DiVa: An Accelerator for Differentially Private Machine Learning

Beomsik Park* Ranggi Hwang* Dongho Yoon Yoonhyuk Choi Minsoo Rhu
School of Electrical Engineering
KAIST
{parkbeomsik, ranggi.hwang, dongho.yoon, yoonhyuk.choi, mrhu}@kaist.ac.kr

Abstract—The widespread deployment of machine learning (ML) is raising serious concerns on protecting the privacy of users who contributed to the collection of training data. Differential privacy (DP) is rapidly gaining momentum in the industry as a practical standard for privacy protection. Despite DP’s importance, however, little has been explored within the computer systems community regarding the implication of this emerging ML algorithm on system designs. In this work, we conduct a detailed workload characterization on a state-of-the-art differentially private ML training algorithm named DP-SGD. We uncover several unique properties of DP-SGD (e.g., its high memory capacity and computation requirements vs. non-private ML), root-causing its key bottlenecks. Based on our analysis, we propose an accelerator for differentially private ML named DiVa, which provides a significant improvement in compute utilization, leading to $2.6 \times$ higher energy-efficiency vs. conventional systolic arrays.

Keywords—Differential privacy; accelerator; machine learning; deep learning

I. INTRODUCTION

Deep neural network (DNN) based machine learning (ML) algorithms have demonstrated remarkable performance in numerous application domains [20], [30], [87]. Such advances are fueled by the availability of large, representative datasets that are being utilized for training ML algorithms, allowing DNNs to capture multi-level representations and abstractions from the training dataset.

Despite the enormous success of DNNs, the widespread deployment of ML applications is raising serious concerns on protecting the privacy of users who contributed to the collection of training data. Because the training datasets are oftentimes crowdsourced and can include sensitive information (e.g., private emails, medical records, financial transactions), an adversary can seek a training data extraction attack to restore individual training examples. Even if the ML model parameters are not shared, black-box access to the models was shown to leak private information [13], [27], [33], [86]. In particular, recent literature demonstrated that the memorization behavior exhibited with large DNN models can be exploited to leak individual’s private information, posing risks to those that contributed to the training data.

Given this landscape, both industry and academia have started developing solutions that satisfy the demands of ML applications while also offering principled and rigorous privacy guarantees [2], [8], [22], [72], [85]. Among various privacy mechanisms, differential privacy (DP) [23] has rapidly gained momentum as a well accepted notion of privacy (Section II-A). Informally speaking, for the ML model to be differentially private, the estimated model and all of its parameters should be indistinguishable regardless of whether a particular client’s data was taken into consideration or not during the training process, allowing the privacy of individual training examples to be protected. Thanks to DP’s strong mathematical guarantees on privacy protection and recent advances in successfully training differentially private ML models [4], [36], [64], [92], we are witnessing a wide variety of real-world products incorporating DP. For example, Apple employs DP to collect iOS device users’ anonymous usage patterns and Amazon similarly utilizes DP to access user’s personalized shopping preference while hiding sensitive information regarding past purchases [5], [21]. In general, DP methods are being recognized in the industry as a practical standard for privacy protection. Despite DP’s importance, however, little has been explored and understood within the computer architecture community regarding the implication of this highly important and emerging ML algorithm on computer system designs.

Consequently, an important motivation and key contribution of our study is a detailed workload characterization on differentially private ML. To the best of our knowledge, this work is the first to quantitatively analyze a representative, state-of-the-art differentially private ML system, discussing its architectural implications as well as its key challenges. Standard practice in training a non-private DNN model is to employ stochastic gradient descent (SGD) where multiple input examples are batched together as a training mini-batch. During backpropagation, SGD derives a per-batch weight gradient for updating the DNN weights. Under the privacy-preserving scenario, the state-of-the-art algorithm employed in practice is the “differentially-private” SGD (henceforth referred to as DP-SGD), a variation of SGD with strong privacy protection. The unique property of DP-SGD is twofold: 1) it requires the derivation of per-example weight gradients, rather than the per-batch weight gradients derived in non-private SGD, and 2) these per-example weight gradients go through

* Co-first authors who contributed equally to this research.
series of post-processing steps (e.g., per-example gradient norm derivation, gradient clipping/reduction, and random noise addition to the gradients) for the privacy enhancement of the target model (Section II-C).

Given such, our study uncovers important research challenges this emerging privacy enhanced ML paradigm brings about to computer system designers, which we outline below. The key compute primitive of SGD training is the GEMM (generalized matrix multiplication) operation as it can cover the majority of execution time of both forward and backpropagation (Section III-B). Systolic arrays are arguably the most successfully deployed GEMM acceleration engine for ML training, notably represented by its wide adoption in the industry (e.g., Google TPUs [47]). Using Google Cloud TPUv3, we demonstrate that training DNNs with DP-SGD incurs both low compute utilization (up to 29× lower than SGD) and high memory consumption (up to 11× higher than SGD), significantly aggravating training throughput by up to 33× vs. non-private SGD. Careful examination of such performance drop reveals that conventional systolic arrays are suboptimal for efficiently handling both the derivation of per-example weight gradients as well as gradient post-processing steps, posing serious challenges in practically training differentially private, large-scale DNN models (Section III-C).

To this end, we present DiVa, an accelerator architecture tailored for the unique algorithmic properties of Differentially PrivIate machine learning training. The design of DiVa is driven by our detailed characterization study, unlocking DP-SGD’s full potential with the following two key innovations.

1) Compared to non-private SGD, deriving DP-SGD’s per-example weight gradients can entail hundreds of irregular, tall-skinny shaped GEMMs, which is ill-suited for systolic arrays optimized for regular, square shaped GEMMs. We propose an outer-product based dataflow for DP-SGD’s processing engines (PEs) which provides high robustness to both regular and irregularly shaped GEMMs. Compared to systolic array’s dataflow, our proposal does a much superior job in mapping irregular (per-example weight gradient) GEMMs over the compute fabric, significantly improving PE utilization by an average 5.5×.

2) Another critical step in DP-SGD training is the gradient post-processing stage where the L2 norm values of per-example gradients are derived, which are utilized for clipping and reducing the gradients (Section II-C). All of these operations are highly memory bandwidth limited and can cause latency overheads. DiVa augments its outer-product based PE array with a tightly coupled DP-SGD post-processing unit (PPU), a multi-level adder-tree for vector reductions whose datapath is optimized for the unique dataflow of gradient norm/clipping/reduction to minimize off-chip memory accesses. We demonstrate that DiVa’s PPU provides 99% reduction in off-chip data movements during gradient post-processing, effectively resolving its memory bandwidth limitation.

Putting everything together, DiVa provides a significant improvement in compute utilization which leads to an average 3.8× training time reduction, providing 2.6× higher energy-efficiency vs. conventional systolic arrays for DP-SGD.

II. BACKGROUND

A. Why Differential Privacy?

As ML become widely deployed across various application domains, the importance of protecting data privacy is growing rapidly, especially among areas such as finance, health care, etc [9], [26], [34]. Differential privacy (DP) has recently emerged as a privacy preserving mechanism that provides a strong, mathematical definition of privacy under the context of statistical and ML analysis. In general, an algorithm is considered differentially private if an observer seeing the output of the algorithm cannot tell whether a particular individual’s information was utilized in computing that given output, allowing the privacy of individual training examples to be protected. Overall, DP mathematically guarantees that the observer seeing the output of a given algorithm will make the same inference about any individual’s private information, regardless of whether or not that individual’s information is included in the input. We refer to [2], [23], [24], [25] for a more rigorous discussion on DP’s mathematical foundation.

Under the context of ML, DNN models trained with an individual’s data (e.g., clinical records, photos) were shown to be vulnerable to attacks that directly analyze the internal model parameters or indirectly query the model repeatedly in a black-box setting (Figure 1) [27], [33], [66], [86]. What is troubling is the fact that larger DNN models are more vulnerable than smaller ones [13], which is at odds with recent trends where larger/bigger models are favored given their higher algorithmic performance [11], [77], [84], [89]. To address such vulnerabilities, the seminal work by Abadi et al. [2] proposed a solution that enables the training of DNNs with DP. In the remainder of this section, we review both a non-private SGD vs. privacy-aware DP-SGD and discuss their key differences.

