G-quadruplexes: a promising target for cancer therapy

Nils Kosiol, Stefan Juranek, Peter Brossart, Annkristin Heine† and Katrin Paeschke *

Abstract

DNA and RNA can fold into a variety of alternative conformations. In recent years, a particular nucleic acid structure was discussed to play a role in malignant transformation and cancer development. This structure is called a G-quadruplex (G4). G4 structure formation can drive genome instability by creating mutations, deletions and stimulating recombination events. The importance of G4 structures in the characterization of malignant cells was currently demonstrated in breast cancer samples. In this analysis a correlation between G4 structure formation and an increased intratumor heterogeneity was identified. This suggests that G4 structures might allow breast cancer stratification and supports the identification of new personalized treatment options. Because of the stability of G4 structures and their presence within most human oncogenic promoters and at telomeres, G4 structures are currently tested as a therapeutic target to downregulate transcription or to block telomere elongation in cancer cells. To date, different chemical molecules (G4 ligands) have been developed that aim to target G4 structures. In this review we discuss and compare G4 function and relevance for therapeutic approaches and their impact on cancer development for three cancer entities, which differ significantly in their amount and type of mutations: pancreatic cancer, leukemia and malignant melanoma. G4 structures might present a promising new strategy to individually target tumor cells and could support personalized treatment approaches in the future.

Keywords: G-quadruplex, genome instability, cancer progression, cancer therapy, malignant melanoma, pancreatic cancer, acute myeloid leukemia

Introduction

Cancer is the world’s second most leading cause of death [1]. Although therapeutic strategies for many cancers have greatly advanced during the last years, still about 9.6 million people died of cancer in 2018 [2]. This highlights the need to strengthen the research on causes of cancer development and to improve diagnostic and anti-tumor treatment options. Different promising therapeutic strategies have been identified in the last decades. Among those, immunotherapy and targeted therapies have revolutionized anti-tumor therapy [3]. The identification of genetic and epigenetic abnormalities as well as tumor-growth promoting oncogenes in tumor cells provided the rationale for molecular targeted therapies [4, 5]. Immun oncology (IO) aims at boosting the patient’s own immune system to eliminate tumor cells. One example is the immune checkpoint blockade [6]. Both approaches, targeted therapies as well as IO, significantly improved survival outcome in cancer patients, such as in malignant melanoma and other cancer entities [7, 8]. A diverging new strategy aims to modulate the 3-dimensional structure of the DNA with the goal to influence biological processes and genome stability.

Genomic DNA canonically adopts a standard B-DNA conformation. DNA can also fold into alternative structures such as DNA hairpins, holiday junctions, cruciforms, triplexes or G-quadruplexes (G4) [9, 10]. Although the relevance of G4 structures in living cells...
was controversially discussed in the past, accumulating experimental data now supports the existence and importance of these structures in living cells [10–12].

G4 structures can form within DNA and RNA [13]. In a G4 structure, four guanines are held together by Hoogsteen hydrogen bonds wherein each guanine can act as a donor and acceptor for two hydrogen bonds. Based on in vitro experiments it was predicted that G4 structures form in regions harboring a specific G4 motif: $G_{i-3}N_1G_{i-2}N_1>G_{i-3}N_1G_{i-2}N_1>G_{i-3}N_1G_{i-2}N_1>G_{i-3}$ [13]. However, current experimental data shows that G4 structures can also form within regions that have longer loops or less than 3 guanines per repeat and the length of the loops [13, 16].

Computational as well as deep-sequencing approaches have demonstrated that in the human genome over 700,000 regions exist that could potentially fold into G4 structures [14, 15, 17, 18]. Also in other organisms including viruses, yeasts and different bacterial genomes regions with a strong potential to fold into G4 were mapped genome-wide [15, 19–21]. To this date, the identification of a G4 motif within the genome does not proof the formation of G4 structures at these regions in vivo, but simply gives a potential to form a G4. G4 formation needs to be experimentally evaluated and depends on different factors (e.g. protein binding, loss of protein binding, cell cycle phase, stress), of which not all are known, yet.

G4 motifs are not randomly distributed throughout the genome, but are enriched in certain regions (e.g. promoters, telomeres, transcription factor binding sites) [14, 22, 23]. More than 40% of human promoter regions harbor at least one G4 motif [24]. The evolutionary conservation, the specific location within the genome [15, 19, 25] as well as different biochemical and molecular experiments underline the current model that G4 structures form in living cells, where they support/affect different biological pathways (e.g. protein expression, telomerase activity and genome stability) (Fig. 1) [10–12].

The physiological relevance of G4 structures is further supported by the existence of proteins that are able to bind and unfold G4 structures [11, 12, 26]. There are three classes of G4-interacting proteins described in the literature: G4 binding, G4 stabilizing and G4 unwinding proteins (e.g. helicases: BLM, WRN, BRIP1/FANCF and PIF1) [27]. It has been reported that mutations and/or deletions of these proteins (e.g. PIF1) lead to changes in the formation of G4 structures. This in turn can result in changes of biological pathways (transcriptional changes) and can also increase genome instability [28–32]. This agrees with the finding that changes within some G4-interacting helicases are linked to cancer progression and tumorigenesis [27]. However, the link of tumorigenesis and mutations of helicases is not proofed to be related to G4 formation. Antibody stainings as well as G4 ChIP-seq in stomach and liver tissues of immortalized HaCaT cells showed increased levels of G4 structures compared to a normal/healthy state [18, 33, 34]. Similar observations were made for other cancer states. Different lines of evidence demonstrated that changes in G4 formation/stability can alter telomerase activity [35, 36], transcription efficiency (inhibit or promote [11, 37, 38]), stall DNA replication and induce genome instability [39, 40]. Changes can be triggered chemically (G4-ligands) or by proteins that modulate G4 formation. G4 ligands that modulate G4 structure formation or stabilize G4 structures were
developed with the idea that G4 formation can be used as an anti-tumor treatment strategy by blocking cellular replication or expression of oncogenes [41, 42]. To date, about 1000 different G4 ligands have been identified [43]. These ligands differ in their specificity, binding surface and cell permeability [44]. Most of them, including MM41 [45], Telomestatin [46], BRACO19 [47], TMPyP4 [48], RHP54 [49] and PDS [50] preferentially bind G4 structures over duplex DNA. However, most of these binding preferences were tested in vitro and it is difficult to elucidate if and how selective these G4 ligands perform in living cells. Additionally, different lines of evidence indicate that at least some G4 ligands (e.g. BRACO19) also bind to other non-canonical DNA structures such as the i-motif [51, 52], indicating the possibility that some of the G4 ligand-mediated effects in living cells might not only be caused by G4 stabilization. Regardless, some ligands show very promising results as novel therapeutic drugs [41, 42], but their use in clinical applications is not approved, yet. This is mainly due to selectivity problems and the fact that most G4 ligands target multiple G4s and by this effect many different sites in the genome. In the last years, tremendous effort has taken place to investigate G4 ligands that selectively target specific G4 structures with the aim that these ligands have high anti-tumor activity but reduced side effects [53, 54].

G-quadruplex structures and cancer

In the last years, formation and/or stabilization of G4 structures has been discussed as a potential therapeutic tool against tumor cells [41, 42, 55]. In most of these reports, G4 formation/stabilization was supported by G4 ligands. Three main therapeutic strategies have been investigated so far (Fig. 1). First, G4 formation/stabilization at telomeres was used as a tool to block telomerase activity (Fig. 1a). In about 85-90% of all cancer cells telomerase activity is upregulated, which allows the cell to replicate without telomere shortening [56]. G4 structures at telomeres alter telomerase binding and block telomerase activity in vitro [57] and in vivo [58–60]. The working hypothesis is that G4 formation at telomeres can be used to block telomerase in tumors and by this prevent uncontrolled DNA replication, while somatic cells do not express telomerase and are thus not affected. Until now G4 stabilization at telomeres has been studied by using different ligands [35]. Most of them cause reduced growth of targeted tumor cells by influencing different telomere maintenance factors [35, 61]. For example, treatment of cancer cells with the G4 ligands Telomestatin [62] or 2,6-diamidoanthraquinone derivatives [63] leads to telomerase inhibition, whereas the G4 ligand RHP54 resulted in telomere dysfunction by disrupting the telomere protecting shelterin complex [64]. These uncapped telomeres are repaired in dependency of PARP1. Co-treatment of cells with RHP54 and the PARP1 inhibitor GPI-15427 increased the growth reduction observed upon RHP54 treatment, indicating the biomedical significance of this finding [65]. A novel approach is to use specific G4 ligands that act as photosensitizer to facilitate photodynamic therapy (PDT) [66]. Photosensitizer aim to specifically target tumors and cause an increased ROS production after photo-irradiation, which results in a cytotoxic effect for the tumor cells. Porphyrins are well known photosensitizer used in PDT. Specific porphyrin derivatives have been developed to target telomeric G4 (TMPiP-EOPP [67], ZnP1 [68]). TMPiP-EOPP binds to telomeric G4. After photoinduction, TMPiP-EOPP-bound sites are cleaved, which leads to increased ROS levels and cell death [67]. ZnP1 acts via a different mechanism and creates a singlet oxygen after photoinduction that drives cleavage, ROS production and cell death [68].

