A new class of positive recurrent functions

Pawel Hanus and Mariusz Urbański

Abstract. In [Sa] Sarig has introduced and explored the concept of positively recurrent functions. In this paper we construct a natural wide class of such functions and we show that they have stronger ergodic properties than the general functions considered in [Sa].

1. Preliminaries

In [Sa] Sarig has introduced and explored the concept of positively recurrent functions. In this paper, using the concept of an iterated function system, we construct a natural wide class of positively recurrent functions and we show that they have stronger properties than the general functions considered in [Sa]. In some parts our exposition is similar and follows the approach developed in [MU1] and [Wa], where also the idea of embedding the infinite dimensional shift space into a compact metric space and the Shauder-Tichonov fixed-point theorem have been used. To begin with, let \mathcal{N} be the set of positive integers and let $\Sigma = \mathcal{N}^\infty$ be the infinitely dimensional shift space equipped with the product topology. Let $\sigma : \Sigma \to \Sigma$ be the shift transformation (cutting out the first coordinate), $\sigma(\{x_n\}_{n=1}^\infty) = (\{x_n\}_{n=2}^\infty)$. Fix $\beta > 0$. If $\phi : \Sigma \to \mathbb{R}$ and $n \geq 1$, we set

$$V_n(\phi) = \sup\{\|\phi(x) - \phi(y)\| : x_1 = y_1, x_2 = y_2, \ldots, x_n = y_n\}.$$

The function ϕ is said to be Hölder continuous of order β if and only if

$$V(\phi) = \sup_{n \geq 1}\{e^{\beta n} V_n(\phi)\} < \infty.$$

We also assume that

$$\sup_{\omega \in \Sigma} \sum_{\tau \in \sigma^{-1}(\omega)} e^{\phi(\tau)} < \infty.$$

This assumption allows us to introduce the Perron-Frobenius-Ruelle operator $L_\phi : C_b(\Sigma) \to C_b(\Sigma)$,

$$L_\phi(g)(\omega) = \sum_{\tau \in \sigma^{-1}(\omega)} e^{\phi(\tau)} g(\tau).$$

1991 Mathematics Subject Classification. 28D05, 28D20.

The second author was supported in part by NSF Grant DMS 9801583.
acting on \(C_b(\Sigma) \), the space of all bounded continuous real-valued functions on \(\Sigma \) equipped with the norm \(|| \cdot ||_0 \), where \(||k||_0 = \sup_{x \in \Sigma} |k(x)| \). Moreover,

\[
||L_0||_0 \leq L_\phi(\mathbb{1}) = \sup_{\omega \in \Sigma} \sum_{\tau \in \sigma^{-1}(\omega)} e^{\phi(\tau)} < \infty.
\]

We extend the standard definition of topological pressure by setting

\[
(1.2) \quad P(\phi) = \lim_{n \to \infty} \frac{1}{n} \log \left(\sum_{|\omega|=n} \sup_{\tau \in [\omega]} \exp \left(\sum_{j=0}^{n-1} \phi \circ \sigma^j(\tau) \right) \right),
\]

where \([\omega] = \{ \rho \in \Sigma : \rho_1 = \omega_1, \rho_2 = \omega_2, \ldots, \rho_{|\omega|} = \omega_{|\omega|} \}\). Notice that the limit exists since the partition functions

\[
Z_n(\phi) = \sum_{|\omega|=n} \sup_{\tau \in [\omega]} \exp \left(\sum_{j=0}^{n-1} \phi \circ \sigma^j(\tau) \right)
\]

form a subadditive sequence. Notice also that our definition of pressure formally differs from that provided by Sarig in [Sa] which reads that given \(i \in \mathbb{N} \)

\[
(1.3) \quad P(\phi) = \lim_{n \to \infty} \frac{1}{n} \log Z_n(\phi, i),
\]

where

\[
Z_n(\phi, i) = \sum \exp \left(\sum_{j=0}^{n-1} \phi \circ \sigma^j(\omega) \right)
\]

and the summation is taken over all elements \(\omega \) satisfying \(\sigma^n(\omega) = \omega \) and \(\omega_1 = i \). However in [Sa] Sarig proves Theorem 2 which says that \(P(\phi) = \sup\{P(\phi|_Y)\} \), where the supremum is taken over all topologically mixing subshifts of finite type \(Y \subset \Sigma \) and the same proof goes through with (1.3) replaced by (1.2) (comp. Theorem 3.1 of [MU2]). Thus we have the following.

Lemma 1.1. The definitions of topological pressures given by (1.2) and (1.3) coincide.

Here is a direct proof of this lemma communicated to us by Sarig Omri: Fix \(i \in \mathbb{N} \). Using Hölder continuity of the function \(\phi \) we can write

\[
Z_n(\phi) \asymp \sum_{|\omega|=n} \exp(\sum_{j=0}^{n-1} \phi(\omega^\infty)) \asymp \sum_{|\omega|=n} \exp(\sum_{j=0}^{n} \phi((i\omega)^\infty)) = Z_{n+1}(\phi, i).
\]

Thus the lemma is proved.

Following the definition 2 of [Sa] we call the function \(\phi : \Sigma \to \mathbb{R} \) positive recurrent if for every \(i \in \mathbb{N} \) there exists a constant \(M_i \) and an integer \(N_i \) such that for all \(n \geq N_i \)

\[
M_i^{-1} \leq Z_n(\phi, i) \lambda^{-n} \leq M_i
\]

for some \(\lambda > 0 \). As we already have said the main purpose of this paper is to provide a wide natural class of examples of positive recurrent potential which additionally satisfy much stronger properties than those claimed in Theorem 4 of [Sa]. In order to describe our setting let \((X, d)\) be a compact metric space and let \(\phi_i : X \to X, i \in \mathbb{N} \), be a family of uniform contractions, i.e. \(d(\phi_i(x), \phi_i(y)) \leq sd(x, y) \) for all \(i \in \mathbb{N} \),
Given $\omega \in \Sigma$ consider the intersection $\bigcap_{n \geq 1} \phi_{\omega_n}(X)$, where $\phi_{\omega_n} = \phi_1 \circ \ldots \circ \phi_{\omega_n}$. Since $\phi_{\omega_n}(X)$, $n \geq 1$, form a descending family of compact sets, this intersection is non-empty and since the maps ϕ_i, $i \in \mathbb{N}$, are uniform contractions, it is a singleton. So, we have defined a projection map $\pi : \Sigma \to X$ given by the formula

