Necessary and sufficient conditions for boundedness of commutators of fractional integral operators on mixed-norm Lebesgue spaces

Houkun Zhang†, Jiang Zhou‡
College of Mathematics and System Sciences, Xinjiang University, Urumqi 830046
People’s Republic of China

Abstract: In this paper, the sharp maximal theorem is generalized to mixed-norm ball Banach function spaces, which is defined as Definition 2.7. As an application, we give a characterization of BMO via the boundedness of commutators of fractional integral operators on mixed-norm Lebesgue spaces. Moreover, the characterization of homogeneous Lipschitz space is also given by the boundedness of commutators of fractional integral operators on mixed-norm Lebesgue spaces. Finally, two applications of Corollary 6.4 are given.

Keywords: Ball quasi-Banach function space; Mixed-norm ball quasi-Banach function space; Mixed-norm Lebesgue space; Fractional integral operators; Commutators

MSC(2000) subject classification: 42B25; 42B20.

1 Introduction

In recent years, due to the more precise structure of mixed-norm function spaces than the corresponding classical function spaces, the mixed-norm function spaces are widely used in the partial differential equations [3–6]. In 1961, the mixed Lebesgue spaces $L^p(\mathbb{R}^n)(0 < \vec{p} < \infty)$ were studied by Benedek and Panzone [7]. These spaces were natural generalizations of the classical Lebesgue spaces $L^p(0 < p < \infty)$. After that, many function spaces with mixed norm were introduced, such as mixed-norm Lorentz spaces [8], mixed-norm Lorentz-Marcinkiewicz spaces [9], mixed-norm Orlicz spaces [10], anisotropic mixed-norm Hardy spaces [11], mixed-norm Triebel-Lizorkin spaces [12], mixed Morrey spaces [15,16] and weak mixed-norm Lebesgue spaces [13]. More information can be found in [14].

*The research was supported by the National Natural Science Fundation of China(12061069).
†E-mail address: zhanghkmath@163.com
‡Corresponding author E-mail address: zhoujiang@xju.edu.cn.
In 2017, ball (quasi-)Banach function spaces were introduced by Sawano et al. [19]. Ball (quasi-)Banach function spaces are the generalizations of the (quasi-)Banach function spaces (see Remark 2.6). In this paper, according to the definitions of the mixed-norm Banach function spaces [43] defined by Blozinski, we introduce the definitions of mixed-norm ball (quasi-)Banach function spaces and prove sharp maximal theorem mixed-norm ball Banach function spaces (see Theorem 3.7). We also acquire Corollary 3.8 and Corollary 3.9.

Moreover, we point out that many spaces are ball (quasi-)Banach function spaces, such as variable Lebesgue spaces [31] and Orlicz spaces [32], which also are (quasi-)Banach function spaces. Besides, some spaces are ball (quasi-)Banach function spaces, which are not necessary to be (quasi-)Banach function spaces, such as Morrey spaces [30], mixed-norm Lebesgue spaces, weighted Lebesgue spaces, and Orlicz-slice spaces [34].

Particularly, mixed-norm Lebesgue spaces also can be regarded as mixed-norm ball (quasi-)Banach function spaces. In addition, mixed-norm Lorentz spaces, mixed-norm Orlicz spaces, and mixed-norm Lebesgue spaces with variable exponents are also mixed-norm ball (quasi-)Banach function spaces. For more studies of Banach function spaces, we refer the readers to [36–40].

Given a number $0 < \alpha < n$, the fractional integral functions of a measurable function f on \mathbb{R}^n is defined by

$$I_\alpha f(x) = \int_{\mathbb{R}^n} \frac{f(y)}{|x - y|^{n-\alpha}} dy.$$

These operators I_α play an essential role in real and harmonic analysis [1, 2].

For a locally integrable function b, the commutator is defined by

$$[b, I_\alpha]f(x) := b(x)I_\alpha f(x) - I_\alpha(bf)(x) = \int_{\mathbb{R}^n} \frac{(b(x) - b(y))f(y)}{|x - y|^{n-\alpha}} dy,$$

which are introduced by Chanillo in [17]. It is obvious that

$$|[b, I_\alpha](f)(x)| \leq I_{a,b}(|f|)(x),$$

where

$$I_{a,b}(f)(x) := I_a(|b(x) - b(\cdot)|f)(x) = \int_{\mathbb{R}^n} \frac{|b(x) - b(y)|f(y)}{|x - y|^{n-\alpha}} dy.$$

Many classical works on the characterizations of $BMO(\mathbb{R}^n)$ and homogeneous Lipschitz spaces were studied via the boundedness of $[b, I_\alpha]$ on classical Lebesgue spaces. In 1982, an early characterization of $BMO(\mathbb{R}^n)$ spaces was investigated by Chanillo [41] via the $(L^p(\mathbb{R}^n), L^q(\mathbb{R}^n))$-boundedness of $[b, I_\alpha]$. That is

$$b \in BMO(\mathbb{R}^n) \iff [b, I_\alpha] : L^p(\mathbb{R}^n) \to L^q(\mathbb{R}^n),$$

where $1 < p < q < \infty$, $\frac{1}{p} - \frac{1}{q} = \frac{\alpha}{n}$. The characterization of homogeneous Lipschitz spaces $Lip_\beta(\mathbb{R}^n)(0 < \beta < 1)$ was given by Paluszyński [42] via $(L^p(\mathbb{R}^n), L^q(\mathbb{R}^n))$-boundedness of
\[[b, I_\alpha] \text{ as:} \]
\[b \in Lip_\beta(\mathbb{R}^n) \iff [b, I_\alpha] : L^p(\mathbb{R}^n) \mapsto L^q(\mathbb{R}^n), \]
where \(1 < p < q < \infty \), \(\frac{1}{p} - \frac{1}{q} = \frac{\alpha + \beta}{n} \).

In 2019, Nogayama given a characterization of \(BMO(\mathbb{R}^n) \) via the boundedness of commutators of fractional integral operators on mixed Morrey spaces [16]. Due to the definitions of mixed Morrey spaces, we know that

\[b \in BMO(\mathbb{R}^n) \iff [b, I_\alpha] : L^{\vec{p}}(\mathbb{R}^n) \mapsto L^{\vec{q}}(\mathbb{R}^n), \]

where \(1 < \vec{p}, \vec{q} < \infty \) and

\[\alpha = \sum_{i=1}^{n} \frac{1}{p_i} - \sum_{i=1}^{n} \frac{1}{q_i}, \quad p_j \sum_{i=1}^{n} \frac{1}{p_i} = q_j \sum_{i=1}^{n} \frac{1}{q_i} \quad (j = 1, \cdots, n). \]

In fact, the condition

\[p_j \sum_{i=1}^{n} \frac{1}{p_i} = q_j \sum_{i=1}^{n} \frac{1}{q_i} \quad (j = 1, \cdots, n) \]

is not necessary. In Theorem 4.3, a weaker condition is given. Furthermore, the characterization of homogeneous Lipschitz spaces \(Lip_\beta(\mathbb{R}^n)(0 < \beta < 1) \) was also given in Theorem 5.3 via the boundedness of \([b, I_\alpha]\) on mixed-norm Lebesgue spaces.

The paper is organized as the following. In Section 2, some notations and notions are recalled and we introduce the definitions of mixed-norm ball (quasi-)Banach function spaces. In Section 3, the sharp maximal theorem is investigated on mixed-norm ball Banach function spaces via corresponding extrapolation theorem. As an application, we give a characterization of \(BMO \) via the boundedness of commutators of fractional integral operators on Mixed-norm Lebesgue spaces in Section 4. Moreover, the characterization of homogeneous Lipschitz spaces is also given in Section 5. In Section 6, two applications of Corollary 6.4 are given.

2 Some notations and notions

In this section, we make some conventions on notation and recall some notions. Let \(\vec{p} = (p_1, p_2, \cdots, p_n) \), \(\vec{q} = (q_1, q_2, \cdots, q_n) \), are n-tuples and \(1 < p_i, q_i < \infty \), \(i = 1, 2, \cdots, n \).

