IDENTIFYING AF-ALGEBRAS THAT ARE GRAPH C^*-ALGEBRAS

SØREN EILERS, TAKESHI KATSURA, EFREN RUIZ, AND MARK TOMFORD

Abstract. We consider the problem of identifying exactly which AF-algebras are isomorphic to a graph C^*-algebra. We prove that any separable, unital, Type I C^*-algebra with finitely many ideals is isomorphic to a graph C^*-algebra. This result allows us to prove that a unital AF-algebra is isomorphic to a graph C^*-algebra if and only if it is a Type I C^*-algebra with finitely many ideals. We also consider nonunital AF-algebras that have a largest ideal with the property that the quotient by this ideal is the only unital quotient of the AF-algebra. We show that such an AF-algebra is isomorphic to a graph C^*-algebra if and only if its unital quotient is Type I, which occurs if and only if its unital quotient is isomorphic to M_k for some natural number k. All of these results provide vast supporting evidence for the conjecture that an AF-algebra is isomorphic to a graph C^*-algebra if and only if each unital quotient of the AF-algebra is Type I with finitely many ideals, and bear relevance for the intriguing question of finding K-theoretical criteria for when an extension of two graph C^*-algebras is again a graph C^*-algebra.

1. Introduction

Since the introduction of graph C^*-algebras in the 1990s, it has been observed that graph C^*-algebras contain numerous AF-algebras. Indeed, Drinen proved that every AF-algebra is Morita equivalent to a graph C^*-algebra [4]. At the same time, it is easily seen that there are AF-algebras that are not isomorphic to any graph C^*-algebra. For example, the only commutative graph C^*-algebras that are AF-algebras are the direct sums of complex numbers, so any commutative AF-algebra that is not isomorphic to the direct sum of copies of C (for instance, the C^*-algebra of continuous complex-valued functions on the Cantor set) is not isomorphic to a graph C^*-algebra. This has led to the natural question of determining exactly which AF-algebras are isomorphic to graph C^*-algebras.

An extensive exploration of this question was undertaken by Sims together with the second and fourth named authors in [10], where they not only investigated which AF-algebras are isomorphic to graph C^*-algebras, but also which AF-algebras are isomorphic to Exel-Laca C^*-algebras, and which AF-algebras are isomorphic to ultragraph C^*-algebras. A complete answer to this question for the class of graph C^*-algebras was not obtained in [10], although many useful partial results were deduced. In particular, if one restricts to

Date: May 11, 2014.
2010 Mathematics Subject Classification. Primary: 46L55.
Key words and phrases. Graph C^*-algebras, AF-algebras, Bratteli diagrams, Type I C^*-algebras.

This research was supported by the Danish National Research Foundation through the Centre for Symmetry and Deformation (DNRF92). The fourth author was supported by a grant from the Simons Foundation (#210035 to Mark Tomforde). The third and fourth authors thank the Centre de Recerca Matemàtica for supporting each for a month-long visit during which portions of this research were completed. Also, the third and fourth author thank the University of Houston for supporting a trip by the third author to visit the fourth author in Houston to work on this project.
the class of row-finite graphs with no sinks, the question has been completely answered: An AF-algebra is isomorphic to the C^*-algebra of a row-finite graph with no sinks if and only if it has no unital quotients [10, Theorem 4.7]. In addition, an interesting necessary condition for an AF-algebra to be isomorphic to a graph C^*-algebra was obtained in [10, Proposition 4.21], where it is shown that an AF graph C^*-algebra has the property that all of its unital quotients are Type I C^*-algebras with finitely many ideals. This naturally leads one to conjecture that the converse is true. We state this conjecture here, and we will refer to it throughout the paper.

Conjecture: An AF-algebra is isomorphic to a graph C^*-algebra if and only if every unital quotient of the AF-algebra is a Type I C^*-algebra with finitely many ideals.

As we have mentioned, [10, Proposition 4.21] establishes the “only if” direction of the conjecture, so the open question is to determine whether the “if” direction holds. Also, we observe that the result in [10, Theorem 4.7] is consistent with the conjecture, since it states that any AF-algebra with no unital quotients (which therefore vacuously satisfies the condition of the conjecture) is isomorphic to the C^*-algebra of a row-finite graph with no sinks.

In this paper we prove results that provide mounting evidence in support of this conjecture. After some preliminaries in Section 2, we consider Type I C^*-algebras in Section 3 and prove in Theorem 3.13 that any separable, unital, Type I C^*-algebra with finitely many ideals is isomorphic to a graph C^*-algebra. This allows us to give a complete description of the unital AF-algebras that are isomorphic to graph C^*-algebras, and in Corollary 3.14 we prove that a unital AF-algebra is isomorphic to a graph C^*-algebra if and only if it is a Type I C^*-algebra with finitely many ideals. This result supports the conjecture mentioned above, since all quotients of a unital Type I C^*-algebra with finitely many ideals are also unital Type I C^*-algebras with finitely many ideals.

In the remainder of the paper we consider nonunital AF-algebras that have a unital quotient. However, this situation here is much more difficult than the unital case. Indeed, we restrict our attention to nonunital AF-algebras that have a largest ideal (i.e., a proper ideal that contains all other ideals) with the property that the quotient by this ideal is the only unital quotient of the AF-algebra. Studying these nonunital AF-algebras requires a subtle analysis of Bratteli diagrams, and we spend Section 4 developing the needed technical lemmas. In Section 5 we prove in Theorem 5.7 that if A is an AF-algebra with a largest ideal having the property that the quotient by this ideal is the only unital quotient, then A is isomorphic to a graph C^*-algebra if and only if this unital quotient is a Type I C^*-algebra, which is also equivalent to the unital quotient being isomorphic to M_k for some natural number k. This result provides additional support for the conjecture mentioned earlier, since these AF-algebras have exactly one unital quotient, and this unital quotient is simple. Moreover, unlike the result for unital C^*-algebras in Section 3, our result in Theorem 5.7 is entirely constructive, and shows exactly how to build the C^*-algebra from a Bratteli diagram for the AF-algebra.

Combining our results for unital and nonunital AF-algebras, we are also able to show in Theorem 5.9 that the conjecture from above holds for all AF-algebras with exactly one proper nonzero ideal. Finally, we end the paper with an alternate proof of [10, Theorem 4.7].
The original proof in [10] shows that an AF-algebra with no unital quotients is isomorphic to a graph C^*-algebra in an indirect way, through the use of ultragraphs. Our alternate proof in Theorem 5.10 shows exactly how to construct the necessary graph from a Bratteli diagram for the AF-algebra.

The results presented here bear relevance for the intriguing question of finding K-theoretical criteria for when an extension of AF graph C^*-algebra, and our main results confirming this in key cases may be used to close the gap (cf. [5]) in our present knowledge and complete the picture when both $C^*(E)$ and $C^*(F)$ are simple.

2. Background and Preliminaries

A graph $E = (E^0, E^1, r, s)$ consists of a countable set E^0 of vertices, a countable set E^1 of edges, and maps $r: E^1 \to E^0$ and $s: E^1 \to E^0$ identifying the range and source of each edge. A path in a graph $E = (E^0, E^1, r, s)$ is a finite sequence of edges $\alpha := e_1 \ldots e_n$ with $s(e_{i+1}) = r(e_i)$ for $1 \leq i \leq n - 1$. We say that α has length n, and we write $|\alpha|$ for the length of α. We regard vertices as paths of length 0 and edges as paths of length 1, and we then extend our notation for the vertex set and the edge set by writing E^n for the set of paths of length n for all $n \geq 0$. We write E^* for the set $\bigcup_{n=0}^{\infty} E^n$ of paths of finite length, and extend the maps r and s to E^* by setting $r(v) = s(v) = v$ for $v \in E^0$, and $r(\alpha_1 \ldots \alpha_n) = r(\alpha_n)$ and $s(\alpha_1 \ldots \alpha_n) = s(\alpha_1)$.

If α and β are elements of E^* such that $r(\alpha) = s(\beta)$, then $\alpha \beta$ is the path of length $|\alpha| + |\beta|$ obtained by concatenating the two. Given $\alpha, \beta \in E^*$, and a subset $X \subseteq E^*$, we define

$$\alpha X \beta := \{ \gamma \in E^* : \gamma = \alpha \gamma' \beta \text{ for some } \gamma' \in X \}.$$

So when v and w are vertices, we have

$$vX = \{ \gamma \in X : s(\gamma) = v \},$$

$$Xw = \{ \gamma \in X : r(\gamma) = w \},$$

$$vXw = \{ \gamma \in X : s(\gamma) = v \text{ and } r(\gamma) = w \}.$$

In particular, vE^1w denotes the set of edges from v to w and $|vE^1w|$ denotes the number of edges from v to w. Furthermore, if $V \subseteq E^0$, $W \subseteq E^0$, and $X \subseteq E^*$, we define

$$VXW := \{ \alpha \in X : s(\alpha) \in V \text{ and } r(\alpha) \in W \}.$$

We say a vertex v is a sink if $vE^1 = \emptyset$ and an infinite emitter if vE^1 is infinite. A singular vertex is a vertex that is either a sink or an infinite emitter. A graph is called row-finite if it has no infinite emitters.
Definition 2.1. If $E = (E^0, E^1, r, s)$ is a graph, then the graph C^*-algebra $C^*(E)$ is the universal C^*-algebra generated by mutually orthogonal projections $\{p_v : v \in E^0\}$ and partial isometries $\{s_e : e \in E^1\}$ with mutually orthogonal ranges satisfying

1. $s_e^*s_e = p_{r(e)}$ for all $e \in E^1$
2. $p_v = \sum_{e \in vE^1} s_es_e^*$ for all $v \in E^0$ such that $0 < |vE^1| < \infty$
3. $s_es_e^* \leq p_{s(e)}$ for all $e \in E^1$.

We write $v \geq w$ to mean that there is a path $\alpha \in E^*$ such that $s(\alpha) = v$ and $r(\alpha) = w$. A cycle in a graph E is a path $\alpha \in E^*$ of nonzero length with $r(\alpha) = s(\alpha)$. A graph is called acyclic if it has no cycles. A graph C^*-algebra $C^*(E)$ is an AF-algebra if and only if E is acyclic [11, Theorem 2.4].

Definition 2.2. If $E = (E^0, E^1, r, s)$ is a graph, a subset $H \subseteq E^0$ is called hereditary if whenever $e \in E^1$ and $s(e) \in H$, then $r(e) \in H$. A hereditary set H is called saturated if whenever $v \in E^0$ is a vertex that is neither a sink nor an infinite emitter, then $r(s^{-1}(v)) \subseteq H$ implies $v \in H$.

If H is a saturated hereditary subset of E^0, we define the graph $E_H := (E^0, E^1_H, r_{E_H}, s_{E_H})$ as follows: The vertex set is $E^0_H := E^0 \setminus H$, the edge set is $E^1_H := s^{-1}(H)$, and the range and source maps are $r_{E_H} := r|_{E^1_H}$ and $s_{E_H} := s|_{E^1_H}$, which are obtained by restricting r and s to E^1_H.

3. **Unital Type I C^*-algebras and unital AF-algebras**

In this section, we prove that any unital separable Type I C^*-algebra with finitely many ideals is isomorphic to a graph C^*-algebra. We obtain this result in two steps: First, we show that any unital, separable, Type I C^*-algebra with finitely many ideals is stably isomorphic to a the C^*-algebra of an amplified graph with finitely many vertices (see Definition 3.6 and Proposition 3.8). Second, we show that if \overline{G} is an acyclic amplified graph with a finite number of vertices, then any full unital corner of the stabilization $C^*(\overline{G}) \otimes K$ is isomorphic to a graph C^*-algebra (see Proposition 3.11). To do this it will be convenient for us to apply theorems for C^*-algebras classified by their tempered primitive ideal space, so we begin by establishing the necessary terminology and preliminary results.

