Counterexamples to a conjecture by Gun and co-workers, its correct reformulation and the transcendence of some series

F. M. S. Lima

Institute of Physics, University of Brasilia, P.O. Box 04455, 70919-970, Brasilia, DF, Brazil

Abstract

In a recent work, Gun, Murty and Rath have introduced a ‘theorem’ asserting that \(\sum_{n=-\infty}^{\infty} (n + \alpha)^{-k} \) yields a transcendental number for all \(\alpha \in \mathbb{Q} \setminus \mathbb{Z} \), \(k \) being an integer greater than 1. I show here in this short paper that this conjecture is false whenever \(k \) is odd and \(\alpha \) is a half-integer. I also prove that these are the only counterexamples, which allows for a correct reformulation. The resulting theorem implies the transcendence of both the polygamma function at rational entries and certain zeta series.

Key words: Dirichlet series, Cotangent derivatives, Transcendental numbers, Polygamma function, Zeta series

2000 MSC: 11J81, 11J91, 11M41, 33B15

Email address: fabio@fis.unb.br (F. M. S. Lima)
1. Introduction

In a recent work on the transcendence of the log-gamma function and some discrete periods, Gun, Murty and Rath (GMR) have presented the following ‘theorem’ on the transcendence of certain Dirichlet series (see Theorem 4.1 in Ref. [1]):

Conjecture 1 (GMR). Let α be a non-integral rational number and $k > 1$ be a natural number. Then $\sum_{n=-\infty}^{+\infty} \frac{1}{(n+\alpha)^k}$ is a transcendental number.

In a recent work, I have shown that even the main ‘theorem’ in that work (namely, their Theorem 3.1) has an incorrect proof [2]. So, by suspecting that the above series could converge to an algebraic number for some non-integral rational α, I have considered the possibility of finding a counterexample to their assertion. After some computational tests, I have found a simple counterexample: the series is **null** (hence an algebraic number) for $\alpha = \frac{1}{2}$ and $k = 3$. Of course, this implies that Conjecture 1 above, is **false**.

Here in this work, I show that the original proof by Gun and co-workers is **invalid** when α is a half-integer and k is an odd integer. By repairing their defective proof, I show that these values of α and k compose an (infinite) set containing all possible counterexamples, which allows for a correct reformulation of their assertion. This yields a theorem that determines whether $\sum_{n=-\infty}^{+\infty} 1/(n+\alpha)^k$ is an algebraic or a transcendental number, for all rational α, $\alpha \notin \mathbb{Z}$, and every $k \in \mathbb{Z}$, $k > 1$. My proof is based only upon the periodicity and some basic properties of this series. I also show that

1The short proof provided in Ref. [1] is, at first sight, quite convincingly.
the theorem has interesting consequences for the transcendence of both the polygamma function at rational entries and certain zeta series.

2. A first simple counterexample

By testing the validity of the GMR conjecture for $k = 3$ and some rational numbers $\alpha \in (0, 1)$, I have found the following counterexample.

Lemma 1 (First counterexample). The series

$$
\sum_{n=-\infty}^{+\infty} \frac{1}{(n + \frac{1}{2})^3}
$$

is null, thus an algebraic number.

Proof. By writing the above series as the sum of two series, one for the non-negative values of n and the other for the negative ones, which is a valid procedure since the series converges absolutely, one has

$$
\sum_{n=-\infty}^{+\infty} \frac{1}{(n + \frac{1}{2})^3} = \sum_{n=-\infty}^{-1} \frac{1}{(n + \frac{1}{2})^3} + \sum_{n=0}^{+\infty} \frac{1}{(n + \frac{1}{2})^3} = \sum_{n=-\infty}^{-1} \frac{2^3}{(2n + 1)^3} + \sum_{n=0}^{+\infty} \frac{2^3}{(2n + 1)^3}.
$$

Now, by substituting $n = -m$ in the series for $n < 0$ and $n = j - 1$ in the series for $n \geq 0$, one has

$$
\sum_{n=-\infty}^{+\infty} \frac{1}{(n + \frac{1}{2})^3} = -8 \sum_{m=1}^{+\infty} \frac{1}{(2m - 1)^3} + 8 \sum_{j=1}^{+\infty} \frac{1}{(2j - 1)^3} = 0.
$$

\[\square\]
The existence of a counterexample to the GMR conjecture implies that its original statement (see Theorem 4.1 (2) of Ref. [1]) is false. In fact, by scrutinizing the proof furnished there in Ref. [1], I have found some defective points. Their proof reads [1]:

