Inhibition of Notch uncouples Akt activation from hepatic lipid accumulation by decreasing mTorc1 stability

Utpal B Pajvani1, Li Qiang1, Thaned Kangsamaksin2–4, Jan Kitajewski2,3, Henry N Ginsberg1 & Domenico Accili1

Increased hepatic lipid content is an early correlate of insulin resistance and can be caused by nutrient-induced activation of de novo lipogenesis. This raises the question of whether the developmental Notch pathway has metabolic functions in adult mouse liver. Acute or chronic inhibition of Notch dampens hepatic glucose production and increases Akt activity and may therefore be predicted to increase hepatic lipid content. Here we show that constitutive liver-specific ablation of Notch signaling, or its acute inhibition with a decoy Notch1 receptor, prevents hepatosteatosis by blocking mTor complex 1 (mTorc1) activity. Conversely, constitutive Notch gain of function causes fatty liver through constitutive activation of mTorc1, an effect that is reversible by treatment with rapamycin. We demonstrate that Notch signaling increases mTorc1 complex stability, augmenting mTorc1 function and sterol regulatory element binding transcription factor 1c (Srebp1c)-mediated lipogenesis.

The developmental Notch pathway has metabolic functions in adult mouse liver. Acute or chronic inhibition of Notch dampens hepatic glucose production and increases Akt activity and may therefore be predicted to increase hepatic lipid content. Here we show that constitutive liver-specific ablation of Notch signaling, or its acute inhibition with a decoy Notch1 receptor, prevents hepatosteatosis by blocking mTor complex 1 (mTorc1) activity. Conversely, constitutive Notch gain of function causes fatty liver through constitutive activation of mTorc1, an effect that is reversible by treatment with rapamycin. We demonstrate that Notch signaling increases mTorc1 complex stability, augmenting mTorc1 function and sterol regulatory element binding transcription factor 1c (Srebp1c)-mediated lipogenesis. These data identify Notch as a therapeutically actionable branch point of metabolic signaling at which Akt activation in the liver can be uncoupled from hepatosteatosis.

Obesity-induced metabolic diseases, including type 2 diabetes and nonalcoholic fatty liver disease, will be a defining healthcare issue of the 21st century. Aside from surgical remediation, progress in the treatment of these diseases with lifestyle or pharmacologic therapies has been disappointing.

Under normal physiological conditions, activation of the nutrient-sensing mTorc1 pathway, a substrate of insulin-Akt signaling, stimulates hepatic de novo lipogenesis. For example, treatment of hepatocytes with rapamycin, an allosteric inhibitor of mTorc1, prevents insulin activation of the lipogenic transcription factor Srebp1c (also known as Srebf1), and liver-specific knockout of the mTorc1-defining component Raptor protects from diet-induced hepatosteatosis, probably as a result of reduced lipogenesis.

Increased hepatic lipid content is an early correlate of insulin resistance and can be caused by nutrient-induced activation of de novo lipogenesis. This raises the question of whether the developmental Notch pathway has metabolic functions in adult mouse liver. Acute or chronic inhibition of Notch dampens hepatic glucose production and increases Akt activity and may therefore be predicted to increase hepatic lipid content. Here we show that constitutive liver-specific ablation of Notch signaling, or its acute inhibition with a decoy Notch1 receptor, prevents hepatosteatosis by blocking mTor complex 1 (mTorc1) activity. Conversely, constitutive Notch gain of function causes fatty liver through constitutive activation of mTorc1, an effect that is reversible by treatment with rapamycin. We demonstrate that Notch signaling increases mTorc1 complex stability, augmenting mTorc1 function and sterol regulatory element binding transcription factor 1c (Srebp1c)-mediated lipogenesis. These data identify Notch as a therapeutically actionable branch point of metabolic signaling at which Akt activation in the liver can be uncoupled from hepatosteatosis.

The developmental Notch pathway has metabolic functions in adult mouse liver. Acute or chronic inhibition of Notch dampens hepatic glucose production and increases Akt activity and may therefore be predicted to increase hepatic lipid content. Here we show that constitutive liver-specific ablation of Notch signaling, or its acute inhibition with a decoy Notch1 receptor, prevents hepatosteatosis by blocking mTor complex 1 (mTorc1) activity. Conversely, constitutive Notch gain of function causes fatty liver through constitutive activation of mTorc1, an effect that is reversible by treatment with rapamycin. We demonstrate that Notch signaling increases mTorc1 complex stability, augmenting mTorc1 function and sterol regulatory element binding transcription factor 1c (Srebp1c)-mediated lipogenesis. These data identify Notch as a therapeutically actionable branch point of metabolic signaling at which Akt activation in the liver can be uncoupled from hepatosteatosis.
independent. These results establish Notch as a unique pharmacological target in liver whose inhibition can prevent the twin abnormalities of hepatic insulin resistance—excessive glucose production and fatty liver—through its ability to uncouple Akt signaling from mTor activation.

