Modelling emergence of money from the barter trade: multiscaling edge effects

Stanisław Drożdż · Robert Gębarowski · Andrzej Z. Górski · Jarosław Kwapień · Paweł Oświęcimka

Received: date / Accepted: date

Abstract The agent-based computational economical model for the emergence of money from the initial barter trading, inspired by Menger’s postulate that money can spontaneously emerge in a commodity exchange economy, is extensively studied. The model considered, while manageable, is sufficiently complex, however. It already is able to reveal phenomena that can be interpreted as emergence and collapse of money as well as the related competition effects. In particular, it is shown that - as an extra emerging effect - the money lifetimes near the critical threshold value develop multiscaling, which allow one to set parallels to critical phenomena and, thus, to the real financial markets.

Keywords Complex systems · Agent-based model · Money · Multifractality · Criticality

JEL classification: C15, C51, E40

1 Introduction

Extreme complexity of a phenomenon commonly termed as money stems from several factors. Viewed in contemporary terms as a foreign exchange (Forex) market it can be considered the world’s largest and most important financial market, entirely decentralized, crossing all the countries, with the highest daily trading volume extending to trillions of US dollars. There is plenty of evidence (Kwapień and Drożdż 2012) that the Forex’s dynamics is more complex than
that of any other market’s. The absence of an independent reference frame makes the absolute currency pricing virtually impossible and a given currency’s value is expressed by means of some other currency, which, in turn, is also denominated only in currencies. Moreover, in global terms the Forex market is exposed to current situation on other markets in all parts of the world, which makes it particularly sensitive and unpredictable. These facts together with other Forex specific relationships like the triangle rule (Aiba et al. 2002, Drożdż et al. 2010) that links mutual exchange rates of three currencies are among the factors responsible for a highly convoluted structure (Drożdż et al. 2007, Kwapieniń et al. 2009, Yakovenko and Rosser JB Jr 2009) of Forex.

Complexity of money as a general medium of exchange that allows to avoid difficulties of barter trade requiring a “double coincidence of needs” and constitutes a measure of and a store of value, roots back even to its beginnings. Menger (1892) proposed that money can spontaneously emerge in a commodity exchange economy. Accordingly, each commodity is characterized by its own marketability reflecting its status in the market. Money is a commodity, which through the process analogous to the physical spontaneous symmetry breaking (Bak et al. 2001) receives a very high marketability and thus a special status of a medium of exchange (Kiyotaki and Wright 1985). Katsuhito (1993, 1996) developed a model along the original Menger’s idea and demonstrated that money is governed by a kind of the so-called bootstrap mechanism, i.e., it is accepted at any place at any time because it is in a position of money. Agent based variants of such a model have further been studied by Yasutomi (1995, 2003) and Górski et al. (2010) who by numerical simulations demonstrated that they are able to reveal money emergence as well as its collapse. In general, agent based models (Samanidou et al. 2007, Chakraborti et al. 2011) find an increasing number of promising applications in various areas of economics (Yasutomi 1996, Lux and Marchesi 1999, Iori 2002, Krawiecki et al. 2002, Yang et al. 2008, Denys et al. 2013) and in social sciences (Kacperski and Holyst 1996, Helbing et al. 2000, Sznajd-Weron and Sznajd 2000, Grabowski and Kosiński 2006, Gawroński and Kulakowski 2011) and the need for this kind of approaching the related phenomena, especially in an economic context, is being expressed more and more forcefully (Bouchaud 2008, Farmer and Foley 2009, Lux and Westerhoff 2009). For all these reasons in the present contribution, we further pursue simulations based on an agent based model which from an initial barter trading is able to spontaneously elevate one of the commodities to the money status. We in particular focus on the transition region between the homogenous commodities and emerging money phases with the aim to identify the complexity characteristics of this transition in terms of the multifractal scaling. Below we list the main ingredients of the model used.

