Cytokinin oxidase/dehydrogenase family genes exhibit functional divergence and overlap in rice growth and development, especially in control of tillering

Chenyu Rong 1, Yuexin Liu 1, Zhongyuan Chang 1, Ziyu Liu 1, Yanfeng Ding 1,2,3 and Chengqiang Ding 1,2,3,*

1College of Agriculture, Nanjing Agricultural University, Nanjing 210095, People’s Republic of China
2Key Laboratory of Crop Physiology Ecology and Production Management, Ministry of Agriculture, Nanjing 210095, People’s Republic of China
3Collaborative Innovation Center for Modern Crop Production co-sponsored by Province and Ministry, Nanjing 210095, People’s Republic of China

*Correspondence: Chengqiang Ding, email: dingcq@njau.edu.cn. ORCID: 0000-0001-6061-1979

Running title: OsCKX4 and OsCKX9 regulate tillering in rice

Highlight: The osckx4 osckx9 double mutant had a significantly greater number of tillers, whereas the osckx1 osckx2 double mutant showed the opposite phenotypic change, compared to the wild type.
ABSTRACT

Cytokinins play key roles in plant growth and development; hence, cytokinin biosynthesis and degradation have been extensively studied. Cytokinin oxidase/dehydrogenases (CKXs) are a group of enzymes that regulate oxidative cleavage to maintain cytokinin homeostasis. In rice, 11 OsCKX genes have been identified to date; however, most of their functions remain unknown. Here, we comprehensively analyzed the expression patterns and functions of OsCKX genes. Using CRISPR/Cas9 technology, we constructed mutants of all OsCKX genes to determine the functions of OsCKXs in rice development. The results revealed that the single osckx and higher-order osckx4 osckx9 mutant lines showed functional overlap and subfunctionalization. Notably, the osckx1 osckx2 and osckx4 osckx9 double mutants displayed contrasting phenotypic changes in tiller number and panicle size compared to the wild type. Moreover, we identified several genes with significantly altered expression in osckx4 and osckx9 single and double mutant plants. Many differentially expressed genes were found to be associated with auxin and cytokinin pathways. Additionally, the cytokinins in osckx4 osckx9 mutants were increased compared to the wild type. Overall, our findings provide new insights into the functions of OsCKX genes in rice growth and may be used as a foundation for future studies aimed at improving rice yield.

Key words: Cytokinin, expression pattern, OsCKX, panicle, phenotype, rice, tiller
INTRODUCTION

Cytokinin controls plant growth and development by promoting plant cell division, growth, and differentiation. Specifically, it is responsible for stem enlargement and differentiation, organ development and structure, nutrition absorption, senescence, and stress response (Zurcher et al., 2016).

Cytokinin biosynthesis starts from the ADP, ATP, or tRNA catalyzed by different adenosine phosphate isopentenyl transferases and activated by LONELY GUY enzymes (Kurakawa et al., 2007). After performing its function, cytokinin is inactivated by certain enzymes such as cytokinin oxidase/dehydrogenases (CKXs) that induce cytokinin oxidative cleavage, which is an irreversible process. CKXs are essential for maintaining cytokinin homeostasis during plant growth and development. Therefore, extensive research on CKXs has been conducted and is still ongoing.

Each plant species has a group of CKX genes: for example, Arabidopsis has seven, rice has 11, and maize has 13 (Ashikari et al., 2005; Zalabak et al., 2016). Most CKXs in maize and Arabidopsis have putative N-terminal secretory peptides that assist in locating the endoplasmic reticulum (ER) (Niemann et al., 2018; Zalabak et al., 2016). Previous studies have discovered several functions of CKXs in Arabidopsis and other crops. The overexpression of AtCKX1 and AtCKX2 in tobacco resulted in smaller shoots, larger roots, and smaller shoot apical meristems (SAMs), while AtCKX7 overexpression in Arabidopsis resulted in shorter primary roots (Kollmer et al., 2014; Werner et al., 2001). Furthermore, cxx3 cxx5 mutants developed larger SAM and more siliques in Arabidopsis (Bartrina et al., 2011). Sextuple cxx3 cxx5 mutants of oilseed rape showed larger and more active inflorescence meristems (Schwarz et al., 2020). In barley, HvCKX1 downregulation resulted in more spikes, more grains per spike, and a higher 1,000-grain weight (Zalewski et al., 2010). TaCKX6-D1 was found to be associated with grain filling and grain size in wheat (Zhang et al., 2012).
In rice, *OsCKX2/Gn1a* was the first CKX gene identified. Rice varieties with low *OsCKX2* expression yielded more grains per panicle, while *OsCKX2* downregulation or *osckx2* mutation produced more tillers, more grains per panicle, and heavier grains (Ashikari *et al.*, 2005; Yeh *et al.*, 2015). *OsCKX4* overexpression reduced the tiller number, grain number per panicle, grain weight, and plant height, while it increased the number of roots (Gao *et al.*, 2014). On the other hand, *osckx9* mutants developed more tillers and smaller panicles, while *OsCKX9* overexpression mutants displayed more tillers, shorter culms, smaller panicles, and lower setting rates (Duan *et al.*, 2019). *OsCKX11* was found to regulate leaf senescence and grain number, while *osckx11* mutation resulted in the increased number of spikelets per panicle and tillers (Zhang *et al.*, 2021).

In rice breeding, *OsCKX2* has been artificially selected from wild rice since ancient times and can be divided into alleles from different geographic distributions (Ashikari *et al.*, 2005; Wang *et al.*, 2015). Since most plants with downregulated CKX expression exhibit better phenotypes, researchers believed that CKX is a potential target to improve yield or to initiate another “Green Revolution” (Ashikari *et al.*, 2005; Chen *et al.*, 2020; Jameson and Song, 2020). Numerous studies have analyzed the structures of and genetic relationships between *OsCKXs* (Ashikari *et al.*, 2005; Zhang *et al.*, 2021). However, the expression patterns that may determine their functions during plant growth, especially of *OsCKXs* with similar amino acid sequences, are yet to be elucidated.

OsCKX genes play an important role in the crosstalk between cytokinin and other hormones by regulating cytokinin content in plant tissues. Most *OsCKX* genes are upregulated by exogenous cytokinins, such as *trans*-zeatin (tZ), *N*\(^6\)-(Δ\(^2\)-isopentenyl) adenine (iP) and 6-benzylaminopurine (6-BA) (Duan *et al.*, 2019). *OsCKX4* can be induced by auxin, which plays a role in regulating the root system (Gao *et al.*, 2014). In addition, *OsCKX9* acts downstream of strigolactones (SLs) and plays a key role...
in the crosstalk between cytokinin and SLs. The SL-induced activation of OsCKX9 relies on D53, which acts as a repressor of SL signaling and consequently functions in the SL-induced regulation of tiller development (Duan et al., 2019). On the other hand, OsCKXII has antagonistic roles between the cytokinin and abscisic acid (ABA) pathways during leaf senescence. In osckxII mutants, the downregulation of ABA biosynthesis genes and the upregulation of ABA degradation genes result in the reduction of ABA content in flag leaves and subsequently regulate leaf senescence, which shows the relationship between cytokinin and ABA (Zhang et al., 2021). Thus, these findings demonstrate that OsCKX genes act as bridges between cytokinin and other plant hormones.

In this study, we investigated the genetic relationships and expression patterns of OsCKX genes using RNA sequencing (RNA-seq). We evaluated the phenotypes of osckx single and double mutants produced using CRISPR/Cas9 technology to determine the function of different OsCKXs. We also analyzed the transcriptomes of the roots and shoot bases from Nipponbare (NIP), osckx4, osckx9, and osckx4 osckx9 mutants to identify the genes that were influenced by OsCKX4 and OsCKX9. Our findings may provide new insights regarding the potential application of OsCKX genes for improving agricultural traits.
MATERIALS AND METHODS

Plant materials and growth conditions

Oryza sativa L. ssp. *japonica* (cultivars: Nipponbare (NIP) and Zhonghua 11 (ZH11)) was the wild-type (WT) rice material chosen for this study. The mutants included *osckx3, osckx4, osckx5, osckx1 osckx2, osckx9, osckx4 osckx9, and osckx6 osckx7 osckx10* from NIP and *osckx1, osckx2, osckx7, osckx8, osckx9, and osckx11* from ZH11 (Supplemental Figure S1–S3). The target for *osckx1 osckx2* matches *OsCKX1* and *OsCKX2* completely, and has a 1-bp mismatch for *OsCKX11*. The sequencing results showed that the *osckx1 osckx2-19* and *osckx1 osckx2-21* line had a 1-bp insertion in *OsCKX1* and *OsCKX2*, respectively, but no change was observed in *OsCKX11* (Supplemental Figure S2A).

