Supporting Information for:

Trimetallaborides as Starting Points for the Syntheses of Large Metal-Rich Molecular Borides and Clusters

Holger Braunschweig, William C. Ewing, Thomas Kramer, Sundargopal Ghosh, Sebastian Östreicher, Alfredo Vargas, James Mattock and Christine Werner

h.braunschweig@uni-wuerzburg.de

Experimental

Materials: Li[{(CO)2CpMn}2B] (1),1 dimethylsulfide gold and copper chlorides (DMS–AuCl, DMS–CuCl) and 1,3-(4-tolyl)imidazol-2-ylidene copper chloride (ITol–CuCl),2 and Li[{(CO)2CpMn}2B{Pt(PCy3)}] (6),3 were prepared by literature methods.

Physical Methods: All manipulations were performed either under an atmosphere of dry argon or in vacuo using standard Schlenk line or glovebox techniques. All solvents (including DMS) were dried and degassed as according to literature methods, and stored under inert environments.4 NMR spectra in solution were acquired on a Bruker Avance 400 (1H: 400.1 MHz, 11B{1H}: 128.4 MHz, 13C{1H}: 100.6 MHz). 1H NMR and 13C NMR spectra were referenced to external TMS via residual protons of the solvent (1H) or the solvent itself (13C) and 11B{1H} NMR spectra were referenced to external Et2O·BF3. IR spectra were acquired on a JASCO FT/IR-6200 type A spectrometer. Elemental analysis was performed on Vario MICRO Cube Elemental Analyzer.
Crystallographic Details: All structures were solved using direct methods, refined with the Shelx software package\(^5\) and expanded using Fourier techniques. The *ShelXL* was interfaced with *ShelXLe* GUI for most of the refinement steps.\(^6\) The pictures of molecules were prepared using *Pov-Ray* 3.6.2.\(^7\) Additional details on refinement can be found in CIF files, which can be obtained from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif under CCDC 1420470 (2), CCDC 1420471 (3), CCDC 1420472 (4), and CCDC 1420473 (7).

For **2**:

The crystal data of 2 were collected on a Bruker X8-APEX II diffractometer with a CCD area detector and multi-layer mirror monochromated Mo\(_{K\alpha}\) radiation. Hydrogen atoms were included in structure factors calculations. All hydrogen atoms were assigned to idealised geometric positions.

Crystal data for 2: C\(_{28}\)H\(_{20}\)B\(_2\)Cu\(_2\)Mn\(_4\)O\(_8\), \(M_f = 852.90\), orange block, 0.26×0.19×0.12 mm\(^3\), Monoclinic space group \(P2_1/c\), \(a = 12.6570(12)\) Å, \(b = 17.3227(16)\) Å, \(c = 13.6878(13)\) Å, \(\beta = 91.065(4)\)^\(\circ\), \(V = 3000.6(5)\) Å\(^3\), \(Z = 4\), \(\rho_{calc} = 1.888\) g·cm\(^{-3}\), \(\mu = 3.072\) mm\(^{-1}\), \(F(000) = 1680\), \(T = 100(2)\) K, \(R_I = 0.0396\), \(wR^2 = 0.0780\), 6139 independent reflections \([\theta \leq 52.74^\circ]\) and 397 parameters.

For **3**:
The crystal data of 3 were collected on a Bruker X8-Apex II diffractometer with a CCD area
detector and multi-layer mirror monochromated MoKα radiation. All non-hydrogen atoms were
refined anisotropically. Hydrogen atoms were included in structure factors calculations. All
hydrogen atoms were assigned to idealised geometric positions.

Crystal data for tsk100: C_{28}H_{20}Au_{2}B_{2}Mn_{4}O_{8}, \(M_r = 1119.75 \), red block, 0.12×0.04×0.03 mm\(^3\),
Monoclinic space group C2/c, \(a = 17.4662(13) \) Å, \(b = 12.1607(9) \) Å, \(c = 15.4013(18) \) Å,
\(α = 119.822(2)^\circ \), \(V = 2838.1(4) \) Å\(^3\), \(Z = 4 \), \(ρ_{calc} = 2.621 \) g·cm\(^{-3}\), \(μ = 12.077 \) mm\(^{-1}\),
\(F(000) = 2080 \), \(T = 100(2) \) K, \(R_I = 0.0195 \), \(wR^2 = 0.0409 \), 3023 independent reflections
[20≤53.52°] and 200 parameters.

For 4:

The crystal data of 4 were collected on a Bruker X8-Apex II diffractometer with a CCD area
detector and multi-layer mirror monochromated MoKα radiation. All non-hydrogen atoms were
refined anisotropically. Hydrogen atoms were included in structure factors calculations. All
hydrogen atoms were assigned to idealised geometric positions.

The displacement parameters of the fragments CuPCy\(_3\) and PtPCy\(_3\) were constrained to the same
value.

The Uii displacement parameters of the fragments CuPCy\(_3\) and PtPCy\(_3\) were restrained with
ISOR keyword to approximate isotropic behavior.
Crystal data for 4: C_{50}H_{76}BCuMn_{2}O_{4}P_{2}Pt, \(M_r = 1182.37 \), red block, 0.24×0.18×0.11 mm³,
Triclinic space group \(P-1 \), \(a = 11.1740(8) \) Å, \(b = 11.1760(8) \) Å, \(c = 19.8602(14) \) Å,
\(\alpha = 83.931(2)^\circ \), \(\beta = 83.831(2)^\circ \), \(\gamma = 75.995(2)^\circ \), \(V = 2384.3(3) \) Å³, \(Z = 2 \), \(\rho_{calc} = 1.647 \) g·cm⁻³,
\(\mu = 3.993 \) mm⁻¹, \(F(000) = 1200 \), \(T = 100(2) \) K, \(R_I = 0.0680 \), \(wR^2 = 0.0966 \), 9725 independent reflections \([2\theta \leq 52.74^\circ]\) and 491 parameters.

For 7:
The crystal data of 7 were collected on a Bruker X8APEX diffractometer with a CCD area
detector and multi-layer mirror monochromated MoKα radiation. All non-hydrogen atoms were
refined anisotropically. Hydrogen atoms were included in structure factors calculations. All
hydrogen atoms were assigned to idealised geometric positions.

Crystal data for 7: C_{70}H_{83}BCuMn_{2}N_{2}O_{4}P_{2}Pt, \(M_r = 1426.67 \), red block, 0.21×0.15×0.08 mm³,
Triclinic space group \(P-1 \), \(a = 12.516(2) \) Å, \(b = 13.405(3) \) Å, \(c = 19.099(4) \) Å, \(\alpha = 100.262(5)^\circ \),
\(\beta = 97.963(5)^\circ \), \(\gamma = 95.107(5)^\circ \), \(V = 3101.3(10) \) Å³, \(Z = 2 \), \(\rho_{calc} = 1.528 \) g·cm⁻³, \(\mu = 3.061 \) mm⁻¹,
\(F(000) = 1452 \), \(T = 100(2) \) K, \(R_I = 0.0642 \), \(wR^2 = 0.0913 \), 13026 independent reflections
\([2\theta \leq 53.86^\circ]\) and 753 parameters.

Computational Details:
For the investigation of potential closed shell interactions, geometry optimization was carried out
using the Amsterdam Density Functional (ADF)⁸ program at the OLYP/TZP.⁹ All calculations
were conducted within the zeroth-order regular approximation (ZORA) formalism.¹⁰ To obtain
the singlet state, spin-restricted calculations were performed constraining the projection of the
total electronic spin along a reference axis to 0. Frequency calculations were conducted to
determine if each stationary point corresponds to a minimum. Reported bond orders are of the
Mayer bond order type11 and atomic charges were determined according to the Hirshfeld charge
analysis.12 Dispersion was included via the addition of the D3 version of Grimme's dispersion
with Becke-Johnson damping.13 The Jmol14 program and the Graphical User Interface (ADF-
GUI) – a part of the ADF package, were used for visualization purposes.

For the reported thermochemistry, calculations were performed in the Gaussian 09 software
suite.15 For compound 2 and its related thermochemistry, optimizations were carried out at the
B3LYP/6-311+G(d,p) level of theory for all atoms and checked via frequency calculation to
ensure the stationary point was a true minimum with no imaginary frequencies. The calculated
electronic and free energies at 298.15 K are given in Table 1. For compound 3, small atoms were
calculated at the B3LYP/6-311+G(d,p) level, while Au and Mn were treated at with the
LANL2DZ pseudopotential.

Synthetic Details

\{[(η5-C5H5)2(CO)4Mn]BCu\}2 (2): DMS–CuCl (5.0 mg, 0.031 mmol) was added to a solution of
1 (20 mg, 0.031 mmol) in toluene (1 mL) and stirred for 0.5 h at room temperature. The color of
the reaction mixture changed from slightly yellow to red and a colorless precipitate formed.
After a complete conversion, indicated by the emergence of a 11B NMR signal at 208 ppm, the
solution was filtered and stored at –35 °C. Slow crystallization led to the isolation of red crystals
of 2 suitable for X-ray diffraction. For (2): 12.1 mg (0.015 mmol, 46%) 1H NMR (C₆D₆,
400.1 MHz): $\delta = 4.58$ (s, 10H, C_5H_5). $^{11}B\{^1H\}$ NMR (C_6D_6, 128.4 MHz): $\delta = 208$. $^{13}C\{^1H\}$ NMR (C_6D_6, 100.6 MHz): $\delta = 225.7$ (CO), 84.3 (s, C_5H_5). FT-IR (hexane): 1957 (br), 1942 (br), 1907 (br), 1878 (br) cm$^{-1}$. Elemental analysis: calc’d (%): C: 39.43, H: 2.36; found (%): C: 40.22 H: 2.80.

