Sweeping Preconditioner for the Helmholtz Equation:
Hierarchical Matrix Representation

Björn Engquist and Lexing Ying
Department of Mathematics and ICES, University of Texas, Austin, TX 78712
July 2010

Abstract

The paper introduces the sweeping preconditioner, which is highly efficient for iterative solutions of the variable coefficient Helmholtz equation including very high frequency problems. The first central idea of this novel approach is to construct an approximate factorization of the discretized Helmholtz equation by sweeping the domain layer by layer, starting from an absorbing layer or boundary condition. Given this specific order of factorization, the second central idea of this approach is to represent the intermediate matrices in the hierarchical matrix framework. In two dimensions, both the construction and the application of the preconditioners are of linear complexity. The GMRES solver with the resulting preconditioner converges in an amazingly small number of iterations, which is essentially independent of the number of unknowns. This approach is also extended to the three dimensional case with some success. Numerical results are provided in both two and three dimensions to demonstrate the efficiency of this new approach.

Keywords. Helmholtz equation, perfectly matched layer, absorbing boundary condition, high frequency waves, preconditioner, LDL^t factorization, Green’s function, matrix compression, hierarchical matrices.

AMS subject classifications. 65F08, 65N22, 65N80.

1 Introduction

This is the first of a series of papers on developing efficient preconditioners for the numerical solutions of the Helmholtz equation in two and three dimensions. The efficiency of preconditioners for the Helmholtz equation in the important high frequency range are at present much lower than that of preconditioners of typical elliptic problems. This paper develops efficient preconditioners of the Helmholtz equation by exploiting the physical property of the wave phenomena and certain low rank interaction properties of the Green’s function.

Let the domain of interest be the unit box $D = (0, 1)^d$ with $d = 2, 3$. The time-independent wave field $u(x)$ for $x \in D$ satisfies

$$
\Delta u(x) + \frac{\omega^2}{c^2(x)} u(x) = f(x),
$$

where ω is the angular frequency and $c(x)$ is the velocity field and $f(x)$ is the external force. Commonly used boundary conditions are approximations of the Sommerfeld condition which guarantees that the wave field generated by $f(x)$ propagates out of the domain.
Other boundary condition for part of the boundary will also be considered. By appropriate rescaling the system, it is convenient to assume that the mean of \(c(x) \) is around 1. Then \(\frac{\omega}{2\pi} \) is the (average) wave number of this problem and \(\lambda = \frac{2\pi}{\omega} \) is the (typical) wavelength.

The Helmholtz equation is ubiquitous since it is the root of almost all linear wave phenomena. Applications of the Helmholtz equation are abundant in acoustics, elasticity, electromagnetics, quantum mechanics, and geophysics. As a result, efficient and accurate numerical solution of the Helmholtz problem is one of the urgent problems in computational mathematics. This is, however, a very difficult problem due to two main reasons. Firstly, in a typical engineering application, the Helmholtz equation is disrupted with at least 8 to 16 points per wavelength. Therefore, the number of samples \(n \) in each dimension is proportional to \(\omega \), the total number of samples \(N \) is \(n^d = O(\omega^d) \), and the discrete system of the Helmholtz equation is of size \(O(\omega^d) \times O(\omega^d) \). In the high frequency range when \(\omega \) is large, this is an enormous system. Secondly, as the discrete system is highly indefinite and has a very oscillatory Green’s function due to the wave nature of the Helmholtz equation, most of the modern multiscale techniques developed for elliptic or parabolic problems are no longer effective.

1.1 Approach and contribution

In this paper, we propose a sweeping preconditioner for the iterative solution of the Helmholtz equation. In all examples, the Helmholtz equation is discretized by centered finite differences, i.e., the 5-point stencil in 2D and the 7-point stencil in 3D.

In the 2D case, this new preconditioner is based on a block \(LDL^t \) factorization of the discrete Helmholtz operator. The overall process is to eliminate the the unknowns layer by layer, starting from an layer with Sommerfeld condition specified. The main observation is that each intermediate \(n \times n \) Schur complement matrix of this block \(LDL^t \) factorization roughly corresponds to the restriction of a half-space Green’s function to a line and these Schur complement matrices are highly compressible with low-rank off-diagonal blocks. Representing and manipulating these matrices in the hierarchical matrix framework \([7]\) requires only \(O(n \log n) \) space and \(O(n \log^2 n) \) steps. As a result, the block \(LDL^t \) factorization takes \(O(n^2 \log^2 n) = O(N \log^2 N) \) steps. The resulting block \(LDL^t \) factorization serves as an excellent preconditioner for the discrete Helmholtz system and applying it to any vector takes only \(O(n^2 \log n) = O(N \log N) \) steps using the hierarchical matrix framework. By combining this preconditioner with GMRES, we obtain iteration numbers that are almost independent of \(\omega \). In a typical example with a computational domain of 256 \(\times \) 256 wavelengths and four million unknowns, only 3 to 4 GMRES iterations are required (see Section 3).

We also extend this approach to the 3D case and construct an approximate block \(LDL^t \) factorization by eliminating the unknowns face by face, starting from a face with Sommerfeld condition specified. Though each intermediate \(n^2 \times n^2 \) Schur complement matrix still corresponds to the restriction of a half-space Green’s function to a face, the off-diagonal parts may not be of numerically low-rank. However, since the goal is to construct a preconditioner, we still represent and manipulate these matrices under the hierarchical matrix framework. Numerical results show that applying the resulting preconditioner is highly efficient and the preconditioned GMRES solver converges in a small number of iterations, weakly depending on \(\omega \).

The main observation of the sweeping preconditioner comes from the analytic low-rank
property of the Green’s function of the continuous Helmholtz operator. On the other hand, the algorithms construct the approximation to the Green’s function of the discrete Helmholtz operator. It is important that this Green’s function is calculated from the discretized problem to be solved numerically and is not an independent approximation of the continuous analogue.

1.2 Related work

There has been a vast literature on developing efficient algorithms for the Helmholtz equation. A wide class of methods for special sets of solutions are based on asymptotic expansion of the solution \(u(x) \). These techniques of geometric optics type are efficient when \(\omega \) is very large. A review article on these methods can be found in [16]. There is also a class of methods based on boundary integral or volumetric integral representations. These integral equation methods can be highly efficient for piecewise constant velocity fields when combined with fast summation methods such as the fast multipole methods and the fast Fourier transforms [6, 9, 17, 18, 39, 40]. Here we will focus on the methods that discretize the Helmholtz equation directly.

The most efficient direct methods for solving the discretized Helmholtz systems are the multifrontal methods or their pivoted versions [12, 25, 33]. The multifrontal methods exploit the locality of the discrete operator and construct an \(LDL^t \) factorization based on a hierarchical partitioning of the domain. Their computational costs depend quite strongly on the dimensionality. In 2D, for a problem with \(N = n \times n \) unknowns, a multifrontal method takes \(O(N^{3/2}) \) steps and \(O(N \log N) \) storage space. The prefactor is usually rather small, making the multifrontal methods effectively the default choice for the 2D Helmholtz problem. In 3D, for a problem with \(N = n \times n \times n \) unknowns, a multifrontal method takes \(O(n^6) = O(N^2) \) steps and \(O(n^4) = O(N^{4/3}) \) storage space. For large scale 3D problems, they can be very costly.

In the setting of the elliptic operators, the intermediate matrices of the multifrontal methods can be well approximated using hierarchical matrix algebra and this allows one to bring the cost down to linear complexity in both 2D and 3D [36, 45]. This is, however, not true for the Helmholtz operator. As we pointed out, the sweeping preconditioner introduced in this paper is also based on constructing an \(LDL^t \) factorization of the Helmholtz operator. However, due to its specific sweeping (or elimination) order, which is very different from the one of the multifrontal methods, we are able to represent the intermediate matrices in a more effective way and obtain a highly efficient preconditioner.

There has been a surge of developments in the category of iterative methods for solving the Helmholtz equation. The following discussion is by no means complete and more details can be found in [20].

Standard multigrid methods do not work well for the Helmholtz equation for several reasons. The most important one is that the oscillations on the scale of the wavelength cannot be carried on the coarse grids. Several methods have been proposed to remedy this \([8, 13, 23, 31, 34, 44]\). For example in \([8, 34]\), Brandt and Livshits proposed the wave-ray method. This method uses the standard smoothers to remove the coarse and fine components of the residue. It also decomposes the component that oscillates on the scale of the wavelength into rays pointing at different directions. Each ray is further represented with a phase and amplitude representation, and the amplitude is relaxed with an anisotropic grid aligned with the ray direction. A limitation of the wave-ray method is however that the method is essentially restricted only to the case of constant velocity field. We would
like to point out that there is a connection between the wave ray method and the sweeping preconditioner proposed in this paper, as both methods exploit the analytic behavior of the Green’s function of the Helmholtz equation. The wave ray method relies on the Green’s function over the whole domain, while the sweeping preconditioner uses its restriction on a single layer.

Several other methods \cite{2, 11, 43} leverage the idea of domain decomposition. These methods are typically quite suitable for parallel implementation, as the computation in each subdomain can essentially be done independently. However, convergence rates of the these methods are usually quite slow \cite{20}.

Another class of methods \cite{1, 21, 22, 30} that attracts a lot of attention recently preconditions the Helmholtz operator with a shifted Laplacian operator,

\[
\Delta - \frac{\omega^2}{c^2(x)}(\alpha + i\beta), \quad \alpha > 0,
\]

to improve the spectrum property of the discrete Helmholtz system. Since the shifted Laplacian operator is elliptic, standard algorithms such as multigrid can be used for its inversion. These methods offer quite significant improvements for the convergence rate, but the reported number of iterations typically still grow linearly with respect to \(\omega\) and are much larger than the iteration numbers produced by the sweeping preconditioner.

Several other constructions of preconditioners \cite{3, 24, 38} are based on incomplete LU (ILU) decomposition, i.e., generating only a small portion of the entries of the LU factorization of the discrete Helmholtz operator and applying this ILU decomposition as a preconditioner. Recent approaches based on ILUT (incomplete LU factorization with thresholding) and ARMS (algebraic recursive multilevel solver) have been reported in \cite{38}. These ILU preconditioners bring down the number of iterations quite significantly, however the number of iterations still scale typically linearly in \(\omega\). In connection with the ILU preconditioners, the sweeping preconditioner can be viewed as an approximate LU (ALU) preconditioner: instead of keeping only a few selected entries, it approximates the whole inverse operator more accurately in a more sophisticated and effective form, thus resulting in substantially better convergence properties.

1.3 Contents

The rest of this paper is organized as follows. Section 2 presents the sweeping preconditioner in the 2D case and Section 3 reports the 2D numerical results. We extend this approach to the 3D case in Section 4 and report the 3D numerical results in Section 5. Finally, Section 6 discusses some future directions of this work.

2 Preconditioner in 2D

2.1 Discretization

Recall that the computational domain is \(D = (0, 1)^2\). Let us assume for simplicity that the Sommerfeld condition is specified over the whole boundary. One standard way of incorporating the Sommerfeld boundary condition into (1) is to use the perfectly matched
layer (PML) \[4, 10, 29\]. Introduce

\[
\sigma(t) = \begin{cases}
\frac{C}{\eta} \cdot \left(\frac{t-\eta}{\eta} \right)^2 & t \in [0, \eta] \\
0 & t \in [\eta, 1-\eta] \\
\frac{C}{\eta} \cdot \left(\frac{t-1+\eta}{\eta} \right)^2 & t \in [1-\eta, 1],
\end{cases}
\]

(2)

and

\[
s_1(x_1) = \left(1 + i \frac{\sigma(x_1)}{\omega} \right)^{-1}, \quad s_2(x_2) = \left(1 + i \frac{\sigma(x_2)}{\omega} \right)^{-1}.
\]

Here \(\eta\) is typically about one wavelength and \(C\) is an appropriate positive constant independent of \(\omega\). The PML approach replaces \(\partial_1 s_1(x_1) \partial_1\) and \(\partial_2 s_2(x_2) \partial_2\), which effectively provides a damping layer of width \(\eta\) near the boundary of the domain \([0, 1]^2\).

