The Web2 Environment As a Platform for Making Natural and Cultural Values Accessible to Potential and Actual Clients

Abstract

Services like tourism have to use the possibilities of modern advertising. In particular, these include the World Wide Web (WWW). This platform brings its products and services directly to the customers. To place the information about a region and its tourist offer in optimal manner requires exact definition of elements in the Web based tourist information system (WETIS) and their presentation.

We discuss the elements and their integration in other services, the data structures and types, maps and their interactivity. Furthermore, we present tourism related data of selected Slovakian villages and cities. Finally, we give a report regarding our demonstration web page and future development.

The usual tourist information on the web usually relates to the most interesting historical or cultural sights in the region and is marketing oriented. In this way the full image of history and beauty of the characteristic towns and villages is usually missed. Our intention was – in cooperation with the Geotourism students of the Institute if Geotourism – to map also these features of Eastern Slovakia and of the NE Carpathians.

As the web is to serve mainly the tourist community, the map connects to useful information on various facilities available at the given locality. The detailed photodocumentation makes it possible e.g. also to see each traditional house. This is interesting as the number of these houses is decreasing. They are replaced by modern buildings, which lack the regional and local flavour.

Key words: Web2, database, information system, E. Slovakia, NE Carpathians, tourism

Introduction

E-marketing of regions and its settlements as well as tourist areas is of particular economic relevance for the tourism sector. For example, customers nowadays wish to obtain information about locations like hotels, restaurants, routes and tourist attractions. For a user friendly representation, the data should be pictured on maps. Due to copyrights, many of the maps available on the WWW are inaccessible for use. However, recently Google released free maps and their use requires only registration. Yahoo has a similar offer. In this paper we will demonstrate the use of Google maps available on the Internet for the optimal representation of the region of the NE part of Carpathian basin as an example. The WETIS portal developed by us, includes an interactive graphical user interface as well as the searching for objects and the possibility to create own objects. Furthermore, it allows the use of Google geographical search functions. The details of the

* Institute of Geotourism, FBERG TU Kosice, Nêmcovej 32, 04001 Košice, Slovakia; e-mail: gmtkg@tuke.sk
** TU Berlin, Faculty School of Process Sciences and Engineering, Field Computer Science, Gustav-Meyer Allee 25, 13355 Berlin, Germany; e-mail: Heinz.Schleusener@tu-berlin.de
*** Institute of Geotourism, FBERG TU Kosice, Nêmcovej 32, 040 01 Košice, Slovakia; e-mail: jana.jablonska@tuke.sk
In contrast to other web sites, like http://mars.elte.hu/varak/terkep+lista2.php, where very nice pictures of historical buildings and their sections are given, the WETIS web solution has a more active approach and has a wider range of data attached.

The purpose of this work was, however, not only to provide marketing for objects that – according to the prevalent tourist taste – could be of interest and thus be an attractor. We wanted to create a site, where in-depth information is available on individual settlements and their environment. The web site does not contain only data of selected settlements, but of all settlements. This – we hope – may also increase the interest of people in their local and personal history. The GIS solution for the same task (Timčák, Vizi 2006, Vizi, Janičko, Timčák 2008) was found to be less user-friendly and costly.

Although history is a sensitive concept (e.g. Slovak and Hungarian historians do not always agree on the interpretation of historical events), we feel that it is an area that can be clarified only by mutual communication. Still at present, there are hurdles. For example in Slovakia, the Hungarian historical family names have to be written using Slovakian orthography (cf. e.g. Uhláriková 2002). Thus Batthyán would be Bat'an, Dessewffy would be Dezsőfi (irrespective of the fact that it may be derived from Dessewffy, Desewffy, Dezsőfi, Dezsőfy or any variant of that). Such policy was used in the USSR, where foreign names were simply transcribed according to Russian pronunciation. Thus Schmidt, Schmitt, Schmied, Schmiedt, etc. – all were transcribed as ĜH. In this way, the identity of the original name was often permanently obscured.

