The rice ALS3 encoding a novel pentatricopeptide repeat protein is required for chloroplast development and seedling growth

Dongzhi Lin1†, Xiaodi Gong1,2†, Quan Jiang1, Kailun Zheng1, Hua Zhou1,3, Jianlong Xu4, Sheng Teng5 and Yanjun Dong1*

Abstract

Background: Pentatricopeptide repeat (PPR) proteins play essential roles in modulating the expression of organelle genes and have expanded greatly in higher plants. However, molecular mechanisms of most rice PPR genes remain unclear.

Results: In this study, a new rice PPR mutant, asl3 (albino seedling lethality3) exhibits an albino lethal phenotype at the seedling stage. This albino phenotype was associated with altered photosynthetic-pigment and chloroplast development. Map-based cloning showed that ASL3 encodes a novel rice PPR protein with 10 tandem PPR motifs, which localizes to the chloroplast. ASL3 showed tissue-specific expression, as it was highly expressed in the chlorenchyma, but expressed at much lower levels in roots and panicles. RNAi of ASL3 confirmed that ASL3 plays an essential role in the early development and chloroplast development in rice. Moreover, expression analysis revealed that the asl3 mutation severely affected the transcriptional levels of important genes associated with plastid translation machinery and photosynthesis, which may impair photosynthesis and finally led to the seedling death in asl3 mutant. These results evidenced the important role of ASL3 in the early development of rice, especially chloroplast development.

Conclusions: The ASL3 gene encoded a novel chloroplast-targeted PPR protein with 10 tandem PPR motifs in rice. Disruption of the ASL3 would lead to a defective chloroplast and seedling lethality, and affected expression levels of genes associated with chloroplast development and photosynthesis at early leaf stage of rice.

Keywords: Albino; Chloroplast development; Lethality; Rice; Pentatricopeptide repeat (PPR) proteins

Background

The pentatricopeptide repeat (PPR) family was first recognized from the Arabidopsis thaliana genome sequence (Small and Peeters 2000). The PPR proteins are characterized by a degenerate motif of 35 amino acids that can be repeated up to 30 times within a single protein. They are predicted to comprise an array of α helices (Small and Peeters 2000), placing them in the ‘α-solenoid’ superfamily that includes tetratricopeptide repeat (TPR) proteins, ankyrin repeat proteins, HEAT domain proteins and Puf domain RNA-binding proteins. The PPR proteins can be separated into two major subfamilies based on the nature of their PPR motifs and into several smaller subclasses based on their C-terminal domain structure (Lurin et al. 2004; O’Toole et al. 2008). Additionally, the genomes of the parasitic protozoan Trypanosoma brucei, yeast, drosophila, and human are predicted to contain only 28, 5, 2, and 6 PPR genes, respectively (Lurin et al. 2004; O’Toole et al. 2008; Asano et al. 2013). However, the PPR family has expanded greatly in higher plants, with 466 members in Arabidopsis and 477 members in rice, suggesting that PPR protein genes diversified during the evolution of the land plants (Lurin et al. 2004; Schmitz-Linneweber and Small 2008).

* Correspondence: dong@shnu.edu.cn
† Equal contributors
1 Development Center of Plant Germplasm Resources, College of Life and Environment Sciences, Shanghai Normal University, Shanghai 200234, China
Full list of author information is available at the end of the article

© 2015 Lin et al; licensee Springer. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited.
To date, all confirmed physiological roles of PPR proteins are within mitochondria or chloroplasts (Schmitz-Linneweber and Small 2008). Most PPR proteins act as sequence-specific RNA binding factors that are involved in the post-transcriptional regulation of organellar gene expression (Delannoy et al. 2007). In chloroplasts, some PPR proteins have been found to participate in RNA splicing (Schmitz-Linneweber et al. 2006; de Longevialle et al. 2007; Ichinose et al. 2012), RNA processing (Meierhoff et al. 2003; Hattori et al. 2007), RNA editing (Kotera et al. 2005; Okuda et al. 2007; Chateignier-Boutin et al. 2008; Cai et al. 2009; Yu et al. 2009; Zhou et al. 2009; Tseng et al. 2010; Sosso et al. 2012), translation (Williams and Barkan, 2003; Tavares-Carreón et al. 2008), and RNA stability (Yamazaki et al. 2004; Pfalz et al. 2009). Despite the few PPR proteins of which molecular functions have been characterized in detail, a lot of work still to be done is to identify the functions of the other PPR proteins in plant development, especially in rice.

