Pseudo-Riemannian Symmetries on Heisenberg group \mathbb{H}_3

Michel Goze *, Paola Piu

December 21, 2013

Abstract

The notion of Γ-symmetric space is a natural generalization of the classical notion of symmetric space based on \mathbb{Z}_2-grading of Lie algebras. In our case, we consider homogeneous spaces G/H such that the Lie algebra \mathfrak{g} of G admits a Γ-grading where Γ is a finite abelian group. In this work we study Riemannian metrics and Lorentzian metrics on the Heisenberg group \mathbb{H}_3 adapted to the symmetries of a Γ-symmetric structure on \mathbb{H}_3. We prove that the classification of \mathbb{Z}_2^2-symmetric Riemannian and Lorentzian metrics on \mathbb{H}_3 corresponds to the classification of left invariant Riemannian and Lorentzian metrics, up to isometries. This gives examples of non-symmetric Lorentzian homogeneous spaces.

Mathematics Subject Classification 2000: 22F30, 53C30, 53C35, 17B70

Key words: Γ-symmetric spaces, Heisenberg group, Graded Lie algebras.

1 Γ-symmetric spaces

Let Γ be a finite abelian group. A Γ-symmetric space is an homogeneous space G/H such that there exists an injective homomorphism

$$\rho : \Gamma \to Aut(G)$$

where $Aut(G)$ is the group of automorphisms of the Lie group G, the subgroup H satisfying $G^\rho_e \subset H \subset G^\rho$ where $G^\rho = \{ x \in G / \rho(\gamma)(x) = x, \forall \gamma \in \Gamma \}$ and G^ρ_e is the connected identity component of G^ρ of G.

The notion of Γ-symmetric space is a generalization of the classical notion of symmetric space by considering a general finite abelian group of symmetries Γ instead of \mathbb{Z}_2. The case $\Gamma = \mathbb{Z}_k$, the cyclic group of order k, was considered by A.J. Ledger, M. Obata [13], A. Gray, J. A. Wolf, [8] and O. Kowalski [11] in terms of k-symmetric spaces. The general notion of Γ-symmetric spaces was

*The first author was supported by: Visiting professor program, Regione Autonoma della Sardegna - Italy. The second author was supported by GNSAGA(Italy)
introduced by R. Lutz [12] and was algebraically reconsidered by Y. Bahturin and M. Goze [1]. In this last work the authors proved, in particular, that a Γ-symmetric space $M = G/H$ is reductive and the Lie algebra \mathfrak{g} of G is Γ-graded, that is,

$$\mathfrak{g} = \bigoplus_{\gamma \in \Gamma} \mathfrak{g}_\gamma$$

with

$$[\mathfrak{g}_\gamma, \mathfrak{g}_{\gamma'}] \subset \mathfrak{g}_{\gamma\gamma'} \quad \forall \gamma, \gamma' \in \Gamma.$$

Examples.

1. If $\Gamma = \mathbb{Z}_2$ and \mathfrak{g} a complex or real Lie algebra, a Γ-grading of \mathfrak{g} corresponds to the classical symmetric decomposition of \mathfrak{g}.

2. If \mathfrak{g} is a simple complex Lie algebra and $\Gamma = \mathbb{Z}_k$, $k \geq 3$, we have the notion of generalized symmetric spaces and the classification of Γ-gradings are described by V. Kac in [10].

3. Let $\mathfrak{g} = \bigoplus_{\gamma \in \Gamma} \mathfrak{g}_\gamma$ be a Lie algebra Γ-graded. For any commutative associative algebra \mathcal{A}, the current algebra $\mathcal{A} \otimes \mathfrak{g}$ (see [18]) also admits a Γ-grading.

4. In [1], the $\mathbb{Z}_2 \times \mathbb{Z}_2$ grading on classical simple complex Lie algebras are classified.

One proves also in [1] that the structure of Γ-symmetric space on G/H is, when G is connected, completely determinate by the Γ-grading of \mathfrak{g}. Thus, if G is connected, the classification of the Γ-symmetric spaces is equivalent to the classification of the Γ-graded Lie algebras. Many results of this last problem concern more particularly the simple Lie algebras. For solvable or nilpotent Lie algebras, it is an open problem. A first approach is to study induced grading on Borel or parabolic subalgebras of simple Lie algebras. In this work we describe Γ-grading of the Heisenberg algebra \mathfrak{h}_3. Two reasons for this study

- Heisenberg algebras are nilradical of some Borel subalgebras.
- The Riemannian and Lorentzian geometries on the 3-dimensional Heisenberg group have been studied recently by many authors. Thus it is interesting to study the Riemannian and Lorentzian symmetries with the natural symmetries associated with a Γ-symmetric structure on the Heisenberg group. In this paper we prove that these geometries are entirely determined by Riemannian and Lorentzian structures adapted to $(\mathbb{Z}_2^2 \times \mathbb{Z}_2^2)$-symmetric structures.

Recall that the Heisenberg algebra \mathfrak{h}_3 is the real Lie algebra whose elements are matrices

$$\begin{pmatrix}
0 & x & z \\
0 & 0 & y \\
0 & 0 & 0
\end{pmatrix} \quad \text{with} \quad x, y, z \in \mathbb{R}$$

2
The elements of h_3, X_1, X_2, X_3, corresponding to $(x, y, z) = (1, 0, 0)$, $(0, 1, 0)$ and $(0, 0, 1)$ form a basis of h_3 and the Lie brackets are given in this basis by

$$\begin{align*}
[X_1, X_2] &= X_3 \\
[X_1, X_3] &= [X_2, X_3] = 0.
\end{align*}$$

The Heisenberg group is the real Lie group of dimension 3 consisting of matrices

$$\begin{pmatrix}
1 & a & c \\
0 & 1 & b \\
0 & 0 & 1
\end{pmatrix}$$

$\alpha, b, c \in \mathbb{R}$

and its Lie algebra is h_3.

2 Finite abelian subgroups of $Aut(h_3)$

Let us denote by $Aut(h_3)$ the group of automorphisms of the Heisenberg algebra h_3. Every $\tau \in Aut(h_3)$ admits, with regards to the basis $\{X_1, X_2, X_3\}$, the following matricial representation:

$$\begin{pmatrix}
\alpha_1 & \alpha_2 & 0 \\
\alpha_3 & \alpha_4 & 0 \\
\alpha_5 & \alpha_6 & \Delta
\end{pmatrix}$$

with $\Delta = \alpha_1\alpha_4 - \alpha_2\alpha_3 \neq 0$.

Let Γ be a finite abelian subgroup of $Aut(h_3)$. It admits a cyclic decomposition. If Γ contains a cyclical component isomorphic to \mathbb{Z}_k, then there exists an automorphism τ satisfying $\tau^k = Id$. The aim of this section is to determinate the cyclic decomposition of any finite abelian subgroup Γ.

