The Normalized Laplacian Spectrum Analysis of Fractal Möbius Octagonal Networks and its Applications

Jia-Bao Liu 1, Ting Zhang 1, Wenshui Lin 2

1 School of Mathematics and Physics, Anhui Jianzhu University, Hefei 230601, P.R. China
2 School of Informatics, Xiamen University, Xiamen 361005, China

Abstract. The study and calculation of spectrum of networks can be used to describe networks structure and quantify analysis of networks performance. The fractal Möbius octagonal networks, denoted by Q_n, is derived from the inverse identification of the opposite lateral edges of fractal linear octagonal networks. In this paper, the normalized Laplacian spectrum of Q_n is determined by two matrices L_A and L_S. As an important application of our results, some topological indices (multiplicative degree-Kirchhoff index, the number of spanning trees) formulas of Q_n are obtained.

Keywords: Fractal Möbius Octagonal Networks, Multiplicative Degree-Kirchhoff index, Normalized Laplacian, Spanning trees.

1. Introduction

In recent years, as a tool for studying mathematics, complex network plays a great role in scientific and social research, which has attracted the attention of scholars and achieved some results [1–3]. In this paper, the network is considered as simple, finite and undirected. If there is no special explanation, the terminology and notation we mainly use come from [4].

A network can be regarded as a graph, $G = (V_G, E_G)$, and V_G, E_G are its vertex set and edge set, respectively, $V_G = \{u_1, u_2, \ldots, u_n\}$, $E_G = \{e_1, e_2, \ldots, e_m\}$. The adjacent matrix A_G of simple networks can be expressed as

$$(A_G)_{ij} = \begin{cases} 1, & \text{if } u_i \text{ and } u_j \text{ are adjacent;} \\ 0, & \text{otherwise.} \end{cases}$$

The degree of u_j is represented by d_j, for $1 \leq j \leq n$. The Laplacian matrix L_G of G is expressed as $L_G = D_G - A_G$, where $D_G = diag_G(d_1, d_2, \ldots, d_n)$. Let $0 = \mu_1 < \mu_2 \leq \cdots \leq \mu_n$ be the eigenvalues of L_G. Then the Laplacian spectrum of L_G is expressed as $Sp(L_G) = \{\mu_1, \mu_2, \ldots, \mu_n\}$.

In the past few years, the normalized Laplacian matrix has come into the eyes of academic researchers. Some of its results are not only useful for regular networks, but also suitable for general networks. For any vertices u_i and u_j, the normalized Laplacian matrix can be written as

$$(L(G))_{ij} = \begin{cases} 1, & i = j; \\ -\frac{1}{\sqrt{d_i d_j}}, & i \neq j, \ u_i \text{ and } u_j \text{ are adjacent;} \\ 0, & \text{otherwise.} \end{cases}$$

When each edge of a connected network G takes the place of a unit resistor [5], the network can be regarded as a electric circuit. r_{ij} means the effective resistance distance between any vertices u_i and u_j. It has been found that this new parameter is also an invariant of network G, and it has also played an important role in chemistry [6, 7]. At this time, based on the electrical network, Klein and Randić [5] proposed a new distance function called Kirchhoff index, $Kf(G)$. Similar to Wiener

*Corresponding author. Email address: wslin@xmu.edu.cn
index, Kirchhoff index, the sum of the effective resistance distances of any two vertices, is represented as $K_f(G) = \sum_{i<j} r_{ij}$. Later, Gutman, Mohar [8] and Zhu et al. [9] introduced

$$K_f(G) = \sum_{i<j} r_{ij} = n \sum_{j=2}^{n} \frac{1}{\mu_j},$$

where $0 = \mu_1 < \mu_2 < \cdots < \mu_n$ are the eigenvalues of L_G.

Chen and Zhang [10] proposed a new index, denoted by $DK(G)$, called multiplicative degree-Kirchhoff index. The mathematical expression is $DK(G) = \sum_{i<j} d_i d_j r_{ij}$. One can see [11, 12]. At the same time, the index is closely related to the normalized Laplacian matrix of network G. For the studies of normalized Laplacian of different networks, one can see [13–17].

Furthermore, Kemeny’s constant [18] is the expected number of time steps required for a Markov chain to transition from a starting state i to a random destination state sampled from the Markov chain’s stationary distribution, denoted as $K_c(G)$. The $K_c(G)$ is closely related to the effective resistance of the graph, and the Kemeny’s constant can be connected with the degree-Kirchhoff index by means of the normalized Laplacian matrix.

Recently, a host of scholars have paid attention to study spectrum of networks. In 2016, Huang et al. [19] characterized the normalized Laplacian spectrum, multiplicative degree-Kirchhoff index and the number of spanning trees of linear hexagonal chain networks. In 2018, Li et al. [20] studied the normalized Laplacian spectrum of the penta-graphene and Möbius networks, and obtained the corresponding formulas of degree-Kirchhoff index and the number of spanning trees. In 2018, Li et al. [21] also studied the normalized Laplacian spectrum of linear phenylene and their dicyclobutadieno derivatives. By using the same methods, in 2019, X. Ma and H. Bian, [22,23] not only got the expressions for the Möbius networks, but also calculated some indices of cylinder phenylene networks. More information about normalized spectrum. In 2019, Liu et al. [24] derived the multiplication degree-Kirchhoff index $DK(G)$ and the number of spanning trees $\tau(G)$ of fractal Möbius octagonal networks.

Let L_n be a fractal linear octagonal networks of n octagons, it is shown in Figure 1. Then, the fractal Möbius octagonal networks Q_n is obtained from L_n by identifying the opposite lateral edges in reversed way.

The rest of the work is arranged as follows. In Section 2, in order to get the results of this paper, we introduce some theorems and terms. In Section 3, closed-form formulae of degree-Kirchhoff index and the number of spanning trees are determined for Q_n. In Section 4, we have done a full text summary.

![Figure 1: The fractal linear octagonal networks L_n.](image)

2. Preliminary

In order to facilitate the calculation in the next section, firstly, we introduce some theorems and lemmas. In this paper, we use $\Phi(G) = det(I - L(G))$ as its characteristic polynomial of $L(G)$. It is well
known that the roots of \(\Phi(G) \) are composed of the normalized Laplacian eigenvalues of \(L(G) \).

Suppose \(\pi = (1, \bar{1}, \ldots, m)(1,1')(2,2') \cdots (n, n') \) is an automorphism of a network \(G = (V_G, E_G) \). From Figure 2, obviously, we find that \(|V_G| = m + 2n \). Provided \(V_0 = \{1, \bar{1}, \ldots, m\}, V_1 = \{1, 2, \ldots, n\}, V_2 = \{1', 2', \ldots, n'\} \). Therefore, \(L(G) \) can be written as

\[
L(G) = \begin{pmatrix}
L_{V_0 V_0} & L_{V_0 V_1} & L_{V_0 V_2} \\
L_{V_1 V_0} & L_{V_1 V_1} & L_{V_1 V_2} \\
L_{V_2 V_0} & L_{V_2 V_1} & L_{V_2 V_2}
\end{pmatrix},
\]

where \(L_{V_i V_j} \) are the matrix formed by the rows and columns of \(L(G) \) corresponding to the vertices in \(V_i \cup V_j, 0 \leq i, j \leq 2 \).

Suppose that

\[
U = \begin{pmatrix}
I_m & 0 & 0 \\
0 & -\frac{1}{\sqrt{2}}I_n & \frac{1}{\sqrt{2}}I_n \\
0 & \frac{1}{\sqrt{2}}I_n & \frac{1}{\sqrt{2}}I_n
\end{pmatrix}.
\]

Consequently,

\[
UL(O_n)U' = \begin{pmatrix}
L_A & 0 \\
0 & L_S
\end{pmatrix},
\]

where \(U' \) is the transposition of \(U \), \(L_A = \begin{pmatrix} L_{V_0 V_0} & \sqrt{2}L_{V_0 V_1} \\
\sqrt{2}L_{V_0 V_1} & L_{V_1 V_1} + L_{V_1 V_2} \end{pmatrix} \), and \(L_S = L_{V_1 V_1} - L_{V_1 V_2} \).