Functional studies of rice PPR proteins remain very sparse and a mutation in a PPR gene usually has a strong phenotypic effect. OsPPR1, including 11 PPR motifs, is the first report on the rice PPR protein required for the chloroplast biogenesis (Gothandam et al. 2005). Antisense transgenic strategy was used to suppress the expression of OsPPR1 and the resulted transgenic rice showed the typical phenotypes of chlorophyll-deficient mutants, albinism and lethality. Another rice PPR protein, YSA, with 16 PPR motifs, is required for chloroplast development in early seedling leaves, and disruption of its function causes a seedling-stage-specific albino phenotype (Su et al. 2012). OsV4 encodes a PPR protein targeted to the chloroplast, which is essential for chloroplast development during the early leaf stage under cold stress (Gong et al. 2014). The osv4 mutant exhibits albino phenotype at a restrictive temperature (20°C) before the 4-leaf stage and gradually turned green as the leaf number rose, but it is always green at 32°C.

Here, we isolated a new rice albino seedling lethal mutant, asl3, which develops albino leaves before the 3-leaf stage, thereafter died. Map-based cloning and further analysis revealed that ASL3 encodes a novel PPR protein containing 10 tandem PPR motifs, whose biological action is required for early chloroplast development and photosynthesis in rice.

Results
Characterization of the asl3 mutant
The asl3 mutant was a lethal mutant isolated from a 60Co-irradiated population of japonica variety Jiahua1 (WT). All leaves of asl3 seedlings exhibited an albino phenotype at the seedling stage (Figure 1A,B), and the seedlings did not survive past the 4-leaf stage because of no photosynthesis to provide nutrition. In addition, the accumulation of chlorophyll (Chl) a, b and carotenoid (Car) were negligible in the asl3 seedlings (Figure 1E), which was consistent with the albino phenotype.

To investigate chloroplast development in asl3 mutant, the ultrastructure of chloroplasts at 3-leaf stages were examined by transmission electron microscopy (TEM). As expected, the unabridged chloroplast was found in all WT plants and the grana stacks were dense and well structured (Figure 2A,B), whereas chloroplast did not display the usual architecture and had no observable grana lamella stacks in asl3 mutant (Figure 2C,D). These observations indicate that the asl3 mutation results in abnormal development of the chloroplasts.

Map-based cloning of the ASL3 gene
To elucidate the molecular mechanism responsible for the phenotype of asl3 mutant, map-based cloning was performed to identify the ASL3 locus. Due to no seeds could be obtainable in homozygous mutants because of the seedling-lethality, the crosses of the heterozygous ASL3/asl3 plants with indica cultivar Peai64S were conducted to generate a segregation population for gene mapping. The F1 plants (ASL3/ASL3: ASL3/asl3 = 1:1) from the crosses were all normal green; however, segregation occurred in the F2 plants selfed from the heterozygous F1 plants (ASL3/asi1) in the proportion of 3:1 (green: albino = 313:98; χ2 = 0.21; P > 0.05), indicating that this mutation in asl3 plants is a single recessive locus.

The ASL3 locus was initially mapped to the long arm of chromosome 1(Chr1) between the molecular markers RM488 and RM297 by analyzing 160 mutant individuals (Figure 3A). Then a larger F2 population with 4213 mutant individuals was used for fine mapping. Eight InDel markers (P1 → P8) were developed between RM488 and RM297. The ASL3 locus was further narrowed down to a 32-kb region between P3 and P4 (Figure 3B), which included 3 putative open reading frames (ORFs) (http://rice.plantbiology.msu.edu) (Figure 3C). All putative ORFs were sequenced and a 1-bp deletion (G*) was found in LOC_Os01g48380, causing a premature stop codon (Figure 3D).

Knockdown of ASL3 displays the lethal phenotypes
To understand whether the function-loss of ASL3 is responsible for the lethal phenotype in mutant, RNA interference (RNAi) technology was used to suppress ASL3 expression in WT plants. A gene-specific fragment of ASL3 was cloned into an RNAi vector and transgenic plants were generated via Agrobacterium–mediated transformation. Resultantly, fifty-one RNAi lines showed the same albino phenotypes as in the asl3 mutant (Figure 1C). Further, two RNAi transgenic plants with albino phenotypes were selected for measurement of ASL3 transcript.
Figure 1 Characterization of the asl3 mutants at 3-leaf stage: (A) WT plants (Jiahua 1) (B) asl3 mutant plants; (C) RNAi transgenic line transformed with pTCK303-dsRNAiASL3; (D) RNAi control; (E) The pigment contents in leaves at 3-leaf stage in asl3 mutants are much lower than that in WT plant. Chlorophyll a (Chla), chlorophyll b (Chlb), total chlorophyll (Chl) and carotenoid (Car).

Figure 2 Transmission electron microscopy of chloroplasts in expanded third leaves: (A) The cell of wild type; (B) An intact chloroplast in the wild type cell; (C) The cell of an asl3 mutant; (D) An abnormal chloroplast in the asl3 mutant cell. c, chloroplast; g, grana stack.
The ASL3 transcripts of RNAi lines were significantly lower than that of the WT plants (Figure 4B). These results confirmed that RNAi of ASL3 could mimic the phenotypes of the asl3 mutant.

