Toxoplasma gondii infection and liver disease: a case-control study in a Northern Mexican population

Cosme Alvarado-Esquivel1*, José Luis Torres-Berumen2, Sergio Estrada-Martínez3, Oliver Liesenfeld4,5 and Miguel Francisco Mercado-Suarez2

Abstract

Background: Infection with the protozoan parasite Toxoplasma gondii may cause liver disease. However, the impact of the infection in patients suffering from liver disease is unknown. Therefore, through a case-control study design, 75 adult liver disease patients attending a public hospital in Durango City, Mexico, and 150 controls from the general population of the same region matched by gender, age, and residence were examined with enzyme-linked immunoassays for the presence of anti-Toxoplasma IgG and anti-Toxoplasma IgM antibodies. Socio-demographic, clinical and behavioral characteristics from the study subjects were obtained.

Results: Seroprevalence of anti-Toxoplasma IgG antibodies and IgG titers did not differ significantly in patients (10/75; 13.3%) and controls (16/150; 10.7%). Two (2.7%) patients and 5 (3.3%) controls had anti-Toxoplasma IgM antibodies (P = 0.57). Seropositivity to Toxoplasma did not show any association with the diagnosis of liver disease. In contrast, seropositivity to Toxoplasma in patients was associated with consumption of venison and quail meat. Toxoplasma seropositivity was more frequent in patients with reflex impairment (27.8%) than in patients without this impairment (8.8%) (P = 0.05). Multivariate analysis showed that Toxoplasma seropositivity in patients was associated with consumption of sheep meat (OR = 8.69; 95% CI: 1.02-73.71; P = 0.04) and rabbit meat (OR = 4.61; 95% CI: 1.06-19.98; P = 0.04).

Conclusions: Seropositivity to Toxoplasma was comparable among liver disease patients and controls. Further studies with larger sample sizes are needed to elucidate the association of Toxoplasma with liver disease. Consumption of venison, and rabbit, sheep, and quail meats may warrant further investigation.

Background

Human infection with the protozoan parasite Toxoplasma gondii occurs worldwide [1,2]. Major routes of T. gondii infections include ingesting food or water that is contaminated with oocysts shed by cats or by eating undercooked or raw meat containing tissue cysts [2-4]. The clinical spectrum of T. gondii infection varies from an asymptomatic state to severe illness. The parasite can affect the host’s lymph nodes, eyes, central nervous system, liver, and heart [3,5,6]. In liver, the parasite has been associated with a number of pathological changes including hepatomegaly, granuloma, hepatitis, and necrosis [7-14]. In addition, an epidemiological study has reported an association of T. gondii infection with liver cirrhosis [15]. However, epidemiological studies on the association of infection with T. gondii and liver disease are scarce, and have not been performed in Mexico. Therefore, we performed a case-control study in Northern Mexico to determine the seroprevalence of T. gondii infection and anti-T. gondii IgG levels in adult patients with liver disease attending the Department of Gastroenterology in a secondary-care public hospital in Durango City. Furthermore, we investigated socio-demographic, clinical, and behavioral characteristics associated with T. gondii seropositivity in these patients.
Methods

Study design and study populations

Through a case-control study design, we studied the association of liver disease with infection with *T. gondii* in adult patients and control subjects in Durango City, Mexico from January 2009 to December 2010.

Liver disease patients

Seventy five outpatients attended in the Gastroenterology Department of a public secondary-care hospital (Mexican Social Security Institute) in Durango City, Mexico were enrolled in the study. Forty seven patients were male and twenty eight were female. The mean age of the patients was 58.65 ± 14.41 years (range: 22-85 years). All patients resided in Durango State. Patients suffered from liver cirrhosis (n = 67), steatosis (n = 4), chronic hepatitis (n = 2), acute hepatitis (n = 1), and amoebic liver abscess (n = 1). The etiology of liver cirrhosis was alcohol consumption in 35 patients, hepatitis C virus in 4 patients, and unknown in 28 patients.

Control subjects

One hundred and fifty control subjects matched with patients by age, gender, and residence were included in the study. The mean age in controls was 58.68 ± 14.35 (range: 22-86) and comparable with that in patients (P = 0.99). Control subjects were obtained from the general population of Durango City, Mexico.

