Investigations into the Influence of Solvents on the Nucleation Kinetics for Isonicotinamide, Lovastatin, and Phenacetin

Lie-Ding Shiau*†‡

†Department of Chemical and Materials Engineering, Chang Gung University, Taoyuan 33302, Taiwan
‡Department of Urology, Chang Gung Memorial Hospital, Linkou, Taoyuan 33305, Taiwan

ABSTRACT: A new method of data interpretation based on classical nucleation theory is proposed in this work to elucidate the influence of solvents on the pre-exponential nucleation factor and interfacial energy using the induction time data for three crystallization systems, including isonicotinamide, lovastatin, and phenacetin. In this method, the pre-exponential nucleation factor is replaced by the intrinsic nucleation factor multiplied by temperature and divided by solution viscosity. The proposed method is applied to study the nucleation kinetics of isonicotinamide, lovastatin, and phenacetin among various solvents using the induction time data measured in this work. The results indicate that the intrinsic nucleation factor increases linearly with increasing square root of interfacial energy in various solvents for each system.

■ INTRODUCTION

Nucleation is the initial process for the formation of crystals in solutions. In classical nucleation theory (CNT),1−3 the nucleation rate is expressed in the thermally activated Arrhenius form governed by the pre-exponential nucleation factor and interfacial energy. The interfacial energy is the energy required to create a new solid liquid interface for the formation of crystals in solutions. Traditionally, the interfacial energy is determined from the induction time measurements by assuming \(J \propto t_i^{-1} \).1,4−7 Generally, the higher the value of interfacial energy, the more difficult it is for the solute to crystallize.

As the nucleation behavior of the same solute is greatly influenced by the choice of solvent, the study of nucleation in various solvents has long been an important research subject.8−14 Recent studies have indicated an increasing trend of the interfacial energy with the increasing corresponding solute–solvent interaction for the same solute in various solvents.15−18 Apart from the interfacial energy, nucleation should also be influenced by the pre-exponential factor based on CNT. However, few studies have been published regarding to the influence of the solvent type on the pre-exponential factor for nucleation.

Although the pre-exponential factor is related to the solute mobility in solutions, it is also implicitly dependent on the interfacial energy of a crystalline solid according to the derivation of CNT2,3,19 which nevertheless has not been experimentally validated in the literature. Nucleation in various solvents for a system can provide important information for nucleation rate parameters. In this work, the influence of the solvent type on nucleation will be investigated based on CNT to examine the implicit relationship between the pre-exponential factor and interfacial energy in various solvents using the induction time data for three common model compounds widely studied in crystal engineering, including isonicotinamide, lovastatin, and phenacetin. The chemical structures of these compounds are given in Figure 1. Various

Figure 1. Chemical structures of (a) isonicotinamide, (b) lovastatin, and (c) phenacetin.

Received: July 8, 2019
Accepted: September 13, 2019
Published: October 10, 2019
THEORY

The nucleation rate based on CNT is expressed as:

\[
J = A_0 \exp \left[-\frac{16\pi a_m^3 \gamma^3}{3k_B T^3 \ln^2 S} \right]
\]

(1)

where \(A_0 \) is the nucleation pre-exponential factor, \(\gamma \) is the interfacial energy, \(k_B \) is the Boltzmann constant, \(a_m = \frac{8v_{m}}{3S} \) is the molecular volume, and \(S = C_p / C_{eq} \) is the supersaturation ratio. As the solute attachment for small critical nucleus in a stirred solution should be interface-transfer control, it yields based on CNT:

\[
A_j \propto \gamma^{1/2} D_{AB}
\]

(2)

where \(D_{AB} \) is the solute diffusivity in the solution.

