

L² CONCENTRATION OF BLOW-UP SOLUTIONS FOR THE MASS-CRITICAL NLS WITH INVERSE-SQUARE POTENTIAL

ABDELWAHAB BENSOUILAH

ABSTRACT. In this paper, we prove a refined version of a compactness lemma and we use it to establish mass-concentration for the focusing nonlinear Schrödinger equation with an inverse-square potential.

1. Introduction

We consider the following L²-critical nonlinear Schrödinger equation (NLS) with an attractive inverse-square potential:

\[
\begin{aligned}
&i\partial_t u + \Delta u + \frac{c}{|x|^2}u + |u|^4 u = 0, \quad x \in \mathbb{R}^d, \ t > 0, \\
u(0, x) = u_0(x),
\end{aligned}
\]

with \(d \geq 3 \) and \(c \in (0, c_*) \), where \(c_* = \frac{(d-2)^2}{4} \) is the best constant in Hardy’s inequality:

\[
c_* \int_{\mathbb{R}^d} \frac{|u|^2}{|x|^2} \, dx \leq \int_{\mathbb{R}^d} |\nabla u|^2 \, dx, \quad u \in H^1(\mathbb{R}^d).
\]

The Schrödinger equation (1) appears in a variety of physical settings, such as quantum field equations or black hole solutions of the Einstein’s equations [4].

As in the classical case, i.e., with \(c = 0 \), (1) is invariant under the scaling

\[u \to u_\lambda : (t, x) \mapsto \lambda^{d/2} u(\lambda^2 t, \lambda x), \quad \lambda > 0,\]

that is why the equation is called L²-critical.

We have also invariance under time-translation and phase shift. However, the strict positivity of the parameter \(c \) breaks the space-translation symmetry as well as the Galilean transformation.

A recent result of Okazawa, Suzuki and Yokota [10] shows that the Cauchy problem (1) is locally well-posed in \(H^1 \): there exists \(T^* \in (0, +\infty) \) and a
maximal solution $u \in C([0, T^*), H^1)$. Moreover, we have the following blow-up alternative: either $T^* = \infty$ (the solution is global) or $T^* < +\infty$ (the solution blows up in finite time) and

$$ \lim_{t \uparrow T^*} \|u(t, \cdot)\|_{H^1} = +\infty. $$

The unique solution has the following conserved quantities:

$$ M(t) := \int_{\mathbb{R}^d} |u(t, x)|^2 \, dx = M(0), $$

$$ E(t) := \frac{1}{2} \int_{\mathbb{R}^d} |\nabla u|^2 \, dx - \frac{c}{2} \int_{\mathbb{R}^d} |u|^2 \, dx - \frac{d}{4 + 2d} \int_{\mathbb{R}^d} |u|^\frac{4}{d+2} \, dx $$

$$ = E(0). $$

From the definition of the energy, we see that it is convenient to introduce the following Hardy functional

$$ H(u) := \int |\nabla u|^2 \, dx - c \int \frac{|u|^2}{|x|^2} \, dx. $$

The hypothesis on the parameter c implies that H defines a semi-norm on H^1 equivalent to $\|\nabla u\|_2$. In particular, u blows up at $T^* > 0$ if and only if $\lim_{t \to T^*} H(u(t)) = \infty$.

The blow-up theory for (1) is mainly connected to the notion of ground state, which is a non-zero, non-negative and radially symmetric H^1-solution of the elliptic problem

$$ \Delta Q + \frac{c}{|x|^2} Q - |Q|^\frac{4}{d+2} Q = 0. $$

The existence of ground state solutions to (3) was recently obtained in [5, 6, 2] via Weinstein’s variational approach, but unlike the standard problem (i.e., $c = 0$) where the ground state is unique (up to the symmetries), we do not know if it is the case when $c \in (0, c_*)$.

In addition, the authors in [2] exhibited the following precised Gagliardo-Nirenberg inequality: for all $\psi \in H^1$

$$ \|\psi\|^{\frac{4}{d+2}}_{L^d} \leq C_d H(\psi) \|\psi\|^\frac{4}{d} \|_{L^2}, $$

where $C_d := \frac{d+2}{d} \|Q\|^{-\frac{4}{d}}_{L^2}$.

