Temperature-sensitive mutations for live-attenuated Rift Valley fever vaccines: implications from other RNA viruses

Shoko Nishiyama1 and Tetsuro Ikegami1,2,3*

1 Department of Pathology, The University of Texas Medical Branch at Galveston, Galveston, TX, USA, 2 Sealy Center for Vaccine Development, The University of Texas Medical Branch at Galveston, Galveston, TX, USA, 3 Center for Biodefense and Emerging Infectious Diseases, The University of Texas Medical Branch at Galveston, Galveston, TX, USA

Rift Valley fever (RVF) is a mosquito-borne zoonotic disease endemic to the African continent. RVF is characterized by high rate of abortions in ruminants and hemorrhagic fever, encephalitis, or blindness in humans. RVF is caused by the Rift Valley fever virus (RVFV; genus Phlebovirus, family Bunyaviridae). Vaccination is the only known effective strategy to prevent the disease, but there are no licensed RVF vaccines available for humans. A live-attenuated vaccine candidate derived from the wild-type pathogenic Egyptian ZH548 strain, MP-12, has been conditionally licensed for veterinary use in the U.S. MP-12 displays a temperature-sensitive (ts) phenotype and does not replicate at 41°C. The ts mutation limits viral replication at a specific body temperature and may lead to an attenuation of the virus. Here we will review well-characterized ts mutations for RNA viruses, and further discuss the potential in designing novel live-attenuated vaccines for RVF.

Keywords: Rift Valley fever virus, bunyavirus, vaccine, MP-12, temperature sensitivity
effective countermeasures to prevent the introduction of RVFV. In the U.S., RVFV is classified as a Risk Group 3 pathogen, a Category A Priority Pathogen (NIAID/NIH), and an overlap select agent [U.S. Department of Health and Human Services (HHS) and Agriculture (USDA)]. Vaccination is one of the most effective approaches to minimize the spread of RVFV (Ikekami and Makino, 2009). Since 1950s, a live-attenuated Smithburn vaccine has been used in Africa (Grobbeelaar et al., 2011). The vaccine, however, causes abortions in pregnant ruminants, and retains neurovirulence in non-human primates (Morrill and Peters, 2003; Botros et al., 2006). Despite the limitations in safety, the Smithburn vaccine had been used in Africa for RVF prevention. In the U.S., during 1980s, the live-attenuated MP-12 vaccine was developed (Caplen et al., 1985; Ikekami and Makino, 2009). Though the MP-12 vaccine is conditionally licensed for veterinary use in the U.S., a few studies indicated that the vaccine may cause abortions in pregnant ewes and mild hepatitis in calves (Hunter et al., 2002; Miller et al., 2015). It remains unknown whether the MP-12 vaccine can replicate at an internal body temperature in ruminants (38–39°C), and whether vaccination may lead to a disease associated with MP-12 replication. In this minireview, we will describe current understandings of temperature-sensitivity (ts) for RVFV, and summarize ts mutants of other RNA viruses.

Life Cycle for RVFV

Rift Valley fever virus has a tripartite negative-stranded RNA genome designated Small (S)-, Medium (M)-, and Large (L)-segments. The S-segment encodes two open reading frames (ORF) for a nucleoprotein (N) and a non-structural protein (NSs) in an ambisense manner. The M-segment encodes a single ORF for a polyprotein precursor. The precursor protein is co-translationally cleaved into four different proteins: Gn, Gc, 78-kD protein, and a non-structural protein (NSm). The L-segment encodes a single ORF for the RNA-dependent RNA polymerase (L) protein.

DC-SIGN, dendritic cell specific intercellular adhesion molecule-3-grabbing non-integrin, is a receptor for RVFV and binds to oligosaccharides attached to virions (Lozach et al., 2011). After viral attachment, viral entry occurs via caveola-mediated endocytosis in a pH-dependent manner (Harmon et al., 2012). Upon uncoating, the L protein, derived from incoming virions begins viral mRNA synthesis (primary transcription). The viral polymerase cleaves a capped host mRNA, near the 5’ terminus, and uses it to prime the synthesis of viral mRNA (cap-snatching) (Schmaljohn and Nichol, 2007). As soon as viral proteins accumulate, the viral RNA genome becomes encapsidated with N protein and forms the ribonucleocapsid (RNP), which is used for RNA genome replication. The viral envelope proteins, Gn and Gc, play a role in viral assembly. Gn encodes a Golgi retention motif (Gerrard and Nichol, 2002), while Gc localizes to the ER, when Gn is not present. The complexes of Gn and Gc localize to the Golgi and trigger the assembly of RNP and L, and then the budding of virions (Piper et al., 2011).

Rift Valley fever virus encodes two non-structural proteins, NSs and NSm. Both proteins are dispensable for viral replication. However, NSs serves as a major virulence factor as it counteracts host antiviral responses. NSs suppresses host general transcription by interrupting the assembly of transcription factor (TF) IIH, which is essential for the function of cellular RNA polymerase I or II (Le May et al., 2004; Kalveram et al., 2011; Kainulainen et al., 2014). RVFV NSs also suppresses the up-regulation of interferon (IFN)-β promoter at a transcriptional level by interacting with cellular transcription repressors (Billecocq et al., 2004; Le May et al., 2008). Furthermore, RVFV NSs promotes the degradation of dsRNA-dependent protein kinase (PKR). PKR is a cellular sensor of dsRNA or the 5’-triphosphate of ssRNA. Upon the binding to RNA, PKR is dimerized. PKR homodimers then undergo autophosphorylation and phosphorylate eukaryotic initiation factor (eIF) 2α, which inhibits the initiation of cellular and viral translation. By promoting the degradation of PKR, RVFV can synthesize viral proteins without inducing significant eIF2α phosphorylation (Habjan et al., 2009; Ikekami et al., 2009). The minor virulence factor, NSm, inhibits the apoptosis of infected cells, yet the lack of NSm expression only moderately affects the RVFV mortality in mice (Won et al., 2006; Terasaki et al., 2013; Kreher et al., 2014). The 78-kD protein and NSm contribute to an efficient dissemination of RVFV in mosquitoes (Crabtree et al., 2012; Kading et al., 2014; Kreher et al., 2014).

