Displacement of X-ray sources from star clusters in starburst galaxies

P. Kaaret,1 A. Alonso-Herrero,2,3 J. S. Gallagher, III,4 G. Fabbiano,1 A. Zezas1 and M. J. Rieke2

1Harvard-Smithsonian Center for Astrophysics, 60 Garden St., Cambridge, MA 02138, USA
2Steward Observatory, University of Arizona, Tucson, AZ 85721, USA
3Departamento de Astrofísica Molecular e Infrarroja, IEM, Consejo Superior de Investigaciones Científicas, 28006 Madrid, Spain
4Department of Astronomy, University of Wisconsin at Madison, 475 North Charter Street, Madison, WI 53706, USA

ABSTRACT

We examine the spatial offsets between X-ray point sources and star clusters in three starburst galaxies. We find that the X-ray sources are preferentially located near the star clusters. Because the star clusters are very good tracers of the star formation activity in the galaxies, this indicates that the X-ray sources are young objects associated with current star formation. We find significant displacements of the X-ray sources from the clusters. These displacements are likely due to motion of the X-ray sources and indicates that they are X-ray binaries. We find that brighter X-ray sources preferentially occur closer to clusters. The absence of very bright sources at large displacements from clusters may help constrain models of the sources.

Key words: galaxies: individual: M82 – galaxies: individual: NGC 1569 – galaxies: individual: NGC 5253 – galaxies: starburst – galaxies: stellar content – X-rays: galaxies.

1 INTRODUCTION

Starburst galaxies contain prominent populations of X-ray sources (Fabbiano 1989) including unusually luminous ones (Kaaret et al. 2001; Zezas & Fabbiano 2002). The young stellar ages within starbursts suggest that the associated X-ray sources are likely to be young objects (Kilgard et al. 2002). Strong X-ray variability in many sources further suggests those sources are accreting compact objects (Makishima et al. 2000; Kaaret et al. 2001; Fabbiano et al. 2003).

In starburst galaxies, a substantial fraction of young stars are found in compact, luminous star clusters (Meurer et al. 1995). Indeed, Tremonti et al. (2001) and Harris et al. (2001) find evidence that most high mass stars in starbursts could form in dense clusters which quickly dissolve to feed the surrounding field. Consistent with this, the young compact cluster R136a contains a rich population of massive stars, evidently following a standard Salpeter-like upper initial mass function (IMF; Massey & Hunter 1998). However, there also are indications that some compact young massive clusters have either a flatter than normal upper mass function or a cut-off at low mass (Sternberg 1998; Smith & Gallagher 2001; McCrady, Gilbert & Graham 2003). The current data are insufficient to distinguish between these two possibilities (Mengel et al. 2002). In either case, the clusters would contain relatively more massive stars, and thus potentially more massive X-ray binaries.

Star clusters in starburst regions usually are centrally concentrated, with as much as 10^6 M☉ of stars within a half light radius of a few pc (e.g. Ho & Filippenko 1996a,b). Stellar encounters in such dense clusters may enhance the production of X-ray binaries (Portegies Zwart et al. 1999). Interactions of binaries in clusters (Phinney & Sigurdsson 1991) and binary recoil following supernovae leading to compact object formation (Nelemans, Tauris & van den Heuvel 1999) can lead to ejection of X-ray binaries from their point of origin. Therefore, if the X-ray sources are X-ray binaries, then they may be expected to be spread over a larger spatial area than the star clusters.

Here, we study the spatial offsets between X-ray point sources and star clusters in three starburst galaxies with dense clusters and deep, high-resolution X-ray observations. We describe our sample, the observations and our analysis in Section 2, the results in Section 3, and discuss the implications in Section 4.
which has been in a starburst phase for 10–20 Myr (Hunter et al. 2000).

2.1 Star clusters

For each galaxy, we require the positions of the star clusters. For NGC 1569, we used the list of star clusters compiled by Hunter et al. (2000) based on Hubble Space Telescope (HST) observations in the optical band. Because this galaxy has a relatively low gas/dust content and therefore low internal extinction, the optical data should provide a complete cluster list.

