AN UPPER BOUND ON THE DEGREE OF SINGULAR VECTORS FOR
E(1, 6)

LUCIA BAGNOLI

Abstract. The aim of this work is to prove a technical result, that had been stated by Boyallian, Kac and Liberati [3], on the degree of singular vectors of finite Verma modules over the exceptional Lie superalgebra $E(1, 6)$ that is isomorphic to the annihilation superalgebra associated with the conformal superalgebra CK_6.

1. INTRODUCTION

Finite simple conformal superalgebras were completely classified in [12] and consist in the list: Cur \mathfrak{g}, where \mathfrak{g} is a simple finite–dimensional Lie superalgebra, $W_n(n \geq 0)$, $S_{n,b}$, $\tilde{S}_n(n \geq 2, b \in \mathbb{C})$, $K_n(n \geq 0, n \neq 4)$, K'_4, CK_6. The finite irreducible modules over the conformal superalgebras Cur \mathfrak{g}, K_0, K_1 were studied in [7]. The classification of all finite irreducible modules over the conformal superalgebras Cur \mathfrak{g}, K_N, for $N = 2, 3, 4$ was obtained in [10]. Boyallian, Kac, Liberati and Rudakov classified all finite irreducible modules over the conformal superalgebras of type W and S in [4]; Boyallian, Kac and Liberati classified all finite irreducible modules over the conformal superalgebras of type K_N for $N \geq 4$ in [2]. All finite irreducible modules over the conformal superalgebra K'_4 were classified in [1]. Finally a classification of all finite irreducible modules over the conformal superalgebra CK_6 was obtained in [3] and [16] with different approaches.

In [3] the classification of all finite irreducible modules over the conformal superalgebra CK_6 is obtained by their correspondence with irreducible finite conformal modules over the annihilation superalgebra $\mathcal{A}(CK_6)$ associated with CK_6. The annihilation superalgebra $\mathcal{A}(CK_6)$ is isomorphic to the exceptional Lie superalgebra $E(1, 6)$ (see [8], [9], [17], [14]). In [3], in order to obtain this classification, the authors classify all highest weight singular vectors of finite Verma modules, i.e. induced modules $\text{Ind}(F) = U(\mathfrak{g}) \otimes_{U(\mathfrak{g}_{\geq 0})} F$, where F is a finite–dimensional irreducible $\mathfrak{g}_{\geq 0}$–module [15][10]. In [3] the classification of highest weight singular vectors is based on a technical lemma, whose proof is missing (Lemma 4.4 in [3]), that provides an upper bound on the degree of singular vectors for $E(1, 6)$.

The aim of this paper is to prove that technical lemma stated in [3]. The proof of this lemma completes the classification of singular vectors for $E(1, 6)$ given in [3].

The paper is organized as follows. In section 2 we recall some notions on conformal superalgebras. In section 3 we recall the definition of the conformal superalgebra CK_6 and some of its properties. Finally, in section 4 we prove the bound on the degree of singular vectors for $E(1, 6)$.

2010 Mathematics Subject Classification. 08A05, 17B05 (primary), 17B65, 17B70 (secondary).

Key words and phrases. conformal superalgebras, annihilation superalgebras, finite Verma modules, singular vectors.
2. Preliminaries on Conformal Superalgebras

We recall some notions on conformal superalgebras. For further details see [13, Chapter 2], [11], [4], [2].

Let \(\mathfrak{g} \) be a Lie superalgebra; a formal distribution with coefficients in \(\mathfrak{g} \), or equivalently a \(\mathfrak{g} \)-valued formal distribution, in the indeterminate \(z \) is an expression of the following form:

\[
a(z) = \sum_{n \in \mathbb{Z}} a_n z^{-n-1},
\]

with \(a_n \in \mathfrak{g} \) for every \(n \in \mathbb{Z} \). We denote the vector space of formal distributions with coefficients in \(\mathfrak{g} \) in the indeterminate \(z \) by \(\mathfrak{g}[[z, z^{-1}]] \). We denote by \(\text{Res}(a(z)) = a_0 \) the coefficient of \(z^{-1} \) of \(a(z) \). The vector space \(\mathfrak{g}[[z, z^{-1}]] \) has a natural structure of \(\mathbb{C}[\partial_z] \)-module.

We define for all \(a(z) \in \mathfrak{g}[[z, z^{-1}]] \) its derivative:

\[
\partial_z a(z) = \sum_{n \in \mathbb{Z}} (-n - 1) a_n z^{-n-2}.
\]

A formal distribution with coefficients in \(\mathfrak{g} \) in the indeterminates \(z \) and \(w \) is an expression of the following form:

\[
a(z, w) = \sum_{m,n \in \mathbb{Z}} a_{m,n} z^{-m-1} w^{-n-1},
\]

with \(a_{m,n} \in \mathfrak{g} \) for every \(m, n \in \mathbb{Z} \). We denote the vector space of formal distributions with coefficients in \(\mathfrak{g} \) in the indeterminates \(z \) and \(w \) by \(\mathfrak{g}[[z, z^{-1}], w, w^{-1}] \). Given two formal distributions \(a(z) \in \mathfrak{g}[[z, z^{-1}]] \) and \(b(w) \in \mathfrak{g}[[w, w^{-1}]] \), we define the commutator \([a(z), b(w)]\):

\[
[a(z), b(w)] = \left[\sum_{n \in \mathbb{Z}} a_n z^{-n-1}, \sum_{m \in \mathbb{Z}} b_m w^{-m-1} \right] = \sum_{m,n \in \mathbb{Z}} [a_n, b_m] z^{-n-1} w^{-m-1}.
\]

Definition 2.1. Two formal distributions \(a(z), b(z) \in \mathfrak{g}[[z, z^{-1}]] \) are called local if:

\[
(z - w)^N [a(z), b(w)] = 0 \quad \text{for some } N \gg 0.
\]

We call \(\delta \)-function the following formal distribution in the indeterminates \(z \) and \(w \):

\[
\delta(z - w) = z^{-1} \sum_{n \in \mathbb{Z}} \left(\frac{w}{z} \right)^n.
\]

See Corollary 2.2 in [13] for the following equivalent condition of locality.

Proposition 2.2. Two formal distributions \(a(z), b(z) \in \mathfrak{g}[[z, z^{-1}]] \) are local if and only if \([a(z), b(w)]\) can be expressed as a finite sum of the form:

\[
a(z, w) = \sum_j (a(w)(j)b(w)) \frac{\partial^j}{j!} \delta(z - w),
\]

where the coefficients \((a(w)(j)b(w)) := \text{Res}_z (z - w)^j [a(z), b(w)] \) are formal distributions in the indeterminate \(w \).

Definition 2.3 (Formal Distribution Superalgebra). Let \(\mathfrak{g} \) be a Lie superalgebra and \(\mathcal{F} \) a family of mutually local \(\mathfrak{g} \)-valued formal distributions in the indeterminate \(z \). The pair \((\mathfrak{g}, \mathcal{F})\) is called a formal distribution superalgebra if the coefficients of all formal distributions in \(\mathcal{F} \) span \(\mathfrak{g} \).
We define the λ–bracket between two formal distributions $a(z), b(z) \in \mathfrak{g}[[z, z^{-1}]]$ as the generating series of the $(a(z)_{(j)} b(z))$'s:

\[
[a(z)_{\lambda} b(z)] = \sum_{j \geq 0} \frac{\lambda^j}{j!} (a(z)_{(j)} b(z)).
\]

Definition 2.4 (Conformal superalgebra). A **conformal superalgebra** R is a left \mathbb{Z}_2–graded $\mathbb{C}[\partial]$–module endowed with a \mathbb{C}–linear map, called λ–bracket, $R \otimes R \to \mathbb{C}[\lambda] \otimes R$, $a \otimes b \mapsto [a_{\lambda} b]$, that satisfies the following properties for all $a, b, c \in R$:

\begin{enumerate}[(i)]
 \item **conformal sesquilinearity**: $[\partial a_{\lambda} b] = -\lambda[a_{\lambda} b]$, \quad $[a_{\lambda} \partial b] = (\lambda + \partial)[a_{\lambda} b]$;
 \item **skew–symmetry** : $[a_{\lambda} b] = -(-1)^{p(a)p(b)} [b_{-\lambda-\partial a}]$;
 \item **Jacobi identity** : $[a_{\lambda} [b_{\mu} c]] = [[a_{\lambda} b]_{\lambda+\mu} c] + (-1)^{p(a)p(b)} [b_{\mu} [a_{\lambda} c]]$;
\end{enumerate}

where $p(a)$ denotes the parity of the element $a \in R$ and $p(\partial a) = p(a)$ for all $a \in R$.

We call n–products the coefficients $(a_{(n)} b)$ that appear in $[a_{\lambda} b] = \sum_{n \geq 0} \frac{\lambda^n}{n!} (a_{(n)} b)$ and give an equivalent definition of conformal superalgebra.

Definition 2.5 (Conformal superalgebra). A **conformal superalgebra** R is a left \mathbb{Z}_2–graded $\mathbb{C}[\partial]$–module endowed with a \mathbb{C}–bilinear product $(a_{(n)} b) : R \otimes R \to R$, defined for every $n \geq 0$, that satisfies the following properties for all $a, b, c \in R, m, n \geq 0$:

\begin{enumerate}[(i)]
 \item $p(\partial a) = p(a)$;
 \item $\ (a_{(n)} b) = 0$, for $n \gg 0$;
 \item $(\partial a_{(0)} b) = 0$ and $(\partial a_{(n+1)} b) = -(n+1)(a_{(n)} b)$;
 \item $\ (a_{(n)} b) = -(-1)^{p(a)p(b)} \sum_{j \geq 0} (-1)^{j+n} \frac{j!}{m!} (b_{(n+j)} a)$;
 \item $\ (a_{(m)} (b_{(n)} c)) = \sum_{j=0}^{m} \sum_{j=0}^{n-j} (a_{(j)} b_{(m+n-j)} c) + (-1)^{p(a)p(b)} (b_{(n)} (a_{(m)} c))$.
\end{enumerate}

Using (iii) and (iv) in Definition 2.5 it is easy to show that for all $a, b \in R, n \geq 0$:

\[
(a_{(n)} \partial b) = \partial (a_{(n)} b) + n(a_{(n-1)} b).
\]

Due to this relation and (iii) in Definition 2.5 the map $\partial : R \to R$, $a \mapsto \partial a$ is a derivation with respect to the n–products.