For simplicity, the solute diffusivity is usually estimated based on the Stokes–Einstein equation as:

\[
D_{AB} = \frac{k_B T}{6\pi \eta r}
\]

(3)

where \(r \) is the molecular radius of solute and \(\eta \) is the solution viscosity. As \(D_{AB} \) is generally assumed to be proportional to \(T/\eta (T, S) \) for the same solute among various solvents, the intrinsic nucleation factor \(A_0 \) is introduced in this work as:

\[
A_j = A_0 \frac{T}{\eta (T, S)}
\]

(4)

To differentiate between the effects of \(\gamma^{1/2} \) and \(T/\eta (T, S) \) on \(A_0 \), the intrinsic nucleation factor \(A_0 \) is introduced in this work as:

\[
A_j = A_0 \frac{T}{\eta (T, S)}
\]

(5)

Substituting eq 5 into eq 4 yields

\[
A_0 \propto \gamma^{1/2}
\]

(6)

Consequently, although \(A_j \) in eq 2 is dependent on \(D_{AB} \) among various solvents, \(A_0 \) is not related to the dependence of \(D_{AB} \) on \(T/\eta (T, S) \) among various solvents. Substituting eq 5 into eq 1 yields

\[
J = \frac{A_0 T}{\eta (T, S)} \exp \left[-\frac{16\pi a_m^3 \gamma^3}{3k_B T^3 \ln^2 S} \right]
\]

(7)

Thus, \(J \) is expressed in terms of \(A_0 \) and \(\gamma \) as opposed to \(J \) commonly adopted in terms of \(A_j \) and \(\gamma \) in eq 1.

In the induction time study, the nucleation event is usually assumed to correspond to a point at which the total number density of accumulated crystals in a vessel has reached a fixed (but unknown) value, \(f_N \). Thus, one obtains at the nucleation time \(t_i \)

\[
f_N = J t_i
\]

(8)

where \(f_N \) depends on the measurement device and on the substance. Note that eq 8 is consistent with \(J \propto t_i^{-1} \) reported in the literature. Based on the study of 28 systems, Mersmann and Bartosch estimated \(f_N = 10^{-4} \) to \(10^{-3} \) with a detectable size of 10 \(\mu \)m. If the intermediate value, \(f_N = 4 \times 10^{-4} \), for spherical nuclei with \(k_v = \pi/6 \) is assumed, it leads to \(f_N = 7.64 \times 10^{11} \) m \(^{-3} \) proposed by Shiu.

Substituting eq 1 into eq 8 yields

\[
\ln \left(\frac{1}{t_i} \right) = \ln \left(\frac{A_0}{f_N} \right) - \frac{16\pi a_m^3 \gamma^3}{3k_B T^3 \ln^2 S}
\]

(9)

Experimental induction time data can be evaluated by plotting \(\ln(1/t_i) \) versus \(1/T^3 \ln^2 S \) for determination of \(\gamma \) from the slope and \(A_0 \) from the intercept, respectively. Substituting eq 7 into eq 8 yields

\[
\ln \left[\frac{\eta (T, S)}{t_i T} \right] = \ln \left(\frac{A_0}{f_N} \right) - \frac{16\pi a_m^3 \gamma^3}{3k_B T^3 \ln^2 S}
\]

(10)

Experimental induction time data can be evaluated by plotting \(\ln[\eta(T,S)/t_iT] \) versus \(1/T^3 \ln^2 S \) for determination of \(\gamma \) from the slope and \(A_0 \) from the intercept, respectively.

RESULTS AND DISCUSSION

Tables 1–3 list the experimental average induction time data of each solute in various solvents measured for various \(S \) at the

Table 1. Experimental Induction Time Data of Isonicotinamide in Each Solvent for Various \(S \) at 303 K

solute	solvent	\(S \) (×)	\(t_i \) (s)
isonicotinamide	methanol	1.43	664
		1.45	564
		1.50	400
		1.55	370
acetone		1.20	1077
		1.25	330
		1.30	186
		1.40	122
acetonitrile		1.10	2879
		1.13	1338
		1.14	787
		1.20	206
ethyl acetate		1.05	1156
		1.07	605
		1.10	589
		1.15	341

Table 2. Experimental Induction Time Data of Lovastatin in Each Solvent for Various \(S \) at 303 K

solute	solvent	\(S \) (×)	\(t_i \) (s)
lovastatin	ethyl acetate	1.45	1139
		1.50	970
		1.60	573
		1.70	275
ethanol		1.40	1998
		1.50	1240
		1.70	633
		1.90	357
butyl acetate		1.40	1156
		1.45	788
		1.50	531
		1.70	363
methanol		1.30	1389
		1.40	889
		1.50	378
		1.70	278
acetone		1.25	846
		1.30	545
		1.40	447
		1.50	321
and the deviation of the induction time is generally less than 15%. In the following, eqs 9 and 10 are applied to determine the nucleation kinetics in various solvents using the induction time data for each system.