RVFV ts Mutants

Rift Valley fever virus is an arbovirus and can replicate in both mosquito and mammalian hosts in nature. RVFV can replicate at 28°C in insect cells (Weingartl et al., 2014), and at 41°C in mammalian cells (Saluzzo and Smith, 1990). Internal body temperatures of RVFV-susceptible hosts are as follows: sheep: 38.3–39.9°C, cattle: 38.0–39.3°C, goats: 38.5–39.7°C, humans: 37°C, mice: 37.5–38.0°C (Talan, 1984; Robertshaw, 2004). RVFV replication initially occurs in the draining lymph nodes, liver, and spleen (Smith et al., 2010; Gommet et al., 2011). It is important to understand the “restrictive temperature” for the ts mutants, because it can allow prediction of viral replication at specific body temperatures in mammalian hosts.

Currently, little is known about ts mutations for RVF vaccine candidates. The RVFV MP-12 strain was developed by 12 serial plaque isolations in human lung diploid (MRC-5) cells in the presence of a chemical mutagen, 5-fluorouracil (Caplen et al., 1985). As a result, a total of 23 mutations are encoded in the genome: four mutations in the S-segment, nine mutations in the M-segment, and 10 mutations in the L-segment (Figure 1). The MP-12 vaccine does not replicate efficiently in vivo, though the S-segment encodes a functional NSs gene. Saluzzo and Smith (1990) previously characterized reassortant RVFV strains between the pathogenic Senegal ArD38661 strain and the MP-12 vaccine strain or the intermediate passage levels of MP-12 (MP-4, MP-6, or MP-9). Their study identified that MP-12 M- and L-segment produce the ts phenotype. Ts mutations on the M-segment were introduced during the MP-12 development.
Nishiyama and Ikegami
Temperature-sensitivity and RVF vaccine development

FIGURE 1 | Mapping of temperature-sensitive (ts) mutations for selected negative-stranded RNA viruses. The genome structures of RVFV MP-12 strain, Respiratory syncytial virus (RSV) cpts 248/404/1030, Influenza A virus (MDV-A), Influenza B virus (MDV-B), and Vesicular stomatitis virus (VSV) ts114 strain are shown. Viral genes are shown in different colors: Nucleocapsid protein (green), phosphoprotein (orange), RNA-dependent RNA polymerase (gray), envelope protein (yellow), matrix proteins (blue), and accessory or non-structural proteins (brown). Conserved six functional regions of RNA-dependent RNA polymerase (RdRp) among non-segmented negative-stranded RNA viruses are shown as I, II, III, IV, V, and VI, and those aligned to RdRp of bunyavirus and influenza virus are also indicated. Location of representative mutations and ts mutations (red square) are indicated by arrowheads. Putative ts mutations in the L-segment of MP-12 are shown in green squares. For RSV mutations, the name of clone, which encodes the mutation, is also shown in quotation.

(from 7 to 9 passages). On the other hand, ts mutation on the L-segment occurred during the earlier stages of development (the passage 4 or earlier). Since the U533C (V172A) and G3750A (M1244I) mutations were introduced in the L-segment at the passage 3, these two specific mutations may be responsible for the ts phenotype of L-segment (Vialat et al., 1997). However, no further characterization of ts mutations has been reported for MP-12 vaccine.

Currently, the MP-12 vaccine is conditionally licensed in the U.S., and the master seed is available for the production of vaccine lots. A number of safety and efficacy tests were performed for the MP-12 vaccine using pregnant and newborn ruminants (Morrill et al., 1987, 1991, 1997a,b, 2013a; Morrill and Peters, 2003, 2011a,b). To understand the mechanism of attenuation for the MP-12 vaccine, virulent recombinant ZH501 (rZH501) strains encoding the MP-12 S-, M-, or L-segment, or a single mutation of the MP-12 M- or L-segment were analyzed in an outbred CD1 mouse model (1 × 10^3 pfu, i.p) (Ikegami et al., 2015). The study revealed that an incorporation of a MP-12 S-, M-, or L-segment confers partial attenuation to pathogenic ZH501. Two amino
acid changes in Gn (Y259H) and Gc (R1182G) were identified as major attenuation mutations for the M-segment. A combination of Y259H and R1182G only partially attenuates rZH501, while a combination of Y259H, R1182G, plus an L-segment mutation, G3104A (R1029K), could fully attenuate rZH501. Importantly, MP-12 encoding reversion mutations in these three amino acids (H259Y, G1182R, and K1029R) still retained attenuation in mice, indicating that the attenuation of MP-12 vaccine is supported by multiple attenuation mutations, and MP-12 does not revert into virulent phenotype by a few reversion mutations. Further characterization of ts mutations of MP-12 vaccine will help the understanding of the mechanism behind attenuation.