![Figure 1](image-url)
B. Non-Private Training with SGD

Training a DNN involves learning and updating the weights of the DNN layers by the operations of forward and backward propagation (aka backpropagation) as detailed below.

Forward propagation. Figure 2(a) illustrates the forward propagation of a two-layered feedforward DNN with a mini-batch size of 4. Each layer conducts a mathematical operation (e.g., convolution) to its input activation (X) using the per-layer weight (W), if any, and generates the output activation (Y). Note that all the (four) input examples that are part of the mini-batch go through the layer-wise forward propagation in parallel, which helps better reuse the weight W and improve compute utilization of the ML accelerator.

Backpropagation. A loss function is used to derive the magnitude of an inference’s error at the end of forward propagation. Specifically, the gradient of the loss function with respect to the last layer’s input activation is derived. Using the chain rule, all the layer’s input activation gradient (G(X)) as well as the weight gradient (G(W)) is calculated on a per-layer basis, from the last layer to the first layer [62], [78]. Once the per-layer G(W) is derived, it is utilized to update the corresponding layer’s weight W for training. A distinguishing aspect of mini-batch SGD training is that the size and shape of the per-layer G(W) is identical to the original per-layer weight W, regardless of the mini-batch size. This is because the weight gradient vectors derived for the individual input examples (that constitute the input mini-batch) are aggregated (i.e., reduced) into a single set of G(W). This is illustrated in Figure 2(a) where only a single set of G(W) is derived, per-layer. In the remainder of this paper, we refer to the non-private SGD’s weight gradients as “per-batch” weight gradients to distinguish it against the “per-example” weight gradients of DP-SGD, as detailed below.

C. Privacy-Aware Training with DP-SGD

High-level overview of DP-SGD. Abadi et al. [2] suggests to add DP to deep learning models by adding bias and noise into the mini-batch gradient computation process. Algorithm 1 provides a high-level overview of such DP-SGD training procedure. At each step of the training iteration, DP-SGD derives the weight gradients for each individual input example that constitute the input mini-batch (line 19), rather than computing a single set of weight gradient per each mini-batch as done in SGD (see Figure 2). These per-example weight gradients are then clipped (line 23) based on the L2 norm of each individual per-example gradient (line 22) and subsequently reduced into a single set of weight gradient G(W) (line 24). The reduced G(W) is then added with noise to protect privacy (line 24). By taking a step in the opposite direction of this noisy gradient, the DNN model is incrementally trained in a differentially private manner.

SGD vs. DP-SGD. Compared to SGD, a distinguishing aspect of DP-SGD is threefold. First, DP-SGD requires the derivation of per-example weight gradients rather than per-“batch” weight gradient of SGD. Second, derivation of per-example weight gradients requires separate memory
weight gradients require post-processing (i.e., gradient norm addition) in order to derive the single set of $G(W)$ in memory usage, i.e., compared to SGD which requires example L2 norms (line 22), incurring a significant increase in memory allocation size at the cost of additional computation steps.

Line 28–42 in Algorithm 1 summarizes the steps undertaken in DP-SGD (R)’s backpropagation. A key difference between DP-SGD vs. DP-SGD (R) is threefold. First, DP-SGD (R) effectively executes backpropagation “twice” for: 1) deriving per-example weight gradients during the 1st backpropagation to compute the L2 norm (line 31), and 2) utilizing the L2 norms derived to compute per-batch weight gradients during the 2nd backpropagation pass (line 39). Second, the gradient clipping and reduction stages of DP-SGD are all fused as part of DP-SGD’s 2nd backpropagation stages (line 39). Third, because per-example weight gradients are only required to compute per-example L2 norms (line 22) and such procedure is fused as part of the 1st backpropagation under DP-SGD (R), the runtime memory manager need not have to overprovision the memory allocation size with $B \times \text{sizeof}(G(W))$ across all the layers, enabling opportunities to reduce memory usage. In Section III, we provide a detailed analysis on the compute vs. memory usage tradeoffs between DP-SGD vs. DP-SGD (R).

D. Systolic Arrays for Accelerating GEMM

Why systolic arrays for training? There is a rich set of prior literature on designing accelerator designs for both ML training and inference [3], [14], [16], [17], [31], [41], [42], [45], [46], [47], [51], [52], [55], [56], [57], [58], [59], [60], [65], [74], [75], [79]. Interestingly, while defining a generic ML accelerator for inference is challenging (i.e., accelerators for inference is typically optimized for a specific application domain, for instance convolution for computer vision [16], [17], those for training have more or less settled on a design that is optimized for a “single” key primitive: generalized matrix multiplication (GEMM). A key reason why accelerators for training are optimized for GEMM is because both forward and backpropagation of SGD (i.e., derivation of $G(X)$ and $G(W)$) can all be permuted to GEMM for representative DNN layers (e.g., the `im2col` operation that transforms convolutions into GEMM [18], [44]). Among these, systolic arrays have been most commercially successful thanks to its regular layout of processing engines (PEs), efficient inter-PE communication, and highly regular dataflow with very little data reuse, enabling low power consumption and high throughput for training. In the rest of this paper, we assume systolic arrays as the baseline accelerator for training given its enormous industrial success and wide applicability.

Systolic array dataflow. There are two distinct approaches in mapping the GEMM’s dataflow onto systolic arrays, namely output stationary (OS) and weight stationary (WS). The OS dataflow, as depicted in Figure 3(b), refers to the mapping strategy where each PE is responsible for conducting all the computations required for deriving a given output activation. All the required data operands are streamed in from the (left and top) edges of the array, which are distributed to the PEs using local communication channels to

author: See author details from the extracted text.

Algorithm 1 DP-SGD and DP-SGD (R)

Input: Dataset $D = \{(x_1, y_1), \ldots, (x_n, y_n)\}$, batch size B, max gradient norm C, noise multiplier σ, max steps T, learning rate η, loss function l, model weight $w = (w_1, w_2, \ldots, w_m)$, gaussian random variable N.