3.1. **The tempered primitive ideal space of a C^*-algebra**. Let X be a topological space and let $\mathcal{O}(X)$ be the set of open subsets of X partially ordered by set inclusion. A subset $Y \subseteq X$ is called locally closed if $Y = U \setminus V$ where $U, V \in \mathcal{O}(X)$ and $V \subseteq U$. The set of all locally closed subsets of X will be denoted by $\mathbb{L}(X)$.

The partially ordered set $(\mathcal{O}(X), \subseteq)$ is a lattice with meet and join given by $Y_1 \cap Y_2 := Y_1 \cap Y_2$ and $Y_1 \vee Y_2 := Y_1 \cup Y_2$, respectively. For a C^*-algebra \mathfrak{A}, we let $l(\mathfrak{A})$ denote the set of closed ideals of \mathfrak{A}. The partially ordered set $(l(\mathfrak{A}), \subseteq)$ is also a lattice with meet and join given by $I_1 \cap I_2 := I_1 \cap I_2$ and $I_1 \vee I_2 := \overline{I_1 + I_2}$. If \mathfrak{A} is a C^*-algebra, we let $\text{Prim}(\mathfrak{A})$ denote the primitive ideal space of \mathfrak{A} equipped with the usual hull-kernel topology. For any C^*-algebra \mathfrak{A}, the lattices $\mathcal{O}(\text{Prim}(\mathfrak{A}))$ and $l(\mathfrak{A})$ are isomorphic via the lattice isomorphism

$$U \mapsto \bigcap_{p \in \text{Prim}(\mathfrak{A}) \setminus U} p$$
We shall frequently identify $O(\text{Prim}(A))$ and $\mathcal{L}(A)$ in this way.

Definition 3.1. Let X be a topological space. A C^*-algebra over X is a pair (A,ψ) consisting of a C^*-algebra A and a continuous map $\psi: \text{Prim}(A) \to X$.

If (A,ψ) is a C^*-algebra over X, we have a map $\psi^*: O(X) \to O(\text{Prim}(A))$ defined by

$$U \mapsto \{p \in \text{Prim}(A) : \psi(p) \in U\}.$$

Using the isomorphism $O(\text{Prim}(A)) \cong \mathcal{L}(A)$, we obtain a map from $O(X)$ to $\mathcal{L}(A)$ given by $U \mapsto A[U]$, where

$$A[U] := \bigcap \{p \in \text{Prim}(A) : \psi(p) \notin U\}.$$

If $Y \in \mathcal{L}(X)$, we may write $Y = U \setminus V$ for open sets $U,V \subseteq X$ with $V \subseteq U$, and we define $A[Y] := A[U]/\mathcal{A}[V]$. It follows from [12, Lemma 2.15] that $A[Y]$ is independent of the choice of U and V.

Remark 3.2. Any C^*-algebra A can be viewed as a C^*-algebra over $\text{Prim}(A)$ by taking $\psi := \text{id} : \text{Prim}(A) \to \text{Prim}(A)$. In this case we shall simply write A in place of (A,id).

Definition 3.3 (The Tempered Primitive Ideal Space). Let A be a C^*-algebra, and view A as a C^*-algebra over $\text{Prim}(A)$. Define $\tau_A : \text{Prim}(A) \to \mathbb{Z} \cup \{-\infty, \infty\}$ by

$$\tau_A(x) := \begin{cases} -\text{rank}(K_0(A[x])) & \text{if } K_0(A[x])_+ \neq K_0(A[x]) \\ \text{rank}(K_0(A[x])) & \text{if } K_0(A[x])_+ = K_0(A[x]). \end{cases}$$

The **tempered primitive ideal space** of A is defined to be the pair

$$\text{Prim}^\tau(A) := (\text{Prim}(A), \tau_A).$$

If A and B are C^*-algebras, we say that $\text{Prim}^\tau(A)$ and $\text{Prim}^\tau(B)$ are isomorphic, denoted by $\text{Prim}^\tau(A) \cong \text{Prim}^\tau(B)$, if there exists a homeomorphism $\alpha : \text{Prim}(A) \to \text{Prim}(B)$ such that $\tau_B \circ \alpha = \tau_A$.

Definition 3.4 (Definition 6.1 of [8]). Let C be the class of separable, nuclear, simple, purely infinite C^*-algebras satisfying the UCT that have free K_0-group and zero K_1-group.

Let C_free be class of all C^*-algebras A satisfying all of the following four properties:

1. $\text{Prim}(A)$ is finite.
2. For each $x \in \text{Prim}(A)$, the subquotient $A[x]$ is either unital or stable.
3. For each $x \in \text{Prim}(A)$, the subquotient $A[x]$ is either in C or stably isomorphic to K.
4. For each $x \in \text{Prim}(A)$, if the subquotient $A[x]$ is unital, then there exists an isomorphism from $K_0(A[x])$ onto $\bigoplus_n \mathbb{Z}$ that takes $[1_{A[x]}]$ to an element of the form $(1, \lambda) \in \bigoplus_n \mathbb{Z}$ for some λ.

It turns out that C^*-algebras in C_free are classified up to stable isomorphism by the tempered primitive ideal space.

Theorem 3.5. (Theorem 6.17 of [8]) If $A,B \in C_\text{free}$, then $A \otimes K \cong B \otimes K$ if and only if $\text{Prim}^\tau(A) \cong \text{Prim}^\tau(B)$.

3.2. Realizing unital Type I C^*-algebras as graph C^*-algebras.

Definition 3.6. If $E = (E^0, E^1, r, s)$ is graph, we say that E is an **amplified graph** if for all $e \in E^1$ the number of edges from $s(e)$ to $r(e)$ is countably infinite.

If $G = (G^0, G^1, r, s)$ is a graph, the **amplification of G** is defined to be the graph $\overline{G} = (\overline{G}^0, \overline{G}^1, r_{\overline{G}}, s_{\overline{G}})$ defined by $\overline{G}^0 := G^0$,
\[\overline{G}^1 := \{ (e, w)^n : v, w \in G^0, n \in \mathbb{N}, \text{and there exists an edge from } v \text{ to } w \}, \]
$s_{\overline{G}}((v, w)^n) := v$, and $r_{\overline{G}}((v, w)^n) := w$.

Note that a graph E is an amplified graph if and only if $E = \overline{G}$ for some graph G, and in this case the graph G may always be chosen to be row-finite with the same number of vertices as E. Because of this, we shall often write an amplified graph as \overline{G} for a row-finite graph G.

Lemma 3.7. If \mathfrak{A} is a separable Type I C^*-algebra, then every simple subquotient of \mathfrak{A} is isomorphic to either \mathbb{K} or M_n for some $n \in \mathbb{N}$. If, in addition, \mathfrak{A} has finitely many ideals, then $\mathfrak{A} \otimes \mathbb{K} \in C_{\text{free}}$.

Proof. Since \mathfrak{A} is a separable Type I C^*-algebra, every simple subquotient of \mathfrak{A} is a separable Type I C^*-algebra, and hence isomorphic to either \mathbb{K} or M_n for some $n \in \mathbb{N}$. Moreover, since every simple subquotient of \mathfrak{A} is isomorphic to \mathbb{K} or M_n for some $n \in \mathbb{N}$, we have that $(\mathfrak{A} \otimes \mathbb{K})[x]$ is isomorphic to \mathbb{K} for all $x \in \text{Prim}(\mathfrak{A} \otimes \mathbb{K})$. Thus Property 2, Property 3, and Property 4 of Definition 3.4 hold for $\mathfrak{A} \otimes \mathbb{K}$ (with Property 4 holding vacuously). In addition, if \mathfrak{A} has finitely many ideals, then $\mathfrak{A} \otimes \mathbb{K}$ has finitely many ideals, so that $\text{Prim}(\mathfrak{A})$ is finite, Property 1 of Definition 3.4 is satisfied by $\mathfrak{A} \otimes \mathbb{K}$, and $\mathfrak{A} \otimes \mathbb{K} \in C_{\text{free}}$. \qed

Proposition 3.8. If \mathfrak{A} is a unital separable Type I C^*-algebra with finitely many ideals, then there exists a finite graph G such that $\mathfrak{A} \otimes \mathbb{K} \cong C^*(\overline{G}) \otimes \mathbb{K}$.

Proof. Lemma 3.7 shows that $\mathfrak{A} \otimes \mathbb{K} \in C_{\text{free}}$ and every simple subquotient of $\mathfrak{A} \otimes \mathbb{K}$ is isomorphic to \mathbb{K}. Since every simple subquotient of $\mathfrak{A} \otimes \mathbb{K}$ has K_0-group isomorphic to \mathbb{Z} and $\mathfrak{A} \otimes \mathbb{K}$ has finitely many ideals, it follows that
\[K_0(\mathfrak{A} \otimes \mathbb{K}) \cong \bigoplus_{x \in \text{Prim}(\mathfrak{A} \otimes \mathbb{K})} K_0((\mathfrak{A} \otimes \mathbb{K})[x]) \cong \bigoplus_{x \in \text{Prim}(\mathfrak{A} \otimes \mathbb{K})} \mathbb{Z}. \]

For any $x \in \text{Prim}(\mathfrak{A} \otimes \mathbb{K})$ we have $(\mathfrak{A} \otimes \mathbb{K})[x] \cong \mathbb{K}$ and hence $\tau_{\mathfrak{A} \otimes \mathbb{K}}(x) = \{-1\} \subseteq \{-1\} \cup \mathbb{N}$. Therefore [8, Theorem 7.3] shows there exists a finite graph G such that
\[\text{Prim}^\tau(\mathfrak{A} \otimes \mathbb{K}) \cong \text{Prim}^\tau(\overline{G} \otimes \mathbb{K}). \quad (3.1) \]

Since \overline{G} is an amplified graph, every vertex of \overline{G} is a singular vertex and \overline{G} has no breaking vertices. It follows from [8, Proposition 6.10] that $C^*(\overline{G}) \otimes \mathbb{K} \in C_{\text{free}}$. In addition, Lemma 3.7 implies $\mathfrak{A} \otimes \mathbb{K} \in C_{\text{free}}$. By Theorem 3.5, (3.1) implies $\mathfrak{A} \otimes \mathbb{K} \cong C^*(\overline{G}) \otimes \mathbb{K}$. \qed

Proposition 3.8 shows to establish that $\mathfrak{A} \otimes \mathbb{K}$ is isomorphic to a graph C^*-algebra, it suffices to show any full unital corner of $C^*(\overline{G}) \otimes \mathbb{K}$ is isomorphic to a graph C^*-algebra. We shall accomplish this by examining the range of the order unit of $C^*(\overline{G})$. A more systematic study of hereditary subalgebras of graph C^*-algebras will appear in work in preparation by the third named author together with Sara Arklint and James Gabe [1].
Lemma 3.9. Let \overline{G} be an acyclic amplified graph with a finite number of vertices, and let $S = \{ v \in \overline{G}^0 : v \text{ is a source in } \overline{G} \}$. Let $H \subseteq \bigoplus_{v \in \overline{G}^0} \mathbb{Z}$ be the monoid generated by

$$\left\{ \delta_v : v \in \overline{G}^0 \right\} \cup \left\{ \delta_v - \sum_{e \in T} \delta_{\gamma(e)} : v \in \overline{G}^0 \text{ and } T \text{ is a finite subset of } s^{-1}(v) \right\}.$$

If $(n_v)_{v \in \overline{G}^0} \in H$ with $n_v \geq 1$ for all $v \in S$, then there exists $(m_v)_{v \in \overline{G}^0} \in H$ with $m_v \geq 1$ for all $v \in \overline{G}^0$ and there exists an isomorphism $\alpha : \bigoplus_{v \in \overline{G}^0} \mathbb{Z} \to \bigoplus_{v \in \overline{G}^0} \mathbb{Z}$ such that $\alpha(H) = H$ and $\alpha \left((n_v)_{v \in \overline{G}^0} \right) = (m_v)_{v \in \overline{G}^0}$.

