SHORT COMMUNICATION

Gemmological Characteristics of Gemstone Varieties Found in the Pegmatite of Haramosh Area, Gilgit-Baltistan

Javed Akhtar Qureshi1*, Mudasir Ali1, Zohaib Hassan1, Muhammad Alam1, Memoona Niloofar2, Sabit Rahim3

1Department of Earth Science, 2Department of Management Sciences, 3Department of Computer Science, Karakoram International University, Gilgit, Pakistan

*Email: javed.akhter@kiu.edu.pk

Introduction

Haramosh valley is located in eastern side of Gilgit city (Fig. 1). Geographically it is located between 74°44' 17.37 " E and 35° 51 '8.97 " N. The area is a sub range of Karakoram in the south-central region of the Rakaposhi–Haramosh mountains. Haramosh valley is famous for its gemstones which are well known in the world. The first gem mine was discovered in 1951 in the area of Haramosh valley in Gilgit. The prominent four localities of gem-bearing pegmatites occur in the vicinity of the Haramosh peak, Shengus along Indus river, Haramosh Bulachi village, and the setting of Khaltoro pasture. Along with glaciers, Hindukush Karakoram and Himalayan ranges host a variety of precious stones (Agheem et al., 2014). In recent decade Haramosh valley received more attention because of the occurrence of a variety of gems in pegmatite veins. Gemstone varieties related to pegmatites are also found in other parts of Gilgit Baltistan, like Shigar, Shengus, and Stuk Nala (Kazmi et al., 1998). Pegmatites are found widely in Gilgit-Baltistan Pakistan within the mountain ranges of Karakoram (Laurs et al. 1998). These macrolicht pegmatite’s are mainly associated with leucogranites in Haramosh Massif, which is famous for recent rapid uplift (Laurs et al., 1998; Zeitler 1985). Various crystals of topaz, tourmaline, beryl, and quartz are being mined from these macrolicht pegmatite’s (Laurs et al., 1998). Famous tourmaline crystal (10cm) of Pakistan is found in Stuk Nala of Nanga Parbat Haramosh Massif (Laurs et al., 1998).

Geology of the Area

Haramosh Valley which is a part of Kohistan island arc and two main fault lines separating Kohistan Island Arc from Indian and Eurasian plates known as Main Mantle Thrust (MMT) in the south and Main Karakoram Thrust (MKT) in the north. The area is mostly composed of metamorphic rocks with subordinate igneous rocks. The rocks are highly metamorphosed and the valley is surrounded by high steep mountains. The area is under the Nanga-Parbat Haramosh Massif. In most of the regions, banded gneisses occur. The geological features of the field site include dikes, sills, joints, fault, contacts, folds, striation, etc., along with geomorphologic features like river terraces, alluvial fans, etc., are existed in the area (Fig. 2). There are approximately 200 active mines in the Haramosh valley, but the local people are not extracting the gems by modern mining methods and use primitive methods like excavating mouse bores. As a result, about 50% gems pockets are ruined due to blasting.

Several other areas of the world are famous for pegmatite gems (London 1986; Peretyazhko et al., 2004; Rosenberg 1972; Shearer et al., 1984; Viana et al., 2002). Various types of other gemstones are also reported from different localities of Gilgit–Baltistan like Shigar valley, (Blauwet, Smith, and Smith 1997). Almost all gem bearing pegmatites are of granitic origin rarely few pegmatites are reported having the primary or alkaline source, which contains gems (Simmons et al., 2012). Historically granitic pegmatites are found in Brazil, Madagascar, the United States in large amounts but presently gemstone varieties are found mainly in Africa and Asia (Simmons et al., 2012; Simmons and Groat 2007).
The core of the gem pocket’s formula, while Californian optical properties of collected tin contained in Stak mineralogical characteristics play a significant role in knowing the petrogenesis of any rock and mineralization of the gem pocket of the Haramosh area is similar to southern California (Food and EE 1976; Jahns and Wright 1951; London, 1986). Conversely, the internal zonation of both is different. Haramosh pegmatites are symmetrically zoned, while Californian pegmatites are asymmetrical (Jahns, 1953). The pegmatites of the Haramosh area form different sills, which are about 0.3 to 1.2m thick while up to 120m long. These sills are dipping 5° southward (Laurs et al., 1998).

