The Prognostic Value of Modified Glasgow Prognostic Score in Pancreatic Cancer: A Meta-analysis

Authors:
Huan Zhang¹,², ⁶, Dianyun Ren¹,², ⁶, Xin Jin²,³,⁹, Heshui Wu¹,², ⁹

Institutes:
¹Department of Pancreatic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
²Sino-German Laboratory of Personalized Medicine for Pancreatic Cancer, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
³Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China

Emails:
Email for Huan Zhang: drhuanzhang@hust.edu.cn
Email for Dianyun Ren: dianyunren@hust.edu.cn
Email for Xin Jin: jinxinunion@hust.edu.cn
Email for Heshui Wu: heshuiwu@hust.edu.cn

#First authors: Huan Zhang and Dianyun Ren contributed equally to this work.

*Corresponding Authors:
Heshui Wu (heshuiwu@hust.edu.cn) and Xin Jin (jinxinunion@hust.edu.cn)

Preprints are preliminary reports that have not undergone peer review. They should not be considered conclusive, used to inform clinical practice, or referenced by the media as validated information.
Running title: Prognostic values of mGPS in pancreatic cancer

Abstract

Background: Several studies were conducted to explore the prognostic value of modified Glasgow Prognostic Score (mGPS) in pancreatic cancer, which reported contradictory results. The purpose of this meta-analysis was to summarize the prognostic value of mGPS in pancreatic cancer by investigating the correlation between mGPS and overall survival (OS).

Methods: A systematic literature search was performed in PubMed, EMBASE, ISI Web of Science, Cochrane library databases and OVID to identify eligible studies published from Jan 1, 2011 to June 20, 2020. Pooled hazard ratios (HRs) with corresponding 95% confidence intervals (CIs) were used to detect the prognostic significance of mGPS in patients with pancreatic cancer.

Results: A total of 222 non-repetitive studies were identified, and 20 enrolled studies described the association between survival outcomes and mGPS in pancreatic cancer patients. The results showed a significant correlation between high mGPS and poor OS (HR=1.50, 95% CI=1.20–1.89, P<0.0001). Similar results were observed in the subgroup analyses of OS, which were based on the treatment regimen and research region.
Conclusions: Our study suggested the close association between the poor prognosis and high level of mGPS, which will be helpful for future clinical applications in pancreatic cancer patients.

Keywords: Pancreatic cancer, modified Glasgow Prognostic Score (mGPS), Meta-analysis, Prognosis

Introduction
Pancreatic cancer is one of the most devastating human malignancies and the fourth leading cause of cancer death, where the five-year survival rate for all stages of pancreatic cancer as low as 6–8% [1]. It was estimated that approximately 39590 patients would die of this disease in the United States in 2014. With the trend of early metastasis, the five-year survival rate of pancreatic cancer was less than 5% [2]. In 2015, the incidence rate and the mortality of pancreatic cancer account for 9th and 6th for all the Malignant tumors in China, which showed a rapid trend of growth [3].

As a major component of the tumor microenvironment, the role of cells and inflammation mediators in tumor invasion and metastasis was widely recognized by mediating proliferation and survival of malignant cells, stimulating angiogenesis and metastasis, subverting adaptive immunity, and reducing response to hormones and chemotherapy [4, 5]. Recently, several studies have proved the prognostic significance of a multiple prognostic scores in a variate of cancers based on systemic inflammation, such as neutrophil-to-lymphocyte ratio (NLR), platelet-to-lymphocyte ratio (PLR), CRP and C-reactive
protein-to-albumin ratio (CAR), as well as modified Glasgow Prognostic Score (mGPS) [6-9]. Among these, mGPS, consisting of the level of serum C-reactive protein (CRP) and albumin, was considered to have similar prognostic ability to performance status [10]. The mGPS score ranges from 0 to 2: patients with both CRP increase (>10 mg/L) and hypoalbuminemia (<35 g/L) is defined as a score of 2; patients with normal CRP level and albumin level is defined as a score of 0; patients with only increased CRP level is defined as a score of 1 [10].

The prognostic value of mGPS has been confirmed in a variety of solid tumors, such as small cell lung cancer, colorectal cancer, gastric cancer, and ovarian cancer [11-14]. Several studies proved that mGPS was one of the most important determinants of overall survival (OS) in pancreatic cancer patients [15, 16], but others showed contradictory results [17, 18]. Therefore, the exactly prognostic value of mGPS remained to be confirmed. Our study aimed to investigate the prognostic significance of mGPS in pancreatic cancer patients.

Methods

Literature search strategy

Two authors (Zhang and Ren) independently used the following tools: PubMed, EMBASE, ISI Web of Science and Cochrane library databases to obtain relevant articles (published from Jan 1, 2011 to June 20, 2020). We used the following combined text and Medical Subject Headings (MeSH) as follows: terms: “Pancreatic Neoplasms”. The complete literature search used for PubMed was: ((((((Pancreatic Neoplasm[Title/Abstract]) OR Neoplasm, Pancreas[Title/Abstract]) OR Pancreas
Neoplasm[Title/Abstract]) OR Pancreatic Cancer[Title/Abstract]) OR Pancreas Cancer[Title/Abstract]) OR Cancer of the Pancreas[Title/Abstract]) OR pancreatic ductal adenocarcinoma[Title/Abstract]) OR PDAC[Title/Abstract]) OR "Pancreatic Neoplasms"[Mesh]) AND ((modified Glasgow Prognostic Score[Title/Abstract]) OR mGPS[Title/Abstract]). Furthermore, the references in these eligible articles were also manually reviewed to identify potentially relevant studies.

