Identification of species and materia medica within *Saussurea* subg. *Amphilaena* based on DNA barcodes

Jie Chen ¹, Yong-Bao Zhao ¹, Yu-Jin Wang ¹ Corresp., Xiao-Gang Li ¹

¹ State Key Laboratory of Grassland Agro-Ecosystem, School of Life Sciences, Lanzhou University, Lanzhou, Gansu, China

Corresponding Author: Yu-Jin Wang
Email address: wangyujin@lzu.edu.cn

Saussurea is one of the most species-rich genera in the family Asteraceae, where some have a complex evolutionary history, including radiation and convergent evolution, and the identification of these species is notoriously difficult. This genus contains many plants with medical uses, and thus an objective identification method is urgently needed. *Saussurea* subg. *Amphilaena* is one of the four subgenera of *Saussurea* and it is particularly rich in medical resources, where 15/39 species are used in medicine. To test the application of DNA barcodes in this subgenus, five candidates were sequenced and analyzed using 131 individuals representing 15 medical plants and four additional species from this subgenus. Our results suggested that internal transcribed spacer (ITS) + *rbcL* or ITS + *rbcL* + *psbA-trnH* could distinguish all of the species, while the ITS alone could identify all of the 15 medical plants. However, the species identification rates based on plastid barcodes were low, i.e., 0% to 36% when analyzed individually, and 63% when all four loci were combined. Thus, we recommend using ITS + *rbcL* as the DNA barcode for *S.* subg. *Amphilaena* or the ITS alone for medical plants. Possible taxonomic problems and substitutes for medicinal plant materials are also discussed.
Identification of species and materia medica within *Saussurea* subg. *Amphilaena* based on DNA barcodes

Jie Chen¹, Yong-Bao Zhao¹, Yu-Jin Wang¹, Xiao-Gang Li¹

¹State Key Laboratory of Grassland Agro-Ecosystem, School of Life Sciences, Lanzhou University, Lanzhou 730000, PR China

Corresponding Author:
Yu-Jin Wang

Email address: wangyujin@lzu.edu.cn
ABSTRACT

Saussurea is one of the most species-rich genera in the family Asteraceae, where some have a complex evolutionary history, including radiation and convergent evolution, and the identification of these species is notoriously difficult. This genus contains many plants with medical uses, and thus an objective identification method is urgently needed. Saussurea subg. Amphilaena is one of the four subgenera of Saussurea and it is particularly rich in medical resources, where 15/39 species are used in medicine. To test the application of DNA barcodes in this subgenus, five candidates were sequenced and analyzed using 131 individuals representing 15 medical plants and four additional species from this subgenus. Our results suggested that internal transcribed spacer (ITS) + rbcL or ITS + rbcL + psbA-trnH could distinguish all of the species, while the ITS alone could identify all of the 15 medical plants. However, the species identification rates based on plastid barcodes were low, i.e., 0% to 36% when analyzed individually, and 63% when all four loci were combined. Thus, we recommend using ITS + rbcL as the DNA barcode for S. subg. Amphilaena or the ITS alone for medical plants. Possible taxonomic problems and substitutes for medicinal plant materials are also discussed.
INTRODUCTION

Saussurea is one of the most species-rich genera in Asteraceae and the taxonomic identification of these species is notoriously difficult (Lipschitz, 1979). Recent radiation, widespread hybridization, and convergent evolution have combined to make the delimitation of these species extremely complicated (Wang et al., 2009). Among the 289 recognized species in the “Flora of China” (FOC), many are very challenging to differentiate, with one or several morphologically similar species (Shi & Raab-Straube, 2011). For example, about nine current widely accepted species are suspected to be conspecific with *S. taraxacifolia* (Chen, 2015). Since the publication of FOC, the newly described species have totaled more than 60 species (Chen, 2015; Wang et al., 2014; Xu et al., 2014; Chen & Wang, 2018), with an average of 10 species every year, which is a far higher number than that of other genera. These new species have mostly been separated from the known species and at least 10 of them bear the prefix "pseudo" to indicate their similarity in terms of morphology (Chen, 2014; Chen & Yuan, 2015; Wang et al., 2014).

This taxonomic problem particularly affects *S. subg. Amphilaena*, which is one of the four subgenera of *Saussurea*, where these species are defined mainly based on the self-transparent and colorful bract that subtends the synflorescence (Fig. 1) (Lipschitz, 1979; Raab-Straube, 2017). This character is a well-known adaptation to high altitudes and it occurs in a number of angiosperm genera from different families (Omori et al., 2000). Within *S. subg. Amphilaena*, it has also been documented that this character was derived multiple times and some of the species showing very high similarity, such as *S. involucrata* and *S. obvolata*, are actually distantly related according to molecular phylogeny (Wang et al., 2009). In addition, this subgenus is
considered to be a result of a recent radiation in the Qinghai–Tibet Plateau where 35 of the total number of 38 species have been recorded (Raab-Straube, 2017). This type of process usually produces many closely related species where one species might resemble several other species, thereby yielding a number of complexes (Simâµes et al., 2016).

Complex taxonomy undoubtedly causes problems with identification, and among the 38 species recognized in the latest monograph, at least 13 species are widely misidentified. For example, *S. orgaadayi* was long misidentified as *S. involucrata* (Smirnov, 2004), although both species were described many years ago and the latter is one of the most famous plants in China because of its beauty and usage in traditional Chinese medicine (Chik et al., 2015). In addition, eight species within the *S. obvallata* complex have been recognized as single species since the establishment of *S. obvallata* (Raab-Straube, 2017).

Evidently, misidentification can lead to a misunderstanding of biodiversity. In some cases, these errors can even be deadly harmful for humans given that many *Saussurea* species are used in medicine (Chik et al., 2015; Li et al., 2000; Yang et al., 2005). In addition to *S. involucrata*, 14 other species have been formally recorded as medically useful in *S. subg. Amphilaena* (Table 1) (Cao et al., 2016; Chen et al., 2010; Jiang et al., 2010; Li, 1999). However, the authentication of species is time-consuming and it requires a specialist taxonomist in most cases. Moreover, some species are found only in areas that are difficult to access, possibly because of their excessive consumption. For example, *S. involucrata* is currently listed as second-class protected plants due to over-exploitation (Fu & Jin, 1992), while *S. wettsteiniana* and *S. velutina* are both endemic to a few mountains in Sichuan, China, and they are difficult to obtain due to their restricted distributions (Shi & Raab-Straube, 2011). Thus, possible substitutes for these species are urgently needed to be ascertained.
DNA barcoding is a rapid and reliable technique for identifying species based on variations in the sequence of short standard DNA regions. Phylogenetic studies based on these fragments can also help to identify substitute plants. However, the selection of the fragments used for DNA barcoding is a controversial problem. The Plant Working Group of the Consortium for the Barcode of Life (CBOL) proposed using a combination of \textit{rbcL} and \textit{matK} as a “core barcode” for identifying land plants (Hollingsworth et al., 2009). Subsequently, \textit{trnH-psbA} and the nuclear ribosomal internal transcribed spacer (ITS) were proposed as supplementary barcodes for land plants (Kress et al., 2005; Li et al., 2011). In addition, \textit{trnK} was found to outperform \textit{matK} in some studies (Cao et al., 2010; Müller & Borsch, 2005).

