Rogers functions and fluctuation theory

Mateusz Kwaśnicki

Wrocław University of Technology
mateusz.kwasnicki@pwr.wroc.pl

Lévy Processes 7
Wrocław, July 16, 2013
...it would be worth studying Lévy processes whose jump measure has a completely monotone density, and in particular, the Wiener–Hopf factorization of such.
Outline

- L.C.G. Rogers’s result
- Extension and further results
- ‘Rogers functions’ and their properties
- Wiener–Hopf factorisation
- Further research

Rogers functions and fluctuation theory
In preparation
Credits

In connection with this presentation, I thank:

- **L.C.G. Rogers**
 — for an inspiring article

- **A. Kuznetsov**
 — for letting me know about it

- **K. Kaleta, T. Kulczycki, J. Małecki, M. Ryznar**
 — for joint research in the symmetric case

- **P. Kim, Z. Vondraček**
 — for a discussion of the non-symmetric case
CM jumps

\(X_t \) is a 1-D Lévy process with Lévy measure \(\nu(x)dx \)

Notation: **CM** = completely monotone

Definition

\(X_t \) has **CM jumps** \(\iff \) \(\nu(x) \) and \(\nu(-x) \) are **CM** on \((0, \infty)\):

\[
\nu(x) = \mathcal{L} \mu_+(x) = \int_{(0,\infty)} e^{-sx} \mu_+(ds) \quad (x > 0)
\]

\[
\nu(x) = \mathcal{L} \mu_-(x) = \int_{(0,\infty)} e^{sx} \mu_-(ds) \quad (x < 0)
\]

(see Bernstein’s theorem)

Examples:

- Stable processes: \(\nu(\pm x) = c_\pm x^{-1-\alpha} \)
- Tempered stable processes: \(\nu(\pm x) = c_\pm x^{-1-\alpha} e^{-m\pm x} \)
- Meromorphic processes
Plot of $\nu(x)$ for a sample process with CM jumps.
Rogers’s theorem

Notation: **CBF** = complete Bernstein function

Definition

\[f \text{ is a CBF} \iff \frac{1}{f} = \mathcal{L} g \text{ for a CM } g \iff \frac{1}{f} = \mathcal{L} \mathcal{L} \mu \]

(there are many equivalent definitions)

Theorem [Rogers, 1983]

\[X_t \text{ has CM jumps} \iff \kappa(\tau; \xi) \text{ and } \hat{\kappa}(\tau; \xi) \text{ are CBFs of } \xi \text{ for some/all } \tau \]

- \(\kappa(\tau; \xi) \text{ and } \hat{\kappa}(\tau; \xi) \) are Laplace exponents of the ladder processes for \(X_t \) (describe extrema of \(X_t \))

(\textit{more on this below})
Extension of Rogers’s theorem

Theorem [K., 2013]

\(X_t \) has **CM jumps** and is **balanced**

\[\kappa(\tau; \xi) \text{ and } \hat{\kappa}(\tau; \xi) \text{ are CBFs of both } \tau \text{ and } \xi \]

Furthermore, the following are **CBF**s of \(\tau \) and \(\xi \):

\[
\begin{align*}
\kappa(\tau_1; \xi) & \quad \hat{\kappa}(\tau_1; \xi) \\
\kappa(\tau_2; \xi) & \quad \hat{\kappa}(\tau_2; \xi) \\
\kappa(\tau; \xi_1) & \quad \hat{\kappa}(\tau; \xi_1) \\
\kappa(\tau; \xi_2) & \quad \hat{\kappa}(\tau; \xi_2)
\end{align*}
\]

\((0 \leq \tau_1 \leq \tau_2) \quad (0 \leq \xi_1 \leq \xi_2) \)

- The meaning of ‘**balanced**’ is explained later

 (stable are balanced; tempered stable can be made balanced)
Supremum functional

Definition

Supremum of X_t:

$$M_t = \sup_{s \in [0,t]} X_s$$

Time of supremum:

$$T_t \in [0, t] : M_t = X_{T_t}$$

Theorem

$$\int_0^\infty \left(E e^{-\sigma T_t - \xi M_t} \right) e^{-\tau t} dt dx = \frac{1}{\tau} \frac{\kappa(\tau; 0)}{\kappa(\sigma + \tau; \xi)}$$

That is:

$$\mathcal{L}_{t \mapsto \tau} P(T_t \in ds, M_t \in dx) = \frac{1}{\tau} \frac{\kappa(\tau; 0)}{\kappa(\sigma + \tau; \xi)}$$
Properties of the supremum