Inclusion and exclusion criteria

Eligible studies must meet the following criteria: (1) the diagnosis of pancreatic cancer was confirmed by pathological methods; (2) the relationships between mGPS and OS or other survival parameters were investigated for patient with pancreatic cancer; (3) the mGPS were calculated using a recognized standard method; (4) hazard ratio (HR) and 95% confidence interval (95% CI) of OS or other survival parameters were reported or could be calculated by Tierney’s method [19]; (5) studies were published as full-text articles in English; (6) studies were considered qualified if they met all of the following requirement: unrelated articles, conference abstracts, letters, reviews, case reports and studies without enough data were excluded; (7) if multiple studies were performed in the same center and the samples were overlapped, the study with the largest sample size was included. Furthermore, the exclusion criteria were as follows: (1) duplicated articles; (2) experimental studies; (3) case reports, editorial, letters, review articles, and meta-analyses, conference abstracts; (4) studies with unavailable data and irrelevant articles; (5) studies with insufficient prognostic outcomes.
Data extraction and quality assessment

All data were extracted from eligible studies by two independent investigators (Zhang and Ren). Any disagreement between the two investigators was settled by discussion. The following information from each study was extracted: first author, country of the population enrolled, year of publication, sample size, patient characteristics (age, gender, tumor stage), outcome parameter, therapy strategy, mean follow-up, research duration and so on. The quality of included studies was assessed by Newcastle-Ottawa Scale (NOS), including the following aspects: representativeness of the exposed cohort, selection of the non-exposed cohort, ascertainment of exposure and demonstration that outcome of interest was not present at start of study; comparability of cohorts on the basis of the design or analysis; assessment of outcome, follow-up time was sufficient enough for results to occur and adequacy of follow-up of cohorts [20].

Statistical analysis

Pooled HRs with corresponding 95% CIs was used to evaluate the association between the mGPS and OS. Heterogeneity among studies was assessed using chi-square-based Higgins I² statistic [21], and I²>50% indicated significant heterogeneity. Fixed effect models were used only when I²<50%, otherwise a random effect model was executed. HR and 95% CI were utilized as the effect value to assess the association between mGPS and OS in pancreatic cancer. The Begg’s funnel plot was used to assess the presence of potential publication bias by plotting the effect sizes calculated from individual studies examining the association between HR and standard error (SE) of OS. Publication bias was assessed by
Table 1 Basic characteristics of included studies

Study	Year	Country	Sample size/N	mGPS group	Age (year) (%)	Survival Analysis	NOS score	Tumor stage	Therapy	Mean Follow-up (month)	Research duration
Partridge et al.[30]	2012	UK	102 (16/20/66)	0/1/2	≤72, (50%)	M	6	Advanced	Chemotherapy	/	2006.01-2006.10
Jamieson et al.[32]	2011	UK	135 (74/61)	low/high	≤65, (54%)	M	6	T2/T3	Pancreatectomy	/	2002-2009
Torre et al.[29]	2012	Italy	82 (37/45)	low/high	/	M	5	I/IV	Chemotherapy	19	2003-2009
Wang et al.[26]	2012	China	177 (115/62)	low/high	≤65, (70.1%)	U, M	6	I/IV	Chemotherapy	31.33	2006-2010
Inoue et al.[25]	2015	Japan	440 (36/74/92)	0/1/2	≤65, (40.7%)	U	7	I/IV	Chemotherapy	18.7	2008-2012
Martin et al.[27]	2014	Australia	124 (46/78)	low/high	/	U, M	7	Locally advanced or metastatic	Chemotherapy	12	2008-2012
Mitsunaga et al.[18]	2016	Japan	141 (79/39/23)	0/1/2	≤67, (50%)	M	5	Advanced	Chemotherapy	/	2008-2013
Imaoka et al.[38]	2016	Japan	807 (620/153/34)	0/1/2	<75, (81.9%)	U	7	Locally advanced or metastatic	Chemotherapy	/	2001-2013
Wu et al.[8]	2016	China	233 (119/114)	low/high	<62, (47.6%)	U, M	5	Advanced	Chemotherapy	/	2011-2014
Kawai et al.[17]	2016	Japan	1347 (1121/115/111)	0/1/2	/	M	6	I/IV	Pancreatectomy	25.3	2001-2012
Yamada et al.[33]	2016	Japan	305 (243/62)	low/high	≤65, (50.1%)	U, M	5	I/IV	Chemotherapy	/	2002-2014
Liu et al.[15]	2017	China	386 (131/242/13)	0/1/2	≤65, (35.8%)	U	5	I/IV	Chemotherapy	8.7	2010-2015
Iino et al.[24]	2017	Japan	47 (35/12)	low/high	/	U, M	7	Locally advanced or metastatic	Chemotherapy	/	2010-2015
Xiao et al.[34]	2017	China	66 (39/27)	low/high	/	U, M	6	Advanced	Chemotherapy	/	2012-2013
Fujiwara et al.[35]	2018	Japan	188 (140/21/27)	0/1/2	<70, (54.3%)	U, M	8	I/IV	Pancreatectomy	/	2000-2015
Ikuta et al.[36]	2019	Japan	136 (131/5)	low/high	≤68, (54.4%)	U	5	I/IV	Pancreatectomy	16.8	2005-2017
Abe et al.[16]	2018	Japan	329 (282/47)	low/high	<65, (43.76%)	U, M	6	I/IV	Pancreatectomy	/	1996-2014
Shin et al.[31]	2018	South Korea	1092 (587/353/152)	0/1/2	/	M	6	I/IV	Chemotherapy	21.6	2000-2016
Hwang et al.[28]	2018	South Korea	203 (137/66)	low/high	≤65, (62.1%)	U, M	8	Metastatic or recurrent	Chemotherapy	21.5	2016.01-2016.12
Nakagawa et al.[37]	2019	Japan	172 (157/15)	low/high	<70, (49.4%)	U, M	6	I/IV	Pancreatectomy	/	2006-2015

