A kinetic study of the photoinduced oxo-transfer using a Mo complex anchored to TiO₂

Un estudio cinético de la oxo-transferencia fotoinducida usando un complejo de Mo anclado a TiO₂

Julián E. Sánchez-Velandia 1,2*, Edgar A. Páez-Mozo 1, Fernando Martínez-Ortega 1

1Centro de Investigación en Catálisis, Escuela de Química, Facultad de Ciencias, Universidad Industrial de Santander. Km 2 vía El refugio. C. P. 681011. Piedecuesta, Colombia.
2Grupo de Investigación Catálisis Ambiental, Departamento de Ingeniería Química, Facultad de Ingeniería, Universidad de Antioquia. Calle 70 #52-21. C. P. 050010. Medellín, Colombia.

CITE THIS ARTICLE AS:

J. E. Sánchez, E. A. Páez and F. Martínez. “A kinetic study of the photoinduced oxo-transfer using a Mo complex anchored to TiO₂”, Revista Facultad de Ingeniería Universidad de Antioquia, no. 98, pp. 83-93, Jan-Mar 2021. [Online]. Available: https://www.doi.org/10.17533/udea.redin.20200477

ARTICLE INFO:
Received: February 01, 2020
Accepted: May 14, 2020
Available online: May 14, 2020

KEYWORDS:
Photonic flux; selective photooxidation; dioxomolybdenum complex; quantum yield
Flujo fotónico; fotooxidación selectiva; complejo dioxo-Molibdeno; rendimiento cuántico

ABSTRACT: Kinetic study of the photo-assisted oxygen atom transfer reaction (OAT) using a dioxo-Mo complex anchored on TiO₂, stimulated by light, was performed at ambient conditions using triphenylphosphine (PPh₃) as a model molecule. The kinetic of the OAT reaction was studied with three catalytic systems: 4,4’-dicarboxylate-2,2’-bipyridine-dioxochloromolybdenum (MoO₂L/TiO₂), H₂MoO₄ (H₂MoO₄/TiO₂) and molybdenum oxide (MoO₃/TiO₂) anchored to TiO₂. The MoO₂L/TiO₂ gives conversion higher than 90% and selectivity (to phosphine oxide) close to 100%. MoO₃/TiO₂ did not allow the oxo-transference, suggesting the importance of the bipyridine ligand as an electronic connector between MoO₂L unit and TiO₂. With the MoO₂L/TiO₂ system was observed that when the photonic flux increases, the quantum yield, and the OAT reaction rate increases.

RESUMEN: El estudio cinético de la reacción de transferencia de átomos de oxígeno (TAO) foto asistida se estudió usando un complejo de dioxo-Mo anclado al TiO₂, estimulada por la luz en condiciones ambientales usando trifenilfosfina como molécula modelo. La cinética de la reacción TAO fue estudiada con tres sistemas catalíticos anclados al TiO₂: 4,4’-dicarboxilato-2,2’-bipiridina-dioxocloromolibdeno (MoO₂L/TiO₂), H₂MoO₄ (H₂MoO₄/TiO₂) y óxido de molibdeno (MoO₃/TiO₂). El catalizador MoO₂L/TiO₂ permitió la conversión más alta del 90% y una selectividad (al óxido de fosfina) cercana al 100%. MoO₃/TiO₂ no permitió la oxo-transferencia sugiriendo la importancia del ligando bipiridinico como una conexión electrónica entre la unidad MoO₂L y el TiO₂. Adicionalmente, se observó que cuando se incrementa el flujo fotónico, el rendimiento cuántico y la concentración inicial de la PPh₃, aumenta la velocidad de reacción de la TAO para el sistema MoO₂L/TiO₂.

1. Introduction

The direct use of molecular oxygen as an oxidant for the selective oxidation of organic compounds requires activation of O₂ by transforming the triplet spin state in order to allow the reaction with organic substances [1, 2]. The traditional activation of oxygen is done by thermal action at least 400K, with probability of explosion [3]. An alternative activation procedure is using a pathway of lower activation energy, through the formation of a metal-dioxygen complex [M (paramagnetic)-O₂] [doublet state]: [Mⁿ⁺¹O₂ (·O – O) Mⁿ⁺ (O₂)]. [doublet state] which can selectively react with organic molecules (R·H), following a similar mechanism to autoxidation. Coordination of O₂ to a complex with metal oxo (M=O) unit [4–6] permits the transfer of oxygen atom to organic molecules under mild reaction conditions but requires an oxygen donor agent to regenerate the metaloxo center [7]. The (Moⁿ⁺ = O₂L) (L is bipyridine, thiocyanate) has
been used for Oxygen Atom transfer (OAT) [8, 9]. The OAT process begins by the nucleophilic attack of the compound (X) on an empty Mo=O π∗ orbital, forming XO and MoIV species [10]. The initial reaction depends on the oxo-donor center nucleophilicity or electrophilicity. Generally, the re-oxidation of MoIV is based on an oxygen donor such as DMSO, which is used as a solvent in the reaction, but it can generate unwanted by products [11].

The anchoring of dioxomolybdenum complexes on TiO2: (MoOIV2L/TiO2) favors the OAT to the organic substance under UV radiation and allows to use molecular oxygen as oxidant agent [12]. Our experience showed that the re-oxidation of the reduced metal center (MoIVO)L/TiO2 with O2 and without light is able to continue the catalytic cycle [13].

The OAT kinetics has been studied with several dioxo-molybdenum complexes in solution [14], using triphenylphosphine (PPh3) as the oxygen acceptor. However, there are no studies on the kinetics of a heterogeneous system like MoVI O2L/TiO2 that works with light and molecular oxygen.

