MINIREVIEWS

1 Confocal endomicroscopy and cyst fluid molecular analysis: Comprehensive evaluation of pancreatic cysts
 Li F, Malli A, Cruz-Monserrate Z, Conwell DL, Krishna SG

10 Imaging of gall bladder by endoscopic ultrasound
 Sharma M, Somani P, Sunkara T

ORIGINAL ARTICLE

Retrospective Cohort Study

16 New 14-mm diameter Niti-S biliary uncovered metal stent for unresectable distal biliary malignant obstruction
 Kikuyama M, Shirane N, Kawaguchi S, Terada S, Mukai T, Sagimoto K

Retrospective Study

23 Post-endoscopic procedure satisfaction scores: Can we improve?
 Munjal A, Steinberg JM, Mossaad A, Kallus SJ, Mattar MC, Haddad NG

Case series on multimodal endoscopic therapy for gastric antral vascular ectasia, a tertiary center experience
 Matin T, Naseemuddin M, Shoreibah M, Li P, Kyanam Kabir Baig K, Wilcox CM, Peter S

Progressive Study

37 Mediastinal node staging by positron emission tomography-computed tomography and selective endoscopic ultrasound with fine needle aspiration for patients with upper gastrointestinal cancer: Results from a regional centre
 Harrington C, Smith L, Bisland J, Lope Gonzalez E, Jamieson N, Paterson S, Stanley AJ

45 Management of endoscopic biliary stenting for choledocholithiasis: Evaluation of stent-exchange intervals
 Tohda G, Dochin M

Prospective Study

51 Bacterial presence on flexible endoscopes vs time since disinfection
 Mallette KI, Pieroni P, Dhalla SS
ABOUT COVER

Editorial Board Member of World Journal of Gastrointestinal Endoscopy, Marcela Kopacova, MD, PhD, Professor, 2nd Department of Internal Medicine - Gastroenterology, Charles University Teaching Hospital, Hradec Kralove 500 05, Czech Republic

AIM AND SCOPE

World Journal of Gastrointestinal Endoscopy (World J Gastroint Endosc, WJGE, online ISSN 1948-5190, DOI: 10.4253) is a peer-reviewed open access (OA) academic journal that aims to guide clinical practice and improve diagnostic and therapeutic skills of clinicians. WJGE covers topics concerning gastroscopy, intestinal endoscopy, colonoscopy, capsule endoscopy, laparoscopy, interventional diagnosis and therapy, as well as advances in technology. Emphasis is placed on the clinical practice of treating gastrointestinal diseases with or under endoscopy.

We encourage authors to submit their manuscripts to WJGE. We will give priority to manuscripts that are supported by major national and international foundations and those that are of great clinical significance.

INDEXING/ABSTRACTING

World Journal of Gastrointestinal Endoscopy is now indexed in Emerging Sources Citation Index (Web of Science), PubMed, and PubMed Central.

EDITORS FOR THIS ISSUE

Responsible Assistant Editor: Xiang Li
Responsible Science Editor: Li-Jun Cui
Responsible Electronic Editor: Rui-Fang Li
Proofing Editorial Office Director: Xiu-Xia Song

NAME OF JOURNAL
World Journal of Gastrointestinal Endoscopy

ISSN
ISSN 1948-5190 (online)

LAUNCH DATE
October 15, 2009

FREQUENCY
Monthly

EDITORS-IN-CHIEF
Qiang Cai, MD, Professor, School of Medicine, Emory University, Atlanta, GA 30322, United States
Atsushi Imagawa, PhD, Doctor, Department of Gastroenterology, Imagawa Medical Clinic, Mitoyo 769-1503, Kagawa, Japan

COPYRIGHT
© 2018 Baishideng Publishing Group Inc. Articles published in this Open-Access journal are distributed under the terms of the Creative Commons Attribution Non-commercial License, which permits use, distribution, and reproduction in any medium, provided the original work is properly cited, the use is non-commercial and is otherwise in compliance with the license.

SPECIAL STATEMENT
All articles published in journals owned by the Baishideng Publishing Group (BPG) represent the views and opinions of their authors, and not the views, opinions or policies of the BPG, except where otherwise explicitly indicated.

