15 Jahre Shunttherapie mit hydrostatischen Ventilen bei Patienten mit idiopathischem Normaldruckhydrozephalus: Wann ist eine Ventilverstellung sinnvoll?

Indications for Valve-Pressure Adjustments of Gravitational Assisted Valves in Patients with Idiopathic Normal Pressure Hydrocephalus – 15 Years Experience

Zusammenfassung

Einleitung: Ziel dieser retrospektiven Analyse ist es, Indikationen zur Verstellung des Ventilöffnungsdruks der Niederdruckeintrichtung beim idiopathischen Normaldruckhydrozephalus (iNPH) zu evaluieren.

Material und Methoden: Eingeschlossen wurden operierte Patienten zwischen 2004 und 2011 mit der Klinik eines iNPH, einem Evans-Index ≥ 0,3 und positiver invasiver Liquordiagnostik. Die Einordnung der Symptomatik erfolgte anschließend der Kiefer-Skala. Nachuntersuchungen erfolgten 3, 6 und 12 Monate nach der Shuntimplantation und anschließend jährlich. Bei Implantation wurde der Ventilöffnungsdruk auf 100 oder 70 mmH₂O eingestellt. Es erfolgte die geplante Reduktion des Ventilöffnungsdruks auf 70 bzw. 50 mmH₂O. Reaktive Ventilverstellungen erfolgten um Über- und Unterdrainagesymptomatik zu therapeutieren. Ergebnisse: 52 Patienten erhielten ein Medos-Hakim-Ventil Codman® und 111 Patienten ein Miethke-Shuntassistenten Aesculap®. Während der Nachuntersuchungen erfolgte 180-mal eine Reduktion des Ventilöffnungsdruks (65 % reaktiv und 35 % der Verstellung geplant). Die Mehrzahl der Patienten (90 %) erhielten ein Medos-Hakim-Ventil Codman® mit einem Miethke-Shuntassistenten Aesculap®. Die optimale Ventileinstellung lag bei 50 mmH₂O (36 %). Schlussfolgerung: Die Zieleinstellung des Niederdruckventils sollte bei den meisten Patienten zwischen 30 – 70 mmH₂O liegen. Reaktive Verstellungen der Niederdruckventile machen sowohl bei Unter- als auch bei Überdrainagesymptomatik Sinn. Geplante Verstellungen des Ventilöffnungsdruks waren sinnvoll. Insgesamt verbesserten sich die Einzelsymptome nach 41 % der Ventilverstellungen. Am häufigsten besserte sich das Gangbild (33 %). 18-mal war eine Erhöhung des Ventilöffnungsdruks auf 70 mmH₂O erforrerlich, um Over- und Underdrainage zu vermeiden. 52 Patienten wurden mit einem Hakim valve Codman® mit einem Miethke shunt assistant Aesculap® und 111 Patienten mit einem Miethke-proGAV Aesculap® operiert. Während der Nachuntersuchungen erfolgte 180-mal eine Reduktion des Ventilöffnungsdruks (65 % reaktiv und 35 % der Verstellung geplant). Die Mehrzahl der Patienten (90 %) erhielten ein Medos-Hakim-vale Codman® mit einem Miethke shunt assistant Aesculap® und 111 Patienten mit einem Miethke-proGAV Aesculap®. Während der Nachuntersuchungen erfolgte 180-mal eine Reduktion des Ventilöffnungsdruks (65 % reaktiv und 35 % der Verstellung geplant). Die Mehrzahl der Patienten (90 %) erhielten ein Medos-Hakim-vale Codman® mit einem Miethke shunt assistant Aesculap® und 111 Patienten mit einem Miethke-proGAV Aesculap®. Während der Nachuntersuchungen erfolgte 180-mal eine Reduktion des Ventilöffnungsdruks (65 % reaktiv und 35 % der Verstellung geplant). Die Mehrzahl der Patienten (90 %) erhielten ein Medos-Hakim-vale Codman® mit einem Miethke shunt assistant Aesculap® und 111 Patienten mit einem Miethke-proGAV Aesculap®.
Oft führen bei schon postoperativ deutlich gebesserter Klinik zu einer weiteren Besserung der Einzelsymptome.

