Comparing light and noise levels before and after a NICU change of design

Marilyn Aita 1,2,3 · Stephanie Robins 4 · Lyne Charbonneau 4 · Pascal Doray-Demers 5 · Nancy Feeley 3,6,7

Received: 7 April 2020 / Revised: 4 December 2020 / Accepted: 11 February 2021 / Published online: 12 March 2021
© The Author(s), under exclusive licence to Springer Nature America, Inc. 2021

Abstract
Objective To compare light and sound levels before and after a change of design and evaluate these levels considering recommended NICU standards.

Study design A pre-test/post-test design. Light and sound levels were compared between the former open ward (OW) NICU of 34 beds and the current 40-bed unit composed of both pods and single-family rooms (SFR).

Result Light levels were significantly higher in the pod/SFR unit for all levels of care, days of the week and time of the day. These findings could be attributed to the number and configuration of windows in the new pod/SFR unit allowing for more daylight entry compared to the OW. Sound levels were significantly lower in the current NICU (pod/SFR) compared to the former OW.

Conclusion Following the change of design, the pod/SFR unit are less noisy than the OW, although light levels are higher indicating the necessity to measure light levels.

Introduction
Appropriate light and sound levels in the Neonatal Intensive Care Unit [NICU] are essential to promote preterm infants’ growth and development [1–4] and a fundamental consideration in any plan to change the design of a unit [5].

A small change in the NICU light environment creates physiological instability in preterm infants [6] and disrupts their sleep if light protection is insufficient [7]. Similar adverse effects, such as physiological and motor instability [8, 9] and sleep disruption [10] have been reported in preterm infants exposed to NICU sound. These environmental factors could also prevent parents from staying close to their infants [11], while sound restrict their presence [12], and interferes with their sleep in the NICU [13]. An optimal NICU environment includes developmentally appropriate lighting for preterm infants, is exempt of excessive sound [14] and encourages family involvement [15]. In an evidence-based NICU design, light levels should respect diurnal variations and should be adjusted to perform care and procedures, while a combination of environmental control for sound is essential [16]. NICU standards recommend that ambient lighting in the infant care area should be adjustable from ten to 600 lux [17]. White et al. [17] also advise that sound levels should not exceed an hourly average of 45 decibels (dBA) and should never exceed 65 dBA.

In the past few years, many NICUs world-wide have modified their unit configuration from an open ward [OW] design to single-family rooms [SFRs] as the latter has been the recommended NICU design [18–20]. SFRs enable family-centered care [21] and allow for better control of light and...
sound levels and promote families’ involvement [22] Still, a pod design which may consist of a cluster of four to six infants cared for in one space has been recently proposed to optimize infants’ development and interaction with caregivers and avoid the isolation of infants’ that may occur in SFRs if families are not sufficiently present [23]. In the context of a change in design from an OW to 6-bed pods and SFRs at one hospital, the aim of our study was to compare the light and sound levels before and after this NICU change of design and evaluate if these levels respect the recommended NICU standards. We hypothesized that: (a) light levels (in lux) would be more appropriate in the pod/SFR unit compared to the former OW; (b) sound levels (in decibels) would be lower in the pod/SFR unit compared to OW; and (c) the percentage of time light and sound levels would meet the recommended levels would be higher in the pod/SFR unit.

Methods

The study was a pre-test/post-test design and was conducted in a NICU in Montreal, Canada. Ethics approval was obtained from the institutional review board at the study site (Federal Assurance number 0796). In January 2016, the 34-bed OW design NICU moved to a newly constructed unit with a 40-bed combination design consisting of three pods of six beds for intensive level III care, two pods of six beds for intermediate level II care, and 10 SFRs for level I care prior to discharge of the infant (including two isolation rooms) (see Fig. 1 for the pod/SFR unit design). The former OW had all three care levels in one large open space of 400-m²: critical (14 beds), semi-critical (12 beds), and step-down (8 beds). In the pod/SFR unit of 1145-m², infants are admitted to an intensive or intermediate pod and then moved to a SFR when their health status is stable. The nurse-patient ratio remained unchanged between the former OW and the pod/SFR; 1:2 in acute care, 1:3 in intermediate care, and 1:4 in step-down/SFR. In the former unit, nurses sat at a central station at the entry of the NICU and in the new unit nurses sit at stations designed for this use in the pods and at a central station for the SFR area (see Fig. 1). Creating optimal environmental conditions for newborn infants was an important goal in the design of the new NICU, so the Recommended Standards for Newborn ICU Design [17] in addition to the guidelines for design and construction of health care facilities [24] were consulted and recommendations followed. In the pod/SFR unit, indirect ceiling neon and procedural lights were installed beside each infant for care or emergency purposes. In addition,
outside windows were triple glazed and equipped with light filtering blinds with double roller shades (one being a blackout shade). For sound, floors of the pods and SFRs were covered in sound absorbent tiles.

