Article

Characteristic Fluctuations of Dynamic Power Delay Induced by Random Nanosized Titanium Nitride Grains and the Aspect Ratio Effect of Gate-All-Around Nanowire CMOS Devices and Circuits

Yiming Li *, Chieh-Yang Chen, Min-Hui Chuang and Pei-Jung Chao

Parallel and Scientific Computing Laboratory, Department of Electrical and Computer Engineering, National Chiao Tung University, Hsinchu 300, Taiwan; cychen@mail.ymlab.org (C.-Y.C.);
mhchuang@mail.ymlab.org (M.-H.C.); pjchao@mail.ymlab.org (P.-J.C.)

* Correspondence: ymli@faculty.nctu.edu.tw; Tel.: +886-3-5712121 (ext. 52974)

Received: 1 January 2019; Accepted: 5 May 2019; Published: 8 May 2019

Abstract: In this study, we investigate direct current (DC)/alternating current (AC) characteristic variability induced by work function fluctuation (WKF) with respect to different nanosized metal grains and the variation of aspect ratios (ARs) of channel cross-sections on a 10 nm gate gate-all-around (GAA) nanowire (NW) metal–oxide–semiconductor field-effect transistor (MOSFET) device. The associated timing and power fluctuations of the GAA NW complementary metal–oxide–semiconductor (CMOS) circuits are further estimated and analyzed simultaneously. The experimentally validated device and circuit simulation running on a parallel computing system are intensively performed while considering the effects of WKF and various ARs to access the device’s nominal and fluctuated characteristics. To provide the best accuracy of simulation, we herein calibrate the simulation results and experimental data by adjusting the fitting parameters of the mobility model. Transfer characteristics, dynamic timing, and power consumption of the tested circuit are calculated using a mixed device–circuit simulation technique. The timing fluctuation mainly follows the trend of the variation of threshold voltage. The fluctuation terms of power consumption comprising static, short-circuit, and dynamic powers are governed by the trend that the larger the grain size, the larger the fluctuation.

Keywords: DC and AC characteristic fluctuations; gate-all-around; nanowire; MOSFETs; work function fluctuation; aspect ratio of channel cross-section; timing fluctuation; noise margin fluctuation; power fluctuation; CMOS circuit; statistical device simulation

1. Introduction

The dimension of effective devices has shrunk to a sub-22 nanometer scale, and due to this, we are facing even more serious characteristic variability problems [1–7]. High-κ/metal gate (HKMG) technology has been recognized as a solution to solve intrinsic fluctuation, but the crystal orientation of nanosized metal grain is uncontrollable during the growth step under high temperatures [8,9]. Values of uncertain orientation-dependent work functions (WKs) of gate material causes WK fluctuation (WKF). Many studies have surveyed WK for different devices [3,10–16], and some have further discussed the distribution of metal grains on planar metal–oxide–semiconductor field-effect transistors (MOSFETs) [17,18]. However, seldom do these studies put emphasis on gate-all-around (GAA) nanowire (NW) MOSFET devices. As a result, in this study, we will focus on estimating the impact of
WKF on the electrical characteristics of GAA NW MOSFET devices and its implication for the dynamic property of a complementary metal–oxide–semiconductor (CMOS) circuit. In order to analyze WKF, we apply the newly developed localized WKF (LWKF) method [18]. The averaged work function method (AWKF) [19] was reported to estimate the entire value of WKs, but the process of averaging cannot be used to estimate the effect of local WKs on device characteristics. The physically-sound LWKF method is an effective technique that can determine the random number and random location effects, as well as the physical phenomena of the localization of nanosized metal grains, and it does not underestimate the effect of WKF [20]. Hence, we adopt the LWKF method to explore the WKF effect. According to the properties of the metal material, TiN has two different orientations: <200> and <111>, with 60% and 40% generated probabilities [19,21,22]. In addition to WKF, the limitation of process fabrication may lead to geometrical variations in channel cross-sections and affect the operations of devices. Due to this, perfectly round-shaped channel GAA NW MOSFET devices are difficult to manufacture. The different aspect ratio (AR) of channel radius results in a different shape of channel cross-section—an elliptical shape instead of the ideal round shape [23–25]. Therefore, we will discuss the electrical characteristics of the explored devices with different ARs. Additionally, we will simulate the combination effect of WKF and the variation of AR. WKF-induced circuit variations, such as timing and power fluctuations [26–28], seriously affect the dynamic property of GAA NW CMOS circuits. Most previous research only focused on the DC characteristics of N-type planar or fin-typed MOSFET devices when considering the aforementioned variability [10,28–30]. Various fluctuations of circuit characteristics, such as noise margin (NM), timing, and power consumption are also important to research, but the variability of GAA NW CMOS circuits has not been clearly studied yet. To comprehensively explore the aforementioned issues for 10 nm gate GAA NW MOSFETs and CMOS circuits induced by WKF and different ARs, we extend an experimentally-calibrated three-dimensional (3D) quantum-mechanically-corrected device and circuit simulation [1,18,26–29]. The engineering findings of this study indicate that falling time (t_f) is lower than rising time (t_r) owing to the relatively larger driving capability of the N-type device. Along with the increasing grain number of higher WKs, the high-to-low delay time (t_{HL}) and the low level of noise margin (NM$_L$) become higher, while the low-to-high delay time (t_{LH}) and the high level of noise margin (NM$_H$) decrease. All power consumption terms follow the trend that the larger the grain size, the larger the fluctuation.

