Effective Pedestrian Detection Using Center-symmetric Local Binary/Trinary Patterns

Yongbin Zheng, Chunhua Shen, Richard Hartley, Fellow, IEEE, and Xinsheng Huang

Abstract—Accurately detecting pedestrians in images plays a critically important role in many computer vision applications. Extraction of effective features is the key to this task. Promising features should be discriminative, robust to various variations and easy to compute. In this work, we present novel features, termed dense center-symmetric local binary patterns (CS-LBP) and pyramid center-symmetric local binary/ternary patterns (CS-LBP/LTP), for pedestrian detection. The standard LBP proposed by Ojala et al.

C. Shen and R. Hartley are with NICTA, Canberra Research Laboratory, Canberra, ACT 2601, Australia. This work was done when Y. Zhang visited NICTA Canberra Research Laboratory.

The ability to detect pedestrians in images has a major impact on applications such as video surveillance [2], smart vehicles [3], [4], robotics [5]. Changing variations in human body poses and clothing, combined with varying cluttered backgrounds and environmental conditions, make this problem far from being solved. Recently, there has been a surge of interest in pedestrian detection [6]–[19]. One of the leading approaches for this problem is based on sequentially applying a classifier at all the possible subwindows, which are obtained by exhaustively scanning the input image in different scales and positions. For each sliding window, certain feature sets are extracted and fed to the classifier, which is trained beforehand using a set of labeled training data of the same type of features. The classifier then determines whether the sliding window contains a pedestrian or not.

Driven by the development of object detection and classification, promising performance on pedestrian detection have been achieved by:

1) using discriminative and robust image features, such as Haar wavelets [6], region covariance [10], [12], HOG [8], [9] and PHOG [20];
2) using a combination of multiple complementary features [14], [21];
3) including spatial information [20];
4) the choices of classifiers, such as support vector machines (SVMs) [8], [20], boosting [22], [23].

Feature extraction is of the center importance here. Features must be robust, discriminative, compact and efficient. To date, HOG is still considered as one of the state-of-the-art and most popular features used for pedestrian detection [8]. One of its drawbacks is the heavy computation. Maji et al. [20] introduced the PHOG feature into pedestrian detection, and their experiments showed that PHOG can yield better classification accuracy than the conventional HOG and is much computationally simpler and have smaller dimensions. However, these HOG-like features, which capture the edge or the local shape information, could perform poorly when the background is cluttered with noisy edges [14].

Our goal here is to develop a feature extraction method for pedestrian detection that, in comparison to the state-of-the-art, is comparable in performance but faster to compute. A conjecture is that, if both the shape and texture information are used as the features for pedestrian detection, the detection accuracy is likely to increase. The center-symmetric local binary patterns feature (CS-LBP) [24], which is a modified version of the LBP texture feature [25], inherits the desirable properties of both texture features and gradient based features. In addition, they are computationally cheaper and easier to implement. Furthermore, CS-LBP can be extended to center-symmetric Local Trinary Patterns (CS-LTP), which is more descriptive and less sensitive to noise in uniform image regions. In this work, we introduce the CS-LBP/LTP features into pedestrian detection:

1) We propose the dense CS-LBP feature, in the approach similarity as the HOG feature [8], which was carefully developed to work well with linear SVMs for pedestrian detection.
2) We propose the pyramid CS-LBP/LTP features, in the
approach similarity as the PHOG feature [20], which is multi-scale feature and producing the state-of-the-art accuracy with HIKSVMs on the INRIA pedestrian dataset.

Experiments on the INRIA pedestrian dataset show that the dense CS-LBP feature with linear SVMs performs as well as the HOG feature with linear SVMs, and the pyramid CS-LBP feature with HIKSVMs [20] outperforms the state-of-the-art PHOG features with HIKSVMs. The pyramid CS-LTP feature can achieve even better performances.

The key contributions of this work can be summarized as follows.

1) To our knowledge, it is the first time to apply the CS-LBP feature to pedestrian detection. The standard LBP feature captures the detailed texture information, which is usually harmful for pedestrian detection, e.g., the rich textures on the cloth of a pedestrian. Besides, the bin number of the standard LBP operator is 256, which leads a huge dimensional descriptor of a detection window. On the contrary, the CS-LBP feature captures the shape information and some salient texture information, which is very useful for pedestrian detection. The bin number of the CS-LBP is 16, which is much smaller than the standard LBP.

