Traditional Uses, Phytochemistry, and Bioactivities of *Mesosphaerum suaveolens* (L.) Kuntze

José Weverton Almeida-Bezerra,1 Felicidade Caroline Rodrigues,1 José Jailson Lima Bezerra,1 Anderson Angel Vieira Pinheiro,1 Saulo Almeida de Menezes,1 Aline Belém Tavares,1 Adrielle Rodrigues Costa,1 Priscilla Augusta de Sousa Fernandes,1 Viviane Bezerra da Silva,1 José Galberto Martins da Costa,1 Rafael Pereira da Cruz,1 Maria Flaviana Bezerra Morais-Braga,1 Henrique Douglas Melo Coutinho,1 Edward Teixeira de Albergaria,1 Marcos Vinicius Meiado,1 Abolghasem Siyadatpanah,2 Bonglee Kim,6 and António Fernando Morais de Oliveira1

1Federal University of Pernambuco–UFPE, Recife 50670-901, PE, Brazil
2Federal University of Paraíba–UFPB, João Pessoa 58051-970, PB, Brazil
3Regional University of Cariri–URCA, Crato 63105-000, CE, Brazil
4Federal University of Sergipe–UFS, Itabaiana 49500-000, SE, Brazil
5Ferdows School of Paramedical and Health, Birjand University of Medical Sciences, Birjand, Iran
6Department of Pathology, College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea

Correspondence should be addressed to Bonglee Kim: bongleekim@khu.ac.kr

Received 1 December 2021; Revised 28 January 2022; Accepted 16 February 2022; Published 10 March 2022

Academic Editor: Sekar Vijayakumar

Copyright © 2022 José Weverton Almeida-Bezerra et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Mesosphaerum suaveolens (L.) Kuntze is a species widely used traditionally in the treatment of ailments, such as stomach pain, hemorrhoids, cough, verminosis, ulcer, liver disease, fever, influenza, nasal congestion, and inflammation. This review aims to provide a survey of available information on several international electronic databases (Google Scholar, Medline, ResearchGate, Web of Science, Scopus, Science Direct, and PubMed) about botanical aspects, traditional uses, phytochemistry, and biological activities of *M. suaveolens*. *Mesosphaerum suaveolens* is a tropical America native species, but it can be found in several parts of the world as a ruderal plant. The species is the most studied species of the genus Lamiaceae due its phytochemical aspect, especially regarding the chemical composition of its essential oil. Besides the essential oils, *M. suaveolens* is a source of numerous secondary compounds such as triterpenes, diterpenes, and phenolic compounds, which are related to its biological activities, such as allelopathic, antibacterial, antifungal, insecticidal, and larvicidal activities as described in the literature.

1. Introduction

Plant species, with medicinal properties that have always been part of human life, are being used both for the treatment of diseases as for food. For the treatment of diseases, they are accessible and culturally accepted, so their use is popular since ancient civilizations [1, 2]. The Lamiaceae family is one of the most diverse and widespread in terms of the ethnomedicinal value and variety of plants with biological and medical applications [3–8]. Regarding the genus *Mesosphaerum*, previous studies demonstrate the ethnomedicinal and pharmacological importance of some
species that belong to it, such as *Mesosphaerum sidifolium* (L’Hér.) Harley & J.F.B. Pastore, used to treat stomach disorders and headaches, as well as being used as an expectorant, carminative, and tonic. This species possesses in vivo antitumor activity against Ehrlich ascites carcinoma cells causing growth inhibition by inducing cell cycle arrest, besides not showing cytotoxicity [9]. Another species with several bioactivities is *Mesosphaerum verticillatum* (syn. *Hyptis verticillata* Jacq.) with anti-inflammatory, antimicrobial, and anticancer potentials, among other reports. Ethnomedicinal uses of this plant include cough, colds, asthma, fever, tonsillitis, uterine fibroids, bronchitis, and gastrointestinal problems [5].

In Northeast Brazil, the use of plant species as therapeutic resources is widespread, and one species present in this region is *Mesosphaerum suaveolens* (L.) Kuntze, known as “bamburral,” “erva-canudo,” or “alfazema-brava” [10]. Its leaves are mainly used to treat respiratory diseases (asthma, bronchitis, colds, and flu) and diseases related to the gastrointestinal tract [1]. Such medicinal uses are related to the chemical heterogeneity arising from the secondary metabolism of the species, a recurrent characteristic in species of the Lamiaceae family [6].

Several works in the literature indicate that *M. suaveolens* presents a high biotechnological potential, mainly regarding its essential oil [10]. In addition, a large number of studies have emphasized the biological activities of the essential oil and extracts of this species against pathogenic microorganisms to humans [6]. Taking into account that *M. suaveolens* is a medicinal species widely studied by the scientific community, the main objective of this work was to make a general review of the botanical aspects, traditional uses, phytochemistry, toxicity and biological, and pharmacological activities.

2. Materials and Methods

Methodologically, it was used the keywords “*Mesosphaerum suaveolens*” and its synonym “*Hyptis suaveolens*” associated to the terms “biological activity,” “bioactive,” “ethnomedical use,” “traditional use,” “ethnobotany,” “ethnopharmacology,” “toxicity,” “natural products,” “phytochemistry,” and “allelopathy” to collect information available on Google Scholar, Medline, ResearchGate, Web of Science, Scopus, ScienceDirect, and PubMed databases. The consideration insertion criteria of the articles were as follows: full article only, articles written in English and/or Portuguese languages, and all available and opened access articles, with no time limit determined.

It was obtained 190 articles dated between 1971 and 2021 which were grouped into some categories. (1) Botanical aspects, with information on description, classification, and geographical distribution; (2) phytochemistry; (3) ethnobotany; (4) biological activities; and (5) pharmacological activities. The trial process (collecting of the articles, reading of the abstracts, and checking the insertion criteria) took three months, and all the selected articles had been read completely and summarized in a table with the isolated chemical constituents and their respective biological activities.

3. Review

3.1. Botanical Aspects: Description, Classification, and Distribution. *Mesosphaerum suaveolens* (L.) Kuntze is an herbaceous plant belonging to the Lamiaceae family. The word “mesosphaerion” comes from the Greek and Latin “mesosphaerum,” meaning “a type of tuberose with medium-sized leaves,” while its specific epithet *suaveolens*, means “with a sweet fragrance” due to the aroma of essential oils exhaled by the trichomes present on its leaves [11, 12].

Its vernacular name varies widely according to the region of occurrence. In the northeastern region of Brazil, the species is known as “bamburral” and “alfazema-brava” and in the southern region of the country, the herbaceous plant is called “erva-canudo” and “betônica-brava” [10]. In other parts of the world, such as in India, it is known as “pignut,” “beejabanjha,” “simila tulasi,” “sakavong,” “pichi tulas,” and “bushmint” [13], while in Nigeria, it is known as “false buttonweed” and in Bangladesh as “tukma” [14]. In French-speaking countries, the species is called “horehound,” “pignut,” “wild spikenard,” “gros baume,” and “Hyptis à odeur.” In other languages, the plant is called “choa,” “hierba de las muebas,” “menta de campo” (Spanish), “wilaiti tulsi” (Hindi), “bhustrena,” “darp tulas,” “jungli tulas” (Marathi), “sirna tulas” (Telugu), “bilati tulas” (Bengali), “ganga tulas” (Ora), and “bhustrena” (Sanskrit) [13].

Taxonomically, *M. suaveolens* presents as botanical synonyms *Ballota suaveolens* L., *Hyptis suaveolens* (L.) Poit., *Bystropogon suaveolens* (L.) L’Hér., *Bystropogon graveolens* Blume, *Hyptis congesta* Leonard, *Hyptis ebracteata* R.Br., *Hyptis plumieri* Poit., and *Marrubium indicum* Blanco, with *H. suaveolens* as the most widespread synonym in scientific circles. However, the current circumscription of the genus *Mesosphaerum* P. Browne was recognized in 2012 after phylogenetic studies [15].

Morphologically, *M. suaveolens* is an erect herb or subshrub that measures up to 2 m in height. Its photosynthetic quadrangular stem is hairy with closely spaced branches and nodes. It has oval leaves, serrate or cordate margins, pilose limb, acute apex, and obstone base with opposite crossed phyllotaxis. The petioles are short, canalicate, as are its stems. Its inflorescences consist of up to 20 flowers located around the nodes and near the leaf axils. The flowers are pedunculate, with a persistent, tubular calyx, and 5 pointed sepals. The corolla is also tubular with five lilac petals, and the lobes are evident. Its fruits are dry, indehiscent, and uniseminated, originating from a bicarpellate gynoecium. Such fruits originate dimorphic seeds, two per fruit. Morphologically, such diaspores are elongated with dorsoventral flattening, longitudinal median ridge, starting near the hilum and extending to the apex of the seed with retusa boundary with black coloration (Figure 1) [16–18].

As for the geographical distribution, *M. suaveolens* is native to tropical America; however, as it is ruderal, it ended up invading natural ecosystems in tropical and subtropical regions of the globe, so that, due to this widespread occurrence, the species is considered a pantropical ruderal species [19–22]. In Brazil, *M. suaveolens* is present in almost the entire territory [23].
3.2. Phytochemistry. *Mesosphaerum suaveolens* is an important source of essential oils, alkaloids, flavonoids, phenols, saponins, triterpenes, and sterols [13, 24]. The essential oil of this species, obtained exclusively from its leaves, has already been chemically characterized in several studies. However, since this species exhibits a high level of genetic polymorphism and allows adaptation to changes in environmental characteristics, high variability in the composition and content of the major constituents (>20%) has been found [25]. In *M. suaveolens* extracts, terpenoids had a great predominance (mono, di, tri, and sesquiterpenes) (Table 1) (Table 1). Among the diterpenes, suaveolic acid stood out with recognized antimicrobial and allelopathic action [26]. Furthermore, phenolic acids, phenylpropanoids, flavonoids [10, 27], and fatty acids [28, 29] were also identified in different parts of *M. suaveolens* (Table 1).

3.3. Ethnobotany. Traditionally, *M. suaveolens* is taken to treat ailments in Brazil, Benin, India, Nigeria, Thailand, and Togo. In Brazil, the leaves in the form of infusions, decoctions, teas, and syrups are used to treat ulcers, inflammation, respiratory diseases (asthma, bronchitis, colds, flu, and sinusitis), diseases related to the gastrointestinal tract, pain, dizziness, nausea, nervousness, and constipation [1, 56–64]. The leaves are also used to treat headaches [65], malaria [14, 66], fever [67, 68], and used to reduce labor time and labor pain [69]. The flowers of *M. suaveolens* are employed as therapeutic resources against dysmenorrhea, respiratory diseases, and as a febrifuge [70, 71].

In the Asian continent, more specifically in India, the leaves, stems, inflorescence, and roots are used to treat urinary calculi [72], stomach pain [73], healing, itching [74], boil, eczema, diabetes [75], pneumonia [76], and fever [77]. Besides that, the seeds of *M. suaveolens* are used to treat gynecological disorders such as menorrhagia, leucorrhea, and rheumatism [78, 79]. The fresh poultice of the leaves is applied to snake bites, wounds, and mycoses [80], while the paste of the fresh leaves is also indicated for skin diseases [81].

