Optimal Feeding Frequency for African Sneakhead Fish (*Parachanna obscura*, Gunther, 1861) Fingerlings Reared in Captivity

Diane N.S Kpogue 1, Herman K. Gangbazo 2, Juste Vital Vodounnou 3, G.A. Mensah 4, Emile D. Fiogbé 3

1 National University of Agriculture, BP 43 Ketou, Benin
2 Halieutic Production Direction 01 BP 383 Cotonou, Benin
3 University of Abomey-Calavi, Faculty of Sciences and Techniques, Laboratory of Research in the Wetlands, 01 BP 526 Cotonou, Benin
4 National Institute of Agriculture, Research of the Benin, 01 BP 884 Cotonou, Benin

Corresponding author Email: *senamidiane@yahoo.fr*

International Journal of Aquaculture, 2018, Vol.8, No.22 doi: 10.5376/ija.2018.08.0022

Received: 28 Jun., 2018
Accepted: 29 Sep., 2018
Published: 12 Oct., 2018

Copyright © 2018 Kpogue et al. This is an open access article published under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Preferred citation for this article:
Kpogue D.N.S., Gangbazo H.K., Vodounnou J.V., Mensah G.A., and Fiogbé E.D., 2018, Optimal feeding frequency for African sneakhead fish (*Parachanna obscura*, Gunther, 1861) fingerlings reared in captivity, International Journal of Aquaculture, 8(22): 161-167 (doi: 10.5376/ija.2018.08.0022)

Abstract *Parachanna obscura* is a fish that has a good economic value and is an important performance for aquaculture. By identifying the optimum stocking density and frequency of feeding, farmers can successfully decrease the feed charge and increase growth performance. The aim of our study is to define optimum frequency of feeding of *P. obscura* fingerlings reared controlled condition. Therefore the experiment was conducted during three months. The fingerlings of *P. obscura* were fed one of four schedules at 3% of body weight. The initial weight body was 13.27±0.07 g. At the end of this study, the results prove that survival rates were 100% and were not significantly affected by the frequency of feeding (*p*>0.05). Growth performances varied significantly with treatments (*p*<0.05). The augmentation of frequency of feeding above 3 times/day did not produce any significant (*p*>0.05) improvement of growth. Therefore, optimal feeding frequency for *Parachanna obscura* fingerlings reared in controlled conditions is three times daily.

Keywords Feeding frequency; *P. obscura*; Fingerlings; Diet

Background
The snakehead belonging to the family Channidae is one of the important native fish of freshwater of tropical Africa and Asia (Ng and Lim, 1990). The local and international markets greatly demand on Channidae due to its tasty flesh and medicinal value in enhancing wound healing and reducing postsurgical pain (Mollah et al., 2009). *Parachanna obscura* is the most common African Channidae (Bonou and Teugels, 1985). It is a hardy species that supports stressful conditions (Kpoguè et al., 2013a). It has good economic value and is an important performance for aquaculture (Micha, 1974; Boladji et al., 2011). It is not a fatty fish but an intermediate one (Mujina et al., 2009). It is consumed for its nutritional value (Ama-Abasi and Ogar, 2013) and its flesh is white, firm, practically boneless and has an good flavor. To maintain this fish population as well as its rehabilitation and conservation, development of a suitable technology for rearing of *P. obscura* fingerlings is necessary. Efforts on culturing *P. obscura* merely start and end at collecting them from the wild. It is reared in small reservoirs in hydro-agricultural purpose in Ivory Cost (Lazard and Legendre, 1994). It is also extensively cultured in Cameroon, Nigeria and Democratic Republic of Congo (De Graaf, 2004; FAO, 2007; Bassey and Ajah, 2010). In intensive fingerlings culture, several factors influence survival rate, welfare, growth, feed efficiency, production including feeding level (El-Sayed, 2002; Imtiaz, 2007), dietary nutrient level (NRC, 1993), stocking density (Ma et al., 2006; Chambel et al., 2015; Gao et al., 2017) and feeding frequency (Jamabo et al., 2015). The overfeeding of fish pollutes the water of the aquaculture and meant expenses supplement on the production cost. However, the optimization of the feed ration and the frequency of distribution constitute fields of research in the aquaculture. In aquaculture, stocking density is the concentration which fish are stocked into a system (De Oliveira et al., 2012). By identifying the optimum stocking density and feeding frequency, farmers can successfully decrease the feed cost and increase growth and also able to manage other parameters such as variation of individual size and qualities of water which are deemed important in rearing of fish in culture conditions. Feeding level requirements, dietary (protein, lipid and carbohydrate) level requirements of *P. obscura* fingerlings have been determined by...
No work has yet been undertaken on feeding frequency of *P. obscura* fingerlings. The aim of study is therefore to determine optimum frequency of feeding of *P. obscura* fingerlings reared controlled condition.

