High expression of Toll-like receptor 4/myeloid differentiation factor 88 signals correlates with poor prognosis in colorectal cancer

EL Wang1,2,8, ZR Qian*,1,8, M Nakasono1,3, T Tanahashi4, K Yoshimoto5, Y Bando6, E Kudo1, M Shimada7 and T Sano1

1Department of Human Pathology, Institute of Health Biosciences, University of Tokushima Graduate School, 3-18-15 Kuramoto-cho, Tokushima 770-8503, Japan; 2Department of Legal Medicine, Kanazawa Medical University, 1-1 Daigaku, Uchinada, Ishikawa 920-0293, Japan; 3Department of Medicine, Tsunagi Municipal Handa-Hospital, Tsunagi-cho, Mima-gun, Tokushima 779-4401, Japan; 4Department of Stress Science, Institute of Health Biosciences, University of Tokushima Graduate School, 3-18-15 Kuramoto-cho, Tokushima 770-8503, Japan; 5Department of Medical Pharmacology, Institute of Health Biosciences, University of Tokushima Graduate School, 3-18-15 Kuramoto-cho, Tokushima 770-8504, Japan; 6Division of Pathology, Tokushima University Hospital, 2-50-1 Kuramoto-cho, Tokushima 770-8503, Japan; 7Department of Surgery, Institute of Health Biosciences, University of Tokushima Graduate School 3-18-15 Kuramoto-cho, Tokushima 770-8503, Japan

BACKGROUND: The Toll-like receptor (TLR) 4 signalling pathway has been shown to have oncogenic effects in vitro and in vivo. To demonstrate the role of TLR4 signalling in colon tumourigenesis, we examined the expression of TLR4 and myeloid differentiation factor 88 (MyD88) in colorectal cancer (CRC).

METHODS: The expression of TLR4 and MyD88 in 108 CRC samples, 15 adenomas, and 15 normal mucosas was evaluated by immunohistochemistry, and the correlations between their immunoscores and clinicopathological variables, including disease-free survival (DFS) and overall survival (OS), were analysed.

RESULTS: Compared with normal mucosas and adenomas, 20% cancers displayed high expression of TLR4, and 23% cancers showed high expression of MyD88. The high expression of TLR4 and MyD88 was significantly correlated with liver metastasis ($P = 0.0001$, and $P = 0.0054$). In univariate analysis, the high expression of TLR4 was significantly associated with shorter OS (hazard ratio (HR): 2.17, 95% confidence interval (95% CI): 1.15–4.07; $P = 0.015$). The high expression of MyD88 was significantly associated with poor DFS and OS (HR: 2.33, 95% CI: 1.31–4.13; $P = 0.0038$ and HR: 3.03, 95% CI: 1.67–5.48; $P = 0.0002$). The high combined expression of TLR4 and MyD88 was also significantly associated with poor DFS and OS (HR: 2.25, 95% CI: 1.27–3.99; $P = 0.0053$ and HR: 2.97, 95% CI: 1.64–5.38; $P = 0.0003$). Multivariate analysis showed that high expressions of TLR4 (OS: adjusted HR: 1.88, 95% CI: 0.99–3.55; $P = 0.0298$) and MyD88 (DFS: adjusted HR: 1.93, 95% CI: 1.01–3.67; $P = 0.044$; OS: adjusted HR: 2.25, 95% CI: 1.17–4.33; $P = 0.0112$) were independent prognostic factors of OS. Furthermore, high co-expression of TLR4/MyD88 was strongly associated with both poor DFS and OS.

CONCLUSION: Our findings suggest that high expression of TLR4 and MyD88 is associated with liver metastasis and is an independent predictor of poor prognosis in patients with CRC.

Keywords: TLR4; MyD88; colorectal cancer; prognosis

Colorectal cancer (CRC) is the fourth leading cause of cancer-related death in the world and the third leading cause in the United States (Jemal et al, 2009). In Japan, the incidence of CRC has doubled over the past 20 years, and it was the second leading cause of cancer-related death during that period (Tsukuma et al, 2004).

Although recent advances in chemotherapy have prolonged the survival of patients with advanced disease, the results are still unsatisfactory, and further research is required to understand the disease and improve its outcome (Wolpin et al, 2007; Wolpin and Mayer, 2008).

