Action of an endo-β-1,3(4)-glucanase on celllobiosyl unit structure in barley β-1,3:1,4-glucan

Takao Kuge1,a, Hiroki Nagoya2,a, Theodora Tryfona3, Tsunemi Kurokawa2, Yoshihisa Yoshimi2, Naoshi Dohmae2,4, Kazufumi Tsubaki1, Paul Dupree3, Yoichi Tsumuraya2, and Toshihisa Kotake2,5,*

1Life Science Materials Laboratory, Research and Development Division, ADEKA Corporation, Tokyo, Japan; 2Division of Life Science, Graduate School of Science and Engineering, Saitama University, Saitama, Japan; 3Department of Biochemistry, University of Cambridge, Cambridge, UK; 4Global Research Cluster, RIKEN, Saitama, Japan; 5Institute for Environmental Science and Technology, Saitama University, Saitama, Japan

Received March 9, 2015; accepted April 23, 2015

http://dx.doi.org/10.1080/09168451.2015.1046365

β-1,3:1,4-Glucan is a major cell wall component accumulating in endosperm and young tissues in grasses. The mixed linkage glucan is a linear polysaccharide mainly consisting of cellotriosyl and cellotetraosyl units linked through single β-1,3-glucosidic linkages, but it also contains minor structures such as celllobiosyl units. In this study, we examined the action of an endo-β-1,3(4)-glucanase from Trichoderma sp. on a minor structure in barley β-1,3:1,4-glucan. To find the minor structure on which the endo-β-1,3(4)-glucanase acts, we prepared oligosaccharides from barley β-1,3:1,4-glucan by endo-β-1,4-glucanase digestion followed by purification by gel permeation and paper chromatography. The endo-β-1,3(4)-glucanase appeared to hydrolyze an oligosaccharide with degree of polymerization 5, designated C5-b. Based on matrix-assisted laser desorption/ionization (MALDI) time-of-flight (ToF)/ToF-mass spectrometry (MS)/MS analysis, C5-b was identified as β-Glc-1,3-β-Glc-1,4-β-Glc-1,3-β-Glc-1,4-Glc including a celllobiosyl unit. The results indicate that a type of endo-β-1,3(4)-glucanase acts on the celllobiosyl units of barley β-1,3:1,4-glucan in an endo-manner.

Key words: barley; celllobiosyl unit; endo-β-1,3(4)-glucanase; β-1,3:1,4-glucan; MALDI-ToF/ToF/MS/MS

β-1,3:1,4-Glucan is a linear polysaccharide relatively abundant in young tissues and endosperm of grasses.1) Although the mixed linkedage β-glucan does not exist in dicotyledonous plants, it has been also found in lichens such as Cetraria islandica and recently in horsetails (Equisetopsida).2,3) β-1,3:1,4-Glucan is mainly consisted of cellotriosyl and cellotetraosyl units linked through single β-1,3-glucosidic linkages, though the proportion of cellotriosyl and cellotetraosyl units varies depending on the plant species. β-1,3,1,4-Glucan has also minor structures that are celllobiosyl units and long β-1,4-glucosyl stretches linked through a single β-1,3-glucosidic linkage, and continuous β-1,3-glucosyl residues.4,5) The activity of β-1,3,1,4-glucan synthase has been seen in microsomal fractions prepared from young seedlings and endosperm in barley, maize, and rice.6–8) To date, two glycosyltransferases, cellulose synthase-like F (CsIF) and H (CsIH), have been identified as components required for the synthesis of β-1,3,1,4-glucan in Poaceae.9,10) However, it is still unknown whether β-1,3- and β-1,4-glucosyl residues are synthesized by single glycosyltransferase. In addition, the synthesis of cellotriosyl units was selectively inhibited by 3-{[(3-cholamidopropyl)dimethylammonio]-1-propanesulfonic acid}, indicating the presence of at least two different glycosyltransferases synthesizing odd-numbered and even-numbered cellooligosaccharide units.11,12) However, the precise mechanism for the synthesis of cellotriosyl and cellotetraosyl units and minor structures remains to be clarified.

