Analyses of Canal Flows in NSP (Nagarjuna Sagar Project) Right Canal Using Flow Pro 2.1 Software

D. Sai Gangadhara Rao¹*, H. V. Hema Kumar², B. Sarojini Devi³, L. Edukondalu⁴ and V. Srinivasa Rao⁵

¹PhD scholar, ANGRAU,
²Professor & Head, Dept. of Soil and Water Engineering, Dr NTR CAE, Bapatla
³Professor & Head, Dept. of Ag. Engg. Ag. College, Mahanandi
⁴Associate Professor, Dept. of Agricultural Processing and Food Engineering, CFST, Pulivendula
⁵Professor & University Head, Dept. of Statistics & Computer Applications, Ag. College, Bapatla

*Corresponding Author E-mail: dsgra01@gmail.com
Received: 5.09.2020 | Revised: 13.10.2020 | Accepted: 21.10.2020

ABSTRACT
Nagarjuna Sagar Right (Jowhar) Canal Command area spared 37 mandals in Guntur and 23 mandals in Prakasam districts. Hydraulic particulars of main and branch canal was collected from Water resources department, Lingamguntla circle and Ongole circle. The area irrigated under Nagarjuna Sagar Right Canal (Jawahar canal) is 4.75 lakh ha covering Guntur district with 2.84 lakh ha and Prakasam district with 1.91 lakh ha. The computed values at head, middle and tail section of the main canal were 3.05 m/s, 0.85 m/s and 0.719 m/s and as per the design 3.048 m/s, 0.85 m/s and 0.814 m/s respectively. The variation in values is also not more than 11%. The computed values at head, middle and tail sections of the Addanki branch canal was 0.807 m/s, 0.782 m/s and 0.73 m/s and as per design 0.889 m/s, 0.87 m/s and 0.805 m/s respectively. The maximum variation is even not more than 10%. Darsi branch canal were 0.832 m/s, 0.802 m/s and 0.155 m/s and as per the design 0.82 m/s, 0.753 m/s and 0.135 m/s respectively. The maximum variation is even not more than 14%. Hence, the simulated discharges of flowpro 2.1 software compared with designed discharges and velocities and there is no much variation in canal flow.

Keywords: NSPRCC, Hydraulic particulars, Flowpro, Water surface profile and Critical depth.

INTRODUCTION
Nagarjuna Sagar Project is built across river Krishna at Nandikonda village of Nalgonda District. The main objective of this Nagarjuna Sagar project is to bring the 9 lakhs hectare of land in to cultivation. The right canal was designed 11,000 cusecs carrying capacity. Rapid growth in industrialization and urbanization in the country resulted as decrease in the availability of water for domestic and irrigation purpose and it creates the high demand in those sectors.

Cite this article: Rao, D.S.G., Hema Kumar, H.V., Sarojini Devi, B., Edukondalu, L., & Rao, V.S. (2020). Analyses of Canal Flows in NSP (Nagarjuna Sagar Project) Right Canal Using Flow Pro 2.1 Software, Ind. J. Pure App. Biosci. 8(5), 31-39. doi: http://dx.doi.org/10.18782/2582-2845.8379
Guntur and Prakasam Districts of 4.75 lakhs ha area is irrigating by Nagarjuna Sagar Jawahar Canal (Anonymous, 1999). The Canal is divided into 9 branch canals spread across Guntur and Prakasam districts. The Right main canal having Guntur, Zulakallu, Bellarnkonda, Peddanandipadu, Addanki, Eddanapudi, Darsi, Pamidipadu and Ongole branch canals. The scope for resilience and adaptation of large surface irrigation systems is vital to the development of management strategies designed to mitigate the impact of river basin closure on food production and the livelihoods of farmers.

Study area

Nagarjuna Sagar Project Right Canal (Jawahar) Command

The command area lies between the latitudes of 15° 20' to 16° 41' 24" N and the longitudes of 79° 18'44" to 80° 25' 56" E, encompassing Guntur and Prakasam districts in the state of Andhra Pradesh. The geographical command area consists from block 1 to 22 (GA) as shown in Figure 1.