Meanwhile, Rossi and Turell (1988) isolated another ts strain of RVFV. RVFV T1 strain was isolated from female Culex pipiens, which fed on hamsters infected with the pathogenic ZH501 strain. T1 strain displayed a ts phenotype at 41°C, and produced uniformly small plaques. The T1 strain is also highly attenuated in hamsters, and the LD₅₀ is >6.3 × 10⁵ pfu (i.p.). On the other hand, the RVFV T46 strain, which was isolated from Aedes taeniorhynchus that fed on ZH501-infected gerbils, also predominantly produced small plaques, but was pathogenic in hamsters, without showing a ts phenotype. As the full genome sequences are available (T1 strain: GenBank Accession DQ375407, DQ380201, and DQ380150, T46 strain: DQ375405, DQ380147, and DQ380199), we analyzed the mutations that occurred in the T1 and T46 strains compared to the parental ZH501 strain. The T1 strain encodes two mutations in the N gene: the G144U (G to V) mutation and a deletion of A at nt.640, which causes a frame-shift and a premature termination of N protein synthesis. T1 strain also encodes a mutation in the 5′-M-untranslated region (C3818U), and two silent mutations in the L-segment (C282U and A2691G). On the other hand, T46 strain encodes only one mutation in the M-segment (U1174A: M to K). The T1 strain has not been further evaluated for vaccine development.

Studies of ts Phenotype in Other RNA Viruses

It is difficult to predict viral attenuation, as a result of mutagenesis, without using animal models. However, a ts phenotype indicates attenuation in vivo and can be screened for using culture cells. Ts phenotypes have been characterized for many viruses (Richman and Murphy, 1979), using different approaches. In Table 1, we have summarized the ts mutants of selected RNA viruses. The ts phenotype depends on host cell types for the Poliovirus Sabin Type2 strain or Dengue virus NS5 gene mutants. For other RNA viruses, the majority of ts mutants were determined by using just one or a few cell types. Thus, it is important to broadly test different cell types to determine a ts phenotype. The location of ts mutations results in a unique ts phenotype. If the viral polymerase encodes a ts mutation, the syntheses of viral genomic RNA or mRNA, or both can be affected at a restricted temperature. If envelope proteins encode a ts mutation, the production of infectious progeny can be inefficient at a restricted temperature. A lack of viral replication or viral RNA synthesis can be an indicator for ts screening when a ts mutation is encoded in the viral polymerase. On the other hand, when the ts mutation is encoded in envelope proteins, the reduction of viral titers may be more remarkable than the decrease in viral RNA accumulation.

Temperature-sensitive mutations have been identified in the RNA-dependent RNA polymerases of many RNA viruses (Table 1). Non-segmented negative-stranded RNA viruses encode six conserved regions (Region I, II, III, IV, V, and VI) in the RNA-dependent RNA polymerase (Rahmeh et al., 2010). The region III (PreMotif A, and Motif A, B, C, D, and E) serves in RNA polymerization, and V and VI function in cap addition and cap methylation, respectively. There is also an endonuclease domain at the N-terminus of some of segmented negative-stranded RNA viruses (Reguera et al., 2010). As described above, V172A and M1244I mutations may be involved in the ts phenotype for MP-12 L protein. The V172A mutation is located in Region I, while M1244I is located downstream of Region III Motif E (Muller et al., 1994). Though no studies have been performed for the ts phenotype of RVFV L mutants, mutagenesis of the L protein may identify ts mutations useful for the future rational design of RVF vaccines. Several studies have indicated that ts phenotypes occur from amino acid change(s) in the viral polymerase. Figure 1 illustrates the locations of ts mutations for selected negative-stranded RNA viruses.

The vesicular stomatitis virus (VSV) ts114 mutant encodes three amino changes (D575G, E1117G, and I1937T) in the L-segment compared to the non-ts parental strain. The ts phenotype occurs from D575G, which is located between PreMotif A and Motif A in Region III (Galloway and Wertz, 2009). The ts114 mutant displayed a ts phenotype at 39°C. The ts114 mutant also showed a selected inhibition of viral mRNA synthesis, while maintaining active viral RNA genome replication. However, the selected inhibition of viral transcription only occurred with the combination of all three mutations of ts114, and the single D575G mutant abolished both viral genome replication and transcription at 39°C.

The respiratory syncytial virus (RSV) cold-adapted, temperature-sensitive (cpts) 248/404/1030 is a live-attenuated vaccine strain (Polack and Karron, 2004). It encodes two ts mutations (Q831L and Y1321N) in the L region, in addition to a nucleotide substitution in the M2 transcription start sequence. Q831L is located between Motif C and D in Region III, while Y1321N is located in Region V. In another study, an alanine scan of charged amino acid residues in the RSV L protein was performed to identify ts mutants (Tang et al., 2002). Alanine scanning identified three types of L phenotypes: (1) Abolished L activity, (2) Little change in L activities, and (3) a ts phenotype at 39°C: K157A-D158A (Upstream of Region I), E510A-R511A, R520A, L587A-R588A, R588A-D589A (Region II and upstream) or E1208A-R1209A (Region V).
et al., 2008). MDV-A also decreases the nuclear export of RNP

The live-attenuated FluMist vaccine consists of master donor

and the incorporation of the M1 protein into virions at 39°C. Furthermore, MDV-A virions become heterogeneous in size and shape at 39°C. Meanwhile, MDV-B is derived from a cold-adapted B/Ann Arbor/6/66 strain, and encodes ts mutations in the PA and NP segments (Hoffmann et al., 2005).

Temperature-sensitive mutants have been successfully developed as licensed vaccines, or candidate vaccines, in particular, for respiratory diseases: e.g., FluMist (influenza A and B viruses), FluAvert (equine influenza virus)

TABLE 1 | Determination of temperature-sensitive (ts) phenotypes for RNA viruses.

