Evaluation of serum ferritin and some metal elements in type 2 diabetes mellitus patients: comparative cross-sectional study

Amare Desalegn Wolide
Belay Zawdie
Tilahun Alemayehu
Samuel Tadesse

Background: The chronic hyperglycemia of diabetes has been associated with an imbalance of some trace metal elements in the blood sample of type 2 diabetes patients.

Aim: To evaluate the status of serum ferritin and some selected metal elements among type 2 diabetes mellitus (T2DM) patients.

Methods: Facility-based comparative cross-sectional study was conducted from February 15, 2015 to October 30, 2015, at Jimma University Specialized Hospital, Ethiopia. A total of 428 type 2 diabetes and nondiabetes study subjects were recruited to the study. After overnight fasting, 10 mL of venous blood samples were taken for biochemical and trace metal element analysis. Data were entered into EpiData version 3.5.1 and exported to SPSS version 20 for Windows for analysis.

Results: Serum concentration of Zn\(^{2+}\), Mg\(^{2+}\), Cr\(^{3+}\), ferritin, and Fe\(^{3+}\) in patients with type 2 diabetes was significantly lower \((p<0.0001)\) than nondiabetes patients. In contrast, serum Cu\(^{2+}\) was significantly higher \((p<0.0001)\) in type 2 diabetes patients than nondiabetics. In addition, significant differences were not seen in both groups with regard to serum Mn\(^{2+}\), Ca\(^{2+}\), and Po\(_4\)\(^{3-}\). Waist-to-hip ratio (WHR), serum Fe\(^{3+}\), ferritin, and Mn\(^{2+}\) were significantly higher among oral hypoglycemic agent users of type 2 diabetes patients than the injectable insulin users. Serum Zn\(^{2+}\) had significant positive correlation with serum Mg\(^{2+}\) \((r=0.738)\), Cr\(^{3+}\) \((r=0.233)\), Ca\(^{2+}\) \((r=0.238)\), and Po\(_4\)\(^{3-}\) \((r=0.222)\). In addition, serum Zn\(^{2+}\) had shown significant and negative correlation with body mass index (BMI, \(r=-0.331\)), WHR \((r=-0.340)\), and fasting blood glucose (FBG, \(r=-0.186)\). Likewise, serum Mg\(^{2+}\) and Po\(_4\)\(^{3-}\) are significantly and negatively correlated with BMI, WHR, and FBG.

Conclusion: The imbalance of trace metal elements in the blood sample of diabetes is uncertain. Thus, we recommend a prospective cohort study to find out the principal factors behind the problem.

Keywords: diabetes, ferritin, trace metal elements, hyperglycemia, insulin, metal
cases of diabetes in Ethiopia during 2015, and the number of deaths due to diabetes was 23,145.6 Owing to the increasing prevalence of diabetes, multidisciplinary study aimed at preventing and treating diabetes is one of the worldwide research priorities.7 The burden of diabetes and other chronic noncommunicable diseases in Ethiopia has been grossly overlooked by concerned bodies as a consequence of government’s intense focus on communicable disease and malnutrition agendas. The few studies done on diabetes were confined on the issue of quality of care and patients satisfaction in the follow-up clinics. Thus, research on diabetes in this country can only be described as inadequate. To remedy this situation, research on the causation aspect of the disease needs to be conducted. To the best of our knowledge, the relationship between diabetic hyperglycemia and relevant blood chemistry and trace metal elements has not yet been investigated in Ethiopia. The study results may contribute to the development of evidence-based decision and intervention strategies to enhance a healthier lifestyles and better diabetes care. Therefore, this study is aimed to evaluate the status of serum ferritin and some selected trace metal elements, such as zinc (Zn\(^{2+}\)), magnesium (Mg\(^{2+}\)), chromium (Cr\(^{6+}\)), iron (Fe\(^{2+}\)), copper (Cu\(^{2+}\)), manganese (Mn\(^{2+}\)), calcium (Ca\(^{2+}\)), and phosphorus (P\(_{0}\)-\(^{3}\)), among type 2 diabetes mellitus (T2DM) patients at Jimma University Specialized Hospital (JUSH), Ethiopia.

Subjects and method

Study subjects and design

Comparative cross-sectional study was used among 214 patients with T2DM and 214 age, sex, and educational level matched nondiabetes individuals who were in the outpatient department at JUSH using consecutive sampling technique. The study was conducted in JUSH from February 15, 2015 to October 30, 2015. JUSH is one of the oldest public hospitals in the country, located about 350 km southwest of the capital, Addis Ababa.