$\{(\eta^5-C_5H_5)_2(CO)_4Mn_2)BAu\}_2$ (3): DMS–AuCl (4.6 mg, 0.016 mmol) was added to a solution of 1 (10 mg, 0.016 mmol) in toluene (1 mL) and stirred for 0.5 h at room temperature. The color of the reaction mixture changed from slightly yellow to red and a precipitate was formed. After a complete conversion in the ^{11}B NMR spectrum to a low-field signal at 208 ppm was observed, the solution was filtrated and stored at -35°C. Slow crystallization led to the isolation of red crystals of 3 suitable for X-ray diffraction. For 3: 3.2 mg (0.003 mmol, 17%). 1H NMR (C_6D_6, 400.1 MHz): $\delta = 4.85$ (s, 10H, C_5H_5). $^{11}B\{^1H\}$ NMR (C_6D_6, 128.4 MHz): $\delta = 208$. $^{13}C\{^1H\}$ NMR (C_6D_6, 100.6 MHz): $\delta = 232.2$ (CO), 83.9 (s, C_5H_5). FT-IR (hexane): 1986 (br), 1945 (br), 1927 (br), 1913 (br), 1878 (br) cm$^{-1}$. Elemental analysis: calc’d (%): C: 30.03, H: 1.80; found (%): C: 31.05 H: 1.75.

$\{(\eta^5-C_5H_5)_2(CO)_4Mn_2][CuPCy_3][PtPCy_3]\}$ (4): Pt(PCy$_3$)$_2$ (21.3 mg, 0.028 mmol) was added to a solution of (2) (12 mg, 0.014 mmol) in toluene (1 mL) and stirred for 4 at 60 °C. The color of the reaction mixture remained red, but in the ^{11}B NMR spectrum a low-field shift to 215 ppm was observed. The solution was concentrated and stored at -35°C. After 4 weeks orange crystals of 4 suitable for X-ray diffraction were obtained. For 4: 10.2 mg (0.009 mmol, 31%). 1H NMR (C_6D_6, 400.1 MHz): $\delta = 4.75$ (s, 10H, C_5H_5), 1.23 – 2.41 (br, 66H, PCy$_3$). $^{11}B\{^1H\}$ NMR (C_6D_6, 128.4 MHz): $\delta = 215$. $^{13}C\{^1H\}$ NMR (C_6D_6, 100.6 MHz): $\delta = 236.9$ (CO), 82.3 (s, C_5H_5), 25.0 –
34.9 (br, PCy₃). 31P{¹H} NMR (C₆D₆, 162.0 MHz): $\delta = 63.9$ (s, PtPCy₃, $^1J_{P-Pt} =$ 4421 Hz), 13.4 (s, CuPCy₃). FT-IR (hexane): 1946 (br), 1913 (br), 1873 (br), 1849 (br), 1793 (br), 1768 (br) cm⁻¹. Elemental analysis: calc’d (%): C: 50.79, H: 6.47; found (%) C: 51.06 H: 6.75.

Alternative route to 4: PCy₃–CuCl (24.0 mg, 0.047 mmol) was added to a solution of 6 (30 mg, 0.047 mmol) in toluene (1 mL) and stirred for 0.5 h at room temperature. The color of the reaction mixture turned yellow and a white precipitate formed. In the 11B NMR spectrum a low-field shift to 216 ppm was observed. The solution was filtered, concentrated and stored at -35 °C. After 12 h yellow crystals of 4 were obtained. Yield: 31 mg, 0.037 mmol, 79%.

(η⁵-C₅H₅)₂(CO)₄Mn₂B(PtPCy₃)(CuITol) (7): ITol–CuCl (3.71 mg, 0.010 mmol) was added to a solution of 6 (10 mg, 0.010 mmol) in toluene (1 mL) and stirred for 2 h at room temperature. The color of the reaction mixture turned red as a white precipitate formed. A downfield shift of the 11B NMR resonance to 226 ppm was observed. The solution was filtered, concentrated and stored at -35 °C. After four weeks, orange crystals of 7 suitable for X-ray diffraction were obtained. For 7: 7.4 mg (0.006 mmol, 61%). 1H NMR (C₆D₆, 400.1 MHz): $\delta = 7.65$ (d, 4H, Tol), 7.03 (t, 4H, Tol), 6.47 (s, 2H, NHC), 4.38 (s, 10H, C₅H₅), 2.74 (m, 3H, PCy₃), 2.18 (m, 6H, PCy₃), 1.96 (s, 6H, Tol), 1.77 (m, 6H, PCy₃), 1.63 (m, 6H, PCy₃), 1.36 (m, 6H, PCy₃), 1.20 (m, 6H, PCy₃). 11B{¹H} NMR (C₆D₆, 128.4 MHz): $\delta = 226$. 13C{¹H} NMR (C₆D₆, 100.6 MHz): $\delta =$ 214.3 (CO), 139.4 (Tol), 138.2 (Tol), 130.8 (Tol), 125.0 (Tol), 121.5 NHC, 82.0 (s, C₅H₅), 34.3 (PCy₃), 30.7 (PCy₃), 28.3 (PCy₃), 27.2 (PCy₃), 20.9 (Tol). 31P{¹H} NMR (C₆D₆, 162.0 MHz): $\delta =$ 55.3 (s, PtPCy₃, $^1J_{P-Pt} =$ 4269 Hz). FT-IR (hexane): 1948 (br), 1909 (br), 1859 (br), 1766 (br) cm⁻¹. Elemental analysis: calc’d (%) C: 54.14, H: 5.44, N: 2.25; found (%) C: 54.29 H: 5.53, N: 2.13.
Figure S1. Evaluation of the potential energy changes involved in the movement of the Cu ion in 2a from a centrosymmetric position to a position closer to one of the two Mn atoms. Calculations were carried out at the B3LYP/6-311+G** level for all atoms by fixing the Mn1-B-Cu angle and optimizing around this coordinate. In the Kohn-Sham molecular orbital depictions, the top figure is the LUMO for the partially-optimized structures, and the lower figure is the HOMO. The values of E used for the determination of ΔE are not ZPE-corrected.
Table 1. Energies calculated for the reported thermochemical data. Energies are in Hartrees and calculated in the gas phase at 298.15 K. Optimizations and frequencies calculations were carried out using the B3LYP functional. For copper-containing compounds the 6-311+G(d,p) basis set was used for all atoms. For gold containing compounds the 6-311+G(d,p) basis set was used for all non-metals and the LANL2DZ pseudopotential was used for Mn and Au.

Compound	E	G
1·Cu⁰	-4807.864936	-4807.918751
1·Au⁰	-1208.65455	-1208.710171
2	-9615.79298	-9615.875567
3	-2417.380441	-2417.380441
1·Cu_{DMS}	-5285.889168	-5285.952871
1·Au_{DMS}	-1686.676566	-1686.740467
1·Cu_{PMe₃}	-5268.963001	-5268.029736
1·Au_{PMe₃}	-1669.758054	-1669.824634
1·Cu_{IMe}	-5112.685243	-5112.752845
1·Au_{IMe}	-1513.481545	-1513.548901
DMS	-477.991357	-478.018459
PMe₃	-461.052417	-461.081485
IMe	-304.754655	-304.785764
Table 2. Relevant bond lengths and angles for 2.

bond	length [Å]	atoms	angle (°)
B1-Mn1	1.960(3)	B2-Cu1-B1	111.13(12)
B1-Mn2	1.970(3)	Cu1-B1-Cu2	67.96(10)
B1-Cu1	2.186(3)	B1-Cu2-B2	112.40(12)
B1-Cu2	2.238(3)	Cu2-B2-Cu1	68.43(10)
B2-Mn3	1.975(3)	Mn1-B1-Mn2	161.95(19)
B2-Mn4	1.962(3)	Mn3-B2-Mn4	157.05(19)
B2-Cu1	2.240(3)	Mn2-Cu1-Mn4	162.90(2)
B2-Cu2	2.156(3)	Mn1-Cu2-Mn3	161.23(2)
Cu1-Cu2	2.473(1)		
Cu1-Mn2	2.458(1)		
Cu1-Mn4	2.464(1)		
Cu2-Mn1	2.440(1)		
Cu2-Mn3	2.462(1)	Mn1-C1-O1	173.0(3)
Cu1-C4	2.430(3)	Mn1-C2-O2	177.7(3)
Cu1-C7	2.264(3)	Mn2-C3-O3	178.3(3)
Cu2-C1	2.315(3)	Mn2-C4-O4	174.1(3)
Cu2-C5	2.281(3)	Mn3-C5-O5	171.0(2)
C1-O1	1.168(4)	Mn4-C7-O7	172.8(2)
C2-O2	1.165(4)	Mn4-C8-O8	177.7(3)
C3-O3	1.157(4)		
C4-O4	1.166(3)		
Mn1-C1	1.804(3)		
Mn1-C2	1.780(3)		
Mn2-C3	1.778(3)		
Mn2-C4	1.797(3)		
Table 3. Relevant bond lengths and angles for 3.

bond	length [Å]	atoms	angle (°)
B1-Mn1	1.983(2)	B2-Au-B1	104.48(12)
B1-Mn1'	1.983(2)	Au-B1-Au'	74.05(16)
B1-Au	2.327(4)	B1-Au'-B2	104.48(12)
B1-Au'	2.327(4)	Au'-B2-Au	76.99(17)
B2-Mn2	1.991(2)	Mn1-B1-Mn1'	155.9(3)
B2-Mn2'	1.991(2)	Mn2-B2-Mn2'	148.8(3)
B2-Au	2.251(4)	Mn1-Au-Mn2	178.47(2)
B2-Au'	2.251(4)	Mn1'-Au'-Mn2'	178.47(2)
Au-Au'	2.803(1)		
Au-Mn1	2.614(1)		
Au-Mn2	2.631(1)		

bond	length [Å]	atoms	angle (°)
Mn3-C5	1.797(3)		
Mn3-C6	1.778(3)		
Mn4-C7	1.817(3)		
Mn4-C8	1.775(3)		

Mn1-C1-O1 178.4(3)
Bond	Distance (Å)	Bond	Distance (Å)
C1-O1	1.154(4)	Mn2-C3-O3	170.9(3)
C2-O2	1.156(4)	Mn2-C4-O4	177.8(3)
C3-O3	1.158(4)		
C4-O4	1.153(4)		
Mn1-C1	1.772(4)		
Mn1-C2	1.830(4)		
Mn2-C3	1.794(4)		
Mn2-C4	1.769(4)		
Table 4. Relevant bond lengths and angles in 4.

