Review Article

Regulation of lung immunity by dendritic cells: Implications for asthma, chronic obstructive pulmonary disease and infectious disease

Marcus Peters, Karin Peters and Albrecht Bufe

Abstract
Since the first description of dendritic cells by Steinman and Cohn in 1973, this important cell type has gained increasing attention. Over 4000 papers have been published on this topic annually during the last few years. At the beginning, dendritic cells were recognized for their immune stimulatory properties and their importance in initiating an adaptive immune response. Later, it was found that dendritic cells do not only initiate but also regulate immune responses. This attribute makes the so-called regulatory dendritic cells highly important for the prevention of exaggerated immune responses. Immune cells make contact with different Ags every day and must be tightly controlled to prevent excessive inflammation and subsequent organ destruction, particularly in organs such as the gut and lungs. Here, we give a brief overview of our current knowledge on how immune responses are controlled by dendritic cells, highlighting how they are involved in the induction of peripheral tolerance. We focus on what is known about these processes in the lung, with a closer look at their role in the induction and control of diseases such as bronchial asthma, chronic obstructive pulmonary disease and lung infections. Finally, we summarize some current approaches to modulate the behavior of dendritic cells that may hopefully lead to future therapeutics to control exaggerated immune responses.

Keywords
Asthma, COPD, tolerogenic, dendritic cell, anergy

Date Received: 11 October 2018; accepted: 5 December 2018

The role of dendritic cells in innate and adaptive immunity
Dendritic cells (DCs) were first described by Steinman and Cohn in 1973 as a distinct population of immune cells in the spleen of mice. This cell type was subsequently identified in all lymphoid tissues and many other organs, and is particularly detectable in the epithelium. DCs are a highly specialized cell population able to present peptides bound to the proteins of the MHC on their surface. Proteins from the cytosolic compartment are cleaved via the proteasome, transported to the lumen of the endoplasmic reticulum and bound to MHC I molecules. Proteins from the extracellular compartment are cleaved via the proteasome, transported to the lumen of the endoplasmic reticulum and bound to MHC I molecules. Therefore, a portion of the proteins engulfed are transported from the phagosomes to the cytosol via retro-translocation. In contrast, proteins generated in the endosomal compartment. Subsequently, these peptides are loaded on MHC class I molecules and transported to the cell surface. Although peptides from exogenous proteins are predominantly displayed on MHC II, they can also be presented on MHC I via cross-presentation. Similarly, proteins from the extracellular compartment can enter the endoplasmic reticulum to be presented on MHC I molecules. Therefore, a portion of the proteins engulfed are transported from the phagosomes to the cytosol via retro-translocation. In contrast, proteins

Department of Experimental Pneumology, Ruhr-University
Bochum, Germany

Corresponding author:
Marcus Peters, Zentrum für Klinische Forschung II, Universitätsstr. 150, D-44801 Bochum, Germany.
Email: marcus.peters@rub.de

Creative Commons Non Commercial CC BY-NC: This article is distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 License (http://www.creativecommons.org/licenses/by-nc/4.0/) which permits non-commercial use, reproduction and distribution of the work without further permission provided the original work is attributed as specified on the SAGE and Open Access pages (https://us.sagepub.com/en-us/nam/open-access-at-sage).
from the cytosol can be brought to the endosomal compartment via autophagy and, in this way, introduced into the MHC II presentation pathway. Cross-presentation is important not only for the induction of antiviral and antitumor immunity, but also in peripheral tolerance.7

In their role as professional APCs, DCs are the most important immune cells for the activation of T lymphocytes.8 This is particularly clear due to the recent advances in immunological tools such as transgenic mice.9 However, in their bridging role between innate and adaptive immunity, DCs do not only play a role in the protection against pathogens, but also in the induction and the perpetuation of diseases such as asthma.10

The activation status of DCs decides the activation or inhibition of a T cell. Activated DCs differ from resting cells in their shape and the expression of specific membrane receptors. The expression, for instance, of CD40, CD80, CD83, CD86 and CD252 (OX40 ligand), the so-called costimulatory molecules, were all shown to have an impact on the activation of T lymphocytes.4,11–13 All these membrane receptors are expressed at low-density under steady state conditions but become up-regulated after DC activation. This gives the DCs the license to activate naive T lymphocytes, given that the MHC-presented peptides are recognized by the specific T-cell receptor.14

Different exogenous signals can trigger the productive activation of DCs after binding to their PRRs. The large group of molecules belonging to the PAMPs provide the ligands for the PRRs.15 The PRRs can be divided into the Toll-, NOD- and retinoic acid (RA)-inducible gene I-like receptors predominantly recognizing bacterial and viral PAMPs and the C-type lectin receptors (CLR) detecting glycostructures from fungi and from bacteria. In addition to these pathogenic-derived signals, endogenous ‘danger signals’ coming from dying cells and necrotic tissues can further lead to the activation of DCs.16,17 Later, these danger signals were called a damage-associated molecular pattern and shown to activate the inflammasome leading to maturation of strong pro-inflammatory signals such as IL-1β and IL-18.18 The production of cytokines plays an important role not only in the regulation of the induced T-cell response regarding T-cell polarization into subpopulations, but also in preventing exaggerated T-cell responses.

The phenotype of different DC subsets of the lung

Conventional DCs (cDCs), plasmacytoid DCs (pDCs) and macrophages of the tissues are derived from Lin cKitCD115−Flt3+ common progenitors.19 These cells are generated in the bone marrow, from where they start to populate the lymphatic tissues and different organs. Mouse cDCs are characterized by their high expression of CD11c, whereas mouse pDCs only express low levels of CD11c but do express additional characteristic markers, such as CD45R (B220) and CD317 (PDCA1). Many cDCs are found in the mucosa of the conducting airways.20 They protrude their pseudopodia between the epithelial cells to capture Ag from the airway lumen. In addition to CD11c, these cDCs partially express the integrin CD103, which is a specific marker for a subset of lung cDCs (cDC1). The other subset of cDCs express CD11b in addition to the CD11c marker (cDC2). When a trigger of airway inflammation is encountered, another population of cells comes into play, the inflammatory DCs. They are generated from Ly6C+ blood monocytes under the influence of a granulocyte macrophage colony stimulating factor. These inflammatory CD11c+ and CD11b+ DCs retain the monocyte marker Ly6c.21 This cell type shows many similarities to the widely used DCs generated in vitro that can be utilized, for instance, to sensitize mice via their airways.22 The pDCs can also be detected in the conducting airways, although in a lower density, and they have also been described as present in lung parenchyma.23 Human DCs can generally be divided in similar subgroups to their murine counterparts.24 However, there are additional markers used for the characterization of human DCs in addition to markers such as CD11c, also common for human DCs. The different subsets of human lung cDCs express CD141 (BDCA3) on cDC1 cells and CD11c (BDCA1) on cDC2 cells, respectively.25 Human lung pDCs express CD303 (BDCA2) and CD304 (BDCA4).