Huang et al. \[19\] proposed the decomposition theorem of normalized Laplacian characteristic polynomial.

Theorem 2.1. \[19\] Let \(L(G) \), \(L_A \), and \(L_S \) be defined as above. Then we have

\[
\phi_{L(G)}(z) = \phi_{L_A}(z)\phi_{L_S}(z).
\]

Lemma 2.2. \[29\] Let \(G \) be connected graph with \(|V_G| = n \) and \(|E_G| = m \). Then

\[DK(G) = 2m \sum_{j=2}^{n} \frac{1}{\lambda_j},\]

where \(0 = \lambda_1 < \lambda_2 \leq \cdots \leq \lambda_n \) are eigenvalues of \(L(G) \).

Lemma 2.3. \[30\] Let \(G \) be \(|V_G| = n \) and \(|E_G| = m \). Then

\[Kc(G) = \sum_{j=2}^{n} \frac{1}{\lambda_j},\]
Lemma 2.4. \[31\] Let \(\tau(G)\) be the number of spanning trees of a connected graph \(G\) of order \(n\) and \(m\) edges. Then
\[
\prod_{j=1}^{n} d_j \prod_{j=2}^{n} \lambda_j = 2m\tau(G).
\]

3. Main results

In this section, we mainly give some results and proofs. Using theorem 2.1 and Vieta’s theorem, \(DK(Q_n)\) and \(\tau(Q_n)\) are determine.

Obviously, \(|V(Q_n)| = 6n\), and \(\pi = (1, 1, 2, 2, \ldots, 3n, 3n)\) is an automorphism of \(Q_n\). Let \(V_0 = \{\emptyset\}, V_1 = \{1, 2, \ldots, 3n\}, \) and \(V_2 = \{1, 2, \ldots, (3n)\}\). Thus \(L_A = L_{V_1 V_1} + L_{V_1 V_2}\) and \(L_S = L_{V_1 V_1} - L_{V_1 V_2}\).

By elementary calculations, we have
\[
L_{V_1 V_1} = \begin{pmatrix}
1 & -\frac{1}{\sqrt{6}} & 0 & 0 & 0 & \cdots & 0 & 0 & 0 & 0 & 0 \\
-\frac{1}{\sqrt{6}} & 1 & -\frac{1}{2} & 0 & 0 & \cdots & 0 & 0 & 0 & 0 & 0 \\
0 & -\frac{1}{2} & 1 & -\frac{1}{\sqrt{6}} & 0 & \cdots & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & -\frac{1}{\sqrt{6}} & 1 & -\frac{1}{\sqrt{6}} & \cdots & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & -\frac{1}{\sqrt{6}} & 1 & \cdots & 0 & 0 & 0 & 0 & 0 \\
\vdots & \vdots & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \vdots & \vdots \\
0 & 0 & 0 & 0 & 0 & \cdots & 1 & -\frac{1}{\sqrt{6}} & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & \cdots & 0 & -\frac{1}{\sqrt{6}} & 1 & -\frac{1}{2} & 0 \\
0 & 0 & 0 & 0 & 0 & \cdots & 0 & 0 & -\frac{1}{2} & 1 & 0 \\
\end{pmatrix}_{(3n) \times (3n)}
\]

and
\[
L_{V_1 V_2} = \begin{pmatrix}
-\frac{1}{3} & 0 & 0 & 0 & 0 & \cdots & 0 & 0 & 0 & -\frac{1}{\sqrt{6}} \\
0 & 0 & 0 & 0 & 0 & \cdots & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & \cdots & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & -\frac{1}{3} & 0 & \cdots & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & \cdots & 0 & 0 & 0 & 0 \\
\vdots & \vdots & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \vdots \\
0 & 0 & 0 & 0 & 0 & \cdots & 0 & -\frac{1}{3} & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & \cdots & 0 & 0 & 0 & 0 \\
-\frac{1}{\sqrt{6}} & 0 & 0 & 0 & 0 & \cdots & 0 & 0 & 0 & 0 \\
\end{pmatrix}_{(3n) \times (3n)}
\]

Hence
\[
L_A = \begin{pmatrix}
\frac{2}{3} & -\frac{1}{\sqrt{6}} & 0 & 0 & 0 & \cdots & 0 & 0 & 0 & -\frac{1}{\sqrt{6}} \\
-\frac{1}{\sqrt{6}} & 1 & -\frac{1}{2} & 0 & 0 & \cdots & 0 & 0 & 0 & 0 \\
0 & -\frac{1}{2} & 1 & -\frac{1}{\sqrt{6}} & 0 & \cdots & 0 & 0 & 0 & 0 \\
0 & 0 & -\frac{1}{\sqrt{6}} & 1 & -\frac{1}{\sqrt{6}} & \cdots & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & -\frac{1}{\sqrt{6}} & 1 & \cdots & 0 & 0 & 0 & 0 \\
\vdots & \vdots & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \vdots \\
0 & 0 & 0 & 0 & 0 & \cdots & 1 & -\frac{1}{\sqrt{6}} & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & \cdots & 0 & -\frac{1}{\sqrt{6}} & 1 & -\frac{1}{2} \\
-\frac{1}{\sqrt{6}} & 0 & 0 & 0 & 0 & \cdots & 0 & 0 & -\frac{1}{2} & 1 \\
\end{pmatrix}_{(3n) \times (3n)}
\]
and

\[
\mathcal{L}_S = \begin{pmatrix}
\frac{4}{3} & -\frac{1}{\sqrt{6}} & 0 & 0 & 0 & \cdots & 0 & 0 & 0 & \frac{1}{\sqrt{6}} \\
-\frac{1}{\sqrt{6}} & 1 & \frac{1}{2} & 0 & 0 & \cdots & 0 & 0 & 0 & 0 \\
0 & \frac{1}{2} & 1 & -\frac{1}{\sqrt{6}} & \frac{1}{3} & \cdots & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & -\frac{1}{\sqrt{6}} & \frac{4}{3} & \cdots & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & \cdots & 0 & 0 & 0 & 0 \\
\cdots & \cdots \\
0 & 0 & 0 & 0 & 0 & \cdots & 1 & -\frac{1}{\sqrt{6}} & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & \cdots & 0 & -\frac{1}{\sqrt{6}} & 1 & -\frac{1}{2} \\
\frac{1}{\sqrt{6}} & 0 & 0 & 0 & 0 & \cdots & 0 & 0 & -\frac{1}{2} & 1 \\
\end{pmatrix}_{(3n) \times (3n)}
\]

Let \(0 = \alpha_1 < \alpha_2 \leq \cdots \leq \alpha_{3n}\) and \(0 < \rho_1 \leq \rho_2 \leq \cdots \leq \rho_{3n}\) be the eigenvalues of \(\mathcal{L}_A\) and \(\mathcal{L}_S\), respectively. Hence \(Sp(\mathcal{L}(Q_n)) = \{\alpha_1, \alpha_2, \ldots, \alpha_{3n}, \rho_1, \rho_2, \ldots, \rho_{3n}\}\).