2) We propose the CS-LTP feature, which is even more distinctive than the CS-LBP feature, for the first time.

3) We apply the pyramid structure, which can capture richer spatial information, to CS-LBP and CS-LTP for the first time.

4) We show that the detection performance can be further improved significantly by combining our proposed pyramid CS-LBP/LTP features with the PHOG feature.

The rest of the paper is organized as follows. In Section II we briefly describe the LBP operator, the LTP operator, and the CS-LBP operator. In Section III we give the details of the dense CS-LBP pedestrian detection approach. In Section IV we propose the pyramid CS-LBP/LTP features based pedestrian detection approach. The results of numerous experiments and some study on feature combination are presented in Section V. Section VI concludes the paper.

II. PRELIMINARIES

A. The LBP and LTP features

LBP is a texture descriptor that codifies local primitives (such as curved edges, spots, flat areas) into a feature histogram. LBP and its extensions outperform existing texture descriptors both with respect to performance and to computational efficiency [1].

The standard version of the LBP feature of a pixel is formed by thresholding the 3×3-neighborhood of each pixel with the center pixel’s value. Let g_c be the center pixel graylevel and g_i (for $i = 0, 1, \cdots, 7$) be the graylevel of each surrounding pixel. If g_i is smaller than g_c, the binary result of the pixel is set to 0, otherwise to 1. All the results are combined to a 8-bit binary value. The decimal value of the binary is the LBP feature. See Fig. 1 for an illustration of computing the basic LBP feature.

In order to be able to cope with textures at different scales, the original LBP has been extended to arbitrary circular neighborhoods [25] by defining the neighborhood as a set of sampling points evenly spaced on a circle centered at a pixel to be labeled. It allows any radius and number of sampling points. Bilinear interpolation is used when a sampling point does not fall in the center of a pixel. Let $LBP_{p,r}$ denote the LBP feature of a pixel’s circular neighborhoods, where r is the radius of the circle and p is the number of sampling points on the circle. The $LBP_{p,r}$ can be computed as follows:

$$LBP_{p,r} = \sum_{i=0}^{p-1} S(g_i - g_c)^2, S(x) = \begin{cases} 1 & \text{if } x \geq 0, \\ 0 & \text{otherwise.} \end{cases}$$

Here g_c is the center pixel’s graylevel and g_i (for $i = 0, 1, \cdots, 7$) is the graylevel of each sampling pixel on the circle. See Fig. 2 for an illustration of computing the LBP feature of a pixel’s circular neighborhoods with $r = 1$ and $p = 8$. Ojala et al. [25] proposed the concept of “uniform patterns” to reduce the number of possible LBP patterns while keeping its discrimination power. An LBP pattern is called uniform if the binary pattern contains at most two bitwise transitions from 0 to 1 or vice versa when the bit pattern is considered circular. For example, the bit pattern 11111111 (no transition), 00001100 (two transitions) are uniform whereas the pattern 01010000 (four transitions) is not. The uniform pattern constraint reduces the number of LBP patterns from 256 to 58 and is successfully applied to face detection in [26].

In order to make LBP less sensitive to noise, particularly in near-uniform image regions, Tan and Triggs [27] extended LBP to 3-valued codes, called local trinary patterns (LTP). If each surrounding graylevel g_i is in a zone of width ±ε around the center graylevel g_c, the result value is quantized to 0. The value is quantized to +1 if g_i is above this and is quantized...
Fig. 4. Splitting the LTP code into positive and negative LBP codes.

Fig. 5. The CS-LBP features for a neighborhood of 8 pixels.

In this section, we introduce the implementation details of our dense CS-LBP feature based pedestrian detection approach. Detailed comparisons between different parameter choices are carried out later. The key steps are as follows.
Fig. 6. Example images of LBP, orientation bin and CS-LBP. (a) The original image selected from INRIA dataset. (b) The LBP image, which is obtained by replacing the graylevel of each pixel of the original image with the pixel’s LBP value. (c) The orientation bin image, which is obtained by replacing the graylevel of each pixel of the original image by the pixel’s orientation bin number. (d) The CS-LBP image, which is obtained by replacing the graylevel of each pixel of the original image by the pixel’s CS-LBP value.