Proof. For each $v \in \overline{G}^0$, set $T_v := \{ w \in S : w \geq v \}$. Note that T_v is a finite set because \overline{G} has a finite number of vertices, and T_v is nonempty since $v \in T_v$. For each $v \in \overline{G}^0$ and $w \in T_v$, let $k_{v,w}$ denote the smallest element of $\mathbb{N} \cup \{0\}$ such that $n_w k_{v,w} + n_v \geq 1$. (Note that if $v \in S$, then $T_v = \{ v \}$ and $k_{v,v} = 0$ since $n_v \geq 1$ by hypothesis.)

Define $(m_v)_{v \in \overline{G}^0} \in H$ by $m_v := n_v + \sum_{w \in T_v} n_w k_{v,w}$ for $v \in \overline{G}^0$. Observe that $m_v \geq 1$ for all $v \in \overline{G}^0$ and $m_v = n_v$ for all $v \in S$. Also define a homomorphism $\alpha : \bigoplus_{v \in \overline{G}^0} \mathbb{Z} \to \bigoplus_{v \in \overline{G}^0} \mathbb{Z}$ by

$$\alpha(\delta_v) = \begin{cases} \delta_v + \sum_{w \in \overline{G}^0 \setminus T_v} k_{v,w}\delta_w & \text{if } v \in S \\ \delta_v & \text{if } v \in \overline{G}^0 \setminus S \end{cases}$$

One can verify that α is an isomorphism with inverse given by the homomorphism $\beta : \bigoplus_{v \in \overline{G}^0} \mathbb{Z} \to \bigoplus_{v \in \overline{G}^0} \mathbb{Z}$ with

$$\beta(\delta_v) = \begin{cases} \delta_v - \sum_{w \in \overline{G}^0 \setminus T_v} k_{v,w}\delta_w & \text{if } v \in S \\ \delta_v & \text{if } v \in \overline{G}^0 \setminus S \end{cases}.$$

In addition,

$$\alpha \left((n_v)_{v \in \overline{G}^0} \right) = \alpha \left(\sum_{v \in \overline{G}^0} n_v \delta_v \right) = \alpha \left(\sum_{v \in S} n_v \delta_v \right) + \alpha \left(\sum_{w \in \overline{G}^0 \setminus S} n_w \delta_w \right)$$

$$= \sum_{v \in S} n_v \left(\delta_v + \sum_{w \in \overline{G}^0 \setminus T_v} k_{v,w} \delta_w \right) + \sum_{w \in \overline{G}^0 \setminus S} n_w \delta_w$$

$$= \sum_{v \in S} n_v \delta_v + \sum_{w \in \overline{G}^0 \setminus S} \left(n_w + \sum_{v \in T_w} n_v k_{w,v} \right) \delta_w = \sum_{v \in S} m_v \delta_v + \sum_{w \in \overline{G}^0 \setminus S} m_w \delta_w = (m_v)_{v \in \overline{G}^0}.$$
fact that \(T_w \) is finite for all \(w \in \mathcal{G}^0 \), we see that \(\alpha(\delta_v) \in H \). Next, let \(v \in \mathcal{G}^0 \) and let \(T \) be a finite subset of \(s^{-1}(v) \).

If \(v \notin S \), then \(r(e) \notin S \) for all \(e \in T \), and \(\alpha \left(\delta_v - \sum_{e \in T} \delta_r(e) \right) = \delta_v - \sum_{e \in T} \delta_r(e) \in H \). If \(v \in S \), then \(r(e) \notin S \) for all \(e \in T \), and

\[
\alpha \left(\delta_v - \sum_{e \in T} \delta_r(e) \right) = \left(\delta_v - \sum_{e \in T} \delta_r(e) \right) + \sum_{w \in \mathcal{G}^0 \text{ with } v \in T_w} k_{v,w} \delta_v \in H.
\]

Since these elements generate \(H \) and \(\alpha \) is a homomorphism, we may conclude that \(\alpha(H) \subseteq H \). A nearly identical argument shows that \(\beta(H) \subseteq H \). Hence \(\alpha(H) = H \). \(\square \)

Definition 3.10. An element \(a \) in a \(C^* \)-algebra \(\mathfrak{A} \) is said to be full if \(a \) is not contained in a proper ideal of \(\mathfrak{A} \).

Proposition 3.11. Let \(\mathcal{G} \) be an acyclic amplified graph with a finite number of vertices, and let \(p \) be a full projection in \(C^*(\mathcal{G}) \otimes \mathbb{K} \). Then there exists a graph \(E \) with finitely many vertices such that \(p(C^*(\mathcal{G}) \otimes \mathbb{K})p \cong C^*(E) \).

Proof. It follows from [13, Theorem 2.2] that \(K_0(C^*(\mathcal{G})) \cong \bigoplus_{v \in \mathcal{G}} \mathbb{Z} \) via an isomorphism taking \(K_0(C^*(\mathcal{G}))_+ \) onto the monoid \(H \subseteq \bigoplus_{v \in \mathcal{G}^0} \mathbb{Z} \) generated by

\[
\left\{ \delta_v : v \in \mathcal{G}^0 \right\} \cup \left\{ \delta_v - \sum_{e \in T} \delta_{r(e)} : v \in \mathcal{G}^0_{\text{inf}} \text{ and } T \text{ is a finite subset of } s^{-1}(v) \right\}.
\]

Denote this isomorphism from \(K_0(C^*(\mathcal{G})) \) to \(\bigoplus_{v \in \mathcal{G}^0} \mathbb{Z} \) by \(\phi \).

Let \(p \) be a full projection in \(C^*(\mathcal{G}) \otimes \mathbb{K} \). Let \(S = \left\{ v \in \mathcal{G}^0 : v \text{ is a source in } \mathcal{G} \right\} \). Then \(\phi([p]_0) = (n_v)_{v \in \mathcal{G}} \) such that \(n_v \geq 0 \) for all \(v \in \mathcal{G}^0 \). Since \(p \) is a full projection, we must have that \(n_v \geq 1 \) for all \(v \in S \). By Lemma 3.9, there exists \((m_v)_{v \in \mathcal{G}^0} \in H \) with \(m_v \geq 1 \) for all \(v \in \mathcal{G}^0 \) and there exists an isomorphism \(\alpha : \bigoplus_{v \in \mathcal{G}^0} \mathbb{Z} \to \bigoplus_{v \in \mathcal{G}^0} \mathbb{Z} \) such that \(\alpha(H) = H \) and \(\alpha \left((n_v)_{v \in \mathcal{G}^0} \right) = (m_v)_{v \in \mathcal{G}^0} \).

Define a directed graph as follows: Set

\[
E^0 := \mathcal{G}^0 \cup \left\{ w_{k,v} : v \in \mathcal{G}^0 \text{ and } 1 \leq k \leq m_v - 1 \right\}
\]

and

\[
E^1 := \mathcal{G}^1 \cup \left\{ e_{k,v} : v \in \mathcal{G}^0 \text{ and } 1 \leq k \leq m_v - 1 \right\}.
\]

Define \(s_{E|\mathcal{G}} = s_{\mathcal{G}} \) and \(r_{E|\mathcal{G}} = r_{\mathcal{G}} \). Also define \(s_{E}(e_{k,v}) = w_{k,v} \) for all \(k \) and \(v \), and define \(r_{E}(e_{k,v}) = w_{k+1,v} \) when \(1 \leq k \leq m_v - 2 \) and \(r_{E}(e_{m_v-1,v}) = v \). Using [13, Theorem 2.2] and the fact that \(E \) is obtained by adding finite heads at the vertices of \(\mathcal{G}^0 \), we have that \(K_0(C^*(E)) \) is isomorphic to \(\bigoplus_{v \in \mathcal{G}^0} \mathbb{Z} \) via an isomorphism taking \(K_0(C^*(E))_+ \) onto the monoid \(H \subseteq \bigoplus_{v \in \mathcal{G}^0} \mathbb{Z} \) generated by

\[
\left\{ \delta_v : v \in \mathcal{G}^0 \right\} \cup \left\{ \delta_v - \sum_{e \in T} \delta_{r(e)} : v \in \mathcal{G}^0_{\text{inf}} \text{ and } T \text{ is a finite subset of } s^{-1}(v) \right\},
\]
and furthermore, this isomorphism takes $[1_{C^*(E)}]_0$ to $(m_v)_{v \in G \cup}$. Denote this isomorphism from $K_0(C^*(E))$ to $\bigoplus_{v \in \overline{G}} \mathbb{Z}$ by γ.

Let $\iota: p(C^*(\overline{G}) \otimes \mathbb{K})p \hookrightarrow C^*(\overline{G}) \otimes \mathbb{K}$ be the inclusion map. Then

$$K_0(\iota): K_0(p(C^*(\overline{G}) \otimes \mathbb{K})p) \to K_0(C^*(\overline{G}))$$

is an order isomorphism with $K_0(\iota) \left([1_{p(C^*(\overline{G}) \otimes \mathbb{K})p}]_0 \right) = [p]_0$. Hence $\gamma^{-1} \circ \alpha \circ \phi \circ K_0(\iota)$ is an order isomorphism from $K_0(p(C^*(\overline{G}) \otimes \mathbb{K})p)$ to $K_0(C^*(E))$ with

$$(\gamma \circ \alpha \circ \phi \circ K_0(\iota)) \left([1_{p(C^*(\overline{G}) \otimes \mathbb{K})p}]_0 \right) = (\gamma \circ \alpha \circ \phi)([p]_0) = (\gamma \circ \alpha) \left((m_v)_{v \in \overline{G}} \right)
= \gamma \left((m_v)_{v \in \overline{G}} \right) = [1_{C^*(E)}]_0.$$

Since \overline{G} and E are acyclic graphs with finitely many vertices, $p(C^*(\overline{G}) \otimes \mathbb{K})p$ and $C^*(E)$ are unital AF-algebras. Hence, by Elliott’s classification theorem for AF-algebras [9], we have $p(C^*(\overline{G}) \otimes \mathbb{K})p \cong C^*(E)$.

Example 3.12. The proof of Proposition 3.11 actually shows how to construct the graph E from the graph G in the proposition’s statement, provided we know the class of $[p]_0$ in $K_0(C^*(\overline{G}))$. For example, suppose G is the graph

\[
\begin{array}{ccc}
\bullet & \longrightarrow & \bullet \\
\end{array}
\]

and suppose p is full projection in $C^*(\overline{G}) \otimes \mathbb{K}$ such that $[p]_0$ is identified with $(3, 2)$ in $K_0(C^*(\overline{G})) \cong \mathbb{Z} \oplus \mathbb{Z}$. If we define E to be the graph

\[
\begin{array}{ccc}
\bullet & \longrightarrow & \bullet \\
\end{array}
\]

then the proof of Proposition 3.11 shows that $p(C^*(\overline{G}) \otimes \mathbb{K})p \cong C^*(E)$.

Theorem 3.13. If \mathcal{A} is a separable, unital, Type I C^*-algebra with finitely many ideals, then \mathcal{A} is isomorphic to a graph C^*-algebra.

Proof. By Proposition 3.8 there exists a finite graph G such that $\mathcal{A} \otimes \mathbb{K} \cong C^*(\overline{G}) \otimes \mathbb{K}$. Let $\{e_{ij}\}$ be a system of matrix units for \mathbb{K}. Since $\mathcal{A} \cong (1_{\mathcal{A}} \otimes e_{11})(\mathcal{A} \otimes \mathbb{K})(1_{\mathcal{A}} \otimes e_{11})$ and $1_{\mathcal{A}} \otimes e_{11}$ is a full projection in $\mathcal{A} \otimes \mathbb{K}$, we have that $\mathcal{A} \cong p(C^*(\overline{G}) \otimes \mathbb{K})p$ for some full projection p in $C^*(\overline{G}) \otimes \mathbb{K}$. By Proposition 3.11 $p(C^*(\overline{G}) \otimes \mathbb{K})p \cong C^*(E)$ for some graph E. Hence $\mathcal{A} \cong C^*(E)$.

