rBmaTX14 Increases the Life Span and Promotes the Locomotion of *Caenorhabditis Elegans*

Lan Chen1,*, Ju Zhang1,*, Jie Xu1, Lu Wan1, Kaixuan Teng1, Jin Xiang1, Rui Zhang1, Zebo Huang1,3, Yongmei Liu1, Wenhua Li2, Xin Liu1

1 Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, and School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, China, 2 School of Life Science, Wuhan University, Wuhan, 430071, China, 3 Guangdong Province Key Laboratory for Biotechnology Drug Candidates, School of Biosciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, 510006, China

☯ These authors contributed equally to this work.

* lx@whu.edu.cn

Abstract

The scorpion has been extensively used in various pharmacological profiles or as food supplies. The exploration of scorpion venom has been reported due to the presence of recombinant peptides. rBmaTX14 is an α-neurotoxin extracted from the venom gland of the East Asian scorpion *Buthus martensii* Karsch and can affect ion channel conductance. Here, we investigated the functions of rBmaTX14 using the *Caenorhabditis elegans* model. Using western blot analysis, rBmaTX14 was shown to be expressed both in the cytoplasm and inclusion bodies in the *E. coli* Rosetta (DE3) strain. Circular dichroism spectroscopy analysis demonstrated that purified rBmaTX14 retained its biological structures. Next, feeding nematodes with *E. coli* Rosetta (DE3) expressing rBmaTX14 caused extension of the life span and promoted the locomotion of the nematodes. In addition, we identified several genes that play various roles in the life span and locomotion of *C. elegans* through microarray analysis and quantitative real-time PCR. Furthermore, if the amino acid site H15 of rBmaTX14 was mutated, rBmaTX14 no longer promoted the *C. elegans* life span. In conclusion, the results not only demonstrated the functions and mechanism of rBmaTX14 in *C. elegans*, but also provided the new sight in the utility of recombinant peptides from scorpion venom.

Introduction

Scorpions, which are considered ‘living fossils’, maintain primary Paleozoic scorpions features such as the venom apparatus, book lung and pectin [1]. Although Scorpion venom has toxin effects, it also contains enzymes, including hyaluronidase, phospholipase and proteases [2–4], and small peptides with antimicrobial and anti-parasitic activities [5–7]. Scorpions are also used as a source of Chinese medicine to treat stroke and other diseases.

Scorpion venom contains many polypeptides, usually several amino acid residues compiled into long single chains [8–10]. These polypeptides specifically interact with ion channels,
causing their blockage or by altering the opening and closing of the channels [11, 12]. Several types of scorpion venom such as chlorotoxin, AaeAP1 and AaeAP2 have anti-cancer effects [13, 14]. Additionally, rBmαTX14, a peptide extracted from East Asian Buthus martensii Karsch, is known to be a potent blocker of the Na+ currents of root ganglia neuron. The rBmαTX14 cDNA sequence was obtained from the BmK cDNA library [15], and the recombinant protein was successfully expressed both in Pichia pastoris and in E.coli [16, 17].

In this work, we used the animal model C. elegans to assess rBmαTX14 function. C. elegans was the first multicellular organism to have its entire genome sequenced, and approximately 35% of C. elegans genes have human homologs). Additionally, this small soil nematode has a short life cycle [18, 19]. All of these features make C. elegans a unique model, especially for life span study and disease analysis [20, 21]. In our study, we used the C. elegans model system to investigate the bioactivity of rBmαTX14, and the results show that this polypeptide plays potential roles against aging and promotes locomotion.

Materials and Methods

Plasmid construction

The rBmaTX14 DNA sequence was amplified via the Polymerase Chain Reaction (PCR) with the forward primer CCCATATGGTTCGGGATGCT and the reverse primer CGGGATCCT CAATGGCATTT. After digestion with the Nde I and BamHI restriction enzymes (TaKaRa, Kyoto, Japan), the rBmaTX14 DNA sequence was ligated into the pET28a vector with T4 DNA ligase (TaKaRa, Kyoto, Japan). The insertion accuracy was verified by DNA sequencing (GENWIZ, Suzhou, China). The antibody was obtained from Proteintech (Wuhan, China).

Since the protein sequence of BmαTX14 was "VRDAYIAKPENCVYHCATNEGCNKLCT DNGAESGYCQWGKYGNACWCICLPDDVPRPGKCH", and then the cDNA sequence of the negative control for BmaTX14 was created according to the sequence of BmaTX14. The protein sequence of this negative control was "VCHGKPVPIDVPDKLIWCCNAYGGKWGCQGYEASNGTDLCNKGCNEATHYCNVEPCKYIDRA". So the random protein was expressed as the negative control using pET28a-rBmaTX14 (NEG).

