Diversity of ethnobotanically significant angiospermic weeds in Siang Belt of Arunachal Himalayan Region in India

Momang Taram1, Rubu Rinyo1, Lemmem Gammi1, Kenba Yanggi1, Atek Nangkar1, Pallabi K. Huı2, Sanjay Jambhulkar3 and Hui Tag1,4

1Plant Systematics and Ethnobotanical Research Laboratory, Department of Botany, Rajiv Gandhi University, Rono Hills, Doimukh- 791112, Arunachal Pradesh, India
2Department of Biotechnology, National Institute of Technology – Arunachal Pradesh, Yupia-791112, Papum Pare, Arunachal Pradesh, India
3Nuclear Agriculture & Biotechnology Division, Bhabha Atomic Research Centre, Trombay, Mumbai-400085, India
4Corresponding author; E-mail: huitag2008rgu@gmail.com

[Received 11.11.2019; Revised & accepted 22.12.2019; Published 31.12.2019]

Abstract

With objective to investigate the diversity of ethnobotanically significant angiospermic weeds used among the Adi community in the Siang belt of Arunachal Pradesh in their traditional biocultural landscape has recorded a total of 87 weed species. Many of these are economic significant and growing luxuriantly on the roadside, wasteland, jhum land and valleys. Their uses include food, human herbal medicines, veterinary medicines, fish poisoning agent, and use in local customary rituals practices.

Key words: Ethnobotany; Angiosperm Weeds; Utilization, Siang Belt; Arunachal Himalaya

INTRODUCTION

Etymologically, “weed” derives from the old English word for “grass” or “herb,” but during the middle ages the meaning has been changed to indicate an undesirable plant that grows where it is not wanted, especially along the agricultural plots (Rahman 2013). Baker (1965) defines a weed as a plant in any specify geographical area, its populations grow entirely or predominantly in situations markedly in disturbed environments, fast growing and are not always herbaceous (Zimdahl 1992). The notion of weeds as unnecessary plants was originated when man started to intentionally growing plants for food. They invade natural vegetation, usually adversely affecting native biodiversity or ecosystem functioning as well as competing with crop plants for common resources such as water, mineral nutrients, space and light (Heywood 1995; Rahman et al. 2011; Maroyi 2013). Some weeds produce chemical substances which are toxic to crop plants but not all the weeds are unwanted. In the rangeland areas, many annual grasses considered as weeds in crops are useful as animal feed. They also serve as food and shelter for wildlife, reduce soil erosion as good soil binders, and are useful for food and medicinal purposes (Neogi et al. 1989).

India has a wide range of agro-climates and soil types with highly diverse agriculture and farming systems beset with different types of weeds, which are very common, dominant and wide spread in the crop fields (Dhole et al. 2009; Rao & Chauhan 2015). Ethnobotanically important rare, endangered primary forest plant species can be replaced by invasive and exotic weeds, which have higher potential to survive and reproduce in stressed environment (Neogi et al. 1989). In the context of India and Northeast India, no systematic documentation
on weed flora are available to date. Hence, this paper aims to discuss on the diversity, distribution, ecology and economic importance of the ethnobotanically significant weed flora recorded from Adi inhabited Siang Belt of Arunachal Pradesh based on the ethnobotanical survey conducted during 2017 – 2019 and it is expected that this baseline taxonomic data would be useful for the management of weeds flora in Eastern Himalayan region in more productive and sustainable manner.

MATERIALS & METHODS

Study site and local cultural group
Ethnobotanical field study was conducted from 2017 – 2019 in the 8 villages of Siang districts, namely, Geku, Komkar, Yingkyong, Pasighat, Mebo, Riew, Boleng and Kerang which falls under tropical and subtropical climatic zones of East Siang, Upper Siang and Siang districts of Arunachal Pradesh, India. These districts are predominantly inhabited by the indigenous Adi tribal community living in the foot hills and the Bank of Mighty Siang River in the Eastern Himalayan region of India. The Adi people of Siang area still practices their age-old traditional faith and belief system called Donyi-Polo and practice terrace and jhum agriculture for sustenance of livelihood (Tag et al. 2008).