Remark 2.6. Let $(\mathfrak{g}, \mathcal{F})$ be a formal distribution superalgebra, endowed with λ–bracket $[\]$. The elements of \mathcal{F} satisfy sesquilinearity, skew-symmetry and Jacobi identity with $\partial = \partial_{\zeta}$; for a proof see Proposition 2.3 in [13].

We say that a conformal superalgebra R is **finite** if it is finitely generated as a $\mathbb{C}[\partial]$–module. An **ideal** I of R is a $\mathbb{C}[\partial]$–submodule of R such that $(a_{(n)} b) \in I$ for every $a \in R, b \in I, n \geq 0$. A conformal superalgebra R is **simple** if it has no non-trivial ideals and the λ–bracket is not identically zero. We denote by R' the **derived subalgebra** of R, i.e. the \mathbb{C}–span of all n–products.

Definition 2.7. A module M over a conformal superalgebra R is a left \mathbb{Z}_2–graded $\mathbb{C}[\partial]$–module endowed with \mathbb{C}–linear maps $R \to \text{End}_\mathbb{C} M$, $a \mapsto a_{(n)}$, defined for every $n \geq 0$, that satisfy the following properties for all $a, b \in R, v \in M, m, n \geq 0$:

\begin{enumerate}[(i)]
 \item $a_{(n)} v = 0$ for $n \gg 0$;
 \item $(\partial a)_{(n)} v = [\partial, a_{(n)}] v = -na_{(n-1)} v$;
\end{enumerate}
(iii) \([a_{(m)}, b_{(n)}]v = \sum_{j=0}^{m} \binom{m}{j} (a_{(j)}b)_{(m-n+j)}v.\]

Given a module \(M\) over a conformal superalgebra \(R\), we define for all \(a \in R\) and \(v \in M\):

\[
a_{\lambda}v = \sum_{n \geq 0} \frac{\lambda^n}{n!}a_{(n)}v.
\]

A module \(M\) is called \textit{finite} if it is a finitely generated \(\mathbb{C}[\partial]\)-module.

We can construct a conformal superalgebra starting from a formal distribution superalgebra \((g, \mathcal{F})\). Let \(\mathcal{F}\) be the closure of \(\mathcal{F}\) under all the \(n\)-products, \(\partial_z\) and linear combinations. By Dong’s Lemma, \(\mathcal{F}\) is still a family of mutually local distributions (see [13]). It turns out that \(\mathcal{F}\) is a conformal superalgebra. We will refer to it as the conformal superalgebra associated with \((g, \mathcal{F})\).

Let us recall the construction of the annihilation superalgebra associated with a conformal superalgebra \(R\). Let \(\tilde{R} = R[y, y^{-1}]\), set \(p(y) = 0\) and \(\tilde{\partial} = \partial + \partial_y\). We define the following \(n\)-products on \(\tilde{R}\), for all \(a, b \in R, f, g \in \mathbb{C}[y, y^{-1}], n \geq 0:\)

\[
(af_{(n)}bg) = \sum_{j \in \mathbb{Z}_+} (a_{(n+j)}b)\left(\frac{\partial_j}{j!}f\right)g.
\]

In particular if \(f = y^m\) and \(g = y^k\) we have for all \(n \geq 0:\)

\[
(ay_{m_{(n)}}by_{k}) = \sum_{j \in \mathbb{Z}_+} \binom{m}{j} (a_{(n+j)}b)y^{m+k-j}.
\]

We observe that \(\tilde{\partial}\tilde{R}\) is a two sided ideal of \(\tilde{R}\) with respect to the \(0\)-product. The quotient \(\text{Lie } R := \tilde{R}/\tilde{\partial}\tilde{R}\) has a structure of Lie superalgebra with the bracket induced by the \(0\)-product, i.e. for all \(a, b \in R, f, g \in \mathbb{C}[y, y^{-1}]:\)

\[
[af, bg] = \sum_{j \in \mathbb{Z}_+} (a_{(j)}b)\left(\frac{\partial_j}{j!}f\right)g.
\]

Definition 2.8. The annihilation superalgebra \(\mathcal{A}(R)\) of a conformal superalgebra \(R\) is the subalgebra of \(\text{Lie } R\) spanned by all elements \(ay^n\) with \(n \geq 0\) and \(a \in R\).

The extended annihilation superalgebra \(\mathcal{A}(R)^e\) of a conformal superalgebra \(R\) is the Lie superalgebra \(\mathbb{C}\partial \ltimes \mathcal{A}(R)\). The semidirect sum \(\mathbb{C}\partial \ltimes \mathcal{A}(R)\) is the vector space \(\mathbb{C}\partial \oplus \mathcal{A}(R)\) endowed with the structure of Lie superalgebra determined by the bracket:

\[
[\partial, ay^m] = -\partial_y(ay^m) = -may^{m-1},
\]

for all \(a \in R\) and the fact that \(\mathbb{C}\partial, \mathcal{A}(R)\) are Lie subalgebras.

For all \(a \in R\) we consider the following formal power series in \(\mathcal{A}(R)[[\lambda]]:\)

\[
a_{\lambda} = \sum_{n \geq 0} \frac{\lambda^n}{n!}ay^n.
\]

For all \(a, b \in R\), we have: \([a_{\lambda}, b_{\mu}] = [a_{\lambda}b]_{\lambda+\mu}\) and \((\partial a)_{\lambda} = -\lambda a_{\lambda}\) (for a proof see [5]).
Proposition 2.9 ([7]). Let R be a conformal superalgebra. If M is an R-module then M has a natural structure of $\mathcal{A}(R)^c$-module, where the action of ay^n on M is uniquely determined by $a_k v = \sum_{n \geq 0} \frac{\lambda^n}{n!} ay^n.v$ for all $v \in V$. Viceversa if M is a $\mathcal{A}(R)^c$-module such that for all $a \in R$, $v \in M$ we have $ay^n.v = 0$ for $n \gg 0$, then M is also an R-module by letting $a_k v = \sum_n \frac{\lambda^n}{n!} ay^n.v$.

Proposition 2.9 reduces the study of modules over a conformal superalgebra R to the study of a class of modules over its (extended) annihilation superalgebra. The following proposition states that, under certain hypotheses, it is sufficient to consider the annihilation superalgebra. We recall that, given a \mathbb{Z}-graded Lie superalgebra $g = \oplus_{l \in \mathbb{Z}} g_l$, we say that g has finite depth $d \geq 0$ if $g_{-d} \neq 0$ and $g_i = 0$ for all $i < -d$.

Proposition 2.10 ([2, 10]). Let g be the annihilation superalgebra of a conformal superalgebra R. Assume that g satisfies the following conditions:

- **L1:** g is \mathbb{Z}-graded with finite depth d;
- **L2:** There exists an element whose centralizer in g is contained in g_0;
- **L3:** There exists an element $\Theta \in g_{-d}$ such that $g_{-d} = [\Theta, g]$, for all $i \geq 0$.

Finite modules over R are the same as modules V over g, called finite conformal, that satisfy the following properties:

1. For every $v \in V$, there exists $j_0 \in \mathbb{Z}$, $j_0 \geq -d$, such that $g_{j}.v = 0$ when $j \geq j_0$;
2. V is finitely generated as a $\mathbb{C}[[\Theta]]$-module.

Remark 2.11. We point out that condition **L2** is automatically satisfied when g contains a grading element, i.e. an element $t \in g$ such that $[t, b] = \deg(b)b$ for all $b \in g$.

Let $g = \oplus_{i \in \mathbb{Z}} g_i$ be a \mathbb{Z}-graded Lie superalgebra. We will use the notation $g_{>0} = \oplus_{i \geq 0} g_i$, $g_{<0} = \oplus_{i < 0} g_i$, and $g_{\geq 0} = \oplus_{i \geq 0} g_i$. We denote by $U(g)$ the universal enveloping algebra of g.

Definition 2.12. Let F be a $g_{>0}$-module. The generalized Verma module associated with F is the g-module $\text{Ind}(F)$ defined by:

$$\text{Ind}(F) := \text{Ind}^g_{>0}(F) = U(g) \otimes_{U(g_{>0})} F.$$

If F is a finite-dimensional irreducible $g_{>0}$-module we will say that $\text{Ind}(F)$ is a finite Verma module. We will identify $\text{Ind}(F)$ with $U(g_{<0}) \otimes F$ as vector spaces via the Poincaré–Birkhoff–Witt Theorem. The \mathbb{Z}-grading of g induces a \mathbb{Z}-grading on $U(g_{<0})$ and $\text{Ind}(F)$. We will invert the sign of the degree, so that we have a $\mathbb{Z}_{\geq 0}$-grading on $U(g_{<0})$ and $\text{Ind}(F)$. We will say that an element $v \in U(g_{<0})k$ is homogeneous of degree k. Analogously an element $m \in U(g_{<0})k \otimes F$ is homogeneous of degree k. For a proof of the following proposition see [1].

