POVERTY AND NATURAL DISASTERS: A REGRESSION META-ANALYSIS

Azreen Karim & Ilan Noy*

School of Economics and Finance
Victoria Business School
Victoria University of Wellington, New Zealand

July 2016

* Corresponding author: EQC-MPI Chair in the Economics of Disasters and Professor of Economics, School of Economics and Finance, POB 600, Wellington, New Zealand. ilan.noy@vuw.ac.nz; Tel. 64-4-463-5737.
ABSTRACT

With a meta-regression analysis of the existing literature on the impacts of disasters on households, we observe several general patterns. Incomes are clearly impacted adversely, with the impact observed specifically in per-capita measures. Consumption is also reduced, but to a lesser extent than incomes. Poor households appear to smooth their food consumption by reducing the consumption of non-food items; in particular health and education, and this suggests potentially long-term adverse consequences. Given the limits of our methodology and the paucity of research, we find no consistent patterns in long-term outcomes. We place disaster risk to the poor within the context of sustainable development and future climatic change.

Key words: disaster, natural, poverty, meta-analysis.

JEL codes: I3, Q54, Q56, B41.
1. INTRODUCTION

Natural disasters - earthquakes, typhoons, hurricanes, floods, cold and heat waves, droughts and volcanic eruptions - are a constant presence in all our lives, but especially so for the poor. Disasters are especially prevalent in the most populous region of the world (Asia) and most catastrophic in the destruction they wreak in the poorest countries (e.g., Haiti in 2010). Disasters, however, occur everywhere, and their direct financial costs have been increasing for the past several decades.

The poor, both in low- and higher-income countries are especially vulnerable to the impact of disasters, so that disasters are not only of interest to social scientists because of society-wide economic impact, their impact on the public sector which bears the costs of reconstruction, or because of their environmental impact, but also because of their importance in the processes of development, income growth, and income distribution. The World Bank, for example, devoted its 2014 World Development Report to the risk faced by poor households, poor regions, and poor countries, with a special emphasis on risks that are associated with natural events. The need to understand the role of disasters and their impacts on the poor, in creating and sustaining poverty, and in generating poverty traps, is even more acute as the changes due to human-induced climate change are predicted to be more extreme in poorer countries and will thus place additional barriers to poverty alleviation.¹

The empirical and theoretical research on disasters has been evaluating the impacts of natural disasters on a diverse range of social and economic issues: the economic growth impact of disasters in the short and long terms, the fiscal impact of disasters, the impact on international

¹ There is little certainty regarding the impact of climate change on the occurrence of natural disasters, though the most recent assessment by the IPCC concludes that the frequency of days with extreme temperature, of floods, and of droughts, is likely to increase (IPCC, 2012). In addition, the spatial distribution of extreme events is likely to change leading to further impact as these will affect areas that are less prepared for them.
trade and financial flows, the impact on populations through migration and fertility choices, the impact on human capital accumulation, the importance of political economy in shaping the disasters’ aftermath, and other related topics. The research on the impact of disaster shocks specifically on the poor is one branch of this wider ‘disaster’ literature that has not yet been adequately summarized, nor has there appeared to be any attempt to reach any general conclusions from the numerous case studies (country-specific, disaster-type-specific, or disaster-event-specific) that constitute the bulk of this research stream.

This lacuna is at least in part attributable to the complex nature of the inter-relationship between disaster impacts and poverty and welfare outcomes, and the consequent diversity of impacts across the investigated case studies. An additional difficulty, given this diversity of outcomes, is in identifying the precise channels - both direct and indirect - that describe the causal mechanisms. We aim to fill this lacuna using meta-regression analysis.

For readers who are not familiar with this methodology, meta-regression analysis is a statistical method, a regression that is used to evaluate a body of empirical research that is itself typically regression-based. It is especially appropriate for questions for which there are multiple studies using similar methodologies, but different datasets, different regression specifications, or different time-periods. Meta-regression analysis is a companion method to a narrative survey of the literature. It identifies empirical regularities in the investigated body of work that are more difficult to spot or to rigorously establish. It further establishes what characteristics of the data, the method, or the studies’ designs are most closely associated with the observed empirical regularities. Stanley (2001) provides further details about the justification and the theoretical underpinning of the meta-regression method.

Here, we embark on an attempt to provide some generalizations about this literature through the use of a meta-regression analysis of this literature. Two strands of literature constitute
our primary focus in this study. The first strand investigates the immediate (direct or first-order) effect of disasters on household welfare, on the poor specifically, and on society-wide incidence of poverty. The second strand explores the consequent indirect (higher-order) effects that have an impact on the lives of the poor, in generating additional poverty, or in the creation and sustenance of poverty traps. Given the nature of our quantitative meta-analysis, we restrict our investigation to research projects that are empirical in nature, and thus exclude qualitative assessments, theoretical analyses, and work that relies on calibration of structural models.

The diverse foci of these empirical studies and the multitude of different empirical findings clearly demonstrate the importance of synthesizing these research results formally in meta-regression analysis. According to guidelines suggested by Stanley et al. (2013), a statistical meta-regression analysis is explicitly designed to integrate econometric estimates, typically regression coefficients or transformation of regression coefficients. To put differently, a meta-analysis is a quantitative summary of statistical indicators reported in a series of similar empirical studies; previous well-known examples include Card and Krueger (1995), Smith and Huang (1995), Brander et al. (2006), and Disdier and Head (2008). We essentially provide an exploratory synopsis of the empirical literature analyzing the direct and indirect relationship among poverty, household welfare and natural disasters attempting to generalize from the contextual idiosyncrasies of each case-study.

Our contribution here is the synthesis of the microeconomic literature examining the heterogeneity of impact of disasters on the poor, using regression meta-analysis methodology. Two

2 Cavallo and Noy (2011), following the ECLAC (1991) methodology, distinguish between the direct impact of sudden-onset disasters (the immediate mortality, morbidity, and physical damage) and the indirect impact that affects the economy in the aftermath of the actual damage caused (including secondary mortality and morbidity, and on economic activity). The World Bank, in its survey *Natural Hazards Unnatural Disasters* (2010), employs a different terminology that makes essentially the same distinction: first-order and higher-order effects.

3 A companion narrative review of the literature that also describes the projects that employ other methodological approaches is Karim and Noy (2016).
recently published papers, Lazzaroni and van Bergeijk (2014) and Klomp and Valckx (2014), both conducted regression meta-analysis of the macroeconomic literature. They both focus on the impact of natural disasters on aggregate growth and conclude that while the average indirect short-term impact is largely negative, there is significant heterogeneity across countries, time periods, and types of events. Our contribution, therefore, provides useful microeconomic detail complementing the macroeconomic insights derived from this previous work.

The empirical studies utilized to conduct the quantitative analysis here illustrate the geographical coverage of this research: Asia (36.8 percent of research projects) and Africa (34.2 percent) are the most studied regions compared to Central America (23.7 percent), South America (18.4 percent) and Oceania (15.8 percent). Regarding the types of natural disasters studied, hydro-meteorological events (mainly floods, rainfall and tropical cyclones) are studied in 21 studies (55.2 percent) followed by geo-climatological events (i.e. droughts and earthquakes) in 13 studies (34.2 percent). The rest constitute seven studies that investigate multiple types of natural shocks (18.4 percent).