Light and sound measurements

Light levels were measured in lux with the Omega® HB3336-03 light meter in a horizontal plane and sound levels were captured with a dBA-weighted scale sound meter (Sound Examiner SE-402), which measures environmental sound as heard by the human ear [25]. The sound measurements were obtained with one decimal in equivalent level (Leq), which is the appropriate measure to obtain an average sound level. Light and sound levels were recorded over 24 h and for an entire week (7 days). Light levels were recorded every minute and sound levels every second, but for sound a mean was computed every minute for analysis. After measurements were obtained, recordings were downloaded into an Excel spreadsheet for analysis. Measurements in the former and current NICUs were collected over the same months of the year and same time of the day to control for daylight associated with seasonal variations as well as sound associated with nursing workload.

Former NICU

Light and sound levels in the OW were assessed during the summer in 2014, 6 months prior to the NICU’s planned move to the pod/SFR unit configuration. In the OW, light and sound meters were placed in four locations representing the three levels of care: critical, semi-critical, and step-down. These locations were selected as they replicated locations used for a previous evaluation of sound levels conducted by the biomedical department of the hospital.

Current NICU

In the pod/SFR unit, light and sound levels were measured during the summer of 2016, 6 months after the move, which had been delayed from January 2015 to January 2016. Measurements were taken at five different locations representing the same levels of care as in the former unit: critical, semi-critical, and step-down. For critical care, measurements were taken in two different pods composed of six beds, one pod with windows adjacent to an atrium and the other pod with windows exposed to the exterior of the building. For semi-critical care, measurements were obtained in one 6-bed pod, while for the step-down area; measurements were taken in two SFRs—one with a window and the other without.

Analysis

Analysis were conducted with Stata (version 16). Independent Student *t*-test were conducted to compare light and sound levels between the former and current NICUs. A test of variance was conducted to compare variability of measures between the former and current NICUs. The percentage of time light and sound levels exceeded the recommended levels was calculated using the two-tailed proportion *z*-test. These analyses were also performed using nonparametric statistics, and since all findings remained significant, results of parametric statistics are reported. Significance was set at *p* < 0.05 two-sided for all tests.

Findings

A total of 93,620 light readings were collected over both phases of this study. Of these, two light readings from the step-down unit were above 20,000 lux and thus considered outliers and removed from the analysis dataset. In the OW, 43,412 (46.37%) readings of light were captured, and in the pod/SFR unit 50,208 (53.63%). Overall, light readings ranged from 0 to 4030 lux, with a mean of 189.90 and standard deviation of 359.79 lux. For sound, a total of 5,549,651 measurements were captured over both phases of this study. Of these, 114,896 readings were removed from the dataset as there was missing data (no data recorded), leaving 5,434,755 measurements. For the purpose of analysis 4,792,810 measurements were used: 1,953,612 measurements (40.76%) taken in the OW unit, and 2,839,198 in the pod/SFR unit (59.24%). Overall, sound levels ranged from 37.4 to 97.3 dBA with a mean of 53.10 dBA, and standard deviation of 6.80 dBA. Means and standard deviations of light and sound levels over 24 h for every day of the week in the OW and current pod/SFR are shown in Table 1. Means and standard deviations of light and sound per 24 h periods for the three time periods corresponding to the timing of shifts for nursing staff: day (7h30 to 15h30), evening (15h30 to 23h30), and night shifts (23h30 to 7h30) in the OW and current pod/SFR are shown in Table 2.

Light levels

OW versus Pod/SFR

Independent samples *t*-tests demonstrated that overall mean light levels were significantly higher in the pod/SFR unit (253.29 ± 449.62 lux) compared to the previous OW unit (93.74 ± 61.51 lux), *t*(83,289) = 64.15, *p* ≤ 0.001. This finding was the same irrespective of the care level designation. Thus,
Table 1: Means levels of light and sound over 24 h for every day of the week in former NICU (OW) and current NICU (pod/SFR) units.

