Exendin-4 increases extracellular superoxide dismutase expression in cultured astrocytes

Takano K*, Komada Y, Kawabe K, Moriyama M and Nakamura Y

Laboratory of Integrative Physiology in Veterinary Sciences, Osaka Prefecture University, Japan

Abstract

Under some pathological conditions in brain, a large amount of superoxide anion (O$_2^-$) is produced, causing various cellular damages. Among three isozymes of superoxide dismutase (SOD), extracellular (EC)-SOD should play a role to detoxify O$_2^-$ in extracellular space; however, a little is known about EC-SOD in brain. Exendin 4 (Ex-4), an analogue of glucagon-like peptide-1 (GLP-1), binds to GLP-1 receptor to potentiate insulin secretion in pancreatic β cells and is used extensively as a drug for type 2 diabetes mellitus. It was reported that Ex-4 might represent neuroprotective effects; however, the details of mechanisms and the effects on glial cells were unclear. In the present study, we examined the effects of Ex-4 on EC-SOD expression in cultured rat cortical astrocytes. By means of RT-PCR, EC-SOD mRNA was increased by Ex-4 exposure in a time-dependent manner. The expression of EC-SOD protein was also increased by Ex-4 exposure for 24 h. These results suggest that Ex-4 might increase EC-SOD expression in astrocytes and the activity of SOD released in the medium were not significantly affected by incubation of Ex-4 and/or exendin (9-39) for 24 h. These results suggest that Ex-4 might increase EC-SOD expression via binding to GLP-1 receptor although EC-SOD activities in astrocytes and in the medium were not affected. The regulation of EC-SOD in astrocytes may contribute to the defensive mechanism against oxidative stress in brain.

Exendin (Ex)-4 is a peptide found from saliva of Gila monster (Heloderma suspectum) consisting of 39 amino acids, an analogue of glucagon-like peptide-1 (GLP-1), and an agonist of GLP-1 receptor [1,2]. GLP-1 binds to GLP-1 receptor in pancreatic β cells and potentiates glucose-dependent insulin secretion to decrease blood glucose levels [3]. Ex-4 has 53% amino acids homologous to GLP-1, has higher affinity to GLP-1 receptor than GLP-1, and is less degraded in serum by dipeptidyl peptidase [1]. Therefore, Ex-4 recently has been used as a drug for type 2 diabetes mellitus.

It was reported that Ex-4 permeated blood brain barrier [15]. In model mice of diabetes mellitus, Ex-4 injection could protect neurons through upregulation of glutamate transporters and neurotrophic factors [16,17]. In rodent models of brain ischemia, AD, and PD, Ex-4 could protect neurons from oxidative stress-induced impairment [18-21]. It was known that hyperglycemia in diabetes mellitus might elevate oxidative stress and induce mitochondrial impairment to cause neuronal toxicity [22,23]. Also in human ischemia, AD and PD, oxidative stress and metabolic disturbance might cause neuronal dysfunction [24-26].

Key words: astrocyte, extracellular superoxide dismutase, exendin, GLP-1

Abbreviations: AD: Alzheimer’s disease; CNS: central nervous system; CRE: cyclic AMP response element; CREB: CRE binding protein; DMEM: Dulbecco’s modified Eagle medium; DTPA: diethylenetriamine-N,N',N,N'',N'''-pentaaacetic acid; Ex: exendin; FBS: fetal bovine serum; GLP-1: glucagon-like peptide-1; GSH: glutathione; HKR: HEPES-buffered Krebs Ringer solution; HPX: hypoxanthine; NF: nuclear factor; O$_2^-$: superoxide anion; PBS: phosphate-buffered saline; PD: Parkinson’s disease; ROS: reactive oxygen species; RT-PCR: reverse transcription polymerase chain reaction; SOD: superoxide dismutase; WST-1: water soluble tetrazolium-1; XOD: xanthine oxidase.