Uniform pattern	0000	0001	0011	0100	0111	1000	1011	1111	Total
Percent. (%)	7.67	7.34	2.19	5.65	3.47	2.28	3.52	55.26	87.39

Non-uniform pattern	0010	0101	0110	1001	1010	1011	1100	1110	Total
Percent. (%)	2.16	1.09	1.84	2.18	0.52	1.51	1.85	1.45	12.61

1) We normalize the graylevel of the input image to reduce the illumination variance in different images. After the graylevel normalization is performed, all input images have graylevel ranging from 0 to 1.

2) Each detection window is split into equally sized cells and the cells are grouped into bigger blocks. The size of our detection window is 64×128 and the size of each block is 32×32 and each block contains 2×2 cells of 16×16 pixels, as shown in Fig. 7. As in [8], there are overlaps among adjacent blocks (overlapping 1/2 block).

3) The 3D histogram of each block is computed similarly as the SIFT descriptor: The gradient magnitude and the CS-LBP value at each pixel in every cell are computed, as the arrows shown on the left of Fig. 7. These are weighted by a Gaussian window centered in the middle of the block with $\sigma = 0.5 \times \text{blockwidth}$, indicated by overlaid circle. The weighted values of all the points in a cell are accumulated into histograms by summarizing the contents over the cell. On the right of Fig. 7, it shows 16 bins for the histogram of each cell, with the length of each arrow corresponding to the magnitude of the histogram entry. A 3D histogram of the cells’ locations (x and y shown on the right of Fig. 7) and the cells’ CS-LBP values is proposed for the block. In order to avoid boundary effects in which the 3D histogram abruptly changes as a feature shifts from one cell to another, bilinear interpolation over horizontal and vertical dimensions is used to share the weights of the features between four nearest cells. Interpolation over CS-LBP value dimension is not carried out because the CS-LBP feature is quantized by its nature [24].

4) The 3D histogram of each block is converted into a vector and is normalized. Let v be the unnormalized
descriptor, $\|v\|_k$, be its k-norm for $k = 1, 2$, and ϵ be a small constant. The commonly used normalization schemes are [3]:

a) ℓ_1-norm, $v \leftarrow v/(\|v\|_1 + \epsilon)$;

b) ℓ_1-SQR, ℓ_1-norm followed by square root $v \leftarrow v/\sqrt{\|v\|_1 + \epsilon}$;

c) ℓ_2-norm, $v \leftarrow v/\sqrt{\|v\|_2^2 + \epsilon}$;

d) ℓ_2-HYS, ℓ_2-norm followed by clipping (limiting the maximum values of v to 0.2) and re-normalizing.

In our implementation, ℓ_1-SQR normalization gives the best result. The difference between these normalization schemes are not significant.

5) The histograms of all the blocks in a detection window are concatenated to form a CS-LBP descriptor. This is used as the input for the linear SVMs classifier.

6) The detection window slides on the input images in all positions and scales, with a fixed scale factor 1.09 and a fixed step size 8 \times 8. The descriptor of each detection window is classified by the pretrained linear SVM classifier. As in [9], non maximal suppression [29] clustering is used to merge the multiple overlapping detections in the 3D position and scale space.

B. Parameters selection

There are various parameter configurations that can be chosen to optimize the performance of the CS-LBP feature based detection approach. These include choosing the block size and cell size, σ of the Gaussian weighing window, using interpolate bilinearly over x and y dimensions when building the histogram, the normalization methods and the overlapping size of blocks.

We train a linear SVMs classifier using the training set described in Section [A] and use the 1,132 cropped human samples with size 70 \times 134 (a margin of 3 pixels around each side) from the test dataset as the positive test set. We randomly select 4,530 patches with size 64 \times 128 from the 453 human free images in the test dataset as negative test set. Then we use the pretrained classifier to classify between the positive samples and the negative samples. The classification rate of the positive samples versus false positive rate is used to evaluate the performances of different parameter selections.

We compare the performances of our CS-LBP features with different block size and cell size configurations in Fig. 8(a). It shows that 32 \times 32 pixels blocks with 16 \times 16 pixels cells performs better than 16 \times 16 pixels blocks with 8 \times 8 pixels cells.

We explore the effect of the Gaussian weight window in Fig. 8(b). The results show that a Gaussian weight window with $\sigma = 16$ (half block width) can improve the performance significantly. However, if σ is too big or small, the performance is almost identical as the case when there is no Gaussian weight.

Fig. 8(c) shows that using bilinear interpolation when building the histogram of each block can increase the performance.

