Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website.

Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.
Integrative resource for network-based investigation of COVID-19 combinatoric drug repositioning and mechanism of action

AKM Azad¹§, Shadma Fatima¹,²§, Alexander Capraro³,⁴, Shafagh A. Waters³,⁴,⁵, Fatemeh Vafaee¹,⁶*#

¹School of Biotechnology and Biomolecular Sciences, University of New South Wales (UNSW Sydney), NSW, Australia
²Department of Medical Oncology, Ingham Institute of Applied Research, Sydney, Australia
³School of Women’s and Children’s Health, Faculty of Medicine, UNSW Sydney, NSW, Australia
⁴Molecular and Integrative Cystic Fibrosis Research Centre, UNSW Sydney and Sydney Children’s Hospital, Australia
⁵Department of Respiratory Medicine, Sydney Children’s Hospital, Sydney, NSW, Australia
⁶Data Science Hub, University of New South Wales, NSW, Australia

§ These authors contributed equally to this work.

* Correspondence to:
Fatemeh Vafaee, PhD
Senior Lecturer, Bioinformatics | AI in Biomedicine
School of Biotechnology and Biomolecular Sciences
UNSW SYDNEY NSW 2052 AUSTRALIA
Email: f.vafaee@unsw.edu.au
Telephone: +61 (2) 9385 3281

Lead Contact:
Email: f.vafaee@unsw.edu.au
Summary

An effective monotherapy to target the complex and multifactorial pathology of SARS-CoV-2 infection poses a challenge to drug repositioning, which can be improved by combination therapy. We developed an online network pharmacology-based drug repositioning platform, COVID-CDR (http://vafaelab.com/COVID19repositioning.html), that enables a visual and quantitative investigation of the interplay between the drug primary targets and the SARS-CoV-2–host interactome in the human protein-protein interaction network. COVID-CDR prioritizes drug combinations with potential to act synergistically through different, yet potentially complementary pathways. It provides the options for understanding multi-evidence drug-pair similarity scores along with several other relevant information on individual drugs or drug pairs. Overall, COVID-CDR is the first-of-its-kind online platform that provides a systematic approach for pre-clinical in silico investigation of combination therapies for treating COVID-19 at the fingertips of the clinicians and researchers.

Keywords: COVID-19, drug repositioning, combination therapies, SARS-CoV-2
Introduction

The COVID-19 pandemic caused by a novel coronavirus SARS-CoV-2 has caused a grave threat to public health and an unprecedented loss to the global economy. A worldwide scientific attention has been focused on drug repositioning to rapidly identify interventions for COVID-19 prevention and cure\(^1\). In addition to time effective solutions for disease treatment, drug repositioning provides better value healthcare by reducing cost and avoiding risk as multiple phases of de-novo drug discovery can be bypassed\(^2\). An effective monotherapy to target the complex and multifactorial pathology of SARS-CoV-2 infection poses a challenge to drug development, which can be improved by combination therapy\(^3,4\). The increased therapeutic efficacy due to combination therapy could result in lower-dose prescribing, reducing risk of side effects and toxicity hazards. However, due to the large number of possible drug pairs, our ability to find and verify effective combinations is limited by this combinatorial explosion\(^5\).

Over the last decade, a variety of computational drug-repurposing methods have been developed. Some of these have been applied to search for new therapeutics against COVID-19 (as recently reviewed\(^6\)), most of which focused on developing monotherapy strategies. Among these methods, network pharmacology approaches that quantify the interplay between the SARS-CoV-2–host interactome and drug targets in the human protein-protein interaction (PPI) network have offered a ground for prioritizing effective repositioning candidates as both mono- and combination therapies\(^7,9\). However, most of the former network pharmacology studies focused on prioritising and reporting a few individual drugs or drug pairs (Table S8). There has been a lack of an integrative and accessible platform enabling the investigation of a large set of repositioning drug candidates for their putative efficacy and mechanism of action.

To address this resource gap, we developed COVID-CDR (COVID-19 Combinatorial Drug Repositioning), an integrative web-based computational platform that prioritises complementary and additive drug combinations for SARS-CoV-2 treatment. COVID-CDR compiles a large set of FDA-approved drugs, investigational compounds previously used to treat COVID-19 symptoms, and drugs in clinical trials for COVID-19 treatment. For a given drug combination, COVID-CDR constructs a multi-level interactome encompassing drug-target/s, target-human and viral-human interactions overlaid on a comprehensive human PPI network. By leveraging this network, COVID-CDR prioritizes drugs with primary host protein targets in close vicinity to SARS-CoV-2 proteins, highlighting those that may have potential to interfere with viral or host-virus functions. Moreover, COVID-CDR prioritizes drug combinations with potential to
act synergistically through different, yet potentially complementary pathways. This network-based information is complemented with a diverse drug-drug similarity measurement as well as drug pair synergy in cell lines to offer a rational multi-level, multi-evidence solution for investigating drug combination strategies against COVID-19.

COVID-CDR also includes a multitude of useful drug information all in one intuitive platform, including drug structure, drug physicochemical properties, therapeutic class, indications, side-effects, induced pathways, and drug-drug interactions which together form a unique starting point for \textit{in silico} COVID-19 combinatorial drug repositioning. We demonstrated the utility of COVID-CDR for combination of LY2275796 and cyclosporine and explained the mechanism of action of such combination. To the best of our knowledge, \textit{COVID-CDR} is the first computational online tool to integrate COVID-19 drug information in the context of virus and human interaction networks, which may facilitate a better understanding of the molecular mechanisms of drug actions for the identification of potentially effective drug combinations and can help in prioritizing therapies of COVID-19 worldwide.

\textbf{Results}

\textit{COVID-CDR overview and statistics}

Figure 1 shows the \textit{COVID-CDR} platform content and construction. 867 drugs with reported evidence in treating COVID-19 symptoms or under-investigation in trials were pre-compiled (Table S1). Of these drugs, 57\% were approved for an indication, 41\% are investigational, and >2\% were veterinary-approved, nutraceutical or withdrawn. These drugs cover a wide range of therapeutic classes (>200 categories) including antivirals, antibiotics, anti-cancer, anti-inflammatory, immunomodulatory, immuno-suppressive, and anti-coagulant agents. Multiple drug-related information sources including chemical structure, physiochemical and pharmacological properties, side effects, protein targets, associated pathways, and drug-drug interactions were compiled from diverse resources for each drug (Table 1) and are accessible to explore from the web interface.

