Pleural complications in patients with coronavirus disease 2019 (COVID-19): how to safely apply and follow-up with a chest tube during the pandemic?

Kenan Can Ceylana, Guntug Batihan*a, Serkan Yazgana, Soner Gürsöya, Sami Cenk Kiraklıb and Sena Atamanc

a Department of Thoracic Surgery, University of Health Sciences Turkey, Dr Suat Seren Chest Diseases and Chest Surgery Training and Research Hospital, Izmir, Turkey
b Department of Chest Diseases, University of Health Sciences Turkey, Dr Suat Seren Chest Diseases and Chest Surgery Training and Research Hospital, Izmir, Turkey

* Corresponding author. Department of Thoracic Surgery, University of Health Sciences Turkey, Dr Suat Seren Chest Diseases and Chest Surgery Training and Research Hospital, Yenisehir, Gaziler Street 331, Izmir 35110, Turkey. Tel: +90-532-5764546; fax: +90-232-4587262; e-mail: gbatihan@hotmail.com (G. Batihan).

Received 7 June 2020; received in revised form 11 August 2020; accepted 14 August 2020

Abstract

OBJECTIVES: Severe acute respiratory syndrome coronavirus 2, a novel coronavirus, affects mainly the pulmonary parenchyma and produces significant morbidity and mortality. During the pandemic, several complications have been shown to be associated with coronavirus disease 2019 (COVID-19). Our goal was to present a series of patients with COVID-19 who underwent chest tube placements due to the development of pleural complications and to make suggestions for the insertion and follow-up management of the chest tube.

METHODS: We retrospectively collected and analysed data on patients with laboratory-confirmed COVID-19 in our hospital between 11 March and 15 May 2020. Patients from this patient group who developed pleural complications requiring chest tube insertion were included in the study.

RESULTS: A total of 542 patients who were suspected of having COVID-19 were hospitalized. The presence of severe acute respiratory syndrome coronavirus 2 was confirmed with laboratory tests in 342 patients between 11 March and 15 May 2020 in our centre. A chest
tube was used in 13 (3.8%) of these patients. A high-efficiency particulate air filter mounted double-bottle technique was used to prevent viral transmission.

CONCLUSIONS: In patients with COVID-19, the chest tube can be applied in cases with disease or treatment-related pleural complications. Our case series comprised a small group of patients, which is one of its limitations. Still, our main goal was to present our experience with patients with pleural complications and describe a new drainage technique to prevent viral transmission during chest tube application and follow-up.

Keywords: Chest tube • Coronavirus disease 2019 • Pleural complication • Severe acute respiratory syndrome coronavirus 2 • Tube thoracostomy

ABBREVIATIONS

- ARDS: Acute respiratory distress syndrome
- COVID-19: Coronavirus disease 2019
- ECMO: Extracorporeal membrane oxygenation
- HEPA: High-efficiency particulate air
- PEEP: Positive end-expiratory pressure
- SARS-CoV-2: Severe acute respiratory syndrome coronavirus 2

INTRODUCTION

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) primarily affects the lower respiratory system. The severity of the clinical presentation ranges from a mild common cold-like illness to severe disseminated viral pneumonia leading to acute respiratory distress syndrome (ARDS) [1–5].

Several complications such as secondary bacterial infections, cardiac arrhythmia, cardiomyopathy, acute kidney injury and liver dysfunction have been shown to be associated with coronavirus disease 2019 (COVID-19); moreover, pleural complications including pneumothorax and pneumomediastinum were also reported [2, 3].

Although there are several guidelines on the application and management of a chest tube during the pandemic, there are no clinical studies in the literature [6–9]. Our goal was to present a series of patients with COVID-19 who underwent chest tube placement due to the development of disease- or procedure-related pleural complications including pneumothorax, parapneumonic effusion, malignant effusion, empyema and haemothorax.

An additional goal was to present our clinical experience and make several suggestions on chest tube placement in patients with COVID-19 in light of the data obtained as a result of the retrospective examinations of these cases.

PATIENTS AND METHODS

This retrospective study was approved by our institutional review board (No. 49109414-604.02).

We retrospectively collected and analysed data on patients who were admitted to our hospital for any reason and who had positive test results for COVID-19 infection at our hospital between 11 March and 15 May 2020. Real-time reverse transcriptase-polymerase chain reaction assays of specimens collected using a nasopharyngeal swab were used to make a diagnosis of infection with SARS-CoV-2.