This paper is organized as follows: In Section 2, we describe the statistical device simulation techniques of WKF and AR for the GAA NW MOSFETs and CMOS circuits. In Section 3, we discuss and analyze the simulation results of WKF combined with the variation of AR on GAA NW MOSFETs and CMOS circuits. Finally, we draw the conclusions of this study and suggest future work.

2. Statistical LWKF and AR Simulation Techniques

In this work, we extended the statistical device simulation technique [3,31] to analyze WKF and different ARs of GAA NW CMOS circuits. Figure 1a shows the device setting parameters, the device characteristics, and the achieved nominal values of the short-channel effect (SCE) of the studied N-/P-type devices. To conduct the simulation and to estimate the impacts of WKF, we used the LWKF method for statistical device simulation, which is illustrated in Figure 1b–e in detail. We used TiN as the metal gate material, which includes two different orientations: <200> and <111> with the associated 60% and 40% probabilities. The related parameters are shown in Figure 1b. To calibrate the magnitude of threshold voltage (V_{th}) to 280 mV, we used the WK-tuning techniques in which the metal gate is doped by hydrogen plasma/fluorine ion implantation, as this was found by K. Han et al. [32,33] to achieve different WK values. The corresponding WKs are 4.6 and 4.84 eV and 4.4 and 4.64 eV, respectively, for the N-/P-type devices. First, to carry out the WKF simulation, we partitioned the TiN metal gate of the GAA NW MOSFET devices into many sub-regions according to grain size. Second, Figure 1c shows a histogram plot of the number of high WKs, which were generated according to Gaussian distribution. Then, the high and low WKs were randomly assigned and mapped onto the sub-region of the gate region of device, as shown in Figure 1d. Finally, we acquired the statistically
generated surface for WKF simulation. For the N-/P-type devices, 200 cases were generated and simulated, as shown in Figure 1d, where the regions of light color and dark color represent the low and high WKs, respectively. Figure 1e is a flow chart of the LWKF simulation. The illustration and definition of different AR devices are given in Figure 1f. The device channel has major axis “a” and minor axis “b” of different lengths of channel radius. The AR is defined as the ratio of the length of the major axis to that of the minor axis, which equals “a/b”. The length of the minor axis of the ellipse-shaped channel is fixed at 5 nm, and the major axis varies with an AR of 0.5, 1, and 2, respectively, in our simulation setting. To discuss and analyze the variations that experience both WKF and variation of AR, we used a new extension of the LWKF method for the explored device with respect to different ARs that can be implemented in device simulation. We utilized the CMOS inverter circuit consisting of N- and P-type GAA NW MOSFETs as the tested circuit to explore the timing and power fluctuations induced by WKF and the effect of AR. The schematic plot of the GAA NW CMOS inverter circuit is shown in Figure 1g. The logic input signals of the N- and P-type GAA NW MOSFETs were “1” to “0” and “0” to “1”. The transition time, including rising delay time, as well as the falling delay time and the hold time of the input signal were 2, 2, and 30 ps, respectively. To estimate and capture the influence of WKF on the circuit characteristics of the explored GAA NW CMOS inverter, a coupled device–circuit simulation approach was employed, as shown in Figure 1h. This was used because a well-established equivalent circuit model of GAA NW CMOS devices is still unavailable. At first, an initial guess for device bias was assumed, and the device characteristics in the test circuit were estimated by solving the device transport equations. The obtained result was the initial guess for the coupled device–circuit simulation. Then, based on Kirchhoff’s current law, the nodal equations of the tested circuits were formulated. Because the device equations were solved in the coupled device–circuit simulation, the effects of WKF on the device and the CMOS inverter circuit characteristics were thus properly captured. The coupled simulation was solved iteratively until the solution converged in each time step and bias condition.

To validate our simulation, we examined the band profile along the channel by solving 3D quantum mechanical transport and non-equilibrium Green’s function models. Then, we calibrated the simulation result with measurement data of the fabricated sample [34,35]. For both the N- and P-type devices, the \(I_D – V_C \) characteristics of the simulated device at \(V_D = 1/−1 \text{ V} \) were experimentally calibrated to the measured data by fitting the mobility model parameters [18,20,34,35]. Because the \(I_D – V_C \) characteristics are well-fitted between the fabrication and the simulation, this further ensures the accuracy of our statistical device and circuit simulation.

