Automorphisms of relative Quot schemes

CHANDRANANANDAN GANGOPADHYAY

School of Mathematics, Tata Institute of Fundamental Research, Homi Bhabha Road, Mumbai 400 005, India
E-mail: chandrag@math.tifr.res.in

MS received 28 January 2019; revised 30 April 2019; accepted 3 May 2019; published online 22 August 2019

Abstract. Let \(X \rightarrow S \) be a smooth family of projective curves over an algebraically closed field \(k \) of characteristic zero. Assume that both \(X \) and \(S \) are smooth projective varieties and let \(E \) be a vector bundle of rank \(r \) over \(X \) and \(\mathbb{P}(E) \) be its projectivization. Fix \(d \geq 1 \). Let \(Q(E, d) \) be the relative quot scheme of torsion quotients of \(E \) of degree \(d \). Then we show that if \(r \geq 3 \), then the identity component of the group of automorphisms of \(Q(E, d) \) over \(S \) is isomorphic to the identity component of the group of automorphisms of \(\mathbb{P}(E) \) over \(S \). We also show that under additional hypotheses, the same statement is true in the case when \(r = 2 \). As a corollary, the identity component of the automorphism group of flag scheme of filtrations of torsion quotients of \(\mathcal{O}_C^r \), where \(r \geq 3 \) and \(C \) a smooth projective curve of genus \(\geq 2 \) is computed.

Keywords. Quot schemes; flag schemes; automorphisms.

1991 Mathematics Subject Classification. 14H10.

1. Introduction

Let \(p_S : X \rightarrow S \) be a smooth family of projective curves over an algebraically closed field \(k \) of characteristic zero. Assume \(X \) and \(S \) are smooth projective varieties. Let \(E \) be a vector bundle over \(X \) of rank \(r \).

Fix \(d \geq 1 \). Let \(\pi_S : Q(E, d) \rightarrow S \) be the relative Quot scheme [6, Theorem 2.2.4] whose closed points correspond to quotients \(E|_{X_s} \rightarrow B_d, \forall s \in S \), where \(X_s \) is the fibre of \(p_S \) over \(s \), and \(B_d \) is a torsion sheaf over the smooth projective curve \(X_s \) of degree \(d \).

Notation. If \(f : Y \rightarrow Z \) is a smooth morphism between two projective varieties, let us denote the automorphism group of \(Y \) over \(Z \) by \(\text{Aut}(Y/Z) \). It is known that \(\text{Aut}(Y/Z) \) is a group scheme and let its identity component be denoted by \(\text{Aut}^0(Y/Z) \). Let \(T_{Y/Z} \) be the relative tangent bundle of \(f \). Then \(\text{Lie}(\text{Aut}^0(Y/Z)) = H^0(Y, T_{Y/Z}) \) [3, Theorem 3.7].

Let us denote the projective bundle associated to \(E \) by \(\mathbb{P}(E) \). Note that \(Q(E, 1) \cong \mathbb{P}(E) \). Then, we will prove the following theorem.

Theorem 2.5(a). If rank \(E \geq 3 \), then

(i) \(\text{Aut}^0(Q(E, d)) \cong \text{Aut}^0(\mathbb{P}(E)/S) \),
(ii) \(H^0(\mathbb{P}(E), T_{\mathbb{P}(E)/S}) \cong H^0(Q(E, d), T_{Q(E,d)/S}) \).
Let \(\mathcal{O}_X(1) \) be a \(p_S \)-ample line bundle and \(\mathcal{O}_S(1) \) be an ample line bundle on \(S \). Then \(\mathcal{O}_X(1) \otimes \mathcal{O}_S(a) \) is ample over \(X \) for \(a \gg 0 \). Fix such an ample line bundle \(\mathcal{M} \) over \(X \).

Then we have as follows.

Theorem 2.5(b). Let \(E \) be a vector bundle of rank 2 over \(X \) such that \(E \) is semistable with respect to \(\mathcal{M} \). Further, assume that genus of each fibre of \(X \to S \) is \(\geq 2 \). Then both (i) and (ii) are also true in this case.

Note that a special case of the above theorem was proved in [2].

In the third section, we will use Theorem 2.5 to compute the automorphism group in certain specific cases.

2. Main Theorem

Lemma 2.1.

(i) \(\text{Aut}^o(Q(E, d)) \leftrightarrow \text{Aut}^o(\mathbb{P}(E)/S) \),

(ii) \(H^0(\mathbb{P}(E), T_{\mathbb{P}(E)/S}) \leftrightarrow H^0(Q(E, d), T_{Q(E, d)/S}) \).

Proof. Note that by [3, Corollary 2.2], any automorphism \(g \in \text{Aut}^o(\mathbb{P}(E)/S) \) descends to an automorphism \(g' \in \text{Aut}^o(Q(E, d)/S) \). Therefore, we have the following diagram:

\[
\begin{array}{ccc}
\mathbb{P}(E) & \xrightarrow{g} & \mathbb{P}(E) \\
\downarrow^p & & \downarrow^p \\
X & \xrightarrow{g'} & X
\end{array}
\]

Then \(E \cong (g')^*E \otimes p^*L \) for some line bundle \(L \) on \(X \). Let us denote this isomorphism of bundles by \(\Psi_g \).

It is clear that \(\Psi_g \) induces an automorphism of \(Q(E, d) \) by sending \([E|_{p_S^{-1}(s)} \to B_d \to 0] \) to \([E|_{p_S^{-1}(s)} \xrightarrow{(g')^*} (E|_{p_S^{-1}(s)} \to B_d \to 0) \otimes L|_{p_S^{-1}(s)}] \). Hence, we have a homomorphism \(\text{Aut}^o(\mathbb{P}(E)/S) \to \text{Aut}^o(Q(E, d)/S) \) and clearly it is injective. Hence, we have a morphism of Lie algebras \(H^0(X, T_{\mathbb{P}(E)/S}) \leftrightarrow H^0(Q(E, d), T_{Q(E, d)/S}) \). \(\square \)

Let \(\mathcal{Z} \) be the fibered product of \(d \) copies of \(\mathbb{P}(E) \) over \(S \). Then

Theorem 2.2.

