Positive Selection in the Chromosome 16 VKORC1 Genomic Region Has Contributed to the Variability of Anticoagulant Response in Humans

Blandine Patillon1,2,*, Pierre Luisi3,*, Hélène Blanché4, Etienne Patin5, Howard M. Cann4, Emmanuelle Génin11, Audrey Sabbagh6,6

1 Inserm UMR 946, Genetic Variability and Human Diseases, Institut Universitaire d'Hématologie, Université Paris Diderot, Paris, France, 2 Université Paris Sud, Kremlin-Bicêtre, France, 3 Institute of Evolutionary Biology, CEXS-UPF-PRBB, Catalonia, Barcelona, Spain, 4 Fondation Jean-Dausset-CEPH, Paris, France, 5 Human Evolutionary Genetics, CNRS URA 3012, Institut Pasteur, Paris, France, 6 UMR IRD 216, Université Paris Descartes, Paris, France

Abstract

VKORC1 (vitamin K epoxide reductase complex subunit 1, 16p11.2) is the main genetic determinant of human response to oral anticoagulants of antivitamin K type (AVK). This gene was recently suggested to be a putative target of positive selection in East Asian populations. In this study, we genotyped the HGDP-CEPH Panel for six VKORC1 SNPs and downloaded chromosome 16 genotypes from the HGDP-CEPH database in order to characterize the geographic distribution of footprints of positive selection within and around this locus. A unique VKORC1 haplotype carrying the promoter mutation associated with AVK sensitivity showed especially high frequencies in all the 17 HGDP-CEPH East Asian population samples. VKORC1 and 24 neighboring genes were found to lie in a 505 kb region of strong linkage disequilibrium in these populations. Patterns of allele frequency differentiation and haplotype structure suggest that this genomic region has been submitted to a near complete selective sweep in all East Asian populations and only in this geographic area. The most extreme scores of the different selection tests are found within a smaller 45 kb region that contains VKORC1 and three other genes (BCKDK, MYST1 (KAT8), and PRSS8) with different functions. Because of the strong linkage disequilibrium, it is not possible to determine if VKORC1 or one of the three other genes is the target of this strong positive selection that could explain present-day differences among human populations in AVK dose requirement. Our results show that the extended region surrounding a presumable single target of positive selection should be analyzed for genetic variation in a wide range of genetically diverse populations in order to account for other neighboring and confounding selective events and the hitchhiking effect.

Introduction

Oral anticoagulants of antivitamin K type (AVK) – such as warfarin and acenocoumarol – are widely prescribed drugs for the prevention and treatment of arterial and venous thromboembolic disorders [1,2]. They exert their anticoagulant effect by inhibiting the vitamin K 2,3-epoxide reductase complex 1 (VKORC1). Besides well-known physiopathological and environmental factors, including age, sex, body mass index, disease states, co-medications and diet, genetic factors have been identified as major determinants of AVK dose variability [3]. Candidate-gene and genome-wide association studies have identified four main genes – CYP2C9, CYP4F2, CYP2C19 and VKORC1 – which explain together between 28.2% and 43.5% of the AVK dose variance [3,4,5,6,7]. CYP2C9, CYP4F2 and CYP2C19 encode proteins involved in the hepatic metabolism of AVK [8,9,10]. VKORC1 encodes the VKORC1 enzyme, which is the direct pharmacologic target of AVK [11,12]. Differences in the worldwide distribution of the most important polymorphisms influencing AVK dosing are likely to underlie the wide interethnic variability in AVK dose requirements: current population-based trends in warfarin dosing, as reported by the International Warfarin Pharmacogenetics Consortium, indicate a mean weekly dose of 21 mg in Asians, 31.5 mg in Europeans and 40 mg in individuals of African ancestry [13].

Recently, Ross et al. [14] documented the distribution of four functional variants located in the three main genes known to influence AVK dose requirement – rs9923291 (VKORC1), rs1799853 and rs1057910 (CYP2C9), and rs2108622 (CYP4F2) – in a large set of samples from the Human Genome Diversity Project - Centre d’Etude du Polymorphisme Humain (HGDP-
allele frequency spectrum such as the Tajima’s ascertainment bias in SNP discovery than methods based on the to detect and localize a selective sweep, and are more robust to methods have proved to be powerful and largely complementary methods were applied to detect signatures of positive selection in the genome. F_{ST} and XP-CLR are both based on allele frequency differentiation, whereas XP-EHH and iHS are based on haplotype structure. Scores for the four test statistics were computed at both the regional and population levels for the seven $VKORC1$ SNPs and for some other available SNPs [15] representing the expected neutral genomic background. For each score, a p-value was derived from the empirical distribution obtained from the genomic background (cf. Material and Methods). We considered as significant any p-value below 0.05. The results of the four tests are presented in Table 1 and Table 2.

Results

$VKORC1$ Haplotype Study

A haplotype study of the 4.1 kb $VKORC1$ gene was carried out with seven $VKORC1$ SNPs genotyped in the 52 HGDP-CEPH population samples (Figure 1A). Haplotypes were reconstructed from these SNPs. Seven of these haplotypes had a frequency above 1% in at least one geographic region and were labeled H1 to H7 according to their frequency at the global level (Figure 1B). Four haplotypes are found in at least five geographic regions and only two are shared among all regions. The highest and lowest haplotype diversity values are observed in Sub-Saharan Africa (0.75\pm0.02) and East Asia (0.19\pm0.02), respectively. Most individuals carrying the ancestral haplotype (H6), i.e. the haplotype carrying the ancestral allele at each SNP, are from Sub-Saharan Africa (Figure 1B and Figure S1). Interestingly, the -1639A allele (rs9932231) conferring the increased sensitivity to AVK is carried by a unique haplotype (H1). This haplotype associated with AVK sensitivity is the most frequent at the worldwide level (39.7%) and shows an extremely high differentiation among geographic regions (Figure 1B). While rare in Sub-Saharan Africa (4.4%), it is found at intermediate frequencies in the Middle East, Europe, Central South Asia, Oceania and America (from 27.8% to 51.2%), and is largely predominant in East Asia (89.6%). The prevalence of H1 tends to be high in all of the 17 East Asian population samples investigated, ranging from 75% in She to 100% in Oroqen (Figure S1). However, the sample size is small for most of them, with 10 or less individuals.