Second, G4 formation was also discussed as a supporting element that impacts gene expression of oncogenes [38, 53, 69, 70] (Fig. 1b). This hypothesis was underlined by the observation that most promoters of oncogenes harbor more G4 motifs than promoters of regulatory or tumor suppressor genes [70, 71]. In vitro and in cellulo experiments revealed that changes within G4 structure formation in promoters correlates with a reduction in gene expression (e.g. MYC [72], VEGF [73], BCL2 [74], KRAS [75] and KIT [72, 76, 77]). Especially the G4-mediated changes in MYC expression [72, 76] have been studied extensively. The MYC gene encodes for the transcription factor MYC, which is upregulated in 70% of all cancers [78] and drives oncogenesis by altering cell proliferation, metabolism, and immune evasion [78–80]. Due to the lack of direct inhibitors, current strategies aim to regulate the gene expression of MYC itself [81]. One attempt is to block its expression by inducing G4 structures that are located within the MYC gene promoter [72, 76, 82]. Different G4 ligands have been tested to regulate MYC expression. Global studies using these G4 ligands resulted in reduced tumor growth, which was correlated to decreased expression of MYC and other oncogenes [54, 83]. But many of these ligands are not selective and it is not clear if the G4 ligand-dependent mechanism is via a MYC-dependent or another, yet unknown mechanism [84].

Third, under specific conditions G4 structures can cause genome instability [10, 11] (Fig. 1c). In detail, misregulated G4 structures, which form at the “wrong” time and place in the cell, cause alterations within DNA replication and can induce DNA damage and recombination events [39, 40, 85]. These findings agree with observations that treatment with G4 ligands (e.g. PDS) leads to enhanced DNA double strand breaks, replication pauses, micronuclei formation and telomere maintenance problems [30, 50, 65, 86, 87]. The enhanced mutagenic rate,
Recent advances in the understanding of G4 DNA structures and their role in cancer therapy have brought new insights into the potential of G4 ligands as anti-cancer agents. G4 DNA is a four-stranded DNA structure that forms under specific conditions, such as high salt concentration or the presence of certain drugs. G4 structures have been implicated in various cancer-related processes, including DNA repair, cell-cycle regulation, and apoptosis.

G4 ligands, such as PDS (pyridostatin), CX-5461, and CX-3543, are designed to stabilize G4 structures, leading to enhanced DNA damage and cell death. This stabilization can be combined with DNA damaging agents, such as IR or hydroxyurea, to further exacerbate DNA damage and promote apoptosis.

Stabilization of G4 structures by PDS in cells that were deficient in homologous recombination (HR) (e.g. BRCA1, BRCA2, Rad51 deficient cells) exhibited slow growth, fragile telomeres, DNA double strand breaks and checkpoint activation [94]. The authors concluded that in the absence of a functional DNA repair machinery G4 stabilization by PDS exacerbes genome instability, which further drives checkpoint activation, G2/M cell-cycle arrest and cell death [86]. This data underlines the hypothesis that G4 stabilization drives genome instability and the cytotoxic effect of G4 stabilization is enhanced in cells that accumulate DNA damage (e.g. due to IR treatment or the loss of a functional repair pathway – see above). This raises the question whether the mutational burden of a tumor has an impact on the outcome of G4 ligand treatment. Second, what long-term effects does the treatment with G4 ligands have on tumor development? Third, does the G4 landscape change during therapy and does this contribute to genome instability that supports tumor relapse?

To this date little is known regarding the risks of long-term treatment and how G4 formation is changed over time during treatment and how/if this contributes to tumor relapse. We believe that these questions are of high relevance and that they will be addressed in the near future. Here, we aim to investigate if the current literature allows us to address these questions. We chose three different cancer entities that vary in their mutational burden and have been used to study G4 structure-mediated changes of cancer growth.

G-quadruplexes and melanoma
Melanoma is the most aggressive skin cancer. While the 5-year overall survival (OS) rate of localized melanoma is about 99%, it decreases for distant metastatic melanomas to only about 25% [106]. The development of targeted therapies [107, 108] and new immunotherapeutic approaches [109] have significantly improved survival rates, but most patients still die [110].

Melanomas are generally characterized by a high mutational burden [111, 112] and have frequently been used as an example for a highly mutated cancer that blocks DNA-damage induced apoptosis by mutations in different proteins, including TP53 [113, 114], POU3F2/BRN2
The authors speculate that this difference in treatment inhibition of cancer cell growth in several different melanoma cell lines [135]. Also, treatment with the imidazole-benzo-thiazole conjugate IZTZ-1 reduces the growth of melanoma cells [124]. Both ligands target MYC and lead to a reduction of MYC protein expression (up to 80%) after G4 stabilization [124, 131]. A systematic screen of different naphthalene diimides revealed that “G4 ligand 1” targets the G4s within KIT and BCL2 and drives melanoma tumors into a pro-apoptotic environment. In this paper the authors propose that G4 stabilization might be relevant in the context of resistance to targeted therapies of BRAF mutant melanomas [126]. However, if the ligands target other promoters and stimulate changes in other pathways (e.g. telomeres) has not been investigated in this context, yet. A similar growth effect was observed after treatment of B78-H1-tumor-bearing mice with the G4 ligands C14 and TMPyP4 [121]. Both ligands are photosensitizers that caused retarded tumor growth and increased survival time of irradiated mice. Based on their data, the authors propose a model in which photocleavage of G4 RNA at the mitogenic Ras gene was stimulated due to TMPyP4 and C14 binding, which led to reduced levels of Ras protein [141, 142]. Overall these studies measured enhanced apoptosis and necrosis [121]. It is not clear whether the observed effects were only because of changes within the mRNA of the Ras genes or if additional targets such as Myc and other genes also drove this effect.

Note, treatment with either RHPS4 or BRACO19 for 3-21 days led to telomere uncapping and end-to-end fusion of chromosomal ends in both, prostate and melanoma cell lines [65]. In contrast, in a UFX1138L uterine carcinoma cell line telomere uncapping could already be detected after 24 h of treatment with a G4 ligand [64]. The authors speculate that this difference in treatment timing might come from the difference in telomere length between prostate/melanoma cells (4-10 kb) and uterine carcinoma cells (2.7 kb). This raises the hypothesis that telomere length as well as telomerase activity might be useful markers for the success of G4 stabilization by ligands [64].

In an alternative approach guanine-rich oligos (t-oligos) homolog to the telomeric overhang that forms the G4 structures were designed [143]. Within melanoma cells the t-oligos led to a decreased proliferation rate, enhanced apoptosis and reduced expression of the catalytic subunit of the telomerase reverse transcriptase (TERT). Two major telomere-binding proteins, POT1 and TERF2, bind to these t-oligos and might cause the observed effects (107). Another study investigated the effect of TERF2 on cancer proliferation and genome stability [136]. They observed that TERF2 inhibition reduces tumor growth in dependency to its telomere capping potential. This implies that cells with shorter telomeres are targeted more efficiently by TERF2 inhibitor. In subsequent experiments they revealed that G4 stabilization by RHPS4 makes cells with longer telomeres (M14 cells) sensitive to TERF2 inhibition [136]. This indicates that G4 stabilization might induce telomere uncapping, which supports co-treatments that target short or unprotected telomeres (e.g. after TERF2 inhibitors) [136].

Pancreatic cancer

Pancreatic cancer is associated with a poor prognosis. The five-year OS rate of diagnosed patients is only 9% [144]. Once surgery is incapable of removing the tumor, treatment options are very limited. In contrast to melanoma, pancreatic cancer is associated with a lower mutational burden [111] although 97% of pancreatic cancers have gene alterations [145].

RAS genes (KRAS, NRAS and HRAS) represent the most frequently mutated oncogenes in human cancer [146] including pancreatic cancer [147]. Generally, tumor cells harbor multiple genetic and epigenetic abnormalities. Nevertheless, in some cancers, tumor growth depends on one single oncogene and its continued activation. This is named oncogene addiction [148, 149]. For the initiation of pancreatic ductal adenocarcinoma (PDCA), the oncogenic KRAS mutation is indispensable [150]. In pancreatic cancer mutations in the oncogene KRAS are essential for tumorigenesis and impact directly multiple metabolic pathways of PDAC [150].