Level of care	Light (lux)	Sound (dBA)		
	OW Mean (SD)	Pod/SFR Mean (SD)	OW Mean (SD)	Pod/SFR Mean (SD)
Critical				
Sunday	63 (55)	219 (383)	58 (3.7)	50 (5.6)
Monday	66 (30)	296 (457)	59 (3.6)	51 (5.0)
Tuesday	52 (22)	359 (560)	60 (3.9)	50 (5.4)
Wednesday	41 (21)	189 (243)	59 (3.8)	50 (5.2)
Thursday	47 (20)	260 (456)	59 (4.2)	48 (5.2)
Friday	54 (27)	183 (304)	59 (3.7)	50 (5.3)
Saturday	79 (53)	213 (375)	58 (3.4)	49 (5.9)
Semi-critical	120 (49)	407 (510)	60 (3.4)	49 (5.0)
Sunday	114 (50)	507 (611)	60 (3.0)	48 (5.0)
Monday	95 (5)	532 (472)	60 (3.4)	48 (5.1)
Tuesday	170 (53)	336 (403)	60 (2.8)	50 (5.1)
Wednesday	153 (25)	273 (308)	61 (3.0)	49 (4.7)
Thursday	157 (21)	242 (241)	61 (3.7)	50 (4.6)
Friday	60 (25)	246 (281)	62 (3.5)	49 (4.7)
Saturday	100 (20)	710 (798)	62 (3.8)	50 (5.0)
Step down	117 (71)	184 (433)	56 (5.3)	49 (5.2)
Sunday	52 (8)	238 (500)	55 (4.8)	48 (5.0)
Monday	84 (82)	110 (200)	56 (5.3)	48 (5.1)
Tuesday	125 (64)	88 (171)	56 (5.6)	48 (4.6)
Wednesday	151 (66)	212 (572)	56 (5.0)	49 (5.2)
Thursday	142 (67)	249 (525)	58 (5.2)	50 (5.8)
Friday	141 (74)	259 (539)	56 (5.1)	49 (5.3)
Saturday	114 (54)	129 (260)	55 (5.2)	48 (4.9)

aIncludes readings from two different critical care pods.
bIncludes readings from one semi-critical care pod.
cIncludes readings from two different SFRs.

Light levels were also higher in the critical care pods of the new unit (245.79 ± 412.89 lux) compared to the OW unit’s critical care area (54.82 ± 35.13 lux), (t(29,979) = 52.26, p ≤ 0.001; in the semi-critical care pods of the new unit (407.22 ± 510.45 lux) compared to the previous OW unit’s semi-critical care area (120.19 ± 49.50 lux), (t(19,743) = 55.24, p ≤ 0.001; and finally in the SFRs of the new unit (step down care) (183.94 ± 433.82 lux) compared to the OW’s step down area (116.68 ± 71.45 lux), (t(30,563) = 15.80, p ≤ 0.001).

Light variability

To better understand the variability that appeared to be notable in our study, an F-test for equality of variances was performed to test the hypothesis that the variance of the two units differed. In all three care levels of the new pod/SFR unit, that is in critical care, F(20,157, 12,822) = 138.12, p ≤ 0.001, semi-critical care F(10,006, 9737) = 106.35, p ≤ 0.001 and step-down care, F(20,037, 10,526) = 36.86, p ≤ 0.001, there was significantly more variability in light levels compared to the former OW (see Fig. 2).

Light levels versus recommendations

In the respective critical care areas, the current pod/SFR unit had significantly more (11.3%) light readings that surpassed the ambient light recommendation of 600 lux compared to the OW where it never exceeded 600 lux (z = 39.36, p ≤ 0.001). The pod/SFR unit’s semi-critical care pod also had significantly more readings over 600 lux (27.7%) than the OW’s semi-critical area that had none (z = 56.01, p ≤ 0.001), a trend that continued in the SFRs (step down area), where the proportion of light readings over 600 lux was significantly higher (9.5%) than those of the OW which were 0% (z = 32.57, p ≤ 0.001) (See Supplementary file, Table 1).

Table 2: Means levels of light and sound per 24 h period: day (7:30 to 15:30), evening (15:30 to 23:30), and night shifts (23:30 to 7:30) in the former NICU (OW) and current NICU (pod/SFR) units.

