Associations between a neurophysiological marker of central cholinergic activity and cognitive functions in young and older adults

Marielle Young-Bernier1,2, Yael Kamil1, François Tremblay1,2,3 and Patrick S R Davidson1,2,4*

Abstract

Background: The deterioration of the central cholinergic system in aging is hypothesized to underlie declines in several cognitive domains, including memory and executive functions. However, there is surprisingly little direct evidence regarding acetylcholine’s specific role(s) in normal human cognitive aging.

Methods: We used short-latency afferent inhibition (SAI) with transcranial magnetic stimulation (TMS) as a putative marker of cholinergic activity in vivo in young (n = 24) and older adults (n = 31).

Results: We found a significant age difference in SAI, concordant with other evidence of cholinergic decline in normal aging. We also found clear age differences on several of the memory and one of the executive function measures. Individual differences in SAI levels predicted memory but not executive functions.

Conclusion: Individual differences in SAI levels were better predictors of memory than executive functions. We discuss cases in which the relations between SAI and cognition might be even stronger, and refer to other age-related biological changes that may interact with cholinergic activity in cognitive aging.

Keywords: Acetylcholine, Aging, Cortical inhibition, Executive function, Memory, Transcranial magnetic stimulation

* Correspondence: patrick.davidson@uottawa.ca
1 School of Psychology, University of Ottawa, 136 Jean Jacques Lussier Private, Ottawa, Ontario K1N 6N5, Canada
2 Élisabeth Bruyère Research Institute, University of Ottawa, Ottawa, Ontario, Canada
Full list of author information is available at the end of the article

© 2012 Young-Bernier et al.; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
on the role of the cholinergic system in cognition. However, the extent to which age-related changes in cholinergic neuromodulation contribute to cognitive decline in normal human aging remains unclear. There are at least three reasons for this: First, making inferences from animal and computational models to humans has sometimes proven surprisingly difficult (e.g., [17,18]). Second, much of what we infer about the role of ACh in cognitive aging comes from studies in which Alzheimer’s patients are treated with cholinesterase inhibitors, including donepezil, galantamine, and rivastigmine (e.g., [19]). Unfortunately, these patients can be difficult to test and experience other confounding factors including significant structural and functional brain changes. Third, manipulation of ACh via agonist and antagonist drugs (e.g., scopolamine) has produced a vast amount of data, but strictly speaking this line of research tells us more about acute effects than it does about the long term decline in cholinergic activity seen in normal aging. There is thus a need to further examine the in vivo contribution of age-related alterations in central cholinergic function to declines in human cognition.

Recent advances in the field of non invasive brain stimulation have yielded new opportunities to examine the neurophysiological correlates of aging using markers of cortical excitability that can be linked with relative confidence to specific neurotransmitter systems [20]. One such marker involves pairing afferent nerve stimulation with transcranial magnetic stimulation (TMS) of the motor cortex to modulate motor responses evoked in contralateral hand muscles [21]. When applied at short intervals (e.g., 18–20 milliseconds [ms]) before TMS pulses, afferent nerve stimulation typically leads to a period of inhibition of the motor evoked potentials (MEPs). This short-interval afferent activation (SAI) is mediated at the cortical level through cholinergic-dependent GABA_A receptor activation [22]. The implication of cholinergic action in mediating SAI is supported by in vivo observations of its reduction or even abolition by administration of a selective muscarinic cholinergic receptor blocker (scopolamine) in healthy participants [23]. Further, SAI is lower than expected in Alzheimer’s patients but restored by cholinesterase inhibitors [22]. SAI is also reduced in other disorders characterized by cholinergic dysfunction, including Lewy body dementia [24], multiple sclerosis [25], and Wernicke–Korsakoff syndrome [26], but it is normal in frontotemporal dementia, a non-cholinergically mediated form of dementia [27]. Together, these observations provide strong evidence that SAI is a cholinergic-dependent marker of motor intra-cortical excitability.

Given the clear decline in cholinergic modulation with age [28,29], one would predict that SAI would be altered in healthy older adults. Yet, very few studies have examined this issue. Oliviero et al. [30] compared SAI levels in healthy young and older adults and found no age differences. More recently, Degardin et al. [31] performed a similar study and reached a similar conclusion. However, as we and others [32] have argued previously, the use of varying test intensities to obtain a constant MEP size across participants might have contributed to masking any age effects in the two studies above. In line with this, we recently found a large and selective decrease in SAI in healthy seniors when we used a constant TMS test intensity approach [33]. Further, we found that age-related variations in SAI explained a substantial proportion of the variance in timed motor tasks assessing processing speed.

