RORγt-expressing cells attenuate cardiac remodeling after myocardial infarction

Daichi Enomoto*, Kotaro Matsumoto*, Tomomi Yamashita, Arisa Kobayashi, Makiko Maeda, Hiroyuki Nakayama, Masanori Obana*, Yasushi Fujio

Laboratory of Clinical Science and Biomedicine, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka, Japan

* These authors contributed equally to this work.
* obana@phs.osaka-u.ac.jp

Abstract

Aims

Retinoic acid receptor-related orphan nuclear receptor γt (RORγt) is a transcriptional factor responsible for IL-17-producing T-cell differentiation. Although it was demonstrated that RORγt plays essential roles in the onset of autoimmune myocarditis, pathophysiological significance of RORγt in cardiac remodeling after myocardial infarction (MI) remains to be fully elucidated.

Methods and results

MI was generated by ligating coronary artery. The expression of RORγt and IL-17A transcripts increased in murine hearts after MI. Additionally, immunohistochemical staining revealed that RORγt-expressing cells infiltrated in the border zone after MI. Flow cytometric analysis showed that RORγt-expressing cells were released from the spleen at day 1 after MI. Though RORγt-expressing cells in spleen expressed γδTCR or CD4, γδTCR+ cells were major population of RORγt-expressing cells that infiltrated into post-infarct myocardium. To address the biological functions of RORγt-expressing cells in infarcted hearts, we used mice with enhanced GFP gene heterozygously knocked-in at RORγt locus (RORγt+/− mice), which physiologically showed reduced expression of RORγt mRNA in thymus. Kaplan-Meier analysis showed that MI-induced mortality was higher in RORγt+/− mice than wild-type (WT) mice. Masson’s trichrome staining demonstrated that cardiac injury was exacerbated in RORγt+/− mice 7 days after MI (Injured area: RORγt+/−; 42.1±6.5%, WT; 34.0±3.7%, circumference of injured myocardium: RORγt+/−; 61.8±4.8%, WT; 49.6±5.1%), accompanied by exacerbation of cardiac function (fractional shortening: RORγt+/−; 32.9±2.9%, WT; 38.3±3.6%). Moreover, immunohistochemical analyses revealed that capillary density in border zone was significantly reduced in RORγt+/− mice after MI, compared with WT mice, associated with the reduced expression of angiopoietin 2. Finally, the mRNA expression of RORγt, IL-17A, IL-17F and IL-23 receptor (IL-23R) mRNA and protein expression of IL-10 were decreased in RORγt+/− hearts.
Conclusions
Heterozygous deletion of RORγt gene resulted in aggravated cardiac remodeling, accompanied by reduced capillary density, after MI, suggesting that RORγt-expressing cells contribute to tissue repair in infarcted myocardium.

Introduction
Myocardial infarction (MI) is one of the major causes of heart failure. MI induces cardiomyocyte death, followed by infiltration of immune cells into post-infarct myocardium. The immune cells positively or negatively regulate myocardial inflammation and modulate adverse cardiac remodeling [1–3]. For instance, neutrophils infiltrate into infarcted myocardium immediately after coronary occlusion and aggravate tissue damage by producing reactive oxygen species (ROS) [4,5]. In contrast, macrophages contribute to the clearance of dead cells after MI and promote angiogenesis, leading to wound healing [6–8]. Therefore, in order to understand the importance of immune cells in cardiac remodeling, it would be required to make clear the biological functions of immune cells based on cell-lineage in more detail.

The retinoic acid receptor-related orphan nuclear receptor γt (RORγt) was originally identified as an essential transcription factor for IL-17A producing T cell differentiation [9,10]. Physiologically, IL-17A plays important roles in host protection against the microbial infection in the bowels [11–13]. IL-17A is also implicated in the pathogenesis of various inflammatory diseases such as atherosclerosis [14,15], psoriasis [16,17] and autoimmune diseases [18,19]. Interestingly, recent studies have proposed that the deficiency of IL-17A could ameliorate left ventricular remodeling after MI [20,21], suggesting that IL-17A is detrimental to the maintenance of cardiac homeostasis after MI; however, it is required to clarify the biological significance of RORγt-expressing cells that produce IL-17A, because IL-17A is a pleiotropic cytokine and locally functions in various tissues.

RORγt-expressing cells express various cytokines and cytokine receptors, including IL-17F and IL-23R, as well as IL-17A [22,23]. In this study, we addressed the pathophysiological roles of RORγt-expressing cells in cardiac remodeling after MI, using mice with enhanced GFP (eGFP) gene heterozygously knocked-in at RORγt locus (RORγt+/− mice), because homozygous deletion of RORγt gene showed higher mortality by coronary ligation, compared with WT or RORγt+/− mice, in our preliminary study. In RORγt+/− mice, the myocardial expression of RORγt and IL-17A was reduced in the heart after MI, compared with wild-type (WT) mice. Importantly, post-infarct cardiac remodeling was exacerbated in RORγt+/− mice, accompanied by reduced capillary density, suggesting that RORγt-expressing cells ameliorate cardiac remodeling after MI. The present study is the first demonstration that RORγt-expressing cells exhibit cardioprotective properties after MI.