Corollary [Rogers, 1983]
If X_t has **CM jumps**:
\[
\frac{d}{dx} \int_0^\infty e^{-\tau t} P(M_t < x) \, dt
\]
is **CM** in x

Corollary [K.]
If X_t has **CM jumps** and is **balanced**:
\[
\frac{d}{ds} \int_0^\infty e^{-\tau t} P(T_t < s) \, dt
\]
is **CM** in s

Corollary [K.]
If X_t has **CM jumps** and is **balanced**:
\[
\mathbb{E}e^{-\xi M_t}
\]
is **CM** in t
Space-only Laplace transform

Theorem [K.]

If X_t has **CM jumps** and is **balanced**:

$$E e^{-\xi M_t} = \int_0^\infty e^{-tr} \frac{\xi \Re \psi^{-1}(r)}{|i\xi - \psi^{-1}(r)|^2} \frac{\psi^*_r(\xi)}{r} dr$$

where

$$\psi^*_r(\xi) = \exp \left(\frac{1}{\pi} \int_{\psi_r(0)}^\infty \arg \left(1 - \frac{i\xi}{\psi^{-1}(s)} \right) \frac{ds}{s} \right)$$

and

$$\psi_r(\xi) = \frac{(\xi - \psi^{-1}(r))(\xi + \overline{\psi^{-1}(r)})}{\psi(\xi) - r}$$

(ψ is the Lévy–Khintchine exponent; more on this later)
Semi-explicit formula?

If one can justify the use of Fubini:

If X_t has **CM jumps** and is **balanced**:

$$P(M_t < x) = \int_0^\infty e^{-tr}F_r(x)dr$$

where

$$F_r(x) = c_r e^{arx} \sin(\beta_rx + \vartheta_r) - \{\text{CM correction}\}$$

$$\alpha_r = \text{Im}(\psi^{-1}(r))$$

$$\beta_r = \text{Re}(\psi^{-1}(r))$$

c_r, ϑ_r and the **CM** correction are given semi-explicitly
Potential applications

- Semi-explicit expression for the distribution of M_t
- Asymptotic expansions and estimates of the above
- Eigenfunction expansion for X_t in half-line

For the symmetric case, see:

1. K.
 Spectral analysis of subordinate Brownian motions...
 Studia Math. 206(3) (2011)

2. K., J. Małecki, M. Ryznar
 Suprema of Lévy processes
 Ann. Probab. 41(3B) (2013)

3. K., J. Małecki, M. Ryznar
 First passage times for subordinate Brownian...
 Stoch. Proc. Appl 123 (2013)
Lévy–Khintchine exponent

Definition

\[\mathbb{E} e^{-i\xi X_t} = e^{-t\psi(\xi)} \]

Lévy–Khintchine formula

\[\psi(\xi) = a\xi^2 - ib\xi + \int_{\mathbb{R}} (1 - e^{i\xi x} + i\xi x \mathbf{1}_{|x|<1}) \nu(x) \, dx \]

- \(\text{Re} \, \psi(\xi) \geq 0 \)
CM jumps revisited

Observation: If X_t has **CM jumps**: $\nu(x) = \mathcal{L} \mu_+(x)$ (for $x > 0$)

$\nu(x) = \mathcal{L} \mu_-(x)$ (for $x < 0$)

then

$$\psi(\xi) = a\xi^2 - ib\xi + \int_{\mathbb{R}\setminus\{0\}} \left(\frac{\xi}{\xi + is} + \frac{i\xi s}{1 + s^2} \right) \frac{\mu(ds)}{|s|}$$

with

$$\mu(E) = \mu_+(E \cap (0, \infty)) + \mu_-((-E) \cap (-\infty, 0))$$
Rogers functions

Definition

f is a **Rogers function** if

$$f(\xi) = a\xi^2 - ib\xi + c + \int_{\mathbb{R}\setminus\{0\}} \left(\frac{\xi}{\xi + is} + \frac{i\xi s}{1 + s^2} \right) \frac{\mu(ds)}{|s|}$$

for $a \geq 0$, $b \in \mathbb{R}$, $c \geq 0$, $\mu \geq 0$

- f extends to $\mathbb{C} \setminus i\mathbb{R}$
- $f(-\bar{\xi}) = \overline{f(\xi)}$
- It suffices to consider f on $\{\xi : \text{Re} \xi > 0\}$
Equivalent definitions

