Testing for white noise has been well studied in the literature of econometrics and statistics. For most of the proposed test statistics, such as the well-known Box-Pierce’s test statistic with fixed lag truncation number, the asymptotic null distributions are obtained under independent and identically distributed assumptions and may not be valid for the dependent white noise. Due to recent popularity of conditional heteroscedastic models (e.g. GARCH models), which imply nonlinear dependence with zero autocorrelation, there is a need to understand the asymptotic properties of the existing test statistics under unknown dependence. In this paper, we showed that the asymptotic null distribution of Box-Pierce’s test statistic with general weights still holds under unknown weak dependence so long as the lag truncation number grows at an appropriate rate with increasing sample size. Further applications to diagnostic checking of the ARMA and FARIMA models with dependent white noise errors are also addressed. Our results go beyond earlier ones by allowing non-Gaussian and conditional heteroscedastic errors in the ARMA and FARIMA models and provide theoretical support for some empirical findings reported in the literature.

1 Introduction

A fundamental problem in time series analysis is to test for white noise (or lack of serial correlation). For a zero-mean stationary process \(\{u_t\} \) with finite variance \(\sigma^2 = \text{var}(u_t) \), denote its covariance and correlation functions by \(R_u(k) = \)
cov(ut, ut+k) and ρu(k) = Ru(k)/σ², k ∈ Z respectively. Then the null and alternative hypothesis are

\[H_0 : \rho_u(j) = 0 \text{ for all } j \neq 0, \text{ and } H_1 : \rho_u(j) \neq 0 \text{ for some } j \neq 0. \]

Let \(f_u(\lambda) = (2\pi)^{-1} \sum_{k \in \mathbb{Z}} \rho_u(k) e^{ik\lambda} \) be the normalized spectral density function of ut. The equivalent frequency domain expressions to \(H_0 \) and \(H_1 \) are

\[H_0 : f_u(w) = \frac{1}{2\pi}, \quad w \in [-\pi, \pi) \text{ and } H_1 : f_u(w) \neq \frac{1}{2\pi}, \text{ for some } w \in [-\pi, \pi). \]

In statistical modeling, diagnostic checking is an integrable part of model building. A common way of testing the adequacy of the proposed model is by checking the assumption of white noise residuals. Systematic departure from this assumption implies the inadequacy of the fitted model. Thus testing for white noise is an important research topic and it has been extensively studied in the literature of econometrics and statistics.

The methodologies can be roughly divided into two categories: time domain tests and frequency domain tests. In the time domain, the most popular test is probably Box and Pierce’s (1970) (BP) portmanteau test, which admits the following form:

\[Q_n = \sum_{j=1}^{m} \hat{\rho}_u^2(h), \]

where \(m \) is the so-called lag truncation number [see Hong (1996)] and is (typically) assumed to be fixed. The empirical autocorrelation \(\hat{\rho}_u(j) \), is defined as \(\hat{\rho}_u(j) = \hat{R}_u(j)/\hat{R}_u(0) \) with \(\hat{R}_u(j) = n^{-1} \sum_{t=|j|+1}^{n} (u_t-\bar{u})(u_{t-|j|}-\bar{u}) \), where \(\bar{u} = n^{-1} \sum_{t=1}^{n} u_t \).

Under the assumption that \(\{u_t\}_{t \in \mathbb{Z}} \) are independent and identically distributed (iid), it can be shown that \(nQ_n \to_D \chi^2(m) \), where “\(\to_D \)” stands for convergence in distribution. If \(\{u_t\}_{t=1}^{n} \) are replaced by the residuals from a well specified model, then the limiting distribution is still \(\chi^2 \) but the degree of freedom is reduced to \(m - m' \), where \(m' \) is the number of parameters in the model. In the frequency domain, Bartlett (1955) proposed test statistics based on the famous \(U_p \) and \(T_p \) processes and a rigorous theoretical treatment of their limiting distributions was provided by Grenander and Rosenblatt (1957). Other contributions to the frequency domain tests can be found in Durlauf (1991) and Deo (2000) among others.

In the literature, when deriving the asymptotic null distribution of the test statistic, most earlier works assume Gaussianity and thus lack of correlation is
equivalent to independence. Lately there has been work that stress the distinction between lack of correlation and independence. The main reason is that the asymptotic null distributions of the above-mentioned test statistics were obtained under iid assumptions on u_t, and may not hold in the presence of nonlinear dependence, such as conditional heteroscedasticity. For example, Romano and Thombs (1996) showed that the BP statistic with χ^2 approximation can lead to misleading inferences when the time series is uncorrelated but dependent. Francq et al. (2005) also demonstrated that the BP test applied to the residuals of an ARMA model with uncorrelated but dependent errors performs poorly without suitable modifications. Various methods have been proposed to account for the dependence; see for example, Romano and Thombs (1996), Lobato et al. (2002), Francq et al. (2005) and Horowitz et al. (2006) among others. At this point, it seems natural to ask: “Does there exist a test statistic whose asymptotic null distribution is robust to the unknown dependence of u_t”. We shall give an affirmative answer in this paper.

In a seminal paper, Hong (1996) proposed several test statistics, which measure the distance between a kernel-based spectral density estimator and the spectral density of the noise under the null hypothesis. Let

$$\hat{f}_n(w) = (2\pi)^{-1} \sum_{j=-n+1}^{n-1} K(j/m_n)\hat{\rho}_u(j)e^{ijw}$$

be the lag window estimator of the normalized spectral density function [Priestley (1981)], where $K(\cdot)$ is a nonnegative symmetric kernel function, m_n is the bandwidth that depends on the sample size. With the quadratic distance, Hong’s statistic is expressed as

$$T_n = \pi \int_{-\pi}^{\pi} (\hat{f}_n(w) - (2\pi)^{-1})^2 dw,$$

or equivalently,

$$T_n = \sum_{j=1}^{n} K^2(j/m_n)\hat{\rho}_u^2(j).$$

It is worth noting that BP statistic can be regarded as a special case of Hong’s, where $K(\cdot)$ is taken to be the truncated kernel $K(x) = 1(|x| \leq 1)$. Under the iid
assumptions on \(u_t \) and \(1/m_n + m_n/n \to 0 \), Hong (1996) established the asymptotic null distribution of \(T_n \), i.e.

\[
\frac{nT_n - C_n(K)}{\sqrt{2D_n(K)}} \to D N(0, 1),
\]

(1)

where \(C_n(K) = \sum_{j=1}^{n-1} (1 - j/n)K^2(j/m_n) \), \(D_n(K) = \sum_{j=1}^{n-2} (1 - j/n)(1 - (j + 1)/n)K^4(j/m_n) \) and \(N(0, 1) \) stands for the standard normal distribution. Under some additional assumptions on \(K(\cdot) \) and \(m_n \), (1) holds with \(C_n(K) \) and \(D_n(K) \) replaced by \(m_nC(K) \) and \(m_nD(K) \) respectively, where \(C(K) = \int_0^\infty K^2(x)dx \) and \(D(K) = \int_0^\infty K^4(x)dx \). Later Hong and Lee (2003) established the above result assuming \(u_t \) to be martingale differences with conditional heteroscedasticity of unknown form. One of the major contributions of this paper is to show that Hong’s test statistic is still asymptotically valid under general white noise assumption on \(u_t \). Further, we establish that when replacing \(u_t \) by \(\hat{u}_t \), the residuals from the ARMA model with uncorrelated and dependent errors, the asymptotic null distribution of \(T_n \) still holds. Our assumptions and results differ from those in Francq et al. (2005) in that \(m \) is held fixed in their asymptotic distributional theory, while \(m = m(n) \) grows with the sample size \(n \) in our setting. From a theoretical standpoint, the fourth cumulant of \(u_t \) plays a non-negligible role in the asymptotic distribution of \(Q_n \) when \(m \) is fixed, whereas it turns out to be asymptotically negligible in \(T_n \) when \(m_n \to \infty \). So in the latter case, the asymptotic null distribution does not change under dependent white noise, i.e. the dependence is automatically accounted for if \(m \) and \(n \) both grow to infinity. The theoretical finding is also consistent with the empirical results reported in the simulation studies of Francq et al. (2005), where the empirical size of the BP test is seen to be reasonably close to the nominal one when \(n \) is large and \(m \) is relatively large compared to \(n \).

Recently, there has been considerable attention paid to the goodness-of-fit for long memory time series. Here we only mention some representative works. Extending Hong’s (1996) idea, Chen and Deo (2004a) proposed a generalized portmanteau test based on the discrete spectral average estimator and obtained the asymptotic null distribution for Gaussian long memory time series. Following the early work by Bartlett (1955), Delgado et al. (2005) studied Bartlett’s \(T_p \) process with estimated parameters and a martingale transform approach was used to make the null distribution asymptotically distribution-free. In a related work, Hidalgo and Kreiss (2006) proposed to use bootstrap methods in the frequency domain
to approximate the sampling distribution of Bartlett’s \(T_p \) statistic with estimated parameters. In these two articles, the asymptotic distributional theory heavily relies on the assumption that the noise processes are conditionally homoscedastic martingale differences.

In the last decade, the FARIMA (fractional autoregressive integrated moving average) models with GARCH errors have been widely used in the modeling literature [cf. Lien and Tse (1999), Elek and Márkus (2004), Koopman et al. (2007)]. In the modeling stage of a FARIMA-GARCH model, it is customary to fit a FARIMA model first and then fit a GARCH model to the residuals. It is crucial to specify the FARIMA model correctly since the model misspecification of the conditional mean often leads to the misspecification of the GARCH model; see Lumsdaine and Ng (1999). Thus diagnostic checking of FARIMA models with unknown GARCH errors is a very important issue. Note that Ling and Li (1997) and Li and Li (2008) have studied the BP type tests for FARIMA-GARCH models assuming a parametric form for the GARCH model. To the best of our knowledge, there seems no diagnostic checking methodology known or theoretically justified to work for long memory time series models with nonparametric conditionally heteroscedastic martingale difference errors. In this article, we shall fill this gap by proving asymptotic validity of Hong’s test statistic when we replace the unobserved errors by the estimated counterpart from a FARIMA model.

We now introduce some notation. For a column vector \(x = (x_1, \cdots, x_q)' \in \mathbb{R}^q \), let \(|x| = (\sum_{j=1}^{q} x_j^2)^{1/2} \). For a random vector \(\xi \), write \(\xi \in \mathcal{L}^p \; (p > 0) \) if \(\|\xi\|_p := [E(|\xi|^p)]^{1/p} < \infty \) and let \(\| \cdot \| = \| \cdot \|_2 \). For \(\xi \in \mathcal{L}^1 \) define projection operators \(P_k \xi = E(\xi | \mathcal{F}_k) - E(\xi | \mathcal{F}_{k-1}) \), \(k \in \mathbb{Z} \), where \(\mathcal{F}_k = (\ldots, \varepsilon_{k-1}, \varepsilon_k) \) with \(\{ \varepsilon_t \}_{t \in \mathbb{Z}} \) being iid random variables. Let \(C > 0 \) denote a generic constant which may vary from line to line; denote by \(\rightarrow_p \) convergence in probability. The symbols \(O_p(1) \) and \(o_p(1) \) signify being bounded in probability and convergence to zero in probability respectively. The paper is structured as follows. In Section 2 we introduce our assumptions on \(u_t \) and establish the asymptotic distributions of \(T_n \) under the null and alternative hypothesis. Section 3 discusses the case when \(u_t \) are not directly observable. Here we consider the ARMA and FARIMA models with dependent white noise errors in Section 3.1 and Section 3.2 respectively. Section 4 concludes. Proofs are gathered in Section 5.
2 When \(u_t \) is observable

Suitable structural assumptions on the process \((u_t) \) are certainly needed. Throughout, we assume that \((u_t) \) is a mean zero stationary causal process of the form
\[
 u_t = F(\cdots, \varepsilon_{t-1}, \varepsilon_t),
\]
where \(\varepsilon_t \) are iid random variables, and \(F \) is a measurable function for which \(u_t \) is well defined. Further we assume \(u_t \) satisfies the geometric-moment contraction (GMC) condition [Hsing and Wu (2004), Shao and Wu (2007), Wu and Shao (2004)]. Let \((\varepsilon'_k)_{k \in \mathbb{Z}} \) be an iid copy of \((\varepsilon_k)_{k \in \mathbb{Z}} \); let \(u'_n = F(\cdots, \varepsilon'_{t-1}, \varepsilon'_0, \varepsilon_1, \cdots, \varepsilon_n) \) be a coupled version of \(u_n \). We say that \(u_n \) is GMC(\(\alpha \)), \(\alpha > 0 \), if there exist \(C > 0 \) and \(\rho = \rho(\alpha) \in (0, 1) \) such that
\[
 \mathbb{E}(|u_n - u'_n|^\alpha) \leq C \rho^n, \ n \in \mathbb{N}.
\]

The property \(\mathbb{E}(|u_n - u'_n|^\alpha) \) indicates that the process \(\{u_n\} \) forgets its past exponentially fast, and it can be verified for many nonlinear time series models, such as threshold model, bilinear model and various forms of GARCH models; see Wu and Min (2005) and Shao and Wu (2007).

Besides conditional heteroscedastic models, which imply uncorrelation due to the martingale difference structure, there are a few commonly used models [see Lobato et al. (2002)] that are uncorrelated but are not martingale differences. We shall show that these models satisfy GMC property under appropriate assumptions.

Example 2.1. Bilinear model [Granger and Anderson (1978)]:
\[
 u_t = \varepsilon_t + b\varepsilon_{t-1}u_{t-2},
\]
where \(\varepsilon_t \) are iid \(N(0, \sigma^2_\varepsilon) \) and \(|b| < 1 \). According to Example 5.3 in Shao and Wu (2007), \(u_t \) is GMC(\(\alpha \)), \(\alpha \geq 1 \) if
\[
 \mathbb{E} \left| \frac{1}{\alpha} \begin{pmatrix} 0 & 1 \\ b\varepsilon_t & 0 \end{pmatrix} \right|_\alpha < 1,
\]
where for a \(p \times p \) matrix \(A \), \(|A|_\alpha = \sup_{z \neq 0} |Az|_\alpha/|z|_\alpha \), \(\alpha \geq 1 \), is the matrix norm induced by the vector norm \(|z|_\alpha = (\sum_{j=1}^p |z_j|^\alpha)^{1/\alpha} \).
Example 2.2. All-Pass ARMA(1,1) model [Breidt et al. (2001)]:

\[u_t = \phi u_{t-1} + \varepsilon_t - \phi^{-1} \varepsilon_{t-1} \]

where \(|\phi| < 1\) and \(\varepsilon_t \sim iid(0, \sigma^2)\). Note that \(u_t = \varepsilon_t + \sum_{j=1}^{\infty} (\phi^j - \phi^{j-2}) \varepsilon_{t-j}\). Since \(|\phi| < 1\), \(u_t\) is GMC(\(\alpha\)) if \(\varepsilon_t \in \mathcal{L}^{\alpha}\). In view of Theorem 5.2 in Shao and Wu (2007), the all-pass ARMA\((p,p)\) model also satisfies GMC(\(\alpha\)) provided that \(\varepsilon_t \in \mathcal{L}^{\alpha}\).