Proposition 2.13. Let $g = \oplus_{i \in \mathbb{Z}} g_i$ be a \mathbb{Z}-graded Lie superalgebra. If F is an irreducible finite-dimensional $g_{>0}$-module, then $\text{Ind}(F)$ has a unique maximal submodule. We denote by $\text{I}(F)$ the quotient of $\text{Ind}(F)$ by the unique maximal submodule.

Definition 2.14. Given a g-module V, we call singular vectors the elements of:

$$\text{Sing}(V) = \{v \in V \mid g_{>0}.v = 0\}.$$

Homogeneous components of singular vectors are still singular vectors so we often assume that singular vectors are homogeneous without loss of generality. If $V = \text{Ind}(F)$, for a
\(g_{\geq 0}\)-module \(F\), we will call \textit{trivial singular vectors} the elements of \(\text{Sing}(V)\) of degree 0 and \textit{nontrivial singular vectors} the nonzero elements of \(\text{Sing}(V)\) of positive degree.

Theorem 2.15 ([15], [10]). Let \(g\) be a Lie superalgebra that satisfies \(L1, L2, L3\), then:

(i) if \(F\) is an irreducible finite-dimensional \(g_{\geq 0}\)-module, then \(g_{\geq 0}\) acts trivially on it;

(ii) the map \(F \mapsto I(F)\) is a bijective map between irreducible finite-dimensional \(g_{0}\)-modules and irreducible finite conformal \(g\)-modules;

(iii) the \(g\)-module \(\text{Ind}(F)\) is irreducible if and only if the \(g_{0}\)-module \(F\) is irreducible and \(\text{Ind}(F)\) has no nontrivial singular vectors.

3. The Conformal Superalgebra \(CK_6\)

In this section we recall the definition and some properties of the conformal superalgebra \(CK_6\) from [3]. Let \(\Lambda(N)\) be the Grassmann superalgebra in the \(N\) odd indeterminates \(\xi_1, \ldots, \xi_N\). Let \(t\) be an even indeterminate and \(\Lambda(1,N) = \mathbb{C}[t, t^{-1}] \otimes \Lambda(N)\). We consider the Lie superalgebra of derivations of \(\Lambda(1,N)\):

\[
W(1,N) = \left\{ D = a\partial_t + \sum_{i=1}^N a_i\partial_i \mid a, a_i \in \Lambda(1,N) \right\},
\]

where \(\partial_t = \frac{\partial}{t}\) and \(\partial_i = \frac{\partial}{\xi_i}\) for every \(i \in \{1, \ldots, N\}\).

Let us consider the contact form \(\omega = dt - \sum_{i=1}^N \xi_i d\xi_i\). The contact Lie superalgebra \(K(1,N)\) is defined by:

\[
K(1,N) = \left\{ D \in W(1,N) \mid D\omega = f_D\omega \text{ for some } f_D \in \Lambda(1,N) \right\}.
\]

Analogously, let \(\Lambda(1,N)_+ = \mathbb{C}[t] \otimes \Lambda(N)\). We define the Lie superalgebra \(W(1,N)_+\) (resp. \(K(1,N)_+\)) similarly to \(W(1,N)\) (resp. \(K(1,N)\)) using \(\Lambda(1,N)_+\) instead of \(\Lambda(1,N)\). We can define on \(\Lambda(1,N)\) a Lie superalgebra structure as follows. For all \(f, g \in \Lambda(1,N)\) we let:

\[
[f, g] = \left(2f - \sum_{i=1}^N \xi_i \partial_i f\right) (\partial_t g) - (\partial_t f) \left(2g - \sum_{i=1}^N \xi_i \partial_i g\right) + (-1)^{p(f)} \left(\sum_{i=1}^N \partial_i f \partial_i g\right).
\]

We recall that \(K(1,N) \cong \Lambda(1,N)\) as Lie superalgebras via the following map (see [9]):

\[
\Lambda(1,N) \longrightarrow K(1,N)
\]

\[
f \mapsto 2f \partial_t + (-1)^{p(f)} \sum_{i=1}^N (\xi_i \partial_i f + \partial_i f)(\xi_i \partial_t + \partial_t).
\]

We will always identify elements of \(K(1,N)\) with elements of \(\Lambda(1,N)\) and we will omit the symbol \(\wedge\) between the \(\xi_i\)'s. We consider on \(K(1,N)\) the standard grading, i.e. for every \(t^m \xi_i \cdots \xi_s \in K(1,N)\) we have \(\deg(t^m \xi_i \cdots \xi_s) = 2m + s - 2\).

We consider the following family of formal distributions:

\[
\mathcal{F} = \left\{ A(z) := \sum_{m \in \mathbb{Z}} (At^m) z^{-m-1} = A\delta(t - z), \forall A \in \Lambda(N) \right\}.
\]

The pair \((K(1,N), \mathcal{F})\) is a formal distribution superalgebra and the conformal superalgebra \(\overline{\mathcal{F}}\) can be identified with \(K_N := \mathbb{C}[\partial] \otimes \Lambda(N)\) (for a proof see [1]). We will refer to it as the conformal superalgebra of type \(K\).
On \(K \) the \(\lambda \)-bracket for \(f, g \in \Lambda(N) \), \(f = \xi_{i_1} \cdots \xi_{i_r} \) and \(g = \xi_{j_1} \cdots \xi_{j_s} \), is given by (see \[2, 12\]):

\[
[f, g] = (r - 2) \partial (fg) + (-1)^r \sum_{i=1}^{N} (\partial_i f)(\partial_i g) + \lambda (r + s - 4) fg.
\]

The associated annihilation superalgebra is (see \[2, 12\]):

\[
\text{A}(K) = K(1, N)_+.
\]

We adopt the following notation: we denote by \(\mathcal{I} \) the set of finite sequences of elements in \(\{1, \ldots, N\} \); we will write \(I = i_1 \cdots i_r \) instead of \(I = (i_1, \ldots, i_r) \). Given \(I = i_1 \cdots i_r \) and \(J = j_1 \cdots j_s \), we will denote \(i_1 \cdots i_r j_1 \cdots j_s \) by \(IJ \); if \(I = i_1 \cdots i_r \in \mathcal{I} \) we let \(\xi_I = \xi_{i_1} \cdots \xi_{i_r} \) and \(|I| = |I| = r \). We denote by \(\mathcal{I}_\neq \) the subset of \(\mathcal{I} \) of sequences with distinct entries and by \(\mathcal{I}_\leq \) the subset of \(\mathcal{I}_\neq \) of increasingly ordered sequences. We focus on \(N = 6 \). We let \(\xi_* = \xi_{123456} \).

Following [5], for \(\xi_I \in \Lambda(6) \) we define the modified Hodge dual \(\xi_I^* \) to be the unique monomial such that \(\xi_I \xi_I^* = \xi_* \). We extend the definition of modified Hodge dual to elements \(\sum k,l \alpha_{k,l} t^k \xi_I \in \Lambda(1, 6)_+ \) letting \((\sum k,l \alpha_{k,l} t^k \xi_I)^* = \sum k,l \alpha_{k,l} t^k \xi_I^* \).

The conformal superalgebra \(CK_6 \) is the subalgebra of \(K_6 \) defined by (see construction in [5]):

\[
CK_6 = \mathbb{C}[\partial] - \text{span} \left\{ \xi_L - i(-1)^{|L|/2} (|\partial|)^{3-|L|} \xi_L^* : L \in \mathcal{I}_\neq, 0 \leq |L| \leq 3 \right\}.
\]

We introduce the linear operator \(A : K(1, 6)_+ \to K(1, 6)_+ \):

\[
A(t^k \xi_L) = (-1)^{|L|/2} \left(\frac{d}{dt} \right)^{3-|L|} (t^k \xi_L)^*,
\]

where \(\left(\frac{d}{dt} \right)^{-1} \) indicates integration with respect to \(t \) (i.e. it sends \(t^k \) to \(t^{k+1}/(k+1) \)) and \(A \) is extended by linearity (cf. Remark 5.3.2 in [5]). The annihilation superalgebra associated with \(CK_6 \), that we will denote by \(\mathfrak{g} \), is the subalgebra of \(K(1, 6)_+ \) given by the image of \(Id - iA \); it is isomorphic to the exceptional Lie superalgebra \(E(1, 6) \) (see [5, 8, 17, 14]). The bracket on \(\mathfrak{g} \) is given by \([\cdot, \cdot]\).