Theorem 3.1. Let \(0 = \alpha_1 \leq \alpha_2 \leq \cdots \leq \alpha_{3n}\) be eigenvalues of \(\mathcal{L}_A\). Then

\[
\sum_{j=2}^{3n} \frac{1}{\alpha_j} = \frac{147n^2 - 19}{84}.
\]

Proof. Let \(\phi_{\mathcal{L}_A}(z) = z^{3n} + d_1 z^{3n-1} + \cdots + d_{3n-1} z + d_{3n}\) be the characteristic polynomial of \(\mathcal{L}_A\). According to Vieta’s theorem, we have

\[
\sum_{j=2}^{3n} \frac{1}{\alpha_j} = \frac{(-1)^{3n-2} d_{3n-2}}{(-1)^{3n-1} d_{3n-1}}.
\]

To determine \((-1)^{3n-2} d_{3n-2}\) and \((-1)^{3n-2} d_{3n-1}\), we need more preparations. Let

\[
\mathcal{L}_A^0 = \begin{pmatrix}
\frac{2}{3} & -\frac{1}{\sqrt{6}} & 0 & 0 & 0 & \cdots & 0 & 0 & 0 & 0 \\
-\frac{1}{\sqrt{6}} & 1 & -\frac{1}{2} & 0 & 0 & \cdots & 0 & 0 & 0 & 0 \\
0 & -\frac{1}{2} & 1 & -\frac{1}{\sqrt{6}} & \frac{2}{3} & \cdots & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & -\frac{1}{\sqrt{6}} & \frac{4}{3} & 1 & \cdots & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & \cdots & 0 & 0 & 0 & 0 \\
\cdots & \cdots \\
0 & 0 & 0 & 0 & 0 & \cdots & 1 & -\frac{1}{\sqrt{6}} & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & \cdots & 0 & -\frac{1}{\sqrt{6}} & \frac{2}{3} & -\frac{1}{\sqrt{6}} \\
0 & 0 & 0 & 0 & 0 & \cdots & 0 & 0 & -\frac{1}{2} & 1 \\
\end{pmatrix}_{(3n) \times (3n)}
\]

\[
\mathcal{L}_A^1 = \begin{pmatrix}
1 & -\frac{1}{2} & 0 & 0 & 0 & \cdots & 0 & 0 & 0 & 0 \\
-\frac{1}{2} & 1 & -\frac{1}{\sqrt{6}} & 0 & 0 & \cdots & 0 & 0 & 0 & 0 \\
0 & -\frac{1}{\sqrt{6}} & \frac{2}{3} & -\frac{1}{\sqrt{6}} & 0 & \cdots & 0 & 0 & 0 & 0 \\
0 & 0 & -\frac{1}{\sqrt{6}} & \frac{4}{3} & 1 & -\frac{1}{2} & \cdots & 0 & 0 & 0 \\
0 & 0 & 0 & -\frac{1}{2} & 1 & \cdots & 0 & 0 & 0 & 0 \\
\cdots & \cdots \\
0 & 0 & 0 & 0 & 0 & \cdots & -\frac{1}{\sqrt{6}} & 1 & -\frac{1}{2} & 0 \\
0 & 0 & 0 & 0 & 0 & \cdots & 0 & -\frac{1}{2} & 1 & -\frac{1}{\sqrt{6}} \\
0 & 0 & 0 & 0 & 0 & \cdots & 0 & 0 & -\frac{1}{\sqrt{6}} & \frac{2}{3} \\
\end{pmatrix}_{(3n) \times (3n)}
\]
and

$$L_A^2 = \begin{pmatrix}
1 & -\frac{1}{\sqrt{6}} & 0 & 0 & 0 & \cdots & 0 & 0 & 0 & 0 \\
-\frac{1}{\sqrt{6}} & \frac{1}{\sqrt{6}} & 0 & 0 & 0 & \cdots & 0 & 0 & 0 & 0 \\
0 & -\frac{1}{\sqrt{6}} & 1 & \frac{1}{\sqrt{2}} & 0 & \cdots & 0 & 0 & 0 & 0 \\
0 & 0 & -\frac{1}{2} & 1 & \frac{1}{\sqrt{6}} & \cdots & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & -\frac{1}{\sqrt{6}} & \frac{1}{3} & \cdots & 0 & 0 & 0 & 0 \\
\vdots & \vdots & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \vdots \\
0 & 0 & 0 & 0 & 0 & \cdots & -\frac{1}{2} & 1 & \frac{1}{\sqrt{6}} & 0 \\
0 & 0 & 0 & 0 & 0 & \cdots & 0 & -\frac{1}{\sqrt{6}} & \frac{2}{3} & \frac{1}{\sqrt{6}} \\
0 & 0 & 0 & 0 & 0 & \cdots & 0 & 0 & -\frac{1}{2} & 1
\end{pmatrix}_{(3n)\times(3n)}.$$

Let W_j^0 (W_j^1/W_j^2) be the sequential principal minor of order i of L_A^0 (resp. L_A^1/L_A^2). Take $w_j^0 := \det W_j^0, w_j^1 := \det W_j^1, w_j^2 := \det W_j^2, w_0 = w_0^0 = w_0^1 = 1$. Then we can get some results as below.

Fact 1. For $1 \leq j \leq 3n$,

$$w_j^0 = \begin{cases}
(1 + j) \cdot \left(\frac{1}{12}\right)^{\frac{j}{2}}, & \text{if } j \equiv 0 \pmod{3}; \\
(1 + \frac{j}{3}) \cdot \left(\frac{1}{12}\right)^{\frac{j-1}{2}}, & \text{if } j \equiv 1 \pmod{3}; \\
(1 + j) \cdot \left(\frac{1}{12}\right)^{\frac{j-2}{2}}, & \text{if } j \equiv 2 \pmod{3}.
\end{cases}$$

Proof. It’s easy to get

$$w_0^0 = \frac{2}{3}, w_0^1 = \frac{1}{2}, w_0^2 = \frac{1}{3}, w_0^3 = \frac{5}{36}, w_0^4 = \frac{1}{12}, w_0^5 = \frac{7}{144},$$

and for $3 \leq j \leq 3n - 1$,

$$w_j^0 = \begin{cases}
w_{j-1}^0 - \frac{1}{4}w_{j-2}^0, & \text{if } j \equiv 0 \pmod{3}; \\
\frac{2}{3}w_{j-1}^0 - \frac{1}{6}w_{j-2}^0, & \text{if } j \equiv 1 \pmod{3}; \\
w_{j-1}^0 - \frac{1}{6}w_{j-2}^0, & \text{if } j \equiv 2 \pmod{3}.
\end{cases}$$

For $1 \leq j \leq n - 1$, let $A_j = w_{3j}^0, B_j = w_{3j+1}^0, C_j = w_{3j+2}^0$. Then $A_1 = \frac{1}{3}, B_0 = \frac{2}{7}, B_1 = \frac{5}{36}, C_0 = \frac{1}{2}, C_1 = \frac{1}{12}$. For $j \geq 2$

$$\begin{cases}
A_j = C_{j-1} - \frac{1}{4}B_{j-1}; \\
B_j = \frac{3}{2}A_j - \frac{1}{6}C_{j-1}; \\
C_j = B_j - \frac{1}{6}A_j.
\end{cases} \quad (3.1)$$

By substituting elimination method into 3.1, we have $A_j = 2B_j + \frac{1}{12}B_{j-1}$, and $C_j = \frac{2}{3}B_j - \frac{1}{12}B_{j-1}$. Finally, we put the results into the second equation of 3.1, and one has

$$144B_j - 24B_{j-1} + B_{j-2} = 0.$$

Thus

$$B_j = (c_1 + c_2j)\left(\frac{1}{12}\right)^j,$$

B_0 and B_1 are introduced into the above formula.

$$\begin{cases}
c_1 \cdot \left(\frac{1}{12}\right)^0 = \frac{2}{7}; \\
(c_1 + c_2) \cdot \left(\frac{1}{12}\right) = \frac{5}{36}.
\end{cases}$$
So, $c_1 = \frac{2}{3}$, $c_2 = 1$.
Thus,

$$
\begin{align*}
A_j &= (1 + 3j) \cdot \left(\frac{1}{12}\right)^j; \\
B_j &= \left(\frac{4}{3} + j\right) \cdot \left(\frac{1}{12}\right)^j; \\
C_j &= \left(\frac{1}{4} + \frac{j}{2}\right) \cdot \left(\frac{1}{12}\right)^j.
\end{align*}
$$

The Fact 1 proved over.
In a similar way, we acquire Fact 2 and Fact 3.

