Accelerating boundary analog of a Kerr black hole

Michael R R Good1,2,*, Joshua Foo3 and Eric V Linder2,4

1 Physics Department, Nazarbayev University, Nur-Sultan, Kazakhstan
2 Energetic Cosmos Laboratory, Nazarbayev University, Nur-Sultan, Kazakhstan
3 Centre for Quantum Computation & Communication Technology, School of Mathematics & Physics, The University of Queensland, St. Lucia, Queensland, 4072, Australia
4 Berkeley Center for Cosmological Physics & Berkeley Lab, University of California, Berkeley, CA, United States of America

E-mail: michael.good@nu.edu.kz, joshua.foo@uqconnect.edu.au and evlinder@lbl.gov

Received 2 October 2020, revised 25 February 2021
Accepted for publication 3 March 2021
Published 18 March 2021

Abstract

An accelerated boundary correspondence (i.e. a flat spacetime accelerating mirror trajectory) is derived for the Kerr spacetime, with a general formula that ranges from the Schwarzschild limit (zero angular momentum) to the extreme maximal spin case (yielding asymptotic uniform acceleration). The beta Bogoliubov coefficients reveal the particle spectrum is a Planck distribution at late times with temperature cooler than a Schwarzschild black hole, due to the ‘spring constant’ analog of angular momentum. The quantum stress tensor indicates a constant emission of energy flux at late times consistent with eternal thermal equilibrium.

Keywords: black holes, Hawking radiation, moving mirrors, dynamical Casimir effect, quantum fields in curved spacetime

(Some figures may appear in colour only in the online journal)

1. Introduction

Essentially all astrophysical black holes observed in our Universe are described by the Kerr metric. Quasars in active galactic nuclei, supermassive black holes in the centers of galaxies, and black holes in binary systems whose eventual inspiral can be measured by gravitational wave detectors possess angular momentum, and can be analyzed using the Kerr metric or its

* Author to whom any correspondence should be addressed.
perturbations. Thus, a deeper understanding of the Kerr metric [1]—and how it affects quantum particle production from black hole event horizons—is a pertinent question, highly relevant to the fields of quantum cosmology and quantum field theory in curved spacetime. However due to the complicated metric, exact calculations in the Kerr spacetime are difficult and even intractable, in comparison to its non-rotating partner, the Schwarzschild metric.

To investigate the quantum phenomena produced by Kerr black holes, we consider a cleaner analog system (intrinsically interesting in itself), namely an accelerating boundary in flat spacetime, which replaces gravitational effects with those induced by acceleration. A well-known prediction of relativistic quantum field theory is that accelerated mirrors radiate particles, a manifestation of the dynamical Casimir effect [2, 3]. Mirrors act as boundaries which act on and transform incoming field states, especially the vacuum, of quantum fields. Up to grey-body factors and higher dimensional effects (which we justify neglect in the text), appropriately chosen mirror trajectories give a thermal radiation flux, and comparisons can be made with the Hawking radiation emitted from a black hole formed via gravitational collapse [4–10]. Recent experiments have also been proposed to observe this effect; see for example [11–14].

While accelerated mirrors have been long-studied in the literature (see for example, [15–17]), recent works [18–25] have revisited the problem and demonstrated that new insights can still be obtained. In particular, the application of the so-called accelerated boundary correspondence (ABC) has yielded exact results for the particle and energy spectrum of Hawking radiation emitted from nontrivial black hole spacetimes, along with its thermodynamical properties. Recent studies have analyzed the Schwarzschild [26–28], Schwarzschild with Planck length corrections [29], Reissner–Nordström (RN) [30], and extreme Reissner–Nordström (ERN) [31] cases through a transformation of the (3 + 1)-dimensional metric to a (1 + 1)-dimensional mirror trajectory in flat spacetime. This approach has also been applied to the cosmological horizon of de Sitter space, where an exact thermal distribution was derived [32]. The commonality between mathematicsof the horizon of the moving mirror and treatment of the spacetime horizons have revealed the utility of the ABC’s for providing insights into the nature of Hawking radiation.

In this paper, we build on previous works and derive an ABC for the axially symmetric, rotating Kerr metric. We derive in section 2 the relation between the Kerr metric, null shell collapse, and the matching condition for the accelerated mirror trajectory. In section 3, we calculate the quantum particle spectrum and compare it to the late-time Schwarzschild mirror solution (the eternal black hole spectrum of the Carlitz–Willey mirror [9]). We extend the mapping to the extremal Kerr spacetime in section 4 and conclude in section 5.

2. From Kerr metric to acceleration

2.1. Kerr metric

The Kerr metric is not spherically symmetric, but this is immaterial to the coordinates describing the collapsing star’s center. The regularity condition at the origin defines the behavior of incoming modes, subsequently governing the character of outgoing particle production [33–35]. The position of the center of the star is insensitive to the asymmetry of the surface event horizon and a (1 + 1)-dimensional model can be constructed by specializing to a single plane. Hence, the angular coordinates are not required in the calculation of the temperature of the radiation. This was discovered for the late-time extremal Kerr case by Rothman [34]. We will demonstrate this fact holds true for both the extremal and non-extremal Kerr spacetimes at all times.
The line element in spatial spherical coordinates is (throughout this paper we utilize natural units, \(G = h = c = k_B = 1 \))
\[
 ds^2 = g_{tt} dt^2 + g_{rr} dr^2 + g_{\theta\theta} d\theta^2 + g_{\phi\phi} d\phi^2 + 2g_{t\phi} dt d\phi,
\]
(1)

