Status and Impacts of Industrial Pollution on the Karnafully River in Bangladesh: A Review

Md. Simul Bhuyan, Md. Shafiqul Islam
Institute of Marine Sciences and Fisheries, University of Chittagong, Chittagong, Bangladesh
Corresponding email: simulbhuyan@gmail.com

Abstract
Rapid growth of urbanization and industrialization in Bangladesh has been coupled with increasing environmental pollution. The coastal and estuarine ecosystems of the country are now facing increasing pollution pressures because of the elevated level of waste discharges from various sources. Major sources of pollution include domestic sewage, industrial waste, commercial waste, agricultural waste, institutional waste, street sweepings, construction debris, mining activities and sanitation residues etc. In this review, status and effect of solid waste pollution, heavy metal pollution, organochlorine pesticides pollution and oil pollution along with the Karnafully River Estuary is assessed by a comprehensive review, recorded by researchers especially on water, sediment and aquatic biota. Different study show that metal concentrations in estuarine water relatively higher due to rapid acceleration of industrial sector. Metal concentrations is higher in fish than water and sediment. Elevated level of trace metals is highly detrimental for fish and human mechanism shown by different studies. Oil pollution is responsible for environmental deterioration due to its adverse effects on estuarine biota, fish and shellfishes, phytoplankton and zooplankton. Industrialization is needed for the development of the country. But it should be eco-friendly for the effective and sustainable development and for the protection of the environment (aquatic).

Keywords
Industrial pollution; Impacts; Biota; Development; Karnafully River

Introduction
Bangladesh is blessed with an extensive coastline of about 710 km which is mostly covered by a complex estuarine ecosystem (Pramanik, 1988). This estuarine ecosystem is enriched with the huge amount of living resources such as aquatic macrophytes (i.e. Tropical moist forest, salt marshes, seagrasses and seaweeds), fisheries, avian fauna, animals and coral reefs (Kamal and Khan, 2009). In Bangladesh, the estuarine system is comprised mainly of the Brahmaputra - Megna (Gangetic delta), Karnafully, Matamuhuri, Bakkhali and Naf rivers etc.

However, the Karnafully estuary (Figure 1) originating from the Lushai hills of Asam in India ultimately finds its way into the Bay of Bengal through the south-eastern coast of Bangladesh (O’ Mallery, 1908). This estuary is an important for many aspects including navigation, transportation, fishing activities, docking yards, the industrial utility of river water (Siddique and Akter, 2012). Moreover, it is used for port activities, fishing and industries (cooling and processing purposes) (Sarkar, 1998). But pollution is rapidly increasing and crossing safe limit day by day in the Karnafully River Estuary hampering coastal fisheries and people (Forkan, 2003). Water pollution occurs when foreign materials, either from natural or other sources mixes with water, contaminate water supplies and may be harmful to life because of their toxicity and the reduction of the normal O2 level of water as well as they also have aesthetically unpalatable effects which are responsible for the spread of epidemic diseases (Pandey, 1997). This river receives a lot of canals, tributaries and small river, which has been played a dominant role on the hydrobiology of the Karnafully River, contributing large amount of contaminated water, solid wastes, sewage (Hossain et al., 2006). The latest addition to the fertilizer industry is a modern installation with a proper stream, but Hossain (1992) reported that the Karnafully estuary is, nevertheless, being polluted by its effluents. About 800 industrial units are located on and adjacent to the banks of the Karnafully in different industrial areas such as Kalurghat, Nashirabad, Sagarica and Anawara industrial zone as well as oil refinery, oil companies depot, ship...
breaking activities, etc. (ADB, 2004). It is obvious that huge amounts of toxic pollutants in its rivers and in the Bay of Bengal are threatening aquatic life, particularly fish. Many cases of localized but severe environmental problems, like fish kills, have been registered by the DOE, other institutions and by fisher folk (Bhuyain, 1983). The invertebrate’s fauna is affected by the elimination of certain species, taxa which are universally affected by metal mining and associated activities. Mollusks, crustacean, Platyhelminthes, oligochaetes and some groups appear to behave inconsistently in response to metal pollution (Tyler and Buckney, 1973; Bhuyan et al., 2016; Islam et al., 2016). Consequently, any form of critical investigation on estuarine living resources and their environment can be considered as an important research in Bangladesh. As part of the estuarine study, this paper review the living estuarine resources with their usefulness and their depletion due to pollution.

Figure 1 Map showing the study site (Map created by ArcGIS v.10.3)

1 Status of the Water Quality
1.1 Physico-chemical parameters of the Karnafully River

Industrialization increases the unsuitability of surface water and create pressure on ground water which have negative impacts on human and aquatic organisms (Bhuyan et al., 2017). Physico-chemical parameters fluctuated seasonally in the estuarine area (Khan and Mahmood, 1976; Quader, 1978; Paul, 1981; Hussain et al., 1988a; Hussain et al., 1988b; Hussain, 1992; Islam, 1993; Uddin, 1993; Ahammad, 1995). The ranges of measured parameters of water samples were 26.5-32°C, 0.0-5.0‰, 7.5-7.9 and 2.28-2.91 mg/L for temperature, salinity, pH and DO (Alam and Zafar, 2012) (Table 1).

Table 1 Physico-chemical parameters of the Karnafully river water (Source: Sarwar et al., 2010)

Sample id	Color	Odor	Tem. (°C)	TSS (mg/L)	TDS (mg/L)	TS (mg/L)	Turb (FTU)	DO (mg/L)	pH	EC (µs/cm)	BOD (mg/L)	COD (mg/L)	Salinity (mg/L)
Patenga Sea Beach	Nearly colorless	Odorless	21	590	13200	13990	42.00	3.0-2.6	7.0	19920	163	390	6.20
Patenga Nevay Academy	Nearly colorless	Odorless	21	560	17500	18300	50.10	2.7-2.9	6.9	31340	178	380	6.50
Nevay Academy 15 no ghat,	Nearly colorless	Odorless	22	610	16100	16850	49.45	2.5	6.9	29900	195	420	9.20
opposite of the KAFCO													
Dry Dock	Nearly colorless	Odorless	23.5	360	15000	15490	38.54	0.70	6.9	29200	195	423	9.90
Shipping Corporation	Nearly colorless	Odorless	23.5	490	12590	13193	45.00	0.20	6.8	20700	200	425	6.70
Continued Table 1

Sample id	Color	Odor	Tem. (°C)	TSS (mg/L)	TDS (mg/L)	TS (mg/L)	Turb (FTU)	DO (mg/L)	pH	EC (µs/cm)	BOD (mg/L)	COD (mg/L)	Salinity (mg/L)
Chaktai New Bridge	Muddy	Pungent	22	480	510	1120	40.50	2.10	6.7	820	290	635	0.40
Karnafuly River in front of Chaktai Khal	Turbid color	High pungent	22.5	190	421	695	16.20	0.35	6.6	820	397	865	0.40
Chaktai Khal (Chawkbazar)	Turbid color	High pungent	23	120	292	472	14.00	0.65	6.6	552	198	510	1.50
Firingibazar Khal (at outfall to Karnafuly River)	Light green	High pungent	24	230	999	1320	19.71	0.40	6.4	1806	370	755	5.20
Firingibazar Khal (Upstream)	Oily & Black	High pungent	24.5	380	6920	1320	19.71	0.40	6.4	1806	370	755	5.20
Monohar Khal (Low tide starting, east of Sadarghat)	Turbid color	Odorless	24	175	910	1167	18.45	0.10	6.4	1712	273	600	1.40
Monohar Khal (at outfall to Karnafuly River)	Nearly colorless	Odorless	24	305	7510	7932	22.00	1.20	6.5	12880	243	590	5.10
Mazhirghat (Main drain)	Light green	Shortly pungent	23.5	210	3500	3910	19.50	4.5-8	6.4	6190	310	743	2.70
Mazhirghat (Outfall to Karnafuly River)	Turbid color	Shortly pungent	23.5	275	6300	6685	26.10	6.5	10450	255	695	4.70	

At the waste disposal area, DO varied between (3.3-6.2) mg/L, BOD (1.83-4.82) mg/L and pH (6.3-7.8) (Hossain et al., 1988). Islam et al. (2015) recorded the mean concentrations of pH (7.1-8.5), DO (0.1-0.55 mg/L), TA (47.6-65.9 mg/L), TDS (631.8-653.6 mg/L), TSS (280-300.3 mg/L), SO₄²⁻S (1-2.3 mg/L), NH₃ (0.6-1.1 mg/L), NO₃⁻N (0.2-0.3 mg/L) and PO₄³⁻P (0.1-0.5 mg/L). Ahmed et al. (2010) also studied on the Karnafuly river water quality (Table 2).

