Case report

Cutaneous metastases from cholangiocarcinoma following percutaneous transhepatic biliary drainage: Case report and literature review

A. Rosich-Medina *, S.S. Liau, A. Jah, E. Huguet, T.C. See, N. Jamieson, R. Praseedom

Department of General Surgery, Addenbrooke’s Hospital, Hills Road, Cambridge CB2 0QQ, United Kingdom

1. Introduction

Cholangiocarcinomas are rare and account for 3% of all gastrointestinal tumours.¹ They are malignant neoplasms which arise from the biliary ductular epithelium. Cholangiocarcinomas typically present late, with signs of obstructive jaundice. In such setting, liver failure and recurrent sepsis from cholangitis partly account for the high morbidity and mortality rate associated with this malignancy. Complete surgical resection offers the only chance for cure. However, due to the late presentation of the disease, the majority of patients have unresectable disease at the time of presentation.¹ Thus, palliative care is the mainstay of treatment for many patients.

Percutaneous transhepatic biliary drainage (PTBD) has become established practice in the management of cholangiocarcinomas. Major complications of percutaneous transhepatic cholangiography (PTC) and PTBD have been reported to occur in fewer than 4%² and 7–10%³ of patients respectively. Major complications include cholangitis, haemorrhage, bile leakage and peritonitis.³⁻⁵ Minor complications, such as catheter dislocation and blockage, local infections and granulomas at the catheter entry site have been reported to occur in 20% of cases.⁵

Cutaneous metastases from seeding along the catheter tract following PTBD for cholangiocarcinoma have been reported sporadically in the literature⁴,⁶⁻¹² and the incidence has been reported to range between 0.6% and 6%.¹⁰ This case report describes a rare case of cutaneous metastasis at the PTBD site in a patient with cholangiocarcinoma. In addition, we conducted a literature review of all documented cases of cutaneous metastases secondary to cholangiocarcinoma following PTBD.

2. Case report

A 79 year old man presented to his General Practitioner (GP) with a 2 week history of intermittent right upper quadrant pain, jaundice, pruritus and weight loss. He was found to have deranged liver function tests with a bilirubin of 184 µmol/L, alkaline phosphatase of 646 U/L, alanine transferase of 223 U/L and a CA 19.9 of 83 U/ml. The patient was referred to the fast track jaundice service and underwent a liver ultrasound scan which showed dilated intra-hepatic bile ducts.

A triple phase abdominal computer tomography (CT) scan demonstrated moderate to severe intrahepatic duct dilatation and
an area of abnormal soft tissue (Fig. 1). The appearances were suggestive of a hilar cholangiocarcinoma, with no evidence of metastatic disease.

Two days later, the patient was admitted with worsening symptoms and an endoscopic retrograde cholangiopancreatography (ERCP) was performed. Appearances were suggestive of Bismuth IV hilar cholangiocarcinoma. The left intra-hepatic ducts were grossly dilated and an 11 cm plastic stent was placed with good effect. The right system was completely occluded and it was not possible to stent it. Cytology brushings taken at ERCP demonstrated epithelial groups with nuclear enlargement, flat nuclei, loss of polarity and hyperchromatism. The features were highly suspicious of adenocarcinoma of biliary epithelium.

The patient was discussed at the regional specialist hepatopancreaticobiliary multidisciplinary meeting. As standard, the surgical management option would have entailed a right portal vein embolisation to allow compensatory hypertrophy of the relatively small left lobe followed by an extended right hepatectomy. In view of the patients’ numerous and very significant co-morbidities, including previous cerebrovascular event, ischaemic heart disease, hypertension, hypercholesterolaemia and aortic sclerosis palliative management was recommended.

The patient underwent a further ERCP to remove the left sided plastic stent. A PTBD was subsequently performed (Fig. 2) and bilateral parallel metal biliary stents were placed successfully as
Patients with cholangiocarcinoma who developed cutaneous metastases following percutaneous transhepatic biliary drainage.

Author	Sex	Age	Histology of primary	Histology of metastases	Detection of metastases after PTBD	Time catheter was in place	Management of metastases	Outcome after detection of metastases
Oleaga	M	60	No biopsy	Adeno	16 m	3 m	RTx & ICNB	ND
Shorvon	M	73	Adeno	Adeno	3 m	7 d	ND	DOD: (5 m)
Demas	ND	ND	Adeno	ND	ND	ND	ND	ND
Tersigni M	66	G1 adeno	ND	13 m	16 d	4 d	ND	ND
Tersigni F	79	ND	Adeno	ND	4 m	4 d	ND	ND
Loew	M	67	G2 adeno	Adeno	7 m	2 m	ND	DOD: (2.5 m)
Sakata F	63	G1 adeno	ND	14 m	ND	ND	RTx	DOD: (20 m)
Sakata M	78	G2 adeno	ND	20 m	ND	ND	ECT	DOD: (9 m)
Sakata M	76	G3 adeno	ND	7 m	ND	ND	BSM	DOD: (3 m)
Balzani F	59	Cholangio	Adeno	3 m	ND	ND	ECT	NED: (12 m)
Mizon ND	ND	ND	Cholangio	Adeno	‘several m’	ND	AWR	NED: (18 m)
Mizon ND	ND	ND	Cholangio	Adeno	‘several m’	ND	AWR	AWR (8 m)

