Does the Threshold Voltage Extraction Method Affect Device Variability?

GABRIEL ESPIÑEIRA, ANTONIO J. GARCÍA-LOUREIRO, AND NATALIA SEOANE

CITIUS, Universidade de Santiago de Compostela, 15705 Galicia, Spain

CORRESPONDING AUTHOR: A. J. GARCÍA-LOUREIRO (e-mail: antonio.garcia.loureiro@usc.es)

This work was supported in part by the Spanish Government under Grant PID2019-104834GB-I00 and Grant RYC-2017-23312, and in part by the Xunta de Galicia and FEDER (accreditation 2016–2019) under Grant GRC 2014/008, Grant ED431G/08, and Grant ED431F-2020/008.

ABSTRACT The gate-all-around nanowire FET (GAA NW FET) is one of the most promising architectures for the next generation of transistors as it provides better performance than current mass-produced FinFETs, but it has been proven to be strongly affected by variability. For this reason, it is essential to be able to characterize device performance which is done by extracting the figures of merit (FoM) using data from the IV curve. In this work, we use numerical simulations to evaluate the effect of the threshold voltage (V_{TH}) extraction method on the variability estimation for a gate-all-around nanowire FET. For that, we analyse the impact of four sources of variability: gate edge roughness (GER), line edge roughness (LER), metal grain granularity (MGG) and random discrete dopants (RDD). We have considered five different extraction methods: the second derivative (SD), constant current (CC), linear extrapolation (LE), third derivative (TD) and transconductance-to-current-ratio (TCR). For the ideal non-deformed device at high drain bias, the effect of the extraction technique can lead to a 137 mV difference in V_{TH} and an 89 mV/V difference in the drain-induced-barrier-lowering (DIBL), and when considering GER and LER variability, the influence of the extraction method leads to differences in the standard deviation values of the V_{TH} distribution ($\sigma_{V_{TH}}$) of up to 2.3 and 3.7 mV respectively, values comparable to intrinsic parameter variations. Therefore, the V_{TH} extraction technique presents itself as an additional parameter that should be included in performance comparisons as it can heavily impact the results.

INDEX TERMS Threshold voltage, figures of merit, nanowires, device variability.

I. INTRODUCTION

The gate-all-around nanowire FET is one of the most viable alternatives to current mass produced architectures as it provides an enhanced performance with respect to previous competitors [1], [2], [3], [4]. However it still faces some difficulties to come into market like high production costs and degradation due to variability issues [2], [5]. Some of these influential variability sources that can affect device performance are: GER [6], [7], LER [8], [9], MGG [10], [11] and RDD [12], [13].

The most common methodology to compare the performance of different device architectures using physically-based simulations is done through the comparison of the figures of merit (FoM) that characterize the device performance [14], [15].

Previous works showed that some of these FoM can be obtained using different extraction methods as explained in [16], which may impact directly the results and influence the outcome [17]. For this reason, it is necessary to develop a consistent methodology that enables researchers in academia and industry to compare device performance between different architectures without being affected by the FoM extraction method. Moreover, there are several studies comparing the extraction method influence in some architectures like MOSFETs [16], [18], [19], TFETs [20] or FinFETs [17], but there is work to be done both in recent devices like the GAA NW FET and in variability cases. In this work, we present a study using five different extraction techniques (SD, CC, LE, TD and TCR) to calculate the V_{TH} values of a state-of-the-art variability-affected (GER, LER,
TABLE 1. Main device dimensions for the 10 nm gate length GAA NW FET.

Symbol	GAA NW FET
Gate length (L_G) [nm]	10.0
S/D length (L_S/D) [nm]	14.0
Channel width (W_CH) [nm]	5.7
Channel height (H_CH) [nm]	7.17
Equivalent oxide thickness (EOT) [nm]	0.80
Channel p-type doping (N_C_P) [cm⁻³]	10¹⁵
S/D n-type doping (N_S/D) [cm⁻³]	10²⁰
S/D doping lateral straggle (σ_x)	3.23
S/D doping lateral peak (x_p) [nm]	7.8
Channel perimeter [nm]	20.3
Gate perimeter [nm]	25.0

MGG and RDD) GAA NW FET and assess the effect on the results. The paper is structured as follows: Section II contains a detailed description of the device dimensions, the different extraction methods that are used and an explanation of the simulation methodology. In Section III, the simulation results with the extraction method comparison are presented. Finally, the conclusions of this work are summarised in Section IV.