Classification	Species	ts strains	Location of ts mutation	Restrictive Temp for ts (Permissive)	Cell type	Reference	
Family Bunyaviridae	Genus Phlebovirus	RVFV	MP-12, T1	M- and L-segments	41°C (35°C)	Vero	Rossi and Turell (1988)
	Genus Orthobunyavirus	UUKV	S23, 7, 8, 11, 12	Unknown	41°C (35°C)	Vero	Rossi and Turell (1988)
	MAGV	MAG ts8	M-segment	38°C (33°C)	BHK-21	Polli et al. (2006)	
	LACV	RFC/25B,5	Unknown	39.9°C (37°C)	BHK-21	Endres et al. (1990)	
	BUNV	rBUN-NS with N mutation	N protein	38°C (33°C)	VeroE6	Efain and Elliott (2000)	
	SSHV	ts1, 2, 3	Unknown	39.5°C (33°C)	BHK-21	Gentsch and Bishop (1976)	
	AKV	OBE-1 strain	M- and/or L-segments	40°C (33°C)	HmLu-1	Ogawa et al. (2007)	
Family Paramyxoviridae	Genus Pneumovirus	RSV	rA2 cpts 248/404	M2 and L	37°C (32°C)	Hep-2	Whitehead et al. (1999)
		rA2 cpts 248/404/1090	M2 and L	36°C (32°C)	Hep-2	Whitehead et al. (1999)	
	Genus Respirovirus	HPIV3	rHPIV3 JS cp45	L	38°C (32°C)	LLC-MK2	Skiadopoulos et al. (1996)
		HPIV1	rHPIV1 L:F456L	L	38°C (32°C)	LLC-MK2	Newman et al. (2004)
		BPIV3	rBPIV L:1103V	L	40°C (37°C)	Vero	Haller et al. (2001)
Family Orthomyxoviridae	Genus Influenza virus A	Flu A	MDV-A	NP, PB1, PB2	39°C (33°C)	MDCK	Jin et al. (2003)
	Genus Influenza virus B	Flu B	MDV-B	M1, NP, PA	37°C (33°C)	MDCK or PCK	Hoffmann et al. (2005)
Family Rhabdoviridae	Genus Vesiculovirus	VSV	Indiana ts11, 13, 114, 22, 33, 41, 45	L (ts114)	38.5°C (31°C)	L	Rettenmier et al. (1979)
Family Picornaviridae	Genus Enterovirus	PV	Sabin Type3	VP3, 5′-UTR	40°C (35°C)	Hep-2c	Minor et al. (1989)
		Sabin Type2	5′-UTR	39.9°C (35°C)	Hep-2c	Macadam et al. (1991)	
		Sabin Type1	5′-UTR	38.4°C (35°C)	BGM		
			5′-UTR	38.3°C (35°C)	Vero F		
	EV A	EV71 (BrCr-ts)	VP1, VP3, VP4, 2Dpol, 3′-UTR	40°C (37°C)	HeLa S3	Bouchard et al. (1995)	
Family Flaviviridae	Genus Flavivirus	DENV	rDENV NS5	NS5	39°C (35°C)	Vero	Hanley et al. (2002)
		E645A-K646A	Not ts	HuH-7			
	WNV	rWNV NS4B	NS4B	41°C (37°C)	Vero	Wicker et al. (2006)	
	JEV	M1/311 ts104	Unknown	39°C (35°C)	CF	Halle and Zebovitz (1977)	
	LGV	ES-104	NS3, E	37°C (32°C)	Vero	Rumyantsev et al. (2006)	

RVFV, Rift valley fever virus; UUKV, Uukuniemi virus; MAGV, Maguari virus; LACV, La Crosse virus; BUNV, Bunyamwera virus; SSHV, Snowshow hare virus; AKV, Akabane virus; RSV, Respiratory syncytial virus; HPW, Human parainfluenza virus; VSV, Vesicular stomatitis virus; PV, Poliovirus; EV, Enterovirus; DENV, Dengue virus; WNV, West Nile virus; JEV, Japanese encephalitis virus; LGV, Langat virus.
of vaccination routes. Meanwhile, further characterization of 12 vaccine is efficacious for aerosol RVFV challenge, regardless
and Peters, 2011b). These results clearly indicate that the MP-
6 years. The vaccinated rhesus macaques were protected from
in 1.0 ml volume) of rhesus macaques with MP-12 induced serum
Neutralization Test 80: PRNT80), which was maintained for
vaccination of rhesus macaques with MP-12 vaccine also led to
Aerosol (RVFV challenge via the respiratory route has been studied.
pathogenic RVFV. Efficacy of the MP-12 vaccine in a pathogenic
about the efficacy of RVF vaccines against aerosol challenge of
must be considered in the case of bioterrorism. Little is known
A vaccine protection from an exposure via aerosols or powders
is safe, nonteratogenic, and confers protection from viremia, pyrexia,
avian outbreak of the pathogenic ZH501 strain (Morrill
Neutralization Test 80: PRNT80), which was maintained for 6 years. The vaccinated rhesus macaques were protected from
an aerosol challenge of the pathogenic ZH501 strain (Morrill
and Peters, 2011b). These results clearly indicate that the MP-
12 vaccine is efficacious for aerosol RVFV challenge, regardless of
vaccination routes. Meanwhile, further characterization of
viral replications in upper and lower respiratory tract will be
important to evaluate the risk of available live-attenuated RVF
vaccine candidates: e.g., MP-12, or rMP12-ΔNSm21/384 (Morrill
et al., 2013a,b), Clone 13 vaccine (Dungu et al., 2010), or
rZH501ΔNSsΔNSm (Bird et al., 2011).

