The Health Consequences of Social Mobility in Contemporary China

Fei Yan
Tsinghua University

Guangye He
Nanjing University

Yunsong Chen
Nanjing University

(October 18, 2018)

Abstract

Although numerous studies have shown the importance of an individual’s socioeconomic status on his or her self-rated health status, less well-known is whether self-perceived class mobility, a measure highly correlated with an individual’s de facto social class and past mobility experiences, affects self-rated health. In this paper, we attempt to fill the gap by examining how perception of class mobility is associated with self-rated health. Using eight waves of Chinese General Social Survey data spanning the years 2005 to 2015, we conducted an analysis at the micro (individual) level and the macro (provincial) level. Analyses at both levels yielded consistent results. At the individual level, we employed ordered logistic regression and found that those who perceived themselves as experiencing upward mobility were associated with higher health status compared with those experiencing downward mobility. At the provincial level, the findings from static panel analysis further revealed the positive relationship between the two measures.

Keywords: self-rated health, social mobility, China, upward mobility, downward mobility
1. Introduction

Research on the relationship between an individual’s social class and health has been plentiful in the last few decades, and much scholarly discussion has been devoted to the relative explanatory power of two main hypotheses: social causation and health selection (Elliott, 2018; Rosenberg, 2014; Dorling, 2015; Simandan, 2011).

The social causation hypothesis argues that health is affected by socially determined structural factors. Family income, an individual’s employment status, childhood living conditions, and mobility trajectories are common variables that help measure how an individual’s social mobility affects his or her health. Early research indicated that upward social mobility is accompanied by better health, while downward social mobility leads to poorer health (Lundberg, 1991; Rodgers and Mann, 1993; Wadsworth, 1986; Wadsworth, et al. 1997). However, recent research seems to have challenged these results, showing that while downward social mobility does indeed predict negative health, upward social mobility is not always accompanied by improved health (Collins et al., 2015; Lee and Huang, 2015). One study even proposed that upward mobility would result in poorer health and downward mobility to better health (Bartley and Plewis, 1997), based on the observation that individuals and families who experience rapid upward mobility may at the same time become socially isolated and excluded from both their original class and their new class group (Bourdieu, 1984; Simandan, 2016), thus increasing the risk of negative physical and mental health. Sorokin (1959) also proposed that although societies with inter-class mobility are more dynamic and active, individuals in such societies usually experience more life stress and low social trust. Moreover, individuals in socially
mobile societies find it harder to form intimate relationship, and the weak social ties that result can lead to more mental illnesses among adults.

The health selection hypothesis maintains that social mobility is affected by health—the healthier the individual, the more likely his or her upward social advance; the less healthy the individual, the more likely his or her downward social movement (Dahl, 1996). According to this argument, health does play an important role in social mobility, affecting education, performance in the labor market, and intergenerational mobility (Hertz, 2006; Palloni, 2006; Smith, 1999; Currie and Madrian, 1999). Previous studies have shown that parents’ health status is positively correlated to their next generations’ income level; however, such results are applicable for low-income families and are not significant in high-income families (Palloni, 2006).

Though scholarly interest has focused on explaining the topic according to those two hypotheses, few studies have explored the relationship between self-rated health and the subjective perception of social mobility. Lipset and Bendix’s (1959) classical research finds that the downwardly mobile do not identify with their destination class and tend to be more conservative in terms of political attitudes: “In all countries, manual workers coming from middle-class backgrounds should be expected to desire a return to the higher class, and hence should be likely to retain middle-class values and patterns of behavior.” Similarly, the upwardly mobile “who rise to middle-class status become politically conservative” (Lipset and Bendix, 1959: pp. 69–70). The underlying hypothesis is that people in general prefer to adopt the more prestigious identity and thereby to maximize their status, including their health status (Wright and Shin, 1988; Nieuwbeerta, De Graaf and Ultee, 2000; Clifford and Heath, 1993).
For example, researchers have found that high-performing students usually rate their health higher than do those with low grades (Reay et al., 2009). Similarly, people who receive salary raises and promotions tend to perceive their health conditions as good (Lehmann, 2009). Such phenomena can be explained by an individual’s degree of life satisfaction, which derives primarily from a subjective sense of social class and mobility. As noted in past research, most people have little or no sense of a social distribution system or the inequality or deprivation within it; satisfaction with life comes from comparing their own social rank and health with those of their local cohort group. In this view, those with higher life satisfaction are those who see themselves as having a better chance for upward mobility (Simandan, 2018; Norton, 2013; Cruces et al., 2013; Mishra and Carlton, 2015); however, whether such results are applicable in a global context is still unknown.

