Pd-Catalyzed Directed Thiocyanation Reaction by C–H Bond Activation
Mélissa Gao, Mu-Yi Chen, Xavier Pannecoucke, Philippe Jubault, Tatiana Besset

To cite this version:
Mélissa Gao, Mu-Yi Chen, Xavier Pannecoucke, Philippe Jubault, Tatiana Besset. Pd-Catalyzed Directed Thiocyanation Reaction by C–H Bond Activation. Chemistry - A European Journal, Wiley-VCH Verlag, 2020, 22 (19), pp.7556-7561. 10.1002/chem.202003521. hal-03004678

HAL Id: hal-03004678
https://hal.archives-ouvertes.fr/hal-03004678
Submitted on 7 Dec 2020

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Reprint
Synthetic Methods

Pd-Catalyzed Directed Thiocyanation Reaction by C–H Bond Activation

Mélissa Gao†, Mu-Yi Chen†, Xavier Pannecoucke, Philippe Jubault, and Tatiana Besset‡(†)

Abstract: The Pd-catalyzed directed thiocyanation reaction of arenes and heteroarenes by C–H bond activation was achieved. In the presence of an electrophilic SCN source, this original methodology offered an efficient tool to access a panel of functionalized thiocyanated compounds (21 examples, up to 78% yield). Post-functionalization reactions further demonstrated the synthetic utility of the approach by converting the SCN-containing molecules into value-added scaffolds.

Over the years, the direct functionalization of a simple C–H bond by transition metal catalysis became an efficient and pivotal tool in organic chemistry, answering to the increasing demand for more sustainable chemical transformations.[1],[2] Indeed, an array of methodologies was developed to build up a C–N, C–O, C–X or C–C bond. However, less attention was paid to the formation of the C–S bond by transition metal catalyzed C–H bond activation[2] as sulfur poisoning of the transition metal might be a problem to circumvent.[3] Nevertheless, key advances were made by several research groups using Pd[2],[4], Rh,[5] Ru,[5] Cu,[5] Co,[5] and Ni-catalysts, among others (Scheme 1).[5a,b] These major contributions brought synthetic solutions for making C–S bonds generally using di(hetero)aryl disulfides as coupling partners. In sharp contrast, the directed thiocyanation reaction by transition metal catalysis is still elusive, and the existing methods are based on the functionalization of innate positions. Convinced about the key role of organothiocyanate compounds,[5a,b] for agrochemicals and medicinal chemistry along with the synthetic utility of the SCN residue as a linchpin[6] to access a large variety of sulfur-containing molecules,[5] we thought that the development of a new tool for the direct introduction of a SCN moiety by transition metal catalyzed C–H bond activation is of prime importance and constitutes today a challenge.

To this end, in course of our research program dedicated to the development of new methodologies to build up C–S bonds by transition metal catalyzed C–H bond activation,[7] we report herein an unprecedented directed Pd-catalyzed thiocyanation reaction by C–H bond activation.

At the outset of this study, the 2-phenylpyridine was selected as the model substrate (Table 1). Pleasingly, in the presence of N-(thiocyanato)phthalimide as the electrophilic SCN source and using a catalytic amount of PdCl₂, the mono-thiocyanation of 1a occurred, affording the product 2a in 67% yield (Table 1, entry 1). Then, several parameters were investigated to further improve the efficiency of the transformation. First, different catalysts were tested (Table 1, entries 2–5) and PdCl₂ turned out to be the best one. It must be noted that when the catalyst loading was decreased (Table 1, entry 6), a significant drop of the yield was observed (37% vs. 67%). The replacement of DMF by other solvents did not improve the reactivity (Table 1, entries 7–10) and the temperature as well as the time turned out to be key parameters in this transformation (Table 1, entries 11–14). When other electrophilic SCN sources (II–IV) were provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made.

Scheme 1. State of the art on transition metal catalyzed directed C–S bond formation by Cl(sp²)–H bond activation and the present work.