Proposition

The following are equivalent:

(a) for $a \geq 0$, $b \in \mathbb{R}$, $c \geq 0$, $\mu \geq 0$:

$$f(\xi) = a\xi^2 - ib\xi + c + \int_{\mathbb{R}\setminus\{0\}} \left(\frac{\xi}{\xi + is} + \frac{i\xi s}{1 + s^2} \right) \frac{\mu(ds)}{|s|}$$

(b) for $k \geq 0$, $\varphi \in [0, \pi]$:

$$f(\xi) = k \exp \left(\frac{1}{\pi} \int_{-\infty}^{\infty} \left(\frac{\xi}{\xi + is} - \frac{1}{1 + |s|} \right) \frac{\varphi(s)ds}{|s|} \right)$$

(c) f is holomorphic in $\{\xi : \text{Re } \xi > 0\}$ and:

$$\text{Re} \frac{f(\xi)}{\xi} \geq 0 \quad \text{if} \ \text{Re } \xi > 0$$

(that is, $f(\xi)/\xi$ is a Nevanlinna–Pick function)
Real values

Theorem [K.]
If f is a Rogers function, then:
(a) For $r > 0$ there is at most one solution of
$$f(\xi) = r \quad \text{ (Re} \, \xi > 0)$$
Write $\xi = f^{-1}(r)$
(b) $|f^{-1}(r)|$ is increasing

Definition
A Rogers function f is **balanced** if
$$-\frac{\pi}{2} + \varepsilon \leq \arg(f^{-1}(r)) \leq \frac{\pi}{2} - \varepsilon$$
X_t is **balanced** if ψ is **balanced**
BM with drift stable tempered stable

Real lines $\{\xi : f(\xi) \in (0, \infty)\}$ for some Rogers functions
Extension

Definition

A Rogers function \(f \) is **nearly balanced** if

\[
 f \circ \Phi
\]

is **balanced** for some Möbius transformation \(\Phi \) which preserves \(\{\xi : \Re \xi > 0\} \) (e.g. vertical translation).

Theorem

Main results extend to **nearly balanced** processes.

Examples of **nearly balanced** processes:

- Non-monotone strictly stable and their mixtures
- Tempered strictly stable:
 \[
 \nu(\pm x) = c_{\pm} x^{-1-\alpha} e^{-m_{\pm} x}
 \]
- (Completely) subordinate to above

(that is, with a subordinator corresponding to a CBF)
Real lines $\{\xi : f(\xi) \in (0, \infty)\}$ for some Rogers functions
Analytical approach

Wiener–Hopf method

For $A \in \mathcal{S}'(\mathbb{R})$ write

\[
A = A^+ \ast A^- \quad \text{(or } \mathcal{F}A = \mathcal{F}A^+ \cdot \mathcal{F}A^-)\]

where \(\text{supp} A^+ \subseteq [0, \infty)\), \(\text{supp} A^- \subseteq (-\infty, 0]\)

- Fourier transform of A^+ extends to \(\{\xi : \text{Im} \xi > 0\}\):
 \[
 \log \mathcal{F}A^+(\xi) = \frac{1}{2\pi i} \int_{-\infty}^{\infty} \frac{1}{\xi - z} \log \mathcal{F}A(z)dz
 \]

- Fourier transform of A^- extends to \(\{\xi : \text{Im} \xi < 0\}\):
 \[
 \log \mathcal{F}A^-(\xi) = -\frac{1}{2\pi i} \int_{-\infty}^{\infty} \frac{1}{\xi - z} \log \mathcal{F}A(z)dz
 \]

 (these are principal value integrals at \(\pm\infty\))

- Developed to solve integral equations and PDEs with mixed boundary conditions on \((-\infty, 0)\) and \((0, \infty)\)
Wiener–Hopf in fluctuation theory

Wiener–Hopf factorization

\[
\frac{1}{\psi(\xi) + \tau} = \frac{1}{\kappa(\tau; -i\xi)} \cdot \frac{1}{\hat{\kappa}(\tau; i\xi)}
\]

- \(\frac{1}{\psi(\xi) + \tau} = \mathcal{F} U^\tau(\xi) \) with \(U^\tau(E) = \int_0^\infty e^{-\tau t} P(X_t \in E) \, dt \)
 (or \(\frac{\tau}{\psi(\xi) + \tau} \) is the Fourier transform of \(X_{e^t} \))