Ethical aspects

This study was approved by the Institutional Ethical Committee of the Mexican Social Security Institute. The purpose and procedures of the study were explained to all participants, and a written informed consent was obtained from all of them.

Socio-demographic, clinical and behavioral data

We explored socio-demographic, clinical and behavioral characteristics of the participants with the aid of a standardized questionnaire. Socio-demographic data including age, gender, birthplace, residence area, educational level, occupation, and socio-economic level were obtained from all participants. Clinical data explored in patients included type and duration of liver disease, clinical response to treatment, presence of concomitant diseases, presence or history of lymphadenopathy, frequent headache, impairments in memory, reflexes, hearing and vision, blood transfusion, transplant or surgery history. Behavioral data included animal contacts, contact with cat feces, foreign travel, kind of meat consumption (pork, beef, goat, sheep, boar, chicken, turkey, pigeon, rabbit, deer, squirrel, horse, opossum, or other), consumption of raw or undercooked meat, unpasteurized milk, dried or cured meat (chorizo, ham, sausages or salami), consumption of unwashed raw vegetables, fruits, or untreated water, frequency of eating away from home (in restaurants or fast food outlets), contact with soil (gardening or agriculture), and types of floors at home.

Laboratory tests

Serum samples of participants were obtained and kept frozen at -20°C until analyzed. Sera were analyzed by qualitative and quantitative methods for anti-*T. gondii* IgG antibodies with the commercially available enzyme immunoassay kit “Toxoplasma IgG” (International Immuno-Diagnostics, Foster City, California). Anti-*T. gondii* IgG antibody levels were expressed as International Units (IU)/ml, and a result equal or greater than 8 IU/ml was considered positive. In addition, sera positive for anti-*T. gondii* IgG antibodies were further analyzed for anti-*T. gondii* IgM antibodies by the commercially available enzyme immunoassay “Toxoplasma IgM” kit (International Immuno-Diagnostics). All tests were performed following the instructions of the manufacturer.

Statistical Analysis

Results were analyzed with the aid of Epi Info version 3.5.1 and SPSS 15.0 (SPSS Inc. Chicago, Illinois). Age among the groups was compared by the student’s t test. For comparison of the frequencies among groups, the Yates corrected or, when indicated, the Fisher exact test, were used. Bivariate and multivariate analyses were used to assess the association between subject’s characteristics and *T. gondii* infection. Variables were included in the multivariate analysis if they had a P value equal or less than 0.25 in the bivariate analysis. Odd ratio (OR) and 95% confidence interval (CI) were calculated by multivariate analysis using multiple, unconditional, logistic regression. When a cell in the 2 × 2 contingency table had a value of zero, the odds ratio was calculated by adding 0.5 to all table cells [16]. A P value less than 0.05 was considered statistically significant.

Results

Anti-*T. gondii* IgG antibodies were found in 10 (13.3%) of 75 patients and in 16 (10.7%) of 150 controls (P = 0.71). Of the 10 anti-*T. gondii* IgG positive patients, 6 (8.0%) had IgG levels higher than 150 IU/ml, and 4 (5.3%) between 8 to 99 IU/ml. In comparison, of the 16 anti-*T. gondii* IgG positive controls, 9 (6.0%) had IgG levels higher than 150 IU/ml, 2 (1.3%) between 100 to 150 IU/ml, and 5 (3.3%) between 8 to 99 IU/ml. Anti-*T. gondii* IgG levels were comparable among patients and controls (P = 0.60). Anti-*T. gondii* IgM antibodies were found in 2 patients and in 5 controls (2.7% vs 3.3%, respectively; P = 0.57). The socio-demographic characteristics among seropositive and seronegative patients were not significantly different (Table 1). Seropositivity to *T. gondii* was significantly higher in
patients with an occupation of truck driver than those with other occupations (3/3: 100% vs 8/65: 12.3%; $P = 0.04$). Rabbit meat (OR = 4.61; 95% CI: 1.06-19.98; $P = 0.04$), venison (OR = 40.46; 95% CI: 2.25-725.75; $P < 0.01$), and quail meat (OR = 38.50; 95% CI: 1.70-871.99; $P < 0.01$) were significantly associated with $T. gondii$ infection in patients (Table 4). Other behavioral characteristics did not show an association with $T. gondii$ infection. Raw data of patients and controls are included in additional files [additional file 1-cases and additional file 2-controls, respectively].