RESULTS
Liver Notch activity is altered by nutrient state
Notch1 activation in liver, as reflected by cleavage at Val1744 and increased expression of Notch target genes, increases with fasting\(^1\). When we analyzed wild-type mice after overnight fasting, we found that refeeding quickly (0–2 h) repressed Notch1 cleavage and target gene expression, but this decline was followed by a second peak of Notch activation at later time points (4–12 h) (Fig. 1a and Supplementary Fig. 1). Notably, Notch activation during fasting coincided with increased gluconeogenic gene expression, whereas the second peak coincided with maximal expression of Srebplc and its transcriptional targets (Fasn (fatty acid synthase) and Acc1 (acyl-CoA carboxylase)) (Fig. 1b–d), as well as activation of mTor (data not shown). Notch target gene induction was absent in livers from mice lacking hepatocyte Rbp-Jk (L-Rbpj mice) (Fig. 1e)\(^1\), confirming that classical Notch activation is affected by the nutritional state.

We hypothesized that nutrient excess would similarly stimulate hepatic Notch signaling. We analyzed livers from mice fed a high-fat diet (HFD), which showed greater Notch activation than those of chow-fed littermates (Fig. 1f,g), as did hepatocytes and livers from leptin signaling–deficient mice (Supplementary Fig. 1)\(^1\), confirming that L-Rbpj mice are protected from obesity-induced insulin resistance\(^1\). Given the interaction between Rbp-Jk and Foxo1 (ref. 21), we hypothesized that L-Rbpj mice would have similarly increased hepatic triglyceride levels as mice lacking Foxo proteins\(^22\).\(^23\). Notably, despite unchanged body weight, L-Rbpj mice showed lower HFD-induced hepatic steatosis (Fig. 2a,b) that was due to a 30–50% reduction in hepatic triglyceride level (Fig. 2c). The livers of L-Rbpj mice were smaller, without changes in adiposity (Fig. 2d) or serum lipid concentrations (Supplementary Fig. 2), as compared to those

These results suggest a cell-autonomous dysregulation of Notch signaling in obesity and fatty liver.

L-Rbpj mice show resistance to diet-induced fatty liver
As whole-body disruption of Rbp-Jk results in embryonic lethality\(^13\), we generated mice harboring a liver-specific knockout (L-Rbpj) in which hepatocyte Rbp-Jk was deleted postnatally\(^17\) and that had full recombination by 6–12 weeks of age\(^20\). We have previously shown that L-Rbpj mice are protected from obesity-induced insulin resistance\(^17\). The livers of L-Rbpj mice would similarly stimulate hepatic triglyceride levels (Fig. 2d) or serum lipid concentrations (Supplementary Fig. 2), as compared to those

Figure 1 Regulation of hepatic Notch activity.
(a) Western blot analysis and quantification of the cleaved Notch1 receptor (NICD) in livers from fasted and refed 9-week-old, chow-fed C57BL/6 mice (n = 4 per group), AU, arbitrary units. (b–d) Expression of insulin (b), Srebplc (c) and Notch (d) targets in livers from fasted and refed 9-week-old, chow-fed C57BL/6 mice (n = 5 per group). (e) Regulation of Notch targets in 16-week-old L-Rbpj and control (Cre–) mice fasted for 16 h or fasted for 16 h followed by a 4-h refeeding (n = 6 per group). The fasted values are set arbitrarily to 1 for both groups. *P < 0.05 compared to fasted mice (two-way analysis of variance (ANOVA)). (f,g) Western blot analysis of cleaved Notch1 (f) and Notch target gene (g) expression in livers from fasted 16-week-old chow-fed or HFD-fed mice (n = 12 per group). *P < 0.05 compared to chow-fed mice (two-way ANOVA). (h,i) Notch target expression in livers from db/db or control (db/+) mice (n = 5 per group; h) or in hepatocytes from ob/ob or control (wild-type (WT)) mice (i), all of which were analyzed after being in the ad libitum state (triplicate wells representative of two individual experiments). *P < 0.05 compared to db/+ or WT mice (two-way ANOVA). All data are shown as the mean ± s.e.m.
of Cre− control mice. Moreover, Rbp-Jk knockout prevented steatosis in mice lacking hepatic Foxo1 (Supplementary Fig. 3a)22, suggesting that Notch regulates hepatic lipid deposition independently of its known coactivation of Foxo1 targets37.

