On-Line Fault Judgment of Integrated Capacitive Coupler Based on Signal Line Port Impedance

Yue Fan¹, Lishan Ma², Xiaqing Liu², Shunhu Dong², Xiaoming Hou¹, Jianying Xu³

¹State Grid Qinghai Electric Power Company, Xining Qinghai
²State Grid Qinghai Electric Power Company, Guoluo, Xining Qinghai
³Qingdao Topscmm Communication Co. Ltd., Qingdao Shandong

Email: 873321454@qq.com

Received: Jul. 17th, 2020; accepted: Jul. 30th, 2020; published: Aug. 6th, 2020

Abstract

Medium voltage carrier communication is a communication mode using 10 kV medium voltage distribution line as transmission channel, which has been widely used in the field of distribution automation and electricity information acquisition. Integrated capacitive coupler is the guarantee for stable and reliable operation of medium voltage carrier communication system. However, limited by voltage level, there is no effective method to judge whether the coupler fails when the 10 kV distribution line is constantly on. This paper puts forward a based on the integration capacitor coupler port impedance line on-line fault judgment method, the improvement of middle pressure carrier communication machine to collect signal port impedance, can in 10 kv distribution line continuous electric power, judge whether the integration capacitor coupler faults online, method is simple, reliable, save manpower material resources waste, has certain practical value.

Keywords

Medium Voltage Carrier, Medium Voltage Carrier Machine, Integrated Capacitor Coupler, Impedance, Constant Electric

基于信号线端口阻抗的一体化电容耦合器在线故障判断

范越¹，马丽山²，刘小庆²，董顺虎²，侯晓明¹，徐剑英³

¹国网青海省电力公司，青海 西宁
²国网青海省电力公司果洛供电公司，青海 西宁

文章引用：范越, 马丽山, 刘小庆, 董顺虎, 侯晓明, 徐剑英. 基于信号线端口阻抗的一体化电容耦合器在线故障判断[J]. 智能电网, 2020, 10(4): 164-172. DOI: 10.12677/sg.2020.104018
摘要
中压载波通信是利用 10 kV 中压配电线路作为传输通道的一种通信方式，已广泛应用于配电自动化、用电信息采集领域。一体化电容耦合器是中压载波通信系统稳定、可靠运行的保障。但受电压等级制约，在 10 kV 配电线路不断电情况下缺少有效方法判断耦合器是否出现故障。文中提出了一种基于信号线端口阻抗的一体化电容耦合器在线故障判断方法，利用改进的中压载波通信机采集信号线端口阻抗，可在 10 kV 配电线路不断电的情况下，在线判断一体化电容耦合器是否故障，方法简单可靠，节省人力物力浪费，具有一定的工程实际价值。

关键词
中压载波，中压载波通信机，一体化电容耦合器，阻抗，不断电

1. 引言
中压载波通信[1]是利用 10 kV 中压配电线路作为传输通道的一种通信方式，由于使用现有的、完善的配电线路作为传输通道，不需要投资建设专用通信线路，具有投资少、设备简单、施工容易、维护管理方便等优点，广泛应用于配电自动化、用电信息采集领域。其中，一体化电容耦合器是中压载波通信系统稳定、可靠运行的保障。一体化电容耦合器在线运行过程中出现故障，如无明显外观损坏，受电压等级制约，缺少有效方法直接判断耦合器是否故障，现场只能用排除法，协调 10 kV 配电线路停电更换耦合器测试，相当浪费人力和物力。

文中提出了一种基于信号线端口阻抗的一体化电容耦合器在线故障判断方法[2][3]，利用改进的中压载波通信机采集信号线端口阻抗，可在 10 kV 配电线路不断电的情况下，在线判断一体化电容耦合器是否故障。通过理论推导、仿真测试、模拟测试和实际现场测试，证实了该方法可有效判断一体化电容耦合器是否故障，简单可靠，节省人力物力浪费，具有一定的工程实际价值。

2. 实现方法
传统的中压载波通信机主要实现载波信号发送与载波信号接收，载波通信接口与一体化电容耦合器信号端口通过信号线相连。一体化电容耦合器主要实现载波信号的传输和工频隔离，顶端接 10 kV 线路，底端接地。连接方式如图 1 所示。

文中提出的一种基于信号线端口阻抗的一体化电容耦合器在线故障判断方法，改进传统的中压载波通信机，在传统中压载波通信机的原理基础上，硬件上增加电压、电流采样电路，软件上增加发送特定频率(206 KHz)载波信号、信号线端口电压电流采样、阻抗计算机制，并根据信号线端口阻抗值判断一体
改进的中压载波通信机原理框图如图 2 所示：