Figure 1. Location map of study area

Nagarjuna Sagar Right (Jowhar) Canal Command area spared 37 mandals in Guntur and 23 mandals in Prakasham districts.

Milage	Name of the Branch Canal/ Major	Length	Designed discharge in C/S	Block No
M-F-Ft	Right Canal Head Regulator		11,000	
0-0-000	Pasuvemula Major	1-0-207	5.24	1
4-6-000	Tallapalli Major – I	0-4-365	4.48	2
7-4-000	Tallapalli Major – II	0-4-300	10.13	2
12-1-558	Mallavaram Major	7-7-572	126.18	3
13-6-000	Khambampadu Major	1-6-290	18.53	3
15-7-000	Paluvai Major	5-0-110	64.09	3
20-7-076	Buggavagu O T Regulator		11000	
	Description of Flow pro 2.1			
---	----------------------------			
	Flow Pro 2.1 Visually design waterways and channels with an intuitive interface. Effortlessly design open-channel waterways, culverts, irrigation channels, sluiceways, and flumes with Flow Pro. Looking for easy to use software to help you plot water surface profiles, or calculates critical depth and slope. Flow Pro saves you time and money by letting you compare more than one hydraulic design alternatives and exports the results to Word or Excel. Visualize depth, flow, and velocity with its built-in graphing software. The software having File, Channel type, Units, Tools and Help are appeared in the main menu bar. DUFLOW is a microcomputer software package for simulating one-			

	Rentachintala Major	9-5-655	42.64	4
	Daida Major	12-6-360	266.40	4
	Charlagudipadu Major	3-4-150	24.16	4
	Miryala Major	2-5-495	17.20	5
	Ramapuram Major	18-3-018	253.80	5
	Pedakodamagundla Major	2-4-402	22.30	5
	Cross regulator cum surplus escape			
	Kesanupalli Major	6-6-613	68.80	6
	Zulakallu Branch Canal	1-3-299	564.29	6
	Janapadu Major	4-4-000	34.40	6
	Guttikonda Major	2-4-535	15.20	7
	Kotanemalipuri Major	7-2-330	31.40	7
	Bellamkonda Branch Canal	11-3-027	645	8&9
	Guntur Branch Canal	32-1-000	2920	10
	O.T. of 1 AR Kothapalli Major(shifted from GBC)	8.64		10
	Addanki Brach Canal	37-3-272	2469	11
	Cross regulator	3947.00		
	Inumella D.P	1.07 / 0.25	11A	
	Inumella Major	8-0-080	23.20	11A
	Ipur D.P	1.80		12
	Angaluru Major	8-0-440	52.02	12
	Perumallapalli Major	20-5-372	192.60	13
	Perurupadu Major	3-1-110	28.97	13
	Dondapadu Major	6-2-220	48.97	14
	Chekateegalapalem Major	14-1-550	140.14	14
	Palakuru Major	0-6-250	5.57	14
	Cross regulator cum escape	3346		
dimensional unsteady flow in open-channel systems by Clemmens et al. (1993). In Channel type there is option to select the sections like trapezoidal, circular, U shaped, elongated circular and channel type and name. In units icon select the either SI or English. According to Charles et al. (2018) requires calculated, remote manual adjustments to all the canal check structure gate positions in addition to two flow rate changes made at the head of the canal, followed by are turn to automated upstream control. In Tools icon critical depth and slope, depth, flow rate, slope and Roughness, Orifices, underflow gates, water surface profile and weirs.

Nagarjuna Sagar Right Canal Command area flows were analyzed using the Flow Pro 2.1 version software at three different sections like head section, middle and tail end of the main canal. The input data needed for the software as given in the Table 1 and computed water surface profiles as shown in Figure 1, 2 and 3.