Fact 2. For $1 \leq j \leq 3n$,

$$
|w_j| = \begin{cases}
(1 + j) \cdot \left(\frac{1}{12}\right)^j, & \text{if } j \equiv 0 \pmod{3}; \\
\left(\frac{4}{3} + j\right) \cdot \left(\frac{1}{12}\right)^j, & \text{if } j \equiv 1 \pmod{3}; \\
\left(\frac{1}{4} + \frac{j}{2}\right) \cdot \left(\frac{1}{12}\right)^j, & \text{if } j \equiv 2 \pmod{3}.
\end{cases}
$$

Fact 3. For $1 \leq j \leq 3n - 1$,

$$
|w_j|^2 = w_{j-1}^0 - \frac{1}{6} w_{j-2}^1.
$$

Fact 4. $(-1)^{3n-1}d_{3n-1} = 21n^2 \left(\frac{1}{12}\right)^n$.

Proof.

$$
(-1)^{3n-1}d_{3n-1} = \sum_{x=1}^{3n} \det\mathcal{L}_A[x]
$$

$$
= \sum_{x=3, x \equiv 0 \pmod{3}}^{3n} \det\mathcal{L}_A[x] + \sum_{x=1, x \equiv 1 \pmod{3}}^{3n-2} \det\mathcal{L}_A[x] + \sum_{x=2, x \equiv 2 \pmod{3}}^{3n-1} \det\mathcal{L}_A[x],
$$

where

$$
\det\mathcal{L}_A[x] = \begin{cases}
\frac{w_{x-1}^0 \cdot w_{3n-x}^0 - \frac{1}{6} w_{x-2}^1 \cdot w_{3n-x-1}^0}{w_{x-1}^0} & \text{if } x \equiv 0 \pmod{3}; \\
\frac{w_{x-1}^0 \cdot w_{3n-x}^0 - \frac{1}{6} w_{x-2}^1 \cdot w_{3n-x-1}^0}{w_{x-1}^0} & \text{if } x \equiv 1 \pmod{3}; \\
\frac{w_{x-1}^0 \cdot w_{3n-x}^0 - \frac{1}{6} w_{x-2}^1 \cdot w_{3n-x-1}^0}{w_{x-1}^0} & \text{if } x \equiv 2 \pmod{3}.
\end{cases}
$$

By the Fact 1 and Fact 2, we obtain

$$
\sum_{x=3, x \equiv 0 \pmod{3}}^{3n} \det\mathcal{L}_A[x] = w_{j-1}^0 \cdot w_{3n-x}^0 - \frac{1}{6} w_{x-2}^1 \cdot w_{3n-x-1}^0
$$

$$
= \sum_{j=3, x \equiv 0 \pmod{3}}^{3n} \left(\frac{x}{6} \left(\frac{1}{12}\right)^{x-3} \cdot (1 + 3n - x) \left(\frac{1}{12}\right)^{3n-3} - \frac{1}{6} \cdot \frac{1}{2} (x-1) \cdot \left(\frac{1}{12}\right)^{x-3} \cdot \frac{1}{6} (3n - x) \cdot \left(\frac{1}{12}\right)^{3n-3-3}\right).
$$

$$
= 6n^2 \left(\frac{1}{12}\right)^n.
$$

In the same way, according to Fact 1 - 3, we get the following results.

$$
\sum_{x=1, x \equiv 1 \pmod{3}}^{3n-2} \det\mathcal{L}_A[x] = 9n^2 \left(\frac{1}{12}\right)^n.
$$

$$
\sum_{x=2, x \equiv 2 \pmod{3}}^{3n-1} \det\mathcal{L}_A[x] = 6n^2 \left(\frac{1}{12}\right)^n.
$$
The desired result holds.

Fact 5. $(-1)^{3n-2} d_{3n-2} = \frac{147n^4-19n^2}{4}$.

Proof. $(-1)^{3n-2} d_{3n-2}$ is the sum of all principal minors obtained by deleting two rows and two columns of L_A. So

$(-1)^{3n-2} d_{3n-2} = \sum_{1 \leq x < y}^{3n} \det L_A[x, y] = M_0 + M_1 + M_2.$

Note that

$M_0 = \sum_{1 \leq x < y \leq n} \det L_A[3x, 3y] + \sum_{1 \leq x < y \leq n-1} \det L_A[3x, 3y + 1] + \sum_{1 \leq x < y \leq n-1} \det L_A[3x, 3y + 2];$

$M_1 = \sum_{1 \leq x < y \leq n} \det L_A[3x + 1, 3y] + \sum_{1 \leq x < y \leq n-1} \det L_A[3x + 1, 3y + 1] + \sum_{1 \leq x < y \leq n-1} \det L_A[3x + 1, 3y + 2];$

$M_2 = \sum_{1 \leq x < y \leq n} \det L_A[3x + 2, 3y] + \sum_{1 \leq x < y \leq n-1} \det L_A[3x + 2, 3y + 1] + \sum_{1 \leq x < y \leq n-1} \det L_A[3x + 2, 3y + 2].$

Case 1. If $3x \ (\text{mod} \ 3) \equiv 0, 3y \ (\text{mod} \ 3) \equiv 0, 1 \leq x < y \leq n$. That is,

$\sum_{1 \leq x < y \leq n} \det L_A[3x, 3y] = \sum_{1 \leq x < y \leq n} w^0_{x-1} \cdot w^0_{y-x-1} \cdot w^0_{3n-y} - \frac{1}{6} w^1_{x-2} \cdot w^1_{y-x-1} \cdot w^1_{3n-y-1}$

$= \sum_{1 \leq x < y \leq n} 4(y - x)(3n - y + x) \cdot \left(\frac{1}{12}\right)^n$

$= 3(n^4 - n^2)\left(\frac{1}{12}\right)^n.$

Case 2. For $1 \leq x < y \leq n - 1$,

$\sum_{1 \leq x < y \leq n-1} \det L_A[3x, 3y + 1] = \sum_{1 \leq x < y \leq n-1} w^0_{x-1} \cdot w^0_{y-x-1} \cdot w^1_{3n-y} - \frac{1}{6} w^1_{x-2} \cdot w^0_{y-x-1} \cdot w^1_{3n-y-1}$

$= \sum_{1 \leq x < y \leq n-1} 6(y - x)(3n - y + x) \cdot \left(\frac{1}{12}\right)^n$

$= \left(\frac{9}{2} n^4 - 6n^3 + \frac{3}{2} n^2\right)\left(\frac{1}{12}\right)^n.$

Case 3. For $1 \leq x < y \leq n - 1$,

$\sum_{1 \leq x < y \leq n-1} \det L_A[3x, 3y + 2] = \sum_{1 \leq x < y \leq n-1} w^0_{x-1} \cdot w^0_{y-x-1} \cdot w^2_{3n-y} - \frac{1}{6} w^1_{x-2} \cdot w^0_{y-x-1} \cdot w^2_{3n-y-1}$

$= \sum_{1 \leq x < y \leq n-1} 4(y - x)(3n - k + j) \cdot \left(\frac{1}{12}\right)^n$