INSTRUCTIONS TO AUTHORS
http://www.wjgnet.com/bpg/gerinfo/204

ONLINE SUBMISSION
http://www.f6publishing.com
Case series on multimodal endoscopic therapy for gastric antral vascular ectasia, a tertiary center experience

Tasnia Matin, Mohammed Naseemuddin, Mohamed Shoreibah, Peng Li, Kondal Kyanam Kabir Baig, Charles Mel Wilcox, Shajan Peter

Tasnia Matin, Internal Medicine, UAB Hospital, Birmingham, AL 35233, United States

Mohammed Naseemuddin, Department of Gastroenterology, Emory, Atlanta, GA 30322, United States

Mohamed Shoreibah, Kondal Kyanam Kabir Baig, Charles Mel Wilcox, Shajan Peter, Division of Gastroenterology, University of Alabama at Birmingham, Birmingham, AL 35233, United States

Peng Li, School of Public Health, University of Alabama at Birmingham, Birmingham, AL 35294, United States

ORCID number: Tasnia Matin (0000-0001-6255-0946); Mohammed Naseemuddin (0000-0002-0648-2747); Mohamed Shoreibah (0000-0002-8461-3976); Peng Li (0000-0002-9026-9999); Kondal Kyanam Kabir Baig (0000-0003-1550-4853); Charles Mel Wilcox (0000-0001-5246-3419); Shajan Peter (0000-0003-3214-2989).

Author contributions: Matin T was responsible for design, data collection/analysis/interpretation and drafting article; Naseemuddin M was responsible for additional design, data collection and drafting article; Shoreibah M was responsible for critical revision of the article; Li P was responsible for statistical analysis of data; Kyanam Kabir Baig K was responsible for critical revision of the article for important intellectual content; Wilcox CM was responsible for critical revision of the article for important intellectual content; Peter S was responsible for conception and design, critical revision and final approval of article.

Institutional review board statement: IRB was approved by the UAB IRB board.

Informed consent statement: Informed consent was obtained from all patients.

Conflict-of-interest statement: No authors had conflicts of interest.

Data sharing statement: Technical appendix, statistical code, and dataset available from the corresponding author at tasniamatin@uabmc.edu. Specific consent not obtained from participants but data is anonymized and risk of identification is low.

Open-Access: This article is an open-access article which was selected by an in-house editor and fully peer-reviewed by external reviewers. It is distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited and the use is non-commercial. See: http://creativecommons.org/licenses/by-nc/4.0/

Manuscript source: Invited manuscript

Correspondence to: Tasnia Matin, MD, Division of Gastroenterology, University of Alabama School of Medicine, 1720 2nd Avenue South, BDB 380, Birmingham, AL 35294, United States. tasniamatin@uabmc.edu

Telephone: +1-205-9962459

Fax: +1-205-9756201

Received: October 27, 2017

Peer-review started: October 28, 2017

First decision: November 14, 2017

Revised: December 13, 2017

Accepted: December 29, 2017

Article in press: December 29, 2017

Published online: January 16, 2018

Abstract

AIM

To study and describe patients who underwent treatment for gastric antral vascular ectasia (GAVE) with different endoscopic treatment modalities.

METHODS

We reviewed patients with GAVE who underwent treat-
ment at University of Alabama at Birmingham between March 1, 2012 and December 31, 2016. Included patients had an endoscopic diagnosis of GAVE with associated upper gastrointestinal bleeding or iron deficiency anemia.

RESULTS
Seven out of 15 patients had classic watermelon description for GAVE, 1/15 with diffuse/honeycomb pattern and 6/15 with nodular GAVE per EGD description. Seven out of 15 patients required multimodal treatment. Four out of six patients with endoscopically nodular GAVE required multimodal therapy. Overall, mean pre- and post-treatment hemoglobin (Hb) values were 8.2 ± 0.8 g/dL and 9.7 ± 1.6 g/dL, respectively (P ≤ 0.05). Mean number of packed red blood cells transfusions before and after treatment was 3.8 ± 4.3 and 1.2 ± 1.7 (P ≤ 0.05), respectively.

CONCLUSION
Patients with nodular variant GAVE required multimodal approach more frequently than non-nodular variants. Patients responded well to multimodal therapy and saw decrease in transfusion rates and increase in Hb concentrations. Our findings suggest a multimodal approach may be beneficial in nodular variant GAVE.

Key words: Gastric antral vascular ectasia; Upper GI bleed; Radiofrequency ablation; Endoscopic band ligation; Argon plasma coagulation

© The Author(s) 2018. Published by Baishideng Publishing Group Inc. All rights reserved.

Core tip: Over the past several years, treatment for gastric antral vascular ectasia (GAVE) has continued to evolve and the number of available treatments has continued to increase. However, the optimal treatment of GAVE is currently unknown and there currently aren't any studies comparing every modality. However, it is becoming apparent that patients with severe, diffuse or refractory disease require multimodal therapy. Our case series not only shows that but also that patients specifically with nodular variant GAVE require and respond well to multimodal therapy.