Adeno = adenocarcinoma, m = months, RTx = radiotherapy, ICNB = intercostal nerve block, ND = not documented, d = days, DOD = died of disease, G1 = well differentiated, CTx = chemotherapy, G2 = moderately differentiated, ECT = excision of catheter tract, G3 = poorly differentiated, BSM = best supportive management, cholangio = cholangiocarcinoma, NED = no evidence of disease, AWR = abdominal wall resection & reconstruction.

3. Discussion

During a five year period in our institution, fifty-nine patients were diagnosed with cholangiocarcinoma. Twenty-nine (49%) of these patients underwent PTC or PTBD and one (3.4%) of twenty-nine patients developed cutaneous metastases following the procedure.

Twelve cases of cutaneous metastases from cholangiocarcinoma, following PTBD, were identified in the literature (Table 1). The average age of the patients was 68.1 (range 59–79). Six of these patients were male (50%), three patients were female (25%) and three were not specified (25%).

The mean time elapsed from PTBD and detection of cutaneous metastasis was 9 months (range = 3–20 months). The mean length of survival after the detection of cutaneous metastases was 9 months (range = 10 weeks to 20 months). Six patients died as a consequence of their cholangiocarcinoma (one of these six patients had surgical excision of their cutaneous metastases). The outcome after the detection of metastases was not documented in three cases. Three patients were well on follow-up at 8, 12 and 18 months and they had all undergone surgical resection of the cutaneous metastasis.

The incidence of cholangiocarcinoma remains low, as such clinical decisions are often based on retrospective studies. PTC and PTBD has been used in the management of malignant obstructive jaundice for precise delineation of intrahepatic ductal anatomy, as palliative treatment in unresectable patients and as a way in which to reduce serum bilirubin preoperatively in resectable patients. However, there has been much debate about the benefits of preoperative PTBD. A number of studies have evaluated the morbidity and mortality associated with pre-operative PTBD. Several nonrandomized studies favoured the use of pre-operative PTBD for patients with pre-operative hyperbilirubinemia. However, three prospective, randomized studies analysing pre-operative PTBD demonstrated no advantage for preoperative drainage. In fact, McPherson et al. suggested higher mortality in the PTBD group than the non-PTBD group. Currently, PTC and PTBD are commonly used as palliative treatment in unresectable patients.

PTBD is associated with both major and minor complications. A lesser documented complication is metastatic tumour seeding along the catheter tract following PTBD, which has been reported sporadically in the literature. In 1980, Oleaga reported the first case of extension of a cholangiocarcinoma into the drainage catheter site following PTBD. A retrospective analysis of 67 patients who underwent PTBD for extrahepatic cholangiocarcinoma found three
patients with catheter tract implantation metastases (Table 1),
which presented as subcutaneous nodules.10

In addition, there have been reports of metastatic seeding at the abdominal wall and peritoneum, chest wall and pleural space and liver parenchyma following PTBD.5,18,19 Sakamoto conducted a prospective study over a 22 year period, in which 7 of 206 (3.4%) patients who underwent PTBD developed tumour seeding in the PTBD sinus tract as a late complication. These findings would suggest that the incidence of metastatic tumour seeding along the biliary catheter tract is not as low as initially suspected. However, the development of cutaneous metastases following PTBD appears to be rarer.

The precise mechanism in which these implantation metastases occur remains uncertain. It has been suggested that catheters which are left in situ longer and catheters which are manipulated and exchanged more frequently increase the risk of metastatic seeding.20 Tanaka reported that patients who had bile positive and exchanged more frequently increase the risk of metastatic which are left in situ longer and catheters which are manipulated to be rarer.

The development of cutaneous metastases following PTBD appears to be rarer.

The optimum management for cutaneous metastases from cholangiocarcinoma, following PTBD, remains uncertain. Several authors have suggested aggressive surgical resection of the metastatic deposits to improve morbidity and mortality10,18 particularly in patients with ‘curative disease’. As implantation metastases are a form of local recurrence rather than systematic dissemination12 achieving negative margins could potentially lead to long-term survival. Mizuno reported two cases in which survival at 8 and 18 months was achieved following surgical resection of the metastatic tumour.