The organization of this paper is as follows: Section 2 details the data construction procedure. We first identify the algorithm that led to the choice of studies to include, and then providing detailed explanation of the specific categories of variables we included as both the independent and dependent variables in our regression analysis. This section follows closely the meta-analysis protocol outlined in Stanley et al. (2013). This section also includes the relevant descriptive and summary statistics. Section 3 presents the methodological framework with the specifications we use and the functional form of the meta-regression. Section 4 examines the regression output and provides interpretation of results comparing it with the results outlined in
the existing literature we analyze. We describe robustness checks with restricted samples in Section 5 and end with some conclusions and a further research agenda in Section 6.\(^4\)

2. DATA CONSTRUCTION

The empirical literature on poverty and natural disasters is relatively new with a substantial inflow of new studies during the past decade. This may be the case because of the availability of new data, the increasing media reporting of natural catastrophes, and/or the potential link to the changing climate. This short history assists us in as much as almost all the studies we found were completed using rigorous statistical/econometric approaches. In order to make sure our results are less biased than a more informal qualitative survey, we include every single paper that we found by following a well-defined procedure, and which includes all the relevant variables/measures we require for our statistical analysis. In our final sample of 38 papers, 28 had gone through a peer-reviewing process. In order to attenuate any publication bias we also included working papers and other unpublished work we found while following our search procedure described below.\(^5\)

Our base sample constitutes English-language papers identified through an extensive search using the main relevant search engines and electronic journal databases deploying combinations of keywords and terminologies. Papers have been collected between April and June, 2013. We searched in: EconLit, Google Scholar, JSTOR, RePec, Wiley Online Library, and the World Bank working paper series. The keywords we used in these searches were: poverty and natural

\(^4\) Goodman et al. (2013) describe the steps that are dictated in a standard meta-analysis protocol: “1) a thorough literature search; 2) clear and transparent eligibility criteria for selecting studies to include in the analyses; 3) a standardized approach for critically appraising studies; 4) appropriate statistical calculations to assess comparisons and trends among study findings; and 5) evaluations of potential sources of heterogeneity and bias.” In this section, we describe steps (1)-(3), in the next section we describe (4), while the last two sections include detailed descriptions of the evaluations we undertook (step 5).

\(^5\) Unlike practice in some other research disciplines, in economics most research projects are posted online as working papers long before they are accepted for publication anywhere. Thus, by relying also on search engines that identify working papers we overcome much of the publication bias that could be a bigger concern had we not been able to access unpublished research.
disasters, inequality and natural disasters, impacts of natural disasters on household, weather shocks and household welfare, and impacts of natural shocks on the poor. We followed this by examining the existing bibliographies within these papers we already identified to further widen our sample. The studies we collected range from journal articles, to project reports, book chapters and working papers.

Out of 62 studies we identified, we were able to extract 161 separate observations from 38 studies of direct and indirect impacts on poverty and welfare indicators impacted through different types of sudden and slow on-set naturally occurring events.\(^6\) The maximum number of observations taken from a single study is 20 and the average number is 4.2. Table 1 details the list of studies we analyzed and reports the number of observations derived from each study in the finalized sample of 38 papers.

(a) Disaster types and outcome variables: Broad and Sub-categories

Due to diverse range of foci within the available literature, we have accumulated the measures of poverty and welfare outcomes under several broad categories: income, consumption, poverty, wealth, health, education and labour. Within each category, we further sub-divided the measures into separate indicators, to enable us to examine whether the type of poverty/welfare measure used affects the results. The classification of types of natural disasters and the methodologies used were also recorded and classified for further analysis. Table 2 presents the lists of categories of variables and their descriptions. The frequency distribution of observations

\(^6\) We could not use 24 studies for our statistical analysis either because of the methodology they used (e.g., calibrated modelling), some of the data was missing in their reporting (e.g., number of observations in sample), or their focus was on evaluation of alternative coping strategies rather than impact analysis. In a companion paper (Karim and Noy, 2016), we summarize some general information from all 62 studies including a study description (author, year of publication, study area and specification of natural disaster), data sources and time period used, sample size and methodology, and the results and main conclusions of each study.
and the descriptive statistics of for each of nine (9) types of outcome variables is described in Table 3. Among the outcome values (in percentage changes), consumption1 displays the maximum number of observations (39) followed by health (29), poverty (20), and labour (20). Interestingly, the number of negative outcomes in these categories are 16 (consumption1), 19 (health), 12 (poverty) and 15 (labour). This skewness of the observations suggests the presence of heterogenous impacts among the poverty-disaster outcome measures in this literature.

The direct and indirect impacts of disasters have mostly been defined from the perspectives of income, consumption (for direct impact) and poverty and wealth indicators (for indirect or longer-term). We have further sub-divided income and consumption into two sub-categories while leaving wealth and poverty under one broad category. The direct and indirect impacts of shocks on health, education and labour outcomes have also been investigated in some of the studies in our sample; we classified health, education, and labour in one category each.

In order to conduct our analysis, without assuming that ‘all disasters are created equal’, we classified three different types of disasters: disaster 1 (hydro-meteorological), disaster 2 (geo-climatological) and disaster 3 (grouped natural shocks). Table 2 provides additional information. Information on our procedure for standardizing the dependent variables is available in the appendix.

(b) Control variables

We recorded a set of control variables for the observations in our sample. The control variables are included in a binary format based upon their usage in the selected studies; i.e., when a particular control variable had been used in a paper we have recorded 1 and when the specified model failed to control for a specific variable, we recorded 0. The set of control variables whose inclusion we recorded are household/community characteristics (i.e. household heterogeneity including characteristics regarding household head), year and seasonal effects, regional
characteristics (i.e., district dummies), demographics (population and labour force characteristics), socio-economic indicators (occupation, land ownership and access to safety net) and features indicating geographical and natural-environmental features. Comprehensive descriptions of all these controls are provided in table 2. In Appendix Table 1 we document the descriptive statistics of all the variables used to conduct this meta-analysis.

3. METHODOLOGICAL FRAMEWORK

Our main objective here is to generalize the direct and indirect impacts of natural disasters on households, poverty and welfare measures. We employ the following general econometric specification: \(y_i = \alpha C_i + \beta D_i + \delta x_i + \mu_i \). The dependent variable in our regression equation is a vector of percentage change of disaster-impact indicators, labeled \(y_i \). \(C_i \) is the vector of outcome variables that are potentially examined in each paper \(i \). \(D_i \) is the set of shock variables (disaster and methodology) variables in binary format measured in each study \(i \), while \(x_i \) is the set of control variables included in the regressions of the original studies, all these are also in binary format. \(\mu_i \) represent the error term; we assume the error terms are clustered by study. \(\alpha \), \(\beta \), and \(\delta \) are the vectors of estimated coefficients.

Heterogeneity in the precision of estimates is likely to be present due to between-study variation. Possible reasons could be differences in sample size or population, study design and methodologies employed. We therefore estimate the model with standard errors clustered by study.\(^7\)

\(^7\) Cipollina and Salvatici (2010), in their meta-analysis on reciprocal trade agreements, used clustered standard errors (by study). We also estimated the model without the clustered errors; results are very similar and are available upon request.
We start with the most basic specification, estimated using ordinary least squares (OLS) with standard errors clustered by study. We continued with weighted least squares (WLS) estimation using the same control variable specifications as in the OLS regressions. The weights are determined by the square root of the number of observations in each of the original papers we investigated. Basing the weights on the square root of the sample size allows us not to place undue weight on the few studies with very large number of observations.\(^8\)

4. ESTIMATION RESULTS

Our meta-regression results are reported in tables 4 and 5. We formulated three groups to obtain four different model specifications. Model (1) includes all variables\(^9\), Model (2) the outcome and shock variables, Model (3) the outcome and the control variables and finally Model (4) includes only the outcome variables.\(^10\)

We first examine the outcome variables in table 4. Generally, we find little statistical significance in the coefficients of these outcome variables. For income, for example, we mostly obtain a negative coefficient in most specifications. In this case, a negative coefficient is interpreted to mean that the impact of disasters on income (rather than on other outcome measures) is more negative. When compared to the average impact on other outcome measures, income is impacted more adversely, by 2.5 percentage point. That is, income declines by more. Disasters appear to decrease incomes more (in percentage terms) than other impact measures such as consumption. While the coefficient on income is mostly negative and the coefficient on consumption is generally positive, they are not statistically different from zero (not statistically significant). It is important to

\(^8\) Longhi et al. (2010), in their meta-study on the impact of immigration on employment and wages, adopted the technique of weighted least square with weights based on the square root of the sample size.

\(^9\) Model 1 excludes the education control as it is dropped because of multicollinearity.