Induction of peripheral tolerance by DCs

There are distinct immunological mechanisms responsible for the induction of tolerance of T lymphocytes to harmless Ags. Central tolerance is induced in the thymus during the interaction of maturing T cells with specialized thymic epithelial cells and DCs presenting a huge repertoire of self-Ags. Even tissue-restricted Ags are produced under the influence of the transcription factor, Auto Immune Regulator. However, it is known that some potentially autoreactive T lymphocytes leave the thymus, because not every possible auto-Ag is presented.26 Induction of peripheral tolerance comes into play to prevent the activation of these potentially autoreactive T lymphocytes. Three distinct mechanisms of peripheral tolerance induction by DCs are known: activation of regulatory T cells (Treg), induction of anergy in Ag-specific T cells and negative feedback regulation.27
Negative feedback regulation

Negative feedback regulation in DCs means extracellular stimulation addressed to DCs, which leads to a tolerogenic DC phenotype (Figure 1a). An example of this feedback regulation is the action of IL-10 on DCs. The source of this anti-inflammatory cytokine could be, for example Treg, known to be good producers of IL-10, which may act in a paracrine manner on the DCs, arresting the latter in an immature state with low expression of costimulatory molecules. Another possibility is that the IL-10 released acts in an autocrine manner after being induced, for instance, by activation of the CLR, for example, DC-specific ICAM3-grabbing non-integrin (DC-SIGN). This mechanism is thought to be involved in the dormancy of mycobacteria infection, since polysaccharides of the cell envelope of, for example, Mycobacterium tuberculosis, are known to activate DC-SIGN and, therefore, lead possibly to anergy induction in T-helper cells. Another example of such a negative feedback is the direct cell contact-dependent interaction of DCs with Treg. This interaction was shown to be extraordinarily strong and may lead to down-regulation of costimulatory molecules on DCs. This negative feedback given by Treg can lead to enhanced anergy induction by DCs after interaction with an Ag-specific T cell. It has been shown more recently that DCs also respond to the cytokines of the WNT family. Canonical signaling via β-catenin is able to down-regulate the NFκB pathway and may, therefore, block DC activation by PAMPs or cytokines, leaving the DC in a tolerogenic state. Similarly, signaling through DC receptors with intracellular immunoreceptor tyrosine-based inhibitory motif domains (results in the inhibition of the NFκB pathway and results, therefore, in negative feedback regulation).

Induction of energy

Induction of anergy or clonal deletion of specific T cells is a second mechanism by which DCs can establish peripheral tolerance (Figure 1b). One well-known pathway to induce anergy in specific T cells is the presentation of Ag in the absence of costimulation; this was shown for T-helper cells and for cytotoxic T cells. The constant uptake of auto-Ags from the surrounding tissues by DCs is important for anergy induction. This mechanism has already been exploited by delivering Ag via targeting endocytic receptors, such as CD205 (Dec205). Cross-presentation of engulfed Ags via MHC I is an essential mechanism for tolerizing cytotoxic T cells. As has already been mentioned, anergy induction is observed when Ag is presented in the absence of costimulation, i.e. the lack of expression of CD80/86 and cytokines. Anergy induction by DCs can also be facilitated when DCs express certain molecules, such as IL-10, discussed above, or the membrane receptor PD-L1, which interacts with PD1 on the T cell. The interaction between PD1 and its ligand on DCs is such an important mechanism in anergy induction that there have already been several clinical studies showing promising results in the reactivation of the immune response against tumor cells in cancer patients by blocking this interaction and, therefore, preventing the anergy of tumor-Ag-specific T cells. Another example of such a negative regulation is the interaction of DCs with T cells expressing cytotoxic T-lymphocyte-associated protein 4 (CTLA-4). CTLA-4 binds to CD80/86 with a greater affinity than CD28, leading to the down-regulation of T-cell activity. CTLA-4 can capture its ligands, CD80 or CD86, from cells presenting Ag by a process of trans-endocytosis. The costimulatory molecules are degraded in the CTLA-4-expressing cells. By this depletion, CTLA-4 acts as an effector molecule to inhibit CD28 costimulation. Additionally, CTLA-4 induces the production of indoleamine 2,3-dioxygenase (IDO) in DCs. The role of IDO in tolerance induction is discussed in the following chapter.

