Search for $D^0 \to \ell^+\ell^-$ decays and for CP violation in $D^+_s \to K_S^0\pi^+$ and $D^+_s \to K_S^0 K^+$ at BELLE

Marko Petrič (on behalf of the BELLE collaboration)
Jožef Stefan Institute, Jamova cesta 39, 1000 Ljubljana, Slovenia
E-mail: marko.petric@ijs.si

Abstract. We are reporting on a search for flavour-changing neutral current decays $D^0 \to \mu^+\mu^-$ and $D^0 \to e^+e^-$, and for lepton-flavour violating decays $D^0 \to e^\pm\mu^\mp$, the measurement of $D^+_s \to K_S^0\pi^+$ and $D^+_s \to K_S^0 K^+$ branching fractions, and the search for CP violation in $D^+_s \to K_S^0\pi^+$ and $D^+_s \to K_S^0 K^+$ decays. The analyses are based on 600 fb^{-1} to 700 fb^{-1} of data collected in e^+e^- collisions at the centre-of-mass (CM) energy of the $\Upsilon(4S)$ resonance and 60 MeV below by the Belle detector at the KEKB collider.

1. Search for $D^0 \to \ell^+\ell^-$ decays
The flavour-changing neutral current (FCNC) decays $D^0 \to \mu^+\mu^-$ and $D^0 \to e^+e^-$, and for lepton-flavour violating decays $D^0 \to e^\pm\mu^\mp$, the measurement of $D^+_s \to K_S^0\pi^+$ and $D^+_s \to K_S^0 K^+$ branching fractions, and the search for CP violation in $D^+_s \to K_S^0\pi^+$ and $D^+_s \to K_S^0 K^+$ decays. The analyses are based on 600 fb$^{-1}$ to 700 fb$^{-1}$ of data collected in e^+e^- collisions at the centre-of-mass (CM) energy of the $\Upsilon(4S)$ resonance and 60 MeV below by the Belle detector at the KEKB collider.

Using 660 fb$^{-1}$ of data we searched for the decays $D^0 \to \mu^+\mu^-$, $D^0 \to e^+e^-$ and $D^0 \to e^\pm\mu^\mp$. We use D^0 mesons from the decays $D^{*+} \to D^0\pi^+$ with a characteristic low momentum pion, since this considerably improves the purity of the reconstructed samples. We normalise the sensitivity of our search to topologically similar $D^0 \to \pi^+\pi^-$ decays; this cancels various systematic uncertainties. The signal efficiencies $\epsilon_{\ell\ell}$ and $\epsilon_{\pi\pi}$ are evaluated using signal Monte Carlo simulation.

In order to avoid biases, a blind analysis technique has been adopted. As the $D^0 \to \ell^+\ell^-$ decays are not expected to be observed at the current sensitivity, we maximise the figure-of-merit, $F = \epsilon_{\ell\ell}/N_{UL}$, where $\epsilon_{\ell\ell}$ is the efficiency for detecting $D^0 \to \ell^+\ell^-$ decays, and N_{UL} is the Poisson average of Feldman-Cousins 90% confidence level upper limits on the number of observed signal events that would be obtained with the expected background and no signal [6].

The background events can be grouped into two categories: (1) a smooth combinatorial background, and (2) a peaking background from the misidentification of $D^0 \to \pi^+\pi^-$ decays. To estimate the number of combinatorial background events in the signal region, the sideband region is used. The peaking background in the signal region due to misidentification of $D^0 \to \pi^+\pi^-$ decays is estimated from the reconstructed $D^0 \to \pi^+\pi^-$ decays found in data
and the misidentification probability measured in data using \(D^{*+} \to D^0 \pi^+_s \), \(D^0 \to K^-\pi^+ \) decays, binned in particle momentum \(p \) and cosine of polar angle.

![Figure 1. The dilepton invariant mass distributions for a) \(D^0 \to \mu^+\mu^- \), b) \(D^0 \to e^+e^- \) and c) \(D^0 \to e^+\mu^\mp \). The dashed vertical lines indicate the optimised signal window. Superimposed on the data (open histograms) are the estimated distribution for combinatorial background (filled histogram), the misidentification of \(D^0 \to \pi^+\pi^- \) (cross-hatched histogram), and the signal if the branching fractions were equal to the 90% confidence level upper limit (single hatched histogram).]