As KRAS is a driver of oncogene addiction, it is tempting to identify and characterize a therapeutic target to specifically down-regulate KRAS. The expression of all three RAS genes can be reduced by G4 formation [75, 151–153]. G4 stabilization by G4 ligands is a promising strategy to target the activity of the KRAS gene promoter [70]. There are three G4 motifs in the KRAS promoter which are located in the nuclease hypersensitive element upstream of the transcription start site [75, 154–157]. It has been reported that the transcription factors MAZ and HNRNPA1 as well as HMGB1 can upregulate KRAS expression by binding to a G4 structure within KRAS [158, 159]. G4 structure formation itself acts as a gene silencer for KRAS expression [75, 160]. These biochemical studies strengthen the hypothesis
Ligand/G4 targeting	Cell line \((X_h=human, X_m=mouse)\)	Treatment duration \((\text{in vitro})\)	Growth Effect	Cellular Effects	Oncogene regulation	Genome instability	Not tested	Literature
SME	B16F10\(_m\), SK-MEL-2\(_m\)	48 h	IC\(_{50}\): ~100 \(\mu M\)	x	x			[122]
Am9.5	SKMel-5\(_m\), ROSS\(_m\), A375\(_m\), M14\(_m\)	48 h	IC\(_{50}\): 4 \(\mu M\) (ROSS) to 10 \(\mu M\) (SCMel-5)	x				[123]
BRACO19	B16\(_m\)	24 h	IC\(_{50}\): 28 \(\mu M\)	x				[124]
C8	B16\(_m\)	72 h	IC\(_{50}\): ~5 \(\mu M\)	x				[125]
C14 Derivate from TMPyP4; induces singlet oxygen \((^{1}\text{O}_2)\) production	B78-H1\(_m\)	n.a.	IC\(_{50}\): 10 \(nM\)	In vitro: IC\(_{50}\) (metabolic activity): 10 \(nM\)	x			[121]
c-exNDIs	A375\(_h\), SK-MEL-2\(_h\)	48 h	IC\(_{50}\): ~8 \(nM\)	x				[126]
CORON	M14\(_h\), LOX IMVI\(_h\), MALME-3\(_h\), SK-MEL-2\(_h\), SK-MEL-28\(_h\), SK-MEL-5\(_h\), UACC-62\(_h\)	n.a.	LC\(_{50}\) mean for all cell lines: ~2.5 \(\mu M\)	x	x	x		[127, 128]
CX-3543 (Quarfloxin)	M14\(_h\), MALME-3\(_h\), UACC-257\(_h\), UACC-62\(_h\)	n.a.	IC\(_{50}\): > 1 \(\mu M\) for all cell lines	x				[129]
EMICORON	M14\(_h\), LOX IMVI\(_h\), MDAMB-435\(_h\), SK-MEL-2\(_h\), SK-MEL-28\(_h\), SK-MEL-5\(_h\), UACC-62\(_h\), UACC-257\(_h\)	n.a.	LC\(_{50}\) mean for all cell lines: ~3 \(\mu M\)	x	x	x		[127, 128]
IZCZ-0	A375\(_h\)	24 h	IC\(_{50}\): 2.3 \(\mu M\)	x				[130]
IZCZ-3	A375\(_h\)	24 h	IC\(_{50}\): 4.2 \(\mu M\)	x				[130]
IZTC-1	B16\(_m\)	24 h	IC\(_{50}\): ~2.2 \(\mu M\), ~50-65% reduced melanoma growth in vivo. Binds preferentially to MYC G4	x				[124]
N,N’-bis(3,4-dihydroxybenzylidene)-1,2-diaminobenzene (crosslinker)	B16F1\(_m\)	n.a.	IC\(_{50}\): 1.7 \(\mu M\)	x	x			[131]
Naphthalene diimide derivatives (compound 2)	SKMEL-5\(_h\)	48 h	IC\(_{50}\): 1.7 \(\mu M\)	x	x			[132]
PhenDC3	A375\(_h\)	96 h	GI\(_{50}\): 10 \(\mu M\)	x				[69]
Phenyl 1,2,3-triazole-thymidine ligands \((L1, L2, L3)\)	B16F10\(_m\)	24 and 48 h	IC\(_{50}\): 200 \(\mu M\) (L1), 125 \(\mu M\) (L2), 50 \(\mu M\) (L3)	x				[133]
PPL3C	M14\(_h\)	96 h	IC\(_{50}\): 0.8 \(\mu M\)	x				[128, 134]
Pyridostatin	A375\(_h\)	96 h	GI\(_{50}\): 1.5 \(\mu M\)	x				[69]
RHPS4	M14\(_h\), PLF2\(_h\), JR1\(_h\), JR8\(_h\), SBCL1\(_h\), SAN\(_h\), LP\(_h\), LM\(_h\), JR\(_h\), M14\(_h\)	5 and 7 days	IC\(_{50}\): 3.1 \(\mu M\) (5 days M14), ~1 \(\mu M\) (5 days PLF2\(_h\), JR1, JR8, SBCL1, SAN)	x				[135–137]

Kosiol et al. Molecular Cancer (2021) 20:40
that G4 structures within KRAS represent a promising new drug target.

G4 ligands were also used in targeted approaches in pancreatic tumors analog to other cancer entities [72, 161]. These studies revealed that application of different G4 ligands resulted in reduced viability and growth inhibition of pancreatic cancer cells. In detail, the G4 ligand TMPyP4 induced tumor cell death when incubated with MIA Pa-Ca-2 pancreatic cancer cells while causing no effect in non-malignant cells [162]. Additional studies demonstrated that the G4 ligand MM41 led to reduced tumor cell growth in MIA Pa-Ca-2 xenografts [163]. Also, the G4 binding porphyrins Tetrakis and Octaacetyl inhibited proliferation of Ehrlich Ascites Carcinoma (EAC) solid tumors. The authors explained these growth changes of MIA Pa-Ca-2 and EAC tumors by the reduced expression of the KRAS and BCL2 genes in cancer cells. Note, in these experiments the G4 ligands enhanced the expression of pro-apoptotic molecules such as BAX and TP53 and by this promoted apoptosis [164]. Similarly, the G4 ligand nitidine, or TINA-modified oligonucleotides (insertion of (R)-1-O-(4-(1-pyrenylethynyl)phenylmethyl)glycerol to increase stability) that mimic G4 structures of KRAS could stabilize G4 structures of the promoter and down-regulate KRAS expression and inhibit pancreatic cancer cell growth [165, 166]. One possible explanation for these observations is that KRAS expression is reduced due to the competition of G4 structure formation and MAZ binding [155, 165]. An alternative, but not exclusive hypothesis is that the G4 structures within the promoter are crucial for KRAS expression itself by inducing a positive feedback loop. KRAS stimulates the expression of ILK, which regulates HNRNPA1. HNRNPA1 binds and breaks down the G4 motif in the KRAS promoter and induces KRAS transcription [166, 167].

While most of the G4-related studies in the context of pancreatic cancer focus on changes of KRAS expression, one study demonstrated that G4 stabilization by BMSG-SH-3 in MIA Pa-Ca-2 xenograft tumors led to telomere shortening caused by reduced expression of TERT. In this study neither KRAS nor BCL2 expression changed [168].

Taken together, these studies revealed promising experimental evidence that G4 structure formation alters the expression of RAS genes and by this inhibits tumor growth. This can be explained by the blocking of DNA polymerases and/or altering the binding of proteins in these regions. It is not clear which additional G4 motifs are targeted by G4 ligands and if this induces genome instability, alters transcription or even translation of multiple other sites. It would be interesting to identify proteins that bind to G-rich non-G4 regions whose binding behaviour is altered upon G4 structure formation at oncogenes. These proteins would be useful future drug targets to gain specificity of treatments with G4 ligands (Table 2).

G-quadruplexes and leukemia
Leukemia is caused by the abberant proliferation of blood cells. Different subtypes of leukemia exist according to the WHO classification depending on the affected cell type, the cell phenotype, cytogenetic and molecular genetic alterations. Acute myeloid leukemia (AML) is the most common acute leukemia in adults and is characterized by a relatively low number of mutations [112]. It is a clinically as well as genetically heterogeneous disease and is also popular as a leukemia model in G4 research. Over the past two decades a number of different G4 ligands (e.g. SYUIQ-5 [180], APTO-253 [181], TMPyP4 [182], telomestatin [62] and Tel03 [183]) were used to test their effect on leukemia cell growth. Most of these studies demonstrated that leukemia cell growth was inhibited after G4 structure stabilization by G4 ligands in vitro and in vivo [62, 181, 182]. Similar to
Ligand/G4 targeting	Cell line (all human)	Treatment duration (in vitro)	Growth Effect	Cellular Effects	Literature
4,11-bis(2-aminoethylamino) anthra[2,3-b]fur an-5,10-dione (2a), 11-bis(2-aminoethylamino) anthra[2,3-b]thiophene-5,10-dione (2b)	PANC-1	72 h	IC₅₀ (metabolic activity): 0.26 μM (2a) and 0.9 μM (2b)	x	[169]
SMe	PANC-1	48 h	IC₅₀: 80 μM	x	[122]
Alkyl-modified porphyrins	PANC-1	72 h	IC₅₀ (metabolic activity): ~15 nM	x	[142]
Azidothymidine (AZT)	MIA PaCa-2	4 and 7 days	IC₅₀ >200 μM	x	[162]
BMSG-SH3	MIA PaCa-2	n.a.	50% decreased tumor growth of MIA-Pa-Ca2 xenografts No in vitro cytotoxicity assay done	x	[168]
C14	PANC-1	n.a.	IC₅₀: ~10 nM when irradiated with halogen light	x	[141]
C-2028	PANC-1, MIA PaCa-2, BxPC-3, AsPC-1, Capan-2	72 h	IC₅₀ for all cell lines < 100 nM About 80% reduced Panc-1 xenograft growth in vivo	x	[170]
CM03	MIA PaCa-2, PANC-1	96 h	IC₅₀: 7 nM (MIA), 18 nM (PANC-1), reduced tumor growth by ~ 73%	x	[171–173]
Copper(ii) I/d-valine-(1,10-phen) complexes (complex 1a, 1b)	BxPC3, AsPC1	72 h	IC₅₀: ~2 μM for both complexes in both cell lines	x	[174]
CX-3543 (Quarfloxin)	MIA PaCa-2	n.a.	>50% reduced tumor growth of MIA PaCa-2 xenografts	x	[129]
CX-5461	Gemcitabine-resistant MIA PaCa-2 (Gem-MIA-R3) and normal MIA-Pa-Ca2	96 h	GI₅₀: 90.3 nM (GemMIA-R3), 88.7 nM (MIA-Pa-Ca2)	x	[175]
MIM41	MIA PaCa-2, PANC-1	96 h	IC₅₀: 11 nM (MIA), 3 nM (PANC-1), ~80% reduced growth of MIA PaCa-2 xenografts in vivo	x	[163, 171]
Naphthalene diimide ligands (compounds 3d, 3h)	MIA PaCa-2	96 h	IC₅₀: 10 nM for both compounds	x	[45]
Naphthalene diimide isomer ligands (compounds 2-5)	MIA PaCa-2, PANC-1	96 h	IC₅₀: 5-130 nM (MIA PaCa-2), 2 nM-1.5 μM (PANC-1)	x	[176]
Nitidine	AsPC-1, BxPC-3, MIA PaCa-2, PANC-1	72 h	IC₅₀: 6.1 μM (AsPC-1), 5.2 μM (BxPC-3), 13.4 μM (MIA PaCa-2), 35.3 μM (PANC-1)	x	[160]
Octaacetyl	Panc-1, MIA PaCa-2	24-72 h	IC₅₀: 65, 40, 36 μM for Panc-1 (24, 48, 72 h) and 62, 38, 33 μM for MIA PaCa-2 Reduced tumor growth in vivo	x	[164]
previously discussed cancer entities, studies in leukemia revealed that after G4 stabilization the expression of oncogenes changed as well as the function of telomerase. G4 stabilization by telomestatin led to apoptosis and telomere shortening in leukemia cells from four AML patients [184]. Similarly, telomere shortening and senescence was observed with the G4 ligand SYUIQ-5 in K-562 and HL-69 leukemia cells, because of changes in the expression of telomerase (TERT) and TERF2 [180]. In addition to the relevance of G4 structure regulation at telomeres, several important leukemic oncogenes were inhibited after using G4 ligands (including BCL2 [183], MYC [180, 181, 185], MLLT1 and AFDN [186], WT1 [182], KIT [181] and KRAS [185]) in human AML-derived cell lines.

