\textbf{Abstract}

From a planar algebra, we give a functorial construction to produce numerous associated C^*-algebras. Our main construction is a Hilbert C^*-bimodule with a canonical real subspace which produces Pimsner-Toeplitz, Cuntz-Pimsner, and generalized free semicircular C^*-algebras. By compressing this system, we obtain various canonical C^*-algebras, including Doplicher-Roberts algebras, Guionnet-Jones-Shlyakhtenko algebras, universal (Toeplitz-)Cuntz-Krieger algebras, and the newly introduced free graph algebras. This is the first article in a series studying canonical C^*-algebras associated to a planar algebra.

\section{Introduction}

Since Jones’ landmark article \cite{Jon83}, the modern theory of subfactors has developed deep connections to numerous branches of mathematics, including, but not limited to, representation theory, category theory, knot theory, topological quantum field theory, statistical mechanics, conformal field theory, and free probability. The purpose of this series of articles is to develop connections to C^*-algebras with a view toward connections to non-commutative geometry.

A II$_1$-subfactor $N \subset M$ has finite index if NM is a finitely generated projective N-module. In this case, the index $[M : N]$ is the trace of the corresponding idempotent in $K_0(N)^+$. Jones remarkably proved that the index has discrete and continuous ranges

$$[M : N] \in \left\{ 4 \cos^2(\pi/n) | n = 3, 4, 5, \ldots \right\} \cup \{4, \infty\},$$

and he constructed an example with each admissible index \cite{Jon83}.

Decomposing the alternating tensor powers of $N L^2(M)_M$ and $M L^2(M)_N$ into irreducible bimodules yields a unitary 2-category called the \textit{standard invariant}, generalizing the representation categories of quantum groups. The objects are N and M, the 1-morphisms are bimodules generated by $N L^2(M)_M$ and its dual $M L^2(M)_N$, and the 2-morphisms are bimodule maps. The principal graphs are the induction/restriction multi-graphs corresponding to tensoring with $N L^2(M)_M$ and $M L^2(M)_N$.

The standard invariant has been axiomatized in three similar ways, each emphasizing slightly different structure: Ocneanu’s paragroups \cite{Ocn88, EK98}, Popa’s λ-lattices \cite{Pop95},
and Jones’ planar algebras [Jon99]. In [Pop93, Pop95, Pop02], Popa starts with a λ-lattice $A_{\bullet \bullet} = (A_{i,j})$ and constructs a Π_1-subfactor whose standard invariant is $A_{\bullet \bullet}$. If the standard invariant has finite depth, or more generally, is strongly amenable, the resulting subfactor is hyperfinite. Hence we have a Tannaka-Krein like duality between hyperfinite (strongly) amenable subfactors and (strongly) amenable standard invariants. For finite depth subfactors, Popa’s canonical commuting squares [Pop90] are roughly equivalent to Ocneanu’s flat connections and string algebras [Ocn88].

The techniques used for the above duality, particularly Ocneanu’s string algebras in finite depth, are highly similar to those used by Doplicher-Roberts [DR89] in their duality for subgroups of compact groups independent of the classical Tannaka-Krein theory [JS91]. Given a closed subgroup $G \subset SU(n)$, the representation category $\text{Rep}(G)$ forms a symmetric rigid C^*-tensor category. Conversely, given a suitably nice object ρ in a symmetric rigid C^*-tensor category C, they construct a C^*-algebra O_ρ together with a canonical endomorphism $\tilde{\rho}$ which produces a closed subgroup $G \subset SU(n)$ that encodes the category C.

The algebra O_ρ is a compression of the Cuntz-Krieger graph algebra O_{Γ_ρ} of (a directed version of) the fusion graph Γ_ρ with respect to ρ [MRS92] (see Remark 2.22). In fact, Izumi used a slight variation of the Doplicher-Roberts algebras to find a link with subfactor theory in [Izu98], where he obtained inclusions of (compressions of) Cuntz-Krieger algebras with finite Watatani indices (see Remark 2.23).

In [GJS10, GJS11], starting with a subfactor planar algebra \mathcal{P}_\bullet, Guionnet, Jones, and Shlyakhtenko (GJS) gave a diagrammatic proof of Popa’s celebrated reconstruction theorem, developing connections to free probability and random matrices. They showed that the resulting factors are interpolated free group factors when \mathcal{P}_\bullet is finite depth. When \mathcal{P}_\bullet is infinite depth, Hartglass showed the factors are $L(F_\infty)$ [Har13].

In this article, we provide a framework to fit the above constructions together. Our construction is motivated by the work of Voiculescu and Pimsner and ideas of Jones [Jon].

First, in [Voi85], Voiculescu produced his free Gaussian functor. Starting with an n-dimensional real Hilbert space $H_\mathbb{R}$, and real vectors $\xi \in H_\mathbb{R}$, Voiculescu forms creation and annihilation operators $L(\xi), L(\xi)^*$ acting on the full Fock space $\mathcal{F}(H_\mathbb{C})$ of the complexified Hilbert space. The $L(\xi), L(\xi)^*$ generate the Toeplitz algebra T_n which contains the compacts \mathcal{K}, and T_n/\mathcal{K} is isomorphic to the Cuntz algebra O_n [Cun77]. The sums $L(\xi) + L(\xi)^*$ generate Voiculescu’s free semicircular algebra S_n.

Starting with a C^*-algebra A and a Hilbert $A-A$ bimodule \mathcal{Y}, one can mimic the same construction, as in work of Pimsner [Pim97]. We get the Pimsner-Toeplitz algebra $\mathcal{T}(\mathcal{Y})$ of creation and annihilation operators on the Pimsner-Fock space $\mathcal{F}(\mathcal{Y})$, which contains the compacts $\mathcal{K}(\mathcal{F}(\mathcal{Y}))$. If A acts on \mathcal{Y} by compact operators, the Cuntz-Pimsner algebra is the quotient C^*-algebra $O(\mathcal{Y}) = \mathcal{T}(\mathcal{Y})/K(\mathcal{F}(\mathcal{Y}))$. If we have a distinguished real subspace $\mathcal{Y}_\mathbb{R} \subset \mathcal{Y}$ such that $\mathcal{Y}_\mathbb{R} \cdot A = \mathcal{Y}$, we also get a free semicircular algebra $S(\mathcal{Y}_\mathbb{R})$ and KK-equivalences $A \hookrightarrow S(\mathcal{Y}_\mathbb{R}) \hookrightarrow \mathcal{T}(\mathcal{Y})$ [Ger].

Starting with a (sub)factor planar algebra \mathcal{P}_\bullet (see Subsection 2.4), we define a ground C^*-algebra $\mathcal{B} = \mathcal{B}(\mathcal{P}_\bullet)$ and a $\mathcal{B} - \mathcal{B}$ Hilbert bimodule $\mathcal{X} = \mathcal{X}(\mathcal{P}_\bullet)$ with a distinguished real subspace $\mathcal{X}_\mathbb{R} \subset \mathcal{X}$ satisfying $\mathcal{X}_\mathbb{R} \cdot \mathcal{B} = \mathcal{X}$. From our bimodule, we obtain the Pimsner-Fock space $\mathcal{F}(\mathcal{P}_\bullet)$, a Pimsner-Toeplitz algebra $\mathcal{T}(\mathcal{P}_\bullet)$ of creation and annihilation operators, a Cuntz-Pimsner quotient $O(\mathcal{P}_\bullet)$, and a free semicircular algebra $S(\mathcal{P}_\bullet)$, which is isomorphic
to the C^*-analog of the semifinite GJS von Neumann algebra [GJS11]. Moreover, we have the following.

Theorem A. The assignment \mathcal{P}_* to $\mathcal{X}(\mathcal{P}_*)$, $\mathcal{F}(\mathcal{P}_*)$, $\mathcal{T}(\mathcal{P}_*)$, $\mathcal{O}(\mathcal{P}_*)$, and $\mathcal{S}(\mathcal{P}_*)$ is functorial.

Compressions of $\mathcal{X}(\mathcal{P}_*)$ yield other canonical Hilbert bimodules associated to \mathcal{P}_* and its principal graph Γ. First, we recover the Cuntz-Krieger bimodule of [Pim97, FR99]. The corresponding compressions of the Cuntz-Pimsner and Pimsner-Toeplitz algebras are exactly the Cuntz-Krieger algebra [CK80] of $\overrightarrow{\Gamma}$, a certain directed graph associated to Γ, and its universal Toeplitz extension [FR99].

We define a new canonical C^*-algebra associated to a undirected graph, which is the C^*-analog of the free graph von Neumann algebras appearing in [GJS11, BKS12, Har13].

Theorem B. Given an arbitrary undirected graph Λ and a (non-degenerate) weighting μ on its vertices, we define the free graph algebra $\mathcal{S}(\Lambda, \mu)$ as a canonical subalgebra of the Toeplitz-Cuntz-Krieger algebra $\mathcal{T}_{\overrightarrow{\Lambda}}$, provided we remember the edge generators S_{ϵ} of $\mathcal{T}_{\overrightarrow{\Lambda}}$. The inclusion $\mathcal{C}_0(V(\Gamma)) \hookrightarrow \mathcal{S}(\Lambda, \mu)$ is a K-equivalence. In certain situations, $\mathcal{S}(\Lambda, \mu)$ passes injectively to the quotient Cuntz-Krieger algebra $\mathcal{O}_{\overrightarrow{\Lambda}}$. (See Subsection 5.3 for more details.)

When $\Lambda = \Gamma$, we let μ be the quantum dimension weighting induced from the trace on \mathcal{P}_*, which satisfies the Frobenius-Perron condition for the modulus δ. In this case, $\mathcal{S}(\Gamma) = \mathcal{S}(\Gamma, \mu)$ arises as the compression of the semifinite GJS C^*-algebra corresponding to the compression of $\mathcal{X}(\mathcal{P}_*)$ realizing the Cuntz-Krieger bimodule. Moreover, $\mathcal{S}(\Gamma)$ always passes injectively to the quotient Cuntz-Krieger algebra $\mathcal{O}_{\overrightarrow{\Gamma}}$.

A further compression yields an honest Hilbert space $\mathcal{F}_0(\mathcal{P}_*)$ associated to a planar algebra originally due to Jones-Shlyakhtenko-Walker [JSW10]. The corresponding compression of $\mathcal{O}(\mathcal{P}_*)$ is the Doplicher-Roberts algebra \mathcal{O}_ρ, where ρ corresponds the strand in $\text{Pro}(\mathcal{P}_*)$, the rigid C^*-tensor category of projections of \mathcal{P}_* [MPS10, Yam12, BHP12]. Hence we recover the main result of [MRS92] on compressing $\mathcal{O}_{\overrightarrow{\Gamma}}$ to obtain \mathcal{O}_ρ. The compression of $\mathcal{T}(\mathcal{P}_*)$ is a Toeplitz extension of \mathcal{O}_ρ by the compacts \mathcal{K} on $\mathcal{F}_0(\mathcal{P}_*)$.

In this case, the compression of the semifinite GJS C^*-algebra (and also the free graph algebra $\mathcal{S}(\Gamma)$) is the zeroth GJS C^*-algebra [GJS10, JSW10, HP14]. When $\mathcal{P}_* = \mathcal{NC}_*$, the planar algebra of non-commuting polynomials in n self-adjoint variables (see Definition 3.17), this second compression exactly recovers Voiculescu’s free Gaussian functor.

\mathcal{A}	\mathcal{O}	\mathcal{T}	\mathcal{S}
$\mathcal{A}(\mathcal{P}_*)$	Cuntz-Pimsner	Pimsner-Toeplitz	semifinite GJS algebra
$\mathcal{A}(\Gamma)$	Cuntz-Krieger $\mathcal{O}_{\overrightarrow{\Gamma}}$	Toeplitz-Cuntz-Krieger $\mathcal{T}_{\overrightarrow{\Gamma}}$	free graph algebra $\mathcal{S}(\Gamma)$
$\mathcal{A}_0(\mathcal{P}_*)$	Doplicher-Roberts \mathcal{O}_ρ	Toeplitz extension by \mathcal{K}	GJS algebra
$\mathcal{A}_0(\mathcal{NC}_*)$	Cuntz \mathcal{C}_n	Toeplitz \mathcal{T}_n	Free semicircular system

Figure 1: C^*-algebras arising from our C^*-Hilbert bimodule $\mathcal{X}(\mathcal{P}_*)$.

We immediately see some basic properties of the above algebras. First, for $\mathcal{A} \in \{\mathcal{O}, \mathcal{T}, \mathcal{S}\}$, we have $\mathcal{A}(\mathcal{P}_*) \cong \mathcal{A}(\Gamma) \otimes \mathcal{K}$, where \mathcal{K} is the compact operators on a separable, infinite dimensional Hilbert space. This fact, together with Theorem B above, yields the following corollary.
Corollary. The semifinite GJS algebra $S(P_\bullet)$ and the free graph algebra $S(\Gamma)$ are subnuclear, and thus exact.

In Part II of this series [HP14], we use our functorial construction to analyze the structure of the GJS C^*-algebra $S_0(P_\bullet)$. In particular, we show it is simple, has unique tracial state, has stable rank 1, and has weakly unperforated K_0-group. We will also show that $S_0(P_\bullet)$ is strongly Morita equivalent to $S(\Gamma)$ and to $S(P_\bullet)$, and thus we determine its K-theory from Theorem B.

1.1 Outline

In Section 2, we give the background for our construction, including material on C^*-Hilbert bimodules, Cuntz-Krieger graph algebras, Doplicher-Roberts algebras, and planar algebras. In Section 3, we give the first construction: the GJSW-Doplicher-Roberts system based on work of Jones [Jon]. There are slight problems with functoriality of this construction, and it does not allow for the efficient computation of $K_*(S_0(P_\bullet))$.

Our operator-valued system in Section 4 alleviates these concerns, and we compress it in Section 5 to obtain numerous canonical C^*-algebras, including (Toeplitz-)Cuntz-Krieger algebras, as well as the GJSW-Doplicher-Roberts system of Section 3. Of particular importance is Subsection 5.3 where we introduce the free graph algebra $S(\Lambda, \mu)$.

1.2 Acknowledgements

The authors would like to thank Ken Dykema, George Elliott, Vaughan Jones, Dima Shlyakhtenko, and Dan Voiculescu for many helpful conversations. We would like to thank Vaughan Jones again for generously allowing us to develop his ideas from [Jon]. David Penneys was partially supported by the Natural Sciences and Engineering Research Council of Canada. Both authors were supported by DOD-DARPA grant HR0011-12-1-0009.

2 Background

In this section, we begin by studying canonical C^*-algebras associated to a Hilbert bimodule Y. We follow [Pim97], defining the Pimsner-Toeplitz and Cuntz-Pimsner algebras. If we have a real subspace $Y_R \subset Y$, we also get a free semicircular algebra as in [Ger]. This construction allows for the computation of K-theory via [Ger].

We then define the Cuntz-Krieger algebras [CK80] via the Cuntz-Krieger bimodule [FR99]. Next, we look at the Doplicher-Roberts algebras O_ρ associated to an object ρ in a rigid C^*-tensor category C [DR89].

Finally, we discuss planar algebras as the rest of this article will connect the above ideas to shaded and unshaded planar algebras.

2.1 C^*-algebras associated to a Hilbert bimodule

We now recall the construction of the Pimsner-Toeplitz and Cuntz-Pimsner algebras of a Hilbert $A - A$ bimodule Y from [Pim97]. We will assume A acts by compact operators.
to simplify the definitions. First, we recall the notion of an \(A - B \) Hilbert-bimodule for \(C^* \)-algebras \(A \) and \(B \).

Definition 2.1. An \(A - B \) Hilbert bimodule \(\mathcal{Y} \) is a Banach space with an isometric left action of \(A \) and a right action of \(B \), together with a \(B \)-valued sesquilinear form \(\langle \cdot | \cdot \rangle_B \) on \(\mathcal{Y} \) which is conjugate linear in the first variable. It satisfies

1. \(\| \xi \|_\mathcal{Y} = \| \langle \xi | \xi \rangle_B \|_B^{-1/2} \) for all \(\xi \in \mathcal{Y} \). In particular, \(\langle \cdot | \cdot \rangle_B \) is positive definite.
2. \(\langle \xi | \eta \rangle_B = \langle \eta | \xi \rangle_B^* \) for all \(\xi, \eta \in \mathcal{Y} \)
3. \(\langle x \xi | \eta \rangle_B = \langle \xi | x^* \eta \rangle \) for all \(\xi, \eta \in \mathcal{Y} \) and \(x \in A \)
4. \(\langle \xi | \eta \rangle_B \cdot y = \langle \xi | \eta y \rangle_B \) for all \(\xi, \eta \in \mathcal{Y} \) and \(y \in B \)

We denote by \(\mathcal{L}(\mathcal{Y}) \) the operators \(T \) on \(\mathcal{Y} \) which are bounded and adjointable, i.e., there exists \(T^* \) such that \(\langle T \xi | \eta \rangle_B = \langle \xi | T^* \eta \rangle_B \) for all \(\xi, \eta \in \mathcal{Y} \).

For \(\eta, \xi \in \mathcal{Y} \), we define the rank one operator \(|\eta\rangle \langle \xi| \) by \(|\eta\rangle \langle \xi| \xi = \eta \langle \xi | \zeta \rangle_B \). Note that each rank one operator is adjointable, and \(|\eta\rangle \langle \xi|^* = \langle \xi | \eta \rangle \). The \(\mathcal{Y} \)-compact operators, denoted \(\mathcal{K}(\mathcal{Y}) \), is the \(C^* \)-algebra generated by the rank one operators. Note that \(\mathcal{K}(\mathcal{Y}) \) is an ideal of \(\mathcal{L}(\mathcal{Y}) \).

We say \(A \) acts by compact operators on \(\mathcal{Y} \) if the left action of \(A \) on \(\mathcal{Y} \) is by operators in \(\mathcal{K}(\mathcal{Y}) \).

Definition 2.2. Let \(A, B, C \) be \(C^* \)-algebras, with \(\mathcal{Y} \) an \(A - B \) Hilbert bimodule and \(\mathcal{Z} \) a \(B - C \) Hilbert bimodule. Let \(\mathcal{Y} \odot \mathcal{Z} \) be the algebraic tensor product over \(\mathbb{C} \). Define a \(C \)-valued inner product on \(\mathcal{Y} \odot \mathcal{Z} \) by

\[
\langle \eta_1 \odot \eta_2 | \xi_1 \odot \xi_2 \rangle_C = \langle \eta_2 | \langle \eta_1 | \xi_1 \rangle_B \xi_2 \rangle_C,
\]

and define \(\mathcal{N} = \{ \xi \in \mathcal{Y} \odot \mathcal{Z} | \langle \xi | \xi \rangle_C = 0 \} \). Then \(\mathcal{Y} \odot_B \mathcal{Z} \) is defined to be the completion of \((\mathcal{Y} \odot \mathcal{Z})/\mathcal{N} \) with respect to the above \(C \)-valued inner product.

Definition 2.3. Let \(\mathcal{Y} \) be a Hilbert \(A - A \) bimodule, where \(A \) acts by compact operators on \(\mathcal{Y} \). The Pimsner-Fock space of \(\mathcal{Y} \) is given by

\[
\mathcal{F}(\mathcal{Y}) = \bigoplus_{n=0}^{\infty} \bigotimes_A^n \mathcal{Y},
\]

where \(\bigotimes_A^n \mathcal{Y} = A \) and the completion of the direct sum is with respect to the \(A \)-valued inner product which is the \(A \)-linear extension of

\[
\langle \eta_1 \otimes \cdots \otimes \eta_m | \xi_1 \otimes \cdots \otimes \xi_n \rangle_A = \delta_{m,n} \langle \eta_n | \eta_{n-1} \cdots \eta_1 \rangle \cdot \langle \eta_2 | \langle \eta_1 | \xi_1 \rangle_A \xi_2 \rangle_A \cdots \langle \eta_1 | \xi_{n-1} \rangle_A \xi_n \rangle_A.
\]

The Pimsner-Toeplitz algebra \(\mathcal{T}(\mathcal{Y}) \) is the \(C^* \)-subalgebra of \(\mathcal{L}(\mathcal{F}(\mathcal{Y})) \) generated by \(A \) and creation operators \(L_+(x) \) for \(x \in \mathcal{Y} \). The action of the creation operators is given by:

\[
L_+(x)(y_1 \otimes \cdots \otimes y_n) = x \otimes y_1 \otimes \cdots \otimes y_n.
\]
The operators $L_+(x)$ are bounded and adjointable with adjoint
\[
(L_+(x))^*(y_1 \otimes \cdots \otimes y_n) = \langle x|y_1\rangle_A \cdot y_2 \otimes \cdots \otimes y_n.
\]
Notice that $L_+(y^*)L_+(x) = \langle y|x\rangle_A$ so that $\|L_+(x)\|_{\mathcal{L}(\mathcal{F}(\mathcal{Y}))} = \|x\|_A$.

The Cuntz-Pimsner algebra $\mathcal{O}(\mathcal{Y})$ is given by $\mathcal{T}(\mathcal{Y})/\mathcal{K}(\mathcal{F}(\mathcal{Y}))$. (Clearly $\mathcal{K}(\mathcal{F}(\mathcal{Y})) \subset \mathcal{T}(\mathcal{Y})$).

Definition 2.4. The algebra $\mathcal{T}(\mathcal{Y})$ has a canonical C^*-dynamical system. There is a gauge action $\gamma : \mathbb{T} \to \text{Aut}(\mathcal{T}(\mathcal{Y}))$ satisfying $\gamma_z(L_+(\xi)) = zL_+(\xi)$ for all $\xi \in \mathcal{Y}$, and there is a dynamics $\sigma : \mathbb{R} \to \text{Aut}(\mathcal{T}(\mathcal{Y}))$ which is lifted from γ via the map $t \mapsto e^{it}$.

Note that we have the (unbounded) number operator given by $N\xi = n\xi$ for $\xi \in \mathcal{Y}$. Hence the map $\exp(itN)$ given by $\xi \mapsto e^{itN}\xi$ extends uniquely to a unitary on $\mathcal{F}(\mathcal{Y})$. For $x \in \mathcal{T}(\mathcal{Y})$, we have $\sigma_t(x) = \exp(itN)x\exp(-itN)$ for $t \in \mathbb{R}$.

Recall that a state φ is a KMS state on $(\mathcal{T}(\mathcal{Y}), \sigma)$ for $\beta > 0$ if for all $x, y \in \mathcal{T}(\mathcal{Y})$ with y entire we have $\varphi(xay_{t,\beta}(y)) = \varphi(\gamma y) [\text{Ped79, BEK86}].$ The element $y \in \mathcal{T}(\mathcal{Y})$ is entire if $t \mapsto \sigma_t(y)$ extends to an entire function.

Definition 2.5. Define the conditional expectation $E : \mathcal{T}(\mathcal{Y}) \to \mathcal{T}(\mathcal{Y})^\mathbb{T}$ by
\[
E(x) = \int_{\mathbb{T}} \gamma_z(x) \, dz
\]
where we use the normalized Lebesgue measure on \mathbb{T}. The image of E is called the core of $\mathcal{T}(\mathcal{Y})$.

