FAST TRACK COMMUNICATION

Heat exchanges in a quenched ferromagnet

Federico Corberi¹,², Giuseppe Gonnella³, Antonio Piscitelli³ and Marco Zannetti¹

¹ Dipartimento di Fisica ‘E.R. Caianiello’, and CNISM, Unità di Salerno, Università di Salerno,
via Ponte don Melillo, I-84084 Fisciano, SA, Italy
² INFN, Gruppo Collegato di Salerno, I-84084 Fisciano, SA, Italy
³ Dipartimento di Fisica, Università di Bari and INFN, Sezione di Bari, via Amendola 173,
 I-70126 Bari, Italy

E-mail: antonio.piscitelli@ba.infn.it

Received 10 October 2012, in final form 14 December 2012
Published 10 January 2013
Online at stacks.iop.org/JPhysA/46/042001

Abstract

The off-equilibrium probability distribution of the heat exchanged by a ferromagnet in a time interval after a quench below the critical point is calculated analytically in the large-N limit. The distribution is characterized by a singular threshold $Q_c < 0$, below which a macroscopic fraction of heat is released by the $k = 0$ Fourier component of the order parameter. The mathematical structure producing this phenomenon is the same responsible for the order parameter condensation in the equilibrium low temperature phase. The heat exchanged by the individual Fourier modes follows a non-trivial pattern, with the unstable modes at small wave vectors warming up the modes around a characteristic finite wave vector k_M. Two internal temperatures, associated with the $k = 0$ and $k = k_M$ modes, rule the heat currents through a fluctuation relation similar to the one for stationary systems in contact with two thermal reservoirs.

PACS numbers: 05.40.-a, 05.70.Ln, 05.70.–a

(Some figures may appear in colour only in the online journal)
at two inverse temperatures $\beta_1 < \beta_2$ [5, 6], the probability distribution $P(Q)$ that the heat Q flows from the first to the second heat bath in a large time interval is related to $P(-Q)$ by

$$\ln \frac{P(Q)}{P(-Q)} = (\beta_2 - \beta_1)Q.$$ \hspace{1cm} (1)

Fluctuation behavior in non-stationary states is by far less understood. In the thoroughly investigated field of aging systems, such as quenched ferromagnets or binary mixtures, disordered materials and glasses, heat PDF have been considered only numerically in some specific disordered models [7] and, recently, in an experiment for a Brownian particle [8] trapped in an aging bath [9]. Understanding the properties of heat fluxes in these systems is of great importance also for what concerns the notion of an effective temperature [10], which is expected to regulate such fluxes similarly to what the ordinary temperature does in equilibrium.

In this communication, we address the latter category of problems, by studying the probability distribution of heat exchanges in a ferromagnetic model quenched from a disordered state to a final temperature below the critical point. We do this by an exact calculation carried out on the time-dependent Ginzburg–Landau model with an N-component vector order parameter in the large-N limit [11]. Specifically, we find the analytical form of the probability distribution $P(Q(t, t_w))$, where Q is the heat exchanged during the time interval $[t_w, t]$ following the quench. Most interesting is the existence of a singular threshold Q_c, such that for $Q < Q_c$ the macroscopic amount of heat $Q - Q_c$ is entirely released by the zero wave vector mode. This comes about through the same mechanism responsible for the transition to the low temperature phase in the equilibrium version of the model [12, 13]. Furthermore, we find that $P(Q(t, t_w))$ asymptotically obeys a fluctuation relation akin to equation (1), even though the system is not in a stationary state. This can be interpreted as due to the heat exchanged between the condensing $k = 0$ mode, lowering the system energy as an effect of the ordering process and the modes at some finite characteristic wave vector k_M. The two inverse temperatures playing the role of β_1, β_2 in equation (1) arise as the typical energy scales associated with these two kinds of non-equilibrium modes and reduce to the bath temperature when the system is in equilibrium.