In this paper, we attempt to fill this research gap by examining how perception of class mobility will affect an individual’s self-rated health in China. Using eight waves of Chinese General Social Survey data spanning ten years between 2005 and 2015, we conducted the analysis at the micro (individual) level and at the macro (provincial) level. The results from both levels yielded consistent results. At the individual level, we found that those who perceived themselves as experiencing upward mobility are associated with a higher health status compared with those who perceived themselves as experiencing downward mobility. At the provincial level, our findings from static panel analysis further revealed the positive relationship between the perception of class mobility and provincial health level.
2. Data, Variables, and Methods

2.1. Data and Sample

We conducted this research using two types of analytical sample: the individual-level sample and the provincial-level sample. The primary data source was the Chinese General Social Survey (CGSS), a national representative survey using multistage stratified national probability sampling. Officially launched in 2003, CGSS aims to systematically monitor the changing relationship between social structure and quality of life in urban and rural China. Multilayered strata sampling is used in surveys and samples drawn from each stage, including primary sampling units from districts, secondary sampling units from neighborhood residential areas, and tertiary sampling units from residents’ committees. One eligible person, aged eighteen or over, was randomly selected from each sampled household to serve as the survey respondent. Each wave of the CGSS covered between about 5,000 and 12,000 households from twenty-six to thirty-one provinces and collected comprehensive information such as individuals’ self-rated health, employment status, and various social attitudes (Bian and Li, 2012). The survey response rate was over 50%.

For the individual-level analysis, we pooled eight waves of CGSS spanning the years 2005 to 2015 (CGSS 2005, 2006, 2008, 2010, 2011, 2012, 2013, and 2015). Owing to the sample design, household sizes varied among respondents, though individuals from large families had a higher probability of being selected into the sample. Moreover, there were differences between the actual sample size and the real annual population in China from 2005 to 2015. To correct for these two major sources of biases, we first computed household weights for each sample to achieve a representative figure for the annual
general population. We then computed the population weights for rural and urban samples and further normalized the population weight by using the real population size of each survey year so that all waves of data correctly reflected the real population in China. After excluding the missing values on some key independent variables—in particular, familial income and employment status—our working sample for multivariate regression shrank from 78,097 to 65,829.

For the provincial-level analysis, we computed average health status, average score of self-perceived class mobility, and subjective social class for each province from the eight-wave CGSS data and merged that with corresponding provincial-level socioeconomic statistics from the China Statistical Yearbook, published by National Bureau of Statistics of China. The construction of data as such constituted province panels. This sample contains twenty-five provinces; for each province, there are eight observations.

2.2. Variables

For individual-level analysis, self-rated health is the dependent variable. This was assessed by asking respondents, “In general, how would you rate your health?”, with the options being, 1 (“very unhealthy”), 2 (“unhealthy”), 3 (“so-so”), 4 (“healthy”), and 5 (“very healthy”). Though self-rated health may be a problematic measure since it primarily reflects an individual’s subjective evaluation of his or her own health, existing literature has widely shown that this measure has robust predictive power on mortality, morbidity, and individuals’ physical functioning (Jylhä, 2009). The main explanatory variable—subjective class mobility—is captured by a single question: “Compared with
the past three years, how would you feel about your socioeconomic status?”, with three ordered responses—“lower,” “almost the same,” and “higher.” Other control variables include age, years of schooling, familial annual income, a five-category subjective social class (1 = lower, 2 = lower middle, 3 = middle, 4 = upper middle, 5 = upper), communist party membership (1 = yes, 0 = otherwise), urban registration status, known as urban hukou (1 = yes, 0 = otherwise), gender (1 = male; 0 = female), marital status (1 = married, 2 = never married, 3 = separated/divorced/widowed), work status (0 = unemployed, 1 = employed, 2 = retired), and wave dummies. Descriptive statistics are shown in Table 1.

For the provincial-level analysis, the dependent variable of interest was provincial average health status and the key independent variable was the average score of class mobility. Other control variables included the provincial average score of subjective social class, logged value of number of college students in the survey, logged gross domestic product (GDP) per capita, logged GDP annual growth rate, logged wage level, Gini index, logged number of non-governmental organization (NGO) associations, provincial proportion of party members, particulate matter ten micrometers or less in diameter (PM10) as a measure of air quality, and logged number of hospital beds. These variables, derived from the aspects of economic development, social development, political party structure, the environment, and healthcare availability, attempt to provide
explanations for the spatial variation and temporal trend of health status. For the description of variable distribution, please refer to Table 2.

[insert table 2]

2.3. Analytical Procedures

The overall analysis was conducted using Stata/SE, version 14.2. For individual samples, since self-rated health is an ordinal variable, we adopted ordered logistic regression for this part of the analysis. To reveal the effect of self-perceived class mobility on an individual’s self-rated health, we controlled for a series of individual and familial characteristics that affect self-rated health and that may also be associated with self-perceived class mobility.