Toll-like receptors (TLRs) expressed on immune cells have a critical role in immune responses against invading pathogens (Akira et al, 2006). At least 11 mammalian TLRs have been identified and are involved in recognition by immune and non-immune cells of pathogen-associated molecular patterns, such as lipopolysaccharides (LPSs), viral double-stranded RNA, and unmethylated CpG islands (Akira et al, 2006). The TLRs transmit signals through one or more of four adaptor proteins, namely,
myeloid differentiation factor 88 (MyD88), MyD88 adaptor-like, Toll/IL1R domain-containing adaptor molecule inducing interferon-β (TRIF), and TRIF-related adaptor molecule (Rakoff-Nahoum and Medzhitov, 2009). Stimulation of TLR leads to the activation of nuclear factor-κB (NF-κB) and mitogen-activated protein kinases, which are essential for the classical outcomes of TLR activation: host innate and adaptive immune responses (Rakoff-Nahoum and Medzhitov, 2009). Toll-like receptor-mediated activation of innate or adaptive immunity may be used as an effective immunoadjuvant in tumour immunotherapy or combined tumour therapy (Huang et al, 2008; Rakoff-Nahoum and Medzhitov, 2009). However, recent evidence has shown that functional TLRs are expressed on a wide variety of tumours (Huang et al, 2008; Rakoff-Nahoum and Medzhitov, 2009). Contemporary experimental evidence suggests that TLRs have important roles in tumorigenesis (Killeen et al, 2008). Lipopolysaccharide, a putative ligand for TLR4, may promote tumour progression by acting directly on cancer cells, resulting in increased tumour cell–endothelial cell adhesion, tumour cell–extracellular matrix adhesion, and tumour cell–extracellular matrix invasion through NF-κB-mediated upregulation of β-1 integrin (Andrews et al, 2001; Wang et al, 2003). Helicobacter pylori acting through TLR2/TLR9 on gastric epithelial cells activated both Src and NF-κB, resulting in an increased expression of cyclooxygenase-2 (COX-2), which may contribute to gastric cancer progression (Chang et al, 2004). The triggering of TLR4 and TLR9 on prostate cancer cells has also been shown to promote tumour cell proliferation through increased NF-κB activation (Kundu et al, 2008).

Mounting evidence suggests that innate immune responses to luminal microbes participate in the development of gastrointestinal malignancies (Fukata and Abreu, 2008). The large intestine contains the highest density of microorganisms with the potential to have a key function in colorectal carcinogenesis (Fukata and Abreu, 2008). An expanding body of experimental studies has identified the contribution of TLR signalling to intestinal carcinogenesis (Fukata and Abreu, 2008). Blocking TLR4 signalling in colon cancer cells resulted in the reduction of tumour growth in a subcutaneously implanted mouse model (Huang et al, 2005). In addition, the involvement of TLR signalling through MyD88 in tumour growth and progression has been demonstrated in an Apcmin/− mouse model (Rakoff-Nahoum and Medzhitov, 2007). Furthermore, a recent study reported that TLR4 activation seems to promote the development of colitis-associated cancer by enhancing Cox-2 expression and increasing epidermal growth factor receptor (EGFR) signalling (Fukata et al, 2007). These findings have opened a multitude of oncological therapeutic opportunities. However, little is known about the clinical significance of TLR-4/MyD88 signalling expression in sporadic CRC.

In this study, we performed a systematic immunohistochemical analysis of TLR4 and MyD88 expression in normal colon mucosa, adenomas, and CRC. The analysis of the investigation involved two parts: The first was concerned with the correlation between pathological factors and protein expression, and the second tested the correlation between protein expression and disease-free survival (DFS) and overall survival (OS).

MATERIALS AND METHODS

Patients and human tissues

A total of 108 patients with CRC (62 males and 46 females) who underwent surgery from 1990 to 1999 at the Tokushima University Hospital were investigated in this study. Information on patient demographics (sex and age) and tumour features (anatomical site, histology, vascular invasion, lymphatic invasion, lymph node metastasis, liver metastasis, peritoneal metastasis, and TNM stage) was obtained from clinical and pathological records (Table 1). The tumour site was classified as proximal or distal with respect to the splenic flexure. Disease stages were classified according to the criteria proposed by the Standard AJCC (American Joint Committee on Cancer) (Fleming et al, 1997). Disease-free survival was defined as the interval between the day that surgery was performed and the day that recurrence was first detected. If recurrence was not diagnosed, the date of death or of last follow-up was used. Overall survival was defined as the interval between the dates of surgery and death. The follow-up period after the initial operation for the primary lesion was 5 years for DFS and OS. Exclusion criteria were cancers associated with ulcerative colitis, Crohn’s disease, or familial adenomatous polyposis. Ethical approval for the project was obtained from the Tokushima University Hospital Research Ethics Committee.

For the immunohistochemical study, formalin-fixed, paraffin-embedded tissue samples from 15 normal mucosa tissues obtained by colon biopsy, as well as 15 adenomas, 108 CRC, and 14 liver metastases, were used.

Immunohistochemistry for TLR4 and MyD88

To immunostain TLR4 and MyD88 proteins, the streptavidin–biotin labelling method was carried out on 4 μm tissue sections as described previously (Rahman et al, 2009). After deparaffinisation in xylene and rehydration in a series of ethanol, the sections were then treated with 0.3% hydrogen peroxide to block endogenous peroxidase activity for 30 min. Antigen retrieval was performed using an autoclave oven technique. The tissue sections were then incubated with a serum-free protein blocker and incubated at 4°C overnight with mouse monoclonal anti-human TLR4 antibody (1:100; HTA125, ebioscience, San Diego, CA, USA) or rabbit polyclonal anti-MyD88 antibody (1:100; HFL-296, Santa Cruz Biotech, Santa Cruz, CA, USA). The biotinylated secondary antibody and peroxidase-conjugated streptavidin (DakoCyto, Glostrup, Denmark) were applied for 50 min each at room temperature. Antigen–antibody complexes were visualised using the 3, 3′-diaminobenzidine reaction. For confirmation, the 3-aminio-9-ethylcarbazole reaction was also used. The slides were counterstained lightly with haematoxylin and mounted for microscopic examination. Human tonsil tissue was used as a positive control for TLR4 and MyD88 immunoreactivity. Phosphate-buffered saline without the primary antibody served as a negative control.