β-1,3:1,4-Glucan undergoes degradation by endogenous hydrolases in young tissues and germinating seeds of Poaceae plants.13,14) Endo-β-1,3,1,4-glucanase (EC 3.2.1.73) of Poaceae plants belonging to glycoside...
hydrolase (GH) family 17 is an enzyme specifically hydrolyzing the β-glucan in an endo-manner. Higher plants also possess GH9 endo-β-1,4-glucanases (EC 3.2.1.4, cellulase) acting on the β-glucan in endo-manner. In addition to the endo-acting enzymes, β-glucosidase (EC 3.2.1.21) and exo-β-glucanase (β-glucan exohydrolase, EC 3.2.1.58) hydrolyzing both β-1,3- and β-1,4-glucosidic linkages in exo-manner participate in the hydrolysis of β-1,3:1,4-glucan. β-1,3:1,4-Glucan is also degraded by various enzymes secreted by fungi and bacteria in nature. Together with endo-β-1,3:1,4-glucanase and endo-β-1,4-glucanase, endo-β-1,3(4)-glucanase (EC 3.2.1.6) takes part in the hydrolysis of β-1,3:1,4-glucan as an endo-acting enzyme. The enzyme has substrate specificity distinct from endo-β-1,3:1,4-glucanase and endo-β-1,4-glucanase, as it acts on both of β-1,3:1,4-glucan and β-1,3-glucan. Actually, an endo-β-1,3(4)-glucanase from *Phanerochaete chrysosporium*, PCLαn16A, belonging to GH16 family acts on lichenin, β-1,3:1,4-glucan from *C. islandica*, liberating β-Glc-1-β-Glc-1:3-Glce (G4G3G) and also on β-1,3:1,6-glucan releasing G6G3G3G as the main products, respectively.

On the basis of three-dimensional (3-D) structure, the enzyme was revealed to accommodate both of β-1,3:1,4-glucan and β-1,3-glucan. Actually, an endo-β-1,3(4)-glucanase from *Phanerochaete chrysosporium*, PCLαn16A, belonging to GH16 family acts on lichenin, β-1,3:1,4-glucan from *C. islandica*, liberating β-Glc-1-β-Glc-1:3-Glce (G4G3G) and also on β-1,3:1,6-glucan releasing G6G3G3G as the main products, respectively.

Analysis of endo-manner action on β-glucan. Digestion of β-1,3:1,4-glucan with enzyme was performed using a reaction mixture (total volume, 1 mL) consisting of the enzyme, 0.3% (w/v) β-1,3:1,4-glucan, and 50 mM 3-morpholinopropanesulfonic acid-NaOH buffer (pH 6.5). The apparent molecular weight (M$_{a}$) of the β-glucan was estimated by high-performance liquid chromatography (HPLC) with a Shimadzu LC-10 A (Shimadzu, Kyoto, Japan) fitted with a refractive index detector (Shimadzu) and tandem columns (each 7.8 × 300 mm) of TSKgel G3000PWXL and G2500PWXL (Tosoh, Tokyo, Japan), equilibrated and eluted with 0.2 M potassium phosphate buffer (pH 6.9) at a flow rate of 0.8 mL/min and at 40 °C. The void volume (V_0) and inner volume (V_i) were determined with pullulan markers (Shodex Standard P-82; Showa Denko, Tokyo, Japan) and Glc.

Preparation of C5 oligosaccharides. One gram of barley β-1,3:1,4-glucan, E70-S, was digested with endo-β-1,4-glucanase from *A. niger* in 10 mM sodium acetate buffer (pH 4.5) at 37 °C for 24 h. The hydrolysate was lyophilized by freeze-dry and dissolved into 4 mL of water. Oligosaccharides released from the β-glucan were separated by gel permeation chromatography on a Bio-Gel P-2 column (26 mm × 925 mm, Bio-Rad). The V_0 and V_i of the column were determined with dextran (Sigma) and Glc. Oligosaccharides were fractionated into C3, C4, and C5 fractions in order of increasing degree of polymerization (DP), which was determined by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-ToF-MS) with a Bruker AutoflexIII (Bruker Daltonics, Bremen, Germany). C5 fraction was further fractionated into C5-a, -b, and -c by paper chromatography using Whatman 3MM filter paper with 6:4:3 (v/v/v) 1-butanol/pyridine/water (Supplemental Fig. 2). The sugar content of the fractions was determined by the phenol–sulfuric acid method using Glc as the standard.