The rice plants were grown in a field in Danyang, Jiangsu Province, China (31.907° N 119.466° E). We used 300 kg/hm² nitrogen, 150 kg/hm² P₂O₅, and 240 kg/hm² K₂O as base fertilizers for the field experiment. For the pot experiment, 4.28 g of urea was added to each pot, while 1.92 g of KH₂PO₄ and 1.49 g KCl were used during the whole growth period. For the hydroponic experiment, the nutrient solution was composed of 2 mM KNO₃ and 2 mM NH₄Cl, and the concentrations of other nutrient elements were the same as those described by Wang *et al.*, 2020. The plants were grown in climate chambers under long-day conditions (15 h light at 28 °C and 9 h dark at 24 °C) with a relative humidity of ~70%, and the treatment lasted 20 days.

Plasmid construction for genetic transformation

To construct the mutants for research by using CRISPR/Cas9 technology, as previously described, each *OsCKX* gene was assigned one to two single guide RNA oligo targets by using CRISPR/Cas9 technology as previously described (Mao *et al.*, 2013). The primers used for vector construction and
genotyping are shown in Supplemental Table S1.

To construct pOsCKX::GUS, an upstream fragment of the OsCKX-encoding region (>3 kb) was amplified by PCR, and the resulting amplicon was excised with the corresponding restriction endonuclease and ligated into the pCAMBIA1300::GUS vector (Wang et al., 2020). The primers used for vector construction are shown in Supplemental Table S1.

Analysis of GUS activity

The GUS reporter activity was assayed by histochemical staining using GUS Staining Kit (FCNCS, https://www.fcncs.com). Various tissues were collected from the pOsCKX::GUS transgenic plants at each developmental stage, after which they were immersed in the GUS staining solution and incubated for 6–48 h at 37 °C in the dark. The samples were de-stained thrice with 70% ethanol in a water bath for 5 min. Images were taken using SZX16 microscope (Olympus, Tokyo, Japan; https://www.olympus-lifescience.com/en/). Each pOsCKX::GUS transgenic plant had 20 independent lines, from which 2 or 3 independent lines were chosen and subjected to staining at the same position as other lines for further studies.

Sampling, RNA extraction, and gene expression analysis

We collected roots from approximately 2 cm under the tip and shoot bases (~5-mm segments from the first nodes) containing the SAM, axillary buds, young leaves, and tiller nodes from the WT, osckx4, osckx9, and osckx4 osckx9 plants at 46 days after sowing. We also collect axillary buds (0-1 cm) in 2021 at 50 days after sowing. The samples were stored at −80 °C until further use.

Total RNA was extracted using an E.Z.N.A.® Plant RNA Kit (Omega Bio-tek Inc., Norcross, GA, USA; https://www.omegabiotek.com/) and subjected to reverse-transcription using a PrimeScript™ RT Reagent Kit (Takara Biotechnology, Tokyo, Japan; https://www.takarabio.com/). Quantitative reverse-
transcription PCR was performed on an ABI PRISM 7300 Real-Time PCR System (Applied Biosystems, Thermo Fisher Scientific, Waltham, MA, USA; https://www.thermofisher.com/) with SYBR® Premix Ex Taq™ (Takara), following the manufacturer’s instructions. Relative expression analysis was performed using the actin gene as internal control. The primers used are listed in Supplemental Table S1.

Sequence alignment and phylogenetic analysis

The amino acid sequence alignment was performed using MUSCLE (Madeira et al., 2019), and phylogenetic trees were generated using a neighbor-joining method and 1,000 bootstrap iterations in MEGA X (Kumar et al., 2018).

RNA-Seq and data analysis

Before library preparation, Dynabeads® mRNA Purification Kit (Invitrogen, Thermo Fisher Scientific, Waltham, MA, USA; https://www.thermofisher.com/) were used to purify the mRNA. An MGIEasy RNA Library preparation kit was used for library construction from purified mRNA according to the manufacturer’s instruction (BGI, Shenzhen, China; https://www.mgi-tech.com/). The quality of the constructed library was checked and sequenced after passing. High-throughput sequencing was paired-end sequenced on the MGISEQ-2000 platform (BGI). The obtained reads were processed and analyzed, and genes with Q values of < 0.05 and log$_2$(fold change) values of > 1 or < -1 were considered to be significantly differentially expressed. Based on the list of DEGs, we created and modified Venn diagrams in Microsoft Excel. Furthermore, we performed KEGG enrichment analysis ($Q < 0.05$) (Kanehisa, 2019), and generated a bubble chart using R.

Sampling and quantification of cytokinins

From the WT and osckx4 osckx9 plants, we collected roots from approximately 5 cm below the tip
and shoot bases (~5-mm segments from the first nodes) containing the SAM, axillary buds, young
leaves, and tiller nodes at 4 weeks after sowing. The samples were stored at −80 °C until further use.
Endogenous cytokinin levels were quantified by Webiolotech (Nanjing, China;
https://www.webiolotech.com/) with the ESI-HPLC-MS/MS method, using isotope internal standard as
previously reported (Cai et al., 2013).

ACCESSION NUMBERS

Sequence data from this article can be found in Rice Annotation Project database (http://rice.plantbiology.msu.edu) under the following accession numbers: Actin (Os03g0718100),
OsCKX1 (Os01g0187600), OsCKX2 (Os01g0197700), OsCKX3 (Os10g0483500), OsCKX4
(Os01g0940000), OsCKX5 (Os01g0775400), OsCKX6 (Os02g0220000), OsCKX7 (Os02g0220100),
OsCKX8 (Os04g0523500), OsCKX9 (Os05g0374200), OsCKX10 (Os06g0572300), OsCKX11
(Os08g0460600), OsMADS25 (Os04g0304400), OsMADS57 (Os02g0731200), OsTB1
(Os03g0706500), OsT20 (Os12g0405200), OsD27 (Os11g0587000), OsD17 (Os04g0550600), OsD10
(Os01g0746400), OsD3 (Os06g0154200), OsD14 (Os03g0203200), OsPIN2 (Os06g0660200),
OsWOX11 (Os07g0684900), OsRR1 (Os04g0442300), OsRR2 (Os02g0557800), OsRR3
(Os02g0830200), OsRR4 (Os01g0952500), OsRR5 (Os04g0524300), OsRR6 (Os04g0673300), OsRR7
(Os07g0449700), OsRR9 (Os11g0143300), OsRR10 (Os12g0139400), and OsRR11 (Os02g0631700).
RESULTS

OsCKX family genes display different expression patterns

Similar to the findings of previous studies (Ashikari et al., 2005; Zhang et al., 2021), the OsCKX phylogenetic tree consisted of five major clades (Figure 1A). OsCKX1, which is commonly expressed in the roots, flowers, and grains, and OsCKX2 were grouped together in the first clade. The β-glucuronidase (GUS) staining results revealed that OsCKX1 had obvious expression in the shoot base and top of axillary buds (Figure 1B). On the other hand, OsCKX2, usually expressed at high levels in the leaf sheath and inflorescence, was found to be particularly expressed in the lateral root primordium, leaf blade, shoot base, and inflorescence. OsCKX6, OsCKX7, and OsCKX10 were grouped together in the second clade and showed very low expression in all the tissues analyzed.

The third clade was composed of OsCKX4, OsCKX5, and OsCKX9. OsCKX4, which is generally strongly expressed in the vegetative organs, displayed extremely special expression in the roots. OsCKX9 was generally expressed at low levels in all the tissues analyzed but showed special expression in the leaf blade and whole axillary buds. OsCKX5, usually highly expressed in all the checked tissues, also exhibited especial expression in the roots and leaves.

The fourth clade consisted of OsCKX3 and OsCKX8. OsCKX3, which is expected to have the highest expression in the stem and young panicles, was found to have particular expression in the shoot base and young panicle. OsCKX8, commonly expressed at lower levels than OsCKX3 in all vegetative organs, was extraordinarily expressed in the shoot base, flag leaf primordia, and inflorescence.

OsCKX11 showed a different sequence from other OsCKX genes; it was generally expressed at a higher level in all tissues, specifically in the reproductive-stage root and inflorescence, displaying special expression in the root, shoot base, and young inflorescence.
Cytokins have many functions during plant growth and development in different organs, and the biodegradation of cytokins in different periods or tissues can help plants accurately regulate their growth and development, so that each OsCKX gene is expressed in a distinct pattern. In rice, we found all of eight of the OsCKX genes expressed at the shoot base and inflorescence meristem at different stages and positions. We found some tissues with low expression of certain OsCKX genes, such as OsCKX2, OsCKX3, and OsCKX11, which were not expressed in the flag leaf primordia. Additionally, we determined the expression patterns of OsCKX genes in axillary buds: OsCKX1 was expressed at the top; OsCKX2, OsCKX3, OsCKX4, and OsCKX5 were expressed at the base; and OsCKX9 was expressed throughout the buds.

OsCKX mutants exhibit different phenotypes

Previous studies suggested that the knockdown of specific OsCKXs might help improve rice production by influencing important agronomic traits, such as tillering, development of organs facilitating nutrition, and panicle phenotype. To confirm this hypothesis, we created mutants of all OsCKX genes using the CRISPR/Cas9 system, including single mutants of the nine OsCKX genes (except OsCKX6 and OsCKX10); double mutants of OsCKX1 and OsCKX2 as well as OsCKX4 and OsCKX9; and triple mutants of OsCKX6, OsCKX7 and OsCKX10 (Supplemental Figures S1-S3).