INTRODUCTION
First described in 1953 by Rider et al[1], gastric antral vascular ectasia (GAVE) is now a well-recognized cause of chronic upper gastrointestinal bleeding (UGIB) accounting for 4% of non-variceal UGIB[2] and an important cause of chronic iron deficiency anemia. Endoscopically, GAVE can appear as organized red spots emanating radially from the pylorus (watermelon stomach), arranged in a diffuse manner (honeycomb stomach), or as nodules[3]. Histologically, GAVE appears as ectatic mucosal capillaries with fibrin thrombi, spindle cell formation and fibrohyalanosis[4]. Immunohistochemical staining for CD61, a platelet marker, further confirms a diagnosis of GAVE[5]. GAVE has been associated with cirrhosis, chronic kidney disease, diabetes mellitus, autoimmune diseases, hypothyroidism, bone marrow transplant and left ventricular assist devices[6-8]. Over the past two decades, many therapeutic options have been implemented for treatment of GAVE including surgical, medical and endoscopic therapies. Data is emerging on the resolution of GAVE following liver transplant in cirrhotics[9]. Endoscopic therapies have rapidly become the mainstays of first line therapy namely with argon plasma coagulation (APC) as the most common modality and more recently with radiofrequency ablation (RFA) using Halo90 catheter[10] and endoscopic band ligation (EBL) both of which have been shown to be safe and effective for GAVE treatment[10,11]. The latter two have been utilized in treatment of severe, diffuse, APC refractory GAVE[10,21]. Furthermore, there has been the advent of BARR® Through The Scope technique (Covidien, TTS-1100) for RFA, which posits some advantages over the traditional Halo90 system. Despite these advances, the best therapeutic approach has yet to be defined. This case series describes patients who underwent treatment for GAVE with TTS-RFA alone or part of a multimodal approach incorporating other methods such as APC and EBL (Figure 1). We believe that the multimodal approach may be appropriate for certain subsets of patients, namely patients with severe nodular GAVE.

MATERIALS AND METHODS
We reviewed patients with GAVE who underwent treatment at University of Alabama at Birmingham (UAB) between March 1, 2012 and December 31, 2016. Included patients had an endoscopic diagnosis of GAVE with associated UGIB or iron deficiency anemia. Medical history including demographic data and chronic medical conditions associated with GAVE were collected. Patients receiving transfusions for other issues outside of GAVE (i.e., for surgeries) were excluded.

Outcomes
The primary outcomes measured included number of packed red blood cells (pRBC) transfusions required and hemoglobin (Hb) concentrations 6 mo prior to and after initiation of treatment, either with TTS-RFA alone or multimodal therapy. In case of patients in the multimodal group, the same variables were collected 6 mo before and after initiation of an alternative modality (APC, EBL or TTS-RFA). Secondary outcome measures included adverse events, post-treatment adverse events, and number of hospitalizations at University of Alabama at Birmingham.
Technique
Informed consent was obtained from all patients prior to the procedure. All antiplatelet/anticoagulant therapy was discontinued prior to the procedure. High-resolution endoscopy was performed using white light endoscopy (Figure 2) as well as narrow band imaging. Focal ablation was performed using TTS-RFA catheter. The catheter, consisting of 15.7 mm × 7.5 mm transparent electrode array, was passed through the 2.8 mm working channel of the endoscope. The electrode was the placed in opposition of the GAVE lesions and two consecutive pulses of energy at settings 12-15 J/cm², 40 W/cm² were delivered. Circumferential ablation of antral lesions was achieved using the external rotatory function of the catheter (Video 1). Repeat endoscopies and RFA was performed at intervals of 6-8 wk until all lesions appeared healed.

Statistical analysis
Frequencies (%) were used for categorical variables. For continuous variables, mean ± SD was used. Non-parametric, matched pairs, two-tailed Wilcoxon signed rank tests were used to assess differences in pRBC transfusions before and after treatment. Paired T test was used to compare pre and post treatment Hb concentrations. All the analysis were conducted with SAS 9.4 (Cary, NC, United States) and P < 0.05 was considered statistically significant.

RESULTS
Fifteen patients were included in this case series Table 1 describes the demographics. The mean patient age was 62.9 ± 8.7 (range 46-79). Seven out of 15 were women (47%). Included patients underwent a mean of 2.7 ± 1.8 TTS-RFA sessions. TTS-RFA was performed in all patients without adverse events. In addition to TTS-RFA, 7/15 (47%) patients required multimodal...
approach with APC and/or EBL as well. Average amount of hospitalizations prior to first intervention was 1.4 ± 1.3 and average after initial intervention was 1.1 ± 1.4 (P > 0.05). Average time between initial intervention and second intervention was 2.35 ± 2.27 mo. Overall, mean pre- and post-treatment Hb values were 8.2 ± 0.8 g/dL and 9.7 ± 1.6 g/dL, respectively (P ≤ 0.05) (Figure 3A). Mean number of pRBC transfusions before and after treatment was 3.8 ± 4.3 and 1.2 ± 1.7 (P ≤ 0.05), respectively (Figure 3B).