Remark 3.1. We point out that, \(\mathfrak{g} \) is in bijective correspondence with the span of elements \((Id - iA)(t^k \xi_L) \) with \(L \in \mathcal{I}_\neq, |L| \leq 3, k \geq 0 \). Indeed for \(L \in \mathcal{I}_\neq \), with \(|L| > 3\):

\[
(Id - iA)(t^k \xi_L) = (Id - iA) \left(-i(-1)^{|L|/2} \frac{t^{k+|L|-3}}{k(k+1) \cdots (k+|L|-3)} \xi_L^* \right).
\]

The map \(A \) preserves the \(\mathbb{Z} \)-grading, then \(\mathfrak{g} \) inherits the \(\mathbb{Z} \)-grading. The homogeneous components of non-positive degree of \(\mathfrak{g} \) and \(K(1, 6)_+ \) coincide and are:

\[
\mathfrak{g}_{-2} = \langle 1 \rangle, \\
\mathfrak{g}_{-1} = \langle \xi_1, \xi_2, \xi_3, \xi_4, \xi_5, \xi_6 \rangle, \\
\mathfrak{g}_0 = \langle t, \xi_{ij} : 1 \leq i, j \leq 6 \rangle.
\]

The annihilation superalgebra \(\mathfrak{g} \) satisfies \(\mathbf{L1}, \mathbf{L2}, \mathbf{L3} \): \(\mathbf{L1} \) is straightforward; \(\mathbf{L2} \) follows by Remark \[2, 11\] since \(t \) is a grading element for \(\mathfrak{g} \); \(\mathbf{L3} \) follows from the choice \(\Theta := -1/2 \in \mathfrak{g}_{-2} \). Let us focus on \(\mathfrak{g}_0 = \langle t, \xi_{ij} : 1 \leq i < j \leq 6 \rangle \cong \mathfrak{Cl} \oplus \mathfrak{so}(6), \) where \(\mathfrak{so}(6) \) is the Lie algebra of \(6 \times 6 \) skew-symmetric matrices and \(\xi_{ij} \in \mathfrak{g}_0 \) corresponds to \(E_{ji} - E_{ij} \in \mathfrak{so}(6) \). We recall
the following notation from [3]. We choose as basis of a Cartan subalgebra \mathfrak{h} of $\mathfrak{so}(6)$ the elements:

$$H_1 = -i\xi_{12},
H_2 = -i\xi_{34},
H_3 = -i\xi_{56}.$$

Let $\varepsilon_j \in \mathfrak{h}^*$ such that $\varepsilon_j(H_k) = \delta_{jk}$. The roots are $\Delta = \{\pm\varepsilon_i \pm \varepsilon_j : 1 \leq l < j \leq 3\}$, the positive roots are $\Delta^+ = \{\varepsilon_l \pm \varepsilon_j : 1 \leq l < j \leq 3\}$ and the simple roots are $\Pi = \{\varepsilon_1 - \varepsilon_2, \varepsilon_2 - \varepsilon_3, \varepsilon_2 + \varepsilon_3\}$. The root decomposition is $\mathfrak{so}(6) = \mathfrak{h} \oplus (\oplus_{\alpha \in \Delta} \mathfrak{g}_\alpha)$, where $\mathfrak{g}_\alpha = \mathbb{C}\mathfrak{e}_\alpha$ and the \mathfrak{e}_α’s are, for $1 \leq l < j \leq 3$:

$$E_{\varepsilon_l - \varepsilon_j} = -\xi_{2l-1,2j-1} - \xi_{2l,2j} - i\xi_{2l-1,2j} + i\xi_{2l,2j-1},$$

$$E_{\varepsilon_l + \varepsilon_j} = -\xi_{2l-1,2j-1} + \xi_{2l,2j} + i\xi_{2l-1,2j} + i\xi_{2l,2j-1},$$

$$E_{-(\varepsilon_l - \varepsilon_j)} = -\xi_{2l-1,2j-1} - \xi_{2l,2j} + i\xi_{2l-1,2j} - i\xi_{2l,2j-1},$$

$$E_{-(\varepsilon_l + \varepsilon_j)} = -\xi_{2l-1,2j-1} + \xi_{2l,2j} - i\xi_{2l-1,2j} - i\xi_{2l,2j-1}.$$

We denote by $N_{\mathfrak{g}_0}$ the nilpotent subalgebra $\oplus_{\alpha \in \Delta^+} \mathfrak{g}_\alpha$.

We introduce the following notation. Given a proposition P, we let

$$\chi_P = \begin{cases}
1 & \text{if } P \text{ is true,} \\
0 & \text{if } P \text{ is false.}
\end{cases}$$

From now on F will be a finite-dimensional irreducible \mathfrak{g}_0-module, such that $\mathfrak{g}_{>0}$ acts trivially on it. We point out that $\text{Ind}(F) \cong \mathbb{C}[\Theta] \otimes \Lambda(6) \otimes F$. Indeed, let us denote by η_i the image in $U(\mathfrak{g})$ of $\xi_i \in \Lambda(6)$, for all $i \in \{1,2,3,4,5,6\}$. In $U(\mathfrak{g})$ we have that $\eta_i^2 = \Theta$, for all $i \in \{1,2,3,4,5,6\}$: since $[\xi_i, \xi_i] = -1$ in \mathfrak{g}, we have $\eta_i\eta_i = -\eta_i\eta_i - 1$ in $U(\mathfrak{g})$. We will make the following abuse of notation: if $I, J \in \mathcal{I}_\neq$ we will denote by $I \cap J$ the increasingly ordered sequence whose elements are the elements of the intersection of the underlying sets of I and J. Given $I = i_1, \ldots, i_k \in \mathcal{I}_\neq$, we will use the notation η_I to denote the element $\eta_{i_1} \cdots \eta_{i_k} \in U(\mathfrak{g}_{<0})$ and we will denote $|\eta_I| = |I| = k$. We will denote $\eta_\star = \eta_{123456}$. Given $I, J \in \mathcal{I}_\neq$, we define:

$$\xi_i \star \eta_I = \chi_{I \cap J = \emptyset} \eta_I \eta_I,$$

$$\eta_I \star \xi_i = \chi_{I \cap J = \emptyset} \eta_I \eta_1.$$

We will also use the following notation: if $i_1, \ldots, i_k \in \mathcal{I}_\neq$ and $i \in \{1,2,3,4,5,6\}$ we let

$$\partial_{i_1, \ldots, i_k} = \begin{cases}
(-1)^{j+1}\eta_{i_1, \ldots, i_j, \ldots, i_k} & \text{if } i = i_j \text{ for some } j \\
0 & \text{otherwise.}
\end{cases}$$

and for $a \in \mathbb{C}, I = (i_1, i_2, \ldots, i_k), J \in \mathcal{I}_\neq$:

$$\partial_{i_1, i_2, \ldots, i_k} \eta_I J = \partial_{i_1} \partial_{i_2} \cdots \partial_{i_k} \eta_I J,$$

$$\partial_{i_1, i_2, \ldots, i_k} \eta_I J = a \partial_{i_1} \eta_I J,$$

$$\partial_{i_1, i_2, \ldots, i_k} \eta_\star = \eta_\star,$$

$$\partial_{i_1, i_2, \ldots, i_k} \xi_I J = \partial_{i_1} \partial_{i_2} \cdots \partial_{i_k} \xi_I;$$

$$\partial_{i_1, i_2, \ldots, i_k} \xi_I J = a \partial_{i_1} \xi_I J,$$

$$\partial_{i_1, i_2, \ldots, i_k} \xi_\star = \xi_\star.$$

We extend the definition of modified Hodge dual to the elements of $U(\mathfrak{g}_{<0})$ in the following way: for $\eta_I \in U(\mathfrak{g}_{<0})$, we let $\eta_I^* \eta_I^* \eta_I^* \eta_I^* \eta_I^* \eta_I^*$ to be the unique monomial such that $\xi_I \star \eta_I^* = \eta_I$.

Moreover we define the Hodge dual of elements of $\Lambda(6)$ (resp. $U(\mathfrak{g}_{<0})$) in the following way: for $\xi_I \in \Lambda(6)$ (resp. $\eta_I \in U(\mathfrak{g}_{<0})$), we let ξ_I (resp. η_I) to be the unique monomial such that
\[\overline{\xi}_I \xi_I = \xi_s \] (resp. \(\overline{\eta} \ast \xi_I = \eta_* \)). Then we extend by linearity the definition of Hodge dual to elements \(\sum \alpha_I \xi_I \) (resp. \(\sum \alpha_I \eta_I \)) and we set \(t^k \overline{\xi}_I = t^k \overline{\xi}_I \) (resp. \(\Theta^k \eta_I = \Theta^k \eta_I \)). We point out that for \(\eta_I \in U(g_{<0}) \), \(\overline{\eta} \) = \((-1)^{|I|} \eta_I \).

In order to study singular vectors, it is important to find an explicit form for the action of \(g \) on \(\text{Ind}(F) \) using the \(\lambda \)-action notation \([3]\). Due to the fact that the homogeneous components of non-positive degree of \(E(1,6) \) are the same as those of \(K(1,6)_+ \), the \(\lambda \)-action is given by restricting the \(\lambda \)-action for \(K(1,6)_+ \):

\[\xi_{L \lambda}(g \otimes v) = \sum_{j \geq 0}^{\lambda^j} t^j \xi_{L \lambda}(g \otimes v), \]

for \(L \in \mathcal{I} \), \(g \otimes v \in \text{Ind}(F) \), described explicitly in Theorem 4.1 in \([2]\). We recall the following result proved in \([2]\), Theorem 4.3 for the \(\lambda \)-action in the case of \(K(1,6)_+ \).

Proposition 3.2 (\([2]\)). Let \(T \) be the vector spaces isomorphism \(T : \text{Ind}(F) \rightarrow \text{Ind}(F) \), \(g \otimes v \mapsto \overline{g} \otimes v \), for all \(g \otimes v \in \text{Ind}(F) \cong \mathbb{C}[\Theta] \otimes \Lambda(6) \otimes F \). Let \(L, I \in \mathcal{I}_\# \). Then

\[
T \circ \xi_{L \lambda} \circ T^{-1}(\eta_I \otimes v) = (-1)^{\frac{|L|(|L|+1)}{2} + |L||I|} \left\{ \left(|L| - 2 \right) \Theta(\xi_L \ast \eta_I) \otimes v - (-1)^{|L|} \sum_{i=1}^{6} (\partial_i \xi_L \ast \partial_i \eta_I) \otimes v - \sum_{r<s} (\partial_{rs} \xi_L \ast \eta_I) \otimes \xi_{sr}.v \\
+ \lambda \left((\xi_L \ast \eta_I) \otimes t.v - (-1)^{|L|} \sum_{i=1}^{6} \partial_i (\xi_{L_i} \ast \eta_I) \otimes v + (-1)^{|L|} \sum_{i \neq j} (\partial_i \xi_{L_i} \ast \eta_I) \otimes \xi_{ji}.v \right) \\
- \lambda^2 \sum_{i<j} (\xi_{L_{ij}} \ast \eta_I) \otimes \xi_{ji}.v \right\}.
\]

The following lemma allows to compute \(\xi_{L \lambda}(\Theta^k \xi_I \otimes v) \).