Table 2 Water quality of the Karnafuly River

Parameters	WHO Standard	Present Study	Previous Study
Ambient temp (°C)	-	18.25-35.00	ND
Water temp (°C)	-	19.50-34.30	ND
pH	NYS	6.36-9.86	7.01-8.24
EC (S/cm)	800-1000	90.00-45600.00	100-26150
TDS (mg/L)	-	45.00-20000.00	ND
TSS (mg/L)	-	14.40-5100.00	ND
TS (mg/L⁻¹)	-	46.00-27700.00	ND
DO (mg/L)	4-6	0.00-7.91	3.20-7.20
Transparency (cm)	-	1.50-150.00	ND
Acidity (mg/L)	-	1.60-52.25	ND
CO₂ (mg/L)	6	1.41-49.98	ND
P.alkalinity (mg/L)	-	0.00	ND
The total Biological Oxygen Demand (BOD) load was estimated at about 3.5 MT every day (Ali, 1997). Uddin (2006) recorded the value of DO (4.9-5.21) mg/L, TDS (115-550) mg/L, BOD (1.14-2.99) mg/L, COD (10.8-32.1) mg/L (Uddin, 2006). Akter (2012) found following values from KPM effluent (Table 3).

Table 3: Experimented value from laboratory analysis of KPM effluent

Parameters	Banshghat (Control)	KPM discharge point	Dhubashi Bazar	Average	Standard		
pH							
Dry season	8.19	8.10	8.90	8.66	7.52	8.51	6-9
Wet season	8.10	8.90	8.98	7.52	8.51	6-9	
TDS (mg/L)	80	102	520	210	180	327.5	2100
TSS (mg/L)	110	170	220	122	280	310.5	150
DO (mg/L)	4.5	4.2	0.8	3.25	3.12	1.99	4.5-8
BOD (mg/L)	10	12	24	18	9	16.75	50
COD (mg/L)	150	170	780	320	280	500	200
SO4²⁻ (mg/L)	0.14	0.9	12	22.0	17.0	5.98	0.40
Cl⁻ (mg/L)	15	17	28	12	14	19.25	600
NO3⁻ (mg/L)	0.9	0.3	2.8	2.2	1.2	2.25	10

Note: Source: Akter (2012)

Temperature, transparency, pH, DO, BOD and petroleum hydrocarbon concentration in water sample were found to be ranged from 27-29°C, 14-18 cm, 7.9-9.5, 4.5-7.9 mg/L, 33.6-450.3 mg/L (Ahmed, 2006). According to Chowdhury (2005) DO, water temperature, pH, salinity, CO₂, HCO₃, alkalinity, NO₃-N, PO₄-P and SiO₂-Si varied seasonally. Hossain (2004) and Ahmed (2010) also conducted research on the water quality of the arnfully river (Table 4; Table 5).
Table 4 Typical analysis of river water and pollution load in the Karnafully River at different locations, April 1984–March 1985

Location	pH	E.C. (micromhos/cm)	Chloride (mg/L)	Total alkalinity (mg/L)	S.S. (mg/L)	D.O. (mg/L)	BOD (mg/L)	COD (mg/L)	Remarks
Middle of Karnafully River near Bambooghat	7.7	245	18.0	55	240	6.5	38	65	Maximum
	6.8	134	6.2	34	59	5	4.2	49	Average
	6.0	100	2.0	16	101.0	4.0	0.4	30	Minimum
Side of Karnafully	8.5	750	100.0	460	42.5	5.9	22.0	68	Maximum
	7.3	218	15.5	36.8	11.0	4.4	3.8	45.1	Average
	7.0	120	3.1	18	46	0.1	1.0	30	Minimum
River near Dovashi bazaar	7.6	250	28	60	31	5.6	3.2	55	Maximum
	7.2	150	7.4	36	12	5.0	2.0	42.2	Average
	6.7	120	2.5	18	58	3.8	0.7	26	Minimum
Middle of Karnafully	8.4	-	-	-	48.5	7.4	2.9	104	Maximum
River near Dobshi bazaar	7.9	-	-	-	23.0	7.0	2.2	78.9	Average
	7.6	-	-	-	≧ 50	6.5	1.6	39.5	Minimum
Side of Karnafully river near Patenga	7.7	245	18.0	55	240	6.5	38	65	Maximum
	6.8	134	6.2	34	59	5	4.2	49	Average
	6.0	100	2.0	16	101.0	4.0	0.4	30	Minimum
Acceptable value of the parameters in the case of use of the river for fishing	6.5-8.5	-	-	-	≧ 7.0	≧ 5			

Note: Source: Hossain (2004)

Table 5 Seasonal variation of the Karnafully river water quality

Parameters	Seasons	Karnafully Min.	Karnafully Max.
pH	Pre-monsoon	7.15	8.12
	Monsoon	6.36	9.86
	Post-monsoon	7.20	8.40
EC	Pre-monsoon	90.00	36325.00
	Monsoon	99.00	25300.00
	Post-monsoon	93.00	45600.00
DO	Pre-monsoon	.00	6.33
	Monsoon	2.15	6.50
	Post-monsoon	3.25	7.91
	Pre-monsoon	1.41	13.31
Carbon dioxide	Monsoon	4.47	13.40
	Post-monsoon	3.12	49.98
	Pre-monsoon	5.64	119.00
Total alkalinity	Monsoon	16.29	104.00
	Post-monsoon	24.00	121.00
	Pre-monsoon	16.00	4000.00
Total hardness	Monsoon	10.00	2380.00
	Post-monsoon	22.00	4500.00
Chloride	Pre-monsoon	2.09	13147.70
	Monsoon	3.21	10125.94
	Post-monsoon	7.00	12120.20
Continued Table 5

Parameters	Seasons	Karnafullly		
		Min.	Max.	
BOD	Pre-monsoon	0.22	9.17	
	Monsoon	0.21	6.22	
	Post-monsoon	11.39	122.46	
Nitrite-N	Pre-monsoon	1.01	3.89	
	Monsoon	0.00	5.18	
	Post-monsoon	1.60	14.60	
	Pre-monsoon	2.00	3.37	
Phosphate-P	Monsoon	0.12	4.94	
	Post-monsoon	9.26	212.81	
Sulphate-S	Pre-monsoon	152.08	974.10	
	Monsoon	28.55	977.08	
	Post-monsoon	9.26	32.87	
Fe	Pre-monsoon	0.06	2.30	
	Monsoon	0.40	2.72	
	Post-monsoon	0.23	3.24	
Mn	Pre-monsoon	0.01	0.92	
	Monsoon	0.22	0.45	
	Post-monsoon	0.01	0.24	

Note: Source: Ahmed (2010)

2.2 Sediment
The overlying deposits of the Karnafully river is consist of successive layers of mud and sand (Rizvi, 1971). During rainy season, a large amount of sand and mud particles run down into the river water increasing turbidity and decreasing navigability of the river by siltation (Hossain, 1992). Chowdhury (2005) conducted a comprehensive study on the soil of the Karnafully river (Table 6).

