DNA Barcoding for mangrove identification

R. Taufan Harisam1,2*, Asrul Sahri Siregar1, Norman Arie Prayogo1, Purnama Sukardi1, Nguyen The Hung3

1Fishery and Marine Faculty, Universitas Jenderal Soedirman, Jenderal Soedirman University, Purwokerto 53122, Indonesia
2Research and Community Service, Jenderal Soedirman University, Indonesia
3Thai Nguyen University of Agriculture and Forestry, Viet Nam

*Corresponding author: taufan.ltd@gmail.com

Abstract. Mangroves are distributed in the transition zone between sea and land, mostly in tropical and subtropical areas. They provide important ecosystem services and are therefore economically valuable. Mangrove species identification using traditional taxonomical methods is often burdened with taxonomic controversies. DNA barcoding provides a useful tool for species identification and phylogenetic reconstruction. \textit{rbcl} and \textit{matK} are short and unique DNA sequences, and also provide good identification for magrove. This critical review highlights the development of the use of molecular applications that is DNA Barcoding. We focus on observing the development of the use of DNA barcoding in the world, especially on mangroves. Our observations are limited to the use of \textit{rbcl} and \textit{matK} markers in some mangrove species in the world. In conjugation with newer and faster techniques such as high-throughput sequencing, \textit{rbcl} and \textit{matK} marker can serve as an effective modern tool in mangrove identification.

Keywords: \textit{rbcl}, \textit{matK}, DNA barcoding, mangrove

1. Introduction

Mangrove forests, in a broad sense, are a community of woody plants that grow in intertidal zones in the tropics and subtropics, which play an important role in maintaining the balance of coastal ecosystem zones (Dan et al, 2016). Mangrove forests are highly productive ecosystems with the same primary production level as tropical forests [1; 25].

Species identification method living things have evolved from morphological identification to on molecular identification based on short pieces of DNA called “DNA barcode” [11]. DNA Barcoding is a very short standardized DNA sequence that can be used for identification to species level [8]. The concept of DNA barcoding has become one of the most important and significant scientific visions in the past decade. As an effective tool for species level identification, the concept of DNA barcoding has developed rapidly and gained popularity throughout the world. In 2009, Professor Paul Hebert and collaborators on duty at the University of Guelph, Canada, initially the use of DNA Barcoding. Around 2005, The concept of DNA barcoding was introduced into botanical research [3; 5]. Further research is required to compare DNA barcode fragments to test their efficacy for species identification [14; 11].

Identification of mangroves based on morphological characteristics, such as leaf shape, flower shape, branching stems and root shape is very susceptible to errors [21; 19]. There are many mangrove species morphologically that look almost the same, and the distribution area is in almost the
same location. It is difficult to identify at the level of mangrove species that have similar morphological forms using external morphological forms of plants, such as Sonneratia alba, Sonneratia caseolaris (L.), Sonneratia Hainanesis, Sonneratia paracaseolaris or Bruguiera sexangula (Lour.) Poir and Bruguiera sexangula (Lour.), and fact it is difficult to understand the evolutionary relationship between mangrove species and traditional classification methods. The development of the world of biotechnology, especially in the molecular field is very rapid, one of which is DNA Barcoding which provides species-level identification results with a high level of accuracy at a relatively affordable price [27].

Technically, the use of DNA barcoding for mangrove identification is a comparison of short DNA sequences compared to sequences that already exist at Gene Bank. Some Gene which is commonly used to identify mangroves are Gene rbcl and matK. In this article, we highlight the development of DNA barcoding, especially the rbcl and matK markers for mangrove identification in the world.

2. The rbcl and matk markers: A marker for mangrove identification

Mangroves are unique plants and grow at tidal locations. There are 84 species of 24 genera and 16 families of mangrove plants in the world, including 70 species of 16 genera and 11 families of true plants and 14 species of 8 genera and 5 families of semi-mangrove plants [16]. Conventional mangrove identification often causes errors due to damage to plant parts and differences in perspective. One of the effective molecular markers is DNA barcode. In the last decade, DNA barcoding method has become very important, especially for mangrove identification. Many researchers have begun using DNA barcodes to explore mangroves in several countries. The Used of DNA Barcode markers for reasons of high efficiency and accuracy.