To understand the lower hepatic triglyceride content in L-Rbpj mice, we systematically evaluated cell-autonomous and non–cell autonomous pathways that regulate hepatic triglyceride accumulation8,24. Very low density lipoprotein secretion was unaltered in L-Rbpj mice (Supplementary Fig. 3b), as were plasma triglyceride concentrations, after olive oil gavage (Supplementary Fig. 3c). Liver expression of the fatty acid oxidation enzymes encoded by Acox and Cpt1a, serum ketone concentrations and β-oxidation of exogenous fatty acids in primary hepatocytes were similarly unchanged (Supplementary Fig. 3d–f). Next we studied lipogenesis and found that the livers of L-Rbpj mice showed lower expression of Fasn and Acc1 compared to those of Cre− control mice (Fig. 2e), leading to less fatty acid synthesis (Fig. 2f). In primary hepatocytes derived from L-Rbpj mice, we found impaired insulin-dependent Srebplc expression and activity as assessed by lower expression of Fasn promoter–driven luciferase containing a consensus Srebplc binding site25 (Fig. 2g,h). Alternative proliferator activated receptor γ (Ppar-γ) signaling26, were unaltered in L-Rbpj mice (Supplementary Fig. 3g). We observed a similar protection from insulin resistance associated with lower hepatic triglyceride concentrations after short-term HFD feeding (Supplementary Fig. 4). These data indicate that blocking hepatic Notch reduces hepatic triglyceride concentrations, probably because of impaired Srebplc-mediated lipogenesis.

We next studied two pathways that converge on Srebplc: the insulin-Akt pathway and the nutrient-mTORc1 pathway3. Livers of L-Rbpj mice show higher insulin sensitivity with higher Akt phosphorylation at the Pdk1 site, Thr308 (ref. 17). Conversely, we noted repressed mTORc1 signaling, as indicated by lower phosphorylation of the mTOR and mTORc1 targets, p70 S6 kinase (S6k) and 4e-bp1, after either 5 h or 16 h of fasting as compared to Cre− control mice (Fig. 2i and data not shown)27–29. To determine whether this effect was cell autonomous, we isolated primary hepatocytes from Cre− and L-Rbpj littermates that were transferred to serum-free medium for 16 h followed by the addition of 10 nM insulin for 6 h before lysis (triplicate wells representative of two individual experiments). tx, treatment. (i) Western blot analysis of Akt and mTOR signaling in livers from HFD-fed mice analyzed after a 16-h fast. (j) Western blot analysis of Akt and mTORc1 targets, p70 S6K and 4e-bp1, after either 5 h or 16 h of fasting as compared to Cre− control mice (Fig. 2j) and Cre− 16-week-old mice (triplicate wells representative of two individual experiments). cpm, counts per million.

Figure 2 Lower hepatic triglyceride concentrations in HFD-fed L-Rbpj mice. (a) Body weights of male Cre− and L-Rbpj mice (n = 6–8 per group) on standard chow or HFD started at weaning. (b) H&E staining from age- and weight-matched L-Rbpj and Cre− mice on HFD. Scale bars, 100 μm. (c,d) Hepatic lipids (inset shows an expanded graph for cholesterol; e) and liver and epidydimal white adipose tissue (WAT) weights (f) in mice fed HFD from weaning and analyzed at 20 weeks and after a 16-h fast (n = 8 per group). (e,f) Hepatic lipogenic protein expression (e) and de novo lipogenesis (f, left) in livers from 20-week-old, HFD-fed mice analyzed after a 16-h fast followed by a 6-h refeeding (n = 7 per group). FA, fatty acid; prot, protein. (f, right) De novo lipogenesis in hepatocytes from chow-fed L-Rbpj and Cre− 16-week-old mice (triplicate wells representative of two individual experiments). cpm, counts per million. (g,h) Basal and insulin-stimulated Srebplc expression (g) and Fasn–luciferase (Fasn–luc) activity (h) in primary hepatocytes from chow-fed 16-week-old Cre− and L-Rbpj/littermates that were transferred to serum-free medium for 16 h followed by the addition of 10 nM insulin for 6 h before lysis (triplicate wells representative of two individual experiments). tx, treatment. (i) Western blot analysis of Akt and mTOR signaling in livers from HFD-fed mice analyzed after a 5-h fast. (j) Western blot analysis of Akt and mTORc1 targets, p70 S6K and 4e-bp1, after either 5 h or 16 h of fasting as compared to Cre− control mice (Fig. 2i) and Cre− 16-week-old mice (triplicate wells representative of two individual experiments). cpm, counts per million. (k) Basal and insulin-stimulated Fasn–luciferase activity in primary hepatocytes from chow-fed 16-week-old Cre− and L-Rbpj/littermates that were transferred to serum-free medium for 16 h followed by the addition of 10 nM insulin for 6 h before lysis (triplicate wells representative of two individual experiments). tx, treatment. (l) Western blot analysis of Akt and mTORc1 targets, p70 S6K and 4e-bp1, after either 5 h or 16 h of fasting as compared to Cre− control mice (Fig. 2j) and Cre− 16-week-old mice (triplicate wells representative of two individual experiments). cpm, counts per million. *P < 0.05, **P < 0.01 compared to Cre− mice or hepatocytes (two-way ANOVA). All data are shown as the means ± s.e.m.
Hepatic Notch1 induces mTorC1 signaling and fatty liver

