Obesity Impacts Mortality and Rate of Revascularizations Among Patients With Acute Myocardial Infarction: An Analysis of the National Inpatient Sample

Genaro Velazquez 1, Trisha Marie A. Gomez 1, Iriagbonse Asemota 1, Emmanuel Akuna 1, Pius E. Ojemolon 2, Precious Eseaton 3

1. Internal Medicine, John H. Stroger, Jr. Hospital of Cook County, Chicago, USA 2. Anatomical Sciences, St. George’s University, St. George’s, GRD 3. College of Medicine, University of Benin, Benin City, NGA

Corresponding author: Precious Eseaton, precious.eseaton@yahoo.com

Abstract

Background
Obesity is now a recognized chronic comorbid condition which is highly prevalent in the United States. Obesity poses several health risks, affecting multiple organ systems. The cardiovascular system is particularly affected by obesity including its role in atherosclerotic disease and hence myocardial infarction (MI) from atheromatous plaque events. However, multiple population-based studies have shown mixed outcomes in obese patients who have acute MI. This study aimed to determine if obesity paradoxically improved outcomes in patients with acute myocardial infarction (AMI) as well as compare outcomes of mild to moderately obese patients and morbidly obese patients to non-obese patients.

Materials and methods
Data was obtained from the Nationwide Inpatient Sample (NIS) for 2016 and 2017. The study included adult patients with a principal discharge diagnosis of AMI. This group was divided into ST segment elevation myocardial infarction (STEMI) and non-ST segment myocardial infarction (NSTEMI). Obese patients were subdivided into two groups: mild-moderate obesity and morbid obesity. Primary outcome compared inpatient mortality. Secondary outcomes included rate of percutaneous coronary intervention (PCI), coronary artery bypass grafting (CABG), composite revascularization, mean length of hospitalization, total hospital charges, and rates of complications.

Results
In patients with STEMI, mild to moderately obese patients had lower odds of mortality (aOR: 0.80, 95% CI: 0.715-0.906, p < 0.001) compared to non-obese patients. However, morbidly obese patients had higher odds of mortality (aOR: 1.26, 95% CI: 1.100-1.446, p < 0.001) compared to non-obese patients. Mild to moderately obese patients had higher odds of composite revascularization (aOR: 1.24, 95% CI: 1.158-1.334, p < 0.001), PCI (aOR: 1.08, 95% CI: 1.054-1.150, p = 0.014), and CABG (aOR: 1.46, 95% CI: 1.313-1.626, p < 0.001).

Conclusion
The degree of obesity affects outcome of patients with AMI. Cardiovascular interventions during hospitalizations for AMI also varied with degree of obesity. This may have affected the outcome, especially among morbidly obese patients.

Introduction
Obesity is now a recognized chronic comorbid condition which is highly prevalent in the United States. It has a higher prevalence among the middle age female population [1, 2]. Obesity poses several health risks, affecting multiple organ systems [3, 4]. The cardiovascular system is particularly affected by obesity. The mechanism through which obesity affects the cardiovascular system includes adipokine dysregulation, inflammation, increased circulating free fatty acids, increased oxidative stress and adipose tissue hypoxia, ultimately contributing to atherosclerosis and the development of atheromatous plaques [5]. The development and subsequent disruption of atheromatous plaques results in atherothrombosis, which is the hallmark of acute myocardial infarction (AMI) [6]. Studies involving outcomes of AMI in obese population have yielded mixed results [7-11]. Improved outcomes have fueled concepts including metabolically healthy obesity and the obesity paradox relating to cardiovascular diseases. It is also suggested that this paradox may be due to unaccounted confounding factors yet to be objectively identified [12]. This study aimed to
determine if obesity paradoxically improved outcomes in patients with AMI as well as compare outcomes of mild to moderately obese patients and morbidly obese patients to non-obese patients.

Materials And Methods

Design and data source

This study was a retrospective cohort study involving adult patients (aged ≥ 18 years) hospitalized for AMI in the US between January 1, 2016 and December 31, 2017. Data was obtained from the Nationwide Inpatient Sample (NIS) database for 2016 and 2017. The NIS is a database of hospital inpatient stays derived from billing data submitted by hospitals to statewide data organizations across the US, covering more than 97% of the US population [13-16]. It approximates a 20% stratified sample of discharges from US community hospitals, excluding rehabilitation and long-term acute care hospitals [17,18]. This dataset is weighted to obtain national estimates [19,20]. Both the 2016 and 2017 database are coded using the International Classification of Diseases, Tenth Revision, Clinical Modification/Procedure Coding System (ICD-10-CM/PCS) [21,22].