This study constitutes an extension of our previous findings; data were derived from the same sample of participants as already described [33]. In the present study, we examined possible relationships between SAI, as a putative marker of cholinergic-dependent cortical inhibition, and cognition in young and older healthy adults. Because mean differences between young and older adult groups are often small, especially relative to the extensive variability that can be seen among healthy older adults (e.g., some perform much more poorly than young people, whereas others are indistinguishable from the young [34]), we capitalized on the individual-differences approach used by Glisky and colleagues [35,36]. This approach allows the characterization of each participant’s long-term memory and executive functions using neuropsychological testing to construct aggregate scores reflecting performance across several tasks in each domain (for details, see Method). We hypothesized that age-related differences in SAI levels would be associated with age-related differences in memory and executive functions. For memory, several investigators have emphasized ACh’s putative role in binding information in memory [15], which we assessed using a canonical measure of paired associate learning (Verbal Paired Associates from the Wechsler Memory Scale-III; WMS-III [37]). We also examined face recognition from the WMS-III because recent studies have also described cholinergic modulation of face-memory-related activity in the fusiform gyrus [38]. Given the emphasis in the recent literature on the crucial role of ACh in modulating executive functions [19,39,40], we also expected correlations between SAI and our aggregate executive function measure.

Method

Participants

The present data were derived from the same group of participants previously described [33], with minor differences in the current sample (i.e. one young adult was excluded from the present study because of incomplete cognitive data). We analyzed data from 24 young adults (age range = 18 to 30 years; M = 22.67, SD = 3.49; 13 females) and 31 community-dwelling older adults (age range = 65 to 82 years; M = 70.29,
The two age groups were similar in education (young: $M = 16.08$ years, $SD = 1.89$; older adults: $M = 16.19$, $SD = 2.83$). All participants were fluent English and/or French speakers with normal or corrected-to-normal vision (one participant was blind in one eye, but had no difficulty with the visual tasks) and hearing, and were screened for depression (two participants were taking anti-depressants but their depression screening scores, TMS, and cognitive data were normal), dementia, psychiatric or neurological disorders, drug or alcohol abuse, and counter-indications to TMS. Participants’ medications were not altered for testing, with many older adults taking drugs related to vascular health (e.g., hypertension, statins cholesterol lowering drugs). None of the participants was taking neuroactive drugs such as neuroleptics, however one young adult and one older adult were taking antidepressants (as mentioned above, their TMS data were normal). Vascular risk factors were assessed for each participant and consisted of a cumulative score of 6 factors: body mass index with obesity defined as being greater than 30 kg/m2, current smoking status, lack of physical activity, type-2 diabetes, history of hypertension, and history of cardiac symptoms [41,42]. Vascular risk factors for participants ranged from 0 to 3 ($M = 0.44$) with the maximum possible score being 6, suggesting generally good vascular health. All participants also completed the Montreal Cognitive Assessment (MoCA; [43]). Although some older adults (5/31) scored slightly below the recommended cutoff (i.e., >26), they were deemed eligible for the study based on the interview and their good performance on the other tasks, and on recent evidence that this cut-off may be too high [44]. The results of five additional participants were discarded because they did not meet inclusion criteria and thirteen more (including 6 older adults) because of incomplete testing (10 could not be reached for a second testing session resulting in missing TMS-SAI data and 3 decided to stop before completion). The Research Ethics Boards of the University of Ottawa and Bruyère Continuing Care approved the study procedure (two composite factors with two subfactors each). The second factor score, reflecting executive function, is made up of the number of categories achieved on the computerized Wisconsin Card Sorting Test [49], the total number of words produced to the cues F, A, and S on a phonemic fluency test [50], and the Backward Digit Span and Mental Control measures from the WMS-III. In previous studies involving only older adults, the executive function factor had also included Mental Arithmetic from the Wechsler Adult Intelligence Scale—Revised (WAIS-R; [51]), but [35] reported that this measure did not load significantly on the executive function factor.

Analysis of MEP data

Mean individual values for conditioned and unconditioned MEP responses were measured off-line by averaging the amplitude (peak-to-peak) and latency of each trial. SAI level was determined in each participant in terms of percent of unconditioned MEP responses (i.e.%) $\frac{\text{MEP}_{\text{Conditioned}} - \text{MEP}_{\text{Unconditioned}}}{\text{MEP}_{\text{Unconditioned}}}$.

Memory and executive functions

Participants underwent neuropsychological testing in a quiet, well-lit room, in their language of choice. We created two composite z scores for each individual, based on previous factor analyses [35,36]. The first factor score reflects long-term memory and is composed of five scores: the Logical Memory I, Faces recognition I, and Verbal Paired Associates I subscores of the WMS-III, Visual Paired Associates II from the Wechsler Memory Scale—Revised (WMS-R; [47]), and Long Delay Cued Recall from the California Verbal Learning Test—II (CVLT-II; [48]). The second factor score, reflecting executive function, is made up of the number of categories achieved on the computerized Wisconsin Card Sorting Test [49], the total number of words produced to the cues F, A, and S on a phonemic fluency test [50], and the Backward Digit Span and Mental Control measures from the WMS-III. In previous studies involving only older adults, the executive function factor had also included Mental Arithmetic from the Wechsler Adult Intelligence Scale—Revised (WAIS-R; [51]), but [35] reported that this measure did not load significantly on the executive function factor.
executive function factor in their young adults. Therefore, we omitted this measure from the executive function z score in both groups to allow for direct age group comparisons.