2.1 Subgroups of $Aut(h_3)$ isomorphic to \mathbb{Z}_2

Let $\tau \in Aut(h_3)$ satisfying $\tau^2 = Id$. If

$$\begin{pmatrix}
\alpha_1 & \alpha_2 & 0 \\
\alpha_3 & \alpha_4 & 0 \\
\alpha_5 & \alpha_6 & \Delta
\end{pmatrix}$$

is its matricial representation, then the involution can be written in matrix form

$$\begin{pmatrix}
\alpha_1^2 + \alpha_2\alpha_3 & \alpha_1\alpha_2 + \alpha_2\alpha_4 & 0 \\
\alpha_1\alpha_3 + \alpha_3\alpha_4 & \alpha_2\alpha_3 + \alpha_4^2 & 0 \\
\alpha_1\alpha_5 + \alpha_3\alpha_6 + \Delta\alpha_5 & \alpha_2\alpha_5 + \alpha_4\alpha_6 + \Delta\alpha_6 & \Delta^2
\end{pmatrix} = \begin{pmatrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{pmatrix}$$

The resolution of the system can be done using formal calculation software. Here we use Mathematica.
Proposition 2.1. Any involutive automorphism τ of $\text{Aut}(\mathfrak{h}_3)$ is equal to one of the following automorphisms

$$\text{Id}, \quad \tau_1(\alpha_3,\alpha_6) = \begin{pmatrix} -1 & 0 & 0 \\ \frac{\alpha_3}{\alpha_3 \alpha_6} & 1 & 0 \\ \frac{\alpha_6}{2} & \alpha_6 & -1 \end{pmatrix}, \quad \tau_2(\alpha_3,\alpha_5) = \begin{pmatrix} 1 & 0 & 0 \\ \alpha_3 & -1 & 0 \\ \alpha_5 & 0 & -1 \end{pmatrix},$$

$$\tau_3(\alpha_1,\alpha_2 \neq 0,\alpha_6) = \begin{pmatrix} \frac{1 - \alpha_1^2}{\alpha_2} & \alpha_2 & 0 \\ -\alpha_1 & 0 & \alpha_6 \\ (1 + \alpha_1)\alpha_6 & \alpha_2 & -1 \end{pmatrix}, \quad \tau_4(\alpha_5,\alpha_6) = \begin{pmatrix} -1 & 0 & 0 \\ 0 & -1 & 0 \\ \alpha_5 & \alpha_6 & 1 \end{pmatrix}.$$

Corollary 2.2. Any subgroup of $\text{Aut}(\mathfrak{h}_3)$ isomorphic to \mathbb{Z}_2 is equal to one of the following:

1. $\Gamma_1(\alpha_3,\alpha_6) = \{\text{Id}, \tau_1(\alpha_3,\alpha_6)\}$,
2. $\Gamma_2(\alpha_3,\alpha_5) = \{\text{Id}, \tau_2(\alpha_3,\alpha_5)\}$,
3. $\Gamma_3(\alpha_1,\alpha_2,\alpha_6) = \{\text{Id}, \tau_3(\alpha_1,\alpha_2,\alpha_6), \alpha_2 \neq 0\}$,
4. $\Gamma_4(\alpha_5,\alpha_6) = \{\text{Id}, \tau_4(\alpha_5,\alpha_6)\}$.

2.2 Subgroups of $\text{Aut}(\mathfrak{h}_3)$ isomorphic to \mathbb{Z}_3

Let τ be an automorphism satisfying $\tau^3 = \text{Id}$. This identity is equivalent to $\tau^2 = \tau^{-1}$. If we have

$$\tau = \begin{pmatrix} \alpha_1 & \alpha_2 & 0 \\ \alpha_3 & \alpha_4 & 0 \\ \alpha_5 & \alpha_6 & \Delta \end{pmatrix}, \quad \Delta = \alpha_1 \alpha_4 - \alpha_2 \alpha_3,$$

then

$$\tau^{-1} = \frac{1}{\Delta} \begin{pmatrix} \alpha_4 & -\alpha_2 & 0 \\ -\alpha_3 & \alpha_1 & 0 \\ \alpha_3 \alpha_6 - \alpha_4 \alpha_5 & \Delta & \alpha_2 \alpha_5 - \alpha_1 \alpha_6 \\ \alpha_5 & \alpha_6 & 1 \end{pmatrix}.$$

The condition $\tau^2 = \tau^{-1}$ implies $\Delta^3 = 1$ and the only real solution is $\Delta = 1$. Thus $\tau^2 = \tau^{-1}$ is equivalent to

$$\begin{align*}
\alpha_1 \alpha_4 - \alpha_2 \alpha_3 &= 1, \\
\alpha_1^2 + \alpha_2 \alpha_3 &= \alpha_4, \\
\alpha_4^2 + \alpha_2 \alpha_3 &= \alpha_1, \\
\alpha_2 (1 + \alpha_1 + \alpha_4) &= 0, \\
\alpha_3 (1 + \alpha_1 + \alpha_4) &= 0, \\
\alpha_5 (1 + \alpha_1 + \alpha_4) &= 0, \\
\alpha_6 (1 + \alpha_1 + \alpha_4) &= 0.
\end{align*} \tag{1}$$
If $\alpha_1 + \alpha_4 \neq -1$, then $\alpha_2 = \alpha_3 = \alpha_5 = \alpha_6 = 0$ and $\alpha_1 = \alpha_4 = 1$. In this case
$$\tau = Id.$$ Let us assume $\alpha_1 + \alpha_4 = -1$. Then (I) is reduced to
$$\alpha_1^2 + \alpha_1 + \alpha_2 \alpha_3 + 1 = 0$$
If $\alpha_2 \alpha_3 > -\frac{3}{4}$, we have no solutions. Assume that $\alpha_2 \alpha_3 \leq -\frac{3}{4}$. Then
$$\alpha_1 = \frac{-1 \pm \sqrt{-3 - 4\alpha_2 \alpha_3}}{2}.$$ So we obtain
$$\tau_5 = \begin{pmatrix} \frac{-1 - \sqrt{-3 - 4\alpha_2 \alpha_3}}{2} & \alpha_2 & 0 \\ \alpha_3 & -1 + \sqrt{-3 - 4\alpha_2 \alpha_3} & 0 \\ \alpha_5 & 0 & \alpha_6 \end{pmatrix},$$
and
$$\tau_5' = \begin{pmatrix} \frac{-1 + \sqrt{-3 - 4\alpha_2 \alpha_3}}{2} & \alpha_2 & 0 \\ \alpha_3 & -1 - \sqrt{-3 - 4\alpha_2 \alpha_3} & 0 \\ \alpha_5 & 0 & \alpha_6 \end{pmatrix}.$$ Since
$$\tau_5^2(\alpha_2, \alpha_3, \alpha_5, \alpha_6) = \tau_5'(-\alpha_2, -\alpha_3, \alpha_5', \alpha_6'),$$
where
$$\alpha_5' = \frac{\alpha_5 - \sqrt{-3 - 4\alpha_2 \alpha_3 \alpha_5 - 2\alpha_3 \alpha_6}}{2}, \quad \alpha_6' = \frac{\alpha_6 + \sqrt{-3 - 4\alpha_2 \alpha_3 \alpha_6 - 2\alpha_2 \alpha_5}}{2},$$
and
$$\tau_5' \tau_5(\alpha_2, \alpha_3, \alpha_5, \alpha_6) = \tau_5(-\alpha_2, -\alpha_3, \alpha_5'', \alpha_6''),$$
where
$$\alpha_5'' = \frac{\alpha_5 + \sqrt{-3 - 4\alpha_2 \alpha_3 \alpha_5 - 2\alpha_3 \alpha_6}}{2}, \quad \alpha_6'' = \frac{\alpha_6 - \sqrt{-3 - 4\alpha_2 \alpha_3 \alpha_6 - 2\alpha_2 \alpha_5}}{2},$$
we deduce