2 Model

In the model (Yasutomi 1995, Górski et al. 2010) we have N agents, each agent producing one type of good enumerated by $k = 1,\ldots,N$. For the sake
of simplicity, we assume that the agent number k is producing a good type denoted by k. The elementary interaction of two agents ("transaction") consist of several steps including search of the co-trader, exchange of particular goods, change of the agent’s buying preferences and finally the production and consumption phase. A sequence of N consecutive transactions is called a turn. In a single turn each of the N agents has chance to take part in exchange of goods, production, and consumption. To each agent, say k, there are attributed three N-dimensional vectors. The possession vector, $P_i^{(k)}$, $i = 1, \ldots, N$, with non-negative integer components that denote how many units of the i-th good has the kth agent at the moment. The demand vector, $D_i^{(k)}$, is actually a "shopping list", i.e. it counts how many goods of the type i the agent k is going to buy. Finally, the "world view" vector, $V_i^{(k)}$, with non-negative real components is related to the kth agent’s shopping preferences. These preferences are evolving with time, depending on the preferences of the other agents (co-traders) as well as according to success of the previous transaction of the trader. The vector $V_i^{(k)}$ is normalized according to

$$\sum_{i=1}^{N} V_i^{(k)} = N, \quad \forall k, \quad 0 \leq V_i^{(k)} \leq N.$$ \hspace{1cm} (1)

The higher is the value of $V_i^{(k)}$, the more willing to buy the good i is the agent k. In addition, for each agent there is attributed an integer $w^{(k)}$ equal to the number of the goods that the agent urgently needs at the moment and that must be included in the shopping list independently of his preferences ($V_i^{(k)}$). The other goods at the shopping list will be added depending on the values of the "world view" (preference) vector. In particular, if the value of a component i of the vector V_i is greater than the only external parameter of the model, $Thresh \in [0, N]$, the good i will be added to the shopping list.

The model algorithm is defined by the following steps:

Step 1. An agent ("trader") k is chosen randomly.

Step 2. The trader k chooses a co-trader (say, agent l) who has the largest amount of wanted good, $w^{(k)}$.

Step 3. Both traders check what they have and what they want.

Step 4. The traders exchange their views. At first, they increase the value of component $V_i^{(n)}$ ($n = l, k$) by 1.0 if their previous demands were not satisfied, i.e.

$$D_j^{(n)} > 0 \Rightarrow V_j^{(n)} \rightarrow V_j^{(n)} + 1 \quad (n = l, k).$$

Then both traders accept an averaged view:

$$V_j^{(n)} \rightarrow \frac{[V_j^{(k)} + V_j^{(l)}]}{2} \quad (n = l, k).$$

Finally, the new views are re-normalized according to the condition (1).

Step 5. The traders create their "shopping list" i.e. they decide what they want to buy. For the trader k:

if $P_j^{(l)} > 0 \land (w^{(k)} = j \lor V_j^{(k)} > Thresh) \Rightarrow D_j^{(k)} = P_j^{(l)}$, otherwise $D_j^{(k)} = 0$.

The same is done symmetrically ($k \leftrightarrow l$) by the co-trader l and for all types of goods, $j = 1, \ldots, N$.

Step 6. The exchange procedure. The traders "buy" (exchange) goods according to their shopping lists $D^{(n)}_j$, $n = l, k$, $j = 1, \ldots, N$. If total amount of goods on both their shopping lists (demands) is identical, $\sum_j D^{(k)}_j = \sum_j D^{(l)}_j$, then their demands are fully satisfied and the shopping lists are zeroed.

If the shopping list of one trader (say, k) is bigger then the shopping list of his co-trader, all demands of trader k cannot be satisfied. Hence, after the exchange the vector $D^{(k)}_j$ will have non-zero components for the goods that could not be bought. In this case the trader with a larger shopping list (k) can satisfy his demands partially only. In particular, he selects from his co-trader one unit of good j with the smallest component $D^{(k)}_j$ (i.e. the agent prefers to get more rare goods). This procedure is repeated unit by unit until the shopping list $D^{(l)}_j$ is zeroed.

If one of the traders has empty shopping list (all components are zero), there is no exchange at all and the whole transaction is finished without any exchange. Notice, however, that in spite of this, the update of the world view vectors was already done (Step 5). Also during this step, the possession vectors $P^{(k)}_j, P^{(l)}_j$ of both traders are updated.

Step 7. The final step consists of consumption and production. The traders k, l consume goods specified by the variable $w^{(k)}_j, w^{(l)}_j$, respectively. Then, if $P^{(k,l)}_j = 0$, the traders produce one unit of the good k, l. Finally, we choose new wants for the traders: new values for the variables $w^{(k)}_j, w^{(l)}_j$ are randomly selected $w^{(k)}_j \neq k$. This ends the elementary transaction process.