Proof (GMR incorrect proof). We know that

\[\sum_{n=-\infty}^{+\infty} \frac{1}{(n+\alpha)^k} = \frac{1}{\alpha} + \frac{(-1)^k}{(k-1)!} D^{k-1}(\pi \cot \pi z) \big|_{z=\alpha}, \]

where \(D := \frac{d}{dz} \). It is a consequence of a result of Okada [3] that \(D^{k-1}(\pi \cot \pi z) \big|_{z=\alpha} \) is non-zero. But then it is \(\pi^k \) times a non-zero linear combination of algebraic numbers of the form \(\csc(\pi \alpha), \cot(\pi \alpha) \). Thus we have the result. \(\square \)

There in the Okada’s cited work [3], one finds, in its only theorem, the following (correct) linear independence result.

Lemma 2 (Okada’s theorem). Let \(k \) and \(q \) be integers with \(k > 0 \) and \(q > 2 \). Let \(T \) be a set of \(\varphi(q)/2 \) representatives mod \(q \) such that the union \(\{T, -T\} \) is a complete set of residues prime to \(q \). Then the real numbers \(D^{k-1}(\cot \pi z)\big|_{z=a/q}, a \in T, \) are linearly independent over \(\mathbb{Q} \).\(^2\)

See Ref. [3] for a detailed proof of this lemma based upon the partial fraction decomposition of \(D^{k-1}(\pi \cot \pi z) \), valid for all \(z \notin \mathbb{Z} \), as well as a theorem by Baker-Birch-Wirsing on cyclotomic polynomials (see his Corollary 1). Note, however, that this lemma says nothing about the cotangent derivatives at \(z = a/q \) with \(q = 2 \). Then, the linear independence over \(\mathbb{Q} \) is

\(^2\)Here, \(\varphi(q) \) is the Euler totient function.
not guaranteed if \(z \) is a half-integer, which is a source of potential counterexamples to the GMR conjecture. Moreover, the proof of Okada’s theorem is based upon the following partial fraction decomposition for his function

\[
F_k(z) = \frac{k}{(-2\pi i)^k} D^{k-1}(\pi \cot \pi z),
\]

valid for all \(z \notin \mathbb{Z} \) (see Eq. (1) of Ref. [3]):

\[
-\frac{k!}{(2\pi i)^k} \sum_{n=-\infty}^{+\infty} \frac{1}{(n + z)^k} = \frac{k}{(-2\pi i)^k} D^{k-1}(\pi \cot \pi z),
\]

which simplifies to

\[
\sum_{n=-\infty}^{+\infty} \frac{1}{(n + z)^k} = \frac{(-1)^{k-1}}{(k-1)!} D^{k-1}(\pi \cot \pi z).
\]

This identity, by itself, shows that the expression for \(\sum_{n=-\infty}^{+\infty} 1/(n + \alpha)^k \) taken into account by Gun and co-workers in their proof [1], as reproduced in our Eq. (3), is incorrect.

3. An infinity of counterexamples

As we are only interested on integer values of \(k, k > 1 \), let us define the following countable set of real functions:

\[
S_k(z) := \sum_{n=-\infty}^{+\infty} \frac{1}{(n + z)^k},
\]

defined for all real \(z \notin \mathbb{Z} \). From this definition, it is easy to deduce the following mathematical properties.

Lemma 3. The functions \(S_k(z), k \in \mathbb{Z}, k > 1 \), have the following properties, valid for all \(z \) in its domain (i.e., \(z \in \mathbb{R} \setminus \mathbb{Z} \)):

\footnote{Note that, for all \(m \in \mathbb{Z}, \lim_{z \to m} |S_k(z)| = \infty.\]
(i) All functions $S_k(z)$ are periodic, with an unitary period;

(ii) For even values of k, $S_k(z) > 0$;

(iii) All functions $S_k(z)$ are differentiable;

(iv) For odd values of k, $S_k(z)$ are strictly decreasing functions.