Efficacy of MP-12 Vaccine against Aerosol Challenge of Pathogenic RVFV

A vaccine protection from an exposure via aerosols or powders
must be considered in the case of bioterrorism. Little is known
about the efficacy of RVF vaccines against aerosol challenge of
pathogenic RVFV. Efficacy of the MP-12 vaccine in a pathogenic
RVFV challenge via the respiratory route has been studied. Aerosol (~1 × 10^5 pfu) or intranasal vaccination (~1 × 10^4 pfu
in 1.0 ml volume) of rhesus macaques with MP-12 induced serum
neutralizing IgG (Morrill and Peters, 2011a). Intramuscular
vaccination of rhesus macaques with MP-12 vaccine also led to
neutralizing antibody titers of 1:320 to 1:1,280 (Plaque Reduction
Neutralization Test 80: PRNT80), which was maintained for 6 years. The vaccinated rhesus macaques were protected from
an aerosol challenge of the pathogenic ZH501 strain (Morrill
and Peters, 2011b). These results clearly indicate that the MP-
12 vaccine is efficacious for aerosol RVFV challenge, regardless
of vaccination routes. Meanwhile, further characterization of
viral replications in upper and lower respiratory tract will be
important to evaluate the risk of available live-attenuated RVF

Concluding Remarks

Outbreak of RVF causes decreased animal productivities and viral
persistance in mosquito vectors for unknown periods of time, thus
significantly impacting the animal industry. In the U.S.,
the live-attenuated MP-12 vaccine is conditionally licensed, but
the vaccine will still require an improvement in terms of safety
considering reported side effects: e.g., abortions in pregnant ewes,
necrosis in calf liver. Further studies should design additional
attenuation mutations rationally, including gene deletion(s) or ts
mutations, to fully attenuate the S-, M-, and L-segments, toward
the development of highly safe and efficacious RVF vaccines
(Grobbelaar et al., 2011; Ikegami, 2012; Lihoradova and Ikegami,
2012).

Acknowledgments

We thank Ms. Hoai J. Ly and Ms. Inaia Phoenix for their
proofreading of this manuscript. This work was partly supported
by NIH grant R01 AI08764301, and by the Sealy Center for
Vaccine Development at The University of Texas Medical Branch
at Galveston.

References

Abu-Elyazeed, R., El-Sharkawy, S., Olson, J., Botros, B., Soliman, A., Salih, A., et al.
(1996). Prevalence of anti-Rift Valley fever IgM antibody in abattoir workers in
the Nile delta during the 1993 outbreak in Egypt. *Bull. World Health Organ.* 74,
155–158.

Arita, M., Shimizu, H., Nagata, N., Ami, Y., Suzuki, Y., Sata, T., et al.
(2005). Temperature-sensitive mutants of enterovirus 71 show attenuation
in cynomolgus monkeys. *J. Gen. Virol.* 86, 1391–1401. doi: 10.1099/vir.0.07840
Billecocq, A., Spiegel, M., Vialat, P., Kohl, A., Weber, F., Bouloy, M., et al.
(2004). NSs protein of Rift Valley fever virus blocks interferon production by inhibiting
host gene transcription. *J. Virol.* 78, 9796–9806. doi: 10.1128/JVI.78.18.9796-
9806.2004.

Bird, B. H., Ksiazek, T. G., Nichol, S. T., and Maclachlan, N. J.
(2009). Rift Valley fever virus. *J. Am. Vet. Med. Assoc.* 234, 883–893. doi:
10.2460/javma.234.7.883.

Bird, B. H., Maartens, I. H., Campbell, S., Erasmus, B. J., Erickson, B. R., Dodd,
K. A., et al. (2011). Rift Valley fever virus vaccine lacking the NSs and NSm
genes is safe, nonteratogenic, and confers protection from viremia, pyrexia,
and abortion following challenge in adult and pregnant sheep. *J. Virol.* 85,
12901–12909. doi: 10.1128/JVI.06046-11.

Botros, B., Omar, A., Elian, K., Mohamed, G., Soliman, A., Salih, A., et al.
(2006). Adverse response of non-indigenous cattle of European breeds to live
attenuated Smithburn Rift Valley fever vaccine. *J. Med. Virol.* 88, 65
(Pt 6), 1079–1090. doi: 10.1099/0022-1317-65-6-1079.

Bouchard, M. J., Lam, D. H., and Racaniello, V. R.
(1995). Determinants of
neuroattenuation in the type 1 poliovirus Sabin vaccine. *J. Virol.* 69, 4972–4978.

Caplen, H., Peters, C. J., and Bishop, D. H. (1985). Mutagen-directed attenuation
of Rift Valley fever virus as a method for vaccine development. *J. Gen. Virol.*
66(Pt 10), 2271–2277. doi: 10.1099/0022-1317-66-10-2271.

CDC. (2007). Rift Valley fever outbreak—Kenya, November 2006-January 2007.
MMWR Morb. Mortal. Wkly. Rep. 56, 73–76.

Chambers, P. G., and Swanepoel, R. (1980). Rift valley fever in abattoir workers.
Cent. Afr. J. Med. 26, 122–126.

Chan, W., Zhou, H., Kemble, G., and Jin, H. (2008). The cold adapted
and temperature sensitive influenza A/Ann Arbor/60/6 virus, the master
donor virus for live attenuated influenza vaccines, has multiple defects in
replication at the restrictive temperature. *Virology* 380, 304–311. doi:
10.1016/j.virology.2008.07.027.