1 Results

During the experimental, physico-chemical parameters are 27.85 ± 0.29°C for the temperature, 6.57 ± 0.16 mg/L for the dissolved oxygen and 6.15 ± 0.82 for pH. Survival rate, growth performances (condition factor, specific growth rate and final body weight) and feed efficiency during the study are presented in Table 1. There was no mortality recorded during the experiment period. Survival rate didn’t vary among treatments and was 100% (*p* > 0.05). Growth performances varied significantly with treatments (*p* < 0.05). Thus the greatest final body weight was achieved by the fish fed treatments T2 (3 times/day), T3 (4 times/day) and T4 (5 times/day). The least final body weight (26.75±0.86 g) was recorded with fish fed treatment T1 (2 times/day). The specific growth rate and the condition factor improved significantly (*p* < 0.05) as feeding frequency increased from twice (T1) for 3 times/day (T2). The augmentation of feeding frequency above 3 times/day did not produce any significant (*p* > 0.05) improvement of specific growth rate (Figure 1). Feed efficiency did not varied significantly with treatment (*p* > 0.05). Nevertheless, it varied from 0.51 ± 0.05 (T1) to 0.63 ± 0.12 (T3).

Table 1 Growth performances, feed efficiency and survival rate of experimental fishes

| Parameters                   | T1               | T2               | T3               | T4               |
|------------------------------|------------------|------------------|------------------|------------------|
| Initial body weight (g)      | 13.23±0.03 a     | 13.29±0.04 a     | 13.27±0.06 a     | 13.29±0.06 a     |
| Final body weight (g)        | 26.75±0.86 a     | 30.13±0.55 bc    | 32.57±1.45 c     | 33.03±0.42 cd    |
| Feed efficiency              | 0.51±0.05 a      | 0.58±0.07 a      | 0.63±0.12 a      | 0.62±0.06 a      |
| K (condition factor %)       | 0.72±0.05 a      | 0.77±0.01 b      | 0.78±0.03 b      | 0.79±0.04 b      |
| Survival rate (%)            | 100±0.00 a       | 100±0.00 a       | 100±0.00 a       | 100±0.00 a       |

![Figure 1 Relationship between specific growth rate and feeding frequency](image)

2 Discussion

The mean quality of water parameters values (dissolved oxygen, pH temperature) observed in this study were within the recommended range for *P. obscura* according to Bonou and Teugels (1985) and Riehl and Baensch (1991). Feeding and feeding frequencies are key factors that determine the growth and survival chances of fishes (Ndome et al., 2011). Multiple feedings has previously been found to be stimulatory for growth, survival and feed utilization in fingerlings of Indian major carps (Choudhury et al., 2002; Kiaalvandi et al., 2011; Ashfaq et al., 2017). The results of our study showed that, in any treatments, a survival rate (100%) was affected by the feeding frequency. These results confirmed that *P. obscura* is a hardy and rustic species (Kpoguè et al., 2013a). Growth performances (final body weight, specific growth rate and condition factor) varied significantly with treatment. But the augmentation of feeding frequency above 3 times/day did not produce any significant (*p* > 0.05) improvement of growth. The least growth performances were recorded in fingerlings fed with twice/day groups.
Growth generally increased with feeding frequency up to a given limit (Wang et al., 1998; Bascinar et al., 2007; Asuwaju et al., 2014; Jamabo et al., 2015). Indeed, according to several studies, the schedules of feed strongly affect the ingestion and the assimilation of feed. The fish which are less frequently fed can adapt to such conditions by consuming greater quantities of feed during each feeding. If schedules are applied for a long period, this can lead to the hyperphagia. The fish which are well fed more frequently consume a greater quantity of feed, when the intervals between the meals are short, feed crosses the digestive area more quickly, having for result an ineffective digestion. Feed efficiency did not varied significantly with treatment (p>0.05). Nevertheless, it varied from 0.51±0.05 (T1) to 0.63±0.12 (T3). This result was an indication of better food utilization efficiency when feeding frequency is thrice time daily. According to Jamabo et al. (2015), feeding frequency is optimal for the condition of the trial suggesting that both growth parameters and feed utilization are most efficiency. Therefore, optimal feeding frequency for *Parachanna obscura* fingerlings reared in controlled conditions is three times daily. This observation agrees with the findings of several authors. According to Abid and Ahmed (2009) and Aderolu et al. (2010), optimum feeding frequency of *Labeo rohita* and *Clarias gariepinus* fingerlings is three times daily respectively. Moreover, three feeding a day have been found to be sufficient for maximum growth of *Oncorhynchus mykiss* (Ruohonen et al., 1998).