The initial conditions are the following: $P^{(k)}_j = \delta_{kj}, D^{(k)}_j = 0, V^{(k)}_j = 1$, and $w^{(k)}$ are chosen randomly from the set $\{1, 2, \ldots, N\}$ for each k. In particular, the initial shopping list is empty and the "views" of all traders are identical and equally distributed for all goods.

In the model money is defined as the good satisfying the following four conditions: (i) that is most wanted by all agents, i.e. $\sum_k V^{(k)}_j / N$ is maximized ($= V^{\text{max}}$) for the value of j that corresponds to the good that plays the role of money; (ii) the total trade should be nonzero; (iii) in comparison to other goods, money should be relatively often exchanged; (iv) the money lifetime should be sufficiently long (lasting for many trades).

An example of time evolution of the principal characteristics of this model for the population size $N = 50$ is shown in Fig. 1 for the following dynamical variables: (a) V^{max}, (b) production of goods, (c) supply of the most wanted good, and (d) points of the "money switching", i.e. the points when the most wanted good is overtaken by another good. The distances between the consecutive time-points are thus to be interpreted as "money lifetimes" within the present model. These plots are given for the threshold value $\text{Thresh} = 2.5$ which for $N = 50$ about marks a center of the region where money start emerging. From the point of view of complexity science and in relation to the financial reality, this is the most interesting region. The structure of "money lifetimes" seen in panel (d) of Fig. 1 suggests their fractal organization and
Fig. 1 Model behavior for $N = 50$ and the parameter threshold $Thresh = 2.5$. (a) Time evolution of V_{max}; the dashed lines show the values $1 + \sqrt{N}/2$ and $1 + \sqrt{N}$, respectively. (b) Production of goods; (c) Supply of the most wanted good ("money"); (d) Vertical lines indicate when the "money switching" takes place for the first 10^4 turns.

Fig. 2 Consecutive "money lifetimes" measured in terms of the number of trading turns, during which a given commodity fulfills criterion of being money, for two values of the model's threshold parameter $Thresh = 1.0$ (top panel) and $Thresh = 2.5$ (bottom panel). Note different scales.
thus critical character of the transition from the phase with no money to the money phase while increasing the parameter Thresh value.

This is even more suggestive in Fig. 2 showing the consecutive “money life-times” for $\text{Thresh} = 1.0$ and $\text{Thresh} = 2.5$ measured in terms of the number of trading turns. While in the former case we see a white noise-like structure with very short lifetimes, in the later case the commodity fulfilling the criterion of money often happens to reign for up to 35000 of trading turns. The overall structure in this later case displays a characteristic ‘volatility clustering’, which is a hallmark of criticality and multiscaling (Lux and Marchesi 1999, Drożdż et al. 2009). In the following we therefore perform a more systematic quantitative study of this particular aspect of the present model using the modern formalism of multifractality (Kwapien and Drożdż 2012).

3 Multifractal analysis of ”money switching” dynamics

Multiscaling (Halsey et al. 1986, Hentchel and Procaccia 1983) represents a commonly accepted concept to grasp the most essential characteristics of complexity. Indeed, the related measure in terms of multifractal spectra offers an attractively compact frame to quantify the hierarchy of scales and specificity of their interwoven organization. This in particular applies to the temporal aspects of complexity and, thus, well suits the present issue of ”money switching” dynamics. Up to now there exist two main types of algorithms to determine the multifractal spectra. The one that typically delivers the most stable results (Oświęcimka et al. 2006) constitutes a natural extension of Detrended Fluctuation Analysis (DFA) (Peng et al. 1994, Kantelhardt et al. 2001) and is known as Multifractal Detrended Fluctuation Analysis (MFDFA) (Kantelhardt et al. 2002). The other algorithm - Wavelet Transform Modulus Maxima (WTMM) (Muzy et al. 1994, Arneodo et al. 1995) - is based on the wavelet decomposition of a signal. This algorithm requires more care as far as stability of the result is concerned. It at the same time offers better visualization of the relevant structures, however. For this reason, and also as a consistency test, below we use both these algorithms in parallel to analyze the same time series.

