Оценка уровня сывороточного BDNF при комплексной реабилитации пациентов с ишемическим инсультом с использованием традиционных подходов к восстановлению моторных функций

Казаков С.Д.1, Королева Е.С.1, Бразовская Н.Г.1, Зайцев А.А.2, Иванова С.А.3, Алифирова В.М.1

1 Сибирский государственный медицинский университет (СибГМУ) Россия, 634050, Томск, Московский тракт, 2
2 Сибирский федеральный научно-клинический центр (СибФНКЦ) Россия, 636000, г. Северск, ул. Мира, 4
3 Научно-исследовательский институт (НИИ) психического здоровья, Томский национальный исследовательский медицинский центр (НИМЦ) Российской академии наук Россия, 634014, Томск, ул. Алеутская, 4

РЕЗЮМЕ

Цель – оценить взаимосвязь между изменением уровня сывороточного BDNF, регрессом моторного дефицита и восстановлением функциональной активности у пациентов с ишемическим инсультом после II этапа медицинской реабилитации.

Материалы и методы. В исследовании приняли участие 49 пациентов с ишемическим инсультом в бассейне средней мозговой артерии после I этапа медицинской реабилитации. Группа I (n = 32) прошла II этап реабилитации в ранний восстановительный период, группа II (n = 17) выписана на амбулаторное наблюдение по месту жительства. Точки наблюдения: 14-е и 90-е сут. Оценочные шкалы: шкала инсульта Национального института здоровья (NIHSS), шкала Фугл – Мейера (FMA), модифицированная шкала Рэнкина (mRS). Уровень BDNF в сыворотке крови определяли на мультиплексном анализаторе MAGPIX (Luminex, США).

Результаты. Сравнительный анализ исследуемой популяции показал, что пациенты, получавшие моторную реабилитацию в раннем восстановительном периоде, имеют больший регресс неврологического дефицита по шкале ΔNIHSS (pгр.I–II = 0,043), более выраженное повышение функциональной активности по шкале ΔmRS (pгр.I–II = 0,047) и положительную динамику по шкале FMA (pгр.I–II = 0,003) в сравнении с пациентами, находившимися на амбулаторном наблюдении. Концентрация BDNF значимо снижалась к концу раннего восстановительного периода у пациентов на амбулаторном наблюдении в группе II (pсут14–90_гр.II = 0,002). В группе пациентов, проходивших реабилитацию, напротив, снижения уровня фактора не наблюдалось (pсут14–90_гр.I = 0,613).

Заключение. Результаты исследования демонстрируют клиническую эффективность II этапа комплексной реабилитации пациентов в ранний восстановительный период инсульта и дают основание предположить, что успех нейрореабилитации тесно связан с повышением BDNF на фоне ее проведения. Это делает мозговой нейротрофический фактор потенциальным маркером оценки эффективности проводимого восстановительного лечения.

Ключевые слова: ишемический инсульт, мозговой нейротрофический фактор, реабилитация, ранний восстановительный период, нейропластичность.
Assessment of serum BDNF levels in complex rehabilitation of patients with ischemic stroke using traditional approaches to the restoration of motor functions

Kazakov S.D.¹, Koroleva E.S.¹, Brazovskaya N.G.¹, Zaytsev A.A.², Ivanova S.A.³, Alifirova V.M.¹

¹ Siberian State Medical University
2 Moscow Trakt, Tomsk, 634050, Russian Federation
3 Siberian Federal Scientific Clinical Center of Federal Medicobiological Agency
4 Mira Str., Seversk, 63600, Russian Federation

ABSTRACT

Aim. To assess the relationship between changes in serum brain-derived neurotrophic factor (BDNF) level, regression of motor deficiency, and restoration of functional activity in patients with ischemic stroke after stage II of medical rehabilitation.

Materials and methods. The study included 49 patients with ischemic stroke in the middle cerebral artery after stage I of medical rehabilitation. Group I (n = 32) went through stage II of rehabilitation in the early recovery period, group II (n = 17) was discharged for outpatient monitoring at the place of residence. Observation points: day 14 and day 90. Evaluation scales: National Institute of Health Stroke Scale (NIHSS), Fugle – Meyer Scale (FMA), Modified Rankin Scale (mRS). Serum BDNF levels were determined using a MAGPIX multiplex analyzer (Luminex, USA).