$$\{\pi(\omega)\} = \bigcap_{n \geq 1} \phi_{\omega_n}(X).$$

J, the range of π, is said to be the limit set of the iterated function system $\phi_i : X \to X$, $i \in \mathbb{N}$. Let now $\phi^{(i)} : X \to \mathbb{R}$, $i \in \mathbb{N}$, be a family of continuous functions such that

$$\sup_{x} \sum_{i \in \mathbb{N}} e^{\phi^{(i)}(x)} < \infty. \quad (1.4)$$

We define a function $\phi : \Sigma \to \mathbb{R}$ by setting

$$\phi(\omega) = \phi^{(\omega_1)}(\pi(\sigma^i(\omega))). \quad (1.5)$$

It easily follows from (1.4) that $P(\phi) < \infty$. In the next section we shall prove the following.

Theorem 1.2. Suppose that the function $\phi : \Sigma \to \mathbb{R}$ defined by (1.5) and satisfying (1.4) is Hölder continuous. Let L^*_ϕ be the operator conjugate to L_ϕ. Then ϕ is positive recurrent with $\lambda = e^{P(\phi)}$. Moreover there exists $M > 0$ such that $M^{-1} \leq \lambda^{-n} L^*_\phi(\mathbb{1}) \leq M$ for all $n \geq 1$. Suppose additionally that $\phi_i(X) \cap \phi_j(X) = \emptyset$ for all $i, j \in \mathbb{N}$, $i \neq j$. Then there are a probability measure ν on Σ and a bounded away from zero and infinity Hölder continuous function $h : \Sigma \to (0, \infty)$ such that $L^*_\phi(\nu) = \lambda \nu$, $L_\phi(h) = \lambda h$, $\nu(h) = 1$ and $\lambda^{-n} L^*_\phi(g) \to (\int g d\nu)h$ uniformly for every uniformly continuous bounded function g. Additionally $\lambda^{-n} L^*_\phi(g) \to (\int g d\nu)h$ exponentially fast for each Hölder continuous bounded function g.

2. Proof of Theorem 1.2.

Define first an auxiliary Perron-Frobenius operator $\tilde{L}_\phi : C(X) \to C(X)$ given by the formula

$$\tilde{L}_\phi(g)(x) = \sum_{i \in \mathbb{N}} \phi^{(i)}(x) g(\phi_i(x)).$$

\tilde{L}_ϕ is continuous, positive and $||\tilde{L}_\phi||_0 \leq \sup_X \sum_{i \in \mathbb{N}} e^{\phi^{(i)}(x)} < \infty$. Let $\hat{L}^*_\phi : C(X)^* \to C(X)^*$ be the conjugate operator and following Bowen’s approach from [Bo] consider the map

$$\mu \mapsto \frac{\hat{L}^*_\phi(\mu)}{L^*_\phi(\mu)(\mathbb{1})},$$

of the space of Borel probability measures on X into itself. This map is continuous in the weak-* topology of measures and therefore, in view of the Schauder-Tichonov theorem, it has a fixed point, say m_ϕ. Thus

$$\hat{L}^*_\phi(m_\phi) = \lambda m_\phi \quad (2.1)$$

with $\lambda = \hat{L}^*_\phi(m_\phi)(\mathbb{1})$.

Given $n \geq 1$ and $\omega \in \mathbb{N}^n$, denote $\sum_{j=1}^n \phi^{(\omega_j)} \circ \phi_{\sigma^j \omega}$ by $S_\omega(\phi)$. Let us then prove the following.
Lemma 2.1. If \(x, y \in \phi_\tau(X) \) for some \(\tau \in I^* \), then for all \(\omega \in I^* \)
\[
|S_\omega(\phi)(x) - S_\omega(\phi)(y)| \leq \frac{V(\phi)}{1 - e^{-\beta}} e^{-\beta|\tau|}
\]

Proof. Let \(n = |\omega| \). Write \(x = \phi_\tau(u) \), \(y = \phi_\tau(w) \), where \(u, w \in X \). By (2.1) we get
\[
\left| \sum_{j=1}^{n} \phi^{(\omega_j)}(\phi_{\tau_j\omega_j}(x)) - \sum_{j=1}^{n} \phi^{(\omega_j)}(\phi_{\tau_j\omega_j}(y)) \right| = \left| \sum_{j=1}^{n} \phi^{(\omega_j)}(\phi_{\tau_j}(u)) - \sum_{j=1}^{n} \phi^{(\omega_j)}(\phi_{\tau_j}(w)) \right| \\
\leq \sum_{j=1}^{n} V(\phi) e^{-\beta(n+|\tau|-j)} \\
\leq \frac{V(\phi)}{1 - e^{-\beta}} e^{-\beta|\tau|}
\]
The proof is finished.

Remark 2.2. We allow in Lemma 2.1 \(\tau \) to be the empty word \(\emptyset \). Then \(\phi_\emptyset = \text{Id}_X \) and \(|\emptyset| = 0 \).

Set
\[
Q = \exp \left(V(\phi) \frac{e^{-\beta}}{1 - e^{-\beta}} \right).
\]
We shall prove the following.

Lemma 2.3. The eigenvalue \(\lambda \) (see 2.1) of the dual Perron-Frobenius operator is equal to \(e^{P(\phi)} \).