For the provincial sample, considering the provincial panel design, we conducted panel data analysis. Since the lagged dependent variable did not show significant effects—meaning that present health status was not affected by past health status—static panel models were employed for this part. For these, we adopted pooled ordinary least squares (OLS) regression, a random-effects model, and a fixed-effects model; time-fixed effects are controlled for all three models. When conducting pooled OLS, we assumed provincial homoskedasticity and largely ignored the province-specific effects, which is often the case in panel setting. To accommodate provincial heterogeneity, more advanced techniques, such as a random-effects model and a fixed-effects model, are further considered. The model can be written as follows:
\[\text{Health}_{it} = \beta \text{Mobility}_{it} + X_{it} \gamma + \alpha_i + u_{it} \quad (1) \]

where \(\text{Health}_{it} \) is the dependent variable—provincial health level at time \(t \); \(\text{Mobility}_{it} \) is the key independent variable—provincial class mobility score at time \(t \); \(\beta \) is the corresponding coefficient of \(\text{Mobility}_{it} \); \(X_{it} \) represents a variable matrix containing various other time-variant provincial characteristics, including provincial subjective social class, economic development, social development, political party structure, environmental, and medical supply measures (see Table 2); \(\gamma \) is the corresponding coefficient vector of \(X_{it} \); \(\alpha_i \) is the unknown province-specific intercept, which is time-invariant; \(u_{it} \) is the time-variant error term. In pooled OLS, we mixed \(\alpha_i \) and \(u_{it} \) and assumed that the composite errors \(v_{it} \) (\(v_{it} = \alpha_i + u_{it} \)) are homoscedastic and independent of each other. However, if \(\alpha_i \) is correlated with one or more \(X_{it} \)—that is, \(\text{cov}(\alpha_i, X_{it}) \neq 0 \)—OLS would produce a biased and inconsistent estimation. If \(\alpha_i \) is uncorrelated with \(X_{it} \)—that is, \(\text{cov}(\alpha_i, X_{it}) = 0 \)—and meanwhile we have more than one observation on each province, OLS would produce unbiased yet inefficient estimates. When running the random effects model, we assumed that the expected value of errors would be zero, that is, \(\text{E}(\alpha_i + u_{it} | X_{it}) = 0 \), or \(\text{cov}(\alpha_i, X_{it}) = 0 \); if this assumption would have been violated, the random-effects model would have produced inconsistent estimates (Greene, 2008). For the fixed-effects model, we allowed \(\text{cov}(\alpha_i, X_{it}) \neq 0 \), since the province-specific effect is time invariant and can be taken as the intercept.

We conducted various statistical tests to choose the best-fitting model. Relative to pooled OLS, whether the fixed-effects model is preferred can be tested by an F test, and
whether the random-effects model is favored can be tested by Breusch-Pagan Lagrange multiplier (LM) test. For the above two comparisons, insignificant results imply the preference for pooled OLS over fixed-effects or random-effects models. To choose between random-effects and fixed-effects models, we conducted a Hausman test; if there were significant differences in estimates, we preferred the fixed-effects model; otherwise, we chose the random-effects model.

3. Results

3.1. Distribution of Health Status

Figure 1 depicts the provincial snapshot of health status in 2005 and 2015; the darker the color, the better the health. As shown, in 2005, the health status is quite scattered, while in 2015, there seems to have been declining health in eastern and western areas except Yunnan, Guizhou, and Guangxi, three provinces with more areas of higher elevation. In general, from 2005 to 2015, the average health status showed some improvement, particularly in the middle and lower reaches of the Yangtze River.

To visualize how self-perceived class mobility is associated with individual health status, Figure 2 is drawn to show the distribution of health status across different types of mobility patterns. From left to right, each bar presents the perception of downward mobility, immobility, and upward mobility. For each bar, there are five segments; these
segments add up to 100% for that specific mobility pattern. It is shown that among those who perceived themselves to be experiencing upward mobility, 22.21% rated themselves very healthy, 37.31% rated themselves healthy, and only 16.76% rated themselves unhealthy or very unhealthy. However, the corresponding percentages for those who perceived themselves to be downwardly mobile were 12.67% very healthy, 29.08% healthy, and 22.73% unhealthy or very unhealthy.