Results. A comparative analysis of the studied population showed that patients who underwent motor rehabilitation in the early recovery period had greater regression of neurologic deficit according to the ΔNIHSS scale (p day1–90 gr.I–II = 0.043), a more pronounced increase in the functional activity on the ΔmRS scale (p day1–90 gr.I–II = 0.047), and positive dynamics according to the FMA scale (p day14–90 gr.I–II = 0.003) in comparison with patients who received outpatient follow-up. The concentration of BDNF was significantly reduced by the end of the early recovery in the group II (p day14–90 gr.II = 0.002). On the contrary, there was no decrease in the level of the BDNF (p day14–90 gr.I = 0.613) in the group of patients undergoing rehabilitation.

Conclusion. The results of the study demonstrated the clinical effectiveness of stage II of the comprehensive rehabilitation of patients in the early period of stroke recovery. We can suggest that the success of neurorehabilitation is closely associated with an increase of the BDNF level against the background of its performance. This makes BDNF a potential marker of evaluating the effectiveness of ongoing rehabilitation treatment

Key words: ischemic stroke, brain-derived neurotropic factor, rehabilitation, early recovery period, neuroplasticity.

Conflict of interest. The authors declare the absence of obvious and potential conflicts of interest related to the publication of this article.

ВВЕДЕНИЕ

Ишемический инсульт является значимой меди-ко-социальной проблемой во всем мире [1]. Более 50% пациентов, перенесших ишемический инсульт, не способны вернуться к полноценной жизни ввиду сохранения инвалидизирующего неврологического дефицита, который в большинстве случаев обусловлен двигательными нарушениями [2]. В связи с этим успешная реабилитация пациентов, перенесших инсульт, является одной из наиболее актуальных проблем современной медицины [3].

Эффективность моторной реабилитации тесно связана с механизмами нейропластичности — способностью нейронов головного мозга к функциональной и структурной реорганизации [4, 5]. В настоящее время активно изучается участие BDNF (brain-derived neurotrophic factor, BDNF) в процессах нейрогенеза, пластичности и нейронного выживания, индуцированных повреждением ткани мозга в условиях церебральной ишемии. BDNF — один из наиболее изученных белков семейства нейротрофиков, способствующих выживанию, росту и дифференцировке клеток коры головного мозга и гиппокампа [5–9]. Кроме того, BDNF вовлечен в процессы, лежащие в основе клеточных механизмов памяти и двигательного обучения [10–12].

Существуют два пути экспрессии BDNF в централизованной нервной системе. Первый — нерегулируемый конститутивный путь — ишемический инсульт индуцирует синтез BDNF и экспрессию его рецепторов [13]. Второй — зависимый — экспрессия BDNF возрастает при двигательном обучении в результате многократного повторения, под воздействием сенсорной стимуляции и активации первичной мозговой коры. Активно-зависимое высвобождение BDNF играет ключевую роль в синаптической пластичности при моторной реабилитации [5, 14, 15].

Большинство исследований, ставящее перед собой цель изучить взаимоотношение между уровнем BDNF и физическими упражнениями в постинсультном периоде, были проведены на животных. Ряд экспериментальных исследований показал, что различная интенсивность и периодичность физических нагрузок по-разному влияют на уровень BDNF [16]. Слишком высокая интенсивность и большая частота физических нагрузок могут иметь отрицательный терапевтический эффект после инсульта и замедлять моторное восстановление [17]. Вид физической нагрузки также влияет на концентрацию BDNF. Результаты большинства экспериментальных исследований демонстрируют повышение уровня BDNF на фоне аэробных физических упражнений, в то же время данные о влиянии на уровень BDNF анаэробных функциональных тренировочных сессий противоречивы [18].

