The current status and associated factors of fatigue in Chinese patients with gout: A cross-sectional study

CURRENT STATUS: POSTED

Jiaxin Guo
Affiliated Hospital of Nantong University

Wei Zhou
Affiliated Hospital of Nantong University

Mei He
Affiliated Hospital of Nantong University

Jianlin Gao
Affiliated Hospital of Nantong University

Yilin Wang
Affiliated Hospital of Nantong University

Rui Zhao
Affiliated Hospital of Nantong University

Jiefu Liu
Affiliated Hospital of Nantong University

Ting Fu
Affiliated Hospital of Nantong University

Juan Ji
Affiliated Hospital of Nantong University

Yanfeng Bao
Affiliated Hospital of Nantong University

Xingyu Ge
Affiliated Hospital of Nantong University

Liren Li
Affiliated Hospital of Nantong University
Zhifeng Gu
Affiliated Hospital of Nantong University

Chen Dong
Affiliated Hospital of Nantong University

dongchensc@126.com Corresponding Author
ORCiD: https://orcid.org/0000-0003-4975-6426

DOI:
10.21203/rs.2.23942/v1

SUBJECT AREAS
Anesthesiology & Pain Medicine

KEYWORDS
Gout, Fatigue, Health-related quality of life, Pain, Sleep quality, psychological factors
Abstract

Background
Fatigue is a common symptom in patients with rheumatism that is easy to ignore. In the absence of previous studies, our study aims to investigate the fatigue status, explore the potential predictors of fatigue and the effects of fatigue on health-related quality of life (HRQoL) among Chinese gout patients.

Method
This cross-sectional study was conducted from the Affiliated Hospital of Nantong University. A series of questionnaires were applied: Fatigue Scale-14 (FS-14), the 10 cm visual analog scale (VAS), the Patient Health Questionnaire (PHQ-9), the Generalized Anxiety Disorder questionnaire (GAD-7), the Pittsburgh Sleep Quality Index (PSQI), Health Assessment Questionnaire (HAQ), the Short Form 36 health survey (SF-36). Laboratory examinations were taken to obtain some biochemical indicators. Independent samples t-test, Mann-Whitney U-test, Chi-square analysis, Pearson /Spearman correlation, Stepwise linear regression and binary logistic regression were used to analyze the data.

Results
410 gout patients were included in this study. Among them, more than 50% patients reported physical fatigue in FS-14, severe disease, poor psychological status and reduced HRQoL were associated with fatigue. Multiple stepwise linear regression and binary logistic regression were applied and showed that pain, sleep quality, anxiety and depression were the potential predictors of fatigue. In addition, we found that the more severe the fatigue, the lower the patient’s HRQoL.

Conclusions
Fatigue among gout patients is exceedingly common. The results of this study suggested that rheumatologists should pay closely attention to gout patients who suffer from serious fatigue, especially those with pain, poorer sleep quality, anxiety and depression.

Significance And Innovations
1. We firstly reported the relationship between fatigue and gout, fatigue is exceedingly common among gout patients.
2. We firstly reported that pain, sleep quality, anxiety and depression were the potential predictors of fatigue in gout patients.

3. We firstly investigated the effects of fatigue on health-related quality of life among gout patients, we found that fatigue is closely related to health-related quality of life (HRQoL), the more severe the fatigue, the lower the patient’s HRQoL.

1. Introduction
Gout is a type of repetitive, inflammatory, metabolic disorder disease due to the crystallization of uric acid in joints and soft issues with certain familial aggregation and certain genetic predisposition, which is closely related to hyperuricemia, uric acid product excessive and/or uric acid metabolism reduction(1). In recent years, with the improvement of people's living standard and the change of diet, the prevalence of gout in the world is increasing steadily(2, 3). The prevalence of gout to be 1.14 per 100 in china(4). Gout is not only associated with complications such as diabetes and hypertension, but also lead to gout nephropathy, even renal insufficiency and disability, these problems seriously affect the quality of life and bring serious burden to the social economy and endanger the family(5, 6).

Gout patients regularly suffer from signs and symptoms of gout, the swelling and pain of joint and deformity cause different degrees of dysfunction, leading to patients' cannot take care of themselves(7). A research provides a result that physical and mental health assessments play an important role in measuring disease and making clinical treatment decision(8). Our previous research also showed that excruciating arthritic pain and injury impose a huge physical and mental burden on gout patients, leading to functional disability and adverse psychological states such as anxiety and depression, and lower quality of life than healthy person(9, 10). These studies showed us that the quality of life in gout patients is very poor and need more attention.

Fatigue, which is an important component of health-related quality of life, is only rarely assessed and remains poorly understood. As a health problem, fatigue is a prevalent phenomenon among many patients with chronic, metabolic, rheumatic, inflammatory arthritis diseases, such as chronic obstructive pulmonary disease, diabetes, rheumatoid arthritis, systemic lupus erythematosus and
osteoarthritis(11-14). While fatigue is usually regarded as a fairly somatic phenomenon, they often report fatigue as one of their most debilitating symptoms(15). We all know, symptoms of fatigue, pain, depression and anxiety are common symptom may contribute to work impairment in chronic health conditions. In chronic fatigue syndrome, fatigue lower labor productivity, increased the economic burden, it represent an important cause of impaired quality of life(16).