3. Results and Discussion

Figure 2 shows the standard deviation (\(\sigma \)) of threshold voltage, drain-induced barrier lowering (DIBL), and gate capacitance (\(C_G \)) versus AR with respect to different grain sizes of N- and P-type GAA NW MOSFETs. As the grain size reduced from 4 × 5 to 1 × 1 nm\(^2\) and the AR induced from 0.5 to 2, \(\sigma V_{th} \) reduced, as shown in Figure 2a,b. For a fixed channel area with a different grain size, if the grain size is large, the same gate area may contain only a few grains, so the effective WKF will be governed by high or low WKs and further lead to higher or lower \(V_{th} \), causing relatively larger variation. Under the condition of the same grain size, the device with the larger AR has smaller fluctuation, because the grain size is relatively small. As shown in Figure 2c,d, the case of AR = 0.5 had the highest deviation, indicating that the device with the critical dimension is more sensitive to variation in the process. According to the definition of DIBL, the magnitude of \(\sigma \)DIBL in Figure 2c,d had a similar trend to \(\sigma V_{th} \), as shown in Figure 2a,b, due to the dependency on \(V_{th} \). Figure 2e,f shows the bar charts of \(\sigma C_G \) with three different ARs and three different grain sizes. The devices with a larger AR had a larger surface area, so the value of \(C_G \) with a larger AR was larger than that of the smaller AR. However, under the condition of the same grain size, the larger AR had the smaller fluctuation. This is because the area of AR = 2 was larger, and the grain size was relatively small. Thus, the magnitude of \(\sigma C_G \) of larger AR devices was smaller. Notably, the aspect ratio was given from a fixed axis, so it would also be helpful to interpret the result versus the device dimension using the plot of a Pelgrom model. Although we have
applied the Pelgrom model to explore the variability of fin-type field-effect transistors (FinFETs) [36],
the same model, we assumed, can be applied to examine the variability of a GAA NW MOSFET device.

![Figure 1](image)

Figure 1. (a) The device’s parameters and the nominal short-channel effect (SCE) values of the N-/P-type devices. We used TiN, which is a stable compound with a NaCl (sodium chloride) structure as the metal gate. According to the properties of the metal material, TiN has two different orientations: <200> and <111>, with 60% and 40% generated probabilities [19,21,22]. The related work functions (WKs) of the N-/P-type devices are shown in (b). (c) A histogram plot of the number of high WKs generated following Gaussian distribution. (d) The adopted test device with low and high WKs, in which the light color and dark color represent the low and high WKs, respectively. (e) The flow chart of work function fluctuation (WKF) simulation, where 200 cases for the N-/P-type devices were generated and simulated, as shown in (d). (f) The illustration and definition of different aspect ratio (AR) devices. (g) The tested complementary metal–oxide–semiconductor (CMOS) inverter circuits in this study. (h) Simulation flowchart for the coupled device–circuit approach. MOSFET: metal–oxide–semiconductor field-effect transistors; S: source; D: drain; DIBL: drain-induced barrier lowering; EOT: effective oxide thickness; SS: subthreshold swing; 3D: three-dimensional.
Figure 2. The standard deviation of (a), (b) V_{th}, (c), (d) DIBL, and (e), (f) gate capacitance (CG) versus different ARs with respect to different grain sizes of N-/P-type gate-all-around (GAA) nanowire (NW) MOSFETs affected by WKF. For both the N- and P-type GAA NW MOSFETs, devices with a larger grain size and smaller AR have greater deviations than the others.

Figure 3 shows the effects of a random number and random position of high WK grains on the threshold voltage: threshold voltage increases when the number of high WK grains increases. Notably, the charge distribution is strongly governed by different WKs locally. By using the LWKF method, we determined the random location effect and found that most of the high WK grains are near source (S) side or drain (D) side. Figure 3a,b shows the distributions of Case A and Case B with the highest and lowest V_{th} in the group of the same number of high WKs, respectively. The green color represents low WKs, and the white color indicates high WKs. Figure 3a',b' shows the corresponding conduction band...
energy distributions in the off-state. Because the grain pattern of Case A has a larger proportion of high WKs near the source side compared with Case B, in order to explore the difference, we illustrate the one-dimensional (1D) conduction band energy profile of the device channel center in Figure 3c. Figure 3d is a zoom-in plot and the black solid line and the red dashed line represent Case A and Case B, respectively. The barrier of Case A is 35 meV higher than that of Case B. Thus, the case with the higher barrier needs a higher voltage to lower the high barrier and make the electrons easier to pass through, leading to higher V_{th}.