We conclude this section by deducing necessary and sufficient conditions for a unital AF-algebra to be a graph C^*-algebra, and observe that this result provides further support for the conjecture from the introduction.

Corollary 3.14. A unital AF-algebra is isomorphic to a graph C^*-algebra if and only if it is a Type I C^*-algebra with finitely many ideals.

Proof. Suppose \mathcal{A} is a unital AF-algebra. If \mathcal{A} is a Type I C^*-algebra with finitely many ideals, then \mathcal{A} is isomorphic to a graph C^*-algebra by Theorem 3.13. Conversely, if \mathcal{A} is
isomorphic to a graph C^*-algebra, then [10, Proposition 4.21] shows that \mathfrak{A} is a Type I C^*-algebra with a finite number of ideals.

4. Technical lemmas for Bratteli diagrams

In Section 5 we shall need a number of technical results about Bratteli diagrams for certain AF-algebras. This section is devoted to proving these lemmas, with our primary goal being the proof of Lemma 4.12 at the end of the section.

Definition 4.1. A Bratteli diagram (E, d_E) consists of a graph $E = (E^0, E^1, r_E, s_E)$ and a degree function $d_E : E^0 \to \mathbb{N}$ such that

1. E has no sinks;
2. E^0 is partitioned as disjoint sets $E^0 = \bigsqcup_{n=1}^\infty W_n$ with each W_n a finite set;
3. for each $e \in E^1$, there exists $n \in \mathbb{N}$ such that $s_E(e) \in W_n$ and $r_E(e) \in W_{n+1}$;
4. for each $v \in E^0$,
 \[d_E(v) \geq \sum_{e \in E^1 v} d_E(s_E(e)). \]

We call W_n the nth level of the Bratteli diagram, and when we write $E^0 = \bigsqcup_{n=1}^\infty W_n$, we say E^0 is partitioned into levels by the W_n.

Definition 4.2. Let (E, d_E) with E^0 be a Bratteli diagram partitioned into levels as $E^0 = \bigsqcup_{n=1}^\infty W_n$. For any increasing subsequence $\{n_m\}_{m=1}^\infty$ of \mathbb{N}, we define a new Bratteli diagram (F, d_F) as follows:

1. The set of vertices is partitioned into levels as $F^0 := \bigsqcup_{m=1}^\infty W_{n_m}$;
2. The set of edges is $F^1 := \bigcup_{m=1}^\infty W_{n_m} E^* W_{n_{m+1}}$ with the range and source map as defined on the paths of E; and
3. $d_F = d_E|_{F^0}$.

We call (F, d_F) a telescope of (E, d_E).

We say that two Bratteli diagrams (E, d_E) and (F, d_F) are equivalent (sometimes also called telescope equivalent) if there is a finite sequence of Bratteli diagrams $(E_1, d_{E_1}), \ldots, (E_n, d_{E_n})$ such that $(E_1, d_{E_1}) = (E, d_E)$, $(E_n, d_{E_n}) = (F, d_F)$, and for each $1 \leq i \leq n - 1$, one of (E_i, d_{E_i}) and $(E_{i+1}, d_{E_{i+1}})$ is a telescope of the other. Bratteli proved in [2] that two Bratteli diagrams give rise to isomorphic AF-algebras if and only if the diagrams are equivalent (see [2, §1.8 and Theorem 2.7]).

The following lemma is contained implicitly in the proof of [10, Lemma 3.2]. For the convenience of the reader, we provide an explicit proof here.

Lemma 4.3. Let (E, d_E) be a Bratteli diagram for the C^*-algebra \mathfrak{A} with E^0 partitioned into levels as $E^0 = \bigsqcup_{n=1}^\infty W_n$. Suppose $v \in W_n$ and $k \leq n$. If $w \in E^0$ with $v \geq w$ and

\[d_E(v) = \sum_{\alpha \in W_k E^* w} d_E(s_E(\alpha)), \]

then

\[d_E(v) = \sum_{\alpha \in W_k E^* v} d_E(s_E(\alpha)). \]
In addition, if for every \(v \in E^0 \) there exists \(w \in E^0 \) with \(v \geq w \) and
\[
d_E(w) = \sum_{\alpha \in W_1 E^* w} d_E(s_E(\alpha)),
\]
then \(\mathfrak{A} \) is a unital AF-algebra.

Proof. Note that
\[
d_E(w) = \sum_{\alpha \in W_1 E^* w} d_E(s_E(\alpha)) = \sum_{\beta \in W_n E^* w} \left(\sum_{\gamma \in W_k E^* s_E(\beta)} d_E(s_E(\gamma)) \right)
\]
\[
\leq \sum_{\beta \in W_n E^* w} d_E(s_E(\beta)) \leq d_E(w)
\]
and hence we have equality throughout. In particular, we deduce
\[
d_E(s_E(\beta)) = \sum_{\gamma \in W_k E^* s_E(\beta)} d_E(s_E(\gamma)).
\]
for each \(\beta \in W_n E^* w \). Since \(v \geq w \), there exists \(\beta \in W_n E^* w \) such that \(s_E(\beta) = v \). Thus
\[
d_E(v) = \sum_{\gamma \in W_k E^* v} d_E(s_E(\gamma)).
\]

For the second part of the lemma, suppose that for every \(v \in F^0 \) there exists \(w \in F^0 \) with \(v \geq w \) and
\[
d_E(w) = \sum_{\alpha \in W_1 E^* w} d_E(s_E(\alpha)),
\]
To show that \(\mathfrak{A} \) is unital, it is enough to show that for each \(v \in \bigcup_{n=2}^\infty W_n \) we have
\[
d_E(v) = \sum_{e \in E^1_v} d_E(s_E(e)). \tag{4.1}
\]
We shall obtain this fact by induction on \(n \). For the base case of \(n = 2 \), we suppose \(v \in W_2 \). By hypothesis there exists \(w \in F^0 \) such that \(v \geq w \) and
\[
d_E(w) = \sum_{\alpha \in W_1 E^* w} d_E(s_E(\alpha)).
\]
It follows from the first part of this lemma, and the fact that \(v \in W_2 \), that
\[
d_E(v) = \sum_{\alpha \in W_1 E^* v} d_E(s_E(\alpha)) = \sum_{e \in E^1_v} d_E(s_E(e)).
\]
For the inductive step suppose \(n \geq 2 \) and (4.1) holds for all vertices in \(W_n \). Let \(v \in W_{n+1} \). By hypothesis, there exists \(w \in F^0 \) with \(v \geq w \) and
\[
d_E(w) = \sum_{\alpha \in W_1 E^* w} d_E(s_E(\alpha)).
\]
Thus
\[d_E(v) = \sum_{\beta \in W_n}^{\beta \in W_n} \left(\sum_{\gamma \in W_1}^{\gamma \in W_1} d_E(s Е(\gamma)) \right) \leq \sum_{\beta \in W_n}^{\beta \in W_n} d_E(s Е(\beta)) \]
\[= \sum_{e \in E^1 v} d_E(s Е(e)) \leq d_E(v). \]
Therefore, we have equality throughout and \(d_E(v) = \sum_{e \in E^1 v} d_E(s Е(e)). \) By induction (4.1) holds for all \(v \in \bigcup_{n=2}^{\infty} W_n. \)

Lemma 4.4. Let \((E, d_E)\) be a Bratteli diagram for \(M_k \) with \(E^0 \) partitioned into levels as \(E^0 = \bigcup_{n=1}^{\infty} W_n. \) Then there exists \(m \in \mathbb{N} \) such that for each \(n \geq m, W_n = \{w_n\} \) is a singleton set and \(d_E(w_n) = k. \)

Proof. Writing \(M_k \) as the direct limit coming from the Bratteli diagram, there exists an increasing sequence of finite-dimensional \(C^*\)-subalgebras \(\mathfrak{A}_n \) of \(M_k \), and hence there exists \(N \in \mathbb{N} \) such that \(1_{\mathfrak{A}_n} = 1_{M_k} \) for all \(n \geq N \). Thus, for each \(n \geq N, k = \sum_{v \in W_n} d_E(v). \) Since \(M_k = \bigcup_{n=1}^{\infty} \mathfrak{A}_n \), there exists \(m \geq N \) such that for each \(n \geq m \), \(\dim_{\mathbb{C}}(M_k) = \dim_{\mathbb{C}}(\mathfrak{A}_n) \). Therefore, for each \(n \geq m, \)
\[\left(\sum_{v \in W_n} d_E(v) \right)^2 = k^2 = \dim_{\mathbb{C}}(M_k) = \dim_{\mathbb{C}}(\mathfrak{A}_n) = \sum_{v \in W_n} d_E(v)^2. \]
Since the \(d_E(v) \) are non-negative integers, it follows that \(W_n = \{w_n\} \) is a singleton set and \(d_E(w_n) = k. \)

Definition 4.5. Let \((E, d_E)\) be a Bratteli diagram. A saturated, hereditary subset \(H \) of \(E^0 \) is a **largest saturated, hereditary subset of \(E^0 \)** if whenever \(Y \) is a saturated, hereditary subset of \(E^0 \), then either \(Y \subseteq H \) or \(Y = E^0 \).

Definition 4.6. Let \(\mathfrak{A} \) be a \(C^*\)-algebra. An ideal \(\mathfrak{J} \) of \(\mathfrak{A} \) is **essential** if for every nonzero ideal \(\mathfrak{K} \) of \(\mathfrak{A}, \mathfrak{J} \cap \mathfrak{K} \neq 0. \) An ideal \(\mathfrak{J} \) of \(\mathfrak{A} \) is a **largest ideal** of \(\mathfrak{A} \) if whenever \(\mathfrak{K} \) is an ideal of \(\mathfrak{A}, \) then either \(\mathfrak{K} \subseteq \mathfrak{J} \) or \(\mathfrak{K} = \mathfrak{A}. \)

Remark 4.7. Note that if \(\mathfrak{J} \) is a largest ideal of \(\mathfrak{A}, \) then \(\mathfrak{J} \) is unique, \(\mathfrak{J} \) is an essential ideal of \(\mathfrak{A}, \) and \(\mathfrak{A}/\mathfrak{J} \) is a simple \(C^*\)-algebra.

Definition 4.8. For any \(k \in \mathbb{N}, \) we say a Bratteli diagram \((E, d_E)\) is **\(M_k \)-separated** if it satisfies the following five properties:

1. \(E^0 = \bigcup_{n=1}^{\infty} W_n \) is partitioned into levels with \(W_n = H_n \cup \{y_n\}. \)
2. \(H_n E^0 y_{n+1} = \emptyset \) for all \(n \in \mathbb{N}. \)
3. \(d_E(y_n) = k \) for all \(n \in \mathbb{N}. \)
4. \(|y_n E^0 y_{n+1}| = 1 \) for all \(n \in \mathbb{N}. \)
5. \(y_n E^0 H_{n+1} \neq \emptyset \) for all \(n \in \mathbb{N}. \)

In addition, we say that a Bratteli diagram \((E, d_E)\) is **properly \(M_k \)-separated** if it is \(M_k \)-separated and satisfies the additional property:

6. For each \(n \in \mathbb{N} \) and \(v \in H_n \) we have
\[d_E(v) > \sum_{e \in E^1 v} d_E(s Е(e)). \]
Remark 4.9. Note that if \((E, d_E)\) is an \(M_k\)-separated Bratteli diagram, the set \(H := \bigsqcup_{n=1}^{\infty} H_n\) is a largest saturated hereditary subset of \(E^0\). In addition, if \(\mathfrak{A}\) is the \(C^*\)-algebra associated with \((E, d_E)\), and \(\mathfrak{I}\) is the ideal in \(\mathfrak{A}\) associated with \(H\), then \(\mathfrak{I}\) is an essential ideal of \(\mathfrak{A}\), and the quotient \(\mathfrak{A}/\mathfrak{I}\) is an AF-algebra with Bratteli diagram \(k \to k \to k \to \ldots\), so that \(\mathfrak{A}/\mathfrak{I} \cong M_k\). The following lemma shows that, conversely, any AF-algebra with \(M_k\) as a quotient by an essential ideal has an \(M_k\)-separated Bratteli diagram.

