Functional variants of lncRNA LINC00673 and gastric cancer susceptibility: a case-control study in a Chinese population

Kexin Zhao, Rui Zhang, Tiantian Li, Zhifan Xiong

1Division of Gastroenterology, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430077, People’s Republic of China; 2The Second Clinical Medical College, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People’s Republic of China; 3College of Life Science & Technology, Huazhong University of Science and Technology, Wuhan 430074, People’s Republic of China

Background: Two genome-wide association studies (GWASs) identified LINC00673 rs11655237 was associated with susceptibility to pancreatic cancer.

Methods: To investigate the association between LINC00673 polymorphisms and gastric cancer (GC) risk, and the impact of gene-environmental interaction on GC risk, we conducted this case-control study in a Chinese population.

Results: We found rs11655237 significantly increased susceptibility of GC in the Chinese population (OR=1.29; 95% CI=1.12–1.48; P=4.1×10⁻⁴), and a significant interaction was found between rs11655237 and Helicobacter pylori infection (P=0.006). Expression of LINC00673 was significantly higher in adjacent normal tissues than in paired cancer tissues (P<0.001) and significantly lower in the cancer or paired adjacent normal tissues of GC patients with rs11655237 allele A than in those with rs11655237 allele G (P<0.001). Mechanism exploration found that, the construct with the rs11655237[A] allele had significantly reduced luciferase activity in the presence of miR-1231, and this effect could be completely rescued when miR-1231 inhibitor was present.

Conclusion: Our results indicate that LINC00673 rs11655237 is associated with an increased GC risk, possibly by down-regulating LINC00673 expression through creating a miR-1231 binding site.

Keywords: gastric cancer, LINC00673, genetic, rs11655237, polymorphism

Introduction

Gastric cancer (GC) is one of the most common cancer worldwide. There are 498,000 new cases and 679,100 deaths from GC annually. However, the true mechanism of gastric cancer is still unclear. Helicobacter pylori (HP) infection is undoubtedly an important risk factor for gastric cancer. However, studies indicated that only a small percentage of infected patients would finally develop into GC. In this regard, several reports indicated that tumor angiogenesis of GC is controlled by numerous factors, including the regulation of many long non-coding RNAs (lncRNAs). Recently, lncRNAs and their variants has been widely explored for its role in the development and prognosis of many tumors, including pancreatic cancer, GC, non-small cell lung cancer, breast cancer, tongue squamous cell carcinoma, and so on. For GC, genetic variants of multiple Incrnas, eg, HOTAIR, H19, PTENP1 and GAS5, were identified to be associated with its carcinogenesis.
Recently, LINC00673 rs11655237 was first identified to be associated with susceptibility to pancreatic cancer by a genome-wide association study (GWAS) from North America, Central Europe and Australia. Furthermore, another Chinese GWAS by Zheng et al replicated the findings in a Chinese population, and found that rs11655237 created a miR-1231 binding site and interferes with PTPN11 degradation. Zhang et al verified that the LINC00673 rs11655237 might be associated with neuroblastoma susceptibility. However, the role of functional polymorphisms of lncRNA LINC00673 within the context of GC had not been reported yet. In this study, rs11655237, together with 3 SNPs located in LINC00673 (rs6501551, rs857510, and rs9914618) with RegulomeDB score <3 were selected as the tagSNPs. We explored their associations with susceptibility of GC, and the possible mechanism.

Methods

Study population

We totally included 1392 GC cases and 1,364 healthy controls with the HP infection status in this study. All patients were newly diagnosed incident GC cases and histopathologically confirmed. All participants had no previous history of tumors or history of blood transfusion in the three month prior to surgery resection. The healthy controls were randomly selected during the same time period as the case study from healthy individuals with no history of cancer. Frequency matching of controls to cases was used in the design of this study. Demographic information was obtained from all participants during research interviews using a structured questionnaire. The clinical characteristics of patients were obtained from the electronic medical records. The study was approved by the institutional review board of Liyuan Hospital, and each subject signed an informed consent. The study was conducted in accordance with the Declaration of Helsinki.

SNP selection and genotyping

SNP rs11655237, together with 3 SNPs located in LINC00673 (rs6501551, rs857510, and rs9914618) with RegulomeDB score <3 were selected as the tagSNPs using SNPinfo. The genotypes of SNPs were determined by TaqMan allelic discrimination methods. The random 10% of samples were repeatedly genotyped and the results were 100% concordant.

