Complete intersection theorem and complete nontrivial-intersection theorem for systems of set partitions

Vladimir Blinovsky

Institute for Information Transmission Problems,
B. Karetnyi 19, Moscow, Russia,
Instituto de Matematica e Statistica, USP,
Rua do Matao 1010, 05508-090, Sao Paulo, Brazil
vblinovs@yandex.ru

Abstract

We prove the complete intersection theorem and the complete nontrivial-intersection theorem for systems of set partitions. This means that for all positive integers \(n \) and \(t \) we find the maximum size of a family of partitions of \(n \)-element set such that any two partitions from the family have at least \(t \) common parts and we also find the maximal size under the additional condition that no \(t \) parts appear in all members of the family.

I Introduction

Let \(\Pi(n) \) be the set of partitions of \([n]\). Define the intersection of two partitions \(p_1 \cap p_2, \ p_1, p_2 \in \Pi(n) \) to be the set of common parts (blocks). We say that two partitions \(p_1, p_2 \in \Pi(n) \) are \(t \)-intersecting if the size of their intersection is at least \(t \). A family of partitions is a \(t \)-intersecting family if every two members of it are \(t \)-intersecting. The collection of \(t \)-intersecting families of partitions of \([n]\) is denoted by \(\Omega(n,t) \). We say that the family of partitions is nontrivially \(t \)-intersecting family if it is \(t \)-intersecting and fewer than \(t \) parts are common to all its members. The collection of nontrivially \(t \)-intersecting families of partitions we denote by \(\tilde{\Omega}(n,t) \).

We say that \(i \) is fixed in a partition \(p \in \Pi(n) \) if \(\{i\} \) is a singleton \(\{i\} \) block in \(p \). For \(p \in \Pi(n) \) let \(f(p), \ p \in \Pi(n) \) denote the set of points fixed by \(p \).
Define
\[M(n, t) = \max\{|A| : A \in \Omega(n, t)\}, \]
\[\tilde{M}(n, t) = \max\{|A| : A \in \tilde{\Omega}(n, t)\}. \]

The main result of the present work is obtaining explicit expression for \(M(n, t) \) (Theorems 1 or Theorem 2) and \(\tilde{M}(n, t) \) (Theorem 6) for all \(n \) and \(t \). The word complete in the phrase Complete Intersection Theorem underline the fact that the problem of determining values \(M(n, k) \) and \(\tilde{M}(n, k) \) is solved completely for all \(n, t \). We also say that the solution of the above problems are complete.

Let \(B(n) \) be the number of partitions of the set \([n]\), which is called the Bell number. Let also \(\tilde{B}(n) \) be the number of partitions of the set \([n]\) that do not have singletons. The Bell numbers satisfy the following relations
\[
B(n) = \frac{1}{e} \sum_{i=0}^{\infty} \frac{i^n}{i!},
\]
\[
\tilde{B}(n) = \frac{1}{e} \sum_{i=0}^{\infty} \frac{i^n}{(i+1)!},
\]
\[
B(n+1) = \sum_{i=0}^{n} \binom{n}{i} B(i)
\]
whereas \(\tilde{B}(n) \) satisfies the following relation
\[
\tilde{B}(n) = \sum_{i=0}^{n} \binom{n}{i} (-1)^{n-i} B(i)
\]

Define
\[
\gamma(\ell) = \frac{\sum_{i=0}^{n-\ell+1} \tilde{B} \left(n - \frac{\ell + t}{2} + 1 - i \right) \binom{n-\ell+1}{i}}{\sum_{i=0}^{n-\ell} \tilde{B} \left(n - \frac{\ell + t}{2} - i \right) \binom{n-\ell}{i}}.
\]
Note that, when \(\ell \) is fixed,
\[
\gamma(\ell) \rightarrow \infty, \text{ as } n \rightarrow \infty.
\]

Our first main result is the following theorem.

Theorem 1

\[
M(n, t) = \max_{r \in \left[0, \left\lfloor \frac{n-t}{2} \right\rfloor \right]} \{|p \in \Pi(n) : |[t + 2r] \cap f(p)| \geq t + r\}|.
\]

It follows from the proof of Theorem 1 that it can be reformulated as follows:
Theorem 2 Let $\ell = t + 2r$ be the largest number not greater than n satisfying the relation
\[
\frac{\ell - t}{2(\ell - 1)} \gamma(\ell) \leq 1.
\] (4)

For this value of ℓ we have
\[
M(n, t) = \sum_{i=t+r}^{t+2r} \binom{t+2r}{i} \sum_{j=0}^{n-t-2r} \binom{n-t-2r}{j} \tilde{B}(n-i-j).
\] (5)

Our proof of this theorem is an extension of the ideas from [10], where the complete intersection theorem was proved for a family of t-cycle-intersecting permutations.

Remark. Each permutation of $[n]$ is determined by the set of cyclic permutations. Cycle-intersection of two permutations is the set of their common cycles. We say that two permutations are t-cycle-intersecting if the size of their intersection is at least t.

It is proved in [1] that $M(n, 1) = B(n-1)$ and for sufficiently large n in terms of t that $M(n, t) = B(n - t)$.

Our theorem completes the solution of the problem of determination of the value $M(n, t)$ for all n and $t > 1$.

Let $2^{[n]}$ be the family of subsets of $[n]$ and $\binom{[n]}{k}$ be the family of k-element subsets of $[n]$. We say that a family $\mathcal{A} \subset 2^{[n]}$ is a t-intersecting family if for the arbitrary elements $a_1, a_2 \in \mathcal{A}$ the size of their intersection $|a_1 \cap a_2| \geq t$. Let $I(n, t)$ be the collection of t-intersecting families \mathcal{A} of $[n]$, $I(n, k, t)$ be the collection of t-intersecting k-element families from $[n]$ and $\tilde{I}(n, t)$, $\tilde{I}(n, k, t)$ the collection of nontrivially t-intersecting families ($\bigcap_{A \in \mathcal{A}} A < t$). Define
\[
\tilde{M}(n, k, t) = \max_{\mathcal{A} \in \tilde{I}(n, k, t)} |\mathcal{A}|.
\]

Hilton and Milner proved the next theorem in [7].

Theorem 3 If $n > 2k$, then
\[
\tilde{M}(n, k, t) = \binom{n-1}{k-1} - \binom{n-k-1}{k-1} + 1.
\]
This theorem was proved by Frankl [8] for $t > 1$.

Theorem 4 There exists $n_0(n, k)$ such that if $n > n_0(n, k)$, then

- If $t + 1 \leq k \leq 2t + 1$, then $\tilde{M}(n, k, t) = |\nu_1(n, k, t)|$, where
 \[
 \nu_1(n, k, t) = \left\{ V \in \binom{[n]}{k} : \left| [t + 2] \cap V \right| \geq t + 1 \right\},
 \]

- If $k > 2t + 1$, then $\tilde{M}(n, k, t) = |\nu_2(n, k, t)|$, where
 \[
 \nu_2(n, k, t) = \left\{ v \in \binom{[n]}{k} : [t] \subset V, \ V \cap [t + 1, k + 1] \neq \emptyset \right\}
 \cup \left\{ [k + 1] \setminus \{i\} : i \in [t] \right\}.
 \]

In [5], the problem of determining $\tilde{M}(n, k, t)$ was solved completely for all n, k, t:

Theorem 5

- If $2k - t < n \leq (t + 1)(k - t + 1)$, then
 \[
 \tilde{M}(n, k, t) = M(n, k, t);
 \]

- If $(t + 1)(k - t + 1) < n$ and $k \leq 2t + 1$, then
 \[
 \tilde{M}(n, k, t) = |\nu_1(n, k, t)|;
 \]

- If $(t + 1)(k - t + 1) < n$ and $k > 2t + 1$, then
 \[
 \tilde{M} = \max\{|\nu_1(n, k, t)|, |\nu_2(n, k, t)|\}.
 \]

Note also that the value $M(n, k, t)$ was determined for all n, k, t by Ahlswede and Khachatrian in the paper [6].

Before formulating our second main result, let’s make some additional definitions.

\[
\mathcal{H}_i = \left\{ H \in \binom{[t + i]}{t + 1} : [t] \subset H \right\}
\]

\[
\bigcup \left\{ H \in \binom{[t + i]}{t + i - 1} : [t + 1, t + i] \subset H \right\}.
\]
For $C \subset 2^n$, denote by $W(C)$ the minimal upset containing C and by $M(C)$ the set of its minimal elements. Denote by $U(C)$ the set of partitions that has $W(C)$ as the family of sets of fixed elements.

Our second main result of this work is the following Theorem which completely determines $\tilde{M}(n, t)$ for all n, t.

Theorem 6

- If

 $\max \left\{ \ell = t + 2r : \frac{\ell - t}{2(\ell - 1)} \gamma(\ell) \leq 1 \right\} > t,$

 then

 $\tilde{M}(n, t) = M(n, t);$

- If

 $\max \left\{ \ell = t + 2r : \frac{\ell - t}{2(\ell - 1)} \gamma(\ell) \leq 1 \right\} = t,$

 then

 $\tilde{M}(n, t) = \max \{\nu_1(n, t), \nu_2(n, t)\},$

 where

 $\nu_i(n, t) = \sum_{S \in W(H_i)} \tilde{B}(n - |S|).$

II Proof of Theorem 6

Define the fixing procedure $F(i, j, p)$ for $i \neq j$ over the set of partitions $p \in \mathcal{P}(n)$:

$$F(i, j, p) = \begin{cases} (p \setminus p_i) \cup \{\{i\}, p_i \setminus \{i\}\}, & j \in p_i, \\ p, & \text{otherwise} \end{cases}$$

where p_i is the part of p that contains i.

The fixing operator on the family $\mathcal{A} \subset \Omega(n, t)$ is defined as follows ($p \in \mathcal{A}$)

$$F(i, j, p, \mathcal{A}) = \begin{cases} F(i, j, p), & F(i, j, p) \notin \mathcal{A}, \\ p, & F(i, j, p) \in \mathcal{A}. \end{cases}$$

Finally define the operator

$$\mathcal{F}(i, j, \mathcal{A}) = \{F(i, j, p, \mathcal{A}); p \in \mathcal{A}\}.$$
It is easy to see that the fixing operator \(F(i, j, \mathcal{A}) \) preserves the size of \(\mathcal{A} \) and its \(t \)-intersecting property. At last note that making shifting operations a finite number of times for different values of \(i \) and \(j \) allows us to obtain the compressed set \(\mathcal{A} \) with the following property: for all \(i \neq j \in [n] \),

\[
F(i, j, \mathcal{A}) = \mathcal{A}.
\]

It also has the property, that an arbitrary pair of partitions \(p_1, p_2 \) from the compressed set \(\mathcal{A} \) intersected by at least \(t \) fixed points.

