Prevalence of putative invasive pulmonary aspergillosis in critically ill patients with COVID-19
Alexandre Alanio, Sarah Dellièrè, Sofiane Fodil, Stéphane Bretagne, Bruno Megarbane

To cite this version:
Alexandre Alanio, Sarah Dellièrè, Sofiane Fodil, Stéphane Bretagne, Bruno Megarbane. Prevalence of putative invasive pulmonary aspergillosis in critically ill patients with COVID-19. The Lancet Respiratory Medicine, Elsevier, 2020, 8 (6), pp.e48-e49. 10.1016/s2213-2600(20)30237-x. pasteur-02864593

HAL Id: pasteur-02864593
https://hal-pasteur.archives-ouvertes.fr/pasteur-02864593
Submitted on 11 Jun 2020

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial 4.0 International License
High prevalence of putative invasive pulmonary aspergillosis in critically ill COVID-19 patients

Alexandre Alanio,1,2,3,* Sarah Dellièré,1,2,3 Sofiane Fodil,2,4 Stéphane Bretagne,1,2,3 Bruno Mégarbane2,5,6

1 Laboratoire de Parasitologie-Mycologie, AP-HP, Groupe Hospitalier Saint-Louis-Lariboisière-Fernand-Widal, Paris, France
2 Université de Paris, Paris, France
3 Institut Pasteur, CNRS, Unité de Mycologie Moléculaire, Centre National de Référence Mycoses Invasives et Antifongiques, URA3012, Paris, France
4 Médecine Intensive Réanimation, AP-HP, Groupe Hospitalier Saint-Louis-Lariboisière-Fernand-Widal, Paris, France
5 Réanimation Médicale et Toxicologique, AP-HP, Groupe Hospitalier Saint-Louis-Lariboisière-Fernand-Widal, Paris, France
6 INSERM UMRS1144, Paris, France

* Corresponding author: Dr Alexandre Alanio. Saint Louis Hospital, 1 avenue Claude Vellefaux, 75475 Paris CEDEX 10, alexandre.alanio@pasteur.fr.
About 5% of coronavirus disease 2019 (COVID-19) patients require intensive care unit (ICU) management. These patients are at high risk of developing secondary infections including invasive pulmonary aspergillosis (IPA). First reported with H1N1 influenza, IPA represents a frequent (20-30%) and early-onset complication (median, 3 days post-ICU admission) in critically ill influenza patients leading to enhanced illness severity and mortality (40-60%).

Most cases have been observed in non-immunocompromised patients, questioning the applicability of the EORTC-MSG consensus criteria used to define aspergillosis in immunocompromised patients. Therefore, an algorithm to discriminate Aspergillus colonization from putative IPA was developed in ICU patients based on mycological criteria combining culture from respiratory specimens and galactomannan detection in the bronchoalveolar lavage (BAL) and serum.

Paralleling what has been reported in influenza patients, we designed this prospective observational study to investigate IPA risk in critically ill COVID-19 patients. The patients were classified using the EORTC-MSG criteria (if immunocompromised) and the influenza-associated IPA criteria combined with serum beta-D-glucan and quantitative real-time PCR (qPCR) performed in the serum and/or pulmonary specimens (if non-immunocompromised).

Putative IPA was considered if (i) Aspergillus spp. was identified in BAL culture; or (ii) two of the following conditions were met, i.e. presence of Aspergillus spp. in bronchial aspiration (BA) culture; positive Aspergillus fumigatus qPCR in BAL, BA or serum; galactomannan index >0.8 in BAL; galactomannan index >0.5 in serum; and beta-D-glucan >80 pg/mL in serum. Noteworthy, direct examination of respiratory specimens was not performed to avoid operator contamination.

Twenty-seven successive mechanically ventilated COVID-19 patients (18M/9F, median age, 63 years [range, 43-79]) were included. Specimens (20 BALs/7 BAs) were obtained on day 1-6 post-intubation. Probable and putative IPAs were diagnosed in one (4%) and eight patients (30%), respectively (Table 1). Putative IPA diagnosis relied on Aspergillus identification in BAL culture (N=2) and validation of ≥2 mycological criteria (N=6).

History of hypertension was significantly more frequently reported in the IPA patients (7/9 versus 6/18, p=0.04). No other significant differences were observed in terms of age, EORTC-MSG risk factors for IPA, time between onset of symptoms and intubation and times between onset of symptoms or intubation and Aspergillus respiratory specimen collection, severity, laboratory data, non-COVID CT-scan images, and steroid administration. Antifungal therapy was initiated in 2/9 IPA patients. Mortality rate did not differ between IPA and non-IPA patients (4/9 versus 7/18, p=0.9).
Here we found putative IPA in almost one third of our mechanically ventilated COVID-19 patients, at a similar rate to that which has been observed in influenza patients.\(^3,^4\) One patient with myeloma presented a probable IPA based on the EORTC criteria\(^5\) with one nodule on chest X-Rays in addition to the typical COVID-19-attributed lesions.