Materials and methods
Animal care
Animal care was performed according to the Osaka University animal care guidelines. The study was approved by the Institutional Animal Care and Use Committee of the Graduate School of Pharmaceutical Science, Osaka University (Permit Number; DOUYAKU 26–4). All animal experiments were in accordance with the Guide for the Care and Use of Laboratory Animals, Eighth Edition, updated by the US National Research Council Committee in 2011.
Male C57BL/6 mice (8–12 weeks old, 25-30 g body weight) were purchased from Japan SLC, Inc, and maintained on a 12 h light/dark cycle with free access to food and water at Animal Care Facility of Graduate School of Pharmaceutical Sciences, Osaka University. At the endpoints of all experiments, the hearts were excised from isoflurane-anesthetized mice. All efforts were made to minimize suffering.

Induction of MI

Murine MI was induced by permanent ligation of the left anterior descending coronary artery as previously described [24].

Splenectomy surgery

Mice were ventilated and anesthetized by isoflurane. After the left-side small laparotomy, splenic vessels were ligated with 7–0 silk sutures and the spleen was removed. The peritoneum and skin were closed with 5–0 silk sutures. MI operation was performed immediately after the splenic removal.

RORγt-enhanced green fluorescence protein (eGFP) transgenic mice

The genetically engineered mice with eGFP cDNA knocked-in at RORγt gene locus on a C57BL/6 background, designated as RORγt+/− mice, were purchased from Jackson Laboratories (stock number: 007572). Genomic DNA was prepared from RORγt WT, RORγt+/−, and RORγt−/− mice. The genotyping of RORγt and eGFP was performed by PCR using specific primers. The primers used for genotyping were as follows: RORγt forward 5’ - GC C ACC TGT GTG GAG CAG AGC TTA -3’, RORγt reverse 5’ - GGA TGC CCC CAT TCA CTT ACT TCT -3’, eGFP forward 5’ - TCC TTG AAG AAG ATG GTG CG -3’, eGFP reverse 5’ - TCC TTG AAG AAG ATG GTG CG -3’. Because, in our preliminary study, RORγt−/− mice showed higher mortality compared with WT or RORγt+/− mice within 2 days after MI (WT: 7.1%, RORγt+/−: 5.3%, RORγt−/−: 25.0%). RORγt+/− mice were used to evaluate the pathophysiological roles of RORγt-expressing cells in cardiac remodeling.

Quantitative RT-PCR

Total RNA sample was prepared using QIAzol reagent (QIAGEN). RT-PCR was performed according to the manufacturer’s protocol, as described previously [25]. The expression of RORγt, VEGF, CXCL5, angiopoietin 2, IL-17A, IL-17F, IL-6, IL-1β, TNF-α, IFN-γ, IL-10, and TGF-β mRNA in the left ventricle (LV) from the ligation point to the apex was estimated by real-time PCR using the SYBR green system (Applied Biosystems). The expression of GAPDH was measured and used as an internal control. The primers used in this study are shown in Supplementary material online, S1 Table.

Histological analysis

Cardiac injury was histologically estimated as described previously [24,26]. Briefly, hearts were harvested at day 7 after MI. The hearts were sliced from the position about 300 μm distal to the ligation point at 5-μm thickness, followed by staining with Masson’s trichrome method. The area or circumference ratio of the injured region to LV was measured using Image J software (National Institutes of Health) by a researcher who was blinded to the experimental condition.

Immunohistochemical analysis was performed as described previously [24]. In brief, frozen sections were fixed with 4% paraformaldehyde (PFA) or acetone. RORγt-expressing cells infiltration was stained using Histofine Mousestain kit (Nichirei Bioscience) with mouse anti-RORγt monoclonal antibody (Clone: Q31-378, BD Bioscience). Mouse non-immune IgG
(Santa Cruz Biotechnology) was used as control. Nuclei were counterstained with hematoxylin. To estimate the number of RORγt-expressing cells, photomicrographs of border area and remote area were taken at random. Border area was defined as the region < 1 mm from the end of infarct area. RORγt-positive cells were counted in number by the researcher who was blinded to the assay condition.

To estimate the capillary density, capillary vessels were stained using a Vectastain ABC kit (Vector Laboratories) with rat anti-CD31 monoclonal antibody (Clone: MEC13.3, BD Bioscience). Sections were photographed at border area, and then CD31-positive cells were counted in number by the researcher who was blinded to the assay condition.