With this estimate in hand, one can prove that the L^2-norm of the ground state is the mass threshold for the formation of singularities. Besides, all solutions to (1) with a mass equal to that of a ground state are all equal to a ground state up to the symmetries.

We note that most of the previously mentioned phenomena (singularity formation, universality of the blow-up profile, etc.) were settled first for the standard problem and there is an abundant literature on that. We refer
the interested reader to [1].

Our aim here is to establish a concentration result for solutions to (NLS) with an inverse-square potential. That is, blowing-up solutions to (1) concentrates a minimal amount of mass, or more precisely

Theorem 1. Denote by Q a ground state solution to (3). Let u be a solution of (1) which blows up at finite time $T^* > 0$, and $a(t) > 0$ any function, such that $a(t)\|\nabla u(t)\|_{L^2} \to +\infty$ as $t \to T^*$. Then, there exists $x(t) \in \mathbb{R}^d$, such that

$$\liminf_{t \to T^*} \int_{\{|x-x(t)| \leq a(t)\}} |u(t, x)|^2 dx \geq \int_{\mathbb{R}^d} Q^2.$$

Remark 2. Results of this type where firstly obtained for equation (1) with $c = 0$ in [13, 7, 11].

Remark 3. Adapting the arguments in [8], one could establish the following lower bound on the blow-up rate for blowing-up solutions

$$\|\nabla u(t, \cdot)\|_{L^2} \geq \frac{C}{\sqrt{T^*-t}}.$$

Thus, any function $a(t) > 0$, such that $\frac{\sqrt{T^*-t}}{a(t)} \to 0$ as $t \to T^*$, fulfills the conditions of the above theorem.

The paper is organized as follows. In section 2 we prove a compactness lemma adapted to equation (1). In section 3, we apply the aforementioned lemma to prove our main result, Theorem 1. We conclude the paper with an appendix.

2. Compactness tools

This section is devoted to the proof of our key result which is crucial in establishing the L^2 concentration phenomenon for solutions to (1). It is equivalent to the concentration-compactness lemma used in [2], but expressed in terms of H^1-profiles.

Theorem 4. Let $v = \{v_n\}_{n=1}^{\infty}$ be a bounded sequence in $H^1(\mathbb{R}^d)$. Then, there exist a subsequence of $\{v_n\}_{n=1}^{\infty}$ (still denoted $\{v_n\}_{n=1}^{\infty}$), a family $\{x^j\}_{j=1}^{\infty}$ of sequences in \mathbb{R}^d and a sequence $\{V^j\}_{j=1}^{\infty}$ of H^1-functions, such that

i) for every $k \neq j$, $|x^k_n - x^j_n| \to +\infty$;

ii) for every $\ell \geq 1$ and every $x \in \mathbb{R}^d$, we have

$$v_n(x) = \sum_{j=1}^{\ell} V^j(x - x^j_n) + v^\ell_n(x),$$

with

$$\limsup_{n \to \infty} \|v^\ell_n\|_{L^p(\mathbb{R}^d)} \to 0$$
for every $p \in]2, 2^*[$.

Moreover, we have, as $n \to +\infty$,

\begin{equation}
\|v_n\|_{L^2}^2 = \sum_{j=1}^{\ell} \|V_j\|_{L^2}^2 + \|v_{\ell n}\|_{L^2}^2 + o_n(1) \tag{6}
\end{equation}

and

\begin{equation}
H(v_n) = \sum_{j=1}^{\ell} H(V_j(\cdot - x_n^j)) + H(v_{\ell n}) + o_n(1). \tag{7}
\end{equation}

Proof. Let $\mathcal{V}(v)$ be the set of functions obtained as weak limits in H^1 of subsequences of the translated $v_n(\cdot + x_n)$ with $\{x_n\}_{n=1}^\infty \subset \mathbb{R}^d$. Set

$$
\eta(v) = \sup\{\|V\|_{H^1}, \ V \in \mathcal{V}(v)\}.
$$

Clearly

$$
\eta(v) \leq \limsup_{n \to \infty} \|v_n\|_{H^1}.
$$

We claim the existence of a sequence $\{V_j\}_{j=1}^\infty$ of $\mathcal{V}(v)$ and a family $\{x^j\}_{j=1}^\infty$ of sequences of \mathbb{R}^d, such that

$$
k \neq j \Rightarrow |x_n^k - x_n^j| \to \infty,
$$

and, up to extracting a subsequence, the sequence $\{v_n\}_{n=1}^\infty$ can be written as