Since every $A - A$ bilinear isomorphism of \mathcal{Y} induces an automorphism of $\mathcal{O}(\mathcal{Y})$, we get a gauge action on $\mathcal{O}(\mathcal{Y})$ as well. Again, we have a conditional expectation $E : \mathcal{O}(\mathcal{Y}) \to \mathcal{O}(\mathcal{Y})^\mathbb{T}$, and the image is called the core of $\mathcal{O}(\mathcal{Y})$.

Remark 2.6. It is of great interest to study KMS states on the Pimsner-Toeplitz and Cuntz-Pimsner algebras (e.g., see [LN04]). Recall that if φ is a KMS state on A, then $\mathfrak{N}_\varphi = \{x \in A | \varphi(x^*x) = 0\}$ is a closed 2-sided ideal in A. Since φ is a state, \mathfrak{N}_φ is a closed left ideal, as $\varphi(x^*x) = 0$ implies $\varphi(xy^*yx) \leq \|y^*y\|\varphi(x^*x) = 0$. Using the KMS-condition and the Cauchy-Schwarz inequality, for y^* entire in $\mathcal{T}(\mathcal{Y})$,
\[
\varphi(y^*x^*xy) = \varphi(x^*xy\sigma_{t,\beta}(y^*)) \leq \|x^*x\|_2\|y\sigma_{t,\beta}(y^*)\|_2 \leq \|x\|_{\infty}\varphi(x^*x)^{1/2}\|y\sigma_{t,\beta}(y^*)\|_2 = 0.
\]
Hence by continuity, we see that \mathfrak{N}_φ is a right ideal. In many cases, $\mathfrak{N}_\varphi = \mathcal{K}(\mathcal{Y})$, and we will see such examples in Subsections 3.3 and 4.3 (see also Subsection 3.2).

Definition 2.7. Let $\mathcal{Y}_\mathbb{R}$ be a closed real subspace of \mathcal{Y} such that $\mathcal{Y}_\mathbb{R} \cdot A = \mathcal{Y}$. The semicircular algebra $\mathcal{S}(\mathcal{Y}_\mathbb{R})$ of $\mathcal{Y}_\mathbb{R}$ is the C^*-subalgebra of $\mathcal{L}(\mathcal{F}(\mathcal{Y}))$ generated by A together with the operators $\{L_+(\eta) + L_+(\eta)^* | \eta \in \mathcal{Y}_\mathbb{R}\}$.

We have the following theorem from [Ger].

Theorem 2.8. Suppose A is a unital C^* algebra, and \mathcal{Y} is an $A - A$ Hilbert bimodule, with inner product $\langle \cdot | \cdot \rangle_A$. Let $\mathcal{Y}_\mathbb{R}$ be a closed real subspace of \mathcal{Y} such that $\mathcal{Y}_\mathbb{R} \cdot A = \mathcal{Y}$. The canonical inclusions $i : A \to \mathcal{S}(\mathcal{Y}_\mathbb{R})$ and $j : \mathcal{S}(\mathcal{Y}_\mathbb{R}) \to \mathcal{T}(\mathcal{Y})$ are KK-equivalences.
Remark 2.9. The proof that \(j \circ i : A \to \mathcal{T}(\mathcal{Y}) \) is a KK-equivalence is originally in [Pim97].

Example 2.10 (Voiculescu’s free Gaussian functor [Voi85]). Let \(H \mathbb{R} \) be a real Hilbert space, and let \(H \) be its complexification. Consider \(H \) as a \(\mathbb{C} - \mathbb{C} \) Hilbert bimodule in the obvious way. In this case, we get Voiculescu’s free Gaussian functor.

The full Fock space is
\[
\mathcal{F}(H) = \bigoplus_{n \geq 0} H^\otimes n,
\]
where \(H^\otimes 0 \) denotes a one dimensional Hilbert space spanned by the vector \(\Omega \). The left creation and annihilation operators \(L_+(\xi), L_+(\xi)^* \) for \(\xi \in H \) are the usual left creation and annihilation operators on full Fock space.

We may also define right creation and annihilation operators, which commute with the left creation and annihilation operators up to the compacts. For all \(\eta, \xi \in H \), we have the relations \([L_+(\eta), R_+(\xi)] = 0\) and \([R_+(\eta)^*, L_+(\xi)] = \langle \xi, \eta \rangle p_\Omega\) and their adjoints.

When \(\dim(\mathcal{H}) = n < \infty \), the Pimsner-Toeplitz and Cuntz-Pimsner algebras are the Toeplitz algebra \(\mathcal{T}_n \) and the Cuntz algebra \(\mathcal{O}_n \) respectively. On the full Fock space \(\mathcal{F}(H) \),

1. \(L_+(\xi)^* L_+(\xi) = \|\xi\|^2 \) for all \(\xi \in H \mathbb{R} \), and
2. if \(\{\xi_1, \ldots, \xi_n\} \) is an orthonormal basis for \(H \mathbb{R} \), then \(\sum_{i=1}^n L_+(\xi_i)L_+(\xi_i)^* = 1 - p_\Omega \).

The representation of \(\mathcal{T}_n \) on \(\mathcal{F}(H) \) is irreducible, so \(\mathcal{T}_n \) contains the compact operators \(\mathcal{K} \) on \(\mathcal{F}(H) \). Moreover, \(\mathcal{T}_n/\mathcal{K} \cong \mathcal{O}_n \). If we set \(S_i = L_+(\xi_i) \) for \(i = 1, \ldots, n \) for an orthonormal basis \(\{\xi_1, \ldots, \xi_n\} \) of \(H \mathbb{R} \), the \(S_i \)'s satisfying the Cuntz algebra relations

\[
\sum_{i=1}^n S_i S_i^* = 1 = S_j^* S_j \text{ for all } j = 1, \ldots, n.
\]

It is well known that \(\mathcal{O}_n \) is simple and purely infinite, and \(K_0(\mathcal{O}_n) = \mathbb{Z}/(n-1)\mathbb{Z} \) and \(K_1(\mathcal{O}_n) = (0) \) [Cun81b].

The point of starting with a real Hilbert space is that we get Voiculescu’s free semicircular C*-algebra \(\mathcal{S}_n \) as the C*-algebra generated by the elements \(L_+(\xi) + L_+(\xi)^* \) for \(\xi \in H \mathbb{R} \). The von Neumann completion of \(\mathcal{S}_n \) is isomorphic to \(L(\mathbb{F}_n) \).

In this case, the \(\mathbb{R} \)-action satisfies \(\sigma_t(S_j) = e^{it} S_j \) for all \(j = 1, \ldots, n \), and the core of \(\mathcal{O}_n \) is the AF algebra \(\bigotimes_\infty M_n(\mathbb{C}) \), which has a unique tracial state. By [OP78], there is a unique KMS state on \(\mathcal{O}_n \) for \(2 \leq n < \infty \), where the only admissible \(\beta \)-value is \(\ln(n) \). The KMS\(\ln(n) \)-state \(\varphi \) is given by
\[
\varphi(S_{i_k} \cdots S_{i_1}S_{j_1}^* \cdots S_{j_r}^*) = e^{-\ln(n)k} \delta_{k,0} \delta_{i_1,j_1} \cdots \delta_{i_k,j_k}.
\]

As \(\mathfrak{R}_\varphi \) must be an ideal of \(\mathcal{O}_n \), we must have \(\mathfrak{R}_\varphi = (0) \), i.e., \(\varphi \) is faithful.

Moreover, there is a unique KMS\(\ln(n) \)-state on \(\mathcal{T}_n \) which factors through \(\varphi \), so taking the GNS representation of \(\mathcal{T}_n \) implements the canonical surjection \(\mathcal{T}_n \to \mathcal{O}_n \). (However, note that for each \(\beta > \ln(n) \), there is a KMS\(\beta \)-state on \(\mathcal{T}_n \) by [aHLRS13] which does not factor through \(\mathcal{O}_n \).

The \(K \)-theory of \(\mathcal{O}_n \) was computed in [Cun81b], and the \(K \)-theory of \(\mathcal{S}_n \) was computed in [Voi93]. Note that by [Ger], we have KK-equivalences \(i : \mathcal{C} \to \mathcal{S}_n \) and \(j : \mathcal{S}_n \to \mathcal{T}_n \).
2.2 Cuntz-Krieger graph algebras and Toeplitz extensions

We define the Toeplitz-Cuntz-Krieger and Cuntz-Krieger [CK80] algebras associated to a directed graph Λ as the Pimsner-Toeplitz and Cuntz-Pimsner algebras associated to the Cuntz-Krieger bimodule [FR99] respectively. This spatial approach is parallel to Voiculescu’s free Gaussian functor [Voi85] and to our operator valued system in Section 4.

Notation 2.11. A directed graph Λ = (V(Λ), E(Λ), s, t) consists of a countable vertex set V(Λ), a countable edge set E(Λ), and source and target maps s, t : E(Λ) → V(Λ).

We use the characters Λ, Γ for graphs, and we will specify whether they are directed.

Definition 2.12. Given a directed graph Λ = (V(Λ), E(Λ), s, t), let CΛ = C0(V(Λ)). We define the Cuntz-Krieger bimodule Y(Λ) (called X(Λ) in [FR99, Example 1.2], see also [Pim97, p. 193]) as

\[Y(Λ) = \left\{ f : E(Λ) \to \mathbb{C} \mid V(Λ) \ni \alpha \mapsto \sum_{t(ε) = \alpha} |f(ε)|^2 \text{ is in } C_Λ \right\} \]

together with the following CΛ – CΛ Hilbert bimodule structure.

For ε ∈ E(Λ), let χε be the indicator function at ε ∈ E(Λ), i.e., χε(ε′) = δε=ε′. Then Y(Λ) is the completion of the space of finitely supported functions on E(Λ) under the CΛ-valued inner product

\[\langle χ_{ε'} | χ_ε \rangle_{C_Λ} = δ_{ε=ε'} p_{t(ε)} \]

where pα is the indicator function at α ∈ V(Λ). Note Y(Λ) is naturally a CΛ – CΛ Hilbert bimodule under the actions pαχε = δα=s(ε)χε and χεpα = δt(ε)=αχε.

The Toeplitz-Cuntz-Krieger algebra TΛ is the Pimsner-Toeplitz algebra T(Y(Λ)). The Cuntz-Krieger algebra OΛ is the Cuntz-Pimsner algebra O(Y(Λ)).

Remark 2.13. If Λ = (V(Λ), E(Λ), s, t) is a locally finite directed graph with no sinks, then these algebras can also be defined as universal C*-algebras via generators and relations as follows.

(1) The Toeplitz-Cuntz-Krieger algebra TΛ is the universal C*-algebra generated by partial isometries Sε for ε ∈ E(Λ) and projections pα for α ∈ V(Λ) satisfying the relations

\[S_{ε'}^*S_ε = δ_{ε,ε'} p_{t(ε)} \quad \text{and} \quad \sum_{s(ε) = \alpha} S_εS_{ε'}^* \leq p_α. \]

(2) If we replace the ‘≤’ with ‘=’ in the second relation above, then this universal C*-algebra is the Cuntz-Krieger algebra OΛ.

Given a countable directed graph Λ, there are two matrices associated to it.

Definition 2.14. The edge matrix of Λ is the \{0, 1\}-matrix A indexed by the edges of Λ such that A(ε, ε′) = δt(ε)=s(ε′).

The vertex matrix of Λ (also known as the adjacency matrix of Λ) is the Z≥0-matrix B indexed by the vertices of Λ such that B(α, β) is the number of edges from α to β.
Facts 2.15. Suppose Λ is locally finite, strongly connected, and the edge matrix is not a permutation matrix.

1. The K-theory of \mathcal{O}_Λ is given by $K_0(\mathcal{O}_\Lambda) = \text{coker}(1 - A^T) \cong \text{coker}(1 - B^T)$ and $K_1(\mathcal{O}_\Lambda) = \ker(1 - A^T) \cong \ker(1 - B^T)$ where $1 - A^T$ acts on $\mathbb{Z}^E(\Lambda)$ and $1 - B^T$ acts on $\mathbb{Z}^V(\Lambda)$ [Cum81a, PR96], [RS04, Theorem 3.2].

2. \mathcal{O}_Λ is separable, nuclear, simple, purely infinite, [CK80, KPRR97, KPR98], and in the bootstrap class [KP99, Proposition 2.6] (the crossed product $\mathcal{O}_\Lambda \rtimes_\alpha \mathbb{T}$ is AF), so it satisfies the UCT [RS87]. Hence by [Phi00, KP00], the stable isomorphism class of \mathcal{O}_Λ is determined by the K-theory of \mathcal{O}_Λ, and the isomorphism class is determined by the K-theory and the class of the unit.

Remarks 2.16.

1. The examples in this article are inspired by (sub)factor planar algebras \mathcal{P}_\bullet. Hence each directed graph $\vec{\Lambda}$ in this article is obtained from an undirected graph Λ by a simple procedure (see Definition 2.20). In the (sub)factor planar algebra case, this undirected graph is the principal graph Γ of \mathcal{P}_\bullet.

When our directed graphs come from principal graphs, they are pointed (there is a base vertex \star), locally finite, and strongly connected (any vertex may be reached from \star along directed edges). Moreover, since we assume $\delta > 1$, Γ is not the graph with one vertex and one loop nor the Coxeter-Dynkin diagram A_2, so the edge and vertex matrices will always be irreducible and not permutation matrices. Hence we are in the fortunate situation of Facts 2.15.

2. The Cuntz-Krieger algebras can also be realized as a quotient of the Toeplitz extensions acting on a Fock space of finite paths due to [EFW81, Eva82]. In general, this will not yield the universal Toeplitz-Cuntz-Krieger algebra as the defect p_Ω must always be the same for each vertex, since their Fock space has only one vacuum vector Ω.

3. It might be interesting to extend our results beyond the finite dimensional case (allowing $\dim(\mathcal{P}_n) = \infty$), where truly infinite matrices could appear. In particular, one might want to work with a planar algebra for which \mathcal{P}_0 is some infinite dimensional commutative C^*-algebra. The work of Exel-Laca [EL99] might be highly useful in this situation.

4. Many authors have studied KMS states on Cuntz-Krieger algebras. If Λ is finite and the edge matrix is irreducible, by [EFW84], \mathcal{O}_Λ has a unique KMS state, and the only admissible β-value is $\ln(\lambda)$, where λ is the Frobenius-Perron eigenvalue of Λ. See [aHLRS13] for the KMS states on \mathcal{T}_Λ in this case. For infinite locally finite graphs, see also [Tho13].

2.3 Doplicher-Roberts algebras

In [DR89], Doplicher-Roberts obtain a duality theory for compact subgroups G extending the Tannaka-Krein theory [JS91]. In [DR89, Section 4], they associate a C^*-algebra \mathcal{O}_ρ to an object ρ in a rigid C^*-tensor category \mathcal{C}. The category may be recovered from the algebra with some additional structure in special situations.
These algebras are similar to the Cuntz-Krieger algebras and Ocneanu’s path/string algebras [Ocn88]. Indeed, in [MRS92], it was shown that O_ρ is a corner of the Cuntz-Krieger algebra associated to an auxiliary bipartite graph associated to the fusion graph of ρ. One can also view paths on this auxiliary bipartite graph as paths on a certain directed graph (see Definition 2.20 below). Using the string algebra approach in [Izu98], Izumi found inclusions of generalized Doplicher-Roberts algebras with finite Watatani indices.

Because we want undirected fusion graphs to define our free graph algebras in Subsection 5.3, we work with symmetrically self-dual objects. Note that although the C^*-algebra construction of [DR89] does not require symmetrically self-dual objects, the main theorems therein require ‘special objects’ in symmetric rigid C^*-tensor categories. Theorem 3.4 of [DR89], which ensured the existence of enough ‘special objects’, constructed objects of the form $X \oplus \overline{X}$, which are always symmetrically self-dual.

Notation 2.17. Let C be a strict rigid C^*-tensor category, where we denote the objects of C by ρ, σ, τ. We denote the tensor product of σ and τ by $\sigma \tau$. We denote the finite dimensional Hilbert space of maps from σ to τ by $\text{Hom}(\sigma, \tau)$.

Fix a simple symmetrically self-dual object $\rho \in C$. Let Γ_ρ be the fusion graph with respect to ρ, i.e., the vertices are the isomorphism classes of irreducible objects in C, and given simples σ, τ there exactly $\dim(\text{Hom}(\sigma, \tau))$ edges from σ to τ. Since our distinguished object ρ is symmetrically self-dual, our fusion graph is undirected.

Definition 2.18. The Doplicher-Roberts algebra O_ρ is the C^*-algebra defined as follows. First, there is a canonical inclusion $\text{Hom}(\rho^n, \rho^n) \hookrightarrow \text{Hom}(\rho^{n+1}, \rho^{n+1})$ given by $x \mapsto x \otimes 1_\rho$. For $k \in \mathbb{Z}$, let $^oO_\rho^k = \lim_{\to} \text{Hom}(\rho^n, \rho^{n+k})$, and let $^oO_\rho = \bigoplus_{k \in \mathbb{Z}} ^oO_\rho^k$. The multiplication on $^oO_\rho$ is induced from the composition in C. If $y \in \text{Hom}(\rho^n, \rho^{n+m})$ and $x \in \text{Hom}(\rho^{n+m}, \rho^{k+n+m})$, then $xy \in \text{Hom}(\rho^m, \rho^{k+n+m})$, and $xy \otimes 1_\rho = (x \otimes 1_\rho)(y \otimes 1_\rho)$. We let O_ρ be the universal enveloping algebra of $^oO_\rho$, which exists by [DR89, MRS92].

Remark 2.19. The Doplicher-Roberts algebra O_ρ comes equipped with a canonical \mathbb{T}-action γ and a canonical endomorphism $\tilde{\rho}$ implemented by ρ. They define $\tilde{\rho}$ on $\bigoplus_{k \in \mathbb{Z}} ^oO_\rho^k$ as the map induced by

$$\text{Hom}(\rho^m, \rho^{n+m}) \ni x \mapsto 1_\rho \otimes x \in \text{Hom}(\rho^{m+1}, \rho^{n+m+1}),$$

and $\tilde{\rho}$ extends to an endomorphism of O_ρ. We get a faithful representation of the full subcategory $T_\rho \subset C$ whose objects are ρ^n for $n \in \mathbb{Z}_{\geq 0}$ in $\text{End}(O_\rho)$, the C^*-tensor category of endomorphisms of O_ρ. Moreover, the assignment (T_ρ, ρ) to $(O_\rho, \gamma, \tilde{\rho})$ is functorial.

We give a diagrammatic construction of the Doplicher-Roberts algebra O_ρ via Subsection 3.3 using the factor planar algebra P_\bullet of the rigid C^*-tensor subcategory $\langle \rho \rangle \subset C$ and the choice of object ρ. See also Remark 2.29 below.

Definition 2.20. Suppose Λ is an undirected graph. The directed graph $\hat{\Lambda} = (V(\Lambda), E(\Lambda), s, t)$ is the graph with the following properties:

1. $V(\Lambda) = V(\hat{\Lambda})$.
2. For each $e \in E(\Lambda)$ which is a loop, i.e., e only connects to one vertex α, we have a single edge $e \in E(\hat{\Lambda})$ such that $s(\epsilon) = t(\epsilon) = \alpha$.
(3) For each $\epsilon \in E(\Lambda)$ which is not a loop, i.e., ϵ connects to two distinct vertices α, β, we have two edges $\epsilon', \epsilon'' \in E(\tilde{\Lambda})$ such that $s(\epsilon') = t(\epsilon'') = \alpha$ and $t(\epsilon') = s(\epsilon'') = \beta$.

There is an involution op on $E(\tilde{\Lambda})$ given by $\epsilon \text{op} = \epsilon$ if ϵ is a loop, and $(\epsilon') \text{op} = \epsilon''$ if ϵ is not a loop.

Remark 2.21. As long as Λ is not the graph with one vertex and one loop or the A_2 Coxeter-Dynkin diagram, $\tilde{\Lambda}$ is strongly connected, and the vertex and edge matrices of $\tilde{\Lambda}$ are not permutation matrices. Moreover, $\tilde{\Lambda}$ is locally finite if Λ is.

Remark 2.22. By [MRS92], \mathcal{O}_ρ is isomorphic to a full corner of the Cuntz-Krieger algebra $\mathcal{O}_{\Gamma_\rho}$, where $\tilde{\Gamma}_\rho$ is obtained from Γ_ρ as in Definition 2.20. They showed how to realize $\mathcal{O}_{\Gamma_\rho}$ as a path/string algebra acting on a Hilbert space of infinite paths. In this infinite path representation, \mathcal{O}_ρ is isomorphic to the cutdown $P_* \mathcal{O}_\rho P_*$, where P_* is the projection onto the paths that start at the distinguished vertex \star, which corresponds to the trivial object $1 \in \mathcal{C}$. In particular, Facts 2.15 all hold for \mathcal{O}_ρ. (See also [KPRR97] on Cuntz-Krieger algebras of pointed graphs.)

We note that the method of [MRS92] using a bipartite graph is equivalent to looking at infinite paths on our directed graph $\tilde{\Gamma}_\rho$ obtained from Γ_ρ as in Definition 2.20. This approach is analogous to the finite path representation due to [Eva82, EFW84].

Remark 2.23. In [Izu98, Section 2.5], Izumi studies the Doplicher-Roberts algebras $\mathcal{O}_{\rho \rho}$ and $\mathcal{O}_{\bar{\rho} \rho}$, where ρ is the standard sector of a finite index, finite depth type III subfactor. In the type II$_1$ language, ρ corresponds to the standard bimodule $_N L^2(M)_{L^2}$, which is a 1-morphism in a 2-category. Thus $\rho \rho$ and $\bar{\rho} \rho$ are generating bimodules of the principal even half and the dual even half of the standard invariant respectively, and the Doplicher-Roberts construction can be performed in these tensor categories. In this case, there are two canonical endomorphisms $\hat{\rho}$ and $\hat{\bar{\rho}}$ which switch back and forth between the two algebras $\mathcal{O}_{\rho \rho}$ and $\mathcal{O}_{\bar{\rho} \rho}$.

Izumi notes in [Izu98, Proposition 3.1] that $\mathcal{O}_{\rho \rho}$ is stably isomorphic to $\mathcal{O}_{\Lambda \Lambda^T}$ where Λ is the (bipartite!) adjacency matrix of Γ. This follows from Remark 2.22 above, since $\Lambda \Lambda^T$ is the adjacency matrix of the fusion graph with respect to $\rho \rho$.

2.4 Planar algebras

Planar algebras have proven to be a useful tool for analyzing subfactors and tensor categories.