COVID-CDR constructs a multi-dimensional network (Figure 1A) comprising drug-target interactions (867 drugs, 2,228 protein targets, and 4,866 interactions), and high-confidence binding associations between SARS-CoV-2 and human proteins (28 viral proteins, 340 human proteins, and 414 interactions) overlaid on a comprehensive experimentally validated human protein-protein interactome (469,515 PPIs). SARS-CoV-2-host protein-protein interaction
network was curated from literature10,11 and relevant interaction databases12. In addition, we incorporated the SARS-CoV-1 virus-host protein-protein interaction network which can serve as a valuable reference due to the close similarity between SARS-CoV-1 and SARS-CoV-2 proteins13-15. This multi-dimensional interactome (Table S2) has been used to estimate the topological proximity of drug targets to COVID-19-related proteins and quantify the separation of drug targets on human protein-protein interactome for network-based exploration of efficacious drug combinations (Figure 1C, \textit{c.f.}, Methods). In addition to network-based topological metrics, the functional relevance of drug targets with COVID-related cellular biological processes were estimated (Figure 1D).

Furthermore, for each drug pair, structural and functional similarity measures were estimated (Figure 1B, Table S3). Multiple studies suggest that synergy is associated with functional similarity/dissimilarity of drug pairs16,17. Distinct drug-drug similarity matrices were generated based on chemical structures, target protein sequences, induced pathways, and target protein function, i.e., cellular components, biological processes, and molecular functions (see Methods). The size of each matrix is 867 by 867, i.e., 751,689, and values range from zero to one. The individual similarity matrices were then mean-aggregated to form a combined-score similarity matrix and z-transformed for significance assessment (Table S3). Overall, the network proximity of drug-drug pairs holds negative but insignificant correlation with structural and functional similarities (Figure S2).

To provide in-action examples of studies likely to influence clinical practice, 36 different drug combinations were incorporated in the platform involving more than 20 different drugs in various clinical trials designed for treating COVID-19 from \textit{Clinicaltrials.gov} database (Figure 1E, Table S5). Additionally, 150 pairs of COVID-19-related drugs approved by FDA for other indications were compiled (Table S6). Table 2 provides statistics and details of external drug combinations included in this platform.

COVID-CDFR also incorporated the high-throughput viability screening results related to drug combinations assessed on more than 124 immortalized human cancer cell lines (Figure 1E, Table S7) assembled by Liu and colleagues18. While reduction in cancer cell proliferation and/or viability may not be associated with antiviral effects, it indicates that at least in a different context/endpoint, the evaluated drugs have shown synergistic interaction.
Prioritization of individual drugs based on the topological and functional proximity between known primary targets and SARS-CoV-2 proteins in the PPI network

The network-based drug repositioning prioritization is based on the notion that for a drug to be efficacious, its target proteins should be within or in the immediate neighborhood of the corresponding subnetwork of the disease-related proteins in the human interactome5,7,19-22. Accordingly, the topological distance of a drug to SARS-CoV-2 proteins was measured as the network-based shortest distance of the drug’s primary targets to SARS-CoV-2-related proteins (i.e., disease module) on human PPI network (see Methods). SARS-CoV-2-related proteins considered in this study include viral proteins, human proteins interacting with SARS-CoV-2, and virus entry factors (Table S2). To quantify the significance of the shortest distances between drug and disease module, drug-disease proximity measures were then converted to z-scores (z) based on permutation tests as previously explained5,7, and the corresponding p-values were estimated. For $z < 0$ (and the corresponding p-value < 0.05), the drug–target subnetwork (i.e., drug module) and the disease module are significantly proximal and often overlap; while for $z \geq 0$, the drug module and the disease module are distal and thus separated5,23. Overall, 543 drugs topologically overlap with SARS-CoV-2 module ($z < 0$), 118 of them show significant exposure with the disease module ($z < 0$ and p-value < 0.05, permutation test, Table S1).

The network-based topological proximity of drug module to the disease module measures the immediate vicinity of drug targets to SARS-CoV-2 proteins on cellular interactome. However, it falls short in capturing the effect of drug’s downstream changes in biological processes perturbed under the impact of the SARS-CoV-2 infection. Hence, the topological proximity was complemented with a measure of drug-disease functional proximity that quantifies the similarity between biological processes significantly enriched (FDR < 0.05) by a drug module (drug primary target/s and their direct interactors in PPI) and the disease module (SARS-CoV-2-related proteins). The similarity between drug- and disease-associated biological processes was estimated using Gene Ontology-based semantic similarity measure which leverages on the ontology graph structure and information content to estimate similarities among gene ontology terms24. Table S4 shows biological processes enriched by SARS-CoV-2 related proteins (FDR < 0.05). Drug-disease functional proximities are ranged between 0 and 1 with the mean value of $\mu = 0.29$ (Figure S1A). Overall, the higher the similarity is the greater the effect of the drug would be in perturbing disease-related mechanisms. Similarity measures were standardized to z-scores and the corresponding one-tailed p-values (i.e., $P[X > x]$) were estimated; 306 drugs hold z-score $> \mu$, among them 82 have p-value < 0.05 (Table S3). SARS-CoV-2 functional
proximities of drugs are inversely correlated to the corresponding topological proximities (Pearson’s correlation coefficient = -0.413) and hold relatively weak linear relationship ($R^2 = 0.17$), indicating that these two measurements are complementary rather than being redundant justifying the integration (Figure S1B).