3.1 MFDFA and results

The MFDFA algorithm consists of several steps as sketched below. At first, for a time series x_i a signal profile is calculated according to the equation:

$$Y (j) = \sum_{i=1}^{j} [x_i - \langle x \rangle] \quad j = 1...N, \tag{2}$$

where $<>$ denotes averaging over a time series of length N. Then the profile is divided into $2M_s$ disjoint segments ν of length s starting both from the beginning and from the end of the time series. For each box the assumed trend
is estimated by least-squares fitting a polynomial $P^{(m)}_\nu$ of order m. Based on our own experience (Oświęcimka et al 2006) in the present analysis we use $m = 2$ as optimal. Next, variance of the detrended data is calculated:

$$F^2(\nu, s) = \frac{1}{s} \sum_{k=1}^{s} \{(Y((\nu - 1)s + k) - P^{(m)}_\nu(k))\},$$

and finally, by averaging the $F^2(\nu, s)$ function over all the segments ν, a qth-order fluctuation function is derived according to the equation:

$$F_q(s) = \left\{ \frac{1}{2M^2} \sum_{\nu=1}^{2M} [F^2(\nu, s)]^{q/2} \right\}^{1/q}, \quad q \in \mathbb{R} \setminus \{0\}.$$ (4)

In order to determine the statistical properties of the $F_q(s)$ function, the above steps are repeated for different values of s. In the case of a fractal time series, fluctuation function $F_q(s)$ reveals power law dependence: $F_q \sim s^{h(q)}$, where $h(q)$ denotes the generalized Hurst exponent. For monofractal time series, $h(q)$ is independent of q and equals the well-known Hurst exponent $h(q) = H$. In the case of multifractal correlations, however, $h(q)$ depends on q and the Hurst exponent is obtained for $q = 2$. From $h(q)$ exponents, one can calculate the multifractal spectrum according to the equations:

$$\alpha = h(q) + qh'(q) \quad \text{and} \quad f(\alpha) = q[\alpha - h(q)] + 1,$$

where α denotes the Hölder exponent and $f(\alpha)$ is the fractal dimension of the set of points with this particular α. For multifractal time series, the singularity spectrum typically assumes shape similar to an inverted parabola whose width is considered a measure of the degree of multifractality and it thus shrinks to one point in the case of monofractal.

By using this method, we then address the problem of correlations in the time series of money lifetimes. For this time series (as the ones shown in Fig. 1(d) or in Fig. 2), the scale s dependence for the set of the so-evaluated fluctuation functions $F_q(s)$ ($-4 \leq q \leq +4$), around the critical threshold value for the emergence of money, starting with $\text{Thresh} = 1.0$ up to $\text{Thresh} = 3.5$ with the step of 0.5 is shown in Fig. 3. As it can clearly be seen, these functions develop a power law form over the scale range of about two orders of magnitude. The q-dependence of the corresponding power-law indices significantly varies, however, with the threshold parameter Thresh and around $T = 2.5$ this dependence (here shown for $-4 \leq q \leq +4$) is the most prominent, which signals nontrivial multifractality. The degree of multifractality systematically increases while approaching this Thresh value from below, but then it sharply degrades when exceeding it.

The resulting singularity spectra $f(\alpha)$ are presented in Fig. 4 for the same sequence of the parameter Thresh values as in Fig. 3. Indeed, the broadest spectrum - reflecting the highest complexity of the underlying dynamics (Kwapień and Drożdż 2012) - corresponds to $\text{Thresh} = 2.5$ and departing from this value in either direction makes $f(\alpha)$ narrower with the maximum moving towards $\alpha = 0.5$ like for the monofractal uncorrelated signals. Comparison of these singularity spectra to the analogous quantities for the randomized (shuffled) data, shown in the inset to Fig. 4, clearly demonstrates significance of
Fig. 3 Fluctuation functions $F_q(s)$ (for $q = -4 \ldots +4$) for the time series of money lifetimes generated from the model presented for the threshold parameter T ranging from $T = 1.0$ to $T = 3.5$ with the step of $\Delta T = 0.5$.

Fig. 4 Singularity spectra $f(\alpha)$, calculated by means of MFDFA algorithm, for the same sequence of the original time series of money lifetimes as in Fig. 3 and (inset) for the same but randomized (shuffled) time series of money lifetimes.