Since CT-scan and BAL are extremely difficult to perform in life-threatening COVID-19 patients, mycological data collection is essential to allow IPA diagnosis. We strongly support adding beta-D-glucan and qPCR in serum and respiratory specimens to the currently accepted mycological work-up (i.e. BAL culture and galactomannan testing)\(^3,^6\) until the most sensitive and specific biomarkers are determined in this setting. Serum galactomannan was negative in 8/9 patients, suggesting lesser degree of aspergillus invasiveness or early IPA diagnosis since respiratory specimens were obtained shortly after intubation. Interestingly, galactomannan was negative in our two patients receiving hydroxychloroquine thought to have a negative effect on this measurement.\(^9\)

We are convinced that IPA is more likely if at least two mycological criteria are met, such as in six of our patients. One patient presented positive serum beta-D-glucan (>80 pg/mL) and galactomannan index (>0.5) without *Aspergillus* detection in the BAL. Three others had *Aspergillus fumigatus* culture without positive qPCR detection or galactomannan antigen in the BAL or BA. Not considering positive culture alone as a diagnostic criterion in accordance with what is currently accepted,\(^4,^6\) would have resulted in underestimating the frequency of putative IPA (22% rather than 30% in our study).

Despite similar IPA rates in critically ill COVID-19 and influenza patients, the contribution of *Aspergillus* to the patient presentation in each illnesses may be different. In our IPA patients, death including in the two patients who received anti-*Aspergillus* treatment was not related to aspergillosis but to bacterial septic shock complicated by multiorgan failure.

Consistent with others,\(^10\) our findings support systematic screening for Aspergillus infection markers in critically ill COVID-19 patients. Although oseltamivir-induced inhibition of the host neuraminidase activity has been suggested as possible molecular mechanism leading to decreased anti-*Aspergillus* protective immunity in influenza patients, the exact reasons for increased vulnerability of the COVID-19 patient to *Aspergillus* remain to be determined as well as *Aspergillus* contribution to COVID-19-related lung inflammation.

\[\text{Conflict of interest}\]

The authors declare no conflict of interest
This study was part of the COVID-ICU registry and the French COVID-19 cohort registry conducted by the REACTing consortium and directed by INSERM and ISARIC. Our institutional ethics committee approved the study (N°, IDRCB, 2020-A00256-33; CPP, 11-20 20.02.04.68737). When possible, signed informed consent was obtained from the patients or the next of kin.

References

1- Wu Z, McGoogan JM. Characteristics of and Important Lessons From the Coronavirus Disease 2019 (COVID-19) Outbreak in China: Summary of a Report of 72 314 Cases From the Chinese Center for Disease Control and Prevention. *JAMA* 2020. DOI:10.1001/jama.2020.2648.

2- Lescure F-X, Bouadma L, Nguyen D, et al. Clinical and virological data of the first cases of COVID-19 in Europe: a case series. *Lancet Infect Dis* 2020. DOI:10.1016/s1473-3099(20)30200-0.

3- Wauters J, Baar I, Meersseman P, et al. Invasive pulmonary aspergillosis is a frequent complication of critically ill H1N1 patients: a retrospective study. *Intens Care Med* 2012; 38: 1761–8.

4- Schauwvlieghe AFAD, Rijnders BJA, Philips N, et al. Invasive aspergillosis in patients admitted to the intensive care unit with severe influenza: a retrospective cohort study. *Lancet Respir Medicine* 2018; 6: 782–92.

5- Donnelly JP, Chen SC, Kauffman CA, et al. Revision and Update of the Consensus Definitions of Invasive Fungal Disease From the European Organization for Research and Treatment of Cancer and the Mycoses Study Group Education and Research Consortium. *Clin Infect Dis Official Publ Infect Dis Soc Am* 2019. DOI:10.1093/cid/ciz1008.

6- Blot SI, Taccone FS, Abeele A-MV den, et al. A Clinical Algorithm to Diagnose Invasive Pulmonary Aspergillosis in Critically Ill Patients. *Am J Resp Crit Care* 2012; 186: 56–64.
7- White P, Alanio A, Cruciani M, et al. Nucleic Acid Tools for Invasive Fungal Disease Diagnosis. *Curr Fungal Infect Rep* 2020; 14: 76–88.

8- Alanio A, Menotti J, Gits-Muselli M, et al. Circulating Aspergillus fumigatus DNA Is Quantitatively Correlated to Galactomannan in Serum. *Front Microbiol* 2017; 8: 2040.

9- Verweij PE, Gangneux JP, Bassetti M, et al. Diagnosing COVID-19 associated pulmonary aspergillosis. *Lancet Microbe* 2020. DOI: https://doi.org/10.1016/S2666-5247(20)30027-6.

