Abstract

We have investigated the escape rate of the nanospin particle with a magnetic field applied along the easy axis. The model studied here is described by the Hamiltonian $\hat{\mathcal{H}} = K_1 \hat{S}_z^2 + K_2 \hat{S}_y^2 + g\mu_B H \hat{S}_x$, ($K_1 > K_2 > 0$) from which the escape rate is calculated within the semiclassical approximation. We have obtained a diagram for the orders of the phase transitions depending on the anisotropy constant and the external field. For $K_2/K_1 > 0.85$ the present model reveals, for the first time, the existence of the first-order transition within the quantum regime.

PACS number : 75.45.+j, 75.50.Tt
In recent years there has been much interest in the problem of the magnetization reversal of a nanospin particle \cite{1}. It is well known that there are two possible mechanisms of the magnetization reversal: a classical thermal activation \cite{2} and a quantum tunneling \cite{3–5}. In the study of this problem the transition rate of the system of magnetic particles is mainly concerned. At high temperature the transition rate is governed by the classical thermal activation, but when the temperature is very low the quantum tunneling dominates. As the temperature is lowered the phase change of the transition rate between the classical thermal activation and the quantum tunneling occurs. This phase transition can be either first-order \cite{6} or second-order \cite{7}. In recent several works \cite{8–10} these are shown to be possible in the real system such as single-domain ferromagnetic particle. These two types of phase transitions have been suggested by Chudnovsky \cite{11}. However, the coexistence of the first-order phase transition within quantum regime and the second-order classical-to-quantum transition, which was also proposed by Chudnovsky, was not found yet. In this letter we find a real system which shows all kinds of phase transitions mentioned above.

Consider a nanospin particle with an applied field \mathbf{H} along the easy axis. If the spin particle is a uniaxial spin system with XOY easy plane anisotropy and the easy X-axis in the XY-plane the Hamiltonian for this system is given by \cite{5}

$$\hat{H} = K_1 \hat{S}_z^2 + K_2 \hat{S}_y^2 - g \mu_b H \hat{S}_z$$

where K_1, K_2 are the anisotropy constants, μ_b is the Bohr magneton, and g is the spin g-factor which is taken to be 2.0 here. Since we choose XY-plane as the easy plane the anisotropy constants satisfies $K_1 > K_2 > 0$.

The anisotropy energy associated with this Hamiltonian has two local energy minima; the one on the $+X$-axis which is metastable state and the other on the $-X$-axis. Between these two energy minima there exists an energy barrier, and the spin escapes this metastable state either by crossing over or by tunneling through the barrier.

In the coherent spin state representation \cite{12} the effective Lagrangian corresponding to the Hamiltonian, Eq.(1), for small deviation from the easy plane can be written as
\[\mathcal{L}(\phi, \dot{\phi}) = \dot{\phi} \hbar S_z - \langle \theta, \phi | \hat{H} | \theta, \phi \rangle \]
\[= \hbar^2 \frac{m(\phi)}{2} \dot{\phi}^2 - V(\phi) \]
(2)

where

\[m(\phi) = \frac{1}{2K_1(1 - \lambda \sin^2 \phi - \frac{\alpha \lambda}{2} \cos \phi)} \]
(3)

is an effective mass, and

\[V(\phi) = K_2 S^2 (\sin^2 \phi + \alpha \cos \phi + \alpha) \]
(4)

is an effective potential for the spin system. Here we have introduced dimensionless parameters \(\lambda = K_2/K_1 (< 1) \), \(\alpha = 2H/H_c \) \((H_c = \frac{K_2 S}{\mu_B} \) being the coercive field), and added a constant term \(K_2 S^2 \alpha \) in the effective potential for convenience. The effective mass and potential are shown in Fig.1. The barrier height of \(V(\phi) \) decreases as \(\alpha \) increases and vanishes at \(H = H_c \) for a given \(\lambda \). Thus, in order for the tunneling to exist \(\alpha \) should have values between 0 and 2. We note that the mass depends on \(\phi \). Later we will see that the \(\phi \) dependence of the effective mass plays a crucial role for the occurrence of the first-order phase transition in quantum regime.

At temperature \(T \) the escape rate of the spin particle can be obtained by taking ensemble average of the tunneling probability. Introducing Euclidean-time \(\tau = it \) this can be written as the path integral form [13-15]

\[\Gamma(\tau) = \int d[\phi(\tau)] e^{-\frac{1}{\hbar} \oint d\tau [\hbar^2 \frac{m(\phi)}{2} \dot{\phi}^2 - V_E(\phi)],} \]
(5)

where \(V_E(\phi) = -V(\phi) \) is the Euclidean effective potential (see Fig.1), and \(\dot{\phi} \equiv d\phi/d\tau \). In the semiclassical approximation, neglecting the quantum fluctuation term, the escape rate at an energy \(E \) above the metastable minimum is given by

\[\Gamma(\tau) \sim e^{-\frac{1}{\hbar} S(\tau)}, \]
(6)