Einleitung

Patienten mit idiopathischem Normaldruckhydrozephalus (iNPH) leiden an einer Kombination aus Gangstörung, Urininkontinenz und kognitiver Störung. Diese beginnt zunächst mit einer Kurzzeitgedächtnisstörung und kann im Verlauf in eine Demenz übergehen [1]. Zu der als Hakim-Trias bezeichneten klinischen Symptomatik können außerdem Kopfschmerzen und Schwindel hinzukommen; eine Ventrikelverlagerung in der zerebralen Bildgebung ist jedoch Voraussetzung für die Diagnose idiopathischer Normaldruckhydrozephalus [2, 3].

Die Implantation von ventrikulo-peritonealen Shunts gilt als Therapie der Wahl bei Patienten mit iNPH [4]. Während der letzten 15 Jahre wurde unsere Klinik immer häufiger mit dem Krankheitsbild des idiopathischen Normaldruckhydrozephalus konfrontiert. Innerhalb dieses Zeitraums kam es national und international zu einem Wandel in der Ventiltechnologie. Zunächst wurden gravitationsassistierte, nicht verstellbare Ventile (Miethke-Dual-Switch Aesculap®) implantiert. Damit konnten sehr gute klinische Ergebnisse erzielt werden; 79% der therapierten Patienten hatten 6–9 Monate postoperativ ein befriedigendes bis excellentes Outcome [5]. Die Shuntechnologie entwickelte sich zur Jahrtausendwende in Richtung gravitationsassistierter, verstellbarer Ventile (Miethke-proGAV Aesculap®). Dabei ist die Gravitationseinheit (Shuntassistent) dem verstellbaren Differenzialdruckventil nachgeschaltet. In diesem Jahr konnte in einer prospektiven multizentrischen Studie (SVASONA) der Nachweis erbracht werden, dass der Einsatz programmierbarer und gravitationsgesteuerter Shuntsysteme den gleichen günstigen, postoperativen Effekt bei deutlich geringerer Komplikationsrate (deutlich geringere Rate an Überdrainagen) verglichen mit verstellbaren Differenzialdruckventilen im Zusammenhang mit einem Studienprotokoll [8] vorgenommen. Darüber hinaus wird in der Nachbehandlung operierter Patienten mit idiopathischem Normaldruckhydrozephalus in erster Linie auf den klinischen Verlauf der Erkrankung mit der Anpassung des Öffnungsdrucks reagiert. Die Einschätzung als Verbesserung oder Verschlechterung der Symptomatik erfolgte auf der Basis des Vergleichs der aktuellen Klinik mit dem bis zu diesem Zeitpunkt besten Zustand des jeweiligen Patienten (niedrigster Kiefer-Score).

Während der Nachuntersuchungen wurden insgesamt 180 Verstellungen an den Ventilen durch Reduktion des Öffnungsdrucks im Differenzialdruckventil (Niederdruckeinheit) vorgenommen. 117 (65%) der Ventilverstellungen mit Reduktion des Ventilöffnungsdrucks erfolgten als Reaktion auf die klinische Entwicklung des jeweiligen Patienten seit der Entlassung nach Shuntimplantation bzw. der letzten ambulanten Konsultation. Meist bedingte dabei eine Kombination klinischer Beschwerden die Indikation zur Ventilverstellung. Bei 55 dieser Ventilverstellungen (47%) erfolgte u.a. aufgrund einer Verschlechterung des Gangbilds die Reduktion des Ventilöffnungsdrucks. 26 der Ventilverstellungen (22%) ging eine Zunahme der Urininkontinenz voraus. 18 bzw. 17 der reaktiven Ventilverstellungen (15%) wurden wegen einer Zunahme der Schwindelsymptomatik bzw. der mindesten Störung durchgeführt. Eine Verstärkung der Kopfschmerzsymptomatik führte bei 16 (14%) der reaktiven Ventilverstellungen zu einer Reduktion des Ventilöffnungsdrucks. Darüber hinaus bedingte ein Anstieg des Evans-Indexes 11 (9%) der reaktiven Ventilverstellungen. Bei 57 der 117 reaktiven Ventilverstellungen (49%) wurde zudem eine Persistenz der klinischen Symptomatik zum Anlass der Reduktion des Ventilöffnungsdrucks genommen.

