Granulometry analysis of Ngrayong sandstone, Tempuran Area, Rembang Zone, North East Java Basin

Myo Min Htun 1,2,3, Sugeng Sapto Surjono2,4, Jarot Setyowiyoto2,5
1Geology Department, Monywa University, Monywa, Myanmar
2Geological Engineering Department, Faculty of Engineering, Gadjah Mada University, Yogyakarta, Indonesia

*Corresponding author: myomintun@gmail.ugm.ac.id

Abstract. The study area is located near Tempuran Village, Rembang Zone, North-East Java. Ngrayong sandstone is a famous reservoir in north-east Java, mainly composed of sandstones which are exposed along east-west trending along the southern flank of Pakel Anticline. Eighteen samples from four different facies from eight outcrops conducted for granulometry analysis. The objective of this paper is to predict the reservoir potential base on granulometry analysis especially grain size and sorting. The study area is still needs to confirm about reservoir quality. Ngrayong Formation consists of laminated to thin bedded sandstone facies, thick bedded to massive sandstone facies, calcareous sandstone facies and cross-bedded sandstone facies. According to the analytical results, sandstone facies are composed of very fine to fine, poorly sorted to very well sorted sandstones. Based on the results of analyzed samples, Ngrayong sandstone have good porosity and permeability, thus Tempuran area can be considered as a prospective reservoir.

1. Introduction

The NE Java basin can be classified as a classic back-arc basin. It consists largely of a foreland shelf dipping gently southward, which is covered by a relatively thin stratigraphic section (averaging less than 6,000 feet). In contrast, the deep basin area contains more than 30,000 feet of sediments. The age of Ngrayong sediments ranges from early Middle Miocene to Middle Miocene [1]. It represents a complete regressive-transgressive sedimentary cycle which ranges from coarse-grained sandy clastics in the lower part grading to fine-grained clastics and limestones toward the top [2]. The Ngrayong Formation is mainly composed of quartzarenite sandstones in Madura Island, and shales and sandstones in the Rembang and Randublatung zone [3]. The study area is located in near Tempuran village, Rembang zone, western part north-east Java Island, bounded by Latitudes S06° 53’ 45” and S06° 54’ 45”, Longitude E111° 27’ 30” and E111° 30’ 30” are shown in Figure 1. In Northeast Java Basin, Ngrayong Formation is one of the prolific reservoirs. The study is still need to conduct the research to characterize the prospective reservoir. This paper will be focus to predict the reservoir quality of Ngrayong sandstone base on the results of
granulometry analysis. There is no previous research in order to predict the reservoir quality of study area by using the granulometry analysis.

2. Method and Materials

The field work was carried out along the exposure surface of Ngrayong Formation in study area. Eight stratigraphic sections were measured from different locations near the Tempuran Village. Field investigation have been done simply by measuring the strata, noting detail characteristics of rock, sedimentary structures, plotting the measured section location by using GPS, collecting the fresh samples for analysis. Those eight measured sections were given the name here as section A (06°54′27.57″S, 111°28′52.90″E), section B (06°54′12.72″S, 111°30′12.70″E), section C (06°54′07.87″S, 111°27′39.60″E), section D (06°54′25.06″S, 111°28′15.02″E), section E (06°54′19.78″S, 111°28′16.78″E), section F (06°54′10.98″S, 111°28′17.81″E), section G (06°54′13.11″S, 111°28′14.86″E), and section H (06°54′27.65″S, 111°29′59.23″E) respectively. Measured stratigraphic sections are shown in Figure 4. Geological map of the Rembang and surrounding area and measured sections of analyzed samples localities are shown in Figure 3. During the careful field observation, eighteen sandstone samples were collected from eight measured sections of study area shown in Figure 4.