The resulting equation is

\[
\left(s_1 \partial_1(s_1 \partial_1) + s_2 \partial_2(s_2 \partial_2) + \frac{\omega^2}{c^2(x)} \right) u = f \quad x \in D = [0, 1]^2, \\
u = 0 \quad x \in \partial D.
\]

Without loss of generality, we assume that \(f(x)\) is supported inside \([\eta, 1-\eta]^2\) (away from the PML). Dividing the above equation by \(s_1(x_1)s_2(x_2)\) results

\[
\left(\partial_1 \left(\frac{s_1}{s_2} \partial_1 \right) + \partial_2 \left(\frac{s_2}{s_1} \partial_2 \right) + \frac{\omega^2}{s_1 s_2 \cdot c^2(x)} \right) u = f.
\]

The advantage of working with this equation is that it is symmetric, which offers some convenience from the algorithmic point of view. We discretize the domain with a Cartesian grid with spacing \(h = 1/(n + 1)\). In order to discretize each wavelength with a couple of points, the number of points \(n\) in each dimension needs to be proportional to \(\omega\). We assume that \(n\) to be an integer power of two for simplicity. The interior points of this grid are

\[
P = \{p_{i,j} = (ih, jh) : 1 \leq i, j \leq n\}
\]

(see Figure 1 (left)) and the total number of points \(N\) is equal to \(n^2\).

Figure 1: Left: Discretization grid in 2D. Right: Sweeping order in 2D. The dotted grid indicates the unknowns that have already been eliminated.

We denote by \(u_{i,j}, f_{i,j},\) and \(c_{i,j}\) the values of \(u(x), f(x),\) and \(c(x)\) at point \(p_{i,j} = (ih, jh)\). The standard 5-point stencil finite difference method writes down the equation at points in
\[P \text{ using central difference. The resulting equation at } p_{i,j} = (ih, jh) \text{ is} \]

\[
\frac{1}{h^2} \left(\frac{s_1}{s_2} \right)_{i-\frac{1}{2},j} u_{i-1,j} + \frac{1}{h^2} \left(\frac{s_1}{s_2} \right)_{i+\frac{1}{2},j} u_{i+1,j} + \frac{1}{h^2} \left(\frac{s_2}{s_1} \right)_{i,j-\frac{1}{2}} u_{i,j-1} + \frac{1}{h^2} \left(\frac{s_2}{s_1} \right)_{i,j+\frac{1}{2}} u_{i,j+1} + \left(\frac{\omega^2}{(s_1 s_2)_{i,j} c_{i,j}^2} - (\cdots) \right) u_{i,j} = f_{i,j} \quad (3)
\]

with \(u_{i',j'} \) equal to zero for \((i', j')\) that violates \(1 \leq i', j' \leq n\). Here \((\cdots)\) stands for the sum of the four coefficients appeared in the first line. We order \(u_{i,j} \) row by row starting from the first row \(j = 1 \) and denote the vector containing all unknowns by

\[
u = (u_{1,1}, u_{2,1}, \ldots, u_{n,1}, \ldots, u_{1,n}, u_{2,n}, \ldots, u_{n,n})^t.
\]

Similarly, \(f_{i,j} \) are ordered in the same way and the vector \(f \) is

\[
f = (f_{1,1}, f_{2,1}, \ldots, f_{n,1}, \ldots, f_{1,n}, f_{2,n}, \ldots, f_{n,n})^t.
\]

Then (3) takes the form \(Au = f \). We further define \(\mathcal{P}_m \) to be the unknowns in the \(m \)-th row

\[
\mathcal{P}_m = \{p_{1,m}, \ldots, p_{n,m}\}
\]

and introduce

\[
u_m = (u_{1,m}, u_{2,m}, \ldots, u_{n,m})^t \quad \text{and} \quad f_m = (f_{1,m}, f_{2,m}, \ldots, f_{n,m})^t.
\]

Then

\[
u = (u_1^t, u_2^t, \ldots, u_n^t)^t \quad \text{and} \quad f = (f_1^t, f_2^t, \ldots, f_n^t)^t.
\]

Using these notations, the system \(Au = f \) takes the following tridiagonal block form

\[
\begin{pmatrix}
A_{1,1} & A_{1,2} \\
A_{2,1} & A_{2,2} & \ddots \\
& \ddots & \ddots & A_{n-1,n} \\
& & A_{n,n-1} & A_{n,n}
\end{pmatrix}
\begin{pmatrix}
u_1 \\
u_2 \\
\vdots \\
u_n
\end{pmatrix}
= \begin{pmatrix}
f_1 \\
f_2 \\
\vdots \\
f_n
\end{pmatrix}
\]

where \(A_{m,m} \) are tridiagonal matrices and \(A_{m,m-1} = A_{m-1,m}^t \) are diagonal matrices.

We introduce the notion of the sweeping factorization, which is essentially a block \(LDL^t \) factorization of \(A \) that eliminates the unknowns layer by layer. Starting from the first row of unknowns \(\mathcal{P}_1 \) gives

\[
A = L_1 \begin{pmatrix}
S_1 & S_2 & A_{2,3} \\
S_2 & A_{3,2} & \ddots \\
& \ddots & \ddots \\
& & \ddots & A_{n,n}
\end{pmatrix} L_1^t
\]

where \(S_1 = A_{1,1}, S_2 = A_{2,2} - A_{2,1} S_1^{-1} A_{1,2} \), and the matrix \(L_1 \) is a block lower-triangular matrix given by

\[
L_1(\mathcal{P}_2, \mathcal{P}_1) = A_{2,1} S_1^{-1}, \quad L_1(\mathcal{P}_i, \mathcal{P}_1) = I \quad (1 \leq i \leq n), \quad \text{and zero otherwise.}
\]
Repeating this process over all P_m for $m = 2, \ldots, n - 1$ gives

\[
A = L_1 \cdots L_{n-1} \begin{pmatrix}
S_1 & & \\
& S_2 & \\
& & \ddots \\
& & & S_n
\end{pmatrix} L_{n-1}^t \cdots L_1^t, \tag{4}
\]

where $S_m = A_{m,m} - A_{m,m-1}S_{m-1}^{-1}A_{m-1,m}$ for $m = 2, 3, \ldots, n$. The matrix L_m is given by

\[
L_m(P_{m+1}, P_m) = A_{m+1,m}S_m^{-1}, \quad L_m(P_i, P_i) = I \quad (1 \leq i \leq n), \quad \text{and zero otherwise}.
\]

This process is illustrated graphically in Figure 1 (right). Inverting this factorization (4) for A gives the following formula for u:

\[
u = (L_1^t)^{-1} \cdots (L_{n-1}^t)^{-1} \begin{pmatrix}
S_1^{-1} & & \\
& S_2^{-1} & \\
& & \ddots \\
& & & S_n^{-1}
\end{pmatrix} L_{n-1}^{-1} \cdots L_1^{-1} f.
\]

Algorithmically, the construction of the sweeping factorization of A can be summarized as follows by introducing $T_m = S_m^{-1}$.

Algorithm 2.1. Construction of the sweeping factorization of H.

1. $S_1 = A_{1,1}$ and $T_1 = S_1^{-1}$.
2. for $m = 2, \ldots, n$ do
3. $S_m = A_{m,m} - A_{m,m-1}T_{m-1}A_{m-1,m}$ and $T_m = S_m^{-1}$.
4. end for

Since S_m and T_m are in general dense matrices of size $n \times n$, the cost of the construction algorithm is of order $O(n^4) = O(N^2)$. The computation of $u = A^{-1} f$ is carried out in the following algorithm once the sweeping factorization is ready.

Algorithm 2.2. Computation of $u = A^{-1} f$ using the sweeping factorization of A.

1. for $m = 1, \ldots, n$ do
2. $u_m = f_m$
3. end for
4. for $m = 1, \ldots, n - 1$ do
5. $u_{m+1} = u_{m+1} - A_{m+1,m}(T_m u_m)$
6. end for
7. for $m = 1, \ldots, n$ do
8. $u_m = T_m u_m$
9. end for
10. for $m = n - 1, \ldots, 1$ do
11. $u_m = u_m - T_m(A_{m,m+1}u_{m+1})$
12. end for

Obviously the computations of $T_m u_m$ in the second and the third loops only need to be carried out once. However, we prefer to write the algorithm this way for simplicity. The cost of computing u is of order $O(n^3) = O(N^{3/2})$. This is $O(N^{1/2})$ times more expensive compared to the multifrontal methods, therefore Algorithms 2.1 and 2.2 themselves are not very useful.
2.2 Main observation

Let us consider the meaning of the matrix $T_m = S_m^{-1}$. Consider only the top-left $m \times m$ blocks of the factorization (4).

$$
\begin{pmatrix}
A_{1,1} & A_{1,2} \\
A_{2,1} & A_{2,2} & \ddots \\
& \ddots & \ddots & \ddots \\
A_{m-1,m} & A_{m,m}
\end{pmatrix}
= L_1 \cdots L_{m-1}
\begin{pmatrix}
S_1 \\
S_2 \\
\vdots \\
S_{m-1} & S_m
\end{pmatrix}
L_{m-1}^t \cdots L_1^t,
$$

(5)

where the L_k matrices are redefined to their restrictions to the top-left $m \times m$ blocks. The matrix on the left is in fact the discrete Helmholtz operator of the half space problem below $x_2 = (m + 1)h$ and with zero boundary condition on $x_2 = (m + 1)h$. Inverting the above factorization gives

$$
\begin{pmatrix}
A_{1,1} & A_{1,2} \\
A_{2,1} & A_{2,2} & \ddots \\
& \ddots & \ddots & \ddots \\
A_{m-1,m} & A_{m,m}
\end{pmatrix}^{-1}
= (L_1^t)^{-1} \cdots (L_{m-1}^t)^{-1}
\begin{pmatrix}
S_1^{-1} \\
S_2^{-1} \\
\vdots \\
S_{m-1}^{-1} & S_m^{-1}
\end{pmatrix}
L_{m-1}^{-1} \cdots L_1^{-1}.
$$

(6)

The matrix on the left is the discrete half-space Green’s function of the Helmholtz operator with zero boundary condition. On the right side, due to the definition of the matrices L_1, \ldots, L_{m-1}, the (m, m)-th block of the whole product is exactly equal to S_m^{-1}. Therefore,

$$
T_m = S_m^{-1}
$$

is the discrete half-space Green function of the Helmholtz operator with zero boundary at $x_2 = (m + 1)h$, restricted to the points on $x_2 = mh$.

The main observation of our approach is that T_m and S_m are highly compressible with numerically low-rank off-diagonal blocks.

The following theorem shows that this is true for the continuous half-space Green’s function for the case of constant velocity field $c(x) = 1$.

Theorem 2.3. Let

$$
Y = \left\{p_{i,m} = (ih, mh), i = 1, \ldots, \frac{n}{2}\right\} \quad \text{and} \quad X = \left\{p_{i,m} = (ih, mh), i = \frac{n}{2} + 1, \ldots, n\right\},
$$

and G be the (continuous) half-space Green’s function of the Helmholtz operator for the domain $(-\infty, \infty) \times (-\infty, (m + 1)h)$ with zero boundary condition. Then $(G(x, y))_{x, y, Y}$ is numerically low-rank. More precisely, for any $\varepsilon > 0$, there exist a constant $R = O(\log \omega |\log \varepsilon|^2)$, functions $\{\alpha_r(x)\}_{1 \leq r \leq R}$ for $x \in X$ and functions $\{\beta_r(y)\}_{1 \leq r \leq R}$ for $y \in Y$ such that

$$
\left| G(x, y) - \sum_{r=1}^{R} \alpha_r(x) \beta_r(y) \right| \leq \varepsilon \quad \text{for} \quad x \in X, y \in Y.
$$

The proof of this theorem relies on the following theorem from [37]. Let $H_0(\cdot)$ be the 0-th order Hankel function of the first kind.
Theorem 2.4. Let ω be the angular frequency and $\lambda = 2\pi / \omega$. Let $W > 0$. There exists $C(W)$ such that, for $L > 0$, $\varepsilon > 0$, and $S > C(W)|\log \varepsilon|\cdot \frac{2\pi}{\lambda}$, there exist a constant $J \leq \log(\omega L)|\log \varepsilon|^2$, functions $\{\phi_j(x)\}_{1 \leq j \leq J}$, and functions $\{\chi_j(y)\}_{1 \leq j \leq J}$ such that

$$|H_0(\omega |x - y|) - \sum_{j=1}^{J} \phi_j(x) \chi_j(y)| \leq \varepsilon$$

for

$$y \in [-L, -S/2] \times [-W/2, W/2] \quad \text{and} \quad x \in [S/2, L] \times [-W/2, W/2].$$

Figure 2: Left: The setting of Theorem 2.4. Right: The setting of Theorem 2.3.

