Germination of conidia of *Aspergillus niger* is accompanied by major changes in RNA profiles

M.R. van Leeuwen1, P. Krijgsheld2, R. Bleichrodt3, H. Menke3, H. Stam3, J. Stark3, H.A.B. Wösten2, and J. Dijksterhuis*1*

1Applied and Industrial Mycology, CBS-KNAW Fungal Biodiversity Centre, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands; 2Microbiology and Kluver Centre for Genomics of Industrial Fermentation, Molecular Microbiology, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands; 3DSM Food Specialties, PO Box 1, 2600 MA Delft, The Netherlands

*Correspondence: Jan Dijksterhuis, j.dijksterhuis@CBS.knaw.nl

Abstract: The transcriptome of conidia of *Aspergillus niger* was analysed during the first 8 h of germination. Dormant conidia started to grow isotropically two h after inoculation in liquid medium. Isotropic growth changed to polarised growth after 6 h, which coincided with one round of mitosis. Dormant conidia contained transcripts from 4 626 genes. The number of genes with transcripts decreased to 3 557 after 2 h of germination, after which an increase was observed with 4 780 expressed genes 8 h after inoculation. The RNA composition of dormant conidia was substantially different than all the subsequent stages of germination. The correlation coefficient between the RNA profiles of 0 h and 8 h was 0.46. They were between 0.76–0.93 when profiles of 2, 4 and 6 h were compared with that of 8 h. Dormant conidia were characterised by high levels of transcripts of genes involved in the formation of protecting components such as trehalose, mannitol, protective proteins (*e.g.* heat shock proteins and catalase). Transcripts belonging to the Functional Gene Categories (FunCat) protein synthesis, cell cycle and DNA processing and respiration were over-represented in the up-regulated genes at 2 h, whereas metabolism and cell cycle and DNA processing were over-represented in the up-regulated genes at 4 h. At 6 h and 8 h no functional gene classes were over- or under-represented in the differentially expressed genes. Taken together, it is concluded that the transcriptome of conidia changes dramatically during the first two h and that initiation of protein synthesis and respiration are important during early stages of germination.

Key words: Aspergillus niger, conidia, germination, transcriptome.

Published online: 17 September 2012; doi:10.3114/sim0009. Hard copy: March 2013.

INTRODUCTION

Conidia are the main vehicles of distribution for fungi (Navarro-Bordonaba & Adams 1996) and are characterised by a dormant state and transported via different media such as water and air. Air-dispersed conidia possess moderate resistance towards low water activity conditions, high and low temperature, UV radiation and other stressors like reactive oxygen species. The dormancy of these cells is broken upon exposure to water, air, and / or inorganic salts, amino acids and fermentable sugars (Osherov & May 2001, Thanh et al. 2005). The environmental conditions are signaled by receptor(s) via Ras/MAPK and cAMP/PKA signal-transduction pathways (Osherov & May 2000, Liebmann et al. 2004, Reyes et al. 2006, Zhao et al. 2006). Upon activation of germination, the disaccharide trehalose and the polyol mannitol are degraded (Witteveen & Visser 1995, Thevelein 1996, d’Enfert et al. 1999, Fillinger et al. 2001, Ruijter et al. 2003, Dijksterhuis et al. 2007). As a consequence, glycerol is formed, which is indicative for an active glycolysis (d’Enfert 1997).

The first morphological change in spore germination is isotropic growth. During this process, also called swelling, the diameter of the spore increases two fold or more. It involves water uptake and a decrease in the micro-viscosity of the cytoplasm (van Leeuwen et al. 2010). Moreover, molecules are directed to the cell cortex to enable addition of new plasma membrane and cell wall (Bartnicki-Garcia & Lippman 1977, Momany 2002). Isotropic growth is concomitant with metabolic activities such as respiration, and DNA, RNA, and protein synthesis (Mirkes 1974, Osherov & May 2001). Isotropic growth is followed by polarised growth that results in the formation of a germ tube. During this phase, the morphogenetic machinery is redirected to the site of polarisation. This machinery includes the cytoskeleton, the vesicle trafficking system, landmark proteins, signaling pathways and endocytic partners like Rho GTPase modules, polarsome and Arp2/3 complexes (d’Enfert 1997, Momany 2002, Harris & Momany 2004, Harris 2006). Moreover, the lipid composition of the plasma membrane changes by the appearance of sterol-rich domains (Van Leeuwen et al. 2008). At later stages of development the growth speed of the germ tube increases and the functional organisation of the hyphal tip area acquires its full potential as judged by zones of endocytosis and exocytosis and the presence of the Spitzenkörper (Taheri-Talesh et al. 2008, Köhli et al. 2008). By branching and inter-hyphal fusions (Glass et al. 2004) a fungal mycelium is established.

Genera of the order Eurotiales (*e.g.* *Penicillium*, *Aspergillus* and *Paecilomyces*) produce numerous single-celled conidia that are abundant in air samples (McCartney & West 2007). These genera are associated with food spoilage and are able to form a wide panel of mycotoxins (Frisvad et al. 2007). In addition, they can act as opportunistic pathogens (Burrell 1991). *Aspergillus niger* is a world-wide food spoiler and can also infect harvested crops (Snowdon 1990). Moreover, it is an important cell factory (Meyer et al. 2011). The impact of *A. niger*, the availability of its genome sequence and whole genome microarrays (Pel et al. 2007) makes...
this an attractive fungal model system. So far, only the asexual stage of *A. niger* has been identified. Formation of conidia involves a complex developmental pathway (Krijgsheld et al. 2013). In this study, the transcriptome of conidia of *A. niger* was studied during dormancy and germination. Most changes in the transcriptome occurred early in germination (i.e. before isotropic growth). The data show that the transcriptome of dormant conidia is distinct from that of conidia during all stages of germination.

MATERIALS AND METHODS

Organism and growth conditions

The *A. niger* strain N402 (Bos et al. 1988) and its derivative RB#9.5 were used in this study. The latter strain expresses a gene encoding a fusion of sGFP and the histone protein H2B under regulation of the *mpdA* promoter. For spore isolation, strains were grown for 12 days at 25 °C on complete medium (CM) containing per liter: 1.5 % agar, 6.0 g NaNO₃, 1.5 g KH₂PO₄, 0.5 g KCl, 0.5 g MgSO₄, 4.5 g D-glucose, 0.5 % casamino acids, 1 % yeast extract and 200 μl trace elements (containing per liter: 10 g EDTA, 4.4 g ZnSO₄·7H₂O, 1.0 g MnCl₂·4H₂O, 0.32 g CoCl₂·6H₂O, 0.32 g CuSO₄·5H₂O, 0.22 g (NH₄)₆Mo₇O₂₄·4H₂O, 1.5 g CaCl₂·2H₂O, and 1.0 g FeSO₄·7H₂O). Conidia were harvested in ice-cold ACES-buffer (10 mM ACES, 0.02 % Tween-80, pH 6.8). To this, the colony surface was gently rubbed with a sterile T-spatula and the conidal suspension was filtered through sterile glass wool. Conidia were washed in ice-cold ACES-buffer, resuspended in CM and kept on ice until further processing on the same day.

Microscopy

Samples of liquid cultures were placed on poly-l-lysine (Sigma) coated cover slips (Van Leeuwen et al. 2008). After removal of the medium, the cover slips with the immobilised cells were placed upside-down onto an object glass overlaid with a thin (< 0.5 mm) layer of 2 % water agar. Any remaining liquid was removed with filter paper. Images were captured with a Zeiss Axioskop 2 plus microscope (Zeiss, Oberkochen, Germany) equipped with a HBO 100 W mercury lamp and a AxioCam MRc (Zeiss, Germany) camera using standard FITC (λ = 450–490 nm, FT510, LP520) filters. A minimal number of 93 cells for each time point was counted for the enumeration of the number of nuclei in dormant and germinating conidia.