We consider a system of volume V, described by the Ginzburg–Landau Hamiltonian

$$H(\varphi) = \int_V d^d x \left[\frac{1}{2} (\nabla \varphi)^2 + \frac{r}{2} \varphi^2 + \frac{g}{4N} (\varphi^2)^2 \right],$$ \hspace{1cm} (2)

where $r < 0$, $g > 0$ and $\varphi = (\varphi_1, \ldots, \varphi_N)$ is the N-component order parameter field. Dynamics is governed by the Langevin equation

$$\partial \varphi_\alpha / \partial t = -\delta H(\varphi) / \delta \varphi_\alpha + \eta_\alpha,$$ \hspace{1cm} (3)

where $\varphi_\alpha, \eta_\alpha$ stand for $\varphi_\alpha(x, t), \eta_\alpha(x, t)$ and the latter one represents the Gaussian white noise generated by the thermal bath with averages $\langle \eta_\alpha(x, t) \rangle = 0$ and $\langle \eta_\alpha(x, t) \eta_\beta(x', t') \rangle = 2T \delta_{\alpha\beta} \delta(t - t') \delta(x - x')$. The leading order of all quantities of interest in the $1/N$-expansion can be obtained by replacing the above Hamiltonian with the time-dependent effective one

$$\mathcal{H}(\varphi) = \frac{1}{2} \int_V d^d x (\nabla \varphi)^2 + (r + gS(t)) \varphi^2 - (NVg/4)S^2(t),$$ \hspace{1cm} (4)

where $S(t) = \langle \varphi^2(x, t) \rangle / N$ must be computed self-consistently and angular brackets stand for the average over both initial condition and thermal noise. Due to space homogeneity, the quantity S only depends on time. The remarkable feature of the large-N limit is that the dynamics generated by \mathcal{H}, although retaining all the relevant features of the phase-ordering
process, becomes exactly soluble [11, 14]. By Fourier transformation, one obtains a decoupled set of formally linear equations of motion
\[
\frac{\partial}{\partial t} \varphi_w(k, t) = -\omega(k, t) \varphi_w(k, t) + \eta_w(k, t),
\]
where \(\omega(k, t) = \vec{k}^2 + r + gS(t)\) and \(\langle \eta_w(k, t) \rangle = 0\), \(\langle \eta_w(k, t) \eta_w(k', t') \rangle = 2T \delta(t - t') \delta(k + k')\). Integrating equation (5) and taking averages, the various observables can be obtained [15]. In particular, the two-times structure factor \(C(k, t, t_w) = \langle \varphi_w(k, t) \varphi_w(-k, t_w) \rangle\) with \(t_w \leq t\) will play a relevant role in the following.