Definition 2.24. A planar algebra is a sequence of vector spaces $\mathcal{P}_* = (\mathcal{P}_n)_{n \geq 0}$ together with an action of the planar operad, i.e., every planar tangle with k_1, \ldots, k_r points on the input disks and k_0 points on the output disk corresponds to a multilinear map $\mathcal{P}_{k_1} \times \cdots \times \mathcal{P}_{k_r} \to \mathcal{P}_{k_0}$. For example,

$$\begin{align*}
\begin{array}{ccc}
\star & \star & \star \\
\circ & \circ & \circ \\
\end{array} & : \mathcal{P}_3 \times \mathcal{P}_5 \to \mathcal{P}_6.
\end{align*}
$$

We require
• isotopy invariance: isotopic tangles produce the same multilinear maps,
• identity: the identity tangle (which only has radial strings) acts as the identity transformation, and
• naturality: the gluing of tangles corresponds to composition of multilinear maps. When we glue tangles, we match up the points along the boundary disks making sure the distinguished intervals marked by \(\star \) align.

Notation 2.25. We will always draw our planar tangles in rectangular form in what follows.

When we draw a planar tangle, we will often suppress the external rectangle, which is assumed to be large. If we omit a \(\star \), it is always assumed to be in the lower left corner. Finally, we draw one string labelled \(k \) rather than \(k \) parallel strings.

Definition 2.26. \(P_\star \) is called a factor planar algebra if \(P_\star \) is

- **evaluable:** \(\dim(P_n) < \infty \) for all \(n \geq 0 \) and \(P_0 \cong \mathbb{C} \) via the map that sends the empty diagram to 1 \(\in \mathbb{C} \). By naturality, there is a scalar \(\delta \) such that any labelled diagram containing a closed loop is equal to \(\delta \) times the same diagram without the closed loop.

- **involutive:** for each \(n \geq 0 \), there is a map \(* : P_n \to P_n \) with \(* \circ * = \text{id} \) which is compatible with the reflection of tangles, i.e., if \(T \) is a planar tangle with \(r \) input disks, then \(T(x_1, \ldots, x_r)^* = T^*(x_1^*, \ldots, x_r^*) \) where \(T^* \) is the reflection of \(T \).

- **spherical:** the value of a closed diagram is invariant under spherical isotopy. Equivalently, for all \(x \in \mathcal{P}_2 \),

\[
\text{tr}(x) = \begin{array}{c}
\overbrace{x} \\
\end{array} = \begin{array}{c}
\overbrace{x} \\
\end{array}.
\]

- **unitary/positive:** for every \(n \geq 0 \), the map \(\langle \cdot, \cdot \rangle : P_n \times P_n \to P_0 \cong \mathbb{C} \) given by

\[
\langle x, y \rangle = \begin{array}{c}
\overbrace{x} \\
\end{array}^n \begin{array}{c}
y^* \\
\end{array}
\]

is a positive definite inner product. Hence by [Jon83], \(\delta \in \{2 \cos(\pi/n) | n \geq 3\} \cup [2, \infty) \).

A subfactor planar algebra is a 2-shaded factor planar algebra. We refer the reader to [BMPS12, Jon12] for more details on subfactor planar algebras.

Examples 2.27. Some examples of factor planar algebras are the Temperley-Lieb planar algebra \(\mathcal{T}_\star(\delta) \) and the planar algebra of non-commutative polynomials \(\mathcal{NC}_\star \) (see Definition 3.17).
Definition 2.28. The principal graph Γ of \mathcal{P}_\bullet is the graph whose vertices are the isomorphism classes of simple projections in \mathcal{P}_\bullet, and if $p \in \mathcal{P}_{2n}$ and $q \in \mathcal{P}_{2(n+1)}$ are simple projections, then the vertices $[p]$ and $[q]$ are connected by $\dim(q \mathcal{P}_{2(n+1)}(p \otimes \text{id}))$ edges.

Given a vertex $[p]$ of Γ, the number $\text{tr}(p)$ is independent of the choice of representative of $[p]$. The vector $(\text{tr}(p))_{[p] \in V(\Gamma)}$ defines the quantum dimension weight vector on the vertices of Γ satisfying the Frobenius-Perron condition:

$$\delta \text{tr}(p) = \sum_{[q] \in V(\Gamma)} N_{[p],[q]} \text{tr}(q)$$

where $N_{[p],[q]}$ is the number of edges connecting $[p]$ and $[q]$ in Γ. Note that the quantum dimension weight vector is normalized so that the trace of the empty diagram is 1.

Remark 2.29. In [MPS10, BHP12], it was shown how to associate to a factor planar algebra \mathcal{P}_\bullet its rigid C^*-tensor category of projections $\text{Pro}(\mathcal{P}_\bullet)$, and from a rigid C^*-tensor category \mathcal{C} and a choice of symmetrically self-dual object $\rho \in \mathcal{C}$, how to obtain a factor planar algebra $\mathcal{P}A(\mathcal{C}, \rho)_\bullet$. In this case, $\mathcal{P}A(\text{Pro}(\mathcal{P}_\bullet), \text{id})_\bullet = \mathcal{P}_\bullet$, and $\text{Pro}(\mathcal{P}A(\mathcal{C}, \rho)_\bullet)$ is equivalent to the subcategory of \mathcal{C} generated by ρ. Moreover, the fusion graph Γ_ρ corresponds to the principal graph Γ. Also see [Yam12] for more details.

3 The GJSW-Doplicher-Roberts system

In this subsection, following Guionnet-Jones-Shlyakhtenko-Walker [GJS10, JSW10], we define a canonical Hilbert space $\mathcal{F}_0(\mathcal{P}_\bullet)$ associated to a planar algebra \mathcal{P}_\bullet which shares some properties of a full Fock space. Following Jones [Jon], we define the Toeplitz and Cuntz algebras in this scenario, where the latter is isomorphic to the Doplicher-Roberts algebra \mathcal{O}_ρ where ρ is the strand in \mathcal{P}_\bullet.

The work of Jones [Jon] and Shelly [She13] defined \mathcal{O}_ρ as the image of the Toeplitz algebra in the GNS representation of a KMS$_{\ln(\delta)}$-state. We show this is equivalent to taking the quotient by the compact operators $\mathcal{K} \subset B(\mathcal{F}_0(\mathcal{P}_\bullet))$ in Subsection 3.2.

We will see the GJS algebra $\mathcal{S}_0(\mathcal{P}_\bullet)$ arises as the analog of Voiculescu’s free semicircular algebra in Subsection 3.4.

3.1 The Fock space and Toeplitz algebra

Definition 3.1. Let $\mathcal{F}_0(\mathcal{P}_\bullet)$, the full Fock space of \mathcal{P}_\bullet, be the Hilbert space of $\text{Gr}_0 = \bigoplus_{k=0}^\infty \mathcal{P}_k$ with the usual inner product, i.e., the completion of Gr_0 under the inner product given by the extension of

$$\langle x, y \rangle = \begin{cases} 0 & \text{if } m \neq n \\ x \overline{y}^* & \text{if } m = n \end{cases}$$

for $x \in \mathcal{P}_n$ and $y \in \mathcal{P}_m$.
For $x \in \mathcal{P}_n$ and $0 \leq \ell, r$ with $\ell + r = n$, we define the creation-annihilation operator $L_r(x)$ by its action on a $y \in \mathcal{P}_m$:

$$L_r(x)y = \begin{cases} 0 & \text{if } m < r \\ x \cdot y & \text{if } r \leq m \end{cases}$$

We use the dot on the top of the n-box x to denote $x \in \mathcal{P}_n$ as the operator $L_r(x)$ to distinguish it from the vector $x \in \mathcal{F}_0(\mathcal{P}_\ast)$. Note that the omitted \ast is still on the bottom left corner. The operator $L_r(x)$ is bounded by [JSW10].

We define the \mathcal{P}_\ast-Toeplitz algebra $\mathcal{T}_0(\mathcal{P}_\ast)$ as the unital C^\ast-algebra generated by

$$\{ L_r(x) | x \in \mathcal{P}_n, n \geq 0, \text{ and } 0 \leq r \leq n \}.$$

It is straightforward to show that the product $L_{r_1}(x) \cdot L_{r_2}(y) \in \mathcal{T}_0(\mathcal{P}_\ast)$ for $x \in \mathcal{P}_n$ and $y \in \mathcal{P}_m$ is given by

$$L_{r_1}(x) \cdot L_{r_2}(y) = \begin{cases} \ell_1 | r_1 \\ x \end{cases} \cdot \begin{cases} \ell_2 | r_2 \\ y \end{cases} = \begin{cases} \ell_1 | \ell_2 - r_1 \\ x \end{cases} \cdot \begin{cases} \ell_2 | r_2 \\ y \end{cases}$$

if $r_1 \leq \ell_2$,

and the adjoint of $L_r(x)$ is $L_{\ell}(x^*)$:

$$\left(\begin{cases} \ell | r \\ x \end{cases} \right)^* = \begin{cases} \ell | \ell \\ x^* \end{cases}.$$

Define the Toeplitz core of \mathcal{P}_\ast, denoted $\operatorname{core}(\mathcal{T}_0(\mathcal{P}_\ast))$, as the subalgebra of $\mathcal{T}_0(\mathcal{P}_\ast)$ generated by $\{ L_n(x) | x \in \mathcal{P}_{2n}, n \geq 0 \}$.

Remark 3.2. The core of $\mathcal{T}_0(\mathcal{P}_\ast)$ with the multiplication defined above is not the usual core of the standard invariant defined by Popa in [Pop94], i.e., the inductive limit algebra $\lim \mathcal{P}_{2n}$ under the right inclusion. See Remark 3.15 for the appearance of the usual core, and see Example 5.34 for the AF structure of the core of $\mathcal{T}_0(\mathcal{P}_\ast)$.

The Toeplitz algebra $\mathcal{T}_0(\mathcal{P}_\ast)$ appears briefly in [Jon], but without a distinguished name. Jones observes that $\mathcal{T}_0(\mathcal{P}_\ast)$ contains the compact operators \mathcal{K} as follows from the next two lemmas.

Lemma 3.3 ([Jon]). The action of $\mathcal{T}_0(\mathcal{P}_\ast)$ on $\mathcal{F}_0(\mathcal{P}_\ast)$ is irreducible.
Proof. Let \(x \in \mathcal{P}_r \setminus \{0\} \) and \(y \in \mathcal{P}_\ell \). Then the operator

\[
\frac{1}{\|x\|_2^2} L_{\ell}(y \wedge x) = \frac{1}{\|x\|_2^2} \begin{array}{c}
\ell
\end{array} \begin{array}{c}
y
\end{array} \begin{array}{c}
x
\end{array}
\]

maps \(x \in \mathcal{F}_0(\mathcal{P}_*) \) to \(y \in \mathcal{F}_0(\mathcal{P}_*) \). The rest is straightforward. \qed

Lemma 3.4 ([Jon]). The Toeplitz algebra \(\mathcal{T}_0(\mathcal{P}_*) \) contains a finite rank operator, and thus all the compact operators \(\mathcal{K} \) by Lemma 3.3.

Proof. Note that the projection onto \(\bigoplus_{k \geq n} \mathcal{P}_k \) is given by

\[
L_n(\cup_n) = \begin{array}{c}
n
\end{array} \begin{array}{c}

\end{array} .
\]

Hence \(1 - L_n(\cup_n) \) is the finite rank projection onto \(\bigoplus_{k \leq n} \mathcal{P}_k \). \qed

3.2 A useful result for weights on Toeplitz algebras

Before we study the \(\mathbb{T} \)-action, the KMS state, and the Cuntz algebra of \(\mathcal{P}_* \), we take a brief interlude to prove a useful result for weights on Toeplitz algebras.

Suppose \(T \) is a \(C^* \)-algebra together with:

- a closed 2-sided ideal \(K \subset T \) of “compact” operators,
- a \(\| \cdot \| \)-continuous action \(\sigma : T \to \text{Aut}(T) \),
- a conditional expectation \(E : T \to C \) given by \(E(x) = \int_T \gamma_z(x)\,dz \), where the measure is normalized Lebesgue measure,
- the core \(C \) is AF, with distinguished finite dimensional algebras \(C_k \) for \(k \geq 0 \) such that \(C = \bigcup_{k \geq 0} C_k^{\|\cdot\|} \) where the inclusion \(C_k \hookrightarrow C_{k+1} \) is not necessarily unital,
- a lower semi-continuous tracial weight \(\text{Tr} : C^+ \to [0, \infty] \), which induces a lower semi-continuous weight \(\varphi = \text{Tr} \circ E \) on \(T \),
- the set \(\mathcal{N}_\varphi = \{ x \in T | \varphi(x^*x) = 0 \} \) is a 2-sided ideal of \(T \).

Remarks 3.5.

(1) \(\mathcal{N}_\varphi \) is automatically closed by lower semi-continuity.

(2) If \(\varphi \) is a KMS state, then \(\mathcal{N}_\varphi \) is automatically a 2-sided ideal by Remark 2.6.

Lemma 3.6. Suppose \(x \in T^+ \). Then \(x \in K \) if and only if \(E(x) \in K \).
Proof. Suppose \(x \in K \). Then \(E(x) \) is a limit of Riemann sums of elements of \(K \), so \(E(x) \in K \). Now suppose \(E(x) \in K \). Since \(K \) is hereditary, if \(E(x) \in K \), then so is
\[
E_s(x) = \int_0^s \sigma_t(x) \, dt,
\]
and thus so is the difference quotient
\[
x = \lim_{h \to 0} \frac{E_{0+h}(x) - E_0(x)}{h} = \lim_{h \to 0} \frac{1}{h} \int_0^h \sigma_t(x) \, dt.
\]

We now prove the following main theorem of this subsection.

Theorem 3.7. Suppose that \(K \subseteq \mathcal{N}_\varphi \) and \(C_+^* \cap \mathcal{N}_\varphi \subset K \). Then \(\mathcal{N}_\varphi = K \).

Proof. First, we note that \(E(\mathcal{N}_\varphi) = C \cap \mathcal{N}_\varphi \) since \(\varphi = \varphi \circ E \). We prove the following claim:

Claim. If \(p \in C \cap \mathcal{N}_\varphi \) is a projection, then \(p \in K \).

Proof of Claim. Suppose \(p \in C \) is a projection with \(\varphi(p) = 0 \). Since \(C \) is AF, there is an \(n > 0 \) and a projection \(q \in C_n \) such that \(\|p - q\| < 1 \). Hence \(p \) is homotopic in \(C \) to \(q \), and thus there is a unitary \(u \in C \) such that \(p = uqu^* \) [RLL00, Section 2.2]. Now \(\varphi(q) = \varphi(u^*pu) = 0 \) since \(\mathcal{N}_\varphi \) is an ideal, and thus \(q \in C_+^* \cap \mathcal{N}_\varphi \subset K \). We conclude \(p \in K \).

Now we know the ideal \(E(\mathcal{N}_\varphi) = C \cap \mathcal{N}_\varphi \) is a hereditary subalgebra of the AF algebra \(C \), and thus has real rank zero. By the claim, every projection in \(E(\mathcal{N}_\varphi) \) is in \(K \), so \(E(\mathcal{N}_\varphi) \subseteq K \). Using Lemma 3.6, we see every positive element in \(\mathcal{N}_\varphi \) is also in \(K \). Hence \(\mathcal{N}_\varphi \subseteq K \). \(\square \)

3.3 The \(\mathbb{T} \)-action, the KMS state, and the Cuntz algebra

We now give an action of \(\mathbb{T} \) on \(\mathcal{T}_0(\mathcal{P}_\bullet) \), and we construct a KMS\(_{\ln(\delta)}\)-state \(\varphi \).

Definition 3.8 ([Jon]). Consider the number operator \(N : \mathcal{G}_0 \to \mathcal{F}_0(\mathcal{P}_\bullet) \) by
\[
\begin{array}{c|c|c}
|n \quad x | & n \quad x \end{array}.
\]
Note that \(N \) is an unbounded, closable operator which preserves the grading of \(\mathcal{F}_0(\mathcal{P}_\bullet) \). There is a unique bounded operator \(\exp(itN) \) given by the extension of
\[
\begin{array}{c|c|c}
|n \quad x | & e^{itn} \quad x \end{array}.
\]
Define an \(\mathbb{R} \)-action \(\sigma : \mathbb{R} \to \text{Aut}(\mathcal{T}_0(\mathcal{P}_\bullet)) \) by \(\sigma_t = \text{Ad}(\exp(itN)) \):
\[
\sigma_t \left(\begin{array}{c|c|c}
|t \quad x | & t \quad x \end{array} \right) = e^{it(t-x)} \begin{array}{c|c|c}
|t \quad x | & t \quad x \end{array}.
\]
Note that the \(\mathbb{R} \)-action induces a \(\mathbb{T} \)-action \(\gamma \) via the map \(t \mapsto e^{it} \).
Definition 3.9 ([Jon, She13]). For each $x \in T_0(P_\ast)$, the map $t \mapsto \sigma_t(x)$ is norm continuous, so we define the conditional expectation $E : T_0(P_\ast) \to \mathrm{core}(T_0(P_\ast))$ by

$$E(x) = \int_T \gamma_z(x) \, dz,$$

where we use the normalized Lebesgue measure on T. We define a normalized (non-faithful) trace τ on $\mathrm{core}(T_0(P_\ast))$ by the extension of

$$\tau \left(\begin{array}{c} n \\ x \end{array} \right) = \delta^{-n} \begin{array}{c} n \\ x \end{array}.$$

Finally, define the state $\varphi : T_0(P_\ast) \to \mathbb{C}$ by $\varphi = \tau \circ E$.

Lemma 3.10 ([Jon, She13]). φ is a KMS$_{\ln(\delta)}$ state.

Proof. For $x \in P_{\ell_1+r_1}$ and $y \in P_{\ell_2+r_2}$, where without loss of generality $r_1 \leq \ell_2$,

$$\varphi \left(\begin{array}{c} \ell_1 \\ x \end{array} \cdot \begin{array}{c} \ell_2 \\ y \end{array} \right) = \delta_{\ell_1=r_1-\ell_2} \delta_{\ell_1}.$$

Recall from Remark 2.6 that \mathfrak{N}_φ is a closed 2-sided ideal of $T_0(P_\ast)$. Also note that the finite rank operators from the proof of Lemma 3.4 are in the kernel of the KMS state φ, since we are using the normalized trace, and \cup_n is the image of 1_0 inside P_{2n} under the right inclusion. Thus $\mathcal{K} \subset \mathfrak{N}_\varphi$. To show that $\mathcal{K} = \mathfrak{N}_\varphi$, by Theorem 3.7, it suffices to show the following lemma.

Lemma 3.11. Suppose $x \in \mathrm{core}(T_0(P_\ast))$ is a finite sum of elements of the form $L_n(x_n)$ where $x_n \in P_{2n}$. If $x \geq 0$ and $\varphi(x) = 0$, then x has finite rank.

Proof. Suppose

$$x = \sum_{n=0}^N \begin{array}{c} n \\ x_n \end{array},$$

$x \geq 0$, and $\varphi(x) = 0$. Consider the element \tilde{x} given by

$$\tilde{x} = \sum_{n=0}^N \begin{array}{c} n \\ \frac{n}{N-n} \end{array} x_n.$$
Note that for all $m \geq N$ and all $y \in \mathcal{P}_M$, we have

$$\tilde{x}y = \sum_{n=0}^{N} \binom{n}{x_n}^{N-n} \binom{m-N}{y} = xy.$$

(1)

Hence if $\xi \in H$, and p is the projection onto $\bigoplus_{n \geq N} \mathcal{P}_n$, we have

$$\langle \tilde{x}\xi, \xi \rangle = \langle \tilde{x}p\xi, p\xi \rangle = \langle xp\xi, p\xi \rangle \geq 0,$$

so $\tilde{x} \geq 0$. With a slight abuse of notation, we may identify \tilde{x} with $L_N(\tilde{x})$ for $\tilde{x} \in \mathcal{P}_{2N}$. Now even though φ is not faithful on core$(\mathcal{T}_0(\mathcal{P}_*))$, $\varphi|_{\mathcal{P}_{2N}}$ is faithful when we identify each $y \in \mathcal{P}_{2N}$ with $L_N(y) \in$ core$(\mathcal{T}_0(\mathcal{P}_*))$. Thus

$$0 = \varphi(x) = \varphi(\tilde{x}) = \varphi|_{\mathcal{P}_{2N}}(\tilde{x}),$$

and thus $\tilde{x} = 0$. Thus x is finite rank since it agrees with \tilde{x} on \mathcal{P}_m for $m \geq N$. \hfill \Box

Corollary 3.12. Suppose $x \in \mathcal{T}_0(\mathcal{P}_*)$ is a finite sum of elements of the form $L_{t_j}(x_j)$ where $x_j \in \mathcal{P}_{t_j+t_j}$. If $x \geq 0$ and $\varphi(x) = 0$, then $x \in \mathcal{K}$.

Proof. Note that $E(x) \in$ core$(\mathcal{T}_0(\mathcal{P}_*))$ is a finite sum of elements of the form $L_n(x_n)$ where $x_n \in \mathcal{P}_{2n}$, $E(x) \geq 0$, and $\varphi(E(x)) = \varphi(x) = 0$. By Lemma 3.11, $E(x)$ has finite rank, so by Lemma 3.6, $x \in \mathcal{K}$. \hfill \Box

By Theorem 3.7, where C_n is the C^*-algebra generated by \mathcal{P}_{2k} for $0 \leq k \leq n$, we now have the following proposition.

Proposition 3.13. $\mathcal{K} = \mathfrak{M}_\varphi$. Hence $\mathcal{T}_0(\mathcal{P}_*)/\mathcal{K}$ is isomorphic to the C^*-algebra generated by $\mathcal{T}_0(\mathcal{P}_*)$ in the GNS representation of the KMS$_{\ln(\delta)}$-state φ.

Definition 3.14. Define the \mathcal{P}_*-Cuntz algebra $\mathcal{O}_0(\mathcal{P}_*) = \mathcal{T}_0(\mathcal{P}_*)/\mathcal{K} = \mathcal{T}_0(\mathcal{P}_*)/\mathfrak{M}_\varphi$. Define the (Cuntz) core of \mathcal{P}_* as the fixed points of $\mathcal{O}_0(\mathcal{P}_*)$ under the T-action. Note that for each $z \in T$, the action of γ_z descends to $\mathcal{O}_0(\mathcal{P}_*) = \mathcal{T}_0(\mathcal{P}_*)/\mathcal{K}$ since γ_z preserves \mathcal{K} as it is unitarily implemented.

Remarks 3.15.

1. The core of $\mathcal{O}_0(\mathcal{P}_*)$ is the usual core which appears in [Pop94], i.e., core$(\mathcal{O}_0(\mathcal{P}_*)) = \lim_{\rightarrow} \mathcal{P}_{2k}$ under the right inclusion $\mathcal{P}_{2k} \hookrightarrow \mathcal{P}_{2k+2}$ given by

$$\begin{array}{c}
\begin{array}{c}
\begin{array}{c}
\Huge{n} \\
\Huge{\cdots} \\
\Huge{x} \\
\Huge{\cdots} \\
\Huge{1}
\end{array}
\end{array}
\end{array}\quad \mapsto \quad \begin{array}{c}
\begin{array}{c}
\begin{array}{c}
\Huge{n} \\
\Huge{\cdots} \\
\Huge{x} \\
\Huge{\cdots} \\
\Huge{1}
\end{array}
\end{array}
\end{array}.$$

Hence the AF structure of the core of $\mathcal{O}_0(\mathcal{P}_*)$ is the usual one encoded by the principal graph Γ.