“/” means not available; N means number; U means univariable regression analysis; M means multivariable regression analysis.
the Begg’s test [22], with P>0.05 implying no significant publication bias. All statistical analyses were performed by STATA version 15.0 (StataCorp, College Station, TX, USA).

Results

Study selection and characteristics

A total of 222 papers were initially retrieved from PubMed, Web of Science, EMBASE and Cochrane library database. As shown in Fig. 1, the literature search process was summarized in the flow diagram according to Preferred Reporting Items for Systematic Reviews and Meta-analyses (PRISMA) [23]. Ultimately, 20 studies [8, 15-18, 24-38] including 6512 patients were enrolled in this meta-analysis after excluding ineligible studies.

Characteristics and main outcomes of the included 20 studies were shown in Table 1. These studies were published from 2011 to 2020, with a research duration ranging from 2000 and 2017. The sample sizes of these studies ranged from 47 to 1347, with a total number was 6512. As for the therapeutic methods, patients in 14 studies received chemotherapy, and pancreatectomy was chosen in another 6 studies. The NOS score of all included studies were equal or greater than 5, which meant relatively high quality. 16 studies were conducted in Asia (including China, Japan, and South Korea), and 4 studies were performed in western countries (including the United Kingdom, Italy and Australia). Most studies were assessed with multivariate analysis except that 4 studies were only assessed with univariate analysis.
Prognostic value of mGPS in pancreatic cancer

As shown in Table 2 and Fig. 2, a total of 20 studies evaluated the association between the level of the mGPS and OS for pancreatic cancer patients. The mGPS ranged from 0 to 2 based on the CRP and albumin levels as discussed above. Since 12 cohorts divided the participants into 2 groups (high vs. low, mGPS=1 as the cutoff value), and other participants in another 8 cohorts were grouped into 3 groups (mGPS=0, 1 and 2), we separately performed a meta-analysis for different groupings. When divided into two groups, we defined an mGPS of 0 as the low group and an mGPS of 1 or 2 as the high group. There was evidence for moderate heterogeneity among studies ($I^2=61.7\%$ and $P=0.003$), so random-model was applied. The results indicated the statistically significant relationship between the mGPS and prognosis of patients with pancreatic cancer, and the OS may be better for patients with lower mGPS compared with patients with higher mGPS (HR=1.50, 95% CI=1.20–1.89, $P<0.0001$) (Fig. 2A). When divided into three groups, the random-effect model was applied due to significant heterogeneity ($I^2=86.6\%$ and $I^2=80.4\%$ for mGPS=1 vs. mGPS=0 and mGPS=2 vs. mGPS=0, respectively). The results also demonstrated a statistically significant difference between the high mGPS and poor survival for pancreatic cancer patients (mGPS=1 vs. mGPS=0: HR=1.68, 95% CI=1.25–2.27, $P=0.001$; mGPS=2 vs. mGPS=0: HR=1.90, 95% CI=1.36–2.67, $P<0.0001$, Fig. 2B to C).

Subgroup analyses of the association between mGPS and OS

In view of obvious heterogeneity among studies, we conducted subgroup analyses for OS by factors of the therapeutic method and study region, and the heterogeneity partly decreased in several subgroups.
Subgroups	Studies/N	Patients/N	Pooled HR (95% CI, P)	Heterogeneity (P, I², Model)
mGPS: high vs. low				
Overall	12	2009	1.504, (1.197-1.891), <0.0001	0.003, 61.7%, Random
Region				
East	9	1668	1.597, (1.240-2.056), <0.0001	0.071, 44.7%, Fixed
West	3	341	1.342, (0.797-2.258), 0.268	0.002, 83.8%, Random
Therapy				
Chemotherapy	7	932	1.455, (1.048-2.020), 0.025	0.001, 74.2%, Random
Pancreatectomy	5	1077	1.638, (1.247-2.150), <0.0001	0.345, 10.7%, Fixed
mGPS: 1 vs. 0				
Overall	8	4503	1.683, (1.247-2.269), 0.001	<0.0001, 86.6%, Random
Region				
East	7	4401	1.711, (1.248-2.347), 0.001	<0.0001, 88.5%, Random
West	1	102	1.346, (0.585-3.098), 0.485	/
Therapy				
Chemotherapy	6	2968	1.780, (1.297-2.443), <0.0001	<0.0001, 83.9%, Random
Pancreatectomy	2	1535	1.521, (0.602-3.838), 0.375	0.001, 91.4%, Random
mGPS: 2 vs. 0				
Overall	8	4503	1.899, (1.356-2.660), <0.0001	<0.0001, 80.4%, Random
Region				
East	7	4401	1.833, (1.285-2.615), 0.001	<0.0001, 82.3%, Random
West	1	102	2.712, (1.252-5.875), 0.011	/
Therapy				
Chemotherapy	6	2968	1.872, (1.174-2.984), 0.008	<0.0001, 81.5%, Random
Pancreatectomy	2	1535	2.011, (0.941-4.297), 0.078	0.003, 88.3%, Random