We also evaluate four different normalization schemes in Fig. 8(d). The schemes are: ℓ_2-norm, ℓ_2-HYS, ℓ_1-norm, ℓ_1-SQR. Fig. 8(d) shows that ℓ_1-SQR performs best and ℓ_2-norm performs very close to ℓ_1-SQR, ℓ_2-HYS and ℓ_2-norm are about 2\% worse than ℓ_1-SQR when false positive rate is 0.03. The performance of without normalization is worst.

Fig. 8(e) shows the performance of overlapping blocks. We can see from Fig. 8(e) that the detection rate increases when overlapping 1/2 blocks, and overlapping 3/4 blocks performs equally to overlapping 1/2. Overlapping 1/2 is a better choice because its descriptor dimension is much smaller than overlapping 3/4.

In conclusion, the CS-LBP feature based approach has the following descriptions: 64 \times 128 detection windows, 32 \times 32 pixels block of four 16 \times 16 pixels cells; overlapping 1/2 block (block spacing stride of 16 pixels); the Gaussian with $\sigma = 16$; ℓ_1-SQR block descriptor normalization; the descriptor length of each detection window is 1334 (3 \times 7 \times 4 \times 16); the detection window slides with a fixed step size of 8 pixels and a fixed scale factor of 1.09 in the 3D position and scale space.

IV. PEDESTRIAN DETECTION USING PYRAMID CS-LBP/LTP FEATURES

Motivated by the image pyramid representation in [30] and the HOG feature [8], Bosch et al. [31] proposed the PHOG descriptor, which consists of a pyramid of histograms of orientation gradients, to represent an image by its local shape and the spatial layout of the shape. Experiments showed that the PHOG feature together with the histogram intersection kernel can bring significant performance to object classification and recognition. Maji et al. [20] introduced the PHOG feature into pedestrian detection and achieved the current state-of-the-art on pedestrian detection. In this section, we propose the pyramid CS-LBP/LTP features based pedestrian detection approach.

A. The pyramid CS-LBP/LTP features

Because the LTP patterns can be divided into two separate channels of LBP patterns, we only illustrate the computation of the pyramid CS-LBP features. Our features of a 64 \times 128 detection window are computed as follows (Fig. 9 shows the first three steps of computing the features):

1) We compute the CS-LBP value and the gradient magnitude of each pixel of the input grayscale image (detection window). The CS-LBP value is computed as [3] with $t = 0.022$. Then we obtain 16 layers of gradient magnitude images corresponding to each CS-LBP pattern. We call them edge energy responses of the input image. Fig. 10 shows the 16 layers of edge energy responses of the example image from INRIA dataset. We can see that the first layer mainly captures the contours, the 16th layer mainly captures the detailed textures or cluttered background, the rests capture spacial edges or textures. The responses in the first layer is much bigger than those in the 16th layer. That is because contours are more important than detailed textures to detect a pedestrian. Sometimes the detailed textures (e.g., textures on the clothes of pedestrians) are harmful to pedestrian detection.
2) Each layer of the response image is \(\ell_1 \) normalized in non overlapping cells of fixed size \(y_n \times x_n \) (\(y_n = 16, x_n = 16 \)) so that the normalized gradient values in each cell sum to unity.

3) At each level \(l \in \{1, 2, ..., L\} \), the response image is divided into non overlapping cells of size \(y_l \times x_l \), and a histogram with 16 bins is constructed by summing up normalized response within the cell. In our case, \(L = 4 \), \(y_1 = x_1 = 64 \), \(y_2 = x_2 = 32 \), \(y_3 = x_3 = 16 \), \(y_4 = x_4 = 8 \). So we obtain 2, 8, 32, and 128 histograms at level \(l = 1, 2, 3 \) and 4 respectively.

4) The histograms of each level is normalized to sum to unity. This normalization ensures that the edge or texture rich images are not weighted more strongly than others.

5) The features at a level \(l \) are weighted by a factor \(w_l \) \((w_1 = 1, w_2 = 2, w_3 = 4, w_4 = 9) \), and the features at all the levels are concatenated to form a vector of dimension \(2,720 \), which is called pyramid CS-LBP features.

The precess of computing pyramid uniform CS-LBP features is almost same as pyramid CS-LBP. The only difference lies in the first step. In the first step, the edge energy responses corresponding to the 8 different uniform patterns are count into 8 different layers and the edge energy responses corresponding to all the 8 non-uniform patterns are count into one layer. So we obtain 9 layers of edge energy responses of the input image.