Example 2.3. Nonlinear moving average model [Granger and Ter"asvirta (1993)]:

\[u_t = \beta \varepsilon_t - \varepsilon_{t-2} + \varepsilon_t, \]

where \(\varepsilon_t \sim iid(0, \sigma^2)\) and \(\beta \in \mathbb{R}\). It is easily seen that \(u_t\) is GMC(\(\alpha\)) if \(\varepsilon_t \in \mathcal{L}^{\alpha}\).

To obtain the asymptotic distribution of \(T_n\), the following assumption is made on the kernel function \(K(\cdot)\) and is satisfied by several commonly-used kernels in spectral analysis, such as Bartlett, Parzen and Tukey kernels (see Priestley (1981), p 446-447).

Assumption 2.1. Assume the kernel function \(K : \mathbb{R} \rightarrow [-1,1]\) has compact support on \([-1,1]\), is differentiable except at a finite number of points and symmetric with \(K(0) = 1\), \(\max_{x \in [-1,1]} |K(x)| = K_0 < \infty\).

The assumption that \(K(\cdot)\) has compact support can presumably be relaxed at the expense of longer and more technical proof; see Chen and Deo (2004a). Here we decide to retain it to avoid more technical complications.

Theorem 2.1. Suppose Assumption [2.1] and [3] holds with \(\alpha = 8\). Assume \(\log n = o(m_n)\) and \(m_n = o(n^{1/2})\). Under \(H_0\), we have

\[\frac{nT_n - m_n C(K)}{\sqrt{2m_n D(K)}} \rightarrow_D N(0,1). \quad (4) \]

Remark 2.1. As pointed out by a referee, the 8-th moment condition on \(u_t\) is fairly strong and it excludes some interesting GARCH models, such as the IGARCH model. In addition, the permissible parameter space for the regular GARCH\((r,s)\) model is quite small under the 8-th moment assumption. At this point, we are unable to relax this assumption as it seems necessary in our technical argument. Nevertheless, the result above suggests that the asymptotic null distribution of Hong’s
(1996) statistic is unaffected by unknown (weak) dependence. From a technical point of view, the asymptotic null distribution of the BP statistic depends on the fourth cumulants of u_t since the number of lags m is fixed. In contrast, for Hong’s statistic, as $m_n \to \infty$, the fourth cumulant effect appears to be asymptotically negligible. For a fixed m, our result in Theorem 2.1 is not applicable.

The condition on the bandwidth is less restrictive than it looks. I am not aware of any theoretical results on the optimal bandwidth choice for T_n in the hypothesis testing context. In terms of estimating the spectral density function, the optimal bandwidth is $m_n = Cn^{1/5}$ if the kernel (e.g. Parzen kernel) is quadratic around zero, and $m_n = Cn^{1/3}$ if the kernel (e.g. Bartlett kernel) is linear around zero. Note that the problem of testing for white noise bears some resemblance to testing lack of fit (or specification testing) in the nonparametric regression context. The latter problem has been well studied in the literature and the data-driven bandwidth choice for the smoothing type test has been addressed in Horowitz and Spokoiny (2001) and Guerre and Lavergne (2005) among others.

For the optimal choice of the kernel function, we refer the reader to Hong (1996) for more details. The consistency of T_n is stated in the following theorem.

Theorem 2.2. Suppose Assumption 2.1 and (3) holds with $\alpha = 8$. Assume $1/m_n + m_n/n \to 0$. Under H_1, we have

$$
\sqrt{m_n} \left(\frac{nT_n - m_n C(K)}{\sqrt{2m_n D(K)}} \right) \xrightarrow{p} \frac{1}{2} \sum_{j \neq 0} \rho_2(j)/(2D(K))^{1/2}.
$$

Proof of Theorem 2.2. It follows from the argument in the proof of Theorem 6 of Hong (1996) by noting that $R_u(j) \leq Cr^j$ for some $r \in [0, 1)$ and the absolute summability of the fourth cumulants under GMC(4) [See Wu and Shao (2004), Proposition 2]. We omit the details.

Remark 2.2. In a related work, Chen and Deo (2006) considered the variance ratio statistic to test for white noise based on the first differenced series and proved that when the horizon k satisfies $1/k + k/n = o(1)$, the asymptotic null distribution of the variance ratio statistic is also robust to conditional heteroscedasticity of unknown form. Their result is akin to ours, in that the asymptotic null distribution of the test statistic is nuisance parameter free and the horizon k in variance ratio statistic plays a similar role as our bandwidth m_n. However, in their conditions
(A1)-(A6), the white noise process is assumed to be a sequence of martingale differences with additional regularity conditions imposed on the higher order moments (up to 8th); compare Deo (2000). Under our framework, the white noise process does not have to be martingale difference under the null. This has some practical implications since there are nonlinear time series models that are uncorrelated but are not martingale differences, as shown in Examples 2.1-2.3. From a technical point of view, the relaxation of the martingale difference assumption, which was imposed in Hong and Lee (2003) and Chen and Deo (2006), is a very nontrivial step and is made feasible with the novel martingale approximation techniques; see Appendix for more discussions.

Remark 2.3. For the BP test statistic, $K(x) = 1(|x| \leq 1)$ and $C(K) = D(K) = 1$. Thus the statement (1) reduces to $\{n \sum_{j=1}^{m_n} \hat{\rho}^2_u(j) - m_n\}/\sqrt{2m_n} \to_d N(0,1)$. In the implementation of the BP test, we use the critical values based on $\chi^2(m_n)$ and compare it with the realized value of $n \sum_{j=1}^{m_n} \hat{\rho}^2_u(j)$, whereas in Hong’s test, the critical values are based on the standard normal distribution. Loosely speaking, the two procedures are asymptotically equivalent, since as $m_n \to \infty$, the central limit theorem implies $\chi^2(m_n) \approx N(m_n, 2m_n)$. This suggests that the use of BP test is valid in the presence of unknown weak dependence when m_n is relatively large compared to n.

3 When u_t is unobservable

In practice, the errors $\{u_t\}_{t=1,2,\ldots,n}$ are often unobservable as a part of the model, but can be estimated. Hong (1996) studied the residuals from a linear dynamic model that includes both lagged dependent variables and exogenous variables. In principle, our results can be extended to the residuals from any parametric time series models with uncorrelated errors, including the setup studied by Hong (1996). Instead of pursuing full generality, we shall treat the residuals from ARMA and FARIMA models in Sections 3.1 and 3.2 respectively. This is motivated by the recent interests on the ARMA models with dependent white noise errors [cf. Francq and Zakoïan (2005), Francq et al. (2005) and the references therein] and goodness-of-fit for long memory time series models [see Section 3.2 for more references].
3.1 ARMA model

Consider a stationary autoregressive and moving average (ARMA) time series generated by

\[(1 - \alpha_1B - \cdots - \alpha_pB^p)X_t = (1 + \beta_1B + \cdots + \beta_qB^q)u_t, \quad (5)\]

where \(B\) is the backward shift operator, \(\{u_t\}\) is a sequence of uncorrelated random variables and \(\Lambda = (\alpha_1, \ldots, \alpha_p, \beta_1, \ldots, \beta_q)'\) is an unknown parameter vector. Let
\[
\phi_\Lambda(z) = 1 - \alpha_1z - \cdots - \alpha_pz^p \quad \text{and} \quad \psi_\Lambda(z) = 1 + \beta_1z + \cdots + \beta_qz^q
\]
be AR and MA polynomials respectively. Denote by \(\Lambda_0 = (\alpha_{10}, \ldots, \alpha_{p0}, \beta_{10}, \ldots, \beta_{q0})'\) the true value of \(\Lambda\) and assume that \(\Lambda_0\) is an interior point of the set
\[
\Omega_\delta = \{\Lambda \in \mathbb{R}^{p+q}; \text{the roots of polynomials } \phi_\Lambda(z) \text{ and } \psi_\Lambda(z) \text{ have moduli } \geq 1 + \delta\}
\]
for some \(\delta > 0\). Following Francq et al. (2005), we call (5) a weak ARMA model if \((u_t)\) is only uncorrelated, a semi-strong ARMA model if \((u_t)\) is a martingale difference, and a strong ARMA model if \((u_t)\) is an iid sequence.

Denote by \(\hat{\Lambda}_n = (\hat{\alpha}_1, \ldots, \hat{\alpha}_p, \hat{\beta}_1, \ldots, \hat{\beta}_q)'\) the estimator of \(\Lambda\). Then the residuals \(\hat{u}_t, t = 1, 2, \ldots, n\) are usually obtained by the following recursion

\[
\hat{u}_t = X_t - \hat{\alpha}_1X_{t-1} - \cdots - \hat{\alpha}_pX_{t-p} - \hat{\beta}_1\hat{u}_{t-1} - \cdots - \hat{\beta}_q\hat{u}_{t-q}, \quad t = 1, 2, \ldots, n,
\]

where the initial values \((X_0, X_{-1}, \ldots, X_{1-p})' = (\hat{u}_0, \ldots, \hat{u}_{1-q})' = 0\). Following Francq et al. (2005), we test

\[H_0 : (X_t) \text{ has an ARMA}(p, q) \text{ representation} \quad (5)\]

against the alternative

\[H_1 : (X_t) \text{ does not admit an ARMA representation, or admits an ARMA}(p', q') \text{ representation with } p' > p \text{ or } q' > q.\]

If \(p\) and \(q\) are correctly specified, we would expect the estimated residuals behave like a white noise sequence under \(H_0\). The following theorem states the asymptotic null distribution of the test statistic \(T_{1n} = \sum_{j=1}^{n} K^2(j/m_n)\hat{\rho}_n^2(j)\).

Theorem 3.1. Suppose the assumptions in Theorem 2.1 hold. Assume \(\hat{\Lambda}_n - \Lambda_0 = O_p(n^{-1/2})\). Then under \(H_0\),

\[
\frac{nT_{1n} - m_nC(K)}{(2m_nD(K))^{1/2}} \rightarrow_D N(0, 1).
\]
The proof of Theorem 3.1 follows the argument used in the proof of Theorem 3.2 below and is simpler. We omit the details. Note that as a common feature of smoothing-type test, the use of the residuals \{\hat{u}_t\} in place of the true unobservable errors \{u_t\} has no impact on the limiting distribution.

Remark 3.1. In the simulation studies of Francq et al. (2005), it can be seen that when \(m\) is large relative to \(n\), the level of the BP test is reasonably close to the nominal one. Here our result provides theoretical support for this phenomenon since if we let \(K\) to be the truncated kernel, the resulting test statistic is exactly the same as BP’s. As commented in Remark 2.3, the difference between the use of the \(\chi^2\)-based critical values as done in BP test, and the use of the \(N(0,1)\)-based critical values for Hong’s test is asymptotically negligible since the number of model parameters (i.e. \(p + q\)) is fixed and \(mn \to \infty\). Therefore, it seems fair to say that the use of BP test is still justified when the lag truncation number \(m\) is large, as the unknown dependence in \(u_t\) does not kick in asymptotically.

As mentioned in Francq et al. (2005), weak ARMA models can arise from various situations, such as transformation of strong ARMA processes, causal representation of noncausal ARMA processes and nonlinear processes. In the sequel, we demonstrate that the GMC condition for the noise process in the weak ARMA representation can be verified for the two leading examples in Francq et al. (2005).

Example 3.1. Consider the process

\[
X_t - aX_{t-1} = \varepsilon_t - b\varepsilon_{t-1}, \quad a \neq b \in (-1,1),
\]

where \(\varepsilon_t\) are iid random variables with \(E(\varepsilon_t) = 0\) and \(\varepsilon_t \in \mathcal{L}^\alpha, \alpha \geq 1\). Let \(Y_t = X_{2t}\). Then \(Y_t - a^2Y_{t-1} = \xi_t = u_t - \theta u_{t-1}\), where \(\theta \in (-1,1), \xi_t = \varepsilon_{2t} + (a - b)\varepsilon_{2t-1} - ab\varepsilon_{2t-2}, \ u_t\) is white noise and \(u_t = R_{1t} + R_{2t} + \theta \xi_{t-1}\), where \(R_{1t} = -ab\varepsilon_{2t-2} + \theta^2 \varepsilon_{2t-4} + \varepsilon_{2t} + (a - b)\varepsilon_{2t-1} + \theta^2[(a - b)\varepsilon_{2t-5} - ab\varepsilon_{2t-6}]\) and \(R_{2t} = \sum_{i \geq 3} \theta^i u_{t-i}\). It is easily seen that \(\xi_t\) and \(R_{1t}\) satisfy GMC(\(\alpha\)). By Theorem 5.2 in Shao and Wu (2007), \(R_{2t}\) also satisfies GMC(\(\alpha\)). Therefore, \(u_t\) is GMC(\(\alpha\)).