Lemma 4.10. Let \(\mathfrak{A}\) be an AF-algebra with an essential ideal \(\mathfrak{I}\) such that \(\mathfrak{A}/\mathfrak{I} \cong M_k\). Then any Bratteli diagram for \(\mathfrak{A}\) can be telescoped to an \(M_k\)-separated Bratteli diagram.

Proof. Let \((E, d_E)\) be a Bratteli diagram of \(\mathfrak{A}\) with \(E^0 = \bigsqcup_{n=1}^\infty V_n\) partitioned into levels, and let \(S\) be the hereditary saturated subset of \(E^0\) that corresponds to the ideal \(\mathfrak{I}\). Then the Bratteli diagram obtained by restricting to \(E^0 \setminus S = \bigsqcup_{n=1}^\infty (V_n \setminus S)\) is a Bratteli diagram for \(\mathfrak{A}/\mathfrak{I}\). Since \(\mathfrak{A}/\mathfrak{I} \cong M_k\), by Lemma 4.4 there exists \(m \in \mathbb{N}\) such that for each \(n \geq m\), \(|V_n \setminus S| = 1\) and \(d_E(x_n) = k\), where \(\{x_n\} = V_n \setminus S\). Note that for each \(n \geq m\), \(V_n = (V_n \setminus S) \cup \{x_n\}\). To obtain the result, we shall establish two claims.

Claim 1: There exists infinitely many \(n\) such that \(x_n E^1 (V_{n+1} \cap S) \neq \emptyset\). Suppose not. Then there exists \(N \geq m\) such that for all \(n \geq N\), \(x_n E^1 (V_{n+1} \cap S) = \emptyset\) and \(x_n E^1 (V_{N+1} \cap S) = \emptyset\). Then \(\bigcup_{n=N+1}^\infty \{x_n\}\) is a saturated, hereditary subset of \(E^0\) disjoint from \(S\), which corresponds to a nonzero ideal \(\mathfrak{K}\) of \(\mathfrak{A}\) such that \(\mathfrak{I} \cap \mathfrak{K} = \emptyset\), contradicting the fact that \(\mathfrak{I}\) is an essential ideal of \(\mathfrak{A}\).

Claim 2: There exists \(m_1 \geq m\) such that for all \(n \geq m_1\) we have \((V_n \cap S) E^1 x_{n+1} = \emptyset\). Suppose not. Then for each \(m_1 \geq m\), there exists \(n \geq m_1\) such that \((V_n \cap S) E^1 x_{n+1} \neq \emptyset\). Since \(S\) is a saturated, hereditary subset of \(E^0\), this would imply that \(\bigsqcup_{n=m_1}^\infty V_n \subseteq S\). Hence, \(\mathfrak{I} = \mathfrak{A}\) contradicting that fact that \(\mathfrak{A}/\mathfrak{I} \cong M_k\).

By Claim 1 and Claim 2, there exists a subsequence \(\{k(n)\}_{n=1}^\infty\) of \(\{n \in \mathbb{N} : n \geq m_1\}\) such that \(x_{k(n)} E^* (V_{k(n+1)} \cap S) \neq \emptyset\) and \((V_{k(n)} \cap S) E^* x_{k(n+1)} = \emptyset\). Telescope \((E, d_E)\) to \(\bigsqcup_{n=1}^\infty V_{k(n)}\). Then we get a Bratteli diagram \((F, d_F)\) with \(F^0 = \bigsqcup_{n=1}^\infty W_n\) and \(W_n = U_n \cup \{t_n\}\), where \(U_n := V_{k(n)} \cap S\), and \(t_n := x_{k(n)}\). We see that \((F, d_F)\) satisfies properties (1)–(5) of Definition 4.8. □

Lemma 4.11. Let \(\mathfrak{A}\) be an AF-algebra with a largest ideal \(\mathfrak{I}\) such that \(\mathfrak{A}/\mathfrak{I} \cong M_k\) and \(\mathfrak{A}/\mathfrak{I}\) is the only unital quotient of \(\mathfrak{A}\). Then there exists an \(M_k\)-separated Bratteli diagram \((F, d_F)\) for \(\mathfrak{A}\) with \(F^0 := \bigsqcup_{n=1}^\infty W_n\) partitioned into levels for which \(W_n = U_n \cup \{t_n\}\) satisfies Properties (1)–(5) of Definition 4.8 and also satisfies the additional property:

\[(6') \quad \text{For every } n \geq 2 \text{ and for every } v \in U_n \text{ either} \]
\[d_F(v) > \sum_{\alpha \in W_n F^* v} d_F(s_F(\alpha)) \quad \text{or} \quad d_F(v) = \sum_{\alpha \in t_n F^* v} d_F(t_m). \]

Proof. Note that it suffices to show that \(\mathfrak{A}\) has an \(M_k\)-separated Bratteli diagram satisfying the following condition:

\[(6)'' \quad \text{For every } m \in \mathbb{N}, \text{ there exists } n \geq m \text{ such that for every } v \in U_n \text{ either} \]
\[d_F(v) > \sum_{\alpha \in W_m F^* v} d_F(s_F(\alpha)) \quad \text{or} \quad d_F(v) = \sum_{\alpha \in t_m F^* v} d_F(t_m) \]

since any such Bratteli diagram can be telescoped to an \(M_k\)-separated Bratteli diagram satisfying Property (6') in the statement of the lemma.
Since any largest ideal is also an essential ideal, Lemma 4.10 implies that there is an \(\mathbb{M}_k \)-separated Bratteli diagram \((F, d_F)\) for \(\mathfrak{A} \). Suppose \(F^0 := \bigcup_{n=1}^{\infty} W_n \) is partitioned into levels with \(W_n = U_n \cup \{ t_n \} \). We shall show that \((F, d_F)\) satisfies Property (6') of Lemma 4.11. We establish this through proof by contradiction. To this end, suppose there exists \(m \in \mathbb{N} \) such that for each \(n \geq m \), the set

\[
Y_n := \left\{ x \in W_n : d_F(x) = \sum_{\alpha \in W_n F^* x} d_F(s_F(\alpha)) \text{ and } d_F(x) \neq \sum_{\alpha \in t_n F^* x} d_F(t_m) \right\}
\]

is nonempty. Without loss of generality, we may assume that \(m = 1 \). Set

\[
T = \{ w \in F^0 : \text{there exist infinitely many } n \in \mathbb{N} \text{ such that } w \geq Y_n \}.
\]

Then \(F^0 \setminus T \) is a saturated hereditary subset of \(F^0 \). In addition, since \(\mathfrak{A} \) contains a largest ideal, and \(U := \bigcup_{n=1}^{\infty} U_n \) is a saturated hereditary subset of \(F^0 \) not contained in any proper saturated hereditary subset of \(F^0 \), it follows that \(U \) is the saturated hereditary subset corresponding to \(\mathcal{J} \) and \(U \) is a largest saturated hereditary subset of \(F^0 \). Therefore, \(F^0 \setminus T \subseteq U \) or \(F^0 \setminus T = F^0 \). We shall show that it must be the case that \(F^0 \setminus T \subseteq U \) by proving that \(T \neq \emptyset \).

We claim that \(T \cap U \neq \emptyset \). Suppose \(T \cap U = \emptyset \). Then, \(U \subseteq F^0 \setminus T \). Therefore, for every \(v \in U \), there exists \(n_v \in \mathbb{N} \) such that for each \(n \geq n_v \), there are no paths from \(v \) to \(Y_n \). Set \(N := \max \{ n_v : v \in U_1 \} \). Then for each \(n \geq N \) we have \(U_1 F^* Y_n = \emptyset \).

Let \(x \in Y_N \). Then \(d_F(x) = \sum_{\alpha \in W_1 F^* x} d_F(s_F(\alpha)) \) and \(d_F(x) \neq \sum_{\alpha \in t_1 F^* x} d_F(t_1) \). Note that \(x \neq t_N \) since \(\sum_{\alpha \in t_1 F^* t_N} d_F(t_1) = d_F(t_1) = k = d_F(x) \). Therefore, \(x \in U_N \). Since \(0 \neq d_F(x) = \sum_{\alpha \in W_1 F^* x} d_F(s_F(\alpha)) \), we have that \(W_1 F^* x \neq \emptyset \). Since \(U_1 F^* Y_N = \emptyset \), it follows that \(U_1 F^* x = \emptyset \). Hence

\[
d_F(x) = \sum_{\alpha \in W_1 F^* x} d_F(s_F(\alpha)) = \sum_{\alpha \in t_1 F^* x} d_F(t_1),
\]

which contradicts the assumption that \(x \in Y_N \). Therefore, \(T \cap U \neq \emptyset \).

Since \(T \cap H \neq \emptyset \), we have that \(T \neq \emptyset \) and \(F^0 \setminus T \neq F^0 \). Hence it must be the case that \(F^0 \setminus T \subseteq H \). Since \(T \cap H \neq \emptyset \), we have that \(F^0 \setminus T \neq H \). Let \(\mathfrak{R} \) be the ideal of \(\mathfrak{A} \) corresponding to \(F^0 \setminus T \). Then \(\mathfrak{R} \neq \mathcal{J} \) and \(\mathfrak{A}/\mathfrak{R} \) has a Bratteli diagram obtained by restricting to the vertices of \(T \). By Lemma 4.3, \(\mathfrak{A}/\mathfrak{R} \) is a unital \(C^* \)-algebra, and since \(\mathfrak{R} \neq \mathcal{J} \), this contradicts the fact that \(\mathfrak{A}/\mathfrak{J} \) is the only unital quotient of \(\mathfrak{A} \). Hence the lemma holds.

Lemma 4.12. Let \(\mathfrak{A} \) be an AF-algebra with a largest ideal \(\mathcal{J} \) such that \(\mathfrak{A}/\mathcal{J} \cong \mathbb{M}_k \) and \(\mathfrak{A}/\mathcal{J} \) is the only unital quotient of \(\mathfrak{A} \). Then there exists a proper \(\mathbb{M}_k \)-separated Bratteli diagram for \(\mathfrak{A} \).

Example 4.13. By Lemma 4.11 it suffices to show that an \(\mathbb{M}_k \)-separated Bratteli diagram that satisfies Property (6') of Lemma 4.11 is equivalent to a proper \(\mathbb{M}_k \)-separated Bratteli diagram for \(\mathfrak{A} \). To help the reader follow the proof of Lemma 4.12, we give an example to illustrate how the telescoping constructions in the proof are performed.