\(^10\) The fit (\(R^2\) and adjusted-\(R^2\)) of some of the models, especially in table 5, appears to be better for OLS compared to WLS estimations; see Willett and Singer (1988).
note, however, that the coefficients are at times quite large, even if they are imprecisely estimated. The largest coefficient we estimate point to an increase of consumption of 5.4 percentage points, _ceteris paribus_, relative to other variables of interest. The average decrease of an outcome variable was 2.0 percentage points (see Appendix Table 1).

This finding of a larger decrease in income, relative to consumption, in a post-disaster environment is the explicit conclusion arrived in several of the empirical case studies that are part of our sample. In general, this finding of decreased income that is larger than any impact on consumption is suggestive that, at least in part, households and individuals are able to realize (partial) consumption smoothing through the supply of *ex post* credit (formal or informal), relief support, tax relief, or other mitigation policies. More results about the types of income and consumption that are impacted are available in Table 5.

More intriguingly, the longer-term welfare measures that are sometime investigated—poverty indicators, wealth and labour market measures—do not yield unambiguous results in the benchmark regressions in Table 4. In the un-weighted regressions, poverty and wealth indicators are consistently negative, but these coefficients are not statistically significant, so we are reluctant to attach much importance to these estimates.

Two variables appear to be consistently estimated to be statistically significant. These are the controls for household heterogeneity, and for socio-economic characteristics. This finding endorses a theme that is found in several research projects. They typically point to differential access to recovery funding and/or credit as a major determinant of the post-disaster economic dynamics (e.g., Sawada and Shimizutani, 2008, at the microeconomic level, and Noy, 2009, at the aggregate macro level). We can conclude here that disaster impacts are not ‘an equal opportunity

11 See Carter et al, 2007; Tesliuc and Lindert, 2002; Anttila-Hughes and Hsiang, 2013; Giesbert and Schindler, 2012; Morris et al, 2002; Asiimwe and Mpuga, 2007; Mueller and Osgood, 2009b; and Baez and Santos, 2008.
menace’ and that disasters exact a differential impact on households with different characteristics belonging to different socio-economic strata. While we do not know the exact general pattern of differential impacts, prior evidence suggests that the poor are more adversely affected by disasters than groups from more privileged socio-economic backgrounds; especially when these affects are measured by poverty indicators or by health and labour outcomes (e.g. Noy and Patel, 2014).12

Finally, when comparing the different columns in table 4, we observe that the weighted models, and the ones that include controls for the community, time, region, demographic, socio-economic and geographical characteristics—models (1) and (3)—have a significantly higher fit (higher adjusted R2).

A separate research agenda, whose methodology did not allow us to include many of the projects within this stream in the corpus of papers we examine, focus on the role of social cohesion in the affected communities and the various types of social capital (bonding, linking, bridging) in determining post disaster recovery. Aldrich (2012) includes a thorough investigation of this literature and a summary of the evidence.13 For example, Aldrich and Sawada (2015) provide a recent investigation of the importance of social capital in determining mortality due to the tsunami wave generated by the Sendai earthquake of 2011. So, it might be the case that the variables we interpret as proxies for access to resources (credit or otherwise) are also correlated with the presence of social capital in the affected communities. Given our method, we are unable to differentiate between the two channels (nor do we think these are mutually exclusive interpretations of the evidence).

In table 5, we investigate the impact of disasters on the various outcome variables in more detail, now distinguishing between the different types of income and consumption. We observe,

12 We thank Stephane Hallegatte for suggesting this interpretation of the evidence.

13 Kage (2011), Klinenberg (2002) and Chamlee-Wright (2010) are all book-length investigations of the role of social capital in specific case-studies.
for example, that while initially we concluded that indeed there is an exceptionally adverse impact of disasters on income in general, this result appears to be driven by a negative impact on per capita or household income (income_2) rather than aggregate measures of total, urban, or rural income. We note that agricultural income (income_1) increases, relative to other measures, in the post-disaster period.

For consumption, the relatively milder impact of disasters on consumption focused on per capita consumption (consume_1) compared to aggregate measures of food and non-food consumption (consume_2). It is impossible to robustly compare the impacts of food and non-food consumption measures in further disaggregation due to limited number of observations.

Human capital (education) and health outcomes appear to be especially adversely affected by disasters. This is more explicit in the models (models 1 and 3) that include household and socio-economic controls (as in table 4, these are also the models with a higher adjusted R²). This decline in health and educational outcomes could potentially explain the observed and relatively milder impacts on consumption; though the methodology does not allow us to precisely identify that.14 The results on labour market indicators also portray the adverse (negative) impact of disasters particularly in models 1 and 3.15 However, the impacts on wages and labour force participation rates could not be differentiated due to less variation in the disaggregated data.

As before, we still observe negative and statistically significant coefficients for household heterogeneity and the socio-economic characteristics − again supporting the hypothesis of differential impact of disasters. In this case, the coefficient for household heterogeneity in Table 4 (column 1 in OLS regression) indicates that if the estimated model does not control for household

14 This result corresponds with the findings of Tiwari et al. (2013) on children’s weight and adult women’s outcomes of Maccini and Yang (2009).
15 This result corresponds with the findings of Mueller and Osgood (2009a), Mueller and Quisumbing (2011), Mahajan (2012) and Shah and Steinberg (2012).
heterogeneity in the impacted households, this will mean that the estimated effect of disasters on income will be higher by 5.12 percentage points. That is, the impact on income would have been larger than 2.5 percentage point if not controlled for household heterogeneity in our estimated model. We find no statistically consistently observable difference in estimation results for the poverty, wealth, and health, labour, and education indicators, and across the various methodological approaches adopted in this literature. Finally, the estimates regarding the disaster indicators mostly illustrates the comparison between hydro-meteorological events—primarily floods, rainfall and tropical cyclones—and geo-climatological ones. We find no robust evidence that different types of disasters have a differential impact.

5. ROBUSTNESS CHECKS

As robustness checks, in Table 6, we split our sample to samples focused on consumption and non-consumption outcome measures, and conducted meta-regression analysis with our baseline model and these samples separately. We do not observe any systematic difference on poverty-disaster impact outcomes. The controls for household heterogeneity and socio-economic characteristics appear to be statistically significant in most cases as was the case previously. However, the coefficients for household characteristics are found positive and significant in consumption outcomes. This demonstrates consumption smoothing through cutting non-food consumption (e.g. education and health) and spending more on food consumption in the aftermath of a natural disaster. The coefficients for household characteristics and socio-economic controls are negative and significant in non-consumption outcome measures suggesting their presence would further worsen the impact of disasters on this category.

16 This is due to having fewer observations in non-consumption outcome categories of interest.
6. **CONCLUSIONS**

Natural disasters affect households adversely, and they do so especially for people with focusing especially on the poor and on poverty measures. We find lower incomes and wealth that are less able to smooth their consumption. We conducted a meta-regression analysis of the existing literature on the impacts of disasters on households, much heterogeneity in these impacts, and this is most likely the most important insight gleaned from our analysis. There is no ‘one-size fits all’ description of the ways disasters have an impact on poverty, and the poor.

Yet, several general patterns that are observed in individual case studies also emerge. Incomes are clearly impacted adversely, with the impact observed specifically in per-capita measures (so it is not due to the mortality caused by the observed disaster). Consumption is also reduced, but to a lesser extent than incomes. Importantly, poor households appear to smooth their food consumption by reducing the consumption of non-food items; the most significant items in this category are spending on health and education. This suggests potentially long-term adverse consequences as consumption of health and education services is often better viewed as long-term investment.

There are limits to what we can conclude using our methodology, especially since this meta-analysis is covering a fairly large and diverse literature. These limits are especially obvious as we note that we observe no robust insight on the impact of disasters in the longer term. It might be the case that only very large disasters impose long-term consequences on the affected, but it may also be the case that our measurements are not focused enough to enable us to identify what these outcomes are. There is, after all, significant evidence that adverse but short-term shocks can imply long term adverse consequences, especially within the context of under-development and poverty traps (World Bank, 2014).
The literature on the impact of disasters—both intensive and extensive—on the welfare of households, is growing daily. A remaining important task is to identify the channels through which the shocks impose more costs than the immediate impacts, so that policy intervention may mitigate those, while also trying to prevent the initial losses. The observation that we consistently find; non-food spending decrease in the aftermath of natural disasters is especially of concern, as it implies the possibility that disasters prevent long-term investment and therefore trap households in cycles of poorer education and health outcomes and persistent poverty.

