Original Research

Correlation analysis of lymphocyte-monocyte ratio with pathological complete response and clinical prognosis of neoadjuvant chemotherapy in patients with breast cancer

Xiangyu Meng a, Xueying Wang b, Cong Jiang a, Shuai Zhang c, Shaoqiang Cheng a, *

a Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin 150081, China
b Department of Head and Neck Surgery, Harbin Medical University Cancer Hospital, Harbin 150081, China
c The Fourth Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin 150081, China

ARTICLE INFO

Keyword:
Lymphocyte-monocyte ratio (LMR)
Breast cancer
Neoadjuvant chemotherapy
Pathological complete response
HER-2

ABSTRACT

Purpose: Inflammation plays an important role in tumor proliferation, metastasis, and chemotherapy resistance. Peripheral blood lymphocyte-monocyte ratio (LMR) has been reported to be closely associated with the prognosis of many tumors, such as certain hematologic malignancies and gastric cancer. However, the association in breast cancer is still not clear. This study investigated the relationship between LMR with pathological complete response and clinical prognosis of neoadjuvant chemotherapy in patients with breast cancer, to provide convenient and accurate predictive indicators for pathological complete response (pCR) and prognosis.

Methods: The clinicopathological data of 192 female breast cancer patients who received neoadjuvant chemotherapy and surgery in Harbin Medical University Tumor Hospital from January 2013 to August 2017 were retrospectively analyzed. Blood lymphocytes and monocytes were obtained by peripheral venous punctures.

Results: Compared with the low LMR group, pCR was more easily obtained in the high LMR group (P = 0.020); Subgroup analysis showed that patients with the high LMR and HER-2 (+) group were more likely to obtain pCR (P = 0.011). Univariate and multivariate results showed that the overall survival (OS) and disease free survival (DFS) of the high LMR group were longer than that of the low LMR group.

Conclusion: LMR and HER-2 status are correlated with pCR of neoadjuvant chemotherapy in breast cancer patients and are independent predictors of pCR after neoadjuvant chemotherapy in breast cancer patients. Meanwhile, both LMR and T stage of tumor are independent prognostic factors of breast cancer patients, with good predictive value.

Introduction

Breast cancer is the most common malignant tumor in the world, which seriously affects people’s quality of life and endangers people’s health. Although major advances in cancer treatment over the past few decades have significantly reduced mortality rates among women worldwide, breast cancer is still one of a leading cause of death among women today [1]. Surgery-based comprehensive treatment has been recognized as the best treatment for patients with early breast cancer [2]. However, tumor cells are characterized by diffusion from the primary site and early metastasis to other tissues or organs, resulting in unsatisfactory treatment results, and a considerable number of patients will have local recurrence or distant metastasis within a period after surgical resection [3]. Therefore, the identification of reliable biomarkers to predict prognosis and choose a treatment plan has become the key to the treatment of breast cancer.

Many studies have confirmed that inflammation plays a crucial role in the occurrence, development, and prognosis of cancer [4]. Changes in inflammatory cells can significantly affect tumor progression, including tumor proliferation, angiogenesis, metastasis, and resistance to chemotherapy [5,6]. Inflammatory responses related to cancer are divided into local responses and systemic responses, which can be detected unlike local responses [7]. Studies have confirmed that inflammatory indicators such as inflammatory cytokines, white blood cell count and...
platelet count in peripheral blood have been used to evaluate the inflammatory state of the body [8,9]. Some immunological and histological indicators are closely related to the prognosis of breast cancer [10], but the acquisition of these indicators is time-consuming and expensive, which greatly limits their clinical application. Compared with them, routine peripheral blood examination is simple to operate, easy to evaluate, cheap, and has a good promotion effect.

According to the number of inflammatory cells in peripheral blood, previous researchers established some combined indicators [11,12] and used them as relevant parameters to evaluate systemic inflammatory response. Among them, neutrophil to lymphocyte ratio (NLR) and platelet to lymphocyte ratio (PLR) have been reported as prognostic factors of various cancers [13–15]. Previous studies have found that NLR is not only associated with the prognosis of patients with breast cancer, lung cancer, colorectal cancer, esophageal cancer and cervical cancer [14–18] elevated preoperative NLR is also associated with poor prognosis of breast cancer. PLR is considered as a prognostic marker for gastric cancer, ovarian cancer, colorectal cancer, bile duct cancer and other cancers as well[17,19-21]. In breast cancer, some studies have found that increased PLR has an adverse effect on survival [22]. The value of LMR as a prognostic indicator has been validated in several cancer types, including head and neck cancer, lymphoma and pancreatic cancer [23–25]. Although it has been reported that LMR has predictive value for neoadjuvant chemotherapy for breast cancer [26], there are still few studies on the correlation between LMR and prognostic value of neoadjuvant chemotherapy for breast cancer patients.