Proof. The property (i) follows from the fact that, $\forall k \in \mathbb{Z}$, $k > 1$, and for all real $z \notin \mathbb{Z}$, $S_k(z+1) = \sum_{n=-\infty}^{+\infty} 1/ [n + (z + 1)]^k = \sum_{m=-\infty}^{+\infty} 1/ (m + z)^k = S_k(z)$. Note that n has been substituted by $m-1$ in the first series. Property (ii) is an obvious consequence of the fact that, for any positive even k, every term $1/(n + z)^k$ of the series that defines $S_k(z)$, see Eq. (5), is positive. Property (iii) follows from the fact that the series for $S_k(z)$ in Eq. (5) is term-by-term differentiable with respect to z, without restrictions for $z \in (0, 1)$, and that differentiation does not affect the convergence for any z in this interval. This differentiability for $z \in (0, 1)$ can then be extended to all real $z \notin \mathbb{Z}$ — i.e., all points in the domain of $S_k(z)$ — by making use of their periodicity, as established in property (i). Property (iv) follows from a less direct argument. Firstly, from Eq. (4) we deduce that, for any positive integer m,

$$S_{2m+2}(z) = \frac{-1}{(2m + 1)!} D^{2m+1} (\pi \cot \pi z)$$

and

$$\frac{d}{dz} S_{2m+1}(z) = \frac{1}{(2m)!} D^{2m+1} (\pi \cot \pi z).$$

This property also follows from the representation of $S_k(z)$ as a sum/difference of two polygamma functions $\psi_k(z)$ with $z \in (0, 1)$, since each $\psi_k(z)$ is differentiable at all points of this interval. This representation will be considered in the next section.
By isolating the cotangent derivative at the right-hand side of Eq. (7) and then substituting it on Eq. (6), one finds that

\[
\frac{d}{dz} S_{2m+1}(z) = -(2m + 1) S_{2m+2}(z) .
\]

(8)

By property (ii), \(S_{2m+2}(z) > 0 \), thus \(dS_{2m+1}/dz < 0 \) for all real \(z \not\in \mathbb{Z} \). Then, \(S_{2m+1}(z) \) is a strictly decreasing function in all points of its domain. \(\square \)

An immediate consequence of the periodicity of \(S_k(z) \) is the periodic repetition of the null result established for \(\alpha = \frac{1}{2} \) in Lemma 1. This leads to an infinite set of counterexamples to the GMR assertion, as establishes the following theorem.

Lemma 4 (More counterexamples for \(k = 3 \)). For every integer \(m \), the series

\[
\sum_{n=-\infty}^{+\infty} \frac{1}{(n + m + \frac{1}{2})^3}
\]

(9)
is null.

Proof. From the fact that \(S_3 \left(\frac{1}{2} \right) = 0 \) (see Lemma 1) and from the periodicity of \(S_3(z) \), with an unitary period, as established in Lemma 3, one has \(S_3 \left(m + \frac{1}{2} \right) = 0 \).

\(\square \)

All counterexamples to the GMR original assertion presented hitherto are particular cases of a more general set of counterexamples, as establishes the next lemma.
Lemma 5 (Counterexamples for odd values of k). For every odd integer k, $k > 1$, and every $m \in \mathbb{Z}$, the series
\[
\sum_{n=-\infty}^{+\infty} \frac{1}{(n + m + \frac{1}{2})^k}
\] (10)
is null.

Proof. The proof for $S_k(\frac{1}{2})$ (i.e., for $m = 0$), valid for any odd integer k, $k > 1$, is analogue to that developed in Lemma for $k = 3$. By writing the corresponding series as the sum of two series, one for $n < 0$ and the other for $n \geq 0$, one has
\[
S_k(\frac{1}{2}) = \sum_{n=-\infty}^{+\infty} \frac{1}{(n + \frac{1}{2})^k} = \sum_{n=-\infty}^{-1} \frac{1}{(n + \frac{1}{2})^k} + \sum_{n=0}^{\infty} \frac{1}{(n + \frac{1}{2})^k} = \sum_{n=-\infty}^{-1} \frac{2^k}{(2n + 1)^k} + \sum_{n=0}^{\infty} \frac{2^k}{(2n + 1)^k}.
\]

By substituting $n = -m$ in the series for $n < 0$ and $n = j - 1$ in the series for $n \geq 0$, one finds the following null result:
\[
S_k(\frac{1}{2}) = -2^k \sum_{m=1}^{\infty} \frac{1}{(2m - 1)^k} + 2^k \sum_{j=1}^{\infty} \frac{1}{(2j - 1)^k} = 0.
\] (11)
The extension of this null result to all other half-integer values of z follows from the fact that $S_k(z)$ is periodic, with an unitary period (see property (i) of Lemma 3). Then, $S_k(m + \frac{1}{2}) = 0$.

With these properties and counterexamples in hands, we can now reformulate the GMR conjecture.
4. Reformulating the GMR conjecture

Let us present and prove a theorem which determines whether $S_k(\alpha)$ is an algebraic number or not for non-integral rational values of α.

