Advance of Nitrogen Removal in Constructed Wetland

Anbin Xie¹, Hao Chen² and Shaohong You³*
¹Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Area, Guilin University of Technology, Guilin 541004, China, crabs138@qq.com
²China Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin 541004, China, rosechen1994@sina.com
³College of Environmental Science and Engineering, Guilin University of Technology, Guilin 541004, China, 646761963@qq.com
*Corresponding author

Abstract. Based on current literature, the article reviewed the mechanism and route of nitrogen removal, discussed the microbial species associated with nitrogen metabolism in constructed wetlands. Key unresolved issues were concluded for classical and novel nitrogen removal routes.

Keywords: Nitrogen removal; Constructed wetlands; Route

1. Introduction

In the last ten years, Constructed wetlands have been widely used due to low cost, simple operation and maintenance [1, 2]. Constructed wetlands are an artificial ecosystem consisting of plants, substrate and microbes [3]. The substrate can provide the necessary nutrients for the microorganisms and the larger attachment area. The plant has a certain effect on the removal of total nitrogen and suspended matter. Furthermore, Microbes often play a critical role in term of pollutant removal, especially nitrogen-containing contaminants. Because of excessive emissions of nitrogen aggravates eutrophication of rivers [4, 5].

2. The Form of Nitrogen in Constructed Wetland

Nitrogen is one of the major contaminants causing eutrophication, affecting the level of dissolved oxygen in the receiving water and may be toxic to aquatic organisms. There are organic and inorganic forms of nitrogen in the wastewater. Organic nitrogen can be represented by amino acids, urea, uric acid and purines and pyrimidine. The inorganic nitrogen includes ammonium (NH₄⁺), nitrite (NO₂⁻), nitrate (NO₃⁻), nitrous oxide (N₂O) and dissolved element nitrogen or nitrogen (N₂) [6].

3. Related Processes of Nitrogen Metabolism and Related Bacteria

In constructed wetland, the transformation and removal of nitrogen are accomplished by biological (ammonification, nitrification, denitrification, plant uptake, biomass assimilation, dissimilatory nitrate reduction), and physicochemical routes (e.g. ammonia volatilization, and adsorption) [7, 8]. Ammonification, nitrification and denitrification might constitute a nitrogen cycle in constructed wetland (classical route of nitrogen removal).
3.1. Ammonification
Ammonification is the first step of nitrogen transformation in constructed wetlands when influent is rich with organic nitrogen. The main reaction is as follows:
Amino acids \rightarrow Imino acids \rightarrow keto acid

3.2. Nitrification
The second step is Nitrification. Nitrification is carried out by ammonia-oxidizing archaea (AOA), ammonia-oxidizing bacteria (AOB) and nitrite-oxidizing bacteria (NOB) that are capable of transforming ammonia directly to nitrite and nitrate. The main reaction is as follows:

$$\text{NH}_4^+ + 1.5\text{O}_2 \rightarrow \text{H}^+ + \text{H}_2\text{O} + \text{NO}_2^-$$ (1)

$$\text{NO}_2^- + 0.5\text{O}_2 \rightarrow \text{NO}_3^-$$ (2)

$$6\text{CO}_2 + 6\text{H}_2\text{O} \rightarrow \text{C}_6\text{H}_{12}\text{O}_6 + 6\text{O}_2$$ (3)

Involving in the reaction of the relevant chemolithotrophic bacteria contains Nitrosomonas, Nitrosospira, Nitrosococcus and Nitrosolobus et al., belonging to AOB, and Nitrobacter, Nitrococcus, and Nitrospira et al., belonging to NOB. In addition, heterotrophic nitrifiers (such as Actinomycetes, Arthrobacterglobiformis, Aerobacteraerogenes, Algae, Bacillus, Fungi, Mycobacterium phlei, Streptomyces griseus, Thiosphaera, and Pseudomonas) also contribute to nitrification [9]. Nevertheless, the nitrification rate is lower than autotrophic nitrifiers [10].

3.3. Denitrification
Denitrification consisting of reactions for transformation of nitrate or nitrite into gaseous forms by heterotrophic denitrification bacteria (HDB) and autotrophic denitrification bacteria (ADB) is an critical link in the removal of nitrogen in constructed wetlands [11, 12]. The main reaction is as follows:

$$\text{NO}_3^- + 0.833\text{CH}_3\text{OH} \rightarrow 0.5\text{N}_2 + 0.833\text{CO}_2 + 1.167\text{H}_2\text{O} + \text{OH}^-$$ (4)

$$\text{NO}_3^- + 1.08\text{CH}_3\text{OH} + 0.24\text{H}_2\text{CO}_3 \rightarrow 0.06\text{C}_6\text{H}_7\text{NO}_2 + 0.47\text{N}_2 + 1.68\text{H}_2\text{O} + \text{HCO}_3^-$$ (5)

Involving in the reaction of the relevant heterotrophic denitrification bacteria contains Denitratisoma, Thauera, Comamonas, Bacillus, Aerobacter and Paracoccus et al. [13, 14]. Others (such as Thiobacillus and Sulfurimonas et al.) were classified in ADB and living under strict anaerobic conditions [15].

Furthermore, the anammox bacteria, in the presence of planctomycete bacteria group under anaerobic conditions, capable of autotrophic ammonium oxidation with nitrite as the terminal electron acceptor were also proved to exist in constructed wetlands [16].