Crabtree, M. B., Kent Crockett, R. J., Bird, B. H., Nichol, S. T., Erickson, B. R.,
Biggerstaff, B. J., et al. (2012). Infection and transmission of Rift Valley
fever viruses lacking the NSs and/or NSm genes in mosquitoes: potential
role for NSm in mosquito infection. *PLoS Negl. Trop. Dis.* 6.e1639. doi:
10.1371/journal.pntd.0001639.

Dauney, R., and Hudson, J. R. (1931). Enzootic hepatitis or Rift Valley fever: an
undescribed virus disease of sheep cattle and man from east Africa. *J. Pathol.
Bacteriol.* 34, 545–579. doi:10.1002/path.1700340418.

Dungu, B., Louw, I., Lubisi, A., Hunter, P., Von Teichman, B. F., and Bouloy, M.
(2010). Evaluation of the efficacy and safety of the Rift Valley Fever Clone 13
vaccine in sheep. *Vaccine* 28, 4581–4587. doi: 10.1016/j.vaccine.2010.04.085.

Eifan, S. A., and Elliott, R. M. (2009). Mutational analysis of the Bunyamwera
Orthobunyavirus nucleocapsid protein gene. *J. Virol.* 83, 11307–11317. doi:
10.1128/JVI.01460-09.

Empey, K. M., Peebles, R. S. Jr., and Kolls, J. K. (2010). Pharmacologic advances in
the treatment and prevention of respiratory syncytial virus. *Clin. Infect. Dis.*
50, 1258–1267. doi: 10.1086/527301.

Endres, M. J., Valsamakis, A., Gonzalez-Scarano, F., and Nathanson, N.
(1990). Neuroattenuated bunyavirus variant: derivation, characterization, and
revertant clones. *J. Virol.* 64, 1927–1933.

Gahmberg, N. (1984). Characterization of two recombination-complementation
groups of Uukuniemi virus temperature-sensitive mutants. *J. Gen. Virol.*
65(Pt 6), 1079–1090. doi:10.1099/0022-1317-65-6-1079.

Nishiyama and Ikegami Temperature-sensitivity and RVF vaccine development
Galloway, S. E., and Wertz, G. W. (2009). A temperature sensitive VSV identifies L protein residues that affect transcription but not replication. Virology 388, 286–293. doi: 10.1016/j.virology.2009.03.015

Gentsch, J., and Bishop, D. H. (1976). Recombination and complementation between temperature-sensitive mutants of a Bunyavirus, snowshoe hare virus. J. Virol. 20, 351–354.

Gerrard, S. R., and Nichol, S. T. (2002). Characterization of the Golgi retention motif of Rift Valley fever virus G(N) glycoprotein. J. Virol. 76, 12200–12210. doi: 10.1128/JVI.76.20.12200-12210.2002

Gommet, C., Billecocq, A., Jouvin, G., Hasan, M., Zaverucha Do Valle, T., Galloway, S. E., and Wertz, G. W. (2009). A temperature sensitive VSV identifies determinants of virus propagation in vertebrate and invertebrate hosts. Emerg. Microbe Infect. 3, e71. doi: 10.1038/em.2014.71

Le May, N., Dubaële, S., Proietti De Santis, L., Billecocq, A., Bouloy, M., and Egly, J. M. (2004). TFIIH transcription factor, a target for the Rift Valley hemorrhagic fever virus. Cell 116, 541–550. doi: 10.1016/S0092-8674(04)00132-1

Le May, N., Mansuroğlu, Z., Leger, P., Josse, T., Blot, G., Billecocq, A., et al. (2008). A SAP30 complex inhibits IFN-beta expression in Rift Valley fever virus infected cells. PLoS Pathog. 4:e13. doi: 10.1371/journal.ppat.0040013

Lihoradova, O., and Ikegami, T. (2012). Modifying the NSs gene to improve live-attenuated vaccine for Rift Valley fever. Expert Rev. Vaccines 11, 1283–1285. doi: 10.1586/erv.12.106

Lozach, P. Y., Kuhbacher, A., Meier, R., Mancini, R., Bitto, D., Bouloy, M., et al. (2011). DC-SIGN as a receptor for phleboviruses. Cell Host Microbe 10, 75–88. doi: 10.1016/j.chom.2011.06.007

Macadam, A. J., Pollard, S. R., Ferguson, G., Dunn, G., Skuce, R., Almond, J. W., et al. (1991). The 5‘ non-coding region of the type 2 poliovirus vaccine strain contains determinants of attenuation and temperature sensitivity. Virology 181, 451–458. doi: 10.1016/0042-6822(91)90877-E

Madani, T. A., Al-Mazrou, Y. Y., Al-Jeffri, M. H., Mishkhas, A. A., Al-Rabeah, A. M., Turkistani, A. M., et al. (2003). Rift Valley fever epidemic in Saudi Arabia: epidemiological, clinical, and laboratory characteristics. Clin. Infect. Dis. 37, 1084–1092. doi: 10.1086/378747

Miller, M. L., Bennett, K. E., Drolet, B. S., Lindsay, R., Mecham, J. O., Reeves, W. K., et al. (2015). Evaluation of the efficacy, potential for vector transmission, and duration of immunity of MP-12, an attenuated Rift Valley fever virus vaccine candidate, in sheep. Clin. Vaccine Immunol. doi: 10.1128/CVI.00114-15 [Epub ahead of print].