Since leaf size affects the photosynthetic capacity of rice, we investigated this and discovered that the top three leaves in the osckx1, osckx2, osckx8, and osckx11 mutants were distinctly longer and wider compared to those of ZH11 (Supplemental Figures S4-S6; Supplemental Table S2). The last three leaves of the osckx9 mutant were also distinctly longer, yet no change in their width was observed compared to ZH11. The leaf length and width of the other mutants did not significantly change (Supplemental Figures S5, A–D, and S6). On the other hand, culm diameter and plant height are closely
related to the lodging resistance of rice. We found that the diameters of the basal internodes in \textit{osckx1}, \textit{osckx2}, \textit{osckx8}, and \textit{osckx11} mutants were significantly wider than those in the WT, while the \textit{osckx3}, \textit{osckx4}, and \textit{osckx5} mutants had thinner basal internodes (Supplemental Figure S5, E and F).

Furthermore, the \textit{osckx3}, \textit{osckx4}, and \textit{osckx5} mutants showed significantly decreased plant height compared to others (Supplemental Figure S5, G and H).

The panicle number is determined by the tiller number per plant and has a significant effect on rice yield. In the field and pot experiments, the \textit{osckx4} and \textit{osckx9} mutants developed more tillers than the WT plants, which is consistent with the results of previous studies (Supplemental Figures S4B and S5, I and J; Supplemental Tables S2 and S3). Although the mutants produced more panicles per plant, the number of grains per panicle decreased, resulting in no significant change in yield (Supplemental Figure S7, A-D; Supplemental Table S2). In contrast, the \textit{osckx2} mutant showed significantly reduced tiller number in both the 2019 and 2020 field and pot experiments (Supplemental Tables S2 and S3).

However, no significant differences were observed in the tiller numbers of the other \textit{osckx} mutants. Additionally, there was no significant change in the yield per plant of the \textit{osckx} mutants, except for \textit{osckx1} and \textit{osckx11-1}, which had significantly improved production. In contrast, \textit{osckx3-1}, \textit{osckx3-26}, and \textit{osckx4-6} had significantly low yields (Supplemental Figures S7, A and B). Despite this, we observed several agronomic traits that were improved in the mutants. For example, the \textit{osckx1}, \textit{osckx2}, \textit{osckx7}, and \textit{osckx8} mutants presented heavier grain weight, while the \textit{osckx11} mutant developed more spikelets per panicle (Supplemental Figure S7, E–H).

Though OsCKX6, OsCKX7, and OsCKX10 have similar protein sequences, the three genes have very low expression levels. Using these genes, we constructed \textit{osckx6 osckx7 osckx10} triple mutant lines; all the three lines showed no significant difference in panicle number and yield compared to the
WT (Supplemental Figures S8).

The osckx1 osckx2 double mutants have significantly reduced tiller numbers

OsCKX1 and *OsCKX2* displayed similar trends in the phenotypes of flag leaf length and width, culm diameter, and 1000-grain weight, and the two genes were grouped into the same clade. Based on this, we constructed the *osckx1 osckx2* double mutants. In 2021, both of the two *osckx1 osckx2* double mutant lines showed a significant increase in the number of spikelets per panicle in relation to NIP; this increase is mainly attributed to the significantly increased number of primary branches per panicle; however, the *osckx1 osckx2-19* mutant showed a significant increase in the number of secondary branches per panicle (Figure 2, A–D). A similar phenotype was also seen in 2020 (Supplemental Figure S9, A–D). However, compared to NIP, the seed setting rate of *osckx1 osckx2* mutant lines was significantly lower in the two years (Figure 2E, Supplemental Figure S9E). Furthermore, the panicle number of *osckx1 osckx2* mutant lines was less than that of NIP in 2021, while the *osckx1 osckx2-19* mutant showed a significantly reduced number of tillers and panicles per plant compared to NIP in 2020 (Figure 2F, Supplemental Figure S9, F and G). Moreover, the 1,000-grain weight and grain length were significantly increased in *osckx1 osckx2-19* compared with those in NIP (Supplemental Figure S9, H–J). In contrast, the grain width and thickness did not show significant changes between *osckx1 osckx2-19* and NIP (Supplemental Figure S9, K and L). Owing to the small panicle number per plant and lower setting rate, the yield of *osckx1 osckx2* lines was lower compared to that of NIP (Figure 2G, Supplemental Figure S9M). Moreover, in *osckx1 osckx2-19* plants, the flag leaf became wider (Supplemental Figure S9, N and O) and the plants had thick basal internodes, while the plant height did not noticeably change (Supplemental Figure S9, P and Q). Collectively, these observations of the spikelet phenotype, panicle number, and vegetative organ size suggest that the double knockout of
OsCKX1 and OsCKX2 may help improve the lodging resistance and optimize the plant architecture in rice.

Double knockout of OsCKX4 and OsCKX9 significantly promotes tillering

For osckx4, we observed four independent lines of the NIP background, and for osckx9, we observed two independent lines of the ZH11 background; all of these lines showed a relative phenotype in increased tiller numbers (Supplemental Figures S5, I and J; Supplemental Tables S2 and S3) and reduced spikelets (Supplemental Figure S7, E and F; Supplemental Table S2) per panicle. Moreover, OsCKX4 and OsCKX9 were grouped into the same clade. Based on these results, we mutated OsCKX9 in NIP and osckx4-6 mutants. The double mutant osckx4 osckx9 has the same mutations as osckx4-6 and osckx9-1 (Supplemental Figures S3B). At the T0 generation, we obtained 5 lines of an osckx4 osckx9 double mutant. All mutant lines showed a higher number of tillers than the wild type. We used two independent lines with the same mutations for further research. As expected, we discovered that the osckx4 osckx9 double mutant had an extremely higher tiller number compared to NIP and the two single mutants (Figure 3, A–D). In contrast, panicle size was significantly reduced in the osckx4 osckx9 mutant (Figure 3E). The osckx9-1 mutant had a high panicle number per plant, which is the same as the osckx9 single mutants in ZH11 background, but the number was markedly higher in the osckx4 osckx9 mutant (Figure 3F). However, the number of spikelets per panicle of osckx4 was significantly decreased, while that of osckx4 osckx9 was even lower (Figure 3G). The decreased number of spikelets per panicle of osckx4-6 was due to the low number of secondary branches per panicle, while the low number of spikelets per panicle of osckx4 osckx9 was caused by the reduced number of both the primary and secondary branches (Figure 3, E, H, and I). On the other hand, seed setting rates were similar in the single and double mutants, and were significantly lower than those in WT (Figure 3J). Despite the
increase in grain length, the *osckx4-6* mutant presented decreased 1,000-grain weight due to reduced grain thickness (Figure 3K; Supplemental Figure S10, A–E). The 1,000-grain weight of *osckx4 osckx9* was lower than that of the *osckx4-6* mutant due to reduced grain width and thickness (Figure 3K; Supplemental Figure S10, A–E). As a result of these changes, the yield of *osckx4 osckx9* was significantly decreased (Figure 3L). Moreover, the root length, diameter of basal internode, plant height, and flag leaf length and width were further decreased in the double mutant compared to those in the two single mutants (Figure 3, A, M and N; Supplemental Figure S10, F-H).

We also conducted a hydroponic experiment to investigate the root phenotypes of the mutants (Figure 4A). We verified that *OsCKX4* and *OsCKX9* have redundant roles in regulating tillering, plant height, and root length (Figure 4 B and C). The *osckx4 osckx9* mutant not only had shorter roots, but also fewer crown roots and smaller root diameter (Supplemental Figure S11, A and B). The length and width of the 8th leaf were also decreased in *osckx4-6* and *osckx4 osckx9* compared to those in NIP (Figure 4, D and E). These results indicate that the reduction in the leaf size of *osckx4 osckx9* started at the vegetative stage. Overall, these results suggest that *OsCKX4* and *OsCKX9* have a functional overlap during rice growth and development.

RNA-seq analysis reveals genes with altered expression of *osckx4*, *osckx9*, and *osckx4 osckx9*

To obtain information regarding the possible functional context of *OsCKX4* and *OsCKX9*, we sampled the roots and shoot bases from NIP, *osckx4*, *osckx9*, and *osckx4 osckx9* and performed RNA-seq analysis. Results revealed that *osckx4* had 297 differentially expressed genes (DEGs) in the shoot bases and 415 DEGs in the roots compared to NIP. There were 500 DEGs in the shoot bases and 342 DEGs in the roots of the *osckx9* mutant compared to NIP. The *osckx4 osckx9* double mutant had the highest number of DEGs, with 806 DEGs in the shoot base and 4,556 DEGs in the roots compared to NIP.
(Figure 5A). To verify the accuracy and reproducibility of the RNA-seq results, we randomly selected seven previously studied genes associated with the phenotypes observed in this study for quantitative reverse-transcription PCR analysis. The expression profiles of these genes were found to corroborate the RNA-seq results (Supplemental Figure S12).