The knowledge particularly concerning nitrogen transforming bacteria in constructed wetlands had exhibited on some studies [17, 18]. Tietz et al. [19] evaluated the community of ammonia-oxidizing bacteria (AOB) in three VF beds (18 m², 0.50 m depth) treating municipal sewage after 2.5 years of operation and despite nitrification was stable, little AOB activity was identified. During the winter, nitrification decreased, however not affecting the spatial distribution of AOB, being Nitrosomonaseuropaea, Nitrosococcosmobilis and Nitrosospira the dominant AOB. Zhi and Ji [20] identified functional genes involved in nitrification and denitrification in a tidal flow CW showing nitrification activity performed by AOB and Anammox bacteria, as well as denitrification.

Fig. 1 shows a nitrogen cycle in constructed wetland.
4. Prospects
Overall, traditional nitrification-denitrification route widely distributed and play a crucial role for the removal of nitrogenin constructed wetlands. However, the nitrogen removal is limited due to the lack of organic carbon. Despite Partial nitrification-denitrification, an ammoxeliminated the necessity of organic carbon, identifying optimal environmental, operational parameters and microbes associated with nitrogen metabolism is still concerned, particularly in HF systems. This is of great significance to further optimize the design of constructed wetlands.

5. Acknowledgements
This work was financially supported by the Guangxi Scientific Experiment Center of Mining, Metallurgy and Environment (KH2012ZD004) and the project of high level innovation team and outstanding scholar in Guangxi colleges and universities (002401013001).

6. References
[1] Vymazal J. Horizontal sub-surface flow and hybrid constructed wetlands systems for wastewater treatment [J]. Ecological Engineering, 2005, 25(5): 478-490.
[2] Vymazal J. Constructed wetlands for wastewater treatment [J]. Ecological Engineering, 2005, 25(5): 475-477.
[3] Pelissari C, Avila C, Trein C M, et al. Nitrogen transforming bacteria within a full-scale partially saturated vertical subsurface flow constructed wetland treating urban wastewater [J]. Science of the Total Environment, 2017, 574: 390-399.
[4] Chen Y, Wen Y, Cheng J, et al. Effects of dissolved oxygen on extracellular enzymes activities and transformation of carbon sources from plant biomass: implications for denitrification in constructed wetlands [J]. Bioresource Technology, 2011, 102(3): 2433-40.
[5] Song X, Qin L, Yan D. Nutrient Removal by Hybrid Subsurface Flow Constructed Wetlands for High Concentration Ammonia Nitrogen Wastewater [J]. Procedia Environmental Sciences, 2010, 2(1): 1461-1468.
[6] Saeed TS, Sun G Z. A review on nitrogen and organics removal mechanisms in subsurface flow constructed wetlands: Dependency on environmental parameters, operating conditions and supporting media [J]. Journal of Environmental Management, 2012, 112: 429-448.
[7] Xu M, Liu W J, Li C, et al. Evaluation of the treatment performance and microbial communities of a combined constructed wetland used to treat industrial park wastewater [J]. Environmental Science and Pollution Research, 2016, 23(11): 10990-11001.
[8] He G, Yi F, Zhou S, et al. Microbial activity and community structure in two terrace-type wetlands constructed for the treatment of domestic wastewater [J]. Ecological Engineering, 2014, 67: 198-205.
[9] Vymazal J. Removal of nutrients in various types of constructed wetlands [J]. Science of the Total Environment, 2007, 380(1-3): 48-65.

[10] Vymazal J. Removal of enteric bacteria in constructed treatment wetlands with emergent macrophytes: A review [J]. Journal of Environmental Science and Health Part a-Toxic/Hazardous Substances & Environmental Engineering, 2005, 40(6-7): 1355-1367.

[11] Mao Y, Yu X, Tong Z. Characterization of Thauera-dominated hydrogen-oxidizing autotrophic denitrifying microbial communities by using high-throughput sequencing [J]. Bioresource Technology, 2012, 128C (1): 703-710.

[12] Zhang T, Ye L, Tong A H Y, et al. Ammonia-oxidizing archaea and ammonia-oxidizing bacteria in six full-scale wastewater treatment bioreactors[J]. Applied Microbiology and Biotechnology, 2011, 91(4): 1215-25.

[13] Vymazal J, Balcarova J, Dousova H. Bacterial dynamics in the sub-surface constructed wetland [J]. Water Science and Technology, 2001, 44(11-12): 207-209.

[14] Wu Y, Han R, Yang X, et al. Correlating microbial community with physicochemical indices and structures of a full-scale integrated constructed wetland system [J]. Applied Microbiology and Biotechnology, 2016, 100(15): 6917-6926.

[15] Andrade M V F, Sakamoto I K, Corbi J J, et al. Effects of hydraulic retention time, co-substrate and nitrogen source on laundry wastewater anionic surfactant degradation in fluidized bed reactors [J]. Bioresource Technology, 2017, 224: 246-254.

[16] Dong Z, Sun T. A potential new process for improving nitrogen removal in constructed wetlands—Promoting coexistence of partial-nitrification and ANAMMOX [J]. Ecological Engineering, 2007, 31(2): 69-78.

[17] Adrados B, Sanchez O, Arias C A, et al. Microbial communities from different types of natural wastewater treatment systems: vertical and horizontal flow constructed wetlands and biofilters[J]. Water Research, 2014, 55(10): 304.

[18] Mayo A W, Bigambo T. Nitrogen transformation in horizontal subsurface flow constructed wetlands I: Model development [J]. Physics & Chemistry of the Earth Parts A/b/c, 2005, 30(11-16): 658-667.

[19] Tietz A, Hornek R, Langergraber G, et al. Diversity of ammonia oxidising bacteria in a vertical flow constructed wetland[J]. Water Science & Technology A Journal of the International Association on Water Pollution Research, 2007, 56(3): 241-7.

[20] Zhi W, Ji G. Quantitative response relationships between nitrogen transformation rates and nitrogen functional genes in a tidal flow constructed wetland under C/N ratio constraints [J]. Water Research, 2014, 64(7): 32-41.