The median-joining haplotype network describes the mutational relationships between the different $VKORC1$ haplotypes inferred (Figure 1C). Haplotype H1 differs from the others by two nucleotide substitutions at the functional rs9923231 SNP and at the rs9934438 SNP, which are found in complete LD in all geographic regions ($D^2 = 1$ and $r^2 = 1$, Figure S2).
When global FST values were computed among the 52 world populations, very similar results were obtained (Table S1). At the inter-regional level, i.e. between a given geographic region and the remaining ones, the same four VKORC1 SNPs showed highly significant FST values (<0.01) when comparing Central South Asia and East Asia to the rest of the world (Table 1, Figures 2B and 2C). Regarding East Asia, the highest FST values (FST = 0.41, p = 0.003) were observed for the two SNPs, rs9923231 and rs9934438. For the other geographic regions, no VKORC1 SNP displayed an inter-regional FST value as much significant as the ones observed for Central South Asia and East Asia (Table 1 and Figure S3). At the intra-regional level, i.e. among populations within a region, no extreme pattern of genetic differentiation (p<0.01) was observed for any VKORC1 SNP in any geographic region (Table 1 and Figure S4).

The XP-CLR test applied to each geographic region also provided evidence of an atypical pattern of genetic differentiation at the VKORC1 gene locus, with XP-CLR scores in East Asia ranging from 16.53 (p = 0.050) to 43.44 (p = 0.012) in the 16 kb genomic region centered on VKORC1 (Table 2). For each of the other six geographic regions, the XP-CLR scores were very low, supporting the existence of a selective sweep restricted to East Asia. In this geographic region, when the XP-CLR test was...
Table 1. Results of the inter-regional F_{ST}, intra-regional F_{ST}, XP-EHH and iHS tests in the seven geographic regions.

Region	SNP	DAF*	Inter-regional F_{ST} p-value	Intra-regional F_{ST} p-value	XP-EHH score	XP-EHH p-value	iHS score	iHS p-value		
Africa	n7294	0.63	0.18	0.215	0.13	0.074	−0.94	0.833	−1.24	0.183
	n7200749	0.20	0.48	0.217	0.02	0.643	−1.50	0.923	−0.31	0.748
	n2359612	0.82	0.23	0.173	0.09	0.123	−1.15	0.875	−0.96	0.305
	n8050894	0.16	0.25	0.143	0.09	0.125	−1.14	0.872	0.11	0.909
	n9934438	0.04	0.36	0.029 *	0.10	0.058	−1.05	0.855	−0.03	0.974
	n13336384	0.04	0.16	0.329	0.02	0.448	−1.06	0.858	0.14	0.883
	n9923231	0.04	0.36	0.029 *	0.10	0.058	−1.01	0.845	−0.01	0.989
Middle East	n7294	0.27	0.02	0.411	0.00	0.906	0.94	0.171	1.55	0.103
	n7200749	0.02	0.00	0.670	0.02	0.310	1.58	0.069	0.65	0.492
	n2359612	0.48	0.00	1.000	0.006	0.595	1.17	0.127	2.69	0.009 **
	n8050894	0.54	0.00	0.849	0.002	0.667	1.15	0.132	−1.40	0.141
	n9934438	0.51	0.00	0.946	0.01	0.481	1.05	0.149	−1.76	0.066
	n13336384	0.00	0.005	0.044 *	0.00	1.000	1.07	0.145	NA	NA
	n9923231	0.51	0.00	0.946	0.01	0.481	1.01	0.156	−1.76	0.066
Europe	n7294	0.30	0.005	0.670	0.004	0.570	0.94	0.167	0.67	0.474
	n7200749	0.00	0.02	0.477	0.00	1.000	1.50	0.077	NA	NA
	n2359612	0.49	0.00	1.000	0.02	0.304	1.15	0.125	2.00	0.039 **
	n8050894	0.51	0.00	1.000	0.02	0.286	1.14	0.128	−0.98	0.298
	n9934438	0.51	0.00	0.993	0.02	0.304	1.05	0.145	−1.02	0.281
	n13336384	0.00	0.005	0.071	0.00	1.000	1.06	0.142	NA	NA
	n9923231	0.51	0.00	0.993	0.02	0.304	1.01	0.155	−1.02	0.281
Central South Asia	n7294	0.49	0.06	0.042 *	0.07	0.026*	0.62	0.260	−0.54	0.550
	n7200749	0.003	0.02	0.261	0.02	0.041*	1.25	0.116	NA	NA
	n2359612	0.69	0.12	0.002 **	0.07	0.025*	0.89	0.187	1.00	0.280
	n8050894	0.32	0.12	0.003 **	0.08	0.015*	0.87	0.191	−0.13	0.393
	n9934438	0.31	0.10	0.006 **	0.07	0.020*	0.78	0.215	−0.20	0.834
	n13336384	0.00	0.005	0.088	0.00	1.000	0.79	0.210	NA	NA
	n9923231	0.31	0.10	0.006 **	0.07	0.020*	0.73	0.227	−0.20	0.834
East Asia	n7294	0.10	0.21	0.063	0.02	0.311	2.68	0.011 *	1.99	0.040 *
	n7200749	0.00	0.02	0.576	0.00	1.000	3.10	0.005 **	NA	NA
	n2359612	0.10	0.39	0.005 **	0.02	0.317	2.89	0.008 **	1.92	0.047 *
	n8050894	0.90	0.38	0.005 **	0.02	0.331	2.88	0.008 **	−1.20	0.200
	n9934438	0.90	0.41	0.003 **	0.02	0.300	2.81	0.009 **	−1.27	0.174
	n13336384	0.00	0.005	0.252	0.00	1.000	2.81	0.009 **	NA	NA
	n9923231	0.90	0.41	0.003 **	0.02	0.300	2.773	0.010 *	−1.274	0.174
Region	SNP	DAF*	Inter-regional F_{ST}	Inter-regional F_{ST} p-value^c	Intra-regional F_{ST}	Intra-regional F_{ST} p-value^c	XP-EHH score	XP-EHH p-value^e	iHS score	iHS p-value^e
----------	------------	------	-----------------------------	--------------------------------	-----------------	-----------------	----------------	---------------------	-----------	---------------------
Oceania	rs7294	0.72	0.23	0.090	0.00	0.771	0.03	0.456	0.05	0.961
	rs7200749	0.00	0.005	0.401	0.00	1.000	0.51	0.285	NA	NA
	rs2355612	0.72	0.09	0.404	0.00	0.771	0.32	0.346	0.05	0.961
	rs8050894	0.25	0.12	0.327	0.02	0.530	0.29	0.355	0.50	0.584
	rs9934438	0.28	0.08	0.438	0.00	0.749	0.20	0.388	0.50	0.584
	rs1336384	0.00	0.009	0.014[*]	0.00	1.000	0.21	0.384	NA	NA
	rs923231	0.28	0.08	0.438	0.00	0.749	0.16	0.404	0.50	0.584
America	rs7294	0.58	0.11	0.320	0.17	0.195	0.76	0.207	NA	NA
	rs7200749	0.00	0.01	0.555	0.00	1.000	1.15	0.125	NA	NA
	rs2355612	0.59	0.02	0.674	0.17	0.190	0.96	0.162	NA	NA
	rs8050894	0.41	0.02	0.667	0.17	0.190	0.95	0.163	NA	NA
	rs9934438	0.41	0.01	0.743	0.17	0.190	0.88	0.178	NA	NA
	rs1336384	0.00	0.006	0.013[*]	0.00	1.000	0.89	0.176	NA	NA
	rs923231	0.41	0.01	0.743	0.17	0.190	0.85	0.185	NA	NA