Table 1 Patient demographics, medical history and gastric antral vascular ectasia characteristics

Patient	Age	Sex	Race	GAVE associated conditions	Description	Biopsy confirmed?	ASA	On anticoagulation?	Sedation used	MELD-Na
1	65	F	W	Cirrhosis	Watermelon	N	3	No	MAC	15
2	58	M	W	Cirrhosis	Watermelon	N	3	Yes	MAC	17
3	75	F	B	LVAD	Watermelon	Y	4	No	MAC	n/a
4	55	M	W	Cirrhosis, DM	Nodular	N	3	No	MAC	15
5	79	F	W	Hypothyroidism	Watermelon	Y	3	No	n/a	
6	65	F	W	Cirrhosis	Nodular	Y	3	No	MAC	11
7	70	F	B	Hypothyroidism	Watermelon	Y	2	No	n/a	
8	53	M	W	Cirrhosis	Watermelon	N	3	No	MAC	26
9	70	M	W	DM	Diffuse	N	4	Yes	n/a	
10	46	F	W	CKD	Nodular	Y	3	No	MAC	n/a
11	60	M	W	DM	Watermelon	N	4	No	MAC	n/a
12	68	F	W	Cirrhosis, DM	Watermelon	N	3	No	MAC	18
13	59	M	W	Cirrhosis, DM	Nodular	N	2	No	MAC	14
14	62	M	W	Cirrhosis, DM, Nodular		N	4	Yes	MAC	25
15	58	M	W	Cirrhosis, DM	Nodular	Y	3	No	MAC	23

GAVE: Gastric antral vascular ectasia; F: Female; M: Male; LVAD: Left ventricular assist device; DM: Diabetes mellitus; CKD: Chronic kidney disease; Y: Yes; N: No; ASA: American Society of Anesthesiologists score; MAC: Monitored Anesthesia Care; MELD-Na: Model for end-stage liver disease–with sodium.

In patients who were primarily treated with TTS-RFA (patients 1-8, n = 8), mean number of sessions was 2.8 ± 1.5. Mean number of transfusions was reduced from 3.0 ± 2.7 to 1.2 ± 1.9 (P > 0.05). Mean Hb increased from 8.3 ± 1.0 g/dL to 9.9 ± 1.2 g/dL (P > 0.05). In patients who required multimodal therapy (patients 9-15, n = 7), mean number of TTS-RFA, APC and EBL sessions was 2.9 ± 2.0, 2.9 ± 3.1 and 1.6 ± 2.2, respectively. The mean number of transfusions decreased from 4.9 ± 5.7 to 1.3 ± 1.7 (P > 0.05) and the mean Hb increased from 8.1 ± 0.7 g/dL to 9.5 ± 2.1 g/dL (P > 0.05). Overall, 8 out of 15 patients were weaned off transfusions (53%) entirely at 6-mo follow-up (Figure 4) and 13/15 saw a decrease in requirements (87%). Only one out of the 15 saw an increase in requirements, while 2 had no change in requirements.

Seven out of 15 patients had classic watermelon description for GAVE, 1/15 with diffuse/honeycomb pattern and 6/15 with nodular GAVE per EGD description. Four out of six of patients with endoscopically nodular GAVE required multimodal therapy. Of the 7 patients requiring multimodal therapy, 4 (57%) had nodular GAVE. Three of these four patients were completely weaned off transfusions in the post-treatment period.

DISCUSSION

GAVE is an important cause of chronic anemia[7]. Though, often asymptomatic and an incidental finding, it can lead to chronic transfusion dependence. Over the past several years, treatment for GAVE has continued to evolve as the number of available effective therapeutic interventions has increased. These included: YAG laser, APC, EBL, cryotherapy and surgical anterectomy (Figure 5)[10,13-15]. APC is most commonly used but has been associated with sepsis, post-APC bleeding, gastric outlet...
obstruction and increased incidence of hyperplastic polyps. Recently, the BARR x Halo system (Covidien, Sunnyvale, CA, United States), which mounts on to the tip of the standard endoscope, has been successfully used for treatment of GAVE. Given the fixed positioning of the electrode, the Halo system requires removal of the endoscope for rotation of the electrode for exact apposition to the mucosa. Repeated intubations are cumbersome and can increase the risk of adverse events, including gastroesophageal junction laceration.