Table 6 Organic carbon, organic matter and soil texture of sediment at three stations during post-monsoon (January, 2005)

Parameters	Amanat Shah Bridge	Sadar Ghat	Jetty no. 15
Organic carbon	0.200	0.230	0.430
Organic matter	0.344	0.396	0.740
Soil texture			
Sand (%)	82.36	84.25	78.87
Silt (%)	7.82	6.90	11.52
Clay (%)	9.82	8.85	9.61

Note: Source: Chowdhury (2005)

2.3 Macro benthos
Macro benthos distribution vary spatially and temporally (Sharif et al., 2017). According to Chowdhury (2005) maximum population density 148583 indiv/m² was recorded during pre-monsoon at Amanat Shah Bridge and minimum population density 1333.33 indiv/m² was recorded at Jetty no.15 during monsoon. Sharif et al. (2017) recorded 25 major taxa of zooplankton from the Karnafully River of which 23 taxa during monsoon, 20 taxa during post monsoon and 20 taxa during pre-monsoon. Species richness, diversity and evenness were very low in the mouth of the Chaktai canal where majority of sewage materials of Chittagong city falls into the Karnafully estuary in comparison with the Goverment Fish landing station and Eastern side of the third Karnafully Bridge (Molla et al., 2014). Oligochaetes, the most common that constitute the largest assebly of benthic form during pre-monsoon and lowest during monsoon (Kamruzzaman, 2003) (Table 7).

2.4 Bacteria
Health hazard bacteria are *Escherichia coli*, Fecal *Streptococci* sp. and *Staphylococcus*. Occurrence of *Salmonella* sp. and *Vibrio cholerae* were also found (Alam, 2005). In compare with bacterial load between water and sediment,
sediment sample carry higher bacteria than water sample in the Karnafully River (Alam, 2005). The available DO consumed by bacterial activity and thus the presence of such materials quickly leads to a depletion of DO (Islam, 1998). Hossain et al. (1988) recorded as many as 18000 coliforms/100 mL in the Karnafully River Estuary near sewage disposal areas which is higher than safer level (0/100 mL) for drinking water and greater than 200 cells/100 mL for bathing recommended by WHO (1984) (Table 8).

Table 7 Major taxa of macro benthos and their total number (indiv/m²) among Amanat Shah Bridge, Sadar Ghat, Jetty no. 15 during post-monsoon (December-2004)

Major taxa	Amanat Shah Bridge	Sadar Ghat	Jetty no. 15
Polychaeta	1083.333	1166.667	500.000
Oligochaeta	625.00	750.000	583.333
Gastropoda	83.3333	0.00000	208.3333
Bivalvia	166.6667	83.3333	0.000000
Crab larvae	41.6666	0.00000	0.000000
Amphipoda	83.3333	41.6666	41.6666
Urchin	0.00000	41.6666	0.000000
Megalopa	41.6666	41.6666	0.000000
Nematoda	83.3333	83.3333	83.3333
Isopoda	41.6666	0.00000	41.6666
Insecta	83.3333	125.000	0.000000
Unidentified	375.00	208.333	291.6667
Total	2708.33	2541.667	1750.00

Note: Source: Chowdhury (2005)

Bacteriological study showed that coliform bacteria and faecal streptococci occurred in greater frequency in the polluted area of the Karnafully River rather than pristine area. Polluted stations (Sadarghat and Majhirghat) were dominant in respect of quantitative distribution of Oligochaetes and Polychaetes and occasionally Molluscs (Hossain, 1983) (Table 9).

Table 8 Seasonal variations of different group of organisms/m² at polluted and unpolluted area of the Karnafully River Estuary

Months & Years	Oligochaeta (Ind/m²)	Polychaeta (Ind/m²)	Mollusca (Ind/m²)	Miscellaneous group (Crab larvae, Mysids, Amphipod, Shrimp larvae, Dipteran larvae) (Ind/m²)	Total organisms (Ind/m²)					
	Polluted	Unpolluted								
April’82	67203	83	1042	63	125	104	-	21	68375	271
May’82	7667	83	333	63	313	63	42	-	8355	209
June’82	2167	63	792	42	417	73	62	73	3438	251
July’82	77488	292	21	-	146	-	21	77509	459	
Aug’82	22417	42	542	105	167	83	42	21	23168	251
Sept’82	83	-	-	-	-	-	-	-	83	-
Oct’82	1500	21	250	73	-	-	-	-	1750	198
Nov’82	646	-	146	73	-	83	-	-	792	136
Dec’82	21	-	188	-	-	-	42	-	251	-
Jan’82	417	-	833	-	-	-	-	-	1250	-
Feb’82	988	-	563	42	-	-	-	-	1521	42
Mar’82	8188	63	396	104	-	21	63	73	8667	261
Total (Ind/m²)	188760	647	5106	565	1022	553	271	313	195159	

Bacteriological study showed that coliform bacteria and faecal streptococci occurred in greater frequency in the polluted area of the Karnafully River rather than pristine area. Polluted stations (Sadarghat and Majhirghat) were dominant in respect of quantitative distribution of Oligochaetes and Polychaetes and occasionally Molluscs (Hossain, 1983) (Table 9).
Table 9 Health hazard indicating bacterial load in water and sediment of the three sampling sites of the Karnafully River Estuary

Month	Sample	Site	TBC($\times 10^2$)	E. coli	Streptococci sp.	Staphylococci sp.
March	Water	Near Shah Amanat Bridge	4.03	30.67	172.33	11.0
		Near Sadar Ghat	3.95	22.67	126.67	5.00
		Near Jetty No. 15	3.94	24.67	148.33	7.00
	Sediment	Near Shah Amanat Bridge	6.32	100.67	203.00	20.33
		Near Sadar Ghat	5.86	44.67	177.67	9.33
		Near Jetty No. 15	5.71	79.00	162.0	6.67
April	Water	Near Shah Amanat Bridge	3.81	30.33	185.67	10.33
		Near Sadar Ghat	4.45	34.67	134.67	6.33
		Near Jetty No. 15	3.97	22.33	188.33	8.33
	Sediment	Near Shah Amanat Bridge	5.96	129.67	266.33	16.67
		Near Sadar Ghat	6.13	64.67	226.33	16.67
		Near Jetty No. 15	5.94	76.67	164.0	11.67
June	Water	Near Shah Amanat Bridge	4.20	33.00	200.67	14.00
		Near Sadar Ghat	3.99	29.00	166.33	12.33
		Near Jetty No. 15	3.88	16.67	118.33	5.33
	Sediment	Near Shah Amanat Bridge	6.37	108.67	269.0	14.33
		Near Sadar Ghat	6.22	93.67	215.67	18.33
		Near Jetty No. 15	5.76	54.00	108.0	17.00
July	Water	Near Shah Amanat Bridge	4.19	22.00	145.33	9.33
		Near Sadar Ghat	4.27	39.00	164.33	7.33
		Near Jetty No. 15	3.83	15.33	134.0	10.33
	Sediment	Near Shah Amanat Bridge	6.16	42.67	189.33	10.67
		Near Sadar Ghat	6.23	54.00	175.67	20.00
		Near Jetty No. 15	6.12	68.67	144.67	13.33

Note: Source: Alam (2005)

2.5 Fish diversity
Total 30806 numbers of species were found and the range of species number was from 397 to 1296 with a mean of 855.72±202.58 (Habib, 2011). According to Khan (2005) there are about 51 species under 23 families were found in the Karnafully River Estuary. Among seventy four (74) fish species have been reported by Bhuiyan and Gafur (1977). Twenty eight (28) have neither obtained in sample nor interviewing to fishermen revealed to exit which showed in Kamal (1992) observation. This is probably due to huge pollutant discharges from various sources into the estuary. Pollution status and its hazardous effects in the Karnafully River Estuary have been reported by Khan and Talukder (1993) and Mahmood et al. (1992). Diversity of ichthyofauna is closely related with physico-chemical parameters. Species distribution also vary temporal and spatial basis. In the monsoon, species diversity was found than that of the any other seasons (Khan, 2005). The combination of diverse fluctuating parameters are responsible for distribution and occurrence of ichthyofauna in the estuarine waters (Zafar, 1986).