Statistical methods
Independent t-tests, with adjusted p values for multiple comparisons (i.e. \(p = 0.0125 \)), were used to examine age group differences on baseline measures of excitability. Mixed analysis of variance (ANOVA) and independent t-tests were used to examine differences between age groups. We adjusted \(p \) values to correct for multiple comparisons in the between-group t-tests on the cognitive tasks (\(p = 0.05/8 \), that is, \(p = 0.00625 \)). We used Pearson’s correlations to examine associations among SAI levels and memory and executive function scores. All statistical tests were performed using the PASW software version 18.0 for Windows (GraphPad Software, San Diego California USA) or GraphPad Prism version 5.00 for Windows (GraphPad Software, San Diego California USA, www.graphpad.com).

Results
TMS and SAI
The TMS procedure was well tolerated and no participants experienced adverse effects. A thorough analysis of the physiological data has been reported previously [33] (see Table 1 for baseline TMS measurements). Briefly, young adults generally exhibited marked MEP suppression in response to afferent conditioning leading to high levels of SAI (18.13 ± 15.74). In contrast, seniors exhibited more variable afferent-induced inhibition with a substantial proportion of subjects (14/31) showing either low or absent inhibition (MEPcond ≥ 50% suppression). Accordingly, SAI levels estimated in seniors (51.36 ± 34.62) were significantly lower than in young adults (\(p < 0.001 \)).

Age differences in cognition
The young adults performed significantly better on several of the memory and executive function tasks than the older adults did (ANOVA: main effect of Age: \(F_{1,51} = 6.86, p = 0.01 \), significant Age X Task interaction: \(F_{7, 357} = 3.22, p = 0.003 \)). At the adjusted \(p \) value, post-hoc t tests showed that the young significantly outperformed the older adults on memory for Verbal Paired Associates I (\(t_{53} = 4.03, p = 0.0002 \)) and Faces I (\(t_{53} = 3.89, p = 0.0003 \)), and number of categories on the Wisconsin Card Sorting Test (\(t_{52} = 4.10, p = 0.0001 \)). Although the two age groups could not be compared on the Visual Paired Associates II measure using parametric methods because of ceiling effects in the young adults (that is, all the young adults scored 6 out of 6, whereas the older adults ranged from 4 to 6), a Chi-Squared analysis suggested a significant advantage for the young adults (\(\chi^2 = 9.82, p = 0.007 \)). The factor scores, by definition, reflected the individual test scores: The young had significantly higher scores than the older adults on the memory factor z score (\(t_{53} = 4.53, p < 0.0001 \)), but the groups were not significantly different from one another on the executive function factor z score (\(t_{53} = 1.65, p = 0.11 \)). The mean levels of performance on the individual cognitive tasks and the factor scores are shown in Table 2.

Correlations between SAI and cognition
When we performed an analysis across all individuals [52,53]; but see [54,55], SAI significantly predicted the memory factor score (\(r = -0.31, p = 0.02 \)), whereas it did not predict the executive function z score (\(r = -0.09, p = 0.51 \); see Figure 1). The correlation between SAI and memory was modest in size (\(r^2 = 10\% \)), and when we performed an analysis across all individuals [52,53]; but see [54,55], SAI significantly predicted the memory factor score (\(r = -0.31, p = 0.02 \)), whereas it did not predict the executive function z score (\(r = -0.09, p = 0.51 \); see Figure 1). The correlation between SAI and memory was modest in size (\(r^2 = 10\% \)), and when

Table 1 Hand dominance and baseline measures of excitability in the two age groups (mean ± SD)

	Young (n = 24)	Senior (n = 31)
Hand Dominance (L/R)	2/22	1/30
Resting MT (% output)	66.00 ± 11.55	72.55 ± 12.71
Test MT (% output)	79.17 ± 13.82	86.97 ± 15.15
Resting MEP amplitude (μV)	926.61 ± 774.34	427.22 ± 540.59*
Resting MEP latency (ms)	22.27 ± 1.88	24.03 ± 1.87*
Intensity MNS1	64.17 ± 1.80	72.87 ± 1.72

Key: MEP, motor evoked potential; MNS, median nerve stimulation; MT, motor threshold.
1 Conditioning intensity for median nerve stimulation (MNS).
*Significant difference at adjusted p-values (\(p = 0.0125 \)) for multiple comparisons (see [33] for a more elaborate analysis of these age differences).

Table 2 Cognitive performance in the two age groups (mean ± SD)

	Young Adults (n = 24)	Older Adults (n = 31)
Logical Memory I	30.46 ± 4.04	29.00 ± 6.77
Visual Paired Associates II	6.00 ± 0.00	5.50 ± 0.77 ***
Verbal Paired Associates I	26.63 ± 5.59	19.00 ± 7.84 ***
Faces I	38.71 ± 4.31	34.67 ± 3.34 ***
CVLT-II Long-Delay Cued Recall	13.67 ± 1.81	12.39 ± 2.70
Verbal Fluency (FAS) Test	40.25 ± 9.81	41.00 ± 12.20
Backward Digit Span	7.67 ± 2.67	7.42 ± 2.80
Wisconsin Card Sorting Test	4.25 ± 0.85	2.83 ± 1.51 ***
Mental Control	27.13 ± 4.74	26.39 ± 4.10
Memory factor (z score)	0.39 ± 0.39	-0.31 ± 0.68 ***
Executive function factor (z score)	0.16 ± 0.50	-0.12 ± 0.71

1 California Verbal Learning Test-II.
Significant difference at adjusted p-values (\(p = 0.006 \)) for multiple comparisons *** \(p < 0.001 \).
examined the correlation separately within each age group it failed to obtain significance. Although in the young group alone a significant correlation between SAI levels and the executive function z score emerged in our initial analysis ($r = -0.56$, $p = 0.004$), visual inspection suggested that this was driven by two data points; indeed, if we deleted these two cases the correlation was rendered non-significant.