Evaluation of immunohistochemical findings

Each slide was evaluated independently by two pathologists who were blinded to clinical and outcome data. As most samples stained for TLR4 and MyD88 showed similar colour intensity, from moderate to strong, no evaluation of colour intensity was performed in this study. Any intensity of membrane and/or cytoplasmic staining was considered to represent a positive stain for TLR4 and MyD88. Several high-power fields (×200) selected from different staining density regions including high, moderate, low, and negative staining areas were captured using a digital camera (Olympus Q-color 3; Olympus Inc., Center Valley, PA, USA). Photographs were printed on plain paper and a grid was drawn over them. We counted a mean of 2000 tumour cells per tumour (range, 1500–2500), and the results were expressed as the percentage of tumour cells with a positive stain. Thereafter, the percentage of TLR4- or MyD88-positive tumour cells was scored on a scale of 0–4 (0: no staining; 1+: ≤10%; 2+: 11–30%; 3+: 31–50%; 4+: >50%). Furthermore, the expression levels of TLR4 and MyD88 were divided into the following two groups according to score: low (0, 1+, 2+) and high (3+, 4+). In addition, the sum of the score of TLR4/MyD88 staining was divided into the following two groups: <5 and ≥5.
Statistical analysis

Analysis was performed using StatView J-4.5 software (Abacus Concepts, Berkeley, CA, USA). The Pearson χ^2 test or Fisher’s exact test was used to compare qualitative variables. The primary statistical outcomes were DES and OS measured from the day of surgery. Both DFS and OS were estimated by Kaplan–Meier curves, and the curves were compared using the log-rank test. Time to relapse and to death was analysed using the Cox proportional hazards model for univariate and multivariate analyses. In addition, the hazard ratios (HRs) between prognostic groups and their 95% confidence intervals were computed. Probability values ($P < 0.05$) were considered to be statistically significant.

RESULTS

TLR4 and MyD88 expression in normal colonic mucosae, adenomas, and cancers

Immunolocalisation of TLR4 protein was observed in the membrane and cytoplasm. In general, TLR4 expression was absent or very weak in the normal mucosae collected from biopsy samples and cancer margin samples (Figure 1A). This finding is consistent with those of earlier reports (Cario and Podolsky, 2000; Furrie et al, 2005; Fukata and Abreu, 2008). The expression of TLR4 was also absent or weak in adenomas (Figure 1A). Compared with normal mucosae and adenomas, the expression of TLR4 was detected in a high proportion of cancers (78 of 108, 72%) (Figure 1B). A total of 22 cancers displayed high expression ($4^+ : 6, 3^+ : 16$), and 86 cancers showed low expression ($2^+ : 33, 1^+ : 23$ and $0^+ : 30$) (Table 1). Among the 14 liver metastases obtained by hepatectomy, 12 (86%) were TLR4 positive and 6 (43%) showed a high expression.

Immunolocalisation of MyD88 protein was observed in the cytoplasm. Similar to that of TLR4, MyD88 expression was absent or very weak in normal mucosae, cancer margin samples, and adenomas (Figure 1A). Compared with normal mucosae and adenomas, the expression of MyD88 was detected in a high proportion of cancers (93 of 108, 86%) (Figure 1C). A total of 22 cancers displayed high expression ($4^+ : 10, 3^+ : 12$), and 86 cancers showed low expression ($2^+ : 33, 1^+ : 35$, and $0^+ : 15$). All of 14 liver metastases were positive for MyD88 expression and 12 (86%) of them displayed high expression.
In the co-expression analysis, MyD88 expression levels were higher in TLR4 high-expression CRC than in TLR4 low-expression CRC ($P < 0.05$, Figure 1D). Similarly, significantly high levels of TLR4 were detected in CRC with high MyD88 expression ($P < 0.005$, Figure 1D). Finally, the correlation between the expression of TLR4 and MyD88 in CRC was confirmed using Pearson’s correlation coefficient analysis ($r = 0.33$, $P < 0.05$) and Spearman’s correlation coefficient analysis ($P = 0.003$). In addition, 25 (23%) cancers showed a high-level combined expression of TLR4/MyD88 (5+: 12, 6+: 5, 7+: 7, and 8+: 1) (Table 1).

Clinicopathological significance of TLR4 and MyD88 expression

The co-distribution of CRC with a high or low TLR4/MyD88 expression in relation to cancer and patient characteristics is shown in Table 1. The high expression of TLR4 was significantly associated with liver metastasis ($P = 0.0001$) and TNM stage ($P = 0.0197$) and potentially related to peritoneal metastasis ($P = 0.0611$). The high expression of MyD88 was significantly associated with cancer histology ($P = 0.0333$) and liver metastasis ($P = 0.0054$) and potentially related to TNM stage ($P = 0.0745$). Furthermore, a high co-expression of TLR4/MyD88 was significantly associated with vascular invasion ($P = 0.0186$), liver metastasis ($P = 0.0002$), and TNM stage ($P = 0.0036$). In addition, CRC with liver metastasis showed higher levels of TLR4 expression.