Strains and nematode culture

The C. elegans strain N2 (wide type) and E. coli strain OP50 were obtained from the Caenorhabditis Genetics Center at the University of Minnesota. C. elegans were grown at 20°C on nematode growth media (NGM) plates and were propagated on E. coli OP50 using standard methods [22]. Synchronization was performed using the standard alkaline hypochlorite method.

Induced rBmaTX14 expression

The recombinant pET28a-rBmaTX14 plasmid (with 6-His-Tag) or the empty pET28a vector was transformed into competent E.coli strain Rosetta (DE3) cells (Proteintech Group, Wuhan, China). Then, E.coli cells were maintained at 37°C in Luria–Bertani medium with vigorous shaking. Isopropyl-β-D-thiogalactopyranoside (Amresco, OH, USA) was added at a concentration of 1 mM when the OD600 of the E.coli reached 0.4. After further incubation at 28°C for 4 h, the cells were harvested for further use.

Western blotting analysis

The E.coli cells were harvested and lysed with ultrasonication, and the lysate was centrifuged at 4,000 rpm for 10 minutes at 4°C. Then, the supernatant was centrifuged at 12,000 rpm for 15 minutes at 4°C. The supernatant was obtained from the cytoplasm, while the insoluble fraction...
primarily included inclusion bodies. The supernatant and insoluble fractions were lysed again for 10 minutes at 100°C. Then, the protein samples were analyzed by western blotting.

HPLC purification

The r*BmαTX14* inclusion bodies were lysed in denaturation solution (6 M guanidine-HCl, 0.1 M Tris-HCl, 1 mM EDTA, 30 mM reduced glutathione, pH 8.0). After 2 h of incubation, the solution was slowly added to 100-fold volume of renaturation solution (0.2 M ammonium acetate and 0.2 mM oxidized glutathione, pH 7.0) and incubated at 16°C for 24 h. The precipitate was removed by centrifugation at 12,000 rpm for 15 min. The supernatant was desalted and concentrated with a centrifugal filter device (cutoff value > 3 kDa) at 5,000 g for 4 h. Next, 0.1% TFA was added to the concentrated protein solution to remove the precipitate, and the supernatant was injected into RP-HPLC. Renatured r*BmαTX14* was purified by RP-HPLC on a C18 column (10×250 mm, 5 μm) (Elite-HPLC) using a linear gradient of 5–95% acetonitrile with 0.1% TFA in 60 min at a constant flow rate of 5 ml/min, and the protein was detected at 230 nm. The r*BmαTX14* peak appeared at 21 min and was manually collected.

Circular dichroism (CD) spectroscopy

The 20 μM peptide far-UV CD spectra in H2O was measured in the 195–250 nm wavelength range (protein secondary structure) at 25°C on a Jasco J-810 spectropolarimeter (Jasco Corporation, Tokyo, Japan) with a 0.1 cm pathlength cylindrical cell. The bandwidth was 1 nm, and the response time was 1 s. All the samples were allowed to equilibrate thermally for 5 min prior to the CD measurements. Each sample spectrum was corrected by subtraction from the spectrum (baseline) that was recorded for H2O. Each spectrum is an average of three different scans that were obtained by collecting data at 0.1 nm intervals at a scan speed of 200 nm/min.

Life span analysis

All life span assays were conducted in 96-well plates using liquid culture at 20°C as previously described [23]. Batches of synchronized L1 nematodes were incubated in S medium containing *E. coli* OP50 (initial D570 of 0.6–0.7), 50 μg/mL carbenicillin and 0.1 μg/mL fungizone with gentle shaking until L4. Next, 2’-deoxy- 5-fluorouridine (Ribio, Beijing, China) was added to prevent progeny growth. After further incubation for 24 h, culture aliquots were dispensed into plate wells (90 μL/well, with approximately ten adults; five to ten wells/sample), and appropriate volumes of *E.coli* solution were added to achieve the indicated concentrations. The total incubation volume was 100 μL per well, and the plates were sealed with Parafilm to prevent evaporation. The day of nematode transfer was counted as day 0 in the life span analysis. The fraction of nematodes alive was scored microscopically every 2 days. Survival data were analyzed using the log-rank test using SPSS 17.0 for Windows.

Food clearance assay

Newly synchronized L1 nematodes were incubated in 96-well plates containing foods (*E. coli* strain r*BmαTX14* or the control with initial OD600 of 0.6–0.7) with gentle shaking (110 rpm) at 20°C. Regarding the food clearance assay, the plates were measured every day using the micro-plate spectrophotometer for a week as previously described [24].

Locomotor behavior assay

Locomotor behavior was assessed including the reversal frequency and body bend as previously described, with a slight modification [25]. Adult nematodes were transferred to the plates.
lacking food, and the animals were allowed to adjust to the plates for 5 minutes. Video images were recorded and analyzed off-line. Body bend frequency was quantified by counting the number of body bends produced by 20 worms in 30 seconds using a SAMSUNG SCC-101BP device. Reversals of the nematodes were also measured with VideoMach software using 25 nematodes per group.