**Discussion**

In this seroprevalence case-control study, we found a comparable frequency of anti-$T. gondii$ IgG and IgM antibodies in liver disease patients and controls. Similarly, levels of anti-$T. gondii$ IgG antibodies were comparable among these groups indicating that $T. gondii$ infection is not likely to substantially contribute to the etiology of liver disease in our patient population. We are not aware of previous reports about the association of $T. gondii$ infection in liver disease patients in Mexico, and reports in other countries are scarce. Our results conflict with those reported in a Turkish study where researchers found an association of $T. gondii$ infection with liver cirrhosis [15]. Most of our patients suffered from liver cirrhosis but we did not find any association between seropositivity to $T. gondii$ and cirrhosis. Similarly, the comparable seroprevalence of $T. gondii$ infection in patients and controls differs from those reported in an Egyptian study where researchers found a 65.5% seroprevalence of $T. gondii$ antibodies in patients with acute and chronic hepatic diseases against a 27% seroprevalence found in controls [17]. Certainly, differences in the characteristics of the studies might explain the differences in the seroprevalences including the use of different laboratory methods and matching procedures, difference in ages of participants and proportions of controls and patients.

None of the socio-demographic characteristics and diagnosis of liver disease associated with $T. gondii$ seropositivity in our patients. Concerning behavioral characteristics, it was noteworthy that there was an association between $T. gondii$ seropositivity and sheep meat consumption (OR = 8.69; 95% CI: 1.02-73.71; $P = 0.04$). Infections with $T. gondii$ have been reported in sheep [18]. In addition, viable $T. gondii$ has been found

| Characteristic | No. | %   | No. | %   | P value |
|---------------|-----|-----|-----|-----|---------|
| Gender        |     |     |     |     |         |
| Male          | 47  | 62.7| 8   | 17.0| 0.19    |
| Female        | 28  | 37.3| 2   | 7.1 |         |
| Age groups (years) |   |     |     |     |         |
| 30 or less    | 3   | 4.0 | 0   | 0.0 |         |
| 31-50         | 17  | 22.7| 2   | 11.8| 0.56    |
| 51-70         | 41  | 54.7| 6   | 14.6|         |
| >70           | 14  | 18.7| 2   | 14.3|         |
| Residence place |    |     |     |     |         |
| Durango City  | 75  | 100.0| 10 | 13.3|         |
| Birth place   |     |     |     |     |         |
| Durango State | 67  | 89.3| 9   | 13.4| 0.71    |
| Other Mexican State | 8 | 10.7| 1 | 12.5|         |
| Residence area |    |     |     |     |         |
| Urban         | 49  | 65.3| 5   | 10.2| 0.2     |
| Suburban      | 1   | 1.3 | 0   | 0.0 |         |
| Rural         | 25  | 33.3| 5   | 20.0|         |
| Socio-economic level |   |     |     |     |         |
| Low           | 50  | 72.5| 8   | 16.0| 0.44    |
| Medium        | 19  | 27.5| 2   | 10.5|         |
| Educational level |     |     |     |     |         |
| No education  | 6   | 8.0 | 1   | 16.7| 0.58    |
| Up to 6 years | 63  | 84.0| 8   | 12.7|         |
| 7-12 years    | 6   | 8.0 | 1   | 16.7|         |
| Occupation    |     |     |     |     |         |
| No laborer    | 26  | 34.7| 1   | 3.8 | 0.07    |
| Laborer       | 49  | 65.3| 9   | 18.4|         |

Non laborer = none occupation, student or housewife.  
Laborer = Employee, business, agriculture, construction worker, driver or other.
Table 2 Bivariate analysis of liver disease characteristics in patients and seropositivity to *T. gondii* infection.