The setting of this theorem is illustrated in Figure 2 (left). Using Theorem 2.4, the proof of Theorem 2.3 goes as follows.

Proof of Theorem 2.3. Let $W = 2h$. We partition the set X into the union of the near set X_N and the far set X_F depending on the distance from Y.

$$X_N = \left\{ p = (p_1, p_2) \in X, p_1 \leq \frac{1}{2} + \frac{1}{2} C(W)|\log(\varepsilon/2)|\lambda \right\}$$

$$X_F = \left\{ p = (p_1, p_2) \in X, p_1 > \frac{1}{2} + \frac{1}{2} C(W)|\log(\varepsilon/2)|\lambda \right\}.$$

Similarly, Y is partitioned into the union of Y_N and Y_F

$$Y_N = \left\{ p = (p_1, p_2) \in Y, p_1 \geq \frac{1}{2} - \frac{1}{2} C(W)|\log(\varepsilon/2)|\lambda \right\}$$

$$Y_F = \left\{ p = (p_1, p_2) \in Y, p_1 < \frac{1}{2} - \frac{1}{2} C(W)|\log(\varepsilon/2)|\lambda \right\}.$$

See Figure 2 (right). These partitionings introduce a natural block structure for the matrix $(G(x, y))_{x \in X, y \in Y}$:

$$
\begin{pmatrix}
(G(x, y))_{x \in X_N, y \in Y_N} & (G(x, y))_{x \in X_N, y \in Y_F} \\
(G(x, y))_{x \in X_F, y \in Y_N} & (G(x, y))_{x \in X_F, y \in Y_F}
\end{pmatrix}
$$

Let $p = \lambda/h$ be the number of points per wavelength. It is clear from the definition of X_N and Y_N that each of them has at most $\frac{1}{2} C(W)|\log \varepsilon|\lambda/h = \frac{1}{2} C(2h)|\log \varepsilon|p$ points. Hence the ranks of the $(1,1)$, $(1,2)$, and $(2,1)$ blocks of (7) are all bounded from above by $\frac{1}{2} C(2h)|\log \varepsilon|p$.
Let us consider the \((2,2)\) block. Define \(\mathcal{M}(Y_F)\) to be the mirror image set of the set \(Y_F\) with respect to the line \(x_2 = (m+1)h\). Due to the zero Dirichlet boundary condition at \(x_2 = (m+1)h\), for \(x \in X_F\) and \(y \in Y_F\)

\[G(x, y) = H_0(\omega|x - y|) - H_0(\omega|x - \mathcal{M}(y)|)\]

where \(\mathcal{M}(y) \in \mathcal{M}(Y_F)\) is the mirror image of \(y\). \(Y_F \cup \mathcal{M}(Y_F)\) is contained in the box

\[
\left[0, \frac{1}{2} - \frac{1}{2}C(W)\log(\varepsilon/2)|\lambda|\right] \times [mh, (m + 2)h]
\]

and \(X_F\) is in

\[
\left[\frac{1}{2} + \frac{1}{2}C(W)\log(\varepsilon/2)|\lambda|, 1\right] \times [mh, (m + 2)h].
\]

Since the distance between these two boxes is \(C(W)|\log(\varepsilon/2)|\lambda\) and their widths are bounded by \(1\), Theorem 2.4 guarantees that there exist a constant \(J \leq \log(\omega)|\log(\varepsilon/2)|^2\), functions \(\{\phi_j(x)\}_{1 \leq j \leq J}\), and functions \(\{\chi_j(y)\}_{1 \leq j \leq J}\) such that

\[
\left|H_0(\omega|x - y|) - \sum_{j=1}^{J} \phi_j(x)\chi_j(y)\right| \leq \frac{\varepsilon}{2}
\]

for \(x \in X_F\) and \(y \in Y_F \cup \mathcal{M}(Y_F)\). This implies that

\[
\left|G(x, y) - \sum_{j=1}^{J} \phi_j(x)(\chi_j(y) - \chi_j(\mathcal{M}(y)))\right| \leq \varepsilon.
\]

Combining this with the estimates for the other three blocks shows that there exists \(R = \frac{3}{2}C(2h)|\log(\varepsilon/2)|p + \log(\omega)|\log(\varepsilon/2)|^2 = O(\log(\omega)|\log \varepsilon|^2)\) and functions \(\{\alpha_r(x)\}_{1 \leq r \leq R}\) for \(x \in X\) and functions \(\{\beta_r(y)\}_{1 \leq r \leq R}\) for \(y \in Y\) such that

\[
\left|G(x, y) = \sum_{r=1}^{R} \alpha_r(x)\beta_r(y)\right| \leq \varepsilon \quad \text{for} \quad x \in X, y \in Y.
\]

For a fixed \(\varepsilon\), Theorem 2.3 shows that the rank \(R\) grows logarithmically with respect to \(\omega\) (and thus to \(n\)). Though the theorem states the result under the case that \(X\) contains the points on the left half and \(Y\) contains the points on the right half, it also applies to any disjoint intervals \(X\) and \(Y\) on \(x_2 = mh\) due to the translational invariance of the kernel \(G(x,y)\) in the \(x_1\) direction. It is also clear that, when \(X\) and \(Y\) are well-separated from each other, the actual rank \(R\) should be smaller.

Theorem 2.3 can be extended to the case of smooth layered media where the velocity variation only depends on \(x_1\). In this case, the restriction of the Green’s function to \(x_2 = mh\) does not develop caustics. Therefore, the geometric optics representation \(A(x, y)e^{i\omega \Phi(x, y)}\) of the Green’s function for \(x \in X\) and \(y \in Y\) can be made sufficiently accurate as long as \(X\) and \(Y\) are well-separated. The amplitude \(A(x, y)\) is numerically low-rank due to its smoothness. The phase term is also numerically low-rank since for the layered media \(\Phi(x, y) = \tau(x) - \tau(y)\) where \(\tau(\cdot)\) is the travel time function from a fixed point. Therefore,
their product, the Green’s function $G(x, y)$, is also numerically low rank for well-separated X and Y.

Numerical experiments confirm the result of Theorem 2.3. For the constant coefficient case $c(x) = 1$ with $\frac{\omega}{2\pi} = 32$ ($n = 256$), Figure 3 (left) shows the numerical ranks of the off-diagonal blocks of T_m for $m = 128$. For each off-diagonal block, the singular values of this block are calculated and the value in each block indicates the number of singular values that are greater than 10^{-6}. For non-constant velocity fields $c(x)$, the rank estimate would depend on the variations in $c(x)$ and numerical results suggest that the off-diagonal blocks of T_m and S_m still admit this low-rankness property for a wide class of $c(x)$. An example for the non-constant velocity field is given in Figure 3 (middle).

We would like to emphasize that both the Sommerfeld boundary condition and the layer-by-layer sweeping order are essential. To illustrate that, we perform the same test with the same threshold 10^{-6} but with zero Dirichlet boundary condition. The result of T_m for $m = 128$ is plotted in Figure 3 (right). It is clear that the rank of a off-diagonal block is much higher and grows almost linearly with respect to the size of the block. This clearly shows the importance of the Sommerfeld boundary condition. A similar matrix T_m would also appear if one adopts different elimination orders such as the one of multifrontal methods or the one proposed in [36]. Therefore, these elimination orders do not result efficient solution methods for the Helmholtz equation.

Figure 3: Numerical ranks of off-diagonal blocks of T_m. Left: Constant coefficient case with PML boundary condition. Middle: Non-constant coefficient case with PML boundary condition. Right: Constant coefficient case with zero Dirichlet boundary condition.

2.3 Hierarchical matrix representation

Since T_m and S_m are highly compressible with numerically low-rank off-diagonal blocks, it is natural to represent these matrices using the hierarchical matrix (or H-matrix) framework proposed by Hackbusch et al [7, 26, 27], where off-diagonal blocks are represented in low-rank factorized form. The discussion below is by no means original and is included for the sake of completeness.

At the m-th layer for any fixed m, we construct a hierarchical decomposition of the grid points in P_m through bisection. At level 0 (the top level), the set

$$J^0_1 = P_m.$$

At level ℓ, there are 2^ℓ sets J^ℓ_i for $i = 1, \ldots, 2^\ell$ given by

$$J^\ell_i = \{ p_{\nu, m} : (i - 1) \cdot n/2^\ell + 1 \leq t \leq i \cdot n/2^\ell \}.$$
The bisection is stopped when each set J_i^ℓ contains only a small number of indices. Hence, the number of total levels L is equal to $\log_2 n - O(1)$ (see Figure 4 (left)). We often write $G(J_i^\ell, J_i'^\ell)$ (the restriction of a matrix G to J_i^ℓ and $J_i'^\ell$) as $G_{i,i'}^\ell$.

The hierarchical matrix representation relies on the notion of \textit{well-separatedness} between different sets. If J_i^ℓ and $J_i'^\ell$ are well-separated from each other, then $G(J_i^\ell, J_i'^\ell)$ is allowed to be stored in a low-rank factorized form. There are two different choices of the notion of well-separatedness [7]. In the \textit{weakly admissible case}, J_i^ℓ and $J_i'^\ell$ are well-separated if and only if they are disjoint. In the \textit{strongly admissible case}, J_i^ℓ and $J_i'^\ell$ are well-separated if and only if the distance between them is greater than or equal to their width. Next, define the interaction list of J_i^ℓ to be the set of all index sets $J_i'^\ell$ such that J_i^ℓ is well-separated from $J_i'^\ell$ but J_i^ℓ’s parent is not well-separated from $J_i'^\ell$’s parent. It is clear from this definition that being a member of another set’s interaction list is a symmetric relationship.

2.3.1 Weakly admissible case

In the weakly admissible case, the interaction list of J_{2i}^ℓ contains only J_{2i-1}^ℓ and vice versa.

Matrix representation. For a fixed ε, let $R = O(\log \omega) = O(\log n)$ be the maximum over the ranks of the off-diagonal blocks on all levels. For a given matrix G, the hierarchical matrix framework represents all blocks $G_{i,i'}^\ell = G(J_i^\ell, J_i'^\ell)$ with J_i^ℓ and $J_i'^\ell$ in each other’s interaction list in the factorized form with rank less than or equal to R. For example, at the first level, the two off-diagonal blocks $G_{1,2}^1 = G(J_1^1, J_2^1)$ and $G_{2,1}^1 = G(J_2^1, J_1^1)$ are represented with

$$
G_{1,2}^1 \approx U_{1,2}^1 V_{1,2}^1$$

and

$$
G_{2,1}^1 \approx U_{2,1}^1 V_{2,1}^1
$$

where each of $U_{1,2}^1, U_{2,1}^1, V_{1,2}^1, V_{2,1}^1$ has at most R columns. At the second level, the new off-diagonal blocks are $G_{1,2}^2, G_{2,1}^2, G_{3,4}^2,$ and $G_{4,3}^2$, each represented in a similar way. Finally, at level $L - 1$, all diagonal blocks $G_{i,i}^{L-1}$ for $i = 1, \ldots, 2^{L-1}$ are stored densely. This representation is illustrated in Figure 4 (right). The total storage cost is $O(Rn \log n)$.

![Hierarchical matrix representation](image-url)
Matrix-vector multiplication. Let us consider the product \(Gf \) where \(f \) is a vector of size \(n \). Denote by \(f^\ell_i \) the part of \(f \) restricted to \(I^\ell_i \). Using the block matrix form, the product is

\[
\begin{pmatrix}
G_{1,1}^1 & G_{1,2}^1 \\
G_{2,1}^1 & G_{2,2}^1
\end{pmatrix}
\begin{pmatrix}
f_1^1 \\
f_2^1
\end{pmatrix}
= \begin{pmatrix}
G_{1,1}^1 f_1^1 + G_{1,2}^1 f_2^1 \\
G_{2,1}^1 f_1^1 + G_{2,2}^1 f_2^1
\end{pmatrix}.
\]

First, the product \(G_{1,2}^1 f_2^1 \) is computed with \(G_{1,2}^1 f_2^1 \approx U_{1,2}^1 (V_{1,2}^1 f_2^1) \). The same is carried out for the product \(G_{1,1}^1 f_1^1 \). Second, the computation of \(G_{1,1}^1 f_1^1 \) and \(G_{2,2}^1 f_2^1 \) is done recursively since both \(G_{1,1}^1 \) and \(G_{2,2}^1 \) are in the hierarchical matrix form. We denote this matrix-vector multiplication procedure by \texttt{hmatvec}(\texttt{G}, f)\) and its computational cost is \(O(Rn \log n) \).