We define that if \(\varphi(a, b) \) is a relation or equation among numbers, \(\varphi(\vec{p}, \vec{q}) \) will mean that \(\varphi(p_i, q_i) \) holds for each \(i \). For example, \(\vec{p} < \vec{q} \) means that \(p_i < q_i \) holds for each \(i \) and \(\frac{1}{p_i} + \frac{1}{p_i'} = 1 \) means \(\frac{1}{p_i} + \frac{1}{p_i'} = 1 \) hold for each \(i \). The symbol \(Q \) denote the cubes whose edges are parallel to the coordinate axes and \(Q(x, r) \) denote the open cube centered at \(x \) of side length \(r \). Let \(cQ(x, r) = Q(x, cr) \). Denote by the symbol \(\mathcal{M}(\mathbb{R}^n) \) the set of all measurable function on \(\mathbb{R}^n \). \(A \approx B \) means that \(A \) is equivalent to \(B \). That is \(A \leq CB \) and \(B \leq CA \),
where C is a constant. Through all paper, every constant C is not necessarily equal. Now, let us recall some definitions.

The definitions of some maximal functions and some class of weight functions are given as the following.

Definition 2.1 Given a locally integrable function f. The Hardy-Littlewood maximal operators is defined by

$$M(f)(x) := \sup_{Q \ni x} \frac{1}{|Q|} \int_Q |f(y)|dy,$$

where the supremum is taken over all cube $Q \subset \mathbb{R}^n$ containing x. The sharp maximal operators is defined by

$$M^{\#}(f)(x) := \sup_{Q \ni x} \frac{1}{|Q|} \int_Q |f(y) - f_Q|dy,$$

where $f_Q = \frac{1}{|Q|} \int_Q f$ and the supremum is taken over all cube $Q \subset \mathbb{R}^n$ containing x.

Definition 2.2 An $A_p(\mathbb{R}^n)$ weight ω, with $1 \leq p < \infty$, is a locally integrable and nonnegative function on \mathbb{R}^n satisfying that, when $1 < p < \infty$,

$$[\omega]_{A_p(\mathbb{R}^n)} := \sup_{Q \subset \mathbb{R}^n} \left(\frac{1}{|Q|} \int_Q \omega(x)dx \right) \left(\frac{1}{|Q|} \int_Q \omega(x)^{\frac{1}{p'}}dx \right)^{p-1} < \infty,$$

and, when $p = 1$,

$$[\omega]_{A_1(\mathbb{R}^n)} := \sup_{Q \subset \mathbb{R}^n} \left(\frac{1}{|Q|} \int_Q \omega(x)dx \cdot \|\omega^{-1}\|_{L^{\infty}(\mathbb{R}^n)} \right) < \infty.$$

Define $A_\infty(\mathbb{R}^n) := \bigcup_{1 \leq p < \infty} A_p(\mathbb{R}^n)$. It is well-known that $A_p(\mathbb{R}^n) \subset A_q(\mathbb{R}^n)$ for $1 \leq p \leq q \leq \infty$.

The following is the corresponding weight functions for the product domain $\mathbb{R}^{n_1} \times \mathbb{R}^{n_2}$ from Chapter IV of [28].

Definition 2.3 Let $Q_1 \subset \mathbb{R}^{n_1}$, $Q_2 \subset \mathbb{R}^{n_2}$, $R = Q_1 \times Q_2$ and $n = n_1 + n_2$. For $1 < p < \infty$, a locally integrable and nonnegative function on \mathbb{R}^n is said to be an $A^*_p(\mathbb{R}^n)$ weight if

$$[\omega]_{A^*_p(\mathbb{R}^n)} := \sup_{R \subset \mathbb{R}^n} \left(\frac{1}{|R|} \int_R \omega(z)dz \right) \left(\frac{1}{|R|} \int_R \omega(z)^{\frac{1}{p'}}dz \right)^{p-1} < \infty,$$

A locally integrable and nonnegative function on \mathbb{R}^n is said to be an $A^*_1(\mathbb{R}^n)$ weight if

$$[\omega]_{A^*_1(\mathbb{R}^n)} := \sup_{R \subset \mathbb{R}^n} \left(\frac{1}{|R|} \int_R \omega(z)dz \cdot \|\omega^{-1}\|_{L^{\infty}(\mathbb{R}^n)} \right) < \infty.$$

We write $A^*_\infty(\mathbb{R}^n) := \bigcup_{1 \leq p < \infty} A^*_p(\mathbb{R}^n).$
By the definition of $A_p^*(\mathbb{R}^n)$ for $1 \leq p < \infty$, it is easy to prove that if $\mu \in A_p(\mathbb{R}^{n_1})$ and $\nu \in A_p(\mathbb{R}^{n_2})$ then

$$\mu \nu \in A_p^*(\mathbb{R}^n)$$

where $n = n_1 + n_2$. Moreover, $[\omega]_{A_p(\mathbb{R}^n)} \leq [\omega]_{A_p^*(\mathbb{R}^n)}$ and $A_p^*(\mathbb{R}^n) \subset A_p(\mathbb{R}^n)$ for $1 \leq p < \infty$.

Definition 2.4 Let $0 < p < \infty$ and $\omega \in A_\infty(\mathbb{R}^n)$. The weighted Lebesgue space $L^p_\omega(\mathbb{R}^n)$ is defined to be the set of all measurable functions f on \mathbb{R}^n such that

$$\|f\|_{L^p_\omega(\mathbb{R}^n)} := \left(\int_{\mathbb{R}^n} |f(x)|^p \omega(x) \, dx \right)^{\frac{1}{p}} < \infty.$$

The definition of ball (quasi-)Banach function spaces is presented as the following, which were introduced by Sawano et al. [19].

Definition 2.5 A (quasi-)Banach space $X \subset M(\mathbb{R}^n)$ with (quasi-)norm $\|\cdot\|_X$ is called a ball (quasi-)Banach function space if it satisfies

1. $|g| \leq |f|$ almost everywhere implies that $\|g\|_X \leq \|f\|_X$;
2. $0 \leq f_m \uparrow f$ almost everywhere implies that $\|f_m\|_X \uparrow \|f\|_X$;
3. If $|Q| < \infty$, then $\chi_Q \in X$;
4. If $f \geq 0$ almost everywhere and $|Q| < \infty$, then

$$\int_Q f(x) \, dx \leq C_Q \|f\|_X;$$

for some constant C_Q, $0 < c_Q < \infty$, depending on Q but independent of f.

Remark 2.6 The definition remains unchanged if we replace ”cube” with ”ball” in the above. So this definition deserves this name. Particularly, if we replace any cube Q by any measurable set E in Definition 2.5 and add the condition $\|f\|_X = \|f\|_|E|$, we obtain the definition of (quasi-)Banach function space (see Definition 1.1 of Chapter 1 of [35]).

Next, we given the definition of mixed-norm ball (quasi-)Banach function spaces.

Definition 2.7 Let n_1, $n_2 \in \mathbb{N}$ and X_1 and X_2 be ball (quasi-)Banach function spaces on \mathbb{R}^{n_1} and \mathbb{R}^{n_2}, respectively. The mixed-norm ball (quasi-)Banach function spaces (X_1, X_2) consists of Lebesgue measurable function on $\mathbb{R}^{n_1} \times \mathbb{R}^{n_2}$, f such that

$$\|f\|_{(X_1, X_2)} := \|\|f\|_{X_1}\|_{X_2} < \infty.$$

It is easy to prove that (X_1, X_2) is also a ball (quasi-)Banach function space. In fact, if $Q = Q_1 \times Q_2 \in \mathbb{R}^{n_1} \times \mathbb{R}^{n_2}$, then

$$\|\lambda_Q\|_{X_1} \|x_Q\|_{X_2} < \infty.$$
and
\[\int_\Omega f(x,y) \, dx \, dy = \int_{Q_2} \int_{Q_1} f(x,y) \, dx \, dy \]
\[\leq C_{Q_1} \int_{Q_2} \|f(\cdot,y)\|_{X_1} \, dy \]
\[\leq C_Q \|f\|_{X_1} \|f\|_{X_2}. \]

The definition of associate space of a ball Banach function space can be found in chapter 1 of [21]. The definition of associate space of a ball (quasi-)Banach function space is given as the following.