The newly introduced TTS-RFA is an improvement over the Halo system as it enables the endoscopist to reach all areas of the antrum by internally rotating the catheter without having to remove the endoscope. While it does have a reduced ablative area (1.2 cm²), it delivers up to 120 pulses per session compared to 80 pulses delivered by the Halo systems. While TTS-RFA is an effective treatment for GAVE, it may not be sufficient to some subgroups of patients.

EBL has lately been demonstrated as a good alternative to APC especially in refractory cases of GAVE and has been found to have a similar safety profile and per Zepeda’s randomized controlled time performed better than APC. The optimal treatment for GAVE is still unknown and currently there are no studies comparing every modality. However, it is becoming more apparent that patients with more severe, diffuse or refractory GAVE would benefit from multimodal therapy.

From our review, our numbers indicate that patients undergoing single modality treatment with TTS-RFA and multimodality treatment had overall increase in mean Hb concentrations and decreased transfusion requirements in the 6 mo following treatment.

Interesting, of the 6 patients described as having nodular GAVE, 4 required multimodal therapy suggesting perhaps the multimodal approach should be applied to this newly described variant. Outcomes were favorable with multimodal approach in this group showing increased Hb and decreased transfusion requirements. Increased Hb concentrations and subsequent decreased transfusion requirements together decrease patient costs with fewer hospitalizations related to anemia and outpatient costs. We did not see a statistically significant decrease in hospitalizations in our case series and this may be due to a myriad of factors including the fact that hospitalizations may be due to another of patients’ comorbidities. Also, it is difficult to attain data on number of hospitalizations outside of our facility.

There are several limitations to the conclusions that can be drawn from this study that need to be addressed. First, this is a small, single center, single operator, retrospective study. Second, GAVE was not confirmed on biopsy on all patients. Third, this study is observational and cannot ascertain if any one therapy is superior over other modalities as study design was not to compare modalities. Lastly, patients were followed for a period of 6 mo after the initiation of treatment. While the data is promising, it is not clear if GAVE lesions recur or if patients have worsening anemia after our follow-up period of 6 mo.

In conclusion, patients with nodular variant GAVE required multimodal approach more frequently than non-nodular variants. Patients responded well to multimodal therapy and saw decrease in transfusion rates and increase in Hb concentrations. Our findings suggest a multimodal approach may be beneficial in nodular variant GAVE.

ARTICLE HIGHLIGHTS

Research background

At present, optimal treatment of gastric antral vascular ectasia (GAVE) is unknown but it is apparent that severe cases require multimodal therapy. The newly discovered nodular variant, from our study, appears to more often require multimodal therapy.

Research motivation

GAVE is an important cause of chronic anemia and can lead to chronic blood transfusion dependence. Having effective treatment is an important for patient survival and decrease in hospital costs.
Seven out of 15 patients had classic watermelon description for GAVE, 1/15 with diffuse/honeycomb pattern and 6/15 with nodular GAVE per EGD description. Seven out of 15 patients required multimodal treatment. Four out of six of patients with endoscopically nodular GAVE required multimodal therapy. Overall, mean pre- and post-treatment hemoglobin (Hb) values were 8.2 ± 0.8 g/dL, and 9.7 ± 1.6 g/dL, respectively (P ≤ 0.05). Mean number of PRBC transfusions before and after treatment was 3.8 ± 4.3 and 1.2 ± 1.7 (P ≤ 0.05), respectively.

Research conclusions
Patients who received TTS-radiofrequency ablation and patient with multimodal therapy, both had decrease in transfusion requirements and improvement in mean Hb. Our study found that patients with nodular variant GAVE tended to require multimodal therapy more frequently. We believe patients with nodular variant GAVE would benefit from a multimodal approach.

Research perspectives
Lessons learned from this study include importance of larger study population. Future directions include involving larger patient pool and possibly attempting a prospective approach based on suggested algorithm.

REFERENCES
Matin T et al. GAVE treatment case series

24 Zepeda-Gómez S, Sultanian R, Teshima C, Sandha G, Van Zanten S, Montano-Loza AJ. Gastric antral vascular ectasia: a prospective study of treatment with endoscopic band ligation. Endoscopy 2015; 47: 538-540 [PMID: 25650636 DOI: 10.1055/s-0034-1391395]

P- Reviewer: Akiho H, Chiu CC, Dinc T S- Editor: Chen K L- Editor: AE- Editor: Song XX