Prioritization of drug combinations based on the difference in PPI footprint of drugs

For drugs whose known primary targets are topologically and functionally proximal to SARS-CoV-2-related proteins, combinations can be prioritized based on the separation of drug-target modules in PPI. It has been previously hypothesized that different drug-target module has different network-based footprint; two drugs are pharmacologically distinct if the footprints of the drug-target modules are topologically separated. A drug combination is therefore putatively effective if it follows a complementary exposure pattern (Figure 1C) indicating that targets of individual drugs (in a combination) overlap with the disease module but target separate neighborhoods on the interactome. Accordingly, for each drug pair A and B, a network separation measure, s_{AB}, was estimated as the mean shortest distance within the interactome between the targets of two drugs (Equation 3, Methods). For $s_{AB} < 0$, drug target subnetworks overlap, while for $s_{AB} \geq 0$, they are separated on the interactome. Hence, complementary exposure implies that $s_{AB} \geq 0$, $z_A < 0$, and $z_B < 0$.

For FDA-approved drug-pairs, median(s_{AB}) = 1.0 and median(z-scores) = -0.75 and 31% of drug pairs follow the complementary exposure criteria. Note that these drugs are not meant to overlap with SARS-CoV-2 module as they are approved for other indications. However, 84% of FDR-approved drug pairs show distinct PPI footprints, i.e., $s_{AB} \geq 0$ (p-value = 0.0016, Fisher’s exact test with hypergeometric null distribution). For drug pairs in COVID-19 clinical trials, median(s_{AB}) = 0.833 and median(z-scores) = -0.47. Out of drug pairs with human and/or SARS-CoV-2/SARS-CoV-2 primary targets, 25% follow the complementary exposure criteria and 75% have distinct PPI footprints ($s_{AB} \geq 0$) with at least one drug in close proximity to the disease module ($z_A < 0$ or $z_B < 0$); p-value = 0.138 using Fisher’s exact test with hypergeometric null distribution.

Database access and usage notes

Figure 2 shows the COVID-CDR web interface. The user can query drug combinations simply by using the search option and can start with two drugs of choice (Figure 2A). If required, additional drugs can be added on the top of the built network to explore a combination of three or more drugs. When displaying the drug-targets network, each node type is highlighted with a
specific color: pink nodes indicate drugs, blue nodes are human proteins directly targeted by the
drug while green nodes are other human host proteins, red nodes indicate SARS-CoV-2 proteins,
and purple nodes indicate other viral proteins. Users can simply hover on the individual drug to
check the information related to the drug such as its therapeutic class, primary indication, and
disease topological and functional proximities. While being selected, details of a drug and its
target information can be observed by clicking a small brain tab in the top right (Figure 2B),
which displays physiochemical properties of the queried drug, its chemical structure in an
interactive 3D view, and its pharmacological properties providing an all-in-one view for further
investigation of the drug of interest. The platform also provides the flexibility of querying any
drug beyond the 867 pre-compiled drugs, by using the customize tab in the top right (Figure 2B)
to upload drug-target interactions into the platform. The drug will be integrated into the in-
screen network and drug-disease functional and topological proximity measures as well as drug-
pair separation measures will be estimated in real-time.

Upon completion of network rendering, user can observe pair-wise multi-modal drug similarity
information and their network separation score by interacting with the tab at the bottom of
interface (Figure 2B). The induced sub-network of the queried drug(s) in the network-view is
also interactive and query-able, and upon selecting an edge, a PubMed query is made with its
incident nodes (e.g., protein-pair or drug-protein), and the search results of literature list are
displayed as a table in a modal window. Under the curated combination tabs user can also check
the network for clinical drug combinations by clicking the clinical trial tab at top left, these 40
selected bi- or tri-drug combinations are currently under ongoing clinical trials for COVID-19
treatment (Figure 2C). Additionally, the network-based action mechanisms of FDA approved
drug combinations can be explored. The sensitivities of the various cancer cell lines to the
chosen drugs combinations can be viewed as well with the 'ranking' function of the tabular
viewer. Users can quickly identify drug combinations with high sensitivity toward the specific
cell lines with respect to certain types of synergy scores, such as Bliss, Loewe, or ZIP. All these
files can be downloaded from the download tabs at the top front page of COVID-CDR interface.

Case study: LY2275796 and cyclosporine combination therapy

We sought to use our platform to identify drug combinations that may provide effective
synergistic therapy in potentially treating SARS-CoV-2 infection along with displaying well-
deﬁned mechanism-of-action by the implemented functional and network-based analyses. The
utility of COVID-CDR and its integrated network-based system medicine approaches is
showcased by LY2275796 and cyclosporine combination. Our network analysis indicates that LY2275796 and cyclosporine synergistically target SARS-CoV-2-associated host protein subnetwork by “Complementary Exposure” pattern, offering potential combination regimens for the treatment of SARS-CoV-2 (Figure 3). The targets of both drugs hit the SARS-CoV-2 host subnetwork (overlap with the disease module), but the targets separate neighborhoods in the human interactome network. Briefly, the negative value of topological network proximity for both the drugs suggested proximity with the disease module (LY2275796: z-score=−1.68, p-value = 0.01; cyclosporine: z-score=−2.24, p-value=0.01). Simultaneously, the higher positive value for functional proximity for both drugs (LY2275796: z-score=4.42, p-value=4.86E-06; cyclosporine: z-score=2.40, p-value=0.008) indicated significant similarity between the biological processes targeted by these drugs and the perturbed cellular processes in SARS-CoV2–infection implying potentially high effectiveness of each drug. Moreover, the two drugs denote positive separation score (s_{AB}=0.46) between the sub-modules suggesting no overlap between the targets of LY2275796 and cyclosporine, and thus the efficacy of the combination therapy.

All viruses require host protein synthesis machinery for replication before release and infection of neighbouring cells. Numerous promising antiviral therapies against SARS-CoV-2 are being investigated with the hope to stop the virus from utilizing host machinery, and thus preventing its replication and spread. The translation of most of the viral (sub-genomic) mRNAs is believed to be cap-dependent which displays a requirement for eukaryotic initiation factor 4F (eIF4F), a heterotrimeric complex consisting of eIF4E, the cap-binding protein; eIF4A, an RNA helicase; and eIF4G, a large scaffolding protein needed for the recruitment of 40S ribosomes. LY2275796 inhibits eIF4E complex and its activating kinases, MNK1/2 and is currently in Phase 1 development as the second antisense anti-cancer drug. Inhibition of eIF4A or eIF4F, the catalytic subunits of eIF4F, is shown to lead apoptosis in selected cancer models. EIF4E, F and G proteins are involved in tumour progression, angiogenesis, and metastases. Inhibiting eIF4E inhibits Ras-Mnk and PI3-AKT-mTOR pathways, which are key nodes where the RAS and PI3K pathways come together and control the production of multiple oncoproteins, which are also important in SARS-COV-2 infection. Targeting this translational pathway could lead to the development of new, more effective antiviral therapies to fight COVID-19.