In conclusion, health care professionals should be aware of this form of complication in order to offer appropriate support and management options.

Conflicts of interest statement
None.

Funding
None.

Ethical approval
Written informed consent was obtained from the patient for publication of this case report and accompanying images. A copy of the written consent is available for review by the Editor-in-Chief of this journal on request.

Acknowledgment
The authors would like to thank Andrew Barnes for assistance with data collection.

References
1. Khan SA, Thomas HC, Davidson BR, Taylor-Robinson SD. Cholangiocarcinoma. Lancet 2005;366:1303–14.
2. Harbin WP, Mueller PR, Ferrucci JT. Transhepatic cholangiography: complications and use patterns of the fine-needle technique: a multi-institutional survey. Radiology 1980;135:15–22.
3. Mueller PR, vanSonnenberg E, Ferrucci JT. Percutaneous biliary drainage: technical and catheter related problems in 200 procedures. AJR 1982;138:17–23.
4. Demas BE, Moss AA, Goldberg HI. Computed tomographic diagnosis of complications of transhepatic cholangiography and percutaneous biliary drainage. Gastrointest Radiol 1984;9:219–22.
5. Miller GA, Heaston DK, Moore AV, Mills SR. Dunnick. Peritoneal seeding of cholangiocarcinoma in patients with percutaneous biliary drainage. AJR 1983;141:581–2.
6. Oloaga JA, Ring EJ, Freeman DB, McLean GK, Rosen RJ. Extension of neoplasm along the tract of a transhepatic tube. AJR 1980;135:841–4.
7. Shorvon PJ, Leung JWC, Corcoran M, Mason RR, Cotton PB. Cutaneous seeding of malignant tumours after insertion of percutaneous prosthesis for obstructive jaundice. Br J Surg 1984;71:694–5.
8. Tersigni R, Rossi P, Bochicchio O, et al. Tumour extension along percutaneous transhepatic biliary drainage tracts. Eur J Radiol 1986;6:280–2.
9. Loew R, Dueber C, Schwarting A, Thelen M. Subcutaneous implantation metastasis of a cholangiocarcinoma of the bile duct after percutaneous transhepatic biliary drainage (PTCD). Eur J Radiol 1997;7:259–61.
10. Sakata J, Shirai Y, Wakai T, Nomura T, Sakata E, Hatakeyama K. Catheter tract implantation metastases associated with percutaneous biliary drainage for extrahepatic cholangiocarcinoma. World J Gastroenterol 2005;11:7024–7.
11. Balzani A, Clerico R, Schwartz RA, et al. Cutaneous implantation metastasis of cholangiocarcinoma after percutaneous transhepatic biliary drainage. Acta Dermatovenerol Croat 2005;13:118–21.
12. Mizuno T, Iizikazi Y, Komuro Y, et al. Surgical treatment of abdominal wall tumor seeding after percutaneous transhepatic biliary drainage. Am J Surg 2007;193:511–3.
13. Gobien RP, Stanley JH, Sousek CD, Anderson MC, Vuic I, Gobien BS. Routine preoperative biliary drainage: effect on management of obstructive jaundice. Radiology 1984;152:353–6.
14. Norlander A, Kalin B, Sundblad R. Effect of percutaneous transhepatic drainage upon liver function and postoperative mortality. Surg Gynecol Obstet 1982;155:161–6.
15. Hatfield AR, Tobias R, Terblanche J, et al. Preoperative external biliary drainage in obstructive jaundice: a prospective controlled clinical trial. Lancet 1982;2:896–9.
16. Pitt HA, Gomes AS, Lois JF, Mann LL, Deutsch LS, Longmire WP. Does preoperative percutaneous biliary drainage reduce operative risk or increase hospital cost? Ann Surg 1985;201:545–52.
17. McPherson GAD, Benjamin IS, Hodgson HFJ, Bowley NB, Allison DJ, Blumgart LH. Preoperative percutaneous transhepatic biliary drainage: the results of a controlled trial. Br J Surg 1984;71:371–5.
18. Uemishi T, Hirohastu K, Inoue K, et al. Pleural dissemination as a complication of preoperative percutaneous transhepatic biliary drainage for hilar cholangiocarcinoma: report of a case. Surg Today 2001;31:174–6.
19. Shimizu Y, Yasui K, Kato T, et al. Implantation metastasis along the percutaneous transhepatic biliary drainage sinus tract. Hepatogastroenterology 2004;51:365–7.
20. Tanaka N, Nobori M, Suzuki Y. Does bile spillage during an operation present a risk for peritoneal metastasis in bile duct carcinoma? Surg Today 1997;27:1010–4.