Dietary Habits and Selenium Intake of Residents in Mountain and Coastal Communities in Japan

Yukiko MIYAZAKI1,2, Hiroshi KOYAMA2, Yoko SASADA3, Hiroshi SATOH4, Masami NOJIRI5 and Shosuke SUZUKI6

1Department of Public Health Nursing, Faculty of Nursing, Jobu University, Gunma 370-1393, Japan
2Department of Public Health, Gunma University School of Medicine, Maebashi 371-8511, Japan
3Morioka Junior College, Iwate 020-0183, Japan
4Department of Public Health and Forensic Medicine, Division of Environmental Health Sciences, Tohoku University School of Medicine, Sendai 980-8575, Japan
5Department of Gerontology, Graduate School of International Studies, Obirin University, Machida 194-0294, Japan
6Gunma Occupational Health Promotion Center, Maebashi 371-0222, Japan

(Received July 14, 2003)

Summary We used a Simple Food Frequency Questionnaire (SFFQ) in combination with other dietary approaches to estimate the selenium intake from different food groups based on the average long-term diet, in two rural communities in Japan, one in a mountain area and the other in a coastal area. The intake frequencies of rice and wheat products were significantly different in the two districts. The intake frequencies of fish, meat, and eggs, which are rich in selenium, were not significantly different. The mean dietary selenium intake, estimated from the SFFQ and the 24-h recall method, was 82.7 μg/d (n=234) (range 19.2–180.1 μg/d) in the mountain community. The mean dietary selenium intake estimated from the SFFQ and average value of the normal portion size was 118.0 μg/d (n=123) (range 22.6–255.3 μg/d) in the coastal community. These estimated mean values exceeded the Japanese RDA, although the range of daily selenium intake was large. In the mountain community, fish made the largest contribution to dietary selenium intake (48.2% of daily total), followed by eggs (24.3%), and meat (17.0%). In the coastal community, fish accounted for 57.7% of daily total selenium intake, followed by meat (17.5%), and eggs (16.1%). In both districts, the total contribution of rice and wheat products was around 10%. It was found that the contribution of fish to dietary selenium intake was high and the contribution of cereals was low among Japanese.

Key Words selenium, food frequency questionnaire, dietary habit, nutrition surveys

Selenium is an essential trace element (1), and human selenium deficiency has been reported as the cause of endemic fatal cardiomyopathy in certain low selenium areas of China (2), and as the cause of muscular pain or discomfort in patients on long-term total parenteral nutrition (TPN) (3).

Selenium has many biological functions in humans. One of the most important effects of selenium is its antioxidant effect (4–6), which helps to prevent cardiovascular disease and cancer. Several epidemiological studies have reported that low selenium levels in serum are associated with the risk of vascular disease (7–11), and the risk of coronary heart disease (CHD) in Japanese subjects (12, 13). Low selenium intake has also been associated with the risk of cancer (14–18).

Marked selenium deficiency has not been reported in the Japanese general population. The mean daily selenium intake in Japan was estimated at 104.2 μg/d by Suzuki et al. (19), and 154.7 μg/d by Otsuka et al. (20). These studies are not based on the average long-term

diet of individuals. Koyama et al. (21) obtained values of the daily selenium intake in a mountain community by three different methods: the value was estimated at 137.3–199.1 μg/d by the 24-h recall method, and 85.8–94.5 μg/d by a food frequency questionnaire, while the measured value was 113.7 μg/d by the duplicated meal method. Little is known about individual selenium intake and regional differences in selenium intake in Japan.

Selenium bioavailability has a high variability, principally due to the different chemical forms that exist in foods (4–6). It is important to know the contributions of various food groups to the overall dietary intake of selenium. The present Japanese recommended dietary allowances (RDA) take selenium bioavailability into consideration (22). However, data on selenium bioavailability to humans is sparse. Therefore, the selenium bioavailability of different food groups in the RDA is tentative.

Food frequency questionnaires (FFQ) are designed to measure average long-term diet (23), which is important for assessing the relationship between nutrition
and chronic disease. The reproducibility and validity of such questionnaires has been examined in a number of studies (24–27). The simple food frequency questionnaire (SFFQ) was developed to estimate dietary selenium intake for different food groups (21). By using the SFFQ to determine the frequency of consumption in combination with other methods to quantify portion sizes, it is possible to estimate average dietary selenium intake over the long-term.

In the present study, we conducted the SFFQ and some additional nutrition surveys by interview in two rural communities in Japan with different geographies, climates, and industries. One was Ohasama, which is a mountain community, and the other was Nishiizu, which is a coastal community. We estimated selenium intakes by food groups in the two districts with the SFFQ, and assessed the regional characteristics in the food consumption pattern, and dietary selenium intakes.

SUBJECTS AND METHODS

Survey site

Ohasama is a mountain community, situated in central Iwate Prefecture. It is about 80 km from the Sanriku-coast (Fig.1), and is situated on the road from the Sanriku-coast to Morioka city, the capital of Iwate prefecture. The area of this district is 246.61 km², 80% of which is forested mountains. The total population of Ohasama was 6,949, in 2000. About 28.4% of the adult population works in agriculture and forestry, 32.9% works in factories, and 38.7% works in offices. As of 2000, the major causes of death were cancer, cardiac disease, and cerebrovascular disease (CVD). Mortality due to cancer, cardiac disease, and CVD among the residents was 359.8, 244.6, 187.1 (per 100,000), respectively.