**Characterization of the predicted ASL3**

Sequence analysis of the genomic DNA and cDNA revealed that the ASL3 gene is comprised of 9 exons and 8 introns and encoded a polypeptide of 994 amino acids with a calculated molecular mass of 113.05 kD. The functional domain analysis using TPRpred (Karpenahalli et al. 2007) reveals that ASL3 is a PPR protein containing 10 PPR motifs. Although bioinformatics (http://rice.plantbiology.msu.edu) shows that there is another transcript, we haven’t detected it by RT-PCR method using specific primers (data not shown).

Orthologs of ASL3 from Arabidopsis thaliana, Brachypodium distachyon, Sorghum bicolor and Zea mays were found in the NCBI database. ASL3 has 42–74% amino acid sequence identity to the four characterized orthologs. Among these, ASL3 exhibits maximum sequence similarity with protein in Brachypodium distachyon, with 74% amino acid identity and it shared 42% peptide identity with protein from Arabidopsis (Figure 5A). These data indicated that the ASL3 protein is highly conserved in higher plants. Eight related proteins were used to investigate the relationship between ASL3 homologs in evolutionary history. As shown in Figure 5B, they could be divided into two groups: (1) the orthologs proteins from both monocots and dicots are divided clearly into two subgroups; (2) another two paralogous proteins from rice and Arabidopsis forms another group.

**Subcellular localization of ASL3**

The ASL3 protein was predicted to localize to chloroplasts according to ChloroP (http://www.cbs.dtu.dk/services/ChloroP/) and TargetP (http://www.cbs.dtu.dk/services/TargetP/). To examine the actual subcellular localization of ASL3, the cDNA fragment encoding the N-terminal region (amino acids 1–249) of the ASL3 was amplified from WT plants and introduced into the N-terminal of the GFP gene in the expression vector pMON530-GFP. The pMON530:CaMV35S:ASL3-GFP plasmid was introduced into tobacco cells using Agrobacterium-mediated infection method. Meanwhile, empty GFP vector was used as a control. As a result, the green fluorescent signals of ASL3-GFP fusion protein perfectly overlapped with chloroplast autofluorescence in transformed tobacco mesophyll cells (Figure 6A). By contrast, the epidermis cells transformed with the empty GFP vector without a specific targeting sequence had green fluorescent signals in both plasma membrane, cytoplasm and the nucleus. Thus, these findings suggest that ASL3 is localized to the chloroplast (Figure 6B).

**Expression pattern of ASL3 gene**

Reverse transcription PCR (RT-PCR) was performed to examine the expression pattern of ASL3. Resultantly, a
significantly high level of expression was detected in stems, young leaves and flag-leaves, but a very limited amount of the transcript was detected in roots and panicles (Figure 4A), suggesting that the ASL3 mainly functions in the chlorenchyma. Interestingly, the transcripts of ASL3 had no obvious change in asl3 plants (Figure 4B), showing that the 1-bp deletion could not affect its transcriptional expression in asl3 plants.

The transcript expressions of related genes in the asl3 mutant
To assess the possibility that the impaired chloroplasts in asl3 mutant may be reflected at the level of related gene expression, we examined the transcription levels of genes associated with photosynthesis and chloroplast development both in the asl3 mutant and WT plant by qPCR analysis. The photosynthesis-associated transcripts of plastid genes, psbA (encoding a reaction center polypeptides) and rbcL (encoding the large subunit of Rubisco), the nuclear genes RbcS (encoding the small subunit of Rubisco, Kyozuka et al. 1993) and Cab1R (encoding the light harvesting Chla/b-binding protein of PSII), were significantly suppressed in the asl3 mutant, which may impair photosynthesis ability and finally led to the seedling lethality in mutant (Figure 7).

As for chloroplast-development associated transcripts, the levels of PEP-dependent transcripts such as rpoB, rpoC, rpoC2 (encoding three subunits of PEP) were obviously up-regulated and the expression of the genes dependent on both PEP and NEP such as 16S rRNA and 23S rRNA, two components of the plastid translation machinery, declined sharply (Figure 7). In addition, the expression of OsRpoTp (encoding NEP core subunits, Hiratsuka et al. 1989) was increased, but the expression of FtsZ (encoding a component of the plastid division machinery, Takeuchi et al. 2007) was decreased significantly (Figure 7). Overall, the observations indicated that the asl3 mutation affects the transcriptional expressions of genes associated with not only photosynthesis but also the early chloroplast development.