In South Asia, in Bangladesh, traditional communities use the seeds in juice preparations to treat constipation and weakness [82, 83]; in addition, the seeds are consumed along with roots of *Bombax ceiba* to treat gonorrhea [84, 85], and the paste of the leaves is used to treat skin infections [86]. In Togo, the leaves of the species are spent in decoction form for the treatment of gynecological disorders [87], while in Thailand, the decoction of the roots is indicated in cases of food poisoning [88]. On the African continent, more specifically in Benin and Nigeria, the whole plant of
Composite Structure Identification method	Part of the plant	Citation		
Monoterpene				
Sabinene	GC-MS	Leaves (essential oil) [30–35]		
Eucalyptol	GC-MS	Leaves (essential oil) [35–37]		
Sesquiterpene				
E-Caryophyllene	GC-MS	Leaves (essential oil) [38]		
Germacrene D	GC-MS	Leaves (essential oil) [38]		
β-Caryophyllene	GC-MS	Leaves (essential oil) [32, 33, 39, 40]		
Diterpenes				
Mellowolic acid	\(^1\text{H-NMR and }^{13}\text{C-NMR}\)	Leaves and stem [26, 41]		
Suaveolol	\(^1\text{H-NMR and }^{13}\text{C-NMR}\)	Leaves [41–43]		
Composite	Structure	Identification method	Part of the plant	Citation
-----------	-----------	-----------------------	-------------------	----------
Dehydroabietinol		GC-MS, 1H-NMR, and 13C-NMR	Leaves, stem, and flowers	[29, 44, 45]
9α,13α-Epi-dioxiabiet-8(14)-en-18-ol		1H-NMR and 13C-NMR	Leaves	[46]
Methyl suaveolate		1H-NMR and 13C-NMR	Leaves	[42]
Ácido 8α,9α-epoxysuaveolic		1H-NMR and 13C-NMR	Leaves and stem	[43]
4α-Hydroperoxy-5-enovatodiolide		1H-NMR and 13C-NMR	Flowers	[47]
4-Methylene-5β-hydroperoxy ovatodiolide		1H-NMR and 13C-NMR	Flowers	[47]
Ovatodiolide		1H-NMR and 13C-NMR	Flowers	[47]
Composite Structure	Identification method	Part of the plant	Citation	
---------------------	-----------------------	-------------------	----------	
4α-Hydroxy-5-enovatodiolide	1H-NMR and 13C-NMR	Flowers	[47]	
Phytol	GC-MS	Flowers	[29]	
Triterpenes and steroids				
α-Peltobokinolic acid	1H-NMR and 13C-NMR	Root	[48]	
Oleanolic acid	1H-NMR and 13C-NMR	Root	[48]	
Bacosine	1H-NMR and 13C-NMR	Root	[49]	
Betulinic acid	1H-NMR and 13C-NMR	Root	[49]	
Ursolic acid	1H-NMR and 13C-NMR	Root, leaves, and stem	[49, 50]	
Composite	Structure	Identification method	Part of the plant	Citation
-------------------------------	--	-----------------------	-------------------	----------
α-Amyrin	![α-Amyrin](image1)	1H-NMR and 13C-NMR	Root	[51]
3β-Hydroxylup-20(29)-en-28-oic acid	![3β-Hydroxylup-20(29)-en-28-oic acid](image2)	1H-NMR and 13C-NMR	Root	[51]
Urs-12-en-3β-ol-29-oic acid	![Urs-12-en-3β-ol-29-oic acid](image3)	1H-NMR and 13C-NMR	Leaves and stem	[53]
Lupeol	![Lupeol](image4)	1H-NMR and 13C-NMR	Leaves	[50]
Rotundic acid	![Rotundic acid](image5)	1H-NMR and 13C-NMR	Leaves and stem	[50]
β-Sitosterol	![β-Sitosterol](image6)	1H-NMR and 13C-NMR	Leaves and stem	[50]
Composite	Structure	Identification method	Part of the plant	Citation
-------------------------	-----------	-----------------------	-------------------	----------
Hyptadienoic acid	![Structure](image)	1H-NMR and 13C-NMR	Leaves and stem	[53]
Phenolics				
Gallic acid	![Structure](image)	HPLC-DAD and HPTLC	Leaves and stem	[10, 27]
Ellagic acid	![Structure](image)	HPLC-DAD	Leaves and aerial parts	[6]
Ferulic acid	![Structure](image)	HPTLC	Leaves and stem	[27]
Caffeic acid	![Structure](image)	HPLC-DAD and UPLC-MS	Leaves	[6, 10, 54]
Chlorogenic acid	![Structure](image)	HPLC-DAD and HPTLC	Leaves and stem	[6, 10, 27]
Apigenin	![Structure](image)	HPLC-DAD	Leaves	[6, 10]
Catechin	![Structure](image)	HPLC-DAD	Leaves	[6, 10]
Composite	Structure	Identification method	Part of the plant	Citation
----------------------	-----------	-----------------------	-------------------	----------------
Rutin	![Structure of Rutin](image)	HPLC-DAD and UPLC-MS	Leaves	[6, 10, 54]
Quercetin	![Structure of Quercetin](image)	HPLC-DAD and UPLC-MS	Leaves and stem	[6, 10, 27, 54]
Rosmarinic acid	![Structure of Rosmarinic acid](image)	UPLC-MS	Leaves	[54]
Ethyl caffeate	![Structure of Ethyl caffeate](image)	UPLC-MS	Leaves	[54]
Sagerinic acid	![Structure of Sagerinic acid](image)	UPLC-MS	Leaves	[54]
Isoquercetin	![Structure of Isoquercetin](image)	UPLC-MS	Leaves	[54]
Syringic acid	![Structure of Syringic acid](image)	UPLC-MS	Leaves	[54]
Table 1: Continued.

Composite	Structure	Identification method	Part of the plant	Citation
Yunnaneic acid	![Structure](image1.png)	UPLC-MS	Leaves	[54]
Secoiridoid	![Structure](image2.png)			
Oleoside dimethyl ester	![Structure](image3.png)	UPLC-MS	Leaves	[54]
Fatty acids				
Linoleic acid	![Structure](image4.png)	GC-MS	Seeds	[28]
Palmitic acid	![Structure](image5.png)	GC-MS	Seeds and leaves	[28, 29]
Oleic acid	![Structure](image6.png)	GC-MS	Seeds	[28]
Stearic acid	![Structure](image7.png)	GC-MS	Seeds	[28]
Palmitoleic acid	![Structure](image8.png)	GC-MS	Seeds	[28]
Undecanoic acid	![Structure](image9.png)	GC-MS	Leaves	[29]
M. suaveolens is used for the treatment of candidiasis and as a blood tonic [89, 90].

From a veterinary point of view, M. suaveolens has also been used for the treatment of diseases in animals. Such use is reported in India for the treatment of inflammation in cattle, with the juice of the leaves being applied to the animal’s eyes [91]. In Brazil, the species is employed against diarrhea [92]. In the African continent, more specifically in Kenya, the aerial parts of the plant are utilized as a repellent for the mosquito Anopheles gambiae Giles, 1926 (Diptera: Culicidae) [93, 94].

3.4. Biological Activities

3.4.1. Allelopathic Activity. According to Sharma et al. [95], after the establishment of M. suaveolens in an area, it becomes evident that the species imposes a profound impact on the local vegetation, as the number of species, richness, diversity, and uniformity is severely reduced. Although M. suaveolens is native to the Brazilian territory, it is distributed in different ecosystems, such as Caatinga, a seasonally dry tropical forest [20].

Mesosphaerum suaveolens produces numerous seeds of rapid germination and subsequent growth and thus manages to occupy and dominate environments because of its allelopathic action [96]. Islam et al. [26], for example, isolated suaveolic acid from M. suaveolens and demonstrated in bioassays that this diterpene exhibits allelopathic action, interfering with the growth of the caulicle and radicle of Lepidium sativum L. (Brassicaceae), Lactuca sativa L. (Asteraceae), Lolium multiflorum Lam. (Poaceae), and Echinochloa crus-galli (L.). P. Beauv. (Poaceae). Their extracts present allelopathic action against Echinochloa crus-galli (L.) P. Beauv. [97], Sorghum vulgare Pers., Raphanus sativus L., and Lactuca sativa L. [98].

Allelochemicals present in the species have been reported to act by causing oxidative stress, reduction in chlorophyll content, and inducing the formation of chromosomal aberrations [99, 100]. Such damage may occur in response to the synergistic action of the constituents.

In addition to heterotoxicity, M. suaveolens has been found to exhibit autotoxicity; however, its constituents affect other species more than itself [101]. Thus, the low amounts of allelochemicals released by M. suaveolens affect the ecological succession of other species, but do not affect the species itself as much.

Despite reports of the allelopathic action of M. suaveolens, it is worth noting that most of these studies were conducted under laboratory conditions and with extracts of the plant, so these actions do not match the allelopathic actions found in the environment. Thus, it is necessary to conduct studies that simulate as much as possible the natural conditions, to affirm whether one species can affect another. Only Kapoor [99] evaluated the allelopathic action of M. suaveolens in conditions similar to those found in the environment, demonstrating in fact that the species has allelopathic action on Parthenium hysterophorus L. (Asteraceae).

M. suaveolens has allelochemicals from its secondary metabolism, which compromise the structure and plant diversity [102].

3.4.2. Antimicrobial Activity. Teas of M. suaveolens are used to treat diseases related to the gastrointestinal and respiratory tracts [1], so numerous researchers have hypothesized that the species exhibits biological activity against strains of pathogenic microorganisms.

Cyrille et al. [103] evaluated the antibacterial action of the hydroethanolic extract (70%) of the leaves and found that the species presented low antibacterial activity since an MIC of 3.12 mg/ml was observed against Staphylococcus aureus (Rosenbach, 1884) (Staphylococcaceae) ATCC 25923 and Pseudomonas aeruginosa (Schroeter, 1872) (Pseudomonadaceae) ATCC 27853 strains. It is worth noting that MIC values obtained above 1 mg/ml (1000 μg/ml) do not reflect clinically notable activity (Van Vuuren, 2008) (Table 2).

The works evaluating the antimicrobial action of the species highlight the use of the volatile terpenes (essential oils) of the leaves (Table 2). Xu et al. [104] demonstrated that the oil of M. suaveolens showed antimicrobial action through the microdilution technique with MIC values of great clinical relevance, notably against Bacillus subtilis (Cohn, 1872) (Bacillaceae) CMCC 63501, Escherichia coli