$$
v_n(x) = \sum_{j=1}^{\ell} V_j(x - x_n^j) + v_{\ell n}(x), \quad \eta(v^\ell) \to 0,
$$

such that the identities (6)-(7) hold. Indeed, if $\eta(v) = 0$, one can take $V^1 \equiv 0$ for all j, otherwise one chooses $V^1 \in \mathcal{V}(v)$, such that

$$
\|V^1\|_{H^1} \geq \frac{1}{2} \eta(v) > 0.
$$

By definition, there exists some sequence $x^1 = \{x_n^1\}_{n=1}^\infty$ of \mathbb{R}^d, such that, up to extracting a subsequence, we have

$$
v_n(\cdot + x_n^1) \to V^1 \quad \text{weakly in } H^1.
$$

Define

$$
v_n^1(\cdot + x_n^1) := v_n - V^1(\cdot - x_n^1).
$$

Since $v_n^1(\cdot + x_n^1) \to 0$, we get

$$
\|v_n\|_{L^2}^2 = \|V^1\|_{L^2}^2 + \|v_{\ell n}\|_{L^2}^2 + o(1),
$$

$$
\|\nabla v_n\|_{L^2}^2 = \|\nabla V^1\|_{L^2}^2 + \|\nabla v_{\ell n}\|_{L^2}^2 + o(1), \quad \text{as } n \to \infty.
$$

It remains to show the following identity

$$
\int \frac{|v_n(x)|^2}{|x|^2} \ dx = \int \frac{|V^1(x - x_n^1)|^2}{|x|^2} \ dx + \int \frac{|v_{\ell n}(x)|^2}{|x|^2} \ dx + o(1), \quad \text{as } n \to \infty.
$$

We have
\[|v_n(x)|^2 = |V^1(x - x_n^1)|^2 + |v_n^1(x)|^2 + 2\mathcal{R}[V^1(x - x_n^1)v_n^1(x)], \]

where \(\mathcal{R}(z) \) denotes the real part of the complex number \(z \). Thus, it suffices to prove that
\[
\int_{\mathbb{R}^d} \frac{V^1(x - x_n^1)v_n^1(x)}{|x|^2} \, dx \to 0, \quad \text{as} \quad n \to \infty.
\]

Without loss of generality, we suppose that \(V^1 \) is continuous and compactly supported in \(B(0, R), R > 0 \). We distinguish two cases:

- **Case 1:** \(|x_n^1| \to \infty. \)

 We have
 \[
 \int_{\mathbb{R}^d} \frac{V^1(x - x_n^1)v_n^1(x)}{|x|^2} \, dx = \int_{B(0,R)} \frac{V^1(x)v_n^1(x + x_n^1)}{|x + x_n^1|^2} \, dx.
 \]
 Since \(|x_n^1| \to \infty \), there exists \(n(R) \in \mathbb{N}^* \) such that for all \(n \geq n(R) \)
 \[|x_n^1| \geq 2R. \]
 Therefore, for all \(n \geq n(R) \) and all \(x \in B(0, R) \)
 \[|x_n^1 + x| \geq R, \]
 and then
 \[
 \int_{B(0,R)} \frac{|V^1(x)||v_n^1(x + x_n^1)|}{|x + x_n^1|^2} \, dx \leq \frac{1}{R^2} \int |V^1(x)||v_n^1(x + x_n^1)| \, dx.
 \]
 The right-hand side term tends to zero as \(n \) tends to infinity, since \(|v_n^1(x + x_n^1)| \to 0 \) in \(H^1 \) (see appendix for a proof).

- **Case 2:** Up to extracting a subsequence, we assume that \(x_n^1 \to x^1 \)
 for some \(x^1 \in \mathbb{R}^d \). It suffices to study the case when \(x^1 = 0 \).