Flow cytometric analysis

Spleens were harvested, triturated, and passed through a 70 μm cell strainer in PBS containing 3% fetal bovine serum (FBS). Cells were treated Lysing buffer (BD Bioscience) to exclude erythrocytes. To block Fc receptors, cells were incubated with rat anti-CD16/32 monoclonal antibody (Clone: 93, BioLegend) on ice for 15 minutes. Cells were stained surface markers with PE-conjugated armenian hamster anti-γδTCR monoclonal antibody (Clone: GL3, BioLegend) and FITC-conjugated rat anti-CD4 monoclonal antibody (Clone: RM4-5, BD Bioscience) on ice for 40 minutes. Transcription Factor Staining Buffer Set (eBioscience) was used for intracellular staining according to the manufacturer’s protocol. After fixation and permeabilization, cells were stained with APC-conjugated rat anti-RORγt antibody (Clone: B2D, eBioscience) on ice for 40 minutes. Isotype-control staining was performed using FITC- or APC-conjugated rat control IgG (Clone: RTK2758, BioLegend) and PE-conjugated rat control IgG (Clone: R35-95, BD Bioscience). Flow cytometric analysis was performed on FACS Aria II (BD Bioscience) and analyzed using BD FACS Diva software (BD Bioscience).

Analysis of cardiac function by echocardiography

Echocardiography was performed as described previously [25].

Gravimetric analysis

Mice were weighted at day 7 after MI. The heart and lung were harvested after euthanasia by inhalation of isoflurane and washed with cold PBS. The weight of these organs was measured and normalized with body weight.

Enzyme-linked immunosorbent assay

Heart homogenates were prepared and IL-10 concentration in myocardium was evaluated with ELISA kit (BioLegend, ELISA MAX™ Deluxe Set#431414).

Statistical analysis

Data are shown as means ± SD. Survival rate was analyzed by the Kaplan-Meier method using a log-rank test. Comparisons between two groups were performed with the use of Student t-test. One-way ANOVA followed by a Tukey-Kramer or Dunnett test was used for multiple comparisons. P value < 0.05 was considered to be statistically significant.
Results

RORγt-expressing cells infiltrated in the heart after MI

We examined the expression of RORγt and IL-17A mRNA in post-infarct myocardium by quantitative RT-PCR (Fig 1A). After C57BL/6 mice were subjected to MI, mRNA expression was measured at various time points. The expression of RORγt and IL-17A transcripts was upregulated at day 1 and the expression of these genes displayed its peak at day 7 after MI. Consistently, immunohistochemical staining with anti-RORγt antibody revealed that RORγt-expressing cells infiltrated in the border area after MI, but not in remote area or sham operated hearts (Fig 1B and 1C). Previously, we demonstrated that RORγt-expressing cells are required for the onset of experimental autoimmune myocarditis (EAM) [27]. Interestingly, it is reported that EAM is produced by adoptive transfer of splenocytes after MI [28]. Therefore, we examined...
the effects of the splenectomy on the infiltration of ROR\gammat-expressing cells into post-infarct myocardium and found that the number of ROR\gammat-expressing cells infiltration was reduced by splenectomy surgery (Fig 1B and 1C). These data indicate that ROR\gammat-expressing cells were released at least partially from the spleen. It should be noted that the infiltration of ROR\gammat-expressing cells was not completely inhibited by splenectomy, suggesting that some fraction of ROR\gammat-expressing cells were originated from other lymphoid tissues, such as lymph nodes.

ROR\gammat-expressing cells were released from the spleen after MI

Since splenectomy reduced the number of ROR\gammat-expressing cells that infiltrated post-infarct myocardium, we performed flow cytometric analysis for splenic leukocytes to characterize ROR\gammat-expressing cells. Consistent with ROR\gammat-expressing cells infiltration in infarcted heart, the number of leukocytes and ROR\gammat-expressing cells in the spleen was reduced at day 1 after MI (Fig 2A). The staining of cell surface markers revealed that ROR\gammat-expressing cells consist of ROR\gammat+γδTCR+ and ROR\gammat+CD4+ cells (Fig 2B). We analyzed temporal changes of both ROR\gammat+γδTCR+ and ROR\gammat+CD4+ cells in the spleen after MI. ROR\gammat+γδTCR+ cells were more abundantly released from the spleen from day 1 to day 7 after MI, while ROR\gammat+CD4+ cells were transiently released at day 1 (Fig 2C). Considering that the expression of ROR\gammat increased in the heart from day 1 to day 7 after MI, it is likely that majority of ROR\gammat-expressing cells in post-infarct myocardium are ROR\gammat+γδTCR+ cells.

Heterozygous deletion of ROR\gammat gene increased the mortality after MI

To analyze the pathophysiological significance of ROR\gammat-expressing cells in post-infarct myocardium, we used ROR\gammat+/- mice with eGFP gene heterozygously knocked-in at ROR\gammat gene locus (Fig 3A). In order to confirm that ROR\gammat gene was successfully reduced in ROR\gammat+/- mice, we examined physiological expression of ROR\gammat mRNA in the thymus by quantitative RT-PCR analysis, because ROR\gammat mRNA is constitutively expressed in the thymus [9]. The ROR\gammat mRNA expression was significantly suppressed in the thymus in ROR\gammat+/- mice compared with WT mice (Fig 3B). Similarly, the expression of ROR\gammat in spleen has tendency to decrease in ROR\gammat+/- mice with wide standard deviation, possibly because splenic cells are composed of more various immune cells than thymic cells. In comparison with the thymus, the expression of ROR\gammat mRNA in non-MI hearts was very low in both ROR\gammat+/- and WT mice. Consistently, echocardiographic analysis showed that there was no difference in cardiac function between these two groups of mice before MI (Table 1). However, after MI, ROR\gammat+/- mice showed higher rate of mortality (Fig 3C), accompanied by aggravated cardiac dysfunction at day 7 after MI, compared with WT mice (Table 1).

