Moment-based density and risk estimation from grouped summary statistics

PHILIPPE LAMBERT1,2

1 Institut de Recherche en Sciences Sociales (IRSS), Méthodes Quantitatives en Sciences Sociales, Université de Liège, Place des Orateurs 3, B-4000 Liège, Belgium
Email: p.lambert@uliege.be

2 Institut de Statistique, Biostatistique et Sciences Actuarielles (ISBA), Université catholique de Louvain, Voie du Roman Pays 20, B-1348 Louvain-la-Neuve, Belgium.

January 13, 2022

Abstract

Data on a continuous variable are often summarized by means of histograms or displayed in tabular format: the range of data is partitioned into consecutive interval classes and the number of observations falling within each class is provided to the analyst. Computations can then be carried in a nonparametric way by assuming a uniform distribution of the variable within each partitioning class, by concentrating all the observed values in the center, or by spreading them to the extremities. Smoothing methods can also be applied to estimate the underlying density or a parametric model can be fitted to these grouped data. For insurance loss data, some additional information is often provided about the observed values contained in each class, typically class-specific sample moments such as the mean, the variance or even the skewness and the kurtosis. The question is then how to include this additional information in the estimation procedure. The present paper proposes a method for performing density and quantile estimation based on such augmented information with an illustration on car insurance data.

Keywords: Nonparametric density estimation, grouped data, sample moments, risk measures.

1 Introduction and motivation

In risk analysis, losses are generally modelled as non-negative random variables and are usually called risks. Analysts often need easy-to-compute approximations of quantities relating to the risks they consider, typically based on a few moments of the underlying loss distribution. Several methods have been proposed in the literature, including the classical Central Limit theorem, the Normal Power approximation (Pentikäinen [1987]) based on Edgeworth expansion or the maximum entropy principle (Brocketf et al. [1995]) to cite a few.

Numerous moment bounds have also been developed in probability and actuarial science. Risk analysts indeed sometimes act in a conservative way by basing their decisions on the least attractive risk that is consistent with the incomplete available information (here, the range and the first moments). Since Markov fundamental inequality, a number of improvements have been obtained.
under additional assumptions on the underlying distribution function. Bernard, Denuit, and Vanduffel (2014) recently provided a new derivation of moment bounds on distribution functions and Value-at-Risk measures, revisiting previous contributions to the literature. Besides distribution functions and Value-at-Risk measures, bounds have also been derived on stop-loss premiums and Tail-VaR, for instance. H"urlimann (2008) provides a useful review of the available results.

In the present paper, we propose an efficient nonparametric estimation procedure for the density based on histograms or grouped data, including information about class-specific sample moments. Specifically, the analyst has access to a set of data grouped into consecutive classes (or tranches). Graphically, this corresponds to an histogram. In addition to these grouped data, the average value of the observations in each class is provided, as well as the corresponding variance, skewness and kurtosis.

This format is often encountered in practice. For instance, in banking and insurance contexts, operational risk loss data in the ORX annual report (published by the operational risk management association) are tranked and the total number of loss events as well as the total gross loss falling within loss size boundaries are provided. Reinsurers also often display the information about insurance losses in this way. Confidentiality issues may sometimes justify this grouping procedure. We show in this paper how to obtain a smooth, nonparametric density estimate based on this information. It is worth pointing out that the simulations conducted in the present paper suggest that the additional information contained in class-specific average values greatly improves the accuracy of the estimation. Of course, the proposed method can also be applied to individual data. It suffices to group them in an arbitrary number of classes and to compute the corresponding sample moments.

The remainder of this paper is organized as follows. Section 2 formally describes the problem under investigation. In Section 3, we explain how to get a smooth estimate of the density based on summary data. As intermediate statistical goals, we also aim to quantify uncertainty for the density estimate and derived quantities and to evaluate the contribution of the different descriptive measures on the density estimate (to issue recommendations for future reporting). Section 4 is devoted to a simulation study assessing the performances of the proposed approach. In Section 5, we analyze a set of insurance losses and we illustrate the value added of our new method. The final Section 6 discusses the results and research perspectives.

2 Problem under investigation

Our starting point is a set of n observations x_1, x_2, \ldots, x_n available in tabular form. We consider that these observations are realizations of independent random variables X_1, X_2, \ldots, X_n with common distribution function F and density function f. Precisely, the available data points x_i have been partitioned into consecutive class intervals $C_j, j = 1, \ldots, J$, also called tranches. These classes are defined by $C_j = (a_{j-1}, a_j]$ where the cut points a_0, a_1, \ldots, a_J satisfy

$$a_0 < \min x_i < a_1 < \ldots < a_{J-1} < \max x_i < a_J.$$

In addition to the number n_j of observations belonging to C_j, we also have summary statistics about observations in each class. Specifically, we assume that we know the class-specific means

$$\bar{x}_j = \frac{1}{n_j} \sum_{x_i \in C_j} x_i, \quad j = 1, \ldots, J,$$
as well as sample centered moments \(m_{kj} \), \(k = 2, 3, \ldots \), defined as

\[
m_{kj} = \frac{1}{n_j} \sum_{x_i \in C_j} (x_i - \bar{x}_j)^k, \quad j = 1, \ldots, J.
\]

Here, we consider the cases where variances, \(s_j^2 = m_{2j} \), skewness coefficients, \(g_{1j} = m_{3j}/m_{2j}^{3/2} \), and kurtosis, \(g_{2j} = m_{4j}/m_{2j}^{4/2} - 3 \), are available in addition to the means \(\bar{x}_j \).

Nonparametric computations are often carried out using the empirical distribution function, assuming a uniform distribution of the class relative frequencies \(n_j/n \) over \(C_j \). This allows the risk analyst to estimate \(E[g(X)] \) by

\[
\sum_{j=1}^{J} \frac{n_j}{n(a_j - a_{j-1})} \int_{a_{j-1}}^{a_j} g(t) dt.
\]

This standard approach does not use any information about the structure of the observed data inside each class. Arbitrarily assuming a uniform distribution of the losses in each risk class \(C_j \) is contradicted by data for instance if \(x_j \neq a_j - 1 + a_j \).

The approach proposed in the present paper integrates the information about class-specific sample moments in the smooth density estimate. Expectations of functions of \(X \) are then easily computed, as well as risk measures defined from quantiles such as Value-at-Risk,

\[
\text{VaR}_\epsilon(X) = F^{-1}(1 - \epsilon) = \inf \{ x \in \mathbb{R} | F(x) \geq 1 - \epsilon \}, \quad \epsilon \in (0, 1)
\]

3 Methodology

3.1 Description of the model

Assume that each class \(C_j \) is divided into finer sub-intervals. The fine grid spacing \(\Delta \) is taken small enough to give an accurate description of the density \(f \) for plotting it or for computing quantiles or other indices accurately. The fine grid consists in a sufficiently large number of grid points partitioning \([a_0, a_J]\) into \(I \) consecutive intervals \(\mathcal{I}_i = (b_{i-1}, b_i] \) of equal width \(\Delta \) with mid-point \(u_i \), \(i = 1, \ldots, I \). For simplicity, assume that \(\Delta \) is selected in such a way that \(\{a_0, \ldots, a_J\} \subset \{b_0, \ldots, b_I\} \).