II. DEVICE DESCRIPTION AND SIMULATION METHODOLOGY

The benchmark architecture used in this work is a 10 nm gate length Si GAA NW FET. This is a state-of-the-art device characterized from experimental data [21] and later scaled as explained in [22], following the ITRS guidelines [23]. The main dimensions and doping values can be seen in Table 1. The device channel has been uniformly doped whereas the source/drain (S/D) regions have Gaussian doping. These Gaussian doping profiles, reverse engineered from experimental data and scaled as explained in [22], are characterized by the slope (σ_x) and the peak (x_p) of the Gaussian profile (see Table 1).

We use VENDES, an in-house-built software [24], to obtain the GAA NW FET transfer characteristics. VENDES includes two transport schemes: drift-diffusion (DD) and Monte Carlo (MC), and two different types of quantum corrections: anisotropic Schrödinger equation based (SCH) and density gradient (DG). Also, the mesh used by the simulator is based on the finite element (FE) approach that accurately describes complex three-dimensional geometries. Detailed information about the simulator functionalities and the models it is based on can be seen in [24]. The DD-DG simulations used for this study require calibration against self-consistent schemes like the SCH-DD and SCH-MC and at a fraction of the simulation time, which is especially important when dealing with a massive number of simulations like in variability studies.

VENDES implements several variability sources that have been proven to play a critical role in performance, limiting the scaling of the device, and as a consequence dificulting the reduction of supply voltage and power dissipation [26]. GER and LER are modelled similarly, the device gate or the edge of the nanowire, respectively, are deformed according to a given roughness profile characterised by the root mean square (RMS) height, that defines the amplitude, and the correlation length (CL), that accounts for the spatial correlation. The MGG is modelled by generating a work-function map of the device gate that matches realistic metal grain distributions generated using the Voronoi approach. RDDs are introduced in the n-type doped S/D regions using a rejection technique from the doping profile (shown in Table 1) of the ideal non-deformed device and the charge of each dopant is later distributed through the mesh using the cloud-in-cell approach. A full description of the generation of all the aforementioned variability sources can be seen in [24].

For each variability source, ensembles of 300 device configurations were simulated to be able to statistically assess the impact on device performance. Figure 2 shows examples of the aforementioned sources on the 10 nm GAA-NW FET structure.

To perform this study in a time-efficient manner, we developed an in-house built python library called FoMPy, available to download at [27]. FoMPy implements some of the most common FoM extraction techniques used by the semiconductor community. This software can import large datasets, as required in variability studies, allowing the user above V_TH, SCH-MC produces more accurate predictions as it considers scattering events (see the calibration curves in Fig. 1).

The DD-DG simulation method has been chosen for this study as it produces sound results in the sub-threshold region if thoroughly calibrated against a self-consistent schemes like the SCH-DD and SCH-MC and at a fraction of the simulation time, which is especially important when dealing with a massive number of simulations like in variability studies.

VENDES implements several variability sources that have been proven to play a critical role in performance, limiting the scaling of the device, and as a consequence dificulting the reduction of supply voltage and power dissipation [26]. GER and LER are modelled similarly, the device gate or the edge of the nanowire, respectively, are deformed according to a given roughness profile characterised by the root mean square (RMS) height, that defines the amplitude, and the correlation length (CL), that accounts for the spatial correlation. The MGG is modelled by generating a work-function map of the device gate that matches realistic metal grain distributions generated using the Voronoi approach. RDDs are introduced in the n-type doped S/D regions using a rejection technique from the doping profile (shown in Table 1) of the ideal non-deformed device and the charge of each dopant is later distributed through the mesh using the cloud-in-cell approach. A full description of the generation of all the aforementioned variability sources can be seen in [24]. For each variability source, ensembles of 300 device configurations were simulated to be able to statistically assess the impact on device performance. Figure 2 shows examples of the aforementioned sources on the 10 nm GAA-NW FET structure.