bond	length [Å]	atoms	angle (°)
B1-Mn1	1.970(6)	Mn1-B1-Mn2	149.1(3)
B1-Mn2	1.970(6)	Cu1-B1-Pt1	75.19(18)
B1-Cu1	2.176(6)	Mn1-B1-Pt1	72.02(18)
B1-Pt1	2.196(5)	Mn1-B1-Cu1	130.1(3)
Cu1-Mn1	2.623(3)	Mn2-B1-Pt1	78.3(2)
Pt1-Mn1	2.456(2)	Mn2-B1-Cu1	135.2(3)
Pt1-Cu1	2.668(3)		
		Mn1-C1-O1	164.7(4)
C1-O1	1.174(5)	Mn1-C2-O2	178.1(4)
C2-O2	1.176(6)	Mn2-C3-O3	164.6(4)
C3-O3	1.159(5)	Mn2-C4-O4	177.8(4)
C4-O4	1.170(6)	Pt1-C1-O1	117.8(4)
Mn1-C1	1.815(5)	Cu1-C3-O3	116.7(4)
Mn1-C2	1.756(6)		
Mn2-C3	1.824(5)		
Mn2-C4	1.756(5)		
		Mn1-Cu1-P2	153.1(3)
Pt1-C1	2.099(5)	Mn2-Cu1-P2	145.0(2)
Cu1-C3	2.275(5)	B1-Pt1-P1	149.2(2)
Pt1-P1	2.263(7)	Mn1-Pt1-P1	155.3(2)
Cu1-P2	2.259(9)		
---------	------------		

Table 5. Relevant bond lengths and angles in 7.

bond	length [Å]	atoms	angle (°)
B1-Mn1	1.907(5)	Mn1-B1-Mn2	168.2(3)
B1-Mn2	1.970(5)	Cu1-B1-Pt1	155.1(3)
B1-Cu1	2.055(5)	Mn1-B1-Pt1	85.6(2)
B1-Pt1	2.106(5)	Mn1-B1-Cu1	115.2(3)
Cu1-Mn1	3.347(1)	Mn2-B1-Pt1	83.14(19)
Cu1-Mn2	2.494(1)	Mn2-B1-Cu1	76.52(17)
Pt1-Mn1	2.707(1)		
Pt1-Mn2	2.731(1)		
C1-O1	1.176(5)	Mn1-C1-O1	178.8(4)
C2-O2	1.169(6)	Mn1-C3-O3	147.6(4)
C3-O3	1.173(5)	Mn2-C2-O2	176.1(4)
C4-O4	1.186(5)	Mn2-C4-O4	140.0(3)
Mn1-C1	1.747(5)	Pt1-C3-O3	129.5(3)
Mn1-C3	1.853(5)	Pt1-C4-O4	134.5(3)
Mn2-C2	1.769(5)		
Mn2-C4	1.933(5)		
Pt1-C3	2.253(4)	B1-Cu1-C	147.57(19)
Pt1-C4	2.059(4)	Mn2-Cu1-C	161.21(13)
Pt1-P	2.338(2)	B1-Pt1-P	174.51(14)
Cu1-C	1.920(5)		
Table S6. Coordinated for the optimized structures in the presence and absence of dispersion corrections. For the methods employed see the Computational Details. Columns are multi-page.

	$[[\text{CO}_2\text{CpMn}]_2\text{BAu}_2]$ without dispersion	$[[\text{CO}_2\text{CpMn}]_2\text{BAu}_2]$ with dispersion					
	Au	10.05712	1.93568	Au	10.07047	1.920203	
Au	6.919333	10.05712	1.93568	Au	6.932469	10.07047	1.920203
O	6.716622	10.05717	4.745432	O	6.704405	10.07075	4.760564
O	6.37159	5.481425	1.325237	O	6.440081	5.502096	1.517156
O	7.594752	8.653916	-0.8463	O	7.74982	8.616136	-0.80423
O	3.952364	10.39174	0.566098	O	3.893783	10.3208	0.651448
O	3.659218	12.82483	3.751661	O	3.819703	12.55462	4.09245
O	7.267723	5.482672	5.354666	O	7.19722	5.503902	5.164335
O	6.040995	8.654205	7.527425	O	5.885208	8.617857	7.484893
O	9.683854	10.39102	6.11615	O	9.74367	10.32122	6.029062
O	9.977796	12.82098	2.928279	O	9.816844	12.55491	2.588559
C	7.053856	6.39898	1.588109	C	7.122327	6.434314	1.717276
C	7.734701	8.400316	0.294663	C	7.844632	8.375394	0.34266
C	4.733602	11.10739	1.073411	C	4.655262	11.04543	1.170774
C	4.521199	12.65567	2.96965	C	4.57673	12.46823	3.196416
C	9.99826	8.670789	2.667228	C	9.798416	8.888432	2.897067
C	10.25448	8.058899	1.409249	C	10.23666	8.26974	1.696779
C	9.984742	6.666656	1.52248	C	10.06303	6.862901	1.824999
C	9.556411	6.417547	2.862034	C	9.506856	6.613459	3.113924
C	9.559178	7.655694	3.567372	C	9.336199	7.864859	3.774347
C	7.438416	13.23868	0.570259	C	7.300568	13.09514	0.652513
C	6.976609	14.22861	1.481271	C	6.953077	14.04226	1.653554
C	5.618898	14.52081	1.16311	C	5.597059	14.42374	1.448585
C	5.241332	13.7223	0.04965	C	5.103919	13.72097	0.316735
C	6.368591	12.92304	-0.31135	C	6.160501	12.89342	-0.1692
C	6.584395	6.399575	5.092244	C	6.514527	6.435743	4.963984
C	5.901568	8.400455	6.386449	C	5.791018	8.377461	6.337979
C	8.902709	11.10672	5.608788	C	8.982014	11.04583	5.510003
C	9.115768	12.65329	3.710774	C	9.059882	12.46866	3.484647
C	3.638312	8.669873	4.013991	C	3.837795	8.888585	3.783054
C	3.382288	8.057372	5.271718	C	3.399506	8.269906	4.983331
C	3.652712	6.665289	5.157947	C	3.573732	6.863111	4.855375
C	4.081216	6.416895	3.818313	C	4.130269	6.613681	3.566613
C	4.077931	7.65534	3.113483	C	4.300602	7.865048	2.906045
C	6.198372	13.23861	6.109698	C	6.335933	13.09383	6.029368
C	6.66104	14.22832	5.198845	C	6.682538	14.04154	5.028563
C	8.018705	14.52002	5.517601	C	8.038354	14.42385	5.233293
C	8.395415	13.7214	6.631252	C	8.532259	13.72103	6.364767
\[
\{(CO)_2\text{CpMn}\}_2\text{BCu}_2\text{ dispersion}
\]
\[
\{(CO)_2\text{CpMn}\}_2\text{BAu}_2\text{ without dispersion}
\]

Cu	10.35544	16.44941	3.281967
Cu	8.697267	18.27904	3.058555
O	8.002471	18.99922	5.972949
O	7.700556	14.85315	6.042224
O	7.281647	12.92061	3.249838
O	10.90908	15.89732	6.224251
O	11.8681	19.00633	-0.04353
O	7.737252	19.27889	0.363198
O	11.3576	13.50575	3.406043
O	11.25919	19.90623	6.268798
C	7.663531	18.19857	5.179968

Cu	10.29852	16.42076	3.399325
Cu	8.673323	18.18454	2.910584
O	8.451097	18.80216	6.027508
O	7.841427	14.62563	5.794591
O	6.846282	13.31701	2.857463
O	10.67062	16.17629	6.334405
O	12.09412	19.16185	0.133762
O	7.818899	19.10257	0.201583
O	11.02561	13.35061	3.682856
O	11.44845	20.12103	6.05289
C	7.951595	18.06562	5.263792
B	C	H	Mn	B	C	H
6.420963	15.6916	5.277191	C	7.541428	15.57129	5.177282
8.026462	13.67858	2.755702	C	7.794685	13.91934	2.522161
11.29078	16.63963	5.398581	C	11.11962	16.81024	5.455329
11.14215	19.40383	0.792906	C	11.23639	19.47007	0.875892
8.643573	19.48267	1.095618	C	8.687958	19.33573	0.969368
10.48794	14.09498	2.875323	C	10.27644	13.98551	3.038937
11.55181	19.08912	5.480731	C	11.63141	19.21064	5.338459
4.940371	17.85913	4.523682	C	5.374806	18.30797	4.212698
5.411026	18.26321	3.236506	C	5.81013	18.08675	2.872931
5.199725	15.96909	3.228823	C	5.185983	16.05893	3.774314
5.564026	17.09409	2.436991	C	5.692595	16.68866	2.605666
9.970148	15.74951	0.128543	C	9.991249	16.20217	0.504598
4.81942	16.4478	4.521274	C	4.988916	17.06244	4.772064
9.10116	13.61381	0.054281	C	9.749315	13.94615	0.076465
8.012255	14.54174	0.075397	C	8.474953	14.56605	-0.04627
8.54982	15.8572	0.117077	C	8.621591	15.95807	0.212676
9.687995	21.53931	3.599595	C	9.619146	21.18928	3.709612
8.905405	21.88856	2.463472	C	8.659711	21.50505	2.70932
9.784617	22.16385	1.374478	C	9.349363	22.00764	1.56409
11.11514	21.97773	1.84283	C	10.73594	21.99046	1.858121
11.05814	21.60026	3.215363	C	10.90709	21.49286	3.182849
14.1419	18.52595	4.640445	C	14.0745	18.30923	4.433264
13.77887	18.71924	3.27367	C	13.61159	18.55027	3.104712
13.48992	17.44137	2.714521	C	13.1365	17.31603	2.580082
13.67542	16.46433	3.733518	C	13.30891	16.31687	3.580919
14.08749	17.13618	4.923848	C	13.89825	16.93276	4.724421
10.3036	14.36461	0.087163	C	10.68337	14.96144	0.428686
6.889833	16.95569	4.150027	Mn	7.036227	16.95829	4.2165
9.138313	14.74956	1.901106	Mn	9.172712	14.82807	1.934305
10.05529	20.10143	1.989532	Mn	9.983208	20.01089	1.971183
12.11373	17.84758	4.355961	Mn	12.01238	17.8471	4.306875
8.260385	16.07597	3.068155	B	8.289227	16.06318	3.099165
10.79672	18.68023	3.168658	B	10.7377	18.66662	3.143942
4.734113	18.51582	5.360128	H	5.378986	19.25872	4.727
5.588654	19.28149	2.914726	H	6.129087	18.83846	2.166969
5.202555	14.93429	2.913783	H	5.021284	14.99902	3.890581
5.866858	17.07871	1.399802	H	5.945152	16.19848	1.679235
10.67032	16.57172	0.112529	H	10.41667	17.16199	0.735928
4.494161	15.83526	5.35312	H	4.637867	16.89747	5.779818
9.02033	12.53471	0.01595	H	9.962923	12.89476	-0.04623
6.96042	14.28489	0.038079	H	7.548992	14.06397	-0.28826
H | 7.988637 | 16.77783 | 0.087248
H | 9.313525 | 21.29475 | 4.58395
H | 7.823852 | 21.94477 | 2.431322
H | 9.493222 | 22.45367 | 0.372314
H | 12.01661 | 22.11636 | 1.25755
H | 11.90478 | 21.42244 | 3.861716
H | 14.42024 | 19.30453 | 5.340784
H | 13.75306 | 19.66267 | 2.746107
H | 13.21644 | 17.24931 | 1.686548
H | 13.53463 | 15.3964 | 3.624776
H | 14.30057 | 16.66921 | 5.877516
H | 11.30702 | 13.95529 | 0.082898