Proposition 2.3. Any abelian subgroup of $\text{Aut}(h_3)$ isomorphic to \mathbb{Z}_3 is equal to
$$\Gamma_5(\alpha_2, \alpha_3, \alpha_5, \alpha_6) = \{Id, \tau_5(\alpha_2, \alpha_3, \alpha_5, \alpha_6), \tau_5'(-\alpha_2, -\alpha_3, \alpha_5', \alpha_6'), 4\alpha_2 \alpha_3 \leq -3\}.$$
2.3 Subgroups of $\text{Aut}(h_3)$ isomorphic to \mathbb{Z}_k, $k > 3$

If $\tau \in \text{Aut}(h_3)$ satisfies $\tau^k = Id$, $k > 3$, its minimal polynomial has 3 simple roots and it is of degree 3. More precisely, it is written

$$m_\tau(x) = (x - 1)(x - \mu_k)(x - \overline{\mu_k})$$

where μ_k is a root of order k of 1. As τ has to generate a cyclic subgroup of $\text{Aut}(h_3)$ isomorphic to \mathbb{Z}_k, the root μ_k is a primitive root of 1. There exists m, a prime number with k such that $\mu_k = \exp\left(\frac{2m\pi}{k}\right)$. If $\tau = \begin{pmatrix} \alpha_1 & \alpha_2 & 0 \\ \alpha_3 & \alpha_4 & 0 \\ \alpha_5 & \alpha_6 & \Delta \end{pmatrix}$ is the matricial representation of τ, then $\Delta = 1$ and $\alpha_1 + \alpha_4 = 2 \cos \frac{2m\pi}{k}$. Thus

$$\begin{cases}
\alpha_1 = \cos \frac{2m\pi}{k} - \sqrt{\cos^2 \frac{2m\pi}{k} - 1 - \alpha_2 \alpha_3}, \\
\alpha_4 = \cos \frac{2m\pi}{k} + \sqrt{\cos^2 \frac{2m\pi}{k} - 1 - \alpha_2 \alpha_3}, \\
\end{cases}$$

or

$$\begin{cases}
\alpha_1 = \cos \frac{2m\pi}{k} + \sqrt{\cos^2 \frac{2m\pi}{k} - 1 - \alpha_2 \alpha_3}, \\
\alpha_4 = \cos \frac{2m\pi}{k} - \sqrt{\cos^2 \frac{2m\pi}{k} - 1 - \alpha_2 \alpha_3}, \\
\end{cases}$$

If τ' and τ'' denote the automorphisms corresponding to these solutions, we have, for a good choice of the parameters α_i, $\tau' \circ \tau'' = Id$ and $\tau'' = (\tau')^{k-1}$. Thus these automorphisms generate the same subgroup of $\text{Aut}(h_3)$. Moreover, with same considerations, we can choose $m = 1$. Thus we have determinate the automorphism $\tau_6(\alpha_2, \alpha_3, \alpha_5, \alpha_6)$ whose matrix is

$$\begin{pmatrix}
\cos \frac{2\pi}{k} + \sqrt{\cos^2 \frac{2\pi}{k} - 1 - \alpha_2 \alpha_3} & \alpha_2 & 0 \\
\alpha_3 & \cos \frac{2\pi}{k} - \sqrt{\cos^2 \frac{2\pi}{k} - 1 - \alpha_2 \alpha_3} & \alpha_6 \\
\alpha_5 & \alpha_6 & 1
\end{pmatrix}$$

Proposition 2.4. Any abelian subgroup of $\text{Aut}(h_3)$ isomorphic to \mathbb{Z}_k is equal to

$$\Gamma_{6,k}(\alpha_2, \alpha_3, \alpha_5, \alpha_6) = \left\{ Id, \tau_6(\alpha_2, \alpha_3, \alpha_5, \alpha_6), \ldots, \tau_6^{k-1}, \ \alpha_2 \alpha_3 \leq -1 + \cos^2 \frac{2\pi}{k} \right\}.$$
2.4 General case

Now suppose that the cyclic decomposition of a finite abelian subgroup Γ of $\text{Aut}(\mathfrak{h}_3)$ is isomorphic to $\mathbb{Z}_2^{k_2} \times \mathbb{Z}_3^{k_3} \times \cdots \times \mathbb{Z}_p^{k_p}$ with $k_i \geq 0$.

Lemma 2.5. Let Γ be an abelian finite subgroup of $\text{Aut}(\mathfrak{h}_3)$ with a cyclic decomposition isomorphic to $\mathbb{Z}_2^{k_2} \times \mathbb{Z}_3^{k_3} \times \cdots \times \mathbb{Z}_p^{k_p}$.

Then

- If there is $i \geq 3$ such that $k_i \neq 0$, then $k_2 \leq 1$.
- If $k_2 \geq 2$, then Γ is isomorphic to $\mathbb{Z}_2^{k_2}$.

Proof. Assume that there is $i \geq 3$ such that $k_i \geq 1$. If $k_2 \geq 1$, there exist two automorphisms τ and τ' satisfying $\tau^2 = \tau'^2 = \text{Id}$ and $\tau' \circ \tau = \tau \circ \tau'$. Thus τ' and τ can be reduced simultaneously in the diagonal form and admit a common basis of eigenvectors. As for any $\sigma \in \text{Aut}(\mathfrak{h}_3)$ we have $\sigma(X_3) = \Delta X_3$, X_3 is an eigenvector for τ' and τ associated to the eigenvalue 1 for τ' and ± 1 for τ. As the two other eigenvalues of τ' are complex conjugate numbers, the corresponding eigenvectors are complex conjugate. This implies that the eigenvalues of τ distinguished of $\Delta = \pm 1$ are equal and from Proposition 2.4, $\tau = \tau_4(\alpha_5, \alpha_6)$. But

$$\tau_4(\alpha_5, \alpha_6) \circ \tau_4(\alpha'_5, \alpha'_6) = \tau_4(\alpha'_5, \alpha'_6) \circ \tau_4(\alpha_5, \alpha_6) \iff \alpha_5 = \alpha'_5, \alpha_6 = \alpha'_6.$$

Thus, we have to determine, in a first step, the subgroups Γ of $\text{Aut}(\mathfrak{h}_3)$ isomorphic a $(\mathbb{Z}_2)^k$ with $k \geq 2$.