18
(2) Jones [Jon] and Shelly [She13] use the T-action to show that the conditional expectation from $O_0(\mathcal{P}_\bullet)$ onto core($O_0(\mathcal{P}_\bullet)$) is positive and faithful, since it is just integration with respect to Haar measure. The KMS state then arises naturally as the composite of this faithful conditional expectation along with the faithful trace on core($O_0(\mathcal{P}_\bullet)$) inherited from \mathcal{P}_\bullet.

Facts 3.16.

(1) The algebra $O_0(\mathcal{P}_\bullet)$ is isomorphic to the Doplicher-Roberts algebra O_ρ [DR89] where ρ is the strand in the rigid C^*-tensor category $Pro(\mathcal{P}_\bullet)$ [BHP12]. Thus $O_0(\mathcal{P}_\bullet)$ is isomorphic to a full corner of the Cuntz-Krieger algebra $O_{\bar{\Gamma}}$ (see Remark 2.22).

In Remark 5.15, we provide another proof that $O_0(\mathcal{P}_\bullet)$ is a compression of $O_{\bar{\Gamma}}$. Our approach has the added benefit that it realizes $T_0(\mathcal{P}_\bullet)$ and $S_0(\mathcal{P}_\bullet)$ as reduced compressions of the universal Toeplitz-Cuntz-Krieger algebra $T_{\bar{\Gamma}}$ and the newly introduced free graph algebra $\mathcal{S}(\Gamma')$ respectively. (See Subsection 3.4 for the definition of $S_0(\mathcal{P}_\bullet)$ and Subsection 5.3 for the definition of the free graph algebra $\mathcal{S}(\Gamma)$.)

(2) When the strand in \mathcal{P}_\bullet is $\rho\bar{\rho}$ where $\rho = N L^2(M)_M$ is the standard bimodule for a finite index II_1-subfactor $N \subset M$, $O_0(\mathcal{P}_\bullet)$ is isomorphic to $O_{\rho\bar{\rho}}$ from [Izu98, Section 2.5].

(3) Jones [Jon] and Shelly [She13] originally define the Cuntz algebra $O_0(\mathcal{P}_\bullet)$ as the image of $T_0(\mathcal{P}_\bullet)$ in the GNS representation of the KMS state φ. In fact, by [She13, Propositions 3.1.3 and 3.3.2], for finite depth \mathcal{P}_\bullet, φ is the unique KMS state for $O_0(\mathcal{P}_\bullet)$, and the only admissible β-value is $\ln(\delta)$. (This is not the case for infinite depth. For example, there is a 1-parameter family of traces on the AF core of $O_0(T\mathcal{L}_\bullet)$.)

3.4 The generalized semicircular algebra of \mathcal{P}_\bullet

We now see that the algebras arising from Voiculescu’s free Gaussian functor arise from the factor planar algebra \mathcal{NC}_\bullet of non-commuting polynomials. This motivates the definition of a generalized semicircular algebra, which is also known as the (zeroth) Guionnet-Jones-Shlyakhtenko C^*-algebra.

We first recall the construction of the factor planar algebra \mathcal{NC}_\bullet.

Definition 3.17. Consider the algebra $C\langle X_1, \ldots, X_n \rangle$ of non-commuting polynomials in self-adjoint variables. The factor planar algebra \mathcal{NC}_\bullet is uniquely characterized by the following properties:

- \mathcal{NC}_n is the C-span of the monomials of degree n, and $(X_{i_1} \cdots X_{i_n})^* = X_{i_n} \cdots X_{i_1}$.
- \mathcal{NC}_\bullet is generated by the 1-boxes $\begin{array}{c}
\boxed{X_i}
\end{array}$, which satisfy $\begin{array}{c}
\boxed{X_i} - \boxed{X_j}
\end{array} = \delta_{i,j}$.
- The strand is equal to $\sum_{i=1}^n X_i^2$. In diagrams, $\begin{array}{c}
\sum_{i=1}^n \boxed{X_i}
\end{array}$.
It is not hard to show that the modulus of \mathcal{NC}_\bullet is $\delta = n$, and the principal graph Γ is the n-bouquet, i.e., one vertex with n self-loops.

In more detail, the planar operad acts on \mathcal{NC}_\bullet by contracting indices. For a vector of indices $\vec{i} = (i_1, \ldots, i_n)$, let $X_{\vec{i}} = X_{i_1} \cdots X_{i_n}$. For example, if $\vec{i} = (i_1, i_2, i_3)$ and $\vec{j} = (j_1, j_2, j_3, j_4, j_5)$, then

$$\star \star \star \star (X_{\vec{i}}, X_{\vec{j}}) = \star \star \star \star X_{i_1}X_{i_2}\left(\sum_{k=1}^{n} X_k^2\right)X_{j_4}X_{j_5}. $$

Fact 3.18. When $\delta = n$, $T_0(\mathcal{NC}_\bullet)$ is isomorphic to T_n and $O_0(\mathcal{NC}_\bullet)$ is isomorphic to O_n (see Example 2.10).

Voiculescu’s free semicircular algebra S_n naturally arises in this situation. The generators X_i are in P_1, and thus can be viewed as creation or annihilation operators depending upon the dot placement:

$$\begin{align*}
\vcenter{\hbox{\includegraphics[scale=0.5]{diagram1}}} & \quad \text{and} \quad \vcenter{\hbox{\includegraphics[scale=0.5]{diagram2}}}.
\end{align*}$$

Hence summing over all placements of the dot above gives the free semi-circular generators:

$$L_+(X_i) + L_+(X_i)^* = \begin{array}{c}
\vcenter{\hbox{\includegraphics[scale=0.5]{diagram3}}} \quad \text{and} \quad \vcenter{\hbox{\includegraphics[scale=0.5]{diagram4}}}.
\end{array}$$

In the general (sub)factor planar algebra setting, it has proven instrumental to look at the algebra generated by summing over all placements of the dot.

Definition 3.19. The P_\bullet-semicircular algebra $S_0(P_\bullet)$ is the C^*-algebra generated by

$$\left\{ \sum_{\ell + r = n} \vcenter{\hbox{\includegraphics[scale=0.5]{diagram5}}} \mid x \in P_n \text{ and } n \geq 0 \right\}.$$

Facts 3.20.

1. $S_0(\mathcal{NC}_\bullet)$ is isomorphic to Voiculescu’s free semicircular algebra S_n.

2. In [HP14], we will see that $S_0(P_\bullet)$ is isomorphic to the (zeroth) Guionnet-Jones-Shlyakhtenko C^*-algebra [GJS10, JSW10]. Thus $S_0(P_\bullet)$ completes to an interpolated free group factor [GJS11, Har13], just as S_n completes to $L(F_n)$ [Voi85].

3. Since $S_0(P_\bullet) \cap \mathcal{K} = (0)$, the inclusion $S_0(P_\bullet) \hookrightarrow T_0(P_\bullet)$ descends to an injection $S_0(P_\bullet) \hookrightarrow O_0(P_\bullet)$.
Remarks 3.21.

(1) Germain’s Theorem 2.8 does not apply to give us the K-theory of $\mathcal{T}_0(\mathcal{P}_\bullet)$ or $\mathcal{S}_0(\mathcal{P}_\bullet)$. The Fock space $\mathcal{F}_0(\mathcal{P}_\bullet)$ is not generated by \mathcal{P}_1, so $\mathcal{T}_0(\mathcal{P}_\bullet)$ is not generated by elements of degree 1.

(2) This construction is not functorial. Consider the canonical planar algebra inclusion $\Phi : \mathcal{T}\mathcal{L}_\bullet \hookrightarrow \mathcal{N}\mathcal{C}_\bullet$. While Φ induces an inclusion of Hilbert spaces $\mathcal{F}_0(\mathcal{T}\mathcal{L}_\bullet) \hookrightarrow \mathcal{F}_0(\mathcal{N}\mathcal{C}_\bullet)$, Φ does not induce a map of Toeplitz algebras. Consider the element

$$x_{\mathcal{P}_\bullet} = \begin{array}{c}
\begin{array}{c}
\begin{array}{c}
\vdots
\end{array}
\end{array}
\end{array} - \begin{array}{c}
\begin{array}{c}
\begin{array}{c}
\vdots
\end{array}
\end{array}
\end{array} \in \mathcal{T}_0(\mathcal{P}_\bullet).$$

Note that $x_{\mathcal{T}\mathcal{L}_\bullet} = 0$ in $\mathcal{T}_0(\mathcal{T}\mathcal{L}_\bullet)$ since $\mathcal{T}\mathcal{L}_1 = (0)$, but $x_{\mathcal{N}\mathcal{C}_\bullet} \neq 0$ in $\mathcal{T}_0(\mathcal{N}\mathcal{C}_\bullet)$, as it is the projection onto $\mathcal{N}\mathcal{C}_1$.

However, we will see in Theorem 5.32 that the assignments \mathcal{P}_\bullet to $\mathcal{O}_0(\mathcal{P}_\bullet)$ and $\mathcal{S}_0(\mathcal{P}_\bullet)$ are functorial.

4 The operator-valued system

The Fock space analogy of the previous section, originally due to Jones, brought together work of Doplicher-Roberts [DR89], Guionnet-Jones-Shlyakhtenko-Walker [GJS10, JSW10, Jon], Izumi [Izu98], Shelly [She13], and Voiculescu [Voi85]. However, we saw some problems with functoriality.

In this section, we construct a canonical C^*-Hilbert bimodule $\mathcal{X} = \mathcal{X}(\mathcal{P}_\bullet)$ associated to a (sub)factor planar algebra. We will see in Subsection 5.5 that the Cuntz and free semicircular algebras of \mathcal{P}_\bullet of the previous subsection are full hereditary subalgebras of the Cuntz-Pimsner and B-valued free semicircular algebras associated to \mathcal{X}. In general, the \mathcal{P}_\bullet-Toeplitz algebra may be a reduced compression of the Pimsner-Toeplitz algebra of \mathcal{X}.

This C^*-Hilbert bimodule construction is functorial. Additionally, it allows for the efficient computation of the K-theory of the free semicircular algebra $S(\mathcal{P}_\bullet)$ via Theorem 2.8 from [Ger]. We postpone the proof to Corollary 5.30, but the interested reader can perform the calculation at the end of Subsection 4.2.

For this section, \mathcal{P}_\bullet is a fixed factor planar algebra.

4.1 Operator-valued Fock space

Definition 4.1. For $n \geq 0$, let $\mathcal{B}_n = \mathcal{B}_n(\mathcal{P}_\bullet)$ be the external direct sum

$$\mathcal{B}_n = \bigoplus_{l,r=0}^n \mathcal{P}_{l,r},$$

where $\mathcal{P}_{l,r} = \mathcal{P}_{l+r}$, and we picture an element of $b \in \mathcal{P}_{l,r}$ as $\begin{array}{c}
\begin{array}{c}
\begin{array}{c}
\vdots
\end{array}
\end{array}
\end{array}$.
We define the following multiplication and (non-normalized) trace Tr on B_n by

\[
\begin{array}{c}
\begin{array}{c}
\hline
l & a & r
\end{array}
\end{array}
\cdot
\begin{array}{c}
\begin{array}{c}
\hline
l' & b & r'
\end{array}
\end{array}
= \delta_{r,l'} \begin{array}{c}
\begin{array}{c}
\hline
l & a & r
\end{array}
\end{array}
\begin{array}{c}
\begin{array}{c}
\hline
r & b & r'
\end{array}
\end{array}
\quad \text{and} \quad
\text{Tr}(b) = \delta_{l,r} \begin{array}{c}
\begin{array}{c}
\hline
l & b & r
\end{array}
\end{array}
\end{array}
\]

We equip B_n with involution \dagger defined as follows. If $b \in \mathcal{P}_{l,r}$, then

\[
b^\dagger = \begin{array}{c}
\begin{array}{c}
\hline
r & b^* & l
\end{array}
\end{array} \in \mathcal{P}_{r,l},
\]

where the $*$ is the standard involution on \mathcal{P}_\bullet. Notice that B_n is a finite dimensional C^*-algebra under \dagger, so B_n has a unique C^*-norm.

Definition 4.2. Let $\Gamma(n)$ be the truncation of Γ to depth n, and let $V(\Gamma(n))$ be its vertices.

Remark 4.3. Note that $B_n \cong \bigoplus_{\alpha \in V(\Gamma_n)} M_{n(\alpha)}(\mathbb{C})$, where $n(\alpha)$ represents the multiplicity of p_α in B_n, and p_α is a representative of the vertex $\alpha \in V(\Gamma(n))$.

Observe that B_n is canonically a non-unital, hereditary subalgebra of B_{n+1}. Furthermore, the uniqueness of the C^*-norm on each B_n implies that there is a unique C^*-norm on $\bigcup_n B_n$.

Definition 4.4. Define the C^*-algebra $B = B(\mathcal{P}_\bullet) = \varprojlim B_n = \bigcup_{n \geq 0} B_n$.

Remark 4.5. From the preceding discussion, as a C^*-algebra, $B \cong \bigoplus_{\alpha \in V(\Gamma)} K$.

In what follows, we construct $B - B$ Hilbert bimodules.

Definition 4.6. Consider the external direct sum

\[
X_n = \bigoplus_{l,r=1}^\infty \mathcal{P}_{l,n,r},
\]

where diagrammatically, an element $x \in \mathcal{P}_{l,n,r}$ can be seen as $x = \begin{array}{c}
\begin{array}{c}
\hline
l & x & r
\end{array}
\end{array}$. We use the convention that $X = X_1$. We have an involution \dagger on X_n defined as follows. If $x \in \mathcal{P}_{l,n,r}$, then

\[
x^\dagger = \begin{array}{c}
\begin{array}{c}
\hline
r & x^* & l
\end{array}
\end{array} \in \mathcal{P}_{r,n,l}.
\]

Moreover, X_n has a B-valued inner product given by the sesquilinear extension of

\[
\langle x | y \rangle_B = \delta_{l,l'} \begin{array}{c}
\begin{array}{c}
\hline
l & x^* & l
\end{array}
\end{array}
\begin{array}{c}
\begin{array}{c}
\hline
r & y & r'
\end{array}
\end{array}
\]

for $x \in \mathcal{P}_{l,n,r}$ and $y \in \mathcal{P}_{l',n,r'}$. However, note that so far, the B-valued inner product only takes values in $\bigcup_{n \geq 0} B_n$.

Define a norm on X_n by $\|x\|_{X_n}^2 = \|\langle x | x \rangle_B\|_B$.

22
Before we continue, we need to show that the involution \dagger is continuous on X_n. The following two propositions accomplish just that.

Proposition 4.7. Consider the capping map $R_k : \cup_{n \geq 0} B_n \rightarrow \cup_{n \geq 0} B_n$ which is given by linear extension of

$$R_k \left(\begin{array}{c} l \\ b \\ r \end{array} \right) = \begin{cases} l - k & \text{if } l, r \geq k \\ b & \text{if } 0 \end{cases}$$

Then $\|R_k(b)\|_B \leq \delta^k \|b\|_B$, so R_k extends continuously to B.

Proof. Let $b \in B_n$ for some n. We may assume that $b \in \bigoplus_{l, r \geq k} P_{l, r}$. Let

$$\iota_{n,k} : B_n \rightarrow \left(\sum_{j=k}^{n+k} 1_j \right) B \left(\sum_{j=k}^{n+k} 1_j \right) \text{ by } a \mapsto \begin{array}{c} 1_j \\ a \\ 1_j \end{array}$$

Note that $\iota_{n,k}$ is a unital inclusion. Let

$$E_{n,k} : \left(\sum_{j=k}^{n+k} 1_j \right) B \left(\sum_{j=k}^{n+k} 1_j \right) \rightarrow \iota_{n,k}(B_n)$$

be the Tr-preserving conditional expectation. Then $E_{n,k}$ has norm 1. It is a straightforward diagrammatic argument to see for all b as above, $R_k(b) = \delta^k E_{n,k}(b)$. This gives the desired bound. \qed

Proposition 4.8. For $x \in X_n$, $\|x\|_{X_n} \leq \delta^{n/2} \|x^\dagger\|_{X_n}$.

Remark 4.9. Note that this proposition also implies $\|x\|_{X_n} \geq \delta^{-n/2} \|x^\dagger\|_{X_n}$.

Proof. Let $x \in X_n$, and write x as a finite sum

$$x = \sum_{l, r} \begin{array}{c} l \\ x_{l,r} \\ r \end{array}.$$

Let $\bar{x}_{l,r}$ be the following element of B:

$$\bar{x}_{l,r} = \begin{array}{c} l + n \\ x_{l,r} \\ r \end{array},$$

and let $\bar{x} = \sum_{l, r} \bar{x}_{l,r}$. By drawing the right diagrams, $\|x\|_{X_n} = \|\bar{x}^\dagger \cdot \bar{x}\|_B^{1/2}$, and

$$\|x^\dagger\|_{X_n} = \|R_n(\bar{x} \cdot \bar{x}^\dagger)\|_B^{1/2} \leq \delta^{n/2} \|\bar{x} \cdot \bar{x}^\dagger\|_B^{1/2} = \delta^{n/2} \cdot \|\bar{x}^\dagger \cdot \bar{x}\|_B^{1/2} = \delta^{n/2} \|x\|_{X_n}.$$

In the string of inequalities, we used that B is a C^*-algebra under the involution \dagger. \qed
Definition 4.10. Let $X_n = \mathcal{X}_n(\mathcal{P}_\ast)$ be the completion of X_n with respect to $\| \cdot \|_{X_n}$, where again, we use the convention that $\mathcal{X} = \mathcal{X}_1$. We also use the convention that $\mathcal{X}_0 = \mathcal{B}$. By Proposition 4.8, the involution \dagger extends continuously to each \mathcal{X}_n.

For each m, there are natural left and right actions of \mathcal{B}_m on \mathcal{X}_n, namely the extensions of the actions on \mathcal{X}_n given by

$$b \cdot x = \delta_{r,l} \cdot b \cdot x$$

and

$$x \cdot b = \delta_{r',l} \cdot x \cdot b.$$

Moreover, the operator norm of the left action of $b \in \mathcal{B}_m$ on \mathcal{X}_n is equal to $\|b\|_{\mathcal{B}}$ since \mathcal{B}_m has a unique C^*-norm, so we get an isometric embedding of \mathcal{B} into $L(\mathcal{X}_n)$.

Proposition 4.11. $\mathcal{X}_n \cong \bigotimes^n_{\mathcal{B}} \mathcal{X}$.

Proof. We first prove by induction on n that the \mathcal{B} valued inner product on $\bigotimes^n_{\mathcal{B}} \mathcal{X}$ is given on simple tensors by

$$\langle x_1 \otimes \cdots \otimes x_n | y_1 \otimes \cdots \otimes y_n \rangle_{\mathcal{B}} = \begin{array}{c}
\xymatrix{
x^* \ar@{..}[r] & x_1^* \ar[r] & \cdots \ar[r] & y_1 \ar[r] & \cdots \ar[r] & y_n}
\end{array}.$$

For $n = 1$, this is a tautology. Assume the result holds for $\bigotimes^{n-1}_{\mathcal{B}} \mathcal{X}$. Then on $\bigotimes^n_{\mathcal{B}} \mathcal{X}$, we have

$$\langle x_1 \otimes x_2 \otimes \cdots \otimes x_n | y_1 \otimes y_2 \otimes \cdots \otimes y_n \rangle_{\mathcal{B}} = \langle x_2 \otimes \cdots \otimes x_n | \langle x_1 | y_1 \rangle_{\mathcal{B}} \cdot y_2 \otimes \cdots \otimes y_n \rangle_{\mathcal{B}}.$$

By the induction hypothesis, this inner product is

$$\begin{array}{c}
\xymatrix{
x^* \ar@{..}[r] & x_1^* \ar[r] & \cdots \ar[r] & y_1 \ar[r] & \cdots \ar[r] & y_n}
\end{array}.$$

We now define a map $U_n : \bigotimes^n_{\mathcal{B}} \mathcal{X} \to \mathcal{X}_n$ by

$$U_n(x_1 \otimes \cdots \otimes x_n) = \begin{array}{c}
\xymatrix{
x_1 \ar@{..}[r] & \cdots \ar[r] & x_n}
\end{array}.$$

Note that U_n is a $\mathcal{B} - \mathcal{B}$ bimodule map which is \mathcal{B} middle linear and preserves the \mathcal{B} valued inner product. Therefore it is an isometry. Let $x \in \mathcal{P}_{l,n,r}$, and define \hat{x} and $c_k \in \mathcal{P}_{k+1,k}$ as follows:

$$\hat{x} = \begin{array}{c}
\xymatrix{\xymatrix{l}}\xymatrix{x \ar[r]^{r+n} & x} \end{array} \quad \text{and} \quad c_k = \begin{array}{c}
\xymatrix{\xymatrix{k}}\xymatrix{c_k}
\end{array}.$$

Then $\hat{x} \in \mathcal{B}$, $c_k \in \mathcal{X}$, and $U_n(\hat{x}c_{n+r-1} \otimes c_{n+r-2} \otimes \cdots \otimes c_r) = x$. Therefore, U_n has dense range, and since it is an isometry, it is surjective. \hfill \Box
Definition 4.12. The Pimsner-Fock space is given by \(\mathcal{F}(\mathcal{P}_*) = \bigoplus_{n \geq 0} \mathcal{X}_n \cong \bigoplus_{n \geq 0} \bigotimes^n_B \mathcal{X} \).

Remark 4.13. The involution \(\dagger \) defined on each \(\mathcal{X}_n \) does not extend continuously to \(\mathcal{F}(\mathcal{P}_*) \). Indeed, if we set \(C_k \) to be the diagram \(\begin{array}{c} \vdots \\ \end{array} \), then \(\| C_k \|_B = \delta^{n/2} \) and \(\| C_k \|_B = 1 \). An involution on \(\mathcal{F}(\mathcal{P}_*) \) is not required in the sections that follow. We will only use that \(\mathcal{X} \) has a well defined involution.

Before we define our Pimsner-Toeplitz algebra, we need to know that \(B \) acts on \(\mathcal{X} \) by compact operators.

Proposition 4.14. Let \(p_\alpha \) be a representative of the vertex \(\alpha \in V(\Gamma) \). Then \(p_\alpha \) is a linear combination of rank 1 operators. Hence \(B \subset K(\mathcal{X}) \).

