ISOLATION OF SECONDARY METABOLITE COMPOUNDS FROM *Elaeocarpus mastersii* KING STEM BARK AND THEIR BIOLOGICAL ACTIVITY EVALUATION

Tia Okselni¹, Adlis Santoni² and Mai Efdi²,⁎

¹Research Center for Pharmaceutical Ingredients and Traditional Medicine, National Research and Innovation Agency, Bogor 16911, West Java, Indonesia
²Department of Chemistry, Universitas Andalas, Padang 25163, West Sumatra, Indonesia

⁎Corresponding Author: maiefdi@sci.unand.ac.id

ABSTRACT

In this research, isolation of secondary metabolites of *Elaeocarpus mastersii* King stem bark was conducted by column chromatography and pure compounds were characterized by the IR, UV, and NMR spectra. The biological activity of the isolated compounds as antidiabetic was determined based on the α-glucosidase inhibition. The investigation led to isolate β-sitosterol (1), β-sitosterol glucoside (2), and cucurbitacin F (3). The evaluation of the α-glucosidase inhibitory assay showed that the isolated compounds had different inhibition performances caused by the interaction distinction with the active site of the enzyme. These results perform that *Elaeocarpus mastersii* King contained several types of secondary metabolite compounds and had the potential to be used as medicine.

Keywords: Cucurbitacin F, *Elaeocarpus mastersii* King, β-sitosterol, β-sitosterol Glucoside, α-glucosidase Inhibitory Activity

RASĀYAN J. Chem., Vol. 15, No.2, 2022

INTRODUCTION

The development of research in plant science is increasing continuously, most plant species are used for medicinal uses. WHO (World Health Organization) has recorded more than 21,000 names of plants that have been reported as medical treatments worldwide.¹ The utilization of plants as traditional medicine is caused by the active compounds contained in the plants. These compounds are classes of secondary metabolite compounds. Most of these active compounds have been isolated from medicinal plants which have interesting activities such as 3-methyl-1H-benz[f]indole-4,9-dione², sentulic acid³, and clerodermic acid⁴. *Elaeocarpus mastersii* King (Elaeocarpaceae) is the endemic Riau (Sumatra) plant. Its bark is used for hypertensive and diabetic treatment. As far as our literature study of *E. mastersii* King, only six compounds have been successfully isolated from this plant, such as two antocyanins⁵, two cucurbitacins, and two ellagic acid derivatives.⁶ Several species of this genus show the biological activities as cytotoxic⁷, antioxidant⁷, and antibabesial activity.⁸ These activities are related to the various organic compounds of *Elaeocarpus* genus plants such as flavonoids⁷, ellagic acid derivatives⁸, alkaloids⁹, terpenoids¹⁰,¹¹, and the other aromatic compounds.¹² As a part of our research of *E. mastersii* King¹³,¹⁴, we proved the constituents of the stem bark from *E. mastersii* King and investigated their biological activity to inhibit the α-glucosidase enzyme.

EXPERIMENTAL

General Experimental Procedure

Si gel column chromatography and Thin-layer chromatography (TLC) were provided by Merck 60 (70-230 or 230-400 mesh) and Merck 60 GF₂₅₄ (0.25 mm). Fractionations were obtained from TLC analyses. NMR spectrums were afforded by the spectrometer of JEOL JNM-ECS 400 using tetramethylsilane (TMS) as an internal standard.

Plant Collection and Extraction

Plant of *E. mastersii* King was identified at Andalas Herbarium. Stem bark was collected in the Riau Province, Sumatra-Indonesia. The dried stem bark (13.5 Kg) was ground and extracted at room
temperature by maceration method using the step gradient polarity of hexane, ethyl acetate (EtOAc), and methanol (MeOH) solvent. The solvents were evaporated by the rotary evaporator to obtain the crude extracts of each fraction.

Isolation
The ethyl acetate extract (80 g) was separated by Si gel column chromatography with the gradient mixture of hexane-EtOAc-acetone-MeOH affording 11 fractions. Fraction 8 dissolved by dichloromethane (DCM) (1.42 g) was purified by Si gel column chromatography eluted with hexane-DCM-EtOAc-MeOH and obtained 16 fractions (81-16). Compound 1 (± 6 mg) was isolated from fraction 811 using Si gel column chromatography (with DCM-EtOAc as eluent) and was recrystallized by MeOH. Fraction 816 was subjected for further purification using Si gel column chromatography eluted with hexane-DCM-EtOAc-MeOH and continued by trituration method using EtOAc 100% to obtain compound 3 (± 6 mg). Compound 2 (± 30 mg) was gained from fraction 9 using the trituration method with EtOAc-MeOH solvent.