To perform this study in a time-efficient manner, we developed an in-house built python library called FoMPy, available to download at [27]. FoMPy implements some of the most common FoM extraction techniques used by the semiconductor community. This software can import large datasets, as required in variability studies, allowing the user above V_TH, SCH-MC produces more accurate predictions as it considers scattering events (see the calibration curves in Fig. 1).

The DD-DG simulation method has been chosen for this study as it produces sound results in the sub-threshold region if thoroughly calibrated against a self-consistent schemes like the SCH-DD and SCH-MC and at a fraction of the simulation time, which is especially important when dealing with a massive number of simulations like in variability studies.

VENDES implements several variability sources that have been proven to play a critical role in performance, limiting the scaling of the device, and as a consequence dificulting the reduction of supply voltage and power dissipation [26]. GER and LER are modelled similarly, the device gate or the edge of the nanowire, respectively, are deformed according to a given roughness profile characterised by the root mean square (RMS) height, that defines the amplitude, and the correlation length (CL), that accounts for the spatial correlation. The MGG is modelled by generating a work-function map of the device gate that matches realistic metal grain distributions generated using the Voronoi approach. RDDs are introduced in the n-type doped S/D regions using a rejection technique from the doping profile (shown in Table 1) of the ideal non-deformed device and the charge of each dopant is later distributed through the mesh using the cloud-in-cell approach. A full description of the generation of all the aforementioned variability sources can be seen in [24]. For each variability source, ensembles of 300 device configurations were simulated to be able to statistically assess the impact on device performance. Figure 2 shows examples of the aforementioned sources on the 10 nm GAA-NW FET structure.

To perform this study in a time-efficient manner, we developed an in-house built python library called FoMPy, available to download at [27]. FoMPy implements some of the most common FoM extraction techniques used by the semiconductor community. This software can import large datasets, as required in variability studies, allowing the user above V_TH, SCH-MC produces more accurate predictions as it considers scattering events (see the calibration curves in Fig. 1).
FIGURE 2. Schematics representing the variability sources applied to the ideal non-deformed GAA NW FET. The modelling of MGG and LER has been done according to [2] whereas GER can be found in [6] and RDD in [17]. The cases presented in the image are: (a) GER using correlation length (CL) of 11 nm and root mean square height (RMS) of 1 nm, (b) LER using CL of 20 nm and RMS of 1 nm, (c) MGG using a grain size of 2.5 nm and (d) RDD affected electron concentration.

FIGURE 3. General capabilities of the FoMPy library. FoMPy is able to import your data into a dataset, and after optional conditioning (data filtering or interpolation) is able to extract and plot some of the most commonly studied FoMs.

to automatically obtain relevant FoM (V_{TH}, SS, I_{OFF}, I_{ON} and DIBL) for each one of thousands of IV curves. Fig. 3 shows the overall capabilities of this library. It enables users to easily import their data, preprocess it with filters or interpolation mechanisms and extract and plot the main FoMs with the several implemented extraction techniques.

In this work, we employed FoMPy to analyze the influence that the chosen V_{TH} extraction method has on the results. The study was performed both at low (V_{D,lin} = 0.05 V) and high drain biases (V_{D,sat} = 0.70 V). This library includes the following V_{TH} extraction methods: the second derivative (SD), constant current (CC), linear extrapolation (LE), third derivative (TD) and transconductance-to-current-ratio (TCR). See Fig. 4 for an illustrative explanation of the five aforementioned extraction methods.