![Figure 1. Location map of study area.](image)

Quantitative assessment of the percentages of different grain sizes in clastic sediments and sedimentary rocks is called granulometric analysis [4]. Granulometry analysis has been conducted for this research. Granulometry is a basic analytical technique that has wide applications within the earth and archaeological sciences. Particle or grain size is a fundamental attribute or physical property of particulate samples or sediments and sedimentary rocks [5,6]. Several sediment, soil, or material properties are directly influenced by the size of its particles, as well as their shape (form, roundness and surface texture or the grains) and fabric (grain-to-grain interrelation and grain orientation), such as texture and appearance, density, porosity, and permeability [7]
Most of the sandstone samples from Ngrayong formation are very loose because they are less cemented. So this method is very applicable to determine the textural properties in order to predict the reservoir quality especially base on grain size and sorting. This method is very cheaper than the other methods such as petrographic analysis, laser diffraction method, etc. Sieve applied in the analysis follow the US standard sieve mesh system (i.e. 10, 18, 35, 60, 120, 230, and the remain in the pan). The purpose of the analysis is to determine the quantitative distribution of grain size and sorting of sand-size grain in the sample to predict the reservoir quality of Ngrayong sandstone and hence help understand textural maturity. The four mathematical measurements: average grain size, sorting, skewness and kurtosis value can be determined using this analysis. The coarsest sieve was put at the top of fine sieves in which the screen openings become progressively smaller downwards. A pan is placed beneath the lowest sieve to retain the finest grains which pass through the entire column. The sample (100g) was put in the uppermost sieve, after the sieves have been put on a shaker. The sieving analysis data can be got by weighting on a balance after running shaker about 15 minutes. After that, the mean value, standard deviation value, skewness value and kurtosis value are calculated from the Φ value. The percentile values calculated from cumulative curve (Figure 2).

![Image](image_url)

Figure 2. The method for calculating percentile values from the cumulative curve

Source: Boggs (2006)

2.1. **Mean (M)**

The mean size is the arithmetic average value of all the particles sizes in a sample [8]. The actual arithmetic mean of most sediment samples cannot be determined because of uncountable small grain in a sample. An approximation of the arithmetic mean can be arrived at by picking selected Phi (Φ) values from the cumulative curve and averaging these values. The mean value of the graph is the average grain size of the overall data. Graphically, the mean value can be calculated by the following equation:

$$\text{Mean} = \frac{\Phi_{16} + \Phi_{50} + \Phi_{84}}{3}$$
Figure 3. Geological map of the Rembang and surrounding area, NE Java, Indonesia [9]
Figure 4 Location of eight measured sections on geological map of study area.

Table 1. Particle size scale for sediments and sedimentary rocks [10]

mm	phi	Name
256	-8	Boulders
128	-7	
64	-6	Cobbles
32	-5	Conglomerate
16	-4	Pebbles
8	-3	
4	-2	granules
2	-1	very coarse sand
1	0	coarse sand
0.5	1	medium sand
0.25	2	fine sand
0.125	3	Very fine sand
0.063	4	Coarse Silt
0.031	5	Medium Silt
0.0156	6	Fine silt
0.0078	7	Very fine silt
0.0039	8	Clay
2.2. Standard Deviation (D) (Sorting)

The sorting of the grain population is a measure of the range of grain sizes presented the magnitude of the spread or scatter of these sizes around the mean size [8]. Sorting value indicates the level of uniformity of grain sorting. The mathematical expression of sorting is standard deviation. Sorting corresponding to various values of standard deviation (Table 2) is defined as follows [8]. Base on phi values, standard deviation have been calculated from the following fomular:

Where:

\[
\text{Standard Deviation} = \frac{\phi_{84} - \phi_{16}}{4} + \frac{\phi_{95} - \phi_{5}}{6.6}
\]

\(\phi_5\) is grain size of 5th percentile value

\(\phi_{16}\) is grain size of 16th percentile value

\(\phi_{84}\) is grain size of 84th percentile value

\(\phi_{95}\) is grain size of 95th percentile value

Standard Deviation (D)	Sorting Class
< 0.35Ø	Very well sorted
0.35-0.50Ø	Well sorted
0.50-0.71Ø	Moderately well sorted
0.71-1.00Ø	Moderately sorted
1.00-2.00Ø	Poorly sorted
2.00-4.00Ø	Very poorly sorted
> 4.00Ø	Extremely poorly sorted