Next define the usual shifting procedure \(L(v, w, p) \) for \(1 \leq v < w \leq n \) as follows. Let \(p = \{\{j_1, \ldots, j_q-1, v, j_q+1, \ldots, j_s\}, \ldots, \{w\}, \pi_1, \ldots, \pi_c\} \in \mathcal{A} \), then

\[
L(v, w, p) = \{\{j_1, \ldots, j_q-1, w, j_q+1, \ldots, j_s\}, \ldots, \{v\}, \pi_1, \ldots, \pi_s\}.
\]

If \(p \in \mathcal{A} \) does not fix \(w \), then we set

\[
L(v, w, p) = p.
\]

Now define the shifting operator \(L(v, w, p, \mathcal{A}) \) as follows

\[
L(v, w, p, \mathcal{A}) = \begin{cases}
L(v, w, p), & L(v, w, p) \notin \mathcal{A}, \\
 p, & L(v, w, p) \in \mathcal{A}.
\end{cases}
\]

At last define the operator \(\mathcal{L}(v, w, \mathcal{A}) : \)

\[
\mathcal{L}(v, w, \mathcal{A}) = \{L(v, w, \mathcal{A}); \; p \in \mathcal{A}\}.
\]

It is easy to see that the operator \(\mathcal{L}(v, w, \mathcal{A}) \) does not change the size of \(\mathcal{A} \) and it preserve the \(t \)-intersecting property. Later we will show, proving the Statement 1, that this operator also preserves the nontrivially \(t \)-intersecting property. Also it is easy to see that after a finite number of operations we come to the compressed \(t \)-intersecting set \(\mathcal{A} \) of the size \(M(n, t) \) for which

\[
L(v, w, \mathcal{A}) = \mathcal{A} \; \text{for} \; 1 \leq v < w \leq n
\]

and to the property that each pair of partitions of \(\mathcal{A} \) is \(t \)-intersected by fixed elements. Next we consider only such sets \(\mathcal{A} \). We denote the collection of fixed compressed \(t \)-intersecting families of partitions by \(L\Omega(n, t) \) and the collection of fixed compressed nontrivially \(t \)-intersecting families of partitions by \((L\Omega(n, t)) \). Note that such family \(\mathcal{A} \) have the property that all partitions of \(\mathcal{A} \) have \(s \) common parts if and only if \(\left| \bigcap_{p \in \mathcal{A}} f(p) \right| = s \). We assume that all families of partitions considered next are left compressed.

Let \(\mathcal{D}(v, w, \mathcal{A}) \) be the same operator as \(\mathcal{L}(v, w, \mathcal{A}) \) but only with the condition \(v \neq w \).

We need the following
Lemma 1 If $|A| = M(n, t)$,

$$D(v, w, A) = A, \text{ for all } v, w \in [\ell]$$

and for $\ell = t + 2r$

$$\frac{\ell + 1}{r - t + 1} > \gamma(\ell + 2),$$

then $D(v, w, A) = A$, for all $v, w \in [\ell + 2]$.

Suppose that $|A| = M(n, t)$ and \mathcal{A} is invariant under shifting and fixing operators. Assume also that $\mathcal{D}(v, w, A) = A$ for all $v, w \in [\ell]$, but $A \neq \mathcal{D}(v, \ell + 1, A)$ for some $v \in [\ell]$.

We set

$$\mathcal{A}' = \{ p \in A : D(v, \ell + 1, p) \notin A, v \in [\ell] \}$$

We identify the set of binary n-tuples with the family of subsets of $[n]$.

Define

$$B(\mathcal{A}) = \{ f(p) ; p \in A \} \subset 2^{[n]}.$$

It is easy to see that the set $B(\mathcal{A})$ is an upper ideal under the inclusion order. Denote by $M(\mathcal{A})$ the set of minimal elements of $B(\mathcal{A})$.

Let

$$s^+(M(\mathcal{A})) = \max_{M \in M(\mathcal{A})} s^+(M),$$

where

$$s^+(M) = \max_{i \in \mathcal{M}} i.$$

We also need one more lemma.

Lemma 2 If $|A| = M(n, t)$ and $s^+(M(\mathcal{A})) = \ell$, then

$$\frac{\ell - t}{2(\ell - 1)} \gamma(\ell) \leq 1.$$ (7)
Later we will show that there exists a unique \(\ell \) that satisfies inequalities (6) and (7). From this follows the statement of Theorem 1.

First we will prove 1. Assume that \(\mathcal{A}' \neq \emptyset \).

Let

\[
\mathcal{A}(i) = \left\{ p \in \mathcal{A}' : f(p) \cap [\ell] = i \right\}.
\]

It follows that \(\mathcal{A}(i) \neq \emptyset \) for some \(i \in [\ell] \).

Let

\[
\mathcal{A}'(i) = \left\{ f(p) \cap [\ell + 2, n] : p \in \mathcal{A}(i) \right\}.
\]

Define

\[
\mathcal{B}(i) = \left\{ p \in \Pi(n) : f(p) \cap [\ell] = i - 1, \ell + 1 \in p, f(p) \cap [\ell + 2, n] \in \mathcal{A}'(i) \right\}.
\]

We have

\[
|\mathcal{A}(i)| = \binom{\ell}{i} \sum_{m \in \mathcal{A}'(i)} \tilde{B}(n - i - 1 - |m|),
\]

\[
|\mathcal{B}(i)| = \binom{\ell - 1}{i - 1} \sum_{m \in \mathcal{A}'(i)} \tilde{B}(n - i - 1 - |m|)
\]

and, for any \(i \in [\ell] \), we have

\[
\mathcal{C}(i) = (\mathcal{A} \setminus \mathcal{A}(i)) \cup \mathcal{B}(\ell + t - i) \in \Omega(n, t).
\]

Next we will demonstrate that if \(\mathcal{A}(i) \neq \emptyset \) and \(i \neq \frac{\ell + t}{2} \), then

\[
\max\{|\mathcal{C}(i)|, |\mathcal{C}(\ell + t - i)|\} > |\mathcal{A}|
\]

which contradicts the maximality of \(\mathcal{A} \).

If (8) is not valid, then

\[
\left(\ell \right)_{i - 1} \sum_{m \in \mathcal{A}'(i)} \tilde{B}(n - i - 1 - |m|)
\]

\[
\leq \left(\ell \right)_{\ell + t - i} \sum_{r \in \mathcal{A}'(\ell + t - i)} \tilde{B}(n - (\ell + t - i) - 1 - |m|),
\]

\[
\left(\ell \right)_{\ell + t - i - 1} \sum_{m \in \mathcal{A}'(\ell + t - i)} \tilde{B}(n - (\ell + t - i) - 1 - |m|)
\]

\[
\leq \left(\ell \right)_{i} \sum_{m \in \mathcal{A}'(i)} \tilde{B}(n - i - 1 - |m|).
\]
We have $A(i) \neq \emptyset$ hence $A(\ell + t - i) \neq \emptyset$ and
\[
i(\ell + t - i) \leq (\ell - i + 1)(i + 1 - t).
\]
Since $t \geq 2$, the last inequality is false. This contradiction shows that $A(i) = \emptyset$ for $i \neq \frac{\ell + t}{2}$.

Now suppose $2| (\ell + t)$. We will demonstrate that if \(6\) is true, then $A\left(\frac{\ell + t}{2}\right) = \emptyset$.

We have
\[
|A\left(\frac{\ell + t}{2}\right)| = \left(\frac{\ell}{\frac{\ell + t}{2}}\right) \sum_{m \in A'} \tilde{B}\left(n - \frac{\ell + t}{2} - 1 - |m|\right).
\]

Now we will introduce the family $C \subset \Pi(n)$. Its elements are permutations p which satisfy the following conditions
\[
|f(p) \cap [\ell]| = \frac{\ell + t}{2} - 1,
\]
\[
\{\ell + 1, n\} \subset f(p), \quad f(p) \cap [\ell + 2, n] \in A'\left(\frac{\ell + t}{2}\right).
\]

Define
\[
\mathcal{G} = \left\{ \left(A \setminus \left\{ p \in A\left(\frac{\ell + t}{2}\right) : \{n\} \not\subset p \right\} \right) \cup C \right\}.
\]

It is easy to see that
\[
\mathcal{G} \subset \Omega(n, t).
\]

Next we will demonstrate that if $\mathcal{A}\left(\frac{\ell + t}{2}\right) \neq \emptyset$ and \(6\) is true, then the maximality of \mathcal{A} is contradicted because
\[
|\mathcal{G}| > |A|.
\] (9)

We have
\[
|\mathcal{C}| = \left(\frac{\ell}{\frac{\ell + t}{2}} - 1\right) \sum_{m \in A'(\frac{\ell + t}{2}), \{n\} \in m} \tilde{B}\left(n - \frac{\ell + t}{2} - 1 - |m|\right).
\]

Inequality \(7\) is equivalent to
\[
\left(\frac{\ell}{\frac{\ell + t}{2}} - 1\right) \sum_{m \in A'(\frac{\ell + t}{2}), \{n\} \in m} \tilde{B}\left(n - \frac{\ell + t}{2} - 1 - |m|\right)
\]
\[
> \left(\frac{\ell}{\frac{\ell + t}{2}} - 1\right) \sum_{m \in A'(\frac{\ell + t}{2}), \{n\} \not\in m} \tilde{B}\left(n - \frac{\ell + t}{2} - 1 - |m|\right).
\]
\[
\left(\frac{\ell + t}{2} \right) m \in A' \left(\frac{\ell + t}{2} \right) B \left(n - \frac{\ell + t}{2} - 1 - |m| \right) \\
- \sum_{m \in A' \left(\frac{\ell + t}{2} \right), \{n\} \in m} B \left(n - \frac{\ell + t}{2} - 1 - |m| \right).
\]

From here we have
\[
\left(\frac{\ell + 1}{2} \right) \sum_{m \in A' \left(\frac{\ell + t}{2} \right), \{n\} \in m} B \left(n - \frac{\ell + t}{2} - 1 - |m| \right) > \left(\frac{\ell + t}{2} \right) \sum_{m \in A' \left(\frac{\ell + t}{2} \right)} B \left(n - \frac{\ell + t}{2} - 1 - |m| \right).
\]

Hence
\[
\frac{\ell + 1}{\ell - t + 1} > \beta_1(\ell) \triangleq \frac{\sum_{m \in A' \left(\frac{\ell + t}{2} \right)} B \left(n - \frac{\ell + t}{2} - 1 - |m| \right)}{\sum_{m \in A' \left(\frac{\ell + t}{2} \right), \{n\} \in m} B \left(n - \frac{\ell + t}{2} - 1 - |m| \right).
\]

Let’s prove that
\[
\gamma(\ell + 2) \geq \beta_1(\ell).
\] (10)

From here it follows that (11) is true. Taking into account the condition from Lemma 1 that |A| is maximal we come to contradiction of this maximality. Thus to complete the proof of Lemma 1 we need to prove equality (10).