with
\[
 g_{tt} = -(\Delta - a^2 \sin^2 \theta) \Sigma^{-1}, \quad g_{rr} = \Sigma \Delta^{-1}, \quad g_{\theta\theta} = \Sigma, \quad g_{\phi\phi} = -\sin^2 \theta \left[a^2 \Delta \sin^2 \theta - (r^2 + a^2) \right] \Sigma^{-1}, \quad g_{t\phi} = -a \sin^2 \theta \left(r^2 + a^2 - \Delta \right) \Sigma^{-1},
\]
(2)

where
\[
 \Delta \equiv a^2 + r^2 - r_s, \quad \Sigma \equiv a^2 \cos^2 \theta + r^2, \quad r_s \equiv 2M, \quad a \equiv J/M.
\]
(3)

In this parametrization, \(a \) is the ‘spin’ or mass-normalized angular momentum of the rotating black hole and \(r_s = 2M \) is the Schwarzschild radius as taken from the Schwarzschild metric.

The corresponding static coordinate metric of the \((1 + 1)\)-dimensional Kerr metric [36] can be obtained by setting \(\theta = 0 \) in the \((3 + 1)\)-dimensional case, equation (1). Subsequently suppressing the \(d\theta \) element in the metric, yields the following line element in terms of the radial and time pieces,
\[
 ds^2 = -f(r) dt^2 + f(r)^{-1} dr^2,
\]
(4)

with
\[
 f(r) = 1 - \frac{2Mr}{r^2 + a^2}.
\]
(5)

Note that this is the same \(a \) as that found in equation (1). While there is no well-established close analog to the \((3 + 1)\) dimensional Kerr solution in \((1 + 1)\) dimensions, we refer to the above metric as the \((1 + 1)\) dimensional Kerr metric (as is also done in [36] when considering the non-extremal 2D dilaton gravity of the Kerr solution). Here, it is introduced to find the associated radial trajectory (i.e. the mapping of inside to outside coordinates, see section 2.2) of the center of the black hole in \((3 + 1)\) dimensions, which can be understood as the reflecting point of the incoming modes. Hence, the mirror trajectory in \((1 + 1)\) is an appropriate model for describing the collapse and its subsequent effect on the modes, as far as an analysis of the radiation temperature is concerned.

We justify that \(\theta = 0 \) is required to produce a spectrum independent of \(\theta \) in the final result. As we will see, this is so because \(\theta = 0 \) corresponds to the only sensible tortoise coordinate since the \(\theta = 0 \) pole is associated with the location where the ergosphere and outer horizon meet. The outer horizon of \(f(r) \) is needed to obtain the tortoise coordinate. Appealing to the zeroth law of black hole thermodynamics, we point out the general independence of temperature on angular coordinates \(\theta \) and \(\phi \), i.e. no functional dependence \(T \neq T(\theta, \phi) \), is connected to the absence of angular coordinates in the equation for \(f(r) \). This will illustrate an important one-dimensional trait of the Kerr black hole, similar to single channel Bekenstein entropy flow [37, 38]. The resulting temperature is for the equivalent \((3 + 1)\)-dimensional Kerr black hole.

Equation (4) contains two horizons at the radial coordinates \(r_{p,m} = M \pm \sqrt{M^2 - a^2} \) (where \(r_p, r_m \) correspond to the \(\pm \) signs respectively), which reduce to the event horizon, \(r = r_s \), and the
curvature singularity, \(r = 0 \), of the Schwarzschild metric in the limit \(a \to 0 \). Using equation (4) one can straightforwardly derive the analogous single moving mirror model [6, 7] trajectory, where the accelerating boundary plays the role of the black hole center. The resulting particle production emitted by the mirror can be analyzed through the calculation of Bogoliubov coefficients between the incoming and outgoing modes.

There are key characteristics of the Kerr solution which will not apparently be captured or possible to capture by the analog mirror model. Any trait related to the literal rotation in 3 + 1 curved spacetime dimensions such as the ring singularity, the ergosphere, Penrose energy extraction, superradiance, backscattering, or curvature vs coordinate singularities, will be lost in the analog model. However, connections between acceleration and gravity will remain. The zeroth law of black hole mechanics states the existence of temperature, which remains constant in the thermodynamic equilibrium for a stationary black hole (like Kerr). A direct calculation determines the surface gravity is constant, and the analog model will follow suit. The constant surface gravity is necessarily independent of angle and gives the temperature of the black hole at late times. The analog model, as we shall see, is capable of capturing the zeroth law in a distinctly non-gravitational, lower dimensional system. This system exploits the use of an accelerated boundary condition that disturbs the quantum field. The physical effect can be considered a type of thermodynamic addendum to the equivalence principle.

2.2. Accelerated boundary correspondence

In curved Kerr spacetime, the temperature of emitted radiation observed by an inertial observer at infinity is

\[
T_K = \frac{\kappa}{2\pi} = \frac{g}{2\pi} = \frac{k}{2\pi} = \frac{1}{8\pi M} \frac{2\beta}{1 + \beta},
\]

(6)

where \(\beta = \sqrt{1 - a^2/M^2} \) (see appendix for a derivation). We will show that the same Planck spectrum with an identical temperature holds for the accelerating mirror analog in flat spacetime. Here \(g = 1/(4M) \) is the usual Schwarzschild surface gravity, and \(k = M\Omega^2 \) is the black hole spring constant [39] where \(\Omega \) is the angular velocity at the outer event horizon, see equation (A5). The parameter \(\beta \) will allow us to present results for the continuous range from Schwarzschild (\(\beta = 1 \)) to extreme Kerr (EK) (\(\beta = 0 \)) solutions.