Total RNA extraction and microarray analysis

Total RNA was extracted from adult worms grown at 20°C on NGM plates using TRIzol™ Reagent (Invitrogen, Carlsbad, USA) according to the manufacturer’s instructions. We further examined the gene expression changes through DNA microarray expression profiling. Affymetrix Genechips were used to perform *C. elegans* Genome Arrays and the samples were tested by CapitalBio Corporation (Beijing, China). The results were analyzed using the Molecule Annotation System (MAS) 3.0 (at http://bioinfo.capitalbio.com/mas3/).

Quantitative real-time PCR analysis

The mRNA was converted to cDNA using the RevertAid First Strand cDNA Synthesis Kit (Thermo, Waltham, USA) according to the manufacturer’s instructions. *Act-1* expression was used as the control reference. Quantitative RT-PCR was conducted using SYBR Green PCR Master Mix (TOYOBO, Osaka, Japan) and analyzed with the 7500HT Fast Real-Time PCR machine (Applied Biosystems, Waltham, USA).

Live subject statement

All experiments were performed in compliance with the relevant laws and institutional guidelines, and approved by the Committee of Experimental Animal Administration in the School of Pharmaceutical Sciences, Wuhan University.

Statistical analysis

The results are expressed as the mean ± S.E. variance. The Tukey-Kramer multiple comparisons test was used to determine statistical significance. A p-value of <0.05 was considered to be statistically significant.

Results

rBmaTX14 was expressed both in the cytoplasm and inclusion bodies

To identify the *rBmaTX14* expression pattern in *E. coli*, we isolated protein samples from the cytoplasm and inclusion bodies. *rBmaTX14* was tagged with 6-His peptide; therefore, the samples were detected with the 6-His-tag antibody. As shown in Fig 1A & 1B, the antibody recognized an approximately 13 kDa protein, which is the predicted size of *rBmaTX14*, in all isolated samples, showing that *rBmaTX14* exists both in the cytoplasm and inclusion bodies. Furthermore, HPLC was used to purify His-tagged *rBmaTX14* in this *E. coli* expression system, and a protein peak was observed (Fig 1C).

To determine the secondary peptide structure, we assessed the far-UV CD spectra of the peptide. As shown in Fig 1D, the far-UV CD spectrum of the peptide exhibited no obvious negative maxima at 222 and 208 nm, suggesting that an α-helical structure is not present. The secondary structure content analysis using Yang’s equation showed that the peptide is composed of approximately 43.8% β-sheet, 12.9% β-turn, and 43.3% random coil.
rBmAαTX14 extended life span of C. elegans

Expressed rBmAαTX14 in E. coli retained its biological structure; therefore, a food clearance assay was conducted to test whether rBmAαTX14 had any effects on C. elegans growth and reproduction. Taking advantage of the short life cycle and the ability of C. elegans to grow in E. coli liquid culture, the E. coli stains were used to feed C. elegans. The rate at which the E. coli suspension (food source) was consumed in 7 days was approximately the same in the rBmAαTX14 and control group (Fig 2A), indicating that rBmAαTX14 has little impact on the growth and reproduction of C. elegans.

Longevity is an important characteristic in this animal model [26, 27]; therefore, we further tested the life span of nematodes treated with rBmAαTX14 or the control. As shown in Fig 2B, the life span in the rBmAαTX14 group was longer than that of the control by approximately 19.2% (S1 Table).

rBmAαTX14 promoted locomotion of C. elegans

Locomotion is also an important characteristic of C. elegans; therefore, we examined two basic body movements to observe any behavioral changes of nematodes fed with rBmAαTX14.
Both the average body bends frequency and reversals significantly increased in the rBmA TX14 group compared with the control (Fig 2C & 2D), suggesting that rBmA TX14 promotes locomotion.

Genes involved in life span extension and locomotion promoting phenotype

C. elegans gene expression was monitored to observe any corresponding effects caused by the ingestion of rBmA TX14 and to identify the genes underlying the observed phenotypes [31–33]. Therefore, we examined the gene expression of adult C. elegans using microarray expression profiling, which identified 178 genes that were up-regulated and 12 genes that were down-regulated in the rBmA TX14-fed animals compared with the control (S2 Table). Many of these deregulated genes are involved in life span regulation or other interesting processes (Table 1). Among these genes, abu-1, abu-5, abu-7, abu-8, and abu-11 belong to ABU family of genes [34, 35], and abu-11 overexpression is sufficient to increase C. elegans survival [36]. Specifically, ptr-23 has been previously reported to increase C. elegans life span via the daf-2 pathway. Additionally, the pathways affected by the C26B9.3 and T19B10.2 RNAi clones also shorten life span and are related to the daf-2 pathway [37].
We further re-tested 16 of the up-regulated genes, which were chosen based on their roles in anti-aging and locomotion, using quantitative RT-PCR (qRT-PCR) analysis. The results showed that 12 out of the 16 tested genes showed similar changes using qRT-PCR and microarray analysis (Fig 3A). The primers utilized are listed in Table 2. Thus, our microarray analysis identified a small but reliable set of genes that are differentially expressed in animals fed with \(r\)Bm\(\alpha\)TX14.