In the application of eq 10, the solution viscosities \(\eta(T,S) \) in various solvents for each system are experimentally measured in this work using a rotational viscometer (Brookfield DV2T). The measurements under each condition are repeated three times, and the deviation of the viscosity value is generally less than 6%.

Figure 2a shows the measured supersaturation dependence of solution viscosity for isonicotinamide in various solvents at 303 K, where \(C_{eq} \) for isonicotinamide in each solvent at 303 K is taken from a report by Hansen et al.22 (\(C_{eq} = 210 \text{ mg solute/g solvent} \) for methanol, \(C_{eq} = 11 \text{ mg solute/g solvent} \) for ethyl acetate, \(C_{eq} = 23 \text{ mg solute/g solvent} \) for acetonitrile, and \(C_{eq} = 37 \text{ mg solute/g solvent} \) for acetone). Figure 2b shows the measured induction time data fitted to eq 10 for isonicotinamide in various solvents at 303 K, where the induction time data are experimentally obtained in this work for various initial concentrations cooled to 303 K. Figure 2c shows that \(A_0 \) increases linearly with increasing \(\gamma^{1/2} \) for isonicotinamide in various solvents at 303 K, where \(A_0 \) and \(\gamma \) in each solvent are determined using the corresponding induction time data fitted.
to eq 10. On the other hand, Figure 2d shows that no clear relationship is observed between A_J and $\gamma^{1/2}$ for isonicotinamide in various solvents at 303 K, where A_J and γ in each solvent are determined using the corresponding induction time data fitted to eq 9.

As shown in Figure 2a, η increases in the order: acetone < acetonitrile < ethyl acetate < methanol. Although Figure 2c shows that A_0 increases in the order: ethyl acetate < acetonitrile < acetone < methanol, A_J in Figure 2d increases in the order: ethyl acetate < methanol < acetonitrile < acetone, which is different from the increasing order of A_0. It should be noted that η in methanol is significantly greater than that in other solvents. Consequently, although A_0 in methanol is the greatest among various solvents, A_J in methanol becomes smaller than that in acetone or acetonitrile because of eq 5.

As shown in Figure 3a, η increases in the order: acetone < acetonitrile < ethyl acetate < methanol. Although Figure 2c shows that A_0 increases in the order: ethyl acetate < acetonitrile < acetone < methanol, A_J in Figure 2d increases in the order: ethyl acetate < methanol < acetonitrile < acetone, which is different from the increasing order of A_0. It should be noted that η in methanol is significantly greater than that in other solvents. Consequently, although A_0 in methanol is the greatest among various solvents, A_J in methanol becomes smaller than that in acetone or acetonitrile because of eq 5.

Figure 3a shows the measured supersaturation dependence of solution viscosity for lovastatin in various solvents at 303 K, where C_{eq} for lovastatin in each solvent at 303 K is taken from a report by Sun et al.30 ($C_{eq} = 38$ mg solute/g solvent for ethanol, $C_{eq} = 22$ mg solute/g solvent for butyl acetate, $C_{eq} = 52$ mg solute/g solvent for methanol, $C_{eq} = 31$ mg solute/g solvent for ethyl acetate, and $C_{eq} = 105$ mg solute/g solvent for acetone). Figure 3b shows the measured induction time data fitted to eq 10 for lovastatin in various solvents at 303 K, where the induction time data are experimentally obtained in this work for various initial concentrations cooled to 303 K. Figure 3c shows that A_0 increases linearly with increasing $\gamma^{1/2}$ for lovastatin in various solvents at 303 K, where A_0 and γ in each solvent are determined using the corresponding induction time data fitted to eq 10. On the other hand, Figure 3d shows that no clear relationship is observed between A_J and $\gamma^{1/2}$ for lovastatin in various solvents at 303 K, where A_J and γ in each solvent are determined using the corresponding induction time data fitted to eq 9.