In combination with LY2275796, we added cyclosporine, an effective immunosuppressive agent that is often used for prophylaxis of organ rejection. Cyclosporine is a calcineurin inhibitor
that is shown to inhibit the replication of SARS-CoV, MERS-CoV and human immunodeficiency virus (HIV) at very low doses \(^{36}\). From the perspective of our analysed network, cyclosporine would inhibit cyclophilin functions of SARS-CoV-2 by hampering the peptidyl-prolyl isomerase activity (PPIA) (Figure 3). PPIA is a proinflammatory protein which stimulates activation of NF-kappa-B and ERK, JNK and p38 MAP-kinases\(^{37-39}\). Cyclosporine may also act by indirectly inhibiting multiple SARS-CoV-2 proteins (Figure 1)\(^ {40}\).

Importantly, cyclosporine has demonstrated improved clinical outcomes of patients with severe H1N1 pneumonia and acute respiratory failure in SARS-CoV-2 infection via preventing the production of Interleukin-2, an essential cytokine in the cytokine release storm experienced during coronavirus infection\(^ {36,40,41}\). Cyclosporine may also significantly limit the severity of sepsis and/or inflammation-induced acute lung injury and post-cardiac arrest in SARS-CoV-2 patients \(^ {42}\). It has been consistently reported to improve lung function via mitochondrial processes, including PTP inhibition\(^ {37}\). Altogether, our network analyses and literature evidence suggested that combining LY2275796 and cyclosporin can offer a potential combined therapeutic approach for SARS-CoV-2.

Discussion

COVID-CDR contribution compared to related studies

While a number of clinical trials are proposed to test the efficacy of the repurposed drugs against COVID-19, prioritization of many drug candidates has been mostly unstructured \(^ {43}\). Following a network pharmacology approach that quantitatively analyzes the vicinity of drug targets to HCoV proteins on human PPI network, Zhou *et al.*\(^ {7}\) predicted specific mono and combination therapies as potential treatment for COVID-19. The major limitation of this study is lack of availability of SARS-CoV-2-human interactome at the time, so the predictions were made based on host proteins associated with other HCoV species. Moreover, the study does not offer an accessible and generalizable platform to explore other combinations beyond those few drugs predicted by the study. Gordon *et al.*\(^ {10}\) constructed the first human–SARS-CoV-2 protein interaction map based on the affinity purification-mass spectrometry and identified potential repurposing candidates whose primary targets directly interact SARS-CoV-2 proteins. This molecular landscape of the human-SARS-CoV-2 protein interaction has offered a ground for various drug repurposing strategies\(^ {3,44-46}\) and a way towards elucidating the mechanisms of viral infection\(^ {47,48}\). While multiple in-silico studies have now proposed the analysis of virus-host-drug network to prioritize “individual” drug candidates as potential COVID-19 monotherapies, only
few studies identified combination therapies with the potential to act synergistically against SARS-CoV-2 infection (Table S8). Additionally, while GitHub code is available in some cases, these studies often overlooked providing an accessible implementation to conduct the network-based proximity analyses of individual or drug pairs as potential COVID-19 mono- or combination therapies. Among these, COVEX48 is the only online platform that enables a visual exploration of the SARS-CoV-2 virus-host-drug interactome for drug repositioning prediction. COVEX implements several network-based algorithms to prioritize repositionable drugs for COVID-19. The platform however is not intuitively applicable to drug combination prioritization. It lacks in providing an option for the users to start with their own choice of drugs and do not provide comprehensive drug or drug-pair information.

Overall, to the best of our knowledge, COVID-CDR is the first computational online platform for \textit{in-silico} combinatorial drug repositioning which allows visual and quantitative investigation of any individual drug for their potential to interfere with viral functions, as well as any drug pairs for their potency to act synergistically against SARS-CoV-2 infection. Additionally, COVID-CDR compiles a wealth of other very useful information on individual drugs (i.e., drug structure and Physicochemical and pharmacological properties, drug-drug interactions, side effects, induced pathways) and drug pairs (drug-drug similarity measures, drug-drug interactions, and cell line viability synergy scores), all in one place in a very intuitive way. Together, COVID-CDR provides an easy and holistic approach to explore the crucial SARS-CoV-2–human interactome and may provide added promising targets for therapeutic intervention which can be tested in preclinical studies.