Ethnobotanical documentation of weeds flora
A total of 100 respondents from 50 household covering 8 villages of Adi localities were interviewed following the method suggested by Martin (2008). Prior Inform Consent (PIC) was taken from the potential informants before start of the work. Ethnobotanical uses of weed flora encountered were recorded in the structured questionnaire format and field notebook, and live photos of each species were captured. The voucher specimens were collected, dried, mounted, labelled and preserved following the method suggested by Jain and Rao (1977). Each plant was identified using standard regional and national floras, including Materials for the flora of Arunachal Pradesh (Hajra et al. 1996; Giri et al. 2008; Chowdhery et al. 2009); The Flora of British India (Hooker 1872 – 1897) and e-flora of India. The accepted scientific names were verified in the website www.theplantlist.org hosted by Royal Botanic Garden Kew UK and Missouri Botanical Garden, St. Louis, and Plants of World Online (POWO) hosted by RBG Kew. Voucher specimens were deposited in the Herbarium of Arunachal University (HAU), Department of Botany, Rajiv Gandhi University for future consultation.

RESULT AND DISCUSSION

Weed species diversity and traditional uses
Present investigation has recognized 87 weed species falling under 64 genera and 31 families which belong to Angiosperms which is presented in Table 1. Majority of the species (44%) reported are having local food value while 27 % species are used as medicine, 11% species are used for other purposes, 10% species are used for fodders and only 8% of the total species reported are used for traditional customary rituals. Of the total 87 weed species reported, 42 species are exclusively used as food supplements. These species are widespread in distribution right from road side to invading jhum field, kitchen garden and wasteland in the Eastern Himalaya including the Adi belt of Arunachal Pradesh. The edible and ethnobotanically significant weed species reported from current study sites are: Gynura cosimbua, Fagopyrum esculentum, Houttuynia cordata, Gonostegia hirta, Solanum americanum, Solanum torvum, etc. commonly domesticated in the kitchen garden and found in wild in jhum land.
PLATE - I. A. Persicaria capitata; B. Stellaria media; C. Nasturtium microphyllum; D. Lindenbergia hookeri; E. Portulaca oleracea; F. Rumex maritimus; G. Duchesnia indica; H. Oxalis debilis var. corymbosa; I. Gonostegia hirta; J. Rubus ellipticus; K. Dense uninterrupted population of Impatiens bracteolata; L. Viola betonicifolia; M. Paederia foetida
Table 1. Checklist of ethnoobotanically significant angiospermic weeds in the Siang belt of Arunachal Himalayan Region

Abbreviation used: F = Food; FD = Fodder; FH = Fishing; RBC = Rituals beliefs and customs; VET = Veterinary; O = Others; TU = Traditional uses