10- Koehler P, Cornely OA, Böttiger BW, et al. COVID-19 Associated Pulmonary Aspergillosis. *Mycoses* 2020. DOI:10.1111/myc.13096
Patients (gender, age)	Risk factors of severe COVID-19	EORTC risk factors	APACHE II score	Thoracic CT-scan/X-Ray¹	Anti-COVID-19 therapies	Steroids to treat pneumonia²	Renal replacement therapy	Vasopressor	Pulmonary specimen³	IPA diagnosis	Outcome							
Pt1 (M, 53)	HT, obesity, IHD	None	26	Typical COVID-19	LPV/RTV	Yes	Yes	Yes	BAL -	BAL Culture⁴	BAL/BA qPCR⁵	BAL galactomannan index	Serum qPCR⁶	beta-D-glucan (pg/mL)	Serum galactomannan index	Number of mycological criteria	Antifungal therapy	Outcome
Pt2 (F, 59)	HT, diabetes, obesity	None	16	Typical COVID-19	LPV/RTV, AZI	No	No	Yes	BAL +	BAL/BA qPCR⁵	BAL galactomannan index	Serum qPCR⁶	beta-D-glucan (pg/mL)	Serum galactomannan index	Number of mycological criteria	Antifungal therapy	Outcome	
Pt3 (F, 69)	HT, obesity	None	11	Typical COVID-19	LPV/RTV	Yes	No	Yes	BAL TA	BAL Culture⁴	BAL/BA qPCR⁵	BAL galactomannan index	Serum qPCR⁶	beta-D-glucan (pg/mL)	Serum galactomannan index	Number of mycological criteria	Antifungal therapy	Outcome
Pt4 (F, 63)	HT, diabetes, IHD	None	20	Typical COVID-19	LPV/RTV	Yes	Yes	Yes	BAL -	BAL Culture⁴	BAL/BA qPCR⁵	BAL galactomannan index	Serum qPCR⁶	beta-D-glucan (pg/mL)	Serum galactomannan index	Number of mycological criteria	Antifungal therapy	Outcome
Pt5 (M, 43)	Asthma	Steroids	8	Typical COVID-19	AZI	No	No	No	BAL +	BAL Culture⁴	BAL/BA qPCR⁵	BAL galactomannan index	Serum qPCR⁶	beta-D-glucan (pg/mL)	Serum galactomannan index	Number of mycological criteria	Antifungal therapy	Outcome
Pt6 (M, 79)	HT	None	16	Typical COVID-19, segmental	LPV/RTV, HCQ, AZI	Yes	No	Yes	BAL +	BAL Culture⁴	BAL/BA qPCR⁵	BAL galactomannan index	Serum qPCR⁶	beta-D-glucan (pg/mL)	Serum galactomannan index	Number of mycological criteria	Antifungal therapy	Outcome

Table 1. Clinical characteristics of nine critically ill COVID-19 patients with probable (N=1) and putative invasive pulmonary aspergillosis (IPA, N=8)
Patient	Gender/Age	Comorbidities	Severity at Admission	Typical COVID-19	LPV/RTV, HCQ, AZI	BAL	BAL +	29.0	3.91	-	135	0.37	3	VRC	Death (day 18)			
Pt7	M, 77	HT, asthma	None	25	Typical COVID-19, emphysema	Yes	Yes	Yes	BAL	+	29.0	3.91	-	135	0.37	3	VRC	Death (day 18)
Pt8	F, 75 yr	HT, diabetes	None	21	Typical COVID-19	Yes	No	Yes	BAL	+	31.7	0.36	-	450	0.37	3	CSP	Death (day 11)

Probable IPA patient

Patient	Gender/Age	Comorbidities	Severity at Admission	Typical COVID-19	LPV/RTV, AZI	BAL	BAL +	TA	ND	-	14	0.09	1	None	Death (day 3)				
Pt9	M, 47	None	Myeloma, steroids	10	Typical COVID-19 + one peripheral nodule	No	No	No	Yes	TA	+	-	ND	-	14	0.09	1	None	Death (day 3)

1. **HT,** hypertension; **IHD,** ischemic heart disease; **LPV/RTV,** lopnavir/ritonavir combination; **AZI,** azithromycin; **HCQ,** hydroxychloroquine; **IPA,** invasive pulmonary aspergillosis; **VRC,** voriconazole; **CSP,** caspofungin; **EORTC,** European Organization for Research and Treatment of Cancer; †Steroid regimen, dexamethasone intravenous dose of 20 mg once daily from day 1 to day 5, followed by 10 mg once daily from day 6 to day 10; ‡Culture (-, negative; +, positive with *Aspergillus fumigatus* identification);

3. **qPCR,** quantitative real-time PCR (-, negative; if positive, number of quantification cycles) Thoracic CT-scan/X-Ray*: Thoracic Ct scan was performed in Pt3, Pt4, Pt5, five days (median) before respiratory specimens. Pulmonary specimen*: BAL, Bronchoalveolar lavage; BA, Bronchial Aspiration; No endotracheal/endobronchial lesion was observed.