The probability of releasing the heat \(Q\) per component in the time interval \([t_w, t]\) is defined by
\[
P(Q; t_w, t) = \int d[\varphi_r] d[\varphi_w] \mathcal{P}(\varphi_r, \varphi_w) \delta \left(Q - \frac{\mathcal{H}[\varphi_r]}{N} + \frac{\mathcal{H}[\varphi_w]}{N} \right),
\]
where \(\mathcal{P}(\varphi_r, \varphi_w) = \prod_{k, \omega} \mathcal{P}_{k, \omega}(\varphi_w(k, t), \varphi_w(k, t_w))\) is the joint probability of the two configurations \((\varphi_r, \varphi_w)\) at the times \(t\) and \(t_w\). For a Gaussian process \(\mathcal{P}_{k, \omega}(\varphi_w, \varphi_w) = N^{-1} \exp\left\{ -\frac{C_{tt'} \varphi_{a,t} \varphi_{a',t'} + \varphi_{a,w} \varphi_{a,w}}{2V(C_{ww} - C_{tt'})} - 2C_{et\omega} \varphi_{e,t} \varphi_{a,w} \right\}\), where the short notation \(C_{et\omega} \equiv C(k, t, t_w)\) (and similarly for \(C_{rt\omega}, C_{ww}\)) has been introduced and \(N\) is the normalization. Next, using the representation \(\delta(x) = \frac{1}{2\pi i} \int_{-i\infty}^{i\infty} e^{-\zeta x} d\zeta\) of the Dirac \(\delta\)-function and carrying out the integration in equation (6), we find
\[
P(Q; t, t_w) = \int_{z_0 - i\infty}^{z_0 + i\infty} \frac{dz}{2\pi i} e^{\mathcal{H}[Q; z; t, t_w]},
\]
where \(Q = \frac{Q}{R}\) is the heat density and the real quantity \(z_0\) is chosen in such a way that the integral is well defined [12]. For large \(V\), discrete sums over wave vectors can be replaced by integrals, yielding
\[
h(Q; z; t, t_w) = -\bar{z} [Q + gU(t, t_w)] - (1/2) \int_{\Lambda} \frac{d^d k}{(2\pi)^d} \ln[1 - z q(k, t, t_w) - z^2 b(k, t, t_w)],
\]
where \(U(t, t_w) = [S^2(t) - S^2(t_w)]/4\), \(b(k, t, t_w) = \omega(k, t) \omega(k, t_w) [C(k, t, t) C(k, t_w, t_w) - C^2(k, t, t_w)]\), \(q(k, t, t_w) = \omega(k, t) C(k, t, t) - \omega(k, t_w) C(k, t_w, t_w)\), and the symbol \(\int_{\Lambda}\) denotes an integral with an ultraviolet cut-off \(\Lambda\) related to the lattice spacing.

Equations (8) and (9) are completely general. Different dynamical protocols are encoded into the correlation \(C\). We start our analysis from the simpler case in which the system is in equilibrium at a generic temperature \(T\). In this case \(\omega(k, t) = \omega_{eq}(k)\) and \(C(k, t, t) = C_{eq}(k)\) do not depend on time due to stationarity, so from equation (12) \(q = 0\) and similarly \(U = 0\). Moreover \(C(k, t, t_w) = C_{eq}(k, t - t_w) = (T/\omega_{eq}) \exp[-\omega_{eq}(t - t_w)]\) [15], hence \(b = T^2 \exp[-2\omega_{eq}(t - t_w)]\). In the large \(V\) limit, the integral in (8) can be computed by the steepest descent method. The saddle point equation \(\frac{db}{dt} \mid_{z = z^*} = 0\) reads
\[
Q = \int_{\Lambda} \frac{d^d k}{(2\pi)^d} \frac{z^*(t, t_w) b(k, t, t_w) - b(k, t, t_w)}{1 - z^*(t, t_w) b(k, t, t_w)}.
\]
In order for h in equation (9) to be defined, it must be $z \neq b(k, t, t_w)^{-1/2} \forall k, t, t_w$. This, for $t - t_w \gg 1/\omega_{eq}(\Lambda)$, requires $-\beta < z_0 < \beta$, with $\beta = 1/T$. From the above expression of b one sees that the integral approaches infinity as $z^* \to \pm \beta$ so that equation (13) admits a real solution z^* for any value of Q. The large deviation function defined by

$$P(Q; t, t_w) = \exp[V\mathcal{L}(Q; t, t_w)]$$

(14)
is given by $\mathcal{L}(Q; t, t_w) = h(Q; z^*; t - t_w)$ and is plotted in the inset of figure 1. It is symmetric and for Q not too small behaves linearly, $\mathcal{L} \simeq -\beta |Q|$, since z^* rapidly converges to β as Q increases. Note that the equilibrium temperature can be read out from the singular points of h, which in turn regulate the exponential decay of the tails of P.

Next, we consider the quench from infinite temperature to $T < T_c$, starting with $T = 0$. Since $q(k, t, t_w)$ will now play a central role, let us comment on its physical meaning. Using the normal modes decomposition, the average energy at the time t can be written as $\langle H \rangle = \frac{1}{2} \sum_n \omega(k, t) C(k, t, t) - (Ng/4) S(t)$. This shows that q in equation (12) can be interpreted as the average heat (per component) exchanged by the individual modes, since the contributions due to $VgS^2/4$ become negligible at large times as we will show below.