RNA extraction

For isolation of RNA, 3 x 10⁹ conidia were inoculated in 300 ml CM. Three cultures were shaken at 125 rpm at 24 °C for each RNA isolation. At each time point, 15 ml culture medium was sampled from the biological triplicates. Samples were pooled and centrifuged (3000 x g, 10 min, 4 °C). The supernatant was mixed thoroughly with 1000 μl isopropanol. RNA was precipitated at 12.000 x g (10 min, 4 °C) and the pellet was air-dried for 5 min. The pellet was then resuspended in 100 μl RNase-free water. This was followed by addition of 700 μl of RLT buffer (without β-mercaptoethanol) and 500 μl 96 % ethanol. RNA was further purified using the RNeasy® Mini kit (Qiagen) according to the RNA Cleanup protocol. The concentration of RNA was measured with the Nanodrop ND-1000 spectrophotometer (NanoDrop Tech., Wilmington, USA). The quality was assayed with an Agilent 2100 Bioanalyzer™, using an RNA Nano LabChip® (Agilent Technology, Palo Alto, CA, USA).

cDNA labeling, microarray hybridisation and data analysis

cDNA labeling, microarray hybridisation, and scanning were performed at ServiceXS (Leiden, The Netherlands) according to Affymetrix protocols. In brief, 2 µg of total RNA was used to generate Biotin-labeled antisense cRNA with the Affymetrix Eukaryotic One-Cycle Target Labeling and Control reagents. Quality of the cRNA was assayed using the Agilent 2100 Bioanalyzer™. Subsequently, labeled cRNA of biological triplicates for each time point was used for the hybridisation of Affymetrix *A. niger* Genome Genechips (Pel et al. 2007). After an automated process of washing and staining, absolute values of expression were calculated from the scanned array using the Affymetrix Command Console v. 1. software. Arrays were globally scaled to a target value (TGT) of 100 using the average signal from all gene features using Microarray Suite v. 5.0. (MAS5.0) in Refiner Array Affymetrix IVT Arrays 5.2 of Genedata Expressionist (Basel, Switzerland). Arrays were then normalised on the median in Genedata Analyst (Basel Switzerland). The array data has been deposited in NCBI’s Gene Expression Omnibus (Edgar et al. 2002) and is accessible through GEO Series accession number GSE36439 (www.ncbi.nlm.nih.gov/geo/). MAS5.0 detection calls were calculated using the median in Genedata Analyst (Basel Switzerland). The array data has been deposited in NCBI’s Gene Expression Omnibus (Edgar et al. 2002) and is accessible through GEO Series accession number GSE36439 (www.ncbi.nlm.nih.gov/geo/). MAS5.0 detection calls were used to calculate the number of absent / present calls on each probe set. Filtering was performed by setting the value of all probesets that satisfied the criteria of a Benjamini Hochberg False Discovery rate of p=0.05 (Benjamini & Hochberg 1995) was applied. The Functional Catalogue (FunCat; Munich Information Center for Protein Sequence) was used for functional classification of genes (Ruepp et al. 2004).
RESULTS

Conidial germination

Conidial germination of A. niger has a maximal rate between 30 – 34 °C, with more than 90 % germination after 6 h (Abdel-Rahim & Arbab 1985). In this study A. niger was grown at 25 °C enabling us to separate the different stages of germination in time (Fig. 1A). Isotrophic growth was observed between 2 and 6 h after inoculation and germ tubes were formed between 6 and 8 h. An A. niger reporter strain (RB#9.5) expressing a fusion of the H2B histone protein and the sGFP protein under control of the mpdA promoter was used to monitor nuclear division (Fig. 1B). Dormant conidia were predominately bi-nucleate (85 %), the remainder being uni-nucleate. Nuclear division was shown to occur between 6 and 8 h of germination. After 8 h, 42 % and 34 % of the germinating conidia contained 3 or 4 nuclei, respectively, 10 % and 14 % of the conidia still had 1 or 2 nuclei, respectively.

Transcriptional profiling

Most methods for RNA isolation from fungal tissue are based on extraction with phenol or phenol based reagents like TRizol® (Invitrogen, Breda, The Netherlands). Using this method we were unable to extract RNA from dormant conidia and from conidia during early stages of germination. Therefore, a novel RNA extraction method for conidia of A. niger was developed (see Materials and Methods) resulting in high quality intact RNA (see online Supplemental Fig. 1). This method was used to isolate RNA from dormant (0 h) and germinating (2, 4, 6, and 8 h) conidia. RNA from three independent biological replicates were used for hybridisation of A. niger Affymetrix microarray chips representing 14,259 open reading frames (Pel et al. 2007, Jacobs et al. 2009). MAS5.0 detection calls were used to determine the number of expressed genes. Dormant conidia contained transcripts from 4626 genes (Fig. 2A, 3A). The number of expressed genes decreased to 3,557 after 2 h of germination. This was followed by a gradual increase to 4,780 genes 8 h after inoculation. Correlation of expression showed that the RNA profile of dormant conidia was
most different when compared to the other samples (Fig. 2B). The correlation coefficient of the profiles at 0 h and 8 h was 0.46. Correlation increased from 0.76 to 0.93 when the profiles of 2 h, 4 h, and 6 h were compared to that of 8 h. A principal component analysis (PCA) showed similar results (Fig. 2C). According to the PCA, the 0 h sample was substantially different from all other time points in that it contributes for the majority of the first principal component while the variation in the other time points was predominantly confined to the second principal component.

Comparison of gene expression during conidial germination

In dormant conidia, 1986 genes were expressed that were subsequently absent at the 2 h time point (Fig. 3A). These numbers were markedly lower (i.e. between 179 and 290) when the other stages were compared. A similar trend was obtained when the numbers of down-regulated genes with a fold change ≥ 2 were compared (Fig. 3B). In fact, the differences are even stronger. A number of 1959 genes were down-regulated between 0 h and 2 h, whereas between 3 and 45 genes were down-regulated when the other stages were compared. The number of up-regulated genes was also highest between 0 h and 2 h (i.e. 1161 genes) when compared to the other stages (i.e. between 16 and 383 genes). This difference was less when the number of present calls was taken into account (Fig. 3A).

A Fisher exact test showed that transcripts belonging to the functional gene classes protein synthesis and protein fate are over-represented in the RNA profile of dormant spores. Transcripts belonging to the functional category protein synthesis and its subcategories translation and initiation were over-represented in the up-regulated genes, while amino acid degradation was under-represented. Taken together, these data indicate that initiation of translation and respiration are key processes for initial stages of germination.

During later stages of germination (between 2 and 8 h of germination) the changes in expression of functional gene classes were smaller. In fact, no functional gene classes are over- or under-represented in the differentially expressed genes at 6 h and 8 h. The categories metabolism and cell cycle and DNA processing were over-represented in the up-regulated genes at 4 h. The latter suggests that the conidium prepared itself for mitosis which occurs a few hours later.