Discussion
ASL3 encodes a chloroplast-targeted PPR protein which is necessary for the survival of rice
PPR genes constitute a large multigene family in higher plants. Recent studies have revealed that PPR proteins...
are essential for plant growth and development and most of them are involved in editing, splicing, and regulating the stability of various organellar transcripts (Schmitz-Linneweber and Small 2008). In contrast to Arabidopsis PPRs, very little is known about the functions of rice PPRs. Here, we present a molecular characterization of the PPR gene, rice ASL3, with 10 PPR motifs. The ASL3 protein was predicted to contain a chloroplast transit peptide (cTP) in its N-terminal region, suggesting that the protein is one of the PPRs targeted to chloroplast, and subcellular localization experiments confirmed this prediction. Similarly, few PPR genes that contain cTP were reported in rice such as OsPPR1, YSA, and OsV4 (Gothandam et al. 2005; Su et al. 2012; Gong et al. 2014).

In this study, the lack of rice ASL3 leads to the albino seedling lethality and attributes to the hindrance of chloroplast development (Figure 2C, D) and Chl biosynthesis (Figure 1E). Furthermore, the ASL3 RNAi transgenic lines were obtained with reduced expression of ASL3 relative to WT plants and the albino phenotype was observed at early growth stages for ASL3 RNAi lines (Figure 1C). These results show the importance of ASL3 gene. In the previous studies, osppr4 also showed an albino phenotype with early seedling lethality and the OsPPR4 possesses 15 PPR motifs (Asano et al. 2013). The rice osv4 mutant develops albino leaves initially at a restrictive low temperature (constant 20°C) but gradually turns green as the plants grow (Gong et al. 2014). Interestingly, the lack of homologs

Figure 5 Phylogenic analysis of ASL3 Protein: (A) Amino acid sequence alignment of its homologs Arabidopsis thaliana, Brachypodium distachyon, Sorghum bicolor and Zea mays. Amino acids fully or semi-conserved are shaded black and gray, respectively; (B) Homologous proteins similar to ASL3 were used to obtain a phylogenetic tree with the program Mega5.1, which was bootstrapped over 1,000 cycles. Significance values above a 50% cutoff threshold are indicated near the relative branches.
ASL3 in *Arabidopsis* leads to embryo lethality rather than albino seedling lethality (Cushing et al. 2005). This observation suggests that the functions of some PPR genes have changed during evolution in spite of the high conservative property. Taken together, these results suggest that the ASL3 is a chloroplast-targeted PPR protein which is essential for the survival of rice.

**ASL3 may be involved in the regulation of early chloroplast development and plastid gene expression**

The chloroplast is a semi-autonomous organelle, which contains about 100 genes, although more than 3,000 proteins function within it (Leister, 2003). Thus, nucleus-encoded factors play essential roles in the regulation of chloroplast development, which requires the coordinated expression of both nucleus-encoded and chloroplast-encoded genes. The processes accompanying chloroplast development can be divided into three steps in higher plants (Mullet 1993; Kusumi et al. 2010). The first step involves the proplastid growth and activation of plastid DNA synthesis. The second step is the chloroplast ‘build-up’ step, which is characterized by the establishment of transcription/translation apparatus. At this step, NEP preferentially transcribes plastid genes that encode elements of the transcription and translation apparatus (Hajdukiewicz et al. 1997) and the transcription and translation activity in the chloroplast is dramatically elevated. The final step is the high level expression of...
plastid and nuclear genes encoding photosynthetic apparatus. In particular, the plastid genes are exclusively transcribed by PEP (De Santis-Maclossek et al. 1999).

In asi3 plants, the mutation disrupts the transcripts of plastid and nuclear genes associated with chloroplast development (Figure 7). The suppression on the FtsZ transcripts resulted in the less number of chloroplasts (Figure 2C), because it is essential in the first step of chloroplast development. Besides, the transcripts for NEP component (OsRpoTp) and PEP components (rpoB, rpoC1 and rpoC2) accumulated to a high level, probably caused by feedback mechanism (Figure 7). However, transcript accumulation of both PEP- and NEP-dependent genes (16S rRNA, 23S rRNA) and PEP-transcribed plastid genes (psbA, rbcL) were severely suppressed (Figure 7), suggesting that, in asi3 mutant, accumulation of transcripts for PEP components did not result in the formation of functional PEP due to the disruption of transcription/translation apparatus. Similar conclusions were also obtained in maize ppr2 mutant considering that PPR2 functions in the synthesis or assembly of one or more component of the plastid translation machinery (Williams and Barkan 2003). In addition, the plastid-to-nucleus signaling pathways in asi3 mutant probably were changed and finally affected the expressions of nuclear-encoded genes required for photosynthesis (Cab1R and RbcS). This result was in accordance with the previous results from v2 mutant (Sugimoto et al. 2004) and another rice albino mutant, asi1 (Gong et al. 2013).