Ввиду недостаточности данных об изменении концентрации BDNF на фоне реабилитационных мероприятий после ишемического инсульта, полученных в результате клинических исследований, изучение динамики изменения уровня нейротрофина в зависимости от вида, интенсивности и частоты двигательных тренировок, оценка его влияния на исход инсульта являются актуальными задачами. Решение данных задач позволит ответить на вопросы, возможно ли использовать BDNF для прогнозирования исхода ишемического инсульта и оценки эффективности реабилитационных методик, а также применение каких видов нейрореабилитации является наиболее рациональным.

Цель исследования — оценить взаимосвязь между изменением уровня сывороточного BDNF и реабилитационным мероприятием после ишемического дефицита и восстановлением функциональной активности у пациентов с ишемическим инсультом после II этапа медицинской реабилитации.

МАТЕРИАЛЫ И МЕТОДЫ

Проведено проспективное нерандомизированное сравнительное параллельное исследование с марта 2018 по декабрь 2019 г. В исследование включены пациенты старше 18 лет, подписавшие добровольное информированное согласие (либо согласие было получено от ближайших родственников). Диагноз ишемического инсульта подтвержден данными компьютерной или магнитно-резонансной томографии головного мозга. Критерии исключения: другие поражения центральной и периферической нервной системы; вирус иммунодефицита человека, сифилис,
вирусный гепатит; онкологические заболевания; транзиторная ишемическая атака, геморрагический или повторный ишемический инсульт.

Для каждого участника исследования были проведены сбор анамнеза жизни, оценка неврологического статуса, а также взятие венозной крови для определения уровня сывороточного BDNF. Традиционные подходы к восстановлению двигательных функций на II этапе медицинской реабилитации в Филиале Томского научно-исследовательского института курортологии и физиотерапии (ТИНИКиф) ФГБУ СибФНКЦ ФМБА России включали: локальную воздушную криотерапию на область спастичных мышц, функциональную электростимуляцию мышц, антагонистических спастичным, ручной классической массаж области паретических конечностей, лечебную физическую культуру (активно-пассивную гимнастику на столе Bobath, активную гимнастику, ходьбу на беговой дорожке, ходьбу в реабилитационных брусьях и по лестнице с регулируемой высотой ступеней).

Специалисты мультидисциплинарной реабилитационной бригады подбирали для пациента адекватную физическую нагрузку, составляя план его мобилизации и реабилитации в зависимости от результатов малонагрузочных функциональных проб, оценки риска падений по шкале Морзе, антагонистической спастичности, оценки перирифической спастичности, оценки периферической спастичности по шкале MRC, спастичности по шкале Ashworth в различных мышечных группах, оценки нарушения иерархического контроля двигательной функции по шкале Ашворта в различных мышечных группах, спастичности по шкале MRC, функциональной электростимуляции, оценки риска падений по шкале Морзе, паттернов мобилизации и реабилитации по участкам криволинейных брусьев и по лестнице с регулируемой высотой ступеней.

Период наблюдения – ранний восстановительный (90 сут от начала инсульта), средний (65 (59; 68) лет) с острым ишемическим инсультом в бассейне средней мозговой артерии, выписанных из регионального сосудистого центра Томской областной клинической больницы после I этапа медицинской реабилитации. Популяция разделена на две группы.

Группа I (n = 32) получала восстановительное лечение на II этапе реабилитации в Филиале ТНИИКиф ФГБУ СибФНКЦ ФМБА России. Группа 2 (n = 17) выписана на амбулаторное наблюдение по месту жительства. После I этапа медицинской реабилитации суммарный балл оценочных шкал в исследуемой популяции свидетельствовал о неврологическом дефиците средней степени тяжести (NIHSS = 4 (3; 8) балла; FMA = 196 (179; 200) баллов) и умеренному нарушению жизнедеятельности (mRS = 3 (2; 4) балла). Для определения нормы сывороточного BDNF для данной возрастной популяции была создана группа сравнения, состоящая из 50 лиц без инсульта, сопоставимых с исследуемой выборкой по полу, возрасту, факторам риска развития цереброваскулярных заболеваний (табл. 1).