Induction of Treg

The Treg are a highly important group of lymphocytes that protect the body from autoimmune responses. The essential role of these cells becomes clear in mouse models where Treg were depleted. Fatal autoimmunity was observed in this model even when the cells were depleted later in life. In addition to naturally occurring Treg that are already preformed in the thymus, inducible Treg are induced by DCs with TGFβ1 in the absence of IL-6, leading to the expression of the transcription factor Foxp3 (Figure 1c). Interestingly, the activation of inducible Treg also relies on conventional signals for T-cell activation, such as MHC II molecules and costimulation via CD80/86. The cDCs expressing CD103 are a source of TGFβ1 and known to be potent inducers of Treg in models of oral tolerance induction. The RA produced by the enzyme retinaldehyde dehydrogenases expressed by these cDCs stabilizes the Treg lineage. However, it seems to be important that RA signaling is in context with TGFβ signaling, otherwise RA can also have pro-inflammatory roles. Human CD1c+ DCs were also shown to be capable of producing RA under the influence of vitamin D3. Another molecule involved in the peripheral tolerance induction by DCs is the enzyme IDO. The importance of IDO for peripheral tolerance was first identified due to its important role in the protection of the fetus against attacks from the immune system. IDO acts...
Figure 1. Negative feedback regulation (a): IL-10 is secreted in a paracrine manner by regulatory T cell (Treg) and by dendritic cells (DCs) in an autocrine manner upon activation of DC-specific ICAM3-grabbing non-integrin (DC-SIGN), which is a carbohydrate receptor containing an immunoreceptor tyrosine-based inhibitory motif domain. The Treg can adhere very strongly to DCs via LFA-1 and ICAM-1. These mechanisms result in the down-regulation of costimulatory molecules on DCs. Induction of anergy (b): the longest known way to induce anergy is via Ag presentation in the absence of costimulation. This way is known in T-helper cells and via cross-presentation in cytotoxic T cells. Anergy induction is enhanced by the interaction of cytotoxic T-lymphocyte-associated protein 4 (CTLA-4) with B7 molecules on DCs or the binding of PD1 to PD-L1. Induction of Treg (c): CD103-positive DCs secrete TGFβ1 and retinoic acid (RA), which leads to the induction of Treg in the absence of IL-6. Activity of indoleamine 2,3-dioxygenase (IDO) in DC catalysis the production of kynurenine, which may bind to the aryl hydrocarbon receptor (AHR) in T cells. Without a ligand, the AHR transcription factor is localized in the cytoplasm in complex with other proteins. Upon ligand binding, its conformation changes and a translocation into the nucleus takes place, where AHR can activate gene transcription and the activation of Treg. The amino acid sensors mammalian target of rapamycin (mTOR) and general control nonderepressible 2 (GCN2) kinase are influenced by tryptophan deficiency as a result of IDO activity. This contributes, on the one hand, to anergy and suppression of effector cells and, on the other hand, to a hyperactivation of Treg.
through its enzymatic activity; it catalyzes the production of kynurenine from tryptophan. Kynurenine is a natural ligand of the aryl hydrocarbon receptor (AHR) and the consumption of tryptophan by IDO activates the amino acid sensors general control nonderepressible 2 and mammalian target of rapamycin. IDO activity facilitates the suppression and anergy of effector cells, on the one hand, and boosts the activity of T_{reg} cells existing already, on the other hand.\(^{46}\)

Regulation of inflammation by DCs in asthma

The DCs play an essential role in the induction and regulation of the asthmatic response. After the first contact with the allergen, they transport these to the bronchial lymph nodes and activate allergen-specific T cells. When DCs are eliminated by \textit{in vivo} depletion of all CD11c-expressing cells during the sensitization phase in a mouse model of asthma, the characteristic features of asthma are abrogated.\(^{49}\) Meanwhile, the cells and processes involved in allergic sensitization via the airways are understood in more detail. After contact with allergen, the airway epithelium is exposed to adjuvants, such as proteases, PAMP and pollen-associated lipid mediators, leading to the release of chemokines and the alarmins IL-25, IL-33 and Thymic stromal lymphopoietin, resulting in the recruitment of innate lymphoid cells and DCs, such as cDC2 cells expressing CD11b.\(^{50}\) This highly migratory DC population transports the allergens to the lymph nodes to induce an allergen-specific Th2 response. Although the precise phenotype these migratory cells must achieve to elicit Th2 immunity in the secondary lymphatics has yet to be described, some parameters have already been revealed to be relevant. The expression, for instance, of OX40L on the surface of DCs may influence Foxp3.\(^{56}\) Interestingly, the transcription factor Foxp3, known for its importance in determining the fate of T_{reg}, has also been shown to be expressed by tolerogenic DCs of the lung.\(^{57}\) Because Foxp3 is known to bind to the promotor of TGFB, these cells are good TGFB producers, thereby inhibiting T-cell activation.

In addition to these reports indicating that cDCs may induce tolerance under certain conditions, pDCs were also shown to play an important role in the induction of tolerance against harmless Ags by transporting them to the regional lymph nodes.\(^{58}\) In the case of oral tolerance induction towards gastrointestinal Ags, they play a pivotal role by the induction of T_{reg}.\(^{59}\) The pDCs were also shown to be essential in the induction of tolerance to harmless Ags in the lungs under steady-state conditions and to be of merit in suppressing ongoing allergic sensitization when transferred adoptively.\(^{60}\) This discovery reveals pDCs are a highly relevant target to be exploited for the control of allergic inflammation. There are first reports showing that the attraction of pDCs by treating mice with Flt3L resulted in down-regulation of the allergic immune response.\(^{61}\) However, one must be very careful when manipulating the Janus-faced DC network, because there have been recent reports showing that pDCs may also be involved in the exacerbation of allergic asthma.\(^{62}\)

Regulation of inflammation by DCs in chronic obstructive pulmonary disease

The role of DCs in chronic obstructive pulmonary disease (COPD) pathogenesis is more obscure than their role in asthma. One reason for this might be the undefined nature of Ags involved in COPD immune response. By contrast, the Ags (allergens) playing a role in asthma are well defined and can be used as a tool to study the interaction of DCs with specific T cells. Interestingly, newer studies have shown that autoimmunity consisting of both autoreactive T cells and B cells are involved in the pathogenesis of COPD.\(^{53, 64}\) Although the precise contribution of this maladaptive autoimmune response in COPD has yet to be revealed, it shows that at some time during disease development, auto-Ags have to be presented by DCs to
activate autoreactive T cells. Nevertheless, it is known that cigarette smoke, the leading cause for the development of COPD, attracts cDCs into the human lung. The infiltrating DCs have an activated phenotype with the expression of costimulatory molecules, such as CD83.

Because cigarette smoke is a source of high amounts of ligands for the AHR, one would think there must be a continuous stimulation of the AHR due to smoking leading to the induction of tolerogenic DCs. Indeed, there are reports showing that deletion of the AHR in mice resulted in enhanced inflammation upon smoke exposure. However, it is still unclear whether the increased inflammation depends on a dysfunction of regulatory DCs. Intriguingly, a subset of human lung cDCs, the cDC2 expressing CD1c, was demonstrated to exhibit enhanced tolerogenic activity in COPD patients. These cDC2 expressed tolerogenic surface molecules, such as PD-L1, and were potent inducers of Treg cells exerting their immune-regulating activity via production of IL-10 and TGFβ1. From this study, the question arose of whether this regulatory activity may predispose COPD patients to respiratory infections leading to exacerbation of the disease. However, pDCs were also discussed as having an immune suppressive role due to smoking.