Based on previous studies, we concluded that LMR is likely to play an important role in the prognosis of neoadjuvant chemotherapy in breast cancer. Therefore, we conducted a retrospective cohort study to investigate the relationship between lymphocyte monocyte ratio with a pathological complete response and clinical prognosis of neoadjuvant chemotherapy in patients with breast cancer, to provide convenient and accurate predictive indicators for pCR and prognosis.

Material and methods

Clinical sample and data collection

A retrospective study was performed on 217 female breast cancer patients who received neoadjuvant chemotherapy and mastectomy from
August 2013 to December 2017 in Harbin Medical University Cancer Hospital.

Inclusion criteria:

1. Female patients
2. Neoadjuvant chemotherapy was performed before surgery, and radiotherapy and endocrine therapy were not given before chemotherapy
3. Patients with invasive breast cancer confirmed by biopsy pathology before chemotherapy
4. Patients with sufficient detailed clinicopathological data.

Exclusion criteria:

1. Patients with incomplete clinical data
2. Patients with multiple tumors
3. Patients who have inflammatory diseases, infectious diseases, autoimmune diseases, immune deficiency diseases, or other diseases which affect blood components (such as blood diseases, liver dysfunction, chronic kidney diseases, etc.)
4. Patients taking drugs that have obvious effects on blood cells. A few cancer cells changed, but the number of cancer cells did not decrease overall (pNR); Grade 2 (G2) showed a slight decrease in invasive cancer cells, but the total number was still high, and the number of cancer cells was less than 30% (pPR); Grade 3 (G3) is a 30% to 90% reduction in invasive cancer cells (pPR); Grade 4 (G4) is a significant reduction of more than 90% in invasive cancer cells, with only scattered small clusters or single cancer cells remaining (almost pCR); Grade 5 (G5) refers to the presence of ductal carcinoma in situ (pCR) despite the absence of invasive cancer cells in the original tumor bed. G1, G2, and G3 were classified as a pathological invalid group, G4 and G5 were classified as a pathological effective group, and G5 was pathological complete response (pCR).

Pathological features and molecular subtypes

ER, PR, HER-2 and Ki67 states are assessed by immunohistochemistry (IHC) staining or in situ hybridization (ISH), and ER and PR nuclear ≥1% are defined as positive. Ki-67 positive nuclear ≥14% was defined as high expression, <14% as low expression. HER-2 immunohistochemical staining was divided into positive HER-2, low HER-2 expression and negative HER-2. IHC 0 was defined as HER-2-negative, IHC 2+ and ISH negative or IHC 1+ was defined as HER-2 low expression, and IHC 3+ or IHC 2+ and ISH positive were defined as positive.

Follow-up

Follow-up in this study was from the time of the first diagnosis to October 1, 2021. Patients were followed up by outpatient review and telephone contact. Disease free survival (DFS) was defined as the interval from the first diagnosis to first recurrence or distant metastasis and contralateral breast malignancy. Overall survival (OS) was defined from the date of diagnosis to the date of death or the end of follow-up.

Statistical Treatment

SPSS 21.0 statistical software was used for data analysis and processing. Analysis between different LMR groups and HER-2 subgroups was evaluated by Pearson’s χ² test. The logistic regression model was used to conduct univariate and multivariate analysis on the relationship between clinicopathological features and pCR. Cox regression model was used to conduct univariate and multivariate analysis on the relationship between clinicopathological features and patients’ OS and DFS. Kaplan-Meier method was used to draw a survival curve. P<0.05 was considered to be statistically significant.

Result

Patient characteristics

A total of 192 women with breast cancer were enrolled in this study. All of them have been pathologically confirmed as breast cancer and received surgical treatment and necessary follow-up treatment in Harbin Medical University Cancer Hospital. Patients ranged in age from 24 to 65 years, with a median age of 49 years. Among them, 99 cases (51.6%) were ≤49 years old and 93 cases (48.4%) were >49 years old. The LMR value of the patients ranged from 1.27 to 92.50, and the median LMR value was 4.62, among which 96 cases (50%) were ≤4.62 and 96 cases (50%) were >4.62. There were 117 cases (60.9%) with negative HER-2, 13 cases (6.8%) with low HER-2 expression and 62 cases (32.3%) with positive HER-2. 30 cases (15.6%) reached pCR after neoadjuvant therapy, and 162 cases (84.4%) did not (Table 1).