Fatigue has poor effect on patients' clinical disease state, psychological function and quality of life. Gout, as a chronic, metabolic, rheumatic, inflammatory arthritis diseases, yet there are currently no known reported studies about fatigue in gout patients, especially from China, the relationship between influence factor and fatigue among gout patients has not yet been fully explored. Thus, the objectives of this study were (1) to describe the status of fatigue in gout; (2) to explore the independent associate factors for fatigue in gout patients.

2. Methods

2.1 Participants

We conducted a cross-sectional study among patients with gout fulfilling the American College of Rheumatology (ACR) criteria (1977 and 2015) for gout. Gout patients were inpatients or outpatients of Rheumatology setting from October 2016 to February 2018 at Affiliated Hospital of Nantong University. A total of 427 gout patients were consecutively recruited to participate in this study and 411 (96.25% of the patients) complete the relevant questionnaire under the researchers’ supervision. Patients were excluded based on either of the following: (1) under 18 years old; (2) hearing and cognitive impairment; (3) not complete the questionnaire. All other patients were included. The study was approved by the Ethics Committee of the Affiliated Hospital of Nantong University (2017-K003), and a written informed consent was obtained from each gout patient participant.

2.2 Demographics and clinical characteristics

Demographic characteristics and clinical variables were measured using a baseline questionnaire. Demographic variables included sex, age, body mass index (BMI), place of residence, education level, marital status, employment, yearly per capita income, hospitalization, tobacco and alcohol usage, comorbidities, and family history. Clinical variables contained the following: the presence or absence
of tophi, stage of disease, disease duration, etc. Several serological markers including erythrocyte sedimentation rate (ESR), C-reactive protein (CRP), and serum Uric Acid (sUA) were examined in this study. All demographic, clinical, and laboratory data were collected at the same time point.

2.3 Clinical measurements

The Visual Analogue Scale (VAS) was used to assess total pain. Patients were asked to estimate their experiences of total pain during the last week, the score ranges from 0–10, with higher score indicating more severe pain(17).

2.4 Psychological functional status:

Fatigue was assessed with the Fatigue Scale-14 (FS-14). FS-14 includes a two-factor solution (physical and mental fatigue) was used to assess fatigue (0= no fatigue, and 1=severe fatigue)(18). Fatigue is calculated by summation of the scores of the individual items (scores range from 0-14, with higher scores indicating more severe tired).

The patient’s level of anxiety was measured by the Generalized Anxiety Disorder questionnaire (GAD-7). The scale has 7 items and each item scored from 0 (not at all) to 3 (nearly every day), the total score of each item can measures of the severity of anxiety. (Scores range from 0-21, with higher scores indicating severe anxiety). The GAD-7 have good reliability and validity(19).

The Patient Health Questionnaire (PHQ-9) was applied to measure the patient’s level. The scale has 9 items and each item scored from 0 (not at all) to 3 (nearly every day), the total score of each item can measures of the severity of depression. (Scores range from 0-27, with higher scores indicating severe depression). The PHQ-9 have good reliability and validity(20).

Physical function was assessed with The Health Assessment Questionnaire-disability index (HAQ-DI). It contains 20 items were broken into eight dimensions. Each item had a 4-point Likert scale and was scored between 0 and 3. Physical function is calculated by summation of the highest scores in each dimension (Scores range from 0-3, with higher scores indicating more limited the functionality). The HAQ-DI is a valid and reliable instrument for measuring functioning in patients with gout(21).

Sleep quality was assessed with the Pittsburg Sleep Quality Index (PSQI). The PSQI was used to assess sleep quality in the past month. It includes 19 items were divided into seven dimensions, respectively
is: subjective sleep quality, sleep latency, sleep duration, habitual sleep efficiency, sleep disorders, use of hypnotics, and daytime dysfunction. Each item scored from 0 (no difficulty) to 3 (severe difficulty), the total score of each item can figure out the quality of sleep. (Scores range from 0-21, with higher scores indicating worse sleep quality)(22). The PSQI have good reliability and validity(23).

2.5 Health related quality of life:
Health related quality of life (HR-QoL) was assessed using the 36-item short-form health survey (SF-36). The SF-36 includes 36 items assessing two dimensions about Physical Composite Score (PCS) and Mental Component Summary (MCS) with the following eight scales: physical functioning (PF), physical role functioning (RP), bodily pain (BP), general health (GH), vitality (VT), social functioning (SF), emotional role functioning (RE), and mental health (MH).It aims to measure HR-QoL within the previous 4 weeks (scores range from 0-100, with higher scores indicating better health status). The SF-36 has been shown to have good reliability and strong validity(24).

2.6 Date analysis
Descriptive statistics are provided using mean, standard deviation (SD), median, and interquartile range (IQR), or number (percentage) depending on parametric distribution of measured variables. The association of demographic variables, disease parameters, psychological status, and fatigue were examined with Spearman rank correlation analysis. Variables shown to be significant in the univariate tests were included into multiple regression with fatigue as the dependent variables, respectively. The group differences were evaluated by two-tailed t test, chi-square test, and/or Mann-Whitney U test. Variables with a significant association with fatigue were entered into a multiple stepwise logistic regression model. Statistical significance was considered when $P<0.05$ (two-sided). All analyses were performed using SPSS version 22.0.