Study population

The study included adult patients with a principal discharge diagnosis of AMI (n = 1,299,885). This group was divided into ST segment elevation myocardial infarction (STEMI: I21.0, I21.1, I21.2, I21.3) and non-ST segment myocardial infarction (NSTEMI: I21.4). A total of 349,900 hospitalizations were for STEMI, out of which 16.5% (n = 57,734) were obese and 83.5% (n = 292,166) were non-obese. A total of 949,985 hospitalization were for NSTEMI, out of which 19.8% (n = 188,097) were obese and 80.2% (n = 761,888) were non-obese (Figure 1). Patients were excluded if STEMI or NSTEMI was a secondary diagnosis or if they developed AMI following a procedure. The cohort of patients with AMI was further divided based on the presence of a secondary discharge diagnosis of obesity (E66.0, E66.1, E66.2, E66.8, E66.9, Z68.3, Z68.4). We combined both general codes for obesity as well as BMI specific codes to accurately capture obesity categories. Obese patients were subdivided into two groups: mild-moderate obesity and morbid obesity, using the above codes, correlating with a BMI of 30-39 and 40 and above, respectively. The ICD-10-CM/PCS codes used to obtain the cohort can be found in the Appendix.

Outcome measures

The primary outcome was comparing inpatient mortality among patients with AMI based on presence or absence of obesity. Secondary outcomes in this population included need for percutaneous coronary intervention (PCI) with drug eluting stent and bare metal stent placement, coronary artery bypass grafting (CABG), and composite revascularization (PCI and CABG). Other outcomes included rate of complications including need for electrical cardioversion/defibrillation and odds of having a secondary discharge diagnosis of acute kidney failure (AKI) and cardiogenic shock. We also compared mean length of hospitalization as well
as total hospital charges between both groups as measures of healthcare utilization cost.

Statistical analysis

Data was analyzed using Stata® (Statistics and Data) Version 16 software (StataCorp, Texas, USA). All analyses were conducted using the weighted samples for national estimates in adjunct with Healthcare Cost and Utilization Project regulations for using the NIS database. Co-morbidities were calculated as proportions of the cohort and Chi squared test was used to compare association between the non-obese and the obese subgroups. Multivariate regression analysis was done to adjust for possible confounders while calculating the primary and secondary outcomes. The patient and hospital characteristics as well as co-morbidities were obtained during literature review. A univariate screen was done to further confirm these factors. Variables with p < 0.2 in univariate screen were included in multivariable regression model. A p-value of 0.05 was set as the threshold for statistical significance in the multivariate regression analysis.

Ethical considerations

The NIS database does not contain patient identifiers. Since 2012, the NIS has also removed state level and hospital identifiers. This has enhanced patient protection and anonymity. This study was exempt from Institutional Review Board approval.

Results

Characteristics of STEMI patients

Data showed 349,900 hospitalizations were for STEMI during the study period. The prevalence of obesity among patients with STEMI was 16.5%.

Obese patients were significantly younger (59.2 vs 64.3 years, p < 0.001), with a higher proportion of females (34.4 vs 30.2%, p < 0.001). Compared to non-obese patients, obese patients had a higher proportion with comorbidities including hypertension (57.3 vs 50.7%, p < 0.001), diabetes (47.9 vs 28.0%, p < 0.001), smoking history (52.5 vs 51.4%, p < 0.054), congestive heart failure (25.7 vs 23.0%, p < 0.001) and chronic kidney disease (10.5 vs 8.5%, p < 0.001) (Table 1).

Variable	STEMI N = 349,900	NSTEMI N = 949,985	p-value			
Obese, %	Non-obese, %	Obese, %	Non-obese, %	p-value		
Percent	16.5	83.5	19.8	80.2		
Mean Age, years	59.2	64.3	<0.001	63.0	69.5	<0.001
Females	34.4	30.2	<0.001	42.8	40.1	<0.001
Racial distribution			<0.001			
White	73.1	72.0	70.2	70.5		
Black	9.4	8.2	13.4	11.4		
Hispanic	8.2	7.8	8.6	8.1		
Others	9.3	12.0	7.8	10.0		
Insurance type			<0.001	<0.001		
Medicaid	37.4	48.5	54.2	66.3		
Medicare	12.8	10.6	11.3	8.7		
Private	42.6	34.1	30.0	21.4		
Uninsured	7.2	6.8	4.5	3.6		
Charlson Comorbidity Index score	<0.001	<0.001				
1	25.7	34.7	20.5	21.6		
2	32.4	30.8	22.5	20.5		
≥3	41.9	34.5	57.0	55.9		
Median annual income expected for patient’s zip code, US$			<0.001	<0.001		
---	---	---	---	---		
1-43,999	26.6	26.5	32.7	31.3		
44,000-55,999	28.2	27.5	28.1	27.4		
56,000-73,999	25.0	23.9	23.4	23.0		
≥74,000	18.2	20.1	15.8	18.3		