Introduction

Exendin (Ex)-4 is a peptide found from saliva of Gila monster (Heloderma suspectum) consisting of 39 amino acids, an analogue of glucagon-like peptide-1 (GLP-1), and an agonist of GLP-1 receptor [1,2]. GLP-1 binds to GLP-1 receptor in pancreatic β cells and potentiates glucose-dependent insulin secretion to decrease blood glucose levels [3]. Ex-4 has 53% amino acids homologous to GLP-1, and has higher affinity to GLP-1 receptor than GLP-1, and is less degraded in serum by dipeptidyl peptidase [1]. Therefore, Ex-4 recently has been used as a drug for type 2 diabetes mellitus.

It has been reported that GLP-1 is produced also in brain and that GLP-1 receptor expresses in neurons and glial cells widely in brain [4-8]. In vitro experiments, GLP-1 was reported to protect neurons against glutamate-induced excitotoxicity and against amyloid β-induced oxidative stress and cell death, and to suppress lipopolysaccharide-induced inflammatory cytokines in astrocytes [9-11]. In vivo experiments, GLP-1 was reported to protect neurons in rodent models of Alzheimer’s disease (AD) and Parkinson’s disease (PD) [12-14].
Superoxide dismutase (SOD) is a unique enzyme that converts $\text{O}_2^-$ into $\text{H}_2\text{O}_2$ and $\text{O}_2$ by dismutating reaction [27] and known to be classified into three isozymes: cytosolic SOD (Cyt-SOD, Cu/Zn-SOD or SOD1) that contains Cu$^{2+}$ and Zn$^{2+}$ as enzyme cofactors, mitochondrial SOD (Mt-SOD, Mn-SOD or SOD2) in its matrix that contains Mn$^{2+}$, and extracellular SOD (EC-SOD or SOD3) that contains Cu$^{2+}$ and Zn$^{2+}$ and has the enzymatic activity in extracellular space.

In the central nervous system (CNS), SOD isozymes are expressed and there are many reports suggesting that SOD plays important roles in defense against hypoxia-induced brain injury and neurodegenerative diseases such as PD [28-35]. However, most of these reports regard Cyt-SOD; not so much information on EC-SOD is known in CNS.

Although the expression level of EC-SOD in brain is considered to be much less than blood vessel or lung [36], it is reported that a proteolytic product of EC-SOD at C-terminal region is secreted in cerebrospinal fluid [37] and EC-SOD mRNA expression level increases in the brain after ischemia [38]. Furthermore, there are reports that mice overexpressing EC-SOD shows the increased resistance to focal cerebral ischemia [39,40], conversely EC-SOD deficiency in mice worsens outcome from focal cerebral ischemia [41]. Further, the beneficial function of EC-SOD is demonstrated in hyperoxia-induced brain injury in neonatal mice [42]. EC-SOD should play crucial roles in brain.

In addition, we previously reported that the expression level of EC-SOD in cultured astrocytes was higher than neurons and microglia by semi-quantitative RT-PCR and that lipopolysaccharide-stimulation increased SOD activity in the medium [43]. We also previously reported that dopamine incorporated into the cells through dopamine transporter triggered the EC-SOD induction via nuclear factor-kappa B (NF-κB) activation in cultured astrocytes [44]. Astrocytes play various important roles in CNS, such as maintenance of blood brain barrier, scavenging some neurotransmitters, control of ionic balance in brain parenchyma [45-47]. These functions of astrocytes serve the maintenance of brain homeostasis. Furthermore, it is reported that astrocytes protect endothelia from oxidative stress [48] and supply glutathione (GSH) to neurons and that astrocytes regulate the metabolism of ascorbic acid to protect neurons [49,50].

In the present study, we examined the effects of Ex-4 on EC-SOD expression and activity in cultured rat brain astrocytes. We found that exposure to Ex-4 increased the EC-SOD expressions in mRNA and protein, and SOD activities on the cell-surface and in the medium were not significantly affected by Ex-4.