3 Materials and Methods

3.1 Fish and experimental design

The experiment was conducted in the experimental Station in the Wetlands Research Unit of Faculty of Abomey Calavi University (6°25’1.53”N, 2°20’42.2”E). 300 fingerlings of *Parachanna obscura* (mean weight: 13.27 ± 0.07 g) were collected in a pond on the experimental station. They were stocked per a 225 liter tank for 12 weeks. Water was continuously renewed (1 L/min). Tanks were protected at half with a perforated wooden plank to avoid fish from jumping out. Based on nutrient of various ingredients composition (Table 2), experimental diet was formulated (Table 3) and used during the trial. Sulfate of ferrous was used to decrease a possible toxicity of free gossypol in the diet. The ingredients diet were ground, weighted and mixed. Feed preparation was made by mixing the ingredients with boiling water and oil in paste. The paste was transformed into pellets of 2 mm diameter by food blender. After freeze drying at a temperature of 28 to 35°C in lyophilisator, the pellets were manually broken in small pieces. The fishes were fed one of four schedules (Table 4) at 3% of body weight (Kpogu and Fiogbé, 2012) from 08:00 AM to 08:00 PM up to apparent satiation. Each treatment was tested in triplicate. The density of 50 fishes/tank was used.

| Composition | Cotton seed meal | Soybean meal | Maize bran | Fish meal |
|-------------|------------------|--------------|------------|-----------|
| Essential   | Threonine        | 0.45         | 0.76       | 0.20      | 2.31      |
|             | Valine           | 0.50         | 0.56       | 0.20      | 2.77      |
|             | Methionine       | 0.20         | 0.24       | 0.06      | 1.94      |
|             | Isoleucine       | 2.50         | 0.52       | 0.13      | 2.45      |
|             | Leucine          | 0.95         | 1.72       | 0.50      | 3.79      |
|             | Phenylalanine    | 1.10         | 1.36       | 0.50      | 3.74      |
|             | Histidine        | 0.70         | 0.64       | 0.44      | 1.75      |
|             | Thryptophan      | 0.40         | 0.32       | 0.25      | 0.57      |
|             | Lysine           | 0.50         | 1.20       | 0.44      | 4.22      |
|             | Arginine         | 2.15         | 2.04       | 1.80      | 3.43      |
| Anti-nutrients | Phytic acid   | 0.36         | 0.57       | 0.04      | No detectable |
|             | Gossypol         | 0.11         | Not significant | Not significant | Not significant |

Physico-chemical parameters of water were measured during the experiment period. A portable chemical multimeter parameters served to measure temperature, pH and dissolved oxygen.

Test fishing was carried every seven days. Ponds were emptied and washed. Fishes were counted and weighted per pond. Test fishing enabled ration readjusting in relation to biomass. At the end of experiment, biomass, total fries number, weight and individual length were measure in each pond.
Table 3 Formulation and proximate composition of experimental diet

| Ingredients                  | Percentage (%) |
|------------------------------|----------------|
| Cottonseed meal              | 20             |
| Maize bran                   | 12             |
| Fish meal                    | 45             |
| Soybean meal                 | 17             |
| "Soya oil"                   | 2              |
| "Carboxymethylcellulose"     | 1              |
| Iron sulphate                | 0.5            |
| "Premix (Vit-Min)"           | 2.5            |