Inclusion and exclusion criteria

All patients aged 20–79 years with a history of diabetes more than 3 years from their diagnosis at the time of data collection were included. Subjects with a history of 1) pregnancy and lactation, 2) use of any drugs affecting electrolytes at the time of data collection, 3) taking nutritional supplements, such as magnesium-containing laxatives, 4) chronic disorders of the liver, kidney, and cardiovascular system, 5) endocrine disorders, 6) established psychiatric disorder and on antidepressant and/or antipsychotic therapy, 7) HIV/AIDS, 8) malignancy, and 9) substance abuse were excluded from the study. Study subjects in the nondiabetes group were included and excluded based on the same criteria as stated earlier.

Ethical consideration

Prior to participation for the study, written informed consent was obtained from the study subjects. The purpose of the study was clearly described to the study subjects including the benefits and risks of the study. Information concerning the study subjects was kept confidential. The specimen collected from the study subjects was only analyzed for the intended purposes. The study was performed in accordance with the ethical principles outlined in the Helsinki Declaration8 and guidelines for Good Clinical Practice.9 Ethical approval was obtained from the Jimma University ethical review board. Letter for permission to conduct the study was obtained from JUSH medical director office.

Data collection

Each study subjects was interviewed and completed the questionnaire in the presence and assistance of trained data collectors (Medical Doctors and Laboratory Technologist). Information concerning age, sex, family history of diabetes, history of hypertension and dyslipidemia, and other information was collected using questionnaire. Anthropometric measures included height and weight; waist and hip circumference; respiratory rate; examination of extremities, eye, skin, and sensory-motor functionality and all routine investigations were measured according to standard protocols. Blood pressure and heart rate were measured three times every 2 minutes after an initial 10-minute rest period.

Specimen collection and storage

Overnight fasting venous blood (10 mL) was taken from the median cubital vein of subjects using sterile disposable plastic syringe and preserved in ethylenediamine tetraacetic acid (EDTA.K\(_{3}\))-containing vacuum tubes (Weihai Hongye, Weihai, People’s Republic of China) and plain vacutainer tubes (Shandong Branden Medical Devices Co., Ltd, Beijing, People’s Republic of China). Samples in the EDTA. K\(_{3}\)-containing vacuum tubes were sent to JUSH Laboratory Department for fasting blood glucose (FBG) determination. Samples in the plain vacutainer tubes were immediately brought to the Medical Physiology Laboratory of Jimma University for processing. These samples were centrifuged at 3000 rpm for 10 minutes, and the serum (3.2 mL) was transferred to labeled 3.6 mL Nunc™ cryogenic tubes (NUNC INC) and stored at −20°C until analysis.
Specimen preparation and analysis
Fasting plasma glucose was determined by glucose hexokinase method (ABX Pentra Glucose hexokinase 135 kit). Serum C-reactive protein (CRP; ABX Pentra CRP 12CP kit) and ferritin (ABX Pentra ferritin 5CP kit) were determined by radioimmunoassay method. Both clinical methods were performed using automated chemistry analyzer ABX Pentra 400 (HORIBA Medical Diagnostics Instruments & Systems, Montpellier, France). Trace element levels were determined using wet acid digestion method. All sample containers were meticulously washed with nonionic detergents solution and rinsed triply with distilled water and dried in the oven at 80°C for 24 hours. Each sample was mixed with 3 mL concentrated nitric acid and hydrogen peroxide [HNO₃–H₂O₂] solution (2:1, v/v) in a beaker for 10 minutes and heated at 120°C on a hot plate until complete digestion had taken place. The beaker was loosely covered by 150 mm Pyrex watch glass to avoid contamination from the air. Then, the samples were brought to 5.4 mL and allowed to cool at room temperature while continuously adding triple distilled water to maintain the volume. After cooling down, the digested samples were centrifuged at 10,000 rpm for 30 seconds and the organic supernatant aspirated directly into the flam. Finally, the clear samples were analyzed for trace elements using atomic absorption spectrophotometry (Shimadzu AA-670, Kyoto, Japan).

Data quality assurance
To ensure the quality of the data, good laboratory practice was followed in all stages of the work. All reagents used were checked for their expiry date and used according to the manufacturer’s instructions.