The general pattern of post-shock dynamics is established with the meta-regression analysis we conducted here, and the need to develop the policy instruments that can deal with these dangers is clearer. One potentially promising tool for transferring this risk, and protecting households from the indirect impact of disasters is the provision of insurance. The distribution of insurance products, especially within the context of urban poverty in low-income countries, is facing significant challenges. This appears to be one potential tool that needs to be examined further.
REFERENCES

Aldrich, D. P. (2012). *Building Resilience: Social Capital in Post-Disaster Recovery*. University of Chicago Press, Chicago.

Aldrich, D. P., & Sawada, Y. (2015). The physical and social determinants of mortality in the 3.11 tsunami. *Social Science & Medicine*, 124, 66-75.

Anttila-Hughes, J. K., & Hsiang, S. M. (2013). Destruction, Disinvestment, and Death: Economic and Human Losses Following Environmental Disaster. *Available at SSRN: http://ssrn.com/abstract=2220501 or http://dx.doi.org/10.2139/ssrn.2220501*.

Asiimwe, J. B., & Mpuga, P. (2007). *Implications of rainfall shocks for household income and consumption in Uganda*. AERC Research Paper 168, African Economic Research Consortium.

Auffret, P. (2003). *High Consumption Volatility: The Impact of Natural Disasters?*. World Bank Policy Research Working Paper 2962, The World Bank.

Baez, J. E., & Santos, I. V. (2007). Children’s vulnerability to weather shocks: A natural disaster as a natural experiment. *Social Science Research Network, New York*.

Baez, J. E., & Santos, I. V. (2008). On Shaky Ground: The Effects of Earthquakes on Household Income and Poverty. *Background paper of the ISDR/RBLAC-UNDP Project on Disaster Risk and Poverty in Latin America*.

Borenstein, M., Hedges, L. V., Higgins, J. P., & Rothstein, H. R. (2011). *Introduction to meta-analysis*. John Wiley & Sons.

Brander, L. M., Florax, R. J., & Vermaat, J. E. (2006). The empirics of wetland valuation: a comprehensive summary and a meta-analysis of the literature. *Environmental and Resource Economics*, 33(2), 223-250.

Card, D., & Alan, B. K. (1995). Time-Series Minimum-Wage Studies: A Meta-Analysis. *American Economic Review*, 85(2), 238-243.

Carter, M. R., Little, P. D., Mogues, T., & Negatu, W. (2007). Poverty traps and natural disasters in Ethiopia and Honduras. *World Development*, 35(5), 835-856.

Cavallo, E., & Noy, I. (2011). The economics of natural disasters - a survey. *International Review of Environmental and Resource Economics*, 5(1), 1-40.

Cavallo, E., Galiani, S., Noy, I. & Pantano, J. (2013). Catastrophic natural disasters and economic growth. *Review of Economics and Statistics* 95(5), 1549-1561.

Chamlee-Wright, E. (2010). *The Cultural and Political Economy of Recovery: Social Learning in a Post-disaster Environment*. Routledge, London and New York.
Cipollina, M., & Salvatici, L. (2010). Reciprocal Trade Agreements in Gravity Models: A Meta-Analysis. *Review of International Economics*, 18(1), 63-80.

Datt, G., & Hoogeveen, H. (2003). El Niño or El Peso? Crisis, poverty and income distribution in the Philippines. *World Development*, 31(7), 1103-1124.

Dercon, S. (2004). Growth and shocks: evidence from rural Ethiopia. *Journal of Development Economics*, 74(2), 309-329.

Disdier, A. C., & Head, K. (2008). The puzzling persistence of the distance effect on bilateral trade. *Review of Economics and statistics*, 90(1), 37-48.

ECLAC. (1991). *Manual For Estimating The Socio-Economic Effects Of Natural Disasters*. Economic Commission for Latin America and the Caribbean Programme Planning and Operations Division.

Foltz, J., Gars, J., Özdoğan, M., Simane, B., & Zaitchik, B. (2013). Weather and Welfare in Ethiopia. In 2013 Annual Meeting, August 4-6, 2013, Washington, DC (No. 150298). Agricultural and Applied Economics Association.

Giesbert, L., & Schindler, K. (2012). Assets, shocks, and poverty traps in rural Mozambique. *World Development*, 40(8), 1594-1609.

Glave, M., Fort, R., & Rosemberg, C. (2008). Disaster Risk and Poverty in Latin America: The Peruvian Case Study. *Background paper of the ISDR/RBLAC-UNDP Project on Disaster Risk and Poverty in Latin America*.

Goodman, J. E., Boyce, C. P., Sax, S. N., Beyer, L. A., & Prueitt, R. L. (2013). Rethinking Meta-analysis: Applications for Air Pollution Data and Beyond. In presentation at the Harvard Center for Risk Analysis workshop," *Methods for Research Synthesis: A Cross-Disciplinary Approach*"(October 3-4, 2013).

Hoddinott, John. (2006). Shocks and their consequences across and within households in Rural Zimbabwe. *Journal of Development Studies*, 42(2), 301-321.

Hoddinott, J., & Kinsey, B. (2001). Child growth in the time of drought. *Oxford Bulletin of Economics and Statistics*, 63(4), 409-436.

Hoddinott, J., & Kinsey, B. (2000). Adult health in the time of drought. *Food Consumption and Nutrition Division (FCND) Discussion Paper*, (79).

Hou, X. (2010). Can Drought Increase Total Calorie Availability? The Impact of Drought on Food Consumption and the Mitigating Effects of a Conditional Cash Transfer Program. *Economic Development and Cultural Change*, 58(4), 713-737.

IPCC (2012). *Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation*. A Special Report of Working Groups I and II of the Intergovernmental Panel on Climate Change.
Jakobsen, K. T. (2012). In the Eye of the Storm - The Welfare Impacts of a Hurricane. *World Development*, 40(12), 2578-2589.

Jensen, R. (2000). Agricultural volatility and investments in children. *The American Economic Review*, 90(2), 399-404.

Jha, R. (2006). *Vulnerability and Natural Disasters in Fiji, Papua New Guinea, Vanuatu and the Kyrgyz Republic*. Division of Economics, Research School of Pacific and Asian Studies, Australian National University.

Kage, R. (2011). *Civic Engagement in Postwar Japan: The Revival of a Defeated Society*. Cambridge University Press, New York and London.

Karim, A., & Noy, I. (2016). Poverty and Natural Disasters–A Qualitative Survey of the Empirical Literature. *The Singapore Economic Review*, 61(1), DOI: http://dx.doi.org/10.1142/S0217590816400014.

Khandker, S. R. (2007). Coping with flood: role of institutions in Bangladesh. *Agricultural Economics*, 36(2), 169-180.

Klinenberg, E. (2002). *Heat Wave: A Social Autopsy of Disaster in Chicago*. University of Chicago Press, Chicago.

Klomp J., & Valckx, K. (2014). Natural disasters and economic growth: A meta-analysis. *Global Environmental Change*, 26, 183-195.

Lal, P. N., Singh, R., & Holland, P. (2009). *Relationship between natural disasters and poverty: a Fiji case study*. SOPAC Miscellaneous Report 678, Global Assessment Report on Disaster Reduction, UNISDR.

Lazzaroni, S., & van Bergeijk, P. (2014). Natural disasters' impact, factors of resilience and development: A meta-analysis of the macroeconomic literature. *Ecological Economics*, 107, 333–346.

Longhi, S., Nijkamp, P., & Poot, J. (2010). Joint impacts of immigration on wages and employment: review and meta-analysis. *Journal of Geographical Systems*, 12(4), 355-387.

Lopez-Calva, L. F., & Ortiz-Juarez, E. (2009). Evidence and Policy Lessons on the Links between Disaster Risk and Poverty in Latin America. United Nations Development Program, Working Paper.