In this work, the effect of kinetic parameters (initial concentration of PPh3, photonic flux, and the quantum yield) of the photoinduced OAT were studied to PPh3 with 4,4’-dicarboxylate-2,2’-bipyridine-dioxodichloromolybden, molybdic acid and molybdenum oxide, anchored to TiO2 with molecular oxygen as the oxidant agent.

2. Experimental methodology

2.1 Catalyst synthesis

4,4’-dicarboxylate-2,2’-bipyridine-dioxo-dichloromolybdenum anchored to TiO2 (BipyMoO2/TiO2)

0.120 g of 4,4’-dicarboxy-2,2’-bipyridine acid (Aldrich, 70% wt) was dispersed on 40 mL of benzene and 0.102 g of 1,3 Bis-trimethyl silil urea (Aldrich, 95% wt) and was stirred for 4h at room temperature. After, the solid was filtered and the excess of solvent was evaporated, a white solid called Bipy-Sil (A) was obtained. 0.5 mmol of A was dissolved on 40 mL of benzene and in a solution of 0.5 mmol of MoO2Cl2 in 30 mL of the same solvent, stirring for 4h at room temperature until the formation of a solid (B). Finally, 0.294 g of B in 30 mL of benzene was added to 1 g of dehydrated TiO2 at constant stirring (400 rpm) for 12h. The resultant solid (BipyMoO2/TiO2, Figure 1a) was filtered and washed with benzene. As benzene is a very toxic solvent, other green solvents could be used for this application (Toluene, heptane or DMF that are less toxic and have been used for silylation of secondary amines) [15].

Molybdic acid anchored to TiO2 (H2MoO4/TiO2)

0.294 g of molybdic acid (Aldrich) in 30 mL of benzene was added to 1.0 g of dehydrated TiO2 (Degussa P-25) at constant stirring (400 rpm) for 12 h. Finally, the solid was washed with benzene (Figure 1b). The same consideration for increasing the sustainability of the synthesis could be taken into account, changing the solvent for others such as DMF [15].

Molybdenum trioxide anchored to TiO2 (MoO3/TiO2)

The catalyst was synthesized according to [16]. For this, 5.52 mL of ammonium heptamolybdate tetrahydrate (Aldrich 97% wt) was added dropwise over 2.1077 g of dehydrated TiO2 at constant stirring (400 rpm) for 1 h. Finally, the solid was dried at 383 K for 16 h and calcined in air at 773 K for 6h (Figure 1c)

Figure 1 Scheme of the synthesized catalyst. In each figure, the molecular structure is shown: A) BipyMoO2/TiO2 B) AcMo/TiO2 and C) MoO3/TiO2
2.2 Characterization of catalysts

The specific area BET [Brunauer-Emmett-Teller] and the pore volume were determined using the adsorption-desorption isotherms of N2 in a Micromeritics 3 flex equipment at 77 K. Samples were degasified at 523 K for 30 min previously to the analysis. FTIR spectra were taken in an infrared spectrometer Bruker tensor 27 using a NaCl cell at 327. To estimate the amount of anchored complex, TGA was performed using a thermogravimetric analyzer model 5,500, with a heating rate of 10°C/min and a nitrogen atmosphere from 298 K to 1,073 K. UV-Vis diffuse reflectance measurements were acquired in a Shimadzu UV-Vis RD spectrometer model 2,401. For the Raman spectra, an Evolution Horiba confocal microscope was used, with 10x objective, 2s integration time and 10 accumulations. Atomic absorption was performed to determine the amount of metal in all catalysts. For this, 50 mg of each material was dissolved on a mix of HF/HCl/HNO3 and measured in an atomic absorption equipment Philips PU9100X model. The powder XRD was not included because of the quantity of each Mo catalyst is low and only detected phases anatase and rutile of TiO2.

2.3 Catalytic activity

The photocatalytic reactions were carried out in a 15 mL microreactor Batch type [Aceglass], with a pen-ray lamp (λmax = 360 nm), 60 mg of catalyst and 10 mL of 0.01 M of PPh3 (acetonitrile as solvent) was used at 293 K. Initially, the reaction was left 1 h with an atmosphere of nitrogen (purge) and in the darkness to eliminate possible radical species (O2−, OH, HO2). Afterward, it was changed under a nitrogen atmosphere for 30 min before the light turns. Finally, the catalytic reaction was put in a way (60 mg of catalyst, 10 mL of 0.01 M of PPh3 with acetonitrile as solvent at 293 K). The Selection of the amount of catalyst was based on previous results [17].

The formation of triphenylphosphine oxide (OPPh3) was determined with UV-Vis spectroscopy, measuring the P=O band (n → π*) at 265 nm [18] and the PPh3 band at 258 nm [19]. The kinetic study was performed varying the initial concentration of PPh3, photonic flux, and quantum yield.

The determination of photonic flux was carried out using chemical actinometry [20, 21] using the Reinecke salt [K2[Cr(NH3)2(NCS)3]] and measuring the absorbance from 350 nm to 750 nm. The measures were performed with two Pen-ray lamps with a λmax=360 (with two different voltages: 280 V and 375 V). The NCS ion generation rate was determined from the complexation with Fe(III)NO3 in HClO4 at 432 nm. The photonic fluxes determined were 321.54 µEinstein L⁻¹min⁻¹ y 8360.13 µEinstein L⁻¹min⁻¹, respectively.