Data analysis
Data were entered into Epi-info version 3.5.1 and then exported to SPSS version 20 (SPSS Inc., Chicago, IL, USA). Independent t-test was performed to determine significant differences between type 2 diabetics and nondiabetics in terms of FBG, weight, body mass index (BMI), waist-to-hip ratio (WHR), blood pressure (systolic and diastolic), ferritin, and trace metal elements. Levene’s test for homogeneity of variances was calculated in order to accept or reject the null hypothesis. To determine possible relationships between parameters, Pearson’s correlation coefficient (r) was used. All variables with p-value less than 0.05 were considered as statistically significant.

Reference ranges
The reference ranges used to determine serum ferritin, trace metal elements, FBG, and CRP were obtained from different literature and presented as follows: Zn²⁺ (75–120 μg/dL), Mg²⁺ (1.6–2.6 mg/dL), Cr³⁺ (0.05–0.5 μg/L), Fe³⁺ for male (65–165 μg/dL) and for female (50–70 μg/dL), ferritin for male (20–250 μg/L) and for female (10–120 μg/L), Cu²⁺ (70–140 μg/dL), Mn²⁺ (0.4–1.1 μg/L), Ca²⁺ (4.64–5.28 mg/dL), PO₄³⁻ (2.5–4.5 mg/dL), FBG (≤126 mg/dL), and CRP (≤10 mg/dL).

Results
It is common scientific knowledge that there is a strong association between type 2 diabetes and increased FBG, BMI, waist circumference, and WHR. The results of the present study are consistent with this fact. As shown in Table 1, FBG, BMI, WHR, and systolic and diastolic blood pressures in type 2 diabetes patients were significantly (p<0.0001) higher than in nondiabetes study subjects.

Study subjects with T2DM had a significant (p<0.0001) lower serum Zn²⁺, Mg²⁺, Cr³⁺, Fe³⁺, and ferritin concentrations than nondiabetics (Table 2). In contrast, the serum Cu²⁺ concentration was significantly (p<0.0001) higher in T2DM patients than in nondiabetics. Significant differences were not observed in both study subjects with regard to the serum concentration of Mn²⁺, Ca²⁺, and Po₄³⁻.

Tables 3 and 4 show the mean differences in age, BMI, WHR, systolic and diastolic blood pressures, fasting plasma glucose, ferritin, and trace metal elements among T2DM study subjects who had been taking hypoglycemic agents and insulin as treatment options.

WHR was significantly higher (p<0.0001) among oral hypoglycemic agents taking T2DM study subjects than

Table 1 Clinical characterization of the diabetes and nondiabetes study subjects

Tested parameters	Study subjects	t-test	p-value	
Age (years)	Diabetes (n=214)	Nondiabetes (n=214)	t-test	p-value
	43.18±12.68	43.18±12.68	-0.37	0.712
	5.8±3.11		-	
Duration with diabetes (years)	162±29.53	87.56±10.73	38.92	<0.0001*
Fasting blood glucose (mg/dL)	26.15±4.53	23.94±4.68	4.93	<0.0001*
Body mass index (kg/m²)	1.05±0.56	1.04±0.37	8.52	<0.0001*
Waist and hip circumference (cm)	134.2±22.62	122.04±18.76	6.05	<0.0001*
Systolic blood pressure (mmHg)	88.36±13.23	84.14±13.92	3.21	<0.0001*

Notes: Data were presented as mean (standard deviation). *p<0.05 indicates a significant difference. Independent t-test.
Table 2 Levels of ferritin and metal elements in the serum of diabetes and nondiabetes study subjects

Tested parameters	Study subjects	t-test	p-value	
	Diabetes (n=214)	Nondiabetes (n=214)		
Zn\(^2\) (µg/dL)	46.2±21.03	72.4±21.47	-12.72	<0.0001*
Mg\(^2\) (µg/dL)	0.86±0.88	1.82±0.76	-11.95	<0.0001*
Cr\(^3\) (µL/L)	0.82±1.42	0.35±0.43	4.57	<0.0001*
Fe\(^+\) (µg/dL)	55.95±20.99	71.19±25.72	-6.70	<0.0001*
Ferritin (µg/L)	24.96±18.60	34.99±18.53	-5.58	<0.0001*
Cu\(^2\) (µg/dL)	79.6±27.38	71.67±22.38	3.28	<0.0001*
Mn\(^2\) (µL/L)	0.65±0.91	0.66±0.45	-0.18	0.853
Ca\(^2\) (µg/L)	4.28±1.19	4.36±0.56	-0.83	0.407
P0\(^2\)-3 (µg/dL)	2.16±0.98	2.27±0.56	-1.40	0.162

Notes: Data were presented as mean (standard deviation). *p<0.05 indicates a significant difference. Independent t-test.