\textit{Limitation and future directions}

The potentially best performing drug combinations for treatment of SARS-COV-2 are ranked in COVID-CDR platform based on their \textit{in-silico} scores assessed using network computation methods. The current version of COVID-CDR does not support context-specificity and relies on a general PPI network. This does not guarantee that the same interaction occurs \textit{in vivo} in every cell type as the proteome of each cell type differ. COVID-CDR will be enhanced by incorporating gene expression profiles of SARS-CoV-2 infection across multiple cell models, organoids, and human samples into the protein interactome. Accordingly, the network proximity measures are estimated based on a subnetwork of the protein interactome that is active in the context of the interest (as per user’s choice). Furthermore, the current disease module mainly includes the human proteins directly interacting with SARS-CoV-2. The COVID-CDR disease module, however, will be expanded by incorporating cell line specific genome-wide CRISPR
screens to include host factors critical for SARS-CoV-2 infection beyond those directly interacting with the virus. Moreover, the current version of COVID-CDR does not predict drug combinations and can be mainly used for querying drug pairs of interest or ranking drug pairs based on the measure of interest (i.e., network separation, topological or functional proximity). The platform can be enhanced by incorporating an automated drug pair screening by developing a multi-objective optimiser to identify a pareto set of drug pairs whose PPI fingerprint is separated in PPI yet both drugs are functionally and topologically proximal to the SARS-CoV-2 module in any specific context (cell lines, organoid models, or human samples). COVID-CDR is also not exempt from some common drawbacks in integrative data analysis tools regarding data availability and comprehensiveness. For instance, COVID-CDR is limited to specific organisms (i.e., human, SARS-CoV-2 and to partially SARS-CoV/SARS-CoV-1), and antivirals with targets in other organisms (i.e., Favipiravir, an antiviral used to manage influenza) are not integrable into the network. Additionally, an important step in drug discovery is the assessment of the ADME (absorption, distribution, metabolism, excretion) properties of compounds that can be partially evaluated in silico49 and in vitro50. Information on possible ADME drug-drug-interactions is missing in the current version of the COVID-CDR. Furthermore, the drug-target network was built considering only protein targets, hence nucleic acid targets were not included. These issues could be partially mitigated by a more extensive integration of data from a wider variety of databases. Additionally, despite some similarities in epithelial mesenchymal transitions between cancer cell lines and the SARS-CoV-2 induced epithelial mesenchymal transitions in lung cell lines51, cancer cell lines may not be the most appropriate representative for identifying the synergy/antagonism of drug combinations. More physiologic models, like primary cell cultures and organoid models, are required to better understand this process in a way that is decoupled from the transformed nature of the cancer cell lines.

Experimental Procedures

Full experimental procedures are provided in Supplemental Information.

Resource Availability

Lead Contact

Further information and requests for resources should be directed to the Lead Contact, Fatemeh Vafaee (f.vafaee@unsw.edu.au).

Materials Availability
No materials were used in this study.

Data and Code Availability

To ensure the reproducibility of COVID-CDR, we have made the whole codebase (including any intermediate curation, processing, and the web application) freely available for non-commercial uses in GitHub (first release DOI: https://doi.org/10.5281/zenodo.5089231). The code and interface are well documented, and the database update is implemented as an HPC-powered and parallel processing-enabled, semi-automated pipeline to accommodate anytime system upgradation. The platform is accessible via http://vafaeelab.com/COVID19_repositioning.html.

Acknowledgements

The authors acknowledge funding support from The University of New South Wales (UNSW Sydney), Faculty of Science internal research seed funding and UNSW Research Technology Services for high-performance Computing Resources required for large scale computations involved in this study.

Author Contributions

AKM Azad: Conceptualization, Methodology, Data curation, Software development, Formal analysis, Writing (relevant sections in original draft), Visualization, review & editing. **Shadma Fatima:** Conceptualization, Data curation, Analysis, Validation, Writing – original draft preparation; Writing-review & editing. **Alexander Capraro:** Data curation, Writing-review & editing. **Shafagh Waters:** Data curation, Writing-review & editing. **Fatemeh Vafaee:** Conceptualization, Supervision, Methodology, Resources, Funding acquisition, Formal analysis, Preparation of results, Writing – original draft, Writing - review and editing, Project administration

Declaration of Interests

Dr Fatemeh Vafaee is a member of Patterns Journal's advisory board. Authors declare no other competing interests.
References

1. Yang, P. & Wang, X. COVID-19: a new challenge for human beings. *Cell Mol Immunol* **17**, 555-557 (2020).
2. Pushpakom, S. *et al.* Drug repurposing: progress, challenges and recommendations. *Nature reviews Drug discovery* **18**, 41-58 (2019).
3. Senanayake, S.L. Drug repurposing strategies for COVID-19. (Future Science, 2020).
4. Al Rihani, S.B. *et al.* Risk of adverse drug events following the virtual addition of COVID-19 repurposed drugs to drug regimens of frail older adults with polypharmacy. *Journal of clinical medicine* **9**, 2591 (2020).
5. Cheng, F., Kovacs, I.A. & Barabasi, A.L. Network-based prediction of drug combinations. *Nat Commun* **10**, 1197 (2019).
6. Dotolo, S., Marabotti, A., Facchiano, A. & Tagliaferri, R.J.B.i.b. A review on drug repurposing applicable to COVID-19. *Briefings in bioinformatics* **22**, 41-58 (2019).
7. Zhou, Y. *et al.* Network-based drug repurposing for novel coronavirus 2019-nCoV/SARS-CoV-2. *Cell Discovery* **6**, 1-18 (2020).
8. Fiscon, G., Conte, F., Farina, L. & Paci, P.J.P.c.b. SAvE RUNNER: A network-based algorithm for drug repurposing and its application to COVID-19. *PLoS computational biology* **17**, e1008686 (2021).
9. Stolfi, P. *et al.* Designing a network proximity-based drug repurposing strategy for Covid-19. *Frontiers in cell developmental biology* **8**(2020).
10. Gordon, D.E. *et al.* A SARS-CoV-2 protein interaction map reveals targets for drug repurposing. *Nature* **583**, 459-468 (2020).
11. Gordon, D.E. *et al.* A SARS-CoV-2-Human Protein-Protein Interaction Map Reveals Drug Targets and Potential Drug-Repurposing. (2020).
12. Cook, H.V., Doncheva, N.T., Szklarczyk, D., von Mering, C. & Jensen, L.J. Viruses.STRING: A Virus-Host Protein-Protein Interaction Database. *Viruses* **10**(2018).
13. Hillen, H.S. *et al.* Structure of replicating SARS-CoV-2 polymerase. *Nature* **584**, 154-156 (2020).
14. Jin, Z. *et al.* Structure of M(pro) from SARS-CoV-2 and discovery of its inhibitors. *Nature* **582**, 289-293 (2020).
15. Lan, J. *et al.* Structure of the SARS-CoV-2 spike receptor-binding domain bound to the ACE2 receptor. *Nature* **581**, 215-220 (2020).
16. Liu, Y. & Zhao, H. Predicting synergistic effects between compounds through their structural similarity and effects on transcriptomes. *Bioinformatics* **32**, 3782-3789 (2016).
17. Liu, X. *et al.* Predicting targeted polypharmacology for drug repositioning and multi-target drug discovery. *Curr Med Chem* **20**, 1646-61 (2013).
18. Liu, H. *et al.* DrugCombDB: a comprehensive database of drug combinations toward the discovery of combinatorial therapy. *Nucleic Acids Research* **48**, D871-D881 (2019).
19. Karunakaran, K.B., Balakrishnan, N. & Ganapathiraju, M. Potentially repurposable drugs for COVID-19 identified from SARS-CoV-2 Host Protein Interactome. *Res Sq* (2020).
20. Gao, Y. *et al.* A Novel Network Pharmacology Strategy to Decode Metabolic Biomarkers and Targets Interactions for Depression. *Front Psychiatry* **11**, 667 (2020).
21. Guo, Y. *et al.* Network-Based Combinatorial CRISPR-Cas9 Screens Identify Synergistic Modules in Human Cells. *ACS Synth Biol* **8**, 482-490 (2019).
22. Ding, P., Yin, R., Luo, J. & Kwoh, C.K. Ensemble Prediction of Synergistic Drug Combinations Incorporating Biological, Chemical, Pharmacological, and Network Knowledge. *IEEE J Biomed Health Inform* **23**, 1336-1345 (2019).