| Characteristic                 | No. of subjects tested | Prevalence of *T. gondii* infection | P value | Anti-*T. gondii* IgG levels >150 IU/ml |
|-------------------------------|------------------------|------------------------------------|---------|---------------------------------------|
|                               | No. | %     | No. | %                               |
| Diagnosis                     |     |       |     |                                 |
| Acute hepatitis               | 1   | 0.0   | -   | -                                 |
| Chronic hepatitis             | 2   | 0.0   | -   | -                                 |
| Cirrhosis                     | 67  | 9.1%  | 0.89| 5/55.6                            |
| Steatosis                     | 4   | 25.0  | 1   | 100                               |
| Amoebic abscess               | 1   | 0.0   | -   | -                                 |
| Alcohol related disease       |     |       |     |                                   |
| Yes                           | 35  | 17.1% | 0.28| 3/50                              |
| No                            | 40  | 10.0% | 3   | 75                                |
| Duration of disease           |     |       |     |                                   |
| Less than 1 year              | 30  | 5.0%  | 0.35| 3/36                              |
| 1 to 5 years                  | 34  | 11.8% | 3   | 75                                |
| More than 5 years             | 11  | 9.1%  | 1   | 100                               |
| Treatment response            |     |       |     |                                   |
| Good                          | 50  | 16.0% | 4   | 50                                |
| Regular                       | 4   | 25.0% | 1   | 100                               |
| Bad                           | 3   | 33.3% | 1   | 100                               |

Table 3 Bivariate analysis of clinical data and infection with *T. gondii* in patients.

| Characteristic              | No. of subjects tested | Prevalence of *T. gondii* infection | P value |
|----------------------------|------------------------|------------------------------------|---------|
|                             | No. | %     |       |         |
| Concomitant disease        |     |       |       |         |
| Yes                        | 49  | 5.1%  | 10.2% | 0.22    |
| No                         | 26  | 5.2%  | 19.2% |         |
| Lymphadenopathy ever       |     |       |       |         |
| Yes                        | 11  | 9.1%  | 9.1%  | 0.54    |
| No                         | 64  | 9%    | 14.1% |         |
| Headache frequently        |     |       |       |         |
| Yes                        | 25  | 3%    | 12%   | 0.55    |
| No                         | 50  | 7%    | 14%   |         |
| Blood transfusion          |     |       |       |         |
| Yes                        | 56  | 6%    | 12%   | 0.44    |
| No                         | 25  | 4%    | 16%   |         |
| Transplantation            |     |       |       |         |
| Yes                        | 4   | 0%    | 0%    | 0.55    |
| No                         | 71  | 10%   | 14.1% |         |
| Surgery ever               |     |       |       |         |
| Yes                        | 42  | 7%    | 16.7% | 0.27    |
| No                         | 33  | 3%    | 9.1%  |         |
| Memory impairment          |     |       |       |         |
| Yes                        | 32  | 4%    | 12.5% | 0.56    |
| No                         | 43  | 6%    | 14%   |         |
| Reflex impairment          |     |       |       |         |
| Yes                        | 18  | 5%    | 27.8% | 0.05    |
| No                         | 57  | 5%    | 8.8%  |         |
| Hearing impairment         |     |       |       |         |
| Yes                        | 48  | 6%    | 12.5% | 0.51    |
| No                         | 27  | 4%    | 14.8% |         |
| Visual impairment          |     |       |       |         |
| Yes                        | 27  | 3%    | 11.1% | 0.48    |
| No                         | 48  | 7%    | 14.6% |         |
in lambs destined for meat consumption in the USA [19], and ovine meat consumed in France [20]. It will therefore be of interest to examine the seroprevalence of *T. gondii* infection in sheep in Durango. In a recent study in the USA, elevated risk of recent *T. gondii* infection was associated with eating rare lamb [21]. Even frozen lamb meat has been associated with acute *T. gondii* infection in Brazil [22]. The association of *T. gondii* infection and consumption of sheep meat in our patients was unexpected since lamb meat consumption was negatively associated with *T. gondii* infection in a previous study in psychiatric patients in Durango [23]. We are not aware of any previous report about a positive association of *T. gondii* infection and consumption of sheep meat in Mexico. Remarkably, consumption of rabbit meat was also associated with *T. gondii* infection in patients (OR = 4.61; 95% CI: 1.06-19.98; *P* = 0.04). Infections with *T. gondii* in rabbits have been reported in several countries [24-26]. Antibodies against *T. gondii* were found in 77 (26.9%) of 286 domestic rabbits from three rabbit farms in Mexico [25]. However, the seroprevalence of *T. gondii* infection in rabbits in Durango is unknown. To the best of our knowledge there is not any previous report about the association of *T. gondii* infection and consumption of quail meat [27] and Japanese quail [28] have been reported. We are not aware of any previous epidemiological report about the association of *T. gondii* infection and consumption of quail meat. More expectantly, we observed an association between *T. gondii* seropositivity and consumption of venison (OR = 40.46; 95% CI: 2.25-725.75; *P* < 0.01). Infections with *T. gondii* have been reported in deer [29,30]. Consumption of undercooked or uncooked venison has been linked to ocular toxoplasmosis in deer hunters [31]. Interestingly, toxoplasmosis with liver involvement has been reported in deer hunters who had eaten undercooked venison [32].