Moreover, all 190 differentially expressed genes were analyzed using a free Molecular Annotation System 2.0 (MAS 2.0, www.capitalbio.com). With the MAS 2.0 tool, the pathways are ranked by statistical significance by calculating their \(p \) -values based on the hypergeometric distribution [32]. The classification of the differentially expressed genes by GO-term annotation also highlighted the genes involved in locomotion and other biological processes (Fig 3B).

The \(H_{15} \) to \(F_{15} \) amino acid change in \(r\)Bm\(\alpha\)TX14 alters the life-span extension of \(C. \) elegans

According to the analysis of the \(r\)Bm\(\alpha\)TX14 structure, amino acid site mutations were created to identify \(r\)Bm\(\alpha\)TX14 function. In the \(r\)Bm\(\alpha\)TX14 sequence shown in Fig 4A, \(H_{15} \) was changed to \(F_{15} \), and \(T_{18} \) was changed to \(R_{18} \). Especially the software predicted that \(H_{15} \) was involved in the \(\beta \)-sheet. After the mutant proteins were expressed in \(E. \) coli strains, these bacteria were fed to \(C. \) elegans.
Given the impact that rBmA TX14 has on C. elegans survival, we wondered whether key rBmA TX14 amino acids influence longevity. We feed the animals with appropriate strains, and found that pET28a-rBmA TX14 and pET28a-rBmA TX14 (T18→R18) increased the median day of life span by 14.8% compared with empty vector and pET28a-rBmA TX14 (H15→F15). P-value indicated this change was statistically significant. Specifically, the life span with pET28a-rBmA TX14 and pET28a-rBmA TX14 (T18→R18) were approximately 50 days in length, while the life spans with empty vector and pET28a-rBmA TX14 (H15→F15) were approximately 44 days in length (Fig 4B, Table 3 and S3 Table). Then H15 was shown to be an important amino acid site because when the amino site was mutated to F15, the effect of rBmA TX14 on the life span was lost. However, if the mutation site was T18, no significant effects on rBmA TX14 function were observed.

Fig 3. Relative expression of various genes in C. elegans fed with pET28a-rBmA TX14. (A) The gene expression changes were detected through Affymetrix Genechip profiling. qRT-PCR analysis also confirms the differential regulation of genes identified through microarray analysis. qRT-PCR was used to examine changes in gene expression. (B) Molecular annotation system analysis of the genes. The differentially expressed genes were classified according to GO-term annotation.
Discussion

Despite the extensive study of the effects of scorpion venom toxins on ion channels, why scorpion venom toxins can also be eaten as food or medicine remains unknown. Scorpion bioactivities such as anti-aging and anti-tumor properties remain to be uncovered. To test the effects of rBmαTX14 as food, C. elegans was used here as the animal model to screen the peptides. C. elegans has a short life-cycle, small size and ease of culturing and is extensively used as an animal model, especially for the detailed analysis of the molecular pathways involved in aging and other physiological activities [18].

Although rBmαTX14 showed no obvious effects on growth and reproduction, rBmαTX14 extended C. elegans life span and promoted locomotion. To understand the underlying mechanisms, microarray analysis was widely used to screen the genes involved in the pathways [47]. Here, the potential genes that regulate this mechanism are listed in Table 2, including ptr-23, M03F4.6, tag-297, C26B9.3 and others. In addition to these genes, the M03F4.6 and tag-297 RNAi clones shortened life span and produced other pleiotropic effects that may shorten life span [37]. Furthermore, rBmαTX14 promoted C. elegans locomotion, and genes such as wrt-4, grd-14, C06G1.1, col-97, F10D11.6 and lpr-3 are known to be involved in nematode locomotion.

Interestingly, rBmαTX14 induced the expression of cav-1 and mnt-1, which play various roles in tumor progression. Cav-1 protein levels are consistently down-regulated in a wide range of human cancers, including ovarian carcinomas, sarcomas, and mammary carcinomas [48]. These genes also have in vivo tumor suppressor properties in certain tissues such as the mammary gland and murine animal models [40, 49]. mnt-1 also encoded a nicotinamide nucleotide transhydrogenase, which normally functions to maintain electron transport chain activity. Reducing the activity of this gene caused a metabolic shift that promotes tumor growth [41], and wide variety genes extend C. elegans life span and also reduce tumor cell division [50], implying that rBmαTX14 may have a valuable use in cancer therapy.