B. Pedestrian detection based on pyramid CS-LBP/LTP features

The first major component of our approach is feature extraction. We perform the graylevel normalization of the input image so that the input image have the graylevel ranged from 0 to 1. Then the detection window slides on the input images in all positions and scales, with a fixed step size \(8 \times 8 \) and a fixed scale factor \(1.09 \). We follow the steps in Sec. [IV-A](#) to compute the pyramid CS-LBP/LTP features of each \(64 \times 128 \) detection window.

The second major component of our approach is the classifier. We use IKSVMs [20] as the classifier. The histogram intersection kernel,

\[
\text{k}_{\text{HI}}(h_a, h_b) = \sum_{i=1}^{n} \min(h_a(i), h_b(i))
\]

was original proposed by Swain and Ballard [32] for color-based object recognition and has been shown to be a suitable measurement of similarity between histogram \(h_a \) and \(h_b \) (\(n \) is the length of the histogram). It is further shown to be positive definite [33] and can be used as a kernel for classification using SVMs. Compared to linear SVMs, histogram intersection kernel involves great computational expense. Maji et al. [20], [34] approximated the histogram intersection kernel for faster execution. Their experiments showed that the approximate IKSVMs consistently outperform linear SVMs at a modest increase in running time.

The third major component of our approach is the merging of the multiple overlapping detections using non maximal suppression [9]. After merging, detections with bounding boxes and confidence scores are obtained.

V. Experiments

A. Experiment setup

Datasets. We perform the experiments on INRIA human dataset [8], which is one of the most popular publicly available datasets. The datasets consist of a training set and a test set. The training set contains 1, 208 images of size \(96 \times 160 \) pixels (a margin of 16 pixels around each side) of human samples (2, 416 mirrored samples) and 1, 218 pedestrian-free images. The test set contains 288 images with 589 human samples and 453 human free images. Besides, in the test set, there is a fold contains 566 human samples (1, 132 mirrored samples) of size 70 \(\times \) 134 (a margin of 3 pixels around each side), which were cropped out from the 288 positive test images. All the human samples are cropped from a varied set of personal photos and
vary in pose, clothing, illumination, background and partial occlusions, what make the dataset is very challenge.

Methodology. Per-window performance is accepted as the methodology for evaluating pedestrian detectors by most researchers. But this evaluating methodology is flawed. As pointed out in [13], per-window performance can fail to predicate per-image performance. There may be at least two reasons: first, per-window evaluation does not measure errors caused by detections at incorrect scales or positions or arising from false detections on body parts, nor does it take into
Fig. 9. The first three steps of computing the pyramid CS-LBP feature. (1) Edge energy responses corresponding to each CS-LBP pattern of the input image are computed. (2) The responses are ℓ_1 normalized over all layers in each non overlapping 16×16 cells independently so that the normalized gradient values in each cell sum to unity. (3) The features at each level is extracted by concatenating the histograms, which are constructed by summing up the normalized response within each cell at the level. The cell size at level 1, 2, 3 and 4 are 64×64, 32×32, 16×16 and 8×8 respectively.

Fig. 10. Edge energy responses of an example image. The first image is the input image and the rests are its 16 layers of edge energy responses corresponding to each CS-LBP pattern. In order to show the response images more clearly, the response images are plotted out in color format by indexing the values to hot colormap. On the right of every response images shows the corresponding colorbar.

account the effect of non maximal suppression. Second, the per-window scheme uses cropped positives and uncropped negatives for training and testing: classifiers may exploit window boundary effects as discriminative features leading to good per-window but poor per-image performance. In this paper, we use per-image performance, plotting detection rate versus false positives per-image (FPPI).

We select the 2,416 mirrored human samples from the training set as positive training examples. A fixed set of 12,180 patches sampled randomly from 1,218 pedestrian-free training images as initial negative set. As in [8], a preliminary detector is trained and the 1,218 negative training images are searched exhaustively for false positives (‘hard examples’). The final classifier is then trained using the augmented set (initial 12,180 + hard examples). The SVM tool we used is LIBSVM [35] and the fast intersection kernel SVMs tool we used is proposed by Maji et al. [20].

We detect pedestrians on each test images (both positive and negative) in all positions and scale with a step size 8×8 and a scale factor 1.09. Multiscale and nearby detections are merged using non maximal suppression and a list of detected bounding boxes are given out. Evaluation on the
list of detected bounding box is done using the PASCAL criterion which counts a detection to be correct if the overlap of the detected bounding box and ground truth bounding box is greater than 0.5.