Proof. Iterating (2.1) we get
\[
\lambda^n = \lambda^n m_\phi(\mathbb{I}) = \tilde{L}_\phi^n(\mathbb{I}) = \int_X \tilde{L}_\phi^n(\mathbb{I}) dm_\phi \\
= \int_X \sum_{|\omega|=n} \exp(S_\omega(\phi)(x)) \leq \sum_{|\omega|=n} \| \exp(S_\omega(\phi)) \|_0.
\]
So,
\[
\log \lambda \leq \lim_{n \to \infty} \frac{1}{n} \log \left(\sum_{|\omega|=n} \| \exp(S_\omega(\phi)) \|_0 \right) = P(\phi).
\]
Fix now \(\omega \in I^n \) and take a point \(x_\omega \) where the function \(S_\omega(\phi) \) takes on its maximum. In view of Lemma 2.1, for every \(x \in X \) we have
\[
\sum_{|\omega|=n} \exp(S_\omega(\phi)(x)) \geq Q^{-1} \sum_{|\omega|=n} \exp(S_\omega(\phi)(x_\omega)) = Q^{-1} \sum_{|\omega|=n} \| \exp(S_\omega(\phi)) \|_0.
\]
Hence, iterating (2.1) as before,

$$
\lambda^n = \int_X \sum_{|\omega|=n} \exp(S_\omega(\phi))dm_\phi \geq Q^{-1} \sum_{|\omega|=n} \|\exp(S_\omega(\phi))\|_0.
$$

So, log $\lambda \geq \lim_{n \to \infty} \frac{1}{n} \log(\sum_{|\omega|=n} \|\exp(S_\omega(\phi))\|_0) = P(\phi)$. The proof is finished. \qed

Let \hat{L}_0 and L_0 denote the corresponding normalized Perron-Frobenius operators, i.e. $\hat{L}_0 = e^{-P(\phi)}\hat{L}_\phi$ and $L_0 = e^{-P(\phi)}L_\phi$. We shall prove the following.

Theorem 2.4. $m_\phi(J) = 1$.

Proof. Since by (2.1)

$$
\hat{L}_0^*(m_\phi) = m_\phi
$$

and consequently $\hat{L}_0^*(m_\phi) = m_\phi$ for all $n \geq 0$, we have

$$
\int_X \sum_{|\omega|=n} \exp(S_\omega(\phi) - P(\phi)n) \cdot (f \circ \phi_\omega)dm_\phi = \int_X f dm_\phi
$$

for all $n \geq 0$ and all continuous functions $f : X \to \mathbb{R}$. Since this equality extends to all bounded measurable functions f, we get

$$
m_\phi(A) = \sum_{\tau \in \mathbb{T}^n} \int \exp(S_\tau(\phi) - P(\phi)n) \cdot \mathbb{1}_{\phi_\omega(A)} \circ \phi_\tau dm_\phi
$$

(2.4) \geq \int_A \exp(S_\omega(\phi) - P(\phi)n) dm_\phi

for all $n \geq 0$, all $\omega \in \mathbb{T}^n$, and all Borel sets $A \subset X$. Now, for each $n \geq 1$ set $X_n = \bigcup_{|\omega|=n} \phi_\omega(X)$. Then $\mathbb{1}_{X_n} \circ \phi_\omega = \mathbb{1}$ for all $\omega \in \mathbb{N}_n$. Thus applying (2.3) to the function $f = \mathbb{1}_{X_n}$ and later to the function $f = \mathbb{1}$, we obtain

$$
m_\phi(X_n) = \int_X \sum_{|\omega|=n} \exp(S_\omega(\phi) - P(\phi)n) \cdot (\mathbb{1}_{X_n} \circ \phi_\omega) dm_\phi
$$

$$
= \int_X \sum_{|\omega|=n} \exp(S_\omega(\phi) - P(\phi)n) dm_\phi = \int \mathbb{1} dm_\phi = 1.
$$

Hence $m_\phi(J) = m_\phi(\bigcap_{n \geq 1} X_n) = 1$. The proof is complete. \qed

Theorem 2.5. For all $n \geq 1$

$$
Q^{-1} \leq \hat{L}_0^n(\mathbb{1}) \leq Q.
$$

Proof. Given $n \geq 1$ by (2.3) there exits $x_n \in X$ such that $\hat{L}_0^n(\mathbb{1})(x_n) \leq 1$. It then follows from Lemma 2.1 that for every $x \in X$, $\hat{L}_0^n(\mathbb{1}) \leq Q$. Similarly by (2.3) there exists $y_n \in X$ such that $\hat{L}_0^n(\mathbb{1}) \geq 1$. It then follows from Lemma 2.1 that for every $x \in X$, $\hat{L}_0^n(\mathbb{1}) \geq Q^{-1}$. The proof is finished. \qed

So far we have worked downstairs in the compact space X. It is now time to lift our considerations up to the shift space Σ.

Lemma 2.6. There exists a unique Borel probability measure \tilde{m}_ϕ on \mathbb{N}^∞ such that $\tilde{m}_\phi([\omega]) = \int \exp(S_\omega(\phi) - P(\phi)n) dm_\phi$ for all $\omega \in \mathbb{N}^\ast$.
PROOF. In view of (2.4) \(\int \exp(S_\omega(\phi) - P(\phi)n)dm_\phi = 1 \) for all \(n \geq 1 \) and therefore one can define a Borel probability measure \(m_n \) on \(C_n \), the algebra generated by the cylinder sets of the form \([\omega], \omega \in \mathbb{N}^n \), putting \(m_n(\omega) = \int \exp(S_\omega(\phi) - P(\phi)n)dm_\phi \). Hence, applying (2.4) again we get for all \(\omega \in \mathbb{N}^n \).