![Figure 3](image)

Figure 3. (a,b) The metal grain distribution of Case A and Case B that have the same number of high WKs but different V_{th}. For the metal gate, the green color represents low WKs, and the white color indicates high WKs. (a’,b’) The corresponding conduction band energy distributions in the channel region. The bias conditions are $V_D = 0.6 \text{V}$ and $V_G = 0 \text{V}$. (c) The one-dimensional (1D) conduction band energy profile, and (d) the zoom-in plot from the source side to the drain side of Case A and Case B. Case A has a higher barrier in the off-state, which leads to higher V_{th} compared with Case B.

Figure 4a shows the fluctuated voltage transfer curves induced by the WKF of the explored CMOS inverter circuit. V_{IL}, the maximum permitted logic “0” at input, and V_{IH}, the minimum permitted logic “1” at input, are the extracted input voltages of the voltage transfer curves at the slope of -1V/V. These two points are used to determine NM_H and NM_L. The definition of NM is shown in Figure 4. The values of NM_H and NM_L are indicators to estimate the maximum noise signal tolerance during the operation of the inverter circuits. Figure 4b,c shows the bar chart of NM, which increases with an increasing grain size, similar to the variation of V_{th} in Figure 2a,b. Hence, NM also follows the trend of σV_{th}. Figure 4d,e displays the plots of NM_L and NM_H versus the number of high WKs affected by WKF with grain size fixed at $2 \times 2 \text{nm}^2$. When the number of high WK metals increases, NML rises and NMH does the opposite. Higher WK numbers cause a higher value of N-type V_{th} and a lower value of P-type V_{th}, resulting in both the values of V_{IL} and V_{IH} becoming higher. This leads to an increasing NM_L and a decreasing NM_H. Figure 5 shows the variance of the timing of the tested circuits experiencing WKF with three different grain sizes and three different ARs. The magnitude of variance of t_r is smaller than that of t_f owing to the larger driving capability of the N-type device. The device with the larger driving capability requires less time to charge/discharge the load capacitance. Hence, it
which indicates the magnitude of V_{th}. Along with the rising high WK number, the value of the N-type V_{th} increases, and it becomes harder for the N-type device to turn on, causing a higher t_{HL}. For P-type devices, a larger number of high WKs leads to a lower value of V_{th}, so t_{LH} decreases. Figure 7 shows the related results of the power consumption affected by WKF and various ARs of the tested circuit.

The “Delay” is defined as the average of t_{HL} and t_{LH}. The larger the grain size, the larger the fluctuation of the delay time. This can be explained by the load capacitance fluctuation in Figure 5c. The σ_{CG} of the grain equal to $4 \times 5 \text{nm}^2$ is the largest among the three different sizes of metal grains. A larger σ_{CG} would lead to a longer σ_{Delay}. The associated values of the timing fluctuation of different ARs are given in Figure 5d, which can verify the trend in Figure 5b—the larger the AR, the larger the timing fluctuation. Figure 6 shows t_{HL} and t_{LH} versus the number of high WKs fluctuated by WKF with grain size equal to $2 \times 2 \text{nm}^2$. The trend of t_{HL} increases when the number of high WK metals increases, because the delay time is dependent on the start of the signal transition, which indicates the magnitude of V_{th}. Along with the rising high WK number, the value of the N-type V_{th} increases, and it becomes harder for the N-type device to turn on, causing a higher t_{HL}. For P-type devices, a larger number of high WKs leads to a lower value of V_{th}, so t_{LH} decreases. Figure 7 shows the related results of the power consumption affected by WKF and various ARs of the tested circuit.

$$NM_L = V_{IL}$$

$$NM_H = V_{DD} - V_{IH}$$

Figure 4. (a) The voltage transfer curves of NW MOSFET inverter circuits fluctuated by WKF. V_{IL} and V_{IH} are used to determine the noise margin (NM) of the inverter. The slope at these two points of voltage transfer curves is $-1/V$. The related definitions of low level of noise margin (NML) and high level of noise margin (NMH) are shown below (a). (b,c) Plots of the fluctuated NM induced by the WKF of a GAA NW MOSFET with three grain sizes: $4 \times 5 \text{nm}^2$ (red), $2 \times 2 \text{nm}^2$ (white), and $1 \times 1 \text{nm}^2$ (black), respectively. (b) The standard deviation and (c) the coefficient of variance of NM. (d,e) Plots of NML and NMH versus the number of TiN $<200>$ with grain size equal to $2 \times 2 \text{nm}^2$. The trend of NM versus high WK number between NML and NMH acts conversely. When the high WK number increases, NML also increases, and thus, NMH decreases.
where I_{leakage} is the leakage current that flows between the power rails when operating at static state.