Adverse cardiac remodeling was exacerbated in ROR\gammat+/- mice after MI

To make clear the effects of ROR\gammat knockdown on adverse cardiac remodeling after MI, we conducted gravimetric analysis and measured severity of cardiac injury in ROR\gammat+/- and WT mice (Fig 4). In this study, we analyzed cardiac remodeling at day 7 after MI, because approximately 80% of ROR\gammat+/- mice died by day 14 (Fig 3C). Consistent with the aggravated cardiac dysfunction in ROR\gammat+/- mice at day 7 after MI, the ratio of heart weight to body weight and lung weight to body weight were both increased in ROR\gammat+/- mice after MI, compared with WT mice (Fig 4A). Histological analyses by Masson’s trichrome staining revealed that severity of cardiac injury, including cardiac fibrosis, was exacerbated in ROR\gammat+/- mice after MI, although there was no histological difference between ROR\gammat+/- mice and WT mice in sham-operated groups (Fig 4B). We quantified injured area and circumference, and found that cardiac injury was significantly increased in ROR\gammat+/- mice (Fig 4B and 4C).
Capillary density was reduced in RORγt+/− hearts after MI

Impaired vascular formation in post-infarct myocardium aggravates adverse cardiac remodeling [29,30]. Therefore, we measured capillary density at day 7 after MI by immunohistochemical staining with anti-CD31 antibody (Fig 5). In the border zone, capillary density was significantly reduced in RORγt+/− mice relative to WT mice, whereas there was no difference between WT and RORγt+/− mice in sham-operation. To explore the mechanisms of impaired angiogenesis in RORγt+/− mice, the mRNA expression of angiogenic factors, such as VEGF, CXCL5 and angiopoietin 2, was measured by quantitative PCR. While VEGF and CXCL5 mRNA expressions were unchanged between RORγt+/− mice and WT mice, angiopoietin 2 expression was significantly reduced in RORγt+/− mice at day 4 after MI (Fig 5C).

Effects of heterozygous RORγt deletion on cytokine production in post-infarct myocardium

The inflammatory reaction is closely associated with the progression of cardiac remodeling. Therefore, to assess the effects of heterozygous RORγt deletion on cytokine production, we performed quantitative RT-PCR and estimated mRNA expression of cytokines and their
Fig 3. Heterozygous deletion of RORγt gene increased the mortality after MI. (A) The representative image of PCR products of RORγt and eGFP from genomic DNA. (B) Total RNA was prepared from thymus, spleen and heart of RORγt+/− or WT mice. Quantitative RT-PCR was performed for RORγt. The expression of RORγt mRNA was normalized with that of GAPDH. The expression levels were calculated as a ratio to the average value of thymus on WT mice. Data are shown as means ± SD; n = 3 for thymus of WT and RORγt+/− mice, heart of WT and RORγt+/− mice, spleen of RORγt+/− mice, n = 6 for spleen of WT mice. **P < 0.01 vs WT mice by Student’s t-test. (C) Kaplan-Meier analyses of survival rate after MI or sham operation. Mice were subjected to MI or sham operation. n = 18 for WT mice with MI, 20 for RORγt+/− mice with MI, 6 for each group with sham operation. The survival rate after MI or sham operation was estimated by the Kaplan-Meier method. *P < 0.05 vs WT mice by log-rank test.

https://doi.org/10.1371/journal.pone.0183584.g003

Table 1. Echocardiographic analyses on the cardiac function.

Days after MI	0	2	7			
	WT	RORγt+/−	WT	RORγt+/−	WT	RORγt+/−
FS (%)	51.6±3.2	52.0±2.7	46.5±3.1[§]	44.8±1.6[‡]	38.3±3.6[§]	32.9±2.9[‡]
HR (bpm)	520.4±56.1	539.4±46.2	486.2±96.2	471.7±50.1	529.8±57.9	487.8±55.8
LVIDd (mm)	3.7±0.3	3.4±0.3	4.2±0.4	4.0±0.4	4.9±0.7[‡]	4.9±0.5[‡]
LVIDs (mm)	1.8±0.2	1.8±0.2	2.2±0.3	2.2±0.3	3.0±0.5[§]	3.3±0.4[‡]

FS; Fractional Shortening, HR; Heart Rate, LVIDd; Left Ventricular Internal Dimension in diastole, LVIDs; Left Ventricular Internal Dimension in systole. Data are shown as mean ± S.D; n = 14 for day 0-WT mice, 11 for day 0-RORγt+/− mice, 17 for day 2-WT mice, 11 for day 2-RORγt+/− mice, 17 for day 7-WT mice, 13 for day 7-RORγt+/− mice.