The Nishiizu district includes two rural communities: Nishiizu town (65.88 km²) and Kamo village (39.64 km²). These neighboring communities are situated on the west coast of the Izu Peninsula in Shizuoka prefecture (Fig.1). Most (84%) of the Nishiizu district is forested. In 2000, the total populations of Nishiizu town and Kamo village were 7,747, and 3,521 respectively. About 9.0% of the adult population works in agriculture and fishing, 26.1% works in factories, construction, and the mining industry, and 64.8% works in service industries and businesses. Previously, the key industry was fishing, but more recently the tourist industry has become the major source of employment in this area. As of 2000, the major causes of death were cancer, cardiac disease, and CVD. Mortality due to cancer, cardiac disease, and CVD among the residents was 337.2, 275.1, 159.7 (per 100,000), respectively.

Subjects

In Ohasama, we interviewed 102 men and 140 women aged 40–69 y. These subjects were selected from participants in a health examination conducted by the government of Ohasama town in 1998, 1999, and 2000. The participants were stratified by sex and age group in each year, and the subjects were randomly selected from each stratum, respectively. The distribution of subjects was 88 (in 1998), 67 (in 1999), 87 (in 2000), and combined data for each year were used. In Nishiizu, we interviewed 55 men aged 44–76 y and 71 women aged 32–80 y. These subjects participated in a health examination conducted by the government of Nishiizu town and Kamo village in 2000 and volunteered for this study. All subjects gave their signed informed consent.

We excluded eight subjects from analysis for blank on the SFFQ. We also excluded two subjects under the age of 40 and 1 subject of over 80 years. A total of 357 subjects were included in the analysis.

Table 1. Frequency categories and their values converted to daily intake rate.

Major food groups	Value (times/d)	Vegetables	Value (times/d)
Twice or more per day	2.00	Two or three times per day	3.00
Once per day	1.00	Twice a day	2.00
Once every two days	0.50	Once a day	1.00
Once or twice a week	0.14	Once every two days	0.50
Once or twice a month/almost never	0.04	Once or twice a week/almost never	0.14
Dietary Se Intakes among Japanese

Table 2. Cereal eating habits and the estimated equivalent daily intake rates.

Cereal eating habits	Value (times/day)		
Rice	Wheat products		
Almost only rice	Less than once or twice a month	3.0	0.0
Almost only rice	Once or twice a week.	2.7	0.3
The rest is rice	Once every two days	2.5	0.5
The rest is rice	Once a day	2.0	1.0
The rest is rice	Twice or more a day	1.0	2.0

Dietary assessment

Subjects answered the SFFQ by interview. The questionnaire included twelve food group items, and subjects indicated their average frequency of consumption of each item over the past year. The food list consisted of cereals, fish, meat, eggs, soybean products, vegetables, seaweed, milk and dairy products, fruits, wheat products as snacks between meals, cakes and candies, juice and soft drinks with sugar. Questions relating to the intake frequency of major food group items (excluding cereals and vegetables) included five frequency categories from twice or more per day to once or twice a month/almost never (Table 1). The responses were converted into frequencies as daily intake rate (Table 1). For vegetables, the possible responses and frequencies were slightly different (Table 1). For cereals, the frequency of consumption of rice was asked separately from the consumption of wheat products, because the selenium contents in rice and wheat are considerably different. The possible responses and the corresponding frequencies are shown in Table 2.

In Ohasama and Nishiizu, at the same time of the SFFQ, the subjects were shown actual-sized pictures of food items and asked what they ate and the quantity of each food. The same photos were shown in each community. In Ohasama, the subjects were asked to base answers on what they ate the previous day (24-h dietary recall method), while later in Nishiizu, they were asked to base answers on what they usually ate. The averaged consumption of each food item in each community was used as the mean portion size. The daily consumption of each food item was calculated from the mean portion size and daily intake rate.

Daily selenium intake was the sum of the products of the selenium content, the mean portion size, and the daily intake rate of each food (i.e., $\Sigma (\text{selenium content} \times \text{mean portion size} \times \text{daily intake rate})$). The food groups of the major dietary selenium sources (21) were used for the estimation. The selenium content of each food group was obtained from the selenium content of foodstuffs measured by Koyama et al. (28). Selenium concentrations in the diet were determined fluorometrically by 2,3-diaminonaphthalene with a spectro-fluorometer (Type 821-FP; Japan Spectroscopic Co., Ltd., Tokyo) after digestion in nitric acid and perchloric acid as described by Watkinson (29). Bovine serum SRM1598 and bovine liver 1577a, produced by NIST (National Institute of Standards and Technology, Gaithersburg, MD), was used as a reference material to validate the selenium measurement (28). The selenium contents of main food items are shown in Table 3.

To determine the range of selenium intakes among different individuals, the individual portion size, which was not averaged, was also used for estimation in Nishiizu. For this estimation, the daily intake rate of cereals was modified when subjects took two servings per day.

Statistical analysis

The Mann-Whitney U test was used to determine the differences in the frequency of each food item on the SFFQ between the two districts. The significance level was set at $p<0.05$. The analyses were performed using SPSS for Windows (version 11).

RESULTS

The intake frequencies of rice and wheat products as staple foods in Ohasama and Nishiizu are shown in Table 4. Mean of daily intake rate of rice in Ohasama and Nishiizu was 2.77 and 2.46, respectively. Mean of daily intake rate of wheat products in Ohasama and Nishiizu was 0.24 and 0.54, respectively. There was a significant difference in the intake frequencies of rice and wheat products between the two districts by the Mann-Whitney U test ($p=0.000$). Rice was more frequently consumed in Ohasama, and wheat products were more frequently consumed in Nishiizu.

The intake frequencies of other food items are shown in Tables 5 (a)-(c). When the data for all subjects in a community were combined, the frequencies of consumption of soybean products, vegetables, seaweed, cakes and candies, juice and soft drinks with sugar were significantly greater in Ohasama, and the frequency of consumption of fruits was greater in Nishiizu. The intake frequencies for fish, meat, eggs, milk and dairy

Table 3. The selenium content of main food groups.

