Data Article

Llaima volcano dataset: In-depth comparison of deep artificial neural network architectures on seismic events classification

João Paulo Canário⁴, Rodrigo Fernandes de Mello⁵, Millaray Curilem⁶, Fernando Huenupan⁶, Ricardo Araujo Rios⁴

⁴Department of Computer Science, Federal University of Bahia, Brazil
⁵Institute of Mathematics and Computer Science, University of São Paulo, Brazil
⁶Department of Electrical Engineering, Universidad de La Frontera, Chile

ARTICLE INFO

Received 14 April 2020
Accepted 20 April 2020
Available online 30 April 2020

Keywords:
Volcano Monitoring
Time Series Analysis
Time Series modelling
Neural Network

ABSTRACT

This data manuscript presents a set of signals collected from the Llaima volcano located at the western edge of the Andes in Araucania Region, Chile. The signals were recorded from the LAV station between 2010 and 2016. After individually processing and analyzing every signal, specialists from the Observatorio Vulcanológico de los Andes Sur (OVDAS) classified them into four class according to their event source: i) Volcano-Tectonic (VT); ii) Long Period (LP); iii) Tremor (TR), and iv) Tectonic (TC). The dataset is composed of 3592 signals separated by class and filtered to select the segment that contains the most representative part of the seismic event. This dataset is important to support researchers interested in studying seismic signals from active volcanoes and developing new methods to model time-dependent data. In this sense, we have published the manuscript “In-Depth Comparison of Deep Artificial Neural Network Architectures on Seismic Events Classification” [1] analyzing such signals with different Deep Neural Networks (DNN). The main contribution of such manuscript is a new DNN architecture called SeismicNet, which provided classification results among the best in the literature without demanding explicit signal pre-

* Corresponding author: João Paulo Canário Federal University of Bahia, Department of Computer Science, Av Adeamar de Barros Avenue, 40170-110 Salvador, Brazil, Phone: +5571999538382
E-mail addresses: joao.canario@ufba.br, jopacanario@gmail.com (J.P. Canário).

https://doi.org/10.1016/j.dib.2020.105627
2352-3409/© 2020 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license. (http://creativecommons.org/licenses/by/4.0/)
processing steps. Therefore, the reader is referred to such manuscript for the interpretation of the data.
© 2020 The Authors. Published by Elsevier Inc.
This is an open access article under the CC BY license. (http://creativecommons.org/licenses/by/4.0/)

### Specifications table

| Subject                  | Environmental Science and Artificial Intelligence |
|--------------------------|--------------------------------------------------|
| Specific subject area    | Application of neural networks in the modelling of seismic patterns |
| Type of data             | 1D Time-Frequency Signal                          |
| How data were acquired   | The signals produced by different seismic events were collected from the Llaima volcano located at the western edge of Andes in Araucania Region (S 38°41’ - W 71°44’), Chile. The state agency responsible for monitoring this volcano and processing its signals is the Observatorio Vulcanológico de los Andes Sur (OVDAS). |
| Parameters for data collection | Raw signals |
| Description of data collection | The signals were collected from LAV, that is one of the seven seismic stations of Llaima, being recorded in terms of the Z-vertical component from 2010 to 2016, sampled at 100Hz and filtered using a 10th-order Butterworth bandpass filter in range [1, 10] Hz in order to preserve the bandwidth that contains the range of interest. The Z-vertical component contains all the necessary information to classify the event types, according to the specialists from OVDAS. |
| Data source location     | Llaima Volcano located at the western edge of Andes in Araucania Region (S 38°41’ - W 71°44’), Chile |
| Data accessibility       | The data is available at http://dx.doi.org/10.17632/dv8nwld35k.1 |
| Related research article | Canário, J. P., de Mello, R. F., Curilem, M., Huenupan, F., Rios, R. A. (2020). In-Depth Comparison of Deep Artificial Neural Network Architectures on Seismic Events Classification. Journal of Volcanology and Geothermal Research. |

### Value of the data

- The data can inspire new methods to detect and classify signals.
- Our data is helpful to understand different patterns from volcano seismic events.
- The data is important to compare the behavior of similar events from different active volcanoes.

### 1. Data description

The signals were collected from the Llaima volcano located at the western edge of Andes in Araucania Region (S 38°41’ - W 71°44’), Chile. Due to its location, Llaima is considered a touristic attraction surrounded by villages, whose productive activity is mainly farming and livestock. Aiming at providing some security level for the people living in the neighborhood, there is a state agency, called OVDAS (Observatorio Vulcanológico de los Andes Sur), that monitors not
only Llaima but also other 42 volcanoes over the whole country. In particular for Llaima, OVDAS performs constant surveillance with 9 stations that continuously gather seismic activity with a 24/7 monitoring service as represented in Fig. 1.

In particular, the data presented here takes into account the signals under the types Volcano-Tectonic (VT), Long Period (LP), Tremor (TR) and Tectonic (TC) collected from LAV, one of the seven seismic stations of Llaima, given it was the most complete dataset studied by the specialists from OVDAS, being recorded in terms of the Z-vertical component from 2010 to 2016, sampled at 100Hz and filtered using a 10th-order Butterworth bandpass filter in range [1, 10] Hz in order to preserve the bandwidth that contains the range of interest. The Z-vertical component contains all the necessary information to classify the event types, according to the specialists from OVDAS [1,3]. As a preprocessing step, a total of 3592 signals were normalized using their
maximal values and organized into four classes with the following amounts: VT - 304, LP - 1310, TR - 490, and TC - 1488.