Methylation analysis. For the analysis of sugar linkage, the oligosaccharide (approximately 100 μg) was subjected to the methylation analysis. Methylation was performed by the Hakomori method, and the products were analyzed by gas liquid chromatography (GLC). GLC of neutral sugars as their alditol acetate derivatives was done with a Shimadzu gas chromatograph GC-6A equipped with a column using reaction mixtures (0.1 mL) consisting of the enzyme, 0.1% (w/v) polysaccharide, and 200 mM acetate buffer, pH 5.0. After incubation at 37 °C for the appropriate reaction time, the liberated sugars were determined reductometrically by the method of Nelson and Somogyi. One unit of enzyme activity liberates 1 μmol of reducing sugar per min. The concentration of protein was determined by the method of Bradford using bovine serum albumin as the standard.
Action of enzymes on oligosaccharides. The action of the *Trichoderma* enzyme, rGI, and rGII on C4 and C5-b was analyzed using a reaction mixture (total volume, 20 μL) containing the enzyme, 0.1 mM oligosaccharide, and 50 mM sodium acetate buffer (pH 5.0). After incubation at 37 °C for 24 h, the sample was inactivated by heating. The reducing sugars liberated were coupled at their reducing terminals with p-aminobenzoic acid ethyl ester (ABEE) by the method of Matsuura and Imaoka.39) The ABEE-derivatized sugars were analyzed on an HPLC system equipped with a TSKgel Amide-80 column (4.6 mm × 250 mm; Tosoh). The column was eluted with a linear gradient of CH3CN:water from 74:26 to 36:64 (v/v), for 40 min at a flow rate of 1 mL/min and 40 °C. ABBE sugars were monitored by a fluorescence detector model RF-10AXL at 305 nm (excitation) and 360 nm (emission).

Structural analysis of oligosaccharide. For MALDI-ToF/ToF-MS/MS, per-methylation of glycans was performed using the NaOH slurry method described by Ciucanu and Kerek30) using 1 mL of methyl iodide (Fluka, Buchs, Switzerland). Dry samples were resuspended in 100 μL of methanol and were kept at room temperature for MALDI-ToF/ToF-MS/MS analysis. Per-methylated methanol dissolved samples (5 μL) were mixed with 5 μL of 2,5-dihydroxybenzoic acid matrix {10 mg/mL dissolved in 50% (v/v) methanol} and 1 μL of the mixture was spotted on a MALDI target plate and analyzed by MALDI-ToF/ToF-MS/MS (4700 proteomics analyzer, Applied Biosystems, Foster City, CA, USA) as previously described.31) High-energy MALDI collision-induced dissociation (CID) spectra were acquired with an average 10,000 laser shots/spectrum, using a high collision energy (1 kV). The oligosaccharide ions were allowed to collide in the CID cell with argon at a pressure of 2 × 10−6 Torr.

Polysaccharide analysis using carbohydrate gel electrophoresis. Products from the C5-b oligosaccharide by the *Trichoderma* enzyme were analyzed by polysaccharide analysis using carbohydrate gel electrophoresis (PAGE). The derivatization of carbohydrates was performed according to previously developed protocols.32) Carbohydrate electrophoresis and PAGE gel scanning were performed as described by Goubet et al.32)

Results

Hydrolytic activity of endo-β-1,3:1,4-glucanase

In this study, we analyzed the action of a commercial endo-β-1,3(4)-glucanase from *Trichoderma* sp. belonging to GH16 family and two recombinant barley endo-β-1,3-glucanases belonging to GH17 family, rGI and rGII,25) on β-1,3:1,4-glucan. The *Trichoderma* enzyme purchased from Megazyme was identified as GH16 enzyme by MALDI-ToF/ToF-MS/MS analysis (data not shown). The rGI and rGII were expressed in *P. pastoris* and purified by conventional chromatography to homogeneity (Supplemental Information, Supplemental Fig. 1). First, the substrate specificity of the *Trichoderma* endo-β-1,3(4)-glucanase was confirmed by comparing with that of endo-β-1,3-glucanases rGI and rGII. The *Trichoderma* enzyme hydrolyzed laminarin, β-1,3:1,6-glucan from *L. digitata*, and barley β-1,3:1,4-glucan but hardly acted on CM-cellulose, proving that it has the characteristic of endo-β-1,3(4)-glucanase (Table 1). On the other hand, rGI and rGII failed to act on β-1,3:1,4-glucan. In addition, the endo-manner action of the *Trichoderma* enzyme on β-1,3:1,4-glucan was also confirmed. Consistent with the activity toward β-1,3:1,4-glucan determined by the reducing sugar assay, the *Trichoderma* enzyme decreased the apparent *M*₅₀ of β-1,3:1,4-glucan, but rGI and rGII did not cause any change (Fig. 1).