Comorbidities

Hypertension	57.3	50.7	<0.001	47.6	45.8	<0.001
Diabetess	47.9	28.0	<0.001	60.2	39.1	<0.001
Smoking history	52.5	51.4	0.034	49.2	47.7	<0.001
Atrial fibrillation/flutter	14.1	14.4	0.372	20.6	22.1	<0.001
CHF	25.7	23.0	<0.001	39.6	37.2	<0.001
CKD	10.5	8.5	<0.001	23.8	21.6	<0.001
Dialysis dependence	1.2	1.1	0.643	3.5	4.0	<0.001
Dyslipidemia	72.4	61.3	<0.001	75.3	65.6	<0.001
Chronic IHD	87.1	84.2	<0.001	83.1	80.1	<0.001
Old PCI	1.4	1.5	0.874	1.7	1.8	0.148
Old CABG	4.1	4.5	0.102	10.6	12.9	<0.001
Pacemaker	0.8	1.2	<0.001	2.5	4.0	<0.001
Prior CVA	1.1	1.3	0.112	2.3	2.7	<0.001
Liver disease	4.8	4.3	0.012	3.6	3.0	<0.001
COPD	12.2	11.7	0.103	21.6	20.2	<0.001
Supplemental O₂	1.3	0.9	<0.001	3.7	2.8	<0.001
Hypothyroidism	9.0	8.4	0.045	13.3	13.1	0.171
Electrolyte disorders	20.6	20.1	0.186	22.1	22.2	0.837
Anemia	15.9	14.8	0.004	26.2	25.7	0.040

Hospital characteristics

Hospital region		<0.001		<0.001		
Northeast	15.8	17.1	16.0	18.6		
Midwest	25.8	22.2	25.2	21.7		
South	39.8	40.6	40.8	41.0		
West	18.6	20.1	18.0	18.7		
Hospital bed size	0.462	0.030				
Small	15.1	14.5	16.6	17.4		
Medium	29.6	29.8	30.5	30.8		
Large	55.3	55.7	52.9	51.8		
Urban location	94.3	93.3	<0.001	93.0	91.6	<0.001
Teaching hospital	68.8	67.6	0.035	68.0	65.6	<0.001
Primary outcome in STEMI patients: in-hospital mortality

The in-hospital mortality for patients with STEMI was 8.0% overall. Mild to moderately obese patients had lower odds of mortality (aOR: 0.80, 95% CI: 0.715–0.906, p < 0.001) compared to non-obese patients. However, morbidly obese patients had higher odds of mortality (aOR: 1.26, 95% CI: 1.100–1.446, p < 0.001) compared to non-obese patients (Tables 2, 3).

Outcome	Mild-moderate, %	Nonobese, %	aOR (95% CI)	p-value
Primary outcome				
In-hospital mortality	5.1	8.4	0.80 (0.715 – 0.906)	<0.001*
Secondary outcomes				
Mean Length of stay, days (95% CI)	4.1 (3.9 - 4.2)	4.0 (4.0 - 4.1)	0.00 (-0.107 – 0.102)	0.965
Mean total hospital charges, US$ (95% CI)	113000 (109300 – 116600)	107600 (105400 – 109800)	2200 (-800 – 5100)	0.151
PCI with DES	69.9	65.1	1.12 (1.054 – 1.180)	<0.001*
PCI with BMS	8.6	9.2	0.93 (0.851 – 1.023)	0.138
PCI	77.4	73.5	1.08 (1.016 – 1.150)	0.014*
CABG	7.6	4.7	1.46 (1.313 – 1.628)	<0.001*
Revascularization	83.9	77.7	1.24 (1.158 – 1.334)	<0.001*
AKI	15.6	15.7	1.10 (1.013 – 1.193)	0.023*
Electrical cardioversion/defibrillation	4.6	4.0	1.18 (1.041 – 1.326)	0.009*
Cardiogenic shock	11.5	13.3	0.91 (0.837 – 0.992)	0.032*

