Low energy measurement of the 7Be(p,γ)8B cross section

F. Hammache1,∗, G. Bogaert1,∗∗, P. Aguer2, C. Angulo3, S. Barhoumi5, L. Brillard4, J.F. Chemin2, G. Claverie2, A. Cox1, M. Hussonnois4, M. Jacotin1, J. Kiener1, A. Lefebvre1, C. Le Naour4, S. Ouichaoui5, J.N. Scheurer2, V. Tatischeff4, J.P. Thibaud1, E. Virassamyntaiken2

1) CSNSM, IN2P3-CNRS, 91405 Orsay et Université de Paris-Sud, France
2) CENBG, IN2P3-CNRS, et Université de Bordeaux I, 33175 Gradignan, France
3) Centre de Recherches du Cyclotron, UCL, Chemin du Cyclotron 2, 1348 Louvain la Neuve, Belgium
4) IPN,IN2P3-CNRS et Université de Paris-Sud, 91406 Orsay, France
5) Institut de Physique, USTHB, B.P. 32, El-Alia, Bab Ezzouar, Algiers, Algeria

We have measured the cross section of the 7Be(p,γ)8B reaction for $E_{cm}=185.8$ keV, 134.7 keV and 111.7 keV using a radioactive 7Be target (132 mCi). Single and coincidence spectra of β^+ and α particles from 8B and 8Be* decay, respectively, were measured using a large acceptance spectrometer. The zero energy S factor inferred from these data is 18.5 ± 1.7 eV b (theoretical uncertainty included) is deduced when combining this value with our previous results at higher energies.

PACS numbers : 25.40.IW, 27.20.+n, 26.65.+t

Recent experimental results on solar ν_e and atmospheric ν_{μ} neutrinos support neutrino oscillation scenarios, in which the oscillation probability depends on the neutrino mixing angles and squared mass differences. For ν_e-ν_μ oscillation, the determination of these fundamental quantities needs accurate solar modeling and nuclear cross sections for the reactions operating in the solar core. In this respect, the most important nuclear physics parameter is the S factor of the 7Be(p,γ)8B reaction which gives rise to the crucial 8B neutrinos. In a previous work we have measured the 7Be(p,γ)8B reaction cross section for $E_{cm}=0.35 - 1.4$ MeV using radioactive 7Be targets. In this Letter, we report on new direct measurements of this cross section at center of mass energies below 200 keV, where extrapolation to solar energies ($E_{cm}=18$ keV) is expected to be almost free of theoretical uncertainties, which is not the case for measurements at higher energies.

The electrostatic accelerator PAPAP at Orsay supplied intense proton beams of well calibrated energies. We used a highly radioactive 7Be target (131.7 mCi) prepared as in ref. [3] additionally containing approximately 3.1016 atoms of 8Be. β^+ and α particles from 8B(β^+)8Be* decay were detected at forward and backward angles respectively. We used the solenoidal superconducting magnet SOLENO (3.2 T at the center, 1.22 m long, 32 cm of internal diameter) in order to detect both α and β^+ particles with high efficiency (11.5 % and 25% respectively) due to the focusing power of the field. Both singles and coincidence events between α and β^+ particles were recorded, the latter providing spectra free of background events even at low bombarding energies.

Off beam detection (8B period = 0.77 s) was necessary to avoid any contamination in both α and β^+ coincidence spectra arising from the channel 7Li(p,γ)8Be* (2α). In this reaction the α decay of 8Be* is the same as in 8B(β^+)8Be* (2α) and the β^+ detector could not efficiently discriminate β^+ particles of interest from electron pairs produced in the target assembly by γ rays ($E_{\gamma_1}=14.8$ MeV).

For the delayed detection purpose, the beam passed through an electrostatic deflector which was alternately switched on and off for time periods of 1.5 s. The prompt events from 8Be(p,α)7Li and 8Be(p,d)7Be were also recorded and used later for energy calibration of the α detectors and normalization purpose (see below).

The target was located near the solenoid center, perpendicular to the symmetry axis of the field. The target backing of 0.1 mm ultra pure platinum and its holder allowed both efficient water cooling and large transmission for β^+ particles. The beam spot at the target position was made visible by using an aluminia (Al_2O_3) target which could be moved to the exact position of the target. An optical system provided a magnified image of the beam spot to measure its position and size on the target. They were systematically determined (size about 10 mm2) before and after each run.