The frequency of *T. gondii* seropositivity was higher in patients with reflex impairment (27.8%) than patients without this impairment (8.8%), and this difference showed a borderline significance (*P* = 0.05). In a previous study in patients with visual impairment in Durango, we found that patients with reflex impairment had significantly higher frequency of *T. gondii* infection than those with normal reflexes [33]. Reflex impairment might contribute to reducing the quality of life in *T. gondii* infected patients.

**Conclusions**

Seropositivity to *T. gondii* was comparable among liver disease patients and controls. Further studies with larger sample sizes are needed to elucidate the association of *T. gondii* with liver disease. Consumption of venison, and rabbit, sheep, and quail meats may warrant further investigation.

| Table 4 Multivariate analysis of selected characteristics of patients and their association with *T. gondii* infection. |
|---------------------------------------------------------------|
| Characteristic                     | Yes | No | Odds ratio | 95% Confidence interval | *P* value |
|-----------------------------------|-----|----|------------|------------------------|-----------|
| Cats at home                      | 7/41| 3/34| 1.99       | 0.45 - 8.81            | 0.36      |
| Raising animals                   | 8/48| 2/27| 2.53       | 0.48 - 13.37           | 0.27      |
| Traveling abroad                  | 6/34| 4/41| 2.24       | 0.54 - 9.23            | 0.26      |
| Sheep meat consumption            | 9/43| 1/32| 8.69       | 1.02 - 73.71           | 0.04      |
| Chicken meat consumption          | 9/74| 1/1 | 0.04       | 0.001-1.27             | 0.01      |
| Turkey meat consumption           | 9/51| 1/24| 5.97       | 0.68 - 51.93           | 0.10      |
| Pigeon meat consumption           | 3/12| 7/63| 2.42       | 0.46 - 12.69           | 0.29      |
| Rabbit meat consumption           | 7/31| 3/44| 4.61       | 1.06 - 19.98           | 0.04      |
| Venison consumption               | 10/36| 0/39| 40.46      | 2.25-725.75            | <0.01     |
| Squirrel meat consumption         | 5/24| 5/51| 2.46       | 0.59 - 10.29           | 0.21      |
| Quail meat consumption            | 2/2 | 8/73| 38.50      | 1.70-871.99            | <0.01     |
| Skunk meat consumption            | 2/5 | 8/70| 3.11       | 0.43 - 22.39           | 0.25      |
| Armadillo meat consumption        | 1/2 | 9/73| 7.11       | 0.085-566.52           | 0.05      |
| Raw milk consumption              | 6/31| 4/44| 2.26       | 0.56 - 8.99            | 0.24      |
| Ham consumption                   | 7/63| 3/12| 0.46       | 0.09 - 2.21            | 0.33      |
| Unwashed raw fruits               | 5/24| 5/51| 2.4        | 0.60 - 9.58            | 0.21      |
| Untreated water                   | 9/47| 1/28| 6.73       | 0.75 - 60.49           | 0.08      |
| Soil contact                      | 9/53| 1/22| 3.86       | 0.45 - 33.17           | 0.21      |
| Soil floor at home                | 4/16| 6/59| 2.35       | 0.51 - 10.72           | 0.26      |

*Odd ratios for these characteristics were calculated by adding 0.5 to each cell of the 2 × 2 table.*
Funding
This study was supported by Fondos Mixtos Durango-Consejo Nacional de Ciencia y Tecnología, Mexico. Grant No. 66718.

Additional material

Additional file 1: Patients. Raw data of patients suffering from liver diseases.