B. Detection results

In this section, we study the performance of our dense CS-LBP feature based approach and the pyramid CS-LBP/LTP features based approach by comparing with the HOG feature and the PHOG feature based approaches. We obtain the HOG and the PHOG detectors from their authors, and all the parameters of the PHOG (such as the ℓ_1 normalization cell size, the level number and cell size in each cell) are same as our pyramid features. The results are shown in Fig. [11].

The performance of pyramid CS-LTP based detector performs best, with detection rate over 80% at 0.5 FPPI. Then followed by the pyramid uniform CS-LBP based detector, which is slightly better than the PHOG based detector. The pyramid CS-LBP based detector performs almost as good as the PHOG. Though the pyramid uniform CS-LBP based detector performs slightly worse than PHOG based detector, it outperforms the HOG features with linear SVMs based detector proposed by Dalal and Triggs [8]. The performance of the dense CS-LBP feature with linear SVMs based detector is very close to the HOG features with linear SVMs based detector. The results also show that the pyramid features with HIKSVMs approach is more promising than the dense feature with linear SVMs approach.

C. Study on the features combined with the pyramid CS-LBP and PHOG

In this experiment, our main aim is to find out whether the combination of our feature with the PHOG feature can achieve better detection result or not. Feature Combination is a recent trend in class-level object recognition in computer vision. One efficient method is to combine the kernels corresponding to different features. The simplest method to combine several kernels is to average them. Gehler and Nowozin [36] pointed out that this simplest method is highly competitive with multiple kernel learning (MKL) [37] method and the method based on boosting approaches proposed in [36]. Here, We simply average the two kernels corresponding to the pyramid uniform CS-LBP feature and the PHOG feature as follows:

$$K_c(v_1,v_2) = \frac{1}{2}[K_1(v_1) + K_2(v_2)],$$

where K_1 and K_2 are the IK SVMs classifiers pretrained using the pyramid uniform CS-LBP feature and the PHOG feature respectively, v_1 and v_2 are the pyramid uniform CS-LBP feature and the PHOG feature of a detection window respectively.

Detection performance are shown In Fig. [12]. The detection rate versus FPPI curves show that the feature combination can significantly improve the detection performance. Compared to the PHOG, the detection rate raises about 6% at 0.25 FPPI and raises about 1.5% at 0.5 to 1 FPPI. Fig. [13] shows pedestrian detection on some example test images. The three rows show the bounding boxes detected by PHOG based detector, the pyramid uniform CS-LBP based detector and the PHOG + pyramid uniform CS-LBP based detector, respectively. We can see that the PHOG with pyramid uniform CS-LBP based detector performs best.

VI. Conclusion

We have presented the dense CS-LBP feature and the pyramid CS-LBP/LTP features for pedestrian detection. Experimental results on the INRIA dataset show that the dense CS-LBP feature based approach the pyramid CS-LTP features using the IKSVM classifier outperform the PHOG, and the pyramid CS-LBP features perform as well as the HOG feature. We have also show that combining the pyramid CS-LBP with PHOG produces a significantly better detection performance on the INRIA dataset.
There are many directions for further research. To make the conclusion more convincing, the performance of the pyramid CS-LBP features based pedestrian detector needs to be further evaluated on other dataset, e.g., the Daimler Chrysler Pedestrian Dataset [11] and the Caltech Pedestrian Dataset [13]. Another further study is to compare the computational complexity of the pyramid CS-LBP/LTP features with PHOG both theoretically and experimentally. Thirdly, it is worthy studying how to combine our features with PHOG or other features more efficiently. We are also interested in implement the new feature in a boosting framework.