Composite Structure	Identification method	Part of the plant	Citation
Octanoic acid	GC-MS	Leaves	[29]
n-Decanoic acid	GC-MS	Leaves	[29]
Tetradecanoic acid	GC-MS	Leaves	[29]
Myristic acid ethyl ester	GC-MS	Aerial parts	[53]
Extract/parts of the plant	Assay	Antimicrobial activity	Citation
----------------------------	------------------------------	---	----------
Methanolic extract of the aerial parts	Disk diffusion test	*Candida albicans* (7 mm)	[105]
Essential oil from the leaves	Disk diffusion test	*Staphylococcus aureus* ATCC 29213 (27 mm) Escherichia coli ATCC 25922 (22 mm) Trichophyton mentagrophytes (15 mm) Trichophyton rubrum (24 mm)	[106]
Essential oil from the leaves	Dilution method	*Staphylococcus aureus* ATCC 29213 (MIC 8.82 mg/ml) *Streptococcus pyogenes* P183 (MIC 4.41 mg/ml) *Streptococcus pyogenes* P31 P183 (MIC 4.41 mg/ml) *Bacillus subtilis* (MIC 16.67 μl/ml)	[106]
Essential oil from the leaves	Disk diffusion test	*Staphylococcus aureus* (MIC 1.56 μl/ml) *Escherichia coli* (MIC 6.25 μl/ml) *Proteus vulgaris* (MIC 50 μl/ml)	[107]
Essential oil from the leaves	Disk diffusion test and dilution method	*Erwinia herbicola* MTCC 3609 (MIC 2 μl/ml) *Pseudomonas putida* MTCC 1190 (MIC 8 μl/ml) *Staphylococcus aureus* CMCC 26001 (MIC 50 μg/ml) *Bacillus subtilis* CMCC 63501 (MIC 25 μg/ml) *Pseudomonas aeruginosa* CMCC 10104 (MIC 50 μg/ml)	[108]
Essential oil from the aerial parts	Microdilution method	*Erwinia herbicola* CMCC 44102 (MIC 25 μg/ml) *Fusarium graminearum* (MIC 50 μg/ml) *Botrytis cinerea* (MIC 25 μg/ml) *Exerohilum turcicum* (MIC 50 μg/ml) *Lecanosticta acicola* (MIC 50 μg/ml)	[104]
Ethanolic extract of the aerial parts	Disk diffusion test	*Aeromonas hydrophila* (0.1 mm) *Ralstonia spp.* (0.17 mm) *Shigella spp.* (0.23 mm) *Trichophyton mentagrophyte* (15.7 mm) *Trichophyton rubrum* (14.7 mm)	[109]
Aerial parts essential oil	Disk diffusion test	*Microsporum gypseum* (13.3 mm) *Candida albicans* (13.7 mm)	[110]
Blossoms essential oil	Disk diffusion test	*Escherichia coli* ATCC 25922 (MIC 350 μl/ml) *Klebsiella pneumoniae* ATCC 23357 (MIC 400 μl/ml) *Salmonella typhi* CDC57 (MIC 450 μl/ml) *Escherichia coli* ATCC 25922 (MIC 350 μl/ml)	[111]
Flower essential oil	Disk diffusion test	*Staphylococcus aureus* ATCC 23357 (MIC 400 μl/ml) *Salmonella typhi* CDC57 (MIC 450 μl/ml) *Staphylococcus aureus* ATCC 25923 (MIC 3.12 mg/ml) *Pseudomonas aeruginosa* ATCC 27853 (MIC 3.12 mg/ml) *Staphylococcus aureus* Meti-R (MIC 3.12 mg/ml)	[111]
Leaf hydroethanolic extract (70%)	Agar diffusion method	*Pseudomonas aeruginosa* Ceftriaxone-Imp-R (MIC 12.5 mg/ml) *Staphylococcus aureus* ATCC 25923 (MIC 3.12 mg/ml) *Pseudomonas aeruginosa* ATCC 27853 (MIC 3.12 mg/ml) *Staphylococcus aureus* Meti-R (MIC 5.37 mg/ml)	[103]
Leaves essential oil	Agar diffusion method	*Pseudomonas aeruginosa* Ceftriaxone-Imp-R (MIC 10.75 mg/ml) *Staphylococcus aureus* ATCC 25923 (MIC 5.37 mg/ml) *Pseudomonas aeruginosa* ATCC 27853 (MIC 10.75 mg/ml) *Escherichia coli* MTCC 443 (MIC 0.5 mg/ml) *Salmonella typhi* MTCC 531 (MIC 0.125 mg/ml) *Shigella flexneri* MTCC 1457 (MIC 0.5 mg/ml) *Vibrio vulnificus* MTCC 1145 (MIC 0.5 mg/ml)	[103]
Seed fixed oil	Dilution method	*Pseudomonas aeruginosa* MTCC 424 (MIC 0.125 mg/ml) *Lactobacillus plantarum* MTCC 2621 (MIC 0.125 mg/ml) *Lactobacillus casei* MTCC 911 (MIC 0.25 mg/ml) *Staphylococcus aureus* MTCC 737 (MIC 0.25 mg/ml) *Candida tropicalis* MTCC 227 (MIC 0.125 mg/ml) *Candida albicans* MTCC 227 (MIC 0.25 mg/ml) *Escherichia coli* ATCC 25922 (MIC 350 μl/ml)	[112]
Essential oil from leaves	Disc diffusion method	*Klebsiella pneumoniae* ATCC 23357 (MIC 300 μl/ml) *Salmonella typhi* CDC57 (MIC 400 μl/ml)	[111]
Extract/parts of the plant	Assay	Antimicrobial activity	Citation
---------------------------	-------	------------------------	----------
Hexanic extract from the seeds	Microdilution method	*Staphylococcus aureus* Meti-R (MIC 0.375 mg/ml)	
Enterococcus faecalis ATCC 29212 (MIC 0.1875 mg/ml)			
Escherichia coli ATCC 25922 (MIC 0.1875 mg/ml)			
Pseudomonas aeruginosa ATCC 15442 (MIC 0.375 mg/ml)			
Klebsiella pneumoniae (MIC 0.375 mg/ml)			
Acinetobacter baumannii (MIC 0.375 mg/ml)			
Candida albicans 77 (IC₅₀ 266.4 μg/ml)			
Candida albicans 40006 (IC₅₀ 304.4 μg/ml)			
Candida tropicalis 40042 (IC₅₀ 640.3 μg/ml)	[113]		
Aqueous extract from the leaves	Microdilution method	*Candida albicans* 77 (IC₅₀ 18.5 μg/ml)	
Candida albicans 40006 (IC₅₀ 26.4 μg/ml)			
Candida tropicalis 23 (IC₅₀ 18.5 μg/ml)			
Candida tropicalis 40042 (IC₅₀ 58.62 μg/ml)	[6]		
Aqueous extract from aerial parts	Microdilution method	*Candida albicans* 77 (IC₅₀ 18.5 μg/ml)	
Candida albicans 40006 (IC₅₀ 26.4 μg/ml)			
Candida tropicalis 23 (IC₅₀ 25 μg/ml)			
Staphylococcus aureus UCH 511 (14 mm)			
Escherichia coli NCTC 7001 (12 mm)			
Bacillus cereus (10 mm)			
Escherichia coli (12 mm)			
Staphylococcus aureus ATCC 25923 (12 mm)			
Pseudomonas aeruginosa UCH 655 (14 mm)	[114]		
Essential oil from the leaves	Disk diffusion test	*Escherichia coli* NCTC 701 (12 mm)	
Pseudomonas aeruginosa UCH 655 (14 mm)			
Candida albicans (16 mm)	[115]		
Leaf ethanolic extract	Disk diffusion test	*Sclerotium rolfsii* (MIC 2000 mg/ml)	
Staphylococcus aureus Meti-R (24 mm)	[116]		
Leaf hydroethanolic extract (70%)	Disk diffusion test	*Staphylococcus aureus* ATCC 25923 (24 mm)	
Pseudomonas aeruginosa Cef/Imp-R (16 mm)			
Pseudomonas aeruginosa ATCC 27853 (20 mm)			
Staphylococcus aureus Meti-R (3 mm)	[116]		
Leaf essential oil	Disk diffusion test	*Staphylococcus aureus* ATCC 25923 (16 mm)	
Pseudomonas aeruginosa Cef/Imp-R (0 mm)			
Pseudomonas aeruginosa ATCC 27853 (0 mm)			
Staphylococcus aureus (MIC 30 μg/ml)			
Bacillus subtilis (MIC 26 μg/ml)			
Proteus vulgaris (MIC 15 μg/ml)			
Candida albicans (MIC 10 μg/ml)	[116]		
Leaf essential oil	Disk diffusion test	*Aspergillus niger* (MIC 40 μg/ml)	
Pseudomonas aeruginosa (MIC 28 μg/ml)			
Trichophyton mentagrophytes (MIC > 100 μg/ml)			
Escherichia coli (MIC 26 μg/ml)			
Klebsiella pneumoniae (MIC 37 μg/ml)			
Yersinia enterocolitica (MIC > 100 μg/ml)	[117]		
Essential oil from the leaves	Disk diffusion test	*Aspergillus flavus* (MIC 93.8 μL/ml)	
Escherichia coli (7 mm)			
Bacillus subtilis (8 mm)			
Vibrio cholerae (9 mm)			
Shigella dysenteriae (9 mm)			
Corynebacterium diphtheriae (10 mm)			
Salmonella typhi (9 mm)			
Streptococcus faecalis (9 mm)			
Bacillus pumilus (9 mm)			
Streptococcus pyogenes (8 mm)			
Micrococcus (8 mm)			
Pseudomonas solanacearum (10 mm)	[118]		
Essential oil from the leaves	Disk diffusion test	*Pseudomonas aeruginosa* (56% inhibition at 5% concentration)	
Bacillus cereus (9 mm)			
Bacillus subtilis (3 mm)*Bacillus megaterium* (1 mm)*Staphylococcus aureus* (6 mm)	[120]		
Crushed leaves	Disk diffusion test	*Aspergillus flavus* (56% inhibition at 5% concentration)	
Bacillus cereus (9 mm)			
Bacillus subtilis (3 mm)*Bacillus megaterium* (1 mm)*Staphylococcus aureus* (6 mm)	[121]		
Extract/parts of the plant	Assay	Antimicrobial activity	Citation
----------------------------	---------------------------	--	-----------
Essential oil from the	Microdilution method	*Saccharomyces cerevisiae* (IC$_{50}$ 1000 μg/ml)	[122]
leaves		*Fusarium moniliforme* 7075 (IC$_{50}$ > 1500 μg/ml)	
		Mucor sp. (IC$_{50}$ 750 μg/ml)	
		Candida albicans (0 mm)	
Whole plant aqueous	Disk diffusion test	*Fusarium oxysporum* F.sp. lycopersici (5 mm)	[123]
extract		*Klebsiella pneumoniae* (14 mm)	
		Escherichia coli (12 mm)	
		Staphylococcus aureus (0 mm)	
		Pseudomonas aeruginosa (0 mm)	
		Candida albicans (19 mm)	
		Colletotrichum capsici (20 mm)	
Whole plant ethanolic	Disk diffusion test	*Fusarium oxysporum* F.sp. lycopersici (18 mm)	[123]
extract		*Klebsiella pneumoniae* (22 mm)	
		Escherichia coli (18 mm)	
		Staphylococcus aureus (29 mm)	
		Pseudomonas aeruginosa (12 mm)	
		Aspergillus niger:	
Ethanol (1), chloroform	Disk diffusion test	1: 6 mm	[124]
(2), methanolic (3),		2: 11 mm	
petroleum ether (4), and		3: 0.5 mm	
aqueous (5) extracts of the		4: 7 mm	
whole plant		5: 12 mm	
		Candida albicans:	
		1: 10 mm	
		2: 10.5 mm	
		3: 3.5 mm	
		4: 8.5 mm	
		5: 8 mm	
Essential oil from the	Microdilution method	*Aspergillus fumigatus* ATCC 40640 (MIC 40 μl/ml)	[36]
leaves		*Aspergillus parasiticus* ATCC 15517 (MIC 40 μl/ml)	
		Trichophyton mentagrophytes (MIC 640 μl/ml)	
		Staphylococcus aureus (MIC 160 μl/ml)	
		Streptococcus suis (MIC 160 μl/ml)	
Essential oil from the	Microdilution method	*Erysipelothrix rhusiopathiae* (MIC 80 μl/ml)	[125]
leaves		*Actinomyces pyogenes* (MIC 80 μl/ml)	
		Pasteurella multocida (MIC 80 μl/ml)	
		Pseudomonas aeruginosa (MIC 20 μl/ml)	
		Escherichia coli (MIC 20 μl/ml)	
		Rhizoctonia solani (MIC 4000 μl/l)	
Essential oil from the	Disk diffusion test	*Pythium debaryanum* (MIC 300 μl/l)	[126]
leaves		*Pythium aphanidermatum* (MIC 300 μl/l)	
Extract/parts of the plant	Assay	Antimicrobial activity	Citation
---------------------------	----------------------------	--	----------
Aqueous extract of the leaves	Microdilution method	Trichoderma viride (IC$_{50}$ > 500 μl/l)	
Alternaria porri (IC$_{50}$ > 500 μl/l)			
Aspergillus parasiticus (IC$_{50}$ > 500 μl/l)			
Aspergillus fumigatus (IC$_{50}$ > 500 μl/l)			
Fusarium lini (IC$_{50}$ > 500 μl/l)			
Alternaria brassicae (IC$_{50}$ > 500 μl/l)			
Fusarium sesami (IC$_{50}$ > 500 μl/l)			
Fusarium nivale (IC$_{50}$ > 500 μl/l)			
Alternaria solani (IC$_{50}$ > 500 μl/l)			
Fusarium oxysporum f. sp. ciceri (IC$_{50}$ > 393.4 μl/l)			
Aspergillus niger (IC$_{50}$ > 244.7 μl/l)			
Aspergillus sulphureus (IC$_{50}$ > 475.4 μl/l)			
Helminthosporium oryzae (IC$_{50}$ > 197.7 μl/l)			
Alternaria Alternata (IC$_{50}$ > 243.5 μl/l)			
Alternaria tenuissima (IC$_{50}$ > 321.1 μl/l)			
Fusarium semitectum (IC$_{50}$ > 428.6 μl/l)			
Cladosporium cladosporioides (IC$_{50}$ > 228.6 μl/l)			
Drechslera aurnii (IC$_{50}$ > 411 μl/l)			
Penicillium citrinum (IC$_{50}$ > 446.7 μl/l)	[127]		
Methanolic extract of the leaves	Disk diffusion test	Staphylococcus aureus (6 mm)	
Bacillus subtilis (9 mm)			
Escherichia coli ATCC 10536 (IC$_{50}$ > 200 μg/ml)			
Proteus mirabilis ATCC 7002 (IC$_{50}$ > 200 μg/ml)			
Klebsiella pneumoniae ATCC 10031 (IC$_{50}$ > 400 μg/ml)			
Proteus vulgaris ATCC 49132 (IC$_{50}$ > 100 μg/ml)			
Serratia marcescens FJ584421 (IC$_{50}$ > 50 μg/ml)			
Staphylococcus aureus ATCC 29213:			
1: 13 mm			
2: 8 mm			
3: 8 mm			
4: 12 mm			
Listeria monocytogenes ATCC 19115:			
1: 0 mm			
2: 7 mm			
3: 5 mm			
4: 0 mm			
Escherichia coli ATCC 25922:			
1: 7 mm			
2: 10 mm			
3: 0 mm			
4: 0 mm			
Serratia marcescens ATCC 21074:			
1: 18 mm			
2: 0 mm			
3: 8 mm			
4: 0 mm			
Aspergillus flavus ATCC 32612:			
1: 18 mm			
2: 0 mm			
3: 0 mm			
4: 14 mm	[128]		
Hexanic extract of the leaves	Microdilution method	Fusarium oxysporum f. sp. gladioli MPPLU 01 (MIC 0.6 μl/ml)	
Rhizoctonia solani (MIC 5.000 μg/ml)			
Sclerotinia sclerotiorum (MIC 5.000 μg/ml)			
Sclerotium rolfsii (MIC 5.000 μg/ml)	[130]		
Petroleum ether (1), chloroform (2), methanolic (3), and aqueous (4) extracts of the leaves	Disk diffusion test	Fusarium oxysporum f. sp. gladioli MPPLU 01 (MIC 0.6 μl/ml)	
Rhizoctonia solani (MIC 5.000 μg/ml)			
Sclerotinia sclerotiorum (MIC 5.000 μg/ml)			
Sclerotium rolfsii (MIC 5.000 μg/ml)	[131]		
Leaf essential oil	Disk diffusion test	Fusarium oxysporum f. sp. gladioli MPPLU 01 (MIC 0.6 μl/ml)	
Rhizoctonia solani (MIC 5.000 μg/ml)			
Sclerotinia sclerotiorum (MIC 5.000 μg/ml)			
Sclerotium rolfsii (MIC 5.000 μg/ml)	[132]		
Leaf essential oil	Disk diffusion test	Fusarium oxysporum f. sp. gladioli MPPLU 01 (MIC 0.998 μg/ml)	[133]
Leaf methanolic extract	Disk diffusion test	Fusarium oxysporum f. sp. gladioli MPPLU 01 (MIC 0.6 μl/ml)	
Rhizoctonia solani (MIC 5.000 μg/ml)
Sclerotinia sclerotiorum (MIC 5.000 μg/ml)
Sclerotium rolfsii (MIC 5.000 μg/ml) | [134] |
Table 2: Continued.