Previously, the sequences used in DNA barcodes for \textit{Saussurea} species have been rather limited and only five species have been reported with DNA sequences. Among these species, none have been reported more than two populations, which is obviously insufficient for DNA barcode studies (Wang et al., 2009). Thus, in this study, we performed extensive investigations in the field and we sequenced five DNA barcode candidates in chloroplasts (\textit{matK}, \textit{trnH-psbA}, \textit{trnK}, and \textit{rbcL}) and the nuclear ITS. Our main aims were: i) to evaluate the application of these DNA barcodes in \textit{S. subg. Amphilaena}; ii) to develop an objective method for identifying medically important \textit{Saussurea} species; and iii) to explore the possible taxonomic problems and potential substitutes for some rare herbs.

\section*{Materials and Methods}

\textbf{Taxon sampling}

In total, 20 species were sampled in the present study, including 18 from the 38 species recognized in the latest monograph on \textit{S. subg. Amphilaena} (Raab-Straube, 2017), one recently
published species, *S. bogedaensis* (Chen & Wang, 2018), and a *Jurinea* species, which was selected as an outgroup according to a previous study (Wang et al., 2009). Photos of some species are presented in Fig. 1. Our sample focus on medical resources and 15 species formally recorded in the medical literature were included in the analyses (Table 1). For most of the species in the ingroup, we collected from two or more populations, with more than three individuals from each population. In total, we collected 132 individuals and their details are listed in Table 2.

DNA extraction, PCR amplification, and sequencing

Genomic DNA was extracted from dried leaves in silica gel using the CTAB method (Doyle, 1987). Five regions (*rbc*L, *mat*K, *trn*H-*psb*A, *trn*k, and ITS) (Berends et al., 1990; Ford et al., 2009; Olmstead et al., 1992; Sang et al., 1997; White et al., 1990), were amplified and sequenced using the primers listed in Table 3. A PCR reaction mixture comprising 25 μL was prepared and amplified according to the procedure described by Wang et al. (Wang et al., 2009). The PCR products were sent to the Beijing Genomics Institute for commercial sequencing. Sequences were aligned using CLUSTALX v.2.1 (Thompson et al., 1997) with the default settings and adjusted manually with Bioedit v.7.0.5 (Hall, 1999). All of the sequences were registered in GenBank (Table 2).

Data analysis

We constructed 31 datasets for ITS, *psb*A-*trn*H, *mat*K, and *trn*K, either individually or in different combinations. For the combination of ITS and each chloroplast loci, incongruence length difference (ILD) was preferred to test the incongruence (Farris et al., 1995) using PAUP version 4b10 (Swofford, 2003). For each dataset, the inter- and intraspecific genetic divergences were calculated as described by Meyer (Meyer & Paulay, 2005) and used to determine whether a
barcoding gap was present. For each dataset, best close match (BCM) and two tree-based methods comprising neighbor-joining (NJ) and Bayesian inference (BI) were employed to analyze the five single markers and their different combinations. BCM analysis was conducted using the SPIDER package in R (Brown et al., 2012). NJ trees were constructed using PAUP with the Kimura two-parameter model (Swofford, 2003). Support for nodes was assessed based on 100,000 bootstrap replicates. BI analysis was implemented using MrBayes on XSEDE (v3.2.6) (Ronquist et al., 2012) and the optimal models for each marker were determined according to Akaike’s information criterion with jModelTest2 in XSEDE (v2.1.6) (Darriba et al., 2012). Species were considered to be identified successfully if individual samples of a species clustered in species-specific monophyletic clades.

RESULTS

The PCR amplification ranged from about 73% (trnK) to 93% (ITS), while sequencing success rates from about 95% for the three chloroplast loci to 100% for the ITS, as shown in Table 4. The length after alignment, the variable sites, the interspecific or intraspecific genetic distance for each locus as well as the p values of ILD test between ITS and each chloroplast locus are also listed in Table 4. The mean intraspecific genetic distances for each species based on ITS and the four cp markers combined are listed in Table 5, and those for the mean interspecific genetic distances are shown in Table 6. The distributions of the intraspecific and interspecific distances for each species based on the five separate markers are shown in Fig. 2. In general, the mean interspecific distances were higher than the intraspecific distances for the five markers. However, the ranges of the intra- and interspecific distances overlapped for all the barcodes tested in this study.
The discriminatory powers of all the loci both individually and in different combinations based on the three methods are listed in Table 7 (Supporting information). In general, BCM achieved higher success rates, followed by NJ and BI, but there were a few exceptions. Among the results obtained with a single barcode, ITS (84.2–93.2%) had the highest species discriminatory power, followed by trnK (15.8–36%), matK (10.5–16.8%), and trnH-psbA (5.2–27%). Among the combinations of two barcodes, ITS + rbcL had the highest discriminatory success (89.5–100%), whereas that of matK and rbcL, which was suggested as the core barcode by CBOL (CBOL Plant Working Group 2009), was only 10.5–25.6%. The three-region combination of ITS + rbcL + trnH-psbA recovered the highest number of monophyletic species (18) in the NJ tree (94.7%). Only five species were successfully discriminated (26.3%) by either the NJ or BI trees using the combination of all four cp markers, i.e., matK + rbcL + trnH-psbA + trnK.

DISCUSSION

Proposed DNA barcodes for S. subg. Amphilaena

Among the fragments tested in the present study, ITS obtained a much higher success rate compared with the other loci. In addition, all of the combinations without ITS yielded much lower success rates, regardless of the method used (Table 7). Moreover, the rate of successful PCR (92.7%) was more or less higher for ITS than the other fragments (72.9–91.6%). It has also been reported that this fragment is highly efficient in other Asteraceae genera (Gao et al., 2010; Gong et al., 2016). However, an intrinsic problem with this fragment is that an individual may have undergone recent hybridization, thereby resulting in multiple mosaic sites (Li et al., 2011). In S. subg. Amphilaena, two species failed to form monophyletic clades in the BI and NJ trees, which could be attributed to the presence of multiple mosaic sites (Fig. 3). However, ITS
performed better than the other fragments in S. subg. *Amphilaena*, and thus we propose that this
fragment should be the first or best choice when selecting only one of the current candidates.

We found that it was difficult to identify the best second choice after ITS. *trnK* performed
much better than *rbcL* in terms of its efficiency when used individually, but its combination with
ITS obtained contradictory results, i.e., ITS + *trnK* was inferior to ITS + *rbcL* in terms of
efficiency. This contradictory result was unexpected and it is not common in other taxa (Cao et
al., 2010; Müller & Borsch, 2005). We attributed this result to higher degree of congruence of
the concatenated sequences of *rbcL* and ITS (P = 0.12 for ILD test), in compare to *trnK* and ITS
(P = 0.001). But it might derive from some other mechanisms, such as the higher rate of
mutation for *trnK* that could have caused differentiation within species, but not high enough to
form distinct genetic differentiation among species, and thus a failure to cluster as a
monophyletic group in line with species (Naciri et al., 2012; Petit & Excoffier, 2009). Therefore,
we suggest that using *trnK* alone is problematic and instead we propose to use *rbcL* as
complementary to ITS because this combination could identify all 19 of the sampled species
based BCM, and 17 by NJ or BI (89%) (Table 7) (Fig. 4).

The two loci comprising *trnH-psbA* and *matK* were affected by the same problem as *trnK*,
with higher mutation rates and barcode efficiencies compared with *rbcL* when used individually,
but lower efficiency when combined with ITS. Thus, their combination with ITS + *rbcL* failed to
significantly increase the success rate and lower results were even obtained in some cases (Table
7). However, among the combinations without ITS, the combination with higher mutation rates
was more efficient than those with lower mutation rates, e.g., *trnK + trnH-psbA* was better than
matK + rbcL, which was proposed previously as the core DNA barcode for plants
(Hollingsworth et al., 2009). Therefore, if ITS is subjected to hybridization, we propose that the
priority order should be the following: trnK > trnH-psbA > matK > rbcL. Moreover, the combination with more loci performed better than that with less loci. However, even the combination of all four loci was not sufficient to discriminate each species and new fragments should be considered.