In a zero temperature quench, one has $C(k, t, t_w) = \sqrt{C(k, t, t) C(k, t_w, t_w)}$, which implies $b = 0$. In what follows, we will consider the large t_w limit. In these regimes, one finds $S(t) = -r/g - d/(4gt)$ and the dynamical scaling property $L(t_w)^{-4} C(k, t, t_w) = C(x, y)$, where $x = t/t_w, y = kt_w^2, L(t_w) = (2t_w)^{1/2}$ is the characteristic lengthscale at the age t_w of the system and $C(x, y) = (4\pi)^{d/2}/(-r/g)x^{d/2}\exp[-y^2(x + 1)]$. Hence, using these results, also q can be written in the scaling form

$$\frac{q(y, x)}{q_{typ}} = \left(x^2 - \frac{d}{4}\right)x^{d/2-1}e^{-2y^2} - \left(y^2 - \frac{d}{4}\right)e^{-2y^2},$$

(15)

where $q_{typ}(t_w) = -[r(8\pi)^2 t_w^{d/2-1}/g]$ is the typical age-dependent scale of heat fluxes. Note that, for fixed x and y, q grows like $t_w^{d/2-1}$. Therefore, using the expression of S given above, the extra term $(Ng/4)[S^2(t) - S^2(t_w)] \propto (t_w^{-1} - t^{-1}) \propto t_w^{-1}(1 - x^{-1})$ is negligible with respect to q, as anticipated. The quantity q is plotted in figure 2 against y for two different...
values of \(x \). For any \(x \) there is a negative minimum \(-\beta_0^{-1} \equiv q(x, 0) \) at the origin. Since \(q \) is the average heat exchanged by the single modes, this means that the components around \(k = 0 \) cool as the time goes on and that the cooling increases with the time difference, as intuitively expected. However, the shape of the curves shows that the rate of cooling decreases as \(y \) increases, with the unexpected and quite interesting feature of the development of a positive peak \(\beta_M^{-1} \equiv q(x, y_M) \), which is more pronounced for the larger time differences. This implies that the modes under the positive peak warm up as time goes on. Since the thermal bath is at zero temperature, this extra heat can only originate in the heat redistribution due to the coupling among the modes. In fact, it should be kept in mind that the linearization of the equations of motion is only formal, the nonlinearity having been preserved through the mean field term \(S(t) \). For yet larger values of \(y \) the curves become flat about zero, indicating that the large \(k \) modes are equilibrated.

In order to see what are the implications of the above features on the properties of \(P(Q; t, t_w) \), let us compute the integral in (8). Recalling that \(b = 0 \), for \(h \) in equation (9) to be defined, it must be \(z \neq q(k, t, t_w)^{-1} \) \(\forall k, t, t_w \). With the form (15) of \(q \) (see figure 2) this translates into \(-\beta_0 < z_0 < \beta_M \). The analyticity domain of \(h \) is shown in the inset of figure 2. Note that, in this far from equilibrium situation, \(\beta_0 \) and \(\beta_M \) play a role analogous to that of the inverse bath temperature \(\beta \) in equilibrium. We now compute the integral in equation (8) by steepest descent. The saddle point \(z^* \), if it exists, must satisfy the above constraint and the saddle point equation \(Q = G(z; t, t_w) \mid z = z^*(t, t_w) \), with

\[
G(z; t, t_w) = \frac{1}{2} \int_A \frac{dk}{(2\pi)^d} \frac{q(k, t, t_w)}{1 - z q(k, t, t_w)} - gU(t, t_w).
\]

