A correspondence between the \(SO(5) \) theory of high-\(T_C \) superconductivity and antiferromagnetism, put forward by Zhang and collaborators, and a theory of gravity arising from symmetry breaking of a \(SO(5) \) gauge field is presented. A physical correspondence between the order parameters of the unified SC/AF theory and the generators of the gravitational gauge connection is conjectured.

A preliminary identification of regions of geometry, in solutions of Einstein's equations describing charged-rotating black holes embedded in de Sitter space-time, with SC and AF phases is carried out.

1. Introduction

Two of the outstanding problems in theoretical physics today are those of high-\(T_C \) superconductivity (HTSC) on the one hand and quantum gravity (QG) on the other. In the case of HTSC, it has been demonstrated that the antiferromagnetic (AF) and superconducting (SC) phases \(d \)-wave [1–4] and \(p \)-wave [5] superconductors can be given a unified explanation in terms of a nonlinear sigma model for a field which behaves as a vector transformation under \(SO(5) \) rotations. In QG research, it is known that general relativity with nonzero cosmological constant (\(\Lambda \neq 0 \)) can be obtained from a so-called BF model (a topological field theory) for a gauge field, valued in either \(SO(3,2) \) (for \(\Lambda < 0 \)) or a \(SO(4,1) \) (for \(\Lambda > 0 \)), by a symmetry breaking mechanism [6, 7]. This mechanism was first outlined in a seminal paper by MacDowell and Mansouri [8] in 1977 whose motivation was to construct a unified theory of gravity and supergravity. Similar work was undertaken by Stelle and West in 1980 [9].

More recent works on these topics are the papers by Freidel and Starodubtsev [6], Randono [10, 11], and Westman and Zlosnik [12, 13]. In [14], a model similar to ours has been used to show that the early universe can undergo a spontaneous signature change from a Euclidean to Lorentzian phase. However, in contrast to the present work, the physical correspondence between phases of a real condensed matter system and various regions of a space-time has not been carried out.

The notion that geometry should have various phases is suggested by the numerical work in the field of Causal Dynamical Triangulations (CDT) [15]. Moreover in [16, 17] Ansari has demonstrated a connection between antiferromagnetism and a statistical formulation of CDT. The connection between the spin-networks used in Loop Quantum Gravity and the Ising model has recently been discussed in [18–20]. In [21], Wang has argued that the black hole horizon behaves as the surface of a topological insulator. The fact that anti-de Sitter space-time with black holes can be described as phases of a van der Waals type fluid is discussed in [22–25].

What is new in the present work, to the best of our knowledge, is that it is the first to connect the symmetry breaking on the gravitational side with a well-established model on the condensed matter side. In any situation where a symmetry is spontaneously broken, it is crucial to not only be able to identify the underlying microscopic dynamics which causes the symmetry to break and also to be able to identify and classify the various phases that result from this process. Here we are able to take the first tentative steps towards achieving both these goals.

In this work we demonstrate the equivalence between these two theoretical frameworks. The picture resulting from our line of reasoning is that of a space-time with nonzero
\(\Lambda\), as described by classical general relativity, emerging via symmetry breaking of a topological quantum field theory (TQFT), defined on a four-dimensional manifold. The superconducting phase can be identified with the near horizon geometry of a charged black hole and the antiferromagnetic phase can be identified with the geometry far from the horizon of a rotating black hole. A mixed phase, consisting of both SC and AF phases, would correspond to the space-time of a charged, rotating black hole.

The plan of the paper is as follows. In Section 2 we explain why the theory of HTSC should have effective description in terms of a SO(5) gauge theory. In Sections 2.1 and 2.2, we define the order parameters and symmetry generators of the microscopic theory underlying HTSC and explain how the SO(5) symmetry arises from these structures. In Sections 3 and 4 we outline the basic structure of Einstein-Cartan gravity and how it can be seen as arising from symmetry breaking of a TQFT represented by a BF theory.

2. SO(5) Model of High Temperature Superconductivity

One can ask why the group SO(5) should have anything to do with the description of the SC or AF phases (the phase diagram for HTSC is shown in Figure 1) in condensed matter systems and, for that matter, why do we need a unified description of the two phases in the first place. There are three reasons [4] to believe that this should be the case:

1. In 1988, Chakravarty et al. [27] demonstrated that the nonlinear sigma model for a field with SO(3) symmetry gives a good description of the properties of a two-dimensional (2+1) Heisenberg antiferromagnet in the low-temperature, long-wavelength regime.

2. The behavior of the superconducting state is known to be well-described by a so-called "XY" model for a \(U(1)\) gauge field.

3. Both \(d\)-wave SC and AF can be described in terms of the behavior of singlet pairs in the Hubbard model at half-filling. These singlet pairs can describe either an AF phase, a SC phase, or a so-called "spin-bag" phase where both the phases coexist.

Now, if both AF and SC arise in different regimes of a system with the same underlying physics, the Hubbard model at half-filling, and can coexist under certain conditions, it follows that one would be well-advised to seek out a low-temperature, long-wavelength effective field theory which can describe both phases. Such a theory should contain a \(SO(3) \times U(1)\) symmetry, which should arise after some symmetry breaking transition. The smallest gauge group that can accommodate such a symmetry among its subgroups is \(SO(5)\).