In order to show this, we state the validity of the following inequality
\[
\gamma(\ell + 2) = \frac{\sum_{i=0}^{n-\ell-1} B \left(n - \frac{\ell + t}{2} - i \right) \left(n - \ell - 1 \right)}{\sum_{i=0}^{n-\ell-2} B \left(n - \frac{\ell + t}{2} - i - 1 \right) \left(n - \ell - 2 \right)} \geq \frac{\sum_{m \in A' \left(\frac{\ell + t}{2} \right)} B \left(n - \frac{\ell + t}{2} - 1 - |m| \right)}{\sum_{m \in A' \left(\frac{\ell + t}{2} \right), \{n\} \in m} B \left(n - \frac{\ell + t}{2} - 1 - |m| \right) = \beta_1 \\
= \frac{\sum_{i=0}^{n-\ell-2} B \left(n - \frac{\ell + t}{2} - i \right) \left(n - \ell - 2 \right)}{\sum_{i=0}^{n-\ell-2} B \left(n - \frac{\ell + t}{2} - i - 1 \right) \left(n - \ell - 2 \right)} \geq \frac{\sum_{m \in A' \left(\frac{\ell + t}{2} \right), \{n\} \notin m} B \left(n - \frac{\ell + t}{2} - 1 - |m| \right)}{\sum_{m \in A' \left(\frac{\ell + t}{2} \right), \{n\} \in m} B \left(n - \frac{\ell + t}{2} - 1 - |m| \right).
\] (11)

Validity of this inequality follows from the next consideration. Family \(\mathcal{A} \) is compressed under fixing operator. Set of minimal elements \(M(A) \subset 2^{[\ell]} \) in the set \(B(A) \) has t-intersection property.
Hence \(\{ f(p) \cap [\ell + 2, n]; p \in A \} = 2^{[\ell + 2, n]} \) and inequality \((11)\) can be written as follows:

\[
\frac{\sum_{i=0}^{n-\ell-2} \tilde{B} \left(n - \frac{\ell + t}{2} - i \right) \binom{n-\ell-2}{i}}{\sum_{i=0}^{n-\ell-2} \tilde{B} \left(n - \frac{\ell + t}{2} - 1 \right) \binom{n-\ell-2}{i}} \geq \frac{\sum_{i=0}^{n-\ell-2} \tilde{B} \left(n - \frac{\ell + t}{2} - i - 1 \right) \binom{n-\ell-2}{i}}{\sum_{i=0}^{n-\ell-2} \tilde{B} \left(n - \frac{\ell + t}{2} - 2 \right) \binom{n-\ell-2}{i}}.
\]

or

\[
\frac{\sum_{i=0}^{n-\ell-2} \tilde{B} \left(n - \frac{\ell + t}{2} - i - 2 \right) \binom{n-\ell-2}{i}}{\sum_{i=0}^{n-\ell-2} \tilde{B} \left(n - \frac{\ell + t}{2} - i - 1 \right) \binom{n-\ell-2}{i}} \geq \frac{\sum_{i=0}^{n-\ell-2} \tilde{B} \left(n - \frac{\ell + t}{2} - i - 1 \right) \binom{n-\ell-2}{i}}{\sum_{i=0}^{n-\ell-2} \tilde{B} \left(n - \frac{\ell + t}{2} - i \right) \binom{n-\ell-2}{i}}.\tag{12}
\]

or, using identity \(\tilde{B}(m) = B(m) - \tilde{B}(m+1) \), we obtain from the inequality \((12)\) inequality

\[
\frac{\sum_{i=0}^{n-\ell-2} B \left(n - \frac{\ell + t}{2} - i - 2 \right) \binom{n-\ell-2}{i}}{\sum_{i=0}^{n-\ell-2} B \left(n - \frac{\ell + t}{2} - i - 1 \right) \binom{n-\ell-2}{i}} \geq \frac{\sum_{i=0}^{n-\ell-2} B \left(n - \frac{\ell + t}{2} - i - 1 \right) \binom{n-\ell-2}{i}}{\sum_{i=0}^{n-\ell-2} B \left(n - \frac{\ell + t}{2} - i \right) \binom{n-\ell-2}{i}}.\tag{13}
\]

Validity of last inequality follows from Holley’s correlation inequality. Let’s \(\Delta \subseteq 2^{[n]} \) be finite distributive lattice and measures \(\mu_1, \mu_2 : \Delta \to R_+ \cup \{0\}, \sum_{A \in \Delta} \mu_1(A) = \sum_{A \in \Delta} \mu_2(A) \) satisfy FKG condition

\[
\mu_1(A) \mu_2(B) \leq \mu_1 \left(A \cup B \right) \mu_2 \left(A \cap B \right), \ A, B \in \Delta. \tag{14}
\]

Then for an arbitrary nondecreasing nonnegative function \(f : \Delta \to R_+ \cup \{0\}, A \subset B \to f(A) \geq f(B) \), the Holley’s inequality stand

\[
\sum_{A \in \Delta} \mu_1(A) f(A) \geq \sum_{A \in \Delta} \mu_2(A) f(A).
\]

We choose

\[
\Omega = \{ [k], \ k \in [n - \ell - 2] \}, \ f([k]) = \frac{B \left(n - \frac{\ell + t}{2} - k - 2 \right)}{B \left(n - \frac{\ell + t}{2} - k - 1 \right)},
\]

\[
\mu_1([k]) = \frac{\tilde{B} \left(n - \frac{\ell + t}{2} - k - 1 \right) \binom{n-\ell-2}{k}}{\sum_{i=0}^{n-\ell-2} \tilde{B} \left(n - \frac{\ell + t}{2} - i - 1 \right) \binom{n-\ell-2}{i}},
\]

\[
\mu_2([k]) = \frac{\tilde{B} \left(n - \frac{\ell + t}{2} - k \right) \binom{n-\ell-2}{k}}{\sum_{i=0}^{n-\ell-2} \tilde{B} \left(n - \frac{\ell + t}{2} - i \right) \binom{n-\ell-2}{i}}.
\]

FKG condition for \(\mu_1, \mu_2 \) follows from the validity if FKG condition for Bell numbers \(B(k) \) proved in \((13)\).
We need to check the monotonicity of \(f([k]) \). If \(f([k+1]) \geq f([k]) \), then

\[
\frac{B \left(n - \frac{\ell + t}{2} - k - 2 \right)}{\tilde{B} \left(n - \frac{\ell + t}{2} - k - 1 \right)} \geq \frac{B \left(n - \frac{\ell + t}{2} - k - 1 \right)}{\tilde{B} \left(n - \frac{\ell + t}{2} - k \right)}
\]

or identity \(B(m) = \tilde{B}(m) + \tilde{B}(m+1) \), we reduce last inequality to the so-called log-convexity condition of \(\tilde{B}(m) \):

\[
\tilde{B}^2 \left(n - \frac{\ell + t}{2} - k - 1 \right) \leq \tilde{B} \left(n - \frac{\ell + t}{2} - k - 2 \right) \tilde{B} \left(n - \frac{\ell + t}{2} - k \right).
\]

In Appendix we prove that \(\tilde{B} \left(n - \frac{\ell + t}{2} - k - 1 \right) \) satisfies this inequality when \(n - \frac{\ell + t}{2} - k - 1 > 3 \). This inequality is true for all \(k \in [n - \ell - 2] \) and \(r > 2 \).

Assume at first that \(r > 2 \). Then, using Holley’s inequality we have

\[
\sum_{k=0}^{n-\ell-2} \mu_1([k]) f([k+1]) = \frac{\sum_{k=0}^{n-\ell-2} B \left(n - \frac{\ell + t}{2} - k - 2 \right) \binom{n-\ell-2}{i}}{\sum_{i=0}^{n-\ell-2} \tilde{B} \left(n - \frac{\ell + t}{2} - i - 1 \right) \binom{n-\ell-2}{i}}
\]

\[
\geq \sum_{k=0}^{n-\ell-2} \mu_2([k]) f([k]) \geq \frac{\sum_{i=0}^{n-\ell-2} B \left(n - \frac{\ell + t}{2} - i - 1 \right) \binom{n-\ell-2}{i}}{\sum_{i=0}^{n-\ell-2} \tilde{B} \left(n - \frac{\ell + t}{2} - i \right) \binom{n-\ell-2}{i}}
\]

This proves inequality (12) when \(r > 2 \). When \(r \leq 3 \), we use identities (14) (both identities are actually the same, we just write them in form in which they we will use them later):

\[
\begin{align*}
\binom{n-t-2r-2}{i} &= \sum_{k=0}^{q} (-1)^k \binom{q}{k} \binom{n-t-2r-2+q-k}{i+q}, \quad q \geq 0, \\
n-t-2r-2 \choose a+i+r-2 &= \sum_{k=0}^{r+2-a} (-1)^k \binom{r+2-a}{k} \binom{n-t-r-a-k}{i}.
\end{align*}
\]

We have \(a \leq 2 + r \):

\[
\begin{align*}
\sum_{i=0}^{n-t-2r-2} \tilde{B} \left(n - t - r - i - a \right) \binom{n-t-2r-2}{i} &= \sum_{i=0}^{n-t-2r-2} \tilde{B} \left(r + 2 - a + i \right) \binom{n-t-2r-2}{i} \\
= \sum_{k=0}^{r+2-a} (-1)^k \binom{r+2-a}{k} \sum_{i=0}^{n-t-r-a-k} \tilde{B} \left(r + 2 - a + i \right) \binom{n-t-r-a-k}{i+r+2-a} \\
= \sum_{k=0}^{r+2-a} (-1)^k \binom{r+2-a}{k} \sum_{i=r+2-a}^{n-t-r-a-k} \tilde{B} \left(r + 2 - a + i \right) \binom{n-t-r-a-k}{i}
\end{align*}
\]

12
We write this inequality for \(r \),

Using last identity we can rewrite inequality (12) as follows

Next we will prove Lemma 2.

Denoting \(S = \sum_{i=0}^{r+1} \bar{B}(i) \sum_{k=0}^{r+1} (-1)^k \binom{r+1}{k} \binom{n-t-r-a-k}{i} \), \(B = \sum_{k=0}^{r} \sum_{i=0}^{r} \bar{B}(i) \sum_{k=0}^{r} (-1)^k \binom{r+2-a}{k} \binom{n-t-r-a-k}{i} \).

Using last identity we can rewrite inequality (12) as follows

Denoting \(S(r) = \sum_{k=0}^{r} (-1)^k \binom{r}{k} B(n-t-r-2-k) \), we need to show the validity of inequality

\[S^2(r + 1) \leq S(r + 2) S(r). \]

We write this inequality for \(r = 0, 1, 2, 3 \) making some transformations:

\[
\begin{align*}
\frac{B(n-t-1)}{B(n-t-2)} &\leq \frac{B(n-t)}{B(n-t-1)}, \quad r = 0; \\
\frac{B(n-t-2) - B(n-t-3)}{B(n-t-3) - B(n-t-4)} &\leq \frac{B(n-t-1) - B(n-t-2)}{B(n-t-2) - B(n-t-3)}, \quad r = 1; \\
\frac{B(n-t-3) - 2B(n-t-4) + B(n-t-5)}{B(n-t-4) - 2B(n-t-5) + B(n-t-6)} &\leq \frac{B(n-t-2) - 3B(n-t-3) + 3B(n-t-4) - B(n-t-5)}{B(n-t-3) - 3B(n-t-4) + 3B(n-t-5) - B(n-t-6)}, \quad r = 2; \\
\frac{B(n-t-4) - 3B(n-t-5) + 3B(n-t-6) - B(n-t-7)}{B(n-t-5) - 3B(n-t-6) + 3B(n-t-7) - B(n-t-8)} &\leq \frac{B(n-t-3) - 4B(n-t-4) + 6B(n-t-5) + 4B(n-t-6) - B(n-t-7)}{B(n-t-4) - 4B(n-t-5) + 6B(n-t-6) - 4B(n-t-7) + B(n-t-8)}, \quad r = 3.
\end{align*}
\]

Next we will prove Lemma 2.