Since starvation could elongate the life span of nematodes [51], calorically/nutritionally restricted might affect the nematodes. However, the data showed the life span of C. elegans feeding with pET28a-rBmαTX14 was longer than with pET28a (NEG) (S4 Table
and S1 Fig). Because pET28a-rBmaTX14 and pET28a-rBmaTX14 (NEG) all have inclusion bodies, so calorically/nutritionally restricted or biomass should not be the main reason that affects gene transcription. Maybe the peptides were digested by proteases in the gut and absorbed by the gut of the animal. Though BmaTX14 is known to be a potent blocker of the sodium channel, genome sequence analysis showed that voltage-gated sodium channel was absent in C. elegans. In the muscle cells of C. elegans, voltage-gated calcium channels had the similar functions as well as the sodium channel [52–54]. Then it is still interesting to know if the potential working mechanism of rBmaTX14 is through the related voltage-gated channel?
Overall, in this study, we’ve expressed, purified and measured the secondary structure of recombinant protein rBmαTX14. Feeding the nematodes with pET28a-rBmαTX14, we’ve demonstrated that rBmαTX14 caused extension of the life span and promoted the locomotion of the nematodes. Further investigation uncovered the specific genes that play various roles in the life span and locomotion of C. elegans. In addition, the amino acid site H15 of rBmαTX14 was proved to be an important site in the function of the protein. This interesting finding may provide an insight into the utility of scorpion venom in anti-aging as food or medicine.

Supporting Information

S1 Fig. pET28a-rBmαTX14 (NEG) had no effects on the life-span extension and the locomotion promotion of C. elegans. (A) pET28a-rBmαTX14 (NEG) did not increase the C. elegans life span. The nematodes were treated with empty vector, pET28a-rBmαTX14 and pET28a-rBmαTX14 (NEG) in 96-well plates. The survival data were plotted using the Kaplan-Meier method and analyzed by log-rank tests using SPSS 17.0 software. Body bend frequency (B) and reversals (C) were analyzed using a SAMSUNG SCC-101BP device and VideoMach software (Data were expressed as mean values ± SD, *p < 0.05). 100 worms were observed for each condition in motility assays, and the data represent an average of at least three independent experiments. (D) Expression of rBmαTX14 and the negative control in E. coli. Lanes 1 and 3 indicated cell lysate from E.coli with pET28a, lanes 2 and 4 indicated cell lysate from E.coli with pET28a-rBmαTX14, and lane 5 and 6 indicated cell lysate from E.coli with pET28a-rBmαTX14 (NEG). The primary antibody utilized was anti-6-His.

S1 Table. pET28a-rBmαTX14 extended the life span of C. elegans. Group 1 is C. elegans fed with empty vector, and Group 2 is C. elegans fed with pET28a-rBmαTX14.

Strain	Treatment	Mean life span ±SEM (days)	Median life span ±SEM (days)	Maximum life spans (days)	p-value vs. control	Life span extension	Number of animal
N2	Empty vector	26±0.7	27±0.9	44	-	-	148
N2	pET28a-rBmαTX14	28±0.8	31±0.7	50	0.008	14.8%	166
N2	pET28a-rBmαTX14 (H15→F15)	27±0.5	27±0.5	44	0.717	-	152
N2	pET28a-rBmαTX14 (T18→R18)	29±0.7	31±1	50	0.001	14.8%	149

Life span analysis of empty vector, pET28a-rBmαTX14, pET28a-rBmαTX14 (T18→R18), pET28a-rBmαTX14 (H15→F15) was starting from L4. These combined results were derived from individual experiments that are described in S3 Table. P-values indicate comparisons between expression plasmids and empty vector. N2 represents the wild type C. elegans. SEM = standard error of the mean. p-values (log-rank test) refer to the control experiment.

Overall, in this study, we’ve expressed, purified and measured the secondary structure of recombinant protein rBmαTX14. Feeding the nematodes with pET28a-rBmαTX14, we’ve demonstrated that rBmαTX14 caused extension of the life span and promoted the locomotion of the nematodes. Further investigation uncovered the specific genes that play various roles in the life span and locomotion of C. elegans. In addition, the amino acid site H15 of rBmαTX14 was proved to be an important site in the function of the protein. This interesting finding may provide an insight into the utility of scorpion venom in anti-aging as food or medicine.
Group 4 is *C. elegans* fed with pET28a-\(rBm\alpha TX14\) (T18→R18).

(S4 Table. Effects of pET28a-\(rBm\alpha TX14\) and pET28a-\(rBm\alpha TX14\) (NEG) on longevity. Life span analysis of empty vector, pET28a-\(rBm\alpha TX14\) and pET28a-\(rBm\alpha TX14\) (NEG) were starting from L4.

Acknowledgments

This study was supported by National Program on Key Basic Research Project (973 Program, No. 2010CB529804) and the National Natural Science Foundation of China (Grant No. 31400155, 81472550 and 81274048). The DNA sequence of \(rBm\alpha TX14\) was kindly provided by Prof. Zhijian Cao (College of Life Sciences, Wuhan University).

Author Contributions

Conceived and designed the experiments: XL WHL ZBH.