Figure 4a shows the measured supersaturation dependence of solution viscosity for phenacetin in various solvents at 298 K, where C_{eq} for phenacetin in each solvent at 298 K is taken from a report by Croker et al.21 ($C_{eq} = 72$ mg solute/g solvent for ethanol, $C_{eq} = 24$ mg solute/g solvent for ethyl acetate, and $C_{eq} = 48$ mg solute/g solvent for acetonitrile).
Figure 4b shows the measured induction time data fitted to eq 10 for phenacetin in various solvents at 298 K, where the induction time data are experimentally obtained in this work for various initial concentrations cooled to 298 K. Figure 4c shows that A_0 increases linearly with increasing $\gamma^{1/2}$ for phenacetin in various solvents at 298 K, where A_0 and γ in each solvent are determined using the corresponding induction time data fitted to eq 10. On the other hand, Figure 4d shows that no clear relationship is observed between A_J and $\gamma^{1/2}$ for phenacetin in various solvents at 298 K, where A_J and γ in each solvent are determined using the corresponding induction time data fitted to eq 9.

As shown in Figures 2a, 3a, and 4a, the supersaturation dependence of solution viscosity in these systems is nearly negligible because of the narrow concentration range associated with the varied supersaturations. Table 4 lists the value of γ and the correlation coefficient R^2 for each line in Figures 2b, 3b, and 4b. The value of γ in each solvent for these systems agrees with the reported literature value.27,28 Note that the correlation coefficient in each solvent for these systems exceeds the critical value of 0.900 for the 90% confidence interval and 4 points (i.e., degree of freedom = 2).

Table 5 lists comparison between the correlation coefficient for each line in Figures 2c, 3c, and 4c and the corresponding critical value based on the 95% confidence interval. As the correlation coefficient for these systems exceeds the corresponding critical value based on the 95% confidence interval, it is concluded that A_0 increases linearly with increasing $\gamma^{1/2}$ in various solvents for each system. As an increasing trend of the interfacial energy with the increasing corresponding solute—solvent

Table 4. Value of γ and the Correlation Coefficient for Each Line in Figures 2b, 3b, and 4b

solute	solvent	γ (mJ/m^2)	R^2
isonicotinamide	methanol	3.32	0.973
	acetone	2.53	0.992
	acetonitrile	1.72	0.951
	ethyl acetate	0.77	0.900
lovastatin	ethyl acetate	1.94	0.915
	ethanol	1.72	0.959
	butyl acetate	1.62	0.974
	methanol	1.44	0.926
	acetone	1.08	0.965
phenacetin	ethanol	1.17	0.964
	acetonitrile	0.674	0.960
	ethyl acetate	0.632	0.943
interaction for the same solute in various solvents has been reported in the literature, it is speculated that the effect of this interaction on γ is also strongly correlated with that on A_0, for the same system. Consequently, if the choice of solvent results in a smaller γ because of a weaker solute–solvent interaction, it simultaneously results in a smaller A_0. On the other hand, if the choice of solvent results in a larger γ because of a stronger solute–solvent interaction, it simultaneously results in a smaller A_0.

CONCLUSIONS

According to CNT, $A_1 = A_0 \frac{T}{\eta}$ is proposed in this work.

Equation 10 is derived to investigate the nucleation kinetics in various solvents using the induction time data for isonicotinamide, lovastatin, and phenacetin. Although no clear relationship is observed between A_1 and $\gamma^{1/2}$ among various solvents for each system, A_1 increases linearly with increasing $\gamma^{1/2}$ among various solvents for each system, which is consistent with eq 6 derived based on CNT. Based on the analyzed results of nucleation kinetics in these systems, it is proposed that A_1 consists of two parts: the first part T/η is proportional to D_{AB}, and the other part A_0 is proportional to $\gamma^{1/2}$. Although A_1 is dependent on D_{AB} among various solvents, A_0 is not related to the dependence of D_{AB} on $T/\eta(T,S)$ among various solvents. It is speculated that both γ and A_0 are proportional to the solute–solvent interaction for the corresponding solvent.