If a member of one nationality or ethnic group sees names well known in its culture rewritten, he/she may perceive that as a threat to his national or ethnic identity and decline visiting the place (cf. Grainger, Crouch 2006). A possible solution was indicated by Gvilli and Poria (2006), where the web service, using special software, checks the original country of the enquirer and presents the site description in accordance with the culture/history of the enquirer. That is sometimes seen as unethical or opportunist. We adopted a solution, where in the Slovak text, the personal and locality names are written using the prescribed orthography, but in the description we give all the historical names. A universal solution is still hidden in the future, though even amongst the Slovaks, there is often a feeling that historical names should retain their historical forms (Uhláriková 2002).

In case of geographical names, the situation is somewhat similar. Slovakia has a number of ethnical groups, and all have their names for geographical entities. Thus the city of Košice has a number of names (Kassa, Kaschau or Cassovia). In non-Slovak cultures, if the ethnic name occurs in their language, this is the name that will be easily recognized and contextualised.

The historical data and field data needed for the WETIS were collected mostly by the BSc and MSc students of the Institute of Geotourism, FBERG, TU Košice. Their full list is on the www.kgptour.tuke.sk page.

Data collection

From tourism development point of view, the Kosice and Presov County represent 7 sub-regions name-wise adopted from the times before WWI. (Fig. 1).
For our research, Kosice County was divided into units containing approximately 10 settlements, where a comprehensive set of data was collected (Tab.1; Timčák 2006). As already mentioned, field data were collected mostly by BSc and MSc students during the work on their thesis. The coordinates were taken by Garmin Venture Cx GPS unit. Digital photographs were taken not only of objects of historical, cultural, leisure or administrative interest, but also hospitality related objects. Furthermore, photographs were taken of traditional rural buildings that could be of interest for rural tourism development.

The data on photograph localisation were also inserted to 1:10 000 map sections for double checking the XYZ coordinate values (Fig.2).

At present, data on Čičarovce, Veľké Kapušany, Čierne Pole, Bajany, Maťovské Vojkovce, Budince, Ruská, Kapušianske Kľačany, Veľké Slemenec, Prrucká, Opiná, Kecerevský Lipovec, Mudrovice, Rankovce, Herľany, Vyšná Kamenica, Nižná Kamenica, Košický Klečenov, Svinica, Dargov, Sady nad Torsou, Oľšovany, Ďurkov, Košická Polianka, Ruskov, Vyšný Čaj, Nižný Čaj, Vyšná Hutka, Blažice, Bohdanovce, Zemplínska Nová Ves, Stanča, Kožuchov, Zemplínsky Branč, Lastovce, Hrčel', Novosad, Kašov, Kysta, Luhyňa, Veľaty, Ovčie, Vít'az, Široké, Fričovce, Poľanovce, Pongrácovce, Korytné Harakovce, Beharovce, Dubrava, Slovenská Ves, Bušovce, Jurské, Ihlny, Križová Ves, Spišská Belá, Mlynčeky, Rakúsky, Stráne pod Tatrami, Kežmarok, Lúčky, Hažín, Zalužice, Čechehov, Jastrabie pri Michalovciach, Michalovce, Lastomír, Laškovce, Šamudovce, Krásnovce, Inačovce, Lúčky, Hažín, Zalužice, Čechehov, Jastrabie pri Michalovciach, Michalovce, Lastomír, Laškovce, Šamudovce, Krásnovce, Inačovce, Ondavka, Vyšná Polianka, Varadka, Nižná Polianka, Hutka, Mikulášová, Smilno, Jedlinka, Becherov, Zborov, Chmeľová, Giraltovce, Kobylnice,
Mičakovce, Železník, Kračúnovce, Lúčka, Kuková, Želmanovce, Dukovce, Kalnište, Lužany
pri Topli, Slančík, Slanske Nové Mesto, Kalša, Slivník, Egreš, Plechotice, Čelovce, Nižný
Žípov, Kuzmice, Brezina, Čakov, Zámuto, Jusková Voľa, Veche, Kamenná Poruba, Dávidov,
Banské, Cabov, Sečovská Polianka, Sačurov, Sabinov, Uzovský Šalgov, Pečovská Nová
Ves, Jakubova Voľa, Červenica pri Sabinove, Červená Voda, Drienica, Jakovany, Olejníkov,
Lutina, Hranovnica, Spišský Štiavnik, Výdmik, Jánovice, Abrahámovce, Vlková, Vrbov,
Žakovce, Hôrka, Švábovce, Hozelec, Gánovce, Poprad, Mlynica, Veľký Slavkov, Hanušovce
nad Topľou, Medzianky, Pavlovce, Petrovice, Hermanovce nad Topľou, Bystré, Čierne nad
Topľou, Michalok, Petkove, Skrabské (63 settlements) are already prepared for inclusion.