Maccini, S., & Yang, D. (2009). Under the weather: Health, schooling, and economic consequences of early-life rainfall. *The American Economic Review*, 1006-1026.

Mahajan, K. (2012). Rainfall shocks and gender wage gap: Agricultural labor in India. Presented in 8th Annual Conference on Economic Growth and Development, Dec 17-19, 2012, Indian Statistical Institute, New Delhi.
Mazzotta, M. J., Besedin, E., & Speers, A. E. (2014). A Meta-Analysis of Hedonic Studies to Assess the Property Value Effects of Low Impact Development. *Resources*, 3(1), 31-61.

Mogues, T. (2011). Shocks and asset dynamics in Ethiopia. *Economic Development and Cultural Change*, 60(1), 91-120.

Morris, S. S., Neidecker-Gonzales, O., Carletto, C., Munguía, M., Medina, J. M., & Wodon, Q. (2002). Hurricane Mitch and the livelihoods of the rural poor in Honduras. *World Development*, 30(1), 49-60.

Mueller, V., & Quisumbing, A. (2011). How resilient are labour markets to natural disasters? The case of the 1998 Bangladesh Flood. *Journal of Development Studies*, 47(12), 1954-1971.

Mueller, V. A., & Osgood, D. E. (2009a). Long-term impacts of droughts on labour markets in developing countries: evidence from Brazil. *The Journal of Development Studies*, 45(10), 1651-1662.

Mueller, V. A., & Osgood, D. E. (2009b). Long-term consequences of short-term precipitation shocks: evidence from Brazilian migrant households. *Agricultural Economics*, 40(5), 573-586.

Narayanan, K., & Sahu, S. K. (2011). Health, income inequality and climate related disasters at household level: reflections from an Orissa District. Munich Personal RePEc Archive.

Noy, I. (2009). The Macroeconomic Consequences of Natural Disasters. *Journal of Development Economics*, 88(2), 221-231.

Noy, I., & Patel, P. (2014). *After the Flood: Households After the 2011 Great Flood in Thailand*. Victoria University SEF Working Paper 11/2014.

Reardon, T., & Taylor, J. E. (1996), ‘Agroclimatic shock, income inequality, and poverty: Evidence from Burkina Faso’, *World Development*, 24(5), 901-914.

Rodriguez-Oreggia, E., De La Fuente, A., De La Torre, R., & Moreno, H. A. (2013). Natural disasters, human development and poverty at the municipal level in Mexico. *The Journal of Development Studies*, 49(3), 442-455.

Rose, A., & Dormady, N. (2011). A meta-analysis of the economic impacts of climate change policy in the United States. *Energy Journal*, 32(2), 143-165.

Sawada, Y., & Shimizutani, S. (2008). How Do People Cope with Natural Disasters? Evidence from the Great Hanshin-Awaji (Kobe) Earthquake in 1995. *Journal of Money, Credit and Banking*, 40(2-3), 463-488.

Shah, M., & Steinberg, B. M. (2012). Could droughts improve human capital? Evidence from India. *Unpublished manuscript*, University of California.
Silbert, Megan, and Maria del Pilar Useche (2012). *Repeated Natural Disasters and Poverty in Island Nations: A Decade of Evidence from Indonesia*. University of Florida, Department of Economics, PURC Working Paper.

Skidmore, M., & Toya, H. (2002). Do natural disasters promote long-run growth?. *Economic Inquiry, 40*(4), 664-687.

Skoufias, E., Katayama, R. S., & Essama-Nssah, B. (2012). Too little too late: welfare impacts of rainfall shocks in rural Indonesia. *Bulletin of Indonesian Economic Studies, 48*(3), 351-368.

Smith, V. K., & Huang, J. C. (1995). Can markets value air quality? A meta-analysis of hedonic property value models. *Journal of political economy, 209*-227.

Stanley, T. D. (2001). Wheat from chaff: Meta-analysis as quantitative literature review. *Journal of Economic Perspectives, 131*-150.

Stanley, T. D., Doucouliagos, H., Giles, M., Heckemeyer, J. H., Johnston, R. J., Laroche, P., ... & Rost, K. (2013). Meta-analysis of economics research reporting guidelines. *Journal of Economic Surveys, 27*(2), 390-394.

Tesliuc, E. D., & Lindert, K. (2002). Vulnerability: A quantitative and qualitative assessment. *Guatemala Poverty Assessment Program*.

Thomas, T., Christiaensen, L., Do, Q. T., & Trung, L. D. (2010). Natural disasters and household welfare: evidence from Vietnam. *World Bank Policy Research Working Paper Series 5491*, The World Bank.

Tiwari, S., Jacoby, H. G., & Skoufias, E. (2013). Monsoon babies: rainfall shocks and child nutrition in Nepal. *Policy Research Working Paper 6395*, The World Bank.

Willett, J. B. & Singer, J. D. (1988). Another Cautionary Note About R²: Its Use in Weighted Least-Squares Regression Analysis. *American Statistician, 42*(3), 236-238.

Wong, P. Y., & Brown, P. H. (2011). Natural Disasters and Vulnerability: Evidence from the 1997 Forest Fires in Indonesia. *The BE Journal of Economic Analysis & Policy, 11*(1), 66.

World Bank (2014). *World Development Report*. World Bank Publications, Washington, DC.

World Bank (2010). *Natural Hazards, Unnatural Disasters*. World Bank Publications, Washington, DC.
Paper Identification	Paper Source	No. of Observations
1	Rodriguez-Oreggia et al. (2013)	16
2	Mogues (2011)	2
3	Morris et al. (2002)	2
4	Datt and Hoogeveen (2003)	2
5	Carter et al (2007)	1
6	Hoddinott and Kinsey (2001)	4
7	Reardon and Taylor (1996)	1
8	Lal et al. (2009)	1
9	Jha (2006)	5
10	Wong and Brown (2011)	2
11	Silbert and Pilar Useche (2012)	3
12	Tiwari et al. (2013)	4
13	Maccini and Yang (2009)	6
14	Asilimwe and Mpuga (2007)	7
15	Dercon (2004)	3
16	Glave et al. (2008)	4
17	Tesliuc and Lindert (2002)	20
18	Anttila-Hughes and Hsiang (2013)	13
19	Jakobsen (2012)	2
20	Lopez-Calva and Juarez (2009)	3
21	Baez and Santos (2007)	7
22	Auffret (2003)	1
23	Skoufias et al. (2012)	6
24	Mueller and Osgood (2009b)	4
25	Mueller and Quisumbing (2011)	2
26	Giesbert and Schindler (2012)	1
27	Narayan and Sahu (2011)	1
28	Khandker (2007)	1
29	Mahajan (2012)	2
30	Foltz et al. (2013)	4
31	Shah and Steinberg (2012)	10
32	Thomas et al. (2010)	4
33	Hou (2010)	2
34	Hoddinott (2006)	4
35	Hoddinott and Kinsey (2000)	4
36	Jensen (2000)	4
37	Baez and Santos (2008)	2
38	Mueller and Osgood (2009a)	1