Level of care	Light (lux)	Sound (dBA)		
	OW Mean (SD)	Pod/SFR Mean (SD)	OW Mean (SD)	Pod/SFR Mean (SD)
Critical				
Day	69 (32)	368 (403)	59 (3.8)	50 (5.3)
Evening	48 (18)	342 (525)	60 (3.6)	50 (5.4)
Night	48 (45)	28 (48)	58 (3.9)	49 (5.4)
Semi-critical				
Day	131 (54)	741 (540)	61 (3.3)	50 (5.0)
Evening	122 (55)	410 (503)	61 (3.4)	50 (4.8)
Night	108 (35)	78 (144)	60 (3.4)	48 (5.1)
Step down				
Day	141 (62)	309 (495)	57 (5.2)	49 (5.0)
Evening	158 (63)	232 (522)	57 (5.3)	51 (5.6)
Night	48 (24)	13 (36)	54 (5.0)	47 (4.6)

SPRINGER NATURE

Pods versus SFRs

Comparing light data recorded in the pod/SFR in the current NICU, we noticed differences in the estimated means. However, as the two mean distributions overlapped, we could conclude that there was no significant difference between the mean levels observed in the pods and those from the SFR.

Sound levels

OW versus Pod/SFRs

Irrespective of the day of the week, sound levels were always lower in the pod/SFR unit compared to the OW (see Fig. 3). Independent samples t-tests confirmed that this difference was significant overall, with lower levels in the
current unit (49.32 ± 5.28 dBA) compared to the former NICU (58.62 ± 4.64 dBA), \(t(4.8e + 06) = -2.0e + 03, \ p \leq 0.001. \) At every level of care this trend held. Thus, sound levels were lower in the pod/SFR critical care area (49.70 ± 5.43 dBA) compared to the OW unit’s critical care area (58.97 ± 3.83 dBA), \(t(1.9e + 06) = -1.3e + 03, \ p \leq 0.001; \) in the semi-critical pod (49.33 ± 4.99 dBA) compared to the OW unit’s semi-critical care area (60.84 ± 3.41 dBA), \(t(1.2e + 06) = -1.5e + 03, \ p \leq 0.001; \) and finally in the SFRs (48.89 ± 5.24 dBA) versus the OW’s step down area (56.13 ± 5.30 dBA), \(t(1.7e + 06) = -8.7e + 02, \ p \leq 0.001.

Pods versus SFRs

For the comparisons of the mean levels obtained in the pods and SFRs in the current unit, even if there are differences in the estimated means, we could conclude that there was no significant difference between the means as the two distributions overlapped.

Sound levels versus recommendations

Maximum recommended sound levels of 45 dBA were met 100% of the time in the OW for all levels of care (critical, semi-critical, and step-down areas); however, in the pod/SFR unit, minimum levels were only met 76.7%, 79.5% and 75.8% of the time for critical and semi-critical pods as well as the SFRs, respectively (Supplementary files, Table 2). With respect to sound surpassing the recommended upper level of 65 dBA, the former OW had significantly more readings above 65 dBA than the critical care pods (7.1% OW versus 0.7% pods), the semi-critical care pods (11.1% OW versus 0.5% pods) and the SFRs (6.6% OW versus 1.5% SFRs). All differences were statistically significant (\(p \leq 0.001).\)

Discussion

Light levels

Our study findings do not support the hypothesis that light levels would be more appropriate in the pod/SFR unit compared to the former OW nor that the percentage of time light levels would meet the recommended levels would be higher in the current NICU. Light levels were significantly
higher in the pod/SFR unit for all levels of care, days of the week and time of the day. However, these findings should be interpreted with caution as they more likely reflect architectural design decisions and not that light levels are necessarily higher in pods/SFR. These findings could be attributed to the number and configuration of windows in the new pod/SFR unit allowing for more daylight entry compared to the OW. In fact, had the SFR unit rooms with north-facing windows or a suitable window overhang, excessive light entering the rooms could have been avoided. In the former OW, all the windows were located on only one side of the large open space on the only exterior wall therefore limiting daylight entry into many areas of the OW, especially the intermediate and step-down areas that were further from the windows. In contrast, all pods and five of ten SFRs in the new unit have windows either exposed onto an outdoor atrium or a fully exposed exterior wall allowing for more daylight entry (see Fig. 1). The effect of windows on light levels in the current unit is particularly noticeable when comparing the readings taken in a SFR with and without windows. In the SFR without windows (SFR B), light levels never go beyond 10 lux (Tables 3 and 4, Supplementary files). Our findings are consistent with one study where the mean light levels were found to be higher in a SFR unit compared to an OW due to the higher number of windows in the new SFR unit [25]. Windows guarantee the entry of daylight, which is the optimal lighting for care procedures and to observe infants’ skin color [16, 17]. Windows may increase light levels in the NICU but are also recommended so that both professionals and parents have access to daylight for psychological benefits [17]. Nonetheless, control of light levels is important for the wellbeing of the infants.