In this report, Sorrentino et al. showed that murine cDCs exposed to cigarette smoke attract pDCs to the lung that subsequently suppress the immune response to Chlamyphila pneumoniae, presumably involving an IDO-mediated mechanism. A similar accumulation of pDCs was found in lung bronchial-associated lymphoid tissue in COPD patients. In contrast to the report in the murine model system, it was not investigated whether the accumulating pDCs have immune-suppressive properties. However, treatment of human pDCs with cigarette smoke extract renders the cells reluctant to activation with agonists of TLR7 or TLR9, suggesting they become unresponsive to the virus. Such a state of enhanced susceptibility to virus infection with influenza and respiratory syncytial virus is known to be one of the major problems in advanced COPD, often leading to the exacerbation of the disease.

Regulation of the immune response by DCs during respiratory infection

The most obvious and important role of DCs in the lungs is protection against respiratory infections by bridging innate and adaptive immunity to mount a robust adaptive immune response towards pathogens. Following influenza infection, cDC1 migrate from their intraepithelial origin to the draining mediastinal lymph nodes, where they can activate cytotoxic T lymphocytes. The cDC2 are attracted and activated by alarmins secreted by airway epithelial cells that were stimulated with PAMPs. These cells are also involved in the activation of T cells, but they are thought to be beneficial in the prevention of exaggerated inflammatory responses to pathogens.

The most obvious and important role of DCs in the lungs is protection against respiratory infections by bridging innate and adaptive immunity to mount a robust adaptive immune response towards pathogens. Following influenza infection, cDC1 migrate from their intraepithelial origin to the draining mediastinal lymph nodes, where they can activate cytotoxic T lymphocytes. The cDC2 are attracted and activated by alarmins secreted by airway epithelial cells that were stimulated with PAMPs. These cells are also involved in the activation of T cells, but they are thought to be beneficial in the prevention of exaggerated inflammatory responses to pathogens.
Similarly, it was shown in tuberculosis that the activity of T_{reg} contributes to the persistence of $M. tuberculosis$ in the host lung of patients who are extensively drug resistant. The exact pathways leading to activation of these T_{reg} are still unknown, although there are some reports showing that cell wall compounds of mycobacteria may modulate the behavior of DCs in favor of T_{reg} induction. Geijtenbeek et al. showed that mannosylated lipoarabinomannans from the cell envelope of mycobacteria bind to the CLR DC-SIGN on monocyte-derived DCs leading to enhanced IL-10 production by the DCs. The authors provide further evidence that this leads to negative feedback inhibition preventing the activation of DCs. In contrast, it is conceivable that the DCs producing IL-10 will contribute to T_{reg} differentiation, because it is known that IL-10 is able to potentiate T_{reg} formation. Later, it was shown that DC-SIGN-modulated IL-10 production may be involved in the down-regulation of the immune response against several different pathogens.

‘Therapeutic’ induction of tolerogenic DCs

The first efforts to exploit DCs for clinical purposes came from trials to induce a tumor-specific immune response. However, the predominant proportion (> 90%) of clinical trials applying DCs is made to enhance the anti-tumor response. Due to the awareness that DCs not only induce but also suppress T-cell responses, new efforts were made to manipulate DCs in such a way that they induce tolerance. Tolerogenic DCs are already in use in some clinical trials to treat autoimmune disease, such as multiple sclerosis, type I diabetes, rheumatoid arthritis or to prevent organ rejection after transplantation. Several substances were shown to have the property to induce DCs with a tolerogenic behavior. For instance, dexamethasone, a drug that has been used for many years to control inflammation, was shown to activate tolerogenic DCs. Treatment of human DCs with this anti-inflammatory drug leads to cells in a semi-mature state that express high levels of PD-L1. Cultivation of DCs treated with dexamethasone alongside T cells leads to the activation of T cells producing IL-10. Similarly, DCs that were treated with rapamycin are able to induce T_{reg} responses. Here, the authors showed that rapamycin-treated DCs that were loaded with allo-Ags led to the longtime survival of skin allografts in rats. In addition to small-molecule drugs that were used for the induction of tolerogenic DCs, there are studies revealing a pronounced activity of distinct cytokines in the induction of tolerogenic DCs. Both IL-10 and TGFβ1 in particular are under extensive investigation. Different protocols were described.

Table 1. Examples of substances known from the literature to induce tolerogenic DCs and their mode of action. Most experiments are performed in mouse models of allergic disease.

Substances for stimulation of DCs	Disease	Mode of action	Reference
Arabinogalactan	Murine asthma model	IL-10 production by DCs	98
Cowshed dust extract	Murine asthma model	IL-10 production by DCs	92
Bacterial lipopeptides	Murine asthma model	IL-10 production by DCs, IRAK-M induction, arrest in immature state	91
Immune complexes Ag and siaylation	Delayed type hypersensitivity (mouse model)	Arrest in immature state, inhibition of IL-12/23 and IL-6 release	99
Lactobacillus reuteri and Lactobacillus casei	In vitro studies with human cells	DC-SIGN ligation activation of IL-10 producing T_{reg}	100
Lactococcus lactis	Murine asthma model	TLR13 activation	94
Complement (C5a)	Murine asthma model	Attraction of pDCs?	101,102
Staphylococcal enterotoxin B	Intestinal allergic inflammation	Foxp3 induction in DCs release of TGFβ	57
Fungal β-glucan	Autoimmune diabetes	Dectin-1 ligation, induction of T_{reg}	95
IL-10	Allergic sensitization (house dust mite)	In vitro induction of T_{reg}	103
Flagellin	Allergic sensitization (birch pollen)	IL-10 production of DCs via a mTOR pathway	93
Cisplatin	In vitro studies with murine cells	IL-10 production of DCs via MAPK pathway	104

DC: dendritic cell; pDC: plasmacytoid DC; mTOR: mammalian target of rapamycin; DC-SIGN: DC-specific ICAM3-grabbing non-integrin; T_{reg} regulatory T cell.
to differentiate tolerogenic DCs under the influence of IL-10 with or without TGFβ. 90 The DCs treated with IL-10 have shown their immune regulatory behavior in several animal models and it is believed they can also be of benefit for the treatment of patients. 90 However, the stimulation of DCs with PRR or CLR ligands to generate cells that produce IL-10 on their own could be even more efficient in generating tolerogenic DCs to regulate immune responses. The advantage of this would be that these cells, on the one hand, lead to the activation of T\textsubscript{reg} and, on the other hand, arrest themselves in an immature state via negative feedback regulation. Some substances have already been shown to act in that way via activation of TLRs or CLR. 91–94

The stimulation particularly of DCs via CLR seems to be effective in generating tolerogenic DCs. 84,95,96 Treatment with substances aiming to induce tolerogenic DCs do not necessarily occur ex vivo and in vivo induction of tolerogenic DCs is possible, for example, by the targeting of Ag to DC receptors such as DEC205. 97 Several examples for the manipulation of DCs to induce tolerance are given in Table 1.