Definition 2.8 For any ball (quasi-)Banach function space X, the associate space (also called the Köthe dual) X' is defined by setting
\[X' := \left\{ f \in M(\mathbb{R}^n) : \|f\|_{X'} := \sup_{g \in X, \|g\|_X = 1} \int_{\mathbb{R}^n} |f(x)g(x)| \, dx < \infty \right\}, \]
where $\| \cdot \|_{X'}$ is called the associate norm of $\| \cdot \|_X$.

We still need to recall the notion of the convexity of ball (quasi-)Banach function spaces, which can be found in Definition 4.6 of [19].

Definition 2.9 Let X be a ball (quasi-)Banach function space and $0 < p < \infty$. The p-convexification X^p of X is defined by setting
\[X^p := \{ f \in M(\mathbb{R}^n) : |f|^p \in X \} \]
equipped with the (quasi-)norm $\|f\|_{X^p} := \||f|^p\|_X^{\frac{1}{p}}$.

Remark 2.10 (1) By the definition 2.9, we know that
\[\|f\|_{(X_1, X_2)^p} = \||f|^p\|_{X_1}^{\frac{1}{2}} \|f\|_{X_2}^{\frac{1}{2}}. \]

Thus,
\[(X_1, X_2)^p = (X_1^p, X_2^p). \quad (2.1) \]

(2) If $f \in (X_1, X_2)'$, then there exist $h_1 \in X_1$, $h_2 \in X_2$, $\|h_1\|_{X_1} = 1$ and $\|h_2\|_{X_2} = 1$ such that
\[\|f\|_{(X'_1, X'_2)} = \| \|f\|_{X'_1} \|_{X'_2} \]
\[\leq 2 \int_{\mathbb{R}^{n_1} \times \mathbb{R}^{n_2}} |f(x,y)h_1(x)h_2(y)| \, dx \, dy \]
\[\leq \sup_{g \in (X_1, X_2), \|g\|_{(X_1, X_2)} = 1} 2 \int_{\mathbb{R}^{n_1} \times \mathbb{R}^{n_2}} |f(x,y)g(x,y)| \, dx \, dy \]
\[\leq \|f\|_{(X_1, X_2)'} \]
For another hand, if \(f \in (X_1', X_2') \), then there exist \(g \in (X_1, X_2) \),
\[
\|f\|_{(X_1', X_2')} \leq 2 \int_{\mathbb{R}^{n_1} \times \mathbb{R}^{n_2}} |f(x, y)g(x, y)| \, dx \, dy
\]
\[
\leq 2 \int_{\mathbb{R}^{n_2}} \|f(\cdot, y)\|_{X_1'} \|g(\cdot, y)\|_{X_1} \, dx_2
\]
\[
\leq 2 \|f\|_{(X_1', X_2')} \|g\|_{(X_1, X_2)} = 2 \|f\|_{(X_1, X_2)'}
\]
Hence, \((X_1', X_2')\) are equivalent to \((X_1, X_2)\).

Obviously, if \(X \) is a ball (quasi-)Banach function space, the \(X^p \) and \(X' \) are also ball (quasi-)Banach function spaces. Now, the definitions of mixed-norm Lebesgue spaces are given as the following, which were introduced by Benedek and Panzone [7].

Definition 2.11 Let \(f \) is a measurable function on \(\mathbb{R}^n \) and \(1 < \vec{p} < \infty \). We say that \(f \) belongs to the mixed Lebesgue spaces \(L_{\vec{p}}(\mathbb{R}^n) \), if the norm
\[
\|f\|_{L_{\vec{p}}(\mathbb{R}^n)} = \left(\int_{\mathbb{R}^n} \cdots \left(\int_{\mathbb{R}^n} |f(x)|^{p_1} \, dx_1 \right)^{\frac{p_2}{p_1}} \cdots \right)^{\frac{1}{\vec{p}}}<\infty.
\]

Note that if \(p_1 = p_2 = \cdots = p_n = p \), then \(L_{\vec{p}}(\mathbb{R}^n) \) are reduced to classical Lebesgue spaces \(L^p \) and
\[
\|f\|_{L^p(\mathbb{R}^n)} = \left(\int_{\mathbb{R}^n} |f(x)|^p \, dx \right)^{\frac{1}{p}}.
\]

Remark 2.12 It is easy to calculate that for any cube \(Q \subset \mathbb{R}^n \) and \(|Q| < \infty \),
\[
\|\chi_Q\|_{L_{\vec{p}}(\mathbb{R}^n)} = |Q|^\frac{1}{\vec{p}} \sum_{i=1}^n \frac{1}{p_i}
\]
and
\[
\int_Q f(x) \, dx \leq |Q|^{\frac{1}{\vec{p}}} \sum_{i=1}^n \frac{1}{p_i} \|f\|_{L_{\vec{p}}(\mathbb{R}^n)}.
\]
By Levi Lemma, (2) also can be proved. Thus \(L_{\vec{p}} \) are ball Banach function spaces. But it is uncertain whether mixed-norm Lebesgue spaces are Banach function spaces.

Let us recall the definition of \(BMO(\mathbb{R}^n) \) spaces.

Definition 2.13 If \(b \) is a measurable function on \(\mathbb{R}^n \) and satisfies that
\[
\|b\|_{BMO(\mathbb{R}^n)} = \sup_{Q \subset \mathbb{R}^n} \frac{1}{|Q|} \int_Q |b(y) - b_Q| \, dy < \infty,
\]
then \(b \in BMO(\mathbb{R}^n) \) and \(\|b\|_{BMO(\mathbb{R}^n)} \) are the norms of \(b \) in \(BMO(\mathbb{R}^n) \).
3 Sharp maximal theorem on mixed-norm ball quasi-Banach function spaces

In this section, we will prove an extrapolation theorem on mixed-norm ball quasi-Banach function spaces. According to the extrapolation theorem, we prove the sharp maximal theorem on mixed-norm ball quasi-Banach function spaces. The sharp maximal theorem on weighted Lebesgue spaces can be found in Theorem 3.4.5 of [33].

Lemma 3.1 Let $1 < p < \infty$, $\omega \in A_p$. Then for any $f \in L^p_\omega$,

$$\int_{\mathbb{R}^n} (Mf(x))^p \omega(x)dx \leq C \int_{\mathbb{R}^n} (M^\sharp f(x))^p \omega(x)dx$$

holds.

To prove the sharp maximal theorem on ball (quasi-)Banach function space, we give an assumption and some lemmas.

Assumption 3.2 There exists an $s \in (1, \infty)$ such that X is a ball Banach function space, and that Mf is bounded on $(X^s)'$.

The following result can be found in Lemma 4.7 of [20].

Lemma 3.3 Let X be a ball quasi-Banach function space satisfying Assumption 2.10. Then there exists an $0 < \varepsilon < 1$ such that X continuously embeds into $L^s_\omega(\mathbb{R}^n)$ with $\omega := [M(\chi_{Q(0,1)})]^\varepsilon \in A_1(\mathbb{R}^n)$, namely, there exists a positive constant C such that, for any $f \in X$,

$$\|f\|_{L^s_\omega(\mathbb{R}^n)} \leq C \|f\|_X.$$

Due to Lemma 3.3, the following lemma is proved.

Lemma 3.4 Let X_1 and X_2 be ball quasi-Banach function spaces on \mathbb{R}^{n_1} and \mathbb{R}^{n_2}, and satisfy Assumption 2.10. Then there exists an $0 < \varepsilon < 1$ such that (X_1, X_2) continuously embeds into $L^s_\omega(\mathbb{R}^{n_1+n_2})$ with $\omega = \omega_1 \omega_2 \in A_1(\mathbb{R}^n)$, where $\omega_1 := [M(\chi_{Q(0,1)})]^\varepsilon \in A_1(\mathbb{R}^{n_1})$ $\omega_2 := [M(\chi_{Q(0,1)})]^\varepsilon \in A_1(\mathbb{R}^{n_2})$ and $n = n_1 + n_2$, namely, there exists a positive constant C such that, for any $f \in (X_1, X_2)$,

$$\|f\|_{L^s_\omega(\mathbb{R}^{n_1+n_2})} \leq C \|f\|_{(X_1, X_2)}.$$

Proof If $f \in (X_1, X_2)$, then by Lemma 3.3

$$\|f\|_{L^s_\omega(\mathbb{R}^{n_1+n_2})} = \left(\int_{\mathbb{R}^{n_2}} \left(\int_{\mathbb{R}^{n_1}} |f(x, y)|^s \omega_1(x)dx \right)^\frac{1}{s} \omega_2(y)dy \right)^\frac{1}{s} \leq \left(\int_{\mathbb{R}^{n_2}} \|f(\cdot, y)\|_{X_1} \omega_2(y)dy \right)^\frac{1}{s} \leq \|\|f\|_{X_1}\|_{X_2}$$
The proof is completed. ■

The following extrapolation theorem plays an important role in the proof of Theorem 3.4. The extrapolation theorem is a slight variant of a special case of Theorem 3.2 of [29], via replacing Banach function spaces by ball quasi-Banach function spaces. The proof of Lemma 3.5 is similar to Theorem 3.2 of [29].