DNA Barcoding is designed to provide accurate identification at the species level through molecular markers based on short standard gene regions [7;18]. In 2009, the CBOL (Consortium for the Barcode of Life) Plant Working Group initially identified and recommended the use of the chloroplast-derived DNA barcode fragments rbcl and matK. The core barcode matK locates at the intron region in chloroplast lysine tRNA (trnK) gene, and is ~1,550 bp in length, encoding a mature enzyme that involves in type II intron splicing during RNA transcripts [18]. matK is a single-copy and one of the fastest evolving genes in protein encoding regions of the chloroplast genome [10]. Rbcl has supported it as a barcode fragment because of its universality, easy amplification and comparability [12]. However, the use of rbcl rarely finds variations at the species level, only at the species level above [13; 20;7;17]. The use of DNA barcoding in mangrove research has been carried out to determine the genetic characteristics of mangroves [18;9]. Further studies on the DNA barcoding especially on rbcl and matK marker for the mangrove have mainly focused on DNA barcoding analysis and phylogenetic relation of several mangroves in China [8]. Loss of evolutionary unique species in the mangrove ecosystem has been reported and DNA barcoding provided phylogenetic information for developing unified mangrove management plan worldwide [5]. According to Suman [24], in their study rbcl and matK markers provided initial assessment data that would be useful for broader applications of DNA Barcoding in the ecological studies of Mangrove Plants.

Serial number	Topics	References
1.	Mangroves in Guangdong Province, China	[8]
2.	Mangrove plant species of Visakhapatnam Coast, Andhra, India	[24]
3.	Genetic mutation in mangrove Acanthus ilifolicius Coastal Cilacap, Central Java, Indonesia.	[25]
4.	Mangroves from Goa, West Coast, India	[18]
5.	Phylogenetic, Sequence Analysis and Structural Studies of Maturase K Proteins from Mangroves	[26]
6.	Phylogenetic relationships of the Rhizophoraceae in China	[22]
3. Closing and future DNA barcoding research trends

DNA Barcode research for the mangrove field will continue. Molecular mangrove conservation is a challenge in the world of biological conservation. The influence of anthropogenic activity on mangrove ecosystems is increasing every year. There are can be effect for the extent of mangroves to narrow in the future. Rapid and precise identification of mangroves will continue because researchers need them for other fields such as forestry, coastal management, and exploration of wetland areas. Molecular research on mangrove associations still needs to be done. Important discoveries regarding DNA barcoding in sub-tropical and tropical countries are very important to be developed. The challenge of managing mangroves is not easy, especially molecular-based mangrove management to ensure its sustainability.

4. Conclution

Research publications on DNA barcoding in the mangrove field are still limited. rbcL and matK are effective markers for mangrove identification, but have not been proven to look for genetic variations at the species level. rbcL and matK markers provide preliminary assessment data that will be useful for broader applications of DNA barcodes in the ecological studies of Mangrove Plants.