Source: Authors’ calculations.
Categories	Description of Variables
Income 1	Farm/Agricultural/Rural income
Non-Farm/Entrepreneurial/Urban income	
Income 2	Total Household Income
Per Capita Income	
Total Income Loss	
Consumption 1	Household Consumption/Expenditure
Per Capita Consumption/Expenditure	
Rural Consumption /rural per capita consumption	
Urban Consumption	
Consumption Growth/CECG	
Consumption 2	Food Consumption/Expenditure
Non-Food Consumption/Expenditure	
Poverty	Poverty Incidence
Food Poverty Incidence	
Asset Poverty Incidence	
Capacities Poverty Incidence	
Poverty Rate	
Human Development Index	
Wealth	Total livestock asset
Asset Index	
Agricultural Productive Asset Index	
Non-Productive Asset Index	
Asset Growth	
Asset Loss	
Health	Child Height (cm), cohort 1 - 12-24m
Child Height (cm), cohort 2 - 24-36m	
Child Height (cm), cohort 3 - 36-48m	
Child Height (cm), cohort 4 - 48-60m	
Child Weight (kilo), cohort 1 - 12-24m	
Child Weight (kilo), cohort 2 - 24-36m	
Child Mortality , CM (female)	
Malnourishment/malnutrition (by gender), MAL (rural HH)	
Adult (women) height (cm)	
Body Mass Index (men)	
Body Mass Index (women)/mother	
Health Expenditure	
Category	Data
-------------------------------	--
Education	Completed Grades of Schooling
	School Attendance, SA (rural HH)
	School Enrolment by gender
	Educational Expenditure
Labour	Agricultural/Farm/Rural wage
	Non-Farm/Urban wage
	Male wage
	Female wage
	Labour Force Participation-male
	Labour Force Participation-female
	Child Labour Force Participation/ CLFP (rural HH)
Household / Community	Household heterogeneity
Characteristics	Community/ village level heterogeneity and characteristics (e.g. access to roads, markets)
	Head of HH’s education, age, gender, marital status, employment status
	HH size
	HH composition (e.g. number of adult male/female members, no. of children)
	Control regarding HH level data limitation
	Ethnicity
Time variant characteristics	Time fixed effect
	Seasonal Fixed effect
	Survey year fixed effect
	Birth year-season, birth district-season and season specific linear time trends
Regional characteristics	Region /District/Province fixed effect
	Municipality fixed effect
Demographic	Life-cycle age of Households
	Population characteristics in general
	Labour force characteristics
Socio-Economic	HH ownership of business, land, animals
	Occupation (e.g. farm/non-farm)
	Asset (e.g. access to electricity, water, sanitation, healthcare, credit, banks, savings)
	Pre-shock HH income/asset value
	Post-shock inheritance
Geography / Nature	Natural and geographical characteristics
(e.g. measures of latitude, altitude, surface length, avg. temp. and rainfall (max/min))	
Precipitation rate	
Earth shaking distribution	
Disaster 1	**Flood / riverine flood**
(Hydro-Meteorological)	Rains / rainfall shocks
Positive rainfall including seasonal deviation	
Negative Rainfall including variability	
(e.g. delay of monsoon / post on-set low rainfall)	
Hurricane/Storms/Cyclone/Tornado/Typhoon	
Tsunami	
Disaster 2	**Frost**
(Geo-Climatological)	Drought / dry spell including time horizons
(1-5 years ago/6-10 years ago)	
Earthquake	
Forest Fire	
Volcanic eruptions	
Disaster 3	**Bunched natural shocks**
(Groups)	
Method	Linear regression
Logistic regression	
Multinomial /multivariate (logit) regression	
Time series non-linear regression	
Difference in difference regression	
Reduced-form linear regression	
/ reduced form log-linear regression	
Log linear regression	
Dynamic model using regression	
Multivariate Probit regression	
Recursive bivariate Probit model	
Foster-Greer-Thorbecke (FGT) poverty index	
Macroeconomic aggregates corresponding to ND	
Income source decomposition	
Case study analysis, group interviews	
Cluster analysis	

Source: Authors’ elaborations.
TABLE 3: FREQUENCY DISTRIBUTION OF OBSERVATIONS IN OUTCOME VARIABLES

Outcome Variables	No. of Observations	Mean	Std. Dev	Number of Negative Outcome	Min	Max
Income 1	11 (6.8)	5.53	6.96	1	-6.76	22.2
Income 2	10 (6.2)	-9.90	9.24	9	-32.23	.477
Consumption 1	39 (24.2)	0.83	6.66	16	-11.66	22
Consumption 2	13 (8.0)	-2.11	6.81	7	-15.04	10.3
(Non)Poverty B	20 (12.4)	-2.47	4.58	12	-16.1	1.28
Wealth	9 (5.6)	-4.81	6.06	6	-17.6	3
Health	29 (18.0)	-2.47	5.95	19	-22.98	7.1
Education	10 (6.2)	-1.40	14.06	6	-21.8	24.96
Labour	20 (12.4)	-5.64	7.58	15	-17.9	11

Source: Authors’ calculations.
Note: a The numbers in parenthesis shows the percentage of number of observations against the corresponding variable.
 b As we have changed the sign due to standardization, we use non(poverty) for ease of reading.
OUTCOME VARIABLES	VARIABLES	(1) OLS	(2) WLS	(3) OLS	(4) WLS	(5) OLS	(6) WLS	(7) OLS	(8) WLS
	INCOME	-2.503	-1.228	-2.753	-6.739	1.856	0.995	-1.818	-4.761
		(5.417)	(3.026)	(5.504)	(6.315)	(4.972)	(4.120)	(4.704)	(4.100)
	CONSUMPTION	2.365	3.663	-0.193	-3.149	6.081	5.451*	0.0956	-0.999
		(4.372)	(3.081)	(4.201)	(5.273)	(3.750)	(2.972)	(1.448)	(2.262)
	POVERTY	-1.677	1.167	-3.378	-4.768	2.651	3.955	-2.475	-2.241
		(5.158)	(4.855)	(4.638)	(6.080)	(4.188)	(4.555)	(1.651)	(1.479)
	WEALTH	-5.398	-3.270	-5.704	-4.949	-0.632	0.165	-4.808**	-2.942
		(5.180)	(5.122)	(4.743)	(5.680)	(4.152)	(3.885)	(2.145)	(2.053)
	HEALTH	0.711	2.248	-3.112	-4.951	5.251	4.409	-2.466**	-3.142***
		(4.329)	(3.968)	(4.404)	(5.360)	(3.837)	(4.411)	(1.116)	(0.907)
	LABOUR	-3.459	-1.610	-6.368	-7.356	0.725	0.589	-5.642***	-5.242***
		(4.811)	(4.565)	(4.784)	(5.735)	(5.171)	(5.152)	(1.468)	(1.527)
	EDUCATION	-1.998	-3.799	4.313	2.267	-1.401	-1.986		
		(6.751)	(5.754)	(6.116)	(4.791)	(5.620)	(4.045)		
CONTROL VARIABLES	HHCOMMUNITY	-5.115*	-4.392**			-4.936*	-3.899**		
		(2.998)	(2.062)			(2.732)	(1.767)		
	TIME	0.0902	2.371			0.409	3.024		
		(1.609)	(1.750)			(1.691)	(1.950)		
	REGION	2.839	1.732			3.612*	3.796		
		(2.261)	(2.661)			(2.034)	(2.486)		
	DEMOGRAPHIC	-2.668	-2.362			-2.731	-2.151		
		(1.893)	(1.496)			(1.960)	(1.560)		
SHOCK VARIABLES	SOCIOECONOMIC	GEOGNATURE							
-----------------	--------------	------------							
	-4.402***	-8.062***							
	(1.503)	(1.352)							
	-2.616	-4.012*							
	(1.900)	(2.180)							

METHOD	4.779	6.880
	(4.949)	(5.203)
DIS_1	0.658	-1.282
	(6.294)	(5.862)
DIS_2	1.467	-1.096
	(6.039)	(5.394)
DIS_3	-0.499	-0.997
	(5.997)	(4.464)

OBSERVATIONS	161	161
	161	161
	161	161
	161	161
	161	161

R-SQUARED	0.267	0.311
	0.128	0.162
	0.250	0.296
	0.116	0.159

ADJUSTED R-SQUARED	0.186	0.235
	0.0705	0.107
	0.184	0.234
	0.0760	0.121

F-TEST (OUTCOME VARIABLES)	2.06 (0.0818)	4.21 (0.0025)
	1.71 (0.1377)	0.73 (0.6463)
	2.64 (0.0256)	5.83 (0.0001)
	4.14 (0.0019)	7.60 (0.0000)

| F-TEST (CONTROL VARIABLES) | 4.07 (0.0031) | 11.79 (0.0000) |
| | 3.26 (0.0112) | 6.65 (0.0001) |

| F-TEST (SHOCK VARIABLES) | 1.47 (0.2312) | 1.73 (0.1651) |
| | 0.87 (0.4666) | 0.14 (0.9337) |

Source: Authors’ calculations.