Группы I и II на 14-е сут после инсульта были равноценны по выраженности неврологического дефицита и функциональной независимости (табл. 2). Пациенты группы I после второго этапа медицинской реабилитации с использованием традиционных подходов к восстановлению двигательных функций конечностей демонстрировали выраженный прогресс неврологического дефицита по шкалам NIHSS (p = 0,002) и FMA (p = 0,003), а также улучшение функциональной независимости по шкале mRS (p = 0,009).

РЕЗУЛЬТАТЫ

Обследовано 49 пациентов (26 мужчин (53,1%) и 23 женщины (46,9%), средний возраст 65 (59; 68) лет) с острый ишемическим инсультом в бассейне средней мозговой артерии, выписанных из регионального сосудистого центра Томской областной клинической больницы после I этапа медицинской реабилитации. Популяция разделена на две группы.

Группа I (n = 32) получала восстановительное лечение на II этапе реабилитации в Филиале ТНИИКиф ФГБУ СибФНКЦ ФМБА России. Группа 2 (n = 17) выписана на амбулаторное наблюдение по месту жительства. После I этапа медицинской реабилитации суммарный балл оценочных шкал в исследуемой популяции свидетельствовал о неврологическом дефиците средней степени тяжести (NIHSS = 4 (3; 8) балла; FMA = 196 (179; 200) баллов) и умеренному нарушению жизнедеятельности (mRS = 3 (2; 4) балла). Для определения нормы сывороточного BDNF для данной возрастной популяции была создана группа сравнения, состоящая из 50 лиц без инсульта, сопоставимых с исследуемой выборкой по полу, возрасту, факторам риска развития цереброваскулярных заболеваний (табл. 1).

Группы I и II на 14-е сут после инсульта были равноценны по выраженности неврологического дефицита и функциональной независимости (табл. 2). Пациенты группы I после второго этапа медицинской реабилитации с использованием традиционных подходов к восстановлению двигательных функций конечностей демонстрировали выраженный прогресс неврологического дефицита по шкалам NIHSS (p = 0,002) и FMA (p = 0,003), а также улучшение функциональной независимости по шкале mRS (p = 0,009).
Таблица 1

Показатель	Группа I	Группа II	Группа сравнения	p
Средний возраст, лет, \(Me (Q_1; Q_3) \)	62 (57; 67)	66 (61; 68)	63 (56; 65)	0,817
Пол:				
– муж., абс. (%)	17 (53%)	9 (53%)	29 (58%)	0,876
– жен., абс. (%)	15 (47%)	8 (47%)	21 (42%)	0,902
Артериальная гипертония, абс. (%)	32 (100%)	17 (100%)	37 (74%)	0,914
Длительность АГ, лет, \(Me (Q_1; Q_3) \)	11 (10; 15)	10 (10; 15)	6 (5; 9)	0,892
Инфаркт миокарда, абс. (%)	7 (22%)	4 (23%)	0	0,231
Фибрилиация предсердий, абс. (%)	5 (15%)	4 (23%)	0	0,190
Стентирование и искусственные клапаны сердца, абс. (%)	2 (4%)	1 (6%)	0	0,380
Ожирение, абс. (%)	21 (65%)	13 (76%)	28 (56%)	0,785
Дислипидемия, абс. (%)	27 (84%)	13 (76%)	43 (86%)	0,872
Сахарный диабет, абс. (%)	8 (25%)	2 (12%)	14 (28%)	0,638
Длительность СД, лет, \(Me (Q_1; Q_3) \)	8 (5; 10)	12 (5; 20)	7 (4; 10)	0,742
Куриение, абс. (%)	18 (56%)	9 (53%)	32 (64%)	0,823
Уровень BDNF, 14-е сут, \(Me (Q_1; Q_3) \)	2768,0 (2009,0; 3652,0)	2224,0 (1302,0; 4497,0)	4273,0 (2221,0; 5251,0)	0,072
Уровень BDNF, 90-е сут, \(Me (Q_1; Q_3) \)	2175,0 (1730,0; 2739,0)	881,1 (231,9; 1483,5)	4273,0 (2221,0; 5251,0)	0,000
Подтип инсульта в соответствии с критериями TOAST:				0,204
– атеросклероз крупных артерий, абс. (%)	5 (16%)	2 (12%)		
– кардиальная эмболия, абс. (%)	4 (12%)	5 (29%)		
– окклюзия мелких кровеносных сосудов, абс. (%)	0 (0%)	0 (0%)		
– инсульт неопределенной этиологии, абс. (%)	23 (72%)	10 (59%)		
Пораженное полушарие головного мозга:				0,401
– правое, абс. (%)	16 (53%)	11 (65%)		
– левое, абс. (%)	15 (47%)	6 (35%)		