Extract/parts of the plant	Assay	Antimicrobial activity	Citation
Aerial parts methanic	Disk diffusion test	*Candida albicans* (7 mm)	[105]
extract		*Microsporum gypseum* (MIC 625 μg/ml)	
		Aureobasidium pullulans (MIC 5.000 μg/ml)	
Leaf essential oil	Disk diffusion test	*Candida albicans* (MIC 10.000 μg/ml)	[134]
		Aspergillus flavus (MIC 10.000 μg/ml)	
		Trichophyton rubrum (MIC 156 μg/ml)	
		Cryptococcus neoformans (MIC 5.000 μg/ml)	
Essential oil from the	Microdilution method	*Candida albicans* (IC50 18.15 μg/ml)	[135]
leaves		*Candida tropicalis* (IC50 40.4 μg/ml)	
		Staphylococcus aureus (0.7 cm)	[136]
Leaf hydroethanolic	Disk diffusion test	*Salmonella typhi* (0.52 cm)	
extract		*Escherichia coli* (0.25 cm)	
Leaf essential oil	Microdilution method	*Enterococcus faecalis* (IC50 5.78 μg/ml)	[137]
		Staphylococcus aureus (IC50 68.98 μg/ml)	
		Bacillus cereus (IC50 9.35 μg/ml)	
		Candida albicans (IC50 6.78 μg/ml)	

(T. Escherich, 1885) (Enterobacteriaceae) CMCC 44102, and *Botrytis cinerea* (De Bary) Whetzel, 1945 (Sclerotinia). The oil was also very active against *S. aureus* CMCC 26001, *P. aeruginosa* CMCC 10104, *Fusarium graminearum* Schwabe, 1839 (Nectriaceae), *Exerohilum turcicum* (Pass.) K.J. Leonard & Suggs, 1974 (Pleosporaceae), and *Lecanosticta acicola* (Thüm.) Syd., 1924 (Mycosphaerellaceae). Besides the essential oil, the fixed oil from *M. suaveolens* seeds showed activities of clinical relevance against *E. coli* MTCC 443 (MIC 0.5 μg/ml), *Salmonella typhi* Typhi (Enterobacteriaceae) MTCC 531 (MIC 0.125 μg/ml), *Shigella flexneri* Castellani & Chalmers, 1919 (Enterobacteriaceae) MTCC 1457 (MIC 0.5 μg/ml), *Vibrio vulnificus* (Reichert et al. Farmer, 1980 (Vibrionaceae) MTCC 424 (MIC 0.125 μg/ml), *Lactobacillus plantarum* (Orla-Jensen) Bergey et al., 1923 (Lactobacillaceae) MTCC 2621 (MIC 0.125 μg/ml), *Lactobacillus leichmannii* (Henneberg) Bergey et al. 1923 (Lactobacillaceae) MTCC 911 (MIC 0.25 μg/ml), *S. aureus* MTCC 737 (MIC 0.25 μg/ml), *Candida tropicalis* Berkhout, 1923 (Saccharomycetaceae) MTCC 227 (MIC 0.125 μg/ml), and *Candida albicans* Berkhout, 1923 (Saccharomycetaceae) MTCC 227 (MIC 0.25 μg/ml) (Table 2).

3.4.3. Insecticidal Activity. Popularly, in Kenya, the aerial parts of *M. suaveolens* are burned to repel mosquitoes of the species *Anopheles gambiae* [84, 94]. Subsequently, other researchers have highlighted that the oil has biological action against various insects, such as *A. gambiae* itself (Table 3).

Works evaluating the insecticidal action showed that the essential oil of *M. suaveolens* by fumigation showed the effect against *Callosobruchus maculatus* (Fabricius 1775; Coleoptera: Chrysomelidae) (CL50 4.7 μg/ml), *Rhyzopertha dominica* (Fabricius 1972; Coleoptera: Bostrichidae) (CL50 12 μg/ml), *Sitophilus oryzae* (Linnaeus 1763; Coleoptera: Curculionidae) (CL50 10.6 μg/ml), *Tribolium castaneum* (Herbst 1932; Coleoptera: Tenebrionidae) (CL50 23.2 μg/ml) (Tripathi; Upadhyay 2009), and *Sitophilus granarius* (Linnaeus, 1758) (CL50 0.251 μl/insect) [138].

Mesosphaerum suaveolens oil showed toxicity through contact and ingestion against Mediterranean flies (*Ceratitis capitata* (Wiedemann, 1824) (Diptera: Tephritidae)) with CL50 13.041 μl/l through ingestion and CL50 0.066 μl/l through contact [30]. Canale et al. [139], when evaluating the toxicity of the oil against *Bactrocera oleae* (Rossi, 1790) (Diptera: Tephritidae), demonstrated that, by ingestion, the product showed a CL50 of 4.9 ml/g. Bezerra et al. [10] evaluated by fumigation the action of the oil and highlighted that it presents great insecticidal action with CL50 of 15.5 μg/ml against adults of *Drosophila melanogaster* (Meigen, 1830) (Diptera: Drosophilidae). Also, via the fumigation test, Wangrawa et al. [35] found a CL50 of 1.86 μg/ml (oil/air) against *A. gambiae*. Recently, Adjou et al. (2019) found the insecticidal action of *M. suaveolens* oil against *Tenebroides mauritanicus* (Linnaeus, 1758) (Coleoptera: Trogossitidae) with a CL50 0.35 μl/g.

3.4.4. Repellent Activity. Besides causing mortality in insects, the products of *M. suaveolens*, especially the essential oil of the leaves, can repel insects and arachnids of public health and economic interests (Table 4). As for Diptera, the essential oil by fumigation and the fresh leaves by contact were able to repel mosquitoes of the species *Anopheles gambiae*, malaria vector, with the former showing an effective rate of 98% repellency at a low concentration (6%) [152], while the leaves when rubbed on the body had a rate of 66.5% [153]. Besides this Diptera, *Aedes aegypti* vector of arboviruses, such as dengue, yellow fever, chikungunya, and zika, was also repelled when in contact with the ethyl acetate extract of the leaves.

As for insects of economic interest, the leaves of *M. suaveolens* showed that the phytochemicals released by the leaves can repel two species of coleoptera, being...
As for arachnid repellency, the essential oil was able to repel *Sitophilus granarius* and *Ixodes ricinus*. For repelling arthropods, the oil was also effective against *Ixodes ricinus*, *Artemia salina* (Linnaeus, 1758) (Anostraca: Artemiidae) (CL50 4.7 μg/ml) [32], *Aedes aegypti* (Linnaeus, 1762) (Diptera: Culicidae) (CL50 0.15 mg/ml) [156, 157]. It also showed repellency against *Chrysodeixis chalcites* (Esper, 1789) (Lepidoptera: Noctuidae) (CL50 2.42 μg/ml) [32].

3.4.5. Larvicidal Activity

Besides microbiological and insecticidal activities, the essential oil was shown to be effective against *Mesosphaerum suaveolens* (L.) Kuntze (Lamiaceae). For example, the leaf essential oil showed larvicidal action in some studies (Table 3). Its oil, for example, showed activity against *Tribolium castaneum* (CL50 4.7 μg/ml) [34], *Rhyzopertha dominica* (CL50 10.6 μg/ml) [138], *Sitophilus oryzae* (CL50 23.2 μg/ml) [34], *Sitophilus granarius* (CL50 12 μg/ml) [34], and *Callosobruchus maculatus* (CL50 451.2 μg/ml) [34].

3.4.6. Cytotoxic Activity

Besides microbiological and insecticidal activities, it was evidenced that *Mesosphaerum suaveolens* products present biologically active compounds against *A. cajennense* and *Ceratitis capitata*. For example, the leaf essential oil showed toxicity by ingestion against *Apis mellifera* (CL50 451.2 μg/ml) [34].

Table 3: Insecticidal activities of *Mesosphaerum suaveolens* (L.) Kuntze (Lamiaceae).

Extract/parts of the plant	Assay	Insecticidal activity	Citation
Leaf essential oil	Fumigation	*Ceratitis capitata*	[30]
	Ingestion	*Sitophilus granarius* (CL50 0.251 μL/insect)	[138]
	Contact toxicity	*Sitophilus oryzae* (CL50 13.041 μg/ml)	[139]
		Callosobruchus maculatus (CL50 18.37 μL)	[30]
		Sitophilus oryzae (CL50 167 μg/ml)	[30]
		Rhyzopertha dominica (CL50 12 μg/ml)	[34]
		Sitophilus oryzae (CL50 101 μg/ml)	[30]
		Trichogramma castaneum (CL50 23.2 μg/ml)	[34]
		Rhyzopertha dominica (CL50 57 μg/mg)	[34]
Leaf essential oil	Fumigation	*Callosobruchus maculatus* (CL50 167 μg/ml)	[30]
		Sitophilus oryzae (CL50 101 μg/ml)	[30]
		Trichogramma castaneum (CL50 23.2 μg/ml)	[34]
		Rhyzopertha dominica (CL50 57 μg/mg)	[34]
Leaf essential oil	Contact toxicity	*Sitophilus granarius* (CL50 4.7 μg/ml)	[138]
	Ingestion	*Bactrocera oleae* (CL50 4.9 mg/ml)	[139]
		Callosobruchus maculatus (CL50 707.4 μg/ml)	[140]
Leaf essential oil	Fumigation	*Callosobruchus maculatus* (CL50 451.2 μg/ml)	[34]
		Drosophila melanogaster (CL50 15.5 μg/ml)	[10]
Leaf essential oil	Contact toxicity	*Tenebroides mauritanicus* (CL50 0.35 μL/g)	[142]
Leaf essential oil	Contact toxicity	*Trichogramma castaneum* (CL50 23.2 μg/ml)	[34]
Leaf essential oil	Toxicity by ingestion	*Aphis mellifera* (CL50 13.041 μg/ml)	[139]
Leaf essential oil	Fumigation	*Callosobruchus maculatus* (100% mortality at 10% concentration)	[144]
Crushed leaves	Ingestion toxicity	*Callosobruchus maculatus* (CL50 73 μg/g)	[145]
Crushed leaves and flowers	Ingestion toxicity	*Callosobruchus maculatus* (20.1% of mortality)	[146]
Crushed leaves	Ingestion toxicity	*Sitophilus zeamais* (30% of mortality in the concentration 43.75 mg/ml)	[147]
Leaf essential oil	Fumigation	*Callosobruchus maculatus* (CL50 < 1.3 μL/l)	[148]
Leaf essential oil	Fumigation	*Callosobruchus maculatus* (CL50 > 20 μL/l)	[149]
Leaf essential oil	Fumigation	*Callosobruchus maculatus* (CL50 > 2.6 μL/l)	[150]
Leaf essential oil	Fumigation	*Nauphoeta cinerea* (did not show insecticidal action)	[151]

Table 4: Repellent activities of *Mesosphaerum suaveolens* (L.) Kuntze (Lamiaceae).

