Protecting qubit coherence by spectrally engineered driving of the spin environment

Maxime Joos¹, Dolev Bluvstein¹,², Yuanqi Lyu¹,³, David Weld³ and Ania Bleszynski Jayich¹

Modern quantum technologies rely crucially on techniques to mitigate quantum decoherence; these techniques can be either passive, achieved for example via materials engineering, or active, typically achieved via pulsed monochromatic driving fields applied to the qubit. Using a solid-state defect spin coupled to a microwave-driven spin bath, we experimentally demonstrate a decoherence mitigation method based on spectral engineering of the environmental noise with a polychromatic drive waveform, and show that it outperforms monochromatic techniques. Results are in agreement with quantitative modeling, and open the path to active decoherence protection using custom-designed waveforms applied to the environment rather than the qubit.

ARTICLE

INTRODUCTION

Quantum decoherence, resulting from the unavoidable coupling between a qubit and its environment, underlies fundamental descriptions of the quantum-classical transition and poses a major challenge to a variety of quantum technologies. Several methods exist to mitigate environment-induced decoherence. Materials-based approaches aim to perfect the environment through techniques like surface passivation and optimized synthesis. Dynamical decoupling instead relies on manipulating the qubit rapidly enough to average out deleterious environmental fluctuations at particular frequencies. However, the flexibility and power of this technique comes at some cost to the qubit’s utility, as the decoupling pulses need to be interleaved with gate operations or sensing sequences. An alternative and complementary approach aims at manipulating the noise frequency spectrum of the bath itself, a technique referred to as spin-bath driving and originally developed in nuclear magnetic resonance and known as spin decoupling. Recent work has shown that monochromatic driving of a spin bath can extend the coherence of bulk and near-surface NV centers. An intrinsic limitation of this monochromatic approach is that it does not efficiently address spectrally broad classes of spins that naturally emerge in inhomogeneous environments and interacting spin baths.

In this work, we apply a polychromatic drive scheme to a single qubit system and demonstrate experimentally that spectrally engineered driving of a spin bath enhances qubit coherence beyond the limit of what can be achieved with monochromatic driving. The drive is an extension of broad-band decoupling methods used in nuclear magnetic resonance and operates in analogy to motional narrowing: driving the spin bath accelerates incoherent bath fluctuations, reducing the integrated phase acquired from the spin bath. Our driving scheme not only enables significantly increased power efficiency for protecting coherence, it also paves the way toward more complex and powerful techniques of tailored dynamical bath engineering.

Figure 1a shows a model of the system we investigate. The polychromatic drive is applied to the spin environment of a shallow nitrogen-vacancy (NV) center in diamond (see Methods for details on the diamond sample preparation). The NV center is a solid-state qubit that exhibits long coherence in ambient conditions and is being used in a variety of applications ranging from networking to quantum sensing. This work uses NV centers located just a few nanometers below the diamond surface, where they are exposed to magnetic noise originating from surface electronic spins. The surface character of the spin bath is documented for example in and also corroborated by the lack of a signature for bulk NVs.

Radio-frequency (rf) fields, delivered by a single free-space antenna, enable coherent control of NV qubit states and NV surface spin qubit states. An intrinsic limitation of this monochromatic approach is that it does not efficiently address spectrally broad classes of spins that naturally emerge in inhomogeneous environments and interacting spin baths.

RESULTS

Bath driving

To understand the effect of bath driving on the qubit’s coherence, we first give a quantitative description of NV decoherence based

¹Department of Physics, University of California, Santa Barbara 93106 CA, USA. ²Department of Physics, Harvard University, Cambridge 02138 MA, USA. ³Department of Physics, University of California, Berkeley 94720 CA, USA. ⁴email: ania@physics.ucsb.edu

Published in partnership with The University of New South Wales
Coherence extension by driving the spin bath. a A shallow NV center (qubit) is dephased by the magnetic noise originating from a bath of surface spins. b Hahn-echo sequence used to measure coherence during bath driving with linewidth \(\Delta \nu \) and Rabi frequency \(\Omega_{\text{ss}} \). c Coherence decay without driving (gray), with monochromatic driving (blue) and polychromatic/stochastic driving (orange), described in the text. Solid lines are fits to \(\exp[-(\tau/T_2)^2] \). Error bars correspond to ± one standard error of the mean.

Our strategy to decouple the qubit from its noise environment relies on actively reshaping the spectral density so that it minimally overlaps with the filter function. This decoupling mechanism and its underlying microscopic model are illustrated in Fig. 2. The upper panels are time-domain representations of the magnetic noise \(\mathcal{B}(t) \) produced by the surface spins, and the lower panels are the corresponding frequency domain representations \(S(\omega) \). We now illustrate three cases of driving: no driving, monochromatic, and stochastic.