Treatment and follow-up of the patients with positive test results for SARS-CoV-2 were carried out according to the COVID-19 treatment guideline released from the ministry of health of our country [10]. This guideline includes a combination treatment of hydroxychloroquine 200 mg 2 × 1 po, azithromycin 400 mg po 1 × 1 ± favipiravir (for patients with severe pneumonia).

Patients from this patient group who developed pleural complications requiring chest tube insertion were included in the study. We included complications not only related to COVID-19 or its treatment process but also related to patients’ comorbid conditions (e.g. malign pleural effusion). All of the patients in our case series were hospitalized with suspicion of COVID-19, and chest tube implementation was needed during follow-up.

Patient demographic data, comorbidities, clinical symptoms, laboratory and radiological findings and treatment modalities were obtained, and daily chest tube drainage follow-up information was collected by reviewing medical records.

Patients included in the study were examined as separate groups according to the indications for chest tube placement. Risk factors for the development of pleural complications and the effects of the development of complications on the treatment process were investigated.

Surgical technique

Tube thoracostomy is a surgical procedure that may require urgent application and has the risk of facilitating the spread of SARS-CoV-2 via aerosols and droplets. Although it can be applied by members of various specialties, it was applied only by senior surgical residents or thoracic surgeons and with the fewest number of staff members during the pandemic period in our hospital.

Throughout the pandemic, all chest tube placements were performed by teams of 3 people (surgeon/senior resident, nurse and surgical technician). This team changed weekly and was responsible for all chest tube insertions, dressings and pleural interventions during its tenure. Personal protective equipment included an FFP3 mask, long-sleeved gown and gloves; eye protection was used with all chest tube placement procedures.

Pleural procedures were performed in a well-ventilated operating theatre or at the bedside in the intensive care unit. No other patients were admitted to the operating room for 25 min after the procedure to ensure sufficient change of air.

We used a two-bottle technique in all cases (Fig. 1). In this technique, trap (collection) and underwater seal bottles were used. A high-efficiency particulate air (HEPA) viral filter was placed on the tip of the underwater seal bottle filled only with 200 cc (80%) alcohol instead of water alone. The suction tube can be easily connected to the tip (1) of the filter when it is needed. In our centre, we use a suction regulation bottle (manometer bottle) to maintain...
continuous aspiration, and we have not observed that the HEPA filter makes or requires a change under this pressure.

Follow-up

The thoracic intervention team, which comprises a thoracic surgeon/senior resident, nurse and surgical technician, was established for the evaluation and subsequent follow-up of patients diagnosed with COVID-19 who need surgical pleural intervention. After placement of the chest tube, patients hospitalized in isolated rooms or intensive care units were seen and evaluated twice a day by the thoracic intervention team. This team was also responsible for changing the dressings of patients with chest tubes and terminating the chest tube when necessary. In this way, a small but sufficient number of healthcare professionals had contact with patients diagnosed with COVID-19.

Statistical analyses

Counts and percentages were used to summarize the categorical variables. Medians and interquartile ranges were used to describe continuous variables. SPSS 25.0 (SPSS Inc., Chicago, IL, USA) was used to perform statistical analysis.

RESULTS

A total of 542 patients who were suspected of having COVID-19 were hospitalized. The presence of the SARS-CoV-2 virus was confirmed in our centre by laboratory tests of 342 patients between 11 March and 15 May 2020. A chest tube was applied in 13 (3.8%) of these patients. There were 9 men and 4 women. The median age was 54 years (range 3–94). The main characteristics of these 13 patients are summarized in Table 1. Ten (76.9%) patients had 1 or more comorbidities. The indications for chest tube placement were pneumothorax in 6 (46.1%) patients; pleural effusion in 3 (23%) patients; empyema in 3 (23%) patients; and haemothorax in 1 patient (7.6%). In 4 patients, pneumothoraxes developed during mechanical ventilation. In 1 patient, the pneumothorax was spontaneous. Iatrogenic pneumothorax was seen in 1 patient secondary to the endotracheal intubation.