Most PPR proteins are involved in editing, splicing, and regulating the stability of various organelar transcripts (Schmitz-Linneweber and Small 2008). However, those evidences are mainly obtained in Arabidopsis research but rarely obtained in rice. Asano et al. (2013) reported that OsPPR4 is required for splicing of chloroplast transcripts and RNA editing of ndhA. Disruption of OsPPR4 expression led to a strong defect in the splicing of atpF, ndhA, rpl2, and rps12-2 introns and influences the splicing of petB and rps16 introns. The rice DYW-class PPR protein, OGR1, is essential for RNA editing in rice mitochondria and is required for normal growth and development (Kim et al. 2009). In this study, although specific target RNA has not been found yet, our results still reveal some useful information. For example, transcript levels of some ribosomal components and PEP-dependent genes are dramatically reduced in the albino mutants. Furthermore, our study with the antisense plant demonstrated that the ASL3 gene plays an important role in the early chloroplast development of rice. Probably, the ASL3 gene is involved in the processing of plastid RNA required for the early event of chloroplast biogenesis. Further genetic and biochemical studies of ASL3 will be required to gain insight into its detailed function.

Conclusion

The ASL3 gene encoded a novel chloroplast-targeted PPR protein with 10 tandem PPR motifs in rice. Disruption of the ASL3 would lead to a defective chloroplast and seedling lethality, and affected expression levels of genes associated with chloroplast development and photosynthesis at early leaf stage of rice.

Methods

Plant materials and growth conditions

The rice albino mutant asi3 used in this study was isolated from a 60Co gamma rays irradiated mutant pool of Oryza sativa cultivar Jiahua1 (WT, japonica rice variety). To generate a large F2 populations for genetic studies, crosses were conducted between heterozygous plants (ASL3/asi3) and an indica cultivar Pei’ai64S. For phenotypic characterization, pigment content measurement and RNA extraction, seeds of the WT and asi3 plants were grown in growth chambers under controlled 12 h of light and 12 h of dark at a constant temperature of 32°C and humidity of approximately 70%. The asi3 mutants can be distinguished from the normal segregants by albino phenotype.

Cloning of ASL3

To map the ASL3 gene, 22 individuals with typical albino phenotype were screened out from an F2 populations derived from a cross between the heterozygous plants (ASL3/asi3) and Pei’ai64S for linkage analysis. Then a total of 4213 F2 mutant individuals were selected for fine-mapping. Genomic DNA was extracted from young leaves by the CTAB method and analyzed for cosegregation using available simple sequence repeat markers (McCouch et al. 2002). New insertion-deletion (InDel) markers were developed based on the entire genomic sequences of Nipponbare variety (Goff et al. 2002) and indica variety 93–11 (Yu et al. 2002). The sequences of the markers were designed using the PREMIERE5.0 software. The markers are listed in Additional file 1: Table S1. Gene prediction was performed using the Rice Genome Annotation Project (http://rice.plantbiology.msu.edu/cgi-bin/gbrowse/rice/). The genomic DNA fragments of candidate genes from the mutant and WT plants were amplified and sequenced.

RNAi suppression of ASL3

To confirm that ASL3 was the gene associated with the phenotype observed, RNA interference (RNAi) analysis was performed. The construct vector pTCK303 with a maize ubiquitin promoter and a rice intron was used as an RNAi vector (Wang et al. 2004). Both anti-sense and sense versions of a specific 414-bp fragment from the coding region of the ASL3 were amplified, and successively inserted into pTCK303, to form the RNAi construct vector pTCK303-dsRNAiASL3. The primer pairs are
Chlorophyll and carotenoid content measurement
Both chlorophyll (Chl) and carotenoid (Car) contents of the 3-leaf-stage leaves were measured following the method of Arnon (1949). Briefly, leaves (approximately 0.02 g fresh weight) were cut and marinated in 5 ml of 5:4:1 acetone: ethanol: H$_2$O for 18 h under dark conditions. Residual plant debris was removed by centrifugation. The supernatants were analyzed with a DU 800 UV/Vis Spectrophotometer (Beckman Coulter) at 665, 649 and 470 nm, respectively.

Transmission electron microscopy (TEM) analysis
For TEM analysis, the transverse sections of top leaves sampled from the 3-leaf-stage WT and asl3 seedlings grown in a growth chamber at 32°C were fixed in a solution of 2.5% glutaraldehyde and then fixed in 1% OsO$_4$. After staining with uranyl acetate, tissues were further dehydrated in an ethanol series and finally embedded in Spurr’s medium prior to ultrathin sectioning. Samples were stained again and examined with a Hitachi-7650 transmission electron microscope.

Phylogenetic analysis
Homologous sequences of ASL3 were identified using the Blast search program of the National Center for Biotechnology Information (NCBI, http://www.ncbi.nlm.nih.gov/). The functional domain analysis was performed by TPRpred (Karpenahalli et al. 2007). The sequences of PPR domains were aligned using BioXM version 2.6 software and the neighbor-joining tree was generated with the Poisson correction method with MEGA version 5.1 software. Bootstrap replication (1000 replications) was used for a statistical support for the nodes in phylogenetic tree.