Additional file 2: Controls. Raw data of controls of patients suffering from liver diseases.

Author details
1Faculty of Medicine, Juárez University of Durango State. Avenida Universidad S/N. 34000 Durango, Dgo, Mexico. 2Mexican Social Security Institute, Avenida Normal # 200, 34000, Durango City, Durango, Mexico. 3Institute for Scientific Research, Juárez University of Durango State. Avenida Universidad S/N. 34000 Durango, Durango, Mexico. 4Institute for Microbiology and Hygiene, Campus Benjamin Franklin, Charité Medical School, Hindenburgdamm 27, D-12203 Berlin, Germany. 5Roche Molecular Diagnostics, Pleasanton, CA. USA.

References
1. Hill DE, Chirikandoth S, Dubey JP. Biology and epidemiology of Toxoplasma gondii in man and animals. Annu Health Res Rev 2005, 6:41-61.
2. Dubey JP. Toxoplasmosis of animals and humans. Second edition. Boca Raton, Florida CRC Press, 2009.
3. Montoya JG, Liesenfeld O. Toxoplasmosis. Lancet 2004, 363:1965-1976.
4. Dawson D. Foodborne protozoan parasites. Int J Food Microbiol 2005, 103:207-227.
5. Walker M, Zunt JR. Parasitic central nervous system infections in immunocompromised hosts. Clin Infect Dis 2005, 40:1005-1015.
6. Balsamaram MB, Andavar R, Palaniswamy M, Venkatapathy N. Outbreak of acquired ocular toxoplasmosis involving 248 patients. Arch of Ophthalm 2010, 128:28-32.
7. Karasawa T, Shikata T, Takazawa I, Morita K, Komuki M. Localized hepatic necrosis related to cytomegalovirus and Toxoplasma gondii. Acta Pathol Jpn 1981, 31:527-534.
8. Ortego TJ, Robey B, Morrison D, Chan C. Toxoplastic choriorretinitis and hepatic granulomas. Am J Gastroenterol 1990, 85:1418-1420.
9. Bonacini M, Kangel G, Alamy M. Duodenal and hepatic Toxoplasma gondii infection in a patient with HIV infection; review of the literature. Am J Gastroenterol 1996, 91:1838-1840.
10. Hassan MM, Faraghy AM, Gaber NS, Nageeb AH, Hegab MH, Galal N. Parasitic causes of hepatomegaly in children. J Egypt Soc Parasitol 1996, 26:177-187.
11. Mastroianni A, Coronado O, Scarani P, Manfredi R, Chiodo F. Liver toxoplasmosis and acquired immunodeficiency syndrome. Recent Prog Med 1996, 87:353-355.

Received: 14 April 2011 Accepted: 13 May 2011 Published: 13 May 2011

Competing interests
The authors declare that they have no competing interests.