In the absence of driving (gray curve in Fig. 2), intrinsic spin relaxations at a rate \(\Gamma \) lead to a random process for the noise, characterized by a correlation time \(\tau_c = 1/\Gamma \) in the time domain (Fig. 2a, b) and a Lorentzian spectrum with half width at half maximum (HWHM) \(\Gamma \) centered at \(\omega = 0 \) (Fig. 2c, d). The overlap of the noise spectrum with the Hahn-echo filter function sets the temporal response of the bath.

In summary, both monochromatic and stochastic driving decouple surface spins by inducing magnetic fluctuations that are fast compared to the Hahn-echo phase sensing time. Compared to monochromatic driving, the advantage of stochastic driving is that it more efficiently addresses the broad spectral range of spins observed in real settings.

Probing bath dynamics under drive

Having discussed the predicted spin dynamics under stochastic excitation and its potential for extending qubit coherence, we now experimentally characterize the frequency and time response of the surface-spin bath and the effects of stochastic driving. We use the NV to probe the surface spins dynamics with the double electron-electron resonance (DEER) sequence shown in Fig. 3a. The Hahn-echo sequence on the NV cancels out low frequency noise from the environment, but the DEER pulse (duration \(t_{ss} \), center frequency \(\nu_{ss} \), and spectral width \(\Delta \nu \)) selectively recouples the surface spins and reveals their dynamics.

Figure 3b shows the NV coherence as a function of \(f_{ss} \) with the fixed pulse duration \(t_{ss} = 60 \) ns is chosen to be a \(\pi \)-pulse on resonance with the surface spins. The acquired spectrum exhibits a resonance at \((885.3 \pm 0.4) \) MHz which is the magnetic signature of a g = 2 spin-1/2 particle in the applied static field of 315 G. The line-shape is best modeled by assuming inhomogeneous broadening of the surface spins and accounting for the finite pulse width \(t_{ss} \) (see Supplementary Note 3 for details). From the fit, we extract the FWHM of the underlying Gaussian distribution of the spins \(2\Delta \nu = (15.7 \pm 1.3) \) MHz.

Having confirmed the electronic nature of the surface spins and identified their inhomogeneous broadening, we now investigate the temporal response of the bath. Figure 3c shows the measured...
exhibits a peak at $\Omega = 1.2$ MHz in agreement with the DEER spectrum in Fig. 3b, and a coherence exhibits damped oscillations as a function of broadened, and the overlap with Eq. (2), as expected for broad Lorentzian excitation. The solid inhomogeneously broadened spins (the simpli- feature due to the detuned Rabi oscillations of the dynamics, the spectrum under monochromatic driving ($\Delta \nu = 0$, $\nu < 0$). We observe that stochastic driving outperforms monochromatic driving over a broad range of drive parameters. Figure 4 shows the coherence time $T_2(\nu)$, where the coherence time $T_2(\nu = 0) = (33.1 \pm 1.5)$ μs. Figure 4a, b highlight the $\Delta \nu$ and ν dependences, respectively. For example, we measure a 2.7-fold increase in coherence time with stochastic driving at $\nu = 4.9$ MHz, $\Delta \nu/2\pi = 1.74$ MHz, as compared to a 1.8-fold increase with monochromatic driving at the same power. Our experimental data are well-captured by Eq. (1) where $S(\omega)$ includes contributions from two qubit baths (both are driven, but have different bath parameters), and a residual bath that is undriven (see Supplementary Note 3 for details). Details of how the extracted stretch exponent ν varies with bath driving parameters are given in Supplementary Note 6.

Our results suggest that, for a given driving power, an optimal $\Delta \nu$ exists that maximizes the coherence. The non-monotonic dependence on $\Delta \nu$ can be understood intuitively as follows: starting from $\Delta \nu = 0$, increasing $\Delta \nu$ enables a larger fraction of the inhomogeneously broadened surface spins to be resonantly addressed and therefore decoupled from the NV center. When $\Delta \nu$ exceeds the inhomogeneous broadening of the surface spins (reported above as $2T_2 \sim 16$ MHz), drive energy is spread over non-resonant frequencies and the power efficiency of stochastic driving decreases.