Isolation of oligosaccharides derived from the minor structure

To identify the minor structure of β-1,3:1,4-glucan that is hydrolyzed by the *Trichoderma* endo-β-1,3(4)-glucanase, β-glucan E70-S was first hydrolyzed by GH12 endo-β-1,4-glucanase from *A. niger* in large scale, and the resulting oligosaccharides were fractionated into C3, C4, and C5 fractions by gel permeation chromatography (Fig. 2). The majority of oligosaccharides were fractionated into C3 and C4 fractions, which are presumably β-Glc-1,4-β-Glc-1,3-Glc (G4G3G) or β-Glc-1,3-β-Glc-1,4-Glc (G3G4G) derived from the cellobiosyl unit and β-Glc-1,4-β-Glc-1,4-β-Glc-1,3-Glc (G4G4G3G), β-Glc-1,4-β-Glc-1,3-β-Glc-1,4-Glc (G4G3G4G), or β-Glc-1,3-β-Glc-1,4-β-Glc-1,4-Glc (G3G4G4G) derived from the celloctaerosyl unit, respectively. The digestion also yielded a small amount (1.5% of total sugar) of C5 fraction presumably derived from the minor structures, on which the endo-β-1,4-glucanase does not act. MALDI-TOF-MS analysis revealed that C5 fraction has an oligosaccharide with DP 5 (Supplemental Fig. 3). The C5 fraction was further separated by paper chromatography into C5-a, -b, and -c (Supplemental Fig. 2). As C5-a and -c consisted of more than one oligosaccharides, C5-b was used for following analysis.

Hydrolysis of C5-b oligosaccharides by *Trichoderma* endo-β-1,3(4)-glucanase

C5-b oligosaccharide was incubated with the *Trichoderma* enzyme, rGI, or rGII, and the hydrolysis was monitored on HPLC. While rGI and rGII failed to act on the substrate, the *Trichoderma* enzyme properly degraded C5-b into smaller oligosaccharides and glucose (Glc) (Fig. 3). The results indicate that C5-b structure is hydrolyzed by *Trichoderma* endo-β-1,3(4)-glucanase belonging to GH16, but not by *A. niger* endo-β-1,4-glucanase belonging to GH12 and barley endo-β-1,3-glucanases belonging to GH17, rGI, and rGII. On the other hand, C4 oligosaccharide derived from celloctaerosyl unit was not hydrolyzed by the *Trichoderma* enzyme at all.
To determine the structure, C5-b oligosaccharide was subjected to methylation analysis for glucosidic linkages together with C3 and C4 oligosaccharides. In the analysis, sugars at reducing end were converted to their respective alditols before methylation of free OH groups. C4 oligosaccharide appeared to have nearly equal molecular ratio of terminal Glc (t-Glc), 3-linked Glc (3-Glc), 4-linked Glc (4-Glc), and 4-linked reducing-end Glc (4-Glcol), which coincides with the ratio obtained from G3G4G4G (Table 2). Similarly, C3 was identified as G3G4G. Compared with C3 and C4, C5-b had roughly two units of 3-Glc, indicating that C5-b is derived from a cellobiosyl unit or continuous β-1,3:1,4-glucan.

Structure of C5-b oligosaccharide

For further structural analysis, C5-b oligosaccharide was also per-methylated and analyzed by high-energy MALDI-CID (Fig. 4, Supplemental Fig. 4). However, because the direct annotation of the fragmentation spectrum was very ambiguous, we followed a comparative approach where the CID spectra of per-methylated cellopentaose, laminaripentaose, and C5-b oligosaccharide were simultaneously analyzed. In particular, we compared the relative proportions of various molecular ions in the corresponding spectra in order to decipher the structure of C5-b oligosaccharide. Comparing the CID spectra of cellopentaose and laminaripentaose, it becomes apparent that the intensity of the D1 “elimina-

Table 1. Substrate specificity of the enzymes.

