Habitat, diversity, and abundance of waterbirds in lantebung mangrove ecotourism area, Makassar city

A Purify¹, N Nurdin², 4 R I Maulany³, A Achmad³ and M Lanuru²

¹Environmental Management Study Program, Graduate School, Hasanuddin University, Makassar, Indonesia
²Faculty of Marine Science and Fisheries, Hasanuddin University, Makassar, Indonesia
³Faculty of Forestry, Universitas Hasanuddin, Makassar, Indonesia
⁴Marine Coast and Small Islands Research and Development Center, Hasanuddin University, Makassar, Indonesia

Email: aaurapurify@pasca.unhas.ac.id

Abstract. Waterbirds are a significant part of mangrove forests due to their ecological role in the ecosystem. However, land conversion, human disturbance, pollution, and other anthropogenic factors are continued to give pressure to the existence of waterbirds, especially in the urban mangrove area. Therefore, this study aims to identify waterbirds habitat types and analyze its abundance and diversity at Lantebung Mangrove Ecotourism Area, Makassar City. Bird survey was done during three days, morning and afternoon, by walking along the peripheral of fish ponds and mudflats behind mangrove forest using binocular to identify waterbirds habitat types, kinds of species, and to count total individuals. The result shows there are four types of waterbirds habitat at Lantebung Mangrove Ecotourism Area, which are mangrove, mudflats, inactive fish ponds, and bushes. There are 18 species identified, with medium diversity (Shanon Weiner Diversity Index of 1.029), medium richness (Margalef Species Richness Index of 2.918), and stable species evenness (Hill Species Evenness Index of 0.356). Species with the highest abundance is Chadrius .sp with Relative Abundance Index 27%.

1. Introduction

Waterbird is one of the animals that inhabit the coastal wetlands. This animal is a necessary component for the mangrove ecosystem because of its role in mangrove forest dynamics [1]. Waterbirds can oxidize soil while eating and release nutrients through its feces and dung [2]. Waterbirds keep the integrity of the ecosystem as a predator for several pests, as an effective indicator of environment condition, and as disease transmission surveillance [3]. Due to its ability to travel to different areas, waterbirds can move nutrients from one place to another, so that it will benefit infertile lands.

However, nowadays, the existence of mangrove wetlands as the habitat for waterbirds is threatened by the growth of the human population and their activities. For instance, approximately half of natural coastal wetlands in the Makassar region have been lost, with 130.78 ha of it converted to built-up areas between 2000 and 2010, when the city population increased from 1.1 million to 1.3 million.

Due to continuously degraded and converted coastal wetlands, especially in urban areas, waterbirds often coexist at human-occupied wetlands. Nevertheless, as their habitat is so close to the area of
human activities, the waterbirds population is very vulnerable because of hunting activities for hobbies and souvenir making and the paradigm of the society that regards waterbirds as a nuisance animal. Therefore, the population of waterbirds, as well as their habitat, need to be conserved in order to maintain the function and productivity of coastal wetlands, especially mangrove ecosystems.

On the north coast of Makassar, in Lantebung Village, there is a mangrove wetland ecosystem, which is the remnant of the green belt that was designated as a conservation and protection area based on the Makassar Regional Spatial Plan [4]. Lantebung is well-known as an important habitat for waterbirds. Lantebung was one of the locations for observing the abundance of waterbirds in Indonesia, with the number of waterbirds observed from 1983 to 1992, ranging from 1,001 to 5,000 [5].

However, the population of humans and their activities in its surroundings (including Bira and Untia villages) continue to affect the area. Today, this area is close to residential, industrial, and warehousing areas, apart from the presence of waterbirds that are still actively nesting and foraging. Therefore, this study aims to identify the types of waterbird habitats and analyze the variety and diversity of waterbirds in the Lantebung, Mangrove Ecotourism Area.

2. Methods
The type of waterbird habitat in the Lantebung Mangrove Ecotourism Area was determined by direct observation of waterbird presence in the study sites. The observation was conducted by recording the characteristics of habitat, types of waterbird activities, and taking pictures of each habitat type, which was observed. The observation of waterbirds at the study site was carried out using land survey methods [6], by walking along the edges of ponds and mudflats behind mangroves, while using binoculars to see the location where the waterbirds existed. After located, they were then identified by species and counted by individuals. The observation at the study site was held for three days at 6.00 - 10.00 am and from 3.00-5.00 pm. The instruments that were used were: Sakura binoculars with a radius of 1000 m, counter, Android phones with Avenza maps application to get GPS points and Burungnesia application, 'The Birds of Sulawesi' book to identify bird species, SLR cameras, and stationery.