TABLE 2: Clinical outcomes of STEMI in mild to moderately obese patients

*: Statistically significant, AKI: Acute kidney failure, aOR: adjusted odds ratio, BMS: Bare metal stent, CABG: Coronary artery bypass grafting, CI: Confidence interval, DES: Drug eluting stent, PCI: Percutaneous coronary intervention, STEMI: ST segment elevation myocardial infarction.
Clinical outcomes of STEMI in morbidly obese patients

Outcome	Morbid obesity, %	Nonobese, %	aOR (95% CI)	p-value
Primary outcome				
In-hospital mortality	7.8	8.4	1.26 (1.100 – 1.446)	0.001*
Secondary outcomes				
Mean Length of stay, days (95% CI)	4.7 (4.5 – 4.9)	4.0 (4.0 – 4.1)	0.34 (0.170 – 0.516)	<0.001*
Mean total hospital charges, US$ (95% CI)	120500 (115900 – 125200)	107600 (105400 – 109800)	7900 (3900 – 12000)	<0.001*
PCI with DES	63.5	65.1	0.91 (0.841 – 0.973)	0.007*
PCI with BMS	10.0	9.2	1.11 (0.994 – 1.235)	0.063
PCI	72.5	73.5	0.92 (0.846 – 0.991)	0.030*
CABG	6.8	4.7	1.35 (1.170 – 1.559)	<0.001*
Revascularization	78.8	77.7	0.99 (0.911 – 1.086)	0.905
AKI	21.0	15.7	1.47 (1.333 – 1.610)	<0.001*
Electrical cardioversion/defibrillation	5.2	4.0	1.31 (1.128 – 1.528)	<0.001*
Cardiogenic shock	13.6	13.3	1.05 (0.944 – 1.160)	0.383

Secondary outcomes in STEMI patients

Mild to moderately obese patients had higher odds of composite revascularization (aOR: 1.24, 95% CI: 1.158–1.334, p < 0.001), PCI (aOR: 1.08, 95% CI: 1.054-1.150, p = 0.014), and CABG (aOR: 1.46, 95% CI: 1.313-1.626, p < 0.001). These patients had lower odds of cardiogenic shock (aOR: 0.91, 95% CI: 0.837-0.992, p = 0.032), but higher odds of AKI (aOR: 1.10, 95% CI: 1.013-1.193, p = 0.025) and electrical cardioversion or defibrillation (aOR: 1.18, 95% CI: 1.041-1.326, p = 0.009) when compared to non-obese patients (Table 2).

There was no difference in rate of composite revascularization between morbidly obese and non-obese patients (aOR: 0.99, 95% CI: 0.911-1.086, p = 0.905). Morbidly obese patients had lower odds of PCI (aOR: 0.92, 95% CI: 0.846-0.991, p = 0.030), but higher odds of CABG (aOR: 1.35, 95% CI: 1.170-1.559, p < 0.001) and AKI (aOR: 1.47, 95% CI: 1.333-1.610, p < 0.001) compared to non-obese patient (Table 3).

Characteristics of NSTEMI patients

Obese patients admitted for NSTEMI had a significantly lower mean age compared to non-obese patients (63.0 vs 69.5 years, p < 0.001). Obese patients had higher proportion of medical comorbidities (Table 1).

Primary outcome in NSTEMI patients: in-hospital mortality

A total of 949,985 hospitalizations involved patients with NSTEMI. The in-hospital mortality for patients with NSTEMI was 3.5% overall. Mild to moderately obese patients with NSTEMI had a lower adjusted odds ratio for mortality (aOR: 0.73, 95% CI: 0.660-0.811, p < 0.001) when compared to non-obese patients with NSTEMI. Patients with morbid obesity had no difference in mortality (aOR: 0.95, 95% CI: 0.854-1.055, p = 0.333) compared to non-obese patients (Tables 4, 5).
Outcome	Mild-moderate, %	Nonobese, %	aOR (95% CI)	p-value
Primary outcome				
In-hospital mortality	2.0	3.8	0.73 (0.660 – 0.811)	<0.001*
Secondary outcomes				
Mean Length of stay, days (95% CI)	4.8 (4.7 – 4.9)	4.5 (4.4 – 4.5)	0.28 (0.205 – 0.351)	<0.001*
Mean total hospital charges, US$ (95% CI)	96400 (84100 – 38800)	83800 (82200 – 85400)	7100 (5400 – 8700)	<0.001*
PCI with DES	36.4	31.2	1.06 (1.028 – 1.100)	<0.001*
PCI with BMS	3.2	3.2	0.97 (0.887 – 1.051)	0.420
PCI	39.3	34.1	1.05 (1.017 – 1.088)	0.003*
Revascularization	54.1	42.3	1.31 (1.262 – 1.350)	<0.001*
CABG	15.0	8.3	1.65 (1.576 – 1.747)	<0.001*
AKI	19.6	20.0	1.06 (1.014 – 1.108)	0.011*
Electrical cardioversion/defibrillation	1.4	1.2	1.12 (0.985 – 1.284)	0.081
Cardiogenic shock	3.2	3.6	0.93 (0.855 – 1.016)	0.110