As stated above, G4 structure formation might also challenge genome stability and exhibit tumor/leukemia-promoting properties. Indeed, Tauchi and colleagues demonstrated that telomestatin activates the ATM-dependent DNA-damage checkpoint response [62]. In silico analysis revealed that 70% of the rearranged genes in leukemia contain a G4 motif [187]. This might indicate that G4 structures stimulate genome instability in these tumors. This was further supported by the finding that sites of rearrangement in TCF3, which promotes leukemia development, colocalize with regions that can form G4 structures [188]. In the future, it would be interesting to determine, if the G4 landscape within these mutagenic tumors changes and to address, which G4 structure newly forms and which are lost in these tumors. One hypothesis is that G4 structure formation contributes to the mutagenic nature of tumors. The determination of the location of G4 structures within these cancers together with deeper knowledge of the function and relevance of these structures will be beneficial to adjust G4 structure-driven treatments.

Table 2 Overview of studies investigating the effect of G4 ligands on different pancreatic cancer cell lines (Continued)

Ligand/G4 targeting	Cell line (all human)	Treatment duration (in vitro)	Growth Effect	Cellular Effects	Oncogene regulation	Genomic instability	Not tested	Literature
RHPS4	PAXF 736	15 days colony forming assay	IC_{50}: 0.44 μM	Telomere maintenance	x	[177]		
SOP1812	MIA PaCa-2, PANC-1, Capan-1, BXPC-3	96 h	GI_{50}: 1.3 nM (MIA PaCa-2), 5.9 nM (Capan-1)	Significantly reduced MIA PaCa-2 xenograft growth in vivo	x	[173]		
Telomestatin	MIA PaCa-2	48 h	IC_{50}: 0.5 μM				[178]	
Tetakis	PANC-1, MIA PaCa-2	24-72 h	IC_{50}: 60, 31, 25 μM (PANC-1) and 65, 36, 30 μM (MIA PaCa-2) for 24, 48, 72 h	Reduced tumor growth in vivo	x	[164]		
Tetrasubstituted naphthalene diimide ligands	PANC-1, MIA PaCa-2, HPAC, BxPc-3	96 h	IC_{50}: 0.1-0.2 μM (PANC-1, MIA PaCa-2, HPAC), 1.5 μM (BxPc-3)		x		[179]	
TMPyP4	MIA PaCa-2, PANC-1	48 h, 4 and 7 days	IC_{50}: 21.9 μM (MIA PaCa-2, 4 days), 50 μM (PANC1, 7 days), 50 μM (MIA PaCa-2, 48 h), ~20 μM (PANC-1, 48 h), ~30% KRAS inhibition after 12 and 24 h		x	[122, 142, 154, 162, 178]		

Kosiol et al. Molecular Cancer (2021) 20:40
Page 9 of 18
Table 3 Overview of studies investigating the effect of G4 ligands on different leukemia cell lines

Ligand/G4 targeting	Cell line (all human)	Treatment duration (in vitro)	Growth Effect	Cellular Effects	Literature		
1,8-dipyrazolcarbazole (DPC) derivatives, compound 7b	HL-60	48 h	IC50: 1.2 μM	x	[193]		
7-substituted 5,6-dihydrobenzo[c]acridine derivatives, compound 2b	K-562	48 h	IC50: 9.2 μM	x	[194]		
9-N-substituted berberine derivatives, compound 2j	HL-60	8 days	IC50: ~3 μM	x	[195, 196]		
12-N-Methylated 5,6-dihydrobenzo[c]acridine derivatives, compound 21c	Ramos, CA46	96 h	IC50: ~5-10 μM	x	[197]		
Actinomycin D	Ramos, CA46	24 h	IC50: ~25 nM (Ramos), ~10 nM (CA46)	x	[198]		
Alkynylplatinum(II)terpyridine complexes (1-3)	K-562	48 h	IC50: 4-7.3 μM	x	[199]		
APTO-253	AML: EOL-1, HEL92.1.7, MV4-11, KG-1, SKM-1, THP-1, NOMO-1, HL-60, MOLM-13 Leukemia/ Lymphoma: GRANTA-519, Jeko-1, Jurkat, SUDHL-6, Mino, Raji, Ramos	5 days	LC50: 0.14-1.75 μM (AML), 0.057-0.52 μM (non-AML)	x	x	[181]	
AQ1	HMC1.2, α155	n.a.	n.a.	x	x	[200, 201]	
B5	Ramos, CA45	48 h	IC50: 11.3 μM (Ramos), 21.8 μM (CA45)	x	[198, 202]		
Ber8	HL-60	48 h	IC50: 1.7 μM	x	x	x	[196]
BRACO-19	CLL, AML	n.a.	IC50: 80 μM	x	[203]		
C2	Ramos, CA45	48 h	IC50: 1.4 μM (Ramos), >100 μM (CA45)	x	[198, 202]		
CORON	CCRF-CEM, HL-60(TB), K-562, MOLT-4, RPMI-8226, SR	n.a.	LC50: 0.85 μM (K-562), 1.4 μM (MOLT-4), 1.9 μM (HL-60(TB)), > 50 μM (all other)	x	x	x	[127]
CX-3543 (Quarflaxin)	A3, CCRF-CEM, D1-1, GDM-1, HL-60, I 9.2, J45-01, Jgamma-1, Jurkat, K-562, Kasumi-1, KG-1, Ku-812, MEG-01, MOLT-3, MOLT-4, MV-4-11, P116, Reh, RPMI-8226, RS4-11, SR, TF-1, THP-1	n.a.	IC50: ~1 μM	-	-	[129]	
D2	Ramos, CA45	48 h	IC50: 11.7 μM (Ramos), 17.8 μM (CA45)	x	[198, 202]		
Ligand/G4 targeting	Cell line (all human)	Treatment duration (in vitro)	Growth Effect	Cellular Effects	Literature		
---------------------	-----------------------	-------------------------------	---------------	-----------------	------------		
Dequinolinyl-Pyridine Ligands (1a-c)	K-562, HL60	72 h	IC_{50} >50 μM (1a), 3 μM (1b), >50 μM (1c, all K-562)	x	[204]		
Disubstituted quindoline derivatives, compound 74a	Raji, CCRF-CEM, U266B2	48 h	IC_{50} 4.7 μM (Raji), 18.1 μM (CCRF-CEM), 23.0 μM (U266B2)	x	[205]		
DNR	K-562	48 h, 96 h	IC_{50} 0.33 μM, 0.067 μM	x	[206]		
EMICORON	CCRF-CEM, HL-60(TB), K-562, MOLT-4, RPMI-8226, SR	n.a.	LC_{50} 3.7 μM (HL-60(TB)), > 50 μM (all other)	x	[127]		
GQC-05	KG-1a, CMK, TF-1	24 h	IC_{50} >1 μM	x	x	[207]	
LZ-11	HL-60	48 h, 96 h	IC_{50} 9.6 μM	x	[208]		
MXR	K-562	48 h, 96 h	IC_{50} 0.411 μM	x	[206]		
Pegaharmine D	HL-60	72 h	IC_{50} 3.81 μM	x	[209]		
Pyrazine-based cyclometalated (C^Npz^C)Au(III) carbene complexes, compound 2 and 3	HL-60	72 h	IC_{50} 0.31 μM (2), 4.05 μM (3)	x	[210]		
Pyridine(2,4-dihydroxybenz aldehyde dibenzyl semicarbazone) copper(II)	MOLT-4	24 h, 72 h	IC_{50} 5 μM, IC_{50} 1.5 μM	x	[185]		
QPB compound 15e	HL-60	48 h	IC_{50} 1.7 μM	x	[211]		
Quinolino-benzo-[5, 6]-dihydro isoquinolium compounds 3a, 3f, 3g	HL-60	48 h	IC_{50} 2 μM (3a), 12.6 μM (3g)	x	[212]		
TMPyP4	K-562, OCI-AML2, OCI-AML3	48 and 96 h	IC_{50} 100-170 μM (K-562), 48 h, 60 μM (OCI-AML2), 96 h, 50 μM (OCI-AML3), 96 h	x	[182, 191, 213, 214]		
Telomestatin	Primary blast cells from AML patients OM9,22, K-562	10-30 days	IC_{50} 5 μM (10 days), 2 μM showed growth inhibition (15/30 days)	x	x	[62, 184, 215]	
As a side note we would like to point out that also G4 structure formation within RNAs could impact tumorigenesis and might be a useful target for cancer therapy. The translational control of oncoprotein expression is considered to be relevant in many solid cancers [192] and leukemias. EIF4A is an RNA helicase that promotes and sustains T-acute lymphoblastic leukemia and preferentially targets mRNAs with G4 motifs in their 5'UTR [192]. Silvestrol, hippuristanol and pateamine A are natural compounds that target EIF4A. Inhibition of EIF4A with silvestrol showed anti-tumor efficacy in vitro and in vivo [192]. It was proposed that after EIF4A inhibition by silvestrol more G4 structures are formed within these transcripts leading to altered translation, which caused the slow growth of tumor cells (Table 3).