Matrix addition and subtraction. Consider the sum of two matrices \(G \) and \(H \) with their off-diagonal blocks represented in the factorized form by \(G_{i,j}^\ell \approx U_{i,j}^\ell (V_{i,j}^\ell)^t \) and \(H_{i,j}^\ell \approx X_{i,j}^\ell (Y_{i,j}^\ell)^t \). Under the block matrix notation, the sum is

\[
\begin{pmatrix}
G_{1,1}^1 & G_{1,2}^1 \\
G_{2,1}^1 & G_{2,2}^1
\end{pmatrix}
+ \begin{pmatrix}
H_{1,1}^1 & H_{1,2}^1 \\
H_{2,1}^1 & H_{2,2}^1
\end{pmatrix}
= \begin{pmatrix}
G_{1,1}^1 + H_{1,1}^1 & G_{1,2}^1 + H_{1,2}^1 \\
G_{2,1}^1 + H_{2,1}^1 & G_{2,2}^1 + H_{2,2}^1
\end{pmatrix}.
\]

First, \(G_{1,2}^1 + H_{1,2}^1 \approx U_{1,2}^1 (V_{1,2}^1)^t + X_{1,2}^1 (Y_{1,2}^1)^t \). One needs to recompute the last two matrices in order to prevent the rank of the low rank factorization from increasing indefinitely. This can be done by computing QR decomposition of \(U_{1,2}^1, V_{1,2}^1 \) and \(X_{1,2}^1, Y_{1,2}^1 \), followed by a truncated SVD of a matrix of small size. The same procedure is carried out for \(G_{2,1}^1 + H_{2,1}^1 \) to compute the necessary factorization. Second, let us consider the diagonal blocks. \(G_{1,1}^1 + H_{1,1}^1 \) and \(G_{2,2}^1 + H_{2,2}^1 \) are done recursively since they are two sums of the same nature but only half the size. This addition procedure is denoted by \texttt{hadd}(\texttt{G}, \texttt{H})\). The subtraction procedure is almost the same and is denoted by \texttt{hsub}(\texttt{G}, \texttt{H})\). Both of them take \(O(R^2 n \log n) \) steps.

Matrix multiplication. Let us consider the sum of two matrices \(G \) and \(H \) with their off-diagonal blocks represented by \(G_{i,j}^\ell \approx U_{i,j}^\ell (V_{i,j}^\ell)^t \) and \(H_{i,j}^\ell \approx X_{i,j}^\ell (Y_{i,j}^\ell)^t \). Under the block matrix form, the product is

\[
\begin{pmatrix}
G_{1,1}^1 & G_{1,2}^1 \\
G_{2,1}^1 & G_{2,2}^1
\end{pmatrix}
\times
\begin{pmatrix}
H_{1,1}^1 & H_{1,2}^1 \\
H_{2,1}^1 & H_{2,2}^1
\end{pmatrix}
= \begin{pmatrix}
G_{1,1}^1 H_{1,1}^1 + G_{1,2}^1 H_{2,1}^1 & G_{1,1}^1 H_{1,2}^1 + G_{1,2}^1 H_{2,2}^1 \\
G_{2,1}^1 H_{1,1}^1 + G_{2,2}^1 H_{2,1}^1 & G_{2,1}^1 H_{1,2}^1 + G_{2,2}^1 H_{2,2}^1
\end{pmatrix}.
\]

First, the off-diagonal block \(G_{1,1}^1 H_{1,2}^1 + G_{1,2}^1 H_{2,1}^1 \approx G_{1,1}^1 X_{1,2}^1 (Y_{1,2}^1)^t + U_{1,2}^1 (V_{1,2}^1)^t H_{2,2}^1 \). The computation \(G_{1,1}^1 X_{1,2}^1 \) and \((V_{1,2}^1)^t H_{2,1}^1 \) are essentially matrix-vector multiplications. Once they are done, the remaining computation is then similar to the off-diagonal part of the matrix addition algorithm. The other off-diagonal block \(G_{2,1}^1 H_{1,1}^1 + G_{2,2}^1 H_{2,1}^1 \) is done in the same way. Next, consider the diagonal blocks. Take \(G_{1,1}^1 H_{1,1}^1 + G_{1,2}^1 H_{2,1}^1 \) as an example. The first part \(G_{1,1}^1 H_{1,1}^1 \) is done using recursion. The second part is \(G_{1,2}^1 H_{2,1}^1 \approx U_{1,2}^1 (V_{1,2}^1)^t X_{1,2}^1 (Y_{2,1}^1)^t \), where the middle product is carried out first in order to minimize the computational cost. The final sum \(G_{1,1}^1 H_{1,1}^1 + G_{1,2}^1 H_{2,1}^1 \) is done using the matrix addition algorithm described above. The same procedure can be carried out for \(G_{2,1}^1 H_{1,1}^1 + G_{2,2}^1 H_{2,1}^1 \). This matrix multiplication procedure is denoted by \texttt{hmul}(\texttt{G}, \texttt{H})\) and its computational cost is \(O(R^2 n \log^2 n) \).
Matrix inversion. The inverse of G is done by performing a 2×2 block matrix inversion:

\[
\begin{pmatrix}
G_{1,1}^1 & G_{1,2}^1 \\
G_{2,1}^1 & G_{2,2}^1
\end{pmatrix}^{-1} = \begin{pmatrix}
(G_{1,1}^1)^{-1} + (G_{1,1}^1)^{-1}G_{1,2}^1S^{-1}G_{2,1}^1(G_{1,1}^1)^{-1} & -(G_{1,1}^1)^{-1}G_{1,2}^1S^{-1} \\
S^{-1}G_{2,1}^1(G_{1,1}^1)^{-1} & S^{-1}
\end{pmatrix}
\]

where $S = G_{2,2}^1 - G_{2,1}^1(G_{1,1}^1)^{-1}G_{1,2}^1$. The computation of this formula requires matrix additions and multiplications, along with the inversion of two matrices S and $G_{1,1}^1$, half of the original size. The matrix additions and multiplications are carried out by the above procedures, while the inversion are done recursively. This matrix inversion procedure is denoted by $\text{hinv}(G)$ and its cost is $O(R^2n \log^2 n)$.

Multiplication with a diagonal matrix. Finally, we consider the multiplication of G with a diagonal matrix D. Denote the two diagonal blocks of D on the first level by $D_{1,1}^1$ and $D_{2,2}^1$, both of which are diagonal matrices. In the block matrix form, the product becomes

\[
\begin{pmatrix}
G_{1,1}^1 & G_{1,2}^1 \\
G_{2,1}^1 & G_{2,2}^1
\end{pmatrix} \times \begin{pmatrix}
D_{1,1}^1 \\
D_{2,2}^1
\end{pmatrix} = \begin{pmatrix}
G_{1,1}^1D_{1,1}^1 & G_{1,2}^1D_{2,2}^1 \\
G_{2,1}^1D_{1,1}^1 & G_{2,2}^1D_{2,2}^1
\end{pmatrix}.
\]

Consider the off-diagonal blocks first. For example, $G_{1,2}^1D_{2,2}^1 \approx U_{1,2}^1(V_{1,2}^1)^tD_{2,2}^1$ and this is done by scaling each columns of $(V_{1,2}^1)^t$ by the corresponding diagonal entries of $D_{2,2}^1$. The same is true for $G_{2,1}^1D_{1,1}^1$. For the diagonal blocks, say $G_{1,1}^1D_{1,1}^1$, we simply apply recursion since $G_{1,1}^1$ is itself a hierarchical matrix and $D_{1,1}^1$ is diagonal. This special multiplication procedure is denoted by $\text{hdiagmul}(G, D)$ if D is on the right or $\text{hdiagmul}(D, G)$ if D is on the left. The cost of both procedures is $O(Rn \log n)$.

2.3.2 Strongly admissible case

The matrix representation and operations in the strongly admissible case are similar to the ones in the weakly admissible case. The only one that requires significant modification is the matrix multiplication procedure $R = \text{hmul}(G, H)$, where the most common step is the calculation of

\[
R_{i,i''}^\ell \leftarrow G_{i,i}^\ell H_{i',i''}^\ell.
\]

In order to simplify the discussion, we denote a matrix symbolically by H if it is in hierarchical form and by F if it is represented in a factorized form. The product (8) can then take one of the following eight forms

\[
H = H \cdot H, \quad H = H \cdot F, \quad H = F \cdot H, \quad H = F \cdot F,
\]

\[
F = H \cdot H, \quad F = H \cdot F, \quad F = F \cdot H, \quad F = F \cdot F.
\]

All of them except one have already appeared in the matrix multiplication procedure of the weakly admissible case and the only one that is new is $F = H \cdot H$. We implement this using the randomized SVD algorithm proposed recently in [28, 32] for numerically low-rank matrices. The main idea of this randomized algorithm is to capture the column (or row) space of the matrix by multiplying the matrix with a small number of Gaussian random test vectors. Results from random matrix theory guarantee that the column space of the product matrix approximates accurately the span of all dominant singular vectors of the original (numerically low-rank) matrix. Since the product matrix has much fewer columns, applying singular value decompositions to it gives rise to an accurate and efficient way to approximate the SVD of the original matrix. Notice that this randomized approach only
requires a routine to apply the original matrix to an arbitrary vector and everything else is just standard numerical linear algebra. In our setting, applying $H \cdot H$ to a vector is simply equal to two hmatvec operations.

2.4 Approximate inversion and preconditioner

Let us denote the approximations of S_m and T_m in the hierarchical matrix representation by \tilde{S}_m and \tilde{T}_m, respectively. The construction of the approximate LDL^t factorization of H takes the following steps.

Algorithm 2.5. Construction of the approximate sweeping factorization of H in the hierarchical matrix framework.

1: $\tilde{S}_1 = A_{1,1}$ and $\tilde{T}_1 = \text{hinv}(\tilde{S}_1)$.
2: for $m = 2, \ldots, n$ do
3: $\tilde{S}_m = \text{hsub}(A_{m,m}, \text{hdiagmul}(A_{m,m-1}, \text{hdiagmul}(\tilde{T}_{m-1}, A_{m-1,m})))$ and $\tilde{T}_m = \text{hinv}(\tilde{S}_m)$.
4: end for

The cost of Algorithm 2.5 is $O(R^2 n^2 \log^2 n) = O(R^2 N \log^2 N)$. The computation of $u \approx A^{-1} f$ using the this approximate factorization is summarized as follows.

Algorithm 2.6. Computation of $u \approx A^{-1} f$ using the approximate sweeping factorization of A in the hierarchical matrix framework.

1: for $m = 1, \ldots, n$ do
2: $u_m = f_m$
3: end for
4: for $m = 1, \ldots, n - 1$ do
5: $u_{m+1} = u_{m+1} - A_{m+1,m} \cdot \text{hmatvec}(\tilde{T}_m, u_m)$
6: end for
7: for $m = 1, \ldots, n$ do
8: $u_m = \text{hmatvec}(\tilde{T}_m, u_m)$
9: end for
10: for $m = n - 1, \ldots, 1$ do
11: $u_m = u_m - \text{hmatvec}(\tilde{T}_m, A_{m,m+1} u_{m+1})$
12: end for

The cost of Algorithm 2.6 is $O(R n^2 \log n) = O(R N \log N)$. Algorithm 2.6 defines an operator

$$M : f = (f_1^t, f_2^t, \ldots, f_n^t)^t \rightarrow u = (u_1^t, u_2^t, \ldots, u_n^t)^t,$$

which is an approximate inverse of the discrete Helmholtz operator A. When the threshold ε is set to be sufficiently small, M can be used directly as the inverse of H and u can be taken as the solution. However, a small ε value means that the rank R of the low-rank factorized form needs to be fairly large, thus resulting large storage and computation cost. On the other hand, when R is kept rather small, Algorithms 2.5 and 2.6 become highly efficient both in terms of storage and time. Though the resulting M is not accurate enough as the inverse of A, it serves as an excellent preconditioner. Therefore, we solve the preconditioner system

$$MAu = Mf$$

using iterative solvers such as GMRES and TFQMR [41, 42]. Since the cost of applying M to any vector is $O(R N \log N)$, the total cost of the iterative solver is $O(N f R N \log N)$,
where N_I is the number of iterations. The numerical results in Section 3 demonstrate that N_I is in practice very small, thus resulting an algorithm for almost linear complexity.