In [1–5] it was shown that a nonlinear sigma model for a field with an SO(5) gauge symmetry can describe the physics of both the AF and SC phases. The ten independent elements of the SO(5) Lie algebra can be identified with (see (6a)–(6c)) the three components of the generator of total spin \(\vec{S}\), the total charge operator \(Q\), and the six real and imaginary components of the \(\vec{T}\) operator (which "rotates" the AF phase into the SC phases and vice versa).

As argued by Zhang [4], the physical picture of the transition between the AF and SC states is the following. The overall system is described by some microscopic Hamiltonian describing the interaction between electrons on a lattice. Below some characteristic temperature \(T_{MF}\), and below some critical value of an external parameter \(\lambda\) (typically this is the electron or hole doping in the cuprate superconductors though it can also be the pressure or some other external parameter) electrons on neighboring sites tend to form singlet bound pairs or dimers. The AF and the SC phase are different states in which this dimer collective can form. When the dimers are not free to move, due to the lack of vacancies on the lattice, the collective forms a dimer "solid" which corresponds to the AF phase (left side of Figure 2). As \(\lambda\) is varied, the dimer solid begins to melt and forms a fluid which corresponds to the SC phase (right side of Figure 2). At the transition between the two phases one will have regions where both the solid and liquid phases are present. This corresponds to the "spin-bag" phase where both AF and SC coexist.

2.1. Order Parameters. We will define our creation and annihilation operators in the spatial representation in order to make better contact with the physical system. The interested reader can find the momentum space expressions of these operators in Section 2.2.

Let us introduce some notation. In order to study antiferromagnetic ordering we need at least two neighboring sites with spins \(\vec{S}_1\) and \(\vec{S}_2\). Let \(\vec{S} = \vec{S}_1 + \vec{S}_2\) be the total spin on the two sites and \(\vec{N} = \vec{S}_1 - \vec{S}_2\) be the Néel vector which is measures AF order. Let \(\{c_{\alpha}^{+}, c_{\alpha}\}\) and \(\{d_{\alpha}^{+}, d_{\alpha}\}\) be the
The AF order parameter can be defined as follows [2]:

\[n_{\alpha} = \frac{\Delta_{\alpha} + \Delta_{\alpha}^*}{2i} \]

In terms of \(\mathbf{1} \), the two SC order parameters are as follows:

\[n_1 = \frac{\Delta^1 + \Delta}{2i} \]

\[n_5 = \frac{\Delta^1 - \Delta}{2i} \]

Figure 2: Schematic illustration of the SC and AF phases of HTSC. For \(\lambda > \lambda_c \), the system favors AF alignment of neighboring spins. For \(\lambda < \lambda_c \), SC emerges. The quasiparticles in the AF phase spin waves and in the SC phase they are “triplons,” dimers consisting of two neighboring spins which are aligned parallel to each other. In between the AF and SC phases there is a pseudogap phase which consists of a mixture of SC and AF phases.

2.2. Symmetry Generators. In order to be able to write down the generators of the SO(5) Lie algebra, with respect to which \(n_{\alpha} \) transforms as an SO(5) vector, we need to define the operators which generate the symmetries of the system. These are \(S_i \), \(Q \), and \(\pi_i \), which correspond, respectively, to the total spin, total charge, and AF-to-SC transformation operators, respectively. They can be defined as follows:

\[S_i = \frac{1}{2} (c_i^\dagger \sigma_i^a c + d_i^\dagger \sigma_i^a d) \]

\[Q = \frac{1}{2} (c_i c + d_i^\dagger d - 2) \]

\[\pi_i = -\frac{1}{2} c_i^\dagger \sigma_i^a d_i^\dagger; \]

\[\pi = (\pi_i^+)^* \]

The operators \(S_i \), \(Q \), and \(\pi_i \) can be arranged in the form of a 5 \times 5 matrix \(L_{ab} \) as in the following:

\[L_{ab} = \begin{pmatrix} 0 & \pi_x^+ + \pi_x & \pi_y + \pi_y & \pi_z + \pi_z & Q \\ \pi_x^+ + \pi_x & 0 & -S_z & 0 & -i (\pi_y^+ - \pi_y) \\ \pi_y + \pi_y & S_z & 0 & -i (\pi_z^+ - \pi_z) & -i (\pi_y^+ - \pi_y) \\ \pi_z + \pi_z & -i (\pi_y^+ - \pi_y) & -i (\pi_z^+ - \pi_z) & 0 & 0 \\ Q & i (\pi_z^+ - \pi_z) & -i (\pi_y^+ - \pi_y) & 0 & 0 \end{pmatrix} \]

where \(L_{ab} = -L_{ba} \). The elements of this matrix satisfy the commutation relations:

\[[L_{ab}, L_{cd}] = i (\delta_{ac} L_{bd} - \delta_{ad} L_{bc} - \delta_{bd} L_{ac} + \delta_{cd} L_{ab}) \]

which are the commutation rules satisfied by the generators of the Lie algebra of the group SO(5). \(L_{ab} \) and \(n_{\alpha} \) satisfy the following:

\[[L_{ab}, n_{\alpha}] = i (\delta_{ac} n_b - \delta_{bc} n_a) \]