The relationship between class \(C_j \) and the narrow bins \(\mathcal{I}_i \) is coded by means of the \(J \times I \) matrix \(C = (c_{ji}) \) where \(c_{ji} = 1 \) if \(\mathcal{I}_i \subset C_j \) and 0 otherwise. Let
\[\pi_i = \Pr(X \in I_i) = \int_{b_{i-1}}^{b_i} f(t) dt = f(u_i) \Delta + \mathcal{O}(\Delta^2), \]

where \(\pi = (\pi_i)_{i=1}^I \) contains the values of the latent distribution on the grid of \(I \) narrow intervals \(I_i \) partitioning the support of \(X \). Figure 1 illustrates the construction (for a value of \(\Delta \) much larger than what we use in practice). Consider a cubic B-spline basis \(\{b_k(\cdot)\}_{k=1}^K \) associated to a large number of equidistant knots on \((a_0, a_J)\). We model the probabilities in \(\pi \) using polytomous logistic regression,

\[\pi_i = \pi_i(\theta) = \frac{\exp(\eta_i)}{\exp(\eta_1) + \ldots + \exp(\eta_I)} \]

where the scores \(\eta_1, \ldots, \eta_I \) are connected to the B-spline basis using

\[\eta_i = \eta_i(\theta) = \sum_{k=1}^K b_k(u_i) \theta_k = [B\theta]_i, \]

with each column of the matrix \([B]_{ik} = b_k(u_i)\) containing one of the \(K \) B-splines in the basis evaluated at the small bin midpoints. In this setting, we cannot observe \(\pi \) itself, but only sums over \(J < I \) intervals. The probability masses assigned to these intervals are given by

\[\Pr(X \in C_j) = \int_{a_{j-1}}^{a_j} f(u) du = \gamma_j, \]

with \(\gamma_j = \sum_{i=1}^J c_{ji} \pi_i \), or in matrix form, \(\gamma = C\pi \), where \(C \) is a \(J \times I \) matrix. The likelihood based on the observed grouped data frequencies, \(D_0 = \{n_1, \ldots, n_J\} \), directly follows from the Multinomial distribution for the observed frequencies,

\[\ell(\theta|D_0) = \sum_{j=1}^J n_j \log \gamma_j. \]

Eilers and Marx (1996) proposed to put a discrete roughness penalty on the B-splines coefficients to force smoothness on the density estimate. The penalized log-likelihood based on the observed data is

\[\ell_p(\theta|D_0, \lambda) = \ell(\theta|D_0) - \frac{\lambda}{2} \|D\theta\|^2, \]

where \(D \) is the \(r \)th order differencing matrix of size \((K-r) \times K \) such that \(D\theta = \Delta^r \theta \). For instance, with second-order differences, we have

\[
D = \begin{pmatrix}
1 & -2 & 1 & 0 & \cdots & 0 \\
0 & \ddots & \ddots & \ddots & \ddots & \ddots \\
\vdots & \ddots & \ddots & \ddots & \ddots & \ddots \\
0 & \cdots & 0 & 1 & -2 & 1
\end{pmatrix}.
\]

3.2 Estimation from grouped frequency data using the EM algorithm

The expectation-maximization (EM) algorithm (Dempster, Laird, and Rubin 1977) is well-suited to estimate the probabilities \(\pi \) from the latent (unobserved) small bin frequencies \(k = (k_1, \ldots, k_I) \), where \(n_j = \sum_{i=1}^J c_{ji} k_i \). Since \(X_1, \ldots, X_n \) have been assumed to be independent and identically distributed, the small bin frequencies \(k_1, \ldots, k_I \) are the realization of a Multinomial random vector with exponent the sample size \(n \) and probability vector \(\pi \). The complete log-likelihood is then given by \(\ell^c(\theta|D_0^c) = \sum_{i=1}^I k_i \log \pi_i(\theta) \) where \(D_0^c = \{k\} \). The penalized complete log-likelihood based on the complete frequency data is

\[\ell_p^c(\theta|D_0^c, \lambda) = \ell^c(\theta|D_0^c) - \frac{\lambda}{2} \|D\theta\|^2. \]

We propose to use Algorithm 1 to perform estimation in the described context.
Algorithm 1. Density estimation using grouped data frequencies

The following EM algorithm alternates the update of the estimates for the latent frequencies \(k, \theta \) and, possibly, \(\lambda \) using the following steps till convergence:

1. E-step: \(k_i \leftarrow E(k_i | \theta, D_0) = m_{ij}(\theta) \gamma^j(i) / \gamma(i) \) where \(j(i) \) is such that \(I_i \subset C_{j(i)} \);

2. M-step: \(\theta = \arg \max_{\theta} \ell_p^c(\theta | D_0, \lambda) \). This can be done using penalized iteratively weighted least squares (P-IWLS) or a Newton-Raphson (N-R) algorithm. Let us detail the last algorithm. Based on the following explicit forms for the gradient \(\nabla_\theta \ell_p^c \) and the Hessian matrix \(H_p^c = \nabla_\theta^2 \ell_p^c \),

\[
\nabla_\theta \ell_p^c(\theta | D_0, \lambda) = B^T (k - n\pi) - \lambda P \theta \quad ; \quad -H_p^c = -\nabla_\theta^2 \ell_p^c(\theta | D_0, \lambda) = B^T WB + \lambda P,
\]

where \(P = D^T D \) is the \(K \times K \) penalty matrix and \((W)_{ij} = n(\pi_i \delta_{ij} - \pi_i \pi_j) \), the N-R algorithm repeats, till convergence, the following substitution: \(\theta \leftarrow \theta + (-H_p^c + \epsilon I_K)^{-1} \nabla_\theta \ell_p^c \). The addition of a small multiple of the identity matrix to the Hessian before inversion in the N-R step is a ridge penalty that conveniently handles the identification problem in [1], as \(\pi_i(\theta) = \pi_i(\theta + c) \) for any constant \(c \).

3. Penalty update: \(\lambda \leftarrow (\text{edf} - r)/\|P\theta\|^2 \) where the effective number of spline parameters is given by the trace of a matrix, \(\text{edf}(\lambda) = \text{Tr}((-H_p^c + \epsilon I_K)^{-1}(-H_p^c - \lambda P)) \).

The last step is optional as one might prefer to perform the estimation procedure for a given value of the penalty parameter and rely on an external ad-hoc strategy to select \(\lambda \). At convergence, one obtains the penalized MLE \(\hat{\theta}_\lambda \) (given the selected value for the penalty parameter \(\lambda \)).

Estimation could also be performed using the strategy described in Eilers [2007] based on the composite link model (Thompson and Baker [1981]) or in a Bayesian setting, see Section 3.3.

3.3 Estimation in a Bayesian setting

Lambert and Eilers [2009] suggested to estimate \(f \) using the Bayesian paradigm. In that context, the roughness penalty translates into a smoothness prior for the spline coefficients,

\[p(\theta | \lambda) \propto \lambda^{\rho(P)/2} \exp \left(-\frac{\lambda}{2} \theta^T P \theta \right) \]

where \(P = D^T D \) and \(\rho(P) \) is the rank of \(P \). A Gamma prior \(\mathcal{G}(a, b) \) with large variance for \(\lambda \) is a possible choice to express prior ignorance about suitable values for \(\lambda \), although more robust results can be obtained with a mixture of Gammas (Jullion and Lambert [2007]). Closed forms for the joint posterior of \((\theta, \lambda) \),

\[
p(\theta, \lambda | D_0) \propto \lambda^{a+\rho(P)/2-1} \prod_j \gamma_j^{n_j} \exp \left\{ -\lambda (b + 0.5 \theta^T P \theta) \right\}
\]

and its gradient are available. The Langevin-Hastings algorithm (Roberts and Rosenthal [1998]) can be used to get a random sample, \(\{ (\theta^{(m)}, \lambda^{(m)}, m = 1, \ldots, M \} \) from the posterior. To each \(\theta^{(m)} \) corresponds a density \(f^{(m)} \) from which any summary measure \(\xi^{(m)} \) of interest such as the mean, the standard deviation or quantiles can be computed. Point estimates and credible intervals for \(\xi \) can be derived from \(\{ \xi^{(m)}, m = 1, \ldots, M \} \). Specific properties such as unimodality or log-concavity can be imposed on the estimated density by excluding, through the prior, the configurations of \(\theta \) corresponding to non-desirable densities. Alternatively, in that Bayesian framework, Laplace
approximations can be combined in a Bayesian setting to estimate a density from grouped data in a fast and reliable way, see Lambert (2021) Section 2.5). The marginal posterior for the spline parameters is very well approximated by a mixture of Normal distributions with weights defined by the marginal posterior for the log of the penalty parameter. The latter distribution can be reliably approximated by a skewed Normal distribution (Gressani and Lambert 2021).

One can show that maximizing (3) for a given value of \(\lambda \) is equivalent to maximizing \(p(\theta|\lambda, D_0) \) or the penalized complete log-likelihood \(\ell_c p(\theta|D_0, \lambda) \). Therefore, the so-obtained conditional posterior mode coincides with the penalized MLE \(\hat{\theta}_\lambda \) given by the EM algorithm. Further extensions to take into account the moments observed within classes will be based on the EM algorithm.