Discussion

The research of the past decades links G4 structure formation and unfolding to defects and changes observed in different cancer entities. Current studies revealed that although most G4 ligands result in changes of cancer cell growth, they act via different mechanisms and most likely at different targets. It is not clear, if the reduced growth effect on cancer cells after G4 ligand treatment is caused by multiple G4 structure-mediated changes, by a single G4 structure-driven event or by unspecific binding of the ligand. The problem in the current literature is to pinpoint the exact cause that drives altered translation, which caused the slow growth of tumor cells (Table 3).

Table 3 Overview of studies investigating the effect of G4 ligands on different leukemia cell lines (Continued)

Ligand/G4 targeting	Cell line (all human)	Treatment duration (in vitro)	Growth Effect	Cellular Effects	Literature	
			IC_{50} 3.1 μM (9-py), 18.1 μM (7-py), 5 μM (7), 8.03 μM (9)	Telomere maintenance, Oncogene regulation, Genome instability	Not tested	
Substituted salicylaldehyde dibenzyl semicarbazones copper(II) complexes (7, 9, 7-py and 9-py)	MOLT-4	24 h	x	[215]		
Sysu12d	CA46, HL-60	48 h	IC_{50} 11.2 μM (CA46), 5 μM (HL-60)	x	x	[216]
SYUIQ-5	K-562, HL-60	72 h	IC_{50} 5 μM (K-562, HL-60) or 2.65 μM (K-562)	x	x	[180, 217]
SYUIQ-FM05	K-562	24 h	IC_{50} 10.83 nM	x	[218]	

An interesting therapeutic strategy could be to combine immune checkpoint inhibitors with G4 structure-stabilizing ligands. It has been demonstrated that the success of immune checkpoint inhibition correlates with the mutational burden of a tumor [111, 112]. Hence, immunotherapeutic approaches might benefit from a combinational therapy with G4 ligands. It seems plausible that G4 ligands, which induce genome instability, might increase the immunogenecity of a tumor and sensitize it for checkpoint inhibition or other immunotherapeutic approaches.

Conclusion

In this review we presented and discussed the relevance of G4 structure formation and stabilization as a therapeutic approach to treat cancer cells based on the current literature. As pointed out, different ligands have often a negative effect on cancer cell growth via different mechanisms. We discussed the hypothesis, if the mutagenic burden of the tumor positively or negatively influences the outcome of G4
ligand treatment. We summarized the current research results that are linked to changes in G4 levels in melanoma, pancreatic cancer and leukemia cells. The conclusions are not very clear. We observe that all three tumor entities show reduced cell growth upon treatment with different G4 ligands and, depending on the ligand, also changes in telomere maintenance, gene expression of oncogenes and increased genome instability. A direct comparison is difficult, because different studies were often done using different conditions. Some ligands were used in at least two entities. TMPyP4, EMICORON and CORON were tested in all three selected entities. Although similar effects were documented, the timing of treatment was as well as the used concentration differs in these different studies. These differences indicate that lower concentrations of G4 ligands (e.g. EMICORON) are required to induce G4 structure-driven toxicity in cancer cells that have a high mutagenic burden (see Table 1, 2 and 3). A similar trend was observed for BRACO-19 (28 µM in melanoma and 80 µM for leukemia). Further experimental data demonstrated that a treatment with G4 ligands further enhances the cytotoxic effect in cells that have high levels of genome instability (e.g. after radiation therapy, after PARP inhibitor treatment or in BRCA1-deficient cells). However, in studies that used quarfloxin (CX-3543) we could not find this correlation. Future studies with similar culturing conditions and additional molecular studies are required to proof this hypothesis.

Lastly, we would like to discuss the potential impact that G4 structure formation might have on the mutagenic burden of the tumor and what the consequences are for tumor development and tumor relapse after treatment. In general, G4 structure formation, if not regulated efficiently (this includes formation and unfolding), can stimulate genome instability, which includes mutations and deletions and complex gross chromosomal rearrangements [28, 30, 220]. A computational study investigated how the mutational burden correlates with G4 structure formation [221]. They revealed by comparing the location of potential G4 forming sites with cancer-associated breakpoints (using the COSMIC database) a significant overlap, in particular in those cancers that harbor a mutation in TP53. This is underlined by computational studies in melanoma cells that link G4 regions with mutational hot spots [187]. A recent study identified a direct correlation of G4 structure formation with mutational changes in different breast cancer entities [222]. This supports the notion that G4 formation indeed stimulates and influences mutation rates in different cancers and may also contribute to subtype classifications [222].

Abbreviations

20A: 1-ethyl-N-(phenylmethyl)-4-(tetrahydro-2H-pyran-4-ylamino)-1H-pyrano[3,4-B]pyridine-5-carboxamide; AFDN: Afadin, Adherens Junction Formation Factor; AML: Acute myeloid leukemia; APTO-253: 2-(5-fluoro-2-methyl-1H-indol-3-yl)-1H-midazol[4,5-[][1]O,phenanthroline; ATM: Ataxia Telangiectasia Mutated; ATRX: ATRX Chromatin Remodeler; BAX: BCL2 Associated X, Apoptosis Regulator; BCL2: BCL2 Apoptosis Regulator; BLM: Bloom Syndrome RecQ Like Helicase; BMSC-Sh3-1: 2,7-Bis-[5-(4-methyl-piperazin-1-yl)-pentyl]-4,9-bis-[3-(4-methyl-piperazin-1-yl)-propylamino]-benzo[ln]r][3,8]phenanthroline-1,3,6,8-tetraco; BRACO19: N-b[4-(2-(Dimethylamino)phenylamino)acridine-3,6-diy][diis][5-(4-pyrimidin-1-yl)propanoamide] hydrochloride; BRAF: B-Raf Proto-Oncogene, Serine/Threonine Kinase; BRCA1: Breast Cancer Type 1 Susceptibility Protein; BRCA2: Breast Cancer Type 2 Susceptibility Protein; BRCA1 Interacting Protein C-Terminal Helicase 1; C14: C14H28-alkyl derivative of PMPyP4; ChlP-seq: Chromatin Immunoprecipitation and sequencing; CX-3543: Quarfloxin, 15-fluoro-N-[2-(251)-1-methylpyridinol-2-yl]ethyl]-18-oxo-14-(3-pyrazin-2-ylpyridolin-1-yl)-12-oxa-3-azapentacyclo[17.1.02,11.04,9.017,21]-henicosa-2,6,8,10,13(21),14,16,19-nonenaene-19-carboxamide; CX-5461: 2-(4-methyl-1,4-diazepan-1-yl)-N-[5-(5-methylpyrazin-2-yl)methyl]-5-oxo-[1,3]benzothiazol[3,2-a][1,8]naphthyridine-6-carboxamide; EAC: Ehrlich ascites carcinoma; EIF4A: Eukaryotic translation initiation factor 4A; G4: G-quadruplex; GI20/GI50: 20%/50% growth inhibition; GI5427: 10-(4-Methyl-piperazin-1-yl)methylchromo[4,3,2-b]dephthalazine(2H-one; h: Hours; HaCaT: Human adult low Calcium high Temperature Keratinocytes; HMK81B: High mobility group box 1; HNRRPA1: Heterogeneous nuclear ribonucleoprotein A1; HR: Homologous recombination; HRAS: HRas Proto-Oncogene, GTase; ICo: Half maximal inhibitory concentration; IkK: IκB Kinase Linked Kinase; IO: Immune-ontology; IR: Ionizing radiation; ITZTZ-

Acknowledgements

We thank the Paeschi and the Heine group for helpful discussion.

Authors’ contributions

NK, SJ, AH, KP literature search, NK, AH, KP initial draft of manuscript, NK, SJ, PB, AH, KP editing and final draft of manuscript, AH and KP supervision and funding acquisition. All authors approved the final manuscript.
Funding
Open Access funding enabled and organized by Projekt DEAL. Research in the Paeschke laboratory is funded by an ERC Stg Grant (638988-G4DSB) and by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) – Project-ID 3691/9452 – TRR237. Research in the Paeschke and Heine lab are funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under Germany’s Excellence Strategy – EXC2151 – 390873048.

Availability of data and materials
Not applicable

Ethics Approval and Consent to participate
Not applicable

Consent for publication
Not applicable

Competing interests
The authors declare no competing interests.