Extract/parts of the plant	Assay	Insecticidal activity	Citation
Aerial parts essential oil	Contact	*Amblyomma cajennense* (EC50 0.55 mg/cm²)	[23]
Crushed leaves	Fumigation	*Callosobruchus maculatus* (repellency from 5 minutes of exposure)	[146]
Leaf essential oil	Fumigation	*Anopheles gambiae* (89% repellency rate at 6% concentration)	[152]
Fresh leaves	Contact	*Anopheles gambiae* (repellency rate 66.5%)	[153]
Leaf essential oil	Fumigation	*Sitophilus granarius* (repellency rate 40% at 100% concentration)	[154]
Leaf ethyl acetate extract	Contact	*Aedes aegypti* (repellency rate of 78.8% for 300 μl)	[155]
Crushed leaves (1) and twigs (2)	Contact	1: repellency index: 0.11	[156]
		2: repellency index: 0.2	[156]
Leaf essential oil	Fumigation	*Anopheles sp.* (67% repellency rate at 6.3 μg/ml concentration)	[157]
Leaf essential oil	Fumigation	*Ixodes ricinus* (repellency rate 93% at 10% concentration)	[158]
Table 5: Larvicidal activities of *Mesosphaerum suaveolens* (L.) Kuntze (Lamiaceae).

Extract/parts of the plant	Assay	Larvicidal activity	Citation
Leaf essential oil	Acute toxicity	*Artemia salina* (CL50 49.72 μg/ml)	[10]
Leaf infusion	Acute toxicity	*Artemia salina* (CL50 > 1000 μg/ml)	[10]
Leaf essential oil	Acute toxicity	*Chrysodeixis chalcites* (CL50 2.42 μg/ml)	[32]
Essential oil from leaves	Acute toxicity	*Aedes albopictus* (CL50 240.3 μg/ml)	[159]
Leaf essential oil	Acute toxicity	*Aedes aegypti* (CL50 0.4 μL/ml)	[160]
Hexanic extract (1), diethyl ether (2), dichloromethane (3), and ethyl acetate (4) from leaves	Acute toxicity	*Aedes aegypti* 1: CL50 543.66 μg/ml 2: CL50 1443.53 μg/ml 3: CL50 1292.36 μg/ml 4: CL50 853.04 μg/ml	[161]
Hexanic extract (1), diethyl ether (2), dichloromethane (3), and ethyl acetate (4) from aerial parts	Acute toxicity	*Anopheles stephensi* 1: CL50 1.52 mg/ml 2: CL50 1.49 mg/ml 3: CL50 1.39 mg/ml 4: CL50 0.94 mg/ml	[162]
Hexanic (1), isopropanolic (2), methanolic (3), acetone (4), and dimethyl sulfoxide (5) extract from the leaves	Acute toxicity	*Aedes aegypti* 1: CL50 1.52 mg/ml 2: CL50 1.52 mg/ml 3: CL50 1.52 mg/ml 4: CL50 1.52 mg/ml 5: CL50 1.52 mg/ml	[163]
Isopropanolic (1), methanolic (2), acetonic (3), dimethyl sulfoxide (4), and aqueous extract from the leaves (5)	Acute toxicity	*Anopheles stephensi* 1: CL50 900 μg/ml 2: CL50 940 μg/ml 3: CL50 820 μg/ml 4: CL50 1590 μg/ml 5: CL50 1560 μg/ml	[163]
Aqueous leaf extract	Acute toxicity	*Culex quinquefasciatus* (CL50 26.08 mg/ml) *Aedes aegypti* (CL50 17.6 mg/ml)	[164]
Methanolic (1), chloroform (2), and petroleum ether (3) extracts of the leaves	Acute toxicity	*Culex quinquefasciatus* 1: CL50 > 300 μg/ml 2: CL50 41.93 μg/ml 3: CL50 38.39 μg/ml	[165]
Dichloromethane extract from the aerial parts	Acute toxicity	*Anopheles gambiae* (CL50 63.5 mg/ml)	[166]
Aqueous extract from aerial parts	Spraying	*Sesamia calamistis* (37.85% motility (300 mg/ml))	[167]
Aqueous extract from leaves and fruits	Contact toxicity	*Mussidia nigrivenella* (49% motility (200 mg/g)) *Sesamia calamistis* (37% motility (200 mg/g)) *Eldana saccharina* (41% motility (200 mg/g))	[168]
Hexanic (1), chloroform (2), ethyl acetate (3), and methanolic (4) extract from the aerial parts	Acute toxicity	*Culex quinquefasciatus* 1: CL50 213.09 μg/ml 2: CL50 217.64 μg/ml 3: CL50 167.59 μg/ml 4: CL50 86.93 μg/ml	[169]
Crushed aerial parts	Contact toxicity	*Helicoverpa armigera* (66.7% mortality at 20% concentration)	[170]
Essential oil from leaves	Ingestion toxicity	*Spodoptera frugiperda* (CL50 600 μg/ml)	[171]
cancer cells (Table 6). The activities evaluated using the MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay demonstrated that the leaves are the source of the anticancer compounds against some cell types. Among these, Lautié et al. [175] evaluated the bioactivities of chlorophore and butanolic extracts against MCF-7 cell lines and showed that such products have low IC₅₀ (12 and 2.8 μg/ml, respectively). Besides these cell lines, activities were demonstrated against EAC (Ehrlich ascites carcinoma), human breast epithelial adenocarcinoma (MDA-MB-231), and T-lymphocyte leukemia cells.

Among the studies against cancer cell lines, only the aqueous extract of the leaves showed low cytotoxicity (IC₅₀ 1,356.17 μg/ml) when evaluated against T-lymphocyte leukemia-causing cells [176]. Concomitantly in the same study, the ethanolic extract of the same organs had moderate cytotoxicity (IC₅₀ 553.52 μg/ml); such fact is explained by the variation of solvent used for the extraction of the compounds.

3.4.7. Other Biological Activities (Acaricidal, Antiparasitic, and Molluscicides)

In addition to the aforementioned activities, the herbaceous species present bioactive compounds against other biological organisms. Among these were highlighted parasitic organisms of humans, as reported by Shittu et al. [180], in which evaluating the trypanocidal action (>Trypanosoma brucei brucei<) in vivo of gold nanoparticles from <i>M. suaveolens</i> demonstrated that the species can cause a complete clearance of the parasite after seven days of infection. As well as in insecticidal action against malaria vectors (<i>Anopheles</i> spp.), <i>M. suaveolens</i> exhibits antiparasitic activity (<i>Plasmodium falciparum</i> 3D7) [45, 46, 181]. Noronha et al. [181] evaluated the antiparasitic

Table 5: Continued.
Extract/parts of the plant
Hexanic extract (1), chloroform (2), and ethyl acetate (3) from leaves
Essential oil from leaves (1) and crushed leaves (2)
Leaf essential oil

Table 6: Cytotoxic activities of <i>Mesosphaerum suaveolens</i> (L.) Kuntze (Lamiaceae).
Extract/parts of the plant
Chloroform (1) and butanolic (2) extract from the leaves
Ethanolic (1) and aqueous (2) extracts of the leaves
Ethanolic extract of the aerial parts
Leaf callus
Silver nanoparticles from the leaves
action of the methanolic extract of *M. suaveolens* leaves and observed that the natural product has an IC\(_{50}\) of 3.906 µg/ml against chloroquine-sensitive *Plasmodium falciparum* strains. In the study by Ziegler et al. [45], the researchers isolated a diterpene (dehydroabietinol) from the leaves and observed that the compound was able to inhibit 50% of parasite growth at a low concentration of 7.3 µg/ml. Similarly, Chukwujekwu et al. [46] demonstrated that another diterpene (13α-epi-dioxabieta-8(14)-en-18-ol) isolated from the same organ showed an IC\(_{50}\) of 0.11 µg/ml, against *P. falciparum* D10, being of great clinical interest.

Research involving the extracts and essential oil of *M. suaveolens* focus on insecticidal activities, so only one work aimed to evaluate the bioactive potential against Arachnida species [182]. In this study, the authors demonstrated that the essential oil of the leaves at the concentration of 31.3 mg/ml can cause 50% mortality of *Rhipicephalus (Boophilus) microplus* for engorged females, while for juvenile forms of the tick, CL\(_{50}\) is 51.6 mg/mL, demonstrating that females are more susceptible to the oil.

Salawu and Odaibo [182] evaluated the molluscicidal action of the ethanolic extract of *M. suaveolens* against *Bulinus globosus*, found that the product presents both lethality in adult individuals (IC\(_{50}\) 77 µg/ml), and also presents an ovicidal potential (LC\(_{50}\) 614 µg/ml).

3.5. Pharmacological Activities

3.5.1. Antioxidant Activity

Narayanaswamy and Balakrishnan [84] evaluated the extracts of thirteen plants of ethnomedicinal importance and identified that *M. suaveolens* species among all had the highest activity in both aqueous and ethanolic extracts evaluated. Thus, it demonstrates that the species is a source of compounds of pharmacological interest for the development of natural antioxidant products.

Agarwal [183] showed that the methanolic extract of *M. suaveolens* leaves has potent antioxidant activity evaluated by the 2,2-diphenyl-1-picrylhydrazyl (DPPH) method with IC\(_{50}\) value = 40.91 µg/ml, and there is about 69% free radical inhibition capacity at the highest concentration (100 µg/ml). It was also found that the percentage of inhibition is concentration dependent, the higher the concentration the greater the inhibition of free radicals, and that the main phytochemicals involved in this activity may be phenols and flavonoids. The methanolic extract also demonstrated antioxidant activity with assays other than DPPH, such as ferric reducing antioxidant power (FRAP) and 2,2′-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) [184].

Other studies have also evaluated the free radical scavenging potential by the DPPH method. Gavani and Paarak [185] evaluated the methanolic extract of *M. suaveolens* leaves and obtained an IC\(_{50}\) of 14.04 µg/ml. The aqueous and ethanolic extracts of the fresh leaves of *M. suaveolens* demonstrated high antioxidant activity. The former product had an IC\(_{50}\) = 20.32 µg/ml, while the ethanolic extract had a statistically equal result to the positive control, ascorbic acid, with IC\(_{50}\) of 7.06 ± 0.82 and 6.69 ± 0.85 µg/mL, respectively [186]. Such results are attributed to the phenolic compounds present in such extracts.

Iqbal et al. [187] reported that the methanolic extract of the seeds of *M. suaveolens* showed better antioxidant activity by the DPPH method (IC\(_{50}\) = 72 ± 0.45 µg/ml) when compared to the methanolic extracts of the stem (IC\(_{50}\) = 250 ± 5.46 µg/ml) and root (IC\(_{50}\) = 143 ± 2.15 µg/ml).

In the work of Priyadharsini and Sujatha [188], four types of leaf extracts were evaluated; in the DPPH assay, three of the extracts had significant results, the best of them being the ethyl acetate extract with a percentage of inhibition (IC\(_{50}\) = 137 µg) very close to that of the standard used, ascorbic acid (IC\(_{50}\) = 127 µg). In this same study, the acetate extract also stood out with other tests; in the superoxide anion radical scavenging assay, the IC\(_{50}\) value = 22.94 µg, and the standard had a value of 21.47 µg.

In addition to leaves, antioxidant potentials of other organs such as flowers were investigated in the study by Banerjee and De [189]. However, the results were not promising, as the extract of the reproductive parts exhibited an IC\(_{50}\) of 1690.21 µg/ml against DPPH. Antioxidant studies involving *M. suaveolens* are not restricted to extracts only. Nantanlon et al. [126] evaluated the effect of the essential oil from the leaves; however, it showed low potential to reduce free radicals (IC\(_{50}\) of 3.7200 mg/ml). Hsu et al. [190] demonstrated that the seeds also exhibit antioxidant action, as they showed moderate inhibitory activity against xanthine oxidase. In a study conducted by Lima et al. [191], it was observed that the essential oil from *M. suaveolens* leaves showed moderate Fe\(^{2+}\) chelating activity at the concentration of 480 µg/ml.

3.5.2. Healing Potential

The healing potential of *M. suaveolens* leaves was evaluated by three types of extracts (petroleum ether, ethanolic, and aqueous) in different wound models (excision, incision, and healing) using albino Wistar rats [192]. In this study, it was revealed that the extract using petroleum ether had the greatest significant effect on wound healing in murine wounds. Shirwaikar et al. [193] evaluated the ethanolic extract on these same three types of wounds, also obtaining significant results which were justified by the free radical scavenging action of this species.

3.5.3. Neuroprotective Activity

Ghaffari et al. [184] determined the neuroprotective potential of the methanolic extract of the aerial parts of *M. suaveolens* on mouse N2A neuroblastoma cells, in which they observed that the natural product inhibits hydrogen peroxide (H\(_2\)O\(_2\))-induced neuronal death. The authors justified this effect by the fact that the extract can regulate the activation of antioxidant and protective genes of the neural cells. These results are promising, and the methanolic extract can be employed to treat stress-induced neurodegeneration.