Lemma 3.3. Let \(L, I \in \mathcal{I}_\# \) and \(k \geq 0 \). The following holds:

\[\xi_{L \lambda}(\Theta^k \xi_I \otimes v) = (\Theta + \lambda)^k(\xi_{L \lambda} \xi_I \otimes v). \]

Proof. The proof is analogous to Lemma 5.11 in \([1]\). \(\square \)

Let \(\vec{m} \) be a vector of the \(E(1,6) \)-module \(\text{Ind}(F) \). From \([3]\) we know that \(\vec{m} \) is a highest weight singular vector if and only if:

S0: \(N_{\vec{m}, \vec{m}} = 0 \).

S1: For all \(L \in \mathcal{I}_\# \), with \(0 \leq |L| \leq 3 \):

\[\frac{d^2}{d\lambda^2} \left(\xi_{L \lambda} \vec{m} - i(-1)^{|L|(|L|+1)} \lambda^{3-|L|} (\xi^*_{L \lambda} \vec{m}) \right) = 0. \]

S2: For all \(L \in \mathcal{I}_\# \), with \(1 \leq |L| \leq 3 \):

\[\frac{d}{d\lambda} \left(\xi_{L \lambda} \vec{m} - i(-1)^{|L|(|L|+1)} \lambda^{3-|L|} (\xi^*_{L \lambda} \vec{m}) \right) \big|_{\lambda=0} = 0. \]

S3: For all \(L \in \mathcal{I}_\# \), with \(|L| = 3 \):

\[\left(\xi_{L \lambda} \vec{m} - i(-1)^{|L|(|L|+1)} \lambda^{3-|L|} (\xi^*_{L \lambda} \vec{m}) \right) \big|_{\lambda=0} = 0. \]
In particular condition **S0** is equivalent to impose that \(\vec{m} \) is a highest weight vector; conditions **S1-S3** are equivalent to impose that \(\vec{m} \) is a singular vector. Indeed condition **S1** is equivalent to

\[
\sum_{j \geq 2} j(j-1)\frac{\lambda_j}{j!}(t^j \xi_L)\vec{m} - i(-1)^{(\frac{i}{2}(|L|+1))} \sum_{j \geq 2} (3 - |L| + j)(2 - |L| + j)\frac{\lambda_1^{1-|L|+j}}{j!}(t^j \xi_L^*)\vec{m} = 0,
\]

which implies \((t^j \xi_L - i(-1)^{(\frac{i}{2}(|L|+1))} t^j \xi_L^*)\vec{m} = 0\) for all \(L \in \mathcal{I}_k \), with \(0 \leq |L| \leq 3 \) and \(j \geq 2 \).

Condition **S2** is equivalent to \((t^j \xi_L - i(-1)^{(\frac{i}{2}(|L|+1))} t^j \xi_L^*)\vec{m} = 0\) for all \(L \in \mathcal{I}_k \), with \(1 \leq |L| \leq 3 \).

Condition **S3** is equivalent to \((t^j \xi_L - i\xi_L^*)\vec{m} = 0\) for all \(L \in \mathcal{I}_k \) such that \(|L| = 3 \). Therefore, by Remark **3.4**, **S1-S3** are equivalent to impose that \(\vec{m} \) is a singular vector.

Remark 3.4. We point out that, by the previous conditions, a vector \(\vec{m} \in \text{Ind}(F) \) is a highest weight singular vector if and only if it satisfies **S0-S3**. Since \(T \), defined as in Proposition **3.2**, is an isomorphism, the fact that \(\vec{m} \in \text{Ind}(F) \) satisfies **S0-S3** for \((T \circ (\xi_L - i(-1)^{\frac{i}{2}(|L|+1)} \lambda^{3-|L|}\xi_L^*) \circ T^{-1})T(\vec{m})\), using the expression given by Proposition **3.2**

Therefore in the following results we will consider a vector \(T(\vec{m}) \in \text{Ind}(F) \) and we will impose that the expression for \((T \circ (\xi_L - i(-1)^{\frac{i}{2}(|L|+1)} \lambda^{3-|L|}\xi_L^*) \circ T^{-1})T(\vec{m}) = (T \circ (\xi_L - i(-1)^{\frac{i}{2}(|L|+1)} \lambda^{3-|L|}\xi_L^*))\vec{m}\) given by Proposition **3.2** satisfies conditions **S0-S3**. We will have that \(\vec{m} \) is a highest weight singular vector.

Motivated by Remark **3.4** we consider a singular vector \(\vec{m} \in \text{Ind}(F) \) such that:

\[
T(\vec{m}) = \sum_{k=0}^{N} \Theta^k \sum_{I \in \mathcal{I}_<} \eta_I \otimes v_{I,k}.
\]

We will denote \(v_{123456,k} = v_{*,k} \) for all \(k \).

4. **Main result**

In [3] the following Lemma is stated without proof (Lemma 4.4 in [3]). In particular, this Lemma is used in [4] to completely classify the highest weight singular vectors of finite Verma modules over \(g \).

Lemma 4.1. Let \(\vec{m} \in \text{Ind}(F) \) be a singular vector, such that \(T(\vec{m}) \) is written as in [3]. Then the degree of \(\vec{m} \) with respect to \(\Theta \) is at most 2. Moreover, \(T(\vec{m}) \) has the following form:

\[
T(\vec{m}) = \Theta^2 \sum_{|I| \geq 5} \eta_I \otimes v_{I,2} + \Theta \sum_{|I| \geq 3} \eta_I \otimes v_{I,1} + \sum_{|I| \geq 1} \eta_I \otimes v_{I,0}.
\]

The rest of this section is the dedicated to the proof of Lemma **4.1**

Lemma 4.2. A singular vector \(\vec{m} \in \text{Ind}(F) \), such that \(T(\vec{m}) \) is written as in [3], has degree at most 4 with respect to \(\Theta \).
Proof. By Remark 3.4, condition S1 for \(\xi_1 \) reduces to:

\[
\frac{d^2}{d\lambda^2} \left(T(\xi_1, \tilde{m} + i\lambda^2(\xi_{23456}, \tilde{m})) \right) = 0.
\]

Using Proposition 3.2 and Lemma 3.3 the previous equation reduces to:

\[
0 = \frac{d^2}{d\lambda^2} \sum_{k=0}^{N} \sum_{l} (\lambda + \Theta)^{k} (-1)^{1+|l|} \left\{ -\Theta(\xi_1 \star \eta_l) \otimes v_{l,k} + \partial_1 \eta_l \otimes v_{l,k} + \lambda \left((\xi_1 \star \eta_l) \otimes t.v_{l,k} - \sum_{l<j} (\xi_{1l} \star \eta_l) \otimes \xi_{jl} \right) \right\}
\]

\[
= \sum_{k=0}^{N} \sum_{l} (\lambda + \Theta)^{k} (-1)^{1+|l|} \left\{ -2 \sum_{l<j} (\xi_{1l} \star \eta_l) \otimes \xi_{jl} \right\}
\]

\[
+ 2 \sum_{k=2}^{N} \sum_{l} k(k-1)(\lambda + \Theta)^{k-2} (-1)^{1+|l|} \left\{ -\Theta(\xi_1 \star \eta_l) \otimes v_{l,k} + \partial_1 \eta_l \otimes v_{l,k}
\]

\[
- 2\lambda \sum_{l<j} (\xi_{1l} \star \eta_l) \otimes \xi_{jl} \right\}
\]

\[
+ \sum_{k=0}^{N} \sum_{l} (\lambda + \Theta)^{k} (-1)^{1+|l|} \left\{ 3\Theta(\xi_{23456} \star \eta_l) \otimes v_{l,k} + \sum_{l=1}^{6} \partial_l (\xi_{23456} \star \partial_l \eta_l) \otimes v_{l,k} - \sum_{r<s} (\partial_{rs} \xi_{23456} \star \eta_l) \otimes \xi_{sr} \right\}
\]

\[
+ \lambda \left((\xi_1 \star \eta_l) \otimes t.v_{l,k} - \sum_{j \neq l} (\xi_{1l} \star \eta_l) \otimes \xi_{jl} \right) \right\}
\]

\[
+ \sum_{k=0}^{N} \sum_{l} (-1)^{1+|l|} \left(4i\lambda(\lambda + \Theta)^{k} + 4i\lambda k(\lambda + \Theta)^{k-1} + i\lambda^2 k(k-1)(\lambda + \Theta)^{k-2} \right).
\]
We consider the previous expression as a polynomial in λ and $\lambda + \Theta$, by writing Θ as $(\lambda + \Theta) - \lambda$. We look at the coefficient of $\lambda^3(\lambda + \Theta)^s$, for a fixed $s \geq 0$, in (7) and we obtain that:

\[
\sum_{I} (-1)^{|I|} \left[\right. \\
-3(\xi_{23456} \ast \eta_I) \otimes v_{I,s+2} + (\xi_{23456} \ast \eta_I) \otimes t.v_{I,s+2} \\
+ \sum_{l=1}^6 \partial_l(\xi_{23456l} \ast \eta_I) \otimes v_{I,s+2} - \sum_{l \neq j} (\partial_l \xi_{23456j} \ast \eta_I) \otimes \xi_{jl}.v_{I,s+2} \left. \right] = 0.
\]