*Derived allele frequency estimated at the global level.

^bF_{ST} estimated at the inter-regional level, i.e. between a given geographic region and the remaining ones.

^cp-values are derived from the genome-wide empirical distribution of F_{ST} values.

^dF_{ST} estimated at the intra-regional level, i.e. among populations within a region.

^ep-values are derived from the empirical distribution of the iHS and XP-EHH scores along the chromosome 16.

[*]p<0.05; ** p<0.01; *** p<0.005.

NA: Not Applicable (for IHS: when a gap >200 kb between successive SNPs is found in the region in the region delimited by the SNPs where the EHH value drops below 0.05 around the core SNP).

DOI:10.1371/journal.pone.0053049.t001
Table 2. Results of the XP-CLR test in a 16 kb region centered on VKORC1 in the seven geographic regions.

Region	Physical position	XP-CLR score	XP-CLR p-value
Africa	31005354	0.00	1.00
	31009354	0.00	1.00
	31013354	0.96	0.289
	31017354	0.58	0.348
	31021354	0.09	0.470
Middle East	31005354	4.00	0.138
	31009354	0.85	0.306
	31013354	3.28	0.158
	31017354	0.27	0.403
	31021354	6.25	0.092
Europe	31005354	0.54	0.351
	31009354	0.00	1.000
	31013354	2.63	0.186
	31017354	0.15	0.427
	31021354	2.40	0.198
Central South Asia	31005354	0.03	0.464
	31009354	0.00	1.000
	31013354	0.00	1.000
	31017354	0.01	0.476
	31021354	0.00	0.490
East Asia	31005354	24.08	0.032 *
	31009354	16.53	0.050 *
	31013354	30.49	0.023 *
	31017354	26.82	0.028 *
	31021354	43.44	0.012 *
Oceania	31005263	0.00	1.000
	31009263	0.00	1.000
	31013263	0.00	1.000
	31017263	0.00	1.000
	31021263	0.00	1.000
America	31005354	0.00	1.000
	31009354	0.00	1.000
	31013354	0.00	1.000
	31017354	0.01	0.587
	31021354	0.00	0.597

*p-values are derived from the empirical distribution of the XP-CLR scores along the chromosome 16.

*p < 0.05; ** p < 0.01; *** p < 0.005.
doi:10.1371/journal.pone.0053049.t002

performed for each population, all of the 17 population samples, except Oroqen, showed this extreme pattern of genetic differentiation, with at least three significant XP-CLR scores out of the five scores computed in the 16 kb genomic region surrounding VKORC1 (Table S2). As most of the SNPs in the VKORC1 genomic region have reached fixation in the Oroqen sample, XP-CLR scores could be calculated for only very few SNPs on either side of VKORC1, making difficult the interpretation of XP-CLR results in this sample.

Regional results obtained with the extended haplotype-based XP-EHH test indicated that the unusual pattern of genetic differentiation observed at the VKORC1 gene locus resulted from a selective sweep in East Asia. Significant XP-EHH scores, ranging from 2.68 (p = 0.011) to 3.10 (p = 0.005), were observed for the seven VKORC1 SNPs in East Asia, while no significant values were observed in any other geographic region (Table 1). For East Asian populations, evidence for a selective sweep was detected in all 17 population samples with significant XP-EHH scores for each of the seven VKORC1 SNPs, ranging from 1.84 (p = 0.049) in the Dai sample for rs7294, to 3.78 (p = 0.004) in the Tujia sample for rs8050894 (Table S3).

With the iHS test, only two VKORC1 SNPs (rs7294 and rs2359612) exhibited significant iHS scores in East Asia (p = 0.040 and 0.047, respectively; Table 1). Two other significant scores were observed for the rs2359612 SNP in the Middle East (2.69, p = 0.009) and Europe (2.00, p = 0.039). At the population level in East Asia, only three samples (Hezhen, Lahu, and Yakut) displayed significant iHS scores for two, three and four SNPs, respectively (Table S3).