Botanical name [Family]; Voucher specimen	Adi Names	T U	Mode of use	Endemism range	Markability
Actephila excelsa (Dalzell) Mull. Arg. [Phyllanthaceae]; LG-134	Kamsar-oying	F	Tender shoots taken as vegetable	-	Yes
Ageratum conyzoides (L.) L. [Asteraceae]; MT-906	Namsing eeing/ Migom Dumpu/ Bongar/ Yahum	M; RCB	Leaf paste applied on cuts and bruises as haemostat; leaf juice taken orally for headache and shivering; Facing of inflorescence direction signify dusk/ dawn	Tropical America and Mexico	No
Ageratum houstonianum Mill. [Asteraceae]; MT-908	Namsing eeing/ Migom Dumpu	M; RCB	Leaf paste used as haemostat on cuts and bruises; movement of inflorescence direction signifies dusk / dawn	Central America, Mexico	No
Amaranthus spinosus L. [Amaranthaceae]; GM-142	Tapi-Pilee / Gabor	F	Tender shoots taken as vegetable	Trop. America, Mexico	Yes
Amaranthus viridis L. [Amaranthaceae]; GM-143	Tapi-pilee/ Gabor	F	Tender shoots taken as vegetable	Trop. America, Mexico	Yes
Ardisia solanacea Roxb. [Primulaceae]; LG-122	Go-yakpin	F	Tender shoots taken as vegetable	Pakistan, India, Sri Lanka, SE Asia, W China	No
Artemisia indica Willd. [Asteraceae]; LG- 116	Eetki-Daali/ fagi Reti/ Laglin	M; RBC	Leaves paste taken orally stomach disorder; twigs used in funerals	East Asia, China, Japan, India	No
Bidens pilosa L. [Asteraceae]; GM-145	Tasso-Lepyo/ Ejar	F	Tender shoots taken as vegetable	America, Eurasia, Africa, Australia, Pacific Island	Yes
Blumea balsamifera DC. [Asteraceae]; LG-119	Eyok aain/ Mine geyin	M	Crushed leaves mixed with Mithun dung and freshly collected stream-water is applied on the forehead to treat malaria	Asia, China, Indo-China, Malaysia	No
Brachiaria eruciformis (Sm.) Griseb. [Poaceae]; MT-932	Taami	FD	Fodder for cattle	Mediterranean to Indo-China, Africa	No
Brachiaria ramosa (L.) Stapf [Poaceae]; MT-937	Taami/ Tarum majit	FD	Fodder for cattle	Africa, Asia	No
Brachiaria reptans (L.) C.A. Gardener & C.E.Hubb. [Poaceae]; MT-933	Taami	FD	Fodder for cattle	Arab peninsula, Afghanistan to Pacific	No
Brachystemma calycinum D.Don [Caryophyllaceae]; MT-912	Okin-Parin	F; M	Leaves are warmed after packing with Phrynium pubinerve leaves and then applied to cure cracked sole	SW China, Nepal	No
Bryophyllum pinnatum (Lam.) Oken [Crassulaceae]; MT-909	Nevi nelaum, Eme kaserang	M	Plant extract applied on affected body part to cure burn and inflammation; leaves eaten raw to clean stomach	S Africa, Madagascar, Asia	No
Cardamine hirsuta L. [Brassicaceae]; MT-917	Oram-Petsik/ Loram patta	F	Whole plants edible	Europe, N Africa	No
Carex baccans Nees [Cyperaceae]; LG-120	Gemin-Taabeng/ Tapok/ Tabeng	RBC	They belief that Carex baccans and Saccharum arundinaceum came from the same ancestor so both are used together in funeral rituals	India, Sri Lanka, China	No
Botanical name [Family]; Voucher specimen	Adi Names	T U	Mode of use	Endemism range	Marketability
--	-----------	-----	-------------	----------------	---------------
Centella asiatica (L.) Urb. [Apiaceae]; LG-139	Kiling Kipum, Golgi-Sipum, Dolgi/Jorgang taek	M	Paste of whole plants taken orally to treat gastritis	Asia	Yes
Chenopodium album L. [Amaranthaceae]; LG-129	Jili-Mili/ Taye	F	Tender shoots taken as vegetable	Europe, Eurasia to India	Yes
Chenopodium giganteum D.Don [Amaranthaceae]; LG-103	Amateng	F	Tender shoots taken as vegetable	Himalayas to Korea	Yes
Chromolaena odorata (L.) R.M.King & H.Rob. [Asteraceae]; LG-126	Ingkir	M	Leaf paste applied on cuts for blood clotting	America	No
