Suicide among physicians and health-care workers: A systematic review and meta-analysis

Frédéric Dutheil, Claire Aubert, Bruno Pereira, Michael Dambrun, Fares Moustafa, Martial Mermillod, Julien S. Baker, Marion Trousselard, François-Xavier Lesage, Martial Mermillod, Julien S. Baker, Marion Trousselard, François-Xavier Lesage

1 Université Clermont Auvergne, CNRS, LaPSCo, Physiological and Psychosocial Stress, CHU Clermont-Ferrand, University Hospital of Clermont-Ferrand, Occupational and Preventive Medicine, WittyFit, Clermont-Ferrand, France, 2 Australian Catholic University, Faculty of Health, School of Exercise Science, Melbourne, Victoria, Australia, 3 Université de Versailles Saint-Quentin-en-Yvelines, Faculty of Health Science Simone Veil, Versailles, France, 4 CHU Clermont-Ferrand, University Hospital of Clermont-Ferrand, Biostatistics Unit, the Clinical Research and Innovation Direction, Clermont-Ferrand, France, 5 Université Clermont Auvergne, CNRS, LaPSCo, Physiological and Psychosocial Stress, Clermont-Ferrand, France, 6 CHU Clermont-Ferrand, University Hospital of Clermont-Ferrand, Emergency, Clermont-Ferrand, France, 7 Univ. Grenoble Alpes, Univ. Savoie Mont Blanc, CNRS, LPNC, Grenoble, France, 8 Institut Universitaire de France, Paris, France, 9 Centre for Health and Exercise Science Research, Department of Sport, Physical Education and Health, Hong Kong Baptist University, Kowloon Tong, Hong Kong, 10 French Armed Forces Biomedical Research Institute-IRBA, Neuropsychology of Stress, Neuroscience and Operational Constraint Department, Brétigny-sur-Orge, France, 11 University of Montpellier, Laboratory Epsylon EA, Dynamic of Human Abilities & Health Behaviors, CHU Montpellier, University Hospital of Montpellier, Occupational and Preventive Medicine, Montpellier, France, 12 CHU Clermont-Ferrand, University Hospital of Clermont-Ferrand, Ophthalmology, Clermont-Ferrand, France

* These authors contributed equally to this work.

* frederic.dutheil@uca.fr

Abstract

Background

Medical-related professions are at high suicide risk. However, data are contradictory and comparisons were not made between gender, occupation and specialties, epochs of times. Thus, we conducted a systematic review and meta-analysis on suicide risk among health-care workers.

Method

The PubMed, Cochrane Library, Science Direct and Embase databases were searched without language restriction on April 2019, with the following keywords: suicide* AND (« health care worker* » OR physician* OR nurse*). When possible, we stratified results by gender, countries, time, and specialties. Estimates were pooled using random-effect meta-analysis. Differences by study-level characteristics were estimated using stratified meta-analysis and meta-regression. Suicides, suicidal attempts, and suicidal ideation were retrieved from national or local specific registers or case records. In addition, suicide attempts and suicidal ideation were also retrieved from questionnaires (paper or internet).
Results

The overall SMR for suicide in physicians was 1.44 (95CI 1.16, 1.72) with an important heterogeneity (I² = 93.9%, p<0.001). Female were at higher risk (SMR = 1.9; 95CI 1.49, 2.58; and ES = 0.67; 95CI 0.19, 1.14; p<0.001 compared to male). US physicians were at higher risk (ES = 1.34; 95CI 1.28, 1.55; p<0.001 vs Rest of the world). Suicide decreased over time, especially in Europe (ES = -0.18; 95CI -0.37, -0.01; p = 0.044). Some specialties might be at higher risk such as anesthesiologists, psychiatrists, general practitioners and general surgeons. There were 1.0% (95CI 1.0, 2.0; p<0.001) of suicide attempts and 17% (95CI 12, 21; p<0.001) of suicidal ideation in physicians. Insufficient data precluded meta-analysis on other health-care workers.

Conclusion

Physicians are an at-risk profession of suicide, with women particularly at risk. The rate of suicide in physicians decreased over time, especially in Europe. The high prevalence of physicians who committed suicide attempt as well as those with suicidal ideation should benefits for preventive strategies at the workplace. Finally, the lack of data on other health-care workers suggest to implement studies investigating those occupations.

Introduction

Suicide risk was increased in certain occupational groups, especially in medical-related professions [1]. Physicians, and other health-care workers such as nurses [2,3], were considered like high risk group of suicide in different countries [4,5,6], especially for women [6,7,8]. Indeed, despite considerably higher risk of suicides in men than women in the general population [9], female doctors have higher suicide rates than men [10], putatively because of their social family role [11], or a poor status integration within the profession [7]. Suicide rate in physicians was also not homogenous in all countries [12], and physicians' satisfaction has been reported to change between different epochs of times [13]. Physicians working conditions varied substantially between countries and over contemporary times, these factors were never investigated in relationships with suicide in physicians. For example, there were tentative to regulate working time of physicians over the recent years, such as in Europe with its European Working Time Directive (EWTD) [14]. Some specialties have been suggested to be particularly at risk of suicides [15,16] with occupational factors individualized in different medical or surgical specialties: heavy workload and working hours involved in the job such as long shifts and unpredictable hours (with the sleep deprivation associated) [17], stress of the situations (life and death emergencies) [18], and easy access to a means of committing suicide [19]. To implement coordinated and synergistic preventive strategies, we need to identify physicians in mental health suffering [20], therefore statistical analyses on suicide attempts and suicidal ideation were necessary. However, robust statistics on health-care workers were desperately lacking for suicides, suicide attempts and suicidal ideation. The latest meta-analysis summarized physicians suicide risk before 2000s [6], we need for updated synthesis of literature. We hypothesized that 1) physicians are more at risk to commit suicide than the general population, 2) women physicians are more at risk to commit suicide than their male counterparts, 3) some countries would have higher rates of suicide in physicians, 4) with an improvement over time, 5) some medical or surgical specialties would be at higher risk of suicide, 6) physicians would also exhibit higher rates of suicide attempts and suicidal ideation, and 7) other health care workers would also be at risk of suicide.
Thus, we aimed to conduct a systematic review of the literature and meta-analysis to provide evidence-based data for suicide risk among health-care workers, considering gender, geographic zone, epoch of time, medical and surgical specialties. Finally, we wanted to expand our study to suicide attempts and suicidal ideation.

Methods

Search strategy and study eligibility

We reviewed all studies involving suicides, suicide attempts or suicidal ideation in health-care workers. Students were excluded because of the difference in responsibilities in comparisons with health-care workers, and because of the existence of previous recent meta-analyses focusing specifically on health-care students [21, 22, 23, 24]; we included interns because they were not included in the aforementioned meta-analyses on prevalence of suicides, suicide attempts or suicidal ideation, and because they could have similar responsibilities to senior practitioners. The PubMed, Cochrane Library, Science Direct and Embase databases were searched on April 2019, with the following keywords: suicide AND (« health care worker » OR physician OR nurse). The search was not limited by years or languages. To be included, articles had to be peer-reviewed and to describe original empirical data on suicides, suicide attempt or suicidal ideation in health-care workers. When data were available, we also collected data from a control group (such as general population) for comparisons purposes. In addition, reference lists of all publications meeting the inclusion criteria will be manually searched to identify any further studies not found through digital research. The search strategy was presented in Fig 1. Three authors (Claire Aubert, Valentin Navel and Frederic Dutheil) conducted all literature searches, and separately reviewed the abstracts and decided the suitability of the articles for inclusion. Two others authors (Bruno Pereira and Martial Mermillod) have been asked to review the articles when consensus on suitability was debated. Then all authors reviewed the eligible articles.

Quality of assessment

Although not designed for quantifying the integrity of studies [25], the “STrengthening the Reporting of Observational studies in Epidemiology” (STROBE) criteria [26] and Newcastle-Ottawa Scale (NOS) were used to check the quality of articles [27]. The maximum score in STROBE criteria was 30 with assessment of 22 items, in NOS criteria was 9 with assessment of 8 items (one star for each item within the selection and exposure category and a maximum of two stars for comparability) (Figs 2 and 3).

Statistical considerations

Statistical analysis was conducted using Comprehensive Meta-analysis software (version 2, Biostat Corporation) [28, 29, 30] and Stata software (version 13, StataCorp, College Station, US) [28, 29, 31]. Main characteristics were summarized for each study sample and reported as mean (standard-deviation) and number (%) for continuous and categorical variables respectively. Statistical heterogeneity between results was assessed by examining forest plots, confidence intervals (CI) and using formal tests for homogeneity based on I² statistic, which is the most common metric for measuring the magnitude of heterogeneity between studies and is easily interpretable. I² values range between 0% and 100% and are typically considered low for <25%, moderate for 25–50%, and high for > 50%. Random effect meta-analysis (DerSimonian and Liard approach) were conducted when data could be pooled [32]. P values < 0.05 were considered statistically significant. We conducted: 1) meta-analyses on the Standardized Mortality Ratio (SMR) for suicides i.e. the ratio between the observed and expected number of
death among physicians, stratified by sex (Fig 4; and Fig 5 for metaregressions), geographic zones (Fig 6), epochs of time, and by categories of specialties (main groups of specialities (Fig 7 and S1 Fig), surgical specialties (Fig 8 and S2 Fig), then medical specialities (Fig 9 and S3 Fig), 2) meta-analyses on the prevalence of health-care workers died by suicide among all health-care workers death (Fig 10), 3) meta-analyses on the prevalence of health-care workers died by suicide among all the deaths by suicide in the general population (S4 Fig), 4) meta-analyses on suicide attempts (S5 Fig) and suicidal ideation (Fig 11). Effect-size was estimated for quantitative endpoints as number of physicians having done suicide attempt and number of physicians with suicidal ideation. A scale for ES has been suggested with 0.8 reflecting a large effect, 0.5 a moderate effect, and 0.2 a small effect [33]. When possible (sufficient sample size), meta-regressions were proposed to study relation between prevalence and epidemiological relevant

Fig 1. Search strategy.

https://doi.org/10.1371/journal.pone.0226361.g001
Methodological quality of included articles using Newcastle–Ottawa Quality Assessment Scale	Selection bias	Comparability bias	Outcome bias
Yes	Yes	Yes	Yes
No	Yes	Yes	Yes
Can't say	Yes	Yes	Yes
Not applicable	NA	NA	NA

Aastand 2001
Aastand 2011
Ametz 1987
Austin 2013
Baymer 1986
Brooks 2017
Carpenter 1997
Craig 1968
Davidson 2018
Dean 1989
Dede 1969
Everson 1975
Franch 1999
Franck 2000
Fridner 2009
Gagné 2011
Gold 2013
Gunnarsdottir 1995
Hawton 2001
Hawton 2002
Hawton 2011
Hemm 2000
Hemm 2005
Hemsworth 1993
Hemsworth 1993
Huijji 2013
Hubbard 1922
Innes 2002
Jonas 1977
Juel 1999
Lew 1979
Linde 1981
Lindeman 1997
Lindeman 2007
Lindfors 2009
Lindhardt 1963
Loe 2015
Mintz 2018
No author 1986
Northcott 1988
Okinouma 1990
Patalas-Aires 2015
Petersen 2009
Pitts 1979
Rafnsson 1998
Reivik 1985
Rich 1979
Rich 1980
Rimpela 1987
Rose 1973
Roy 1985
Samkoff 1995
Schlicht 1980
Shang 2011
Shang 2012
Simon 1999
Stefansson 1991
Torre 2005
Ulmann 1991
Wang 2017
Zang 2018
parameters determined according to the literature: sex, geographic zone, epoch of time (for studies with a follow-up over several consecutive years, we based our statistics on the mean year of epoch of time). Results were expressed as regression coefficient and 95% CI.