Material und Methodik

Patienten mit dem Leitsymptom des idiopathischen Normaldruckhydrozephalus, der Gangstaxie [7, 8], ggf. noch weiterer Symptome der Hakim-Trias sowie einer Erweiterung des Ventrikelsystems in den bildgebenden Verfahren der Neuroradiologie (Evans-Index ≥0,3) wurden mittels invasiver, liquordynamischer Untersuchung (intrathekaler Infusions- und cerebrospinaler Tap test) diagnostiziert [9]. Bei Bestätigung der Diagnose eines idiopathischen Normaldruckhydrozephalus erfolgte die Indikationsstellung zur Shuntoperation. Von 163 Patienten mit idiopathischem Normaldruckhydrozephalus wurden 52 Patienten mit einem Medos-Hakim-Ventil Codman® und einem Miethke-Shuntassistenten Aesculap® operiert. Bei 111 Patienten wurde ein Miethke-proGAV Aesculap® als v.-p. Shunt implantiert. Bei 93 Patienten betrug die initiale Ventileinstellung 70 mmH₂O und bei den übrigen 70 Patienten 100 mmH₂O im Rahmen eines Studienprotokolls [8]. Die Auswahl der Gravitationseinheit erfolgte anhand der Körpergröße des Patienten: 200 mmH₂O bei Patienten ≤160 cm Körpergröße, 250 mmH₂O bei Patienten zwischen 161–179 cm Körpergröße und 300 mmH₂O bei Patienten ≥180 cm Körpergröße.

Die Einordnung der klinischen Symptomatik in Schweregrade erfolgte präoperativ und während der Nachuntersuchungen anhand der Kiefer-Skala. Die Kardinalsymptome werden dabei je-weils mit 0 bis maximal 6 Punkten bewertet, sodass eine Zunahme des Kiefer-Indexes für eine Verschlechterung der Symptomatik steht [3]. Die klinischen Untersuchungsergebnisse wurden nach der NPH-Recovery-Rate basierend auf dem klinischen Grad für den Normaldruckhydrozephalus von Kiefer [10] bewertet.

Im Rahmen regelmäßiger Nachuntersuchungen 3, 6 und 12 Monate postoperativ und anschließend jährlich, nahmen wir geplante Verstellungen an den programmierbaren Ventilen vor. Bei geplanten Ventilverstellungen wird der Öffnungsdruck der Niederdruckstufe im Differenzialdruckventil trotz bereits gebesselter Klinik eine Reduktion des Ventilöffnungsdrucks. Darüber hinaus be- wirkt bei 16 (14%) der reaktiven Ventilverstellungen zu einer weiteren Besserung der Einzelsymptome. Bei den meisten Patienten waren 1–2 Verstellungen des Ventilöffnungsdrucks notwendig, um den klinischen Verlauf zu optimieren (Abb. 1). Lediglich 18–mal erfolgte eine 3–5. Ventilverstellung. Die erstmalige Ventilverstellung erfolgte zu gleichen Teilen reaktiv (57-mal) und geplant (52-mal). Die weiteren Verstellungen des Ventilöffnungsdrucks in der Niederdruckeinheit

Ergebnisse

Reduktion des Ventilöffnungsdrucks

Bei den meisten Patienten waren 1–2 Verstellungen des Ventilöffnungsdrucks notwendig, um den klinischen Verlauf zu optimieren (Abb. 1). Lediglich 18–mal erfolgte eine 3–5. Ventilverstellung. Die erstmalige Ventilverstellung erfolgte zu gleichen Teilen reaktiv (57-mal) und geplant (52-mal). Die weiteren Verstellungen des Ventilöffnungsdrucks in der Niederdruckeinheit