Figure 1 Detection of TLR4 and MyD88 immunoreactivity in normal colon tissues, adenoma, and CRC. (A) Normal colon mucosa (left) and adenoma (right) showed no or weak immunoreactions for TLR4 (top) and MyD88 (below), which was identified as negative expression in this study. Original magnification, $\times 200$. (B) In contrast to the situation in the normal and adenoma, strong immunostaining of TLR4, which was localized in the membrane (top) or cytoplasm (below), was observed in the cancer cells. Original magnification, right, $\times 200$; left, $\times 400$. (C) Strong immunostaining of MyD88, which was localized in the cytoplasm, was observed in the cancer cells. Original magnification, right, $\times 200$; left, $\times 400$. (D) High expression of TLR4 was correlated with high expression of MyD88 in CRC. CRC with a high expression of TLR4 ($n = 22$) showed significantly high levels of MyD88 expression than did CRC with a low expression of TLR4 ($n = 86$) ($P < 0.05$). CRC with a high expression of MyD88 ($n = 25$) showed significantly high levels of TLR4 expression than did CRC with a low expression of MyD88 ($n = 83$) ($P < 0.005$).

Figure 2 Differences in immunostaining scores of TLR4 and MyD88 in liver metastasis (+) CRC ($n = 22$) and liver metastasis (−) CRC ($n = 86$) were analysed. The TLR4 (A), MyD88 (B), and combined TLR4/MyD88 expression (C) levels were significantly higher in liver metastasis (+) CRC than in liver metastasis (−) CRC ($P = 0.0015$, $P = 0.0035$, $P < 0.0001$, respectively).
Clinical pathological parameters and patient survival in CRC

At the 5-year follow-up, 53 patients had tumour recurrence (DFS rate: 49%), and 46 patients had died (OS rate: 43%). In univariate analysis, histology (DFS, P = 0.0322; OS, P = 0.0084), TNM stage (DFS, P < 0.0001; OS, P = 0.0011), vascular invasion (DFS, P < 0.0001; OS, P = 0.0001), lymphatic invasion (DFS, P = 0.0001; OS, P = 0.0017), lymph node metastasis (DFS, P = 0.0001; OS, P = 0.0001), and peritoneal metastasis (DFS, P = 0.0368; OS, P = 0.007) were important factors associated with DFS and OS (Table 2). Patient age, sex, and tumour location were not related to DFS or OS (Table 2). Multivariate analysis was performed to identify independent prognostic factors. In Table 3, models that include all histopathological variables and tumour markers found to have significant prognostic value in univariate analysis (Table 2) are shown. In Table 3 models A and B, TNM stage was significantly associated with DFS (A, P = 0.0026; B, P = 0.0043) and OS (A, P = 0.0074; B, P = 0.0216), and the presence of liver metastasis was significantly associated with DFS (A, P = 0.0373; B, P = 0.047) (Table 3). In Table 3 model B, the presence of lymphatic invasion was significantly associated with DFS (P = 0.0362), and histology was significantly associated with OS (P = 0.0435) (Table 3).

TLR4 and MyD88 expression and patient survival in CRC

We assessed the influence of high expression of TLR4 and MyD88 in CRC on patient survival. Patients with a high TLR4 expression had a worse DFS than did those with a low TLR4 expression (36 vs 55%, Figure 3A). However, a high expression of TLR4 did not significantly influence DFS (log-rank P = 0.1177; Figure 3A). High expression of MyD88 and high co-expression of TLR4/MyD88 were significantly related to poor DFS (log-rank P = 0.0029; log-rank P = 0.0042, respectively, Figure 3C and E). Furthermore, high expression of TLR4, MyD88, and co-expression TLR4/MyD88 were significantly associated with poor OS (log-rank P = 0.013; log-rank P = 0.0001; log-rank P = 0.0001, respectively, Figures 3B, D, and F).

In univariate analysis, high expression of TLR4 was not significantly related to DFS (Table 2). High expression of MyD88

Table 2: Clinical pathological features, tumour markers, and patient survival (univariate analysis)

Variable	5-Year DFS HR (95% CI)	P-value	5-Year OS HR (95% CI)	P-value
Age (≥65 years vs <65 years)	0.84 (0.48–1.45)	0.5355	1.17 (0.65–2.08)	0.5934
Sex (male vs female)	0.95 (0.73–1.26)	0.8568	0.85 (0.55–1.31)	0.5781
Tumour site (distant vs proximal)	2.89 (1.16–8.97)	0.0656	3.17 (0.98–10.23)	0.0349
Tumour size (T1/T2 vs T3/T4)	1.95 (1.05–3.6)	0.0325	2.57 (1.27–5.19)	0.0084
TNM stage (III/IV vs III)	8.07 (3.2–20.33)	<0.0001	6.26 (2.46–15.88)	<0.0001
Vascular invasion (yes vs no)	3.28 (1.86–5.78)	<0.0001	3.35 (1.82–6.16)	<0.0001
Lymphatic invasion (yes vs no)	4.68 (1.86–11.79)	0.001	3 (1.27–7.09)	0.0121
Lymph node metastasis (yes vs no)	3.64 (1.87–7.09)	0.0001	3.07 (1.52–6.2)	0.0017
Liver metastasis (yes vs no)	5.04 (2.85–8.9)	0.0001	5.35 (2.94–9.74)	<0.0001
Peritoneal metastasis (yes vs no)	2.32 (1.05–5.18)	0.0387	3.06 (1.35–6.91)	0.007
TLR4 (high vs low)	1.62 (0.87–2.99)	0.1213	2.17 (1.15–4.07)	0.015
MyD88 (high vs low)	2.33 (1.31–4.13)	0.0038	3.03 (1.64–5.38)	0.0002
TLR4+MyD88 (≥5+ vs ≤5+)	2.25 (1.27–3.99)	0.0053	2.97 (1.64–5.38)	0.0003