The four selection tests consistently evidenced the signature of a selective sweep involving the VKORC1 genomic region in East Asia. However, this result did not allow us to determine with certainty that VKORC1 is the direct target of positive selection. A linked gene could be the target instead, resulting in genetic hitchhiking of VKORC1 [23]. In an attempt to seek the true target of positive selection, we probed the downloaded chromosome 16 genotypes [15] with the four tests for selection and examined the results over an extended 2 Mb genomic region centered on VKORC1. We focused on clusters of selection test scores with highly significant p-values (p < 0.01) for East Asia only. Three clusters were observed (Figure 3): (i) ~ 570 kb downstream of VKORC1, the first cluster was found with partially overlapping clusters of extreme XP-CLR and XP-EHH scores over a region of 64 and 39 kb, respectively, involving the genes ITGAL, ZNF768, and ZNF747; (ii) at or close to VKORC1 genomic position, the second cluster was determined by overlapping clusters of extreme FST values when comparing East Asia to the rest of the world (with the lowest p-values observed for the same two VKORC1 SNPs evidenced before, rs9923251 and rs9934438) and extreme XP-CLR and XP-EHH scores. These clusters ranged in size from 45 to 244 kb; (iii) ~ 230 kb upstream of VKORC1, the third cluster of 32 kb was found with XP-EHH and concerned the genes ITGAM and ITGAX. If SNPs within clusters are in high LD (D’ ≥ 0.97, except for one SNP in the third cluster), only limited LD exists between the SNPs located in the different clusters (Figure 4 and Figure S5) and several recombination hotspots are present between these clusters (Figure 4). This suggests that each of the three clusters represents a different adaptive event.

Examination of the second cluster showed that VKORC1 is contained in a block of strong LD spanning ~ 505 kb in East Asia (Figure 4 and Figure S5). Similar LD blocks were observed for Central South Asia and Europe, and to a lesser extent, for the Middle East (Figure S5). This LD block encompasses 25 genes (Figure 4). We used the most extreme FST, XP-CLR and XP-EHH scores in order to spatially localize a target of selection within the LD block. Significant XP-CLR scores (p < 0.05) were found in a 350 kb region encompassing 19 genes including VKORC1 (Table S4). XP-EHH scores were almost all significant at the 0.05 threshold but four adjacent genes VKORC1, BC062387, MYS1 (KAT8) and PRSS8 displayed most extreme XP-EHH scores (p < 0.01). Clusters of highly significant FST values when comparing East Asia to the rest of the world (p < 0.01) and significant global FST values (p < 0.05) were also found for these four genes (Table S5). It is thus probable that the selective pressure has targeted one of these genes.
When did the -1639A VKORC1 Allele begin to Increase in East Asia?

The time at which the frequency of the -1639A allele started to increase in East Asia was estimated by using a maximum-likelihood method [31] with the 17 East Asian HGDP-CEPH sample data. Our analysis yielded an age estimate of 181 generations (95% CI: 128–256 generations). Assuming a generation time of 25 years, the expansion therefore occurred about 4,525 years ago (95% CI: 3,200–6,400 years).

Discussion

Numerous genes involved in absorption, distribution, metabolism and excretion (ADME) of drugs, exhibit evidence of recent positive selection and/or high population differentiation levels [32]. However, there are fewer examples of the action of natural selection on genes involved in the pharmacodynamics of drugs, such as VKORC1. Although numerous surveys have examined the genetic polymorphism of VKORC1 in samples from diverse ethnic origins [13,20,33,34,35,36,37], these studies provided an incomplete picture of haplotype diversity because different sets of SNPs were used and worldwide coverage was incomplete. In this study, we took advantage of the worldwide coverage of the HGDP-CEPH Panel to provide the first detailed analysis of VKORC1 population diversity using the same set of SNPs. Haplotype analysis revealed that the -1639A derived allele that confers AVK sensitivity is carried by a unique haplotype in all 52 population samples investigated. This haplotype associated with AVK sensitivity is predominant in East Asia, rare in Sub-Saharan Africa and occurs at intermediate frequencies in other geographic regions. Because it is found in Sub-Saharan Africa and other world populations, this haplotype is probably rather old. Its geographic distribution leads to striking differences between East Asian and non East Asian samples for genetic susceptibility to AVK sensitivity.

One explanation for worldwide diversity of this haplotype could be positive selection. This hypothesis was supported by five genome-wide scans that found atypical patterns of the allele frequency spectrum [38], extended LD [39,40], and unusual genetic differentiation [40,41,42] in a 450 kb genomic region encompassing VKORC1. When specified, the target population was Asian [38,40]. Ross et al. [14] found evidence of positive selection at VKORC1 in the East Asian HapMap sample, based on the level of genetic diversity (lnRH test [17]), genetic differentiation (LSBL test [16]) and allele frequency spectrum (Tajima’s D [18]).

![Figure 2. Atypical patterns of genetic differentiation observed for VKORC1 SNPs.](http://www.plosone.org/figure/2/10.1371/journal.pone.0053049.g002)
In this study, we provided compelling evidence of positive selection at the VKORC1 gene locus in East Asia and only in this geographic region. A footprint of natural selection was found in each of the widely distributed 17 HGDP-CEPH East Asian population samples. By using four different tests of positive selection and by assessing significance at a given locus on the basis of an empirical distribution derived from the genomic background, we believe we can be confident that positive selection, rather than demographic forces, accounts for the data presented here. Indeed, it is well known that large allele frequency differences between populations are not infallible proofs of positive selection: these can also result from genetic drift, migration and other neutral demographic processes [43,44]. This might be the explanation for the significant inter-regional \(F_{ST} \) values observed in Central South Asia (Table 1 and Figure 2B).