For a double null coordinate system \((u, v)\), with \(u = t - r^* \) and \(v = t + r^* \), the appropriate tortoise coordinate \(r^* \) is found in the usual way, via

\[
r^* = \int dr f(r)^{-1},
\]

(7)

yielding

\[
r^* = r + M \ln \left[\frac{(r - r_p)(r - r_m)}{r^2} \right] + \frac{M}{\beta} \ln \left[\frac{r - r_p}{r - r_m} \right].
\]

(8)

One then has the metric for the geometry describing the outside region \(r > r_p \),

\[
d\bar{s}^2 = -f du dv.
\]

(9)

The matching condition (see e.g. [35]) with a flat interior geometry, described by the interior coordinates \(U = T - r \) and \(V = T + r \), is the trajectory of \(r = 0 \), expressed in terms of the exterior function \(u(U) \) with interior coordinate \(U \). The interior is flat to account for collapse models. It is possible to choose a flat interior [33] because we are working with the symmetric
line element equation (4) and may appeal to Birkhoff’s theorem for a spherically symmetric gravitational field produced by a source centered at the origin. The matching is obtained via the association, \(r' = r \). We take \(r'(v_0 - U)/2 = (v_0 - u)/2 \), occurring along a light ray, \(v_0 \). We can choose either \(v_0 - 2r_p \equiv v_H \) or \(v_0 - 2r_m \equiv v_H \) because \(u \to +\infty \) at \(U = v_H \). Without loss of generality, we can set \(v_H = 0 \), i.e. \(v_0 = 2r_{p.m.} \). Choosing \(v_0 = 2r_p \) gives the correct Schwarzschild limit since for Schwarzschild, \(r_m = 0 \). Another way of understanding this choice is that the modes that escape the incipient black hole necessarily have access to the \(r = 0 \) center. Anticipating a transition to the mirror system, the outer radius is chosen for the shell position because \(r_p > r_m \). That is, the modes from the shell \(v_0 = 2r_p \) will reach the observer at \(\mathcal{I}_H^\pm \) first in both the mirror and black hole system, already having passed through \(r = 0 \) (reflecting off the mirror). Thus, we choose \(v_0 = 2r_p \) rather than the inner radius which occurs at an earlier \(v \).

Taking the outer horizon \(v_0 = 2r_p \), the result for the exterior coordinate is expressed as

\[
u(U) = U - 2M \frac{1 + \beta}{\beta} \ln \left| \frac{U}{4M} \right| + 2M \frac{1 - \beta}{\beta} \ln \left| \frac{U - 4M\beta}{4M} \right|.
\tag{10}
\]

We can verify that the Schwarzschild expression is reproduced for \(\beta = 1 \).

To ensure regularity of the modes, we require that they vanish at \(r = 0 \) such that the origin acts like a moving mirror in the \((U, V)\) coordinates. Since there is no field behind \(r < 0 \), the form of field modes can be determined, such that a \(U \leftrightarrow v \) identification is made for the outgoing, Doppler-shifted right-movers [2]. We are now ready to analyze the analog mirror trajectory by making the identification \(u(U) \leftrightarrow f(v) \), a known function of the advanced time \(v \).

Using the standard moving mirror formalism [2], we study the massless scalar field in \((1 + 1)\)-dimensional Minkowski spacetime (following e.g. [20]). From equation (10) the Kerr analog moving mirror trajectory is

\[
f(v) = v - \frac{1}{2g} \frac{1 + \beta}{\beta} \ln |gv| + \frac{1}{2g} \frac{1 - \beta}{\beta} \ln |gv - \beta|.
\tag{11}
\]

Note that the prefactor of the first logarithm is simply \(1/\kappa \) (the surface gravity at \(r_p \)) and the prefactor of the second logarithm is \(1/\kappa_m \) (the surface gravity at \(r_m \)) and so for \(\beta = 1 \) the reduction to the Schwarzschild case (where \(g = \kappa \)) is clear. This is now to be regarded as the trajectory of a perfectly reflecting boundary in flat spacetime rather than the origin as a function of coordinates in curved Kerr spacetime. We have reintroduced \(g \equiv 1/(4M) \) to signal that we are now working in the moving mirror model with a background of flat spacetime, where \(g \) is related to the acceleration parameter of the trajectory.

The rapidity, in advanced time, can be obtained via \(-2\eta(v) = \ln f'(v) \), where the prime denotes a derivative with respect to the argument [40]. This yields

\[
\eta(v) = -\frac{1}{2} \ln \left| 1 - \frac{1 + \beta}{2\beta g v} + \frac{1 - \beta}{2\beta (gv - \beta)} \right|.
\tag{12}
\]

The rapidity asymptotes at \(v = 0 \), i.e. the mirror approaches the speed of light at the horizon, \(u \to +\infty \). Again, this agrees with the Schwarzschild result for \(\beta = 1 \). The proper acceleration \(\alpha = e^{\eta(v)} f'(v) \) is also easily found and diverges as \(v \to 0^+ \), with \(\alpha(v \to 0^+) = -\kappa/\sqrt{-4\kappa v} \).