HP serum detection

The HP infection of all participants were detected with a commercial HP testing kit (Shenzhen, China) according to the suggested procedures, which were validated in the Chinese populations with a sensitivity and specificity of more than 99% for the detection of HP infection.

Cell line, construction of reporter plasmids, transient transfections and luciferase assays

The BGC-803 cell line was purchased from the Cell Bank of Type Culture Collection of the Chinese Academy of Sciences Shanghai Institute of Biochemistry and Cell Biology. It was cultured in RPMI 1640 supplemented with 10% fetal bovine serum, at 37 °C in a humid incubator with 5% CO2. The reporter vector was generated encoding the 307-bp LINC00673 exon region flanking rs11655237[G] or rs11655237[A] using the restriction enzymes XhoI and NotI (Fermentas). Then 800 ng of reporter plasmid was cotransfected into HeLa cells with miR-1231 using Lipofectamine 2000 (Invitrogen). Cells were collected 24 h after transfection, and Renilla luciferase activity was detected and used to normalize firefly luciferase activity.

Quantitative RT-PCR

Total RNAs were isolated using Trizol method and reverse transcribed to cDNA, and subjected for quantitative RT-PCR. The primers of LINC00673 were sense TCCACCCCTGGCTTCTCTCTGTAAC and reverse GGTTCAAAGCACCCACCGAGT. The primers for miR-1231 were sense ACAGTCTGTTCTGGCCGGA and the reverse GTGCAGGGTCCGAGGTATTC. The relative normalized quantity of LINC00673 expression was calculated using the 2−ΔΔCT algorithm, with GAPDH employed as an internal control.

Statistical analysis

Demographic characteristics between cases and controls were analyzed using Chi-square test, and differences in continuous variables were tested by Student t-test. Hardy-Weinberg equilibrium (HWE) among the controls was tested using a goodness-of-fit χ2 test. Unconditional logistic regression model was conducted to calculate odds ratios (ORs) and their 95% confidence internals (CIs) of the association between the SNP and GC risk. All statistical tests were two-sided and conducted using Statistical Program for Social Science.
Sciences (SPSS 17.0, Chicago, IL, USA). A two-sided \(P \)-value of <0.05 was considered as statistically significant.

Results

Population characteristics
As shown in Table 1, there were no statistically significant differences in age, gender, body mass index (BMI), waist-hip-ratio (WHR). However, compared with the control group, we found the case group have high percentage of HP infection, family history of cancers and drinkers (\(P < 0.001 \)).

Association studies of LINC00673 gene polymorphisms and GC risk
As shown in Table 2, the genotype frequencies of the four tagSNPs (rs11655237, rs6501551, rs857510, and rs9914618) among the controls were all in accordance with HWE (\(P > 0.05 \)). We found rs11655237 was significantly associated with susceptibility of GC (OR=1.29; 95% CI=1.12–1.48; \(P = 4.1 \times 10^{-4} \)). The AG genotype was associated with a 1.29-fold increased risk (95% CI=1.07–1.54; \(P = 0.006 \)) of GC as compared with the GG genotype, while the AA genotype conferred 1.58-fold increased risk of GC compared with the GG genotype (95% CI=1.13–2.22; \(P = 0.008 \)). Additionally, we detected an marginal association for rs9914618 (OR=1.21; 95% CI=1.03–1.43; \(P = 0.023 \)), although it attenuated for Bonferroni adjustment. Then, we evaluated the interactive effects of HP infection and rs11655237 based on an dominant model. As shown in Table 3, a significant interaction was found between rs11655237 and HP infection (\(P = 0.006 \)). Compared with those with AG or AA genotype, carriers of GG genotype are more likely to be infected with HP (OR: 1.24; 95% CI: 1.07–1.44).

Relative expression of LINC00673 in gastric tissues
Then, we examined expression level of LINC00673 and the potential effect of rs11655237 in 94 randomized selected GC

![Table 1](image)

Table 1 Demographic characteristics and HPV infection rates in GC cases and controls