$= (3n^4 - 2n^3 + n^2 - 2n)\left(\frac{1}{12}\right)^n.$
Case 4. If \((3x + 1) \pmod{3} \equiv 1, 3y \pmod{3} \equiv 0, 1 \leq x < y \leq n\). So,
\[
\sum_{1 \leq x < y \leq n} \det \mathcal{L}_A[3x + 1, 3y] = \sum_{1 \leq x < y \leq n} w^0_{x-1} \cdot w^1_y \cdot w^0_{3n-y} - \frac{1}{6} w^1_{x-2} \cdot w^1_y \cdot w^0_{3n-y-1} = 6(y-x)(3n-y+x) \cdot \left(\frac{1}{12}\right)^n = \left(\frac{9}{2} n^4 + 6n^3 + 3n^2\right) \left(\frac{1}{12}\right)^n.
\]

Case 5. For \(1 \leq x < y \leq n-1\),
\[
\sum_{1 \leq x < y \leq n-1} \det \mathcal{L}_A[3x + 1, 3y+1] = \sum_{1 \leq x < y \leq n-1} w^0_{x-1} \cdot w^1_y \cdot w^1_{3n-y} - \frac{1}{6} w^1_{x-2} \cdot w^1_y \cdot w^1_{3n-y-1} = 9(y-x)(3n-y+x) \cdot \left(\frac{1}{12}\right)^n = \frac{27}{4} (n^4 - n^2) \left(\frac{1}{12}\right)^n.
\]

Case 6. For \(1 \leq x < y \leq n-1\),
\[
\sum_{1 \leq x < y \leq n-1} \det \mathcal{L}_A[3x + 1, 3y+2] = \sum_{1 \leq x < y \leq n-1} w^0_{x-1} \cdot w^2_y \cdot w^1_{3n-y} - \frac{1}{6} w^1_{x-2} \cdot w^2_y \cdot w^0_{3n-y-1} = 6(y-x)(3n-y+x) \cdot \left(\frac{1}{12}\right)^n = \frac{9}{2} (n^4 + 3n^3 + \frac{3}{2} n^2 + 3n) \left(\frac{1}{12}\right)^n.
\]

Case 7. If \((3x + 2) \pmod{3} \equiv 2, 3y \pmod{3} \equiv 0\), for \(1 \leq x < y \leq n\),
\[
\sum_{1 \leq x < y \leq n} \det \mathcal{L}_A[3x + 2, 3y] = \sum_{1 \leq x < y \leq n} w^0_{x-1} \cdot w^2_y \cdot w^1_{3n-y} - \frac{1}{6} w^1_{x-2} \cdot w^2_y \cdot w^1_{3n-y-1} = 4(y-x)(3n-y+x) \cdot \left(\frac{1}{12}\right)^n = (3n^4 + 2n^3 + n^2 + 2n) \left(\frac{1}{12}\right)^n.
\]

Case 8. For \(1 \leq x < y \leq n-1\),
\[
\sum_{1 \leq x < y \leq n-1} \det \mathcal{L}_A[3x + 2, 3y+1] = \sum_{1 \leq x < y \leq n-1} w^0_{x-1} \cdot w^2_y \cdot w^1_{3n-y} - \frac{1}{6} w^1_{x-2} \cdot w^2_y \cdot w^1_{3n-y-1} = 6(y-x)(3n-y+x) \cdot \left(\frac{1}{12}\right)^n = \frac{9}{2} (n^4 - 3n^3 + \frac{3}{2} n^2 - 3n) \left(\frac{1}{12}\right)^n.
\]

Case 9. For \(1 \leq x < y \leq n-1\),
\[
\sum_{1 \leq x < y \leq n-1} \det \mathcal{L}_A[3x + 2, 3y+2] = \sum_{1 \leq x < y \leq n-1} w^0_{x-1} \cdot w^2_y \cdot w^0_{3n-y} - \frac{1}{6} w^1_{x-2} \cdot w^2_y \cdot w^0_{3n-y-1} = 4(y-x)(3n-y+x) \cdot \left(\frac{1}{12}\right)^n = 3(n^4 - n^2) \left(\frac{1}{12}\right)^n.
\]
The proof of Fact 5 completed.

Theorem 3.2. Assume that \(\rho_1 < \rho_2 \leq \cdots \leq \rho_{3n} \) are the eigenvalues of \(L_S \). One has

\[
\sum_{i=1}^{3n} \frac{1}{\rho_j} = \frac{37 \sqrt{15} n}{30} \left[(4 + \sqrt{15})^n - (4 - \sqrt{15})^n \right]
\]

(3.2)

Proof. Let \(\phi_{L_S}(z) = z^{3n} + t_1 z^{3n-1} + \cdots + t_{3n-1} z + t_{3n} \) be the characteristic polynomial of \(L_S \). So,

\[
\sum_{j=1}^{3n} \frac{1}{\rho_j} = \frac{(-1)^{3n-1} t_{3n-1}}{(-1)^{3n-1} t_{3n}} = \frac{(-1)^{3n-1} t_{3n-1}}{det L_S}.
\]

To determine \((-1)^{3n-1} t_{3n-1}\), we need more preparations. Let

\[
L_0^0 = \begin{pmatrix}
\frac{1}{3} & -\frac{1}{\sqrt{6}} & 0 & 0 & 0 & \cdots & 0 & 0 & 0 & 0 \\
\frac{1}{\sqrt{6}} & 1 & \frac{1}{2} & 0 & 0 & \cdots & 0 & 0 & 0 & 0 \\
0 & 1 & \frac{1}{2} & \frac{1}{\sqrt{6}} & 0 & \cdots & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & \frac{1}{\sqrt{6}} & \frac{1}{3} & \cdots & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & \cdots & 0 & 0 & 0 & 0 \\
\vdots & \vdots & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \vdots \\
0 & 0 & 0 & 0 & 0 & \cdots & 0 & \frac{1}{\sqrt{6}} & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & \cdots & 0 & 0 & \frac{1}{\sqrt{6}} & 0 \\
0 & 0 & 0 & 0 & 0 & \cdots & 0 & 0 & 0 & \frac{1}{\sqrt{6}} \\
0 & 0 & 0 & 0 & 0 & \cdots & 0 & 0 & 0 & 1
\end{pmatrix}
\]

and

\[
L_1^0 = \begin{pmatrix}
1 & -\frac{1}{2} & 0 & 0 & 0 & \cdots & 0 & 0 & 0 & 0 \\
-\frac{1}{2} & 1 & -\frac{1}{\sqrt{6}} & 0 & 0 & \cdots & 0 & 0 & 0 & 0 \\
0 & \frac{1}{\sqrt{6}} & \frac{1}{2} & -\frac{1}{\sqrt{6}} & 0 & \cdots & 0 & 0 & 0 & 0 \\
0 & 0 & \frac{1}{\sqrt{6}} & \frac{1}{3} & \cdots & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & \cdots & 0 & 0 & 0 & 0 \\
\vdots & \vdots & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \vdots \\
0 & 0 & 0 & 0 & 0 & \cdots & 0 & \frac{1}{\sqrt{6}} & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & \cdots & 0 & 0 & \frac{1}{\sqrt{6}} & 0 \\
0 & 0 & 0 & 0 & 0 & \cdots & 0 & 0 & 0 & \frac{1}{\sqrt{6}} \\
0 & 0 & 0 & 0 & 0 & \cdots & 0 & 0 & 0 & 1
\end{pmatrix}
\]

Let \(Q_i^0 \) (\(Q_i^1 \)) be the sequential principal minor of order \(i \) of \(L_0^0 \) (resp. \(L_1^0 \)). Take \(q_i^0 = det Q_i^0 \), \(q_i^1 = det Q_i^1 \). Then we get the following results.