Our loss-of-function studies suggest that Notch signaling is permissive for mTorC1 activation and diet-induced steatosis. We thus tested whether Notch gain of function would be sufficient to induce fatty liver in vivo. Chow-fed mice transduced with an adenovirus encoding constitutively active Notch1 (N1-IC) showed higher liver weight and triglyceride levels than mice transduced with control (GFP) adenovirus (Fig. 4a–c) without concomitant changes in body weight or composition (data not shown). Livers from N1-IC adenovirus–transduced mice had higher Srebplc cleavage, resulting in increased expression of Srebplc and Fasn (Fig. 4d,e). Consequently, primary hepatocytes from mice transduced with the N1-IC adenovirus showed greater lipogenesis (Supplementary Fig. 6a). Notably, N1-IC expression did not alter lipogenic gene expression or hepatic triglyceride levels in L-Rbpj mice and hepatocytes or affect fatty-acid synthesis in hepatocytes derived from L-Rbpj mice (Fig. 4f,g and Supplementary Fig. 6b), suggesting that Notch-induced lipogenesis requires Rbp-JK, which is similar to its activation of hepatic glucose production15.

Notch–induced lipogenic gene expression paralleled higher hepatic mTorC1 activity in fasted and, more markedly, refed mice (Fig. 4h), which is consistent with enhanced physiologic regulation of mTorC1. In hepatoma cells and mouse primary hepatocytes, activation of mTorC1 signaling by insulin and amino acids was potentiated by N1-IC (Fig. 4i), resulting in Srebplc cleavage and activation (Fig. 4j and Supplementary Fig. 6c). These data suggest that Notch modulates, but does not over-ride, endogenous mTor regulation in a cell-autonomous manner.

Inhibition of mTor prevents Notch-induced fatty liver

To test the hypothesis that Notch induction of lipogenic gene expression and fatty liver requires mTorC1 signaling, we cotransfected hepatoma cells with Fasn–luciferase and shRNA to Raptor32, the defining component of the mTorC1 complex, and then transduced the cells with the N1-IC adenovirus. Notch–induction of Fasn–luciferase activity was potentiated by insulin but was reversed by Raptor knockdown or treatment with rapamycin (Fig. 5a and Supplementary Fig. 7). Similarly, Notch induction of endogenous Fasn in primary hepatocytes was augmented by insulin and suppressed by rapamycin (Fig. 5b), suggesting that N1-IC–induced Fasn expression is mTorC1 dependent.

On the basis of these data, we hypothesized that the higher lipogenic gene expression and fatty liver in mice transduced with N1-IC adenovirus would be ameliorated by rapamycin treatment. Indeed, Notch–mediated hepatic steatosis was completely reversed by rapamycin treatment (Fig. 5c). The effect of rapamycin was specific to Notch induction of lipogenic genes, as Heyl and Hey1 were unaffected (Fig. 5d). Similarly, although rapamycin induced mild glucose intolerance (data not shown)33, N1-IC adenovirus–transduced mice showed further exacerbation of glucose intolerance (Fig. 5e,f). These data show that Notch-induced hepatic steatosis, but not hyperglycemia, is prevented by mTor inhibition.

Notch increases mTorC1 complex stability

To study the mechanism of altered Notch–induced mTorC1 activation, we examined mTor component expression in livers of HFD-fed L-Rbpj mice. We found unchanged levels of the shared mTor1 and mTor2 components, mTor and Gβl, and the mTor2–specific component Rictor but a reduction in the levels of Raptor protein (Fig. 6a) independent of changes in Raptor mRNA levels (data not shown),
suggested that the effects of Rbp-Jk deficiency on Raptor are post-transcriptional. Conversely, mice transduced with N1-IC adenovirus demonstrated higher liver Raptor protein expression as compared to control mice transduced with GFP adenovirus (Fig. 6b). We found a similar increase in the amount of endogenous Raptor protein in hepatoma cells (Fig. 6c) and primary hepatocytes (data not shown) from mice transduced with the N1-IC adenovirus without changes in Raptor mRNA levels (Supplementary Fig. 8a). Transient transfection of Raptor cDNA in primary hepatocytes showed a similar effect, demonstrating that the action of Notch is independent of locus