Table 1: Characteristic features of the patients

Case	Sex	Age	Indication	Localization	Drainage time (days)	Comorbidity	The need for MV	Outcome
1	F	67	Iat pnx	Right	7	DM, HT	Yes	Alive
2	M	68	Pnx	Right	2	Neurological	Yes	Died
3	M	54	Pnx	Right	5	None	No	Alive
4	M	64	Pnx	Right	7	Larynx ca	Yes	Died
5	M	64	Spn pnx	Left	6	Bronchial	No	Alive
6	M	45	Pnx + Emp	Bilateral	20	None	Yes	Died
7	F	45	Empyema	Left	13	CRF	No	Alive
8	M	31	Empyema	Right	24	Neurological	Yes	Alive
9	F	45	Empyema	Right	10	DM	Yes	Alive
10	M	94	PE	Left	4	CRF, CHF	Yes	Died
11	M	69	MPE	Right	7	Bronchial	Yes	Died
12	F	51	MPE	Left	4	Cervical	No	Alive
13	M	48	Haemothorax	Right	10	None	Yes	Died

c: cancer; CHF: congestive heart failure; CRF: chronic renal failure; DM: diabetes mellitus; Emp: empyema; HT: hypertension; Iat: iatrogenic; MPE: malignant pleural effusion; MV: mechanical ventilation; PE: pleural effusion; pnx: pneumothorax; Spn: spontaneous.
and their chest tubes were removed during follow-up. Secondary care unit after the insertion of a chest tube were extubated, secondary to ARDS. Two patients who were taken to the intensive care unit in the days following insertion of the chest tube. During the study period, 6 (46.1%) patients died of respiratory failure due to COVID-19. In our case series, a total of 7 patients had pleural effusions. Three of them had empyema; 2 had malignant effusions; 1 had parapneumonic effusion; and 1 had haemothorax.

It has been shown that viral infections facilitate secondary infections by disrupting mucociliary clearance, weakening neutrophil functions and affecting the functioning of immunological pathways [15–18].

Secondary bacterial infections can also be seen in patients with COVID-19. Zhou et al. [16] demonstrated that 50% of patients with COVID-19 who died had secondary bacterial infections. Wang et al. [17] showed that the most common complications in patients with COVID-19 were bacterial infections (42.8%).

We detected empyema in 4 patients and performed tube thoracostomy. In 1 of these patients, empyema developed secondary to prolonged air leakage after pneumothorax. Despite the complete drainage of the empyema, regular irrigation of the pleural cavity with antibiotic solutions and appropriate antibiotherapy, the mean drainage time was relatively long (16.7 ± 6.3 days).

Prevention is the ideal solution for secondary infections in COVID-19. Several studies have shown the positive effect of empiric antibiotherapy in patients with COVID-19. However, it is extremely important to know institutional antibiograms, local drug resistance and hospital epidemiological prototypes when choosing empiric regimens [18].

Malignant pleural effusion was detected in 2 patients with COVID-19. The respiratory parameters of these patients were poor, and rapid progression of the effusions was observed despite recurrent thoracentesis. Therefore, the chest tube was inserted, and total lung expansion was obtained. Because of the poor general condition of these patients, talc slurry was not administered.

Massive haemothorax was observed in a patient undergoing ECMO with an indication of severe respiratory failure due to ARDS. Haemothorax was unrelated to ECMO cannulation, and there was no history of cardiopulmonary resuscitation. Left-sided tube thoracostomy was performed, and drainage of the haemothorax was obtained.

Low-dose heparin infusion (100 U/kg heparin) was discontinued, and intravenous tranexamic acid (500 mg q8h) was applied. A total of 500 cc of haemorrhagic drainage was observed in the first 2 h. Subsequently, a total of 1000 cc of haemorrhagic fluid drainage occurred in 24 h, and total lung expansion was obtained. No deterioration was observed in the patient’s vital signs with adequate volume replacement. Therefore, no surgical intervention was needed.

Several guidelines and recommendations regarding a chest tube thoracostomy and patient follow-up during the pandemic have been published. Common points in these guidelines include avoiding unnecessary surgical interventions and working with a
small but sufficient number of medical staff [6–8]. SARS-CoV-2 is not currently considered to be airborne, but several procedures like chest tube placement would be associated with aerosol generation. Therefore, pleural procedures must be performed in a well-ventilated room, and personal protective equipment must be worn [19, 20].

Another important point is the risk of droplet spread from the chest tube. Traditional underwater seal drainage bottles have a port that allows the air to escape and, if necessary, to connect to the low-pressure wall suction. In the absence of air leakage, aerosolization can occur inside the drainage bottle, and air escaping through the port would increase the risk of viral transmission. This issue has been noted before, and various suggestions have been made in the literature [7–9].

Bilkhu et al. [7] suggested connecting the chest drain to the wall suction and attaching a viral filter to the suction port of a chest drainage bottle or using digital drain circuits to reduce droplet spread from the chest tube.