Based on the hypotheses outlined at the end of the introduction, we also examined associations between SAI and specific individual subtest scores. First, we found a significant correlation between SAI and Verbal Paired Associates I ($r = -0.35$, $p = 0.008$), a canonical measure of memory binding, although this correlation became non-significant when we examined each age group on its own ($r \leq |0.21|$). Note that although Visual Paired Associates II is also a canonical measure of this ability, it was not explored further because of the ceiling-level scores in data, especially for the young adults. Second, we found a significant correlation between SAI and memory for faces (Faces I; $r = -0.31$, $p = 0.02$), although, again, it disappeared when analyses were performed separately within each age group ($r \leq |0.17|$).

We also performed all analyses while excluding the five older adults who had MoCA scores lower than the recommended cutoff. This did not yield any changes in the results.

Discussion

Deficits in central cholinergic activity are thought to underlie age-related cognitive decline, but evidence regarding the specific role(s) of ACh in human cognitive aging is still scarce. We investigated the relation of SAI, a putative neurophysiological marker of cholinergic activity, to memory and executive functions in aging.

Age differences in SAI

Consistent with reports of impaired cortical inhibition with age [56], as a group, our senior participants exhibited reduced intra-cortical inhibition, as reflected in the overall decrease in afferent-induced inhibition. The fact that SAI has been linked with cholinergic activity in the motor cortex in pharmacological and patient studies (e.g., [22,23,57]; but see below) provides further converging in vivo evidence of a decline in central cholinergic function in normal human aging (e.g., [58] for reviews, see [28,59]).

Associations between SAI and cognition

The young adults outperformed their older counterparts on several measures of memory, consistent with numerous previous reports [1-4]. Although memory was clearly impaired in the older adults, executive function was not. This finding is concordant with a similar study to ours [35], which noted that others too have found this pattern. For example, Lamar and Resnick [60] reported no age differences in verbal fluency, mental control, and digit span, which were included in the present executive function factor score.

SAI predicted individual performance in memory, although, contrary to expectations, it did not predict executive functioning. These results are consistent with some studies [61], but not with others [19,39,40] and may stem from the poor vascular health of the patients included in those studies. (This issue will be discussed further below.)

The association between SAI and memory is also consistent with Duzel et al. [52], who recently reported that a magnetic resonance imaging estimate of the structural integrity of the basal forebrain (the major source of cholinergic input into the cortex and hippocampus) predicted verbal memory in a mixed sample of young and older adults.

Figure 1 Scatter plots showing the associations between SAI levels and composite z scores of (A) memory and (B) executive functions. SAI levels correspond to the modulation of motor evoked potentials (MEP) induced by afferent conditioning at an inter-stimulus interval (ISI) of 20 ms (% Conditioned MEP/Unconditioned MEP).
In the present study, SAI levels explained approximately 10% of the variance in memory. Although this is comparable in size to the explanatory power of Duzel et al.’s [52] measure of basal forebrain integrity, we suspect that the relation between SAI and cognition might be even stronger under different circumstances. First, pharmacological studies indicate that ACh must decline past a certain threshold before changes in cognition are detectable [62-66]. Although we studied a representative group of older adults, only a small number of them exhibited relatively low SAI levels. Given that cholinergic function declines with age, one future possibility would be to recruit older seniors (i.e., over 80 years of age) with the expectation that stronger correlations with cognition would emerge. Also, one important putative cause of cholinergic decline in aging is microvascular damage to the ascending cholinergic pathways from the midbrain to the cortex [67,68]. Our older participants were in relatively good vascular health. Were we to focus on recruiting people in poorer vascular health, we might find stronger correlations between cholinergic function and cognition [39,40].

Second, it is possible that cholinergic modulation supports only relatively specific aspects of memory and executive functions and that these processes were not optimally assayed or taxed by the current neuropsychological battery. A general assertion is that for ACh to be significantly implicated in cognitive tasks, these tasks must be difficult and require effortful attention [11,59]. The tasks in the current study all fit this description. However, based on techniques that can target specifically the cholinergic system in animals (e.g., the immunotoxin 192 IgG-saporin), it has recently been argued that ACh is particularly important for certain memory functions, including encoding more so than retrieval, and remembering relational and contextual information in particular [15,69]. Consistent with the strong involvement of ACh in attention, studies have also suggested that the cholinergic system is more important for strategic and effortful processing of information to be remembered rather than when it is automatic [70]. Regarding executive functions, cholinergic activity may be especially important for task-switching, handling competition among possible responses, and suppressing unwanted responses [11]. Although we did measure several of these putative processes (e.g., memory binding with the visual and verbal paired associates subtests; switching and suppression with the Wisconsin Card Sorting Test), we are currently developing a new battery to probe some of these memory and executive sub-processes more specifically. Combined with our previous observation of an association between SAI and complex motor tasks (i.e. Grooved Pegboard Test, complex reaction times, go/no-go) but not with simple reaction times in aging [33], this study suggests that SAI may be a better predictor of memory than executive functions, but an even stronger indicator of motor performance and information processing speed.