M82 is a larger galaxy and has high obscuration near its core, where most of the star clusters are located (McLeod et al. 1993). Comparison of optical and infrared (IR) images shows that many clusters are missed in the optical due to the high obscuration. We chose to derive a cluster list from IR observations obtained with NICMOS on HST. The observations and reduction of data to images are described in Alonso-Herrero et al. (2003). We used a sliding cell algorithm to detect compact sources within the images from the NIC2 camera using the F160W filter with a central wavelength of 1.6 µm and covering a wavelength range of 1.4–1.8 µm, and the NIC3 camera using the F166N filter with a central wavelength of 1.66 µm and a 1 per cent bandpass (images in the F160W filter were not available with NIC3). The NIC2 images are higher resolution (75-mas pixels) and cover the inner regions of the galaxy. The NIC3 images extend the imaged field at lower resolution (200-mas pixels).

We found clusters in each image. Clusters found in multiple images were used to align the relative positions of the various NICMOS images. We determined the absolute astrometry of the NICMOS images using the positions of four clusters detected in the 2MASS survey which lie well outside the crowded central region of the galaxy. After applying one global shift to the NICMOS coordinates, the positions of all four clusters agree within 0.5 arcsec with the NICMOS image positions. Displacements smaller than 10 pc have been considered as upper bounds. We examine only sources within 1 kpc of a star cluster. The uncertainty in the relative alignment of the X-ray source and star cluster positions is 1 arcsec or less, corresponding to uncertainties in the displacements of about 10 pc. Displacements smaller than 10 pc have been set to 10 pc. Displacements smaller than about 20 pc should be considered as upper bounds. We examine only sources within 1 kpc of a star cluster. The distributions of the spatial displacements are shown in Fig. 1 and some statistics of the distributions are shown in Table 1.

Our cluster lists contains all of the most luminous clusters for each galaxy, but may be incomplete at low luminosities. To determine if the clustering of the X-ray sources near the star clusters is statistically significant, we generated random sets of uniformly distributed sources and found the spatial displacements from the star clusters following the same procedures used for the actual X-ray sources. The displacement distributions of the X-ray sources are inconsistent with that expected for a uniform distribution of sources. The probabilities of chance occurrence from a uniform distribution are 2 × 10⁻⁶ for M82, 5 × 10⁻⁵ for NGC 1569, and
2 × 10^{-4} for NGC 5253. For each galaxy, the average displacement of X-ray sources from star clusters is significantly smaller than for the random source distribution, indicating that the X-ray sources are preferentially located near the star clusters.

The distributions of the spatial displacements are similar in all three galaxies (see Fig. 2). We compared the various distributions using a Kolmogorov–Smirnov (KS) test and also by calculating the average displacement. We applied both tests to both the full data sample and also restricting the source luminosities to the range $10^{36} < L_X < 10^{38}$ erg s^{-1}. In all cases, the distributions of the spatial displacements for the X-ray sources in the three galaxies are consistent with being drawn from the same distribution. The median displacement for NGC 1569 appears somewhat smaller than for the other galaxies, but the difference is not statistically significant. The 90 per cent confidence level error intervals for the median overlap for all three galaxies.

Fig. 3 shows the luminosity of each X-ray source plotted versus its spatial displacement from the nearest star cluster. The striking feature of the plot is that there are no high luminosity sources at large displacements from star clusters. Furthermore, there is an apparent trend of decreasing luminosity with increasing displacement from the nearest star cluster.

To evaluate if this trend is statistically significant, we performed a ‘boot-strap’ analysis. We used the set of displacements and luminosities shown in Fig. 3 and then randomly rearranged the pairings.

This corresponds to the null hypothesis in which luminosity and displacement are unrelated. In 10^7 trials, we found 1920 cases in which no sources lay in the same region of the luminosity-displacement plot which is empty in Fig. 3. This corresponds to a chance probability of occurrence of 1.9 × 10^{-4}.