[a] M. Gao,* M.-Y. Chen,* Prof. Dr. X. Pannecoucke, Prof. Dr. P. Jubault, Prof. T. Besset
Normandie Univ, INSIA Rouen
UNIROUEN, CNRS, COBRA (UMR 6014)
76000 Rouen (France)
E-mail: tatiana.besset@insa-rouen.fr

[†] These authors contributed equally to this work.
[‡] Supporting information and the ORCID identification number(s) for the author(s) of this article can be found under: https://doi.org/10.1002/chem.202003521.

© 2020 The Authors. Published by Wiley-VCH GmbH. This is an open access article under the terms of Creative Commons Attribution Non-Commercial-NoDerivs License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made.

Part of a Special Issue celebrating the 1000th issue of Chemistry—A European Journal.
formed without catalyst (Table 1, entry 20) and no product was observed, which confirmed the importance of the PdII catalyst in that transformation.

With the optimized reaction conditions in hand, a series of 2-phenylpyridine derivatives was evaluated (Scheme 2). The thiocyanation of the 2-phenylpyridine 1a provided selectively an access to the mono-functionalized product 2a in 63% yield and the reaction was easily scaled up on a gram scale, affording 2a in 40% yield. When the naphthalene derivative 1b was used, the expected product 2b was obtained in 53% yield and its structure was further confirmed by X-ray analysis (CCDC 1993683).

Even ortho- (1o) and ortho, meta-disubstituted (1p) derivatives were suitable substrates. It must be noted that the transformation was tolerant to halogens (2f–2h, 2p) and fluorinated groups (2h–2j), although no reaction was observed with compounds bearing more sensitive functional groups such as alcohol, amine, nitrile.

Pleasingly, when an heteroaromatic substrate namely the 2-(2-thienyl)pyridine was reacted, the methodology furnished the corresponding product 2q in 41% yield.

A control experiment was conducted in the absence of Pd-catalyst using 1p and 1q as starting materials and no product was observed, which allowed us to rule out a Friedel–Crafts type reaction. Finally, when substrates bearing a pyrimidine or a pyrazole as directing groups were used, the expected products 2r and 2s were obtained in lower yields (44% and 28% yields, respectively).

We were pleased to see that our methodology was also applied to the thiocyanation of the N-pyrimidine carbazole 3 and the benzo[h]quinoline 5, offering an access to the corresponding products 4 and 6 in 33% and 78% yields, respectively.

Table 1. Optimization studies for the thiocyanation of the 2-phenylpyridine 1a.$^{[a]}$

Entry	Catalyst	Solvent	SCN source	Yield [%]
1	PdCl$_2$	DMF	I	67
2	PdBr$_2$	DMF	I	18
3	Pd(OAc)$_2$	DMF	I	36
4	Pd(MeCN)$_2$Cl	DMF	I	NR
5	Pd(PPh$_3$)$_2$	DMF	I	57
6	PdCl$_2$	DMSO	I	57
7	PdCl$_2$	DCE	I	46
8	PdCl$_2$	toluene	I	27
9	PdCl$_2$	1,4-dioxane	I	28
10	PdCl$_2$	DMF	I	28
11	PdCl$_2$	DMSO	I	28
12	PdCl$_2$	DCE	I	9
13	PdCl$_2$	DMF	II	NR
14	PdCl$_2$	DMF	III	traces
15	PdCl$_2$	DMF	IV	NR
16	PdCl$_2$	DMF	I	57
17	PdCl$_2$	DMF	I	57
18	PdCl$_2$	DMF	I	57
19	PdCl$_2$	DMF	I	57
20	–	DMF	I	NR

[a] Reaction conditions: 1a (0.2 mmol, 1 equiv), reagent I (2 equiv), catalyst (20 mol%), in solvent (0.1 mL) at 100 °C for 16 h under argon. Isolated yields were given. [b] PdCl$_2$ (10 mol%). [c] 120 °C. [d] 80 °C. [e] 8 h. [f] 24 h. [g] AcOH (1 equiv) was used. [h] CsOPiv (1 equiv) was used. NR = No Reaction.