Third, recent microdialysis studies have described phasic cholinergic release during attention-related tasks in rats [71,72]. These studies suggest that indices of relatively tonic ACh levels (including SAI, positron emission tomography, and magnetic resonance spectroscopy) in the brain will need to be supplemented with methods that have higher temporal resolution when they become available in humans. Finally, like most studies, this one was cross-sectional. Complementary longitudinal studies of within-subject changes must be completed to yield a more complete understanding of the relationship between the onset and course of cholinergic dysfunction and cognitive decline in normal and pathological aging (e.g., [73] cf. [74,75]).

Strong evidence that SAI is a reliable marker of cholinergic function comes from pharmacological and patient studies [22,23,57], but gamma-aminobutyric acid (GABA), dopamine, and serotonin may also contribute to the signal (e.g., [76,77]). For example, as we have noted previously [33], our older adults showed greater inter-individual variability in SAI than did our young adults, with approximately half the seniors exhibiting either poor or absent intra-cortical inhibition. These older adults were indistinguishable from the other seniors in terms of age and vascular health, and there was no evidence that these individuals were in a preclinical stage of dementia. One possibility, however, is that these individual differences in intra-cortical inhibition are related to variability in changes in motor cortex GABA\textsubscript{A} receptors in aging [78,79]. Future pharmacological and neuroimaging work must verify that SAI is strongly, although perhaps not exclusively, reflective of activity in the cholinergic system.

Conclusion

We found that individual differences in episodic memory could be explained in part by SAI, a putative marker of central cholinergic functioning. However, cholinergic decline is only one of many brain changes that occur in aging [80-82]. The goal of future research on the biological bases of cognitive aging should be to combine multiple methods to increase explanatory power, for example by combining multiple neuroimaging methods (e.g., [83,84]) with genetic information (e.g., [52,85]). The short afferent inhibition marker of cholinergic integrity reported in this study is a minimally-invasive, relatively inexpensive, significant predictor of cognition. Combining it with neuroimaging, genetic, and other cognitive neuroscience methods should prove useful in future studies.
Endnote

*Three older adults each did not complete one cognitive measure (Faces I, Wisconsin Card Sorting Test and Visual Paired Associates II); their factor z scores were calculated by computing the mean of the remaining tests.

Abbreviations

AcCh: Acetylcholine; GABA: Gamma-aminobutyric acid; CBT-II: California Verbal Learning Test - II; ISI: Inter-stimulus interval; MEP: Motor evoked potentials; MoCA: Montreal Cognitive Assessment; RMT: Resting motor threshold; SAI: Short-latency afferent inhibition; TMS: Transcranial magnetic stimulation; WAIS-R: Wechsler Adult Intelligence Scale – Revised; WMS-III: Wechsler Memory Scale – III; WMS-R: Wechsler Memory Scale – Revised.

Competing interests
We declare no actual or potential conflicts of interest.

Acknowledgements

We thank our participants for their time and patience during testing, and Hélène Drouin, Sabah Master, and Travis Davidson for help with data collection and analysis. This work will serve as a partial fulfillment for a doctoral thesis in clinical psychology by MYB. This work was supported by student awards from the Canadian Institutes of Health Research to MYB and from the Natural Sciences and Engineering Research Council of Canada to YK, a Research Development Grant from the Faculty of Social Sciences of the University of Ottawa to FT and PD, and a Discovery grant from the Natural Sciences and Engineering Research Council of Canada to PD. These funding sources played no role in the design or administration of the study, the analysis or interpretation of the results, or the decision to submit for publication.

Author details

1School of Psychology, University of Ottawa, 136 Jean Jacques Lussier Private, Ottawa, Ontario K1N 6N5, Canada. 2Élisabeth Bruyère Research Institute, University of Ottawa, Ottawa, Ontario, Canada. 3School of Rehabilitation Sciences, University of Ottawa, Ottawa, Ontario, Canada. 4Heart and Stroke Foundation Centre for Stroke Recovery, University of Ottawa, Ottawa, Ontario, Canada.

Authors’ contributions
MYB participated in the design of the study, carried out the cognitive and behavioural testing, performed the statistical analyses, and drafted the manuscript. YK participated in the cognitive testing. FT conceived of the study, participated in its design, and helped with the behavioural testing. PD conceived of the study, participated in its design, helped with the statistical analyses and drafted the manuscript. All authors read and approved the final manuscript.