The identification of bird species and its migration status was based on the field guide book ‘the birds of Sulawesi’ [7]. The determination of scientific names and species names refers, while the status of species was based on IUCN (International Union for Conservation Nature) criteria on the IUCN Red List of Threatened Species official website (www.iucnredlist.org) and the Minister of Environment Regulation 2018 about protected species.

2.1. Diversity of waterbirds species analysis
Species density was determined by using observational data on the type and the number of species along the observation route in the morning and afternoon for three days. Species density is the average number of individuals per area (ha), which is calculated using the Line transect method with animal distance is known [8]. The line transect equation is as follows.

\[
\hat{D} = n \sqrt{\frac{\left(2n/\pi \sum x_i^2\right)}{(2L)}}
\]

Where
- \(\hat{D} \) = Estimation of population density
- \(n \) = The number of detected animals
- \(x_i \) = perpendicular distance of animal-i which was detected from the transect line
- \(L \) = Length of transect

\(x_i \) value (perpendicular distance) derives from:

\[
x = Z \sin \theta
\]
Where
\[Z = \text{Detection distance} \]
\[\Theta = \text{Detection angle} \]

In addition, the relative frequency value was also calculated, which is the value of the frequency of occurrence of a species for three days observation, divided by the number of all waterbirds appearance frequencies multiplied by 100%. For example, in 3 days observation of a species, it only appeared in 1 day, so that the relative frequency is \(\frac{1}{3} \times 100\% = 33.34\% \).

\[R = \frac{S - 1}{\ln (NO)} \]

The species diversity index was calculated using the equation as follows.

\[R = \text{Diversity Index} \]
\[S = \text{the total of a species number in a habitat} \]
\[n = \text{the total of an individual number in a habitat} \]

with the criteria :
\[R < 2.5 \quad = \text{low diversity level} \]
\[2.5 > R > 4 \quad = \text{moderate diversity level} \]
\[R > 4 \quad = \text{high diversity level} \]

The relative abundance of each species is calculated by using equation as follows.

\[\frac{\text{The number of individuals of one species (ni)}}{\text{Total of individual that were found(N)}} \times 100\% \]
Abundance is regarded high if the value is above 20%, moderate if the value is between 15% -20%, and low if the value is below 15%. A diversity index is calculated by using the equation as follows.

\[H = - \sum p_i \ln p_i \]

\[H' = - \sum \{(n_i/n)\ln(n_i/n)\} \]

\[H' < 1 \] is low diversity level
\[1 < H' < 3 \] is moderate diversity level
\[H' > 3 \] is high diversity level

while evenness index is calculated by using the equation as follows:

\[E = \frac{1}{Si} \frac{e^{Hr}}{e^{Hr}} \]

\[E < 0.2 \] means the distribution is not stable, but if \(0.2 \leq E \leq 1 \), it means the distribution is stable.

3. Results and Discussion

There were 18 species of waterbirds at the study sites (the list of waterbirds species can be seen in Appendix IV). The types of waterbirds in the vicinity of the Lantebung Ecotourism Area are shorebirds and wading birds. Table 1 provides information about the diversity of waterbirds in the Lantebung Mangrove Ecotourism Area along with their conservation status and original habitat status. There were eight species of migrant or 45% of the total and ten species of resident or 55% of the total. The status was determined based on the field guidebook 'The Birds of Sulawesi.'

The most protected species by the government based on the Minister of Environment and Forestry Regulation in 2018, are Blekok Cina (Ardeola bacchu s), Gagang Bayang Timur (Himantopus leucocephalus), Gajahan Timur (Numenius madagascarensis), dan Kowak Malam merah (Nyticorax Caledonicus). If these species are compared with the IUCN status, several species, including Least Concern (the population has not declined). However, there are several species that have not been registered (unlisted) at the IUCN, but they are included in endangered statuses, such as the Gajahan Timur and the Kowak Malam Merah. Among 18 observed species, none were listed on the CITES Appendix (Convention on International Trade in Endangered Flora and Fauna Species).

Table 1 shows the species density, which was calculated according to equation, with the area of observation was 20.14 ha. The highest species density and abundance were showed by Cerek shorebirds (Chadrius sp.). The density of Chadrius sp. was 74.95 individuals/m² while the Relative Abundance Index was 27%. The most frequent occurrence species were the species with the relative frequency value of 0.079, namely Cerek, Cerek Kalung Kecil, Gagang Bayang Timur, Kedidi, Kuntul Kecil, Kuntul Perak, dan Trinil Kaki Hijau.