Figure 4 Activation of hepatic Notch increases mTor1 activity, lipogenic gene expression and steatosis in chow-fed mice. (a–c) Oil Red O staining (a), weight (b) and lipid content (c) in livers of mice fasted for 16 h (the inset shows an expanded graph for cholesterol (chol)) 7 d after adenoviral delivery of GFP (control) or N1-IC (n = 6 per group). Scale bars, 100 μm. (d,e) Western blot analysis (d) and gene expression analysis (e) in livers of mice transduced with GFP or N1-IC adenovirus analyzed after a 16-h fast followed by a 2-h refeeding. (n = 6 per group). (f) Hepatic triglyceride content 7 d after GFP or N1-IC adenovirus transduction in fasted 24-week-old chow-fed Cre– and L-Rbpj mice fasted for 16 h. (g) De novo lipogenesis in hepatocytes isolated from L-Rbpj and Cre– mice after transduction with GFP (arbitrarily set to a value of 1) or N1-IC adenovirus and incubation with 10 nM insulin (triplicate wells representative of two individual experiments). (h) Western blot analysis and quantification of the bands from livers of mice transduced with GFP or N1-IC adenovirus and either fasted for 16 h or refed for 2 h. (i) Western blot analysis of FAO hepatoma cells transduced with Fc (–) or N1-IC adenovirus, incubated in serum-free and amino acid–free medium for 4 h and treated with 10 nM insulin or a 4× amino acid (aa) mixture for 4 h. (j) Fasn-luciferase assays in FAO hepatoma cells transduced with N1-IC, Notch1 decoy or Fc (control) adenovirus and treated with 10 nM insulin. *P < 0.05, **P < 0.01, ***P < 0.001 compared to Fc or GFP adenovirus (two-way ANOVA). Protein expression was normalized to either actin or tubulin. The mice analyzed were 8-week-old C57BL/6/6 males unless otherwise indicated. All data are shown as the means ± s.e.m.

Figure 5 mTor inhibition prevents Notch-induced fatty liver. (a) Fasn-luciferase in FAO hepatoma cells transduced with either scrambled (scr) or Raptor shRNA, transduced with either Fc (–) or N1-IC adenovirus, serum starved overnight and then treated for 6 h with 10 nM insulin. (b) Gene expression in primary hepatocytes after transduction with GFP (–) or N1-IC adenovirus followed by incubation with 10 nM insulin with or without 25 nM rapamycin (triplicate wells representative of two individual experiments). (c,d) Hepatic triglyceride content (c) and gene expression (d) in rapamycin-treated Fc adenovirus– or N1-IC adenovirus–transduced mice analyzed after a 16-h fast followed by 6 h of refeeding. (e,f) Glucose tolerance test (e) and the area under the curve (AUC) from the glucose tolerance test in mice transduced with Fc (arbitrarily set to a value of 1 for both treatments) or N1-IC adenovirus and injected daily with rapamycin or vehicle. The mice analyzed were 10-week-old, short-term (3 weeks) HFD-fed C57BL/6 males. *P < 0.05, **P < 0.01, ***P < 0.001 compared to Fc adenovirus–transduced cells or mice (two-way ANOVA). NS, not significant. All data are shown as the means ± s.e.m.
Figure 6 Notch induces mTorc1 complex stability. (a) Western blot analysis of liver proteins from HFD-fed L-Rbpj and control mice fasted for 5 h (the mTor and actin blots are reproduced from Fig. 2). (b) Western blot analysis of liver proteins from chow-fed, 12-week-old C57BL/6 male mice transduced with Fc or N1-IC adenovirus analyzed at day 7 after overnight fasting. (c) Western blot analysis of FAO hepatoma cells transduced with either Fc or N1-IC adenovirus with or without treatment with MG132 for 4 h. (d) Western blot analysis of primary hepatocyte transduced with Raptor cDNA and then transduced with Fc or N1-IC adenovirus and treated for 2 h with cycloheximide (CHX). (e) Fasn-luciferase activity in FAO hepatoma cells transduced with the Fasn-luciferase reporter and cotransduced with Fc or N1-IC adenovirus and either GFP or Raptor. Twenty-four hours after transduction, hepatoma cells were transferred to serum-free medium for 16 h and then treated with 10 nM insulin for 6 h before lysis. ***P < 0.001 compared to Fc adenovirus (two-way ANOVA). The data are shown as the means ± s.e.m. (f, g) Western blot analysis of HEK293 cells (f) or primary hepatocytes (g) transduced with Flag-tagged Raptor (Raptor-Flag) followed by transduction with GFP or N1-IC adenovirus and immunoprecipitation with Flag-specific antibody. Protein expression was normalized to either actin or tubulin. (h) Schematic diagram outlining the effects of Notch on hepatic glucose and lipid metabolism.