- Any involutive automorphism τ commuting with $\tau_1(\alpha_3, \alpha_6)$ and distinct from it is equal to one of the following automorphisms

$$\tau_2(-\alpha_3, \alpha_5), \quad \tau_4(\alpha_5, -\alpha_6)$$

Indeed, if we set $[\tau, \tau'] = \tau \circ \tau' - \tau' \circ \tau$ then

$$[\tau_1(\alpha_3, \alpha_6), \tau_1(\alpha'_3, \alpha'_6)] = 0 \quad \text{if and only if} \quad \alpha'_3 = \alpha_3 \quad \text{and} \quad \alpha'_6 = \alpha_6$$

$$[\tau_1(\alpha_3, \alpha_6), \tau_2(\alpha'_3, \alpha'_5)] = 0 \quad \text{if and only if} \quad \alpha'_3 = -\alpha_3$$

$$[\tau_1(\alpha_3, \alpha_6), \tau_1(\alpha_1, \alpha_2, \alpha'_3)] \neq 0 \quad \text{whatever they are} \quad \alpha_1, \alpha_2, \alpha'_3$$

$$[\tau_1(\alpha_3, \alpha_6), \tau_4(\alpha_5, \alpha_6)] = 0 \quad \text{if and only if} \quad \alpha'_6 = -\alpha_6$$

These results follow directly from the matrix calculation. In addition we have

$$\tau_1(\alpha_3, \alpha_6) \circ \tau_2(-\alpha_3, \alpha_5) = \tau_4 \left(-\frac{\alpha_3 \alpha_6}{2} - \alpha_5, -\alpha_6 \right)$$

7
and
\[\tau_2(-\alpha_3, \alpha_5), \tau_4 \left(-\frac{\alpha_3 \alpha_6}{2} - \alpha_5, -\alpha_6 \right) \] = 0.
Thus
\[\Gamma_7(\alpha_3, \alpha_5, \alpha_6) = \{ Id, \tau_1(\alpha_3, \alpha_6), \tau_2(-\alpha_3, \alpha_5), \tau_4 \left(-\frac{\alpha_3 \alpha_6}{2} - \alpha_5, -\alpha_6 \right) \} \]
is a subgroup of \(\text{Aut}(\mathfrak{h}_3) \) isomorphic to \(\mathbb{Z}_2^2 \). Moreover it is the only subgroup of \(\text{Aut}(\mathfrak{h}_3) \) of type \((\mathbb{Z}_2)^k, k \geq 2 \), containing an automorphism of type \(\tau_1(\alpha_3, \alpha_6) \).

- Let us suppose that \(\tau_2(\alpha_3, \alpha_5) \in \Gamma \) and that \(\tau_1(\alpha_3, \alpha_6) \notin \Gamma \). We have
 \[[\tau_2(\alpha_3, \alpha_5), \tau_2(\alpha'_3, \alpha'_5)] = 0 \] if and only if \(\alpha'_3 = \alpha_3 \) and \(\alpha'_5 = \alpha_5 \)
 \[[\tau_2(\alpha_3, \alpha_5), \tau_3(\alpha_1, \alpha_2, \alpha_6)] \neq 0 \] because by assumption \(\alpha_2 \neq 0 \)
 \[[\tau_2(\alpha_3, \alpha_5), \tau_4(\alpha'_5, \alpha_6)] = 0 \] if and only if \(\alpha'_5 = -\alpha_5 - \frac{\alpha_3 \alpha_6}{2} \)
But
\[\tau_2(\alpha_3, \alpha_5) \circ \tau_4(\alpha_5 - \frac{\alpha_3 \alpha_6}{2}, \alpha_6) = \tau_1(\alpha_3, \alpha_6). \]
Thus every abelian subgroup \(\Gamma \) containing \(\tau_2(\alpha_3 \alpha_5) \) are either isomorphic to \(\mathbb{Z}_2 \) or is equal to \(\Gamma_7 \).

- Assume that \(\tau_3(\alpha_1, \alpha_3, \alpha_6) \in \Gamma \). We have
 \[[\tau_3(\alpha_1, \alpha_2, \alpha_6), \tau_3(\alpha'_1, \alpha'_2, \alpha'_6)] = 0 \] if and only if \(\alpha'_1 = -\alpha_1 \) and \(\alpha'_2 = -\alpha_2 \).
Thus
\[[\tau_3(\alpha_1, \alpha_2, \alpha_6), \tau_3(-\alpha_1, -\alpha_2, \alpha'_6)] = 0, \]
and
\[[\tau_3(\alpha_1, \alpha_2, \alpha_6), \tau_4(\alpha_5, \alpha'_6)] = 0 \] if and only if \(\alpha_2 \alpha_5 + 2\alpha_6 = (\alpha_1 - 1)\alpha'_6 \).
Moreover
\[\tau_3(\alpha_1, \alpha_2, \alpha_6) \circ \tau_3(-\alpha_1, -\alpha_2, \alpha'_6) = \tau_4 \left(\frac{\alpha'_6(1 - \alpha_1) - \alpha_6(1 + \alpha_1)}{\alpha_2}, -\alpha_6 - \alpha'_6 \right) \]
because
\[\alpha_2 \left(\frac{\alpha'_6(1 - \alpha_1) - \alpha_6(1 + \alpha_1)}{\alpha_2} \right) + 2\alpha_6 + (1 - \alpha_1)(-\alpha_6 - \alpha'_6) = 0. \]
The subgroup of \(\Gamma_8(\alpha_1, \alpha_2, \alpha_6, \alpha'_6) \) of \(\text{Aut}(\mathfrak{h}_3) \) equal to
\[\{ \text{Id}, \tau_3(\alpha_1, \alpha_2, \alpha_6), \tau_3(-\alpha_1, -\alpha_2, \alpha'_6), \tau_4 \left(\frac{\alpha'_6(1 - \alpha_1) - \alpha_6(1 + \alpha_1)}{\alpha_2}, -\alpha_6 - \alpha'_6 \right) \} \]
is isomorphic to \(\mathbb{Z}_2^2 \).
• We suppose that \(\tau_4(\alpha_5, \alpha_6) \in \Gamma \). If \(\Gamma \) is not isomorphic to \(\mathbb{Z}_2 \), then \(\Gamma \) is one of the groups \(\Gamma_7, \Gamma_8 \).

Theorem 2.1. Any finite abelian subgroup \(\Gamma \) of \(\text{Aut}(h_3) \) isomorphic to \((\mathbb{Z}_2)^k \) is one of the following

1. \(k = 1 \), \(\Gamma = \Gamma_1(\alpha_3, \alpha_6), \Gamma_2(\alpha_3, \alpha_5), \Gamma_3(\alpha_1, \alpha_2, \alpha_6), \alpha_2 \neq 0, \Gamma_4(\alpha_5, \alpha_6) \),
2. \(k = 2 \), \(\Gamma = \Gamma_7(\alpha_3, \alpha_5, \alpha_6), \Gamma_8(\alpha_1, \alpha_2, \alpha_6, \alpha_6') \).