Results

An initial search produced a possible 37050 articles (Fig 1). Removal of duplicates and use of the selection criteria reduced the search to 61 articles \[1, 2, 5, 7, 8, 15, 16, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87\]. In those 61 articles, 55 articles were on physicians \[1, 5, 7, 8, 15, 16, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79\], four on dental surgeons \[55, 56, 62, 70\], four on nurses \[2, 79, 80, 86\], and two on other health-care workers \[70, 87\]. Among those 55 on physicians, 47 reported data on deaths by suicide \[1, 5, 7, 8, 15, 16, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 82, 83\], five on suicide attempts \[47, 73, 75, 77, 84, 85\], and seven on suicidal ideation \[74, 75, 76, 77, 84, 85\]. In those 47 articles on deaths by suicide among physicians, 25 described SMR for suicide \[7, 8, 41, 46, 52, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 82, 83\], eight reported percentages of suicide by specialty \[15, 16, 40, 43, 45, 47, 51, 83\], 12 reported the number of physicians died by suicide among all deaths in

Fig 2. Methodological quality of included articles using Newcastle–Ottawa Quality Assessment Scale.

https://doi.org/10.1371/journal.pone.0226361.g002

Fig 3. Summary bias risk of included articles using the Newcastle–Ottawa Quality Assessment Scale model.

https://doi.org/10.1371/journal.pone.0226361.g003
physicians [16,39,41,42,44,46,48,49,50,51,52,53], and nine reported the number of physicians died by suicide among all the deaths by suicide in the general population [1,5,15,34,35,36,37,38,82]. As there are few exploitable studies about dental surgeons, nurses and other health-care workers, we won’t treat them in that meta-analysis.

More details on study characteristics (Table 1), quality of articles (Figs 2 and 3), method of sampling for markers analysis, inclusion and exclusion criteria, characteristics of participants, outcomes and aims of the studies, and study designs of included articles are described in S1 Appendix.

Meta-analysis of the standardized mortality rate for suicides among physicians

We included 25 studies. The overall SMR was 1.44 (95CI 1.16, 1.72) with an important heterogeneity ($I^2 = 93.9\%$). Among the 25 included studies, 17 studies reported both male and female

Study	n of death by suicides	Sex* (%male)	Country	Time (period of observation)	SMR (95%CI)	Weight (%)
Ametz 1987	42	76%	Europe	1961-1970	1.20 (0.85, 1.69)	3.4
Baymarm 1986	94	72%	Europe	1963-1978	1.58 (1.07, 2.34)	3.1
Carpenter 1997	64	87%	Europe	1962-1979	0.96 (0.72, 1.25)	3.5
Dean 1969	23	96%	Africa	1960-1966	1.26 (0.74, 2.13)	3.0
Frank 2000	416	91%	North America	1984-1995	1.70 (1.53, 1.88)	3.6
Hawton 2001	57	74%	Europe	1991-1995	0.67 (0.47, 0.87)	3.6
Hermer 1993	25	68%	Europe	1989-1991	1.10 (0.80, 1.52)	3.4
Innos 2002	11	54%	Europe	1983-1998	0.58 (0.21, 1.27)	3.2
Juel 1999	194	80%	Europe	1973-1992	1.84 (1.40, 2.41)	3.5
Lindemann 1997	51	70%	Europe	1986-1993	0.87 (0.69, 1.10)	3.6
Lindhardt 1983	67	100%	Europe	1935-1959	1.53 (1.06, 2.20)	3.2
Nordin 1988	69	85%	Europe	1970-1980	2.46 (1.31, 4.60)	1.6
Petersen 2008	203	89%	North America	1984-1992	0.80 (0.53, 1.20)	3.5
Raffnson 1998	7	100%	Europe	1955-1995	1.01 (0.40, 2.04)	2.8
Revicki 1985	13	100%	North America	1978-1982	1.16 (0.80, 1.70)	3.3
Rich 1979	544	100%	North America	1967-1972	1.03 (0.74, 1.45)	3.4
Rimpela 1987	17	100%	Europe	1971-1980	1.28 (1.00, 1.65)	3.5
Rose 1973	49	98%	North America	1959-1961	2.03 (1.29, 3.19)	2.5
Schlicht 1990	13	77%	Australia	1950-1986	1.13 (0.54, 2.07)	2.6
Stefansson 1991	138	82%	Europe	1971-1985	1.82 (1.19, 2.80)	2.8
Torre 2005	22	91%	North America	1948-1998	1.82 (1.11, 2.82)	2.7
Ullmann 1991, Loma Linda Univ	46	100%	North America	1910-1981	1.01 (0.63, 1.62)	1.5
Ullmann 1991, Univ of Southern California	39	100%	North America	1910-1981	1.18 (0.70, 1.98)	3.1

Sub-total (I^2=79.1%, p<0.001)

Study	n of death by suicides	Sex* (%male)	Country	Time (period of observation)	SMR (95%CI)	Weight (%)
Ametz 1987	42	76%	Europe	1961-1970	5.70 (1.08, 10.72)	0.3
Baymarm 1986	94	72%	Europe	1963-1978	2.96 (1.44, 5.09)	1.0
Carpenter 1997	64	87%	Europe	1962-1979	2.15 (0.93, 4.23)	1.6
Frank 2000	416	91%	North America	1984-1995	2.38 (1.68, 3.28)	2.8
Hawton 2001	57	74%	Europe	1991-1995	2.02 (1.00, 3.04)	2.4
Hermer 1993	25	68%	Europe	1989-1991	2.32 (1.12, 4.81)	1.4
Innos 2002	11	54%	Europe	1983-1998	0.62 (0.20, 1.54)	3.1
Juel 1999	194	86%	Europe	1973-1992	1.68 (1.10, 2.46)	3.0
Lindemann 1997	51	70%	Europe	1986-1993	2.33 (1.08, 5.05)	1.3
Nordin 1988	69	85%	Europe	1970-1980	3.33 (0.42, 25.29)	0.1
Petersen 2008	203	89%	North America	1984-1992	2.39 (1.52, 3.77)	2.3
Pitts 1979	49	0%	North America	1967-1972	3.57 (1.23, 10.40)	0.3
Schlicht 1990	13	77%	Australia	1950-1986	5.01 (1.01, 14.65)	0.2
Stefansson 1991	138	82%	Europe	1971-1985	5.02 (1.87, 15.03)	0.2
Torre 2005	22	91%	North America	1948-1998	4.95 (0.58, 17.65)	0.1

Sub-total (I^2=42.5%, p<0.041)
Physicians [7, 8, 41, 46, 52, 54, 55, 56, 57, 58, 59, 61, 62, 68, 70, 71, 82], six reported only male physicians [60, 64, 65, 66, 67, 72], and one only reported female physicians [63]. We found a significantly higher risk of suicide among male physicians than in the general population (SMR = 1.24; 95CI 1.05, 1.43; \(P < 0.001; I^2 = 79.1\%\)) and for suicide among female physicians than in the general population (SMR = 1.94; 95CI 1.49, 2.58; \(P < 0.041; I^2 = 42.5\%\)) (Fig 4). Meta-regressions demonstrated that women physicians had a higher risk than their counterpart men to commit suicide (0.67; 95CI 0.19, 1.14; \(P = 0.007\)) (Fig 5). We further demonstrated that the risk of suicide was not homogeneous over all the countries. SMR was 1.27 (95CI 1.05, 1.49; \(P < 0.001; I^2 = 71.3\%\)) in Europe, 1.63 (95CI 1.29, 1.96; \(P < 0.001; I^2 = 74.1\%\)) in North America, 0.79 (95CI 0.03, 1.62; \(P = 0.002; I^2 = 79.5\%\)) in Australia, New-Zealand and Pacific and 1.26 (95CI 0.56, 1.96) in Africa (Fig 6). Meta-regressions demonstrated a higher risk of suicide in North America than in Australia, New-Zealand and Pacific (0.92; 95CI 0.22, 1.63; \(P = 0.013\)) and especially higher in USA vs the rest of the world (1.34; 95CI 1.28, 1.55; \(P < 0.001\)) (Fig 5).

Finally, we demonstrated an overall time effect (-0.15; 95CI -0.29, -0.01; \(P = 0.032\)) which signify that the risk decreased over time. This relationship is significant in Europe (-0.18; 95CI -0.37, -0.01; \(P = 0.044\)) but not in USA (-0.11; 95CI -0.37, 0.15; \(P = 0.370\)) or in Australia, New-Zealand and Pacific (-0.48; 95CI -8.09, 7.12; \(P = 0.570\)). For Africa, there were insufficient observations (Fig 5).