Univariate and multivariate analysis of pCR

Among 192 patients, a total of 30 patients (15.6%) obtained pCR. Logistic univariate analysis showed that: (1)Compared with negative HER-2 patients and patients with low HER-2 expression, the pCR of
dictors of pCR in breast cancer patients. To further understand the logical features and pCR, LMR and HER2 status were independent predictors of pCR (Table 3). In multivariate analysis. Logistic regression analysis showed that pCR = 0.020), and the difference was statistically significant (Table 2). (2) LMR and HER2 status were included in multivariate analysis. In the high LMR group, the pCR rate of HER-2(+) subgroup was 44.1% (15 cases), The pCR rate of HER-2(-) subgroup was 9.3% (5 cases), and the pCR rate of HER-2 low expression subgroup was 12.5% (1 case). The pCR rate of positive HER-2 subgroup was significantly different (P = 0.011). In the low LMR group, the pCR rate of HER-2(-) subgroup was 14.3% (4 cases), the pCR rate of HER-2(+) subgroup was 63.4% (3 cases), and the pCR rate of patients with low HER-2 expression subgroup was 20.0% (1 case). There was no significant difference in the pCR rate among different subgroups (all P > 0.05). That is, patients with the high LMR and HER-2(+) group were more likely to obtain pCR (Table 4).

Univariate and multivariate analysis of OS

The mean survival time of 192 patients to the deadline of follow-up was 56.8 months. Cox regression model was used for univariate analysis: (1) compared with the low LMR group, the high LMR group had longer OS. (OR = 0.501, CI 95% 0.261-0.959, P = 0.037), the difference was statistically significant. The OS of cT1/cT2 group was longer than that of cT3/cT4. (OR = 2.466, CI 95% 1.287-4.724, P = 0.007), the difference was statistically significant (Table 5). (2) LMR and tumor T stage with the statistical difference in univariate analysis were included in multivariate Cox regression analysis: patients in the high LMR group had a longer survival trend than those in the low LMR group (OR = 0.532, CI 95% 0.277-1.022, P = 0.058). Although it failed to reach statistical significance, this may be caused by the long survival cycle of breast cancer patients after standardized treatment and the relatively small sample size of this study. Therefore, we still need a larger sample size to confirm the effect of LMR on OS in breast cancer patients. Compared with cT3/cT4, The OS of cT1/cT2 group was longer (OR = 0.324, CI 95% 1.210-4.464, P = 0.011), and the difference was statistically significant. LMR is one of the factors affecting OS in breast cancer patients. Tumor T stage was an independent predictor of OS (Table 6).

Univariate and multivariate analysis of DFS

The mean DFS of 192 patients to the deadline of follow-up was 48.5 months. Cox regression model was used for univariate analysis: (1) compared with the low LMR group, the high LMR group had longer DFS. (OR = 0.422, CI 95% 0.220-0.808, P = 0.009). Compared with cT3/cT4, cT1/cT2 group had a longer DFS. (OR = 2.513, CI 95% 1.311-4.819, P = 0.006), the difference was statistically significant (Table 7). (2) LMR and tumor T stage with the statistical difference in univariate analysis were included in multivariate Cox regression analysis: compared with low LMR group, DFS in high LMR group was longer (OR = 0.441, CI 95% 0.230-0.846, P = 0.014); Compared with cT3/cT4, cT1/cT2 group had longer DFS. (OR = 2.379, CI 95% 1.239-4.568, P = 0.009), the difference was statistically significant. Therefore, we believe that LMR and tumor T stage are independent predictors of DFS (Table 8).

Influence of LMR on prognosis

192 patients with breast cancer were followed up for 12-98 months, with an average follow-up of (56.78 ± 17.20) months. Local recurrence or metastasis occurred in 65 patients (33.9%) during follow-up. Kaplan-Meier survival analysis showed that there was a significant correlation between LMR and OS, and patients with high LMR before treatment had higher OS than those with low LMR (Fig. 2 A), the difference was statistically significant (P = 0.039). LMR was significantly correlated with DFS, and patients with high LMR before treatment had higher DFS than those with low LMR (Fig. 2 B), the difference being statistically significant (P = 0.007).

Discussions

In recent decades, studies on the relationship between inflammation relationship between them, we conducted a subgroup analysis. In the high LMR group, the pCR rate of HER-2(+) subgroup was 44.1% (15 cases), The pCR rate of HER-2(-) subgroup was 9.3% (5 cases), and the pCR rate of HER-2 low expression subgroup was 12.5% (1 case). The pCR rate of positive HER-2 subgroup was significantly different (P = 0.011). In the low LMR group, the pCR rate of HER-2(-) subgroup was 14.3% (4 cases), the pCR rate of HER-2(+) subgroup was 63.4% (3 cases), and the pCR rate of patients with low HER-2 expression subgroup was 20.0% (1 case). There was no significant difference in the pCR rate among different subgroups (all P > 0.05). That is, patients with the high LMR and HER-2(+) group were more likely to obtain pCR (Table 4).

