Effects of acute exposure to low-dose radiation on the characteristics of human bone marrow mesenchymal stromal/stem cells.
氏名：藤城綾

学位の種類：博士（医学）

学位記番号：博士甲第800号

学位授与の要件：学位規則第4条第1項

学位授与年月日：平成30年3月9日

学位論文題目：Effects of acute exposure to low-dose radiation on the characteristics of human bone marrow mesenchymal stromal/stem cells

（低線量放射線が骨髄間葉系幹細胞に与える影響）

審査委員：
主査　教授　小島秀人
副査　教授　丸尾良浩
副査　教授　九嶋亮治
論文内容要旨

整理番号	807	氏名	藤城 綾
学位論文题目	Effects of acute exposure to low-dose radiation on the characteristics of human bone marrow mesenchymal stromal/stem cells (和名：低線量放射線が骨髄間葉系幹細胞に与える影響)		

【目的】
近年、0.1 Gy 以下の低線量放射線が人体に与える影響について注目されている。本研究では骨髄に含まれる幹細胞の一種である骨髄間葉系幹細胞 (mesenchymal stromal/stem cell; MSC) が低線量放射線照射によって受ける機能的影響を明らかにすることを目的とした。

【方法】
米国 AllCells 社より購入した健常ヒト全骨髄液（異なる5名分の骨髄液を使用し、それぞれロット A〜E とする）から Ficoll® を用いた遠心分離法で単球層を分離回収し、更に播種法を用いて既報（参考文献 1）の通り MSC を分離培養した。また同じ方法で分離回収した骨髄単球層から磁気ビーズ法を用いて CD34⁺細胞（造血幹細胞 hematoopoietic stem cell; HSC）を単離した。ガンマ線照射装置を使って MSC に 0.1 Gy の γ線を線量率 0.8 Gy/分で照射し、低線量放射線が照射後急性期 (照射 24 時間後) に MSC の機能（増殖能、分化能、HSC 支持機能）に与える影響を非照射 MSC と比較した。MSC の分化能への影響は、照射 MSC を骨分化、脂肪分化培地で分化誘導することで、HSC 支持機能評価は、照射 MSC と CD34⁺細胞を共培養し、フローサイトメトリー法でそれぞれ評価した。更に、リアルタイム PCR 法を用いて照射 MSC 中の HSC 支持サイトカイン・ケモカインの mRNA の発現を非照射 MSC と比較評価した。

【結果】
ロット A では 0.1 Gy の γ線照射を受けた MSC は非照射 MSC と比較して照射後 14日目に増殖遅延を示し、21日目には非照射と同等まで回復した。ロット B では照射 MSC と非照射 MSC との間に増殖の差は見られなかった。
HSC 支持機能評価では、ロット A の照射 MSC と CD34⁺細胞の共培養実験において

(備考) 1. 論文内容要旨は、研究の目的・方法・結果・考察・結論の順に記載し、2 千字程度でタイプ等を用いて印字すること。
2. ※印の欄には記入しないこと。
別紙様式3の2（課程博士・論文博士共用）

(続紙)

CD34*CD38*分画の細胞が、非照射MSCとの共培養と比較して増加していた。リアルタイムPCR法によるHSC支持サイトカイン・ケモカインのmRNAの発現の比較では、ロットAにおいてstem cell factor(SCF)、FMS-like tyrosine kinase3ligand(Flt3L)のmRNAの発現が低下し、interleukin(IL)-6のmRNAの発現が上昇していた。

照射MSCの骨分化能、脂肪分化能の評価では、ロットAの照射MSCで非照射MSCと比較してミネラル化(骨分化)の低下と脂肪細胞分化細胞数の減少傾向が見られたが有意差はなかった。その他のロットでは、ロットDの照射MSCの脂肪細胞分化が被照射MSCと比較して亢進していたが、それ以外のロットでは照射MSCと非照射MSCとで差は見られなかった。

ロットAで見られたような照射MSCにおける一過性の増殖遅延、CD34*細胞との共培養におけるCD34*CD38*分画の細胞の増加、そしてSCF、Flt3LのmRNAの発現低下とIL-6のmRNAの発現上昇は、5ロット中では、ロットCにおいて同様の結果が見られた。残りのロットB、D、Eでは照射MSCと非照射MSCでこれらの実験で差は見られなかった。

ロットAおよびCにおいて照射後慢性期（照射2〜3週間後）のMSCを用いて同様の実験をしたところ、急性期の照射MSCで見られたCD34*細胞との共培養におけるCD34*CD38*分画の細胞の増加、そしてSCF、Flt3LのmRNAの発現低下とIL-6のmRNAの発現上昇は、慢性期の照射MSCでは見られなくなっていた。

【考察】

5ロット中、2ロットにおいて0.1 Gyのγ線照射によって一過性の増殖遅延が見られた。マイクロアレイ実験において、細胞周期に関する遺伝子発現の低下がみられたことから、低線量放射線照射によって細胞周期が遅滞し、一過性の増殖遅延を来したものと推察された。

増殖遅延を示した2ロットではIL-6のmRNAの発現上昇が見られた。参考文献2でも報告されているようにIL-6は細胞老化を示唆するマーカーの一つであることから、0.1 Gyを照射したMSCでは細胞老化が誘導されている可能性が考えられた。またCD34*細胞との共培養実験においてこの2ロットの照射MSCはCD34*CD38*分画の細胞増幅が促進していたが、IL-6はHSCを骨髄球系へ分化誘導することが知られており（文献3）、CD34*CD38*は骨髄球系へやや分化した造血幹前駆細胞であることから、このCD34*細胞の変化はIL-6の発現上昇の影響を受けたものと推察された。

これらの変化はいずれも低線量放射線照射後3週間後では見られなくなっていた。また他3ロットではこれらの変化は見られなかった。
【結論】
低線量放射線（0.1 Gy）は一部の MSC に機能低下をもたらすものの、その影響は一過性であることが分かった。
学位論文審査の結果の要旨

整理番号	807
氏名	藤城絢
論文審査委員	

放射線診断機器の利用増加や原発事故による放射能汚染により、0.1Gy以下の低線量放射線の人体に及ぼす影響に社会的関心が強まっている。本論文では、骨髄に関含まれる幹細胞の1つである骨髄間葉系幹細胞（mesenchymal stromal/stem cell; MSC）が低線量放射線によって受ける機能的な影響について、米国AllCells社より購入した健常ヒト骨髄液5名分（5つのロットとする）より抽出したMSCを用いて研究し、以下の所見を得た。

1) 5ロット中、2ロットにおいて0.1Gy線照射によって一過性の細胞増殖遅延が見られた。この原因として細胞周期の遅延が考えられた。

2) 上記で見られた2ロットの細胞周期の遅延は、同時に細胞老化のマーカーであるIL-6が上昇していたことから、細胞老化を促進する所見と考えられた。

3) 異常を示した2ロットの照射MSCは造血幹細胞との共培養により、造血幹細胞の骨髄球系への分化を誘導した。

4) 上記の変化は照射後3週間で見られなくなり、低線量放射線は一部のMSCの機能低下をもたらすが、その作用は一過性であると考えられた。

本論文は、低線量放射線（0.1Gy）による骨髄間葉系幹細胞の影響について新たな知見を与えたものであり、また最終試験として論文内容に関連した試験を実施したところ合格と判断されたので、博士（医学）の学位論文に値することと認められた。

（総字数589字）

（平成30年1月29日）