Specific transcriptional changes associated to conidial germination

Regulation

So far, asexual development has not been studied in A. niger. However, its genomic sequence predicts that mechanisms of asexual development are similar, if not identical, to that in A. nidulans (Pel et al. 2007, Krijgsheld et al. 2013). The expression of genes predicted to be involved in regulation of asexual development is given in Table 2. Levels of the master regulator of asexual development brlA (An01g10540) were very low in dormant conidia and absent in germinating conidia. Transcription factor genes that are operating more downstream from brlA including medA (An02g02150), abaA (An01g03750) and possibly hymA (An02g08420, Karos & Fisher 1999) and dopA (An02g08420, Pascon & Miller 2000) were present at higher levels than brlA and did show clear higher expression after 2 h (medA), a general trend of down regulation (abaA) or a general trend in upregulation (hymA and dopA). In contrast, stuA (An05g00480) was clearly down-regulated when germination was initiated. Genes that are predicted to directly activate genes involved in conidium formation and stress resistance (i.e. wetA (An01g08890), af11 (An14g06250, An02g07070, An12g10230) and sakA (An08g05850)) had high transcript levels in dormant conidia and invariably showed strong down-regulation.
FadA (An08g06130), SfaD (An18g02090) and FlbA (An02g03160) are members of one the signaling pathways that regulates the transition from vegetative growth to conidiation. Their genes are clearly expressed in germinating spores, but transcripts were also shown to be present in dormant spores. Gene fadA, which encodes an α-subunit of heterotrimeric G-proteins, was up-regulated after 2 hours of germination. The Gβ-subunit encoded by gene sfaD also showed a clear tendency in up-regulation during germination. Interestingly, flbA, which represses this signaling pathway showed a trend to down-regulation. Surprisingly, an α-subunit of the heterotrimeric G-proteins namely GanB (An08g05820), which is involved in conidial germination in A. nidulans, is lowly expressed in germinating conidia of A. niger. It signals via adenylate cyclase (An11g01520) and via the protein kinase PkaC (An02g04270) together with its regulator PkaR (An16g03740, Lafon et al. 2005)). The latter genes do exhibit characteristic expression patterns in A. niger conidia, including a very high accumulation of transcripts in dormant conidia, a strong drop at 2 hours of germination (but not to zero) and clear tendencies of up-regulation during further germination. This expression pattern is very similar to that of a gene which has a strong similarity to the Gpr1 receptor in yeast (An07g08810), which has a function as a nutrient sensing G-protein coupled receptor (Kraakman et al. 1999).

| Table 1. Over- (E) and under- (S) representation of functional gene classes in the pool of genes that are up- and down-regulated between t = 0 h and t = 2 h and between t = 2 h and t = 4 h after inoculation of conidia of A. niger. |
|---------------------------------|-----------------|-----------------|
| **01 METABOLISM** | | |
| 01.01.10 amino acid degradation (catabolism) | S | |
| 01.02.01 nitrogen and sulfur utilisation | | |
| 01.03 nucleotide metabolism | | |
| 01.03.01 purine nucleotide metabolism | E | |
| 01.03.04 pyrimidine nucleotide metabolism | E | |
| 01.05.01 C-compound and carbohydrate utilisation | | E |
| 01.05.07 C-compound, carbohydrate transport | | S |
| 01.20.05 biosynthesis of acetic acid derivatives | | |
| 01.20.05.01 biosynthesis of acetoacetate, acetone, hydroxybutyril acid | S | |
| 01.20.35 biosynthesis of secondary products derived from L-phe and L-tyr | S | |
| 01.20.37 biosynthesis of peptide derived compounds | S | |
| **02 ENERGY** | | |
| 02.11.05 accessory proteins of electron transport and energy conservation | E | |
| 02.13 respiration | | |
| 02.13.03 aerobic respiration | | |
| **03 CELL CYCLE AND DNA PROCESSING** | E | |
| 03.01.03 DNA synthesis and replication | | |
| 03.03.01 mitotic cell cycle and cell cycle control | | |
| **04 TRANSCRIPTION** | | |
| 04.01.01 rRNA synthesis | | |
| 04.01.04 rRNA processing | | |
| 04.05.05 mRNA processing (splicing, 5’-, 3’-end processing) | S | |
| 04.05.01 mRNA synthesis | S | S |
| **05 PROTEIN SYNTHESIS** | | |
| 05.04 translation | | |
| 05.04.01 initiation | | |
| **06 PROTEIN FATE (folding, modification, destination)** | | |
| 06.07.05 modification by ubiquitination, deubiquitination | S | |
| 06.13.01 cytoplasmic and nuclear degradation | S | |
| **11 CELL RESCUE, DEFENSE AND VIRULENCE** | | |
| **29 TRANSPOSABLE ELEMENTS, VIRAL AND PLASMID PROTEINS** | S | S |
| **40 SUBCELLULAR LOCALISATION** | | |
| **99 UNCLASSIFIED PROTEINS** | S | S |
Gene fluG (An14g03390) encodes a protein that is involved in the production of an extracellular factor that leads to an up-regulation of the transcription factor gene brlA. Several fb-genes play a role in this upstream regulation of brlA and three An genes (An02g05420, An12g08230, An01g04830) are highly similar to these factors. These genes were only lowly expressed (one of the two fbC analogues is up-regulated during germination), while fluG exhibits clear tendencies up-regulation of > 2-fold compared to the previous time point. As noted above, brlA is not expressed during germination. Up-regulation of fluG may fulfill another role in growth of A. niger.

Different studies have stressed the importance of a RasA signaling pathway during germination of A. nidulans conidia (Som & Kolaparthi 1994, Osherov & May 2000, Fillinger et al. 2001, Harispe et al. 2008). A gene similar to a RasA GTP-binding protein (An01g02320, rasA) is strongly up-regulated 2 h after inoculation, while rasB (An05g00370) is not expressed at all during germination.

Three A. niger genes (An01g10790, An04g02110, An12g10240) are highly homologous to (late) conidiation factors of N. crassa (Roberts & Yanofsky 1989). These transcripts show high accumulation in dormant spores of A. niger, but were detected at much lower levels at all stages of germination.

Compatible solutes

Trehalose and mannitol are needed to protect proteins and membranes against heat, drought and other stressors. These compatible solutes accumulate in dormant conidia and are degraded during germination (d’Enfert et al. 1999, Ruijter et al. 2004, Van Leeuwen et al. 2013). Conidia of A. oryzae and A. nidulans contain 0.7–1.4 pg trehalose per spore which is comparable to 2–4 % of the spore wet weight (d’Enfert & Fontaine 1997, Sakamoto et al. 2009). Trehalose biosynthesis occurs by the action of trehalose-6-phosphate synthase (TPS). It links UDP-glucose to glucose-6-

Table 2. Expression of regulatory genes in germinating conidia of A. niger. The normalised average values of three independent experiments are given. White to black shading indicate expression levels from absent (12 units of expression) to > 7000 expression units. If the outline of the boxes is dashed, the value of gene expression is significantly differentially expressed (> 2-fold) compared to the previous time point. SS = strong similarity; S = similarity; WS = weak similarity. Anid = Aspergillus nidulans; Hsap = Homo sapiens; Mgri = Magnaporthe grisea; Ncras = Neurospora crassa; Pans = Podospora anserina; Scer = Schizosaccharomyces cerevisiae.