Conclusions

Our knowledge about the circumstances under which tolerogenic DCs differentiate have increased continuously over the last 15 yr. This is an important development because DCs are already in use in clinical studies for the treatment of cancer. Knowing the precise parameters involved in the differentiation of tolerogenic DCs will avoid trials under risk of inducing T\textsubscript{reg} against tumor Ags. Exemplarily, DCs treated with the Dectin-1 ligand β-glucan were successfully used to induce tolerance against auto-Ags. 95 Confusingly, DCs treated with β-glucan were also shown to initiate an anti-tumor immune response. 105 Thus, much more research is needed to delineate all the parameters distinguishing between activating versus tolerogenic DCs. Once the best way to induce stable tolerogenic DCs is deciphered, the ground is prepared for the development of new treatment opportunities for asthma bronchiale and other chronic inflammatory airway disorders. Moreover, the extended knowledge will enable us to perform meaningful trials to modulate the tolerogenic behavior of DCs in vivo, aiming to break the tolerance against pathogens hiding in the cells of infected patients.

Acknowledgements

We would like to thank Philip Saunders (Language Support Services, Berlin, Germany) for proofreading the manuscript.

Declaration of conflicting interests

The authors declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.

Funding

The authors received no financial support for the research, authorship, and/or publication of this article.

ORCID iD

Marcus Peters
http://orcid.org/0000-0003-1850-2845

References

1. Steinman RM and Cohn ZA. Identification of a novel cell type in peripheral lymphoid organs of mice. I. Morphology, quantitation, tissue distribution. *J Exp Med* 1973; 137(5):1142–1162.
2. Steinman RM and Cohn ZA. Identification of a novel cell type in peripheral lymphoid organs of mice. II. Functional properties in vitro. *J Exp Med* 1974; 139(2):380–397.
3. Alvarez D, Vollmann EH and von Andriane UH. Mechanisms and consequences of dendritic cell migration. *Immunity* 2008; 29(3):325–342.
4. Banchereau J and Steinman RM. Dendritic cells and the control of immunity. *Nature* 1998; 392(6673):245–522.
5. Liu Z and Roche PA. Macropinocytosis in phagocytes: Regulation of MHC class-II-restricted antigen presentation in dendritic cells. *Front Physiol* 2015; 6:1.
6. Blum JS, Wearsch PA and Cresswell P. Pathways of antigen processing. *Annu Rev Immunol* 2013; 31:443–473.
7. Steinman RM. Decisions about dendritic cells: Past, present, and future. *Annu Rev Immunol* 2012; 30:1–22.
8. Le Bon A and Tough DF. Links between innate and adaptive immunity via type I interferon. *Curr Opin Immunol* 2002; 14(4):432–436.
9. Bar-On L and Jung S. Defining dendritic cells by conditional and constitutive cell ablation. *Immunol Rev* 2010; 234(1):76–89.
10. Lambrecht BN and Hammad H. The role of dendritic and epithelial cells as master regulators of allergic airway inflammation. *Lancet* 2010; 376(9743):835–843.
11. Aerts-Toegaert C, Heirman C, Tuyaerts S, et al. CD83 expression on dendritic cells and T cells: Correlation with effective immune responses. *Eur J Immunol* 2007; 37(3):686–695.
12. Willoughby J, Griffiths J, Tews I, et al. OX40: Structure and function - What questions remain? *Mol Immunol* 2017; 83:13–22.
13. Schoenberger SP, Toes RE, van der Voort EL, et al. T-cell help for cytotoxic T lymphocytes is mediated by CD40-CD40L interactions. *Nature* 1998; 393(6864):480–483.
14. Smith-Garvin JE, Koretzky GA and Jordan MS. T cell activation. *Annu Rev Immunol* 2009; 27:591–619.
15. Janeway CA and Medzhitov R. Innate immune recognition. *Annu Rev Immunol* 2002; 20:197–216.
16. Shi Y, Evans JE and Rock KL. Molecular identification of a danger signal that alerts the immune system to dying cells. *Nature* 2003; 425(6957):516–521.
17. Gallucci S and Matzinger P. Danger signals: SOS to the immune system. *Curr Opin Immunol* 2001; 13(1):114–119.
18. Martinon F, Mayor A and Tschopp J. The inflammasomes: Guardians of the body. *Annu Rev Immunol* 2009; 27:229–265.
19. Onai N, Obata-Onai A, Schmid MA, et al. Identification of clonogenic common Flt3+M-CSFR+ plasmacytoid and conventional dendritic cell progenitors in mouse bone marrow. *Nat Immunol* 2007; 8(11):1207–1216.
20. Lambrecht BN and Hammad H. Lung dendritic cells in respiratory viral infection and asthma: From protection to immunopathology. *Annu Rev Immunol* 2012; 30:243–270.
21. Plantinga M, Guilliams M, Vanheerswynghels M, et al. Constitutive cross-presentation of tissue antigens by dendritic cells controls CD8+ T cell tolerance in vivo. *Immunity* 2008; 28(4):521–532.
22. Peters M, Dudziak K, Stiehm M, et al. T-cell polarization depends on concentration of the danger signal used to activate dendritic cells. *Immunol Cell Biol* 2010; 88(5):537–544.
23. von Garnier C, Filgueira L, Wikstrom M, et al. Molecular identification of a danger signal that alerts the immune system to house dust mite allergen. *Front Immunol* 2013; 38(2):322–335.
24. Peters M, Dudziak K, Stiehm M, et al. T-cell polarization depends on concentration of the danger signal used to activate dendritic cells. *Immunol Cell Biol* 2010; 88(5):537–544.
25. Plantinga M, Guilliams M, Vanheerswynghels M, et al. Conventional and monocyte-derived CD11b+ dendritic cells initiate and maintain T helper 2 cell-mediated immunity to house dust mite allergen. *Nat Immunol* 2007; 8(11):1207–1216.
26. Oh J and Shin J-S. The role of dendritic cells in central tolerance. *Curr Opin Immunol* 2005; 175(3):1609–1618.
27. Guilliams M, Ginhoux F, Jakubzick C, et al. Dendritic cells, monocytes and macrophages: A unified nomenclature based on ontogeny. *Nat Rev Immunol* 2014; 14(8):571–578.
28. Granot T, Senda T, Carpenter DJ, et al. Dendritic cells display subset and tissue-specific maturation dynamics over human life. *Immunity* 2017; 46(3):504–515.
29. Oh J and Shin J-S. The role of dendritic cells in central tolerance. *Immune Netw* 2015; 15(3):111–120.
30. Mayer CT, Berod L and Sparwasser T. Layers of dendritic cell-mediated T cell tolerance, their regulation and the prevention of autoimmunity. *Front Immunol* 2012; 3:183.
31. van Kooyk Y and Geijtenbeek T BH, DC-SIGN: Escape mechanism for pathogens. *Nat Rev Immunol* 2003 [cited 2018 Mar 7]; 3(9):697–709.
32. Hirsch I, Janovec V, Stranka R, et al. Cross-talk between inhibitory immunoreceptor tyrosine-based activation motif-signaling and toll-like receptor pathways in macrophages and dendritic cells. *Front Immunol* 2017; 8:394.
33. Hawiger D, Inaba K, Dorsett Y, et al. Dendritic cells induce peripheral T cell unresponsiveness under steady state conditions in vivo. *J Exp Med* 2001; 194(6):769–779.
34. Probst HC, Lagnel J, Kollias G, et al. Inducible transgenic mice reveal resting dendritic cells as potent inducers of CD8+ T cell tolerance. *Immunity* 2003; 18(5):713–720.
35. Bonifaz L, Bonnyay D, Mahnke K, et al. Efficient targeting of protein antigen to the dendritic cell receptor DEC-205 in the steady state leads to antigen presentation on major histocompatibility complex class I products and peripheral CD8+ T cell tolerance. *J Exp Med* 2002; 196(12):1627–1638.
36. Luckashenak N, Schroeder S, Endt K, et al. Constitutive cross-presentation of tissue antigens by dendritic cells controls CD8+ T cell tolerance in vivo. *Immunity* 2008; 28(4):521–532.
37. Keir ME, Francisco LM and Sharpe AH. PD-1 and its ligands in T-cell immunity. *Curr Opin Immunol* 2007; 19(3):309–314.
38. Nguyen LT and Ohashi PS. Clinical blockade of PD1 and LAG3–potential mechanisms of action. *Nat Rev Immunol* 2015; 15(1):45–56.
39. Slavik JM, Hutchcroft JE and Bierer BE. CD28/CTLA-4 and CD80/CD86 families: Signaling and function. *Immunol Res* 1999; 19(1):1–24.
40. Qureshi OS, Zheng Y, Nakamura K, et al. Transendocytosis of CD80 and CD86: A molecular basis for the cell-extrinsic function of CTLA-4. *Science* 2011; 332(6029):600–603.
41. Kim JM, Rasmussen JP and Rudensky AY. Regulatory T cells prevent catastrophic autoimmunity throughout the lifespan of mice. *Nat Immunol* 2007; 8(2):191–197.
42. Darrasse-Jéze G, Deroubaix S, Mouquet H, et al. Feedback control of regulatory T cell homeostasis by dendritic cells in vivo. *J Exp Med* 2009; 206(9):1853–1862.
43. Salomon B, Lenschow DJ, Rhee L, et al. B7/CD28 costimulation is essential for the homeostasis of the CD4+CD25+ immunoregulatory T cells that control autoimmune diabetes. *Immunity* 2000; 12(4):431–440.
44. Coombes JL, Siddiqui KRR, Arancibia-Carcamo CV, et al. A functionally specialized population of mucosal CD4+CD25+ regulatory T cells induces Foxp3+ regulatory T cells via a TGF-beta and retinoic acid-dependent mechanism. *J Exp Med* 2007; 204(8):1757–1764.
45. Erkelenz MN and Mebius RE. Retinoic Acid and Immune Homeostasis: A Balancing Act. *Trends Immunol* 2017; 38(3):168–180.
46. Sato T, Kitawaki T, Fujita H, et al. Human CD1c+ myeloid dendritic cells acquire a high level of retinoic acid-producing capacity in response to vitamin D3. *J Immunol* 2013; 191(6):3152–3160.
47. Munn DH. Prevention of allogeneic fetal rejection by tryptophan catabolism. *Science* 1998; 281(5380):1191–1193.