Scheme 2. Scope of the Pd-catalyzed thiocyanation reaction of 2-phenylpyridine derivatives. Reaction conditions: 1 (0.3 mmol), I (2 equiv), PdCl$_2$ (20 mol%), DMF (0.1 mL), 100 °C, 16 h, Ar. Isolated yields were provided. [a] Reaction was run on 0.2 mmol scale. [b] Reaction was run on a gram scale. [c] The product was obtained with an inseparable impurity. [d] PdCl$_2$ (15 mol%), I (1.55 equiv). [e] No reaction occurred in the absence of PdCl$_2$.

Chem. Eur. J. 2020, 26, 15497 – 15500 www.chemeurj.org
(Scheme 3). To further demonstrate the synthetic utility of the organothiocyanate compounds, the SCN residue was easily converted into high value-added groups (Scheme 4). The tetrazole 7 was synthesized by reacting 2a with NaN₃ via a [3+2]-cycloaddition reaction. Then, the trifluoromethylthiolation of the derivative 2c was carried out using the conditions described by Gooßen, leading to the corresponding product 8 in 43% yield.

Based on the literature, the following mechanism was suggested (Scheme 5). The metallacycle formation (intermediate A) followed by an oxidative addition with the reagent I, would provide the Pd⁹ intermediate B. Finally, a final reductive elimination would afford the expected product 2a and regenerate the catalyst.

In summary, the regioselective Pd-catalyzed directed monothiocyanation of 2-phenylpyridine and heteroarene derivatives by C–H bond activation was developed. With this innovative methodology, a panel of aromatic derivatives was functionalized in moderate to good yields (21 examples, up to 78% yield). Finally, the introduction of the thiocyanate group as a “synthetic transformable handle” reinforced the synthetic utility of the depicted method as it opened several possibilities towards a large variety of high value-added compounds. To this end, post-functionalization reactions were smoothly achieved. We believe that this original approach to build up C–SCN bond by C–H bond activation will be useful for the organic chemistry community and will open new avenues towards further investigations regarding the potential of the SCN group.

Acknowledgements

This work was partially supported by Normandie Université (NU), the Région Normandie, the Centre National de la Recherche Scientifique (CNRS), Université de Rouen Normandie (URN), INSA Rouen Normandie, Labex SynOrg (ANR-11-LABX-0029) and Innovation Chimie Carnot (I2C). M.G. and T.B. thank the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement no. 758710). M.-Y.C. thanks the French National Research Agency for a doctoral fellowship (ANR-17-CE07-0038-01). M.G. thanks the Region Normandy for a doctoral fellowship.

Conflict of interest

The authors declare no conflict of interest.

Keywords: C–H activation · homogeneous catalysis · palladium · synthetic methodology · thiocyanation