Materials and Methods

Different analytical techniques were used to determine the physical and optical properties of the gems found in the study area. Total nine samples (Fig. 2) for determining their properties and identified in the laboratory of Pakistan Gems and Jewelry Development Corporation (PGJDC), Gilgit using different instruments, e.g., Refractometer, polarize scope, lopes, specific gravity weighing balance, spectroscope and gemological microscope. These properties include color, cut, shape, transparency, weight, hardness, crystal system, specific gravity, chemical formula, optical characteristics, refractive index, pleochroism, and inclusions. Inclusions may be in the form of liquid, concrete, and gas. The type of inclusion provides a strong clue about the origin of stone (Viana et al., 2002). Firstly, the samples were collected and washed, and then different experiments were conducted to know the physical and optical properties of collected gemstone samples from the study area.

Results and Discussion

By studying different physical and optical properties, we can identify the gem quality and variety of the mineral specimens found in the Haramosh area. Like physical properties, we also did an optical analysis of gemstone varieties of Haramosh Pegmatites. Each sample has different optical properties, which are mentioned in table 2.

The study reveals that pegmatite’s contain different varieties of garnet, beryl, and quartz. Almandine, which is a variety of garnet, occurs in large amounts while pyrope, almandine, and spessartine are in a minor amount (Laurs et al. 1998). A large amount of garnet is present in the form of fine-grained subhedral crystals. Two varieties of tourmaline were sampled...
during this study and the color of each sample was different. One was black while the other was pink. The black color tourmaline is known as schorl, while rubellite is pinkish. The schorl is found in the main mine area, which contains more Ti and Mg than schorl, which occurs in pegmatites containing a significant amount of Al and Fe (Laur et al., 1998).

Table 2 Optical properties and variety of gems of Haramosh pegmatites.

Sample ID	Name	Optical Characteristics	Refractive Index	Pleochroism	Inclusions	Specie	Variety
Sample 1	Quartz	Double refractive	1.544-1.553	N/A	N/A	Crystalline Quartz	Colorless quartz
Sample 2	Garnet	Single refractive	Over the limit	N/A	Spots, Blemishes, and inclusions	Garnet	Pyrope garnet
Sample 3	Fluorite	Double refractive	1.432-1.443	N/A	Spots and Inclusions	Fluorite	purple florite
Sample 4	Emerald	Double refractive	1.56-1.59	N/A	Inclusions	Beryl	Green emerald
Sample 5	Topaz	Double refractive	1.609-1.643	N/A	none	Topaz	Colorless topaz
Sample 6	Tourmaline	Double refractive	1.615-1.655	N/A	none	Tourmaline	Schorl
Sample 7	Amethyst	Double refractive	1.542-1.550	N/A	white stripes	Quartz	Amethyst
Sample 8	Aquamarine	Double refractive	1.570-1.592	N/A	small spots	Beryl	Aquamarine
Sample 9	Tourmaline	Double refractive	1.612-1.643	N/A	blemishes	Tourmaline	Rubellite

Conclusion

Initially, gemstone mining started in the Haramosh area by the villagers using primitive techniques. The formation of the gemstones and minerals are caused by extensive magmatism and metamorphism after the collision of Karakoram plate to the Kohistan magmatic arc along Shayok suture in late Cretaceous and the Indian plate to the Karakoram Kohistan collision during Paleocene-Eocene age. The high-grade metamorphism occurs at the southern edge of the Karakoram and Northern edge of Indian plate. Most of the pegmatites are accompanying quartz-feldspar veins with tourmaline, aquamarine, topaz, quartz, amethyst, fluorite, moonstone, sphene, rutile, apatite, morganite, beryllonite, h amphibolite, herderite, zoisite-epidote, Mn-rich garnet, zircon, axinite, and many other minerals. Pegmatite mainly occur on the eastern side of Gilgit-Baltistan. Emerald beryl in pegmatites while quartz-albite bearing tourmaline veins in Khaltor area of Haramosh. Moreover, slight or no deformation is occurred in the gem bearing pegmatites, indicating these gemstones were formed after the times of Cretaceous-Tertiary tectonometamorphism.