3 Pollution Sources and Industries
3.1 Major sources of pollution
Water is the most vital element among the natural resources and is crucial for the survival of all living organisms including humans, for food production and economic development (Shiklomanov, 1993). Surface water of the country is vulnerable to pollution from untreated industrial effluents, municipal wastewater, runoff from chemical fertilizers and pesticides, and oil and lube spillage in the coastal area from the operation of sea and river ports (Hossain, 2001). Water quality depends on effluent types and discharge quantity from different types of industries, types of agrochemicals used in agriculture and seasonal water flow and dilution capability by the river system (DHV, 1998). Industries along the side of the River Karnafuly damp 50 to 60 ton of wastes per day directly into the river (Table 10).
Table 10 Estimated Pollution load as Biodegradable organics in terms of kg BOD/day at Chittagong

Industrial zone	Pollution load (kg/day)				
Pollution source in Chittagong area	Total	Textile	Paper	Leather	Others
Karnuphuli river	-	-	1400	110	
Kalurghat	2500	-	-	4100	1500
Nasirabad/Sholashahar	6400	800	-	-	1800
Patenga	2000	200	-	-	1150
Kaptai (Chandraghona)	5800	2550	2100	-	
Bhatiari	1000	600	-	-	400
Kumira	380	380	-	-	
Barakunda	600	600	-	-	
Fauzdarhat	3200	2300	-	-	900
Domestic waste load from	3500	-	-	-	
Chittagong city					

Note: Source: ESCAP (1988)

Moreover, 05 major canals carry domestic and municipal wastes and effluents to the River Karnafully. Urea Fertilizer Factory discharges untreated effluents directly into the River Karnafully. Hg, Pb, Cr, Cd and As from 144 industries, degradable and persistent organic and inorganic compounds from 297 industries and oil, lubricants from (40-50) tankers polluting Karnafully river (MoFL, 2013). From the survey of effluents from different industries, it has been found that the discharge is generally composed of organic and inorganic wastes. The organic wastes are the effluents from the tanneries, fish processing units, degradable wood chips, pulps and untreated municipal and sewage (about 40,000 kg BOD daily) etc. The inorganic wast are chemicals used by the industries such as various acids, bleaching powder, lissapol, hydrogen peroxide, alkali, salts, lime, dyes, pigments, aluminium-sulphate and heavy metals etc. The DDT factory and fertilizer factory disposing of DDT, toxic chemicals and heavy metals to the Karnafully River and ultimately to the Bay of Bengal. Some survey showed about 220 ppm of chromium, 0.3-2.9 of cadmium, 0.05-0.27 ppm of mercury, 0.5-21.8 ppm of lead entering into river and sea water much higher than allowable limits and extremely alarmingly to aquatic flora and fauna and through food chains to human beings (Table 11).

Table 11 Mean load of heavy metals in the coastal water of Chittagong (Tamanna and Hossain, 2010)

Metals	Mean load of metals (µg/L) with seasonal variation	Standard limit (µg/L)	
	Rainy	Dry	Standard limit (µg/L)
As	3.746	3.981	2.60
Co	8.989	11.937	0.50
Cr	23.346	25.085	50
Cu	57.423	62.336	08
Fe	536.371	583.042	300
Mn	20.349	23.104	100
Ni	7.844	12.106	01
Pb	23.778	24.015	8.50

Note: Maximum deterioration of the water quality was observed during summer and rainy season due to excessive disposal of wastes and outfall of land washing (Hossain, 1988)

It may be mentioned that Bangladesh obtain table salt from solar drying of sea water and consequently increase pollution of sea water shell create a serious national health hazard situation (IEDS, 2003). The concentration of Pb, Cu, Fe, Ni and Cr were observed higher and concentration of Mn and Cd were found lower than that of the recommended values. It was assumed that from the analytical findings that the estuary has been polluted from domestic sewages, land washout, river runoff and shipping activities (Das et al., 2002). There are some study on the contamination level of heavy metals in water and in sediments along the Karnafully estuary and its adjacent coastal area (Sarker, 1998; Sanjoy, 2007; Tamanna and Hossain, 2010; Hossain, 2010). An ADB study reported...
effluent flux of 150,000 litres/day from tannery Industry at Kalurghat, Chittagong, and discharge of about 0.35 tons of China clay/day from Karnafully Paper Mills (KPM) at Chittagong (MoEF, 2005) that Pollutes river water. According to a government report, in the 1994-1995 fiscal year alone, 2528 metric tonnes of wastes were dumped from shrimp processing units into the Bay of Bengal via the Karnafully River (Hassan, 2006). Human excreta from the city’s 50,000 sanitary and 24,000 service latrines are thrown into the river (Khan et al., 1996). Technical workshops, automobile factories, motor garage, vehicle repairing units, asphalt road constructions, etc. discharge lube oil, grease, diesel, bitumen, and tar, which ultimately contaminate the sediment. The industrial zones, EPZs and city dwellers activities are also responsible for oil contamination in the Karnafully River (Hossain, 2006). Rajakhali Canal, a tributary of the Karnafully River estuary, flowing through Chittagong City (the commercial capital of Bangladesh) receives a huge amount of domestic and industrial wastes and sewages (Islam et al., 2015). In Chittagong region, wastewater from Nasirabad industrial area (mainly chemical, leather, textile and steel re-rolling industries) is discharged into surface drains that ultimately carry it to the Karnafully river (Dey et al., 2015). There are rather few studies published in recent years on pollution sources in the Karnafully River (Hossain et al., 1992; 2001). Annually about 1216 ships and 45-60 oil tankers are handled at the Chittagong port (Ashraf, 2003). As a result, various refuse and disposable materials are discharged and spills from ships, oil tankers and fishing boats get mixed with water and sediments. The high level of Cu in sediments of the Karnafully coast indicates a higher input of deposited organic matter which comes from the industrial and domestic sewages (Siddique, 2012). Nutrient pollution occurred at the Karnafully River to St Martin Island, BoB when concentrations of nitrate, phosphate and silicate vary from 0.16 to 8.98 μg at/1, 0.08 to 2.33 μg at/1 and 0.67 to 6331 μg-at/1 which indicate high productivity (Holmgren, 1994). Running water of the Rivers Karnafully and Padma is heavily contaminated by industrial influents of factories from the river banks (Sarker, 2009) (Table 12).

Table 12 Estimated amount of pollutants entering the water

Inorganic	Probable quantity discharged directly or indirectly to coastal water of Chittagong	Conc. Level in ground water in Chittagong (ppm)	Conc. Level in surface water and in Bay of Bengal (ppm)	Standard allowable concentration (ppm)
Mercury	500kg/year	-	0.05-0.27	0.01
Lead		-	0.5-21.8	0.025
Chromium		-	220	0.05
Arsenic		-	+ve	0.015
Cadmium		-	0.3-2.9	0.015
Si	1.9-12.12	-	-	
Al	0.53-32	-	-	
Fe	0.97-42	2.6-5.6	0.3	
Ca	3.2-25.2	5.2-23.2	-	
Mg	0.0-70	6.57-10.36	125	

Note: * * means data not available; Source: Department of Environmental Pollution Control, Bangladesh (ESCAP, 1988)

3.2 Major polluting industries

The major polluting industries are 19 tanneries, 26 textile mills, 1 oil refinery, 1 TSP plant, 1 DDT plant, 2 chemical complexes, 5 fish processing units, 1 urea fertilizer factory, 1 asphalt bitumen plant, 1 steel mill, 1 paper mill (solid waste disposal hourly 1450 m³), 1 rayon mill complex, 2 cement factories, 2 pesticide manufacturing plants, 4 paint and dye manufacturing plants, several soap and detergent factories and a number of light industrial units (IEDS, 2003) (Figure 2). According to Islam (1993); Rahman (1994); Ahmed et al. (2002); Kamruzzaman (2003) and Uddin (2006) the polluting industrial units include 19 tanneries, 26 textile mills, 2 chemical industries, 5 fish processing plants, 2 soap factories, 2 pesticide plants, 2 detergent plants, 1 oil refinery, 1 asphalt bitumen plant, 1 TSP plant, Chittagong Steel Mills Ltd., Karnafully Paper Mills, Karnafully Rayon Complex, coca cola factory, 4 paint and dye manufacturing units, Chittagong Urea Fertilizer Ltd. (CUFL), Triple superphosphate (TSP), and Karnafully Fertilizer Company (KAFCO).
3.3 Major pollutants