Substratea	rGI	rGII	Trichoderma enzyme
Laminarin (β-1,3:1,6-glucan)	100b	100	100
β-1,3:1,4-Glucan (high viscosity)	<0.1	<0.1	41
β-1,3:1,4-Glucan (medium viscosity)	<0.1	<0.1	9
β-1,3:1,4-Glucan (low viscosity)	<0.1	<0.1	9
CM-cellulose (β-1,4-glucan)	<0.1	<0.1	<0.1

aThe reducing sugars liberated from polysaccharide substrate by the enzyme were measured.
bActivity is expressed in % of that toward laminarin.
and analyzed on HPLC, respectively. Sugars before and after enzyme reaction were derivatized with ABEE C5-b; and D, the action of rGII on C5-b were analyzed. Reducing action of the *Trichoderma* β-glucan, E70-S.

	t-Glc*	3-Glc	4-Glc	4Glocb
C3	1.00	0.96	-	1.46
C4	1.00	0.93	0.90	1.19
C5-b	1.00	1.72	1.14	0.53

* Molar ratio is expressed based on either nonreducing (t-Glc) taken as 1.0.
* Samples were methylated after reduction of their reducing ends with NaBH₄.

Note: A, the action of the *Trichoderma* enzyme on C4; B, the action of the *Trichoderma* enzyme on C5-b; C, the action of rGI on C5-b; and D, the action of rGII on C5-b were analyzed. Reducing sugars before and after enzyme reaction were derivatized with ABEE and analyzed on HPLC, respectively.

Table 2. Glucosidic linkage analysis of oligosaccharides derived from β-glucan, E70-S.

Fig. 3. Action of the *Trichoderma* enzyme, barley rGI and rGII on oligosaccharides prepared from β-1,3,1,4-glucan.

Notes: A, the action of the *Trichoderma* enzyme on C4; B, the action of the *Trichoderma* enzyme on C5-b; C, the action of rGI on C5-b; and D, the action of rGII on C5-b were analyzed. Reducing sugars before and after enzyme reaction were derivatized with ABEE and analyzed on HPLC, respectively.

Discussion

Poaceae β-1,3:1,4-glucan is mainly consisted of cellobiosyl and cellotetraosyl units linked through single β-1,3-glucosidic linkages, but it has also been shown to possess celllobioisyl units as the minor structure. Through the structural analysis of unexpected oligosaccharides released by endo-β-1,3,1,4-glucanase, the celllobiosyl units appeared to locate at the nonreducing side of cellotetraosyl units in barley, lichen, and horse-tail. Based on the proportion of the released oligosaccharides, the frequency of celllobiosyl unit was estimated less than 2% in barley β-1,3:1,4-glucan. In this study, based on sugar content, C5 fraction obtained by digestion with *A. niger* endo-β-1,4-glucanase belonging to GH12 was less than 1.5% of total sugar released from barley β-1,3:1,4-glucan, confirming that the celllobiosyl units exist as the minor structure in barley β-1,3:1,4-glucan.
Together with celllobiosyl unit and long stretch of \(\beta-1,4 \)-glucosidic linkage, continuous \(\beta-1,3 \)-glucosidic linkages have also been presumed in maize \(\beta-1,3;1,4 \)-glucan. However, we could not detect any hydrolysis of barley \(\beta-1,3;1,4 \)-glucan by barley \(\beta \)-glucanases belonging to GH17, rGI, and rGII. The fact that laminaritriose is the smallest substrate for GII suggests that barley \(\beta \)-glucan does not have three continuous \(\beta-1,3 \)-glucosyl residues. Hence, the hydrolysis of \(\beta-1,3;1,4 \)-glucan by endogenous GI and GII does not occur.

Fig. 4. Structural characterization of C5-b oligosaccharide by MALDI-CID. Cellopentaose (A), laminaripentaose (B), and C5-b oligosaccharide (C) were per-methylated and analyzed by MALDI-CID.