[1] For selected reviews, see: a) T. M. Lyons, M. S. Sanford, Chem. Rev. 2010, 110, 1147–1169; b) R. Jazzer, J. Hitte, A. Renaudat, J. Sofack-Kreutzger, O. Baudoin, Chem. Eur. J. 2010, 16, 2654–2672; c) K. Engle, T.-S. Mei, M. Wasa, J.-Q. Yu, Acc. Chem. Res. 2012, 45, 788–802; d) Z. Chen, B. Wang, J. Zhang, W. Yu, Z. Liu, Y. Zhang, Org. Chem. Front. 2015, 2, 1107–1295; e) C–H Bond Activation and Catalytic Functionalization II, Topics in Organometallic Chemistry, Vol. 56, Eds.: P. H. Dixneuf, H. Doucet, (eds), Springer, 2016; f) G. Potschtnig, N. Maulide, M. Schnürch, Chem. Eur. J. 2017, 23, 9206–9232; g) C. Sambiagio, D. Schönbauer, R. Bieck, T. Dao-Huy, G. Potschtnig, P. Schafa, T. Wiesinger, M. F. Zai, J. Wencel-Delord, T. Besiet, B. U. W. Maes, M. Schnürch, Chem. Soc. Rev. 2018, 47, 6603–6743; h) C. Ma, P. Fang, T.-S. Mei, ACS Catal. 2018, 8, 7179–7189; i) P. Gandeepan, T. Müller, D. Zell, G. Cera, S. Warratz, L. Ackermann, Chem. Rev. 2019, 119, 2192–2452; j) For an issue on C–H bond activation, see: Chem. Rev. 2017, 117, Issue 13, https://pubs.acs.org/toc/chemrev/117/13; k) A. Dey, S. K. Sinha, T. K. Achar, D. Maiti, Angew. Chem. Int. Ed. 2019, 58, 10820–10843; l) Angew. Chem. 2019, 131, 10934–10958; m) S. Rej, Y. Ano, N. Chatani, Chem. Rev. 2020, 120, 1788–1887; m) J. Ghorai, P. Anbarasan, Asian J. Org. Chem. 2019, 8, 430–455.

[2] For selected reviews, see: a) W. Ma, N. Kaplaneris, X. Fang, L. Gu, R. Mei, L. Ackermann, Org. Chem. Front. 2020, 7, 1022–1060; b) M. Iwasaki, Y. Nishihara, Dalton Trans. 2016, 45, 15278–15284; c) C. Song, K. Liu, X.
For selected examples using Pd-catalysts, see:

a) X. Zhao, E. Dimitrijevic, J. Am. Chem. Soc. 2009, 131, 3466 –3467;

b) M. Iwasaki, M. Iyanaga, T. Tsuchiya, Y. Nishimura, W. Li, Z. Li, Y. Nishihara, Chem. Eur. J. 2014, 20, 2459 –2462;

c) C. Xu, Q. Shen, Org. Lett. 2014, 16, 2046 –2049;

d) W. Yin, Z. Wang, Y. Huang, Adv. Synth. Catal. 2014, 356, 2998 –3006;

e) R. Qiu, P. V. Reddy, T. Iwaiaki, N. Kambe, J. Org. Chem. 2015, 80, 367 –374;

f) X. S. Zhang, G. Li, X. Z. Zhang, J. Photochem. Photobiol. A: Chem. 2014, 260, 5458 –5464;

g) M. Chaitanya, P. Anbarasan, Org. Lett. 2018, 20, 3362 –3366;

h) L. Gu, F. Fang, Z. Wang, Y. Song, W. Ma, Eur. J. Org. Chem. 2019, 1825 –1829;

For selected examples using Rh-catalysts, see:

i) Y. Yang, W. Hou, L. Qin, J. Du, H. Feng, B. Zhou, Y. Li, Chem. Eur. J. 2014, 20, 416 –420;

j) S. Yang, B. Feng, Y. Yang, J. Org. Chem. 2017, 82, 12430 –12438;

k) Y.-S. Kang, P. Zhang, M.-Y. Li, Y.-K. Chen, H.-J. Xu, J. Zhao, W.-Y. Sun-J., Q.-Y. Yu, Y. Lu, Angew. Chem. Int. Ed. 2019, 58, 9099 –9103;

l) Angew. Chem. 2019, 131, 9197 –9201; For selected examples using Ru-catalysts, see:

m) S. Shu, Z. Fan, Q. Yao, A. Zhang, J. Org. Chem. 2016, 81, 5263 –5269;

n) A. Mandal, S. Dana, H. Sahoo, G. S. Grandhi, M. Baidya, Org. Lett. 2017, 19, 2430 –2433;

o) W. Ma, Z. Weng, T. Rogge, L. Gu, J. Lin, A. Peng, X. Luo, X. Gou, L. Ackermann, Adv. Synth. Catal. 2018, 360, 704 –710;