3. Results
3.1 Correlations between demographic, clinical, and psychological characteristics and total fatigue
As shown in Table 1, Table 2, Results indicated that 96.3% gout participants were male, the media (IQR) age of the gout respondents was 54 (38,64) years, a mean ± standard deviation of BMI was
25.37 ± 3.48, 58.3% come from urban, 60.2% of the patient’s educational level no more than 9 years, and more than one-third of the patients’ yearly per capita family income was less than 15000 RMB. In addition, more than half of participants have tophi (51%) and comorbidities (52.4%), it suggests a severe disease burden. Among the gout participants, more than half of gout patients (64.9%) are in the acute stage, the median (IQR) of disease duration were 5 (2,12) years and laboratory indexes include ESR, CRP, sUA were 15 (6, 35.25) mm/h, 13.65 (4.83, 33.65) mg/l, and 473.62 ± 124.36μmol/L, respectively. According to the cut-off scores, depression disorder was presented in 12.9%, 6.1% had anxiety. Not only that, we found 199 (48.5%) gout patients have sleep disorders. Spearman rank correlation coefficients were computed to identify the relationships among two dimensions of FS-14, demographic, clinical, and psychogenic variables in present sample of gout patients. Patients with live in urban, low level of education, have no job, longer disease duration and hospitalization, severe total pain, have tophi, comorbidity, higher degree of depression and anxiety, have sleep disorder, higher level of ESR and CRP were more likely to have higher scores of fatigue(P<0.05).

3.2 Differences between psychological, clinical characteristics and quality of life of gout patients grouped by each item of FS-14

Figure S1 [Additional file 1] presented the proportion of each fatigue item in FS-14, we found that in physical fatigue Question (Q1-8), the proportion of each fatigue item more than 50% and patients with physical fatigue showed higher degree of anxiety, higher degree of depression, worse sleep quality, more severe pain (P<0.05), lower quality of life: PCS (P<0.001), MCS (P<0.001). Except Q1, gout patients with fatigue showed more serious functional disability (P<0.05). Comparing patients without fatigue, except Q1 and Q3, patients with fatigue had increased disease activity. In addition, we compared patients with and without mental fatigue (Q9-14). In Q9, gout patients with fatigue showed higher degree of anxiety (P<0.001), higher degree of depression (P<0.001), worse sleep quality (P<0.001), more severe pain (P=0.015), more serious functional disability (P=0.001). In Q11, gout patients with fatigue showed worse sleep quality (P=0.038), more serious functional disability (P=0.041). In Q12, gout patients with fatigue showed higher degree of anxiety (P=0.002),
higher degree of depression ($P=0.007$). In Q13, gout patients with fatigue showed higher degree of depression ($P=0.026$). In Q14, gout patients with fatigue showed higher degree of anxiety ($P=0.012$), higher degree of depression ($P=0.001$). Patients with mental fatigue had lower quality of life in MCS ($P<0.05$). The results are shown in Table S1 [Additional file 2].

3.3 Differences between demographic, psychological, clinical characteristics and quality of life of gout patients in single item subjective report fatigue of FS-14

In Q1: Do you have problems with tiredness? According to patients choose “yes” or “no”, the comparison in demographic, psychological, clinical characteristics and quality of life were exhibited in Table S2,3 [Additional file 3,4], gout patients with fatigue showed higher degree of anxiety, higher degree of depression, worse sleep quality, more severe pain, the occurrence of fatigue significantly reduces the quality of life in gout patients both physically and psychologically.

3.4 Determinants of Fatigue in gout patients

Stepwise multiple linear regression analysis was conducted to investigate contributors of fatigue in Table 3. Depression ($r=0.366$, $P<0.001$) and pain ($r=0.237$, $P=0.005$) were significantly accounted for fatigue.

Stepwise logistic regression analyses were used to identify a model to predict gout patients who would have tiredness problem in single item. The results indicated that anxiety (OR=9.848) and sleep quality (OR=2.397) were significant risk factors for fatigue in gout patients (Table 4).

3.5 Correlations between Quality of life and fatigue in gout patient

Correlations among quality of life and fatigue in gout patients was summarized in Table 5. We found that fatigue have a significant negatively correlated with each component of SF-36 by Spearman rank correlation analysis ($P<0.05$).

3.6 Fatigue lower the quality of life in gout patients

Total fatigue scores in gout patients were divided into four subgroups, G1 (P_0-P_{25}), G2 ($P_{25}-P_{50}$), G3 ($P_{50}-P_{75}$), G4 ($P_{75}-P_{100}$), corresponding to 0-3 points, 4-5 points, 6-8 points, 9-14 points, respectively.

The rank-sum test was used to analyze the difference of life quality in gout patients with different
fatigue degrees. In conclusion, we found that patients with higher fatigue scores had significantly lower HR-QoL in all domains of the SF-36 scale. Table 6 and Figure S2 [Additional file 5] presented that the more severe the fatigue, the lower the patient’s HR-QoL.