12. Doğan N, Kabukçuoğlu S, Vardareli E. Toxoplasmatis hepatitis in an immunocompetent patient. Turk J Parasitol Derg 2007, 31:260-263.
13. Neves ES, Ricacho LN, Curi AL, Carregal E, Bueno WF, Ferreira RG, Amendoeira MF, Benchimol E, Fernandes O. Acute acquired toxoplasmosis: clinical-laboratorial aspects and ophthalmologic evaluation in a cohort of immunocompetent patients. Mem Inst Oswaldo Cruz 2009, 104:393-396.
14. Nuruna J, Vásquez T, Endo S, Salazar D, Rodrigues A, Pereyra S, Solis H. Disseminated toxoplasmosis in an immunocompetent patient from Peruvian Amazon. Rev Inst Med Trop Sao Paulo 2010, 52:107-110.
15. Ustun S, Aksoy U, Dago H, Erizar G. Incidence of toxoplasmosis in patients with cirrhosis. World J Gastroenterol 2004, 10:452-454.
16. Fleiss JL. Statistical methods for rates and proportions. Second edition. New York: John Wiley & Sons; 1981.
17. Ghannam ME, Shataat MA, Monib Meïl-S, Hassan AA, Younis AI. Evaluation of the role of some parasitic infections as a cause of acute and chronic hepatic diseases. J Egypt Soc Parasitol 2001, 31:37-42.
18. Dubey JP. Toxoplasmosis in sheep—the last 20 years. Vet Parasitol 2009, 163:1-14.
19. Dubey JP, Sundar N, Hill D, Velmurugan GV, Bandini LA, Kwok OC, Majumdar D, Su C. High prevalence and abundant atypical genotypes of Toxoplasma gondii isolated from lambs destined for human consumption in the USA. Int J Parasitol 2008, 38:999-1006.
20. Halos L, Thébault A, Aubert D, Thomas M, Perret C, Geers R, Alliot A, Escotte-Binet S, Azenberg D, Darol MI, Durand B, Boreau P, Villani I. An innovative survey underlining the significant level of contamination by Toxoplasma gondii of ovine meat consumed in France. Int J Parasitol 2010, 40:193-200.
21. Jones JL, Dargelas V, Roberts J, Press C, Remington JS, Montoya JG. Risk factors for Toxoplasma gondii infection in the United States. Clin Infect Dis 2009, 49:878-884.
22. Jones JL, Muccioli C, Belfort R Jr, Holland GN, Roberts JM, Silveria C. Recently acquired Toxoplasma gondii infection, Brazil. Emerg Infect Dis 2006, 12:582-587.
23. Alvarado-Esquivel C, Alanis-Quiñones OP, Arreola-Valenzuela MA, Rodríguez-Brones A, Piedra-Nevarez LJ, Duran-Morales E, Estrada-Martinez S, Martinez-Garcia SA, Liesenfeld O. Seroepidemiology of Toxoplasma gondii infection in psychiatric inpatients in a northern Mexican city. BMC Infect Dis 2006, 6:178.
24. Almeira S, Calvette C, Pagés A, Gauss C, Dubey JP. Factors affecting the seroprevalence of Toxoplasma gondii infection in wild rabbits (Oryctolagus cuniculus) from Spain. Vet Parasitol 2004, 123:265-270.
25. Figueroa-Castillo JA, Duarte-Rosas V, Juárez-Acevedo M, Luna-Pastén H, Correa D. Prevalence of Toxoplasma gondii antibodies in rabbits (Oryctolagus cuniculus) from Mexico. J Parasitol 2006, 92:394-395.
26. Haffouch M, Tahoon Ael-N. Seroprevalence of Toxoplasma gondii antibodies in domestic ducks, free-range chickens, turkeys and rabbits in Kafr El-Sheikh Governate Egypt. J Egypt Soc Parasitol 2010, 40:295-302.
27. Dubey JP, Ruff MD, Kwok OC, Shen SK, Wilkins GC, Thuliez P. Experimental toxoplasmosis in bobwhite quail (Colinus virginianus) from California. J Parasitol 2002, 88:41-44.
28. Banura SA, Liesenfeld O. Toxoplasma gondii infection in roe deer from Spain. Gortázar C, Almería S. J Parasitol 1996, 82:41-44.
29. Vanek JA, Dubey JP, Thuliez P, Riggs MR, Stromberg BE, Dubey JP. Prevalence of Toxoplasma gondii antibodies in hunter-killed white-tailed deer (Odocoileus virginianus) in four regions of Minnesota. J Parasitol 2006, 92:152-156.
30. Ross RD, Spec LA, Werner JC, Blumenkrans MS, Glazer L, Williams GA. Presumed acquired ocular toxoplasmosis in deer hunters. Retina 2001, 21:226-229.
31. Sacks JJ, Delgado DG, Lobel HO, Parker RL. Toxoplasmosis infection associated with eating undercooked venison. Am J Epidemiol 1983, 118:832-838.

http://www.parasitesandvectors.com/content/4/1/75
33. Alvarado-Esquivel C, Liesenfeld O, Torres-Castorena A, Estrada-Martínez S, Urbina-Alvarez JD, Ramos-de la Rocha M, Márquez-Conde JA, Dubey JP: Seroepidemiology of *Toxoplasma gondii* infection in patients with vision and hearing impairments, cancer, HIV, or undergoing hemodialysis in Durango, Mexico. *J Parasitol* 2010, 96:505-508.

doi:10.1186/1756-3305-4-75

Cite this article as: Alvarado-Esquivel et al.: *Toxoplasma gondii* infection and liver disease: a case-control study in a Northern Mexican population. *Parasites & Vectors* 2011 4:75.