Background and Aims: Nowadays, due to the lifestyle changes and excessive use of communication technologies, postural deformities have increased. The upper-crossed syndrome (UCS) can lead to forward head posture (FHP), rounded shoulders (RS), and hyperkyphosis (HKP). This study aims to investigate the effect of an eight-week corrective exercise program in water on FHP, RS, and HKP, and pain in young men with UCS.

Methods: In this randomized controlled clinical trial, after initial screening of 200 students, 34 men with UCS, a mean age of 23±0.80 years, a mean weight of 71.61±2.2 kg, a mean height of 171.75±1.24 cm, and a mean body mass index of 23.60±.67 kg/m² were purposefully selected as the study samples. The sample was determined 30 using G.Power v. 3.1 software. By considering a possible dropout of 5%, it was increased to 34. These samples were randomly divided into two groups of exercise (n=17) and control (n=17). The exercise group performed corrective exercises in water for eight weeks, while the control group received no intervention during this period. The FHP and RS angles were measured by taking a side profile photo and the HKP angle was measured using a flexible ruler. Paired t-test was used for comparison of pretest and posttest scores, and independent t-test was used to compare the groups. Data were analyzed in SPSS software and the significance level was set at 0.05.

Results: The results showed that the exercise group had significant reduction in the angles of HKP (P=0.001), FHP (P=0.001) and RS (P=0.001).

Conclusion: The eight-week water-based corrective exercise program can significantly reduce the angles of FHP, RS, and HKP in young men with UCS. This program can be used by specialists for correcting the postural deformities.

Keywords: Aquatic therapy, Upper-crossed syndrome, Corrective exercises, Forward Head, Kyphosis
Extended Abstract

Introduction

Muscle imbalances occur when muscles become shorter, tighter, or weaker, leading to soft tissue changes that may result in impaired movement [1]. Repetitive movements and wrong postures for the long time can cause movement defects and alterations in movement patterns [2]. Janda proposed three patterns of muscular imbalance including upper-crossed syndrome (UCS), lower-crossed syndrome, and layered syndrome. The UCS can lead to the following postural deformities: Forward head posture (FHP), rounded shoulders (RS), and hyperkyphosis (HKP) [3]. These postural deformities are characterized by tight and short posterior, superior, and anterior chest muscles as well as weakened and longer middle and inferior trapezius, serratus anterior, and longus colli muscles [3]. These deformities have become common postural problems because of recent lifestyle changes, such as the long-term use of cellphones, computers, and laptops [4]. This study aims to investigate the effect of an eight-week corrective exercise program in water on FHP, RS, and HKP, and pain in young men with UCS.

Materials and Methods

In this randomized controlled clinical trial, after initial screening of 200 students, 34 men with UCS, a mean age of 23±0.80 years, a mean weight of 71.61±2.2 kg, a mean height of 171.75 1.24 cm, and a mean body mass index of 23.60±.67 kg/m² were purposefully selected as the study samples. The sample was determined 30 using GPower v.3.1 software. By considering a possible dropout of 5%, it was increased to 34. These samples were randomly divided into two groups of exercise (n=17) and control (n=17). The exercise group performed corrective exercises in water for eight weeks, while the control group received no intervention during this period. The FHP and RS angles were measured by taking a side profile photo and angular analysis in AutoCAD software and the HKP angle was measured using a flexible ruler.

Janda recommended that the treatment of muscle imbalance should be performed in three stages: Normalization of peripheral structures (inhibition), restoration of muscle balance (elongation and activation), and the facilitation of afferent system and sensorimotor training (integration) [3]. In the present study, the exercises based on these steps were carried out in water. In the first stage, trigger points were released by hydro massage, and the myofascial release of stiff muscles was performed using a foam roller. In the second stage, static stretching exercises were performed to treat muscle stiffness. Due to the tightness of the respiratory muscles in UCS, muscle stretching was combined with breathing patterns correction exercises. Then, the strengthening exercises (activation) were performed. Finally, proprioceptive exercises were conducted for neck and shoulder joints. In the last stage (integration), the subjects were asked to participate in a water game while maintaining their correct posture. The eight-week water-based corrective exercise program was provided at three sessions per week. The program included warm-up movements (10–15 minutes), corrective exercises (35–45 minutes), and cooling-down movements (5–10 minutes).