Insights into taxonomic problems based on DNA barcodes

Most of the analyses failed to identify the species within two groups, i.e., *S. luae* vs. *S. pubifolia* and *S. globosa* vs. *S. erubescens* (Figs. 3–5; Table 7). We found that these failures might have been attributable to taxonomic problems. For the first group, we found that *S. luae* was rather heterogeneous in terms of the ITS sequences. Some cp sequences were slightly differentiated compared with *S. velutina*, but the others were closer to those in *S. glandulosissima* or *S. uniflora* (Fig. 5). By contrast, the ITS sequences lacked variance and after excluding the mosaic sites, they were closely related in *S. pubifolia* or *S. bracteata* (Fig. 3). These nuclear-cytoplasmic inconsistencies suggest that hybridization may have occurred among these species.

The second group comprising *S. globosa* and *S. erubescens* was often confused in previous studies because the latter resembles a smaller form of *S. globosa*, which has various forms across its distribution (Raab-Straube, 2017). In agreement with the morphology, the genetic distance between the cp sequences within *S. erubescens* was zero whereas that within *S. globosa* was 0.04% (Table 5), which is even larger than that between *S. erubescens* and *S. globosa* (Table 6). The ITS sequences had a very similar pattern and the rich mosaic sites in both species also indicated differentiation accompanying substantial gene flow (Naciri et al., 2012). Both the BI and NJ methods found that *S. globosa* formed a clade within which *S. erubescens* nested as a monophyletic clade (Fig. 3). Based on these results, we propose that *S. globosa* might be a
species with a series of differentiated populations where *S. erubescens* represents one of the most obvious. The current delimitation might need revision on the basis of extensive morphological as well as genetic diversity across the distribution range of both species.

Identification of the medicinal species and the potential substitutes

All of the known medically important species could be identified using our proposed DNA barcodes, i.e., ITS + *rbcL* or ITS alone (Table 7; Figs. 3–4). Moreover, some species such as *S. bogedaensis, S. glandulosissima, S. polycolea, S. wettsteiniana,* and *S. orgaadayi* could be identified with the cp DNA barcodes (Fig. 5). This high rate of success was unexpected because some species such as the two species in the *S. obvallata* complex (*S. glandulosissima* and *S. sikkimensis*) have been morphologically confused for many years and they were only separated very recently (Raab-Straube, 2017). Their distinction is indicative of difference in bioactive components. Therefore, our results caution against their indiscriminating usage in medicine. Barcode sequences can also help to identify substitutes for medically useful species because closely related species might possibly share the same or similar secondary metabolites and bioactivities (Zhou et al., 2014). Thus, we propose that nine of the 15 medically useful species might be substituted by their close relatives according to the molecular phylogenetic context. Six of these species, which formed three groups, are also morphologically similar, i.e., *S. involucrata* and *S. orgaadayi* or *S. bogedaensis, S. globosa* and *S. erubescens,* and *S. wettsteiniana* and *S. glandulosissima* (Fig. 3) (Raab-Straube, 2017). Among the remaining three species, *S. bracteata* appears to be closely related to *S. pubifolia* whereas *S. iodostegia* and *S. nigrescens* are closely related to each other according to phylogenetic tree (Fig. 3). These affinities were not expected according to their morphology, but they are possibly due to convergent evolution or radiation in
Saussurea (Wang et al., 2009). Secondary metabolomes or bioactivities are wanted to confirm their similarity.

CONCLUSION

Based on the sequence statistics, inter- and intraspecific distances, SPIDER, and phylogenetic analyses, it is concluded that internal transcribed spacer (ITS) + \textit{rbcL} or ITS + \textit{rbcL} + \textit{psbA-trnH} could distinguish all of the species, while the ITS alone could identify all of the 15 medical plants. However, the species identification rates based on plastid barcodes were low, i.e., 0% to 36% when analyzed individually, and 63% when all four loci were combined. Thus, we recommend using ITS + \textit{rbcL} as the DNA barcode for \textit{S. subg. Amphilaena} or the ITS alone for medical plants.

ACKNOWLEDGMENTS

We are grateful to Jian-Quan Liu, Zhong-Hu Li, Yi-Xuan Kou, Fu-Shen Yang and Hiroshi Ikeda for helping with our field investigation. This study was supported by the National Natural Science Foundation of China (81274024).

REFERENCES

Berends ST, Jones JT, and Mullet JE. 1990. Sequence and transcriptional analysis of the barley ctDNA region
upstream of \textit{psbD-psbC} encoding \textit{trn}(UUU), \textit{rps}16, \textit{trn}(UUG), \textit{psbK}, \textit{psbI}, and \textit{trn}(GCU). \textit{Current Genetics} 17:445-454.

Brown SD, Collins RA, Boyer S, Lefort MC, Malumbres-Olarte J, Vink CJ, and Cruickshank RH. 2012. Spider: an R package for the analysis of species identity and evolution, with particular reference to DNA barcoding. \textit{Molecular Ecology Resources} 12:562-565.

Cao H, Sasaki Y, Fushimi H, and Komatsu K. 2010. Authentication of \textit{Curcuma} species (Zingiberaceae) based on nuclear 18S rDNA and plastid \textit{trn}K sequences. \textit{Acta Pharmaceutica Sinica} 45:926.

Chen J, and Wang YJ. 2018. New \textit{Saussurea} (Asteraceae) species from Bogeda Mountain, eastern Tianshan, China, and inference of its evolutionary history and medical usage. \textit{Plos One} 13:e0199416.

Cao JH, Wang YF, Xi SQ, Qi RL, and Yang YJ. 2016. Investigation on resources of medicinal plants \textit{Saussurea} DC. in Gansu Province. \textit{Journal of Traditional Chinese Veterinary Medicine} 2:73-75.

Chen QS, Pei J, and Zhao JW. 2010. Measurement of total flavone content in snow lotus (\textit{Saussurea involucrata}) using near infrared spectroscopy combined with interval PLS and genetic algorithm. \textit{Spectrochimica Acta Part A Molecular & Biomolecular Spectroscopy} 76:50-55.

Chen YS. 2014. Five new species of \textit{Saussurea} (Asteraceae, Cardueae) from the Hengduan Mountains region, southwestern China. \textit{Phytotaxa} 170:141-154.

Chen YS. 2015. Astereaceae II \textit{Saussurea}. In: Hong DY, ed. \textit{Flora of Pan-Himalaya}. Beijing: Science Press.

Chen YS, and Yuan Q. 2015. Twenty-six new species of \textit{Saussurea} (Asteraceae, Cardueae) from the Qinghai-Tibetan Plateau and adjacent regions. \textit{Phytotaxa} 213:159-211.

Chik WI, Zhu L, Fan LL, Yi T, Zhu GY, Gou XJ, Tang YN, Xu J, Yeung WP, Zhao ZZ, Yu ZL, and Chen HB. 2015. \textit{Saussurea involucrata}: A review of the botany, phytochemistry and ethnopharmacology of a rare traditional herbal medicine. \textit{Journal of Ethnopharmacology} 172:44-60.

Darriba D, Taboada GL, Doallo R, and Posada D. 2012. jModelTest 2: more models, new heuristics and parallel computing. \textit{Nature Methods} 9:772.

Doyle JJ. 1987. A rapid DNA isolation procedure for small amounts of fresh leaf tissue. \textit{Phytochem Bull} 19:11-15.

Farris JS, Kallersjo M, Kluge AG, and Bult C. 1995. Constructing a significance test for incongruence. Systematic Biology 44:570-572.