The quantum yield was estimated using the equation reported previously [22, 23] for heterogeneous photocatalytic systems (Equation 1):

\[\phi = \frac{\left(\frac{V_r}{V_L} \right) \left(\frac{dC_{ph}}{dt} \right)_{t=0}}{LV RPA} \]

Where \(V_L \) represents the total volume of the reactor, \(V_r \) the volume used for the reaction, \(\left(\frac{dC_{ph}}{dt} \right)_{t=0} \) is the variation of the concentration at the initial time of the triphenylphosphate and \(LV RPA \) is the local volumetric rate of photon absorption.

\[LV RPA = Fe \left(1 - e^{-\mu \varphi} \right) \]

Where \(Fe \) represents the radiation in the reaction system, \(\mu = C_{cat} k_{\lambda} \) (\(C_{cat} \) is the concentration of catalyst and \(K_{\lambda} \) is the specific absorption coefficient) and \(\varphi \) is the reactor diameter.

3. Results and analysis

3.1 Characterization of the materials

Figure 2 shows the IR spectra for all molybdenum materials. The presence of Mo-pyridine anchored on titanium oxide (Figure 2a), was determined with the bands at 1,395 cm⁻¹ and 1,797 cm⁻¹ related to the C-O and C=O vibrations [26]. The presence of the bipyridine ligand was confirmed with the bands at 1,591 cm⁻¹ and 1,797 cm⁻¹ associated with the C=C and C=N vibrations [27, 28] and the signals at 940 cm⁻¹ and 915 cm⁻¹ corresponding to the symmetric and asymmetric vibrations of the MoO2 group, respectively [29]. The molybdic acid supported on titania (Figure 2b) shows bands at 500 cm⁻¹ and 600 cm⁻¹ due to TiO2 while that OH group present bands at 1,620 cm⁻¹ and 1,797 cm⁻¹ related to geminal and terminal groups of the titanium oxide) [30]. The dixo-Mo compound show bands at 894 (asymmetric) and 945 cm⁻¹ (symmetric) and at 721 cm⁻¹ associated with the Mo-O stretching vibration [31, 32]. On the other hand, The MoO2/TiO2 (Figure 2c) system presents bands at 867 and 831 cm⁻¹ [32] related to the symmetric and asymmetric vibrations of the MoO2 group, respectively [30].

Figure 3 show the UV-Vis spectrum of the Mo supported materials which presents an asymmetric band at around 360 nm associated with the charge transference ligand-to-metal (\(O^{2+} \rightarrow Mo^{6+} \)) [10, 33, 34]. The Mo anchored on TiO2 bandgap is evaluated with the UV-Vis spectra, according to Equation 3 [35, 36].

\[(ahv)^\frac{1}{2} = A_1 (hv - E_g) \]
Figure 2 IR spectra of Mo supported heterogeneous catalysts: a) BipyMoO$_2$/TiO$_2$ b) AcMo/TiO$_2$ c) MoO$_3$/TiO$_2$ d) TiO$_2$

Where $h\nu$ is the photon energy, A_1 is the independent parameter of the photon energy for the complex transitions, and E_g is the band-gap energy. The calculated values of the band-gap of BipyMoO$_2$/TiO$_2$ give a value of 3.2 eV, with the same values for the other Mo systems, suggesting that the TiO$_2$ band-gap was not affected after anchoring the Mo compounds.

Figure 3 UV-Vis spectra of Mo heterogeneous catalysts: a) BipyMoO$_2$/TiO$_2$ b) AcMo/TiO$_2$ c) MoO$_3$/TiO$_2$ d) TiO$_2$ catalysts

Table 1 presents the textural properties of the synthesized materials. The system [MoO$_3$/TiO$_2$] has the highest amount of Mo per gram of catalyst and the smallest surface area, with a considerably larger pore diameter in comparison with the bipyridine system. In the case of AcMo/TiO$_2$, which has a lower amount of Mo, it has an intermediary surface area. In all cases, it is observed that the incorporation of Mo on the support considerably decreases the BET surface area. In the case of AcMo/TiO$_2$ and MoO$_3$/TiO$_2$ catalysts, the BET area is almost 50% as compared to TiO$_2$. The decreasing of the surface area compared to titanium oxide (Degussa P-25) can be attributed to increasing of the dispersion of Mo species. In contrast with other Mo supported catalysts, it has been showed that, increasing the MoC (Molibdenum carbide) onto TiO$_2$ supported [12.0% wt] presents a similar
Table 1 Textural properties of the Mo-heterogeneous catalysts

Catalyst	Surface area (m²/g)	Pore volume (cm³/g)	Pore diameter (Å)	mmol Mo/g catalyst*
TiO₂ - degussa P25	49	- - - -	- - - -	0.00
BipyMoO₂/TiO₂	43	0.0054	289	0.15**
AcMo/TiO₂	26	0.0049	337	0.13
MoO₃/TiO₂	23	0.0029	329	0.52

* Values determined using atomic absorption.
** TGA determined this value.

Table 2 Catalytic activity of the different Mo supported catalysts

Catalyst	Conversion (%)	Selectivity to OPPh₃	TON	TOF (h⁻¹)
BipyMoO₂/TiO₂	96	> 95	5.92	9.66
AcMo/TiO₂	95	4*	3.95	12.17
MoO₃/TiO₂	93	15*	1.03	1.53

*Reaction conditions: 0.01 M of PPh₃ in acetonitrile (10 mL), 60 mg of catalyst, 450 rpm at room temperature. Conversion and selectivity were calculated at 240 min. TON was calculated as mmol of PPh₃ per mmol of Mo (t=30 min). TOF was taken as the first derivate of TON with respect to time at saturation regime and instantaneous conditions [TOF=(dTON/dt) t=1 min]. *Other by products were obtained but not identified.

surface area than TiO₂ degussa P25 [42]. AcMo/TiO₂ and MoO₃/TiO₂ presents similar surface area to Mo (0.02% - 0.1%) doped TiO₂ [43].