However, although there were numerous DEGs between the WT and mutants, there were 71 DEGs in the roots and 90 DEGs in the shoot bases that overlapped between the osckx4 vs. WT and osckx9 vs. WT comparisons and occupied only a small fraction of the total DEGs (Figure 5B). These included some genes that regulate the absorption of silicon (Lsi1, Lsi2), zinc (OsZIP16), and iron (OsIRO2) (Figure 5C). OsZIP9, OsTCP19, OsHKT1.1, and OsNPF5.5 were upregulated in the shoots of osckx4, while OsLBD37, OsARF19, OsMYB61, and MT1a were upregulated in the shoots of osckx9. In the roots of osckx4, the expression of OsAAP5, OsAAP8, and OsNLP6 was downregulated, while certain genes influencing iron and phosphorus absorption were upregulated. We also observed the downregulation of OsPUP1, OsPUP5, OsRR10, and OsNAAT4 in the roots of osckx9 (Figure 5C). However, the functions of most DEGs remain unknown (Supplemental Dataset 1). The difference in DEGs between the two single mutants and NIP implied that OsCKX4 and OsCKX9 have different functions at the molecular level. Moreover, 87.1% and 78.2% of DEGs in the roots and shoot bases, respectively, between the osckx4 osckx9 and WT were identified only in the double mutants, which may have been caused by the duplicate effect of the functional loss of OsCKX4 and OsCKX9 (Figure 5B).

Since we observed that osckx4 osckx9 exhibited more severe phenotypes and possessed more DEGs, we analyzed the DEGs identified in the roots and shoot bases between the WT and osckx4 osckx9 plants by using Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis (Figure 5D). In both tissues, the top enriched KEGG pathways included ‘glycolysis/gluconeogenesis’,
‘biosynthesis of amino acids’, and those related to carbon and nitrogen metabolism. Since most of the DEGs were not functionally annotated, the relationship between the DEGs and the enriched pathways and their influence on the growth and development of the mutant plants were not fully understood. However, we identified several genes that may be associated with the phenotypes observed in this study.

OsCKX4 and OsCKX9 regulate cytokinin levels

As OsCKX4 and OsCKX9 are involved in biodegradation of cytokinins, we first analyzed the DEGs associated with cytokinin metabolism and signal transduction. Among the cytokinin metabolism-related genes, only *OsCKX2* and *OsCKX5* expression was downregulated in the root of *osckx4 osckx9* (Supplemental Dataset 1). Type-A *OsRR* genes are a group of genes that can be induced by cytokinins. However, the expression of *OsRR4*, *OsRR6*, *OsRR7*, *OsRR9*, and *OsRR10* was significantly downregulated in the roots of *osckx4 osckx9*, whereas the expression of *OsRR10* was significantly downregulated in the roots of *osckx9* (Figure 6A). In the shoot base, only *OsRR10* expression was significantly upregulated in *osckx9* and *osckx4 osckx9* mutants (Figure 6A). In contrast, in the axillary bud, the expression of detectable type-A *OsRR* genes, except *OsRR2*, was significantly upregulated in *osckx4 osckx9* mutants (Figure 6B).

Although type-A *OsRR* genes can indicate the content of cytokinins indirectly, we sampled the roots and shoot base of NIP and *osckx4 osckx9* to detect the content of cytokinins. In the root, compared to NIP, the content of *cZ* (*cis*-zeatin), iP, *tZ*, IPA (isopentenyl adenosine), and tZR (*trans*-zeatin riboside) showed a significant increase, while 6-BA and DHZR (dihydrozeatin riboside) contents significantly decreased in *osckx4 osckx9* (Figure 6C). However, in the shoot base, we found a higher content of iP and lower content of tZR and DHZR in *osckx4 osckx9* (Figure 6D).

SL metabolism and signaling are not regulated by OsCKX4 and OsCKX9
SLs perform the function of regulating tiller numbers (Jiang et al., 2013; Zhou et al., 2013). To investigate the cause of the increased tiller numbers in the single and double mutants, we examined the genes associated with SLs. In the root and shoot base, none of the genes related to SL biosynthesis and signaling transduction, including OsT20 (Liu et al., 2020), OsD27, OsD17, OsD10, OsD3, OsD14 (Arite et al., 2007), and OsD53 (Jiang et al., 2013; Zhou et al., 2013), showed no significant difference between NIP and mutants (Supplemental Figure S13; Supplemental Dataset 1). Based on these results, there is no direct evidence that the metabolism and signaling transduction of SLs are downstream of OsCKX4 and OsCKX9.

OsCKX4 and OsCKX9 may participate in regulating the metabolism and transport of other hormones

To investigate the cause for the increases in tillers and the reduced root length in osckx4 osckx9, considering the importance of auxin in regulating root elongation (Jun et al., 2011) and tiller bud outgrowth (Zha et al., 2019), we analyzed the genes related to auxin. We discovered that auxin efflux transporters OsPIN2 was upregulated in the shoot bases, while OsPIN1d and OsPIN8 were upregulated in the roots, respectively, in double mutants (Figure 7; Supplemental Dataset 1). We also found that the auxin primary response genes OsGH3-2 and OsIAA9 were upregulated in the shoot bases of the osckx4 osckx9 and single mutants. Additionally, OsGH3-2, nine OsIAA genes (OsIAA1, 4, 9, 12, 14, 15, 19, 23, 24), and five OsSAUR genes (OsSAUR6, 20, 27, 28, 33) were downregulated in the roots of osckx4 osckx9; however, OsIAA16, OsARF10 and OsARF24 were upregulated in the roots of osckx4 osckx9. These results may partly explain the reduced root system and increased tiller numbers of osckx4 osckx9 double mutants, but these conclusions are only based on RNA-Seq, more research is required to learn the relationship between cytokinins and auxins.
Additionally, to explain the reason for reduced plant height of osckx4 osckx9, we identified genes related to gibberellin metabolism, as gibberellins can regulate plant height (Sasaki et al., 2002). We found that the expression of OsKS1 and OsKS2 was significantly downregulated in the roots of osckx4 osckx9 (Figure 8; Supplemental Dataset 1). OsKS1 and OsKS2 are enzymes that catalyze the second step of the GA biosynthesis pathway (Ji et al., 2014; Tezuka et al., 2015). The expression of OsKS2 was also downregulated in the roots of the osckx9 mutant, while no changes were observed in the osckx4 mutant. Other genes for GA biosynthesis and degradation, such as GA20ox and GA2ox, were markedly downregulated in the roots of the osckx4 osckx9. Some GA receptors were also downregulated in the roots of the osckx4 osckx9. Although the changes in the expression of gibberellin-related genes may explain the significantly reduced plant height of osckx4 osckx9 double mutants, deeper explore is needed to explain the crosstalk between cytokinins and gibberellin.
DISCUSSION

Functional differences and redundancy between *OsCKX* genes

To systematically determine the functions of *OsCKX* genes, we analyzed their expression patterns and investigated the phenotypes of *osckx* single, double and triple mutation lines. Our study revealed the roles of all *OsCKX* genes in the growth and development of rice. Each *OsCKX* gene had its own special functions (summarized in Figure 9). Loss of function of some *OsCKX* genes cause changes to the yield.

Previous studies have described the functions of *OsCKX2*, *OsCKX4*, *OsCKX9*, and *OsCKX11*. First, researchers elucidated the function of *OsCKX2* after observing that null mutants or plants with downregulation of *OsCKX2* developed more spikelets per panicle (Ashikari *et al.*, 2005), more tillers, and larger grains (Yeh *et al.*, 2015). Our present study observed little increase in the number of spikelets, but reduced tiller number in the *osckx2* mutant of ZH11, which were different from previous studies. Similar results of tiller numbers were also found in *osckx1 osckx2* double mutant of NIP, which supports the hypothesis that fewer tillers may be related to thicker culms. Furthermore, both the *osckx2* mutant of ZH11 and *osckx1 osckx2* mutant of NIP presented increased 1,000-grain weight. The discrepancies between our results and previous findings regarding panicle size may be attributed to the different cultivated varieties or environmental impact.

Furthermore, previous reports stated that *OsCKX4* showed a positive impact on the root system but a negative impact on the shoot growth (Gao *et al.*, 2014; Mao *et al.*, 2020). Since *OsCKX4* is commonly expressed in the root, previous studies were more focused on investigating the relationships between *OsCKX4* and the root system instead of the shoot system. Here, we discovered that *osckx4* mutants produced more tillers, especially at the early stages, but has fewer spikelets per panicle. Additionally, *osckx9* mutants have been reported to develop more tillers, fewer spikelets per panicle,
and shorter plant height (Duan et al., 2019). Since the null mutations of OsCKX4 and OsCKX9 can affect the tiller number, we constructed osckx4 osckx9 mutants, which distinctly showed more tillers, shorter plant height, and smaller panicles. The increase in the tiller number of osckx4 osckx9 double mutants was greater than observed in osckx4 and osckx9 single mutants. Furthermore, the decrease in plant height and number of spikelets per panicle of osckx4 osckx9 double mutants was also higher than observed in osckx4 and osckx9 single mutants. These results suggest the partial functional overlap of OsCKX4 and OsCKX9 during rice growth and development. Moreover, osckx11 mutants previously displayed more tillers, larger panicles, and lighter 1,000-grain weight (Zhang et al., 2020); these were also observed in our study.