SO$_2$, CO$_2$, NO$_3$, H$_2$S and lignin vapor from tanning industries; Na$_2$SO$_4$, NaOH, CaCO$_3$, Ca(OH)$_2$, Hg, Na$_2$CO$_3$, Na$_2$SO$_3$, H$_2$SO$_4$, HCl etc. from pulp and paper industries; Cr, Ni, Cd textile industries; NH$_3$, NO$_2$, SO$_2$, H$_2$SO$_4$, Sulphur dust, rock dust and COD from fertilizer industries; Lime components, silica, alumina iron from cement industries; DDT, Caustic soda, HCl, H$_2$SO$_4$, bleaching powder, acids, alkalis, ammonia, chlorine and suspended solid from chemical industries; waste water containing high level of BOD, COD, Phenol, Cyanides and very low value of DO from iron, steel and metal industries; crude oil from oil refinery; baling, jute fibre and dust from jute industries; minerals, organic acids, alkalis, ammonia, suspended solids and various chemicals from pharmaceutical industries; acids, solvents, cyanides, chlorophenolic components, lead, copper, arsenic, suspended solids etc. from pesticides and herbicide manufacturing industries; Zn, Cd and grease from rubber and plastic industries; pigments, resins, solvent, Pb, Sal, Cr, Cd, and Zn from paint manufacturing industries are major pollutants of the Karnafully water pollution (Ahmed et al., 2002). According to Chowdhury (1994) caustic soda, lime stone, lime, salt cake, resin size, china clay, alum, sodium sulphate, sodium sulphide, chlorine gas, calcium hydrochloride, hydrochloride, sulphuric acid and sodium hexameta phosphate are major chemicals used in KPM and KPRC industries.

3.4 Types of pollutants

3.4.1 Organochlorine pesticides

Seasonal variation in organochlorine pesticides was estimated in the Karnafully River (Table 13).

Table 13 Seasonal variation in Organochlorine pesticides

Name	Lindane (ng/mL)	Aldrin (ng/mL)	Heptachlor (ng/mL)	P,P’DDT (ng/mL)	P,P’DDE (ng/mL)	P,P’TDE(DDD) (ng/mL)
Surface Water	0.321-0.023	0.020-0.010	2.291-0.053	1.851-0.340	1.18-.005	1.421-0.018
Surface Sediment	1.321-0.425	3.142-0.123	3.607-1.224	4.560-0.745	5.030-0.085	2.831-0.531
Fish Muscle	132.915-85.212	103.215-26.285	937.88-124.6	702.59-40.0	152.35-107.25	825.79-112.0

Note: Source: Mannan (2006)

3.4.2 Solid wastes

Solid and solid wastes causes serious environmental problems containing urban local government in developing countries. Solid waste generation of the urban areas of Bangladesh is increasing proportionately with the growth of its population that is 5.4% per annum (BBS, 1997). The highest Total Suspended Solid (TSS) was found 405
mg/L at the Karnafully River Estuary (Jetty No.15) and lowest was 169 mg/L (Uddin, 2006). The concentration of TDS was 520 mg/L and TSS was 220 mg/L in dry season and 400 mg/L TDS as well as 620 mg/L was found in wet season at KPM discharge point (Akter, 2012). Akter (2012) showed that solid waste generated from domestic sewage which contributes (53.9%), street sweeping (19.5%), commercial waste (1.4%), industrial waste (8.2%) and clinical waste (1%) in Chittagong city. According to Sarkar (2000) domestic sewage contributes (48.9%), street sweeping (21.5%), commercial waste (18.4%), industrial waste (10.2%) and clinical waste (1%) in Chittagong city.

3.4.3 Domestic sewage
The mixture of water and waste products popularly called sewage (EQS, 1991). Human excreta is only one component of domestic sewage with the wastes of personal washing, household cleaning and home food preparation adding to the dissolved and suspended, organic and inorganic materials in the carrier water (Uddin, 1993) consist of nitrogenous materials, carbohydrates, fats and soaps (EQS, 1991). The Chittagong city has about 50000 sanitary latrines, 24000 service latrines and 3 public toilets whose excreta collected by the municipality are stored in 5 large tanks for 2 months and then discharged into the rivers (Mozumder, 2003). In case of sewage, Chaktai canal contributes 30%, Monoharkhali canal 15%, Majhirghat canal 25% and Firingi-Bazar canal 18% into the Karnafully River (Source: Ahammod, 1995).

3.4.4 Oil pollution
Oil pollution is only one of man's untreated wastes which contributing to the deterioration of the environment (Ahmed, 2006). In the coastal area, it is about 0-2.3 to 0-3.4 ug/kg on the surface of the water. In the tanker routes, it is about 21.7 to 11.2 ug/kg on the surface and the value of the same varies from 23.2 to 13.6 ug/kg at 10 m deep water (Alam, 2004) (Table 14).

Table 14 Oil and oily substances in the Chittagong Area

Oil and oil emulsion source	Estimated source of discharge
Chronic spillage of crude oil during transportation operation in Chittagong port	6000 metric ton/year
Ballast water	Not known
Bilge water	2.4 million gallons/year
Leakage loss of fuel oil from mechanized vessels, dry dock, fish harbor etc.	Not known
Oil emission from workshop	Not known
Crude oil residue process oil and wash water from refinery	50000 metric ton/year
Refuse oil from ship breaking activities from Fauzderhat	400 kg/year

Note: Assuming 0.5% transportation loss during crude oil transfer at Chittagong port; Source: ESCAP (1988)

According to Ahmed (2006) about 102-230 mg/L residual oil from surface area, 33.6 mg/L-180 mg/L from 5 m depth and 35.5-230.5 mg/L from 10 m depth were found (Table 15).

Table 15 Probable oil spill points in Chittagong coastal environment

Oil spill sources	Kinds of probable spill oil	Remarks
Oil companies terminal	Gasoline, kerosene, diesel oil, fuel oil, lubricating oil	Loading/unloading operation
Dry Dock	Diesel oil, fuel oil, oil mixed debris	Repairing, painting
Eastern Refinery	Heavy oil, oil residue	Crude oil refining
Port operations	Diesel oil, fuel oil, ballast, bilge	Cargo vessel and oil tanker
Ship breaking activity	Heavy oil, oil debris, ballast, bilge	Dismantling of ships/tankers
Outer anchor	Bunker oil, gasoline, kerosene, diesel oil, fuel oil	Collision, grounding
Inner anchor	Bunker oil, gasoline, kerosene, diesel oil, fuel oil	Collision, grounding
Port area	Bunker oil, Diesel oil, lubricating oil	De-ballasting, De-bilging

Note: Merchant vessels and tankers based sources; Source: Hossain (2006)
3.4.5 Heavy metal pollution

Heavy metal concentrations in the water of the river varied temporally and spatially (Bhuyan and Islam, 2017). Heavy metal concentration varied according to seasons in water, sediment and fish (Table 16; Table 17).