**Experimental procedures**

**Materials**

Deoxyribonuclease 1 (DNase I; DN-25), trypsin, SOD (from bovine liver), xanthine oxidase (XOD; from milk), nitrotetrazolium blue chloride (NBT), anti-β-actin antibody and horseradish peroxidase (HRP)-conjugated goat anti-rabbit IgG (whole molecule) antibody were purchased from Sigma Chemical Co. (St Louis, MO, U.S.A.). Dulbecco’s modified Eagle medium (DMEM) and horse serum were obtained from Gibco BRL (Grand Island, NY, U.S.A.). Fetal bovine serum was obtained from Nichirei Biosciences Inc. (Tokyo, Japan). HRP-conjugated goat anti-mouse IgG (H+L) antibody was purchased from Bio-Rad Laboratories Inc. (Hercules, CA, U.S.A.). Hypoxanthine (HPX) was from Wako Pure Chemical Industries Ltd. (Osaka, Japan). Water soluble tetrazolium-1 (WST-1, 2-(4-iodophenyl)-3-(4-nitrophenyl)-5-(2,4-disulfophenyl)-2H-tetrazolium, monosodium salt), diethylenetriamine-$N,N',N'',N''',N''''$-pentacetic acid (DTPA) and 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-tetrazolium bromide (MTT) were obtained from Dojindo (Kumamoto, Japan). Anti-EC-SOD antibody was purchased from Enzo Life Sciences, Inc. (Plymouth Meeting, PA, U.S.A.). FavorPrep™ Tissue Total RNA Purification Mini Kit was from Favorgen (Ping-Tung, Taiwan). Omniscript Reverse Transcription kit was from Qiagen (Hilden, Germany). SYBR® Green Realtime PCR Master Mix was from Toyobo (Osaka, Japan). EC-SOD primer and 18S RNA primer were obtained from Operon Biotechnologies (Tokyo, Japan).

**Preparation of astrocytes culture**

This study was carried out in compliance with the Guideline for Animal Experimentation at Osaka Prefecture University, with an effort to minimize the number of animals used and their suffering. Astrocytes were prepared as described previously [51]. In brief, cortex from 20- day-old embryos, which were taken out from pregnant Wistar rats deeply anesthetized, were cleared of meninges, cut into about 1 mm$^3$ blocks, and treated with 0.25% trypsin in Ca$^{2+}$, Mg$^{2+}$-free phosphate-buffered saline containing 5.5 mM glucose for 20 min at 37ºC with gentle shaking. An equal volume of horse serum supplemented with 0.1 mg/ml of DNase I was added to the medium to inactivate the trypsin. Then, the tissues were centrifuged at 350 x g for 5 min. The tissue sediments were triturated through a pipette with DMEM containing 10% fetal bovine serum, 100 µg/ml streptomycin and 50 unit/ml penicillin. After filtering cell suspensions through a lens-cleaning paper (Fujifilm Co., Tokyo, Japan), the cells were plated on polyethyleneimine-coated 100 mm-diameter plastic dishes (Iwaki, Asahi Glass Co., Tokyo, Japan) at a density of 0.8 - 1.3 x 10^5 cells/cm$^2$. Cultures were maintained in a humidified atmosphere of 5% CO$_2$ and 95% air at 37ºC with gentle shaking. An equal volume of horse serum supplemented with 0.1 mg/ml of DNase I was added to the medium to inactivate the trypsin. Then, the tissues were centrifuged at 350 x g for 5 min. The tissue sediments were triturated through a pipette with DMEM containing 10% fetal bovine serum, 100 µg/ml streptomycin and 50 unit/ml penicillin. After filtering cell suspensions through a lens-cleaning paper (Fujifilm Co., Tokyo, Japan), the cells were plated on polyethyleneimine-coated 100 mm-diameter plastic dishes (Iwaki, Asahi Glass Co., Tokyo, Japan) at a density of 0.8 - 1.3 x 10^5 cells/cm$^2$. Cultures were maintained in a humidified atmosphere of 5% CO$_2$ and 95% air at 37ºC with changing medium every 3 days. After one week, astrocytes were replated to remove neurons. On days 12 - 14, they were replated onto 96-well plates (MS-8096F; for tissue culture, Sumitomo, Tokyo, Japan), 12-well plates (Iwaki), 35 mm-diameter plastic dishes (Thermo Fisher Scientific Inc., Waltham, MA, U.S.A.), or 60 mm-diameter plastic dishes (Thermo Fisher Scientific) using an ordinary trypsin-treatment technique at a density of 1.2 x 10^5 cells/cm$^2$ and stabilized for 1 day, then we used for experiments.