Lemma 3.5 Let X_1 and X_2 be a ball quasi-Banach function spaces and $p_0 \in (0, \infty)$. Let \mathcal{F} be the set of all pairs of nonnegative measurable functions (F, G) such that, for any given $\omega \in A^*_1(\mathbb{R}^n)$,

$$
\int_{\mathbb{R}^{n_1} \times \mathbb{R}^{n_2}} (F(x, y))^{p_0} \omega(x, y)dxdy \leq C_{(p_0, [\omega], A^*_1(\mathbb{R}^n))} \int_{\mathbb{R}^{n_1} \times \mathbb{R}^{n_2}} (G(x, y))^{p_0} \omega(x, y)dxdy.
$$

where $C_{(p_0, [\omega], A^*_1(\mathbb{R}^n))}$ is a positive constant independent of (F, G), but dependent on p_0 and $A^*_1(\mathbb{R}^n)$. Assume that there exists a $q_0 \in [p_0, \infty)$ such that $X_1^{\frac{1}{q_0}}$ and $X_2^{\frac{1}{q_0}}$ are ball Banach function spaces and Mf is bounded on $(X_1^{\frac{1}{q_0}})'$ and $(X_2^{\frac{1}{q_0}})'$. Then there exists a positive constant C_0 such that, for any $(F, G) \in \mathcal{F}$,

$$
\|F\|(x_1, x_2) \leq C_0 \|G\|(x_1, x_2).
$$

For completeness, we will give the proof of Lemma 3.5. Before that, the following lemma is necessary. It can be found in Theorem 3.1 of [29].

Lemma 3.6 Suppose that for P_0 with $1 \leq p_0 < \infty$. Let \mathcal{F} be the set of all pairs of nonnegative measurable functions (F, G) such that, for any given $\omega \in A^*_1(\mathbb{R}^n)$,

$$
\int_{\mathbb{R}^{n_1} \times \mathbb{R}^{n_2}} F(x, y)^{p_0} \omega(x, y)dxdy \leq C \int_{\mathbb{R}^{n_1} \times \mathbb{R}^{n_2}} G(x, y)^{p_0} \omega(x, y)dxdy \quad (F, G) \in \mathcal{F},
$$

where $n = n_1 + n_2$. Then, for all $1 < p < \infty$ and $\omega \in A^*_p(\mathbb{R}^n)$, we have

$$
\int_{\mathbb{R}^{n_1} \times \mathbb{R}^{n_2}} F(x, y)^p \omega(x, y)dxdy \leq C \int_{\mathbb{R}^{n_1} \times \mathbb{R}^{n_2}} G(x, y)^p \omega(x, y)dxdy \quad (F, G) \in \mathcal{F}.
$$

The proof of Lemma 3.5 According to Theorem 3.6, if let

$$
\mathcal{F}_0 = \{(F^{p_0}, G^{p_0}) : (F, G) \in \mathcal{F}\}
$$

then we find that for any $p \geq 1$ and $\omega \in A^*_1(\mathbb{R}^n) \subset A^*_p(\mathbb{R}^n)$,

$$
\int_{\mathbb{R}^{n_1} \times \mathbb{R}^{n_2}} F(x, y)^{p_0} \omega(x, y)dxdy \leq C \int_{\mathbb{R}^{n_1} \times \mathbb{R}^{n_2}} G(x, y)^{p_0} \omega(x, y)dxdy.
$$

Let $p = \frac{q_0}{q_0}$. Then

$$
\int_{\mathbb{R}^{n_1} \times \mathbb{R}^{n_2}} F(x, y)^{q_0} \omega(x, y)dxdy \leq C \int_{\mathbb{R}^{n_1} \times \mathbb{R}^{n_2}} G(x, y)^{q_0} \omega(x, y)dxdy. \quad (3.1)
$$
We write $Y_1 = X_1^{\frac{1}{n}}$ and $Y_2 = X_2^{\frac{1}{n}}$. For any functions $h_1(x) \in Y_1'$ and $h_2(y) \in Y_2'$, let

$$R_1 h_1(x) = \sum_{k=0}^{\infty} \frac{M^k h_1(x)}{(2A_1)^k}$$

and

$$R_2 h_2(y) = \sum_{k=0}^{\infty} \frac{M^k h_2(y)}{(2A_2)^k},$$

where $A_1 = \|M\|_{Y_1' \rightarrow Y_1'}$, $A_2 = \|M\|_{Y_2' \rightarrow Y_2'}$, $M^0 h = |h|$ and $M^k h = M(M^{k-1} h)$. Obviously, h_1 and h_2 satisfy that

$$|h_i| \leq R_i h_i,$$ \hspace{1cm} (3.2)

$$\|R_i h_i\|_{Y_i'} \leq 2 \|h_i\|_{Y_i'},$$ \hspace{1cm} (3.3)

$$M(R_i h_i) \leq 2A_i R_i h_i,$$ \hspace{1cm} (3.4)

for $i = 1, 2$. (3.2), (3.3) and (3.4) follow from the definition of R_1 and R_2. By (3.4), it is obvious that

$$R_1 h_1(x) \in A_1(\mathbb{R}^{n_1}), \quad R_2 h_2(y) \in A_2(\mathbb{R}^{n_2})$$

and

$$R_1 h_1(x) R_2 h_2(y) \in A_1^*(\mathbb{R}^{n_1+n_2}). \hspace{1cm} (3.5)$$

According to the definition of associate spaces and (2.1) there exists measurable functions $h_1(x) \in Y_1'$ and $h_2(y) \in Y_2'$ such that $\|h_1\|_{Y_1'} = 1$, $\|h_2\|_{Y_2'} = 1$ and

$$\|F\|_{(X_1,X_2)}^q = \|F\|_{(Y_1,Y_2)}^q \leq C \int_{\mathbb{R}^{n_2}} \|F(\cdot, y)\|_{Y_1}^q |h_2(y)| dy \leq C \int_{\mathbb{R}^{n_1+1} \times \mathbb{R}^{n_2}} |F(x, y)|^q |h_1(x)||h_2(y)| |dx|dy$$

According to (3.2), we have

$$\|F\|_{(X_1,X_2)}^q \leq C \int_{\mathbb{R}^{n_1} \times \mathbb{R}^{n_2}} |F(x, y)|^q |R_1 h_1(x)||R_2 h_2(y)| |dx|dy.$$

Due to (3.1) and (3.5), we have

$$\|F\|_{(X_1,X_2)}^q \leq C \int_{\mathbb{R}^{n_1} \times \mathbb{R}^{n_2}} |G(x, y)|^q |R_1 h_1(x)||R_2 h_2(y)| |dx|dy.$$

By the definition of associate spaces, H"{o}lder's inequalities are obtained. That is

$$\int_{\mathbb{R}^n} f(x) g(y) |dx|dy \leq \|f\|_{X} \|g\|_{X'}$$
for \(f \in X \) and \(g \in X' \). Thus,

\[
\|F\|_\left(\|\cdot\|,X\right) \leq C \int_{\mathbb{R}^n} \|G(\cdot,y)\|_{Y_1} \|R_1h_1\|_{Y_1'} \|R_2h_2(y)\|dy \\
\leq C\|G\|_\left(\|\cdot\|,X\right) \|R_1h_1\|_{Y_1'} \|R_2h_2\|_{Y_2'}
\]