Example 3.2. Consider the process

\[
X_t = \varepsilon_t - \phi \varepsilon_{t-1}, \quad |\phi| > 1.
\]

Let \(u_t = \sum_{i=0}^{\infty} \phi^{-i}X_{t-i}\). Then \(X_t\) admits the causal MA(1) representation: \(X_t = u_t - \phi^{-1}u_{t-1}\). Since \(X_t\) is GMC(\(\alpha\)), \(u_t\) is also GMC(\(\alpha\)) by Theorem 5.2 in Shao and Wu (2007).
Remark 3.2. To study the local power of T_{1n}, we follow Hong (1996) and define the local alternative $H_{1n} : f_{un}(w) = (2\pi)^{-1} + a_ng(w)$ for $w \in [-\pi, \pi]$, where $a_n = o(1)$. The function g is symmetric, 2π-periodic and satisfies $\int_{-\pi}^{\pi} g(w)dw = 0$, which ensures that f_{un} is a valid normalized spectral density function for large n. Let $\mu(K) = 2\pi \int_{-\pi}^{\pi} g^2(w)dw / (2D(K))^{1/2}$. It can be shown that under H_{an} with $a_n = m_n^{1/4}/n^{1/2}$,

$$\frac{nT_{1n} - m_nC(K)}{(2m_nD(K))^{1/2}} \xrightarrow{D} N(\mu(K), 1) \quad (6)$$

provided that $\hat{\Lambda}_n - \Lambda_0 = O_p(n^{-1/2})$ and the assumptions in Theorem 2.1 hold. Since the proof basically repeats the argument in the proof of Hong’s (1996) Theorem 4, we omit the details. It is worth mentioning that the above asymptotic distribution (6) under the local alternative still holds for T_n, whereas a similar result for T_{2n} [see Section 3.2 for the definition] in the long memory case may still hold but the proof seems tedious and is thus not pursued. Compared to the Box-Pierce test with a fixed m, Hong’s test is locally less powerful in that Box-Pierce’s test has nontrivial power against the local alternative of order $n^{-1/2}$. On the other hand, Box-Pierce’s test only has trivial power against non-zero correlations at lags beyond m, whereas Hong’s test is able to detect non-zero correlations at any nonzero lags asymptotically.

3.2 FARIMA model

In this subsection, we extend our result to the goodness-of-fit problem for long memory time series. A commonly used model in the long memory time series literature is the FARIMA model:

$$(1 - B)^d \phi_\Lambda(B)Y_t = \psi_\Lambda(B)u_t, \quad (7)$$

where $d \in (0, 1/2)$ is the long memory parameter. Let $\theta = (d, \Lambda')'$ and denote by $\theta_0 = (d_0, \Lambda_0')'$ its true value. Assume that θ_0 lies in the interior of $\Theta_\delta = [\Delta_1, \Delta_2] \times \Omega_\delta$, where $0 < \Delta_1 < \Delta_2 < 1/2$.

Testing goodness of fit for short/long memory time series models has attracted a lot of attention recently. Most tests were constructed in the frequency domain and they can be roughly categorized into two types: spectral density based test and spectral distribution function based test. Tests developed by Hong (1996),
Paparoditis (2000), Chen and Deo (2004a) are of the first type and they usually involve a smoothing parameter and have trivial power against $n^{-1/2}$ local alternatives. The advantage of this type of tests is that the asymptotic null distributions are free of nuisance parameters. For the second type, see Beran (1992), Chen and Romano (1999), Delgado et al. (2005) and Hidalgo and Kreiss (2006), among others. Typically, the tests of this type avoid the issue of choosing the smoothing parameter and they can distinguish the alternatives within $n^{-1/2}$-neighborhoods of the null model. However, a disadvantage associated with this kind of tests is that the asymptotic null distributions often depend on the underlying data generating mechanism and are not asymptotically distribution-free. The martingale transform method [see Delgado et al. (2005)] and the bootstrap approach [Chen and Romano (1999), Hidalgo and Kreiss (2006)] have been utilized to make the tests practically usable. So far, the tests proposed by Chen and Deo (2004a), Delgado et al. (2005) and Hidalgo and Kreiss (2006) have been justified to work for long memory time series models. However, they assumed either Gaussian processes or linear processes with the noise processes being conditionally homoscedastic martingale differences, which exclude interesting models, such as FARIMA models with unknown GARCH errors.

Since $d_0 \in (0, 1/2)$, the process Y_t is invertible. We have the following autoregressive representation

$$u_t = \sum_{k=0}^{\infty} e_k(\theta_0)Y_{t-k}.$$

Given the observations $Y_t, t = 1, 2, \cdots, n$, we follow Beran (1995) and form the residuals by

$$\hat{u}_t = \sum_{j=0}^{t-1} e_j(\hat{\theta}_n)Y_{t-j}, \quad t = 1, 2, \cdots, n, \quad (8)$$

where $\hat{\theta}_n$ is an estimator of θ. Similar to the ARMA case, the null and alternative hypothesis are

$$H_0 : (Y_t) \text{ has an FARIMA}(p, d, q) \text{ representation}$$

and

$$H_1 : (Y_t) \text{ does not admit an FARIMA representation, or admits an FARIMA}(p', d, q')$$
representation with $p' > p$ or $q' > q$.

The test statistic is $T_{2n} = \sum_{j=1}^{n} K^2(j/m_n)\hat{\rho}^2(j)$, where $\{\hat{u}_t\}_{t=1}^{n}$ are from (8).

Theorem 3.2. Suppose that the assumptions in Theorem 2.1 hold. Assume $\hat{\theta}_n - \theta_0 = O_p(n^{-1/2})$. Then under H_0, we have

$$\frac{nT_{2n} - m_nC(K)}{(2m_nD(K))^{1/2}} \to_D N(0,1).$$

The result presented above is a new contribution to the literature, even for the model (7) with iid errors. Here we can take the Whittle pseudo-maximum likelihood estimator as $\hat{\theta}_n$. The root-n asymptotic normality of Whittle estimator for long memory time series models with general white noise errors has been established by Hosoya (1997) and Shao (2010).

Remark 3.3. Hong’s (1996) statistic has been reformulated in the discrete form by Chen and Deo (2004a), who showed asymptotic equivalence of the two statistics for Gaussian long memory time series. Note that the applicability of Chen and Deo’s (2004a) test statistic has only been proved for the Gaussian case. The latter authors conjectured that their assumptions can be relaxed to allow long memory linear processes with iid innovations. The work presented here partially solves their conjecture and our results even allow for dependent innovations.

A limitation of our theory is that we need to assume the mean of Y_t is known. In practice, if the mean is unknown, we need to modify our \hat{u}_t [cf. (8)] by replacing Y_t with $Y_t - \bar{Y}_n$, where $\bar{Y}_n = \frac{1}{n}\sum_{t=1}^{n}Y_t$. It turns out that our technical arguments are no longer valid with this modification except for the case $d_0 \in (0,1/4)$ with additional restrictions on m_n. The main reason is that the sample mean of a long memory time series converges to the population mean relatively slowly at the rate of $n^{(1/2-d_0)}$. The larger d_0 is, the slower it becomes. When $d_0 \in [1/4,1/2)$, the effect of mean adjustment becomes asymptotically non-negligible. As pointed out by a referee, Chen and Deo’s (2004a) frequency domain test statistic is mean invariant, so no mean adjustment is needed. It might be possible to extend the theory presented in Chen and Deo (2004a) directly to the case of dependent innovations, but such an extension seems very challenging and is beyond the scope of this paper. In the short memory case, i.e. $d_0 = 0$, the mean adjustment does not affect the asymptotic null distribution of the test statistic T_{1n}. In other words,
Theorem 3.1 still holds if we use the mean adjusted residuals in the calculation of T_{1n}.

Remark 3.4. It seems natural to ask if a central limit theorem for statistics based on Bartlett’s T_p process can be obtained under the GMC conditions on the errors. Although it might be possible to obtain a non-pivotal asymptotic null distribution under GMC conditions, the martingale transformation method used in Delgado et al. (2005) and the frequency domain bootstrap approach in Hidalgo and Kreiss (2006) may no longer be able to take care of the estimation effect for the long memory model with unknown conditional heteroscedastic errors. The main reason is that the validity of both approaches rely on the assumption that the fourth order spectrum of the innovation sequence is a constant, which happens to be true for conditional homoscedastic martingale differences [cf. Shao (2010)]. In the case of conditional heteroscedastic errors, I am not aware of any feasible tests based on Bartlett’s T_p process. Further study along this direction would be certainly interesting.

4 Conclusions

In this paper, we showed that Hong’s (1996) test is robust to conditional heteroscedasticity of unknown form in large sample theory and is applicable to a large class of dependent white noise series. Further, when applied to the residuals from short/long memory time series models, the asymptotical null distribution is still valid. The main focus of this paper is on the theoretical aspect, although the empirical performance is also very important. The finite sample performance of Hong’s test statistic has been examined by Hong (1996) and Chen and Deo (2004b) among others to assess the goodness of fit of time series models with iid errors. It was found that the sampling distribution of the test statistic is right-skewed, and the size distortion can presumably be reduced by adopting a power transformation method [Chen and Deo (2004b)] or frequency domain bootstrap approach [Paparoditis (2000)]. The performance of the afore-mentioned test statistics along with size-correction devices have yet to be examined for time series models with dependent errors. An in-depth study is certainly worthwhile, and will be pursued in a separate work.
REFERENCES

Bartlett, M. S. (1955). *An Introduction to Stochastic Processes with Special Reference to Methods and Applications*. Cambridge University Press.

Beran, J. (1992). A goodness-of-fit test for time series with long range dependence. *Journal of Royal Statistical Society Series B Statistical Methodology* 54, 749-760.

Beran, J. (1995). Maximum likelihood estimation of the differencing parameter for invertible short and long memory autoregressive integrated moving average models. *Journal of Royal Statistical Society Series B Statistical Methodology* 57, 659-672.

Box, G. & D. Pierce (1970). Distribution of residual autocorrelations in autoregressive-integrated moving average time series models. *Journal of the American Statistical Association* 65, 1509-1526.

Breidt, F.J., R. A. Davis & A. A. Trindade (2001). Least absolute deviation estimation for all-pass time series models. *Annals of Statistics* 29, 919-946.

Brillinger, D. R. (1975). *Time Series: Data Analysis and Theory*. Holden-Day, San Francisco.

Chen, W. & R. S. Deo (2004a). A generalized portmanteau goodness-of-fit test for time series models. *Econometric Theory* 20, 382-416.

Chen, W. & R. S. Deo (2004b). Power transformation to induce normality and their applications. *Journal of Royal Statistical Society Series B Statistical Methodology* 66, 117-130.

Chen, W. & R. S. Deo (2006). The variance ratio statistic at large horizons. *Econometric Theory* 22, 206-234.

Chen, H. & J. P. Romano (1999). Bootstrap-assisted goodness-of-fit tests in the frequency domain. *Journal of Time Series Analysis* 20, 619-654.

Delgado, M.A., J. Hidalgo & C. Velasco (2005). Distribution free goodness-of-fit tests for linear processes. *Annals of Statistics* 33, 2568-2609.

Deo, R. S. (2000). Spectral tests of the martingale hypothesis under conditional heteroscedasticity. *Journal of Econometrics* 99, 291-315.

Durlauf, S. (1991). Spectral based testing for the martingale hypothesis. *Journal of Econometrics* 50, 1-19.
Elek, P. & L. Márkus (2004). A long range dependent model with nonlinear innovations for simulating daily river flows. *Natural Hazards and Earth System Sciences* 4, 277-283.

Francq, C. & J. M. Zakoïan (2000). Covariance matrix estimation for estimators of mixing weak ARMA-models. *Journal of Statistical Planning and Inference* 83, 369-394.

Francq, C. & J. M. Zakoïan (2005). Recent Results for Linear Time Series Models with Non Independent Innovations, in Statistical Modeling and Analysis for Complex Data Problems, P. Duchesne and B. Rmillard Editors, Springer.

Francq, C., R. Roy & J. M. Zakoïan (2005). Diagnostic Checking in ARMA models with uncorrelated errors. *Journal of the American Statistical Association*. 100, 532-544.

Granger, C. W. J. & A. P. Anderson (1978). *An Introduction to Bilinear Time Series Models*. Gottingen: Vandenhoek and Ruprecht.

Granger, C. W. J. & T. Teräsvirta (1993). *Modelling Nonlinear Economic Relationships* (New York: Oxford University Press).

Grenander, U. & M. Rosenblatt (1957). *Statistical Analysis of Stationary Time Series*. Wiley, New York.

Guerre, E. & P. Lavergne (2005) Data-driven rate-optimal specification testing in regression models. *Annals of Statistics* 33, 840-870.

Hall, P. & C. C. Heyde (1980). *Martingale Limit Theory and Its Applications*. Academic Press.

Hidalgo, J. & J. P. Kreiss (2006). Bootstrap specification tests for linear covariance stationary processes. *Journal of Econometrics* 133, 807-839.

Hong, Y. (1996). Consistent testing for serial correlation of unknown form. *Econometrica* 64, 837-864.

Hong, Y. & Y. J. Lee (2003). Consistent testing for serial uncorrelation of unknown form under general conditional heteroscedasticity. Preprint.

Horowitz, J. L., I. N. Lobato, J. C. Nankervis & N. E. Savin (2006). Bootstrapping the Box-Pierce Q test: A robust test of uncorrelatedness. *Journal of Econometrics* 133, 841-862.

Horowitz, J. L. & V. G. Spokoiny (2001) An adaptive rate-optimal test of a parametric mean-regression model against a nonparametric alternative. *Econo-
metrica 69, 599-631.

Hosoya, Y. (1997). A limit theory for long-range dependence and statistical inference on related models. Annals of Statistics 25, 105-137.

Hsing, T. & W. B. Wu (2004). On weighted U-statistics for stationary processes. Annals of Probability 32, 1600-1631.

Koopman, S. J., M. Ooohs & M. A. Carnero (2007). Periodic seasonal Reg-ARFIMA-GARCH models for daily electricity spot prices. Journal of the American Statistical Association 102, 16-27.

Li, G. & W. K. Li (2008) Least absolute deviation estimation for fractionally integrated autoregressive moving average time series models with conditional heteroscedasticity. Biometrika 95, 399-414.

Ling, S. & W. K. Li (1997) On fractionally integrated autoregressive moving-average time series models with conditional heteroscedasticity. Journal of the American Statistical Association 92, 1184-1194.

Lien, D. & Y. K. Tse (1999). Forecasting the Nikkei spot index with fractional cointegration. Journal of Forecasting 18, 259-273.

Lobato, I.N., J. C. Nankervis & N. E. Savin (2002). Testing for zero autocorrelation in the presence of statistical dependence. Econometric Theory 18, 730-743.

Lumsdaine, R. L. & S. Ng (1999). Testing for ARCH in the presence of a possibly misspecified conditional mean. Journal of Econometrics 93, 257-279.

Paparoditis, E. (2000). Spectral density based goodness-of-fit tests for time series models, Scandinavian Journal of Statistics 27, 143-176.

Priestley, M. B. (1981). Spectral Analysis and Time Series, Vol 1, Academic, New York.

Robinson, P. M. (2005). Efficiency improvements in inference on stationary and nonstationary fractional time series. Annals of Statistics 33, 1800-1842.