Notes: a Robust standard errors (clustered by studies) in parentheses *** p<0.01, ** p<0.05, * p<0.1.

b The numbers in parentheses under each set of F-test result shows P-value (Prob>F).
VARIABLES	OLS	WLS	OLS	WLS	OLS	WLS	OLS	WLS
INCOME_1	4.714	3.481	10.25***	5.060	8.519**	5.040	5.531***	2.129
	(4.451)	(3.018)	(2.753)	(5.012)	(3.215)	(3.621)	(1.643)	(4.460)
INCOME_2	-8.548	-3.797	-5.087	-6.388**	-5.170	-2.945	-9.901***	-9.365***
	(5.833)	(3.637)	(4.415)	(2.875)	(4.463)	(4.383)	(3.623)	(2.014)
CONSUME_1	3.075	4.732	6.829**	3.475	5.779	4.996	0.829	0.193
	(4.462)	(3.435)	(2.563)	(3.078)	(3.525)	(3.169)	(1.615)	(1.809)
CONSUME_2	1.449	0.390	2.713	2.905	5.163	2.341	-2.106	-5.848
	(4.897)	(3.280)	(2.802)	(4.681)	(4.111)	(4.771)	(1.800)	(4.170)
POVERTY	-1.933	1.011	2.633	0.573	1.424	2.808	-2.475	-2.241
	(5.003)	(4.830)	(2.536)	(2.790)	(3.531)	(4.432)	(1.662)	(1.489)
WEALTH	-4.909	-2.945	-1.061	-0.313	-4.808**	-2.942		
	(5.185)	(4.978)	(3.811)	(3.684)	(2.159)	(2.066)		
HEALTH	0.706	1.833	2.427	-0.173	4.592	3.074	-2.466**	-3.142***
	(4.371)	(4.104)	(2.303)	(2.113)	(3.446)	(4.447)	(1.123)	(0.913)
LABOUR	-3.626	-1.749	-0.777	-2.314	-0.0277	-0.598	-5.642***	-5.524***
	(4.851)	(4.648)	(2.702)	(2.543)	(4.796)	(5.163)	(1.477)	(1.537)
EDUCATION	3.508	0.982	3.723	1.299	-1.401	-1.986		
	(5.042)	(3.871)	(5.919)	(4.994)	(5.657)	(4.071)		
HHCOMMUNITY	-5.377*	-4.182*	-5.447**	-3.466*				
	(2.788)	(2.189)	(2.572)	(1.996)				
TIME	1.290	2.712			1.402	3.619*		
	(1.523)	(1.898)	(1.571)	(2.022)				
REGION	2.169	0.0695	2.792	2.733				
	(2.166)	(2.731)	(1.820)	(2.328)				
Source: Authors' calculations.								
Notes: a Robust standard errors (clustered by studies) in parentheses *** p<0.01, ** p<0.05, * p<0.1.								

b The numbers in parentheses under each set of F-test result shows P-value (Prob>F) at 95 percent confidence interval. |
Table 6: Meta-Regression results with restricted observations

VARIABLES	Consumption			
	OLS	WLS	OLS	WLS
CONSUME_1	-29.85**	-40.16***		
	(11.85)	(10.51)		
CONSUME_2	-34.14**	-48.18***		
	(12.25)	(11.20)		
INCOME_1			5.71	
			(4.18)	
INCOME_2			-11.33**	0.95
			(4.48)	(4.15)
POVERTY	-5.27	9.31**		
	(5.27)	(4.43)		
WEALTH	-8.93**			
	(3.62)			
HEALTH	-2.34	7.13*		
	(3.20)	(3.91)		
LABOUR	-6.91	4.39		
	(4.37)	(4.53)		
EDUCATION	-3.32	5.21		
	(4.89)	(5.78)		
HHCOMMUNITY	23.14***	28.98***	-7.05**	-5.44***
	(6.63)	(6.78)	(2.75)	(1.64)
TIME	0.69	-1.05	0.53	0.44
	(3.70)	(4.24)	(2.82)	(2.56)
REGION	-4.47	-7.77*	3.35	2.36
	(3.17)	(4.03)	(2.83)	(3.26)
DEMOGRAPHIC	-11.89**	-15.27**	-2.60	-3.36**
	(4.84)	(5.36)	(2.00)	(1.56)
SOCIOECONOMIC	-4.42	-4.48	-3.96**	-8.63***
	(3.66)	(4.11)	(1.73)	(1.49)
GEOGNATURE	0.94	1.11	-3.75	-5.35**
	(2.91)	(4.10)	(2.88)	(1.99)
METHOD	15.08*	22.66***	7.35	13.09***
	(7.67)	(7.47)	(5.32)	(3.66)
DIS_1	-0.71	-0.39	2.96	-8.22**
	(1.29)	(1.46)	(5.10)	(3.94)
DIS_2	2.18			-10.10**
	(4.48)			(4.15)
DIS_3	5.08	9.56**	-3.32	-23.45***
	(5.50)	(4.46)	(6.61)	(6.05)
OBSERVATIONS	52	52	109	109
R-SQUARED	0.32	0.36	0.44	0.43
ADJUSTED R-SQUARED	0.14	0.19	0.34	0.33

Source: Authors’ calculations.

*Notes: Robust standard errors (clustered by studies) in parentheses *** p<0.01, ** p<0.05, * p<0.1.*
Appendix Table 1: Descriptive Statistics of Variables Defined

VARIABLES	OBSERVATIONS	MEAN	MEDIAN	STD. DEV.	MIN	MAX
Y	161	-2.01	-0.75	7.89	-32.23	24.96
N	161	28076.38	3823	69540.15	94	446780
INCOME	161	0.13	0	0.34	0	1
INCOME_1	161	0.07	0	0.25	0	1
INCOME_2	161	0.06	0	0.24	0	1
CONSUMPTION	161	0.32	0	0.47	0	1
CONSUME_1	161	0.24	0	0.43	0	1
CONSUME_2	161	0.08	0	0.27	0	1
POVERTY	161	0.12	0	0.33	0	1
WEALTH	161	0.06	0	0.23	0	1
HEALTH	161	0.18	0	0.39	0	1
LABOUR	161	0.12	0	0.33	0	1
EDUCATION	161	0.06	0	0.24	0	1
HH/COMMUNITY	161	0.80	1	0.40	0	1
TIME	161	0.67	1	0.47	0	1
REGION	161	0.76	1	0.43	0	1
DEMOGRAPHIC	161	0.37	0	0.48	0	1
SOCIOECONOMIC	161	0.62	1	0.49	0	1
GEOG/NATURE	161	0.54	1	0.50	0	1
METHOD	161	0.96	1	0.19	0	1
DISASTER	161	1.46	1	0.66	1	3
DIS_1	161	0.63	1	0.48	0	1
DIS_2	161	0.27	0	0.45	0	1
DIS_3	161	0.09	0	0.29	0	1

Source: Authors' calculations.
APPENDIX TABLE 2: META-REGRESSION RESULTS A: THE DIRECT AND INDIRECT IMPACTS