In order to prevent carbon buildup on the target, a copper plate cooled with liquid nitrogen was placed in the target vicinity. In addition, cryogenic, turbomolecular and ionic pumps were used to keep the vacuum below 5 × 10$^{-7}$ mbar during the whole experiment.

Typical beam currents of 10-40 μA on the target were used. To suppress secondary electron escape, the target was biased at a positive 300 V. As a consistency check, currents were also measured in the insulated chamber where the beam was periodically deflected, at the SOLENO entrance collimator and at the α detector tube (see below) where negligible currents were observed. All the currents were integrated, digitized, recorded cycle-by-cycle and analyzed off-line. Very good agreement was found between integrated charges for beam on target and beam off target, and the overall uncertainty on the target integrated charge was 2%.

β^+ particles ($E_{max}=14$ MeV) were detected in a set of 6 successive cylindrical plastic scintillators (diameter 20 mm and thickness 3, 3, 8, 8 and 10 mm) centered on the field axis and 22 cm away from the target. The number
and thickness of the plastic scintillators were optimized from GEANT simulations [1] to discriminate MeV β^+ particles from the huge number of γ rays and photoelectrons produced in the target backing by the $E_p = 478$ keV radiation from ^7Be decay while still measuring β^+ energies with a reasonable precision. This discrimination was effective when at least two β detectors were required to fire.

α particles (from $^8\text{Be}^*$ decay) with energies below 3.5 MeV and emission angles between approximately 95 and 150 degrees with respect to the beam direction were deflected towards the solenoid axis and detected in an array of 6×4 Si detectors ($22 \text{ mm} \times 45 \text{ mm} \times 0.1 \text{ mm}$). The detectors were mounted in cylindrical geometry (internal diameter of 4 cm) aligned on the solenoid axis. Backscattered protons were deflected along different paths and were not able to reach the α detectors.

The data were recorded event by event. They included the measurements of α and β^+ energies, number and identification of detectors fired and the time of flight difference between α and β^+ particles for coincidence events. In the data analysis, events where more than one α detector or less than two β^+ detectors fired were rejected. A pulse generator was used for dead time measurements.

![FIG. 1. a). Energy spectrum of singles delayed α particles. b). Energy spectrum of delayed α particles detected in coincidence with delayed β particles.](image)

Cross section measurements were performed at three proton energies, 217 keV, 160 keV and 130 keV. The absolute value of the cross section at the proton energy of 217 keV was obtained counting singles delayed α particles in the range from 1 MeV to 3.36 MeV. Figure 1.a shows the corresponding spectrum, obtained by adding together the individual α spectra measured in the silicon detectors.

The calibration of the silicon detectors was performed using the three well defined peaks observed in the singles prompt spectra from $^9\text{Be}(p,d)^8\text{Be}$ and $^9\text{Be}(p,\alpha)^6\text{Li}$ reactions. Data shown in figure 1.a were obtained after subtraction of the background contribution which was determined in a series of measurements of several days with the beam off and the active target in place. A check was made to ensure that a null extra background (within statistical uncertainties) was introduced when the beam hit a pure platinum target. Background subtraction was performed by simply normalizing the corresponding spectrum to counting time. For comparison, the coincidence delayed α particle spectrum measured in the same runs is shown in figure 1.b. It can be seen in figure 1 that the low energy (< 1 MeV) component in the singles spectrum, corresponding to pileup events due to photoelectrons created by the 478 keV γ rays, has completely vanished in the coincidence spectrum. The solid curve in figure 1.b is obtained from a least squares fit to this background free coincidence spectrum. We see in figure 1.a that the same curve also provides a reasonable fit to singles data (after normalization to counting), as expected from an unbiased background subtraction process.