48. Munn DH and Mellor AL. Indoleamine 2,3 dioxygenase and metabolic control of immune responses. *Trends Immunol* 2013; 34(3):137–143.

49. van Rijt LS, Jung S, Kleinjan A, et al. In vivo depletion of lung CD11c+ dendritic cells during allergen challenge abrogates the characteristic features of asthma. *J Exp Med* 2005; 201(6):981–991.

50. Zhou Q, Ho AWS, Schilzter A, et al. GM-CSF-licensed CD11b+ lung dendritic cells orchestrate Th2 immunity to *Blomia tropicalis*. *J Immunol* 2014; 193(2):496–509.

51. Liu Y-J. Thymic stromal lymphopoietin and OX40 ligand pathway in the initiation of dendritic cell-mediated allergic inflammation. *J Allergy Clin Immunol* 2007; 120(2):238–244; quiz 245-6.

52. Tindemans I, Lukkes M, de Bruijn MJW, et al. Notch signaling in T cells is essential for allergic airway inflammation, but expression of the Notch ligands Jagged 1 and Jagged 2 on dendritic cells is dispensable. *J Allergy Clin Immunol* 2017; 140(4):1079–1089.

53. Lin Y-L, Chen S-H and Wang J-Y. Critical role of IL-6 in dendritic cell-induced allergic inflammation of asthma. *J Mol Med* 2016; 94(1):51–59.

54. Krishnamoorthy N, Oriss TB, Paglia M, et al. Activation of c-Kit in dendritic cells regulates T helper cell differentiation and allergic asthma. *Nat Med* 2008; 14(5):565–573.

55. Akbari O, DeKruyff RH and Umetsu DT. Pulmonary dendritic cells producing IL-10 mediate tolerance induced by respiratory exposure to antigen. *Nat Immunol* 2001; 2(8):725–731.

56. Khare A, Krishnamoorthy N, Oriss TB, et al. Cutting edge: Inhaled antigen upregulates retinaldehyde dehydrogenase in lung CD103+ but not plasmacytoid dendritic cells to induce Foxp3 de novo in CD4+ T cells and promote airway tolerance. *J Immunol* 2013; 191(1):25–29.