Received: 14 October 2020 Accepted: 1 February 2021

Published online: 25 February 2021

References
1. Hannah Ritchie and Max Roser. Causes of Death - Our World in Data. https://ourworldindata.org/causes-of-death. Accessed 4 Dec 2020.
2. Cancer. https://www.who.int/news-room/fact-sheets/detail/cancer. Accessed 4 Dec 2020.
3. Couzin-Frankel J. Breakthrough of the year. Cancer immunotherapy. Vol. 27, Science. 2013;342:1432–3.
4. Sun W, Shi Q, Zhang H, Yang K, Ke Y, Wang Y, et al. Advances in the techniques and methodologies of cancer gene therapy. Discov Med. 2019; 27(146):45–55.
5. Klinakis A, Karagiannis D, Rampias T. Targeting DNA repair in cancer: current state and novel approaches. 77, Cellular and Molecular Life Sciences. 2020. p. 677–703.
6. A R, JD W. Cancer immunotherapy using checkpoint blockade. Science. 2018;359(6382).
7. Hochhaus A, Larson RA, Guilhot F, Radich JP, Branford S, Hughes TP, et al. Long-Term Outcomes of Imatinib Treatment for Chronic Myeloid Leukemia. N Engl J Med. 2017;376(10):917–27.
8. Hellmann MD, Paz-Ares L, Bernabe Caro R, Zurawski B, Kim S-W, Carcereny E, et al. Determinants of G-quadruplex-induced epigenetic instability in REV1-deficient cells. EMBO J. 2014;33(21):2507–20.
9. De Magis A, Marzo SG, Russo M, Marinello J, Motrigi R, Sordet O, et al. DNA damage and genome instability by G-quadruplex ligands are mediated by R loops in human cancer cells. Proc Natl Acad Sci U S A. 2019;116(3):1816–25.
10. Lopes J, Lie Piazza A, Bermejo R, Kriegsman B, Colotso A, Teulade-Fichou MP, et al. G-quadruplex-induced instability during leading-strand replication. EMBO J. 2011;30(19):4033–46.
11. Puig Lombard E, Holmes A, Verga D, Teulade-Fichou MP, Nicolas A, Londono-Vallée A. Thermodynamically stable and genetically unstable G-quadruplexes are depleted in genomes across species. Nucleic Acids Res. 2019;47(14):6150–71.
12. Biffi G, Tannahill D, Miller I, Howat W, Balasubramanian S. Elevated levels of G-quadruplex formation in human stomach and liver cancer tissues. PLoS One. 2014(9).
46. Kim MY, Vankayalapati H, Shin-Ya K, Wierzbicki K, Hurley LH. Telomestatin, a potent telomerase inhibitor that interacts quite specifically with the human telomeric intramolecular G-quadruplex. J Am Chem Soc. 2002;124(10):2098–9.

47. Burger AM, Dai F, Schultes CM, Resko AP, Moore MJ, Double JA, et al. The G-quadruplex-interacting molecule BRACO-19 inhibits tumor growth, consistent with telomere targeting and interference with telomerase function. Cancer Res. 2005;65(4):1489–96.

48. Izibicka E, Wheeless RT, Raymond E, Davidson KK, Lawrence RA, Sun D, et al. Effects of cationic porphyrins as G-quadruplex interactive agents in human tumor cells. Cancer Res. 1999;59(3):639–44.

49. Gowen SM, Heald R, Stevens MGF, Kelland LR. Potent inhibition of telomerase by small-molecule pentacyclic acyclics capable of interacting with G-quadruplexes. Mol Pharmacol. 2001;60(3):981–8.

50. Rodríguez R, Muller S, Yeoman TA, Treantaux C, Rou JF, Balasubramanian S. A novel small molecule that alters shelterin integrity and triggers a DNA-damage response at telomeres. J Am Chem Soc. 2008;130(4):15758–9.

51. Pagano A, Iaccarino N, Abdelhamid MAS, Brancaccio D, Garzarella EU, Di Pozzo A, et al. Common G-quadruplex binding agents found to interact with i-motif-forming DNA: Unexpected multi-target-directed compounds. Front Chem. 2018;6.

52. Abdelhamid MAS, Gates AJ, Waller ZAE. Destabilization of i-Motif DNA at Neutral pH by G-Quadruplex Ligands. Biochemistry. 2019;58(4):245–9.

53. Asanitsu S, Bando T, Sugiyama H. Ligand Design to Acquire Specificity to Intended G-Quadruplex Structures. Vol. 25, Chemistry - A European Journal. 2019, p. 471–30.

54. Felsenstein KM, Saunders LB, Simmons JK, Leon E, Calabrese DR, Zhang S, et al. Small Molecule Microarrays Enable the Identification of a Selective, Quadruplex-Binding Inhibitor of MYC Expression. ACS Chem Biol. 2016;11(1):138–48.

55. Cimino-Reale G, Zaffaroni N, Folini M. Emerging Role of G-quadruplex DNA as Target in Anticancer Therapy. Curr Pharm Des. 2016;22(44):6612–24.

56. Kim NW, Piatsyk MA, Prowse KR, Hurley CB, West MD, Ho PLC, et al. Specific association of human telomerase activity with immortal cells and cancer. Science (80-.). 1994;266(5193):201–5.

57. Zahler AM, Williamson JR, Cech TR, Prescott DM. Inhibition of telomerase by g-quartet DNA structures. Nature. 1991;350(6320):718–20.

58. Moe et al., Porter KC, Cohen SB, Phan T, Zyner KG, Sasaki N, et al. Telomeric G-quadruplexes are a substrate and site of localization for human telomerase. Nat Commun. 2015;6.

59. Paeschke K, Simonsson T, Postberg J, Rhodes D, Lipps HJ. Telomere uncapping by the G-quadruplex ligand RHPS4 inhibits clonogenic damage response pathways. Oncogene. 2003;22(34):5338–47.

60. Paudel BP, Moye AL, Assi HA, El-Khoury R, Cohen SB, Holien JK, et al. A novel small molecule that alters shelterin integrity and triggers a DNA-damage response at telomeres. J Am Chem Soc. 2008;130(4):15758–9.

61. Lin CY, Lovén J, Rahl PB, Faralone RM, Burge CB, Bradner JE, et al. Telomeric G-quadruplex-interactive molecule BRACO-19 inhibits tumor growth, potentiates DNA damage at telomeres. J Am Chem Soc. 2008;130(47):15758–9.

62. Rankin S, Reszka AP, Huppert J, Zloh M, Parkinson GN, Todd AK, et al. Putative DNA Quadruplex Formation within the Human c-Myc Oncogene. J Am Chem Soc. 2005;127(10):8544–50.

63. Cogli S, Xodo LE. G-quadruplex formation within the promoter of the KRAS proto-oncogene and its effect on transcription. Nucleic Acids Res. 2006;34(9):2536–49.

64. Yang D, Hurley L. Structure of the biologically relevant g-quadruplex in the c-Myc promoter. Nucleosides, Nucleotides and Nucleic Acids. 2006;25(8):951–68.

65. Whitfield JR, Beaulieu ME, Soucek L. Strategies to inhibit Myc and their clinical applicability. Vol. 5, Frontiers in Cell and Developmental Biology. 2017.

66. Nasiri HR, Bell NM, Mc Luskie KE, Husby J, Abell C, Neidle S, et al. Targeting a c-Myc G-quadruplex DNA with a fragment library. Chem Commun. 2014;50(14):1704–7.

67. Balasubramanian S, Hurley LH, Neidle S. Structure of the biologically relevant G-quadruplex in the human c-myc oncogene. Nat Struct Mol Biol. 2005;12(10):847–54.

68. Valton AL, Pridelou M. G-Quadruplexes in DNA Replication: A Problem or a Necessity? Vol. 32, Trends in Genetics. 2016. p. 697–706.

69. Boddupally PVL, Hahn S, Beman C, De B, Brooks TA, Gokhale V, et al. Chemical and structural studies provide a mechanistic basis for recognition of the G-quadruplex Myc. Nat Commun. 2018;9(1):4229.

70. Rankin S, Reszka AP, Mungall ID, et al. FANCJ is a structure-specific DNA helicase associated with the polypurine/polypyrimidine tract within the proximal promoter region of the human VEGF gene by the presence of potassium and G-quadruplex-interacting agents. Nucleic Acids Res. 2005;33(18):6070–80.

71. Desheimeier TS, Sun D, Hurley LH. Deconvoluting the structural and drug-recognition complexity of the G-quadruplex-forming region upstream of the bcl-2 PI promoter. J Am Chem Soc. 2006;128(16):5404–15.

72. Syn D, Guo K, Rusche JJ, Hurley LH. Facilitation of a structural transition in the polypurine/polypyrimidine tract within the proximal promoter region of the human VEGF gene by the presence of potassium and G-quadruplex-interacting agents. Nucleic Acids Res. 2005;33(18):6070–80.
92. Rizzo A, Salvi E, Ponz M, D’Angelo C, Stevens MF, D’Incalci M, et al. Stabilization of quadruplex DNA perturbs telomere replication leading to the activation of an ADP- dependent ATM signaling pathway. Nuclear Acids Res. 2009;37(16):5353–64.

93. Beauverlet J, Bensadoun P, Darbo E, Laboruère G, Rousseau B, Richard E, et al. Modulation of the ATM/Chromatin pathology pathway by a Quadruplex ligand tips the balance between senescence and apoptosis in cancer cells. Nucleic Acids Res. 2019;47(18):2793-56.

94. Zimmer J, Taconi EMC, Fello C, Badie S, Ponz M, Klarke K, et al. Targeting BRCAA1 and BRCAA2 Deficiencies with G-Quadruplex-Interacting Compounds. Mol Cell. 2016;61(3):499–60.

95. Bywater MJ, Poortinga G, Sanij E, Hein N, Peck A, Cullinane C, et al. Survival Rates for Melanoma Skin Cancer. https://www.cancer.org/cancer/melanomaskincancer/causes-and-risk-factors/survival-rates-for-melanoma.html. 2014;13(1):75.

96. Wolchok JD, Chiarion-Sileni V, Gonzalez R, Rutkowski P, Grob J-J, Cowey CL, et al. Nivolumab plus Ipilimumab in Advanced Melanoma. N Engl J Med. 2017;377(14):1345–55.

97. Bruno PM, Lu M, Dennis KA, Moore CJ, Inam H, Moore CJ, et al. The primary mechanism of cytotoxicity of the chemotherapeutic agent CX-4561 is topoisomerase II poisoning. Proc Natl Acad Sci U S A. 2020;117(8):4053–60.

98. Mcluckie KIE, Di Antonio M, Zecchini H, Xian J, Caldas C, Krippendorff BF, et al. TP53 allele loss, mutations and expression in malignant melanoma. Br J Cancer. 2007;6(4):453–61.