Proof. We write \(\beta \sim \alpha \) if \(\alpha \) and \(\beta \) are the endpoints of at least one edge in \(E(\Gamma) \). For each \(\beta \sim \alpha \), we observe that \(\text{dim}(p_\alpha \mathcal{X} p_\beta) \) is \(n_\beta \) where there are \(n_\beta \) edges with endpoints \(\alpha \) and \(\beta \). Pick an orthogonal basis \(\{ g(\beta)_i \}_{i=1}^{n_\beta} \) for \(p_\alpha \mathcal{X} p_\beta \) under the inner product \(\text{Tr}(\langle \cdot | \cdot \rangle_B) \).

We claim

\[
p_\alpha = \sum_{\beta \sim \alpha} \sum_{i=1}^{n_\beta} |g(\beta)_i\rangle \langle g(\beta)_i|.
\]

Indeed, if \(x \in p_\gamma \mathcal{X} \) and \(\gamma \neq \alpha \), then both sides of the equation send \(x \) to zero. Otherwise, we may assume \(x \in p_\alpha \mathcal{X} \) is of the form

\[
x = \begin{array}{c} \vdots \\ \end{array} \quad b
\]

for \(\beta \sim \alpha \) and \(b \in B \). Clearly, \(p_\alpha \cdot x = x \). As for \(y = \sum_{i=1}^{n_\beta} |g_i\rangle \langle g_i| \), the orthogonality relations give

\[
y \cdot x = g(\beta)_i \langle g(\beta)_i | g(\beta)_i \rangle_B \cdot b = \langle g(\beta)_i | p_\beta \rangle b = g(\beta_i) \cdot b \]

so we have the desired equality. \(\square \)

4.2 The Pimsner-Toeplitz and free semicircular algebras

On \(\mathcal{F}(\mathcal{P}_*) \), we have creation and annihilation operators as follows.

Definition 4.15. Let \(x \in \mathcal{P}_{l,r} \subset \mathcal{X} \). We define the \(x \) creation operator \(L_+(x) \) on \(\mathcal{F}(\mathcal{P}_*) \) by the linear extension of its action on \(y \in \mathcal{P}_{n,r} \):\[
L_+(x)y = \begin{pmatrix} \vdots \newline x \newline \vdots \end{pmatrix} \begin{pmatrix} \vdots \newline y \newline \vdots \end{pmatrix} = \delta_{r,r'} \begin{pmatrix} \vdots \newline x \newline \vdots \end{pmatrix} \begin{pmatrix} \vdots \newline y \newline \vdots \end{pmatrix}.
\]
We define the \(x \) annihilation operator \(L_-(x) \) on \(\mathcal{F}(\mathcal{P}_\bullet) \) by the extension of
\[
L_-(x)y = \begin{pmatrix}
\ell & x & r
\end{pmatrix}_\ell^r y^{n-r'} = \delta_{r,r'} \begin{pmatrix}
\ell & x & r
\end{pmatrix}_\ell^r y^{n-r'}.
\]
Note that \((L_+(x))^* = L_-(x^\dagger)\).

The following proposition shows these operators generate a Pimsner-Toeplitz algebra:

Proposition 4.16. The operators \(L_+(x) \) and \(L_-(x) \) acting on \(\mathcal{F}(\mathcal{P}_\bullet) \) are bounded. Furthermore, together with \(\mathcal{B} \), the \(C^* \)-algebra they generate is isomorphic to the Pimsner-Toeplitz algebra \(\mathcal{T}(\mathcal{X}) \).

Proof. Consider the map \(U: \bigoplus_{n \geq 0} \bigotimes_{\mathcal{B}}^n \mathcal{X} \to \mathcal{F}(\mathcal{P}_\bullet) \) which is defined by \(U(y_1 \otimes \cdots \otimes y_n) = U_n(y_1 \otimes \cdots \otimes y_n) \) with \(U_n \) as in the proof of Proposition 4.11. The operator \(U \) is unitary, and it is easy to verify that \(U \) intertwines the action of the two definitions of \(L_+(x) \) from Definitions 2.3 and 4.15.

Definition 4.17. We refer to the \(C^* \)-algebra generated by \(\mathcal{B} \) and \(\{ L_+(x)|x \in \mathcal{X} \} \) as \(\mathcal{T}(\mathcal{P}_\bullet) \).

Remark 4.18. One can think of \(\mathcal{T}(\mathcal{P}_\bullet) \) as being generated by operators of the form
\[
L_\ell(x) = \begin{pmatrix}
\ell & x & r
\end{pmatrix}_\ell^r x^{k-r}
\]
where
\[
\begin{pmatrix}
\ell & x & r
\end{pmatrix}_\ell^r (\begin{pmatrix}
k & \xi
\end{pmatrix}) = \begin{cases}
0 & \text{if } k < r \\
\begin{pmatrix}
\ell & x & r
\end{pmatrix}_\ell^r \xi^{k-r} & \text{if } r \geq k.
\end{cases}
\]
Indeed, if \(c_k \) as in Proposition 4.11, then
\[
L_\ell(x) = L_+(c_{\ell}) \cdots L_+(c_{\ell+\ell-2})L_+(c_{\ell+\ell-1})(b)L_-(c_{r+r-1})L_-(c_{r+r-2}) \cdots L_-(c_{\ell})
\]
where \(b = \begin{pmatrix}
\ell + \ell & x & r + \tau
\end{pmatrix}^{r+\tau} \in \mathcal{B} \).

Definition 4.19. Let \(\mathcal{X}_\mathbb{R} \) be the closed real subspace \(\{x \in \mathcal{X}|x = x^\dagger\} \subset \mathcal{X} \). We define the \(\mathcal{B} \)-valued semicircular algebra \(\mathcal{S}(\mathcal{P}_\bullet) \) to be the \(C^* \)-subalgebra of \(\mathcal{T}(\mathcal{P}_\bullet) \) spanned by the (self-adjoint) elements \(L_+(\xi) + L_-(\xi) \) for \(\xi \in \mathcal{X}_\mathbb{R} \).

Note that \(\mathcal{S}(\mathcal{P}_\bullet) \) is isomorphic to the algebra generated by \(\{L_+(x) + L_+(x^\dagger)|x \in \mathcal{X}_\mathbb{R}\} \) and \(\mathcal{B} \) as operators on \(\bigoplus_{n \geq 0} \bigotimes_{\mathcal{B}}^n \mathcal{X} \). We may also view generators of \(\mathcal{S}(\mathcal{P}_\bullet) \), just as in the presentation of \(\mathcal{S}_0(\mathcal{P}_\bullet) \) is Subsection 3.4, where we sum over all placements of the dot on the top.

Proposition 4.20. \(\mathcal{S}(\mathcal{P}_\bullet) \) is generated by \(\mathcal{B} \) and \(\left\{ \sum_{\ell+\tau=n} \begin{pmatrix}
\ell & x & r
\end{pmatrix}_\ell^r | n \geq 0 \text{ and } x \in \mathcal{P}_{l,n,r} \right\} \).
Proof. Let A be the C^*-algebra generated by the sums above. It is clear that $S(P_\bullet) \subset A$. To show the other inclusion, will prove by induction on n that each sum is in $S(P_\bullet)$.

If $n = 1$, we see that

\[x + x = \frac{1}{2}[L_+(x + x^\dagger) + L_-(x + x^\dagger) + i(L_+(-i(x - x^\dagger)) + L_-(-i(x - x^\dagger))]. \]

We now assume that the result holds for up to $n - 1$ marked points at the top of the box. We need only show that

\[\sum_{m+k=n} \ell \in S(P_\bullet) \]

when x is of the form

\[x = \begin{array}{c}
 x_1 \\
 y
\end{array} \]

We see that

\[\left(\begin{array}{c}
 x_1 \\
 x_1
\end{array} \right) \cdot \sum_{\ell + \tau = n - 1} \ell \in S(P_\bullet) \]

By the inductive hypothesis, the left hand side and the first summation on the right hand side is in $S(P_\bullet)$. Therefore, all terms are in $S(P_\bullet)$. \qed

It is important to note that this proposition proves the following:

Proposition 4.21. $S(P_\bullet)$ is generated by B and $\{L_+(x) + L_-(x)|x \in X\}$.

Remark 4.22. Proposition 4.20 shows that we may regard $S(P_\bullet)$ as generated by operators $x \in P_{l,n,r}$. The action of x on $y \in F(P_\bullet)$ is given by:

\[x \cdot \begin{array}{c}
 m \\
 \xi
\end{array} = \sum_{k=0}^{\min\{n,m\}} \begin{array}{c}
 x \\
 y
\end{array} \]

This diagram also shows how to multiply x and y when they are viewed in the algebra $S(P_\bullet)$. This is exactly the product that appears in [JSW10]. We will show $S(P_\bullet)$ is isomorphic to the semifinite GJS algebra in [HP14, Lemma 3.3].

4.3 The Cuntz-Pimsner algebra

As $T(P_\bullet)$ is isomorphic the the Pimsner-Toeplitz algebra acting on $F(P_\bullet)$, it contains $K(P_\bullet) = K(F(P_\bullet))$. This allows us to define our Cuntz-Pimsner algebra over X.

Definition 4.23. The Cuntz-Pimnser algebra $O(P_\bullet)$ is the C^*-algebra $T(P_\bullet)/K(P_\bullet)$.

27
Definition 4.24. From Definition 2.4, there is a canonical \mathbb{R}-action $\sigma : \mathbb{R} \to \text{Aut}(\mathcal{T}(\mathcal{P}_\bullet))$ given by the extension of

$$
\sigma_t \left(\begin{array}{c|c}
\ell & r \\
\hline
x & \\
\end{array} \right) = e^{i(\ell-r)t} \left(\begin{array}{c|c}
\ell & r \\
\hline
x & \\
\end{array} \right),
$$

which again induces a \mathbb{T}-action. We define the core of $\mathcal{T}(\mathcal{P}_\bullet)$ as the fixed points under the \mathbb{T}-action, i.e., $\mathcal{T}(\mathcal{P}_\bullet)^\mathbb{T}$. Note that just as in Subsection 3.1, σ_t is norm continuous in t, so we define the conditional expectation $E : \mathcal{T}(\mathcal{P}_\bullet) \to \text{core}(\mathcal{T}(\mathcal{P}_\bullet))$ by

$$
E(x) = \int_{\mathbb{T}} \gamma_z(x)dz
$$

where the measure is normalized Lebesgue measure.

We have a \mathcal{B}-valued expectation ϕ on $\text{core}(\mathcal{T}(\mathcal{P}_\bullet))$ given by

$$
\phi(L_n(x)) = \phi \left(\begin{array}{c|c}
n & n \\
\hline
x & \\
\end{array} \right) = \delta^n \cdot \left(\begin{array}{c|c}
n & n \\
\hline
x & \\
\end{array} \right).
$$

Note that ϕ extends continuously to $\text{core}(\mathcal{T}(\mathcal{P}_\bullet))$ and is faithful on elements of the form $\phi(L_n(x))$ as above. We therefore obtain a \mathcal{B}-valued conditional expectation $\psi = \phi \circ E$ defined on $\mathcal{T}(\mathcal{P}_\bullet)$.

The map ψ induces the weight $\Psi = \text{Tr} \circ \psi$ which is defined on $\mathcal{T}(\mathcal{P}_\bullet)^+$ and takes values in $[0, \infty]$. The techniques of Subsections 3.2 and 3.3 can be used to show that Φ is KMS with inverse temperature $\ln(\delta)$, and the ideal generated by

$$
\{ x \in \mathcal{T}(\mathcal{P}_\bullet)^+ | \Psi(x) = 0 \}
$$

is $\mathcal{K}(\mathcal{P}_\bullet)$. Therefore, Ψ drops to a faithful KMS weight on $\mathcal{O}(\mathcal{P}_\bullet)$.

4.4 Functoriality of the construction

In this subsection, we will show that if \mathcal{P}_\bullet and \mathcal{Q}_\bullet are factor planar algebras, and $i : \mathcal{Q}_\bullet \to \mathcal{P}_\bullet$ is a planar algebra homomorphism, then i induces a map between the corresponding Pimsner-Toeplitz, Cuntz-Pimsner, and free semicircular algebras. Note that any such i must be injective due the fact that the inner product tangle is positive definite, and $\mathcal{P}_0 \cong \mathbb{C} \cong \mathcal{Q}_0$.

To begin, recall that

$$
\mathcal{B}_n(\mathcal{P}_\bullet) = \bigoplus_{l,r=1}^n \mathcal{P}_{l,r} \quad \text{and} \quad \mathcal{B}(\mathcal{P}_\bullet) = \lim_{\leftarrow} \mathcal{B}_n(\mathcal{P}_\bullet)
$$

$$
\mathcal{B}_n(\mathcal{Q}_\bullet) = \bigoplus_{l,r=1}^n \mathcal{Q}_{l,r} \quad \text{and} \quad \mathcal{B}(\mathcal{Q}_\bullet) = \lim_{\leftarrow} \mathcal{B}_n(\mathcal{Q}_\bullet)
$$

28
with C^*-algebra structure as described in Subsection 4.1. Note that i induces a C^*-algebra inclusion $\mathcal{B}_n(Q_*) \hookrightarrow \mathcal{B}_n(P_*)$ and hence an inclusion $i_B : \mathcal{B}(Q_*) \hookrightarrow \mathcal{B}(P_*)$. Recall that
\[
\mathcal{X}(P_*) = \bigoplus_{l,r=1}^{\infty} \mathcal{P}_{l,1,r} \quad \text{and} \quad \mathcal{X}(Q_*) = \bigoplus_{l,r=1}^{\infty} \mathcal{Q}_{l,1,r}
\]
with $\mathcal{B}(P_*) - \mathcal{B}(P_*)$ (respectively $\mathcal{B}(Q_*) - \mathcal{B}(Q_*)$) bimodule structure as described in Subsection 4.1. Furthermore we see that the map i induces a bimodule map from $i_X : \mathcal{X}(Q_*) \to \mathcal{X}(P_*)$ which satisfies $i_X(b_1 \cdot \xi \cdot b_2) = i_B(b_1) \cdot i_X(\xi) \cdot i_B(b_2)$.

We are now ready for the main theorem of this subsection.

Theorem 4.25. The assignment P_* to $\mathcal{T}(P_*)$, $S(P_*)$, and $O(P_*)$ is functorial in the following sense. If $i : Q_* \to P_*$ is an inclusion of factor planar algebras, then i induces an injective C^*-algebra homomorphism $i_A : \mathcal{A}(Q_*) \to \mathcal{A}(P_*)$ with $A \in \{T, O, S\}$. The map i_T satisfies and is uniquely determined by
\[
\begin{align*}
& i_T(b) = i_B(b) \text{ for } b \in \mathcal{B}(Q_*) \quad \text{and} \\
& i_T(L_+)(\xi) = L_+(i_X(\xi)).
\end{align*}
\]

Proof. We consider the C^*-subalgebra of $\mathcal{T}(P_*)$ which is generated by $i_B(\mathcal{B}(Q_*))$ and the elements $L_+(\xi)$ for $\xi \in i_X(\mathcal{X}(Q_*))$. We note that the following relations hold:
\[
\begin{align*}
& (a_1 L_+(i_X(\xi_1)) + a_2 L_+(i_X(\xi_2)) = L_+(a_1 i_X(\xi_1) + a_2 i_X(\xi_2)) \quad \text{for } a_i \in \mathbb{C} \text{ and } \xi_i \in \mathcal{X}(Q_*). \\
& i_B(a) \cdot L_+(i_X(\xi)) \cdot i_B(b) = L_+(i_B(a) \cdot \xi \cdot i_B(b)) \quad \text{for } \xi \in \mathcal{X}(Q_*) \text{ and } a, b \in \mathcal{B}(Q_*). \\
& L_+(i_X(\eta))^* L_+(i_X(\xi)) = \langle i_X(\eta) | i_X(\xi) \rangle_{\mathcal{B}(P_*)} = i_B(\langle \eta | \xi \rangle_{\mathcal{B}(Q_*)}).
\end{align*}
\]

The last equality holds since the $\mathcal{B}(P_*)$ and $\mathcal{B}(Q_*)$ valued inner products are induced from the planar operad. Since $i_B : \mathcal{B}(Q_*) \to \mathcal{B}(P_*)$ is an injection, the universality of Pimsner-Toeplitz algebras [Pim97] implies that i induces a C^*-algebra homomorphism $i_T : \mathcal{T}(Q_*) \to \mathcal{T}(P_*)$. The map i_T satisfies and is uniquely determined by the equations claimed above.

We now show that i_T is injective. Let \mathcal{X}_{Q_*} be the closure of the subspace of $\mathcal{F}(P_*)$ spanned by boxes in $i(Q_*)$, and note that \mathcal{X}_{Q_*} is naturally an $\mathcal{B}(\mathcal{B}(Q_*) \hookrightarrow \mathcal{B}(P_*)$ Hilbert bimodule. We define a map $U : \mathcal{F}(Q_*) \to \mathcal{X}_{Q_*}$ which is initially defined on diagrams and is given by linear extension of the formula
\[
U(\xi) = i(\xi) \text{ for } \xi \in Q_{l,n,r}.
\]
We see that $U(b_1 \cdot \xi \cdot b_2) = i_B(b_1) \cdot U(\xi) \cdot i_B(b_2)$, and $\langle U(\eta) | U(\xi) \rangle_{\mathcal{B}(P_*)} = i_B(\langle \eta | \xi \rangle_{\mathcal{B}(Q_*)})$, and by construction, U has dense range. Therefore, U extends to be a unitary satisfying
\[
UL_+(\xi)U^* = L_+(i_X(\xi)).
\]
This shows that U intertwines the action of $\mathcal{T}(Q_*)$ on $\mathcal{F}(P_*)$ and the action of $i_T(\mathcal{T}(Q_*)$ on \mathcal{X}_{Q_*}. Therefore i_T is injective.

The map i_T sends $S(Q_*)$ into $S(P_*)$, so the assignment P_* to $S(P_*)$ is functorial as well. Finally, note that if $x \in K(Q_*)$ then $i_T(x) \in K(P_*)$. This shows that i_T induces a map $O(Q_*) \to O(P_*)$. Theorem 5.14 and Lemma 5.29 below show that $O(Q_*)$ is simple, implying that the map is injective. □
Example 4.26. A common example of an inclusion of planar algebras is the inclusion of
the Temperley-Lieb planar subalgebra $\mathcal{T}\mathcal{L}_\bullet \hookrightarrow \mathcal{P}_\bullet$.

Example 4.27. Another common example arises from equivariantization, i.e., when \mathcal{Q}_\bullet is
the fixed points of \mathcal{P}_\bullet under the action of some finite group G of planar algebra automor-
phisms. In this case, one can show that each $g \in G$ induces an automorphism of $\mathcal{A}(\mathcal{P}_\bullet)$, and $\mathcal{A}(\mathcal{P}_\bullet)^G \cong \mathcal{A}(\mathcal{Q}_\bullet)$ for $\mathcal{A} \in \{\mathcal{T}, \mathcal{O}, \mathcal{S}\}$.

Remark 4.28. Theorem 5.32 below will show that the assignments \mathcal{P}_\bullet to $\mathcal{O}_0(\mathcal{P}_\bullet)$ and $\mathcal{S}_0(\mathcal{P}_\bullet)$
are functorial.

5 Compressions of the operator-valued system

In this section, we investigate a compression of \mathcal{B} which induces a compression of \mathcal{X}, leading
to subsequent compressions of $\mathcal{F}(\mathcal{P}_\bullet)$, $\mathcal{T}(\mathcal{P}_\bullet)$, $\mathcal{O}(\mathcal{P}_\bullet)$, and $\mathcal{S}(\mathcal{P}_\bullet)$. While the compressing
projections from Γ are not in general canonical, the resulting compressions are isomorphic
to canonical objects associated to an oriented graph $\vec{\Gamma}$ obtained from Γ.

First, we get a spatial isomorphism from the compression of \mathcal{X} to the Cuntz-Krieger
bimodule of $\vec{\Gamma}$ from [FR99, Example 1.2]. This spatial isomorphism implements isomorphisms between

- the compression of $\mathcal{F}(\mathcal{P}_\bullet)$ and the Fock space of the Cuntz-Krieger bimodule [FR99, Example 1.4],
- the compression of $\mathcal{T}(\mathcal{P}_\bullet)$ and the universal Toeplitz-Cuntz-Krieger algebra $\mathcal{T}_\vec{\Gamma}$ [FR99],
- the compression of $\mathcal{O}(\mathcal{P}_\bullet)$ and the Cuntz-Krieger algebra $\mathcal{O}_\vec{\Gamma}$ [CK80], and
- the compression of $\mathcal{S}(\mathcal{P}_\bullet)$ and the free graph algebra $\mathcal{S}(\vec{\Gamma})$.

The free graph algebra $\mathcal{S}(\vec{\Gamma})$ is analogous to the free graph von Neumann algebras associated
to arbitrary unoriented weighted graphs appearing in [GJS11, BKS12, Har13]. In particular,
in Subsection 5.3, we discuss the free semicircular graph algebra $\mathcal{S}(\Lambda, \mu)$ associated to an
arbitrary unoriented weighted graph (Λ, μ) (which is not necessarily a principal graph) and
how it sits inside the (Toeplitz-)Cuntz-Krieger algebra.

In Subsection 5.5, we discuss a further compression by p_\bullet which recovers the GJSW-
Doplicher-Roberts system of Section 3. Finally, in Subsection 5.6, we briefly sketch the case
of a shaded subfactor planar algebra.

5.1 Compressing \mathcal{B} and \mathcal{X}

For each $\alpha \in V(\Gamma)$, choose a representative $p_\alpha \in P_{2\text{depth}(\alpha)} \subset 1_{\text{depth}(\alpha)} B_{1\text{depth}(\alpha)}$. Set $P_n = \sum_{\alpha \in V(\Gamma(n))} p_\alpha$, and notice that $P_n B P_n$ is naturally a subspace of $P_{n+1} B P_{n+1}$. In fact, $P_n B P_n \cong C(V(\Gamma(n)))$, and the inclusion $P_n B P_n \hookrightarrow P_{n+1} B P_{n+1}$ is the natural inclusion $C(V(\Gamma(n))) \hookrightarrow C(V(\Gamma(n+1)))$. Let

$$\mathcal{C} = \mathcal{C}(\mathcal{P}_\bullet) = \lim_{\to} P_n B P_n \cong C_0(V(\Gamma)),$$
which is our compression of \(\mathcal{B} \).
Note that \(\mathcal{C} \) induces a compression of \(\mathcal{X} \) as follows. Let
\[
\mathcal{Y} = \mathcal{Y}(\mathcal{P}_\bullet) = \mathcal{C}\mathcal{X}\mathcal{C}^{\parallel x} = \lim_{\to} P_n \mathcal{X} P_n.
\]
Moreover, \(\mathcal{Y} \) carries a \(\mathcal{B} \)-valued inner product, which is actually just a \(\mathcal{C} \)-valued inner product. Hence \(\mathcal{Y} \) is a Hilbert \(\mathcal{C} - \mathcal{C} \) bimodule.