改进的中压载波通信机通过采集载波信号接口，即信号线端口的发送信号电压幅值 $U(t)$ 与电流幅值 $I(t)$，可以计算出信号线端口阻抗 $Z(t)$，计算公式如下：

$$ Z(t) = \frac{U(t)}{I(t)} \quad (1) $$

设定一体化电容耦合器是否故障的信号线端口阻抗的阈值为 Z_{max}，则有：

若 $Z(t) > Z_{\text{max}}$，则判断一体化电容耦合器已经故障；

根据理论推导、仿真测试、模拟测试及现场测试分析积累的经验值，取 $Z_{\text{max}} = 400 \Omega$。
该方法只需中压载波通信机在软件上做简单调整，就可在现场无法协调10 kV配电线路停电的情况下直接判断一体化电容耦合器是否出现故障，通过理论推导、仿真测试、模拟测试及现场实际测试证明该方法简单有效，避免了因协调10 kV线路停电而造成的人力和物力浪费，具有一定的工程实际价值。

3. 理论推导

一体化电容耦合器原理图如图3所示：

![Figure 3. Principle block diagram of integrated capacitor coupler](image)

图3. 一体化电容耦合器原理图

根据一体化电容耦合器原理图，加上中压裁波通信机和信号线后等效原理图如图4所示：

![Figure 4. Equivalent schematic diagram](image)

图4. 等效原理图

其中 \(L_2, R_2 \) 为信号线等效模型，设等效值分别为 \(L_2, R_2, L_1 \) 为熔断管等效模型，设等效值为 \(L_1, R_1 \) 为等效 10 kV 线路负载阻抗，设等效值为 \(R_1, C_1 \) 为中压裁波通信机等效模型，设发送信号频率为 \(f, T_1 \) 为阻抗变换器等效模型，设一、二次侧感量等效值分别为 \(L_1, L_2, C_1 \) 为调谐器等效模型，设等效值为 \(C_1, C_2 \) 为高压电容等效模型，设等效值为 \(C_2, L_3 \) 为排流线圈等效模型，设等效值为 \(L_3 \)。

设定二次侧电流值为 \(I_2 \)，一次侧电流为 \(R_1 \) 的电流值为 \(I_1 \)。

设定二次侧发送功率为 \(P_1 \)，一次侧馈网功率为 \(P_2 \)，假设阻抗变换器为理想模型(无损耗)，则有：

\[
P_1 = P_2
\]

(2)

假设端口阻抗为 \(Z, \) 二次侧发送功率则有：

\[
P_1 = I_1^2 \times (2\pi f L_2 + R_2 + 2\pi f L_1 + Z)
\]

(3)
L_2, R_2, L_i 极小，可以忽略不计，则有:

$$P_1 = I_1^2 \times Z$$

（4）

一次侧馈网功率则有:

$$P_2 = I_2^2 \times \left[R_i + 2\pi fL_3 + \frac{1}{2\pi fC_2} + R_3 \right]$$

（5）

其中 $R_3 \equiv C_1, L_i, L_o$ 的并联阻抗，有:

$$R_3 = \frac{(2\pi fL_1) \times \left(\frac{1}{2\pi fC_1} + 2\pi fL_o \right)}{2\pi fL_o + 2\pi fL_1 + \frac{1}{2\pi fC_1}}$$

（6）

L_3, C_2, C_1, L_1, L_o 极小，可以忽略不计，则有:

$$P_2 = I_2^2 \times R_i$$

（7）

根据公式（2）可得:

$$Z = I_2^2 \times R_i + I_1^2$$

（8）

根据过往现场处理情况汇总，一体化电容耦合器故障[6]主要表现为接地不良和熔断管失效（失效模式为断路），在图 4 中即等效10 kV 线路负载阻抗的值很大或直接断路，即 R_i 阻值很大或无穷大，由公式（8）可推断一体化电容耦合器故障时信号线端口阻抗同样很大或直接趋近于无穷大。

4. 仿真测试

根据图 4 电容耦合器等效原理图在 Multisim 中建模[7][8]。

建模完成后，在中压载波通信机等效模型 V_1 前插入电压、电流测量探针，信号源发送有效值 10 V 的 206 KHz 信号，通过改变 R_i 的值读取电压、电流值，并计算出阻抗值。

4.1. 正常情况

正常情况下取 $R_i = 10 \Omega$~$1 k\Omega$ 一组数据，仿真得到信号线端口阻抗数据[9]如表 1 所示:

R_i/Ω	电压有效值/V	电流有效值/mA	信号线端口阻抗/Ω
10	10	107	93.46
20	10	106	94.34
50	10	103	97.09
100	10	94	106.38
200	10	73.3	136.43
300	10	57.6	173.61
400	10	47.1	212.31
500	10	40	250.00
600	10	35	285.71

Table 1. Simulation table of signal line port impedance under normal condition

表 1. 正常情况信号线端口阻抗仿真表

DOI: 10.12677/sg.2020.104018 168
4.2. 故障情况

故障情况下取 $R_i = 2 \Omega \sim 100 \Omega$ 之间一组数据，仿真得到信号线端口阻抗数据如表 2 所示:

R_i/Ω	电压有效值/V	电流有效值/mA	信号线端口阻抗/Ω
2 k	10	18.9	529.10
3 k	10	17.4	574.71
4 k	10	16.9	591.72
5 k	10	16.6	602.41
6 k	10	16.5	606.06
7 k	10	16.4	609.76
8 k	10	16.3	613.50
9 k	10	16.3	613.50
10 k	10	16.3	613.50
100 k	10	16.2	617.28

4.3. 测试结论

通过仿真测试可以看出，一体化电容耦合器在故障情况下信号线端口阻抗有明显变化，快速转折点在 400Ω 与 500Ω 之间，如图 5 所示:
5. 模拟测试

利用改进的中压载波通信机、一体化电容耦合器搭建模拟测试环境，如图 6 所示，改进的中压载波通信机发送 206 KHz 信号，通过改变 R_1 的值后，通过串口直接读取中压载波通信机内计算出的信号线端口阻抗值。

![Figure 6. Simulation test environment diagram](image)

图 6. 模拟测试环境图

5.1. 正常情况

正常情况下取 $R_1 = 10 \Omega \sim 1 \kOmega$ 之间一组数据，通过串口读取中压载波通信机内计算出的信号线端口阻抗值，数据如表 3 所示：

R/Ω	信号线端口阻抗/Ω
10	62.33
20	63.53
50	69.04
100	80.47
200	108.42
300	139.36
400	170.69
500	200.68
600	229.07
700	255.53
800	280
900	302.66
1 k	323.04

表 3. 正常情况信号线端口阻抗模拟测试表
5.2. 故障情况

故障情况下取 $R_i = 2 \ k\Omega \sim 100 \ k\Omega$ 之间一组数据，通过串口读取中压载波通信机内计算出的信号线端口阻抗值，数据如表 4 所示:

Table 4. Analog test table of signal line port impedance in case of fault
表 4. 故障情况下信号线端口阻抗模拟测试表

R_i/Ω	信号线端口阻抗/Ω
2 k	451.67
3 k	504.02
4 k	530.57
5 k	546.84
6 k	556.73
7 k	563.13
8 k	567.4
9 k	571.17
10 k	573.74
100 k	577.59

5.3. 测试结论

通过模拟测试可以看出，一体化电容耦合器在故障情况下信号线端口阻抗有明显变化，且变化趋势与仿真测试一致，快速转折点在300Ω与450欧姆之间，如图7所示:

Figure 7. Impedance line chart of analog test signal line port
图7. 模拟测试信号线端口阻抗折线图

6. 现场测试

贵州一现场反馈中压载波通信系统无法正常通信，现场采集信号线端口阻抗数据为594.982Ω，如图8所示，检查接地情况良好后，判断为一体化电容耦合器故障，耦合器拆下解剖后，分析确认为熔断管失效[10]，说明基于信号线端口阻抗的一体化电容耦合器在线故障判断方法有效可行。
7. 结束语

通过理论推导、仿真测试、模拟测试和现场实际测试，证明基于信号线端口阻抗的一体化电容耦合器在线故障判断方法可行。只需针对传统中压载波通信机做简单修改，该方法简单有效，避免了因协调10 kV线路停电而造成的人力和物力浪费，具有一定的工程实际价值。

根据上述理论推导，该方法同样适用于10 kV配电线路故障监测。当10 kV配电线路出现接地接地、短路或断路故障时，一次侧阻抗变化明显，同样会在二次侧信号线端口阻抗表现出相同变化趋势，这对中压载波通信系统在10 kV配电线路故障监测方面的应用提供了理论依据。

参考文献

[1] 陈辉, 马亚彬. 10kV电力线路的载波通信技术[J]. 自动化应用, 2017(4): 98-99, 104.
[2] 熊淦辉, 谢润生, 林伟坤. 架空线中压电力线载波的信道阻抗特性研究[J]. 电工技术, 2019(6): 71-73.
[3] 肖湘奇, 黄瑞, 黄燕娇, 刘旭雷. 中压电力线路载波信道特性分析方法[J]. 大众用电, 2019(5): 30-31.
[4] 齐传风, 王学伟, 韩东, 陆以彪. 低压电力线载波信道阻抗测试终端的设计与应用[J]. 电测与仪表, 2012(1): 57-62.
[5] 王立城, 胡科军, 刘超. 低压电力线载波信道测试装置[J]. 电测与仪表, 2015(10): 44-49, 77.
[6] 郭以贺, 谢志远. 低压电力载波信道的分析与建模[J]. 电力自动化设备, 2010(3): 49-52.
[7] 冯升同, 刘东, 杨光. 基于Multisim 11的复阻抗的测量与仿真分析[J]. 电子世界, 2016(10): 195-196.
[8] 史光, 朱永印, 李莉. 频响阻抗实验的测量与方法[J]. 电子世界, 2016(10): 32-38.
[9] 陶守龙. 电容耦合器元器件的分析与研究[J]. 电力电容器与无功补偿, 2018(3): 92-95.