Theorem 2.3 shows that in the constant coefficient case the hierarchical matrix representation of T_m is accurate. Therefore, the preconditioner M well approximates the inverse of A and the number of iterations N_I is expected to be small. The numerical results in Section 3 demonstrates that N_I is also small for general velocity field such as converging lens, wave guides, and random media. Here we provide a heuristic explanation for this phenomena. For the variable coefficient case, the numerical rank of the off-diagonal blocks of T_m can potentially increase mainly due to the turning rays, i.e., the rays that leave the m-th layer downward, travel horizontally in x_1 direction, and come upward back to the m-th layer. The interactions related to turning rays are difficult to capture in the hierarchical matrix representation of T_m if R is small. However, the iterative solver addresses this interaction in several steps as follows: the downward part of the ray is processed by a first few sweeps, the horizontal part is then captured by the T_m matrix of the next sweep, and finally the upward part of the ray is processed by a couple of extra sweeps.

In the presentation of the sweeping preconditioner, we choose the sweeping direction to be in the positive direction of the x_2 axis. It is clear that sweeping along either one of the other three directions also gives a slightly different sweeping preconditioner. Due to the variations in the velocity field and, more precisely, the existence of the turning rays, a carefully selected sweeping direction can often result significantly fewer number of GMRES iterations than the other directions do. We will give one numerical example to demonstrate this phenomenon in Section 3.

2.5 Other boundary conditions

So far, we discuss the case with Sommerfeld boundary condition specified over the whole boundary. From the above discussion, it is clear that the success of the preconditioner only relies on the fact that S_m and T_m are compressible. For many other boundary conditions, the matrices S_m and T_m also have this property, as long as the Helmholtz problem is not close to resonance. Here, we mention three representative examples.

![Figure 5: Mixed boundary conditions. Left: Depth extrapolation problem in seismology. Middle and right: Problems with partly zero Dirichlet boundary condition and non-zero $f(x)$.](image)

In the first example (see Figure 5 (left)), the PML boundary condition at $x_2 = 1$ is replaced with non-trivial Dirichlet boundary condition $u(x_1, 1) = b(x_1)$ and f is equal to zero. This corresponds to the depth extrapolation problem \[5, 35\] in reflection seismology.
The proposed algorithm proceeds exactly the same and the only modification is that the boundary condition \(b(x_1) \) is transformed into an appropriate forcing term at last layer of unknowns (i.e., the index set \(P_n \)).

In the second example, the zero boundary condition is mixed with the PML condition. In Figure 5 (middle) the zero Dirichlet boundary condition is specified on \(x_1 = 0 \) and \(x_1 = 1 \). The matrix \(T_m \) then corresponds the restriction (to an edge) of the Green’s function of the discrete Helmholtz operator in a half strip. By using the imaging method also in the \(x_1 \) direction, one can show that the rank of the off-diagonal blocks is bounded by \(O(\log \omega |\log \varepsilon|^2) \) with a slightly larger constant due to the mirror images. In Figure 5 (right), the zero Dirichlet boundary condition is specified on \(x_1 = 1 \) and \(x_2 = 1 \). \(T_m \) corresponds to the restriction of the Green’s function of the discrete Helmholtz operator in a quadrant in this case.

Finally, the PML boundary condition is by no means the only approximation to the Sommerfeld condition. As the essential requirement is that the problem should not be close to resonance (i.e., a wave packet escapes the domain without spending too much time inside), the sweeping preconditioner should work with any reasonable approximations to the Sommerfeld boundary condition such as absorbing boundary conditions (ABCs) \[14, 15\] and damping/sponge layers. We focus on the PML due to its simplicity, its low non-physical reflections, and the symmetry of its discrete system.

3 Numerical Results in 2D

In this section, we present several numerical results to illustrate the properties of the sweeping preconditioner described in Section 2. The implementation is done in C++ and the results in this section are obtained on a computer with a 2.6GHz CPU. The GMRES method is used as the iterative solver with relative residue tolerance set to be \(10^{-3} \).

3.1 PML

The examples in this section have the PML boundary condition specified at all sides.

Dependence on \(\omega \). First, we study how the sweeping preconditioner behaves when \(\omega \) varies. Consider three velocity fields in the domain \((0,1)^2\):

1. The first velocity field is a converging lens with a Gaussian profile at the center of the domain (see Figure 6(a)).
2. The second velocity field is a vertical waveguide with Gaussian cross section (see Figure 6(b)).
3. The third velocity field has a random velocity field (see Figure 6(c)).

For each velocity field, we test with two external forces \(f(x) \).

1. The first external force \(f(x) \) is a Gaussian point source located at \((x_1, x_2) = (0.5, 0.125)\). The response of this forcing term generates circular waves propagating at all directions. Due to the variations of the velocity field, the circular waves would bend, form caustics, and intersect.
2. The second external force \(f(x) \) is a Gaussian wave packet with a wavelength comparable to the typical wavelength of the Helmholtz equation. This packet centers at \((x_1, x_2) = (0.125, 0.125)\) and points to the \((1, 1)\) direction. The response of this forcing term generates a Gaussian beam initially pointing towards the \((1, 1)\) direction. Due to the variations of the velocity field, this Gaussian beam should bend and scatter.

![Figure 6: Test velocity fields.](image)

For each velocity field, we perform tests for \(\omega^2 \pi = 16, 32, \ldots, 256 \). In these tests, we discretize with \(q = 8 \) points per wavelength. Therefore, the number of points for each dimension is \(n = 8 \times \frac{\omega}{2\pi} = 128, 256, \ldots, 2048 \). The strongly admissible case is used in the implementation of the hierarchical matrix representation. Recall that \(R \) is the rank of the off-diagonal blocks in the hierarchical matrix and we fix it to be a uniform constant 2. In all tests, the sweeping direction is bottom-up from \(x_2 = 0 \) to \(x_2 = 1 \).

The results of the first velocity field are summarized in Table 1. \(T_{\text{setup}} \) denotes the time used to construct the preconditioner in seconds. For each external force, \(N_{\text{iter}} \) is the number of iterations of the preconditioned GMRES solver and \(T_{\text{solve}} \) is the overall solution time. When \(n \) doubles and \(N \) quadruples, the setup cost \(T_{\text{setup}} \) increases by a factor of 5 or 6, which is consistent with the \(O(N \log^2 N) \) complexity of Algorithm 2.5. A remarkable feature of the sweeping preconditioner is that the number of iterations is extremely small. In fact, in all cases, the preconditioned GMRES solver converges in less than 3 iterations.

As a result of the constant iteration number, the solution time increase by a factor of 4 or 5 when \(N \) quadruples, which is consistent with the \(O(N \log N) \) complexity of Algorithm 2.6. Finally, we would like to point out that our algorithm is extremely efficient: for a problem with \(N = n^2 = 2048^2 \) unknowns, the solution time is only about 30 seconds.

The results of the second and third velocity fields are summarized in Tables 2 and 3, respectively. The behaviors of these tests are similar to the one of the first velocity field. In all cases, the GMRES solver converges in less than 5 iterations when combined with the sweeping preconditioner.

Dependence on \(q \). Secondly, we study how the sweeping preconditioner behaves when the number of discretization points per wavelength \(q \) varies. Fix \(\frac{\omega}{2\pi} \) at 32 and let \(q \) be 8, 16, \ldots, 64. In the following tests, \(R \) is again equal to 2. The sweeping direction is bottom-up from \(x_2 = 0 \) to \(x_2 = 1 \). The test results for the three velocity fields are summarized in Tables 4, 5, and 6, respectively. These results show that the number of iterations remain to be extremely small and the overall solution time scales roughly linearly with respect to the number of unknowns.
Table 1: Results of velocity field 1 for different ω. Top: Solutions for two external forces with $\omega/(2\pi) = 64$. Bottom: Results for different ω.

$\omega/(2\pi)$	q	$N = n^2$	R	T_{setup}	N_{iter}	T_{solve}	N_{iter}	T_{solve}
16	8	1282	2	6.70e-01	2	5.00e-02	2	5.00e-02
32	8	2562	2	4.97e+00	2	2.30e-01	2	2.30e-01
64	8	5122	2	3.43e+01	3	1.39e+00	3	1.39e+00
128	8	10242	2	2.13e+02	4	8.38e+00	4	8.38e+00
256	8	20482	2	1.25e+03	5	3.93e+01	4	3.93e+01

Table 2: Results of velocity field 2 for different ω. Top: Solutions for two external forces with $\omega/(2\pi) = 64$. Bottom: Results for different ω.

$\omega/(2\pi)$	q	$N = n^2$	R	T_{setup}	N_{iter}	T_{solve}	N_{iter}	T_{solve}
16	8	1282	2	6.70e-01	2	5.00e-02	2	5.00e-02
32	8	2562	2	4.97e+00	2	2.30e-01	2	2.30e-01
64	8	5122	2	3.43e+01	3	1.39e+00	3	1.39e+00
128	8	10242	2	2.13e+02	4	8.38e+00	4	8.38e+00
256	8	20482	2	1.25e+03	5	3.93e+01	4	3.93e+01
Table 3: Results of velocity field 3 for different \(\omega \). Top: Solutions for two external forces with \(\omega/(2\pi) = 64 \). Bottom: Results for different \(\omega \).

\(\omega/(2\pi) \)	\(q \)	\(N = n^2 \)	\(R \)	\(T\text{\tiny setup} \)	\(N\text{\tiny iter} \)	\(T\text{\tiny solve} \)	\(N\text{\tiny iter} \)	\(T\text{\tiny solve} \)
16	8	128	2	6.50e-01	2	5.00e-02	2	5.00e-02
32	8	256	2	5.10e+00	2	2.50e-01	3	3.00e-01
64	8	512	2	3.48e+01	3	1.49e+00	3	1.48e+00
128	8	1024	2	2.16e+02	4	8.99e+00	3	7.37e+00
256	8	2048	2	1.26e+03	5	4.64e+01	3	3.25e+01

Table 4: Results of velocity field 1 for different \(q \).

\(\omega/(2\pi) \)	\(q \)	\(N = n^2 \)	\(R \)	\(T\text{\tiny setup} \)	\(N\text{\tiny iter} \)	\(T\text{\tiny solve} \)	\(N\text{\tiny iter} \)	\(T\text{\tiny solve} \)
32	8	256	2	4.93e+00	2	2.30e-01	2	2.30e-01
32	16	512	2	3.42e+01	2	1.11e+00	2	1.09e+00
32	32	1024	2	2.13e+02	2	5.45e+00	2	5.45e+00
32	64	2048	2	1.23e+03	2	2.50e+01	2	2.49e+01

Table 5: Results of velocity field 2 for different \(q \).

Dependence on sweeping direction. Next, we study how the sweeping directions affect the convergence rate of the GMRES algorithm. In this example, the velocity field is given by \(c(x_1, x_2) = 1/2 + x_2 \). The external force is a a narrow Gaussian point source centered at \((x_1, x_2) = (0.125, 0.5)\). Two sweeping directions are tested here: the first one sweeps in the positive \(x_2 \) direction while the second sweeps in the negative \(x_2 \) direction. For the first
sweeping direction, the matrix T_m approximates the Green’s function of the lower half-space $(-\infty, \infty) \times (-\infty, mh)$. Since the velocity field decreases in the negative x_2 direction, in a geometric optics argument the rays emanating from $x_2 = mh$ plane do not travel back to the same plane. Therefore, we expect that the numerical rank of the off-diagonal blocks of T_m to be low, the preconditioner to be quite accurate, and the number of iterations to be small. The geometric theory of diffraction indicates that the coupling between points on the plane $x_2 = mh$ is via exponentially decaying creeping rays and thus very weak.