2.3. Skewness (S)

Skewness is a measure of the symmetry of the grain size distribution about the mean; it has a maximum possible value of +1 and a minimum possible value of -1. A of skewness that is close to zero indicates that the distribution is very symmetrical and the mean is equal, or nearly so, to the median and both fall within the modal class. A positive value of skewness indicates that the distribution has a larger proportion of fine grains than if the distribution were symmetrical. Conversely, if the value of skewness is negative the distribution is enriched in coarse grains. There are various types of skewness shown in (Table 3). Base on phi values, skewness value was calculated by the equation:
\[
Skewness (S) = \frac{\bar{\phi} 4 + \bar{\phi} 16 - 2 \bar{\phi} 50}{2(\bar{\phi} 4 - \bar{\phi} 16)} + \frac{22(\bar{\phi} 95 - \bar{\phi} 5)}{\bar{\phi} 95 + \bar{\phi} 5 - 2 \bar{\phi} 50}
\]

2.4. Kurtosis (K)

Kurtosis is a measure of the peakedness of the distribution; if a distribution is flatter than a normal one it is called platykurtic but, if more peaked, it is called leptokurtic. Kurtosis can be classified base on value as shown in (Table 4) and kurtosis value can be calculated mathematic by following equation;

\[
Kurtosis (K) = \frac{2.44(\bar{\phi} 75 - \bar{\phi} 25)}{\bar{\phi} 95 - \bar{\phi} 5}
\]

Skewness	Class
> +0.30	Strongly fine skewed
+0.30 to +0.10	Fine skewed
+0.10 to -	Near symmetrical
-0.10 to -	Coarse skewed
< -0.30	Strongly coarse skewed

Kurtosis (K)	Class
< 0.67	Very platykurtic
0.67-0.90	Platykurtic
0.90-1.11	Mesokurtic
1.11-1.50	Leptokurtic
1.50-3.00	Very leptokurtic
> 3.00	Extremely leptokurtic

3. Results and Discussion

Wentworth grain-size scale (Table 1) were used in order to classified the sand size grain from the mean value. The percentile values (Table 5) are calculated from cumulative curves (shown in figure 5 and 6) of each analyzed sample. The calculated mean values of sandstones range from 2.52 to 3.65 and fall in the size class very fine to fine (Table 6).
Figure 5. Cumulative curves of sample A3, A8, A10, B3, B5, B7, C3, C7 and C10.
Figure 6. Cumulative curves of sample D5, E2, E4, E8, F1, G4, G5, G9 and H2.
Table 5. The percentile values calculated from cumulative curve of each analyzed sample.

No	Sample No.	Φ5	Φ16	Φ25	Φ50	Φ75	Φ84	Φ95
1	Sp. A3	1.2	2.17	2.4	3.05	3.79	4.06	4.73
2	Sp. A8	0.18	0.9	1.57	3.07	4.39	4.6	4.89
3	Sp. A10	0.12	1.25	2.05	3.33	4.29	4.52	4.85
4	Sp. B3	1.09	1.69	2.06	2.58	3.10	3.65	4.52
5	Sp. B5	0.3	1.00	1.88	3.78	4.48	4.67	4.90
6	Sp. B7	0.67	1.64	2.12	2.92	3.80	4.20	4.75
7	Sp. C3	0.9	2.68	3.14	3.7	4.33	4.58	4.86
8	Sp. C7	1.8	2.14	2.27	2.64	3.00	3.60	4.55
9	Sp. C10	-0.5	0.32	0.85	3.05	4.33	4.58	4.88
10	Sp. D5	-0.25	0.78	2.63	3.13	4.00	4.38	4.80
11	Sp. E2	1.3	2.09	2.20	2.59	2.94	3.35	4.20
12	Sp. E4	0.13	0.67	1.13	3.05	4.37	4.59	4.88
13	Sp. E8	1.26	2.30	2.65	3.47	4.23	4.52	4.88
14	Sp.F1	0.5	1.33	1.71	2.54	3.50	3.96	4.70
15	Sp. G4	0.44	1.70	2.53	3.62	4.36	4.59	4.89
16	Sp. G5	0.45	1.90	2.70	2.38	4.35	4.60	4.89
17	Sp.G9	0.3	1.56	2.28	3.53	4.35	4.59	4.87
18	Sp. H2	1.39	2.06	2.18	2.51	2.86	2.98	4.00