Proximate analyses

| Moisture (%)                | 88.5           |
| Ash (%)                     | 9.22           |
| Crude lipid (%)             | 7.69           |
| Carbohydrate (%)            | 13.76          |
| Crude protein (%)           | 42.86          |
| "Brute Energy (MJ/100 g)"   | 1.76           |
| Protein/Energy (g/MJ)       | 24.35          |

Antinutrients

| "Phytic acid"               | 17.4           |
| "Gossypol"                  | 2.0            |

Note: "Songhai center (Republic of Benin); "SIGMA-Aldrich Chemie, Steinhem, Germany; " Drugstore, premix (vitamin-mineral) contains (%): Vitamin A 4,000,000 U.I; Vitamin D 800,000 U.I; Vitamin E 40,000 U.I; Vitamin K, 1,600 mg; Vitamin B1 4,000 mg, Vitamin B2 3,000 mg; Vitamin B6 3,800 mg; Vitamin B12 3 mg; Vitamin C 60,000 mg; Biotin 100 mg; Inositol 10,000 mg, Pantothenic acid 8,000 mg; Nicotinic acid 18,000 mg; Folic acid 800 mg; Cholin chloride 120,000 mg; Coqaine carbonate 150 mg, Ferrous sulphate 8,000 mg; Potassium iodide 400 mg; Manganese oxide 6,000 mg; Cuvire 800 mg; Sodium selenite 40 mcg; Lysine 10,000 mg; Methionin 10,000 mg; Zinc sulphate 8,000 mg; "Calculated from nutrient content: 23.01 KJ/g protein; 38.07 KJ/g lipid and 17.15 KJ/g carbohydrates; "By calculation using value in Table 2

Table 4 Hours and frequency of feeding

| Treatments | Feeding frequency | Feeding hours |
|------------|------------------|---------------|
| T1         | 2x/day           | 8 h           |
| T2         | 3x/day           | 8 h           |
| T3         | 4x/day           | 8 h 11 h 20 |
| T4         | 6x/day           | 8 h 10 h 12 h 14 h 16 h |

3.2 Chemicals and calculations

Standard methods for dry matter were used to analyze the ingredients and diet samples. The (oven drying) at 105°C for 24 h, crude protein (CP) (N-Kjeldahl×6.25) and ash (oven incineration at 550°C for 12 h) were used. Lipids were extracted according to Bligh and Dyer (1959). Analysis of the amino acids in the ingredients was carried out by high performance liquid chromatography (HPLC, Waters 474, Milford, MA, USA). These analyses were carried out according to the method described by Alegria et al. (1999). Whereas gossypol was determined according to the method described by Imorou Toko et al. (2008), phytic acid in the ingredients was acid-extracted using 3% H2SO4 for 60 min at room temperature, centrifuged at 3,897 g for 15 min. Supernatant was mixed with FeCl3 (0.1 N) and centrifuged again to obtain a precipitate at which we added de-ionized water and NaOH (1.5 N) to extract the phytate after incubation at 80°C during 30 min. After the feeding trial, fish were collected, counted, weighed and the different parameters were calculated as follows:

\[
\text{Survival rate (SR)} = \frac{\text{FN}}{\text{IN}} \times 100
\]

\[
\text{Final mean weight (FMW)} = \frac{\text{FB}}{\text{FN}}
\]
Specific growth rate (SGR) = \frac{\ln(FMW) - \ln(IMW)}{T} \times 100

Feed efficiency (FE) = \frac{FB + DB - IB}{dR}

Consumption index (CI) = \frac{1}{FE}

Where: FN = final fish number per pond, IN = initial fish number per pond, FB = final biomass per pond, Ln = logarithm, T = time (experiment duration), DB = dead fish biomass (g), IB = initial biomass per pond (g), DR = distributed ration (g).

3.3 Statistical analysis
Data collected during experiment were encoded in Excel software version 2010. Different zootechnical parameters, physico-chemical and morpho-metrical were calculated. Mean and range of each parameter were calculated and graphs were drawn. Statistical analyses were carried out by using STATVIEW software (version 5.01) at 5% probability threshold. A one way analysis of variance was carried out to compare zootechnical performances of different treatments. In case of significant differences, the Fisher LSD (Least Significant Difference) test served to means comparisons.