Let us assume now that \(\Gamma \) is isomorphic to \(\mathbb{Z}_3^{k_3} \) with \(k_3 \geq 2 \). If \(\tau \in \Gamma_5 \), its matricial representation is

\[
\begin{pmatrix}
-1 - \sqrt{-3 - 4\alpha_2\alpha_3} \\
\alpha_3 \\
\alpha_5
\end{pmatrix} \begin{pmatrix}
\alpha_2 \\
0 \\
0
\end{pmatrix} \begin{pmatrix}
2 \\
-1 + \sqrt{-3 - 4\alpha_2\alpha_3} \\
0
\end{pmatrix}.
\]

To simplify, we put \(\lambda = \frac{-1 - \sqrt{-3 - 4\alpha_2\alpha_3}}{2} \). The eigenvalues of \(\tau \) are \(1, j, j^2 \) and the corresponding eigenvectors \(X_3, V, V' \) with

\[
V = (1, -\frac{\lambda - j}{\alpha_2}, -\frac{\alpha_5}{1 - j} + \frac{\alpha_6(\lambda - j)}{\alpha_2(1 - j)})
\]

if \(\alpha_2 \neq 0 \). If \(\tau' \) is an automorphism of order 3 commuting with \(\tau \), then

\[
\tau'V = jV \quad \text{or} \quad j^2V.
\]

But the two first components of \(\tau'(V) \) are

\[
\lambda' - \frac{\beta_2}{\alpha_2}(\lambda - j), \beta_3 - \frac{\lambda'(\lambda - j)}{\alpha_2}
\]

where \(\beta_i \) and \(\lambda' \) are the corresponding coefficients of the matrix of \(\tau' \). This implies

\[
\alpha_2\lambda' - \beta_2(\lambda - j) = \alpha_2j \quad \text{or} \quad \alpha_2j^2.
\]

Considering the real and complex parts of this equation, we obtain

\[
\begin{cases}
\alpha_2\lambda' - \beta_2\lambda = 0, \\
\beta_2j = \alpha_2j \quad \text{or} \quad \alpha_2j^2.
\end{cases}
\]

As \(\alpha_2 \neq 0 \), we obtain \(\alpha_2 = \beta_2 \) and \(\lambda = \lambda' \). Let us compare the second component of \(\tau'(V) \). We obtain

\[
\beta_3\alpha_2 - \lambda'(\lambda - j) = -(\lambda - j)j \quad \text{or} \quad -(\lambda - j)j^2.
\]

As \(\lambda = \lambda' \), we have in the first case \(2\lambda j = j^2 \) and in the second case \(2\lambda j = j^3 = 1 \). In any case, this is impossible. Thus \(\alpha_2 = 0 \) and, from section 2.2, \(\tau = Id. \) This implies that \(k_3 = 1 \) or 0.
Theorem 2.2. Let Γ be a finite abelian subgroup of $Aut(h_3)$. Thus Γ is isomorphic to one of the following

1. $\mathbb{Z}_2 \times \mathbb{Z}_2$,

2. $\mathbb{Z}_2^{k_2} \times \mathbb{Z}_3^{k_3} \times \cdots \times \mathbb{Z}_p^{k_p}$ with $k_i = 0$ or 1 for $i = 2, \cdots, p$.

To prove the second part, we show identically to the case $i = 3$ that $k_i = 1$ as soon as $k_i \neq 0$.

Example. The group

$$\Gamma_4(0, 0) \times \Gamma_5(0, 0, 0) \times \cdots \times \Gamma_{6,k}(0, 0, 0)$$

satisfies the second property of the theorem.

Remark. We have determined the finite abelian subgroups of $Aut(h_3)$. There are non-abelian finite subgroups with elements of order at most 3. Take for example the subgroup generated by

$$\sigma_1 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{pmatrix}, \quad \sigma_2 = \begin{pmatrix} -1/2 & \alpha & 0 \\ 3\alpha & -1/2 & 0 \\ 0 & 0 & 1 \end{pmatrix} \quad \alpha \neq 0$$

The relations on the generators are

$$\begin{cases} \sigma_1^2 = Id, \\ \sigma_2^2 = Id, \\ \sigma_1 \sigma_2 \sigma_1 = \sigma_2^2. \end{cases}$$

Thus the group generated by σ_1 and σ_2 is isomorphic to the symmetric group Σ_3 of degree 3.

3 Γ-grading of h_3

3.1 Description of the \mathbb{Z}_2 and \mathbb{Z}_2^2-gradings

Let Γ be a finite abelian subgroup of $Aut(h_3)$. We consider a Γ-grading of h_3

$$h_3 = \bigoplus_{\gamma \in \Gamma} h_{3, \gamma}$$

such that $h_{3,e} = \{0\}$ where e is the identity of Γ. In this case, the space Γ-symmetric associated with this grading is isomorphic to the Heisenberg group H_3 and then H_3 can be studied in terms of Γ-symmetric spaces. In this section, we are particularly interested by the case $\Gamma = \mathbb{Z}_2$ or $\Gamma = \mathbb{Z}_2 \times \mathbb{Z}_2$.

- If $\Gamma = \mathbb{Z}_2$ then the grading of h_3 is of the type

$$h_3 = g_0 \oplus g_1$$
with $g_0 \neq \{0\}$. In this case the corresponding symmetric homogeneous space is isomorphic to \mathbb{H}_3/H where H is a non trivial Lie subgroup of \mathbb{H}_3 whose Lie algebra is g_0. The group \mathbb{H}_3 is not provided with a symmetric space structure.

- If $\Gamma = \mathbb{Z}_2^2$ then $\Gamma = \Gamma_7$ or $\Gamma = \Gamma_8$. Recall that

$$\Gamma_7 = \left\{ \text{Id}, \tau_1(\alpha_3, \alpha_6), \tau_2(-\alpha_3, \alpha_5), \tau_4 \left(-\frac{\alpha_3\alpha_6}{2} - \alpha_5, -\alpha_6 \right) \right\}$$

Denote by $L(V_1, \cdots, V_k)$ the real vector space generated by the vectors V_1, \cdots, V_k. Recall that each vector of the Heisenberg algebra is decomposed in the basis $\{X_1, X_2, X_3\}$. The eigenspaces associated with $\tau_1(\alpha_3, \alpha_6)$ are

$$V_1 = L \left((0, 1, \frac{\alpha_6}{2}) \right)$$
$$V_{-1} = L \left((1, 0, \alpha_5), (0, 0, 1) \right)$$

The eigenspaces associated to $\tau_2(-\alpha_3, \alpha_5)$ are

$$W_1 = L \left((1, 0, \frac{\alpha_5}{2}) \right)$$
$$W_{-1} = L \left((0, 1, 0), (0, 0, 1) \right).$$

Since $\tau_4 = \tau_1 \circ \tau_2$, the grading of h_3 associated with Γ_7 is

$$h_3 = V_1 \cap W_1 \oplus V_1 \cap W_{-1} \oplus V_{-1} \cap W_1 \oplus V_{-1} \cap W_{-1}$$
$$= \left\{ 0 \right\} \oplus \mathbb{R}\left\{ (0, 1, \frac{\alpha_6}{2}) \right\} \oplus \mathbb{R}\left\{ (1, 0, \frac{\alpha_5}{2}) \right\} \oplus \mathbb{R}\left\{ (0, 0, 1) \right\}.$$

Now consider the case where $\Gamma = \Gamma_8$

$$\Gamma_8 = \left\{ \text{Id}, \tau_3(\alpha_1, \alpha_2, \alpha_6), \tau_3(\alpha_1', \alpha_2', \alpha_6'), \tau_4 \left(\frac{\alpha_6'(1 - \alpha_1) - \alpha_6(1 + \alpha_1)}{\alpha_2}, -\alpha_6 - \alpha_6' \right) \right\}$$

The eigenspaces associated with τ_3^1 are

$$V_1 = L \left((1, 1 - \frac{\alpha_1}{\alpha_2}, \frac{\alpha_6}{\alpha_2}) \right)$$
$$V_{-1} = L \left((1, 1 + \frac{\alpha_1}{\alpha_2}, 0), (0, 0, 1) \right)$$