3.4 Moment-based extensions

3.4.1 Density estimation for given class-specific sample means

Let us now further assume that, together with the frequencies \(n_j \), the sample means \(\bar{x}_j \) within \(C_j \) \((j = 1, \ldots, J)\) are also reported. Then, the likelihood based on the observed data, \(D_1 = D_0 \cup \{ \bar{x}_j : j = 1, \ldots, J \} \), becomes

\[
L(\theta|D_1) = \Pr (N_1 = n_1, \ldots, N_J = n_J) \prod_{j=1}^J f_{\bar{X}_j}(\bar{x}_j|n_j) \propto \prod_{j=1}^J \left(\gamma_j^{n_j} f_{\bar{X}_j}(\bar{x}_j|n_j) \right),
\]

where \(f_{\bar{X}_j}(\cdot|n_j) \) is the conditional density of \(\bar{X}_j \) given the class frequency \(N_j = n_j \). Provided that the class frequency \(n_j \) is not too small, the Central Limit theorem provides a reasonable approximation to \(f_{\bar{X}_j}(\cdot|n_j) \). Formally, denote the class-specific population moments as

\[
\mu_{1j} = \frac{1}{\gamma_j} \int_{a_{j-1}}^{a_j} x f(x) \, dx \quad \text{and} \quad \sigma_j^2 = \frac{1}{\gamma_j} \int_{a_{j-1}}^{a_j} (x - \mu_{1j})^2 f(x) \, dx.
\]

Then,

\[
f_{\bar{X}_j}(\bar{x}_j|n_j) \approx \frac{\sqrt{n_j}}{\sigma_j \sqrt{2\pi}} \exp \left(-\frac{n_j}{2\sigma_j^2} (\bar{x}_j - \mu_{1j})^2 \right).
\]

Given the preceding spline approximation to the (log-)density using polytomous logistic regression for the probabilities to be in the small bins partitioning the support, see (1), one has

\[
\mu_{1j}(\theta) = \text{E}[X|X \in C_j] = \sum_{i=1}^I u_i \frac{c_{ji} \bar{\pi}_i(\theta)}{\gamma_j(\theta)} + O(\Delta^2),
\]

\[
\sigma_j^2(\theta) = \text{Var}[X|X \in C_j] = \sum_{i=1}^I (u_i - \mu_{1j}(\theta))^2 \frac{c_{ji} \bar{\pi}_i(\theta)}{\gamma_j(\theta)} + O(\Delta^2).
\]

Then, for given roughness penalty parameter \(\lambda \), the penalized log-likelihood based on \(D_1 \) becomes

\[
\ell_p(\theta|D_1, \lambda) = \ell_p(\theta|D_0, \lambda) - \frac{1}{2} \sum_{j=1}^J \left(\ln \sigma_j^2(\theta) + \frac{n_j}{\sigma_j^2(\theta)} (\bar{x}_j - \mu_{1j}(\theta))^2 \right),
\]

while its counterpart based on latent small bins frequencies, \(D_1^c = D_0^c \cup \{ \bar{x}_j : j = 1, \ldots, J \} \), is

\[
\ell_c p(\theta|D_1^c, \lambda) = \ell_c p(\theta|D_0^c, \lambda) - \frac{1}{2} \sum_{j=1}^J \left(\ln \sigma_j^2(\theta) + \frac{n_j}{\sigma_j^2(\theta)} (\bar{x}_j - \mu_{1j}(\theta))^2 \right).
\]

(4) It leads to Algorithm 2 for an estimation of the density using the EM algorithm.
Algorithm 2. Density estimation using grouped data means and frequencies

The following EM algorithm alternates the update of the estimates for the latent frequencies \(k, \theta \) and, possibly, \(\lambda \). Denote by \(\hat{B} \) the \(I \times K \) matrix such that \((\hat{B})_{ik} = \hat{b}_{ik} = b_k(u_i) - \sum_{t=1}^{I} b_k(u_t)\pi_t\).

Repeat the following steps till convergence:

1. **E-step**: \(k_i \leftarrow \mathbb{E}(k_i|\theta, D_1) = m_{\gamma(i)}\pi_i(\theta)/\gamma_{j(i)}(\theta) \) where \(j(i) \) is such that \(I_i \subset C_{j(i)} \);

2. **M-step**: compute \(\theta = \text{argmax}_\theta \ell^c_p(\theta|D_1, \lambda) \). This can be done using a Newton-Raphson (N-R) algorithm with the iterative substitution, \(\theta \leftarrow \theta + (-H^c_\theta + \epsilon I_K)^{-1}\nabla_\theta \ell^c_p \), till convergence. Explicit forms for the gradient and the Hessian matrix are available after conditioning on the value \(\sigma_j^2 \) of \(\sigma_j^2(\theta) \) in (4) at the start of the iteration:

\[
\nabla_\theta \ell^c_p(\theta|D_1^N, \lambda) = \nabla_\theta \ell^c_p(\theta|D_0^N, \lambda) + \sum_{j=1}^{J} n_j \frac{\sigma_j}{\sigma_j^2} (\bar{x}_j - \mu_{1j}) \frac{\partial \mu_{1j}}{\partial \theta} ;
\]

\[
-H^c_\theta = -\nabla_\theta \ell^c_p(\theta|D_1^N, \lambda) \approx -\nabla_\theta \ell^c_p(\theta|D_0^N, \lambda) + \sum_{j=1}^{J} n_j \frac{\sigma_j}{\sigma_j^2} \frac{\partial \mu_{1j}}{\partial \theta} \frac{\partial \mu_{1j}}{\partial \theta}^T ,
\]

where \(\frac{\partial \mu_{1j}}{\partial \theta_k} = \frac{1}{\gamma_j} \sum_{i=1}^{I} c_{ji} \pi_i(u_i - \mu_{1j}) b_{ik} \), with the approximation to \(H^c_\theta \) coming from the neglect of zero expectation terms.

3. **Penalty update**: \(\lambda \leftarrow (\text{edf} - r)/\|\theta\|^2 \) where the effective number of spline parameters is given by the trace of a matrix, \(\text{edf}(\lambda) = \text{Tr}((-H^c_\theta + \epsilon I_K)^{-1}(-H^c_\theta - \lambda P)) \).

At convergence, one obtains the penalized MLE \(\hat{\theta}_\lambda \) (given the selected value for \(\lambda \)).

3.4.2 Density estimation for given class-specific sample central moments

Assume now that, together with the frequencies, the sample mean \(\bar{X}_j \), variance \(S_j^2 \), skewness \(G_{1j} \) and kurtosis \(G_{2j} \) within \(C_j \) are reported. If \(M_{rj} \) denotes the \(r \)th sample central moment in \(C_j \), we have

\[
\bar{X}_j = M_{1j} ; \quad S_j^2 = M_{2j} ; \quad G_{1j} = M_{3j}/M_{2j}^{3/2} ; \quad G_{2j} = M_{4j}/M_{2j}^{4/2} - 3.
\]

Denote by \(M_j = (M_{1j}, M_{2j}, M_{3j}, M_{4j}) \) the random vector of sample central moments in \(C_j \) and by \(m_j \) its observed counterpart. For sufficiently large values of \(n_j \), the Central Limit theorem provides a multivariate Normal approximation to the sampling distribution of \(M_j \), \(M_j \xrightarrow{d} \mathcal{N}_4(\mu_j, \Sigma_j) \), where \(\mu_j = (\mu_{1j}, \ldots, \mu_{4j}) \) with \(\mu_{1j} = \mu_j \) and

\[
\mu_{rj} = \mu_{rj}(\theta) = \mathbb{E}[(X - \mu_{1j}(\theta))^r|X \in C_j] , \quad r = 2, 3, \ldots
\]

\[
= \frac{1}{\gamma_j(\theta)} \sum_{j=1}^{J} c_{ji} \pi_i(\theta)(u_i - \mu_{1j}(\theta))^r + \mathcal{O}(\Delta^2).
\]