As mentioned in the Table of Specifications and discussed in [1,3], Volcano-Tectonic (VT) refers to brittle failure of rocks inside of the volcanic building, which is the same type of event that happens along purely tectonic faults. VT events are also resultant of normal tectonic forces inside volcanoes due to the stress caused by the movement of fluids into pre-existing cracks. This sort of activity presents a frequency pattern with a broadband spectrum that may reach 10 Hz. Events under the type Long Period (LP) correspond to the resonating of magma and gases inside volcanic conduits toward the surface, whose spectral pattern is narrower than VT and it is mainly bounded in [0.5, 5] Hz. LP events are usually observed before volcanic eruptions, being an important indicator of relevant imminent activities. However, its occurrence is also part of the normal background seismicity at many volcanoes. Non-magmatic processes may also produce LP events, such as the case of glacier movements. Tremor (TR) are continuous and high-amplitude signals produced by several different processes, such as long-lived resonance due to extended flow of magma movement through cracks, the continuous incidence of other events such as VT and LP when closely spaced over time. Their broadband spectrum is usually in range [0.5, 3.0] Hz, being slowly attenuated at the end of the event. At last, Tectonic (TC) are not related to volcanic activities, being a typical result of the dynamics of geological faults. TCs may be the result of local, regional or even distant activities in terms of the epicenter location. When the TC event is detected far from the epicenter, it has lower frequencies than nearby ones. According to the proximity of the source, TC could be misclassified as LP or VT. The spectral content of TC is similar to VT, being characterized by an impulsive beginning and an exponential decay, on the other hand it typically carries more energy which is made evident by analyzing the signal amplitudes. Fig. 2 illustrates an example of every seismic class available in our dataset along with their spectrogram to better describe the signal behavior.

2. Experimental design, materials, and methods

As discussed in [1,2], these volcano signals were analyzed using different approaches: raw data, spectrograms, and Wavelets. Experiments presented in [2] were designed to analyze the DNN performance while discriminating seismic activities through two common network architectures: a 2D Convolutional Neural Networks (CNN) and the Long Short-Term Memory (LSTM) network [2]. In manuscript [1], we extended the analysis presented in [2] by comparing those two architectures against the Multilayer Perceptron (MLP), which would be the simplest and most common baseline to take into account. Finally, a new architecture was proposed in [1], referred to as SeismicNet, allowed to accurately classify signals without demanding explicit signal pre-processing steps though.

As commonly performed in the literature of artificial neural networks, we analyzed in [1] multiple architecture settings in terms of their loss (or accuracy performance if we consider its complement) in order to estimate the best as possible configurations to address the problem of interest. The obtained results were evaluated by using measures traditionally computed to assess supervised learning tasks. Firstly, the generalization capability of our predictive models was studied by sampling the original dataset using a 10-fold cross-validation strategy. Then, the results were organized into one-vs-all contingency matrices containing the number of true positive (TP), true negative (TN), false positive (FP), and false negative (FN). Based on such matrices, we calculated four measures: i) Accuracy; ii) Error; iii) Specificity; and iv) F1-score. In addition to these indices, the Kappa coefficient was also used to measure the general agreement between our classification system and experts, emphasizing the results were not obtained by chance.

According to the results presented in [1], one may notice the adjusted models were capable of modeling and learning from seismic signals, by providing high accuracies within the interval of 96.2% and 98.10%. Moreover, the other classification measures (Recall, Specificity, Kappa, and F1-score) were greater than 90%, whereas the error for all models were, at most, 3.1%. It is also important to emphasize the outstanding results obtained with SeismicNet, showing classification
Fig. 2. Samples of Llaima signals to represent every seismic event class: (A) LP; (B) TR; (C) VT; and (D) TC.
rates greater than 90%, without transforming the signals to images (outputs from Fourier and Wavelet transforms) before proceeding with the training phase.

Acknowledgments

This work was supported by FAPESP (Sao Paulo Research Foundation) under grants 2013/07375-0 and CAPES (Coordination for the Improvement of Higher Education Personnel – Brazilian federal government agency). We gratefully acknowledge OVDAS (Observatorio Volcanologico de los Andes del Sur) for providing the datasets and the support from NVIDIA Corporation with the donation of the Titan V GPU used for this research. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of FAPESP, NVIDIA and CAPES.

Conflict of Interest

The authors declare that they have no known competing financial interests or personal relationships which have, or could be perceived to have, influenced the work reported in this article.

References

[1] J.P. Canário, R.F. de Mello, M. Curilem, F. Huenupan, R.A. Rios, In-Depth Comparison of Deep Artificial Neural Network Architectures on Seismic Events Classification, Journal of Volcanology and Geothermal Research (2020).

[2] Curilem, M., Canário, J.P., Franco, L., Rios, R.A., Using CNN to classify spectrograms of seismic events from Llaima Volcano (Chile). In 2018 International Joint Conference on Neural Networks (IJCNN) (pp. 1-8). IEEE, https://doi.org/10.1109/IJCNN.2018.8489285.

[3] M. Curilem, R.F. de Mello, F. Huenupan, C. San Martin, L. Franco, E. Hernández, R.A. Rios, Discriminating seismic events of the Llaima volcano (Chile) based on spectrogram cross-correlations, Journal of Volcanology and Geothermal Research 367 (2018) 63–78 https://doi.org/10.1016/j.jvolgeores.2018.10.023.