Seasonal and diurnal variability is also a factor influencing light intensity in the NICU and infants’ exposure to light [26]. In our study light readings from the former and current NICU were taken during the summer when sunny days tend to be more frequent and the days are longer. Our readings reflect the influence of natural light entering the pod/SFR unit as levels of light increased and decreased in a typical diurnal cycle in all three care areas, peaking near 3 pm daily (see Fig. 2). Independent of the day of the week, and without reaching statistically significant differences, light levels were always higher in the semi-critical pod (overall mean of 407 lux) compared to critical care (overall mean of 246 lux), a trend which was also observed for daytime and across weekdays with the highest mean level reaching 741 lux in the semi-critical pod during the day, a mean above the upper recommended ambient level of 600 lux (see Tables 1 and 2). The orientation of the windows to the sun may explain these findings as the entry of light is more direct in this critical care pod compared to the semi-critical care pod. Direct sunlight entering the critical care pod may be more noticeable and prompt NICU nurses and other professionals to close windows blinds to lower both light and heat; whereas in the semi-critical care pod where the light is more indirect, windows blinds may not be closed as often or as much and thus contributing to the higher levels observed. Thus, NICU staff should be aware of the light exposure provided by windows in various areas of their unit in addition to abrupt changes in lighting [27], as small light variations in the NICU have been found to disrupt preterm infants’ physiological stability and sleep [6, 7]. It might be difficult for NICU staff to estimate when light levels are too high, thus regular light meter readings should be readily available for NICU professionals to facilitate appropriate control of the environment. For instance, sound-level system providing direct and visual color feedback to staff when a 50 decibels threshold is exceeded in the NICU was found to successfully reduce sound levels in patient care areas [28]. Also, a noise-sensor light alarm activating in the NICU when noise levels reached more than 65 dBA was reported to decrease noise levels inside incubators [29]. Similar technology could therefore be designed for a continuous reading of NICU light levels and automatic feedback provided to staff.

Due to weather conditions (cloudy, partly cloudy, or sunny), ambient light was occasionally above 600 lux in the current pod/SFR unit. In contrast, light in the OW never surpassed this recommended upper limit (Table 1, Supplementary file). Generally, in the current pod/SFR unit for the critical and semi-critical levels of care, readings were more frequently above 600 lux on sunny days. Still, in the SFR with a window, light levels were on average, frequently higher on partly cloudy days compared to sunny or cloudy days suggesting again that NICU staff or parents, may tend to close blinds more often on sunny days compared to partly cloudy days where daylight enters the unit but it may be less apparent that the level is high. For the SFR without a window, the recommended maximum level of 600 lux was always respected (Table 1, Supplementary file). As suggested, all NICU windows should be equipped with adequate shading [17] to avoid directly exposing infants to direct sunlight and allow for the control of light levels at any time of day.

Sound levels

For sound levels, our findings support the hypothesis that levels would be more appropriate in the pod/SFR unit compared to the former OW and that the percentage of time sound levels would meet the recommended levels would be higher in the current NICU. For every day of the week, every time of the day and for all levels of care, sound levels were significantly lower in the new pod/SFR unit compared to the OW. We also compared sound levels between pods