Her-2 subgroup analysis

According to univariate and multivariate analysis of clinicopathological features and pCR, LMR and HER2 status were independent predictors of pCR in breast cancer patients. To further understand the relationship between them, we conducted a subgroup analysis. In the high LMR group, the pCR rate of HER-2(+) subgroup was 44.1% (15 cases), The pCR rate of HER-2(-) subgroup was 9.3% (5 cases), and the pCR rate of HER-2 low expression subgroup was 12.5% (1 case). The pCR rate of positive HER-2 subgroup was significantly different (P = 0.011). In the low LMR group, the pCR rate of HER-2(-) subgroup was 14.3% (4 cases), the pCR rate of HER-2(+) subgroup was 63.4% (3 cases), and the pCR rate of patients with low HER-2 expression subgroup was 20.0% (1 case). There was no significant difference in the pCR rate among different subgroups (all P > 0.05). That is, patients with the high LMR and HER-2(+) group were more likely to obtain pCR (Table 4).
Monocytes, especially tumor-associated macrophages differ in their role in tumor immunity, such as cytotoxic cell death, tumor cell proliferation and migration [38]. Many inflammatory indicators, including NLR, PLR and LMR are prognostic factors for a variety of tumors, such as metastatic breast cancer and non-Hodgkin lymphoma [29,30]. Studies have confirmed that cancer-related inflammation plays a crucial role in tumor immunity and increased tumor load.

Thus, the immune response to cancer is dependent on lymphocytes, and the high level of tumor-associated macrophages from monocytes is a biological marker that can replace TAMs [36]. TILs controls tumor progression by participating in cellular and humoral immunity. Low lymphocyte count may indicate poor immune function. The decrease of immune function will lead to the weakening of tumor tissue growth control function, resulting in poor prognosis [37–39].

Table. 2
Univariate analysis between clinical characteristics and pCR.

Variable	N	pCR (n=30)	B	S.E.	Wals	OR	CI(95%)	p
Age(years-old) ≤49	99(51.6%)	17(17.2%)	Ref.	Ref.	Ref.	Ref.	Ref.	Ref.
BMI ≤25	116(60.4%)	19(16.4%)	Ref.	Ref.	Ref.	Ref.	Ref.	Ref.
25–30	67(34.9%)	10(14.9%)	-0.110	0.425	0.067	0.896	0.390-2.060	0.795
≥30	94(47.7%)	11(11.1%)	-0.449	1.090	0.170	0.638	0.075-5.404	0.680
T stage cT1/cT2	155(80.7%)	27(17.4%)	Ref.	Ref.	Ref.	Ref.	Ref.	Ref.
cT3/cT4	37(19.3%)	9(16.8%)	-0.872	0.638	1.864	0.418	0.120-1.462	0.172
N stage N0	14(7.3%)	2(14.3%)	Ref.	Ref.	Ref.	Ref.	Ref.	Ref.
N1-3	178(92.7%)	28(15.7%)	0.113	0.791	0.021	1.120	0.238-5.279	0.886
HER-2 Negative	117(60.9%)	9(13.8%)	Ref.	Ref.	Ref.	Ref.	Ref.	Ref.
Low expression	13(6.8%)	2(14.3%)	Ref.	Ref.	Ref.	Ref.	Ref.	Ref.
Positive	62(32.3%)	19(30.6%)	1.668	0.443	14.179	5.302	2.225-12.634	<0.001
Cycle ≤4	65 (33.9%)	9(13.8%)	Ref.	Ref.	Ref.	Ref.	Ref.	Ref.
5–6	80 (41.7%)	16(20.0%)	0.442	0.455	0.943	1.556	0.638-3.795	0.332
>7	47 (24.5%)	5(10.6%)	-0.300	0.594	0.255	0.741	0.231-2.373	0.613
Ki-67 ≤14%	37(19.3%)	9(16.8%)	Ref.	Ref.	Ref.	Ref.	Ref.	Ref.
>14%	155(80.7%)	27(17.4%)	0.872	0.638	1.864	2.391	0.684-8.355	0.172
LMR ≤4.62	96(50.0%)	9(19.4%)	Ref.	Ref.	Ref.	Ref.	Ref.	Ref.
>4.62	96(50.0%)	21(21.9%)	0.996	0.428	5.401	2.707	1.169-6.268	0.020

Table. 3
Multivariate analysis between clinical characteristics and pCR.

Variable	B	S.E.	Wals	OR	CI(95%)	p
LMR ≤4.62	0.947	0.446	4.520	2.579	1.077-6.176	0.033
>4.62	0.657	0.585	0.593	1.930	0.362-10.280	<0.001
HER-2 Negative	Ref.	Ref.	Ref.	Ref.	Ref.	Ref.
Low expression	Ref.	Ref.	Ref.	Ref.	Ref.	Ref.
Positive	1.635	0.449	13.271	5.132	2.129-12.372	

Table. 4
Relationship between LMR and HER-2 subgroup of breast cancer patients.