Romano, J. L. & L. A. Thombs (1996). Inference for autocorrelations under weak assumptions. Journal of the American Statistical Association 91, 590-600.

Shao, X. (2010). Nonstationarity-extended Whittle estimation. Econometric Theory, to appear.

Shao, X. & W. B. Wu (2007). Asymptotic spectral theory for nonlinear time series. Annals of Statistics 4, 1773-1801.
Throughout the appendices, u_t is assumed to be an uncorrelated stationary sequence with the representation \(2\). For the convenience of notation, let \(k_{nj} = K(j/m_n)\). Denote by \(Z_{jt} = u_tu_{t-j}\) and \(D_{j,k} = \sum_{t=k}^{\infty} \mathcal{P}_k(Z_{jt})\). Note that for each \(j \in \mathbb{N}\), \(D_{j,k}\) is a sequence of stationary and ergodic martingale differences. For \(a, b \in \mathbb{R}\), denote by \(a \vee b = \max(a, b)\) and \(a \wedge b = \min(a, b)\). Let \(\mathcal{F}_i^j = (\varepsilon_i, \ldots, \varepsilon_j)\) and \(\mathcal{F}_i^t = (\varepsilon_{i-1}, \varepsilon_0, \varepsilon_1, \ldots, \varepsilon_t)\), \(t \in \mathbb{N}\). For \(X \in \mathcal{L}^1\), denote by \(\mathcal{P}_t^iX = \mathbb{E}(X|\mathcal{F}_t^i) - \mathbb{E}(X|\mathcal{F}_{t-1}^i)\). Let \(u_k^* = F(\varepsilon_{-1}, \varepsilon_0, \varepsilon_1, \ldots, \varepsilon_k)\), \(k \in \mathbb{N}\). Denote by \(\delta_\alpha(k) = \|u_k - u_k^*\|_\alpha\), \(k \in \mathbb{N}\), \(\alpha \geq 1\) the physical dependence measure introduced by Wu (2005). According to Wu (2007), we have \(\|\mathcal{P}_0 Z_{jk}\|_\alpha \leq C(\delta_2\alpha(k) + \delta_2\alpha(k-j)1(k \geq j))\) if \(u_t \in \mathcal{L}^{2\alpha}\), and \(\delta_\alpha(k) \leq Cr_k\) for some \(r \in (0, 1)\) provided that \(u_t\) is GMC\((\alpha)\), \(\alpha \geq 1\).

One of major technical contributions of this paper is to replace the martingale difference assumption in Hong and Lee (2003) by the GMC condition under the white noise null hypothesis. This is achieved by approximating the double array sequence \(\sum_{t=j+1} Z_{jt}\) using its martingale counterpart \(\sum_{t=j+1} D_{j,t}\) for \(j = 1, \ldots, m_n\). Note that the martingale approximation for the single array sequence \(u_t\) has been well studied [cf. Hsing and Wu (2004), Wu and Woodroofe (2004), Wu and Shao (2007) among others], but the techniques there are not directly applicable. The
major difficulty is that in our setting the martingale approximation error has to be bounded uniformly in \(j = 1, \ldots, m_n \) and the application of martingale central limit theorem after martingale approximation requires very delicate analysis due to the presence of dependence.

We separate the proofs of Theorem 5.1 and Theorem 5.2 along with necessary lemmas into Appendices A and B respectively.

5.1 Appendix A

Let \(\theta_{j,r,\alpha} = \| \mathcal{P}_0 Z_{jr} \|_\alpha \), \(\alpha \geq 1 \) and \(\Theta_{j,n,\alpha} = \sum_{t=n}^\infty \theta_{j,r,\alpha} \). The following lemma is an extension of Theorem 1 (ii) in Wu (2007). Since the proof basically repeats that in Wu (2007), we omit the details.

Lemma 5.1. Assume \(u_t \in \mathbb{L}^{2\alpha} \), \(\alpha \geq 2 \). For \(0 < a_n < b_n \leq n \), we have

\[
\left\| \sum_{r=a_n}^{b_n} (Z_{jr} - D_{jr}) \right\|_\alpha^2 \leq C \sum_{k=1}^{b_n-a_n+1} \Theta_{j,k,\alpha}^2.
\]

The part (a) of the lemma below states the variance and covariances of the approximating martingale difference \(D_{j,k} \) and may be of its independent interest.

Lemma 5.2. Assume that \(u_t \) is GMC(8). (a) For \(j > 0 \), we have

\[
\mathbb{E}(D_{j,k}^2) = \sigma^4 + \text{cov}(u_t^2, u_{t-j}^2) + \sum_{k \neq 0, k \in \mathbb{Z}} \text{cum}(u_0, u_k, u_{-j}, u_{k-j}),
\]

and \(\mathbb{E}(D_{j,k} D_{j',k}) = (1/2) \sum_{k \in \mathbb{Z}} \{ \text{cum}(u_0, u_{-j}, u_k, u_{k-j'}) + \text{cum}(u_0, u_{-j'}, u_k, u_{k-j}) \} \) when \(j \neq j' > 0 \). (b) Let \(D_{j,k}' = \sum_{t=k}^\infty \mathcal{P}_k \{ u_t' u_{t-j}' \} \). Then \(\| D_{j,k} - D_{j,k}' \|_4 \leq C(\rho^{k-j} \mathbf{1}(k \geq j) + |j-k| \mathbf{1}(k < j)) \). (c) Let \(\bar{D}_{j,k} = \mathbb{E}(D_{j,k})(\varepsilon_k, \cdots, \varepsilon_{k-l+1}), l \in \mathbb{N} \). Then \(\| \bar{D}_{j,k} - D_{j,k} \|_4 \leq C(\rho^{l-j} \mathbf{1}(l \geq j) + |j-l| \mathbf{1}(l < j)) \). Here the positive constant \(C \) appeared in (b) and (c) is independent of \(j \).

Proof of Lemma 5.2 (a) It follows that when \(j = j' > 0 \),

\[
\mathbb{E}(D_{j,k}^2) = \sum_{k=-\infty}^{\infty} \text{cov}(Z_{jt}, Z_{j(t+k)}) = \text{var}(Z_{jt}) + \sum_{k \neq 0, k \in \mathbb{Z}} \text{cov}(u_t u_{t-j}, u_{t+k} u_{t+k-j})
\]

\[
= \sigma^4 + \text{cov}(u_t^2, u_{t-j}^2) + \sum_{k \neq 0, k \in \mathbb{Z}} \text{cum}(u_0, u_k, u_{-j}, u_{k-j}).
\]
and when $j \neq j' > 0$,

$$\mathbb{E}(D_{j,k}D_{j',k}) = (1/4)\mathbb{E}\{ (D_{j,k} + D_{j',k})^2 - (D_{j,k} - D_{j',k})^2 \}$$

$$= (1/4) \sum_{k \in \mathbb{Z}} \left\{ \text{cov}(u_t u_{t-j} + u_t u_{t-j'}, u_{t+k} u_{t+k-j} + u_{t+k} u_{t+k-j'}) - \text{cov}(u_t u_{t-j} - u_t u_{t-j'}, u_{t+k} u_{t+k-j} - u_{t+k} u_{t+k-j'}) \right\}$$

$$= (1/2) \sum_{k \in \mathbb{Z}} \left\{ \text{cov}(u_t u_{t-j}, u_{t+k} u_{t+k-j'}) + \text{cov}(u_t u_{t-j'}, u_{t+k} u_{t+k-j}) \right\}$$

$$= (1/2) \sum_{k \in \mathbb{Z}} \left\{ \text{cum}(u_0, u_{-j}, k, u_{k-j}) + \text{cum}(u_0, u_{-j'}, k, u_{k-j}) \right\}.$$

(b) In general, for $V_t = J(\cdots, \varepsilon_{t-1}, \varepsilon_t)$, we have $\mathbb{E}(V_t | \mathcal{F}_k) = \mathbb{E}(V_t' | \mathcal{F}_k)$ when $t \geq k$. So for $\alpha \geq 1$,

$$\|\mathbb{E}(V_t | \mathcal{F}_k) - \mathbb{E}(V_t' | \mathcal{F}_k)\|_\alpha \leq 2\|V_t - V_t'\|_\alpha,$$

which implies that

$$\|P_k V_t - P_k' V_t'\|_\alpha \leq 4\|V_t - V_t'\|_\alpha. \quad (9)$$

Note that $D_{j,k} = \sum_{t=k}^\infty P_k(u_t u_{t-j})$ and $D_{j',k} = \sum_{t=k}^\infty P_k'(u_t u_{t-j'})$. Then when $k \leq t \leq k + j - 1$, $P_k(u_t u_{t-j}) = u_{t-j} P_k u_t$ and $P_k'(u_t' u_{t-j'}) = u_{t-j}' P_k u_t'$. So by the Cauchy-Schwarz inequality and (9),

$$\|D_{j,k} - D_{j',k}\|_4 \leq \sum_{t=k}^{k+j-1} \|u_{t-j} P_k u_t - u_{t-j}' P_k' u_t'\|_4 + \sum_{t=k+j}^\infty \|P_k(u_t u_{t-j}) - P_k'(u_t' u_{t-j}')\|_4$$

$$\leq C \sum_{t=k}^{k+j-1} \{ \|u_{t-j} - u_{t-j}'\|_8 + \|P_k u_t - P_k' u_t'\|_8 \} + C \sum_{t=k+j}^\infty \|u_{t-j} u_{t-j} - u_{t-j}' u_{t-j}'\|_4$$

$$\leq C \sum_{t=k}^{k+j-1} \{ \rho^{t-j} + 1(t \leq j) + \rho^t \} + C \sum_{t=k+j}^\infty \{ \rho^t + \rho^{t-j} \}$$

$$\leq C\rho^{k-j} \mathbf{1}(k \geq j) + |j - k| \mathbf{1}(k < j).$$

As to (c), applying the fact that $\mathbb{E}(D_{j,l} | \varepsilon_1, \cdots, \varepsilon_1) = \mathbb{E}(D_{j,l} | \mathcal{F}_l)$, we get

$$\|\bar{D}_{j,k} - D_{j,k}\|_4 = \|\bar{D}_{j,l} - D_{j,l}\|_4 = \|D_{j,l} - \mathbb{E}(D_{j,l} | \varepsilon_1, \cdots, \varepsilon_1)\|_4$$

$$\leq \|\mathbb{E}(D_{j,l} - D'_{j,l} | \mathcal{F}_l)\|_4 \leq \|D_{j,l} - D'_{j,l}\|_4$$

$$\leq C\rho^{l-j} \mathbf{1}(l \geq j) + |j - l| \mathbf{1}(l < j).$$
The proof is complete.

\[\diamond \]

\textbf{Proof of Theorem 2.1} Since \(\hat{R}_u(0) = \sigma^2 + O_p(n^{-1/2}) \), we have

\[n \sum_{j=1}^{m_n} k_{nj}^2 \hat{R}_u^2(j) = n \sigma^{-4} \sum_{j=1}^{m_n} k_{nj}^2 \hat{R}_u^2(j) + o_p(m_n^{1/2}). \]

Let \(G_n := n \sum_{j=1}^{m_n} k_{nj}^2 \hat{R}_u^2(j) \), where \(\hat{R}_u(j) = n^{-1} \sum_{t=|j|+1}^{n} u_t u_{t-|j|} \). Note that \(\hat{R}_u(j) = \bar{u} (1 - j/n) - n^{-1} \sum_{t=|j|+1}^{n} u_t - n^{-1} \sum_{t=|j|+1}^{n} u_t \) for \(j \geq 1 \). Under GMC(2), \(\bar{u}^2 = O_p(n^{-1}) \), \(\sum_{j=1}^{m_n} k_{nj}^2 \mathbb{E}(\sum_{t=|j|+1}^{n} u_t + \sum_{t=|j|+1}^{n} u_t)^2 = o(m_n) \). Consequently, \(n \sum_{j=1}^{m_n} k_{nj}^2 (\hat{R}_u(j) - \bar{R}_u(j))^2 = o_p(1) \). Then it suffices to show

\[\frac{G_n - \sigma^4 m_n C(K)}{(2 \sigma^8 m_n D(K))^{1/2}} \xrightarrow{D} N(0,1). \tag{10} \]

We shall approximate \(G_n \) by \(\tilde{G}_n = \sum_{j=1}^{m_n} k_{nj}^2 n^{-1} \left(\sum_{k=|j|+1}^{n} D_{j,k} \right)^2 \). By the Cauchy-Schwarz inequality,

\[|G_n - \tilde{G}_n|^2 \leq \sum_{j=1}^{m_n} k_{nj}^2 \left(\sum_{k=|j|+1}^{n} (Z_{jk} - D_{j,k}) \right)^2 \times \sum_{j=1}^{m_n} k_{nj}^2 \left(\sum_{k=|j|+1}^{n} (Z_{jk} + D_{j,k}) \right)^2, \]

where the second term on the right hand side of the inequality is easily shown to be \(O_p(m_n) \) in view of the proof to be presented hereafter. As to the first term, we apply Lemma 5.1 and get

\[
\frac{1}{n} \sum_{j=1}^{m_n} \left\| \sum_{k=|j|+1}^{n} (Z_{jk} - D_{j,k}) \right\|^2 \leq \frac{C}{n} \sum_{j=1}^{m_n} \sum_{h=1}^{\infty} \left(\sum_{k=h}^{\infty} \|P_k Z_{jk}\| \right)^2 \leq \frac{C}{n} \sum_{j=1}^{m_n} \sum_{h=1}^{\infty} \left(\sum_{k=h}^{\infty} (\delta_4(k) + \delta_4(k-j)1(k \geq j)) \right)^2 \leq \frac{C}{n} \sum_{j=1}^{m_n} \sum_{h=1}^{\infty} \left(\sum_{k=h}^{\infty} (\delta_4(k) + \delta_4(k-j)1(k \geq j)) \right)^2 \leq \frac{C m_n}{n} \sum_{k=1}^{\infty} k \delta_4(k) + \frac{C}{n} \sum_{k=1}^{\infty} \sum_{h=1}^{\infty} \sum_{j=1}^{m_n} \delta_4(k-j) \leq C m_n^2 / n = o(1). \]