3.5.4. Anti-Inflammatory Activity

Shenoy and Shirwaikar [194] evaluated the anti-inflammatory potential of ethanolic extract of the leaves against inflammation induced by carrageenan in albino rats; the extract showed significant results.
when compared to standard ibuprofen; this result is justified by the good antioxidant activity of this extract. In the study by Grassi et al. [42], two diterpenes (C_{20}) isolated from \textit{M. suaveolens}, suaveolol and methyl suaveolate, showed anti-inflammatory potential when evaluated regarding the reduction of ear edema in rats. In such research, it was observed that the compounds reduced inflammation with \(ID_{50} = 0.71 \, \mu \text{mol/cm}^2 \) (dose giving 50% edema inhibition) for suaveolol and \(ID_{50} = 0.60 \, \mu \text{mol/cm}^2 \); however, despite the pharmacological effect, the results were only two to three times less active than the standard drug used in the study indomethacin (\(ID_{50} = 0.26 \, \mu \text{mol/cm}^2 \)).

3.5.5. Antiulcer Activity. \textit{Mesosphaerum suaveolens} leaves are popularly used for the treatment of gastric ulcers; however, no active ingredient had been identified. The first study evaluating such an effect was by Vera-Arvaze et al. [43], in which such authors isolated the diterpene suaveolol from the leaves and evaluated it against an induced experimental model; the results presented indicated that this compound had a gastroprotective effect of more than 70%.

One year after the publication of the mentioned study, Jesus et al. [195] using the ethnopharmacological approach of \textit{M. suaveolens} evaluated its antiulcer potential through the ethanolic extract and its fractions. The results for all products had high significance, \(p > 0.001 \), with the hexanic fraction of the extract being the most effective with 74% inhibition of induced gastric ulcer at a dose of 500 mg/kg.

3.5.6. Antidiarrheal Activity. Although \textit{M. suaveolens} is popularly used to treat gastrointestinal disorders such as diarrhea, only the work of Shaikat et al. [196] evaluated its antidiarrheal potential. The researchers prepared ethanolic extracts of the leaves and based on the popular use, evaluated against an experimental model of diarrhea induced in mice; the results obtained show that this species presents compounds with the antidiarrheal effect (\(p > 0.001 \)) that may be acting in an isolated or synergistic way.

3.5.7. Antihyperglycemic Activity. The ethanolic extract of \textit{M. suaveolens} leaves was evaluated in the in vivo experimental model of streptozotocin-induced diabetes. The extract at doses of 250 and 500 mg/kg bodyweight was administered orally over 21 days; at the end of the treatment, a decrease in the levels of triglycerides, total cholesterol, and low-density lipoprotein can be seen; these results indicate that this species has significant antidiabetic activity [197].

3.5.8. Hepatoprotective Effect. Ghaffari et al. [198] induced damage to livers of Wistar rats using carbon tetrachloride (CCl4) and subsequently administered doses of 50 and 100 ml/kg of methanolic extract of the aerial parts of \textit{M. suaveolens}. The results were promising, demonstrating that the extract has a hepatoprotective effect, which can be explained by the antioxidant potential of the product, also demonstrated in the study.

3.5.9. Toxicity. A topical cream based on \textit{M. suaveolens} essential oil was prepared based on its popular use in Thailand, where they pointed out further investigations related to its toxicity in humans. This study was conducted on Wistar rats for 28 days under 3, 10, and 30% concentration of essential oil. The results showed us that concentrations of 3 and 10% did not cause a statistically significant dermal toxicity unlike the 30% concentration in which some female rats presented signs of erythema on its shaved dorsal skin between 11 and 14 days after the cream application [199].

4. Conclusions

It is evident that \textit{M. suaveolens} is the most studied species of the genus, traditionally used in the new and old world to combat several diseases. Chemically, the species is much investigated, mainly about the composition of its essential oils that can vary according to the locality of occurrence. \textit{Mesosphaerum suaveolens} also behaves as ruderal, and its success may be due to the release of allelochemicals. The species also presents a biotechnological potential corroborated by the remarkable activity against pathogenic microorganisms, insects, and other arthropods that transmit diseases. Finally, the pharmacological applications of the species are highlighted, especially the antioxidant action found in several organs of the species.

Data Availability

The data used to support the findings of this study are available from the corresponding author upon request.

Conflicts of Interest

The authors declare that they have no conflicts of interest.

Authors’ Contributions

J.W.A.B. conceptualized the study. J.J.L.B. and F.C.R. developed methodology. A.A.V.P. developed software. M.F.B.M.B. and J.G.M.d.C. validated the study. F.C.R., P.A.d.S.F., and V.B.d.S. performed formal analysis. S.A.d.M. investigated the study. A.R.C. curated data. A.S. and P.A.d.S.F., and V.B.d.S. performed formal analysis. S.A.d.M. developed methodology. A.A.V.P. developed software. J.W.A.B. conceptualized the study. J.J.L.B. and F.C.R. developed methodology. A.A.V.P. developed software.

Acknowledgments

This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (NRF-2020R1I1A2066868), the National Research Foundation of Korea (NRF) grant funded by the Korea Government (MSIT) (2020R1A5A2019413), a grant of the Korea Health Technology R&D Project through the Korea Health Industry Development Institute (KHIDI), funded by the Ministry of Health and Welfare, Republic of Korea (HF20C0116), and a
Evidence-Based Complementary and Alternative Medicine

used in the treatment of malarial in Ogbomoso, Southwest Nigeria,” *Journal of Ethnopharmacology*, vol. 150, no. 1, pp. 71–78, 2013.

[15] R. M. Harley and J. F. B. Pastore, “A generic revision and new combinations in the Hymenoptera (Hymenoptera, Lepidoptera), based on molecular and morphological evidence,” *Phytochemistry*, vol. 58, no. 1, pp. 1–55, 2002.

[16] M. Chatri, A. Baktiar, M. Mansyurdin, and P. Periadnadi, “Leaf trichomes morphology of *Hyptis suaveolens* (L.) Poit. (Lamiaceae),” *IOP Conference Series: Materials Science and Engineering*, vol. 335, pp. 1–6, 2018.

[17] H. I. C. Moreira and H. B. N. Bragança, *Manual de Identificação de Plantas Infestantes*, FMC Campinas, Campinas, Brazil, 2010.

[18] J. S. R. Aluri, M. I. Vergara-Santana, and S. L. Juarez, “Floral ecology, carinal-lobe release, pollination and reproductive success in the wild and domesticated forms of *Hyptis suaveolens* (L.) Poit. (Lamiaceae) in Mexico,” *Plant Species Biology*, vol. 12, no. 2-3, pp. 61–68, 1997.

[19] P. Sharma and N. Sharma, “Mating strategies in a ruderal weed: case history of *Hyptis suaveolens* (L.) Poit,” *Vegetos*, vol. 32, no. 4, pp. 564–570, 2019.

[20] H. Padalia, V. Srivastava, and S. P. S. Kushwaha, “Modeling potential invasion range of alien invasive species, *Hyptis suaveolens* (L.) Poit. in India: comparison of MaxEnt and GARP,” *Ecological Informatics*, vol. 22, pp. 36–43, 2014.

[21] R. J. Fensham and I. D. Cowie, “Alien plant invasions on the Tiwi Islands. Extent, implications and priorities for control,” *Biological Conservation*, vol. 83, no. 1, pp. 55–68, 1998.

[22] I. D. Cowie and P. A. Werner, “Alien plant species invasive in Kakadu National Park, tropical northern Australia,” *Biological Conservation*, vol. 63, no. 2, pp. 127–135, 1993.

[23] S. F. Soares, L. M. F. Borges, R. de Sousa Braga et al., “Repellent activity of plant-derived compounds against Amblyomma cajennense (Acari: ixodidae) nymphs,” *Veterinary Parasitology*, vol. 167, no. 1, pp. 67–73, 2010.

[24] H. O. Edeoga, G. Omosun, and L. C. Uche, “Chemical composition of *Hyptis suaveolens* and *Ocimum gratissimum* hybrids from Nigeria,” *African Journal of Biotechnology*, vol. 5, pp. 892–895, 2006.

[25] L. C. A. Barbosa, F. T. Martins, R. R. Teixeira, M. Polo, and R. M. Montanari, “Chemical variability and biological activities of volatile oils from *Hyptis suaveolens* (L.) Poit,” *Agriculturae Conspectus Scientificus*, vol. 78, pp. 1–10, 2013.

[26] A. K. M. M. Islam, O. Ohno, K. Suenaga, and H. Kato-Noguchi, “Suaveolic acid: a potent phytotoxic substance of *Hyptis suaveolens*,” *The Scientific World Journal*, vol. 2014, pp. 1–6, 2014.

[27] D. Asha, L. Mathew, and K. S. Rishad, “Evaluation of HPTLC fingerprints of flavonoids and antioxidant activity of selected medicinal plants of Lamiaceae family,” *International Journal of Pharmacognosy and Phytochemical Research*, vol. 7, pp. 240–245, 2015.

[28] B. G. V. N. Rao and S. S. Nigam, “Chemical examination of the fixed oil from the seeds of *Hyptis suaveolens*,” *Indian Oil & Soap Journal*, vol. 37, pp. 295–300, 1972.

[29] R. Salini, M. Sindhulakshmi, T. Poongothai, and S. K. Pandian, “Inhibition of quorum sensing mediated biofilm development and virulence in uropathogens by *Hyptis suaveolens*,” *Antonie Van Leeuwenhoek*, vol. 107, no. 4, pp. 1095–1106, 2015.

[30] G. Benelli, G. Flamini, A. Canale, P. L. Cioni, and B. Conti, “Toxicity of some essential oil formulations against the Mediterranean fruit fly *Ceratitis capitata* (Wiedemann)
Evidence-Based Complementary and Alternative Medicine

of plants in Bokkos district of Bokkos local government area of plateau state," International Journal of Engineering Science, vol. 10, pp. 13–21, 2021.

R. L. S. Sikarwar and V. Kumar, "Ethnoveterinary knowledge and practices prevalent among the tribes of central India," Journal of Natural Remedies, vol. 5, pp. 147–152, 2005.

M. L. Marinho, M. S. Alves, M. L. C. Rodrigues et al., "A utilização de plantas medicinais em medicina veterinária: um resgate do saber popular," Revista Brasileira de Plantas Medicinais, vol. 9, pp. 64–69, 2007.

M. Rahmatullah, M. N. K. Azam, I. Malek et al., "An ethnomedicinal survey among the Marathak sect of the Garo tribe of Mymsingh district, Bangladesh," International Journal of PharmTech Research, vol. 4, pp. 141–149, 2021.

A. Seyoum, K. Pålsson, S. Kung’a et al., "Traditional use of mosquito-repellent plants in western Kenya and their evaluation in semi-field experimental huts against Anopheles gambiae: ethnomedical studies and application by thermal expulsion and direct burning," Transactions of the Royal Society of Tropical Medicine and Hygiene, vol. 96, no. 3, pp. 225–231, 2002.

A. Sharma, D. R. Batish, H. P. Singh, V. Jaryan, and R. K. Kohli, "The impact of invasive Hyptis suaveolens on the floristic composition of the periurban ecosystems of Chandigarh, northwestern India," Flora, vol. 233, pp. 156–162, 2017.

R. Wulff and E. Medina, "Germination of seeds in Hyptis suaveolens poit," Plant and Cell Physiology, vol. 12, pp. 567–579, 1971.

A. K. M. Islam and H. Kato-Noguchi, "Allelopathic potential of five Labiatae plant species on barnyard grass (Echinochloa crus-galli)," Australian Journal of Crop Science, vol. 7, p. 1369, 2013.

A. C. Rodrigues, F. A. Artioli, M. Polo, L. C. A. Barbosa, and L. A. Beijo, "Efeito alelopático de folhas de bamburral [Hyptis suaveolens (L.) Poit.] sobre a germinação de sementes de sorgo (Sorghum vulgare Pers.)," Rahanete (Raphanus sativus L.) e alfáce (Lactuca sativa L.)," Revista Brasileira de Plantas Medicinais, vol. 14, no. 3, pp. 487–493, 2012.

R. T. Kapoor, "Bioherbicidal potential of leaf-residue of Hyptis suaveolens on the growth and Physiological Parameters of Parthenium hysterophorus L.," Current Research Journal of Biological Sciences, vol. 3, pp. 341–350, 2011.

K. V. Sumitha and J. E. Thoppil, "Genotoxicity assessment of two common curing weeds: Hyptis suaveolens (L.) Poir. and Leucas indica (L.) R. Br.," CytoTechnology, vol. 68, no. 4, pp. 1513–1527, 2016.

J. A. Kumari and P. R. C. Prasad, "Assessing the allelopathy and autotoxicity effects of Parthenium hysterophorus L., Senna uniflora (mill.), H. S. Irwin and Barneby and Hyptis suaveolens (L.) poit," Russian Journal of Biological Invasions, vol. 9, no. 3, pp. 290–298, 2018.

