A bidimensional (2D) thermotropic liquid crystal (LC) is investigated with Molecular Dynamics (MD) simulations. The Gay-Berne mesogen with parameterization GB(3, 5, 2, 1) is used to model a calamitic system. Spatial orientation of the LC samples is probed with the nematic order parameter: a sharp isotropic-smectic (I-Sm) transition is observed at lower pressures. At higher pressures, the I-Sm transition involves an intermediate nematic phase. Topology of the orthobaric phase diagram for the 2D case differs from the 3D case in two important respects: 1) the nematic region appears at lower temperatures and slightly lower densities, and 2) the critical point occurs at lower temperature and slightly higher density. The 2D calamitic model is used to probe the structural behavior of LC samples under strong confinement when either planar or homeotropic anchoring prevails. Samples subjected to circular, square, and triangular boundaries are gradually cooled to study how orientational order emerges. Depending on anchoring mode and confining geometry, characteristic topological defects emerge. Textures in these systems are similar to those observed in experiments and simulations of lyotropic LCs.

Keywords: confinement, topological, disclination, transition, nematic, simulation

1 INTRODUCTION

Bulk materials exhibit properties imbued by their underlying chemical makeup: the packing of and interactions between atoms and/or molecules impart characteristic traits. On the other hand, metamaterials are synthetically produced and depend more on the relative positioning of building blocks within the structure. Such a trait allows metamaterials to achieve novel properties not exhibited by bulk materials (prominently of an electromagnetic and/or an optical nature). This has facilitated the expansion and miniaturization of existent technologies [1, 2].

Building blocks capable of molecular recognition are essential in the bottom-up production of metamaterials [3–7]. Specifically, complementary moieties can display the ability to “latch” in solution, onto a substrate, or in a combination of scenarios to produce desirable architectures. The threshold concentration of building blocks and formation steps are some issues to consider when optimizing their fabrication [5]. Structural properties in a metamaterial will remain stable provided the interaction strength between units withstands thermal fluctuations in the medium. Bottom-up approaches exploit this feature to circumvent the use of mechanical intervention. Production is
scaled by merely increasing the amounts of reactants and relying on system kinetics for product formation. Packing specificity can be modulated by carrying out the assembly under spatial confinement [9–15]. Many fabrication protocols have been optimized by mimicking the strategies latent in biomolecular systems [4, 16, 17].

The solvent is a key component in the production of metamaterials, which must effectively disperse building blocks and stabilize noncovalent interactions holding structures together. Self-assembly reliant on the chemical complementarity embedded in building blocks relegates the solvent to a passive role, serving in large measure as a dispersing agent. A paradigm shift is to screen solvents for an active role in the generation of metamaterials [18–22]. In this scenario, the solvent provides additional bottom-up control that extends the gamut of attainable targets [23–26].

The solvent “paradigm shift” is exemplified in the elastic forces mediated within a liquid crystal (LC) fluid. The intrinsic anisotropy of LCs facilitates spatially ordered mesophases. Solvent order at certain state points can be disturbed in the presence of colloidal inclusions, resulting in topological defects that exert static and dynamic control. Because of their ability to spatially “communicate,” topological defects can couple (obeying topological charge rules) to yield specific colloidal arrangements, including dimers [27–38], wires (i.e., chains) [21, 28, 35, 39–44], and arrays [21, 31–34, 36–38, 43, 45, 46]. Solvents recruited as active agents contributing to the self-assembly of metamaterials enhance a variety of structural possibilities.

Much research has been devoted to three-dimensional (3D) self-assembly [25], though a two-dimensional (2D) variant continues to be of interest from an exploratory perspective [47–55] as well as in applied technologies [1, 56]. Optimal function is achieved via slab geometry in many devices, including optoelectronic/photonics materials [57–61], sensors [60, 62–68], display technologies [69–71], smart glass [72, 73], spatial light modulators [74–77], and tunable filters [78–81]. However, dimensionality plays an essential role in the type and extent of structural order that a condensed phase can maintain [52, 82–88]. When coupling the elastic forces of topological defects in LC media, colloidal ordering induced via a substrate can differ significantly from that observed via topological mediation in the bulk [21, 24, 25, 35, 36]. Slab assembly becomes relevant in 3D colloidal arrangements because it yields intermediates: metamaterials are finalized upon “stacking” slabs in layer-by-layer synthesis to achieve a target 3D structure [89–91].

In this work, we focus on two aspects of a thermotropic calamitic LC fluid relevant to colloidal self-assembly: 1) the changes in topology of the solvent phase diagram due to a reduction in dimensionality from 3D to 2D, and 2) the mesophase behavior of the solvent under strong confinement in slab geometry. The Gay-Berne (GB) model [92] is used here because it captures salient mesogenic features and has a relatively low computational overhead. Prior work with the GB mesogen has focused on different mesophases in bulk 3D systems [93–98]. Additionally, surface-induced ordering (i.e., anchoring) via boundary walls has been studied in thin films [99], droplets [100], and toroidal cavities [101]. Several GB parameterizations have reproduced nematic and smectic phases [102–104]. More recently, a discotic parameterization has been used to explore nematic and columnar phases [105–109], providing insight on structural and dynamic measurements at the molecular level [110–112]. The recognition of specific design principles has stimulated the attainment of novel targets [27].

Despite serving as a point of reference for 3D phenomena, the phase behavior of a strictly 2D thermotropic GB LC system has been limited [113, 114]. On the experimental front, optical microscopy commonly provides information on quasi-2D samples, and in most cases, data merely reflect 2D projections of an underlying 3D system [56, 115]. Renewed interest in the organization of rigid biopolymers as effective 2D systems (in bulk and under confinement) has led to new and interesting textures observed under strong confinement [116–122]. Simple simulation models reproduced the phenomenology observed in 2D [123–126]. Because those efforts focused on lyotropic liquid crystals, we extend the field by considering a thermotropic fluid. Specifically, we explore how shape of the confining area and type of anchoring induced by boundary walls affect mesophase behavior.

2 MODEL AND METHODS

The GB model is a generalization of the Lennard-Jones potential defining the interaction between anisotropic molecules. Each molecule i is represented as an ellipsoid having a center-of-mass position \mathbf{r}_i and a unit vector \mathbf{e}_i along the principal (major) axis denoting its orientation (Figure 1).