Received: 13 October 2011 Accepted: 26 April 2012
Published: 26 April 2012

References

1. Davidson PSR, Winocur G. Aging and Cognition. In Encyclopedia of Behavioral Neuroscience, Volume 1. Edited by Koob GF, Le Moal M, Thompson RF. Oxford: Academic Press; 2010: 20–26.
2. Park DC, Reuter-Lorenz P. The adaptive brain: aging and neurocognitive scaffolding. Annu Rev Psychol 2009, 60:173–196.
3. Drag LJ, Bellakulas LA. Contemporary review 2009: cognitive aging. J Gen Psychiatry 2010, 63:75–93.
4. Gisky SL. Changes in cognitive function in human aging. In Brain aging: Models, methods and mechanisms. 2011:01:05 edition. Edited by Riddle DR, Boca Raton, FL: CRC Press; 2007: 4–20.
5. Salthouse TA. Neuroanatomical substrates of age-related cognitive decline. Psychol Bull 2011, 137:73–84.
6. Bakman L, Lindberger U, Li SC, Nyberg L. Linking cognitive aging to alterations in dopamine neurotransmitter functioning: recent data and future avenues. Neurosci Biobehav Rev 2010, 34:670–677.
7. Floresco SB, Jentsch JD. Pharmacological enhancement of memory and executive functioning in laboratory animals. Neuropharmacology 2011, 62:227–250.
8. Piccotto MR, Meenakshi A, Jentsch JD. Acetylcholine. In Neuropsychopharmacology: The Fifth Generation of Progress. Edited by Davis KL, Charney D, Coyle JT, Nemeroff C. Philadelphia, PA: Lippincott; Williams & Wilkins; 2002: 3–14.
9. Hasselmo ME, Sarter M. Modes and models of forebrain cholinergic neurotransmission of cognition. Neuropsychopharmacology 2011, 36:52–73.
10. Davidson KC, Marrocco RT. Local infusion of scopolamine into intraparietal cortex slows covert orienting in rhesus monkeys. J Neurophysiol 2000, 83:1536–1549.
11. Sarter M, Hasselmo ME, Bruno JP, Givens B. Unraveling the attentional functions of cortical cholinergic inputs: interactions between signal-driven and cognitive modulation of signal detection. Brain Res Rev 2005, 48:98–111.
12. Yu AJ, Dayan P: Acetylcholine in cortical inference. Neuron 2002, 15:719–730.
13. Yu AJ, Dayan P: Uncertainty, neuromodulation, and attention. Neuron 2005, 45:681–692.
14. Hasselmo ME, Giocomo LM. Cholinergic modulation of cortical function. J Mol Neurosci 2006, 30:133–135.
15. Botly LC, De Rosa E: A cross-species investigation of acetylcholine, attention, and feature binding. Psychol Sci 2008, 19:1185–1193.
16. Botly LC, De Rosa E: Cholinergic influences on feature binding. Behav Neurosci 2007, 121:264–276.
17. Arnsten AF, Robbins TW: Neurochemical modulation of prefrontal cortical function in humans and animals. In Principles of Frontal Lobe Function. Edited by Stuss DT, Knight RT. New York, NY: Oxford University Press; 2002: 51–84.
18. Grauf S, Schonlemitz P, Sabri O, Heged U. Cholinergic receptor subtypes and their role in cognition, emotion, and vigilance control: an overview of preclinical and clinical findings. Psychopharmacol 2011, 215:205–229.
19. Behl P, Lantot KL, Steiner DL, Guimont I, Black SE. Cholinesterase inhibitors slow decline in executive functions, rather than memory, in Alzheimer’s disease: a 1-year observational study in the Sunnybrook dementia cohort. Curr Alzheimer Res 2008, 3:147–156.
20. Reis HJ, Guatimosim C, Paquet M, Santos M, Ribeiro FM, Kummer A, Schenatto G, Salgado JV, Vieira LB, Teixeira AL, Palotos A: Neuro-transmitters in the central nervous system & their implication in learning and memory processes. Curr Med Chem 2009, 16:796–840.
21. Chen R, Cios D, Curra A, Di Lazzaro V, Lefaucheur JP, Magistris MR, Mills K, Rosler KM, Trigg WI, Ugawa Y, Ziemann U. The clinical diagnostic utility of transcranial magnetic stimulation: report of an IFCN committee. Clin Neurophysiol 2008, 119:504–532.
22. Di Lazzaro V, Oliviero A, Tonali PA, Marra C, Daniele A, Procleve P, Saturno E, Pilato F, Masullo C, Rothwell JC, Noninvasive in vivo assessment of cholinergic cortical circuits in AD using transcranial magnetic stimulation. Neurology 2003, 59:392–397.
23. Di Lazzaro V, Oliviero A, Procleve P, Pernisi MA, Di Giovanni S, Gainotti G, Tonali PA. Transcranial magnetic stimulation: report of an IFCN committee. Clin Neurophysiol 2002, 133:277–292.
24. Di Lazzaro V, Procleve P, Daniele A, Procleve P, Pernisi MA, Di Giovanni S, Gainotti G, Tonali PA. Transcranial magnetic stimulation: report of an IFCN committee. Clin Neurophysiol 2002, 133:277–292.
25. Cucurachi L, Immovilli P, Granella F, Pavesi G, Cattaneo L. Cholinergic modulation of cortical function. J Clin Neurosci 2005, 12:681–692.
26. Ghassemi M, McFadyen P, Schugens M, Maier A, Behzadi A, Delfabbro PH, Zijderveld RH, Bear MF, Jeroen J. Short-latency afferent inhibition predicts verbal memory performance in patients with multiple sclerosis. J Neurosci 2008, 28:1949–1956.
27. Nardone R, Bergmann J, De Blasi P, Kouniak B, Kraus I, Calei F, Tizzon F, Ladurner G, Golazewski S. Cholinergic dysfunction and amnesia in patients with Wernicke-Korsakoff syndrome: a transcranial magnetic stimulation study. J Neural Transm 2010, 117:385–391.
28. Di Lazzaro V, Oliviero A, Procleve P, Pernisi MA, Di Giovanni S, Gainotti G, Tonali PA, Muscarinic receptor blockade has differential effects on the excitability of intracortical circuits in the human motor cortex. Exp Brain Res 2000, 135:455–461.
29. Di Lazzaro V, Procleve P, Daniele A, Procleve P, Marra C, Daniele A, Ranieri F, Quarranta D, Gainotti G, Tonali PA. Functional evaluation of cerebral cortex in dementia with Lewy bodies. Neuroimage 2007, 37:422–429.
30. Cucurachi L, Immovilli P, Granella F, Pavesi G, Cattaneo L. Short-latency afferent inhibition predicts verbal memory performance in patients with multiple sclerosis. J Neurosci 2008, 28:1949–1956.
31. Ghassemi M, McFadyen P, Schugens M, Maier A, Behzadi A, Delfabbro PH, Zijderveld RH, Bear MF, Jeroen J. Short-latency afferent inhibition predicts verbal memory performance in patients with multiple sclerosis. J Neurosci 2008, 28:1949–1956.
32. Nardone R, Bergmann J, De Blasi P, Kouniak B, Kraus I, Calei F, Tizzon F, Ladurner G, Golazewski S. Cholinergic dysfunction and amnesia in patients with Wernicke-Korsakoff syndrome: a transcranial magnetic stimulation study. J Neural Transm 2010, 117:385–391.
33. Di Lazzaro V, Procleve P, Daniele A, Procleve P, Marra C, Daniele A, Ranieri F, Gainotti G, Tonali PA. In vivo cholinergic circuit evaluation in frontotemporal and Alzheimer dementia. Neurology 2006, 66:1111–1113.
34. Bartus RT. On neurodegenerative diseases, models, and treatment strategies: lessons learned and lessons forgotten: a generation following the cholinergic hypothesis. Exp Neurol 2000, 163:495–529.
35. Gallagher M, Colombo P. Aging: The cholinergic hypothesis of cognitive decline. Curr Opin Neurol 1995, 8:161–168.
30. Oliviero A, Proifice P, Tonali PA, Pilato F, Saturno E, Dileone M, Ranieri F, Di Lazzaro V: Effects of aging on motor cortex excitability. Neurosci Res 2006, 55:74–77.