α-Glucosidase Inhibitory Activity
The α-glucosidase inhibitory activity was investigated by the method of Sancheti et al.20 with slight modifications. The sample was dissolved in DMSO solution. The sample solution of 10 µL was mixed with 50 µL of phosphate buffer (100 mM, pH 7.0), 25 µL of 0.5 mM 4-nitrophenyl α-D-glucopyranoside (4-NPG) and incubated at 37°C for 30 minutes. The addition of 100 µL sodium carbonate solution (200 mM) was used after the incubation process to terminate the enzymatic reaction. The absorbance was measured at 410 nm as the amount of p-nitrophenol released in the reaction.

RESULTS AND DISCUSSION

β-sitosterol (1)
This compound had molecular formula of C29H48O, white powder with a melting point of 133-134°C. UV (MeOH) λmax nm: 210. IR νmax, C=O) cm⁻¹: 3341 (νmax, OH), 2938 (νmax, C-H), 1658 (νmax, C=C), 1040 (νmax, C-O). ¹H NMR (500 MHz, CDCl₃) and ¹³C NMR (125 Mhz, CDCl₃) spectroscopic data, see Table-1.

β-sitosterol glucoside (2)
This compound had molecular formula of C35H50O6, white powder with a melting point of 286-288°C. UV (MeOH) λmax nm: 210. IR νmax, C=O) cm⁻¹: 3386 (νmax, OH), 2936 (νmax, C-H), 1672 (νmax, C=C), 1027 (νmax, C-O). ¹H NMR (500 MHz, DMSO-D₆) and ¹³C NMR (125 MHz, DMSO-D₆) spectroscopic data, see Table-1.

Cucurbitacin F (3)
This compound had the molecular formula of C30H46O7, white powder with a melting point of 190-192°C. UV (MeOH) λmax nm: 210, 231, IR νmax (KBr) cm⁻¹: 3343 (νmax, OH), 2928 (νmax, C-H), 1683 (νmax, C=C), 1052 (νmax, C-O). ¹H NMR (500 MHz, Acetone-D₆) and ¹³C NMR (125 Mhz, Acetone-D₆) spectroscopic data, see Table-1.

Table 1: NMR Chemical Shifts of Compound 1-3.

Carbon	¹H NMR (500 MHz, CDCl₃)	¹³C NMR (125 MHz, CDCl₃)	¹H NMR (500 MHz, DMSO-D₆)	¹³C NMR (125 MHz, DMSO-D₆)				
	δC	δH	δC	δH	δC	δH	δC	δH
C-1	37.43	1.86; 1.05	36.83	0.81; 1.8	33.43	1.03; 1.8		
C-2	31.85	1.95; 1.86	29.27	1.8; 1.15	70.40	3.54		
C-3	71.99	3.53	76.91	3.05	80.57	2.85		
C-4	42.48	2.28	39.28	2.12; 1.98	42.01	-		
C-5	140.94	-	140.44	-	141.35	-		
C-6	121.92	5.35	121.22	5.33	118.63	5.75		
C-7	32.08	1.54; 1.48	31.42	1.5; 1.95	23.41	1.98; 2.39		
C-8	32.08	1.43	31.37	1.38	42.99	1.92		
The data had been confirmed by the reported data.21-25 The HMBC (Heteronuclear Multiple Bond Connectivity) spectrums are used to confirm the structure correctly. It exhibits information about the correlation or relationship between protons and adjacent carbons through two, three, and sometimes four bonds.26 The HMBC spectrums of β-sitosterol(1) and cucurbitacin F(3) were shown in Fig.-1. The HMBC spectrums of the isolated compound (Fig.-1) confirmed that compounds 1 and 3 were β-sitosterol and Cucurbitacin F, respectively. The β-sitosterol compound was indicated by the correlation between the specific protons and carbons, such as C-3 (C-OH) with H-1 and H-4; C-5 and C-6 (olefin carbon) with H-1, H-4, H-19; and proton at methyl carbon of H-18 with C-12 and C-13; H-19 with C-1, C-5, C-9, and C-10; H-21 with C-22, C-20, and C-17; H-26 with C-27 and C-25; H-27 with C-24, C-25, and C-26; and H-29 with C-24 and C-28 (Fig.-2A). Whereas the cucurbitacin F was identified by the connection between protons and the specific carbons, such as carbon with OH substitutions at C-2 with H-3 and H-29, C-3 with H-28 and H-29, C-20 with H-16, olefins at C\textsubscript{5}C\textsubscript{6} with H-28 and H-29, and C\textsubscript{23}C\textsubscript{24} with H-23, H-26, and H-27, and carbonyl at C-11 with H-10, H-12, and H-19, and C-22 with H-17, H-21, H-23, and H-24 (Fig.-2B).
SECONDARY METABOLITE COMPOUNDS OF E. mastersii King

A B

Fig.-1: HMBC Spectrums of Isolated Compounds of E. mastersii King Stem Bark; β-sitosterol (A) and Cucurbitacin F (B)

A B

Fig.-2: Key HMBC (H → C) of Isolated Compounds; β-sitosterol (A) and Cucurbitacin F (B)

All of the spectroscopy data confirmed that the isolated compounds 1, 2, and 3 were assigned as β-sitosterol, β-sitosterol glucoside, and cucurbitacin F, respectively (Fig.-3). Sterol compounds of β-sitosterol and β-sitosterol glucoside were firstly reported from the plant E. mastersii King.