The intermolecular interaction between the ith and jth mesogens is written as
where r intermesogen interaction. This requires a fully speci-
medium must be taken into account to regulate the strength of the
separation vector. The relative orientation of mesogens within the
of a general variable r.

\[U_{\text{GB}}(r_{ij}, \hat{e}_i, \hat{e}_j) = 4 \epsilon(\hat{r}_{ij} \cdot \hat{e}_i, \hat{e}_j) \left[\Xi_{ij}^{1/2} - \Xi_{ij}^{-6} \right], \tag{1} \]

where $r_{ij} = r_i - r_j$ and the scaled distance is given by

\[\Xi_{ij} = \frac{1}{\sigma_0} \left[r_{ij} - \sigma(\hat{r}_{ij} \cdot \hat{e}_i, \hat{e}_j) + \sigma_0 \right] \tag{2} \]

where σ_0 the width of the mesogen (i.e., the minor axis) and $r_{ij} = |r_{ij}|$ is the magnitude of the intermolecular (center-to-center) separation vector. The relative orientation of mesogens within the medium must be taken into account to regulate the strength of the intermesogen interaction. This requires a fully specified function of a general variable ω,

\[\Gamma(\omega) = 1 - \omega \left[\frac{c_i^2 + c_j^2 - 2 \omega c_i c_j \epsilon_{ij}}{1 - \omega^2 c_i^2} \right], \tag{3} \]

where $c_i = \hat{e}_i \cdot \hat{r}_{ij}$, $c_j = \hat{e}_j \cdot \hat{r}_{ij}$, $c_{ij} = \hat{e}_i \cdot \hat{e}_j$, and $\hat{r}_{ij} = r_{ij}/|r_{ij}|$ is the unit (center-to-center) separation vector. The orientation-dependent length scale (range) parameter $\sigma(\hat{r}_{ij} \cdot \hat{e}_i, \hat{e}_j)$ is computed as

\[\sigma(\hat{r}_{ij} \cdot \hat{e}_i, \hat{e}_j) = \sigma_0 \Gamma(\chi)^{-1/2} \tag{4} \]

Here, $\chi = (\kappa^2 - 1)/(\kappa^2 + 1)$, where $\kappa = \sigma_{ee}/\sigma_0 = \sigma_{ss}/\sigma_{ss}$ is the length-to-width (aspect) ratio of the mesogen (Figure 1). The strength anisotropy function $\epsilon(\hat{r}_{ij} \cdot \hat{e}_i, \hat{e}_j)$ is defined by the product

\[\epsilon(\hat{r}_{ij} \cdot \hat{e}_i, \hat{e}_j) = \epsilon_0 \left[\epsilon_1(\hat{e}_i, \hat{e}_j) \right]^{1/2} \left[\epsilon_2(\hat{r}_{ij} \cdot \hat{e}_i, \hat{e}_j) \right]^{1/2}, \tag{5} \]

where the exponents ν and μ are adjustable parameters. The energy anisotropy functions are defined as

\[\epsilon_1(\hat{e}_i, \hat{e}_j) = \left[1 - \chi(\hat{r}_{ij} \cdot \hat{e}_i)^2 \right]^{-1/2} \tag{6} \]

and

\[\epsilon_2(\hat{r}_{ij} \cdot \hat{e}_i, \hat{e}_j) = \Gamma(\chi'). \tag{7} \]

The parameter χ' depends on the ratio of the potential well depths corresponding to side-side (ss) and end-end (ee) configurations, $\kappa' = \epsilon_{ss}/\epsilon_{ee}$. More specifically, $\chi' = [(\kappa')^{1/\nu} - 1]/[(\kappa')^{1/\nu} + 1]$.

The GB model uses four parameters conventionally represented as GB$(\kappa, \kappa', \mu, \nu)$. Previous work has shown that specific parameter sets reproduce thermodynamic and structural properties of experimental systems [105, 107, 127]. A complete phase diagram of the 3D GB model is available for GB$(3, 5, 2, 1)$ [104, 128–132], which corresponds to a calamitic mesogen. Moreover, this parameterization has been used to investigate intermolecular interactions in nematic samples [133–135]. Simulations have been previously reported for GB discotic mesogens focused on tracing changes in phase behavior under confinement [99, 130, 136–140] and in droplets [141]. The reader interested in additional parameterizations is referred to previous work [127, 129, 135, 142–146].

The GB$(3, 5, 2, 1)$ parameterization is used in this work to elucidate the role that dimensionality plays on mesophase behavior. Shown in Figure 2 are representative interaction energy curves as a function of intermesogen distance for different relative orientations. For the GB$(3, 5, 2, 1)$ mesogen, the side-side arrangement is preferred over other configurations, a feature that promotes the nematic phase at reasonably accessible temperatures. The GB$(3, 5, 2, 1)$ parameterization was chosen because it has been extensively used as a model for prolate LCs, such as the alkylphenyl mesogen family.

Confined systems were modeled with walls constructed from an array of spherical (i.e., circular in 2D) particles. The mesogen-wall interaction is obtained by taking the limit of Eqs. 1 and 2 when one of the interacting mesogens becomes a sphere (i.e., a wall particle) [147–149]. In that limit, the range parameter and strength anisotropy functions are given by

\[\sigma_w(\hat{r}_{ij} \cdot \hat{e}_i, \hat{e}_j) = \sigma_0 \left[1 - \chi(\hat{r}_{ij} \cdot \hat{e}_i)^2 \right]^{-1/2} \tag{8} \]

and

\[\epsilon_w(\hat{r}_{ij} \cdot \hat{e}_i, \hat{e}_j) = \epsilon_0 \left[1 - \chi'(\hat{r}_{ij} \cdot \hat{e}_i)^2 \right] \tag{9} \]

where

\[\chi' = 1 - \left(\epsilon_s/\epsilon_p \right)^{1/\nu}. \tag{10} \]

For Eqs. 8–10, the ith molecule denotes a wall-type particle, the jth molecule refers to a mesogen, ϵ_0 corresponds to the energy scale for homeotropic anchoring (when \hat{e}_i is locally perpendicular to the confining wall), and ϵ_p represents the energy scale for
planar anchoring (when \vec{e}_i is locally parallel to the confining wall). Anchoring conditions can thus be controlled by adjusting these two parameters.