Minor, P. D., Dunn, G., Evans, D. M., Magrath, D. L., John, A., Howlett, J., et al. (1989). The temperature sensitivity of the Sabin type 3 vaccine strain of poliovirus: molecular and structural effects of a mutation in the capsid protein VP3. J. Gen. Virol. 70(Pt 5), 1117–1123. doi: 10.1099/0022-1317-70-5-1117

Morrill, J. C., Carpenter, L., Taylor, D., Ramsburg, H. R., and Peters, C. J. (1991). Further evaluation of a mutagen-attenuated Rift Valley fever virus vaccine in sheep. Vaccine 9, 35–41. doi: 10.1016/0264-410X(91)90014-Y

Morrill, J. C., Verstraete, M. B., Caplen, H., Turell, M. J., Johnstone, A. J., and Peters, C. J. (1987). Pathogenicity and immunogenicity of a mutagen-attenuated Rift Valley fever virus immunogen in pregnant ewes. Am. J. Vet. Res. 48, 1042–1047.

Morrill, J. C., Laughlin, R. C., Lokugamage, N., Pugh, R., Sbrana, E., Weise, W. J., et al. (2013a). Safety and immunogenicity of recombinant Rift Valley fever virus MP-12 vaccine candidates in sheep. Vaccine 31, 559–565. doi: 10.1016/j.vaccine.2012.10.118

Morrill, J. C., Laughlin, R. C., Lokugamage, N., Wu, J., Pugh, R., Kanani, P., et al. (2013b). Immunogenicity of a recombinant Rift Valley fever MP-12 NSm deletion vaccine candidate in calves. Vaccine 31, 4988–4994. doi: 10.1016/j.vaccine.2013.08.003

Morrill, J. C., Mebus, C. A., and Peters, C. J. (1997a). Safety and efficacy of a mutagen-attenuated Rift Valley fever virus vaccine in cattle. Am. J. Vet. Res. 58, 1104–1109.

Morrill, J. C., Mebus, C. A., and Peters, C. J. (1997b). Safety of a mutagen-attenuated Rift Valley fever virus vaccine in fetal and neonatal bovids. Am. J. Vet. Res. 58, 1110–1114.

Morrill, J. C., and Peters, C. J. (2003). Pathogenicity and neurovirulence of a mutagen-attenuated Rift Valley fever virus vaccine in rhesus monkeys. Vaccine 21, 2994–3002. doi: 10.1016/S0264-410X(03)00131-2

Morrill, J. C., and Peters, C. J. (2011a). Mucosal immunization of rhesus macaques with Rift Valley Fever MP-12 vaccine. J. Infect. Dis. 204, 617–625. doi: 10.1093/infdis/jir354

Morrill, J. C., and Peters, C. J. (2011b). Protection of MP-12-vaccinated rhesus macaques against parental and aerosol challenge with virulent rift valley fever virus. J. Infect. Dis. 204, 229–236. doi: 10.1093/infdis/jir249
Muller, R., Poch, O., Delarue, M., Bishop, D. H., and Bouloy, M. (1994). Rift Valley fever virus L segment: correction of the sequence and possible functional role of newly identified regions conserved in RNA-dependent polymerases. J. Gen. Virol. 75, 1345–1352. doi: 10.1099/0022-1317-75-6-1345

Newman, J. T., Riggs, J. M., Surman, S. R., Mcauliffe, J. M., Mulaikal, T. A., Collins, P. L., et al. (2004). Generation of recombinant human parainfluenza virus type I vaccine candidates by importation of temperature-sensitive and attenuating mutations from heterologous paramyxoviruses. J. Virol. 78, 2017–2028. doi: 10.1128/JVI.78.4.2017-2028.2004

Ogawa, Y., Kato, K., Tohya, Y., and Akashi, H. (2007). Characterization of temperature-sensitive Akabane virus mutants and their roles in attenuation. Arch. Virol. 152, 1679–1686. doi: 10.1007/s00705-007-0991-4

Olaye, O. D., Tomori, O., Ladipo, M. A., and Schmitz, H. (1996). Rift Valley fever in Nigeria: infections in humans. Rev. Sci. Tech. 15, 923–935.

Paillot, R., Hannant, D., Kydd, J. H., and Daly, J. M. (2006). Vaccination against equine influenza: quid novi? Vaccine 24, 4047–4061. doi: 10.1016/j.vaccine.2006.02.030

Pepin, M., Bouloy, M., Bird, B. H., Kemp, A., and Pawska, J. (2010). Rift Valley fever virus (Bunyaviridae: Phlebovirinae); an update on pathogenesis, molecular epidemiology, vectors, diagnostics and prevention. Vet. Res. 41, 61. doi: 10.1051/vetres/2010033v100009

Piper, M. E., Sorenson, D. R., and Gerrard, S. R. (2011). Efficient cellular release of Rift Valley fever virus requires genomic RNA. PLoS ONE 6:e18070. doi: 10.1371/journal.pone.0018070

Polack, F. P., and Karron, R. A. (2004). The future of respiratory syncytial virus vaccine development. Pediatr. Infect. Dis. J. 23, S65–S73. doi: 10.1097/00002200-200407000-00012

Pollitt, E., Zhao, J., Muscat, P., and Elliott, R. M. (2006). Characterization of Maguari orthobunyavirus mutants suggests the nonstructural protein NSm is not essential for growth in tissue culture. Virology 348, 224–232. doi: 10.1016/j.virol.2005.12.026

Rahmeh, A. A., Schenk, A. D., Danek, E. I., Kranzusch, P. J., Liang, B., Wah, T., et al. (2010). Molecular architecture of the vesicular stomatitis virus RNA polymerase. Proc. Natl. Acad. Sci. U.S.A. 107, 20075–20080. doi: 10.1073/pnas.1013559107

Reguera, J., Weber, F., and Cusack, S. (2010). Bunyaviridae RNA polymerases (L-protein) have an N-terminal, influenza-like endonuclease domain, essential for viral cap-dependent transcription. PLoS Pathog. 6:e1000110. doi: 10.1371/journal.ppat.1001101

Rettnermier, C. W., Dumont, R., and Baltimore, D. (1975). Screening procedure for complementation-dependent mutants of vesicular stomatitis virus. J. Virol. 15, 41–49.