Overall, the diversity index of the waterbirds community in Lantebung from Shannon Wiener (H’) was 1.029029 (moderately diverse). The distribution of species was relatively stable with a value of Hill’s Evenness Index was 0.35602 while the value of the Margalef Diversity Index was 2.918323, so that the species diversity was classified as moderate.
Table 1. The diversity, conservation status, and origin of waterbirds in Lantebung Ecotourism Area.

Local Name	Scientific Name	The average number of individuals per day	Density (indv/ha)	Relative Frequency	Relative Abundance Index (%)	Conservation Status	Origin Status
Bambanga n Merah	*Ixobrychus cinnamomeus*	2	0.035	0.026	1	Protected	Least Concern
Blekok Cina	*Ardeolabacchus*	17	1.34	0.026	5	Least Concern	Least Concern
Blekok Sawah	*Ardeolaspesiosa*	17	0.86	0.053	5	-	Unlisted
Bondol Rawa	*Lonchuraatrica pila*	2	0.61	0.053	1	-	Least Concern
Cangak Merah	*Ardeapupuarea*	4	0.10	0.053	1	-	Least Concern
Cerek	*Chadrius sp.*	41	6.26	0.079	27	-	migratory
Cerek Kalung Kecil	*Chadriusdubius*	37	4.89	0.079	11	-	Unlisted
Gagang Bayang Timur	*Himantopus leucocephalus*	26	4.31	0.079	8	Protected	migratory / resident
Gajahan Timur	*Numenius madagascarensis*	1	1.73	0.026	0	Protected	Unlisted
Kedidi Kokokan Laut	*Calidris sp.*	40	9.89	0.079	12	-	migratory
Kowak malam merah	*Butoridesstriatus*	1	0.08	0.026	0	-	resident
Kuntul karang	*Egretta sacra*	2	0.05	0.053	0	-	resident
Kuntul Kecil	*Egrettagarzetta*	38	4.55	0.079	11	-	resident / migratory
Kuntul Perak	*Ardea intermedia*	36	2.93	0.079	11	-	resident
Mandarbe sar	*Porphyrio indicus*	2	0.01	0.026	1	-	resident
Mandar padikunin g	*Gallirallus philipensis*	1	0.04	0.053	0	-	resident
Trinil kaki hijau	*Tringanebularia*	18	3.05	0.079	5	-	migratory
TOTAL		**289**					

From 18 species of waterbirds observed in Lantebung Ecotourism Area, there were several species observed in the morning, evening, and both times. Figure 1 shows the types of species and the average number of waterbirds in the morning.
Figure 1. Types and the average number of waterbirds observed in the morning.

Figure 1 shows the average number of waterbirds observed in the morning. The total number observed was 238. The most dominant species in the morning was a shorebird type, *Chadrius sp.* (Cerek), with the average number of individuals of 26 or 26% of the total. The species of birds with the high abundance in the morning was *Egretta garzetta* (Kuntul Kecil), with an average number of individuals of 35 or 14% from the total. The least abundance type was *Butorides striatus* (Kokokan Laut), with only around one animal per day appeared in the morning.

Figure 2 gives information about the types and the average number of waterbirds observed in the afternoon. The average number of waterbirds observed in the afternoon for three days was 130. Figure 2 shows that the most dominant species in the afternoon was *Ardea intermedia* (Kuntul Perak), with an average number of individuals, was 55 or 42.3% of the total. The highest number of shorebirds in the afternoon was *Calidris sp.* (Kedidi), with the average number of individuals of 21 or 16.2% from the total. The least abundance species in the afternoon were *Numenius madagascariensis* (Gajahan Timur) and *Gallirallus phillipensis* (Mandar Padi Kuning), with only around one animal per day appeared in the morning.

The average number of individuals observed in the morning was higher than in the afternoon. Their average number of individuals in the morning was 238, and in the afternoon, it was 130. In the morning and evening, there were 14 species of waterbirds at the study site, but not all of the observed individuals were the same species. *Ixobrychus cinnamomeus* (Bambangan Merah), *Ardea spesiosa* (Blekok Sawah), *Lonchura atricapilla* (Bondol Rawa), and *Butorides striatus* (Kokokan Laut) only appeared in the morning, while *Nycticorax caledonicus* (Kowak Malam Merah), *Egretta sacra* (Kuntul
Kerang), *Numenius madagascarensis* (Gajahan Timur), and *Porphyrio indicus* (Mandar Besar) were the species that were observed only in the afternoon. Other types were: *Ardeola bacchus* (Blekok Cina), *Ardea purpurea* (Cangak Merah), *Chadrius sp.* (Cerek), *Chadrius dubius* (Cerek Kalung Kecil), *Himantopus leucocephalus* (Gagang Bayam Timur), *Calidris sp.* (Kedidi), *Egretta garzetta* (Kuntul Kecil), *Ardea intermedia* (Kuntul Perak), *Gallirallus philippensis* (Mandar Padi Kuning), and *Tringa nebularia* (Trinil Kaki Hijau) were observed in the morning and evening.

