LETTER TO THE EDITOR

What to Expect from Antibody Assays of SARS-CoV-2?

TO THE EDITOR:
The COVID-19 pandemic has resulted in nearly 7 million confirmed infections and >400 000 deaths as of June 7, 2020, with 3 billion people under lockdown worldwide. Nucleic acid tests of the disease-causing SARS-CoV-2 have been the mainstream diagnostic method in the early phase of outbreak, but the abundance of virus is reported to fade 3–5 weeks after infection (1). Furthermore, with growing concern about halted social activity and intention to reopen, serological assays detecting SARS-CoV-2 antibodies for population surveillance have gained increasing interest. To have reasonable expectations of the antibody tests, better understanding of their properties is warranted.

KEY PROTEINS IN SARS-COV-2
SARS-CoV-2 is an enveloped, single-stranded, and positive-sense RNA virus that belongs to the family of Coronaviridae. It has 4 major structural proteins—spike (S), envelope, membrane, and nucleocapsid (N)—and a number of other nonstructural proteins. The S protein is essential to viral attachment, fusion, entry, and transmission. Its N-terminal S1 subunit, composed of N-terminal domain and receptor-binding domain (RBD), is responsible for virus–receptor binding, and the C-terminal S2 subunit is responsible for virus–cell membrane fusion. The S1-RBD interacts with host cells expressing angiotensin-converting enzyme 2 as receptors. The receptor binding triggers conformational changes in the S2 subunit that result in virus fusion and entry into the target cell (2).

HUMORAL RESPONSE TO SARS-COV-2
The time course of SARS-CoV-2 seroconversion is not fully understood at this time, but studies are rapidly emerging. The seroconversion window may range from a few days to 3 weeks after symptom onset (3). The median duration of the IgM and IgA detection period was reported to be 5 days, whereas IgG was detected at a median of 14 days after symptom onset (4). Within 2 weeks after symptom onset, the positive rate of total antibody usually increased to nearly 100%.

FORMAT OF SEROLOGICAL ANTIBODY TESTS
The development of antibody tests starts from selecting antigen epitopes in the viral protein to allow antibodies (IgM, IgA, IgG) present in infected individuals to bind to recombinant viral proteins. S protein tends to be the a more desirable target given its specificity and high immunogenicity, with the RBD in S protein being the target of many neutralizing antibodies; however, other strategies use both S and N proteins. Several formats of antibody assays for SARS-CoV-2 have been produced, including qualitative lateral flow assay, qualitative or quantitative ELISA, or chemiluminescent assay and neutralizing assays. The first 2 types test for either total antibodies or for specific IgG, IgM, or IgA antibodies. Neutralizing assays test for active antibodies that can effectively block the virus. The antibody assay also needs to demonstrate minimal cross-reactivity with other coronaviruses (2).

As of June 7, 2020, the US Food and Drug Administration has issued emergency use authorizations for 17 serological tests, and we summarized their technical features in Table 1. The Vitros assay, for example, uses a SARS-CoV-2 S protein antigen to immobilize antibodies in the blood sample and murine monoclonal antihuman IgM/IgG antibodies for detection. The Diasorin assay uses recombinant S1 and S2.
Table 1. Antibody assays with US Food and Drug Administration emergency use authorizations as of June 7, 2020.

Test name	Manufacturer	Approval date	Format	Antigen target	Antibody classes
qSARS-CoV-2 IgG/IgM Rapid Test	Cellex	4/1/2020	Lateral flow immunoassay	SARS-CoV-2 S and N proteins	IgM, IgG
DPP COVID-19 IgM/IgG	Cymbio Diagnostics System	4/14/2020	Lateral flow with reader	SARS-CoV-2 N protein	IgM, IgG
VITROS Immunodiagnostic Products Anti-SARS-CoV-2 Total Reagent Pack	Ortho Clinical Diagnostics	4/14/2020	Qualitative chemiluminescent assay	SARS-CoV-2 S protein and RBD protein	IgG
COVID-19 ELISA IgG Antibody Test	Mount Sinai Laboratory	4/15/2020	Antibody-titer ELISA	SARS-CoV-2 S protein and RBD protein	IgG, IgG
Anti-SARS-CoV-2 IgM/IgG Rapid Test	Autobio Diagnostics	4/24/2020	Lateral flow immunoassay	SARS-CoV-2 S protein	IgM, IgG
LIAISON SARS-CoV-2 S1/S2 IgG	DiaSorin	4/24/2020	Qualitative chemiluminescent microparticle immunoassay	SARS-CoV-2 S1 and S2 proteins	IgG
SARS-CoV-2 IgG assay	Abbott Laboratories	4/26/2020	Antibody-titer ELISA	SARS-CoV-2 N protein	IgG
Platelia SARS-CoV-2 Total Ab assay	Bio-Rad Laboratories	4/29/2020	Antibody-titer ELISA	SARS-CoV-2 N protein	IgG