Meta-analysis of percentage of suicide in physicians by group of specialties

We included eight studies [15, 16, 40, 43, 47, 51, 83]. The percentage of suicide in general practitioners was 32% (95CI 21, 43; \(P < 0.001; I^2 = 93.1\%\)), in internal medicine was 16% (95CI 9, 23; \(P < 0.001; I^2 = 88.6\%\)), in psychiatrists was 11% (95CI 9, 14; \(P = 0.30; I^2 = 17.5\%\)), in other medical specialties was 3% (95CI 3, 4; \(P = 0.02; I^2 = 40.7\%\)), in surgeons was 4% (95CI 2, 6; \(P < 0.001; I^2 = 62.8\%\)) and in internships was 2% (95CI 1, 4) (Fig 7).

Meta-regressions demonstrated a higher risk of suicide in general practitioners than intern medical (0.12; 95CI 0.05, 0.19; \(P = 0.001\)), than psychiatrists (0.17; 95CI 0.09, 0.24;}

Study	Effect Size (95%CI)	p-value
Sex, male as reference	0.67 (0.19, 1.14)	0.007
Time, unit is period of 10 years, continuous variable	-0.15 (-0.29, -0.01)	0.032
Overall	-0.18 (-0.37, -0.01)	0.044
Europe	-0.11 (-0.37, 0.15)	0.370
Australia, New-Zealand and Pacific	0.48 (-7.12, 8.09)	0.570
Africa	insufficient observations	
Geographic zone		
Europe vs North America	-0.32 (-0.75, 0.10)	0.116
Europe vs Australia, New-Zealand and Pacific	0.60 (-0.07, 1.27)	0.091
Europe vs Africa	0.04 (-1.14, 1.22)	0.833
North America vs Australia, New-Zealand and Pacific	0.92 (0.22, 1.63)	0.013
North America vs Africa	0.36 (-0.84, 1.56)	0.442
Australia, New-Zealand and Pacific vs Africa	-0.56 (-1.86, 0.74)	0.502
USA vs Rest of the world	1.34 (1.28, 1.55)	<0.001

Fig 5. Meta-regression of standardized mortality rate for suicides among physicians. https://doi.org/10.1371/journal.pone.0226361.g005
than other medical specialties (0.12; 95CI 0.08, 0.17; \(P < 0.001\)) and than internships (0.13; 95CI 0.03, 0.22; \(P = 0.008\)). Finally, we demonstrated a higher risk of suicide in psychiatrists than other medical specialties (0.07; 95CI 0.02, 0.13; \(P = 0.005\)) (S1 Fig).

Meta-analysis of percentages of suicide in physicians by category of surgical specialties

We included six studies [15,16,43,47,51,83]. The percentage of suicide in general surgeons was 6% i.e. (95CI 4, 9; \(I^2 = 64.5\%, P = 0.04\)), in obstetricians was 4% (95CI 2, 5; \(I^2 = 0\), \(P = 0.001\)), than other medical specialties (0.24; 95CI 0.18, 0.30; \(P < 0.001\)), than surgeons (0.25; 95CI 0.19, 0.30; \(P < 0.001\)) and then internships (0.24; 95CI 0.15, 0.34; \(P < 0.001\)). Moreover, a higher risk of suicide in internal medicine than in other medical specialties (0.12; 95CI 0.08, 0.17; \(P < 0.001\)) and than surgeons (0.13; 95CI 0.08, 0.18; \(P < 0.001\)), and than internships (0.13; 95CI 0.03, 0.22; \(P = 0.008\)). Finally, we demonstrated a higher risk of suicide in psychiatrists than other medical specialties (0.07; 95CI 0.02, 0.13; \(P = 0.005\)) (S1 Fig).
Fig 7. Meta-analysis of percentages of suicide in physicians by group of specialties.

https://doi.org/10.1371/journal.pone.0226361.g007
0.81), in orthopaedists was 2% (95CI 1, 4), in ears, nose and throat was 3% (95CI 0, 3) and in plastic surgeons was 1% (95CI 0, 6) (Fig 8).

Meta-regressions demonstrated a higher risk of suicide in general surgeons than obstetricians (0.03; 95CI 0.01, 0.05; \(P = 0.035\)), than orthopedists (0.04; 95CI 0.01, 0.07; \(P = 0.006\)), than ophthalmologists (0.04; 95CI 0.02, 0.07; \(P = 0.006\)) and than plastic surgeons (0.05; 95CI 0.01, 0.09; \(P = 0.010\)) (S2 Fig).

Meta-analysis of percentages of suicide in physicians by category of surgical specialties

Eight studies were included [15,16,40,43,45,47,51,83]. The percentage of suicide in internal medicine was 16% (95CI 9, 23; \(I^2 = 88.6\%, P < 0.001\)), in psychiatrists was 11% (95CI 9, 14; \(I^2 = 17.5\%, P = 0.30\)), in anaesthesiologists was 4% (95CI 2, 6; \(I^2 = 43.6\%, P = 0.11\)), in radiologists was 3% (95CI 2, 5; \(I^2 = 66.0\%, P = 0.02\)), in paediatricians was 4% (95CI 3, 6; \(I^2 = 46.4\%, P = 0.11\)), in pathologists was 2% (95CI 1, 3), in dermatologists was 5% (95CI 1, 9), in cardiologists was 6% (95CI 1, 26), in neurologists was 6% (95CI 1, 26) and in emergency physicians was 6% (95CI 1, 26) (Fig 9). Meta-regressions demonstrated a higher risk of suicide in internal medicine than anaesthesiologists (0.12; 95CI 0.06, 0.18; \(P = 0.001\)) than radiologists (0.13; 95CI
Table: Suicide Evaluation in Health-care Workers

Specialty	Study Year	n of Death by Suicide	n of Death in the Specialty	Country	Time (Period of Observation)	Effect Size (95% CI)	Weight (%)
Internal Medicine	Desole 1969	291	37	North America	1965-1968	0.13 (0.09, 0.17)	3.7
	Hikiji 2014	87	21	Asia	1996-2010	0.24 (0.16, 0.34)	2
	Jones 1977	16	1	North America	1967-1975	0.06 (0.01, 0.28)	1.4
	Rich 1980	593	80	North America	1967-1972	0.13 (0.11, 0.16)	4.1
	Samkoff 1995	322	95	North America	1980-1988	0.30 (0.25, 0.35)	3.3
	Wang 2017	18	1	Asia	2004-2017	0.06 (0.01, 0.26)	1.6
Sub-total (I²= 88.6%, p< 0.001)						0.16 (0.09, 0.23)	16.1
Psychiatrists	Austin 2013	9	2	Australia	1997-2011	0.22 (0.06, 0.55)	0.4
	Desole 1969	291	31	North America	1965-1968	0.11 (0.08, 0.15)	3.8
	Gagne 2011	36	2	North America	1992-2009	0.06 (0.02, 0.18)	2.4
	Hikiji 2014	87	16	Asia	1996-2010	0.18 (0.12, 0.28)	2.2
	Jones 1977	16	2	North America	1967-1975	0.13 (0.03, 0.36)	0.9
	Rich 1980	593	70	North America	1967-1972	0.12 (0.09, 0.15)	4.14
Sub-total (I²= 17.5%, p= 0.30)						0.11 (0.09, 0.14)	13.8
Anesthesiologists	Austin 2013	9	4	Australia	1997-2011	0.44 (0.19, 0.73)	0.3
	Desole 1969	291	12	North America	1965-1968	0.04 (0.02, 0.07)	4.2
	Hikiji 2014	87	5	Asia	1996-2010	0.06 (0.02, 0.13)	3.3
	Jones 1977	16	1	North America	1967-1975	0.06 (0.01, 0.28)	1.4
	Rich 1980	593	16	North America	1967-1972	0.03 (0.02, 0.04)	4.5
	Wang 2017	18	1	Asia	2004-2017	0.06 (0.01, 0.26)	1.6
Sub-total (I²= 43.6%, p= 0.11)						0.04 (0.02, 0.06)	15.3
Radiologists	Desole 1969	291	5	North America	1965-1968	0.02 (0.01, 0.04)	4.4
	Gagne 2011	36	3	North America	1992-2009	0.08 (0.03, 0.22)	2
	Hikiji 2014	87	2	Asia	1996-2010	0.02 (0.01, 0.08)	4
	Rich 1980	593	17	North America	1967-1972	0.03 (0.02, 0.05)	4.5
	Samkoff 1995	322	22	North America	1980-1988	0.07 (0.05, 0.10)	4.1
	Sub-total (I²= 66.0%, p= 0.02)					0.03 (0.02, 0.05)	19
Pediatricians	Desole 1969	291	8	North America	1965-1968	0.03 (0.01, 0.05)	4.3
	Hikiji 2014	87	6	Asia	1996-2010	0.07 (0.03, 0.14)	3.2
	Rich 1980	593	21	North America	1967-1972	0.04 (0.02, 0.05)	4.4
	Samkoff 1995	322	21	North America	1980-1988	0.07 (0.04, 0.10)	4.1
	Wang 2017	18	2	Asia	2004-2017	0.11 (0.03, 0.33)	1
Sub-total (I²= 46.4%, p= 0.11)						0.04 (0.03, 0.06)	17
Pathologists	Desole 1969	291	8	North America	1965-1968	0.03 (0.01, 0.05)	4.3
	Rich 1980	593	11	North America	1967-1972	0.02 (0.01, 0.03)	4.5
Sub-total (I²= 6.1%, p= .)						0.02 (0.01, 0.03)	8.8
Dermatologists	Hikiji 2014	87	4	Asia	1996-2010	0.05 (0.02, 0.11)	3.5
	Wang 2017	18	1	Asia	2004-2017	0.06 (0.01, 0.26)	1.6
Sub-total (I²= 97.9%, p= .)						0.05 (0.01, 0.09)	5.1
Cardiologists	Wang 2017	18	1	Asia	2004-2017	0.06 (0.01, 0.26)	1.63
Sub-total (I²= 97.9%, p= .)						0.06 (0.01, 0.26)	1.63
Emergency	Wang 2017	18	1	Asia	2004-2017	0.06 (0.01, 0.26)	1.63
Sub-total (I²= 97.9%, p= .)						0.06 (0.01, 0.26)	1.63
Neurologists	Wang 2017	18	1	Asia	2004-2017	0.06 (0.01, 0.26)	1.63
Sub-total (I²= 97.9%, p= .)						0.06 (0.01, 0.26)	1.63
Overall (I²= 88.7%, p< 0.001)						0.07 (0.06, 0.09)	100

Fig 9. Meta-analysis of percentages of suicide in physicians by category of medical specialties.

https://doi.org/10.1371/journal.pone.0226361.g009
0.07, 0.19; \(P < 0.001 \), than pediatricians (0.12; 95CI 0.06, 0.18; \(P = 0.001 \)) than pathologists (0.14; 95CI 0.07, 0.21; \(P < 0.001 \)) and than dermatologists (0.12; 95CI 0.03, 0.21; \(P = 0.13 \)).