Define

\[M_0(A) = \{ E \in M(A) ; s^+ (E) = s^+ (M(A)) = \ell \} \]

and

\[M_1(A) = M(A) \setminus M_0(A). \]
It is easy to see that, for \(E_1 \in M_0(A) \) and \(E_2 \in M_1(A) \),

\[
\left| (E_1 \setminus \{\ell\}) \cap E_2 \right| \geq t
\]

and for \(E_1, E_2 \in M_0(A) \) and \(|E_1 \cap E_2| = t \),

\[
|E_1| + |E_2| = \ell + t.
\]

Set

\[
M_0(A) = \bigcup_i R(i),
\]

where

\[
R(i) = M_0(A) \cap \left(\left[n \right] \right).\]

Define

\[
R'(i) = \{ E \setminus \{\ell\}; \ E \in R(i) \}.
\]

Next we are going to prove that if \((6)\) is not true, then \(R(i) = \emptyset \).

Suppose that \(R(i) \neq \emptyset \) for some \(i \). At first, assume that \(i \neq \frac{\ell + t}{2} \).

Define

\[
F_1 = M_1(A) \cup (M_0(A) \setminus (R(i) \cup R(\ell + t - i))) \cup R'(i),
\]

\[
F_2 = M_1(A) \cup (M_0(A) \setminus (R(i) \cup R(\ell + t - i))) \cup R'(\ell + t - i).
\]

It is easy to see that for \(E_1, E_2 \in F_i \) we have \(\left| E_1 \cap E_2 \right| \geq t \) and thus \(U(F_1), U(F_2) \in \Omega(n, t) \). We are going to show that if \(R(i) \neq \emptyset \), then

\[
\max\{|U(F_1)|, |U(F_2)|\} > |A|
\]

which gives us a contradiction.

We have

\[
|A \setminus U(F_1)| = |R(\ell + t - i)| \sum_{j=0}^{n-t} \binom{n-\ell}{j} \tilde{B}(n - \ell - t + i - j)
\]

(16)

and

\[
|U(F_1) \setminus A| = |R(i)| \sum_{j=0}^{n-t} \binom{n-\ell}{j} \tilde{B}(n - i - j + 1).
\]

(17)
Also
\[|A \setminus U(F_2)| = |R(i)| \sum_{j=0}^{n-\ell} \binom{n-\ell}{j} \tilde{B}(n-i-j), \tag{18} \]
\[|U(F_2) \setminus A| = |R(\ell+t-i)| \sum_{j=0}^{n-\ell} \tilde{B}(n-\ell-t+i-j+1). \tag{19} \]

If (15) is not true, then from (16)-(19) it follows that
\[
|R(i)| \sum_{j=0}^{n-\ell} \binom{n-\ell}{j} \tilde{B}(n-i-j+1)
\leq |R(\ell+t-i)| \sum_{j=0}^{n-\ell} \binom{n-\ell}{j} \tilde{B}(n-\ell-t+i-j),
\]
\[
|R(\ell+t-i)| \sum_{j=0}^{n-\ell} \binom{n-\ell}{j} \tilde{B}(n-\ell-t+i-j+1)
\leq |R(i)| \sum_{j=0}^{n-\ell} \binom{n-\ell}{j} \tilde{B}(n-i-j).
\]

These inequalities couldn't be valid together due to monotonicity of \(\tilde{B}(n) \).

Now consider the case \(i = \ell + \frac{t}{2} \). We are going to prove that if inequality \((7) \) is not true, then
\(R \left(\frac{\ell+t}{2} \right) = \emptyset \). Simple averaging argument shows that there exists \(i \in [\ell-1] \) and \(Z \subset R' \left(\frac{\ell+t}{2} \right) \) such that \(i \in E \) for all \(E \in Z \) and
\[|Z| \geq \frac{\ell-t}{2(\ell-1)} \left| R' \left(\frac{\ell+t}{2} \right) \right|. \tag{20} \]

Because \(|E_1 \cap E_2| \geq t \) when \(E_1, E_2 \in Z \) and \(R(i) = \emptyset \) when \(i \neq \frac{\ell+t}{2} \) we have for all \(E_1, E_2 \in D \), where
\[D = \left(M(A) \setminus R \left(\frac{\ell+t}{2} \right) \right) \cup Z, \]
we have \(|E_1 \cap E_2| \geq t \). Hence \(W(D) \in \Omega(n,t) \) and now we have to show that, if \((7) \) is not true, then
\[|W(D)| > |A|. \tag{21} \]

Consider the partition
\[A = W(M(A)) = S_1 \cup S_2, \]
\[S_1 = W \left(M(\mathcal{A}) \setminus R \left(\frac{\ell + t}{2} \right) \right), \]
\[S_2 = W \left(R \left(\frac{\ell + t}{2} \right) \right) \setminus S_1 \]

and the partition
\[W(D) = S_1 \cup S_3, \]
\[S_3 = W(D) \setminus S_1. \]

One can see that (35) is equivalent to
\[|S_3| > |S_2|. \]

It is easy to show that
\[|S_2| = \left| R \left(\frac{\ell + t}{2} \right) \sum_{j=0}^{n-\ell} \binom{n-\ell}{j} \tilde{B} \left(n - \frac{\ell + t}{2} - j \right) \right|, \]
\[|S_3| = |Z| \sum_{j=0}^{n-\ell+1} \binom{n-\ell+1}{j} \tilde{B} \left(n - \frac{\ell + t}{2} + 1 - j \right). \]

Using (20) and (22) we conclude that
\[\frac{\ell - t}{2(\ell - 1)} |R\left(\frac{\ell + t}{2}\right)| \sum_{j=0}^{n-\ell+1} \binom{n-\ell+1}{j} \tilde{B} \left(n - \frac{\ell + t}{2} + 1 - j \right) \]
\[> |R\left(\frac{\ell + t}{2}\right)| \sum_{j=0}^{n-\ell} \binom{n-\ell}{j} \tilde{B} \left(n - \frac{\ell + t}{2} - j \right). \]

But from here follows the contradiction of the maximality of \(\mathcal{A} \).

Thus (7) holds.

Now we rewrite inequality (6) as follows
\[\ell + 2 < t + 2 - \frac{t - 1}{\gamma(\ell + 2) - 2}. \]

and inequality (7) as
\[\ell \leq t + 2 - \frac{t - 1}{\gamma(\ell) - 2}. \]

It is left for us to show that the function
\[\varphi(\ell) = t - \ell + 2 - \frac{t - 1}{\gamma(\ell) - 2} \]

16
does not change its sign in the interval \([t, n]\) more than one time. To prove this we will first show that \(\varphi\) is \(\cap\)-convex on interval \([t, n]\). Obviously \(\varphi(t) > 0\). From these facts will follow the statement of the Theorem 1.

We have

\[
\gamma(\ell) = \frac{\sum_{j=0}^{n-\ell} \binom{n-\ell}{j} \tilde{B} \left(n - \frac{\ell + t}{2} + 1 - j \right) + \sum_{j=0}^{n-\ell} \binom{n-\ell}{j} \tilde{B} \left(n - \frac{\ell + t}{2} - j \right)}{\sum_{j=0}^{n-\ell} \binom{n-\ell}{j} \tilde{B} \left(n - \frac{\ell + t}{2} - j \right)} = 1 + \frac{\sum_{j=0}^{n-\ell} \binom{n-\ell}{j} \tilde{B} \left(n - \frac{\ell + t}{2} + 1 - j \right)}{\sum_{j=0}^{n-\ell} \binom{n-\ell}{j} \tilde{B} \left(n - \frac{\ell + t}{2} - j \right)}.
\]

Now using identity (2) we derive the relations

\[
\gamma(n, \ell, t) = \sum_{j=0}^{n-\ell} \binom{n-\ell}{j} \tilde{B} \left(n - \frac{\ell + t}{2} - j \right) = \frac{1}{e} \sum_{i=1}^{\infty} (i-1)^{n-\ell} (i-1)^{n-\ell} \sum_{j=0}^{n-\ell} \binom{n-\ell}{j} (i-1)^{j} (i-1)^{-j} = \frac{1}{e} \sum_{i=2}^{\infty} (i-1)^{\frac{\ell + t + 1}{2}} (i-2)^{n-\ell}.
\]

Similar calculations show the validity of the following identity

\[
\gamma(n + 2, \ell + 2, t) = \sum_{j=0}^{n-\ell} \binom{n-\ell}{j} \tilde{B} \left(n - \frac{\ell + t}{2} + 1 - j \right) = \frac{1}{e} \sum_{i=2}^{\infty} (i-1)^{\frac{\ell + t + 1}{2}} (i-2)^{n-\ell}.
\]

Hence, for \(\gamma(\ell) - 2\), we have the expression

\[
\gamma(\ell) - 2 = \frac{\gamma(n + 2, \ell + 2, t)}{\gamma(n, \ell, t)} = \frac{\sum_{i=2}^{\infty} (i-1)^{\frac{\ell + t + 1}{2}} (i-2)^{n-\ell}}{\sum_{i=2}^{\infty} (i-1)^{\frac{\ell + t}{2}} (i-2)^{n-\ell}} - 1 = \frac{\sum_{i=2}^{\infty} (i-1)^{\frac{\ell + t + 1}{2}} (i-2)^{n-\ell}}{\sum_{i=2}^{\infty} (i-1)^{\frac{\ell + t}{2}} (i-2)^{n-\ell}}.
\]

We obtain the following expression for the function \(\varphi(\ell)\):

\[
\varphi(\ell) = t - \ell + 2(t - 1) \frac{\sum_{i=2}^{\infty} (i-1)^{\frac{\ell + t + 1}{2}} (i-2)^{n-\ell}}{\sum_{i=2}^{\infty} (i-1)^{\frac{\ell + t}{2}} (i-2)^{n-\ell}}.
\]

It is easy to show that the second derivative of this function is negative. This completes the proof of Theorem 1.

II Proof of Theorem 6.

Denote by \(\Omega_0(n, t) \subset \Omega(n, t)\) the collection of the families of partitions \(A\) such that \(\left| \bigcap_{p \in A} f(p) \right| = 0\).
Statement 1

\[\tilde{M}(n, t) = \max_{A \in L \tilde{\Omega}(n, t)} |A|, \]
\[M_0(n, t) = \max_{A \in \Omega_0(n, t)} |A| = \tilde{M}(n, t). \]

Moreover, if \(A \in \tilde{\Omega}(n, t) \) and \(|A| = \tilde{M}(n, t) \), then \(A \in \Omega_0(n, t) \).