4. Discussion
To our knowledge, this is the first cross-sectional study investigating potential risk factors of fatigue and the relationship between fatigue and HR-QoL in people with gout from China. Disease characteristics and psychological functional status significantly correlated with fatigue in Chinese gout population. In the current study, pain, poor sleep, anxiety and depression were both independent risk predictors of fatigue in gout patients. What’s more, with severe fatigue gout patients had poorer HR-QoL. It is important for rheumatologists pay attention to gout patients and address their fatigue issues.

Previous studies have suggested that fatigue is associated with demographic factors and work conditions, older age, being female, long working hours and occupational stress may be a key factor associated with fatigue. However, the negative relationship of fatigue and employment was found in the present study, it may be that they are too old to work, consistently with previous studies(25).

As we all know, the impact of disease activity on fatigue in inflammatory diseases remains a controversial issue. Some investigators claim that fatigue increases with high disease activity, while others have not confirmed such a relationship(26-28). This issue has not yet been thoroughly studied in gout patients. Pain was highly prevalent in fatigued patients with chronic inflammatory diseases like psoriasis, contributing independently to functional impairment, due to the inflammatory response, pain may increases the likelihood of insomnia and aggravates fatigue, those factors interact with each other and have a huge impact on patients’ quality of life(26). In rheumatoid arthritis, reduced functional status and mental health deterioration have been reported to be associated with fatigue, not only that, sleep disturbances and increased activity in illness have also been found to be significantly associated with fatigue(27). In an Internet survey, gout patient reported frequent sleep disorders and daytime sleepiness, sleep disturbances aggravated rheumatic fatigue(13, 29). Poor sleep quality has been identified as a contributing factor to fatigue by the present study, we firstly
reported that relative factors of disease play a key role in gout patients with fatigue, the conclusions suggested us that fatigue interventions should address pain and improve sleep quality. Psychological states like anxiety and depression are important risk factors affecting fatigue of patients in chronic autoimmune and inflammatory disease(30). Fatigue and depression have traditionally been regarded as psychological origin(31). It is generally believed that living with depressive symptoms can lead to a lack of energy, yet researchers think that depressive and fatigue may coexist and be separate entities due to they found 14.9% of patients reported fatigue without depressive symptoms in chronic disease(32). In this study, it is significance when we took it into linear and logistic regression. The survey results indicated that psychological health was a problem for a large number of gout patients. Through multiple linear regression analysis and binary logistic regression, anxiety and depression were the potential predictors of fatigue. This suggests that targeted intervention for gout patients with psychological disorders plays a very important role in reducing the burden of fatigue.

Pain may cause difficulty falling asleep, and pain-induced sleep disorders can lead to anxiety and depression, which further exacerbates sleep disorders. Moreover, there is a lot of overlap in symptoms between pain, depression and fatigue. Thus, many patients enter a vicious cycle and in turn leads to fatigue, which strongly affects the patient's ability to function and reduce quality of life. In this study, we found that the negative relationship between fatigue, disease activity, psychological health, and HR-QoL is not necessarily a causal relationship. There may be a two-way relationship and interact with each other between the factors, or the relationship may actually be caused by another factor.

In chronic inflammatory disease, proinflammatory cytokines keep signaling constantly active and cause fatigue(26). Fatigue is constituting a survival mechanism, warning signs of ongoing or impending tissue damage, as a defense mechanism and action to protect and warn an organism from harm(31). In an animal experiments found that proinflammatory cytokines and IL - 1β causes the body to produce symptoms are similar to fatigue, thus, researchers have applied this to rheumatism, by cytokine injections to induce fatigue, after treatment with biologics to reduce fatigue, support this
hypothesis, and could offer understanding treatment in the future(30). In addition, previous studies have shown that 9.6% of Chinese gout patients adhered to urate lowering therapy (ULT), they have poor compliance and high sUA(33). In this study, we found that sUA is not significance for fatigue. Nevertheless, this mechanism has not yet been thoroughly studied in patients with gout, it suggests that researchers should pay more attention to this direction.

Improving HR-QoL of patients and functional disability are considered to be the core areas of gout research(34). HR-QoL is considered as one of the important outcome measures for gout patients and fatigue represents a central component of HR-QoL. It has reported that gout is a chronic condition associated poor HR-QoL and patients with gout experience substantially impaired health compared to the general population(10, 35). In this study, Fatigue significantly correlated with HR-QoL in Chinese gout population, this correlation suggests that there is a relationship between reduced HR-QoL and the degree of fatigue in Systemic Lupus Erythematosus (SLE)(36). The decreased HR-QoL maybe an outcome or predictor of fatigue in patients with gout. It is also possible that other causes, such as anxiety, depression, complications, tophi, sUA, and other objective indicators(37). Thus, fatigue may lower the quality of life by affecting the mental health and disease status of gout patients.

In spite of we firstly reported the relationship between the demographic, clinical, psychological characteristics and fatigue and the effects of fatigue on HR-QoL in Chinese patients with gout, however, we also had several limitations: (1) We just assess fatigue and associated factors with self-report questionnaires, while FS-14 is an good reliability and validity tool, a good objective measure of fatigue is still needed. (2) The sample was from a single clinic that the results were not necessarily generalizable to a broader population. (3) Since the study was cross-sectional in design, it does not allow examining causal relationships between variables.