1: Initialize model weight w_0
2: for $t = 0, 1, \ldots, T$ do
3: \hspace{1em} Randomly sample a minibatch $\{(x_i, y_i) \mid i \in \mathbb{B}\}$ from dataset D
4: \hspace{1em} Compute loss value through forward propagation
5: \hspace{2em} For each $i \in \mathbb{B}$, $L_i \leftarrow l(w_i, x_i, y_i)$
6: \hspace{1em} Derive differentially private weight gradients
7: \hspace{2em} $\bar{g}_i \leftarrow \text{DERIVE}_\text{DP-GRADIENTS}(L_i)$
8: \hspace{2em} for
9: \hspace{3em} $i \in \mathbb{B}$ do
10: \hspace{4em} $\bar{g}_i \leftarrow \text{DERIVE}_\text{REWEIGHTED}_\text{DP-GRADIENTS}(L_i)$
11: \hspace{4em} end for
12: \hspace{1em} $w_{t+1} \leftarrow w_t - \eta \bar{g}_t$ \hspace{1em}\triangleright Update model weight
13: end for
14: end for
15: \triangleright DP-SGD
16: procedure DERIVE_\text{DP-GRADIENTS}(L)
17: \hspace{1em} Compute per-example weight gradients through backpropagation
18: \hspace{2em} for $l = M, M-1, \ldots, 1$ do
19: \hspace{3em} For each $i \in \mathbb{B}$, $g_i(w^{(m)}) \leftarrow \frac{\partial}{\partial w^{(m)}} E \left(\sum_{j \in \mathbb{B}} L_i \right)$ \hspace{1em}\triangleright Compute per-example gradient
20: \hspace{3em} end for
21: end for
22: \hspace{1em} For each $i \in \mathbb{B}$, $n_i \leftarrow \|g_i(w^{(m)})\|_2$ \hspace{1em}\triangleright Derive per-example L2 norm
23: \hspace{1em} for $i \in \mathbb{B}$, $\bar{g}_i(w) \leftarrow g_i(w)/\max(1, n_i^{(m)})$ \hspace{1em}\triangleright Clip per-example gradients
24: \hspace{1em} return $\frac{1}{N} \left(\sum_{j \in \mathbb{B}} \bar{g}_i(w) + N(0, \sigma^2I)\right)$ \hspace{1em}\triangleleft Aggregate gradients & add noise
25: end procedure
26: end procedure
27: \triangleright DP-SGD (R)
28: procedure DERIVE_\text{REWEIGHTED}_\text{DP-GRADIENTS}(L)
29: \hspace{1em} Compute per-example weight gradient L2 norm via 1st backpropagation
30: \hspace{2em} for $l = M, M-1, \ldots, 1$ do
31: \hspace{3em} For each $i \in \mathbb{B}$, $n_i^{(m)} \leftarrow \|g_i^{(m)}\|_2$ \hspace{1em}\triangleright Compute per-example gradient
32: \hspace{3em} end for
33: \hspace{2em} for $l = M, M-1, \ldots, 1$ do
34: \hspace{3em} $L_i \leftarrow \sum_{j \in \mathbb{B}} L_j/\max(1, n_j^{(m)})$ \hspace{1em}\triangleleft Compute clipped, per-batch weight gradient via 2nd backpropagation
35: \hspace{3em} end for
36: \hspace{1em} Compute clipped, per-batch weight gradient via 2nd backpropagation
37: \hspace{2em} for $l = M, M-1, \ldots, 1$ do
38: \hspace{3em} $\bar{g}_i^{(m)} \leftarrow \frac{\partial}{\partial w^{(m)}} E \left(\sum_{j \in \mathbb{B}} L_j \right)$ \hspace{1em}\triangleleft Add random noise
39: \hspace{3em} end for
40: end for
41: return $\frac{1}{N} \left(\bar{g}_i^{(m)} + N(0, \sigma^2I)\right)$
42: end procedure
43: end procedure
44: end procedure
45: end procedure
46: Output: Differentially private model weight w_f and total privacy cost (δ, ε)
Figure 3: (a) The three GEMM dimensions (M,K,N) that define a matrix multiplication operation between (M,K)=\((4 \times 2)\) and (K,N)=\((2 \times 4)\) matrices, generating the output matrix (M,N)=\((4 \times 4)\). Figure (b-c) shows the schematic illustrating two representative dataflows in a systolic array: (b) output stationary (OS) and (c) weight stationary (WS). The height (PEH) and width (PEW) of the systolic array are assumed as (4,4) in the given example.

the systolic array. The partial sums are generated and reduced down to its final output activation value \textit{locally} within each PE. Once all the PEs within the systolic array are done deriving its share of the output activation value, the inter-PE communication links are utilized to transfer the final outputs out of the array.

Unlike the OS dataflow, the WS dataflow employs a different strategy as shown in Figure 3(c). Here, the weight values (RHS matrix) are filled into the local latches in each PE \textit{in advance}, prior to the start of GEMM. The elements of the input activation (LHS matrix) are then streamed in through the (left) edge of the systolic array, where each PE computes one partial sum every cycle. The partial sums derived are then reduced across the rows, along each column in parallel to generate one output value per each column. Google TPUs are well-known to employ a WS dataflow because of its cost-effective design and lower on-chip data fetch bandwidth requirements [45], [47], [67]. In this work, we assume a WS dataflow for our baseline systolic array. Nonetheless, we discuss the implication of DP-SGD on OS in Section IV-C for the completeness of our study.

In general, because systolic arrays are designed as one large, inflexibly 2D array (PEH,PEW)=(128,128) in Google TPUv3, it can suffer from low PE utilization when the GEMM’s (M,K,N) dimensions do not align with the dimensions of the \textit{physical} systolic array (e.g., non-square shaped matrices, GEMMs with small K-dimension sizes). For instance, GEMMs with small K-dimensions map poorly to OS with large (PEH, PEW) systolic array because the two input vectors streaming in from left/top edges lead to significant idle cycles along the diagonal direction (Figure 3(b)). WS similarly suffers from low PE utility as it fails in fully utilizing the PEs throughout the computation, i.e., only half of the PE rows in Figure 3(c) are latched with the RHS matrix, reducing effective PE throughput.

\section{Workload Characterization}

In this section, we utilize Google Cloud TPUv3 [29] combined with our cycle-level simulation framework to conduct a workload characterization on training representative DNNs via 1) non-private SGD, 2) DP-SGD as-is and 3) DP-SGD with reweighting for memory optimization (denoted DP-SGD(R), see Section II-C). Section V further details our methodology regarding hardware/software configurations, simulation framework, benchmark selection, etc.

\subsection{A. DP-SGD’s Memory Consumption and Its Effect on Training Mini-batch Size}

Figure 4 shows the size of memory allocations based on its functionality. Training with DP-SGD requires the derivation of per-example weight gradients whose size grows proportional to the mini-batch size (Section II-C). This is represented by the large portion of per-example weight gradients’ memory allocations in DP-SGD, amounting to an average 78% of its memory consumption. The implication of DP-SGD’s high memory usage is that the maximum possible mini-batch it can practically employ is severely limited because TPUs come with much smaller memory size than CPUs (e.g., 16 GB in Google TPUv3 vs. several TBs in CPUs). For instance, while SGD can train ResNet-1024 respectively, DP-SGD can only accommodate a mini-batch size of 8192 and 1024 respectively, DP-SGD(R) can only include a mini-batch of 32 and 8. Encouragingly, DP-SGD(R) is able to reduce the memory bloat problem of DP-SGD by an average 3.8× thanks to its reweighted gradient derivation (Algorithm 1). This enables DP-SGD(R) to achieve similar levels of maximum possible mini-batch size that is feasible with non-private SGD.

Key takeaways: \textit{Training with DP-SGD as-is incurs an intractable amount of memory consumption, severely limiting the largest mini-batch size it can be trained on. DP-SGD(R) can help achieve commensurate level of memory allocation to that of SGD, enabling much larger mini-batches to be employed for training. The memory efficiency of DP-SGD(R), however, comes at the cost of an additional pass of backpropagation for deriving per-batch weight gradients; for DP-SGD(R) to become a practically viable solution for}
DP training, the added computation overhead of per-batch backpropagation should incur reasonable latency overheads.

B. Identifying the Bottlenecks in DP-SGD

In order to identify performance bottlenecks of DP-SGD, Figure 5 explores the end-to-end training time broken down into key steps of forward and backpropagation\(^1\). We make several key observations from this characterization study.

1) Both DP-SGD algorithms incur an average 9.1 \times 5.8 \times increase in training time vs. SGD, largely due to its significantly longer backpropagation time (i.e., the forward propagation stages are practically identical among the three design points). Unlike the non-private SGD where backpropagation “only” accounts for 60 – 77% of training latency, the proportion of backpropagation takes up close to an average 99% of latency under DP-SGD, making it the single most important bottleneck.

2) The significantly slower backpropagation of DP training is mostly attributed to deriving the per-example weight gradients and gradient post-processing. Specifically, DP-SGD and DP-SGD(R) causes an average 12.7 \times and 8.0 \times increase in latency for deriving the final weight gradient set \(G(W)\) used for model updates. It is worth pointing out that, regardless of which training algorithm is being employed, all the gradients derived during backpropagation (i.e., \(G(X)\) , \(G(W)\) for both per-batch and per-example weight gradients) are generated by conducting GEMMs (detailed further in Figure 6).