22
So \(G_n = \tilde{G}_n + o_p(m_n^{1/2}) \). Write

\[
\tilde{G}_n = n^{-1} \sum_{j=1}^{m_n} k_{nj}^2 \left(\sum_{k=j+1}^{n} D_{j,k} \right)^2 \]

\[
= n^{-1} \sum_{j=1}^{m_n} k_{nj}^2 \sum_{k=j+1}^{n} D_{j,k}^2 + 2n^{-1} \sum_{j=1}^{m_n} k_{nj}^2 \sum_{k=j+1}^{n} \sum_{k,j+2}^{n} D_{j,k} D_{j,r} = \tilde{G}_{1n} + \tilde{G}_{2n}.
\]

Under the assumption that \(u_t \) is GMC(8), it is easy to show that \(u_t^2 \) is GMC(4), which implies that \(|\text{cov}(u_t^2, u_{t-j}^2)| \leq C r^j \) for some \(r \in (0, 1) \). So by Lemma 5.2

\[
E(\tilde{G}_{1n}) = n^{-1} \sum_{j=1}^{m_n} k_{nj}^2 (n-j) \left(\sigma^4 + \text{cov}(u_t^2, u_{t-j}^2) + \sum_{k \neq 0} \text{cum}(u_0, u_k, u_{-j}, u_{k-j}) \right)
\]

\[
= \sigma^4 \sum_{j=1}^{m_n} k_{nj}^2 + O(1) = \sigma^4 m_n C(K) + O(1),
\]

where we have applied the absolute summability of the 4-th joint cumulants under GMC(4) [Wu and Shao (2004), Proposition 2]. Let \(\tilde{D}_{j,k} = E(D_{j,k} | \varepsilon_k, \varepsilon_{k-1}, \cdots, \varepsilon_{k-l+1}) \), where \(l = l_n = 2m_n \). By Lemma 5.2 and the assumption that \(\log n = o(m_n) \),

\[
\sup_{1 \leq j \leq m_n} \| \tilde{D}_{j,k} - D_{j,k} \|_4 = O(n^{-\kappa}) \text{ for any } \kappa > 0.
\]

Write

\[
\tilde{G}_{1n} = n^{-1} \sum_{j=1}^{m_n} k_{nj}^2 \sum_{k=j+1}^{n} \tilde{D}_{j,k}^2 + n^{-1} \sum_{j=1}^{m_n} k_{nj}^2 \sum_{k=j+1}^{n} (D_{j,k}^2 - \tilde{D}_{j,k}^2) = \tilde{G}_{11n} + \tilde{G}_{12n},
\]

where \(\text{var}(\tilde{G}_{11n}) = O(m_n^3/n) = o(m_n) \) by the \(l_n \)-dependence of \(\tilde{D}_{j,k} \), and by (11),

\[
\| \tilde{G}_{12n} \| \leq \frac{C}{n} \sum_{j=1}^{m_n} k_{nj}^2 \sum_{k=j+1}^{n} \| D_{j,k}^2 - \tilde{D}_{j,k}^2 \| = o(1).
\]

So (11) follows if we can show that \(\tilde{G}_{2n}/(2\sigma^8 m_n D(K))^{1/2} \rightarrow_D N(0, 1) \).

Write

\[
\tilde{G}_{2n} = 2n^{-1} \sum_{j=1}^{m_n} k_{nj}^2 \times \left(\sum_{k=j+2}^{m_n} \sum_{r=j+1}^{k-1} + \sum_{k=6m_n+1}^{m_n+1} \sum_{r=j+1}^{k-1} + \sum_{k=6m_n+1}^{m_n+1} \sum_{r=k-2l_n}^{m_n+1} \right) D_{j,k} D_{j,r} = U_{1n} + U_{2n} + U_{3n} + U_{4n}.
\]
We proceed to show that \(U_{kn} = o_p(m_n^{1/2}) \), \(k = 1, 2, 3 \). Note that the summands in \(U_{1n} \) form martingale differences. So

\[
\mathbb{E}(U_{1n}^2) = \frac{4}{n^2} \sum_{k=3}^{6m_n} \sum_{r=2}^{k-1} \sum_{j=1}^{k^2} k_{nj} \left(\frac{(r-1)\wedge m_n}{m_n} \right) D_{j,k} D_{j,r} = O(m_n^5/n^2) = o(m_n).
\]

Regarding \(U_{2n} \), we let \(\tilde{U}_{2n} = 2n^{-1} \sum_{j=1}^{m_n} \sum_{k=6m_n+1}^{n} \sum_{r=j+1}^{m_n+1} \mathbb{E}(\tilde{D}_{j,k} \tilde{D}_{j',r}) \). It is easy to show that \(U_{2n} - \tilde{U}_{2n} = o_p(1) \) in view of (11). Further, by Lemma 5.2,

\[
\mathbb{E}(\tilde{U}_{2n}^2) = \frac{4}{n^2} \sum_{k,k'=6m_n+1}^{2n} \sum_{j,j'=1}^{m_n} \sum_{r,j'+1}^{m_n+1} \mathbb{E}(\tilde{D}_{j,k} \tilde{D}_{j',k'}) \mathbb{E}(\tilde{D}_{j,r} \tilde{D}_{j',r}) = O(m_n^3/n) = o(m_n).
\]

Thus \(U_{2n} = o_p(m_n^{1/2}) \). Concerning \(U_{3n} \), since it is a martingale, we have

\[
\mathbb{E}(U_{3n}^2) = \frac{4}{n^2} \sum_{k=6m_n+1}^{n} \left(\sum_{j=1}^{m_n} \sum_{r=k-2m_n+1}^{k-1} D_{j,k} D_{j,r} \right)^2 \leq C \left(\frac{1}{n^2} \sum_{k=6m_n+1}^{n} \left(\sum_{j=1}^{m_n} \sum_{r=k-2m_n+1}^{k-1} D_{j,k} D_{j,r} \right)^2 \right)^{1/4} \leq C \left(\sum_{r=k-2m_n+1}^{k-1} \left(\sum_{j=1}^{m_n} \left(\sum_{r=k-2m_n+1}^{k-1} D_{j,r}^2 \right)^{1/2} \right) \right)^{1/2} \leq C m_n^{1/2}.
\]

Since \(D_{j,r} \)'s are martingale differences for each \(j \), we apply Burkholder’s inequality [Hall and Heyde (1980)] and get

\[
\left\| \sum_{r=k-2m_n+1}^{k-1} D_{j,r} \right\|_4^{1/2} \leq C \left(\sum_{r=k-2m_n+1}^{k-1} \left\| D_{j,r}^2 \right\|^{1/2} \right) \leq C m_n^{1/2}.
\]

Note that the constant \(C \) in the above display does not depend on \(j \). So \(\mathbb{E}(U_{3n}^2) \leq C m_n^3/n = o(m_n) \). Let \(\tilde{U}_{4n} = 2n^{-1} \sum_{j=1}^{m_n} \sum_{k=6m_n+1}^{n} \sum_{r=m_n+2}^{k-2m_n+2} \tilde{D}_{j,k} \tilde{D}_{j,r} \). Since \(U_{4n} - \tilde{U}_{4n} = o_p(1) \) by (11), it remains to show \(\tilde{U}_{4n} / (2\sigma^8 m_n D(K))^{1/2} \to_D N(0,1) \) in view of (12).
Write \(\hat{U}_{4n} = n^{-1} \sum_{k=6m_n+1}^{n} V_{nk} \), where \(V_{nk} := 2 \sum_{r=m_n+2}^{k-2l_n} \sum_{j=1}^{m_n} k_{nj}^2 \tilde{D}_{j,k} \tilde{D}_{j,r} \). Then \(\{V_{nk}\} \) forms a sequence of martingale differences with respect to \(\mathcal{F}_k \). By the martingale central limit theorem, it suffices to verify the following conditions:

\[
\sigma^2(n) := \mathbb{E}(\hat{U}_{4n}^2) = 2\sigma^8 m_n D(K) (1 + o(1)), \quad (13)
\]

\[
\sum_{t=6m_n+1}^{n} \mathbb{E}(V_{nt}^2 1(|V_{nt}| > \varepsilon n \sigma(n))) = o(\sigma^2(n) n^2), \quad \epsilon > 0, \quad (14)
\]

\[
\sigma^{-2}(n) n^{-2} \sum_{t=6m_n+1}^{n} V_{nt}^2 \rightarrow_p 1, \quad \text{where} \quad \bar{V}_{nt}^2 = \mathbb{E}(V_{nt}^2 | \mathcal{F}_{t-1}). \quad (15)
\]

By Lemma 5.2 and (11), we have

\[
\sigma^2(n) = n^{-2} \sum_{k=6m_n+1}^{n} \mathbb{E}(V_{nk}^2)
= \frac{4}{n^2} \sum_{k=6m_n+1}^{n} \sum_{r,m_n+2}^{k-2l_n} \sum_{j=1}^{m_n} k_{nj}^2 k_{nj'}^2 \mathbb{E}(\tilde{D}_{j,k} \tilde{D}_{j',k}) \mathbb{E}(\tilde{D}_{j,r} \tilde{D}_{j',r}) \quad (16)
\]

\[
= \frac{4}{n^2} \sum_{k=6m_n+1}^{n} \sum_{r,m_n+2}^{k-2l_n} \sum_{j=1}^{m_n} k_{nj}^2 k_{nj'}^2 \mathbb{E}(\tilde{D}_{j,k} \tilde{D}_{j',k}) \mathbb{E}(\tilde{D}_{j,r} \tilde{D}_{j',r}) + o(1)
\]

\[
= \frac{4}{n^2} \sum_{k=6m_n+1}^{n} \sum_{r,m_n+2}^{k-2l_n} \sum_{j=1}^{m_n} k_{nj}^4 \mathbb{E}(\tilde{D}_{j,k}^2) \mathbb{E}(\tilde{D}_{j,r}^2) (1 + o(1))
= 2\sigma^8 m_n D(K) + o(m_n).
\]

For (14), again by Burkholder’s inequality, we get

\[
\mathbb{E}(V_{nk}^4) = \mathbb{E} \left(\sum_{r=m_n+2}^{k-2l_n} \sum_{j=1}^{m_n} k_{nj}^2 \tilde{D}_{j,k} \tilde{D}_{j,r} \right)^4 \leq C m_n^3 \sum_{j=1}^{m_n} \mathbb{E} \left(\sum_{r=m_n+2}^{k-2l_n} \tilde{D}_{j,k} \tilde{D}_{j,r} \right)^4
\]

\[
\leq C m_n^3 \sum_{j=1}^{m_n} \mathbb{E}(\tilde{D}_{j,k}^4) \mathbb{E} \left(\sum_{r=m_n+2}^{k-2l_n} \tilde{D}_{j,r}^2 \right)^2 \leq C m_n^4 k^2,
\]

which implies (14). To show (15), we let \(\bar{V}_{nt}^2 = n^{-2} \sum_{t=6m_n+1}^{n} \bar{V}_{nt}^2 \), where

\[
\bar{V}_{nt}^2 = 4 \sum_{r,r',m_n+2}^{t-2l_n} \sum_{j,j'=1}^{m_n} k_{nj}^2 k_{nj'}^2 \mathbb{E}(\tilde{D}_{j,t} \tilde{D}_{j',t} | \mathcal{F}_{t-1}) \tilde{D}_{j,r} \tilde{D}_{j',r'}.
\]
Then we can write

$$\tilde{V}_n^2 - \sigma^2(n) = \frac{4}{n^2} \sum_{t=6n+1}^{n} \sum_{r,r'=m_n+2}^{t-2n} \sum_{j,j'=1}^{m_n} k_{nj}^2 k_{nj'}^2$$

$$\{ \mathbb{E}([\tilde{D}_{j,t} D_{j',t} - D_{j,t} D_{j',t} | F_t] - \tilde{D}_{j,t} D_{j',t}, \tilde{D}_{j,t} D_{j',t}) \} - \sigma^2(n) =: \sum_{k=1}^{5} J_{kn} - \sigma^2(n).$$

By a similar argument as in (16), $J_{5n} = \sigma^2(n)(1 + o(1))$. So (15) follows if we can show $\sigma^{-2}(n) J_{kn} = o_p(1)$ for $k = 1, \cdot \cdot \cdot , 4$. By (11), $J_{kn} = o_p(m_n)$. As to J_{2n}, it follows from Lemma 5.2 and 11 that uniformly in $j, j' = 1, 2, \cdot \cdot \cdot , m_n$,

$$||\mathbb{E}(D_{j,t} D_{j',t} | F_{t-1}) - \mathbb{E}(D_{j,t} D_{j',t} | F_{t-1})|| = ||\mathbb{E}(D_{j,t} D_{j',t} | F_{t-1}) - \mathbb{E}(D_{j,t} D_{j',t} | F_{t-1})||$$

$$\leq ||\mathbb{(D_{j,t} D_{j',t} - D_{j,t} D_{j',t}) | F_{t-1}} || + ||\mathbb{(D_{j,t} D_{j',t} - D_{j,t} D_{j',t}) | F_{t-1}} ||$$

$$\leq 2||D_{j,t} D_{j',t} - D_{j,t} D_{j',t}|| \leq C \rho^m_n = O(n^{-\kappa})$$

for any $\kappa > 0$. So $J_{2n} = o_p(m_n)$. Lemmas 5.3 and 5.4 assert that $J_{3n} = o_p(m_n)$ and $J_{4n} = o_p(m_n)$ respectively. Thus (15) holds and the conclusion follows.

Lemma 5.3. Under the assumptions in Theorem 2.7, the random variable $J_{3n} = \frac{4}{n^2} \sum_{t=6n+1}^{n} \sum_{r,r'=m_n+2}^{t-2n} \sum_{j,j'=1}^{m_n} k_{nj}^2 k_{nj'}^2 [\mathbb{E}(D_{j,t} D_{j',t} | F_{t-1}) - \mathbb{E}(D_{j,t} D_{j',t})] \tilde{D}_{j,t} D_{j',t}$ as defined in (17) is $o_p(m_n)$.