A B

Fig.-3: Isolated Compounds of E. mastersii King Stem Bark; β-sitosterol (1), β-sitosterol glucoside (2), and Cucurbitacin F (3)

α-Glucosidase Inhibitory Activity of Isolated Compounds

The inhibition of the α-glucosidase enzyme was used to determine the antidiabetic activity of the isolated compounds (Fig.-4). The principle of this evaluation is based on the decrease in the amount of p-nitrophenol produced due to the performance of the inhibitor agent.20
As shown in Fig.-4, each isolated compound had a different inhibition performance, such as the β-sitosterol inhibition percentage of 36.08 ± 0.12 % at the concentration of 2.4 x 10^{-3} mol/L, a β-sitosterol glucoside of 26.35 ± 1.33 % at the concentration of 1.7 x 10^{-3} mol/L, and cucurbitacin F of 35.85 ± 0.06 % at the concentration of 1.9 x 10^{-3} mol/L.

Sterol compounds such as β-sitosterol and β-sitosterol glucoside had been reported to have potential α-glucosidase inhibitor activity.27, 28, 29 Some previous studies suggested the inhibition mechanism of α-glucosidase by β-sitosterol and β-sitosterol glucoside was through the hydrophobic interactions that blocked the entry of the substrate resulting in the change of the conformation of the active site of the α-glucosidase enzyme.30,31 In which β-sitosterol had the interactions with the enzyme site of MET 385, ILE 203, HIS 282, and TYR 388 and β-sitosterol glucoside had the interactions with the enzyme site of LYS 156, TYR 158, and PHE 303.31 Meanwhile, cucurbitacin F had not been known clearly about its inhibition mechanism. It was due to the limitations of the study of cucurbitacin F in inhibiting the α-glucosidase enzyme.

CONCLUSION

This study exhibited that the *E. mastersii* King stem bark had various types of secondary metabolite compounds such as terpenoid and steroids. Based on the spectroscopic data, those compounds were β-sitosterol, β-sitosterol glucoside, and cucurbitacin F. All of those compounds revealed different inhibition performances as an α-glucosidase inhibitors.