{(CO)$_2$CpMn)$_2$B(Cu(PCy)$_3$)[Pt(PCy)$_3$]}
without dispersion

Mn	6.287589	6.960661	6.74922
Mn	6.70913	7.077202	2.918896
B	6.890715	6.700542	4.885858
O	7.563701	5.010592	8.592955
C	7.729923	5.171871	7.668762
O	4.00894	5.211083	6.18188
C	4.978744	5.856994	6.385287
O	8.682635	5.660192	1.267116
C	7.926956	6.144436	2.036841
O	8.618316	9.17798	3.660191
C	7.886359	8.292803	3.400032
O	6.75194	8.336058	8.420368
H	7.309969	8.08995	9.262211
C	7.09113	8.972069	7.217682
H	8.09916	9.309669	6.979264
C	5.959444	9.087	6.365626
C	9.51059	9.556413	5.393219
C	4.845301	8.516761	7.042202
H	3.827477	8.464088	6.675003
C	5.288052	8.051301	8.322008
H	4.675754	7.567442	9.072837
C	4.6103	6.512156	2.599164
H	4.118981	5.643583	3.011317
C	5.278232	6.602385	1.343489
H	5.415275	5.798181	0.631924
C	5.742418	7.938114	1.175363

{(CO)$_2$CpMn)$_2$B(Cu(PCy)$_3$)[Pt(PCy)$_3$]}
with dispersion

Mn	6.366275	7.108947	6.803667
Mn	6.631512	7.090449	3.050144
B	6.845865	6.774829	4.961521
O	7.576569	5.229126	8.741378
C	7.242279	5.854066	7.782785
O	3.96756	5.560998	6.187802
C	4.966142	6.134366	6.448388
O	8.242864	5.407217	1.26035
C	7.664645	5.998494	2.11356
O	8.634511	9.119402	3.695164
C	7.873001	8.260539	3.435069
O	7.096173	8.494541	8.265531
C	7.775724	8.2056	9.053452
C	7.471157	8.950857	6.973085
H	8.474559	9.074619	6.600224
C	6.282847	9.153398	6.219617
C	6.238869	9.492107	5.200017
C	5.176996	8.821758	7.050599
H	4.133797	8.8634	6.771686
C	5.678471	8.414366	8.324415
H	5.090823	8.079336	9.166283
C	4.588579	6.465397	2.920894
H	4.204551	5.557497	3.356109
C	5.124055	6.632827	1.611769
H	5.23866	5.858434	0.869425
C	5.536059	7.985368	1.460052
C	6.295472	8.321586	0.326826	C	6.009293	8.414655	0.589028
H	5.366701	8.66954	2.337301	H	5.25611	8.654331	2.685577
C	5.5708	9.718564	2.515918	H	5.470423	9.691691	2.898548
H	4.661646	7.792891	3.21036	C	4.666613	7.720484	3.581233
C	4.232646	8.049069	4.16615	H	4.361787	7.910849	4.593879
Pt	8.583301	5.997659	5.998525	Pt	8.46559	5.894509	6.02665
P	10.96603	5.755214	6.051831	P	10.67215	5.407695	5.811623
C	11.76907	7.09929	7.165109	C	11.59041	6.534574	6.973077
H	12.65771	6.601218	7.571334	C	12.48472	5.989553	7.290895
C	10.84984	7.474194	8.347164	H	10.71527	6.820296	8.196337
H	9.957175	7.966141	7.948626	H	9.830298	7.357047	7.844491
H	10.49249	6.58478	8.869641	H	10.34668	5.899286	8.641785
C	11.54913	8.409608	9.346571	C	11.45194	7.66535	9.226034
C	12.37968	7.875002	9.831043	H	12.3167	7.105682	9.605596
H	10.84698	8.674452	10.14789	H	10.79606	7.858317	10.0818
C	12.085	9.675683	8.670306	C	11.9301	8.975193	8.612647
H	11.24049	10.29317	8.331817	H	11.05673	9.572525	8.322488
H	12.64588	10.28618	9.389712	H	12.49325	9.562647	9.345455
C	12.96858	9.325656	7.4695	C	12.78153	8.710552	7.376958
H	13.89416	8.847938	7.823048	H	13.69978	8.189311	7.676433
H	13.27561	10.23903	6.9433	H	13.08526	9.654822	6.912452
C	12.26161	8.387795	6.474837	C	12.03455	7.856668	6.356762
H	11.41195	8.918806	6.029053	H	11.14705	8.398697	6.01914
H	12.95733	8.158434	5.663831	H	12.66563	7.68086	5.48333
C	11.92842	5.848837	4.410335	C	11.42993	5.630652	4.150609
C	12.96705	6.05271	4.704581	H	12.50925	5.732126	4.305127
C	11.4456	6.994332	3.497072	H	10.89415	6.871991	3.446334
H	11.4119	7.946625	4.023647	H	10.95074	7.754024	4.073838
H	10.42052	6.783454	3.189366	H	9.836627	6.70293	3.253399
C	12.33257	7.13687	2.249141	C	11.6402	7.105042	2.138605
C	11.93648	7.943461	1.619133	C	11.24076	7.996781	1.644481
H	13.34352	7.449379	2.551327	H	12.69584	7.308184	2.362779
C	12.41584	5.833793	1.446612	H	11.53347	5.900209	1.211259
H	13.13838	5.937378	0.626415	C	12.1699	6.040071	0.330425
C	11.44277	5.63431	0.983129	H	10.50466	5.81932	0.859448
C	12.80485	4.652043	2.341341	C	11.91155	4.605452	1.922586
H	13.85302	4.760583	2.656961	H	12.98856	4.605262	2.136671
H	12.75234	3.714448	1.772967	H	11.71724	3.750908	1.269274
C	11.91634	4.536706	3.594919	C	11.16343	4.433485	3.241972
H	10.88631	4.312098	3.296329	H	10.08744	4.382122	3.068325
H	12.26391	3.687532	4.187523	H	11.45806	3.49651	3.71051
Atom	X	Y	Z				
------	-----	-----	-----				
C	11.63868	4.142326	6.826475				
C	11.24894	3.388992	6.128231				
C	13.17537	3.992884	6.885998				
C	13.59317	4.732512	7.579899				
C	13.63838	4.186803	5.915074				
C	13.59257	2.592311	7.370831				
C	12.90401	1.844001	6.2217				
C	14.68762	2.542477	7.435274				
C	12.63055	2.240636	8.723057				
C	13.22085	1.211316	9.004541				
C	13.89484	2.890118	9.501511				
C	14.41040	2.419049	8.689319				
C	11.01507	2.239575	9.684874				
C	11.00284	1.662127	8.024905				
C	11.03134	3.820596	8.206935				
C	9.943192	3.906905	8.944772				
Cu	7.073072	4.731977	3.968425				
P	6.678317	2.395	3.847934				
C	8.015852	1.448373	2.879456				
C	8.839348	1.464665	3.605293				
C	8.550905	2.170569	1.966808				
C	8.804209	3.205433	1.860148				
C	7.81621	2.212592	0.848515				
C	9.782502	1.449134	1.054269				
C	10.61291	1.522019	1.770538				
C	10.11308	1.966983	0.145108				
C	9.502939	-0.0277	0.752933				
C	8.783495	-0.10143	-0.0756				
C	10.41884	-0.52632	0.411116				
C	8.936882	-0.75005	1.980816				
C	9.713942	-0.81772	2.75577				
C	8.666181	-1.78309	1.724925				
C	7.705415	-0.02799	2.554993				
C	6.898205	-0.0792	1.914494				
C	7.349508	-0.56468	3.440196				
C	5.033533	1.883642	3.018648				
C	5.114778	0.795191	2.901659				
C	4.879051	2.509292	1.617263				
C	5.722998	2.239478	0.979358				
C	4.899017	3.599556	1.709684				
\[
\begin{array}{cccc}
\text{C} & 3.576873 & 2.081403 & 0.918343 \\
\text{H} & 3.500267 & 2.599281 & -0.04666 \\
\text{H} & 3.624466 & 1.006861 & 0.687991 \\
\text{C} & 2.337834 & 2.359994 & 1.77436 \\
\text{H} & 1.437504 & 1.981618 & 1.273665 \\
\text{H} & 2.199306 & 3.445171 & 1.88086 \\
\text{C} & 2.482215 & 1.724717 & 3.158973 \\
\text{H} & 1.624671 & 1.986333 & 3.791995 \\
\text{H} & 2.468974 & 0.62946 & 3.058531 \\
\text{C} & 3.775652 & 2.156241 & 3.87251 \\
\text{H} & 3.711353 & 3.220654 & 4.123586 \\
\text{C} & 3.835179 & 1.616868 & 4.819875 \\
\text{H} & 6.599321 & 1.435924 & 5.501148 \\
\text{H} & 5.978855 & 0.556674 & 5.275809 \\
\text{C} & 5.907978 & 2.261754 & 6.605843 \\
\text{H} & 4.950148 & 2.659428 & 6.275029 \\
\text{H} & 6.532901 & 3.128364 & 6.830664 \\
\text{C} & 5.701911 & 1.446198 & 7.89167 \\
\text{H} & 5.231541 & 2.086995 & 8.647463 \\
\text{H} & 4.997211 & 0.623203 & 7.699596 \\
\text{C} & 7.021567 & 0.880679 & 8.424353 \\
\text{H} & 7.646422 & 1.708163 & 8.783776 \\
\text{H} & 6.839697 & 0.228185 & 9.288225 \\
\text{C} & 7.770053 & 0.10938 & 7.33309 \\
\text{H} & 7.218996 & -0.81196 & 7.903025 \\
\text{H} & 8.754488 & -0.21082 & 7.698041 \\
\text{C} & 7.953639 & 0.28608 & 6.041109 \\
\text{H} & 8.606392 & 1.787168 & 6.241714 \\
\text{H} & 8.468306 & 0.299107 & 5.311831 \\
\end{array}
\]