Claim 1. For \(1 \leq j \leq 3n \),

\[
q_j^0 = \begin{cases}
\frac{1}{2} + \frac{\sqrt{15}}{6} & \text{if } j \equiv 0 \pmod{3} \\
\frac{2}{3} + \frac{\sqrt{15}}{90} & \text{if } j \equiv 1 \pmod{3} \\
\frac{7}{12} + \frac{\sqrt{15}}{45} & \text{if } j \equiv 2 \pmod{3}
\end{cases}
\]

Proof. According to the specific calculation, one has \(q_1^0 = \frac{4}{5} \), \(q_2^0 = \frac{7}{6} \), \(q_3^0 = \frac{5}{6} \), \(q_4^0 = \frac{11}{12} \), \(q_5^0 = \frac{7}{5} \). For \(1 \leq j \leq 3n \),

\[
q_j^0 = \begin{cases}
\frac{1}{2} q_{j-1}^0 - \frac{1}{6} q_{j-2}^0 & \text{if } j \equiv 0 \pmod{3} \\
\frac{1}{2} q_{j-1}^0 - \frac{1}{6} q_{j-2}^0 & \text{if } j \equiv 1 \pmod{3} \\
\frac{1}{2} q_{j-1}^0 - \frac{1}{6} q_{j-2}^0 & \text{if } j \equiv 2 \pmod{3}
\end{cases}
\]
For 1 ≤ j ≤ n, Suppose that e_j = q_{3j}. When 0 ≤ j ≤ n − 1, Suppose that f_j = q_{3j+1}, and g_j = q_{3j+2}. Then e_1 = \frac{5}{6}, f_0 = \frac{1}{3}, f_1 = \frac{11}{12}, g_1 = \frac{2}{5}. For j ≥ 2,

\begin{align*}
e_j &= g_j - \frac{1}{6} f_{j-1}; \\
f_j &= \frac{4}{3} e_j - \frac{1}{5} g_{j-1}; \\
g_j &= f_j - \frac{1}{6} e_j.
\end{align*}

From the first and second expressions of 3.3, we can get e_j = \frac{5}{6} f_j + \frac{1}{25} f_{j-1}. Then put the result into the third equation, we have \(g_j = \frac{6}{7} f_j - \frac{1}{168} f_{j-1}, \) so \(g_{j-1} = \frac{6}{7} f_{j-1} - \frac{1}{168} f_{j-2}. \) Finally, substituting e_j and g_{j-1} into the second formula,

\[144 f_j - 96 f_{j-1} + f_{j-2} = 0. \]

So, \(f_j = a_1\left(\frac{1}{12} + \frac{\sqrt{15}}{\sqrt{15}}\right)^j + a_2\left(\frac{4\sqrt{15}}{12}\right)^j, \) substituting the initial conditions \(f_1 \) and \(f_2 \) into the above formula, \(a_1 = \frac{2}{3} + \frac{17\sqrt{15}}{90}, \) and \(a_2 = \frac{2}{3} - \frac{17\sqrt{15}}{90} \) are obtained. And then,

\begin{align*}
e_j &= (\frac{1}{2} + \frac{\sqrt{15}}{5})(\frac{4\sqrt{15}}{12})^j + (\frac{1}{2} - \frac{\sqrt{15}}{5})(\frac{4\sqrt{15}}{12})^j; \\
f_j &= (\frac{2}{3} + \frac{17\sqrt{15}}{90})(\frac{4\sqrt{15}}{12})^j + (\frac{2}{3} - \frac{17\sqrt{15}}{90})(\frac{4\sqrt{15}}{12})^j; \\
g_j &= (\frac{7}{12} + \frac{7\sqrt{15}}{45})(\frac{4\sqrt{15}}{12})^j + (\frac{7}{12} - \frac{7\sqrt{15}}{45})(\frac{4\sqrt{15}}{12})^j,
\end{align*}

as desired.

In the same way, we can get Claim 2. Here we omit the proof.

Claim 2. For 1 ≤ j ≤ 3n,

\[
g_j^1 = \begin{cases}
\left(\frac{1}{2} + \frac{\sqrt{15}}{3}\right)(\frac{4\sqrt{15}}{12})^j + \left(\frac{1}{2} - \frac{\sqrt{15}}{3}\right)(\frac{4\sqrt{15}}{12})^j, & \text{if } j \equiv 0 \pmod{3}; \\
\left(\frac{1}{2} + \frac{\sqrt{15}}{3}\right)(\frac{4\sqrt{15}}{12})^j + \left(\frac{1}{2} - \frac{\sqrt{15}}{3}\right)(\frac{4\sqrt{15}}{12})^j, & \text{if } j \equiv 1 \pmod{3}; \\
\left(\frac{1}{3} + \frac{\sqrt{15}}{10}\right)(\frac{4\sqrt{15}}{12})^j + \left(\frac{1}{3} - \frac{\sqrt{15}}{10}\right)(\frac{4\sqrt{15}}{12})^j, & \text{if } j \equiv 2 \pmod{3}.
\end{cases}
\]

Using the properties of determinants, we have

\[
\text{det } \mathcal{L}_S = \begin{vmatrix}
\frac{4}{3} & -\frac{1}{\sqrt{6}} & 0 & 0 & \cdots & 0 & \frac{1}{\sqrt{6}} \\
-\frac{1}{\sqrt{6}} & 1 & -\frac{1}{\sqrt{6}} & 0 & \cdots & 0 & 0 \\
0 & -1 & 2 & -1 & \cdots & 0 & 0 \\
0 & 0 & -1 & 4 & \cdots & 0 & 0 \\
& \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & 0 & 0 & \cdots & 1 & -\frac{1}{\sqrt{6}} \\
\frac{1}{\sqrt{6}} & 0 & 0 & 0 & \cdots & -\frac{1}{\sqrt{6}} & 1
\end{vmatrix}_{3n \times 3n}
\]

= \begin{vmatrix}
\frac{4}{3} & -\frac{1}{\sqrt{6}} & 0 & 0 & \cdots & 0 & 0 \\
-\frac{1}{\sqrt{6}} & 1 & -\frac{1}{\sqrt{6}} & 0 & \cdots & 0 & 0 \\
0 & -1 & 2 & -1 & \cdots & 0 & 0 \\
0 & 0 & -1 & 4 & \cdots & 0 & 0 \\
& \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & 0 & 0 & \cdots & 1 & -\frac{1}{\sqrt{6}} \\
\frac{1}{\sqrt{6}} & 0 & 0 & 0 & \cdots & -\frac{1}{\sqrt{6}} & 1
\end{vmatrix}_{3n \times 3n}
Claim 5. In the determinant of \(L \), we have the following Claim.

Next, we focus on calculating \((-1)^{3n-1}t_{3n-1}\).

Claim 4. \((-1)^{3n-1}t_{3n-1} = \frac{37\sqrt[3]{15}n}{30} \left[(\frac{4+\sqrt{15}}{12})^n - (\frac{4-\sqrt{15}}{12})^n \right] \). \(\] .

Proof. \((-1)^{3n-1}a_{3n-1} \) is the sum of all \(3n-1 \) order principal subexpression by deleting the row by column of \(L \). One has

\[-\sum_{j=1,j \equiv 1 \pmod{3}}^{3n-2} \] det\(L \) \(+ \) \(\sum_{x=2,x \equiv 2 \pmod{3}}^{3n-1} \) det\(L \) \(= \) \(\frac{1}{6} q_{3n-2} + 2 \cdot \left(\frac{1}{12} \right)^n \)

In the determinant of \(\text{det} L \), we obtain

\[
(-1)^{3n-1}t_{3n-1} = \sum_{x=3,x \equiv 0 \pmod{3}}^{3n} \text{det} L[x] + \sum_{x=1,x \equiv 1 \pmod{3}}^{3n-2} \text{det} L[j] + \sum_{x=2,x \equiv 2 \pmod{3}}^{3n-1} \text{det} L[x]. \tag{3.4}
\]