Proof. First we will prove (23). For \(A \in \tilde{\Omega}(n, t) \) assume that \(|A| = \tilde{M}(n, t) \). One can see that either \(L(v, w, A) \in \tilde{\Omega}(n, t) \) or \(L(v, w, A) \in \Omega(n, t) \setminus \Omega(n, t) \). In the first case we continue shifting. Assume that the second case occurs. We can assume that \(\cap_{p \in L(v, w, A)} f(p) = [t - 1] \) and also that \(\cap_{p \in L(v, w, A)} f(p) = [t] \). Because \(A \) is maximal, then

\[\{p \in \Omega(n, t) : [t + 1] \subset f(p)\} \subset A. \]

(24)

There are \(p_1, p_2 \in A \) such that

\[f(p_1) \cap [t + 1] = [t] \]

and

\[f(p_2) \cap [t + 1] = [t - 1] \cup \{t + 1\}. \]

Now we apply the shifting \(L(v, w, A) \) for \(v \neq w \in \{n\} \setminus \{t, t + 1\} \). We have \(\cap_{p \in L(v, w, A)} f(p) = [t - 1] \). Thus we can assume that \(L(v, w, A) = A \) for all \(v \neq w \in \{n\} \setminus \{t, t + 1\} \) and

\[f(p_1) = \{a\} \setminus \{t + 1\}, a \geq t, a \neq t + 1, \]

\[f(p_2) = \{b\} \setminus \{t\}, b > t. \]

From here and (24) it follows that

\[C = U((\{t - 1\} \cup C : C \subset [t, \min\{a, b\}])) \subset A \]

and for all \(L(v, w, C) = C \) where \(v \neq w \in \{n\} \). Thus \(|\cap_{p \in A} f(p)| < t \).

Now we prove second part of the Statement. Assume that \(A \subset \tilde{\Omega}(n, t) \setminus \Omega_0(n, t) \) and \(|A| = \tilde{M}(n, t) \). We can suppose that \(A \) is shifted and \(\{1\} \in f(p) \) for all \(p \in A \). We can also assume that \(A \in L\tilde{\Omega}(n, t) \). Consider \(p \in \Omega(n, t) : f(p) = \{2, \ldots, n - 1\} \). Next we will show that \(p \in A \), which leads to the contradiction of the maximality of \(A \). Suppose that there exists a partition \(p_1 \in A \) such that

\[|\{2, n - 1\} \cap f(p_1)| \leq t - 1. \]

We can assume that \(f(p_1) = [t] \cup \{n\} \). We have \(p_2 : f(p_2) = [t - 1] \cup \{n\} \) belongs to \(A \) and hence \(p_3 : f(p_3) = [t] \) also belongs to \(A \). But then \(|f(p_3) \cap f(p_2)| = t - 1 \) which contradicts the \(t \)-intersecting property of \(A \).
For further convenience we will make some changes in the definitions, which we will use next. Let $g(A)$ be the family of subsets of $[n]$ such that $A = U(g(A))$. If A is maximal, then we can assume that $g(A)$ is upset and $g^*(A)$ is the set of its minimal elements. It is easy to see that $A \in \Omega(n, t)$ if and only if $g(A) \in I(n, t)$ and $A \in \tilde{\Omega}(n, t)$ if and only if $g(A) \in \tilde{I}(n, t)$. We can assume that $g(A)$ is left compressed.

Define

$$
s^+(a = (a_1 < \ldots < a_j)) = a_j,
$$

$$
s^+(g(A)) = \max_{a \in g^*(A)} s^+(a),
$$

$$
s_{\min} = \min_{A \in L\tilde{\Omega}(n, t): |A| = M(n, t)} s^+(g(A)).
$$

It is easy to see that $A \in L\Omega(n, t)$ is a disjoint union

$$
A = U_{f \in g^*(A)} Q(f),
$$

where

$$
Q(f) = \left\{ A \in 2^{[n]} : A = f \cup B, B \in [s^+(f), n] \right\},
$$

and if $f \in g(A)$ is such that $s^+(f) = s^+(g(A))$, then the set of partitions generated only by f is

$$
\mathcal{A}_f = (U(f) \setminus U(g^*(A) \setminus \{f\})) = Q(f).
$$

Note also a simple fact that if $f_1, f_2 \in g^*(A)$ and $i \notin f_1 \cup f_2$, $j \in f_1 \cap f_2$ for some $i < j$, then

$$
|f_1 \cap f_2| \geq t + 1.
$$

Next lemma helps us to establish possible sets of $g^*(A)$ for maximal $A \in L\tilde{\Omega}(n, t)$ when $M(n, t)$ is not this maximum. To make the formulation more clear we repeat in Lemma all conditions which we have considered before as default.

Lemma 3 For $A \in L\tilde{\Omega}(n, t)$ assume that $|A| = \tilde{M}(n, t)$ and $g(A) \in G(A)$ is such that $s^+(g(A)) = s_{\min}(G(A))$, then for some $i \geq 2$

$$
g^*(A) = \mathcal{H}_i.
$$

Suppose that $\ell = s^+(g(A))$, $g_0(A) = \{ g \in g^*(A) : s^+(g) = \ell \}$ and $g_1(A) = g^*(A) \setminus g_0(A)$. It is easy to see that $\ell > t + 1$. From above it follows that if $f_1, f_2 \in g_0(A)$ and $|f_1 \cap f_2| = t$, then $|f_1| + |f_2| = \ell + t$. Denote

$$
\left| \bigcap_{f \in g_1(A)} f \right| = \tau.
$$
Consider consequently two cases \(\tau < t \) and \(\tau \geq t \).

Assume at first that \(\tau < t \). Consider the partition
\[
g_0(\mathcal{A}) = \bigcup_{t<i<\ell} R_i, \quad R_i = g_0(\mathcal{A}) \cap \binom{[n]}{i}.
\]
Denote
\[
R'_i = \{ f \subset [\ell - 1] : f \cup \{\ell\} \in R_i \}.
\]
As above, because the set \(g(\mathcal{A}) \) is left compressed, it follows that for
\[
f_i \in R'_i, \quad f_j \in R'_j \text{ and } i + j \neq \ell + t, \quad |f_i \cap f_j| \geq t.
\]

Next we show that \(R_i = \emptyset \).
Assume at first that \(\forall R_i \neq \emptyset \) we have \(R_{\ell+t-i} = \emptyset \), then for
\[
g' = (g^*(\mathcal{A}) \setminus g_0(\mathcal{A})) \bigcup \bigcup_{t<i<\ell} R'_i \in I(n, k)
\]
we have
\[
|U(g')| \geq |\mathcal{A}| \quad \text{and} \quad s^+(g') < s^+(g(\mathcal{A}))
\]
which contradicts our assumptions.

Now assume that \(R_i, R_{\ell+t-i} \neq \emptyset \). At first we consider the case when \(i \neq (\ell + t)/2 \). Consider the new sets
\[
\varphi_1 = g_1(\mathcal{A}) \bigcup \left(g_0(\mathcal{A}) \setminus \left(R_i \cup R_{\ell+t-i} \right) \right) \cup R'_i;
\]
\[
\varphi_2 = g_1(\mathcal{A}) \bigcup \left(g_0(\mathcal{A}) \setminus \left(R_i \cup R_{\ell+t-i} \right) \right) \cup R'_{\ell+t-i}.
\]
We have \(\varphi_i \in I(n, k) \). Thus,
\[
\mathcal{A}_i = U(\varphi_i) \in \tilde{\Omega}(n, t).
\]
We will show that, under the last assumption,
\[
\max_{j=1,2} |\mathcal{A}_i| > |\mathcal{A}| \quad \text{(26)}
\]
and come to a contradiction. Using (25) it is easy to see that:
\[
|\mathcal{A} \setminus \mathcal{A}_i| = |R_{\ell+t-i}| \sum_{j=0}^{n-\ell} \binom{n-\ell}{j} \tilde{B}(n - \ell - t + i - j),
\]

20
\[|A_1 \setminus A| \geq |R_i| \sum_{j=0}^{n-\ell} \binom{n-\ell}{j} \tilde{B}(n - i - j + 1), \]
\[|A \setminus A_2| = |R_i| \sum_{j=0}^{n-\ell} \binom{n-\ell}{j} \tilde{B}(n - i - j), \]
\[|A_2 \setminus A| \geq |R_{\ell+t-i}| \sum_{j=0}^{n-\ell} \binom{n-\ell}{j} \tilde{B}(n - \ell - t + i - j + 1). \]

From these equalities it follows that, if (26) is not valid, then
\[|R_{\ell+t-i}| \sum_{j=0}^{n-\ell} \binom{n-\ell}{j} \tilde{B}(n - \ell - t + i - j) \geq |R_i| \sum_{j=0}^{n-\ell} \tilde{B}(n - i - j + 1) \]
and
\[|R_i| \sum_{j=0}^{n-\ell} \binom{n-\ell}{j} \tilde{B}(n - i - j) \geq |R_{\ell+t-i}| \sum_{j=0}^{n-\ell} \binom{n-\ell}{j} \tilde{B}(n - \ell - t + i - j + 1). \]

Since \(\tilde{B}(n+1) > \tilde{B}(n) \) when \(n > 0 \), the last two inequalities couldn’t be valid together. This contradiction shows that \(R_i = \emptyset \) when \(i \not= (\ell + t)/2 \).

Now consider the case \(i = (\ell + t)/2 \). By pigeon-hole principle, there exists \(k \in [\ell - 1] \) and \(S \subset R'_{(\ell+t)/2} \) such that \(k \not\in B \) for all \(B \in S \) and
\[
|S| \geq \frac{\ell - t}{2(\ell - 1)} |R'_{(\ell+t)/2}|. \tag{27}
\]

Hence, as before, we have \(|B_1 \cap B_2| \geq t \) for all \(B_1, B_2 \in S \) and
\[
f' = (g^*(A) \setminus R_{(\ell+t)/2}) \cup S \in \bar{I}(n, t) .
\]

Next we show that
\[
|U(f')| > |A|. \tag{28}
\]
Consider the partition
\[
A = G_1 \cup G_2 ,
\]
where
\[
G_1 = U(g^*(A) \setminus R_{(\ell+t)/2}) , \quad G_2 = U(R_{(\ell+t)/2}) \setminus U(g^*(A) \setminus R_{(\ell+t)/2}) .
\]
Consider also the partition
\[U(f') = \mathcal{G}_1 \cup \mathcal{G}_3, \]
where
\[\mathcal{G}_3 = U(\mathcal{S}) \setminus U(g^*(\mathcal{A}) \setminus R(\ell+\ell/2). \]
We should show that
\[|\mathcal{G}_3| > |\mathcal{G}_2|. \quad (29) \]
We have
\[|\mathcal{G}_2| = |R(\ell+\ell/2)| \sum_{j=0}^{n-\ell} \binom{n-\ell}{j} \bar{B} \left(n - \frac{\ell + t}{2} - j \right) \]
and
\[|\mathcal{G}_3| \geq |\mathcal{S}| \sum_{j=0}^{n-\ell+1} \binom{n-\ell+1}{j} \bar{B} \left(n - \frac{\ell + t}{2} - j + 1 \right). \]
Hence, for (29) to be true, it is sufficient that
\[\frac{\ell - t}{2(\ell - 1)} \gamma(\ell) > 1. \]
The last inequality is true because, otherwise, from (6) it follows that \(\bar{M}(n, k) = M(n, k). \) Hence \(R_{\ell+\ell/2} = \emptyset. \)

Now consider the case \(\tau \geq t. \) We have
\[\bigcap_{f \in g_1(\mathcal{A})} f = [\tau], \]
\[\ell = s^+(g(\mathcal{A})) > \tau \]
and for all \(f \in g_0(\mathcal{A}), \)
\[\left| F \cap [\tau] \right| \geq \tau - 1, \]
if \(|f \cap [\tau]| = \tau - 1, \) then \([\tau + 1, \ell] \in f. \)

Let's show that \(\tau \leq t + 1. \)
If \(\tau \geq t + 2, \) then, for \(f_1, f_2 \in g(\mathcal{A}), \)
\[\left| f_1 \cap f_2 \cap [\tau] \right| \geq \tau - 2 \geq t \]
and thus, setting \(g_0(\mathcal{A}) = \{ f \subset [\ell - 1] : f \cup \ell \in g_0(\mathcal{A}) \} \), we have

\[
\varphi = (g^*(\mathcal{A}) \setminus g_0(\mathcal{A})) \cup g_0(\mathcal{A}) \in \tilde{I}(n, k)
\]

and

\[
|U(\varphi)| \geq |\mathcal{A}|, \ s^+(\varphi) < \ell.
\]

This gives us the contradiction of minimality of \(\ell \).