\[
\begin{array}{cccc}
\text{C} & 4.661084 & 2.477896 & 0.618183 \\
\text{H} & 4.563649 & 3.193751 & -0.20528 \\
\text{H} & 5.068039 & 1.553044 & 0.189456 \\
\text{C} & 3.297217 & 2.187935 & 1.234184 \\
\text{H} & 2.623021 & 1.75602 & 0.487236 \\
\text{H} & 2.847352 & 3.131967 & 1.565972 \\
\text{C} & 3.428088 & 1.256018 & 2.433404 \\
\text{H} & 2.449345 & 1.08817 & 2.895396 \\
\text{H} & 3.79697 & 0.279124 & 2.095847 \\
\text{C} & 4.395229 & 1.823802 & 3.468284 \\
\text{H} & 4.001712 & 2.777056 & 3.831224 \\
\text{H} & 4.466485 & 1.15425 & 4.326713 \\
\text{C} & 6.712636 & 2.035021 & 5.654731 \\
\text{H} & 6.368786 & 1.002646 & 5.534442 \\
\text{C} & 5.632565 & 2.867465 & 6.337701 \\
\text{H} & 4.756487 & 2.997376 & 5.711174 \\
\text{H} & 6.049676 & 3.86063 & 6.501951 \\
\text{C} & 5.240782 & 2.237957 & 7.667853 \\
\text{H} & 4.468206 & 2.8481 & 8.146014 \\
\text{H} & 4.800992 & 1.249752 & 7.477356 \\
\text{C} & 6.44539 & 2.099556 & 8.590759 \\
\text{H} & 6.759439 & 3.094604 & 8.904849 \\
\text{H} & 6.170421 & 1.5433 & 9.493738 \\
\text{C} & 7.616759 & 1.413892 & 7.895642 \\
\text{H} & 7.375103 & 0.356858 & 7.720419 \\
\text{H} & 8.496537 & 1.435908 & 8.542841 \\
\text{C} & 7.94565 & 2.058835 & 6.552761 \\
\text{H} & 8.236541 & 3.104795 & 6.680983 \\
\text{H} & 8.788522 & 1.543918 & 6.094642 \\
\end{array}
\]

without dispersion

\[
\begin{array}{ccc}
\{(\text{CO})_2\text{CpMn}_2\}\text{B(Cu(ITol))}[\text{Pt(PCy}_3\}] \\
\text{Pt} & 7.308311 & 1.493381 & 4.291855 \\
\text{Mn} & 9.759415 & 1.309359 & 5.881208 \\
\text{P} & 6.844125 & 3.256043 & 2.762623 \\
\text{B} & 8.051362 & 0.33368 & 5.872384 \\
\text{O} & 10.93763 & -1.31679 & 5.323704 \\
\text{C} & 10.424375 & -0.27323 & 5.049498 \\
\text{Cu} & 7.321874 & -0.5418 & 7.790088 \\
\text{Mn} & 6.40038 & -0.69807 & 5.502085 \\
\end{array}
\]

with dispersion

\[
\begin{array}{ccc}
\{(\text{CO})_2\text{CpMn}_2\}\text{B(Cu(ITol))}[\text{Pt(PCy}_3\}] \\
\text{Pt} & 7.485754 & 1.508704 & 4.498957 \\
\text{Mn} & 9.078792 & 1.865788 & 6.631013 \\
\text{P} & 6.710268 & 3.087914 & 3.018777 \\
\text{B} & 8.12828 & 0.328734 & 6.084 \\
\text{O} & 11.37727 & 0.140499 & 6.189053 \\
\text{C} & 10.43549 & 0.836874 & 6.340999 \\
\text{Cu} & 7.279841 & -0.88252 & 7.486118 \\
\text{Mn} & 7.226307 & -1.05984 & 5.068857 \\
\end{array}
\]
C	O	4.425984	0.64102	7.231789	O	4.627276	-1.67192	6.254357	C	5.271975	0.09706	6.611148	C	5.707793	-1.36496	5.882531	O	10.50001	1.971519	3.114644	O	9.962827	3.346053	4.265641	C	9.99461	1.703125	4.149592	C	9.331817	2.660167	5.004132	O	4.48735	0.685909	3.698146	O	5.15369	-0.00408	3.282635	C	5.549819	0.555278	4.244665	C	6.139965	0.055021	3.955514	C	9.305363	3.109904	7.063585	C	7.739404	3.231547	7.616642	H	8.403212	3.698168	6.971198	H	6.801197	3.546748	7.190891	C	10.52216	3.295735	6.342184	C	9.010416	3.854757	7.429825	H	10.70788	4.055506	5.595579	H	9.201066	4.737495	6.840701	C	11.4578	2.317989	6.775939	C	9.984808	3.085232	8.111036	H	12.4702	2.195637	6.411052	H	11.04723	3.278631	8.13287	C	10.81029	1.510679	7.756414	C	9.317069	1.9684	8.710257	H	11.25523	0.67885	8.28129	H	9.784456	1.186987	9.290527	C	9.488954	2.009474	7.942731	C	7.927954	2.075954	8.411102	H	8.758126	1.637237	8.647668	H	7.149952	1.410691	8.728005	C	6.506463	-2.75544	6.109488	C	8.148497	-2.92318	5.314614	H	6.576248	-3.12539	7.124395	H	8.131992	-3.49474	6.229781	C	7.606807	-2.49246	5.232612	C	9.136991	-1.9597	4.951409	H	8.656991	-2.58169	5.470802	H	9.889987	-1.66984	5.535063	C	7.075367	-2.11893	3.972126	C	8.794041	-1.44388	3.673637	H	7.652751	-1.83416	3.102214	H	9.316557	-0.65675	3.153287	C	5.650535	-2.16107	4.06161	C	7.593446	-2.08353	3.243252	H	4.955847	-1.91567	3.26983	H	7.056579	-1.8783	2.33013	C	5.297851	-2.5589	5.372456	C	7.200004	-3.00288	4.247651	C	4.290171	-2.67843	5.75109	C	6.312014	-3.61752	4.230703	H	5.037344	3.78693	2.975689	H	4.878252	3.086241	3.092414	C	4.554601	2.825231	2.76887	C	4.661948	2.092595	2.692829	C	4.656216	4.124234	4.434976	C	4.36109	3.065943	4.531172	H	5.059108	5.103453	4.717981	H	4.518962	4.042621	4.99519	C	5.094351	3.390516	5.116739	H	4.934426	2.336591	5.106509	C	3.128751	4.149625	4.604973	C	2.876277	2.730722	4.542059	H	2.735926	3.137107	4.445557	H	2.746782	1.714438	4.154011	H	2.879271	4.420375	5.639854	H	2.494562	2.737162	5.567962	C	2.459491	5.124762	3.628263	C	2.083655	3.71108	3.684239	H	1.366757	5.0618	3.717534	H	1.023968	3.434601	3.668332	H	2.732048	6.156286	3.898228	H	2.146764	4.710438	4.1347	C	2.884535	4.855583	2.178703	C	2.630949	3.776486	2.262461	H	2.461438	5.619262	1.512041	H	2.078351	4.519555	1.676965	H	2.468572	3.892388	1.850594	H	2.482127	2.805272	1.775405	C	4.416647	4.822826	2.017604	C	4.120952	4.106785	2.257058
\[
\begin{align*}																																																																																																																																																																																																																																																																																																																																								
\{(\text{CO})_2\text{CpMn}\}_2\text{B(Cu(Ime))}[\text{Pt(PCy}_3\text{)}]\]																																																																																																																																																																																																																																																																																																																																								
& \text{without dispersion} \\																																																																																																																																																																																																																																																																																																																																								
\{(\text{CO})_2\text{CpMn}\}_2\text{B(Cu(Ime))}[\text{Pt(PCy}_3\text{)}]																																																																																																																																																																																																																																																																																																																																								
& \text{without dispersion} \\																																																																																																																																																																																																																																																																																																																																								
\end{align*}																																																																																																																																																																																																																																																																																																																																								
\]																																																																																																																																																																																																																																																																																																																																								
H	11.79613	7.071583	3.197571	H	11.41259	7.062678	3.179029																																																																																																																																																																																																																																																																																																																																	
H	13.06089	5.904334	3.584709	H	12.83054	6.090528	3.574636																																																																																																																																																																																																																																																																																																																																	
C	11.24015	3.827972	4.375743	C	11.04741	3.987154	4.259259																																																																																																																																																																																																																																																																																																																																	
H	12.33849	3.817749	4.355038	H	12.13231	3.947023	4.120761																																																																																																																																																																																																																																																																																																																																	
C	10.72575	4.107048	2.948667	C	10.36326	4.367349	2.949139																																																																																																																																																																																																																																																																																																																																	
H	11.0623	5.079608	2.587724	H	10.72424	5.323633	2.581522																																																																																																																																																																																																																																																																																																																																	
H	9.632729	4.15486	2.978095	H	9.300305	4.501506	3.167259																																																																																																																																																																																																																																																																																																																																	
C	11.16809	3.02149	1.955135	C	10.52168	3.297814	1.878252																																																																																																																																																																																																																																																																																																																																	
H	10.75678	3.248529	0.962497	H	9.988088	3.609289	0.974264																																																																																																																																																																																																																																																																																																																																	
H	12.26236	3.047678	1.84563	H	11.58114	3.198695	1.608945																																																																																																																																																																																																																																																																																																																																	
C	10.73532	1.621236	2.399621	C	9.99585	1.955077	2.365028																																																																																																																																																																																																																																																																																																																																	
H	11.13584	0.861389	1.715602	H	10.14236	1.183339	1.601739																																																																																																																																																																																																																																																																																																																																	
H	9.640692	1.545771	2.341412	H	8.920725	2.042549	2.533614																																																																																																																																																																																																																																																																																																																																	
C	11.18761	1.333789	3.834217	C	10.68146	1.552788	3.664079																																																																																																																																																																																																																																																																																																																																	
H	12.28322	1.286665	3.856832	H	11.748	1.383457	3.468883																																																																																																																																																																																																																																																																																																																																	
H	10.78976	0.367774	4.172506	H	10.27232	0.60721	4.037652																																																																																																																																																																																																																																																																																																																																	
C	10.75417	2.430977	4.820379	C	10.53524	2.626948	4.73646																																																																																																																																																																																																																																																																																																																																	
H	9.661291	2.440669	4.905319	H	9.482883	2.744164	5.009458																																																																																																																																																																																																																																																																																																																																	
H	11.13447	2.173486	5.811134	H	11.06256	2.31484	5.638263																																																																																																																																																																																																																																																																																																																																	
C	11.32751	4.499085	7.268569	C	11.34931	4.545692	7.108262																																																																																																																																																																																																																																																																																																																																	
H	10.65964	3.636735	7.388486	H	10.74239	3.655193	7.297562																																																																																																																																																																																																																																																																																																																																	
H	12.78274	3.993768	7.35263	H	12.81608	4.139272	7.030301																																																																																																																																																																																																																																																																																																																																	
H	13.4793	4.835016	7.245961	H	13.4258	5.017992	6.800764																																																																																																																																																																																																																																																																																																																																	
H	13.01375	3.298083	6.541024	H	12.97271	3.420601	6.225833																																																																																																																																																																																																																																																																																																																																	
C	13.0518	3.300982	8.69934	C	13.28418	3.548625	8.361006																																																																																																																																																																																																																																																																																																																																	
H	12.46137	2.379667	8.760054	H	12.73952	2.614238	8.546289																																																																																																																																																																																																																																																																																																																																	
H	14.11063	2.990076	8.740065	H	14.34815	3.294703	8.299945																																																																																																																																																																																																																																																																																																																																	
C	12.72445	4.201023	9.893809	C	13.03047	4.508687	9.51851																																																																																																																																																																																																																																																																																																																																	
H	12.85947	3.648272	10.83256	H	13.34736	4.055077	10.46334																																																																																																																																																																																																																																																																																																																																	
H	13.43416	5.040884	9.925009	H	13.63845	5.411596	9.375841																																																																																																																																																																																																																																																																																																																																	
H	11.29608	4.748307	9.799169	H	11.56022	4.90673	9.584827																																																																																																																																																																																																																																																																																																																																	
H	11.10705	5.455419	10.61759	H	11.39348	5.618492	10.40054																																																																																																																																																																																																																																																																																																																																	
C	10.57873	3.925517	9.92821	C	10.95312	4.018958	9.800854																																																																																																																																																																																																																																																																																																																																	
H	11.03305	5.441745	8.453491	H	11.10008	5.512604	8.265359																																																																																																																																																																																																																																																																																																																																	
H	9.996391	5.786037	8.405871	H	10.03665	5.767474	8.294321																																																																																																																																																																																																																																																																																																																																	
H	11.6677	6.33418	8.389636	H	11.64975	6.441399	8.086779																																																																																																																																																																																																																																																																																																																																	
Cu	7.063243	5.875888	3.437445	Cu	7.375975	5.886192	3.567193																																																																																																																																																																																																																																																																																																																																	
C	6.831644	4.42796	2.145261	C	6.959173	4.441965	2.417343																																																																																																																																																																																																																																																																																																																																	
C	6.388015	3.144765	2.365682	C	6.585005	3.175645	2.769968																																																																																																																																																																																																																																																																																																																																	
C	6.202401	2.45144	1.177043	C	6.203124	2.42528	1.667005																																																																																																																																																																																																																																																																																																																																	
C	6.545957	3.297427	0.172234	C	6.349616	3.227308	0.579471																																																																																																																																																																																																																																																																																																																																	
Table S7. Optimized structures used for thermochemical calculations. For the methods employed see the Computational Details. Columns are multi-page.