Crassocephalum crepidioides (Benth.) S.Moore [Asteraceae]; LG-115	Eedi/Jogenei/ Teimbabo/ Gendeh	F	Tender shoots taken as vegetable	Africa	Yes
Chenopodium album L. [Amaranthaceae]; LG-129	Jili-Mili/ Taye	F	Tender shoots taken as vegetable	Europe, Eurasia to India	Yes
Chenopodium giganteum D.Don [Amaranthaceae]; LG-103	Amateng	F	Tender shoots taken as vegetable	Himalayas to Korea	Yes
Chromolaena odorata (L.) R.M.King & H.Rob. [Asteraceae]; LG-126	Ingkir	M	Leaf paste applied on cuts for blood clotting	America	No
Crassocephalum crepidioides (Benth.) S.Moore [Asteraceae]; LG-115	Eedi/Jogenei/ Teimbabo/ Gendeh	F	Tender shoots taken as vegetable	Africa	Yes
Cyanodon dactylon (L.) Pers. [Poaceae]; MT-936	Taami/Tarum majut	FD	Fodder for cattle	E Africa, Australia	No
Dinebra retroflexa (Vahl) Panz. [Poaceae]; MT-934	Taami	FD	Fodder for cattle	Africa	No
Droyaria cordata (L.) Willd. ex Schult. [Caryophyllaceae]; MT-29	Pipi, Perok taller/ Kaming karlor	M	Paste of whole plant used locally to cure ringworm	Mexico, West Indies, S Africa, C & S America	No
Duchesnea indica (Jaccks.) Focke [Rosaceae]; LG 118	Eki-Tangkin/ Panik taang	F	Ripe fruits edible (watery)	E & S Asia, Afghanistan to Russian Far East, Malaysia	No
Eclipta prostrata (L.) L. [Asteraceae]; LG-137	Keharaj/ Donyi Hangkang	M	Plant decoction taken orally to cure dysentery	America, India, Nepal, China, Thailand, Brazil	No
Eragrostis minor Host [Poaceae]; MT-935	Taami	FD	Fodder for cattle	Eurasia, Africa	No
Erigeron canadensis L. [Asteraceae]; LG-127	Ingkobodong/ Eedong	F	Tender shoots taken as vegetable	N & C America	No
Euphorbia hirta L. [Asteraceae]; MT-902	Korek oying	FD; M	Whole plant used as pig-fodder; leaves taken orally against flies	Trop. America	No
Fagopyrum esculentum Moench [Polygonaceae]	Okung, Lompuk	F	Tender shoot taken as vegetable	Native to C & N Asia	Yes
Gnaphalium polycaulon Pers. [Asteraceae]; MT-923	Paaput	F	Leaves edible	Mesoamerica, S America, West Indies	No
Gynura cusimbua (D.Don) S.Moore [Asteraceae]; MT-910	Ogen	F	Leaves edible	China, Tibet, India, Myanmar, Nepal, Thailand, Bangladesh, Bhutan	Yes
Houttuynia cordata Thumb. [Saururaceae]; MT-930	Roram	F; M	Whole plant made into chutney; use in stomachache	SE Asia	Yes
Hydrocotyle javanica Thunb. [Araliaceae]; LG-140	Kiling-Kipum	O	Whole plants used to stupify fishes	NE India, SE Asia, Fiji	No
Impatiens bracteolata Hook.f. [Balsaminaceae]; MT-907	Nanor–Tangkor	F	Tender shoots edible	E Himalaya to Myanmar	No
Laphangium affine (D.Don) Tzvelev [Asteraceae]; MT-922	Paaput	F	Leaves edible	Temperate region of China, Korea, Japan, Taiwan, high altitude tropical region of India, Nepal, Thailand	No
Botanical name [Family]; Voucher specimen	Adi Names	T U	Mode of use	Endemism range	Marketability
--	-----------	-----	-------------	----------------	---------------
Leucas aspera (Willd.) Link [Lamiaceae]; LG-117	Eki sipak	M	Leaf-paste used externally on nose to cure sinus problems	India, Mauritius, Philippines, Java	No
Lindenhergia hookeri C.B.Clarke ex Hook.f. [Orobanchaceae]; MT-925	Pepit namdung	F	Flowers are edible (sour)	E. Himalaya	No
Melastoma malabathricum L. [Melastomataceae]; LG-136	Kassi Rai/ Joger	F; RBC	Fruits edible; its blooming signals that the high time for paddy-seeds broadcasting	Indo-Malaya, Japan, Australia	No
Mikania micrantha Kunth [Asteraceae]; LG-114	Eeli/ Eeing mamang	M	Leave used to cure stomachache and dysentery	Subtrop. N, C & S America	No