Using the Generalized Method of Moments (GMM) (Hansen 1982), one can show that

\[
\Sigma_j = \frac{1}{n_j} \begin{pmatrix}
\mu_{2j} & \mu_{3j} & \mu_{4j} & \mu_{5j} \\
\mu_{3j} & \mu_{4j} - \mu_{2j}^2 & \mu_{5j} - \mu_{2j}\mu_{3j} & \mu_{6j} - \mu_{2j}\mu_{4j} \\
\mu_{4j} & \mu_{5j} - \mu_{2j}\mu_{3j} & \mu_{6j} - \mu_{2j}\mu_{4j} & \mu_{7j} - \mu_{3j}\mu_{4j} \\
\mu_{5j} & \mu_{6j} - \mu_{2j}\mu_{4j} & \mu_{7j} - \mu_{3j}\mu_{4j} & \mu_{8j} - \mu_{4j}^2
\end{pmatrix} ,
\]

(6)
Based on the observed data $D = D_0 \cup \{m_j : j = 1, \ldots, J\}$ and for a given roughness penalty parameter λ, the penalized log-likelihood becomes

$$
\ell_p(\theta|D, \lambda) = \ell_p(\theta|D_0, \lambda) - \frac{1}{2} \sum_{j=1}^{J} \left\{ \ln |\Sigma_j| + (m_j - \mu_j)^\top \Sigma_j^{-1} (m_j - \mu_j) \right\},
$$

(7)

comparable to (4) when only the tabulated sample means were available. When, in addition, the latent small bins frequencies are given, $D^c = D^c_0 \cup \{m_j : j = 1, \ldots, J\}$, inference is based on the penalized complete log-likelihood,

$$
\ell^c_p(\theta|D^c, \lambda) = \ell^c_p(\theta|D^c_0, \lambda) - \frac{1}{2} \sum_{j=1}^{J} \left\{ \ln |\Sigma_j| + (m_j - \mu_j)^\top \Sigma_j^{-1} (m_j - \mu_j) \right\}.
$$

(8)

The maximization of the penalized log-likelihood (7) and the selection of λ can be made using Algorithm 3

Algorithm 3. Density estimation given class-specific sample moments and frequencies

The following EM algorithm alternates the update of the estimates for the latent frequencies k, θ and, possibly, λ using the following steps till convergence:

1. E-step: $k_i \leftarrow \mathbb{E}(k_i|\theta, D_1) = m_{\gamma(i)}\pi_i(\theta)/\gamma_j(i)(\theta)$ where $j(i)$ is such that $I_i \subset C_j(i)$;

2. M-step: compute $\theta = \arg\max_\theta \ell^c_p(\theta|D^c, \lambda)$. This can be done using a Newton-Raphson (N-R) algorithm with the iterative substitution, $\theta \leftarrow \theta + (-\nabla^2 \ell^c_p(\theta|D^c, \lambda))^{-1} \nabla \ell^c_p(\theta|D^c, \lambda)$, till convergence. Explicit forms for the gradient and the Hessian matrix are available after conditioning on the value $\hat{\Sigma}_j$ of $\Sigma_j(\theta)$ in (8) at the start of the iteration:

$$
(\nabla \ell^c_p)_k = (\nabla \ell^c_p(\theta|D^c_0, \lambda))_k + \sum_{j=1}^{J} (m_j - \mu_j)^\top \hat{\Sigma}_j^{-1} \frac{\partial \mu_j}{\partial \theta_k};
$$

$$
-(H^c_p)_{ks} \approx - (\nabla^2 \ell^c_p(\theta|D^c_0, \lambda))_{ks} + \sum_{j=1}^{J} \frac{\partial \mu_j^\top}{\partial \theta_k} \hat{\Sigma}_j^{-1} \frac{\partial \mu_j}{\partial \theta_k}
$$

(9)

with

$$
\frac{\partial \mu_{rj}}{\partial \theta_k} = \frac{1}{\gamma_j} \sum_{i=1}^{I} c_{ji} \pi_i b_{ik} \{(u_i - \mu_{1j})^r - \mu_{rj}\} - r \mu_{r-1,j} \frac{\partial \mu_{1j}}{\partial \theta_k}
$$

$$
= \frac{1}{\gamma_j} \sum_{i=1}^{I} c_{ji} \pi_i b_{ik} \{(u_i - \mu_{1j})^r - \mu_{rj} - r \mu_{r-1,j} (u_i - \mu_{1j})\}
$$

(10)

for $1 \leq k, s \leq K$ and $2 \leq r \leq 4$.

3. Penalty update: $\lambda \leftarrow (edf - r)/||D\theta||^2$ where the effective number of spline parameters is given by the trace of a matrix, $edf(\lambda) = \text{Tr}((-H^c_p + \epsilon I)\lambda P)$. At convergence, one obtains the penalized MLE $\hat{\theta}_\lambda$ (given the selected value for λ). □
3.5 Quantile estimation

Consider the following shorthand notation for the conditional posterior mode of the vector of spline parameters underlying the density estimate, \(\hat{\theta} = \theta_\lambda - \max\{\hat{\theta}_k\}_{k=1}^K \), with a subtraction of the largest estimated component to handle the identification issue following from \(\pi(\theta + c) = \pi(\theta) \) for any real number \(c \). Denote by \(\hat{k} \) the component for which \((\hat{\theta})_{\hat{k}} = 0 \) and by \(\theta_{-\hat{k}} \) the vector of spline parameters where the \(\hat{k} \)th component of \(\theta \) is omitted. Quantile estimates can be derived using the fitted density estimate,

\[
f(x|\hat{\theta}) = \exp\{\eta(x|\hat{\theta})\} / \int_{\mathcal{X}} \exp\{\eta(t|\hat{\theta})\} dt,
\]

where \(\eta(x|\theta) = \sum_{k=1}^K b_k(x) \theta_k \) and \(\mathcal{X} = (a_0, a_J) \) denotes the support of the density. Indeed, as the associated estimate for the cumulative distribution function (CDF), \(\hat{F}(x) = F(x|\hat{\theta}) = \int_{a_0}^x f(t|\hat{\theta}) dt \), is monotone, it can be inverted to provide an estimate of the quantile function,

\[
\hat{Q}(p) = Q(p|\hat{\theta}) = \inf\{x \in \mathbb{R} : F(x|\hat{\theta}) \geq p\}.
\]

Practically, starting for the fitted probability, \(\hat{\pi}_i = \Pr(X \in I_i|\hat{\theta}) \), to have an observation in the small bin \(I_i = (b_{i-1}, b_i) \) \((i = 1, \ldots, I) \), see Section 3.1 and with \(\hat{F}(b_0) = 0, \hat{F}(b_1) = \hat{\pi}_1 + \ldots + \hat{\pi}_i \), a first guess for \(\hat{Q}(p) \) is given by

\[
x_0 = \max_{0 \leq i \leq I} \{b_i : \hat{F}(b_i) \leq p\}.
\]

This first approximation can be improved in an iterative way with, at iteration \(t \),

\[
x_t \leftarrow x_{t-1} + (p - \hat{F}(x_{t-1}|\hat{\theta})) / f(x_{t-1}|\hat{\theta}),
\]

yielding at convergence \(Q(p|\hat{\theta}) = x_\infty \). The uncertainty in that estimation directly follows from the uncertainty in the choice of \(\hat{\theta} \). The latter is quantified by the conditional posterior distribution of \(\theta_{-\hat{k}} \) with Laplace approximation \((\theta_{-\hat{k}}|D_0, \lambda) \sim \mathcal{N}(\theta_{-\hat{k}}, (\mathcal{J}_{\hat{k}, -\hat{k}})^{-1}) \) where

\[
\mathcal{J}_{ks} = -\left(\nabla_2 \ell_p(\theta|D_0, \lambda)\right)_{ks} + \sum_{j=1}^J \frac{\partial \mu_j^\top}{\partial \theta_s} \sum_{p=1}^P \frac{\partial \mu_p}{\partial \theta_k},
\]

with the partial derivatives of the theoretical central moments \(\mu_j \) in the \(j \)th class given in (10). The second derivatives of the log-likelihood based on the observed class frequencies \(D_0 \) in the first term of (11) has an explicit form given by

\[
-\left(\nabla_2 \ell_p(\theta|D_0, \lambda)\right)_{ks} = n \sum_{i=1}^I b_{ik} \pi_i b_{is} + \sum_{j=1}^J \frac{n_j}{\gamma_j} \sum_{\ell=1}^L c_{j\ell} \pi_{j\ell} b_{i\ell} s + \sum_{i=1}^I c_{ij} \pi_i b_{ik} - \sum_{j=1}^J \frac{n_j}{\gamma_j} \sum_{i=1}^I c_{ij} \pi_i b_{is} b_{ik}
\]

\[
= (B^\top WB)_{ks} - \sum_{j=1}^J \frac{n_j}{\gamma_j} \sum_{i=1}^I c_{ij} \pi_i b_{ik} \left(b_{is} - \frac{1}{\gamma_j} \sum_{\ell=1}^L c_{j\ell} \pi_{j\ell} b_{i\ell} \right).
\]