For M82 there is also an absence of dim sources at small displacements. This is likely due to the high level of diffuse X-ray emission in the central 200 pc of M82 (Griffiths et al. 2000) which precludes detection of dim sources in the central regions of M82. Dim sources are detected very near star clusters in NGC 1569.

4 DISCUSSION

We have shown that X-ray sources in these three starburst galaxies are preferentially located near star clusters. Because the star clusters are very good tracers of current star formation activity in the galaxies, this confirms that the X-ray binaries are young objects associated with current star formation.

We also found significant displacements of the X-ray sources from the clusters. Because X-ray binaries, unlike other bright X-ray sources such as young supernovae, can exhibit high velocities, this suggests that much of the X-ray source population consists of X-ray binaries. Several mechanisms can put a binary in motion. For neutron star binaries, a ‘kick’ due to an asymmetric explosion in the formation of the neutron star can lead to high velocities (Lyne & Lorimer 1994). Even in the absence of ‘kicks’ from supernova explosions, momentum conservation following a symmetric ejection of matter in the formation of the neutron star or black hole in a binary with a high mass companion can produce a runaway speed of ~50 km s^{-1}; the ejected matter continues to move with the instantaneous orbital velocity of the compact object at the moment of ejection and the binary must move in the opposite direction to conserve momentum (Nelemans et al. 1999; van den Heuvel et al. 2000). For binaries in clusters, interactions with other stars and binaries in the cluster can eject the binary from the cluster (Phinney & Sigurdsson 1991; Kulkarni, Hut & McMillian 1993; Sigurdsson & Hernquist 1993). In young, dense star clusters such interactions can
occur on time-scales of a few Myr (Portegies Zwart et al. 1999). Objects ejected via dynamical interactions tend to escape with close to the minimum energy needed to escape (Joshi, Nave & Rasio 2001). The runaway velocities (at infinity) should be of the same magnitude as the stellar velocity dispersions of the clusters, which are typically 10–15 km s$^{-1}$ in these galaxies (Smith & Gallagher 2001; McCrady et al. 2003). The displacements we observe in the starburst galaxies are likely due to motion of the X-ray sources caused by one or more of these mechanisms.

Furthermore, we found that there is an absence of bright X-ray sources with large displacements. This suggests that there is some correlation between the maximum possible brightness of an X-ray source and its motion. This correlation appears to hold only for (isotropic equivalent) luminosities above 10^{38} erg s$^{-1}$. The excluded region appears to be bounded by a linear relation between (isotropic equivalent) source luminosity L_X and source displacement from the nearest star cluster d, $L_X < (1 \times 10^{41}$ erg s$^{-1})/(d$ pc$^{-1})$.

In discussing this correlation, we first consider the case where the X-ray sources emit isotropically. In this case, the systems producing such high luminosities likely contain black holes accreting via Roche lobe overflow because such high luminosities would be difficult to achieve in a wind accretor due to the low efficiency of wind capture and black holes and needed to not violate the Eddington limit (Blondin, Stevens & Kallman 1991; Pettersen 1978).

If the X-ray sources are ejected from the star clusters with speeds which are roughly independent of mass, then the inverse correlation between maximum X-ray source luminosity and displacement from the nearest star cluster would arise if the source lifetime varies inversely with luminosity. An upper bound on the source lifetime can be obtained from the time required to fully accrete the stellar companion. For a companion mass M and an efficiency for the conversion of mass lost by the companion to luminosity of η, the source lifetime must be $T \leq \eta M c^2/L$ where L is the average luminosity and c is the speed of light. For sources travelling with a speed v perpendicular to the line of sight, the displacement from the point of origin will then be $d \leq \eta v M c^2/L$. If the companion mass is independent of the compact object mass, then this would reproduce the required dependence of source lifetime on luminosity.