Götz L et al. 15 Jahre Shunttherapie ... Akt Neurol 2013; 40: 16–21
wurden viel häufiger aufgrund einer erneuten Zunahme der Beschwerden (reaktiv) notwendig (Abb. 2).
Eine Besserung der klinischen Symptomatik gemessen anhand der Kiefer-Skala stellte sich nach 41% der Verstellungen ein. Am häufigsten kam es dabei zu einer Besserung des Gangbildes (33% der Verstellungen), der kognitiven Störung (20%), der Schwindelsymptomatik (19%), der Kopfschmerzen (15%) und der Urininkontinenz (13%). Eine Verringerung der Ventrikelweite gemessen am Evans-Index trat nur 3-mal (1,7%) nach der Reduktion des Ventilöffnungsdrucks auf (Abb. 3).
Betrachtet man die Resultate für die geplanten und reaktiven Verstellungen getrennt, so erhält man vergleichbare Besserungsraten (43% für geplante vs. 39% für reaktive Verstellungen).
Zu einer Verschlechterung der Symptomatik nach Verringerung des Öffnungsdruksamtes des Differenzialdruckventils kam es bei 21% der Verstellungen. Am häufigsten kam es zu einer Zunahme der Gangstörung (36% der Verstellungen), seltener der Urininkontinenz (24%), der Schwindelsymptomatik (15%), des Kopfschmerzes (15%) und der kognitiven Störung (9%; Abb. 4).
Auch die klinische Verschlechterung der Einzelsymptome trat in den Gruppen der geplanten und reaktiven Verstellungen vergleichbar häufig auf (24% für geplante vs. 19% für reaktive Verstellungen). Hier ist erwähnenswert, dass 11 der 37 Ventilverstellungen, bei denen es zu einer klinischen Verschlechterung kam, aufgrund mangelnder Patientencompliance erst mehr als 6 Monate nach der Ventilverstellung nachuntersucht werden konnten. Die Nachuntersuchungen nach erfolgter Ventilverschlechterung wurden frühestens nach 1 Monat, in der Regel jedoch nach 3 Monaten und anschließend jährlich durchgeführt. Es zeigte sich, dass die Mehrzahl der Besserung der Einzelsymptome 3–6 Monate nach der Ventilverstellung festzustellen waren. Bei 22 der Ventilverstellungen konnte eine Verbesserung der Symptome erst nach mehr als 12 Monaten nach der letzten Verstellung verifiziert werden (Abb. 5).

Erhöhung des Ventilöffnungsdrucks
In unserer Untersuchungsgruppe fanden sich neben den 180 beschriebenen Verstellungen mit Reduktion des Ventilöffnungsdrucks 18 Ventilverstellungen (Reduktion vs. Erhöhung des Ven-
bei 2 Ventilverstellungen wurde das Ventil von 30 auf 40 mmH2O erhöht und 13% der Patienten mit mehr als 70 mmH2O therapiert. 26% der Patienten wurden mit 60 mmH2O behandelt. 22% der Patienten konnten nach 12 Monaten nach 22 der Ventilverstellungen verifiziert werden.

Dysfunktionen des Shuntassistenten bzw. des abdominellen Schenkels und eine Dislokation des abdominellen Katheters wurden bei 6 Patienten (4%) beobachtet. Bei 6 weiteren Patienten (1%) kam es zur Ausbildung subduraler Hygrome oder Hämatome, die durch eine Anhebung des Ventilöffnungsdrucks nicht zurückgebildet wurden. Wundheilungsstörungen im Bereich der Narben ohne Nachweis einer Shuntinfektion traten bei 3 Patienten auf (2%) und führten zur vorläufigen Explantation des Shuntsystems. Bei 2 weiteren Patienten (1%) musste der Shunt aufgrund einer abdominellen Infektion im Sinne einer Peritonitis bzw. eines Abszesses explantiert werden. Eine Liquorrauminfektion trat bei einem Patienten (<1%) nach Shuntimplantation auf und machte nach Shuntexzision und Implantation einer extraventrikulären Drainage eine intraventrikuläre Antibiotikatherapie notwendig.

Tab. 1 Optimale Ventileinstellung. 62% der Patienten profitieren von einer Ventileinstellung zwischen 50 – 70 mmH2O am meisten.