Continued
Test name	Manufacturer	Approval date	Format	Antigen target	Antibody class(es)
New York SARS-CoV Microsphere Immunoassay for Antibody Detection	Wadsworth Center, New York State Department of Health	4/30/2020	Microsphere immunoassay	SARS-CoV-2 N protein	Total Antibody
Elecsys Anti-SARS-CoV-2	Roche Diagnostics	5/2/2020	Qualitative chemiluminescent immunoassay	SARS-CoV-2 N protein	Total Antibody
Anti-SARS-CoV-2 ELISA (IgG)	EUROIMMUN US	5/4/2020	ELISA	SARS-CoV-2 S protein	IgG
Atellica IM SARS-CoV-2 Total (COV2T)	Siemens Healthcare Diagnostics	5/29/2020	Qualitative chemiluminescent microparticle immunoassay	SARS-CoV-2 S protein	Total Antibody
ADVIA Centaur SARS-CoV-2 Total (COV2T)	Siemens Healthcare Diagnostics	5/29/2020	Qualitative chemiluminescent microparticle immunoassay	SARS-CoV-2 S protein	Total Antibody
COVID-19 IgG/IgM Rapid Test Cassette (Whole Blood/Serum/Plasma)	Healgen Scientific	5/29/2020	Lateral flow immunoassay	SARS-CoV-2 S protein	IgM, IgG
RightSign COVID-19 IgG/IgM Rapid Test Cassette	Hangzhou Biotest Biotech	6/4/2020	Lateral flow immunoassay	SARS-CoV-2 S protein RBD domain	IgM, IgG
Vibrant COVID-19 Ab Assay	Vibrant America Clinical Labs	6/4/2020	Qualitative chemiluminescent immunoassay	SARS-CoV-2 S (S1, S2, RBD) and N proteins	IgM, IgG
antigens to capture sample antibodies on the solid-phase, and mouse monoclonal antibodies to human IgG for detection. The majority of the assays claimed positive agreement with PCR between 80% and 90% and close to 100% negative agreement.

NEUTRALIZING ANTIBODIES IN CONVALESCENT PATIENTS

Neutralizing antibody from a convalescent patient is believed to block SARS-CoV-2 from entering into target cells. Lessons from the 2003 SARS-CoV-1 showed that the specific IgG antibodies and neutralizing antibodies were highly correlated, peaking at month 4 after the onset of disease and decreasing gradually thereafter. Long-lasting specific IgG and neutralizing antibody were reported at least 2 years and as long as 17 years after infection (5). Because SARS-CoV-2 S protein is responsible for interacting with host receptors, antibody assays that target the S protein with titer results that correlate well with neutralizing assay would be of great value in assessing patients’ immunity and potentially managing plasma donation from convalescent patients.

In summary, antibody assays of SARS-CoV-2 are mainly developed against the viral S or N protein and are available in multiple formats. Their clinical utility is for the identification of individuals with past exposure history to SARS-CoV-2 in the previous 2 weeks or longer. Presence of SARS-CoV-2 IgG potentially correlates with a virus-blocking effect (i.e., immunity), but further direct evidence needs to be collected.

Nonstandard abbreviations: S, spike; N, nucleocapsid; RBD, receptor-binding domain.

Author Contributions: All authors confirmed they have contributed to the intellectual content of this paper and have met the following 4 requirements: (a) significant contributions to the conception and design, acquisition of data, or analysis and interpretation of data; (b) drafting or revising the article for intellectual content; (c) final approval of the published article; and (d) agreement to be accountable for all aspects of the article thus ensuring that questions related to the accuracy or integrity of any part of the article are appropriately investigated and resolved.

Authors’ Disclosures or Potential Conflicts of Interest: No authors declared any potential conflicts of interest.

© American Association for Clinical Chemistry 2020. All rights reserved. For permissions, please email: journals.permissions@oup.com.

REFERENCES

1. Wölfel R, Corman VM, Guggemos W, Seilmaier M, Zange S, Müller MA, et al. Virological assessment of hospitalized patients with COVID-2019. Nature 2020;581:465–10.
2. Petherick A. Developing antibody tests for SARS-CoV-2. Lancet (London, England) 2020;395:1101–2.
3. Kai-Wang To K, Tak-Yin Tsang O, Leung W-S, Raymond Tam A, Wu T-C, Christopher Lung D, et al. Temporal profiles of viral load in posterior oropharyngeal saliva samples and serum antibody responses during infection by SARS-CoV-2: an observational cohort study. 2020. www.thelancet.com/infection (Accessed April 2020).
4. Guo L, Ren L, Yang S, Xiao M, Chang D, Yang F, et al. Profiling early humoral response to diagnose novel coronavirus disease (COVID-19). Clin Infect Dis 2020. DOI: 10.1093/cid/ciaa310.
5. Jiang S, Hillyer C, Du L. Neutralizing antibodies against SARS-CoV-2 and other human coronaviruses. Trends Immunol 2020;41:355–35.

Xin Yi
Jing Cao
Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, TX
Department of Pathology, Baylor College of Medicine, Texas Children’s Hospital, Houston, TX

Address correspondence to this author at: Baylor College of Medicine, Texas Children’s Hospital, Pathology, 6621 Fannin St., West Tower, Room BB100.39, Houston, TX 77030. Fax 832-605-5110; e-mail jeac@texaschildrens.org.

DOI: 10.1093/jalm/jfaa100