4 Conclusion
Fixing the optimum frequency of feeding, farmers can decrease the feed cost and increase growth parameters. This study showed that the augmentation of feeding frequency above 3 times/day did not produce any significant improvement of growth. Therefore, optimal feeding frequency for Parachanna obscura fingerlings reared in controlled conditions is three times daily.

Authors’ contributions
All authors contributed equally in this study and writing of the manuscript. All authors read and approved the final manuscript.

Acknowledgements
This study was supported by the Ministry of Higher Education and Scientific Research of Republic of Benin.

References
Abid M., and Ahmed M.S., 2009, Efficacy of feeding frequency on growth and survival of Labeorohita (Ham) fingerlins under intensive rearing, Short communication, J. Anim. Plant Sci., 19(2): 111-113
http://thejaps.org.pk/docs/19-2-%202009/09-918.pdf

Aderolu A., Seriki B.M., Apatira A.L., and Ajaegbo C.U., 2010, Effects of feeding frequency on growth, feed efficiency and economic viability of rearing African catfish (Clarias gariepinus; Burchell, 1822) fingerlings and juveniles, Afr. J. Food Sci., 4(5): 286-290
http://www.academicjournals.org/journal/AJFS/article-abstract/512F64123916

Alegria A., Barbera R., Farré R., Lagarda M.J., and Lopez J.C., 1999, Amino acid contents of infant formulas, J. Food COMP Anal, 12: 137-146
https://doi.org/10.1006/jfca.1999.0818

Asuwaju F.P., Onyecha V.O., Ogbuebunu K.E., Moradum H.F., and Robert E.A., 2014, Effect of feeding frequency on growth and survival rate of Clarias gariepinus fingerlings reared in plastic bowls, Journal of Fisheries and Aquatic Science, 9(5): 425-429
https://doi.org/10.3923/jfas.2014.425.429

Bascinar N.E., Calmak Y., and Cardar Aksungu N., 2007, The effect of feeding frequency on growth performance and feed conversion rate of black sea trout (Salmo trutta, 1811), Turkish J. Fisheries and Aquatic Sci., 7: 13-17
http://trfas.org/pdf.php?id=305

Ama-Abasi D., and Ogar A., 2013, Proximate analysis of snakehead fish, Parachanna obscura (Günther, 1861) of the cross river, Nigeria, J. Fish. Aquat. Sci., 8(1): 295-298
https://doi.org/10.3923/jfas.2013.295.298

Ashfaq F.A., Asha D., and Meera D.A., 2017, Efficacy of feeding frequency, feeding rates and formulated diets on growth and survival of rohu Labeo rohita brood stock under intensive rearing, International Journal of Fisheries and Aquatic Studies, 5(1): 85-89
http://www.fisheriesjournal.com/archives/2017/vol5issue1/PartB/4-6-113-129.pdf

Asuwaju FP, Onyecha V.O., Ogbebumu K.E., Moradum H.F., and Robert E.A., 2014, Effect of feeding frequency on growth and survival rate of Clarias gariepinus fingerlings reared in plastic bowls, Journal of Fisheries and Aquatic Science, 9(5): 425-429
https://doi.org/10.3923/jfas.2014.425.429

Bascinar N.E., Calmak Y., and Cardar Aksungu N., 2007, The effect of feeding frequency on growth performance and feed conversion rate of black sea trout (Salmo trutta, 1811), Turkish J. Fisheries and Aquatic Sci., 7: 13-17
http://trfas.org/pdf.php?id=305
Bassey A.U., and Ajah P.O., 2010, Effect of three feeding regimes on growth, condition factor and food conversion rate of pond cultured *Parachanna obscura* (Günther, 1861) (Channidae) in Calabar, Nigeria, Turk. J. Fish. Aquat. Sci., 10: 195-202

http://www.trifas.org/pdf.php?id=357

Bligh E.G., and Dyer W.J., 1959, A rapid method for lipid extraction and purification, Can. J. Biochem. Physiol., 37: 911-917