3) Lastly, despite having to execute another backpropagation pass, the reweighted DP-SGD(R) surprisingly performs better than DP-SGD with an average 31% reduction in training time vs. DP-SGD. Reason for DP-SGD(R)’s superior performance is as follows. The gradient post-processing stages of DP-SGD involves a series of memory bandwidth limited operations, incurring high latency. DP-SGD(R), however, fuses the gradient clipping/reduction stages of post-processing as part of the “rewighted” per-batch weight gradient derivation, significantly reducing its memory traffic and reducing latency. In other words, while DP-SGD does not require DP-SGD(R)’s second backpropagation pass, the high latency overhead of gradient clipping/reduction stage (which is eliminated with DP-SGD(R), line 39 in Algorithm 1) washes out DP-SGD’s performance advantage vs. DP-SGD(R), rendering DP-SGD(R) to perform superior than DP-SGD.

Key takeaways: DP-SGD incurs an order of magnitude higher training time than SGD because of the high latency incurred during the derivation of 1) per-example weight gradients and 2) gradient post-processing. And while both DP-SGD algorithms perform poorly vs. SGD, the reweighted DP-SGD(R) demonstrated its superiority over DP-SGD as it not only provides consistently higher performance but it also helps drastically reduce its overall memory consumption, becoming a strong baseline DP training algorithm.

C. Understanding the Bottlenecks in DP-SGD

Our characterization in Section III-B identified two key bottlenecks of DP-SGD: 1) derivation of the per-example weight gradients and 2) computing gradient norms. Below we root-cause the key reasons behind such performance bottleneck.

Low compute utilization in DP-SGD backprop. As mentioned in Section III-B, both per-batch and per-example weight gradients are derived using GEMMs. To understand the reason behind GEMM’s low throughput during DP-SGD backpropagation, we compare the GEMM dimensions of
IV. DiVA Architecture and Design

A. Architecture Overview

DiVA consists of a GEMM engine which is implemented as a 2D spatial array of PEs, a post-processing unit (PPU), and a memory hierarchy. The PPU is designed to efficiently process the irregularly shaped GEMMs generated during the backpropagation phase, which are typically much larger than those during the forward propagation phase.

Memory-Bound Gradient Norm Derivation

The post-processing stages of DP-SGD (i.e., gradient norm derivation, gradient clipping/reduction) are all memory-bound operations with low compute intensity. With reweighted DP-SGD(R) established as our baseline DP-SGD algorithm, computing the gradient norms is the only major step left in our memory-bound bottleneck stage during gradient post-processing (see Figure 5). Aside from the systolic array engine, Google TPUv3 comes with an on-chip vector processing unit that handles vector operations (e.g., vector additions and multiplications), which Google TPUv3 utilizes for computing gradient norms. We observe that the per-example weight gradients that are targeted for gradient norm derivation are typically too large to be stored inside Google TPUv3’s on-chip buffers, rendering these per-example gradient tensors to be spilled to off-chip DRAM. This leads to frequent off-chip memory accesses to fetch the weight gradients for computing gradient norms, exhibiting memory bandwidth limited behavior and causing steep latency penalties.

Figure 6: Comparison of GEMM operations during (left) forward propagation and backpropagation for deriving (middle) per-batch weight gradients and (right) per-example weight gradients.

Table 1: GEMM dimensions for different layers and input types.

Layer Type	M	K	N	Input Type	Output Type	Parameters
Multi-layer perceptron (MLP)	B	I	O	I	O	B I O
Convolutional layer	B*K*Q	C_{in}*R*S	C_{out}	B*K*Q	C_{out}	B K O
MLP layer with time-series input	B*L	I	O	I	O	B L I

Figure 7: Google TPUv3’s compute utilization during key GEMM operations of forward and backpropagation. We quantify TPU’s compute utilization by measuring the effective FLOPS achieved vs. maximum available FLOPS in Google TPUv3.

DNN models, the irregularly shaped GEMM for per-example weight gradients consistently exhibit much lower compute utilization compared to the other GEMM operations (i.e., forward propagation as well as backpropagation for deriving the input activation gradient and per-batch weight gradient). These results explain why the per-example weight gradient derivation incurs such high performance overhead (Figure 5), providing important guidelines on designing an accelerator tailored for the unique dataflow of DP-SGD.
for accelerating gradient post-processing, a large on-chip SRAM buffer that is partitioned for storing the left-hand side (LHS) and right-hand side (RHS) input matrices as well as one output matrix, a transpose/permute unit that handles matrix transposition or im2col operation (i.e., transforms convolutional layers into GEMM) [18], [44], a DMA unit that orchestrates on-/off-chip data movements, and the main control unit (Figure 8). The control unit populates the on-chip SRAM buffer as appropriate per DiVa’s tiled GEMM execution order. Once the two input matrix tiles are uploaded, the control unit initiates the outer-product dataflow based matrix multiplication using the GEMM engine. After the GEMM computation is finished, depending on which phase of DP training DiVa is currently under processing, either the output activation (forward propagation), the per-batch input gradient, the per-batch weight gradient, or the per-example weight gradient (backpropagation) is derived and latched inside the spatial PE array, i.e., DiVa is classified as an output stationary (OS) dataflow. In cases where gradient post-processing over per-example weight gradients is required, the control unit directly routes the outputs latched inside the PEs into the PPU. The PPU output is then drained back into the SRAM buffer and finally the off-chip DRAM by the DMA unit.

B. Outer-product GEMM Engine

Challenges of systolic array dataflow. A fundamental limitation of the systolic array architecture is that it suffers from very low PE utilization when the K-dimension of the LHS (and RHS) matrix is small, which is a unique property of the GEMMs that derive DP-SGD’s per-example weight gradients. Under the WS systolic dataflow, having more flexibility and robustness in mapping the GEMM across the PE array.

Outer-product dataflow and its implementation. To address such challenge, DiVa proposes a GEMM engine based on the outer-product dataflow. Figure 9(a) shows an outer-product GEMM between matrices A and B, where the matrix multiplication is decomposed into series of outer-product multiplications between pairs of vectors, ai and bi. Specifically, each column of A (ai) and the corresponding row of B (bi) is multiplied in an all-to-all manner, producing K partial sum matrices, Ci. These partial sum matrices are summed altogether to produce the final output matrix C. Notice how the outer-product generates a total of M × N MAC operations over two input vectors with lengths M and N, respectively. Unlike an inner-product where two input vectors must be of equal length, outer-product can have arbitrary length input vectors M and N, having more flexibility and robustness in mapping the GEMM across the PE array.

DiVa seeks to address the PE underutilization issue of systolic arrays by leveraging the aforementioned property of outer-product dataflow as illustrated in Figure 9(b). For clarity of explanation, suppose the M/N-dimension sizes of an (M,K,N) GEMM matches the spatial PE array’s height (PEh) and width (PEw). The frontend of DiVa’s GEMM engine streams in two vectors of length M (columns of LHS matrix) and N (rows of RHS matrix) each clock cycle. Each row and each column of our spatial PE array utilizes its local bus to broadcast the streamed in vectors across the PEs, conducting an all-to-all multiplication as
depicted in Figure 9(b). The partial sum matrix C_i (i.e., matrix $M \times N$) gets newly generated every clock cycle, which are accumulated locally within each individual PE, requiring a total of K clock cycles to derive the final matrix C for the (M,K,N) dimension GEMM. Note how DiVa’s GEMM engine is always capable of conducting $M \times N$ MAC operations each cycle, regardless of the K-dimension size. Again, it is worth pointing out that the outer-product dataflow broadly falls under an OS dataflow as the final output remain stationary within the spatial PE array during GEMM computation.

Given DP-SGD’s key bottleneck is the small K-dimension GEMMs in deriving per-example weight gradients, DiVa’s outer-product GEMM engine can significantly improve performance as the effective throughput of these GEMMs are dependent upon the M-/N-dimensions, and not the K-dimension (see Figure 6). In Section VI-A, we quantify the magnitude of how much improvement DiVa brings about in closing the wide performance gap between SGD vs. DP-GSD.