Food item	Selenium content (µg/g)
Boiled rice	0.0090
Wheat products	0.0610
Fish	0.6287
Meat	0.6360
Egg	0.5640
Table 4. Comparison of food frequency of cereals as staple foods between two districts, Ohasama and Nishiizu (all subjects).

District	mean of daily intake rate	Frequency categoriesa	p valueb				
	Rice	Wheat products	1	2	3	4	5
All subjects	2.77 (0.24)	117 (50.0%)	75 (32.1%)	21 (9.0%)	20 (8.5%)	1 (0.4%)	0.000
Nishiizu	2.46 (0.54)	35 (28.5%)	35 (28.5%)	9 (7.3%)	36 (29.3%)	8 (6.5%)	0.000
Males	2.81 (0.19)	55 (56.1%)	28 (28.6%)	9 (9.2%)	6 (6.1%)	0 (0.0%)	0.002
Ohasama	2.52 (0.48)	20 (36.4%)	16 (29.1%)	3 (5.5%)	12 (21.8%)	4 (7.3%)	0.000
Nishiizu	2.73 (0.27)	62 (45.6%)	47 (34.6%)	12 (8.8%)	14 (10.3%)	1 (0.7%)	0.000
Females	2.40 (0.60)	15 (22.1%)	19 (27.9%)	6 (8.8%)	24 (35.3%)	4 (5.9%)	0.000

a Frequency categories were as follows (cf. Table 2). 1: Almost only rice, and wheat products are less than once or twice a month. 2: Almost rice, and wheat products are once or twice a week. 3: Wheat products are once every two days and the rest is rice. 4: Wheat products are once a day and the rest is rice. 5: Wheat products are twice or more a day and the rest is rice.

b The Mann-Whitney U test was used.

Table 5. Comparison of food frequency between two districts, Ohasama and Nishiizu.

(a) All subjects

Food group item	District	mean of daily intake rate
Fish	Ohasama	43 (18.4%) 123 (52.6%) 52 (22.2%) 15 (6.4%) 1 (0.4%) 1.0 (0.8%)
	Nishiizu	31 (25.2%) 39 (31.7%) 31 (25.2%) 21 (17.1%) 26 (11.1%) 0.575
Meat	Ohasama	10 (0.4%) 30 (12.8%) 71 (30.3%) 106 (45.3%)
	Nishiizu	6 (2.4%) 11 (8.9%) 36 (29.3%) 58 (47.2%)
Eggs	Ohasama	6 (2.6%) 75 (32.1%) 88 (37.6%) 52 (22.2%) 13 (5.6%)
	Nishiizu	5 (4.1%) 36 (29.3%) 34 (27.6%) 41 (33.3%) 7 (5.7%)
Soybean products	Ohasama	87 (37.2%) 105 (44.9%) 31 (13.2%) 11 (4.7%) 0 (0%)
	Nishiizu	13 (10.6%) 38 (30.9%) 39 (31.7%) 28 (22.8%) 5 (4.1%)
Vegetablesa	Ohasama	151 (64.5%) 69 (29.3%) 11 (4.7%) 2 (0.9%)
	Nishiizu	62 (50.4%) 33 (26.8%) 16 (13.6%) 7 (5.7%) 1 (0.8%)
Seaweed	Ohasama	13 (5.6%) 82 (35.0%) 98 (41.9%) 41 (17.5%) 0 (0%)
	Nishiizu	6 (4.9%) 32 (26.0%) 44 (35.8%) 36 (29.3%) 5 (4.1%)
Milk & dairy products	Ohasama	42 (17.9%) 106 (45.3%) 31 (13.2%) 38 (16.2%) 17 (7.3%) 0.528
	Nishiizu	23 (18.7%) 51 (41.5%) 12 (9.8%) 25 (20.3%) 12 (9.8%)
Fruits	Ohasama	24 (10.3%) 81 (34.6%) 53 (22.6%) 65 (27.8%) 11 (4.7%) 0.001
	Nishiizu	18 (14.6%) 56 (45.5%) 29 (23.6%) 18 (14.6%) 2 (1.6%)
Wheat products as snacks between meals	Ohasama	3 (1.3%) 26 (11.1%) 21 (9.0%) 55 (23.5%) 129 (55.1%) 0.660
	Nishiizu	0 (0%) 12 (9.8%) 15 (12.2%) 33 (26.8%) 63 (51.2%)
Cakes & candies	Ohasama	34 (14.5%) 85 (36.3%) 30 (12.8%) 42 (17.9%)
	Nishiizu	10 (8.1%) 35 (28.5%) 15 (12.2%) 24 (19.5%) 39 (31.7%)
Juice & soft drinks with sugar	Ohasama	56 (23.9%) 52 (22.2%) 21 (9.0%) 44 (18.8%) 61 (26.1%) 0.000
	Nishiizu	18 (14.6%) 18 (14.6%) 18 (14.6%) 13 (7.6%) 16 (8.9%)

products, and wheat products as snacks were not significantly different. Among males, significant differences in intake frequency were found for soybean products, vegetables, seaweed, cakes and candies, juice and soft drinks with sugar. These food items were consumed more frequently in Ohasama. Among females, significant differences in intake frequency were found for soybean products, vegetables, fruits, cakes and candies, juice and soft drinks with sugar. These food items, except fruits, were consumed more frequently in Ohasama.