	\[([\text{CO}]_2\text{CpMn})_2\text{B(Au(DMS))}\]	\[([\text{CO}]_2\text{CpMn})_2\text{BAu}\]
Au	1.310159 0.404629 0.015781	Au 0.697373 -1.64932 0.232982
Mn	-1.39012 -1.8947 0.175498	Mn -2.19912 0.4204 0.123489
Mn	-0.85343 1.861174 -0.9675	Mn 1.638314 0.698406 -0.25715
B	-0.85278 -0.12673 -0.0041	B -0.37321 0.256609 -0.03355
O	0.187027 -2.12518 2.636472	O -1.84157 0.196267 3.025933
C	0.446711 0.075282 1.667473	C -1.98528 0.287482 1.860287
O	-0.92711 0.146912 -2.60328	O -0.12197 -1.15282 -1.71312
C	0.945982 2.943533 -2.27709	C 0.80496 1.302281 -1.71312
C	0.290314 0.246237 -1.45812	C 2.677847 -0.32406 -1.35808
C	-0.965111 7.332618 -1.93643	C -2.53224 -0.84163 -1.62616
H	-0.54771 1.49612 -2.60328	H -1.75424 -1.18207 -2.29141
C	-0.23149 0.37192 -1.16736	C -3.01122 -1.52882 -0.47459
H	0.841774 3.28671 -1.14767	H -2.66115 -2.48109 -0.10773
C	-1.16891 -3.99952 -0.46665	C -4.67979 -0.75136 0.087373
H	-0.92614 4.60847 0.209624	H -4.63033 -0.99899 0.974677
C	-2.46942 -3.55609 -0.79772	C -4.24386 0.403188 -0.71071
H	-3.39308 -3.96138 -0.41424	H -4.95827 1.92931 -0.53776
C	-2.34992 -2.45824 -1.70683	C -3.28291 0.356801 -1.76705
H	-3.16183 -1.90132 -2.14399	H -3.16054 1.092707 -2.54655
C	-0.35394 2.758278 1.758848	C 2.423855 0.869905 1.800974
C	-1.47947 1.892422 1.888624	C 1.324256 1.755479 1.618725
C	-2.51924 2.39785 1.06276	C 1.674632 2.671218 0.584724
C	-2.03457 3.56947 0.407308	C 2.976915 2.335434 0.118085
$$\begin{align*}
C & \quad -0.70148 \quad 3.790258 \quad 0.848953 \quad C & \quad 3.43639 \quad 1.222807 \quad 0.885434 \\
H & \quad 0.590585 \quad 2.651829 \quad 2.267571 \quad H & \quad 2.465374 \quad 0.05866 \quad 2.518211 \\
H & \quad -1.5439 \quad 1.026627 \quad 2.527491 \quad H & \quad 0.416087 \quad 1.767694 \quad 2.19858 \\
H & \quad -3.49924 \quad 1.906213 \quad 0.953927 \quad H & \quad 1.049876 \quad 3.471894 \quad 0.219918 \\
H & \quad -2.58694 \quad 4.187954 \quad -0.28261 \quad H & \quad 3.52766 \quad 2.84689 \quad -0.65564 \\
H & \quad -0.05567 \quad 4.59436 \quad 0.530008 \quad H & \quad 4.388756 \quad 0.727106 \quad 0.772739 \\
S & \quad 3.640085 \quad -0.40889 \quad 0.391438 \\
C & \quad 4.28934 \quad -0.86756 \quad -1.25571 \\
H & \quad 5.267249 \quad -1.33489 \quad -1.13613 \\
H & \quad 3.602199 \quad -1.53929 \quad -1.76807 \\
H & \quad 4.393312 \quad 0.055196 \quad -1.82484 \\
C & \quad 3.448155 \quad -2.06083 \quad 1.153671 \\
H & \quad 4.436203 \quad -2.48648 \quad 1.330828 \\
H & \quad 2.925568 \quad -1.91984 \quad 2.098431 \\
H & \quad 2.854729 \quad -2.71019 \quad 0.512314
\end{align*}$$

$$\begin{align*}
\text{[[}\text{(CO)}_2\text{CpMn}]\text{B}\text{(Cu(DMS))}} & \quad \text{[[}\text{(CO)}_2\text{CpMn}]\text{BCu}]
\end{align*}$$