C. Post-Processing Unit (PPU) Design

WS vs. OS dataflow in gradient norm derivation. Another crucial bottleneck in DP-SGD training is the memory-bandwidth limited gradient norm derivation (Section III-C). Before discussing DiVa’s PPU, let us first discuss the challenges of Google TPU’s WS dataflow in handling gradient norm computation, root-causing its memory-bound characteristic. As discussed in Figure 3(c), for WS systolic arrays to achieve high PE utility, the length of the LHS matrix streamed in from the left side of the GEMM engine must be sufficiently large enough to amortize the effect of idle cycles manifested in the diagonal direction of the input stream. An important implication of having large LHS input streams is that the output SRAM buffer that temporarily stores the WS systolic array’s output must be sufficiently large, proportional to the size of the LHS input stream. In Google TPUv3, the size of this SRAM buffer (referred to as Vector Memory in TPUs [47], [67], Figure 10) is 16 MB, accounting for the largest on-chip memory capacity. Since the per-example weight gradients, subject for gradient norm derivation, are stored inside this (large) SRAM buffer, the control unit can either 1) directly forward this several tens of MBs worth of tensors to the vector unit for on-the-fly gradient norm derivation, or 2) temporarily spill them to off-chip DRAM and process them later on. Careful examination of this process over Cloud TPUs revealed that Google TPUv3 typically takes the latter approach and spills these large sized tensors to DRAM (step 1 in Figure 10(a)), later fetching them back on-chip for gradient norm derivation (step 2). We speculate the reason for such design decision is as follows. Directly forwarding the per-example gradients to the vector unit for on-the-fly gradient norm derivation requires the GEMM engine (systolic array) to remain stalled until the gradient norm computation is finalized by the vector unit (i.e., unless the output SRAM buffer is vacant, the systolic array does not have a temporary buffer to store the next GEMM’s output). Since these tensors are sized in the tens of MBs scale, deriving gradient norms on-the-fly itself incurs high latency, which directly affects the main GEMM unit’s stalled period. Double-buffering the output SRAM buffer, however, is practically a non-option since this buffer is already in the order of tens of MBs, due to the nature of a WS dataflow.

Consequently, an OS systolic dataflow becomes an appealing alternative for handling on-the-fly gradient norm derivation. As illustrated in Figure 10(b), the per-example weight gradients are derived in a much smaller, finer-granularity in an OS dataflow, the size of which scales proportional to the systolic array size. Under the (128,128) PE array, this amounts to “only” 64 KB (=128 x 128 x 4 Bytes), far less than the tens of MBs of tensors requiring post-processing under a WS dataflow. Overall, the benefits of an OS dataflow that can directly forward the per-example weight gradients to the vector unit is clear: 1) the tensors no longer have to be spille/d/retrieved to/from DRAM, alleviating its memory bandwidth pressure, and 2) the datapath of such on-the-fly derivation of gradient norm opens up an opportunity to further boost its overall throughput with a dedicated accelerator microarchitecture tuned for gradient
norm derivation. We now detail DiVa’s PPU design, readily applicable not only for DiVa’s outer-product GEMM engine (i.e., outer-product also falls under an OS dataflow) but also for an OS dataflow based systolic arrays.

PPU architecture. Deriving an L2 norm of a tensor (Equation 1) requires an element-wise multiplication of the target tensor with itself, followed by a reduction operation over all of its elements to generate a single output scalar value.

$$\|g\|_2 = \sqrt{\sum_{i_1=1}^{d_1} \cdots \sum_{i_n=1}^{d_n} g_{i_1 \ldots i_n}^2}, \quad \text{where } g \in \mathbb{R}^{d_1 \times \cdots \times d_n} \quad (1)$$

While conventional vector units do an excellent job in the element-wise dot-product operation, they become sub-optimal in conducting reductions as it require multiple iterations of vector permutations to retrofit reductions as vector operations. In DiVa’s PPU, we implement a spatial, multi-level adder-tree based reduction unit for accelerating gradient norm derivation as illustrated in Figure 11. Under such tree-based topological design, the input data loading and output data generation time is in the order of $O(1)$ and $O(\log_2 E)$, respectively (E: number of elements to reduce), significantly reducing latency for gradient norm derivation.

Interface between GEMM engine and PPU. Figure 12 summarizes 1) the rate in which DiVa’s GEMM engine drains out per-example weight gradient vectors to the PPU, and 2) the required PPU’s processing throughput to seamlessly derive gradient norms. As depicted, DiVa’s GEMM engine reads out R output rows each clock cycle and forwards them to the PPU for post-processing. Assuming the GEMM engine’s operating frequency is $FREQ_{GEMM}$, ($FREQ_{GEMM} \times R \times PE_W$) elements are drained out of the GEMM engine each clock cycle. Under DiVa’s default configuration of $FREQ_{GEMM} = 940$ MHz, $R = 8$ rows, $PE_W = 128$ elements/row, and 4 Bytes/element, this amounts to $(940M \times 8 \times 128 \times 4B)/(3.85) = 65.2$ TB/sec of weight gradients to reduce. DiVa’s PPU is provisioned with sufficient processing throughput by having the reduction unit be designed as a 7-level $(\log_2 PE_W)$, pipelined adder-tree with R separate instances of it incorporated within the PPU. Specifically, each output row of the GEMM engine is forwarded to its corresponding adder-tree each clock cycle. Because the operating frequency of PPU ($FREQ_{PPU}$) matches $FREQ_{GEMM}$ and the PPU’s adder tree is capable of reducing $PE_W = 128$ elements each clock in a pipelined manner, DiVa is able to seamlessly derive gradient norms. Overall, a total of 128$/R$ clock cycles are required in fully draining out the GEMM engine’s outputs for gradient norm derivation.

D. Design Overhead

While DiVa’s outer-product engine provides robust GEMM performance across a wide range of GEMM shapes, it can incur design overheads vs. systolic arrays in terms of 1) inter-PE communication channels and 2) read/write bandwidth from/to on-chip SRAM buffers.

One of the key advantages of systolic arrays is its simple inter-PE communication datapath as only spatially nearby PEs exchange data amongst them, simplifying its design. DiVa’s all-to-all multiplication requires each and every rows and columns to have a local bus datapath to broadcast the incoming two input vectors across the PEs, potentially incurring higher area and power overheads vs. systolic arrays.

In terms of on-chip SRAM bandwidth needs, the WS systolic dataflow requires sufficient SRAM read bandwidth to be provisioned for a one-time latching of the RHS matrix into the systolic array (e.g., Google TPUv3 is capable of filling in 8 rows/cycle, Table I), accompanied by a single vector streaming bandwidth of $O(PE_H)$ to feed in the LHS matrix. In contrast, DiVa outer-product dataflow needs to stream in two separate vectors of length PE_H and PE_W consistently to the GEMM engine, having an $O(PE_H + PE_W)$ SRAM read bandwidth at steady state. It is worth pointing out that the $O(PE_H + PE_W)$ SRAM read bandwidth of outer-product (as well as its SRAM write bandwidth) is no worse than the OS systolic dataflow, as summarized in Table I (see Figure 3(c) vs. Figure 9(b)). As we uncovered in the previous subsection, the OS dataflow provides better opportunities than WS for accelerating gradient norm derivation (but the OS in itself does not necessarily help accelerate the GEMMs with small K-dimensions for per-example weight gradient derivation), rendering DiVa’s higher on-chip SRAM bandwidth vs. WS a reasonable trade-off. We quantitatively analyze the design overheads of DiVa in Section VI-B, demonstrating its merits.

V. METHODOLOGY

The workload characterization in Section III is performed over the Google Cloud TPUv3 platform. We used TensorFlow Privacy (v0.5.1) [73] to compare SGD vs. DP-SGD’s memory
Transformer

Dataflow (Bytes/clock)
Systolic OS & Outer-product
450 GB/sec
PE
100 cycles
940 MHz
16 MB
(2
PE
128
PE
)

Figure 13: End-to-end speedup vs. baseline WS systolic array. DiVa is evaluated with/without PPU. Unlike WS, the OS systolic array can reap the benefits of PPU (Section IV-C), so we evaluate OS with PPU implemented. We also present non-private SGD trained with WS and DiVa as a comparison point.