A. Islam and H. Kato-Noguchi, "Plant growth inhibitory activity of medicinal plant Hyptis suaveolens: could allelopathy be a cause?" Emirates Journal of Food and Agriculture, vol. 25, no. 9, pp. 692–701, 2013.

G. K. R. Cyrrle, S. O. R. O. Yaya, D. A. D. I. E. Adjehi, K. A. B. Benjamin, and D. J. E. Marcellin, "Antibacterial activity of essential oils and extracts from the leaves of Hyptis suaveolens and Lippia multiflora on multi-resistant bacteria," Journal of Chemistry, vol. 8, pp. 396–403, 2015.

D.-H. Xu, Y.-S. Huang, D.-Q. Jiang, and K. Yuan, "The essential oils chemical compositions and antimicrobial, antioxidant activities and toxicity of three Hyptis species," Pharmaceutical Biology, vol. 51, no. 9, pp. 1125–1130, 2013.

C. Wiart, S. Mogana, S. Khalilaf et al., "Antimicrobial screening of plants used for traditional medicine in the state of Perak, Peninsular Malaysia," Fitoterapia, vol. 75, no. 1, pp. 68–73, 2004.

S. Okonogi, S. Chansakaow, S. Vejabhiikul et al., "Antimicrobial activity and pharmaceutical development of essential oil from Hyptis suaveolens," Acta Horticulturae, vol. 678, no. 678, pp. 163–169, 2005.

B. Joy, M. Omanakutty, and M. Mathew, "Antibacterial effects and chemical composition of the essential oil of Hyptis suaveolens Poit leaves," Journal of Essential Oil Bearing Plants, vol. 11, no. 4, pp. 384–390, 2008.

A. Pandey, P. Singh, U. Palni, and N. N. Tripathi, "In-vitro antibacterial activities of the essential oils of aromatic plants against Erwinia herbicola (Lohnis) and pseudomonas putida (Kris Hamilton)," Journal of the Serbian Chemical Society, vol. 77, no. 3, pp. 313–323, 2012.

N. R. Tesch, R. Marquez Yanez, X. Mendoza-Rojas et al., "Composición química y actividad antibacteriana del aceite esencial de Hyptis suaveolens (L.) Poit. (Lamiaceae) de los Llanos venezolanos," Revista Peruana de Biologia, vol. 22, pp. 103–107, 2015.

R. K. Bachheti, I. Rai, A. Joshi, and R. S. Satyan, "Chemical composition and antimicrobial activity of Hyptis suaveolens Poit. seed oil from Uttarakhand State, India," Oriental Pharmacy and Experimental Medicine, vol. 15, no. 2, pp. 141–146, 2015.

M. S. Hossan, H. Jindal, S. Maisha et al., "Antibacterial effects of 18 medicinal plants used by the Khyang tribe in Bangladesh," Pharmaceutical Biology, vol. 56, no. 1, pp. 201–208, 2018.

O. T. Asekun, O. Ekundayo, and B. A. Adeniyi, "Antimicrobial activity of the essential oil of Hyptis suaveolens leaves," Fitoterapia, vol. 70, no. 4, pp. 440–442, 1999.

M. Chatri, D. Handayani, and S. A. Primayani, "The effect of Hyptis suaveolens (L.) poit extract on the growth of sclerotium rolfsii in vitro," Journal of Physics: Conference Series, vol. 1317, no. 1, Article ID 012081, 2019.

K. R. C. Goly, Y. Soro, A. Dadie, A. B. B. Kassi, and M. Djé, "Antibacterial activity of essential oils and extracts from the leaves of Hyptis suaveolens and Lippia multiflora on multi-resistant bacteria," Rasayan Journal of Chemistry, vol. 8, pp. 396–403, 2015.

M. Iswu, C. Ezeugwu, C. Okunji, D. R. Sanson, and M. S. Tempesta, "Antimicrobial activity and terpenoids of the essential oil of Hyptis suaveolens," International Journal of Crude Drug Research, vol. 28, no. 1, pp. 73–76, 1990.

B. Prakash and N. K. Dubey, "Evaluation of chemically characterised essential oils of Coleus aromaticus, Hyptis suaveolens and Ageratum conyzoides against storage fungi and aflatoxin contamination of food commodities," International Journal of Food Science and Technology, vol. 46, pp. 754–760, 2011.
[119] A. Kar and S. R. Jain, “Antibacterial evaluation of some indigenous medicinal volatile oils,” *Qualitas Plantarum et Materiae Vegetables*, vol. 20, no. 3, pp. 231–237, 1971.

[120] Y. L. Krishnamurthy, J. Shashikala, and B. Shankar Naik, “Antifungal potential of some natural products against *Aspergillus flavus* in soybean seeds during storage,” *Journal of Stored Products Research*, vol. 44, no. 4, pp. 305–309, 2008.

[121] Y. Mahida and J. S. S. Mohan, “Screening of Indian plant extracts for antibacterial activity,” *Pharmaceutical Biology*, vol. 44, no. 8, pp. 627–631, 2006.

[122] R. S. Malele, C. K. Mutayabarwa, J. W. Mwangi et al., “Essential oil of Hyptis suaveolens (L) Poit. from Tanzania: composition and antifungal activity,” *Journal of Essential Oil Research*, vol. 15, no. 6, pp. 438–440, 2003.

[123] G. L. Pachkore, D. A. Dhale, and A. N. Dhararsurkar, “Antimicrobial and phytochemical screening of *Hyptis suaveolens* (L) Poit. Lamiaeae,” *International Multidisciplinary Research Journal*, vol. 1, pp. 01–03, 2011.

[124] V. C. Mbatchou, S. Abdullatif, and R. Glover, “Phytochemical screening of solvent extracts from *Hyptis suaveolens* LAM for fungal growth inhibition,” *Pakistan Journal of Nutrition*, vol. 9, no. 4, pp. 358–361, 2010.

[125] W. Nantitanon, S. Chowwanapoonsorn, and S. Okonogi, “Antioxidant and antimicrobial activities of *Hyptis suaveolens* essential oil,” *Scientia Pharmaceutica*, vol. 75, no. 1, pp. 35–46, 2007.

[126] V. N. Pandey and N. K. Dubey, “Effect of essential oils from some higher plants against fungi causing damping-off disease,” *Biology Plantarum*, vol. 34, no. 1–2, pp. 143–147, 1992.

[127] V. N. Pandey and N. K. Dubey, “Antifungal potential of leaves and essential oils from higher plants against soil phytopathogens,” *Soil Biology and Biochemistry*, vol. 26, no. 10, pp. 1417–1421, 1994.

[128] A. Rojas, L. Hernandez, R. Pereda-Miranda, and R. Mata, “Screening for antimicrobial activity of crude drug extracts and pure natural products from Mexican medicinal plants,” *Journal of Ethnopharmacology*, vol. 35, no. 3, pp. 275–283, 1992.

[129] V. Sathish, V. D. Ravichandrian, U. Gavani, and P. M. Paarak, “Antimicrobial studies on the extracts of *Cocculus hirsutus* Linn. and *Hyptis suaveolens* poit,” *Indian Journal of Natural Products and Resources*, vol. 1, pp. 49–52, 2010.

[130] N. Sharma and A. Tripathi, “Integrated management of postharvest *Fusarium* rot of gladiolus corms using hot water, UV-C and *Hyptis suaveolens* (L.) Poit. essential oil,” *Postharvest Biology and Technology*, vol. 47, no. 2, pp. 246–254, 2008.

[131] H. B. Singh and A. K. Handique, “Antifungal activity of the essential oil of *Hyptis suaveolens*and its efficacy in biocontrol measures,” *Journal of Essential Oil Research*, vol. 9, no. 6, pp. 683–687, 1997.

[132] N. U. Prakash, S. Sowmya, C. Priyadharshini et al., “Studies on bio efficacy of weeds in Tanjore district, Tamilnadu, India,” *International Journal of Pharmacy and Pharmaceutical Sciences*, vol. 4, pp. 132–134, 2012.

[133] A. Tripathi, N. Sharma, and V. Sharma, “In vitro efficacy of *Hyptis suaveolens* L. (Poit.) essential oil on growth and morphogenesis of *Fusarium oxysporum* f.sp. gladioli (Massey) Snyder & Hansen,” *World Journal of Microbiology and Biotechnology*, vol. 25, no. 3, pp. 503–512, 2009.

[134] P. H. A. Zollo, L. Biyiti, F. Tchoumbougngn, C. Menut, G. Lamaty, and P. Bouchet, “Aromatic plants of tropical Central Africa. part XXXII. chemical composition and antifungal activity of thirteen essential oils from aromatic plants of Cameroon,” *Flavour and Fragrance Journal*, vol. 13, no. 2, pp. 107–114, 1998.

[135] J. W. A. Bezerra, F. C. Rodrigues, A. R. Costa, K. S. Pereira, N. R. Vieira, and G. Oliveira Lobo, “*Mesophaerum suaveolens* (Lamiaceae): source of antimicrobial and antioxidant compounds,” *Research, Society and Development*, vol. 9, Article ID e575986161, 2020.

[136] S.-A. Oscar, C.-N. Antonio, G.-V. Marina, R.-S. Elsa, and Y.-A. Gabriel, “Phytochemical screening, antioxidant activity and *in vitro* biological evaluation of leave extracts of *Hyptis suaveolens* (L.) from south of Mexico,” *South African Journal of Botany*, vol. 128, pp. 62–66, 2020.

[137] N. T. Chung, L. T. Huong, D. N. Dai, and I. A. Ogunwande, “Chemical compositions of essential oils and antimicrobial activity of *Hyptis suaveolens* (L.) Poit. (Lamiaceae) from Vietnam,” *European Journal of Medicinal Plants*, vol. 31, pp. 114–123, 2020.

[138] B. Conti, A. Canale, P. L. Cioni, G. Flamini, and A. Rifici, “*Hyptis suaveolens* and *Hyptis spicigera* (Lamiaceae) essential oils: qualitative analysis, contact toxicity and repellent activity against *Sitophilus granarius* (L.) (Coleoptera: Dryophthoridae),” *Journal of Pest Science*, vol. 84, no. 2, pp. 219–228, 2011.

[139] A. Canale, G. Benelli, B. Conti et al., “Ingestion toxicity of three Lamiaceae essential oils incorporated in protein baits against the olive fruit fly, *Bactrocera oleae* (Rossi) (Diptera: Tephritidae),” *Natural Product Research*, vol. 27, no. 22, pp. 2091–2099, 2013.

[140] O. F. Olotuah, “Laboratory evaluation of pesticidal activities of *Hyptis suaveolens* in pest management,” *International Journal of Agricultural Research*, vol. 8, no. 2, pp. 101–106, 2013.

[141] P. S. Jaya, P. Singh, B. Prakash, and N. K. Dubey, “Insecticidal activity of *Ageratum conyzoides* L., *Coleus aromaticus* Benth. and *Hyptis suaveolens* (L.) Poit essential oils as fumigant against storage grain insect *Tribolium castaneum* Herbst,” *Journal of Food Science & Technology*, vol. 51, no. 9, pp. 2210–2215, 2014.

[142] E. S. Adjou, D. Chougourou, and M. M. Soumanou, “Insecticidal and repellent effects of essential oils from leaves of *Hyptis suaveolens* and *Ocimum canum* against *Tenebroides mauritianus* (L.) isolated from peanut in post-harvest,” *Journal of Consumer Protection and Food Safety*, vol. 14, no. 1, pp. 25–30, 2019.

[143] C. I. Abramson, P. A. Wanderley, M. J. A. Wanderley, J. C. R. Silva, and L. M. Michaluk, “The effect of essential oils of sweet fennel and pignut on mortality and learning in africanized honeybees (*Apis mellifera* (Hymenoptera: apidae),” *Neotropical Entomology*, vol. 36, no. 6, pp. 828–835, 2007.

[144] C. O. Adedire, P. H. A. Zollo, L. Biyiti, and T. A. Vennezia, “Toxicity and oviposition deterreny of some plant extracts on cowpea storage bruchid, *Callosobruchus maculatus* Fabricius,” *Journal of Plant Diseases and Protection*, vol. 106, pp. 647–653, 1999.

[145] O. M. Azeez and O. O. R. Pitan, “Influence of cowpea variety on the potency and deterrent indices of six plant powders against the seed bruchid, *Callosobruchus maculatus* (Fabricius) (Coleoptera: Bruchidae),” *Archives of Phytopathology and Plant Protection*, vol. 48, no. 5, pp. 441–451, 2015.