<30	30 – 40	50	60 – 70	>70	mmH2O	Summe
6	35	58	43	21	163	
4	22	36	26	13	%	

Abb. 5 Reaktion der klinischen Symptomatik auf die Ventilverstellung. Die Besserung der klinischen Einzelsymptome trat insbesondere 3 – 6 Monate nach der Ventilverstellung ein, aber auch eine langfristige Besserung nach über 12 Monaten konnte nach 22 der Ventilverstellungen verifiziert werden.

Optimierung der Ventileinstellung
Die Analyse der Ventileinstellung, die den besten klinischen Verlauf (niedrigster Kiefer-Score) bei den einzelnen Patienten mit iNPH erzielte, ergab folgende Verteilung: bei den meisten Patienten (36%) wurde anhand ihrer klinischen Symptomatik eine Endeinstellung von 50 mmH2O des Niederdruckventils gewählt. 26% der Patienten wurden mit 60 – 70 mmH2O behandelt. 13% der Patienten mit mehr als 70 mmH2O. Dagegen war bei 22% eine Ventileinstellung zwischen 30 – 40 mmH2O notwendig. Lediglich 4% profitierten von einer Ventileinstellung <30 mmH2O (Tab. 1).

Komplikationen
Eine operationsspflichtige Komplikation trat bei 18 Patienten auf, was einer Komplikationsrate von 11% entspricht. Bei 6 Patienten (4%) kam es zu einer mechanischen Komplikation. Es wurden 5

Diskussion

Schrittweise Reduktion des Ventilöffnungsdrucks
Die Ersteinstellung der Ventile bei Implantation erfolgte im Bereich von 70 – 100 mmH2O. Im Rahmen der Nachuntersuchung nach 3, 6 und 12 Monaten wurde dann die individuelle Anpassung des Ventilöffnungsdrucks vorgenommen. Durch die schrittweise Reduktion des Ventilöffnungsdrucks wird postoperativen Komplikationen im Sinne einer Überdrainagesymptomatik oder der Entwicklung chronischer Subduralhämatome vorgebeugt, da es intraoperativ zu einem nicht unbedeuteten Liquorverlust kommt. Somit kam es zu einer geringen Komplikationsrate mit nur 6 Patienten (4%), bei denen sich postoperativ ein großesprogradientes, operationspflichtiges Hygrom bzw. Subduralhämatom entwickelte. Es konnte in einer Studie zur prospektiven und randomisierten Multizenterstudie (Svasona) bewiesen werden, dass die Implantation der verstellbaren Niederdruckventile mit der optimalen Ventileinstellung um 50 mmH2O und einem zusätzlichen Gravitationsventil die Komplikationsrate im Sinne einer Überdrainagesymptomatik oder der Entwicklung chronischer Subduralhämatome verringert. Bei 6 weiteren Patienten (4%) kam es zur Ausbildung subduraler Hygrome oder Hämatome, die sich durch eine Anhebung des Ventilöffnungsdrucks nicht zurückgebildet und operativ entlastet werden mussten. Wundheilungsstörungen im Bereich der Narben ohne Nachweis einer Shuntinfektion traten bei 3 Patienten auf (2%) und führten zur vorläufigen Explantation des Shuntsystems. Bei 2 weiteren Patienten (1%) musste der Shunt aufgrund einer abdominellen Infektion im Sinne einer Peritonitis bzw. eines Abszesses explantiert werden. Eine Liquorrauminfektion trat bei einem Patienten (<1%) nach Shuntimplantation auf und machte nach Shuntexzision und Implantation einer extraventrikulären Drainage eine intraventrikuläre Antibiotikatherapie notwendig.
timale Ventileinstellung nicht zwischen 30–70 mmH₂O [13], sondern darüber liegt. Insgesamt sind daher eine langsame Reduktion des Ventilöffnungsdrucks und ein ausreichend langer Beobachtungszeitraum von mindestens 3 Monaten nach Ventilverstellung zu empfehlen. Wie gezeigt wurde, sind innerhalb dieses Zeitraums die meisten positiven klinischen Effekte zu beobachten. Ein darüber hinaus abwartendes Verhalten ist bei Patienten, deren Ventil schon 2-mal verstellt wurde, ebenfalls gerechtfertigt. Allerdings muss bei einem abwartenden Vorgehen wiederum berücksichtigt werden, dass der natürliche Verlauf der Erkrankung und die Komorbiditäten einen positiven Behandlungs- erfolg überdecken können.