3.2 Effect of the photocatalytic parameters: Estimation of the oxo-transfer kinetics

The kinetics of the photo-oxidation of triphenylphosphine was performed using BipyMoO₂/TiO₂, MoO₃/TiO₂ and AcMo/TiO₂ catalysts, taking into account the effect of the initial concentration, photonic flux and the quantum yield. Blank reactions were carried out: without catalyst (oxygen atmosphere) and with catalyst and without light. It is observed that the oxidation of triphenylphosphine is not carried out in presence of oxygen and without light. TiO₂ support without light did not show activity towards oxygen transfer to phosphate. In this way, Table ?? shows the catalytic oxo-transfer activity of different Mo supported catalysts. It can be seen that the highest conversion and selectivity to OPPh₃ was obtained with BipyMoO₂/TiO₂. BipyMoO₂/TiO₂ presents the highest TON (at 30 min), suggesting that the bipyridine ligand favor the oxo-transfer to PPh₃. Also, the electronic transference from TiO₂ favor oxygen donation by decreasing the Mo=O bond order [12].

Effect of the photonic flux

Figure 5 shows the effect of the radiation intensity in the concentration of PPh₃ as a function of time. It can be seen that when increasing photonic flux, the phosphine transforms rapidly. Similar behavior is observed with the three Mo-catalytic systems. The photocatalytic support properties remain the same, which could be associated to the location of Mo species in the material. The kinetic was evaluated, calculating the specific rate constant, using the Langmuir–Hinshelwood-Hougen-Watson (LHHW) model (Equation 4), which gives the best fitting in comparison with other pseudo-homogeneous (o polynomial) kinetic models. It was considered that the limiting step corresponds to the surface reaction and that the heat of adsorption is constant in the surface [ideal model] [44, 45].

\[
\frac{da}{dt} = -\frac{d[PPh₃]}{dt} = \left(\frac{kK[PPh₃]}{1 + K[PPh₃]}\right)
\]

Where \([PPh₃]\) means the concentration of the substrate, \(k\) is the kinetic constant (associated with the product of the quantum yield and the volumetric rate of absorption of photons \(F_{abs}\)) and \(K\) is the adsorption constant [44, 45]. The kinetic was considered as first-order because oxygen is in excess in comparison with the other reactants: solvent and catalyst present in the reaction.

Table 3 indicates the specific rate constants estimated for each catalyst as a function of photonic flux. It can be observed that the catalytic system BipyMoO₂/TiO₂ presented the highest rate constant for both photonic...
Table 3 The specific reaction rate constant of the Mo heterogeneous catalysts

Catalyst	Lamp 1: Photonic flux of 321.54 EinstenL⁻¹min⁻¹	Lamp 2: Photonic flux of 8,360.13 µEinstenL⁻¹min⁻¹
	\(k_{\text{specific}} \pm \Delta k(\text{min}^{-1})\)	\(k_{\text{specific}} \pm \Delta k(\text{min}^{-1})\)
BipyMoO₂/TiO₂	0.014±0.005	0.040±0.008
AcMo/TiO₂	0.011±0.004	0.017±0.007
MoO₃/TiO₂	0.012±0.003	0.013±0.008

The specific reaction rate constant of the Mo heterogeneous catalysts

Effect of the initial concentration

The initial concentration of the reactant affects the oxidation rate. To evaluate the effect of concentration, the following solutions of PPh₃ 0.01, 0.005 and 0.001 M were taken, and the catalytic activity was observed at the same reaction time, using a photonic flow of 321.54 µEinsteinL⁻¹min⁻¹.

Figure 8 shows the effect of the concentration for each catalyst. The increase in concentration generates an increase in the specific reaction rate constant in each case (Table 4). It was observed that the BipyMoO₂/TiO₂ catalyst showed that the rate constant is a function of the concentration. The activity of AcMo/TiO₂ changes slightly with the initial fluxes. It could be associated with the conductive nature of the bipyridine ligand, which favors the electronic conduction between the dioxo-Mo and the semiconductor surface. It is correlated with the highest generation of the OPPh₃.

Given the observed correlation between the increase in photonic flux (8,360.13 µEinsteinL⁻¹min⁻¹), and the significant increase of the velocity constant, it can be seen that with this lamp, the kinetic constant is almost four times higher than the other one. In the case of the AcMo/TiO₂ and MoO₃/TiO₂ catalysts, there is no noticeable change when increasing the photon flux, which may suggest that the oxidation mechanism is different.

When the BipyMoO₂/TiO₂ catalyst is used, the formation of OPPh₃ [triphenylphosphine oxide] as a function of time corresponds to 1:1 molar ratio between PPh₃ and OPPh₃ (Figure 6), which is associated to the transference of the oxygen atom from dioxo-Mo to phosphine, according to the OAT mechanism. While for the other two catalysts (Figure 6b and 6c), this molar ratio is different, generating other oxidation products via a radical pathway (Figure 7) [46]. This is because between the Mo unit and the support does not exist a good electronic connection as occurs with BipyMoO₂/TiO₂. Besides, for the AcMo/TiO₂ system (Figure 6b), and MoO₃/TiO₂ (Figure 6c), the stoichiometric ratio is not 1:1 evidencing that the mechanism is a radical pathway instead of an electronic transfer.