3.2. Individual-Level Analysis

To examine the effect of self-perceived class mobility on an individual’s health, we first took health status as an ordinal variable and ran ordered logistic regression based on individual-level data. Table 3 presents the results of this ordered logistic regression. For all three models, provincial and time dummies are controlled. Model 1 is the baseline model, in which we included only for class mobility. It is shown that the odds of being very healthy and healthy versus the combined so-so, unhealthy, and very unhealthy were about 11.62% ($= e^{0.110} - 1$) higher for those who perceived themselves as having no mobility and 40.07% ($= e^{0.337} - 1$) higher for those who perceived themselves as experiencing upward mobility, compared to downward mobility.

In Model 2, we accounted for a series of individual and familial characteristics, such as age, gender, party membership, marital status, work status, years of schooling, and total family income, that have been central in predicting self-rated health in previous
studies. The results show that the corresponding coefficient of immobility decreased from 0.110 to 0.089 and the coefficient of upward mobility decreased to 0.224, about two-thirds of that of Model 1. Because individuals from different social classes may have different perceptions of class mobility, individuals’ subjective social class is included in Model 3. Clearly, once controlling for subjective social class, immobility has no significant effect on self-rated health compared to downward mobility. However, upward mobility remains important in promoting individuals’ perception of their own health. Note that when examining social mobility, especially intragenerational mobility, there has been a long-standing debate about whether holding low-wage jobs improves the chances of upward mobility (e.g., Cappellari, 2007; D’Addio and Rosholm, 2005; Knabe and Plum, 2013). Though they had mixed results, these studies imply that occupation is closely associated with the potential for mobility.

To control for a possible correlation between occupation and social mobility, we included sixty-four occupation dummies in Model 4. The results show that the effect of self-perceived class mobility remains largely the same compared with that of Model 3. Holding other variables constant, individuals who perceived themselves to be experiencing upward movement were more likely to have better self-rated health compared with those who perceived themselves to be experiencing either downward movement ($p = 0.002 < 0.01$) or stasis ($p = 0.033 < 0.05$).

[insert table 3]
Recent scholarship has proposed that it is often problematic to compare log-odds or odds ratios across models with different predictors in logistic regression, since unobserved heterogeneity tends to vary across models (Mood, 2010). We thus present the average partial effect of self-perceived class mobility on the probability of rating oneself as very unhealthy, unhealthy, so-so, healthy, and very healthy in Table 4. This result is calculated based on Model 4 in Table 3. As shown, the partial change in probability of $Health_i$ ($i = 1,2,3,4,5$) has no significant difference for those remaining stable and those experiencing downward movement. Moreover, perceiving oneself as experiencing upward mobility compared to downward mobility would on average reduce an individual’s probability of reporting lower health—by 0.003 for “very unhealthy,” by 0.009 for “unhealthy,” and by 0.006 for “so-so”—and would increase the probability of an individual reporting better health—by 0.006 for “healthy” and by 0.012 for “very healthy.” The partial changes in probability of $Health_i$ ($i = 1,2,3,4,5$) are similar when switching the reference category of self-perceived class mobility to immobility. Figure 3 illustrates such partial changes.

3.3. Provincial-Level Analysis

To investigate whether the pattern persists at the macro level, we also conducted a provincial panel data analysis. We first fit a pooled OLS model (Model 1). Consistent with individual-level analysis, the results showed that at the provincial level, average
self-perceived mobility was positively associated with health score, controlling for other provincial characteristics such as the subjective social class and the logged number of college students. It was also found that political party structure (measured by proportion of communist party membership) and economic development (measured primarily by logged GDP per capita) both negatively predicted health status at the provincial level. While somewhat unexpected, the negative relations might reflect the fact that development does not necessarily bring about health benefits; for instance, fast food restaurants, which pose threats to public health, have shown strong growth in regions with higher levels of development in many developing countries. These regions often have a high prevalence of obesity, which is associated with increased risks of such concurrent morbidities of chronic diseases as type II diabetes, insulin resistance, coronary artery disease, hypertension, and osteoarthritis. (e.g., Bhurosy and Jeewon, 2014; Yatsuya et al., 2014).

Although the OLS is based on the provincial homoskedasticity assumption, this is often not the case for panel data design. To accommodate for province-specific effects, we then employed a random-effects model by allowing intercepts to vary by province; the results are shown in the middle panel of Table 4. Clearly, the results of random-effects and OLS regression showed great similarity. To choose between these two models, we conducted a Breusch-Pagan LM test, whose results suggested that we cannot reject the null hypothesis that the variances across provinces was zero ($p > 0.1$), meaning that pooled OLS regression was preferred. However, we could not rule out the possibility that there may have been some omitted variables at the province level that could have affected the self-perceived class mobility level as well as the health level; for this reason,
we employed a fixed-effects model, whose results are presented in the last column of Table 4. By using a fixed-effects model, we removed the time-invariant provincial characteristics—observed or unobserved—and assumed that within-province variation is vital in predicting the provincial health level. Despite some reduction of coefficient magnitude, the significance of the variables barely changed. Given that all the other variables were controlled, an increase in average self-perceived mobility score was associated with a 0.156 increase in provincial health level. The results of an F test suggested the null hypothesis that all within-province errors are equal to zero has been rejected ($p < 0.001$), meaning that a fixed-effects model is preferred in this analysis.