which shows that \(n_{\alpha} \) transforms as the vector representation of the group SO(5) generated by \(L_{cb} \). \(L_{ab} \) and \(n_{\alpha} \) can also be seen to be conjugate variables [2], just as the momentum and position \(p, q \) are in the ordinary harmonic oscillator. Thus in
terms of these objects we can write down the Hamiltonian for SO(5) effective theory of AF and SC:

\[H_{SOS} = \frac{1}{2\lambda} \sum_{x,a,b} L^2 \left(x \right) + \sum_{x,a} n^i \left(x \right) n_j \left(x \right) + \sum_{x,a} B_{ab} \left(x \right) L_{ab} \left(x \right) + \sum_x V \left(n \left(x \right) \right), \]

(11)

where the various terms correspond to, respectively, the kinetic energy of SO(5) rotors (\(\sim L^2 \)), the coupling between rotors on different sites (\(\sim n^2 \), \(\cdot \cdot \cdot \) denotes sum over nearest neighbors), coupling between an external field and the momenta of the rotors (\(\sim BL \)), and a symmetry breaking term (\(V(n) \)) which breaks the SO(5) symmetry down to SO(3) \(\times U(1) \).

3. Cartan Decomposition

We now come to the gravity side of the picture. Our ingredients are a four-dimensional manifold \(\mathcal{M}^4 \) on which we have a SO(4, 1) or SO(3, 2) connection \(A^I_\mu \), depending on whether \(\Lambda > 0 \) and \(\Lambda < 0 \), respectively. There is no metric structure on this manifold to begin with. This connection can then be decomposed into two parts [7]:

\[A = \omega + \frac{e}{l} e, \]

(12)

where \(\omega^I_\mu \) is identified with an \(\mathfrak{so}(3, 1) \) connection and \(e^I_\mu \) is a four-dimensional frame field. \(e = +1 \) when \(\Lambda > 0 \) and \(e = -1 \) when \(\Lambda < 0 \). The curvature \(F[A] \) of the connection can then be written as follows:

\[F[A]^I_J = \mathbf{d}A^I_J + A^I_K \wedge A^K_J, \]

(13)

where \(I, J, K = 0, 1, 2, 3 \), label the elements of the \(\mathfrak{so}(4, 1) \) (\(\mathfrak{so}(3, 2) \), resp.) matrices, and the space-time indices are suppressed. \(\mathbf{d} \) is the exterior derivative. In terms of these indices, (12) can be written as follows:

\[A^a_b = \omega^a_b; \]
\[A^a_4 = \frac{1}{l} e^a_4; \]
\[A^4_a = -\frac{e}{l} e^a_4, \]

(14)

where \(a, b = 0, 1, 2, 3 \). This can be more clearly seen in the explicit matrix form:

\[
A^I_J = \begin{pmatrix}
0 & \omega^0_1 & \omega^0_2 & \omega^0_3 & \frac{e^0}{l} \\
\omega^1_0 & 0 & \omega^1_2 & \omega^1_3 & \frac{e^1}{l} \\
\omega^2_0 & \omega^2_1 & 0 & \omega^2_3 & \frac{e^2}{l} \\
\omega^3_0 & \omega^3_1 & \omega^3_2 & 0 & \frac{e^3}{l} \\
\frac{e^0}{l} & \frac{e^1}{l} & \frac{e^2}{l} & \frac{e^3}{l} & 0
\end{pmatrix}.
\]

(15)

\(\omega^i_0 \) (\(i = 1, 2, 3 \)) are the generators of boosts, \(\omega^i_j \) (\(i, j = 1, 2, 3; i \neq j \)) are the generators of spatial rotations (\(\omega^1_1 = -\omega^1_0 \) and \(\omega^2_2 = -\omega^2_1 \)), and \(e^a_4 \) (\(a = 0, 1, 2, 3 \)) are the generators of translations. The gauge curvature can then be expanded as follows. For the \(\mathfrak{so}(3, 1) \) part,

\[F^a_b = \mathbf{d}A^a_b + A^a_\epsilon \wedge A^\epsilon_b + A^a_4 \wedge A^4_b \]
\[= \mathbf{d}e^a_b + \omega^a_\epsilon \wedge \omega^\epsilon_b - \frac{e}{l^2} e^a_b \]
\[= R^a_b - \frac{e}{l^2} e^a_b \wedge e_b. \]

(16)

Similarly the \(\mathfrak{r}(3, 1) \) part of the curvature is given by the following:

\[F^a_4 = \mathbf{d}A^a_4 + A^a_\epsilon \wedge A^\epsilon_4 = \frac{1}{l} \left(\mathbf{d}e^a + \omega^a_\epsilon \wedge e^\epsilon \right) \]
\[= \frac{1}{l} \mathbf{D} e^a, \]

(17)

where \(\mathbf{D} \) is the antisymmetrized covariant derivative operator with respect to the connection \(\omega \). Finally we see that the various components of the gauge field strength can be written as follows:

\[F^a_b = R^a_b - \frac{e}{l^2} e^a_b \wedge e_b \]
\[F^a_4 = \frac{1}{l} \mathbf{D} e, \]

(18)

where \(R \) is the curvature of a \(\mathfrak{so}(3, 1) \) connection \(\omega \) and \(e \) is a \(\mathfrak{so}(3, 1) \) valued one-form.