Figure 5 Photocatalytic transformation of PPh₃ as a function of the time with the lamp of a photonic flux of (a) 321.54 µEinsteinL⁻¹min⁻¹ and b) 8360.13 µEinsteinL⁻¹min⁻¹. Reaction conditions: Room temperature, acetonitrile as the solvent (10 mL), constant stirring (450 rpm), and 60 mg of catalyst.
Figure 6 Generation of OPPh$_3$ as a function of the time: (a) BipyMoO$_3$/TiO$_2$ (b) AcMo/TiO$_2$ and (c) MoO$_3$/TiO$_2$. Reaction conditions: Room temperature, acetonitrile as the solvent (10 mL), constant stirring (450 rpm), and 60 mg of catalyst.

Figure 7 Formation of different products of the oxidation of PPh$_3$ on time towards a radical pathway. Modified from reference [46]
Table 4 The specific rate constant of reaction as a function of the initial concentration of PPh$_3$

Catalyst	0.01 M $k_{specific}$ ± Δk(min$^{-1}$)	0.005 M $k_{specific}$ ± Δk(min$^{-1}$)	0.001 M $k_{specific}$ ± Δk(min$^{-1}$)
BipyMoO$_2$/TiO$_2$	0.014±0.005	0.011±0.005	0.003±0.006
AcMo/TiO$_2$	0.011±0.004	0.008±0.007	0.005±0.007
MoO$_3$/TiO$_2$	0.013±0.003	0.011±0.005	0.001±0.006

Figure 8 Effect of the initial concentration for Mo-heterogeneous catalysts: (a) BipyMoO$_2$/TiO$_2$ (b) AcMo/TiO$_2$ and (c) MoO$_3$/TiO$_2$.
Reaction conditions: Room temperature, acetonitrile as the solvent (10 mL), constant stirring (450 rpm), and 60 mg of catalyst. (Symbols indicate the tendency of each initial concentration; squares=0.01 M, asterics=0.006 M and triangles=0.002 M)

Concentration, and its value does not increase significantly as a function of concentration. At the same time, in the other two cases, the specific constant varies significantly. When the concentration is 0.01 M, the constant presents a maximum for BipyMoO$_2$/TiO$_2$. In contrast, for the concentration of 0.005 M, the kinetic behavior was higher for MoO$_3$/TiO$_2$, perhaps associated with its higher concentration of Mo.

Estimation of the quantum yield and their effect

Estimation of the quantum yield was calculated using the Equations 1 and 2. Figure 9 shows the variation of the reaction kinetic constant as a function of the quantum yield for each Mo catalyst. Increasing the quantum yield, the initial reaction rate increases for all catalysts; nevertheless, the behavior is different for the MoO$_3$/TiO$_2$ material, where the increase of reaction rate is slowest; this fact could be associated with the
amount of Mo. As for both BipyMoO$_2$/TiO$_2$ and AcMo/TiO$_2$ catalysts, the same amount of Mo was added, a similar quantum yield behavior was achieved. Other reason for this fact could be associated with the variation of the reaction rate, the photonic flux and the absorption coefficient, which are associated mainly with the TiO$_2$ support. It was assumed that only TiO$_2$ contributes to the photocatalytic properties of the material, and besides, that other properties are considered constant (scattering and absorption coefficients). The quantum yields are lower than 25 Einstein min$^{-1}$; the reaction rate appears to be the same for the three catalysts and by increasing the quantum yield, the reaction rate increases exponentially for all materials.

As no detailed kinetics have been reported, the current study shows references values of quantum yield (at different conditions) of Mo catalysts supported on TiO$_2$, characteristic of photocatalysts used in different applications. As can be seen in Table 5, all heterogeneous catalysts present a quantum yield in a range between 0 and 0.9 Einstein s$^{-1}$, being our system AcMo/TiO$_2$ the higher as compared with the other materials. It is essential to highlight that in all cases, only TiO$_2$ was used. The lowest value was achieved for the colloidal TiO$_2$ used for the degradation of formaldehyde (0.019). Similar yields were obtained towards the degradation of phenol with TiO$_2$ (Degussa P-25) [0.11-0.1275]. Also, the quantum yield obtained for the MoO$_3$/TiO$_2$ catalyst showed the same value that TiO$_2$ (Degussa P-25) used for the degradation of 2,6-dimethylphenol.

Table 5 Comparison of Quantum Yields for different heterogeneous photocatalysts

Catalyst	Substract	Reaction conditions	Quantum Yield (einstein s$^{-1}$)	Reference
TiO$_2$ (Degussa P-25)	Phenol, 2,6-dimethylphenol	Photodegradation, 200 μm of substract, 2 gL$^{-1}$ of catalys, pH=3	0.11\pm0.01	[47]
Colloidal TiO$_2$	Formaldehyde	100 mgL$^{-1}$ of catalyst, pH=2, 100 mM of substate	0.02	[48]
TiO$_2$ (Degussa P-25)	Phenol	Photodegradation, 50 mg/L of substract, 1 gL$^{-1}$	0.13 (0.02*)	[49]
BipyMoO$_2$/TiO$_2$	Triphenylphosphine	0.01 M of substract, 10 mL of solvent, 6 g L$^{-1}$ of catalyst	0.67	This work
AcMo/TiO$_2$			0.85	
MoO$_3$/TiO$_2$			0.33	

*If not considering the absorption coefficient of the incident light.

As can be seen in the data, all heterogeneous catalysts present a quantum yield in a range between 0 and 0.9 Einstein s$^{-1}$, being our system AcMo/TiO$_2$ the higher as compared with the other materials. It is essential to highlight that in all cases, only TiO$_2$ was used. The lowest value was achieved for the colloidal TiO$_2$ used for the degradation of formaldehyde (0.019). Similar yields were obtained towards the degradation of phenol with TiO$_2$ (Degussa P-25) [0.11-0.1275]. Also, the quantum yield obtained for the MoO$_3$/TiO$_2$ catalyst showed the same value that TiO$_2$ (Degussa P-25) used for the degradation of 2,6-dimethylphenol.