Murdannia nudiflora (L.) Brenan [Commelinaceae]; LG-124	Hodog/ Golgi/ Gorgi roksok	RBC	flowering of the plant signals villagers that it is time to broadcast paddy-seeds; the plant is grown in field as demarcation line	Trop. & subtrop. Asia	No
Nasturtium microphyllum (Boenn.) Rchb. [Brassicaceae]; MT-919	Orgyam/ Patang oying	F	Leaves edible	Middle-east, parts of N Africa, Europe	Yes
Oenanthe javanica (Blame) DC. [Apiaceae]; LG-101	-	F	Tender shoots served as vegetable	Temp. Asia, Trop. Asia, Queensland, Australia	Yes
Oxalis corniculata L. [Oxalidaceae]; MT-926	Piag-Hiya, Piak lip	M	Fruit-juice used to cure eye infection	S America	No
Oxalis debilis var. corymbosa (DC.) Lourteig [Oxalidaceae]; MT-927	Piag-Hiyub, Piak lip	F	Flowers and rhizome edible	C America to Guyana, Paraguay	No
Paederia foetida L. [Rubiaceae]; GM-146	Yape Taari/ Riki Ringkom/ Yepe ribung	M	Leaves taken orally to cure gastritis	Temp. & trop. Asia	No
Persicaria barbata (L.) H.Hara [Polygonaceae]; LG-107	Diko-Taama	O	Crushed plants used to stupefy fish	India, Myanmar, China, Pegu	No
Persicaria capitata (Buch.-Ham. ex D.Don) H.Gross [Polygonaceae]; LG-104	Babing-kaling, Mijing kaling, Tasum momi/ Kibu nanung	F	Ripe fruits edible	Asia	Yes
Persicaria chinensis (L.) H. Gross [Polygonaceae]; LG-102	Babing-kaling, Mijing kaling, Tasum momi/ Kibu nanung	O	Crushed plants used to wash hands in the field; plant-paste applied on cuts and wound	Native to trop. to temp. Asia	No
Persicaria hydropiper (L.) Delarbre [Polygonaceae]; LG-108	Diko-Taama/ eeing killing	O	Crushed leaves used to stupefy fishes	Australia, New Zealand, temp. Asia, Europe, N America, Africa	No
Persicaria nepalensis (Meisn.) H.Gross [Polygonaceae]; LG-105	Babing-kaling, Mijing kaling, Tasum momi/ Rungkung	O	Crushed plant used to wash hands in the field	E Africa, including Madagascar, parts of Asia	No
Phyllanthus amarus Schumach. &Thonn. [Phyllanthaceae]; MT-901	Kobelang/ Eeyup	M	Plant-paste taken orally against jaundice	Mexico to Trop. America.	No
Physalis minima L. [Solanaceae]; LG 131	Jajing belang	F	Ripe fruits edible	Trop. & Subtrop. America.	No
Pilea insolens Wedd. [Urticaceae]; MT-940	Tango-Lisak	F	Leaves used in fermentation of Perilla ocymoides seeds	S-E Xizang, China, Bhutan, N India, Nepal	No
Pilea umbrosa Wedd. ex Blume [Urticaceae]; MT-915	Oko-Robo	F	Tender shoots edible	Pakistan, China, N Vietnam	No
Botanical name [Family]; Voucher specimen	Adi Names	T U	Mode of use	Endemism range	Marketable
--	-----------	----	-------------	----------------	------------
Plantago asiatica L. [Plantaginaceae]; LG-111	Donyi-Borkor Donyi hakneng, Donyi sokang	F	Leaves edible	E China	No
Polygonum molle D.Don [Polygonaceae]; LG-138	Kibbu- Namung	F	Tender shoots edible	Indian Subcontinent to S. China, W. Malaysia.	No
Portulaca oleracea L. [Portulacaceae]; LG-123	Gubor-Oying	F	Whole plants edible	Australia	No
Gonostegia hirta (Blume ex Hassk.) Miq. [Urticaceae]; MT-920	Oyik	F; M	Tender shoots edible; leaf-paste used on cuts and wounds	Trop. & subtrop. Asia to Australia	Yes
Puszoltzia zeylenica (L.) Benn. [Urticaceae]; MT-921	Oyik	M	Leaf paste used on cuts and wounds	Trop. & subtrop. Asia.	No
Ricinus communis L. [Euphorbiaceae]; LG-121	Gopo-Golo / Perok aki/ Aki rongnik	M	Leaves warm on fire placed paining joints and muscle. Petiole bark used as bandage to cure fractured bone of chicks	N-E Africa	No
Rosippa dubia (Pers.) H.Hara [Brassicaceae]; MT-918	Orgyam, sitong pettu	F	Leaves edible	Indian subcontinent, S China, Malay peninsula	No