Table 6. The calculated mean values and size class of analyzed samples.

Facies	Sample No.	Mean (M)	Size Class
Laminated to thin bedded	Sp. A3	3.09	Very fine sand
sandstone facies	Sp. A8	2.86	Fine sand
	Sp. B3	2.64	Fine sand
	Sp. C3	3.65	Very fine sand
	Sp. C10	2.65	Very fine sand
	Sp. D5	2.76	Fine sand
	Sp. E2	2.68	Fine sand
	Sp. F1	2.61	Fine sand
	Sp. G4	3.30	Very fine sand
	Sp. G9	3.23	Very fine sand
Thick bedded to massive	Sp. A10	3.03	Very fine sand
massive sandstone facies	Sp. C7	2.79	Fine sand
	Sp. E8	3.43	Very fine sand
	Sp. G5	3.39	Very fine sand
Calcareous sandstone	Sp. B5	3.15	Very fine sand
facies	Sp. B7	2.92	Fine sand
	Sp. E4	2.77	Fine sand
Cross bedded sandstone	Sp. H2	2.52	Fine sand
facies			
Mean represents the average size of the total distribution of sediments. Mean size of the sediments are influenced by the source of supply, transporting medium and the energy conditions of the depositing environment. It serves as an index to measure the nature as well as the depositional environment of the sediments. It is the function of total amount of sediments available, the amount of energy imported to the sediments and nature of the transporting agent. The energy of transporting agent includes the degree of turbulence and the role played by current sand waves. The mean size of the selected sandstones ranges from 2.52 to 3.65 and mean 2.97 in average (Table 7), indicating in the size class fine-grained.

Standard deviation is a measure of uniformity or sorting. It is an important parameter in sediment analysis because it indicates the energy conditions of depositional environment. It is also the resultant character of sediments controlled by size, shape and specific gravity of sediments and energy and time involved in transporting tine. It is noted that the standard deviation decreases towards the sample of lower mean size. In other words, the sorting improves with the lowering of mean size. Based on (Table 2) the standard deviation of the selected sandstones varies from poorly sorted to very well sorted (1.07 to 0.23).

Average value of standard deviation is (0.67), sandstone are, generally, moderately well-sorted. According to standard deviation values, moderately well sorted character of sediments indicating the influence of stronger energy conditions in the basin [11]. Dominance of moderately well sorted to well sorted sands could be a reflection of the higher wave energy and strong shore currents of the coast.

Facies	Sample No.	Standard deviation (D)	Sorting Class
Laminated to thin bedded sandstone facies			
Sp. A3	0.47		Well sorted
Sp. A8	0.93		Moderately sorted
Sp. B3	0.49		Well sorted
Sp. C3	0.48		Well sorted
Sp. C10	1.07		Poorly sorted
Sp. D5	0.90		Moderately sorted
Sp. E2	0.32		Very well sorted
Sp. F1	0.66		Moderately well sorted
Sp. G4	0.72		Moderately sorted
Sp. G9	0.76		Moderately sorted
Thick bedded to massive sandstone facies			
Sp. A10	0.82		Moderately sorted
Sp. C7	0.37		Well sorted
Sp. E8	0.56		Moderately well sorted
Sp. G5	0.68		Moderately well sorted
Calcareous sandstone facies			
Sp. B5	0.92		Moderately sorted
Sp. B7	0.64		Moderately well sorted
Sp. E4	0.98		Moderately sorted
Crossbedded sandstone facies			
Sp. H2	0.23		Very well sorted

Table 7. The calculated standard deviation values and size class of analyzed samples.
Table 8. Skewness values of selected samples of study area.