Abbreviations: DFS = disease-free survival; HR = hazard ratio; CI = confidence interval; OS = overall survival; TNM = tumour, node, metastasis; TLR4 = Toll-like receptor 4; MyD88 = myeloid differentiation factor 88. Bold values indicate P<0.05.

Table 3: Clinical pathological features, tumour markers, and patient survival (multivariate analysis)

Variable	5-Year DFS HR (95% CI)	P-value	5-Year OS HR (95% CI)	P-value
Model A				
Histology (poor/moderate vs well)	1.31 (0.67–2.55)	0.4342	1.75 (0.8–3.81)	0.1619
TNM stage (III/IV vs III)	8.52 (2.11–24.33)	0.0026	8.17 (1.76–27.28)	0.0074
Vascular invasion (yes vs no)	1.32 (0.69–2.54)	0.4034	1.55 (0.77–3.11)	0.2169
Lymphatic invasion (yes vs no)	2.53 (0.96–6.67)	0.061	1.5 (0.69–3.83)	0.4040
Lymph node metastasis (yes vs no)	0.56 (0.21–1.55)	0.259	0.49 (0.15–1.5)	0.2058
Liver metastasis (yes vs no)	2.02 (1.04–3.92)	0.0373	1.68 (0.79–3.58)	0.1791
Peritoneal metastasis (yes vs no)	0.99 (0.43–2.31)	0.9897	1.23 (0.49–3.08)	0.655
TLR4 (high vs low)	—	—	1.39 (0.67–2.89)	0.381
MyD88 (high vs low)	2.01 (1.00–4.03)	0.0494	2.31 (1.09–4.89)	0.0279
Model B				
Histology (poor/moderate vs well)	1.53 (0.81–2.89)	0.1873	2.11 (1.02–4.37)	0.0435
TNM stage (III/IV vs III)	7.17 (1.86–25.68)	0.0043	5.56 (1.87–21.68)	0.0216
Vascular invasion (yes vs no)	1.33 (0.69–2.56)	0.3887	1.35 (0.77–3.11)	0.2224
Lymphatic invasion (yes vs no)	2.85 (1.07–7.61)	0.0362	1.74 (0.67–4.5)	0.2522
Lymph node metastasis (yes vs no)	0.67 (0.25–1.75)	0.4071	0.67 (0.22–1.96)	0.4602
Liver metastasis (yes vs no)	1.97 (1.01–3.86)	0.047	1.83 (0.87–3.83)	0.1093
Peritoneal metastasis (yes vs no)	0.89 (0.38–2.11)	0.8065	1.21 (0.5–2.9)	0.6739
TLR4+MyD88 (≥5+ vs ≤5+)	1.87 (0.97–3.59)	0.0625	2.11 (1.05–4.23)	0.0352

Abbreviations: DFS = disease-free survival; HR = hazard ratio; CI = confidence interval; OS = overall survival; TNM = tumour, node, metastasis; TLR4 = Toll-like receptor 4; MyD88 = myeloid differentiation factor 88. Bold values indicate P<0.05.
Expression of TLR4/MyD88 in CRC
EL Wang et al

Table 4 Clinicopathological features, tumour markers, and patient survival (multivariate analysis)

Variable	5-Year DFS HR (95% CI)	P-value	5-Year OS HR (95% CI)	P-value
Model A				
TLR4 (high vs low)	1.31 (0.71–2.43)	0.3816	1.88 (0.99–3.55)	0.0298
Histology (poor/moderate vs well)	1.82 (0.98–3.37)	0.0572	2.52 (1.24–5.14)	0.0065
TNM stage (III/IV vs I/II)	5.8 (2.26–15.09)	0.0003	4.6 (1.72–12.01)	0.0013
Vascular invasion (yes vs no)	1.81 (1.01–3.25)	0.0448	2.23 (1.18–4.2)	0.019
Lymphatic invasion (yes vs no)	2.35 (0.91–6.07)	0.0752	1.518 (0.62–3.67)	0.4202

Model B				
MyD88 (high vs low)	1.93 (1.01–3.76)	0.0441	2.25 (1.17–4.33)	0.0112
Histology (poor/moderate vs well)	1.54 (0.8–2.95)	0.1878	1.89 (0.99–3.99)	0.0679
TNM stage (III/IV vs I/II)	5.98 (2.28–15.68)	0.0003	4.52 (1.7–11.99)	0.0017
Vascular invasion (yes vs no)	1.61 (0.87–2.97)	0.122	2.08 (1.09–3.97)	0.0414
Lymphatic invasion (yes vs no)	2.27 (0.86–5.94)	0.0944	1.38 (0.55–3.45)	0.5922