Rubia manjith Roxb. ex Fleming [Rubiacae]; MT-938	Taman	O	Roots boiled with cotton (for thread) turns red	Africa to trop. Asia, China, Japan, Australia	No
Rubus ellipticus Sm. [Rosaceae]; MT-939	Tangkin / Pakkom Tayin/ Pakkom tasing	F	Sweet ripe fruits edible	China, Nepal, Indian subcontinent, Indochina, Philippines	No
Rumex maritimus L. [Polygonaceae]; MT-916	Okung	F	Young leaves edible	Ireland	Yes
Saccharum arundineaceum Retz. [Poaceae]; GM-141	Tapii	RBC	Believed that it is the elder brother of Carex sp. and both are use in rituals during funeral	India	No
Saccharum spontaneum L. [Poaceae]; MT-928	Piko-Pimur/ Aasi-Pimur	F	Roasted young inflorescences edible	Sicilia, Africa, Asia to N. & NE. Australia.	No
Scoparia dulcis L. [Plantaginaceae]; GM-147	Yongin	M	Taken orally against rabies	C & S America	No
Senna alata (L.) Roxb. [Fabaceae]; LG-109	Donyi Sori	M	Leaf-paste used as antimicrobial medicine for old wounds	N-S & C America	No
Senna tora (L.) Roxb. [Fabaceae]; LG-110	Donyi Sori	M	Leaf-paste used against Ring worm	C America	No
Sida acuta Burm.f. [Malvaceae]; LG-128	Jara Ane	O	Dried whole plants used as hard broom	C America	No
Solanum americanum Mill. [Solanaceae]; MT-914	Okomamang/Ma ali/ Yanga	F	Tender shoots taken as vegetable	America, Melanesia, New Guinea, Australia	Yes
Solanum torvum Sw. [Solanaceae]; MT-905	Migmom kopi, Kodu/ Taleng koe	F	Young fruits tastes bitter, made into chutney	Florida, S Alabama, Brazil, Mexico	Yes
Solanum viarum Dunal [Solanaceae]; MT-924	Peeli-Taang	M	Warmed fruits used in toothache	Brazil, Argentina	No
Solanum villosum Mill. [Solanaceae]; MT-913	Okomamang/Ma ali/ koieer	F	Tender shoots taken as vegetable	Europe, W Asia, N Africa, N America	No
Sonchus oleraceus L. [Asteraceae]; MT-911	Ogon	F	Tender leaves eaten as vegetable	Europe, W Asia	No
Botanical name [Family]; Voucher specimen	Adi Names	T U	Mode of use	Endemism range	Marketability
--	-----------	----	-------------	----------------	---------------
Spermacoce alata Aubl. [Rubiaceae]; LG-113	Eeing / Tagin mikki	FD	Whole plant used as pig-fodder	S Mexico, C America, Caribbean	No
Spermacoce ocymoidea Burm.f. [Rubiaceae]; LG-112	Eeing	FD	Whole plant used as pig-fodder	Trop. to SW Pacific	No
Spilanthes acmella (L.) L. [Asteraceae]; MT-903	Marshang Haali, Aying Marshang	F	Leaves edible	Trop. & S countries mainly India, S America	Yes
Stellaria media (L.) Vill. [Caryophyllaceae]; LG-125	Hosir Oying	F	Whole plants edible	Europe, Africa	Yes
Themeda villosa (Lam.) A.Camas [Poaceae]; LG-144	Tase	O	Dried leaves use for roofing	Trop. & subtrop. Asia	No
Thysanolaena latifolia (Roxb. ex Hornem.) Honda [Poaceae]; LG-135	Kanggam/ Jara Ane/ Kamgang	RBC, O	Believe that in course of evolution the tail of Bos frontalis was originated from plant inflorescence; mature inflorescence use as soft broom	Trop. & subtrop. Asia	Yes
Urtica ardens Link [Urticaceae]; LG-130	Jimang/ Matpe Pereng	M	Infected wounds of Bos frontalis is beaten with nettle leaf to kill the infectious organisms	Himalayas to SE Tibet	No
Urtica dioica L. [Urticaceae]; MT-904	Matpe pereng/ Peji pamang	M	As in U. ardens	Europe, temp. Asia, W-N Africa	No
Viola betonicifolia Sm. [Violaceae]; LG-133	Jortung / Japjor	F	Whole plants edible	S Asia, E Australia, Tasmania	No
Viola pilosa Blume [Violaceae]; LG-132	Jorsing/ Japjor Peaak sangar	F	Whole plants edible	Trop. & temp. Asia	No
Youngia japonica (L.) DC. [Asteraceae]; MT-931	Rundum/ Rundum/ Rukjub mikki	O	Dried leaves are smoked as substitute to tobacco	E Asia	No