*P<0.01 vs day 7-WT mice
§P<0.01 vs day 0-WT mice
‡P<0.01 vs day 0-RORγt+/− mice by one-way ANOVA followed by Tukey-Kramer test.

https://doi.org/10.1371/journal.pone.0183584.t001
related genes (Fig 6). The myocardial expression of RORγt, IL-17A, IL-17F, and IL-23R mRNA was significantly suppressed in RORγt+/− mice at day 7 after MI, compared with WT mice, respectively. Consistent with previous reports that IL-17 was thought to be only increased locally in the infarcted region after MI [31,32], there was no significant difference in serum IL-17 level between RORγt+/− and WT mice after MI (S1 Fig). Moreover, the expression of pro-inflammatory cytokines, including IL-6, IL-1β, TNF-α, and IFN-γ, as well as anti-inflammatory cytokines, including IL-10 and TGF-β, was not influenced by heterozygous deletion of RORγt gene. Whereas, ELISA revealed that IL-10 protein in myocardium was reduced in RORγt+/− mice in comparison to control mice at day 7 after MI.

Discussion

In post-infarct myocardium, immune cells positively or negatively modulate cardiac remodeling [1–8]. Here, we have demonstrated that RORγt-expressing cells infiltrated into myocardium after MI. To analyze the pathophysiological roles of RORγt-expressing cells, MI was generated in RORγt+/− mice with eGFP gene heterozygously knocked-in at RORγt locus. In RORγt+/− mice, the mortality was increased with reduced expression of RORγt and IL-17A transcripts in post-infarct myocardium. Importantly, adverse cardiac remodeling was
exacerbated in RORγt+/− mice, accompanied by reduced capillary density. These data suggest that RORγt-expressing cells play cardioprotective roles in cardiac remodeling after MI.

In this study, we used RORγt+/− mice instead of RORγt−/− mice, because RORγt−/− mice showed higher mortality immediately after MI. RORγt+/− mice grew normally and echocardiography showed that there was no difference in cardiac function between RORγt+/− and WT mice under physiological conditions. We confirmed that the expression level of RORγt transcript in the thymus was reduced by 41% in RORγt+/− mice, compared with WT, indicating that RORγt+/− mice could be used as RORγt knock-down model.

RORγt was originally identified as a transcription factor responsible for differentiation of IL-17-producing T cells [9,10]. Previously, we have demonstrated that RORγt is essential for the induction of experimental autoimmune myocarditis (EAM) [27]; however, the pathophysiological roles of RORγt-expressing cells poorly understand in cardiac remodeling after MI. RORγt is a transcriptional factor for various cytokines and their receptors, including IL-17A, IL-17F and IL-23R [22,23]. Indeed, the expression of these cytokines and cytokine receptors was reduced in post-infarct myocardium in RORγt+/− mice. Interestingly, we showed that heterozygous deletion of RORγt gene exacerbated adverse cardiac remodeling after MI, suggesting that RORγt-expressing cells could prevent cardiac remodeling.

Though RORγt is essential for Th17 differentiation, RORγt expression is not limited to Th17 cells [22,23]. Our data presented here propose that RORγt-mediated regulation of inflammatory reaction could be crucial for protection from adverse cardiac remodeling.

Fig 5. Capillary density was reduced in RORγt+/− hearts after MI. (A) Capillaries in the heart were detected by immunohistochemical staining with anti-CD31 antibody. Representative images at border zone are shown. Bar = 50 µm. (B) Sixty visual fields at the border zone from 5 hearts were randomly selected. The number of CD31-positive cells was counted to calculate the capillary density. Data are shown as means ± SD. **P < 0.01 by one-way ANOVA followed by Turkey-Kramer test. (C) Quantitative RT-PCR was performed for VEGF, CXCL5 and angiopoietin 2 at day 4 after MI. The expression of the transcripts was normalized with that of GAPDH and shown as the ratio to the average value of WT mice. Data are shown as means ± SD; n = 4. **P < 0.01 vs WT mice by Student’s t-test.

https://doi.org/10.1371/journal.pone.0183584.g005
independently of Th17 cells. Importantly, we demonstrated that RORγt-expressing cells, released from the spleen at day 1 to 7 after MI, were γδT cells. Recently, two types of γδT cells have been identified [33]; one is RORγt+ IL-17+ γδT cell and the other is RORγt− IFN-γ+ γδT cell. Consistent with our results, IL-17-producing γδT cells are known to contribute to tissue repair by promoting angiogenesis [34,35].