(a) There exists an open subset \(\mathcal{U} \subseteq \mathcal{Z} \) and a dominant map \(\Phi : \mathcal{U} \to Q(E, d) \) over \(S \) such that \(\text{codim}_S(\mathcal{Z} \setminus \mathcal{U}) \geq 2 \).

(b) If either \(r \geq 3 \) or the hypothesis of Theorem 2.5(b) holds, then

(i) \(H^0(\mathcal{U}, \Phi^*T_{Q(E, d)/S}) = \bigoplus_{i=1}^d H^0(\mathbb{P}(E), T_{\mathbb{P}(E)/S}) \),

(ii) The natural map \(H^0(Q(E, d), T_{Q(E, d)/S}) \to H^0(\mathcal{U}, \Phi^*T_{Q(E, d)/S}) = \bigoplus_{i=1}^d H^0(\mathbb{P}(E), T_{\mathbb{P}(E)/S}) \) is an injection and is invariant under permutation of the components of \(\bigoplus_{i=1}^d H^0(\mathbb{P}(E), T_{\mathbb{P}(E)/S}) \), i.e. we have an injection \(H^0(Q(E, d), T_{Q(E, d)/S}) \hookrightarrow H^0(\mathbb{P}(E), T_{\mathbb{P}(E)/S}) \).
By Grauert’s theorem [5, Corollary 12.9], we have
\[\phi^* T_{Q(E,d)/S} = (\phi^* (p_Q)_* \text{Hom}(A(E,d), B(E,d))) \]
\[\cong (\pi_1)_* (id_X \times \phi)^* \text{Hom}(A(E,d), B(E,d)). \]

Now, since \(A(E,d) \) is a vector bundle, we have
\[(id_X \times \phi)^* \text{Hom}(A(E,d), B(E,d)) = \text{Hom}(\phi^* A(E,d), \phi^* B(E,d)). \]
Applying \(\Phi_1 \), we have \(\Phi^*B(E, d) \cong (\bigoplus_{i=1}^d \pi_{2,i}^*\mathcal{O}(1)|_{\Delta_i})|_{X \times \mathcal{U}} \). Also, \(\Phi^*A(E, d) \cong \mathcal{F}(E, d)|_{X \times \mathcal{U}} \), since by [4, Lemma 2.2], \(\mathcal{F}(E, d)|_{X \times \mathcal{U}} \) is again a vector bundle of rank \(r \), and there exists a surjection \(\Phi^*A(E, d) \twoheadrightarrow \mathcal{F}(E, d)|_{X \times \mathcal{U}} \). Therefore, \(\Phi^*\mathcal{T}_q(E, d)/S = \mathcal{H}\text{om}(\mathcal{F}(E, d), \bigoplus_{i=1}^d \pi_{2,i}^*\mathcal{O}(1)|_{\Delta_i})|_{X \times \mathcal{U}} \). Now \(b(i) \) follows from Lemma 2.3.

(b(ii)) Note that since \(\Delta_1 \) is dominant, then the induced map \(H^0(\mathcal{Q}(E, d), \mathcal{T}_q(E, d)/S) \to H^0(\mathcal{U}, \Phi^*\mathcal{T}_q(E, d)/S) = \bigoplus_{i=1}^d H^0(\mathbb{P}(E), \mathcal{T}_{\mathbb{P}(E)}/S) \) is an injection.

Now, since \(\Phi : \mathcal{U} \to \mathcal{Q}(E, d) \) is invariant under any permutation of the various \(\mathbb{P}(E) \) factors of \(\mathcal{U} \), hence, the map \(H^0(\mathcal{Q}(E, d), \mathcal{T}_q(E, d)/S) \hookrightarrow \bigoplus_{i=1}^d H^0(\mathbb{P}(E), \mathcal{T}_{\mathbb{P}(E)}/S) \) factors through the \(H^0(\mathbb{P}(E), \mathcal{T}_{\mathbb{P}(E)}/S) \) factors in a way that is again a vector bundle of rank \(r \).

Lemma 2.3. If either \(r \geq 3 \) or the hypothesis of Theorem 2.5(b) holds, then \(H^0(X \times_S \mathcal{U}, \mathcal{H}\text{om}(\mathcal{F}(E, d), \pi_{2,j}^*\mathcal{O}(1)|_{\Delta_j})|_{X \times \mathcal{U}}) = H^0(\mathbb{P}(E), \mathcal{T}_{\mathbb{P}(E)}/S) \) \(\forall \; j \).