Optimaler Öffnungsdruck des Niederdruckventils
Die Zielbestimmung des Niederdruckventils sollte bei den meisten Patienten um 50 mmH₂O liegen. In der vorliegenden Arbeit lag die Ventileinstellung, die den besten klinischen Verlauf der einzelnen Patienten gewährleistete, zum Untersuchungszeitpunkt bei 62% der Patienten zwischen 50–70 mmH₂O und bei 36% bei genau 50 mmH₂O. Die Indikationsstellung zur Ventilverstellung beruht also ebenfalls auf der Erkenntnis, dass der optimale Öffnungsdruck bei den meisten Patienten mit programmierbaren Gravitationsventilen in diesem Bereich liegt [13]. Des Weiteren ist das Regime der Ventilverstellung letztlich von der klinischen Erfahrung des jeweiligen Untersuchers geprägt. Es kommt zu einer Varianz bezüglich des Zeitpunkts reaktiver Verstellungen, da auch über 12 Monate nach Ventilverstellung noch weitere klinische Verbesserungen beobachtet werden. In seltenen Fällen scheint daher auch ein abwartendes Vorgehen gerechtfertigt. Insgesamt folgt daraus auch, dass während der Nachuntersuchungen unmittelbar nach der Operation, also 3 Monate postoperativ, die meisten Ventilverstellungen vorgenommen werden. Mit weiterem zeitlichen Abstand von der Ventilimplantation nimmt die Anzahl der Ventilverstellungen wie in dieser retrospektiven Analyse ab. Dies ist erneut auf die optimale Ventileinstellung zurückzuführen, die bei den meisten Patienten nach 1–2 Ventilverstellungen erreicht wird.

Reaktive Ventilverstellungen
Die reaktive Verstellung der Niederdruckventile macht sowohl bei Unter- als auch bei Überdrainagesymptomatik Sinn. Nach 39% der Verstellungen kommt es durch Senkung des Ventilöffnungsdrucks zu einer klinischen Besserung. Dabei ist hervorzuheben, dass bei 163 Patienten 117 reaktive Verstellungen aufgrund einer Unterdrainage vorgenommen wurden. Hier zeigt sich die immense Fortschritt durch verstellbare Ventile, da den Patienten Sekundäroperationen zur Anpassung des Ventilöffnungsdrucks erspart bleiben. In Zeiten der nicht verstellbaren Ventile kam es bei 4% der Patienten zu einer Unterdrainage [5]. Diese hatte eine Revisionsoperation zur Folge. Es ist zu vermuten, dass die Diagnose Unterdrainage nur in schwerwiegendere Fällen erfolgte, da der Nutzen der Revision gegenüber den erneuten Risiken einer Operation abgewogen werden musste. Aufgrund der einfachen, komplikationssarmen Verstellbarkeit der modernen Ventile, wird die Indikation zur Reduktion des Ventilöffnungsdrucks sicherlich heute viel großzügiger gestellt und erklärt die weitaus über 4% liegende Anzahl der Patienten, bei denen eine reaktive Ventilverstellung durchgeführt wurde. Darüber hinaus fällt auf, dass reaktiven Verstellungen am häufigsten (46%) eine Verschlechterung des Gangbildes zugrunde liegt. Dies unterstreicht die Bedeutung der Gangstörung beim iNPH als Kardinalsymptom [14]. Die Besserung der klinischen Symptomatik äußert sich dementsprechend ebenfalls am häufigsten (33%) in einer Besserung des Gangbildes. Nach 37 der Ventilverstellungen (19%) waren die klinischen Symptome verschlechtert. Dies darf jedoch keineswegs ausschließlich auf die Ventilverstellung zurückgeführt werden. Es ist bekannt, dass das Ergebnis einer Shuntimplantation stark vom Zeitpunkt der Operation und den Komorbiditäten der iNPH-Patienten abhängt [15]. Darüber hinaus gibt es eine hohe Koinzidenz von idiopathischem Normaldruckhydrozephalus und anderen neurodegenerativen Erkrankungen wie z.B. der Alzheimerkrankheit [16]. Zusammengefasst ist für die beobachteten Verschlechterungen v.a. auch das Fortschreiten der Erkrankung und der Nebenerkrankungen der Betroffenen ursächlich.