effects (Supplementary Fig. 8b). Notably, the effect of N1-IC was not recapitulated by proteosomal inhibition with MG132 (Fig. 6c) but was reversed by treatment of hepatocytes with the protein synthesis inhibitor cycloheximide (Fig. 6d).

Raptor overexpression was insufficient to induce Fasn-luciferase, whereas coexpression of N1-IC and Raptor produced a synergistic effect (Fig. 6e), which is consistent with previous work that Raptor overexpression does not increase mTorc1 function per se34. Likewise, overexpression of Raptor was insufficient to activate mTorc1 in either primary hepatocytes or HEK293 cells (data not shown). We conclude that Notch induction of Raptor expression parallels but does not cause increased mTorc1 activation and hypothesis that increased Raptor expression is secondary to higher mTorc1 complex stability. Indeed, we found that Notch overexpression increased the association among mTorc1 components in HEK293 cells (Fig. 6f) regardless of whether Raptor (Supplementary Fig. 8c) or mTor (Supplementary Fig. 8d) was immunoprecipitated. We observed similar mTorc1 stabilization in FAO hepatoma cells (Supplementary Fig. 8e) and mouse primary hepatocytes (Fig. 6g). In addition, Notch-stabilized mTorc1 complexes were resistant to increasing concentrations of CHAPS detergent, which is known to disrupt the mTor-Raptor interaction (Supplementary Fig. 8f)34–36. These data indicate that Notch stabilizes and activates mTorc1, resulting in increased de novo lipogenesis and fatty liver.

DISCUSSION

The role of developmental pathways in the metabolic homeostasis of adult tissues is only beginning to be appreciated17,37. We have shown that genetic or pharmacologic inhibition of Notch protects from diet-induced glucose intolerance in a Foxo1-dependent manner without effects on body weight or adiposity17. We demonstrate here a similar protection from fatty liver with inhibition of hepatic Notch signaling. We did not expect this result, as inhibition of hepatic Foxo1 is associated with increased hepatic lipid deposition22,23,38, an effect of shifting hepatic carbon flux from glucose to lipid production, as has been seen in other recently described mouse models39,40. In this regard, it seems that chronic (as in L-Rbpj mice) or acute (using Notch decoy) Notch inhibition achieves the long-sought goal of decreasing hepatic glucose production without compensatory increases in hepatic lipid content. Notably, GSIs induce fatty liver, but they do so in a Notch-independent fashion (U.B.P., unpublished data), which is consistent with the idea that substrates of γ-secretase include Notch-unrelated pathways and restricts the repertoire of therapeutically viable Notch inhibitors that can be pursued for treatment of metabolic disease. Nonetheless, the many potential benefits of Notch inhibition, which include the amelioration of atherosclerosis41, provide a strong rationale to pursue Notch inhibition as a treatment of the metabolic syndrome42.

The identification of Notch as a regulator of carbon flux toward hepatic glucose or lipid production (Fig. 6h) is a conceptual advance, as is the finding that a molecular pathway thought to be specialized toward differentiation is regulated by physiologic (fasting and refueling), as well as pathologic (insulin resistance), metabolic cues in hepatocytes. We hypothesize that in the overfed and insulin-resistant state, Notch signaling is inappropriately activated and reprises its developmental interactions with Foxo1 and mTorc1. The mechanisms underlying nutritional activation of hepatic Notch require further clarification. For example, it should be determined whether Notch activation in the hepatocyte requires input from neighboring hepatocytes or other resident liver cells (for example, endothelial, stellate or Kupffer cells, among others). Similarly, which of the five Notch ligands drives signaling in response to nutrients is unknown, and the possibility that different ligands signal in different metabolic states to direct carbon flux or drive differentiation is teleologically attractive.

Besides the further validation of hepatic Notch as a therapeutic target, our data demonstrate a physiologic, and potentially pharmacologic, means of regulating mTorc1 activity and lipogenesis. Previous studies have indicated that tight control of hepatic mTorc1 signaling is crucial for hepatic lipid metabolism43,44. The tandem, but not necessarily related, findings of mTorc1 stabilization and activation by Notch deserve further study. Since the identification of Raptor as the
mTORc1-regulatory subunit, it has been known that the mTor-Raptor association is sensitive to detergent concentrations\(^{38}\); subsequent reports have confirmed this finding and identified potential post-translational modifications of Raptor\(^{35,36,45}\), but none of these modifications has been shown to mediate the mTor-Raptor interaction. How Notch induces mTorc1 stability is unknown, but the demonstration that Raptor protein, but not mRNA, expression is decreased in L-Rbpj mice and that cycloheximide prevents Notch-induced stabilization indicates that a transcriptional target(s) of Notch regulates complex stability.