Estimations of daily consumption of the main food items and selenium intakes in Ohasama and in Nishiizu are shown in Tables 6 (a), (b). In Ohasama, the mean daily total selenium intake in males and in females was 96.3 µg/d and 72.9 µg/d, respectively. In Nishiizu, the mean daily total selenium intake in males and in females was 125.1 µg/d and 112.3 µg/d, respectively.
(b) Males

Food group item	District	n	Frequency categories	Mean of daily intake rate	Food frequency categories
				Twice or more per day	
				Once per day	
				Every two days	
				Once or twice a week	
				Once or twice a month/never	
Fish	Ohasama	98	1.09	26 (26.5%)	45 (45.9%)
	Nishizui	55	1.01	15 (27.3%)	19 (34.5%)
Meat	Ohasama	98	0.36	1 (1.0%)	11 (11.2%)
	Nishizui	55	0.30	1 (1.8%)	4 (7.3%)
Eggs	Ohasama	98	0.63	5 (5.1%)	32 (32.7%)
	Nishizui	55	0.52	2 (3.6%)	14 (25.5%)
Soybean products	Ohasama	98	1.27	40 (40.8%)	35 (35.7%)
	Nishizui	55	0.62	4 (7.3%)	16 (29.1%)
Vegetables*	Ohasama	98	2.55	65 (66.3%)	24 (24.5%)
	Nishizui	55	2.14	27 (49.1%)	12 (21.8%)
Seaweed	Ohasama	98	0.74	9 (9.2%)	35 (35.7%)
	Nishizui	55	0.56	2 (3.6%)	14 (25.5%)
Milk & dairy products	Ohasama	98	0.84	19 (19.4%)	34 (34.7%)
	Nishizui	55	0.75	8 (14.5%)	21 (38.2%)
Fruits	Ohasama	98	0.67	10 (10.2%)	33 (33.7%)
	Nishizui	55	0.79	5 (9.1%)	24 (43.6%)
Wheat products as snacks between meals	Ohasama	98	0.23	0 (0%)	13 (13.3%)
	Nishizui	55	0.20	0 (0%)	5 (9.1%)
Cakes & candles	Ohasama	98	0.58	10 (10.2%)	24 (24.5%)
	Nishizui	55	0.42	4 (7.3%)	11 (20.0%)
Juice & soft drinks with sugar	Ohasama	98	1.01	35 (35.7%)	24 (24.5%)
	Nishizui	55	0.68	13 (23.6%)	7 (12.7%)

(c) Females

Food group item	District	n	Frequency categories	Mean of daily intake rate	Food frequency categories
				Twice or more per day	
				Once per day	
				Every two days	
				Once or twice a week	
				Once or twice a month/never	
Fish	Ohasama	136	0.96	17 (12.5%)	78 (57.4%)
	Nishizui	68	0.94	16 (23.5%)	20 (29.4%)
Meat	Ohasama	136	0.35	0 (0%)	19 (14.0%)
	Nishizui	68	0.40	2 (2.9%)	7 (10.3%)
Eggs	Ohasama	136	0.57	1 (0.7%)	43 (31.6%)
	Nishizui	68	0.60	3 (4.4%)	22 (32.4%)
Soybean products	Ohasama	136	1.27	47 (34.6%)	70 (51.5%)
	Nishizui	68	0.79	9 (13.2%)	22 (32.4%)
Vegetables*	Ohasama	136	2.60	86 (63.2%)	45 (33.1%)
	Nishizui	68	2.32	35 (51.5%)	21 (30.9%)
Seaweed	Ohasama	136	0.66	4 (2.9%)	47 (34.6%)
	Nishizui	68	0.60	4 (5.9%)	18 (26.5%)
Milk & dairy products	Ohasama	136	0.95	23 (16.9%)	72 (52.9%)
	Nishizui	68	0.96	15 (22.1%)	30 (44.1%)
Fruits	Ohasama	136	0.73	14 (10.3%)	48 (35.3%)
	Nishizui	68	0.97	13 (19.1%)	32 (47.1%)
Wheat products as snacks between meals	Ohasama	136	0.24	3 (2.2%)	13 (9.6%)
	Nishizui	68	0.23	0 (0%)	10 (8.3%)
Cakes & candies	Ohasama	136	0.87	24 (17.6%)	61 (44.9%)
	Nishizui	68	0.65	6 (8.8%)	24 (35.3%)
Juice & soft drinks with sugar	Ohasama	136	0.62	21 (15.4%)	28 (20.6%)
	Nishizui	68	0.40	5 (7.4%)	11 (16.2%)

*a Frequency categories of vegetables are as follows: 1: two or three times per day, 2: twice a day, 3: once a day, 4: once every two days, 5: once or twice a week/almost never (cf. Table 1).

b The Mann-Whitney U test was used.
Table 6. (a) Estimation of daily consumption of the main food item and selenium intakes in Ohasama.

Food item	Mean of daily intake rate	Mean portion size (g)	Mean daily consumption (g)	Mean selenium intakes (µg)
Males (n=98)				
Boiled rice	2.81	260.7	731.9	6.6
Wheat products as staple foods	0.19	224.0	43.2	2.6
Wheat products as snacks between meals	0.23	71.9	16.6	1.0
Fish	1.09	68.8	75.0	47.2
Meat	0.36	76.5	27.7	17.6
Eggs^b	0.63	60.0	37.7	21.3
Daily total				96.3
Females (n=136)				
Boiled rice	2.73	172.1	470.6	4.2
Wheat products as staple foods	0.27	141.7	37.6	2.3
Wheat products as snacks between meals	0.24	55.4	13.3	0.8
Fish	0.36	57.6	55.2	34.7
Meat	0.35	51.9	18.3	11.6
Eggs^b	0.57	60.0	34.1	19.2
Daily total				72.9

^a Mean portion size was derived from the 24 h recall method. ^b One egg was estimated as 60 g.

(b) Estimation of daily consumption of the main food item and selenium intakes in Nishiizu.