Proof. Over \(X \times_S \mathcal{U} \), we have the following commutative diagram:

\[
\begin{array}{cccccc}
0 & \downarrow & & & \downarrow & \\
0 & \downarrow & & & \downarrow & \\
0 & \rightarrow & \mathcal{F}(E, d) & \rightarrow & \pi_1^*E & \rightarrow \bigoplus_{i=1}^d \pi_{2,i}^*\mathcal{O}(1)|_{\Delta_i} & \rightarrow 0 \\
& \downarrow & & & \downarrow & \\
0 & \rightarrow & (\pi_1 \times \pi_{2,j})^*\mathcal{F}(E, 1) & \rightarrow & \pi_1^*E & \rightarrow \pi_{2,j}^*\mathcal{O}(1)|_{\Delta_j} & \rightarrow 0 \\
& & & \downarrow & & \downarrow & \\
& & & 0 & & 0 & \\
\end{array}
\]

Now, using snake lemma for the above diagram, we get the following exact sequence over \(X \times_S \mathcal{U} \):

\[
0 \rightarrow \mathcal{F}(E, d) \rightarrow (\pi_1 \times \pi_{2,j})^*\mathcal{F}(E, 1) \rightarrow \bigoplus_{i=1}^d \pi_{2,i}^*\mathcal{O}(1)|_{\Delta_i} \rightarrow 0. \tag{2.1}
\]

Applying \(\mathcal{H}\text{om}(\cdot, \pi_{2,j}^*\mathcal{O}(1)|_{\Delta_j}) \) and Lemma 2.4(i) to the exact sequence (2.3), we get that over \(X \times_S \mathcal{U} \), we have the following exact sequence:

\[
0 \rightarrow \mathcal{H}\text{om}((\pi_1 \times \pi_{2,j})^*\mathcal{F}(E, 1), \pi_{2,j}^*\mathcal{O}(1)|_{\Delta_j}) \rightarrow \mathcal{H}\text{om}(\mathcal{F}(E, d), \pi_{2,j}^*\mathcal{O}(1)|_{\Delta_j}) \rightarrow \mathcal{E}\text{xt}^1\left(\bigoplus_{i=1, i \neq j}^d \pi_{2,i}^*\mathcal{O}(1)|_{\Delta_i}, \pi_{2,j}^*\mathcal{O}(1)|_{\Delta_j} \right).
\]

Applying \(H^0 \) to the above exact sequence and using Lemma 2.4(i) and (ii), we get that \(H^0(X \times_S \mathcal{U}, \mathcal{H}\text{om}(\mathcal{F}(E, d), \pi_{2,j}^*\mathcal{O}(1)|_{\Delta_j}) = H^0(\mathbb{P}(E), \mathcal{T}_{\mathbb{P}(E)}/S). \)
Lemma 2.4.

(i) $\mathcal{H}om(\bigoplus_{i=1, i \neq j}^d \pi_{2,i}^*, O(1)|_{\Delta_i}, \pi_{2,j}^*, O(1)|_{\Delta_j}) = 0$.

(ii) If either $r \geq 3$ or the hypothesis of Theorem 2.5(b) holds, then $H^0(X \times_S U, E_{\text{ext}}(\bigoplus_{i=1, i \neq j}^d \pi_{2,i}^*, O(1)|_{\Delta_i}, \pi_{2,j}^*, O(1)|_{\Delta_j})) = 0$.

(iii) $H^0(X \times_S U, \mathcal{H}om((\pi_1 \times \pi_{2,j})*F(E, 1), \pi_{2,j}^*, O(1)|_{\Delta_j})) = H^0(\mathbb{P}(E), T_{\mathbb{P}(E)/S})$.

Proof.

(i) $\mathcal{H}om(\bigoplus_{i=1, i \neq j}^d \pi_{2,i}^*, O(1)|_{\Delta_i}, \pi_{2,j}^*, O(1)|_{\Delta_j}) = \bigoplus_{i=1, i \neq j}^d \mathcal{H}om(\pi_{2,i}^*, O(1)|_{\Delta_i}, \pi_{2,j}^*, O(1)|_{\Delta_j}) = \bigoplus_{i=1, i \neq j}^d \mathcal{H}om(\pi_{2,i}^*, O(1)|_{\Delta_i}, \pi_{2,j}^*, O(1)|_{\Delta_j})$. Now, by adjunction, $\mathcal{H}om_{O_X \times_S \mathbb{P}}(O_{\Delta_i}, O_{\Delta_j}) = \mathcal{H}om_{O_{\Delta_i}}(O_{\Delta_i \cap \Delta_j}, O_{\Delta_j})$. Now, since Δ_j is an integral scheme, and $\Delta_i \cap \Delta_j$ is a proper subset of Δ_j, so $\mathcal{H}om_{O_{\Delta_i}}(O_{\Delta_i \cap \Delta_j}, O_{\Delta_j})=0$.

(ii) $E_{\text{ext}}(\bigoplus_{i=1, i \neq j}^d \pi_{2,i}^*, O(1)|_{\Delta_i}, \pi_{2,j}^*, O(1)|_{\Delta_j}) = \bigoplus_{i=1, i \neq j}^d E_{\text{ext}}(\pi_{2,i}^*, O(1)|_{\Delta_i}, O(1)|_{\Delta_j}) = \bigoplus_{i=1, i \neq j}^d (\pi_{2,i}^*, O(1)|_{\Delta_i}, O(1)|_{\Delta_j}) E_{\text{ext}}(O_{\Delta_i}, O_{\Delta_j})$.

Now, consider the exact sequence

$$0 \to O(-\Delta_i) \to O_{X \times_S U} \to O_{\Delta_i} \to 0.$$

Applying $\mathcal{H}om(\cdot, O_{\Delta_j})$ to the above exact sequence, we get

$$0 \to O_{\Delta_j} \to O(\Delta_i)|_{\Delta_j} \to E_{\text{ext}}(O_{\Delta_i}, O_{\Delta_j}) \to 0,$$

i.e., $E_{\text{ext}}(O_{\Delta_i}, O_{\Delta_j}) \cong \pi_{1,j}^* T_{X/S}|_{\Delta_i \cap \Delta_j}$. Therefore,

$$H^0(X \times_S U, (\pi_{2,j}^*, O(-1) \otimes \pi_{2,i}^*, O(1))) E_{\text{ext}}(O_{\Delta_i}, O_{\Delta_j})$$

$$= H^0(X \times_S U, (\pi_{2,j}^*, O(-1) \otimes \pi_{2,i}^*, O(1)) \otimes \pi_{1,i}^* T_{X/S}|_{\Delta_i \cap \Delta_j})$$

$$= H^0((X \times_S U) \cap \Delta_i \cap \Delta_j, (\pi_{2,j}^*, O(-1) \otimes \pi_{2,i}^*, O(1)) \otimes \pi_{1,i}^* T_{X/S}|_{\Delta_i \cap \Delta_j}).$$