We consider the coefficient of $\lambda^2(\lambda + \Theta)^s$, for a fixed $s \geq 1$, in (8) and we obtain that:

\[
\sum_{I} (-1)^{|I|} (s+1) \left\{ - (s+2) \sum_{l<j} (\xi_{1lj} \ast \eta_I) \otimes \xi_{jl}.v_{I,s+2} \\
+ 4i \left[-3(\xi_{23456} \ast \eta_I) \otimes v_{I,s+1} + (\xi_{23456} \ast \eta_I) \otimes t.v_{I,s+1} \\
+ \sum_{l=1}^6 \partial_l(\xi_{23456l} \ast \eta_I) \otimes v_{I,s+1} - \sum_{l \neq j} (\partial_l \xi_{23456j} \ast \eta_I) \otimes \xi_{jl}.v_{I,s+1} \right] \\
+ is3(\xi_{23456} \ast \eta_I) \otimes v_{I,s+1} + i(s+2) \left\{ \sum_{l=1}^6 (\partial_1 \xi_{23456l} \ast \partial_l \eta_I) \otimes v_{I,s+2} - \sum_{r<p} (\partial_{rp} \xi_{23456} \ast \eta_I) \otimes \xi_{pr}.v_{I,s+2} \right\} \\
+ 2i \left\{ (\xi_{23456} \ast \eta_I) \otimes t.v_{I,s+1} + \sum_{l=1}^6 \partial_l(\xi_{23456l} \ast \eta_I) \otimes v_{I,s+1} - \sum_{l \neq j} (\partial_l \xi_{23456j} \ast \eta_I) \otimes \xi_{jl}.v_{I,s+1} \right\} \right\} = 0.
\]

Using (7), we obtain that the sum over I of the terms in the second and third rows is zero, and the sum over I of the last row is equal to $\sum_I (-1)^{|I|} 6i(\xi_{23456} \ast \eta_I) \otimes v_{I,s+1}$. Hence for $s \geq 1$:

\[
\sum_{I} (-1)^{|I|} \left\{ - \sum_{l<j} (\xi_{1lj} \ast \eta_I) \otimes \xi_{jl}.v_{I,s+2} + 3i(\xi_{23456} \ast \eta_I) \otimes v_{I,s+1} \\
+ i \left\{ \sum_{l=1}^6 (\partial_1 \xi_{23456l} \ast \partial_l \eta_I) \otimes v_{I,s+2} - \sum_{r<p} (\partial_{rp} \xi_{23456} \ast \eta_I) \otimes \xi_{pr}.v_{I,s+2} \right\} \right\} = 0.
\]

We consider the coefficient of $\lambda(\lambda + \Theta)^s$, for a fixed $s \geq 2$, in (9) and we obtain that:

\[
\sum_{I} (-1)^{|I|} \left\{ - 4(s+1) \sum_{l<j} (\xi_{1lj} \ast \eta_I) \otimes \xi_{jl}.v_{I,s+1} \\
+ (s+1)(s+2) \left[(\xi_1 \ast \eta_I) \otimes v_{I,s+2} + (\xi_1 \ast \eta_I) \otimes t.v_{I,s+2} + \sum_{l=1}^6 \partial_l(\xi_{1l} \ast \eta_I) \otimes v_{I,s+2} \\
- \sum_{j \neq 1} (\xi_j \ast \eta_I) \otimes \xi_{j1}.v_{I,s+2} \right] \\
+ 2i \left[-3(\xi_{23456} \ast \eta_I) \otimes v_{I,s} + (\xi_{23456} \ast \eta_I) \otimes t.v_{I,s} \right] \right\} = 0.
\]
\[+ \sum_{l=1}^{6} \partial_l (\xi_{23456l} \ast \eta_l) \otimes v_{l,s} - \sum_{l \neq j} (\partial_l \xi_{23456j} \ast \eta_l) \otimes \xi_{jl} v_{l,s} \]

\[+ 12i s(\xi_{23456} \ast \eta_l) \otimes v_{l,s} + 4i(s + 1) \left[\sum_{l=1}^{6} (\partial_l \xi_{23456} \ast \partial_l \eta_l) \otimes v_{l,s+1} - \sum_{r < p} \partial_{rp}(\xi_{23456} \ast \eta_l) \otimes \xi_{pr} v_{l,s+1} \right] \]

\[+ 4i \left[(\xi_{23456} \ast \eta_l) \otimes t v_{l,s} + \sum_{l=1}^{6} \partial_l (\xi_{23456l} \ast \eta_l) \otimes v_{l,s} - \sum_{l \neq j} (\partial_l \xi_{23456l} \ast \eta_l) \otimes \xi_{jl} v_{l,s} \right] \right) = 0. \]

We use (7) to point out that the sum over \(I \) of the terms in the fourth and fifth rows is zero. Moreover, due to (7), the sum over \(I \) of the terms in the last row is equal to \(\sum_{I}(-1)^{1+|I|}12i(\xi_{23456} \ast \eta_l) \otimes v_{l,s} \). Finally, the sum of \(\sum_{I}(-1)^{1+|I|}12i(\xi_{23456} \ast \eta_l) \otimes v_{l,s} \) plus the sum over \(I \) of the terms from the first and sixth rows is zero due to (8).

Therefore for \(s \geq 2 \):

\[\sum_{I}(-1)^{1+|I|} \left[(\xi_1 \ast \eta_l) \otimes v_{l,s+2} + (\xi_1 \ast \eta_l) \otimes t v_{l,s+2} + \sum_{l=1}^{6} \partial_l (\xi_1 \ast \eta_l) \otimes v_{l,s+2} \right. \]

\[- \sum_{j \neq 1} (\xi_j \ast \eta_l) \otimes \xi_{j1} v_{l,s+2} \right] = 0. \]

Finally, we consider the coefficient of \((\lambda + \Theta)^s \), for a fixed \(s \geq 3 \), in (6) and we obtain that:

\[\sum_{I}(-1)^{1+|I|} \left\{ - 2 \sum_{l<j} (\xi_{1lj} \ast \eta_l) \otimes \xi_{j1} v_{l,s} \right. \]

\[+ 2(s + 1) \left[(\xi_1 \ast \eta_l) \otimes t v_{l,s+1} + \sum_{l=1}^{6} \partial_l (\xi_1 \ast \eta_l) \otimes v_{l,s+1} - \sum_{j \neq 1} (\xi_j \ast \eta_l) \otimes \xi_{j1} v_{l,s+1} \right] \]

\[- s(s + 1)(\xi_1 \ast \eta_l) \otimes v_{l,s+1} + (s + 1)(s + 2)\partial_1 \eta_l \otimes v_{l,s+2} \]

\[+ 6i(\xi_{23456} \ast \eta_l) \otimes v_{l,s+1} + 2i \left[\sum_{l=1}^{6} (\partial_l \xi_{23456} \ast \partial_l \eta_l) \otimes v_{l,s} - \sum_{r < p} (\partial_{rp} \xi_{23456} \ast \eta_l) \otimes \xi_{pr} v_{l,s} \right] \right) = 0. \]

Using (8), we observe that the sum over \(I \) of the terms from the first and the last row is zero. Using (9) we obtain that the sum of the terms from the second row is equal to \(-2 \sum_{I} (s + 1)(-1)^{1+|I|}(\xi_1 \ast \eta_l) \otimes v_{l,s+1} \). Thus for \(s \geq 3 \):

\[\sum_{I} (-1)^{1+|I|}(\xi_1 \ast \eta_l) \otimes v_{l,s+1} - \partial_1 \eta_l \otimes v_{l,s+2} = 0. \]

By linear independence, we obtain:

\[\sum_{I} (-1)^{1+|I|}(\xi_1 \ast \eta_l) \otimes v_{l,s+1} = 0. \]

Therefore \(v_{I,k} = 0 \) for \(|I| \leq 5 \), \(1 \notin I \) and \(k \geq 4 \). We point out that \(1 \notin I \) is not necessary, since we could have chosen at the beginning any \(\xi_i \) instead of \(\xi_1 \). Finally, the coefficient of \(\eta_{l}^* \) in (10) is \(v_{s,s+2} \). Hence \(v_{s,k} = 0 \) if \(k \geq 5 \).
By Lemma \[\text{4.2}\] for a singular vector \(\vec{m}\), \(T(\vec{m})\) has the following form:
\[
T(\vec{m}) = \Theta^4 \sum_{l \in I_<} \eta_l \otimes v_{l,4} + \Theta^3 \sum_{l \in I_<} \eta_l \otimes v_{l,3} + \Theta^2 \sum_{l \in I_<} \eta_l \otimes v_{l,2} + \Theta \sum_{l \in I_<} \eta_l \otimes v_{l,1} + \sum_{l \in I_<} \eta_l \otimes v_{l,0}.
\]