Notes: The signals used for characterization were boxed numbered from I to VIII. Glucosidic and cross-ring fragments are identified according to the nomenclature of Domon and Costello.
not likely occur in barley. On the other hand, we cannot exclude the possibility that barley β-1,3:1,4-glucan has two continuous β-1,3-glucosyl residues that can be hydrolyzed by distinct endo-β-1,3-glucanases secreted by fungi and bacteria.

In the analysis of 3-D structure of PcLam16A,20,21 two Trp residues have been shown to be involved in the specific recognition of β-1,3-glucosidic linkage between the subsites −1 and −2. In the enzyme, the substrate-binding cleft has a narrow and straight canyon between the subsites −1 and −5 and Glc) were used in β-1,3:1,4-glucan and β-1,3-galactanase (EC 3.2.1.181),39 xyloglucan endo-transglycosylase/hydrolase,40,41 and porphyrinase (no EC entry).42 On the basis of phylogenetic relationships, it has been proposed that an ancestral enzyme had endo-β-1,3(4)-glucanase (laminarinase) activity.43,44 PcLam16A utilizes partially different subsites for β-1,3:1,4-glucan and β-1,3:1,6-glucan. Although the precise substrate specificity of the ancestral enzyme cannot be known, it is conceivable that the Trichoderma enzyme has adapted to cellobiosyl units as well as cellotriosyl and cellotetraosyl units in β-1,3:1,4-glucan keeping high activity toward β-1,3:1,6-glucan. The further study on 3-D structure of the Trichoderma enzyme would give an insight into the adaptation mechanism.

Author contribution

Takao Kuge, Kazufumi Tsubaki, Paul Dupree, Yoichi Tsumuraya, and Toshihisa Kotake conceived and designed the experiments. Takao Kuge, Hiroki Nagoya, Theodora Tryfona, Tsunemi Kurokawa, Yoshihisa Yoshimi, and Naoshi Dohmae performed the experiments. Hiroki Nagoya, Yoshihisa Yoshimi, Naoshi Dohmae, Theodora Tryfona, and Toshihisa Kotake analyzed data. Takao Kuge and Kazufumi Tsubaki contributed reagents/materials/analysis tools. Theodora Tryfona, Paul Dupree, Yoichi Tsumuraya, and Toshihisa Kotake wrote the paper.

Supplemental material

The supplemental material for this study is available at http://dx.doi.org/10.1080/09168451.2015.1046365.

Disclosure statement

No potential conflict of interest was reported by the authors.

Funding

This work was supported in part by a grant-in-aid for Scientific Research to T. Kotake [Grant-in-Aid for Scientific Research no. 25514001] from Japan Society of the Promotion of Science; Y. Tsumuraya and T. Kotake [Grant-in-Aid for Scientific Research no. 24114006] from the Ministry of Education, Culture, Sports, Science, and Technology of Japan. Supports were also provided by BBSRC Sustainable Bioenergy Centre: Cell wall sugars program to P. Dupree [grant number BB/G016240/1].

ORCID

Toshihisa Kotake http://orcid.org/0000-0002-1110-5006

References

[1] Fincher GB. Molecular and cellular biology associated with endosperm mobilization in germinating cereal grains. Annu. Rev. Plant Physiol. Plant Mol. Biol. 1989;40:305–346.
[2] Xue X, Fry SC. Evolution of mixed-linkage (1→3, 1→4)-β-D-glucan and xyloglucan in Equisetum (horsetails) and other monilophytes. Ann. Bot. 2012;109:873–886.
[3] Fry SC, Nesselrode BH, Miller JG, Mewburn BR. Mixed-linkage (1→3, 1→4)-β-D-glucan 4-glucanohydrolase from Equisetum horsetails) and B. subtilis. Plant Physiol. 1984;75:745–752.
[4] Kato Y, Nevins DJ. Enzymic dissociation of Zea shoot cell wall polysaccharides: II. Dissociation of (1→3), (1→4)-β-D-glucan by purified (1→3),(1→4)-β-D-glucan 4-glucanohydrolase from Bacillus subtilis. Plant Physiol. 1984;75:745–752.
[5] Simmons TJ, Uhrin D, Gregson T, Murray L, Sadler IH, Fry SC. An unexpectedly lichenase-stable hexasaccharide from...
cereal, horsetail and lichen mixed-linkage β-glucans (MLGs): implications for MLG subunit distribution. Phycology. 2013;95:322–332.