Performed the experiments: LC JZ.

Analyzed the data: LW KXT J. Xiang RZ.

Contributed reagents/materials/analysis tools: YML ZBH WHL.

Wrote the paper: XL LC.

Obtained permission for use of *Caenorhabditis Elegans*: JZ RZ YML J. Xu.

References

1. Cao Z, Yu Y, Wu Y, Hao P, Di Z, He Y, et al. The genome of *Mesobuthus martensii* reveals a unique adaptation model of arthropods. Nature communications. 2013; 4:2602. doi:10.1038/ncomms3602 PMID: 24129506; PubMed Central PMCID: PMC3826648.
2. Possani LD, Becerril B, Delepierre M, Tytgat J. Scorpion toxins specific for Na+-channels. European journal of biochemistry / FEBS. 1999; 264(2):287–300. PMID: 10491073.
3. Escoubas P, Rash L. Tarantulas: eight-legged pharmacists and combinatorial chemists. Toxicon: official journal of the International Society on Toxinology. 2004; 43(5):555–74. doi:10.1016/j.toxicon.2004.02.007 PMID: 15066413.
4. Cecchini AL, Vasconcelos F, Amara SG, Giglio JR, Arantes EC. Effects of *Tityus serrulatus* scorpion venom and its toxin TsTX-V on neurotransmitter uptake in vitro. Toxicology and applied pharmacology. 2006; 217(2):196–203. doi:10.1016/j.taap.2006.09.003 PMID: 17049577.
5. Cao L, Li Z, Zhang R, Wu Y, Li W, Cao Z. StCT2, a new antibacterial peptide characterized from the venom of the scorpion *Scorpiops tibetanus*. Peptides. 2012; 36(2):213–20. doi:10.1016/j.peptides.2012.04.010 PMID: 22542475.
6. Conde R, Zamudio FZ, Rodriguez MH, Possani LD. Scorpine, an anti-malaria and anti-bacterial agent purified from scorpion venom. FEBS letters. 2000; 471(2–3):165–8. PMID: 10767415.
7. Ortiz E, Gurrola GB, Schwartz EF, Possani LD. Scorpion venom components as potential candidates for drug development. Toxicon: official journal of the International Society on Toxinology. 2015; 93C:125–35. Epub 2014/11/29. doi:10.1016/j.toxicon.2014.11.233 PMID: 25432067.
8. de la Salud Bea R, Ascuitto MR, de Johnson LE. Synthesis of analogs of peptides from *Buthus martensi* scorpion venom with potential antibiotic activity. Peptides. 2014. doi:10.1016/j.peptides.2014.10.008 PMID: 25451872.
9. Wang T, Wang SW, Zhang Y, Wu XF, Peng Y, Cao Z, et al. Scorpion venom heat-resistant peptide (SVHRP) enhances neurogenesis and neurite outgrowth of immature neurons in adult mice by up-regulating brain-derived neurotrophic factor (BDNF). PloS one. 2014; 9(10):e109977. doi: 10.1371/journal.pone.0109977 PMID: 25299676; PubMed Central PMCID: PMC4192587.
10. Velazquez-Marrero C, Seale GE, Treistman SN, Martin GE. Large conductance voltage- and Ca2 +-gated potassium (BK) channel beta4 subunit influences sensitivity and tolerance to alcohol by
altering its response to kinases. The Journal of biological chemistry. 2014; 289(42):29261–72. doi: 10.1074/jbc.M114.604306 PMID: 25190810; PubMed Central PMCID: PMC4200277.

11. Possani LD, Merino E, Corona M, Bolivar F, Becerril B. Peptides and genes coding for scorpion toxins that affect ion-channels. Biochimie. 2000; 82(9–10):861–8. PMID: 11086216.

12. Legros C, Ceard B, Vacher H, Marchot P, Bougis PE, Martin-Eauclaire MF. Expression of the standard scorpion alpha-toxin AaH II and AaH II mutants leading to the identification of some key bioactive elements. Biochimica et biophysica acta. 2005; 1723(1–3):91–9. doi: 10.1016/j.bbapap.2005.01.008 PMID: 15752394.

13. Du Q, Hou X, Wang L, Zhang Y, Xi X, Wang H, et al. AaeAP1 and AaeAP2: Novel Antimicrobial Peptides from the Venom of the Scorpion, Androctonus aeneas: Structural Characterisation, Molecular Cloning of Biosynthetic Precursor-Encoding cDNAs and Engineering of Analogues with Enhanced Antibacterial and Anticancer Activities. Toxins. 2015; 7(2):219–37. Epub 2015/01/28. doi: 10.3390/toxins7020219 PMID: 25626077.

14. Qin C, He B, Dai W, Zhang H, Wang X, Wang J, et al. Inhibition of metastatic tumor growth and metastasis via targeting metastatic breast cancer by chlorotoxin-modified liposomes. Molecular pharmaceutics. 2014; 11(10):3233–41. Epub 2014/02/25. doi: 10.1021/mp400691z PMID: 24559485.