Moreover, the risk of suicide was higher in psychiatrists than anesthesiologists (0.07; 95CI 0.01, 0.13; \(P = 0.038 \)), than radiologists (0.08; 95CI 0.02, 0.14; \(P = 0.014 \)), than pediatricians (0.07; 95CI 0.01, 0.13; \(P = 0.038 \)) and than pathologists (0.09; 95CI 0.02, 0.17; \(P = 0.014 \)) (S3 Fig).

Meta-analysis of prevalence of physicians dead by suicide among all deaths in physicians

We included 12 studies [16,39,41,42,44,46,48,49,50,51,52,53], and we demonstrated a prevalence of 4% (95CI 3, 5) with an important heterogeneity (\(I^2 = 88.7\% \)) (Fig 10).

Meta-regression on geographic zones did not retrieves any significant result. Moreover, insufficient data did not permit other meta-regression.

Fig 10. Meta-analysis of prevalence of physicians died by suicide among all deaths in physicians.

https://doi.org/10.1371/journal.pone.0226361.g010

Fig 11. Meta-analysis of prevalence of physicians with suicidal ideation among all the physicians.

https://doi.org/10.1371/journal.pone.0226361.g011
Table 1. Characteristics of included studies. CI, Confidence Interval; n, Number; SMR, Standardized Mortality Ratio; USA, United States of America.

Study	Country	Continent	Time Period	Total	Suicides	Physicians—n (%)	Death—n (%)	Mortality—SMR (95CI)	Attempts—n	Thoughts—n	Specialities
Aasland 2001	Norway	Europe	1960–1993	73 (89)	9 (11)						No specified
Aasland 2011	Norway	Europe	1960–2000								No specified
Arnetz 1987	Sweden	Europe	1961–1970	32 (76)	10 (24)	1.2 (0.85, 1.69)	5.7 (1.68, 10.7)				No specified
Austin 2013	Australia	New Zealand and Pacific	1997–2011	6 (66)	3 (34)						Anaesthesiologists, psychiatrists, general practitioners, general surgeons
Bamayr 1986	Germany	Europe	1963–1978	67 (71)	27 (29)	1.58 (1.07, 2.34)	2.96 (1.44, 6.09)				No specified
Brooks 2017	USA	North America	2003–2014	1188 (72)	544 (28)				38	32	No specified
Carpenter 1997	Great Britain	Europe	1962–1979	56 (87)	8 (13)	0.96 (0.72, 1.25)	2.15 (0.93, 4.23)				No specified
Craig 1968	USA	North America	1965–1967	211	17						No specified
Davidson 2018	USA	North America	2005–2015			2.29 (1.66, 3.08)	2.29 (1.66, 3.08)				No specified
Dean 1969	South Africa		1960–1966	22 (96)	1 (4)	1.26 (0.74, 2.13)					No specified
Desole 1969	USA	North America	1965–1968								General practitioners, general surgeons, internal medicine, psychiatrists, obstetricians, anaesthesiologists, pathology, paediatrics, radiology, internships
Everson 1975	USA	North America	1966–1970								No specified
Frank 1999	USA	North America	1993–1994	0	4501 (100)				61		No specified
Frank 2000	USA	North America	1984–1995	379 (91)	37 (9)	1.7 (1.53, 1.88)	2.38 (1.69, 3.28)				No specified
Fridner 2009	Sweden and Italy	Europe	2005–2005	0	385 (100)				122		No specified
Gagne 2011	Quebec	North America	1992–2009	29 (80)	7 (20)						General practitioners, radiology, psychiatrists
Gold 2013	USA	North America	2003–2008								No specified
Gunnarsdottir 1995	Iceland	Europe	1920–1979								No specified

(Continued)
Study	Country	Continent	Time Period	Total Physicians—n (%)	Death—n (%)	Mortality—SMR (95CI)	Attempts—n	Thoughts—n	Specialities
Hawton 2002	England and Wales	Europe	1994–1997	No specified					
Hawton 2011	Danish	Europe	1981–2006	131 (80)	32 (20)				
Hem 2000	Norway	Europe	1993–1999	722 (72)	282 (28)		7	9	
Hem 2005	Norway	Europe	1960–1990	98 (88)	13 (22)				
Hemenway 1993	USA	North America	1976–1988	No specified					
Herner 1993	Sweden	Europe	1989–1991	17 (68)	8 (32)	1.1 (0.8, 1.52)	2.32	(1.12, 4.81)	
Hikiji 2014	Japan	Asia	1996–2010	68 (79)	19 (21)				Internal medicine, dermatologists, paediatrics, psychiatrists, general surgeons, orthopaedists, ophthalmology, plastic surgeons, ENT, obstetricians, radiology, anaesthesiologists
Hubbard 1922	USA	North America	1921	No specified					
Innos 2002	Estonia	Europe	1983–1998	6 (54)	5 (46)	0.58 (0.21, 1.27)	0.62	(0.20, 1.45)	
Jones 1977	USA	North America	1967–1975	No specified			11	5	General practitioners, anaesthesiologists, internal medicine, obstetricians, psychiatrists, general surgeons, internships
Juel 1999	Danish	Europe	1973–1992	168 (86)	26 (14)	1.64 (1.40, 1.91)	1.68	(1.10, 2.46)	
Lew 1976	USA	North America	1954–1976	No specified					
Linde 1981	USA	North America	1930–1946	274 (100)	0	10	0		
Lindeman 1997	Finland	Europe	1986–1993	No specified					
Lindeman 2007	Finland	Europe	1987–1988	2 (28)	5 (72)				
Lindfors 2009	Finland	Europe	2004–2008	175 (53)	153 (47)				
Lindhardt 1963	Denmark	Europe	1935–1959	1.53 (1.06, 2.20)					
Loas 2018	Belgium	Europe	2015–2018	223 (40)	334 (60)		5	9	
No Author 1986	USA	North America	1980–1981	No specified					

(Continued)
Table 1. (Continued)

Study	Country	Continent	Time Period	Total Physicians—n (%)	Death—n (%)	Mortality—SMR (95CI)	Attempts—n	Thoughts—n	Specialities
Nordentoft 1988	Netherlands	Europe	1970–1980	59 (85)	10 (15)	2.46 (1.02, 3.42)	3.33 (0.42, 26.3)	No specified	
Olkinuora 1990	Finland	Europe	1986–1989	1062 (41)		10 6	340 269	No specified	
Palhares-Alves 2015	Brazil	South America	2000–2009	38 (76)	12 (24)	No specified	No specified		
Petersen 2008	USA	North America	1984–1992	181 (89)	22 (11)	0.8 (0.53, 1.20)	2.39 (1.52, 3.77)	No specified	
Pitts 1979	USA	North America	1967–1972	751	49	3.57 (1.23, 10.4)	No specified		
Rafnsson 1998	Island	Europe	1955–1995	7 (100)		1.01 (0.40, 2.04)	No specified		
Revicki 1985	USA	North America	1978–1982	13		1.16 (0.80, 1.70)	No specified		
Rich 1979	USA	North America	1967–1972	17979	544	1.03 (0.74, 1.45)	No specified		
Rich 1980	USA	North America	1967–1972	544 (92)	49 (8)	General practitioners, internal medicine, general surgeons, psychiatrists, obstetricians, paediatrics, radiology, anaesthesiologists, pathology, ophthalmology, orthopaedists			
Rimpela 1987	Finland	Europe	1971–1980	17		1.28 (1.01, 1.65)	No specified		
Rose 1973	USA	North America	1959–1961	48 (98)	1 (2)	2.03 (1.29, 3.19)	No specified		
Roy 1985	USA	North America	1981–1974			No specified	No specified		
Samkoff 1995	USA	North America	1980–1988			General practitioners, internal medicine, general surgeons, radiology, paediatrics			
Schlicht 1990	Australia	Australia, New Zealand and Pacific	1950–1986	1279 (88)	174 (12)	1.13 (0.54, 2.07)	5.01 (1.01, 14.7)	No specified	
Shang 2011	Taiwan	Australia, New Zealand and Pacific	1990–2006			No specified	(Continued)		

(Continued)
Meta-analysis of the prevalence of deaths by suicide in physicians among all deaths by suicide in the general population

We included nine studies [1,5,15,34,35,36,37,38,82], and we demonstrated a prevalence of 1% (95CI 1, 1) with an important heterogeneity ($I^2 = 98.0\%$) (S4 Fig). Insufficient data did not permit meta-regression.

Meta-analysis of the number of physicians having done suicide attempt among all the physicians

We included five studies [47,57,75,77,85]. The overall effect size was 0.01 (95CI 0.01, 0.02; $p < 0.01$) with an important heterogeneity ($I^2 = 82.6\%$) (S5 Fig). Insufficient data did not permit meta-regression.

Meta-analysis of the number of physicians with suicidal ideation among all the physicians

We included seven studies [74,75,76,77,78,84,85]. The overall effect size was 0.17 (95CI 0.12, 0.21; $p < 0.001$) with an important heterogeneity ($I^2 = 98.8\%$) (Fig 11). Insufficient data did not permit meta-regression.

Other health care workers

As there are few exploitable studies about dental surgeons, nurses and other health-care workers, we didn’t treat them in that meta-analysis.
Discussion

Physicians were an at-risk profession (1.44, 95CI 1.16, 1.72), particularly women-physician (0.67, 95CI 0.19, 1.14; p = 0.007). Some countries had a high risk of suicide (USA vs Rest of the world: 1.34, 95CI 1.28, 1.55; p < 0.001) and rate of suicide in physicians decreased over time, especially in Europe (-0.18, 95CI -0.37, -0.01; p = 0.044). Some specialties were higher risk such as anesthesiologists, psychiatrists, general practitioners and general surgeons. The prevalence of physicians having done suicide attempt among all the physicians were significant (0.01, 95CI 0.01, 0.02; p < 0.001) as the prevalence of physicians with suicidal ideation among all the physicians (0.17, 95CI 0.12, 0.21; p < 0.001). Finally, there were not enough exploitable data about dental surgeons, nurses and other health-care workers which are however some at-risk professions.