31. Diegardi A, Devos D, Cassim F, Bourriez JL, Defebvre L, Derambure P, Devanne H: Deficit of sensorimotor integration in normal aging. Neurosci Lett 2011, 498:208–212.

32. Garry MJ, Thomson RH: The effect of test TMS intensity on short-interval intracortical inhibition in different excitability states. Exp Brain Res 2009, 193:267–274.

33. Young-Bernier M, Davidson PS, Tremblay F: Paired-pulse afferent modulation of TMS responses reveals a selective decrease in short latency afferent inhibition with age. Neurobiol Aging 2012, 33:e1–e5.

34. Gunstad J, Paul RH, Brickman AM, Cohen RA, Arts M, Roe D, Lawrence JJ, Gordon E: Patterns of cognitive performance in middle-aged and older adults: a cluster analytic examination. J Geriatr Psychiatry Neurol 2006, 19:59–64.

35. Glisky EL, Rubin SR, Davidson PS: Paired-pulse afferent modulation of TMS responses reveals a selective decrease in short latency afferent inhibition with age. Neurobiol Aging 2006, 27:1131–1146.

36. Wechsler D: Wechsler Memory Scale-Wr. San Antonio, TX: Psychological Corporation; 1997.

37. Sperrle R, Grube D, Dale A, Killion R, Holmes J, Rosas HD, Cocchiarella A, Firth P, Rosen B, Lake S, et al: Functional MRI detection of pharmacologically induced memory impairment. Proc Natl Acad Sci U S A 2002, 99:445–460.

38. Behl P, Bocti C, Swartz RH, Gao F, Sahlas DJ, Lanctot KL, Streiner DL, Black SE: Strategic subcortical hyperintensities in cholinergic pathways and executive function decline in treated Alzheimer patients. Arch Neurol 2007, 64:266–272.

39. Swartz RH, Sahlas DJ, Black SE: Strategic involvement of cholinergic pathways and executive dysfunction: does location of white matter signal hyperintensities matter? J Stroke Cerebrovas Dis 2003, 12:29–36.

40. Wiederer K, Laurin D, Simard M, Verreault R, Lindsay J: Vascular risk factors and cognitive functions in nondemented elderly individuals. J Geriatr Psychiatry Neurol 2009, 22:196–205.

41. Czubyszki B, Jagust W, Habel U, Shah NJ, Kircher T: Muscarinic antagonist effects on executive control of attention. Int J Psychopharmacol 2009, 12:1307–1317.

42. Robbins TW, Semple J, Kumar R, Truman J, Shorter J, Ferraro A, Fox B, Mcay G, Matthews K: Effects of scopolamine on delayed-matching-to-sample and paired associates tests of visual memory and learning in human subjects: comparison with diazepam and implications for dementia. Psychopharmacol 1997, 134:95–106.