We focus on a strictly 2D thermotropic liquid crystal in this work: “flat” ellipsoidal mesogens evolve in a plane. All results reported herein were generated by performing MD simulations in the canonical (NAT, where A is constant area for 2D, analogous to NVT where V is constant volume in 3D) and isothermal-isobaric (NPT) ensembles. Translational and rotational equations of motion were integrated using the velocity-Verlet algorithm [150]. For bulk samples, in either the NAT or NPT ensembles, the time step used was $\delta t = 0.001$. For systems in confined regions, the time step used was $\delta t = 0.002$. The coupling parameters for simulations were as follows: $Q_{\text{thermostat}} = 10$, $Q_{\text{barostat}} = 1,000$. In the case of bulk samples, the simulation cell was defined with lateral dimensions L_x and L_y: periodic boundary conditions were applied in all directions. All simulations were initialized at relatively high temperature (i.e., $T^* = k_B T/\epsilon_0 = 1.0$). Low-temperature states ($T^* = k_B T/\epsilon_0 = 0.1$) were attained by cooling the system gradually. Velocities were assigned from a Maxwell-Boltzmann distribution and the moments of inertia were set to $I = (\sigma^2 / 20)(\mathbf{k}^2 + 1)$ [151]. All particles were set to unit mass ($m = 1$) and intermolecular potentials were truncated at a cutoff length scale $r_c = (\sigma + 1) \sigma_0$ for expedience. Interparticle potentials were shifted to enforce a smoothly vanishing force at r_c. Simulations were run for at least 5×10^6 time steps for equilibration and another 5×10^6 time steps for production.

Global orientational order is characterized by the orientational traceless tensor Q [152], specialized for the 2D case [153] as

$$Q = \frac{1}{N} \sum_{i=1}^{N} (2\vec{e}_i \otimes \vec{e}_i - I),$$

where \otimes denotes the tensor product and I is the identity matrix. Diagonalization of Q leads to two eigenvalues (λ_1 and λ_2). The nematic (Maier-Saupe) order parameter S is defined in terms of the highest eigenvalue λ_1, so that $S = \lambda_1$. The parameter S is equal to zero for isotropic configurations and increases as orientational order increases.

3 RESULTS AND DISCUSSION

3.1 Orientational Order and Liquid Structure

In this section, we present data for a series of samples of increasing size (mesogen number) to elucidate the orientational order of the LC liquid as a function of temperature. We focus here on characterizing differences due specifically to sample size, considering $N \in \{500, 1000, 4000\}$. Profiles for the Maier-Saupe order parameter are presented in Figure 3.

The nematic order parameter S displays a state with low orientational order ($S \approx 0$) when the temperature exceeds a threshold depending on the pressure P^* of the system. The onset of orientational order shows a jump in S when the temperature exceeds a threshold depending on the pressure P^* of the system. The onset of orientational order shows a jump in S when the temperature exceeds a threshold depending on the pressure P^* of the system. The onset of orientational order shows a jump in S when the temperature exceeds a threshold depending on the pressure P^* of the system.

To investigate how finite-size effects are pronounced at higher pressures, simulations were performed for $P^* = 5.0$. At this pressure, finite-size effects are accentuated. We performed simulations for $N \in \{10000, 50000\}$. As can be gleaned from Figure 3, results for the larger two systems are close to one another. Hence, finite-size effects seemingly dissipate when the ensemble size is at least of $O(10^4)$.

To gain insight into the local structure, we analyzed MD snapshots for $N = 50,000$ when $P^* = 5.0$ via a temperature sweep shown in Figure 4. An eightfold magnification of a portion of the ensemble is shown to aid discerning local mesophase order: the entire ensemble for each temperature is provided in the Supplementary Material. At high temperatures, translational entropy overwhelms the cohesive energy of the LC medium and a disordered phase is the most stable state accessible to the system. At intermediate temperatures, the ensemble displays small clusters of mesogens with correlated orientation. Clustering grows in spatial extent with decreasing temperature. At even lower temperatures, the cohesive energy overtakes the decreasing translational entropy: a liquid phase with smectic order ensues at these temperatures. The smectic mesophase is stabilized.
(i.e., structural order increases in spatial extent) upon further cooling.

3.2 Phase Diagram Topology and Mesophases

A major contribution in this study is the orthobaric \([i.e., (\rho^*, T^*)]\) phase diagram for the 2D system shown in Figure 5. The 3D case for the same GB mesogen is overlaid with gray and red shadows: such a comparison enables us to appreciate how dimensionality affects topology. The phase diagram for the 3D case was previously reported \([128, 129]\). The 2D phase diagram reported here was obtained from MD simulations performed in the isothermal-isobaric (NPT) ensemble. The pressure \(P^*\) was controlled with a Nosé-Hoover barostat; samples consisted of \(N = 1,000\) mesogens. Phase regions were outlined by acquiring data for \(P^* \in \{0.1, 0.5, 1.0, 2.0, 3.0, 5.0\}\). For each pressure, the system was initialized at a high temperature and gradually cooled in steps of \(\Delta T^* = 0.02\) for at least \(5 \times 10^6\) time steps.

When compared to the 3D case, the 2D system displays an evident shift in its phase boundaries. This behavior is justified by the fact that thermal fluctuations are stronger when the dimensionality of the system is reduced \([154–156]\). The 2D system shows that the nematic phase emerges over a wider (nearly double) range in temperature at slightly lower densities. Additionally, the isotropic phase occupies a larger area of stability in the \((\rho^*, T^*)\)-plane, extending to lower temperatures and higher densities in 2D. The critical point appears at a lower temperature \((T_c^* = 0.202 \pm 0.007)\) and slightly higher density \((\rho_c^* = 0.159 \pm 0.002)\) when compared to the 3D system. Our result for the 2D critical point compares very well with previous work \([157, 158]\).

It is instructional to consider how finite-size effects influence the topology of the phase diagram. For this purpose, three isobars are included: \(P^* \in \{0.1, 3.0, 5.0\}\). For the \((\rho^*, T^*)\) region shown, only slight deviations from the boundaries in the top-right corner would be expected. Boundaries shown on the phase diagram serve as a guide to the eye based on the available data extracted from the isothermal-isobaric simulations. The slim regions conveyed by solid lines are best estimates that outline the limits of phase stability and do not represent true coexistence lines.

We note that isothermal-isobaric simulations can probe metastable regions that elude canonical simulations without

![Figure 4](https://example.com/figure4.png)
yielding coexistence (i.e., phase separation). The complete mapping of such phase boundaries would require free energy calculations, such as Gibbs ensembles [159–161], Gibbs-Duhem integration [162], histogram reweighting [163], or the Frenkel-Ladd method [164], among others. The coexistence of mesophases, however, was verified by independent canonical simulations. A sample cooling routine highlighting the coexistence of different mesophases is shown in Figure 6. The snapshots trim out sparsely populated regions of the full simulation cell observed at lower temperatures.