Table 3 Clinical characteristics among oral hypoglycemic agent and injectable insulin users of diabetes study subjects

Tested parameters	Diabetes treatment options	t-test	p-value	
	Oral hypoglycemic agents (n=161)	Injectable insulin (n=53)		
Age (years)	42.57±13.4	44.11±9.9	-0.894	0.373
Fasting blood glucose (mg/dL)	159.88±27.4	169.07±34.5	-1.761	0.82
Body mass index (kg/m\(^2\))	26.3±4.86	25.65±3.35	1.084	0.281
Waist and hip circumference (cm)	1.5±0.59	1.22±0.43	3.778	<0.0001*
Systolic blood pressure (mmHg)	134.3±24.1	133.9±17.5	0.105	0.928
Diastolic blood pressure (mmHg)	87.2±13.2	91.8±12.8	-2.255	0.025

Notes: Data were presented as mean (standard deviation). *p<0.05 indicates a significant difference. Independent t-test.

Table 4 Levels of serum ferritin and metal elements among oral hypoglycemic agent and injectable insulin users of diabetes study subjects

Tested parameters	Diabetes treatment options	t-test	p-value	
	Oral hypoglycemic agents (n=161)	Injectable insulin (n=53)		
Zn\(^2\) (µg/dL)	45.8±20.84	47.6±21.76	-0.550	0.583
Mg\(^2\) (µg/dL)	0.85±0.89	0.89±0.89	-0.216	0.829
Cr\(^3\) (µL/L)	0.83±1.45	0.78±1.34	0.229	0.819
Fe\(^+\) (µg/dL)	57.79±20.49	50.37±21.71	2.252	<0.025*
Ferritin (µg/L)	26.72±19.70	19.62±13.58	2.439	<0.016*
Cu\(^2\) (µg/dL)	81.28±29.06	74.52±20.88	1.56	1.119
Mn\(^2\) (µL/L)	0.75±0.96	0.35±0.61	3.52	0.001*
Ca\(^2\) (µg/L)	4.28±1.28	4.3±0.86	-0.156	0.877
P0\(^2\)-3 (µg/dL)	2.11±1.07	2.34±0.65	-1.88	0.062

Notes: Data were presented as mean (standard deviation). *p<0.05 indicates a significant difference. Independent t-test.

Discussion

Trace metal elements are very important elements for cellular metabolic reactions, and their deviation from the normal physiologic range may put adverse effect on biological process.\(^{16,17}\) In our finding, the serum concentration of zinc, magnesium, and chromium in patients with T2DM was significantly lower than the nondiabetes study subjects. The finding is in harmony with previous studies.\(^{18-25}\) However, some studies showed insignificant difference of serum zinc and magnesium among T2DM patients and nondiabetes study subjects,\(^{26-28}\) which are inconsistent with the current finding. Zinc and magnesium are essential trace metal elements crucial for the function of more than 300 enzymes.\(^{29-33}\) The trivalent chromium is often required for the maintenance of normal glucose\(^{44}\) and fat metabolism.\(^{35}\) Chromium stimulates insulin signaling pathway and increases glucose transporter protein translocation in muscle cells.\(^{1}\) However, zinc, magnesium, and chromium deficiency often leads to insulin resistance.\(^{36-37}\) The exact physiologic mechanism of zinc, magnesium, and chromium deficiency among T2DM patients is unknown, but high urinary loss has been observed as a result of the osmotic effect of glycosuria.\(^{20,25,33}\) Increased serum iron and ferritin concentrations have been reported to be associated with insulin resistance.\(^{38-45}\) Our findings on serum iron and ferritin concentration were inconsistent with the previous findings.\(^{38-45}\) Iron plays an essential role as a cofactor for fuel oxidation and electron transport, but it also has the potential to cause oxidative damage if not
Table 5 Pearson bivariate correlation analysis on serum ferritin and metal elements among diabetes study subjects