Assume now that \(\tau = t + 1 \). In this case it is necessary that \(\ell = t + 2 \). Otherwise, using the argument above (deleting \(\ell \) from each element of \(g_0(\mathcal{A}) \)), we end up generating the set \(\varphi \in \tilde{I}(n, k) \) for which \(|U(\varphi)| \geq |\mathcal{A}| \) and \(s^+(\varphi) < \ell \). It is clear that \(\tau = t + 1 \) and \(\ell = t + 2 \), then \(g^*(\mathcal{A}) = \mathcal{H}_2 \).

At last, consider the case \(\tau = t \). Define \(g'_0(\mathcal{A}) = \{ f \in g_0(\mathcal{A}) : |f \cap [t]| = t - 1 \} \). We have

\[
g'_0(\mathcal{A}) \subset \{ f \subset [\ell] : |f \cap [t]| = t - 1, [t + 1, \ell] \subset f \}
\]

and for \(f \in g^*(\mathcal{A}) \setminus g'_0(\mathcal{A}) \) we have \([t] \subset f\) and \(|f \cap [t + 1, \ell]| \geq 1\).

Hence

\[
U(g^*(\mathcal{A})) \subset U(\mathcal{H}_{t-1}).
\]

Since \(\mathcal{A} \) is maximal, \(g^*(\mathcal{A}) = \mathcal{H}_{t-1} \). Family \(\mathcal{H}_{n-t} \) is trivially \(t \)-intersecting, so we can assume that \(i < n - t \). Denote \(S_i = |U(\mathcal{H}_i)| \). Next we will prove that if \(S_i < S_{i+1} \), then \(S_{i+1} < S_{i+2} \). We have

\[
S_i = (n - i)! - \sum_{j=0}^{n-t-i} \binom{n-t-i}{j} \tilde{B}(n-t-j) + t \sum_{j=0}^{n-t-i} \tilde{B}(n-t-i-j+1)
\]

and we should show that from inequality

\[
\sum_{j=0}^{n-t-i-1} \binom{n-t-i-1}{j} \tilde{B}(n-t-j+1) \geq t \sum_{j=0}^{n-t-i-1} \binom{n-t-i-1}{j} \tilde{B}(n-t-j-i+1) \tag{30}
\]

follows

\[
\sum_{j=0}^{n-t-i-2} \binom{n-t-i-2}{j} \tilde{B}(n-t-j+1) \geq t \sum_{j=0}^{n-t-i-2} \binom{n-t-i-2}{j} \tilde{B}(n-t-j-i). \tag{31}
\]

We rewrite inequality \((30)\) as follows

\[
\sum_{j=0}^{n-t-i-2} \binom{n-t-i-2}{j} \tilde{B}(n-t-j+1) + \sum_{j=0}^{n-t-i-2} \binom{n-t-i-2}{j} \tilde{B}(n-t-j) \geq t \sum_{j=0}^{n-t-i-2} \binom{n-t-i-2}{j} \tilde{B}(n-t-i-j+1) + t \sum_{j=0}^{n-t-i-2} \binom{n-t-i-2}{j} \tilde{B}(n-t-i-j).
\]
From here, it is clear that if (31) is true, then (15) is also true. From here and expressions for S_2 and S_{n-t-1} follows the statement of Theorem 6. Since, for fixed t,

$$\frac{\sum_{j=1}^{n-t-2} \binom{n-t-2}{j} \tilde{B}(n - t - j)}{\sum_{j=0}^{n-t-2} \binom{n-t-2}{j} \tilde{B}(n - t - 1 - j)} \to \infty, \ n \to \infty,$$

and

$$\frac{\tilde{B}(n - t - 1)}{\sum_{j=1}^{n-t-2} \binom{n-t-2}{j} \tilde{B}(n - t - j)} \to 0, \ n \to \infty,$$

it follows that for sufficiently large n and fixed t:

$$S_2 = B(n - t) - \tilde{B}(n - t) - \tilde{B}(n - t - 1) + t > S_{n-t-1} = B(n - t)$$

$$- \sum_{j=0}^{n-t-2} \binom{n-t-2}{j} \tilde{B}(n - t - j) + t \sum_{j=0}^{n-t-2} \binom{n-t-2}{j} \tilde{B}(n - t - j - 1).$$

Therefore, for $n > n_2(t)$,

$$\tilde{M}(n, t) = B(n - t) - \tilde{B}(n - 1) - \tilde{B}(n - t - 1) + t.$$
Appendix

Let us remark that FKG inequality says that for $\mu : 2^m \rightarrow \mathbb{R}_+$ such that
\[
\mu(a)\mu(b) \leq \mu \left(a \cap b \right) \mu \left(a \cup b \right), \quad a, b \in 2^m,
\] (32)

and for a pair of nondecreasing functions $f_1, f_2 : 2^m \rightarrow \mathbb{R}$, the following inequality is valid:
\[
\sum_{Y \in 2^m} \mu(Y) f_1(Y) \geq \sum_{Y \in 2^m} \mu(Y) f_2(Y) \leq \sum_{Y \in 2^m} \mu(Y) f_1(Y) f_2(Y) \sum_{Y \in 2^m} \mu(Y).
\] (33)

Now we choose
\[
\mu(Y) = \tilde{B} \left(n - \frac{\ell + t}{2} - |Y| \right).
\]

Note that if (32) is true for this choice of μ, then setting $f_1 = I_{X \in \mathcal{F} : x \in X}$ and $f_2 = I_{X \in 2^{n-(\ell+t)/2-1} : x \in X}$ in (33) proves inequality (??).

Define $\bar{a} = n - t - r - a$, $\bar{b} = n - t - r - b$, $\bar{\delta} = n - r - t - \delta$. Then inequality (32) is equivalent to inequality
\[
\tilde{B}(\bar{a}) \tilde{B}(\bar{b}) \leq \tilde{B}(\bar{a} \cap \bar{b}) \tilde{B}(\bar{a} \cup \bar{b}).
\]

Function $F(i) \geq 0$, $i \in \mathbb{Z}_+$ is called log-convex if
\[
F(i + 1)F(i - 1) \geq F^2(i).
\] (34)

FKG condition (32) is equivalent to the log-convexity property of \tilde{B}. We are going to demonstrate that $F(|Y|) = \mu(Y) = \tilde{B} \left(n - \frac{\ell + t}{2} - |Y| \right)$ satisfy inequality (34) for all possible $|Y|$, except $n - t - r - |Y| \neq 2, 4$.

Lemma 4 Inequality
\[
\tilde{B}(k + 1)\tilde{B}(k - 1) \geq \tilde{B}^2(k)
\] (35)

is true for $k \in \mathbb{Z}_+ \setminus \{2, 4\}$

From above considerations it follows it is left to consider the case $k = 2m$, $m > 2$. We will prove this lemma by using asymptotic of $\tilde{B}(k)$.

Next part of text we devote to finding the asymptotic fo $\tilde{B}(n)$.

Lemma 5 The following asymptotic of $\tilde{B}(n)$ is true
\[
\tilde{B}(n) = \frac{n! \exp(e^r - r - 1)}{r^n(4\pi B)^{1/2}}(1 \pm 11e^{-r}), \quad r \geq 12.
\] (36)

where r satisfy equality $r(e^r - 1) = n$ and $B = \frac{1}{2}r((r + 1)e^r - 1)$.

25
To proof this lemma we will use The Moser - Wyman expansion of the Bell numbers [11]. We will follow the text [12] and introduce the extension of proof from [12] for extend Bell number $\tilde{B}(n)$ for completeness (it is quite similar, besides we need calculate the explicit bounds for rest term of asymptotic also).

Because
\[\sum_{n=0}^{\infty} \frac{\tilde{B}(n)x^n}{n!} = \exp(e^x - x - 1), \]
using Cauchy’s formula, we have
\[\frac{\tilde{B}(n)}{n!} = \frac{1}{2\pi i} \oint_{|z|=r} \frac{\exp(e^z - z - 1)}{z^{n+1}} \, dz. \]

Contour integration yields
\[\tilde{B}(n) = \frac{n!}{2\pi r^n} \int_{-\pi}^{\pi} \exp(\epsilon r e^{i\theta} - r e^{i\theta} - i n \theta - 1) \, d\theta. \]

Define
\[F(\theta) = e^{\epsilon r e^{i\theta}} - r e^{i\theta} - i n \theta - (e^r - r). \]

We have
\[\tilde{B}(n) = A \int_{-\pi}^{\pi} \exp(F(\theta)) \, d\theta \]
where
\[A = \frac{n! \exp(e^r - r - 1)}{2\pi r^n}. \]

Define
\[\epsilon = e^{-\frac{1}{2} \epsilon}, \quad J_1 = \int_{-\pi}^{\pi} \exp(F(\theta)) \, d\theta, \quad J_2 = \int_{\epsilon}^{\pi} \exp(F(\theta)) \, d\theta. \]

Using inequality $\cos(\theta) \leq 1 - \frac{\epsilon^2}{2} + \frac{\epsilon^4}{24}$, we have
\[\tilde{B}(n) = A J_1 + A J_2 + A \int_{-\epsilon}^{\epsilon} \exp(F(\theta)) \, d\theta, \]
\[| \exp(F(\theta)) | = \exp(Re(F(\theta))) = \exp \left(e^r \cos(\theta) \cos(r \sin(\theta)) - e^r + r(1 - \cos(\theta)) \right) \]
\[\leq \exp \left(e^r - e^r + r(1 - \cos(\theta)) \right) \]
\[\leq \exp \left(e^r \left(e^r \left(1 - \frac{\epsilon^2}{2} + \frac{\epsilon^4}{24} \right) - 1 \right) + r \right) \]
\[\leq \exp \left(\frac{\epsilon^2}{2} \left(1 - \frac{\epsilon^2}{12} \right) + r \right) \]
\[\leq \exp \left(\frac{e^2}{2} \left(1 - \frac{\epsilon^2}{12} \right) + r \right). \]
\[
\leq \exp \left(-\frac{1}{2} e^r r^2 \left(1 - \frac{e^2}{12} \right) \left(1 - \frac{e^2 \left(1 - \frac{r^2}{12} \right)}{4} \right) + r \right)
\]
\[
\leq \exp \left(-\frac{1}{2} e^{r/4} r \left(1 - \frac{e^{-3r/4}}{12} \right) \left(1 - \frac{e^{-3r/4} \left(1 - \frac{r^2}{12} \right) r}{4} \right) + r \right).
\]