Variable	HER-2 (-) (n=117)	HER-2 Low expression(n=113)	HER-2 (+) (n=62)			
	pCR(%)	P	pCR(%)	P	pCR(%)	P
LMR<4.62	6 (4.6%)	0.347 0.556 4 1(20%) 0.133 0.715 24 4(14.5%) 6.429 0.011				
LMR>4.62	5 (4.6%)	7 1(12.5%) 19 5(15.6%) 15(44.1%)				
Table. 5
Univariate analysis between clinical characteristics and OS.

Variable	N	B	S.E.	Wald	OR	CI(95%)	p
Age(years-old) ≤49	99(51.6%)	Ref.	Ref.	Ref.	Ref.	Ref.	Ref.
>49	93(48.4%)	-0.088	0.318	0.077	0.916	0.491-1.708	0.782
BMI ≤25	116(60.4%)	Ref.	Ref.	Ref.	Ref.	Ref.	Ref.
25–30	57(34.9%)	-0.336	0.321	1.093	1.399	0.745-2.628	0.296
≥30	9(4.7%)	-0.415	1.025	0.164	0.661	0.089-4.924	0.686
T stage cT1/cT2	155(80.7%)	Ref.	Ref.	Ref.	Ref.	Ref.	Ref.
cT3/cT4	37(19.3%)	0.903	0.332	7.402	2.466	1.287-4.724	0.007
N stage N0	14(7.3%)	1.200	1.013	1.405	3.322	0.456-24.182	0.236
N1-3	178(92.7%)	1.000	1.013	1.405	3.322	0.456-24.182	0.236
HER-2 Negative	117(60.9%)	Ref.	Ref.	Ref.	Ref.	Ref.	Ref.
Low expression	13(6.8%)	0.319	0.539	0.349	1.375	0.478-3.954	0.555
Positive	62(32.3%)	-0.165	0.362	0.161	0.818	0.306-2.185	0.688
Cycle ≤4	65(33.9%)	Ref.	Ref.	Ref.	Ref.	Ref.	Ref.
≥5–6	80(41.7%)	0.512	0.359	2.028	1.668	0.825-3.373	0.154
Ki-67 ≥14%	155(80.7%)	0.523	0.478	1.194	1.686	0.660-4.305	0.275
LMR ≤4.62	96(50.0%)	Ref.	Ref.	Ref.	Ref.	Ref.	Ref.
>4.62	96(50.0%)	-0.669	0.332	4.353	0.501	0.261-0.959	0.037

Table. 6
Multivariate analysis between clinical characteristics and OS.

Variable	B	S.E.	Wald	OR	CI(95%)	p
LMR ≤4.62	Ref.	0.333	3.590	0.532	0.277-1.022	0.058
>4.62	-0.631	0.333	3.590	0.532	0.277-1.022	0.058
T stage cT1/cT2	Ref.	Ref.	Ref.	Ref.	Ref.	Ref.
cT3/cT4	0.843	0.333	6.420	2.324	1.210-4.464	0.011

Table. 7
Univariate analysis between clinical characteristics and DFS.

Variable	N	B	S.E.	Wald	OR	CI(95%)	p
Age(years-old) ≤49	99(51.6%)	Ref.	Ref.	Ref.	Ref.	Ref.	Ref.
>49	93(48.4%)	-0.088	0.318	0.077	0.916	0.491-1.708	0.782
BMI ≤25	116(60.4%)	Ref.	Ref.	Ref.	Ref.	Ref.	Ref.
25–30	57(34.9%)	-0.336	0.321	1.093	1.399	0.745-2.628	0.296
≥30	9(4.7%)	-0.415	1.025	0.164	0.661	0.089-4.924	0.686
T stage cT1/cT2	155(80.7%)	Ref.	Ref.	Ref.	Ref.	Ref.	Ref.
cT3/cT4	37(19.3%)	0.903	0.332	7.402	2.466	1.287-4.724	0.007
N stage N0	14(7.3%)	1.200	1.013	1.405	3.322	0.456-24.182	0.236
N1-3	178(92.7%)	1.000	1.013	1.405	3.322	0.456-24.182	0.236
HER-2 Negative	117(60.9%)	Ref.	Ref.	Ref.	Ref.	Ref.	Ref.
Low expression	13(6.8%)	0.319	0.539	0.349	1.375	0.478-3.954	0.555
Positive	62(32.3%)	-0.165	0.362	0.161	0.818	0.306-2.185	0.688
Cycle ≤4	65(33.9%)	Ref.	Ref.	Ref.	Ref.	Ref.	Ref.
≥5–6	80(41.7%)	0.512	0.359	2.028	1.668	0.825-3.373	0.154
Ki-67 ≥14%	155(80.7%)	0.523	0.478	1.194	1.686	0.660-4.305	0.275
LMR ≤4.62	96(50.0%)	Ref.	Ref.	Ref.	Ref.	Ref.	Ref.
>4.62	96(50.0%)	-0.669	0.332	4.353	0.501	0.261-0.959	0.037

Table. 8
Multivariate analysis between clinical characteristics and DFS.