Proof. Let \(\text{det} L[x] = \left(\begin{array}{cc} L & M \\ N & O \end{array} \right) \), where \(L \) is a square matrix of order \(x - 1 \), and \(O \) is \(3n-x \times (3n-x) \). Obviously

\[
\left(\begin{array}{c} 0 \\ I_{3n-x} \end{array} \right)^T \text{det} L[x] \left(\begin{array}{c} 0 \\ I_{3n-x} \end{array} \right) = \left(\begin{array}{c} O \\ -M \\ -L \end{array} \right) \tag{3.5}
\]

Supposing that \(\left(\begin{array}{c} 0 \\ I_{3n-x} \end{array} \right)^T = S \). Then the above formula can be written as

\[
S^T \text{det} L[x] S = \left(\begin{array}{c} O \\ -M \\ -L \end{array} \right) \]

Subcase 1. If \(x \equiv 0 \pmod{3} \), \(3 \leq x \leq 3n-3 \),

\[
S^T \text{det} L[x] S = Q_{3n-1}^0 = L_S[3n]
\]
\[\sum_{x=3, x \equiv 0 \pmod{3}}^{3n} \det \mathcal{L}_S[x] = n q^0_{3n-1} \]
\[= n \left(\frac{7}{12} + \frac{7\sqrt{15}}{45} \right) \left(\frac{4 + \sqrt{15}}{12} \right)^n + \left(\frac{7}{12} + \frac{7\sqrt{15}}{45} \right) \left(\frac{4 - \sqrt{15}}{12} \right)^{n-1} \]
\[= \frac{7\sqrt{15} n}{15} \left[\left(\frac{4 + \sqrt{15}}{12} \right)^n - \left(\frac{4 - \sqrt{15}}{12} \right)^n \right]. \]

Similarly,

Subcase 2. If \(x \equiv 1 \pmod{3}, \) \(1 \leq x \leq 3n - 2, \)

\[ST \det \mathcal{L}_S[x] S = Q^1_{3n-1} = \mathcal{L}_S[1] \]

and

\[\sum_{x=1, x \equiv 1 \pmod{3}}^{3n-2} \det \mathcal{L}_S[x] = n q^1_{3n-1} \]
\[= \frac{3\sqrt{15} n}{10} \left[\left(\frac{4 + \sqrt{15}}{12} \right)^n - \left(\frac{4 - \sqrt{15}}{12} \right)^n \right]. \]

Subcase 3. If \(x \equiv 2 \pmod{3}, \) \(2 \leq x \leq 3n - 1, \)

\[ST \det \mathcal{L}_S[x] S = \left(\begin{array}{cccccccccccc}
1 & -\frac{1}{\sqrt{6}} & 0 & 0 & 0 & \cdots & 0 & 0 & 0 & 0 & 0 & 0 \\
-\frac{1}{\sqrt{6}} & \frac{2}{3} & -\frac{1}{5} & 0 & 0 & \cdots & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & -\frac{1}{5} & 1 & -\frac{1}{7} & 0 & \cdots & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & -\frac{1}{\sqrt{6}} & \frac{3}{4} & \cdots & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & -\frac{1}{\sqrt{6}} & \cdots & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & \cdots \\
0 & 0 & 0 & 0 & 0 & \cdots & 4 & \frac{1}{3} & \frac{1}{\sqrt{6}} & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & \cdots & 0 & \frac{1}{3} & 1 & -\frac{1}{2} & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & \cdots & 0 & 0 & \frac{1}{\sqrt{6}} & 1 & -\frac{1}{2} & 0 \\
0 & 0 & 0 & 0 & 0 & \cdots & 0 & 0 & 0 & \frac{1}{3} & -\frac{1}{6} & -\frac{1}{6} \\
\end{array} \right)_{(3n-1) \times (3n-1)} \]

and

\[\sum_{x=2, x \equiv 2 \pmod{3}}^{3n-1} \det \mathcal{L}_S[x] = n q^0_{3n-1} \]
\[= \frac{7\sqrt{15} n}{10} \left[\left(\frac{4 + \sqrt{15}}{12} \right)^n - \left(\frac{4 - \sqrt{15}}{12} \right)^n \right], \]
as desired.

Theorem 3.3. Suppose \(Q_n \) is a fractal M"obius octagonal networks of \(n \) octagons. Then

\[D_k(Q_n) = 14n \left(\sum_{j=2}^{3n-1} \frac{1}{\alpha_j} + \sum_{j=1}^{3n} \frac{1}{\rho_j} \right) \]
\[= 14n \left(\frac{147n^2 - 19}{84} \right) + \frac{37\sqrt{15} n}{30} \left[\left(\frac{4 + \sqrt{15}}{12} \right)^n - \left(\frac{4 - \sqrt{15}}{12} \right)^n \right] \]
\[= \frac{147n^3}{6} - \frac{19n}{6} + 14n \xi_n, \]
where
\[
\xi_n = \frac{37 \sqrt{15} n}{30} \left[\left(\frac{4+\sqrt{15}}{12} \right)^n - \left(\frac{4-\sqrt{15}}{12} \right)^n \right]
\]

\[
\frac{\left(\frac{4+\sqrt{15}}{12} \right)^n + \left(\frac{4-\sqrt{15}}{12} \right)^n + 2 \left(\frac{1}{12} \right)^n}
\]

Table 1: The Degree-Kirchhoff indices of \(Q_n \) from \(Q_1 \) to \(Q_{30} \).

\(G \)	\(DK(G) \)	\(G \)	\(DK(G) \)	\(G \)	\(DK(G) \)
\(Q_1 \)	73.13	\(Q_{11} \)	33310.28	\(Q_{21} \)	228232.34
\(Q_2 \)	319.17	\(Q_{12} \)	43100.48	\(Q_{22} \)	262277.55
\(Q_3 \)	851.80	\(Q_{13} \)	54654.69	\(Q_{23} \)	299556.76
\(Q_4 \)	1822.69	\(Q_{14} \)	68119.90	\(Q_{24} \)	340216.96
\(Q_5 \)	3381.01	\(Q_{15} \)	83643.10	\(Q_{25} \)	384405.17
\(Q_6 \)	5674.24	\(Q_{16} \)	101371.31	\(Q_{26} \)	432268.38
\(Q_7 \)	8849.45	\(Q_{17} \)	121451.52	\(Q_{27} \)	483953.58
\(Q_8 \)	13053.65	\(Q_{18} \)	144030.72	\(Q_{28} \)	539607.79
\(Q_9 \)	18433.86	\(Q_{19} \)	169255.93	\(Q_{29} \)	599378.00
\(Q_{10} \)	25137.07	\(Q_{20} \)	197274.14	\(Q_{30} \)	663411.21

Theorem 3.4. Suppose \(Q_n \) is a fractal Möbius octagonal networks of length \(n \geq 2 \). Therefore,
\[
Kc(Q_n) = \sum_{j=2}^{3n} \frac{1}{\alpha_j} + \sum_{j=1}^{3n} \frac{1}{\rho_j}
\]
\[
= \frac{147n^2 - 19}{84} + \frac{37 \sqrt{15} n}{30} \left[\left(\frac{4+\sqrt{15}}{12} \right)^n - \left(\frac{4-\sqrt{15}}{12} \right)^n \right]
\]
\[
\frac{\left(\frac{4+\sqrt{15}}{12} \right)^n + \left(\frac{4-\sqrt{15}}{12} \right)^n + 2 \left(\frac{1}{12} \right)^n}
\]

Theorem 3.5. Suppose \(Q_n \) is a fractal Möbius octagonal networks of length \(n \geq 2 \). Then
\[
\tau(Q_n) = \frac{3n}{2} (4 + \sqrt{15})^n + (4 - \sqrt{15})^n + 2.
\]

Proof. According to Fact 4, one has
\[
\prod_{j=2}^{3n} \alpha_j = (-1)^{3n-1} d_{3n-1} = 21n^2 \left(\frac{1}{12} \right)^n.
\]

Similarly, by Claim 4, one finds
\[
\prod_{j=1}^{3n} \rho_j = det L_S = \left(\frac{4 + \sqrt{15}}{12} \right)^n + \left(\frac{4 - \sqrt{15}}{12} \right)^n + 2 \left(\frac{1}{12} \right)^n.
\]

It needs to be pointed out \(\prod_{j=1}^{6n} d_j(Q_n) = 2^{4n} 3^{2n} \), and \(|E(Q_n)| = 7n \). Then Theorem 3.5 is acquired by the formula of \(\tau(Q_n) \).