Facies	Sample No.	Skewness	Class
Laminated to thin bedded sandstone facies	Sp. A3	-0.18	Coarse skewed
	Sp. A8	-3.7	Strongly coarse skewed
	Sp. B3	0.95	Strongly fine skewed
	Sp. C3	-3.38	Strongly coarse skewed
	Sp. C10	-7.18	Strongly coarse skewed
	Sp. D5	-1.73	Strongly coarse skewed
	Sp. E2	-6.11	Strongly coarse skewed
	Sp. F1	-0.53	Strongly fine skewed
	Sp. G4	-5.62	Strongly coarse skewed
	Sp. G9	-5.7	Strongly coarse skewed
Thick bedded to massive sandstone facies	Sp. A10	-5.45	Strongly coarse skewed
	Sp. C7	1.81	Strongly fine skewed
	Sp. E8	-1.58	Strongly coarse skewed
	Sp. G5	-5.65	Strongly coarse skewed
Calcareous sandstone facies	Sp. B5	-8.9	Strongly coarse skewed
	Sp. B7	-0.86	Strongly coarse skewed
	Sp. E4	-4.24	Strongly coarse skewed
Cross bedded sandstone facies	Sp. H2	0.49	Strongly fine skewed

Base on the skewness class (Table 3), the skewness values of analyzed samples are range from strongly coarse skewed to strongly fine skewed (-9.25 to 1.81) (Table 8). Base on the relationship between combine log and skewness variation diagram (Figure 6), strongly fine skewed and strongly coarse skewed are alternatively observed. But strongly coarse skewed are dominated.

According to classification of kurtosis (Table 4), calculated kurtosis values of selected samples of study area are ranging from 0.73 to 7.67 (Table 9). So three samples show platykurtic, six samples show very leptokurtic and ten samples show extremely leptokurtic. Most of sediments are very leptokurtic and extremely leptokurtic. The extreme values of kurtosis, leptokurtic and very leptokurtic character indicate that the sediments were sorted in high or low energy environment and transported to a new environment with reversal of energy to mix with fine or coarse sediments depends on energy condition. Folk and Ward (1957) suggested that beach sediments might show extremely kurtosis values due to good sorting achieved in high energy environment.
Table 9. Kurtosis values of selected samples derived from graphic method

Facies	Sample No.	Mean (M)	Size Class
Laminated to thin bedded sandstone facies	Sp. A3	2.01	Very fine leptokurtic
	Sp. A8	5.44	Extremely leptokurtic
	Sp. B3	1.46	Extremely leptokurtic
	Sp. C3	1.93	Very leptokurtic
	Sp. C10	7.67	Extremely leptokurtic
	Sp. D5	4.91	Extremely leptokurtic
	Sp. E2	0.88	Platykurtic
	Sp. F1	3.08	Extremely leptokurtic
	Sp. G4	3.34	Extremely leptokurtic
	Sp. G9	3.88	Extremely leptokurtic
Thick bedded to massive sandstone facies	Sp. A10	4.34	Extremely leptokurtic
	Sp. C7	0.82	Platykurtic
	Sp. E8	2.34	Very leptokurtic
	Sp. G5	3.00	Very leptokurtic
Calcareous sandstone facies	Sp. B5	4.90	Extremely leptokurtic
	Sp. B7	2.81	Very leptokurtic
	Sp. E4	6.31	Extremely leptokurtic
Cross bedded sandstone facies	Sp. H2	0.73	Platykurtic