- \(\frac{1}{\kappa(\tau; -i\xi)} = \mathcal{F} V^\tau(\xi) \) and \(\frac{1}{\kappa(\tau; i\xi)} = \mathcal{L} V^\tau(\xi) \)
 (\(V^\tau(\, dx \) is the renewal measure of the ascending ladder height process for \(X_t \) killed at rate \(\tau \))

- \(U^\tau(E) = \int_\mathbb{R} V^\tau(x - E) V^\tau(\, dx) \)
Wiener–Hopf in fluctuation theory

Wiener–Hopf factorization

\[
\frac{1}{\Psi(\xi) + \tau} = \frac{1}{\kappa(\tau; -i\xi)} \cdot \hat{\kappa}(\tau; i\xi)
\]

- Baxter–Donsker-type formula:

\[
\log \frac{\kappa(\tau; \xi)}{\kappa(\tau; 1)} = \frac{1}{2\pi i} \int_{-\infty}^{\infty} \left(\frac{1}{i\xi - z} - \frac{1}{i - z} \right) \log(\psi(z) + \tau) \, dz
\]

- Deform the contour of integration from \(\mathbb{R} \) to:

- Exponential **CBF** representation of \(\kappa(\tau; \xi) \) in \(\xi \) follows

(proving Rogers’s result)
Wiener–Hopf in fluctuation theory

Wiener–Hopf factorization

\[
\frac{1}{\Psi(\xi) + \tau} = \frac{1}{\kappa(\tau; -i\xi)} \cdot \frac{1}{\hat{\kappa}(\tau; i\xi)}
\]

- Baxter–Donsker-type formula:

\[
\log \frac{\kappa(\tau; \xi_1)}{\kappa(\tau; \xi_2)} = \frac{1}{2\pi i} \int_{-\infty}^{\infty} \left(\frac{1}{i\xi_1 - z} - \frac{1}{i\xi_2 - z} \right) \log(\Psi(z) + \tau) \, dz
\]

- Deform the contour of integration from \(\mathbb{R} \) to

\[
\{ \xi \in \mathbb{C} : \Psi(\xi) \in (0, \infty) \}
\]

- Then \(\log(\Psi(z) + \tau) \) is holomorphic in \(\tau \in \mathbb{C} \setminus (-\infty, 0] \)
 (a major step towards the extension)
Non-balanced processes

Problem

Show that if X_t has **CM jumps**, then:

\[
\begin{align*}
\kappa(\tau; \xi) &= \hat{\kappa}(\tau; \xi) \\
\kappa(\tau_1; \xi) &= \hat{\kappa}(\tau_1; \xi) \\
\kappa(\tau_2; \xi) &= \hat{\kappa}(\tau_2; \xi) \\
\kappa(\tau; \xi_1) &= \hat{\kappa}(\tau; \xi_1) \\
\kappa(\tau; \xi_2) &= \hat{\kappa}(\tau; \xi_2)
\end{align*}
\]

\[
(0 \leq \tau_1 \leq \tau_2) \quad (0 \leq \xi_1 \leq \xi_2)
\]

are **CBF**s of τ and ξ

Problem

When the above are **CBF**s of τ only?
Bivariate CBFs

Problem

Describe functions \(f(\xi, \eta) \) such that

\[
\begin{align*}
 f(\xi, \eta), \quad \frac{f(\xi, \eta_1)}{f(\xi, \eta_2)} \quad \text{and} \quad \frac{f(\xi_1, \eta)}{f(\xi_2, \eta)} \\
 (0 \leq \xi_1 \leq \xi_2) \quad (0 \leq \eta_1 \leq \eta_2)
\end{align*}
\]

are CBFs of \(\xi, \eta \)
Distribution of the supremum functional

Problem

Justify the use of Fubini for the formula for $P(M_t < x)$

Problem

Prove generalised eigenfunction expansion for X_t killed upon leaving half-line

- Work in progress
Hitting time of a point

\[P(\tau_X > t) \quad \text{with} \quad \tau_X = \inf\{t : X_t \geq x\} \]

Problem

Find a formula, estimates and asymptotic expansion of \(P(\sigma_X > t) \) for

\[\sigma_X = \inf\{t : X_t = x\} \]

For the symmetric case, see:

1. K. Spectral theory for one-dimensional symmetric... Electron. J. Probab. 17 (2012)
2. T. Juszczyszyn, K. Hitting times of points for symmetric Lévy... In preparation