Restricting the analysis to \(2 < d < 4 \) and using equation (15), one finds that \(G(z = -\beta_0) \equiv Q_c < 0 \) is finite, while \(G \) approaches infinity as \(z \) tends to \(\beta_M \). Therefore, now the saddle point equation admits a solution only for \(Q > Q_c \) and the integration path is shown in the inset of figure 2. Instead, for \(Q \leq Q_c \), exploiting the analyticity of \(h \) in the
neighborhood of the branch point $z = -\beta_0$, an analysis similar to the classical one of [12] shows that the steepest descent route deforms into a cusp whose peak is stucked in $z = -\beta_0$ (see inset of figure (2)). With this saddle point structure, finally one obtains

$$2\pi P(Q; t, t_w) = \exp[V h(Q; z_{\text{steep}}; t, t_w)], \quad z_{\text{steep}} = \begin{cases} z^*(Q; t, t_w) & \text{for } Q > Qc, \\ -\beta_0 & \text{for } Q > Qc. \end{cases}$$

The heat large-deviation function $L(Q; t, t_w) = h(Q; z_{\text{steep}}; t, t_w)$ is plotted in figure 1. Due to the sticking of z_{steep}, it consists of two parts. For $Q \leq Qc$, it is linear. For $Q > Qc$, it grows to a maximum and then falls off (again linearly for large Q since $z^* \to \beta_M$). The two branches merge at Qc with a discontinuity in $d^2 L/dQ^2$.

A singular behavior qualitatively similar to that described above has been observed in the numerical simulations of the quenching dynamics of a disordered model for glassy systems [7]. This may suggest a certain generality of the phenomenon in aging system and a possible common origin. Non-analytical large deviation functions have been also found in a stochastic dissipative model for a single particle [17], in simple non-equilibrium systems coupled with two reservoirs [18, 19] and in diffusive models in the continuum limit [20, 21], always in stationary conditions. The singular behavior in [17–19] has been related to the occurring of rare and very large fluctuations in the initial distribution.

In the non-equilibrium setting considered here, the singular behavior of the distribution is related to the tying of the saddle point solution to the analyticity edge. This mechanism is mathematically similar to the one occurring in the equilibrium phase-transition. In that context, the zero wave vector fluctuations develop a macroscopic variance [13, 16] through a mechanism reminiscent of the Bose–Einstein condensation. A similar phenomenon is dynamically produced here in the realm of fluctuating quantities: when a large amount $V Q < Qc \equiv V Qc$ of heat is released, a macroscopic fraction $Q - Qc$ is provided by the $k = 0$ mode. This is a novel condensation mechanism for non-equilibrium fluctuations.

The large deviation function exhibits remarkable symmetry properties in the limit $t_w \to \infty$ with Q fixed. It can be shown that in this limit the first term (i.e. $-zQ$) in equation (9) is dominant, implying that the above limit amounts to test the behavior of the tails of the heat probability distribution. In this regime, one finds an expression where only $\tilde{Q} = Q/q_{\text{typ}}$ and $x = t/t_w$ appear

$$L(Q; t, t_w) = L(\tilde{Q}; x),$$

with $L(\tilde{Q}; x) = q_{\text{typ}}\beta_0\tilde{Q}$ or $L(\tilde{Q}; x) = q_{\text{typ}}\beta_M\tilde{Q}$ for $\tilde{Q} < 0$ or $\tilde{Q} > 0$, respectively. This shows that in this process the same scaling symmetry, which holds for average quantities, underlies also the behavior of fluctuations. As a consequence, $L(Q; t, t_w)$ takes the simple form of equation (18) when its arguments are measured in units of their reference value at the current age t_w of the system. Moreover, using the expression of $L(\tilde{Q}; x)$ one finds the asymmetry function