Barr et al. [9] described the ‘rocket tubing’ method to prevent viral transmission through the port of the drainage bottle. Coronaviruses are ~65–125 nm in size, and unlike standard filters, HEPA filters have a minimum 99.97% efficiency rating for removing particles >30 nm [21, 22]. Therefore, we used the HEPA filter mounted double-bottle technique described above is an effective and feasible method for preventing viral transmission during the follow-up of patients with chest tubes during the pandemic.

The trap was filled only with 200 cc (80%) of alcohol instead of water alone, and a HEPA filter was placed on the tip of the underwater seal bottle. Pieracci et al. recommended adding dilute sodium hypochlorite (household bleach) to the water seal chamber [6, 10]. Although there is no evidence for which one is more protective, we preferred adding alcohol into the trap bottle instead of sodium hypochlorite because it is easily accessible and applicable in our clinic.

To prevent viral dissemination, pleural catheters, which may be inserted with the Seldinger technique, are preferred instead of traditional chest tube systems, especially in loculated pleural effusions. In our centre, only the 8-Fr size of these types of catheters is available. Consequently, they often become occluded in a short time after the placement, and repeated surgical procedures can be required. Therefore, we did not use this type of catheter with any patients during the study period; however, it should be kept in mind as an alternative method for the drainage of pleural effusions.

In our centre, we organized a pleural intervention team of 3 people: a surgeon, a nurse and a surgical technician. The primary purpose was to limit and regulate the contact of healthcare professionals with patients diagnosed with COVID-19.

During the pandemic, COVID-19 (or related symptoms) was not observed in any of the healthcare professionals in our surgical team.

Limitations

This study has several limitations. First, it is a retrospective case series, and there is no control group. Second, our study includes a heterogeneous group of patients; therefore, it is difficult to make comprehensive inferences. Besides, the number of patients in our case series is small, so the conclusions of the study are limited. However, the primary purpose of our research was to provide knowledge and share our experiences under pandemic conditions rather than to produce statistically significant results.

CONCLUSION

The chest tube can be applied with various indications in patients diagnosed with COVID-19.

The addition of pleural complications such as pneumothorax, empyema or haemothorax can create a serious burden for patients whose respiratory parameters are already on the border.

Broad participation in the studies by multiple centres is needed to identify statistically significant risk factors and to offer ways to prevent pleural complications.

Another important point is to prevent aerosol and droplet transmission in patients with COVID-19 during the placement of the chest tube and during the follow-up period.

COVID-19 transmission was not detected in the members of our surgical team who dealt with pleural complications during the study period. Therefore, we believe that the HEPA filter mounted double-bottle technique described above is an effective and feasible method for preventing viral transmission during the follow-up of patients with chest tubes during the pandemic.

However, the effectiveness and success of this technique need to be supported by other studies.

ACKNOWLEDGEMENTS

The authors thank all COVID-19 Working Group members at the University of Health Sciences Turkey, Dr Suat Seren Chest Diseases and Surgery, Medical Practice and Research Center: Berrin Akkol, Nimet Aksel, Ceyda Anar, Gülşüm Ari, Sena Ataman, Çağrı Atasoy, Aysu Ayranç, Günseli Balci, Özgür Batum, Mualla Elif Bayındır, Aylin Bayram, Eda Bayramıç, Can Biçmen, Semra Bilçeroglu, Seda Bilgen, Melih Büyükşirin, Emel Cireli, Melis Çaktu, Kadri Çırak, Pınar Çimen, Cançal Çolak, Hasan Demir, Emine Sena Dikmen, Özlem Ediboğlu, Ece Elburus, Ismail Erikiç, Sinem Ermin, Mücahit Fidan, Mine Gayaf, Gamze Göker, Mutlu Onur Gücşav, Filiz Gülçavalcı, Burçin Hakoğlu, Lütfü Can Hepduman, Osman Hılimiğlu, Gülistan Karadeniz, Fatmanur Kazankaya, Merve Keskin, Ş.Cenk Kirakli, Ali Korkmaz, Berna Kürmürçüoğlu, Nil Kuranoglu, Aydan Mertoğlu, Zeynep Öndes, Hilal Özdemir, Serir Özkan, Gülü Güçlü, Bilge Sala, Hülya Şahin, Yosun Şan, Günes Senol, İmren Taşkın, Dursun Tatar, Züher Sarp Taymaz, Serpil Tekgül, İhsan Topaloğlu, Fevziye Tuksavul, Betül Tunçel, Merve Türk, Damla Serce Unat, Özgür Uslu, Fatma Demirci Üçsalar, Yelda Varol, Enver Yalnız, Özlem Yalnız, Ilkın Yetiştir, Celalettin Yılmaz, Nisel Yılmaz, Ufuk Yılmaz.