The α detection efficiency in the 1.00-3.36 MeV energy range was determined with the same detection setup from an analysis of the reaction $^7\text{Li}(p,\gamma_1)^8\text{Be}^*$ performed with an enriched ^7Li target at $E_p = 160$ keV. As explained above, the 14.8 MeV γ_1 rays create $e^+\cdot e^-$ pairs in the target backing which were detected in the plastic scintillator counter, while $^8\text{Be}^*$ decay into two α particles detected in the silicon array (the same α's as in the channel $^8\text{B}(\beta^+)\text{Be}^*$). The α detection efficiency was deduced from the number of counts in the plastic scintillator taken in singles and in coincidence with the silicon detector. The singles γ_1 ray yield was taken to be 0.680 ± 0.043 [12] times the total counts arising in the plastic scintillator from both γ_0 and γ_1 channels. GEANT simulations confirmed that pair detection efficiencies were the same, within less than 1%, for γ_0 and γ_1. The angular correlation between $e^+\cdot e^-$ pairs and α particles was also calculated and found negligible for the s-wave proton capture at this low bombarding energy.

A kinematics correction of 9.6% was applied to the experimental efficiency value to take into account the $^8\text{Be}^*$ in flight-decay in the $^7\text{Li}(p,\gamma_1)^8\text{Be}^*$ reaction. Finally, the detection efficiency was $\epsilon_\alpha = 0.115 \pm 0.008$ in the 1.00 - 3.36 MeV energy range, in fair agreement with GEANT simulations (12 %).

The ^7Be total activity at the beginning and at the end of the run at 217 keV, the target area (0.47 ± 0.02 cm2) and the ^7Be activity profile were accurately determined with the same instruments and methods used in the experiment described in ref. [5]. After fitting the ^7Be decay function to the measurements, we found an initial total activity of 131.7 ± 2.4 mCi. No loss of activity due to beam impact was observed during the run. The ^7Be areal density over the beam spot was finally determined run by run (9% uncertainty) by averaging the results of the 478 keV γ ray scan over the beam spot dimensions and normalizing them to the total activity per unit surface area.

A value of $\sigma = 16.7 \pm 2.1$ nb at the incident proton energy of 217 keV was deduced (see the formula 3 in ref. [3]). This value takes into account a 1% correction due to the ^8B backscattering on platinum atoms and escape out of the target [14]. This correction was calcu-
lated using a TRIM \cite{13} simulation with target thickness and composition determined from consistent RBS, (d,p) and PIXE analysis measurements performed during the course of the experiment. At the beginning of the experiment, the target was found to contain mainly carbon (9 µg/cm²), oxygen (7.6 µg/cm²) and less than 4 µg/cm² of calcium and other lighter elements, corresponding to a thickness of 9.6 ± 1.0 keV for protons of 217 keV.

This thickness leads to an effective energy of 212.4 keV (E_{cm} = 185.8 keV) and an S factor value of 17.2 ± 2.1 eV b. The quoted uncertainty includes the 6.3% uncertainty in the γ₁ branching ratio of ⁷Li(p,γ)⁸Be.

The cross sections at E_p = 130 keV and 160 keV were determined using α-β coincidence measurements only, because of the decrease of the signal over background ratio observed in singles spectra with lowering bombarding energies. The corresponding coincidence α energy spectra are shown in figure 2 together with time difference spectra between α and β⁺ particles. The 3 peaks in the time spectra correspond to 3 classes of trajectories where α particles can spiral 1 or 3 times in the magnetic field before reaching the detectors. The rare counts found between the peaks and at Δt = 200 ns (i.e. null time of flight difference) in figure 2.b are background events (most probably cosmic rays) eliminated in the energy spectra by gating on the three time peaks.

![Energy spectra obtained at 160 keV and 130 keV for delayed α particles detected in coincidence with delayed β particles. b). Corresponding spectra for time difference between α and β⁺ particles obtained using the first of the six plastic scintillators. A null time of flight difference in figure 2.b are background events (most probably cosmic rays) eliminated in the energy spectra by gating on the three time peaks.](image)

FIG. 2. a). Energy spectra obtained at 160 keV and 130 keV for delayed α particles detected in coincidence with delayed β particles. b). Corresponding spectra for time difference between α and β⁺ particles obtained using the first of the six plastic scintillators. A null time of flight difference is arbitrarily set at 200 ns due to delays in the electronics.