4. BF Theory

The action for a topological theory on a manifold \(\mathcal{M} \) with local gauge group \(G \) is given by:

\[S_{BF} = \int \left(B \wedge F^{ij} \right), \]

(19)

where \(B \) and \(F \) are a \((n - 2) \)-form and a 2-form respectively on \(\mathcal{M} \) and which takes values in the Lie algebra \(\mathfrak{g} \) of \(G \). \(F \) is the field strength for a connection \(A \). The configuration variables are the gauge connection \(A \) and the two-form field \(B \) and the action is invariant under SO(5) transformations of the gauge field. Varying the action with respect to these variables we find the two equations of motion [6]:

\[\frac{\delta S_{BF}}{\delta A} = 0 \quad \Rightarrow \quad \delta S_{BF} = 0 \quad \Rightarrow \]
\[\frac{\delta S_{BF}}{\delta B} = 0 \quad \Rightarrow \quad F_{ij} = 0 \]
\[\frac{\delta S_{BF}}{\delta A} = 0 \quad \Rightarrow \quad D_A B^{ij} = 0, \]

(20a)

(20b)
where $F_{ij} = dA_{ij} + A_i J_k \wedge A_{kj}$ is the curvature tensor and D_A is the covariant derivative with respect to the gauge connection A. We have made use of the fact that

$$\delta F_{ij} = d(\delta A_{ij}) + A_i J_k \wedge \delta A_{kj} = D_A(\delta A_{ij}) \quad (21)$$

followed by a partial integration in order to obtain (20a) and (20b).

Since the field strength is identically zero everywhere, in the present form, this action describes a system with no local degrees of freedom. The value of S_{BF} when evaluated on a given manifold, for any choice of B and A, will only yield information about the topology of the manifold. Thus (19) is the action for a topological field theory or TFT and as such has no correspondence with classical general relativity. The situation changes, however, when we add a term to the action quadratic in the B field which corresponds to the breaking of the $SO(5)$ symmetry of the theory resulting in a theory with propagating local degrees of freedom. The modified action is as follows [6]:

$$S_{BF}' = \int \left(B_{ij} \wedge F_{ij} - \frac{1}{2} B_{ij} \wedge B_{klm} \epsilon_{ijklm} v^M \right),$$

where v^M is a fixed $SO(5)$ vector pointing in a preferred direction. It is this choice of a preferred direction that breaks the $SO(5)$ symmetry, in much the same way as the choice of a preferred direction for spins breaks the symmetry of the Ising model and allows the ferromagnetic phase to appear from an initially disordered phase where the spins point in arbitrary directions.

The equations of motion for the modified action are as follows:

$$\frac{\delta S_{BF}'}{\delta B} = 0 \implies F_{ij} = \frac{1}{2} \epsilon_{ijklm} B_{klm} v^M \quad (23a)$$

$$\frac{\delta S_{BF}'}{\delta A} = 0 \implies D_A B_{ij} = 0. \quad (23b)$$

Now we can always choose our coordinates in the $SO(5)$ space such that v^M has only one nonvanishing component such that $v^M = (0, 0, 0, 0, \alpha/2)$. Then the equation of motion for the B field in (23a) and (23b) becomes

$$F_{ab} = \frac{\alpha}{4} \epsilon_{abcd} B^{cd} \quad (24a)$$

$$F_{a4} = 0, \quad (24b)$$

where $a, b \in \{0, 1, 2, 3\}$, whereas the e.o.m for the gauge connection is unchanged. The second of these equations in combination with (18b) tells us that

$$D_\omega e = 0, \quad (25)$$

that is, the torsion of the gauge connection is zero. Contracting both sides of (24a) with ϵ_{abcd} we obtain

$$B_f^e = \frac{1}{\alpha} \epsilon_{efg} F_g^a,$$ \quad (26)

where $* \gamma$ is the Hodge dual operator (contraction with ϵ_{abcd}). Substituting the solution for B (26) into the modified action and using the fact that $F_{a4} = 0$ (24b), we find

$$S_{BF}' = \int \left(-\frac{1}{\alpha} \epsilon_{efg} F_{ab} \wedge F_{ab} - \frac{1}{\alpha} \gamma F_{ab} \wedge F_{ab} \right)$$

$$= -\frac{1}{2\alpha} \int F_{ab} \wedge * F_{ab}$$

$$= -\frac{1}{2\alpha} \int \left(R_{ab} - \frac{\epsilon}{2} \epsilon^a \wedge e^b \right)$$

$$\wedge * \left(R_{ab} - \frac{\epsilon}{2} \epsilon^a \wedge e^b \right),$$

where in the third line we have utilized the identity (18a). Finally we have

$$S_{BF}' = -\frac{1}{2\alpha} \int \left[R_{ab} \wedge * R_{ab} + \frac{\epsilon^3}{4} \epsilon^a \wedge e^b \wedge * (e_a \wedge e_b) \right.$$

$$- \frac{2\epsilon}{F} R_{ab} \wedge * (e_a \wedge e_b) \bigg].$$

The last two terms give us the Palatini action (The connection formalism and the first-order Palatini action for general relativity are reviewed in a forthcoming review article on LQG [28].) for general relativity with a cosmological constant, while the first term is a topological term whose variation vanishes due to the Bianchi identity.