p) For selected examples using Cu-catalysts, see:

q) X. Chen, X. S. Hao, C. E. Goodhue, J.-Q. Yu, J. Am. Chem. Soc. 2006, 128, 6790 –6791;

r) P. L. Chu, X. Yue, F. L. Qiang, Org. Lett. 2010, 12, 1444 –1447;

s) L. D. Tran, I. Popov, O. Daugulis, J. Am. Chem. Soc. 2012, 134, 18237 –18240;

t) H. Jiang, W. Yu, X. Tang, J. Li, W. Wu, J. Org. Chem. 2017, 82, 9312 –9320;

u) S.-L. Liu, X.-H. Li, T. H. Shi, G.-C. Yang, H.-L. Wang, J.-F. Gong, M.-P. Song, Eur. J. Org. Chem. 2017, 2290 –2293;

v) Y. Li, Y.-J. Liu, B.-F. Shi, Adv. Synth. Catal. 2017, 359, 4117 –4121; For selected examples using Co-catalysts, see:

w) T. Gensch, F. J. R. Klauck, F. Glorius, Angew. Chem. Int. Ed. 2016, 55, 11287 –11291;

x) Angew. Chem. 2016, 128, 11457 –11461;

y) M. Yoshida, K. Kawai, R. Tanaka, T. Yoshino, S. Matsunaga, Chem. Commun. 2017, 53, 5974 –5977;

z) W. Hu, X. Chen, L. Yu, Y. Yu, Z. Tan, G. Zhu, Q. Gui, Org. Chem. Front. 2018, 5, 216 –221;

aa) M. Li, J. J. Wang, Org. Lett. 2018, 20, 6490 –6493; For selected examples using Ni-catalysts, see:

bb) C. Li, D. Li, B. Wang, J. Yao, Y. Zhang, Org. Lett. 2015, 17, 1328 –1331;

c) Y. E. J. L. Petersen, X. Shi, Chem. Commun. 2015, 51, 7863 –7866;

d) X. Wang, R. Qiu, C. Yan, P. V. Reddy, L. Zhu, X. Xu, S.-F. Yin, Org. Lett. 2015, 17, 1970 –1973;

e) S.-Y. Yan, Y.-J. Liu, B. Liu, Y.-H. Liu, Z.-Z. Zhang, B.-F. Shi, Chem. Commun. 2015, 51, 7341 –7344;

f) S.-Y. Yan, Y.-J. Liu, B. Liu, Y.-H. Liu, B.-F. Shi, Chem. Commun. 2015, 51, 4069 –4072; For selected examples using Cu-catalysts, see:

Y. Zhang, H. Lu, Chem. Commun. 2015, 51, 3582 –3585;

T. Müller, L. Ackermann, Chem. Eur. J. 2016, 22, 14151 –14154.

For selected examples, see:

a) T. Castanheiro, J. Suffert, M. Donnad, M. Gulea, Chem. Soc. Rev. 2016, 45, 494 –505;

b) X. Qing, Z. Lianyang, F. Gaofeng, J. Chengan, Chin. J. Org. Chem. 2018, 39, 287 –300;

c) E. A. Iardti, E. Vitaku, J. T. Njardarson, J. Med. Chem. 2014, 57, 2832 –2842;

d) A. W. Erian, S. M. Sherif, Tetrahedron 1999, 55, 7957 –8140;

e) K. Nikiofar, Chem. Sci. Trans. 2013, 2, 691 –700;

f) M. Mellah, A. Voluizere, E. Schulz, Chem. Rev. 2007, 107, 5133 –5209;

g) H.-Y. Xiong, X. Panneeucou, T. Besset, Org. Chem. Front. 2016, 3, 620 –624;

h) M. Gulea, M. Donnad, Curr. Green Chem. 2020, 7, 201 –216.