The eigenspaces associated with τ_3^2 are

$$W_1 = L \left((1, -\frac{1 + \alpha_1}{\alpha_2}, \frac{\alpha_6'}{\alpha_2}) \right)$$
$$W_{-1} = L \left((1, -\frac{1 - \alpha_1}{\alpha_2}, 0), (0, 0, 1) \right).$$
The grading associated with Γ_8 is therefore
\[h_3 = V_1 \cap W_1 \oplus V_1 \cap W_{-1} \oplus V_{-1} \cap W_1 \oplus V_{-1} \cap W_{-1} = \{0\} \oplus \mathbb{R}\{(1, \frac{1-\alpha_1}{\alpha_2}, 0)\} \oplus \mathbb{R}\{(1, -\frac{1+\alpha_1}{\alpha_2}, 0)\} \oplus \mathbb{R}\{(0, 0, 1)\}. \]

Proposition 3.1. The \mathbb{Z}^2_2-grading of h_3 correspond to one of the following:
\[h_3 = \{0\} \oplus \mathbb{R}\{(X_2 + \frac{\alpha_6}{2} X_3)\} \oplus \mathbb{R}\{(X_1 - \frac{\alpha_3}{2} X_2 + \frac{\alpha_5}{2} X_3)\} \oplus \mathbb{R}\{X_3\} \]
\[h_3 = \{0\} \oplus \mathbb{R}\{(X_1 + \frac{1-\alpha_1}{\alpha_2} X_2)\} \oplus \mathbb{R}\{(X_1 - \frac{1+\alpha_1}{\alpha_2} X_2)\} \oplus \mathbb{R}\{X_3\} \]

Remark. If $\Gamma = \mathbb{Z}_3$, we consider the complexification h_3, \mathbb{C} of the Heisenberg algebra. We still denote by X_1, X_2, X_3 the complex basis of h_3, \mathbb{C} corresponding to the given basis of h_3. The grading in this case is defined by the complex eigenspaces of τ_5. They are
\[V_1 = \mathbb{C}\{(0, 0, 1)\} \]
\[V_j = \mathbb{C}\{(1, \frac{1+2j+\sqrt{-3-4\alpha_2\alpha_3}}{\alpha_2}, 0)\} \]
\[V_\bar{j} = \mathbb{C}\{(1, \frac{1+2\bar{j}+\sqrt{-3-4\alpha_2\alpha_3}}{\alpha_2}, 0)\} \]
We have the grading
\[h_3, \mathbb{C} = V_1 \oplus V_j \oplus V_\bar{j} \]

3.2 Classification of \mathbb{Z}^2_2-grading up an automorphism

Lemma 3.2. There is an automorphism $\sigma \in Aut(h_3)$ such that
\[\sigma^{-1}\Gamma_7 \sigma = \Gamma_8 \]

Proof. Denote by $(\alpha_3, \alpha_5, \alpha_6)$ the parameters of the family Γ_7 and by $(\alpha_1, \alpha_2, \alpha_6', \alpha_6'')$ those of Γ_8. If $\alpha_1^2 \neq 1$, then the automorphism
\[\sigma = \left(\begin{array}{ccc}
\gamma & \frac{\gamma \alpha_2}{\alpha_1 - 1} & 0 \\
\delta & \frac{\alpha_2(\gamma \alpha_3 + \delta - \alpha_1 \delta)}{-1 + \alpha_2^2} & 0 \\
\rho & \mu & -\frac{\gamma \alpha_2(\gamma \alpha_3 + 2\delta)}{-1 + \alpha_2^2}
\end{array} \right) \]
with
\[\rho = \frac{(2\gamma \alpha_5 + \gamma \alpha_3 \alpha_6 + 2\alpha_6 \delta)}{4} + \frac{(2\gamma^2 \alpha_3 a'_6 + 4\gamma \delta a'_6)(1 + \alpha_1) + (2\gamma^2 \alpha_3 a''_6 + 4\gamma \delta a''_6)(\alpha_1 - 1)}{4(\alpha_1^2 - 1)} \]
\[\mu = \frac{2\gamma \alpha_2 \alpha_5 (1 + \alpha_1) + \alpha_2 \alpha_6 (\gamma \alpha_3 + 2\delta)(\alpha_1 - 1) + (2\gamma^2 \alpha_2 \alpha_3 + 4\gamma \alpha_2 \delta)(a'_6 + a''_6)}{4(\alpha_1^2 - 1)} \]
answers to the question.

If $\alpha_1 = 1$, we consider

$$\sigma = \begin{pmatrix}
0 & \beta & 0 \\
\gamma & -\beta \alpha_3 + \alpha_2 \gamma & 0 \\
\gamma \left(\frac{\alpha_6}{2} + \frac{\beta \alpha_6}{\alpha_2}\right) & \alpha_2 \gamma \alpha_6 + \frac{2\beta (\alpha_5 + \gamma \alpha_6' + \gamma \alpha_6'')}{4} & -\beta \gamma
\end{pmatrix}$$

and if $\alpha_1 = -1$, we take

$$\sigma = \begin{pmatrix}
-\frac{2\beta}{\alpha_2} & \beta & 0 \\
\beta \alpha_3 & \delta & 0 \\
-\frac{-\alpha_2 \beta \alpha_5 - (\beta^2 \alpha_3 + \gamma)^2}{\alpha_2^2} & 2 \alpha_2 \beta (\alpha_5 + \alpha_3 \alpha_6) + (2\beta^2 \alpha_3 + 4\beta \delta) (\alpha_6' + \gamma \alpha_6'') + 2 \alpha_2 \beta \alpha_6 & -\frac{\beta^2 \alpha_3 + 2 \beta \delta}{\alpha_2}
\end{pmatrix}$$

These automorphisms give an equivalence between the two subgroups.

Consequence Let $\mathfrak{h}_3 = \{0\} \oplus \mathfrak{h}_{3,a_1} \oplus \mathfrak{h}_{3,a_2} \oplus \mathfrak{h}_{3,a_3} = \{0\} \oplus \mathfrak{h}_{3,a_1}' \oplus \mathfrak{h}_{3,a_2}' \oplus \mathfrak{h}_{3,a_3}'$ be the two \mathbb{Z}_2-gradings of \mathfrak{h}_3, where $\{0, a_1, a_2, a_3\}$ are the elements of \mathbb{Z}_2^4. There exists $\sigma \in \text{Aut}(\mathfrak{h}_3)$ such that

$$\mathfrak{h}_{3,a_i}' = \sigma(\mathfrak{h}_{3,a_i})$$

Thus, these gradings are equivalent. (The equivalence of two grading is defined in [1]).