5. Physical Interpretation

It is straightforward to see the correspondence between the operators for charge, rotations, and translations (acting on the electron wave function which) forms the components of the $SO(5)$ connection (B.4) and the operators defined in the space-time connection given in (15). First let us write down the form of the 5×5 matrix generators of the Lie algebras of $\mathfrak{so}(4, 1)$, $\mathfrak{so}(3, 1)$, and $\mathfrak{so}(3, 2)$ in the following suggestive form [7, p. 10]:

$$\begin{pmatrix}
0 & b^1 & b^2 & b^3 & \frac{p^0}{l} \\
b^1 & 0 & j^3 & -j^2 & \frac{p^1}{l} \\
b^2 & -j^3 & 0 & j^1 & \frac{p^2}{l} \\
b^3 & j^2 & -j^1 & 0 & \frac{p^3}{l} \\
e \frac{p^0}{l} & e \frac{p^1}{l} & e \frac{p^2}{l} & e \frac{p^3}{l} & 0
\end{pmatrix}$$

$$= f^j I_j + b^i B_i + \frac{1}{l} p^a P_a.$$
Table 1: Physical correspondence between operators in the condensed matter system and in the gravitational theory.

L_{ij}	A_{ij}
δ_x	$-\omega^2_2$
δ_y	ω^1_3
δ_z	$-\omega^2_3$
Boosts	Translations
$\pi_x^i + \pi_x^j$	ω^0_0
$\pi_y^i + \pi_y^j$	ω^2_0
$\pi_z^i + \pi_z^j$	ω^1_0
$i(\pi_x^i + \pi_x^j)$	ee^l/l
$i(\pi_y^i + \pi_y^j)$	ee^l/l
$i(\pi_z^i + \pi_z^j)$	ee^l/l

where I_i are the generators of rotations, B_i generate boosts, and $P_{\mu} = (P_0, P_i)$ generate translations. The value of the factor ϵ determines the type of the algebra. If ϵ is -1, 0, or 1, the Lie algebra the above matrix describes $\mathfrak{so}(4,1)$, $i\mathfrak{so}(3,1)$, or $\mathfrak{so}(3,2)$ respectively.

Table 1 illustrates this correspondence.

6. Discussion: Phases of Space-Time

On the condensed matter side, it is understood that the SO(5) formalism for high-T_C superconductivity and antiferromagnetism is only an approximation (or effective field theory) [29, 30] that arises in the long-wavelength low-energy limit of the physics of some underlying fundamental dynamics. In [2, 31] several examples of microscopic Hamiltonians are given whose long-wavelength theory explicitly exhibit the SO(5) symmetry. A recurring example of an exact microscopic Hamiltonian in the case of high-T_C SC/AF is that of the tight-binding Hubbard model. In [32, 33] we pointed out that the behavior of black hole entropy in LQG suggests a connection between the physics of a black hole horizon and that of the quantum hall effect. There we suggested the Hubbard model as a candidate microscopic Hamiltonian for describing the physics of a black hole horizon. The present work provides support for this proposal. This addresses the question of the microscopic origin of the effective SO(5) theory in the gravitational context.

Knowledge of the detailed phase diagram of HTSC/AF also allows us to make concrete suggestions regarding the possible phases which space-time geometry can manifest. The important aspect is the ability to identify the various phases, superconducting, antiferromagnetic, ferromagnetic, spin-bag, and so forth, with the various solutions of Einstein’s equations. To do so we can refer to the dictionary given in Table 1.

It is important at this stage to point out a crucial difference between Zhang’s SO(5) system and our model. In Zhang’s model the SO(5) symmetry is a global symmetry: the Lie algebra generators in (B.4) do not have any spatial dependence. In our model we have gauged this symmetry and made it local: Lie algebra generators in (15) have a space-time index (which was not shown in the text to avoid clutter). For instance, the rotation generators ω^i_j are more accurately written as $\omega^i_{j\mu}$ with a space-time index μ.

In the AF phase the symmetry generator is given by the spin vector $S = (S_x, S_y, S_z)$ (6a). The dictionary in Table 1 tells us that on the gravitational side this corresponds to the components of the $\mathfrak{so}(5)$ connection which correspond to spatial rotations ($-\omega^1_2, \omega^1_3, -\omega^2_3$) in the symmetry broken theory. Thus in order to associate a geometric configuration with an AF phase, we should look for a solution of Einstein’s equations where rotations in the spatial planes are determined. An example is space-time of a Kerr-de Sitter (The theory we are considering has $\Lambda \neq 0$; thus one has to work with the de Sitter/anti-de Sitter generalization of the Kerr space-time.) black hole, which describes a rotating black hole. Observers outside a Kerr-de Sitter black hole will experience a space-time with broken rotational invariance, with the rotation axis of the black hole defining a preferred direction in space, and far from the horizon, the generators of spatial rotations ($-\omega^1_2, \omega^1_3, -\omega^2_3$) will reach a constant, nonzero value. Thus, the geometry experienced by observers far from the horizon of a rotating black hole can be identified with the antiferromagnetic phase.