"/"] means not available; N means number.
Detailed results of subgroup analyses are summarized in Table 2 and Fig. 2. In 12 studies that used mGPS=1 as the cutoff value, the subgroup analyses based on the region showed that eastern patients with higher mGPS had a decline of OS (HR=1.60, 95% CI=1.24-2.06, P<0.0001), but not in western patients (HR=1.34, 95% CI=0.80-2.26, P=0.268; Fig. 2D). Patients with higher mGPS in another 4 studies also demonstrated poor OS in eastern areas (mGPS=1 vs. mGPS=0, HR=1.71, 95% CI=1.25-2.35, P=0.001 and mGPS=2 vs. mGPS=0, HR=1.83; 95% CI=1.29-2.62, P=0.001; Fig. 2E to F). Further subgroup analyses by therapy showed that higher mGPS was significantly associated with worse OS in patients receiving chemotherapy (HR=1.45, 95% CI=1.05-2.02, P=0.025) as well as pancreatectomy (HR=1.64, 95% CI=1.25-2.15, P<0.0001) in 12 studies that used mGPS=1 as the cutoff value (Fig. 2G). However, as for the 8 studies in which patients were divided into 2 groups (mGPS=1 vs. mGPS=0 and mGPS=2 vs. mGPS=0; Fig. 2H to I), the stratified analysis by the factor of therapeutic methods indicated that higher mGPS was linked to the poor OS in patients receiving chemotherapy (HR=1.78, 95% CI=1.30-2.44, P<0.0001 and HR=1.87, 95% CI=1.17-2.98, P=0.008, respectively), but not in patients undergoing pancreatectomy (HR=1.52, 95% CI=0.60-3.84, P=0.375 and HR=2.01, 95% CI=0.94-4.30, P=0.078, respectively).

Publication bias and Influence analyses

The Begg’s funnel plots seemed to be symmetrical, suggesting the absence of significant publication bias in all overall meta-analyses (Fig. 3A to C). The Begg’s test linear regression test also proved that there was no significant publication bias (each P>0.05). Using trim and fill analysis, we only found that 3
studies evaluating the prognostic role of mGPS in OS in pancreatic cancer remained unpublished when participants were divided into 2 groups (high vs. low, mGPS=1 as the cutoff value, Fig. 3D to F). The filled meta-analytic results for OS (pooled HR = 1.31, 95% CI [1.01-1.69], p < 0.001) also supported our original results. To examine the stability of the pooled HRs in OS, influence analysis was carried out with the successive omission of each study. The leaving-one-out study revealed that there was no individual cohort influencing the results greatly (Fig. 4A to C).

Discussion

Pancreatic cancer is one of the most lethal cancer, and even pancreatic cancer in resectable stage shows a five-year survival rate of only 15–25% [39]. Unfortunately, 80–85% of patients present with advanced unresectable disease and pancreatic cancer responds poorly to most chemotherapeutic agents [40]. Therefore, it is essential to find a simple but effective way to help clinicians assess the prognosis of pancreatic cancer patients and choose the most appropriate treatment. Recently, mGPS has been suggested as a promising prognostic indicator in various cancers including pancreatic cancer.

This meta-analysis was the first to pool all eligible studies including 6512 patients to assess the prognostic value of the mGPS in patients with pancreatic cancer. After we controlled for other individual and clinical variables, our meta-analysis results showed that higher mGPS was closely linked with less OS. In view of obvious heterogeneity among studies, we next conducted subgroup analysis for OS by factors of the therapeutic method and study regions. In addition, our findings suggested the prognostic value of mGPS as an independent prognostic factor for pancreatic cancer. In spite of remaining
heterogeneity after subgroup analysis, it was partly reduced in some subgroups. We also carried out influence analysis to explore the source of heterogeneity, and there was no significant change in the trend of the adjusted results. Additionally, the absence of detective publication bias in our meta-analysis indicated that our research was credible, and the trim and fill analysis also supported original results.