Recently, it was reported that γδTCR-KO mice exhibited improved survival and cardiac function after MI [20], while we have demonstrated that RORγt-expressing γδTCR+ cells play protective roles. The inconsistency between these two studies might be explained by the heterogeneity of γδTCR+ cells. As described above, γδTCR+ cells consist of at least 2 populations, INF-γ producing γδTCR+ cells and IL-17 producing γδTCR+ cells. The expression of IL-17 was reduced in RORγt+/- myocardium after MI, while that of INF-γ was not. Therefore, RORγt-expressing γδTCR+ cells, observed in this study, are mainly IL-17 producing γδTCR+ cells. In other words, the inconsistent results of these two studies might imply that additional
subpopulation of γδ TCR+ cells could exert detrimental effects on cardiac remodeling after MI, though further studies would be needed to identify the subpopulation. It is interesting that capillary density was reduced in myocardium of RORγt+/− mice after MI. Since angiogenesis prevents post-infarct cardiac fibrosis [29,30], it is proposed that RORγt-expressing cells ameliorated cardiac remodeling at least partially by promoting angiogenesis. This proposal is supported by the finding that the expression of IL-17A and angiopoietin 2 was reduced in post-infarct myocardium in RORγt+/− mice. It is well known that IL-17A promotes vascular formation [36,37]. Moreover, angiopoietin 2 positively regulates angiogenesis in autoimmune diseases [38]. Of course, we cannot exclude the possibility that other secretory factors or cytokines, produced from RORγt-expressing cells, were involved in cardioprotection, because it was reported that deficiency of IL-17A prevented cardiac remodeling and that IL-17A does not necessarily show the beneficial effects on cardiac remodeling [20,21].

In the present study, we have demonstrated that heterozygous ablation of RORγt gene exacerbated cardiac remodeling after MI. RORγt-expressing γδ T cells exhibited preventive effects against cardiac remodeling at least partially through enhanced revascularization, proposing the cardioprotective property as a novel function of RORγt-expressing γδ T cells. Modulation of RORγt+ cell-mediated regulation of cardiac remodeling could be a promising therapeutic strategy for cardiovascular diseases.

Limitations: It should be noted that male mice were exclusively used in this study as a limitation. In our previous study [27], we examined the pathophysiological roles of RORγt in experimental autoimmune myocarditis (EAM) and found that RORγt is essential for the onset of EAM. In EAM experiments, we exclusively used male Balb/c mice because EAM can be induced more severely in male mice than in female, as reported previously [39]. Therefore, considering the possibility that the biological function of RORγt is dependent on sex difference and can be more remarkably observed in male mice, we designed this study as an exclusive study of male mice to make clear the biological roles of RORγt in cardiac remodeling after MI.

Supporting information
S1 Table. Primers used in this study.
(DOCX)
S1 Fig. Serum IL-17 concentration was similar level between RORγt+/− mice and WT mice.
(TIF)

Acknowledgments
We thank Chiharu Tottori for her excellent administrative work.

Author Contributions
Conceptualization: Daichi Enomoto, Masanori Obana, Yasushi Fujio.
Data curation: Daichi Enomoto, Kotaro Matsumoto, Hiroyuki Nakayama, Yasushi Fujio.
Formal analysis: Daichi Enomoto, Kotaro Matsumoto, Tomomi Yamashita, Makiko Maeda, Hiroyuki Nakayama, Yasushi Fujio.
Funding acquisition: Makiko Maeda, Masanori Obana, Yasushi Fujio.
Investigation: Daichi Enomoto, Kotaro Matsumoto, Tomomi Yamashita, Arisa Kobayashi, Masanori Obana.
Writing – original draft: Daichi Enomoto, Masanori Obana, Yasushi Fujio.

Writing – review & editing: Hiroyuki Nakayama, Masanori Obana, Yasushi Fujio.

References

1. Nian M, Lee P, Khaper N, Liu P. Inflammatory cytokines and postmyocardial infarction remodeling. Circ Res. 2004; 94: 1543–1553. https://doi.org/10.1161/01.RES.0000130526.20854.fc PMID: 15217919

2. Frangogiannis NG. Chemokines in the ischemic myocardium: from inflammation to fibrosis. Inflamm Res. 2004; 53: 585–595. PMID: 15693606

3. Frantz S, Bauersachs J, Erli G. Post-infarct remodelling: contribution of wound healing and inflammation. Cardiovasc Res. 2009; 81: 474–481. https://doi.org/10.1093/cvr/cvn292 PMID: 18977766

4. Amulic B, Cazalet C, Hayes GL, Metzler KD, Zychlinsky A. Neutrophil function: from mechanisms to disease. Annu Rev Immunol. 2012; 30: 459–489. https://doi.org/10.1146/annurev-immunol-020711-074942 PMID: 22224774

5. Ma Y, Yabluchansky A, Lindsey ML. Neutrophil roles in left ventricular remodeling following myocardial infarction. Fibrogenesis Tissue Repair. 2013; 6: 11. https://doi.org/10.1186/1755-1536-6-11 PMID: 23731754

6. Wan E, Yeap XY, Dehn S, Terry R, Novak M, Zhang S, et al. Enhanced efferocytosis of apoptotic cardiomyocytes through myeloid-epithelial-reproductive tyrosine kinase links acute inflammation resolution to cardiac repair after infarction. Circ Res. 2013; 113: 1004–1012. https://doi.org/10.1161/CIRCRESAHA.113.301198 PMID: 23836795

7. van Amerongen MJ, Harmsen MC, van Rooijen N, Petersen AH, van Luyn MJ. Macrophage depletion impairs wound healing and increases left ventricular remodeling after myocardial injury in mice. Am J Pathol. 2007; 170: 818–829. https://doi.org/10.2353/ajpath.2007.060547 PMID: 17323268