Table 16 Seasonal variation of trace metal concentrations (μg/mL) in water sample of the Karnafully River Estuary

Station	Area	Season	Metal concentration (μg/mL)							
			Cr	Mn	Zn	Ni	Cu	Pb	Cd	Fe
1	Mouth	Premonsoon	0.573	1.174	0.541	0.493	0.390	0.563	0.139	26.316
		Monsoon	0.602	1.210	0.781	0.520	0.612	0.616	0.217	35.129
		Postmonsoon	0.421	0.686	0.625	0.356	0.391	0.405	0.119	20.025
2	Naval base	Premonsoon	0.741	0.662	0.682	0.516	0.372	0.542	0.093	25.012
		Monsoon	0.687	0.742	0.970	0.619	0.674	0.698	0.211	40.252
		Postmonsoon	0.429	0.498	0.472	0.510	0.449	0.437	0.129	23.168
3	Sadarghat	Premonsoon	0.572	1.121	0.932	0.697	0.543	0.916	0.192	31.021
		Monsoon	0.925	1.173	1.186	0.865	0.918	1.195	0.210	42.203
		Postmonsoon	0.721	0.972	0.852	0.811	0.903	0.876	0.185	22.193
4	Kalurghat	Premonsoon	0.809	1.071	0.731	0.685	0.711	0.772	0.159	35.325
		Monsoon	0.851	1.372	0.910	0.759	0.973	0.747	0.182	36.421
		Postmonsoon	0.512	0.983	1.112	0.664	0.891	0.675	0.090	28.120

Note: Source: Sarkar (1998)

Table 17 Seasonal variation of trace metal concentrations (μg/mL) in sediment sample of the Karnafully River Estuary

Station	Area	Season	Metal concentration (μg/mL)							
			Cr	Mn	Zn	Ni	Cu	Pb	Cd	Fe
1	Mouth	Premonsoon	65.852	60.403	31.191	28.206	34.813	40.165	0.761	3230.69
		Monsoon	67.071	64.231	29.075	32.157	32.129	38.982	0.984	3425.49
		Postmonsoon	64.462	55.012	28.543	26.021	9.615	27.065	0.519	2910.52
2	Naval base	Premonsoon	56.952	62.743	38.019	56.031	35.025	35.593	1.552	3117.71
		Monsoon	57.021	59.131	36.051	58.179	50.741	37.794	1.101	3009.79
		Postmonsoon	53.148	56.189	16.724	49.256	10.059	25.110	0.813	3349.29
3	Sadarghat	Premonsoon	70.105	72.152	38.174	55.052	28.561	39.665	1.001	3649.01
		Monsoon	71.243	70.210	40.051	62.916	49.718	33.891	0.803	3810.15
		Postmonsoon	68.183	68.421	29.215	59.421	17.252	30.571	0.795	3239.14
4	Kalurghat	Premonsoon	69.631	65.321	37.145	46.021	22.192	39.158	0.625	3323.65
		Monsoon	67.542	68.145	40.253	39.365	37.681	40.081	0.712	3467.05
		Postmonsoon	63.748	61.021	38.121	44.101	24.056	34.269	0.306	3126.42

Note: Source: Sarkar (1998)

Most of the dissolved heavy metals were found to be in slightly higher concentrations during winter than that of the rainy season. This trend indicates that during low flow condition of river, the accumulation of the metal concentration increases (Dey et al., 2015) (Table 18).

Table 18 Seasonal variation of trace metal concentrations (μg/mL) in Jew fish (Otolithoides microdon) sample of the Karnafully River Estuary (Sarkar, 1998)

Representative organs	Season	Metal concentration (μg/mL)							
		Cr	Mn	Zn	Ni	Cu	Pb	Cd	Fe
Liver	Premonsoon	6.113	8.765	16.419	4.324	40.715	1.564	0.413	160.262
	Monsoon	5.067	3.909	9.825	2.862	11.291	0.501	0.297	130.012
	Postmonsoon	6.052	5.616	10.326	3.934	17.235	1.968	0.368	140.396
Muscle	Premonsoon	5.203	11.415	25.102	2.436	9.837	1.125	0.098	98.147
	Monsoon	3.051	5.617	41.016	1.978	8.371	1.161	0.375	39.372
	Postmonsoon	4.690	8.168	28.132	2.156	12.192	0.160	0.105	95.261
Water is presently contaminated by heavy metals from dyeing industries and oil spills from ship braking industries and ongoing vessels (Sarker, 1991; 1992; 2004; Sarker and Sarker, 1986; 1988).
3.5 Major causes of fish depletion

In Bangladesh, the fish species from the inland and marine water bodies declined gradually due over the last two decades and the catch of fish declined about 40% compared to the past 20 years (DoF, 2002). A number of studies indicated that the major cause of declining fish catch from the river are the increased fishing pressure and habitat destruction (Tsai and Ali, 1987; Siddique, 1990; Hogarth et al., 1999; Graff et al., 2001). Species diversity also declined due to indiscriminate use of gears, over fishing, destruction of spawning ground and trapping of so called white fish (i.e., carps and butterfish) during their downstream migration from floodplains to river (Ali, 1997; Hogarth et al., 1999; Graff et al., 2001). Pollution, soil erosion, siltation, reclamation of land for settlement, reduction of wetland and biodiversity and proper management problem are the probable causes for the declination of the fishery resources (Khan, 2005).

4 Impacts of Pollution

The scientists in a recent research on the Karnafully found traces of radioactivity ‘very close to risk level’ on the soil. If radioactivity of the river soil goes up it will hamper the natural breeding of fish as well as growth of fishes. If the people eat the affected fish it may spread to their body (Amin, 2015). Ahmed and Reazuddin (2000) reported that the availability of the heavy metal in river water directly affects the fish physiology and by the consumption ultimately affects the human health. The presence of heavy metals in the aquatic environment is of major concern because of their heavy toxicity, bio-accumulating tendency in the biota. Pollution by heavy metals is a threat to human life and the entire environment as well as the wetland ecosystem (Islam and Tanaka, 2004; Igwe and Abia, 2006).

Oil pollution responsible for loss of productivity, other resources and exert adverse effects on aquatic environment, sometimes it become carcinogenic to living organisms (Ahmed, 2006). Oil pollution causes severe damage to fishes and crustaceans.

Contaminated water is not suitable for household uses and possibly hazardous to many aquatic animals and human health. Salmonella spp. concentrations found in water and soil samples exceed the standard level both in water and soil that indicates contaminated water is unsuitable for drinking or for even washing without appropriate water treatment for humans (Alam, 2012). Escherichia coli and Staphylococcus causes abdominal cramping, water borne diseases like diarrhea, fever, nausea and vomiting (HACCP, 2000).

Long term consumption of fishes may have a negative impact on human health (Bhuyan et al. 2016). Pathogens (Oligochaetes) are causative agents of different types of diseases of human beings found very high abundance near sewage outfalls areas in the Karnafully River estuary, which indicates localized pollution in the estuary (Hossain, 1987). The major channels which carry domestic wastes and spread into the coastal city areas causing pathogenic microbial pollution and serious health hazards during the rainy season and flood periods severity is more in the Bay (Mahmood et al., 1994). 20,000 fishermen in Raúján, Rangúnia and Anowara thanas previously dependent on the Karnafully river have given up their fishing profession because they do not have enough catches any more (SEHD, 2002). Lower concentrations of methyl mercury may kill aquatic organisms (Hossain, 2004). Paul (1981) also found the minimum phytoplankton population in the oil polluted Karnafully River Estuary. Most species of fish cannot survive in insecticides in concentrations greater than about 1-10 ppb. A sub lethal dose for fish and birds may bring immediate danger (Ali, 1997).

About 23 species of fishes were found in the Karnafully River during 1975-76, which has come down to 6-7 species during 1987-88. Effluents discharged from the large industries have ruined the Hilsha stock of the Karnafully river (Hossain et al., 2006). Presence of heavy metals in the river water causes perilous impact on the aquatic organisms (Dey et al., 2015). The fish catch is diminishing in the river year after year due to depletion of DO (Ali, 1997). The toxic chemical pollutants like Hg, Pb, Cd, COC and DO were found higher than the EQS value which is dangerous for entire aquatic ecosystem and public health (Akter, 2012). Excessive discharge of nitrogen, sulphur and phosphorus compounds in the water system can cause eutrophication (Bhouyain, 1981). The presence of NO₃ in natural water associated with ecological and health hazard, excess NO₃ in human food and
animal feed has adverse impacts, in human health it causes methmoglobinemia cancer (child cancer), respiratory illness. In animal health, causes loss of livestock. Excess NO3− pollute water causing eutrophication (Akter, 2012).