For the SC phase it is, at present, not clear to us as to what geometric configuration should be identified with it. A guess would be that the geometry near or inside the horizon of a charged, Reissner-Nordstrom, black hole can be identified with a SC phase (It is known that a scalar field living in the charged black hole background will undergo symmetry breaking leading to formation of a superconducting condensate in the near horizon region [34–37]. This observation would appear to buttress our identification of a charged black hole geometry with the SC phase of a symmetry broken SO(5) theory.). If we consider the case of black hole which is both rotating and charged Kerr-Newman (once again with the caveat that the black hole is embedded in a bulk de Sitter space-time), then it would appear that the AF phase can be identified with the bulk geometry far from the horizon and the SC phase with the bulk geometry in the interior of the black hole. Of course, this identification is, as yet, qualitative and requires detailed analytical investigation before it can be fully accepted. However, this does tells us the general direction one must follow for identifying phases of geometry with the phases encountered in condensed matter.

6.1. From SO(5) to SO(3,2) or SO(4,1)

In much of the literature it is commonly assumed that one can work with the Euclidean signature space-time and eventually Wick rotate one of the dimensions to yield a Lorentzian space-time. The role of time in the Lorentzian case is played by the “temperature,” in the Euclidean picture. For instance in order to calculate the temperature of Hawking radiation emitted from a black hole a common technique that is used [38, Section 3.2.2] is to analytically continue the black hole metric to Euclidean signature (whence the “time” becomes an imaginary quantity $t_E = it$) and to identify the periodicity in the imaginary component of the Euclidean time with the inverse temperature $\beta = 1/k_B T \sim \Im(t_E)$.

For instance, the rotation generators ω^i_j are more accurately written as $\omega^i_{j\mu}$ with a space-time index μ.

In the AF phase the symmetry generator is given by the spin vector $S = (S_x, S_y, S_z)$ (6a). The dictionary in Table 1 tells us that on the gravitational side this corresponds to the components of the $\mathfrak{so}(5)$ connection which correspond to spatial rotations ($-\omega^1_2, \omega^1_3, -\omega^2_3$) in the symmetry broken theory. Thus in order to associate a geometric configuration with an AF phase, we should look for a solution of Einstein’s equations where rotations in the spatial planes are determined. An example is space-time of a Kerr-de Sitter (The theory we are considering has $\Lambda \neq 0$; thus one has to work with the de Sitter/anti-de Sitter generalization of the Kerr space-time.) black hole, which describes a rotating black hole. Observers outside a Kerr-de Sitter black hole will experience a space-time with broken rotational invariance, with the rotation axis of the black hole defining a preferred direction in space, and far from the horizon, the generators of spatial rotations ($-\omega^1_2, \omega^1_3, -\omega^2_3$) will reach a constant, nonzero value. Thus, the geometry experienced by observers far from the horizon of a rotating black hole can be identified with the antiferromagnetic phase.

For the SC phase it is, at present, not clear to us as to what geometric configuration should be identified with it. A guess would be that the geometry near or inside the horizon of a charged, Reissner-Nordstrom, black hole can be identified with a SC phase (It is known that a scalar field living in the charged black hole background will undergo symmetry breaking leading to formation of a superconducting condensate in the near horizon region [34–37]. This observation would appear to buttress our identification of a charged black hole geometry with the SC phase of a symmetry broken SO(5) theory.). If we consider the case of black hole which is both rotating and charged Kerr-Newman (once again with the caveat that the black hole is embedded in a bulk de Sitter space-time), then it would appear that the AF phase can be identified with the bulk geometry far from the horizon and the SC phase with the bulk geometry in the interior of the black hole. Of course, this identification is, as yet, qualitative and requires detailed analytical investigation before it can be fully accepted. However, this does tells us the general direction one must follow for identifying phases of geometry with the phases encountered in condensed matter.
It is true that, in this work, we have been somewhat careless in identifying the SO(5) gauge group of the condensed matter theory with the SO(4, 1) or SO(3, 2) gauge groups of the gravity theory; however, we are confident that a more detailed investigation will bear out the correctness of the essential aspects of this approach.

Appendix

A. Notational Conventions

For the reader’s convenience let us clarify some aspects of the notation used in this paper as shown in Table 2.

For the most part, space-time indices \(\mu, \nu, \ldots \) are suppressed. One-forms correspond to objects with one space-time index; two-forms to objects with two space-time indices.

The “wedge” product between one-forms and two-forms is defined as the completely antisymmetric outer product of which the operator for the superconducting gap \(\Delta \) possesses the symmetries.

Thus \(g(\mathbf{k}) \) possesses the symmetries of the gap function \(\Delta_\mathbf{k} \).

