Cosmological number density in depth from V/V_m distribution

Dilip G. Banhatti
School of Physics, Madurai Kamaraj University, Madurai 625021

Abstract. Using distribution p(V/V_m) of V/V_m rather than just mean <V/V_m> in V/V_m- test leads directly to cosmological number density n(z). Calculation of n(z) from p(V/V_m) is illustrated using best sample (of 76 quasars) available in 1981, when method was developed. This is only illustrative, sample being too small for any meaningful results.

Keywords: V/V_m . luminosity volume . cosmological number density . V/V_m distribution

Luminosity-distance and volume
For cosmological populations of objects, distance is measured by (monochromatic) luminosity-distance ℓ_ν(z) (at frequency ν), function of redshift z of object. Similarly, volume of sphere passing through object and centered around observer is (4.π/3).v(z).

Calculation of limiting redshift z_m
For source of (monochromatic radio) luminosity L_ν, flux density S_ν, (radio) spectral index α (≡ dlog S_ν / dlog ν), and redshift z, L_ν = 4.π.ℓ_ν^2(α, z).S_ν. For survey limit S_0, value of limiting redshift z_m is given by ℓ_ν^2(α, z) / ℓ_ν^2(α, z_m) = S_0 / S_ν ≡ s, 0 ≤ s ≤ 1, for source of redshift z and spectral index α. For simplest case, [ℓ_ν(α, z) / ℓ_ν(α, z_m)]^2 = s has single finite solution z_m for given α, z and S_ν, S_0. Different values z_m correspond to different L_ν(α).

Relating n(z) to p(V/V_m)
Let N(z_m).dz_m represent number of sources of limiting redshifts between z_m and z_m + dz_m in sample covering solid angle ω of sky. Then 4.π.N(z_m) / ω is total number of sources of limit z_m per unit z_m-interval. Since volume available to source of limit z_m is V(z_m) = (4.π/3).(c / H_0)^3.v(z_m), (where speed of light c and Hubble constant H_0 together determine linear scale of universe,) number of sources (per unit z_m-interval) per unit volume is

{3.N(z_m) / ω}.(H_0 / c)^3.(1 / v_m), where v_m ≡ v(z_m). Let n_m(z_m, z) be number of sources / unit volume / unit z_m-interval at redshift z. Then, n(z) = ∫_z^∞ dz_m. n_m(z_m, z), and n_m(z_m, z) = \{3.N(z_m) / ω\}.(H_0 / c)^3.(1 / v_m).p_m(v(z) / v(z_m)) for 0 ≤ z ≤ z_m, where p_m(x) is distribution of x ≡ V/V_m for given z_m. For z > z_m, n_m(z_m, z) = 0, since sources with limiting redshift z_m cannot have z > z_m. To get n(z) for all z_m-values, integrate over z_m:

n(z) = \{3 / ω\}.(H_0 / c)^3.∫_z^∞ dz_m.(N(z_m) / v(z_m)).p_m(v(z) / v(z_m)).

Scheme of Calculation
Any real sample has maximum z_max for z_m. So, n(z_max) = 0. In fact, lifetimes of individual sources will come into consideration, as well as structure-formation epoch at some high redshift (say, > 10). Thus, n(z) calculation will give useful results only upto redshift much less than z_max. Formally writing z_max instead of ∞ for upper limit,

n(z) = \{3 / ω\}.(H_0 / c)^3.∫_z^{z_max} dz_m.(N(z_m) / v(z_m)).p_m(v(z) / v(z_m)) for 0 ≤ z ≤ z_max.
To apply to real samples, this must be converted to sum. Divide z_m-range 0 to z_{max} into k equal intervals, each $= z_{\text{max}} / k = \Delta z$. Mid-points are $z_j = (j - \frac{1}{2}) \Delta z = \frac{(j - \frac{1}{2})}{k}.z_{\text{max}}$. Calculate $n(z)$ at these points: $n(z_j)$. Converting integral to sum,

$$\frac{(\omega / 3).(c / H_0)^3.n(z)}{3} = \int z_{\text{max}} dz_m \frac{N_i}{v(z_i)}.v(z_j) / v(z_i) \cdot p_i(x_{ij})$$

where $x_{ij} = v(z_j) / v(z_i)$.

It is useful to use $Z_m = \ln z_m$ as redshift variable. Integral and converted sum are then:

$$n(z) = \frac{3}{\omega}.(H_0 / c)^3.\int z_{\text{max}} dZ_m \frac{N_i}{v(z_i)}.v(z_j) / v(z_i).p_i(x_{ij})$$

In these two forms (with z_m and Z_m as variables), N_i is population of ith z_m-bin and L_i that of ith Z_m-bin. There are K bins for Z_m, and K and k will, in general, be different.