Tested parameters	Zn^{2+} (µg/dL)	Mg^{2+} (µg/dL)	Cr^{3+} (µg/L)	Fe^{2+} (µg/dL)	Ferritin (µg/L)	Cu^{2+} (µg/dL)	Mn^{2+} (µg/L)	Ca^{2+} (mg/dL)	Po_{4}^{3-} (mg/dL)
Zn^{2+} (µg/dL)	r	p-value							
r	1	0.738	0.233	0.062	-0.032	-0.296	0.039	0.238	0.222
p-Value	<0.0001**	<0.0001**	<0.0001**	<0.0001**	<0.0001**	<0.0001**	<0.0001**	<0.0001**	<0.0001**
Mg^{2+} (µg/dL)	r	0.738	1	-0.103	-0.042	-0.171	0.079	0.157	0.209
p-Value	<0.0001**	-0.134	0.544	0.012**	0.250	0.022	0.002**	<0.0001**	
Cr^{3+} (µg/L)	r	0.233	0.358	1	0.01	0.031	-0.03	0.068	0.211
p-Value	<0.0001**	<0.0001**	-0.134	0.665	0.189	0.065	0.024	0.006	
Fe^{2+} (µg/dL)	r	0.062	-0.103	0.010	0.665	0.189	0.065	0.024	0.006
p-Value	<0.0001**	<0.0001**	-0.134	0.665	0.189	0.065	0.024	0.006	
Ferritin (µg/L)	r	0.645	0.544	0.653	<0.0001**	<0.0001**	<0.0001**	0.218	0.732
p-Value	0.001**	0.001**	0.001**	<0.0001**	<0.0001**	<0.0001**	<0.0001**	0.732	
Cu^{2+} (µg/L)	r	-0.296	-0.171	-0.03	0.189	0.327	0.275	-0.038	-0.087
p-Value	<0.0001**	0.012**	0.661	<0.0001**	<0.0001**	<0.0001**	<0.0001**	0.044	
Mn^{2+} (µg/L)	r	0.039	0.079	0.068	0.065	0.085	0.275	-0.144	-0.090
p-Value	0.572	0.250	0.321	0.343	0.218	<0.0001**	-0.036	0.192	
Ca^{2+} (mg/dL)	r	0.238	0.157	0.211	0.020	0.024	-0.138	-0.144	0.527
p-Value	<0.0001**	0.022	0.002**	0.772	0.732	0.044	0.036	-0.036	
Po_{4}^{3-} (mg/dL)	r	0.222	0.209	0.298	-0.058	0.006	-0.087	-0.090	0.527
p-Value	<0.0001**	<0.0001**	<0.0001**	0.402	0.927	0.205	0.192	<0.0001**	

Note: **Pearson correlation is significant at the 0.01 level (two tailed).

Table 6 Pearson bivariate correlation analysis on serum ferritin and metal elements with body mass index, waist-to-hip ratio, and fasting blood glucose among diabetes study subjects

Tested parameters	Body mass index (kg/m²)	Waist-to-hip ratio (cm)	Fasting blood glucose (mg/dL)			
r	p-value	r	p-value			
Zn^{2+} (µg/dL)	-0.331	<0.0001**	-0.340	<0.0001**	-0.186	0.006**
Mg^{2+} (µg/dL)	-0.254	<0.0001**	-0.199	0.003**	-0.136	<0.0001**
Cr^{3+} (µg/L)	-0.121	0.077	0.002	0.974	-0.023	0.734
Fe^{2+} (µg/dL)	-0.099	0.148	-0.029	0.672	-0.111	0.106
Ferritin (µg/L)	-0.058	0.396	0.053	0.443	-0.100	0.144
Cu^{2+} (µg/dL)	0.140	0.04	0.327	<0.0001**	0.057	0.404
Mn^{2+} (µg/L)	0.021	0.755	0.282	<0.0001**	-0.008	0.912
Ca^{2+} (mg/dL)	-0.335	<0.0001**	-0.372	<0.0001**	-0.141	0.040
Po_{4}^{3-} (mg/dL)	-0.380	<0.0001**	-0.309	<0.0001**	-0.159	<0.0001**