Given a typical runaway velocity $v \sim 10$ km s$^{-1}$, we must have $\eta v M \sim 0.2$ M$_\odot$ to match the line plotted in Fig. 3 which bounds the region where X-ray sources are found. If Roche lobe overflow is occurring, then accretion on to the compact object may be efficient with little mass loss giving $\eta \sim 0.1$. In this case, the companion mass would be $M \sim 2$ M$_\odot$. Such intermediate mass companions could be captured via dynamical interactions in the cluster. However, the capture must be directly into a Roche-lobe filling orbit or the binary must harden into a Roche-lobe filling orbit via successive interactions in order to begin accretion promptly, as the evolutionary time-scale of the companion is long. A better understanding of the IMF and the dynamical interactions within the clusters is needed to determine if this scenario is viable. Even with accretion via Roche lobe overflow, the efficiency η may be less than 0.1, because outflows are often observed in X-ray binaries. Super-Eddington mass transfer would also produce $\eta < 0.1$. If $\eta < 0.1$, then a higher companion mass may be compatible with the data shown in Fig. 3.

If the X-ray sources have high-mass companions and maximum speeds near ~50 km s$^{-1}$, then the absence of a high luminosity source at large displacements implies a limit on the X-ray emitting lifetime of the sources. We find no sources at luminosities above 10^{38} erg s$^{-1}$ at displacements larger than 200 pc. At 50 km s$^{-1}$, this would imply that the lifetimes of these luminous sources must be less than 4 Myr, corresponding to very massive stars. An alternative is that the luminosity of the sources decreases with age. This would require an evolutionary path for binaries which produces an accretion rate which decreases with age.

The X-ray binaries may also be beamed (King et al. 2001; Köröd et al. 2002; Kaaret et al. 2003). If the X-ray sources are high-mass systems with high velocities, then the observed correlation would imply that beaming only occurs when the binaries are quite young. King et al. (2001) suggest that the very bright X-ray sources in starburst galaxies are high-mass X-ray binaries with beamed X-ray emission in a phase of thermal time-scale mass transfer. The delay between the formation of the black hole (and, presumably, the start of the motion of the binary away from its point of origin) and the onset of the thermal time-scale mass transfer phase depends on the stellar evolution of the companion. The delay could be ~20 Myr for a 9-M$_\odot$ companion, which would imply that very bright X-ray sources should be visible out to 1 kpc. The data appear inconsistent with this, unless highly beamed X-ray emission occurs in the thermal time-scale mass transfer phase only for very massive companions. Large displacements of high-flux sources, inconsistent with the data, also appear allowed in the relativistic beamed model of Köröd et al. (2002).

Acknowledgments

We thank the Aspen Center for Physics for its hospitality during the workshop where this work was begun. PK acknowledges partial support from NASA grant NAG5-7405 and Chandra grant GO2-3102X. JSG thanks the University of Wisconsin-Madison for support of this research.