The first term in the last expression, where \((W)_{ii'} = n(\pi_i \delta_{ii'} - \pi_i \pi_{i'}) \), corresponds to the information available on \(\theta \) based on data frequencies in the absence of class tabulation. The information reduction due to tabulation is quantified by the second term. Based on the following first-order expansion,

\[
Q(p|\theta) \approx Q(p|\hat{\theta}) + \frac{\partial Q(p|\hat{\theta})}{\partial \theta^\top_{-\hat{k}}} (\theta - \hat{\theta})_{-\hat{k}},
\]
the conditional posterior distribution of \(Q(p|\theta) \) can be approximated by

\[
(Q(p|\theta)|\mathcal{D}, \lambda) \sim \mathcal{N}
\left(Q(p|\hat{\theta}), s_Q^2(p)\right),
\]

with

\[
\frac{\partial Q(p|\hat{\theta})}{\partial \theta_k} = \frac{1}{f(Q(p|\theta)|\theta)} \left\{ \int_{-\infty}^{Q(p|\theta)} b_k(x)f(x|\hat{\theta}) \, dx - p \int_{\mathbb{R}} b_k(x)f(x|\hat{\theta}) \, dx \right\},
\]

\[
s_Q^2(p) = \frac{\partial Q(p|\theta)}{\partial \theta_k} \left(J_{-\infty,-\hat{k}} \right)^{-1} \frac{\partial Q(p|\theta)}{\partial \theta_{-\hat{k}}}.\]

Therefore, an approximate 100(1 - \(\alpha \))% credible interval for \(Q(p) \) is given by

\[
Q(p|\hat{\theta}) \pm \Phi^{-1}(1 - \alpha/2) s_Q(p),
\]

with \(\Phi^{-1}(\cdot) \) denoting the quantile function of the standard Normal distribution.

4 Simulation study

In this section, we evaluate the performances of the estimation method proposed in Section 3 by means of extensive simulations. Independent and identically distributed data were generated from a mixture density,

\[
f(x) = w_1 f_1(x) + w_2 f_2(5.6 - x)
\]

where \(f_1(\cdot) \) corresponds to a Normal density with mean 1.0 and variance 9.0\(^{-1} \), \(f_2(\cdot) \) to a Gamma density with mean 11/6 and variance 11/6\(^2 \), weighted respectively by \(w_1 = .20 \) and \(w_2 = .80 \). It corresponds to the solid red curve in Figs. 2 and 3 that could be viewed as the underlying distribution of log transformed positive data. Datasets of size \(n = 250, 1000 \) or 3000 were generated \(S = 500 \) times and grouped into either \(J = 3 \) or \(J = 5 \) partitioning classes \(\{C_j : j = 1, \ldots, J\} \) with interval extremities given by \(\{-1.0, 1.0, 3.5, 6.0\} \) and \(\{-1.0, 1.0, 2.2, 3.5, 4.8, 6.0\} \), respectively. Tabulated frequencies \((n_j)_{j=1}^J \) and the associated local central moments \((m_{rj})_{j=1}^J \) of order \(r = 1 \) up to 4 were computed and used with the methodology of Section 3 to produce an estimate \(\hat{f}(\cdot|\mathcal{D}_r) \) of the underlying density on \((-1.0, 6.0) \), with \(\mathcal{D}_r = \bigcup_{j=1}^J \{n_j, m_{1j}, \ldots, m_{rj}\} \) denoting the available data.

Selected quantile estimates \(\hat{Q}(p|\mathcal{D}_r) \) were computed using that density and compared to the ‘true’ quantile values associated to \(f(\cdot) \). Biases, standard deviations (SD), root mean squared errors (RMSE) and effective coverages of 95% and 90% credible intervals are given in Tables 1, 2 and 3 for different samples sizes and number of classes. As expected, biases for the point estimator of a given quantile tend to decrease with the sample size and the number of classes for which tabulated summary statistics are observed. They are already very small when \(n = 250 \) with \(r = 4 \) moments reported in only \(J = 3 \) classes, see Fig. 3 for a graphical illustration at the density level when \(n = 250 \) and \(n = 1000 \). An exception concerns the 20% quantile (= 1.793) that is not so well estimated whatever the simulation setting: it corresponds to the region surrounding the local minimum of the mixture density between the two modes. Increasing the number of reported central moments tends to improve the estimation of density and quantiles, with 4 moments being preferable, see Fig. 2 for an evolution of the averaged density estimates (over the \(S = 500 \) replicates) starting with \(\mathcal{D}_1 \) (dotted curve) to \(\mathcal{D}_4 \) (dashed curve) when \(n = 1000 \). This is a remarkable improvement over the estimate that would be obtained using only observed frequencies. Whatever the sample size, the effective coverages of 90% and 95% credible intervals for the reported quantiles (except the
Figure 2: Simulation study (\(n = 1000, J = 3\)) – Density estimates from tabulated summary statistics \(D_1\) (dotted), \(D_2\) (dot-dashed) and \(D_4\) (dashed) averaged over the \(S = 500\) replicates, with the ‘true’ underlying density (solid curve).

20% one) are in agreement with their nominal values when 4 central moments (\(D_4\)) are reported. Moderate undercoverages can be observed with \(D_2\), while the effective coverages can be larger than expected when just the means are reported in addition to frequencies (\(D_1\)). Global metrics were also calculated to compare the true and estimated quantile functions,

\[
\ell_1(Q, \hat{Q}) = \int_0^1 |Q(p|\hat{\theta}) - Q(p)| \, dp
\]

as well the true and estimated densities,

\[
\text{RIMSE}(f, \hat{f}) = \int_{\mathbb{R}} (f(x|\hat{\theta}) - f(x))^2 f(x) \, dx ;
\]

\[
\text{KL}(f, \hat{f}) = \int_{\mathbb{R}} f(x) \log \left(\frac{f(x)}{\hat{f}(x)} \right) \, dx ,
\]

see Table 4 for their median values over the \(S = 500\) simulated datasets with tabulated summary statistics \(D_r\) \((r = 1, 2, 4)\) in 3 or 5 classes. This suggests that the extra information provided by additional central moments for quantile or density estimation is even more valuable when the number of classes is small.

In summary, this simulation study confirms the added value of central moments over isolated frequencies for density estimation. With only 15 numbers (the frequency and the 4 central moments in each of the \(J = 3\) classes), an accurate and precise density estimate could be obtained from
Figure 3: Simulation study – Connected pointwise intervals containing 95% of the estimated densities over the $S = 500$ datasets and obtained using tabulated summary statistics D_4 over $J = 3$ classes. Left panel: $n = 250$; Right panel: $n = 1000$.

summary statistics in just 3 classes, see Fig. 3 for a graphical representation. The simulation study also suggests that this method can be used to estimate quantiles and, consequently, values at risk (VaR) in a reliable way.