Let \(\epsilon > 0 \). By the dominated convergence theorem, there exists \(\delta(\epsilon) > 0 \), such that
\[
\int_{B(0,2\delta(\epsilon))} \frac{|V^1(x)|^2}{|x|^2} \leq \frac{\epsilon^2}{2}.
\]

Now, write
\[
\left| \int_{\mathbb{R}^d} \frac{V^1(x)v_n^1(x + x_n^1)}{|x + x_n^1|^2} \, dx \right| \leq \int_{B(0,\delta(\epsilon))} \frac{|V^1(x)||v_n^1(x + x_n^1)|}{|x + x_n^1|^2} \, dx \\
+ \int_{B^c(0,\delta(\epsilon))} \frac{|V^1(x)||v_n^1(x + x_n^1)|}{|x + x_n^1|^2} \, dx.
\]
Since \(x_n^1 \to 0 \), there exists \(n_1(\epsilon) \) such that, for all \(n \geq n_1(\epsilon) \)
\[|x_n^1| < \frac{\delta(\epsilon)}{2}. \]
This implies for all $n \geq n_1(\epsilon)$

\[\int_{B^c(0,\delta(\epsilon))} \frac{|V^1(x)||v^1_n(x + x^1_n)|}{|x + x^1_n|^2} \, dx \leq \frac{4}{\delta(\epsilon)^2} \int |V^1(x)||v^1_n(x + x^1_n)| \, dx. \]

(10)

Since $\int |V^1(x)||v^1_n(x + x^1_n)| \, dx \xrightarrow{n \to \infty} 0$, there exists $n_3(\epsilon)$ such that for all $n \geq n_3(\epsilon)$

\[\int |V^1(x)||v^1_n(x + x^1_n)| \, dx \leq \frac{\epsilon \delta(\epsilon)^2}{4}. \]

Combining the latter estimate with (10) one gets, for all $n \geq \max(n_1(\epsilon), n_3(\epsilon))$

\[\int_{B^c(0,\delta(\epsilon))} \frac{|V^1(x)||v^1_n(x + x^1_n)|}{|x + x^1_n|^2} \, dx \leq \epsilon. \]

(11)

Now, apply successively Cauchy-Schwarz and Hardy’s inequalities to get

\[\int_{B(0,\delta(\epsilon))} \frac{|V^1(x)||v^1_n(x + x^1_n)|}{|x + x^1_n|^2} \, dx \lesssim \left(\int_{B(0,\delta(\epsilon))} \frac{|V^1(x)|^2}{|x + x^1_n|^2} \, dx \right)^{\frac{1}{2}} \|\nabla v^1_n\|_{L^2}. \]

The sequence \{v^1_n\} is bounded in H^1, we infer that

\[\int_{B(0,\delta(\epsilon))} \frac{|V^1(x)||v^1_n(x + x^1_n)|}{|x + x^1_n|^2} \, dx \lesssim \left(\int_{B(0,\delta(\epsilon))} \frac{|V^1(x)|^2}{|x + x^1_n|^2} \, dx \right)^{\frac{1}{2}}. \]

(12)

We claim that there exists $n(\epsilon)$ such that for all $n \geq n(\epsilon)$

\[\int_{B(0,\delta(\epsilon))} \frac{|V^1(x)|^2}{|x + x^1_n|^2} \, dx \leq \epsilon^2. \]

(13)

Set $K(\epsilon, d) := \frac{\sigma_d}{d(2\delta(\epsilon))^{d-2}}$, where σ_d is the measure of S^{d-1}. The function $|V^1(\cdot)|^2$ is continuous on the compact $\bar{B}(0, 3\delta(\epsilon))$, hence uniformly continuous. That is, there exists $\alpha(\epsilon) \in (0, \delta(\epsilon))$, such that, for all $x, y \in \bar{B}(0, 3\delta(\epsilon))$

\[|x - y| < \alpha(\epsilon) \Rightarrow ||V^1(x)|^2 - |V^1(y)|^2| < \frac{\epsilon^2}{2K(\epsilon, d)}. \]

Since $x^1_n \to 0$, there exists $n_2(\epsilon)$ such that, for all $n \geq n_2(\epsilon)$

\[|x^1_n| < \alpha(\epsilon) < \delta(\epsilon). \]

So that, for all $x \in B(0, 2\delta(\epsilon))$ and all $n \geq n_2(\epsilon)$

\[||V^1(x - x^1_n)|^2 - |V^1(x)|^2| < \frac{\epsilon^2}{2K(\epsilon, d)}. \]

(14)