23. Barabási, A.-L., Gulbahce, N. & Loscalzo, J. Network medicine: a network-based approach to human disease. **12**, 56-68 (2011).

24. Yu, G. Gene ontology semantic similarity analysis using GOSemSim. in *Stem Cell Transcriptional Networks* 207-215 (Springer, 2020).

25. Cencic, R. et al. Blocking eIF4E-eIF4G interaction as a strategy to impair coronavirus replication. *J Virol* **85**, 6381-9 (2011).

26. Hong, D.S. et al. A phase 1 dose escalation, pharmacokinetic, and pharmacodynamic evaluation of eIF-4E antisense oligonucleotide LY2275796 in patients with advanced cancer. *Clin Cancer Res* **17**, 6582-91 (2011).

27. Zhong, X. et al. Eukaryotic translation initiation factor 4A down-regulation mediates interleukin-24-induced apoptosis through inhibition of translation. *Cancers* **10**, 153 (2018).

28. Dong, K. et al. Tumor-specific RNAi targeting eIF4E suppresses tumor growth, induces apoptosis and enhances cisplatin cytotoxicity in human breast carcinoma cells. *Breast cancer research* **113**, 443-456 (2009).

29. Ur Rasool, R. et al. Dual modulation of Ras-Mnk and PI3K-AKT-mTOR pathways: a novel c-FLIP inhibitory mechanism of 3-AWA mediated translational attenuation through dephosphorylation of eIF4E. *Scientific reports* **6**, 1-16 (2016).

30. Pelletier, J., Graff, J., Ruggero, D. & Sonenberg, N. Targeting the eIF4F translation initiation complex: a critical nexus for cancer development. *Cancer research* **75**, 250-263 (2015).

31. Kosciuczuk, E.M., Saleiro, D. & Platanias, L.C. Dual targeting of eIF4E by blocking MNK and mTOR pathways in leukemia. *Cytokine* **89**, 116-121 (2017).

32. ur Rasool, R. et al. Dual modulation of Ras-Mnk and PI3K-AKT-mTOR pathways: A Novel c-FLIP inhibitory mechanism of 3-AWA mediated translational attenuation through dephosphorylation of eIF4E. *Sci Rep* **6**, 18800 (2016).

33. Icard, P. et al. The key role of Warburg effect in SARS-CoV-2 replication and associated inflammatory response. *Biochimie* **180**, 169-177 (2020).

34. Kumar, R. et al. Role of MAPK/MNK1 signaling in virus replication. *Virus Res* **253**, 48-61 (2018).

35. Kindrachuk, J. et al. Antiviral potential of ERK/MAPK and PI3K/AKT/mTOR signaling modulation for Middle East respiratory syndrome coronavirus infection as identified by temporal kinome analysis. *Antimicrob Agents Chemother* **59**, 1088-99 (2015).

36. Rudnicka, L. et al. Cyclosporine therapy during the COVID-19 pandemic. *J Am Acad Dermatol* **83**, e151-e152 (2020).

37. Smid, M. et al. Breast cancer genome and transcriptome integration implicates specific mutational signatures with immune cell infiltration. **7**, 1-9 (2016).

38. Carbajo-Lozoya, J. et al. Human coronavirus NL63 replication is cyclophilin A-dependent and inhibited by non-immunosuppressive cyclosporine A-derivatives including Alisporivir. *Virus Res* **184**, 44-53 (2014).

39. Jin, Z.G. et al. Cyclophilin A is a proinflammatory cytokine that activates endothelial cells. *Arterioscler Thromb Vasc Biol* **24**, 1186-91 (2004).

40. de Wilde, A.H. et al. Cyclosporin A inhibits the replication of diverse coronaviruses. *J Gen Virol* **92**, 2542-2548 (2011).