5. Conclusions

In summary, it has been found that gout patients have fatigue phenomenon and that fatigue was strongly associated with pain, sleep, depression and anxiety. Results from the present study suggest, a better understanding of the link between gout and fatigue indicate health care could promote better nursing and self-management options for these patients, the purpose to improve quality of life and
lay the foundation for more effective treatments in the future.

6. Abbreviations

HRQoL: health-related quality of life; FS-14: Fatigue Scale-14; VAS: the 10 cm visual analog scale; PHQ-9: the Patient Health Questionnaire; GAD-7: the Generalized Anxiety Disorder questionnaire; PSQI: the Pittsburgh Sleep Quality Index; HAQ: Health Assessment Questionnaire; SF-36: the Short Form 36 health survey; ACR: American College of Rheumatology; BMI: body mass index; ESR: erythrocyte sedimentation rate; CRP: C-reactive protein; sUA: serum Uric Acid; PCS: Physical Composite Score; MCS: Mental Component Summary; PF: physical functioning; RP: physical role functioning; BP: bodily pain; GH: general health; VT: vitality; SF: social functioning; RE: emotional role functioning; MH: mental health; SD: standard deviation; IQR: interquartile range; Q: Question; G: Group; ULT: urate lowering therapy; SLE: Systemic Lupus Erythematosus.

Declarations

Ethics approval and consent to participate

This study was approved by Ethics Committee of the Affiliated Hospital of Nantong University (ethics approval number:2017-K003), and all subjects provided written informed consent.

Consent for publication

Prior to participation, all subjects provided written informed consent according to the Declaration of Helsinki. Individual person’s data in any form, consent to publish had be obtained from that person, or in the case of children, their parent or legal guardian.

Availability of data and materials

The datasets used and/or analysed during the present study are available from the corresponding author on reasonable request.

Conflict of interest

There was no conflict of interest between the authors of this study.

Funding

ZF G received a research grant from National Natural Science Foundation of China, Grant/Award Number: 81671616 and 81871278, Science and technology Project of Jiangsu Province, Grant/Award
Number: BE2018671, Clinical Research Center of Stem Cells, Affiliated Hospital of Nantong University, Nantong, Number: HS2018001; JLG received a research grant from Research Center of Gerontology and Longevity, Affiliated Hospital of Nantong University, Nantong, Number: HS2018004, Open foundation of CAS Key Laboratory of Molecular Virology and Immunology: KLMVI-OP-201901; C D received a research grant from Special project of clinical medicine of Nantong University, Grant/Award number: 2019LQ001; JXG received a research grant from Postgraduate Research & Practice Innovation Program of Jiangsu Province, Grant/Award Number: KYCX19_2071; YFB received a research grant from Postgraduate Research & Practice Innovation Program of Jiangsu Province, Grant/Award Number: KYCX18_2410; XYG received a research grant from Postgraduate Research & Practice Innovation Program of Jiangsu Province, Grant/Award Number: KYCX19_2078; JJ received a research grant from National Natural Science Foundation of China, Grant/Award Number: 81801610; LR L received a research grant from Further research program, Nantong University, Grant/Award Number: 13289030.

Authors’ contributions
CD, ZFG were involved in the design of the study; JXG, WZ, MM were involved in the acquisition, analysis, interpretation of data and finalizing the manuscript; JLG, YLW, RZ, JFL, TF, JJ, YFB, XYG, LRL assisted in questionnaire survey. All authors read and approved the manuscript.

Acknowledgments
The authors would like to thank to all members of the Department of Rheumatology of Affiliated Hospital of Nantong University for their helpfulness in the acquisition of data.

References
1. Kuo CF, Grainge MJ, Zhang W, Doherty M. Global epidemiology of gout: prevalence, incidence and risk factors. Nat Rev Rheumatol. 2015;11(11):649-62.
2. Chen-Xu M, Yokose C, Rai SK, Pillinger MH, Choi HK. Contemporary Prevalence of Gout and Hyperuricemia in the United States and Decadal Trends: The National Health and Nutrition Examination Survey, 2007-2016. Arthritis Rheumatol. 2019;71(6):991-9.
3. Kim JW, Kwak SG, Lee H, Kim SK, Choe JY, Park SH. Prevalence and incidence of gout in Korea: data from the national health claims database 2007-2015. Rheumatol Int. 2017;37(9):1499-506.

4. Neogi T, Dalbeth N. Patient education and engagement in treat-to-target gout care. Lancet. 2018;392(10156):1379-81.

5. Dalbeth N, Merriman TR, Stamp LK. Gout. Lancet. 2016;388(10055):2039-52.

6. Khanna PP, Nuki G, Bardin T, Tausche AK, Forsythe A, Goren A, et al. Tophi and frequent gout flares are associated with impairments to quality of life, productivity, and increased healthcare resource use: Results from a cross-sectional survey. Health Qual Life Outcomes. 2012;10:117.