5 Application

Table 5 provides summary statistics on insurance claim amount data (in euros). For confidentiality reasons, the 3,518 data were rescaled and gathered in $J = 3$ classes of increasing width. Besides the class frequencies n_j, the sample mean, standard deviation, skewness and kurtosis of the log$_{10}$ transformed claims within each class are also provided. Figure 4 displays the histogram corresponding to the grouped data frequencies. The thick solid (red) line corresponds to the ’target’ density estimated from the precise individual (log$_{10}$) claims shared with us in confidentiality by the insurance company. Estimation of the density using the grouped summary statistics in Table 5 was performed using the methods described in Sections 3.2 and 3.4 with $K = 25$ B-splines associated to equidistant knots on $(0.0, 6.18)$. Computation was performed in less than one second using the R-package degross (Density Estimation from GRouped Summary Statistics) developed and maintained by the author. The top graph in the figure compares the ’target’ density with the density estimates obtained from the grouped data frequencies (D_0, dotted line) and from the addition of the grouped sample means (D_1, dashed line). The bottom graph further considers the cumulative addition of the grouped sample standard deviations (D_2, dotted line), skewness and kurtosis (D_4, dashed line) to perform density estimation. An important improvement is observed with the addition of the standard deviations in the dataset. This is confirmed numerically by inspecting the evolution of the root integrated mean squared error (RIMSE) and of the Kullback-Leibler (K-L) divergence between the ’target’ density and the estimate obtained using sample moments of increasing orders, see Table 6. When all the tabulated sample moments are used (with D_4), one can see (from the dashed curve in the bottom of Fig. 4 and from the K-L divergence in Table 6) that the target density is nearly perfectly reconstructed. The table also provides information on the effective number of spline parameters edf($\hat{\lambda}$) for the roughness penalty parameter $\hat{\lambda}$ selected using Algorithm 3 and quantifying the complexity of the density estimate. The fitted central moments

12
can be compared to their observed counterparts within each of the 3 classes, see Table 7. The observed differences are within the sampling tolerances tuned by the variance-covariance matrix Σ_j of the moment estimators, see (6), with a larger tolerance for class C_3 as it is associated to the smallest frequency, $n_3 = 116$. Value-at-Risk measures corresponding to 95% and 99% quantile estimates were also computed using the theory of Section 3.5 with 95% credible intervals first evaluated on the log$_{10}$-scale using (13) and transformed back to the original scale (in euros) for reporting purposes. These can be compared with the actual values that were calculated from the confidential raw data, $\text{VaR}_{5\%} = 16125$ and $\text{VaR}_{1\%} = 38099$ euros, respectively.

6 Discussion

We have shown how to combine tabulated summary statistics involving moments of order one to four with the observed frequencies to estimate a density from grouped data. The proposed inference strategy, implemented in the R-package degross, relies on an EM algorithm with uncertainty measures computed in a final step from the observed penalized log-likelihood. The penalty not only encourages smoothing of the resulting density estimate, but also ensures agreement up to sampling errors between the underlying theoretical moments and their observed values in each class. Simple parametric alternatives might be considered for the density model in specific settings. The nonparametric estimation studied here could then be used to validate or select such proposals, or to point out their possible shortcomings.

Although the transmission of data using tabulated summary statistics may not be fully compliant with the European General Data Protection Regulation (GDPR, EU 2016/679) guidelines, it enables to mask data details by summarizing them with a couple of technical numbers besides the class frequencies, see e.g. Table 5. This is a convenient method to communicate in a fairly accurate and compact way on the distribution of the underlying raw data with a limited loss of information.

That methodology might be combined with regression models where information on the distribution of the response is provided in such a summarized way conditionally on a selected and limited number of subject characteristics (such as the age category in the car insurance example). At the individual level, besides covariates values, the reported loss would take the form of a class indicator. The challenge would be to make inference on the regression model components from such imprecise information on the response data. Flexible forms for the error distribution and for the quantification of covariate effect on the response conditional distribution should be compatible with the available information at the aggregate level.

Acknowledgments

The author would like to thank Dr. Bernard Lejeune (ULiege, Belgium) for useful discussions about the Generalized Method of Moments and Prof. Michel Denuit (UCLouvain, Belgium) for motivating this project and sharing the data used in the application. Philippe Lambert also acknowledges the support of the ARC project IMAL (grant 20/25-107) financed by the Wallonia-Brussels Federation and granted by the Académie Universitaire Louvain.
Figure 4: Car insurance data: observed frequencies and density estimates (on the log\(_{10}\)-scale) using tabulated sample moments.
References

Bernard, C., M. Denuit, and S. Vanduffel. 2014. *Measuring portfolio risk under partial dependence information*. ISBA Discussion paper 2014/09. Université catholique de Louvain, Belgium.

Brockett, P., S. Cox, B. Golany, F. Phillips, and Y. Song. 1995. “Actuarial usage of grouped data: an approach to incorporating secondary data”. *Transactions of Society of Actuaries* 47:89–113.

Dempster, A. P., N. M. Laird, and D. B. Rubin. 1977. “Maximum likelihood from incomplete data via the EM algorithm”. *Journal of the Royal Statistical Society: Series B (Methodological)* 39 (1): 1–22. https://doi.org/10.1111/j.2517-6161.1977.tb01600.x

Eilers, P. H. C. 2007. “Ill-posed problems with counts, the composite link model and penalized likelihood”. *Statistical Modelling* 7 (3): 239–254. https://doi.org/10.11177/1471082X0700700302

Eilers, P. H. C., and B. D. Marx. 1996. “Flexible smoothing with B-splines and penalties”. *Statistical Science* 11:89–102. https://doi.org/10.1214/ss/1038425655

Gressani, O., and P. Lambert. 2021. “Laplace approximation for fast Bayesian inference in generalized additive models based on penalized regression splines”. *Computational Statistics and Data Analysis*, https://doi.org/10.1016/j.csda.2020.107088.

Hansen, L. 1982. “Large sample properties of generalized method of moments estimators”. *Econometrica* 50 (4): 1029–1054. https://doi.org/10.2307/1912775

Hürlimann, W. 2008. “Extremal moment methods and stochastic orders”. *Boletin de la Asociacion Matematica Venezolana* 15:153–301.

Jullion, A., and P. Lambert. 2007. “Robust specification of the roughness penalty prior distribution in spatially adaptive Bayesian P-splines models”. *Computational Statistics and Data Analysis* 51 (5): 2542–2558. https://doi.org/10.1016/j.csda.2006.09.027

Lambert, P. 2021. “Fast Bayesian inference using Laplace approximations in nonparametric double additive location-scale models with right- and interval-censored data”. *Computational Statistics and Data Analysis*, https://doi.org/10.1016/j.csda.2021.107250

Lambert, P., and P. H. C. Eilers. 2009. “Bayesian density estimation from grouped continuous data”. *Computational Statistics and Data Analysis* 53 (4): 1388–1399. https://doi.org/10.1016/j.csda.2008.11.022

Pentikäinen, T. 1987. “Approximative evaluation of the distribution function of aggregate claims”. *ASTIN Bulletin* 17 (1): 15–39. https://doi.org/10.2143/AST.17.1.2014982

Roberts, G. O., and J. S. Rosenthal. 1998. “Optimal scaling of discrete approximations to Langevin diffusions”. *Journal of the Royal Statistical Society. Series B: Statistical Methodology* 60 (1): 255–268. https://doi.org/10.1111/1467-9868.00123.