Currently, increasing evidence reveals local immune response and systemic inflammation play a critical role in tumor growth, metastasis, and survival of cancer patients [5, 41]. As one of ten hallmarks of cancer, inflammatory cytokines produce by both the tumor and associate host cells affect tumor characteristics, including proliferation and survival of malignant cells, angiogenesis, metastasis, subversion of adaptive immunity, reduce response to hormones and chemotherapeutic agents [42, 43]. Consequently, systemic inflammatory indicators are extensively used to predict the recurrence and survival in pancreatic cancer patients after treatment [44]. Serum CRP is a typical acute-phase reactant mostly synthesized by the liver, induced by proinflammatory cytokines especially interleukin-6 (IL-6) [45]. Moses’s study has suggested that stimulated peripheral blood mononuclear cells from advanced pancreatic cancer patients usually produce high levels of IL-6 [46]. Accordingly, there may be a correlation between tumor-related inflammation and invasive tumor behavior, which leads to poor patient prognosis. The mechanism of acute-phase protein response in cancer patients is not clear. A plausible explanation is that the worsening disease may lead to more severe tumor-associated inflammation and tumor necrosis. Consequently, serum levels of CRP may merely reflect the tumor load of cancer patients. In addition, an acute-phase response may reflect a host-specific immune response to the tumor, or it may be as a consequence of the direct production of cytokines by tumor cells [47]. Serum albumin level is also one of the most popular indicators of nutritional status, generally applied to evaluate the nutritional status, severity of disease and
Hypoalbuminemia usually occurs in combination with poor performance status, weight loss and nutritional deficiency, which negatively affect the prognosis of cancer patients [48]. In inflammatory states, hypoalbuminemia may result from reduced albumin synthesis or degradation [47, 49]. Accordingly, increased levels of inflammatory cytokines in tumors increase the demand for amino acids, resulting in the decreased serum albumin levels of patients with cachexia. Moreover, these cytokines, including tumor necrosis factor (TNF), increase the transcapillary passage of albumin as well as the permeability of the microvasculature. As a consequence, serum levels of albumin will drop [50]. Fleck’s group has demonstrated an elevated albumin transcapillary escape rate in patients with either sepsis or cancer [51]. Consequently, there is simply slight or even no hypoalbuminemia in early stages of cancer, but as the disease progresses the albumin levels drop significantly and may serve as ideal indicators of prognosis of cancer [48].

Although the clinical significance of pre-operative nutritional and immunological factors in pancreatic cancer has remained controversial, it is reported that CRP and albumin levels are good prognostic indicators of pancreatic cancer on account of correlation with host inflammatory-nutritional status [52]. Actually, the mGPS calculated by serum level of CRP and albumin could provide more accurate and comprehensive prognostic information than CRP alone [50, 53]. Furthermore, a prognostic tool such as the mGPS is more reliable and reproducible. If several clinicians were requested to evaluate performance status on a patient, there would be a degree of variability. When presented with CRP and albumin and asked to calculate an mGPS, there would be a consensus. To sum up, the mGPS is such an influential prognostic factor for overall survival in pancreatic cancer patients that it deserves calculating as a part of the routine in the cancer patient's management. It enables clinicians and patients to make a more informed
choice about the appropriateness of chemotherapy or radiotherapy in advanced cancer [10]. As a promising and reliable inflammatory indicator, the mGPS is expected to predict the prognosis of pancreatic cancer patients and contribute to clinical decision making. However, more large-scale-based validation studies are still necessary.

Nevertheless, it is necessary to note that our research work still has some limitations. Firstly, most included studies have been conducted in China or Japan, which limits generalizability to some extent. Secondly, we only searched studies published in English and studies in other languages were neglected, which might cause selection bias and influenced the pooled results. Thirdly, most eligible studies are retrospective studies. Thus, potential publication bias may exist due to unpublished data with negative results, which might lead to overestimations in the pooled results. Lastly, there still exists high heterogeneity in this meta analysis after the subgroup analysis, which may result from some confounding factors such as different disease progression of patients, tumor stage and sample size. Furthermore, we find no significant correlation between mGPS and OS in some subgroup analyses, and this phenomenon may demonstrate that the country and treatment method can affect the prognostic value of mGPS in pancreatic cancer.

Conclusion and future perspective

In summary, this meta-analysis is the first to demonstrate the close association between high level of mGPS and poor prognosis in pancreatic neoplasms. Besides, our meta-analysis suggests that the mGPS might serve as a novel and promising inflammatory prognostic indicator. More importantly, the mGPS
derived from routine blood test could be used as risk factors to stratify advanced pancreatic cancer patients into groups with different survival probabilities, which will greatly better guide clinical decisions.

Abbreviations

Modified Glasgow Prognostic Score (mGPS), Neutrophil-to-lymphocyte ratio (NLR), Platelet-to-lymphocyte ratio (PLR), C-reactive protein-to-albumin ratio (CAR), C-reactive protein (CRP), Preferred reporting items for systematic review and meta-analysis (PRISMA), Overall survival (OS), Hazard ratio (HR), Confidence interval (CI), Newcastle-Ottawa Scale (NOS), Standard error (SE), Tumor necrosis factor (TNF).

Declarations

Ethics approval and consent to participate

Not applicable.

Consent for publication

Not applicable.

Competing interests

The authors declare that they have no competing interest exists.

Funding
This work was supported by grants from the National Natural Science Foundation of China (Grant No. 81702374 (X.J.)).

Authors’ contributions

Heshui Wu conceived and designed the analyses. Huan Zhang and Dianyun Ren performed the literature search and selection, collected data and wrote the paper. Xin Jin performed statistical analyses. All authors read and approved the final manuscript.

Acknowledgements

We would like to thank all researchers for their contributions.

Availability of data and material

The authors declare that all data supporting the findings of this study are available within the article and the enrolled articles for meta-analysis.