Name	Description	Dormant	2 h	4 h	6 h	8 h
An01g10540	SS to developmental regulatory protein BrlA - Anid	17	12	12	12	12
An02g02150	SS to Medusa (MedA) - Anid [truncated ORF]	20	94	70	54	63
An01g03750	SS to protein AbA - Anid	86	76	61	51	27
An05g00480	SS to transcription factor involved in differentiation StuA - Anid	115	12	12	23	60
An02g08420	SS to hypha-like metulae protein HymA - Anid	33	27	60	92	96
An01g09800	SS to regulatory protein WetA - Anid	548	26	31	26	26
An14g06250	WS to transcription factor Atf1+ - Spom	183	23	17	19	26
An02g07070	SS to transcription factor Atf1 - Spom	1024	42	69	69	69
An12g10230	S to ATF/CREB-family transcription factor Atf21 - Spom	262	12	13	13	14
An06g05850	SS to osmosensitivity MAP kinase OSM1 (SacA) - Mgris	1191	220	293	327	416
An09g06130	SS to GTP-binding regulatory protein alpha chain FadA - Anid	300	700	588	601	677
An08g05820	SS to G protein alpha subunit Mod-D - Pans (ganB)	66	16	22	29	28
An18g02090	SS to G-protein beta subunit StfA - Anid	65	95	100	122	144
An02g03160	SS to developmental regulator FlbA - Anid	178	141	103	102	62
An19g06110	SS to related a-agglutinin core protein Aga1 - Ncra	81	56	47	54	54
An11g01520	SS to adenylate cyclase Mac1 - Mgr	532	70	78	100	131
An02g04270	cAMP-dependent protein kinase catalytic subunit PkaC - Anid	263	17	74	81	100
An16g03740	cAMP-dependent protein kinase regulatory subunit PkaR - Anid	800	20	87	128	262
An07g08810	SS to G protein-coupled receptor Gpr1 - Scer	1800	977	140	171	132
An02g01560	SS to G protein-coupled receptor Edg-4 - Hsap (gprD)	14	18	12	17	16
An01g06290	SS to hypothetical protein related to VeA - Ncra	186	55	72	66	58
An14g03390	SS to FluG - Anid	137	58	65	170	300
An02g05420	SS to putative zinc finger protein (FlbC) - Anid	25	46	49	43	45
An12g08230	SS to zinc finger protein FlbC - Anid	22	27	17	22	12
An01g04830	SS to myb-like DNA binding protein FbdB - Anid	12	31	12	26	14
An01g02320	SS to GTP-binding protein A-ras - Anid	38	152	161	288	359
An05g00370	SS to Ras-2 protein - Neurospora crassa	15	12	12	12	12
An02g08420	SS to developm. reg. of asex. and sex. reproduction DopA - Anid	32	20	49	66	107
An01g10790	SS to hypothetical conidiation-specific protein Con-10 - Ncras	2061	30	57	100	99
An04g02110	S to Con-8 - Ncras	7110	28	49	21	17
An12g10240	SS to conidiation-specific protein pCon-10a - Ncras	2876	12	12	12	12
phosphate resulting in trehalose-6-phosphate (d’Enfert et al. 1999, Avonce et al. 2006). In the next step, the phosphate is removed by trehalose-6-phosphate phosphatase (TPP), which results in the formation of trehalose. Transcripts of tpsA (An08g10510), tpsC (An14g02180), tpsB (An13g00400) and tppC (An07g08720) were found in dormant conidia (Table 3). Their levels dropped strongly 2 h after inoculation. Expression of tpsA, tpsC and tppB increased gradually after 2 h, while tppC was not up-regulated. Other predicted tps and tpp genes (i.e. An02g07770 and An11g10990) also showed a gradual increase during germination.

The transcript level of the gene encoding neutral trehalase (An01g09290) was high in conidia. This is the major enzyme needed for trehalase degradation during germination (d’Enfert et al. 1999). Transcript levels dropped dramatically during early germination and showed a clear increase during isotropic growth (d’Enfert & Fontaine 1997). The gene encoding acid trehalase (An01g09290) is involved in extracellular trehalase degradation during vegetative growth (d’Enfert & Fontaine 1997). Transcript levels of this gene are low in dormant conidia but clearly increase during germination. Taken together, transcripts of most trehalose-synthesising and degrading enzymes are relatively abundant in dormant conidia. After a strong decrease of the levels at 2 h, their expression gradually increases.

Manitol is present in higher amounts than trehalose in A. niger conidia and makes up 10–15 % of the dry weight (Witteveen & Visser 1995, Ruijter et al. 2003). Manitol dehydrogenase (MDT) converts manitol into fructose and vice versa. Fructose enters glycolysis if it is converted via fructose-6-phosphate and fructose-1,6-diphosphate into glyceraldehyde-3-phosphate. Fructose-6-phosphate can be reduced to mannitol-1-phosphate by mannitol-1-phosphate dehydrogenase (MPD) or can enter glycerol metabolism. Transcripts of mtdA (An15g005450, R.P. de Vries, personal communication) and mpdA (An02g05830) were abundant in dormant spores (Table 3). Like the genes involved in synthesis and degradation of trehalose, levels of mtdA and mpdA initially strongly dropped, after which they gradually increased during germination.

Table 3. Expression of genes involved in metabolism of compatible solutes

Name	Description	Dormant	2 h	4 h	6 h	8 h
An08g10510	trehalose-6-phosphate synthase subunit 1 TpsA - Anig	871	44	100	175	270
An14g02180	SS to trehalose-6-phosphate synthase TpsB - Anig	456	6	59	69	134
An07g08710	α,α-trehalose-phosphate synthase 2 TpsB - Anig	121	45	100	87	99
An02g07770	SS to trehalose synthase Tsase - Gnfola frondosa	139	22	106	173	494
An13g00400	SS to reg. sub. treh-6-P synthase/phosphatase complex Tps3 - Scer	392	34	19	21	45
An07g08720	SS to 123K chain α,α-trehalose-phosphate synthase Tal1 - Scer	286	19	31	19	27
An11g10990	SS to TPP of patent WO200116357-A2 - Scer	96	104	123	136	198
An01g09290	SS to neutral trehalase (TreB) - Anid	1203	17	60	87	178
An01g01540	SS to α,α-trehalase TreA - Anid	22	31	42	66	329
An02g05830	SS to manniitol-1-phosphate 5-dehydrogenase MtdID - Smut	140	16	27	30	153
An15g05450	SS to NADPH-dependent carbonyl reductase S1 - Candida magnoliace	425	84	894	606	862
An03g02430	SS to manniitol dehydrogenase Mtd - Pseudomonas fluorescens	645	36	77	119	200
An02g07610	SS to manniitol transporter Mat1 - Apium graveolens	467	12	12	12	12

Conidiation, heat shock proteins and other protective factors

A number of abundant transcripts in dormant conidia are predicted to encode protective proteins (Table 4). The levels of these transcripts have dropped sharply at 2 h. Gene An02g07350 encodes a protein that is homologous to group 3 LEA proteins that protect seeds against drought stress (Chakrabortee et al. 2007, Tompa & Kovacs 2010). The putative protective proteins also include dehydrin-like proteins as described in A. fumigatus (An13g01110 and An14g05070, Wong Sak Hoi et al. 2011) and heat shock proteins. For instance, the protein encoded by An06p01610 is homologous to heat-shock protein Hsp9 of Schizosaccharomyces pombe. This protein is also very similar to Hsp12 of S. cerevisiae that has been designated as LEA-like and which has been shown to stabilise the plasma membrane (Sales et al. 2000). Gene An01g13350 encodes a homologue of the heat shock protein Hsp104, which together with trehalose provides acquired heat resistance when expressed in yeast cells (Elliott et al. 1996). A number of 10 other genes predicted to encode heat shock proteins (e.g. An15g05410, An07g09990 and An18g00600) also show high accumulation in dormant spores, but some are even further up-regulated at later stages (e.g. An16g09260, An11g00550, and An08g05300). Interestingly a transcript (An01g00160) that is predicted to be a regulator of the unfolded protein response (Hac1p in yeast) is also highly present in dormant conidia.

Catalase, superoxide dismutase, glutathione, and thioredoxin also protect conidia by opposing oxidative stress that occurs during air transport or after rewetting of dried spores. Transcripts of genes similar to catalase encoding genes (i.e. An01g01830, An12g10720, An09g03130, and An08g08920) were highly present in dormant conidia, but to a much lesser extent in germinating spores. Gene An07g03770, which is predicted to encode a superoxide dismutase, had high mRNA levels in dormant cells. After an initial sharp drop, mRNA levels of this gene increased again 4 h after inoculation. Transcripts of genes involved in the synthesis of glutathione (i.e. An02g06560, An01g15190 and An09g06270) were highly represented in dormant conidia, but were somewhat down-regulated in germinating spores. In contrast, genes predicted to encode thioredoxin showed similar levels of transcripts in dormant and germinating conidia. Taken together, mRNA of genes encoding catalase, superoxide dismutase and genes involved in the synthesis of glutathione and thioredoxin are abundant in dormant conidia and show a strong drop after start of germination. These data suggest that stress resistance of conidia may drop strongly very early during germination.