REFERENCES

1. B.G. Murray, Encyclopedia of Applied Plant Sciences (Second Edition), 2, 289(2017), https://doi.org/10.1016/B978-0-12-394807-6.00047-2
2. M. Efdi, S. Fujita, T. Inuzuka, and M. Koketsu, *Natural Product Research*, 24(7), 657(2010), https://doi.org/10.1080/14786410903132449
3. M. Efdi, M. Ninomiya, E. Suryani, K. Tanaka, S. Ibrahim, K. Watanabe, and M. Koketsu, *Bioorganic & Medicinal Chemistry Letters*, 22, 4242(2012), https://doi.org/10.1016/j.bmcl.2012.05.043
4. M. Efdi, T. Itoh, Y. Akao, Y. Nozawa, M. Koketsu, and H. Ishihara, *Bioorganic & Medicinal Chemistry*, 15, 3667(2007), https://doi.org/10.1016/j.bmc.2007.03.051
5. J.B. Lowry, *Phytochemistry*, 9, 2411(1970), https://doi.org/10.1016/S0031-9422(00)85751-9
6. A. Ito, H. Chai, D. Lee, L.B.S. Kardon, S. Riswan, N.R. Farnsworth, G.A. Cordell, J.M. Pezzuto, and A.D. Kinghorn, *Phytochemistry*, 61, 171(2002), https://doi.org/10.1016/S0031-9422(02)00232-7
7. L. Jayasinghe, N.R. Amarasinghe, B.G.S. Arundathie, G.K. Rupasinghe, N.H.A.N. Jayatilake, and Y. Fujimoto, *Natural Product Research*, 26, 717(2012), https://doi.org/10.1080/14786419.2010.551514
8. A. Elkhateeb, Subeki, K. Takahashi, H. Matsuura, M. Yamasaki, O. Yamato, Y. Maede, K. Katakura, T. Yoshihara, and K. Nabeta, *Phytochemistry*, 66, 2577(2005), https://doi.org/10.1016/j.phytochem.2005.08.020
9. P.L. Katavic, D.A. Venables, T. Rali, and A.R. Carroll, *Journal of Natural Products*, 70, 866(2007), https://doi.org/10.1021/np060577f
10. P.L. Katavic, D.A. Venables, T. Rali, and A.R. Carroll, *Journal of Natural Products*, 70, 872(2007), https://doi.org/10.1021/np060607e
11. C. Zhou, X. Wang, J. Mo, J. Zhang, and L. Gan, *Helvética Chimica Acta*, 94, 347(2011), https://doi.org/10.1002/hlca.201000200
12. A.R. Carroll, G. Arumugan, R.J. Quinn, J. Redburn, G. Guymer, and P. Grimshaw, *The Journal of Organic Chemistry*, 70, 1889(2005), https://doi.org/10.1021/jo048525n
13. X. Fang, C.H. Phoebe, J.M. Pezzuto, H.H.S. Fong, and N.R. Farnsworth, *Journal of Natural Products*, 47(6), 988(2004), https://doi.org/10.1021/np50036a013
14. D. Meng, S. Qiang, L. Lou, and W. Zhao, *Planta Medica*, 74, 1741(2008), https://doi.org/10.1055/s-2008-1081356
15. Z. Sheng, T. Zheng-ming, Z. Yi, S. Zheng-wu, and Q. Gue-wei, *Chinese Journal of Natural Medicines*, 8(1), 21(2010), https://doi.org/10.3724/SP.J.1009.2010.00021
16. J. Shi-tamoto, K. Matsunami, H. Otsuka, T. Shinzato, and Y. Takeda, *Journal of Natural Medicines*, 64, 104(2010), https://doi.org/10.1007/s11418-009-0370-4
17. H. Wang, C. Peng, and Y. Chen, *Chemistry of Natural Compounds*, 51(6), 1167(2015), https://doi.org/10.1007/s10600-015-1520-4
18. T. Okselni, A. Santoni, A. Dharma, and M. Efdi, *Rasayan Journal of Chemistry*, 11(3), 1211(2018), https://doi.org/10.31788/RJC.2018.1133058
19. T. Okselni, A. Santoni, A. Dharma, and M. Efdi, *Rasayan Journal of Chemistry*, 12(1), 146(2019), https://doi.org/10.31788/RJC.2019.1215019
20. S. Sancheti, S. Sancheti, and S. Seo, *American Journal of Pharmacology and Toxicology*, 4(1), 8(2009), https://doi.org/10.3844/ajptsp.2009.8.11
21. V.S.P. Chaturvedula and I. Prakash, *International Current Pharmaceutical Journal*, 1(9), 239(2012), https://doi.org/10.3329/icpj.v1i9.11613
22. A.T.M.Z. Azam, F. Moni, M. Hamiduzzaman, M.M. Masud, and C.M. Hasan, *Research Journal of Phytochemistry*, 7(1), 1 (2013), https://doi.org/10.3923/rjphyto.2013.1.9
23. T. Peshin and H.K. Kar, *British Journal of Pharmaceutical Research*, 16(4), 1(2017), https://doi.org/10.9734/BJPR/2017/33160
24. S.D. Sarker, P. Whiting, V. Šik, and L. Dinan, *Phytochemistry*, 50, 1123(1999), https://doi.org/10.1016/S0031-9422(98)00653-0
25. K.N. Maloney, M. Fujita, U.S. Eggert, F.C. Schroeder, C.M. Field, T.J. Mitchison, and J. Clardy, *Journal of Natural Products*, 71, 1927(2008), https://doi.org/10.1021/np8005259
26. M. Rahman, *Evidence-Based Validation of Herbal Medicine*, 495(2015), https://doi.org/10.1016/b978-0-12-800874-4.00023-4
27. Z. Sheng, H. Dai, S. Pan, H. Wang, Y. Hu, and W. Ma, *Molecules*, 19, 10563(2014), https://doi.org/10.3390/molecules190710563
28. B. Asghari, P. Salehi, M. Farimani, and S.N. Ebrahimi, *Records of Natural Products*, 9(3), 276(2015).
29. N.T.L. Thuy, P.T. Thuy, P.E. Hansen, and N.K.P. Phung, *Science & Technology Development Journal*, 22(1), 106(2019), https://doi.org/10.32508/stdj.v22i1.1009
30. K. Eawsakul, P. Panichayupakaranant, T. Ongtanasup, S. Warinomhoun, K. Noonong, and K. Bunluepeuch, *Helioyo*, 7, e08078(2021), https://doi.org/10.1016/j.helioyon.2021.e08078
31. Y. Gu, X. Yang, C. Shang, T.T.P. Thaoa, and T. Koyama, *RSC Advances*, 11, 15400(2021), https://doi.org/10.1039/d1ra02198b

[RJC-5294/2021]