Table 1: Data input of Nagarjuna Sagar Right canal Command area main canal needed for Flow pro 2.1

S No	Particulars	Head section	Middle	Tail end
1	Start Station, m	0	92211+00.000	199616+00.000
2	End station, m	3532+00.000	92593+00.000	202796+00.000
3	Flow rate, m³/s	311.49	111.77	79.65
4	Width, m	18.593	26.213	18.8976
5	Manning’s	0.018	0.0255	0.0255
6	Bottom slope	0.00034072	0.00008333	0.00008333
7	Control depth, m	9.296	3.871	3.871
8	Side slope	0.25:1	2:1	2:1

Fig. 1: Flow Pro computed water surface profile data and other parameters at head section of the NSRC command area
Fig. 2: Flow Pro computed water surface profile data and other parameters at middle section of the NSRC command area

Fig. 3: Flow Pro computed water surface profile data and other parameters at tail end of the NSRC command area

The computed parameters like profile type, flow type, critical depth, critical area, velocity, wetted perimeter and hydraulic radius as shown in the Table 2 and Figure 4.

Table 2: Flowpro2.1 computed values at three levels

S No	Particulars	Head section	Middle	Tail end
1	Profile type	Mild, M-1	Mild, M-2	Mild, M-2
2	Flow type	Subcritical	Subcritical	Subcritical
3	Critical depth, m	3.017	1.190	1.168
4	Critical slope	0.00295	0.00634	0.00846
5	Critical area, m²	58.37	34.045	24.799
6	Depth (normal), m	9.296	3.871	3.871
7	Velocity, m/s	3.05	0.85	0.719
8	Area, m²	194.44	131.44	103.12
9	Wetted perimeter, m	37.757	43.525	36.209
10	Hydraulic radius, m	5.150	3.020	2.848
Fig. 4: Comparison of flowpro2.1 computed values with designed values at different locations of NSRJC

The computed values at head, middle and tail section s of the main canal were 3.05 m/s, 0.85 m/s and 0.719 m/s and as per the design 3.048 m/s, 0.85 m/s and 0.814 m/s respectively. The variation in values is also not more than 11%. Similarly, Addanki branch canal of NSRJC input data were tabulated in the following Table 3.

Table 3: Data input for Addanki branch canal of NSRJC

S No	Particulars	Head section	Middle	Tail end
1	Start Station, m	30700+00.000	43721+00.000	199616+00.000
2	End station, m	38025+00.000	50006+00.000	202796+00.000
3	Flow rate, m/s	51.578	41.680	79.65
4	Width, m	22.555	18.288	18.8976
5	Manning’s	0.025	0.025	0.025
6	Bottom slope	0.0005152	0.0005152	0.0005152
7	Control depth, m	2.438	2.438	2.286
8	Side slope	1.5:1	1.5:1	1.5:1

The computed values at head, middle and tail sections of the Addanki branch canal was shown in following Table 4 and Figure 5 as 0.807 m/s, 0.782 m/s and 0.73 m/s and as per the design 0.889 m/s, 0.87 m/s and 0.805 m/s respectively. The maximum variation is even not more than 10%.

Table 4: Computed values at three levels of Addanki branch canal of NSRJC

S No	Particulars	Head section	Middle	Tail end
1	Profile type	Mild, M-1	Mild, M-2	Mild, M-1
2	Flow type	Subcritical	Subcritical	Subcritical
3	Critical depth, m	0.796	0.791	0.731
4	Critical slope	0.00691	0.00698	0.00718
5	Critical area, m²	18.915	15.412	12.393
6	Depth (normal), m	2.438	2.438	2.286
7	Velocity, m/s	0.807	0.782	0.73
8	Area, m²	63.905	53.297	44.072
9	Wetted perimeter, m	31.345	27.049	24.092
10	Hydraulic radius, m	2.039	1.97	1.829
Similarly, Darsi branch canal of NSRJC input data were tabulated in the following Table 5.

S No	Particulars	Head section	Middle	Tail end
1	Start Station, m	30700+00.000	43721+00.000	199616+00.000
2	End station, m	38025+00.000	50006+00.000	202796+00.000
3	Flow rate, m/s	51.578	41.680	79.65
4	Width, m	22.555	18.288	18.8976
5	Manning’s	0.025	0.025	0.025
6	Bottom slope	0.0005152	0.0005152	0.0005152
7	Control depth, m	2.438	2.438	2.286
8	Side slope	1.5:1	1.5:1	1.5:1

The computed values at head, middle and tail sections of the Darsi branch canal were shown in following Table 6 and Figure 6.