Because
\[
1 - \frac{e^{-3r/4}}{12} > \frac{11}{12}, \quad 1 - \frac{e^{-3r/4} \left(1 - \frac{r^2}{12} \right) r}{4} > \frac{3}{4}, \text{ when } r > 12,
\]
we have
\[
|\exp(F(\theta))| \leq \exp \left(-r \frac{1}{3} e^{r/4} + r \right) < e^{-\frac{7}{4} e^{r/4}}
\]
and, hence
\[
J_2 \leq A \pi e^{-\frac{7}{4} e^{r/4}}.
\]
We have
\[
\tilde{B}(n) = A \left(\int_{-\epsilon}^{\epsilon} \exp(F(\theta)) d\theta \pm e^{-\frac{7}{4} e^{r/4}} \pi \right).
\]
Consider the expansion
\[
F(\theta) = (r e^r - r - n) i \theta - \frac{1}{2} (r^2 e^r + r e^r - r) \theta^2 + \sum_{k=3}^{\infty} \left(\frac{d}{dr} \right)^k \left(e^r - r \right) (i \theta)^k, \quad r(e^r - 1) = n.
\]
Hence we have
\[
F(\theta) = -\frac{1}{2} (r^2 e^r + r e^r - r) \theta^2 + \sum_{k=3}^{\infty} \left(\frac{d}{dr} \right)^k \left(e^r - r \right) (i \theta)^k.
\]
Define
\[
\phi = \left(\frac{1}{2} (r^2 e^r + r e^r - r) \right)^{1/2} \theta, \quad a_k = \frac{e^{-r} \left(r \frac{d}{dr} \right)^{k+2} \left(e^r - r e^{-r} \right) (i \phi)^{k+2}}{(k+2)! \left(\frac{1}{2} (r^2 + r - r e^{-r}) \right)^{k+2}}, \quad z = e^{-r/2},
\]
\[
f(z) = \sum_{k=1}^{\infty} a_k z^k.
\]
Then
\[
F(\theta) = -\phi^2 + f(z), \quad \tilde{B}(n) = C \left(\int_{-h}^{h} \exp(-\phi^2 + F(z)) dz \pm \pi e^{-\frac{7}{4} e^{r/4}} \left(\frac{1}{2} r(r+1)e^r - r \right)^{1/2} \right),
\]
\[
h = \left(\frac{1}{2} r((r+1)e^r - 1) \right)^{1/2} e^{-3r/8}, \quad C = \frac{A}{\left(\frac{1}{2} r((r+1)e^r - 1) \right)^{1/2}}.
\]
Consider the expansion
\[e^f(z) = \sum_{k=0}^{\infty} b_k z^k, \quad b_0 = e^{f(0)} = 1, \quad b_1 = e^{f(0)} f'(0) = a_1, \quad b_2 = a_2 + \frac{a_1^2}{2}. \]

We have
\[|a_k| = \left| \frac{\left(\sum_{m=1}^{k+2} S(k+2, m) r^m - r e^{-r} \right) (i \phi)^{k+2}}{(k+2)! \left(\frac{1}{2} (r^2 + r - re^{-r}) \right)^{(k+2)/2}} \right| \leq \frac{2^{k+2}}{(k+2)!} |\phi|^{k+2} B(k+2) < |2\phi|^{k+2}. \]

Here \(S(m, k) \) is Stirling number of second kind, \(B(n) \) is Bell number. We used inequalities \(B(n) \leq n!, \quad \left(r \frac{d}{dr} \right)^{k+2} (e^r) = \sum_{n=1}^{k+2} S(k+2, n) r^n e^r \leq r^{k+2} B(k+2) e^r \). We use formula for coefficients \(b_k \) in composite function \(\exp \left(\sum_{k=2}^{\infty} a_k z^k \right) = \sum_{k=1}^{\infty} b_k z^k \):

\[
\begin{align*}
 b_m &= \sum_{\sum_{p=1}^{m} p j_p = m, \sum_{p=1}^{m} j_p = k} \frac{1}{\prod_{p=1}^{m} j_p! \prod_{p=1}^{m} a_p^{j_p}} \leq \sum_{\sum_{p=1}^{m} p j_p = m, \sum_{p=1}^{m} j_p = k} \frac{1}{\prod_{p=1}^{m} (p^2) j_p!} \leq (2\phi)^m \sum_{\sum_{p=1}^{m} p j_p = m, \sum_{p=1}^{m} j_p = k} \frac{(2\phi)^{2k}}{m! (j_p)!} \\
 &= (2\phi)^m \sum_{\sum_{p=1}^{m} p j_p = m} \sum_{\sum_{p=1}^{m} j_p = k} \frac{(2\phi)^{2k}}{m! (j_p)!} = (2\phi)^m \sum_{\sum_{p=1}^{m} p j_p = m} \frac{(2\phi)^{2k}}{m! (j_p)!} \leq (2\phi)^m \sum_{\sum_{p=1}^{m} p j_p = m} \frac{(2\phi)^{2k}}{m! (j_p)!} \leq (2\phi)^m \sum_{\sum_{p=1}^{m} p j_p = m} \frac{(2\phi)^{2k}}{m! (j_p)!} \leq (2\phi)^m (1 + (2\phi)^2)^{m-1}.
\end{align*}
\]

Next we have
\[
\left| \sum_{k=s}^{\infty} b_k z^k \right| \leq \left(\left| 2\phi \right|^{s+2} (1 + |2\phi|^2)^{s-1} |z|^s \right) \sum_{i=0}^{\infty} \mu_i = \frac{|2\phi|^{s+2} (1 + |2\phi|^2)^{s-1} |z|^s}{M},
\]
\[M = 1 - |z| \left| 2\phi (1 + |2\phi|^2) \right| \mu = |2\phi| (1 + |2\phi|^2) |z| < 1. \]

We impose conditions \(M > \frac{1}{2}, \quad |\phi| \leq h, z = e^{-r/2} \). We have
\[
\begin{align*}
\tilde{B}(n) &= C \left(\int_{-h}^{h} e^{-\phi^2} d\phi + e^{-r} \int_{-h}^{h} b_2 e^{-\phi^2} d\phi \pm \int_{-\infty}^{\infty} \sum_{k=2}^{\infty} b_{2k}(\phi) e^{-kr} \big| e^{-\phi^2} d\theta \right) \\
&\pm \pi e^{-\frac{r^2}{4}} \left(\frac{1}{2} (r (r + 1) e^r - r) \right)^{1/2} \\
&\quad \left(\frac{1}{2} (r (r + 1) e^r - r) \right)^{1/2} \quad \text{(37)}
\end{align*}
\]
Because
\[\int_{h}^{\infty} e^{-\phi^2} d\phi = \frac{1}{2h} e^{-h^2} \left(1 + \frac{1}{h^2} \right), \] we have
\[\int_{-h}^{h} e^{-\phi^2} d\phi = \int_{-\infty}^{\infty} e^{-\phi^2} d\phi - 2 \int_{h}^{\infty} e^{-\phi^2} d\phi = \sqrt{\pi} - \frac{1}{h} e^{-h^2} \left(1 + \frac{1}{h^2} \right). \]
It follows the asymptotic equation
\[\tilde{B}(n) = C \left(e^{-r} \int_{-h}^{h} b_2 e^{-\phi^2} d\phi + \sqrt{\pi} - \frac{1}{h} e^{-h^2} \left(1 + \frac{1}{h^2} \right) \pm e^{-2r} \int_{-\infty}^{\infty} (2\phi)^4 (1 + (2\phi)^2) e^{-\phi^2} d\theta \right) \]
\[\pm \pi e^{-r} \left(\frac{1}{2} (r(r + 1)e^r - r) \right)^{1/2} \]
Next we have
\[a_1 = \sqrt{2 \frac{r^3 + 3r^2 + r - re^{-r}}{3(r^2 + r - re^{-r})^{3/2}} \frac{(i\phi)^3}{\phi^4}}; \]
\[a_2 = \frac{r^4 + 6r^3 + 7r^2 + r - re^{-r}}{6(r^2 + r - re^{-r})} \frac{\phi^4}{\phi^4} - \frac{(r^3 + 3r^2 + r - re^{-r})^2}{9(r^2 + r - re^{-r})^3} \frac{\phi^6}{\phi^6}. \]
Integrating in parts and using asymptotic (38) we have
\[\int_{-h}^{h} \phi^4 e^{-\phi^2} d\phi = -h^3 e^{-h^2} - \frac{3}{2} h e^{-h^2} + \frac{3}{4} \left(\sqrt{\pi} - 2 \int_{h}^{\infty} e^{-\phi^2} d\phi \right) = -h^3 e^{-h^2} - \frac{3}{2} h e^{-h^2} \]
\[+ \frac{3}{4} \left(\sqrt{\pi} - 2 \int_{h}^{\infty} e^{-\phi^2} d\phi \right) = -h^3 e^{-h^2} - \frac{3}{2} h e^{-h^2} + \frac{3}{4} \left(\sqrt{\pi} - \frac{1}{h^2} e^{-h^2} \left(1 + \frac{1}{h^2} \right) \right), \]
\[\int_{-h}^{h} \phi^6 e^{-\phi^2} d\phi = -h^5 e^{-h^2} + \frac{5}{2} \int_{-h}^{h} \phi^4 e^{-\phi^2} d\phi \int_{-h}^{h} \phi^8 e^{-\phi^2} d\phi = -h^5 e^{-h^2} + \frac{5}{2} \int_{-h}^{h} \phi^6 e^{-\phi^2} d\phi \int_{-h}^{h} \phi^8 e^{-\phi^2} d\phi \\
= -h^5 e^{-h^2} + \frac{9}{2} \int_{-h}^{h} \phi^8 e^{-\phi^2} d\phi. \]
Because \(\frac{r^{3/8}}{\sqrt{2}} < h < re^{r/8} \sqrt{2} \), \(r^8 e^r > 100r^6 e^{3r/4} \), we have
\[\int_{-h}^{h} (2\phi)^4 (1 + (2\phi)^2) e^{-\phi^2} d\phi = 16 \int_{-\infty}^{\infty} (\theta^4 + 12\theta^6 + 48\theta^8 + 64\theta^{10}) e^{-\phi^2} d\phi \]
\[= -32 \left(e^{-h^2} h \left(\frac{5133}{2} + 1711h^2 + 334h^4 + 129h^6 + 32h^8 \right) - \frac{5133}{3} \left(\sqrt{\pi} - \frac{e^{-h^2}}{h} \left(1 + \frac{1}{h^2} \right) \right) \right) \]
\[= -32 \left(e^{-h^2} h \left(\frac{5133}{2} + 1711h^2 + 334h^4 + 129h^6 + 32h^8 \right) - \frac{5133}{3} \left(\sqrt{\pi} - \frac{e^{-h^2}}{h} \left(1 + \frac{1}{h^2} \right) \right) \right), \]
\[-32 \left(e^{-\frac{9}{2}e^{r'/4}} (640r^8 e^r + 1200r^6 e^{3r'/4} + 1600r^4 e^{r'/2} + 4000re^{r'/4} + 3000) + 5133 \left(\sqrt{\pi} + e^{-\frac{9}{2}e^{r'/4}} \right) \right) \]