Food item	Mean of daily intake rate	Mean portion size (g)	Mean daily consumption (g)	Mean selenium intakes (µg)
Males (n=55)				
Boiled rice	2.52	161.6	407.6	3.7
Wheat products as staple foods	0.48	190.9	91.3	5.6
Wheat products as snacks between meals	0.20	114.8	23.3	1.4
Fish	1.01	122.4	124.1	78.0
Meat	0.30	98.9	29.7	18.9
Eggs^b	0.52	60.0	30.9	17.4
Daily total				125.1
Females (n=68)				
Boiled rice	2.40	112.1	269.1	2.4
Wheat products as staple foods	0.60	164.4	98.4	6.0
Wheat products as snacks between meals	0.23	104.2	23.7	1.4
Fish	0.94	101.9	95.4	60.0
Meat	0.40	87.4	35.0	22.2
Eggs^b	0.60	60.0	35.9	20.2
Daily total				112.3

^a Mean portion size was estimated from the usual average portion size. ^b One egg was estimated as 60 g.

Dietary selenium intakes estimated using the SFFQ and the mean portion size in Ohasama are shown in Table 7 (a). When the data for all subjects in a community were combined, the mean daily total selenium intake was 82.7 µg/d (range 19.2–180.1 µg/d). The major selenium source was fish, which accounted for 48.2% of the daily total, followed by eggs (24.3%) and meat (17.0%). The contributions of rice and wheat products to daily total selenium intake were 6.3% and 4.0%, respectively.

Dietary selenium intakes estimated using the SFFQ and the mean portion size in Nishiizu is shown in Table 7 (b). When the data for all subjects in a community were combined, the mean daily total selenium intake was 118.0 µg/d (range 22.6–255.3 µg/d). The major selenium source was fish, which accounted for 57.7% of the daily total, followed by meat (17.5%), eggs (16.1%). The contributions of rice and wheat products to daily total selenium intake were 2.5% and 6.1%, respectively.

Dietary selenium intakes estimated using the SFFQ and the individual portion sizes in Nishiizu are shown in Table 7 (c). When the data for all subjects in a community were combined, the mean daily total selenium intake was 123.5 µg/d (range 22.4–422.2 µg/d). The major selenium source was fish, which accounted for 58.1% of the daily total, followed by meat (19.1%), eggs (15.2%). The contributions of rice and wheat products...
DISCUSSION

The mean dietary intake of selenium estimated in this study was similar to the values reported by Otsuka (20), and Koyama (21). It was two or three times higher than the normative requirement (the lower limits of the safe range) estimated by the WHO (4). According to the WHO, the normative requirement is 40 μg/d for males and 30 μg/d for females (aged 18 y and over). Our estimates of dietary intake of selenium also exceeded the Japanese RDA (22), which is 45–55 μg/d for males and 40–45 μg/d for females (aged 30 y and over). However, the range of daily selenium intakes estimated by the

were 2.3% and 5.2%, respectively.

The mean dietary intake of selenium estimated in this study was similar to the values reported by Otsuka (20), and Koyama (21). It was two or three times higher than the normative requirement (the lower limits of the safe range) estimated by the WHO (4). According to the WHO, the normative requirement is 40 μg/d for males and 30 μg/d for females (aged 18 y and over). Our estimates of dietary intake of selenium also exceeded the Japanese RDA (22), which is 45–55 μg/d for males and 40–45 μg/d for females (aged 30 y and over). However, the range of daily selenium intakes estimated by the

were 2.3% and 5.2%, respectively.

DISCUSSION

The mean dietary intake of selenium estimated in this study was similar to the values reported by Otsuka (20), and Koyama (21). It was two or three times higher than the normative requirement (the lower limits of the safe range) estimated by the WHO (4). According to the WHO, the normative requirement is 40 μg/d for males and 30 μg/d for females (aged 18 y and over). Our estimates of dietary intake of selenium also exceeded the Japanese RDA (22), which is 45–55 μg/d for males and 40–45 μg/d for females (aged 30 y and over). However, the range of daily selenium intakes estimated by the

were 2.3% and 5.2%, respectively.

DISCUSSION

The mean dietary intake of selenium estimated in this study was similar to the values reported by Otsuka (20), and Koyama (21). It was two or three times higher than the normative requirement (the lower limits of the safe range) estimated by the WHO (4). According to the WHO, the normative requirement is 40 μg/d for males and 30 μg/d for females (aged 18 y and over). Our estimates of dietary intake of selenium also exceeded the Japanese RDA (22), which is 45–55 μg/d for males and 40–45 μg/d for females (aged 30 y and over). However, the range of daily selenium intakes estimated by the

Table 7. Dietary selenium intakes estimated using the Simple Food Frequency Questionnaire and mean portion size in Ohasama (μg/d).

	n	Mean	SD	Min.-Max.	Median	Percent of daily total
All subjects						
Fish	234	39.9	22.5	1.7–86.6	36.2	48.2%
Eggs		20.1	14.0	1.4–67.7	16.9	24.3%
Meat		14.1	13.5	1.3–97.3	6.8	17.0%
Rice		5.2	1.3	1.6–7.0	4.6	6.3%
Wheat products		3.3	3.4	0.1–20.7	2.7	4.0%
Daily total		82.7	32.9	19.2–180.1	79.5	100.0%
Males						
Fish	98	47.2	26.7	1.7–86.6	43.3	49.0%
Eggs		21.3	16.0	1.4–67.7	16.9	22.1%
Meat		17.6	16.3	2.0–97.3	6.8	18.3%
Rice		6.6	0.6	4.7–7.0	7.0	6.9%
Wheat products		3.7	3.9	0.2–15.9	4.3	3.8%
Daily total		96.3	36.2	20.0–180.1	95.5	100.0%
Females	136					
Fish		34.7	17.1	5.1–72.5	36.2	47.6%
Eggs		19.2	12.3	1.4–67.7	16.9	26.3%
Meat		11.6	10.4	1.3–33.0	4.6	15.9%
Rice		4.2	0.5	1.6–4.7	4.2	5.8%
Wheat products		3.1	3.1	0.1–20.7	2.7	4.3%
Daily total		72.9	26.3	19.2–149.5	65.8	100.0%