8. Kumagai S, Nakayama H, Fujimoto M, Honda H, Serada S, Ishibashi-Ueda H, et al. Myeloid cell-derived LRG attenuates adverse cardiac remodelling after myocardial infarction. Cardiovasc Res. 2016; 109: 272–282. https://doi.org/10.1093/cvr/cvv273 PMID: 26678356

9. He YW, Deftos ML, Ojala EW, Bevan MJ. RORγt, a novel isoform of an orphan receptor, negatively regulates Fas ligand expression and IL-2 production in T cells. Immunity. 1998; 9: 797–806. PMID: 9881970

10. Ivanov II, McKenzie BS, Zhou L, Tadokoro CE, Lepelley A, Lafaille JJ, et al. The orphan nuclear receptor RORγt directs the differentiation program of proinflammatory IL-17+ T helper cells. Cell. 2006; 126: 1121–1133. https://doi.org/10.1016/j.cell.2006.07.035 PMID: 16990136

11. Ishigame H, Kakuta S, Nagai T, Kadoki M, Nambu A, Kominami Y, et al. Differential roles of interleukin-17A and -17F in host defense against mucocutaneous bacterial infection and allergic responses. Immunity. 2009; 30: 108–119. https://doi.org/10.1016/j.immuni.2008.11.009 PMID: 19144317

12. Mangan PR, Harrington LE, O’Quinn DB, Buellard DC, Elson CO, et al. Transforming growth factor-β induces development of the Th17 lineage. Nature. 2006; 441: 231–234. https://doi.org/10.1038/nature04754 PMID: 16648837

13. Sawa S, Lochner M, Satoh-Takayama N, Duauroy S, Bérard M, Kleinshke M, et al. RORγt+ innate lymphoid cells regulate intestinal homeostasis by integrating negative signals from the symbiotic microbiota. Nat Immunol. 2011; 4: 320–326.

14. Erbel C, Akhavanpoor M, Okuyucu D, Wangler S, Dietz A, Zhao L, et al. IL-17A influences essential functions of the monocyte/macrophage lineage and is involved in advanced murine and human atherosclerosis. J Immunol. 2014; 193: 4344–4355. https://doi.org/10.4049/jimmunol.1400181 PMID: 25261478

15. Smith E, Prasad KM, Butler M, Dobrian A, Kolls JK, Levy K, et al. Blockade of IL-17A results in reduced atherosclerosis in Apoe-deficient mice. Circulation. 2010; 121: 1746–1755. https://doi.org/10.1161/CIRCULATIONAHA.109.924886 PMID: 20368519

16. Di Cesare A, Di Meglio P, Nestle FO. The IL-23/Th17 axis in the immunopathogenesis of psoriasis. J Invest Dermatol. 2009; 129: 1339–1350. https://doi.org/10.1038/jid.2009.59 PMID: 19322214

17. van der Fits L, Mourits S, Voerman JS, Kant M, Boon L, Laman JD, et al. Imiquimod-induced psoriasis-like skin inflammation in mice is mediated via the IL-23/IL-17 axis. J Immunol. 2009; 182: 5836–5845. https://doi.org/10.4049/jimmunol.0902099 PMID: 19380832

18. Waisman A, Hauptmann J, Regen T. The role of IL-17 in CNS diseases. Acta Neuropathol. 2015; 129: 625–637. https://doi.org/10.1007/s00401-015-1402-7 PMID: 25716179
19. Benedetti G, Miossec P. Interleukin 17 contributes to the chronicity of inflammatory diseases such as rheumatoid arthritis. Eur J Immunol. 2014; 44: 339–347. https://doi.org/10.1002/eji.201344184 PMID: 24310226

20. Yan X, Shichita T, Katsumata Y, Matsushashi T, Ito H, Ito K, et al. Deleterious effect of the IL-23/IL-17A axis and γδT cells on left ventricular remodeling after myocardial infarction. J Am Heart Assoc. 2012; 5: e004408.

21. Zhou SF, Yuan J, Liao MY, Xia N, Tang TT, Li JJ, et al. IL-17A promotes ventricular remodeling after myocardial infarction. J Mol Med. 2014; 92: 1105–1116. https://doi.org/10.1007/s00109-014-1176-8 PMID: 24965614

22. Skepner J, Ramesh R, Trocha M, Schmidt D, Baloglu E, Lobera M, et al. Pharmacologic inhibition of RORγt regulates Th17 signature gene expression and suppresses cutaneous inflammation in vivo. J Immunol. 2014; 192: 2564–2575. https://doi.org/10.4049/jimmunol.1302190 PMID: 24516202

23. Banerjee D, Zhao L, Wu L, Palanichamy A, Ergun A, Peng L, et al. Small molecule mediated inhibition of RORγt-dependent gene expression and autoimmune disease pathology in vivo. Immunology. 2016; 147: 399–413. https://doi.org/10.1111/imm.12570 PMID: 26694902