By (3.3),

\[
\|F\|_\left(\|\cdot\|,X\right) \leq C\|G\|_\left(\|\cdot\|,X\right) \|h_1\|_{Y_1'} \|h_2\|_{Y_2'} \\
= C\|G\|_\left(\|\cdot\|,X\right)
\]

The proof is completed. ■

Theorem 3.7 Let \(X_1 \) and \(X_2 \) be a ball quasi-Banach function spaces and satisfy Assumption 3.2 for \(1 < s_0 < \infty \). Then there exists a positive constant \(C_0 \) such that, for any \(f \in (X_1,X_2) \),

\[
\|Mf\|_{X_1,X_2} \leq C\|M^*f\|_{X_1,X_2}.
\]

Proof Let

\[
\mathcal{F} := \left\{ (Mf,M^*f) : f \in \bigcup_{\omega \in A_1(\mathbb{R}^n)} L^p(\omega) \right\}.
\]

According to Lemma 3.1,

\[
\int_{\mathbb{R}^n} (Mf(x))^p \omega(x)dx \leq C_{(p,\|\cdot\|,A_1(\mathbb{R}^n))} \int_{\mathbb{R}^n} (M^*f(x))^p \omega(x)dx
\]

for \(1 < p \leq s_0 \). Then, apply Lemma 3.5,

\[
\|Mf\|_{X_1,X_2} \leq C\|M^*f\|_{X_1,X_2}
\]

for \(f \in \bigcup_{\omega \in A_1(\mathbb{R}^n)} L^s(\omega) \). Hence, by Lemma 3.4

\[
\|Mf\|_{X_1,X_2} \leq C\|M^*f\|_{X_1,X_2}, \quad f \in (X_1,X_2).
\]

The proof is completed. ■

In fact, for the mixed-norm ball quasi-Banach function spaces \((X_1,X_2,\cdots,X_m)\), the above discussions are right. Thus, we obtain the following corollary.

Corollary 3.8 Let \(X_1, X_2, \cdots, X_m \) be a ball quasi-Banach function space and satisfy Assumption 3.2 for \(1 < s_0 < \infty \). Then there exists a positive constant \(C_0 \) such that, for any \(f \in (X_1,X_2,\cdots,X_m) \),

\[
\|Mf\|_{X_1,X_2,\cdots,X_m} \leq C\|M^*f\|_{X_1,X_2,\cdots,X_m}.
\]

(3.6)
Taking $m = 1$, we get the following corollary.

Corollary 3.9 Let X be a ball quasi-Banach function space and satisfying Assumption 3.2 for $1 < s_0 < \infty$. Then there exists a positive constant C_0 such that, for any $f \in X$,

$$\|M^s f\|_X \leq C_0 \|M^\# f\|_X.$$ \hspace{1cm} (3.7)

If $1 < \vec{p} = (p_1, p_2, \cdots, p_n) < \infty$, we define that $p_− = \min\{p_1, p_2, \cdots, p_n\}$ and $p_+ = \max\{p_1, p_2, \cdots, p_n\}$.

By Remark 2.12, we know that mixed-norm Lebesgue spaces are a ball quasi-Banach function spaces. By Lemma 3.5 of [23], the Mf is bounded on $L^{\vec{p}}(\mathbb{R}^n)$ with $1 < \vec{p} = (p_1, p_2, \cdots, p_n) < \infty$. According to the dual theorem of Theorem 1.a of [7], there exist $1 < s < p_−$ such that $1 < \frac{\vec{p}}{s} < \infty$ and the Mf is bounded on $L^{(\vec{p'})}(\mathbb{R}^n)$. Hence, (3.7) holds when $X = L^{\vec{p}}(\mathbb{R}^n)$. That is the following theorem.

Theorem 3.10 Let $1 < \vec{p} < \infty$. Then

$$\|Mf\|_{L^{\vec{p}}(\mathbb{R}^n)} \leq C \|M^\# f\|_{L^{\vec{p}}(\mathbb{R}^n)}$$

hold for any $f \in L^{\vec{p}}(\mathbb{R}^n)$.

Remark 3.11 (1) It is well-known that M is bounded on classical Lebesgue spaces. Thus, by Corollary 3.8, Theorem 3.10 can be obtained more simply.

(2) Comparing Corollary 3.8 and Corollary 3.9, we find that if Y is a mixed-norm ball Banach function space, then using Corollary 3.8 will be more simple. But Corollary 3.9 can be applied in a wider range.

4 Application of Theorem 3.10

In this section, a necessary and sufficient conditions of boundedness of commutator of I_α is given on mixed-norm Lebesgue spaces. Particularly, we point out that $\vec{p} \neq \vec{q}$ means there exist i_0 such that $p_{i_0} \neq q_{i_0}$.

In 2020, Zhang and Zhou gave necessary and sufficient conditions [18]. Their result is stated as the following.

Lemma 4.1 Let $0 < \alpha < n$, $1 < \vec{p}, \vec{q} < \infty$. Then

$$1 < \vec{p} \leq \vec{q} < \infty, \vec{p} \neq \vec{q}, \alpha = \sum_{i=1}^n \frac{1}{p_i} - \sum_{i=1}^n \frac{1}{q_i}.$$ if and only if

$$\|I_\alpha f\|_{L^{\vec{p}}} \leq C \|f\|_{L^{\vec{q}}}.$$

The following result can be proved by the means of Theorem 1.3 of [22] and the fact $M_\alpha f(x) \lesssim I_\alpha(|f|)(x)$.

12
Lemma 4.2 Let \(0 < \alpha < n\), \(1 < r < \infty\) and \(b \in BMO(\mathbb{R}^n)\). Then there exists a constant \(C > 0\) independent of \(b\) and \(f\) such that

\[
M^r([b, I_\alpha](f))(x) \leq C\|b\|_{BMO(\mathbb{R}^n)}\{I_\alpha(|f|)(x) + I_{\alpha r}(|f|^r)(x)^{\frac{1}{r}}\}.
\]

The characterization of \(BMO(\mathbb{R}^n)\) is given by the following theorem.

Theorem 4.3 Let \(0 < \alpha < n\), \(1 < \tilde{p}, \tilde{q} < \infty\) and

\[
1 < \tilde{p} \leq \tilde{q} < \infty, \quad \tilde{p} \neq \tilde{q}, \quad \alpha = \sum_{i=1}^{n} \frac{1}{p_i} - \sum_{i=1}^{n} \frac{1}{q_i}.
\]

Then, the following conditions are equivalent:

(a) \(b \in BMO(\mathbb{R}^n)\).

(b) \([b, I_\alpha]\) is bounded from \(L^{\tilde{p}}\) to \(L^{\tilde{q}}\).

Proof (1) By theorem 3.10, Lemma 4.2 and Lemma 4.1,

\[
\|b, I_\alpha\|_{L^{\tilde{q}}(\mathbb{R}^n)} \leq C\|M([b, I_\alpha](f))\|_{L^{\tilde{q}}(\mathbb{R}^n)} \\
\leq C\|M^r([b, I_\alpha](f))\|_{L^{\tilde{q}}(\mathbb{R}^n)} \\
\leq C\|b\|_{BMO(\mathbb{R}^n)}\|I_\alpha(|f|)\|_{L^{\tilde{q}}(\mathbb{R}^n)} + \|I_{\alpha r}(|f|^r)\|^{\frac{1}{r}}_{L^{\tilde{q}/r}(\mathbb{R}^n)} \\
= C\|b\|_{BMO(\mathbb{R}^n)}\|I_\alpha(|f|)\|_{L^{\tilde{q}}(\mathbb{R}^n)} + \|I_{\alpha r}(|f|^r)\|^{\frac{1}{r}}_{L^{\tilde{q}/r}(\mathbb{R}^n)} \\
\leq C\|b\|_{BMO(\mathbb{R}^n)}\|f\|_{L^{\tilde{q}}(\mathbb{R}^n)}
\]

(2) Assume that \([b, I_\alpha]\) is bounded from \(L^{\tilde{p}}\) to \(L^{\tilde{q}}\). We use the same method as Janson [24]. Choose \(0 \neq z_0 \in \mathbb{R}^n\) such that \(0 \notin Q(z_0, 2\sqrt{n})\). Then for \(x \in Q(z_0, 2\sqrt{n}), |x|^{n-\alpha} \in C^\infty(Q(z_0, 2\sqrt{n}))\). Hence, \(|x|^{n-\alpha}\) can be written as the absolutely convergent Fourier series:

\[
|x|^{n-\alpha} \chi_{Q(z_0, 2\sqrt{n})}(x) = \sum_{m \in \mathbb{Z}^n} a_m e^{2im \cdot x} \chi_{Q(z_0, 2\sqrt{n})}(x)
\]

with \(\sum_{m \in \mathbb{Z}^n} |a_m| < \infty\).