	Cases (n=1392)	Controls (n=1364)	\(P \)-value
Age			
<60	681 (48.9%)	656 (48.1%)	0.663
≥60	711 (51.1%)	708 (51.9%)	
Gender			
Male	1013 (72.8%)	995 (73.0%)	0.918
Female	379 (27.2%)	369 (27.0%)	
BMI (kg/m2)	24.1±4.7	24.0±5.3	0.600
WHR	0.82±0.31	0.81±0.34	0.420
Family history of cancer			\(P < 0.001 \)
Yes	306 (22.0%)	112 (8.2%)	
No	1086 (78.0%)	1252 (91.8%)	
Drinking status			\(P < 0.001 \)
Yes	510 (36.6%)	273 (20.0%)	
No	882 (63.4%)	1091 (80.0%)	
HP infection			\(P < 0.001 \)
Yes	998 (71.7%)	750 (55.0%)	
No	394 (28.3%)	614 (45.0%)	
Tumor site			
Cardia	533 (38.3%)	533 (38.3%)	
Non-cardia	859 (61.7%)	859 (61.7%)	
TNM stages			
I/II	722 (51.9%)	722 (51.9%)	
III/IV	670 (48.1%)	670 (48.1%)	

Note: Bold values indicate statistically significant.

Abbreviations: BMI, body mass index; GC, gastric cancer; HP, Helicobacter pylori; WHR, waist-hip-ratio.
Table 2 Associations between LINC00673 variants and GC susceptibility

SNP	Comparison	Cases (n=1392)	Controls (n=1364)	OR (95% CI) a	P-value
rs11655237	GG	775	838	1.00 (Reference)	
	AG	522	458	1.29 (1.07–1.54)	0.006
	AA	95	68	1.58 (1.13–2.22)	0.008
	A vs G	1.29 (1.12–1.48)	4.1x10^-4		
rs65015511	AA	1035	1023	1.00 (Reference)	
	AG	319	306	1.07 (0.72–1.59)	0.731
	GG	38	35	1.15 (0.61–2.13)	0.756
	G vs A	1.08 (0.81–1.45)	0.649		
rs857510	GG	942	922	1.00 (Reference)	
	AG	415	404	1.05 (0.29–3.81)	0.946
	AA	35	38	0.96 (0.78–1.19)	0.738
	A vs G	1.03 (0.61–1.74)	0.906		
rs9914618	GG	928	960	1.00 (Reference)	
	AG	414	363	1.23 (1.01–1.49)	0.042
	AA	51	41	1.34 (0.84–2.13)	0.217
	A vs G	1.21 (1.03–1.43)	0.023		

Notes: aAdjusted for age, gender, BMI, WHR, family history of cancer, drinking status, and HP infection. Bold values indicate statistically significant.

Abbreviations: BMI, body mass index; GC, gastric cancer; HP, Helicobacter pylori; WHR, waist-hip-ratio.

Table 3 Results for gene-environment interaction analysis for rs11655237 and HP infection

SNP	HP infection							
	No	Case	Control	OR(95% CI) a	Yes	Case	Control	OR(95% CI) a
rs11655237	GG	201	355	1.00 (reference)	574	483	267	1.00 (reference)
	AG + AA	193	259	1.32 (1.02–1.7)	424	267	1.34 (1.1–1.62)	
	aa							

P-interaction=0.006

Notes: aAdjusted for age, gender, BMI, WHR, family history of cancer, and drinking status.

Abbreviations: BMI, body mass index; HP, Helicobacter pylori; WHR, waist-hip-ratio.

Figure 1 Relative expression of LINC00673 in GC tissues and adjacent normal tissues.
tissues and adjacent normal tissues (Figure 1). Among all the pairs of GC patients, the expression levels of lncRNA LINC00673 in GC tissues were significantly lower than those in the corresponding normal tissues ($P<0.001$). And the results showed that individuals with the GG genotype of rs11655237 had significantly higher LINC00673 levels than those with the GA or AA genotype ($P<0.001$). However, the expression level of miR-1231 showed no difference in the GC tissues (Figure 2, $P=0.793$).

Mechanism exploration of rs11655237 affecting function of LINC00673

We investigated whether interaction between miR-1231 and LINC00673 existed in a LINC00673 variant-specific manner in BGC-803 cells. As shown in Figure 3, luciferase reporter assays showed that, in comparison to the construct with the rs11655237[G] allele, the construct with the rs11655237[A] allele had significantly reduced luciferase activity in the presence of miR-1231, and this effect could be completely rescued when miR-1231 inhibitor was present. We also found no difference for the expression of miR-1231 in BGC-803 cell line with different alleles of rs11655237 (Figure 4, $P=0.821$). These indicated that LINC00673 rs11655237 [A] is a target of miR-1231.