where \(S(\tau) \) is the minimum effective Euclidean action which can be obtained by taking the smallest value of \(S_0 \) and \(S(T) \). Here, \(S_0 \) is the thermodynamic action defined by
with \(E_0 = \frac{K_2 S^2}{4}(\alpha + 2)^2 \), and \(S(T) \) is expressed as

\[
S(T) = 2\hbar \int_{\phi_i(E)}^{\phi_f(E)} d\phi \sqrt{2m(\phi)[V(\phi) - E]} + \frac{E\hbar}{k_B T},
\]

where \(\phi_i(E) \) and \(\phi_f(E) \) are the solutions of the equation \(V(\phi) = E \). For \(E = 2\alpha K_2 S^2 \) (the bottom of the metastable state) the Euler-Lagrange equation gives the bounce solution. When \(2\alpha K_2 S^2 < E < \frac{K_2 S^2}{4}(\alpha + 2)^2 \) the trajectory \(\phi(\tau) \) in \(V_E(\phi) \) shows periodic motion with turning points at \(\phi_i(E) \) and \(\phi_f(E) \). The solution corresponding to this trajectory is called the periodic instanton whose period is defined as

\[
\tau_p(E) = \frac{\hbar}{k_B T} = \hbar \int_{\phi_i(E)}^{\phi_f(E)} d\phi \frac{\sqrt{2m(\phi)}}{\sqrt{V(\phi) - E}}.
\]

We now examine how the period \(\tau_p \) changes as a function of energy \(E \). Since the effective mass depends on \(\phi \) it influences on the variation of \(\tau_p \) with \(E \). To see this we look into the Eq.(3). For small values of \(\lambda \), since \(m(\phi) \) varies not much it gives little effect on the behavior of \(\tau_p \). However, as \(\lambda \) comes close to 1, the magnitude of the effective mass at turning points is small at first, then rises rapidly (see Fig.1). As the mass becomes larger the speed of a particle in the potential \(V_E(\phi) \) reduces, and it takes more time to complete the periodic motion in \(V_E(\phi) \). Thus, the period \(\tau_p \) decreases with \(E \) at the start, but then changes to increase due to the rapid increase of \(m(\phi_f) \). We now note that the maximum point of the effective mass \(\phi_m \) does not coincide with the minimum point of the Euclidean potential \(\phi_0 \), which is illustrated in Fig.1. Therefore, as \(E \) approaches to the top of the potential barrier the motion of the particle in \(V_E(\phi) \) is restricted in a region where the effective mass becomes small. Thus, in this region, \(\tau_p \) decreases with \(E \). This suggests that the whole behavior of \(\tau_p \) will be the form illustrated in Fig.2. As proposed in Ref. [11] this form produces the first-order phase transition inside the quantum tunneling region.

In Fig.3 we have plotted the effective action as a function of \(T \) for \(\alpha = 1 \) and \(\lambda = 0.9 \). At \(T = T_c \) the escape rate changes from the thermal activation to the quantum tunneling
regime, and the transition is second-order. Below T_c, as T is lowered, the minimum action increases smoothly at first, changes abruptly at T_{qc} (the cusp at $T = T_{qc}$ in the figure), and then becomes almost constant. The quantum regime is, thus, divided into two parts: the thermally assisted quantum tunneling (when $T_{qc} < T < T_c$) and the pure quantum tunneling (when $T < T_{qc}$). It can be seen from this picture that the phase transition at $T = T_{qc}$ is first-order.

According to our numerical calculations the orders of the phase transitions are relevant to both α and λ. In Fig.4 we have drawn a diagram for the orders of the phase transitions in (λ, α) plane. As remarked earlier the maximum value of α is 2 in the spin system. However, since we are interested in the positive effective mass α is restricted by the inequality

$$\lambda \left(1 + \frac{\alpha^2}{16}\right) < 1. \quad (10)$$

From the diagram we observe many interesting results. First, the classical-to-quantum phase transition shows both the first-order (region I) and the second-order (region II) transitions. Note that there is only the second-order transition for $\lambda < 0.5$. For materials with λ larger than 0.5 we can see that the order changes from first to second as α increases, and the phase boundary increases with λ up to 0.85, after which it decreases.

In the case of the phase transition within the quantum regime there is no phase transition for λ below 0.85. However, for $\lambda > 0.85$, there exists phase transition which is first-order. We also observe that for $0.85 < \lambda < 0.91$ the phase boundary starts from the value corresponding to the maximum of the phase boundary between regions I and II and increases with λ. When λ becomes larger than 0.91, however, the phase boundary decreases with λ due to the positive mass condition, Eq.(9). This phase boundary forms a new region III in which both the first-order transition within the quantum regime and the second-order classical-to-quantum transition coexist. Finally, in the region IV, since the negative effective mass begins to appear the phase transition cannot be defined.

Our speculation about these results is as following. For materials with small λ the height of the potential barrier is small. In an ensemble of nanospin particles each will then
be relaxed to reverse its magnetization easily, which leads to the smooth variation of the escape rate with temperature T. On the other hand, if λ is large the barrier height will become large, and hence the spin particle will be reluctant to reverse its magnetization. In this case it needs the energy such as latent heat to make the spin particles ready to reverse their magnetizations. Therefore, the escape rate experiences the first-order phase transition.