Table I: Comparison of on-chip SRAM buffer read/write bandwidth requirements assuming Google TPUv3 level configuration [47], [67]. Note that the LHS/RHS matrices are stored as 16-bit data types (2-Bytes) while the accumulation happens in 32-bits (4-Bytes) for output derivation [48].

Data type	Datatow (Bytes/clock)
Input LHS	PE_{op} × 2\text{B}
Input RHS	PE_{op} × 8\times 2\text{B}
Output	PE_{op} × 4\text{B}
Total	(2\times PE_{op} × 20 \times PE_{op} \times 4\text{B})

Table II: DiVa architecture configuration.

Processor architecture	Memory subsystem
PE array dimension	128 × 128
PE operating frequency	940 MHz
On-chip SRAM size	16 MB
Number of memory channels	16
Memory bandwidth	450 GB/sec
Memory access latency	100 cycles

Benchmarks. We study five DNN models for computer vision (VGG, ResNet-50, ResNet-152, SqueezeNet, MobileNet) [30], [38], [43], [88] and four models for natural language processing (BERT-base/large, LSTM-small/large) [20], [35], [70]. State-of-the-art DP-SGD algorithms for computer vision are currently demonstrated with its efficacy over CIFAR-10 datasets so the evaluation in Section VI assumes such setting. We discuss DiVa’s efficacy when deviating from our default configuration in Section VI-C.

VI. EVALUATION

As we demonstrated DP-SGD(R)’s superiority over a vanilla DP-SGD, this section always employs DP-SGD(R) as the baseline differentially private training algorithm.

A. Performance

End-to-end speedup. Figure 13 summarizes the end-to-end speedup offered with DiVa. In general, DiVa exhibits consistently higher performance than both WS and OS systolic array, achieving an average 3.6× (max 7.3×) speedup over WS. Such high speedup enables privacy-enhanced DiVa to reach an average 75% of the performance of a non-private SGD trained with systolic WS, closing their wide performance gap (Figure 4). In fact, for DNNs that baseline WS especially suffers from low performance (MobileNet, LSTM-large), DiVa’s DP training actually performs better than non-private SGD. Note that DiVa without PPU, while still providing meaningful speedup, leaves significant performance left on the table (e.g., DiVa with/without PPU achieves 7.3×/2.1× speedup vs. WS in ResNet-152), demonstrating the importance of optimizing gradient post-processing.

It is also interesting to note that DiVa utilized for training “non-private SGD” (denoted DiVa-SGD) performs better than systolic WS used for non-private SGD training, achieving an average 1.6× higher performance. Such superior
performance comes from DiVa’s outer-product dataflow, which enables our architectural substrate to be robust for small K-dimension GEMMs existent in non-private SGDs. As we later discuss in Section VI-B, however, DiVa’s outer-product does come at a higher area overhead than the baseline systolic WS. So from a performance/area perspective, ML accelerators optimized for non-private SGD training only might prefer the lightweight systolic design than our proposed outer-product dataflow. Nonetheless, for privacy-enhanced ML training, our DiVa architecture demonstrates its robustness and wide applicability for both non-private and private SGD training.

Latency breakdown. To better root-cause where DiVa’s superior performance comes from, Figure 14 shows the breakdown of end-to-end training time. As discussed in Section III-B, derivation of per-example weight gradients (yellow) and gradient norm (green) causes the biggest performance degradation. The outer-product based DiVa is the only design point that successfully addresses the bottlenecks incurred in per-example gradient derivation, providing an average 7.0× (max 14.6×) reduction in its latency. Our proposed PPU design also shines with its high efficacy, successfully reducing the latency of gradient norm derivation not just for DiVa but also for the OS systolic array.

FLOPS utilization. We highlight DiVa’s effectiveness over a different dimension by presenting the improvements our outer-product dataflow brings about in terms of FLOPS utilization (Figure 15). The increase in effective compute throughput is more pronounced with CNNs (compared to Transformers/RNNs) as they suffered from more severe FLOPS underutilization under baseline WS systolic array (see Figure 7), achieving an average 5.5× (max 28.9× in SqueezeNet) improvement in per-example weight gradient derivations. Transformers and RNNs already achieved around 20% effective throughput even with WS systolic array, so DiVa’s benefits are relatively modest, but still providing a sizable 2.2× average improvement.

B. Area, Power, and Energy Consumption

Area and power. Table III summarizes the area and power overhead of DiVa’s GEMM engine and PPU. The outer-product GEMM engine alone adds 19.6% of area overhead vs. WS systolic array, with an additional 4.6% overhead with our PPU. As we target an accelerator chip with Google TPUv3 level compute throughput and on-chip SRAM capacity, the chip-wide area is estimated to be 650 mm² (designed using 12 nm technology) [47]. Consequently, the addition of DiVa’s 17 (=85-68) mm² (estimated using 65 nm standard cell library) area costs a chip-wide 0.3% additional area overhead. In terms of power consumption, DiVa’s all-to-all multiplication datapath and PPU adds 10.4 Watt (7.8 (outer-product) + 2.6 (PPU)) of additional power consumption, causing a chip-wide 2.3% (=10.4/450) overhead (i.e., TPUv3’s TDP is 450 W). In general, such added area and power overheads are highly reasonable given DiVa’s substantial improvement in FLOPS utilization, achieving 3.5× and 4.6× higher TFLOPS/Watt and TFLOPS/area than WS, respectively.

Energy consumption. Across all the models we study, DiVa provides an average 2.6× (max 4.6×) reduction in energy consumption. Due to space constraints, we show a subset of our studied models’ chip-wide energy consumption in Figure 16. Our analysis is based on a 65 nm technology (i.e., RTL synthesis of DiVa’s compute units for power measurement and SRAM energy modeled using CACTI all assume 65 nm). As depicted, the power overheads of DiVa is outweighed by the significant reduction in training time, achieving substantial reduction in energy consumption.

C. Sensitivity

This subsection evaluates DiVa’s robustness to different model configurations. As discussed in Section V, DP-SGD
for computer vision is currently limited to CIFAR-10 level datasets (i.e., 32 × 32 input images), which we assume in our baseline setting. We evaluate DiVa’s robustness to future larger datasets by increasing the image size by 4 × 16 × 64 × (which allows the systolic arrays to better populate the PEs for higher throughput), achieving an average 3.6 × 2.1 × 1.7 × end-to-end speedup across the five CNNs over WS systolic array, respectively. We also evaluate DiVa for Transformers and RNNs with longer input sequence lengths that are 2 × 4 × 8 × longer than the baseline 32 sequence length, achieving an average 2.0 × 1.6 × 1.5 × training time reduction, respectively.

D. DiVa vs. GPUs

While we focused on accelerating DP-SGD over accelerators like Google TPUs, we also compare DiVa’s merits over a GPU system for the completeness of our study (Figure 17). We compare DiVa against two GPU systems [68], [69] employing NVIDIA’s V100 (32 GB, 900 GB/sec of bandwidth) and A100 (40 GB, 1,555 GB/sec of bandwidth) running JAX enabled with auto-vectorization [10], [53], [90]. Both V100 and A100 are evaluated with and without NVIDIA’s Tensor Core enabled, which provide a sizable difference in its maximum throughput (i.e., 125 TFLOPS/312 TFLOPS with Tensor Cores enabled (FP16) and 15.7 TFLOPS/19.5 TFLOPS when disabled (FP32) for V100/A100, respectively. For those key GEMM operations that constitute DP-SGD’s backpropagation bottleneck stages, DiVa generally provides superior performance against NVIDIA Tensor Cores (FP16), achieving an average 1.2 × 1.0 × (max 4.1 × 3.4 ×) speedup vs. V100/A100, respectively, despite having only 23.6% / 9.5% of V100 and A100’s FP16 throughput. MobileNet is an exception where DiVa performs worse than the two GPUs as the GPU seemingly does a better job in mapping the small sized GEMMs across its SIMD vector units. Nonetheless, recall that DiVa “only” comes with 29.5 TFLOPS, unlike V100 and A100’s Tensor Cores which contain 4.2 × (=125/29.5) and 10.6 × (=312/29.5) higher computational throughputs, respectively, than DiVa. These results highlight the importance of optimally mapping DP-SGD’s MAC operations across the computational units (e.g., despite the significantly higher peak TFLOPS of A100 vs. V100, A100 only achieves incremental speedup comared to V100), which DiVa’s outer-product dataflow demonstrates its efficiency.