Model C				
TLR4+MyD88 (≥5+ vs <5+)	2.06 (1.11–3.92)	0.0216	2.4 (1.28–4.52)	0.0041
Histology (poor/moderate vs well)	1.74 (0.93–3.24)	0.0806	2.3 (1.13–4.69)	0.0155
TNM stage (III/IV vs I/II)	5.89 (2.24–15.45)	0.0003	4.48 (1.68–11.92)	0.0018
Vascular invasion (yes vs no)	1.53 (0.82–2.84)	0.173	1.87 (0.96–3.62)	0.0918
Lymphatic invasion (yes vs no)	2.52 (0.97–6.56)	0.0577	1.58 (0.64–3.92)	0.3742

Abbreviations: DFS = disease-free survival; HR = hazard ratio; CI = confidence interval; OS = overall survival; TNM = tumour, node, metastasis; TLR4 = Toll-like receptor 4; MyD88 = myeloid differentiation factor 88. Bold values indicate P < 0.05.

(HR: 2.33; 95% confidence interval (95% CI): 1.31–4.13; P = 0.0038) and high co-expression of TLR4/MyD88 (HR: 2.25; 95% CI: 1.27–3.99; P = 0.0053; Table 2) were significantly related to poor DFS. In addition, high expression of TLR4 (HR: 2.17; 95% CI: 1.15–4.07; P = 0.015), MyD88 (HR: 3.03; 95% CI: 1.67–5.48; P = 0.0002), and co-expression of TLR4/MyD88 (HR: 2.97; 95% CI: 1.64–5.38; P = 0.0003; Table 2) significantly influenced OS.

In multivariate analysis of Table 3 model A, high expression of MyD88 was significantly associated with poor DFS (adjusted HR: 2.01; 95% CI: 1.00–4.03; P = 0.0494) and OS (adjusted HR: 2.51; 95% CI: 1.09–4.89; P = 0.0279) (Table 3). High co-expression of TLR4/MyD88 was significantly associated with poor OS (adjusted HR: 2.11; 95% CI: 1.05–4.23; P = 0.0352; Table 3 model B) and potentially related to poor DFS (HR: 1.87; 95% CI: 0.97–3.59; P = 0.0625; Table 3 model B). As the TNM stage includes metastasis information, we excluded all metastasis factors from Table 4 models and analysed survival significance of TLR4, MyD88, and TLR4/MyD88. In Table 4 model A, multivariate analysis showed that high expression of TLR4 was significantly associated with poor OS (adjusted HR: 1.88; 95% CI: 0.99–3.95; P = 0.0298; Table 4). In Table 4 model B, high expression of MyD88 was significantly associated with poor DFS and OS (adjusted HR: 1.93; 95% CI: 1.01–3.67; P = 0.0441; adjusted HR: 2.25; 95% CI: 1.17–4.33; P = 0.0112, respectively, Table 4). Table 4 model C showed that high co-expression of TLR4/MyD88 was also significantly associated with poor DFS (adjusted HR: 2.06; 95%
DISCUSSION

It was recently reported that TLR4/MyD88 signalling drives tumour growth in numerous organs (Rakoff-Nahoum and Medzhitov, 2009). Toll-like receptor 4 and other TLRs have been detected in many murine and human cancer cell lines, including laryngeal, lung, breast, gastric, colon, prostate cancer, and melanoma (Huang et al., 2008). Silencing TLR4 signalling in tumour cells results in reduced tumour formation (Huang et al., 2006) and the inhibition of tumour-cell apoptosis by TLR4 signalling was also observed in ovarian, lung cancer, and myeloma cells (Jego et al., 2006; Kelly et al., 2006; He et al., 2007). In addition, it was shown that MyD88 is crucial for the promotion of diethylaminoimidazole-activated hepatocellular tumours (Naugler et al., 2007). Recently, MyD88 has also been shown to be crucial for tumour promotion in models of spontaneous (Apc\(^{min}+)\) and carcinogen-induced (azoxymethane) intestinal tumourigenesis (Rakoff-Nahoum and Medzhitov, 2007). In addition, MyD88 is a positive regulator of chemically induced tumours of both the skin and connective tissue (Swann et al., 2008). In this study, we observed that TLR4/MyD88 signalling was frequently overexpressed in CRC compared with normal mucosa and adenomas. A correlation between TLR4 and MyD88 expression was detected. These findings indicated that TLR4/MyD88 signalling in tumour cells itself has important roles as oncogenic factors in CRC.

It is not yet clear whether TLR4 and MyD88 are involved in tumour initiation (Rakoff-Nahoum and Medzhitov, 2009). In humans, chronic infection and inflammation are considered to be two of the most important factors contributing to tumourigenesis and tumour progression (Balkwill and Coussens, 2004). Toll-like receptor signalling may have an important role in numerous cancers, including gastric, ovarian, lung, pancreatic, liver, and colon cancer, which have been shown to be associated with local chronic inflammation (Kelly et al., 2006; Fukata et al., 2007; He et al., 2007; Naugler et al., 2007; Schwartz et al., 2009). Upregulated stimulation of TLRs could lead to damage and mutation of genomic DNA and aberrant chromosomal translocation (Rakoff-Nahoum and Medzhitov, 2009). Toll-like receptor 4 activation seems to promote the development of colitis-associated cancer by mechanisms including enhanced Cox-2 expression and increased EGFR signalling (Fukata et al., 2007). Excluding colitis-associated cancers, commensal bacteria have also been implicated in the development of sporadic CRC (Hope et al., 2005) and may promote CRC by inducing chromosomal instability (Wang and Huycke, 2007). Our findings suggest that TLR4/MyD88 signalling contributes to CRC tumourigenesis not just in colitis-associated cancer but also in sporadic CRC.