Remark 5.1. If \(\Gamma \) is simply laced and acyclic, then there is a unique choice for each \(p_{\alpha} \), and \(\mathcal{Y} \) is canonical.
If \(\Gamma \) is not simply laced or not acyclic, it is clear from the above definition that if we chose different representatives \(p'_\alpha \) for the vertices \(\alpha \), the resulting projections \(P'_n \) are equivalent in \(\mathcal{B} \) to the \(P_n \). Such a partial isometry implementing the equivalence is unique up to a choice of phase for each \(\alpha \), since minimal projections in a matrix algebra are equivalent by a unique partial isometry up to a phase.

We now identify \(\mathcal{Y} \) with the Cuntz-Krieger bimodule \(Y(\vec{\Gamma}) \) from Definition 2.12.

Definition 5.2. For the principal graph \(\Gamma \) of \(\mathcal{P}_\bullet \), let \(\vec{\Gamma} \) be as in Definition 2.20. Let
\[
E(\alpha \to \beta) = \left\{ \epsilon \in E(\vec{\Gamma}) \big| s(\epsilon) = \alpha \text{ and } t(\epsilon) = \beta \right\}.
\]
We note that \(\mathcal{Y} \) is spanned by elements of the form \(p_{\alpha}xp_{\beta} \) for \(x \in \mathcal{X} \). Diagrammatically, these elements look like
\[
\begin{array}{c}
\xymatrix{ & x \ar[rr] & & p_{\beta} \ar[ll] & \\
p_{\alpha} & & & & \\
\}
\end{array}
\]
where there is only one strand on top. We note that \(p_{\alpha}\mathcal{Y}p_{\beta} \) is finite dimensional, and \(\dim(p_{\alpha}\mathcal{Y}p_{\beta}) = |E(\alpha \to \beta)| \). This observation will help us define our edge elements.

Definition 5.3 (Edge elements). For each edge \(\epsilon \in E(\vec{\Gamma}) \), we define an edge element \(g_{\epsilon} \).

1. Choose an orthonormal basis \(\{g_{\epsilon} \big| \epsilon \in E(\alpha \to \alpha)\} \) of \(p_{\alpha}\mathcal{Y}p_{\alpha} \) under the inner product
\[
\langle x|y \rangle = \begin{array}{c}
\xymatrix{ & x & \\
& & y \ar[ul] & \\
\}
\end{array},
\]
where each \(g_{\epsilon} \) is self-adjoint.

2. Suppose \(\alpha \neq \beta \). Choose an orthonormal basis \(\{g_{\epsilon} \big| \epsilon \in E(\alpha \to \beta)\} \) of \(p_{\alpha}\mathcal{Y}p_{\beta} \). We note that \(\{g_{\epsilon}^\dagger \big| \epsilon \in E(\alpha \to \beta)\} \) gives an orthonormal basis of \(p_{\beta}\mathcal{Y}p_{\alpha} \). Thus, for \(\epsilon \in E(\beta \to \alpha) \), we define \(g_{\epsilon} = g_{\epsilon}^\dagger \). Therefore, if \(\epsilon \) is not a loop, then \(g_{\epsilon} \in p_{s(\epsilon)}\mathcal{Y}p_{t(\epsilon)} \) and \(g_{\epsilon}^\dagger = g_{\epsilon}^\text{op} \).

Remark 5.4. If \(\epsilon \in E(\alpha \to \beta) \), we visualize the edge element as
\[
g_{\epsilon} = \begin{array}{c}
\xymatrix{ & & & x \ar[rr] & & p_{\beta} \ar[ll] & \\
p_{\alpha} & & & & & & \\
\}
\end{array}
\]
with the source projection on the left and the target projection on the right.
We now identify \mathcal{Y} with $Y(\vec{\Gamma})$ from Definition 2.12. We need the following lemma.

Lemma 5.5.

1. If $\epsilon, \epsilon' \in E(\vec{\Gamma})$, then $\langle g_{\epsilon'} | g_\epsilon \rangle_C = \frac{\delta_{\epsilon,\epsilon'}}{\text{Tr}(p_{t(\epsilon)})} \cdot p_{t(\epsilon)}$.

2. $p_\alpha g_\epsilon = \delta_{s(\epsilon) = \alpha} g_\epsilon$ and $g_\epsilon p_\alpha = \delta_{t(\epsilon) = \alpha} g_\epsilon$.

Proof.

(1) First, we note that the C-valued inner product must be zero unless $s(\epsilon') = s(\epsilon)$. Let $\alpha = t(\epsilon') = s((\epsilon')^\text{op})$ and $\beta = t(\epsilon)$. Then we have

$$\langle g_{\epsilon'} | g_\epsilon \rangle_C = \begin{cases} r' & g_{\epsilon'} \end{cases} \in p_\alpha C p_\beta = \begin{cases} 0 & \text{if } \alpha \neq \beta \\ \text{span}\{p_\alpha\} & \text{if } \alpha = \beta. \end{cases}$$

Assuming $\alpha = \beta$, by the orthonormality of the edge elements in $p_{s(\epsilon)} Y p_{t(\epsilon)}$, we observe

$$\begin{cases} r' & g_{\epsilon'} \end{cases} = \begin{cases} \delta_{\epsilon,\epsilon'} \end{cases},$$

and the result follows.

(2) This is immediate from the definition of g_ϵ. \hfill \square

Proposition 5.6. There is a spatial isomorphism $\mathcal{Y} \cong Y(\vec{\Gamma})$ of Hilbert $C - C$ bimodules.

Proof. We construct a unitary $U : Y(\vec{\Gamma}) \rightarrow \mathcal{Y}$. We initially define U on finitely supported functions by the formula $U(\delta_\epsilon) = \sqrt{\text{Tr}(p_{t(\epsilon)})} \cdot g_\epsilon$. Lemma 5.5 shows that U preserves the C-valued inner products, the $C - C$ bimodule structure, and has dense range. Therefore, U can be extended to $Y(\vec{\Gamma})$, giving the isomorphism. \hfill \square

5.2 Induced isomorphisms

Definition 5.7. Define $\mathcal{F}(\Gamma) = \overline{C F(P_\bullet) C}^{\|\|_{F(P_\bullet)}}$ and $\mathcal{Y}_m = \overline{C X_m C}^{\|\|_{X_m}}$. Using the convention that $\mathcal{Y} = \mathcal{Y}_1$, we have $\mathcal{F}(\Gamma) = \bigoplus_{m=0}^{\infty} \mathcal{Y}_m$.

We now show $\mathcal{F}(\Gamma)$ (as a $C - C$ bimodule) retains the Fock space structure of $\mathcal{F}(P_\bullet)$.

Proposition 5.8. $\mathcal{Y}_n \cong \bigotimes_C^n \mathcal{Y}(\cong \bigotimes_C^n Y(\vec{\Gamma}))$, so $\mathcal{F}(\Gamma) \cong \mathcal{F}(Y(\vec{\Gamma}))$.

Proof. We show $\mathcal{Y}_2 \cong \mathcal{Y} \otimes_C \mathcal{Y}$, and the proof of the general statement follows by induction. Let $x \in p_\alpha \mathcal{Y}_2 p_\beta$. By Proposition 4.11 and the discussion thereafter, we see that

$$x = \begin{cases} l & y \end{cases} \frac{z}{r} \begin{cases} \end{cases}$$
for some (non-unique) \(y, z \in X \). There is some projection \(P \in \mathcal{P}_{2n} \) such that

\[
x = \begin{pmatrix} y & P \\ z & r \end{pmatrix}^{n}
\]

Now \(P \) is a sum of projections \(P_{\gamma} \in \mathcal{P}_{2n} \) where the \(\gamma \)'s are vertices connected to both \(\alpha \) and \(\beta \). Thus each \(P_{\gamma} \) is a sum of minimal projections equivalent to \(p_{\gamma} \) in \(\mathcal{B} \). For each \(\gamma \), choose partial isometries \(v_{1}^{\gamma}, \ldots, v_{N(\gamma)}^{\gamma} \) such that

\[
(v_{j}^{\gamma})^{*}v_{j}^{\gamma} = p_{\gamma} \quad \text{and} \quad \sum_{j=1}^{N(\gamma)} v_{j}^{\gamma}(v_{j}^{\gamma})^{*} = P_{\gamma}.
\]

Inserting the latter expression in for each \(P_{\gamma} \) gives the result.

We now define our compressed Toeplitz algebra.

Definition 5.9. We define the Toeplitz algebra of \(\Gamma \) by \(\mathcal{T}(\Gamma) = \text{C}T(\mathcal{P}_{\bullet})\mathcal{C} \parallel \cdot \parallel \). Notice that these are operators on \(\mathcal{F}(\Gamma) \).

The following proposition, whose proof directly follows from Propositions 5.6 and 5.8, shows that the definition of \(\mathcal{T}(\Gamma) \) makes sense.

Proposition 5.10. \(\mathcal{T}(\Gamma) \) is generated as a \(\mathcal{C}^{*} \)-algebra by \(\mathcal{C} \) and \(\{ L_{+}(y) \mid y \in \mathcal{Y} \} \).

This proposition, together with Proposition 5.6, shows that \(\mathcal{T}(\Gamma) \cong \mathcal{T}(Y(\bar{\Gamma})) \). Since the edge elements generate \(\mathcal{Y} \) as a Banach space, the following proposition immediately follows from Proposition 5.10.

Proposition 5.11. \(\mathcal{T}(\Gamma) \) is generated as a \(\mathcal{C}^{*} \) algebra by \(\mathcal{C} \) and \(\{ L_{+}(g_{\epsilon}) \mid \epsilon \in E(\bar{\Gamma}) \} \).

We will now explore the Toeplitz-structure of \(\mathcal{T}(\Gamma) \).

Definition 5.12. For \(\epsilon \in E(\bar{\Gamma}) \), set \(S_{\epsilon} = \sqrt{\text{Tr}(\overline{p_{t(\epsilon)}})}L_{+}(g_{\epsilon}) \).

Proposition 5.13.

1. If \(\epsilon, \epsilon' \in E(\bar{\Gamma}) \), then \(S_{\epsilon}S_{\epsilon'} = \delta_{\epsilon, \epsilon'}p_{t(\epsilon)} \).

2. \(\sum_{s(\epsilon) = \alpha} S_{\epsilon}S_{\epsilon}^{*} = p_{\alpha} - |p_{\alpha}|p_{\alpha} \).

Proof. Using the identity \(L_{+}(y)^{*}L_{+}(x) = \langle y | x \rangle_{\mathcal{C}} \), (1) follows from (1) of Lemma 5.5. For part (2), we first note that if \(\xi \in \mathcal{C} \), then applying either side of the equation to \(\xi \) produces zero. We may now assume that

\[
\xi = \begin{pmatrix} g_{\epsilon'} & \eta \end{pmatrix}.
\]
If ϵ' is not any edge represented in the sum, then $p_\alpha g_{\epsilon'} = 0$ and part (1) implies that the sum annihilates $g_{\epsilon'}$ as well. If ϵ' is an edge represented in the sum, then by parts (1) and (2) and the proof of Lemma 5.5,

$$
\left(\sum_{s(\epsilon)=\alpha} S_{\epsilon} S_{\epsilon}^* \right) \cdot \xi = S_{\epsilon'} S_{\epsilon'} \xi = -\begin{array}{c}
g_{\epsilon'} \\
p_{t(\epsilon')}
\end{array} \begin{array}{c}
\eta
\end{array} = \xi.
$$

We also note that $p_\alpha \xi = \xi$ and $p_\alpha \langle p_\alpha | \xi \rangle = 0$. This completes the proof.

Note that $T(\Gamma)$ is isomorphic to the universal Toeplitz-Cuntz-Krieger C^*-algebra $T_{\vec{\Gamma}}$ [FR99]. Let $K(\Gamma) = K(F(\Gamma))$ be the C^*-algebra generated by the “rank one” operators $|\xi\rangle\langle\eta|$. As in Section 4.3, we see that $T(\Gamma)$ contains $K(\Gamma)$ as an ideal. We define $O(\Gamma) = T(\Gamma)/K(\Gamma)$.

We have the following theorem:

Theorem 5.14. $O(\Gamma)$ is isomorphic to the Cuntz-Krieger graph C^*-algebra $O_{\vec{\Gamma}}$.

Proof. We note that $O(\Gamma)$ is generated by the homomorphic images of C and the elements S_ϵ for $\epsilon \in E(\vec{\Gamma})$, and we will abuse notation by calling the images C and S_ϵ respectively. No nonzero element of C lies in $K(\Gamma)$, so C is faithfully represented inside $O(\Gamma)$. Also note that by Proposition 5.13,

$$S_\epsilon^* S_\epsilon = p_{t(\epsilon)} \quad \text{and} \quad \sum_{s(\epsilon)=\alpha} S_{\epsilon} S_{\epsilon}^* = p_\alpha$$

in $O(\Gamma)$. By [CK80, Theorem 2.13] and [PR96, Theorem 2.1.8], we have $O(\Gamma) \cong O_{\vec{\Gamma}}$. □

Remark 5.15. We will observe in Theorem 5.32 below that $O_0(\mathcal{P}_\bullet)$ is naturally isomorphic to $p_* O(\Gamma)p_*$. As a result, we may now infer many properties of $O_0(\mathcal{P}_\bullet)$ since it is stably isomorphic to $O_{\vec{\Gamma}}$. Hence Facts 2.15 all hold for $O_0(\mathcal{P}_\bullet)$, so in particular, $O_0(\mathcal{P}_\bullet)$ is simple.

5.3 The free graph algebra of an unoriented graph

This subsection defines the third canonical algebra associated to the compressed Fock space. We show this algebra appears as a subalgebra of Cuntz-Krieger graph algebras of certain directed graphs provided certain natural weighting conditions are satisfied. To begin, we provide some useful notation for the remainder of the article.

Notation 5.16. Let \mathcal{A} be a C^*-algebra equipped with a lower semicontinuous tracial weight tr (which may or may not be finite). We write

$$\mathcal{A} = \bigoplus_{\mu_1}^{p_1} \mathcal{A}_1 \oplus \cdots \oplus \bigoplus_{\mu_n}^{p_n} \mathcal{A}_n \oplus \mathcal{D}$$

if p_k is a projection in \mathcal{A} which serves as the identity of the C^*-algebra \mathcal{A}_k and $\text{tr}(p_k) = \mu_k$. The algebra \mathcal{D} may be unital or not.

We start with a connected undirected graph Λ with weighting $\mu : V(\Lambda) \to \mathbb{R}_{>0}$. Let $\tilde{\Lambda}$ be as in Definition 2.20. Set $C_\Lambda = C_0(V(\Lambda)) = C_0(V(\tilde{\Lambda}))$. We form the $C_\Lambda - C_\Lambda$ Hilbert bimodule $Y(\tilde{\Lambda})$ and its Fock space $F(Y(\tilde{\Lambda}))$. For notational convenience, we will rewrite
tensors of the form $\delta_{\epsilon_1} \otimes \cdots \otimes \delta_{\epsilon_n}$ as $\epsilon_1 \otimes \cdots \otimes \epsilon_n$. This means that we can think of $Y(\Lambda)$ being generated by elements ϵ for $\epsilon \in E(\Lambda)$ satisfying the relations
\[
p_{\alpha}\epsilon = \delta_{s(\epsilon),\alpha}\epsilon, \quad \epsilon p_{\alpha} = \delta_{t(\epsilon),\alpha}\epsilon, \quad \text{and} \quad \langle \epsilon' | \epsilon \rangle_{C_{\Lambda}} = \delta_{\epsilon,\epsilon'} p_{t(\epsilon')}.
\]

Definition 5.17. Suppose $\epsilon \in E(\Lambda)$.

(1) If ϵ is a loop, then we can think of $\epsilon \in E(\Lambda)$, and we define $T_{\epsilon} = L_+ (\epsilon) + L_- (\epsilon)^*$.

(2) If ϵ is not a loop, let ϵ' and ϵ'' be the two edges associated to ϵ in Definition 2.20. Set $a = \sqrt[4]{\mu(s(\epsilon'))/\mu(t(\epsilon'))}$. We define T_{ϵ} as follows:
\[
T_{\epsilon} = a L_+ (\epsilon') + a^{-1} L_+ (\epsilon'')^* + a^{-1} L_- (\epsilon'') + a L_- (\epsilon')^*.
\]

Notice that the elements T_{ϵ} are self-adjoint.

Definition 5.18. The free graph algebra $S(\Lambda, \mu)$ is the C^*-subalgebra of T_{Λ} generated by C_{Λ} together with $\{T_{\epsilon} | \epsilon \in E(\Lambda)\}$.

We now determine the structure of the free graph algebra.

Theorem 5.19. Define a map $E : S(\Lambda, \mu) \rightarrow C_{\Lambda}$ by $E(x) = \sum_{\alpha \in V(\Lambda)} \langle p_{\alpha} | xp_{\alpha} \rangle_{C_{\Lambda}}$. Notice that this sum always converges in norm.

For a fixed $\epsilon \in E(\Lambda)$, let S_{ϵ} denote the C^*-subalgebra of $S(\Lambda, \mu)$ generated by C_{Λ} and T_{ϵ}.

(1) E is faithful on each S_{ϵ}.

(2) The S_{ϵ} are free with amalgamation over C_{Λ}, implying E is faithful on $S(\Lambda, \mu)$, and
\[
S(\Lambda, \mu) = *_{C_{\Lambda}} (S_{\epsilon}, E)_{\epsilon \in E(\Lambda)}
\]

where the free product is reduced.

Proof.

(1) Assume first that ϵ is a loop at α. Let Λ_{ϵ} be the subgraph of Λ consisting of the vertex α and the loop ϵ. We need only show that the mapping $E_{\epsilon} : S(\Lambda_{\epsilon}, \mu_{\epsilon}) \rightarrow C^*(p_{\alpha}) \cong \mathbb{C}$ given by $E_{\epsilon}(x) = \langle p_{\alpha} | xp_{\alpha} \rangle_{p_{\alpha}C_{\Lambda}p_{\alpha}}$ is faithful. This immediately follows from Voiculescu's free Gaussian functor construction since $S(\Lambda_{\epsilon}) = C^*(p_{\alpha}, L_+ (\epsilon) + L_- (\epsilon))$.

Now assume that ϵ has two distinct edges α and β as endpoints, and let $s(\epsilon') = \alpha$ and $t(\epsilon') = \beta$. Let Λ_{ϵ} be the subgraph of Λ whose vertices are α and β and edge ϵ. Let $\mu_\epsilon = \mu_{|V(\Lambda_\epsilon)}$.

To show that E is faithful on S_{ϵ}, it is enough to show that the mapping $E_{\epsilon} : S(\Lambda_{\epsilon}, \mu_{\epsilon}) \rightarrow C^*(p_{\alpha}, p_{\beta})$ given by
\[
E_{\epsilon}(x) = \langle p_{\alpha} | xp_{\alpha} \rangle + \langle p_{\beta} | xp_{\beta} \rangle
\]

35
is faithful. We define bounded (non-adjointable) operators \(R_{e'} \) and \(R_{e''} \) on \(\mathcal{F}(Y(\tilde{A})) \), where \(e', e'' \) are as in Definition 2.20. The operators \(R_{e'} \) and \(R_{e''} \) are given on tensors by the formulas

\[
R_{e'}(\epsilon_1 \otimes \cdots \otimes \epsilon_n) = a^{-1}\epsilon_1 \otimes \cdots \otimes \epsilon_n \otimes e' + ae_1 \otimes \cdots \otimes \epsilon_{n-1}\epsilon^{op}_{n}|e'\rangle
\]

\[
R_{e''}(\epsilon_1 \otimes \cdots \otimes \epsilon_n) = a\epsilon_1 \otimes \cdots \otimes \epsilon_n \otimes e'' + a^{-1}\epsilon_1 \otimes \cdots \otimes \epsilon_{n-1}\epsilon^{op}_{n}|e''\rangle.
\]

A standard induction argument shows that \(p_\alpha + p_\beta \) is cyclic for the algebra \(\mathcal{R} \) generated by \(R_{e'}, R_{e''}, \) and \(\mathcal{C}_A \), acting on the right, and it is a straightforward argument to show that \(\mathcal{S}(\Lambda, \mu) \) and \(\mathcal{R} \) commute. Therefore, if there is an \(x \in \mathcal{S}(\Lambda, \mu) \) so that \(xp_\alpha = 0 \) and \(xp_\beta = 0 \), then \(x(p_\alpha + p_\beta) = 0 \) and since \(x \) commutes with \(\mathcal{R} \), \(x \) must be 0. Therefore if \(y \geq 0 \), \(y \in \mathcal{S}(\Lambda, \mu) \), and \(E(y) = 0 \), then

\[
0 = \langle p_\alpha | y p_\alpha \rangle \mathcal{C}_A + \langle p_\beta | y p_\beta \rangle \mathcal{C}_A = \langle y^{1/2} p_\alpha | y^{1/2} p_\alpha \rangle \mathcal{C}_A + \langle y^{1/2} p_\beta | y^{1/2} p_\beta \rangle \mathcal{C}_A
\]

implying \(y = 0 \). This implies \(E \) is faithful on \(\mathcal{S}_e \).

(2) Note that the map \(E \) is clearly well-defined on all of \(\mathcal{T}(Y(\tilde{A})) \), and the expectationless elements in \(\mathcal{T}(Y(\tilde{A})) \) are densely spanned by terms of the form

\[
\sum_{i=1}^n a_i L^o(\epsilon_1) \cdots L^o(\epsilon_{\ell(i)}) L^o(\epsilon_{t_1}^s) \cdots L^o(\epsilon_{t_s}^{r(i)})
\]

for \(\ell(i) \) and \(r(i) \) not both zero. Therefore, the expectationless elements in \(\mathcal{S}(\Lambda, \mu) \) are densely spanned by certain sums of this form as well. Suppose that \(x_1, ..., x_n \) are terms of this form, \(x_i \in \mathcal{S}_e \) with \(\epsilon_i \neq \epsilon_{i+1} \), and \(E(x_i) = 0 \). The identity

\[
L^o(\epsilon_{t_1}^s) L^o(\epsilon_{t_{s+1}}^{r(i)}) = 0 \text{ for } s, t \in \{t', t''\}
\]

shows that no elements of \(\mathcal{C} \) appear as a summand of the expression for \(x_1 \cdots x_n \). This gives the desired result.

Let \(\tau_\mu \) be the tracial weight on \(\mathcal{C}_A \) which is defined by \(\tau_\mu(p_\alpha) = \mu(\alpha) \), and define \(\text{Tr}_\mu = \tau_\mu \circ E \). We can now give the explicit structure of the algebras \(\mathcal{S}_e \).

Theorem 5.20. For each algebra \(\mathcal{S}_e \), \(\text{Tr}_\mu \) is a lower-semicontinuous tracial weight on \(\mathcal{S}_e \), which is finite if and only if \(\sum_{v \in V(\Lambda)} \mu(v) \) is finite. Furthermore,

(1) If \(e \) is a loop at \(\alpha \), then

\[
\mathcal{S}_e \cong C_{[0, 1]}^p \oplus C_0(V(\Lambda) \setminus \{\alpha\})
\]

where if \(f \in p_\alpha \mathcal{S}_e p_\alpha \), \(\text{Tr}_\mu(f) = \mu(\alpha) \int_0^1 f(\lambda) d\lambda \) with \(d\lambda \) Lebesgue measure.