57. Liu X-Y, Xu L-Z, Luo X-Q, et al. Forkhead box protein-3 (Foxp3)-producing dendritic cells suppress allergic response. *Allergy* 2017; 72(6):908–917.

58. Kohli K, Janssen A and Förster R. Plasmacytoid dendritic cells induce tolerance predominantly by cargoring antigen to lymph nodes. *Eur J Immunol* 2016; 46(11):2659–2668.

59. Uto T, Takagi H, Fukaya T, et al. Critical role of plasmacytoid dendritic cells in induction of oral tolerance. *J Allergy Clin Immunol* 2018.

60. de Heer HJ, Hammad H, Soullié T, et al. Essential role of lung plasmacytoid dendritic cells in preventing asthma. *J Exp Med* 2004; 200(1):89–98.

61. Kool M, van Nimwegen M, Willart MAM, et al. An anti-inflammatory role for plasmacytoid dendritic cells in allergic airway inflammation. *J Immunol* 2009; 183(2):1074–1082.

62. Chairakaki A-D, Saridaki M-I, Pyrillou K, et al. Plasmacytoid dendritic cells drive acute asthma exacerbations. *J Allergy Clin Immunol* 2017.

63. Kheradmand F, Shan M, Xu C, et al. Autoimmunity in chronic obstructive pulmonary disease: Clinical and experimental evidence. *Expert Rev Clin Immunol* 2012; 8(3):285–292.

64. Wen L, Krauss-Etchermann S, Petersen F, et al. Autoantibodies in chronic obstructive pulmonary disease. *Front Immunol* 2018; 9:66.

65. Lommatzsch M, Bratke K, Knappe T, et al. Acute effects of tobacco smoke on human airway dendritic cells in vivo. *Eur Respir J* 2010; 35(5):1130–1136.

66. Vassallo R, Walters PR, Lamont J, et al. Cigarette smoke promotes dendritic cell accumulation in COPD; a Lung Tissue Research Consortium study. *Respir Res* 2010; 11:45.

67. de Souza AR, Zago M, Eidelman DH, et al. Aryl hydrocarbon receptor (AhR) attenuation of subchronic cigarette smoke-induced pulmonary neutrophilia is associated with retention of nuclear RelB and suppression of intercellular adhesion molecule-1 (ICAM-1). *Toxicol Sci* 2014; 140(1):204–223.

68. Takenaka MC and Quintana FJ. Tolerogenic dendritic cells. *Semim Immunopathol* 2017; 39(2):113–120.

69. Thatchler TH, Maggirwar SB, Baglole CJ, et al. Aryl hydrocarbon receptor-deficient mice develop heightened inflammatory responses to cigarette smoke and endotoxin associated with rapid loss of the nuclear factor-kappaB component RelB. *Am J Pathol* 2007; 170(3):855–864.

70. Tsoumakidou M, Tousa S, Semitekolou M, et al. Tolerogenic signaling by pulmonary CD1c+ dendritic cells induces regulatory T cells in patients with chronic obstructive pulmonary disease by IL-27/IL-10/inducible costimulator ligand. *J Allergy Clin Immunol* 2014; 134(4):944–954.e8.

71. Sorrentino R, Gray P, Chen S, et al. Plasmacytoid dendritic cells prevent cigarette smoke and *Chlamydia pneumoniae*-induced Th2 inflammatory responses. *Am J Respir Cell Mol Biol* 2010; 43(4):422–431.

72. van Pottelberge GR, Bracke KR, van den Broeck S, et al. Plasmacytoid dendritic cells in pulmonary lymphoid follicles of patients with COPD. *Eur Respir J* 2010; 36(4):781–791.

73. Kim TS and Braciale TJ. Respiratory dendritic cell subsets differ in their capacity to support the induction of virus-specific cytotoxic CD8+ T cell responses. *PLoS ONE* 2009; 4(1):e204.

74. Kim TH and Lee HK. Differential roles of lung dendritic cell subsets against respiratory virus infection. *Immune Netw* 2014; 14(3):128–137.

75. Hemann EA, Sjaastad LE, Langlois RA, et al. Plasmacytoid dendritic cells require direct infection to sustain the pulmonary influenza virus-specific CD8+ T cell response. *J Virol* 2015; 90(6):2830–2837.

76. Boogaard I, van Oosten M, van Rijt LS, et al. Respiratory syncytial virus differentially activates murine myeloid and plasmacytoid dendritic cells. *Immunology* 2007; 122(1):65–72.

77. Smit JJ, Rudd BD and Lukacs NW. Plasmacytoid dendritic cells inhibit pulmonary immunopathology and...
promote clearance of respiratory syncytial virus. *J Exp Med* 2006; 202(5):1153–1159.

78. Tsuchida T, Matsuse H, Fukahori S, et al. Effect of respiratory syncytial virus infection on plasmacytoid dendritic cell regulation of allergic airway inflammation. *Int Arch Allergy Immunol* 2012; 157(1):21–30.

79. Schwarze J, Hamelmann E, Bradley KL, et al. Respiratory syncytial virus infection results in airway hyperresponsiveness and enhanced airway sensitization to allergen. *J Clin Invest* 1997; 100(1):226–233.

80. Lynch JP, Werder RB, Loh Z, et al. Plasmacytoid dendritic cells protect from viral bronchiolitis and asthma through semaphorin 4a-mediated Treg expansion. *J Exp Med* 2017.

81. Araújo EF de, Medeiros DH, Galdino NAdL, et al. Tolerogenic plasmacytoid dendritic cells control *para-coccidioides brasilensis* infection by inducing regulatory T Cells in an IDO-dependent manner. *PLoS Pathog* 2016; 12(12):e100615.

82. de Araújo EF, Feriotti C, Galdino NAdL, et al. The IDO-AhR axis controls Th17/Treg immunity in a pulmonary model of fungal infection. *Front Immunol* 2017; 8:880.

83. Davids M, Pooran AS, Pietersen E, et al. Regulatory T cells subvert mycobacterial containment in patients failing extensively drug-resistant TB treatment. *Am J Respir Crit Care Med* 2018.

84. Geijtenbeek TBH, van Vliet SJ, Koppel EA, et al. Respiratory syncytial virus infection results in airway hyperresponsiveness and enhanced airway sensitization to allergen. *J Clin Invest* 1997; 100(1):226–233.