Discussion

To the best of our knowledge, this should be the first study aiming to evaluate the function of variants of lncRNA LINC00673 on the GC carcinogenesis. We found that rs11655237 was significantly associated with GC susceptibility; and a significant interaction between rs11655237 and HP infection was detected for GC risk. RT-PCR showed that LncRNA LINC00673 was down-regulated in GC tissues, and allele A of rs11655237 could significantly decrease the expression level of LINC00673. This was possibly caused by down-regulating LINC00673...
expression through creating a miR-1231 binding site. These results highlight an important functional interaction between lncRNAs and miRNAs in the process of GC carcinogenesis.

In recent years, the roles of LncRNAs in human disease, including cancer, have attracted much attention. First, LINC00673 was identified as a new locus for susceptibility to pancreatic cancer in the European population in 2015. Then, Zheng et al identified LINC00673 for its role in maintaining cell homeostasis and its germline variation might confer susceptibility to pancreatic cancer. Huang et al identified that SP1-activated LINC00673 exerts an oncogenic function that promotes gastric cancer development and progression, by functioning as a scaffold for LSD1 and EZH2 and repressing KLF2 and LATS2 expression; Lu et al found that LINC00673 regulated non-small cell lung cancer proliferation, migration, invasion and epithelial mesenchymal transition by sponging miR-150-5p, and LINC00673 expression was associated with poor prognosis of NSCLC patients. Yu et al also showed that LINC00673 was associated with poor prognosis and promoted invasion and metastasis in tongue squamous cell carcinoma. Taking together, all studies above indicated the essential role of LINC00673 in the carcinogenesis and tumor progression.

In current study, we found LINC00673 rs11655237 is associated with an increased GC risk, which was consistent with the findings in other cancers. Besides, we also detected a significant interaction between rs11655237 and HP infection. Compared with those with AG or AA genotype, carriers of GG genotype are more likely to be infected with HP. HP infection is an important risk factor for gastric cancer. Previous studies have identified HP infection could interacted with genetic polymorphisms in carcinogenesis process, through inflammatory signaling, inflammasome formation and autophagy. Further, to elucidate biological function of lncRNA LINC00673 and its variant- rs11655237 on GC carcinogenesis, we investigated the association of the rs11655237 genotype with LINC00673 expression in GC and adjacent normal tissues. We found the expression levels of lncRNA LINC00673 in GC tissues were significantly lower than those in the corresponding normal tissues, and allele A of rs11655237 could significantly decrease the expression level of LINC00673. These results indicate that LINC00673 might be a tumor suppressor in GC while rs11655237 A allele suppresses the transcription of lncRNA LINC00673. The G>A mutation at rs11655237 was predicted to change the local folding structures and free energy of lncRNA LINC00673. Additionally, LINC00673 rs11655237[A] has been identified as a target of miR-1231 in both BXPC-3 and CFPAC-1 cells. In this study, we also tested whether interaction between miR-1231 and LINC00673 existed in a LINC00673 variant-specific manner in BGC-803 cells, and we confirmed that LINC00673 rs11655237 [A] was also a target of miR-1231 in GC cell line. Taking together, these results indicate that miR-1231 is an inhibitor of LINC00673[A] but not LINC00673[G].

Conclusively, the present study investigated the association of LINC00673 rs11655237 with GC risk, and its interaction with HP infection. We identified LINC00673 rs11655237 significantly increased susceptibility of GC in the Chinese population, possibly by down-regulating LINC00673 expression through creating a miR-1231 binding site. Follow-up studies, including functional studies, are needed to fully understand the importance of LINC00673 and its variants in GC risk.

Abbreviation list
CIs, confidence intervals; ORs, odds ratios; GWASs, genome-wide association studies; SNP, single nucleotide polymorphism.

Disclosure
The authors report no conflicts of interest in this work.