More than 90% of the cells were immunoreactively positive to glial fibrillary acidic protein (GFAP) using the antibody (Sigma). Less than 10% of the cells were positive to Iba-1 using the antibody (Wako).

**Cell viability**

To evaluate cell viability, we measured total mitochondrial activity with so-called MTT assay. In brief, after the cells were stimulated, the medium was changed with a fresh one and one-tenth volume of 5 mg/ml MTT solution was added. The cells were incubated for 1 h at 37ºC and the formazan generated by total mitochondrial activity was dissolved in dimethysulfoxide, and then the color development was measured at 585 nm with a microplate reader (ARVO 1420 Multilabel counter, Wallac, Turku, Finland). When we observed cell morphology under a phase-contrast microscope, the remaining cell number is almost consistent with the results of MTT assay.

**Reverse transcription-polymerase chain reaction (RT-PCR)**

Cultured astrocytes were washed with PBS, followed by extraction of mRNA using FavorPrep™ Tissue Total RNA Purification Mini Kit and subsequent synthesis of complementary DNA with oligo dT

---

Glob Drugs Therap, 2017 doi: 10.15761/GDT.1000S1001 Volume 2(5): 2-6

Takano K (2017) Exendin-4 increases extracellular superoxide dismutase expression in cultured astrocytes
primers, mixture of dNTP (deoxyribonucleotide triphosphate), RNase inhibitor, Buffer RT and Omniscript Reverse Transcriptase (Omniscript Reverse Transcription Kit; Qiagen). Reverse transcriptase reaction was run at 37°C for 60 min, followed by inactivation of the enzyme at 94°C for 5 min, and an aliquot of synthesized complementary DNA was used for Realtime PCR.

Realtime PCR was performed in buffer containing SYBR Green Realtime PCR Master Mix (Toyobo) and each primer for the corresponding EC-SOD and 18S rRNA. PCR was performed with primers specific for each EC-SOD and 18S rRNA described below. The conditions of each PCR cycles for these primers were as follows: denaturation at 95°C for 15 sec; annealing at 60°C for 15 sec; and extension at 60°C for 30 sec. The results were analyzed using Realtime PCR System (StepOne®; Applied Biosystems).

**Specific primers**

|       | Sense primer  | Antisense primer   |
|-------|---------------|--------------------|
| EC-SOD| 5'-ATGGTGCCCTTCTGTCTGC-3' | 5'-CCAGATCTCCAGGTCTTTGGA-3' |
| 18S rRNA | 5'- AGGTCTGTGATGCCCTTAGA-3' | 5'- CCATCCAATCGGTAGTGCG-3' |

**Western blotting**

Cultured astrocytes were homogenized in 20 mM Tris-HCl (pH 7.5) buffer containing 1 mM EDTA and protease inhibitor cocktail (Sigma P8340). Each homogenate was added at a volume ratio of 4:1 to 50 mM Tris-HCl buffer (pH 6.8) containing 50% glycerol, 10% sodium dodecyl sulfate, 0.05% bromphenol blue and 25% 2-mercaptoethanol, followed by mixing and boiling at 100°C for 5 min. Each aliquot in a certain amount of protein was loaded on a 10% polyacrylamide gel for electrophoresis at a constant voltage of 120 V for 2 h at room temperature and subsequent blotting to a polyvinylidene fluoride membrane previously treated with 100% methanol. After blocking with 5% skimmed milk dissolved in 20 mM Tris-HCl buffer (pH 7.5) containing 137 mM NaCl and 0.05% Tween 20, the membrane was reacted with antibodies against EC-SOD or β-actin followed by a reaction with anti-rabbit or anti-mouse IgG antibody conjugated with peroxidase. Proteins reactive with those antibodies were detected protease inhibitor, Buffer RT and Omniscript Reverse Transcriptase (Omniscript Reverse Transcription Kit; Qiagen). Reverse transcriptase reaction was run at 37°C for 60 min, followed by inactivation of the enzyme at 94°C for 5 min, and an aliquot of synthesized complementary DNA was used for Realtime PCR.