Illustrative Calculation in 1981

Wills & Lynds (1978) have defined carefully sample of 76 optically identified quasars. We use this sample only to illustrate derivation of $n(z)$ from $p(x) \equiv p(V/V_m)$. We use Einstein-de Sitter cosmology or $q_0 = \sigma_0 = \frac{1}{2}$, $k = \lambda_0 = 0$ or $(\frac{1}{2}, \frac{1}{2}, 0, 0)$ world model in von Hoerner’s (1974) notation, for which

$$(H_0 / c)^2.\ell_v^2 = 4.(1 + z)^{\alpha} / \{\sqrt{1 + z} - 1\}^2$$

and

$$(H_0 / c)^3.v(z) = 8.(1 - 1 / \sqrt{1 + z})^3$$

For each quasar, z_m is calculated by iteration with initial guess z for z_m. Values of z, z_m are then used to calculate $v(z), v(z_m)$ and hence $x = V/V_m$. All 76 V/V_m-values are used to plot histogram. Good approximation for $p(x)$ is $p(x) = 2.x$, which is normalized over $[0,1]$. The limiting redshifts z_m range from 0 to 3.2. Dividing into four equal intervals, bins centered at 0.4, 1.2, 2.0 and 2.8 contain 19, 31, 16 and 10 quasars. Although each of these 4 subsets is quite small, we calculate and plot histograms $p_i(x), i = 1, 2, 3, 4$ for each subset for x-intervals of width 0.2 from 0 to 1, thus with 5 intervals centered at $x = 0.1, 0.3, 0.5, 0.7$ and 0.9. Each normalized $p_i(x)$ is also well approximated by $p_i(x) = 2.x$ except $p_4(0.2994)$. So we do calculations using this approximation in addition to using actual values. Finally we calculate $\frac{(\omega / 3).(c / H_0)^3.n(z)}{3}$. (See tables.)

Table for $p_i(x)$ and $p(x)$
x

0.1
0.3
0.5
0.7
0.9
Totals

Table of $n(z)$ calculation using linear scale for limiting redshifts
j

1
2
3
4

Notes for second table: (a) 5^th to 8^th columns list x_{ij}-values,
(b) $v(z_j) = (H_0 / c)^3.v(z_j) = 8.(1 - 1 / \sqrt{1 + z_j})^3$, and
(c) $n(z_j) = (\omega / 3).(c / H_0)^3.n(z_j)$.

Use of approximations \(p(x) = 2x \) in evaluating sums (1) for each row \(j = 1, 2, 3, 4 \) gives virtually same results. Table below shows steps in evaluating \(n(z) \) using ln-scale for limiting redshifts, and \(p(x) = 2x \), so that no \(x_{ij} \)-values need be calculated.

\(j \)	\(Z_m \)-range	mid-\(Z_m \)	\(z_m \) (i.e. \(z_j \))	\(L_j \)	\(\rightarrow v(z_j) \)	\(\rightarrow n(z_j) \)
1	-1.5to-0.9	-1.2	0.3012	7	0.015012	355.
2	-0.9to-0.3	-0.6	0.5488	11	0.060673	301.
3	-0.3to+0.3	0.0	1.0000	27	0.201010	337.
4	+0.3to+0.9	+0.6	1.8221	23	0.530388	181.
5	+0.9to+1.5	+1.2	3.3201	8	1.117620	48.

Number of sources in bin \(j \) is denoted \(L_j \) for ln-scale (instead of \(N_j \) for linear scale).

Conclusion

Due to too small sample, results are only indicative. Main aim is illustrating method fully.

Acknowledgments

Work reported evolved out of discussions with Vasant K Kulkarni in 1981. Computer Centre of IISc, Bangalore was used for calculations. First draft was written in 2004-2005 in Muenster, Germany. Radha D Banhatti provided, as always, unstinting material, moral & spiritual support. Uni-Muenster is acknowledged for use of facilities & UGC, New Delhi, India for financial support.

References

von Hoerner, S 1974 *Cosmology* : Chapter 13 in Kellermann, K I & Verschuur, G L (eds) 1974 *Galactic & Extragalactic Radio Astronomy* (Springer) 353-392.

Wills, D & Lynds, R 1978 *ApJSuppl* 36 317-358 : Studies of new complete samples of quasi-stellar radio sources from the 4C and Parkes catalogs.

(See longer versions astro-ph/0903.1903 and 0902.2898 for fuller exposition and references.)