Значимые различия по сравнению: * с группой I; & с группой сравнения

Таблица 2

Анализ клинических показателей по шкалам NIHSS, FMA, mRS между группами I и II, \(Me (Q_1; Q_3) \)	Группа I	Группа II	\(p \)
NIHSS _сут14	4 (3; 4)	3,5 (2; 9)	0,688
NIHSS _сут90	3 (2; 4)	3 (2; 9)	0,176
\(p \) _сут14-90	0,002	0,025	
FMA _сут14	191 (177; 201)	201 (169; 203)	0,612
FMA _сут90	199 (190; 215)	203 (172; 204)	0,245
\(p \) _сут14-90	0,003	0,406	
mRS _сут14	3 (2; 3)	2 (2; 3)	0,351
mRS _сут90	2 (1; 2)	2 (1; 3)	0,143
\(p \) _сут14-90	0,009	0,011	
\(\Delta mRS \)	–1 (–2; 0)	0 (–1; 0)	0,047
\(\Delta NIHSS \)	–2 (–3; –1)	–1 (–2; 0)	0,043
\(\Delta FMA \)	8 (6; 14)	3 (1; 4)	0,032
\(\Delta FMA _вверхняя_конечность \)	6 (4; 9)	2 (1; 3)	0,041
\(\Delta FMA _нижняя_конечность \)	4 (2; 6)	2 (1; 4)	0,015
У пациентов группы II, выписанных на амбулаторное наблюдение, также выявлено снижение суммарного балла по шкалам NIHSS (рсут14–90 = 0,025) и mRS (рсут14–90 = 0,011), но значимого увеличения суммарного балла по шкале FMA (рсут14–90 = 0,406) не наблюдалось (см. табл. 2).

Сравнительный анализ изменений величин клинических шкал в исследуемых группах между точками наблюдения показал, что прирост баллов по шкале ΔFMA (ргр.I–II = 0,032) и регресс суммарных баллов по шкалам ΔNIHSS (ргр.I–II = 0,043) и ΔmRS (ргр.I–II = 0,047) у пациентов после физической реабилитации значимо превышали таковые у пациентов на амбулаторном наблюдении. При детальной оценке двигательных функций верхней и нижней конечностей по шкале FMA обнаружен более выраженный прирост баллов в группе I по сравнению с группой II (ргр.I–II = 0,041 и ргр.I–II = 0,015 соответственно), (см. табл. 2).

По уровню BDNF не было выявлено значимых различий между сывороточным BDNF у пациентов с ишемическим инсультом в I и II группе на 14-е сут и лиц из группы сравнения (см. табл. 1, рис. 1). При этом концентрация биомаркера пластичности мозга, отвечающего за нейронное выживание и функциональное восстановление после инсульта, значимо снижалась к концу раннего восстановительного периода у пациентов на амбулаторном наблюдении в группе II (рсут14–90_гр.II = 0,002).

ОБСУЖДЕНИЕ

Известно, что содержание BDNF в сыворотке крови возрастает в ответ на ишемическое повреждение ткани головного мозга и достигает максимальной концентрации в среднем на 14-е сут от начала инсульта [14, 15]. Отсутствие различий между уровнем BDNF в исследуемых группах на 14-е сут болезни и в группе лиц без церебральной ишемии, сопоставимой по полу, возрасту и факторам риска инсульта, можно интерпретировать как фактор благоприятного прогноза для функционального восстановления. Однако сравнительный анализ исследуемой популяции в динамике наблюдения показал, что пациенты, получавшие моторную реабилитацию в раннем восстановительном периоде, имели более регресс неврологического дефицита по шкале NIHSS и положительную динамику по шкале FMA.