Ford CS, Ayres KL, Toomey N, Haider N, Stahl JV, Kelly LJ, Wikstrom N, Hollingsworth PM, Duff RJ, Hoot SB, Cowan RS, Chase MW, and Wilkinson MJ. 2009. Selection of candidate coding DNA barcoding regions for use on land plants. \textit{Botanical Journal of the Linnean Society} 159:1-11.

Fu LK, and Jin JM. 1992. Rare and endangered plants. In: Fu LK, and Jin JM, eds. \textit{China plant red data book}. Shanghai, China: Science Press, 234–235.

Gao T, Yao H, Song J-Y, Zhu Y-J, Liu C, and Chen S-L. 2010. Evaluating the feasibility of using candidate DNA barcodes in discriminating species of the large Asteraceae family. \textit{BMC Evolutionary Biology} 10:324.

Gong W, Liu Y, Chen J, Hong Y, and Kong HH. 2016. DNA barcodes identify Chinese medicinal plants and detect geographical patterns of \textit{Sinosenecio} (Asteraceae). \textit{Journal of Systematics & Evolution} 54:83-91.

Hall TA. 1999. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. \textit{Nucleic Acids Symposium Series} 41:95-98.

Hollingsworth ML, Andra Clark A, Forrest LL, Richardson J, Pennington R, Long D, Cowan R, Chase M, Gaudeul M, and Hollingsworth P. 2009. Selecting barcoding loci for plants: evaluation of seven candidate loci with species-level sampling in three divergent groups of land plants. \textit{Molecular Ecology Resources} 9:439-457.
Jiang X, Luo YQ, and Xu SK. 2010. Varieties of Tibetan medicine research in Saussurea. *Chinese Journal of Ethnomedicine and Ethnopharmacy* 11:3-4.

Kress WJ, Wurdack KJ, Zimmer EA, Weigt L, A, and Janzen D, H. 2005. Use of DNA barcodes to identify flowering plants. *Proceedings of the National Academy of Sciences of the United States of America* 102:8369-8374.

Li DZ, Gao LM, Li HT, Wang H, Ge XJ, Liu JQ, Chen ZD, Zhou SL, Chen SL, and Yang JB. 2011. Comparative analysis of a large dataset indicates that internal transcribed spacer (ITS) should be incorporated into the core barcode for seed plants. *Proceedings of the National Academy of Sciences of the United States of America* 108:19641-19646.

Li JS. 1999. Studies on ethnomedicinal plant resources of Xue Lianhua of genus Saussurea DC. in China Doctor. Peking Union Medical College.

Li JS, Zhu ZY, and Cai SQ. 2000. A survey on botanical origins of drug Xue Lianhua produced in China. *China Journal of Chinese Materia Medica* 25:461-465.

Lipschitz SJ. 1979. *Genus Saussurea DC. (Asteraceae).* Lenipopoli: Lenipopoli Science Press.

Müller K, and Borsch T. 2005. Phylogenetics of *Utricularia* (Lentibulariaceae) and molecular evolution of the *trnK* intron in a lineage with high substitutional rates. *Plant Systematics & Evolution* 250:39-67.

Meyer CP, and Paulay G. 2005. DNA barcoding: error rates based on comprehensive sampling. *PLos Biology* 3:e422.

Naciri Y, Caetano S, and Salamin N. 2012. Plant DNA barcodes and the influence of gene flow. *Molecular Ecology Resources* 12:575-580.

Smirnov SV. 2004. Notes on the genus *Saussurea* DC. (Asteraceae) in Altai. *Turczaninowia* 7:11–17.

Swofford D. 2003. *PAUP*: phylogenetic analysis using parsimony (*and other methods), Version 4.0b 10. Sunderland, Massachusetts: Sinauer Associates.

Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, and Higgins DG. 1997. The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. *Nucleic Acids Research* 25:4876-4882.
Wang YF, Li QJ, Du GZ, and Lian YS. 2014. *Saussurea pseudograminea* sp. nov. (Asteraceae) from the Qinghai–Tibetan plateau, China. *Nordic Journal of Botany* 32:185-189.

Wang YJ, Susanna A, Raab-Straube EV, Milne R, and Liu JQ. 2009. Island-like radiation of *Saussurea* (Asteraceae: Cardueae) trigged by uplifts of the Qinghai-Tibetan Plateau. *Botanical Journal of the Linnean Society* 97:893-903.

White TJ, Bruns T, Lee S, and Taylor J. 1990. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis MA, Gelfand DH, Sninsky JJ, and White TJ, eds. *PCR Protocols: A guide to methods and applications*. San Diego: Academic Press, 315–322.

Xu BQ, Hao G, and Xia NH. 2014. *Saussurea haizishanensis* sp. nov. (Compositae, Cardueae) from Sichuan, China. *Nordic Journal of Botany* 32:154-159.

Yang RM, Lan YF, Lan WC, and Peng Cuo T. 2005. The analysis of elements in flowers from two kinds of snow lotus herb of the tibetan drug. *Journal of the Central University for Nationalities* 14:120-123.

Zhou J, Wang WC, Liu MQ, and Liu ZW. 2014. Molecular authentication of the traditional medicinal plant *Peucedanum praeruptorum* and its substitutes and adulterants by DNA-barcoding technique. *Pharmacognosy Magazine* 10:385.
Table 1 (on next page)

List of medicinal plants within *Saussurea* subg. *Amphilaena*.
Species	Reference
S. involucretata	(Chen et al., 2010; Chik et al., 2015)
S. globosa	(Cao et al., 2016; Li, 1999)
S. wettsteiniana	(Jiang et al., 2010)
S. polycolea	(Jiang et al., 2010; Li, 1999)
S. uniflora	(Jiang et al., 2010; Li, 1999)
S. velutina	(Jiang et al., 2010)
S. phaeantha	(Cao et al., 2016; Li, 1999)
S. orgaadayi	(Shi & Raab-Straube, 2011)
S. tangutica	(Cao et al., 2016; Li et al., 2000)
S. bracteata	(Li, 1999)
S. erubescens	(Cao et al., 2016; Li, 1999)
S. nigrescens	(Cao et al., 2016; Li, 1999)
S. iodostegia	(Cao et al., 2016; Li, 1999)
S. glandulosissima	(Cao et al., 2016; Li, 1999; Yang et al., 2005)
S. sikkimensis	(Cao et al., 2016; Li, 1999; Yang et al., 2005)
Table 2 (on next page)