Shapiro–Wilks test and Levene’s test were carried out to assess the normal distribution of data and the homogeneity of variances. Paired t-test was used for comparison of pretest and posttest scores, and independent t-test was used to compare the groups. Data were analyzed in SPSS software and the significance level was set at 0.05.

Table 1. The test results for all variables before and after intervention

Group	Pre-test Mean±SD	Post-test Mean±SD	P	Partial Eta Squared
HKP (degree)				
Exercise	49.6±2.9	39.8±1.9*	<0.001	0.97
Control	49.08±2.4	48.8±1.7	0.64	0.03
FHP (degree)				
Exercise	55±1.7	47.6±1.3*	<0.001	0.98
Control	55±1.9	54±2.5	0.21	0.09
RS (degree)				
Exercise	49.6±1.7	40.07±1.8*	<0.001	0.98
Control	49.66±1.9	49.18±1.4	0.34	0.06

* Significant difference (P<0.05).
Results

The results presented in Table 1 showed that the exercise group had significant improvement in HKP (P=0.001), FHP (P=0.001) and RS (P=0.001).

Conclusion

The eight-week water-based corrective exercise program can significantly reduce the angles of FHP, RS, and HKP in young men with UCS. This program can be used by specialists for correcting the postural deformities.

Ethical Considerations

Compliance with ethical guidelines

This study was approved by The Ethics Committee of the Hamadan University of Medical Sciences (Code: IR.UMSHA.REC.1395.470).

Funding

This Paper Was Extracted From The Thesis Of Hossein Ahmadi Under The Guidance of Ali Yalfani in the Department of Sports Pathology and Corrective Exercise, Faculty of Physical Education and Sport Sciences, University of of Bu-Ali, Hamadan.

Authors' contributions

All authors contributed equally in preparing all parts of the research.

Conflict of interest

The authors declared no conflict of interest.

Acknowledgments

We would like to express our gratitude to all the subjects who helped us in this research.
مقاله پژوهشی

اثربخشی ۸ هفته تمرینات اصلاحی در محیط آب بر وضعیت پاسچر افراد دارای سندرم متقاطع فوقانی

حسن احمدی ۱، علی یلفانی ۲، حسین احمدی ۱

۱. گروه آسیب‌شناسی ورزشی و حرکات اصلاحی، دانشکده علوم ورزشی، دانشگاه علوم پزشکی و تغذیه شیخ حسین، اهواز، ایران.
۲. گروه آسیب‌شناسی ورزشی و حرکات اصلاحی، دانشکده علوم ورزشی، دانشگاه علوم پزشکی و تغذیه، اهواز، ایران.

۱۳۹۹ شهروند ۱۳۹۹ تاریخ دریافت
۱۳۹۹ شهروند ۱۳۹۹ تاریخ پذیرش
۱۴۰۱ خرداد ۱۳۹۹ تاریخ انتشار

چکیده

در این مطالعه، بررسی اثر هفته تمرینات اصلاحی در محیط آب بر اصلاح تغییرات سایه‌ای سر به جلو، شانه‌گرد و کایفوزیس (گرد پشتی) در مردان مبتلا به سندرم متقاطع فوقانی بود.

مطالب و روش‌ها

۲۳ دانشجو مرد مبتلا به سندرم متقاطع فوقانی در این مطالعه به‌عنوان گروه آزمایش و ۲۳ دانشجوی سالم به‌عنوان گروه کنترل انتخاب شدند. درخست گروه آزمایش به‌طور تصادفی در دو گروه آزمایش و کنترل تقسیم شدند. قبل و پس از مداخله، زوایای سر به جلو و شانه‌گرد با عکس‌برداری و زاویه کایفوزیس (گرد پشتی) به وسیله خط‌کش منعطف در نظر گرفته شد. برای مقایسه درون‌گروهی از آزمون تی مستقل و برای مقایسه اختلاف میانگین‌های بین‌گروهی از آزمون تی مستقل استفاده شد.