Кроме того, в группе I отмечалось не только лучшее восстановление двигательной функции конечностей, но и более выраженное повышение функциональной активности – ΔmRS (ргр.I–II = 0,047) в сравнении с пациентами группы II. Соответственно, данные свидетельствуют о клинической эффективности реабилитационных мероприятий с использованием традиционных подходов к восстановлению моторных функций конечностей.

Исследование нейробиологических маркеров показало, что концентрация BDNF также меняется в зависимости от проведения реабилитационных процедур или их отсутствия. У пациентов в группе I уровень сывороточного BDNF значимо не изменялся между 14-м и 90-м сут инсульта, сохраняя высокую концентрацию и не отличаясь от лиц группы сравнения. Противоположные результаты получили
в группе II, где уровень биомаркера неуклонно снижался и в конце раннего восстановительного периода оказался ниже, чем в группе сравнения.

Многчисленные фундаментальные исследования показали участие BDNF в реализации процессов пластики головного мозга за счет активации нейрогенеза, миграции нервных клеток, ремицеллюляции аксонов, а также препятствия действию провоспалительных цитокинов и снижению апоптоза нейронов [20, 21]. Продемонстрирована ключевая роль BDNF в регуляции механизмов патологии и двигательного обучения через эффект долговременной потенциации [22, 23]. В исследовании на экспериментальных моделях ишемического инсульта на животных показано, что экспрессия данного нейротрофина повышается в ходе физической реабилитации за счет активации моторной коры и улучшает восполнение двигательного дефекта [24].

Нами обнаружено лучшее восстановление моторной функции и функциональной независимости в группе I, которое соответствовало изменением по шкалам FMA, NIHSS, mRS. Одновременно с этим в группе пациентов, прошедших через II этап медицинской реабилитации, где отмечалась динамика по шкале FMA, а изменения по шкалам NIHSS и mRS были более выражены, показатель BDNF сохранялся на прежнем уровне.

Очевидно, что единственным возможным объяснением улучшения моторной функции и функциональной независимости явилось проведение у этих пациентов физической реабилитации, которая, в свою очередь, также сопровождалась сохранением уровня BDNF. По нашему мнению, это дает основание предполагать, что индукция активно-зависящего пути экспрессии BDNF и поддержание его относительно высокой концентрации в ходе II этапа медицинской реабилитации являются основным механизмом, предопределяющим благоприятный клинический и функциональный исход.

ЗАКЛЮЧЕНИЕ

Результаты исследования демонстрируют клиническую эффективность II этапа комплексной реабилитации пациентов в ранний восстановительный период инсульта и дают основание предположить, что успех нейрореабилитации тесно связан с повышением BDNF на фоне ее проведения. Это делает мозговой нейротрофический фактор потенциальным маркером оценки эффективности проводимого восстановительного лечения. Применение методов реабилитации, повышающих уровень BDNF, является перспективным.