\[= \pm 2^{17} \left(e^{-\frac{9}{2}e^{r'/4}} r^8 e^r + 1 \right) , \]

\[\int_{-h}^{h} b_2 e^{-\phi^2} d\phi = \int_{-h}^{h} a_2 e^{-\phi^2} d\phi + \frac{1}{2} \int_{-h}^{h} a_1^2 e^{-\phi^2} d\phi \]

\[= \frac{r^4 + 6r^3 + 7r^2 + r - re^{-r}}{6(r^2 + r - re^{-r})^2} \left(-h^3 e^{-h^2} - \frac{3}{2} he^{-h^2} + \frac{3}{4} \left(\sqrt{\pi} - \frac{1}{h} e^{-h^2} \left(1 \pm \frac{1}{h^2} \right) \right) \right) \]

\[- \frac{1}{2} \frac{(r^3 + 3r^2 + r - re^{-r})^2}{9(r^2 + r - re^{-r})^2} \left(-h^3 e^{-h^2} - \frac{5}{2} h^3 e^{-h^2} - \frac{15}{4} he^{-h^2} + \frac{15}{8} \left(\sqrt{\pi} - \frac{1}{h} e^{-h^2} \left(1 \pm \frac{1}{h^2} \right) \right) \right) \]

\[= \left(\frac{\sqrt{\pi} r^4 + 6r^3 + 7r^2 + r - re^{-r}}{8 \left(24 \frac{5}{2} h^3 + \frac{15}{4} \frac{15}{8h} \right)} \right) - \frac{1}{2} \frac{(r^3 + 3r^2 + r - re^{-r})^2}{9(r^2 + r - re^{-r})^2} \left(h^3 + \frac{3}{2} h + \frac{3}{4h} \right) \]

\[= \pm e^{-h^2} \left(\frac{r^4 + 6r^3 + 7r^2 + r - re^{-r}}{6(r^2 + r - re^{-r})^2} + \frac{1}{2} \frac{(r^3 + 3r^2 + r - re^{-r})^2}{9(r^2 + r - re^{-r})^3} \right) \]

\[= \left(\frac{\sqrt{\pi} r^4 + 6r^3 + 7r^2 + r - re^{-r}}{8 \left(24 \frac{5}{2} h^3 + \frac{15}{4} \frac{15}{8h} \right)} \right) - \frac{1}{2} \frac{(r^3 + 3r^2 + r - re^{-r})^2}{9(r^2 + r - re^{-r})^3} \left(h^3 + \frac{3}{2} h + \frac{3}{4h} \right) \]

We are ready to write the asymptotic

\[\tilde{B}(n) = C \sqrt{\pi} \left(1 + \frac{1}{\sqrt{\pi}} e^{-r} \int_{-h}^{h} b_2 e^{-\phi^2} d\phi \pm \frac{1}{\sqrt{\pi}} \left(2\sqrt{\pi} e^{-\frac{1}{2}e^{r'/4}} + e^{-2r} \int_{-\infty}^{\infty} (2\phi)^4 (1 + (2\phi)^2)^3 e^{-\phi^2} d\phi \right) \right) \]

\[+ \frac{1}{2} \int_{-h}^{h} b_2 e^{-\phi^2} d\phi \pm \frac{1}{\sqrt{\pi}} \left(2\sqrt{\pi} e^{-\frac{1}{2}e^{r'/4}} + 2^{17} \left(e^{-\frac{1}{2}e^{r'/4}} r^8 e^r + 1 \right) e^{-2r} + \sqrt{\pi} e^{-\frac{1}{2}e^{r'/4}} r^8 e^{r/2} \right) \]

\[= C \sqrt{\pi} \left(1 + e^{-r} \left(\frac{1}{8} \frac{r^4 + 6r^3 + 7r^2 + r - re^{-r}}{6(r^2 + r - re^{-r})^2} + \frac{5}{24} \frac{(r^3 + 3r^2 + r - re^{-r})^2}{9(r^2 + r - re^{-r})^3} \right) \right) \]
Next, using asymptotic (42) we prove inequality (35) for sufficiently large

Inequality (41) is equivalent to the inequality

As we noticed before last inequality equivalent to log - convexity of function \bar{f}. Then using software "Mathematica" we show that inequality (43) is true for all other values of $a, b, \delta, a + b - \delta < n - t - r$, the inequality (41) follows from the inequality

Define $\bar{a} = n - r - t - a, \bar{b} = n - r - t - b, \bar{\delta} = n - r - t - \delta = \bar{a} \cap \bar{b}, n - r - t - (a + b) + \delta = \bar{a} \cup \bar{b}$

Inequality (41) is equivalent to the inequality

Define $\bar{B}(\bar{a}) \bar{B}(\bar{b}) \leq \bar{B}(\bar{a} \cap \bar{b}) \bar{B}(\bar{a} \cup \bar{b}).$ (42)

As we noticed before last inequality equivalent to log - convexity of function $\bar{f}(n)$:

Next, using asymptotic (42) we prove inequality (35) for sufficiently large $n > n_0$ where $n_0 < e^{12}$. Then using software "Mathematica" we show that inequality (43) is true for all other values of $n = 2m < e^{12}, m > 2$. This complete the proof of Lemma 4. Simple calculations show the validness of the inequality

Following inequality is valid:

Indeed

Hence for $r = r(n), \ln(n) > r(n) > 10$, we have

$$C(n - 1)C(n + 1) - (C(n))^2 > \frac{(n - 1)!(n + 1)!e^{\frac{n}{r} + \frac{1}{n}}}{2\pi r^{n-2} (r + \frac{1}{n})^n (n + r + \frac{1}{n})}$$
To satisfy the last inequality is sufficient to impose the inequality

\[
\frac{1}{(n - 1 + r) \left(r^2 + (n - 1)(r + 1) \right)^{1/2}} \left(\frac{r + \frac{1}{n}}{n} \right)^{1/2} - \frac{n!^2 e^{2\pi}}{2\pi r^{2(n-1)}(r + n)^2(r^2 + n(r + 1))} > \left(\frac{e^{r-2}}{(1 - 1/n)} - 1 \right) \frac{n!^2 e^{2\pi}}{2\pi r^{2n}(r + n)^2(r^2 + n(r + 1))}.
\]

Using inequalities \(\frac{n}{n-1} > 1 + \frac{1}{n}, \ e^{r-2} > 1 + r^{-2} \) and, hence \(\frac{e^{r-2}}{(1-1/n)} > 1 + r^{-2} \) we have

\[
(C(n - 1)C(n + 1) - (C(n))^2) > V = \frac{n!^2 e^{2\pi}}{2\pi r^{2n+2}(r + n)^2(r^2 + n(r + 1))}.
\]

Let’s \(\tilde{B}(n) = \sqrt{\pi}C(n)(1 + d(n)). \) We need to prove the inequality

\[
C(n - 1)(1 + d(n - 1))C(n + 1)(1 + d(n + 1)) \geq C^2(n)(1 + d(n))^2
\]

or

\[
C(n - 1)C(n + 1) - C^2(n) > V
\]

\[
> C^2(n)(2d(n) + d^2(n)) + C(n - 1)C(n + 1)(d(n - 1) + d(n + 1) + d(n - 1)d(n + 1))
\]

\[
> C^2(n)(2d(n) + d^2(n) + d(n - 1) + d(n + 1) + d(n - 1)d(n + 1)).
\]

To satisfy the last inequality is sufficient to impose the inequality

\[
C(n - 1)C(n + 1) - C^2(n) > V > C^2(n)(2|d(n)| + d^2(n) + |d(n - 1)d(n + 1)| + |d(n - 1)| + |d(n + 1)|) \quad (44)
\]

or

\[
\frac{V}{C^2(n)} = \frac{1}{r^2} > 2|d(n)| + d^2(n) + |d(n - 1)d(n + 1)| + |d(n - 1)| + |d(n + 1)|.
\]

We can assume that \(d(m) < 12e^{-r}, \ m = n, n + 1, n - 1. \) Then

\[
2|d(n)| + d^2(n) + |d(n - 1)d(n + 1)| + |d(n - 1)| + |d(n + 1)| < 48e^{-r} + 288 e^{-2r} < \frac{1}{r^2}, \ r > 10.
\]

It is left to check inequality (13) for \(r \leq 12, \ n \neq 2, 4. \) We can do this with the help of software "Mathematica".

Acknowledgment

We would like to express our gratitude to Unifesp and to USP also where he started this work and specially Prof. K. Yoshiharu.

32
References

[1] C.Y.Ku and D.Renshaw, Erdős- Ko- Rado Theorems for Permutations and Set Partitions, J. Comb. Theory, Ser. A, 2008, vol.115, no.6, pp. 1008- 1020.

[2] C.W.Ku and K.B.Wong, An Analogue of the Hilton- Milner Theorem for Set Partitions, J. Comb. Theory, Ser. A, 2013, vol.120, no. 7, pp. 1508- 1520.

[3] P.J.Cameron and C.Y.Ku, Intersecting Families of Permutations, European J.Combin., 2003, vol.24, no. 7, pp.881- 890.

[4] B.Larose and C.Malvenuto, Stable Sets of Maximal Size in Kneser- type Graphs, European J. Combin., 2004, vol. 25, no. 5, pp.657- 673.

[5] R.Ahlswede and L.Khachatrian, The Complete Nontrivial- Intersection Theorem for Systems of Finite Sets, J. of Comb. Theory, Ser. A, 1996, vol. 76, pp.121- 138.

[6] R.Ahlswede and L.Khachatrian, The Complete Intersection Theorem for Systems of Finite Sets, European J. Combin., 1997, vol.18, pp.125- 136.

[7] A.J.W.Hilton and E.C.Milner, Some Intersection Theorems for Systems of Finite Sets, Quart. J. Math. Oxford, 1967, vol.18, pp. 369- 384.

[8] P.Frankl, On Intersecting Families of Finite Sets, J. Combin. Theory, Ser. A, 1978, vol.24, pp.146-161.

[9] R.Ahlswede and V.Blinovsky, Lectures in Advances in Combinatorialcs, Berlin: Springer, 2008.

[10] V.Blinovsky, Intersection Problem for Finite Permutations, Problems of Inform. Transmission, 2011, vo.27, no.1 pp. 40-53.

[11] Moser and Wyman, An Asymptotic formula for the Bell numbers, Transactions of the Royal Society of Canada, 49, (1955), pp. 49 -54.

[12] Notes by Rod Canfield, The Moser- Wyman expansion of the Bell numbers, July 1995, http://www.austinmohr.com/Work-files/bellMoser.pdf

[13] K. Engel, On the average rank of an element in a filter of the partition lattice, J. Combinatorial Theory, Series A 65 (1994), 67-78.

[14] J.Riordan, Combinatorial identities, Wiley Series in Probability and Mathematical Statistics, 1968

33