Proof of Lemma 5.3. Let $M(j, j'; t) = \mathbb{E}(D_{j,t} D_{j',t} | F_{t-1}) - \mathbb{E}(D_{j,t} D_{j',t})$ and

$$\tilde{J}_{3n} = \frac{4}{n^2} \sum_{t=6n+1}^{n} \sum_{r,r'=m_n+2}^{t-2n} \sum_{j,j'=1}^{m_n} k_{nj}^2 k_{nj'}^2 M(j, j'; t) D_{j,t} D_{j',t}.$$

It is easy to see that $\tilde{J}_{3n} = J_{3n} + o_p(m_n)$ in view of (11). For notational convenience, denote by $H_D(j, t) = \sum_{r=m_n+2}^{t-2n} D_{j,r}$ and $H_Z(j, t) = \sum_{r=m_n+2}^{t-2n} Z_{jr}$. Write $\tilde{J}_{3n} = 26$
\[J_{31n} + J_{32n} + J_{33n}, \text{ where} \]
\[J_{31n} = \frac{4}{n^2} \sum_{t=6m_n+1}^{n} \sum_{j,j'=1}^{m_n} k_{nj}^2 k_{nj'}^2 \cdot M(j,j';t)(H_D(j,t) - H_Z(j,t))H_D(j',t), \]
\[J_{32n} = \frac{4}{n^2} \sum_{t=6m_n+1}^{n} \sum_{j,j'=1}^{m_n} k_{nj}^2 k_{nj'}^2 \cdot M(j,j';t)H_Z(j,t)(H_D(j',t) - H_Z(j',t)), \]
\[J_{33n} = \frac{4}{n^2} \sum_{t=6m_n+1}^{n} \sum_{j,j'=1}^{m_n} k_{nj}^2 k_{nj'}^2 \cdot M(j,j';t)H_Z(j,t)H_Z(j',t). \]

We shall first prove \(J_{31n} = o_p(m_n) \). Since \(M(j,j',t) \) is \(l_n \)-dependent with respect to \(t \), we get by the Cauchy-Schwarz inequality,
\[
\mathbb{E}(J_{31n}^2) \leq \frac{C}{n} \sum_{t=6m_n+1}^{n} \sum_{t'=(6m_n+1)\vee(t-l_n)}^{n} \|H_D(j_1,t) - H_Z(j_1,t)\|_4 \|H_D(j_2,t') - H_Z(j_2,t')\|_4 \|H_D(j_1,t)\|_4 \|H_D(j_2,t')\|_4.
\]

Since the summands in \(H_D(j,t) \) form martingale differences, we apply Burkholder's inequality and obtain
\[
\|H_D(j,t)\|_4^2 \leq C \mathbb{E} \left(\sum_{r=m_n+1}^{n} D_{j,r}^2 \right)^2 \leq C t^2, \ j = 1, 2, \ldots, m_n. \tag{18}
\]
Applying Lemma 5.1 and the fact that \(\delta_8(k) \leq C r^k \) for some \(r \in (0, 1) \), we get
\[
\sum_{j_1=1}^{m_n} \|H_D(j_1,t) - H_Z(j_1,t)\|_4 \leq C \sum_{j_1=1}^{m_n} \left(\sum_{k_1=1}^{t-5m_n-1} \Theta_{j_1,k_1,4}^2 \right)^{1/2} \leq C \sum_{j_1=1}^{m_n} \left(\sum_{k_1=1}^{t-5m_n-1} \sum_{h=k_1}^{\infty} (\delta_8(h) + \delta_8(h-j_1) 1(h \geq j_1)) \right)^{1/2} \leq C m_n^{3/2}. \tag{19}
\]
Therefore, in view of (18) and (19), we obtain \(\mathbb{E}(J_{31n}^2) \leq C m_n^6/n^2 = o(m_n^2) \). To show \(J_{32n} = o_p(m_n) \), we note that
\[
\|H_Z(j,t)\|_4^4 = \sum_{r_1,r_2,r_3,r_4=m_n+1}^{t-2l_n} \mathbb{E}(Z_{jr_1} Z_{jr_2} Z_{jr_3} Z_{jr_4})
\]
\[
= \sum_{r_1,r_2,r_3,r_4=m_n+1}^{t-2l_n} \{ \text{cov}(Z_{jr_1}, Z_{jr_2}) \text{cov}(Z_{jr_3}, Z_{jr_4}) + \text{cov}(Z_{jr_1}, Z_{jr_3}) \text{cov}(Z_{jr_2}, Z_{jr_4})
\]
\[+ \text{cov}(Z_{jr_1}, Z_{jr_4}) \text{cov}(Z_{jr_2}, Z_{jr_3}) + \text{cum}(Z_{jr_1}, Z_{jr_2}, Z_{jr_3}, Z_{jr_4}) \}. \tag{20}
\]
Since \(\{u_t\} \) are uncorrelated and the \(k \)-th \((k = 2, 3, \ldots, 8)\) joint cumulants are absolutely summable under GMC(8) [see Wu and Shao (2004) Proposition 2], it is not hard to see that \(\|H_Z(j, t)\|_4^1 \leq C t^2 \). Following the same argument as in the derivation of \(\mathbb{E}(J_{31n}^2) \), we can derive \(\mathbb{E}(J_{32n}^2) = o(m_n^2) \), so \(J_{32n} = o_p(m_n) \).

It remains to show that \(J_{33n} = o_p(m_n) \). Note that

\[
\mathbb{E}(J_{33n}^2) \leq \frac{C}{n^4} \sum_{t=6m_n+1}^{n} \sum_{t'=6m_n+1}^{t+t_l} \sum_{j_1, j_2, j'_1, j'_2}^{m_n} \sum_{k_1, k_2, k'_1, k'_2}^{m_n} \sum_{r_1, r_2, r'_1, r'_2 = m_n+2}^{t-2l_n} \sum_{r_1, r_2, r'_1, r'_2 = m_n+2}^{t'-2l_n} \left| \text{cov}(u_{r_1}, u_{r_2}) \text{cov}(u_{r_1-j_1}, u_{r_2-j_2}) \right|
\]

Following (20), we can write \(\mathbb{E}(Z_{j_1, t_1} Z_{j_2, t_2} Z_{j_1', t_1'} Z_{j_2', t_2'}) \) as a sum of four components, which implies \(H_n(t, t') = \sum_{k=1}^{4} H_{kn}(t, t') \). For \(H_{1n}(t, t') \), it follows from the absolute summability of the 4-th cumulant that

\[
H_{1n}(t, t') = \sum_{j_1, j_2, j'_1, j'_2}^{m_n} \sum_{r_1, r_2, r'_1, r'_2 = m_n+2}^{t-2l_n} \sum_{r_1, r_2, r'_1, r'_2 = m_n+2}^{t'-2l_n} \left| \text{cov}(u_{r_1}, u_{r_2}) \text{cov}(u_{r_1-j_1}, u_{r_2-j_2}) \right|
\]

By the same argument, we have \(H_{kn}(t, t') \leq C m_n^2 (t \lor t')^2 \), \(k = 2, 3 \). Regarding \(H_{4n}(t, t') \), we apply the product theorem for the joint cumulants [Brillinger (1975)] and write

\[
\text{cum}(Z_{j_1, t_1} Z_{j_2, t_2} Z_{j_1', t_1'} Z_{j_2', t_2'}) = \sum_{v} \text{cum}(u_{i_1}, i_j \in v_1) \cdots \text{cum}(u_{i_j}, i_j \in v_p),
\]

where the summation is over all indecomposable partitions \(v = v_1 \cup \cdots \cup v_p \) of the following two-way table

\(r_1 \)	\(r_1 - j_1 \)
\(r_2 \)	\(r_2 - j_2 \)
\(r'_1 \)	\(r'_1 - j'_1 \)
\(r'_2 \)	\(r'_2 - j'_2 \)

Again by the absolute summability of \(k \)-th \((k = 2, \ldots, 8)\) cumulants, we get \(H_{4n}(t, t') \leq C m_n^2 (t \lor t')^2 \). Therefore, \(\mathbb{E}(J_{33n}^2) \leq C m_n^3/n = o(m_n^2) \) and \(J_{33n} = o_p(m_n) \). Thus the conclusion is established.

\(\diamond \)
Lemma 5.4. Under the assumptions in Theorem 2.2, the random variable $J_{4n} = 4/n^2 \sum_{t=6m_n+1}^{n} \sum_{r,r'=m_n+2}^{m_n+2} k_{n_1}^2 E(D_{j_1}D_{j_1'}) [\mathcal{D}_{j_1,r} \mathcal{D}_{j_1',r'} - E(\mathcal{D}_{j_1,r} \mathcal{D}_{j_1',r'})]$ as defined in (17) is $o_p(m_n)$.

Proof of Lemma 5.4 Write $J_{4n} = J_{41n} + J_{42n}$, where
\[
J_{41n} = \frac{4}{n^2} \sum_{t=6m_n+1}^{n} \sum_{r,r'=m_n+2}^{m_n+2} k_{n_1}^2 k_{n_2}^2 E(D_{j_1}D_{j_1'}) [\mathcal{D}_{j_1,r} \mathcal{D}_{j_1',r'} - E(\mathcal{D}_{j_1,r} \mathcal{D}_{j_1',r'})],
\]
\[
J_{42n} = \frac{4}{n^2} \sum_{t=6m_n+1}^{n} \sum_{r,r'=m_n+2}^{m_n+2} k_{n_2}^4 E(D_{j_2}D_{j_2'}) [\mathcal{D}_{j_2,r} \mathcal{D}_{j_2',r'} - E(\mathcal{D}_{j_2,r} \mathcal{D}_{j_2',r'})].
\]

Note that
\[
E(J_{41n}^2) = O(n^{-4}) \sum_{t_1,t_2=6m_n+1}^{n} \sum_{r_1,r'_1=m_n+2}^{m_n+2} \sum_{j_1,j_1'=1}^{j_n} \sum_{j_2,j_2'=1}^{j_n} k_{n_1}^2 k_{n_2}^2 E(D_{j_1}D_{j_1'}) E(D_{j_2}D_{j_2'}) \{ \text{cov}(\mathcal{D}_{j_1,r_1} \mathcal{D}_{j_1',r_1'), \mathcal{D}_{j_2,r_2} \mathcal{D}_{j_2',r_2')}) + \text{cum}(\mathcal{D}_{j_1,r_1} \mathcal{D}_{j_1',r_1'), \mathcal{D}_{j_2,r_2} \mathcal{D}_{j_2',r_2'}) \}
\]

By Lemma 5.2 and (11), the first two terms in the curly bracket above contribute $O(m_n^2)$. Since $\text{cum}(\mathcal{D}_{j_1,r_1} \mathcal{D}_{j_1',r_1'), \mathcal{D}_{j_2,r_2} \mathcal{D}_{j_2',r_2'})$ vanishes when any two neighboring indices (say, (r_1, r_1'), (r_2, r_2')) if $r_1 \geq r_1' \geq r_2 \geq r_2'$ are more than l_n apart, the third term is $O(l_n^3/n) = o(m_n^2)$. So $J_{41n} = o_p(m_n)$. Concerning J_{42n}, we have $J_{42n} = J_{421n} + J_{422n}$, where
\[
J_{421n} = \frac{4}{n^2} \sum_{t=6m_n+1}^{n} \sum_{r=m_n+2}^{m_n+2} \sum_{j_1=1}^{j_n} k_{n_1}^4 E(D_{j_1}D_{j_1'}) [\mathcal{D}_{j_1,r} \mathcal{D}_{j_1',r'} - E(\mathcal{D}_{j_1,r} \mathcal{D}_{j_1',r'})],
\]
\[
J_{422n} = \frac{8}{n^2} \sum_{t=6m_n+1}^{n} \sum_{r=m_n+3}^{m_n+2} \sum_{j_2=1}^{j_n} k_{n_2}^4 E(D_{j_2}D_{j_2'}) [\mathcal{D}_{j_2,r} \mathcal{D}_{j_2',r'} - E(\mathcal{D}_{j_2,r} \mathcal{D}_{j_2',r'})].
\]

Since $\mathcal{D}_{j,r}$ is l_n-dependent, we can easily derive $E(J_{421n}^2) = O(m_n^3/n)$, which implies $J_{421n} = o_p(m_n)$. Let
\[
J_{422n} = \frac{8}{n^2} \sum_{t=6m_n+1}^{n} \sum_{r=m_n+3}^{m_n+2} \sum_{j_2=1}^{j_n} k_{n_2}^4 E(D_{j_2}D_{j_2'}) [\mathcal{D}_{j_2,r} \mathcal{D}_{j_2',r'}].
\]
Then by (11), $J_{422n} - \tilde{J}_{422n} = o_p(1)$. Since for each j, \{\sum_{r=m_n+3}^{n} \sum_{r'=m_n+2}^{r-1} D_{j,r}D_{j,r'}\} form martingale differences with respect to \mathcal{F}_{t-2l_n}, we get

$$
E(\tilde{J}_{422n}^2) \leq Cn^{-4}m_n \sum_{j=1}^{m_n} k_{n,j}^8 E \left(\sum_{t=6m_n+1}^{t-2l_n} \sum_{r=m_n+3}^{r-1} \sum_{r'=m_n+2}^{r-1} E(D_{j,t}^2)D_{j,r}D_{j,r'} \right)^2 \leq \frac{Cm_n}{n^4} \sum_{j=1}^{m_n} \sum_{t=6m_n+1}^{n} \sum_{r=m_n+3}^{r-1} \sum_{r'=m_n+2}^{r-1} E(D_{j,t}^2) \left(\sum_{r'=m_n+2}^{r-1} D_{j,r'} \right)^2 \leq \frac{Cm_n}{n^4} \sum_{j=1}^{m_n} \sum_{t=6m_n+1}^{n} \sum_{r=m_n+3}^{r-1} \sum_{r'=m_n+2}^{r-1} E \left[D_{j,r}^2 \left(\sum_{r'=m_n+2}^{r-1} D_{j,r'} \right)^2 \right],
$$

where we have applied the fact that for each j, \{\sum_{r'=m_n+2}^{r-1} D_{j,r}D_{j,r'}\} is a sequence of martingale differences with respect to \mathcal{F}_r. By the Cauchy-Schwarz inequality and Burkholder’s inequality,

$$
E \left[D_{j,r}^2 \left(\sum_{r'=m_n+2}^{r-1} D_{j,r'} \right)^2 \right] \leq C \left\| \sum_{r'=m_n+2}^{r-1} D_{j,r'} \right\|_4^2 \leq C(r - m_n - 2).
$$

Thus $E(\tilde{J}_{422n}^2) \leq Cm_n^2/n = o(m_n^2)$, in other words, $\tilde{J}_{422n} = o_p(m_n)$. The proof is complete.

\[\Diamond\]

5.2 Appendix B

Throughout the appendix B, we let $u_t(\theta) = \sum_{k=0}^{\infty} e_k(\theta)Y_{t-k}$ and $\tilde{u}_t = \sum_{k=0}^{t-1} e_k(\hat{\theta}_n)Y_{t-k}$, $t = 1, 2, \ldots, n$. Write $u_t = u_t + \lambda nt$, where $\lambda nt = \lambda_1 t + \lambda_2 nt$, $\lambda_1 = -\sum_{k=0}^{\infty} e_k(\theta_0)Y_{t-k}$ = $\sum_{k=0}^{\infty} \psi_k u_{t-k}$ and $\lambda_2 nt = \sum_{k=0}^{t-1} (e_k(\hat{\theta}_n) - e_k(\theta_0))Y_{t-k}$. Denote by $e_{k,m_1}(\theta) = \partial e_k(\theta)/\partial \theta_{m_1}$ and $e_{k,(m_1,m_2)}(\theta) = \partial^2 e_k(\theta)/\partial \theta_{m_1}\partial \theta_{m_2}$ for any $m_1, m_2 \in \{1, 2, \ldots, p+q+1\}$ and assume they are the same as those expressions in Lemma 5.7 without loss of generality.