Thompson, R., and R. Baker. 1981. “Composite link functions in generalized linear models”. *Journal of the Royal Statistical Society. Series C (Applied Statistics)* 30 (2): 125–131.
$J = 3$ (classes)

p	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9
$Q(p)$	1.000	1.793	3.122	3.430	3.643	3.822	3.989	4.163	4.375

$\hat{Q}(p	D_1)$	1.084	2.071	3.081	3.421	3.630	3.801	3.965	4.144	4.383
Bias	0.084	0.278	-0.041	-0.009	-0.014	-0.021	-0.024	-0.019	0.007	
SD	0.121	0.401	0.154	0.074	0.054	0.045	0.040	0.038	0.048	
RMSE	0.147	0.488	0.160	0.075	0.056	0.050	0.046	0.043	0.049	
95% CI	0.950	0.694	0.930	0.964	0.958	0.964	0.968	0.934	0.926	
90% CI	0.904	0.622	0.880	0.922	0.924	0.926	0.920	0.870	0.866	

$\hat{Q}(p	D_2)$	1.016	2.003	3.166	3.466	3.663	3.830	3.988	4.155	4.363
Bias	0.016	0.210	0.124	0.064	0.054	0.044	0.040	0.039	0.040	
SD	0.082	0.493	0.132	0.073	0.054	0.044	0.040	0.040	0.042	
RMSE	0.084	0.536	0.126	0.080	0.058	0.044	0.040	0.040	0.041	
95% CI	0.950	0.656	0.860	0.886	0.908	0.932	0.934	0.896	0.840	
90% CI	0.906	0.586	0.778	0.830	0.842	0.878	0.876	0.848	0.762	

$J = 5$ (classes)

$\hat{Q}(p	D_1)$	1.007	2.004	3.121	3.435	3.646	3.823	3.988	4.160	4.369
Bias	0.007	0.211	-0.001	0.005	0.003	0.001	-0.001	-0.004	-0.006	
SD	0.081	0.480	0.121	0.068	0.053	0.046	0.041	0.040	0.041	
RMSE	0.082	0.525	0.121	0.068	0.054	0.046	0.041	0.040	0.041	
95% CI	0.948	0.740	0.946	0.954	0.950	0.948	0.962	0.950	0.948	
90% CI	0.910	0.694	0.918	0.912	0.908	0.912	0.924	0.904	0.880	

$\hat{Q}(p	D_2)$	0.998	1.914	3.104	3.429	3.648	3.827	3.992	4.159	4.364
Bias	-0.002	0.121	-0.022	-0.007	-0.003	-0.002	-0.001	-0.002	-0.002	
SD	0.081	0.532	0.132	0.073	0.056	0.048	0.043	0.043	0.047	
RMSE	0.082	0.547	0.131	0.074	0.058	0.048	0.043	0.042	0.046	
95% CI	0.910	0.650	0.938	0.930	0.936	0.932	0.912	0.882	0.898	
90% CI	0.866	0.598	0.900	0.894	0.892	0.892	0.892	0.864	0.818	

$\hat{Q}(p	D_4)$	1.012	2.001	3.120	3.435	3.646	3.822	3.987	4.157	4.368
Bias	0.012	0.208	-0.002	0.005	0.002	0.000	-0.003	-0.006	-0.008	
SD	0.091	0.480	0.120	0.068	0.054	0.046	0.041	0.039	0.040	
RMSE	0.092	0.523	0.120	0.068	0.054	0.046	0.041	0.040	0.041	
95% CI	0.952	0.728	0.946	0.952	0.950	0.948	0.960	0.952	0.940	
90% CI	0.914	0.680	0.928	0.906	0.910	0.906	0.922	0.910	0.874	

Table 1: Simulation study ($n = 250$) – Selected p-quantile estimates using tabulated summary statistics in D_r with $r = 1, 2, 4$: bias, standard deviation, root mean squared error (RMSE) and effective coverages of 95% and 90% credible intervals (based on $S = 500$ replicates).
Table 2: Simulation study \((n = 1000) \) – Selected \(p \)-quantile estimates using tabulated summary statistics in \(D_r \) with \(r = 1, 2, 4 \): bias, standard deviation, root mean squared error (RMSE) and effective coverages of 95% and 90% credible intervals (based on \(S = 500 \) replicates).

\(p \)	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	0.95
\(Q(p) \)	1.000	1.793	3.122	3.430	3.643	3.822	3.989	4.163	4.375	4.530

\(J = 3 \) (classes)

| \(\hat{Q}(p|D_1) \) | 1.026 | 1.940 | 3.121 | 3.436 | 3.634 | 3.800 | 3.960 | 4.138 | 4.381 | 4.586 |
|---|---|---|---|---|---|---|---|---|---|---|
| Bias | 0.027 | 0.147 | -0.001 | 0.005 | -0.009 | -0.022 | -0.029 | -0.025 | 0.006 | 0.056 |
| SD | 0.047 | 0.257 | 0.069 | 0.037 | 0.028 | 0.024 | 0.021 | 0.020 | 0.025 | 0.033 |
| RMSE | 0.054 | 0.297 | 0.069 | 0.037 | 0.030 | 0.032 | 0.036 | 0.032 | 0.025 | 0.065 |
| 95% CI | 0.944 | 0.836 | 0.954 | 0.930 | 0.954 | 0.972 | 0.980 | 0.948 | 0.960 | 0.998 |
| 90% CI | 0.878 | 0.786 | 0.910 | 0.894 | 0.916 | 0.920 | 0.920 | 0.892 | 0.918 | 0.978 |

| \(\hat{Q}(p|D_2) \) | 1.005 | 1.867 | 3.159 | 3.452 | 3.653 | 3.826 | 3.989 | 4.159 | 4.381 | 4.586 |
|---|---|---|---|---|---|---|---|---|---|---|
| Bias | 0.006 | 0.074 | 0.037 | 0.022 | 0.010 | 0.004 | 0.000 | -0.005 | -0.007 | -0.003 |
| SD | 0.040 | 0.302 | 0.058 | 0.035 | 0.028 | 0.025 | 0.023 | 0.021 | 0.021 | 0.023 |
| RMSE | 0.040 | 0.311 | 0.068 | 0.042 | 0.030 | 0.025 | 0.023 | 0.022 | 0.022 | 0.023 |
| 95% CI | 0.960 | 0.752 | 0.834 | 0.880 | 0.918 | 0.916 | 0.910 | 0.886 | 0.874 | 0.816 |
| 90% CI | 0.902 | 0.698 | 0.812 | 0.844 | 0.866 | 0.844 | 0.820 | 0.788 | 0.782 | 0.728 |

\(J = 5 \) (classes)

| \(\hat{Q}(p|D_1) \) | 0.989 | 1.864 | 3.108 | 3.427 | 3.648 | 3.828 | 3.992 | 4.161 | 4.367 | 4.522 |
|---|---|---|---|---|---|---|---|---|---|---|
| Bias | -0.010 | 0.071 | -0.014 | -0.003 | 0.005 | 0.006 | 0.003 | -0.003 | -0.009 | -0.008 |
| SD | 0.034 | 0.370 | 0.061 | 0.039 | 0.032 | 0.026 | 0.023 | 0.022 | 0.023 | 0.025 |
| RMSE | 0.036 | 0.377 | 0.063 | 0.040 | 0.032 | 0.027 | 0.023 | 0.022 | 0.024 | 0.027 |
| 95% CI | 0.950 | 0.734 | 0.920 | 0.928 | 0.936 | 0.930 | 0.916 | 0.858 | 0.934 | 0.966 |
| 90% CI | 0.900 | 0.686 | 0.848 | 0.894 | 0.884 | 0.880 | 0.830 | 0.786 | 0.882 | 0.928 |

| \(\hat{Q}(p|D_2) \) | 0.992 | 1.836 | 3.106 | 3.426 | 3.642 | 3.821 | 3.989 | 4.164 | 4.378 | 4.536 |
|---|---|---|---|---|---|---|---|---|---|---|
| Bias | -0.008 | 0.043 | -0.016 | -0.004 | -0.001 | -0.001 | -0.001 | 0.001 | 0.003 | 0.006 |
| SD | 0.036 | 0.357 | 0.064 | 0.038 | 0.030 | 0.026 | 0.024 | 0.023 | 0.024 | 0.026 |
| RMSE | 0.037 | 0.360 | 0.066 | 0.038 | 0.030 | 0.026 | 0.024 | 0.023 | 0.024 | 0.026 |
| 95% CI | 0.942 | 0.730 | 0.912 | 0.938 | 0.932 | 0.924 | 0.890 | 0.816 | 0.692 | 0.808 |
| 90% CI | 0.874 | 0.690 | 0.842 | 0.890 | 0.892 | 0.866 | 0.820 | 0.744 | 0.592 | 0.734 |

| \(\hat{Q}(p|D_4) \) | 0.995 | 1.914 | 3.121 | 3.429 | 3.643 | 3.823 | 3.990 | 4.164 | 4.374 | 4.530 |
|---|---|---|---|---|---|---|---|---|---|---|
| Bias | -0.005 | 0.121 | -0.001 | 0.000 | 0.001 | 0.001 | 0.001 | -0.002 | -0.002 | -0.000 |
| SD | 0.037 | 0.342 | 0.059 | 0.037 | 0.029 | 0.025 | 0.023 | 0.022 | 0.022 | 0.023 |
| RMSE | 0.037 | 0.363 | 0.059 | 0.037 | 0.029 | 0.025 | 0.023 | 0.022 | 0.022 | 0.023 |
| 95% CI | 0.954 | 0.804 | 0.936 | 0.942 | 0.940 | 0.940 | 0.946 | 0.956 | 0.944 | 0.956 |
| 90% CI | 0.910 | 0.754 | 0.890 | 0.900 | 0.896 | 0.904 | 0.900 | 0.880 | 0.892 | 0.914 |
Table 3: Simulation study (n = 3000) – Selected p−quantile estimates using tabulated summary statistics in D_r with $r = 1, 2, 4$: bias, standard deviation, root mean squared error (RMSE) and effective coverages of 95% and 90% credible intervals (based on $S = 500$ replicates).