S factors at E_p = 160 keV and E_p = 130 keV, relative to the one measured at E_p = 217 keV, were obtained by normalization to the α yield from the reaction ⁹Be(p,α)⁶Li through the relation:

\[
\frac{S^7(E_{cm2,3})}{S^7(E_{cm1})} = K \frac{R(E_{2,3})^{7,9} S^9(E_{cm2,3})}{R(E_i)^{7,9} S^9(E_{cm1})} e^{-\lambda^{7/9}(\Delta t_{i1})} \tag{1}
\]

where the subscripts 1, 2 and 3 label the runs at E_p= 217 keV, 160 keV and 130 keV, respectively, and the superscripts 7 and 9 label the reactions ⁷Be(p,γ)⁸B and ⁹Be(p,α)⁶Li, respectively. \(R(E_i)^{7,9}\) is the coincidence yield normalized to the α yield from the ⁹Be(p,α)⁶Li reaction, \(S^9\) is the astrophysical S factor of the ⁹Be(p,α)⁶Li reaction at the corresponding c.m. effective energy. \(K\) is a constant accounting for the changes in dead times, in effective time parameters (see parameter \(\beta\) in formula 4 of ref. \cite{13}) and in angular distributions of alphas in ⁹Be(p,α)⁶Li with the bombarding energies. These 3 corrections were found to be very small (less than a few percent). The exponential term, in which \(\Delta t_{i1}\) is the time difference between experiment i and 1, accounts for the decrease in the ⁷Be target activity with time.

In calculating \(K\), the α yield from ⁹Be(p,α)⁶Li resulted from a least-squares analysis of the prompt singles spectra where very well defined α peaks show-up. S factors and angular distributions concerning the ⁹Be(p,α)⁶Li reaction were taken from the literature \cite{13}.

It must be stressed that the normalization to the α yield from ⁹Be(p,α)⁶Li eliminates effects due to target non uniformity, beam position variation and loss of activity of the target due to beam impact as long as the ratio of atomic densities of ⁷Be to ⁹Be remains constant. This is expected since ⁹Be was introduced in the ⁷Be solution before electrodeposition of the final target. It was verified experimentally through a comparison of ³⁷Be γ ray scan with a ⁹Be scan using (d,p) reaction analysis with a microbeam. A non negligible loss of activity was actually observed after the runs at E_p= 160 keV and 130 keV, because of a significant increase of sputtering effects with decreasing energy.

For the calculations of the proton energy losses at 160 and 130 keV, we took into account the loss of target material by the monitoring of the ⁹Be content through the ⁹Be(p,α)⁶Li reaction. We estimated the uncertainty on the effective energy to be 2.5 keV, which induces an uncertainty of 2% on the ratio \(S^9(E_{cm2,3})/S^9(E_{cm1})\).

Taking into account a 1% loss of ⁴B nuclei due to the ⁸B backscattering \cite{14} we deduced the astrophysical S factor values of S(134.7 keV) = 19.5 ± 3.1 eV b and S(111.7 keV) = 15.8 ± 2.7 eV b. Final uncertainties were calculated by quadratic summation of all individual uncertainties related above.

Results for the astrophysical S factor are shown in figure 3. Extrapolation to zero energy using the calculations of ref. \cite{10} and the present low-energy data gives S(0) = 18.5 ± 2.4 eV b where the error bar is only experimental. A negligible dispersion of S(0) is found (0.2 eV b) when various calculated curves \cite{14,15,18} of S(E) are fitted to the same data. This reflects the agreement between models at low energy, since the interaction in that case takes place at very large ⁷Be-p distances and is mainly governed by Coulomb physics. As a consequence the total uncertainty (experimental + theoretical) is finally ± 2.4 eV b.

Using the calculation of ref. \cite{10}, our previous measurements \cite{1} lead to S(0)=19.1 ± 1.2 eV b \cite{19}, where
the error bar is experimental. As the experiment was performed at higher energies, sophisticated nuclear calculations are required in that case to describe the shape of S(E) which leads to a higher theoretical uncertainty on S(0). An S(0) dispersion of ± 2 eV b was found using the available models [16,17] to fit the data. Adding this dispersion, considered as a reasonable estimate of the theoretical uncertainty, to the experimental error bar and combining quadratically the obtained result for S(0) with that of the present low-energy result, we finally obtain a weighted mean value of S(0) = 18.8 ± 1.7 eV b (taking a more conservative value of ±3 eV b for the theoretical uncertainty would lead to a very similar result of 18.7 ± 1.9 eV b).