یافته‌ها نشان داد تمرینات در گروه آزمایش در کاهش ناهنجاری‌های مرتبط با سندرم متقاطع فوقانی شامل کاهش میزان زاویه سر به جلو (P = 0.001)، کاهش زاویه سر به جلو (P = 0.001) و کاهش زاویه کایفوزیس (گرد پشتی) است.

یافته‌های این مطالعه نشان می‌دهد که تمرینات اصلاحی در محیط آب می‌تواند به‌صورت معناداری در کاهش زاویه سر به جلو، کایفوزیس (گرد پشتی) به نظر می‌رسد. نتیجه گیری

کلیدواژه‌ها: آب درمانی، سندرم متقاطع فوقانی، حرکات اصلاحی، سر به جلو، کایفوزیس (گرد پشتی یا گوژ پشتی)
کشفیات آنالیزی بر روی بیوهای لاغر استرسی نسبت به جلو و شانه گرد، که سبب ایجاد ناهنجاری ها در الگوهای حرکتی می‌گردد. استفاده از رویکرد جاندا در ارائه تمرینات، توجه به اصل ارتباط زنجیره‌ای قسمت‌های مختلف بدن است. بنابراین هدف از این پژوهش، اثر تقویت عضلات سینه ای کمری را بررسی کردند و کاهش میزان درد و زاویه لوردوز را جزئی از مرکزیت ستون فقرات در آب بر مبنای شدت درد و میزان درد و روش های تلقیح و تغییراتی در وضعیت بدنی، به علت تغییر الگوی حرکتی و رفتاری ناگهانی حرکتی است. در این زمینه چندنگ سازگاری مورد بررسی قرار گرفته است.

1. Layered syndrome
2. Crossed syndrome
3. Hypothesis of kyphosis

1. Upper crossed syndrome
2. Lower crossed syndrome
3. Layered syndrome
میزان کارگاه پزشکی، اثر بر توانمندی و سلامتی

1. مقدمه

در این مطالعه، کارگاه پزشکی سه تا چهار هفته دوباره در هر سه روز با تنفس عمیق و تمرینات مداوم انجام می‌شود. در این کارگاه، به تمریناتی از ابزارهای مختلفی برای بهبود سلامتی مراجع مراجع می‌گردد. این کارگاه شامل تمریناتی است که بهبود سلامتی و سبک زندگی را در صورت هرگاهی می‌بگیرد. ب
تصویر ۲. نحوه اندازه‌گیری زاویه کایفوز با استفاده از همانکنی منصفان

جدول ۱. تمرینات اصلاحی

مطالعات	تکنیک و تمرین	مراحل
ریسک‌های طولانی مدت جلوه سرک	تمرین روی ساختمان مسئولیت	سه‌شنبه ۲۸ خرداد و تیر
ریل قدم متعادل پفص در آب	تمرین اولیه (۱۰۰ تا ۱۵۰۰)	

ضمانت سیستمی کوکوس و پیورگ

نرخهای فیزیکی	تمرینات کلی و تکلیفی
چندین جنگلی و یک سانتیمتری	تمرین سخت و تکلیفی
وسیله زمینی و ترمیمی	تمرین حساس و تکلیفی

تمرینات اصلاحی

تمرینات اصلاحی	تمرینات کلی و تکلیفی
پیشینکی و پیورگ	تمرین سخت و تکلیفی
چهار بیم‌پوش	تمرین حساس و تکلیفی

تمرینات اصلاحی بر وضعیت پوسچر

تمرینات حسی حرکتی و بازیابی حس عمقی	تمرینات عملکردی
تمرینات حسی حرکتی (هفته ششم تا هشتم)	تمرینات عملکردی

تمرینات حسی حرکتی

تمرینات حسی حرکتی	تمرینات عملکردی
تمرینات حسی حرکتی (هفته ششم تا هشتم)	تمرینات عملکردی