3.3 Confinement: Point Defects and Domain Walls

The extent to which mesophase structure is affected by strong confinement was also explored in this study. Inspiration for this lies in the rich structures and topological defects observed in lyotropic systems: the similarity in the textures observed in our thermotropic system highlights certain universal traits of topological defects. From an applications standpoint, this is of interest because topological defects can be recruited for the self-ordering of colloidal particles. In the case of a 2D system, this arrangement has the potential to yield monolayers of colloidal particles with specific positional constraints.

The 2D LC samples were confined within walls consisting of an array of fixed Lennard-Jones particles. Three different confinement scenarios were considered in this study: circular, square, and triangular. The mesogen packing fraction was kept approximately at \(\eta = 0.75 \) in all cases to ensure a nematic state point consistent with the bulk 2D phase diagram. As a point of

![FIGURE 5](image1.png) The orthobaric phase diagram for the GB(3, 5, 2, 1) mesogen in 2D (lines) and 3D (gray shadow). The 2D critical point (diamond) appears when \(\rho_c^* = 0.159 \pm 0.002 \) and \(T_c^* = 0.202 \pm 0.007 \). The nematic phase region is highlighted in both cases: 2D (blue shadow) and 3D (red shadow). For 2D, the nematic region is stable over a wider \(T^* \)-range for a slightly narrower \(\rho^* \)-range. Three specific isobars (dotted lines, labeled with \(P^\lambda \)) are shown for comparison. Only the top-right region of the phase diagram is most sensitive to finite-size effects as shown in the response of the order parameter \(S \) in Figure 3.

![FIGURE 6](image2.png) A representative cooling sweep in the NAT ensemble. Configurations are shown for an ensemble with \(N = 2,000 \) and \(\rho^* = 0.10 \). The temperature \(T^* \) decreases going from left to right over a narrow temperature window as shown. Snapshots of the simulation box have been trimmed to improve the visual clarity of the more densely populated regions observed at lower temperature.
reference, the packing fraction for a 2D hexagonal lattice composed of circular units is $\eta \approx 0.907$ [165].

To characterize the way the confining walls exert a structuring effect on the mesogenic liquid, two anchoring conditions were considered: homeotropic ($\varepsilon_h/\varepsilon_p = 5.0$) and planar ($\varepsilon_h/\varepsilon_p = 0.2$) cases (Eq. 10). The nematic field emerging from the sample in the bulk region displays a dominant direction. However, the boundaries defining the confined area disrupt any such dominant alignment. The resulting director field persists in response to a delicate balance between anchoring conditions imposed by the confining walls and the strong tendency of neighboring mesogens to mutually align. As a result, this synergy has the effect of stabilizing topological defects within the confined region.

Data for circular confinement are shown in Figure 7. Topological defects are sharply sensitive to the type of anchoring. For homeotropic anchoring, the confinement radius in this work affords a low-temperature director field giving rise to two defects (with topological charge $+1/2$), localized away from the wall but separated in relation to one another. This behavior is consistent with density functional theory predictions [119]. As temperature increases, the defects move away from one another until they approach the wall: at sufficiently high temperature ($T^* \sim 1.80$), the defects dissipate to yield a single, isotropic configuration. Such an outcome is possible because the anchoring energies at the confining surfaces are of finite strength. As can be seen in the configuration snapshots, thermal fluctuations are sufficiently strong to overcome the orientation induced by anchoring. The situation changes for planar anchoring: at low temperature, two defects are present, but they are located at opposite poles of the confining circle. As a result, the so-called polar nematic configuration is observed. This state is distinguished by a layered mesophase similar to the smectic-like state that dominates all but two thin surface shells on opposite ends ($T^* \sim 0.20$). Another configuration also observed at the lowest temperature possesses boundary disclinations, but the main topological defect consists of point defects appearing on opposite poles of the circular boundary (refer to the discussion on circular boundary confinement in Section 3.4). Radially oriented domains, like those observed in the case of homeotropic anchoring, are absent in planar
anchoring. Nematic-like order emerges as temperature increases for both anchoring modes under circular confinement. Although two polar defects persist at high temperature in the two systems \((T^* \sim 1.20)\), the type of anchoring can be distinguished by probing the relative distance between defects: the separation between the two defects is always larger (nearing the boundary wall) for planar anchoring. As expected, internal order is mostly lost in both types of anchoring at sufficiently high temperatures. Our observations are consistent with those documented for a 2D fluid of hard rods in the high-density regime, with a sufficiently small aspect ratio \([124]\).

Square confinement leads to more interesting textures as shown in Figure 8. The reduced symmetry of the boundary frustrates global mesophase order. For both anchoring conditions, domain walls (i.e., boundaries between different orientationally ordered domains) appear at sufficiently low temperature \((T^* \sim 0.60)\). For homeotropic anchoring, domain walls define three regions: a large region with a local director rotated \(\pi/2\) radians in relation to the local directors characterizing two small regions oriented in the same direction. Mesogens in the large region are highly oriented and form smectic-like layers. These domain walls signal domains possessing different orientations: the free energy is minimized in the system when curved interfaces develop. Moreover, two equivalent states are possible by symmetry: one shown in the snapshots and another obtained by rotating the snapshot \(\pi/2\) radians. In this way, the system displays two-fold degeneracy. This effect was previously observed using a density-functional approach \([166]\). An external field can lead to an interchange between the two states dynamically, as previously reported \([167]\).

When planar anchoring is operative under square confinement, four domain walls (i.e., five regions) appear. Four small regions display an orientation aligned with the confining walls and one interior region with a local director tilted slightly in relation to adjacent lateral domains. This arrangement is strikingly similar to the \(W \sim 40L\) system studied by Cortes et al. \([117]\). It is plausible for the interior region to eventually reorient to create a single region where the local director matches that of two adjacent lateral domains. As temperature increases, those domain walls disappear and two point defects arise close to the corners of the square. The structural behavior of the LC sample under square confinement agrees with previous theoretical models \([121]\).