![Graph](image.png)

FIG. 3. Measured S factors from the present work and from reference [5] after backscattering correction. [5]. Error bars represent random uncertainties. The curve through the data, given for illustrative purposes, is a fit to the three sets of data, assuming independent errors and using the calculation of ref. [16].

These results are in good agreement with some of the previous direct experiments [3,20,21], (see [22] for a comment on the recoil nuclei escape in refs. [3,20]). Concordant results but with larger uncertainties have also been reported in recent studies of the inverse process [23,24] and of transfer reactions [25].

The present result, which includes a total uncertainty significantly lower and better-founded than in higher-energy measurements should help in clarifying the interpretation of solar neutrino experiments.

J.J. Correia, R. Daniel, D. Linget, N. Karkour are gratefully acknowledged for experimental support. Valuable discussions with M. R. Haxton are greatly acknowledged. This work was supported in part by Region Aquitaine.

* Present address: GSI mbH, Planckstr. 1, D-64291 Darmstadt, Germany
** Permanent address: LPNHE, Ecole Polytechnique, 91128 Palaiseau, France.

[1] J.N. Bahcall et al., Phys. Rev. D 58, 096016-1 (1998).
[2] A.S. Brun et al., Astrophys. J. 506, 913 (1998).
[3] P. Morel et al., A. & A. 350, 275 (1999).
[4] H. Schlattl, et al., Phys. Rev. D 60, 60 (1999).
[5] P. Descouvemont et al., Phys. Rev. Lett. 80, 928 (1998).
[6] E. Adelberger et al., Rev. Mod. Phys. 70, 1280 (1998).
[7] G. Bogaert et al., Nucl. Instr. Meth. B89, 8 (1994).
[8] F. Hammaache, Thesis, (1999).
[9] http://www-cnsm.in2p3.fr/astronom/hammaache/0011014
[10] A. S. Brun et al., Nucl. Phys. A567, 211 (1997).
[11] B.W. Filippone et al., Phys. Rev. Lett. 50, 412 (1983).
[12] L. Weissman et al., Nucl. Phys. A630, 678 (1998).
[13] Backscattered 8B nuclei which decay outside the target are lost for delayed detection inducing smaller measured cross sections. For heavy elements target backing, the yield of the 8B loss depends strongly on the beam energy and on the target composition and thickness. In this experiment at low energy, the target deposit was thick enough to stop most of backscattered 8B nuclei resulting in very small 8B loss. In the case of the experiment of ref. [13], the corrections were determined in the same manner, taking advantage of precise knowledge of target composition due to careful RBS, (d,p) and PIXE analysis measurements performed during the course of the experiment. For details see ref. [13].
[14] J.F. Ziegler, J. P. Biersack U. Littmark et al., The Stopping and Range of Ions in Solids, Vol. 1 (Pergamon Press, New York, 1985), and the SRIM96 program.
[15] P. Descouvemont and D. Baye, Nucl. Phys. A567, 341 (1994).
[16] F.C. Barker, Nucl. Phys. A588, 693 (1995); A. Csoto, Phys. Lett. B394, 247 (1994); K. Benacceur et al., J. Phys. G24, 1631 (1998).
[17] C.W. Johnson et al., Astrophys.J. 392, 320 (1992); F.M. Nunes et al., Nucl. Phys. A630, 527 (1998).
[18] S(0) = 19.1 ± 1.2 eV b is obtained when experimental values are corrected for the 8B escape effect [14]. S(0) = 18.5 ± 1.0 eV b was deduced from uncorrected data in reference [5].
[19] F. J. Vaughn et al., Phys. Rev. C2, 1657 (1970).
[20] M. Hass et al., Phys. Lett. B 462 237 (1999).
[21] In these measurements, escape of recoil nuclei out of the target was not corrected, and cannot be accurately calculated since the detailed compositions of the targets was not measured. However the correction is expected to be small (less than 5%) in view of the quoted target thickness and taking into account of the fact that 8B escape is partly counterbalanced by that of 7Li in these measurements which rely on 7Li(d,p)7Li normalization.
[22] T. Kikuchi et al., European Phys. J. A3 213 (1998).
[23] N. Iwasa et al., Phys. Rev. Lett. 83, 2910 (1999).
[24] A. Azhari et al., Phys. Rev. Lett. 82, 3960 (1999).