**Measurement of SOD activity on cell surface**

Cultured astrocytes were stimulated with 10 nM Ex-4 for indicated time, and then the mRNA expression of EC-SOD was analyzed by realtime RT-PCR. The expression of EC-SOD mRNA was significantly increased by 10 nM Ex-4 for 6 h exposure, it was remarkably increased at 6 h and the increased level was sustained up to 24 h (Figure 1).

**Data analysis**

For statistical analysis of the data, one-way ANOVA followed by Tukey-Kramer multiple comparison procedure or Student’s t-test was used. Differences between treatments were considered statistically significant when p < 0.05.

**Results**

**Expression of EC-SOD mRNA increased in astrocytes after Ex-4 stimulation**

Cultured astrocytes were stimulated with 10 nM Ex-4 for indicated time, and then the mRNA expression of EC-SOD was analyzed by realtime RT-PCR. The expression of EC-SOD mRNA was significantly increased by 10 nM Ex-4 for 3 h exposure, it was remarkably increased at 6 h and the increased level was sustained up to 24 h (Figure 1).

![Figure 1. Time course of EC-SOD mRNA expression in cultured astrocytes after Ex-4 exposure. Cultured astrocytes were stimulated by 10 nM Ex-4 for 1, 3, 6, 24 h. The expression of mRNA of EC-SOD was assessed by realtime RT-PCR. Data are mean ± S.D. of three samples from different cell preparations. *P < 0.05, **P < 0.01, significantly different from control.](image.png)
Effect of Ex-4 and/or exendin (9-39) on the EC-SOD protein

In addition to the mRNA level, we examined the level of EC-SOD protein. The cells were stimulated with various concentrations of Ex-4 for 24 h, and then the expression of EC-SOD protein was assessed by western blotting. The expression level of EC-SOD protein increased in a dose-dependent manner and with 10 nM Ex-4, significantly (Figure 2A).

The cells were preincubated with 100 nM exendin (9-39), an antagonist of GLP-1 receptor, for 30 min and stimulated by 10 nM Ex-4 for 24 h, and then the expression of EC-SOD protein was assessed by western blotting. Preincubation with 100 nM exendin (9-39) inhibited Ex-4-increased EC-SOD expression (Figure 2B).

Effect of Ex-4 on cell-surface SOD activity and the cell viability

We examined the effect of Ex-4 on cell-surface SOD activity in cultured astrocytes. The cells were incubated with various concentrations of Ex-4 for 24 h, and washed with HKR. Then, SOD activity on the cell-surface was assayed. The activity was not significantly affected (Figure 3A).

We also examined the effect of Ex-4 on cell viability in cultured astrocytes. The cells were incubated with various concentrations of Ex-4 for 24 h, and cell viability was assessed by MTT assay. Cell viability was not affected by Ex-4 used in the present study (Figure 3B).

Effects of Ex-4 and/or exendin (9-39) on SOD activity in the medium

We examined the effect of Ex-4 on SOD activity in the medium. Cultured astrocytes were preincubated with 100 nM exendin (9-39) for 30 min and stimulated by 10 nM Ex-4 for 24 h in HKR, and then SOD activity in the medium was assayed. The activity was affected by neither Ex-4 nor exendin (9-39) (Figure 4).

Discussion

In the present study, we demonstrated that the expressions of EC-SOD, both of mRNA and protein, were induced when the cells were stimulated by Ex-4 in cultured rat cortex astrocytes. However, the activities of SOD on the cell-surface and in the medium were not significantly affected by Ex-4. The Ex-4-increased EC-SOD expression was inhibited by an antagonist of GLP-1 receptor. These results suggest that Ex-4 increases the expressions of EC-SOD mRNA and protein via binding to GLP-1 receptor.