REFERENCES

[1] T. Ojala, M. Pietikainen, and D. Harwood, “A comparative study of texture features with classification based on featured distribution,” Pattern Recog., vol. 29, no. 1, pp. 51–59, 1996.
[2] I. Haritaoglu, D. Harwood, and L. S. Davis, “W4: real-time surveillance of people and their activities,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 22, no. 8, pp. 809–830, 2000.
[3] D. M. Gavrila and S. Munder, “Multi-cue pedestrian detection and tracking from a moving vehicle,” Int. J. Comp. Vis., vol. 73, no. 1, pp. 41–59, 2007.
[4] D. M. G. abd J. Giebel and S. Munder, “Vision-based pedestrian detection: the protector system,” in Proc. IEEE Int. Conf. Intell. Vehic. Symposium, Parma, Italy, 2004, pp. 13–18.
[5] T. Nakada, S. Kagami, and H. Mizoguchi, “Pedestrian detection using 3D optical flow sequences for a mobile robot,” in Proc. IEEE Conf. Sens., Leece, Italy, 2008, pp. 776–779.
[6] P. Viola, M. J. Jones, and D. Snow, “Detecting pedestrian using patterns of motion and appearance,” in Proc. IEEE Int. Conf. Comp. Vis., vol. 2, Nice, France, 2003, pp. 734–741.
[7] K. Mikolajczyk, C. Schmid, and A. Zisserman, “Human detection based on a probabilistic assembly of robust part detectors,” in Proc. Eur. Conf. Comp. Vis., vol. 3021/2004, LNCS, Prague, Czech Republic, 2004, pp. 69–82.
[8] N. Dalal and B. Triggs, “Histogram of oriented gradients for human detection,” in Proc. IEEE Conf. Vis. Patt. Recogn., vol. 1, San Diego, USA, 2005, pp. 886–893.
[9] N. Dalal, “Finding people in images and videos,” Ph.D. dissertation, Institut National Polytechnique de Grenoble, 2006.
[10] O. Tuzel, F. Porikli, and P. Meer, “Human detection via classification on riemannian manifolds,” in Proc. IEEE Conf. Comp. Vis. Patt. Recogn., Minneapolis, Minnesota, USA, 2007, pp. 1–8.
[11] S. Munder and D. M. Gavrila, “An experimental study on pedestrian classification,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 28, no. 11, pp. 1863–1868, 2006.
[12] S. Paisitkriangkrai, C. Shen, and J. Zhang, “Fast pedestrian detection using a cascade of boosted covariance features,” IEEE Trans. Circuits Syst. Video Technol., vol. 18, no. 8, pp. 1140–1151, 2008.
[13] P. Dollár, C. Wojek, B. Schiele, and P. Perona, “Pedestrian detection: A benchmark,” in Proc. IEEE Conf. Comp. Vis. Patt. Recogn., 2009, pp. 304–311.
[14] X. Wang, T. Han, and S. Yan, “An HoG-LBP human detector with partial occlusion handling,” in Proc. IEEE Int. Conf. Comp. Vis., Kyoto, Japan, 2009, pp. 32–39.
[15] M. Enzweiler and D. M. Gavrila, “Monocular pedestrian detection: Survey and experiments,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 31, no. 12, pp. 2179–2195, 2009.
[16] M. Enzweiler, A. Eigenstetter, B. Schiele, and D. M. Gavrila, “Multi-cue pedestrian classification with partial occlusion handling,” in Proc. IEEE Conf. Comp. Vis. Patt. Recogn., 2010.
[17] B. Leibe, E. Seemann, and B. Schiele, “Pedestrian detection in crowded scenes,” in Proc. IEEE Conf. Comp. Vis. Patt. Recogn., vol. 1, 2005, pp. 878–885.
[18] P. Sabzeydani and G. Mori, “Detecting pedestrians by learning shapelet features,” in Proc. IEEE Conf. Comp. Vis. Patt. Recogn., Minneapolis, Minnesota, USA, 2007, pp. 1–8.
[19] Q. Zhu, S. Avidan, M.-C. Yeh, and K.-T. Cheng, “Fast human detection...
using a cascade of histograms of oriented gradients,” in Proc. IEEE Conf. Comp. Vis. Patt. Recogn., vol. 2, New York City, USA, 2006, pp. 1491–1498.

[20] S. Maji, A. Berg, and J. Malik, “Classification using intersection kernel support vector machines is efficient,” in Proc. IEEE Conf. Comp. Vis. Patt. Recogn., Anchorage, Alaska, USA, 2008, pp. 1–8.

[21] I. P. Alonso, D. F. Llorca, and M. A. Sotelo, “Combination of feature extraction methods for svm pedestrian detection,” Trans. Intell. Transp. Syst., vol. 8, no. 2, pp. 292–307, 2007.

[22] C. Wojek, S. Walk, and B. Schiele, “Multi-cue onboard pedestrian detection,” in Proc. IEEE Conf. Comp. Vis. Patt. Recogn., Miami, Florida, USA, 2009, pp. 794–801.