EXPERIMENTAL SECTION

The experimental apparatus consists of a 250 mL crystallizer immersed in a programmable thermostatic water bath shown in Figure 5. The crystallizer is equipped with a magnetic stirrer at a constant stirring rate 350 rpm. The turbidity probe (Crystal Eyes manufactured by HEL limited) is used to detect the nucleation event during the induction time study.

The induction times for three crystallization systems, including isonicotinamide (Alfa Aesar, purity 99%), lovastatin (Acros, purity 98%), and phenacetin (Acros, purity 78%) are measured in this work. Analytical grade solvents (purity 99.9%) are used to prepare the supersaturated solution. In each experiment, a 200 mL solution with the desired supersaturation is loaded into the crystallizer. The solution is held at 3 °C above the saturated temperature for 5–10 min to ensure a complete dissolution at the beginning of the experiment, which is also confirmed by the turbidity measurement. Then, the supersaturated solution is rapidly cooled to the desired temperature for the induction time measurements.

AUTHOR INFORMATION

Corresponding Author

E-mail: shiau@mail.cgu.edu.tw. Phone: 011-886-3-2118800 ext. 5291. Fax: 011-886-3-2118700.

ORCID

Lie-Ding Shiau: 0000-0002-2959-8523

Notes

The author declares no competing financial interest.

ACKNOWLEDGMENTS

The author would like to thank Chang Gung Memorial Hospital (CMRPD2G0242) and Ministry of Science and Technology of Taiwan (MOST107-2221-E-182-031) for financial support of this research. The author also expresses his gratitude to Tai-Jyun Chen, Wen-Chi Chang and Chen-I Lai for their experimental work.

NOTATION

A_B, pre-exponential nucleation factor (m$^{-3}$ s$^{-1}$)

A_0, intrinsic nucleation factor (Pa m$^{-6/2}$ s$^{-3}$)

C_p, initial concentration of solute molecules (m$^{-3}$)

C_{eq}, equilibrium concentration of solute molecules (m$^{-3}$)

D_{AB}, solute diffusivity (m2/s)

f_{MN}, minimum detectable number density of accumulated crystals (m$^{-3}$)

f_{V}, minimum detectable volume fraction of accumulated crystals (-)

f_i, nucleation rate (m$^{-3}$ s$^{-1}$)

k_B, Boltzmann constant (=1.38 × 10$^{-23}$ J/K)

k_v, volume shape factor (-)

M, molar mass (kg/mol)

N_A, Avogadro number (=6.02 × 1023 mol$^{-1}$)

r_m, molecular radius of solute (m)

S, supersaturation ratio (-)

T, temperature (K)

i, time (s)

t_i, induction time (s)

V_m, volume of the solute molecule (m3)

GREEK LETTERS

γ, interfacial energy (J/m2); ρ, crystal density (kg/m3); η, solution viscosity (Pa s)

REFERENCES

(1) Mullin, J. W. *Crystallization*; Butterworth-Heinemann: Oxford, 1993.
(2) Kashchiev, D. Nucleation: Basic Theory with Applications; Butterworth-Heinemann: Oxford, 2000.

(3) Kashchiev, D.; van Rosmalen, G. M. Review: Nucleation in solutions revisited. *Cryst. Res. Technol.* 2003, 38, 555–574.

(4) Du, W.; Yin, Q.; Bao, Y.; Xie, C.; Hou, B.; Hao, H.; Chen, W.; Wang, J.; Gong, J. Concomitant polymorphism of prasugrel hydrochloride in reactive crystallization. *Ind. Eng. Chem. Res.* 2013, 52, 16182–16189.

(5) You, S.; Zhang, Y.; Zhang, Y. Nucleation of ammonium aluminum sulfate dodecahydrate from unseeded aqueous solution. *J. Cryst. Growth* 2015, 411, 24–29.

(6) Yang, H. Relation between metastable zone width and induction time of butyl paraben in ethanol. *CrystEngComm* 2015, 17, 577–586.