Without loss of generality, assume that $i = 1, j = 2$. Then $\Delta_1 \cong \mathbb{Z}$, where this isomorphism is given by $\Delta_1 \hookrightarrow X \times_S \mathbb{Z} \to \mathbb{Z}$. Under this isomorphism $(X \times_S U) \cap \Delta_1 \cong \mathbb{Z} \times \mathbb{Z} \cong \mathbb{Z}$ and $\Delta_1 \cap \Delta_2 \cong (\mathbb{P}(E) \times_X \mathbb{P}(E)) \times_S (\mathbb{P}(E))^{d-2}$, and the line bundle $(\pi_{2,j}^*, O(-1) \otimes \pi_{2,i}^*, O(1)) \otimes \pi_{1,i}^* T_{X/S}|_{\Delta_i \cap \Delta_j} \cong p_{1,j}^* O(-1) \otimes p_{2,j}^* O(1) \times (p \circ p_1)^* T_{X/S}$.

Let us denote the subscheme $(\mathbb{P}(E) \times_X \mathbb{P}(E)) \times_S (\mathbb{P}(E))^{d-2} \hookrightarrow \mathbb{Z}$ by Y, and the line bundle $p_{1,j}^* O(-1) \otimes p_{2,j}^* O(1) \times (p \circ p_1)^* T_{X/S}|_Y$ by L.

We need to show that $H^0(Y \cup U, L) = 0$.

Now $Y \setminus U = \bigcup_{i,j} (\Delta_i \cap Y) \cup \bigcup_{i,j,k} (\Delta_i \cap \Delta_j \cap Y)$.

Claim.

(a) $\text{codim}_Y (\Delta_i \cap Y) \geq 2$ if $i, j \neq \{1, 2\}$,
(b) $\text{codim}_Y (\Delta_{1,2} \cap Y) = r$,
(c) If $\{1, 2\} \notin \{i, j, k\}$, then $\text{codim}_Y (\Delta_i \cap \Delta_j \cap Y) \geq 2$,
(d) $\Delta_{1,2,k} \cap Y$ has codimension 1 in Y.

Proof of Claim.

(a) If \(\{i, j\} \neq \{1, 2\} \), then \(\Delta_{i,j} \cap Y \cong (\mathbb{P}(E) \times_X \mathbb{P}(E)) \times_S (\mathbb{P}(E))^{d-3}_S \), and hence has codimension \(\geq 2 \) subset in \(Y \).

(b) If \(\{i, j\} = \{1, 2\} \), then \(\Delta_{1,2} \cong \mathbb{P}(E) \times_S (\mathbb{P}(E))^{d-2}_S \), and since rank \(E \geq 3 \), it has codimension \(r \) in \(Y \).

(c) If \(\{1, 2\} \cap \{i, j, k\} = \emptyset \), then

\[\Delta_{i,j,k,X} \cap Y \cong (\mathbb{P}(E) \times_X \mathbb{P}(E)) \times_S (\mathbb{P}(E) \times_X \mathbb{P}(E)) \times_S (\mathbb{P}(E))^{d-5}_S, \]

and if \(i = 1 \) and \(\{j, k\} \cap \{1, 2\} = \emptyset \), then

\[\Delta_{i,j,k,X} \cap Y \cong (\mathbb{P}(E) \times_X \mathbb{P}(E)) \times_S (\mathbb{P}(E) \times_X \mathbb{P}(E)) \times_S (\mathbb{P}(E))^{d-4}_S. \]

Hence, in both these cases, we have codimension of \(\Delta_{i,j,k,X} \cap Y \geq 2 \) in \(Y \).

(d) \(\Delta_{1,2,k,X} \cong \mathbb{P}(E) \times_X \mathbb{P}(E) \times_S (\mathbb{P}(E))^{d-3}_S \). Hence, it has codimension 1 in \(Y \).

For notational convenience, we will denote \(\Delta_{i,j} \cap Y \) and \(\Delta_{i,j,k,X} \cap Y \) by \(\Delta_{i,j} \) and \(\Delta_{i,j,k,X} \) respectively.

Case \(r \geq 3 \). Let us denote the open set \(Y \setminus (\bigcup_{k \geq 3} \Delta_{1,2,k,X}) \) by \(V \). Then, by the above claim \(H^0(Y \cap U, \mathcal{L}) = H^0(V, \mathcal{L}) \). Now, if \(s \in H^0(V, \mathcal{L}|_V) \), then for some \(t \in H^0(Y, \mathcal{O}(\sum_{k=3}^d n \Delta_{1,2,k,X})) \), \(st^n \) extends to a global section of \(\mathcal{L} \otimes \mathcal{O}(\sum_{k=3}^d n \Delta_{1,2,k,X}) \), for some \(n \geq 0 \). So, it is enough to show that \(H^0(Y, \mathcal{L} \otimes \mathcal{O}(\sum_{k=3}^d n \Delta_{1,2,k,X})) = 0 \), \(\forall n \geq 0 \). Now, this follows from the next claim.