An at-risk profession

The high risk of suicide in physicians might be explained by several putative factors such as psychosocial working environment [18], or specific personality traits of physicians. Psychosocial work environment has been shown in the literature as an important risk factor, doctors being confronted to conflicts with colleagues, lack of cohesive teamwork and social support, leading them individually [88]. Physicians must also routinely face with breaking bad news [89], and are in frequent contact with illness, anxiety, suffering and death. Perfectionism, compulsive attention to detail, exaggerated sense of duty, excessive sense of responsibility, desire to please everyone are appreciates qualities in workplace [90, 91] but increased stress and depression [92] and imprison physicians in vicious circle without seek help. They also prevent themselves to ask for help because of the culture of medical education [90, 91]. In particular, we demonstrated that women physicians were particularly exposed to suicide, which might be explained by the additional strain imposed on them because of their social roles [11]. In most countries, women still have more at-home responsibilities (education of children, nursing, household care, etc) than men. Combining a full-time job as a physician and those at-home responsibilities might be particularly difficult to manage [11]. Although income gender-inequalities have not been reported in physicians[93, 94], some authors suggested that the medical field was mainly dominated by the male gender and reported a poor status integration of women physicians within the profession [7]. It has been shown that female physicians/internships react by imposing themselves an additional pressure to demonstrate their male counterparts that they are as strong, self-sufficient and worthy as them [95].

Depending on countries

We showed that the risk of suicide was not homogeneous between countries, in line with inequality of job satisfaction among physicians in many countries [96,97]. Indeed, some countries such as Switzerland and Canada reported a high level of job satisfaction for physicians (>75%) [98,99]. In the United States, most obstetrician gynecologists only rated their job satisfaction as moderate [100]. Physician job satisfaction is essential for ensuring the quality and sustainability of health care provision [101,102]. Moreover, career dissatisfaction was associated with burnout and prolonged fatigue among physicians [103]. In most countries, physicians’ work conditions underwent frequent mutations, with multiple healthcare reforms initiatives promoting by local governments. Reforms are a necessary compromise between best outcomes on deliveries of care, health economics, and quality of work environment [104, 105].
With a time effect

There are few data on the evolution of the rate of suicide over time and we were the first to demonstrate that, in some countries such as in Europe the suicide rate among physicians decreased significantly with time but not in the USA. During the past decade, a confluence of forces has changed the practice of medicine in unprecedented ways. Indeed, physicians have seen their autonomy reduced by increased administrative tasks and time pressure [106, 107, 108]. In USA, a survey showed that physicians’ satisfaction declined over the last 10 years, with less time spent per patient and for private life [13]. US physicians might also be particularly stress [109] because of medical errors that are the third leading cause of death in US [110, 111] in a context of economic pressure and relationships with pharmaceutic companies [112, 113], religious beliefs [114], access care difficulties for some patients [115], and legal procedure intended against physicians [116] leading them to practice a more defensive medicine [117] misleading patients in overdiagnosis [118]. The World Health Organization global strategy on human resources for health (workforce 2030) promoted the personal and professional rights of health-care workers, including safe and decent working environments [119]. Particularly in Europe, working hours of physicians decreased significantly over the last decades following official instructions such as the European Working Time Directive (EWTD) [14], which may have contributed to a decreased risk of suicides.

Some specialties are more at-risk

We showed some the most at-risk specialties were anaesthesiologists, psychiatrists, general practitioners and general surgeons. The high risk of suicides in anaesthesiologists [16, 41, 48, 76] could be explained by an easy access to potentially lethal drugs, a high prevalence of burn-out [120], a high workload with fear of harming patients and organizational burden with poor autonomy, and conflicts with colleagues [121]. For psychiatrists, the high risk of suicides has been linked by stressful and traumatic experiences such as, paradoxically, dealing with suicides of patient [16]. Next to those medical specialties, the general practitioners were an historical at-risk occupation, with moral loneliness, job interfering with family life, constant interruptions both at home and at work, increasing administrative constraints, and high levels of patients’ expectations, leading to a low job satisfaction and poor mental health [122, 123]. Finally, specialties with life-and-death emergencies, like surgery, are particularly stressful [124, 125, 126, 127]. For example, it has been shown that intra-operative death increased morbidity in patients operated by the same surgeon in the subsequent 48 hours, with a more pronounced whether the death occurring during emergency surgery [128].

Suicide attempts and suicidal ideation

Suicide could be regarded as a lengthy process. Little is known about causes and transitions between suicidal ideation / attempted suicide and suicide, as well as about the factors that precipitate or protect against these transitions [129]. Because physicians might be more aware of these characteristics than the general population [75], having suicidal thoughts should be taken particularly seriously in this profession. Suicidal ideation are considered a sensitive and specific indicator of suicide risk [130, 131]. Preventive strategies may include improved management of psychiatric disorders, the recognition and treatment of depression and substances abuse [65], but also measures to reduce occupational stress, and restriction of access to means of suicide when doctors are depressed [4, 132]. Medical school curriculum should also include programs to increase students’ self-confidence, to express their emotional needs, and to teach that anyone may be suicidal–regardless of his status [133]. The preventive approach may
Suicides in other health-care workers

We highlighted the lack of studies providing data on deaths by suicide and on suicidal risks in nurses and in other health-care workers. However, nurses remained at high-risk of suicide with various stressful factors comparable to those previously described for physicians, such as patients cares, team’s conflicts, heavy workload, lack of autonomy, and work-family conflicts [135, 136]. As for physicians, some occupational settings were described as particularly stressful, such as working in emergency departments [137], with a high prevalence of shift work [138], exposure to aggressive and violent behavior from patients [139] and from situation relating to trauma, alcohol and intoxications [140]. Our study demonstrated the lack of data on other health-care workers such as pharmacists, dental surgeons, midwives, caregivers and hospital maids. We believe that such data are needed.

Limitations

Our study has however some limitations. Meta-analyses inherit the limitations of the individual studies of which they are composed: varying quality of studies and multiple variations in study protocols and evaluation. We highlighted that general practitioners were prone to suicide. However, comparisons between specialties may suffer from a major bias such as different number of physicians within each specialty (not the same denominator in statistical analyses—there are more suicides among general practitioners because there are more general practitioners than other individual specialties). All included studies on death by suicide in physicians were retrospective and based on health registers, and thus few studies reported details on occupation such as seniority or characteristics of practice, precluding further analyses necessary for effective preventive strategies. The studies on suicide attempts and suicidal ideation that were based on self-report questionnaire [73, 74, 75, 77] may lack of standardized interviews or specifics criteria for diagnoses psychiatric disorders [125, [141]. Most cross-sectional studies included in our meta-analyses described a bias of self-report such as skipping questions and incomplete information, nondisclosure, and uncertainty regarding timing of questionnaire. Percentage of respondents within those studies may seem low, from 45% [74] to 76% [77], however the response rate was higher than usual [142, 143, 144, 145, 146]. The language used in countries with two official languages may also have influenced responses [74]. Only one study questioned physicians on their antidepressant treatment [121], and only one study questioned about a psychiatric disorder [74]. More data is needed regarding physician’s health. Finally, none of the studies included specified whether some physicians were retired or not.

Conclusion

Preventive strategies on the risk of suicides in physicians are strongly needed. Physicians are an at-risk profession of suicide, with a global SMR of 1.44 (95CI 1.16, 1.72), and an important heterogeneity between studies. Women were particularly at risk compared to male physicians. In addition, some countries were with a higher risk of suicide such as USA. Interestingly, the rate of suicide in physicians decreased over time, especially in Europe, suggesting improvements of working conditions of physicians. Some specialties might be at higher risk such as anesthesiologists, psychiatrists, general practitioners and general surgeons. The high prevalence of physicians who committed suicide attempts as well as those with suicidal ideation should benefits for preventive strategies at the workplace. Public health policies must aim at improving social work environment and contribute to screening, assessment, referral, and
destigmatization of suicides in physicians. Finally, the lack of data on other health-care workers suggest implementing studies investigating those occupations who might also be at risk of suicide.

Supporting information

S1 Appendix. Details on study characteristics, quality of articles (Figs 2 and 3), method of sampling for markers analysis, inclusion and exclusion criteria, characteristics of participants, outcomes and aims of the studies, and study designs of included articles. (DOCX)

S2 Appendix. PRISMA checklist. (DOCX)

S1 Fig. Meta-regression of percentages of suicide in physicians by group of specialties. (TIF)

S2 Fig. Meta-regression of percentages of suicide in physicians by category of surgical specialties. (TIF)

S3 Fig. Meta-regression of percentages of suicide in physicians by category of medical specialties. (TIF)

S4 Fig. Meta-analysis of prevalence of physicians died by suicide among all the deaths by suicide in the general population. (TIF)

S5 Fig. Meta-analysis of prevalence of physicians having done suicide attempt among all the physicians. (TIF)

Acknowledgments

We wish to thank Richard May for providing assistance in improving the manuscript.

Author Contributions

Conceptualization: Frédéric Dutheil, Claire Aubert, Valentin Navel.

Data curation: Frédéric Dutheil, Claire Aubert, Bruno Pereira, Michael Dambrun, Valentin Navel.

Formal analysis: Frédéric Dutheil, Claire Aubert, Michael Dambrun, Martial Mermillod.

Investigation: Claire Aubert, Valentin Navel.

Methodology: Frédéric Dutheil, Claire Aubert, Bruno Pereira, Michael Dambrun, Martial Mermillod, Julien S. Baker, Valentin Navel.

Project administration: Frédéric Dutheil, Claire Aubert, Fares Moustafa.

Resources: Claire Aubert, Michael Dambrun, Valentin Navel.

Software: Frédéric Dutheil, Bruno Pereira.

Supervision: Frédéric Dutheil, François-Xavier Lesage.
Validation: Frédéric Dutheil, Bruno Pereira, Michael Dambrun, Fares Moustafa, Martial Mermillod, Julien S. Baker, Marion Trousselard, François-Xavier Lesage.

Visualization: Frédéric Dutheil, Claire Aubert, Julien S. Baker, Marion Trousselard.

Writing – original draft: Frédéric Dutheil, Claire Aubert, Valentin Navel.