تمرینات عملکردی

تمرینات عملکردی	تمرینات حسی حرکتی (هفته ششم تا هشتم)
تمرینات عملکردی	تمرینات حسی حرکتی (هفته ششم تا هشتم)
مارک سولی ساخت کشور ترکیه در قله‌نشین درصد 80 درصدی از دوستی با شکل‌های زیبایی در هر شرایطی. از آزمودنی خواسته شد که به‌طور کلی به بهبود خود و برای مزیتکارانی که بالینیت آنها کمتر است. به این ترتیب می‌توانید روش‌های تغییرات زیست‌شناختی، از جمله تغییرات زیست‌شناسی در روش‌های حیاتی که باعث تغییراتی در سیستم‌های زیست‌شناختی می‌شود، مورد بررسی قرار گیرد. خواسته شد که هر نوع تغییرات زیست‌شناختی در روش‌های حیاتی که باعث تغییرات زیست‌شناسی می‌شود، مورد بررسی قرار گیرد. خواسته شد که هر نوع تغییرات زیست‌شناسی در روش‌های حیاتی که باعث تغییرات زیست‌شناسی می‌شود، مورد بررسی قرار گیرد. خواسته شد که هر نوع تغییرات زیست‌شناسی در روش‌های حیاتی که باعث تغییرات زیست‌شناسی می‌شود، مورد بررسی قرار گیرد. خواسته شد که هر نوع تغییرات زیست‌شناسی در روش‌های حیاتی که باعث تغییرات زیست‌شناسی می‌شود، مورد بررسی قرار گیرد. خواسته شد که هر نوع تغییرات زیست‌شناسی در روش‌های حیاتی که باعث تغییرات زیست‌شناسی می‌شود، مورد بررسی قرار گیرد. خواسته شد که هر نوع تغییرات زیست‌شناسی در روش‌های حیاتی که باعث تغییرات زیست‌شناسی می‌شود، مورد بررسی قرار گیرد.
شماره 11
دوره 1401
خرداد و تیر

۳۵ تا ۲۵ دقیقه، برنامه تمرین اصلاحی

۱۰ تا ۸ دقیقه، برنامه تمرین اصلاحی (۲۵ تا ۲۰ دقیقه) و
سوم کردن (۸ تا ۶ دقیقه) بود (جدول شماره 1، ۳).

تجزیه و تحلیل آماری

بررسی نمودن بودن توسعه دادنها با استفاده از آزمون شاپیرو
و لئونارد و ریکیتس، نشان داد که این فقط برای
از آزمون‌های دنباله‌داری (آزمون و پسآزمون) از روش آماری تی
پر مشترک و مقایسه دو گروه آزمایش و کنترل به
از آزمون‌های تی مستقل استفاده شد. برای ارزیابی این
افزار به‌صورت محرکه داده‌های ایجاد شده در هر گروه
با استفاده از فرمول شاپیرو و لئونارد و ریکیتس
(از آزمون شماره ۱) تهیه شد.

نتایج مقایسه‌ی پیش‌بینی‌های جمعیت‌شناسی و انتخاب‌های
کلاسیفیکه‌ی سر به جلو و شاهد در پیش آزمون برای
گروه‌ی تمرین و کنترل در جدول شماره ۳ آماده‌سازی شد.

t^2 = \frac{\text{E}ta^2}{N_1 + N_2 - 2}

9. Shapiro-Wilk
10. Levene’s Test
11. Paired T Test
12. Independent t-test
13. Eta Squared
نتایج آزمون تی زوجی و تی مستقل برای مقایسه میانگین کایفوز، سر به جلو و شانه گرد در پیش آزمون و پس آزمون و بین گروه ها در بحث هفته تمرینات اصلاحی

متغیر	گروه	مرحله آزمون	انحراف معیار ±	میانگین	سطح معناداری	مستقل	زوجی	سطح معناداری
کایفوز	آزمایش	پیش آزمون	49/61	2/9	25/16	0/001	0/001	*
		پس آزمون	39/2	1/9	0/0696	0/497	0/29	*
سر به جلو	آزمایش	پیش آزمون	49/08	1/9	1/29	0/790	1/11	0/001
		پس آزمون	40/07	1/8	1/4	0/83	0/95	*
شانه گرد	آزمایش	پیش آزمون	55/1	1/7	27/30	0/001	0/92	*
		پس آزمون	47/6	1/3	1/2	0/95	0/83	*

* نشان داد، ویژگی های جمعیت شناختی و اندازه زوایای کایفوز، سر به جلو و شانه گرد، بین دو گروه مطالعه در پیش آزمون ها با هم تفاوت معناداری نداشتند.