This result. After such a destruction of temporal correlations, all the spectra become narrow and located in the vicinity of $\alpha = 0.5$. This comparison thus indicates that multifractal nature of the time series representing consecutive money lifetimes is primarily due to the long-range temporal correlations.
3.2 WTMM and results

As already mentioned above, the WTMM method is an alternative technique of detecting the fractal properties of a signal. The core of the algorithm is wavelet transform T_ψ that is a convolution of a signal $x(i)$ and a wavelet ψ (Grossmann and Morlet 1984):

$$T_\psi(n, s) = \frac{1}{s} \sum_{i=1}^{N} \psi\left(\frac{i-n}{s}\right)x(i),$$ \hspace{1cm} (5)

where n denotes a shift of the wavelet kernel and s is scale. In particular, the wavelet kernel ψ can be chosen arbitrarily. The only criterion is its good localization in space and in frequency domains. For the purpose of our analysis, we choose the third derivative of the Gaussian $\psi^{(3)}(x) = \frac{d^3}{dx^3}(e^{-x^2/2})$, because it removes the trends that can be approximated by polynomials up to the second order. In the presence of singularity in the data, the scaling relation of T_ψ coefficients can be observed:

$$T_\psi(n_0, s) \sim s^{\alpha(n_0)},$$ \hspace{1cm} (6)

However, this relation can be unstable in the case of densely packed singularities. Therefore, it is suggested to identify the local maxima of T_ψ and then to calculate the partition function according to the equation:

$$Z(q, s) = \sum_{l \in L(s)} |T_\psi(n_l(s), s)|^q,$$ \hspace{1cm} (7)

where $L(s)$ denotes a set of all maxima for scale s and $n_l(s)$ is the position of a particular maximum. In order to preserve the monotonicity of the family of the $Z(q, s)$ functions, the additional condition needs to be imposed:

$$Z(q, s) = \sum_{l \in L(s)} (\sup_{s' \leq s} |T_\psi(n_l(s'), s')|)^q.$$ \hspace{1cm} (8)

In the case of fractal signals, the $\tau(q)$ exponents characterize the power-law behavior of the partition function:

$$Z(q, s) \sim s^{\tau(q)},$$ \hspace{1cm} (9)

For multifractal time series $\tau(q)$ is a nonlinear function of q, whereas it is linear otherwise. The singularity spectrum is obtained by Legendre transforming $\tau(q)$ according to the following formula:

$$\alpha = \tau'(q) \quad \text{and} \quad f(\alpha) = q\alpha - \tau(q).$$ \hspace{1cm} (10)

Two examples of the maps representing the wavelet transforms $T_\psi(n, s)$ calculated from the same time series of money lifetimes as before for our model with $\text{Threshold} = 1.0$ and $\text{Threshold} = 2.5$ are shown in Fig. 5. The fractal
Fig. 5 The wavelet transform T_ψ of time series of money lifetimes. Left and Right panel refers to time series generated with threshold value $T = 1.0$ and $T = 2.5$, correspondingly. The wavelet coefficients were coded, independently at each scale, by means of 128 colors ordered according to spectrum of natural light from blue (min T_ψ) to red (max T_ψ). The wavelets used in calculation were third derivative of Gaussian ($\varphi^{(3)}$).

character of these signals can be seen already on the visual level to manifest itself quite convincingly from the bifurcation structure of the maxima of the wavelet transform. For $Thresh = 2.5$ (right hand side of Fig. 5) the intensities of maxima vary with the scale, while for $Thresh = 1.0$ (left hand side of Fig. 5) they remain largely homogenous, which signals a more involved fractal composition in the former case. Of course, we already know from our previous MFDFA analysis that the $Thresh = 2.5$ case is strongly multifractal while the $Thresh = 1.0$ case is essentially monofractal, and here we find an alternative indication for this fact. Determining the singularity spectra according to the above-described WTMM algorithm for the same six cases of the model’s threshold parameter $Thresh$ as in Fig. 4 gives the results shown in Fig. 6. Comparing both MFDFA and WTMM results indicates basically the same tendency even on a fully quantitative level: the broadest singularity spectrum characterizes the dynamics at around the critical threshold value for the emergence of money. These comparisons are summarized globally in Fig. 7 in terms of the threshold parameter dependence of the maximum span $\Delta \alpha$ of the corresponding singularity spectra obtained within the MFDFA and WTMM methods. Both methods consistently point to $Thresh = 2.5$ as this value of the model’s threshold parameter (for $N = 50$), where the money switching dynamics is the most complex.