7. Scire CA, Manara M, Cimmino MA, Govoni M, Salaffi F, Punzi L, et al. Gout impacts on function and health-related quality of life beyond associated risk factors and medical conditions: results from the KING observational study of the Italian Society for Rheumatology (SIR). Arthritis Res Ther. 2013;15(5):R101.

8. Branco JC, Rodrigues AM, Gouveia N, Eusebio M, Ramiro S, Machado PM, et al. Prevalence of rheumatic and musculoskeletal diseases and their impact on health-related quality of life, physical function and mental health in Portugal: results from EpiReumaPt- a national health survey. RMD Open. 2016;2(1):e000166.

9. Fu T, Cao H, Yin R, Zhang L, Zhang Q, Li L, et al. Depression and anxiety correlate with disease-related characteristics and quality of life in Chinese patients with gout: a case-control study. Psychol Health Med. 2018;23(4):400-10.

10. Fu T, Cao H, Yin R, Zhang L, Zhang Q, Li L, et al. Associated factors with functional disability and health-related quality of life in Chinese patients with gout: a case-control study. BMC Musculoskelet Disord. 2017;18(1):429.

11. Richards SC, Westlake SL. Fatigue in RA. Rheumatology (Oxford). 2012;51(1):1-2.
12. Tarazi M, Gaffney RG, Pearson D, Kushner CJ, Werth VP. Fatigue in systemic lupus erythematosus and other autoimmune skin diseases. Br J Dermatol. 2019;180(6):1468-72.

13. Vitiello MV, McCurry SM, Shortreed SM, Baker LD, Rybarczyk BD, Keefe FJ, et al. Short-term improvement in insomnia symptoms predicts long-term improvements in sleep, pain, and fatigue in older adults with comorbid osteoarthritis and insomnia. Pain. 2014;155(8):1547-54.

14. Zhu B, Martyn-Nemeth P, Ruggiero L, Park CG, Zhang Y, Fritschi C. Associations between fatigue, sleep disturbance and eating style in adults with type 2 diabetes: A correlational study. J Clin Nurs. 2019.

15. Nguyen MH, Bryant K, O'Neill SG. Vitamin D in SLE: a role in pathogenesis and fatigue? A review of the literature. Lupus. 2018;27(13):2003-11.

16. Junghaenel DU, Schneider S, Stone AA. Do people with arthritis differ from healthy controls in their internal comparison standards for self-reports of health, fatigue, and pain? J Patient Rep Outcomes. 2019;3(1):21.

17. Lee SJ, Hirsch JD, Terkeltaub R, Khanna D, Singh JA, Sarkin A, et al. Perceptions of disease and health-related quality of life among patients with gout. Rheumatology (Oxford). 2009;48(5):582-6.

18. Chalder T, Berelowitz G, Pawlikowska T, Watts L, Wessely S, Wright D, et al. Development of a fatigue scale. J Psychosom Res. 1993;37(2):147-53.

19. Spitzer RL, Kroenke K, Williams JB, Lowe B. A brief measure for assessing generalized anxiety disorder: the GAD-7. Arch Intern Med. 2006;166(10):1092-7.

20. Kroenke K, Spitzer RL, Williams JB. The PHQ-9: validity of a brief depression severity measure. J Gen Intern Med. 2001;16(9):606-13.

21. Alvarez-Hernandez E, Pelaez-Ballestas I, Vazquez-Mellado J, Teran-Estrada L,
Bernard-Medina AG, Espinoza J, et al. Validation of the Health Assessment Questionnaire disability index in patients with gout. Arthritis Rheum. 2008;59(5):665-9.

22. Buysse DJ, Reynolds CF, 3rd, Monk TH, Berman SR, Kupfer DJ. The Pittsburgh Sleep Quality Index: a new instrument for psychiatric practice and research. Psychiatry Res. 1989;28(2):193-213.

23. Spira AP, Beaudreau SA, Stone KL, Kezirian EJ, Lui LY, Redline S, et al. Reliability and validity of the Pittsburgh Sleep Quality Index and the Epworth Sleepiness Scale in older men. J Gerontol A Biol Sci Med Sci. 2012;67(4):433-9.

24. Li L, Wang HM, Shen Y. Chinese SF-36 Health Survey: translation, cultural adaptation, validation, and normalisation. J Epidemiol Community Health. 2003;57(4):259-63.

25. Caldwell JA, Caldwell JL, Thompson LA, Lieberman HR. Fatigue and its management in the workplace. Neurosci Biobehav Rev. 2019;96:272-89.

26. Skoie IM, Dalen I, Ternowitz T, Jonsson G, Kvivik I, Norheim K, et al. Fatigue in psoriasis: a controlled study. Br J Dermatol. 2017;177(2):505-12.

27. Katz P. Fatigue in Rheumatoid Arthritis. Curr Rheumatol Rep. 2017;19(5):25.

28. Cleanthous S, Tyagi M, Isenberg DA, Newman SP. What do we know about self-reported fatigue in systemic lupus erythematosus? Lupus. 2012;21(5):465-76.

29. Singh JA. Self-reported sleep quality and sleep disorders in people with physician-diagnosed gout: an Internet cross-sectional survey. Arthritis Res Ther. 2019;21(1):36.