24. Obana M, Maeda M, Takeda K, Hayama A, Mohri T, Yamashita T, et al. Therapeutic activation of signal transducer and activator of transcription 3 by interleukin-11 ameliorates cardiac fibrosis after myocardial infarction. Circulation. 2010; 121: 684–691. https://doi.org/10.1161/CIRCULATIONAHA.109.893677 PMID: 20100971

25. Enomoto D, Obana M, Miyawaki A, Maeda M, Nakayama H, Fujio Y. Cardiac-specific ablation of the STAT3 gene in the subacute phase of myocardial infarction exacerbates cardiac remodeling. Am J Physiol Heart Circ Physiol. 2015; 309: H471–480. https://doi.org/10.1152/ajpheart.00730.2014 PMID: 26055795

26. Takagawa J, Zhang Y, Wong ML, Sievers RE, Kapasi NK, Wang Y, et al. Myocardial infarct size measurement in the mouse chronic infarction model: comparison of area-based and length-based approaches. J Appl Physiol (1985). 2007; 102: 2104–2111.

27. Yamashita T, Iwakura T, Matsui K, Kawaguchi H, Obana M, Hayama A, et al. IL-6-mediated Th17 differentiation through RORγt is essential for the initiation of experimental autoimmune myocarditis. Cardiovasc Res. 2011; 91: 640–648. https://doi.org/10.1093/cvr/cvr148 PMID: 21622681

28. Maisel A, Cesario D, Baird S, Rehman J, Haghighi P, Carter S. Experimental autoimmune myocarditis produced by adoptive transfer of splenocytes after myocardial infarction. Circ Res. 1998; 82: 458–463. PMID: 9506706

29. Giordano FJ, Gerber HP, Williams SP, VanBruggen N, Bunting S, Ruiz-Lozano P, et al. A cardiac myocyte vascular endothelial growth factor paracrine pathway is required to maintain cardiac function. Proc Natl Acad Sci U S A. 2001; 98: 5780–5785. https://doi.org/10.1073/pnas.091415198 PMID: 11331753

30. Shujia J, Haider HK, Idris NM, Lu G, Ashraf M. Stable therapeutic effects of mesenchymal stem cell-based multiple gene delivery for cardiac repair. Cardiovasc Res. 2008; 77: 525–533. https://doi.org/10.1093/cvr/cvm077 PMID: 18032932

31. Timmers L, Sluijter JP, van Keulen JK, Hoef er IE, Nederhoff MG, Goumans MJ, et al. Toll-like receptor 4 mediates maladaptive left ventricular remodeling and impairs cardiac function after myocardial infarction. Circ Res. 2008; 102: 257–264. https://doi.org/10.1161/CIRCRESAHA.107.158205 PMID: 18007026

32. Avalos AM, Apablaza FA, Quiroz M, Toledo V, Pena JP, Micheal L, et al. IL-17A levels increase in the infarcted region of the left ventricle in a rat model of myocardial infarction. Biol Res. 2012, 45:193–200. https://doi.org/10.1086/657165 PMID: 22605579

33. Vanfleteren R, Hayday A. Six-of-the-best: unique contributions of γδ T cells to immunology. Nat Rev Immunol. 2013; 13: 89–100. https://doi.org/10.1038/nri3384 PMID: 23948415

34. Rao R, Grafeoo CS, Gualati R, Jamal M, Narayan S, Zambrinii CP, et al. Interleukin 17-producing γδT cells promote hepatic regeneration in mice. Gastroenterology. 2014; 147: 473–484. https://doi.org/10.1053/j.gastro.2014.04.042 PMID: 24801349

35. Ono T, Okamoto K, Nakashima T, Nitta T, Hori S, Iwakura Y, et al. IL-17-producing γδ T cells enhance bone regeneration. Nat Commun. 2016; 7: 10928. https://doi.org/10.1038/ncomms10928 PMID: 26965330

36. Ahn SH, Edwards AK, Singh SS, Young SL, Lessey BA, Tayade C. IL-17A Contributes to the Pathogenesis of Endometriosis by Triggering Proinflammatory Cytokines and Angiogenic Growth Factors. J Immunol. 2015; 195: 2591–2600. https://doi.org/10.4049/jimmunol.1501138 PMID: 26289958

37. Wakita D, Sumida K, Iwakura Y, Nishikawa H, Okhuri T, Chamoto K, et al. Tumor-infiltrating IL-17-producing γδ T cells support the progression of tumor by promoting angiogenesis. Eur J Immunol. 2010; 40: 1927–1937. https://doi.org/10.1002/eji.200940157 PMID: 20397212
38. MacMillan CJ, Furlong SJ, Doucette CD, Chen PL, Hoskin DW, Easton AS: Bevacizumab diminishes experimental autoimmune encephalomyelitis by inhibiting spinal cord angiogenesis and reducing peripheral T-cell responses. J Neuropathol Exp Neurol. 2012; 71: 983–999. https://doi.org/10.1097/NEN.0b013e3182724831 PMID: 23037326

39. Root-Bernstein R, Fairweather D. Unresolved issues in theories of autoimmune disease using myocarditis as a framework. J Theor Biol. 2015; 375: 101–123. https://doi.org/10.1016/j.jtbi.2014.11.022 PMID: 25484004