p	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	0.95	0.99
$Q(p)$	1.000	1.793	3.122	3.430	3.643	3.822	3.989	4.163	4.375	4.530	4.778

$J = 3$ (classes)

$\hat{Q}(p	D_1)$	1.013	1.897	3.127	3.438	3.634	3.796	3.954	4.131	4.376	4.591	5.052
Bias	0.013	0.104	0.005	0.008	-0.010	-0.025	-0.035	-0.033	0.000	0.061	0.274	
SD	0.025	0.145	0.038	0.021	0.016	0.013	0.011	0.010	0.013	0.020	0.045	
RMSE	0.029	0.179	0.038	0.023	0.019	0.029	0.037	0.034	0.013	0.064	0.278	
95% CI	0.948	0.934	0.990	0.928	0.960	0.992	0.996	0.994	0.996	1.000	1.000	
90% CI	0.886	0.874	0.972	0.866	0.916	0.944	0.974	0.968	0.966	0.996	1.000	

$\hat{Q}(p	D_2)$	1.004	1.810	3.153	3.444	3.649	3.825	3.990	4.160	4.368	4.524	4.797
Bias	0.023	0.170	0.032	0.021	0.017	0.014	0.013	0.012	0.011	0.012	0.021	
SD	0.023	0.171	0.045	0.025	0.018	0.014	0.013	0.013	0.014	0.013	0.028	
RMSE	0.954	0.828	0.762	0.868	0.936	0.942	0.904	0.886	0.818	0.994		
95% CI	0.910	0.762	0.686	0.794	0.866	0.876	0.840	0.832	0.750	0.866		
90% CI	0.886	0.874	0.972	0.866	0.916	0.944	0.974	0.968	0.966	0.996	1.000	

$J = 5$ (classes)

$\hat{Q}(p	D_1)$	0.994	1.868	3.126	3.429	3.643	3.822	3.991	4.165	4.376	4.528	4.782
Bias	0.021	0.170	0.032	0.021	0.017	0.014	0.013	0.012	0.011	0.012	0.021	
SD	0.022	0.235	0.033	0.022	0.017	0.014	0.013	0.012	0.012	0.012	0.018	
RMSE	0.948	0.904	0.946	0.948	0.956	0.954	0.946	0.966	0.964	0.968		
95% CI	0.902	0.850	0.894	0.880	0.894	0.914	0.906	0.910	0.914	0.918	0.918	
90% CI	0.902	0.850	0.894	0.880	0.894	0.914	0.906	0.910	0.914	0.918	0.918	

$\hat{Q}(p	D_2)$	0.997	1.831	3.114	3.433	3.646	3.822	3.987	4.161	4.375	4.530	4.777
Bias	0.021	0.252	0.035	0.022	0.017	0.014	0.013	0.013	0.017	0.019	0.019	
SD	0.022	0.255	0.036	0.022	0.017	0.014	0.013	0.013	0.013	0.013	0.020	
RMSE	0.958	0.846	0.944	0.952	0.976	0.982	0.938	0.908	0.974	0.976	0.984	
95% CI	0.920	0.772	0.882	0.880	0.922	0.946	0.858	0.826	0.926	0.932	0.934	
90% CI	0.920	0.772	0.882	0.880	0.922	0.946	0.858	0.826	0.926	0.932	0.934	

$\hat{Q}(p	D_4)$	0.996	1.875	3.123	3.430	3.644	3.823	3.990	4.164	4.375	4.527	4.778
Bias	-0.003	0.038	-0.008	0.003	0.003	0.000	-0.002	-0.002	-0.001	0.000	0.000	
SD	0.021	0.252	0.035	0.022	0.017	0.014	0.013	0.013	0.013	0.013	0.018	
RMSE	0.958	0.860	0.958	0.946	0.954	0.960	0.948	0.942	0.962	0.958	0.982	
95% CI	0.902	0.820	0.896	0.884	0.892	0.910	0.904	0.904	0.904	0.928	0.952	
90% CI	0.902	0.820	0.896	0.884	0.892	0.910	0.904	0.904	0.904	0.928	0.952	
---	---	---										
n Metric	$J=3$ (classes)	$J=5$ (classes)										
250 $\ell_1(Q, \hat{Q})$	0.087 0.072 0.067	0.072 0.071 0.068										
	RIMSE	0.048 0.044 0.037	0.043 0.043 0.037									
	K-L	0.034 0.022 0.016	0.018 0.019 0.016									
1000 $\ell_1(Q, \hat{Q})$	0.051 0.038 0.034	0.037 0.036 0.034										
	RIMSE	0.041 0.025 0.020	0.025 0.024 0.020									
	K-L	0.025 0.011 0.006	0.006 0.006 0.005									
3000 $\ell_1(Q, \hat{Q})$	0.044 0.025 0.021	0.023 0.021 0.021										
	RIMSE	0.044 0.018 0.014	0.018 0.016 0.013									
	K-L	0.026 0.008 0.003	0.003 0.002 0.002									

Table 4: Simulation study – L_1–distance, $\ell_1(Q, \hat{Q})$, between the true and the estimated quantile functions; Root integrated mean squared error (RIMSE) and Kullback-Liebler divergence (K-L) comparing the true and estimated density functions. Median values of these metrics (over $S=500$ simulated datasets of size n) are reported with estimation performed from tabulated summary statistics D_r (with $r=1,2,4$) in J classes.

Claim Interval	Freq. n_j	Interval C_j	Mean \bar{x}_j	Std.dev s_j	Skewness g_1	Kurtosis g_2
$(0.00 ; 3.00]$	1168	(0.00 ; 3.00]	2.462	0.580	-1.793	2.401
$(3.00 ; 4.30]$	2234	(3.00 ; 4.30]	3.529	0.336	0.375	-0.836
$(4.30 ; 6.18]$	116	(4.30 ; 6.18]	4.556	0.275	2.603	9.416

Table 5: Car insurance data: summary statistics for $n=3518$ grouped claim data (in euros).

Data D	edf	RIMSE	K-L	VaR$_{5\%}$	VaR$_{1\%}$		
D_0	6.2	0.069	0.042	16250	(14795, 17848)	34764	(29724, 40658)
D_1	6.7	0.030	0.029	15885	(14617, 17263)	41502	(37064, 46472)
D_2	9.0	0.027	0.019	16641	(15355, 17647)	40766	(35261, 47131)
D_4	11.7	0.012	0.001	16106	(14896, 17413)	38988	(33504, 45371)

Table 6: Car insurance data: numerical comparison of density and Value-at-Risk estimates obtained using tabulated sample moments of increasing orders.

Claim Interval C_j	Freq. n_j	Central moments for $\log_{10}(\text{Claim})$							
	Obs.	Fitted	Obs.	Fitted	Obs.	Fitted	Obs.	Fitted	
$(0.00 ; 3.00]$	1168	2.462	2.472	0.336	0.336	-0.350	-0.351	0.611	0.619
$(3.00 ; 4.30]$	2234	3.529	3.532	0.113	0.111	0.014	0.013	0.028	0.026
$(4.30 ; 6.18]$	116	4.556	4.549	0.075	0.073	0.054	0.051	0.071	0.064

Table 7: Car insurance data: observed and fitted central moments within classes using a model based on D_4.