3.1. Types of waterbirds based on its habitat

The types of species that were observed in each habitat at the time of observation can be seen in Table 2.

Habitat	Description	Type	Scientific Name	Observation Time
Mudflats area	The empty land behind mangroves is the feeding habitat, which is influenced by ocean tide that brings foods for the waterbirds, such as gastropoda and sea worms.	Blekok Cina	Ardeola bacchus	Morning Afternoon
		Cerek	Chadrius sp.	-
		Gajahan Timur	Numenius madagascarensis	√
		Kowak malam merah	Nyticorax caledonicus	-
		Kuntul karang	Eretta sacra	√
		Kuntul kecil	Eretta garzetta	√
		Kuntul perak	Ardea intermedia	√
		Mandar besar	Gallirallus philippensis	√
Inactive pond	Ponds that are not being used and are submerged in shallow water. There is a mud mound in the middle, which is used by small-sized waterbirds as feeding habitats.	Blekok Cina	Ardeola bacchus	√
		Blekok Sawah	Ardeola spesiosa	-
		Cerek	Chadrius sp.	√
		Cerek Kalung Kecil	Chadrius dubius	√
		Gagang Bayam Timur	Himantopus leucocephalus	√
		Kedidi	Calidris sp.	√
		Kuntul Kecil	Eretta garzetta	√
		Trinil kaki hijau	Tringa nebularia	√
Mangrove tree	Mangrove, *Avicennia.spis* used forresting	Kuntul Kecil	Egretta garzetta	-
		Bondol Rawa	Lonchura atricapilla	√
		Kuntul Perak	Ardea intermedia	-
Shrub	Shrubs beside the edge of mudflats dan ponds that are usually occupied by waterbirds solitary. It is used as a grooming and resting area	Cangak Merah	Ardea purpurea	√
		Kokokan Laut	Butorides striatus	√
		Bambangan Merah	Ixobrychus cinnamomeus	√
		Mandar besar	Porphyrio indicus	-
The habitats that were occupied by most of waterbirds species were a mudflat and ponds with 9 and 8 species, respectively. The habitats with the least number of waterbirds were a mangrove tree and a bush with 2 and 5 species, respectively. The type of waterbirds found in almost all types of habitats was Kuntul kecil, which was observed in the wet mud area, ponds, and trees. The species of water birds that were only found in the wet mud area were Gajahan Timur, Kowak Malam Merah, Kuntul Karang, and Mandar Padi Kuning. The only species that were observed in the ponds area were the Cerek Kalung Kecil, Gagang Bayam Timur, Kedidi, and Trinil Hijau. The only species found in mangrove tree habitat was Bondol Rawa, while the only species found in shrub habitat were Cangak Merah, Kokokan Laut, and Bambangan Merah.

4. Discussion
In Lantebung Mangrove Ecotourism Area and its surroundings, some habitats were used for nesting and foraging as the two main activities of waterbirds. The nesting habitat was mostly mangrove trees, which act as a shelter from disturbances of human and predators. Foraging activities usually are done at midday for diurnal water birds (which are active at noon) and at night for nocturnal water birds (which are active at night). In this region, foraging activities locate near the ponds or shallow waters where the food sources exist. Diurnal foraging is a normal activity for waterbirds outside its breeding period, and nocturnal foraging only occurs when their daily energy requirements are not enough at midday [9].

The waterbird habitats observed at the study site were a stretch of mudflat, ponds, shrubs, and mangroves. From all of these habitats, the abundance and variety of waterbirds species are mostly found in the mudflats and ponds. There were nine species in the mudflat (the average number of individuals per day was 64), and eight species in inactive ponds (the average number of individuals per day was 218). These results were caused by the number of food sources that were rich in macrozoobenthos were greater than other habitats. In this kind of habitat, there were four classes of macrozoobenthos. Moreover, the opportunity to find food in mudflats region was greater than other habitats. Besides, this habitat could also be used for resting. Waterbirds usually do several activities such as feeding (41.6%), resting (20.9%), and grooming (18.8%) [10].

The habitat of waterbirds in the inactive pond at the study sites was also in the form of mudflats. The other ponds that were drained or converted into salt ponds could not support the water birds foraging activity, due to the unavailability or inaccessibility of food source (macrozoobenthos, sea worms, and small fish). The existence of food and its accessibility are influenced by water level and the quality of habitat, thus affect the abundance and diversity of waterbirds, especially in anthropogenically disturbed ecosystems, where availability of habitat is constantly changing [11].