Theorem 1 (Main result). For any integer $k, k > 1$, and every $\alpha \in \mathbb{Q} \setminus \mathbb{Z}$, the series

$$
\sum_{n=\infty}^{+\infty} \frac{1}{(n+\alpha)^k}
$$

is either an algebraic multiple of π^k or null. It is null if and only if k is an odd integer and α is a half-integer.

Proof. From Eqs. (4) and (5), we know that, for any integer $k, k > 1$,

$$
S_k(\alpha) = \sum_{n=-\infty}^{+\infty} \frac{1}{(n+\alpha)^k} = \frac{(-1)^{k-1}}{(k-1)!} D^{k-1} (\pi \cot \pi z) \big|_{z=\alpha}.
$$

From Okada’s theorem, as reproduced in Lemma 2, one knows that, for all rational $\alpha \not\in \mathbb{Z}$ and any integer $k, k > 1$, $D^{k-1} (\pi \cot \pi z) \big|_{z=\alpha}$ is non-zero, the only possible exceptions being the half-integer values of α (i.e., non-integer fractions with a denominator equal to 2). From the usual rules for derivatives, it is easy to note that when the above cotangent derivative is non-zero, it is π^k times a non-zero linear combination (with integer coefficients) of algebraic numbers of the form $\csc (\pi \alpha)$ and $\cot (\pi \alpha)$. When that derivative is null, the resulting equation $S_k(\alpha) = 0$ has no real roots if k is even, according to property (ii) of Lemma 3. For odd values of k, on the other hand, all half-integer values of α are roots of $S_k(\alpha) = 0$, as establishes Lemma 5.

All that rests is to prove that the half-integers are the only roots of $S_{2\ell+1}(\alpha) = 0, \ell$ being any positive integer. For this, let us restrict our
attention to the open interval \((0,1)\). Note that \(\alpha = \frac{1}{2}\) belongs to the interval \((0,1)\) and is a root of \(S_{2\ell+1}(\alpha) = 0\) for all positive integer \(\ell\), as guaranteed by Lemma 5. From properties (iii) and (iv) of Lemma 3, we know that \(S_{2\ell+1}(\alpha)\) is a strictly decreasing differentiable function, for all real \(\alpha \in (0,1)\). Then, \(S_{2\ell+1}(\alpha_1) \neq S_{2\ell+1}(\alpha_2)\) for all distinct \(\alpha_1, \alpha_2 \in (0,1)\). In particular, \(S_{2\ell+1}(\alpha)\) cannot be null for two distinct values of its argument, both belonging to \((0,1)\). It follows that there is at most one real root in \((0,1)\). Therefore, \(\alpha = \frac{1}{2}\) is the only root in the interval \((0,1)\). Finally, the periodicity of \(S_{2\ell+1}(\alpha)\) guarantees that \(\alpha = \frac{1}{2} + m\) (i.e., the half-integers) are the only real solutions for \(S_{2\ell+1}(\alpha) = 0, \alpha \notin \mathbb{Z}\).

\[\blacksquare\]

From the fact that \(\pi\) is a transcendental number, as first proved by Lindemann (1882), it follows that

Corollary 1 (Reformulation of the GMR conjecture). For any integer \(k, k > 1\), and every \(\alpha \in \mathbb{Q} \setminus \mathbb{Z}\), the series

\[
\sum_{n=-\infty}^{+\infty} \frac{1}{(n+\alpha)^k}
\]

(14)

is either null or a transcendental number. It is null if and only if \(k\) is an odd integer and \(\alpha\) is a half-integer.

Another interesting consequence of Theorem 1 comes from the fact that we can easily write the cotangent derivatives in Eq. (4) in terms of the polygamma function \(\psi_k(z) := \psi^{(k)}(z) = d^k \psi(z)/dz^k\), where \(\psi(z) := \frac{d}{dz} \ln \Gamma(z)\)
is the so-called digamma function. From the reflection formula for $\psi_k(z)$, namely \[\psi_k(1 - z) - (-1)^k \psi_k(z) = (-1)^k D^k(\pi \cot \pi z), \] valid for all non-negative integers k, with $\psi_0(z) := \psi(z)$, and $z \not\in \mathbb{Z}$, and taking into account Eqs. (4) and (5), one finds \[S_k(\alpha) = \frac{\psi_{k-1}(1 - \alpha) + (-1)^k \psi_{k-1}(\alpha)}{(k - 1)!}. \] (16)

From Theorem 1, we know that, for any integer $k > 1$ and every $\alpha \in \mathbb{Q} \setminus \mathbb{Z}$, $S_k(\alpha)$ is either null or an algebraic multiple of π^k. Of course, the same conclusion is valid for $(k - 1)! S_k(\alpha)$. By taking Eq. (16) into account, we have the following result.