$$\begin{align*}
\text{Mn} & \quad -2.03727 \quad 0.414627 \quad 0.193204 \quad \text{Mn} & \quad 2.938904 \quad 0.187028 \quad 0.194542 \\
\text{Mn} & \quad 1.673493 \quad 1.153044 \quad -0.15148 \quad \text{Mn} & \quad 1.891049 \quad 0.187011 \quad -0.1946 \\
\text{B} & \quad -0.19549 \quad 0.850112 \quad 0.029993 \quad \text{B} & \quad 0.000052 \quad 0.42345 \quad -7.8E-05 \\
\text{O} & \quad -2.12076 \quad -1.98538 \quad 1.90811 \quad \text{O} & \quad -2.37136 \quad -2.51904 \quad 1.314895 \\
\text{C} & \quad -1.98482 \quad -1.06517 \quad 1.206433 \quad \text{C} & \quad -2.05004 \quad -1.49698 \quad 0.84827 \\
\text{O} & \quad -1.80232 \quad 2.112914 \quad 2.574148 \quad \text{O} & \quad -1.44546 \quad 1.304423 \quad 2.876125 \\
\text{C} & \quad -1.89227 \quad 1.432536 \quad 1.640392 \quad \text{C} & \quad -1.61917 \quad 0.845358 \quad 1.828788 \\
\text{O} & \quad 0.752321 \quad 2.974405 \quad -2.25896 \quad \text{O} & \quad 1.445467 \quad 1.305646 \quad -2.87565 \\
\text{C} & \quad 1.115625 \quad 2.244446 \quad -1.43579 \quad \text{C} & \quad 1.619233 \quad 0.846069 \quad -1.82854 \\
\text{O} & \quad 2.542813 \quad -0.78609 \quad -2.20095 \quad \text{O} & \quad 2.371213 \quad -2.51862 \quad -1.31606 \\
\text{C} & \quad 2.118736 \quad -0.08445 \quad -1.37316 \quad \text{C} & \quad 2.050091 \quad -1.49672 \quad -0.84989 \\
\text{C} & \quad -2.33527 \quad 1.228914 \quad -1.80944 \quad \text{C} & \quad -2.08899 \quad 1.231911 \quad -1.70515 \\
\text{H} & \quad -1.58273 \quad 1.729482 \quad -2.39801 \quad \text{H} & \quad -1.27238 \quad 1.572703 \quad -2.32262 \\
\text{C} & \quad -2.64293 \quad -0.16062 \quad -1.84072 \quad \text{C} & \quad -2.74982 \quad -0.02138 \quad -1.81317 \\
\text{H} & \quad -2.15734 \quad -0.90504 \quad -2.45262 \quad \text{H} & \quad -2.50769 \quad -0.80793 \quad -2.51112 \\
\text{C} & \quad -3.73177 \quad -0.38657 \quad -0.94946 \quad \text{C} & \quad -3.80374 \quad -0.04795 \quad -0.85131 \\
\text{H} & \quad -4.19414 \quad -1.34112 \quad -0.74736 \quad \text{H} & \quad -4.48645 \quad -0.86735 \quad -0.68463 \\
\text{C} & \quad -4.10149 \quad 0.85368 \quad -0.37212 \quad \text{C} & \quad -3.79593 \quad 1.183301 \quad -0.15287 \\
\text{H} & \quad -4.89167 \quad 1.011998 \quad 0.345369 \quad \text{H} & \quad -4.46924 \quad 1.467802 \quad 0.641034 \\
\text{C} & \quad -3.23288 \quad 1.853842 \quad -0.90096 \quad \text{C} & \quad -2.73155 \quad 1.977157 \quad -0.67471 \\
\text{H} & \quad -3.25731 \quad 2.906275 \quad -0.66251 \quad \text{H} & \quad -2.46923 \quad 2.97453 \quad -0.35687 \\
\text{C} & \quad 2.565741 \quad 0.545951 \quad 1.76311 \quad \text{C} & \quad 2.749747 \quad -0.02209 \quad 1.813123 \\
\text{C} & \quad 1.727458 \quad 1.678229 \quad 1.966312 \quad \text{C} & \quad 2.088757 \quad 1.231158 \quad 1.705592 \\
\text{C} & \quad 2.250424 \quad 2.751318 \quad 1.194804 \quad \text{C} & \quad 2.731269 \quad 1.976944 \quad 0.675539 \\
\text{C} & \quad 3.416789 \quad 2.286551 \quad 0.516691 \quad \text{C} & \quad 3.795827 \quad 1.183476 \quad 0.153456 \\
\text{C} & \quad 3.606347 \quad 0.927251 \quad 0.866082 \quad \text{C} & \quad 3.803783 \quad -0.04806 \quad 0.851377
\end{align*}$$
H	2.451765	-0.41881	2.232698	
H	0.869437	1.729278	2.617964	
H	1.839633	3.747978	1.141751	
H	4.038359	2.865267	-0.14891	
H	4.4012	0.288588	0.511003	
Cu	0.178625	-1.10397	-0.11544	Cu
H	0.869437	1.729278	2.617964	
H	1.839633	3.747978	1.141751	
H	4.038359	2.865267	-0.14891	
H	4.4012	0.288588	0.511003	
Cu	0.178625	-1.10397	-0.11544	Cu
S	0.517704	-3.36462	-0.43324	
C	0.143258	-4.2519	1.122068	
H	0.297003	-5.31949	0.963494	
H	-0.89836	-4.05448	1.366002	
C	2.307572	-3.71143	-0.5813	
H	2.841104	-3.36451	0.303506	
H	2.450271	-4.78391	-0.7166	
H	2.66456	-3.1747	-1.45803	

\[
\text{[[CO}_2\text{CpMn}_2\text{BCu}]}_2
\]

Cu	-0.02108	-1.25342	-0.16194					
O	0.02318	2.507538	-2.6709					
C	0.843999	2.052551	-1.98758					
Mn	2.317349	1.483257	-1.10499					
B	1.880055	-0.11265	-0.0755					
Cu	0.08203	1.255015	0.022697					
O	2.803881	-0.51014	-3.20875					
C	2.580211	0.250525	-2.37372					
Mn	2.146958	-1.71739	1.015725					
B	-1.82891	0.09286	0.04442					
Mn	-2.12593	1.652499	1.168141					
O	4.610758	-1.80128	-0.57272					
C	3.617836	-1.76559	0.015231					
C	-0.98922	-1.73572	-2.26851					
O	-0.25195	-1.99014	-3.12055					
C	-2.45418	0.338653	2.313983					
O	-2.68193	-0.50296	3.077564					
C	-0.61587	2.039829	2.058251					
O	0.241661	2.392771	2.762693					
Mn	-2.33615	-1.43119	-1.10097					
O	1.118192	-4.06209	-0.45934					
C	1.456263	-3.08251	0.060111					
C	-2.87966	-0.1048	-2.15255					
O	-3.28168	0.720381	-2.85458					
C	3.030887	3.560268	-1.0259					
H	2.50131	4.393384	-1.46345					
------	------	------	------	------	------	------	------	------
C	2.868022	3.075685	0.302494	H	-4.59719	-1.17757	-0.67654	
H	2.225107	3.491756	1.062406	C	-4.47434	-1.97156	1.409083	
C	4.433112	1.759149	-0.75861	H	-5.18437	-1.36232	1.947586	
H	5.161999	0.987621	-0.95356	C	-3.70925	-3.03292	1.959792	
C	3.742552	1.963018	0.465083	H	-3.72089	-3.359	2.988202	
H	3.878721	1.394003	1.369726	C	-2.91138	-3.58064	0.911822	
C	1.013679	-1.49699	2.896873	H	-2.20768	-4.39316	1.008701	
H	-0.04193	-1.30065	2.996719	Au	0.00588	1.44776	0.01655	
C	3.988834	2.750162	-1.68481	O	4.655573	1.750254	-0.60581	
H	4.322422	2.861143	-2.70501	C	3.741166	1.642245	0.089955	
C	3.030223	-2.60758	2.799998	O	1.601196	4.21902	0.340724	
C	3.769243	-3.39302	2.766005	Mn	-2.37037	1.480816	-1.22995	
C	3.290679	-1.20465	2.781951	C	1.809999	3.11593	0.618331	
H	4.268416	-0.74803	2.746113	Mn	2.383215	1.50553	1.216435	
C	2.048292	-0.51958	2.842884	C	-1.02391	1.979399	-2.31453	
H	1.906522	0.548237	2.884692	O	-0.28228	2.345067	-3.12062	
C	-2.93849	2.889283	-0.45692	O	-2.70728	-0.87624	-2.92316	
H	-2.62507	2.833884	-1.48689	C	-2.56019	0.040779	-2.23302	
C	-2.38901	3.735577	0.540689	C	1.37866	1.01803	3.119153	
H	-1.57689	4.432594	0.399734	H	0.317752	0.887456	3.255384	
C	-3.10197	3.517794	1.757151	C	2.093137	2.236751	3.264713	
H	-2.91932	4.011204	2.699381	H	1.660359	3.195893	3.505823	
C	-4.08666	2.530075	1.506984	C	3.470573	1.981464	3.0266	
H	-4.7916	2.144616	2.228225	H	4.267941	2.7073	3.063138	
C	-3.99061	2.139608	0.140925	C	3.609397	0.593654	2.730322	
H	-4.62222	1.425105	-0.36119	H	4.52967	0.077155	2.50838	
C	-4.32588	-2.30836	-1.16654	C	2.317316	-0.00041	2.782948	
H	-5.13291	-1.90153	-1.75727	H	2.091509	-1.04613	2.651352	
C	-4.02223	-1.96447	0.181871	C	-3.19388	2.865551	0.280998	
H	-4.56789	-1.27175	0.802002	H	-2.75303	3.039137	1.248903	
C	-2.89258	-2.73206	0.581176	C	-4.16033	1.868473	-0.02411	
H	-2.43918	-2.71717	1.559042	H	-4.59721	1.177519	0.676559	
C	-2.49938	-3.54069	-0.5189	C	-4.4744	1.971475	-1.40908	
H	-1.66949	-4.20389	-0.53531	H	-5.18441	1.362204	-1.94758	
C	-3.39224	-3.28342	-1.59932	C	-3.70934	3.032846	-1.95981	
H	-3.3558	-3.74077	-2.57606	H	-3.72099	3.358911	-2.98823	
C	1.625885	-2.781	2.872112	C	-2.91148	3.580602	-0.91186	
H	1.107418	-3.7278	2.896883	H	-2.2078	4.393141	-1.00876	