These operators can be arranged in the form of a \(5 \times 5 \) matrix \(L_{ij} \) as

\[
L_{ab} = \begin{pmatrix}
0 & \pi_x^+ + \pi_x & 0 \\
\pi_y^+ + \pi_y & -S_z & 0 \\
\pi_z^+ + \pi_z & S_y & -S_x \\
Q & -i(\pi_x^+ - \pi_x) & -i(\pi_y^+ - \pi_y) & -i(\pi_z^+ - \pi_z) & 0
\end{pmatrix},
\]

where \(L_{ab} = -L_{ba} \). It can be shown that, if \(|g(\mathbf{k})|^2 = 1 \), the elements of this matrix satisfy the commutation relations:

\[
[L_{ab}, L_{cd}] = i (\delta_{ac} L_{bd} - \delta_{ad} L_{bc} - \delta_{bc} L_{ad} + \delta_{ad} L_{bc}),
\]

which are the commutation rules satisfied by the generators of the Lie algebra of the group SO(5). Zhang [3, 4] suggests that the behavior of high-\(T_c \) superconductors can be characterized by introducing a five-dimensional superspin vector.

B. Momentum Space Representation

\(c_{p,\uparrow}^\dagger \) \((c_{p,\downarrow}^\dagger)\) is the operator which creates (destroys, resp.) an electron with momentum \(\mathbf{p} \) and given spin (\(\sigma \)), momentum (\(\pi \)), and total charge (\(Q \)).

The action for BF theory written with space-time indices shown explicitly is as follows:

\[
S_{BF} = \int d^4 x B^I \wedge F_I \equiv \int d^4 x e^{\mu \alpha \beta} B^{\mu \alpha \beta} F_{\alpha \beta I}.
\]

Table 2

Quantity	Symbols	Range
SD Clifford algebra	\(I, J, K, \ldots \)	\([0, 1, 2, 3, 4]\)
Generators of SO(5)	\(IJ, JK, \ldots \)	
Generators of SO(4, 1) and SO(3, 2)	\(a, b, c, \ldots \)	\([0, 1, 2, 3]\)
Generators of SO(3) and SU(2)	\(i, j, k, \ldots \)	\([1, 2, 3]\)
Space-time coordinates	\(\mu, \nu, \alpha, \beta, \ldots \)	\([0, 1, 2, 3]\)
\(n^1 = \Delta^\dagger + \Delta\)
\(n^2 = -i(\Delta^\dagger - \Delta)\)
\(n^3 = \sum_{\alpha,\beta} c_{k+\Pi,\alpha}^\dagger \sigma^\alpha_{\alpha\beta} c_{k,\beta}\)
\(n^4 = \sum_{\alpha,\beta} c_{k+\Pi,\alpha}^\dagger \sigma^\beta_{\alpha\beta} c_{k,\beta}\)

where \(\Pi = (\pi, \pi) = (k_x, k_y)\) refers to the electron momenta in the two-dimensional momentum space of the cuprate lattice. Recall that in a periodic lattice the allowed momenta range from \(k \in (-\pi/a, \pi/a)\), where \(a\) is the lattice spacing. Thus \(\Pi = (\pi, \pi)\) refers to the maximum allowed momentum of an electron on the cuprate fermi surface. \(\Pi\) is distinct from, but not unrelated to, the operator \(\pi_\alpha\) defined in \((B.1a)-(B.1c)\). The operator \(\Delta\) has been defined previously in \((B.1a)-(B.1c)\) and \((B.2)\).

Conflicts of Interest

The author declares that there are no conflicts of interest regarding the publication of this paper.

References

[1] E. Demler and S.-C. Zhang, “Theory of the Resonant Neutron Scattering of High-T\(_c\) Superconductors,” Physical Review Letters, vol. 75, p. 4126, 1995.

[2] E. Demler, W. Hanke, and S. Zhang, Reviews of Modern Physics, vol. 76, no. 3, pp. 909–974, 2004.

[3] S.-C. Zhang, “SO(5) Quantum Nonlinear sigma Model Theory of the High \(T_c\) Superconductivity,” 1996, http://arxiv.org/abs/cond-mat/9601040.

[4] S.-C. Zhang, “A Unified Theory Based on SO(5) Symmetry of Superconductivity and Antiferromagnetism,” American Association for the Advancement of Science: Science, vol. 275, no. 5303, pp. 1089–1096, 1997.

[5] S. Murakami, N. Nagaosa, and M. Sigrist, “SO(5) Model of p-wave Superconductivity and Ferromagnetism,” Physical Review Letters, vol. 82, no. 14, pp. 2939–2942, 1999.

[6] L. Freidel and A. Starodubtsev, “Quantum gravity in terms of topological observables,” 2005, http://arxiv.org/abs/hep-th/0501191.

[7] D. K. Wise, “MacDowell–Mansouri gravity and Cartan geometry,” Classical and Quantum Gravity, vol. 27, no. 15, 2010.

[8] S. W. MacDowell and F. Mansouri, “Unified geometric theory of gravity and supergravity,” Physical Review Letters, vol. 38, no. 14, pp. 739–742, 1977.

[9] K. S. Stelle and P. C. West, “Spontaneously broken de Sitter symmetry and the gravitational holonomy group,” Physical Review D: Particles, Fields, Gravitation and Cosmology, vol. 21, no. 6, pp. 1466–1488, 1980.

[10] A. Randono, “Gauge Gravity: a forward-looking introduction,” 2010, http://arxiv.org/abs/1010.5822.

[11] A. Randono, “Gravity from a fermionic condensate of a gauge theory,” Classical and Quantum Gravity, vol. 27, no. 21, 2010.