The SD method evaluates V_{TH} at the V_{G} value where the derivative of the transconductance (g_{m} = dI_D/dV_{G}) is maximum. For the saturation region, V_{TH} is determined at the maximum point of the function \(d^2I_D^{0.5}/dV_G^2 \) as explained in [16], where \(I_D^{0.5} \) is the square root of the drain current. Although this method is user-independent and relies on a physical parameter, the transconductance of the device can also be subjective to error and noise, as it acts as a high pass filter of the data [16].

The LE method obtains V_{T} as the V_{G} axis intercept of the tangent of the IV characteristics at its maximum first derivative point. For the saturation region, V_{TH} is determined at the V_{G} axis intercept of the \(I_D^{0.5}/V_G \) function. This method, as it is based on finding the maximum slope of the curve, can be strongly affected by mobility degradation and source and drain series parasitic resistances [16].

The constant current criterion is one of the most commonly used V_{TH} extraction methods [16], [26] because of its simplicity. It determines V_{TH} at a critical user-defined value of the drain current (I_{DCC}). In this article we use one initially proposed by Tsuno et al. [28] for MOSFETs and later adapted for NWs by Tiwari et al. [29] where the constant drain current is set to 100nA/\(W_m/L_m \). L_m and W_m refer to the channel length and channel perimeter of the device, respectively. Also, we have used a similar criteria by Wu and Su [30] where the constant drain current is 300nA/\(W_m/L_m \). This method has the serious disadvantage that all the outcomes depend on an arbitrary criterion which might lead to inconsistent results. For example, when studying ensembles of curves with great excursions, it has been shown that the CC criterion fails to capture this behaviour [17]. To overcome this flaw Bazigos et al. [31] and Zhou et al. [32] proposed to pair the CC method with other physically-based mechanisms like the SD method. In the same manner, we have used a constant current criterion that matches the gate voltage extracted using the LE method. Therefore, three different drain current values will be taken into consideration to compare the effect that the arbitrary fixation of a criterion may have in the results.
The TD method chooses the \(V_{TH} \) where the third derivative of the current \(\left(\frac{d^3 I_D}{d V_G^3} \right) \) has a maximum, inherently disagreeing with the SD results. Equal to the SD method, another degree of differentiation introduces even greater noise, hence making this method the less reliable of all as shown in [17]. For simulations at high drain bias, \(V_{TH} \) is chosen at the maximum point of \(\frac{d^3 I_D}{d V_G^3} \).

Finally, the TCR method [16], [33], [19] is based on calculating the following ratio between the transconductance and the current:

\[
TCR = \frac{g_m}{I_D}
\]

(1)

\(V_{TH} \) is then determined calculating the maximum negative slope, that can be found with the derivative of the ratio \(\frac{dTCR}{dV_G} \).

III. SIMULATION RESULTS

In order to study the variability distributions of the aforementioned sources, we have employed two estimators: the standard deviation (\(\sigma V_{TH} \)) and the threshold voltage shift (\(\Delta V_{TH} \)), defined as the difference between the \(V_{TH} \) of the ideal non-deformed device and the mean value of the \(V_{TH} \) distribution due to a particular source of variability (\(\Delta V_{TH} = V_{TH,\text{ideal}} - \langle V_{TH} \rangle \)).

Tables 2 and 3 show \(\sigma V_{TH} \), \(V_{TH,\text{ideal}} \) and \(\langle V_{TH} \rangle \) obtained using SD, CC, LE, TD and TCR extraction methods for the GER, RDD, MGG and LER variability distributions at low and high drain biases, respectively. Note that the CC criterion has been calculated following Tsuno et al. [28], Wu and Su [30] and using the drain current value corresponding to the \(V_{TH} \) value of the LE method for the ideal device. For the ideal non-deformed device, we observe maximum differences of 23% and 39% in the \(V_{TH} \) between the different extraction methods, for \(V_{D,\text{lin}} \) and \(V_{D,\text{sat}} \), respectively. Also, the DIBL is a FoM that will heavily depend on the \(V_{TH} \) extraction method, as shown in Fig. 5. The SD and TD methods provide values higher than 130mV/V, the LE, CC\(_{\text{Wu}}\) and CC\(_{\text{LE}}\) in the range of 70 and 80 mV/V, and the TCR and CC\(_{\text{TsunO}}\) methods show DIBL values lower that 70 mV/V.