ЛИТЕРАТУРА

1. Kim J., Thayabarathan T., Donnan G.A., Howard G., Howard V.J., Rothwell P.M., Feigin V., Norrving B., Owolabi M., Pandian J., Liping L., Cadilhac D.A., Thrift A.G. Global stroke statistics 2019. Int. J. Stroke. 2020; 15 (8): 819–838. DOI: 10.1177/1747493020909545.
2. Hatem S.M., Saussez G., della Faille M., Pritz V., Zhang X., Dispa D., Bleyenheuft Y. Rehabilitation of motor function after stroke: a multiple systematic review focused on techniques to stimulate upper extremity recovery. Front Hum. Neurosci. 2016; 10: 442. DOI: 10.3389/fnhum.2016.00442.
3. Bernhardt J., Hayward K.S., Kwakkel G., Ward N.S., Wolf S.L., Borschmann K., Krakauer J., Boyd L., Carmichael S.T., Corbett D., Cramer S.C. Agreed definitions and a shared vision for new standards in stroke recovery research: the stroke recovery and rehabilitation roundtable taskforce. Int. J. Stroke. 2017; 12 (5): 444–450. DOI: 10.1177/1747493017711816.
4. Johansson B.B. Current trends in stroke rehabilitation. A review with focus on brain plasticity. Acta Neurol. Scand. 2011; 123 (3): 147–159. DOI: 10.1111/j.1600-0404.2010.01417.x.
5. Mang C.S., Campbell K.L., Ross C.J.D., Boyd L.A. Promoting neuroplasticity for motor rehabilitation after stroke: considering the effects of aerobic exercise and genetic variation on brain-derived neurotrophic factor. Phys. Ther. Dec. 2013; 93 (12): 1707–1716. DOI: 10.2522/ptj.20130053.
6. Гусев Е.И., Мартынов М.Ю., Костенко Е.В. и др. Эффективность семакса при лечении больных на разных стадиях ишемического инсульта. Журнал неврологии и психиатрии им. С.С. Корсакова. 2018; 118 (2-3): 61–68. DOI: 10.17116/jnervo20181183261-68.
7. Рославцева В.В., Салмина А.Б., Прокопенко С.В., Кобаненко И.Б., Резвицкая Г.Г. Возможности применения нейротрофического фактора головного мозга в качестве маркера эффективности терапии при дегенеративных, травматических и ишемических поражениях головного мозга. Неврологический журнал. 2015; 20 (2): 38–46.
8. Chen S.-D., Wu C.-L., Hwang W.-C., Yang D.-L. More Insight into BDNF against neurodegeneration: anti-apoptosis, anti-oxidation, and suppression of autophagy. International Journal of Molecular Sciences. 2017; 18 (3): 545. DOI: 10.3390/ijms18030545.
9. Guo W., Nagappan G., Lu B. Differential effects of transient and sustained activation of BDNF-TrkB signaling. Developmental Neurobiology. 2018; 78 (7): 647–659. DOI: 10.1002/dneu.22592.
10. Liu P.Z., Nusslock R. Exercise-mediated neurogenesis in the hippocampus via BDNF. Front. Neurosci. 2018; 12: 52. DOI: 10.3389/fnins.2018.00052.
11. Park H., Joo M. Neurotrophin Regulation of neural circuit development and function. Nat. Rev. Neurosci. 2013; 14 (1): 7–23. DOI: 10.1038/nrn3379.
12. Zagrebelsky M., Korte M. Form follows function: BDNF and its involvement in sculpting the function and structure of synapses. Neuropharmacology. 2014; 76: 628–638. DOI: 10.1016/j.neuropharm.2013.05.029.
13. Голубев А.М., Петрова М.В., Гречко А.В., Захарченко Е.В., Кузовлев А.Н., Ершов А.В. Молекулярные маркеры ишемического инсульта. Общая реаниматология. 2019; 15 (5): 11–22. DOI: 10.15360/1813-9779-2019-5-11-22.
14. Coleman E.R., Moudgal R., Lang K., Haucinh H.I., Aowski O.O., Kissela B.M., Feng W. Early rehabilitation after stroke: a narrative review. *Current Atherosclerosis Reports*. 2017; 19 (12): 59. DOI: 10.1007/s11883-017-0686-6.

15. Королева Е.С., Алифирова В.М., Бразовская Н.Г., Плотников Д.М., Левчук Л.А., Бойко А.С., Запекин С.П., Семененко А.В., Катаева Н.Г., Иванова С.А. Клинико-лабораторная оценка эффективности ранней реабилитации пациентов с инсультом с применением вспомогательных роботизированных механизмов. *Бюллетень сибирской медицины*. 2019; 18 (4): 55–62. DOI: 10.20538/1682-0363-2019-4-55–62.

16. Walsh J.J., Bentley R.F., Gurd B.J., Tschakovsky M.E. Short-duration maximal and long-duration submaximal effort forearm exercise achieve elevations in serum brain-derived neurotrophic factor. *Front. Physiol.* 2017; 8: 746. DOI: 10.3389/fphys.2017.00746.

17. Mackay C.P., Kuy S.S., Brauer S.G. The effect of aerobic exercise on brain-derived neurotrophic factor in people with neurological disorders: a systematic review and meta-analysis. *Neural Plast.* 2017; 2017: 4716197. DOI: 10.1155/2017/4716197.