Claim. \((p_2 \times p_3 \times \cdots \times p_d)_* (\mathcal{L} \otimes \mathcal{O}(\sum_{k=3}^d n \Delta_{1,2,k,X})) = 0. \)

Proof of Claim. Let us denote \(\mathbb{P}(E) \times_S (\mathbb{P}(E))^{d-2}_S \to \mathbb{P}(E) \), the \(k \)-th projection to \(\mathbb{P}(E) \) by \(p'_k \), where \(3 \leq k \leq d \). Now, consider the following diagram:

\[
\begin{array}{ccc}
(\mathbb{P}(E) \times_X \mathbb{P}(E)) \times_S (\mathbb{P}(E))^{d-2}_S & \xrightarrow{p_2 \times p_3 \times \cdots \times p_d =: f} & (\mathbb{P}(E)) \times_S (\mathbb{P}(E))^{d-2}_S \\
& \downarrow & \downarrow \quad (p_2p'_2) \times (p_3p'_3) \times \cdots \times (p_dp'_d) =: g \\
X \times_S (X)^{d-2}_S.
\end{array}
\]

Let us denote the map \(p_2 \times p_3 \times \cdots \times p_d \) by \(f \), and \((p_2p'_2) \times (p_3p'_3) \times \cdots \times (p_dp'_d) \) by \(g \). Then, if we denote by \(X_k \subseteq X \times_S (X)^{d-2}_S \) the closed subscheme whose points are of the form \((x_1, x_2, \ldots, x_{d-1}) \) with \(x_1 = x_k \), then \(\mathcal{O}(\sum_{k=3}^d n \Delta_{1,2,k,X}) = (g \circ f)^* \mathcal{O}(\sum_{k=2}^d nX_k) \). Hence by projection formula, we have

\[
f_* \left(\mathcal{L} \otimes \mathcal{O} \left(\sum_{k=3}^d n \Delta_{1,2,k,X} \right) \right) = f_* ((p_1)_* \mathcal{O}(-1) \otimes (p_2)^* \mathcal{O}(1)) \otimes (p \circ p_2)^* \mathcal{T}_{X/S} \otimes \mathcal{O} \left(\sum_{k=3}^d n \Delta_{1,2,k,X} \right)
\]

\[
\otimes (p \circ p_2)^* \mathcal{T}_{X/S} \otimes \mathcal{O} \left(\sum_{k=3}^d n \Delta_{1,2,k,X} \right)
\]
Claim. H_0

Proof. Let us denote the diagram:

$$\sum_{k=1}^d nX_k$$

Hence, it is enough to show that $f_*(p_1)^*\mathcal{O}(-1) = 0$. Now consider the following fibered sequence:

$$\begin{array}{ccc}
\mathbb{P}(E) \times_{\mathbb{P}(E)} \mathbb{P}(E) & \xrightarrow{p_1} & \mathbb{P}(E) \\
\downarrow f & & \downarrow p \\
\mathbb{P}(E) \times_{\mathbb{P}(E)} \mathbb{P}(E) & \xrightarrow{p \circ p_2'} & X.
\end{array}$$

Since $p \circ p_2'$ is flat, we have by [5, Proposition 9.3], $f_* p_1^* \mathcal{O}(1) \cong (p \circ p_2')_* p_* \mathcal{O}(-1) = 0$.

Case $r = 2$. As in the previous case, let us denote by V the open set $Y \setminus (\Delta_{1,2} \cup \bigcup_{k=2}^d \Delta_{1,2,k,x})$ in Y. Then $H^0(Y \cap U, \mathcal{L}) = H^0(V, \mathcal{L})$. Therefore, to show that $H^0(Y \cap U, \mathcal{L}) = H^0(V, \mathcal{L}) = 0$, we need to show that $H^0(Y, \mathcal{L}(n(\Delta_{1,2} + \sum_{i=1}^d \Delta_{1,2,k,x}))) = 0 \forall n \geq 0$.

Now consider the following exact sequence:

$$0 \longrightarrow \mathcal{O}(n\Delta_{1,2}) \longrightarrow \mathcal{O}((n+1)\Delta_{1,2}) \longrightarrow \mathcal{O}(n\Delta_{1,2})|_{\Delta_{1,2}} \longrightarrow 0.$$

Tensoring the above exact sequence by $\mathcal{L}(n \sum_{i=1}^d \Delta_{1,2,k,x})$ and applying H^0, it is enough to show that $H^0(\Delta_{1,2}, \mathcal{L}(n(\Delta_{1,2} + \sum_{i=1}^d \Delta_{1,2,k,x})))|_{\Delta_{1,2}} = 0$. Note that $\mathcal{O}(\Delta_{1,2})|_{\Delta_{1,2}} = p_1^* \mathcal{O}(\mathbb{P}(E)/S)|_{\Delta_{1,2}}$. Then

$$\mathcal{L}
\left(n(\Delta_{1,2} + \sum_{i=1}^d \Delta_{1,2,k,x})\right)|_{\Delta_{1,2}} = p_1^* \mathcal{O}(-1) \otimes p_2^* \mathcal{O}(1)$$

$$\otimes (p \circ p_1)^* \mathcal{T}_{X/S} \otimes p_1^* \mathcal{T}_{\mathbb{P}(E)/X} \otimes \mathcal{O}(\sum_{i=1}^d n\Delta_{1,2,k,x})|_{\Delta_{1,2}}$$

$$= p_1^* \mathcal{T}_{\mathbb{P}(E)/X} \otimes (p \circ p_1)^* \mathcal{T}_{X/S} \mathcal{O}(\sum_{i=1}^d n\Delta_{1,2,k,x})|_{\Delta_{1,2}}.$$

Therefore, identifying $\Delta_{1,2}$ with $(\mathbb{P}(E))^d_{S}$, the result follows from the following claim.