The most severe confining geometry in this study is the triangular boundary, the results of which are shown in Figure 9. For either type of anchoring, three orientationally

FIGURE 8 | The 2D GB(3,5,2,1) mesogen system confined by a square boundary. Data are arranged as in Figure 7.
ordered regions are discernible at low temperature: the resulting topological defects are driven by an order that permeates from the boundary wall toward the center of the confining region. This effect promotes the formation of a near-centered defect in either anchoring case at fairly high temperature \((T^* \sim 2.00)\). Streak disclinations radiate from the point defect, signaling the partition between distinctly oriented regions giving rise to three domain walls only when the temperature is sufficiently low \((T^* \sim 0.60)\).

Although the scalar fields of the order parameter under triangular confinement for both anchoring cases are similar, the two samples can still be differentiated when accounting for local order. The approximate local directors corresponding to the three oriented domains highlighted in Figure 9 are rotated \(\pi/6\) radians with respect to one another. This difference arises from the coupling of the anisotropic shape of the calamitic mesogen and the underlying confining geometry. When placed at the center of the triangular region, the set of directors for the homeotropic sample point at the corners of the triangular boundary; the analogous set for planar anchoring results in the bisection of all sides of the triangular region. As expected, the orientationally ordered regions and the streak disclinations dissipate with increasing temperature, though the point defect persists even at high temperature \((T^* \sim 1.40)\).

3.4 Dynamics of Confined Samples

Ancillary data from this work are ensemble trajectories given that systems were evolved with MD simulations. Although static information obtained from simulation snapshots is useful in characterizing orientational order and topological defects, it is equally important to probe the temporal behavior of mesophases. To this end, trajectories were leveraged to probe dynamical fluctuations in the fluid structure and the scalar field of the order parameter. The Supplementary Material includes trajectory visualizations for the systems in Figures 7–9. Each visualization is labeled by temperature and anchoring mode. The timescale in each case corresponds to approximately 3% of an entire simulation run.

The system under circular confinement with planar anchoring at reasonably high temperatures already exhibits features reminiscent of the polar defects stabilized at low temperatures. However, such defects are accompanied by strong fluctuations in intensity and positional alignment. As one point defect vanishes another emerges in the same pole. For homeotropic anchoring, point defects fluctuate in number, intensity, and position at high
temperatures. Upon further cooling, the homeotropic sample displays two point defects with minimal fluctuations in position and intensity, immediately after two radially oriented domains form. Before the central smectic-like region sets in, the separation between the two point defects reaches a minimum. Fluctuations in intensity are minimal at the lowest temperature studied; the separation between the point defects stabilizes at a slightly larger distance \((T^* \sim 0.20)\) than before \((T^* \sim 0.80)\). In the case of planar anchoring, point defects appear on opposite poles of the circular boundary. Unlike the low-temperature configuration in Figure 7, textures in the bulk region of the confined area become richer when the smectic phase sets in: boundary defects of fleeting intensity appear upon further cooling for planar anchoring. However, polar defects persist prominently.

The behavior of topological defects upon sample cooling is similar for both anchoring modes under square confinement. In both cases, a highly fluctuating cross pattern with approximately two point-like defects on opposite corners of the square is observed. As soon as the sample reaches a temperature where the smectic mesophase becomes favorable, the fleeting point-like defects vanish: each anchoring case becomes distinguishable at this point \((T^* \sim 0.60)\). For homeotropic anchoring, two prominent domain walls persist, giving rise to three distinct regions. For planar anchoring, four domain walls become stable, demarcating five distinct regions. The domain walls, although subdued when compared to the homeotropic case, yield a rhomboidal pattern.

When comparing the two anchoring modes for triangular confinement, the cooling history is very similar in both cases. A point defect is characteristic of either case upon the slightest hint of ordering. Three domain walls weakly form at high temperature \((T^* \sim 1.00)\), although they are characterized by strong fluctuations in position and intensity. Upon further cooling, the domain walls assert their presence and a point defect becomes prominent in the sample \((T^* \sim 0.60)\). As discussed in Section 3.3, due to the similarity between the two anchoring cases, it is only possible to distinguish the two samples by inspecting the relative arrangement of local directors in each sample.

4 CONCLUSION

Bulk and confined 2D samples were explored for the Gay-Berne mesogen with parameterization GB(3, 5, 2, 1). This model calamitic exhibits a sharp isotropic-smectic (I-Sm) transition at lower pressures \((P^* < 2.0)\); at higher pressures \((P^* \geq 2.0)\), the I-Sm transition involves an intermediate nematic phase. Clusters of locally ordered mesogens reach a threshold size, at sufficiently low temperatures, before the LC sample becomes smectic. The nematic phase shows an extended region of stability, nearly doubling in the temperature range at slightly lower densities. The critical point shifts to a lower temperature and a higher density compared to the analogous 3D system.

Confined samples were subjected to three boundary geometries: circular, square, and triangular. In circular geometry, two point defects emerge: for homeotropic anchoring, point defects are stable in the bulk region of the boundary and remain at a nearly constant separation. For planar anchoring, point defects gravitate toward opposite poles of the boundary. In square geometry, no stable point defects are observed at low temperatures. Instead, two distinct domain walls give rise to three regions under homeotropic anchoring; the structure under planar anchoring results in four interconnecting domain walls, rhomboidal in form, producing five regions. In triangular geometry, confinement yields similar defects when comparing anchoring modes: three domain walls “emanate” from a nearly centered point defect yielding three regions. In this case, local directors must be accounted for to differentiate between anchoring modes.

All systems were studied with MD simulations. The resulting trajectories of confined 2D LC samples were visualized, revealing a complex evolution of textures originating from topological defects. Ordered domains at low temperatures are prefaced with strong thermal fluctuations that cause spatial variations in the mesophase at sufficiently high temperatures. Within the mesophase, flickering in position and intensity of topological defects is minimized at sufficiently low temperatures. Both the confining geometry and anchoring mode contribute to the type of defects observed.

Confined 2D LC systems provide a rich and exciting outlook. An outstanding matter with an eye toward 3D metamaterials is how disclinations couple when colloidal slabs are stacked. Practicable systems could extend layer-by-layer protocols \([7, 89, 90, 168-180]\), thus expanding the gamut of metamaterials attainable by conventional 3D-based methods. Studies on the switching mechanics by applying external fields (as opposed to thermal tempering) would be of interest in the production of devices and associated technologies. A characterization of relevant timescales would offer an important perspective on design principles. Structured colloidal assemblies via topological defects could be exploited to yield colloidal assemblies with screw/twist properties, thus amplifying the availability of chiral materials.