Because the XP-EHH test is designed to detect fixation events that are relatively young (\(~ 30,000 \text{ years}\) [27], the selective event we have detected is likely to be rather recent. This is indeed supported by an age estimate of 4,525 years (95% CI: 3,200–6,400 years) for the time at which the VKORC1 -1639A allele started to increase in frequency in East Asia. The poor performance of the iHS test that detected only very few signals of positive selection in this study could have been predicted since its power to detect selective sweeps involving alleles near fixation is known to be low [28,45]. By contrast, XP-EHH and XP-CLR perform better when the allele targeted by selection is near fixation and indeed showed strong evidence of a selective sweep in this study [24,27].

In an attempt to determine if the VKORC1 gene has been the direct target of positive selection or if it reflects genetic hitchhiking [23], we extended our analysis to a 2 Mb region surrounding the VKORC1 gene (Figure 3). Apart from the highly significant footprint of positive selection localized in the VKORC1 region, two other significant signals, at \(~ 570 \text{ kb downstream and } \sim 230 \text{ kb upstream of VKORC1} \), were detected with XP-CLR and/or XP-EHH in East Asia. These two regions contain genes that belong to the same integrin family – specifically to the CD11 gene cluster: ITGAL downstream, and adjoining genes ITGAM and ITGAX upstream – involved in immune functions and being thus good candidates for positive selection [46,47,48]. However, since SNPs located in these integrin genes show limited LD with those of VKORC1, a single adaptive event is unlikely. Apart from East Asia, the ITGAL region showed signals of positive selection in other

Figure 3. Distribution of \(-\log_{10}(p\text{-values})\) for four selection tests across a 2 Mb region centered on VKORC1. A black vertical line indicates the physical position of VKORC1 on chromosome 16. Horizontal red dotted and dashed lines show 0.05 and 0.01 chromosome-wide significance levels, respectively. The selection tests (inter-regional \(F_{ST} \), XP-CLR, XP-EHH and iHS, respectively) were separately applied in each of the seven geographic regions.

doi:10.1371/journal.pone.0053049.g003
Figure 4. Detailed analysis of a 1.1 Mb genomic region surrounding the \textit{VKORC1} gene locus in East Asia. The boundaries of the region displayed (chr16:30,271,572-31,391,123; UCSC human genome build hg18) were chosen so as to include the three clusters of significant scores detected in East Asia by the selection tests in the 2 Mb region centered on \textit{VKORC1} (Figure 3). (A) \textbf{Name and location of genes.} Exons are displayed as blue boxes and the transcribed strand is indicated with an arrow. Genes located in the block of strong LD encompassing \textit{VKORC1} and including the SNPs in the red box shown in Figure 4C, are highlighted in the grey area. (B) \textbf{XP-EHH results in East Asia.} The significance of the XP-EHH scores ($-\log_{10}$ empirical p-value) are shown for individual SNPs with a MAF ≥0.01 in East Asia. Horizontal dashed lines indicate 0.05 and 0.01 chromosome-wide significance levels. Recombination hotspots detected in HapMap Phase II data are indicated by red vertical dotted lines. The data...
geographic regions (America with XP-CLR, and Sub-Saharan Africa and Oceania with XP-EHH), arguing for a different evolutionary history from that of VKORC1, which was only found in East Asia. This observation emphasizes the need for studying the geographic distribution of a selective event in a wide range of genetically diverse populations, as per Scheinfeild et al. [49] who, after performing a detailed analysis of a 3 Mb region surrounding a gene showing strong footprints of positive selection, discovered patterns of genetic variation consistent with the presence of a cluster of three independent selective events occurring in different populations. By extending their analysis to the entire genome, they identified several other genomic regions exhibiting evidence for the presence of multiple and independent selective targets, suggesting that clusters of adaptive evolution, such as the one detected herein, are widespread in the human genome.

After delimitating the selective signal for VKORC1 by analyzing selective events identified in the 2 Mb region just described, we aimed at precisely mapping the gene targeted by positive selection. VKORC1 is located in a ∼ 505 kb LD block in East Asia containing 25 genes (Figure 4), and the selective pressure could have targeted any gene in this LD block. We used FST, XP-CLR and XP-EHH scores to spatially localize possible targets of positive selection within the LD region. A block of four adjacent genes – VKORC1, BCKDK, MIST1, and PRSS8 – was found to be the most likely selective target (Table S4).

BCKDK codes for the mitochondrial branched chain ketoacid dehydrogenase kinase. MIST1 and PRSS8 are two immunity-related genes, listed as candidates for positive selection in several databases [40,42,50]. If, indeed, one of these three genes is the target of the selective sweep detected here, it should contain a functional variant of high frequency in East Asia and we did not find such a variant in HapMap data.

Assuming that selection has directly targeted the VKORC1 gene, the advantage would then probably be related to vitamin K metabolism, vitamin K being the only known substrate of VKORC1. This vitamin plays a crucial role in the synthesis of vitamin K-dependent (VKD) proteins, especially blood coagulation factors, which requires VKORC1 activity [51,52]. Large geographic differences in dietary vitamin K intake, especially in vitamin K2, exist between human populations, with the highest plasma levels found in Asian populations, as compared to Europeans and Africans [53,54]. These differences could be explained by the wide consumption of fermented soybean food (natto) - a major source of vitamin K2 - in East Asia [55,56]. It is then possible that, at some points in the history of East Asian populations, these high levels of vitamin K intake could have been deleterious and created a selective pressure against VKORC1 gene expression and coagulant activity. There is, however, no report so far of a deleterious effect associated with a high consumption of vitamin K and it is more the low dietary vitamin K intake that is problematic, hampering the adequate synthesis of VKD proteins in extrahepatic tissues notably bone and arterial vessels [57]. An alternative hypothesis could be that a naturally occurring environmental molecule of AVK type - such as a coumarin derivative - specifically found in East Asia, exerted a selective pressure on the VKORC1 gene in populations of this region during their recent history. Such molecules are present in the nature, as illustrated by the example of the sweet clover disease that affected
that corresponds to the proportion of values from the empirical distribution that are higher than the value observed at the locus of interest. If the value obtained for the SNP of interest is greater than the 95th percentile ($p<0.05$) of the empirical distribution, positive selection is invoked. For that purpose, we used the empirical distributions obtained from the scores calculated either on a genome-wide (all autosomal chromosomes) or chromosome-wide (chromosome 16, where VKORC1 is located) basis.