The fact that, for all $n \geq n_2(\epsilon)$, $B(x^1_n, \delta(\epsilon)) \subseteq B(0, 2\delta(\epsilon))$, yields along with (13)

\[\int_{B(x^1_n, \delta(\epsilon))} \frac{|V^1(x - x^1_n)|^2}{|x|^2} \, dx \leq \int_{B(0, 2\delta(\epsilon))} \frac{|V^1(x)|^2}{|x|^2} \, dx + \frac{\epsilon^2}{2}, \quad \text{for all } n \geq n_2(\epsilon). \]

\[\int_{B(x^1_n, \delta(\epsilon))} \frac{|V^1(x - x^1_n)|^2}{|x|^2} \, dx \leq \int_{B(0, 2\delta(\epsilon))} \frac{|V^1(x)|^2}{|x|^2} \, dx + \frac{\epsilon^2}{2}, \quad \text{for all } n \geq n_2(\epsilon). \]
One obtains (13) by applying estimate (9). At final, for all \(n \geq n_2(\epsilon) \)
\[
\int_{B(0,\delta(\epsilon))} \frac{|V^1(x)||v^1_n(x + x_n^1)|}{|x + x_n^1|^2} \, dx \leq \epsilon.
\] (15)

From (11) and (15), we have, for all \(n \geq \max(n_1(\epsilon), n_2(\epsilon), n_3(\epsilon)) \)
\[
\left| \int_{\mathbb{R}^d} \frac{V^1(x)}{|x + x_n^1|^2} \, dx \right| \leq \epsilon.
\]

This achieves the proof of (8).

Now, replace \(v \) by \(v^1 \) and repeat the same process. If \(\eta(v^1) > 0 \), one gets \(V^2, x^2 \) and \(v^2 \). Moreover, we have
\[
|x_n^1 - x_n^2| \rightarrow \infty, \quad \text{as} \quad n \rightarrow \infty.
\]

Otherwise, up to extracting a subsequence, one gets
\[
x_n^1 - x_n^2 \rightarrow x_0
\]
for some \(x_0 \in \mathbb{R}^d \). Since
\[
v^1_n(\cdot + x_n^2) = v^1_n(\cdot + (x_n^2 - x_n^1) + x_n^1)
\]
and \(v^1_n(\cdot + x_n^1) \) converge weakly to 0, then \(V^2 = 0 \). Thus, \(\eta(v^1) = 0 \), which is a contradiction. An argument of iteration and orthogonal extraction allows us to construct the family \(\{x^j\}_{j=1}^\infty \) and \(\{V^j\}_{j=1}^\infty \) satisfying the claims above. The rest of the proof remains the same as in [3], we omit the details. \(\square \)

As a consequence of Theorem 4, we get the following compactness lemma

Lemma 5. Let \(\{v_n\}_{n=1}^\infty \) be a bounded family of \(H^1 \)-functions, such that
\[
\limsup_{n \to \infty} H(v_n) \leq M \quad \text{and} \quad \limsup_{n \to \infty} \|v_n\|_{L^{\frac{4d}{d+2}}} \geq m.
\] (16)

Then, there exists \(\{x_n\}_{n=1}^\infty \subset \mathbb{R}^d \) such that, up to a subsequence,
\[
v_n(\cdot + x_n) \rightharpoonup V \quad \text{in} \quad H^1,
\]
with \(\|V\|_{L^2} \geq \left(\frac{d}{d+2} \right)^{d/4} \frac{m^{\frac{d+1}{2}}}{M^{1/4}} \|Q\|_{L^2} \).

Proof. According to Proposition 4, the sequence \(\{v_n\}_{n=1}^\infty \) can be written, up to a subsequence, as
\[
v_n(x) = \sum_{j=1}^\ell V^j(x - x_n^j) + e_n^\ell(x)
\]
such that (5), (6) and (7) hold. This implies, in particular,
\[
m^{\frac{d+2}{2}} \leq \limsup_{n \to \infty} \|v_n\|_{L^{\frac{4d}{d+2}}}^{\frac{4d+2}{2}} = \limsup_{n \to \infty} \left\| \sum_{j=1}^\infty V^j(\cdot - x_n^j) \right\|_{L^{\frac{4d}{d+2}}}^{\frac{4d+2}{2}}.
\]
The elementary inequality
\[
\left| \sum_{j=1}^{l} a_j |a_j|^{4/d+2} - \sum_{j=1}^{l} |a_j|^{4/d+2} \right| \leq C \sum_{j \neq k} |a_j||a_k|^{4/d+1}.
\]
along with the pairwise orthogonality of the family \(\{x_j\}_{j=1}^{\infty}\) leads the mixed terms in the sum above to vanish and we get
\[
m^{4/d+2} \leq \sum_{j=1}^{\infty} \|V_j\|^{4/d+2}_{L_4^{d+2}}.
\]