41. Cure, E., Kucuk, A. & Cumhur Cure, M. Cyclosporine therapy in cytokine storm due to coronavirus disease 2019 (COVID-19). *Rheumatol Int* **40**, 1177-1179 (2020).
42. Cour, M., Ovize, M. & Argaud, L. Cyclosporine A: a valid candidate to treat COVID-19 patients with acute respiratory failure? *Crit Care* 24, 276 (2020).
43. Jay J H Park, R.M., Gerald E Smith, Etheldreda Nakimuli-Mpungu, Fyezah Jehan, Craig R Rayner, Jeanine Condo, Eric H Decloedt, Jean B Nachega, Gilmar Reis, Edward J Mills., How COVID-19 has fundamentally changed clinical research in global health. *The Lancet Global Health* 9, e711-e720 (2021).
44. Yan, C. *et al.* A Novel Drug Repositioning Approach Based on Integrative Multiple Similarity Measures. (2020).
45. Morselli Gysi, D. *et al.* Network medicine framework for identifying drug-repurposing opportunities for COVID-19. *Proc Natl Acad Sci U S A* 118(2021).
46. Adhami, M., Sadeghi, B., Rezapour, A., Haghdoost, A.A. & MotieGhader, H. Repurposing novel therapeutic candidate drugs for coronavirus disease-19 based on protein-protein interaction network analysis. *BMC Biotechnol* 21, 22 (2021).
47. Zhou, Y. *et al.* A network medicine approach to investigation and population-based validation of disease manifestations and drug repurposing for COVID-19. *PLoS biology* 18, e3000970 (2020).
48. Sadegh, S. *et al.* Exploring the SARS-CoV-2 virus-host-drug interactome for drug repurposing. *Nat Commun* 11, 3518 (2020).
49. Van De Waterbeemd, H. & Gifford, E.J.N.r.D.d. ADMET in silico modelling: towards prediction paradise? *Nature reviews Drug discovery* 2, 192-204 (2003).
50. Balani, S.K., Miwa, G.T., Gan, L.-S., Wu, J.-T. & Lee, F.W.J.C.t.i.m.c. Strategy of utilizing in vitro and in vivo ADME tools for lead optimization and drug candidate selection. *Current topics in medicinal chemistry* 5, 1033-1038 (2005).
51. Stewart, C.A. *et al.* SARS-CoV-2 infection induces EMT-like molecular changes, including ZEB1-mediated repression of the viral receptor ACE2, in lung cancer models. *bioRxiv* (2020).
52. Wishart, D.S. *et al.* DrugBank 5.0: a major update to the DrugBank database for 2018. *Nucleic Acids Res* 46, D1074-d1082 (2018).
53. National Library of Medicine, U.S. ClinicalTrials.gov.
54. Kanehisa, M., Furumichi, M., Tanabe, M., Sato, Y. & Morishima, K.J.N.a.r. KEGG: new perspectives on genomes, pathways, diseases and drugs. 45, D353-D361 (2017).
55. Slentner, D.N. *et al.* WikiPathways: a multifaceted pathway database bridging metabolomics to other omics research. *Nucleic Acids Research* 46, D661-D667 (2017).
56. Kuleshov, M.V. *et al.* Enrichr: a comprehensive gene set enrichment analysis web server 2016 update. *Nucleic Acids Res* 44, W90-7 (2016).
57. Jassal, B. *et al.* The reactome pathway knowledgebase. *Nucleic Acids Research* 48, D498-D503 (2019).
58. Kuleshov, M.V. *et al.* Enrichr: a comprehensive gene set enrichment analysis web server 2016 update. 44, W90-W97 (2016).
59. Brown, K.R. & Jurisica, I.J.B. Online predicted human interaction database. 21, 2076-2082 (2005).
60. Wang, Y. *et al.* Therapeutic target database 2020: enriched resource for facilitating research and early development of targeted therapeutics. *Nucleic Acids Res* 48, D1031-d1041 (2020).
61. Kuhn, M., Letunic, I., Jensen, L.J. & Bork, P.J.N.a.r. The SIDER database of drugs and side effects. 44, D1075-D1079 (2016).
Figure legends

Figure. 1. Schematic workflow for the content and construction of COVID-CDR.
A. Multi-dimensional network construction. COVID-CDR encompasses a comprehensive multi-layer interactome that is curated based on the known SARS-CoV-2 protein-human host interactions; interactions of all drugs and their direct targets along with all experimentally validated human protein-protein interactions. B. Drug-Drug similarity estimation. A number of drug-drug similarity measures were calculated to determine the similarity index of each possible drug combinations (drug chemical structures to estimate drug pair-wise chemical similarity, drug-protein targets and protein sequences to estimate sequence-based target similarity, drug-induced pathways and their constituent genes to estimate pathway-based similarities and GO annotations of protein targets and protein-protein interactions to identify functional similarities). C. Network-based complementary exposure pattern where the targets of the drugs both hit the virus subnetwork but target separate neighborhoods in the human interactome. D. COVID-19 functional proximity estimation. Functional proximity is an added measure which calculates the functional similarity of the COVID-19 related proteins and drug targets. E. Curated drug combinations. Users can explore curated drug combinations, i.e., drug combinations under investigation in COVID-19 clinical trials or FDA approved potential COVID-19 drug combinations. Synergistic scores of specific combinations can be assessed on various cell lines derived from HTS assays. F. Comprehensive information on drugs. Multiple drug-related information sources were compiled and are accessible to explore from the web interface. Abbreviations: GO: Gene Ontology.

Figure 2. An overview of COVID-CDR web interface.
A. The user can query drug combinations simply by using search option and can start with two drugs of the choice. B. Specific queried drug combination and drug-targets network gets displayed. Users can add on another drug on the same combination or query a different drug combination (top left tab). Any drug beyond those pre-compiled, can be also added into the network by specifying drug-target interactions via a file upload (customize tab, top left). The solid lines indicate known/confirmed interactions between drug and target proteins whereas dashed lines indicate predicted interactions based on the similarity of SARS-CoV2 to other H-CoVs. Colour code of nodes are available via a legend icon on top (pink: drugs, blue: human proteins directly targeted by the drug, green: other human host proteins, red: SARS-CoV-2 proteins, and purple: other viral proteins). Details of drugs-target information can be assessed
by clicking a small brain tab (top right) which displays detailed information of the queried drug. User can observe pair-wise multi-modal drug similarity information and their network separation score using the tab at the bottom of GUI. C. Under the curated combination tabs, user can also check the network for COVID-19 clinical drug combinations by clicking the clinical trial tab at top (C, top panel). Additionally, the network-based mechanism of action (PPI footprint) of FDA approved potential COVID19 drug combinations can be explored (C, middle panel). The sensitivities of the various cancer cell lines to the chosen drugs combinations can be viewed as well with the 'ranking' function of the tabular viewer (C down panel).