4 Concluding remarks

We have performed extensive numerical simulations using the agent-based computational economic model for the creation of money, developed along the lines originally proposed by Menger (1892) that money can spontaneously
Fig. 6 Singularity spectra \(f(\alpha) \), calculated by means of WTMM algorithm, for the same sequence of the original time series of money lifetimes as in Fig. 3 and (inset) for the same but randomized (shuffled) time series of money lifetimes.

Fig. 7 Width of singularity spectrum \(\Delta \alpha \) as function of model’s threshold parameter. Black circles and red squares refer to MFDFA and WTMM algorithm, respectively.

emerge in a commodity exchange economy. Money in this model is defined as the most wanted good. A variant of this model studied in the present paper allows emergence as well as collapse of money. This model’s ability is ruled by the only external parameter \(\text{Thresh} \) whose magnitude reflects agents tendency to act collectively and it induces memory effects. The most interesting situation takes place just at the edge between a phase with no money emergence and a phase with stable money. In this intermediate region one of the commodities spontaneously becomes universally wanted and retains such a status for sufficiently long time so that it can be considered money. Under these edge conditions the dynamics of trade is characterized by a permanent
competition which leads to collapse of that particular money and another commodity overtaking. An interesting related effect that we were witnessing at the course of simulations is that such overtaking often alternates within one particular pair of commodities. In contemporary terms this can perhaps be interpreted as this model’s ability to induce effects in the spirit of competition of two currencies to become world’s leading (like USD versus Euro). From a theoretical point of view, the most interesting effect is that lifetimes of the consecutive money emerging within the model at the edge, form time series that develop remarkable multifractal characteristics as verified by the two independent algorithms: Multifractal Detrended Fluctuation Analysis (MF DFA) and Wavelet Transform Modulus Maxima (WTMM). The width of the corresponding singularity spectra (Fig. 7) considered a function of the threshold parameter displays shape that resembles the order parameter changes at the second-order phase transition. That this transition can be paralleled to the critical phenomena is primarily indicated by an increasing span of the multifractal spectrum (and thus as an increasing complexity) when approaching the transition point. The ability of the present model to generate the above effects seems very demanding since the most creative acts of Nature are commonly considered to be associated with criticality (Bak 1996). There also exists empirical evidence (Oświęcimka et al. 2005) that the consecutive intertransaction times on the stock market form time series that are multifractal. One may speculate that there is some analogy between the present “money lifetime” issue and the stock market intertransaction times: during a given “lifetime” money is the same; similarly, price may change only during transaction. From this perspective intertransaction time can be considered “price lifetime”.

References

Aiba Y, Hatano N, Takayasu H, Marumo K, Shimizu T (2002) Triangular arbitrage as an interaction among foreign exchange rates. Physica A 310: 467-479

Arneodo A, Bacry E, Muzy JF (1995) The thermodynamics of fractals revisited with wavelets. Physica A 213: 232-275

Bak P (1996) How Nature works: the science of self-organized criticality. Springer-Verlag New York

Bak P, Norrelykke SF, Shubik M (2001) Money and Goldstone modes. Quant Finance 1: 186-190

Bouchaud J-P (2008) Economics needs a scientific revolution. Nature 455: 1181

Chakrabarti A, Toke IM, Patriarca M, Abergel F (2011) Econophysics review: II. Agent-based models. Quant Finance 11: 1013-1041

Denys M, Gubiec T, Kutner R (2013) Reinterpretation of Sieczka Holyst Financial Market Model. Acta Phys Polonica A 123: 513-517

Drożdż S, Górski AZ, Kwapien J (2007) World currency exchange rate cross-correlations: Eur Phys J B 58: 499-502
Drozd S, Kwapien J, Oswiecmik, R. Rak (2009) Quantitative features of multifractal subtleties in time series. Europhys Lett (EPL) 88: 60003

Drozd S, Kwapien J, Oswiecmik P, Rak R (2010) The foreign exchange market: return distributions, multifractality, anomalous multifractality and the Epps effect. New J Phys 12: 105003 (23pp)

Farmer JD, Foley D (2009) The economy needs agent-based modelling. Nature 460:685-686

Gawronski P, Kulakovski K (2011) Crowd dynamics - being stuck. Comp Phys Comm 182: 1924-1927