In cultured astrocytes, 10 nM Ex-4 increased EC-SOD mRNA time-dependently for 1-24 h, and 1-10 nM Ex-4 exposure for 24 h increased EC-SOD protein in a dose-dependent manner, significantly with 10 nM. The increased expression of EC-SOD protein by Ex-4 was blocked by exendin (9-39), an antagonist of GLP-1 receptor. GLP-1 receptor is a G-protein coupled receptor, and binding of agonists to it causes activation of adenylate cyclase to increase cAMP and activate protein kinase A [52]. Ex-4 treatment reported to induce the elevation of intracellular cAMP levels in astrocytes [52]. The promoter region of EC-SOD contains various regulatory elements including cAMP response element (CRE) [53]. Therefore, Ex-4 in the present study might increase EC-SOD mRNA via intracellular cAMP production. Moreover, the promoter region of EC-SOD contains various regulatory elements other than CRE, including antioxidant response element, activator protein-1 binding sites, NF-xB motifs, and xenobiotic response elements [53]. Further investigation is necessary to elucidate the total mechanisms of the EC-SOD induction by Ex-4 stimulation.
inclusivity of other transcriptional factors as well as CRE-binding protein (CREB).

It was reported that Ex-4 administration protected neurons through the upregulation of antioxidants in ischemic rat brain [18]. However, in the present study, the activities of SOD on the cell-surface and in the medium were not significantly affected by Ex-4 treatment for 24 h. The effects of Ex-4 on mRNA and protein only in EC-SOD among three isozymes of SOD were assessed in the present study; therefore, the effects of Ex-4 on the expressions of other two SODs, Cu/Zn-SOD and Mn-SOD should be further investigated. Moreover, it is likely that Ex-4 might affect the utilization efficiency of Cu2+ and Zn2+ which are contained as enzyme cofactors and needed for enzymatic activity of EC-SOD.

EC-SOD is a unique enzyme having the enzymatic activity in extracellular space and at least two steps are known to be occurred for secretion [27,54]. It was reported that N-glycosylation was essential for the transport of intracellular EC-SOD protein to cellular membrane [55]. Further, EC-SOD is known to be released through the proteolytic processing at binding region in various cells including glial cell line U1169 CG [56]. The C-terminal proteolytic processing of EC-SOD was reported to be regulated by redox state [57]. In the present study, these post-translational modifications might not be stimulated by Ex-4 treatment in cultured astrocytes although Ex-4 increased the expressions of EC-SOD mRNA and protein. Further investigation is needed to elucidate the effects of Ex-4 on SOD activity in more detail; however, the induced EC-SOD in astrocytes by Ex-4 exposure might play a role in neuronal protection.

Conclusion

In the present study, Ex-4 triggered the EC-SOD induction via binding to GLP-1 receptor in cultured astrocytes. EC-SOD induced by Ex-4 in astrocytes may play a role in extracellular anti-oxidative defense for surrounding neurons. The regulation of EC-SOD expression in astrocytes should be an important target in treatment of CNS diseases.

Acknowledgement

This work was supported in part by JSPS KAKENHI Grant Number JP15J12259 to K.K., JP26850209 to K.T., JP26450447 to M.M., and JP15K07768 to Y.N.