[6] Gibeaute DM, Carpita NC. Synthesis of (1→3)-α-D(1,4)-β-D-glucan in the Golgi apparatus of maize coleoptiles. Proc. Natl. Acad. Sci. 1993;90:3850–3854.

[7] Becker M, Vincent C, Reid JS. Biosynthesis of (1,3)-α-D-glucan and (1,3;1,6)-β-D-glucan in barley (Hordeum vulgare L.). Properties of the membrane-bound glucan synthases. Planta. 1995;195:331–338.

[8] Kimpara T, Aohara T, Soga K, Wakabayashi K, Horita H, Igarashi K, Samejima M, Tsumuraya Y, Kotake T. β-glucanase from lichenin and laminarin hydrolysis. FEBS J. 1997;264:254–266.

[9] Masuda F, Imaoka A. Chromatographic separation of asparagus-linked oligosaccharides labeled with an ultraviolet-absorbing compound, p-aminobenzoic acid ethyl ester. Glycoconjugate J. 1988;5:13–26.

[10] Ciucanu I, Kerek F. A simple and rapid method for the permeability of carbohydrates. Carbohydr. Res. 1984;131:209–217.

[11] Tryfona T, Liang H-C, Kotake T, Kaneko S, Marsh J, Ichinose H, Lovegrove A, Tsumuraya Y, Shewry PR, Stephens E, Dupree P. Carbohydrate structural analysis of wheat flour arabinoxylan protein. Carbohydr. Res. 2010;345:2648–2656.

[12] Hrmova M, Garrett TP, Fincher GB. Polysaccharide hydrolases in germinated barley and Arabidopsis. Primary structure of (1→3;1,4)-β-D-glucanases. Implications in plant-pathogen interactions. J. Biol. Chem. 1995;270:14556–14563.

[13] Takagi E, Hatada Y, Akita M, Ohta Y, Yokoi G, Miyazaki T, Nishikawa A, Tonozuka T. Crystal structure of the catalytic domain of a GH16 β-agarase from a deep-sea bacterium, Microbulbifer thermotolerans JAM-B94. Biosci. Biotechnol. Biochem. 2010;74:61–68.

[14] Hehemann JH, Correc G, Barbeyron T, Helbert W, Czjzek M, Brumer H III. Structural evidence for the evolution of carbohydrate gel electrophoresis: a method to study plant cell wall polysaccharides and polysaccharide hydrolys. Anal. Biochem. 2002;300:53–68.

[15] Spina E, Sturiale L, Romeo D, Impallomeni G, Garozzo D, Wai-delich D, Glueckmann M. New fragmentation mechanisms in matrix-assisted laser desorption/ionization time-of-flight/time-of-flight tandem mass spectrometry of carbohydrates. Rapid Commun. Mass Spectrom. 2004;18:392–398.

[16] Hrmova M, Garrett TP, Fincher GB. Subsite affinities and disposition of catalytic amino acids in the substrate-binding region of barley 1,3-β-glucanases. Implications in plant-pathogen interactions. J. Biol. Chem. 1995;270:14556–14563.

[17] Hrmova M, Garrett TP, Fincher GB. Subsite affinities and disposition of catalytic amino acids in the substrate-binding region of barley 1,3-β-glucanases. Implications in plant-pathogen interactions. J. Biol. Chem. 1995;270:14556–14563.

[18] Hrmova M, Banik M, Harvey AJ, Garrett TP, Varghese JN, Høj PB, Fincher GB. Polysaccharide hydrolases in germinated barley and Arabidopsis. Primary structure of (1→3;1,4)-β-D-glucanases. Implications in plant-pathogen interactions. J. Biol. Chem. 1995;270:14556–14563.

[19] Hrmova M, Banik M, Harvey AJ, Garrett TP, Varghese JN, Høj PB, Fincher GB. Polysaccharide hydrolases in germinated barley and Arabidopsis. Primary structure of (1→3;1,4)-β-D-glucanases. Implications in plant-pathogen interactions. J. Biol. Chem. 1995;270:14556–14563.