ON THE SUPPORT OF RELATIVE D-MODULES

ROBIN VAN DER VEER

Abstract. In this article we prove that although cyclic relative D-modules are not finitely generated as modules over the polynomial ring, their support is open and Zariski dense in the vanishing set of their annihilator. As a consequence we obtain an alternative proof of a conjecture of Budur which was recently proven by Budur, van der Veer, Wu and Zhou.

CONTENTS

1. Introduction
2. A lemma in commutative algebra, and a non-commutative corollary
3. Gröbner bases for D_n-modules
References

1. Introduction

The purpose of this article is to give an alternative proof of the following theorem:

Theorem A (Conjectured in [Bud15], proven in [BvVWZ21]). Denote by $\text{Exp} : \mathbb{C}^p \to (\mathbb{C}^*)^p$ the coordinate-wise exponential map. Let $F = (f_1, \ldots, f_p)$ be a tuple of polynomials on \mathbb{C}^n, and denote by B_F the Bernstein-Sato ideal of the tuple, and by $\psi_F(\mathbb{C}^n)$ the specialization complex of F. Then

$$\text{Exp}(\mathbb{Z}(B_F)) = \text{supp}_{(\mathbb{C}^*)^p}(\psi_F(\mathbb{C}^n)).$$

We refer to [Bud15], [BvVWZ21] for background on B_F and ψ_F. The inclusion

$$\text{Exp}(\mathbb{Z}(B_F)) \supset \text{supp}_{(\mathbb{C}^*)^p}(\psi_F(\mathbb{C}^n))$$

was proven already in [Bud15]. To analyse the reverse inclusion the following criterion can be extracted from the proof of [Bud15] Proposition 1.7].

Proposition 1.1 ([Bud15]). If $\alpha \in \mathbb{Z}(B_F)$ and

$$\frac{D_n[s_1, \ldots, s_p]f_1^s \ldots f_p^s \otimes \mathbb{C}[s_1, \ldots, s_p]}{D_n[s_1, \ldots, s_p]f_1^{s+1} \ldots f_p^{s+1} \otimes \mathbb{C}[s_1, \ldots, s_p]} \not\in \mathfrak{m}_{\alpha},$$

then $\text{Exp}(\alpha) \in \text{supp}_{(\mathbb{C}^*)^p}(\psi_F(\mathbb{C}^n)).$

2020 Mathematics Subject Classification. 14F10 (primary), 16Z10 (secondary).
Key words and phrases. Groebner basis; Weyl algebra; Bernstein-Sato ideal; b-function.
Since supp($C^*P(\psi_F(C^n_\mathbb{C}))$) is a closed subset of (C^*)P, Theorem B follows if we can prove (1) for α in an open Zariski dense subset of $Z(B_F)$. With this in mind the following theorem is our main result.

Theorem B. Let $J \subset D_n[s_1, \ldots, s_p]$ be a left ideal, where D_n is the Weyl algebra. Let p be a minimal prime divisor of $J \cap \mathbb{C}[s_1, \ldots, s_p]$. Then there exists a polynomial $h \in \mathbb{C}[s_1, \ldots, s_p]$ such that for all $\alpha \in \mathbb{Z}(p) \setminus \mathbb{Z}(h)$ with maximal ideal m_α,

$$\left(\frac{D_n[s_1, \ldots, s_p]}{J}\right) \otimes_{\mathbb{C}[s_1, \ldots, s_p]} \left(\frac{\mathbb{C}[s_1, \ldots, s_p]}{m_\alpha}\right) \neq 0.$$

Theorem A was recently proven in [BvVWZ21] where it was deduced from the following theorem.

Theorem C ([BvVWZ21]). Let $F = (f_1, \ldots, f_p)$ be a tuple of polynomials on \mathbb{C}^n. For every codimension 1 irreducible component H of $Z(B_F)$ there is a Zariski open subset $V \subset H$ such that for every $\alpha \in V$ with maximal ideal m_α,

$$\frac{D_n[s_1, \ldots, s_p]}{J} f_1^{s_1} \ldots f_p^{s_p} \otimes_{\mathbb{C}[s_1, \ldots, s_p]} \mathbb{C}[s_1, \ldots, s_p] / m_\alpha \neq 0.$$

Theorem C is a special case of Theorem B since it only deals with codimension 1 components. This restriction meant that in [BvVWZ21] results from [Mai16] were necessary to conclude A from Theorem C. More precisely, the following result from [Mai16] was used to prove Theorem A in [BvVWZ21]:

Theorem D ([Mai16]). Every irreducible component of $Z(B_F)$ can be translated along an integer vector into a codimension 1 component of $Z(B_F)$.