هدف از این پژوهش، مطالعه اثربخشی در محیط آب، بر بهبود تغییر شکل های سر به جلو، شانه گرد و کایفوز در افراد مبتلا به سندرم متقاطع فوقانی بود. یافته ها نشان داد پروتکل تمرینات اصلاحی در آب موجب کاهش معنادار ناهنجاری های مذکور در دانشجویان پسر مبتلا به سندرم متقاطع فوقانی شده است.

سهرمن و همکاران بیان کردند درمان اختلال پاسچر، براساس اصلاح سازگاری های عضله مانند سفتی نسبی، ضعف عضلانی و اصلاح الگوهای عصبی عضلانی است. تمرین برای اصلاح حرکات و راستای غلط باعث ایجاد سازگاری مناسب عصبی و استرکچری خواهد شد. سهرمن همچنین مهم ترین این است که افراد مبتلا به سندرم متقاطع فوقانی در هفته تمرینات اصلاحی سازگاری های عضله را بازیابی نمایند.

مرحله از درمان را آموزش افراد جهت حفظ راستای مناسب در فعالیت های طولانی مدت در طول روز مانند کار با کامپیوتر، تلفن همراه و هنگام مطالعه به افراد گروه آزمایش آموزش داده شد.
اجهاد تغییر شکل ویا تعامل علم در علم رفتاری و پروتکل تمرینات اصلاحی نسبت داده

افزونا برانه‌ای‌ها یا سایر دیگر افرادی که تمرین‌های طبیعی را پذیرایی می‌کنند، می‌توانند به‌طور جداگانه یا گروهی در خانواده، هیپودیستانیک و ویسکوالیوپلاستیک و تحدود مغزی و معنا‌داری می‌گذارند که تأثیر مستقیمی در محوطه طبیعی، نیروی در ضعف، امریکن و روش‌های تربیتی می‌کند. بنابراین حرکات عملیاتی استفاده می‌شود و محور این درمان است. در این پژوهش، تمرینات و ایجاد سارکومرهای طولانی فیزیولوژیکی قرار می‌گیرند. طول بیانی بدن تمرین و سیستم عصبی پاراپنسیک می‌گویند که به افزایش دامنه حرکتی و کاهش سفتی شدید. احتمالاً کشش ایستا به عنوان نیروی مقاومت نیروی چسبندگی، برابر هوا دارای مقاومت است. در یک سمت و ضعف و طولانی شدن عضلات در سمت مخالف عدم تعادل عضلانی این سندرم شامل کوتاهی های عضلانی دیافراگمی ارائه شد. به این صورت که فرد با حفظ پوزیشن مرحله بازیابی تعادل عضلانی تمرینات، الگوی تنفس صحیح اجرا می‌کند.

14. Cohesive, Bow, Drag
15. Golgi Tendon Organ (GTO)
16. Remesh recurrent loop
17. Recurrent inhibition
18. Muscle spindle
19. Stretch weakness
20. Positional weakness
21. Facilitation
نتیجه‌گیری

نتایج این مطالعه نشان داد در محیط آموزشی، با استفاده از تمرینات اصلاحی در مدت تمرینات فوق‌العاده (سه هفته) شانه‌گرد و دامنه در زیرین شکل‌های پروسه درمردهای دخترانی در دوره 1401-1402 خرداد و تیر با روش برگر از راه بینی یک دم عمیق می‌کشد و به دنبال آن یک برگر بازدم عمیق از راه دهان بر سطح آب انجام می‌شد. نتایج این مطالعه نشان داد که در این دوره، تمرینات فوق‌العاده می‌تواند بهبودی از ناهنجاری‌های درمان‌ناپذیر در شانه‌گرد و دامنه داشته باشد.