References

1. Hawton K, Agerbo E, Simkin S, Platt B, Mellanby RJ (2011) Risk of suicide in medical and related occupational groups: a national study based on Danish case population-based registers. J Affect Disord 134: 320–326. https://doi.org/10.1016/j.jad.2011.05.044 PMID: 21676470

2. Hawton K, Simkin S, Rue J, Haw C, Barbour F, Clements A, et al. (2002) Suicide in female nurses in England and Wales. Psychol Med 32: 239–250. https://doi.org/10.1017/s0033291701005165 PMID: 11866319

3. Katz RM (1983) Causes of death among registered nurses. J Occup Med 25: 760–762. https://doi.org/10.1097/00043764-198310000-00017 PMID: 6631561

4. Agerbo E, Gunnell D, Bonde JP, Mortensen PB, Nordentoft M (2007) Suicide and occupation: the impact of socio-economic, demographic and psychiatric differences. Psychol Med 37: 1131–1140. PMID: 17445281

5. Hem E, Haldorsen T, Aasland OG, Tyssen R, Vaglum P, Ekeberg O (2005) Suicide rates according to education with a particular focus on physicians in Norway 1960–2000. Psychol Med 35: 873–880. https://doi.org/10.1017/s0033291704003344 PMID: 15997007

6. Schernhammer ES, Colditz GA (2004) Suicide rates among physicians: a quantitative and gender assessment (meta-analysis). Am J Psychiatry 161: 2295–2302. https://doi.org/10.1176/appi.ajp.161.12.2295 PMID: 15659903

7. Hawton K, Clements A, Sakarovitch C, Simkin S, Deeks JJ (2001) Suicide in doctors: a study of risk according to gender, seniority and specialty in medical practitioners in England and Wales, 1979–1995. J Epidemiol Community Health 55: 296–300. https://doi.org/10.1136/jech.55.5.296 PMID: 11297646

8. Lindeman S, Laara E, Hervonen J, Lonqvist J (1997) Suicide mortality among medical doctors in Finland: are females more prone to suicide than their male colleagues? Psychol Med 27: 1219–1222. https://doi.org/10.1017/s0033291796004680 PMID: 9300526

9. Bachmann S (2018) Epidemiology of Suicide and the Psychiatric Perspective. Int J Environ Res Public Health 15.

10. Lindeman S, Laara E, Hakko H, Lonqvist J (1996) A systematic review on gender-specific suicide mortality in medical doctors. Br J Psychiatry 168: 274–279. https://doi.org/10.1192/bjp.168.3.274 PMID: 8833679

11. Notman MT, Nadelson CC (1973) Medicine: a career conflict for women. Am J Psychiatry 130: 1123–1127. https://doi.org/10.1176/ajp.130.10.1123 PMID: 4728905

12. Bertolote JM, De Leo D (2012) Global suicide mortality rates—a light at the end of the tunnel? Crisis 33: 249–253. https://doi.org/10.1027/0227-5910/a000180 PMID: 22935272

13. Murray A, Montgomery JE, Chang H, Rogers WH, Inui T, Safran DG (2001) Doctor discontent. A comparison of physician satisfaction in different delivery system settings, 1986 and 1997. J Gen Intern Med 16: 452–459. https://doi.org/10.1046/j.1525-1497.2001.016007452.x PMID: 11520382

14. Temple J (2014) Resident duty hours around the globe: where are we now? BMC Medical Education 14: S8. https://doi.org/10.1186/1472-6920-14-S1-S8 PMID: 25559277

15. Hikijj W, Fukunaga T (2014) Suicide of physicians in the special wards of Tokyo Metropolitan area. J Forensic Leg Med 22: 37–40. https://doi.org/10.1016/j.jflm.2013.12.022 PMID: 24485419

16. Rich CL, Pitts FN Jr. (1980) Suicide by psychiatrists: a study of medical specialists among 18,730 consecutive physician deaths in a five-year period, 1967–72. J Clin Psychiatry 41: 261–263. PMID: 7400103

17. Roberts SE, Jaremin B, Lloyd K (2013) High-risk occupations for suicide. Psychol Med 43: 1231–1240. https://doi.org/10.1017/S0033291712002024 PMID: 23098158

18. Patterson PD, Weaver MD, Frank RC, Warner CW, Martin-Gill C, Guyette FX, et al. (2012) Association between poor sleep, fatigue, and safety outcomes in emergency medical services providers. Prehosp Emerg Care 16: 86–97. https://doi.org/10.1080/10903127.2011.616261 PMID: 22023164

19. Hawton K, Clements A, Simkin S, Malmberg A (2000) Doctors who kill themselves: a study of the methods used for suicide. QJM 93: 351–357. https://doi.org/10.1093/qjmed/93.6.351 PMID: 10873184
20. (2012).

21. Puthran R, Zhang MW, Tam WW, Ho RC (2016) Prevalence of depression amongst medical students: a meta-analysis. Med Educ 50: 456–468. https://doi.org/10.1111/medu.12962 PMID: 26995484

22. Rotenstein LS, Ramos MA, Torre M, Segal JB, Peluso MJ, Guille C, et al. (2016) Prevalence of Depression, Depressive Symptoms, and Suicidal Ideation Among Medical Students: A Systematic Review and Meta-Analysis. Jama 316: 2214–2236. https://doi.org/10.1001/jama.2016.17324 PMID: 27923088

23. Witt K, Boland A, Lamblin M, McGorry PD, Veness B, Cipriani A, et al. (2016) Prevalence of Depression, Depressive Symptoms, and Suicidal Ideation Among Medical Students: A Systematic Review and Meta-Analysis. https://doi.org/10.1136/ebmental-2016-300082 PMID: 30918000

24. Zeng W, Chen R, Wang X, Zhang Q, Deng W (2019) Prevalence of mental health problems among medical students in China: A meta-analysis. Medicine (Baltimore) 98: e15337.

25. da Costa BR, Cevallos M, Altman DG, Rutjes AW, Egger M (2011) Uses and misuses of the STROBE statement: bibliographic study. BMJ Open 1: e000048. https://doi.org/10.1136/bmjopen-2010-000048 PMID: 22021739

26. Vandenbroucke JP, von Elm E, Altman DG, Gotzsche PC, Mulrow CD, Pocock SJ, et al. (2007) Strengthening the Reporting of Observational Studies in Epidemiology (STROBE): explanation and elaboration. Ann Intern Med 147: W163–194. https://doi.org/10.7326/0003-4819-147-8-200710160-00010-w1 PMID: 17938389

27. Wells GA, Shea B, O’Connell D, Peterson J, Welch V, Losos M, et al. (2017) The Newcastle-Ottawa Scale (NOS) for assessing the quality of nonrandomised studies in meta-analyses.

28. Citrome L, Magnusson K (2014) Paging Dr Cohen, Paging Dr Cohen . . . An effect size interpretation is required STAT!: visualising effect size and an interview with Kristoffer Magnusson. Int J Clin Pract 68: 533–534. https://doi.org/10.1111/ijcp.12435 PMID: 24750523

29. Aasland OG, Ekeberg O, Schweder T (2001) Suicide rates from 1960 to 1989 in Norwegian physicians compared with other educational groups. Soc Sci Med 52: 259–265. https://doi.org/10.1016/s0277-9536(00)00226-4 PMID: 11144782

30. Aasland OG, Hem E, Haldorsen T, Ekeberg O (2011) Mortality among Norwegian doctors 1960–2000. BMC Public Health 11: 173. https://doi.org/10.1186/1471-2458-11-173 PMID: 21426552

31. Hubbard SD (1922) Suicide Among Physicians. Am J Public Health (N Y) 12: 857.

32. Lindeman S, Heinanen H, Väisänen E, Lünnqvist J (2007) Suicide among medical doctors: Psychological autopsy data on seven cases. Archives of Suicide Research 4: 135–141.

33. (1986) Physician Mortality and Suicide. Results and Implication of the AMA-APA Pilot Study. Connecticut Medicine 50.

34. Austin AE, van den Heuvel C, Byard RW (2013) Physician suicide. J Forensic Sci 58 Suppl 1: S91–93.

35. Carpenter LM, Swerdlow AJ, Fear NT (1997) Mortality of doctors in different specialties: findings from a cohort of 20000 NHS hospital consultants. Occup Environ Med 54: 388–395. https://doi.org/10.1136/oem.54.6.388 PMID: 9245944