Claim. $H^0(\mathcal{Z}, p_1^* \mathcal{T}_{\mathbb{P}(E)/X} \otimes (p \circ p_1)^* \mathcal{T}_{X/S} \otimes \mathcal{O}(\sum_{k=2}^d n\Delta_{1,k,x}) = 0 \forall n \geq 0$.

Proof. Let us denote the i-th projection from $(X)^d_{S}$ to X by $p_{i,X}$. Recall that $X_k \subseteq (X)^d_{S}$ is the closed set defined by the equation $p_{1,X} = p_{k,X}$.

Note that by the projection formula,

$$((p \circ p_1) \times (p \circ p_2) \times \cdots \times (p \circ p_d))_* (p_1^* \mathcal{T}_{\mathbb{P}(E)/X} \otimes (p \circ p_1)^* \mathcal{T}_{X/S} \otimes \mathcal{O}(\sum_{k=2}^d n\Delta_{1,k,x}))$$
Under the hypothesis of Theorem 2.5, we have the following left exact sequence of algebraic groups:

\[p_1^* (S^{2n}(E) \otimes (\det(E^\vee))^n) \otimes p_{1,X}^* T_X/S \]
\[\otimes \mathcal{O} \left(\sum_{k=2}^{d} nX_k \right). \]

Now we have the following exact sequence:

\[0 \longrightarrow \mathcal{O}(nX_k) \longrightarrow \mathcal{O}((n + 1)X_k) \longrightarrow \mathcal{O}((n + 1)X_k)|_{X_k} \longrightarrow 0. \]

Now \(\mathcal{O}((n + 1)X_k)|_{X_k} = p_{1,X}^* T_X^{n+1} \). Using this and tensoring the above exact sequence with \(p_{1,X}^* (S^{2n}(E) \otimes (\det(E^\vee))^n) \otimes p_{1,X}^* T_X/S \), we have \(H^0(\mathcal{Z}, p_{1,X}^* (S^{2n}(E) \otimes (\det(E^\vee))^n) \otimes p_{1,X}^* T_X/S) = 0 \) \(\forall n \geq 0, m \geq 1 \).

Again, applying projection formula for the morphism \(p_{1,X}^* (S^{2n}(E) \otimes (\det(E^\vee))^n) \otimes p_{1,X}^* T_X/S = S^{2n}(E) \otimes (\det(E^\vee))^n \otimes T_X^m/S \). Hence, it is enough to show that \(H^0(X, S^{2n}(E) \otimes (\det(E^\vee))^n \otimes T_X^m/S) = 0 \) \(\forall n \geq 0, m \geq 1 \).

Now, \(\deg S^{2n}(E) = \frac{2 + 2n - 1}{2} \deg E = n(2n + 1) \deg E \) and rank \(S^{2n}(E) = 2n + 1 \).
Therefore, \(\deg S^{2n}(E) \otimes (\det(E^\vee))^n \otimes T_X^m/S = n(2n + 1) \deg E + (2n + 1)(-n(\deg E) + m(\deg T_X/S)) = m(2n + 1)(\deg T_X/S). \)

Now, since genus of each fibre of \(X \rightarrow S \) is \(\geq 2 \), \(\deg T_X/S < 0 \). Hence, \(\deg S^{2n}(E) \otimes (\det(E^\vee))^n \otimes T_X^m/S < 0 \). Since, by assumption, \(E \) is semistable, hence \(S^{2n}(E) \otimes (\det(E^\vee))^n \otimes T_X^m/S \) is also semistable with negative degree. Therefore, it does not have any global sections.

Proof of Lemma 2.4(iii). As before, we identify \(\Delta_j \) with \(\mathcal{Z} \). Then, we have

\[H^0(X \times_S \mathcal{U}, \mathcal{H}\text{om}(p_1 \times \pi_{2,j})^* \mathcal{F}(E, 1, \pi_{2,j}^* \mathcal{O}(1)|_{\Delta_j})) \]
\[= H^0(\mathcal{U}, \mathcal{H}\text{om}(p_j^* \mathcal{F}(E, 1)|_{\Delta_1}, p_j^* \mathcal{O}(1))) \]
\[= H^0(\mathcal{U}, p_j^* (\mathcal{F}(E, 1)^\vee|_{\Delta_1} \otimes \mathcal{O}(1))). \]

Now, since \(p_j^* (\mathcal{F}(E, 1)^\vee|_{\Delta_1} \otimes \mathcal{O}(1)) \) is vector bundle over \(\mathcal{Z} \) and codimension of \(\mathcal{Z} \setminus \mathcal{U} \geq 2 \), hence, \(H^0(\mathcal{U}, p_j^* (\mathcal{F}(E, 1)^\vee|_{\Delta_1} \otimes \mathcal{O}(1))) = H^0(\mathcal{Z}, p_j^* (\mathcal{F}(E, 1)^\vee|_{\Delta_1} \otimes \mathcal{O}(1))). \)
Using the projection formula for the morphism \(p_j \), we get that \(H^0(\mathcal{U}, p_j^* (\mathcal{F}(E, 1)^\vee|_{\Delta_1} \otimes \mathcal{O}(1))) = H^0(\mathbb{P}(E), (\mathcal{F}(E, 1)^\vee|_{\Delta_1} \otimes \mathcal{O}(1))) \).
Now, over \(\mathbb{P}(E), \mathcal{F}(E, d)^\vee|_{\Delta_1} \otimes \mathcal{O}(1) \cong \mathcal{T}_{\mathbb{P}(E)/S}. \) Hence, we have the result.