Figure 3. Integrated network visualization generated for a pair-wise combination of LY2275796 (Cap independent translation inhibitor-Glycosides) and Cyclosporine (Calceinurin inhibitor-immunosuppressant). The top panel indicates possible exposure mode of the SARS-CoV2-associated protein module to the drug cyclosporine. The top left plot shows pathways significantly enriched by direct and indirect targets of cyclosporine (i.e., proteins directly interacting with targets on human PPI). The bottom panel shows the drug-disease module for LY2275796 and pathways significantly enriched by direct and indirect targets of LY2275796.
Tables

Table 1: Data types, statistics and details of data sources used to generate COVID-CDR

Data type	Statistics	Details	Data source
Drug Identifiers, drug names and clinical status	**867** drugs including **487** approved drugs	Molecular weight, Hydrogen bond acceptors/donors, Ring count, Molecular Refractivity and polarizability, CAS number, SMILES, lnChl, IUPAC name, etc.	DrugBank, ClinicalTrials.gov, Literature
Drug physicochemical properties	**16** distinct properties per drug	Description, indication, mechanism of action, target names, toxicity, pharmacodynamics, metabolism, half-life, route of elimination, etc.	DrugBank
Drug pharmacological properties	**16** distinct properties per drug		"
Drug Chemical structures	**726** structures	SDF format	"
Drug target-protein sequences	**2,393** unique protein sequences	FASTA format	"
Drug-target network	**2,228** and **4,866** drug-target pairs	Composed of drugs and their targets from human and other organisms (e.g. SARS-CoV2, SARS-CoV, etc.)	DrugBank
Drug-induced pathways	**298, 459, 226, 1530, 112** pathways from KEGG, WikiPathways, BioCarta, Reactome, and Pather databases, respectively	Based on the over-representation analyses of drug-targets with pathway constituents (Hypergeometric test, p-value <= 0.05)	KEGG, WikiPathway, BioCarta, Reactome, Panther
Gene ontology terms and annotations	**446** **CC**, **1,151** **MF**, and **5,103** **BP** terms, and a total of **250,734** protein-GO term associations	Gene ontology terms across categories of Cellular components (CC), molecular functions (MF) and biological processes (BP)	EnrichR
Protein-protein Interactions (PPIs)	469,515 PPIs	Validated and computationally predicted human PPIs	I2D59
------------------------------------	-------------	---	-------
Drug indications and therapeutic classes			TTD60, DrugBank52
Drug side effects	139,756 drug-side effect associations	Information on marketed medicines and their recorded adverse drug reactions	SIDER61
Drug-Drug interactions	413,898 drug-drug interactions	Information on potential changes in the action or side effects of a drug caused by administration with another drug	DrugBank52

Table 2: Details about external drug-combinations that are used in COVID-CDR interface

Data type	Statistics	Combination Type	Details	Data source
Experimental Drug-combinations	6,181 drug-combinations	Dual combinations only	Combinations experimented in various cell-lines with different settings	drugCombDB18
Combinations in clinical trials	36 drug-combinations	Dual, tri-, and tetra-combinations	Combinations that are related to 867 COVID-19 drugs found in clinical trials in various phases	ClinicalTrials.gov53
FDA approved combinations	150 drug combinations	Dual, tri-, and tetra-combinations	FDA approved combinations that are related to 867 COVID-19 drugs	drugCombDB18

Table legends

Table 1: Data types, statistics and details of data sources used to generate COVID-CDR

Table 2: Details about external drug-combinations that are used in COVID-CDR interface
Supplementary table legends

Table S1. List of all drugs included in this platform along with all drug properties as well as disease topological and functional proximity measures.

Table S2. SARS-CoV-2 interactions incorporated into the multi-dimensional network constructed in this platform (Sheet 1). SARS-CoV interactions incorporated into the multi-dimensional network constructed in this platform (Sheet 2).

Table S3. All possible drug pairs along with network separation measure (s_{AB}) and pair-wise similarity measures.

Table S4. Gene Ontology based (biological processes) enrichment analysis of COVID-19-related human proteins.

Table S5. Curated clinical trial combinations included in this platform.

Table S6. Curated FDA approved drug combinations included in this platform.

Table S7. Curated drug combinations assessed for synergy on immortalized human cancer cell lines included in this platform.

Table S8. Summary of identified relevant works compared to COVID-CDR.

Supplementary Tables are available the COVID-CDR v1.0 GitHub Repository (DOI: 10.5281/zenodo.5089231): https://doi.org/10.5281/zenodo.5089231
Figure 1. Schematic workflow for the content and construction of COVID-CDR.
Figure 2. An overview of COVID-CDR web interface.
Figure 3. Integrated network visualization generated for a pair-wise combination of LY2275796 (Cap independent translation inhibitor-Glycosides) and Cyclosporine (Calceinurin inhibitor-immunosuppressant).
The Bigger Picture
Repurposing of existing medications has been the mainstream focus of anti-COVID-19 drug discovery as it offers rapid and cost-effective solutions for therapeutic development. Repurposing a combination of therapeutic options with complementary but varying mechanisms of action remains a challenge. Our ability to identify effective combinations is limited due to the vast number of possible drug pairs and a lack of convenient tools that can systematically guide the prioritization of a large range of individual drugs or drug combinations with potential value for the treatment of COVID-19. To address this resource gap, we developed, COVID-CDR, an integrative network pharmacology-based platform for in silico repositioning of drug combinations. COVID-CDR provides a visual representation of the cellular interactome involved in modes of action of the chosen drugs and can be used to quantitatively prioritise drug combinations with the potential to act synergistically against COVID-19.

Highlights
- COVID-CDR is an integrative platform for in silico repositioning of drug combinations
- It prioritizes drugs with potentials to interfere with viral or host-virus functions
- It prioritizes potentially synergistic combinations with complementary modes of action
- It also provides multiple useful drug information all in one intuitive online platform

Data Science Maturity Level
Development/pre-production

eTOC blurb
We present, COVID-CDR, a web-based computational platform for in silico repositioning of drug combinations against SARS-CoV-2 infection. COVID-CDR constructs a multi-level interactome encompassing drug-target/s, target-human and viral-human interactions overlaid on a human PPI network. By leveraging this interactome, COVID-CDR prioritizes potentially synergistic drug combinations as those whose primary targets are in close vicinity to SARS-CoV-2 proteins but holds distinct PPI footprints. The platform also provides diverse information on drugs/drug-pairs offering a multi-evidence solution for investigating drug combination strategies against COVID-19.