Richman, D. D., and Murphy, B. R. (1979). The association of the temperature-sensitive phenotype with viral attenuation in animals and humans: implications for the development and use of live virus vaccines. Rev. Infect. Dis. 1, 413–433. doi: 10.1093/clinids/i.1.413

Robertshaw, D. (2004). “Temperature regulation and thermal environment,” in Duke’s Physiology of Domestic Animals, 12th Edn, ed. W. O. Reece (Ithaca, NY: Cornell University Press).

Rossi, C. A., and Turell, M. J. (1988). Characterization of attenuated strains of Rift Valley fever virus. J. Gen. Virol. 69(Pt 4), 817–823. doi: 10.1099/0022-1317-69-4-817

Rumyantsev, A. A., Murphy, B. R., and Petiev, A. G. (2006). A tick-borne Langat virus mutant that is temperature sensitive and host range restricted in neuroblastoma cells and lacks neuroinvasiveness for immunodeficient mice. J. Virol. 80, 1427–1439. doi: 10.1128/JVI.80.3.1427-1439.2006

Saluzzo, J. F., and Smith, J. F. (1990). Use of reassortant viruses to map attenuating and temperature-mutation of the Rift Valley fever virus MP-12 vaccine. Vaccine 8, 369–375. doi: 10.1016/0264-410X(90)90096-5

Schmaljohn, C., and Nichol, S. T. (2007). “Bunyaviridae,” in Fields Virology, 5th Edn, eds D. M. Knipe, P. M. Howley, D. E. Griffin, R. A. Lamb, M. A. Martin, B. Roizman, et al. (Philadelphia, PA: Lippincott, Williams & Wilkins), 1741–1789.

Skidmore, M. H., Durbin, A. P., Tatej, J. M., Wu, S. L., Paschalistas, M., Tao, T., et al. (1998). Three amino acid substitutions in the L protein of the human parainfluenza virus type 3 cp45 live attenuated vaccine candidate contribute to its temperature-sensitive and attenuation phenotypes. J. Virol. 72, 1762–1768.

Smith, D. R., Steele, K. E., Shamblin, J., Honko, A., Johnson, J., Reed, C., et al. (2010). The pathogenesis of Rift Valley fever virus in the mouse model. Virology 407, 256–267. doi: 10.1016/j.virology.2010.08.016

Swanepoel, R., and Coetzer, J. A. W. (2004). “Rift Valley fever,” in Infectious Diseases of Livestock with Special Reference to Southern Africa, 2nd edn, eds J. A. W. Coetzer and R. C. Tustin (Cape Town: Oxford University Press), 1037–1070.

Talan, M. (1984). Body temperature of C57BL/6J mice with age. Exp. Gerontol. 19, 25–29. doi: 10.1016/0531-5565(84)90028-7

Tang, R. S., Nguyen, N., Zhou, H., and Jin, H. (2002). Clustered charge-to-alanine mutagenesis of human respiratory syncytial virus L polymerase generates temperature-sensitive viruses. Virology 302, 207–216. doi: 10.1006/viro.2002.1596

Terasaki, K., Won, S., and Makino, S. (2013). The C-terminal region of Rift Valley fever virus NSm protein targets the protein to the mitochondrial outer membrane and exerts anti-apoptotic function. J. Virol. 87, 676–682. doi: 10.1128/JVI.02192-12

Vialat, P., Muller, R., Vu, T. H., Prehaut, C., and Bouloy, M. (1997). Mapping of the mutations present in the genome of the Rift Valley fever virus attenuated MP12 strain and their putative role in attenuation. Virus Res. 52, 43–50. doi: 10.1016/S0168-1702(97)00097-X

Weingartl, H. M., Zhang, S., Marszal, P., Mcgreevy, A., Burton, L., and Wilson, W. C. (2014). Rift Valley fever virus incorporates the 78 kDa glycoprotein into virions matured in mosquito C6/36 cells. PLoS ONE 9:e87385. doi: 10.1371/journal.pone.0087385

Whitehead, S. S., Fostone, C. Y., Collins, P. L., and Murphy, B. R. (1998). A single nucleotide substitution in the transcription start signal of the M2 gene of respiratory syncytial virus vaccine candidate cpts248/404 is the major determinant of the temperature-sensitive and attenuation phenotypes. Virology 247, 232–239. doi: 10.1006/viro.1998.9248

Wicker, J. A., Whiteman, M. C., Beasley, D. W., Davis, C. T., Zhang, S., Schneider, B. S., et al. (2006). A single amino acid substitution in the central portion of the West Nile virus NS4B protein confers a highly attenuated phenotype in mice. Virology 349, 245–253. doi: 10.1016/j.virol.2006.03.007

Won, S., Ikegami, T., Peters, C. J., and Makino, S. (2006). NSm and 78-kilodalton proteins of Rift Valley fever virus are nonessential for viral replication in cell culture. J. Virol. 80, 8274–8278. doi: 10.1128/JVI.00476-06

Conflict of Interest Statement: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Copyright © 2015 Nishiyama and Ikegami. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.