Up to date, about 400 villages, cities and their surroundings were documented in a
detailed manner. The resulting data-sets are subsequently being reworked into forms
suitable for the web portal (see Tab. 1 and Fig. 5).

![Fig. 2. A 1:10 000 map segment of Kezmarok city. The inserts localize the photographs of
objects of interest. The codes identify the photographs. This identification has also a
corresponding XYZ coordinate set (Hric 2008).](image-url)
Table 1. Primary data types collected for the WETIS (present authors)

Descriptor type	Number of subgroups	Descriptor type	Number of subgroups	Descriptor type	Number of subgroups
Environment type and quality	9 fields, 30 data types	Services	5 fields, 19 data types	Demographic data	3 fields, 15 data types
Man-made objects	9 fields, 36 data types (including XYZ coordinates and photos)	Transport and telecommunications	8 fields, 33 data types	Projects	3 fields, 15 data types
Tourism related enterprises and facilities	11 fields, 42 data types	Existing tourism related programs	6 fields, 26 data types	Information (books, guides, maps) and promo materials	5 fields, 12 data types

Fig. 3. An example of photographs taken in Kezmarok and listed in Fig.2 (KEZ 43) (Hric 2008)

Basic WETIS concepts

It is a complex task to design a portal which offers a user friendly and comprehensive representation of a region. Examples of appropriate portals are still seldom available. The main challenge is to develop a solution which informs the user about a region in a concise and up to date manner. Moreover, a certain adoption to user behaviour is desirable.

In our WETIS solution, we decided to use the Google maps instead of Yahoo ones, as they are more detailed and contain a better representation of Europe. We did not consider the MapPoint Web Service of Microsoft since there are copyright costs depending on the number of users and/or transactions.

The Google maps had to be integrated into the WETIS portal. It required to write program code for certain new functions. Basically, a database contains the georeferenced data which can be extended by the user. The solution may be easily extended e.g. by the incorporation of further modules like Blogs which allows an adjustments according to a
particular project requirement. The basic project page, the portal page, shows the actual offers of the site (Fig. 4). The Fig. 5 gives an impression of the menu point "Search an object".

Fig. 4. The basic project page (portal WETIS East Slovakia)

Fig. 5. The object search page
At present, we are working on a partially open section of the WETIS, where not only the administrator, but users can insert their photos, their trails and descriptions. In this way the WETIS could be a very rich source of information for all potential users, be it tourists or professionals. The possibilities will be “Add and display routes”, “Add and display areas” and “View animated routes”.

Implementation

Programming

In order to incorporate Google maps, on the client side JavaScript is used. This allows also the application of AJAX (Asynchronous JavaScript and XML) concepts.

The georeferenced elements to be represented on the map are stored in a MySQL database. The readout of the data is performed on the server using PHP.

Google Key

Google key is needed for the implementation of solutions offered by Google into one’s own projects. It can be generated by a Google Account and is transferred with JavaScript to Google. The Google key is limited for the use of one URL.

Design of the graphical user interface

The structure of the search and other pages is given in figure 5. It contains the map on the right hand side below the head and the navigation on the left hand side. The Login field of the Administrator is located in the head [Admin]. An Admin has the right to edit the data base (Fig. 6).
Functionalities of the Google map in the left window

In the upper left corner there is a tool to move, to centre and to zoom the map. On the right hand side there are buttons in order to switch the type of the map (Fig. 7). These concern:

- **Map**: Map view
- **Satellite**: Satellite view
- **Hybrid**: Satellite view with overlayed road map

![Fig. 7. Buttons for changing the type of map (present authors)](image)

A scale is located in the lower left area and an overview of the map is given in the lower right area. The georeferenced objects stored in the database are shown on the maps by arbitrary icons. A mouse over icon function delivers information of the object like address, picture with links or a detailed description.

Center

The coordinates (latitude, longitude) are shown. The administrator can use the [add to DB] function in order to insert an object into the database.