In summary, Notch antagonism uncouples Akt from mtor activation, suggesting that Notch antagonists from oncology and neuro-science\(^{46,47}\) may be repurposed to treat fatty liver and diabetes. Furthermore, as Notch-mediated mTorc1 activation does not seem to be cell-type specific, modulators of mTorc1 processing and degradation may be a therapeutic avenue to block mTorc1 activity without the metabolic liabilities of current mTor inhibitors\(^{33,48}\).

METHODS

Methods and any associated references are available in the online version of the paper.

ACKNOWLEDGMENTS

This work was supported by US National Institutes of Health grants DK093604 (U.B.P.), DK57539 (D.A.), HL06245 (J.K.) and DK63608 (Columbia Diabetes Research Center). We thank D. Conlon, C. Eng, I. Goldberg, R. Haeseler and I. Tabas, as well as members of the Accili, Kitajewski and Ginsberg laboratories, for insightful discussion of the data. We acknowledge excellent technical support from A. Flete, T. Kolar and J. Lee, as well as plasmids from D. Sabatini (Whitehead Institute) and B. Spiegelman (Dana-Farber Cancer Institute).

AUTHOR CONTRIBUTIONS

U.B.P. designed and performed experiments, analyzed data and wrote the manuscript. I.Q. and T.K. designed and performed experiments and analyzed data. J.K., H.N.G. and D.A. designed the studies, analyzed the data and wrote the manuscript.

COMPETING FINANCIAL INTERESTS

The authors declare no competing financial interests.

Reprints and permissions information is available online at http://www.nature.com/reprints/index.html.

1. Wang, Y.C., McPherson, K., Marsh, T., Gortmaker, S.L. & Brown, M. Health and economic burden of the projected obesity trends in the USA and the UK. Lancet 378, 815–825 (2011).
2. Hay, N. & Sonenberg, N. Upstream and downstream of mTOR. Genes Dev. 18, 1926–1945 (2004).
3. Li, S., Brown, M.S. & Goldstein, J.L. Bifurcation of insulin signaling pathway in hepatic steatosis and insulin resistance: lessons from genetically engineered mice. J. Clin. Invest. 118, 829–838 (2008).
4. Peterson, T.R. & Stork, D. Non-cell autonomous defects in the Notch signaling pathway contribute to obesity. J. Biol. Chem. 285, 35245–35248 (2010).
5. Wang, Y.P. & Stork, D. Regulation of mTORC1 by raptor Ser863 and Raptor protein, but not mRNA, expression is decreased in L-Rbpj mice and that cycloheximide prevents Notch-induced stabilization indicates that a transcriptional target(s) of Notch regulates complex stability.

© 2013 Nature America, Inc. All rights reserved.
ONLINE METHODS

Antibodies. We purchased antibodies to pAKt (http://www.cellsignal.com/products/2963.html), p70 S6k (http://www.cellsignal.com/products/9205.html), total p70 S6k (http://www.cellsignal.com/products/9202.html), pmTor (http://www.cellsignal.com/products/5536.html), total mTor (http://www.cellsignal.com/products/2983.html), p-e-bp1 (http://www.cellsignal.com/products/2553.html), total e-bp1 (http://www.cellsignal.com/products/9644.html), Raptor (http://www.cellsignal.com/products/2280.html), Rictor (http://www.cellsignal.com/products/2114.html), GβL (http://www.cellsignal.com/products/3274.html), fatty acid synthase (http://www.cellsignal.com/products/3189.html), acetyl-CoA carboxylase (http://www.cellsignal.com/products/3676.html), tubulin (http://www.cellsignal.com/products/2148.html) and actin (http://www.cellsignal.com/products/8456.html) from Cell Signaling, antibodies to Flag M2 (http://www.sigmaaldrich.com/catalog/product/sigma/f1804) and c-Myc (http://www.sigmaaldrich.com/catalog/product/sigma/c9956) from Sigma, antibodies to Sreb1p (http://www.novusbio.com/SREBP1-Antibody-2A4_NB860-582.html) from Novus and antibodies to Val1744-cleaved Notch1 (http://www.abcam.com/Notch1-antibody-Cleaved-Val1744-ab52301.html) from Abcam. All antibodies were used at 1:1,000 dilution in Tris-buffered saline plus Tween-20 (TBS-T) containing 1% BSA, except for the antibodies to Flag M2 (1:5,000, TBS-T and 1% BSA) and c-Myc (1:3,000, TBS-T and 1% BSA).