Lemma 5.5. Under the assumptions in Theorem 3.3, we have (a). $n \sum_{j=1}^{m_n} k_{n,j}^2 \rho_{u}^2(j) = n\sigma^{-4} \sum_{j=1}^{m_n} k_{n,j}^2 \tilde{R}_{u}^2(j) + o_p(m_n^{1/2})$. and (b). $n \sum_{j=1}^{m_n} k_{n,j}^2 (\tilde{R}_{u}(j) - \tilde{R}_{u}^2(j)) = o_p(m_n^{1/2})$, where $\tilde{R}_{u}(j) = n^{-1} \sum_{t=[j+1]}^{n} \tilde{u}_t \tilde{u}_{t-[j]}$.

30
Proof of Lemma 5.5: To prove (a), it suffices to show that

\[
\hat{R}_q(0) = n^{-1} \sum_{t=1}^{n} \hat{u}_t^2 - \left(n^{-1} \sum_{t=1}^{n} \hat{u}_t \right)^2 = \sigma^2 + O_p(n^{-1/2}). \tag{21}
\]

To this end, let \(G_{1n} = n^{-1} \sum_{t=1}^{n} u_t \lambda_1 t, G_{2n} = n^{-1} \sum_{t=1}^{n} \lambda_1^2 t \) and \(G_{3n} = n^{-1} \sum_{t=1}^{n} \lambda_2^2 t \). Since \(n^{-1} \sum_{t=1}^{n} u_t^2 - \sigma^2 = O_p(n^{-1/2}), \tag{21} \) follows if we can show \(G_{1n} = O_p(n^{-1/2}), G_{2n} = O_p(n^{-1/2}) \) and \(G_{3n} = O_p(n^{-1}) \). Note that

\[
\mathbb{E}(G_{1n}^2) = n^{-2} \sum_{t,t'=1}^{\infty} \psi_{k,t} \psi_{k',t'} \mathbb{E}(u_t u_{t'} u_{-k} u_{-k'})
= n^{-2} \sum_{t=1}^{\infty} \sum_{k=0}^{\infty} \psi_{k,t}^2 \sigma^4 + n^{-2} \sum_{t,t'=1}^{\infty} \sum_{k,k'=0}^{\infty} \psi_{k,t} \psi_{k',t'} \mathbb{E}(u_t u_{t'} u_{-k} u_{-k'})
= O(\log n/n^2 + n^{-1}) = O(n^{-1}),
\]

where we have applied the fact that \(\sum_{k=0}^{\infty} \psi_{k,t}^2 = O(t^{-1}) \) [cf. Robinson (2005)] and the absolute summability of the 4-th cumulants. Since \(\mathbb{E}(G_{2n}) = O(\log n/n), G_{2n} = O_p(n^{-1/2}) \), we show \(G_{3n} = o_p(n^{-1}) \). To apply the mean-value theorem and get \(e_k(\hat{\theta}_n) - e_k(\theta_0) = \sum_{m_1=1}^{p+q+1} e_{k,m_1}(\hat{\theta}_{kn}) (\hat{\theta}_{n}^{(m_1)} - \theta_0^{(m_1)}) \), where \(\hat{\theta}_{kn} = \theta_0 + \beta_k (\hat{\theta}_n - \theta_0) \) for some \(\beta_k \in (0,1) \). Then

\[
nG_{3n} = \sum_{t=1}^{n} \sum_{k,k'=0}^{\infty} (e_k(\hat{\theta}_n) - e_k(\theta_0)) (e_{k'}(\hat{\theta}_n) - e_{k'}(\theta_0)) Y_{t-k} Y_{t-k'}
= \sum_{t=1}^{n} \sum_{k,k'=0}^{p+q+1} \sum_{m_1,m_1'=1}^{\infty} \left(\hat{\theta}_n^{(m_1)} - \theta_0^{(m_1)} \right) \left(\theta_n^{(m_1')} - \theta_0^{(m_1')} \right) e_{k,m_1} (\hat{\theta}_{kn}) e_{k',m_1'} (\theta_{k'n}) Y_{t-k} Y_{t-k'}.
\]

When \(\hat{\theta}_n \in \Theta_{\delta} \), by Lemma 5.7 for any \((m_1, m_1') \in \{1, \cdots, p+q+1\}^2 \),

\[
\sum_{t=1}^{n} \sum_{k,k'=0}^{\infty} |e_{k,m_1}(\hat{\theta}_{kn})||e_{k',m_1'}(\hat{\theta}_{kn})|E[Y_{t-k} Y_{t-k'}] = O(n).
\]

Since \(\hat{\theta}_n - \theta_0 = O_p(n^{-1/2}) \), we have \(P(\hat{\theta}_n \notin \Theta_{\delta}) \to 0 \). Consequently \(nG_{3n} = nG_{3n,1}(\hat{\theta}_n \in \Theta_{\delta}) + nG_{3n,1}(\hat{\theta}_n \notin \Theta_{\delta}) = O_p(1) \). Therefore part (a) is proved.

As to part (b), write \(\tilde{R}_q(j) - \hat{R}_q(j) = n^{-1} \tilde{u} \left(\sum_{t=1}^{n-j} \hat{u}_t + \sum_{t=j+1}^{n} \hat{u}_t \right) + (1 - j/n) \tilde{u}^2 \), where \(\tilde{u} = n^{-1} \sum_{t=1}^{n} \hat{u}_t \). Following the argument for part (a), it is straightforward to show that \(\tilde{u} = O_p(n^{-1/2}) \) and \(\sum_{j=1}^{m} k_{n,j}^2 (\sum_{t=1}^{n-j} \hat{u}_t + \sum_{t=j+1}^{n} \hat{u}_t)^2 = o_p(n^{-1/2}) \).
\[O_p(nm_n). \] So \(n \sum_{j=1}^{m_n} k_{nj}^2 (\hat{R}_u(j) - \tilde{R}_u(j))^2 = o_p(1). \) Applying the Cauchy-Schwarz inequality, part (b) follows.

Proof of Theorem 3.2: By Lemma 5.3, we only need to show that
\[
\frac{n \sum_{j=1}^{m_n} k_{nj}^2 \hat{R}_u^2(j) - \sigma^4 m_n C(K)}{(2\sigma^2 m_n D(K))^{1/2}} \to_D N(0,1).
\]
Note that \(\hat{R}_u^2(j) - \tilde{R}_u^2(j) = (\tilde{R}_u(j) - \tilde{R}_u(j))^2 + 2\tilde{R}_u(j)(\tilde{R}_u(j) - \tilde{R}_u(j)). \) By Theorem 2.1, it suffices to show
\[
n \sum_{j=1}^{m_n} k_{nj}^2 (\tilde{R}_u(j) - \tilde{R}_u(j))^2 = o_p(1),
\]
since it implies \(n \sum_{j=1}^{m_n} k_{nj}^2 \tilde{R}_u(j)(\tilde{R}_u(j) - \tilde{R}_u(j)) = o_p(m_n^{1/2}) \) by the Cauchy-Schwarz inequality. To this end, we note that
\[
n \sum_{j=1}^{m_n} k_{nj}^2 (\tilde{R}_u(j) - \tilde{R}_u(j))^2 \leq \frac{C}{n} \sum_{j=1}^{m_n} \left(\sum_{t=1}^{n} \lambda_t u_{t-j} \right)^2 + \left(\sum_{t=1}^{n} \lambda_{2nt} u_{t-j} \right)^2
\]
\[+ \left(\sum_{t=1}^{n} u_t \lambda_{1(t-j)} \right)^2 + \left(\sum_{t=1}^{n} u_t \lambda_{2(n(t-j))} \right)^2 + \left(\sum_{t=1}^{n} \lambda_{nt} \lambda_{n(t-j)} \right)^2 \]
\[=: C(L_{1n} + L_{2n} + L_{3n} + L_{4n} + L_{5n}). \]
We proceed to show that \(L_{kn} = o_p(1), k = 1, \ldots, 5. \) First,
\[
\mathbb{E}(L_{1n}) = n^{-1} \sum_{j=1}^{m_n} \mathbb{E} \left(\sum_{t=1}^{n} \sum_{t=1+1}^{\infty} \psi_{k,t} u_{t-k} u_{t-j} \right) = n^{-1} \sum_{j=1}^{m_n} \sum_{t=1}^{n} \sum_{t'=1}^{\infty} \psi_{k,t} \psi_{k,t'} \mathbb{E}(u_{t-k} u_{t-j} u_{t'-j}) + \text{cum}(u_{t-k}, u_{t'-k}, u_{t-j}, u_{t'-j}),
\]
where the first term above is \((\sigma^4/n) \sum_{j=1}^{m_n} \sum_{t=1}^{n} \sum_{k=0}^{\infty} \psi_{k,t}^2 = O(m_n \log n/n). \) Applying Proposition 2 in Wu and Shao (2004), we have \(|\text{cum}(u_{t-k}, u_{t'-k}, u_{t-j}, u_{t'-j})| \leq C r^{t\vee t'-j+k\vee k'} \) for some \(r \in (0,1). \) So the second term in \(\mathbb{E}(L_{1n}) \) is bounded by
\[
C n^{-1} \sum_{j=1}^{m_n} \sum_{t=1}^{n} \sum_{t'=1}^{\infty} \sum_{k=0}^{\infty} \psi_{k,t} \psi_{k,t'} |t\vee t'-j+k\vee k'| = O(m_n/n).
\]
Following the same argument, we get $E(L_{3n}) = O(m_n/n) = o(1)$.

To show $L_{5n} = o_p(1)$, we note that

$$L_{5n} \leq \frac{C}{n} \sum_{j=1}^{m_n} \left\{ \left(\sum_{t=j+1}^{n} \lambda_{1t} \lambda_{1(t-j)} \right)^2 + \left(\sum_{t=j+1}^{n} \lambda_{1t} \lambda_{2n(t-j)} \right)^2 + \left(\sum_{t=j+1}^{n} \lambda_{2nt} \lambda_{1(t-j)} \right)^2 \right\} =: C(L_{51n} + L_{52n} + L_{53n} + L_{54n}).$$

As to L_{51n}, we have

$$E(L_{51n}) = \frac{1}{n} \sum_{j=1}^{m_n} \sum_{t,t'=j+1}^{n} \mathbb{E} \left(\lambda_{1t} \lambda_{1(t-j)} \lambda_{1(t'-j)} \right)$$

$$= \frac{1}{n} \sum_{j=1}^{m_n} \sum_{t,t'=j+1}^{n} \sum_{k_1,k_2,k_3,k_4=0}^{\infty} \mathbb{E} \left(\psi_{k_1,t} \psi_{k_2,t'} \psi_{k_3,t-j} \psi_{k_4,t'-j} \right)$$

$$\leq \frac{C}{n} \sum_{j=1}^{m_n} \sum_{t,t'=j+1}^{n} \sum_{k_1,k_2,k_3,k_4=0}^{\infty} \sum_{k_5=0}^{\infty} \sum_{k_6=0}^{\infty} \sum_{k_7=0}^{\infty} \sum_{k_8=0}^{\infty} \mathbb{E} \left(\psi_{k_1,t} \psi_{k_2,t'} \psi_{k_3,t-j} \psi_{k_4,t'-j} \right) r^{k_1+k_4}.$$
Lemma 5.6. Under the assumptions in Theorem 3.2, the random variable \(L_{52n} = n^{-1} \sum_{j=1}^{m_n} \left(\sum_{t=j+1}^{n} \lambda_{1t} \lambda_{2n(t-j)} \right)^2 \) as defined in (22) is \(o_p(1) \).