Following \[\text{3}\], we write the \(\lambda\)-action in the following way, using Proposition \[\text{3.2}\] and Lemma \[\text{3.3}\].
\[
\begin{align*}
T(\xi_L, \lambda \vec{m}) &= b_0(\xi_L) + \lambda(B_0(\xi_L) - a_0(\xi_L)) + \lambda^2 C_0(\xi_L) \\
&\quad + (\lambda + \Theta)[a_0(\xi_L) + b_1(\xi_L)] + (\lambda + \Theta)\lambda(B_1(\xi_L) - a_1(\xi_L)) + (\lambda + \Theta)\lambda^2 C_1(\xi_L) \\
&\quad + (\lambda + \Theta)^2[a_1(\xi_L) + b_2(\xi_L)] + (\lambda + \Theta)^2\lambda(B_2(\xi_L) - a_2(\xi_L)) + (\lambda + \Theta)^2\lambda^2 C_2(\xi_L) \\
&\quad + (\lambda + \Theta)^3[a_2(\xi_L) + b_3(\xi_L)] + (\lambda + \Theta)^3\lambda(B_3(\xi_L) - a_3(\xi_L)) + (\lambda + \Theta)^3\lambda^2 C_3(\xi_L) \\
&\quad + (\lambda + \Theta)^4[a_3(\xi_L) + b_4(\xi_L)] + (\lambda + \Theta)^4\lambda(B_4(\xi_L) - a_4(\xi_L)) + (\lambda + \Theta)^4\lambda^2 C_4(\xi_L) \\
&\quad + (\lambda + \Theta)^5a_4(\xi_L),
\end{align*}
\]
where the coefficients \(a_p(\xi_L), b_p(\xi_L), B_p(\xi_L), C_p(\xi_L)\) depend on \(\xi_L\) for all \(0 \leq p \leq 4\) and are explicitly defined as follows. For all \(0 \leq p \leq 4\) we let:
\[
\begin{align*}
a_p(\xi_L) &= \sum_i (-1)^{(iL(|L|+1)/2)+|L||I|} \left([|L| - 2](\xi_L \ast \eta_i) \otimes v_{l,p}\right); \\
b_p(\xi_L) &= \sum_i (-1)^{(iL(|L|+1)/2)+|L||I|} \left(- (|L| - 1)^6 \sum_{i=1}^6 (\partial_i \xi_L \ast \partial_i \eta_i) \otimes v_{l,p} - \sum_{r<s} (\partial_{rs} \xi_L \ast \eta_i) \otimes \xi_{sr,vI,p}\right); \\
B_p(\xi_L) &= \sum_i (-1)^{(iL(|L|+1)/2)+|L||I|} \left((\xi_L \ast \eta_i) \otimes t.v_{l,p} - (|L| - 1)^6 \sum_{i=1}^6 \partial_i (\xi_Li \ast \eta_i) \otimes v_{l,p}\right) + (-1)^{|L|} \sum_{i \neq j} (\partial_i \xi_Lj \ast \eta_i) \otimes \xi_{ji,vI,p}; \\
C_p(\xi_L) &= \sum_i (-1)^{(iL(|L|+1)/2)+|L||I|} \left(- \sum_{i<j} (\xi_Lij \ast \eta_i) \otimes \xi_{ji,vI,p}\right).
\end{align*}
\]

We will write \(a_p\) instead of \(a_p(\xi_L)\) if there is no risk of confusion, and similarly for the others. Analogously:
\[
\begin{align*}
T(\xi_L^*, \lambda \vec{m}) &= bd_0(\xi_L) + \lambda(Bd_0(\xi_L) - ad_0(\xi_L)) + \lambda^2 Cd_0(\xi_L) \\
&\quad + (\lambda + \Theta)[ad_0(\xi_L) + bd_1(\xi_L)] + (\lambda + \Theta)\lambda(Bd_1(\xi_L) - ad_1(\xi_L)) + (\lambda + \Theta)\lambda^2 Cd_1(\xi_L) \\
&\quad + (\lambda + \Theta)^2[ad_1(\xi_L) + bd_2(\xi_L)] + (\lambda + \Theta)^2\lambda(Bd_2(\xi_L) - ad_2(\xi_L)) + (\lambda + \Theta)^2\lambda^2 Cd_2(\xi_L) \\
&\quad + (\lambda + \Theta)^3[ad_2(\xi_L) + bd_3(\xi_L)] + (\lambda + \Theta)^3\lambda(Bd_3(\xi_L) - ad_3(\xi_L)) + (\lambda + \Theta)^3\lambda^2 Cd_3(\xi_L) \\
&\quad + (\lambda + \Theta)^4[ad_3(\xi_L) + bd_4(\xi_L)] + (\lambda + \Theta)^4\lambda(Bd_4(\xi_L) - ad_4(\xi_L)) + (\lambda + \Theta)^4\lambda^2 Cd_4(\xi_L) \\
&\quad + (\lambda + \Theta)^5a_4(\xi_L),
\end{align*}
\]
Lemma 4.3. Let \vec{m} be a singular vector, such that $T(\vec{m})$ is written as in (11).

(i) Condition $S2$ for $L = j$ implies:
\[
4a_4 + B_4 = 3a_3 + B_3 + 4b_4 = 2a_2 + B_2 + 3b_3 = B_1 + a_1 + 2b_2 = B_0 + b_1 = 0.
\]

(ii) Condition $S2$ for $L = ijk$ implies:
\[
4a_4 + B_4 - i(4ad_4 + Bd_4) = 3a_3 + B_3 + 4b_4 - i(3ad_3 + Bd_3 + 4bd_4)
\]
\[
= 2a_2 + B_2 + 3b_3 - i(2ad_2 + Bd_2 + 3bd_3) = B_1 + a_1 + 2b_2 - i(Bd_1 + ad_1 + 2bd_1)
\]
\[
= B_0 + b_1 - i(Bd_0 + bd_1) = 0.
\]

(iii) Condition $S3$ for $L = ijk$ implies:
\[
a_4 - iad_4 = a_3 + b_4 - i(ad_3 + bd_4) = a_2 + b_3 - i(ad_2 + bd_3) = a_1 + b_2 - i(ad_1 + bd_2)
\]
\[
= a_0 + b_1 - i(ad_0 + bd_1) = b_0 - ibd_0 = 0.
\]

(iv) Condition $S1$ for $|L| = 0$ implies:
\[
\begin{align*}
(14) & \quad C_3 + 4B_4 + 6a_4 = 0, \\
(15) & \quad C_2 + 3a_3 + 3B_3 + 6b_4 = 0, \\
(16) & \quad 2C_3 + 2(B_4 - a_4) - iad_1 - ibd_2 = 0, \\
(17) & \quad 4C_2 + 3B_3 - 3a_3 - 3iad_0 - 3ibd_1 = 0, \\
(18) & \quad C_3 - 2iBd_1 - 2ibd_2 = 0, \\
(19) & \quad C_2 - 6iBd_0 + 3iad_0 - 3ibd_1 = 0, \\
(20) & \quad 10Cd_0 + 4Bd_1 - 3iad_1 + bd_2 = 0.
\end{align*}
\]

Proof. It follows by direct computations using notation (12) and (13). □

Lemma 4.4. Let \vec{m} be a singular vector, such that $T(\vec{m})$ is written as in (11).
Condition $S2$ for $L = j$ implies:
\[
0 = \sum_I (-1)^{1+|I|} \left[(\xi_j \star \eta_I) \otimes t.v_{I,1} + \sum_{i=1}^6 \partial_i(\xi_{ji} \star \eta_I) \otimes v_{I,1} - \sum_{i \neq l} (\partial_i \xi_{jl} \star \eta_I) \otimes \xi_{li} v_{I,1} \\
- (\xi_j \star \eta_I) \otimes v_{I,1} + 2\partial_j \eta_I \otimes v_{I,2} \right];
\]
\[
0 = \sum_I (-1)^{1+|I|} \left[(\xi_j \star \eta_I) \otimes t.v_{I,0} + \sum_{i=1}^6 \partial_i(\xi_{ji} \star \eta_I) \otimes v_{I,0} - \sum_{i \neq l} (\partial_i \xi_{jl} \star \eta_I) \otimes \xi_{li} v_{I,0} + \partial_j \eta_I \otimes v_{I,1} \right];
\]
\[
0 = \sum_I (-1)^{1+|I|} \left[-2(\xi_j \star \eta_I) \otimes v_{I,2} + (\xi_j \star \eta_I) \otimes t.v_{I,2} \right]
\]
By Lemma 4.3, relations \(B \) is

\[
0 = \sum_{l=1}^{6} (-1)^{l+1} \left[(\xi_{ijk} \ast \eta_l) \otimes v_{l,1} + \sum_{i \neq l} \partial_i (\xi_{ijkl} \ast \eta_l) \otimes v_{l,1} \right] .
\]

Conditions \(S2 \) and \(S3 \) for \(L = ijk \) imply:

\[
0 = \sum_{l=1}^{6} (-1)^{l+1} \left[(\xi_{ijk} \ast \eta_l) \otimes v_{l,0} + \sum_{i \neq l} \partial_i (\xi_{ijkl} \ast \eta_l) \otimes v_{l,0} \right] .
\]

Proof. These are the explicit expression of some of equations of Lemma 4.3. Equation (21) is \(B_1(j) + a_1(j) + 2b_2(j) = 0 \), \((22) \) is \(B_0(j) + b_1(j) = 0 \), \((23) \) is \(2a_2(j) + B_2(j) + 3b_3(j) = 0 \). By Lemma 4.3, relations \(S2 \) and \(S3 \) for \(L = ijk \) imply, taking linear combinations:

\[
B_1 - a_1 - i(Bd_1 - ad_1) = a_0 - B_0 - i(ad_0 - Bd_0) = -a_2 + B_2 - i(-ad_2 + Bd_2) = 0 .
\]

Equation (24) is \(B_1(ijk) - a_1(ijk) - i(Bd_1(ijk) - ad_1(ijk)) = 0 \), equation (25) is \(a_0(ijk) - B_0(ijk) - i(ad_0(ijk) - Bd_0(ijk)) = 0 \), equation (26) is \(-a_2(ijk) + B_2(ijk) - i(-ad_2(ijk) + Bd_2(ijk)) = 0 \).

Proof of Lemma 4.7. By Lemma 4.2 for a singular vector \(\bar{m} \), \(T(\bar{m}) \) is written as in (11). Let us consider (21) for \(L = j \); the coefficient of \(\eta_j \) is:

\[
t.v_{j,1} - 6v_{j,1} = 0 .
\]
Let us consider (22) for $L = j$; the coefficient of η_j is:

$$t.v_{\emptyset,0} - 5v_{\emptyset,0} = 0.$$

(28)

Let us consider (23) for $L = j$; the coefficient of η_j is:

$$t.v_{\emptyset,2} - 7v_{\emptyset,2} = 0.$$

(29)

The coefficient of 1 in (22) for $L = j$ is $v_{j,1} = 0$. The coefficient of 1 in (21) for $L = j$ is $v_{j,2} = 0$. Now let us consider (24) for $L = ijk$; the coefficient of η_{ijk} is $t.v_{\emptyset,1} - 4v_{\emptyset,1} = 0$. Hence, by (27) we deduce $v_{\emptyset,1} = 0$.