While the late-time acceleration is formally divergent, it is still related (by units) to the finite surface gravity \(\kappa \) of the Kerr black hole. The direct correspondence between the mirror and black hole will be with the temperature of the thermal spectrum of particles produced in both systems. While an intuitive guess using the equivalence principle might lead one to think the acceleration and surface gravity would be the same at late times, this is not so; the difference
Figure 1. Penrose conformal diagrams of flat Minkowski spacetime with inclusion of a class of generalized trajectories of the form equation (11), with $v_H = 0$. In (a), $g = 1$ with $a/M = 0.9, 0.975, 0.999$ from blue to dark orange respectively. In (b), $\beta = 0.5 (a/M = 0.866)$ with $g = 1/(4M) = 0.5, 1, 2, 5$, again from blue to dark orange. Notice the approach to the advanced time horizon at $v_H = 0$, with the mirror asymptotically light-like.

is highlighted by the divergent late time proper acceleration and the finite surface gravity of the black hole. What is equivalent is the temperatures, not the acceleration/surface gravity. The acceleration goes to zero at $v = -\infty$ as $-\beta/(g^2v^2)$.

The trajectory, moving in flat spacetime, captured in a conformal Penrose diagram is plotted in figure 1(a), showing the influence of the spin for different values of $\beta = \sqrt{1 - a^2/M^2}$, while figure 1(b) displays the influence of the mass for different values of $g = 1/(4M)$.

6
Qualitatively and intuitively, the mirror slices through vacuum virtual particle pairs as it accelerates through spacetime. These particles cannot rejoin together, which subsequently reflect off to a far away observer. While these pairs usually exist for an extremely short time, and then mutually annihilate; here the mirror separates the pair using whatever external energy it has been given to accelerate so that the pairs avoid annihilation and become actual particles. We emphasize that this picture of the mechanism responsible for the emission is heuristic only and should not be taken too literally because the real justification for the radiation is the mathematical derivation of the Bogoliubov transformation and renormalized quantum stress tensor given in following section.

3. Flux, spectrum, and particles

Before we proceed to the characteristics of the emitted radiation, we give some important caveats. We concentrate on the pure Hawking radiation—absent scattering effects [35]. A more complete treatment of Hawking radiation will include backscattering, where wave-packets of field modes scatter off the gravitational field and into the black hole, and superradiance, which includes incoming wave amplification due to scattering off the rotating black hole. Backscattering is a curved spacetime effect indicative of the gradual change in geometry which does not appear to have a corresponding effect in the mirror system with flat spacetime background. Superradiance (the kind of superradiance encountered in the original Kerr space-time) is a higher-space dimensional effect which ultimately results due to the inability to expand the scalar in terms of spherical harmonics from rotational symmetry with respect to only one axis. Thus we restrict our focus to the s-wave (no potential) pure Hawking radiation effect, looking for new insights regarding this essential physics.

For the analog Kerr mirror, we find that the energy flux is constant at late times. The radiated energy flux \(F(v) \) as computed from the quantum stress tensor can be calculated via the Schwarzian derivative of equation (11) [42],

\[
F(v) = \frac{1}{24\pi} \{ f(v), v \} f'(v)^{-2},
\]

where the Schwarzian brackets are defined as

\[
\{ f(v), v \} \equiv \frac{f'''}{f'} - \frac{3}{2} \left(\frac{f''}{f'} \right)^2.
\]

This yields, to leading order in \(v \), near \(v \to 0^- \),

\[
F = \frac{\kappa^2}{48\pi} + \mathcal{O}(v^3),
\]

where \(\kappa = g - k \). Here the spring constant arising from the angular momentum is \(k = g(1 - \beta)/(1 + \beta) \), which vanishes for the Schwarzschild case and is maximal for the EK case (forcing \(\kappa \) to zero). See appendix for more details.

Equation (15) is indicative of late time thermal equilibrium. From figure 1 we see that as \(\beta \) decreases (\(a/M \) increases), the late-time trajectory is further from the light-like asymptote

\[
\text{For general spacetimes, superradiance can happen in any dimension, even (1+1)D. It then appears in a divergence of the Planck spectrum and gray body factors. On this level of generality superradiance is more a result of a chemical potential appearing in the spectrum. For example, consider how the Schwinger effect for charged black holes is a result of superradiant modes [41].}
\]
Figure 2. The mode spectra $N_{\omega^\prime} \equiv |\beta_{\omega^\prime}|^2$, setting $\omega^\prime = 1$ for illustration. At late times (i.e. $\omega \ll \omega^\prime$) all approach thermal spectra. Here we have chosen the temperatures to be the same by setting $\kappa = 1$ for Kerr and $g = 1/(4M) = 1$ for Schwarzschild.

(less accelerated), and so as expected, the particle flux decreases as does the temperature. We next present the derivation of the accompanying Planck distribution of the late time thermal equilibrium.