Figure 4b also shows that stochastic driving reduces coherence at the lowest Rabi frequencies, an effect also captured by our model. Intuitively, as Ω_ss first increases from zero, the noise spectral density broadens, increasing in overlap with the filter function (see Fig. 2d) and decreasing the coherence, before broadening well beyond the peak and flattening out. In Supplementary Note 4, we derive the condition for stochastic driving to increase coherence: $\sqrt{FR} \gtrsim 2\pi/\nu$. Incorporating two driven baths with long- and short-lived correlations (as suggested by the model) is essential to quantitatively capture the features of Fig. 4a, b, including the dip of coherence discussed above as detailed in Supplementary Note 4. From the fit in Fig. 4b, we extract the correlation times of the two driven baths: (68 ± 17) μs and (0.37 ± 0.05) μs.

Finally, we provide a qualitative explanation for the gains of stochastic driving relative to monochromatic driving. In order to completely decouple an ensemble of inhomogeneously broa-dened spins, monochromatic driving relies on power broadening and requires $\Omega_\text{ss} \gg \Gamma_2$. On the other hand, stochastic driving naturally addresses all the spins as long as $\Delta \nu \geq \Gamma_2$. Combining this relation with Eq. (2), the condition for decoupling all the spins in the case of stochastic driving is $\Omega_\text{ss} \gg \sqrt{\Gamma_2}$. Therefore, stochastic driving outperforms monochromatic driving as long as $\Gamma < \Gamma_2$, which is often satisfied and, for example, is satisfied by several orders of magnitude for near-surface NV qubits. For the surface spin bath investigated here, we observe $\Gamma_2 \sim 10$ MHz, and expect $\Gamma \sim 0.03$ MHz as reported in (consistent with our observations), explaining the better performance of stochastic driving as $\Gamma \ll \Gamma_2$.

DISCUSSION

A practical advantage of stochastic driving is that it reduces the driving power required to achieve a given coherence extension. AC Zeeman shifts of the qubit energy levels and heating at high rf driving powers are experimental limitations to the coherence time that scale with drive power ($\propto |\Omega_\text{ss}|^2$). For example, Fig. 4b shows that doubling the coherence necessitates $\Omega_\text{ss}/2\pi = 3$ MHz for stochastic driving, and ~ 8 MHz for monochromatic driving, corresponding to a 7-fold power reduction when stochastic

Fig. 3 Probing bath correlations to quantify noise spectrum under drive. **(a)** A Pulse sequence used to probe the surface spin bath, and **(b)** corresponding spectrum with $\Delta \nu = 0$, $t_s = 60$ ns, $\tau = 20\mu s$, $\Omega_\text{ss}/2\pi = 9.7$ MHz, and an NV π-pulse of 80 ns. Experimental spin bath dynamics, obtained by measuring NV coherence as a function of pulse length t_ss for different excitation line-widths $\Delta \nu$ and for $\Omega_\text{ss}/2\pi = 8.7$ MHz. Increasing $\Delta \nu$ accelerates the damping of the Rabi oscillations, eventually reaching an overdamped regime. **(c)** Noise spectral densities obtained by Fourier transformation of the fitted DEER signals in (a) and normalized so that $2 \int_0^{\pi} S(\omega)d\omega = 1$. Gray shaded area represents the Hahn-echo filter function corresponding to a sequence duration of $\tau = 10\mu s$. Error bars represent ± one standard error.

NV coherence as a function of t_ss for different line-widths $\Delta \nu$ of the drive and a fixed sequence duration $\tau = 16\mu s$. When $\Delta \nu = 0$, the NV coherence exhibits damped oscillations as a function of t_ss. The oscillations reflect the Rabi flopping of the surface spins while the damping is due to the inhomogeneous broadening and the intrinsic relaxation. For $\Delta \nu > 0$, the stochastic DEER pulse decorrelates the field produced by the surface spins between the first and second half of DEER sequence, leading to increased damping of the Rabi oscillations. For $\Delta \nu/2\pi = 48 MHz > 2\pi/\nu$, the measured NV coherence decays exponentially at a rate given by Eq. (2), as expected for broad Lorentzian excitation. The solid curves in Fig. 3c are fits using our model of inhomogeneously broadened surface spins subjected to a stochastic drive (see Supplementary Note 3). From these fits, we extract an independend measure of the inhomogeneous broadening $2\Gamma_2 = (14.9 \pm 1.2)$ MHz in agreement with the DEER spectrum in Fig. 3b, and a Rabi frequency $\Omega_\text{ss}/2\pi = (8.7 \pm 0.1)$ MHz.