For the second sweeping direction, the matrix T_m approximates the Green’s function of the upper half-space $(-\infty, \infty) \times (1 - mh, \infty)$. Since the velocity field increases in the positive x_2 direction, the rays emanating from $x_2 = mh$ can shoot back to the same plane. As a result, the hierarchical matrix representation of T_m would incur larger error for the same R value and the number of iterations would become larger.

Table 7 reports the results of these two sweeping directions for different ω values. As expected by the above argument, the number of iterations for the first sweeping preconditioner (in the positive x_2 direction) remains very small while the number of iterations for the second one (in the negative x_2 direction) increases slightly with N.

3.2 Other boundary conditions

Here we report three examples with different boundary conditions.

Depth extrapolation. In the first example (see Figure 5 (left)), the velocity field is a vertical wave guide. We specify the Dirichlet boundary condition $u(x_1, 1) = b(x_1)$ at the top edge $x_2 = 1$ and the PML at the other three edges. This is the depth extrapolation problem in reflection seismology and we report the results of two test cases:

1. $b(x_1) = 1$. This corresponds to a plane wave entering the wave guide. The center part of the plane wave should start to bend and eventually form multiple caustics.

2. $b(x_1) = \exp \left(i \frac{\omega}{2} x_1 \right)$. This corresponds to a slant wave entering the wave guide.

The sweeping direction is bottom-up from $x_2 = 0$ to $x_2 = 1$. The results are summarized in Table 8. The running time again follows closely the analytical estimate and the number of GMRES iterations are bounded by 4.

Mixed PML-Dirichlet boundary condition. In the second example, the velocity field $c(x)$ is equal to constant one and perform two tests with mixed boundary conditions.

1. In the first test (see Figure 5 (middle)), we specify the zero Dirichlet boundary condition at $x_1 = 0$ and $x_1 =$ and the PML condition at the other two sides. The external
Table 7: Results of the positive and negative x_2 sweeping directions. Top row: the velocity field (left) and the solution for the external force (right). Bottom row: results for different ω.

$\omega/(2\pi)$	q	$N = n^2$	R	T_{setup}	N_{iter}	T_{solve}	N_{iter}	T_{solve}
16	8	1282	2	6.80e-01	1	4.00e-02	2	5.00e-02
32	8	2562	2	4.95e+00	2	2.50e-01	3	3.00e-01
64	8	5122	2	3.40e+01	2	1.13e+00	4	1.86e+00
128	8	10242	2	2.14e+02	2	5.82e+00	6	1.21e+01
256	8	20482	2	1.25e+03	2	2.64e+01	6	5.49e+01

force $f(x)$ is a Gaussian wave packet with a wavelength comparable to the typical wavelength of the Helmholtz equation. This packet centers at $(x_1, x_2) = (0.5, 0.125)$ and points to the $(\cos(\pi/8), \sin(\pi/8))$ direction. The Gaussian beam generated by this forcing term should bounce back from the edge $x_1 = 1$ and then from the edge $x_1 = 0$.

2. In the second test (see Figure 5 (right)), we specify the zero Dirichlet boundary condition at $x_1 = 1$ and $x_2 = 1$ and the PML condition at the other two sides. The external force $f(x)$ is a Gaussian wave packet with a wavelength comparable to the typical wavelength of the Helmholtz equation. This packet centers at $(x_1, x_2) = (0.5, 0.125)$ and points to the $(1, 1)$ direction. The Gaussian beam generated by this forcing term should bounce back from the edge $x_1 = 1$ and then from the edge $x_2 = 1$.

The sweeping direction is bottom-up from $x_2 = 0$ to $x_2 = 1$ and the results of these tests are summarized in Table 9. The running time again follows the analytical estimate. For the first test case with zero Dirichlet boundary condition at $x_1 = 0$ and $x_1 = 1$, due to the reason mentioned in Section 2.5, the rank of the off-diagonal blocks of the Schur complement matrices are slightly higher. Hence, with the same R value the number of iterations is expected to increase slightly. In all cases, the number of GMRES iterations is bounded by 10.

Absorbing boundary condition. In the last example, we replace the PML with the second order absorbing boundary condition (ABC). The velocity field $c(x)$ is taken to be one and we perform tests with two different external forces, which are similar to the ones
Test 1
\[\frac{\omega}{(2\pi)} \quad q \quad \frac{N}{\pi^2} \quad R \quad T_{\text{setup}} \quad N_{\text{iter}} \quad T_{\text{solve}} \]
\(16\)	\(8\)	\(128^2\)	\(2\)	\(6.60 \times 10^{-1}\)	\(2\)	\(4.00 \times 10^{-2}\)
\(32\)	\(8\)	\(256^2\)	\(2\)	\(5.07 \times 10^{0}\)	\(3\)	\(3.20 \times 10^{-1}\)
\(64\)	\(8\)	\(512^2\)	\(2\)	\(3.45 \times 10^{1}\)	\(3\)	\(1.46 \times 10^{0}\)
\(128\)	\(8\)	\(1024^2\)	\(2\)	\(2.15 \times 10^{2}\)	\(3\)	\(7.30 \times 10^{0}\)
\(256\)	\(8\)	\(2048^2\)	\(2\)	\(1.25 \times 10^{3}\)	\(4\)	\(3.94 \times 10^{1}\)

Table 8: Results of the depth stepping example for different \(\omega\). Top: Solutions for two test cases with \(\omega/(2\pi) = 64\). Bottom: Results for different \(\omega\).

Test 2
\[\frac{\omega}{(2\pi)} \quad q \quad \frac{N}{\pi^2} \quad R \quad T_{\text{setup}} \quad N_{\text{iter}} \quad T_{\text{solve}} \]
\(16\)	\(8\)	\(128^2\)	\(2\)	\(6.60 \times 10^{-1}\)	\(2\)	\(4.00 \times 10^{-2}\)
\(32\)	\(8\)	\(256^2\)	\(2\)	\(5.07 \times 10^{0}\)	\(3\)	\(3.20 \times 10^{-1}\)
\(64\)	\(8\)	\(512^2\)	\(2\)	\(3.45 \times 10^{1}\)	\(3\)	\(1.46 \times 10^{0}\)
\(128\)	\(8\)	\(1024^2\)	\(2\)	\(2.15 \times 10^{2}\)	\(3\)	\(7.30 \times 10^{0}\)
\(256\)	\(8\)	\(2048^2\)	\(2\)	\(1.25 \times 10^{3}\)	\(4\)	\(3.94 \times 10^{1}\)

Table 9: Results of the mixed boundary condition example for different \(\omega\). Top: Solutions for two test cases with \(\omega/(2\pi) = 64\). Bottom: Results for different \(\omega\).
given at the beginning of Section 3.1. However, since the low order ABCs generate more non-physical reflections at the domain boundaries, we move the support of these external forces closer to the center of the computational domain.

1. The first external force \(f(x) \) is a Gaussian point source located at \((x_1, x_2) = (0.5, 0.25)\).

2. The second external force \(f(x) \) is a Gaussian wave packet with a wavelength comparable to the typical wavelength of the Helmholtz equation. This packet centers at \((x_1, x_2) = (0.25, 0.25)\) and points to the \((1, 1)\) direction.

Due to the same non-physical reflections, the discrete Green's function associated with a low order ABC often has off-diagonal blocks with higher numerical ranks compared to the discrete Green's function associated with the PML. As a result, we let \(R \) increase slightly with \(\omega \). The sweeping direction is bottom-up from \(x_2 = 0 \) to \(x_2 = 1 \) and the results are summarized in Table 10. The setup time grows slightly higher than linear complexity due to the increase of \(R \). The number of iteration increases roughly logarithmically with respect to \(\omega \). In all cases, the number of GMRES iterations is bounded by 13. Overall the results for the ABC compares slightly worse than the ones of the PML, suggesting that, in order for the sweeping preconditioner to work well, it is essential to minimize non-physical reflections at the domain boundary.

\(\omega/(2\pi) \)	\(q \)	\(N = n^2 \)	\(R \)	\(T_{\text{setup}} \)	\(N_{\text{iter}} \)	\(T_{\text{solve}} \)	\(N_{\text{iter}} \)	\(T_{\text{solve}} \)
16	8	128²	2	6.70e-01	7	1.30e-01	6	1.50e-01
32	8	256²	2	4.98e+00	7	4.80e-01	6	4.30e-01
64	8	512²	3	5.10e+01	8	3.16e+00	6	2.42e+00
128	8	1024²	4	4.65e+02	10	2.06e+01	6	1.33e+01
256	8	2048²	5	3.84e+03	13	1.59e+01	6	8.49e+01

Table 10: Results of the absorbing boundary condition (ABC) test for different \(\omega \). Top: Solutions for two test cases with \(\omega/(2\pi) = 64 \). Bottom: Results for different \(\omega \).
4 Preconditioner in 3D

4.1 Discretization

The computational domain is $D = (0, 1)^3$. Using the same $\sigma(t)$ defined in (2), we define

$$s_1(x_1) = \left(1 + i \frac{\sigma(x_1)}{\omega}\right)^{-1}, \quad s_2(x_2) = \left(1 + i \frac{\sigma(x_2)}{\omega}\right)^{-1}, \quad s_3(x_3) = \left(1 + i \frac{\sigma(x_3)}{\omega}\right)^{-1}.$$

The PML replaces ∂_1 with $s_1(x_1)\partial_1$, ∂_2 with $s_2(x_2)\partial_2$, and ∂_3 with $s_3(x_3)\partial_3$. This effectively provides a damping layer of width η near the boundary of $D = (0, 1)^3$. The resulting equation is

$$\left(\frac{s_1(\partial_1)(s_1\partial_1)}{s_2s_3} + \frac{s_2(\partial_2)(s_2\partial_2)}{s_1s_3} + \frac{s_3(\partial_3)(s_3\partial_3)}{s_1s_2} + \frac{\omega^2}{c^2(x)}\right)u = f \quad x \in D = [0, 1]^3,$$

$$u = 0 \quad x \in \partial D.$$

Without loss of generality, we assume that $f(x)$ is supported inside $[\eta, 1 - \eta]^3$ (away from the PML). Dividing the above equation by $s_1s_2s_3$ results

$$\left(\partial_1 \left(\frac{s_1}{s_2s_3}\partial_1\right) + \partial_2 \left(\frac{s_2}{s_1s_3}\partial_2\right) + \partial_3 \left(\frac{s_3}{s_1s_2}\partial_3\right) + \frac{\omega^2}{s_1s_2s_3c^2(x)}\right)u = f.$$

The domain $[0, 1]^3$ is discretized with a Cartesian grid with spacing $h = 1/(n + 1)$. As we discretize the equation with a couple number of points per wavelength, the number n of samples in each dimension is proportional to ω. The interior points of this grid are

$$\mathcal{P} = \{p_{i,j,k} = (ih, jh, kh) : 1 \leq i, j, k \leq n\}$$

(see Figure 7 (left)) and the total number of points is equal to $N = n^3$.

Figure 7: Left: Discretization grid in 3D. Right: Sweeping order in 3D. The remaining grid shows the unknowns yet to be processed.