VII. RELATED WORK

Outer-product dataflow for GEMM acceleration. Several recent literature explored domain-specific architectures for accelerating sparse linear algebra. Among these, OuterSPACE [71] and SpArch [93] are two-most recent studies employing an outer-product dataflow for sparse-sparse GEMMs. The motivation behind the adoption of outer-product in OuterSPACE/SpArch is completely different than DiVa as these two studies seek to reap out opportunities from sparsity. While the details of the underlying microarchitecture and its dataflow are not publicly available, Tesla’s Full Self-Driving (FSD) computer [7], [91] hints at the adoption of an outer-product dataflow in conducting GEMMs. All of these prior studies assume an inference scenario, unlike the training context DiVa is studied over. More importantly, none of these prior work explores DP training for privacy protection, an important motivation and contribution of our study.

Accelerators for irregular GEMMs. Similar to DiVa, SIGMA [76] seeks to address the PE underutilization issue of systolic arrays in executing irregular and sparse GEMMs via flexible interconnects and various sparse optimizations. Unlike the outer-product DiVa, SIGMA employs a SIMD-style inner product array design, let alone the fact that it is optimized for a non-private SGD algorithm. Planaria [28] similarly seeks to address the PE underutilization of systolic arrays for irregular GEMMs via spatially co-locating multiple DNN models, presenting a dynamically reconfigurable interconnect for better utility of computation units. Again, the focus of these prior studies is different than our study, rendering the key contribution of our work stands on its own.

Privacy-preserving ML accelerators. While not necessarily exploring differential privacy, there is a body of prior art that seeks to preserve privacy by adding security enhancements. GuardNN [39] is a DNN accelerator that employs encryption/decryption and integrity verification for off-chip data movements, enhancing its security. DarKnight [32] uses a custom data encoding strategy based on matrix masking to enable input obfuscation. MAXelerator [40] proposes a privacy-preserving MAC unit at the circuit-level. In general, the contributions of DiVa is orthogonal to these prior work.
DNN dataflows for spatial architectures. In this work, we primarily focused on the systolic OS and WS dataflow as assumed in our baseline training accelerator. There are however alternative DNN dataflows discussed in prior literature, with a particular emphasis on inference deployment scenarios. Eyeriss [15], for instance, argued for a row-stationary (RS) dataflow for convolutional neural network inference, demonstrating RS’s superiority over OS and WS. MAESTRO [54] explores a data-centric DNN dataflow for inference, presenting an analytical cost model to evaluate a target dataflow’s latency, throughput, and energy-efficiency. As discussed in this work, ML training involves the derivation of both activation and weight gradients, a computation process non-existent in inference. Therefore, it is unclear how the inference-optimized DNN dataflows explored in prior literature [15], [49], [50], [54] can be applied for the backpropagation’s gradient derivation. Enabling these inference-optimized dataflows to be applicable and optimized for training-purposes, let alone DP training, is beyond our scope. Instead, we focused on two most widely deployed training-purposed architectures like systolic arrays (i.e., OS and WS) and GPUs.

Multi-tenant ML accelerators for enhanced utilization. Aside from novel DNN dataflows for irregular and/or sparse GEMMs, recent work explored the possibility of multi-tenant DNN execution as means to improve compute utilization and throughput for inference. PREMA [19] is one of the first work in this line of research, which employs preemptive multi-tasking to temporally share the ML accelerator. AI-MT [6] and Planaria [28], on the other hand, explored spatial multi-tasking to concurrently execute multiple DNN models and better saturate compute and memory throughput. Given such, co-locating multiple skinny GEMMs within the ML accelerator for spatial multi-tasking is an interesting approach that can potentially lead to higher PE utility in DP-SGD. However, it is unclear how such co-location enabled GEMM engine can efficiently handle the backpropagation stages of deriving both activation and weight gradients (i.e., prior multi-tenant ML accelerators strictly focus on inference, not training), a feature naturally supported under the systolic dataflow as well as our proposed DiVa design. Optimizing DiVa’s spatial array to handle these cases is beyond the scope of our work and we leave it as future work.

VIII. Conclusion

This paper proposed DiVa, an accelerator for differentially private machine learning training. We first conduct a workload characterization on a state-of-the-art DP-SGD algorithm executing over Google TPUs, uncovering its high memory consumption and low compute utilization issue. We then utilize the lessons learned from our characterization to develop a ML accelerator optimized for DP-SGD, employing an outer-product dataflow augmented with an adder-tree based post-processing unit. Compared to prior systolic arrays, DiVa provides significant improvement in compute utilization which allows 3.6× increase in training throughput.

Acknowledgment

This research is partly supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government(MSIT) (NRF-2021R1A2C2091753), the Engineering Research Center Program through the NRF funded by the Korean government MSIT under grant NRF-2018R1A5A1059921, and by Samsung Electronics Co., Ltd. We also appreciate the support from the IC Design Education Center (IDEC), Korea, for the EDA tools. Minsoo Rhu is the corresponding author.

References

[1] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S. Corrado, A. Davis, J. Dean, M. Devin, S. Ghemawat, I. Goodfellow, A. Harp, G. Irving, M. Isard, Y. Jia, R. Jozefowicz, L. Kaiser, M. Kudlur, J. Levenberg, D. Mané, R. Monga, S. Moore, D. Murray, C. Olah, M. Schuster, J. Shlens, B. Steiner, I. Sutskever, K. Talwar, P. Tucker, V. Vanhoucke, V. Vasudevan, F. Viégas, O. Vinyals, P. Warden, M. Wattenberg, M. Wicke, Y. Yu, and X. Zheng, “TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems,” https://www.tensorflow.org/, 2015.

[2] M. Abadi, A. Chu, I. Goodfellow, H. B. McMahan, I. Mironov, K. Talwar, and L. Zhang, “Deep Learning with Differential Privacy,” in Proceedings of the ACM SIGSAC Conference on Computer and Communications Security (CCS), 2016.

[3] J. Albericio, P. Judd, T. Hetherington, T. Aamodt, N. E. Jerger, and A. Moshovos, “Cnvlutin: Ineffectual-Neuron-Free Deep Convolutional Neural Network Computing,” in Proceedings of the International Symposium on Computer Architecture (ISCA), 2016.

[4] R. Anil, B. Ghazi, V. Gupta, R. Kumar, and P. Manurangsi, “Large-Scale Differentially Private BERT,” in arxiv.org, 2021.

[5] Apple, “Learning with Privacy at Scale,” https://docs-assets.developer.apple.com/ml-research/papers/learning-with-privacy-at-scale.pdf, 2017.

[6] E. Baek, D. Kwon, and J. Kim, “A Multi-Neural Network Acceleration Architecture,” in Proceedings of the International Symposium on Computer Architecture (ISCA), 2020.

[7] P. Bannon, G. Venkataramanan, D. D. Sarma, and E. Talpes, “Computer and Redundancy Solution for the Full Self-Driving Computer,” in Hot Chips: A Symposium on High Performance Chips, 2019.