\[
m_{n+1}(\omega) = \sum_{i \in \mathbb{N}} m_{n+1}([\omega]) = \sum_{i \in \mathbb{N}} \int \exp(S_{\omega i}(\phi) - P(\phi)n)dm_\phi
\]

\[
= \int \sum_{i \in \mathbb{N}} \exp \left(\sum_{j=1}^n \phi(\omega_j) \circ \phi_{\sigma^j(\omega)} - L_\phi \right) dm_\phi
\]

\[
= \int \sum_{i \in \mathbb{N}} \exp(S_\omega \circ \phi_i - P(\phi)n) \exp(\phi(\omega)) - P(\phi))dm_\phi
\]

\[
= \int \tilde{L}_\phi \exp(S_\omega(\phi) - P(\phi))dm_\phi = \int \exp(S_\omega(\phi) - P(\phi))dm_\phi = m_n(\omega)
\]

and therefore in view of Kolmogorov’s extension theorem there exists a unique probability measure \(\tilde{m}_\phi \) on \(\mathbb{N}^\infty \) such that \(\tilde{m}_\phi([\omega]) = \tilde{m}_\phi([\omega]) \) for all \(\omega \in \mathbb{N}^n \). The proof is complete. \(\square \)

Now we are ready to prove that the function \(\phi \) is positive recurrent. Let us first notice that

\[
L_{\phi}(\mathbb{I}) (\omega) = \sum_{\tau \in \sigma^{-1}(\omega)} e^{\phi(\tau)} = \sum_{\tau \in \sigma^{-1}(\omega)} \exp(\phi(\tau))(\pi(\tau)) = \sum_{i \in \mathbb{N}} e^{\phi(i)}(\pi(\sigma)) = \tilde{L}_{\phi}(\mathbb{I})(\pi(\omega)).
\]

Since \(\tilde{L}_\phi = e^{-P(\phi)}\tilde{L}_{\phi} \), it then follows from Theorem 2.4 that as \(M \) we can take \(Q \).

In order to demonstrate that the function \(\phi \) is positive recurrent we first show that

\[
\frac{Z_n(\phi, i)}{L_{\phi}^n(\mathbb{I})(\omega)} \leq M_i
\]

for all \(n \geq 1 \), \(\omega \in \Sigma \), and some constant \(M_i > 0 \). So fix \(\omega \in \Sigma \). We shall define an injection \(j \) from \(\{ \rho \in \Sigma : \sigma^n(\rho) = \rho \} \) into \(\sigma^{-n}(\omega) \) as follows: \(j(\rho) = \rho_1 \rho_2 \cdots \rho_n \omega \). Now, by Lemma 2.1

\[
\left| \sum_{j=0}^{n-1} \phi(\sigma^j(\rho)) - \sum_{j=0}^{n-1} \phi(\sigma^j(j(\rho))) \right| \leq \log Q
\]

and therefore \(Z_n(\phi, i) \leq Q L_\phi^n(\mathbb{I})(\omega) \). Thus by Theorem 2.4 and the definition of the operators \(\tilde{L}_\phi \) and \(L_0 \), \(Z_n(\phi, i) \leq M_i \lambda^n \), where \(M_i = Q^2 \). Now we shall prove that \(Z_n(\phi, i) \geq M_i' \lambda^n \) for some constant \(M_i' \) and all \(n \geq 1 \). We demonstrate first that for all \(n \geq 1 \) and all \(i \in \Sigma \)

\[
L_0(\mathbb{I}[i]) \geq \tilde{m}_\phi([i]).
\]
Indeed, since \(\int L_0(\mathbb{I}_i) \, d\tilde{m}_\phi = \int \mathbb{I}_i \, d\tilde{m}_\phi = \tilde{m}_\phi([i]) > 0 \), there exists \(\tau \in \Sigma \) such that \(L_0(\mathbb{I}_i)(\tau) \geq \tilde{m}_\phi([i]) \). It the follows from Lemma 2.1 that for every \(\omega \in \Sigma \)

\[
L^n_0(\mathbb{I}_i)(\omega) = \sum_{\rho \in \sigma^n(\omega)} \exp \left(\sum_{j=0}^{n-1} \phi \circ \sigma^j(\rho) \mathbb{I}_i(\rho) \right)
\]

\[
\geq Q^{-1} \sum_{\rho \in \sigma^n(\tau)} \exp \left(\sum_{j=0}^{n-1} \phi \circ \sigma^j(\rho) \mathbb{I}_i(\rho) \right) = Q^{-1} L_0(\mathbb{I}_i)(\tau)
\]

Hence \(L^n_0(\mathbb{I}_i)(\omega) \geq \lambda^n \tilde{m}_\phi([i]) \). So, in order to conclude the proof that \(\phi \) is positively recurrent it suffices now to show that

\[
\frac{Z_n(\phi,i)}{L^n_0(\mathbb{I}_i)(\omega)} \geq M_i''
\]

for all \(n \geq 1 \), all \(\omega \in \Sigma \) and some constant \(M_i'' > 0 \). Indeed, we shall define an injection \(k \) from \(\sigma^{-n}(\omega) \cap [i] \) to \(\{ \rho : \Sigma : \sigma^n(\rho) = \rho \text{ and } \rho_1 = i \} \) by taking as \(k(\tau) \) the infinite concatenation of the first \(n \) words of \(\tau \). Then by Lemma 2.1,

\[
\left| \sum_{j=0}^{n-1} \phi(\sigma^j(\tau)) - \sum_{j=0}^{n-1} \phi(\sigma^j(k(\tau))) \right| \leq \log Q
\]

and therefore

\[
L^n_0(\mathbb{I}_i)(\omega) = \sum_{\rho \in \sigma^{-n}(\omega)} \exp \left(\sum_{j=0}^{n-1} \phi \circ \sigma^j(\rho) \mathbb{I}_i(\rho) \right)
\]

\[
= \sum_{\rho \in \sigma^{-n}(\omega) \cap [i]} \exp \left(\sum_{j=0}^{n-1} \phi \circ \sigma^j(\rho) \right)
\]

\[
\leq \sum_{\rho \in \sigma^{-n}(\omega) \cap [i]} \exp \left(\sum_{j=0}^{n-1} \phi \circ \sigma^j(k(\rho)) + \log Q \right)
\]

\[
\leq Q \sum_{\rho \in \sigma^{-n}(\omega) \cap [i]} \exp \left(\sum_{j=0}^{n-1} \phi \circ \sigma^j(\rho) \right) \leq QZ_n(\phi,i),
\]

where the last summation is taken over all elements \(\omega \) satisfying \(\sigma^n(\omega) = \omega \) and \(\omega_1 = i \). So, the proof of the positive recurrence of \(\phi \) is complete taking \(Q^{-1} \) as \(M_i'' \).