[insert table 5]

4. Discussion and Conclusion

This study contributes to the extant literature by exploring the link between the perception of class mobility and self-rated health. While numerous studies have shown the importance of an individual’s socioeconomic status on his or her self-rated health, few have investigated how self-perceived class mobility, a measure highly correlated with an individual’s de facto social class and previous mobility experiences, is associated with an individual’s self-rated health. To fill this gap, we employed eight waves of Chinese General Social Survey Data spanning the years 2005 to 2015 to conduct the analysis at the micro level (the individual) and the macro level (the province). Analyses at both levels yielded consistent results. At the individual level, we found that those who
perceived themselves to be experiencing upward mobility had a higher health status compared with those who perceived themselves to be experiencing downward mobility or no change. At the provincial level, our findings further showed that the higher the score of perceived class mobility, the better the health status.

For years, the ecological fallacy, a formal fallacy in the interpretation of individual-level behavior from aggregate-level data, has been the most persistent statistical problem in social science. A key point is that in the process of aggregation, micro-level information would inevitably be lost, making conclusions from micro-level (individual) data unreliable if directly recovered from the aggregate level. However, such inference can be achieved when the certain assumption is met. With respect to the present case, it is reasonable to believe that both levels can suggest a similar pattern if an individual’s perception or attitudes toward his or her own class mobility remain relatively independent, or has no spill-over effects across provinces. This assumption is proper, since mobility perception is too personal to be contagious and further alters the overall distribution of class mobility. In any case, our research focus is not to make any inference from the macro to the micro level or vice versa. Rather, we have attempted to examine the degree to which the macro-level conclusion matches with the micro-level before negating the pattern from any level. Though ad hoc, investigations as such can facilitate new knowledge-building and complement the extant studies by prying into the level of consistency at the micro, macro, or even meso levels.

Still, this research has some limitations that deserve further discussion. First, though we identified a positive correlation between self-perceived class mobility and self-rated health at both the individual and provincial levels, we cannot identify through which specific channel this linkage is formed. Second, mobility in this analysis primarily refers to intragenerational mobility. By definition, intragenerational mobility involves secular
changes of an individual’s economic position, or specifically, the occupational standing across time. However, based on the existing data and operationalization, distinguishing actual moves from temporary changes in socioeconomic status given the time period is like finding a needle in a haystack, making the genuine effect of mobility almost unrecoverable. Besides, our analysis assumes that there is a notable consistency between perceived mobility and de facto mobility; however, the potential disjunction between those who perceive themselves as moving but who remain stable, and vice versa, cannot be ignored. Third, scholars have shown that an individual’s chances for mobility are largely associated with that individual’s occupation. Though our analysis accounted for detailed occupation categories, occupation entry is by no means a random process. The endogenous career entry cannot be solved solely by controlling for it. In this vein, we have revealed only the association between these two.

Despite those limitations, to the best of our knowledge, this is the first study that attempts to link subjective class mobility to health. We hope that this research can be used as a first step to a more robust future investigation that might uncover the specific mechanism of that linkage.
References

Bartley, M.; Plewis, I. Does health-selective mobility account for socioeconomic differences in health? Evidence from England and Wales, 1971 to 1991. *J Health Soc Behav.* **1997**, *38*, 376–386.

Bhurosy, T.; Jeewon, R. Overweight and obesity epidemic in developing countries: A problem with diet, physical activity, or socioeconomic status? *Sci. World J.* **2014**, *964236*. doi:10.1155/2014/964236.

Bian, Y. J.; Li, L. L. The Chinese general social survey (2003–8): Sample designs and data evaluation. *Chinese Sociol. Rev.* **2012**, *45*, 70–97.

Bourdieu, P. *Distinction: A Social Critique of the Judgment of Taste* (R. Nice, Trans.). Cambridge: Harvard University Press, MA, USA, 1984.

Cappellari, L. Earning mobility among Italian low-paid workers. *J. Popul. Econ.* **2007**, *20*, 465–482.

Clifford, P.; Heath, A. The political consequences of social mobility. *J R Stat Soc Series B (Statistics in Society)*. **1993**, *156*, 51–61.

Collins, J. W.; Rankin, K. M.; David, R. J. Downward economic mobility and preterm birth: An exploratory study of Chicago-born upper class white mothers. *Matern. Child Health J.* **2015**, *19*, 1601–1607.