85. Hsu P, Santner-Nanan B, Hu M, et al. IL-10 potentiates respiratory syncytial virus infection results in airway hyperresponsiveness and enhanced airway sensitization to allergen. *J Clin Invest* 1997; 100(1):226–233.

86. Unger WWJ, Laban S, Kleijwegt FS, et al. Induction of respiratory syncytial virus infection results in airway hyperresponsiveness and enhanced airway sensitization to allergen. *J Clin Invest* 1997; 100(1):226–233.

87. Schülke S, Fiedler A-H, Junker A-C, et al. Critical role of mammalian target of rapamycin for IL-10 dendritic cell induction by a flagellin A conjugate in preventing allergic sensitization. *J Allergy Clin Immunol* 2017.

88. Stein K, Brand S, Jenckel A, et al. Endosomal recognition of Lactococcus lactis G121 and its RNA by dendritic cells is key to its allergy-protective effects. *J Allergy Clin Immunol* 2017; 139(2):667–678.e5.

89. Karumuthil-Melethil S, Gudi R, Johnson BM, et al. Fungal β-glucan, a Dectin-1 ligand, promotes protection from type 1 diabetes by inducing regulatory innate immune response. *J Immunol* 2014; 193(7):3308–3321.

90. Peters M, Guidato PM, Peters K, et al. Allergy-protective arabinogalactan modulates human dendritic cells via C-type lectins and inhibition of NF-κB. *J Immunol* 2016; 196(4):1626–1635.

91. Maaske A, Devos FC, Nizezdol T, et al. Mucosal expression of DEC-205 targeted allergen alleviates an asthmatic phenotype in mice. *J Control Release* 2016; 237:14–22.

92. Peters M, Kauth M, Scherner O, et al. Arabinogalactan isolated from cowshed dust extract protects mice from allergic airway inflammation and sensitization. *J Allergy Clin Immunol* 2010; 126(3):648–656.e1-4.

93. Oefner CM, Winkler A, Hess C, et al. Tolerance induction with T cell-dependent protein antigens induces regulatory sialylated IgGs. *J Allergy Clin Immunol* 2012; 129(6):1647–1655.e13.

94. Gutzmer R, Köther B, Zwirner J, et al. Human plasmacytoid dendritic cells express receptors for anaphylatoxins C3a and C5a and are chemoattracted to C3a and C5a. *J Investig Dermatol* 2006; 126(11):2422–2429.

95. Gutiérrez A, Checa C, Corral M, et al. Allergen-specific suppressor T cells using tolerogenic dendritic cells derived from children with allergies to house dust mites. *J Allergy Clin Immunol* 2010; 125(3):727–736.

96. Kim WS, Kim H, Kwon KW, et al. Cisplatin induces tolerogenic dendritic cells in response to TLR agonists through dendritic cell-specific intercellular adhesion molecule 3-grabbing nonintegrin. *J Immunol* 2005; 175(6):1260–1267.

97. Kim WS, Kim H, Kwon KW, et al. Endosomal recognition of Lactococcus lactis G121 and its RNA by dendritic cells is key to its allergy-protective effects. *J Allergy Clin Immunol* 2017; 139(2):667–678.e5.

98. Peters M, Kauth M, Scherner O, et al. Arabinogalactan isolated from cowshed dust extract protects mice from allergic airway inflammation and sensitization. *J Allergy Clin Immunol* 2010; 126(3):648–656.e1-4.

99. Peters M, Kauth M, Scherner O, et al. Allergy-protective arabinogalactan modulates human dendritic cells via C-type lectins and inhibition of NF-κB. *J Immunol* 2016; 196(4):1626–1635.

100. Maaske A, Devos FC, Nizezdol T, et al. Mucosal expression of DEC-205 targeted allergen alleviates an asthmatic phenotype in mice. *J Control Release* 2016; 237:14–22.

101. Peters M, Kauth M, Scherner O, et al. Arabinogalactan isolated from cowshed dust extract protects mice from allergic airway inflammation and sensitization. *J Allergy Clin Immunol* 2010; 126(3):648–656.e1-4.

102. Peters M, Guidato PM, Peters K, et al. Allergy-protective arabinogalactan modulates human dendritic cells via C-type lectins and inhibition of NF-κB. *J Immunol* 2016; 196(4):1626–1635.

103. Maaske A, Devos FC, Nizezdol T, et al. Mucosal expression of DEC-205 targeted allergen alleviates an asthmatic phenotype in mice. *J Control Release* 2016; 237:14–22.

104. Peters M, Kauth M, Scherner O, et al. Arabinogalactan isolated from cowshed dust extract protects mice from allergic airway inflammation and sensitization. *J Allergy Clin Immunol* 2010; 126(3):648–656.e1-4.

105. Peters M, Kauth M, Scherner O, et al. Arabinogalactan isolated from cowshed dust extract protects mice from allergic airway inflammation and sensitization. *J Allergy Clin Immunol* 2010; 126(3):648–656.e1-4.

106. Peters M, Kauth M, Scherner O, et al. Allergy-protective arabinogalactan modulates human dendritic cells via C-type lectins and inhibition of NF-κB. *J Immunol* 2016; 196(4):1626–1635.

107. Maaske A, Devos FC, Nizezdol T, et al. Mucosal expression of DEC-205 targeted allergen alleviates an asthmatic phenotype in mice. *J Control Release* 2016; 237:14–22.

108. Peters M, Kauth M, Scherner O, et al. Arabinogalactan isolated from cowshed dust extract protects mice from allergic airway inflammation and sensitization. *J Allergy Clin Immunol* 2010; 126(3):648–656.e1-4.

109. Peters M, Kauth M, Scherner O, et al. Arabinogalactan isolated from cowshed dust extract protects mice from allergic airway inflammation and sensitization. *J Allergy Clin Immunol* 2010; 126(3):648–656.e1-4.

110. Peters M, Kauth M, Scherner O, et al. Arabinogalactan isolated from cowshed dust extract protects mice from allergic airway inflammation and sensitization. *J Allergy Clin Immunol* 2010; 126(3):648–656.e1-4.

111. Peters M, Kauth M, Scherner O, et al. Arabinogalactan isolated from cowshed dust extract protects mice from allergic airway inflammation and sensitization. *J Allergy Clin Immunol* 2010; 126(3):648–656.e1-4.