Below are four Bratteli diagrams: \((F, d_F)\), \((A, d_A)\), \((B, d_B)\), and \((E, d_E)\). The Bratteli diagram \((F, d_F)\) is an \(\mathbb{M}_1 \)-separated Bratteli diagram that satisfies Property (6') of Lemma 4.11. In addition, \((E, d_E)\) is a proper \(\mathbb{M}_1 \)-separated Bratteli diagram. Telescoping
the Bratteli diagrams \((F,d_F)\) and \((B,d_B)\) at the odd levels, we obtain the Bratteli diagram \((A,d_A)\). Telescoping the Bratteli diagram \((B,d_B)\) at the even levels gives the Bratteli diagram \((E,d_E)\). Thus \((F,d_F)\) is equivalent to \((E,d_E)\).

\[
(F,d_F) \quad \begin{array}{cccccccc}
1 & 2 & 2 & 2 & 2 & \ldots & 2 & \ldots \\
 & 4 & 8 & 12 & 16 & \ldots & 4(n-1) & \ldots \\
1 & 1 & 1 & 1 & 1 & \ldots & 1 & \ldots \\
\end{array}
\]

\[
(A,d_A) \quad \begin{array}{cccccccc}
1 & 2 & 2 & 2 & 2 & \ldots & 2 & \ldots \\
 & 8 & 16 & 24 & 32 & \ldots & 8(n-1) & \ldots \\
1 & 1 & 1 & 1 & 1 & \ldots & 1 & \ldots \\
\end{array}
\]

\[
(B,d_B) \quad \begin{array}{cccccccc}
1 & 2 & 2 & \ldots & 2 & \ldots \\
 & 4 & 8 & 12 & 16 & \ldots & 4(n-1) & \ldots \\
1 & 1 & 1 & 1 & 1 & \ldots & 1 & \ldots \\
\end{array}
\]

\[
(E,d_E) \quad \begin{array}{cccccccc}
4 & 12 & 20 & 28 & 36 & \ldots & 4 + 8(n-1) & \ldots \\
6 & 6 & 6 & 6 & 6 & \ldots & 1 & \ldots \\
1 & 1 & 1 & 1 & 1 & \ldots & 1 & \ldots \\
\end{array}
\]

Proof of Lemma 4.12. By Lemma 4.11 \(\mathfrak{A}\) has an \(\mathbb{M}_k\)-separated Bratteli diagram \((F,d_F)\) that satisfies Property (6’) of Lemma 4.11. We shall prove that \((F,d_F)\) is equivalent to a proper \(\mathbb{M}_k\)-separated Bratteli diagram for \(\mathfrak{A}\).

For each \(n \geq 2\), set

\[
A_n := \left\{ v \in U_n : d_F(v) = \sum_{e \in \ell_{n-1}F^1v} d_F(t_{n-1}) \right\}.
\]

For each \(v \in A_n\) and for each \(w \in U_{n+1}\), let

\[
p(v,w) := |\{ ef \in F^2 : s_F(e) = t_{n-1}, r_F(e) = s_F(f) = v, \text{ and } r_F(f) = w \}|
\]

denote the number of paths in \(F\) from \(t_{n-1}\) to \(w\) that go through \(v\).
Define a Bratteli diagram \((B, d_B)\) as follows:

\[
B^0 = F^0 \setminus \left(\bigcup_{n=1}^{\infty} A_{2n} \right)
\]

\[
B^1 = \left(F^1 \setminus \left(\bigcup_{n=1}^{\infty} \{ e \in F^1 : r_F(e) \in A_{2n} \text{ or } s_F(e) \in A_{2n} \} \right) \right) \\
\cup \left(\bigcup_{n=1}^{\infty} \{ e_i(v, w, n) : v \in A_{2n}, w \in U_{2n+1}, \text{ and } 1 \leq i \leq p(v, w) \} \right)
\]

with range and source maps defined by

\[
r_B(e) = \begin{cases}
 r_F(e), & \text{if } e \in F^1 \\
 w, & \text{if } e = e_i(v, w, n)
\end{cases}
\]

and

\[
s_B(e) = \begin{cases}
 s_F(e), & \text{if } e \in F^1 \\
 t_{2n}, & \text{if } e = e_i(v, w, n)
\end{cases}
\]

and the degree function defined by \(d_B = d_{F|B^0}\).

Note that \(B^0 = \bigsqcup_{n=1}^{\infty} (V_n \cup \{ t_n \})\) with \(V_{2n-1} = U_{2n-1}\) and \(V_{2n} = U_{2n} \setminus A_{2n}\). To show that \((B, d_B)\) is a Bratteli diagram, we must show that

\[
d_B(v) \geq \sum_{e \in B^1 v} d_B(s_B(e)).
\]

for all \(v \in B^0\). To do this it suffices to show that for each \(w \in V_n \cup \{ t_n \}\) we have

\[
\sum_{e \in B^1 w} d_B(s_B(e)) = \sum_{e \in F^1 w} d_F(s_F(w)).
\]

To this end, let \(n \in \mathbb{N}\) and first suppose \(w \in V_{2n}\). Then \(w \in U_{2n} \setminus A_{2n}\). By the construction of \(B\), we have that \(B^1 w = F^1 w\). Hence

\[
\sum_{e \in B^1 w} d_B(s_B(e)) = \sum_{e \in F^1 w} d_F(s_F(e)).
\]

Next, suppose \(w \in V_{2n-1}\). If \(w \in A_{2n-1}\) with \(n \geq 2\) (the case when \(n = 1\) is clear), then \(B^1 w = F^1 w\) and

\[
\sum_{e \in B^1 w} d_B(s_B(e)) = \sum_{e \in F^1 w} d_F(s_F(e)).
\]
Next, suppose \(w \in U_{2n-1} \setminus A_{2n-1} \). Note that \(d_F(t_{2n-3}) = d_F(t_{2n-2}) \). Thus
\[
\sum_{e \in B^1 w} d_B(s_B(e)) = \sum_{e \in V_{2n-2} B^1 w} d_B(s_B(e)) + \sum_{e \in t_{2n-2} B^1 w} d_B(s_B(e))
\]
\[
= \sum_{e \in V_{2n-2} F^1 w} d_F(s_F(e)) + \sum_{e \in t_{2n-2} F^1 w} d_F(s_F(t_{2n-2})) + \sum_{e \in A_{2n-2}} s(v, w) d_F(t_{2n-2})
\]
\[
= \sum_{e \in V_{2n-2} F^1 w} d_F(s_F(e)) + \sum_{e \in t_{2n-2} F^1 w} d_F(s_F(t_{2n-2})) + \sum_{e \in A_{2n-2}} |t_{2n-3} F^1 v| v F^1 w d_F(t_{2n-2})
\]
\[
= \sum_{e \in V_{2n-2} F^1 w} d_F(s_F(e)) + \sum_{e \in t_{2n-2} F^1 w} d_F(s_F(t_{2n-2})) + \sum_{e \in A_{2n-2}} |v F^1 w| d_F(v)
\]
\[
= \sum_{e \in V_{2n-2} F^1 w} d_E(s_E(e)) + \sum_{e \in t_{2n-2} F^1 w} d_E(s_E(t_{2n-2})) + \sum_{e \in A_{2n-2}} d_F(s_F(e))
\]
\[
= \sum_{e \in F^1 w} d_F(s_F(e)).
\]
Since
\[
\sum_{e \in B^1 t_n} d_B(s_B(e)) = d_F(t_{n-1}) = \sum_{e \in F^1 t_n} d_F(s_F(e)),
\]
it follows that for each \(w \in B^0 \) we have
\[
\sum_{e \in B^1 w} d_B(s_B(e)) = \sum_{e \in F^1 w} d_F(s_F(e)) \leq d_F(w) = d_B(w).
\]
Thus \((B, d_B)\) is a Bratteli diagram.

Set \(Y_n = V_n \cup \{ t_n \} \). By the construction of \((B, d_B)\), for each \(w \in A_{2n+1} \) and for each \(v \in A_{2n-1} \) we have
\[
|v B^* w| = |v F^* w|.
\]
Let \((A, d_A)\) be the the Bratteli diagram obtained by telescoping \((B, d_B)\) at the levels \(\bigsqcup_{n=1}^{\infty} Y_{2n-1} \). Since \(Y_{2n-1} = W_{2n-1} \) for each \(n \in \mathbb{N} \), we see that the Bratteli diagram obtained by telescoping \((F, d_F)\) at the levels \(\bigsqcup_{n=1}^{\infty} W_{2n-1} \) is also equal to \((A, d_A)\). Thus \((F, d_F)\) and \((B, d_B)\) are equivalent Bratteli diagrams.

We now show that for each \(n \geq 2 \) and \(w \in Y_{2n} \) we have
\[
\sum_{e \in Y_{2n-2} B^* w} d_B(s_B(e)) = \sum_{e \in W_{2n-2} F^* w} d_F(s_F(e)).
\]
Let \(w \in V_{2n} \). First, suppose \(w = t_{2n} \). Then
\[
\sum_{e \in Y_{2n-2} B^* w} d_B(s_B(e)) = d_F(t_{2n}) = \sum_{e \in W_{2n-2} F^* w} d_F(s_F(e)).
\]
Next, suppose \(w \in V_{2n} \). Then \(w \in U_{2n} \setminus A_{2n} \) and \(B^1w = F^1w \). Therefore
\[
\sum_{e \in W_{2n-2}F^*w} d_F(s_F(e)) = \sum_{e \in W_{2n-2}F^*w} \sum_{f \in F^1s_F(e)} d_F(s_F(e)) = \sum_{e \in B^1w} \sum_{f \in F^1s_B(e)} d_F(s_F(e)) = \sum_{e \in Y_{2n-2}B^*w} d_B(s_B(e)) = \sum_{e \in W_{2n-2}B^*w} d_B(s_B(e)).
\]
Hence, for each \(n \geq 2 \) and \(w \in Y_{2n} \) we have
\[
\sum_{e \in Y_{2n-2}B^*w} d_B(s_B(e)) = \sum_{e \in W_{2n-2}B^*w} d_F(s_F(e)).
\]
In particular, for each \(n \geq 2 \) and \(w \in V_{2n} = U_{2n} \setminus A_{2n} \) we have
\[
\sum_{e \in Y_{2n-2}B^*w} d_B(s_B(e)) = \sum_{e \in W_{2n-2}B^*w} d_F(s_F(e)) < d_F(w) = d_B(w).
\]
Let \((E,d_E)\) be the Bratteli diagram obtained by telescoping \((B,d_B)\) to \(\bigsqcup_{n=1}^{\infty} Y_{2n} \). Set \(H_n := U_{2n} \) and \(y_n := t_{2n} \). Then \((E,d_E)\) is a proper \(\mathbb{M}_k \)-separated Bratteli diagram equivalent to \((F,d_F)\).

\[\square\]

5. Nonunital AF-algebras with a unique unital quotient

We begin by describing a way to construct a graph from a proper \(\mathbb{M}_k \)-separated Bratteli diagram.

Definition 5.1. Let \((E,d_E)\) be a proper \(\mathbb{M}_k \)-separated Bratteli diagram such that \(E^0 = \bigsqcup_{n=1}^{\infty} V_n \) is partitioned into levels with \(V_n = H_n \cup \{y_n\} \). Then \(H := \bigsqcup_{n=1}^{\infty} H_n \) is a saturated hereditary subset of \(E^0 \), and we construct a graph \(G = (G^0,G^1,r_G,s_G) \) from \((E,d_E)\) as follows: For each \(n \in \mathbb{N} \) and \(v \in H_n \), set
\[
\delta(v) := d_E(v) - \sum_{e \in r^{-1}(v)} d_E(s_E(e)) - 1 \quad \text{and} \quad m(v) := |y_{n-1}E^*v|.
\]
Let
\[
G^0 := E^0_H \cup \{z_i : i = 1, \ldots, k\} \cup \{x_i^v : v \in H, 1 \leq i \leq \delta(v)\}
\]
\[
G^1 := E^1_H \cup \{e_i : i = 1, \ldots, k-1\} \cup \{f_i^v : v \in H, 1 \leq i \leq m(v)\}
\]
\[
\sqcup \{g_i^v : v \in H, 1 \leq i \leq \delta(v)\}
\]
be the vertex and edge sets of \(G \), respectively, with
\[
s_G(e) = \begin{cases} s_E(e), & \text{if } e \in E^1_H \\ z_i, & \text{if } e = e_i \\ z_k, & \text{if } e = f_i^v \\ x_i, & \text{if } e = g_i^v \end{cases}
\]
and
\[
r_G(e) = \begin{cases} r_E(e), & \text{if } e \in E^1_H \\ z_k, & \text{if } e = e_i \\ v, & \text{if } e = f_i^v \text{ or } e = g_i^v \end{cases}
\]
as the range and source functions.