Now we pass to proving the existence of the measure \(\nu \) and the function \(h \). We begin with the following two facts.

Lemma 2.7. The measures \(m_\phi \) and \(\tilde{m}_\phi \circ \pi^{-1} \) are equal.

Proof. Let \(A \subset J \) be an arbitrary closed subset of \(J \) and for every \(n \geq 1 \) let \(A_n = \{ \omega \in \mathcal{I}^n : \phi_\omega(X) \cap A \neq \emptyset \} \). In view of (2.3) applied to the characteristic
function \(I_A \) we have for all \(n \geq 1 \)

\[
m_\phi(A) = \sum_{\omega \in \mathbb{N}^n} \int \exp(S_\omega(\phi) - P(\phi)|\omega|) (I_A \circ \phi_\omega)\, dm_\phi
\]

\[
= \sum_{\omega \in A_n} \int \exp(S_\omega(\phi) - P(\phi)|\omega|) (I_A \circ \phi_\omega)\, dm_\phi
\]

\[
\leq \sum_{\omega \in A_n} \int \exp(S_\omega(\phi) - P(\phi)|\omega|)\, dm_\phi = \sum_{\omega \in A_n} \tilde{m}_\phi(\omega) = \tilde{m}_\phi(\bigcup \omega)
\]

Since the family of sets \(\{ \bigcup_{\omega \in A_n} \omega : n \geq 1 \} \) is descending and \(\bigcap_{n \geq 1} \bigcup_{\omega \in A_n} \omega = \pi^{-1}(A) \) we therefore get \(m_\phi(A) \leq \lim_{n \to \infty} \tilde{m}_\phi(\bigcup_{\omega \in A_n} \omega) = \tilde{m}_\phi(\pi^{-1}(A)). \) Since the limit set \(J \) is a metric space, using the Baire classification of Borel sets we easily see that this inequality extends to the family of all Borel subsets of \(J \). Since both measures \(m_\phi \) and \(\tilde{m}_\phi \circ \pi^{-1} \) are probabilistic we get \(m_\phi = \tilde{m}_\phi \circ \pi^{-1}. \) The proof is finished. \(\square \)

We recall that an invariant measure of a metric dynamical system is said to be totally ergodic if it is ergodic with respect to all the iterates of the system under consideration.

Theorem 2.8. There exists a unique totally ergodic \(\sigma \)-invariant probability measure \(\tilde{m}_\phi \) absolutely continuous with respect to \(m_\phi \). Moreover \(\tilde{m}_\phi \) is equivalent with \(m_\phi \) and \(Q^{-1} \leq \frac{d\tilde{m}_\phi}{dm_\phi} \leq Q. \)

Proof. First notice that, using Lemma 2.5, for each \(\omega \in \mathbb{N}^n \) and each \(n \geq 0 \) we have

\[
\tilde{m}_\phi(\sigma^{-n}([\omega])) = \sum_{\tau \in \mathbb{N}^n} \tilde{m}_\phi([\tau \omega]) = \sum_{\tau \in \mathbb{N}^n} \int \exp(S_{\tau\omega}(\phi) - P(\phi)|\tau\omega|)\, dm
\]

\[
\geq \sum_{\tau \in \mathbb{N}^n} Q^{-1} \| \exp(S_{\tau}(\phi) - P(\phi)|\tau) \|_0 \exp(S_{\omega}(\phi - P(\phi)|\omega))\, dm_\phi
\]

\[
= Q^{-1} \int \exp(S_\omega(\phi - P(\phi)|\omega))\, dm_\phi \sum_{\tau \in \mathbb{N}^n} \| \exp(S_{\tau}(\phi - P(\phi)|\tau)) \|_0
\]

\[
\geq Q^{-1} \tilde{m}_\phi([\omega]) m_\phi(\mathbb{N}^\infty) = Q^{-1} \tilde{m}_\phi([\omega])
\]

and

\[
\tilde{m}_\phi(\sigma^{-n}([\omega])) = \sum_{\tau \in \mathbb{N}^n} \tilde{m}_\phi([\tau \omega]) = \sum_{\tau \in \mathbb{N}^n} \int \exp(S_{\tau\omega}(\phi - P(\phi)|\tau\omega))\, dm_\phi
\]

\[
\leq \sum_{\tau \in \mathbb{N}^n} \| \exp(S_{\tau}(\phi - P(\phi)|\tau)) \|_0 \int \exp(S_{\omega}(\phi - P(\phi)|\omega))\, dm_\phi
\]

\[
= \exp(S_{\omega}(\phi - P(\phi)|\omega))\, dm_\phi \sum_{\tau \in \mathbb{N}^n} \| \exp(S_{\tau}(\phi - P(\phi)|\tau)) \|_0
\]

\[
\leq Q \tilde{m}_\phi([\omega]).
\]

Let now \(L \) be a Banach limit defined on the Banach space of all bounded sequences of real numbers. We define \(\mu([\omega]) = L(\tilde{m}_\phi(\sigma^{-n}([\omega])))_{n \geq 0}. \) Hence \(Q^{-1} \tilde{m}_\phi([\omega]) \leq \mu([\omega]) \leq Q \tilde{m}_\phi([\omega]) \) and therefore it is not difficult to check that the formula \(\mu(A) = L(\tilde{m}_\phi(\sigma^{-n}(A)))_{n \geq 0} \) defines a finite non-zero finitely additive measure on Borel
sets of \(\mathcal{N}^\infty \) satisfying \(Q^{-1}\tilde{m}_\phi(A) \leq \mu(A) \leq Q\tilde{m}_\phi(A) \). Using now a theorem of Calderon (Theorem 3.13 of [Fr]) and its proof one constructs a Borel probability (\(\sigma \)-additive) measure \(\tilde{\mu}_\phi \) on \(\mathcal{N}^\infty \) satisfying the formula