The total power (P_{total}) is composed of static power (P_{stat}), short-circuit power (P_{sc}), and dynamic power (P_{dyn}). The definitions of these power components are as follows:

$$P_{\text{stat}} = V_{DD}I_{\text{leakage}}$$ \hspace{1cm} (1)

$$P_{\text{sc}} = f_{0-1}V_{DD} \int_0^T I_{\text{sc}}(\tau) d\tau$$ \hspace{1cm} (2)

$$P_{\text{dyn}} = C_{\text{load}}V_{DD}^2 f_{0-1}$$ \hspace{1cm} (3)

$$P_{\text{total}} = P_{\text{stat}} + P_{\text{sc}} + P_{\text{dyn}}$$ \hspace{1cm} (4)

The definitions of these power components are as follows:

$$P_{\text{stat}} = V_{DD}I_{\text{leakage}}$$ \hspace{1cm} (1)

$$P_{\text{sc}} = f_{0-1}V_{DD} \int_0^T I_{\text{sc}}(\tau) d\tau$$ \hspace{1cm} (2)

$$P_{\text{dyn}} = C_{\text{load}}V_{DD}^2 f_{0-1}$$ \hspace{1cm} (3)

$$P_{\text{total}} = P_{\text{stat}} + P_{\text{sc}} + P_{\text{dyn}}$$ \hspace{1cm} (4)

where I_{leakage} is the leakage current that flows between the power rails when operating at static state.

The definitions of these power components are as follows:

$$P_{\text{stat}} = V_{DD}I_{\text{leakage}}$$ \hspace{1cm} (1)

$$P_{\text{sc}} = f_{0-1}V_{DD} \int_0^T I_{\text{sc}}(\tau) d\tau$$ \hspace{1cm} (2)

$$P_{\text{dyn}} = C_{\text{load}}V_{DD}^2 f_{0-1}$$ \hspace{1cm} (3)

$$P_{\text{total}} = P_{\text{stat}} + P_{\text{sc}} + P_{\text{dyn}}$$ \hspace{1cm} (4)

where I_{leakage} is the leakage current that flows between the power rails when operating at static state.

The definitions of these power components are as follows:

$$P_{\text{stat}} = V_{DD}I_{\text{leakage}}$$ \hspace{1cm} (1)

$$P_{\text{sc}} = f_{0-1}V_{DD} \int_0^T I_{\text{sc}}(\tau) d\tau$$ \hspace{1cm} (2)

$$P_{\text{dyn}} = C_{\text{load}}V_{DD}^2 f_{0-1}$$ \hspace{1cm} (3)

$$P_{\text{total}} = P_{\text{stat}} + P_{\text{sc}} + P_{\text{dyn}}$$ \hspace{1cm} (4)

where I_{leakage} is the leakage current that flows between the power rails when operating at static state.

The definitions of these power components are as follows:

$$P_{\text{stat}} = V_{DD}I_{\text{leakage}}$$ \hspace{1cm} (1)

$$P_{\text{sc}} = f_{0-1}V_{DD} \int_0^T I_{\text{sc}}(\tau) d\tau$$ \hspace{1cm} (2)

$$P_{\text{dyn}} = C_{\text{load}}V_{DD}^2 f_{0-1}$$ \hspace{1cm} (3)

$$P_{\text{total}} = P_{\text{stat}} + P_{\text{sc}} + P_{\text{dyn}}$$ \hspace{1cm} (4)
was the largest among all power consumption terms. However, its contribution to P_{total} was marginal. As a result, P_{total} was mainly affected by P_{sc} and P_{dyn}. Figure 7c shows the average power dissipation affected by the WKF of different ARs. The average values of P_{sc} and P_{dyn} were also much larger than that of P_{stat}. Therefore, for all AR devices, P_{sc} and P_{dyn} were the dominating factors in P_{total}. In addition, I_{sc} in the case of AR = 2 was the largest in Figure 7d, and this shows that devices with AR = 2 had the largest P_{sc}.

$$P_{\text{total}} = P_{\text{stat}} + P_{\text{sc}} + P_{\text{dyn}}$$

Figure 7a,b shows the bar chart of power consumptions of different grain sizes. In Figure 7a, it can be observed that the average values of P_{sc} and P_{dyn} were the dominating roles in power dissipation. As shown in Figure 7b, all the power consumption terms followed the trend that the larger the grain size, the larger the fluctuation. For P_{dyn}, the device with grain size equal to $4 \times 5 \text{ nm}^2$ displayed larger P_{dyn} owing to its larger C_{load} compared with the others. The device with grain size equal to $1 \times 1 \text{ nm}^2$ had smaller P_{stat} than the devices with the other two grain sizes, because I_{leakage} of $1 \times 1 \text{ nm}^2$ was the smallest of the grain sizes. Additionally, Figure 7b shows that the magnitude of the variance of P_{stat} was the largest among all power consumption terms. However, its contribution to P_{total} was marginal. As a result, P_{total} was mainly affected by P_{sc} and P_{dyn}. Figure 7c shows the average power dissipation affected by the WKF of different ARs. The average values of P_{sc} and P_{dyn} were also much larger than that of P_{stat}. Therefore, for all AR devices, P_{sc} and P_{dyn} were the dominating factors in P_{total}. In addition, I_{sc} in the case of AR = 2 was the largest in Figure 7d, and this shows that devices with AR = 2 had the largest P_{sc}.