Proof of Theorem 2.5. By Lemma 2.1, we have an inclusion \(\text{Aut}^e(\mathbb{P}(E)/S) \hookrightarrow \text{Aut}^e(Q(E, d)/S) \) and the corresponding map of Lie algebras \(H^0(\mathbb{P}(E), \mathcal{T}_{\mathbb{P}(E)/S}) \hookrightarrow H^0(Q(E, d), \mathcal{T}_{Q(E, d)/S}). \) Now, by Theorem 2.2, we get that this morphism of Lie algebras is an isomorphism. Since, the characteristic of \(k = 0 \), both \(\text{Aut}^e(\mathbb{P}(E)/S) \) and \(\text{Aut}^e(Q(E, d)/S) \) are reduced. Therefore the inclusion \(\text{Aut}^e(\mathbb{P}(E)/S) \hookrightarrow \text{Aut}^e(Q(E, d)/S) \) is an isomorphism.

3. Applications

COROLLARY 3.1

Under the hypothesis of Theorem 2.5, we have the following left exact sequence of algebraic groups.
0 \rightarrow GL(E)/k^* \rightarrow \text{Aut}^0(Q(E, d)/S) \rightarrow \text{Aut}^0(X/S). \quad (3.1)

The corresponding sequence of Lie algebras is given by

0 \rightarrow H^0(X, ad E) \rightarrow H^0(Q(E, d), T_{Q(E,d)/S}) \rightarrow H^0(X, T_{X/S}). \quad (3.2)

Proof. The left exactness of the above sequences follow from Theorem 2.5 and from the fact that Aut^0(\mathbb{P}(E)/S) and its Lie algebra fits into the above exact sequences.

COROLLARY 3.2

If genus of the fibres of X \rightarrow S is \geq 2 and the hypothesis of Theorem 2.5 holds, then

(i) \text{Aut}^0(Q(E, d)/S) = GL(E)/k^*,
(ii) H^0(Q(E, d), T_{Q(E,d)/S}) = H^0(X, ad E).

Proof. If genus of each fibre is \geq 2, then (p_S)_*T_{X/S} = 0. In particular, H^0(X, T_{X/S}) = 0. Hence, Aut^0(X/S) = 0. Now the corollary follows from Theorem 2.5.

COROLLARY 3.3

Let C be a smooth projective curve of genus \geq 2 over an algebraically closed field k of characteristic zero. Fix \vec{d} = (d_1, d_2, \ldots, d_k) \in \mathbb{N}^k with d_1 > d_2 > \cdots > d_k and r \geq 1. Let D(r, \vec{d}) be the flag scheme of filtration of quotients of \mathcal{O}_C^r \rightarrow B_1 \rightarrow B_2 \rightarrow \cdots \rightarrow B_d, where \mathcal{O}_C^r \rightarrow B_1 is a torsion quotient of degree d_1 [6, 2.A.1]. Then

(i) H^0(D(r, \vec{d}), T_{D(r,\vec{d})}) = sl(r),
(ii) \text{Aut}^0(D(r, \vec{d})) = PGL(r).

Proof. Over C \times D(r, (d_2, d_3, \ldots, d_k)), we have the universal chain of filtrations:

\mathcal{A}(r, d_2) \subseteq \mathcal{A}(r, d_3) \subseteq \cdots \subseteq \mathcal{A}(r, d_k) \subseteq \mathcal{O}_{C \times D(r, (d_1, d_2, \ldots, d_k))}^r.

Then D(r, \vec{d}) is the relative quot scheme of torsion quotients of degree d_1 - d_2 of the vector bundle \mathcal{A}(r, d_1) for the map C \times D(r, (d_2, d_3, \ldots, d_k)) \rightarrow D(r, (d_2, d_3, \ldots, d_k)). Then, by Corollary 3.1, we get that H^0(D(r, \vec{d}), T_{D(r,\vec{d})}) = H^0(C \times D(r, (d_2, d_3, \ldots, d_k)), ad \mathcal{A}(r, d_2)). Now, we know that for k \geq 1, \mathcal{A}(r, d_2) is stable with respect to certain polarizations on C \times D(r, (d_2, d_3, \ldots, d_k)) [4, Theorem 3.2.4, Theorem 5.1], so H^0(C \times D(r, (d_2, d_3, \ldots, d_k)), ad \mathcal{A}(r, d_2)) = 0. Now, by induction on k, we get that H^0(D(r, \vec{d}), T_{D(r, \vec{d})}) = H^0(C, ad \mathcal{O}_C^r) = sl(r). Also, (ii) follows immediately from this fact.

Note that we can apply Theorem 2.5(b) since \mathcal{A}(r, d_2) is stable.

□
COROLLARY 3.4

Let \(C \) be a smooth projective curve over an algebraically closed field \(k \). Let \(E \) be a vector bundle of rank \(\geq 3 \) over \(C \). Fix \(d \geq 1 \). Let \(\mathcal{Q}(E, d) \) be the quot scheme of torsion quotients of \(E \) of degree \(d \). Then

(i) We have the following:

(a) If genus of \(C = 0 \), i.e. \(C \cong \mathbb{P}^1 \), then \(\text{Aut}^{0}(\mathcal{Q}(E, d)) = PGL(2, k) \times GL(E)/k^{*} \).

(b) If genus of \(C = 1 \) and if \(E \) is semistable, then we have the following sequence of algebraic groups:

\[
0 \longrightarrow GL(E)/k^{*} \longrightarrow \text{Aut}^{0}(\mathcal{Q}(E, d)) \longrightarrow \text{Aut}^{0}(C) \longrightarrow 0.
\]

In both of these cases, we have the exact sequence of Lie algebras:

\[
0 \longrightarrow H^{0}(C, \text{ad } E) \longrightarrow H^{0}(\mathcal{Q}(E, d), \mathcal{T}_{\mathcal{Q}(E, d)}) \longrightarrow H^{0}(C, \mathcal{T}_{C}) \longrightarrow 0.
\]

(ii) If \(E \) is not semistable, then \(\text{Aut}^{0}(\mathcal{Q}(E, d)) = GL(E)/k^{*} \) and \(H^{0}(\mathcal{Q}(E, d), \mathcal{T}_{\mathcal{Q}(E, d)}) = H^{0}(C, \text{ad } E) \).