Subcellular localization
To investigate the subcellular localization of ASL3, the cDNA fragment encoding the N-terminal region (amino acids 1–249) of the ASL3 was amplified from WT plants using primer pair 5’ GGAGCTCGGGTTGGAACCAGACCTCATTGTG 3’ and 5’ GACTAGTCACCTGGCAAATCTTCTCGACCT 3’. Then, the resultant plasmid and the empty vector were introduced into Agrobacterium tumefaciens EHA105 and then used to infect calli of WT plants according to published method (Hiei et al. 1994).

5′ CGGAGCTCGGGTTGGAACCAGACCTCATTGTG 3′;
5′ GACTAGTCACCTGGCAAATCTTCTCGACCT 3′; and
5′ CGGGATCCGGTTGGAACCAGACCTCATTGTG 3′;
5′ GGAGCTCGGGTTGGAACCAGACCTCATTGTG 3′;
5′ GGAGCTCGGGTTGGAACCAGACCTCATTGTG 3′.

Then, the resultant plasmid and the empty vector were introduced into Agrobacterium tumefaciens EHA105 and then used to infect calli of WT plants according to a published method (Hiei et al. 1994).

RT-PCR and quantitative real-time PCR (qRT-PCR) analysis
Total RNA was extracted from seedling roots, young stems, young leaves, flag leaves and young panicles using an RNA Prep Pure Plant kit (Tiangen Co., Beijing, China). For RT-PCR, first-strand cDNA was reverse transcribed from total RNA with RT primer mix (oligo dT and random 6 mers). Real-time PCR was performed using a SYBR_ Premix Ex TaqTM kit (TaKaRa) on an ABI prism 7900 Real-Time PCR System. The 2$^{-\Delta\Delta CT}$ method was used to analyze the relative changes in gene expression (Livak and Schmittgen 2001). The primers for photosynthesis and chloroplast development associated genes (FtsZ, OsRpoTp, rpoB, rpoC1, rpoC2, Cab1R, rbcS, RbcL, psbA, 16S rRNA, 23S rRNA) were listed in Additional file 2: Table S2. The rice Actin gene was used as a reference gene in this study.

Additional files

- Additional file 1: Table S1. PCR-based molecular markers designed for fine mapping.
- Additional file 2: Table S2. Markers designed for Real-time PCR.

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
DL and YD provided the mutant seeds. DL, XD, YD, KZ and QJ generated F2 and F3 seeds for genotyping and phenotyping. DL, HZ and DL performed the experiments of phenotype assays and molecular analysis. DL, XD, YD and JX designed and discussed the research. DL, YO, ST and JL wrote the manuscript. All authors approved the manuscript.

Acknowledgments
The project was financially supported by Natural Science Foundation of China (No. 30971552), Shanghai Municipal Education Commission (No. 09YJ167), Shanghai Municipal Science and Technology Commission (No. 093112500, 10DZ2271800, 12ZR1422000), Leading Academic Discipline Project of Shanghai Municipal Education Commission (No. J50401) and the Food Safety and Nutrition Program of Shanghai Normal University (DXL123, SK20159).

Author details
1Development Center of Plant Germplasm Resources, College of Life and Environment Sciences, Shanghai Normal University, Shanghai 200234, China.
2Present address: Institute of Genetics and Developmental Biology Chinese Academy of Sciences, No.1 West Beichen Road, Chaoyang District, Beijing 100101, China. Present address: Agricultural Faculty, Hokkaido University, Sapporo 060-0817, Japan. Institute of Crop Science, National Key Facility for Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences, Beijing 10081, China. Institute of Plant Physiology and Ecology, Shanghai Institute for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China.

Received: 7 December 2014 Accepted: 24 March 2015
Published online: 09 April 2015
References