Note: Data were presented as mean (standard deviation). **Pearson correlation is significant at the 0.01 level (two tailed).
as well. Copper is considered as a powerful enzyme catalyst and its deficiency results in glucose intolerance, hypercholesterolemia, and atherosclerosis. Inconsistent with others findings, significant difference was not observed in both T2DM patients and nondiabetes regarding serum manganese. Manganese is an important constituent of some enzymes, such as pyruvate carboxylase and arginase. Normal levels of manganese are involved in the synthesis and secretion of insulin. Generally, studies are not adequate on calcium and phosphorus in the blood sample of both diabetes and nondiabetes study subjects. But, data from animal models of diabetes and from studying patients with diabetes reveal increased intracellular calcium level in most tissues. However, in the current study, significant difference was not observed in serum calcium and phosphorus in both type 2 diabetes and nondiabetes study subjects. In the current study, we have also compared some clinical parameters, such as BMI, WHR, systolic and diastolic blood pressures, FBG, serum trace metal elements, and ferritin level among oral hypoglycemic agent and injectable insulin users of T2DM study subjects. Thus, WHR, diastolic blood pressure, serum iron, ferritin, and manganese level were significantly higher among oral hypoglycemic agent users of T2DM study subjects than injectable insulin users. Although we do not know the exact mechanism for such differences, usually injectable insulin is much more effective to achieve near normal glycemic control as early as possible in the course of the disease.

Limitation of the study

We did not measure tissue and urinary trace metal elements, glycated hemoglobin, and postprandial insulin level of the study subjects. Moreover, the study was cross-sectional and parameters were measured once. Thus, relationship between the measured parameters and the T2DM may not be truly associated. Thus, we would like to recommend the researchers to study more about the association of ferritin, trace metal elements, and T2DM in a cohort study with larger number of study subjects.

Conclusion

In general, the current study shows decrease of serum zinc, magnesium, chromium, iron, ferritin and increase of serum copper concentration in T2DM study subjects than in nondiabetes mellitus study subjects. But, serum manganese, calcium, and phosphorus did not show significant differences in both the study subjects. Additionally, WHR, serum iron, ferritin, and manganese were significantly higher among oral hypoglycemic agent users of T2DM study subjects. Moreover, significant positive and negative correlation has been seen between serum zinc with magnesium, chromium, copper, calcium, and phosphorus and magnesium with chromium, copper, calcium, and phosphorus among T2DM study subjects (details are described in Table 5). Zinc, magnesium, and phosphorus also negatively correlated with BMI, WHR, and FBG level (details are described in Table 6). We believe that poor glycemic control, poor adherences toward insulin and oral hypoglycemic agents, high urinary clearance rate, asymptomatic disease, oxidative stress, and other health and health-related factors could be contributing factors for the existing disturbed trace metal elements among T2DM patients. Thus, following the possible preventable strategies (lifestyle modification and good adherences to medication) may reduce the complication of diabetes and trace metal elements in T2DM patients.

Acknowledgments

We would like to express our esteemed gratitude to our study participants and data collectors for their cooperation. We also would like to thank Jimma University College of Health Sciences for funding and Jimma University Specialized Hospital for allowing us to conduct the research in the diabetic clinic.

Disclosure

The authors report no conflicts of interest in this work.

References

1. Khan AR, Awan FR. Metals in the pathogenesis of type 2 diabetes. *J Diabetes Metab Disord*. 2014;13[1]:16.
2. Badran M, Morsy R, Soliman H, Elnimr T. Assessment of trace elements levels in patients with type 2 diabetes using multivariate statistical analysis. *J Trace Elem Med Biol*. 2016;33:114–119.
3. Wiernsperger N, Rapin J. Trace elements in glucometabolic disorders: an update. *Diabetol Metab Syndr*. 2010;2(1):70.
4. American Diabetes Association. Diagnosis and classification of diabetes mellitus. *Diabetes Care*. 2006;29(Suppl 1):S43–S48.
5. Ginter E, Simko V. Global prevalence and future of diabetes mellitus. In: *Diabetes*. New York, NY: Springer; 2013:35–41.
6. International Diabetes Federation: Diabetes in Ethiopia [updated 2015]. Available from: http://www.idf.org/membership/afr/ethiopia. Accessed August 21, 2016.
7. Flores CR, Puga MP, Wrobel K, Sevilla ME, Wrobel K. Trace elements status in diabetes mellitus type 2: possible role of the interaction between molybdenum and copper in the progress of typical complications. *Diabetes Res Clin Pract*. 2011;91(3):333–341.
8. Idänpää-Heikkilä JE. Ethical principles for the guidance of physicians in medical research: the Declaration of Helsinki. *Bull World Health Organ*. 2001;79(4):279.
9. Hall GC, Sauer B, Bourke A, Brown JS, Reynolds MW, Casale RL. Guidelines for good database selection and use in pharmacoepidemiology research. *Pharmacoepidemiol Drug Saf*. 2012;21(1):1–10.
10. Yahaya MI, Shehu A, Dabai FG. Efficiency of extraction of trace metals from blood samples using wet digestion and microwave digestion techniques. *J Appl Sci Environ Manag*. 2013;17(3):365–369.
11. Li G, Brockman JD, Lin SW, Abnet CC, Schell LA, Robertson JD. Measurement of the trace elements Cu, Zn, Fe, and Mg and the ultra-trace elements Cd, Co, Mn, and Pb in limited quantity human plasma and serum samples by inductively coupled plasma-mass spectrometry. *Am J Analyst Chem*. 2012;3(9):646.