First, we used two statistics, F_{ST} and XP-CLR, which measure the genetic differentiation among human populations [24,26]. These methods are able to detect selective sweeps that have occurred up to 75,000 years ago [77]. The fixation index F_{ST} [78] quantifies the proportion of genetic variance explained by allele frequency differences among populations. F_{ST} ranges from 0 (for genetically identical populations) to 1 (for completely differentiated populations). We calculated F_{ST} values using the BioPerl module PopGen [79] for each autosomal SNP with a minor allele frequency (MAF) $\geq 10^{-3}$ ($644,143$ SNPs) at three different levels: (i) global level (either among the seven HGDP-CEPH Panel geographic regions or among the 52 Panel populations), (ii) inter-regional level (each geographic region versus the remaining ones), and (iii) intra-regional level (among populations within a region).

Since F_{ST} strongly correlates with heterozygosity [41,80,81], empirical p-values were calculated within bins of 10,000 SNPs grouped according to MAF. The resulting distributions represent the average genetic differentiation of human populations corrected for heterozygosity.

We next applied the XP-CLR test [24] which identifies selective sweeps in a population by detecting significant genetic differentiation in an extended genomic region of interest as compared to a reference population. This method presents both the advantages of being robust to ascertainment bias and of not requiring any information on haplotypes, thus avoiding errors of haplotype estimation from genotype data. XP-CLR scores were computed at regularly spaced grid points (every 4 kb) across chromosome 16 using the genotypes from SNPs within overlapping windows of 0.1 cM around each grid point. To account for different SNP densities among genomic regions, we restricted to 200 the maximal number of SNPs used to compute a XP-CLR score within the 0.1 cM genomic region, by removing excess SNPs at random. We applied this method by considering all SNPs with a MAF $\geq 10^{-3}$ on chromosome 16 at both the regional and population levels ($17,729$ SNPs). P-values were calculated from the empirical distribution of the collected scores obtained with these SNPs. XP-CLR requires the definition of a reference population: the Sub-Saharan African samples were used as a reference for non Sub-Saharan African regions, and the European samples as a reference for Sub-Saharan Africa. For the analyses performed at the population level, we defined the Yoruba as the reference for non Sub-Saharan African samples, and the French for Sub-Saharan African samples.

The second class of methods that we used is based on EHH, i.e. the sharing of identical alleles across relatively long distances by most haplotypes in population samples [25]. In brief, the EHH is computed for a given SNP (the core SNP) of a sequence being interrogated for a selective sweep. In the absence of a selective sweep, recombination events break down haplotypes relatively rapidly with time and with increasing distance from the core SNP. In the case of a selective sweep, LD tends to maintain the haplotype carrying the selected allele, and the relative frequency of this (favored) haplotype will increase with time leading to so-called EHH. Integration of genetic distance in both directions from the core SNP can be used to discriminate between selected and non-selected alleles, and be applied to ancestral and derived alleles.
Analytic methods based on EHH are able to detect recent selective sweeps (i.e., those occurring less than 30,000 years ago [77]). Such analyses require haplotype data. We used fastPHASE v1.3.0 EM algorithm [82] to infer haplotypes with chromosome 16 SNPs for individuals from each geographic region. For each region, the K-selection procedure was first run several times in order to define the optimal number of clusters of similar haplotypes by minimizing chance error rates. Ultimately, phase was determined with $K=6$ for Oceania, $K=14$ for Europe and Central-South Asia and $K=12$ for the remaining regions. Using these values, the EM algorithm was then run with 20 random starts and 25 iterations.

Once haplotypes were reconstructed, we computed the XP-EHH statistic [27] that compares the integrated EHH computed in a test population versus that of a reference population. Therefore, this method detects a sweep in which the selected allele has risen to near fixation in one population but remains polymorphic in the other. XP-EHH scores were computed using the same parameters as those described in Sabichi et al. (2007). Reference populations were defined as for XP-CLR.

We finally applied the iHS [28] that compares the rate of EHH decay observed for both the derived and ancestral allele at the core SNP. An extremely positive or negative value at the core SNP provides evidence of positive selection with unusually long haplotypes carrying the ancestral or the derived allele, respectively. The raw iHS scores were computed using the iHS option implemented in the WHAMM software developed by Voight et al. (2006). The scores were standardized to have null mean and unit variance in 5% bins of the derived allele frequency at the core SNP. Information on ancestral allele status was obtained from the SNP.HTS gene position.

Age of the Expansion of the -1639A VKORC1 Allele in East Asia

We inferred the age at which the -1639A allele started to increase in frequency in East Asia by estimating the age of the most recent common ancestor carrying this allele in East Asia using the likelihood-based method implemented in the Estiagie program [31]. This method assumes that all individuals derive from a common ancestor who introduced the mutation n generations ago. Estimation of n is based on the length of the haplotype shared by the individuals, which is estimated through the identification of recombination events on the ancestral haplotype by taking into account allele frequencies and recombination rates. We estimated n using only one haplotype per East Asian population sample (i.e., 17 haplotypes). For each population, this one haplotype was constructed by taking at each locus over a 6 Mb region the allele the most frequently seen in individuals from the population carrying the -1639A allele. A mutation rate of 10^{-6} per individual and per generation, and a 25-year generation time were assumed.

Supporting Information

Figure S1 Distribution of VKORC1 haplotypes in the 52 HGDP-CEPH samples. The haplotype carrying the -1639A allele (H1) is represented in red and the ancestral haplotype (H6) in black.

Figure S2 Pairwise LD between the seven VKORC1 SNPs at the regional and global level. Red squares indicate statistically significant (logarithm of odds >2) LD between the pair of SNPs, as measured by the D' statistic [75] with the Haploview software [73]; darker colors of red indicate higher values of D', up to a maximum of 1. White squares indicate pairwise D' values of <1 with no statistically significant evidence of LD. Blue squares indicate pairwise D' values of 1 but without statistical significance.