Currie, J.; Madrian, B. C. Health, health insurance and the labor market. *Handbook of Labor Economics*. **1999**, *3*, 3309–3416.

Cruces, G.; Perez-Truglia, R.; Tetaz, M. Biased perceptions of income distribution and preferences for redistribution: Evidence from a survey experiment. *J. Public Econ.* **2013**, *98*, 100–112.

D’Addio, A. C.; Rosholm, M. Exits from temporary jobs in Europe: A competing risks analysis. *Labour Econ.* **2005**, *12*, 449–468.

Dahl, E. Social mobility and health: Cause or effect? *Brit Med J.* **1996**, *313*, 435–436.

Dorling, D. The mother of underlying causes–economic ranking and health inequality. *Soc. Sci. Med.* **2015**, *128*, 327–330.

Elliott, S. J. 50 years of medical health geography (ies) of health and wellbeing. *Soc. Sci. Med.* **2018**, *196*, 206–208.

Greene, W. H. *Economic Analysis, 6th ed.* Prentice Hall: Upper Saddle River, NJ, USA, 2008.
Hertz, T. *Understanding Mobility in America*. Washington: Center for American Progress
Discussion Paper, DC, USA, 2006

Lee, M. C.; Huang, N. Changes in self-perceived economic satisfaction and mortality at old ages: Evidence from a survey of middle-aged and elderly adults in Taiwan. *Soc. Sci. Med.* **2015**, *130*, 1–8.

Lehmann, W. Becoming middle class: How working-class university students draw and transgress moral class boundaries. *Sociology*. **2009**, *43*, 631–647.

Lipset, S. M.; Bendix, R. *Social Mobility in Industrial Society*. Berkeley: University of California Press, CA, USA, 1959.

Lundberg, O. Childhood living conditions, health status, and social mobility: A contribution to the health selection debate. *Eur Sociol Rev*. **1991**, *7*, 149–162.

Jylhä, M. What is self-rated health and why does it predict mortality? Towards a unified conceptual model. *Soc. Sci. Med.* **2009**, *69*, 307–316.

Knabe, A.; Plum, A. Low-wage jobs-springboard to high-paid ones? *Labour*. **2013**, *27*, 310–330.

Mishra, S.; Carleton, R. N. Subjective relative deprivation is associated with poorer physical and mental health. *Soc. Sci. Med.* **2015**, *147*, 144–149.

Mood, C. Logistic regression: Why we cannot do what we think we can do, and what we can do about it. *Eur Sociol Rev*. **2010**, *26*, 67–82.

Nieuwbeerta, P.; De Graaf, N. D.; Ultee, W. The effects of class mobility on class voting in post-war western industrialized countries. *Eur Sociol Rev*. **2000**, *16*, 327–348.

Norton, M. I. All ranks are local: Why humans are both (painfully) aware and (surprisingly) unaware of their lot in life. *Psychol Inq*. **2013**, *24*, 124–125.

Rosenberg, M. Health geography I: Social justice, idealist theory, health and health care. *Prog Hum Geog*. **2014**, *38*, 466–475.

Reay, D.; Crozier, G.; Clayton, J. “Strangers in paradise?” Working-class students in elite universities. *Sociology*. **2009**, *43*, 1103–1121.

Rodgers, B.; Mann, S. L. 1993. Re-thinking the analysis of intergenerational social mobility: A comment on John W. Fox’s social class, mental illness, and social mobility. *J Health Soc Behav*. **1993**, *34*, 165–172.

Smith, J. P. Healthy bodies and thick wallets: The dual relation between health and economic status. *J. Econ Perspect*. **1999**, *13*, 145–166.

Simandan, D. Kinds of environments—A framework for reflecting on the possible contours of a better world. *The Canadian Geographer*. **2011**, *55*, 383–386.
Simandan, D. Proximity, subjectivity, and space: Rethinking distance in human geography. *Geoforum*. **2016**, *75*, 249–252.

Simandan, D. Rethinking the health consequences of social class and social mobility. *Soc. Sci. Med.* **2018**, *200*, 258–261.

Sorokin, P. A. *Social and Cultural Mobility*. New York: The Free Press, NY, USA, 1959.

Palloni, A. Reproducing inequalities: Luck, wallets, and the enduring effects of childhood health. *Demography*. **2006**, *43*, 587–615.

Wadsworth, M. E. Serious illness in childhood and its association with later-life achievement. In *Class and Health: Research and Longitudinal Data*, edited by R. Wilkinson. London: Tavistock Publications, UK, 1986, 50–74.