4. Conclusions

In this work, DC/AC characteristic fluctuation of GAA NW MOSFETs and variation of the dynamic property of a CMOS circuit induced by WKF and ARs of channel cross-sections were investigated using an experimentally calibrated 3D device and circuit simulation running on a parallel computing system. The V_{th} diminished with a decrease in grain size for both the N- and P-type devices. DIBL
followed the trend of V_{th} due to the dependency on the V_{th} of DIBL. The standard deviation of C_G with large grain size also had greater fluctuated value. We conclude that for both DC and AC characteristics, the smaller the grain size, the lower the fluctuation. The threshold voltage increases when the number of high WK grains increases. For devices with the same number of WKs, the device with a larger proportion of high WKs near the source side will achieve to a higher threshold voltage. In addition, under the condition of same metal grain size, the larger AR device has a less severe impact from WKF than a smaller AR device, because it has a large effective gate area and the grain size is relatively small. Hence, larger AR devices will average the effect of random metal grain fluctuation and thereby reduce the degradation of WKF. For the variation of the dynamic property of the explored CMOS circuit, the delay time and NM fluctuations follow the trend of V_{th}—that a larger variation is caused by a larger grain size. For t_f and t_r, the larger driving capability of the N-type device is the reason t_f is smaller than t_r. NML is positively related to the number of high WKs, while NMH is negatively related to it. In power dissipation, both P_{sc} and P_{dyn} are the most significant fluctuation sources.

Author Contributions: Conceptualization, Y.L.; Theory and Methodology, Y.L.; Programming, Software, and Simulation, Y.L., C.-Y.C., M.-H.C., and P.-J.C.; Discussion, Y.L., C.-Y.C., M.-H.C., and P.-J.C.; Draft Preparation, Y.L., C.-Y.C., M.-H.C., and P.-J.C.; Review and Editing, Y.L., C.-Y.C., and M.-H.C.

Funding: This research was funded by Ministry of Science and Technology, Taiwan grant number 106-2221-E-009-149, 106-2622-8-009-013-TM, 107-3017-F-009-001, 107-2221-E-009-094, and 107-2622-8-009-011-TM. The APC was funded by Ministry of Science and Technology, Taiwan.

Acknowledgments: This work was supported in part by the Ministry of Science and Technology (MOST), Taiwan, under grants MOST 106-2221-E-009-149, 106-2622-8-009-013-TM, 107-3017-F-009-001, 107-2221-E-009-094, and 107-2622-8-009-011-TM, and the “Center for mmWave Smart Radar Systems and Technologies” under the Featured Areas Research Center Program within the framework of the Higher Education Sprout Project by the Ministry of Education (MOE) in Taiwan.

Conflicts of Interest: The authors declare no conflicts of interest.

References

1. Li, Y.; Chang, H.-T.; Lai, C.-N.; Chao, P.-J.; Chen, C.-Y. Process Variation Effect, Metal-Gate Work-Function Fluctuation and Random Dopant Fluctuation of 10-nm Gate-All-Around Silicon Nanowire MOSFET Devices. In Proceedings of the Technical Digest of International Electron Devices Meeting, Washington, DC, USA, 7–9 December 2015.

2. Hwang, C.-H.; Li, T.-Y.; Han, M.-H.; Lee, K.-F.; Cheng, H.-W.; Li, Y. Statistical 3D Simulation of Metal Gate Workfunction Variability, Process Variation, and Random Dopant Fluctuation in Nano-CMOS Circuits. In Proceedings of the International Conference on Simulation of Semiconductor Processes and Devices, San Diego, CA, USA, 9–11 September 2009.

3. Cheng, H.-W.; Li, F.-H.; Han, M.-H.; Yu, C.-Y.; Yu, C.-H.; Lee, K.-F.; Li, Y. 3D Device Simulation of Work Function and Interface Trap Fluctuations on High-κ/Metal Gate Devices. In Proceedings of the Technical Digest of International Electron Devices Meeting, San Francisco, CA, USA, 6–8 December 2010.

4. Tan, C.M.; Chen, X. Random dopant fluctuation in gate-all-around nanowire FET. In Proceedings of the IEEE International Nanoelectronics Conference, Sapporo, Japan, 28–31 July 2014.

5. Arnaud, F.; Pinzelli, L.; Gallon, C.; Rafik, M.; Mora, P.; Boeuf, F. Challenges and opportunity in performance, variability and reliability in sub-45 nm CMOS technologies. *Microelectron. Reliab.* **2011**, *51*, 1508–1514. [CrossRef]

6. Stathis, J.H.; Wang, M.; Southwick, R.G.; Wu, E.Y.; Linder, B.P.; Liniger, E.G.; Bonilla, G.; Kothari, H. Reliability Challenges for the 10 nm Node and Beyond. In Proceedings of the Technical Digest of International Electron Devices Meeting, San Francisco, CA, USA, 15–17 December 2014.