According to overall results of granulometry analysis, sandstones from study area are very fine to fine, poorly to very well sorted sandstones. The mean size of the selected sandstones ranges from 2.52 to 3.65 and mean 2.97 in average, generally, indicating in the size class fine-grained. The standard deviation of the selected sandstones varies from poorly sorted to very well sorted (0.23 to 1.07). Average value of standard deviation is (0.67), sandstone are, generally, moderately well-sorted. Analyzed ten samples A3, A8, B3, C3, C10, D5, E2, F1, G4 and G9 are selected from laminated to thin bedded sandstone. Base on the results, sample A3, C3, G4 and G9 are very fine sandstones with moderately sorted to well sorted in nature. So those samples could have good porosity and permeability. Sample A8, B3, D5, E2 and F1 are very well sorted to moderately sorted fine grained sandstones. They will have higher porosity and permeability than very fine and stone. But sample C10 is poorly sorted; fine sandstone and it will have fair reservoir quality. Laminated to thin bedded sandstones have fair to excellent reservoir quality. And four samples A10, C7, E8 and G5 are selected from thick to massive sandstone. Sample A10, E8 and G5 are moderately sorted to moderately well sorted, very fine sandstones. Reservoir characteristics of those sandstones will have good quality. Sample C7 is well sorted, fine sandstone and it could be good porosity and permeability, and thus thick bedded to massive sandstone facies will have good reservoir quality. Sample H2 is selected from cross-bedded sandstone. It is very well sorted; fine sandstone and it could have high porosity and permeability, and it will have excellent reservoir quality. Three samples B5, B7 and E4 are selected from calcareous sandstone. B5 is moderately sorted; very fine sandstone and B7 and E4 are moderately sorted to moderately well sorted in nature. So they also could have fair to good reservoir quality. The summarized of results and reservoir quality are shown in Table. 10. Base on the relationship of lithologic composite log of study area and variation of mean values, standard deviation values, skewness values and kurtosis values of analyzed samples (Figure 5), can be concluded that the sediments were deposited under the influence of alternative of low and fairly high energy environment.
Figure 7. Relationship of lithologic composite log of study area and variation of mean values, standard deviation values, skewness values and kurtosis values of analyzed samples.