The name, locality, voucher and GenBank accession number for the samples used in this study.
Species	Locality	Voucher/ Individual	Latitude (°)	Longitude (°)	Altitude (m)	GenBank accession number (ITS, matK, rbcL, trnK, trnH-psbA)				
S. bogedaensis	Qitai, Xinjiang;	WYJ201607018b,140	43.45321	89.55213	3471	MH003705 MH070617 MH070870 MH070996 MH070743				
S. erubescens	Cuomei, Xizang;	WYJ201607213,151	28.51474	91.45611	4934	MH003721 MH070624 MH070877 MH071003 MH070750				
S. bracteata	Yushu, Qinghai;	WYJ201607043,160	35.05681	93.01225	4644	MH003714 MH070626 MH070879 MH071004 MH070752				
S. bracteata	Yushu, Qinghai;	WYJ201607043,161	35.05681	93.01225	4644	MH003715 MH070627 MH070880 MH071006 MH070753				
S. bracteata	Jilong, Xizang;	WYJ201607099,173	28.93494	85.39376	5108	MH003717 MH070629 MH070882 MH071008 MH070755				
S. bracteata	Jilong, Xizang;	WYJ201607099,174	28.93494	85.39376	5108	MH003718 MH070630 MH070883 MH071009 MH070756				
S. bracteata	Jilong, Xizang;	WYJ201607099,175	28.93494	85.39376	5108	MH003719 MH070631 MH070884 MH071010 MH070757				
S. bracteata	Geermu, Qinghai	WYJ201607053f,204	32.98834	91.98589	5120	MH003720 MH070632 MH070885 MH071011 MH070758				
S. bracteata	Geermu, Qinghai	WYJ201607041,248	35.51127	93.72552	4525	MH003721 MH070633 MH070886 MH071012 MH070759				
S. bracteata	Geermu, Qinghai	WYJ201607041,249	35.51127	93.72552	4525	MH003722 MH070634 MH070887 MH071013 MH070760				
S. erubescens	Luqu, Gansu;	sn110814017,123	34.59103	102.48699	3345	MH003723 MH070635 MH070888 MH071014 MH070761				
S. erubescens	Luqu, Gansu;	sn110814018,124	34.59121	102.48657	3367	MH003724 MH070636 MH070889 MH071015 MH070762				
S. erubescens	Luqu, Gansu;	sn110814017,353	34.59103	102.48699	3345	MH003725 MH070637 MH070890 MH071016 MH070763				
S. erubescens	Luqu, Gansu;	sn110815020,355	33.59203	101.48659	3451	MH003726 MH070638 MH070891 MH071017 MH070764				
S. erubescens	Xihae, Gansu;	Ikeda200713210,371	35.20252	102.52181	3342	MH003727 MH070639 MH070892 MH071018 MH070765				
S. globosa	Aba, Sichuan;	WYJ-2011-175,109	33.63526	102.35556	3470	MH003728 MH070640 MH070893 MH071019 MH070766				
S. globosa	Baoxing, Sichuan	WYJ201607422,168	30.40153	102.48188	3992	MH003729 MH070641 MH070894 MH071020 MH070767				
S. globosa	Kangding, Sichuan	WYJ201209151,318	30.05441	101.96308	3841	MH003730 MH070642 MH070895 MH071021 MH070768				
S. globosa	Kangding, Sichuan	WYJ201209158,329	30.05564	101.97304	3864	MH003731 MH070643 MH070896 MH071022 MH070769				
S. globosa	Kangding, Sichuan	WYJ201209157,331	30.13242	101.56306	3974	MH003732 MH070644 MH070897 MH071023 MH070770				
S. globosa	------	------	28.93118	99.79842	3764	MH003733	------	------	------	------
S. globosa	Xianeheng, Sichuan	WYJ201209234, 337	28.53118	99.45658	3835	MH003734	MH070645	MH070898	MH071024	MH070771
S. globosa	Xianeheng, Sichuan	WYJ-2011-069, 80	28.53118	99.45658	3835	MH003735	MH070646	MH070899	MH071025	MH070772
S. involucrata	Urumqi, Xinjiang	WYJ201607025a, 163	43.10847	86.84220	3564	MH003736	MH070647	MH070900	MH071026	MH070773
S. involucrata	Urumqi, Xinjiang	WYJ201607025e, 165	43.10847	86.84220	3564	MH003737	MH070648	MH070901	MH071027	MH070774
S. involucrata	Tekesi, Xinjiang	WYJ201308184, 24	43.09915	82.68382	3678	MH003738	MH070649	MH070902	MH071028	MH070775
S. involucrata	Tekesi, Xinjiang	WYJ201308184, 26	43.09915	82.68382	3678	MH003739	MH070650	MH070903	MH071029	MH070776
S. involucrata	Urumqi, Xinjiang	WYJ201308203, 372	43.11985	86.82125	3768	MH003740	MH070651	MH070904	MH071030	MH070777
S. involucrata	Urumqi, Xinjiang	WYJ201308203, 374	43.11985	86.82125	3768	MH003741	MH070652	MH070905	MH071031	MH070778
S. involucrata	Xinyuan, Xinjiang	WYJ201308188, 390	43.33469	84.01032	3543	MH003742	MH070653	MH070906	MH071032	MH070779
S. involucrata	Urumqi, Xinjiang	WYJ201308203, 41	43.11985	86.82125	3768	MH003743	MH070654	MH070907	MH071033	MH070780
S. involucrata	Xinyuan, Xinjiang	WYJ201308188, 47	43.33469	84.01032	3543	MH003744	MH070655	MH070908	MH071034	MH070781
S. involucrata	Xinyuan, Xinjiang	WYJ201308188, 48	43.33469	84.01032	3543	MH003745	MH070656	MH070909	MH071035	MH070782
S. involucrata	Dushanzi, Xinjiang	WYJ201308131, 61	43.77545	84.45615	2684	MH003746	MH070657	MH070910	MH071036	MH070783
S. involucrata	Dushanzi, Xinjiang	WYJ201308131, 63	43.77545	84.45615	2684	MH003747	MH070658	MH070911	MH071037	MH070784
S. iodostegia	Datong, Shanxi	WYJ201507117, 107	39.05578	113.65927	2514	MH003748	MH070659	MH070912	MH071038	MH070785
S. iodostegia	Datong, Shanxi	WYJ201507117, 108	39.05578	113.65927	2514	MH003749	MH070660	MH070913	MH071039	MH070786
S. iodostegia	Weixian, Hebei	WYJ201309004, 20	39.91413	114.96546	2237	MH003750	MH070661	MH070914	MH071040	MH070787
S. iodostegia	Weixian, Hebei	WYJ201309004, 21	39.91413	114.96546	2237	MH003751	MH070662	MH070915	MH071041	MH070788
S. iodostegia	Weixian, Hebei	WYJ201309004, 22	39.91413	114.96546	2237	MH003752	MH070663	MH070916	MH071042	MH070789
S. iodostegia	Mentougou, Beijing	WYJ201507105, 27	40.03633	115.47206	2048	MH003753	MH070664	MH070917	MH071043	MH070790
S. iodostegia	Mentougou, Beijing	WYJ201507105, 28	40.03633	115.47206	2048	MH003754	MH070665	MH070918	MH071044	MH070791
S. iodostegia	Mentougou, Beijing	WYJ201507105, 29	40.03633	115.47206	2048	MH003755	MH070666	MH070919	MH071045	MH070792
S. lutea	Linzhi, Gansu	WYJ201607286a, 271	29.59022	94.59631	4121	MH003756	------	------	------	------
S. lutea	Linzhi, Gansu	WYJ201607286a, 272	29.59022	94.59631	4121	MH003757	------	------	------	------
S. lutea	Linzhi, Gansu	WYJ201607286b, 273	29.59022	94.59631	4121	MH003758	MH070667	MH070920	MH071046	MH070793
S. lutea	Linzhi, Gansu	WYJ201607286c, 283	29.59022	94.59631	4121	MH003759	------	------	------	------
S. lutea	Linzhi, Gansu	LJQ2620, 316	28.48051	93.36541	4225	MH003760	MH070668	MH070921	MH071047	MH070794
S. nigrescens	Tianzhu, Gansu	LJQ1480, 314	36.41075	102.45620	1900	MH003761	MH070669	MH070922	MH071048	MH070795
Species	Location	Collection Code	Latitude	Longitude	Accession Numbers					
------------------	-----------------------	-----------------	---------------	---------------	-------------------					
S. nigrescens	Sunan, Gansu	LJQ1517, 315	37.23345	102.32444	MH003762, MH070670, MH070923, MH071049, MH070796					
	Huangyuan, Qinghai	Liu1603, 320	36.20387	98.14870	MH003763, MH070671, MH070924, MH071050, MH070797					
	Huangzhong, Qinghai	WYJ200611, 347	36.50087	101.57164	MH003764, MH070672, MH070925, MH071051, MH070798					
	Menyuan, Qinghai	LJQ-QLS-2008-0065, 82	37.37502	101.62422	MH003765, MH070673, MH070926, MH071052, MH070799					
	Menyuan, Qinghai	LJQ-QLS-2008-0065, 83	37.37502	101.62422	MH003766, MH070674, MH070927, MH071053, MH070800					
S. glandulosissima	Chayu, Xizang	WYJ201607321, 257	29.32542	97.134728	MH003763, MH070671, MH070924, MH071050, MH070802					
	Linzhi, Xizang	WYJ201607298, 264	29.627012	94.635744	MH003769, MH070677, MH070930, MH071056, MH070803					