Proof of Lemma 5.6. We apply a Taylor’s expansion for each \(k \) and obtain

\[
e_k(\hat{\theta}_n) - e_k(\theta_0) = \sum_{m_1=1}^{p+q+1} (\hat{\theta}_n^{(m_1)} - \theta_0^{(m_1)}) e_{k;m_1}(\theta_0)
+ \sum_{m_1,m_2=1}^{p+q+1} (\hat{\theta}_n^{(m_1)} - \theta_0^{(m_1)})(\hat{\theta}_n^{(m_2)} - \theta_0^{(m_2)}) e_{k;(m_1,m_2)}(\hat{\theta}_{kn}),
\]

where \(\hat{\theta}_{kn} = \theta_0 + \alpha_k(\hat{\theta}_n - \theta_0) \) for some \(\alpha_k \in (0, 1) \). By Lemma 5.7, \(|e_{k;m_1}(\theta_0)| \leq Ck^{-1-\epsilon} \) and \(\sup_{\theta \in \Theta_k} |e_{k;(m_1,m_2)}(\theta)| \leq Ck^{-1-\epsilon} \) for some \(\epsilon > 0 \). Denote by \(e_k(\theta_0) = e_k \) and \(e_{k;m_1}(\theta_0) = e_{k;m_1} \). Since \(e_0(\theta) = 1 \), we have

\[
L_{52n} = \frac{1}{n} \sum_{j=1}^{m_n} \sum_{t_1,t_2=j+1}^{n} \lambda_{1t_1} \lambda_{1t_2} \lambda_{2n(t_1-j)} \lambda_{2n(t_2-j)}
= \frac{1}{n} \sum_{j=1}^{m_n} \sum_{t_1,t_2=j+1}^{n} \sum_{k_1,k_2=0}^{\infty} t_1-j-1 t_2-j-1 \psi_{k_1,t_1} \psi_{k_2,t_2} u_{-k_1} u_{-k_2}
\]

\[
(\hat{e}_{k_3}(\hat{\theta}_n) - e_{k_3}(\theta_0))(\hat{e}_{k_4}(\hat{\theta}_n) - e_{k_4}(\theta_0)) Y_{t_1-j-k_3} Y_{t_2-j-k_4}
= \frac{1}{n} \sum_{j=1}^{m_n} \sum_{t_1,t_2=j+1}^{n} \sum_{k_1,k_2=0}^{\infty} \sum_{k_3,k_4=1}^{\infty} \sum_{k_1,k_2=0}^{\infty} \psi_{k_1,t_1} \psi_{k_2,t_2} u_{-k_1} u_{-k_2} Y_{t_1-j-k_3} Y_{t_2-j-k_4}
\]

\[
\left(\sum_{m_1=1}^{p+q+1} (\hat{\theta}_n^{(m_1)} - \theta_0^{(m_1)}) e_{k_3;m_1} + \sum_{m_1,m_2=1}^{p+q+1} (\hat{\theta}_n^{(m_1)} - \theta_0^{(m_1)})(\hat{\theta}_n^{(m_2)} - \theta_0^{(m_2)}) e_{k_3;(m_1,m_2)}(\hat{\theta}_{kn}) \right)
\]

\[
\left(\hat{e}_{k_3}(\hat{\theta}_n) - \hat{e}_{k_3}(\theta_0) \right) \left(\hat{e}_{k_4}(\hat{\theta}_n) - \hat{e}_{k_4}(\theta_0) \right) Y_{t_1-j-k_3} Y_{t_2-j-k_4}
= \frac{4}{h_{52n}} L_{52n}.
\]

Write \(Y_t = \sum_{k=0}^{\infty} a_k u_{t-k} \). To show \(L_{521n} = o_p(1) \), it suffices to show that for any
\((m_1, m_3) \in \{1, \cdots, p + q + 1\}^2\),

\[
\bar{L}_{521n} = \sum_{j=1}^{m_n} \sum_{t_1, t_2=j+1}^{\infty} \psi_{k_1, t_1} \psi_{k_2, t_2} \sum_{k_3=1}^{t_1-j-1} \sum_{k_4=1}^{t_2-j-1} e_{k_3; m_1} e_{k_4; m_3} u_{-k_1} u_{-k_2}
\]

\[
Y_{t_1-j-k_3} Y_{t_2-j-k_4} = \sum_{j=1}^{m_n} \sum_{t_1, t_2=j+1}^{\infty} \sum_{k_3=1}^{t_1-j-1} \sum_{k_4=1}^{t_2-j-1} \psi_{k_1, t_1} \psi_{k_2, t_2} \psi_{k_3, t_1} \psi_{k_4, t_2}
\]

\[
a_{h_1} a_{h_2} e_{k_3; m_1} e_{k_4; m_3} u_{-k_1} u_{-k_2} u_{t_1-j-k_3} u_{t_2-j-k_4} = o_p(n^2).
\]

Note that

\[
\mathbb{E}(\bar{L}_{521n}^2) = \sum_{j, j’=1}^{m_n} \sum_{t_1, t_2=j+1}^{\infty} \sum_{k_1, k_2, k_1’, k_2’=1}^{\infty} \psi_{k_1, t_1} \psi_{k_2, t_2} \psi_{k_1’, t_1’} \psi_{k_2’, t_2’} a_{h_1} a_{h_2} a_{h_1’} a_{h_2’} e_{k_3; m_1} e_{k_4; m_3} e_{k_3’; m_1} e_{k_4’; m_3}
\]

\[
\mathbb{E}(u_{-k_1} u_{-k_2} u_{t_1-j-k_3} h_{t_2-j-k_4}) \leq C \sum_{j, j’=1}^{m_n} \sum_{t_1, t_2=j+1}^{\infty} \sum_{k_1, k_2, k_1’, k_2’=1}^{\infty} \sum_{h_1, h_2, h_1’, h_2’=0}^{\infty} \psi_{k_1, t_1} \psi_{k_2, t_2} \psi_{k_1’, t_1’} \psi_{k_2’, t_2’} a_{h_1} a_{h_2} a_{h_1’} a_{h_2’} |k_3 k_3’| k_4 k_4’|^{1-t} II,
\]

where

\[
II = \left| \mathbb{E}(u_{-k_1} u_{-k_2} u_{t_1-j-k_3} h_{t_2-j-k_4}) \right|
\]

\[
= \left| \sum_g \sum_{i, j \in g} \text{cum}(u_{i, j}) \right|.
\]

In the above equation, \(\sum_g\) is over all partitions \(g = \{g_1 \cup \cdots \cup g_p\}\) of the index set \([-k_1, t_1-j-k_3-h_1, -k_1’, t_1’-j’-k_3’-h_1’, -k_2, t_2-j-k_4-h_2, -k_2’, t_2’-j’-k_4’-h_2’\}\). Since \(\mathbb{E}(u_{t_i}) = 0\), only partitions \(g\) with \(#g_i > 1\) for all \(i\) contribute. We shall divide all contributing partitions into the following several types and treat them one by one.

1. \(#g_1 = #g_2 = #g_3 = #g_4 = 2\). One such term is

\[
\text{cov}(u_{-k_1}, u_{t_1-j-k_3-h_1}) \text{cov}(u_{-k_1’}, u_{t_1’-j’-k_3’-h_1’}) \text{cov}(u_{-k_2}, u_{t_2-j-k_4-h_2}) \\
\times \text{cov}(u_{-k_2’}, u_{t_2’-j’-k_4’-h_2’}),
\]

35
which is nonzero when \(-k_1 = t_1 - j - k_3 - h_1, -k_1' = t_1' - j' - k_3' - h_1', -k_2 = t_2 - j - k_4 - h_2\) and \(-k_2' = t_2' - j' - k_4' - h_2'\). Define \(a_h = 0\) if \(h < 0\). Then for any fixed \(g \in \mathbb{Z}_+, \sum_{h=0}^{\infty} |a_h a_{h+g}| \leq \sum_{h=0}^{\infty} a_h^2 := S_a < \infty\). For any fixed \(t_1, t_1', t_2, t_2', j, j', k_3, k_4, k_3', k_4', k_1, k_1', k_2, k_2', k_1'\), by the Cauchy-Schwarz inequality,

\[
\sum_{k_1, k_2, k_1', k_2' = 0}^{\infty} |\psi_{k_1, t_1} \psi_{k_2, t_2} \bar{\psi}_{k_1', t_1'} \bar{\psi}_{k_2', t_1'}| |a_{k_1 + t_1 - j - k_3} a_{k_2 + t_2 - j - k_4}| \leq \left(\sum_{k_1, k_2, k_1', k_2' = 0}^{\infty} \psi_{k_1, t_1}^2 \psi_{k_2, t_2}^2 \bar{\psi}_{k_1', t_1'}^2 \bar{\psi}_{k_2', t_1'}^2 \right)^{1/2} S_a^2.
\]

So this term is \(O(m_n^2 n^2) = o(n^4)\). Similarly, all non-vanishing terms involve four restrictions on the indices \(k_1, k_2, k_1', k_2', h_1, h_2, h_1', h_2'\) once we fix \(t_1, t_1', t_2, t_2', j, j', k_3, k_4, k_3', k_4'\). The contribution from these terms are of order \(o(n^4)\).

2. \(#g_1 = #g_2 = 3, #g_3 = 2\). A typical term is

\[
\text{cum}(u_{-k_1}, u_{t_1 - j - k_3 - h_1}, u_{-k_1'}) \text{cum}(u_{t_1' - j' - k_3' - h_1'}, u_{-k_2}, u_{t_2 - j - k_4 - h_2}) \times \text{cov}(u_{-k_2'}, u_{t_2' - j' - k_4' - h_2'}).
\]

So for any fixed \(t_1, t_1', t_2, t_2', j, j', k_3, k_4, k_3', k_4'\),

\[
\sum_{k_1, k_1', k_1', h_1 = 0}^{\infty} |\psi_{k_1, t_1} \psi_{k_1', t_1'} a_{h_1}||\text{cum}(u_{-k_1}, u_{t_1 - j - k_3 - h_1}, u_{-k_1'})| \leq C \sum_{k_1, k_1', h_1 = 0}^{\infty} |\psi_{k_1, t_1} \psi_{k_1', t_1'} a_{h_1}|_{\max(-k_1, t_1 - j - k_3 - h_1, -k_1') - \min(-k_1, t_1 - j - k_3 - h_1, -k_1')}.
\]

Consider the case \(-k_1' \geq -k_1 \geq t_1 - j - k_3 - h_1\). Then the corresponding term above is

\[
C \sum_{s_1, s_2, k_1 = 0}^{\infty} |\psi_{k_1, t_1} \psi_{k_1 - s_1, t_1'} a_{s_2 + k_1 + t_1 - j - k_3}|^{s_1 + s_2} = O((t_1 t_1')^{-1/2}),
\]

where we have applied the Cauchy-Schwarz inequality and the fact that \(\sum_{h=0}^{\infty} \psi_{h,t}^2 = O(t^{-1})\). Other cases can be treated in a similar fashion. So.

36
is $O((t_1 t'_1)^{-1/2})$. Similarly, we can show that
\[
\sum_{h'_1, h_2, k_2 = 0}^{\infty} |\psi_{k_2, t_2} a_{h'_1} a_{h_2} \text{cum}(u_{t'_1 - j' - k'_3 - h'_1}, u_{-k_2}, u_{t_2 - j - k_4 - h_2})| = O(t_2^{-1/2})
\]
and
\[
\sum_{k'_2, h'_2 = 0}^{\infty} |a_{h'_2} \psi_{k'_2, t'_2} \text{cov}(u_{-k'_2}, u_{t'_2 - j' - k'_4 - h'_2})| = O((t'_2)^{-1/2}).
\]
Thus these terms contribute $O(m_n^2 n^2) = o(n^4)$.

3. $\# g_1 = \# g_2 = 4$; $\# g_1 = 4, \# g_2 = \# g_3 = 2$; $\# g_1 = 5, \# g_2 = 3$; $\# g_1 = 6, \# g_2 = 2$ and $\# g_1 = 8$. Following a similar argument as the second case, it is not hard to see that the contribution of all these terms are $o(n^4)$.

So $L_{521n} = o_p(1)$. Under the assumption that u_t is GMC(8), it is not hard to show that $\mathbb{E}(Y_t^4) < \infty$, and $\sup_{t \in \mathbb{N}} \mathbb{E} \lambda_t^4 < \infty$; compare the derivation of $\mathbb{E}(L_{511n})$ in the proof of Theorem 3.2. Together with Lemma 5.7, we have $\mathbb{E}|L_{522n}|1(\hat{\theta}_n \in \Theta_\delta) = O(m_n/n^{1/2}) = o(1)$, so $L_{522n} = o_p(1)$. Similarly we derive $L_{52kn} = o_p(1)$, $k = 3, 4$. Now the proof is complete.

\[\square\]

The following lemma is an extension of Lemma A.1 of Francq and Zakoïan (2000) to the FARIMA model.

Lemma 5.7. For any $\theta \in \Theta_\delta$ and any $(m_1, m_2) \in \{1, \cdots, p + q + 1\}^2$, there exist absolutely summable sequences $(e_k(\theta))_{k \geq 0}$, $(e_{k; m_1}(\theta))_{k \geq 1}$ and $(e_{k; (m_1, m_2)}(\theta))_{k \geq 1}$ such that almost surely
\[
u_t(\theta) = \sum_{k=0}^{\infty} e_k(\theta) Y_{t-k}, \quad \frac{\partial \nu_t(\theta)}{\partial m_1} = \sum_{k=1}^{\infty} e_{k; m_1}(\theta) Y_{t-k}
\]
and
\[
\frac{\partial^2 \nu_t(\theta)}{\partial m_1 \partial m_2} = \sum_{k=1}^{\infty} e_{k; (m_1, m_2)}(\theta) Y_{t-k}
\]
Further, there exists an $\epsilon > 0$, such that
\[
\sup_{\theta \in \Theta_\delta}|e_k(\theta)| = O(k^{-1-\epsilon}), \quad \sup_{\theta \in \Theta_\delta}|e_{k; m_1}(\theta)| = O(k^{-1-\epsilon}), \quad \text{and} \quad \sup_{\theta \in \Theta_\delta}|e_{k; (m_1, m_2)}(\theta)| = O(k^{-1-\epsilon}).
\]
Proof of Lemma 5.7: Letting $X_t = (1 - B)^d Y_t$, then $\phi_\Lambda (B) X_t = \psi_\Lambda (B) u_t$. By Lemma A.1 in Francq and Zakoïan (2000), there exist sequences $(c_k(\Lambda))_{k \geq 0}$, $(c_k(m_1(\Lambda)))_{k \geq 1}$ and $(c_k(m_1, m_2)(\Lambda))_{k \geq 1}$ such that

$$u_t(\Lambda) = \sum_{j=0}^{\infty} c_j(\Lambda) X_{t-j}, \quad \partial u_t(\Lambda) / \partial \Lambda = \sum_{j=1}^{\infty} c_{j;m_1}(\Lambda) X_{t-j}$$

and

$$\partial^2 u_t(\Lambda) / \partial \Lambda m_1 \partial \Lambda m_2 = \sum_{j=1}^{\infty} c_{j;m_1,m_2}(\Lambda) X_{t-j}.$$

Further, there exists a $r \in [0, 1)$, such that

$$\sup_{\Lambda \in \Omega_\delta} |c_j(\Lambda)| = O(r^j), \quad \sup_{\Lambda \in \Omega_\delta} |c_{j;m_1}(\Lambda)| = O(r^j), \quad \sup_{\Lambda \in \Omega_\delta} |c_{j;m_1,m_2}(\Lambda)| = O(r^j).$$

Note that $X_t = \sum_{s=0}^{\infty} \phi_s(d) Y_{t-s}$, where $\phi_s(d) = \Gamma(s - d)/\{\Gamma(-d)\Gamma(s + 1)\}$. Therefore, we get $u_t(\theta) = \sum_{k=0}^{\infty} e_k(\theta) Y_{t-k}$, where $e_k(\theta) = \sum_{j=0}^{k} c_j(\Lambda) \phi_{k-j}(d)$. The conclusion follows from the definition of Θ_δ and the fact that $d_0 \in (0, 1/2)$. \hfill \Diamond