Conflict of interest: The authors declare that there is no conflict of interest.

Author contributions

Kenan Can Ceylan: Conceptualization; Data curation; Formal analysis;
Methodology; Supervision; Validation. Gunhtug Batihan: Conceptualization; Data curation; Formal analysis; Investigation; Methodology; Validation; Visualization; Writing--original draft. Serkan Yzag: Conceptualization; Data curation; Investigation; Supervision; Writing--review & editing. Soner Gürsoy: Conceptualization; Data curation; Supervision; Validation; Writing--original draft; Writing--review & editing. Sami Cenk Kirakli: Conceptualization; Investigation; Methodology; Supervision. Sena Ataman: Conceptualization; Data curation; Investigation; Supervision; Writing--review & editing.
Reviewer information

European Journal of Cardio-Thoracic Surgery thanks Emmanouil Ioannis Kapetanakis, Rita Daniela Francesca Marasco and the other, anonymous reviewer(s) for their contribution to the peer review process of this article.

REFERENCES

[1] World Health Organization. 2020. Coronavirus disease 2019 (COVID-19): situation report, 74. World Health Organization.
[2] Huang C, Wang Y, Li X, Ren L, Zhao J, Hu Y et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet 2020;395:497–506.
[3] Gattinoni L, Chiuriello D, Rossi S. COVID-19 pneumonia: ARDS or not? Crit Care 2020;24:154.
[4] Higny J, Feye F, Foret F. COVID-19 pandemic: overview of protective-ventilation strategy in ARDS patients. Acta Clin Belg 2020;27:1–3.
[5] Li X, Ma X. Acute respiratory failure in COVID-19: is it “typical” ARDS? Crit Care 2020;24:198.
[6] Pieracci FM, Burlew CC, Spain D, Livingston DH, Bulger EM, Davis KA et al. Tube thoracostomy during the COVID-19 pandemic: guidance and recommendations from the AAST Acute Care Surgery and Critical Care Committees. Trauma Surg Acute Care Open 2020;5:e000498.
[7] Bilkhu R, Viviano A, Saftic I, Bille A. COVID-19 outbreak control, example of ministry of health of Turkey. Turk J Med Sci 2020;50:489–94.
[8] Yuki K, Fujioji M, Koutsogiannaki S. COVID-19 pathophysiology: a review. Clin Immunol 2020;215:108427.
[9] Jain A, Doyle Dl. Stages or phenotypes? A critical look at COVID-19 pathophysiology. Intensive Care Med 2020;46:1494–5.
[10] Hsu CW, Sun SF. Iatrogenic pneumothorax related to mechanical ventilation. World J Crit Care Med 2014;3:8–14.
[11] Ioannidis G, Lazaridis G, Baka S, Mposkouvias I, Karavalis V, Lampaki S. Barotrauma and pneumothorax. J Thorac Dis 2015;7:38–43.
[12] Hendaus MA, Jomha FA. Covid-19 induced superimposed bacterial infection. J Biomol Struct Dyn 2020;25:1–10.
[13] Zhou F, Yu T, Du R, Fan G, Liu Y, Liu Z et al. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study. Lancet 2020;395:1054–62.
[14] Wang L, He W, Yu X, Hu D, Bao M, Liu H et al. Coronavirus disease 2019 in elderly patients: characteristics and prognostic factors based on 4-week follow-up. J Infect 2020;80:639–45.
[15] Rawson TM, Moore LSP, Zhu N, Ranganathan N, Skolimowska K, Gilchrist M et al. Bacterial and fungal co-infection in individuals with coronavirus: a rapid review to support COVID-19 antimicrobial prescribing. Clin Infect Dis 2020; doi:10.1093/cid/ciaa530.
[16] Setti L, Passarini F, Gennaro GD, Barbieri P, Perrone MG, Borelli M et al. Airborne transmission route of COVID-19: why 2 meters/6 feet of interpersonal distance could not be enough. Int J Environ Res Public Health 2020;23:17.
[17] Kohanski MA, Palmer JN, Cohen NA. Aerosol or droplet: critical definitions in the COVID-19 era. Int Forum Allergy Rhinol 2020;10:968–9.
[18] Shereen MA, Khan S, Kazmi A, Bashir N, Siddique R. COVID-19 infection: origin, transmission, and characteristics of human coronaviruses. J Adv Res 2020;24:91–8.
[19] Vijayan VK, Paramesh H, Salvi SS, Dalal AAK. Enhancing indoor air quality—the air filter advantage. Lung India 2015;32:473–9.