Figure 9 Effect of the quantum yield for Mo heterogeneous catalysts. Reaction conditions: room temperature, acetonitrile as the solvent (10 mL), constant stirring (450 rpm), and 60 mg of catalyst.

4. Conclusions

The kinetics of the oxygen atom transfer reaction to triphenylphosphine with several Mo heterogeneous catalysts anchored to TiO$_2$ stimulated with the light was studied. The rate constant increases as the concentration of the triphenylphosphine as does the photonic flux and the quantum yield increases.

Molybdcic acid, as molybdenum oxide anchored on TiO$_2$, does not allow oxygen atom transfer reaction, suggesting...
the importance of the bipyridine ligand as an electronic connector between the Mo complex and TiO₂ that favor the transfer of oxygen.

This work corresponds to the first report of the kinetic effects of a reaction of heterogeneous photo-oxidation with dioxo-Mo compounds anchored to TiO₂.

5. Declaration of competing interest
None declared under financial, professional and personal competing interest.

6. Acknowledgments
The authors acknowledge the DIEF of the sciences faculty of the Universidad Industrial de Santander (project 1898) for their financial support and Parque Tecnológico de Guatiguará (PTG) for the physicochemical characterization.

References
[1] Z. Guo and et al., “Recent advances in heterogeneous selective-oxidation catalysis for sustainable chemistry,” Chemical Society Reviews, vol. 43, pp. 3840–3524, 2014.
[2] R. Neumann and A. Khenkin, “Molecular oxygen and oxidation catalysis by phosphovanadomolybdates,” Chemical Communications, vol. 24, pp. 2529–2538, Mar. 2006.
[3] S. Gosh and et al., “Selective oxidation of propylene to propylene oxide over silver-supported tungsten oxide nanostructure with molecular oxygen,” ACS Catalysis, vol. 4, no. 7, June 3 2014. [Online]. Available: https://doi.org/10.1021/cs5004454
[4] N. J. Castellanos, “Síntesis, caracterización y evaluación de la actividad foto catalítica de los complejos 1,10-ferrocenilbenceno-dibromo-dioxo-molibdeno(VI) y 1,10-ferrocenilbenceno-dicloro-dioxo-molibdeno [VI].” Undergraduate, Universidad Industrial de Santander, Bucaramanga, Colombia, 2005.
[5] N. J. Castellanos, “Estudio del efecto de ligandos N-heterocíclicos insaturados en la oxo-transferencia foto-inducida con complejos del tipo MoO₂Cl₂Ln/TiO₂.” Ph.D. Dissertation, Universidad Industrial de Santander, Bucaramanga, Colombia, 2011.
[6] H. Arzoumanian, N. J. Castellanos, F. O. Martínez, E. O. Páez, and F. Ziarelli, “Silicon-assisted direct Si-wafer grafting on metal oxide surfaces: Synthesis and characterization of carboxylate N,N’-Ligands on TiO₂,” European Journal of Inorganic Chemistry, vol. 2010, no. 11, March 31 2010. [Online]. Available: https://doi.org/10.1002/ejic.200901092
[7] H. Arzoumanian, “Molybdenum-oxo and peroxo complexes in oxygen atom transfer processes with O₂ as the primary oxidant,” Current Inorganic Chemistry, vol. 1, no. 2, 2011. [Online]. Available: https://doi.org/10.2174/187794411101020140
[8] J. Kim, N. Ichikuni, T. Hara, and S. Shimazu, “Study on the selectivity of propane photo-oxidation reaction on SBA-15 supported Mo oxide catalyst,” Catalysis Today, vol. 265, May 1 2016. [Online]. Available: https://doi.org/10.1016/j.catod.2015.09.043
[9] R. A. Salamon, H. M. Gobara, and S. A. Younis, “Potential application of MoO₃ loaded SBA-15 photo-catalyst for removal of multiple organic pollutants from water environment,” Journal of water process Engineering, vol. 18, August 2017. [Online]. Available: https://doi.org/10.1016/j.jwpe.2017.06.010
[10] P. Basu, B. W. Kail, and C. G. Young, “The influence of the oxygen atom acceptor on the reaction coordinate and mechanism of oxygen atom transfer from the dioxo-Mo(VI) complex, Tp²⁺MoO₂(OPh), to tertiary phosphines,” Inorganic Chemistry, vol. 49, no. 11, 2010. [Online]. Available: https://doi.org/10.1021/ic902500h
[11] J. M. Tunney, J. Mcmaster, and C. D. Garner, “Molybdenum and tungsten enzymes,” in Comprehensive Coordination Chemistry II, J. A. McCleverty and T. J. Meyer, Eds. New York, USA: Elsevier Ltd, 2003, pp. 439–477.
[12] J. Martínez and et al., “Photo-epoxidation of cyclohexene, cyclooctene and 1-ocetene with molecular oxygen catalyzed by dichloro dioxo-[4,4’-dicarboxyato-2,2’-bipyridine] molybdenum(VI)grafted on mesoporous TiO₂,” Journal of Molecular Catalysis A: Chemical, vol. 423, November 2016. [Online]. Available: https://doi.org/10.1016/j.molcata.2016.07.006
[13] H. Martínez, A. Amaya, E. A. Páez, and F. Martínez, “Highly efficient epoxidation of α-pinene with O₂ photocatalyzed by dioxoMo(VI) complex anchored on TiO₂ nanotubes,” Microporous and Mesoporous Materials, vol. 265, February 2018. [Online]. Available: https://doi.org/10.1016/j.micromeso.2018.02.005
[14] M. S. Reynolds, J. M. Berg, and R. H. Holm, “Kinetics of oxygen atom transfer reactions involving oxomolybdenum complexes. general treatment for reactions with intermediate oxo-bridged molybdenum(VI) dimer formation,” Inorganic Chemistry, vol. 23, no. 20, September 1 1984. [Online]. Available: https://doi.org/10.1021/ic00188a007
[15] [1995] Silylating agents: Derivatization reagents, protecting-group reagents, organosilicon compounds, analytical applications, synthetic applications. Fiuka Chemika. Accessed Mar. 25, 2020. [Online]. Available: https://bit.ly/2ykA4a2
[16] K. V. R. Chary, T. Bhaskar, G. Kishan, and V. Vijayakumar, “Characterization of MoO₂/TiO₂ (anatase) catalysts by ESR, 1H MAS NMR, and oxygen chemisorption,” Journal of Physical Chemistry B, vol. 102, no. 20, April 28 1998. [Online]. Available: https://doi.org/10.1021/jp980088r
[17] C. M. Flórez and M. Sánchez, “Fotodisociación catalítica del Rh[I]-limoneno por el dioxo-dibromo4,4’-dicarboxilato-2,2’-bipiridil de Mo(VI) soportado en dióxido de titanio [degussa P-25] [MoO₂/TiO₂-P-25],” Undergraduate, Universidad Industrial de Santander, Bucaramanga, Colombia, 2009.
[18] A. Palade and et al., “Triphenylphosphine oxide detection in traces using MN(III)-5,10,15,20-tetratolyl-21h,23h porphyrin chloride,” Digest Journal of Nanomaterials and Biostructures, vol. 10, no. 3, pp. 729–735, Jul. 2015.
[19] [2001] UV-Vis spectra of neutral bases and their protonated conjugated cationic acids in acetonitrile. Accessed Mar. 27, 2020. [Online]. Available: https://bit.ly/3abq16
[20] E. E. Wegner and A. W. Adamson, “Photochemistry of complex ions. III. absolute quantum yields for the photolysis of some aqueous chromium(III) complexes. chemical actinometry in the long wavelength visible region,” Journal of the American Chemical Society, vol. 88, no. 3, February 1 1966. [Online]. Available: https://doi.org/10.1021/ja00955a003
[21] J. F. Cornet, A. Marty, and J. B. Gros, “Revised technique for the determination of mean incident light fluxes on photobioreactors,” Biotechnology Progress, vol. 13, no. 4, September 2008. [Online]. Available: https://doi.org/10.1021/bp070048c
[22] M. A. Mueses, F. Machuca, and J. Colina, “Determination of quantum yield in a heterogeneous photocatalytic system using a fitting-parameters model,” Journal of Advanced Oxidation Technologies, vol. 11, no. 1, 2008. [Online]. Available: https://doi.org/10.1515/jaots-2008-0105
[23] F. Machuca, “Cálculo de parámetros cinéticos en reacciones foto-catalíticas usando un modelo efectivo de campo de radiación,” Ingeniería y Competitividad, vol. 13, no. 1, 2011. [Online]. Available: https://doi.org/10.25100/icy.v13i1.2681
[24] M. J. Muñoz, M. M. Ballari, A. Kubacka, O. M. Alfono, ...
and M. Fernández, “Braiding kinetics and spectroscopy in photo-catalysis: the spectro-kinetic approach,” Chemical Society Review, vol. 48, no. 2, 2019. [Online]. Available: https://doi.org/10.1039/C8CS00108A