Theorem D is a corollary of Theorem A since it is known from [BLSW17, Theorem 1.3] that supp($C^*P(\psi_F(C^n_\mathbb{C}))$) is a union of codimension 1 torsion translated subtori of (C^*)P. In particular, our methods provide a new proof of Theorem D.

Another advantage of Theorem B over the methods in [BvVWZ21] is that Theorem B does not depend on the module $D_n[s_1, \ldots, s_p]/J$ being relatively holonomic, as defined in [BvVWZ21].

The proof strategy for Theorem B is to specialize a suitable Gröbner basis for $J + p$ to a Gröbner basis for $(D_n[s_1, \ldots, s_p]/J) \otimes_{\mathbb{C}[s_1, \ldots, s_p]} (\mathbb{C}[s_1, \ldots, s_p]/m_\alpha)$. Using a result on specializing Gröbner bases from [Ley01] and [Oak97] we can then conclude Theorem B. This method of proof works in every ring where Gröbner basis methods are available.

In Section 2 we start with some technical preliminaries that allow us to conclude in Lemma 2.4 that $(J + p) \cap \mathbb{C}[s_1, \ldots, s_p] = p$. This result will be used in Section 3 to construct the Gröbner basis we need and to control the specialization.

Acknowledgement. We would like to thank Nero Budur and Alexander Van Werde for the helpful comments and suggestions.

The author is supported by a PhD Fellowship of the Research Foundation - Flanders.
2. A LEMMA IN COMMUTATIVE ALGEBRA, AND A NON-COMMUTATIVE COROLLARY

We denote \(A = \mathbb{C}[s_1, \ldots, s_p] \). An ideal \(q \subset A \) is called primary if for all \(x, y \in A \) with \(xy \in q \), either \(x \in q \) or \(y \in \sqrt{q} \). If \(q \) is primary, then \(p = \sqrt{q} \) is a prime ideal. When we say that \(q \) is \(p \)-primary we mean that \(q \) is primary and \(\sqrt{q} = p \).

Lemma 2.1. Let \(q \subset A \) be a \(p \)-primary ideal. If \(q \neq p \), then there exists an \(f \in p \setminus q \) such that \(fp \subset q \).

Proof. Let \(N \subset A/q \) be the nilradical, which is non-zero since \(q \neq p \). Let \(g_1, \ldots, g_m \in N \) be a set of generators. Let \(f_0 = 1 \in A/q \). Using induction we define for \(i = 1, \ldots, m \):

\[
f_{i+1} = f_i g_{k_i+1}^{k_i+1-1},
\]

where \(k_{i+1} \in \mathbb{Z} \) is the smallest integer for which

\[
f_i g_{k_i+1} = 0.
\]

Notice that such \(k_{i+1} \) always exists, since each \(g_i \) is nilpotent and that \(k_{i+1} \) is always at least 1 since \(f_i \) is not zero, by induction. By construction we have that for each \(i = 1, \ldots, m \),

\[
g_i f_m = 0.
\]

Let \(f \) be a lift of \(f_m \) to \(A \). Since \(f_m \neq 0 \), \(f \not\in q \), and since \(f_m \) is nilpotent, \(f \in p \). Let \(p \in p \). Then in \(A/q \) we can write \(p + q = \sum_{i=1}^m a_i g_i \) for some \(a_i \in A/q \). Then

\[
fp + q = \sum_{i=1}^m a_i g_i f_m = 0,
\]

so that \(fp \in q \). \(\square \)

Every ideal \(\mathfrak{J} \subset A \) has a primary decomposition. This means that we can write \(\mathfrak{J} = \bigcap_{i=1}^m q_i \) such that

1. every \(q_i \) is primary, and
2. for all \(1 \leq j \leq m, \bigcap_{i=1}^m q_i \not\subset \bigcap_{i\neq j}^m q_i \), and
3. The prime ideals \(\sqrt{q_1}, \ldots, \sqrt{q_m} \) are pairwise distinct.

The minimal (under the inclusion order) elements of the set \(\{ \sqrt{q_i} \} \) are uniquely determined by \(\mathfrak{J} \), and are called the minimal prime divisors of \(\mathfrak{J} \).