\[
Q^{-1}\tilde{m}_\phi(A) \leq \tilde{\mu}_\phi(A) \leq Q\tilde{m}_\phi(A)
\]

for every Borel set \(A \subset \mathcal{N}^\infty \) with, perhaps, a larger constant \(Q \). Thus, to complete the proof of our theorem we only need to show total ergodicity of \(\tilde{\mu}_\phi \) or equivalently of \(\tilde{m}_\phi \). Toward this end take a Borel set \(A \subset \mathcal{N}^\infty \) with \(\tilde{m}_\phi(A) > 0 \). Since the nested family of sets \(\{ \} : \tau \in \mathcal{N}^* \) generates the Borel \(\sigma \)-algebra on \(\mathcal{N}^\infty \), for every \(n \geq 0 \) and every \(\omega \in \mathcal{N}^n \) we can find a subfamily \(Z \) of \(\mathcal{N}^* \) consisting of mutually incomparable words and such that \(A \subset \bigcup \{ \} : \tau \in Z \} \) and \(\sum_{\tau \in Z} \tilde{m}_\phi(\{ \omega \tau \}) \leq 2\tilde{m}_\phi(\omega A) \), where \(\omega A = \{ \rho \omega : \rho \in A \} \). Then

\[
\tilde{m}_\phi(\sigma^{-n}(\mathcal{N}^\infty \setminus A) \wedge [\omega]) = \tilde{m}_\phi([\omega] \wedge \sigma^{-n}(A) \wedge [\omega]) = \tilde{m}_\phi([\omega]) - \tilde{m}_\phi(\sigma^{-n}(A) \wedge [\omega]) \leq (1 - (2Q)^{-1}\tilde{m}_\phi(A))\tilde{m}_\phi([\omega]).
\]

Hence for every Borel set \(A \subset \mathcal{N}^\infty \) with \(\tilde{m}_\phi(A) < 1 \), for every \(n \geq 0 \), and for every \(\omega \in \mathcal{N}^n \) we get

\[
\tilde{m}_\phi(\sigma^{-n}(\mathcal{N}^\infty \setminus A) \wedge [\omega]) \leq (1 - (2Q)^{-1}(1 - \tilde{m}_\phi(A)))\tilde{m}_\phi([\omega]).
\]

In order to conclude the proof of total ergodicity of \(\sigma \) suppose that \(\sigma^{-r}(A) = A \) for some integer \(r \geq 1 \) and some Borel set \(A \) with \(0 < \tilde{m}_\phi(A) < 1 \). Put \(\gamma = 1 - (2Q)^{-1}(1 - \tilde{m}_\phi(A)) \). Note that \(0 < \gamma < 1 \). In view of (2.5), for every \(\omega \in (\mathcal{N}^r)^* \) we get \(\tilde{m}_\phi(A \cap [\omega]) = \tilde{m}_\phi(\sigma^{-w}(A) \cap [\omega]) \leq \gamma \tilde{m}_\phi([\omega]) \). Take now \(\eta > 1 \) so small that \(\gamma \eta < 1 \) and choose a subfamily \(R \) of \((\mathcal{N}^r)^* \) consisting of mutually incomparable words and such that \(A \subset \bigcup \{ [\omega] : \omega \in R \} \) and \(\tilde{m}_\phi(\bigcup [\omega] : \omega \in R) \leq \eta \tilde{m}_\phi(A) \). Then \(\tilde{m}_\phi(A) \leq \sum_{\omega \in R} \tilde{m}_\phi(A \cap [\omega]) \leq \sum_{\omega \in R} \gamma \tilde{m}_\phi([\omega]) = \gamma \tilde{m}_\phi(\bigcup [\omega] : \omega \in R) \leq \gamma \eta \tilde{m}_\phi(A) < \tilde{m}_\phi(A) \). This contradiction finishes the proof. \(\square \)

Set \(\nu = \tilde{m}_\phi \). Clearly our assumption \(\phi_i(X) \cap \phi_j(X) = \emptyset \) for \(i, j \in \mathcal{N}, i \neq j \) implies that \(\pi : \Sigma \to J \) is a homeomorphism; in particular, in view of Lemma 2.6, it establishes a measure preserving isomorphism between measure spaces \((\Sigma, \nu) \) and
(J,mφ). To check that $L^*_φ(ν) = λν$ take $g ∈ C_b(Σ)$ and compute

$$
\int gdL^*_0(ν) = \int L_0(g)dν = \int L_0(g)(π^{-1}(x))dν \circ π^{-1}(x) = \int L_0(g)(π^{-1}(x))dmφ
$$

$$
= \int τ∈σ^{-1}(π^{-1}(x)) \exp(φ(τ) - P(φ))dmφ
$$

$$
= \int \sum_{i∈N} \exp(φ(i)(x) - P(φ))g \circ π^{-1}(φ_i(x))dmφ(x)
$$

$$
= \int L_0(g)dmφ = \int g \circ π^{-1}dmφ = \int gdν.
$$

Thus $L_0(ν) = ν$ and by the definition of L_0 and L^*_0, $L^*_φ(ν) = λν$. The fact that $L_0(h)(ν) = λh$ follows immediately from the definition of the operator L_0 and Theorem 2.7, where $h = d̃μφ/d̃mφ$. Theorem 2.7 also implies that h is bounded away from zero and infinity. In order to obtain Hölder continuity of the function h and two convergence statements claimed in Theorem 1.2 one may argue as follows: A well-known computation (see [DU], comp. [MU1]) shows that L_0 acts on the Banach space of bounded uniformly continuous functions on \mathbb{N}^∞ as an almost periodic operator (see [Ly], comp. [DU] and [MU1]). Using Theorem 2.7 and the theory of positive operators on lattices (see [Sc]) one then proves as in [DU] that 1 is the only spectral point of modulus 1 and additionally that 1 is a simple eigenvalue of L_0. These facts and almost periodicity imply the first convergence statement of Theorem 1.2 and uniform continuity of h. A similar computation as above produces constants $0 < γ < 1$, $n ≥ 1$ and $C ≥ 0$ such that

$$
||L^n_0(γ)||_β ≤ C||γ||_0 + γ||g||_β,
$$

where $||γ||_β = V_β(γ) + ||g||_0$. This is so called the Ionescu-Tulcea and Marinescu inequality. Using this inequality and Theorem 2.4 one checks that the assumptions of the theorem of Ionescu-Tulcea and Marinescu (see [IM], comp. [PU]) are satisfied. This theorem gives a nice spectral decomposition of the operator L_0 acting on the space $H_β$ of bounded Hölder continuous functions of order $β$. Having this, a relatively straightforward reasoning (comp. [PU]) shows Hölder continuity of h and the second convergence statement of Theorem 1.2.