99. Beauvarlet J, Bensadoun P, Kannegiesser C, Avril MF, Janin N, Spatz A, et al. Modulation of the ATM/Chromatin pathology pathway by a Quadruplex ligand tips the balance between senescence and apoptosis in cancer cells. Nucleic Acids Res. 2019;47(18):2793-56.

100. Warabi Y, Sugimura T, Nagasawa T, Nomura H, et al. G-quadruplex DNA as a molecular target for induced synthetic lethality in cancer cells. J Am Chem Soc. 2013;135(26):9640–3.

101. Lynes N, Ding L, See WY, Sun Y, Scheper RJ, Cancer Genome Atlas Research Network, et al. Pfam: protein families and domains in 100 genomes. Nucleic Acids Res. 2018;46(D1):D452–59.

102. D’Incalci M, D’Angelo C, Stevens MF, D’Incalci M, et al. Stabilization of quadruplex DNA perturbs telomere replication leading to the activation of an ADP-dependent ATM signaling pathway. Nuclear Acids Res. 2009;37(16):5353–64.

103. Beauverlet J, Bensadoun P, Darbo E, Laboruère G, Rousseau B, Richard E, et al. Modulation of the ATM/Chromatin pathology pathway by a Quadruplex ligand tips the balance between senescence and apoptosis in cancer cells. Nucleic Acids Res. 2019;47(18):2793-56.

104. Angele A, Scaglione M, D’Incalci M, et al. Hybrid ligand-alkylating agents targeting telomeric G-quadruplex structures. Org Biomol Chem. 2012;10(14):2798–805.

105. McGuffin L, Karplus K, McCaig H, McLachlan G, et al. FlexiPDB: flexible alignment of protein 3D structures. Nucleic Acids Res. 2011;39:D563–69.

106. McGuffin L, Karplus K, McCaig H, McLachlan G, et al. FlexiPDB: flexible alignment of protein 3D structures. Nucleic Acids Res. 2011;39:D563–69.

107. McGuffin L, Karplus K, McCaig H, McLachlan G, et al. FlexiPDB: flexible alignment of protein 3D structures. Nucleic Acids Res. 2011;39:D563–69.

108. McGuffin L, Karplus K, McCaig H, McLachlan G, et al. FlexiPDB: flexible alignment of protein 3D structures. Nucleic Acids Res. 2011;39:D563–69.

109. McGuffin L, Karplus K, McCaig H, McLachlan G, et al. FlexiPDB: flexible alignment of protein 3D structures. Nucleic Acids Res. 2011;39:D563–69.

110. McGuffin L, Karplus K, McCaig H, McLachlan G, et al. FlexiPDB: flexible alignment of protein 3D structures. Nucleic Acids Res. 2011;39:D563–69.

111. McGuffin L, Karplus K, McCaig H, McLachlan G, et al. FlexiPDB: flexible alignment of protein 3D structures. Nucleic Acids Res. 2011;39:D563–69.

112. McGuffin L, Karplus K, McCaig H, McLachlan G, et al. FlexiPDB: flexible alignment of protein 3D structures. Nucleic Acids Res. 2011;39:D563–69.

113. McGuffin L, Karplus K, McCaig H, McLachlan G, et al. FlexiPDB: flexible alignment of protein 3D structures. Nucleic Acids Res. 2011;39:D563–69.

114. McGuffin L, Karplus K, McCaig H, McLachlan G, et al. FlexiPDB: flexible alignment of protein 3D structures. Nucleic Acids Res. 2011;39:D563–69.

115. McGuffin L, Karplus K, McCaig H, McLachlan G, et al. FlexiPDB: flexible alignment of protein 3D structures. Nucleic Acids Res. 2011;39:D563–69.

116. McGuffin L, Karplus K, McCaig H, McLachlan G, et al. FlexiPDB: flexible alignment of protein 3D structures. Nucleic Acids Res. 2011;39:D563–69.

117. McGuffin L, Karplus K, McCaig H, McLachlan G, et al. FlexiPDB: flexible alignment of protein 3D structures. Nucleic Acids Res. 2011;39:D563–69.

118. McGuffin L, Karplus K, McCaig H, McLachlan G, et al. FlexiPDB: flexible alignment of protein 3D structures. Nucleic Acids Res. 2011;39:D563–69.

119. McGuffin L, Karplus K, McCaig H, McLachlan G, et al. FlexiPDB: flexible alignment of protein 3D structures. Nucleic Acids Res. 2011;39:D563–69.

120. McGuffin L, Karplus K, McCaig H, McLachlan G, et al. FlexiPDB: flexible alignment of protein 3D structures. Nucleic Acids Res. 2011;39:D563–69.

121. McGuffin L, Karplus K, McCaig H, McLachlan G, et al. FlexiPDB: flexible alignment of protein 3D structures. Nucleic Acids Res. 2011;39:D563–69.

122. McGuffin L, Karplus K, McCaig H, McLachlan G, et al. FlexiPDB: flexible alignment of protein 3D structures. Nucleic Acids Res. 2011;39:D563–69.

123. McGuffin L, Karplus K, McCaig H, McLachlan G, et al. FlexiPDB: flexible alignment of protein 3D structures. Nucleic Acids Res. 2011;39:D563–69.

124. McGuffin L, Karplus K, McCaig H, McLachlan G, et al. FlexiPDB: flexible alignment of protein 3D structures. Nucleic Acids Res. 2011;39:D563–69.

125. McGuffin L, Karplus K, McCaig H, McLachlan G, et al. FlexiPDB: flexible alignment of protein 3D structures. Nucleic Acids Res. 2011;39:D563–69.

126. McGuffin L, Karplus K, McCaig H, McLachlan G, et al. FlexiPDB: flexible alignment of protein 3D structures. Nucleic Acids Res. 2011;39:D563–69.

127. McGuffin L, Karplus K, McCaig H, McLachlan G, et al. FlexiPDB: flexible alignment of protein 3D structures. Nucleic Acids Res. 2011;39:D563–69.

128. McGuffin L, Karplus K, McCaig H, McLachlan G, et al. FlexiPDB: flexible alignment of protein 3D structures. Nucleic Acids Res. 2011;39:D563–69.

129. McGuffin L, Karplus K, McCaig H, McLachlan G, et al. FlexiPDB: flexible alignment of protein 3D structures. Nucleic Acids Res. 2011;39:D563–69.

130. McGuffin L, Karplus K, McCaig H, McLachlan G, et al. FlexiPDB: flexible alignment of protein 3D structures. Nucleic Acids Res. 2011;39:D563–69.

131. McGuffin L, Karplus K, McCaig H, McLachlan G, et al. FlexiPDB: flexible alignment of protein 3D structures. Nucleic Acids Res. 2011;39:D563–69.
139. Platella, C., Guida, S., Bonmassar, I., Aquino, A., Bonmassar, E., Ravagnan, G. et al. Antitumour activity of resveratrol on human melanoma cells: A possible mechanism related to its interaction with malignant cell telomerase. Biochim Biophys Acta. 2017;1861(11):2843–51.

140. Peduto, A., Pagano, B., Petruzzi, C., Massa, A., Esposito, V., Virgilio, A. et al. Design, synthesis, biophysical and biological studies of trisubstituted naphthalimides as G-quadruplex ligands. Bioorg. Med. Chem. 2011;19(21):6419–29.

141. Fadault, M., Cogoi, S., Xodo, L. E. Photoactivated cationic alkyl-substituted porphyrin binding to g4-RNA in the 5'UTR of KRAS oncogene represses translation. Chem Commun. 2012;48(8):874–6.

142. Feino, A., Nicotello, G., D'Este, F., Zozieti, S., Lago, S., Richter, R. N. et al. Photodynamic Therapy for pancreatic cancer: Characterization of G-quadruplex RNA structures with Bifunctional Alkyl-Modified Porphyrins. J. Med Chem. 2006;53(9):3469–406.

143. Chhabra, G., Wojdyla, L., Frakes, M., Schrank, Z., Levkis, B., Ivancich, M. et al. Mechanism of Action of G-Quadruplex-Forming Oligonucleotide Homologous to the Telomere Overhang in Melanoma. J Invest Dermatol. 2018;138(4):903–10.

144. Bisht, S., Brossart, P., Feldmann, G. Current Therapeutic Options for Pancreatic Ductal Adenocarcinoma. Oncol. Res Treat. 2018;41(10):593–4.

145. Ciganas, J., Jurdievicova, K., Meiskmey, I., Meiskmey-Kaustel, E., Skeberdyte, A., KRAS, TP53, CDKN2A, SMAD4, BRC1, and BRC2 mutations in pancreatic cancers. Cancers. 2017;9.

146. Waters, A. M., Der C. J. KRAS: The critical driver and therapeutic target for pancreatic cancer. Cold Spring Harb Perspect Med. 2018;8.

147. Prior, I. A., Lewis, P. D., Mattos, C. A comprehensive survey of ras mutations in cancer. Vol. 72. Cancer Res. 2012. p. 2457–60.

148. Weinstein, I. B. Cancer: Addiction to oncogenes - The Achilles heel of cancer. Vol. 297. Science. 2002. p. 63–4.

149. Weinstein, I. B. Disorders in cell circuitry during multistage carcinogenesis: The role of homeostasis. Vol. 21. Carcinogenesis. 2000. p. 857–64.

150. Ying, H., Kimmelman, A. C., Lysiotis, C. A., Hua, S., Chu, G. C., Fletcher-Sanjuan, K. et al. Oncogenic kras maintains pancreatic tumors through regulation of anabolic glucose metabolism. Cell. 2012;149(2):3763–76.

151. Kuma, S., Bagaut, A., Huppert, J. L., Balasubramanian, S. An RNA G-quadruplex in the 5’UTR of the NRAS proto-oncogene modulates translation. Nat Chem. 2007;3(4):218–21.