[12] H. F. Westman and T. G. Zlosnisk, “Exploring Cartan gravity with dynamical symmetry breaking,” Classical and Quantum Gravity, vol. 31, no. 9, 2014.

[13] H. F. Westman and T. G. Zlosnisk, “An introduction to the physics of Cartan gravity,” Annals of Physics, vol. 361, pp. 330–376, 2015.

[14] J. Maguificio, M. Rodríguez-Vázquez, H. Westman, and T. Zlosnisk, “Cosmological signature change in Cartan gravity with dynamical symmetry breaking,” Physical Review D: Particles, Fields, Gravitation and Cosmology, vol. 89, no. 6, 2014.

[15] J. Ambjorn, A. Görlich, J. Jurkiewicz, and R. Loll, “Quantum Gravity via Causal Dynamical Triangulations,” in Handbook of Spacetime, Springer, 2013.

[16] M. H. Ansari and F. Markopoulou, “A statistical formalism of Causal Dynamical Triangulations,” Nuclear Physics B, vol. 726, no. 3, pp. 494–509, 2005, http://arxiv.org/abs/hep-th/0505165.

[17] M. H. Ansari, The Statistical Fingerprints of Quantum Gravity [Ph.D. thesis], University of Waterloo, 2008, http://uwaterloo.ca/handle/10012/4074.

[18] B. Dittrich and J. Hnybida, “Ising Model from Intertwiners,” 2013, http://arxiv.org/abs/1312.5646.

[19] A. Feller and E. R. Livine, “Ising spin network states for loop quantum gravity: a toy model for phase transitions;” Classical and Quantum Gravity, vol. 33, no. 6, p. 065005, 2016.

[20] A. Feller and E. R. Livine, “Quantum surface and intertwiner dynamics in loop quantum gravity,” Classical and Quantum Gravity, vol. 95, Article ID 124038, 2017.

[21] J. Wang, “Black hole as topological insulator,” 2017, http://arxiv.org/abs/1703.09365.

[22] D. Kastor, S. Ray, and J. Traschen, “Enthalpy and the mechanics of AdS black holes,” Classical and Quantum Gravity, vol. 26, no. 19, Article ID 195011, 16 pages, 2009.

[23] D. Kubiznak and R. B. Mann, “P = V criticality of charged AdS black holes,” Journal of High Energy Physics, vol. 2012, article 33, 2012.

[24] D. Kubiznák and R. B. Mann, “Black hole chemistry,” Canadian Journal of Physics, vol. 93, no. 9, pp. 999–1002, 2015.

[25] D. Kubiznak, R. B. Mann, and M. Teo, “Black hole chemistry: thermodynamics with lambda,” Classical and Quantum Gravity, vol. 34, no. 6, Article ID 063001, 2017.

[26] Wikipedia, “High-temperature superconductivity — wikipedia, the free encyclopedia,” 2017, https://en.wikipedia.org/wiki?title=High-temperature_superconductivity&oldid=812074078.

[27] S. Chakravarty, B. I. Halperin, and D. R. Nelson, “Two-dimensional quantum Heisenberg antiferromagnet at low temperatures,” Physical Review B: Condensed Matter and Materials Physics, vol. 39, no. 4, pp. 2344–2371, 1989.

[28] D. Vaid and S. Bilson-Thompson, Loop Quantum Gravity for the Bewildered: The Self-Dual Approach Revisited, Springer, 2017.

[29] C. P. Burgess and C. A. Lütken, “On the SO(5) Effective Field Theory of High \(T_c\) Superconductors,” 1996, http://arxiv.org/abs/cond-mat/9611070.

[30] C. P. Burgess and C. A. Lütken, “SO(5) invariance and effective field theory for high-,” Physical Review B: Condensed Matter and Materials Physics, vol. 57, no. 14, pp. 8642–8655, 1998.
[31] S. Rabello, H. Kohno, E. Demler, and S. Zhang, “Microscopic Electron Models with Exact SO(5) Symmetry,” Physical Review Letters, vol. 80, no. 16, pp. 3586–3589, 1998.

[32] D. Vaid, “Quantum Hall Effect and Black Hole Entropy in Loop Quantum Gravity,” 2012, http://arxiv.org/abs/1208.3335.

[33] D. Vaid, “Non-abelian Gauge Fields from Defects in Spin-Networks,” 2013, http://arxiv.org/abs/1309.0652.

[34] S. A. Hartnoll, C. P. Herzog, and G. T. Horowitz, “Building a Holographic Superconductor,” Physical Review Letters, vol. 101, Article ID 031601, 2008.

[35] S. A. Hartnoll, C. P. Herzog, and G. T. Horowitz, “Holographic superconductors,” Journal of High Energy Physics, vol. 2008, article 12, 2008.

[36] S. A. Hartnoll, “Lectures on holographic methods for condensed matter physics,” 2010, http://dx.doi.org/10.1088/0264-9381/26/22/224002.

[37] C. P. Herzog, “Lectures on holographic superfluidity and superconductivity,” 2009, http://dx.doi.org/10.1088/1751-8113/42/34/343001.

[38] M. Natsuume, “AdS/CFT Duality User Guide,” 2014, http://arxiv.org/abs/1409.3575.