S No	Particulars	Head section	Middle	Tail end
1	Profile type	Mild, M-1	Mild, M-2	Mild, M-1
2	Flow type	Subcritical	Subcritical	Subcritical
3	Critical depth, m	1.149	1.022	0.054
4	Critical slope	0.00516	0.00513	0.01349
5	Critical area, m²	39.396	33.224	0.619
6	Depth (normal), m	3.871	3.871	1.829
7	Velocity, m/s	0.832	0.802	0.155
8	Area, m²	153.84	127.149	2.908
9	Wetted perimeter, m	49.312	45.726	12.383
10	Hydraulic radius, m	3.12	2.781	0.235
Fig. 6: Comparison of computed values with designed values at different locations of Darsi branch canal of NSRJC

From the above data Darsi branch canal were 0.832 m/s, 0.802 m/s and 0.155 m/s and as per the design 0.82 m/s, 0.753 m/s and 0.135 m/s respectively. The maximum variation is even not more than 14%.

Hence, the simulated discharges of flow pro2.1 software compared with designed discharges and velocities and there is no much variation in flow. The maximum variation is occurred only 10%.

CONCLUSIONS

The computed values at head, middle and tail section s of the main canal were 3.05 m/s, 0.85 m/s and 0.719 m/s and as per the design 3.048 m/s, 0.85 m/s and 0.814 m/s respectively. Similarly, Addanki and Darsi branch canals were also computed using Flowpro2.1 software. Hence, flow pro2.1 software simulated discharges compared with designed discharges and velocities and there is no much variation in flow.

Acknowledgement

We acknowledged the Acharya N G Ranga Agricultural University, Lam, Guntur for financial and technical support for successful completion research.

REFERENCES

Anonymous. (1999). Study of waterlogging in five canal commands. *Nagarjuna sagar right bank canal command area (Andhra Pradesh)*. (6), 1-93.

Anonymous. (2016). Performance Overview & Management Improvement Organization Central Water Commission Government of India. *Report on Summary Report on Water use Efficiency Studies for 35 Irrigation Projects*. 45-48.

Charles, M., Burt. K. E, Feist, P. E., & Piao, Xi. (2018). Accelerated Irrigation Canal Flow Change Routing. *Journal of Irrigation and Drainage Engineering*. 144(6), 1-9.

Clemmens, A. J., Holly, F. M., & Schuurmans, W. (1993). Description and evaluation of program: duflow. *Journal of Irrigation and Drainage Engineering*. 119(4), 724-734.

Donald, M. S., Ibrahim, N. M., John, D. B., Sarva, P., Chinaporn, M., Amanda, M., James, N. E., Raghavan, S., & Lakshmi, V. (2019). Web-based decision support system tools: The Soil and Water Assessment Tool Online visualization and analyses (SWATO nline) and NASA earth observation data downloading and reformating tool (NASA access). *Environmental Modelling and Software*. 104-499.
Irene, P., Alessandro, P., Raffaele, G., & Alexis, T. (2018). A system dynamics model for supporting decision-makers in irrigation water management. *Journal of Environmental Management*. 223, 815-824.

Marta, L., Pierre-Olivier, M., Adriano, B., Vittorio, D., & Federico & Attilio, T. (2018). A Multi-disciplinary Modelling Approach for Discharge Reconstruction in Irrigation Canals: The Canale Emiliano Romagnolo (Northern Italy) Case Study. *Journal of Water*. 10, 1-27.

Max, B., Eduardo, H., & Karin, B. (2007). Decision support system for sustainable irrigation in Latin America. Changes in Water Resources Systems: Methodologies to Maintain Water Security and Ensure Integrated Management (Proceedings of Symposium HS3006 at IUGG2007, Perugia, July 2007. IAHS Publ. 315, 18-24.

Rao, B. K., & Rajput, T. B. S. (2009). Decision support system for efficient water management in canal command areas. *Current Science*. 97(1), 90-98.

Zhenchun, H., Sichun, C., Zehua, L., Zhongbo, Y., Quanxi, S., Fei, Y., & Fangxin, S. (2015). Quantitative assessment of the impacts of irrigation on surface water fluxes in the Tarim River, China. *Hydrology Research*. 996-1007.