References

1. Engel J (1992) Exendin peptides. Mt Sinai J Med 59: 147-149.
2. Goke R, Fehmann HC, Linn T, Schmidt H, Krause M, Eng J, et al. (1993) Exendin-4 is a high potency agonist and truncated exendin(9-39)amide an antagonist at the glucagon-like peptide-1 (7-36) amide receptor of insulin-secreting beta-cells. J Biol Chem 268: 19650-19655.
3. Grief D, Hendrick GK, Mojsov S, Habener J, Weir GC (1990) Glucagon-like peptide-1 (7-36) amide receptor in rat brain. J Neurochem 126: 2164-2166.
4. Campos RV, Lee YC, Drucker DJ (1994) Divergent tissue-specific and developmental expression of receptors for glucagon and glucagon-like peptide-1 in the mouse. Endocrinology 134: 2156-2164.
5. Calvo JC, Yusta B, Mora F, Blázquez E (1995) Structural characterization by affinity cross-linking of glucagon-like peptide-1 (7-36) amide receptor in rat brain. J Neurochem 64: 299-306.
6. Mora F, Expósito I, Sanz B, Blázquez E (1992) Selective release of glutamine and glutamic acid produced by perfusion of GLP-1 (7–36) amide in the basal ganglia of the conscious rat. Brain Res Bull 29: 359-361.
7. Satoh F, Beak SA, Small CJ, Falzon M, Ghatei MA, et al. (2000) Characterization of human and rat glucagon-like peptide-1 receptors in the neuropeptide lobe, lack of coupling to either stimulation or inhibition of adenyl cyclase 1. Endocrinology 141: 1301-1309.
8. Utenthaler LO, Toledano A, Blázquez E (1992) Autoradiographic localization of receptors for glucagon-like peptide-1 (7-36) amide in rat brain. Neuropeptides 21: 143-146.
9. Iwai T, Ito S, Tanimitsu K, Udagawa S, Oka J (2006) Glucagon-like peptide-1 inhibits LPS-induced IL-1β production in cultured rat astrocytes. Neurosci Res 55: 352-360.
10. Perry T, Haughey NJ, Mattson MP, Egan JM, Greig NH (2002) Protection and reversal of excitotoxic neuronal damage by glucagon-like peptide-1 and exendin-4. J Pharmacol Experiment Ther 302: 881-888.
11. Perry T, Lahiri DK, Sambamurti K, Chen D, Mattson MP, et al. (2003) Glucagon-like peptide-1 decreases endogenous amyloid-β peptide (Aβ) levels and protects hippocampal neurons from death induced by Aβ and iron. J Neurosci Res 72: 603-612.
12. Harkavyi A, Whitton PS (2010) Glucagon-like peptide-1 receptor stimulation as a means of neuroprotection. Br J Pharmacol 159: 495-501.
13. Holst JJ, Bucelin R, Nathanson E (2011) Neuroprotective properties of GLP-1, theoretical and practical applications. Curr Med Res Opin 27: 547-558.
14. Li Y, Perry T, Kindy MS, Harvey BK, Tweedie D, et al. (2009) GLP-1 receptor stimulation preserves primary cortical and dopaminergic neurons in cellular and rodent models of stroke and Parkinsonism. Proc Natl Acad Sci 106: 1285-1290.
15. Kastin AJ, Akerstrom V (2003) Entry of exendin-4 into brain is rapid but may be limited at high doses. Int J Obes 27: 313-318.
16. Gmurad F, Mušliu O, Celikyurt IK, Ulaş G, Akar F, et al. (2016) Exendin-4 enhances cognitive performance and upregulates neurotrophic factor gene expression levels in diabetic mice. Fundam Clin Pharmacol 30: 376-384.
17. Zhang Y, Zhang J, Wang Q, Lei X, Chu Q, et al. (2011) Intravitreal injection of exendin-4 analogue protects retinal cells in early diabetic rats. Invest Ophthalmo Vis Sci 52: 278-285.
18. Briyal S, Gulati K, Gulati A (2012) Repeated administration of exendin-4 reduces focal cerebral ischemia-induced infarct in rats. Brain Res 1427: 23-34.
19. Kim S, Moon M, Park S (2009) Exendin-4 protects dopaminergic neurons by inhibition of microglial activation and matrix metalloproteinase-3 expression in an animal model of Parkinson’s disease. J Endocrinol 230: 431-439.
20. Lee CH, Yan B, Yoo KY, Choi JH, Kwon SH, et al. (2011) Ischemia-induced changes in glucagon-like peptide-1 receptor and neuroprotective effect of its agonist, exendin-4, in experimental transient cerebral ischemia. J Neurosci Res 89: 1103-1113.
21. Li Y, Duffy FY, Ottinger MA, Ray B, Bailey IA, et al. (2010) GLP-1 receptor stimulation reduces amyloid-beta peptide accumulation and cytotoxicity in cellular and animal models of Alzheimer’s disease. J Alzheimer’s Dis 19: 1205-1219.
22. Piccoli L, Quagliaro L, Ceriello A (2003) Oxidative stress in diabetes. Clin Chem Lab Med 41: 1144-1149.
23. Yang CM, Lin CC, Hsieh HL (2017) High-glucose-derived oxidative stress-dependent heme oxygenase-1 expression from astrocytes contributes to the neuronal apoptosis. Mol Neurobiol 54: 470-483.
24. Benzi G, Moretti A (1995) Are reactive oxygen species involved in Alzheimer’s disease? Neurobiol Aging 16: 661-674.
25. Hald A, Lohariasis J (2005) Oxidative stress and inflammation in Parkinson’s disease, is there a causal link?. Experimental Neurol 193: 279-290.
26. Nunamiura A, Castellani RJ, Zhu X, Moreira PL, Perry G, et al. (2006) Involvement of oxidative stress in Alzheimer disease. J Neuropathol Experiment Neurol 65: 631-641.
27. McLeod JM, Fridovich I (1969) Superoxide dismutase. An enzymatic function for erythrocuprein (hemocuprein). J Biol Chem 244: 6049-6055.
28. Bowling AC, Beal MF (1995) Bioenergetic and oxidative stress in neurodegenerative diseases. Life Sci 56: 1151-1171.
29. Chan PH, Chu L, Chen SF, Carlson EJ, Epstein CJ (1990) Reduced neurotoxicity in transgenic mice overexpressing human copper-zinc-superoxide dismutase. Stroke 21: 80-82.
30. Kawase M, Murakami K, Fujimura M, Morita-Fujimura Y, Gasche Y, et al. (1999) Exendin-4 analogue protects retinal cells in early diabetic rats. Invest Ophthalmol Vis Sci 39: 1205-1219.
Takano K (2017) Exendin-4 increases extracellular superoxide dismutase expression in cultured astrocytes.