In contrast to our expectations, none of the single mutants showed a stable significant increase in yield, while the double mutants osckx1 osckx2 and osckx4 osckx9 showed lower yields. The lower yield is correlated with some of the disadvantageous phenotypes in these mutants. The discoveries in this study pointed out that single loss-of-function mutants were not good for breeding. If the expression of OsCKX gene in different tissues or at different developmental stages can be regulated in breeding, some favorable phenotypes may be utilized.

Potential causes of the functional differences and redundancy in OsCKX genes

Each OsCKX gene has its distinct functions during rice growth and development, but why different phenotypes arise is worthy of discussion. The main function of CKX enzymes is the biodegradation of cytokinins, with previous studies reporting that CKXs catalyze the degradation of different cytokinin compounds. In maize, the ZmCKX enzyme activity has been systematically analyzed; for example, ZmCKX1 and ZmCKX12 specifically target iP, tZ, and cZ (Zalabak et al., 2014). In Arabidopsis, like AtCKX1 showed the highest preference for tZ phosphates, iP phosphates, and iP9G, while AtCKX3
preferred iP phosphates and iPR (Kowalska et al., 2010). However, little is known about the preference
of OsCKX enzymes; an in vitro experiment showed that OsCKX9 had higher activity to catalyze the
degradation of tZ than to catalyze the degradation of IPA, and OsCKX11 that specially targets tZ and
cZ (Duan et al., 2019; Zhang et al., 2020). While other OsCKX enzyme substrates may need to be
inferred from endogenous hormone content data. From the hormone content detected in the root of
OsCKX4-overexpression line, it was found that the content of iP and tZ cytokinin showed no obvious
change compared to WT, while DHZ and the combined type of iP and tZ showed a significant
reduction (Gao et al., 2014). In our study, in the root and shoot base, not all kinds of cytokinins showed
higher levels in osckx4 osckx9 mutants. Therefore, the distinctive functions of OsCKXs may be
attributed to their different target substrates.

CKX proteins are mainly localized in the ER because most contain an N-terminal signal peptide
sequence (Niemann et al., 2018; Zalabak et al., 2016). In the ER, cytokinins combine with their
receptors and initiate signaling transduction, while most ER-localized CKXs regulate cytokinin
concentrations to precisely adjust cytokinin signals (Niemann et al., 2018; Romanov and Schmulling,
2021). Previous studies revealed that OsCKX4 and OsCKX11 are localized in the cytosol, while
OsCKX9 is localized in the cytosol and nuclei (Duan et al., 2019; Gao et al., 2014; Zhang et al., 2020).
These three CKXs potentially regulate the cytokinin balance in other cellular organelles. However, the
locations of the remaining OsCKXs remain unknown. Hence, we hypothesize that the subcellular
localization of OsCKXs may also influence their functional differentiation.

In this study, the OsCKX genes exhibited different expression patterns. For example, OsCKX1 and
OsCKX2 were expressed in the flower and grains, but OsCKX1 showed lower expressed in the
inflorescence meristem, which is the same as the previous study (Ashikari et al., 2005). As OsCKX4
and OsCKX9 showed similar phenotypes in tiller number, the expression pattern showed a considerable
difference. OsCKX4 is highly expressed in vegetative organs, yet the expression of OsCKX9 in these
organs is very low, and the different expression can get illumination from previous studies (Duan et al., 2019;
Gao et al., 2014). In inflorescence meristem, the two genes showed low expression level, which is also
the same as previous studies by RT-southern blot (Ashikari et al., 2005). In summary, the differences in
the nature of catalytic substrates, subcellular localization, and expression in tissues may contribute to
the different functions observed in OsCKX family genes.

Significantly altered transcriptome of the osckx4 osckx9 mutant

Although OsCKX4 and OsCKX9 have been extensively studied, we observed new phenotypes in the
single mutants, which have not been reported previously. Interestingly, these two genes were found to
exhibit redundant functions during rice growth and development.

First, we found that several type-A OsRR genes showed lower expression in the roots in the
osckx4 osckx9 mutant compared to NIP, while no significantly changes (except OsRR10) in the shoot
base. However, considering the higher content of most types of cytokinins in the root of the osckx4
osckx9 mutant, these results were contradictory, since type-A RR genes are primary response genes for
cytokinin signaling. Such results were not observed in the shoot base. Interestingly, similar results were
also reported in some previous studies; for example, compared to those in WT, a lower content of
cytokinins was recorded in the roots of OsCKX4-overexpression lines, with higher expression of
OsRR4, OsRR9, and OsRR10 (Gao et al., 2014). On the other hand, compared to those in WT, a higher
cytokinin content was recorded in the roots, and lower in the shoots of the mutant osabcg18, but the
expression of OsRR6 and OsRR10 in the roots did not differ significantly; in addition, the expression of
OsRR2, OsRR6 and OsRR10 in the shoots were downregulated (Zhao et al., 2019). These results may
be caused by the response mechanism divergence between endogenous and exogenous cytokinins, the
different functions of each type of cytokinin, and the distinct phenotypes and response pathways of
dereference cytokinins between the root and shoot. However, these ideas need to be verified by further
research. Finally, the upregulated expression of nine type-A OsRR genes in the axillary buds of oscxx4
oscxx9 may have resulted from the increase in the levels of cytokinins; however, owing to the
limitations of the technique used, the levels of cytokinins in this tissue remains unknown.

Though higher cytokinin levels in the oscxx4 oscxx9 mutant can partly explain the increased tiller
number, more information about other plant hormones may be helpful for the analysis. However, from
the RNA-Seq analysis, we did not observe any changes in the expression of SL biosynthesis- and
signaling-related genes in the shoot base or the root. However, the higher expression level of the
OsPIN2 gene in the shoot base of oscxx4 and oscxx4 oscxx9 mutants may help produce more tillers
(Chen et al., 2012). Since SL directly activates OsCKX9 to regulate shoot architecture in rice, based on
these findings, cytokinin may be located downstream of the SL pathway during rice tillering. Further,
though previous studies revealed some relationships between cytokinin content (Gao et al., 2014) or
cytokinin signaling (Simaskova et al., 2015; Waldie and Leyser, 2018) and the expression of PIN genes,
the connection between cytokinins and auxin in regulating tiller numbers require further research.

The reduced plant height of the oscxx4 oscxx9 mutant may be related to the downregulation of
OsKS1 and OsKS2. On the other hand, possibly due to the limited substrate, the expression of several
GA20ox and GA2ox genes for gibberellin biosynthesis and biodegradation, respectively, were
downregulated in the oscxx4 oscxx9 mutant. However, the mechanism by which OsCKX4 and OsCKX9
regulate the expression of OsKS1 and OsKS2 is unknown.

Interestingly, in addition to the genes regulated by both OsCKX4 and OsCKX9, we also identified
several genes that are regulated by OsCKX4 and OsCKX9 individually. In summary, the similar amino
acid sequences but different expression patterns and different subcellular localization of OsCKX4 and
OsCKX9 enable them to functionally overlap in the regulation of some pathways, while also
individually regulating specific pathways.

In conclusion, our systematic analysis of 11 genes in the OsCKX family reveals their complex
expression patterns in rice. A total of 27 OsCKX mutant lines were produced using CRISPR/Cas9
technology. By examining the phenotypes of the mutants throughout the rice growth period, we
determined the functions of specific OsCKX genes in plant development. Specifically, we discovered
that OsCKX4 and OsCKX9 inhibited tillering, while OsCKX1 and OsCKX2 promoted tillering.
Considered together, our findings establish a community resource for fully elucidating the function of
OsCKXs, providing new insights that may be used for future studies to improve rice yield.
Supplemental data

The following supplemental materials are available.

Supplemental Figure S1. Gene structures and mutation details of *OsCKXs*.

Supplemental Figure S2. Chromatograms of the *osckx* mutant lines.

Supplemental Figure S3. Mutation details and chromatograms of double and triple mutants

Supplemental Figure S4. The *osckx* mutants of Zhonghua11 from the 2020 field experiment.

Supplemental Figure S5. Phenotypic characterization of the vegetative organs in *osckx* mutants from the 2020 field experiment.

Supplemental Figure S6. Phenotypic characterization of the second and third top leaves in *osckx* mutants from the 2020 field experiment.

Supplemental Figure S7. Phenotypic characterization of yield-related phenotypes in *osckx* mutants from the 2020 field experiment.

Supplemental Figure S8. Phenotypic characterization of the yield and panicles per plant in Nipponbare (NIP) and *osckx6 osckx7 osckx10* plants.

Supplemental Figure S9. Phenotypic characterization of Nipponbare (NIP) and *osckx1 osckx2-19* mutant plants in 2020.