DATA AVAILABILITY STATEMENT

The numerical model simulations upon which this study is based are unwieldy to archive or to transfer. Instead, all information needed to replicate the simulations is provided.

AUTHOR CONTRIBUTIONS

AC-A and JM-V performed bulk simulations, wrote post-simulation analysis codes, and implemented data analysis. AC-A carried out simulations for small-scale bulk samples as well as strongly confined systems and visualized trajectories. JM-V performed large-scale simulations of bulk samples via parallelization. SH and AR-H contributed to the interpretation of results and drafted relevant sections of the analysis. ES verified results for bulk systems, interpreted dynamical trajectories of strongly confined systems, and completed writing the manuscript. JM-R conceived the study, wrote the Gay-Berne simulation code, drafted initial versions of the manuscript, and coordinated the direction of the project.
FUNDING

JM-V and JM-R are thankful for the computing time generously provided under grant LANCAD-UNAM-DGTI-344. SH is grateful for funding provided by projects UNAM-DGAPA-PAPIIT IA104319, LANCAD-UNAM-DGTIC-276, and LANCAD-UNAM-DGTIC-087.

ACKNOWLEDGMENTS

JM-R gratefully acknowledges the computing resources provided by the Laboratorio de Supercomputo y Visualización en Paralelo (LSVP) at UAM-I. SH gratefully acknowledges the technical support provided by Carlos Sair Flores Bautista, Alejandro de León Cuevas, and Luis Alberto Aguilar Bautista from the Laboratorio Nacional de Visualización Científica Avanzada (LAVIS-UNAM), as well as by Beatriz Marcela Millán Malo from CEATA-UNAM.

REFERENCES

1. Fedotov V. Springer Handbook of Electronic and Photonic Materials. 2nd ed. Cham, Switzerland: Springer International Publishing (2017). 1351–77. chap. Metamaterials.
2. Liu Y, Zhang X. Metamaterials: a new frontier of science and technology. Chem Soc Rev (2011) 40:2494–507. doi:10.1039/c0cs00184h
3. Whitesides GM, Love JC. The art of building small. Sci Am (2001) 285:38–47. doi:10.1038/scientificamerican0901-38
4. Zhang S. Building from the bottom up. Frontiers in Physics | www.frontiersin.org March 2021 | Volume 8 | Article 622872
5. Shimomura M, Sawadaishi T. Bottom-up strategy of materials fabrication: a new trend in nanotechnology of soft materials. Curr Opin Colloid Interface Sci (2001) 6:1–6. doi:10.1016/S1359-0294(00)00081-9
6. Kotnala A, Zheng Y. Digital assembly of colloidal particles for nanoscale manufacturing. Part Part Syst Charact (2002) 36:1900152. doi:10.1002/ppsc.201900152
7. Borges J, Mano JF. Molecular interactions driving the layer-by-layer assembly of multilayers. Chem Rev (2014) 114:8883–942. doi:10.1021/cr400531v
8. Conti S, Cecchini M. Predicting molecular self-assembly at surfaces: a statistical thermodynamics and modeling approach. Phys Chem Chem Phys (2016) 18: 31480–93. doi:10.1039/c6cp05249e
9. Israelachvili JN. Intermolecular and Surface Forces. Amsterdam, Netherlands: Academic Press (2011). 503–76 p.
10. Villan M, Osterman N, Čopič M, Ravnik M, Žumer S, Kotar J, et al. Confinement effect on interparticle potential in nematic colloids. Phys Rev Lett (2008) 101:237801. doi:10.1103/PhysRevLett.101.237801
11. Tasinkevych M, Andrejko D. Colloidal particles in liquid crystal films and at interfaces. Condens Matter Phys (2010) 13:33603. doi:10.5488/cmp.13.33603
12. Verstraete L, Greenwood J, Hirsch BE, De Feyter S. Self-assembly under confinement: nanocorals for understanding fundamentals of 2D crystallization. ACS Nano (2016) 10:10706–15. doi:10.1021/acsnano.6b05954
13. Pfeiffer GR, Pearce N, Champness NR. Complexity of two-dimensional self-assembled arrays at surfaces. Chem Commun (2017) 53:11528–39. doi:10.1039/C7CC08110b
14. Nieckarz D, Szabelski P. Surface-confined self-assembly of asymmetric tetratopic molecular building blocks. Chem Phys Chem (2019) 20:1850–9. doi:10.1002/cphc.201900344
15. Cahus S, Busch M, Kityk AV, Pieczek W, Huber P. Chiral phases of a confined cholesteric liquid crystal: anchoring-dependent helical and smectic self-assembly in nanochannels. J Phys Chem C (2016) 120:11727–38. doi:10.1021/acs.jpcc.6b03553
16. Whitesides GM. The once and future nanomachine. Sci Am (2001) 285:78–83. doi:10.1038/scientificamerican0901-78
17. Tu BS, Tirrell M. Bottom-up design of biomimetic assemblies. Adv Drug Deliv Rev (2004) 56:1537–63. doi:10.1016/j.addr.2003.10.047
18. Min Y, Akbulut M, Kristiansen K, Golan Y, Israelachvili J. The role of interparticle and external forces in nanoparticle assembly. Nat Mater (2008) 7:527–38. doi:10.1038/nmat2206
19. Muševič I. Nematic colloids, topology and photonics. Philos Trans A Math Phys Eng Sci (2013) 371:20120266. doi:10.1098/rsta.2012.0266
20. Lavrentovich OD. Liquid crystals, photonic crystals, metamaterials, and transformation optics. Proc Natl Acad Sci U S A (2011) 108:5143–4. doi:10.1073/pnas.1102130108
21. Muševič I, Škrabot M, Tkalec U, Ravnik M, Žumer S. Two-dimensional nematic colloidal crystals self-assembled by topological defects. Science (2006) 313:954–8. doi:10.1126/science.1128660
22. Alexander GP, Chen BGG, Matsumoto EA, Kamiad RD. Colloquium: disclination loops, point defects, and all that in nematic liquid crystals. Rev Mod Phys (2012) 84:497–514. doi:10.1103/revmodphys.84.497
23. Čopar S, Porenta T, Jampani VSR, Muševič I, Žumer S. Stability and rewiring of nematic braids in chiral nematic colloids. Soft Matter (2012) 8:8589–600. doi:10.1039/C2SM25952D
24. Ravnik M, Alexander GP, Yeomans JM, Žumer S. Three-dimensional colloidal crystals in liquid crystalline blue phases. Proc Natl Acad Sci U S A (2011) 108:5188–92. doi:10.1073/pnas.1015831108
25. Nyč A, Ognysta ů, Škrabot M, Ravnik M, Žumer S, Muševič I. Assembly and control of 3D nematic dipolar colloidal crystals. Nat Commun (2013) 4:1489. doi:10.1038/ncomms2486
26. Poulin P, Stark H, Lubensky TC, Weitz DA. Novel colloidal interactions in anisotropic fluids. Science (1997) 275:1770–3. doi:10.1126/science.275.5307.1770
27. González-Martínez AD, Chávez-Rojo MA, Sambriski EJ, Moreno-Razo JA. Defect-mediated colloidal interactions in a nematic-phase discotic solvent. Rsc Adv (2019) 9:33413–27. doi:10.1039/c9ra05577h
28. Martinez A, Hermosillo L, Tasinkevych M, Smalyukh I. Linked topological colloids in a nematic host. Proc Natl Acad Sci U S A (2015) 112:4545–51. doi:10.1073/pnas.1500998112
29. Wang X, Miller DS, de Pablo JJ, Abbott NL. Reversible switching of liquid crystalline order permits synthesis of homogeneous populations of dipolar patchy microparticles. Adv Funct Mater (2014) 24:6219–26. doi:10.1002/adfm.201400911
30. Cavallaro M, Jr., Gharbi MA, Beller DA, Čopar S, Shi Z, Kamiad RD, et al. Ring around the colloid. Soft Matter (2013) 9:9099–102. doi:10.1039/c3sm51167g
31. Liu Q, Senyuk B, Tasinkevych M, Smalyukh I. Nematic liquid crystal boojums with handles on colloidal handlebodies. Proc Natl Acad Sci U S A (2013) 110:9231–6. doi:10.1073/pnas.1301464110
32. Čopar S, Tkalec U, Muševič I, Žumer S. Knot theory realizations in nematic colloids. Proc Natl Acad Sci U S A (2015) 112:1675–80. doi:10.1073/pnas.1417178112
33. Senyuk B, Liu Q, He S, Kamiad RD, Kusner RB, Lubensky TC, et al. Topological colloids. Nature (2013) 493:200–5. doi:10.1038/nature11710
34. Araki T, Tanaka H. Colloidal aggregation in a nematic liquid crystal: topological arrest of particles by a single-stroke disclination line. Phys Rev Lett (2006) 97:127801. doi:10.1103/PhysRevLett.97.127801
35. Ravnik M, Škrabot M, Žumer S, Tkalec U, Poberaj I, Babic D, et al. Entangled nematic colloidal dimers and wires. Phys Rev Lett (2007) 99:247801. doi:10.1103/PhysRevLett.99.247801
36. Jampani VS, Škrabot M, Ravnik M, Čopar S, Žumer S, Muševič I. Colloidal entanglement in highly twisted chiral nematic colloids: twisted loops, Hopf