Moreover, let us consider (25) for $L = ijk$; the coefficient of η_{ijk} is $-t.v_{\emptyset,0} + 4v_{\emptyset,0} = 0$. Hence by (28) we deduce $v_{\emptyset,0} = 0$.

Finally, let us consider (26) for $L = ijk$; the coefficient of η_{ijk} is $t.v_{\emptyset,2} - 4v_{\emptyset,2} = 0$. Hence by (29) we deduce $v_{\emptyset,2} = 0$.

So far we have shown that, for all $i \in \{1, 2, 3, 4, 5, 6\}$, $v_{\emptyset,0} = v_{\emptyset,1} = v_{\emptyset,2} = v_{i,1} = v_{i,2} = 0$.

Let us now show that $v_{j,l,1} = 1$ for all $ji \in I_c$. The coefficient of η_l in (22) for $L = j$ is $-\eta_l \otimes v_{j,l,1} + \eta_l \otimes \xi_{li}v_{\emptyset,0} = 0$. Therefore $v_{j,l,1} = 0$.

We know by (20) that $bd_2 = -4Bd_1 + 3ad_1$, since $Cd_0(\emptyset) = 0$. Using this relation we have that Equations (14), (16), (18) reduce to:

$$C_3 + 4B_4 + 6a_4 = 2C_3 + 2(B_4 - a_4) - 4iad_1 + 4iBd_1 = C_3 - 6iad_1 + 6iBd_1 = 0.$$

We consider the following linear combinations of the previous equations:

$$3B_4 + 7a_4 + 2iad_1 - 2iBd_1 = B_4 - a_4 + 4iad_1 - 4iBd_1 = 0.$$

Since $ad_1(\emptyset)$ and $Bd_1(\emptyset)$ involve only terms in η with $v_{\emptyset,1}$ that is 0, we obtain $a_4(\emptyset) = 0$. Therefore

$$\sum \eta_l \otimes v_{l,1} = 0.$$

Using linear independence of distinct η_l’s, we get $v_{l,4} = 0$ for all $l \in I_c$. Now Equations (15), (17), (19) reduce to:

$$C_2 + 3a_3 + 3B_3 = 4C_2 + 3B_3 - 3a_3 - 3iad_0 - 3iBd_1 = C_2 - 6Bd_0 + 3iad_0 - 3iBd_1 = 0.$$

We observe that $ad_0(\emptyset)$ and $Bd_0(\emptyset)$ involve only terms with $v_{\emptyset,0}$ that is 0, $bd_1(\emptyset)$ involves only terms with $v_{\emptyset,1}, v_{l,1}$ where $|I| = 1, 2$, that are zero. Then these equations reduce to:

$$C_2 + 3a_3 + 3B_3 = 4C_2 + 3B_3 - 3a_3 = C_2 = 0.$$

Therefore $a_3(\emptyset) = 0$. As before we deduce $v_{l,3} = 0$ for all $l \in I_c$.

Thus we have shown that, for a singular vector \vec{m}, $T(\vec{m})$ has the following form:

$$T(\vec{m}) = \Theta^2 \sum_{|I|\geq 2} \eta_l \otimes v_{l,2} + \Theta \sum_{|I|\geq 3} \eta_l \otimes v_{l,1} + \sum_{|I|\geq 1} \eta_l \otimes v_{l,0}.$$

This means that there are singular vectors \vec{m} of at most degree 8 and, in particular, $T(\vec{m})$ has the following form:

$$T(\vec{m}) = \Theta^2 \sum_{|I|=2} \eta_l \otimes v_{l,2} \text{ degree 8},$$
\[T(\vec{m}) = \Theta^2 \sum_{|I|=3} \eta_I \otimes v_{I,2} \quad \text{degree 7}, \]
\[T(\vec{m}) = \Theta^2 \sum_{|I|=4} \eta_I \otimes v_{I,2} \quad \text{degree 6}, \]
\[T(\vec{m}) = \Theta^2 \sum_{|I|=5} \eta_I \otimes v_{I,2} + \Theta \sum_{|I|=3} \eta_I \otimes v_{I,1} + \sum_{|I|=1} \eta_I \otimes v_{I,0} \quad \text{degree 5}, \]
\[T(\vec{m}) = \Theta^2 \sum_{|I|=6} \eta_I \otimes v_{I,2} + \Theta \sum_{|I|=4} \eta_I \otimes v_{I,1} + \sum_{|I|=2} \eta_I \otimes v_{I,0} \quad \text{degree 4}, \]
\[T(\vec{m}) = \Theta \sum_{|I|=5} \eta_I \otimes v_{I,1} + \sum_{|I|=3} \eta_I \otimes v_{I,0} \quad \text{degree 3}, \]
\[T(\vec{m}) = \Theta \sum_{|I|=6} \eta_I \otimes v_{I,1} + \sum_{|I|=4} \eta_I \otimes v_{I,0} \quad \text{degree 2}, \]
\[T(\vec{m}) = \sum_{|I|=5} \eta_I \otimes v_{I,0} \quad \text{degree 1}. \]

If we look respectively at vectors of degree 8, 7 and 6, we can use relation \(B_1(j) + a_1(j) + 2b_2(j) = 0 \) from condition S2 for \(L = j \). In both these three cases it reduces to \(b_2(j) = 0 \) since there are no \(v_{I,1} \)'s involved. We get that:
\[b_2(j) = \sum_I \text{sgn}_I \partial_j \eta_I \otimes v_{I,2} \]
where \(\text{sgn}_I = \pm 1 \) and is not needed explicitly here, for \(|I| = 2, 3, 4 \) respectively. By linear independence we get \(v_{I,2} = 0 \) for \(|I| = 2, 3, 4, I \in \mathcal{I}_< \).

Acknowledgments. The author would like to thank Nicoletta Cantarini, Fabrizio Caselli and Victor Kac for useful comments and suggestions.

References

[1] Bagnoli L., Caselli F. *Classification of finite irreducible conformal modules for \(K_4' \).* [arXiv:2103.16374](https://arxiv.org/abs/2103.16374)

[2] Boyallian C., Kac V.G., Liberati, J. *Irreducible modules over finite simple Lie conformal superalgebras of type \(K \).* J. Math. Phys. 51 (2010), 1-37.

[3] Boyallian C., Kac V. G., Liberati J. *Classification of finite irreducible modules over the \(\text{Lie conformal superalgebra} \ CK_6 \).*, Comm. Math. Phys. 317 (2013), 503-546.

[4] Boyallian C., Kac V. G., Liberati J., Rudakov A. *Representations of simple finite \(\text{Lie conformal superalgebras of type \(W \) and \(S \)).* J. Math. Phys. 47 (2006), 1-25.

[5] Cantarini N., Caselli F., Kac, V.G. *Lie conformal superalgebras and duality of modules over linearly compact \(\text{Lie superalgebras} \).* Adv. Math. 378 (2021), 107523.

[6] Cheng S., Cantarini N., Kac V. G., *Errata to Structure of Some \(Z \)-graded \(\text{Lie Superalgebras of Vector Fields} \).* Transf. Groups 9 (2004), 399-400.

[7] Cheng S., Kac, V. G. *Conformal modules*, Asian J. Math. 1, 181 (1997); 2, 153(E) (1998).

[8] Cheng S., Kac V.G. *A new \(N = 6 \) superconformal algebra*, Comm. Math. Phys. 186 (1997), 219-231.

[9] Cheng S., Kac, V. G. *Structure of some \(Z \)-graded \(\text{Lie superalgebras of vector fields} \).* Transf. Groups, 4 (1999), 219-272.

[10] Cheng, S., Lam, N. *Finite conformal modules over \(N=2,3,4 \) superconformal algebras*, J. Math. Phys. 42 (2001), 906-933.
[11] D’Andrea A, Kac V. G. *Structure theory of finite conformal algebras*, Selecta Math., (N.S.) 4 (1998) 377-418.
[12] Fattori D., Kac V. G. *Classification of finite simple Lie conformal superalgebras*, J. Algebra 258, (2002) 23-59., Special issue in celebration of Claudio Procesi’s 60th birthday.
[13] Kac V.G. *Vertex algebras for beginners*, Univ. Lecture Ser., Vol. 10, AMS, Providence, RI, 1996, 2nd ed., (1998).
[14] Kac V.G. *Classification of Infinite-Dimensional Simple Linearly Compact Lie Superalgebras*, Advanced in Mathematics 139 (1998), 11-55
[15] Kac V. G., Rudakov A. *Representations of the exceptional Lie superalgebra E(3,6). I. Degeneracy conditions*, Transform. Groups 7, (2002) 67-86.
[16] Martínez C., Zelmanov E., *Irreducible representations of the exceptional Cheng-Kac superalgebra*, Trans. Amer. Math. Soc. 366 (2014), 5853-5876.
[17] Shchepochkina, I. *The five exceptional simple Lie superalgebras of vector fields*, Funktsional Anal. i Prilozhen 33(3), 59-72, 96 (2000). transl. in Funct. Anal. Appl. 33 (1999), 3 208-219.

Lucia Bagnoli, Dipartimento di matematica, Università di Bologna, Piazza di Porta San Donato 5, 40126 Bologna, Italy
Email address: luciabagnoli93@gmail.com