Supplemental Figure S10. Phenotypic characterization of the flag leaves and seeds in Nipponbare (NIP), *osckx4, osckx9*, and *osckx4 osckx9* plants.

Supplemental Figure S11. Phenotypic characterization of the leaf and root systems in wild-type and *osckx4 osckx9* plants.

Supplemental Figure S12. Relative expression levels and FPKM values of *D17, RR4, WOX11, PIN2, TB1, OsMADS25*, and *OsMADS57* in the roots and shoot bases (BP) of Nipponbare (NIP), *osckx4,*
osckx9, and osckx4 osckx9.

Supplemental Figure S13. OsCKX4 and OsCKX9 are associated with strigolactone biosynthesis and signaling transduction.

Supplemental Table S1. Information of primers used in the study.

Supplemental Table S2. Characterization of the vegetative organs and yield-related phenotypes in osckx mutants from the 2019 field experiment.

Supplemental Table S3. Tiller numbers in osckx mutants from the 2019 field experiment.

Supplemental Dataset 1. RNA sequencing data.
Funding:

This work was supported by the National Natural Science Foundation of China (Grant number 31971842 and 31872855).

Data availability

All data supporting the findings of this study are available within the paper and within its supplementary data published online.

Acknowledgments

We thank Jiankang Zhu and Caixia Gao for providing the vectors of the CRISPR-Cas9 system. We also thank Biogle and Biorun genome editing center for producing transgenic rice.

Author contributions

C.D. and Y.D. conceived the original screening and research plans; C.R., Y.L., Z.C., Z.L., and C.D. performed the experiments and analyzed the data; C.R. and C.D. wrote the article with contributions of all the authors; C.D. agrees to serve as the author responsible for contact and ensures communication.

Conflict of interest

The authors declare no competing interests in relation to this work.
References

Arite T, Iwata H, Ohshima K, Maekawa M, Nakajima M, Kojima M, Sakakibara H, Kyoza J. 2007. DWARF10, an RMS1/MAX4/DAD1 ortholog, controls lateral bud outgrowth in rice. Plant J 51, 1019-1029.

Ashikari M, Sakakibara H, Lin S, Yamamoto T, Takashi T, Nishimura A, Angeles ER, Qian Q, Kitano H, Matsuoka M. 2005. Cytokinin oxidase regulates rice grain production. Science 309, 741-745.

Bartrina I, Otto E, Strnad M, Werner T, Schmulling T. 2011. Cytokinin regulates the activity of reproductive meristems, flower organ size, ovule formation, and thus seed yield in Arabidopsis thaliana. Plant Cell 23, 69-80.

Cai BD, Zhu JX, Shi ZG, Yuan BF, Feng YQ. 2013. A simple sample preparation approach based on hydrophilic solid-phase extraction coupled with liquid chromatography-tandem mass spectrometry for determination of endogenous cytokinins. J Chromatogr B 942-943, 31-36.

Chen L, Zhao J, Song J, Jameson PE. 2020. Cytokinin dehydrogenase: a genetic target for yield improvement in wheat. Plant Biotechnol J 18, 614-630.

Chen Y, Fan X, Song W, Zhang Y, Xu G. 2012. Over-expression of OsPIN2 leads to increased tiller numbers, angle and shorter plant height through suppression of OsLAZY1. Plant Biotechnol J 10, 139-149.

Duan J, Yu H, Yuan K, Liao Z, Meng X, Jing Y, Liu G, Chu J, Li J. 2019. Strigolactone promotes cytokinin degradation through transcriptional activation of CYTOKININ OXIDASE/DEHYDROGENASE 9 in rice. Proc Natl Acad Sci U S A 116, 14319-14324.

Gao S, Fang J, Xu F, Wang W, Sun X, Chu J, Cai B, Feng Y, Chu C. 2014. CYTOKININ OXIDASE/DEHYDROGENASE4 Integrates Cytokinin and Auxin Signaling to Control Rice Crown Root Formation. Plant Physiol 165, 1035-1046.

Jameson PE, Song J. 2020. Will cytokinins underpin the second 'Green Revolution'? J Exp Bot 71, 6872-6875.

Ji SH, Gururani MA, Lee JW, Ahn BO, Chun SC. 2014. Isolation and characterisation of a dwarf rice mutant
exhibiting defective gibberellins biosynthesis. Plant Biol (Stuttg) **16**, 428-439.

Jiang L, **Liu X**, **Xiong G**, **Liu H**, **Chen F**, **Wang L**, **Meng X**, **Liu G**, **Yu H**, **Yuan Y**, **Yi W**, **Zhao L**, **Ma H**, **He Y**, **Wu Z**, **Melcher K**, **Qian Q**, **Xu HE**, **Wang Y**, **Li J**. 2013. DWARF 53 acts as a repressor of strigolactone signalling in rice. Nature **504**, 401-405.

Jun N, **Gaohang W**, **Zhenxing Z**, **Huanhuan Z**, **Yunrong W**, **Ping W**. 2011. OsIAA23-mediated auxin signaling defines postembryonic maintenance of QC in rice. Plant J **68**, 433-442.

Kanehisa M. 2019. Toward understanding the origin and evolution of cellular organisms. Protein Science **28**, 1947-1951.

Kollmer I, **Novak O**, **Strnad M**, **Schmulling T**, **Werner T**. 2014. Overexpression of the cytosolic cytokinin oxidase/dehydrogenase (CKX7) from Arabidopsis causes specific changes in root growth and xylem differentiation. Plant J **78**, 359-371.

Kowalska M, **Galuszka P**, **Frebortova J**, **Sebela M**, **Beres T**, **Hluska T**, **Smehilova M**, **Bilyeu KD**, **Frebort I**. 2010. Vacuolar and cytosolic cytokinin dehydrogenases of Arabidopsis thaliana: heterologous expression, purification and properties. Phytochemistry **71**, 1970-1978.

Kumar S, **Stecher G**, **Li M**, **Knyaz C**, **Tamura K**. 2018. MEGA X: Molecular Evolutionary Genetics Analysis across Computing Platforms. Mol Biol Evol **35**, 1547-1549.

Kurakawa T, **Ueda N**, **Maekawa M**, **Kobayashi K**, **Kojima M**, **Nagato Y**, **Sakakibara H**, **Kyozuka J**. 2007. Direct control of shoot meristem activity by a cytokinin-activating enzyme. Nature **445**, 652-655.

Li S, **Zhao B**, **Yuan D**, **Duan M**, **Qian Q**, **Tang L**, **Wang B**, **Liu X**, **Zhang J**, **Wang J**, **Sun J**, **Liu Z**, **Feng YQ**,** Yuan L**, **Li C**. 2013. Rice zinc finger protein DST enhances grain production through controlling Gln1a/OsCKX2 expression. Proc Natl Acad Sci U S A **110**, 3167-3172.

Liu X, **Hu Q**, **Yan J**, **Sun K**, **Liang Y**, **Jia M**, **Meng X**, **Fang S**, **Wang Y**, **Jing Y**, **Liu G**, **Wu D**, **Chu C**, **Smith**

SM, Chu J, Wang Y, Li J, Wang B. 2020. zeta-Carotene Isomerase Suppresses Tillering in Rice through the Coordinated Biosynthesis of Strigolactone and Abscisic Acid. Mol Plant 13, 1784-1801.

Madeira F, Park YM, Lee J, Buso N, Gur T, Madhusoodanan N, Basutkar P, Tivey ARN, Potter SC, Finn RD, Lopez R. 2019. The EMBL-EBI search and sequence analysis tools APIs in 2019. Nucleic Acids Res 47, W636-W641.

Mao C, He J, Liu L, Deng Q, Yao X, Liu C, Qiao Y, Li P, Ming F. 2020. OsNAC2 integrates auxin and cytokinin pathways to modulate rice root development. Plant Biotechnol J 18, 429-442.

Mao Y, Zhang H, Xu N, Zhang B, Gou F, Zhu JK. 2013. Application of the CRISPR-Cas system for efficient genome engineering in plants. Mol Plant 6, 2008-2011.

Niemann MCE, Weber H, Hluska T, Leonte G, Anderson SM, Novak O, Senes A, Werner T. 2018. The Cytokinin Oxidase/Dehydrogenase CKX1 Is a Membrane-Bound Protein Requiring Homooligomerization in the Endoplasmic Reticulum for Its Cellular Activity. Plant Physiol 176, 2024-2039.

Romanov GA, Schmulling T. 2021. Opening Doors for Cytokinin Trafficking at the ER Membrane. Trends Plant Sci 26, 305-308.

Sasaki A, Ashikari M, Ueguchi-Tanaka M, Itoh H, Nishimura A, Swapan D, Ishiyama K, Saito T, Kobayashi M, Khush GS, Kitano H, Matsuoka M. 2002. Green revolution: a mutant gibberellin-synthesis gene in rice. Nature 416, 701-702.

Schwarz I, Scheirlinek MT, Otto E, Bartrina I, Schmidt RC, Schmulling T. 2020. Cytokinin regulates the activity of the inflorescence meristem and components of seed yield in oilseed rape. J Exp Bot 71, 7146-7159.