https://doi.org/10.1139/o59-099

PMid:13671378

Bolaji B.B., Mfon T.U., and Ubue D.I., 2011, Preliminary study on the aspects of the biology of snakehead fish *Parachanna obscura* (Günther) in a Nigerian wetland, Afr. J. Food, Agri. Nutr. Dev., 11(2): 4708-4717

https://doi.org/10.4314/ajfand.v11i2.5923

Bonou C., and Teugels G.G., 1985, Révision systématique du genre Parachanna (Teugels & Daget, 1984) (*Pisces: Channidae*), Rev. Hydro. Tropi., 18: 267-280

http://www.fisheriesjournal.com/archives/2015/vol3issue1

Chambel J., Severiano V., Baptista T., Mendes S., and Pedrosa R., 2015, Effect of stocking density and different diets on growth of Percula Clownfish *Amphiprion percula* (Lacepepe, 1802), SpringerPlus, 4: 183

https://doi.org/10.1186/s40064-015-0967-x

PMid:26069869

PMCID:PMC4456576

Choudhury B.B.P., Das D.R., Ibrahim M., and Chakraborty S.C., 2002, Relationship between feeding frequency and growth of one Indian major carp *Labeo rohita* (Ham.) fingerlings fed on different formulated diets, Pakistan Journal of Biological Sciences, 5(10): 1120-1122

https://doi.org/10.3923/pjbs.2002.1120.1122

De Graaf G., 2004, Optimization of the pond rearing of Nile tilapia (*Oreochromis niloticus*): the impact of stunning processes and recruitment control, PhD thesis, Wageningen University, Hollande, pp.179

https://library.wur.nl/WebQuery/wurpubs/fulltext/121617

De Oliveira E.G., Pinheiro A.B., de Oliveira V.Q., da Silva Junior L., and Almeida E.G., 2011, Preliminary study on the aspects of the biology of snakehead fish *Parachanna obscura* (Günther, 1861) fingerlings fed diets containing graded levels of soybean or shrimp *Litopenaeus vannamei* (Ham.) fingerlings, Pakistan Journal of Biological Sciences, 5(10): 1120-1122

https://doi.org/10.1016/j.aquaculture.2012.09.027

El-sayed A.F.M., 2002, Effect of stocking density and feeding levels on growth and feed efficiency of Nile tilapia *Oreochromis niloticus*, Aquicult. Res., 33: 621-626

https://doi.org/10.1046/j.1365-2109.2002.00700.x

FAO, 2007, Assessment of freshwater fish seed resources for sustainable aquaculture, pp.669

Gao Y., He Z., Veck P., Zhao B., Li Z., He J., Lee J.Y., and Chu Z., 2017

FAO, 2007, Assessment of freshwater fish seed resources for sustainable aquaculture, pp.669

Gao Y ., He Z., Veck H., Zhao B., Li Z., He J., Lee J.Y ., and Chu Z ., 2017

Gao Y., He Z., Veck H., Zhao B., Li Z., He J., Lee J.Y., and Chu Z., 2017, Effect of stocking density on growth, oxidative stress and HSP 70 of pacific white shrimp *Litopenaeus vannamei*, Turkish Journal of Fisheries and Aquatic Sciences, 17: 877-884

https://doi.org/10.4103/1303-2712.v17_5_04

Imorou Toko I., Fiogbe E.D., and Kestemont P., 2008, Mineral statuts of African catfish (*Clarias gariepinus*), Global Veterinaria, 6(6): 514-518

http://www.fisheriesjournal.com/archives/2015/vol3issue1

Imtiaz A., 2007, Effect of ration size on growth, body composition, and energy and protein maintenance requirement of fingerling Indian major carp, *Labeo rohita* (Hamilton), Fish Physiol. Biochem., 33: 203-212

https://doi.org/10.1007/s10586-007-9132-x

Jamabo N.A., Fubara R.I., and Dienye H.E., 2015, Feeding frequency on growth and feed conversion of *Clarias gariepinus* (Burchell, 1822) fingerlings, International Journal of Fisheries and Aquatic Studies, 3(1): 353-356

http://www.fisheriesjournal.com/archives/2015/vol3issue1/PartE/3-1-70.pdf

Kiaalvandi S., Faramarzi M., Iranshahi F., Zahibi A., and Roozbehfar R., 2011, Effect of feeding frequency on growth factors and body composition of common carp, *Cyprinus carpio*, *Rohita* (*Labeo rohita*), and *Rohita* (*Labeo rohita*), Aquaculture, 370-371(0): 96-101