Geplante Ventilverstellungen
Die geplante Senkung des Ventilöffnungsdrucks bedingt auch bei schon gebesserter Klinik in 43% eine weitere Abnahme des Kiefer-Scores. Nach einer Phase der initialen Besserung nach Implantation eines Shuntes mit einer Einstellung von 100–70 mmH₂O kommt es häufig wieder zu einer Zunahme der Beschwerden, sodass der Öffnungsdruck weiter gesenkt werden sollte. Bleibt dieser Rückschritt im Therapieverlauf aus, so ist wie zuvor beschrieben trotzdem eine geplante Senkung des Ventilöffnungsdrucks begründet.

Evans-Index
Die klinische Besserung geht nur in sehr seltenen Fällen mit einer Abnahme des Evans-Index einher. In einer vorhergehenden Studie konnten wir sogar zeigen, dass ein besseres neurologisches Outcome bei iNPH-Patienten mit geringer oder gar keiner Änderung der Ventrikelschwellen bei Shuntimplantation erreicht wird [17]. Eine Zunahme der Ventrikelschwellen ist jedoch verdächtig auf eine Unter- oder eine mechanische Ventilkomplikation. 9% der reaktiven Ventilverstellungen erfolgten daher in der vorliegenden Studie auch wegen einer Zunahme des Evans-Index. Nach Reduktion des Ventilöffnungsdrucks sollte bei Persistenz oder weiterer Zunahme des Evans-Indexes im Verlauf die weiterführende Diagnostik zum Ausschluss einer Shunt Dysfunktion erfolgen.

Kompilikationen und Outcome
Die operative Therapie des idiopathischen Normaldruckhydrozephalus ist ein komplikationsärmerer Eingriff, der bei strenger Indikationsstellung bei der Mehrzahl behandelter Patienten einen guten klinischen Erfolg verspricht. Die Komplikationsrate von 11% bezogen auf operationspflichtige Komplikationen in dieser retrospektiven Analyse ist vergleichbar mit aktuellen internationalen Daten von 12–15% [18, 19]. Eine Besserung tritt bei 83–90% [18, 19] innerhalb des ersten Jahres auf. 60% der operierten Patienten profitiert auch nach 5 Jahren noch von der Shuntimplantation [13]. Zudem ist auch nach 5–7 Jahren und trotz stattgehabten Revisionsoperationen noch ein Behandlungserfolg verifizierbar [20].

Schlussfolgerung für die klinische Praxis
Die Zielbestimmung des Niederdruckventils sollte bei den meisten Patienten zwischen 30–70 mmH₂O liegen. Reaktive Verstellungen der Niederdruckventile machen sowohl bei Unter- als auch bei Überdrainagesymptomatik Sinn. Geplante Verstellungen des Ventilöffnungsdrucks führen bei schon postoperativ deutlich gebesserter Klinik zu einer weiteren Besserung der Einzelsymptome. Die klinische Besserung geht nur in den seltensten Fällen...
mit einer Abnahme des Evans-Indexes einher. Die Implantation von v.-p. Shunts bei iNPH ist ein komplikationsarmes Verfahren. Eine optimale Anpassung des Öffnungsdrucks im Niederdruckventil zur Maximierung des Therapieerfolgs ist bei der Mehrzahl der Patienten nur durch den kombinierten Einsatz mit Gravitationseinheiten möglich. Werden verstellbare Ventile mit Gravitationseinheit implantiert, wird potenziellen Folgeeingriffen wegen Über- und Unterdrainagesymptomatik vorgebeugt.

Interessenkonflikt

Die Autoren geben an, dass kein Interessenkonflikt besteht.