References
1. Pan KF, Zhang L, Gerhard M, et al. A large randomised controlled intervention trial to prevent gastric cancer by eradication of Helicobacter pylori in Linqu County, China: baseline results and factors affecting the eradication. Gut. 2016;65:9–18. doi:10.1136/gutjnl-2015-309197
2. Wang Z, Dai J, Hu N, et al. Identification of new susceptibility loci for gastric non-cardia adenocarcinoma: pooled results from two Chinese genome-wide association studies. Gut. 2017;66(4):581–587.
3. Chen W, Zheng R, Baade PD, et al. Cancer statistics in China, 2015. CA Cancer J Clin. 2016;66:115–132. doi:10.3322/caac.21338
4. Fall K, Ye W, Nyren O. Antibiotic treatment and risk of gastric cancer. Gut. 2006;55:793–796. doi:10.1136/gut.2006.091850
5. Teng AM, Blakely T, Baker MG, Sarfati D. The contribution of Helicobacter pylori to gastric non-cardia adenocarcinoma: pooled results from two Chinese genome-wide association studies. Gut. 2017;66(4):581–587.
6. Talebi Bezmin AA. Helicobacter pylori and gastric cancer. Front Med. 2016;3:36.
7. Xue M, Chen LY, Wang WJ, et al. HOTAIR induces the ubiquitination of Ruxn3 by interacting with Mex3b and enhances the invasion of gastric cancer cells. Gastric Cancer. 2018. doi:10.1007/s10120-018-0801-6
8. YiRen H, YingCong Y, Sunwu Y, et al. Long noncoding RNA MALAT1 regulates autophagy associated chemoresistance via miR-23b-3p sequestration in gastric cancer. Mol Cancer. 2017;16:174. doi:10.1186/s12943-017-0743-3
9. Xue LJ, Mao XB, Ren LL, Chu XY. Inhibition of CXCL12/CXCR4 axis as a potential targeted therapy of advanced gastric carcinoma. Cancer Med. 2017;6:1424–1436. doi:10.1002/cam4.1085
10. Li Y, Wu Z, Yuan J, et al. Long non-coding RNA MALAT1 promotes gastric cancer tumorigenicity and metastasis by regulating vasculo-genic mimicry and angiogenesis. Cancer Lett. 2017;395:31–44. doi:10.1016/j.canlet.2017.02.035
11. Feng X, Huang S. Effect and mechanism of IncRNA HOTAIR on occurrence and development of gastric cancer. J Cell Biochem. 2019;120(5):6899–6907.
12. Lu W, Zhang H, Niu Y, et al. Long non-coding RNA linc00673 regulated non-small cell lung cancer proliferation, invasion and epithelial mesenchymal transition by sponging miR-150-5p. Mol Cancer. 2017;16:118. doi:10.1186/s12943-017-0685-9
13. Huang M, Hou J, Wang Y, et al. Long noncoding RNA LINC00673 is activated by SP1 and exerts oncogenic properties by interacting with LSD1 and EZH2 in gastric cancer. Mol Ther. 2017;25:1014–1026. doi:10.1016/j.ymthe.2017.01.017
14. Yu J, Liu Y, Gong Z, et al. Overexpression long non-coding RNA LIN00673 is associated with poor prognosis and promotes invasion and metastasis in tongue squamous cell carcinoma. Oncotarget. 2017;8:16621–16632. doi:10.18632/oncotarget.14200
15. Zheng J, Huang X, Tan W, et al. Pancreatic cancer risk variant in LINC00673 creates a miR-1231 binding site and interferes with PTPN11 degradation. Nat Genet. 2016;48:747–759. doi:10.1038/ng.3568
16. Jin X, Chen X, Hu Y, et al. LncRNA-TCONS_00026907 is involved in the progression and prognosis of cervical cancer through inhibiting miR-143-5p. Cancer Med. 2017;6:1409–1423. doi:10.1002/cam4.1084
17. Cui Y, Zhang F, Zhu C, Geng L, Tian T, Liu H. Upregulated IncRNA SNHG1 contributes to progression of non-small cell lung cancer through inhibition of miR-101-3p and activation of Wnt/beta-catenin signaling pathway. Oncotarget. 2017;8:17785–17794. doi:10.18632/oncotarget.14854
18. Zheng LL, Li JH, Wu J, et al. deepBase v2.0: identification, expression, evolution and function of small RNAs, LncRNAs and circular RNAs from deep-sequencing data. Nucleic Acids Res. 2016;44: D196–D202. doi:10.1093/nar/gkv1273
19. Zeisel MB, Baumbert TF. Translation and protein expression of IncRNAs: impact for liver disease and hepatocellular carcinoma. Hepatology. 2016;64:671–674. doi:10.1002/hep.28653
20. Pan W, Liu L, Wei J, et al. A functional IncRNA HOTAIR genetic variant contributes to gastric cancer susceptibility. Mol Carcinog. 2016;55:90–96. doi:10.1002/mc.22261