For any \(x_0 \in \mathbb{R}^n\) and \(t > 0\), let \(Q = Q(x_0, t)\) and \(Q_{z_0} = Q(x_0 + z_0 t, t)\). Let \(s(x) = \text{sgn}(\int_{Q}(b(x) - b(y))dy)\). Then

\[
\frac{1}{|Q|} \int_{Q} |b(x) - b_{Q_{z_0}}| = \frac{1}{|Q|} \frac{1}{|Q_{z_0}|} \int_{Q} \int_{Q_{z_0}} (b(x) - b(y))dy \, dx
\]

\[
= \frac{1}{|Q|} \frac{1}{|Q_{z_0}|} \int_{Q} \int_{Q_{z_0}} s(x)(b(x) - b(y))dy \, dx.
\]
If \(x \in Q \) and \(y \in Q_{z_0} \), then \(\frac{y-x}{t} \in Q(z_0, 2\sqrt{n}) \). Thereby,
\[
\frac{1}{|Q|} \int_Q |b(x) - b_{Q_{z_0}}| = t^{-2n} \int_Q \int_{Q_{z_0}} s(x)(b(x) - b(y))|x - y|^{\alpha-n}|x - y|^{n-\alpha}dydx \\
= t^{-2n} \int_Q \int_{Q_{z_0}} s(x)(b(x) - b(y))|x - y|^{\alpha-n}|x - y|^{n-\alpha}dydx \\
= t^{-n-\alpha} \sum_{m \in \mathbb{Z}^n} a_m \int_Q \int_{Q_{z_0}} s(x)(b(x) - b(y))|x - y|^{\alpha-n}e^{-2im\cdot\frac{y}{t}}dy \times e^{2im\cdot\frac{y}{t}}dx \\
= t^{-n-\alpha} \sum_{m \in \mathbb{Z}^n} a_m \int_Q [b, I_\alpha](e^{-2im\cdot\frac{y}{t}Q_{z_0}})(x) \times s(x)e^{2im\cdot\frac{y}{t}}dx.
\]

By Hölder for mixed-norm Lebesgue spaces,
\[
\frac{1}{|Q|} \int_Q |b(x) - b_{Q_{z_0}}| \leq t^{-n-\alpha} \sum_{m \in \mathbb{Z}^n} a_m \|[b, I_\alpha](e^{-2im\cdot\frac{y}{t}Q_{z_0}})\|_{L^q(\mathbb{R}^n)} \|s \cdot e^{-2im\cdot\frac{y}{t}XQ_{z_0}}\|_{L^p(\mathbb{R}^n)}.
\]

It is easy to calculate
\[
\|s \cdot e^{-2im\cdot\frac{y}{t}XQ_{z_0}}\|_{L^p(\mathbb{R}^n)} = \|XQ_{z_0}\|_{L^p(\mathbb{R}^n)} = t \sum_{i=1}^n \frac{1}{q_i}.
\]

Hence,
\[
\frac{1}{|Q|} \int_Q |b(x) - b_{Q_{z_0}}| = t^{-n-\alpha} \sum_{m \in \mathbb{Z}^n} a_m \|[b, I_\alpha](e^{-2im\cdot\frac{y}{t}Q_{z_0}})\|_{L^q(\mathbb{R}^n)}.
\]

According to the hypothesis
\[
\frac{1}{|Q|} \int_Q |b(x) - b_{Q_{z_0}}| \\
\leq t^{-n-\alpha} \sum_{i=1}^n \frac{1}{q_i} \sum_{m \in \mathbb{Z}^n} a_m \|[b, I_\alpha](e^{-2im\cdot\frac{y}{t}Q_{z_0}})\|_{L^q(\mathbb{R}^n)} \|[b, I_\alpha]\|_{L^p(\mathbb{R}^n) \to L^q(\mathbb{R}^n)} \\
= t^{-n-\alpha} \sum_{i=1}^n \frac{1}{q_i} \sum_{i=1}^n \frac{1}{p_i} \sum_{m \in \mathbb{Z}^n} a_m \|[b, I_\alpha]\|_{L^q(\mathbb{R}^n) \to L^q(\mathbb{R}^n)} \\
\leq \sum_{m \in \mathbb{Z}^n} |a_m| \|[b, I_\alpha]\|_{L^q(\mathbb{R}^n) \to L^q(\mathbb{R}^n)} \leq C \|[b, I_\alpha]\|_{L^q(\mathbb{R}^n) \to L^q(\mathbb{R}^n)}.
\]

Thus, we have
\[
\frac{1}{|Q|} \int_Q |b(x) - b(y)|dx \leq \frac{2}{|Q|} \int_Q \int_{Q_{z_0}} |b(x) - b_{Q_{z_0}}|dx \leq C \|[b, I_\alpha]\|_{L^q(\mathbb{R}^n) \to L^q(\mathbb{R}^n)}.
\]
This prove $b \in BMO(\mathbb{R}^n)$. ■

Remark 4.4 If

$$\alpha = \sum_{i=1}^{n} \frac{1}{p_i} - \sum_{i=1}^{n} \frac{1}{q_i}, \quad p_j \sum_{i=1}^{n} \frac{1}{p_i} = q_j \sum_{i=1}^{n} \frac{1}{q_i} \quad (j = 1, \cdots, n),$$

it easy to prove

$$\sum_{i=1}^{n} \frac{1}{p_i} > \sum_{i=1}^{n} \frac{1}{q_i}, \quad 1 < \vec{p} < \vec{q} < \infty.$$

5 Characterization of homogeneous Lipschitz space

In this section, a characterization of homogeneous Lipschitz spaces is given. Let us recall the definition of homogeneous Lipschitz spaces.

Definition 5.1 Let $0 < \beta < 1$. The definition of homogeneous Lipschitz space is defined by

$$\dot{\Lambda}_\beta := \{ f : |f(x) - f(y)| \leq C|x - y|^\beta \}.$$

The following lemma can be found in Lemma 1.5 of [25].

Lemma 5.2 If $0 < \beta < 1$ and $1 < q \leq \infty$, then

$$\|f\|_{\dot{\Lambda}_\beta} \approx \sup_{Q \subset \mathbb{R}^n} \frac{1}{|Q|^\beta/n} \int_Q |f(y) - f_Q| dy \approx \sup_{Q \subset \mathbb{R}^n} \frac{1}{|Q|^\beta/n} \left(\frac{1}{|Q|} \int_Q |f(y) - f_Q|^q dy \right)^{\frac{1}{q}},$$

for $q = \infty$ the formula should be interpreted appropriately, where the supremum is taken over all cubes Q in \mathbb{R}^n.

Theorem 5.3 Let $0 < \alpha < n$, $0 < \beta < 1$, $1 < \vec{p}, \vec{q} < \infty$ and

$$1 < \vec{p} \leq \vec{q} < \infty, \quad \vec{p} \neq \vec{q}, \quad \alpha + \beta = \sum_{i=1}^{n} \frac{1}{p_i} - \sum_{i=1}^{n} \frac{1}{q_i}.$$

Then, the following conditions are equivalent:

(a) $b \in \dot{\Lambda}_\beta$.
(b) $[b, I_\alpha]$ is bounded from $L^{\vec{p}}(\mathbb{R}^n)$ to $L^{\vec{q}}(\mathbb{R}^n)$.