Reference

1. Miller KD, Goding Sauer A, Ortiz AP, Fedewa SA, Pinheiro PS, Tortolero-Luna G, Martinez-Tyson D, Jemal A, Siegel RL: Cancer Statistics for Hispanics/Latinos, 2018. CA: A Cancer Journal for Clinicians 2018, 68(6):425-445.
2. Raimondi S, Maisonneuve P, Lowenfels AB: Epidemiology of pancreatic cancer: an overview. Nat Rev Gastroenterol Hepatol 2009, 6(12):699-708.
3. Chen WQ, Zheng RS, Baade PD, Zhang SW, Zeng HM, Bray F, Jemal A, Yu XQ, He J: Cancer Statistics in China, 2015. Ca-Cancer J Clin 2016, 66(2):115-132.
4. Candido J, Hagemann T: Cancer-related inflammation. J Clin Immunol 2013, 33 Suppl 1:S79-84.
5. Diakos CI, Charles KA, McMillan DC, Clarke SJ: Cancer-related inflammation and treatment effectiveness. Lancet Oncol 2014, 15(11):e493-503.
6. Asaoka T, Miyamoto A, Maeda S, Tsujie M, Hama N, Yamamoto K, Miyake M, Haraguchi N, Nishikawa K, Hirao M et al. Prognostic impact of preoperative NLR and CA19-9 in pancreatic cancer. Pancreatology 2016, 16(3):434-440.
7. Haas M, Laubender RP, Stieber P, Holdenrieder S, Bruns CJ, Wilkowski R, Mansmann U, Heinemann V, Boeck S: Prognostic relevance of CA 19-9, CEA, CRP, and LDH kinetics in patients treated with palliative second-line therapy for advanced pancreatic cancer. *Tumour Biol* 2010, 31(4):351-357.

8. Wu M, Guo J, Guo L, Zuo Q: The C-reactive protein/albumin ratio predicts overall survival of patients with advanced pancreatic cancer. *Tumour Biol* 2016, 37(9):12525-12533.

9. Zhou T, Hong S, Hu Z, Hou X, Huang Y, Zhao H, Liang W, Zhao Y, Fang W, Wu X et al. A systemic inflammation-based prognostic scores (mGPS) predicts overall survival of patients with small-cell lung cancer. *Tumour Biol* 2015, 36(1):337-343.

10. Laird BJ, Kaasa S, McMillan DC, Fallon MT, Hjermstad MJ, Fayers P, Klepstad P: Prognostic factors in patients with advanced cancer: a comparison of clinicopathological factors and the development of an inflammation-based prognostic system. *Clin Cancer Res* 2013, 19(19):5456-5464.

11. Fan H, Shao ZY, Xiao YY, Xie ZH, Chen W, Xie H, Qin GY, Zhao NQ: Comparison of the Glasgow Prognostic Score (GPS) and the modified Glasgow Prognostic Score (mGPS) in evaluating the prognosis of patients with operable and inoperable non-small cell lung cancer. *J Cancer Res Clin Oncol* 2016, 142(6):1285-1297.

12. Sagawa M, Yoshimitsu K, Yokomizo H, Yano Y, Nakayama M, Usui T, Yamaguchi K, Shiozawa S, Shimakawa T, Katsube T et al. [Onodera’s prognostic nutritional index(PNI)and the modified Glasgow Prognostic Score(mGPS)in colorectal cancer surgery]. *Gan To Kagaku Ryoho* 2014, 41(10):1273-1275.

13. Cui Y, Li J, Cao YH, Liu MY, Shi ZX, Gao TH: [Predictive and Prognostic significance of high-sensitivity modified Glasgow Prognostic Score (HS-mGPS) in advanced gastric cancer patients treated with neoadjuvant chemotherapy]. *Zhonghua Zhong Liu Za Zhi* 2017, 39(3):195-200.

14. Roncolato FT, Berton-Rigaud D, O’Connell R, Lanceley A, Sehouli J, Buizen L, Okamoto A, Aotani E, Lorusso D, Donnellan P et al. Validation of the modified Glasgow Prognostic Score (mGPS) in recurrent ovarian cancer (ROC) - Analysis of patients enrolled in the GCIG Symptom Benefit Study (SBS). *Gynecol Oncol* 2018, 148(1):36-41.

15. Liu Z, Jin K, Guo M, Long J, Liu L, Liu C, Xu J, Ni Q, Luo G, Yu X: Prognostic Value of the CRP/Alb Ratio, a Novel Inflammation-Based Score in Pancreatic Cancer. *Ann Surg Oncol* 2017, 24(2):561-568.

16. Abe T, Nakata K, Kibe S, Mori Y, Miyasaka Y, Ohuchida K, Ohtsuka T, Oda Y, Nakamura M: Prognostic Value of Preoperative Nutritional and Immunological Factors in Patients with Pancreatic Ductal Adenocarcinoma. *Ann Surg Oncol* 2018, 25(13):3996-4003.

17. Kawai M, Murakami Y, Motoi F, Sho M, Sato S, Matsumoto I, Honda G, Hirono S, Okada K, Unno M et al. Grade B pancreatic fistulas do not affect survival after pancreatectomy for pancreatic cancer: A multicenter observational study. *Surgery* 2016, 160(2):293-305.
Mitsunaga S, Ikeda M, Shimizu S, Ohno I, Takahashi H, Okuyama H, Ueno H, Morizane C, Kondo S, Sakamoto Y et al: C-Reactive Protein Level Is an Indicator of the Aggressiveness of Advanced Pancreatic Cancer. Pancreas 2016, 45(1):110-116.