The invariant mass distributions after applying the optimised event selection criteria are shown in Figure 1. In the signal region we find two candidates in the \(D^0 \to \mu^+\mu^- \), zero candidates in the \(D^0 \to e^+e^- \) and three candidates in the \(D^0 \to e^+\mu^\mp \) decay mode; the yields are consistent with the estimated background of \(3.1 \pm 0.1, 1.7 \pm 0.2 \), and \(2.6 \pm 0.2 \) events respectively. A binned maximum likelihood fit is used to determine the yield of \(D^0 \to \pi^+\pi^- \) candidates for the normalisation. Finally, the branching fraction upper limits (UL) are calculated using the program pole.f, which extends the Feldman-Cousins method by the inclusion of systematic uncertainties [7]. The upper limits on the branching fractions at the 90% confidence level are found to be \(B(D^0 \to \mu^+\mu^-) < 1.4 \times 10^{-7} \), \(B(D^0 \to e^+e^-) < 7.9 \times 10^{-8} \), and \(B(D^0 \to e^+\mu^\mp) < 2.6 \times 10^{-7} \) [8]. Our results improve the current limits by a factor of 9 for \(D^0 \to \mu^+\mu^- \) decay, by a factor of 15 for \(D^0 \to e^+e^- \) decay and by a factor of 3 for \(D^0 \to e^+\mu^\mp \) decay [9]. In 2008 the CDF collaboration reported a preliminary result on the UL for the \(D^0 \to \mu^+\mu^- \) branching fraction [10]; our result is lower by a factor of 3 and strongly disfavours a leptoquark contribution [5] as the explanation for the anomaly in the measured \(D^+_s \to \mu^+\nu \) width [11].

2. Branching fraction measurement of \(D^{+(s)} \to K^0_S\pi^+ \) and \(D^{+(s)} \to K^0_SK^+ \) decays

Decays of charmed mesons play an important role in understanding the sources of SU(3) flavour symmetry breaking [12]. For \(D^+ \) decays, the branching ratio \(B(D^+ \to \overline{K}^0 K^+)/B(D^+ \to \overline{K}^0 \pi^+) \) deviates from the naive \(\tan^2 \theta_C \) expectation [9], due to the destructive interference between colour-favoured and colour-suppressed amplitudes in \(D^+ \to \overline{K}^0 \pi^+ \) [13]. However, converting experimental measurements of \(D \) decays that include \(K^0_S \) branching ratios to those involving \(K^0 \) or \(\overline{K}^0 \) is not straightforward due to the interference between the doubly Cabibbo-suppressed (DCS) and Cabibbo-favoured (CF) decay modes where the interference phase is unknown [14, 15].

Based on a data sample of 605 fb\(^{-1}\) we measured the \(D^+ \to K^0_S K^+ \) and \(D^+_s \to K^0_S \pi^+ \) branching ratios with respect to the corresponding Cabibbo-favoured modes. The invariant mass distributions of the selected events are shown in Figure 2. The results are \(B(D^+ \to \overline{K}^0 K^+) < 1.4 \times 10^{-7} \) and \(B(D^+_s \to K^0_S K^+ < 2.6 \times 10^{-7} \) [16].
3. Search for CP violation in $D^+_s \to K^0_S \pi^+$ and $D^+_s \to K^0_S K^+$ decays

Another important aspect of such decays is the violation of the combined Charge-conjugation and Parity symmetries (CP). In the SM, the charmed particle processes for which a significant non-vanishing CP violation is expected are singly Cabibbo-suppressed (SCS) decays in which there is both interference between two different decay amplitudes and a strong phase shift from final state interactions. In the SM, CP violation in SCS charmed meson decays is predicted to occur at the level of $\mathcal{O}(0.1\%)$ or lower [17].

Based on a data sample of 673 fb$^{-1}$ we determine the CP violating asymmetry A_{CP} by measuring the signal yield asymmetry $A_{rec} = (N_{rec} - N_{\text{rec}})/(N_{rec} + N_{\text{rec}})$ where $N_{rec}(N_{\text{rec}})$ is the number of reconstructed decays of $D^+_s(D^-_s)$. The measured asymmetry in this equation includes two contributions other than A_{CP}. One is the forward-backward asymmetry (A_{FB}) due to $\gamma^* - Z^0$ interference in $e^+e^- \to c\bar{c}$ and the other is a detection efficiency asymmetry between positively and negatively charged tracks $A_h^B = (\epsilon^+ - \epsilon^-)/\epsilon^+ + \epsilon^-$, where $\epsilon^+ (\epsilon^-)$ is the efficiency for $K^+(K^-)$ or $\pi^+(\pi^-)$ meson and h denotes K or π. Since K^0_S mesons are reconstructed from a $\pi^+\pi^-$ pair, there is no detection asymmetry other than A_h^B. The signal yield asymmetry can therefore be expressed as $A_{rec} = A_{CP} + A_{FB} + A_h^B$.

To correct for the asymmetries other than A_{CP}, we use reconstructed samples of $D^+_s \to \phi\pi^+$ and $D^0 \to K^-\pi^+$ decays and assume that A_{CP} in CF decays is negligibly small compared to $K^0_S K^+/B(D^+ \to K^0_S \pi^+) = 0.1899 \pm 0.0011 \pm 0.0022$ and $B(D^+_s \to K^0_S \pi^+)/B(D^+_s \to K^0_S K^+) = 0.0803 \pm 0.0024 \pm 0.0019$, where the first uncertainties are statistical and the second are systematic [16]. Using the world average values of CF decay rates [9], we obtain the branching fractions $B(D^+ \to K^0_S K^+) = (2.75 \pm 0.08) \times 10^{-3}$ and $B(D^+_s \to K^0_S \pi^+) = (1.20 \pm 0.09) \times 10^{-3}$ where the uncertainties are the sum in quadrature of statistical and systematic errors. These are consistent with the present world averages [9] and are the most precise measurements up to now. The ratio $B(D^+ \to K^0_S K^+)/B(D^+_s \to K^0_S \pi^+) = 2.29 \pm 0.18$ may be due to SU(3) flavour breaking and/or different final-state interactions in D^+ and D^+_s decays.