!www.studiesinmycology.org
Cell wall modulation

Conidia of *A. niger* possess a relatively thick, layered cell wall, of which the pigmented outer cell wall is shed during germination (Tiedt 1982). The spores contain complex melanin pigments (see Krijgsheld et al. 2012). Transcripts of three genes (An03g03750, An09g05730, An14g05350) of the melanin synthesis pathway (Jorgenson et al. 2010) were present in dormant conidia but disappeared during germination. Transcripts of five out of seven genes that code for proteins with similarity to hydrophobins are highly accumulated in dormant conidia and drop strongly upon activation of germination.

Transcripts of genes encoding cell wall degrading and synthesising enzymes were present at every stage of germination (Table 5). A transcript similar to a GPI-anchored chitinase ChiA (An09g06400, Yamazaki et al. 2008) was most highly expressed 6–8 h after inoculation. This enzyme is associated with polarised growth in *A. nidulans*, which makes sense while germ tubes were formed 6–8 h after inoculation. Gene An04g1430 which also has strong similarity to ChiA was highly expressed 8 h after inoculation but transcripts were also abundant in dormant conidia. This suggests an active role during other processes, for instance during spore formation. Chitin synthases are the counterparts of chitinases and reported to be present in the fungal cell (Horiuchi 2009). Transcripts of An07g05570 (*chs1*, *A. nidulans*), An09g04010 (*chsC*, *A. fumigatus*) and An12g10380 (*chsC*, *A. fumigatus*) accumulated 2 h after inoculation, whereas transcripts of An02g02340 and 02360 were present at all stages. The latter genes were similar to csmA, a class V chitin synthase with a myosin motor domain, which has been associated with hyphal tip growth (Takeshita et al. 2005).

Transcripts of two genes that encode glucanases that degrade glucan in the cell wall were observed during germination; one gene (An08g10740) is up-regulated during germination while the other (An12g09130) showed its highest accumulation in dormant conidia. The normalised average values of three independent experiments are given. White to black shading indicate expression levels from absent (12 units of expression) to > 6500 expression units. For further explanation see Table 2. Mmar = *Methylobacter marinus*; Nmen = *Neisseria meningitidis*; Pchry = *Penicillium chrysogenum*; Zmay = *Zea mays*.

Name	Description	Dormant	2 h	4 h	6 h	8 h
An02g07350	WS to group 3 Lea protein MgI3 - Zmay	4559	20	122	72	74
An13g01110	S to hypothetical protein An14g05070 (dehydrin) - Ang	550	15	32	19	18
An14g05070	WS to heterokaryon incompatibility protein Het-C (dehydrin) - Ncra	785	12	106	19	13
An06g16160	SS to the heat shock protein Hsp10 - Spom	4577	80	248	525	460
An01g13350	SS to heat shock protein Hsp104 - Socr	365	13	28	40	61
An15g05410	SS to heat shock protein Hsp30- Anid	1275	31	27	32	30
An19g06650	SS to heat shock protein Hsp30 - Anid	610	37	93	118	97
An07g09990	SS to heat shock protein Hsp70 - Ajellomyces capsulata	4139	1247	2733	2140	1895
An03g04000	S to the heat shock protein Hsp42 - Socr	61	23	28	21	19
An11g08220	S to heat shock protein Hsp70 patent WO20034465-A2 - Nmen	476	12	12	12	12
An19g06060	SS to heat shock protein Hsp30 - Ncras [truncated ORF]	513	12	12	38	12
An11g00550	SS to chaperonin Hsp10 - Socr	303	537	704	647	685
An09g05300	SS to heat shock protein Hsp70 Pss1+ - Spom	251	513	803	692	558
An12g04940	SS to mitochondrial heat shock protein Hsp60 - Socr	522	1011	1211	1158	1036
An16g09260	SS to DnaK-type molecular chaperone Ssb2 - yeast Socr	3585	6678	6741	6299	6103
An08g03480	SS to the mitochondrial heat shock protein Hsp78p - Socr	618	57	201	217	361
An01g00160	S to regulator of unfolded protein response (UPR) Hac1p - Socr	668	219	244	441	619
An08g08920	SS to catalase C CatC - Anid	78	24	56	29	29
An09g03130	SS to catalase CatB - Anid	3106	24	34	29	37
An12g10720	SS to catalase Methanosaarcina Barkeri	1978	12	12	12	12
An01g01830	SS to catalase/peroxidase CpeB - Streptomyces reticuli	555	27	49	49	61
An07g3770	SS to Cu,Zn superoxide dismutase SodC - Afum	3091	12	529	856	1380
An02g05650	SS to glutathione S-transferase iso1 - Rhodococcus sp.	379	12	49	75	185
An01g15190	SS to glutathione-dependent formaldehyde dehydrogenase Fdh - Mmar	568	12	12	12	12
An09g06270	SS put.glutath.-depend. formal. dehydrogen. SPBC1198.01 - Spom	6489	26	396	239	323
An16g06100	S to glutathione S-transferase Gat1 - Ascaris suum	64	12	28	18	12
An13g02540	SS to glutathione S-transferase Gt1 - Socr	150	14	16	39	176
An02g08110	SS to glutathione peroxidase Hyr1 - Socr	251	50	132	193	337
An19g02500	SS to thioredoxin - Anid	1002	241	164	142	208
An01g08570	SS to thioredoxin reductase TrxB - Pchry	77	138	148	135	128
An11g07230	S to mitochondrial thioredoxin of patent W08832863-A2 - Rattus sp.	194	22	20	12	15
An03g02980	SS to thioredoxin - Anid	65	154	206	191	242
conidia and 8 h old germlings. A gene similar to a glucan synthase of Paracoccidioides brasiliensis (Sorais et al. 2010, An06g01550) was highly up-regulated 2 h after inoculation and levels remained high up to 8 h. Another gene that is predicted to encode a glucan synthase (An09g04010, similar to mok1 of S. pombe, Katayama et al. 1999) had similar expression levels throughout germination. Other genes shown in Table 5 are related to cell wall processing. Their encoding proteins make cross-links between 1,6- and 1,3 glucans and between glucans and chitin (see Fontaine et al. 1997, Rodriguez-Peña et al. 2000, Cabib 2009). These genes had accumulated transcripts in dormant conidia (An08g03580), after 2 h or 8 h. During all stages of germination, specific activities of enzymes can be seen, but most are highly expressed after 2 h.

DISCUSSION

In this study the transcriptome of dormant and germinating conidia of the fungus *A. niger* was studied. In fact, this is the first report describing a whole genome expression analysis of dormant and germinating conidia within the class Eurotiomycetes. This class contains, among others, the genera *Aspergillus* and *Candida*. The normalised average values of three independent experiments are given. White to black shading indicate expression levels from absent (12 units of expression) to > 7100 expression units. For further explanation see Table 2. Afum = *Aspergillus fumigatus*; Cabi = *Candida albicans*; Ccin = *Coprinopsis cinerea*, Cmin = *Coniothyrium minitans*; Pbra = *Paracoccidioides brasiliensis*, Tree = *Trichoderma reesei.*