The particle spectrum can be obtained from the beta Bogoliubov coefficient, which can be found via

$$\beta_{\omega^\prime} = -\frac{1}{4\sqrt{\omega^\prime}} \int_{-\infty}^{\infty} \frac{dv}{v} e^{-i\omega^\prime v - i\omega f(v)} (\omega f'(v) - \omega^\prime),$$

where ω and ω^\prime are the frequencies of the outgoing and incoming modes respectively. After integration by parts and neglecting the non-contributing surface terms, equation (16) can be written

$$\beta_{\omega^\prime} = \frac{1}{2\pi} \sqrt{\omega/\omega^\prime} \int_{-\infty}^{\infty} \frac{dv}{v} e^{-i\omega^\prime v - i\omega f(v)}.$$ (17)

To obtain the particle spectrum, we take the modulus square,

$$N_{\omega^\prime} \equiv |\beta_{\omega^\prime}|^2.$$ (18)

which gives

$$N_{\omega^\prime} = \frac{\omega^\prime}{2\pi \kappa \omega_p^2} \frac{e^{i\omega/\kappa(1-\beta)/(1+\beta)}}{e^{2\pi \omega/\kappa} - 1} |U|^2,$$ (19)

where U is the confluent hypergeometric Kummer function of the second kind, given by

$$U \equiv U \left(\frac{i\omega}{\kappa} 1 - \beta, \frac{i\omega}{g} + \frac{i\beta \omega_p}{g} \right).$$ (20)

and $\omega_p = \omega^\prime + \omega$.

The mode-mode spectrum N_{ω^\prime} is plotted in figure 2. The particle spectrum N_ω,

$$N_\omega = \int_0^\infty d\omega' N_{\omega^\prime}$$ (21)
Figure 3. The particle count spectra $N_\omega = \int N_{\omega \omega'} d\omega'$. Both Kerr and Schwarzschild solutions have thermal spectra at temperature $\kappa/2\pi$ and $g/2\pi$ respectively. Here we have chosen $\kappa = 1$ for Kerr and $g = 1$ ($= \kappa$) for Schwarzschild, with the same cases as figure 2.

is obtained numerically and plotted in figure 3, illustrating a thermal Planck particle number spectrum at late times. Multiplying by the energy and phase space factors gives the usual Planck blackbody energy spectrum.

Thermal behavior can also be seen analytically by a series approximation on $N_{\omega \omega'}$ in the high frequency limit $\omega' \gg \omega$, which amounts to late times, as first introduced by Hawking [4]. (Again, note that backscattering effects, and its greybody factors, are negligible at these high frequencies.) As noted already, ω' is the frequency of the modes that have incoming, left-moving plane wave form, while ω is the frequency of the second set of modes that have outgoing right-moving plane wave form (see e.g. [42]). Late-time incoming modes become extremely Doppler-shifted by the receding trajectory of the mirror. The main contribution to the beta Bogoliubov coefficient comes from these high-frequency incoming modes. Therefore they are governed by the asymptotic form for high-frequency, which is independent of the details of collapse. Indeed in this limit (formally both $\omega' \gg \omega$ and $\beta \omega' \gg g$), the expressions only depend on the asymptotic acceleration, which is a function of κ only, and not g and β separately.

The result is

$$N^K_{\omega \omega'} = \frac{1}{2\pi \kappa \omega'} \frac{1}{e^{2\pi \omega/\kappa} - 1}, \quad \omega' \gg \omega, \quad (22)$$

showing a late time equilibrium temperature of $T = \kappa/(2\pi)$.

We can compare this to the Schwarzschild mirror [43], which has beta coefficient squared given by

$$N^S_{\omega \omega'} := |\beta^S_{\omega \omega'}|^2 = \frac{\omega'}{2\pi \beta \omega' (e^{2\pi \omega/g} - 1) (\omega' + \omega)^2}, \quad (23)$$

with $g = 1/(4M)$ as usual. The Schwarzschild case corresponds to $\beta = 1$, giving $\kappa = g$ by equation (6) or (A8), and equation (19) reduces exactly to equation (23) by the identity $U(0, b, z) = 1$ of the Kummer function.
In the high frequency regime $\omega' \gg \omega$, where the incoming modes are extremely red-shifted, one has the per mode squared spectrum $N_{\omega \omega'} := |\beta_{\omega \omega'}|^2$ as

$$N_{\omega \omega'} = \frac{1}{2 \pi g \omega' e^{2\pi g/\omega} - 1}, \quad \omega' \gg \omega,$$

with the Schwarzschild temperature given by $T = g/(2\pi)$. Equation (24) is the eternal thermal spectrum for the mirror trajectory [44] of Carlitz and Willey [9]. As expected, equation (22) reduces to equation (24) for $\beta = 1$ (i.e., $\kappa = g$).

4. From Kerr to extremal Kerr

4.1. Extremal Kerr

The extremal Kerr limit is defined by $J = M^2$, or $a = M$, corresponding to $\beta = 0$. This means that $r_p = r_m = M$ and we have to redo our derivation in the $\beta = 0$ limit to avoid division by zero in the last term of equation (8). The relevant radial and time pieces of the metric are given by

$$ds^2 = -f(r)dt^2 + f(r)^{-1} dr^2,$$

with

$$f(r) = 1 - \frac{2Mr}{r^2 + M^2},$$

giving a horizon at $r = M$. The tortoise coordinate is found by the usual integration equation (7), giving

$$r^* = r - M + \frac{2M^2}{M - r} + 2M \ln \frac{M - r}{2M}.$$

We perform the standard analysis by matching $r^* = r$, solving for the trajectory of the center and then applying the regularity condition of the modes. This gives the moving mirror trajectory,

$$f(v) = v + 2M - \frac{8M^2}{v} - 4M \ln \left(-\frac{v}{4M}\right).$$

Here we have set the shell to $v_0 = 2M$, so that the horizon is at $v_H = 0$. Note that the constant term $2M$ in $f(v)$ has no effect on the acceleration or flux.