References

[1] Alongi, D. M. 2014. Carbon Cycling and Storage in Mangrove Forests. Annu. Rev. Mar. Sci. 6, 195–219.
[2] CBOL Plant Working Group. A DNA barcode for land plants. Proc. Natl. Acad. Sci. USA 2009, 106, 12794–12797.
[3] Chase, M.W.; Salamin, N.; Wilkinson, M.; Dunwell, J.M.; Kesanakurthi, R.P.; Haider, N.; Savolainen, V. Land plants and DNA barcodes: Short-term and long-term goals. Philos. Trans. R. Soc. Lond. B. Biol. Sci. 2005, 360, 1889–1895.
[4] Dan, X.Q.; Liao, B.W.; Wu, Z.B.; Wu, H.J.; Bao, D.M. 2016. Resources, conservation status and main threats of mangrove wetlands in China. Ecol. Environ. Sci. 2016, 25, 1237–1243. (In Chinese).
[5] Daru B.H., Yessoufou K., Mankga L.T., Davies T.J. 2013. A global trend towards the loss of evolutionarily unique species in mangrove ecosystems. PLoS ONE. 2013;8(6):e66686.
[6] Fazekas A.J, Burgess KS, Kesanakurti PR, Graham SW, Newmaster SG, Husband BC, Percy DM, Hajibabaei M, Barrett SCH. 2008. Multiple multilocus DNA barcodes from the plastid genome discriminate plant species equally well. PLoS ONE 3:e2802.
[7] Fazekas, A. J. 2008. Multiple multilocus DNA barcodes from the plastid genome discriminate plant species equally well. PLoS ONE 3, e2802 (2008).
[8] Feng Wu, Mei Li, Baowen Liao, Xin Shi and Yong Xu. 2019. DNA Barcoding Analysis and Phylogenetic Relation of Mangroves in Guangdong Province, China. Forests 2019, 10, 56; doi:10.3390/f10010056
[9] Harisam, R.T., Haryono, F.E.D., Marhaeni, B., Prayogo, N.A., Soebidya, P.H.T. 2018. Genetic mutation in mangrove Acanthus ilifolicius base on DNA Barcode (rbcL and matK gen) in the different environment change in coastal Cilacap, Central Java, Indonesia. E3S Web of Conferences 47, 05005.
[10] Hebert P.D., Cywinska A., Ball S.L. 2003. Biological identifications through DNA barcodes. Proc. Biol. Sci., R. Soc. ;270 (1512): 313–321.
[11] Hebert, P.D.; Cywinska, A.; Ball, S.L.; de Waard, J.R. 2003. Biological identifications through DNA barcodes. Proc. Biol. Sci. 2003, 270, 313–321.
[12] Hollingsworth, P.M. Refining the DNA barcode for land plants. 2011. Proc. Natl. Acad. Sci. USA 2011, 108, 19451–19452.
[13] Kress, W. J. & Erickson, D. L. A two-locus global DNA barcode for land plants: the coding \textit{rbcL} gene complements the non-coding \textit{trnH-psbA} spacer region. 2007. PLoS ONE 2, e508.
[14] Kress, W.J.; Erickson, D.L.; Swenson, N.G.; Thompson, J.; Uriarte, M.; Zimmerman, J.K. Advances in the use of DNA barcodes to build a community phylogeny for tropical trees in a Puerto Rican forest dynamics plot. PLoS ONE 2010, 5, e15409.
[15] Kress, W.J.; Wurdack, K.J.; Zimmer, E.A.; Weigt, L.A.; Janzen, D.H. Use of DNA barcodes to identify flowering plants. Proc. Natl. Acad. Sci. USA 2005, 102, 8369–8374.
[16] Liao, B.W.; Zhang, Q.M. Area, distribution and species composition of mangroves in China. 2014. Wetl. Sci. 2014, 12, 435–440. (In Chinese).
[17] Newmaster, S. G., Fazekas, A. J. & Ragupathy, S. DNA barcoding in land Plants: evaluation of \textit{rbcL} in a multigene tiered approach. Can. J. Bot. 84, 335–341 (2006).
[18] Sadde A.A, Rahul Arvind Jamdade, Kundan Kumar. 2016. Assessment of mangroves from Goa, west coast India using DNA barcode. SpringerPlus 5:1554. DOI 10.1186/s40064-016-3191-4.
[19] Sahu S.K, Kathiresan K. 2012. Molecular Markers: an intricate tool for new insights in mangrove genetics. Int. J. Adv. Biotechnol. Res 3:847e863.
[20] Sass, C., Little, D. P., Stevenson, D. W. & Specht, C. D. DNA barcoding in the Cycadales: testing the potential of proposed barcoding markers for species identification of cycads. PLoS ONE 2, e1154 (2007).
[21] Sheue C.R, Liu HY, Tsai CC, Rashid SMA, Yong JWH, Yang YP. 2009. On the morphology and molecular basis of segregation of \textit{Ceriops zippeliana} and \textit{C. decandra} (Rhizophoraceae) from Asia. Blumea 54: 220–227.
[22] Shi, Suhua., , Yelin Huang. 2002. Phylogenetic relationships of the Rhizophoraceae in China based on sequences of the chloroplast gene matK and the internal transcribed spacer regions of nuclear ribosomal DNA and combined data set. Biochemical Systematics and Ecology, 30(4), 309-319.
[23] Subrata Trivedi, Abdulhadi A. Aloufi, Abid A. Ansari, and Sankar K. Ghosh. 2016. Role of DNA barcoding in marine biodiversity assessment and conservation: An update. Saudi J Biol Sci. 2016 Mar; 23(2): 161–171. doi: 10.1016/j.sjbs.2015.01.001.
[24] Suman P, Raj TSD, Vani PR and Sreeramulu SH. 2018. DNA barcoding and biological assessment on a few mangrove plant species of Visakhapatnam Coast, Andhra Pradesh, India. Int J Pharm Sci Res 2018; 9(2): 795-18. doi: 10.13040/IJPSR.0975-8232.9(2).795-18.
[25] Taufan Harism, Sugiyono, Rudhi Pribadi, Asrul Sari Siregar, Sri Marnani, Dewi Wisudyanti Budi Hastuti, Norman Arie Prayogo. 2018. Acute effects of crude oil for three common mangrove seedling in segara anakan nature reserve (sanr) cileacap, Indonesia . E3S Web of Conferences 47, 04005 (2018).
[26] Thakar B., Sambhaji., J. Dhanavade, Maruti., D. Sonawane and Kailas. 2017. Phylogenetic, Sequence Analysis and Structural Studies of Maturase K Proteins from Mangroves. Current Chemical Biology, Volume 10, Number 2.
[27] Xu, S., He Z., Zbang, Z., Guo, Z., Guo, W., Lyu, H., Li, L., Yang, M., Du, Z., Huang, Y., Zhou, R., Zhong, C., Boufford, D.E., Lerdau, M., Wu, C.i., Duke, N.C., Shi, S. 2017. The origin, diversification and adaptation of a major mangrove clade (Rhizophoreae) revealed by whole-genome sequencing. National Science Review. https://doi.org/10.1093/nsr/nwx065.
[28] Yong Kang, Zhiyan Deng, Runguo Zang and Wenxing Long. 2017. DNA barcoding analysis and phylogenetic relationships of tree species in tropical cloud forests. Scientific Reports volume 7, Article number: 12564.