Name	Description	Dormant	2 h	4 h	6 h	8 h
An14g03350	SS to yellow-green 1 Agy1 - Afum	111	24	25	15	12
An09g05730	SS to polyketide synthase Ab1 - Afum	46	12	12	17	21
An03g03750	SS to brown 2 Ab2 - Afum	59	14	14	16	19
An03g02360	S to the spore-wall fungal hydrophobin DewA - Anid	1286	12	15	12	12
An03g02400	SS to the spore-wall fungal hydrophobin DewA - Anid	3110	60	60	36	34
An04g08500	SS to rodletless protein RodA - Anid	252	19	16	17	18
An12g05020	S to hydrophobin Hfb1 - Tree	12	12	12	12	64
An07g03340	SS to hydrophobin Hyp1 - Afum	812	63	48	35	
An08g09880	WS to hydrophobin Coh1 - Coin	159	17	17	12	12
An09g06400	SS to chitinate ChaA - Anid	32	17	17	17	12
An04g01430	WS to the chitinate ChaA - Anid	987	26	123	310	1341
An06g01000	SS to protein related to chitinase 3 precursor - Ncra	68	162	768	588	634
An07g05570	SS chitin synthase Chs1 - Anid	20	17	17	12	12
An09g04010	SS to chitin synthase ChsC - Afum	145	134	134	128	160
An12g10380	SS to chitin synthase C ChsC - Afum	100	134	134	128	160
An02g02340	SS to the chitin synthase with a myosin motor-like domain CsmA - Anid	228	188	232	227	281
An02g02360	SS to CsmA - Anid [truncated ORF]	76	174	163	175	213
An09g02290	SS to chitin synthase ChsE - Anid	29	32	14	46	107
An08g10740	SS to ZmGnsN3 glucanase of patent WO200073470-A2 - Zmay	177	226	473	597	617
An12g09130	S to glucanase ZmGnsN3 of patent WO200073470-A2 - Zmay	333	24	135	205	454
An06g01550	SS to glucan synthase Fks - Pbra	181	2417	1597	1490	1737
An17g02120	SS to 1,3-beta-glucan synthase Gs-1 - Ncra	68	132	111	120	119
An09g03070	SS to alpha-glucan synthase Mok1 - Spom	432	481	333	357	
An04g09890	SS to cell wall alpha-glucan synthase Ags1 - Spom	14	45	17	19	
An11g07660	S to exo-1,3-beta-glucanase Xog - Cabi	71	52	77	117	
An03g05290	S to glucan 1,3-beta-glucosidase Bgt2 - Scer	23	215	134	151	
An07g04650	S to exo-beta-1,3-glucanase Bgt2 - Scer	233	12	12	12	29
An19g00990	SS to the exo-1,3-glucanase Cmg1 - Cmin	36	213	628	1297	
An16g08800	SS to endoglucanase Egf - Anig	34	30	30	51	127
An03g06220	SS to beta (1-3) glucanosyltransferase Gel3 - Afum	12	12	12	27	98
An16g02850	SS to cell wall glucosidase Ch1 - Scer	69	52	52	112	142
An01g11010	SS to the cell wall protein Ch1 - Scer	54	78	78	54	156
An07g01160	SS to cell wall protein Utr2 - Scer	12	102	83	109	
An07g07530	SS to cell wall protein Utr2 - Scer	80	692	660	793	
An08g03580	SS to 1,3-beta-glucosyltransferase Bgt1 - Afum	7135	104	75	56	
An10g00400	SS to beta(1,3)glucanosyltransferase Gel1 - Afum	36	455	480	751	
An16g07040	S to beta-1,3-glycosyltransferase Bgt1 - Afum [truncated ORF]	14	481	1148	2037	

Table 5. Expression of genes involved in the production of enzymes involved in cell wall synthesis or processing. The normalised average values of three independent experiments are given. White to black shading indicate expression levels from absent (12 units of expression) to > 7100 expression units. For further explanation see Table 2. Afum = *Aspergillus fumigatus*; Cabi = *Candida albicans*; Ccin = *Coprinopsis cinerea*, Cmin = *Coniothyrium minitans*; Pbra = *Paracoccidioides brasiliensis*, Tree = *Trichoderma reesei.*
Penicillium. The data show that the RNA profile of dormant conidia is substantially different when compared to all other stages of germination, each of which is characterised by a typical morphology. A transcriptome reorganisation was shown to take place before the stage of isotropic growth, after which RNA profiles changed gradually. These changes are illustrated by the correlation coefficients of the profiles of dormant conidia and germinating conidia 8 h after inoculation (0.46) and those of conidia 2, 4 and 6 h after inoculation with that of 8 h after inoculation (0.76 to 0.93).

Dormant conidia

About half of the 14 253 genes are expressed in a vegetative mycelium of A. niger (Levin et al. 2007), while approximately 40 % of the genes are active in the aerial structures (i.e. aerial hyphae, conidiophores, conidiospores) (Bleichrodt et al. 2013). Transcripts of 33 % of the genes were detected in dormant conidia, which is in good agreement with the finding that 42 % and 27 % of the genes had transcripts in dormant conidia of Fusarium graminearum (Seong et al. 2008) and Aspergillus fumigatus (Lamarre et al. 2008). The lower complexity of the RNA in conidia when compared to the vegetative mycelium and the aerial structures is explained by the fact that these spores represent a single cell type. In contrast, vegetative mycelium and aerial structures consist of different types of hyphae and cells (Krijgsheld et al. 2013). For instance, the vegetative mycelium consists of hyphae that differ in age, in morphology and in the environmental conditions they are exposed to. In fact, even expression profiles of neighboring hyphae are highly different (Vinck et al. 2005, 2011, De Bekker et al. 2011). It would be interesting to assess to which extent dormant spores are also heterogenic with respect to their RNA profiles.

Lamarre et al. (2008) showed that the RNA profile of dormant conidia of A. fumigatus only changes marginally during a storage period of one year. It is thought that the mRNAs in dormant conidia function as a pool of pre-packed mRNAs primed for translation (Osherov et al. 2002, Lamarre et al. 2008). This would enable the conidium to respond quickly and specific after the onset of germination. Indeed, a Fisher exact test showed that transcripts belonging to the functional gene classes protein synthesis and its subcategories translation and initiation were over-represented in the up-regulated genes. Moreover, the categories energy (including the sub-category respiration), cell cycle & DNA processing as well as transcription (with its sub-categories rRNA synthesis and rRNA processing) were over-represented. On the other hand, genes involved in mRNA processing were under-represented in the up-regulated genes. Taken together, the composition of the RNA profiles of the dormant conidium and conidia 2 h after inoculation indicate that protein synthesis is key during early germination. A similar phenomenon has been described for A. fumigatus (Lamarre et al. 2008). The importance of protein synthesis in early stages of germination is also indicated by the fact that the protein synthesis inhibitor cycloheximide prevents isotropic growth, while inhibitors of the cytoskeleton and DNA- and RNA synthesis had no effect (Osherov & May 2000).

In this study, the distinct morphological changes that occur during germination are not correlated with the highest change in the transcriptome. This is of interest as Kasuga et al. (2005) concluded that transcriptional and morphogenetic change during conidial germination are highly coupled in case of N. crassa. Two h after inoculation, transcripts of only 3 557 genes were present in the conidia of A. niger. This number increased to 4 780 8 h after inoculation. Differential expression of genes was relatively low. Between 16 and 383 genes were ≥ 2-fold up-regulated between 2 and 4 h, 4 and 6 h, and 6 and 8 h. On the other hand only 3–45 genes were ≥ 2-fold down-regulated during these stages. The minor changes in gene expression is also illustrated by the fact that during 2 and 8 h post-inoculation only the categories metabolism and cell cycle and DNA processing were over-represented in the up-regulated genes between 2 and 4 h. The latter suggests that the conidium prepared itself for mitosis which indeed occurred a few hours later. Taken together, germination of A. niger is typified by one large transcriptional transition (i.e. during the first two h after inoculation). Germination in the protonozoa Dictyostelium discoideum is also characterised by such a transcriptional transition (Xu et al. 2004).

Further studies on conidial germination should provide mechanisms underlying the transition of the RNA profile early during spore germination. Perturbation of early germination with natamycine showed that transcriptome reorganisation occurs to a similar scale despite the presence of the antifungal (Van Leeuwen et al. 2013). This suggests that transcriptome reorganisation is a relatively endogenous process that plays an important role in the transition from a stabilised fungal conidium towards a vegetative growing cell.