18. Alcantara C.C., García-Salazar L.F., Silva-Couto M.A., Santos G.L., Reisman D.S., Russo T.L. Post-stroke BDNF concentration changes following physical exercise: a systematic review. *Frontiers in Neurology*. 2018; 9: 637. DOI: 10.3389/fneur.2018.00637.

19. Супонева Н.А., Юсупова Д.Г., Жирова Е.С., Мельченко Д.А., Таратухина А.С., Бутковская А.А., Ильина К.А., Зайцев А.А., Люкманов Р.Х., Калинкина М.Э., Хижникова А.Е. Валидация модифицированной шкалы Рэнкина (The Modified Rankin Scale, MRS) в России. *Неврология, нейропсихиатрия, психосоматика*. 2018; 10 (4): 36–39. DOI: 10.14412/2074-2711-2018-4-36-39.

20. Himi N., Takahashi H., Okabe N., Nakamura N., Shiromoto T., Narita K., Koga T., Miyamoto O. Exercise in the early stage after stroke enhances hippocampal brain-derived neurotrophic factor expression and memory function recovery. *J. Stroke Cerebrovasc. Dis.* 2016; 25 (12): 2987–2994. DOI: 10.1016/j.strokecerebrovasdis.2016.08.017.

21. Leal G., Bramham C.R., Duarte C.B. BDNF and hippocampal synaptic plasticity. *Neurotrophins*. 2017; 104: 153–195. DOI: 10.1016/bs.vh.2016.10.004.

22. Kotłęga D., Peda B., Zembron-Lacny A., Goląb-Janowska M., Nowacki P. The role of brain-derived neurotrophic factor and its single nucleotide polymorphisms in stroke patients. *Neurologia i Neurochirurgia Polska*. 2017; 51 (3): 240–246. DOI: 10.1016/j.pjnns.2017.02.008.

23. Walsh J.J., Tschakovsky M.E. Exercise and circulating BDNF: Mechanisms of release and implications for the design of exercise interventions. *Applied Physiology, Nutrition, and Metabolism*. 2018; 43 (11): 1095–1104. DOI: 10.1139/apnm-2018-0192.

24. Gandolfi M., Smania N., Vella A., Picelli A., Chirumbolo S. Assessed and emerging biomarkers in stroke and training-mediated stroke recovery: state of the art. *Neural Plast.* 2017; 2017: 1389475. DOI: 10.1155/2017/1389475.

Вклад авторов
Казаков С.Д. – сбор данных для анализа, написание текста статьи. Королева Е.С. – разработка дизайна исследования. Бразовская Н.Г. – статистическая обработка данных. Зайцев А.А. – анализ или интерпретация результатов работы. Иванова С.А. – критический пересмотр, содержания статьи. Алифирова В.М. – утверждение окончательного варианта статьи для публикации.

Сведения об авторах
Казаков Станислав Дмитриевич, аспирант, кафедра неврологии и нейрохирургии, СибГМУ, г. Томск. ORCID 0000-0001-9818-5549.
Королева Екатерина Сергеевна, канд. мед. наук, доцент кафедры неврологии и нейрохирургии, СибГМУ, г. Томск. ORCID 0000-0003-1911-166X.
Бразовская Наталья Георгиевна, канд. мед. наук, доцент кафедры медицинской и биологической кибернетики, СибГМУ, г. Томск. ORCID 0000-0002-0706-9735.
Зайцев Алексей Александрович, канд. мед. наук, директор филиала ТНИИКиФ ФГБУ СибФНКЦ, г. Томск. ORCID 0000-0003-2601-1739.
Иванова светлана Александровна, д-р мед. наук, профессор, зав. лабораторией молекулярной генетики и биохимии, НИИ психического здоровья, г. Томск. ORCID 0000-0001-7078-323X.
Алифирова Валентина Михайловна, д-р мед. наук, профессор, зав. кафедрой неврологии и нейрохирургии, СибГМУ, г. Томск. ORCID 0000-0002-4140-3223.
(✉) Казаков Станислав Дмитриевич, e-mail: docstastomsk@gmail.com

Поступила в редакцию 24.01.2021
Подписана в печать 25.05.2021