TABLE 4: Clinical outcomes of NSTEMI in mild to moderately obese patients

*: Statistically significant, AKI: Acute kidney failure, aOR: adjusted odds ratio, BMS: Bare metal stent, CABG: Coronary artery bypass grafting, CI: Confidence interval, DES: Drug eluting stent, PCI: Percutaneous coronary intervention, NSTEMI: Non-ST segment elevation myocardial infarction.
Clinical outcomes of NSTEMI in morbidly obese patients

Outcome	Morbid obesity, %	Nonobese, %	aOR (95% CI)	p-value
Primary outcome				
In-hospital mortality	2.6	3.8	0.95 (0.854 – 1.055)	0.333
Secondary outcomes				
Mean Length of stay, days (95% CI)	5.4 (5.3 – 5.5)	4.5 (4.4 – 4.5)	0.63 (0.536 – 0.723)	<0.001*
Mean total hospital charges, US$ (95% CI)	100000 (97200 – 102900)	83800 (82200 – 85400)	10000 (7800 – 12100)	<0.001*
PCI with DES	32.7	31.2	1.02 (0.983 – 1.064)	0.269
PCI with BMS	2.7	3.2	0.85 (0.759 – 0.941)	0.002*
PCI	35.1	34.1	1.00 (0.960 – 1.039)	0.942
Revascularization	46.9	42.3	1.11 (1.071 – 1.156)	<0.001*
CABG	12.0	8.3	1.35 (1.268 – 1.437)	<0.001*
AKI	24.9	20.0	1.32 (1.264 – 1.386)	<0.001*
Electrical cardioversion/defibrillation	1.6	1.2	1.28 (1.111 – 1.465)	0.001
Cardiogenic shock	3.4	3.6	0.87 (0.791 – 0.962)	0.006

TABLE 5: Clinical outcomes of NSTEMI in morbidly obese patients

*: Statistically significant, AKI: Acute kidney failure, aOR: adjusted odds ratio, BMS: Bare metal stent, CABG: Coronary artery bypass grafting, CI: Confidence interval, DES: Drug eluting stent, PCI: Percutaneous coronary intervention, NSTEMI: Non-ST segment elevation myocardial infarction.

Secondary outcomes in NSTEMI patients

In NSTEMI, mild to moderately obese patients had a significantly lower adjusted odds for inpatient mortality compared to nonobese patients. There was no difference in mortality between morbidly obese patients and non-obese patients with NSTEMI.

Discussion

Obesity is prevalent in patients with AMI. Although more males had AMI, obesity was associated with a higher prevalence in females with AMI. This is congruent with the overall higher prevalence of obesity in females in the US [3]. Obese patients were significantly younger on hospitalization in both the STEMI and NSTEMI groups, likely due to the association of obesity with early development of coronary disease [23, 24]. Whites, Blacks and Hispanics with AMI also had a higher proportion of obese patients suggesting that the racial disparity in obese population also reflects in these patients [3].

Among patients with STEMI, mild to moderately obese patients had lower odds of inpatient mortality. However, morbidly obese patients had higher odds of inpatient mortality compared to nonobese patients. This showed that the severity of obesity likely impacted mortality in STEMI patients. A conclusion reached by Das et al. showed that morbid obesity was independently associated with worse outcomes among patients with STEMI [9]. This finding is at variance with a study by Dhoot et al., which demonstrated lower odds of mortality in morbidly obese patients [25]. This study did not stratify AMI which could have been a confounding factor.

In NSTEMI, mild to moderately obese patients had a significantly lower adjusted odds for inpatient mortality compared to nonobese patients. There was no difference in mortality between morbidly obese patients and non-obese patients with NSTEMI.