Germinating conidia

Lamarre et al. (2008) studied changes in expression profiles during early germination of A. fumigatus conidia by means of macro-arrays that covered approximately 3 000 genes. Differential expression of near 800 genes (80 % being up-regulated) was observed after 30 min of germination at 37 °C. In our study, a whole genome expression analysis was performed during early germination. The first two h after inoculation (i.e. before the stage of isotropic growth) is characterised by disappearance of transcripts. As mentioned above, transcripts of 1986 genes were no longer detected. On the other hand, 917 genes became active. Transcripts belonging to the functional gene classes protein synthesis and its subcategories translation and initiation were over-represented in the up-regulated genes. Moreover, the categories energy (including the sub-category respiration), cell cycle & DNA processing as well as transcription (with its sub-categories rRNA synthesis and rRNA processing) were over-represented. On the other hand, genes involved in mRNA processing were under-represented in the up-regulated genes. Taken together, the composition of the RNA profiles of the dormant conidium and conidia 2 h after inoculation indicate that protein synthesis is key during early germination. A similar phenomenon has been described for A. fumigatus (Lamarre et al. 2008). The importance of protein synthesis in early stages of germination is also indicated by the fact that the protein synthesis inhibitor cycloheximide prevents isotropic growth, while inhibitors of the cytoskeleton and DNA- and RNA synthesis had no effect (Osherov & May 2000).

In this study, the distinct morphological changes that occur during germination are not correlated with the highest change in the transcriptome. This is of interest as Kasuga et al. (2005) concluded that transcriptional and morphogenetic change during conidial germination are highly coupled in case of N. crassa. Two h after inoculation, transcripts of only 3 557 genes were present in the conidia of A. niger. This number increased to 4 780 8 h after inoculation. Differential expression of genes was relatively low. Between 16 and 383 genes were ≥ 2-fold up-regulated between 2 and 4 h, 4 and 6 h, and 6 and 8 h. On the other hand only 3–45 genes were ≥ 2-fold down-regulated during these stages. The minor changes in gene expression is also illustrated by the fact that during 2 and 8 h post-inoculation only the categories metabolism and cell cycle and DNA processing were over-represented in the up-regulated genes between 2 and 4 h. The latter suggests that the conidium prepared itself for mitosis which indeed occurred a few hours later. Taken together, germination of A. niger is typified by one large transcriptional transition (i.e. during the first two h after inoculation). Germination in the protonozoa Dictyostelium discoideum is also characterised by such a transcriptional transition (Xu et al. 2004).

Further studies on conidial germination should provide mechanisms underlying the transition of the RNA profile early during spore germination. Perturbation of early germination with natamycine showed that transcriptome reorganisation occurs to a similar scale despite the presence of the antifungal (Van Leeuwen et al. 2013). This suggests that transcriptome reorganisation is a relatively endogenous process that plays an important role in the transition from a stabilised fungal conidium towards a vegetative growing cell.

ACKNOWLEDGEMENTS

MRVL was supported by The Netherlands Technology Foundation (STW) Open technology project UBC.6524. The authors thank Ferry Hagen, Timon Wyatt and Frank Segers (at the CBS-KNAW Fungal Biodiversity Centre), Jan Grijpstra (Utrecht
University for advice during this study. Eefjan Breukink, Yvonne te Welscher and Ben de Kruijf (Department of Biochemistry of Membranes, Utrecht University, The Netherlands) are thanked for fruitful discussions throughout this study.

REFERENCES

Abdel-Rahim AW, Arbab HA (1985). Factors affecting spore germination in Aspergillus niger. Mycopathologia 89: 75–79.

Avonce N, Mendoza-Vargas A, Morett E, Iturriaga G (2006). Insights on the evolution of mycotoxin producers. In: Frisvad JC, Thrane U, Samson RA, eds. The Mycota. I. Growth, Differentiation and Sexuality. CBS 69: S141–S152.

Berg J, Jørgensen TR, Park J, Arentshorst M, Welzen AM van, Lamers G, et al. (2011). The molecular and genetic basis of conidial pigmentation in Aspergillus niger. Fungal Genetics and Biology 48: 544–553.

Karos M, Fischer R (1999). Molecular characterization of HymA, an evolutionarily highly conserved and exceptionally protein of Aspergillus nidulans. Molecular and General Genetics 260: 510–521.

Kasuga T, Townsend JP, Tian C, Gilbert LB, Mannhaupt G, Taylor JW, Glass NL (2005). Long-oligomer macroarray profiling in Neurospora crassa reveals the transcriptional program underlying biochemical and physiological events of conidial germination. Nucleic Acid Research 33: 6469–6485.

Kasuga T, Hira et A, Arbel M, Pérez P, Toda T (1999). Fission yeast α-glucan synthase Mok1 requires the actin cytoskeleton to localize the sites of growth and plays an essential role in cell morphogenesis downstream of protein kinase C function. Journal of Cell Biology 144: 1173–1186.

Köhler M, Galait V, Boudier K, Robinson RW, Phillipson P (2008). Growth-speed correlated localization of exocyt and polarisome components in growth zones of Asbya gossypii hyphal tips. Journal of Cell Science 121: 3879–3889.

Kraakman L, Lemaire K, Ma P, Teunissen AW, Donaton MC, Dijk P, Winderickx J, Winde de J, Thevelein JM (1999). A Saccharomycopsis cerevisiae G-protein coupled receptor, Gpr1, is specifically required for glucose activation of the cAMP pathway during the transition to growth on glucose. Molecular Microbiology 32: 1002–1012.

Kraakman L, Bleichrodt RJ, Veluw GJ van, Wang F, Müller WG, et al. (2013). Development of Aspergillus. Studies in Mycology 74: 1–29.

Lafon, A, Geo, JA, Han, KH, Yu, JH, d’Enfert (2005). The heterotrimeric G-protein Gar(aLpha)-SfB(dbeta)-GppA(gamma) is a carbon source sensor involved in early cAMP-dependent germination in Aspergillus nidulans. Genetics 171: 71–80.

Lamare C, Sokol S, Depeauvilliers P, Henry C, Lautrich C, Gasper P, Coppée JY, Francois JM, Latgé JP (2008). Transcriptomic analysis of the exit from dormancy of Aspergillus fumigatus fumigatus. BMC Genomics 9: 417–422.

Leeuwen MR van, Smart W, Boer W de, Dijksterhuis J (2008). Filipin is a reliable in situ marker of ergosterol in the plasma membrane of germinating conidia (spores) of Penicillium discolor and stains intensively at the site of germ tube formation. Journal of Microbiological Methods 74: 64–73.

Leeuwen MR van, Doorn TM van, Golovina EA, Stark J, Dijksterhuis J (2010). Water- and air-distributed conidia differ in sterol content and cytoplasmic microviscosity. Applied and Environmental Microbiology 76: 366–369.

Leeuwen MR van, Krijgsheld P, Wyatt TT, Golovina EA, Menke H, Dekker A, Stark J, Stam H, Bleichrodt R, Wösten HAB, Dijksterhuis J (2013). The effect of natamycin on the transcriptome of conidia of Aspergillus nidulans. Studios in Mycology 74: 81–95.

Levin AM, Vries RP de, Conesa A, Bekker C de, Talon M, Menke HH, Peij BN van, Wösten HAB (2007). Spatial differentiation in the vegetative mycelium of Aspergillus nidulans. Eukaryotic Cell 6: 2311–2322.

Liebermann B, Muller M, Braun A, Brakhage AA (2004). The cyclic AMP-dependent protein kinase a network regulates development and virulence in Aspergillus fumigatus. Infection and Immunity 72: 5193–5203.

Meyer V, Wu B, Ram AF (2011). Aspergillus as a multi-purpose cell factory: current status and perspectives. Biotechnology Letters 33: 469–476.

McCartney A, West J (2007). Dispersal of fungal spores through air. In: Food Mycology: A multifaceted approach to fungi and food. Dijksterhuis J, Samson RA, eds. CRC press, Taylor & Francis group, Boca Raton: 65–81.