Theorem 2.2. Let \(\mathfrak{J} \subset A \) be an ideal with primary decomposition \(\mathfrak{J} = \bigcap_{i=1}^m q_i, m > 1 \). Let \(\sqrt{q_j} \) be a minimal prime divisor. Then there exists an \(h \in A \setminus q_j \) such that \(h \sqrt{q_j} \subset \mathfrak{J} \).

Proof. We assume without loss of generality that \(j = 1 \). We claim that \(\bigcap_{i=2}^m q_i \not\subset \sqrt{q_1} \). If we would have \(\bigcap_{i=2}^m q_i \subset \sqrt{q_1} \) then there is some \(q_i \) contained in \(\sqrt{q_1} \), since the latter is prime. Hence also \(\sqrt{q_i} \subset \sqrt{q_1} \). Since \(\sqrt{q_1} \) is a minimal prime, this must be an equality. However, by definition of the primary decomposition, \(\sqrt{q_i} \neq \sqrt{q_1} \), and this contradiction proves the claim. Let \(g \in \bigcap_{i=2}^m q_i \setminus \sqrt{q_1} \).
If \(\sqrt{q_1} = q_1 \), then \(h = g \) satisfies the condition of the theorem. Namely, let \(q \in q_1 \). Then \(gj \subseteq (\bigcap_{i=2}^m q_i) q_1 \subseteq \bigcap_{i=1}^m q_i = \mathfrak{J} \).

If \(\sqrt{q_1} \neq q_1 \), we get from Lemma 2.1 an \(f \in \sqrt{q_1} \setminus q_1 \) such that \(f \sqrt{q_1} \subseteq q_1 \). Set \(h = fg \). We claim that this \(h \) satisfies the conditions of the theorem. If \(h \in q_1 \), then since \(q_1 \) is primary, \(f \in q_1 \) or \(g \in \sqrt{q_1} \), neither of which is possible by choice of \(f \) and \(g \). This means that indeed \(h \in A \setminus q_1 \). Let \(p \in \sqrt{q_1} \). By choice of \(f, pf \in q_1 \), and thus \(ph = gpf \in (\bigcap_{i=2}^m q_i) q_1 \subseteq \bigcap_{i=1}^m q_i = \mathfrak{J} \), which concludes the proof. \(\square \)

Corollary 2.3. Let \(M \) be an \(A \)-module, and let \(p \) be a minimal prime divisor of the ideal \(\text{Ann}_A(M) \). Then \(\text{Ann}_A(M \otimes_A (A/p)) = p \).

Proof. Let \(\text{Ann}_A(M) = \bigcap_{i=1}^m q_i \) be a primary decomposition of \(\text{Ann}_A(M) \) with \(\sqrt{q_1} = p \). From Theorem 2.2 we get an \(h \in A \setminus q_1 \) such that \(hp \subseteq \text{Ann}_A(M) \).

Let \(g \in \text{Ann}_A(M \otimes_A (A/p)) \). This means that for every \(m \in M \), \(gm \subseteq pM \). In other words, for every \(m \in M \), there exists an \(n \in M \) and \(p \in p \) such that \(gm = pn \).

We multiply this equation by \(h \) on both sides to find \(ghm = hpn \). By construction, \(hp \subseteq \text{Ann}_A(M) \), so that \(ghm = 0 \) for all \(m \), and thus \(gh \subseteq \text{Ann}_A(M) \). In particular, \(gh \in q_1 \), so that either \(h \in q_1 \) or \(g \in \sqrt{q_1} \). Since \(h \not\in q_1 \) by construction, we conclude that \(g \in p \), which shows that \(\text{Ann}_A(M \otimes_A (A/p)) \subseteq p \). The other inclusion is obvious, and this concludes the proof. \(\square \)

Lemma 2.4. Let \(\mathfrak{J} \subseteq D_n[s_1, \ldots, s_p] \) be a left ideal. Let \(p \) be a minimal prime divisor of \(\mathfrak{J} \cap A \). Then \((\mathfrak{J} + Rp) \cap A = p \).

Proof. We denote \(R = D_n[s_1, \ldots, s_p] \). We regard \(R/\mathfrak{J} \) as an \(A \)-module. As such we claim that \(\text{Ann}_A(R/\mathfrak{J}) = \mathfrak{J} \cap A \). To see this, let \(f \in \text{Ann}_A(R/\mathfrak{J}) \), so that \(f \cdot (1+\mathfrak{J}) = f + \mathfrak{J} \) is zero in \(R/\mathfrak{J} \), which means that \(f \in \mathfrak{J} \cap A \). For the other inclusion let \(f \in \mathfrak{J} \cap A \). Then

\[
(f \cdot (P + \mathfrak{J}) = fP + \mathfrak{J} = Pf + \mathfrak{J},
\]

where in the second equality we use that \(A \) is contained in the center of \(R \). Since \(f \in \mathfrak{J} \), which is a left ideal, we conclude that \(Pf \in \mathfrak{J} \), so that \(f \cdot (P + \mathfrak{J}) = 0 \) and hence indeed \(f \in \text{Ann}_A(R/\mathfrak{J}) \).