Wadsworth, M. E. J; Kuh, D. J. L. Childhood influences on adult health: A review of recent work from the British 1846 national Birth cohort study, the RMC national survey of health and development. *Pediatric and Perinatal Epidemiology*. **1997**, *11*, 2–20.

Wright, E. O.; Shin, K. Y. 1988. Temporality and class analysis: A comparative study of the effects of class trajectory and class structure on class consciousness in Sweden and the United States. *Sociol Thor*. **1988**, *6*, 58–84.

Yatsuya, H.; Li, Y.; Hilawe, E. H.; Ota, A.; Wang, C.; Chiang, C.; Zhang, Y.; Uemura, M.; Osako, A.; Ozaki, Y., et al. *Circ J*. **2014**, *78*, 2807–2818.
Figure 1. Geographic Distribution of Health in 2005 and 2015

2005

2015
Figure 2. Distribution of Self-Rated Health by Self-Perceived Class Mobility

Downward Immobile Upward

Status	Downward	Immobile	Upward
Very Unhealthy	12.67%	29.08%	35.52%
Unhealthy	20.91%	35.54%	25.00%
So-so	18.75%	15.20%	14.02%
Healthy	22.21%	37.31%	23.73%
Very Healthy			

Very Unhealthy Unhealthy So-so Healthy Very Healthy
Figure 3. Average Partial Effect of Self-Perceived Class Mobility
Table 1. Descriptive Statistics for Selected Variables (2005–2015)

Variable	Proportion (%)	Mean (SD)
Dependent Variable		
Health		
Very Unhealthy = 1	3.75	
Unhealthy = 2	17.05	
So-so = 3	26.94	
Healthy = 4	33.53	
Very Healthy = 5	18.72	
Independent Variable		
Mobility		
Downward = 1	30.26	
Immobile = 2	44.79	
Upward =3	24.95	
Class		
Lower = 1	20.37	
Lower Middle = 2	31.43	
Middle = 3	41.46	
Upper Middle = 4	5.85	
Upper = 5	0.90	
Party Member		
No = 0	89.13	
Yes = 1	10.87	
Hukou		
Rural = 0	50.99	
Urban = 1	49.01	
Gender		
Female = 0	51.10	
Male = 1	48.90	
Marital Status		
Married =1	86.23	
Never Married = 2	5.74	
Divorced/Widowed = 3	8.03	
Work Status		
Unemployed = 0	20.03	
Employed = 1	61.92	
Retired = 2	18.05	
Wave		
Year 2005	12.31	
Year 2006	12.17	
Year 2008	12.67	
Year 2010	11.77	
Year 2011	11.99	
Year 2012	11.83	
Year 2013	13.62	
Year 2015	13.65	
Age	45.93(14.93)	
Years of Schooling	8.40(4.30)	
Family Annual Income	41608.78(104372.20)	
(RMB)		

Note: Data are weighted. Numbers in the parentheses are standard deviations.
Table 2. Descriptive Statistics for Selected Provincial-Level Variables (2005–2015)

Variable	Abbr.	Description	Mean	S.D.
Dependent Variable				
Health	Heal	Average Self-Rated Health	1.26	0.30
Independent Variable				
Class Mobility	Mob	Average Self-Perceived Mobility	0.72	1.71
Urbanization	Urb	Level of Urbanization	0.42	0.16
Class	Class	Average Self-Perceived Class	1.47	0.35
Economic Development	Eco	GDP per capita (log value)	0.17	0.59
Economic Growth	Grow	GDP Annual Growth Rate (Log value)	0.13	0.06
Political Development	Pol	Percent of Party member	0.11	0.05
Social Development	Soc	Number of NGO Association (log value)	1.10	0.46
Inequality	Gini	Gini Coefficient (Household Income)	−0.78	0.18
Marketization	Mkt	Marketization Index	1.85	0.25
Labor Cost	Inc	Average Wage Level (Log value)	10.30	0.80
Education	Edu	College Students per 100,000 People (Log value)	2.16	0.32
Environment	PM10	PM10	−2.31	0.26
Medical Care Development	Med	Number of Hospital Beds (log value)	−5.61	0.28
Table 3. Ordered Logit Model Predicting Self-Rated Health (2005–2015)