Simaskova M, O'Brien JA, Khan M, Van Noorden G, Otvos K, Vieten A, De Clercq I, Van Haperen JMA, Cuesta C, Hoyerova K, Vanneste S, Marhavy P, Wabnik K, Van Breusegem F, Nowack M, Murphy A, Friml J, Weijers D, Beeckman T, Benkova E. 2015. Cytokinin response factors regulate PIN-FORMED auxin
transporters. Nat Commun 6, 8717.

Tezuka D, Ito A, Mitsuhashi W, Toyomasu T, Imai R. 2015. The rice ent-KAURENE SYNTHASE LIKE 2 encodes a functional ent-beyerene synthase. Biochem Biophys Res Commun 460, 766-771.

Tsai YC, Weir NR, Hill K, Zhang W, Kim HJ, Shiu SH, Schaller GE, Kieber JJ. 2012. Characterization of genes involved in cytokinin signaling and metabolism from rice. Plant Physiol 158, 1666-1684.

Waldie T, Leyser O. 2018. Cytokinin Targets Auxin Transport to Promote Shoot Branching. Plant Physiol 177, 803-818.

Wang J, Xu H, Li N, Fan F, Wang L, Zhu Y, Li S. 2015. Artificial Selection of Gn1a Plays an Important role in Improving Rice Yields Across Different Ecological Regions. Rice (N Y) 8, 37.

Wang WC, Lin TC, Kieber J, Tsai YC. 2019. Response Regulators 9 and 10 Negatively Regulate Salinity Tolerance in Rice. Plant Cell Physiol 60, 2549-2563.

Wang Y, Lu Y, Guo Z, Ding Y, Ding C. 2020. RICE CENTRORADIALIS 1, a TFL1-like Gene, Responses to Drought Stress and Regulates Rice Flowering Transition. Rice (N Y) 13, 70.

Werner T, Motyka V, Strnad M, Schmulling T. 2001. Regulation of plant growth by cytokinin. Proc Natl Acad Sci U S A 98, 10487-10492.

Yeh SY, Chen HW, Ng CY, Lin CY, Tseng TH, Li WH, Ku MS. 2015. Down-Regulation of Cytokinin Oxidase 2 Expression Increases Tiller Number and Improves Rice Yield. Rice (N Y) 8, 36.

Yu C, Liu Y, Zhang A, Su S, Yan A, Huang L, Ali I, Liu Y, Forde BG, Gan Y. 2015. MADS-box transcription factor OsMADS25 regulates root development through affection of nitrate accumulation in rice. PLoS One 10, e0135196.

Zalabak D, Galuszka P, Mrizova K, Podlesakova K, Gu R, Frebortova J. 2014. Biochemical characterization of the maize cytokinin dehydrogenase family and cytokinin profiling in developing maize
plantlets in relation to the expression of cytokinin dehydrogenase genes. Plant Physiol Biochem 74, 283-293.

Zalabak D, Johnova P, Plihal O, Senkova K, Samajova O, Jiskrova E, Novak O, Jackson D, Mohanty A, Galuszka P. 2016. Maize cytokinin dehydrogenase isozymes are localized predominantly to the vacuoles. Plant Physiol Biochem 104, 114-124.

Zalewski W, Galuszka P, Gasparis S, Orczyk W, Nadolska-Orczyk A. 2010. Silencing of the HvCKX1 gene decreases the cytokinin oxidase/dehydrogenase level in barley and leads to higher plant productivity. J Exp Bot 61, 1839-1851.

Zha M, Imran M, Wang Y, Xu J, Ding Y, Wang S. 2019. Transcriptome analysis revealed the interaction among strigolactones, auxin, and cytokinin in controlling the shoot branching of rice. Plant Cell Rep 38, 279-293.

Zhang L, Zhao YL, Gao LF, Zhao GY, Zhou RH, Zhang BS, Jia JZ. 2012. TaCKX6-D1, the ortholog of rice OsCKX2, is associated with grain weight in hexaploid wheat. New Phytol 195, 574-584.

Zhang W, Peng KX, Cui FB, Wang DL, Zhao JZ, Zhang YJ, Yu NN, Wang YY, Zeng DL, Wang YH, Cheng ZK, Zhang KW. 2021. Cytokinin oxidase/dehydrogenase OsCKX11 coordinates source and sink relationship in rice by simultaneous regulation of leaf senescence and grain number. Plant Biotechnol J 19, 335-350.

Zhao J, Yu N, Ju M, Fan B, Zhang Y, Zhu E, Zhang M, Zhang K. 2019. ABC transporter OsABCG18 controls the shootward transport of cytokinins and grain yield in rice. J Exp Bot 70, 6277-6291.

Zhou F, Lin Q, Zhu L, Ren Y, Zhou K, Shabek N, Wu F, Mao H, Dong W, Gan L, Ma W, Gao H, Chen J, Yang C, Wang D, Tan J, Zhang X, Guo X, Wang J, Jiang L, Liu X, Chen W, Chu J, Yan C, Ueno K, Ito S, Asami T, Cheng Z, Wang J, Lei C, Zhai H, Wu C, Wang H, Zheng N, Wan J. 2013. D14-SCF(D3)-dependent degradation of D53 regulates strigolactone signalling. Nature 504, 406-410.

Zurcher E, Muller B. 2016. Cytokinin Synthesis, Signaling, and Function--Advances and New Insights. Int Rev
FIGURE LEGENDS

Figure 1. Genetic relationship and expression patterns of OsCKX genes based on RNA sequencing data and GUS staining assay.

(A) Genetic relationship and expression patterns of OsCKX genes investigated in the leaf blade at the vegetative stage (LBV), leaf sheath at the vegetative stage (LSV), root at the vegetative stage (RV), leaf blade at the reproductive stage (LBR), leaf sheath at the reproductive stage (LSR), root at the reproductive stage (RR), stem (S), inflorescence meristem (IM), flower (F), and grain (G). The expression pattern was based on log2 (Fragments Per Kilobase of exon model per Million mapped fragments (FPKM) +1) values. (B) Histochemical GUS staining of pOsCKX::GUS transgenic plants at various developmental stages. The scale bar in B was 1 mm.

Figure 2. Phenotypic characterization of Nipponbare (NIP) and osckx1 osckx2 mutant plants in 2021.

(A) Panicle phenotypes of NIP and osckx1 osckx2 mutants. The image was digitally extracted and scaled for comparison (scale bar = 10 cm). (B–G) Measurement of the primary branches per panicle (B), secondary branches per panicle (C), spikelets per panicle (D), seed setting rate (E), panicles per plant (F) and yield per plant (G) of NIP and osckx1 osckx2 mutants (n > 30 for B–E, n > 15 for F and G). P values indicate the level of statistical significance between NIP and osckx1 osckx2 mutants determined using the Student’s t-test.

Figure 3. Phenotypic characterization of Nipponbare (NIP) and osckx4, osckx9, and osckx4 osckx9 mutant plants from the field experiment.

(A) Phenotypic features of NIP, osckx4, osckx9 and osckx4 osckx9 seedlings at the vegetative stage 46 days after sowing. The image was digitally extracted and scaled for comparison (scale bar = 10 cm). (B, C) Number of
Figure 4. Phenotypic characterization of Nipponbare (NIP) and osckx4, osckx9, and osckx4 osckx9 mutant plants from the hydroponic experiment.

(A) Phenotypic features of Nipponbare (NIP), osckx4, osckx9, and osckx4 osckx9 seedlings 21 days after transferring to hydroponic solutions. The image was digitally extracted and scaled for comparison (scale bar = 10 cm). (B–E) Measurement of the shoot (above X axis) and root (below X axis) lengths (B), tiller numbers (C), length of 8th leaf (D), and width of 8th leaf (E) of NIP, osckx4-6, osckx9-1, and osckx4 osckx9 seedlings at 21 days after transplant (n = 24 each). Different capital letters represent the level of statistical significance (P < 0.01) determined using one-way ANOVA and SSR test.

Figure 5. RNA-seq analysis of the roots and shoot bases (BP) of Nipponbare (NIP) and osckx4, osckx9, and osckx4 osckx9 mutant plants.

(A) The number of differentially expressed genes (DEGs) identified in the roots and shoot bases of the following
pairwise comparisons: Nipponbare (NIP) vs. osckx4, NIP vs. osckx9, and NIP vs. osckx4 osckx9. The changes in
gene expression levels were calculated using the log₂ fold change and Q values from three biological
replicates. (B) Overlapping DEGs in the roots and shoot bases (BP) of NIP vs. osckx4, NIP vs. osckx9, and NIP
vs. osckx4 osckx9. (C) DEGs in osckx4 and osckx9 specifically and in common in the roots and shoots, genes in
magenta are upregulated; genes in sky blue are downregulated. (D) Top enriched Kyoto Encyclopedia of Genes
and Genomes (KEGG) pathways of the DEGs identified in the roots and shoot bases of NIP vs. osckx4 osckx9.

Figure 6. OsCKX4 and OsCKX9 can regulate endogenous cytokinin levels in plant tissues.