3. Equilibrium states

In this section we further investigate the $σ$-invariant measure $μφ$ introduced in Theorem 2.7. We begin with the following technical result.

Lemma 3.1. The following 3 conditions are equivalent (a) $∫ −φdμφ < ∞$.
(b) $∑_{i∈N} \inf(-φ(i)) \exp(\inf φ(i)) < ∞$.
(c) $H_α(μφ) < ∞$, where $α = \{[i] : i ∈ \mathbb{N}\}$ is the partition of $Σ$ into initial cylinders of length 1.
Thus suppose that \(\sum_{i \in \mathbb{N}} -\phi d\tilde{\mu}_\phi < \infty \) and consequently

\[
\infty > \sum_{i \in \mathbb{N}} \inf(-\phi|_i) \int_{[i]} d\tilde{\mu}_\phi = \sum_{i \in \mathbb{N}} \inf(-\phi|_i) \int_{[i]} h d\tilde{m}_\phi
\]

\[
\geq Q^{-1} \sum_{i \in \mathbb{N}} \inf(-\phi|_i) \tilde{m}_\phi([i]) = Q^{-1} \sum_{i \in \mathbb{N}} \inf(-\phi|_i) \int_X \exp(\phi^{(i)}(x) - P(\phi)) dm_\phi(x)
\]

\[
= Q^{-1} e^{-P(\phi)} \sum_{i \in \mathbb{N}} \inf(-\phi|_i) \int_X \exp(\phi^{(i)}(x)) dm_\phi(x)
\]

Thus

\[
\infty > \sum_{i \in \mathbb{N}} \inf(-\phi|_i) \int_X \exp(\phi^{(i)}(x)) dm_\phi(x) \geq \sum_{i \in \mathbb{N}} \inf(-\phi|_i) \exp(\inf(\phi|_i))
\]

\[
= \sum_{i \in \mathbb{N}} \inf(-\phi|_i) \exp(\inf(\phi|_i))
\]

Now suppose that \(\sum_{i \in \mathbb{N}} \inf(-\phi|_i) \exp(\inf(\phi|_i)) < \infty \). We shall show that \(H_{\tilde{\mu}_\phi}(\alpha) < \infty \). So,

\[
H_{\tilde{\mu}_\phi}(\alpha) = \sum_{i \in \mathbb{N}} -\tilde{\mu}_\phi([i]) \log \tilde{\mu}_\phi([i]) \leq \sum_{i \in \mathbb{N}} -Q\tilde{m}_\phi([i]) (\log \tilde{m}_\phi([i]) - \log Q).
\]

But \(\sum_{i \in \mathbb{N}} -Q\tilde{m}_\phi([i]) (-\log Q) = Q \log Q \), so it suffices to show that

\[
\sum_{i \in \mathbb{N}} -\tilde{m}_\phi([i]) \log \tilde{m}_\phi([i]) < \infty.
\]

But

\[
\sum_{i \in \mathbb{N}} -\tilde{m}_\phi([i]) \log \tilde{m}_\phi([i]) = \sum_{i \in \mathbb{N}} -\tilde{m}_\phi([i]) \log \left(\int_X \exp(\phi^{(i)} - P(\phi)) \right) dm_\phi
\]

\[
\leq \sum_{i \in \mathbb{N}} -\tilde{m}_\phi([i]) (\inf_X \phi^{(i)} - P(\phi)).
\]

But \(\sum_{i \in \mathbb{N}} \tilde{m}_\phi([i]) P(\phi) = P(\phi) \), so it suffices to show that \(\sum_{i \in \mathbb{N}} -\tilde{m}_\phi([i]) \inf_X \phi^{(i)} < \infty \). And indeed, using Lemma 2.1 we get

\[
\sum_{i \in \mathbb{N}} -\tilde{m}_\phi([i]) \inf_X \phi^{(i)} = \sum_{i \in \mathbb{N}} \tilde{m}_\phi([i]) \sup_X (-\phi^{(i)}) \leq \sum_{i \in \mathbb{N}} \tilde{m}_\phi([i]) (\inf_X (-\phi^{(i)}) + \log Q).
\]

Since \(\sum_{i \in \mathbb{N}} \tilde{m}_\phi([i]) \log Q = \log Q \), it is enough to show that

\[
\sum_{i \in \mathbb{N}} \tilde{m}_\phi([i]) \inf_X (-\phi^{(i)}) < \infty.
\]

And indeed,

\[
\sum_{i \in \mathbb{N}} \tilde{m}_\phi([i]) \inf_X (-\phi^{(i)}) = \sum_{i \in \mathbb{N}} \int_X \exp(\phi^{(i)} - P(\phi)) dm_\phi \inf_X (-\phi^{(i)})
\]