36. Craig AG, Pitts FN Jr. (1968) Suicide by physicians. Dis Nerv Syst 29: 763–772. PMID: 5717292
43. DeSole DE, Singer P, Aronson S (1969) Suicide and role strain among physicians. Int J Soc Psychiatry 15: 294–301. https://doi.org/10.1177/002076406901500407 PMID: 5381279
44. Everson RB, Fraumeni JF Jr. (1975) Mortality among medical students and young physicians. J Med Educ 50: 809–811. https://doi.org/10.1097/00001888-197508000-00009 PMID: 1152010
45. Gagne P, Moamaj J, Bourget D (2011) Psychopathology and Suicide among Quebec Physicians: A Nested Case Control Study. Depress Res Treat 2011: 936327. https://doi.org/10.1155/2011/936327 PMID: 21822488
46. Inno K, Rahu K, Baburin A, Rahu M (2002) Cancer incidence and cause-specific mortality in male and female physicians: a cohort study in Estonia. Scand J Public Health 30: 133–140. https://doi.org/10.1080/14034940210133735 PMID: 12028862
47. Jones RE (1977) A study of 100 physician psychiatric inpatients. Am J Psychiatry 134: 1119–1123. https://doi.org/10.1176/ajp.134.10.1119 PMID: 900265
48. Lew EA (1979) Mortality experience among anesthesiologists, 1954–1976. Anesthesiology 51: 195–199. https://doi.org/10.1097/00000542-197909000-00003 PMID: 475020
49. Linde HW, Mesnick PS, Smith NJ (1981) Causes of death among anesthesiologists: 1930–1946. Anesth Analg 60: 1–7. PMID: 2608313
50. Palhares-Aires HN, Palhares DM, Laranjeira R, Nogueira-Martins LA, Sanchez ZM (2015) Psychopathology and Suicide among Quebec Physicians: A Nested Case Control Study. Depress Res Treat 2011: 936327. https://doi.org/10.1155/2011/936327 PMID: 21822488
51. Inno K, Rahu K, Baburin A, Rahu M (2002) Cancer incidence and cause-specific mortality in male and female physicians: a cohort study in Estonia. Scand J Public Health 30: 133–140. https://doi.org/10.1080/14034940210133735 PMID: 12028862
52. Jones RE (1977) A study of 100 physician psychiatric inpatients. Am J Psychiatry 134: 1119–1123. https://doi.org/10.1176/ajp.134.10.1119 PMID: 900265
53. Lew EA (1979) Mortality experience among anesthesiologists, 1954–1976. Anesthesiology 51: 195–199. https://doi.org/10.1097/00000542-197909000-00003 PMID: 475020
54. Linde HW, Mesnick PS, Smith NJ (1981) Causes of death among anesthesiologists: 1930–1946. Anesth Analg 60: 1–7. PMID: 7192942
55. Palhares-Aires HN, Palhares DM, Laranjeira R, Nogueira-Martins LA, Sanchez ZM (2015) Suicide among physicians in the state of Sao Paulo, Brazil, across one decade. Rev Bras Psiquiatr 37: 146–149. PMID: 2608313
56. Inno K, Rahu K, Baburin A, Rahu M (2002) Cancer incidence and cause-specific mortality in male and female physicians: a cohort study in Estonia. Scand J Public Health 30: 133–140. https://doi.org/10.1080/14034940210133735 PMID: 12028862
57. Jones RE (1977) A study of 100 physician psychiatric inpatients. Am J Psychiatry 134: 1119–1123. https://doi.org/10.1176/ajp.134.10.1119 PMID: 900265
58. Lew EA (1979) Mortality experience among anesthesiologists, 1954–1976. Anesthesiology 51: 195–199. https://doi.org/10.1097/00000542-197909000-00003 PMID: 475020
59. Linde HW, Mesnick PS, Smith NJ (1981) Causes of death among anesthesiologists: 1930–1946. Anesth Analg 60: 1–7. PMID: 2608313
60. Palhares-Aires HN, Palhares DM, Laranjeira R, Nogueira-Martins LA, Sanchez ZM (2015) Suicide among physicians in the state of Sao Paulo, Brazil, across one decade. Rev Bras Psiquiatr 37: 146–149. PMID: 2608313
61. Inno K, Rahu K, Baburin A, Rahu M (2002) Cancer incidence and cause-specific mortality in male and female physicians: a cohort study in Estonia. Scand J Public Health 30: 133–140. https://doi.org/10.1080/14034940210133735 PMID: 12028862
62. Jones RE (1977) A study of 100 physician psychiatric inpatients. Am J Psychiatry 134: 1119–1123. https://doi.org/10.1176/ajp.134.10.1119 PMID: 900265
63. Lew EA (1979) Mortality experience among anesthesiologists, 1954–1976. Anesthesiology 51: 195–199. https://doi.org/10.1097/00000542-197909000-00003 PMID: 475020
64. Linde HW, Mesnick PS, Smith NJ (1981) Causes of death among anesthesiologists: 1930–1946. Anesth Analg 60: 1–7. PMID: 2608313
65. Samkoff JS, Hockenberry S, Simon LJ, Jones RL (1995) Mortality of young physicians in the United States, 1980–1988. Acad Med 70: 242–244. https://doi.org/10.1097/00001888-199503000-00018 PMID: 7873015
66. Schlicht SM, Gordon IR, Ball JR, Christie DG (1990) Suicide and related deaths in Victorian doctors. Med J Aust 153: 518–521. PMID: 2233473
67. Shang TF, Chen PC, Wang JD (2012) Disparities in mortality among doctors in Taiwan: a 17-year follow-up study of 37 545 doctors. BMJ Open 2: e000382. https://doi.org/10.1136/bmjopen-2011-000382 PMID: 22337815
68. Atzet BB, Horte LG, Hedberg A, Theorell T, Allander E, Malker H (1987) Suicide patterns among physicians related to other academics as well as to the general population. Results from a national long-term prospective study and a retrospective study. Acta Psychiatr Scand 75: 139–143. https://doi.org/10.1111/j.1600-0447.1987.tb02765.x PMID: 3494382
69. Bamayr A, Feuerlein W (1986) [Incidence of suicide in physicians and dentists in Upper Bavaria]. Ugeskr Laeger 150: 2440–2443. PMID: 3206633
70. Petersen MR, Burnett CA (2008) The suicide mortality of working physicians and dentists. Occup Med (Lond) 58: 25–29.
71. Pitts FN Jr., Schuler AB, Rich CL, Pitts AF (1979) Suicide among U.S. women physicians, 1967–1972. Am J Psychiatry 136: 694–696. https://doi.org/10.1176/ajp.136.5.694 PMID: 434249
72. Rimpela AH, Nurminen MM, Pulkkinen PO, Rimpela MK, Valkonen T (1987) Mortality of doctors: do doctors benefit from their medical knowledge? Lancet 1: 84–86. https://doi.org/10.1016/s0140-6736(87)91919-2 PMID: 2879184
68. Rose KD, Rosow I (1973) Physicians who kill themselves. Arch Gen Psychiatry 29: 800–805. https://doi.org/10.1001/archpsyc.1973.04200060072011 PMID: 4751819

69. Shang TF, Chen PC, Wang JD (2011) Mortality of doctors in Taiwan. Occup Med (Lond) 61: 29–32.

70. Stefansson CG, Wicks S (1991) Health care occupations and suicide in Sweden 1961–1985. Soc Psychiatry Psychiatr Epidemiol 26: 259–264. https://doi.org/10.1007/bf00789217 PMID: 1792556

71. Torre DM, Wang NY, Meoni LA, Young JH, Klag MJ, Ford DE (2005) Suicide compared to other causes of mortality in physicians. Suicide Life Threat Behav 35: 146–153. https://doi.org/10.1521/suli.35.2.146.62878 PMID: 15843332

72. Ullmann D, Phillips RL, Beeson WL, Dewey HG, Brin BN, Kuzma JW, et al. (1991) Cause-specific mortality among physicians with differing life-styles. JAMA 265: 2352–2359. PMID: 2016831

73. Frank E, Dingle AD (1999) Self-reported depression and suicide attempts among U.S. women physicians. Am J Psychiatry 156: 1887–1894. https://doi.org/10.1176/ajp.156.12.1887 PMID: 10588401

74. Fridner A, Belkic K, Marini M, Minucci D, Pavan L, Schenck-Gustafsson K (2009) Survey on recent suicidal ideation among female university hospital physicians in Sweden and Italy (the HOUPE study): cross-sectional associations with work stressors. Gend Med 6: 314–326. https://doi.org/10.1016/j.genm.2009.04.006 PMID: 19467527

75. Hem E, Grleveland NT, Aasland OG, Ekeberg O (2000) The prevalence of suicidal ideation and suicidal attempts among Norwegian physicians. Results from a cross-sectional survey of a nationwide sample. Eur Psychiatry 15: 183–189. https://doi.org/10.1016/s0924-9338(00)00227-3 PMID: 10881215

76. Lindfors PM, Meretoja OA, Luukkonen RA, Elovainio MJ, Leino TJ (2009) Suicide among Finnish anaesthesiologists. Acta Anaesthesiol Scand 53: 1027–1035. https://doi.org/10.1111/j.1399-6576.2009.02014.x PMID: 19572941

77. Olkinuora M, Asp S, Juntunen J, Kauttu K, Strid L, Aarimaa M (1990) Stress symptoms, burnout and suicidal thoughts in Finnish physicians. Soc Psychiatry Psychiatr Epidemiol 25: 81–86. https://doi.org/10.1007/bf00794986 PMID: 2336581

78. Simon W, Lumry GK (1968) Suicide among physician-patients. J Nerv Ment Dis 147: 105–112. https://doi.org/10.1097/00005053-196808000-00002 PMID: 4386438

79. Gunnarsdottir H, Rafnsson V (1995) Mortality among Icelandic nurses. Scand J Work Environ Health 21: 24–29. https://doi.org/10.5271/sjweh.4 PMID: 7784860

80. Hemenway D, Solnick SJ, Colditz GA (1993) Smoking and suicide among nurses. Am J Public Health 83: 249–251. https://doi.org/10.2105/ajph.83.2.249 PMID: 8427332

81. Roy A (1985) Suicide in doctors. Psychiatr Clin North Am 8: 377–387. PMID: 3895198

82. Davidson JE, Stuck AR, Zisook S, Proudfoot J (2018) Testing a Strategy to Identify Incidence of Nurse Suicide in the United States. J Nurs Adm 48: 259–265. https://doi.org/10.1097/NNA.0000000000000610 PMID: 29672372

83. Wang Y, Liu L, Xu H (2017) Alarm bells ring: suicide among Chinese physicians: A STROBE compliant study. Medicine (Baltimore) 96: e7790.

84. Brooks E, Gendel MH, Early SR, Gundersen DC (2017) When Doctors Struggle: Current Stressors and Evaluation Recommendations for Physicians Contemplating Suicide. Arch Suicide Res 22: 519–528. https://doi.org/10.1080/13811118.2017.1372827 PMID: 28990863

85. Loas G, Lefebvre G, Rotsaert M, Englert Y (2018) Relationships between anhedonia, suicidal ideation and suicide attempts in a large sample of physicians. PLoS One 13: e0193619. https://doi.org/10.1371/journal.pone.0193619 PMID: 29584785

86. Zeng HJ, Zhou GY, Yan HH, Yang XH, Jin HM (2018) Chinese nurses are at high risk for suicide: A review of nurses suicide in China 2007–2016. Arch Psychiatr Nurs 32: 896–900. https://doi.org/10.1016/j.apnu.2018.07.005 PMID: 30454635

87. Suzanne MP (1999) U.S. psychologists’ suicide rates have declined since the 1960s. Archives of Suicide Research: 11–26.