We denote by $u_{i,j,k}$, $f_{i,j,k}$, and $c_{i,j,k}$ the values of $u(x)$, $f(x)$, and $c(x)$ at point $p_{i,j,k} = (ih, jh, kh)$. The 7-point stencil finite difference method writes down the equation at points
in \(\mathcal{P} \) using central difference. The resulting equation at \(p_{i,j,k} = (ih,jh,kh) \) is

\[
\frac{1}{h^2} \left(\frac{1}{s_2 s_3} \right)_{i - \frac{1}{2}, j} u_{i-1,j,k} + \frac{1}{h^2} \left(\frac{1}{s_2 s_3} \right)_{i + \frac{1}{2}, j} u_{i+1,j,k} + \frac{1}{h^2} \left(\frac{s_2}{s_1 s_3} \right)_{i,j - \frac{1}{2}, k} u_{i,j-1,k} \\
+ \frac{1}{h^2} \left(\frac{s_2}{s_1 s_3} \right)_{i,j + \frac{1}{2}, k} u_{i,j+1,k} + \frac{1}{h^2} \left(\frac{s_3}{s_1 s_2} \right)_{i,j,k - \frac{1}{2}} u_{i,j,k-1} + \frac{1}{h^2} \left(\frac{s_3}{s_1 s_2} \right)_{i,j,k + \frac{1}{2}} u_{i,j,k+1} \\
+ \frac{\omega^2}{(s_1 s_2 s_3)_{i,j,k}} c_{i,j,k}^2 - (\cdots) u_{i,j,k} = f_{i,j,k}
\]

with \(u_{i',j',k'} \) equal to zero for \((i',j',k') \) that violates \(1 \leq i',j',k' \leq n \). Here \((\cdots) \) stands for the sum of the six coefficients appeared in the first two lines. We order \(u_{i,j,k} \) by going through the dimensions in order and denote the vector containing all unknowns by

\[u = (u_{1,1,1}, u_{2,1,1}, \ldots, u_{n,1,1}, \ldots, u_{1,n,n}, u_{2,n,n}, \ldots, u_{n,n,n})^t. \]

Similarly, \(f_{i,j,k} \) are ordered in the same way and the vector \(f \) is

\[f = (f_{1,1,1}, f_{2,1,1}, \ldots, f_{n,1,1}, \ldots, f_{1,n,n}, f_{2,n,n}, \ldots, f_{n,n,n})^t. \]

The whole system takes the form \(Au = f \). We further introduce a block version. Define \(\mathcal{P}_m \) to be the indices in the \(m \)-th row

\[\mathcal{P}_m = \{p_{1,1,m}, p_{2,1,m}, \ldots, p_{n,n,m}\} \]

and introduce

\[u_m = (u_{1,1,m}, u_{2,1,m}, \ldots, u_{n,n,m})^t, \quad f_m = (f_{1,1,m}, f_{2,1,m}, \ldots, f_{n,n,m})^t. \]

Then

\[u = (u_1^t, u_2^t, \ldots, u_n^t)^t, \quad f = (f_1^t, f_2^t, \ldots, f_n^t)^t. \]

Using these notations, the system \(Au = f \) takes the following block tridiagonal form

\[
\begin{pmatrix}
A_{1,1} & A_{1,2} & \cdots & \\
A_{2,1} & A_{2,2} & \cdots & \\
& \ddots & \ddots & \cdots \\
& & A_{n-1,n} & A_{n,n}
\end{pmatrix}
\begin{pmatrix}
u_1 \\
u_2 \\
\vdots \\
u_n
\end{pmatrix}
=
\begin{pmatrix}
f_1 \\
f_2 \\
\vdots \\
f_n
\end{pmatrix}
\]

where each block \(A_{i,j} \) is of size \(n^2 \times n^2 \) and \(A_{m,m-1} = A_{m-1,m}^t \) are diagonal matrices. Similar to the 2D case, the sweeping factorization eliminates the unknowns face by face, starting from the face next to \(x_3 = 0 \) (illustrated in Figure 7 (right)). The algorithms for constructing and applying the sweeping factorization are exactly the same as Algorithms 2.1 and 2.2. The matrix \(T_m = S_m^{-1} \) is now the discrete half-space Green’s function with zero boundary condition at \(x_3 = (m+1)h \), restricted to the points on \(x_3 = mh \). Recall that in the 2D case the off-diagonal blocks of \(T_m \) is numerically low-rank. In the 3D case, this is no longer exactly true. On the other hand, since we only aim at constructing a preconditioner for the Helmholtz problem, it is still reasonable to introduce a hierarchical structure on the unknowns on the face \(x_3 = mh \) and use the hierarchical matrix framework to approximate \(T_m \) and \(S_m \).
4.2 Hierarchical matrix representation

At the m-th layer for any fixed m, we build a hierarchical structure for the grid points in \mathcal{P}_m through bisections in both x_1 and x_2 directions. At the top level (level 0), the set
\[\mathcal{J}_{11}^0 = \mathcal{P}_m. \]

At level ℓ, there are $2^\ell \times 2^\ell$ index sets \mathcal{J}_{ij}^ℓ, $i, j = 1, \ldots, 2^\ell$
\[\mathcal{J}_{ij}^\ell = \{ p_{s,t,m} : (i-1) \cdot n/2^\ell + 1 \leq s \leq i \cdot n/2^\ell, (j-1) \cdot n/2^\ell + 1 \leq t \leq j \cdot n/2^\ell \}. \]

The bisection is stopped when each set \mathcal{J}_{ij}^ℓ contains only a small number of indices. Hence, the number of total levels L is equal to $\log_2 n - O(1)$. This hierarchical partition is illustrated in Figure 8 (left).

![Hierarchical matrix representation](image)

Figure 8: Hierarchical matrix representation. Left: hierarchical decomposition of the index set \mathcal{J} for each layer. Right: Induced partitioning of the matrix T_m in the strongly admissible case. Blocks in white are stored in low-rank factorized form. Blocks in gray are stored densely.

We write $G(\mathcal{J}_{ij}^\ell, \mathcal{J}_{ij'}^\ell)$ (the restriction of a matrix G to \mathcal{J}_{ij}^ℓ and $\mathcal{J}_{ij'}^\ell$) as $G_{ij,ij'}^\ell$. The strongly admissible case is used here and two index sets \mathcal{J}_{ij}^ℓ and $\mathcal{J}_{ij'}^\ell$ on the same level ℓ are considered well-separated from each other if $\max(|i-i'|, |j-j'|) > 1$. Recall that the interaction list of \mathcal{J}_{ij}^ℓ is defined to be the set of all index sets $\mathcal{J}_{ij'}^\ell$ such that \mathcal{J}_{ij}^ℓ is well-separated from $\mathcal{J}_{ij'}^\ell$ but \mathcal{J}_{ij}'’s parent is not well-separated from $\mathcal{J}_{ij'}^\ell$’s parent. When \mathcal{J}_{ij}^ℓ and $\mathcal{J}_{ij'}^\ell$ are well-separated from each other, the numerical rank of their interaction $G_{ij,ij'}^\ell$ is of order $O(n/2^\ell)$. As the number of indices in \mathcal{J}_{ij}^ℓ and $\mathcal{J}_{ij'}^\ell$ is equal to $(n/2^\ell)^2$, the numerical rank scales like the square root of the number of indices in each set. Therefore, it is still favorable to store the interaction $G_{ij,ij'}^\ell$ in a factorized form. In principle, the rank R of the factorized form should scale like $O(n/2^\ell)$. As the construction cost of the approximate sweeping factorization scales like $O(R^2 n^3 \log^2 n) = O(R^2 N \log^2 N)$, following this scaling can be rather costly in practice. Instead, we choose R to be a rather small constant as the goal is only to construct a preconditioner. An illustration of this hierarchical representation is given in Figure 8 (right).
Once the details of the hierarchical matrix representation are determined, the construction of the approximate \(LDL^t \) factorization and the application of its inverse take the same form as Algorithms 2.5 and 2.6 respectively. The operator
\[
M : f = (f_1^t, f_2^t, \ldots, f_n^t)^t \rightarrow u = (u_1^t, u_2^t, \ldots, u_n^t)^t
\]
defined by Algorithm 2.6 is an approximate inverse and a good preconditioner of the discrete Helmholtz operator \(A \). Therefore, we solve the preconditioner system
\[
MAu = Mf
\]
using the GMRES algorithm. As the cost of applying \(M \) to any vector is \(O(Rn^3 \log n) = O(RN \log N) \), the total cost is \(O(N_I Rn^3 \log n) = O(N_I RN \log N) \), where \(N_I \) is the number of iterations. The numerical results in Section 5 demonstrate that \(N_I \) and \(R \) are in practice rather small.

5 Numerical Results in 3D

In this section, we present several numerical results to illustrate the properties of the sweeping preconditioner described in Section 4. We use the GMRES method as the iterative solver with relative residue tolerance equal to \(10^{-3} \). The examples in this section have the PML boundary condition specified at all sides.

We consider three velocity fields in the domain \([0,1]^3\):

1. The first velocity field is a converging lens with a Gaussian profile at the center of the domain (see Figure 9(a)).
2. The second velocity field is a vertical waveguide with Gaussian cross section (see Figure 9(b)).
3. The third velocity field is a random velocity field (see Figure 9(c)).

![Figure 9: Test velocity fields. For each velocity field, the cross sections at \(x_1 = 0.5, x_2 = 0.5, \) and \(x_3 = 0.5 \) are shown.](image)

For each problem, we test with two external forces \(f(x) \).

1. The first external force \(f(x) \) is a Gaussian point source located at \((x_1, x_2, x_3) = (0.5, 0.5, 0.25)\). The response of this forcing term generates spherical waves propagating at all directions. Due to the variations of the velocity field, the circular waves should bend and form caustics.
2. The second external force \(f(x) \) is a Gaussian wave packet whose wavelength is comparable to the typical wavelength of the domain. This packet centers at \((x_1, x_2, x_3) = (0.5, 0.25, 0.25)\) and points to the \((0, 1, 1)\) direction. The response of this forcing term generates a Gaussian beam initially pointing towards the \((0, 1, 1)\) direction.

For each velocity field, we perform tests for \(\omega/(2\pi) \) equal to 5, 10, 20. In these tests, we discretize with \(q = 8 \) points per wavelength. Hence, the number of points in each dimension is \(n = 40, 80, 160 \). Recall that \(R \) is the rank of the factorized form of the hierarchical matrix representation. It is clear from the discussion of Section 4.2 that the value of \(R \) should grow with \(\omega \) (and \(n \)). Here, we choose \(R = 2, 3, 4 \) for \(\omega = 5, 10, 20 \), respectively. The sweeping direction is bottom-up from \(x_3 = 0 \) to \(x_3 = 1 \).

The results of the first velocity field are reported in Table 11. The two plots show the solutions of the two external forces on a plane near \(x_1 = 1/2 \). \(T_{\text{setup}} \) is the time used to construct the preconditioner in seconds. \(N_{\text{iter}} \) is the number of iterations of the preconditioned GMRES solver and \(T_{\text{solve}} \) is the solve time. The analysis in Section 4.2 shows that the setup time scales like \(O(R^2 n^3 \log^2 n) = O(R^2 N \log^2 N) \). When \(\omega \) grows from 5 to 20, since \(R \) increases from 2 to 4, \(T_{\text{setup}} \) increases by a factor of 20 times each time \(\omega \) doubles. Though the setup cost grows significantly faster than the linear scaling \(O(N) \), it is still much better than the \(O(N^2) \) scaling of the multifrontal method. A nice feature of the sweeping preconditioner is that the number of iterations is extremely small. In fact, in all cases, the GMRES solver converges in at most 7 iterations. Finally, we would like to point out that our algorithm is quite efficient: for the case with \(\omega/(2\pi) = 20 \) with more than four million unknowns, the solution time is only about 3 minutes.

The results of the second and the third velocity fields are reported in Tables 12 and 13, respectively. In all cases, the GMRES solver converges in at most 5 iterations when combined with the sweeping preconditioner.

\(\omega/(2\pi) \)	\(q \)	\(N = n^3 \)	\(R \)	\(T_{\text{setup}} \)	\(N_{\text{iter}} \)	\(T_{\text{solve}} \)
5	8	40\(^3\)	2	8.99e+01	3	7.10e-01
10	8	80\(^3\)	3	2.30e+03	7	1.87e+01
20	8	160\(^3\)	4	4.73e+04	6	1.90e+02

Table 11: Results of velocity field 1 for different \(\omega \). Top: Solutions for two external forces with \(\omega/(2\pi) = 20 \) on a plane near \(x_1 = 0.5 \). Bottom: Results for different \(\omega \).
Table 12: Results of velocity field 2 for different ω. Top: Solutions for two external forces with $\omega/(2\pi) = 20$ on a plane near $x_1 = 0.5$. Bottom: Results for different ω.

$\omega/(2\pi)$	q	$N = n^3$	R	T_{setup}	N_{iter}	T_{solve}	N_{iter}	T_{solve}
5	8	40^3	2	8.95e+01	3	7.10e-01	3	7.00e-01
10	8	80^3	3	2.35e+03	5	1.40e+01	3	9.38e+00
20	8	160^3	4	4.73e+04	4	1.38e+02	4	1.34e+02

Table 13: Results of velocity field 3 for different ω. Top: Solutions for two external forces with $\omega/(2\pi) = 20$ on a plane near $x_1 = 0.5$. Bottom: Results for different ω.