OUTCOME VARIABLES	VARIABLES	(1) OLS	(2) WLS	(3) OLS	(4) WLS	(1) OLS	(2) WLS	(3) OLS	(4) WLS
	INCOME	-2.503	2.042	-2.753	-1.790	1.856	0.995	-1.818	-4.761
	(5.417)	(4.051)	(5.504)	(4.522)	(4.972)	(4.120)	(4.704)	(4.100)	
	CONSUMPTION	2.365	6.934*	-0.193	1.799	6.081	5.451*	0.0956	-0.999
	(4.372)	(4.046)	(4.201)	(3.510)	(3.750)	(2.972)	(1.448)	(2.262)	
	POVERTY	-1.677	4.437	-3.378	0.181	2.651	3.955	-2.475	-2.241
	(5.158)	(4.835)	(4.638)	(2.958)	(4.188)	(4.555)	(1.651)	(1.479)	
	WEALTH	-5.398	-5.704	-0.632	0.165	-4.808**	-2.942		
	(5.180)	(4.743)	(4.152)	(3.885)	(2.145)	(2.053)			
	HEALTH	0.711	5.518	-3.112	-0.00269	5.251	4.409	-2.466**	-3.142***
	(4.329)	(3.899)	(4.404)	(2.098)	(3.837)	(4.411)	(1.116)	(0.907)	
	LABOUR	-3.459	1.660	-6.368	-2.407	0.725	0.589	-5.642***	-5.242***
	(4.811)	(4.570)	(4.784)	(2.618)	(5.171)	(5.152)	(1.468)	(1.527)	
	EDUCATION	3.270	-1.998	1.150	4.313	2.267	-1.401	-1.986	
	(5.122)	(6.751)	(3.786)	(6.116)	(4.791)	(5.620)	(4.045)		
CONTROL VARIABLES	HHCOMMUNITY	-5.115*	-4.392**			-4.936*	-3.899**		
	(2.998)	(2.062)			(2.732)	(1.767)			
	TIME	0.0902	2.371			0.409	3.024		
	(1.609)	(1.750)			(1.691)	(1.950)			
	REGION	2.839	1.732			3.612*	3.796		
	(2.261)	(2.661)			(2.034)	(2.486)			
	DEMOGRAPHIC	-2.668	-2.362			-2.731	-2.151		
	(1.893)	(1.496)			(1.960)	(1.560)			
SHOCK VARIABLES	SOCIOECONOMIC	GEOGNATURE							
------------------	---------------	------------							
	-4.402***	-8.062***							
	(1.503)	(1.352)							
	-2.616	-4.012*							
	(1.900)	(2.180)							

SHOCK VARIABLES	METHOD	DIS_1	DIS_2	DIS_3
	4.779	6.880	1.752	2.533
	(4.949)	(5.203)	(4.387)	(5.057)
	0.658	-4.553	-1.283	-5.686
	(6.294)	(5.427)	(1.575)	(5.506)
	1.467	-4.366	2.662	-4.949
	(6.039)	(5.466)	(5.680)	
	-0.499	-4.267	-2.712	-3.460
	(5.997)	(3.528)	(4.577)	(3.529)

OBSERVATIONS	161	161	161	161	161	161	161	161	161
R²	0.267	0.311	0.128	0.162	0.250	0.296	0.116	0.159	
ADJUSTED R²	0.186	0.235	0.0705	0.107	0.184	0.234	0.0760	0.121	
F-TEST (OUTCOME VARIABLES)	2.06 (0.0818)	4.21 (0.0025)	1.71 (0.1377)	0.82 (0.5648)	2.64 (0.0256)	5.83 (0.0001)	4.14 (0.0019)	7.60 (0.0000)	
F-TEST (CONTROL VARIABLES)	4.07 (0.0031)	11.79 (0.0000)	3.26 (0.0112)	6.65 (0.0001)					
F-TEST (SHOCK VARIABLES)	1.47 (0.2312)	1.85 (0.1392)	0.87 (0.4666)	0.61 (0.6552)					

Source: Authors’ calculations.
Notes: a Robust standard errors (clustered by studies) in parentheses *** p<0.01, ** p<0.05, * p<0.1.
b The numbers in parentheses under each set of F-test result shows P-value (Prob>F).
VARIABLES	(1)	(2)	(3)	(4)				
	OLS	WLS	OLS	WLS	OLS	WLS	OLS	WLS
OUTCOME VARIABLES								
INCOME_1	4.714	1.570	10.25***	-0.497	8.519**	5.040	5.531***	2.129
	(4.451)	(5.193)	(2.753)	(6.271)	(3.215)	(3.621)	(1.643)	(4.460)
INCOME_2	-8.548	-5.708	-5.087	-11.95**	-5.170	-2.945	-9.901***	-9.365***
	(5.833)	(5.150)	(4.415)	(5.278)	(4.463)	(4.383)	(3.623)	(2.014)
CONSUME_1	3.075	2.821	6.829**	-2.082	5.779	4.996	0.829	0.193
	(4.462)	(4.817)	(2.563)	(5.005)	(3.525)	(3.169)	(1.615)	(1.809)
CONSUME_2	1.449	-1.521	2.713	-8.462	5.163	2.341	-2.106	-5.848
	(4.897)	(5.671)	(2.802)	(6.024)	(4.111)	(4.771)	(1.800)	(1.170)
POVERTY	-1.933	-0.900	2.633	-4.984	1.424	2.808	-2.475	-2.241
	(5.003)	(5.660)	(2.536)	(5.931)	(3.531)	(4.432)	(1.662)	(1.489)
WEALTH	-4.909	-4.856	-5.557	-1.061	-0.313	4.808**	2.942	
	(5.185)	(5.248)	(5.523)	(3.811)	(3.684)	(2.159)	(2.066)	
HEALTH	0.706	-0.0778	2.427	-5.730	4.592	3.074	-2.466**	-3.142***
	(4.371)	(5.052)	(2.303)	(5.136)	(3.446)	(4.447)	(1.123)	(0.913)
LABOUR	-3.626	-3.660	-0.777	-7.871	-0.0277	-0.598	-5.642***	-5.242***
	(4.851)	(5.395)	(2.702)	(5.486)	(4.796)	(5.163)	(1.477)	(1.537)
EDUCATION	-1.911	3.508	4.575	3.723	1.299	-1.401	-1.986	
	(5.651)	(5.042)	(5.729)	(5.919)	(4.994)	(5.657)	(4.071)	
CONTROL VARIABLES								
HHCOMMUNITY	-5.377*	-4.182*	-5.447**	-3.466*				
	(2.788)	(2.189)	(2.572)	(1.996)				
TIME	1.290	2.712			1.402	3.619*		
	(1.523)	(1.898)			(1.571)	(2.022)		
REGION	2.169	0.0695	2.792	2.733				
	(2.166)	(2.731)			(1.820)	(2.328)		
Source: Authors’ calculations.								
Notes: * Robust standard errors (clustered by studies) in parentheses *** p<0.01, ** p<0.05, * p<0.1.								
Notes: ** The numbers in parentheses under each set of F-test result shows P-value (Prob>F) at 95 percent confidence interval.								
APPENDIX: STANDARDIZATION OF DEPENDENT VARIABLES

Following the data collection from the 38 papers included in our sample, we standardized and converted the estimates of different categories of variables taken from each study to a common metric to make them usable for a comparative meta-analysis. We calculated the percentage changes of the major indicators under representation. The literature sometimes uses other methods to standardize the dependent variable; for example, by using t-statistics if the question that is being answered relates to the precision of estimates (e.g., Lazzaroni and van Bergeijk, 2014). Given the diverse nature of our dependent variables, we chose to standardize by calculating the percentage change in the examined indicator. We considered other methods that rely on indicator-specific second moments as less appropriate in this case.

In cases where seasonal impacts of disasters (e.g. rainfall) had been reported (e.g., Asiimwe and Mpuga, 2007), index values are used (e.g. Rodriguez-Oreggia et al., 2013), or anthropometric values are being recovered (Hoddinott and Kinsey, 2000 and 2001), we used the following measure as used in Rodriguez-Oreggia et al. (2013) to extract the respective observation: $PC = CV/MV * 100$; where $PC =$ percentage Change, $MV =$ Mean Value and $CV =$ Coefficient Value. For more discussion on the various potential measures of the dependent variable in meta-analysis, see Borenstein et al. (2009, chapter 4). Other recent papers that follow a similar standardization procedure in a meta-regression context are Rose and Dormady (2011) and Mazzotta et al. (2014). In studies where impacts of particular type of disaster (e.g. typhoon) had been documented for various disaster strengths (e.g., Anttila-Hughes and Hsiang, 2013), we calculated the cumulative effect over the investigated horizon of a disaster of average strength. The standardization also includes a sign change (+/-) with a positive sign implying a positive (‘favourable’ in a normative sense) impact on poverty and welfare outcomes due to natural disaster whereas a negative sign suggesting the opposite.