Mn	1.127906	-1.88531	-0.23013	Au	-1.0216	-0.42012	0.006794				
Mn	1.127495	1.885727	0.229984	Mn	1.61275	1.963204	0.041152				
B	1.141249	0.000241	-0.00011	Mn	1.255705	-1.8104	-0.09095				
Element	X	Y	Z	Element	X	Y	Z				
---------	-------	-------	-------	---------	-------	-------	-------				
O	-1.15163	-2.43392	-2.02446	B	1.169991	0.158705	-0.02803				
C	-0.30261	-2.123	-1.29092	O	0.390114	2.095362	2.698847				
O	2.812914	-1.185	-2.52675	C	0.884178	2.040948	1.645443				
C	2.134831	-1.45908	-1.6262	O	4.186181	1.062852	1.102689				
O	2.816413	1.185553	2.523748	C	3.163408	1.425836	0.692276				
C	2.136765	1.459555	1.624356	O	2.982274	-1.0383	-2.32246				
O	-1.15009	2.431328	2.027659	C	2.283141	-1.31506	-1.44647				
C	-0.30167	2.121779	1.292862	O	-0.59244	-3.02513	-2.04243				
C	1.642718	-2.09625	1.878994	C	0.084024	-2.49159	-1.26883				
H	1.695104	-1.28675	2.589586	C	0.928862	2.216231	-2.01572				
C	0.508708	-2.91012	1.607791	H	0.520284	1.422806	-2.62175				
H	-0.4648	-2.81965	2.06425	C	0.188849	3.097761	-1.17844				
O	0.890728	-3.89026	0.643679	H	-0.87974	3.085751	-1.03208				
H	0.248705	-4.6515	0.226858	C	1.109003	4.019556	-0.59213				
C	2.250945	-3.67995	0.317348	H	0.860546	4.808124	0.101489				
H	2.830262	-4.25342	-0.38999	C	2.405312	3.704521	-1.06028				
C	2.720342	-2.56821	1.079815	H	3.31914	4.207853	-0.78465				
H	3.719313	-2.16054	1.063312	C	2.300226	2.581666	-1.93799				
C	0.506231	2.90847	-1.60849	H	3.11374	2.099562	-2.4571				
C	1.642383	2.097326	-1.87907	C	0.781329	-2.61081	1.906324				
C	2.718532	2.572224	-1.07969	C	1.858486	-1.68134	1.998265				
C	2.246154	3.683067	-0.31773	C	2.936685	-2.17867	1.218279				
C	0.885499	3.889817	-0.64455	C	2.525708	-3.41456	0.633157				
H	-0.466781	2.815583	-2.06547	C	1.199802	-3.67839	1.067077				
H	1.696973	1.287726	-2.58937	H	-0.17457	-2.5261	2.397659				
H	3.718491	2.166998	-1.06264	H	1.863904	-0.7743	2.581323				
H	2.823794	4.25822	0.389613	H	3.892013	-1.69418	1.090519				
H	0.241446	4.649577	-0.22816	H	3.119834	-4.0408	-0.01376				
Cu	-0.86379	-0.00043	-0.00027	H	0.603436	-4.53419	0.788973				
C	-2.83581	-0.0004	0.000157	C	-5.19743	0.475571	-0.40649				
N	-3.67484	0.068857	-1.06994	C	-4.96554	1.110787	0.767753				
C	-5.00248	-0.04228	0.67672	C	-3.01779	0.176037	0.109375				
C	-5.00289	0.041707	-0.67512	N	-3.9961	-0.09379	-0.79466				
H	-5.81761	-0.08232	1.379022	H	-6.09779	0.380481	-0.98901				
H	-5.81843	0.081777	-1.37693	H	-5.62634	1.671726	1.406332				
N	-3.67422	-0.06958	1.070756	N	-3.62748	0.918214	1.068694				
C	-3.24295	0.119131	-2.46325	C	-2.98307	1.435231	2.275953				
H	-2.17424	0.317918	-2.48812	H	-3.12669	2.514917	2.336968				
H	-3.43078	-0.83513	-2.95737	H	-3.41148	0.959222	3.160027				
H	-3.77203	0.919169	-2.98429	H	-1.91816	1.224746	2.230812				
C	-3.24147	-0.1202	2.463815	C	-3.81445	-0.85133	-2.03181				
H	-2.17345	-0.32282	2.488092	H	-4.6284	-1.56925	-2.14109				
H	-3.42555	0.835079	2.95737	H	-3.80375	-0.17761	-2.89091				
--------	-----------	-----------	-----------	--------	-----------	-----------	-----------	--------	-----------	-----------	
Mn	-1.97774	0.720931	0.217721	Mn	1.772668	1.170961	-0.19843	Mn	1.615402	-1.80285	-0.24082
B	-0.10795	1.010621	0.014186	B	-2.31674	-1.78589	1.740306	B	1.025848	-0.05425	-0.02661
O	-2.06111	-0.83376	1.116383	O	-0.39535	-2.32056	-2.31067	O	0.408197	-2.09698	-1.49905
O	-1.55696	2.226113	2.700728	O	3.540097	-0.66427	-2.12846				
	0.970986	3.004877	-2.34236		2.771018	-1.12336	-1.39073				
C	1.285404	2.268885	-1.50375	C	2.42731	-0.88759	-2.21235	C	2.143144	1.462167	1.346572
C	2.09008	-0.13204	-1.39394	C	-0.18026	2.374519	1.530088				
C	-2.23227	1.623602	-1.75264	C	1.593268	-2.05549	1.924536				
H	-1.44151	2.033821	-2.36036	H	1.224395	-1.32238	2.624443				
C	-2.7275	0.290738	-1.80359	H	0.935205	-3.10376	1.333811				
C	-3.80573	0.189104	-0.87689	H	-0.21213	-3.30016	1.500924				
C	-4.38743	-0.69858	-0.6784	C	1.715664	-3.87667	0.515454				
C	-3.98071	1.450553	-0.25661	H	1.441255	-4.73717	-0.07513				
C	-4.71511	1.693291	0.495761	C	3.003302	-3.29869	0.593708				
C	-3.00325	2.339054	-0.79536	C	3.883526	-3.64102	0.071609				
H	-2.87675	3.378229	-0.5327	C	2.933976	-2.16722	1.462511				
C	2.594451	0.574895	1.75154	H	3.751117	-1.51798	1.73408				
C	1.906476	1.814561	1.883826	C	0.089102	2.831865	-1.66392				
C	2.55627	2.763212	1.048682	C	1.202899	2.004628	-1.99054				
C	3.650681	2.115533	0.40236	C	2.344783	2.520964	-1.32257				
C	3.667994	0.766025	0.834283	C	1.937184	3.666149	-0.57187				
H	2.363281	-0.33652	2.280422	C	0.548772	3.856885	-0.79257				
H	1.065448	2.011199	2.529814	H	-0.91834	2.714652	-2.02928				
H	2.273959	3.798552	0.932527	H	1.189767	1.152987	-2.65142				
H	4.335962	2.569568	-0.29653	H	3.340877	2.110802	-1.37794				
H	4.373453	0.011621	0.519553	H	2.573835	4.284018	0.041888				
Cu	0.117137	-0.98381	-0.0462	H	-0.05891	4.634916	-0.35595				
P	0.387492	-3.2545	-0.03784	P	-3.32842	-0.76094	-0.09893				
C	-0.9293	-4.18331	-0.93547	C	-3.40324	-2.47203	0.568006				
H	-0.76944	-5.26279	-0.86782	H	-2.64087	-3.07894	0.077484				
H	-1.89989	-3.93603	-0.50233	H	-3.20128	-2.45777	1.640344				
H	-0.93399	-3.88937	-1.98688	H	-4.38681	-2.91596	0.392192				
C	1.939656	-3.93494	-0.76261	C	-4.77394	0.076534	0.671272				
H	1.944133	-5.02786	-0.73272	H	-4.61308	0.162397	1.747297				
H	2.043422	-3.5938	-1.79345	H	-4.87216	1.082999	0.261076				
H 2.796436 -3.55761 -0.20116 H -5.69649 -0.48044 0.486563
C 0.343311 -4.01269 1.641835 C -3.80063 -0.95913 -1.86279
H -0.59373 -3.74163 2.130544 H -3.88465 0.02415 -2.32905
H 0.42582 -5.10128 1.584364 H -3.0166 -1.51812 -2.37689
H 1.16946 -3.6256 2.241679 H -4.7533 -1.48686 -1.95935

References.

1. H. Braunschweig, M. Burzler, R. D. Dewhurst and K. Radacki, Angew. Chem. Int. Ed. 2008, 47, 5650–5653.

2. Prepared by a variation on the methods in: P. Braunstein, H. Lehner and D. Matt, Inorg. Synth. 1990, 27, 218.

3. H. Braunschweig, K. Kraft, S. Ostreicher, K. Radacki and F. Seeler, Chem. Eur. J., 2010, 16, 10635.

4. W. L. F. Armarego and C. L. L. Chai, Purification of Laboratory Chemicals; 6 ed., Elsevier: Oxford, 2009.

5. G. M. Sheldrick, Acta Crystallogr., Sect. A Found. Crystallogr. 2008, A64, 112.

6. C. B. Huebschle, G. M. Sheldrick, B. Dittrich, J. Appl. Crystallogr. 2011, 44, 1281.

7. C. Cason, et al.; Persistence of Vision Pty. Ltd., 2009; http://www.povray.org/download/.

8. (a) G. te Velde, F. M. Bickelhaupt, E. J. Baerends, C. Fonseca Guerra, S. J. A. van Gisbergen, J. G. Snijders, and T. Ziegler. J. Comp. Chem., 2001, 22, 931; (b) Amsterdam Density Functional, Theoretical Chemistry, Vrije Universiteit, Amsterdam, The Netherlands, http://www.scm.com.

9. (a) N. C. Handy and A. J. Cohen, Mol. Phys., 2001, 99, 403; (b) D. P. Chong, Mol. Phys., 2005, 103, 749; (c) D. P. Chong, E. van Lenthe, S. J. A. van Gisbergen and E. J. Baerends, J.
10. (a) E. van Lenthe, E. J. Baerends, and J. G. Snijders, *J. Chem. Phys.*, 1993, 99, 4597; (b) E. van Lenthe, E. J. Baerends and J. G. Snijders, *J. Chem. Phys.*, 1994, 101, 9783; (c) E. van Lenthe, A. E. Ehlers and E. J. Baerends. *J. Chem. Phys.*, 1999, 110, 8943; (d) R. Bouten, E. J. Baerends, E. van Lenthe, L. Visscher, G. Schreckenbach and T. Ziegler, *J. Phys. Chem. A*, 2000, 104, 5600.

11. (a) I. Mayer, *Chem. Phys. Lett.*, 1983, 97, 270; (b) E. P. Fowe, B. Therrien, G. Süß-Fink, and C. Daul, *Inorg. Chem.*, 2008, 47, 42.

12. (a) F. L. Hirshfeld. *Theo. Chim. Acta*, 1993, 44, 129; (b) K. B. Wiberg and P. R. Rablen. *J. Comp. Chem.*, 1993, 14, 1504.

13. S. Grimme, S. Ehrlich, and L. Goerigk, *J. Comp. Chem.*, 2011, 32, 1456.

14. Jmol: an open-source Java viewer for chemical structures in 3D. http://www.jmol.org/.

15. Gaussian 09, Revision D.01, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G.
Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, Ö. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox, Gaussian, Inc., Wallingford CT, 2009.