	Model 1	Model 2	Model 3	Model 4
Self-Rated Health				
Immobile	0.110*** (0.030)	0.089*** (0.026)	0.030 (0.027)	0.026 (0.027)
Upward	0.337*** (0.031)	0.224*** (0.030)	0.095** (0.030)	0.094** (0.031)
Age	−0.039*** (0.001)	−0.041*** (0.001)	−0.040*** (0.001)	
Male	0.262*** (0.015)	0.291*** (0.016)	0.281*** (0.017)	
Party Member	0.073** (0.025)	0.048* (0.024)	0.059* (0.024)	
Marital Status				
Never Married	0.008 (0.036)	0.025 (0.035)	0.021 (0.036)	
Separated/Divorced/Widowed	−0.072* (0.035)	−0.074* (0.035)	−0.057 (0.035)	
Urban Hukou	0.103* (0.043)	0.129** (0.041)	0.073+ (0.041)	
Work Status				
Unemployed	−0.325*** (0.037)	−0.307*** (0.037)	−0.322*** (0.037)	
Retired	−0.136*** (0.031)	−0.128*** (0.032)	−0.159*** (0.035)	
Years of Schooling	0.026*** (0.004)	0.019*** (0.004)	0.020** (0.004)	
Logged Family Income	0.154*** (0.012)	0.116*** (0.012)	0.113*** (0.012)	
Self-Rated Class				
Lower				
Lower Middle	−0.598*** (0.025)	−0.601*** (0.025)		
Upper Middle	0.021 (0.021)	0.113* (0.021)	0.115* (0.051)	
Upper				
Occupation Dummies				
No	−3.711*** (0.106)	−3.832*** (0.192)	−4.626*** (0.197)	−4.597*** (0.220)
Yes	−1.728*** (0.099)	−1.717*** (0.189)	−2.498*** (0.194)	−2.468*** (0.216)
Cut Point 3	−0.315*** (0.074)	−0.145 (0.161)	−0.909*** (0.165)	−0.876*** (0.184)
Cut Point 4	1.382*** (0.063)	1.752*** (0.147)	1.005*** (0.152)	1.041*** (0.172)
N	65,345	65,345	65,345	65,345
Log-Likelihood	−91066.408	−85609.978	−85138.356	−85062.141

Note: i. adjusted robust standard errors in parentheses; ii. † p < 0.1, * p < 0.05, ** p < 0.01, *** p < 0.001 (two-tailed tests); iii. Province and wave dummies are controlled.
Table 4. Average Partial Effect of Self-Perceived Mobility

Health	Immobile vs. Downward	Upward vs. Downward	Upward vs. Immobile
Very Unhealthy	−0.001	−0.003**	−0.002*
	(0.001)	(0.001)	(0.001)
Unhealthy	−0.002	−0.009**	−0.007*
	(0.003)	(0.003)	(0.003)
So-so	−0.001	−0.006**	−0.005*
	(0.002)	(0.002)	(0.002)
Healthy	0.001	0.006**	0.005*
	(0.002)	(0.002)	(0.002)
Very Healthy	0.002	0.012**	0.010*
	(0.003)	(0.004)	(0.004)

Note: i. adjusted robust standard errors in parentheses; ii. † p < 0.1, * p < 0.05, ** p < 0.01, *** p < 0.001 (two-tailed tests); iii. Province and wave dummies are controlled.
Table 5. Static Panel Regression Predicting Provincial Health Level (2005–2015)

	OLS	RE	FE
Average Self-perceived Mobility	0.167***	0.167***	0.156***
	(0.023)	(0.023)	(0.022)
Urbanization	−0.030	−0.030	−0.078
	(0.075)	(0.075)	(0.071)
Average Subjective Social Class	0.364***	0.364***	0.218***
	(0.060)	(0.060)	(0.061)
Political Party Structure	−0.327*	−0.327*	−0.503**
	(0.162)	(0.162)	(0.164)
GDP per capita (log value)	−0.064*	−0.064*	0.053
	(0.029)	(0.029)	(0.085)
GDP Annual Growth Rate (log value)	0.035	0.035	−0.256
	(0.164)	(0.164)	(0.176)
Gini Index	−0.002	−0.002	0.001
	(0.030)	(0.030)	(0.030)
Marketization	0.075†	0.075†	0.015
	(0.044)	(0.044)	(0.081)
Average Wage Level (log value)	−0.026	−0.026	0.032
	(0.021)	(0.021)	(0.021)
Number of College Students (log value)	0.313***	0.313***	0.337***
	(0.057)	(0.057)	(0.061)
PM10	0.023	0.023	0.020
	(0.022)	(0.022)	(0.038)
Number of Hospital Bed (log value)	−0.033	−0.033	−0.092
	(0.042)	(0.042)	(0.071)
NGO Association (log value)	0.028	0.028	0.017
	(0.022)	(0.022)	(0.041)
Constant	−0.300	−0.300	−0.783†
	(0.241)	(0.241)	(0.402)

N = 200

Note: i. adjusted robust standard errors in parentheses; ii. † p < 0.1, * p < 0.05, ** p < 0.01, *** p < 0.001 (two-tailed tests).