SPRINGER NATURE
and SFRs. A recent systematic review concluded that sound levels in SFRs or enclosed unit design are usually lower than in OW [19]. More precisely, in one study, the sound level was lower in the SFRs compared to an unoccupied OW (i.e., no patients, no staff) [20] and lower in pods of 6 beds compared to OW of 11 beds [30]. In contrast to our study where no significant difference was found between the 6-bed pods compared to our SFRs for sound levels, two studies reported significantly lower levels in SFRs compared to NICU design similar to pods. Sound levels were reported to be lower in SFR units compared to an 8-bed OW [25] and significantly more time at lower sound levels was observed in the SFRs compared to an OW of six to ten infants [31]. In our study, the critical and intermediate care pods had comparable mean levels of sound to the former NICU (i.e., critical care pods: 50 dBA; semi-critical care pods: 49 dBA; SFRs: 49 dBA). Others reported a significantly higher mean sound level in their critical versus semi-critical care areas of their NICU [32]. In the current NICU the similar levels recorded in the different room configurations (i.e., pods vs. SFRs) and every day of the week may be due to the use of construction materials (i.e., floor, wall materials) meeting the current NICU recommendations, which may contribute to lower sound levels even if there is more than one infant in a pod. The NICU acoustic environment also depends on factors such as sound containment with walls, sound absorption by flooring materials and doors with an acoustic seal that prevent intrusive sounds from entering [17]. It might be that both the unit design as well as the construction materials used in the new unit may be effective in addressing these issues leading to comparable sound levels in the various care areas of our pod/SFR unit.

Our findings are important since lower NICU sound levels are essential to promote preterm infants’ growth and development. Studies report that preterm infants exposed to lower sound levels by wearing earmuffs have longer quiet sleep [33, 34] in addition to improved physiological stability [34], which in turn could limit their energy expenditure and favor growth [35–37]. In addition to appropriate sound levels, it is equally important that preterm infants are exposed to developmentally appropriate auditory experiences during their NICU hospitalization for optimal brain development [38]. Preterm infants are more susceptible to poorer language development which may be attributed to being exposed to high sound levels, as well as low language exposure during their NICU hospitalization. Positive, appropriate auditory stimulation is essential as infants exposed to a higher number of adult words in the NICU were found to have better language and cognitive development at 7- and 18-months corrected age [39].

In the former OW NICU mean sound levels ranged from 54 to 61 dBA and were consistently (100%) above the recommended hourly level of 45 dBA [17], whereas mean levels in our current NICU ranged from 47 to 51 dBA and exceeded 45 dBA no more than 75% of the time. In addition, in the pod/SFR NICU sound levels almost never exceeded 65 dBA (less than 1.1%). Although our mean sound levels in the pod/SFR unit were not always lower than the recommended 45 dBA, we had a significant mean decrease of 7–10 decibels compared to the former OW. Nonetheless, in order to sustain appropriate sound levels in NICUs, there is a need to continue to educate NICU staff and provide reminders to maintain a quiet sound level [40]. Every NICU should have a program of sound control and be aware of the effects of sound on preterm infants.

A significant contribution of our study is both the comparison of light and sound levels between an OW and a pods/SFR NICU, in addition to pods versus SFRs. We found that light levels were higher in the current pod/SFR unit compared to the former OW, which may be explained by not only updated lighting but also a higher number of windows and their orientation to the sun. Accordingly, the higher mean light levels measured in the new pod/SFR unit may reflect architectural design decisions and should not be interpreted to indicate that OWs are more conducive to appropriate light levels. Measurement of the light levels in a vertical plane could have provided, from another angle, more precise information about the sun’s contribution to the intensity of lighting in the pods. Sound levels were significantly lower in the current NICU compared to the former NICU and those levels were similar between pods and the SFRs. Although we collected data on confounding factors which may influence light and sound levels (i.e., numbers of: infants, staff, windows with blinds, ventilators, and phototherapy lamps in function), it was not possible to interpret meaningfully these comparisons between the OW and pods/SFR units. For example, we noted the total of infants hospitalized as well as staff nurses in both the former and current NICU, but those units were not occupied the same way in the pod/SFR unit (i.e., a maximum of six infants and two nurses in the pods; one infant and one nurse in SFR) precluding comparisons with OW.

Recommended light and sound levels should be respected in NICUs to promote infant growth and development as well as to encourage family involvement and optimize work conditions for staff. Future studies should evaluate pod compared to SFRs on preterm infants’ health outcomes as well as parents’ perceptions.

Acknowledgements Kaileen Gattuso, Tara O’Reilly, Mikaela Dimick, Icoquih Badillo-Amberg, Alex Magdzinski, Alvaro Marte, Nahal Siraj Fansia, Christine Genest participated in data collection.

Funding Funded in part by a grant from the Quebec Network on Nursing Intervention Research (RRISIQ). NF was supported by a
Senior Research Scholar Award from the Fonds de recherche du Québec—Santé (FRQS). The funding bodies had no role to play in the design of the study and collection, analysis, and interpretation of data nor in the writing of this manuscript.