But in view of (1.4) \(\phi^{(i)} \) are negative everywhere for all \(i \) large enough, say \(i \geq k \). Then using Lemma 2.1 again we get

\[
\sum_{i \geq k} \tilde{m}_\phi([i]) \inf_X (-\phi^{(i)}) \leq e^{-P(\phi)} Q \sum_{i \geq k} \exp(\inf_X (\phi^{(i)})) \inf_X (-\phi^{(i)})
\]
which is finite due to our assumption. Hence, \(\sum_{i \in \mathbb{N}} \tilde{m}_\phi ([i]) \inf_X (-\phi ([i])) < \infty \). Finally suppose that \(H_{\tilde{\mu}_\phi} (\alpha) < \infty \). We need to show that \(\int -\phi d\tilde{\mu}_\phi < \infty \). We have

\[
\infty > H_{\tilde{\mu}_\phi} (\alpha) = \sum_{i \in \mathbb{N}} -\tilde{m}_\phi ([i]) \log (\tilde{m}_\phi ([i])) \leq \sum_{i \in \mathbb{N}} -\tilde{m}_\phi ([i]) (\inf (\phi ([i]) - P(\phi) - \log Q)).
\]

Hence \(\sum_{i \in \mathbb{N}} -\tilde{m}_\phi ([i]) \inf (\phi ([i])) < \infty \) and therefore

\[
\int -\phi d\tilde{\mu}_\phi = \sum_{i \in \mathbb{N}} \int_{[i]} -\phi d\tilde{\mu}_\phi \leq \sum_{i \in \mathbb{N}} \sup_{\phi} (\phi ([i]) \tilde{m}_\phi ([i])) = \sum_{i \in \mathbb{N}} -\inf (\phi ([i]) \tilde{m}_\phi ([i])) < \infty.
\]

The proof is complete.

By Theorem 3 of [Sa] we know that \(\sup \{ h_\mu (\sigma) + \int \phi d\mu \} = P(\phi) \), where the supremum is taken over all \(\sigma \)-invariant probability measures such that \(\int -\phi d\mu < \infty \). We call a \(\sigma \)-invariant probability measure \(\mu \) an equilibrium state of the potential \(\phi \) if \(h_\mu (\sigma) + \int \phi d\mu = P(\phi) \). We shall prove the following.

Theorem 3.2. If \(\sum_{i \in \mathbb{N}} \inf (-\phi ([i])) \exp (\inf (\phi ([i]))) < \infty \), then \(\tilde{\mu}_\phi \) is an equilibrium state of the potential \(\phi \) satisfying \(\int -\phi d\tilde{\mu}_\phi < \infty \).

Proof. It follows from Lemma 3.1 that \(\int -\phi d\tilde{\mu}_\phi < \infty \). To show that \(\tilde{\mu}_\phi \) is an equilibrium state of the potential \(\phi \) consider \(\alpha = \{ [i] : i \in \mathbb{N} \} \), the partition of \(\Sigma \) into initial cylinders of length one. By Lemma 3.1, \(H_{\tilde{\mu}_\phi} (\alpha) < \infty \). Applying the Breiman-Shannon-McMillan theorem and the Birkhoff ergodic theorem we therefore get for \(\tilde{\mu}_\phi \)-a.e. \(\omega \in \Sigma \)

\[
h_\mu_\phi (\sigma) \geq h_\mu_\phi (\sigma, \alpha) = \lim_{n \to \infty} \frac{-1}{n} \log (\exp (S_n (\phi)))
= \lim_{n \to \infty} \frac{-1}{n} \log \left(\int \exp (\sum_{j=0}^{n-1} \phi (\sigma^j (\omega))) d\mu_\phi (\omega) - P(\phi) n \right)
\geq \lim_{n \to \infty} \frac{-1}{n} \log \left(\int \exp (\sum_{j=0}^{n-1} \phi (\sigma^j (\omega))) + \log Q - P(\phi) n \right)
= \lim_{n \to \infty} \frac{-1}{n} \sum_{j=0}^{n-1} \phi (\sigma^j (\omega)) + P(\phi) = - \int \phi d\tilde{\mu}_\phi + P(\phi).
\]

Hence \(h_\mu_\phi (\sigma) + \int \phi d\tilde{\mu}_\phi \geq P(\phi) \), which in view of the variational principle (see Theorem 3 in [Sa]), implies that \(\tilde{\mu}_\phi \) is an equilibrium state for the potential \(\phi \). The proof is finished.

Acknowledgment. We would like to thank Prof. Sarig Omri who has read the preliminary version of this paper for his helpful remarks and comments which improved the present version. In particular we would like to thank him for a direct proof of Lemma 1.1.
References

[Bo] R. Bowen, Equilibrium States and Ergodic Theory of Anosov Diffeomorphisms, L. N. Math. 470, Berlin, Heidelberg, New York, Springer-Verlag, (1975).

[DU] M. Denker, M. Urbański, Ergodic theory of equilibrium states for rational maps, Nonlinearity 4, (1991), 103-134.

[Fr] N. Friedman, Introduction to Ergodic Theory, New York, Cincinnati, Toronto, London, Melbourne, Van Nostrand Reinhold Company, (1970).

[IM] C. Ionescu-Tulcea, G. Marinescu, Théorie ergodique pour des classes d'opérations non-complément continues, Ann. Math. 52, (1950), 140-147.

[Ly] M. Lyubich, Entropy properties of rational endomorphisms of the Riemann sphere, Ergod. Th. and Dynam. Sys. 3, (1983), 351-386.

[MU1] R.D. Mauldin, M. Urbański, Dimensions and measures in infinite iterated function systems, Proc. London Math. Soc. (3) 73(1996), 105-154.

[MU2] R.D. Mauldin, M. Urbański, Parabolic iterated function systems, Preprint 1998.

[PU] F. Przytycki, M. Urbański, Fractals in the Plane - Ergodic Theory Methods, to appear.

[Sa] O. M. Sarig, Theormodynamic formalism for countable Markov shifts, to appear Ergod. Th. and Dynam. Sys..

[Sc] H. Schaefer, Banach Lattices and Positive Operators. (1974), Springer.

[Wa] P. Walters, Invariant measures and equilibrium states for some mappings which expand distances, Transactions of A.M.S. 236 (1978), 121 - 153.

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF NORTH TEXAS, DENTON, TX 76203-5118, USA

E-mail address: pgh0001@jove.acs.unt.edu, mauldin@unt.edu

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF NORTH TEXAS, DENTON, TX 76203-5118, USA

E-mail address: urbanski@unt.edu