Lemma 3.3. There exists $\sigma \in \text{Aut}(\mathfrak{h}_3)$ such that

$$\begin{align*}
\sigma^{-1} & \tau_1(\alpha_3, \alpha_6) \sigma = \tau_1(0, 0), \\
\sigma^{-1} & \tau_2(-\alpha_3, \alpha_5) \sigma = \tau_2(0, 0).
\end{align*}$$

Proof. Indeed if

$$\sigma = \begin{pmatrix}
1 & 0 & 0 \\
-\frac{\alpha_3}{\gamma} & 1 & 0 \\
\rho & \frac{\alpha_6}{2} & 1
\end{pmatrix}$$

then

$$\sigma^{-1} = \begin{pmatrix}
1 & 0 & 0 \\
\frac{\alpha_3}{2} & 1 & 0 \\
-\frac{\alpha_6}{2} - \rho & -\frac{\alpha_6}{2} & 1
\end{pmatrix}$$

and

$$\sigma^{-1} \tau_1(\alpha_3, \alpha_6) \sigma = \tau_1(0, 0)$$

This automorphism satisfies

$$\sigma^{-1} \tau_2(-\alpha_3, \alpha_5) \sigma = \tau_2(0, \alpha_5 - 2\rho)$$
If $\rho = \frac{\alpha}{\alpha}$ that is

$$\sigma = \begin{pmatrix} 1 & 0 & 0 \\ -\frac{\alpha}{\alpha} & 1 & 0 \\ \frac{\alpha}{\alpha} & \frac{\alpha}{\alpha} & 1 \end{pmatrix}$$

then we have

$$\sigma^{-1}\tau_2(-\alpha_3, \alpha_5)\sigma = \tau_2(0, 0).$$

From the previous Lemma we have

Proposition 3.4. Every \mathbb{Z}_2^2-grading on h_3 is equivalent to the grading defined by

$$\Gamma_7(0, 0, 0) = \{\text{Id}, \tau_1(0, 0), \tau_2(0, 0), \tau_4(0, 0)\}.$$

This grading corresponds to

$$h_3 = \{0\} \oplus \mathbb{R}(X_2) \oplus \mathbb{R}(X_2) \oplus \mathbb{R}(X_3).$$

4 Riemannian structures \mathbb{Z}_2^2-symmetric

Let G/H be an homogeneous Γ-symmetric space. We denoted by $\rho : \Gamma \rightarrow \text{Aut}(G)$ the injective homomorphism of groups. Each element $\rho(\gamma)$ for $\gamma \in \Gamma$ is called a symmetry of the Γ-symmetric space.

Definition 1. The Γ-symmetric homogeneous space G/H is called Riemannian Γ-symmetric if there exists on G/H a Riemannian metric g such that

1. g is G-invariant,
2. the symmetries $\rho(\gamma)$, $\gamma \in \Gamma$, are isometries.

According to [7], such a metric is completely determined by a bilinear form B on the Lie algebra g such that

1. B is adjoint invariant ($B = B_e$)
2. $B(g_\gamma, g_{\gamma'}) = 0$ if $\gamma \neq \gamma' \neq e$
3. The restriction of B to $\oplus_{\gamma \neq e} g_\gamma$ is positive definite.

Consider on \mathbb{H}_3, the Heisenberg group, a \mathbb{Z}_2^2-symmetric structure. It is determined, up to equivalence, by the \mathbb{Z}_2^2-grading of h_3

$$h_3 = \{0\} \oplus \mathbb{R}(X_1) \oplus \mathbb{R}(X_2) \oplus \mathbb{R}(X_3)$$

Since every automorphism of h_3 is an isometry of any invariant Riemannian metric on \mathbb{H}_3, we deduce
Theorem 4.1. Any Riemannian structure \mathbb{Z}_2^2-symmetric over \mathbb{H}_3 is isometric to the Riemannian structure associated with the grading $$h_3 = \{0\} \oplus \mathbb{R}(X_1) \oplus \mathbb{R}(X_2) \oplus \mathbb{R}(X_3)$$ and the Riemannian metric is written $$g = \omega_1^2 + \omega_2^2 + \lambda^2 \omega_3^2$$ with $\lambda \neq 0$, where $\{\omega_1, \omega_2, \omega_3\}$ is the dual basis of $\{X_1, X_2, X_3\}$.

Proof. Indeed, as the components of the grading are orthogonal, the Riemannian metric g, which coincides with the form B verifies $$g = \alpha_1 \omega_1^2 + \alpha_2 \omega_2^2 + \alpha_3 \omega_3^2$$ with $\alpha_1 > 0, \alpha_2 > 0, \alpha_3 > 0$. According to [5], we reduce the coefficients to $\alpha_1 = \alpha_2 = 1$. \qed

Remark. According to [9] and [6], this metric is naturally reductive for any λ.

5 Lorentzian \mathbb{Z}_2^2-symmetric structures on \mathbb{H}_3

We say that a homogeneous space $(M = G/H, g)$ is Lorentzian if the canonical action of G on M preserves a Lorentzian metric (i.e. a smooth field of non degenerate quadratic form of signature $(n-1,1)$).

Proposition 5.1 ([4]). Modulo an automorphism and a multiplicative constant, there exists on h_3 one left-invariant metric assigning a strictly positive length on the center of h_3.

The Lie algebra h_3 is generated by the central vector X_3 and X_1 and X_2 such that $[X_1, X_2] = X_3$. The automorphisms of the Lie algebra preserve the center and then send the element X_3 on λX_3, with $\lambda \in \mathbb{R}^*$. Such an automorphism acts on the plane generated by X_1 and X_2 as an automorphism of determinant λ.

It is shown in [16] and [17] that, modulo an automorphism of h_3, there are three classes of invariant Lorentzian metrics on \mathbb{H}_3, corresponding to the cases where $||X_3||$ is negative, positive or zero.

We propose to look at the Lorentz metrics that are associated with the \mathbb{Z}_2^2-symmetric structure over \mathbb{H}_3.

Definition 2. Let $M = G/H$ be a homogeneous Γ-symmetric space. Let g be a Lorentz metric on M. We say that the metric g is \mathbb{Z}_2^2-symmetric Lorentzian if one of the two conditions is satisfied:

1. The homogeneous non trivial components g_γ of the Γ-graded Lie algebra of G are orthogonal and non-degenerate with respect to the induced bilinear form B.

15
2. One non-trivial component \mathfrak{g}_{λ_0} is degenerate, the other components are orthogonal and non-degenerate, and there exists a component \mathfrak{g}_{λ_1} such that the signature of the restriction to B at $\mathfrak{g}_{\lambda_0} \oplus \mathfrak{g}_{\lambda_1}$ is $(1,1)$.

If \mathfrak{g} is the Heisenberg algebra equipped with a \mathbb{Z}_2^2-grading, then by automorphism, we can reduce to the case where $\Gamma = \Gamma_7$. In this case, the grading of \mathfrak{h}_3 is given by:

$$\mathfrak{h}_3 = \mathfrak{g}_0 + \mathfrak{g}_{++} + \mathfrak{g}_{--}$$

with

$$\begin{cases}
\mathfrak{g}_0 = \{0\}, \\
\mathfrak{g}_{++} = \mathbb{R}(X_2 - \frac{\alpha_3}{2} X_3), \\
\mathfrak{g}_{--} = \mathbb{R}(X_1 - \frac{\alpha_3}{2} X_2 + \frac{\alpha_5}{2} X_3), \\
\mathfrak{g}_{-} = \mathbb{R}(X_3).
\end{cases}$$

Assume

$$Y_1 = X_1 - \frac{\alpha_3}{2} X_2 + \frac{\alpha_5}{2} X_3 \quad Y_2 = X_2 - \frac{\alpha_6}{2} X_3 \quad Y_3 = X_3.$$

The dual basis is

$$\vartheta_1 = \omega_1 \quad \vartheta_2 = \omega_2 + \frac{\alpha_3}{2} \omega_1 \quad \vartheta_3 = \omega_3 - \frac{\alpha_6}{2} \omega_2 - \left(\frac{\alpha_3 \alpha_6}{4} + \frac{\alpha_5}{2} \right) \omega_1$$

where $\{\omega_1, \omega_2, \omega_3\}$ is the dual basis of the base $\{X_1, X_2, X_3\}$.