J Neurosci Res 18: 205-213.

44. Takano K, Tanaka N, Kawabe K, Moriyama M, Nakamura Y (2013) Extracellular superoxide dismutase induced by dopamine in cultured Astrocytes. Neurosci Res 83: 984-991.

45. Ballabh P, Braun A, Nedergaard M (2004) The blood-brain barrier, an overview, structure, regulation, and clinical implications. Neurobiol Dis 16: 1-13.

46. Merrill JL, Jonakait GM (1995) Interactions of the nervous and immune systems in development, normal brain homeostasis, and disease. FASEB J 9: 611-618.

47. Pierre K, Pellerin L (2005) Monocarboxylate transporters in the central nervous system, distribution, regulation and function. J Neurochem 94: 1-14.

48. Schroeter ML, Mertsch K, Giese H, Műller S, Sporbert A, et al. (1999) Astrocytes enhance radical defence in capillary endothelial cells constituting the blood-brain barrier. FEBS Lett 449: 241-244.

49. Stewart VC, Stone R, Gegg ME, Sharpe MA, Hurst RD, et al. (2002) Preservation of extracellular glutathione by an astrocyte derived factor with properties comparable to extracellular superoxide dismutase. J Neurochem 83: 185-191.

50. Wilson JA (1997) Antioxidant defense of the brain: a role for astrocytes. Can J Physiol Pharmacol 75: 1149-1163.

51. Takano K, Sugita K, Moriyama M, Hashida K, Hibino S, et al. (2011) A dibenzoylmethane derivative protects against hydrogen peroxide-induced cell death and inhibits lipopolysaccharide-induced nitric oxide production in cultured rat astrocytes. J Neurosci Res 89: 955-965.

52. Reiner DJ, Mietlicki-Baase EG, McGrath LE, Zimmer DJ, Bence KK, et al. (2016) Astrocytes regulate GLP-1 receptor-mediated effects on energy balance. J Neurosci 36: 3531-3540.

53. Fattman CL, Schaefer LM, Oury TD (2003) Extracellular superoxide dismutase in biology and medicine. Free Radical Biol Med 35: 236-256.

54. James DC, Enghild JJ (2004) The intracellular proteolytic processing of extracellular superoxide dismutase (EC-SOD) is a two-step event. J Biol Chem 279: 22152-22157.

55. Ota F, Kizuka Y, Kitazume S, Adachi T, Taniguchi N (2016) N-Glycolylation is essential for the secretion of extracellular superoxide dismutase. FEBS Lett 590: 3357-3367.

56. Marklund SL (1990) Expression of extracellular superoxide dismutase by human cell lines. Biochem J 266: 213-219.

57. Gottfredsen RH, Tran SMH, Larsen UG, Madsen P, Nielsen MS, et al. (2012) The C-terminal proteolytic processing of extracellular superoxide dismutase is redox regulated. Free Radic Biol Med 52: 191-197.

Copyright: ©2017 Takano K. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.