Search in Database

Objects, regions or cities can be searched for. If search failed, it is announced by "Nothing found. Try again". In this case the inserted text should be checked or replaced by a different request. A successful search represents 10 results per page which could be selected in a list (Fig. 8).

![Fig. 8. Search form and results for query "kultur dom" (present authors)](image)

The check mark in front of the results allows to fade in or to fade out the corresponding object on the map. The function [hide all] hides all objects on the map whereas [show all] makes all objects visible. In the case, that the georeferenced object is a company (e.g. a hotel), it will be indicated by square brackets on the map. An arrow appears on the map when moving the mouse over the results showing the corresponding object. A click opens the bubble with details.
Search by Google's Geocoder

This function allows the search for an arbitrary address (Fig. 9). The input has to be done in the sequence street, city, region. Maximum five results are displayed. In this case the request should be specified. There are also functions [hide all] and [show all] as in the foregoing part Search in Database. The administrator can insert data via the link [add to DB].

Search by Google’s Geocoder

starysmokovec, sk

Found 1 result

☑ Stary Smokovec, Slovakia

Fig. 9. Google’s Geocoder form

Inserting data into the database

The administrator can add entries into the database. This is carried out by the function [add to DB] in the window Center or GeoCorder. The link [Add to DB] opens a new window. WETIS tries to adopt the data from Google (Fig. 10). After having filled-in the fields, the input is finished by OK followed by the conformation of the entry. The object is shown after a refresh of the main page.

Center (Lat, Long)

49.2552574, 21.6073608 [add to DB]

Fig. 10. The admin tool link (present authors)

Conclusions

The WETIS portal provides information on villages and towns in E. Slovakia. It contains data on history, services and also provides images of objects of interest. The WETIS portal in an ongoing project that will reach its full information capacity (nearly 1000 settlements) before 2014. In future, it could be expanded to other regions, too. Alongside with this project, the GIS TOUR project (Timcak, Vizi 2006) is running, but GIS on the web is a far more demanding project than the WETIS.

References

AJAX Tutorial: http://www.w3schools.com/ajax/default.asp
GeoWeb Projekt: http://cs03.lb.tu-berlin.de/world4all/geoweb/index.php
Google Maps API Tutorial: http://www.econvm.demon.co.uk/googlemaps/index.htm
Google Maps: http://maps.google.de und http://www.google.com/apis/maps/
Grainger J., Crouch G. I. (2006): Reconceptualising Destination Image Using Perceived Risk
http://tourism-conference.eap.gr/pdf%20files/Grainger,%20J%20&%20Crouch,%20G.I.pdf
Gvilli Y., Poria Y. (2006): Visitors expectation of heritage site website content, http://tourism-conference.eap.gr/BOOK%20OF%20ABSTRACTS.pdf
Hric P. (2008): MSc Thesis, UGT FBERG TU Kosice, pp.1–116.
Kohler L. et al. (2006): Web presentation of regional data, Proc. GEOTOUR 2006, pp 55–58.
Microsoft MapPoint Web Service: http://www.microsoft.com/mappoint/products/webservice/
Timcák G.M., Vizi L. (2006): A GIS for supporting rural tourism development strategy, Proc. GEOTOUR 2006, pp 59–68; http://www.keptour.tuke.sk/Conferences.htm
Timcak, G., M., Vizi, L. (2006): Tourism potential mapping and a dedicated GIS. In: Trends, impacts and policies on tourism development: International conference: Heraklion, Crete, http://tourism-conference.eap.gr/pdf%20files/Timcak,%20G.M.%20&%20Vizi,%20L.pdf
Vizi L., Janicko M., Timcak G. M. (2008): GIS projekt orientovaný na cestovný ruch pre okres Michalovce, Acta Montanistica Slovaca, vol.13, No.2, pp. 248–253.
Uhlarikova J. (2002): K problemom adaptacie cudzich mien do Slovenciny; in: Problemy adaptacie cudzich mien v slovencine. 1. vydanie. Ed. Lubor Kralik. Bratislava: VEDA, Vydavatelstvo Slovenskej akademie vied – Jazykovedny ustav L. Stura FAV 2002. 182. p
Yahoo!maps: ttp://maps.yahoo.com/beta/
Yahoo-Maps-Webservice nutzen. In: Internet Professionell 12/2005.