Author contributions MA: supervised data collection and analysis and drafted the manuscript with judicious input from all authors (NF, SR, LC, PDD). NF: obtained funding, supervised data collection and analysis. SR: supervised data collection. NF, MA, SR, LC: conceived the study and interpreted the data. PDD: conducted the statistical analysis. All authors read and approved the final manuscript.

Compliance with ethical standards

Conflict of interest The authors declare no competing interests.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

References

1. Aita M, Stremler R, Feeley N, Nuyt AM, Lavallée A. Acceptability to nurses of reducing NICU light and noise levels during skin-to-skin care: A pilot study. Appl Nurs Res. 2019;47:29–31.
2. Altimier L, Kenner C, Damus K. The Wee Care Neuroprotective NICU Program (Wee Care): The Effect of a Comprehensive Developmental Care Training Program on Seven Neuroprotective Care Measures for Family-Centered Developmental Care of Premature Neonates. Newborn Infant Nurs Rev. 2015;15:6–16.
3. Kenner C, Lott JW. Comprehensive neonatal nursing care 5th ed. ed. St. Louis, Mo.: St. Louis, Mo.: Saunders Elsevier; 2013.
4. Lavallée A, De Clifford-Faugère G, Garcia C, Fernandez Oviedo AN, Héon M, Aita M. PART 2: Practice and research recommendations for quality developmental care in the NICU. J Neonatal Nurs. 2019;25:160–5.
5. Denham ME, Bhuselri Y, Lim L. Through the eyes of the user: evaluating neonatal intensive care unit design. Herd. 2018;11:49–65.
6. Zores C, Dufour A, Pebayle T, Langlet C, Astruc D, Kuhn P. Very preterm infants can detect small variations in light levels in incubators. Acta Paediatr. 2015;104:1005–11.
7. Zores C, Dufour A, Pebayle T, Dahan I, Astruc D, Kuhn P. Observational study found that even small variations in light can wake up very preterm infants in a neonatal intensive care unit. Acta Paediatr. 2018;107:1191–7.
8. Kuhn P, Zores C, Pebayle T, Hœft A, Langlet C, Escande B, et al. Infants born very preterm react to variations of the acoustic environment in their incubator from a minimum signal-to-noise ratio threshold of 5 to 10 dBA. Pediatr Res. 2012;71:386–92.
9. Hassanene SM, El Raggal NM, Shalaby AA. Neonatal nursery noise: practice-based learning and improvement. J Matern Fetal Neonatal Med. 2013;26:392–5.
10. Kuhn P, Zores C, Langlet C, Escande B, Astruc D, Dufour A. Moderate acoustic changes can disrupt the sleep of very preterm infants in their incubators. Acta Paediatr. 2013;102:949–54.
11. Heinemann AB, Hellström-Weustas L, Hedberg, Nyqvist K. Factors affecting parents’ presence with their extremely preterm infants in a neonatal intensive care room. Acta Paediatr. 2013;102:695–702.
12. Wigert H, Berg M, Hellström AL. Parental presence when their child is in neonatal intensive care. Scand J Caring Sci. 2010;24:139–46.
13. Edell-Gustafsson U, Angelhoff C, Johnsson E, Karlsson J, Mörelius E. Hindering and buffered factors for parental sleep in neonatal care. A phenomenographic study. J Clin Nurs. 2015;24:717–27.
14. White RD. Designing environments for developmental care. Clin Perinatol. 2011;38:745–9.
15. Johnson BH, Abraham MR, Parrish RN. Designing the neonatal intensive care unit for optimal family involvement. Clin Perinatol. 2004;31:353–82.
16. Shepley MM. Evidence-based design for infants and staff in the neonatal intensive care unit. Clin Perinatol. 2004;31:299–311.
17. White RD, Smith JA, Shepley MM. Recommended standards for newborn ICU design, eighth edition. J Perinatol. 2013;33:52–8.
18. Kuhn P, Sizun J, Casper C. Recommendations on the environment for hospitalised newborn infants from the French neonatal society: rationale, methods and first recommendation on neonatal intensive care unit design. Acta Paediatr. 2018;107:1860–6.
19. O’Callaghan N, Dee A, Philip RK. Evidence-based design for neonatal units: a systematic review. Matern Health Neonatal Perinatol. 2019;5:6.
20. Stevens D, Thompson P, Helseth C, Pottala J. Mounting evidence favoring single-family room neonatal intensive care. J Neonatal Perinat Med. 2015:8:177–8.
21. Stevens DC, Helseth CC, Thompson PA, Pottala JV, Khan MA, Munson DP. A Comprehensive Comparison of Open-Bay and Single-Family-Room Neonatal Intensive Care Units at Sanford Children’s Hospital. Herd. 2012;5:23–9.
22. Servel AC, Rideau Batista Novaes A. Les chambres familiales en néonatologie: essais sur le nouveau-né prématuré, ses parents et l’équipe soignante. Revue systématique de la littérature. Arch de Pédiatrie. 2016;23:921–6.
23. White RD. The next big ideas in NICU design. J Perinatol. 2016;36:259–62.
24. A. I. A. Academy of Architecture for Health, F. G. I. Facilities Guidelines I. Guidelines for design and construction of health care facilities. 2006 ed. ed: Washington, D.C.: American Institute of Architects; 2006.
25. Van Enk RA, Steinberg F. Comparison of private room with multiple-bed ward neonatal intensive care unit. Herd. 2011:5:63.
26. Blackburn S. Environmental impact of the NICU on developmental outcomes. J Pediatr Nurs. 1998;13:279–89.
27. Venkataraman R, Kamaluddeen M, Amin H, Lodha A. Is Less Noise, Light and Parental/Caregiver Stress in the Neonatal Intensive Care Unit Better for Neonates? Indian Pediatr. 2018;55:17–21.
28. Wang D, Aubertin C, Barrowman N, Moreau K, Dunn S, Harrold J. Reduction of noise in the neonatal intensive care unit using sound-activated noise meters. Arch Dis Child Fetal Neonatal Ed. 2014;99:F515–6.
29. Chang YJ, Pan YJ, Lin YJ, Chang YZ, Lin CH. A noise-sensor light alarm reduces noise in the newborn intensive care unit. Am J Perinatol. 2006;23:265–71.
30. Ramm K, Mannix T, Parry Y, Gaffney MP. A comparison of sound levels in open plan versus pods in a neonatal intensive care unit. Herd. 2017;10:30–9.
31. Szmyczak SE, Shellhaas RA. Impact of NICU design on environmental noise. J Neonatal Nurs. 2014;20:77–81.
32. Nieto-Sanjun Barroso A., Quero-Jímenez J., Cantu-Moreno D., Rodríguez-Balderrama I., Montes-Tapia F., Rubio-Pérez N., et al. [Evaluation of strategies aimed at reducing the level of noise in different areas of neonatal care in a tertiary hospital]. Gac Med Mex. 2015;151:741–8.
33. Duran R, Çiftçemir NA, Özbek ÜV, Berberoğlu U, Durankuş F, Süüt N, et al. The effects of noise reduction by earmuffs on the...
physiologic and behavioral responses in very low birth weight preterm infants. Int J Pediatr Otorhinolaryngol. 2012;76:1490–3.