We apply Corollary 2.3 to find that \(\text{Ann}_A((R/\mathfrak{J}) \otimes_A (A/p)) = p \). The lemma follows when we prove that \(\text{Ann}_A((R/\mathfrak{J}) \otimes_A (A/p)) = (\mathfrak{J} + Rp) \cap A \), which in turn follows, as above, when we prove that we have an isomorphism

\[
(R/\mathfrak{J}) \otimes_A (A/p) \cong R/(\mathfrak{J} + Rp).
\]

There is a well-defined map from the left hand side to the right hand side given by

\[
(P + \mathfrak{J}) \otimes (f + p) \mapsto Pf + (\mathfrak{J} + Rp).
\]

Note that this is well-defined because \(A \) is contained in the center of \(R \). In the other direction we have the map

\[
P + (\mathfrak{J} + Rp) \mapsto (P + \mathfrak{J}) \otimes (1 + p).
\]
These maps are inverse to each other, which proves the claim.

3. Gröbner bases for \(D_n\)-modules

In this section we recall some facts about Gröbner bases for ideals in \(R = D_n[s_1, \ldots, s_p]\) and \(D_n\) and then prove Theorem 13. We denote as in the previous section \(A = \mathbb{C}[s_1, \ldots, s_p]\). We will always implicitly regard \(A\) and \(D_n\) as subsets of \(R\).

In \(D_n\), we consider the set of standard monomials of the form \(x^\alpha \partial^{\beta}, \alpha, \beta \in \mathbb{Z}_{\geq 0}^n\). On these monomials, we consider the lexicographical order with

\[
\partial_1 > \cdots > \partial_n > x_n > \cdots > x_1.
\]

Any operator in \(D_n\) is a finite \(\mathbb{C}\)-linear combination of standard monomial in a unique way. Writing \(P \in D_n\) as a linear combination \(P = \sum \alpha, \beta c_{\alpha, \beta} x^\alpha \partial^{\beta}\) with non-zero \(c_{\alpha, \beta}\) we denote by \(\text{lm}_{D_n}(P)\) the largest monomial \(x^\alpha \partial^{\beta}\) with respect to the lexicographical order. For an ideal \(\mathcal{I} \subset D_n\), we denote \(\text{lm}_{D_n}(\mathcal{I}) = \{\text{lm}_{D_n}(P) \mid P \in \mathcal{I}\}\). A finite generating set \(G \subset \mathcal{I}\) is called a Gröbner basis for \(\mathcal{I}\) if the following is true: for every \(m \in \text{lm}_{D_n}(\mathcal{I})\) there exists a \(P \in G\) such that \(\sigma(\text{lm}_{D_n}(P)) \mid \sigma(m)\) where \(\sigma\) denotes the operation of taking the principal symbol. More explicitly, this says that when \(x^\alpha \partial^{\beta} \in \text{lm}_{D_n}(\mathcal{I})\) there exists a \(P \in G\) with \(\text{lm}_{D_n}(P) = x^\alpha \partial^{\beta}\) and \((\alpha, \beta')\) is entry-wise less than or equal to \((\alpha, \beta)\). To simply the notation we will write this divisibility notion simply as \(x^\alpha \partial^{\beta} \mid x^\alpha \partial^{\beta}\), but we emphasise that this does not mean that there exists some \(P \in D_n\) for which \(Px^\alpha \partial^{\beta'} = x^\alpha \partial^{\beta}\). It follows immediately from the definition that \(\mathcal{I} = D_n\) if and only if any Gröbner basis for \(\mathcal{I}\) contains a unit, i.e. an element of \(\mathbb{C}\).