Amon DI (1949) Copper enzymes in isolated chloroplasts. Polyphenoxidaseidase in Beta vulgaris Plant Physiol 24:1–15
Asano T, Miyao A, Hirochika H, Kikuchi S, Kadowaki K (2013) A pentatricopeptide repeat gene of rice is required for splicing of chloroplast transcripts and RNA editing of ndtA. Plant Biotechnol 30:57–64
Cai W, Li D, Peng L, Guan J, Ma L, Zou M, Lu C, Zhang L (2009) LP66 is required for editing psbF chloroplast transcripts in Arabidopsis. Plant Physiol 150:1260–1271
Chateigner-Boutin AL, Ramos-Vega M, Guivara-Garcia A, Andries C, de la Luz Gutierrez-Nava M, Cantero A, Delannoy E, Jimenez LF, Lurin C, Small I, Leon P (2008) CLB19, a pentatricopeptide repeat protein required for editing of rpoA and clpP chloroplast transcripts. Plant J 55:590–602
Cushing DA, Nancy RF, Daniel RG, Vernon DM (2005) Arabidopsis emb175 and other gpr knockout mutants reveal essential roles for pentatricopeptide repeat (PPR) proteins in plant embryogenesis. Plant Cell 21:424–436
de Longevialle AF, Meyer EH, Andries C, Taylor NL, Lurin C, Millar AH, Small I (2007) The pentatricopeptide repeat gene Otp43 is required for trans-splicing of the mitochondrial nad1 Intron 1 in Arabidopsis thaliana. Plant Cell 19:3256–3265
De Santis-Macossos G, Kofer W, Bock A, Schoch S, Maier RM, Wanner G, Rudiger W, Koop HU, Herrmann RG (1999) Targeted disruption of the plastid RNA polymerase genes rpoA, B and C1: Molecular biology, biochemistry and ultrastructure. Plant J 18:477–489
Delannoy E, Stanley WA, Bond CS, Small ID (2007) Pentatricopeptide repeat (PPR) proteins as sequence-specificity factors in post-transcriptional processes in organelles. Biochem Soc Trans 35:1643–1647
Goff SA, Ricke D, Lan TH, Presting G, Wang R, Dunn M, Glazebrook J, Sessions A, Oeller P, Varma H, Haddrich D, Hutchinson D, Martin C, Katagiri F, Lange BM, Moughamer T, Xia Y, Budworth P, Zhong J, Miguel T, Paskowski U, Zhang S, Colbert M, Sun WL, Chen L, Cooper B, Park S, Wood TC, Mao L, Quail P et al (2002) A draft sequence of the rice genome (Oryza sativa L. ssp. japonica). Science 296:92–100
Gong X, Jiang Q, Xu J, Zhang J, Teng S, Lin D, Dong Y (2013) Disruption of the rice plastid ribosomal protein S20 leads to chloroplast developmental defects and seedling lethality. G3 Genes|Genomes|Genetics 3:1769–1777
Gong X, Su Q, Lin D, Xu J, Jiang Q, Zhang J, Teng S, Dong Y (2014) The rice OsLPC encoding a novel pentatricopeptide repeat protein is required for chloroplast development during the early leaf stage under cold stress. J Integr Plant Biol 56:400–410
Goatham KM, Kim ES, Cho H, Chung YY (2005) OsPPR1, a pentatricopeptide repeat protein of rice is essential for the chloroplast biogenesis. Plant Mol Biol 58:421–433
Hajdukiewicz PT, Allison LA, Maliga P (1997) The two RNA polymerases encoded by the nuclear and the plastid compartments transcribe distinct groups of genes in tobacco plastids. EMBO J 16:4041–4048
Hattori M, Miyake H, Sugita M (2007) A pentatricopeptide repeat protein is essential for RNA processing of clpP Pre-rmRNA in moss chloroplasts. J Biol Chem 282:10773–10782
Hiei Y, Ohta S, Komari T, Kumashiro T (1994) Efficient transformation of rice (Oryza sativa L.) mediated by Agrobacterium and sequence analysis of the boundaries of the T-DNA. Plant J 6:277–282
Hiratsuka J, Shimada H, Whittier R, Ishibashi T, Sakamoto M (1989) The complete sequence of the rbcS-gusA fusion genes in transgenic rice. Plant Physiol 102:991–1000
Leister D (2003) Chloroplast research in the genomic age. Trends Genet 19:47–56
Livk KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2 ΔΔCT method. Methods 25:402–408
Lurin C, Andries C, Aubourga S, Bellauoa M, Bittona F, Bruyereb C, Cabochea M, Dassa C, Gaibbertod J, Hoffmanna B, Lechamynb A, Rfeltb M, Martin-Magniettea M, Mirea A, Peetenc N, Remoua J, Serellaa E, Taconnata L, Smillia I (2004) Genome-wide analysis of Arabidopsis pentatricopeptide repeat proteins reveals their essential role in organellar biogenesis. Plant Cell 16:2089–2103
Mccouch SR, Teytelman L, Xu Y, Lobos KB, Clare K, Walton M, Fu B, Maghiranga R, Li Z, Xing Y, Zhang Q, Kono I, Yano M, Pfleister M, DeClerck G, Schneider D, Cartinhourn S, Wade D, Stein L (2002) Development and mapping of 2240 new SSR markers for rice (Oryza sativa L.). DNA Res 9:199–207