(b) Dietary selenium intakes estimated using the Simple Food Frequency Questionnaire and mean portion size in Nishiizu (μg/d).

	n	Mean	SD	Min.-Max.	Median	Percent of daily total
All subjects						
Fish	123	68.1	48.0	3.1–153.9	64.0	57.7%
Eggs		19.0	15.8	1.4–67.7	16.9	16.1%
Meat		20.7	22.1	2.2–125.9	16.9	16.1%
Rice		3.0	0.9	1.0–4.4	2.9	2.5%
Wheat products		7.2	6.2	0.3–26.4	5.3	6.1%
Daily total		118.0	57.8	22.6–255.3	110.4	100.0%
Males						
Fish	55	78.0	52.7	3.1–153.9	76.9	62.4%
Eggs		17.4	15.6	1.4–67.7	16.9	13.9%
Meat		18.9	22.1	2.5–125.9	8.8	15.1%
Rice		3.7	0.8	1.5–4.4	3.9	2.9%
Wheat products		7.0	6.7	0.3–24.3	4.5	5.6%
Daily total		125.1	60.0	29.7–255.3	121.5	100.0%
Females	68					
Fish		60.0	42.6	9.0–128.1	64.0	53.4%
Eggs		20.2	15.9	1.4–67.7	16.9	18.0%
Meat		22.2	22.2	2.2–111.2	7.8	19.8%
Rice		2.4	0.5	1.0–3.0	2.6	2.1%
Wheat products		7.4	5.8	0.3–26.4	6.2	6.6%
Daily total		112.3	55.7	22.6–230.4	105.0	100.0%
SFFQ was large, and selenium intake was low in some subjects.

As shown in Tables 6 (a) and (b), the mean portion size of food items, except eggs, was different between the two districts. It is not clear whether these differences were related to the different method of obtaining portion size or the dietary habit in the two districts. In Ohasama, the 24-h dietary recall method was used to obtain mean portion size. This method can accommodate any level of food description detail, and serves important functions in describing mean values for groups (23). In Nishiizu, subjects were asked the usual portion size. This change in protocol, for portion size information in this study, was made because it was thought to estimate not only portion size as the group mean value, but also individual portion size in Nishiizu. To consider the individual average long-term diet, the usual portion size may be better, because the 24-h dietary recall method depends on the previous day’s diet. However, it is possible with both methods to assess group averages.

When individual portion size was used as the amount in Nishiizu, the range of selenium intakes was large. However, the mean of the selenium intakes was not different so much in the use of the mean or individual portion size. This result shows that the food consumption pattern varies among individuals. Selenium intake would probably be low in people who consumed very little fish, meat, and eggs. It is not sufficient to estimate the mean value, but it is important to know the dispersion of selenium intakes.

By comparing of the intake frequencies of food items on the SFFQ between Ohasama and Nishiizu, the intake frequencies of fish, meat, and eggs, which are rich in selenium, were not seen to be significantly different. However, the intake frequencies of rice and wheat products were significantly different. The intake frequency of boiled rice was higher in Ohasama than in Nishiizu and the intake frequency of wheat products was lower in Ohasama than in Nishiizu. These differences may be related to regional dietary habits.

The mean selenium intakes were not comparable because of the different methods used to obtain mean portion size, however, the difference in frequency and portion size is reflected in the contribution of rice and wheat products to dietary selenium intake. That is, the contribution of rice to daily selenium intake was greater than the contribution of wheat products to daily selenium intake in Ohasama, and the reverse tendency was observed in Nishiizu.

The mean selenium intake from rice was almost the same in spite of the use of the mean or individual portion size in Nishiizu, and the range of selenium intake from rice was smaller than the range of selenium intake from wheat products. This suggests that rice consumption is less variable than wheat consumption among individual Japanese.

Rice and wheat products made small contributions to dietary selenium intake in both districts, and the values estimated in this study were similar to the values obtained by Otsuka (7.7%) (20) and Koyama (5-11%) (21). The proportion of selenium intake that is derived from cereals varies considerably among countries (4, 5, 30-33), and depends on the content of selenium in the soil, which affects the selenium contents in plants. The mean of selenium content in Japanese rice is 43 ng/g (range 11-182 ng/g) (34). For comparison, wheat, which is processed into bread and noodles in Japan, and
which is imported almost entirely from North America, contains 0.30–0.82 μg/g of selenium (35). The low value in rice in Japan is probably due to the soil chemistry.

Even though Ohasama is situated far from the coast, the intake frequency of fish was not significantly different from that at Nishiharu. The contributions of fish to dietary selenium were high in both districts, and were similar to the values reported by Otsuka (55.5%) (20) and Koyama (50–60%) (21). Levels of selenium in fish are comparatively higher than in other foodstuffs. Though measured values of selenium content in fish demonstrate some range by species, these values do not remarkably differ. Suzuki et al. showed values used for the estimation of selenium intake as 0.875 μg/g (tuna); 0.4 μg/g (flounder); 0.3 μg/g (sardine); 0.163 μg/g (salmon); 0.3 μg/g (others) (19). The value of selenium content in fish used for the estimation of selenium intake in this study is within the previously reported range, and is nearly the medium value for the selenium content of fish.

Levels of selenium in other foodstuffs shown by Suzuki et al. are as 0.104–0.273 μg/g (meat); 0.447 μg/g (eggs); 0.0148 μg/g (rice); 0.15 μg/g (bread); 0.30 μg/g (noodles) (19). Levels of selenium in meat cereals used in the estimation of selenium intake in this study are slightly lower than these values, eggs and meat are slightly higher. Such variation in the reported values would be due to some reason, for example, the district producing the foodstuffs.