The study demonstrated higher odds of composite revascularization in mild to moderately obese patients...
with STEMI. There was no difference in composite revascularization between morbidly obese patients and non-obese patients. This finding may be associated with better outcomes in patients with mild-moderate compared to morbidly obese patients who had STEMI. Among patients with NSTEMI, both mild-moderate and morbidly obese patients had higher odds of revascularization compared to non-obese patients.

There was increasingly higher hospital resource utilization with levels of obesity. This is seen in the rising length of hospitalization and the total hospital charges. This is similar to a study by Champagne-Langabeer et al., which showed morbidly obese patients had longer treatment times compared to other patients with MI [26]. This places significant stress on the healthcare institutions amid limited resources.

Various reasons have been postulated for the better outcome in mild to moderately obese patients including lower incidence of undernutrition, weight loss, possible presence of protective cytokine, greater metabolic reserves and possibly differing obesity phenotypes [11, 24]. We also suggest that although obesity is a risk factor for cardiovascular diseases, in patients with AMI, the earlier age of presentation as well as the statistically significant higher rates of interventions including PCI and CABG, procedures with known mortality benefits, help to offset this risk. However, the poorer outcomes in morbidly obese patients suggest that with progression of obesity, there is a proportional increase in cardiovascular risk.

Our study has some important limitations. NIS database is subject to non-randomization. The NIS is an administrative database that uses ICD-10 codes to characterize diagnoses and hospitalization events [27]. BMI could not be coded on a linear scale, as BMI ranges rather than individual BMI values are available. The disability associated with obesity could not be measured using the NIS database. Data in NIS is on hospitalizations, rather than individual patients. Hence if the same patient gets admitted on more than one occasion, that patient will be counted multiple times [28]. There is no reliable way to determine if secondary diagnoses preceded or started in the index hospitalization. NIS studies cannot establish causation, but only association.

Conclusions

The degree of obesity affects outcome of patients with AMI. Cardiovascular interventions during hospitalizations for AMI also varied with degree of obesity. This may have affected the outcome, especially among morbidly obese patients. The reasons for these differences are not clear. However, morbidly obese patients had poorer outcomes compared to patients with only mild-moderate obesity. Increased revascularization procedures may improve outcomes in obese patients. Further studies are required to elucidate factors responsible for this paradox as well as identifying the point at which these variables no longer improve outcomes in obese people.

Appendices

ICD-10 codes
Diagnosis codes
STEMI
NSTEMI
Obesity
Procedure codes
PTCA
PCI BMS
PCI DES
IABP
PEAD	02HA0RJ, 02HA3RJ, 02HA4RJ, 5A02116, 5A0211D, 5A02216, 5A0221D, 02HA3RZ, 5A02216	
Intra coronary artery thrombolytic infusion	3E07017, 3E07317	0210093, 0210098, 0210099, 021009C, 021009F, 021009W, 02100A3, 02100A8, 02100A9, 02100AC, 02100AF, 02100AW, 0211093, 0211098, 0211099, 021109C, 021109F, 021109W, 02110A3, 02110A8, 02110A9, 02110AC, 02110AF, 02110A, 0212093, 0212098, 0212099, 021209C, 021209F, 021209W, 02120A3, 02120A8, 02120A9, 02120AC, 02120AF, 02120AW, 0213093, 0213098, 0213099, 021309C, 021309F, 021309W, 02130A3, 02130A8, 02130AC, 02130AF, 02130AW
Comorbidities		
Dyslipidemia	E78	
Old MI	I252	
Old PCI	Z9861	
Old CABG	Z951	
Old pacemaker	Z950	
Atrial fibrillation/flutter	I48	
Chronic obstructive pulmonary disease	J41, J42, J43, J44	
Old stroke	I69	
Hypertension	I10	
Peripheral vascular disease	I739	
Hypothyroidism	E03	
Diabetes Mellitus Type 1 & 2	E10, E11	
Congestive heart Failure	I50	
Chronic Kidney Disease	N18	
Liver disease	K70, K71, K72, K73, K74, K75, K76, K77	
Electrolyte derangement	E870, E871, E872, E873, E874, E875, E876	
Oxygen dependence	Z9981	
Smoking	ZB7891, F17200	
Anemia	D50, D51, D52, D53, D55, D56, D57, D58, D59, D60, D61, D62, D63, D64	