$$L(Q; t, t_w) - L(-\tilde{Q}; t, t_w) = -(\beta_M - \beta_0) Q.$$

Plugging this result into equation (14) one recovers a relation formally identical to equation (1). Note however that the physical context is quite different: equation (1) holds for $t - t_w$ large, while the validity of equation (14) requires V large. Apart from this difference, equation (19) shows that, by virtue of a scaling symmetry, a fluctuation relation like (1) may be obeyed also in systems that are not at stationarity, but are slowly relaxing and aging. To the best of our knowledge, this is the first analytical result showing this in a classical model of statistical mechanics with a non-trivial equilibrium phase diagram. The quantities β_0, β_M represent the origin of the cuts of h and in close analogy to the equilibrium case can be regarded as self-generated internal temperatures. According to equation (19), these regulate large heat...
fluxes. Recalling that \(-\beta_0 = q^{-1}(k = 0)\) and \(\beta_M = q^{-1}(k = k_M)\), such temperatures can be naturally associated with the ordering modes releasing energy at \(k = 0\), and to those absorbing heat at a finite wave vector \(\vec{k}_M = y_M t_w^{1/2}\) (see figure 2). Note that, for \(t_w \to \infty\) and fixed \(x\), \(\beta_0\) and \(\beta_M\) decrease to zero as \(q_{\text{gap}}^{-1} = t_w^{-d/2}\). Interestingly enough, this is the same behavior observed for the so-called effective temperature \(\beta_{\text{eff}}\), defined in terms of the ratio between the response and the correlation functions, in the present model [15]. However, the relation between the quantities \(\beta_0, \beta_M\) entering \(P(Q, t, t_w)\) and \(\beta_{\text{eff}}\) remains to be fully clarified.

Finally, we briefly discuss the modifications introduced to the present picture by a quench to a finite temperature. It has been shown [15] that, in this case, the order parameter can be split into two statistically independent fields \(\varphi = \sigma + \tilde{\varphi}\), where \(\sigma\) and \(\tilde{\varphi}\) are, respectively, an ordering and a thermal fluctuation component. In the scalar case \((N = 1)\), these two terms are associated with the slow aging process caused by the displacement of interfaces and to the fast spin fluctuations with equilibrium character inside the bulk of the domains. This additive property amounts to the splitting between the quantities \(P(\sigma, t, t_w)\), \(P(\tilde{\varphi}, t, t_w)\) into two statistically independent fields \(\tilde{\varphi} = \sigma + \tilde{\varphi}\). With these behaviors, it can be shown that the cross-term \(h(\sigma, \tilde{\varphi})\) can be neglected. Hence, the heat probability results as the convolution

\[
P(Q; t, t_w) = \frac{2\pi i}{2\pi} e^{i(h(\sigma) + h(\tilde{\varphi}))},
\]

where \(h(\sigma)\) and \(h(\tilde{\varphi})\) are given by equation (9) by setting the correlator \(C = C(\sigma)\) or \(C = C(\tilde{\varphi})\), respectively, and \(h(\sigma, \tilde{\varphi})\) is a function containing cross products \(C(\sigma)C(\tilde{\varphi})\). In the limit \(t_w \to \infty\) with fixed \(x\), or alternatively with \(t - t_w\) fixed, it is possible to show that the cross-term \(h(\sigma, \tilde{\varphi})\) can be neglected. Hence, the heat probability results as the convolution

\[
P = P(\tilde{\varphi}) \ast P(\sigma) = (2\pi i)^{-1} \int_{-\infty}^{\infty} \frac{dz}{2\pi} e^{i(h(\tilde{\varphi}) + h(\sigma))},
\]

of the fast and slow degree distributions. \(P(\sigma)\) has the properties discussed so far for the quench to \(T = 0\) while \(P(\tilde{\varphi})\) is the equilibrium distribution at the temperature \(T\). Note that, in the regime \(t_w \to \infty\) with \(t - t_w\) fixed, \(h(\sigma)\) is negligible and one remains with the equilibrium distribution alone \(P = P(\tilde{\varphi})\). With these behaviors, it can be shown that the saddle point structure described above is not changed, except for a shift of the branch points at \(\beta_0, \beta_M\). Then a singularity in the large deviation function occurs at a temperature-dependent \(Q_c(T)\) < 0. As it can be seen in figure 1, the convolution with the equilibrium part, produces a broadening of \(L\) particularly for large \(T\) and/or small \(x\). This convolution structure, shown here for the first time, is expected to be very general in aging systems where a wide separation of time scales occurs, and also appropriate for other fluctuating quantities, beside \(Q\). We note that an analogue property is not expected in critical quenches at \(T = T_c\), where the additivity \(\varphi = \sigma + \tilde{\varphi}\) is not obeyed: the composition of equilibrium and off-equilibrium fluctuations in this case remains an interesting issue to be clarified.