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found online at: https://www.frontiersin.org/articles/10.3389/fphy.2020.622872/full#supplementary-material.
124. de las Heras D, Velasco E. Domain walls in two-dimensional nematics confined in a small circular cavity. **Soft Matter** (2014) 10:17578–66. doi:10.1039/C4SM52650G

125. Geigenfeind T, Rosenzweig S, Schmidt M, de las Heras D. Confinement of two-dimensional rods in slit pores and square cavities. **J Chem Phys** (2015) 142:174701. doi:10.1063/1.4919307

126. Gärlea IC, Mulder BM. Defect structures mediate the isotropic-nematic transition in strongly confined liquid crystals. **Soft Matter** (2015) 11: 608–14. doi:10.1039/c5sm02087a

127. Sidky H, Whitmer JK, Guzmán O, Abbott NL, de Pablo JJ. Measuring liquid-crystal elastic constants with free energy perturbations. **Phys Rev E** (2016) 93:042606. doi:10.1103/PhysRevE.93.042606

128. Bates MA, Luckhurst GR. Computer Simulation of Liquid Crystal Phases. Oxford, United Kingdom: Clarendon Press (1993).

129. Bates MA, Frenkel D. Nematic-isotropic transition in polydisperse systems of two and three dimensions. **Phys Rev E** (1997) 56:4103–16. doi:10.1103/PhysRevE.56.4103

130. Bates MA, Frenkel D. Monte Carlo simulation of two-dimensional hard ellipses. **Phys Rev E** (1999) 60:2126–36. doi:10.1103/PhysRevE.60.2126

131. de Miguel E, Vega C. The global phase diagram of the Gay-Berne fluid. **Mol Phys** (1991) 74:405–24. doi:10.1080/00268979100102321

132. Brown JT, Allen MP, Martin del Río E, de Miguel E. Effects of elongation on the phase behavior of the Gay-Berne fluid. **Phys Rev E** (1998) 57:6685–99. doi:10.1103/physreve.57.6685

133. Bates MA, Frenkel D. Nematic-isotropic transition in polydisperse systems of two and three dimensions. **Nat Commun** (2015) 6:7592. doi:10.1038/ncomms8592

134. Verbeck B. 2D materials: amorphous and fluctuating. **Nat Phys** (2017) 13:205. doi:10.1038/nphys4065

135. Rugi T, Schoen M. Microscopic structure of molecularly thin confined liquid-crystal films. **Phys Rev E** (1997) 55:2861–75. doi:10.1103/physrev.e.55.2861

136. de Gennes PG. The Physics of Liquid Crystals. Oxford, United Kingdom: Clarendon Press (1993).