Variable	B	S.E.	Wald	OR	CI(95%)	p
LMR ≤4.62	Ref.	0.333	3.590	0.532	0.277-1.022	0.058
>4.62	-0.819	0.333	6.057	0.441	0.220-0.846	0.014
T stage cT1/cT2	Ref.	Ref.	Ref.	Ref.	Ref.	Ref.
cT3/cT4	0.867	0.333	6.779	2.379	1.239-4.568	0.009
significantly correlated with tumor invasion depth and tumor size, and high LMR suggested better OS and DFS for colorectal cancer [41]. Hirahara et al. found that LMR was related to the prognosis of patients with esophageal cancer [42]. Mandalaya et al confirmed the prognostic value of LMR for patients with non-small cell lung cancer [43]. Our study also confirmed that LMR was significantly correlated with OS and DFS in breast cancer patients. There have been some pieces of literature confirming the prognostic value of LMR in breast cancer, Ni et al. conducted a retrospective cohort study of 542 patients with locally advanced breast cancer who received neoadjuvant chemotherapy and reported for the first time that the high level of LMR in peripheral blood before neo-adjuvant chemotherapy is a favorable factor for the prognosis of patients with locally advanced breast cancer [44]. In this study, univariate and multivariate analyses showed that LMR was an independent factor affecting the prognosis of breast cancer patients, and the prognosis of the high LMR group was better than that of the low LMR group. This is also consistent with the results of Ni et al. Hu RJ et al also pointed out that preoperative LMR was related to DFS and OS of breast cancer patients and can be used as a reference indicator of breast cancer prognosis [45]. In addition, several studies have assessed the predictive value of LMR or NLR for progression and sensitivity to chemotherapy in breast cancer patients treated with NAC. For example, Marin Hernandez C et al found that preoperative LMR was significantly correlated with the prognosis of breast cancer patients receiving neoadjuvant chemotherapy [46]. The results of this study are similar to the above conclusions. We found that LMR before neoadjuvant chemotherapy was significantly associated with pathological complete response and prognosis of breast cancer patients. Since breast cancer patients have a better prognosis and longer survival cycle after systematic treatment, in this study, although the OS of breast cancer patients after receiving neoadjuvant chemotherapy was not statistically significant, we still believed that the OS of patients in the high LMR group was relatively better. Subsequent studies with large sample sizes are still needed to confirm this result. In conclusion, LMR may play an important role in the occurrence and development of a variety of malignant tumors including breast cancer, and its specific mechanism needs to be further explored.

HER-2 is a transmembrane protein with tyrosine kinase activity and is a member of the EGFR family [47]. Participating in signal transduction pathways leading to cell growth and differentiation can inhibit cell apoptosis, promote cell proliferation, promote blood vessel and lymphatic regeneration, and increase the invasiveness of tumor cells [48–50]. Previous studies have confirmed that the overexpression of HER-2 is significantly correlated with the occurrence, development and metastasis of breast cancer, and is one of the most important prognostic indicators in its progression [51]. In previous studies, HER-2 status was usually only divided into negative HER-2 group and positive HER-2 group. In this study, HER-2 was divided into negative HER-2 group, positive HER-2 group and low HER-2 expression group according to the 2021CSCO breast cancer diagnosis and treatment Guidelines. According to the results of subgroup analysis, in the high LMR group, The pCR rate of the HER-2 (+) subgroup was 44.1%(P = 0.058). It indicates that patients with the high LMR and HER-2(+) group are more likely to obtain pCR.

The limitations of this study: 1. This study is a retrospective study of single-center, samples from single provinces and regions, including in the sample size are small, may increase the heterogeneity between samples, there is a risk of bias, the future would still need a large sample of prospective cohort studies, and long-term follow-up, so as to achieve better results; 2. For the determination of the critical value of LMR, the critical value selected by different studies is not exactly the same, and the prognostic value is also different. The median was used as the cut-off value of LMR in this study, but whether its accuracy and sensitivity can meet the requirements of the application of clinical biomarkers remains to be further verified.

Conclusion

The results of this study suggest that LMR and HER-2 status are independent predictors of pathological complete response after neoadjuvant chemotherapy in breast cancer patients. More importantly, LMR was significantly associated with OS and DFS in breast cancer patients. LMR is a ratio based on peripheral blood lymphocytes and mononuclear cells of a joint index, compared with the imaging examination and histopathologic examination, it can provide a non-invasive,
easy to obtain, feasible and low price method to evaluate the curative effect of neoadjuvant chemotherapy and the prognosis of patients with breast cancer, and offers the choice of treatment for patients with strong support.

Data availability statement

The data used to support the findings of this study are available from the corresponding author upon request.