21. Ma Y, Yang Y, Wang F, et al. Long non-coding RNA CCAT regulates colorectal cancer progression by activating Wnt/beta-catenin signalling pathway via suppression of activator protein 2alpha. Gut. 2016;65:1494–1504. doi:10.1136/gutjnl-2014-308392
22. Li Q, Ma G, Sun S, Xu Y, Wang B. Polymorphism in the promoter region of IncRNA GAS5 is functionally associated with the risk of gastric cancer. Clin Res Hepat Gastroenterol. 2018;42:478–482. doi:10.1016/j.clinre.2018.01.006
23. Ulger Y, Dadas E, Yalinbas Kaya B, Sumbul AT, Gene A, Bayram S. The analysis of IncRNA HOTAIR rs12826786 C>T polymorphism and gastric cancer susceptibility in a Turkish population: lack of any association in a hospital-based case-control study. Br J Med Sci. 2017;186:859–865. doi:10.1016/s11845-017-1596-x
24. Bayram S, Ulger Y, Sumbul AT, et al. A functional HOTAIR rs920778 polymorphism does not contribute to gastric cancer in a Turkish population: a case-control study. Fam Cancer. 2015;14:561–567. doi:10.1007/s10689-015-9813-0
25. Aminian K, Mashayekhi F, Mirzanejad L, Salehi Z. A functional genetic variant in GAS5 IncRNA (rs145204276) modulates p27 (Kip1) expression and confers risk for gastric cancer. Br J Biomed Sci. 2018;1–3. doi:10.1080/09674845.2018.1530581
26. Ge Y, He Y, Jiang M, et al. Polymorphisms in IncRNA PTENP1 and the risk of gastric cancer in a Chinese population. Dis Markers. 2017;2017:6807452. doi:10.1155/2017/6807452
27. Yang C, Tang R, Ma X, et al. Tag SNPs in long non-coding RNA H19 contribute to susceptibility to gastric cancer in the Chinese Han population. Oncotarget. 2015;6:15311–15320. doi:10.18632/oncotarget.3840
28. Childs EJ, Mocci E, Campa D, et al. Common variation at 2p13.3, 3q29, 7p13 and 17q25.1 associated with susceptibility to pancreatic cancer. Nat Genet. 2015;47:911–916. doi:10.1038/ng.3341
29. Zhang Z, Chang Y, Jia W, et al. LINC00673 rs11655237 C>T confers neuroblastoma susceptibility in Chinese population. Biosci Rep. 2018;38(1):1–6.
30. Xu Z, Taylor JA. SNPinfo: integrating GWAS and candidate gene information into functional SNP selection for genetic association studies. Nucleic Acids Res. 2009;37:W600–W605. doi:10.1093/nar/gkp290
31. Boyle AP, Hong EL, Hariharan M, et al. Annotation of functional variation in personal genomes using ReguNomeDB. Genome Res. 2012;22:1790–1797. doi:10.1101/gr.137323.112
32. Zhao Z, Damert MA, Grummt I, Bierhoff H. IncRNA-induced nucleosome repositioning reinforces transcriptional repression of RNA genes upon hypotonic stress. Cell Rep. 2016;14:1876–1882. doi:10.1016/j.celrep.2016.01.073
33. Zhang M, Gu H, Xu W, Zhou X. Down-regulation of IncRNA MALAT1 reduces cardiomyocyte apoptosis and improves left ventricular function in diabetic rats. Int J Cardiol. 2016;203:214–216. doi:10.1016/j.ijcard.2015.10.136
34. Yang L, Yi K, Wang H, Zhao Y, Xi M. Comprehensive analysis of IncRNAs microarray profile and mRNA-lncRNA co-expression in oncogenic HPV-positive cervical cancer cell lines. Oncotarget. 2016;7:49917–49929. doi:10.18632/oncotarget.10232
35. Xie W, Yuan S, Sun Z, Li Y. Long noncoding and circular RNAs in lung cancer: advances and perspectives. Epigenomics. 2016;8:1275–1287. doi:10.2217/epi-2016-0036
36. Mommersteeg MC, Yu J, Peppelensb CP, Fuhrer GM. Genetic host factors in Helicobacter pylori-induced carcinogenesis: emerging new paradigms. Biochim Biophys Acta Rev Cancer. 2018;1869:42–52. doi:10.1016/j.bcar.2017.11.003
37. Tiwari SK, Manoj G, Sharma V, et al. Relevance of Helicobacter pylori infection and its association with plasma malondialdehyde and nitric oxide levels. Inflammopharmacology. 2010;18:59–64. doi:10.1007/s10787-010-0031-y
38. Forte GI, Cala C, Scola L, et al. Role of environmental and genetic factor interaction in age-related disease development: the gastric cancer paradigm. Rejuvenation Res. 2008;11:509–512. doi:10.1089/rej.2008.0678
39. Hofacker IL. Vienna RNA secondary structure server. Nucleic Acids Res. 2003;31:3429–3431.