The molecular pathway that links inflammation to the acquisition of metastatic capacity during tumour progression has been investigated (Kim et al., 2009). By activating TLR2:TLR6 complexes and inducing NF-kB, Cox-2 expression and NF-kB are induced. These findings suggested that the tumour cell TLR4/MyD88 signalling pathway has a crucial role in CRC patient prognosis and that blocking this pathway could provide great benefits for patients with CRC.

Recently, several approaches to the treatment of TLR4-mediated diseases have been investigated. Rapamycin may abrogate TLR4-mediated colitis and cell-lethal innate immune response and by downregulating TLR4 expression and inhibiting the TLR4-activated NF-kB pathway (Sun et al., 2008). Interestingly, TAK-224, a small-molecule antiproliferative agent, has been demonstrated to be a selective inhibitor of TLR4 signalling (Kawamoto et al., 2008). Our study suggests that it is necessary to investigate the usefulness of TAK-224 in CRC therapy.

The molecular pathway that links inflammation to the acquisition of metastatic capacity during tumour progression has been investigated (Kim et al., 2009). By activating TLR2:TLR6 complexes and inducing NF-kB, Cox-2 expression and NF-kB are induced. These findings suggested that the tumour cell TLR4/MyD88 signalling pathway has a crucial role in CRC patient prognosis and that blocking this pathway could provide great benefits for patients with CRC.

ACKNOWLEDGEMENTS

This study was supported by grants from Cancer Research from the ‘Research Foundation of Tokushima University’. We express our appreciation to our patients. We also thank Taiho Pharmaceutical Co., Ltd for their excellent technical assistance and helpful discussion.
Expression of TLR4/MyD88 in CRC