Funding

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

CRediT authorship contribution statement

Xiangyu Meng: Conceptualization, Data curation, Formal analysis, Writing – original draft. Xueying Wang: Data curation, Formal analysis. Cong Jiang: Data curation, Formal analysis. Shuai Zhang: Data curation, Formal analysis. Shaociqiang Cheng: Data curation, Formal analysis, Writing – review & editing.

Declaration of Competing Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Acknowledgments

We would like to show sincere appreciation to the editors and reviewers for their critical comments on this article.

References

[1] Fahad Ullah M. Breast Cancer: Current Perspectives on the Disease Status. Adv Exp Med Biol. 2019;1152:51-64.
[2] G. Gurigliani, H.J. Burstein, E. P Winer, et al., De-escalating and escalating treatments for early-stage breast cancer: the St. Gallen international expert consensus conference on the primary therapy of early breast cancer 2017, Ann. Oncol. 28 (2017) 1700–1712.
[3] D. Hanahan, R.A. Weinberg, Hallmarks of cancer: the next generation, Cell 144 (2011) 646–674.
[4] F.L.C. Faldoni, R. Claudio Aparecida, S.R. Rogatto, Epigenetics in inflammatory breast cancer: biological features and therapeutic perspectives, Cells 9 (5) (2020) 1164.
[5] L. Zhao, H. Hu, J.A. Gustafsson, S. Zhou, Nuclear receptors in cancer inflammation and immunity, Trends Immunol. 41 (2) (2020) 172–185, https://doi.org/10.1016/j.it.2019.12.006.
[6] N. Singh, D. Baby, J.P. Rajguru, et al., Inflammation and cancer, Ann. Afr. Med. 18 (3) (2019) 121–126.
[7] C.J. Diakos, K.A. Charles, D.C. McMillan, Cancer-related inflammation and treatment effectiveness, Lancet Oncol. 15 (2014) e493–e503.
[8.] T. Fang, Y. Wang, X. Yin, et al., Diagnostic sensitivity of NLR and PLR in early diagnosis of gastric cancer, J. Immunol. Res. 2020 (5) (2020) 1–9.
[9] Mukaida N, Sasaki SI, Baba T. Two-Faced Roles of Tumor-Associated Neutrophils in Cancer Development and Progression. Int J Mol Sci. 2020;21(10):3457. Published 2020 Jul 30.
[10] G. Hu, Q. Liu, J.Y. Ma, CY. Liu, Prognostic Significance of Platelet-to-Lymphocyte ratio (PLR) in Cholangiocarcinoma: a meta-analysis, Biomed. Res. Int. 2018 (2018), 7375169, https://doi.org/10.1155/2018/7375169. Published 2018 Jul 26.
[11] J.Y. Kim, E.J. Jung, J.M. Kim, et al., Dynamic changes of neutrophil-to-lymphocyte ratio and platelet-to-lymphocyte ratio predicts breast cancer prognosis, BMC Cancer 20 (1) (2020) 1206, https://doi.org/10.1186/s12885-020-07700-9. Published 2020 Dec 7.
[12] T. Tham, C. Olson, J. Khaymovich, S.W. Herman, P.D. Costantini, The lymphocyte-to-monocyte ratio as a prognostic indicator in head and neck cancer: a systematic review and meta-analysis, Eur. Arch. Otorhinolaryngol. 275 (7) (2018) 1663–1670, https://doi.org/10.1007/s00405-018-4972-x.
[13] F. Gao, J. Hu, J. Zhang, Y. Xu, Prognostic value of peripheral blood lymphocyte/monocyte ratio in lymphoma, J. Cancer 12 (12) (2021) 3407–3417, https://doi.org/10.7150/jca.50555. Published 2021 Apr 9.
[14] K. Kubota, A. Shimizu, T. Notake, et al., Preoperative peripheral blood lymphocyte-to-monocyte ratio predicts long-term outcome for patients with pancreatic ductal adenocarcinoma [published online ahead of print, 2021 Oct 18], Ann. Surg. Oncol. 10 (2021) 1245, https://doi.org/10.12967/0894-2188-05-184-65.
[15] Y. Peng, R. Chen, F. Qu, et al., Low pretreatment lymphocyte/monocyte ratio is associated with the better efficacy of neoadjuvant chemotherapy in breast cancer patients, Cancer Biol. Ther. 21 (2) (2020) 189–196, https://doi.org/10.1080/15384047.2019.1680057.
[16] C. Chen, H. Yang, D. Cai, L. Xiang, W. Fang, R. Wang, Preoperative peripheral blood neutrophil-to-lymphocyte ratio (NLR) and platelet-to-lymphocyte ratio (PLR) related nomograms predict the survival of patients with limited-stage small-cell lung cancer, Transl. Lung Cancer Res. 10 (2) (2021) 866–877, https://doi.org/10.21037/tlcr-20-997.
[17] V. Asher, J. Lee, A. Innamaa, A. Bali, Preoperative platelet lymphocyte ratio as an independent prognostic marker in ovarian cancer, Clin. Transl. Oncol. 13 (7) (2011) 499–503, https://doi.org/10.1007/s12957-011-0087-9.
[18] X. Meng et al.
[19] X. Meng et al.
[20] L. Zhao, H. Hu, J. A. Gustafsson, S. Zhou, Nuclear receptors in cancer inflammation and immunity, Trends Immunol. 41 (2) (2020) 172–185, https://doi.org/10.1016/j.it.2019.12.006.
[21] F.R. Greten, S.I. Grivennikov, Inflammation and cancer: triggers, mechanisms, and consequences, Immunity 51 (1) (2019) 27–41.
[22] O. Demaria, E. Vivier, Immuno-oncology beyond TILs: unleashing TILCs, Cancer Cell 37 (4) (2020) 428–430, https://doi.org/10.1016/j.ccell.2020.03.021.
[23] R. Singh, S. Shaik, B.S. Negi, et al., Non-Hodgkin’s lymphoma: a review, J. Fam. Med. Prim. Care 9 (4) (2020) 1834–1840.
[24] Y. Sang, X. Kong, X. Li, et al., Langer’s auxillary arch lymph node metastasis in breast cancer patients: a prospective clinical study, Surg. Oncol. 29 (2020) 48–52.
[25] R. Singh, S. Shaik, B.S. Negi, et al., Non-Hodgkin’s lymphoma: a review, J. Fam. Med. Prim. Care 9 (4) (2020) 1834–1840.
[26] D. Royle, J.B. Fleming, R.H. Gomer, Fibrocytes in the tumor microenvironment, Adv. Exp. Med. Biol. 1224 (2020) 79–85.
[27] K. Wu, K. Lin, X. Li, et al., Redefining tumor-associated macrophage subpopulations and functions in the tumor microenvironment, Front. Immunol. 11 (2020) 1731.
[28] Q. Yang, N. Guo, Y. Zhou, et al., The role of tumor-associated macrophages (TAMs) in tumor progression and relevant advance in targeted therapy, Acta Pharm. Sin. B 10 (11) (2020) 2156–2170.
[29] J. Zhou, Z. Tang, S. Gao, et al., Tumor-associated macrophages: recent insights and therapies, Front. Oncol. 10 (2020) 188.
[30] I. Larionova, G. Tuguzbaeva, A. Ponomaryova, et al., Tumor-associated macrophages in breast cancer patients, Front. Onkol. 10 (2020) 565611.
[31] L. Cassetta, S. Fragkogianni, A.H. Sims, et al., Human tumor-associated macrophage and monocyte transcriptional landscapes reveal cancer-specific reprogramming, biomarkers, and therapeutic targets, Cancer Cells 35 (4) (2019) 588–602. Elsevier Sponsored Document10.
[32] F.R. Greten, S.I. Grivennikov, Inflammation and cancer: triggers, mechanisms, and consequences, Immunity 51 (1) (2019) 27–41.
Prognostic significance of preoperative inflammatory response biomarkers in patients undergoing curative thoracoscopic esophagectomy for esophageal squamous cell carcinoma, Eur. J. Surg. Oncol. 43 (2) (2017) 493–501, https://doi.org/10.1016/j.ejso.2016.11.018.