Meierhoff K, Felder S, Nakamura T, Bechtold N, Schuster G (2003) HCF152, an Arabidopsis RNA binding pentatricopeptide repeat protein, involved in the processing of chloroplast psbF-psbL-psbH-psbP-psbA mRNAs. Plant Cell 15:1480–1495
Muller JE (1993) Dynamic regulation of chloroplast transcription. Plant Physiol 103:309–313
O‘Toole N, Hattori M, Andres C, Iida K, Lurin C, Schmitz-Linneweber C, Sugita M, Small I (2008) On the expansion of the pentatricopeptide repeat gene family in plants. Mol Biol Evol 25:1120–1128
Okuda K, Miyouga F, Motohashi R, Shionzaki K, Shikanai T (2007) Conserved domain structure of pentatricopeptide repeat proteins involved in chloroplast RNA editing. Proc Natl Acad Sci U S A 104:8178–8183
Pfalz J, Bayraktar OA, Prikryl A, Barkan A (2009) Site-specific binding of a PPR protein defines and stabilizes S’ and 3’ mRNAs termini in chloroplasts. EMBO J 28:2042–2052
Schmitz-Linneweber C, Small I (2008) Pentatricopeptide repeat proteins: a scaffold set for organelle gene expression. Trends Plant Sci 13:663–670
Schmitz-Linneweber C, Williams-Carrier RE, Williams-Voelker PM, Kroeger TS, Vichas A, Barkan A (2006) A pentatricopeptide repeat protein facilitates the trans-splicing of the maize chloroplast psbB pre-mRNA. Plant Cell 18:2650–2663
Small ID, Peeters N (2000) The PPR motif—an unrelated motif prevalent in plant organelar proteins. Trends Biochem Sci 25:46–47
Sosso D, Mbelo S, Vermoud V, Gendrot G, Dedieu A, Chambrier P, Dauzat M, Heurtevin L, Guyon V, Takenaka M, Rogowsky PM (2012) PPR2263, a DYW-subgroup pentatricopeptide repeat protein, is required for mitochondrial nad5 and cob transcript editing, mitochondrial biogenesis, and maize growth. Plant Cell 24:676–691
Su N, Hu ML, Wu DX, Wu FQ, Fei GL, Lan Y, Chen XL, Shu XL, Zhang X, Guo XP, Cheng ZJ, Lei CL, Qi CK, Jiang L, Wang HY, Wan JM (2012) Disruption of a rice pentatricopeptide repeat protein causes a seedling-specific albino phenotype and its utilization to enhance seed purity in hybrid rice production. Plant Physiol 159:227–238
Sugimoto H, Kusumi K, Toda Y, Yaraki J, Kishimoto N, Kikuuchi S, Ikun M, Tak E (2004) The wiscorg-2 mutation inhibits translation of plastid transcripts for the plastid genetic system at an early stage of chloroplast differentiation. Plant Cell Physiol 45:865–896
Takeuchi R, Kimura S, Saotome A, Sakaguchi K (2007) Biochemical properties of a plastidial RNA polymerase of rice. Plant Mol Biol 64:601–611
Tavares-Carreón F, Camacho-Villasana Y, Zamudio-Ochoa A, Shingü-Vázquez M, Torres-Larios A, Pérez-Martínez X (2008) The pentatricopeptide repeat proteins present in Per098 are necessary for translation but not for stability of the mitochondrial COX1 mRNAs in yeast. J Biol Chem 283:1472–1479
Tseng CC, Sung TY, Li YC, Hsu SJ, Lin CL, Hsieh MH (2010) Editing of accD and ndhF chloroplast transcripts is partially affected in the Arabidopsis cem1 mutant. Plant Mol Biol 73:309–323
Wang Z, Chen C, Xu Y, Jiang R, Han Y, Xu Z, Chong K (2004) A practical vector for efficient knockdown of gene expression in rice (Oryza sativa L.). Plant Molecular Biology Reporter 22:409–417
Williams PM, Barkan A (2003) A chloroplast-localized PPR protein required for plastid ribosome accumulation. Plant J 36:675–686
Yamazaki H, Tasaka M, Shikanai T (2004) PPR motifs of the nucleosencoded factor, PGR3, function in the selective and distinct stages of chloroplast gene expression in Arabidopsis. Plant J 35:182–193
Ye Q, Chen YL, Zhang G, Zhang HD, Wang XM, Yong ZN (2012) The Arabidopsis pentatricopeptide repeat protein PDMI is associated with the intergenic sequence of rps17 pre-rps17 monocistronic RNA cleavage. Chin Sci Bull 57:3452–3459
Yu J, Hu S, Wang J, Wang GK, Li S, Liu B, Deng Y, Dai L, Zhou Y, Zhang X, Cao M, Liu J, Sun J, Tang J, Chen Y, Huang X, Lin W, Ye E, Tong W, Cong L, Geng J, Han Y, Li L, Li W, Hu G, Huang X, Li W, Li J, Liu Z, Li L et al (2002) A draft sequence of the rice genome (Oryza sativa L. ssp. indica). Science 296:79–82
Yu QB, Jiang Y CK, Yang ZN (2009) AtECB2, a pentatricopeptide repeat protein, is required for chloroplast transcript accD RNA editing and early chloroplast biogenesis in Arabidopsis thaliana. Plant J 59:1011–1023

Zhou W, Cheng Y, Yap A, Chatteigner-Boutin AL, Delannoy E, Hammani K, Small I, Huang J (2009) The Arabidopsis gene YS1 encoding a DYW protein is required for editing of rpoB transcripts and the rapid development of chloroplasts during early growth. Plant J 58:82–96