References

Alonso-Herrero A., Rieke G. H., Rieke M. J., Kelly D. M., 2003, AJ, 125, 1210
Beck S. C., Turner J. L., Ho P. T. P., Lacy J. H., Kelly D. M., 1996, ApJ, 457, 610
Blondin J. M., Stevens I. R., Kallman, T. R., 1991, ApJ, 371, 684
Calzetti D., Meurer G. R., Bohlin R. C., Garnett D. R., Kinney A. L., Leitherer C., Storchi-Bergmann T., 1997, AJ, 114, 1834
de Grijs R., O’Connell R. W., Gallagher J. S., III, 2001, AJ, 121, 768
de Grijs R., Bastian N., Lammers H. J. G. M., 2003, MNRAS, 340, 197
Fabbiano G., 1989, ARA&A, 27, 87
Fabbiano G., Zezas A., King A. R., Ponman T. J., Rots A., Schweizer F., 2003, ApJ, 584, L5
Gibson B. K. et al., 2000, ApJ, 529, 723
Griffiths R. E., Puk A., Feigelson E. D., Garmire G., Townsley L., Brandt W. N., Sambruna R., Bregman J. N., 2000, Sci, 290, 1325
Harris J., Calzetti D., Gallagher J. J., Conselice C. J., Smith D. M., 2001, AJ, 122, 3046
Ho L. C., Filippenko A. V., 1996a, ApJ, 466, L83
Ho L. C., Filippenko A. V., 1996b, ApJ, 472, 600
Hunter D. A., O’Connell R. W., Gallagher J. S., Smecker-Hane T. A., 2000, ApJ, 120, 2383
Joshi K. J., Nave C. P., Rasio F. A., 2001, ApJ, 550, 691
Kaaret P., 2001, ApJ, 560, 715
Kaaret P., Prestwich A. H., Zezas A., Murray S. S., Kim D.-W., Kilgard R. E., Schlegel E. M., Ward M. J., 2001, MNRAS, 321, L29
Kaaret P., Corbel S., Prestwich A. H., Zezas A., 2003, Sci, 299, 365
Kilgard R. E., Kaaret P., Krauss M. I., Prestwich A. H., Raley M. T., Zezas A., 2002, ApJ, 573, 138
King A. R., Davies M. B., Ward M. J., Fabbiano G., Elvis M., 2001, ApJ, 552, L109
Köröd E., Falcke H., Markoff S., 2002, A&A, 382, L13
Kulkarni S. R., Hut P., McMillan S., 1993, Nat, 364, 421
Lyne A. G., Lorimer D. R., 1994, Nat, 369, 127
Makishima K. et al., 2000, ApJ, 535, 632
Martin C. L., Kobulnicky H. A., Heckman T. M., 2002, ApJ, 574, 663
Massey P. M., Hunter D. A., 1998, ApJ, 493, 180
McCready N., Gilbert A. M., Graham J. R., 2003, ApJ, 596, 240
McLeod K. K., Rieke G. H., Rieke M. J., Kelly D. M., 1993, ApJ, 412, 111
Mengel S., Lehnert M. D., Thatte N., Genzel R., 2002, A&A, 383, 137
Meurer G., Heckman T. M., Leitherer C., Kinney A., Robert C., Garnett D. R., 1995, AJ, 110, 2665
Nelemans G., Tauris T. M., van den Heuvel E. P. J., 1999, A&A, 352, L87
Petterson J. A., 1978, ApJ, 224, 625
Phinney E. S., Sigurdsson S., 1991, Nat, 349, 220
Portegies Zwart S. F., Makino J., McMillian S. L. W., Hut P., 1999, A&A, 348, 117
Prestwich A. H., Irwin J. A., Kilgard R. E., Krauss M. I., Zezas A., Primini F., Kaaret P., Boroson B., 2003, ApJ, 595, 719
Satyapal S., Watson D. M., Pipher J. L., Forrest W. J., Greenhouse M. A., Smith H. A., Fischer J., Woodward C. E., 1997, ApJ, 483, 148
Smith L. J., Gallagher J. S., III, 2000, MNRAS, 326, 1027
Sigurdsson S., Hernquist L., 1993, Nat, 364, 423
Sternberg A., 1998, ApJ, 506, 721
Tremonti C. A., Calzetti, D., Leitherer, C., Heckman, T. M., 2001, ApJ, 555, 322
Turner J. L., Beck S. C., Ho P. T. P., 2000, ApJ, 532, L109
van den Heuvel E. P. J., Portegies Zwart S. F., Bhattacharya D., Kaper L., 2000, A&A, 364, 563
Zezas A., Fabbiano G., 2002, ApJ, 577, 726

This paper has been typeset from a TeX/LaTeX file prepared by the author.
Figure 1. False colour IR image of M82. The NIC2 data were used for the inner parts of the mosaic and the NIC3 for the remainder. Candidate star clusters are marked as diamonds. X-ray sources are marked as crosses. There are 8 sources in the sample which do not appear on the figure. North is up, and the axes are RA and Dec. in J2000 coordinates.