Tierney JF, Stewart LA, Ghersi D, Burdett S, Sydes MR: Practical methods for incorporating summary time-to-event data into meta-analysis. Trials 2007, 8:16.

Lichtenstein MJ, Mulrow CD, Elwood PC: Guidelines for reading case-control studies. J Chronic Dis 1987, 40(9):893-903.

Higgins JP, Thompson SG: Quantifying heterogeneity in a meta-analysis. Stat Med 2002, 21(11):1539-1558.

Egger M, Davey Smith G, Schneider M, Minder C: Bias in meta-analysis detected by a simple, graphical test. BMJ 1997, 315(7109):629-634.

Moher D, Liberati A, Tetzlaff J, Altman DG, Group P: Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. PLoS Med 2009, 6(7):e1000097.

Iino C, Shimoyama T, Igarashi T, Aihara T, Ishii K, Sakamoto J, Tono H, Fukuda S: Biliary drainage improves the predictive value of modified Glasgow Prognostic Scores in inoperable pancreatic cancer. PLoS One 2017, 12(6):e0178777.

Inoue D, Ozaka M, Matsuyama M, Yamada I, Takano K, Saiura A, Ishii H: Prognostic value of neutrophil-lymphocyte ratio and level of C-reactive protein in a large cohort of pancreatic cancer patients: a retrospective study in a single institute in Japan. Jpn J Clin Oncol 2015, 45(1):61-66.

Wang DS, Luo HY, Qiu MZ, Wang ZQ, Zhang DS, Wang FH, Li YH, Xu RH: Comparison of the prognostic values of various inflammation based factors in patients with pancreatic cancer. Med Oncol 2012, 29(5):3092-3100.

Martin HL, Ohara K, Kiberu A, Van Hagen T, Davidson A, Khattak MA: Prognostic value of systemic inflammation-based markers in advanced pancreatic cancer. Intern Med J 2014, 44(7):676-682.

Hwang I, Kang J, Ip HNN, Jeong JH, Kim KP, Chang HM, Yoo C, Ryoo BY: Prognostic factors in patients with metastatic or recurrent pancreatic cancer treated with first-line nab-paclitaxel plus gemcitabine: implication of inflammation-based scores. Invest New Drugs 2019, 37(3):584-590.

La Torre M, Nigri G, Cavallini M, Mercantini P, Ziparo V, Ramacciato G: The glasgow prognostic score as a predictor of survival in patients with potentially resectable pancreatic adenocarcinoma. Ann Surg Oncol 2012, 19(9):2917-2923.

Partridge M, Fallon M, Bray C, McMillan D, Brown D, Laird B: Prognostication in advanced cancer: a study examining an inflammation-based score. J Pain Symptom Manage 2012, 44(2):161-167.

Shin SH, Kim SC, Song KB, Hwang DW, Lee JH, Park KM, Lee YJ: Chronologic changes in clinical and survival features of pancreatic ductal adenocarcinoma since 2000: A single-center experience with 2,029 patients. Surgery 2018, 164(3):432-442.

Jamieson NB, Denley SM, Logue J, MacKenzie DJ, Foulis AK, Dickson EJ, Imrie CW, Carter R, McKay CJ, McMillan DC: A prospective comparison of the prognostic value of
tumor- and patient-related factors in patients undergoing potentially curative surgery for pancreatic ductal adenocarcinoma. *Ann Surg Oncol* 2011, 18(8):2318-2328.

33. Yamada S, Fujii T, Yabusaki N, Murotani K, Iwata N, Kanda M, Tanaka C, Nakayama G, Sugimoto H, Koike M *et al*. Clinical Implication of Inflammation-Based Prognostic Score in Pancreatic Cancer: Glasgow Prognostic Score Is the Most Reliable Parameter. *Medicine (Baltimore)* 2016, 95(18):e3582.

34. Xiao Y, Xie Z, Shao Z, Chen W, Xie H, Qin G, Zhao N: Prognostic value of postdiagnostic inflammation-based scores in short-term overall survival of advanced pancreatic ductal adenocarcinoma patients. *Medicine (Baltimore)* 2017, 96(50):e9247.

35. Fujiwara Y, Haruki K, Shiba H, Hamura R, Horiuchi T, Shirai Y, Furukawa K, Gocho T, Yanaga K: C-Reactive Protein-based Prognostic Measures Are Superior at Predicting Survival Compared with Peripheral Blood Cell Count-based Ones in Patients After Curative Resection for Pancreatic Cancer. *Anticancer Res* 2018, 38(11):6491-6499.

36. Ikuta S, Aihara T, Yamanaka N: Preoperative C-reactive protein to albumin ratio is a predictor of survival after pancreatic resection for pancreatic ductal adenocarcinoma. *Asia Pac J Clin Oncol* 2019, 15(5):e109-e114.

37. Nakagawa K, Sho M, Akahori T, Nagai M, Nakamura K, Takagi T, Tanaka T, Nishiofuku H, Ohbayashi C, Kichikawa K *et al*. Significance of the inflammation-based prognostic score in recurrent pancreatic cancer. *Pancreatology* 2019, 19(5):722-728.