[23] C. Shen and H. Li, “On the dual formulation of boosting algorithms,” IEEE Trans. Pattern Anal. Mach. Intell., Published online: 18 March, 2010. [Online]. Available: http://dx.doi.org/10.1109/TPAMI.2010.47

[24] M. Heikkila and C. Schmid, “Description of interest regions with local binary patterns,” Pattern Recogn., vol. 42, no. 3, pp. 425–436, 2009.

[25] T. Ojala, M. Pietikainen, and T. Maenpaa, “Multiresolution gray-scale and rotation invariant texture classification with local binary patterns,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 24, no. 7, pp. 971–987, 2002.

[26] T. Ahonen, A. Hadid, and M. Pietikainen, “Face detection with local binary patterns: application to face recognition,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 28, no. 12, pp. 2037–2041, 2006.

[27] X. Tan and B. Triggs, “Enhanced local texture feature sets for face recognition under difficult lighting conditions,” IEEE Trans. Image Process., vol. 19, no. 6, pp. 1635–1650, 2010.

[28] D. W. Lowe, “Distinctive image features from scale-invariant keypoints,” Int. J. Comp. Vis., vol. 60, no. 2, pp. 91–110, 2004.

[29] D. Comaniciu and P. Meer, “Mean shift: A robust approach toward feature space analysis,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 24, no. 5, pp. 603–619, 2002.

[30] A. Bosch, A. Zisserman, and X. Munoz, “Scene classification via PLSA,” in Proc. Eur. Conf. Comp. Vis., vol. 3954/2006, LNCS, Graz, Austria, 2006, pp. 517–530.

[31] ——, “Representing shape with a spatial pyramid kernel,” in Proc. ACM Int. Conf. Image & video retrieval, 2007, pp. 401–408.

[32] M. J. Swain and D. H. Ballard, “Color indexing,” Int. J. Comp. Vis., vol. 7, no. 1, pp. 11–32, 1991.

[33] F. Odone, A. Barla, and A. Verri, “Building kernels from binary strings for image matching,” IEEE Trans. Image Process., vol. 14, no. 2, pp. 169–180, 2005.

[34] S. Maji and A. C. Berg, “Max-margin additive classifiers for detection,” in Proc. IEEE Int. Conf. Comp. Vis., 2009, pp. 40–47.

[35] C.-C. Chang and C.-J. Lin, LIBSVM: a library for support vector machines, 2001, software available at http://www.csie.ntu.edu.tw/~cjlin/libsvm.

[36] P. Gehler and S. Nowozin, “On feature combination for multiclass object classification,” in Proc. IEEE Int. Conf. Comp. Vis., 2009, pp. 221–228.

[37] F. Bach, G. R. G. Lanckriet, and M. I. Jordan, “Multiple kernel learning, conic duality, and the smo algorithm,” in Proc. Int. Conf. Mach. Learn., Banff, Alberta, Canada, 2004.

Yongbin Zheng is a Ph.D. student at the National University of Defense Technology, China and is currently visiting the Canberra Research Laboratory of NICTA (National ICT Australia) and the Australian National University. He received the B.E. degree and M.E. degree in Control Science from the National University of Defense Technology in 2004 and 2006. His research interests include pattern recognition, image processing and machine learning.

Richard Hartley received the degree from the University of Toronto in 1976 with a thesis on knot theory. He is currently with the computer vision group at the Australian National University and also with NICTA (National ICT Australia), a government-funded research institute. He worked in this area for several years before joining the General Electric Research and Development Center, where he developed a computer-aided electronic design system called the Parsifal Silicon Compiler, described in his book “Digit Serial Computation”. Around 1990, he developed an interest in computer vision, and in 2000, he coauthored (with Andrew Zisserman) a book on multiple-view geometry. He has written papers on knot theory, geometric voting theory, computational geometry, computer-aided design, and computer vision. He holds 32 US patents. In 1991, he was awarded GE’s Dushman Award. He is a fellow of the IEEE and a member of the IEEE Computer Society.

Chunhua Shen completed the Ph.D. degree from School of Computer Science, University of Adelaide, Australia in 2005; and the M.Phil. degree from Mathematical Sciences Institute, Australian National University, Australia in 2009. Since Oct. 2005, he has been working with the computer vision program, NICTA (National ICT Australia), Canberra Research Laboratory, where he is a senior research fellow and holds a continuing research position. His main research interests include statistical machine learning and its applications in computer vision and image processing.

Xinsheng Huang is a professor at the College of Mechatronics Engineering and Automation, the National University of Defense Technology, China. His research interests include control science, inertial navigation and image processing.