43. Fredrickson A, Snyder PJ, Comer J, Thomas E, Lewis M, Maruff P: The use of effect sizes to characterize the nature of cognitive change in psychopharmacological studies: an example with scopolamine. Hum Psychopharmacol 2000, 23:425–436.

44. Hodges JR, Lindner MG, Hogan JB, Jones KM, Markus EJ: Scopolamine induced deficits in a battery of rat cognitive tests: comparisons of sensitivity and specificity. Behav Pharmacol 2009, 20:237–251.

45. Edginton T, Rusted JM: Separate and combined effects of scopolamine and nicotine on retrieval-induced forgetting. Psychopharmacol 2003, 170:351–357.

46. Little JT, Johnson DN, Minichiello M, Weingartner H, Sunderland T: Combined nicotinic and muscarinic blockade in elderly normal volunteers: cognitive, behavioral, and physiologic responses. Neropsychopharmacol 1998, 19:60–69.

47. Lamar M, Resnick SM: Aging and prefrontal functions: dissociating orbitofrontal and dorsolateral abilities. Neurobiol Aging 2004, 25:553–558.

48. Thienel R, Kellermann T, Schall U, Voss B, Reske M, Halfter S, Sheldrick AJ, Radenbach K, Habel U, Shah NJ, Kircher T: Muscarinic antagonist effects on executive control of attention. Int J Psychopharmacol 2009, 12:1307–1317.

49. Robbins TW, Semple J, Kumar R, Truman J, Shorter J, Ferraro A, Fox B, Mcay G, Matthews K: Effects of scopolamine on delayed-matching-to-sample and paired associates tests of visual memory and learning in human subjects: comparison with diazepam and implications for dementia. Psychopharmacol 1997, 134:95–106.

50. Fredrickson A, Snyder PJ, Comer J, Thomas E, Lewis M, Maruff P: The use of effect sizes to characterize the nature of cognitive change in psychopharmacological studies: an example with scopolamine. Hum Psychopharmacol 2000, 23:425–436.

51. Hodges JR, Lindner MG, Hogan JB, Jones KM, Markus EJ: Scopolamine induced deficits in a battery of rat cognitive tests: comparisons of sensitivity and specificity. Behav Pharmacol 2009, 20:237–251.

52. Edginton T, Rusted JM: Separate and combined effects of scopolamine and nicotine on retrieval-induced forgetting. Psychopharmacol 2003, 170:351–357.

53. Little JT, Johnson DN, Minichiello M, Weingartner H, Sunderland T: Combined nicotinic and muscarinic blockade in elderly normal volunteers: cognitive, behavioral, and physiologic responses. Neropsychopharmacol 1998, 19:60–69.

54. Lamar M, Resnick SM: Aging and prefrontal functions: dissociating orbitofrontal and dorsolateral abilities. Neurobiol Aging 2004, 25:553–558.

55. Thienel R, Kellermann T, Schall U, Voss B, Reske M, Halfter S, Sheldrick AJ, Radenbach K, Habel U, Shah NJ, Kircher T: Muscarinic antagonist effects on executive control of attention. Int J Psychopharmacol 2009, 12:1307–1317.
78. Yu ZY, Wang W, Fritschy JM, Witte OW, Redecker C: Changes in neocortical and hippocampal GABAA receptor subunit distribution during brain maturation and aging. *Brain Res* 2006, 1099:73–81.

79. Di Lazzaro V, Pilato F, Dileone M, Tonali PA, Ziemann U: Dissociated effects of diazepam and lorazepam on short-latency afferent inhibition. *J Physiol* 2005, 569:315–323.

80. Dennis NA, Cabeza R: Neuroimaging of healthy cognitive aging. In *Handbook of Aging and Cognition*, 3rd Edition. Edited by Craik FIM, Salthouse TA. Mahwah, NJ: Erlbaum; 2008:1–54.

81. Raz N, Rodrigue KM: Differential aging of the brain: patterns, cognitive correlates and modifiers. *Neurosci Biobehav Rev* 2006, 30:730–748.

82. Yankner BA, Lu T, Loerch P: The aging brain. *Annu Rev Pathol* 2008, 3:41–66.

83. Kalpouzos G, Persson J, Nyberg L: Local brain atrophy accounts for functional activity differences in normal aging. *Neurobiol Aging* 2012, 33:e23.e1–e13.

84. Van Petten C, Plante E, Davidson PS, Kuo TY, Bajuscak L, Glisky EL: Memory and executive function in older adults: relationships with temporal and prefrontal gray matter volumes and white matter hyperintensities. *Neuropsychologia* 2004, 42:1313–1335.

85. Ryan L, Walther K, Bendlin B, Lue L, Walker DG, Glisky E: Age-related differences in white matter integrity and cognitive function are related to APOE status. *Neuroimage* 2011, 54:1565–1577.

doi:10.1186/1744-9081-8-17

Cite this article as: Young-Bernier et al: Associations between a neurophysiological marker of central cholinergic activity and cognitive functions in young and older adults. *Behavioral and Brain Functions* 2012, 8:17.