TABLE 6: Used ICD-10 codes

- ACS: Acute Coronary Syndrome
- STEMI: ST Elevation Myocardial infarction
- NSTEMI: Non-ST Elevation Myocardial Infarction
- UA: Unstable Angina
- RA: Rheumatoid Arthritis
- MI: Myocardial Infarction
- PCI: Percutaneous Coronary Intervention
- CABG: Coronary Artery Bypass Graft
- PTCA: Percutaneous Transluminal Coronary Angioplasty
- PCI DES: Percutaneous Coronary Intervention with Drug Eluting Stent
- PCI BMS: Percutaneous Coronary Intervention with Bare Metal Stent
- IABP: Intra-aortic Balloon Pump
- PEAD: Percutaneous External Assist Devices
Additional Information

Disclosures

Human subjects: Consent was obtained by all participants in this study. N/A issued approval N/A. The NIS database does not contain patient identifiers. Since 2012, the NIS has also removed state level and hospital identifiers. This has enhanced patient protection and anonymity. This study was exempt from Institutional Review Board approval. Animal subjects: All authors have confirmed that this study did not involve animal subjects or tissue. Conflicts of interest: In compliance with the ICMJE uniform disclosure form, all authors declare the following: Payment/services info: All authors have declared that no financial support was received from any organization for the submitted work. Financial relationships: All authors have declared that they have no financial relationships at present or within the previous three years with any organizations that might have an interest in the submitted work. Other relationships: All authors have declared that there are no other relationships or activities that could appear to have influenced the submitted work.

References

1. Ogden CL, Carroll MD, Fryar CD, Flegal KM: Prevalence of obesity among adults and youth: United States, 2011–2014. NCHS Data Brief. 2015, 1-8.
2. Hales CM, Fryar CD, Carroll MD, Freedman DS, Ogden CL: Trends in obesity and severe obesity prevalence in US youth and adults by sex and age, 2007-2008 to 2015-2016. JAMA. 2018, 319:1723-1725.
3. NHLBI Obesity Education Initiative Expert Panel on the Identification, Evaluation, and Treatment of Obesity in Adults (US): Clinical Guidelines on the Identification, Evaluation, and Treatment of Overweight and Obesity in Adults—The Evidence Report. National Heart, Lung, and Blood Institute, Bethesda; 1998.
4. Shaka H, Edigin E, Raghavan S, Gomez TM: The obesity paradox among patients hospitalized for bacterial pneumonia: outcomes of the nationwide inpatient sample. Chest. 2020, 158:A335.
5. Bays HE, González-Campoy JM, Bray GA, et al.: Pathogenic potential of adipose tissue and metabolic consequences of adipocyte hypertrophy and increased visceral adiposity. Expert Rev Cardiovasc Ther. 2008, 6:545-568. 10.1586/14779072.6.3.545
6. Thygesen K, Alpert JS, Jaffe AS, et al.: Fourth universal definition of myocardial infarction (2018). J Am Coll Cardiol. 2018, 72:2251-2264. 10.1016/j.jacc.2018.08.1038
7. Sakr Y, Madl C, Filipescu D, et al.: Obesity is associated with increased morbidity but not mortality in critically ill patients. Intensive Care Med, 2008, 34:1999-2009. 10.1007/s00134-008-1245-0
8. Yaegashi M, Jean R, Zurupat M, Noack S, Homel P: Outcome of morbid obesity in the intensive care unit. J Intensive Care Med. 2005, 20147-154. 10.1177/0885066605275314
9. Das SR, Alexander KP, Chen AY, et al.: Impact of body weight and extreme obesity on the presentation, treatment, and in-hospital outcomes of 50,149 patients with ST-Segment elevation myocardial infarction: results from the NCDR (National Cardiovascular Data Registry). J Am Coll Cardiol. 2011, 58:2642-2650. 10.1016/j.jacc.2011.09.030
10. Diercks DB, Roe MT, Mulgund J, et al.: The obesity paradox in non-ST-segment elevation acute coronary syndromes: results from the Can Rapid risk stratification of Unstable angina patients Suppress ADverse events with Early implementation of the American College of Cardiology/American Heart Association Guidelines Quality Improvement Initiative. Am Heart J. 2006, 152:140-148. 10.1016/j.ahj.2005.09.024
11. Vecchié A, Dallegri F, Carbone F, et al.: Obesity phenotypes and their paradoxical association with cardiovascular diseases. Eur J Intern Med. 2018, 48:6-17. 10.1016/j.ejim.2017.10.020
12. Lavie CJ, Milani RV, Ventura HO: Obesity and cardiovascular disease: risk factor, paradox, and impact of weight loss. J Am Coll Cardiol. 2009, 53:1925-1952. 10.1016/j.jacc.2008.12.068
13. Healthcare Cost and Utilization Project. Introduction to the HCUP National Inpatient Sample (NIS), (2017). Accessed: December 04, 2020: https://www.hcup-us.ahrq.gov/db/nation/nis/NIS_Introduction_2017.jsp.
14. HCUP methods series. (2020). Accessed: December 04, 2020: http://www.hcup-us.ahrq.gov/reports/methods/methods.jsp.
15. Edigin E, Rivera Palon MM: LB934 Outcomes of psoriasis with and without joint involvement. J Invest Dermatol. 2020, 140:8. 10.1016/j.jid.2020.05.026
16. Edigin E, Prado V, Shaka H, Salazar M: Lung involvement in systemic lupus erythematosus increases inpatient mortality: analysis of the national inpatient sample. Chest. 2020, 158:A1871. 10.1016/j.chest.2020.08.1623
17. Edigin E, Eseaton P, Kaul S, et al.: Systemic sclerosis is not associated with worse outcomes of patients admitted for ischemic stroke: analysis of the national inpatient sample. Cureus. 2020, 12:9155. 10.7759/cureus.9155
18. Edigin E, Ojemolon PE, Eseaton PO, et al.: Rheumatoid arthritis patients have better outcomes when hospitalized for ischemic stroke: analysis of the national inpatient sample (PREPRINT). Clin Rheumatol. 2020, 10.1007/BH0000000000001563
19. Edigin E, Akuna E, Asemota I, Eseaton P, Ojemolon PE, Shaka H, Manadan A: Rheumatoid arthritis does not negatively impact outcomes of patients admitted for atrial fibrillation. Cureus. 2020, 12:10241. 10.7759/cureus.10241
20. Ojemolon PE, Shaka H, Edigin E, et al.: Impact of diabetes mellitus on outcomes of patients with knee osteoarthritis who underwent knee arthroplasty: an analysis of the nationwide inpatient sample. Cureus. 2020, 12:8902. 10.7759/cureus.8902
21. Edigin E, Shaka H, Eseaton P, et al.: Rheumatoid arthritis is not associated with increased inpatient mortality in patients admitted for acute coronary syndrome. Cureus. 2020, 12:9799. 10.7759/cureus.9799
22. Edigin E, Ojemolon PE, Eseaton PO, Shaka H, Akuna E, Asemota IR, Manadan A: Systemic sclerosis is
associated with increased inpatient mortality in patients admitted for atrial fibrillation: analysis of the national inpatient sample (PREPRINT). J Clin Rheumatol. 2020, 10.1097/RHU.0000000000001545