15. Zhou S, Li WX, Zeng XC, Liu H, Jiang DH, Mao X. Nine novel precursors of Buthus martensii scorpion alpha-toxin homologues. Toxicon: official journal of the International Society on Toxinology. 2000; 38 (12):1653–61. PMID: 10858508.

16. Dai H, Yin S, Li T, Cao Z, Ji Y, Wu Y, et al. Recombinant expression, purification, and characterization of scorpion toxin BmalphaTX14, Protein expression and purification. 2012; 82(2):325–31. Epub 2012/02/22. doi: 10.1016/j.pep.2012.02.001 PMID: 22343065.

17. Wang K, Yin SJ, Lu M, Yi H, Dai C, Xu XJ, et al. Functional analysis of the alpha-neurotoxin, BmalphaTX14, derived from the Chinese scorpion, Buthus martensi Karsch. Biotechnology letters. 2006; 28 (21):1767–72. Epub 2006/08/17. doi: 10.1007/s10529-006-9155-y PMID: 16912922.

18. Li WH, Shi YC, Chang CH, Huang CW, Hsiu-Chuan Liao V. Selenite protects Caenorhabditis elegans from oxidative stress via DAF-16 and TRXR-1. Molecular nutrition & food research. 2014; 58(4):863–74. doi:10.1002/mnfr.201300404 PMID: 24254253.

19. Ueno S, Yasutake K, Tohyama D, Fujimori T, Ayusawa D, Fuji I. Systematic screen for genes involved in the regulation of oxidative stress in the nematode Caeorhabditis elegans. Biochemical and biophysical research communications. 2012; 420(3):552–7. doi: 10.1016/j.bbrc.2012.03.032 PMID: 22445755.

20. Honda Y, Fujita Y, Maruyama H, Araki Y, Ichihara K, Sato A, et al. Lifespan-extendig effects of royal jelly and its related substances on the nematode Caenorhabditis elegans. PloS one. 2011; 6(8): e22445755. doi: 10.1371/journal.pone.0023527 PMID: 21858156; PubMed Central PMCID: PMC3153499.

21. Kramer LB, Shim J, Previtera ML, Isack NR, Lee MC, Firestein BL, et al. UEV-1 is an ubiquitin-conjugating enzyme variant that regulates glutamate receptor trafficking in C. elegans neurons. PloS one. 2010; 5(12):e14291. doi: 10.1371/journal.pone.0014291 PMID: 21179194; PubMed Central PMCID: PMC3001443.

22. Sheng EZ, Song CO, Lin Y, Zhang WH, Su PF, Liu WY, et al. Mitoflash frequency in early adulthood predicts lifespan in Caeorhabditis elegans. Nature. 2014; 508(7494):128–32. doi: 10.1038/nature13012 PMID: 24522532.
28. Gao S, Xie L, Kawano T, Po MD, Guan S, Zhen M. The NCA sodium leak channel is required for persistent motor circuit activity that sustains locomotion. Nature communications. 2015; 6:6323. Epub 2015/02/27. doi: 10.1038/ncomms7323 PMID: 25716181.

29. Wen Q, Po MD, Huule E, Chen S, Liu X, Kwok SW, et al. Proprioceptive coupling within motor neurons drives C. elegans forward locomotion. Neuron. 2012; 76(4):750–61. Epub 2012/11/28. doi: 10.1016/j.neuron.2012.08.039 PMID: 23177960; PubMed Central PMCID: PMC3508473.

30. Hulme E, Luo Q, Lopez JM, Raizen DM, Van Buskirk C. Cellular stress induces a protective sleep-like state in C. elegans. Current biology; CB. 2014; 24(20):2399–405. doi: 10.1016/j.cub.2014.08.040 PMID: 25264259; PubMed Central PMCID: PMC4254280.

31. Franzen J, Menzel R, Hess S, Claus E, Steinberg CE. Organic carbon source in formulated sediments influences life traits and gene expression of Caenorhabditis elegans. Ecotoxicology. 2012; 21(2):557–68. doi: 10.1007/s10646-011-0816-9 PMID: 22080434.

32. MacNeil LT, Watson E, Arda HE, Zhu LJ, Walhout AJ. Diet-induced developmental acceleration independent of TOR and insulin in C. elegans. Cell. 2013; 153(1):240–52. doi: 10.1016/j.cell.2013.02.049 PMID: 23540701; PubMed Central PMCID: PMC3821073.

33. Gagli M, Jeong DE, Ryu EA, Lee D, Kenyon C, Lee SJ. Genes that act downstream of sensory neurons to influence longevity, dauer formation, and pathogen responses in Caenorhabditis elegans. PLoS genetics. 2012; 8(12):e1003133. doi: 10.1371/journal.pgen.1003133 PMID: 23284299; PubMed Central PMCID: PMC3527274.