12. Badran M, Ismail A, Morsy R, Elnimr T. Critical evaluating for five digestion methods using ICP-MS. *J Pharm Sci Innovation*. 2014;3:30–34.

13. Bogden JD, Klevey LM. *Clinical Nutrition of the Essential Trace Elements and Minerals: The Guide for Health Professionals*. Totowa, NJ: Humana Press; 2000.

14. Iyengar V, Voititz J. Trace elements in human clinical specimens: evaluation of literature data to identify reference values. *Clin Chem*. 1988;34(3):474–481.

15. Kratz A, Pesce MA, Fink DJ. Appendix: laboratory values of clinical importance. Harison's principles of internal medicine. 19e. Available from: http://www.accessmedicine.com/content.aspx. 2012. Accessed August 10, 2015.

16. Khan FA, Al Jamei N, Arjumand S, et al. Comparative study of serum copper, iron, magnesium, and zinc in type 2 diabetes-associated proteinuria. *Bio Trace Elem Res*. 2015;168(2):321–329.

17. Basaki M, Saeb M, Nazifi S, Shamsaei HA. Zinc, copper, iron, and chromium concentrations in young patients with type 2 diabetes mellitus. *Bio Trace Elem Res*. 2012;148(2):161–164.

18. Oyedeji SO, Adesina AA, Oke OT, Tijani YO. Evaluation of essential trace metals in female type 2 diabetes mellitus patients in Nigerian population. *Afri J Biotechnol*. 2014;13(18):1910–1914.

19. Arshad A, Naqvi A, Arshad A, et al. Trace elements status in type 2 diabetes. *Bangladesh J Med Sci*. 2009;8(3):52.

20. Ferdousi S, Mollah FH, Mia MA. Serum levels of zinc and magnesium in newly diagnosed type-2 diabetic subjects. *Bangladesh J Med Biochem*. 2013;3(2):46–49.

21. Viktorinová A, Tošerová E, Križko M, Ďuračková Z. Altered metabolism of copper, zinc, and magnesium is associated with increased levels of glycated hemoglobin in patients with diabetes mellitus. *Metabolism*. 2009;58(10):1477–1482.

22. Onah CE, Meludu SC, Dioka CE, Amah UK, Okwara JE, Osuji CU. Testing of magnesium, zinc and copper blood levels in diabetes mellitus patients. *Biol Trace Elem Res*. 2014;158(1):231–237.

23. Ding W, Chai Z, Duan P, Feng W, Qian Q. Serum and urine chromium concentrations in elderly diabetics. *Bio Trace Elem Res*. 1998;63(3):231–237.

24. Walter RM, Uruu-Hare JY, Olin KL, Oster MH, Anawalt BD, Critchfield DW. The role of iron in type 2 diabetes in humans. *Biochim Biophys Acta*. 1998;1790(7):671–681.

25.Mohd R, Mohtar RS, Mat R. The role of iron in type 2 diabetes mellitus and obesity. *Nutr Metab Cardiovasc Dis*. 2008;18(8):559–566.

26. Oral E, Schwab S, Thorand B, Huth C. Association of iron indices and type 2 diabetes: a meta-analysis of observational studies. *Diabetes Metab Res Rev*. 2014;30(5):372–394.

27. Andrews M, Soto N, Arrelando-Olguin M. Association between ferritin and hepcidin levels and inflammatory status in patients with type 2 diabetes mellitus and obesity. *Nutr*. 2015;31(1):51–57.