We claim that
\[
(17) \quad \sum_{j=1}^{\infty} \|V_j\|^{4/d+2}_{L_4^{d+2}} \leq C_d \sup\{\|V_j\|^{4/d}_{L_2}, j \geq 1\} M.
\]

Indeed, let \(\epsilon > 0\). On the one hand, we have from (16)
\[
\exists N_\epsilon \quad \forall n \geq N_\epsilon \quad H(v_n) < M + \frac{\epsilon}{2}.
\]

Let \(l \geq 1\) be fixed. From (7), there exists \(n(l, \epsilon)\) such that for all \(n \geq n(l, \epsilon)\)
\[
\left| H(v_n) - \sum_{j=1}^{l} H(V^j_n) - H(v^l_n) \right| < \frac{\epsilon}{2},
\]
where \(V^j_n(\cdot) := V^j(\cdot - x^j_n)\). Thus, using the fact that the functional \(H\) is positive, we obtain
\[
\sum_{j=1}^{l} H(V^j_{N_\epsilon + n(l, \epsilon)}) \leq \sum_{j=1}^{l} H(V^j_{N_\epsilon + n(l, \epsilon)}) + H(v^j_{N_\epsilon + n(l, \epsilon)}) \leq H(v_{N_\epsilon + n(l, \epsilon)}) + \frac{\epsilon}{2} \leq M + \epsilon.
\]

From the Gagliardo-Nirenberg inequality and the translation-invariance of the \(L^p\)-norms, one has, for all \(l \geq 1\) and all \(\epsilon > 0\)
\[
\sum_{j=1}^{l} \|V^j\|^{4/d}_{L_4^{d+2}} \leq C_d \sup\{\|V^j\|^{4/d}_{L_2}, j \geq 1\} \sum_{j=1}^{l} H(V^j_{N_\epsilon + n(l, \epsilon)}) \leq C_d \sup\{\|V^j\|^{4/d}_{L_2}, j \geq 1\} (M + \epsilon),
\]
that is
\[
\sum_{j=1}^{l} \|V^j\|^{4/d}_{L_4^{d+2}} \leq C_d \sup\{\|V^j\|^{4/d}_{L_2}, j \geq 1\} (M + \epsilon),
\]
which proves (17). Therefore,
\[
\sup_{j \geq 1} \|V_j\|^{4/d}_{L_2} \geq \frac{m^{4/d}}{MC_d}.
\]
Since the series \(\sum \|V_j\|_{L^2}^2\) converges, the supremum above is attained. Therefore, there exists \(j_0\), such that
\[
\|V_{j_0}\|_{L^2} \geq \frac{m^{\frac{d}{2}+1}}{(C_d M)^{d/4}} = \left(\frac{d}{d+2}\right)^{d/4} \frac{m^{\frac{d}{2}+1}}{M^{d/4}} \|Q\|_{L^2}.
\]
On the other hand, a change of variables gives for all \(l \geq j_0\)
\[
v_n(x + x_{j_0}^n) = V_{j_0}(x) + \sum_{1 \leq j \leq \ell} V_j(x + x_{j_0}^n - x_j^n) + \tilde{v}_n^\ell(x),
\]
where \(\tilde{v}_n^\ell(x) = v_n^\ell(x + x_{j_0}^n)\). The pairwise orthogonality of the family \(\{x_j^j\}_{j=1}^\infty\) implies
\[
V_j(\cdot + x_{j_0}^n - x_j^n) \rightharpoonup 0 \quad \text{weakly in } H^1
\]
for every \(j \neq j_0\). Thus
\[
v_n(\cdot + x_{j_0}^n) \rightharpoonup V_{j_0} + \tilde{v}_n^\ell,
\]
derives
\[
\|\tilde{v}_n^\ell\|_{L^\frac{4}{d+2}} \leq \limsup_{n \to \infty} \|\tilde{v}_n^\ell\|_{L^\frac{4}{d+2}} = \limsup_{n \to \infty} \|v_n^\ell\|_{L^\frac{4}{d+2}} \to 0.
\]
The uniqueness of the weak limit yields
\[
\tilde{v}_n^\ell = 0
\]
for every \(\ell \geq j_0\) and then
\[
v_n(\cdot + x_{j_0}^n) \rightharpoonup V_{j_0}.
\]
This closes the proof of the lemma. \(\square\)

3. \(L^2\) CONCENTRATION PHENOMENON

Now with Lemma 4 in hand, one can prove Theorem 1.