 Gorski AZ, Drozd S, Oswiecmik P (2010) Modelling emergence of money. Acta Phys. Pol. A 117: 676-680

Grabowski A, Kosinski RA (2006) Ising-based model of opinion formation in a complex network of interpersonal interactions. Physica A 361: 651-664

Grossmann A, Morlet J (1984) Decomposition of Hardy functions into square integrable wavelets of constant shape. S.I.A.M. J. Math. Anal. 15: 723-736

Halsey TC, Jensen MH, Kadanoff LP, Procaccia I, Shraiman BI (1986) Fractal measures and their singularities: The characterization of strange sets. Phys. Rev. A 33: 1141-1151

Helbing D, Farkas I, Vicsek T (2000) Simulating dynamical features of escape panic. Nature 407: 487

Hentschel HGE, Procaccia I (1983) The infinite number of generalized dimensions of fractals and strange attractors. Physica D 8: 435-444

Iori G (2002) A microsimulation of traders activity in the stock market: the role of heterogeneity, agents’ interactions and trade frictions. J. Econ. Behav. Organ. 49: 269-85

Kacperski K, Holyst JA (1996) Phase transitions and hysteresis in a cellular automata-based model of opinion formation. J Stat Phys 84: 169-189

Kantelhardt JW, Koscielny-Bunde E, Rego HHA, Havlin S, Bunde A (2001) Detecting long-range correlations with detrended fluctuation analysis. Physica A 295: 441-454

Kantelhardt JW, Zochiger SA, Bunde A, Havlin S, Koscielny-Bunde E, Stanley HE (2002) Multifractal detrended fluctuation analysis of nonstationary time series. Physica A 316: 87-114

Katsuhito I (1993) Kaheiron (Theory of Money) Chikuma-Shobo, Tokyo, (in Japanese)

Katsuhito I (1996) The bootstrap theory of money: A search-theoretic foundation of monetary economics. Structural Change Economic Dynamics 7: 451-477

Kiyotaki N and Wright R 1985 On money as a medium of exchange. J. Political Economy 97: 924-954

Krawiecki A, Holyst JA, Helbing D (2002) Volatility clustering and scaling for
financial time series due to attractor bubbling. Phys Rev Lett 89:158701

Kwapięń J, Gworek S, Drożdż S, Górski AZ (2009) Analysis of a network structure of the foreign currency exchange market. J Econ Interact Coord 4: 55-72

Kwapięń J, Drożdż S (2012) Physical approach to complex systems. Phys Rep 515: 115-226

Lux T and Marchesi M (1999) Scaling and criticality in a stochastic multi-agent model of a financial market. Nature 397: 498-500

Lux T, Westerhoff F (2009) Economics crisis. Nature Phys 5: 2-3

Menger C (1892) On the origin of money. Economy J. 2 (June 1892): 239-255

Muzy JF, Bacry E, Arneodo A (1994) The Multifractal formalism revisited with wavelets. Int J Bifurcation Chaos 04: 245-302

Oświęcimka P, Kwapięń J, Drożdż S (2005) Multifractality in the stock market: price increments versus waiting times. Physica A 347: 626-638

Oświęcimka P, Kwapięń J, Drożdż S (2006) Wavelet versus detrended fluctuation analysis of multifractal structures. Phys Rev E 74: 016103

Peng CK, Buldyrev SV, Havlin S, Simons M, Stanley HE, Goldberger AL (1994) Mosaic Organization of DNA Nucleotides. Phys Rev E 49: 1685-1689

Samanidou E, Zschischang E, Stauffer D, Lux T (2007) Agent-based models of financial markets. Rep Prog Phys 70: 409-450

Sznajd-Weron K, Sznajd J (2000) Opinion evolution in closed community. Int J Mod Phys C 11: 1157-1165

Yakovenko VM, Rosser JB Jr (2009) Colloquium: Statistical mechanics of money, wealth, and income. Rev Mod Phys 81: 1703

Yang J-S, Kwon O, Jung W-S, Kim I (2008) Agent-based approach for generation of a money-centered star network. Physica A 387:5498-5502

Yasutomi A (1995) The emergence and collapse of money. Physica D 82: 180-194

Yasutomi A (2003) Itinerancy of money. Chaos 13: 1148-1164