In \(R\), we consider the set of standard monomials of the form \(x^\alpha \partial^{\beta} s^\gamma, \alpha, \beta \in \mathbb{Z}_{\geq 0}^n, \gamma \in \mathbb{Z}_{\geq 0}^p\). On these monomials, we consider the lexicographical order with

\[
\partial_1 > \cdots > \partial_n > x_n > \cdots > x_1 > s_p > \cdots > s_1.
\]

Any operator in \(R\) is a finite \(\mathbb{C}\)-linear combination of standard monomial in a unique way. We denote by \(\text{lm}_R(P)\) the leading monomial of an operator \(P \in R\) with respect to the lexicographical order. For an ideal \(\Omega \subset R\), we denote \(\text{lm}_R(\Omega) = \{\text{lm}_R(P) \mid P \in \Omega\}\). A finite generating set \(G \subset \Omega\) is called a Gröbner basis for \(\Omega\) if the following Gröbner property is true: for every \(m \in \text{lm}_R(\Omega)\) there exists a \(P \in G\) such that \(\sigma(\text{lm}_R(P)) \mid \sigma(m)\) where \(\sigma\) denotes the operation of taking the principal symbol. More explicitly, this says that when \(x^\alpha \partial^{\beta} s^\gamma \in \text{lm}_R(\Omega)\) there exists a \(P \in G\) with \(\text{lm}_R(P) = x^\alpha \partial^{\beta} s^\gamma\) and \((\alpha', \beta', \gamma')\) is entry-wise less than or equal to \((\alpha, \beta, \gamma)\). Again we denote this divisibility relation simply by \(x^\alpha \partial^{\beta} s^\gamma \mid x^\alpha \partial^{\beta} s^\gamma\). Regarding the \(s_1, \ldots, s_p\) as parameters we will also need the following. Any \(P \in R\) can be written uniquely as

\[
P = \sum_{\alpha, \beta} h_{\alpha, \beta}(s_1, \ldots, s_p)x^\alpha \partial^{\beta},
\]
with $h_{α,β} ≠ 0$. We denote the *parametric leading monomial* of P by $\text{plm}(P) = x^α∂^β$ and the *parametric leading coefficient* $\text{plc}(P) = h_{α,β}$, where $x^α∂^β$ is the largest monomial occurring in (4) with respect to the monomial order (2).

In the commutative ring A consider the lexicographical monomial order with

\[(5)\]

$s_p > \cdots > s_1$.

We denote by $\text{lm}_A(f)$ the leading monomial of $f ∈ A$.

In all three rings D_n, A and R a Gröbner basis for an ideal can be obtained by applying Buchberger’s algorithm to an arbitrary generating set. We note the following relations between the leading monomials. For $f ∈ A$:

$\text{lm}_R(f) = \text{lm}_A(f)$.

For $P ∈ D_n$, $\text{lm}_D_n(P) = \text{lm}_R(P)$.

For $P ∈ R$, $\text{lm}_A(\text{plc}(P)) \cdot \text{plm}(P) = \text{lm}_R(P)$. Because of these equalities we will from now on suppress the notation of the ring and simply write lm for leading monomials.

Lemma 3.1. Let $\mathfrak{Q} ⊂ R$ be an ideal and let G be a Gröbner basis for \mathfrak{Q} with respect to the order (3). Then $G ∩ A$ is a Gröbner basis for $\mathfrak{Q} ∩ A$ with respect to the order (5).

Proof. Let $f ∈ \mathfrak{Q} ∩ A$. There exists a $P ∈ G$ such that $\text{lm}(P) | \text{lm}(f)$. This means that $\text{lm}(P) ∈ A$, and thus by definition of the order (3), $P ∈ A$. We conclude that for every $f ∈ \mathfrak{Q} ∩ A$ there exists a $g ∈ G ∩ A$ such that $\text{lm}(g) | \text{lm}(f)$. It only remains to show that $G ∩ A$ generates $\mathfrak{Q} ∩ A$. This follows from the preceding statement, since we can reduce f to zero modulo $G ∩ A$ by iteratively canceling leading monomials.

Lemma 3.2. Let $\mathfrak{Q} ⊂ R$ be an ideal. Then there exists a Gröbner basis G for \mathfrak{Q} with respect to the order (3) such that for all $P ∈ G \setminus A$, $\text{plc}(P) ∉ \mathfrak{Q} ∩ A$.

Proof. Let $P ∈ G \setminus A$ and write

$P = \text{plc}(P) \cdot \text{plm}(P) + Q$.

By Lemma 3.1 $G ∩ A = \{f_1, \ldots, f_m\}$ is a Gröbner basis for $\mathfrak{Q} ∩ A$. Using the division algorithm [CLO15, Proposition 1.6.1] we find q_1, \ldots, q_m, r such that

$\text{plc}(P) = \sum_{i=1}^m q_i f_i + r$,

where $\text{lm}(r)$ is not divisible by any $\text{lm}(f_i)$. This means that

$P = \left(\sum_{i=1}^m q_i f_i + r \right) \cdot \text{plm}(P) + Q ≡ r \text{plm}(P) + Q =: P'$,

where $≡$ denotes equivalence modulo \mathfrak{Q}. If $P' = 0$ we define $G' = G \setminus \{P\}$ and if $P' ≠ 0$ then we define $G' = G \setminus \{P\} ∪ \{P'\}$.