[8] R. Bassily, A. Smith, and A. Thakurta, “Private Empirical Risk Minimization: Efficient Algorithms and Tight Error Bounds,” in IEEE Annual Symposium on Foundations of Computer Science, 2014.

[9] M. Blatt, A. Gusev, Y. Polyakov, and S. Goldwasser, “Secure Large-Scale Genome-wide Association Studies Using Homomorphic Encryption,” in Proceedings of the National Academy of Sciences, 2020.
[63] J. Lee and D. Kifer, “Scaling up Differentially Private Deep Learning with Fast Per-Example Gradient Clipping,” in Proceedings on Privacy Enhancing Technologies (PoPET), 2021.

[64] X. Li, F. Tramer, P. Liang, and T. Hashimoto, “Large Language Models Can Be Strong Differentially Private Learners,” in Proceedings of the International Conference on Learning Representations (ICLR), 2022.

[65] S. Liu, Z. Du, J. Tao, D. Han, T. Luo, Y. Xie, Y. Chen, and T. Chen, “Canbricon: An Instruction Set Architecture for Neural Networks,” in Proceedings of the International Symposium on Computer Architecture (ISCA), 2016.

[66] M. Nasr, R. Shokri, and A. Houmansadr, “Comprehensive Privacy Analysis of Deep Learning: Passive and Active White-box Inference Attacks Against Centralized and Federated Learning,” in IEEE Conference on Security and Privacy (SP), 2019.

[67] T. Norrie, N. Patil, D. H. Yoon, G. Kurian, S. Li, J. Laudon, C. Young, N. P. Jouppi, and D. A. Patterson, “Google’s Training Chips Revealed: TPUV2 and TPUV3,” in Hot Chips: A Symposium on High Performance Chips, 2020.

[68] NVIDIA, “NVIDIA Tesla V100,” 2018.

[69] NVIDIA, “NVIDIA A100,” 2020.

[70] Opacus, https://github.com/pytorch/opacus/blob/main/examples/char-lstm-classification.py, 2020.

[71] S. Pal, J. Beaumont, D.-H. Park, A. Amarnath, S. Feng, C. Chakrabarti, H.-S. Kim, D. Blaauw, T. Mudge, and R. Dreslinski, “OuterSPACE: An Outer Product Based Sparse Matrix Multiplication Accelerator,” in Proceedings of the International Symposium on High-Performance Computer Architecture (HPCA), 2018.

[72] N. Papernot, M. Abadi, U. Erlingsson, I. Goodfellow, and K. Talwar, “Semi-supervised Knowledge Transfer for Deep Learning from Private Training Data,” in Proceedings of the International Conference on Learning Representations (ICLR), 2017.

[73] N. Papernot, A. Galen, and S. Chien, “Tensorflow Privacy,” https://github.com/tensorflow/privacy, 2022.

[74] A. Parashar, M. Rhu, A. Mukkara, A. Puglielli, R. Venkatesan, B. Khailany, J. Emer, S. W. Keckler, and W. J. Dally, “SCNN: An Accelerator for Compressed-sparse Convolutional Neural Networks,” in Proceedings of the International Symposium on Computer Architecture (ISCA), 2017.

[75] J. Park, B. Kim, S. Yun, E. Lee, M. Rhu, and J. H. Ahn, “TRiM: Enhancing Processor-Memory Interfaces with Scalable Tensor Reduction in Memory,” in Proceedings of the International Symposium on Microarchitecture (MICRO), 2021.

[76] E. Qin, A. Samajdar, H. Kwon, V. Nadella, S. Srinivasan, D. Das, B. Kaul, and T. Krishna, “SIGMA: A Sparse and Irregular GEMM Accelerator with Flexible Interconnects for DNN Training,” in Proceedings of the International Symposium on High-Performance Computer Architecture (HPCA), 2020.

[77] A. Radford, J. Wu, R. Child, D. Luan, D. Amodei, and I. Sutskever, “Language Models Are Unsupervised Multitask Learners,” in OpenAI Blog, 2019.

[78] M. Rhu, N. Gimelshein, J. Clemons, A. Zulfiqar, and S. W. Keckler, “vDNN: Virtualized Deep Neural Networks for Scalable, Memory-Efficient Neural Network Design,” in Proceedings of the International Symposium on Microarchitecture (MICRO), October 2016.

[79] M. Rhu, M. O’Connor, N. Chatterjee, J. Pool, Y. Kwon, and S. W. Keckler, “Compressing DMA Engine: Leveraging Activation Sparsity for Training Deep Neural Networks,” in Proceedings of the International Symposium on High-Performance Computer Architecture (HPCA), February 2018.

[80] J. Ross, “Prefetching Weights for Use in a Neural Network Processor,” Patent, 05 2015, uS 9805304B2.

[81] J. Ross, N. Jouppi, A. Phelps, R. Young, T. Norrie, G. Thorson, and D. Luu, “Neural Network Processor,” Patent, 05 2015, uS 9747546B2.

[82] J. Ross and A. Phelps, “Computing Convolutions Using a Neural Network Processor,” Patent, 05 2015, uS 9697463B2.

[83] J. Ross and G. Thorson, “Rotating Data for Neural Network Computations,” Patent, 05 2015, uS 9747548B2.

[84] N. Shazeer, A. Mirhoseini, K. Maziarz, A. Davis, Q. Le, G. Hinton, and J. Dean, “Outrageously Large Neural Networks: The Sparsely-Gated Mixture-of-Experts Layer,” in Proceedings of the International Conference on Learning Representations (ICLR), 2017.

[85] R. Shokri and V. Shmatikov, “Privacy-Preserving Deep Learning,” in Proceedings of the ACM SIGSAC Conference on Computer and Communications Security (CCS), 2015.

[86] R. Shokri, M. Stronati, C. Song, and V. Shmatikov, “Membership Inference Attacks Against Machine Learning Models,” in IEEE Symposium on Security and Privacy (SP), 2017.

[87] D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. van den Driessche, J. Schrittwieser, I. Antonoglou, V. Panneershelvam, M. Lanco, T. Demis, A. Grewe, S. M. Hochreiter, S. De, K. Kavukcuoglu, T. Lillicrap, M. Leach, K. Kavukcuoglu, T. Graepel, and D. Hassabis, “Mastering the Game of Go with Deep Neural Networks and Tree Search,” in Nature, 2016.

[88] K. Simonyan and A. Zisserman, “Very Deep Convolutional Networks for Large-Scale Image Recognition,” in arxiv.org, 2014.

[89] S. Smith, M. Patwary, B. Norick, P. LeGresley, S. Rajbhandari, J. Casper, Z. Liu, S. Prabhumoye, G. Zerveas, V. Kothikanti et al., “Using DeepSpeed and Megatron to Train Megatron-Turing NLG 530B: A Large-Scale Generative Language Model,” in arxiv.org, 2022.

[90] P. Subramani, N. Vadhivel, and G. Kamath, “Enabling Fast Differentially Private SGD via Just-in-Time Compilation and Vectorization,” in Proceedings of the International Conference on Neural Information Processing Systems (NIPS), 2021.
[91] E. Talpes, D. D. Sarma, G. Venkataramanan, P. Bannon, B. McGee, B. Floering, A. Jalote, C. Hsiong, S. Arora, A. Gorti, and G. S. Sachdev, “Compute Solution for Tesla’s Full Self-Driving Computer,” in *IEEE Micro*, 2020.

[92] D. Yu, S. Naik, A. Backurs, S. Gopi, H. A. Inan, G. Kamath, J. Kulkarni, Y. T. Lee, A. Manoel, L. Wutschitz, S. Yekhanin, and H. Zhang, “Differentially Private Fine-tuning of Language Models,” in *Proceedings of the International Conference on Learning Representations (ICLR)*, 2022.

[93] Z. Zhang, H. Wang, S. Han, and W. J. Dally, “SpArch: Efficient Architecture for Sparse Matrix Multiplication,” in *Proceedings of the International Symposium on High-Performance Computer Architecture (HPCA)*, 2020.