7. Kuhn, K.J. Considerations for Ultimate CMOS Scaling. *IEEE Trans. Electron Devices* **2012**, *59*, 1813–1828. [CrossRef]

8. Hussain, M.M.; Quevedo-Lopez, M.A.; Alshareef, H.N.; Wen, H.C.; Larison, D.; Gnade, B.; El-Bouanani, M. Thermal Annealing Effects on A Representative High-κ/Metal Film Stack. *Semicond. Sci. Technol.* **2006**, *21*, 1437–1440. [CrossRef]
9. Heu, J.L.; Setsuhara, Y.; Shimizu, I.; Miyake, S. Structure Refinement and Hardness Enhancement of Titanium Nitride Films by Addition of Copper. Surf. Coat. Technol. 2001, 137, 38–42. [CrossRef]
10. Matsukawa, T.; Liu, Y.; Endo, K.; Tsukada, J.; Yamauchi, H.; Ishikawa, Y.; O’uchi, S.; Mizubayashi, W.; Ota, H.; Migita, S.; et al. Influence of work function variation of metal gates on fluctuation of sub-threshold drain current for Fin field-effect transistors with undoped channels. Jpn. J. Appl. Phys. 2014, 53, 45. [CrossRef]
11. Li, Y.; Cheng, H.-W.; Yiu, C.-Y.; Su, H.-W. Nanosized metal grains induced electrical characteristic fluctuation in 16-nm-gate high-k/metal gate bulk FinFET devices. Microelectron. Eng. 2011, 88, 1240–1242. [CrossRef]
12. Kundu, A.; Koley, K.; Dutta, A.; Sarkar, C.K. Impact of gate metal work-function engineering for enhancement of subthreshold analog/RF performance of underlap dual material gate DG-FET. Microelectron. Reliab. 2014, 54, 2717–2722. [CrossRef]
13. Lee, K.-C.; Fan, M.-L.; Su, P. Investigation and comparison of analog figures-of-merit for TFET and FinFET considering work-function variation. Microelectron. Reliab. 2015, 55, 332–336. [CrossRef]
14. Seoane, N.; Indalecio, G.; Aldegunde, M.; Nagy, D.; Elmessary, M.A.; Garcia-Loureiro, A.J.; Kalna, K. Comparison of Fin-Edge Roughness and Metal Grain Work Function Variability in InGaAs and Si FinFETs. IEEE Trans. Electron Devices 2016, 63, 1209–1216. [CrossRef]
15. Nawaz, S.M.; Mallik, A. Effects of Device Scaling on the Performance of Junctionless FinFETs Due to Gate-Metal Work Function Variability and Random Dopant Fluctuations. IEEE Electron Device Lett. 2016, 37, 958–961. [CrossRef]
16. Yang, C.-C.; Huang, W.-H.; Hsieh, T.-Y.; Wu, T.-T.; Wang, H.-H.; Shen, C.-H.; Yeh, W.-K.; Shiu, J.-H.; Chen, Y.-H.; Wu, M.-C.; et al. High Gamma Value 3D-Stackable HKMG-Stacked Tri-Gate Nanowire Poly-Si FETs With Embedded Source/Drain and Back Gate Using Low Thermal Budget Green Nanosecond Laser Crystallization Technology. IEEE Electron Device Lett. 2016, 37, 533–536. [CrossRef]
17. Dev, S.; Meena, M.; Harsha Vardhan, P.; Lodha, S. Statisical Simulation Study of Metal Grain-Orientation-Induced MS and MIS Contact Resistivity Variability for 7-nm FinFETs. IEEE Trans. Electron Devices 2018, 65, 3104–3111. [CrossRef]
18. Li, Y.; Cheng, H.-W.; Chiu, Y.-Y.; Yiu, C.-Y.; Su, H.-W. A Unified 3D Device Simulation of Random Dopant, Interface Trap and Work Function Fluctuations on High-k/Metal Gate Device. In Proceedings of the Technical Digest of International Electron Devices Meeting, Washington, DC, USA, 5–7 December 2011.
19. Dadgour, H.; Endo, K.; Vivek, D.; Banerjee, K. Modeling and analysis of grain-orientation effects in emerging metal-gate devices and implications for sram reliability. In Proceedings of the Technical Digest of International Electron Devices Meeting, San Francisco, CA, USA, 15–17 December 2008.
20. Li, Y.; Chen, C.-Y.; Chen, Y.-Y. Random-Work-Function-Induced Characteristic Fluctuation in 16-nm-Gate Bulk and SOI FinFETs. Int. J. Nanotechnol. 2014, 11, 1029–1038. [CrossRef]
21. Dadgour, H.F.; Endo, K.; De, V.K.; Banerjee, K. Grain-orientation induced work function variation in nanoscale metal-gate transistors—Part I: Modeling, analysis, and experimental validation. IEEE Trans. Electron Devices 2010, 57, 2504–2514. [CrossRef]
22. Indalecio, G.; Garcia-Loureiro, A.J.; Iglesias, N.S.; Kalna, K. Study of Metal-Gate Work-Function Variation Using Voronoi Cells: Comparison of Rayleigh and Gamma Distributions. IEEE Trans. Electron Devices 2016, 63, 2625–2628. [CrossRef]
23. Li, Y.; Huang, C.-H. The Effect of the Geometry Aspect Ratio on the Silicon Ellipse-Shaped Surrounding-Gate Field-Effect Transistor and Circuit. Semicond. Sci. Technol. 2009, 24, 095018. [CrossRef]
24. Tienda-Luna, I.M.; Ruiz, F.G.; Godoy, A.; Donetti, L.; G’amiz, F. Effects of deviations in the cross-section of square nanowires. In Proceedings of the International Workshop on Computational Electronics, Pisa, Italy, 26–29 October 2010.
25. Jha, S.; Kumar, A.; Kumar, S. Impact of Elliptical Cross-Section on Some Electrical Properties of Gate-All-Around MOSFETs. Bonfring Int. J. Power Syst. Integr. Circuits 2012, 2, 18–22. [CrossRef]
26. Li, Y.; Huang, C.-H.; Li, T.-Y.; Han, M.-H. Process-Variation Effect, Metal-Gate Work-Function Fluctuation, and Random-Dopant Fluctuation in Emerging CMOS Technologies. IEEE Trans. Electron Device 2010, 57, 437–447. [CrossRef]
27. Han, M.-H.; Li, Y.; Hwang, C.-H. The impact of high-frequency characteristics induced by intrinsic parameter fluctuations in nano-MOSFET device and circuit. Microelectron. Reliab. 2010, 50, 657–661. [CrossRef]
28. Hwang, C.-H.; Li, Y.; Han, M.-H. Statistical Variability in FinFET Devices with Intrinsic Parameter Fluctuations. Microelectron. Reliab. 2010, 50, 635–638. [CrossRef]
29. Li, Y.; Hwang, C.-H.; Cheng, H.-W. Process-variation- and random-dopants-induced threshold voltage fluctuations in nanoscale planar MOSFET and bulk FinFET devices. *Microelectron. Eng.* **2009**, *86*, 277–282. [CrossRef]