We claim that G' is still a Gröbner basis for \mathfrak{Q}. This is clear if $P = P'$ so assume that $P ≠ P'$. We first remark that G' clearly still generates \mathfrak{Q}, and hence we need only verify the Gröbner property. If $\text{lm}(P') = \text{lm}(P)$ then the Gröbner property is clearly still satisfied, so assume that $\text{lm}(P') ≠ \text{lm}(P)$. This assumption means that
ON THE SUPPORT OF RELATIVE D-MODULES

For any $\alpha \in \mathbb{C}^p$ there is a specialization map $q_\alpha : R \rightarrow D_\alpha$ defined by

$$q_\alpha(P(s_1, \ldots, s_p)) = P(\alpha_1, \ldots, \alpha_p).$$

Notice that for any ideal $\Omega \subset R$ we have

$$(R/\Omega) \otimes_A (A/m_\alpha) \cong D_\alpha/q_\alpha(\Omega),$$

where m_α denotes the maximal ideal corresponding to α.

Theorem 3.3 ([Ley01], Lemma 2.5). Let $\Omega \subset R$ be an ideal, let $p \subset \Omega$ be a second ideal, and let $G \subset \Omega$ be a Gröbner basis for Ω with respect to the order (3). Let $h = \prod_{P \in G \setminus p} \text{plc}(P)$. Let $\alpha \in Z(p \cap A) \setminus Z(h)$. Then $q_\alpha(G \setminus p)$ is a Gröbner basis for $q_\alpha(\Omega)$ with respect to the order (2).

Proof. Apply [Ley01] Lemma 2.5 without any y-parameters.

We remark that a statement similar to Theorem 3.3 also appeared in [Oak97], and that the comprehensive Gröbner bases from [KW91] can also be used to give a simple proof of this result.

Proof of Theorem 3. Let G be a Gröbner basis for $\Omega = J + Rp$ with respect to the order (3). By Lemma 3.2 we can assume that for all $P \in G \setminus A$,

$$\text{plc}(P) \notin \Omega \cap A = p,$$

where this equality follows from Corollary 2.3.

Since $\Omega \cap A = p$, clearly we have $G \cap A \subset p$, and hence $G \cap p = G \cap A$, and hence also

$$G \setminus A = G \setminus p.$$

Putting the preceding two statements together we conclude that for all $P \in G \setminus p$, $\text{plc}(P) \notin p$. Since p is prime, this means that

$$h = \prod_{P \in G \setminus p} \text{plc}(P) \notin p.$$

Since $G \cap p = G \cap A$, we have that $(G \setminus p) \cap A = \emptyset$, and hence for every $P \in G \setminus p$, $\text{plm}(P) \notin \mathbb{C}$. By choice of h, for all $\alpha \in Z(p) \setminus Z(h)$ and $P \in G \setminus p$, $\text{plm}(P) = \text{lm}(q_\alpha(P))$.

lm(plc(P)) was divisible by lm(f_i) for some f_i. To see this, note that if this were not the case then by the definition of the division algorithm, lm(r) = lm(plc(P)), and hence lm(P) = lm(P'), contradicting our assumption. This means that lm(P) = lm(plc(P))plm(P) is divisible by some lm(f_i). Hence any element $Q \in \Omega$ for which lm(P) | lm(Q) also satisfies lm(f_i) | lm(Q). It follows that G' is still a Gröbner basis, since P was redundant for the Gröbner basis property.

We keep repeating this procedure until no $P \in G \setminus A$ is changed by applying this reduction. This is clearly a finite process. Once we are done we thus find that for all $P \in G \setminus A$, lm(plc(P)) is not divisible by any lm(f_i). Since the $\{f_1, \ldots, f_m\}$ form a Gröbner basis for $\Omega \cap A$, this means that for all $P \in G \setminus A$, plc(P) $\notin \Omega \cap A$. □

For any $\alpha \in \mathbb{C}^p$ there is a specialization map $q_\alpha : R \rightarrow D_\alpha$ defined by

$$q_\alpha(P(s_1, \ldots, s_p)) = P(\alpha_1, \ldots, \alpha_p).$$

Notice that for any ideal $\Omega \subset R$ we have

$$(R/\Omega) \otimes_A (A/m_\alpha) \cong D_\alpha/q_\alpha(\Omega),$$

where m_α denotes the maximal ideal corresponding to α.