15
Therefore, Theorem 4.4. It is easy to calculate that

\[\left| \left[b, I_\alpha \right] f(x) \right| = \left| \int_{\mathbb{R}^n} \frac{(b(x) - b(y))f(y)}{|x - y|^{n-\alpha}} \, dy \right| \]
\[\leq \int_{\mathbb{R}^n} \frac{|b(x) - b(y)| \cdot |f(y)|}{|x - y|^{n-\alpha}} \, dy \]
\[\leq \|b\|_{\hat{\Lambda}_{\beta}} \int_{\mathbb{R}^n} \frac{|f(y)|}{|x - y|^{n-(\alpha+\beta)}} \, dy \]
\[= \|b\|_{\hat{\Lambda}_{\beta}} I_{\alpha+\beta}(|f|)(x). \]

According to Lemma 4.1,

\[\|b, I_\alpha \|_{L^q(\mathbb{R}^n)} \leq C\|b\|_{\hat{\Lambda}_{\beta}} \|I_{\alpha+\beta}(|f|)\|_{L^q(\mathbb{R}^n)} \leq C\|b\|_{\hat{\Lambda}_{\beta}} \|f\|_{L^p(\mathbb{R}^n)}. \]

(2) Let \([b, I_\alpha]\) is bounded from \(L^p(\mathbb{R}^n)\) to \(L^q(\mathbb{R}^n)\). Let \(Q, Q_{x_0}\) and \(s(x)\) is the same as Theorem 4.4. It is easy to calculate that

\[\frac{1}{|Q|} \int_Q |b(x) - b_{Q_{x_0}}| \]
\[= t^{-n-\alpha} \sum_{m \in \mathbb{Z}^n} a_m \int_Q [b, I_\alpha](e^{-2im \cdot x} \chi_{Q_{x_0}})(x) \times s(x)e^{2im \cdot x} \, dx \]
\[\leq t^{-n-\alpha} \sum_{m \in \mathbb{Z}^n} a_m \|b, I_\alpha\|_{L^q(\mathbb{R}^n)} \|s \cdot e^{-2im \cdot x} \chi_{Q}\|_{L^p(\mathbb{R}^n)} \]
\[= t^{-n-\alpha + \sum_{i=1}^n \frac{\alpha}{p_i} + \sum_{i=1}^n \frac{\beta}{q_i}} \sum_{m \in \mathbb{Z}^n} a_m \|b, I_\alpha\|_{L^p(\mathbb{R}^n) \rightarrow L^q(\mathbb{R}^n)} \]
\[\leq t^{\beta} \sum_{m \in \mathbb{Z}^n} |a_m| \|b, I_\alpha\|_{L^p(\mathbb{R}^n) \rightarrow L^q(\mathbb{R}^n)} \leq C t^{\beta} \|b, I_\alpha\|_{L^p(\mathbb{R}^n) \rightarrow L^q(\mathbb{R}^n)} . \]

Therefore,

\[\frac{1}{|Q|^{1+\beta/n}} \int_Q |b(x) - b_Q| \leq \frac{2}{|Q|^{1+\beta/n}} \int_Q |b(x) - b_{Q_{x_0}}| \leq 2C \|b, I_\alpha\|_{L^p(\mathbb{R}^n) \rightarrow L^q(\mathbb{R}^n)} . \]

Due to Lemma 5.2, the proof is completed.

By the process of Theorem 5.3, the following corollary holds.

Corollary 5.4 Let \(T f\) is a operator and its commutator \([b, T](f)\) satisfies that

\[\|b, T\| f(x) \| \leq C I_{\alpha, \beta}(|f|)(x). \]

Let \(0 < \alpha < n, \ 0 < \beta < 1, \ 1 < \vec{p}, \vec{q} < \infty\). If

\[1 < \vec{p} \leq \vec{q} < \infty, \ \vec{p} \neq \vec{q}, \ \alpha + \beta = \sum_{i=1}^n \frac{1}{p_i} - \sum_{i=1}^n \frac{1}{q_i} . \]

16
and \(b \in \mathring{\Lambda}_\beta \), then

\[
\|[b, T]f\|_{L^q(\mathbb{R}^n)} \leq C\|b\|_{\mathring{\Lambda}_\beta} \|f\|_{L^q(\mathbb{R}^n)}.
\]

Proof Let \(b \in \mathring{\Lambda}_\beta \). Then

\[
|\langle b, T \rangle f(x)| \leq C \int_{\mathbb{R}^n} \frac{|b(x) - b(y)| \cdot |f(y)|}{|x - y|^{n-\alpha}} dy
\]

\[
\leq C\|b\|_{\mathring{\Lambda}_\beta} \int_{\mathbb{R}^n} \frac{|f(y)|}{|x - y|^{n-(\alpha+\beta)}} dy
\]

\[
= C\|b\|_{\mathring{\Lambda}_\beta} I_{\alpha+\beta}(|f|)(x).
\]

According to Lemma 4.1,

\[
\|[b, I_\alpha]f\|_{L^q(\mathbb{R}^n)} \leq C\|b\|_{\mathring{\Lambda}_\beta} \|I_{\alpha+\beta}(|f|)\|_{L^q(\mathbb{R}^n)} \leq C\|b\|_{\mathring{\Lambda}_\beta} \|f\|_{L^q(\mathbb{R}^n)}.
\]

The proof is completed. ■

The corollary is very useful and two examples are given in the following section.

6 Two applications of Corollary 5.4

Example 6.1 The fractional maximal function is defined as

\[
M_\alpha f(x) := \sup_{Q \ni x} \frac{1}{|Q|^{1-\frac{\alpha}{n}}} \int_Q |f(y)| dy,
\]

where the supremum is taken over all cube \(Q \subset \mathbb{R}^n \) containing \(x \) and its commutator is defined by

\[
M_{\alpha, b} f(x) := \sup_{Q \ni x} \frac{1}{|Q|^{1-\frac{\alpha}{n}}} \int_Q |b(x) - b(y)||f(y)| dy,
\]

where \(b \) a locally integrable function. It is easy to prove that

\[
|M_{\alpha, b} f(x)| \leq CI_{\alpha, b}(|f|)(x).
\]

Before the second example, let us recall generalized fractional integral operators.

Suppose that \(\mathcal{L} \) is a linear operator which generates an analytic semigroup \(\{e^{-t\mathcal{L}}\}_{t>0} \) on \(L^2(\mathbb{R}^n) \) with a kernel \(p_t(x, y) \) satisfying Gaussian upper bound; that is

\[
\left|p_t(x, y)\right| \leq \frac{C_1}{t^{n/2}} e^{-C_2 \frac{|x-y|^2}{t}} \quad x, y \in \mathbb{R}^n,
\]

where \(C_1, C_2 > 0 \) are independent of \(x, y \) and \(t \).
For any $0 < \alpha < n$, the generalized fractional integrals $L^{-\alpha/2}$ associated with the operator L is defined by

$$L^{-\alpha/2}f(x) = \frac{1}{\Gamma(\alpha/2)} \int_0^\infty e^{-tL}(f)(x) \frac{dt}{t^{\alpha/2+1}}.$$

Note that if $L = -\Delta$ is the Laplacian on \mathbb{R}^n, then $L^{-\alpha/2}$ is the classical fractional integral operator I_α. See, for example, Chapter 5 of [26]. Since the semigroup $L^{-\alpha/2}$ has a kernel $p_t(x, y)$, it is easy to check that for all $x \in \mathbb{R}^n$

$$|L^{-\alpha/2}f(x)| \leq CI_\alpha(|f|)(x).$$

(see [27]). In fact, if we denote the the kernel of $L^{-\alpha/2}$ by $K_\alpha(x, y)$, it is easy to obtain that

$$L^{-\alpha/2}f(x) = \frac{1}{\Gamma(\alpha/2)} \int_0^\infty p_t(x, y) f(y) dy \frac{dt}{t^{\alpha/2+1}} = \int_{\mathbb{R}^n} \frac{1}{\Gamma(\alpha/2)} \int_0^\infty p_t(x, y) \frac{dt}{t^{\alpha/2+1}} \cdot f(y) dy = \int_{\mathbb{R}^n} K_\alpha(x, y) \cdot f(y) dy.$$