Table 2 clearly shows that, at low drain bias, the \(\sigma V_{TH} \) due to a particular source of variability depends on the extraction technique. The difference between the \(\sigma V_{TH} \) of the different methods ranges from 59%, in the GER case, to 10%, in the RDD one. Also, the highest \(\sigma V_{TH} \) values are not always extracted with the same method. For LER and GER, the CC\(_{\text{LE}}\) method outputs the highest \(\sigma V_{TH} \), whereas for RDD and MGG, the maximum is obtained for the TCR and SD methods, respectively. Similarly, at high drain bias, \(V_{TH} \) values are shown, and we obtain an analogous behaviour.

Table 3 shows that the \(\sigma V_{TH} \) due to LER, for two given RMS (0.7 and 0.85 nm) was 10 mV using
the CC criteria in both cases. Additionally, for GER (RMS of 1.0 nm and CL 11 nm) a maximum difference of 2.3 mV was found between the different extraction techniques, whereas in [6] a variation of RMS from 0.8 to 1.0 nm produced a change in $\sigma_{V_{TH}}$ of 1 mV. These results show that the effect of the extraction method can even be comparable to the variation of the intrinsic variability parameters. On the contrary, for other variability sources like MGG (with a grain size of 2.5 nm), the effect of the V_{TH} extraction method modifies the results up to 0.5 mV, a value much lower than the data provided in [2] where the MGG variability (for a grain size of 3.0 nm) produced a $\sigma_{V_{TH}}$ of approximately 20 mV. Also, in the case of RDD, a maximum difference between extraction methods of 16% was found.

In Fig. 6 (top) $\sigma_{V_{TH}}$ for the SD, LE and TD method is presented normalized by the $\sigma_{V_{TH}}$ extracted with the CCTsuno criterion in order to compare both the influence of the variability source and the extraction method at high drain bias ($V_{D, sat} = 0.70$ V). It shows that $\sigma_{V_{TH}}$ depends on the extraction method for GER, RDD and LER. For instance, with GER it can be seen a maximum difference of 30% between the TD (7.9 mV) and the LE method (5.6 mV). However, for MGG all methods, except the TCR, produce a very similar $\sigma_{V_{TH}}$, as this variability source only induces a V_{TH} shift in the IV curves without modifying the subthreshold slope.

Similarly ΔV_{TH} has been plotted in Fig. 6 (bottom) at high drain bias. ΔV_{TH} can be positive or negative, depending on the extraction method and on the variability source. Also, the extraction method can either have a small effect on ΔV_{TH}, like in LER and MGG or influence them considerably, as in RDD, where the CC methods yield a maximum shift of -51 mV, 4 times larger than any other method. The SD, TD, TCR and LE methods are based on the change of the transconductance for each individual device, however, the CC methods set the same fixed drain current value (I_{Dcc}) (chosen for the ideal non-deformed device) for all the variability affected devices. RDD induces not only a V_{TH} shift but also a large change in the slope of the IV curve. Therefore, choosing the same I_{Dcc} for both the nominal and the variability affected devices may lead to the overestimation of ΔV_{TH}.

Fig. 7 and Fig. 8 show, at low and high drain biases respectively, $\sigma_{V_{TH}}$ normalized by $\sigma_{V_{THCC}}$ for the other two CC criteria used in this work, those proposed by Tsuno et al. [28] and Wu and Su [30]. On the one hand, we observe changes of up to 40% and 20% for low and high drain biases, respectively, depending on the CC criteria. On the other hand, the behaviour that these methods predict may differ. For instance, in Fig. 7 when using CC Tsuno, the $\sigma_{V_{TH}}$ yielded is higher in MGG than in the GER, RDD or GER cases, but if CC Wu is used, the results are the opposite. Similarly, in Fig. 8 when using CC Tsuno, $\sigma_{V_{TH}}$ is higher in a RDD affected device than in the MGG case whereas when using CC Wu the opposite behaviour can be seen.
Depending on the drain current that is used-defined, studying the transfer characteristics at different points may result in misinterpretations. This is exemplified in Fig. 9, where five voltages extracted using the TD, SD, TCR, CCwu and LE methods are used to simulate the nominal device at $V_{D,\text{sat}}$. A clear change in the electron concentration in the channel leads to different extraction results, making the V_{TH} extraction method an essential parameter to be taken into account when studying device performance.