(2) If \(e \) has \(\alpha \) and \(\beta \) as endpoints with \(\alpha \neq \beta \) and \(\mu(\alpha) > \mu(\beta) \), then

\[
\mathcal{S}_e \cong (M_2(\mathbb{C}) \otimes C[0, 1]) \oplus \frac{r_2}{\mu(\alpha) - \mu(\beta)} \oplus C_0(V(\Lambda) \setminus \{\alpha, \beta\}).
\]

Here, \(p_\alpha = q_\alpha + r_\alpha \). On \((p_\alpha + q_\beta) \mathcal{S}_e (p_\alpha + q_\beta) \), we have \(\text{Tr}_\mu = \mu(\beta) \text{Tr}_{M_2(\mathbb{C})} \otimes \int (\cdot) d\lambda \) with \(d\lambda \) Lebesgue measure.
(3) Set \(\mathcal{D}\) to be the algebra
\[
\mathcal{D} = \{ f : [0, 1] \to M_2(\mathbb{C}) | f \text{ is continuous and } f(0) \text{ is diagonal} \}.
\]
If \(\epsilon\) has \(\alpha\) and \(\beta\) as endpoints with \(\alpha \neq \beta\) and \(\mu(\alpha) = \mu(\beta)\), then
\[
\mathcal{S}_\epsilon \cong \frac{p_\alpha + p_\beta}{2\mu(\alpha)} \oplus C_0(V(\Lambda) \setminus \{\alpha, \beta\}),
\]
where \(p_\alpha\) and \(p_\beta\) are the canonical matrix units \(e_{11}\) and \(e_{22}\) respectively. The trace on \(\mathcal{D}\) is \(\mu(\alpha)\) \(\text{Tr}_{M_2(\mathbb{C})} \otimes f(\cdot)\) \(d\lambda\) with \(d\lambda\) Lebesgue measure.

Proof. For (1), note that \(\mathcal{S}_\epsilon\) is commutative, and \(p_\alpha \mathcal{S}_\epsilon p_\alpha\) is generated by \(p_\alpha\) and \(L_+(\epsilon) + L_+(\epsilon)^*\). Standard arguments show that \(L_+(\epsilon) + L_+(\epsilon)^*\) has Voiculescu’s semicircular distribution on \([-2, 2]\) in \(p_\alpha \mathcal{S}_\epsilon p_\alpha\) with respect to \(\text{Tr}\).

For (2) and (3), we set \(\alpha = s(\epsilon')\) and \(a = \sqrt{\frac{\mu(\alpha)}{\mu(\beta)}}\) and assume that \(a \geq 1\). We note that \((p_\alpha + p_\beta) \mathcal{S}_\epsilon (p_\alpha + p_\beta)\) is generated as a \(C^*\)-algebra by
\[
T_{\epsilon'} = aL_+(\epsilon') + a^{-1}L_+(\epsilon'')^* \quad \text{and} \quad T_{\epsilon''} = a^{-1}L_+(\epsilon'') + aL_+(\epsilon').
\]
Note that \(T_{\epsilon'}^* = T_{\epsilon'}, \ T_{\epsilon'}^*T_{\epsilon'} \in p_\beta \mathcal{S}_\epsilon p_\beta, \ \text{and} \ T_{\epsilon''}^*T_{\epsilon''} \in p_\alpha \mathcal{S}_\epsilon p_\alpha.\ We will compute the laws of \(T_{\epsilon'}^*T_{\epsilon'}\) and \(T_{\epsilon''}^*T_{\epsilon''}\) in \(p_\beta \mathcal{S}_\epsilon p_\beta\) and \(T_{\epsilon'}^*T_{\epsilon''}\) in \(p_\alpha \mathcal{S}_\epsilon p_\alpha\) with respect to \(\text{Tr}_\mu\).

We let \(P_n(\epsilon')\) be the coefficient of \(p_\beta\) in \((T_{\epsilon'}^*T_{\epsilon'})^n\) and \(P_n(\epsilon'')\) the coefficient of \(p_\alpha\) in \((T_{\epsilon''}^*T_{\epsilon''})^n\). We say that \(P_0(\epsilon') = 1 = P_0(\epsilon'')\). We claim that for \(n \geq 1\)
\[
P_n(\epsilon') = a^2 \sum_{k=0}^{n-1} P_k(\epsilon'') P_{n-k-1}(\epsilon') \quad \text{and} \quad P_n(\epsilon'') = a^{-2} \sum_{k=0}^{n-1} P_k(\epsilon') P_{n-k-1}(\epsilon'').
\]
Indeed, the \(p_\beta\) term in \((T_{\epsilon'}^*T_{\epsilon'})^n\) comes from terms of the form
\[
a^2 L_+(\epsilon')^* (T_{\epsilon'}^*T_{\epsilon'})^k L_+(\epsilon') (T_{\epsilon'}^*T_{\epsilon'})^{n-k-1},
\]
where in each term, we take the term
\[
a^2 L_+(\epsilon')^* (P_k(\epsilon'')p_\alpha) L_+(\epsilon') P_{n-k-1} p_\beta = a^2 P_k(\epsilon'') P_{n-k-1}(\epsilon') p_\beta
\]
to avoid double-counting. This establishes the first identity and the second identity is established from similar arguments.

We now write down the moment generating functions
\[
M_{\epsilon'}(z) = \sum_{n=0}^{\infty} P_n(\epsilon') z^n \quad \text{and} \quad M_{\epsilon''}(z) = \sum_{n=0}^{\infty} P_n(\epsilon'') z^n
\]
for \(T_{\epsilon'}^*T_{\epsilon'}\) and \(T_{\epsilon''}^*T_{\epsilon''}\) respectively. From the above recursion relations, we have the following system of equations:
\[
M_{\epsilon'}(z) = a^2 z M_{\epsilon'}(z) M_{\epsilon''}(z) + 1 \quad \text{and} \quad M_{\epsilon''}(z) = a^{-2} z M_{\epsilon'}(z) M_{\epsilon''}(z) + 1.
\]
Solving this gives
\[
M_{\nu}(z) = \frac{a^2 - (a^4 - 1)z + \sqrt{(z(a^4 - 1) - a^2)^2 - 4a^2z}}{2z} \quad \text{and} \\
M_{\nu'}(z) = \frac{a^{-2} - (a^{-4} - 1)z + \sqrt{(z(a^{-4} - 1) - a^{-2})^2 - 4a^{-2}z}}{2z},
\]

The laws with respect to \(\text{Tr}_\mu \) can now be recovered from the Cauchy transforms \(G_f(z) = \mu(t(f))z^{-1}M_f(z^{-1}) \) for \(f \in \{ \ell, \ell' \} \). The Cauchy transforms are
\[
G_{\nu}(z) = \mu(\beta)\frac{a^2z - (a^4 - 1) + \sqrt{((a^4 - 1) - a^2)^2 - 4a^2z}}{2z} \quad \text{and} \\
G_{\nu'}(z) = \mu(\alpha)\frac{a^{-2}z - (a^{-4} - 1) + \sqrt{((a^{-4} - 1) - a^{-2})^2 - 4a^{-2}z}}{2z}
\]

where the branch on the square root is chosen so that
\[
\lim_{\Im(z) \to +\infty} G_{\nu}(z) = 0 = \lim_{\Im(z) \to +\infty} G_{\nu'}(z).
\]

The polynomials in the square root both have roots at \(a^2 + a^{-2} \pm 2 \). Therefore they are scalar multiples of each other, and we see that the second polynomial differs from the first by a factor of \(a^{-8} \).

To get the law, we compute \(\lim_{y \to 0^+} -\frac{1}{\pi} \Im(G(x + iy)) \) in the sense of distributions. Using \(a^4 \geq 1 \) and \(a^{-4} \leq 1 \), this says that the laws \(d\mu_{\nu'} \) and \(d\mu_{\nu'} \) of \(T_{\nu'}T_{\nu'} \) and \(T_{\nu'}T_{\nu'} \) respectively are:
\[
d\mu_{\nu'} = \mu(\beta)\sqrt{4a^2x - (a^4 - 1 - a^2)^2} \quad \text{and} \\
d\mu_{\nu'} = \mu(\alpha)(1 - a^{-4})\delta_0 + \mu(\alpha)a^{-4}\sqrt{4a^2x - (a^4 - 1 - a^{-2})^2} \quad \text{in} \text{Lebesgue measure,}
\]

Since \(a^4 = \frac{\mu(\beta)}{\mu(\alpha)} \), this implies that \(\text{Tr}_\mu((T_{\nu'}T_{\nu'})^n) = \text{Tr}_\mu((T_{\nu'}T_{\nu'})^n) \) for all \(n \geq 0 \). Therefore \(\text{Tr}_\mu \) is tracial on \(S \).

We see from this analysis that both distributions are free-Poisson. If \(a > 1 \), then \(\mu(\alpha) > \mu(\beta) \), and \(a^{-2} + a^2 > 2 \), implying \(T_{\nu'}T_{\nu'} \) is invertible in \(p_\beta S_p \) and hence the polar part of \(T_{\nu'} \) lies in \(S \). Since the law of \(T_{\nu'}T_{\nu'} \) in \(p_\beta S_p \) is absolutely continuous with respect to Lebesgue measure, we have established the isomorphism in (2).

To establish the isomorphism in (3), we have \(a = 1 \) and hence \(\mu(\alpha) = \mu(\beta) \). Note that the laws of \(T_{\nu'}T_{\nu'} \) and \(T_{\nu'}T_{\nu'} \) are both absolutely continuous with respect to Lebesgue measure and are supported on \([0, 4] \). This gives the isomorphism in (3).

Since \(E \) preserves \(\text{Tr}_\mu \) on each \(S \) by definition, we see that \(\text{Tr}_\mu \) is a faithful semi-finite trace on \(S(\Lambda, \mu) \). We obtain a Hilbert space representation of \(S(\Lambda, \mu) \) by the induced representation on \(H = \mathcal{F}(Y(\tilde{A})) \otimes_{C_\Lambda} \ell^2(V(\Gamma), \mu) \). The action of \(S(\Lambda, \mu) \) on \(H \) is simply the GNS representation of \(S(\Lambda, \mu) \) with respect to \(\text{Tr}_\mu \). (This argument is similar to [HP14, Lemma 3.3].) The von Neumann algebra generated by \(S(\Lambda, \mu) \) in this representation is \(\mathcal{M}(\Lambda, \mu) \) from [Har13]. We have the following useful lemma about the structure of \(\mathcal{M}(\Lambda, \mu) \).
Lemma 5.21 ([Har13]). Write $\alpha \sim \beta$ if α and β are the endpoints of at least one edge in Λ, and $n(\alpha, \beta)$ the number of edges having α and β as endpoints. Set $a_\mu(\alpha) = \sum_{\beta \sim \alpha} n(\alpha, \beta) \mu(\beta)$ and

$$A(\Lambda, \mu) = \{\alpha \in V(\Lambda) | \mu(\alpha) > a_\mu(\alpha)\}.$$

Then

$$\mathcal{M}(\Lambda, \mu) \cong \mathcal{N} \oplus \bigoplus_{\alpha \in A(\Lambda, \mu)} r_{\alpha} C_{\mu(\alpha) - a_\mu(\alpha)}.$$

The algebra \mathcal{N} is $L(\mathbb{F}_s)$ for some s if $\sum_{\alpha \notin A(\Lambda, \mu)} \mu(\alpha) + \sum_{\alpha \in A(\Lambda, \mu)} a_\mu(\alpha)$ is finite or $L(\mathbb{F}_s) \otimes B(H)$ otherwise. The projection r_α is a subprojection of p_α.

The above lemma was proven in [Har13] for finite weighted graphs. The standard embedding arguments used in Section 4 of that paper get the infinite case as well. We also have the following lemma which is surely well known, but we will provide a proof.

Lemma 5.22. Suppose $x \in \mathcal{K}(\mathcal{F}(Y(\tilde{\Lambda})))$ and let π be the induced representation of $\mathcal{L}(\mathcal{F}(Y(\tilde{\Lambda})))$ on $\mathcal{H} = \mathcal{F}(Y(\tilde{\Lambda})) \otimes_{C_A} \ell^2(\Gamma, \mu)$. Then $\pi(x) \in \mathcal{K}(\mathcal{H})$.

Proof. We need only show that $\pi(\langle \epsilon_1 \otimes \cdots \otimes \epsilon_n | \langle \epsilon'_1 \otimes \cdots \otimes \epsilon'_m \rangle) \in \mathcal{K}(\mathcal{H})$. We note that on $\mathcal{F}(Y(\tilde{\Lambda}))$, the range of $\langle \epsilon_1 \otimes \cdots \otimes \epsilon_n | \langle \epsilon'_1 \otimes \cdots \otimes \epsilon'_m \rangle$ is contained in

$$(\epsilon_1 \otimes \cdots \otimes \epsilon_n)C_\Lambda = \text{span}\{(\epsilon_1 \otimes \cdots \otimes \epsilon_n)\pi_t(\epsilon_n)\}.$$

It follows from this that $\pi(\langle \epsilon_1 \otimes \cdots \otimes \epsilon_n | \langle \epsilon'_1 \otimes \cdots \otimes \epsilon'_m \rangle)$ is rank at most 1 on \mathcal{H} and we are finished. \qed

We now show when $\mathcal{S}(\Lambda, \mu)$ nontrivially intersects $\mathcal{K}(\mathcal{F}(Y(\tilde{\Lambda})))$.

Theorem 5.23. If $A(\Lambda, \mu)$ is empty, then $\mathcal{S}(\Lambda, \mu) \cap \mathcal{K}(\mathcal{F}(Y(\tilde{\Lambda}))) = \{0\}$. If Λ is locally finite and $A(\Lambda, \mu)$ is nonempty, then $\mathcal{S}(\Lambda, \mu)$ nontrivially intersects $\mathcal{K}(\mathcal{F}(Y(\tilde{\Lambda})))$.

Proof. If $A(\Lambda, \mu)$ is empty, Lemma 5.21 implies that $\mathcal{S}(\Lambda, \mu)$ completes to either a II$_1$ factor or a II$_\infty$ factor on \mathcal{H}. Neither of these contain $\mathcal{K}(\mathcal{H})$ so it follows that $\mathcal{S}(\Lambda, \mu) \cap \mathcal{K}(\mathcal{F}(Y(\tilde{\Lambda}))) = \{0\}$ from Lemma 5.22.

If $\alpha \in A(\Lambda, \mu)$ and Λ is locally finite, let $\epsilon_1, \ldots, \epsilon_n$ be the edges satisfying $s(\epsilon_i) = \alpha$. By Theorem 5.20 and its proof, the support projections p_i of $T_{\epsilon_i} T_{\epsilon_i}^*$ are in $\mathcal{S}(\Lambda, \mu)$. Since $a(\alpha) = \sum_{i=1}^n \text{Tr}_\mu(p_i) < \mu(\alpha)$, Voiculescu’s R-transform can be used to show that $\sum_{i=1}^n p_i$ has an atom of size $\mu(\alpha) - a(\alpha)$ at 0 and the rest of the law is supported inside an interval missing the origin. From Lemma 5.21, we see that the projection corresponding to the atom at zero is r_α and is hence $r_\alpha \in \mathcal{S}(\Gamma, \mu)$. The projection r_α is rank 1 on \mathcal{H} so it is compact on $\mathcal{F}(Y(\tilde{\Lambda}))$. \qed

From this theorem, we get the following corollary:

Corollary 5.24. If $A(\Lambda, \mu)$ is empty, then the canonical surjection $\mathcal{T}(Y(\Lambda)) \to \mathcal{O}_\Lambda$ is injective on $\mathcal{S}(\Lambda, \mu)$; hence we can view $\mathcal{S}(\Lambda, \mu)$ as a subalgebra of \mathcal{O}_Λ.

39
It would be nice to determine more about the general structure of the algebras $S(\Lambda, \mu)$ for different weightings μ. In particular, it would be nice to know which weightings guarantee that $S(\Lambda, \mu)$ is simple with unique trace, and more ambitiously, when $S(\Lambda, \mu)$ is isomorphic to $S(\Lambda', \mu')$. Using Theorem 2.8, we can very quickly compute the K-theory of $S(\Lambda, \mu)$.

Theorem 5.25. The inclusion $C_\Lambda \hookrightarrow S(\Lambda, \mu)$ is a KK-equivalence for any Λ. Consequently,

$$K_0(S(\Lambda, \mu)) = \mathbb{Z}\{[p_\alpha] | \alpha \in V(\Lambda)\} \text{ and } K_1(S(\Lambda, \mu)) = (0).$$

Proof. We note that on $T(Y(\tilde{\Lambda}))$, $S(\tilde{\Lambda})$ is generated by elements $L_+(x) + L_-(x)$ for x in the closure of the real subspace

$$\text{span}_\mathbb{R}\left\{a\epsilon' + a^{-1}\epsilon'' | \epsilon \in E(\Lambda) \text{ and } a = \sqrt[4]{\frac{\mu(s(\epsilon'))}{\mu(t(\epsilon'))}}\right\}$$

where we assume $\epsilon' = \epsilon = \epsilon''$ if ϵ is a loop. If Λ is finite, Theorem 2.8 gives the K-theory since C_Λ is unital. If Λ is infinite, then write Λ as an increasing union of finite subgraphs Λ_n. Theorem 2.8 implies that the canonical inclusion $C_{\Lambda_n} \hookrightarrow S(\Lambda_n, \mu)$ is a KK-equivalence. Taking inductive limits gives the result. \hfill \square

5.4 Compressing $S(\mathcal{P}_*)$ to the free graph algebra $S(\Gamma)$

Let $\mathcal{Y}_\mathbb{R} = \{y \in \mathcal{Y} | y = y^\dagger\}$, and note that $\mathcal{Y}_\mathbb{R} = \bigcup_n \mathcal{P}_n X_n P_n^{\dagger\dagger}$.

Definition 5.26. We define $S(\Gamma)$ to be the C^*-subalgebra of $T(\Gamma)$ generated by C and

$$\{L_+(y) + L_-(y) | y \in \mathcal{Y}_\mathbb{R}\}.$$

The following proposition has the same proof as Propositions 4.20 and 5.8.

Proposition 5.27.

1. $S(\Gamma)$ is generated by C and elements $\sum_{\ell + \tau = n}^{\ell \downarrow \tau \uparrow} |y_{\ell \tau}|$ for $y \in \mathcal{Y}_n$.
2. $S(\Gamma)$ is generated by C and $\{L_+(y) + L_-(y) | y \in \mathcal{Y}\}$.
3. $S(\Gamma) = \overline{CS(\mathcal{P}_*)C^{\dagger\dagger}}$.

With the aid of this proposition, we can picture $S(\Gamma)$ as being generated by elements $y \in \mathcal{Y}_n$ such that if $x \in \mathcal{Y}_m$ and $y \in \mathcal{Y}_n$, then

$$x \cdot y = \sum_{k = 0}^{\min\{n, m\}} x \otimes k \otimes y.$$

Note that

$$L_+(g_{\epsilon'}) + L_-(g_{\epsilon'}) = \frac{S_{\epsilon'}}{\sqrt[4]{\mu(t(\epsilon'))}} + \frac{S^*_{\epsilon'}}{\sqrt[4]{\mu(s(\epsilon'))}}.$$
with \(\mu \) the quantum dimension weighting on \(\Gamma \) induced from \(\mathcal{P}_\bullet \), which satisfies the Frobenius-Perron condition. From Section 5.3 we see that \(\mathcal{S}(\Gamma) = \mathcal{S}(\Gamma, \mu) \), so the name \(\mathcal{S}(\Gamma) \) makes sense. As the set \(\mathcal{A}(\Gamma, \mu) \) is empty for a weighting which satisfies the Frobenius-Perron condition, we immediately deduce that \(\mathcal{S}(\Gamma) \) can be seen as a subalgebra of \(\mathcal{O}(\Gamma) \). This shows the following:

Corollary 5.28. \(\mathcal{S}(\Gamma) \) is subnuclear, and thus exact.

We could have also deduced exactness of \(\mathcal{S}(\Gamma) \) by [Dyk04]. From the previous section, we deduce that \(\mathcal{K}_0(\mathcal{S}(\Gamma)) = \mathbb{Z}\{[p_\alpha]|\alpha \in V(\Gamma)\} \) and \(\mathcal{K}_1(\mathcal{S}(\Gamma)) = (0) \).

In [HP14, Subsection 5.1] we prove that \(\mathcal{S}(\Gamma) \) is simple. For now, we end with the following lemma which ties together the structure of \(\mathcal{B}, \mathcal{T}(\mathcal{P}_\bullet), \mathcal{S}(\mathcal{P}_\bullet) \) and \(\mathcal{O}(\mathcal{P}_\bullet) \) with \(\mathcal{C}, \mathcal{T}(\Gamma), \mathcal{S}(\Gamma) \), and \(\mathcal{O}(\Gamma) \).

Lemma 5.29. Let \(\mathcal{K} \) be the algebra of compact operators on a separable infinite-dimensional Hilbert space.

(1) \(\mathcal{B} \cong \mathcal{C} \otimes \mathcal{K} \), and

(2) for \(\mathcal{A} \in \{\mathcal{T}, \mathcal{O}, \mathcal{S}\} \), we have \(\mathcal{A}(\mathcal{P}_\bullet) \cong \mathcal{A}(\Gamma) \otimes \mathcal{K} \).

Proof. (1) is immediate since \(\mathcal{C} \cong \bigoplus_{\alpha \in V(\Gamma)} \mathcal{C} \) and \(\mathcal{B} \cong \bigoplus_{\alpha \in V(\Gamma)} \mathcal{K} \) with \(\mathcal{C} \) canonically a hereditary subalgebra of \(\mathcal{B} \). To prove (2)-(4), just use the matrix units from (1), since \(\mathcal{A}(\Gamma) \cong \overline{\mathcal{C} \mathcal{A}(\mathcal{P}_\bullet) \mathcal{C}} \).

These stable isomorphisms immediately imply the following result.

Corollary 5.30. The canonical inclusion \(\mathcal{i} : \mathcal{B} \hookrightarrow \mathcal{S}(\mathcal{P}_\bullet) \) is a \(\mathcal{K}\mathcal{K} \)-equivalence. As a consequence,

\[\mathcal{K}_0(\mathcal{S}(\mathcal{P}_\bullet)) = \mathbb{Z}\{[p_\alpha]|\alpha \in V(\Gamma)\} \] \quad and \[\mathcal{K}_1(\mathcal{S}(\mathcal{P}_\bullet)) = (0) \].

The same holds for the canonical inclusion \(\mathcal{S}(\mathcal{P}_\bullet) \hookrightarrow \mathcal{T}(\mathcal{P}_\bullet) \).