30. Norheim KB, Jonsson G, Omdal R. Biological mechanisms of chronic fatigue. Rheumatology (Oxford). 2011;50(6):1009-18.

31. Omdal R, Mellgren SI, Norheim KB. Pain and fatigue in primary Sjogren's syndrome. Rheumatology (Oxford). 2019.

32. Jensen O, Bernklev T, Gibbs C, Moe RB, Hofso D, Jelsness-Jorgensen LP. Fatigue in
type 1 diabetes, prevalence, predictors and comparison with the background population. Diabetes Res Clin Pract. 2018;143:71-8.

33. Yin R, Cao H, Fu T, Zhang Q, Zhang L, Li L, et al. The rate of adherence to urate-lowering therapy and associated factors in Chinese gout patients: a cross-sectional study. Rheumatol Int. 2017;37(7):1187-94.

34. Singh JA, Taylor WJ, Simon LS, Khanna PP, Stamp LK, McQueen FM, et al. Patient-reported outcomes in chronic gout: a report from OMERACT 10. J Rheumatol. 2011;38(7):1452-7.

35. Chandratre P, Mallen CD, Roddy E, Liddle J, Richardson J. "You want to get on with the rest of your life": a qualitative study of health-related quality of life in gout. Clin Rheumatol. 2016;35(5):1197-205.

36. Yilmaz-Oner S, Ilhan B, Can M, Alibaz-Oner F, Polat-Korkmaz O, Ozen G, et al. Fatigue in systemic lupus erythematosus: Association with disease activity, quality of life and psychosocial factors. Z Rheumatol. 2017;76(10):913-9.

37. Chandratre P, Roddy E, Clarson L, Richardson J, Hider SL, Mallen CD. Health-related quality of life in gout: a systematic review. Rheumatology (Oxford). 2013;52(11):2031-40.

Tables
Table 1. Correlations among demographic and FS-14 in gout patients (total number of subjects enrolled=410)

Characteristic	Descriptives	Fatigue total points	Physical Fatigue	Mental fatigue			
		r	P	r	P	r	P
Gender, male	395 (96.3)	0.005	0.917	-0.006	0.898	0.031	0.527
Age, (years)	54 (38, 64)	0.067	0.175	0.085	0.085	0.001	0.977
BMI, (kg/m²)	25.37 ± 3.48	-0.049	0.321	-0.070	0.155	0.034	0.490
Variable	Sample Size	Mean ± SD	Median (IQR)	Notes			
----------------------------------	-------------	-----------	--------------	-----------			
Place of residence a							
Urban	239 (58.3)						
Rural	169 (41.2)						
Education, years a							
≤ 9 years	247 (60.2)						
> 9 years	161 (39.3)						
Marital status a							
Married	369 (90.0)						
Other	40 (9.8)						
Employment, yes a							
Yearly income, (yuan) a							
<15000	142 (34.6)						
15000-29999	121 (29.5)						
>30000	142 (34.6)						
Medical insurance, yes a							
Tobacco use, yes a							
Alcohol use, yes a							

Notes: SD: standard deviation; IQR: interquartile range; * Number (percentage); Median (IQR); c Mean ± SD; BMI: body mass index; FS-14: Fatigue Scale-14.
*P < 0.05; ** P < 0.001.

Table 2. Correlations among clinical disease, psychological variables and FS-14 in gout patients (total number of subjects enrolled=410)

Characteristic	Descriptives	Fatigue total points	Physical Fatigue	Mental fatigue						
		r	P	r	P	r	P			
Disease duration, (years)	5 (2, 12)	0.110	0.027*	0.126	0.011*	0.006	0.912			
Hospitalization, yes	91 (22.2)	0.104	0.036*	0.122	0.013*	0.027	0.584			
Tophi, yes	209 (51)	0.104	0.040*	0.097	0.055	0.080	0.112			
Comorbidities, yes	215 (52.4)	0.124	0.012*	0.138	0.005*	0.037	0.463			
Family history, yes	94 (22.9)	0.089	0.072	0.077	0.123	0.042	0.400			
Disease activity	266 (64.9)	0.154	0.002*	0.152	0.003*	0.097	0.055			
Acute stage	46 (11.2)	0.174	0.012	0.176	0.031*	0.111	0.164			
Intercritical stage	79 (19.3)	0.174	0.012	0.176	0.031*	0.111	0.164			
Chronic stages	ESR, (mm/h)	15 (6, 35.25)	0.210	<0.001	0.207	<0.001	0.089	0.137		
	CRP, (mg/l)	13.65 (4.83, 33.65)	0.199	0.012*	0.172	0.031*	0.111	0.164		
	sUA, (μmol/L)	473.62 ± 124.36	0.013	0.803	0.020	0.698	-0.010	0.838		
	VAS	3 (0, 6)	0.237	<0.001	**	0.249	<0.001	**	0.080	0.111
	HAQ-DI	0.125 (0,	0.311	<0.001	**	0.338	<0.001	**	0.091	0.067
Total sleep quality \(a \)

Fatigue total points \(b \)

Physical Fatigue \(b \)

Mental fatigue \(b \)