To signal that we are now in flat space with an accelerated boundary, we associate M with A, where A is the limiting uniform proper acceleration of the mirror at late times,

$$\lim_{v \to 0} \alpha(v) = -A.$$ (29)

This gives $M = 1/(2\sqrt{2}A)$. Thus the extremal Kerr case gives asymptotic uniform acceleration, and so the energy flux vanishes in this limit $v \to 0$. This is behavior in common with asymptotically inertial mirrors. The model still produces an infinite total particle count in contrast to asymptotic zero velocity (static) mirrors like that proposed by Walker and Davies [45], or the ‘Schwarzschild mirror with quantum purity’ model [29, 46, 47], which yield finite total particle count N. An infinite total particle count is expected from the extremal Kerr case ($\beta = 0$) because infinite soft particles (zero frequency)—an Infrared (IR) divergence—are present for uniform acceleration.
Figure 4. The energy flux as computed by the stress tensor. The total energy from the non-extremal stress tensors are infinite because the energy flux is eternally thermal and observation happens over retarded time: \(E = \int F ddv \). The results have been normalized by \(768\pi \) (i.e. \(M = 1 \)) so that maximum Schwarzschild thermal emission is \(F(v = 0) = 1 \).

The energy flux is straightforward to derive from equation (13),

\[
F(v) = -\frac{Mv^3 (8M^2 - 7Mv + v^2)}{3\pi (8M^2 - 4Mv + v^2)^3},
\]

and is plotted as the blue curve in figure 4.

The total stress energy is found via substitution of equations (28) and (30) into

\[
E = \int_{-\infty}^{\infty} F(v) \frac{df(v)}{dv} dv,
\]

which gives

\[
E = \frac{A}{48\pi} \frac{\pi - 1}{\sqrt{2}}.
\]

The particle mode-mode spectrum via substitution of equation (28) into equation (16) or equation (17) gives,

\[
|\beta_{\omega\omega'}|^2 = \frac{e^{-\sqrt{2}\pi A\omega/\omega_p}}{\pi^2 A^4 \omega_p} \left| K_j \left(\frac{2}{A} \sqrt{\omega\omega_p} \right) \right|^2.
\]

where \(\omega_p \equiv \omega + \omega' \), and \(j \equiv 1 + i \omega \sqrt{2}/A \). The total energy carried by the particles is the same as that derived by the stress tensor radiation, equation (32),

\[
E = \int_0^\infty d\omega \int_0^\infty d\omega' \omega |\beta_{\omega\omega'}|^2 = \frac{A}{48\pi} \frac{\pi - 1}{\sqrt{2}}.
\]
Figure 5. The integrand $E_{\omega'\omega} = \omega'|\beta_{\omega\omega}'|^2$ for extremal Kerr and extremal RN with equal asymptotic uniform accelerations, $\mathcal{A} = 1$. Here we have set $\omega' = 10$. The surface gravities of the extreme black holes are zero, i.e. the temperature is undefined as at no point during collapse do the particles find themselves distributed according to a Planck spectrum.

Figure 6. Conformal Penrose diagram for extremal mirror trajectories. The extremal Kerr mirrors are the blue to yellow trajectories with asymptotic uniform acceleration $\mathcal{A} = 1, 2, 8$, respectively. The extremal RN trajectory [31] is in black, with $\mathcal{A} = 2$.

4.2. Comparison with extremal Reissner–Nordström

We can compare equation (33) for the EK case with the ERN case [31],

$$|\beta_{\omega\omega}'|_{\text{ERN}} = \frac{e^{-2\pi \omega/\mathcal{A}_{\text{ERN}}\omega'}}{\pi^2 \mathcal{A}_{\text{ERN}}^2 \sqrt{\omega_{\mathcal{P}}}} K_q \left(\frac{2}{\mathcal{A}_{\text{ERN}} \sqrt{\omega_{\mathcal{P}}}} \right)^2,$$

(35)
where \(q \equiv 1 + 2i\omega/\mathcal{A}_{\text{ERN}} \). The forms are quite similar but differ in the details. For two equal mass extremal RN and extremal Kerr black holes, the extremal RN emits more total energy than the extremal Kerr,

\[
E_{\text{ERN}} = \frac{1}{72\pi M_{\text{ERN}}} \simeq \frac{0.0044}{M_{\text{ERN}}} \tag{36}
\]

\[
E_{\text{EK}} = \frac{\pi - 1}{192\pi M_{\text{EK}}} \simeq \frac{0.0035}{M_{\text{EK}}}. \tag{37}
\]

Of course, the inverse relationship between acceleration and mass reverses the situation if instead we take two equal late-time acceleration extremal RN and extremal Kerr mirrors. Then the extremal Kerr emits more total energy than the extremal RN. Since \(\mathcal{A}_{\text{ERN}} = 1/(2M_{\text{ERN}}) \) and \(\mathcal{A}_{\text{EK}} = 1/(2\sqrt{2}M_{\text{EK}}) \), we have

\[
E_{\text{ERN}} = \frac{\mathcal{A}_{\text{ERN}}}{36\pi} \simeq 0.009\mathcal{A}_{\text{ERN}} \tag{38}
\]

\[
E_{\text{EK}} = \frac{\mathcal{A}_{\text{EK}} \pi - 1}{48\pi \sqrt{2}} \simeq 0.010\mathcal{A}_{\text{EK}}. \tag{39}
\]

Figure 5 compares the integrand of \(E \) for the two extremal mirrors, \(\omega|\beta\omega\omega'|^2 \). Figure 6 shows the Penrose diagram of extremal Kerr for various asymptotic accelerations, with a comparison to an extremal RN trajectory in black.