(A) Differentially expressed type-A OsRR genes in the root (R) and shoot base (BP) of different mutants
compared with Nipponbare (NIP). The fold change was based on log₂ (FPKMmutant/FPKMNIP) values. * Q < 0.05,
** Q < 0.01. (B) Transcript levels of OsRR genes at 0–1 cm axillary buds determined using qRT-PCR. β-Actin
was used as a reference gene. Results are presented relative to NIP. Data represent means ± SD (n = 3). P values
represent the level of statistical significance between NIP and osckx4 osckx9. * P < 0.05, ** P < 0.01, determined
using the student’s t-test. (C, D) The content of endogenous cytokinins in root (C) and shoot base (D) of 4-week-
old seedlings. cZ (cis-zeatin), iP (N⁶-(Δ²-isopentenyl) adenine), tZ (trans-zeatin), 6-BA (6-benzylaminopurine),
IPA (isopentenyl adenosine), tZR (trans-zeatin riboside) and DHZR (dihydrozeatin riboside) were detected in
this study. Data represent means ± SD (n = 4). P values indicate the level of statistical significance between NIP
and osckx4 osckx9 mutants determined using the Student’s t-test.

Figure 7. OsCKX4 and OsCKX9 are associated with auxin metabolism and signaling transduction.

Differentially expressed genes (DEGs) related to auxin metabolism and signaling transduction in the root (R) and
shoot base (BP) of different mutants compared with Nipponbare (NIP). The fold change was based on log₂
(FPKM\text{mutant}/\text{FPKM}_{\text{WT}}) \text{ values. } * Q < 0.05, ** Q < 0.01.

Figure 8. OsCKX4 and OsCKX9 are associated with gibberellin metabolism and signaling transduction.

Differentially expressed genes (DEGs) related to gibberellin metabolism and signaling transduction in the root (R) and shoot base (BP) of different mutants compared with Nipponbare (NIP). The fold change was based on log$_2$(FPKM\text{mutant}/\text{FPKM}_{\text{WT}}) \text{ values. } * Q < 0.05, ** Q < 0.01.

Figure 9. Functions of OsCKX genes in rice.

The function of each OsCKX gene in regulating the growth and development of each organ in rice summarized from the phenotypes of all mutants. “+” means positive regulation, while “−” means negative regulation.
Figure 1. Genetic relationship and expression patterns of OsCKX genes based on RNA sequencing data and GUS staining assay.

A. Genetic relationship and expression patterns of OsCKX genes investigated in the leaf blade at the vegetative stage (LBV), leaf sheath at the vegetative stage (LSV), root at the vegetative stage (RV), leaf blade at the reproductive stage (LBR), leaf sheath at the reproductive stage (LSR), root at the reproductive stage (RR), stem (S), inflorescence meristem (IM), flower (F), and grain (G). The expression pattern was based on log₂ (Fragments Per Kilobase of exon model per Million mapped fragments (FPKM) + 1) values.

B. Histochemical GUS staining of pOsCKX::GUS transgenic plants at various developmental stages. The scale bar in B was 1 mm.
Figure 2. Phenotypic characterization of Nipponbare (NIP) and osckx1 osckx2 mutant plants in 2021.
(A) Panicle phenotypes of NIP and osckx1 osckx2 mutants. The image was digitally extracted and scaled for comparison (scale bar = 10 cm). (B-G) Measurement of the primary branches per panicle (B), secondary branches per panicle (C), spikes per panicle (D), seed setting rate (E), panicles per plant (F) and yield per plant (G) of NIP and osckx1 osckx2 mutants (n > 30 for B–E, n > 15 for F and G). P values indicate the level of statistical significance between NIP and osckx1 osckx2 mutants determined using the Student’s t-test.
Figure 3. Phenotypic characterization of Nipponbare (NIP) and osckx4, osckx9, and osckx4 osckx9 mutant plants from the field experiment.
(A) Phenotypic features of NIP, osckx4, osckx9 and osckx4 osckx9 seedlings at the vegetative stage 46 days after sowing. The image was digitally extracted and scaled for comparison (scale bar = 10 cm). (B, C) Number of tillers at the vegetative stage 46 days after sowing (B) and reproductive stage 70 days after sowing (C) (n > 20 for NIP, osckx4-6, and osckx9-1, n = 10 for osckx4 osckx9). (D, E) Habits (D) and panicle phenotypes (E) of NIP, osckx4-6, osckx9-1, and osckx4 osckx9 plants at the mature stage. The image was digitally extracted and scaled for comparison (scale bar = 10 cm). (F–N) Measurement of the panicle number (F), spikelets per panicle (G), primary branches per panicle (H), secondary branches per panicle (I), seed setting rate (J), 1,000-grain weight (K), yield per plant (L), diameter of basal internode (M), and plant height (N) of NIP, osckx4-6, osckx9-1 (n > 20 for F–H and J–N, n = 5 for I), and osckx4 osckx9 (n > 10 for F–J and L–N, n = 5 for K). Different capital letters represent the level of statistical significance (P < 0.01) determined using one-way ANOVA and shortest significant ranges (SSR) test.
Figure 4. Phenotypic characterization of Nipponbare (NIP) and osckx4, osckx9, and osckx4 osckx9 mutant plants from the hydroponic experiment.

(A) Phenotypic features of Nipponbare (NIP), osckx4-6, osckx9-1, and osckx4 osckx9 seedlings 21 days after transferring to hydroponic solutions. The image was digitally extracted and scaled for comparison (scale bar = 10 cm).

(B–E) Measurement of the shoot (above X axis) and root (below X axis) lengths (B), tiller numbers (C), length of 8th leaf (D), and width of 8th leaf (E) of NIP, osckx4-6, osckx9-1, and osckx4 osckx9 seedlings at 21 days after transplant (n = 24 each). Different capital letters represent the level of statistical significance (P < 0.01) determined using one-way ANOVA and SSR test.
Figure 5. RNA-seq analysis of the roots and shoot bases (BP) of Nipponbare (NIP) and osckx4, osckx9, and osckx4 osckx9 mutant plants. (A) The number of differentially expressed genes (DEGs) identified in the roots and shoot bases of the following pairwise comparisons: NIP vs. osckx4, NIP vs. osckx9, and NIP vs. osckx4 osckx9. The changes in gene expression levels were calculated using the log2 fold change and Q values from three biological replicates. (B) Overlapping DEGs in the roots and shoot bases (BP) of NIP vs. osckx4, NIP vs. osckx9, and NIP vs. osckx4 osckx9. (C) DEGs in osckx4 and osckx9 specifically and in common in the roots and shoots; genes in magenta are upregulated; genes in sky blue are downregulated. (D) Top enriched Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways of the DEGs identified in the roots and shoot bases of NIP vs. osckx4 osckx9.
Figure 6. OsCKX4 and OsCKX9 can regulate endogenous cytokinin levels in plant tissues.

(A) Differentially expressed type-A OsRR genes in the root (R) and shoot base (BP) of different mutants compared with Nipponbare (NIP). The fold change was based on log₂ (FPKM_{mutant}/FPKM_{NIP}) values. * P < 0.05, ** P < 0.01. (B) Transcript levels of OsRR genes at 0–1 cm axillary buds determined using qRT-PCR. β-Actin was used as a reference gene. Results are presented relative to NIP. Data represent means ± SD (n = 3). P values represent the level of statistical significance between NIP and osckx4 osckx9. * P < 0.05, ** P < 0.01, determined using the student’s t-test. (C, D) The content of endogenous cytokinins in root (C) and shoot base (D) of 4-week-old seedlings. cZ (cis-zeatin), iP (N⁸-(Δ²-isopentenyl) adenine), tZ (trans-zeatin), 6-BA (6-benzylaminopurine), IPA (isopentenyl adenosine), tZR (trans-zeatin riboside) and DHZR (dihydrozeatin riboside) were detected in this study. Data represent means ± SD (n = 4). P values indicate the level of statistical significance between NIP and osckx4 osckx9 mutants determined using the Student’s t-test.
Figure 7. OsCKX4 and OsCKX9 are associated with auxin metabolism and signaling transduction.

Differentially expressed genes (DEGs) related to auxin metabolism and signaling transduction in the root (R) and shoot base (BP) of different mutants compared with Nipponbare (NIP). The fold change was based on log₂ (FPKM_{mutant}/FPKM_{WT}) values. * Q < 0.05, ** Q < 0.01.
Figure 8. OsCKX4 and OsCKX9 are associated with gibberellin metabolism and signaling transduction

Differentially expressed genes (DEGs) related to gibberellin metabolism and signaling transduction in the root (R) and shoot base (BP) of different mutants compared with Nipponbare (NIP). The fold change was based on log2 (FPKM$_{mutant}$/FPKM$_{WT}$) values. * Q < 0.05, ** Q < 0.01.
Figure 9. Functions of OsCKX genes in rice.
The function of each OsCKX gene in regulating the growth and development of each organ in rice summarized from the phenotypes of all mutants. “+” means positive regulation, while “-” means negative regulation.