In vivo inhibitor studies. We suspended dibenzazepine (Syncrom: 2 μmol per kg body weight), a GSI, and rapamycin (Enzo: 2 μg per kg body weight) in vehicle (0.5% Methocel E4M (wt/vol; Colorcon) and 0.1% Tween-80 (Sigma solution)) and sonicated for 2 min to achieve a homogeneous suspension before daily (for 5 d) intraperitoneal injection.

Experimental animals. We crossed albumin-Cre [http://www.cellsignals.com/products/3274.html], fatty acid synthase [http://www.cellsignal.com/products/2114.html], GβL [http://www.cellsignal.com/products/2983.html], p4e-bp1 [http://www.cellsignal.com/products/2983.html], tubulin [http://www.cellsignal.com/products/2148.html] and actin [http://www.cellsignal.com/products/8456.html] from Cell Signaling, antibodies to Flag M2 [http://www.sigmaaldrich.com/catalog/product/sigma/f1804] and c-Myc [http://www.sigmaaldrich.com/catalog/product/sigma/c9956] from Sigma, antibodies to Sreb1p [http://www.novusbio.com/SREBP1-Antibody-2A4_NB860-582.html] from Novus and antibodies to Val1744-cleaved Notch1 [http://www.abcam.com/Notch1-antibody-Cleaved-Val1744-ab52301.html] from Abcam. All antibodies were used at 1:1,000 dilution in Tris-buffered saline plus Tween-20 (TBS-T) containing 1% BSA, except for the antibodies to Flag M2 (1:5,000, TBS-T and 1% BSA) and c-Myc (1:3,000, TBS-T and 1% BSA).

Hepatocyte studies. We isolated primary hepatocytes from male wild-type C57BL/6 (strain #662) and male leptin-deficient (strain #632) mice purchased from Jackson Liaes. The Columbia University Institutional Animal Care and Use Committee approved all animal procedures.

Metabolic analyses. We measured blood glucose concentration by glucose meter (OneTouch) and plasma insulin concentration by ELISA (Millipore). We performed glucose tolerance tests after a 16-h (6 p.m. to 10 a.m.) fast using intraperitoneal injection of 2 g per kg body weight glucose. We extracted hepatic lipids, normalized them to either liver weight or protein content and confirmed them visually by Oil Red O staining of snap-frozen liver sections. We used colorimetric assays to measure triglyceride (Thermo), cholesterol E (Wako) and nonesterified fatty acid (Wako) content. We determined hepatic hepatic de novo lipogenesis by measuring the amount of newly synthesized fatty acid, as resolved by thin-layer chromatography (TLC), in the liver 1 h after intraperitoneal injection of 1 mCi of 3H2O (ref. 26). The triglyceride secretion rate was measured after injection of Poloxamer 407 with serial measurement of plasma triglycerides.

Luciferase assays. We transfected Lipofectamine 2000 (Invitrogen) FAO hepatoma cells or primary hepatocytes with a luciferase construct (Addgene, 8890) containing the proximal (−220 to +25) Fasn promoter sequence. In some experiments we cotransfected plasmids containing shRNA to Raptor (Addgene, 21339 or 21340) or Rictor (Addgene, 21341) with scrambled shRNA (Addgene, 1864) as a control and/or transduced cells with N1-IC or control (Fc) adenovirus. Twenty-four hours after transfection, FAO cells or primary hepatocytes were serum-free medium for 16 h and then treated with 10 nM insulin (Sigma) for 6 h before lysis and luciferase measurements as described.

Immunoprecipitation. We lysed HEK293 cells, FAO cells and primary hepatocytes in 0.3% or 0.6% CHAPS-containing buffer, followed by immunoprecipitation at a multiplicity of infection (MOI) of 5 and FAO hepatoma cells at an MOI of 200 to achieve 90–100% infection efficiency as assessed by GFP expression. For in vivo studies, we injected 1 x 10^9 purified viral particles (Viraquest) per g body weight through the orbita; we performed metabolic analysis on days 3–5 and euthanized the mice at day 7 or 14 after injection. We limited our analyses to mice showing twofold to fivefold hepatic Notch1 overexpression or detectable hepatic Notch decay or Fc expression by western blotting.

Statistical analyses. We used two-way ANOVA to analyze the data. All western blots were quantified using NIH ImageJ software. All data are shown as the means ± s.e.m.