Theorem 3.3 ([Ley01], Lemma 2.5). Let $\Omega \subset R$ be an ideal, let $p \subset \Omega$ be a second ideal, and let $G \subset \Omega$ be a Gröbner basis for Ω with respect to the order (3). Let $h = \prod_{P \in G \setminus p} \text{plc}(P)$. Let $\alpha \in Z(p \cap A) \setminus Z(h)$. Then $q_\alpha(G \setminus p)$ is a Gröbner basis for $q_\alpha(\Omega)$ with respect to the order (2).

Proof. Apply [Ley01] Lemma 2.5 without any y-parameters. □

We remark that a statement similar to Theorem 3.3 also appeared in [Oak97], and that the comprehensive Gröbner bases from [KW91] can also be used to give a simple proof of this result.

Proof of Theorem 3. Let G be a Gröbner basis for $\Omega = J + Rp$ with respect to the order (3). By Lemma 3.2 we can assume that for all $P \in G \setminus A$,

$$\text{plc}(P) \notin \Omega \cap A = p,$$

where this equality follows from Corollary 2.3.

Since $\Omega \cap A = p$, clearly we have $G \cap A \subset p$, and hence $G \cap p = G \cap A$, and hence also

$$G \setminus A = G \setminus p.$$

Putting the preceding two statements together we conclude that for all $P \in G \setminus p$, $\text{plc}(P) \notin p$. Since p is prime, this means that

$$h = \prod_{P \in G \setminus p} \text{plc}(P) \notin p.$$

Since $G \cap p = G \cap A$, we have that $(G \setminus p) \cap A = \emptyset$, and hence for every $P \in G \setminus p$, $\text{plm}(P) \notin \mathbb{C}$. By choice of h, for all $\alpha \in Z(p) \setminus Z(h)$ and $P \in G \setminus p$, $\text{plm}(P) = \text{lm}(q_\alpha(P))$,

lm(plc(P)) was divisible by lm(f_i) for some f_i. To see this, note that if this were not the case then by the definition of the division algorithm, lm(r) = lm(plc(P)), and hence lm(P) = lm(P'), contradicting our assumption. This means that lm(P) = lm(plc(P))plm(P) is divisible by some lm(f_i). Hence any element $Q \in \Omega$ for which lm(P) | lm(Q) also satisfies lm(f_i) | lm(Q). It follows that G' is still a Gröbner basis, since P was redundant for the Gröbner basis property.

We keep repeating this procedure until no $P \in G \setminus A$ is changed by applying this reduction. This is clearly a finite process. Once we are done we thus find that for all $P \in G \setminus A$, lm(plc(P)) is not divisible by any lm(f_i). Since the $\{f_1, \ldots, f_m\}$ form a Gröbner basis for $\Omega \cap A$, this means that for all $P \in G \setminus A$, plc(P) $\notin \Omega \cap A$. □

For any $\alpha \in \mathbb{C}^p$ there is a specialization map $q_\alpha : R \rightarrow D_\alpha$ defined by

$$q_\alpha(P(s_1, \ldots, s_p)) = P(\alpha_1, \ldots, \alpha_p).$$

Notice that for any ideal $\Omega \subset R$ we have

$$(R/\Omega) \otimes_A (A/m_\alpha) \cong D_\alpha/q_\alpha(\Omega),$$

where m_α denotes the maximal ideal corresponding to α.

Theorem 3.3 ([Ley01], Lemma 2.5). Let $\Omega \subset R$ be an ideal, let $p \subset \Omega$ be a second ideal, and let $G \subset \Omega$ be a Gröbner basis for Ω with respect to the order (3). Let $h = \prod_{P \in G \setminus p} \text{plc}(P)$. Let $\alpha \in Z(p \cap A) \setminus Z(h)$. Then $q_\alpha(G \setminus p)$ is a Gröbner basis for $q_\alpha(\Omega)$ with respect to the order (2).

Proof. Apply [Ley01] Lemma 2.5 without any y-parameters. □

We remark that a statement similar to Theorem 3.3 also appeared in [Oak97], and that the comprehensive Gröbner bases from [KW91] can also be used to give a simple proof of this result.