Corollary 2 (Transcendence of the polygamma function). For any positive integer k and every $\alpha \in \mathbb{Q} \setminus \mathbb{Z}$, \[\psi_k(1 - \alpha) - (-1)^k \psi_k(\alpha) \] (17) is either null or an algebraic multiple of π^{k+1}. It is null if and only if α is a half-integer and k is even.

Finally, let us make use of the above corollaries for establishing a result on the algebraic nature of certain zeta series. In Eq. (7) of Sec. 1.41 of Ref. [6], one finds the Taylor series expansion \[z \cot z = \sum_{n=0}^{\infty} (-1)^n \frac{2^{2n} B_{2n}}{(2n)!} z^{2n}, \] (18)
which converges for all real \(z \) with \(|z| < \pi\). By exchanging \(z \) by \(\pi z \) and making use of the Euler’s formula for even zeta values, namely

\[
\zeta(2n) = (-1)^{n-1} \frac{2^{2n-1} B_{2n} \pi^{2n}}{(2n)!},
\]

where \(\zeta(m) := \sum_{n=1}^{\infty} 1/n^m \) is the Riemann zeta function, it is easy to deduce that

\[
\pi \cot (\pi z) = 1/z - 2 \sum_{n=1}^{\infty} \zeta(2n) z^{2n-1},
\]

with the series at the right-hand being convergent for all real \(z \) with \(|z| < 1\).

From this equation, by calculating the successive derivatives on both sides, it is easy to derive the following general formulae for the derivatives of order \(m \), \(m \) being any non-negative integer:

\[
D^{2m}(\pi \cot \pi z) = \frac{(2m)!}{z^{2m+1}} - 2 \sum_{n=m+1}^{\infty} \zeta(2n) \cdot (2n-1) \cdot \cdots \cdot (2n-2m) z^{2n-2m-1}
\]

(21)

and

\[
D^{2m+1}(\pi \cot \pi z) = -\frac{(2m+1)!}{z^{2m+2}} - 2 \sum_{n=m+1}^{\infty} \zeta(2n) \cdot (2n-1) \cdot \cdots \cdot (2n-2m-1) z^{2n-2m-2}
\]

(22)

From Eq. (1) and Corollary 1, one readily deduces that

Corollary 3 (Transcendence of certain zeta series). For any positive integer \(m \) and every rational \(z \in (-1, 1) \setminus \{0\} \), both the zeta series

\[
\sum_{n=m+1}^{\infty} \zeta(2n) \cdot (2n-1) \cdot \cdots \cdot (2n-2m) z^{2n-2m-1}
\]

(23)

For \(z = 0 \), the series is null, but Eq. (20) is not valid due to an obvious division by zero.
and
\[\sum_{n=m+1}^{\infty} \zeta(2n) \cdot (2n - 1) \cdot \ldots \cdot (2n - 2m - 1) \cdot z^{2n-2m-2} \quad (24) \]
 converge to some algebraic multiple of \(\pi^{2m+1} \) and \(\pi^{2m+2} \), respectively, the only exceptions being for the former series with \(z = \pm \frac{1}{2} \), for which it is null.

Acknowledgments

The author acknowledges a postdoctoral fellowship from CNPq (Brazilian agency) during the course of this work.

References

[1] S. Gun, M. R. Murty, P. Rath, Transcendence of the log gamma function and some discrete periods, J. Number Theory 129 (2009) 2154–2165.

[2] F. M. S. Lima, On the possible exceptions for the transcendence of the log-gamma function at rational entries. ArXiv: 0908.3253v2 (2009).

[3] T. Okada, On an extension of a theorem of S. Chowla, Acta Arith. 38 (1980/1981) 341–345.

[4] K. S. Kölbig, The polygamma function and the derivatives of the cotangent function for rational arguments, CERN Report CN/96/5 (1996).

[5] E. W. Weisstein, Polygamma Function. From MathWorld. Available at:

\protect\vrule width0pt\protect\href{http://mathworld.wolfram.com/PolygammaFunction}{PolygammaFunction}

[6] I. S. Gradshteyn and I. M. Ryzik, Table of Integrals, Series, and Products, 7th ed., Academic Press, New York, 2007.