Ethnomedicinal uses

Of the total 87 weed species reported, 27% of them are being used in traditional ethnomedicinal practices of the Adi community for the treatment of different ailments such as Gastrointestinal disorder, cuts and wound, burns and inflammation, malaria, toothache, jaundice, files, sinus, crack sole, ringworm, sprain and rabies. Majority of the total species reported are used for treatment of Gastro-intestinal disorder, cuts and wound, burns and inflammation and malaria, whereas few species such as *Urtica dioica* and *Urtica parviflora* were found to be used in ethno-veterinary medicinal practices for the treatment of infected wound of their livestock population.

Animal fodder and forage

Domestication of animal is the primary occupation in the rural localities to sustain the economy and human livelihood. Present investigations have revealed a total of 9 weedy species exclusively used by the rural farmers as livestock fodder for the ruminant cattle, such as Mithun, Cow, and Goat. Some of the species are luxuriantly growing in the wild without any agronomic care and are non-toxic, but rather nutritious which are mostly foraged by the ruminant animals.

Weed plant in traditional rituals

Adi community being the followers of indigenous Donyi-Polo religious group uses several plant species while worshiping Gods and Goddesses like Kine Nane, Doying Bote, Gumin...
Soyin, Pedong Nane, and Dadi bote, which is performed with invocation of hymns as per their existing ritual traditions. Present investigation have revealed a total of 8 weedy species which are widely used in traditional rituals, and also associated with local folk belief systems. Weeds species namely, *Thysanolaena latifolia* and *Chenopodium giganteum* are mentioned in folklores since time immemorial which are deeply associated with indigenous faith and belief systems of the Adi community.

Commercially important weeds

A good share of 20% of the recorded 87 species are commercially important, which are frequently harvested and sold in markets as food and medicinal items. These sellers are mostly the marginal farmers, mainly women to sustain their livelihood. These species are also extensively harvested in some places for vermicomposting to produce organic manure in Kitchen Gardens for ensuring organic crop production.

CONCLUSION

It is concluded that Adi people of Siang district are rich in traditional knowledge and local skills related to wise use of weed flora available in their bio cultural landscape. The weed flora luxuriantly growing almost everywhere in Siang Districts of Arunachal Pradesh are being converted into economically productive and livelihood based support items by the local residents by employing them in diverse uses such as food, human medicine, veterinary medicine, organic manure, rituals and belief systems.