Figure S3 Genome-wide empirical distributions of inter-regional F_{ST} values against MAF in the seven geographic regions. Empirical distributions of F_{ST} were constructed by calculating an F_{ST} value for 644,413 SNPs having a MAF ≥ 0.001 at the global level. Individual values of F_{ST} calculated for each of the seven VKORC1 SNPs are plotted against their global MAF. The functional rs9923231 SNP is shown in red. The 50th, 95th and 99th percentiles are indicated as dotted, dashed and full red lines, respectively.

Figure S4 Genome-wide empirical distributions of intra-regional F_{ST} values against MAF in the seven geographic regions. Empirical distributions of F_{ST} were constructed by calculating an F_{ST} value for all SNPs having a MAF ≥ 0.001 at the intra-regional level. Individual values of F_{ST} calculated for each of the seven VKORC1 SNPs are plotted against the regional MAF. The functional rs9923231 SNP is shown in red. The 50th, 95th and 99th percentiles are indicated as dotted, dashed and full red lines, respectively.

Figure S5 LD patterns over a 2 Mb region centered on VKORC1 in the seven geographic regions. Pairwise LD, depicted as D', is shown for SNPs with a MAF ≥ 0.05 at the global level. D' values are displayed in different colors from yellow to red for $D'=0$ to $D'=1$, respectively. The plot was produced using the snp.plotter R package [74]. The vertical dashed lines delineate VKORC1 gene position.

Figure S6 Allele frequency distribution of the seven VKORC1 SNPs in the 52 HGDP-CEPH samples: rs9923231 (A), rs13336384 (B), rs9934438 (C), rs8050094 (D), rs2339612 (E), rs7200749 (F) and rs7294 (G). The derived and ancestral alleles are represented in orange and blue, respectively.

Table S1 Global F_{ST} values among populations and among regions for the seven VKORC1 SNPs.

Table S2 Results of the XP-CLR test in a 16 kb region centered on VKORC1 in the 52 HGDP-CEPH samples.

Table S3 Results of the XP-EHH and iHS tests in the 52 HGDP-CEPH samples.
Table S4 Results of the XP-CLR test in the ~ 500 kb genomic region of the LD block encompassing VKORC1 in East Asia. (XLS)

Table S5 Results of the XP-EHH, iHS tests, inter-regional FST and global FST for all SNPs located in the linkage disequilibrium block encompassing VKORC1 in East Asia. (XLS)

Table S6 Description of the 52 HGDP-CEPH samples grouped into seven main geographic regions. (XLS)

References

1. Hirsh J, Dalen JE, Anderson DR, Poller L, Bussey H, et al. (1998) Oral anticoagulants: mechanism of action, clinical effectiveness, and optimal therapeutic range. Chest 114: 1458–1498.

2. Hyers TM, Agnelli G, Hull RD, Weg JG, Morris TA, et al. (1998) Antithrombotic therapy for venous thromboembolic disease. Chest 114: 5615–5718.

3. D’Andrea G, D’Ambrosio R, Margaglione M (2008) Oral anticoagulants. Pharmacogenomics Relationship between genetic and non-genetic factors. Blood Rev 22: 127–140.

4. Cooper GM, Johnson JA, Langace TY, Feng H, Stanaway IB, et al. (2008) A genome-wide scan for common genetic variants with a large influence on warfarin maintenance dose. Blood 112: 1022–1027.

5. Takeuchi F, McGinnis R, Bourgeois S, Barnes C, Eriksson N, et al. (2009) A genome-wide association study confirms VKORC1, CYP4F2, and CYP2C9 as principal genetic determinants of warfarin dose. PLoS Genet 5: e1000433.

6. Teichert M, Ejigieheim M, Rivadeneira F, Unterstoeudl MG, van Schaik RH, et al. (2009) A genome-wide association study of acenocoumarol maintenance dosage. Hum Mol Genet 18: 3758–3768.

7. Cha PC, Mushroda T, Takahashi A, Kudo M, Minami S, et al. (2010) Genome-wide studies identify genetic determinants of warfarin responsiveness for Japanese. Hum Mol Genet 19: 4755–4744.

8. Goldstein JA, de Morais SM (1994) Biochemistry and molecular biology of the human CYP2C subfamily. Pharmacogenetics 4: 203–299.

9. Sterc DE, Roman RJ, Flach A, Rieder MJ (2007) Functional polymorphism in human CYP4F2 decreases 20-HETE hydroxylation activity. J Nutr 137: 457–511.

10. Bardowell SA, Stec DE, Parker RS (2010) Common variants of cytochrome P450 4F2 exhibit altered vitamin E-[omega]-hydroxylase specific activity. J Nutr 140: 1100–1104.

11. Li T, Chang CY, Jin DY, Lin PJ, Khvorova A, et al. (2004) Identification of the gene for vitamin K epoxide reductase. Nature 427: 537–541.

12. Rost S, Fregin A, Kvaskevicius V, Conzelmann E, Hörttagel K, et al. (2004) Mutations in VKORC1 cause warfarin resistance and multiple coagulation factor deficiency type 2. Nature 427: 537–541.

13. Lindi NA, Wadelius M, Cavallari L, Eriksson N, Cavallari L, et al. (2009) Population variation in VKORC1 haplotype structure. J Thromb Haemost 4: 1800–1811.

14. Limdi NA, Wadelius M, Cavallari L, Eriksson N, Cavallari L, et al. (2008) VKORC1 polymorphisms, haplotypes and haplotype groups on warfarin dose among African-Americans and European-Americans. Pharmacogenomics 9: 1445–1458.

15. Schwierz U, Richie MD, Bradford Y, Li C, Dudek SM, et al. (2008) Genetic determinants of response to warfarin during initial anticoagulation. N Engl J Med 358: 999–1009.