[25] O. M. Alfano, A. E. Cassano, J. Marugán, and R. V. Grieken, “Fundamentals of radiation transport in absorbing scattering media,” in Photocatalysis: Fundamentals and Perspectives, J. Schneider, D. Bahnemann, J. Ye, G. L. Puma, and D. D. Dionysiou, Eds. cambridge, UK: Royal Society of Chemistry, 2016, pp. 140–156.

[26] (2018) Structure determination by spectroscopic methods. Oregon State University. Accessed Dec. 14, 2019. [Online]. Available: https://bit.ly/2VepyUDU

[27] J. Grajeda, M. R. Kita, L. C. Gregor, P. S. White, and A. J. M. Miller, “Diverse cation-promoted reactivity of iridium carbonyl pincer-crown ether complexes,” Organometalics, vol. 35, no. 3, November 19 2016. [Online]. Available: https://doi.org/10.1021/acs.organomet.5b00786

[28] J. Deerberg and et al., “Stereoselective bulk synthesis of CCR2 antagonist BMS-741672: Assembly of an all-cis [5,5,R,R]-1,2,4-triaminocyclohexane (TACH) core via sequential heterogeneous asymmetric hydrogenations,” Organic Process Research & Development, vol. 20, no. 11, October 13 2016. [Online]. Available: https://dx.doi.org/10.1021/acs.oprd.6b00282

[29] C. Li, Q. Xin, K. L. Wang, and X. Guo, “FT-IR emission spectroscopy studies of molybdenum oxide and supported molybdena on alumina, silica, zirconia, and titania,” Applied spectroscopy, vol. 45, no. 5, June 1 1991. [Online]. Available: https://doi.org/10.1366/0003702914336651

[30] S. Bagheri, K. Shamel, and S. B. Abd, “Synthesis and characterization of anatase titanium dioxide nanoparticles using egg white solution via sol-gel method,” Journal of Chemistry, 2013. [Online]. Available: https://doi.org/10.1155/2013/648205