One limitation of this study is that the estimated selenium intake value depends upon the food frequency, portion size, and selenium contents in food groups. It should be carefully considered that the estimated selenium intakes were affected by these values. Further studies, for example, duplicating meal analysis in each district, would be informative for selenium contents and estimation of selenium intakes.

Because fish is a major selenium source in the Japanese diet, the bioavailability of fish selenium is important. Studies have shown marked differences in the ability of selenium from fish to increase selenium status. Some animal studies have shown that the bioavailability of selenium in fish is less than that in wheat (36–39). However, selenium from flounder and tuna was found to be more efficient than selenium from other meats at restoring liver glutathione peroxidase activity (40).

Very few selenium bioavailability studies have been conducted with humans. An increased consumption of fish increases plasma selenium concentration, but not the plasma level of glutathione peroxidase or Selenoprotein-P (41). The glutathione peroxidase activities in plasma and erythrocytes were not influenced by shrimp intake (42). In Norwegians, serum and platelet selenium levels were consistently raised by consumption of wheat, but only slightly raised by consumption of fish (43). These findings indicate that the bioavailability of selenium from fish is relatively low in humans. However, selenium from fish intake has been reported to have a marked impact on selenium status in humans (44). The chemical form of selenium in fish is not known, and the reason for the low selenium bioavailability in certain fish is not clear. A possible explanation for low selenium bioavailability in certain fish is that the selenium might combine with other heavy metals, especially mercury, in these fish (5,45).

Wheat selenium is reported to have a high bioavailability, and cereals are an important selenium source in humans (43, 46). A greater intake of selenium from cereals may be important for optimal selenium status among the Japanese.

The Japanese RDA assumes that 30% of dietary selenium is derived from cereals, and that the bioavailability of selenium is 90% in cereals and 50% in all other foods, resulting in an overall nutritional availability of dietary selenium of 60% (90% of 30%+50% of 70%) (22). However, because of the low contribution of cereals and the high contribution of fish to selenium intake in the Japanese diet, the nutritional availability of dietary selenium might be lower than the above estimate. Further studies of selenium intake that consider the dietary habits of the Japanese population are needed to estimate the optimal selenium intake.

Acknowledgments
We thank Ayano Kariya, Nao Kondo, Aiko Morizono, Yuki Kaneko, Naoko Hosokawa, Yuko Miyairi (Gunma University) for their assistance with the dietary survey. We are also grateful to the subjects for their willing cooperation.

REFERENCES
1) Schwarz K, Foltz CM. 1957. Selenium as an integral part of factor 3 against dietary necrotic liver degeneration. J Am Chem Soc 79: 3292–3293.
2) Yang G, Ge K, Chen J, Chen X. 1988. Selenium-related endemic disease and the daily selenium requirement of humans. Wild Rev Nutr Diet 55: 98–152.
3) Gramm HJ, Kopf A, Brätter P. 1995. The necessity of selenium substitution in total parenteral nutrition and artificial alimentation. J Trace Elements Med Biol 9: 1–12.
4) WHO. 1996. Selenium. In: Trace Elements in Human Nutrition and Health, p 105–122, WHO, Geneva.
5) Rayman MP. 2000. The importance of selenium to human health. Lancet 356: 233–241.
6) Alarcón M, Martínez MC. 2000. Essentiality of selenium in the human body: relationship with different diseases. Sci Total Environ 249: 347–371.
7) Salonen JT, Alifan G, Huttunen JK, Pikkarainen J, Puska P. 1982. Association between cardiovascular death and myocardial infarction and serum selenium in a matched-pair longitudinal study. Lancet 2: 175–179.
8) Jackson ML. 1988. Selenium: Geochemical distribution and associations with human heart and cancer death rates and longevity in China and the United States. Biol Trace Elem Res 15: 13–21.
9) Salonen JT, Salonen R, Seppänen K, Kantola M, Parviainen M, Alifan G, Mäenpää PH, Taskinen E, Rauramaa R. 1988. Relationship of serum selenium and antioxidants to plasma lipoproteins. platelet aggregability...
and prevalent ischaemic heart disease in Eastern Finnish men. *Atherosclerosis* **70**: 155–160.

10 Yegin A, Yegin H, Alicigüzel Y, Değer N, Semiz E. 1997. Erythrocyte selenium-glutathione peroxidase activity is lower in patients with coronary atherosclerosis. *Jpn Heart J* **38**: 793–798.

11 Hughes K, Ong C. 1998. Vitamins, selenium, iron, and coronary heart disease risk in Indians, Malays, and Chinese in Singapore. *J Epidemiol Community Health* **52**: 181–185.

12 Deguchi Y, Ogata A. 1991. Relationship between serum selenium concentration and atherogenic index in Japanese adults. *Tohoku J Exp Med* **165**: 247–251.

13 Koyama H, Watanabe C, Satoh H, Hosokai H, Tamura S. 1995. Consistent relationship between selenium and apolipoprotein A-I concentrations in the sera of fasting middle-aged male abstainers and regular consumers of alcohol. *Biol Trace Elem Res* **50**: 33–42.

14 Willett WC, Polk BF, Morris JS, Stampfer MJ, Pressel S, Rosner B, Taylor JO, Schneider K, Hames CG. 1983. Prediagnostic serum selenium and risk of cancer. *Lancet* **2** (8342): 130–134.

15 Salonen JT, Alfthan G, Huttunen JK, Puska P. 1984. Trace elements in the general population, estimated intake in duplicate diets and attempt to develop a short questionnaire. *Am J Epidemiol* **120**: 342–349.

16 Clark LC, Combs Jr GE, Turnbull BW, Slate EH, Chalker S, Watanabe T. 1996. Measurement of selenium in toenails and the risk of cancer. *Am J Epidemiol* **143**: 975–982.

17 Knekt P, Marniemi J, Teppo L, Hellövaaara M, Aromaa A. 1998. Is low selenium status a risk factor for lung cancer? *Am J Epidemiol* **148**: 1219–1224.