Case I The components $\mathfrak{g}_{++}, \mathfrak{g}_{--}$ are non-degenerate. The quadratic form induced on \mathfrak{h}_3 therefore writes

$$g = \lambda_1 \omega_1^2 + \lambda_2 \left(\omega_2 + \frac{\alpha_3}{2} \omega_1 \right)^2 + \lambda_3 \left(\omega_3 - \frac{\alpha_6}{2} \omega_2 - \left(\frac{\alpha_3 \alpha_6}{4} + \frac{\alpha_5}{2} \right) \omega_1 \right)^2$$

with $\lambda_1, \lambda_2, \lambda_3 \neq 0$. The change of basis associated with the matrix

$$\begin{pmatrix}
1 & 0 \\
-\frac{\alpha_3}{2} & 1 \\
-\frac{\alpha_5}{2} \alpha_6 & -\frac{\alpha_6}{2}
\end{pmatrix}$$

is an automorphism. Thus g is isometric to

$$g = \lambda_1 \omega_1^2 + \lambda_2 \omega_2^2 + \lambda_3 \omega_3^2.$$

Since the signature is $(2,1)$ one of the λ_i is negative and the two others positive.

Proposition 5.2. Every Lorentzian metric \mathbb{Z}_2^2-symmetric g on \mathbb{H}_3 such that the components of the grading of \mathfrak{h}_3 are non-degenerate, is reduced to one of these two forms:

$$\begin{cases}
g = -\omega_1^2 + \omega_2^2 + \lambda^2 \omega_3^2 \\
g = \omega_1^2 + \omega_2^2 - \lambda^2 \omega_3^2
\end{cases}$$
Case II Suppose that a component is degenerate. When this component is $\mathbb{R}(x_2 + \frac{\alpha_6}{2}X_3)$ or $\mathbb{R}(X_1 - \frac{\alpha_5}{2}X_2 + \frac{\alpha_3}{2}X_3)$ then, by automorphism, we reduce to the above case.

Suppose then that the component containing the center is degenerate. Thus the quadratic form induced on h_3 is written

$$g = \omega_1^2 + \left[\omega_3 - \frac{\alpha_6}{2}\omega_2 - \left(\frac{\alpha_5}{2} + \frac{\alpha_3\alpha_6}{4}\right)\omega_1\right]^2 - \left[\omega_2 - \omega_3 + \frac{\alpha_6}{2}\omega_2 + \left(\frac{\alpha_5}{2} + \frac{\alpha_3\alpha_6}{4}\right)\omega_1\right]^2.$$

The change of basis associated with the matrix

$$\begin{pmatrix} 1 & 0 & 0 \\ \frac{\alpha_3}{2} & 1 & 0 \\ -\frac{\alpha_5}{2} - \frac{\alpha_3\alpha_6}{4} & -\frac{\alpha_6}{2} & 1 \end{pmatrix}$$

is given by an automorphism. Thus g is isomorphic to

$$g = \omega_1^2 + \omega_3^2 - (\omega_2 - \omega_3)^2.$$

Proposition 5.3. Every Lorentzian \mathbb{Z}_2^2-symmetric g metric on H_3 such that the component of the grading of h_3 containing the center is degenerate, is reduced to the form

$$g = \omega_1^2 + \omega_3^2 - (\omega_2 - \omega_3)^2.$$

From [3] is the only flat Lorentzian metric, left invariant on the Heisenberg group.

References

[1] Bahturin, Y., Goze, M.; $\mathbb{Z}_2 \times \mathbb{Z}_2$-symmetric spaces. Pacific J. Math. 236 (2008), no. 1, 1-21.

[2] Calvaruso, G.; Homogeneous structures on three-dimensional Lorentzian manifolds. J. Geom. Phys. 57 (2007), no. 4, 1279 - 1291.

[3] Cordero, L.A., Parker, P.E.; Left-invariant Lorentzian metrics on 3-dimensional Lie groups. Rend. Mat. Appl. (7) 17 (1997), no. 1, 129 -155.

[4] Dumitrescu, S., Zeghib, A.; Géométrie Lorentziennes de dimension 3: classification et complétude, Geom. Dedicata (2010) 149, 243 - 273.

[5] Goze, M., Piu, P.; Classification des métriques invariantes à gauche sur le groupe de Heisenberg, Rend. Circ. Mat. Palermo (2) 39 (1990), no. 2, 299 -306.
[6] Goze, M., Piu, P.; *Une caractérisation riemannienne du groupe de Heisenberg*. Geom. Dedicata 50 (1994), no. 1, 27 - 36.

[7] Goze, M., Remm, E.; *Riemannian Γ-symmetric spaces*. Differential geometry, 195 - 206, World Sci. Publ., Hackensack, NJ, 2009.

[8] Gray, A., Wolf, J. A.; *Homogeneous spaces defined by Lie group automorphisms. I*. J. Differential Geometry 2 (1968), 77-114.

[9] Hangan, Th.; *Au sujet des flots riemanniens sur le groupe nilpotent de Heisenberg*. Rend. Circ. Mat. Palermo (2) 35 (1986), no. 2, 291-305.

[10] Kac V.G., *Infinite-dimensional Lie algebras*. Second edition. Cambridge University Press, Cambridge, 1985.

[11] Kowalski O.; *Generalized symmetric spaces*. Lecture Notes in Mathematics, 805. Springer-Verlag, Berlin-New-York, 1980.

[12] Lutz, R.; *Sur la géométrie des espaces Γ-symétriques*. C. R. Acad. Sci. Paris Sér. I Math. 293 (1981), no. 1, 55-58.

[13] Ledger, A.J., Obata, M.; *Affine and Riemannian s-manifolds*. J. Differential Geometry 2 1968 451- 459.

[14] Nomizu, K.; Left-invariant Lorentz metrics on Lie groups, Osaka J. Math. 16 (1979) 143-150

[15] Pansu, P. *Géométrie du groupe d’Heisenberg*. Thèse de doctorat, Université ParisVII, 1982.

[16] Rahmani, S. *Métriques de Lorentz sur les groupes de Lie unimodulaires, de dimension trois*, J. Geom. Phys. 9 (1992), no. 3, 295 - 302.

[17] Rahmani, N., Rahmani, S.: *Lorentzian geometry of the Heisenberg group*. Geom. Dedicata 118 (2006), 133 -140.

[18] Remm, E., Goze, M.; *On algebras obtained by tensor product*. J. Algebra 327 (2011), 13-30.

Université de Haute Alsace,
LMIA
4 rue des frères Lumière, 68093 Mulhouse, France
Michel.Goze@uha.fr

Università degli Studi di Cagliari,
Dipartimento di Matematica e Informatica
Via Ospedale 72, 09124 Cagliari, ITALIA
piu@unica.it