88. Firth-Cozens J (2000) New stressors, new remedies. Occup Med (Lond) 50: 199–201.

89. Schildmann J, Cushing A, Doyal L, Vollmann J (2005) Breaking bad news: experiences, views and difficulties of pre-registration house officers. Palliat Med 19: 93–98. https://doi.org/10.1191/0269216305pm996oa PMID: 15810746

90. Bressler B (1976) Suicide and drug abuse in the medical community. Suicide Life Threat Behav 6: 169–178. PMID: 996197

91. Carr GD (2008) Physician suicide—a problem for our time. J Miss State Med Assoc 49: 308–312. PMID: 19297920
92. McManus IC, Keeling A, Paice E (2004) Stress, burnout and doctors’ attitudes to work are determined by personality and learning style: a twelve year longitudinal study of UK medical graduates. BMC Med 2: 29. https://doi.org/10.1186/1741-7015-2-29 PMID: 15317650

93. Smith SJ (1990) Income, Housing Wealth and Gender Inequality. Urban Studies 27: 67–88.

94. Finch N (2014) Why are women more likely than men to extend paid work? The impact of work-family life history. Eur J Ageing 11: 31–39. https://doi.org/10.1007/s10433-013-0290-8 PMID: 28804312

95. Pospos S, Tait I, Iglewicz A, Newton IG, Tai-Seale M, Downs N, et al. (2019) Gender differences among medical students, house staff, and faculty physicians at high risk for suicide: A HEAR report. Depress Anxiety.

96. Janus K, Ameling VE, Gaitanides M, Schwartz FW (2007) German physicians “on strike”—shedding light on the roots of physician dissatisfaction. Health Policy 82: 1577–1584. https://doi.org/10.1016/j.healthpol.2006.11.003 PMID: 17137674

97. Jenkins K, Wong D (2001) A survey of professional satisfaction among Canadian anesthesiologists. Can J Anaesth 48: 637–645. https://doi.org/10.1007/BF03016196 PMID: 11495869

98. Bell DJ, Bringman J, Bush A, Phillips OP (2006) Job satisfaction among obstetric-gynecologists: a comparison between private practice physicians and academic physicians. Am J Obstet Gynecol 195: 1474–1478. PMID: 16996467

99. Bovier PA, Perneger TV (2003) Predictors of work satisfaction among physicians. Eur J Public Health 13: 299–305. PMID: 14703315

100. Makary MA, Daniel M (2016) Medical error—the third leading cause of death in the US. Bmj 353: i2139. https://doi.org/10.1136/bmj.i2139 PMID: 2718201

101. Korup AK, Sondergaard J, Luchetti G, Ramakrishnan P, Baumann K, Lee E, et al. (2019) Religious values of physicians affect their clinical practice: A meta-analysis of individual participant data from 7 countries. Medicine (Baltimore) 98: e17265.
115. Dickman SL, Himmelstein DU, Woolhandler S (2017) Inequality and the health-care system in the USA. Lancet 388: 1431–1441. https://doi.org/10.1016/S0140-6736(17)30398-7 PMID: 28402825

116. Berlin L (2017) Medical errors, malpractice, and defensive medicine: an ill-fated triad. Diagnosis (Berl) 4: 133–139.

117. Studdert DM, Mello MM, Sage WM, DesRoches CM, Peugh J, Zapert K, et al. (2005) Defensive medicine among high-risk specialist physicians in a volatile malpractice environment. Jama 293: 2609–2617. PMID: 15928282

118. Chiolero A, Paccaud F, Aujesky D, Santschi V, Rodondi N (2015) How to prevent overdiagnosis. Swiss Med Wkly 145: w14060. https://doi.org/10.4414/smw.2015.14060 PMID: 25612105

119. (2006) World Health Organization. Global strategy on human resources for health: workforce.

120. Kuhn CM, Flanagan EM (2017) Self-care as a professional imperative: physician burnout, depression, and suicide. Can J Anaesth 64: 158–168. https://doi.org/10.1007/s12630-016-0781-0 PMID: 27910035

121. Lindfors PM, Nurmi KE, Meretoja OA, Luukkonen RA, Viljanen AM, Leino TJ, et al. (2006) On-call stress among Finnish anaesthetists. Anaesthesia 61: 856–866. https://doi.org/10.1111/j.1365-2044.2006.04749.x PMID: 16922752

122. Rosado-Bartolome A (2014) [The moral loneliness of the General Practitioner]. Rev Clin Esp (Barc) 214: 49–50.

123. Cooper CL, Rout U, Faragher B (1989) Mental health, job satisfaction, and job stress among general practitioners. BMJ 298: 366–370. https://doi.org/10.1136/bmj.298.6670.366 PMID: 2493939

124. Dutheil F, Boudet G, Perrier C, Lac G, Ouchchane L, Chamoux A, et al. (2012) JOBSTRESS study: comparison of heart rate variability in emergency physicians working a 24-hour shift or a 14-hour night shift—a randomized trial. Int J Cardiol 158: 322–323. https://doi.org/10.1016/j.ijcard.2012.04.141 PMID: 22608270

125. Dutheil F, Marhar F, Boudet G, Perrier C, Naughton G, Chamoux A, et al. (2017) Maximal tachycardia and high cardiac strain during night shifts of emergency physicians. Int Arch Occup Environ Health.

126. Dutheil F, Trousselard M, Perrier C, Lac G, Chamoux A, Duclos M, et al. (2012) On the nature, magnitude, and causality of suicidal behaviors: an international perspective. Suicide Life Threat Behav 25: 36–57. PMID: 7631374

127. Goldstone AR, Callaghan CJ, Mackay J, Charman S, Nashef SA (2004) Should surgeons take a break after an intraoperative death? Attitude survey and outcome evaluation. BMJ 328: 379. https://doi.org/10.1136/bmj.37985.371343.EE PMID: 14734519

128. Diekstra RF, Garnefski N (1995) On the nature, magnitude, and causality of suicidal behaviors: an international perspective. Suicide Life Threat Behav 25: 36–57. PMID: 7631374

129. Galfalvy HC, Oquendo MA, Mann JJ (2008) Evaluation of clinical prognostic models for suicide attempts after a major depressive episode. Acta Psychiatr Scand 117: 244–252. https://doi.org/10.1111/j.1600-0447.2008.01162.x PMID: 18321353

130. Gyorffy Z, Adam S, Csoboth C, Kopp M (2005) [The prevalence of suicide ideas and their psychosocial backgrounds among physicians]. Psychiatr Hung 20: 370–379. PMID: 16428812

131. Hawton K, Malmberg A, Simkin S, Nashen SA, Chambres P, Bertrand PR, Dutheil F (2017) The Need for Objective Measures of Stress in Autism. Frontiers in Psychology 8.

132. Goldstone AR, Callaghan CJ, Mackay J, Charman S, Nashef SA (2004) Should surgeons take a break after an intraoperative death? Attitude survey and outcome evaluation. BMJ 328: 379. https://doi.org/10.1136/bmj.37985.371343.EE PMID: 14734519

133. Diekstra RF, Garnefski N (1995) On the nature, magnitude, and causality of suicidal behaviors: an international perspective. Suicide Life Threat Behav 25: 36–57. PMID: 7631374

134. Galfalvy HC, Oquendo MA, Mann JJ (2008) Evaluation of clinical prognostic models for suicide attempts after a major depressive episode. Acta Psychiatr Scand 117: 244–252. https://doi.org/10.1111/j.1600-0447.2008.01162.x PMID: 18321353

135. Gyorffy Z, Adam S, Csoboth C, Kopp M (2005) [The prevalence of suicide ideas and their psychosocial backgrounds among physicians]. Psychiatr Hung 20: 370–379. PMID: 16428812

136. Hawton K, Malmberg A, Simkin S, Nashen SA, Chambres P, Bertrand PR, Dutheil F (2017) The Need for Objective Measures of Stress in Autism. Frontiers in Psychology 8.

137. Healy S, Tyrrell M (2011) Stress in emergency departments: experiences of nurses and doctors. Emerg Nurse 19: 31–37. https://doi.org/10.7748/enn2011.07.19.4.31.c8611 PMID: 21526288

138. Moutier C, Norcross W, Jong P, Norman M, Kirby B, McGuire T, et al. (2012) The suicide prevention and depression awareness program at the University of California, San Diego School of Medicine. Acad Med 87: 320–326. https://doi.org/10.1097/ACM.0b013e31824451ad PMID: 22373625

139. Alderson M, Parent-Rocheleau X, Mishara B (2015) Critical Review on Suicide Among Nurses. Crisis: 1–11. https://doi.org/10.1027/0227-5910/a000315

140. Hawton K, Vissel L (1999) Suicide in nurses. Suicide Life Threat Behav 29: 86–95.
140. Patton R, Smythe W, Kelsall H, Selemo FB (2007) Substance use among patients attending an accident and emergency department. Emerg Med J 24: 146.

141. Hopwood CJ, Morey LC, Edelen MO, Shea MT, Grilo CM, Sanislow CA, et al. (2008) A comparison of interview and self-report methods for the assessment of borderline personality disorder criteria. Psychol Assess 20: 81–85. https://doi.org/10.1037/1040-3590.20.1.81 PMID: 18315403

142. Trousselard M, Dutheil F, Naughton G, Cosserant S, Amadon S, Duale C, et al. (2016) Stress among nurses working in emergency, anesthesiology and intensive care units depends on qualification: a Job Demand-Control survey. Int Arch Occup Environ Health 89: 221–229. https://doi.org/10.1007/s00420-015-1065-7 PMID: 26112796

143. Dutheil F, Delaire P, Boudet G, Rouffiac K, Djeriri K, Souweine B, et al. (2008) [Cost/effectiveness comparison of the vaccine campaign and reduction of sick leave, after vaccination against influenza among the Clermont-Ferrand University Hospital staff]. Med Mal Infect 38: 567–573. https://doi.org/10.1016/j.medmal.2008.09.019 PMID: 19008061

144. Dutheil F, Kelly C, Biat I, Provost D, Baud O, Laurichesse H, et al. (2008) [Relation between the level of knowledge and the rate of vaccination against the flu virus among the staff of the Clermont-Ferrand University hospital]. Med Mal Infect 38: 586–594. https://doi.org/10.1016/j.medmal.2008.09.017 PMID: 18976872

145. Kelly C, Dutheil F, Haniez P, Boudet G, Rouffiac K, Traore O, et al. (2008) [Analysis of motivations for antiflu vaccination of the Clermont-Ferrand University Hospital staff]. Med Mal Infect 38: 574–585. https://doi.org/10.1016/j.medmal.2008.09.018 PMID: 18954950

146. Lopez V, Chamoux A, Tempier M, Thiel H, Ughetto S, Trousselard M, et al. (2013) The long-term effects of occupational exposure to vinyl chloride monomer on microcirculation: a cross-sectional study 15 years after retirement. BMJ Open 3.