$\omega/(2\pi)$	q	$N = n^3$	R	T_{setup}	N_{iter}	T_{solve}	N_{iter}	T_{solve}
5	8	40^3	2	9.00e+01	3	7.20e-01	3	7.20e-01
10	8	80^3	3	2.37e+03	4	1.22e+01	3	9.90e+00
20	8	160^3	4	4.74e+04	4	1.37e+02	3	1.07e+02

6 Conclusion and Future Work

In this paper, we have proposed a sweeping preconditioner for the iterative solution of variable coefficient Helmholtz equations in two and three dimensions. The construction of
the preconditioner is based on an approximate block LDL^t factorization that eliminates the unknowns layer by layer starting from an absorbing layer. By representing and manipulating the intermediate Schur complement matrices in the hierarchical matrix framework, we have obtained preconditioners with almost linear cost. Numerical examples demonstrate that, when combined with standard iterative solvers, these new preconditioners result almost ω-independent iteration numbers.

Some questions remain open. First, in the 2D case, we have proved the compressibility result under the constant coefficient case. A natural question is to what extent this is still true for a general velocity field.

The hierarchical matrix representation may not be very accurate for the Schur complement matrices in 3D, since some high-rank off-diagonal blocks are stored in a low-rank factorized form. Yet our algorithm works well with very small iteration numbers. It is important to understand why this is the case and also to investigate whether other matrix representations would be able to provide more accurate approximations for T_m.

The memory space required by the sweeping preconditioners is linear with respect to the number of unknowns. However, the prefactor is higher compared to the shifted Laplacian preconditioners and the ILU preconditioners. Most of the memory space is in fact used to store the diagonal part of T_m, which corresponds to the local part of the half-space Green’s function. One improvement is to use the asymptotic formula of the Green’s function to represent the local part analytically and this can eliminate the need of storing the diagonal part of the hierarchical matrices.

The matrix representation used here is often referred to as the the H^1 form of the hierarchical matrix algebra. More efficient and sophisticated versions are the uniform H^1 form and the H^2 form. For our problem, Algorithm 2.5 requires the matrices to be represented in the H^1 form since it uses the matrix inversion procedure. However, Algorithm 2.6 of applying the sweeping preconditioner can potentially speed up dramatically when the H^2 form is used.

We have chosen the PML for the numerical implementation of the Sommerfeld condition. Many other boundary conditions are available and commonly used. The sweeping approach should work for these boundary conditions, as we have briefly demonstrated for the second order ABC. The design and implementation of these other boundary conditions should minimize non-physical reflections in order for the sweeping preconditioner to do well.

The second order central difference scheme is used to discretize the Helmholtz equation in this paper. We would like to investigate other more accurate stencils and other types of discretizations such as h/p finite elements, spectral elements, and discontinuous Galerkin methods.

Since high frequency fields typically oscillate rapidly on a similar scale throughout the computational domain, uniform grids are very common. There are however situations where unstructured grids would be natural. The sweeping approach and more general hierarchical matrix representations can also be used in this context. The challenge here is to maintain compatibility between the matrix representation and the geometry as one sweeps through the computational domain. In a second paper [19] another variant of sweeping preconditioning is presented, which is more flexible with respect to unstructured and adaptive grids.

The sequential nature of the sweeping approach complicates parallelization of the algorithm. One possibility is to use parallel hierarchical matrix representation for each layer. This would parallelize an inner part of the algorithm. Another technique would leverage the idea of domain decomposition and use the sweeping preconditioner within each subdomain.
The subdomains should then be coupled with absorbing boundary conditions. The Helmholtz equation is only the simplest example of time-harmonic wave equations. Other cases include elasticity equation and Maxwell equations. For these more complicated systems, multiple wave numbers coexist even for the constant coefficient case. The basic idea of the sweeping preconditioner should apply but the details need to be worked out.

References

[1] A. Bayliss, C. I. Goldstein, and E. Turkel. An iterative method for the Helmholtz equation. *Journal of Computational Physics*, 49(3):443 – 457, 1983.

[2] J.-D. Benamou and B. Desprès. A domain decomposition method for the Helmholtz equation and related optimal control problems. *J. Comput. Phys.*, 136(1):68–82, 1997.

[3] M. Benzi, J. C. Haws, and M. Tůma. Preconditioning highly indefinite and nonsymmetric matrices. *SIAM J. Sci. Comput.*, 22(4):1333–1353 (electronic), 2000.

[4] J.-P. Berenger. A perfectly matched layer for the absorption of electromagnetic waves. *J. Comput. Phys.*, 114(2):185–200, 1994.

[5] B. L. Biondi. *3D Seismic Imaging*. Society of Exploration Geophysicists, 2006.

[6] E. Bleszynski, M. Bleszynski, and T. Jaroszewicz. AIM: Adaptive integral method for solving large-scale electromagnetic scattering and radiation problems. *Radio Science*, 31:1225–1252, 1996.

[7] S. Börm, L. Grasedyck, and W. Hackbusch. Hierarchical matrices, 2006. Max-Planck-Institute Lecture Notes.

[8] A. Brandt and I. Livshits. Wave-ray multigrid method for standing wave equations. *Electron. Trans. Numer. Anal.*, 6(Dec.):162–181 (electronic), 1997. Special issue on multilevel methods (Copper Mountain, CO, 1997).

[9] O. P. Bruno and E. M. Hyde. Higher-order Fourier approximation in scattering by two-dimensional, inhomogeneous media. *SIAM J. Numer. Anal.*, 42(6):2298–2319 (electronic), 2005.

[10] W. C. Chew and W. H. Weedon. A 3-d perfectly matched medium from modified Maxwell’s equations with stretched coordinates. *Microwave Opt. Tech. Lett.*, 7:599–604, 1994.

[11] B. Desprès. Domain decomposition method and the Helmholtz problem. In *Mathematical and numerical aspects of wave propagation phenomena (Strasbourg, 1991)*, pages 44–52. SIAM, Philadelphia, PA, 1991.

[12] J. Duff and J. Reid. The multifrontal solution of indefinite sparse symmetric linear equations. *ACM Trans. Math. Software*, 9:302–325, 1983.

[13] H. C. Elman, O. G. Ernst, and D. P. O’Leary. A multigrid method enhanced by Krylov subspace iteration for discrete Helmholtz equations. *SIAM J. Sci. Comput.*, 23(4):1291–1315 (electronic), 2001.
[14] B. Engquist and A. Majda. Absorbing boundary conditions for the numerical simulation of waves. *Math. Comp.*, 31(139):629–651, 1977.

[15] B. Engquist and A. Majda. Radiation boundary conditions for acoustic and elastic wave calculations. *Comm. Pure Appl. Math.*, 32(3):314–358, 1979.

[16] B. Engquist and O. Runborg. Computational high frequency wave propagation. *Acta Numer.*, 12:181–266, 2003.

[17] B. Engquist and L. Ying. Fast directional multilevel algorithms for oscillatory kernels. *SIAM J. Sci. Comput.*, 29(4):1710–1737 (electronic), 2007.

[18] B. Engquist and L. Ying. A fast directional algorithm for high frequency acoustic scattering in two dimensions. *Commun. Math. Sci.*, 7(2):327–345, 2009.

[19] B. Engquist and L. Ying. Sweeping preconditioner for the Helmholtz equation: moving perfectly matched layers. preprint, 2010.

[20] Y. A. Erlangga. Advances in iterative methods and preconditioners for the Helmholtz equation. *Arch. Comput. Methods Eng.*, 15(1):37–66, 2008.

[21] Y. A. Erlangga, C. W. Oosterlee, and C. Vuik. A novel multigrid based preconditioner for heterogeneous Helmholtz problems. *SIAM J. Sci. Comput.*, 27(4):1471–1492 (electronic), 2006.

[22] Y. A. Erlangga, C. Vuik, and C. W. Oosterlee. On a class of preconditioners for solving the Helmholtz equation. *Appl. Numer. Math.*, 50(3-4):409–425, 2004.

[23] J. Fish and Y. Qu. Global-basis two-level method for indefinite systems. I. Convergence studies. *Internat. J. Numer. Methods Engrg.*, 49(3):439–460, 2000.

[24] M. J. Gander and F. Nataf. An incomplete LU preconditioner for problems in acoustics. *J. Comput. Acoust.*, 13(3):455–476, 2005.

[25] J. George. Nested dissection of a regular finite element mesh. *SIAM J. Numer. Anal.*, 10:345–363, 1973.

[26] L. Grasedyck and W. Hackbusch. Construction and arithmetics of \mathcal{H}-matrices. *Computing*, 70(4):295–334, 2003.

[27] W. Hackbusch. A sparse matrix arithmetic based on \mathcal{H}-matrices. Part I: Introduction to \mathcal{H}-matrices. *Computing*, 62:89–108, 1999.

[28] N. Halko, P.-G. Martinsson, and J. Tropp. Finding structure with randomness: Stochastic algorithms for constructing approximate matrix decompositions. preprint, arXiv:0909.4061, 2009.

[29] S. Johnson. Notes on perfectly matched layers. Technical Report, Massachusetts Institute of Technology, 2010.

[30] A. Laird and M. Giles. Preconditioned iterative solution of the 2D Helmholtz equation. Technical Report, NA 02-12, Computing Lab, Oxford University, 2002.
[31] B. Lee, T. A. Manteuffel, S. F. McCormick, and J. Ruge. First-order system least-squares for the Helmholtz equation. *SIAM J. Sci. Comput.*, 21(5):1927–1949 (electronic), 2000. Iterative methods for solving systems of algebraic equations (Copper Mountain, CO, 1998).

[32] E. Liberty, F. Woolfe, P.-G. Martinsson, V. Rokhlin, and M. Tygert. Randomized algorithms for the low-rank approximation of matrices. *Proc. Natl. Acad. Sci. USA*, 104(51):20167–20172, 2007.

[33] J. Liu. The multifrontal method for sparse matrix solution: Theory and practice. *SIAM Rev.*, 34:82–109, 1992.

[34] I. Livshits and A. Brandt. Accuracy properties of the wave-ray multigrid algorithm for Helmholtz equations. *SIAM J. Sci. Comput.*, 28(4):1228–1251 (electronic), 2006.

[35] G. F. Margrave and R. J. Ferguson. Wavefield extrapolation by nonstationary phase shift. *Geophysics*, 64(4):1067–1078, 1999.

[36] P.-G. Martinsson. A fast direct solver for a class of elliptic partial differential equations. *Journal of Scientific Computing*, 38:316–330, 2009.

[37] P.-G. Martinsson and V. Rokhlin. A fast direct solver for scattering problems involving elongated structures. *J. Comput. Phys.*, 221(1):288–302, 2007.

[38] D. Osei-Kuffuor and Y. Saad. Preconditioning Helmholtz linear systems. Technical Report, umsi-2009-30, Minnesota Supercomputer Institute, University of Minnesota, 2009.

[39] V. Rokhlin. Rapid solution of integral equations of scattering theory in two dimensions. *J. Comput. Phys.*, 86(2):414–439, 1990.

[40] V. Rokhlin. Diagonal forms of translation operators for the Helmholtz equation in three dimensions. *Appl. Comput. Harmon. Anal.*, 1(1):82–93, 1993.

[41] Y. Saad. *Iterative methods for sparse linear systems*. Society for Industrial and Applied Mathematics, Philadelphia, PA, second edition, 2003.

[42] Y. Saad and M. H. Schultz. GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems. *SIAM J. Sci. Statist. Comput.*, 7(3):856–869, 1986.

[43] R. F. Susan-Resiga and H. M. Atassi. A domain decomposition method for the exterior Helmholtz problem. *J. Comput. Phys.*, 147(2):388–401, 1998.

[44] P. Vaněk, J. Mandel, and M. Brezina. Two-level algebraic multigrid for the Helmholtz problem. In *Domain decomposition methods, 10 (Boulder, CO, 1997)*, volume 218 of *Contemp. Math.*, pages 349–356. Amer. Math. Soc., Providence, RI, 1998.

[45] J. Xia, S. Chandrasekaran, M. Gu, and X. S. Li. Superfast multifrontal method for large structured linear systems of equations. *SIAM J. Matrix Anal. Appl.*, 31(3):1382–1411, 2009.