Table 10. Summarized results and reservoir quality of analyzed sandstones

Facies	Sample No.	Grain size	Sorting	Skewness	Kurtosis	Possible Reservoir Quality
Laminated to thin-bedded sandstone facies	Sp. A3	V-fine	Well sorted	Coarse skewed	Very leptokurtic	Good
	Sp. A8	Fine	Moderately Well sorted	Strongly coarse skewed	Extremely leptokurtic	Good
	Sp. B3	Fine	Well sorted	Strongly fine skewed	Very leptokurtic	Good
	Sp. C3	V-fine	Well sorted	Strongly coarse skewed	Very leptokurtic	Good
	Sp. C10	Fine	Poorly sorted	Strongly coarse skewed	Extremely leptokurtic	Fair
Sample	Grain Size	Sorting	Skewness	Kurtosis	Quality	
--------	------------	---------	----------	----------	---------	
Sp. D5	Fine	Moderately well sorted	Strongly coarse skewed	Extremely leptokurtic	Good	
Sp.E2	Fine	Very well sorted	Strongly coarse skewed	Platykurtic	Excellent	
Sp.F1	Fine	Moderately well sorted	Strongly fine skewed	Extremely leptokurtic	Good	
Sp.G4	V-fine	Moderately sorted	Strongly coarse skewed	Extremely leptokurtic	Good	
Sp. G9	V-fine	Moderately sorted	Strongly coarse skewed	Extremely leptokurtic	Good	
Sp.A10	V-fine	Moderately sorted	Strongly coarse skewed	Extremely leptokurtic	Good	
Sp. C7	Fine	Well sorted	Strongly fine skewed	Platykurtic	Good	
Sp. E8	Fine	Moderately well sorted	Strongly coarse skewed	Platykurtic	Good	
Sp. G5	V-fine	moderately well sorted	Strongly coarse skewed	Very leptokurtic	Good	
Sp. B5	V-fine	Moderately sorted	Strongly coarse skewed	Extremely leptokurtic	Fair	
Sp. B7	Fine	Moderately well sorted	Strongly coarse skewed	Very leptokurtic	Good	
Sp. E4	Fine	Moderately sorted	Strongly coarse skewed	Extremely leptokurtic	Good	
Cross-bedded sandstone facies	Sp. H2	Fine	Very well sorted	Strongly fine skewed	Platykurtic	Excellent
4. Conclusion
The granulometry analysis have been conducted on 18 samples from four sandstone facies; laminated to thin bedded sandstone facies, thick bedded to massive sandstone facies, calcareous sandstone and cross-bedded sandstone from study area. Base on the relationship of lithologic composite log of study area and variation analytical results values, (Figure 5), can be concluded that the sediments were deposited under the influence of alternative of low and fairly high energy environment. Generally, laminated to thin bedded sandstone are poorly sorted to very well sorted, very fine to fine grained, and they have fair to excellent reservoir quality. Thick bedded to massive sandstone facies are moderately sorted to very well sorted, very fine to fine sandstone, and they will possess good reservoir quality. Cross-bedded sandstone is very well sorted, fine grain in nature and it will possesses excellent reservoir quality. Calcareous sandstones are moderately sorted to moderately well sorted, very fine to fine grained sandstones, and it could be considered as fair to good reservoir quality.
Base on the results of analyzed samples from all of the sandstone facies of study area have fair to excellent reservoir quality. Thus, study area can be considered as a prospective reservoir.

Acknowledgements
The authors would like to express special gratitude to the AUN/SEED-Net (ASEAN University Network Southeast Asia Engineering Education Development Network) program and JICA (Japanese International Cooperation Agency) for financial support. The authors would like to state my heartfelt thanks to field assistant who accompanied and supported me during field investigation.

References
[1] J O B Pertamina – Trend Tuban 1990 East Java Fieldwork Report 5 unpublished
[2] Ardhana W 1993 A Depositional Model for the Early Middle Miocene Ngrayong Formation and Implications for Exploration in the East Java Basin Proceedings, Indonesian Petroleum Convention, October 1993 pp 395–441
[3] Htwe P, Surjono S S, Amijaya D H and Sasaki K 2015 Grain Size Analysis of Ngrayong Sandstone in Madura Island, North East Java Basin, in the 8th AUN/SEED-Net Regional Conference on Mechanical and Manufacturing Engineering (CMME) 2015 and International Conference on Mechanical and Manufacturing Engineering (ICMME) 2015 on 5th –6th November 2015
[4] Nichols G J 2009 Sedimentology and Stratigraphy 2nd edition p 419 (Oxfprd: Blackwell Scientific Publications)
[5] Folk RL 1980 Petrology of Sedimentary Rocks (Austin: Hemphill Publishing)
[6] Friedman G M and Sanders J E 1978 Principle of Sedimentology (New York: Wiley)
[7] Allan S G 2017 Grain size analysis Encyclopedia of Earth Science Series Encyclopedia of Geoarchaeology Springer pp 341-348
[8] Boggs S J R 2006 Principles of Sedimentology and Stratigraphy 4th edition p 662 (New Jersey: Prentice-Hall)
[9] Kadar D and Sudijono 1993 Systematic geological map, Indonesia, quadrangle Rembang 1509-1&6 scale 1:100,000: Geological research and development centre: 1 sheet
[10] Udden J A 1914 Mechanical composition of elastic sediments Geological Society of America Bulletin 25 655–744
[11] Rita C 2014 Patterns of seasonal variability in granulometric characteristics of Bhitarkanika Mangrove-estuarine complex, East coast of India Indian Journal of Geo-Marine Sciences pp 1083