EL Wang et al

REFERENCES

Akira S, Uematsu S, Takeuchi O (2006) Pathogen recognition and innate immunity. Cell 124: 783–801
Andrews EJ, Wang JH, Winter DC, Lang WE, Redmond HP (2001) Tumor cell adhesion to endothelial cells is increased by endotoxin via an upregulation of β1-integrin expression. J Surg Res 97: 14–19
Balkwill F, Coussens LM (2004) Cancer: an inflammatory link. Nature 431: 405–406
Cario E, Podolsky DK (2000) Differential alteration in intestinal epithelial cell expression of Toll-like receptor 3 (TLR3) and TLR4 in inflammatory bowel disease. Infect Immun 68: 7010–7017
Chang YJ, Wu MS, Lin JT, Sheu BS, Muta T, Inoue H, Chen CC (2004) Induction of cyclooxygenase-2 overexpression in human gastric epithelial cells by Helicobacter pylori involves TLR2/TLR9 and c-Src-dependent nuclear factor-κB activation. Mol Pharmacol 66: 1465–1477
Cianchi F, Cortesini C, Fantappiè O, Messerini L, Sardi I, Lasagna N, Perna F, Fabbroni V, Di Felice A, Perigli G, Mazzanti R, Masini E (2004) Cyclooxygenase-2 activation mediates the proangiogenic effect of nitric oxide in colorectal cancer. Clin Cancer Res 10: 2694–2704
Earl TM, Nicoud IB, Pierce JM, Wright JP, Majoras NE, Rubin JE, Pierre KP, Cianchi F, Cortesini C, Fantappiè O, Messerini L, Sardi I, Lasagna N, Perna F, Fabbroni V, Di Felice A, Perigli G, Mazzanti R, Masini E (2004) Cyclooxygenase-2 expression drives TLR4 signaling in murine colonic tumorigenesis. Cancer Res 64: 783–801
Fukata M, Abreu MT (2008) Role of Toll-like receptors in gastrointestinal malignancies. Oncogene 27: 234–243
Furrie E, Macfarlane S, Thomson G, Macfarlane GT (2005) Toll-like receptor system in cancer: a doubled-edged sword? Br J Cancer 92: 1240–1247
Jemal A, Siegel R, Ward E, Hao Y, Xu J, Thun MJ (2009) Cancer statistics. CA Cancer J Clin 59: 43–65
Killeen SD, Wang JH, Andrews EJ, Redmond HP (2008) Preclinical exploitation of the Toll-like receptor system in cancer: a doubled-edged sword? Br J Cancer 99: 247–252
Killeen SD, Wang JH, Andrews EJ, Redmond HP (2009) Bacterial endotoxin enhances colorectal cancer cell adhesion and invasion through Toll-4 and NF-κB-dependent activation of the urokinase plasminogen activator system. Br J Cancer 100: 1589–1601
Kim S, Takahashi H, Lin WW, Descargues P, Grivennikov S, Kim Y, Luo J, Karin M (2009) Carcinoma-produced factors activate myeloid cells through TLR2 to stimulate metastasis. Nature 457: 102–106
Kunzel SD, Lee C, Bills BP, Habermann GB, Zhang Q, Liu Y, Wong LY, Klumpp DJ, Thumbikat P (2008) The Toll-like receptor pathway: a novel mechanism of infection-induced carcinogenesis of prostate epithelial cells. Prostate 68: 223–229
Lee SJ, Lim KT (2007) UDN glycoprotein regulates activities of manganese-superoxide dismutase, activator protein-1, and nuclear factor-κB stimulated by reactive oxygen radicals in lipopolysaccharide-stimulated HCT-116 cells. Cancer Lett 254: 274–287
Merrell B, Ilvesamo J, Lehtonen N, Sorsa T, Gehrts B, Rosenthal E, Chen D, Shackley B, Harris KW, Selander KS (2006) Toll-like receptor 9 agonists promote cellular invasion by increasing matrix metalloprotease activity. Mol Cancer Res 4: 437–447
Molteni M, Marabell D, Orlandi C, Rossetti C (2006) Melanoma cell lines are responsive in vitro to lipopolysaccharide and express TLR-4. Cancer Lett 235: 75–83
Naugler WE, Sakurai T, Kim S, Maeda S, Kim K, Elsharkawy AM, Karin M (2007) Gender disparity in liver cancer due to sex differences in MyD88-dependent IL-6 production. Science 317: 121–124
Ogino S, Kikner GJ, Nosho K, Irahara N, Kure S, Shima K, Hazra A, Chan AT, Dehari R, Giovannucci EL, Fuchs CS (2008) Cyclooxygenase-2 expression is an independent predictor of poor prognosis in colon cancer. Clin Cancer Res 14: 8221–8228
Rahman MM, Qian ZR, Wang EL, Sultana R, Kudo E, Nakasono M, Hayashi T, Kakiuchi S, Sano T (2009) Frequent overexpression of HMGA1 and 2 in gastrointestinal cancers and its relationship to c-Kit activation. Cancer 115: 501–510
Rakoff-Nahoum S, Medzhitov R (2007) Regulation of spontaneous tumor immunity through the adaptor protein MyD88. Science 317: 124–127
Rakoff-Nahoum S, Medzhitov R (2009) Toll-like receptors and cancer. Nat Rev Cancer 9: 57–63
Scartozzi M, Bearzi I, Pierantoni C, Mandolesi A, Loupakis F, Zaniboni A, Catalano V, Quadri A, Zorzi F, Berardi R, Biscotti T, Labianca R, Falcone A, Cascini S (2007) Nuclear factor-κB tumor expression promotes survival and invasiveness in refractory metastatic colorectal cancer treated with cetuximab-trastuzumab. J Clin Oncol 25: 3930–3935
Schwartz AL, Malgor R, Dickerson E, Weeraratna AT, Slominski A, Wortsman J, Harri N, Kohn AD, Moon RT, Schwartz FL, Goetz DJ, Kohn LD, McCall KD (2009) Phenylmethimazol decreases Toll-like receptor 3 and noncanonical Wnt5a expression in pancreatic cancer and melanoma together with tumor cell growth and migration. Clin Cancer Res 15: 4114–4122
Shishodia S, Aggarwal BB (2004) Nuclear factor-κB: a friend or a foe in cancer? Biochem Pharmacol 68: 1071–1080
Sun Q, Liu Q, Zheng Y, Cao X (2008) Rapamycin suppresses TLR4-activated IL-6 and PGE2 production of colon cancer cells by inhibiting c-Kit activation. J Biol Chem 283: 25113–25121
Sun Q, Liu Q, Zheng Y, Cao X (2008) Rapamycin suppresses TLR4-activated IL-6 and PGE2 production of colon cancer cells by inhibiting c-Kit activation. J Biol Chem 283: 25113–25121
Swann JB, Vesely MD, Silva A, Sharkey J, Akira S, Schreiber RD, Smyth MJ (2007) Gender disparity in liver cancer due to sex differences in MyD88-dependent IL-6 production. Science 317: 121–124
Takayama K, Tanaka K, Kakiuchi S, Sakurai T, Kim S, Ito M, Nguyen T, Kakiuchi S, Sano T (2007) Frequent overexpression of HMGA1 and 2 in gastrointestinal cancers and its relationship to c-Kit activation. Cancer 115: 501–510
Tsukuma H, Ajiki W, Oshima A (2004) Cancer incidence in Japan. Gan To Kagaku Ryoho 31: 840–846 (in Japanese, abstract in English)
Wang JH, Manning BJ, Wu QD, Blankson S, Bouchier-Hayes D, Redmond HP (2003) Endotoxin/lipopolysaccharide activates NF-κB and enhances tumor cell adhesion and invasion through a β1-integrin-dependent mechanism. J Immunol 170: 795–804
Wang X, Huycke MM (2007) Extracellular superoxide production by Enterococcus faecalis promotes chromosomal instability in mammalian cells. Gastroenterology 132: 551–561
Wolpin BM, Meyerhardt JA, Mamom HJ, Mayer RJ (2007) Adjuvant treatment of colorectal cancer. CA Cancer J Clin 57: 168–185
Wolpin BM, Mayer RJ (2008) Systemic treatment of colorectal cancer. Gastroenterology 134: 1296–1310