34. Viswanathan M, Kim SK, Berdichevsky A, Guarante L. A role for SIR-2.1 regulation of ER stress response genes in determining C. elegans life span. Developmental cell. 2005; 9(5):605–15. doi: 10.1016/j.devcel.2005.09.017 PMID: 16256736.

35. Haskins KA, Russell JF, Gaddis N, Dressman HK, Aballay A. Unfolded protein response genes regulate life span in C. elegans. Cell. 2013; 153(1):240–52. doi: 10.1016/j.cell.2013.02.049 PMID: 23540701; PubMed Central PMCID: PMC3821073.

36. Williams TM, Hassan GS, Li J, Cohen AW, Medina F, Frank PG, et al. Caveolin-1 promotes tumor progression in an autochthonous mouse model of prostate cancer: genetic ablation of Cav-1 delays advanced prostate tumor development in tramp mice. The Journal of biological chemistry. 2005; 280(26):25134–45. doi: 10.1074/jbc.M501186200 PMID: 15802273.

37. Pinkston-Gosse J, Kenyon C. DAF-16/FOXO targets genes that regulate tumor growth in Caenorhabditis elegans. Nature genetics. 2007; 39(11):1403–9. doi: 10.1038/ng.2007.1 PMID: 17934462.

38. Zugasti O, Rajan J, Kuwabara PE. The function and expansion of the Patched- and Hedgehog-related homologs in C. elegans. Genome research. 2005; 15(10):1402–10. Epub 2005/10/06. doi: 10.1101/gr.3935405 PMID: 16204193; PubMed Central PMCID: PMC1240083.

39. Simmer F, Moorman C, van der Linden AM, Kuik J, van den Berghe PV, Kamath RS, et al. Genome-wide RNAi of C. elegans using the hypersensitive rfp-3 strain reveals novel gene functions. PLoS biology. 2003; 1(1):E12. doi: 10.1371/journal.pbio.0000012 PMID: 14551910; PubMed Central PMCID: PMC2126962.
46. Stone CE, Hall DH, Sundaram MV. Lipocalin signaling controls unicellular tube development in the Caenorhabditis elegans excretory system. Developmental biology. 2009; 329(2):201–11. doi:10.1016/j.ydbio.2009.02.030 PMID: 19269285; PubMed Central PMCID: PMC3030807.

47. Chen G, Broseus J, Hergalent S, Donnart A, Chevalier C, Bolanos-Jimenez F, et al. Identification of master genes involved in liver key functions through transcriptomics and epigenomics of methyl donor deficiency in rat: relevance to nonalcoholic liver disease. Molecular nutrition & food research. 2015; 59(2):293–302. doi: 10.1002/mnfr.201400483 PMID: 25380481.

48. Razani B, Lisanti MP. Caveolin-deficient mice: insights into caveolar function human disease. The Journal of clinical investigation. 2001; 108(11):1553–61. doi:10.1172/JCI14611 PMID: 11733547; PubMed Central PMCID: PMC201001.

49. Sloan EK, Stanley KL, Anderson RL. Caveolin-1 inhibits breast cancer growth and metastasis. Oncogene. 2004; 23(47):7893–7. doi: 10.1038/sj.onc.1208062 PMID: 15334058.

50. Pinkston JM, Garigan D, Hansen M, Kenyon C. Mutations that increase the life span of C. elegans inhibit tumor growth. Science. 2006; 313(5789):971–5. doi: 10.1126/science.1121908 PMID: 16917064.

51. Rechavi O, Houri-Ze'evi L, Anava S, Goh WS, Kerk SY, Hannon GJ, et al. Starvation-induced transgenerational inheritance of small RNAs in C. elegans. Cell. 2014; 158(2):277–87. doi:10.1016/j.cell.2014.06.020 PMID: 25018105; PubMed Central PMCID: PMC4377509.

52. Liu P, Ge Q, Chen B, Salkoff L, Kotlikoff MI, Wang ZW. Genetic dissection of ion currents underlying all-or-none action potentials in C. elegans body-wall muscle cells. The Journal of physiology. 2011; 589(Pt 1):101–17. doi: 10.1113/jphysiol.2010.200683 PMID: 21059759; PubMed Central PMCID: PMC3039263.

53. Gao S, Zhen M. Action potentials drive body wall muscle contractions in Caenorhabditis elegans. Proceedings of the National Academy of Sciences of the United States of America. 2011; 108(6):2557–62. doi: 10.1073/pnas.1012346108 PMID: 21248227; PubMed Central PMCID: PMC3038695.

54. Sharma V, O’Halloran DM. Nematode Sodium Calcium Exchangers: A Surprising Lack of Transport. Bioinformatics and biology insights. 2016; 10:1–4. doi: 10.4137/BBI.S37130 PMID: 26848260; PubMed Central PMCID: PMC4737524.