	Linzhi, Xizhi	WYJ201607298, 379	29.627012	94.635744	MH003770, MH070678, MH070931, MH071057, MH070804					
	Xingzhong, Qinghai	WYJ201607321, 382	29.32542	97.134728	MH003771, MH070679, MH070932, MH071058, MH070805					
S. phaeantha	Chayu, Xizang	WYJ201607321, 257	29.32542	97.134728	MH003772, MH070680, MH070933, MH071059, MH070806					
S. phaeantha	Mqin, Qinghai	LJQ1718, 317	34.47733	100.23956	MH003773, MH070681, MH070934, MH071060, MH070807					
S. phaeantha	Xinghai, Qinghai	sn10718001, 349	35.58868	99.98818	MH003781, MH070689, MH070942, MH071068, MH070815					
S. phaeantha	Xinghai, Qinghai	sn20811001, 351	34.32412	99.35641	MH003782, MH070690, MH070943, MH071069, MH070816					
S. phaeantha	Xinghai, Qinghai	sn20801130, 354	35.38821	99.78935	MH003783, ------, ------, ------, ------, MH070817					
S. polycolea	Linzhi, Xizang	WYJ201607292, 229	29.62701	94.635745	MH003784, MH070691, MH070944, MH071070, MH070818					
S. polycolea	Linzhi, Xizang	WYJ201607292, 230	29.62701	94.635745	MH003785, MH070692, MH070945, MH071071, MH070819					
S. polycolea	Linzhi, Xizang	WYJ201607292, 231	29.62701	94.635745	MH003786, MH070693, MH070946, MH071072, MH070820					
S. polycolea	Langxian, Xizang	WYJ201607279, 269	28.883036	93.356181	MH003787, MH070694, MH070947, MH071073, MH070821					
S. polycolea	Langxian, Xizang	WYJ201607279, 270	28.883036	93.356181	MH003788, MH070695, MH070948, MH071074, MH070822					
S. polycolea	Linzhi, Xizang	sn07257, 334	29.62201	94.63554	MH003789, MH070696, MH070949, MH071075, MH070823					
S. phaeantha	Jiacha, Xizang	WYJ201607272a, 206	29.03175	92.35724	MH003790, MH070697, MH070950, MH071076, MH070824					
S. polycolea	Jiacha, Xizang	WYJ201607272b, 207	29.03175	92.35724	MH003791, MH070698, MH070951, MH071077, MH070825					
Species	Location	Collecting Code	Latitude	Longitude	Accession Numbers	Coordinates	Elevation	Corresponding Species		
---------------	----------------	-----------------	----------	-----------	-------------------	-------------	-----------	------------------------		
S. pubifolia	Jiacha, Xizang	WYJ201607272c	29.03175	92.35724	MH003792 MH070699 MH070952 MH071078 MH070826					
S. pubifolia	Jiacha, Xizang	WYJ-2011-057	94	29.02165	92.35714 MH003793 MH070700 MH070953 MH071079 MH070827					
S. sikkimensis	Cuona, Xizang	WYJ201607242	156	27.92057	91.84863 MH003794 MH070701 MH070954 MH071080 MH070828					
S. sikkimensis	Yadong, Xizang	WYJ201607150e	186	27.48592	88.90708 MH003795 MH070702 MH070955 MH071081 MH070829					
S. sikkimensis	Yadong, Xizang	WYJ201607150e	187	27.48592	88.90708 MH003796 MH070703 MH070956 MH071082 MH070830					
S. sikkimensis	Yadong, Xizang	WYJ201607150e	385	27.48592	88.90708 MH003797 MH070704 MH070957 MH071083 MH070831					
S. sikkimensis	Yadong, Xizang	WYJ201607150e	386	27.48592	88.90708 MH003798 MH070705 MH070958 MH071084 MH070832					
S. sikkimensis	Cuona, Xizang	WYJ201607242	388	27.92057	91.84863 MH003799 MH070706 MH070959 MH071085 MH070833					
S. sikkimensis	Cuona, Xizang	WYJ201607242	389	27.92057	91.84863 MH003800 MH070707 MH070960 MH071086 MH070834					
S. tangutica	Qilian, Gansu	WYJ201607013	226	38.60685	99.48221 MH003801 MH070708 MH070961 MH071087 MH070835					
S. tangutica	Qilian, Gansu	WYJ201607013	228	38.60685	99.48221 MH003802 MH070709 MH070962 MH071088 MH070836					
S. tangutica	Zhiduo, Qinghai	WYJ201207279	328	33.85203	95.61335 MH003803 MH070710 MH070963 MH071089 MH070837					
S. tangutica	Kangding, Sichuan	snl20801019	335	30.05093	101.96437 MH003804 MH070711 MH070964 MH071090 MH070838					
S. tangutica	Kangding, Sichuan	snl20801019	335	30.05093	101.96437 MH003805 MH070712 MH070965 MH071091 MH070839					
S. tangutica	Zhiduo, Qinghai	WYJ201207279	340	33.85203	95.61335 MH003806 MH070713 MH070966 MH071092 MH070840					
S. uniflora	Cuona, Xizang	WYJ201607254	142	27.765831	91.90194 MH003807 MH070714 MH070967 MH071093 MH070841					
S. uniflora	Cuona, Xizang	WYJ201607254	143	27.765831	91.90194 MH003808 MH070715 MH070968 MH071094 MH070842					
S. uniflora	Cuona, Xizang	WYJ201607254	144	27.765831	91.90194 MH003809 MH070716 MH070969 MH071095 MH070843					
S. uniflora	Yadong, Xizang	WYJ201607151c	145	27.48592	88.90708 MH003810 MH070717 MH070970 MH071096 MH070844					
S. uniflora	Yadong, Xizang	WYJ201607151a	146	27.48592	88.90708 MH003811 MH070718 MH070971 MH071097 MH070845					
S. uniflora	Yadong, Xizang	WYJ201607151b	147	27.48592	88.90708 MH003812 ----- ----- ----- -----					
S. uniflora	Cuona, Xizang	WYJ201607243	197	27.92057	91.84863 MH003813 MH070719 MH070972 MH071098 MH070846					
S. veitchiana	Xinglong, Hebei	WYJ201507098	302	40.59808	117.47655 MH003814 MH070720 MH070973 MH071099 MH070847					
S. veitchiana	Xinglong, Hebei	WYJ201507098	303	40.59808	117.47655 MH003815 MH070721 MH070974 MH071100 MH070848					
S. veitchiana	Nuanchuan, Henan	WYJ201507135	52	33.67057	111.79417 MH003816 MH070722 MH070975 MH071101 MH070849					
S. veitchiana	Nuanchuan, Henan	WYJ201507135	53	33.67057	111.79417 MH003817 MH070723 MH070976 MH071102 MH070850					
S. veitchiana	Nuanchuan, Henan	WYJ201507135	54	33.67057	111.79417 MH003818 MH070724 MH070977 MH071103 MH070851					
S. veitchiana	Nuanchuan, Henan	WYJ201507135	55	33.67057	111.79417 MH003819 MH070725 MH070978 MH071104 MH070852					
S. veitchiana	Shenlongjia, Hubei	WYJ201507160	57	31.43997	110.30714 MH003820 MH070726 MH070979 MH071105 MH070853					
S. veitchiana	Shenlongjia, Hubei	WYJ201507160	58	31.43997	110.30714 MH003821 MH070727 MH070980 MH071106 MH070854					
S. veitchiana	Shenlongjia, Hubei	WYJ201507160	59	31.43997	110.30714 MH003822 MH070728 MH070981 MH071107 MH070855					
Species	Location	Accession Numbers	Coordinates	Sample ID	Date					
------------------	-------------------	-------------------	-------------	-----------	---------					
S. veitchiana	Wuxi, Chongqing	MH003823	31.43791	WYJ201507184, 64	1795					
S. veitchiana	Wuxi, Chongqing	MH003824	31.43791	WYJ201507184, 65	1795					
S. veitchiana	Wuxi, Chongqing	MH003825	31.43791	WYJ201507184, 66	1795					
S. veitchiana	Wuxi, Chongqing	MH003826	31.43791	WYJ201507184, 67	1795					
S. velutina	Xiaojin, Sichuan	MH003827	30.99441	WYJ201209124, 339	4000					
S. velutina	Xiaojin, Sichuan	MH003828	30.99441	WYJ201209124, 342	4000					
S. velutina	Xiaojin, Sichuan	MH003829	30.99441	WYJ201209124, 76	4000					
S. velutina	Xiaojin, Sichuan	MH003830	30.99441	WYJ201209124, 77	4000					
S. velutina	Xiaojin, Sichuan	MH003831	30.99441	WYJ201209124, 78	4000					
S. wettsteiniana	Mianning, Sichuan	MH003832	29.00106	WYJ201607408a, 176	3381					
S. wettsteiniana	Mianning, Sichuan	MH003833	29.00106	WYJ201607408b, 177	3381					
S. wettsteiniana	Mianning, Sichuan	MH003834	29.00106	WYJ201607402, 178	3381					
S. wettsteiniana	Mianning, Sichuan	MH003835	29.00106	WYJ201607402, 284	3381					
Jurinea multiflora	Tuoli, Xinjiang	MH003704	45.73564	WYJ201308102, 377	1753					
Jurinea multiflora	Tuoli, Xinjiang	MH003705	45.73564	WYJ201308102, 378	1753					
Table 3 (on next page)