H. Mandalia, M. Jones, C. Oldmeadow, L.I. Nordman, Prognostic biomarkers in stage IV non-small cell lung cancer (NSCLC): neutrophil to lymphocyte ratio (NLR), lymphocyte to monocyte ratio (LMR), platelet to lymphocyte ratio (PLR), and advanced lung cancer inflammation index (ALI), Transl. Lung Cancer Res. 8 (6) (2019) 886–894, https://doi.org/10.21037/tlcr.2019.11.14.

X.J. Ni, X.L. Zhang, Q.W. Ou-Yang, et al., An elevated peripheral blood lymphocyte-to-monocyte ratio predicts favorable response and prognosis in locally advanced breast cancer following neoadjuvant chemotherapy, PLoS One 9 (11) (2014), e111886, https://doi.org/10.1371/journal.pone.0111886, Published 2014 Nov 5.

R.J. Hu, Q. Liu, J.Y. Ma, et al., Preoperative lymphocyte-to-monocyte ratio predicts breast cancer outcome: a meta-analysis, Clin. Chim. Acta 484 (2018) 1–6.

C. Maria Hernandez, A. Pinero Madrona, P.J. Gil Varquez, Usefulness of lymphocyte-to-monocyte, neutrophil-to-monocyte and neutrophil-to-lymphocyte ratios as prognostic markers in breast cancer patients treated with neoadjuvant chemotherapy, Clin. Transl. Oncol. 20 (2018) 476–483.