Proof. Define
\[
\rho(t) := \left(\frac{H(Q)}{H(u(t, \cdot))}\right)^\frac{1}{2} \quad \text{and} \quad v(t, x) := \rho(t)^{d/2} u(t, \rho(t)x).
\]
Let \(\{t_n\}_{n=1}^\infty\) be an arbitrary sequence such that \(t_n \uparrow T^*\). We set \(\rho_n = \rho(t_n)\) and \(v_n = v(t_n, \cdot)\). Since \(u\) conserves its mass, the sequence \(\{v_n\}_{n=1}^\infty\) satisfies
\[
\|v_n\|_{L^2} = \|u_0\|_{L^2} \quad \text{and} \quad H(v_n) = H(Q).
\]
The conservation of energy and the blow-up criteria imply
\[
\mathcal{E}(v_n) = \rho_n^2 \mathcal{E}(0) \to 0, \quad \text{as } n \to \infty.
\]
In particular,
\[
\|v_n\|_{L^\frac{4}{d+2}} \to \frac{d+2}{d} H(Q), \quad \text{as } n \to \infty.
\]
The family \(\{v_n\}_{n=1}^{\infty} \) satisfies the assumptions of Lemma 5 with
\[
m^{\frac{4}{d} + 2} = \frac{d + 2}{d} H(Q) \quad \text{and} \quad M = H(Q).
\]

It follows that
\[
\liminf_{n \to +\infty} \int_{|x| \leq \alpha} \rho_n^d |u(t_n, \rho_n x + x_n)|^2 dx \geq \int_{|x| \leq \alpha} |V|^2 dx,
\]
for every \(\alpha > 0 \). Thus,
\[
\liminf_{n \to +\infty} \sup_{y \in \mathbb{R}^d} \int_{|x-y| \leq \alpha(t_n)} |u(t_n, x)|^2 dx \geq \int_{|x| \leq \alpha} |V|^2 dx.
\]

The fact that \(\frac{\rho_n}{N(t_n)} \to 0 \) implies
\[
\liminf_{n \to +\infty} \sup_{y \in \mathbb{R}^d} \int_{|x-y| \leq a(t_n)} |u(t_n, x)|^2 dx \geq \int_{|x| \leq \alpha} |V|^2 dx \geq \int Q^2.
\]

Since the sequence \(\{t_n\} \) is arbitrary we get finally
\[
\liminf_{t \to T^*} \sup_{y \in \mathbb{R}^d} \int_{|x-y| \leq a(t)} |u(t, x)|^2 dx \geq \int Q^2.
\]

Since the function \(y \to \int_{|x-y| \leq a(t)} |u(t, x)|^2 dx \) is continuous and goes to 0 at infinity, there exists \(x(t) \) such that
\[
\sup_{y \in \mathbb{R}^d} \int_{|x-y| \leq a(t)} |u(t, x)|^2 dx = \int_{|x-x(t)| \leq a(t)} |u(t, x)|^2 dx,
\]
which concludes the proof of Theorem 1. \(\square \)

4. Appendix

Lemma 6. Let \(d \geq 1 \) be an integer. Let \(\{u_n\}_{n \geq 0} \) be a sequence of \(H^1(\mathbb{R}^d) \)-
functions such that
\[
u_n \to 0 \quad \text{in} \quad H^1(\mathbb{R}^d),
\]

Then we have
\[
|u_n| \to 0 \quad \text{in} \quad H^1(\mathbb{R}^d),
\]

where \(|u_n| \) denotes the modulus of \(u_n \).