Acknowledgements

The authors are thankful the DBT New Delhi for funding under Twinning programme and BRNS DAE BARC Trombay for fund support to RGU. They are also thankful SERB DST New Delhi and GBPIHESD under IERP programme for fund support to NIT, Arunachal Pradesh for conducting present research. All the authors are thankful to the local informants of Adi community residing in 8 villages of Upper Siang, Siang and East Siang districts of Arunachal Pradesh for sharing their valuable ethnobotanical knowledge system during field visits.

LITERATURE CITED

Baker, H.G. 1965. Characteristics and modes of origin of weeds. In: Baker, H.G., Stebbins, G.L. (eds.), *The Genetics of Colonizing Species*. Academic Press, New York. Pp. 147 – 172.

Chowdhery, H.J.; Giri, G.S. & Pramanik, A. 2009. *Materials for the Flora of Arunachal Pradesh*. Vol. III. Botanical Survey of India, Calcutta.

Dhole, J.A; Dhole, N.A. & Bodke S.S. 2009. Ethnobotanical studies of some weeds of crop fields of Marathwada region, India. *Ethnobot. Leafl.* 13(1): 1443 – 1452.

Giri, G.S.; Pramanik, A. & Chowdhery, H.J. 2008. *Materials for the Flora of Arunachal Pradesh*. Vol. II. Botanical Survey of India, Kolkata.

Hajra, P.K.; Verma, D.M. & Giri, G.S. 1996. *Materials for the Flora of Arunachal Pradesh*. Vol. I. Botanical Survey of India, Calcutta.

Hooker, J.D. 1872 – 1897. *The flora of British India*, Vols. 1 – 7. L.Reeve & Co Ltd, Ashford, Kent. London

Jain, S.K. & Rao, R.R. 1977. *A Handbook of Field and Herbarium Methods*. Today and Tomorrow Printers and Publishers, New Delhi.
Maroyi, A. 2013. Use of weeds as Traditional vegetables in Shurugwi District, Zimbabwe. *Journal of Ethnobi. Ethnomed.*, 60(9): 1 – 10.

Martin, G.J. 2008. *Ethnobotany: A Methods Manual, People and Plants Conservation Series*. Earthscan, UK and USA. Pp. 10 – 160.

Neogi, B; Prasad, M.N.V. & Rao, R.R. 1989. Ethnobotany of some weeds of Khasi and Garo Hills, Meghalaya, Northeastern India. *Econ. Bot.* 43(4): 471 – 479.

Rahman, A.H.M.M. 2013. A Checklist of Common Angiosperm Weeds of Rajshahi District, Bangladesh. *Intn. Invent. J. Agri. Soil Sci.* 1(1): 1 – 6.

Rahman, A.H.M.M; Islam, A.K.M.R & Rahman, M.M. 2011. *The Family Asteraceae of Rajshahi Division, Bangladesh*. VDM Verlag Dr. Muller Publishing House Ltd., Germany.

Rao, A.N. & Chauhan, B.S. 2015. Weeds and weed management in India - A Review. Chapter 4. In: Rao, V.S.; Yaduraju, N.T.; Chandrasena, N.R.; Hassan, G & Sharma, A.R. (eds.), *Weed Science in the Asian-Pacific Region*. An AsianPacific Weed Sci. Soc. Public. Indian Soc. Weed Sci., Jabalpur, India. ISBN 13: 978-81-931978-0-6. Pp. 87 – 118.

Tag, H; Murtem, G; Das, A.K. & Singh, R.K. 2008. Diversity distribution of ethnobotanical plants used by Adi tribe of East Siang district of Arunachal Pradesh, India. *Pleione* 2(1): 123 – 136.

Zimdahl, R.L. 1992. *Fundamentals of Weed Science*, 2nd edn., Academic Press, San Diego, CA.

http://www.theplantlist.org

http://www.plantsoftheworldonline.org/