34. Khalesi N, Khosravi N, Ranjbar A, Godarzi Z, Karimi A. The effectiveness of earmuffs on the physiologic and behavioral stability in preterm infants. Int J Pediatr Otorhinolaryngol. 2017;98:43–7.

35. Morris BH, Philbin MK, Bose C. Physiological effects of sound on the newborn. J Perinatol. 2000;20:S55–60.

36. Wachman EM, Lahav A. The effects of noise on preterm infants in the NICU. Arch Dis Child Fetal Neonatal Ed. 2011;96:F305–9.

37. Almadhooob A, Ohlsson A. Sound reduction management in the neonatal intensive care unit for preterm or very low birth weight infants. Cochrane Database Syst Rev. 2015;1:CD010333.

38. McMahon E, Wintermark P, Lahav A. Auditory brain development in premature infants: the importance of early experience. Ann N. Y Acad Sci. 2012;1252:17–24.

39. Caskey M, Stephens B, Tucker R, Vohr B. Adult talk in the NICU with preterm infants and developmental outcomes. Pediatrics. 2014;133:e578–84.

40. Casavant SG, Bernier K, Andrews S, Bourgoin A. Noise in the Neonatal Intensive Care Unit: What Does the Evidence Tell Us? Adv Neonatal Care. 2017;17:265–73.