List of the primers used in this study.
Primer	Fragment	Sequence (5’-3’)	Reference
ITS4	ITS	TCCTCGCTTATTGATATGC	(White et al., 1990)
ITS1	ITS	AGAAGTCGTAACAAGGTTCCGTAGG	(White et al., 1990)
trnK(UUU)	trnK	TTAAAAGCCGAGTACTCTACC	(Berends et al., 1990)
rps16	trnK	AAAGTGGGTTTTTATGATCC	(Berends et al., 1990)
pshA	pshA	GTTATGCATGAACGTAATGCTC	(Sang et al., 1997)
trnH	pshA	CGGCGATGGGGATTCCAATCC	(Sang et al., 1997)
matK-xf	matK	TAATTACGATCAATTCTAC	(Ford et al., 2009)
matK-5r	matK	GTTCTAGCACAAGAAAGTCG	(Ford et al., 2009)
rbcL1	rbcL	ATGTCACCACAACAGAGACTAAAGC	(Olmstead et al., 1992)
rbcL911	rbcL	TTTCTCGCATGACCGGAGC	(Olmstead et al., 1992)
Table 4 (on next page)

List of statistics information of five DNA barcodes and the result of incongruence length difference (ILD) analysis between ITS and each chloroplast locus.
DNA region	ITS	trnH-psbA	matK	rbcL	trnK
PCR success (%)	92.7	77	89.6	91.6	72.9
Sequencing success (%)	100	96.18	95.42	95.42	95.42
Aligned sequence length (bp)	656	444	711	634	656
No. indel (length in bp)	3 (1)	5 (1-3)	0	0	4 (1)
No. variated sites	111	22	18	8	28
No. sampled species (individual)	19 (131)	19 (131)	19 (131)	19 (131)	19 (131)
Interspecific distance mean (range) (%)	0.011 (0-0.028)	0.004(0-0.028)	0.003(0-0.008)	0.002(0-0.006)	0.004(0-0.012)
Intraspecific distance mean (range) (%)	0.001(0-0.005)	0.002(0-0.021)	0.001(0-0.006)	0.001(0-0.006)	0.001(0-0.009)
p values of ILD test between ITS	---	0.02	0.001	0.12	0.001

Table 5 (on next page)

Mean intraspecies distance (%) of ITS and the combined sequences of four chloroplast loci for each species.
Species	ITS	Chloroplast
S. bogedaensis	0.0	0.02
S. bracteata	0.0	0.00
S. erubescens	0.0	0.00
S. glandulosissima	0.1	0.07
S. globosa	0.2	0.04
S. involucrata	0.2	0.06
S. iodostegia	0.0	0.05
S. lucae	0.0	0.29
S. nigrescens	0.0	0.00
S. orgaadayi	0.0	0.00
S. phaeantha	0.4	0.04
S. polyclea	0.0	0.07
S. pubifolia	0.0	0.00
S. sikkimensis	0.2	0.06
S. tangutica	0.1	0.46
S. uniflora	0.1	0.15
S. veitchiana	0.1	0.39
S. velutina	0.0	0.21
S. wettsteiniana	0.0	0.00
Table 6 (on next page)

The pairwise distances (%) of ITS (lower left) and the combined chloroplast loci (upper right) from 19 species of *Saussurea*.