38. Imaoka H, Mizuno N, Hara K, Hijioka S, Tajika M, Tanaka T, Ishihara M, Yogi T, Tsutsui H, Fujiyoshi T *et al*. Evaluation of Modified Glasgow Prognostic Score for Pancreatic Cancer: A Retrospective Cohort Study. *Pancreas* 2016, 45(2):211-217.

39. Schlitter AM, Segler A, Steiger K, Michalski CW, Jager C, Konukiewitz B, Pfarr N, Endris V, Bettstetter M, Kong B *et al*. Molecular, morphological and survival analysis of 177 resected pancreatic ductal adenocarcinomas (PDACs): Identification of prognostic subtypes. *Sci Rep* 2017, 7:41064.

40. Vincent A, Herman J, Schulick R, Hruban RH, Goggins M: Pancreatic cancer. *The Lancet* 2011, 378(9791):607-620.

41. Grivennikov SI, Greten FR, Karin M: Immunity, inflammation, and cancer. *Cell* 2010, 140(5):646-674.

42. Hanahan D, Weinberg Robert A: Hallmarks of Cancer: The Next Generation. *Cell* 2011, 144(5):646-674.

43. Templeton AJ, McNamara MG, Seruga B, Vera–Badillo FE, Anjea P, Ocanse A, Leibowitz–Amit R, Sonpavde G, Knox JJ, Tran B *et al*. Prognostic role of neutrophil-to-lymphocyte ratio in solid tumors: a systematic review and meta-analysis. *J Natl Cancer Inst* 2014, 106(6):dju124.

44. Kanda M, Fuji T, Kodera Y, Nagai S, Takeda S, Nakao A: Nutritional predictors of postoperative outcome in pancreatic cancer. *Br J Surg* 2011, 98(2):268-274.
45. Castell JV, Gomez-Lechon MJ, David M, Fabra R, Trullenque R, Heinrich PC: Acute-phase response of human hepatocytes: regulation of acute-phase protein synthesis by interleukin-6. *Hepatology* 1990, 12(5):1179-1186.

46. Moses AG, Maingay J, Sangster K, Fearon KC, Ross JA: Pro-inflammatory cytokine release by peripheral blood mononuclear cells from patients with advanced pancreatic cancer: relationship to acute phase response and survival. *Oncol Rep* 2009, 21(4):1091-1095.

47. Falconer JS, Fearon KC, Ross JA, Elton R, Wigmore SJ, Garden OJ, Carter DC: Acute-phase protein response and survival duration of patients with pancreatic cancer. *Cancer* 1995, 75(8):2077-2082.

48. Gupta D, Lis CG: Pretreatment serum albumin as a predictor of cancer survival: a systematic review of the epidemiological literature. *Nutr J* 2010, 9:69.

49. Heinrich PC, Castell JV, Andus T: Interleukin-6 and the acute phase response. *Biochem J* 1990, 265(3):621–636.

50. Ichikawa, Mizuno, Hayasaki, Kishiwada, Fujii, Iizawa, Kato, Tanemura, Murata, Azumi et al: Prognostic Nutritional Index After Chemoradiotherapy Was the Strongest Prognostic Predictor Among Biological and Conditional Factors in Localized Pancreatic Ductal Adenocarcinoma Patients. *Cancers* 2019, 11(4).

51. Fleck A, Raines G, Hawker F, Trotter J, Wallace PI, Ledingham IM, Calman KC: Increased vascular permeability: a major cause of hypoalbuminaemia in disease and injury. *Lancet* 1985, 1(8432):781–784.

52. Szkandera J, Stotz M, Absenger G, Stojakovic T, Samonigg H, Kornprat P, Schaberl-Moser R, Alzoughbi W, Lackner C, Ress AL et al: Validation of C-reactive protein levels as a prognostic indicator for survival in a large cohort of pancreatic cancer patients. *Br J Cancer* 2014, 110(1):183-188.

53. Kurahara H, Maemura K, Mataka Y, Sakoda M, Iino S, Hiwatashi K, Kawasaki Y, Arigami T, Ishigami S, Kijima Y et al: Prognostication by inflammation-based score in patients with locally advanced pancreatic cancer treated with chemoradiotherapy. *Pancreatology* 2015, 15(6):688–693.
Figure and table legends

Fig. 1: Flow diagram of selecting relevant published works.

Fig. 2: Forest plots regarding the prognostic significance of mGPS in OS.

Overall: (A) mGPS high vs. low; (B) mGPS 1 vs. 0; (C) mGPS 2 vs. 0; Subgroup analysis by research region: (D) mGPS high vs. low; (E) mGPS 1 vs. 0; (F) mGPS 2 vs. 0; Subgroup analysis by treatment regimen: (G) mGPS high vs. low; (H) mGPS 1 vs. 0; (I) mGPS 2 vs. 0.

Fig. 3: Publication bias of studies enrolled in the present meta-analysis.

The Begg’s funnel plot: (A) mGPS high vs. low; (B) mGPS 1 vs. 0; (C) mGPS 2 vs. 0; Trim and fill analysis: (D) mGPS high vs. low; (E) mGPS 1 vs. 0; (F) mGPS 2 vs. 0.

Fig. 4: Influence analysis of studies enrolled in the present meta-analysis.

(A) mGPS high vs. low; (B) mGPS 1 vs. 0; (C) mGPS 2 vs. 0.

Table 1: Basic characteristics of included studies.

Table 2: Overall and subgroup meta-analyses of the relationship between mGPS and OS.