Hence, by Gaussian upper bound,

$$|K_\alpha(x, y)| = \left| \frac{1}{\Gamma(\alpha/2)} \int_0^\infty p_t(x, y) \frac{dt}{t^{\alpha/2+1}} \right| \leq \frac{1}{\Gamma(\alpha/2)} \int_0^\infty |p_t(x, y)| \frac{dt}{t^{\alpha/2+1}} \leq C \int_0^\infty e^{-C_2 \frac{|x-y|^2}{t}} \frac{dt}{t^{n/2-\alpha/2+1}} \leq C \cdot \frac{1}{|x-y|^{n-\alpha}}.$$

Example 6.2 Let b a locally integrable function. If the commutators of generalized fractional integral operators generated by b and $L^{-\alpha/2}$ are defined by

$$[b, L^{-\alpha/2}] := b(x)L^{-\alpha/2}(f)(x) - L^{-\alpha/2}(bf)(x).$$
It is obvious that
\[
|[b, \mathcal{L}^{-\alpha/2}]f(x)| = \left| \int_{\mathbb{R}^n} (b(x) - b(y))K_\alpha(x, y)f(y)dy \right|
\leq \int_{\mathbb{R}^n} |b(x) - b(y)||K_\alpha(x, y)||f(y)||dy
\leq C \int_{\mathbb{R}^n} |b(x) - b(y)|\frac{|f(y)|}{|x - y|^{n-\alpha}}dy
= C I_{\alpha, b}(|f|)(x).
\]

References

[1] Stein E. M., Singular Integrals and Differentiability of Functions. Princeton University Press, Princeton (1970)

[2] Stein E. M. and Weiss G., Introduction to Fourier analysis on Euclidean spaces. Princeton University Press, Princeton (1971)

[3] Antonic N. and Ivec I., On the Hörmander-Mihlin theorem for mixed-norm Lebesgue spaces, Math. Anal. Appl. 433:176-199 (2016)

[4] Kenig C. E., On the local and global well-posedness theory for the KP-I equation, Ann. Inst. H. Poincar Anal. Non Lineaire 21:827-838 (2004)

[5] Kim D., Elliptic and parabolic equations with measurable coefficients in L^p-spaces with mixed norms, Methods Appl. Anal. 15:437-468 (2008)

[6] Krylov N.V., Parabolic equations with VMO coefficients in Sobolev spaces with mixed norms, Funct. Anal. 250:521-558 (2007)

[7] Benedek A. and Panzone R., The space L^p, with mixed norm, Duke Math. 28:301-324 (1961)

[8] Fernandez D.L., Lorentz spaces, with mixed norms, Funct. Anal. 25:128-146 (1977)

[9] Milman M., Embeddings of Lorentz-Marcinkiewicz spaces with mixed norms, Anal. Math. 4:215-223 (1978)

[10] Milman M., A note on $L(p,q)$ spaces and Orlicz spaces with mixed norms, Proc. Amer. Math. Soc. 83:743-746 (1981)

[11] Cleanthous G., Georgiadis A.G. and Nielsen M., Anisotropic mixed-norm Hardy spaces, J. Geom. Anal. (2017)
[12] Besov O. V., Il’in V. P. and Nikolskiı S.M., Integral Representations of Functions, and Embedding Theorems, Second edition, Fizmatlit “Nauka”, Moscow, 480, (Russian, 1996)

[13] Chen T. and Sun W., Iterated and Mixed Weak Norms with Applications to Geometric Inequalities. (2017) DOI: 10.1007/s12220-019-00243-x

[14] Huang L. and Yang D., On Function Spaces with Mixed Norms – A Survey. (2019) arXiv:1908.03291v1

[15] Nogayama T., Mixed Morrey spaces, Positivity (2019) DOI: 10.1007/s11117-019-00646-8

[16] Nogayama T., Boundedness of commutators of fractional integral operators on mixed Morrey spaces, Integral Transform. Spec. Funct. (2019)

[17] Chanillo S., A note on commutators. Indiana Univ. Math. 31(1):7-16 (1982)

[18] Zhang H. and Zhou J. The Boundedness of Fractional Integral Operators in Local and Global Mixed Morrey-type Spaces. (2021) arXiv:2102.01304v1

[19] Sawano Y., Ho K.-P., Yang D. and Yang S., Hardy spaces for ball quasi-Banach function spaces, Diss. Math. 525:1-102 (2017)

[20] Chang D.C., Wang S., Yang D. and Zhang Y., Littlewood-Paley characterizations of Hardy-type spaces associated with ball quasi-Banach function spaces, Complex Anal. Oper. Theory 14 (2020), Paper No. 40, 33 pp.

[21] Bennett C. and Sharpley R., Interpolation of Operators, Pure Appl. Math. 129, Academic Press, Boston, MA, 1988.

[22] Cruz-Uribe D. and Fiorenza A., Endpoint estimates and weighted norm inequalities for commutators of fractional integrals. Publ. Mat. 47:103-131 (2003)

[23] Huang L., Liu J., Yang D. and Yuan W., Atomic and Littlewood-Paley characterizations of anisotropic mixed-norm Hardy spaces and their applications, J. Geom. Anal. 29:1991-2067 (2019)

[24] Janson S., Mean oscillation and commutators of singular integral operators. Ark. Math. 16:263-270 (1978)

[25] Paluszyński M., Characterization of the Besov spaces via the commutator operator of Coifman, Rochberg and Weiss. Indiana Univ. Math. J. 44:1-17 (1995)

[26] Stein, E.M., Singular Integrals and Differentiability of Functions. Princeton University Press, Princeton (1970)
[27] Duong, X.T., Yan, L.X., On commutators of fractional integrals. Proc. Am. Math. Soc. 132(12):3549-3557 (2004)

[28] Garca-Cuerva and Francia J., Weighted Norm Inequalities and Related Topics. Elsevier, London (1985)

[29] Ho K.-P., Strong maximal operator on mixed-norm spaces. Ann. Univ. Ferrara, 62(2):1-17 (2016)

[30] Morrey C. B., On the solutions of quasi-linear elliptic partial differential equations, Trans. Amer. Math. Soc. 43:126-166 (1938)

[31] O. Kovářik and J. Rákosník, On spaces $L^{p(x)}$ and $W^{k,p(x)}$, Czechoslovak Math. 41(116):592-618 (1991)

[32] Birnbaum Z. and Orlicz W., Über die verallgemeinerung des begriffes der zueinander konjuguerten potenzen, Stud. Math. 3:1-67 (1931)

[33] Grafakos L., Modern Fourier Analysis. Springer New York, (2009)

[34] Zhang Y., Yang D., Yuan W. and Wang S., Real-variable characterizations of Orlicz-slice Hardy spaces, Anal. Appl. (Singap.) 17:597-664 (2019)

[35] Bennett C. and Sharpley R. Interpolation of Operators. Academic Press, London (1988)

[36] Sawano Y., Theory of Besov Spaces, Developments in Mathematics 56, Springer, Singapore, (2018)

[37] Izuki M. and Sawano Y., Characterization of BMO via ball Banach function spaces, Vestn. St.-Peterbg. Univ. Mat. Mekh. Astron. 4(62):78-86 (2017)

[38] Izuki M., Noi T. and Sawano Y., The John-Nirenberg inequality in ball Banach function spaces and application to characterization of BMO, J. Inequal. Appl. 2019(1) (2019)

[39] Wang S., Yang D., Yuan W. and Zhang Y., Weak Hardy-type spaces associated with ball quasi-Banach function spaces II: Littlewood-Paley characterizations and real interpolation, J. Geom. Anal. (2019), DOI: 10.1007/s12220-019-00293-1.

[40] Zhang Y., Yang D., Yuan W. and Wang S., Real-variable characterizations of Orlicz-slice Hardy spaces, Anal. Appl. (Singap.) 17:597-664 (2019)

[41] Chanillo S., A note on commutators, Indiana Univ. Math. J. 31:7-16 (1982)

[42] Paluszyński M., Characterization of the Besov spaces via the commutator operator of Coifman, Rochberg and Weiss, Indiana Univ. Math. J. 44:1-17 (1995)
[43] Blozinski A., Multivariate rearrangements and Banach function spaces with mixed norms. Trans. Am. Math. Soc. 263: 149-167 (1981)