Remark 5.2. In Definition 5.1 the fact that \((E,d_E)\) is a proper \(\mathbb{M}_k \)-separated Bratteli diagram is needed to assure us that \(\delta(v) \geq 0 \) for all \(v \in H \).
Remark 5.3. In the graph G of Definition 5.1 the vertex z_k is an infinite emitter, and all other vertices of G are regular vertices.

Example 5.4. We give an example to illustrate the construction of the graph in Definition 5.1. Consider the following proper M_3-separated Bratteli diagram. In the top row the values at the first three levels are 4, 24, 43, and then for level $n \geq 4$ the value is $20n + 4$.

We see that H consists of the vertices labeled 4, 24, 43, 64, 84, ... and that each H_n consists of a single vertex, which we shall denote v_n. Then $H = \{v_1, v_2, v_3, \ldots\}$, and $\delta(v_1) = 3$, $\delta(v_2) = 1$, $\delta(v_3) = 0$, $\delta(v_4) = 2$, ... The graph $G = (G^0, G^1, r_G, s_G)$ constructed from (E, d_E), as described in Definition 5.1, is given by the following:

Note that the vertex z_3 is an infinite emitter.

Lemma 5.5. Let (E, d_E) be a a proper M_k-separated Bratteli diagram such that $E^0 = \bigsqcup_{n=1}^\infty V_n$ is partitioned into levels with $V_n = H_n \cup \{y_n\}$. If we let $H := \bigsqcup_{n=1}^\infty H_n$ and let $G = (G^0, G^1, s_G, r_G)$ the graph constructed from (E, d_E) as described in Definition 5.1, then

$$d_E(v) = |\{\alpha \in G^* : r_G(\alpha) = v\}| \quad \text{for all } v \in H.$$
and the base case holds. For the inductive step, assume that for a particular value of \(n \in \mathbb{N} \) we have \(d_E(v) = |\{ \alpha \in G^* : r_G(\alpha) = v \}| \) for all \(v \in H_n \). Choose \(v \in H_{n+1} \). Then
\[
|\{ \alpha \in G^* : r_G(\alpha) = v \}| = 1 + |\{ g^v_i : 1 \leq i \leq \delta(v) \}|
\]
\[
+ \sum_{e \in r_E^{-1}(v) \cap s_E^{-1}(H)} |\{ \alpha \in G^* : r_G(\alpha) = s_G(e) \}|
\]
\[
+ k |\{ f^v_i : 1 \leq i \leq m(v) \}|
\]
\[
= 1 + \delta(v) + \sum_{e \in r_E^{-1}(v) \cap s_E^{-1}(H)} d_E(s_G(e)) + km(v)
\]
\[
= 1 + \delta(v) + \sum_{e \in r_E^{-1}(v)} d_E(s_G(e))
\]
\[
= d_E(v)
\]
and our lemma holds for all vertices in \(H_{n+1} \). It follows from induction that the lemma holds.

Proposition 5.6. Let \((E,d_E) \) be a proper \(\mathbb{M}_k \)-separated Bratteli diagram, and let \(G \) be the graph constructed from \((E,d_E) \) as described in Definition 5.1. If \(\mathfrak{A} \) is the AF-algebra associated with \((E,d_E) \), then \(\mathfrak{A} \cong C^*(G) \).

Proof. Let \(\{ S_e, P_v : e \in G^1, v \in G^0 \} \) be a universal Cuntz-Krieger \(G \)-family in \(C^*(G) \). Using the notation of Definition 5.1 set \(V_n := H_n \sqcup \{ y_n \} \) and define
\[
Q_n := P_{z_k} - \sum_{1 \leq i \leq n} \sum_{v \in H_i} \sum_{1 \leq j \leq m(v)} S_{f^v_i} S_{f^v_j}^*
\]
and
\[
\mathfrak{A}_n := C^*(\{ S_\alpha : \alpha \in E^*, r_G(\alpha) \in H_n \} \cup \{ S_e Q_n : i = 1, \ldots, k - 1 \}).
\]
We will prove the following:

1. \(\mathfrak{A}_n \subseteq \mathfrak{A}_{n+1} \) and there exists an isomorphism
\[
\phi_n : \mathfrak{A}_n \to \left(\bigoplus_{v \in H_n} \mathbb{M}_{d_E(v)} \right) \oplus \mathbb{M}_k
\]
such that the induced homomorphism
\[
\psi_{n,n+1} : \left(\bigoplus_{v \in H_n} \mathbb{M}_{d_E(v)} \right) \oplus \mathbb{M}_k \to \left(\bigoplus_{v \in H_{n+1}} \mathbb{M}_{d_E(v)} \right) \oplus \mathbb{M}_k
\]
that makes the diagram
\[
\begin{array}{ccc}
\mathfrak{A}_n & \xrightarrow{\phi_n} & \mathfrak{A}_{n+1} \\
\psi_{n,n+1} \downarrow & & \downarrow \phi_{n+1} \\
(\bigoplus_{v \in H_n} \mathbb{M}_{d_E(v)}) \oplus \mathbb{M}_k & \xrightarrow{\psi_{n,n+1}} & (\bigoplus_{v \in H_{n+1}} \mathbb{M}_{d_E(v)}) \oplus \mathbb{M}_k
\end{array}
\]
commutative has multiplicity matrix \((|wE^1v|)_{w \in V_n, v \in V_{n+1}} \).
(2) \(\{ S_e, P_v : e \in G^1, v \in G^0 \} \subseteq \bigcup_{n=1}^{\infty} \mathfrak{A}_n \).

Note that (1) implies that \(\mathfrak{A} \cong \bigcup_{n=1}^{\infty} \mathfrak{A}_n \) and (2) implies that \(\bigcup_{n=1}^{\infty} \mathfrak{A}_n = C^*(G) \), from which it follows that \(\mathfrak{A} \cong C^*(G) \). Thus establishing (1) and (2) will prove the theorem.

We first prove (1). Let \(\alpha \in G^* \) such that \(r_G(\alpha) = v \in H_n \). Note that
\[
S_\alpha = S_\alpha P_v = S_\alpha \sum_{e \in s^{-1}_G(v)} S_e S_e^* = \sum_{e \in s^{-1}_G(v)} S_\alpha S_e S_e^*.
\]

Since \(v \in H_n \), it follows that \(r_G(s^{-1}_G(v)) \subseteq H_{n+1} \). Thus, \(S_\alpha S_e S_e^* \in \mathfrak{A}_{n+1} \) for all \(e \in s^{-1}_G(v) \).

Note that
\[
S_{ei} Q_n = S_{ei} \left(Q_{n+1} - \sum_{v \in H_{n+1}} \sum_{1 \leq j \leq m(v)} S_{fj} S_{fj}^* \right) = S_{ei} Q_{n+1} - \sum_{v \in H_{n+1}} \sum_{1 \leq j \leq m(v)} S_{ei} S_{fj} S_{fj}^*.
\]

Since \(S_{ei} Q_{n+1} \in \mathfrak{A}_{n+1} \) and \(S_{ei} S_{fj} S_{fj}^* \in \mathfrak{A}_{n+1} \), we have that \(S_{ei} Q_n \in \mathfrak{A}_{n+1} \). Thus \(\mathfrak{A}_n \subseteq \mathfrak{A}_{n+1} \).

For each \(v \in H_n \), set
\[
\mathfrak{B}_{n,v} := C^*\{ S_\alpha : r_G(\alpha) = v \} \quad \text{and} \quad \mathfrak{C}_n := C^*\{ S_{ei} Q_n : 1 \leq i \leq k - 1 \}.
\]

Define \(\alpha_n : \left(\bigoplus_{v \in H_n} \mathfrak{B}_{n,v} \right) \oplus \mathfrak{C}_n \rightarrow \mathfrak{A}_n \) by
\[
\alpha_n \left(\{ (x_v)_{v \in H_n}, y \} \right) := \sum_{v \in H_n} x_v + y.
\]

One can verify that \(\alpha_n \) is an isomorphism. In addition, for each \(v \in H_n \), we have \(d_{E}(v) = | \{ \alpha \in G^* : r_G(\alpha) = v \} | \), and hence \(\mathfrak{B}_{n,v} \cong M_{d_{E}(v)} \). Also, \(\mathfrak{C}_n \cong M_k \). Let \(\phi_n : \mathfrak{A}_n \rightarrow \left(\bigoplus_{v \in H_n} M_{d_{E}(v)} \right) \oplus M_k \) be the composition
\[
\mathfrak{A}_n \xrightarrow{\alpha_n^{-1}} \left(\bigoplus_{v \in H_n} \mathfrak{B}_{n,v} \right) \oplus \mathfrak{C}_n \cong \left(\bigoplus_{v \in H_n} M_{d_{E}(v)} \right) \oplus M_k.
\]

Let \(\iota_{n,n+1} : \mathfrak{A}_n \hookrightarrow \mathfrak{A}_{n+1} \) be the inclusion map. Define \(\psi_{n,n+1} : \left(\bigoplus_{v \in H_n} M_{d_{E}(v)} \right) \oplus M_k \rightarrow \left(\bigoplus_{v \in H_n} M_{d_{E}(v)} \right) \oplus M_k \) to be the composition \(\phi_{n+1} \circ \iota_{n,n+1} \circ \phi_n^{-1} \).

If \(w \in H_n \), then
\[
P_w = \sum_{e \in s^{-1}_G(w)} S_e S_e^* = \sum_{v \in H_{n+1}} \sum_{e \in w E^* v} S_e S_e^* \subseteq \sum_{v \in H_{n+1}} \mathfrak{B}_{n+1,v}.
\]

Note that
\[
Q_n = Q_{n+1} - \sum_{v \in H_{n+1}} \sum_{1 \leq j \leq m(v)} S_{fj} S_{fj}^* \in \mathfrak{C}_{n+1} + \sum_{v \in H_{n+1}} \mathfrak{B}_{n+1,v}.
\]

Therefore, the multiplicity matrix \(\phi_{n,n+1} \) is given by \((|w E^* v|)_{w \in V_n, v \in V_{n+1}} \). This establishes (1), which implies \(\mathfrak{A} \cong \bigcup_{n=1}^{\infty} \mathfrak{A}_n \).

We now prove (2). Note that for each \(v \in H_n \), we have \(S_{g_i}, S_e \in \mathfrak{A}_n \) for all \(e \in r_{G}^{-1}(v) \) and for all \(1 \leq i \leq \delta(v) \). Since \(S_{g_i} S_{g_i}^* = P_{g_i} \) and \(S_e S_e^* = P_v \) for each \(e \in r_{G}^{-1}(v) \), we have that \(S_{g_i}, S_e, P_v, P_{g_i} \subseteq \bigcup_{n=1}^{\infty} \mathfrak{A}_n \) for all \(n \in \mathbb{N}, v \in H_n \), and \(e \in r_{G}^{-1}(v) \).

All that remains is to show that \(S_{g_i} \subseteq \bigcup_{n=1}^{\infty} \mathfrak{A}_n \) for \(i = 1, \ldots, k - 1 \) and \(P_{g_i} \subseteq \bigcup_{n=1}^{\infty} \mathfrak{A}_n \) for \(i = 1, \ldots, k \) are in \(\bigcup_{n=1}^{\infty} \mathfrak{A}_n \). We shall actually show that all these elements are in \(\mathfrak{A}_1 \). To
do this, we see that for each \(v \in H_1 \) we have \(m(v) = 0 \) so that \(Q_1 = P_{z_k} \). Thus \(P_{z_k} \in \mathfrak{A}_1 \).

In addition, for all \(1 \leq i \leq k - 1 \) we have \(S_{e_i} = S_{e_i} P_{z_k} = S_{e_i} Q_1 \in \mathfrak{A}_1 \). Moreover, it follows that for all \(1 \leq i \leq k - 1 \) we have \(P_{z_i} = S_{e_i} S_{e_i}^* \in \mathfrak{A}_1 \).