![Figure 2](image_url)
the current experimental sensitivity and that A_{FB} is the same for all charmed mesons. We reconstruct ϕ mesons via their $\phi \rightarrow K^+K^-$ decays. The measured asymmetry for $D^+_s \rightarrow \phi\pi^+$ is the sum of A_{FB} and A_{CP}^s. Hence one can extract the A_{CP} value for the $K_S^0\pi^+$ final state by subtracting the measured asymmetry for $D^+_s \rightarrow \phi\pi^+$ from that for $D^+_{(s)} \rightarrow K_S^0\pi^+$.

The method for the measurement of A_{CP} in the $K_S^0K^+$ final states is different from that for the $K_S^0\pi^+$ final states. The A_{FB} and A_{CP}^s components in A_{rec} are directly obtained from the $D^+_s \rightarrow \phi\pi^+$ sample, but there is no corresponding large statistics decay mode that can be used to directly measure the A_{FB} and A_{CP}^s components in A_{rec}. Thus, to correct the reconstructed asymmetry in the $K_S^0K^+$ final states, we use samples of $D^0 \rightarrow K^-\pi^+$ as well as $D^+_s \rightarrow \phi\pi^+$ decays. The value $A_{rec} - A_{CP}$ includes not only an A_{CP} component but also an A_{FB} component. Since A_{CP} is independent of all kinematic variables, while A_{FB} is an odd function of $\cos\theta_{D_s^{+}}$, we can deduce both by addition/subtraction in bins of $\cos\theta$. Figure 3 shows the results.

![Figure 3. Measured A_{CP} and A_{FB} values for $D_{(s)}^{+} \rightarrow K_{S}^{0}K^{+}$ as a function of $|\cos\theta_{D_{(s)}^{+}}|$. The dashed curves show the leading-order prediction for A_{FB}^{s}.](image)

No evidence for CP violation has been observed [18]. Our results are $A_{CP}^{D_{s}^{+} \rightarrow K_{S}^{0}\pi^{+}} = (-0.71 \pm 0.19 \pm 0.20)\%$, $A_{CP}^{D_{s}^{+} \rightarrow K_{S}^{0}\pi^{+}} = (+5.45 \pm 2.50 \pm 0.33)\%$, $A_{CP}^{D_{s}^{+} \rightarrow K_{S}^{0}K^{+}} = (-0.16 \pm 0.58 \pm 0.25)\%$, and $A_{CP}^{D_{s}^{+} \rightarrow K_{S}^{0}K^{+}} = (+0.12 \pm 0.36 \pm 0.22)\%$. They are consistent with the SM predictions and provide the most stringent constraints up to now on models beyond the SM [14].

References
[1] Throughout this paper charge-conjugate modes are included
[2] Glashow S L, Iliopoulos J and Maiani L 1970 Phys. Rev. D 2 1285–1292
[3] Burdman G, Golowich E, Hewett J A and Pakvasa S 2002 Phys. Rev. D 66 014009
[4] Golowich E, Hewett J A, Pakvasa S and Petrov A A 2009 Phys. Rev. D 79 114030
[5] Dorsner I, Fajfer S, Kamenik J F and Kosnik N 2009 Phys. Lett. B 682 67–73
[6] Feldman G J and Cousins R D 1998 Phys. Rev. D 57 3873-3889
[7] Conrad J, Botner O, Hallgren A and Pérez de los Heros C 2003 Phys. Rev. D 67 012002
[8] Petrič M et al. 2010 Phys. Rev. D 81 091102
[9] Amsler C et al. (Particle Data Group) 2008 Phys. Lett. B 667 1
[10] Harr R F (CDF) 2008 (Preprint arXiv:0810.3444v1 [hep-ex])
[11] Fajfer S, Dorsner I, Kamenik J F and Kosnik N 2009 (Preprint arXiv:0910.5407v1 [hep-ph])
[12] Bhattacharyya B and Rosner J L 2008 Phys. Rev. D 77 114020
[13] Guberina B, Nussinov S, Peecei R D and Ruckl R 1979 Phys. Lett. B 89 111
[14] Bigi I I Y and Yamamoto H 1995 Phys. Lett. B 349 363–366
[15] Bishai M et al. (CLEO) 1997 Phys. Rev. Lett. 78 3261–3265
[16] Won E et al. (Belle) 2009 Phys. Rev. D 80 111101
[17] Bucchella F, Lusignoli M, Miele G, Pugliese A and Santorelli P 1995 Phys. Rev. D51 3478–3486
[18] Ko B R et al. (Belle) 2010 Phys. Rev. Lett. 104 181602