References

Hassan, A. M., Shah T.M., Khan, T., Murata, M., Arif, M., Dars, H. (2014). Shigar valley gemstones, their chemical composition and origin, Skardu, Gilgit-Baltistan, Pakistan. Arabian Journal of Geosciences, 7 (9), 3801–14.

Blauwet, D., Smith B., Smith C. (1997). A guide to the mineral localities of the Northern Areas, Pakistan.” Mineralogical Record, 28 (3), 183.

Cerny, P. (1982). Anatomy and classification of granitic pegmatites. Granitic Pegmatites in Science and Industry 1–39.

Cerny, P. (1992). Rare-element granitic pegmatites. Part I: Anatomy and internal evolution of pegmatite deposits. Geosci. Canada, Reprint Ser., 8, 29–47.
Foord, E. E. (1976). Mineralogy and petrogenesis of layered pegmatite-aplite dikes in the Mesa Grande district, San Diego County, California. PhD Thesis.

Jahns, R. H., Wright, L. A. (1951). Gem- and lithium-bearing pegmatites of the Pala District, San Diego, California. (Special Report No. 7-A). California Department of Natural Resources.

Jahns, R. H. (1953). The genesis of pegmatites: I. Occurrence and origin of giant crystals. American Mineralogist 38 (7–8), 563–98.

Kazmi, A. H., Peters J. J., Obodda, H. P. (1985). Gem pegmatites of the Shingus-Dusso Area, Gilgit, Pakistan. Mineralogical Record 16 (5), 393–411.

Randall, R., Kleinhesselink, and Eugene, A. R., (1991). Cognitive Representation of Risk Perceptions. Journal of Cross-Cultural Psychology 22 (1), 11–28.

Laurs, B. M., Dilles J. H., Wairrach Y., Kausar A., B., Snee L.W. (1998). Geological Setting and Petrogenesis of Symmetrically Zoned, Miarolitic Granitic Pegmatites at Stak Nala, Nanga Parbat-Haramosh Massif, Northern Pakistan. The Canadian Mineralogist, 36 (1), 1–47.

London, D., (1986). Formation of Tourmaline-Rich Gem Pockets in Miarolitic Pegmatites.” American Mineralogist 71 (3–4), 396–405.

Novák, M., and Povondra, P. (1995). Elbaite pegmatites in the moldanubicum: A new subtype of the rare-element class. Mineralogy and Petrology, 55 (1–3), 159–76.

Peretyazhko, Igor S., Zagorsky V. Y., Sergey Z. S., Mikhail Y. M. (2004). Conditions of pocket formation in the Otayabrskaya tourmaline-rich gem pegmatite (the Malkhan Field, Central Transbaikalia, Russia). Chemical Geology, 210 (1–4), 91–111.

Rosenberg, P. E. (1972). Paragenesis of the topaz-bearing portion of the Brown Derby No. 1 Pegmatite, Gunnison County, Colorado. American Mineralogist, Journal of Earth and Planetary Materials, 57 (3-4 Part_1), 571–83.

Shearer, C. K., Papike J.J., Simon S. B., Laul J.C., Christian R.P. (1984). Pegmatite/wallrock interactions, Black Hills, South Dakota: progressive boron metasomatism adjacent to the Tip Top pegmatite. Geochimica et Cosmochimica Acta 48(12):2563–79.

William B.S., Pezzotta F., James E. S. and Beurlen H., (2012). Granitic pegmatites as sources of colored gemstones, Elements 8 (4), 281–87.

Simmons, Wm B., and L. A. Groat., (2007). Gem-Bearing Pegmatites. Geology of Gem Deposits, Mineralogical Association of Canada, 37,169–206.

Viana, R. R., R., Jordt-Evangelista, H., Magela da Costa G., Stern W. B. (2002). Characterization of beryl (aquamarine variety) from pegmatites of Minas Gerais, Brazil. Physics and Chemistry of Minerals, 29 (10), 668–79.

Peter K. Z. (1985). Cooling History of the NW Himalaya, Pakistan. Tectonics, 4 (1), 127–51.