16. Shriver MD, Kennedy GC, Parra EJ, Lawson HA, Sonpar V, et al. (2004) The human CYP2C subfamily. Pharmacogenetics 4: 285–299.

17. Tajima F (1989) Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics 123: 585–595.

18. Storz JF, Payseur BA, Nachman MW (2004) Genome scans of DNA variability in humans reveal evidence for selective sweeps outside of Africa. Mol Biol Evol 21: 135–140.

19. Frazer KA, Ballinger DG, Cox DR, Hinds DA, Stuve LL, et al. (2007) A second generation human haplotype map of 3.1 million SNPs. Nature 449: 851–861.

20. Rieder MJ, Reiner AP, Gage BF, Nickerson DA, Eby CS, et al. (2005) Effect of VKORC1 haplotypes on transcriptional regulation and warfarin dose. N Engl J Med 352: 2285–2293.

21. Foerster SH, Price AL, Sun Y, Steen WM, Sabeti PC, et al. (2009) A genome-wide association study confirms VKORC1, CYP2C9, and CYP4F2 as determinants of acenocoumarol sensitivity. Blood 106: 135–140.

22. Carlson CS, Thomas DJ, Eberle MA, Swanson JE, Livingston RJ, et al. (2005) Genome regions exhibiting positive selection identified from dense genome data. Genome Res 15: 1355–1365.

23. Wang ET, Kodama G, Baldi P, Moyzis RK (2000) Global landscape of recent positive selection in the human genome. Proc Natl Acad Sci U S A 107: 340–345.

24. Hirsh J, Dalen JE, Poller L, Bussey H, et al. (1998) Oral anticoagulants: mechanism of action, clinical effectiveness, and optimal therapeutc range. Chest 114: 1458–1498.

Acknowledgments

PL thanks Txsma Heredia, Angel Carrero and Jordi Rambla for computational support. BP thanks Steven Gadal for his valuable assistance in writing scripts, Quentin Vincent for his advices on the datation protocol, and Marie-Claude Babron and Remi Kazma for their helpful comments on the manuscript.

Author Contributions

Conceived and designed the experiments: EG AS. Performed the experiments: BP PL, HB. Analyzed the data: BP PL, EG AS. Contributed reagents/materials/analysis tools: HB EP HMC. Wrote the paper: BP PL EP HMC EG AS.
63. Song Y, Endepols S, Klemann N, Richter D, Matuschka FR, et al. (2011) Adaptive introgression of anticoagulant rodent poison resistance by hybridization between old world mice. Curr Biol 21: 1296–1301.

64. Hernandez RD, Kelley JH, Elsaysh E, Melton SC, Auton A, et al. (2011) Classic selective sweeps were rare in recent human evolution. Science 331: 920–924.

65. Pritchard JK, Di Rienzo A (2010) Adaptation - not by sweeps alone. Nat Rev Genet 11: 663–667.

66. Pritchard JK, Pickrell JK, Coop G (2010) The genetics of human adaptation: hard sweeps, soft sweeps, and polygenic adaptation. Curr Biol 20: R208–215.

67. Ho K, Pickrell JK, November J, Kudaravalli S, Li J, et al. (2009) The role of geography in human adaptation. PLos Genet 5: e1000500.

68. Consortium TGP (2010) A map of human genome variation from population-scale sequencing. Nature 467: 1001–1013.

69. Cann HM (1998) Human genome diversity. C R Acad Sci III 321: 443–446.

70. Rosenberg NA (2006) Standardized subsets of the HGDP-CEPH Human Genome Diversity Cell Line Panel, accounting for atypical and duplicated samples and pairs of close relatives. Ann Hum Genet 70: 841–847.

71. Stephens M, Donnelly P (2003) A comparison of bayesian methods for haplotype reconstruction from population genotype data. Am J Hum Genet 73: 1126–1169.

72. Bandelt HJ, Forster P, Rohl A (1999) Median-joining networks for inferring intraspecific phylogenies. Mol Biol Evol 16: 37–48.

73. Barrett JC, Fry B, Maller J, Daly MJ (2005) Haploview: analysis and visualization of LD and haplotype maps. Bioinformatics 21: 263–265.

74. Luna A, Nicolaides K K (2007) An SNP Plotter: an R-based SNP/haplotype association and linkage disequilibrium plotting package. Bioinformatics 23: 774–776.

75. Levontin RC (1964) The Interaction of Selection and Linkage. I. General Considerations; Heterotic Models. Genetics 49: 49–67.

76. Hill WG, Robertson A (1968) Linkage disequilibrium in finite populations. Theor Appl Genet 30: 226–231.

77. Saleti PC, Schaffner SF, Fry B, Lohmueller J, Varilly P, et al. (2006) Positive natural selection in the human lineage. Science 312: 1614–1620.

78. Wright S (1951) The genetical structure of populations. Annals of Eugenics 15: 323–354.

79. Stajich JE, Block D, Boulez K, Brenner SE, Chervitz SA, et al. (2002) The Bioperl toolkit: Perl modules for the life sciences. Genome Res 12: 1611–1618.

80. Beaumont MA, Nichols RA (1996) Evaluating loci for use in the genetic analysis of population structure. The Royal Society 263: 1619–1626.

81. Rosenberg NA (2006) Standardized subsets of the HGDP-CEPH Human Genome Diversity Cell Line Panel, accounting for atypical and duplicated samples and pairs of close relatives. Ann Hum Genet 70: 841–847.

82. Rosenberg NA (2006) Standardized subsets of the HGDP-CEPH Human Genome Diversity Cell Line Panel, accounting for atypical and duplicated samples and pairs of close relatives. Ann Hum Genet 70: 841–847.

83. McVean GA, Myers SR, Hunt S, Deloukas P, Bentley DR, et al. (2004) The role of geography in human adaptation. PLoS Genet 1: 665–667.

84. Winckler W, Myers SR, Richter DJ, Ozonoff RC, McDonald GJ, et al. (2005) Comparison of fine-scale recombination rates in humans and chimpanzees. Science 308: 107–111.