Mirkes PE (1974). Polysomes, ribonucleic acid, and protein synthesis during germination of Neurospora crassa conidia. Journal of Bacteriology 117: 196–202.

Momany M (2002). Polarity in filamentous fungi: establishment, maintenance and new axes. Current Opinion in Microbiology 5: 580–585.

Navarro-Bordonaba J, Adams TH (1996). Development of conidia and fruiting bodies in Ascomycetes. In: The Mycota. I. Growth, Differentiation and Sexuality.應用和 Environmental Microbiology 72: 1593–1602.

Veyder M, Wu B, Ram AF (2011). Aspergillus as a multi-purpose cell factory: current status and perspectives. Biotechnology Letters 33: 469–476.

Osborn N, May GS (2003). Conidial germination in Aspergillus nidulans requires RAS signaling and protein synthesis. Genetics 155: 647–656.

Ostervig, N, May GS (2001). The molecular mechanisms of conidial germination. FEMS Microbiology Letters 199: 153–160.

Ostervig, N, Mathew J, Romana A, May G (2002). Identification of conidial-enriched transcripts in Aspergillus nidulans using suppression subtractive hybridization. Fungal Genetics and Biology 37: 197–204.

Pasan RC, Miller BL (2000). Morphogenesis in Aspergillus nidulans requires Dopey (Dope), a member of a novel family of leucine zipper-like proteins conserved from yeast to humans. Molecular Microbiology 36: 1250–1264.

Pel HJ, Winde de J, Archer DB, Dyer PS, Hofmann G, et al. (2007). Genome sequencing and analysis of the versatile cell factory Aspergillus niger CBS 513.86. Nature Biotechnology 2: 221–231.
Pepper SD, Saunders EK, Edwards LE, Wilson CL, Miller CJ (2007). The utility of MAS5 expression summary and detection call algorithms. BMC Bioinformatics 8: 273.

Reyes G, Romans A, Nguyen CK, May GS (2006). Novel mitogen-activated protein kinase MpkC of Aspergillus fumigatus is required for utilization of polyol alcohol sugars. Eukaryotic Cell 5: 1934–1940.

Rodríguez-Peña RN, Cid V, Arroyo J, Nombela C (2000). A novel family of cell-wall related proteins regulated differently during the yeast life cycle. Molecular and Cellular Biology 20: 3245–3255.

Roberts AN, Yanofsky C (1989) Genes expressed during conidiation in Neurospora crassa: characterization of con-8. Nucleic Acids Research 17: 197–214.

Ruepp A, Zollner A, Maier D, Albermann K, Hani J, Mokrejs M, Tetko I, Guldener U, Mannhaupt G, Munsterkotter M (2004). The FunCat, a functional annotation scheme for systematic classification of proteins from whole genomes. Nucleic Acids Research 32: 5539–5545.

Ruijter GJG, Bax M, Patel H, Flitter SJ, Vondervoort PJL van de, Vries RP de, Kuyk R, Visser J, Rinzema A (2004). Polyol accumulation by Aspergillus niger conidiospores. Eukaryotic Cell 2: 680–698.

Ruijter GJG, Visser J, Rinzena-A (2004). Polyol accumulation by Aspergillus oryzae at low water activity in solid-state fermentation. Microbiology 150: 1095–1101.

Sakamoto K, Iwashita K, Yamada O, Kobayashi K, Mizuno A, Akita O, Mikami S, Shimoi H, Gomi K (2009). Aspergillus oryzae atfA controls conidial germination and stress tolerance. Fungal Genetics and Biology 46: 887–897.

Seong KY, Zhao X, Xu JR, Guldener U, Kistler HC (2008). Conidial germination in the filamentous fungus Fusarium graminearum. Fungal Genetics Biology 45: 389–399.

Snowdon AL (1990). A color atlas of post-harvest diseases and disorders of fruit and vegetables: General introduction and fruits. Wolfe Scientific, London, UK.

Som T, Kolaparthi VSR (1994). Developmental decisions in Aspergillus nidulans are modulated by Ras activity. Molecular and Cellular Biology 14: 5333–5348.

Sorais F, Barreto L, Leal JA, Bernabé M, San-Blas G, Niño-Vega GA (2010). Cell wall glucan synthases and GTPases in Paracoccidioides brasiliensis. Medical Mycology 48: 35–47.

Taheri-Talesh N, Horta T, Araujo-Bazán L, Dou X, Espeso EA, Pefalva MA, Osmani SA, Oakley BR (2008). The tip growth apparatus of Aspergillus nidulans. Molecular Biology of the Cell 19: 1439–1449.

Takehita N, Ohta A, Horiuichi H (2005). CsmA, a class V chitin synthase with a myosin motorlike domain, is localized through direct interaction with the actin cytoskeleton in Aspergillus nidulans. Molecular Biology of the Cell 16: 1961–1970.

Tiedt LR (1993). An electron microscope study of conidiogenesis and wall formation of conidia of Aspergillus niger. Mycological Research 12: 1459–1462.

Thanh NV, Rombouts FM, Nout MJR (2005). Effect of individual amino acids and glucose on activation and germination of Rhizopus oligosporus sporangiospores in tempe starter. Journal of Applied Microbiology 99: 1204–1214.

Thewelein JM (1996). Regulation of trehalose metabolism and its relevance to cell growth and function. In: The Mycota. III. Biochemistry and Molecular Biology. Brambl R, Marzluf GA, eds. Springer-Verlag, Berlin: 395–420.

Tomba P, Kovacs D (2010). Intrinsically disordered chaperones in plants and animals. Biochemistry and Cell Biology 88: 167–174.

Vinck A, Terlou M, Pestman WR, Martens EP, Ram AF, Hondel CA van den, Wösten HA (2005). Hyphaal differentiation in the exploring mycelium of Aspergillus niger. Molecular Microbiology 58: 693–699.

Wong Sai Kow JW, Lamrarre C, Beau R, Meneau I, Berepki A, Barre A, Mellado E, Read ND, Latgé JP. (2011) A novel family of dehydrin-like proteins is involved in stress response in the human fungal pathogen Aspergillus fumigatus. Molecular Biology of the Cell 22: 1896–906.

Witteveen OFB, Visser J (1995). Polyol pools in Aspergillus niger. FEMS Microbiology Letters 134: 57–62.

Xu Q, Ibarra M, Mahadeo D, Shaw C, Huang E, Kupsa A, Cotter D, Shaulsky G (2004). Transcriptional transitions during Dicyostelium sporifer germination. Eukaryotic Cell 5: 1101–1110.

Yamazaki H, Tanaka A, Kaneko J, Ohta A, Horiuichi H (2008). Aspergillus nidulans ChiA is a glycosylphosphatidylinositol (GPI)-anchored chitinase specifically localized at polarized growth sites. Fungal Genetics and Biology 45: 963–972.

Zhang W, Panepeinto JC, Fortwengel JR, Fox L, Oliver BG, Aikew DS, Rhodes JC (2006). Deletion of the regulatory subunit of protein kinase A in Aspergillus fumigatus alters morphology, sensitivity to oxidative damage, and virulence. Infection and Immunity 74: 4865–4874.
SUPPLEMENTARY INFORMATION

A

Time (h)	µg/10^8 conidia	260/280	260/230	260/270
0 h	7.9 ± 1.4	2.1	2.3	1.24
2 h	19.7 ± 12.0	2.2	2.5	1.26
4 h	31.1 ± 12.0	2.2	2.5	1.25
6 h	58.6 ± 2.4	2.1	2.4	1.23
8 h	52.9 ± 7.8	2.1	2.4	1.22

B

Fig. S1. Quality control of RNA extracted from dormant and germinating conidia. (A) Spectrophotometric data showing concentration and quality relevant ratios. (B) Two examples of Agilent 2100 Bioanalyzer™ electropherograms.