IV. CONCLUSION

In this work, we tested the effect of the V_{TH} extraction method on variability studies. In order to do so, 3D quantum-corrected FE DD-DG simulations of a 10 nm gate length GAA NW FET were performed and GER, RDD, MGG and LER variations were applied to the benchmark device. The results were extracted using five different extraction techniques: SD, CC, LE, TD and TCR.

For V_{TH} in the ideal non-deformed case, maximum variations of 39% and 23% between different extraction methods have been found, for simulations at high drain bias ($V_{D,\text{sat}}$) and low drain bias ($V_{D,\text{lin}}$) respectively. Also comparing the DIBL extracted values, a difference of up to 89 mV/V has been found between proposed methods. In variability, the dependence of the results on the extraction method can even be comparable to intrinsic variability parameters like the RMS in GER and LER, with up to a 59% and 30% variation on V_{TH} in GER between the different methods for $V_{D,\text{sat}}$ and for $V_{D,\text{lin}}$ respectively.

Also, even though the CC criterion is one of the most commonly used extraction methods because of its simplicity, the arbitrary value of the drain current the user has to set might lead to misinterpretations. Changes of up to 40% and 20% and opposite behaviours have been found when extracting V_{TH} using different CC criteria for low and high drain biases respectively.

In summary, we have demonstrated that the V_{TH} extraction method may play a significant role in variability studies, becoming an additional factor that has to be taken into account and used consistently in performance comparisons.

REFERENCES

[1] J.-S. Yoon, T. Rim, J. Kim, M. Meyyappan, C.-K. Baek, and Y.-H. Jeong, “Vertical gate-all-around junctionless nanowire transistors with asymmetric diameters and underlap lengths,” J. Appl. Phys., vol. 105, no. 10, Sep. 2014, Art. no. 102105.

[2] D. Nagy, G. Indalecio, A. J. García-Loureiro, M. A. Elmessary, K. Kalna, and N. Seoane, “FinFET versus gate-all-around nanowire FET: Performance, scaling, and variability,” IEEE J. Electron Devices Soc., vol. 6, pp. 332–340, Feb. 2018.

[3] P. Feng et al., “Comparative analysis of semiconductor device architectures for 5-nm node and beyond,” IEEE Electron Device Lett., vol. 38, no. 12, pp. 1657–1660, Dec. 2017.

[4] F. M. Bufler, R. Ritzenthaler, H. Mertens, G. Eneman, A. Mocuta, and N. Horiguchi, “Performance comparison of n-type Si nanowires, nanosheets, and FinFETs by MC device simulation,” IEEE Electron Device Lett., vol. 39, no. 11, pp. 1628–1631, Nov. 2018.

[5] Y. S. Wu and P. Su, “Sensitivity of gate-all-around nanowire MOSFETs to process variations—A comparison with multigate MOSFETs,” IEEE Trans. Electron Devices, vol. 55, no. 11, pp. 3042–3047, Nov. 2008.

[6] G. Espíñeira, D. Nagy, A. García-Loureiro, G. Indalecio, K. Kalna, and N. Seoane, “Impact of gate edge roughness variability on FinFET and gate-all-around nanowire FET,” IEEE Electron Device Lett., vol. 40, no. 4, pp. 510–513, Apr. 2019.