5. Conclusions

In this paper, we have derived the particle spectrum for a rotating Kerr black hole by utilizing the well-known accelerating boundary correspondence in \((1 + 1)\)-dimensional flat spacetime. Since a collapsing matter distribution can be described by a \((1 + 1)\)-dimensional massless conformal field theory via the \(s\)-wave sector of the Hawking radiation, which carries the bulk of the radiated energy (neglecting backscattering and superradiant scattering for the reasons given), this spectrum reveals new information about the early time collapse radiation, i.e. the Kummer function of equation (19).

Kerr black holes are particularly interesting to understand since rotation seems ubiquitous among the observed black holes in our Universe, so understanding the Kerr metric at a fundamental level is of interest, and the accelerating mirror approach makes the calculations tractable. Solving for the beta Bogoliubov coefficients, we find they can be written in terms of special functions (both for early time non-thermal non-extremal and non-thermal extremal Kerr cases) and give rise to a particle spectrum with a late-time Planck distribution with temperature proportional to the surface gravity, \(\kappa = g - k \) in the non-extremal case. The role of the spring constant \(k \) as the measure of the cooling effect due to rotation, and complete separability from the Schwarzschild surface gravity remains despite having no 3D angular momentum in the mirror approach. The angular coordinates are degenerate and irrelevant for computing the correct temperature at late times, reminiscent of the holographic principle and the one-dimensional nature of information flow [38] for black holes [48].

We presented results for the continuous range from Schwarzschild (\(\beta = 1 \)) to EK (\(\beta = 0 \)) solutions, also comparing to the ERN case. In particular the temperature of the late-time Planck spectrum decreases from the Schwarzschild case as one approaches maximal spin, where the flux finally vanishes.

The ABC continues to be demonstrated as a useful tool, here enabling us to use our derived Kerr moving mirror solution to confirm that the distribution of particles produced from a Kerr
spacetime at late times is the thermal Planck spectrum, with temperature related to the surface gravity, or alternately mirror acceleration. Moreover, the ABC enables one to solve for the extremal Kerr distribution, where the surface gravity is zero (the temperature is undefined), confirming that at no point during collapse are the particles distributed in a Planck spectrum. As mentioned in the introduction, several notable geometries, including the Schwarzschild, RN, and the de Sitter/anti-de Sitter spacetimes have recently been studied. The utility of this approach should allow for its application to more complex metrics such as asymptotically de Sitter/anti-de Sitter black holes, and accelerated black holes described by the C-metric [49].

Acknowledgments

Funding from state-targeted program 'Center of Excellence for Fundamental and Applied Physics' (BR05236454) by the Ministry of Education and Science of the Republic of Kazakhstan is acknowledged. MG is also funded by the FY2018-SGP-1-STMM Faculty Development Competitive Research Grant No. 090118FD5350 at Nazarbayev University. JF acknowledges support from the Australian Research Council Center of Excellence for Quantum Computation and Communication Technology (Project No. CE170100012). EL is supported in part by the Energetic Cosmos Laboratory and by the US Department of Energy, Office of Science, Office of High Energy Physics, under Award DE-SC-0007867 and Contract No. DE-AC02-05CH11231.

Data availability statement

All data that support the findings of this study are included within the article (and any supplementary files).

Appendix. Derivation of $\kappa = g - k$

The first law of black hole mechanics relates the two essential parameters, (M, J), the mass and angular momentum of a rotating black hole:

$$dM = \frac{\kappa}{8\pi} dA + \Omega dJ,$$ \hspace{1cm} (A1)

where A is the outer horizon area, κ is the outer surface gravity, Ω is the outer angular velocity, and J is the angular momentum. The area is known,

$$A = 4\pi(r_p^2 + a^2) = 4\pi r_pr_p,$$ \hspace{1cm} (A2)

where $r_p = M + \sqrt{M^2 - a^2}$, $a = J/M$ and $r_s = 2M$. Equivalently to equation (A1),

$$M^2 = \frac{A}{16\pi} + 4\pi \frac{J^2}{A}.$$ \hspace{1cm} (A3)

One differentiates both sides to get,

$$\kappa = 8\pi \frac{\partial M}{\partial A} \bigg|_{J} = \frac{1}{4M} - M \left(\frac{4\pi J}{MA}\right)^2.$$ \hspace{1cm} (A4)
Since the angular velocity at the outer event horizon is
\[\Omega = \left. \frac{\partial M}{\partial J} \right|_A = \frac{4\pi J}{MA}, \tag{A5} \]
we have \(\kappa = g - k \) where \(g = 1/(4M) \) and \(k = M\Omega^2 \).

This can also be obtained by the usual formula:
\[
\kappa = \frac{1}{2} \frac{d}{dr} f(r) \bigg|_{r=r_p} = \frac{1}{2M} - \frac{1}{2r_p} = \frac{1}{4M} - \frac{a^2}{4Mr_p^2}, \tag{A6}
\]
thus \(\kappa = g - k \).

Recalling the notation \(\beta = \sqrt{1 - a^2/M^2} \), we see that \(A = 8\pi M^2(1 + \beta) \) and
\[
k = M \left(\frac{4\pi J}{MA} \right)^2 = \frac{1}{4M} \frac{1-\beta}{1+\beta}, \tag{A7}
\]
so
\[
\kappa = \frac{1}{4M} \frac{2\beta}{1+\beta} = \frac{2g\beta}{1+\beta}. \tag{A8}
\]
having the correct Schwarzschild (\(\beta = 1 \)) and extremal Kerr (\(\beta = 0 \)) limits.