30. Kuhn, K.J. CMOS Scaling for the 22 nm Node and Beyond: Device Physics and Technology. In Proceedings of the International Symposium on VLSI Technology, Systems and Applications, Hsinchu, Taiwan, 25–27 April 2011.

31. Li, Y. Optimal Geometry Aspect Ratio of Ellipse-Shaped-Surrounding-Gate Nanowire Field Effect Transistors. *J. Nanosci. Nanotechnol.* **2016**, *16*, 920–923. [CrossRef]

32. Han, K.; Hsu, P.-F.; Beach, M.; Henry, T.; Yoshida, N.; Brand, A. Metal Gate Work Function Modulation by Ion Implantation for Multiple Threshold Voltage FinFET Devices. In Proceedings of the Extended Abstracts of International Workshop on Junction Technology, Kyoto, Japan, 6–7 June 2013.

33. Han, K.; Lee, J.; Tang, S.; Maynard, H.; Yoshida, N.; Brand, A. FinFET Multi-Vt Tuning with Metal Gate Work Function Modulation by Plasma Doping. In Proceedings of the International Workshop on Junction Technology, Shanghai, China, 18–20 May 2014.

34. Yang, F.-L.; Lee, D.-H.; Chen, H.-Y.; Chang, C.-Y.; Liu, S.-D.; Huang, C.-C.; Chung, T.-X.; Chen, H.-W.; Huang, C.-C.; Liu, Y.-H.; et al. 5 nm-Gate Nanowire FinFET. In Proceedings of the Digest of Technical Papers, Symposium on VLSI Technology, Honolulu, HI, USA, 17–19 June 2004.

35. Sung, W.-L.; Li, Y. DC/AC/RF Characteristic Fluctuations Induced by Various Random Discrete Dopants of Gate-All-Around Silicon Nanowire n-MOSFETs. *IEEE Trans. Electron Devices* **2018**, *65*, 2638–2646. [CrossRef]

36. Li, Y.; Cheng, H.-W.; Hwang, C.-H. Threshold Voltage Fluctuation in 16-nm-Gate FinFETs Induced by Random Work Function of Nanosized Metal Grain. *J. Nanosci. Nanotechnol.* **2012**, *12*, 4485–4488. [CrossRef]

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).