18 Suzuki T, Imai H, Kobayashi K, Hongo T, Kashiwazaki H, Ohtsuka R, Suzuki H, Ishida H. 1988. Dietary intake of selenium in Japanese—An estimation by analyzed and reported values in foodstuffs and cooked dishes. *Jpn Soc Nutr Food Sci* **41**: 91–102 (in Japanese).

19 Otsuki Y, Isomoto S, Noda H. 2000. Dietary intake of trace elements in the general population, estimated from a regional nutritional survey, and comparison with recommended dietary allowances and tolerable upper intake levels. *Jpn J Public Health* **47**: 809–819 (in Japanese).

20 Koyama H, Kasanuma Y, Nakatsuka H, Watanabe C, Satoh H, Watanabe T. 1996. Measurement of selenium intake in duplicate diets and attempt to develop a short food-frequency questionnaire for assessing dietary selenium intake by food groups. *Jpn J Hyg* **51**: 397 (in Japanese).

21 Ministry of Health and Welfare. 1999. Selenium. *In: The 6th Japanese recommended dietary allowances*, p 160–163, Daichii Shuppan, Tokyo (in Japanese).

22 Willett WC. 1998. Food-frequency methods. *In: Nutritional Epidemiology 2nd Edition*, p 74–94, Oxford University Press, New York.

23 Willett WC, Sampson L, Stampfer MJ, Rosner B, Bain C, Witschi J, Hennekens CH, Speizer FE. 1985. Reproducibility and validity of a semiquantitative food frequency questionnaire. *Am J Epidemiol* **122**: 51–65.

24 Rimm EB, Giovannucci EL, Stampfer MJ, Colditz GA, Litin LB, Willett WC. 1992. Reproducibility and validity of an expanded self-administered semiquantitative food frequency questionnaire among male health professionals. *Am J Epidemiol* **135**: 1114–1126.

25 Yegin A, Yegin H, Aliciguzel Y, Değer N, Semiz E. 1997. Nutrition availability to rats of selenium in tuna, wheat and soybean products consumed by Japanese. *Jpn Soc Nutr Food Sci* **41**: 320–323 (in Japanese).

26 Watkins JT. 1966. Fluorometric determination of selenium in biological material with 2,3-diaminonaphthalene. *Anal Chem* **38**: 92–97.

27 Klapec T, Mandic ML, Grigić J, Primorac Lj, Ikić M, Lovrić T, Grigić Z, Herceg Z. 1998. Daily dietary intake of selenium in eastern Croatia. *Sci Total Environ* **217**: 127–136.

28 Kadirabová J, Mad’acić A, Ginter E. 1998. Determination of the daily selenium intake in Slovakia. *Biol Trace Elem Res* **61**: 277–286.

29 Backović D, Mariniković J, Jorga J, Pavlica M, Maksimović Z, Nikolić M. 1999. Environmental factors, health-related habits, and serum selenium levels in cancer patients and healthy controls. *Biol Trace Elem Res* **67**: 55–62.

30 Duffield Adj, Thomson CD. 1999. A comparison of methods of assessment of dietary selenium intakes in Otago, New Zealand. *Br J Nutr* **82**: 131–138.

31 Yoshida M, Yasumoto K. 1987. Selenium contents of rice grown at various sites in Japan. *J Food Compos Anal* **1**: 71–75.

32 Yoshida M, Yasumoto Y. 1988. Selenium content in wheat and soybean products consumed by Japanese. *Jpn Soc Nutr Food Sci* **41**: 320–323 (in Japanese).

33 Cantor AH, Scott ML, Noguchi T. 1975. Biological availability of selenium in feedstuffs and selenium compounds for prevention of exudative diathesis in chicks. *J Nutr* **105**: 96–105.

34 Douglass JS, Morris VC, Soares JH Jr, Levander OA. 1981. Nutrition availability to rats of selenium in tuna, beef kidney, and wheat. *J Nutr* **111**: 2180–2187.

35 Alexander AR, Whanger PD, Miller LT. 1983. Bioavailability of selenium in various tuna and wheat products. *J Nutr* **113**: 196–204.

36 Yoshida M, Iwami K, Yasumoto K. 1984. Determination of nutritional efficiency of selenium contained in processed skipjack meat by comparison with selenite. *BioI Trace Elem Med BioI* **16**: 83–90.

37 Huang W, Akesson B, Svensson KG, Schütze A, Burk RF, Skerfving S. 1995. Selenoprotein P and glutathione peroxidase (EC 1.11.1.9) in plasma as indices of selenium
status in relation to the intake of fish. *Br J Nutr* **73**: 455–461.

42) Bügel SH, Sandström B, Larsen EH. 2001. Absorption and retention of selenium from shrimps in man. *J Trace Elements Med Biol* **14**: 198–204.

43) Meltzer HM, Bibow K, Paulsen IT, Mundal HH, Norheim G, Holm H. 1993. Different bioavailability in humans of wheat and fish selenium as measured by blood platelet response to increased dietary Se. *Biol Trace Element Res* **36**: 229–241.

44) Hagmar L, Persson-Moschos M, Åkesson B, Schütz A. 1998. Plasma levels of selenium, selenoprotein P and glutathione peroxidase and their correlations to fish intake and serum levels of thyrotropin and thyroid hormones: A study on Latvian fish consumers. *Eur J Clin Nutr* **52**: 796–800.

45) Mutanen M. 1986. Bioavailability of selenium. *Ann Clin Res* **18**: 48–54.

46) Djujić IS, Stankov ON, Milovac M, Janković V, Djerumanović V. 2000. Bioavailability and possible benefits of wheat intake naturally enriched with selenium and its products. *Biol Trace Element Res* **77**: 273–285.