The previous two paragraphs show that \(\{ S_{e_i}, g_v : e \in G^1, v \in G^0 \} \subseteq \bigcup_{n=1}^{\infty} \mathfrak{A}_n \), which establishes (2). Since each \(\mathfrak{A}_n \) is a \(C^* \)-subalgebra of \(C^*(G) \), and the elements of the set \(\{ S_{e_i}, P_{v} : e \in G^1, v \in G^0 \} \) generate \(C^*(G) \), it follows that \(C^*(G) \cong \bigcup_{n=1}^{\infty} \mathfrak{A}_n \). \(\square \)

The following theorem shows that the conjecture from the introduction holds whenever \(\mathfrak{A} \) is an AF-algebra with a largest ideal \(\mathfrak{I} \) such that \(\mathfrak{A}/\mathfrak{I} \) is the only unital quotient of \(\mathfrak{A} \).

Theorem 5.7. Let \(\mathfrak{A} \) be a nonunital AF-algebra with a largest ideal \(\mathfrak{I} \). If \(\mathfrak{A}/\mathfrak{I} \) is the only unital quotient of \(\mathfrak{A} \), then the following are equivalent:

1. \(\mathfrak{A} \) is isomorphic to a graph \(C^* \)-algebra.
2. \(\mathfrak{A}/\mathfrak{I} \) is a Type I \(C^* \)-algebra with finitely many ideals.
3. \(\mathfrak{A}/\mathfrak{I} \cong \mathcal{M}_k \) for some \(k \in \mathbb{N} \).

Proof. If (1) holds, then it follows from [10, Proposition 4.21] that the unital quotient \(\mathfrak{A}/\mathfrak{I} \) is a Type I \(C^* \)-algebra with finitely many ideals. Hence (1) implies (2).

If (2) holds, then since \(\mathfrak{I} \) is a largest ideal of \(\mathfrak{A} \), the quotient \(\mathfrak{A}/\mathfrak{I} \) is simple. In addition, since \(\mathfrak{A} \) is AF, and hence Type I, it follows that \(\mathfrak{A}/\mathfrak{I} \) is Type I. Since any unital, simple, Type I \(C^* \)-algebra is isomorphic to \(\mathcal{M}_k \) for some \(k \in \mathbb{N} \), (3) holds. Thus (2) implies (3).

If (3) holds, then Lemma 4.12 implies there exists a proper \(\mathcal{M}_k \)-separated Bratteli diagram for \(\mathfrak{A} \). If \(G \) is the graph constructed from \((E, d_E)\) as described in Definition 5.1, then Proposition 5.6 implies that \(A \cong C^*(G) \). Hence (3) implies (1). \(\square \)

Remark 5.8. Recall that [10, Theorem 4.7] implies that an AF-algebra is isomorphic to the \(C^* \)-algebra of a row-finite graph with no sinks if and only if the AF-algebra has no unital quotients. If the conditions of Theorem 5.7 hold, then since \(\mathfrak{A}/\mathfrak{I} \) is a unital quotient of \(\mathfrak{A} \), we know that \(\mathfrak{A} \) is not isomorphic to the \(C^* \)-algebra of a row-finite graph with no sinks. The construction of Definition 5.1 shows that \(\mathfrak{A} \) is, however, isomorphic to the \(C^* \)-algebra of a graph with no sinks and exactly one infinite emitter.

It is easy to see that the conjecture from the introduction holds for simple AF-algebras: If a simple AF-algebra is unital, Corollary 3.14 shows it is isomorphic to a graph \(C^* \)-algebra if and only if it is a Type I \(C^* \)-algebra. If a simple AF-algebra is nonunital, [10, Theorem 4.7] shows it is always isomorphic to a graph \(C^* \)-algebra.

Combining our result for unital AF-algebras in Corollary 3.14 and for nonunital AF-algebras in Theorem 5.7 allows us to show that the conjecture from the introduction also holds for the class of AF-algebras with exactly one ideal.

Theorem 5.9. Let \(\mathfrak{A} \) be an AF-algebra with exactly one proper nonzero ideal. Then \(\mathfrak{A} \) is isomorphic to a graph \(C^* \)-algebra if and only if every unital quotient of \(\mathfrak{A} \) is a Type I \(C^* \)-algebra.

Proof. Necessity follows from [10, Proposition 4.21]. To see sufficiency, let \(\mathfrak{I} \) be the unique proper nonzero ideal of \(\mathfrak{A} \), and consider three cases.

Case I: \(\mathfrak{A} \) is unital. Then by hypothesis \(\mathfrak{A} \) is Type I with finitely many ideals, so by Corollary 3.14 we have \(\mathfrak{A} \) is isomorphic to a graph \(C^* \)-algebra.
Case II: \(\mathfrak{A} \) is nonunital, and \(\mathfrak{A}/\mathcal{I} \) is unital. Then \(\mathfrak{A}/\mathcal{I} \) is the only unital quotient of \(\mathfrak{A} \), and this quotient is simple and Type I by hypothesis. Hence Theorem 5.7 implies \(\mathfrak{A} \) is isomorphic to a graph \(C^* \)-algebra.

Case III: \(\mathfrak{A} \) is nonunital and \(\mathfrak{A}/\mathcal{I} \) is nonunital. Then \(\mathfrak{A} \) has no unital quotients, and [10, Theorem 4.7] implies \(\mathfrak{A} \) is isomorphic to a graph \(C^* \)-algebra.

It was proven in [10, Theorem 4.7] that an AF-algebra with no unital quotients is isomorphic to a graph \(C^* \)-algebra. However, the argument uses ultragraphs, and it is difficult to determine the required graph from the proof. Here we provide an alternate proof that shows explicitly how to construct a graph from a Bratteli diagram whose \(C^* \)-algebra is isomorphic to the AF-algebra.

Theorem 5.10 (cf. Theorem 4.7 of [10]). Let \(A \) be an AF-algebra that has no nonunital quotients. Then \(A \) has a Bratteli diagram \((E,d_E) \) such that \(d_E(v) \geq 2 \) and \(d_E(v) > \sum_{e \in r_E^{-1}(v)} d_E(s_E(e)) \) for all \(v \in E^0 \). For any such Bratteli diagram, construct a graph \(G \) from \((E,d_E) \) as follows: Set \(\delta(v) = d_E(v) - \sum_{e \in r_E^{-1}(v)} d_E(s_E(e)) - 1 \) for each \(v \in E^0 \). Define the vertex set and edge set of \(G \) as

\[
G^0 = E^0 \cup \{ x_i^v : v \in E^0, 1 \leq i \leq \delta(v) \}
\]

and

\[
G^1 = E^1 \cup \{ e_i^v : v \in E^0, 1 \leq i \leq \delta(v) \},
\]

respectively. Also define the range and source maps of \(G \) as

\[
r_{G|E^1} = r_{E^1} \quad \text{and} \quad r_G(e_i^v) = v
\]

and

\[
s_{G|E^1} = r_{E^1} \quad \text{and} \quad s_G(e_i^v) = x_i^v,
\]

respectively. Then \(\mathfrak{A} \cong C^*(G) \).

Proof. It follows from [10, Lemma 3.5] that \(A \) has a Bratteli diagram \((E,d_E) \) such that \(d_E(v) \geq 2 \) and \(d_E(v) > \sum_{e \in r_E^{-1}(v)} d_E(s_E(e)) \) for all \(v \in E^0 \).

Let \(E^0 \) be partitioned into levels as \(E^0 = \bigsqcup_{n=1}^{\infty} V_n \), let \(\{ S_e, P_v \}_{e \in G^1, v \in G^0} \) be a universal Cuntz-Krieger \(G \)-family for \(C^*(G) \), and let \(\mathfrak{A} \) be the AF-algebra associated to \((E,d_E) \). Set

\[
\mathfrak{A}_n = C^*(\{ S_{e} : r_G(e) \in V_n \}).
\]

Using an argument similar to the one in the proof of Proposition 5.6, we obtain that \(\mathfrak{A}_n \) is a \(C^* \)-subalgebra of \(C^*(G) \) for each \(n \in \mathbb{N} \), and the following statements hold:

1. \(\mathfrak{A}_n \subseteq \mathfrak{A}_{n+1} \) for all \(n \in \mathbb{N} \);
2. \(\mathfrak{A}_n \cong \bigoplus_{v \in V_n} M_{d_E(v)} \) for all \(n \in \mathbb{N} \);
3. \(\bigoplus_{n=1}^{\infty} \mathfrak{A}_n = C^*(G) \); and
4. the homomorphism \(\phi_{n,n+1} : \bigoplus_{v \in V_n} M_{d_E(v)} \to \bigoplus_{v \in V_{n+1}} M_{d_E(v)} \) given by

\[
\bigoplus_{v \in V_n} M_{d_E(v)} \cong \mathfrak{A}_n \subseteq \mathfrak{A}_{n+1} \cong \bigoplus_{v \in V_{n+1}} M_{d_E(v)}
\]

has multiplicity matrix \((|vE^*w|)_{v \in V_n, w \in V_{n+1}} \).
Hence,

\[C^*(G) = \bigcup_{n=1}^{\infty} \mathcal{A}_n \cong \lim_{\rightarrow} \left(\bigoplus_{v \in V_n} M_{d_E(v)}, \phi_{n,n+1} \right) \cong \mathcal{A}. \]

\[\Box \]

REFERENCES

[1] S. Arklint, J. Gabe, and E. Ruiz, Hereditary sub-algebras of graph C^*-algebras, in preparation.

[2] O. Bratteli, Inductive limits of finite dimensional C^*-algebras, Trans. Amer. Math. Soc., 171 (1972), pp. 195–234.

[3] L.G. Brown, Extensions of AF-algebras: the projection lifting problem, Operator Algebras and Applications: Symp. Pure Math. 38 (1982), pp. 175-176.

[4] D. Drinen, Viewing AF-algebras as graph algebras, Proc. Amer. Math. Soc., 128 (2000), pp. 1991–2000.

[5] S. Eilers, T. Katsura, E. Ruiz, and M. Tomforde, The extension problem for graph C^*-algebras, in preparation.

[6] S. Eilers, T. Katsura, M. Tomforde, and J. West, The ranges of K-theoretic invariants for non-simple graph algebras, preprint.

[7] S. Eilers, G. Restorff, and E. Ruiz, The ordered K-theory of a full extension, to appear in Canadian Journal of Mathematics.

[8] S. Eilers, E. Ruiz, and A. Sørensen, Amplified graph C^*-algebras, Münster J. Math., 5 (2012), pp. 121–150.

[9] G. A. Elliott, On the classification of inductive limits of sequences of semisimple finite-dimensional algebras, J. Algebra, 38 (1976), pp. 29–44.

[10] T. Katsura, A. Sims, and M. Tomforde, Realization of AF-algebras as graph algebras, Exel-Laca algebras, and ultragraph algebras, J. Funct. Anal., 257 (2009), pp. 1589–1620.

[11] A. Kumjian, D. Pask, and I. Raeburn, Cuntz-Krieger algebras of directed graphs, Pacific J. Math. 184 (1998), pp. 161–174.

[12] R. Meyer and R. Nest, C^*-algebras over topological spaces: the bootstrap class, Münster J. Math., 2 (2009), pp. 215–252.

[13] M. Tomforde, The ordered K_0-group of a graph C^*-algebra, C. R. Math. Acad. Sci. Soc. R. Can., 25 (2003), pp. 19–25.

Department of Mathematical Sciences, University of Copenhagen, Universitetsparken 5, DK-2100 Copenhagen, Denmark
E-mail address: eilers@math.ku.dk

Department of Mathematics, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kouhoku-ku, Yokohama, Japan, 223-8522.
E-mail address: katsura@math.keio.ac.jp

Department of Mathematics, University of Hawaii, Hilo, 200 W. Kawili St., Hilo, Hawaii, 96720-4091 USA
E-mail address: ruize@hawaii.edu

Department of Mathematics, University of Houston, Houston, Texas, 77204- 3008, USA
E-mail address: tomforde@math.uh.edu