5.5 A further canonical compression

A planar algebra inclusion \(\mathcal{Q}_\bullet \hookrightarrow \mathcal{P}_\bullet \) does not induce inclusions of (Toeplitz-)Cuntz-Krieger or free graph algerbas. More precisely, we do not get a map \(\mathcal{Y}(\mathcal{Q}_\bullet) \) to \(\mathcal{Y}(\mathcal{P}_\bullet) \) since depth(\(\mathcal{Q}_\bullet \)) \(\geq \) depth(\(\mathcal{P}_\bullet \)) (e.g., see [BP13, Corollary 3.12]). In particular, we see this problem when \(\delta \geq 2, \mathcal{Q}_\bullet = \mathcal{T}\mathcal{L}_\bullet, \) and \(\mathcal{P}_\bullet \) is finite depth.

However, we do have functorality of the assignment \(\mathcal{P}_\bullet \) to \(\mathcal{S}_0(\mathcal{P}_\bullet) \) and \(\mathcal{O}_0(\mathcal{P}_\bullet) \). We realize this by a further compression by \(p_* \). To this end, we will need to represent our compression faithfully on a Hilbert space.

Definition 5.31. Using the identification of Remark 4.22, we can define a conditional expectation \(E_\infty : \mathcal{S}(\mathcal{P}_\bullet) \to \mathcal{B} \) given by the extension of \(E_\infty(x) = \delta_{n,0}x \) for \(x \in \mathcal{P}_{l,n,r} \subset \mathcal{S}(\mathcal{P}_\bullet) \). Note that \(E_\infty \) is continuous since if \(Q_0 \) is the orthogonal projection from \(\mathcal{F}(\mathcal{P}_\bullet) \) onto \(\mathcal{B} \), we
have \(E_\infty(x) = Q_0 x Q_0 \) as an element in \(B \). Furthermore, using the isomorphisms \(B \cong C_\Gamma \otimes K \) and \(S(P_\bullet) \cong S(\Gamma) \otimes K \) from Lemma 5.29, \(E_\infty = E \otimes \text{id}_K \) for the \(E \) given in Theorem 5.19. Thus \(E_\infty \) is faithful.

The map \(\text{Tr} \circ E_\infty \) on \(S(P_\bullet) \) becomes a faithful lower-semicontinuous tracial weight on \(S(P_\bullet) \). Diagrammatically, we have

\[
\text{Tr} \circ E_\infty(x) = \delta_{n,0} \cdot \delta_{lr} \begin{tikzpicture}
\draw (0,0) -- (1,1);
\draw (1,0) -- (0,1);
\end{tikzpicture}.
\]

Theorem 5.32. The assignment \(P_\bullet \rightarrow S_0(P_\bullet) \) and \(O_0(P_\bullet) \) is functorial in the sense that an inclusion \(Q_\bullet \hookrightarrow P_\bullet \) of factor planar algebras induces a canonical inclusion \(A(Q_\bullet) \hookrightarrow A(P_\bullet) \) for \(A \in \{O, S\} \).

Proof. We note that the map \(i_A \) in Theorem 4.25 induces a canonical inclusion \(p_* A(Q_\bullet) p_* \rightarrow p_* A(P_\bullet) p_* \) for \(A \in \{O, S\} \). If we show that \(p_* A(P_\bullet) p_* \) is naturally isomorphic to \(A_0(P) \), we will be finished.

To this end, we note that \(p_* F(P_\bullet) p_* \) is the Hilbert space \(F_0(P_\bullet) \). Let \(\rho(p_\bullet) \) denote the right action of \(p_* \) on \(F(P_\bullet) \). We define a \(C^* \)-algebra homomorphism \(\phi : p_* L(F(P_\bullet)) p_* \rightarrow B(F_0(P_\bullet)) \) by \(\phi(x) = x \rho(p_\bullet) \). We observe that \(\phi(p_* T(P_\bullet) p_\bullet) = T_0(P_\bullet) \) and \(\phi(p_* S(P_\bullet) p_\bullet) = S_0(P_\bullet) \). Diagrammatically, \(\phi \) sends \(x \) as an operator on \(p_* F(P_\bullet) \) to the operator \(x \) on \(F_0(P_\bullet) \).

The \(C^* \)-algebra \(p_* S(P_\bullet) p_* = p_* S(\Gamma) p_* \) carries a faithful trace \(\text{tr} = \text{Tr} \circ E_\infty(p_* \cdot p_*) \) as in Definition 5.31. We see that the representation of \(p_* S(P_\bullet) p_* \) on \(F_0(P_\bullet) \) is simply the GNS representation with respect to \(\text{tr} \). Therefore, \(\phi \) is faithful on \(p_* S(P_\bullet) p_* \).

We note that if \(x \in p_* K(P_\bullet) \), then \(\phi(x) \in K(F_0(P_\bullet)) \). Therefore, \(\phi \) induces a surjection from \(p_* O(P_\bullet) p_* \) onto \(O_0(P_\bullet) \). The algebra \(p_* O(P_\bullet) p_* \) is simple from Theorem 5.14 and the simplicity of \(O_\Gamma \). Therefore the surjection is an isomorphism.

Remark 5.33. The proof of Theorem 5.32 shows that \(T_0(P_\bullet) \) is a reduced compression of \(T(P_\bullet) \). Note that the map \(\phi \) need not be injective on \(T(P_\bullet) \). Indeed, if we consider

\[
y_{\Gamma \bullet} = \begin{tikzpicture}
\draw (0,0) -- (1,1);
\draw (1,0) -- (0,1);
\end{tikzpicture} - \begin{tikzpicture}
\draw (0,0) -- (1,1);
\draw (1,0) -- (0,1);
\end{tikzpicture} \in T(P_\bullet)
\]

similar to Remarks 3.21, then \(y_{\Gamma \bullet} \neq 0 \), but \(\phi(y_{\Gamma \bullet}) = 0 \). This explains why the assignment \(P_\bullet \) with \(T_0(P_\bullet) \) is not functorial.

Example 5.34. Recall the AF structure of Cuntz core of \(O_0(P_\bullet) \) from (1) of Remarks 3.15.

Now consider \(p_* T(P_\bullet) p_* = p_* T(\Gamma) p_* \), which acts faithfully on \(p_* F(\Gamma) \). We show that the core of this algebra (the fixed points under the \(T \)-action) has an AF structure related to that of the core of \(O_0(P_\bullet) \). We see that the core of \(p_* T(P_\bullet) p_* \) is generated by the subalgebras \(C_n \) spanned by elements of the form

\[
\begin{tikzpicture}
\draw (0,0) -- (1,1);
\draw (1,0) -- (0,1);
\end{tikzpicture}.
\]
for \(k \leq n \). The inclusion \(C_n \hookrightarrow C_{n+1} \) is the identity. Notice that for each minimal projection \(p \in P_{2n} \), we can write

\[
\begin{aligned}
\begin{array}{c}
\shortunderbrace{p}^n \\
\end{array} =
\begin{array}{c}
\shortunderbrace{p}^n \\
\end{array} + \begin{array}{c}
\shortunderbrace{p}^n - \begin{array}{c}
\shortunderbrace{p}^n \\
\end{array}
\end{array} .
\end{aligned}
\]

We already understand how the first projection on the right hand side decomposes in \(C_{n+1} \) from its decomposition in the Cuntz core. Hence we must analyze the remainder term on the right hand side.

Claim. \(r_p \) is a projection of rank exactly 1.

Proof of Claim. The only elements not killed by \(r_p \) are those of degree exactly \(n \) with no strings on the left side. Consider a vector \(y \in p_*\mathcal{F}(\Gamma) \) of the form

\[
\begin{array}{c}
\shortunderbrace{y}^n - \begin{array}{c}
p\alpha
\end{array}
\end{array}
\]

for some \(\alpha \in V(\Gamma) \). Now we see that \(r_p y \) is given by

\[
\begin{array}{c}
p \\
\shortunderbrace{y}^n - \begin{array}{c}
p\alpha
\end{array}
\end{array}
\]

Since \(p, p_\alpha \) are both minimal in \(P_* \), they are equivalent if \(r_p y \neq 0 \), and there is only a one-dimensional space of morphisms between both simples.

From the above analysis, we see that the Bratteli diagram of \((C_n)_{n \geq 0}\) is obtained by taking the Bratteli diagram for the Cuntz core of \(\mathcal{O}_0(P_*) \), i.e., \((P_{2n})_{n \geq 0}\) under the right inclusion, and adjoining an \(A_\infty \) tail to each vertex. We draw this diagram by first drawing the Bratteli diagram for the core of \(\mathcal{O}_0(P_*) \), drawing a dotted line to the left, and attaching the \(A_\infty \) tails to the left of the dotted line. We give an example in Figure 2.

![Bratteli diagram](image)

Figure 2: Bratteli diagram for the core of \(p_*\mathcal{T}(\mathcal{TL}_*)p_* \) for the \(A_4 \) factor planar algebra

We can now describe the core of \(\mathcal{T}_0(P_*) \) by looking at the reduction of \(C \) by the right action of \(p_* \) on \(p_*\mathcal{F}(\Gamma) \). We take the Bratteli diagram for the core of \(p_*\mathcal{T}(P_*)p_* \), and we
eliminate all A_∞ tails to the left of the dotted line which do not emanate from a vertex corresponding to a projection equivalent to the empty diagram, i.e., a vertex underneath the trivial vertex \star. One sees this by repeating the above argument with $\alpha = \star$, so our vector y lies in $p_* \mathcal{F}(\Gamma)p_*$. Thus p must be equivalent to the empty diagram to find a y with $r_y y \neq 0$. We give an example in Figure 3.

![Figure 3: Bratteli diagram for the core of $\mathcal{T}_0(\mathcal{T}L\star)$ for the A_4 factor planar algebra](image)

5.6 The shaded case

In this subsection, we briefly sketch what happens if \mathcal{P}_\star is shaded. Let \mathcal{P}_\star be a subfactor planar algebra with principal graph Γ_+ and dual principal graph Γ_-. We form two algebras \mathcal{B}_+ and \mathcal{B}_- which are generated by

$$
\bigoplus_{l,n,r=0}^\infty \mathcal{P}_{l,n,r}^\pm = \bigoplus_{l,n,r=0}^\infty \mathcal{P}_{l+r+n,\pm}
$$

respectively. Here, the boxes are drawn exactly as in Section 4 with the marked region on the bottom of the box. One can then form \mathcal{B}_\pm bimodules \mathcal{X}_\pm, the Fock spaces $\mathcal{F}(\mathcal{P}_\pm)$, the Toeplitz algebras $\mathcal{T}(\mathcal{P}_\pm)$, the free semicircular algebras $\mathcal{T}(\mathcal{P}_\pm)$ and the Cuntz-Pimsner algebras $\mathcal{O}(\mathcal{P}_\pm)$.

Compressing $\mathcal{T}(\mathcal{P}_\pm)$, $\mathcal{S}(\mathcal{P}_\pm)$, and $\mathcal{O}(\mathcal{P}_\pm)$ with the same techniques as the beginning of this section produces algebras isomorphic to $\mathcal{T}(\mathcal{Y}(\bar{\Gamma}_\pm))$, $\mathcal{S}(\Gamma_\pm, \mu_\pm)$, and $\mathcal{O}_{\bar{\Gamma}_\pm}$ respectively.

In general, the \pm-algebras are not necessarily isomorphic. If Γ_+ and Γ_- have a different number of vertices, then the K_0-groups are not isomorphic.

We encourage the reader to see [HP14], in particular Subsection 3.3, Remark 4.18, and Subsection 6.3, for more information on the shaded case.

References

[HLRS13] Astrid an Huef, Marcelo Laca, Iain Raeburn, and Aidan Sims, *KMS states on the C^*-algebras of finite graphs*, J. Math. Anal. Appl. 405 (2013), no. 2, 388–399, MR3061018, DOI:10.1016/j.jmaa.2013.03.055, arXiv:1205.2194.

[BEK86] Ola Bratteli, George A. Elliott, and Akitaka Kishimoto, *The temperature state space of a C^*-dynamical system. II*, Ann. of Math. (2) 123 (1986), no. 2, 205–263, MR835762, DOI:10.2307/1971271.
[BHP12] Arnaud Brothier, Michael Hartglass, and David Penneys, *Rigid C*-tensor categories of bimodules over interpolated free group factors*, Journal of Mathematical Physics 53 (2012), 123525, DOI:10.1063/1.4769178, arXiv:1208.5505.

[BKS12] Madhushree Basu, Vijay Kodiyalam, and V. S. Sunder, *From graphs to free products*, Proc. Indian Acad. Sci. Math. Sci. 122 (2012), no. 4, 547–560, MR3016810, DOI:10.1007/s12044-012-0094-3.

[BMPS12] Stephen Bigelow, Scott Morrison, Emily Peters, and Noah Snyder, *Constructing the extended Haagerup planar algebra*, Acta Math. 209 (2012), no. 1, 29–82, MR2979509, DOI:10.1007/s11511-012-0081-7, arXiv:0909.4099.

[BP13] Stephen Bigelow and David Penneys, *Principal graph stability and the jellyfish algorithm*, Math. Ann. (2013), 24 pages, arXiv:1208.1564, DOI:10.1007/s00208-013-0941-2.

[CK80] Joachim Cuntz and Wolfgang Krieger, *A class of C*-algebras and topological Markov chains*, Invent. Math. 56 (1980), no. 3, 251–268, MR561974, DOI:10.1007/BF01390048.

[Cun77] Joachim Cuntz, *Simple C*-algebras generated by isometries*, Comm. Math. Phys. 57 (1977), no. 2, 173–185, MR0467330.

[Cun81a] J. Cuntz, *A class of C*-algebras and topological Markov chains. II. Reducible chains and the Ext-functor for C*-algebras*, Invent. Math. 63 (1981), no. 1, 25–40, MR608527, DOI:10.1007/BF01389192.

[Cun81b] Joachim Cuntz, *K-theory for certain C*-algebras*, Ann. of Math. (2) 113 (1981), no. 1, 181–197, MR604046, DOI:10.2307/1971137.

[DR89] Sergio Doplicher and John E. Roberts, *A new duality theory for compact groups*, Invent. Math. 98 (1989), no. 1, 157–218, MR1010160, DOI:10.1007/BF01388849.

[Dyk04] Kenneth J. Dykema, *Exactness of reduced amalgamated free product C*-algebras*, Forum Math. 16 (2004), no. 2, 161–180, MR2039095, DOI:10.1515/form.2004.008.

[EFW81] Masatoshi Enomoto, Masatoshi Fujii, and Yasuo Watatani, *Tensor algebra on the sub-Fock space associated with O_A*, Math. Japon. 26 (1981), no. 2, 171–177, MR620461.

[EFW84] ______, *KMS states for gauge action on O_A*, Math. Japon. 29 (1984), no. 4, 607–619, MR759450.

[EK98] David E. Evans and Yasuyuki Kawahigashi, *Quantum symmetries on operator algebras*, Oxford Mathematical Monographs. Oxford Science Publications. The Clarendon Press, Oxford University Press, New York, 1998, xvi+829 pp. ISBN: 0-19-851175-2, MR1642584.

[EL99] Ruy Exel and Marcelo Laca, *Cuntz-Krieger algebras for infinite matrices*, J. Reine Angew. Math. 512 (1999), 119–172, MR1703078, DOI:10.1515/crll.1999.051.

[Eva82] David E. Evans, *Gauge actions on O_A*, J. Operator Theory 7 (1982), no. 1, 79–100, MR650194.

[FR99] Neal J. Fowler and Iain Raeburn, *The Toeplitz algebra of a Hilbert bimodule*, Indiana Univ. Math. J. 48 (1999), no. 1, 155–181, MR1722197, DOI:10.1512/iiumj.1999.48.1639, arXiv:math/9806093.

[Ger] Emmanuel Germain, *KK-theory of C*-algebras related to Pimsner algebras*, available at http://www.math.jussieu.fr/~germain.

[GJS10] Alice Guionnet, Vaughan F. R. Jones, and Dimitri Shlyakhtenko, *Random matrices, free probability, planar algebras and subfactors*, Quanta of maths, Clay Math. Proc., vol. 11, Amer. Math. Soc., Providence, RI, 2010, MR2732052, arXiv:0712.2904v2, pp. 201–239.

[GJS11] ______, *A semi-finite algebra associated to a subfactor planar algebra*, J. Funct. Anal. 261 (2011), no. 5, 1345–1360, arXiv:0911.4728, MR2807103, DOI:10.1016/j.jfa.2011.05.004.
Michael Hartglass, Free product von Neumann algebras associated to graphs, and Guionnet-Jones-Shlyakhtenko subfactors in infinite depth, J. Funct. Anal. 265 (2013), no. 12, 3305–3324, MR3110503, DOI:10.1016/j.jfa.2013.09.011.

Michael Hartglass and David Penneys, C*-algebras from planar algebras II: the Guionnet-Jones-Shlyakhtenko C*-algebras, 2014, available on the arXiv (identifier not yet available).

Masaki Izumi, Subalgebras of infinite C*-algebras with finite Watatani indices. II. Cuntz-Krieger algebras, Duke Math. J. 91 (1998), no. 3, 409–461, MR1604162, DOI:10.1215/S0012-7094-98-09118-9.

Vaughan F. R. Jones, Several algebras defined by a planar algebra, pre-preprint.

Vaughan Jones, Dimitri Shlyakhtenko, and Kevin Walker, An orthogonal approach to the subfactor of a planar algebra, Pacific J. Math. 246 (2010), no. 1, 187–197, MR2645882, DOI:10.2140/pjm.2010.246.187.

Alex Kumjian and David Pask, C*-algebras of directed graphs and group actions, Ergodic Theory Dynam. Systems 19 (1999), no. 6, 1503–1519, MR1738948, DOI:10.1017/S0143385799151940.

Alex Kumjian, David Pask, and Iain Raeburn, Cuntz-Krieger algebras of directed graphs, Pacific J. Math. 184 (1998), no. 1, 161–174, MR1626528, DOI:10.2140/pjm.1998.184.161.

Alex Kumjian, David Pask, Iain Raeburn, and Jean Renault, Graphs, groupoids, and Cuntz-Krieger algebras, J. Funct. Anal. 144 (1997), no. 2, 505–541, MR1432596, DOI:10.1006/jfan.1996.3001.

Marcelo Laca and Sergey Neshveyev, KMS states of quasi-free dynamics on Pimsner algebras, J. Funct. Anal. 211 (2004), no. 2, 457–482, MR2056837, DOI:10.1016/j.jfa.2003.08.008.

Scott Morrison, Emily Peters, and Noah Snyder, Skein theory for the D_{2n} planar algebras, J. Pure Appl. Algebra 214 (2010), no. 2, 117–139, arXiv:math/0808.0764, MR2559686, DOI:10.1016/j.jpaa.2009.04.010.

M. H. Mann, Iain Raeburn, and C. E. Sutherland, Representations of finite groups and Cuntz-Krieger algebras, Bull. Austral. Math. Soc. 46 (1992), no. 2, 225–243, MR1183780, DOI:10.1017/S0004972700011862.

Adrian Ocneanu, Quantized groups, string algebras and Galois theory for algebras, Operator algebras and applications, Vol. 2, London Math. Soc. Lecture Note Ser., vol. 136, Cambridge Univ. Press, Cambridge, 1988, MR996454, pp. 119–172.

Dorte Olesen and Gert Kjærgård Pedersen, Some C*-dynamical systems with a single KMS state, Math. Scand. 42 (1978), no. 1, 111–118, MR500150.

Gert K. Pedersen, C*-algebras and their automorphism groups, London Mathematical Society Monographs, vol. 14, Academic Press Inc. [Harcourt Brace Jovanovich Publishers], London, 1979, MR548006.
[Phi00] N. Christopher Phillips, *A classification theorem for nuclear purely infinite simple C*-algebras*, Doc. Math. 5 (2000), 49–114 (electronic), MR1745197.

[Pim97] Michael V. Pimsner, *A class of C*-algebras generalizing both Cuntz-Krieger algebras and crossed products by Z*, Free probability theory (Waterloo, ON, 1995), Fields Inst. Commun., vol. 12, Amer. Math. Soc., Providence, RI, 1997, MR1426840, pp. 189–212.

[Pop90] Sorin Popa, *Classification of subfactors: the reduction to commuting squares*, Invent. Math. 101 (1990), no. 1, 19–43, MR1055708, DOI:10.1007/BF01231494.

[Pop93] ______, *Markov traces on universal Jones algebras and subfactors of finite index*, Invent. Math. 111 (1993), no. 2, 375–405, MR1198815, DOI:10.1007/BF01231293.

[Pop94] ______, *Classification of amenable subfactors of type II*, Acta Math. 172 (1994), no. 2, 163–255, MR1278111, DOI:10.1007/BF02392646.

[Pop95] ______, *An axiomatization of the lattice of higher relative commutants of a subfactor*, Invent. Math. 120 (1995), no. 3, 427–445, MR1334479, DOI:10.1007/BF01241137.

[Pop02] ______, *Universal construction of subfactors*, J. Reine Angew. Math. 543 (2002), 39–81, MR1887878, DOI:10.1515/crll.2002.017.

[PR96] David Pask and Iain Raeburn, *On the K-theory of Cuntz-Krieger algebras*, Publ. Res. Inst. Math. Sci. 32 (1996), no. 3, 415–443, MR1409796, DOI:10.2977/prims/1195162850.

[RLL00] M. Rørdam, F. Larsen, and N. Laustsen, *An introduction to K-theory for C*-algebras*, London Mathematical Society Student Texts, vol. 49, Cambridge University Press, Cambridge, 2000, MR1783408.

[RS87] Jonathan Rosenberg and Claude Schochet, *The Künneth theorem and the universal coefficient theorem for Kasparov’s generalized K-functor*, Duke Math. J. 55 (1987), no. 2, 431–474, MR894590, DOI:10.1215/S0012-7094-87-05524-4.

[RS04] Iain Raeburn and Wojciech Szymański, *Cuntz-Krieger algebras of infinite graphs and matrices*, Trans. Amer. Math. Soc. 356 (2004), no. 1, 39–59 (electronic), MR2020023, DOI:10.1090/S0002-9947-03-03341-5.

[She13] Claire Shelly, *Type III subfactors and planar algebras*, 2013, Ph.D. Thesis at Cardiff University, available at http://orca-mwe.cf.ac.uk/44565/1/cshelly_thesis.pdf.

[Tho13] Klaus Thomsen, *KMS weights on groupoid and graph C*-algebras*, 2013, arXiv:1306.5118.

[Voi85] Dan Voiculescu, *Symmetries of some reduced free product C*-algebras*, Operator algebras and their connections with topology and ergodic theory (Buşteni, 1983), Lecture Notes in Math., vol. 1132, Springer, Berlin, 1985, MR799593, DOI:10.1007/BFb0074909, pp. 556–588.

[Voi93] ______, *The K-groups of the C*-algebra of a semicircular family*, K-Theory 7 (1993), no. 1, 5–7, MR1220422, DOI:10.1007/BF00962789.

[Yam12] Shigeru Yamagami, *Representations of multicategories of planar diagrams and tensor categories*, 2012, arXiv:1207.1923.