Proof of Theorem 3. Let G be a Gröbner basis for $\Omega = J + Rp$ with respect to the order (3). By Lemma 3.2 we can assume that for all $P \in G \setminus A$,

$$\text{plc}(P) \notin \Omega \cap A = p,$$

where this equality follows from Corollary 2.3.

Since $\Omega \cap A = p$, clearly we have $G \cap A \subset p$, and hence $G \cap p = G \cap A$, and hence also

$$G \setminus A = G \setminus p.$$

Putting the preceding two statements together we conclude that for all $P \in G \setminus p$, $\text{plc}(P) \notin p$. Since p is prime, this means that

$$h = \prod_{P \in G \setminus p} \text{plc}(P) \notin p.$$
so that \(q_\alpha(G \setminus p) \) does not contain any units. Since this set is a Gröbner basis for \(q_\alpha(\Omega) \) by Theorem 3.3 we conclude that \(D_n/q_\alpha(\Omega) \neq 0 \).

Now notice that

\[
\frac{D_n}{q_\alpha(\Omega)} \cong \frac{R}{\langle \alpha \rangle} \otimes_A \frac{A}{m_\alpha} \cong \left(\frac{R}{\langle \alpha \rangle} \otimes_A \frac{A}{m_\alpha} \right) \otimes_A \frac{A}{m_\alpha} \cong \frac{R}{\langle \alpha \rangle} \otimes_A \frac{A}{m_\alpha},
\]

which proves the claim. □

Proof of Theorem A. We denote

\[
M = \frac{D_n[s_1, \ldots, s_p] f_1^{s_1} \ldots f_p^{s_p}}{D_n[s_1, \ldots, s_p] f_1^{s_1+1} \ldots f_p^{s_p+1}}.
\]

Then \(B_F = \text{Ann}_A(M) \), and \(M \) is a cyclic \(D_n[s_1, \ldots, s_p] \)-module. Let \(C \subset Z(B_F) \) be an irreducible component. By Theorem [1] there is an \(h \in A \) which does not vanish identically on \(C \) such that for all \(\alpha \in C \setminus Z(h) \), \(M \otimes_A (A/m_\alpha) \neq 0 \).

By Proposition [1.1] we conclude that

\[
\text{Exp}(C \setminus Z(h)) \subset \text{supp}_{(\mathbb{C}^*)^p}(\psi_F(\mathbb{C}_p)).
\]

The map \(\text{Exp} : \mathbb{C}^p \to (\mathbb{C}^*)^p \) is continuous for the analytic topology. In the analytic topology we have \(C \setminus Z(h) = C \), and hence

\[
\text{Exp}(C) \subset \text{Exp}(C \setminus Z(h)) \subset \text{supp}_{(\mathbb{C}^*)^p}(\psi_F(\mathbb{C}_p)) = \text{supp}_{(\mathbb{C}^*)^p}(\psi_F(\mathbb{C}_p)),
\]

which is what we wanted to prove. □

References

[BLSW17] Nero Budur, Yongqiang Liu, Luis Saumell, and Botong Wang. Cohomology support loci of local systems. *Michigan Math. J.*, 66(2):295–307, 06 2017.

[Bud15] Nero Budur. Bernstein-sato ideals and local systems. *Annales de l’Institut Fourier*, 65(2):549–603, 2015.

[BvVWZ21] Nero Budur, Robin van der Veer, Lei Wu, and Peng Zhou. Zero loci of bernstein–sato ideals. *Inventiones mathematicae*, pages 1432–1297, 2021.

[CLO15] David A. Cox, John Little, and Donal O’Shea. *Ideals, Varieties, and Algorithms: An Introduction to Computational Algebraic Geometry and Commutative Algebra*. Springer Publishing Company, 4th edition, 2015.

[KW91] H. Kredel and V. Weispfenning. Parametric gröbner bases for non-commutative polynomials. In *Computer Algebra in Physical Research, Memorial Volume for N N Govorun Proceedings of the IV International Conference*, pages 236–244. World Scientific, 1991.

[Ley01] Anton Leykin. Constructibility of the set of polynomials with a fixed bernstein–sato polynomial: an algorithmic approach. *Journal of Symbolic Computation*, 32(6):663 – 675, 2001.

[Mai16] Philippe Maisonobe. Filtration Relative, l’Idéal de Bernstein et ses pentes. *arXiv e-prints*, page arXiv:1610.03354, October 2016.

[Oak97] Toshinori Oaku. Algorithms for the b-function and d-modules associated with a polynomial. *Journal of Pure and Applied Algebra*, 117-118:495 – 518, 1997.