In addition to the habitat for foraging activities, at the study site, there was also a mangrove habitat where its perimeter part was used for roosting, and the core was used for nesting. The aggregation pattern between nesting and feeding sites is very dominant in the Ardeidae family, water birds that live in urban wetlands with mangrove vegetation [12]. Waterbirds species from this family were dominant in the Lantebung Mangrove Ecotourism Area. Most species of waterbirds choose patches with open landscape for foraging areas and a little vegetation cover for the needs of sight and flight. Patches provide protection from predators as well as human disturbances. This habitat feature determines the distribution and presence of waterbirds, especially Ardeidae species, in the urbanized landscape.

The shrubs in the study site also provide sight and flight needs. This is more obvious in solitary waterbirds that prefer to choose not extensive patches because they require a combination of specific habitat variables. Interspecific competition in foraging habitats also regulates aerial bird communities, as well as species that are more aggressive than others [13]. This can encourage solitary or weaker species to use shrubs for protection.

5. Conclusion
There were 18 species of waterbirds in Lantebung, with a Shannon Wiener Diversity Index (H') was 1.029029 (moderately diverse). The distribution of species was relatively stable with Hill’s Evenness Index was 0.35602 while the Margalef species richness Index was 2.918323, so that the diversity level
of species was classified as moderate. \textit{Cadrius} sp. (Cerek) had the largest species abundance index, which was 27%.

Acknowledgments
This study was supported by the Indonesian Ministry of Research, Technology, and Higher Education (Kemenristek Dikti) through the Magister Thesis Research (Penelitian Tesis Magister) grant. This study also supported by ESRI with ArcGIS 10.5 software's license.

References
[1] Mohd-Azlan J, Noske R and Lawes M 2015 The role of habitat heterogeneity in structuring mangrove bird assemblages \textit{Diversity} \textbf{7} 118–36
[2] Navedo J G, Hahn S, Parejo M, Abad-Gómez J M, Gutiérrez J S, Villegas A, Sánchez-Guzmán J M and Masero J A 2015 Unravelling trophic subsidies of agroecosystems for biodiversity conservation: Food consumption and nutrient recycling by waterbirds in Mediterranean rice fields \textit{Sci. Total Environ.} \textbf{511} 288–97
[3] Green A J and Elmberg J 2014 Ecosystem services provided by waterbirds \textit{Biol. Rev.} \textbf{89} 105–22
[4] [BPPD] Badan Perencanaan Pembangunan Daerah Kota Makassar 2015 \textit{Peraturan Daerah Kota Makassar Nomor 4 Tahun 2015 tentang Rencana Tata Ruang Wilayah Kota Makassar Tahun 2015-2034.}
[5] Tomascik 1997 \textit{The Ecology of the Indonesian Sea part 2}. (Singapore: Peripilus Edition)
[6] Howes J, Bakewell D and Noor Y R 2003 Panduan Studi Burung Pantai. Wetland
[7] Holmes D, Phillipps K, Mulyani Y A and Kartikasari S N 1999 \textit{Burung-burung di Sulawesi} (Pusat Penelitian dan Pengembangan (Puslitbang) Biologi)
[8] Sutherland W J 1996 \textit{Ecological Census Techniques} (Cambridge: Cambridge University Press)
[9] Santiago-Quesada F, Estrella S M, Sánchez-Guzmán J M and Masero J A 2014 Why water birds forage at night: a test using black-tailed godwits Limosa limosa during migratory periods \textit{J. avian Biol.} \textbf{45} 406–9
[10] Putra C A, Perwitasari-Farajallah D and Mulyani Y A 2017 Habitat Use of Migratory Shorebirds on the Coastline of Deli Serdang Regency, North Sumatra Province \textit{HAYATI J. Biosci.} \textbf{24} 16–21
[11] Beerens J M, Noonburg E G and Gawlik D E 2015 Linking dynamic habitat selection with wading bird foraging distributions across resource gradients \textit{PLoS One} \textbf{10} e0128182
[12] Zhang M, Hong Y-M, Castle J G, Kou F-S, Zhang Q and Fan H-M 2018 Habitat Features Rather Than Competition Explain the Distribution and Co-occurrence of Ardeidae in a Highly Urbanized Landscape \textit{Waterbirds} \textbf{41} 46–56
[13] Kath J, Maron M and Dunn P K 2009 Interspecific competition and small bird diversity in an urbanizing landscape \textit{Landsc. Urban Plan.} \textbf{92} 72–9