[7] X. Wang, A. R. Brown, B. Cheng, and A. Asenov, “Statistical variability and reliability in nanoscale FinFETs,” in Proc. IEEE Electron Devices Meeting (IEDM), Dec. 2011, pp. 5.4.1–5.4.4.

[8] R. Wang et al., “Investigations on line-edge roughness (LER) and line-width roughness (LWR) in nanoscale CMOS technology: Part II experimental results and impacts on device variability,” IEEE Trans. Electron Devices, vol. 60, no. 11, pp. 3676–3682, Nov. 2013.

[9] X. Jiang, R. Wang, R. Huang, and J. Chen, “Simulation of correlated line-edge roughness in multi-gate devices,” in Proc. SISPAD, Sep. 2013, pp. 123–126.

[10] S. Chou, M. Fan, and P. Su, “Investigation and comparison of work function variation for FinFET and UTB SOI devices using a Voronoi approach,” IEEE Trans. Electron Devices, vol. 60, no. 4, pp. 1485–1489, Apr. 2013.

[11] H. Nam, C. Shin, and J. Park, “Impact of the metal-gate material properties in FinFETs (versus FD-SOI MOSFET) on high-k/metal-gate work-function variation,” IEEE Trans. Electron Devices, vol. 65, no. 11, pp. 4780–4785, Nov. 2018.

[12] C. Millar, D. Reid, G. Roy, S. Roy, and A. Asenov, “Accurate statistical description of random dopant-induced threshold voltage variability,” IEEE Electron Device Lett., vol. 29, no. 8, pp. 946–948, Aug. 2008.

[13] A. S. Spinelli, C. M. Compagnoni, and A. L. Lacaia, “Random dopant fluctuation and random telegraph noise in nanowire and macaroni MOSFETs,” in Proc. EAE Solid-State Device Res. Conf. (ESSDERC), Sep. 2018, pp. 230–233.

[14] T. K. Agarwal, M. Rau, I. Rud, M. Luissier, W. Dehaene, and M. Heyns, “Performance comparison of n-Si, In$_x$Ga$_{1-x}$As, monolayer BP, and WS$_2$-based n-MOSFETs for future technology nodes—Part I: Device-level comparison,” IEEE Trans. Electron Devices, vol. 66, no. 8, pp. 3608–3613, Aug. 2019.

[15] S. M. Nawaz, S. Dutta, and A. Mallik, “Comparison of gate-metal work function variability between Ge and Si p-channel FinFETs,” IEEE Trans. Electron Devices, vol. 62, no. 12, pp. 3951–3956, Dec. 2015.

[16] A. Ortiz-Conde, F. J. García-Sánchez, J. Muñez, A. A. Barrios, J. L. Liou, and C.-S. Ho, “Revisiting MOSFET threshold voltage extraction methods,” Microelectron. Rel., vol. 53, no. 1, pp. 90–104, Jan. 2013.

[17] G. Espíñeira, D. Nagy, A. J. García-Loureiro, G. Indalecio, and N. Seoane, “Impact of threshold voltage extraction methods on semiconductor device variability,” Solid-State Electron., vol. 159, pp. 165–170, Sep. 2019.
ESPIÑEIRA et al.: DOES THRESHOLD VOLTAGE EXTRACTION METHOD AFFECT DEVICE VARIABILITY?

[18] T. Rudenko, V. Kilchytska, M. K. M. Arshad, J. Raskin, A. Nazarov, and D. Flandre, “On the MOSFET threshold voltage extraction by transconductance and transconductance-to-current ratio change methods: Part II—Effect of gate-voltage-dependent mobility,” IEEE Trans. Electron Devices, vol. 58, no. 12, pp. 4180–4188, Dec. 2011.

[19] D. Flandre, V. Kilchytska, and T. Rudenko, “g_{m}/I_{d} method for threshold voltage extraction applicable in advanced MOSFETs with nonlinear behavior above threshold,” IEEE Electron Device Lett., vol. 31, no. 9, pp. 930–932, Sep. 2010.