28. Fernández-Real JM, López-Bermejo A, Ricart W. Cross-talk between iron metabolism and diabetes. *Diabetes*. 2002;51(8):2348–2354.

29. Yiqiang Z, Zheng T, Jinming Y. Serum ferritin, diabetes, diabetes control, and insulin resistance. *Acta Diabetol*. 2014;51:991–998.

30. Simcox JA, Mitchell TC, Gao Y, et al. Dietary iron controls circa-dian hepatic glucose metabolism through heme synthesis. *Diabetes*. 2015;64(4):1108–1119.

31. Raghavani PH, Sirajwala HB. Serum ferritin level in patients with type 2 diabetes mellitus. *Int J Biomed Adv Res*. 2014;5(6):272–274.

32. Lee BK, Kim Y, Kim YI. Association of serum ferritin with metabolic syndrome and diabetes mellitus in the South Korean general population according to the Korean National Health and Nutrition Examination Survey 2008. *Metabolism*. 2011;60(10):1416–1424.

33. Swaminathan S, Fonseca VA, Alam MG, Shah SV. The role of iron in diabetes and its complications. *Diabetes Care*. 2007;30(7):1926–1933.

34. Ferdousi S, Mia AR. Serum levels of copper and zinc in newly diagnosed type-2 diabetic subjects. *Mymensingh Med J*. 2012;21(3):475–478.

35. Ekin S, Mert N, Gunduz H, Meral I. Serum sialic acid levels and selected mineral status in patients with type 2 diabetes mellitus. *Biol Trace Elem Res*. 2015;168(2):321–329.

36. Majumder K, Chakraborty S, et al. Serum ferritin and hepcidin levels and inflammatory status in patients with type 2 diabetes mellitus. *J Diabetes Metab Disord*. 2013;12:1050–1056.

37. Zargar AH, Shah NA, Masoodi SR, et al. Copper, zinc, and magnesium levels in non-insulin dependent diabetes mellitus. *Postgrad Med J*. 1998;74(877):475–478.

38. Chung K, Park J, Lee J, et al. Correlation of serum chromium, zinc, copper, and magnesium levels in diabetes mellitus patients. *J Clin Diag Res*. 2013;7(9):1863–1865.

39. O’Connell BS. Select vitamins and minerals in the management of diabetes mellitus. *Diabetes Spectr*. 2001;14(3):133–148.

40. de Lourdes Lima M, Cruz T, Rodrigues LE, et al. Serum and intracellular magnesium deficiency in patients with metabolic syndrome: evidences for its relation to insulin resistance. *Diabetes Res Clin Pract*. 2009;83(2):257–262.

41. Masood N, Baloch GH, Ghori RA, Memon IA, Memon MA, Memon MS. Serum zinc and magnesium in type-2 diabetic patients. *J Coll Physicians Surg Pak*. 2009;19(8):483–486.

42. Kandhro GA. Copper, chromium, manganese, iron, nickel, and zinc levels in biological samples of diabetes mellitus patients. *Biol Trace Elem Res*. 2008;122(1):1–8.

43. Forte G, Bocca B, Peruzza A, et al. Blood metals concentration in type 1 and type 2 diabetics. *Biol Trace Elem Res*. 2013;156(1–3):79–90.

44. Praveena S, PaSula S, Sameera K. Trace elements in diabetes mellitus. *J Clin Diag Res*. 2013;7(9):1863–1865.
57. Ekmekcioglu C, Prohaska C, Pomazal K, Steffan I, Schernthaner G, Markl W. Concentrations of seven trace elements in different hematological matrices in patients with type 2 diabetes as compared to healthy controls. *Biol Trace Elem Res*. 2001;79(3):205–219.

58. Levy J, Gavin JR, Sowers JR. Diabetes mellitus: a disease of abnormal cellular calcium metabolism? *Am J Med*. 1994;96(3):260–273.

59. Levy J. Abnormal cell calcium homeostasis in type 2 diabetes mellitus. *Endocrine*. 1999;10(1):1–6.

60. Hermansen K, Mortensen LS, Hermansen ML. Combining insulins with oral antidiabetic agents: effect on hyperglycemic control, markers of cardiovascular risk and disease. *Vasc Health Risk Manag*. 2008;4(3):561–574.