Proof.

(i) We have the following:

(a) If \(C \cong \mathbb{P}^1 \), then any vector bundle \(E \) admits a \(GL(2) \) linearization. In particular, we have a homomorphism \(GL(2) \rightarrow \text{Aut}^{0}(\mathcal{Q}(E, d)) \). This homomorphism factors through \(PGL(2, k) \) and gives a section to the map \(\text{Aut}^{0}(\mathcal{Q}(E, d)) \rightarrow PGL(2, k) \). Therefore, the left exact sequence (3.1) is exact in this case and it splits.

(b) We show that for any \(g \in \text{Aut}^{0}(C) \), \(g^{*}E \cong E \). This will show that the sequence (3.1) is also right exact in this case.

We know that \(E \cong \bigoplus E_{i} \), where \(E_{i} \)'s are indecomposable vector bundles. Since \(E \) is semistable, \(\mu(E_{i}) = \mu(E_{j}) \forall i, j \). Since \(\mathcal{Q}(E, d) \cong \mathcal{Q}(E \otimes \mathcal{L}, d) \) canonically for any line bundle \(\mathcal{L} \), after twisting \(E \) by a line bundle of appropriate degree, we can assume \(\mu(E) = \mu(E_{i}) = 0 \forall i \). By [1, Theorem 5(i)], \(E_{i} \cong F_{r_{i}} \otimes \mathcal{L}_{i} \), where \(F_{r_{i}} \) is the unique indecomposable vector bundle of rank \(r_{i} \) with \(H^{0}(C, E_{r_{i}}) \neq 0 \) and \(\mathcal{L} \) is a line bundle of degree 0.

It follows that for any \(g \in \text{Aut}^{0}(C) \), \(g^{*}F_{r} \cong F_{r} \), since \(g^{*}F_{r} \) is also an indecomposable bundle of degree 0 and rank \(r \) with \(H^{0}(C, g^{*}F_{r}) \neq 0 \). So, we need to show that \(g^{*}\mathcal{L} \cong \mathcal{L} \) for any \(\mathcal{L} \in \text{Pic}^{0}(C) \).

Fix a base point \(x_{0} \in C \). Then, under the group structure of \(C \) with \(x_{0} \) as the identity, \(\text{Aut}^{0}(C) \cong C \) i.e. any element of \(\text{Aut}^{0}(C) \) is given by \(y \mapsto y + c x \) for a fixed \(x \in C \). (Here we denote the group addition of \(C \) by \(+_{C} \).) Fix such an automorphism \(x \in C \cong \text{Aut}^{0}(C) \).

Now \((C, x_{0}, +_{C}) \cong \text{Pic}^{0}(C) \) with the morphism given by \(z \mapsto \mathcal{O}(z - x_{0}) \).

Let us assume \(\mathcal{L} = \mathcal{O}(z - x_{0}) \) for \(z \in C \). Then \(x^{*}\mathcal{L} = \mathcal{O}((z + c x) - (x_{0} - c x)) \).

Since \((C, x_{0}, +_{C}) \cong \text{Pic}^{0}(C) \) is a homomorphism, it follows that

\[
x^{*}\mathcal{L} \cong \mathcal{O}([((z + c x) - x_{0}) - ((x_{0} - c x) - x_{0})])
\]

\[
= \mathcal{O}(((z - c x) - x_{0}) - ((x_{0} - c x) - x_{0}))
\]

\[
= \mathcal{O}((z - x_{0}) - (x - x_{0}) - (x_{0} - x_{0}) + (x - x_{0}))
\]
= \mathcal{O}(z - x_0) = \mathcal{L}.

Hence, it follows that for any \(g \in \text{Aut}^o(C) \), \(g^* E \cong E \) for any \(E \) semistable.

(ii) By [7, Proposition 6.13], every semi-homogeneous vector bundle [7, Definition 5.2] is semistable. In particular, if \(E \) is not semistable, then the map \(H^0(\mathbb{P}(E), T_{\mathbb{P}(E)}) \rightarrow H^0(C, T_C) \) is zero. Hence, using the sequence (3.2), we get \(H^0(C, \text{ad} E) \rightarrow H^0(\mathbb{Q}(E, d), T_{\mathbb{Q}(E, d)}) \) is an isomorphism. From this, it follows that \(\text{Aut}^o(\mathbb{Q}(E, d)) = GL(E)/k^* \). \(\square \)

References

[1] Atiyah M F, Vector bundles over an elliptic curve, Proc. London Math. Soc. (3) 7 (1957) 414–452
[2] Biswas I, Dhillon A and Hurtubise J, Automorphisms of the Quot schemes associated to compact Riemann surfaces, Int. Math. Res. Notices 2015(6) (2015) 1445–1460
[3] Brion M, On automorphism groups of fiber bundles, arXiv:1012.4606 (2011)
[4] Gangopadhyay C, Stability of sheaves over Quot schemes, Bull. Des Sci. Mathématiques 149, (2018) 66–85
[5] Hartshorne R, Algebraic Geometry, Graduate Texts in Mathematics, vol. 52 (1977) (New York-Heidelberg: Springer)
[6] Huybrechts D and Lehn M, The Geometry of Moduli Spaces of Sheaves, second edition (2010) (Cambridge University Press)
[7] Mukai S, Semi-homogeneous vector bundles on an abelian variety, J. Math. Kyoto Univ. 18-2 (1978) 239–272

COMMUNICATING EDITOR: Parameswaran Sankaran