[146] S. J. Boeke, I. R. Baumgart, J. J. A. Van Loon, A. Van Huis, M. Dicke, and D. K. Kossou, “Toxicity and repellence of African plants traditionally used for the protection of stored...
cowpea against *Callosobruchus maculatus*," *Journal of Stored Products Research*, vol. 40, no. 4, pp. 423–438, 2004.

[147] B. N. Iloha and T. Ekraene, "Comparative assessment of insecticidal effect of Azadirachta indica, *Hyptis suaveolens* and *Ocimum gratissimum* on *Sitophilus zeamais* and *Callosobruchus maculatus*," *Journal of Biological Sciences*, vol. 6, pp. 626–630, 2006.

[148] Z. Ilboudo, L. C. D. Babiré, R. C. H. Nébié et al., "Biological activity and persistence of four essential oils towards the main pest of stored cowpeas, *Callosobrachus maculatus* (F.) (Coleoptera: Bruchidae)," *Journal of Stored Products Research*, vol. 46, no. 2, pp. 124–128, 2010.

[149] Z. Ilboudo, C. L. Dabiré-Binso, F. Sankara, R. C. H. Nébié, and A. Sanon, "Optimizing the use of essential oils to protect stored cowpeas from *Callosobrachus maculatus* (Coleoptera: Bruchidae) damage," *African Entomology*, vol. 23, no. 1, pp. 94–100, 2015.

[150] S. M. Kéita, C. Vincent, J. P. Schmit, S. Ramaswamy, and A. Bélanger, "Effect of various essential oils on *Callosobruchus maculatus* (F.) (Coleoptera: Bruchidae)," *Journal of Stored Products Research*, vol. 36, pp. 355–364, 2000.

[151] J. W. A. Bezerra, F. A. Grangeiro Neto, J. T. Pereira Filho et al., "Chemical composition and insecticidal activity of essential oil of *Mesophaerum suaveolens* against *Nauphoeta cinerea*," *Journal of Agricultural Studies*, vol. 8, no. 2, pp. 352–361, 2020.

[152] A. Z. Abagli, T. B. C. Alavo, F. Avlessi, and M. Moudachirou, "Potential of the bush mint, *Hyptis suaveolens* essential oil for personal protection against mosquito biting," *Journal of the American Mosquito Control Association*, vol. 28, no. 1, pp. 15–19, 2012.

[153] K. Pålsson and T. G. Jaenson, "Plant products used as mosquito repellents in Guinea Bissau, West Africa," *Acta Tropica*, vol. 72, pp. 39–52, 1999.

[154] G. Benelli, G. Flamini, A. Canale, I. Molfetta, P. L. Cioni, and B. Conti, "Repellence of *Hyptis suaveolens* whole essential oil and major constituents against adults of the granary weevil *Sitophilus granarius*," *Buletin of Insectology*, vol. 65, pp. 177–183, 2012.

[155] T. G. T. Jaenson, K. Pålsson, and A.-K. Borg-Karlow, "Evaluation of extracts and oils of mosquito (Diptera: Culicidae) repellent plants from Sweden and Guinea-Bissau," *Journal of Medical Entomology*, vol. 43, no. 1, pp. 113–119, 2006.

[156] B. A. d. Melo, A. J. Molina-Rugama, K. Haddi, D. T. Leite, and E. E. d. Oliveira, "Repellency and bioactivity of Cauntinga Biome plant powders against *Callosobruchus maculatus* (Coleoptera: Chrysomelidae: Bruchinae)." *Florida Entomologist*, vol. 98, no. 2, pp. 417–423, 2015.

[157] C. Vongsonthav, K. Pålsson, L. Björk, A. K. Borg–Karlow, and T. G. Jaenson, "Mosquito (Diptera: Culicidae) repellency field tests of essential oils from plants traditionally used in Laos," *Journal of Medical Entomology*, vol. 49, pp. 1398–1404, 2014.

[158] T. Ashitani, S. S. Garboui, F. Schubert et al., "Activity studies of sesquiterpene oxides and sulfides from the plant *Hyptis suaveolens* (Lamiaceae) and its repellency on *Ixodes ricinus* (Acari: ixodidae)," *Experimental & Applied Acarology*, vol. 67, no. 4, pp. 595–606, 2015.

[159] B. Conti, G. Benelli, G. Flamini et al., "Larvicidal and repellent activity of *Hyptis suaveolens* (Lamiaceae) essential oil against the mosquito *Aedes albopictus* Skuse (Diptera: Culicidae)," *Parasitology Research*, vol. 110, no. 5, pp. 2013–2021, 2012.

[160] A. A. Amusan, A. B. Idowu, and F. S. Arowolo, "Comparative toxicity effect of bush tea leaves (*Hyptis suaveolens*) and orange peel (*Citrus sinensis*) oil extract on larvae of the yellow fever mosquito *Aedes aegypti*," *Tanzania Journal of Health Research*, vol. 7, pp. 174–178, 2005.

[161] S. Tennyson, K. J. Ravindran, and S. Arivoli, "Bioefficacy of botanical insecticides against the dengue and chikungunya vector *Aedes aegypti* (L.) (Diptera: Culicidae)," *Asian Pacific Journal of Tropical Biomedicine*, vol. 2, pp. 1842–1844, 2012.

[162] S. Arivoli, K. J. Ravindran, and T. Samuel, "Larvicidal efficacy of plant extracts against the malarial vector *Anopheles stephensi* Liston (Diptera: Culicidae)," *World Journal of Medical Sciences*, vol. 7, pp. 77–80, 2012.

[163] R. Yadav, V. Tyagi, S. N. Tikar et al., "Differential larval toxicity and oviposition altering activity of some indigenous plant extracts against dengue and chikungunya vector *Aedes albopictus*," *Journal of Arthropod-Borne Diseases*, vol. 8, no. 2, pp. 174–185, 2014.

[164] D. Elumalai, M. Hemavathi, C. V. Deepa, and P. K. Kaleena, "Evaluation of phytosynthesised silver nanoparticles from leaf extracts of *Leucas aspera* and *Hyptis suaveolens* and their larvicidal activity against malaria, dengue and filariasis vectors," *Parasite Epidemiology and Control*, vol. 2, no. 4, pp. 15–26, 2017.

[165] I. Hari and N. Mathew, "Larvicidal activity of selected plant extracts and their combination against the mosquito vectors *Culex quinquefasciatus* and *Aedes aegypti*," *Environmental Science and Pollution Research*, vol. 25, no. 9, pp. 9176–9185, 2018.

[166] J. Abok, A. Ombagudu, A. Ombagudu, and G. Anghalaga, "*Hyptis suaveolens* extract exhibits larvicidal activity against *Anopheles gambiae* Larvae," *Tropical Journal of Natural Product Research*, vol. 2, no. 5, pp. 245–249, 2018.

[167] C. Adda, P. Atachi, K. Hell, and M. Tamó, "Potential use of the bushmint, *Hyptis suaveolens*, for the control of infestation by the pink stalk borer, *Seamisia calamisana* on maize in southern Benin, West Africa," *Journal of Insect Science*, vol. 11, pp. 33, 2011.

[168] K. Agboka, A. K. Mawufe, M. Tamó, and S. Vidal, "Effects of plant extracts and oil emulsions on the maize cob borer *Mussida nigrenella* (Lepidoptera: Pyralidae) in laboratory and field experiments," *International Journal of Tropical Insect Science*, vol. 29, no. 04, pp. 185–194, 2009.

[169] K. Kovendan, K. Murugan, C. Panneerselvam et al., "Laboratory and field evaluation of medicinal plant extracts against filarial vector, *Culex quinquefasciatus Say* (Diptera: Culicidae)," *Parasitology Research*, vol. 110, no. 6, pp. 2105–2115, 2012.

[170] K. P. Kumar, P. N. Rao, and A. Tanweer, "*Helicoverpa armigera* larval control with certain plant products in the cotton agro-ecosystem," *Pestology*, vol. 24, pp. 9–13, 2000.

[171] C. W. G. de Menezes, G. A. Carvalho, D. S. Alves et al., "Biocontrol potential of methyl chavicol for managing *Spodoptera frugiperda* (Lepidoptera: Noctuidae), an important corn pest," *Environmental Science and Pollution Research*, vol. 27, no. 5, pp. 5030–5041, 2020.

[172] M. Pavunraj, K. Baskar, M. G. Paulraj, S. Ignacimuthu, and A. Tanweer, "Comparative larvicidal and re-
and larval development of Dinarmus basalis,” *Phytoparasitica*, vol. 39, no. 3, pp. 215–222, 2011.

[174] T. I. Silva, A. C. Leite Alves, F. R. Azevedo, C. Araújo Marco, H. R. Santos, and R. Azevedo, “Actividad larvicida de aceites esenciales en Aedes aegypti (Diptera: Culicidae),” *Ideaia*, vol. 35, pp. 63–70, 2017.

[175] E. Lautié, R. Quintero, M. A. Fliniaux, and M. L. Villarreal, “Selection methodology with scoring system: application to Mexican plants producing podophyllotoxin related lignans,” *Journal of Ethnopharmacology*, vol. 120, pp. 402–412, 2008.

[176] S. Musika and K. Indrapichate, “Cytotoxicity and apoptosis induction of Mintweed (Hyptis suaveolens L. Poit) leaf extracts on human T-leukemia cell line, Jurkat cells,” *World Journal of Pharmacy and Pharmaceutical Sciences*, vol. 3, pp. 304–317, 2014.

[177] S. Gurunagarajan and B. Pemaiah, “Comparative studies on cytotoxic effect of Hyptis suaveolens Poit. and *Leonotis nepetifolia* R. Br. against EAC cell lines,” *Journal of Pharmacy Research*, vol. 4, pp. 1222–1224, 2011.

[178] S. Botcha and S. D. Prattipati, “Callus extract mediated green synthesis of silver nanoparticles, their characterization and cytotoxicity evaluation against MDA-MB-231 and PC-3 cells,” *BioNanoScience*, vol. 10, pp. 1–12, 2019.

[179] S. Botcha and S. D. Prattipati, “Green synthesis of silver nanoparticles using *Hyptis suaveolens* (L.) Poit leaf extracts, their characterization and cytotoxicity evaluation against PC-3 and MDA-MB 231 cells,” *Biologia*, vol. 74, no. 7, pp. 783–793, 2019.

[180] O. K. Shittu, B. Lawal, A. A. Ojo, and A. S. Yisa, “Polyethylene glycol-modified nanocarrier encapsulation of diminazene aceturate improved haematobiochemical recovery in Trypanosoma brucei infected rats,” *Polish Journal of Natural Sciences*, vol. 34, pp. 317–332, 2019.

[181] M. Noronha, S. Guleria, D. Jani, L. B. George, H. Highland, and R. B. Subramanian, “Ethnobotanical database based screening and identification of potential plant species with antiplasmodial activity against chloroquine-sensitive (3D7) strain of Plasmodium falciparum,” *Asian Pacific Journal of Tropical Biomedicine*, vol. 8, p. 92, 2018.

[182] O. T. Salawu, T. O. fmn Odaibo, and B. A., “The molluscicidal effects of *Hyptis suaveolens* on different stages of Bulinus globosus in the laboratory,” *African Journal of Biotecnoalogy*, vol. 10, no. 50, pp. 10241–10247, 2011.

[183] K. Agarwal, “Antioxidant activity and phytochemical analysis of *Hyptis suaveolens* (L.) Poit,” *Journal of Advanced Pharmacy Education & Research*, vol. 3, pp. 541–549, 2013.

[184] H. Ghaffari, B. J. Ghassam, S. Chandra Nayaka, K. Ramachandra Kini, and H. S. Prakash, “Antioxidant and neuroprotective activities of *Hyptis suaveolens* (L.) Poit. against oxidative stress-induced neurotoxicity,” *Cellular and Molecular Neurobiology*, vol. 34, no. 3, pp. 323–331, 2014.

[185] U. Gavani and P. M. Paarakh, “Antioxidant activity of *Hyptis suaveolens* poit,” *International Journal of Pharmacology*, vol. 4, no. 3, pp. 227–229, 2008.

[186] J. W. A. Bezerra, F. C. Rodrigues, A. R. Costa et al., “*Mesosphaerum suaveolens* (L.) Kuntze (pignut) a medicinal plant with antioxidant potential and abundant polyphenols,” *Revista Cubana de Plantas Medicinales*, vol. 24, 2019.

[187] D. Iqbal, A. B. Dukhyil, and M. S. Khan, “Geno-protective, free radical scavenging and antimicrobial potential of *Hyptis suaveolens* Methanolic fraction: an in-vitro study,” *Journal of Pharmaceutical Research International*, vol. 2021, pp. 46–57, 2021.