(7) Yang, L.; Cao, J.; Luo, T. Effect of Mg2+, Al3+, and Fe3+ ions on crystallization of type α hemi-hydrated calcium sulfate under simulated conditions of hemi-hydrate process of phosphoric acid. *J. Cryst. Growth* 2018, 486, 30–37.

(8) Granberg, R. A.; Ducreux, C.; Gracin, S.; Rasmuson, Å. C. Primary nucleation of paracetamol in acetone-water mixtures. *Chem. Eng. Sci.* 2001, 56, 2305–2313.

(9) Omar, W.; Mohnicke, M.; Ulrich, J. Determination of the solid liquid interfacial energy and thereby the critical nucleus size of paracetamol in different solvents. *Cryst. Res. Technol.* 2006, 41, 337–343.

(10) Nordström, F. L.; Svärd, M.; Rasmuson, Å. C. Primary nucleation of salicylamide: the influence of process conditions and solvent on the metastable zone width. *CrystEngComm* 2013, 15, 7285–7297.

(11) Yang, H.; Rasmuson, Å. C. Nucleation of butyl paraben in different solvents. *Cryst. Growth Des.* 2013, 13, 4226–4238.

(12) Yang, H.; Svärd, M.; Zeglinski, J.; Rasmuson, Å. C. Influence of solvent and solid-state structure on nucleation of parabens. *Cryst. Growth Des.* 2014, 14, 3890–3902.

(13) Mealey, D.; Croker, D. M.; Rasmuson, Å. C. Crystal nucleation of salicylic acid in organic solvents. *CrystEngComm* 2015, 17, 3961–3973.

(14) Zou, F.; Zhuang, W.; Chen, Q.; Yang, P.; Lin, C.; Jiao, P.; Zhou, J.; Wu, J.; Ying, H. Solvent effects on nucleation of disodium guanosine 5′-monophosphate in anti-solvent/water mixtures. *CrystEngComm* 2016, 18, 6653–6663.

(15) Khamar, D.; Zeglinski, J.; Mealey, D.; Rasmuson, Å. C. Investigating the role of solvent–solute interaction in crystal nucleation of salicylic acid from organic solvents. *J. Am. Chem. Soc.* 2014, 136, 11664–11673.

(16) Mealey, D.; Zeglinski, J.; Khamar, D.; Rasmuson, Å. C. Influence of solvent on crystal nucleation of risperidone. *Faraday Discuss.* 2015, 179, 309–328.

(17) Zeglinski, J.; Kuhs, M.; Devi, K. R.; Khamar, D.; Hegarty, A. C.; Thompson, D.; Rasmuson, Å. C. Probing crystal nucleation of fenoxycarb from solution through the effect of solvent. *Cryst. Growth Des.* 2019, 19, 2037–2049.

(18) Yang, Y.; Zhou, L.; Zhang, X.; Yang, W.; Zhang, S.; Xiong, L.; Wei, Y.; Zhang, M.; Hou, B.; Yin, Q. Influence of solvent properties and intermolecular interaction between solute and solvent on nucleation kinetics of hmbtad. *J. Cryst. Growth* 2018, 498, 77–84.

(19) Lindenberg, C.; Mazzotti, M. Effect of temperature on the nucleation kinetics of α-l-glutamic acid. *J. Cryst. Growth* 2009, 311, 1178–1184.

(20) Sato, S.; Hata, T.; Tsujita, Y.; Terahara, A.; Tamura, C. The structure of monacolin K, C_{35}H_{46}O_{8}. *Acta Crystalogr., Sect. C: Cryst. Struct. Commun.* 1984, 40, 195–198.

(21) Croker, D. M.; Kelly, D. M.; Horgan, D. E.; Hodnett, B. K.; Lawrence, S. E.; Moynihan, H. A.; Rasmuson, Å. C. Demonstrating the influence of solvent choice and crystallization conditions on phenacetin crystal habit and particle size distribution. *Org. Process Res. Dev.* 2015, 19, 1826–1836.

(22) Hansen, T. B.; Taris, A.; Rong, B.-G.; Grosso, M.; Qu, H. Polymorphic behavior of isonicotinamide in cooling crystallization from various solvents. *J. Cryst. Growth* 2016, 450, 81–90.