Literatur

1. Meier U, Zeilinger FS, Kintzel D. Pathophysiologie, Klinik und Krankheitsverlauf beim Normaldruckhydrozephalus. Fortschr Neurol Psychiatr 1998; 66: 176 – 191
2. Zettl UK, Lehmitz R, Mix E. Klinische Liquordiagnostik. 2. Berlin: Walter de Gruyter; 2005: 77 – 80
3. Kahlon B, Sundbarg G, Rehncrona S. Comparison between the lumbar infusion and CSF tap tests to predict outcome after shunt surgery in suspected normal pressure hydrocephalus. J Neurol Neurosurg Psychiatry 2002; 73: 721 – 726
4. Meier U. The Grading of Normal Pressure Hydrocephalus. Biomed Technik 2002: 54 – 58
5. Kiefer M, Underberg A. Differentialdiagnose und Therapie des Normaldruckhydrozephalus. Deutsches Ärzteblatt 2012; 109: 15 – 25
6. Kiefer M, Eymann R, Komenda Y et al. Ein Graduierungs-system für den chronischen Hydrozephalus. A Grading System for Chronic Hydrocephalus. Zentralbl Neurochir 2003; 64: 109 – 115
7. Meier U, Kiefer M, Sprung C. Evaluation of the Miethke dual-switch valve in patients with normal pressure hydrocephalus. Surg Neurol 2004; 61: 119 – 127; discussion 127-128
8. Lemcke J, Meier U, Mül ler C et al. Is it possible to minimize overdrainage complications with gravitational units in patients with idiopathic normal pressure hydrocephalus? Protocol of the randomized controlled SVASONA Trial (ISRCTN51046698). Acta Neurochir Suppl 2010; 106: 113 – 115
9. Meier U, Knopf W, Gärner F et al. Indikationen zum intrathekalen Infusionstest bei Störungen der Liquordynamik. Zentralbl Neurochir 1990; 51: 107 – 111
10. Meier U, Zeilinger FS, Kintzel D. Klinik und Krankheitsverlauf beim Normaldruckhydrozephalus im Vergleich zur Hirnatrophie. Schw Arch Neurol Psychiatr 1997; 147; 73 – 83
11. Toma AK, Tarnaris A, Kitchen ND et al. Use of the proGAV shunt valve in normal-pressure hydrocephalus. Neurosurgery 2011; 68 (Suppl. 02): 245 – 249
12. Boon AJ, Tans JT, Dehwel EJ et al. Dutch Normal-Pressure Hydrocephalus Study: randomized comparison of low- and medium-pressure shunts. J Neurosurg 1998; 88: 490 – 495
13. Meier U, Lemcke J, Al-Zain F. Course of disease in patients with idiopathic normal pressure hydrocephalus (iNPH): a follow-up study 3, 4 and 5 years following shunt implantation. Acta Neurochir Suppl 2008; 102: 125 – 127
14. Gautschi OP, Cadosch D, Stien en M et al. [Idiopathic normal pressure hydrocephalus]. Praxis (Bern 1994) 2009; 98: 893 – 902
15. Lemcke J, Meier U. Idiopathic normal pressure hydrocephalus (iNPH) and co-morbidity: an outcome analysis of 134 patients. Acta Neurochir Suppl 2012; 114: 255 – 259
16. Bech-Azeddine R, Hagh P, Juhler M et al. Idiopathic normal-pressure hydrocephalus: clinical comorbidity correlated with cerebral biopsy findings and outcome of cerebrospinal fluid shunting. J Neurol Neurosurg Psychiatry 2007; 78: 157 – 161
17. Meier U, Mutze S. Is decreased ventricular size a correlate of positive clinical outcome following shunt placement in 80 cases of normal pressure hydrocephalus? J Neurosurg 2004; 100: 1036 – 1040
18. Poca MA, Solano E, Martinez-Ricarte FR et al. Idiopathic normal pressure hydrocephalus: results of a prospective cohort of 236 shunted patients. Acta Neurochir Suppl 2012; 114: 247 – 253
19. Klinge P, Hellström P, Tans J et al, on behalf of the European iNPH Multicentre Study Group. One-year outcome in the European multicentre study on iNPH. Acta Neurol Scand 2012: doi: 10.1111/j.1600-0404.2012.01676.x [Epub ahead of print]
20. Pujari S, Kharkar S, Metellus P et al. Normal pressure hydrocephalus: long-term outcome after shunt surgery. J Neurol Neurosurg Psychiatry 2008; 79: 1282 – 1286