152. Membrino, M., Cogoi, S., Pedersen, E. B., Xodo, L. E. G4-DNA formation in the HRAS promoter and rational design of decoy oligonucleotides for cancer therapy. PLoS One. 2011;6(9):e24241.

153. Cogoi, S., Chshokordin, A. K., Xodo, L. E., HRAS is silenced by two neighboring G-quadruplexes and activated by MAZ, a zinc-finger transcription factor with DNA unfolding property. Nucleic Acids Res. 2014;42(13):8379–88.

154. Cogoi, S., Paramasivam, M., Spolaore, B., Xodo, L. E. Structural polymorphism within a regulatory element of the human KRAS promoter: Formation of G4-DNA recognized by nuclear proteins. Nucleic Acids Res. 2008;36(11):3765–80.

155. Cogoi, S., Paramasivam, M., Filicchiov, V., Géci, I., Pedersen, E. B., Xodo, L. E. Identification of a new G-quadruplex motif in the KRAS promoter and design of pyrene-modified G4-decoys with anti proliferative activity in pancreatic cancer cells. J Med Chem. 2009;52(2):554–5.

156. Morgan, R. K., Batra, H., Gareig, V. C., Hockings, J., Brooks, T. A. Identification and characterization of a new G-quadruplex forming region within the kRAS promoter and subsequent Drug-Induced Gene Repression. J Am Chem Soc. 2017;139(25):8522–36.

157. Brown, R. V., Danford, F. L., Gokhale, V., Hurley, L. H. Demonstration that drug-activated cationic alkyl-substituted porphyrin binding to g4-RNA in the 5’UTR of KRAS oncogene represses translation. Chem Commun. 2012;48(8):874–6.

158. Kaiser, C. E., Van Ert, N. A., Agrawal, P., Chawla, R., Yang, D., Hurley, L. H. Insight into the Complexity of the G-Motif and G-Quadruplex Structures Formed in the KRAS Promoter and Subsequent Drug-Induced Gene Repression. J Am Chem Soc. 2017;139(25):8522–36.

159. Rha, S. Y., Izbicka, E., Lawrence, R., Davidson, K., Sun, D., Moyer, M. P. et al. Effect of Telomere and Telomerase Interactive Agents on Human Tumor and Normal Cell Lines. Clin Cancer Res. 2000;6(3).

160. Prior, I. A., Lewis, P. D., Mattos, C. A comprehensive survey of ras mutations in cancer. Vol. 72. Cancer Res. 2012. p. 2457–60.

161. Kosiol, M., Bifunctional Alkyl-Modified Porphyrins to restrict progression of pancreatic cancer by stabilizing KRAS G-quadruplexes. J. Med Chem. 2009;37(9):2843–53.

162. Cogoi, S., Zorzet, S., Papozzi, V., Géci, I., Pedersen, E. B. MAZ-binding G4-decoy with locked nucleic acid and twisted intercalating nucleic acid modifications suppresses KRAS in pancreatic cancer cells and delays tumor growth in mice. Nucleic Acids Res. 2013;41(7):4049–64.

163. Gunaratnam, M., de la Fuente, M., Hampel, S. M., Todd, A. K., Reszka, A. P., Schätzlein, A. et al. Targeting pancreatic cancer with a G-quadruplex ligand. Bioorg Med Chem. 2011;19(23):7151–7.

164. Prior, I. A., Cogoi, S., Mariani, H., Mongelli, G., Capriccioni, G., Tikhomirov, A. S., Schekotikhin, A. et al. RNA G-Quadruplexes in Kirsten Ras (KRAS) Oncogene as Targets for Small Molecules Inhibiting Translation. J Med Chem. 2017;60(23):9484–41.

165. Cogoi, S., Chshokordin, A. K., Xodo, L. E., KRAS promoter silencing by MAZ and its role in cancer. J Biol Chem. 2015;290(33):21628–39.

166. Gunaratnam, M., de la Fuente, M., Hampel, S. M., Todd, A. K., Reszka, A. P., Schätzlein, A. et al. Targeting pancreatic cancer with a G-quadruplex ligand. Bioorg Med Chem. 2011;19(23):7151–7.

167. Prior, I. A., Lewis, P. D., Mattos, C. A comprehensive survey of ras mutations in cancer. Vol. 72. Cancer Res. 2012. p. 2457–60.

168. Marchetti, C., Znner, K., Cogoi, S., Pedersen, E. B. MAZ-binding G4-decoy with locked nucleic acid and twisted intercalating nucleic acid modifications suppresses KRAS in pancreatic cancer cells and delays tumor growth in mice. Nucleic Acids Res. 2013;41(7):4049–64.

169. Gunaratnam, M., de la Fuente, M., Hampel, S. M., Todd, A. K., Reszka, A. P., Schätzlein, A. et al. Targeting pancreatic cancer with a G-quadruplex ligand. Bioorg Med Chem. 2011;19(23):7151–7.

170. Prior, I. A., Lewis, P. D., Mattos, C. A comprehensive survey of ras mutations in cancer. Vol. 72. Cancer Res. 2012. p. 2457–60.
190. Guo QL, Su HF, Wang N, Liao SR, Lu YT, Ou TM, et al. Synthesis and evaluation of 7-substituted-5,6-dihydrobenzo[c]acridine derivatives: A new class of highly selective ligands for telomeric G-quadruplex DNA. Eur J Med Chem. 2012;53(5):62–63.

191. Chen WJ, Zhou CX, Yao PF, Wang XX, Tan JH, Li D, et al. Disubstituted 1,8-dipyrazolcarbazole derivatives as a new type of c-myc G-quadruplex binder. Biochemistry. 2009;48(31):7392–7397.

192. Wolfe AL, Singh K, Zhong Y, Drewe P, Rajasekhar VK, Sanghvi VR, et al. RNA-binding Small Molecule. Sci Rep. 2018;8:1.

193. Federici L, Arcovito A, Scaglione GL, Scaloni F, Lo Sterzo C, Di Matteo A, et al. Nucleophosmin C-terminal leukemia-associated domain interacts with G-rich quadruplex forming DNA. J Biol Chem. 2010;285(48):37138–37149.

194. Chiarella S, De Cola A, Scaglione GL, Carletti E, Graziano V, Barcaroli D, et al. The G-quadruplex stabilizing NMR-derived ligand SYUIQ-FM05, targets proto-oncogene c-kit transcription and induces cell cycle arrest. Front Genet. 2020;52(9):878–879.

195. Wang KB, Li DH, Hu P, Wang WJ, Lin C, Wang L, et al. A Series of β-Carbolinoid Alkaloids from the Seeds of Peganum harmala Show G-quadruplex Interactions. Org Lett. 2016;18(14):3398–401.

196. Bertrand B, Fernandez-Cestau J, Angulo J, Cominetti MMD, Waller ZAE, Searcey M, et al. Cytotoxicity of Pynazine-Based Cyclometalated (CpNpzC)Au(III) Carbene Complexes: Impact of the Nature of the Ancillary Ligand on the Biological Properties. Inorg Chem. 2017;56(10):5738–5740.

197. He JH, Liu HY, Li Z, Tan JH, Ou TM, Huang SL, et al. New quinazoline derivatives for telomeric G-quadruplex DNA: Effects of an added phenyl group on quadruplex binding ability. Eur J Med Chem. 2013;63:1–13.

198. Ma Y, Ou TM, Tan JH, Hou JQ, Huang SL, Gu LQ, et al. Quinolino-benzo-[5,6]-dihydroisoquinolium compounds derived from berberine: A new class of highly selective ligands for G-quadruplex DNA in c-myc oncogene. Eur J Med Chem. 2011;46(3):1906–1913.

199. Mikami-Terano Y, Akiyama M, Yuza Y, Yanagisawa T, Yamada O, Yamada H. Antitumor activity of G-quadruplex-interactive agent TMPyP4 in K562 leukemic cells. Cancer Lett. 2008;261(2):226–34.

200. De Cola A, Pietroangelo L, Forfi F, Barcaroli D, Budani MC, Graziano V, et al. AML cells carrying NPM1 mutation are resistant to nucleophosmin displacement from nucleoli caused by the G-quadruplex ligand TMPyP4. Vol. 5, Cell Death and Disease. 2014. p. e1427.

201. Munira Haidad Ali S, Yan YK, Lee PFP, Khong KX, Alam Sk M, Lim KH, et al. Copper(II) complexes of substituted salicylaldehyde dibenzylsemicarbazones: Synthesis, cytotoxicity and interaction with quadruplex DNA. Dalt Trans. 2014(3):349–359.

202. Su L, Zheng H, Li Q, Zhou J, Chen S, Liu J, et al. Mechanistic studies on the anticancer activity of 2,4-disubstituted quinazoline derivative. Biochem Biophys Acta - Gen Subj. 2014(1840):5132–30.

203. Zhou JM, Zhu XF, Lu YJ, Deng R, Huang ZS, Mei YP, et al. Senescence and telomere shortening induced by novel potent G-quadruplex interactive agents, quinolone derivatives, in human cancer cell lines. Oncogene. 2006;25(8):593–11.

204. Shen JH, Jin JI, Li J, Wang Y, Zhu SH, Lu YJ, et al. The G-quadruplex ligand, SYIQI-FM05, targets proto-oncogene c-kit transcription and induces apoptosis in K562 cells. Pharm Biol. 2013;51(4):447–54.

205. Bhattarchjee S, Chakraborty S, Chhorel E, Sengupta PK, Bhownik S. Importance of the hydroxyl substituents in the B-ring of plant flavonoids on their preferential binding interactions with VEGF G-quadruplex DNA: Multi-spectroscopic and molecular modeling studies. Int J Biol Macromol. 2018;118(1):26–39.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.