Depression, yes \(b \)

Anxiety, yes \(b \)

Predictors	\(\beta \)	S.E.	\(t \)	\(P \)	B95%CI Lower	B95%CI Upper
Depression	0.395	0.663	4.908	<0.001**	1.941	4.565
VAS	0.229	0.076	2.842	0.005**	0.066	0.369
Constant	---	0.386	13.865	<0.001**	4.588	6.116

Adjust \(R^2 = 0.256, F = 23.236. \)

Notes: SD: standard deviation; IQR: interquartile range; \(a \) Number (percentage); \(b \) Median (IQR); \(c \) Mean ± SD; erythrocyte sedimentation rate: ESR; C-Reactive Protein: CRP; sUA: serum uric acid; VAS: the 10 cm visual analog scale; HAQ-DI: The Health Assessment Questionnaire disability index; FS-14: Fatigue Scale-14.

\(*P < 0.05; \quad **P < 0.001. \)
Predictors	B	SE	Wals	P	OR	Lower	Upper
Anxiety	2.287	1.033	4.903	0.027*	9.848	1.300	74.578
Total sleep quality	0.874	0.229	14.641	<0.001**	2.397	1.532	3.752

Notes: OR: odds ratio, CI: confidence interval. FS-14: Fatigue Scale-14. P values were obtained with stepwise multiple logistic regression analysis.

*P < 0.05; **P < 0.001.

Table 5. Correlations among quality of life and fatigue in gout patients
Characteristic	Descriptives	Fatigue total points	Physical Fatigue	Men	
PF b	70 (45, 90)	-0.437	<0.001*		
			* -0.413	<0.001** -0.248	<0.001
RP b	0 (0, 75)	-0.394	<0.001*		
			* -0.403	<0.001** -0.146	0.003 **
BP b	41 (22, 62)	-0.348	<0.001*		
			* -0.387	<0.001** -0.092	0.063 **
GH b	50 (35, 65)	-0.476	<0.001*		
			* -0.457	<0.001** -0.251	0.001 **
VT b	65 (50, 75)	-0.613	<0.001*		
			* -0.554	<0.001** -0.370	0.001 **
SF b	62.5 (50, 87.5)	-0.405	<0.001*		
			* -0.397	<0.001** -0.187	0.001 **
RE b	66.67 (0, 100)	-0.472	<0.001*		
			* -0.425	<0.001** -0.309	0.001 **
MH b	68 (56, 80)	-0.567	<0.001*		
			* -0.507	<0.001** -0.371	0.001 **
PCS b	44.63 (30.88, 67.75)	-0.532	<0.001*		
			* -0.527	<0.001** -0.244	0.001 **
MCS b	61.19 (42.94, 81.16)	-0.608	<0.001*		
			* -0.559	<0.001** -0.363	0.001 **

Notes: IQR: interquartile range; a Number (percentage); b Median (IQR); C Mean ± SD; PF: physical functioning; RP: role physical; BP: bodily pain; GH: general health; VT: vitality; SF: social functioning; RE: role emotional; MH: mental health; PCS: physical Composite Score; MCS: mental Component Summary.

*p < 0.05; ** p < 0.001.

Table 6. Comparison between total fatigue and quality of life in different groups gout patients
Group	G1	G2	G3	G4
The fatigue scores	0~	4~	6~	9~14
Number a	90 (22)	78 (19)	108 (26.3)	134 (32.7)
PF b	85 (70, 95)	80 (60,95)	65, (45,85)	50, (30,70)
RP b	75 (0, 100)	25 (0, 100)	0 (0, 50)	0 (0, 0)
BP b	52 (41, 74)	51.5 (41, 74)	41 (31, 58.75)	31 (22, 51)
GH b	62 (54.25, 77)	55 (45, 67)	50 (40, 65)	36 (25, 50)
VT b	80 (70, 85)	70 (55, 80)	60 (50, 70)	50 (38.75,
SF b	75 (62.5, 87.5)	75 (62.5, 87.5)	62.5 (50, 75)	50 (37.5,
RE b	100 (100, 100)	100 (0, 100)	50 (0, 100)	0 (0, 66.6
MH b	80 (72, 92)	72 (60, 84)	64 (56, 80)	56 (44, 68
PCS b	64.13 (47.25, 80.44)	55.75 (42.5,75.81)	40.25 (32.25, 63.56)	31 (21.44,
MCS b	83.5 (72.29, 89.94)	72.38 (54.83, 86.13)	58.75 (44.22, 75.63)	41.13 (31.

Notes: G1: 0-3 points; G2: 4-5 points; G3: 6-8 points; G4: 9-14 points; SD: standard deviation; IQR: interquartile range; a Number (percentage); b Median (IQR); PF: physical functioning; RP: role physical; BP: bodily pain; GH: general health; VT: vitality; SF: social functioning; RE: role emotional; MH: mental health; PCS: physical Composite Score; MCS: mental Component Summary.
*P < 0.05; ** P < 0.001.

Supplementary Files
This is a list of supplementary files associated with this preprint. Click to download.

Additional file 3.docx
Additional file 2.docx
Additional file 1.docx
Additional file 5.docx
Additional file 4.docx