By summarizing, we have computed the exact asymptotic probability distribution of the heat exchanged by a quenched ferromagnet described by the large-\(N\) model. A rich scaling structure emerges where heat, released by the small wave vector ordering modes, flows to components with finite wave vectors. The heat large deviation function shows a non-differentiable behavior with a singular threshold \(Q_c\) signaling the onset of fluctuations condensation at zero wave vector. Heat currents are governed by a fluctuation relation analogue to the one obeyed in stationary systems in contact with two baths, but here with two self-generated temperatures \(\beta_0, \beta_M\). It is a challenge to establish to what extent the scenario above outlined is generic and holds also for systems with finite \(N\).
Acknowledgments

We acknowledge fruitful discussions with Felix Ritort, Sergio Ciliberto and Leticia F Cugliandolo. GG acknowledges support by PRIN 2009SKNEWA.

References

[1] Touchette H and Harris R J 2012 Large deviation approach to nonequilibrium systems Nonequilibrium Statistical Physics of Small Systems: Fluctuation Relation and Beyond ed R Klages, W Just and C Jarzynski (Weinheim: Wiley)
[2] Bertini L et al 2002 J. Stat. Phys. 107 635
Bertini L et al 2001 Phys. Rev. Lett. 87 040601
Bertini L et al 2007 J. Stat. Mech. P07014
Bodineau T and Derrida B 2004 Phys. Rev. Lett. 92 180601
Tailleur J, Kurchan J and Lecomte V 2007 Phys. Rev. Lett. 99 150602
[3] Evans D J et al 1993 Phys. Rev. Lett. 71 2401
Gallavotti G and Cohen E G D 1995 J. Stat. Phys. 80 931
[4] For a recent review see Seifert U 2012 arXiv:1205.4176v1[cond-mat.stat-mech]
[5] Jarzynski C and Wojcik D K 2004 Phys. Rev. Lett. 92 230602
[6] Bodineau T and Derrida B 2007 C. R. Phys. 8 540
[7] Crisanti A and Ritort F 2004 Europhys. Lett. 66 253
Ritort F 2004 J. Phys. Chem. B 108 6893
[8] Imparato A et al 2007 Phys. Rev. E 76 050101
[9] Gomez-Solano J R et al 2011 Phys. Rev. Lett. 106 200602
[10] Cugliandolo L F and Kurchan J 1993 Phys. Rev. Lett. 71 173
Cugliandolo L F and Kurchan J 1994 J. Phys. A: Math. Gen. 27 5749
Cugliandolo L F 2011 J. Phys. A: Math. Theor. 44 483001
[11] Bray A J 1994 Adv. Phys. 43 357
[12] Berlin T H and Kac M 1952 Phys. Rev. 86 821
[13] Castellano C, Corberi F and Zannetti M 1997 Phys. Rev. E 56 4973
Fusco N and Zannetti M 2002 Phys. Rev. E 66 066113
[14] Coniglio A and Zannetti M 1989 Europhys. Lett. 10 575
[15] Corberi F, Lippiello E and Zannetti M 2002 Phys. Rev. E 65 046136
[16] Baxter R J 1982 Exactly Solved Models in Statistical Mechanics (London: Academic)
[17] Farago J 2002 J. Stat. Phys. 107 781
Farago J 2004 Physica A 331 69
[18] Visco P 2006 J. Stat. Mech. P06006
[19] Harris R J, Rákos A and Schütz G M 2006 Europhys. Lett. 75 227
[20] Bunin G, Kafri Y and Podolsky D 2012 arXiv:1207.6117 [cond-mat]
[21] Bertini L et al 2010 J. Stat. Mech. L11001