[20] A. Ortiz-Conde et al., “Threshold voltage extraction in Tunnel FETs,” Solid-State Electron., vol. 93, pp. 49–55, Mar. 2014.

[21] S. Bangsaruntip et al., “Density scaling with gate-all-around silicon nanowire MOSFETs for the 10 nm node and beyond,” in Proc. IEEE Electron Devices Meeting (IEDM), Dec. 2013, pp. 526–529.

[22] M. A. Elmessary et al., “Scaling/LER study of Si GAA nanowire FET using 3D finite element Monte Carlo simulations,” Solid-State Electron., vol. 128, pp. 7–24, Feb. 2017.

[23] (2016), International Technology Roadmap for Semiconductors. [Online]. Available: http://www.itrs2.net/

[24] N. Seoane, D. Nagy, G. Indalecio, G. E. Deus, K. Kalna, and A. García-Loureiro, “A multi-method simulation toolbox to study performance and variability of nanowire FETs,” Materials, vol. 12, no. 15, p. 2391, 2019.

[25] N. Seoane, G. Indalecio, E. Comesaña, M. Aldegunde, A. J. García-Loureiro, and K. Kalna, “Random dopant, line-edge roughness, and gate workfunction variability in a nano InGaAs FinFET,” IEEE Trans. Electron Devices, vol. 61, no. 2, pp. 466–472, Feb. 2014.

[26] M. Tsuno, M. Suga, M. Tanaka, K. Shibahara, M. Miura-Mattausch, and M. Hirose, “Physically-based threshold voltage determination for MOSFET’s of all gate lengths,” IEEE Trans. Electron Devices, vol. 46, no. 7, pp. 1429–1434, Jul. 1999.

[27] P. K. Tiwari, V. R. Samoju, T. Sunkara, S. Dubey, and S. Jit, “Analytical modeling of threshold voltage for symmetrical silicon nano-tube field-effect-transistors (Si-NT FETs),” J. Comput. Electron., vol. 15, no. 2, pp. 516–524, Jun. 2016.

[28] Y. Wu and P. Su, “Sensitivity of gate-all-around nanowire MOSFETs to process variations—A comparison with multigate MOSFETs,” IEEE Trans. Electron Devices, vol. 55, no. 11, pp. 3042–3047, Nov. 2008.

[29] X. Zhou, K. Y. Lim, and D. Lim, “A simple and unambiguous definition of threshold voltage and its implications in deep-submicron MOS device modeling,” IEEE Trans. Electron Devices, vol. 46, no. 4, pp. 807–809, Apr. 1999.

[30] K. Aoyama, “A method for extracting the threshold voltage of MOSFETs based on current components,” in Simulation of Semiconductor Devices and Processes. Vienna, Austria: Springer, 1995, pp. 118–121. [Online]. Available: https://doi.org/10.1007/978-3-7091-6619-2_28

[31] (2016). [Online]. Available: https://github.com/gabrielesp/FoMpy

GABRIEL ESPIÑEIRA received the B.S. degree in physics and a M.Res. degree in HPC from the University of Santiago de Compostela, Santiago de Compostela, Spain, in 2018 and 2019, respectively, where he is currently pursuing the Ph.D. degree in semiconductor device simulation from the CITIUS, University of Santiago de Compostela, Santiago de Compostela, Spain.

ANTONIO J. GARCÍA-LOUREIRO received the Ph.D. degree from the University of Santiago de Compostela, Santiago de Compostela, Spain, in 1999. He is an Associated Professor with the Department of Electronics and Computer Science, University of Santiago de Compostela. His current research interests are multidimensional simulations of nanoscale transistors and solar cells.

NATALIA SEOANE received the Ph.D. degree from the University of Santiago de Compostela, Santiago, Spain, in 2007. She is currently with the University of Santiago de Compostela. She was a Visiting Postdoctoral Researcher with the University of Glasgow, Glasgow, U.K., from 2007 to 2009, Edinburgh University, Edinburgh, U.K., in 2011, and Swansea University, Swansea, U.K., from 2013 to 2015.