https://doi.org/10.1016/j.aquaculture.2012.09.027

Kogou D., and Fiogbé E., 2012, Effects of feeding rate requirements for *Parachanna obscura* fry reared under controlled environmental conditions, J. Appl. Biosci., 55: 298-305

https://doi.org/10.1016/j.aquaculture.2007.11.038

Kogou D., and Fiogbé E., 2012, Feeding rate requirements for *Parachanna obscura* fry reared under controlled environmental conditions, J. Appl. Biosci., 55: 298-305

Kogou D., and Fiogbé E., 2012, Feeding rate requirements for *Parachanna obscura* fry reared under controlled environmental conditions, J. Appl. Biosci., 55: 298-305

Kogou D., and Fiogbé E., 2012, Feeding rate requirements for *Parachanna obscura* fry reared under controlled environmental conditions, J. Appl. Biosci., 55: 298-305

Kogou D., and Fiogbé E., 2012, Feeding rate requirements for *Parachanna obscura* fry reared under controlled environmental conditions, J. Appl. Biosci., 55: 298-305

Kogou D., and Fiogbé E., 2012, Feeding rate requirements for *Parachanna obscura* fry reared under controlled environmental conditions, J. Appl. Biosci., 55: 298-305
Kpogue D.N.S., D’Almeida A.F.M., Houankanlin N., Dougnon J., and Fiogbe E.E.D., 2018b, Influence of dietary lipid levels on growth performances, survival, feed utilization and carcass composition of african snakehead *Parachanna obscura* fingerlings, S. Asian J. Life Sci., 6(2): 36-40
http://dx.doi.org/10.17582/journal.sajs/2018/6.2.36.40

Lazard J., and Legendre M., 1994, La pisciculture africaine: enjeux et problèmes de recherche, Cah. Agr., 3: 83-92
http://agritrop.cirad.fr/397796/

Ma A., Chen C., Lei J., Chen S., Zhuang Z., and Wang Y., 2006, Turbot *Scophthalmus maximus*: stocking density on growth, pigmentation and feed conversion, Chin. J. Ocean. Limno., 24(3): 307-312
https://doi.org/10.1007/BF02842633

Micha J.C., 1974, Fish populations study of Ubangui River: Trying local wild species for fish culture, Aquaculture, 4: 85-87
https://doi.org/10.1016/0044-8486(74)90022-2

Mujinga W., Mutala S., and Hüsken S.M.C., 2009, Rapport d’analyse et table de valeur bromatologique de catégorie des poissons trouvés sur les marchés de poisson à Lubumbashi, République Démocratique du Congo, Programme régional Les pêches et le VIH/SIDA en Afrique: investir dans des solutions durables, Rapport de projet du WorldFish Center, pp.14
http://www.idsociety.org/ajeir/6c1112.pdf

Mullah M.F.A., Mamun M.S.A., Sarowar M.N., and Roy A., 2009, Effects of stocking density on the growth and breeding performance of brood fish and larval growth and survival of shol, *Channa striatus* (Bloch), Journal of the Bangladesh Agricultural University, 7(2): 427-432
http://www.banglajol.info/bd/index.php/JBAU/article/download/4756/3790

Ndome C.B., Ekwu A.O., and Ateb A.A., 2011, Effect of feeding frequency on feed consumption, growth and feed conversion of *Clarias gariepinus* x *Heterobranchus longifilis* hybrids, American-Eurasian Journal of Scientific Research, 6(1): 06-12
http://www.idosi.org/ajeir/6c1112.pdf

Ruohonen K., Vielma J., and Grove D.J., 1998, Effects of feeding frequency on growth and food utilization of rainbow trout *Oncorhynchus mykiss* fed low-fat herring or dry pellets, Aquaculture, 165: 111-112
https://doi.org/10.1016/S0044-8486(98)00235-X

Wang N., Hayward R.S., and Noltie D.B., 1998, Effect of feeding frequency on food consumption, growth, size variation, and feeding pattern of age-0 hybrid sunfish, Aquaculture, 165: 261-267
https://doi.org/10.1016/S0044-8486(98)00266-X