23. Kachur S, Lavie CJ, de Schutter A, Milani RV, Ventura HO: Obesity and cardiovascular diseases. Minerva Medica. 2017, 108:212-228, 10.23736/S0026-4806.17.05022-4

24. Lavie CJ, De Schutter A, Parto P, et al.: Obesity and prevalence of cardiovascular diseases and prognosis - The obesity paradox updated. Progress Cardiovasc Dis. 2016, 58:537-547. 10.1016/j.pcad.2016.01.008

25. Dhoot J, Tariq S, Erande A, Amin A, Patel P, Malik S: Effect of morbid obesity on in-hospital mortality and coronary revascularization outcomes after acute myocardial infarction in the United States. Am J Cardiol. 2015, 111:1104-1110. 10.1016/j.amjcard.2012.12.033

26. Champagne-Langabeer T, Kim J, Bower JK, Gardner A, Fowler R, Langabeer JR 2nd: Obesity, treatment times, and cardiovascular outcomes after ST-elevation myocardial infarction: findings from mission: Lifeline North Texas. J Am Heart Assoc. 2017, 6:e005827. 10.1161/JAHA.117.005827

27. Edigin E, Kaul S, Esieaton PO: Analysis of hidradenitis suppurativa hospitalizations: a report from the National Inpatient Sample database (IN PRESS). J Am Acad Dermatol. 2020, 10.1016/j.jaad.2020.10.083

28. Jamal S, Khan MZ, Kichloo A, et al.: The effect of atrial fibrillation on inpatient outcomes of patients with acute pancreatitis: a two-year national inpatient sample database study. J Innov Cardiac Rhythm Manage. 2020, 12:1-6. 10.19102/icrm.2021.120102