To investigate the noise spectrum generated by the measured surface spin dynamics, Fig. 3d shows the Fourier transform of the fitted bath correlations of Fig. 3c obtained after symmetrization with respect to $t_\text{ss} = 0$. We constrain the integrated power of the spectra to be constant. As expected from the time domain dynamics, the spectrum under monochromatic driving ($\Delta \nu = 0$) exhibits a peak at $\Omega_\text{ss}/2\pi$, but still has a remaining static component due to the detuned Rabi oscillations of the inhomogeneously broadened spins (the simplified Fig. 2 schematic does not account for this inhomogeneous broadening). In the case of stochastic driving, the noise spectrum is flattened and broadened, and the overlap with $F(\tau, \omega)$ is considerably reduced.
diamond sample fabrication

METHODS

Diamond sample fabrication

The diamond substrate consists of a commercial Element Six electronic grade (100) diamond plate with dimensions 2 mm × 2 mm × 0.15 mm on top of which a 50 nm-thick layer of isotopically purified diamond (99.999%^{12}C methane precursor gas) is grown by plasma-enhanced chemical vapor deposition. Shallow NV centers are formed by nitrogen-14 implantation (dose = 5.2 × 10^{10} cm^{-2}, tilt = 7°, energy = 4 keV) followed by high-temperature annealing. The target NV depth is 7 nm. The diamond surface was patterned and etched with O_2 plasma to form nanopillars with diameter 400 nm and height 500 nm, enabling enhanced collection efficiency.

Stochastic drive

For driving surface spins, we use phase modulated rf fields with Lorentzian line shapes centered on the surface spin transition frequency. The modulation scheme is chosen to minimize fluctuations of NV energy levels caused by varying AC Zeeman shifts, which would introduce additional dephasing. A driving field with Rabi frequency Ω and detuning Δ = Ω - νΔ from the (|m_s| = 0) → (|m_s| = -1) NV transition frequency causes an AC Zeeman shift equal to ΩΔ/2Δ. While amplitude modulation causes variations of AC Zeeman shift on the order of ΔΩ/Δν, phase modulation introduces variations smaller by a factor ΔΩ/Δν ~ 0.01.

Following the phase-diffusion model for lasers, we describe the driving field as exp(−i∫(νΔ(t)−φ(t))dt), where the phase φ(t) is a stochastic process chosen to produce the desired spectrum. The desired Lorentzian spectrum implies that the wave auto-correlation function has the form of an exponential decay:

\[\langle e^{−i\phi(0)\phi(t)} \rangle = e^{−\frac{2νΔ|t|^2}{2}}. \]

One choice of φ(t) that satisfies relation (4) is a Gaussian random walk, which we use here for generating our stochastic waveforms. The standard deviation σ for the normally distributed steps should follow:

\[\sigma = \sqrt{\Delta ν dt}. \]

where Δν is the sampling time of the phase trace φ(t).

Once the random walk φ(t) is computer generated, the I and Q modulation parameters are given by the real part and imaginary part of exp(−iφ(t)) respectively.

We use an arbitrary waveform generator (Keysight M8190A) to output the IQ signals and perform phase modulation of a microwave source (Stanford Research Systems, Inc, SG384). For this work, we used a time window of 100 μs and 200,000 samples corresponding to a sampling rate of 1/Δt = 2 GHz for the IQ signals. We control the shape and calibrate the bandwidth of the generated rf drives using a spectrum analyzer.

DATA AVAILABILITY

The data that support the findings of this study are available from the corresponding author upon reasonable request.

CODE AVAILABILITY

The codes developed for the numerical simulations are available from the corresponding author upon reasonable request.

Received: 17 September 2021; Accepted: 24 March 2022; Published online: 29 April 2022

REFERENCES

1. Zurek, W.H. In Quantum Decoherence: Poincaré Seminar 2005, (eds. Duplantier, B. & Raimond, J.-M. & Riveaux, V.J. Ch. 1 (Birkhäuser Basel, 2007).
2. Schlosshauer, M. Quantum decoherence. Phys. Rep. 331, 1–57 (2019).
3. Acín, A. et al. The quantum technologies roadmap: a European community view. New J. Phys. 20, 082001 (2018).
4. Quintana, C. M. et al. Characterization and reduction of microfabrication-induced decoherence in superconducting quantum circuits. Appl. Phys. Lett. 105, 062601 (2014).
5. Kumar, P. et al. Origin and reduction of 1/f magnetic flux noise in superconducting devices. Phys. Rev. Appl. 6, 041001 (2016).
6. Ohno, K. et al. Engineering shallow spins in diamond with nitrogen delta-doping. Appl. Phys. Lett. 101, 082413 (2012).
7. Eichhorn, T. R., McClellan, C. A. & Bleszynski Jayich, A. Optimizing the formation of depth-confined nitrogen vacancy center spin ensembles in diamond for quantum sensing. Phys. Rev. Mater. 3, 113802 (2019).
8. Viola, L. & Lloyd, S. Dynamical suppression of decoherence in two-state quantum systems. Phys. Rev. A 58, 2733–2744 (1998).