Proof. Since \(\{u_n\}_{n \geq 0} \) converges weakly to 0 in \(H^1(\mathbb{R}^d) \) and \(H^1(\mathbb{R}^d) \hookrightarrow L^1_{\text{loc}}(\mathbb{R}^d) \) with compact embedding, the sequence \(\{u_n\}_{n \geq 0} \) converges strongly to 0 in \(L^1_{\text{loc}}(\mathbb{R}^d) \), so that \(\{u_n\}_{n \geq 0} \) converges strongly to 0 in \(L^1_{\text{loc}}(\mathbb{R}^d) \). On the one hand, we deduce from the preceding, using the Riesz representation.
theorem, that \(\{ |u_n| \}_{n \geq 0} \) converges weakly to 0 in \(L^2(\mathbb{R}^d) \). On the other hand, the Diamagnetic inequality \[\int_{\mathbb{R}^d} |\nabla u|^2 dx \geq \int_{\mathbb{R}^d} |\nabla|u||^2 dx \] which holds true for all \(u \in H^1(\mathbb{R}^d) \), implies the existence of a function \(v \in H^1(\mathbb{R}^d) \) such that \(\{ |u_n| \}_{n \geq 0} \) converges weakly in \(H^1(\mathbb{R}^d) \) to \(v \), and hence weakly in \(L^2(\mathbb{R}^d) \) to \(v \). The uniqueness of the weak limit implies that \(v \equiv 0 \). This achieves the proof of the lemma. \[\square \]

Acknowledgement

This work was partially funded by the LABEX CEMPI.

The author would like to thank Pr. Sahbi Keraani, his thesis adviser, for his attention, suggestions, and constant encouragement.

References

[1] Cazenave, T. “Semilinear Schrödinger equations.” Courant Lecture Notes in Mathematics, 10. New York University, Courant Institute of Mathematical Sciences, New York; American Mathematical Society, Providence, RI, 2003.

[2] Csobo, E. and F. Genoud, “Minimal mass blow-up solutions for the \(L^2 \)-critical NLS with inverse-square potential.” (2017): preprint [arXiv:1707.01421]

[3] Hmidi, T. and S. Keraani. “Blow-up theory for the critical nonlinear Schrödinger equations revisited.” International Mathematics Research Notices 46 (2005): 2815-2828.

[4] Kalf, H., U.-W. Schmincke, J. Walter and R. Wust. “On the spectral theory of Schrödinger and Dirac operators with strongly singular potentials.” in: Spectral Theory and Differential Equations (Proceedings Symposium Dundee, 1974), Lecture Notes in Mathematics, 448, Springer, (1975): 182-226.

[5] Killip, R., C. Miao, M. Visan, J. Zhang and J. Zheng. “Sobolev spaces adapted to the Schrödinger operator with inverse-square potential.” (2015): preprint [arXiv:1503.02716]

[6] Killip, R., C. Miao, M. Visan, J. Zhang, J. Zheng. “The energy-critical NLS with inverse-square potential.” Discrete and Continuous Dynamical Systems 37 (2017), 3831-3866.

[7] Merle, F. and Y. Tsutsumi. “\(L^2 \) concentration of blow-up solutions for the nonlinear Schrödinger equation with critical power nonlinearity.” Journal of Differential Equations 84, no. 2 (1990): 205–214.

[8] Merle, F. “Lower bounds for the blow-up rate of solutions of the Zakharov equation in dimension two.” Communications in Pure and Applied Mathematics 49 (1996): 765–794.

[9] Montefusco, E. “Lower Semi-continuity of Functionals via the Concentration-Compactness Principle.” J. of Mathematical Analysis and Applications 263 (2001): 264-276.

[10] Okazawa, N., T. Suzuki and T. Yokota. “Energy methods for abstract nonlinear Schrödinger equations.” Evolution Equations and Control Theory 1 (2012): 337-354.

[11] Tsutsumi, Y. “Rate of \(L^2 \) concentration of blow-up solutions for the nonlinear Schrödinger equation with critical power.” Nonlinear Analysis 15, no. 8 (1990): 719–724.

[12] Tao, T. “Nonlinear Dispersive Equations: Local and Global Analysis.” CBMS Regional Conference Series in Mathematics 106, American Mathematical Society, 2006.
[13] Weinstein, M. I. “On the structure and formation of singularities in solutions to the nonlinear dispersive evolution equations.” Communications in Partial Differential Equations 11 (1986): 545-565.

Laboratoire Paul Painlevé (U.M.R. CNRS 8524), U.F.R. de Mathématiques, Université Lille 1, 59655 Villeneuve d’Ascq Cedex, France

E-mail address: ai.bensouilah@math.univ-lille1.fr