Effects on marine organisms produced by industrial discharged oil studied by Hossain (2011) (Table 21).

Table 21 Effects of pollutants on marine biota

Pollutants	Organisms	Effects
Discharged Oil	Phytoplankton	Reduced Carbon fixation, cell photosynthesis and finally death.
	Zooplankton	Clogged by the oil and sink to bottom
	Mangrove vegetation	Mangrove swamps are highly vulnerable to oiling and oil residue.
	Marine Mammals	Hampered on breeding.
	Algae and sea weeds	Cell division is inhabited at oil concentration of 0.01ppm Sea weeds are clogged and smothered by oil.
	Eggs and larvae	At concentration of 0.01 ppm crude oil hatching of fish eggs is irregular, late and deformed At 1 ppm of oil creates abnormal development of young lobsters
	Fish and shellfish	Locking of gills of fishes Retardation of growth Reduction by defence
	Benthos	Oil residues as tar balls creates acute toxic condition at the bottom Aromatic hydrocarbons cause pronounced mortality to the burrowing organisms
	Sea birds	Reduction of flying capacity due to excessive mixing oil with feather Loss of buoyancy of birds Reduction of shell thickness of eggs Loss of breeding capacity

Note: Source: Hossain (2011)

5 Conclusion
From the critical review, it can be concluded that the Karnafully river water is being polluted gradually by haphazard and unplanned industrialization. Polluted water exacerbatin the health problems both in human and fish posing different fatal and chronic diseases. This review also proved that, industrial area are severely polluted than non-industrial area. This review suggested that to protect the aquatic ecosystem by eco-friendly and planned industrial growth.

Authors' contributions
Md. Simul Bhuyan designed and conducted the review. Md. Shafiqul Islam provided instructions and performed critical review of the manuscript.

Acknowledgments
The authors are grateful to the Biodiversity, Environment, Climate Change and Risk Assessment Research Laboratory, Institute of Marine Sciences and Fisheries, University of Chittagong which has the major contributions to conduct this research. Special thanks to Abu Sayeed Muhammad Sharif (Bangladesh Oceanographic Research Institute, Cox’s Bazar, Bangladesh), Muhammad Abu Bakar (Bangladesh Council of Scientific and Industrial Research, Chittagong, Bangladesh) and Mir Mohammad Ali (WorldFish, Bangladesh) for their continuous inspirations during the research. Special thanks extended to Mr. Md. Fazlur Rahman (Librarian, Institute of Marine Sciences and Fisheries, University of Chittagong) for his incessant support with books, term papers and thesis materials. Conveying heartfelt thanks to my family for continuous support and inspiarition.

References
ADB, 2004, Institutional strengthening of Chittagong Port Authority in environmental management, Volume 2, pp.177
Ahmed M.J., Haque M.R., Ahsan A., Siraj S., Bhuiyan M.H.R., Bhattacharjee S.C., and Islam S., 2010, Physicochemical Assessment of Surface and Groundwater Quality of the Greater Chittagong Region of Bangladesh, Pakistan Journal of Analytical & Environmental Chemistry, 11: 1-11
Ahmed R., 2006, An investigation of residual petroleum hydrocarbon pollution in water at some selected point in Karnafully River, Chittagong, Bangladesh, M.Sc. Thesis, Institute of Marine Science and Fisheries, University of Chittagong, Bangladesh
Ahamed M.K., Mehadi M.Y., Haque M.R., and Ghosh R.P., 2003, Concentration of heavy metals in two upstream river sediments of the Sunderbans Mangrove Forest, Bangladesh, Asian Journal of Microbiology, Biotechnology and Environmental Sciences, 5: 41-47
Ahmed R., Rashid H.E., Akash M.M., Khan M.S., Khan M.A., Hossen M., Chowdhury A., Farooque M., Hasan R., Gain P., Moral S., Raj P., Salam F.M.A., Siddique R., Mojumder M.K., Omar K.I.M., Gregow K., Akhter F., Abedeen M.J., Shariat H., Kamal M., Khan Y.S.A., Lipon S., Matin R., Tahmina Q.A., Alam S., Das U.K., Mondal G.B., Nandy G., Chowdhury S.I., Halim A., Kabir H., Sabuj R.I., Ali N., Sircar L., and Kamruzzamzn M., 2002, Bangladesh Environment: Facing the 21st Century
Ahmed A.U., and Reazuddin M., 2000, Industrial Pollution of Water Systems in Bangladesh, University Press Limited, Dhaka, Bangladesh, pp.175-178
Ahmmod M.S., 1995, Comparative study of municipal sewage, Chittagong, M.Sc. Thesis, Institute of Marine Science and Fisheries, University of Chittagong, Bangladesh
Akter M., 2012, Present status of solid waste disposal and its management system in Kalurghat and Muradpur residential area, Chittagong, M.Sc. Thesis, Institute of Marine Science and Fisheries, University of Chittagong, Bangladesh
Akter N., 2012, Water pollution in Karnafully River by Karnafully Paper Mill (KPM) and its effects on environment, M.Sc. Thesis, Institute of Marine Science and Fisheries, University of Chittagong, Bangladesh, pp.24–33
Alam M.W., and Zafar M., 2012, Occurrences of Salmonella spp. in water and soil sample of the Karnafuly river estuary, Microbes and Health, 1: 41-45
Alam M.W., 2005, Study on the some health hazard indicating bacteria in water and sediment of the Karnafuly River Estuary, M.Sc. Thesis, Institute of Marine Science and Fisheries, University of Chittagong
Alam M.K., 2004, Bangladesh Maritime Challenges in the 21st Century, Pathak Shamabesh, p.528
Ali M.Y., 1997, Fish, Water and People: Reflections on Inland Open water Fisheries Resources of Bangladesh, The University Press Limited (UPL), p.154
Amin F.B., 2015, Water Pollution of Most of the Water Sources in, Bangladesh, FAIR, Foreign Affairs Insights and Reviews
Ashrufaul M.A.K., 2003, Trace metals in littoral sediments from the North east coast of the Bay of Bengal along the ship breaking area, Chittagong, Bangladesh, Journal of Biological Science, 3: 1050-1057
Bhuiyan A.M., 1983, Effects of industrial pollution (Karnafuly Paper Mill and Karnafuly Rayon Complex) on the biology of River Karnafuly, M. Phill Thesis, Department of Zoology, Bangladesh, pp.1961
Bhuiyan A.M., 1983, Fresh and Brakish water pollution, Bangladesh Fisheries Resources Survey System Project, Department of Fisheries, Government of the People’s Republic of Bangladesh, Dhaka, Bangladesh, Bangladesh Fisheries Info, Bull; 3
Bhuiyan A.L., and Gafur M.A., 1977, The Ichthyofauna of the Karnafully River, M.Sc. Thesis, Institute of Marine Science and Fisheries, University of Chittagong, Bangladesh, pp.228
Claes M., 1997, Comparison Study on river quality, Science of The Total Environment, 207: 141-148
Chowdhury M.S., 2005, Study on the macro benthos of the Karnafuly River with special reference to physio-chemical parameters, M.Sc. Thesis, Institute of Marine Science and Fisheries, University of Chittagong, Bangladesh
Chowdhury N.K., 1994, Study on the effects of effluents discharged from the KPRC on the water quality with the prevalent pollution status of the Karnafuly River, M.Sc. Thesis, Institute of Marine Science and Fisheries, University of Chittagong, Bangladesh
Chowdhury N.M., Haider S.M.B., and Chowdhury S.R., 1992, A review of the state or environments relating to marine fisheries of Bangladesh, Institute of Marine Science and Fisheries, University of Chittagong, Bangladesh
Datta D.K., Saha S.K., and Rahman M.S., 2008, Chemical flux to the coast of Bangladesh – a review, Indian Journal of Marine Sciences, 37: 214-219
Das B., Ahmed Y.S., and Sarkar M.A.K., 2002, Trace metal concentration in water of the Karnafuly River Estuary of the Bay of Bengal, Pakistan Journal of Biological Sciences, 5: 607-608
Dey S., Das J., and Manchur M.A., 2015, Studies on heavy metal pollution of Karnafuly River, Chittagong, Bangladesh, IOSR Journal of Environmental Science, Toxicology and Food Technology (IOSR-JESTFT), 9: 79-83
De Graff G.J., Born A.F., Uddin A.K.M., and Martir F., 2001, Floods, fish and fisherman, Eight years’ experience with flood plain fisheries in Bangladesh, University Press Ltd. pp.174
DHW, 1998, Southwest area water resources development project, Feasibility study, final reports (vol. 2 and 3) to Bangladesh water development board, Government of Bangladesh
DoF, 2002, Fisheries resources information of Bangladesh, In matshaya pakshaya, M. N. Islam eds. Directorate of fisheries Bangladesh, pp.44-46