137. Cuesta JA, Frenkel D. Liquid-vapor equilibrium and interfacial properties of square wells in two dimensions. **J Chem Phys** (2013) 138:044508. doi:10.1063/1.4775342

138. Antypov D, Cleaver DJ. The effect of spherical additives on a liquid crystal colloidal suspension. **Langmuir** (2011) 27:11779–86. doi:10.1021/la2017689

139. Armas-Pérez JC, Quintana HJ, Chapela GA. Liquid-vapor equilibrium and interfacial properties of square wells in two dimensions. **J Chem Phys** (2013) 138:044508. doi:10.1063/1.4775342

140. Berne BJ, Pechukas P. Gaussian model potentials for molecular interactions. **Phys Rev** (1972) 16:2176–83. doi:10.1103/PhysRev.16.2176

141. Kofke DA. Gibbs-Duhem integration: a new method for direct evaluation of liquid-vapor coexistence by molecular simulation. **Mol Phys** (1999) 110:6553–9. doi:10.1080/00268979930010881

142. Kofke DA. Gibbs-Duhem integration: a new method for direct evaluation of phase coexistence properties of fluids by Monte Carlo simulation in a new ensemble. **Mol Phys** (1987) 61:813–26. doi:10.1080/00268978701014191

143. De Miguel E, Vega C. The global phase diagram of the Gay-Berne model. **J Chem Phys** (2002) 116:3133–22. doi:10.1063/1.1450430

144. Allen MP. Molecular simulation of liquid crystals. **Mol Phys** (1991) 74:405–24. doi:10.1080/00268979100102321

145. Geigenfeind T, Rosenzweig S, Schmidt M, de Las Heras D. Confinement of two-dimensional rods in slit pores and square cavities. **J Chem Phys** (2015) 142:174701. doi:10.1063/1.4919307

146. Gärlea IC, Mulder BM. Defect structures mediate the isotropic-nematic transition in strongly confined liquid crystals. **Soft Matter** (2015) 11: 608–14. doi:10.1039/c5sm02087a

147. Sidky H, Whitmer JK, Guzmán O, Abbott NL, de Pablo JJ. Measuring liquid-crystal elastic constants with free energy perturbations. **Phys Rev E** (2016) 93:042606. doi:10.1103/PhysRevE.93.042606

148. Bates MA, Luckhurst GR. Computer Simulation of Liquid Crystal Phases. Oxford, United Kingdom: Clarendon Press (1993).

149. Bates MA, Frenkel D. Nematic-isotropic transition in polydisperse systems of two and three dimensions. **Nat Commun** (2015) 6:7592. doi:10.1038/ncomms8592

150. Verbeck B. 2D materials: amorphous and fluctuating. **Nat Phys** (2017) 13:205. doi:10.1038/nphys4065

151. Rugi T, Schoen M. Microscopic structure of molecularly thin confined liquid-crystal films. **Phys Rev E** (1997) 55:2861–75. doi:10.1103/physrev.e.55.2861

152. de Gennes PG. The Physics of Liquid Crystals. Oxford, United Kingdom: Clarendon Press (1993).

153. Cuesta JA, Frenkel D. Liquid-vapor equilibrium and interfacial properties of square wells in two dimensions. **J Chem Phys** (2013) 138:044508. doi:10.1063/1.4775342

154. Antypov D, Cleaver DJ. The effect of spherical additives on a liquid crystal colloidal suspension. **Langmuir** (2011) 27:11779–86. doi:10.1021/la2017689

155. Armas-Pérez JC, Quintana HJ, Chapela GA. Liquid-vapor equilibrium and interfacial properties of square wells in two dimensions. **J Chem Phys** (2013) 138:044508. doi:10.1063/1.4775342

156. Rugi T, Schoen M. Microscopic structure of molecularly thin confined liquid-crystal films. **Phys Rev E** (1997) 55:2861–75. doi:10.1103/physrev.e.55.2861

157. Kofke DA. Gibbs-Duhem integration: a new method for direct evaluation of phase coexistence properties of fluids by Monte Carlo simulation in a new ensemble. **Mol Phys** (1987) 61:813–26. doi:10.1080/00268978701014191

158. Armas-Pérez JC, Quintana HJ, Chapela GA. Liquid-vapor equilibrium and interfacial properties of square wells in two dimensions. **J Chem Phys** (2013) 138:044508. doi:10.1063/1.4775342

159. Berne BJ, Pechukas P. Gaussian model potentials for molecular interactions. **Phys Rev** (1972) 16:2176–83. doi:10.1103/PhysRev.16.2176
172. Tjipto E, Cadwell KD, Quinn JF, Johnston AP, Abbott NL, Caruso F. Tailoring the interfaces between nematic liquid crystal emulsions and aqueous phases via layer-by-layer assembly. Nano Lett (2006) 6:2243–8. doi:10.1021/nl061604p
173. Richardson JJ, Björnmal M, Caruso F. Multilayer assembly. Technology-driven layer-by-layer assembly of nanoﬁlms. Science (2015) 348:aaa2491. doi:10.1126/science.aaa2491
174. Zhang X, Chen H, Zhang H. Layer-by-layer assembly: from conventional to unconventional methods. Chem Commun (2007) 1395–405. doi:10.1039/b615590a
175. Ariga K, Hill JP, Ji Q. Layer-by-layer assembly as a versatile bottom-up nanofabrication technique for exploratory research and realistic application. Phys Chem Chem Phys (2007) 9:2319–40. doi:10.1039/b700410a
176. Tian W, VahidMohammadi A, Wang Z, Ouyang L, Beidaghi M, Hamedi MM. Layer-by-layer self-assembly of pillarled two-dimensional multilayers. Nat Commun (2019) 10:2558. doi:10.1038/s41467-019-10631-0
177. Wang AC, Pereira I, Ferreira C, Veiga F, Fakhrullin R. Chapter 1.4 - Layer-by-Layer Assembly for Nanoarchitectonics. In: K Ariga M. Aono, editors. Norwich, NY: William Andrew Publishing, Micro and Nano Technologies (2019). p. 89–121. doi:10.1016/B978-0-12-813341-5.00005-X
178. Zhao S, Caruso F, Dahne L, Decher G, De Geest BG, Fan J, et al. The future of layer-by-layer assembly: a tribute to ACS Nano associate editor Helmhut Mohwald. ACS Nano (2019) 13:6151–69. doi:10.1021/acsnano.9b03326
179. Oliveira DA, Gasparotto LHS, Siqueira JR, Jr. Processing of nanomaterials in Layer-by-Layer ﬁlms: potential applications in (bio)sensing and energy storage. An Acad Bras Cienc (2019) 91:e20181343. doi:10.1590/0001-3765201920181343
180. Moon G, Jang W, Son I, Cho H, Park Y, Lee J. Fabrication of new liquid crystal device using layer-by-layer thin ﬁlm process. Processes (2018) 6:108. doi:10.3390/pr6080108

Conflict of Interest: The authors declare that the research was conducted in the absence of any commercial or ﬁnancial relationships that could be construed as a potential conﬂict of interest.

Copyright © 2021 Calderón-Alcaraz, Munguía-Valadez, Hernández, Ramírez-Hernández, Sambriski and Moreno-Razo. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.