1) *S. bogedaensis*, 2) *S. bracteata*, 3) *S. erubescens*, 4) *S. globosa*, 5) *S. involucrate*, 6) *S. iodostegia*, 7) *S. luae*, 8) *S. nigrescens*, 9) *S. glandulosissima*, 10) *S. orgaadayi*, 11) *S. phaeantha*, 12) *S. polycolea*, 13) *S. pubifolia*, 14) *S. sikkimensis*, 15) *S. tangutica*, 16) *S. uniflora*, 17) *S. veitchiana*, 18) *S. velutina*, 19) *S. wettsteiniana*.
| CP | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 |
|----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| 1 | 0.30| 0.26| 0.28| 0.22| 0.62| 0.32| 0.34| 0.28| 0.22| 0.28| 0.34| 0.30| 0.41| 0.46| 0.34| 0.55| 0.34| 0.26|
| 2 | 1.92| 0.04| 0.06| 0.17| 0.57| 0.19| 0.29| 0.22| 0.16| 0.06| 0.12| 0.00| 0.35| 0.35| 0.23| 0.50| 0.16| 0.21|
| 3 | 1.52| 2.77| 0.02| 0.13| 0.53| 0.14| 0.25| 0.18| 0.12| 0.02| 0.08| 0.04| 0.31| 0.31| 0.19| 0.46| 0.12| 0.16|
| 4 | 1.53| 2.88| 0.61| 0.15| 0.55| 0.17| 0.27| 0.20| 0.15| 0.05| 0.10| 0.06| 0.34| 0.33| 0.22| 0.48| 0.15| 0.19|
| 5 | 0.93| 2.58| 2.14| 0.14| 0.38| 0.29| 0.22| 0.16| 0.06| 0.35| 0.35| 0.23| 0.50| 0.16| 0.21| 0.42| 0.20| 0.13|
| 6 | 1.96| 3.33| 1.85| 1.60| 2.47| 0.59| 0.34| 0.28| 0.22| 0.28| 0.34| 0.30| 0.41| 0.46| 0.34| 0.55| 0.34| 0.26|
| 7 | 1.07| 0.72| 1.90| 1.78| 1.72| 2.31| 0.31| 0.18| 0.19| 0.17| 0.21| 0.19| 0.37| 0.39| 0.25| 0.52| 0.23| 0.23|
| 8 | 1.83| 3.19| 1.72| 1.47| 2.34| 0.34| 2.12| 0.26| 0.21| 0.27| 0.32| 0.29| 0.31| 0.45| 0.22| 0.32| 0.19| 0.25|
| 9 | 1.35| 2.69| 1.56| 1.31| 1.92| 1.74| 1.69| 1.60| 0.34| 0.30| 0.41| 0.36| 0.57| 0.51| 0.55| 0.71| 0.57| 0.53|
| 10 | 1.41| 3.08| 2.30| 2.35| 2.02| 2.28| 2.21| 2.17| 2.16| 0.15| 0.20| 0.16| 0.27| 0.32| 0.21| 0.42| 0.20| 0.12|
| 11 | 1.53| 2.84| 1.60| 1.45| 2.14| 1.92| 1.84| 1.78| 1.31| 2.34| 0.10| 0.06| 0.34| 0.33| 0.22| 0.48| 0.15| 0.19|
| 12 | 1.09| 2.42| 1.36| 1.06| 1.69| 1.48| 1.43| 1.35| 0.87| 1.89| 0.89| 0.12| 0.37| 0.37| 0.26| 0.53| 0.20| 0.24|
| 13 | 1.61| 1.32| 2.22| 2.23| 2.26| 3.00| 0.23| 2.84| 2.37| 2.76| 2.51| 2.10| 0.35| 0.35| 0.23| 0.50| 0.16| 0.21|
| 14 | 1.11| 2.44| 1.34| 1.08| 1.71| 1.49| 1.38| 1.36| 0.71| 1.91| 1.07| 0.64| 2.12| 0.51| 0.34| 0.48| 0.35| 0.31|
| 15 | 1.63| 2.98| 1.58| 1.59| 1.47| 2.57| 2.01| 2.42| 2.06| 2.67| 2.20| 1.78| 2.32| 1.81| 0.42| 0.65| 0.40| 0.35|
| 16 | 1.00| 2.33| 1.27| 0.97| 1.44| 1.38| 1.34| 1.26| 0.78| 1.80| 0.96| 0.53| 2.01| 0.55| 1.70| 0.46| 0.24| 0.25|
| 17 | 2.10| 3.48| 2.06| 1.74| 2.62| 1.52| 2.36| 1.30| 1.72| 2.93| 2.02| 1.62| 2.81| 1.64| 2.50| 1.53| 0.45| 0.46|
| 18 | 2.21| 2.91| 2.49| 2.50| 2.50| 2.94| 2.04| 2.80| 2.31| 3.04| 2.50| 2.05| 2.59| 2.07| 2.66| 1.96| 3.09| 0.24|
| 19 | 1.73| 3.05| 1.88| 1.70| 2.35| 1.80| 1.85| 1.69| 1.19| 2.39| 1.65| 1.25| 2.77| 1.09| 2.45| 1.16| 2.27| 2.71|
Table 7 (on next page)

Species resolution using the Best Close Match method and the tree-based method with five barcodes and their combinations.
Sequences	Number	Correct (%)	Ambiguous (%)	Incorrect (%)	No match (%)	Threshold (%)	BI (%)	NJ (%)
ITS	132	93.2	6.8	0.0	0.0	0.45	84.2	84.2
trnK	125	36.0	61.6	2.4	0.0	0.91	15.8	15.8
matK	125	16.8	83.2	0.0	0.0	0.56	10.5	10.5
psbA	126	27.0	71.4	0.8	0.8	1.12	5.2	5.2
rbcL	125	12.0	88.0	0.0	0.0	0.63	0.0	0.0
ITS+trnK	125	98.4	0.0	1.6	0.0	0.53	79.0	84.2
ITS+matK	125	96.0	3.2	0.8	0.0	0.36	79.0	84.2
ITS+psbA	126	96.0	4.0	0.0	0.0	0.54	84.2	89.5
ITS+rbcL	125	100.0	0.0	0.0	0.0	0.38	89.5	89.5
trnK+matK	125	52.0	45.6	2.4	0.0	0.72	26.3	26.3
trnK+psbA	125	52.0	44.8	3.2	0.0	0.99	21.1	21.1
trnK+rbcL	125	37.6	60.8	1.6	0.0	0.77	15.8	15.8
matK+psbA	125	49.6	48.8	1.6	0.0	0.77	21.1	15.8
matK+rbcL	125	25.6	74.4	0.0	0.0	0.59	10.5	10.5
psbA+rbcL	125	30.4	68.8	0.8	0.0	0.83	10.5	5.2
ITS+matK	125	96.0	3.2	0.8	0.0	0.54	68.4	89.5
ITS+psbA	125	98.4	0.0	1.6	0.0	0.54	73.7	89.5
ITS+rbcL	125	98.4	0.0	1.6	0.0	0.51	84.2	89.5
ITS+matK	125	99.2	0.0	0.8	0.0	0.39	79.0	89.5
ITS+rbcL	125	100.0	0.0	0.0	0.0	0.57	79.0	94.7
ITS+trnK	125	98.4	0.0	1.6	0.0	0.68	79.0	89.5
trnK+matK	125	52.0	45.6	2.4	0.0	0.69	26.3	26.3
trnK+psbA	125	63.2	35.2	1.6	0.0	0.82	26.3	26.3
matK+psbA	125	49.6	49.6	0.8	0.0	0.72	21.1	21.1
rbcL+trnK	125	55.2	41.6	3.2	0.0	0.86	15.8	21.1
ITS+matK	125	99.2	0.0	0.8	0.0	0.57	68.4	84.2
ITS+psbA	125	98.4	0.0	1.6	0.0	0.64	73.7	84.2
ITS+rbcL	125	98.4	0.0	1.6	0.0	0.52	73.7	84.2
ITS+psbA	125	98.4	0.0	1.6	0.0	0.66	79.0	84.2
matK+psbA	125	63.2	35.2	1.6	0.0	0.77	26.3	26.3
ITS+trnK	125	98.4	0.0	1.6	0.0	0.64	79.0	84.2
Figure 1

Photographs of six species sampled in the study.

A) *S. bogedaensis*, WYJ201607018. B) *S. involucrata*, WYJ201607025. C) *S. pubifolia*, WYJ201607272. D) *S. luae*, WYJ201607286. E) *S. globosa*, WYJ201607422. F) *S. erubescens*, sn110814017.

Note: Auto Gamma Correction was used for the image. This only affects the reviewing manuscript. See original source image if needed for review.
Manuscript to be reviewed
Figure 2

Relative distributions of intraspecific and interspecific distances calculated with ITS, \textit{rbcL}, \textit{trnH-psbA}, \textit{matK}, and \textit{trnK}.
Figure 3

Phylogenetic tree based on Bayesian analysis of ITS.
Figure 4

Phylogenetic tree based on Bayesian analysis of ITS + rbcL.
S. iodostegia
S. nigrescens
S. veitchiana
S. erubescens
S. globosa
S. glandulosissima
S. wettsteiniana
S. phaenta
S. sikkimensis
S. polycolea
S. uniflora
S. involucrata
S. tangutica
S. bogedaensis
S. orgaadayi
S. bracteata
S. pubifolia
S. luue
S. petrina
Figure 5

Phylogenetic tree based on Bayesian analysis of $trnK+$ $matK+$ $psbA+$ $rbcL$.