157
Mannan M.A., 2006, On the study of organochlorine pesticides concentration in water sediment and some commercially important fishes in the Karnafully River, M.Sc. Thesis, Institute of Marine Science and Fisheries, University of Chittagong

Ministry of Fisheries and Livestock (MoFL), 2013, Impact of aquaculture drugs and chemicals on aquatic ecology and productivity

MoEF/GoB, 2005, National Adaptation Programme of Action (NAPA) Final Report, pp.46

Molla M.H.R., Aktaruzzaman M., Mandol S., Al-Irmon M., Sarkar M.S.I., and Islam M.S., 2014, Spatio-temporal variations of macrobenthic annelid community of the Karnafully River Estuary, Chittagong, Bangladesh, International Journal of Marine Science, 4: 1-11

Mozumder M.M.H., 2003, Utilization of absorbometric optical density as a quick index of conventional pollution loads in municipal sewerage discharge canal, M.Sc. Thesis, Institute of Marine Science and Fisheries, University of Chittagong, Bangladesh

O’ Mallory L.S.S., 1908, E.B. District Gazetters, Chittagong, The Bengal Secretariat Book Depot, Calcutta

Pandey G.N., 1997, Environmental management, Vikas Publishing House Pvt Limited, p.404

Paul S., 1981, Effects of oil pollution upon planktonic organisms of the Karnafully River-estuary, M.Sc thesis, Deptt. Of Marine Biology, CU, Bangladesh

Pramanik M.A.H., 1988, Methodologies and techniques of studying coastal systems: Case Studies II, Space and Remote Sensing Organization (SPARSO), Bangladesh, pp.122-138

Quader O., 1978, Pollution of the Karnafully River Estuary and its effect on Apocrepies bato, M.Sc. Thesis, Institute of Marine Science and Fisheries, University of Chittagong, Bangladesh

Rahman M.H., 1994, Study on the accumulation of some trace metals discharged from the KPM and KRC in the commercially important fishes of the Karnafully River near KPBC in relation to surrounding water, M.Sc. Thesis, Institute of Marine Science and Fisheries, University of Chittagong, Bangladesh

Rizvi S.N.H., 1971, Bangladesh district Gaz.letters. Ctg. Govt, of Bangladesh, Service and General Administration Dept., Bangladesh Govt, press, Dhaka, pp.1-64

Sanjoy M., 2007, Ship breaking activities and its impacts on fishes and fisheries at Sitakundu coast, Chittagong, Bangladesh, M.S. thesis at IMSF, CU for partial fulfillment of the requirement for the M.S degree in Marine Science (Env. Br.)

Sarwar M.I., Majumder A.K.M., and Islam M.N., 2010, Water Quality Parameters: A Case Study of Karnafully River Chittagong, Bangladesh Journal of Scientific and Industrial Research, 45: 177-181

https://doi.org/10.3329/bjisr.v45i2.5722

Sarker M.S.U., 2009, Water resources and aquatic biodiversity contributing socio-economic development of Bangladesh, Thirteenth International Water Technology Conference, IWTC 13, Hurghada, Egypt

Sarker S.U., 2004, Ecological assessment of herpeto-faunal diversity of the Sundarbans Mangrove Forests, Bangladesh: Environmental Issues and Conservation, J. NOAMI, 21: 69-86

Sarker S.M.I., 2000, Solid waste management and preparation of compost for environmental improvement of Chittagong city, M.Sc. Thesis, Institute of Marine Science and Fisheries, University of Chittagong, Bangladesh

Sarker M.A.K., 1998, Study on the trace metals in water, sediment and jew fish (Otolithoides microdon) of the Karnafully River Estuary, M.Sc. Thesis, Institute of Marine Science and Fisheries, University of Chittagong, Bangladesh

Sarker S.U., 1992, Wildlife resources in the coastal zone of Bangladesh and their environmental impacts and conservation, Workshop on Coastal Zone Management in Bangladesh, UNESCO/M&B/Unit, Dec., Dhaka, pp.1-23

Sarker S.U., 1991, Endangered and threatened wildlife of the coastal zone of Bangladesh, J. NOAMI, 3: 29-37

Sarker S.U., and Sarker N.J., 1988, Wildlife of Bangladesh: A Systematic List .Rico Publication, Dhaka

Sarker S.U., and Sarker N.J., 1986, Status and Distribution of Birds of the Sundarbans, Bangladesh, J. NOAMI, 3: 19-37

Sharif A.S.M., Islam M.S., and Bhuyan M.S., 2017, Spatio-temporal occurrence and distribution of copepod in the Karnafully river estuary, Bangladesh, Journal of Biodiversity and Environmental Sciences, 10: 271-282

SHED, 2002, Livelihood status of fishermen in the Karnafully River

Siddique M.A.M., and Akter M., 2012, Heavy metals in salt marsh sediments of Portersia Bed along the Karnafully River Coast, Chittagong, Soil and Water Research, 7: 117-123

Siddique H.M., 1990, Flood control and drainage development: physical and environmental issues, In: A.A Rahman, S. Haq and G.R. Coaswray (eds.) Environment aspects of surface water systems of Bangladesh, Dhaka University Press Ltd., pp.104-108

Sikder M.N.A., Haq S.M.S., Mannan M.A.A., Hoque K.A., Bhuyan M.S., and Bakar M.A., 2016, Assessment of physicochemical parameters with its effects on human and aquatic animals giving special preference to effective management of Turag River, Journal of Environmental Science, Toxicology and Food Technology, 10: 41-51

Shikdermanov I.A., 1993, World water resources, Water in Crisis, New York, Oxford

Tamanna H., and Hossain M.M., 2010, Temporal and Spatial variation of some heavy metals at selected sites of marine water in Chittagong, M.Sc thesis at Institute of Forestry & Environmental Sciences, CU, p.78 (unpublished)

Tsai C.F., and Ali L., 1987, The changes in fish community and major carp population in beels in Sylhet, Mymensingh basin, Bangladesh, Indian Journal of Fisheries, 34: 78-88

Tyler P.A., and Buckney R.T., 1973, Pollution of a Tasmanian River by mine effluents, I. Chemical evidence, International Review of Hydrobiology, 58: 873-883

https://doi.org/10.1002/iroh.19730580608
Uddin S.M., 2006, Determination of pollution status through study on the water quality in Karnafully River Estuary, M.Sc. Thesis, Institute of Marine Science and Fisheries, University of Chittagong, Bangladesh

Uddin S.M.J., 1993, Environmental impact assessment (EIA) of the municipal sewage discharge through Majhirghat Canal of the Karnafully River Water, Chittagong, M.Sc. Thesis, Institute of Marine Science and Fisheries, University of Chittagong, Bangladesh

WHO, 1984, Guidelines for drinking water quality, Vol.1. Recommendation Geneva

Zafar M., 1986, Study on zooplankton of Satkhira in the vicinity of aquaculture farms with special reference to Penaeid post larvae, M.Sc. Thesis, Institute of Marine Science and Fisheries, University of Chittagong, Bangladesh, pp.238