[31] P. Wongkrua, T. Thongtem, and S. Thongtem, “Synthesis of h- and α-MoO3 by refluxing and calcination combination: Phase and morphology transformation, photocatalysis, and photosensitization,” Journal of Nanomaterials, August 1 2013. [Online]. Available: https://doi.org/10.1155/2013/702679

[32] L. Seguina, M. Figlarza, R. Cavagnat, and J. C. Lassègues, “Infrared and raman spectra of MoO3·molybdenum trioxides and MoO3·xH2O molybdenum trioxide hydrates,” Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, vol. 51, no. 8, July 1995. [Online]. Available: https://doi.org/10.1016/0584-8539(94)00247-9

[33] S. Valencia, J. M. Marín, and G. Restrepo, “Study of the bandgap of synthesized titanium dioxide nanoparticles using the sol-gel method and a hydrothermal treatment,” The open Materials Science Journal, vol. 4, June 19 2009. [Online]. Available: https://doi.org/10.2174/187408801004010009

[34] L. Galeano, J. A. Navio, G. M. Restrepo, and J. M. Marín, “Preparación de sistemas Óxido de titano/Óxido de silicio TiO2/SiO2 mediante el método solvotérmico para aplicaciones en fotocatalía,” Información tecnológica, vol. 24, no. 5, 2013. [Online]. Available: https://doi.org/10.4067/S0718-0746201300000010

[35] K. Nomiya, Y. Sugie, K. Aminoto, and M. Miwa, “Charge-transfer absorption spectra of some tungsten [VI] and molybdenum [VI] polyoxoanions,” Polyhedron, vol. 6, no. 3, 1987. [Online]. Available: https://doi.org/10.1016/S0277-5387(00)81018-9

[36] J. Meyer and et al., “Metal oxide induced charge transfer doping and band alignment of graphene electrodes for efficient organic light emitting diodes,” Scientific Reports, vol. 4, p. 5380, Jun. 2014.

[37] M. Dieterle, G. Weinberg, and G. Mestl, “Raman spectroscopy of molybdenum oxides part I. structural characterization of oxygen defects in MoO3-x by dr UVVIS, raman spectroscopy and x-ray diffraction,” Physical Chemistry Chemical Physics, vol. 4, no. 5, pp. 812–821, Jan. 2002.

[38] H. J. H. Knoezinger, “Raman spectra of molybdenum oxide supported on the surface of aluminas,” Journal of Physical Chemistry A, vol. 82, no. 18, 2002. [Online]. Available: https://doi.org/10.1021/ j100507a011

[39] E. J. Ekoi, A. Gowen, R. Dorrepaal, and D. P. Dowling, “Characterisation of titanium oxide layers using raman spectroscopy and optical profilometry: Influence of oxide properties,” Results in Physics, vol. 12, March 2019. [Online]. Available: https://doi.org/10.1016/j.rinp.2019.01.054

[40] O. Frank and et al., “Raman spectra of titanium dioxide (anatase, rutile) with identified oxygen isotopes (16, 17, 18),” Physical Chemistry Chemical Physics, vol. 14, no. 42, August 12 2012. [Online]. Available: https://dx.doi.org/10.1039/C2CP42763J

[41] I. E. Wachs, “Raman and IR studies of surface metal oxide species on oxide supports: Supported metal oxide catalysts,” Catalysis today, vol. 27, no. 3-4, February 1996. [Online]. Available: https://doi.org/10.1016/0920-5861(95)00203-0

[42] M. A. Hamdan, S. Loridan, M. Jahjah, C. Pinel, and N. Perret, “TiO2“textsubscript2-supported molybdenum carbide: An active catalyst for the aqueous phase hydrogenation of succinic acid,” Applied Catalysis A: General, vol. 571, December 2018. [Online]. Available: https://doi.org/10.1016/j.apcata.2018.11.009

[43] L. D. Devi and B. N. Murthy, “Characterization of mo doped TiO2 and its enhanced photo catalytic activity under visible light,” Catalysis Letters, vol. 125, no. 3, October 2008. [Online]. Available: https://doi.org/10.1007/s10562-008-9568-4

[44] J. M. Thomas and W. J. Thomas, Principles and Practice of Heterogeneous Catalysis, 2nd ed. Hoboken, NJ, USA: John Wiley & Sons, 2015.

[45] G. F. Froment, K. Bischoff, and J. de Wilde, hemical Reactor Analysis and Design, 3rd ed. Hoboken, NJ, USA: John Wiley & Sons, 2010.

[46] R. Gao and et al., “Reaction of arylphosphines with singlet oxygen: intra- vs intermolecular oxidation,” Organic Letters, vol. 3, no. 23, October 20 2001. [Online]. Available: https://dx.doi.org/10.1021/ ol010195v

[47] N. Serpone, “Relative photonic efficiencies and quantum yields in heterogeneous photocatalysis,” Journal of Photochemistry and Photobiology A: Chemistry, vol. 104, no. 1-3, April 1997. [Online]. Available: https://doi.org/10.1016/S1010-6030(96)04538-8

[48] C. Wang, D. W. Bannemann, and J. K. Dohrmann, “Determination of photonic efficiency and quantum yield of formaldehyde formation in the presence of various TiO2 photocatalysts,” Water Science and Technology, vol. 44, no. 5, February 2001. [Online]. Available: https://doi.org/10.2166/wst.2001.0306

[49] X. Yi and Y. Chun, “Calculation method of quantum efficiency to TiO2 nanocrystal photocatalysis reaction,” Journal of Environmental Sciences, vol. 14, no. 1, pp. 70–75, Feb. 2002.