Finally, according to the formula, we calculate the number of spanning trees from \(Q_1 \) to \(Q_{12} \).
Table 2: The complexity of Q_n from Q_1 to Q_{12}.

G	$\tau(G)$	G	$\tau(G)$	G	$\tau(G)$	G	$\tau(G)$
Q_1	15	Q_4	230,64	Q_7	196,863,45	Q_{10}	137,241,225,60
Q_2	192	Q_5	226,875	Q_8	177,131,568	Q_{11}	118,854,766,965
Q_3	2205	Q_6	214,329,6	Q_9	156,887,293,5	Q_{12}	102,080,901,875,2

4. Conclusion

Under the research of some scholars, we have carried on some expansion, studied a new graph, fractal Möbius Octagonal networks (Q_n). In this paper, we first restate the normalized Laplacian decomposition theorem. Then, the product of the sum of reciprocal eigenvalues of L_A and L_S are required, by using the Vieta’s theorem for the characteristic polynomials of L_A and L_S. Finally, $DK(Q_n)$, $Kc(Q_n)$ and $\tau(Q_n)$ of fractal Möbius octagonal networks (Q_n) are obtained.

publication of this paper.

Funding

This work was funded in part by Anhui Provincial Natural Science Foundation under Grant 2008085J01, and by National Natural Science Foundation of China Grant 11601006, and by China Post-doctoral Science Foundation under Grant 2017M621579.

References

[1] D.J. Watts, S.H. Strogatz, Collective dynamics of ‘small-world’ networks, Nature. 393 (1998) 440-442.
[2] A.-L. Barabási, R. Albert, Emergence of scaling in random networks, Science. 286 (1999) 509-512.
[3] S. Wang, L. Xi, H. Xu, Li. Wang, Scale-free and small-world properties of Sierpinski networks, Physica A. 465 (2017) 690-700.
[4] J. A. Bondy, U. S. R. Murty, Graph theory, Springer, New York, 2008.
[5] D.J. Klein, M. Randić, Resistance distance, J. Math. Chem. 12(1) (1993) 81-95.
[6] D.J. Klein, Resistance-distance sum rules, Croat. Chem. Acta. 75(2) (2002) 633-649.
[7] D.J. Klein, O. Ivanciuc, Graph cyclicity, excess conductance, and resistance deficit, J. Math. Chem. 30(3) (2001) 271-287.
[8] I. Gutman, B. Mohar, The quasi-Wiener and the Kirchhoff indices coincide, J. Chem. Inf. Comput. Sci. 36(5) (1996) 982-985.
[9] H. Y. Zhu, D. J. Klein, I. Lukovits, Extensions of the Wiener Number, J. Chem. Inf. Comput. Sci. 36(3) (1996) 420-428.
[10] H. Y. Chen, F. J. Zhang, Resistance distance and the normalized Laplacian spectrum, Discrete Appl. Math. 155(5) (2007) 654-661.
[11] L. H. Feng, I. Gutman, G. H. Yu, Degree Kirchhoff index of unicyclic graphs, MATCH Commun. Math. Comput. Chem. 69 (2013) 629-648.
[12] J. Huang, S. C. Li, On the normalised Laplacian spectrum, degree-Kirchhoff index and spanning trees of graphs, Bull. Aust. Math. Soc. 91 (2015) 353-367.
[13] S. Butler, A note about cospectral graphs for the adjacency and normalized Laplacian matrices, Linear Multilinear Algebra 58(3) (2010) 387-390.
[14] M. S. Cavers, S. Fallat, S. Kirkland, On the normalized Laplacian energy and general Randić index R_{-1} of graphs, Linear Algebra Appl. 433(1) (2010) 172-190.
[15] H. Chen, J. Jost, Minimum vertex covers and the spectrum of the normalized Laplacian on trees, Linear Algebra Appl. 437(4) (2012) 1089-1101.
[16] K. Ch. Das, S. W. Sun, Normalized Laplacian eigenvalues and energy of trees, Taiwanese J. Math. 20(3) (2016) 491-507.
[17] G.T. Chen, D. George, H. Frank, Z.S. Li, P. Kinnari, S. Michael, An interlacing result on normalized Laplacians, SIAM J. Discrete Math. 18(2) (2004) 353-361.

[18] M. Levene, G. Loizou, Kemeny’s costant and the random surfer, Amer. Math. Monthly. 109(8) (2002) 741-745.

[19] J. Huang, S. C. Li, L. Q. Sun, The normalized Laplacians, degree-Kirchhoff index and the spanning trees of linear hexagonal chains, Discrete Appl. Math. 207(10) (2016) 67-79.

[20] Q. Li, S. Zaman, W. Sun, J. Alam, Study on the normalized Laplacian of a penta-graphene with applications, Int. J. Quantum Chem. 120(9) (2020) e26154.

[21] S. Li, W. Wei, S. Yu, On normalized Laplacians, multiplicative degree-Kirchhoff indices, and spanning trees of the linear [n] phenylenes and their dicyclobutadieno derivatives, Int. J. Quantum Chem. 119 (2019) e25863.

[22] X. Ma, H. Bian, The normalized Laplacians, degree-Kirchhoff index and the spanning trees of cylinder phenylene chain, Polycycl. Aromat. Comp. 2019. DOI: 10.1080/10406638.2019.1665553

[23] X. Ma, H. Bian, The normalized Laplacians, degree-Kirchhoff index and the spanning trees of hexagonal Möbius graphs, Appl. Math. Comput. 355 (2019) 33-46.

[24] J. B. Liu, J. Zhao, Z. X. Zhu, On the number of spanning trees and normalized Laplacian of linear octagonal-quadrilateral networks, Int. J. Quantum Chem. 119 (2019) e25971.

[25] Q. Zhu, Kirchhoff index, degree-Kirchhoff index and spanning trees of linear octagonal chains, Australas. J. Comb. 118 (2018) e25787.

[26] Z. Zhu, J. B. Liu, The normalized Laplacian, degree-Kirchhoff index and the spanning tree numbers of generalized phenylenes, Discrete Appl. Math. 254(15) (2019) 256-267.

[27] C. Liu, Y. Pan, J. Li, On the Laplacian spectrum and Kirchhoff index of generalized phenylenes, Polycycl. Aromat. Comp. 2019. DOI: 10.1080/10406638.2019.1703765.

[28] C. He, S. Li, W. Luo, Calculating the normalized Laplacian spectrum and the number of spanning trees of linear pentagonal chains, J. Comput. Appl. Math. 344(15) (2018) 381-393.

[29] H. Y. Chen, F. J. Zhang, Resistance distance and the normalized Laplacian spectrum, Discrete Appl. Math. 155(5) (2007) 654-661.

[30] S. Butler, Algebraic aspects of the normalized Laplacian, in: A. Beveridge, J. Griggs, L. Hogben, G. Musiker, e. F. Tetai (Eds.), Recent Trends in Combinatorics, The IMA Volumes in Mathematics and its Applications, IMA. 159 (2016) 295-315.

[31] F. R. K. Chung, Spectral Graph Theory, American Mathematical Society, Providence, RI 1997.

Kirchhoff index, Discret. Appl. Math. 200 (2016) Commun. Math. Comput. Chem. 41 (2000) 119-134. Sci. 36 (1996) 420-428.