We can also discuss the change of the order with α for a given λ. For λ less than 0.5, since the barrier height is essentially small for all values of α, the nanospin particle can easily reverse its magnetization, which corresponds to the second-order transition. For $0.5 < \lambda < 0.85$, the barrier height is large at small α, but it becomes smaller as α increases. It is thus possible for the order to change from first to second with increasing α. We now consider the case $\lambda > 0.85$. When α is small the barrier height is so large that only the high temperature first-order classical-to-quantum transition is possible. However, when α is moderately large, the first-order transition occurs at lower temperature, i.e., quantum region, with the classical-to-quantum transition being changed into second-order. This leads to the first-order quantum transition in quantum tunneling region. As α further increases, the external field makes the magnetization reversal easy (small barrier height), the situation is same as the case of small λ.

The Fig. 5 represents the crossover temperatures as a function of α for $\lambda = 0.9$. It tells that both T_c and T_q decrease as α gets large. This is rather obvious from the fact that the depth of the metastable well becomes shallow with increasing α.

In conclusion, we have investigated the phase transition of the escape rate from metastable states in nanospin system with a magnetic field applied along the easy axis. We found the coexistence of the first-order phase transition within the quantum tunneling region and second-order classical-to-quantum transition for large λ and α, which had not been observed before. Furthermore, the phase diagram for the orders of the phase transitions in (λ, α) plane is obtained. This phase diagram can be used as a guide for the experimental observations.
REFERENCES

[1] P. C. E. Stamp, E. M. Chudnovsky and B. Barbara, Int. J. Mod. Phys. 6, 1355 (1992); L. Gunther and B. Barbara, eds., Proc. Meeting on Quantum Tunneling of Magnetization QTM ’94, NATO ASI series, Vol. 301 (Kluwer, Dordrecht, 1995); W. T. Coffey, Yu. P. Kalmykov, and J. T. Waldron, The Langevin Equation (World Scientific, Singapore, 1996).

[2] L. Néel, Ann. Geophys. 5, 99 (1949); W. F. Brown, Phys. Rev. 130, 1677 (1963).

[3] I. Ya. Korenblit and E. F. Shender, Zh. Eksp. Teor. Fiz. 75, 1862 (1978) [JETP 48, 937 (1978)].

[4] M. Enz and R. Schilling, J. Phys. C19, L711 (1986).

[5] E. M. Chudnovsky and L. Gunther, Phys. Rev. Lett. 60, 661 (1988).

[6] A. I. Larkin and Yu. N. Ovchinnikov, Pis’ma Zh. Eksp. Teor. Fiz. 37, 332 (1983)[JETP37, 382 (1983)].

[7] I. Affleck, Phys. Rev. Lett. 46, 388 (1981); see also Ref. [3].

[8] E. M. Chudnovsky and D. A. Garanin, Phys. Rev. Lett. 79, 4469 (1997).

[9] J.-Q. Liang, H. J. W. Müller-Kirsten, D. K. Park, and F. Zimmerschied, Phys. Rev. Lett. 81, 216 (1998).

[10] S. Y. Lee, H. J. W. Müller-Kirsten, D. K. Park, and F. Zimmerschied, Phys. Rev. B (in press).

[11] E. M. Chudnovsky, Phys. Rev. A46, 8011 (1992).

[12] E. Manousakis, Rev. Mod. Phys. 63, 1 (1991); see also Ref. [4].

[13] J. S. Langer, Ann. Phys. (N.Y.) 41, 108 (1967).

[14] C. Callan and S. Coleman, Phys. Rev. D16, 1762 (1977).
[15] R. P. Feynman, *Statistical Mechanics* (Benjamin, New York, 1972).
FIGURES

FIG. 1. The effective potential $V(\phi)$(solid), Euclidean potential $V_E(\phi)$(dashed), and the effective mass $m(\phi)$(dotted). ϕ_0 is the position at which the Euclidean potential has a minimum, while ϕ_m the position at which the effective mass has a maximum. $\phi_i(E)$ and $\phi_f(E)$ are the classical turning points at Euclidean energy $-E$.

FIG. 2. The period in Euclidean potential as a function of energy at $\lambda = 0.9$ and $\alpha = 1.0$, which shows the first-order phase transition within the quantum regime.

FIG. 3. The actions $S(T)$ and S_0 as a function of temperature at $\lambda = 0.9$ and $\alpha = 1$. T_c corresponds to classical-to-quantum crossover temperature and T_{qc} to the transition temperature between the different quantum regime.

FIG. 4. The phase diagram for the orders of phase transition in (λ, α) plane. Region I: the first-order classical-to-quantum transition. Region II: the second-order classical-to-quantum transition. Region III: the second-order classical-to-quantum transition and the first-order transition within quantum regime coexist. Region IV: the negative effective mass area.

FIG. 5. Crossover temperature as a function of α. Both T_c and T_{qc} decrease with increasing α.
$\lambda = 0.9, \ \alpha = 1.0$