ORCID iDs

Michael R R Good © https://orcid.org/0000-0002-0460-1941
Joshua Foo © https://orcid.org/0000-0002-6435-0187
Eric V Linder © https://orcid.org/0000-0001-5536-9241

References

[1] Kerr R P 1963 Phys. Rev. Lett. 11 237
[2] Birrell N and Davies P 1984 *Quantum Fields in Curved Space* (Cambridge Monographs on Mathematical Physics) (Cambridge: Cambridge University Press)
[3] Moore G T 1970 J. Math. Phys. 11 2679
[4] Hawking S W 1975 Commun. Math. Phys. 43 199
[5] DeWitt B S 1975 Phys. Rep. 19 295
[6] Fulling S A and Davies P C W 1976 Proc. R. Soc. A 348 393
[7] Davies P and Fulling S 1977 Proc. R. Soc. A 356 237
[8] Walker W R 1985 Phys. Rev. D 31 767
[9] Carlitz R D and Willey R S 1987 Phys. Rev. D 36 2327
[10] Su D, Ho C T M, Mann R B and Ralph T C 2017 New J. Phys. 19 063017
[11] Chen P and Mourou G 2020 Phys. Plasmas 27 123106
[12] Chen P and Mourou G 2017 Phys. Rev. Lett. 118 045001
[13] Blencowe M P and Wang H 2020 arXiv:2003.00382 [quant-ph]
[14] Wang H, Blencowe M P, Wilson C M and Rimberg A J 2019 Phys. Rev. A 99 053833
[15] Yablonovitch E 1989 Phys. Rev. Lett. 62 1742
[16] Ford L H and Vilenkin A 1982 Phys. Rev. D 25 2569
[17] Dodonov V 2020 Physics 2 67
[18] Good M R R, Anderson P R and Evans C R 2013 Phys. Rev. D 88 025023
[19] Romualdo I, Hackl L and Yokonmizo N 2019 Phys. Rev. D 100 065022
[20] Good M R R and Ong Y C 2015 J. High Energy Phys. JHEP 07(2015)145
[21] Svidzinsky A A, Ben-Benjamin J S, Fulling S A and Page D N 2018 Phys. Rev. Lett. 121 071301
[22] Good M R and Linder E V 2019 Phys. Rev. D 99 025009
[23] Cong W, Tjoa E and Mann R B 2019 J. High Energy Phys. JHEP06(2019)021
[24] Good M R R and Linder E V 2017 Phys. Rev. D 96 125010
[25] Fulling S A and Wilson J H 2019 Phys. Scr. 94 014004
[26] Good M R R 2017 2nd LeCosPA Symp.: Everything about Gravity, Celebrating the Centenary of Einstein’s General Relativity pp 560–5 arXiv:1602.00683 [gr-qc]
[27] Anderson P R, Good M R R and Evans C R 2017 The 14th Marcel Grossmann Meeting pp 1701–4 arXiv:1507.03489 [gr-qc]
[28] Good M R R, Anderson P R and Evans C R 2017 The 14th Marcel Grossmann Meeting pp 1705–8 arXiv:1507.05048 [gr-qc]
[29] Good M R R and Linder E V 2020 arXiv:2003.01333 [gr-qc]
[30] Good M R R and Ong Y C 2020 Eur. Phys. J. C 80 1169
[31] Good M R R 2020 Phys. Rev. D 101 104050
[32] Good M R R, Zhakenuly A and Linder E V 2020 Phys. Rev. D 102 045020
[33] Wilczek F 1993 Int. Symp. on Black Holes, Membranes, Wormholes and Superstrings pp 1–21 arXiv:hep-th/9302096
[34] Rothman T 2000 Phys. Lett. A 273 303
[35] Fabbri A and Navarro-Salas J 2005 Modeling Black Hole Evaporation (London: Imperial College Press)
[36] Mione N T and Voydatch B L 2019 Constructing two dimensional theories of gravity for Schwarzschild, Reissner–Nordstrom, and non-extremal Kerr black holes Technical Report (Worcester Polytechnic Institute)
[37] Bekenstein J D 2003 Contemp. Phys. 45 31
[38] Padmanabhan T 2002 Class. Quantum Grav. 19 5387
[39] Good M R R and Ong Y C 2015 Phys. Rev. D 91 044031
[40] Good M R R and Linder E V 2018 Phys. Rev. D 97 065006
[41] Gibbons G W 1975 Commun. Math. Phys. 44 245
[42] Good M R R, Yelshibekov K and Ong Y C 2017 J. High Energy Phys. JHEP03(2017)013
[43] Good M R, Anderson P R and Evans C R 2016 Phys. Rev. D 94 065010
[44] Good M R R 2013 Int. J. Mod. Phys. A 28 1350008
[45] Walker W R and Davies P C W 1982 J. Phys. A: Math. Gen. 15 L477
[46] Good M R, Linder E V and Wilczek F 2020 Phys. Rev. D 101 025012
[47] Good M R, Linder E V and Wilczek F 2020 Mod. Phys. Lett. A 35 2040006
[48] Bekenstein J D and Mayo A E 2001 Gen. Relativ. Gravit. 33 2095
[49] Griffiths J B and Podolský J 2009 Exact Space-Times in Einstein’s General Relativity (Cambridge: Cambridge University Press)