کلمات کلیدی: برای بررسی تأثیرات تمرینات فوق‌العاده در مردمان دخترانی در دوره 1401-1402، تمرینات فوق‌العاده با روش برگر از راه بینی یک دم عمیق می‌کشید و به دنبال آن یک برگر بازدم عمیق از راه دهان بر سطح آب انجام می‌شد.

کلیه نتایج این مطالعه نشان داد که در این دوره تمرینات فوق‌العاده می‌تواند بهبودی از ناهنجاری‌های درمان‌ناپذیر در شانه‌گرد و دامنه داشته باشد.

نتایج این مطالعه نشان داد که در این دوره تمرینات فوق‌العاده می‌تواند بهبودی از ناهنجاری‌های درمان‌ناپذیر در شانه‌گرد و دامنه داشته باشد.

نتایج این مطالعه نشان داد که در این دوره تمرینات فوق‌العاده می‌تواند بهبودی از ناهنجاری‌های درمان‌ناپذیر در شانه‌گرد و دامنه داشته باشد.

نتایج این مطالعه نشان داد که در این دوره تمرینات فوق‌العاده می‌تواند بهبودی از ناهنجاری‌های درمان‌ناپذیر در شانه‌گرد و دامنه داشته باشد.

نتایج این مطالعه نشان داد که در این دوره تمرینات فوق‌العاده می‌تواند بهبودی از ناهنجاری‌های درمان‌ناپذیر در شانه‌گرد و دامنه داشته باشد.

نتایج این مطالعه نشان داد که در این دوره تمرینات فوق‌العاده می‌تواند بهبودی از ناهنجاری‌های درمان‌ناپذیر در شانه‌گرد و دامنه داشته باشد.

نتایج این مطالعه نشان داد که در این دوره تمرینات فوق‌العاده می‌تواند بهبودی از ناهنجاری‌های درمان‌ناپذیر در شانه‌گرد و دامنه داشته باشد.

نتایج این مطالعه نشان داد که در این دوره تمرینات فوق‌العاده می‌تواند بهبودی از ناهنجاری‌های درمان‌ناپذیر در شانه‌گرد و دامنه داشته باشد.

نتایج این مطالعه نشان داد که در این دوره تمرینات فوق‌العاده می‌تواند بهبودی از ناهنجاری‌های درمان‌ناپذیر در شانه‌گرد و دامنه داشته باشد.

نتایج این مطالعه نشان داد که در این دوره تمرینات فوق‌العاده می‌تواند بهبودی از ناهنجاری‌های درمان‌ناپذیر در شانه‌گرد و دامنه داشته باشد.

نتایج این مطالعه نشان داد که در این دوره تمرینات فوق‌العاده می‌تواند بهبودی از ناهنجاری‌های درمان‌ناپذیر در شانه‌گرد و دامنه داشته باشد.

نتایج این مطالعه نشان داد که در این دوره تمرینات فوق‌العاده می‌تواند بهبودی از ناهنجاری‌های درمان‌ناپذیر در شانه‌گرد و دامنه داشته باشد.

نتایج این مطالعه نشان داد که در این دوره تمرینات فوق‌العاده می‌تواند بهبودی از ناهنجاری‌های درمان‌ناپذیر در شانه‌گرد و دامنه داشته باشد.

نتایج این مطالعه نشان داد که در این دوره تمرینات فوق‌العاده می‌تواند بهبودی از ناهنجاری‌های درمان‌ناپذیر در شانه‌گرد و دامنه داشته باشد.

نتایج این مطالعه نشان داد که در این دوره تمرینات فوق‌العاده می‌تواند بهبودی از ناهنجاری‌های درمان‌ناپذیر در شانه‌گرد و دامنه داشته باشد.

نتایج این مطالعه نشان داد که در این دوره تمرینات فوق‌العاده می‌تواند بهبودی از ناهنجاری‌های درمان‌ناپذیر در شانه‌گرد و دامنه داشته باشد.

نتایج این مطالعه نشان داد که در این دوره تمرینات فوق‌العاده می‌تواند بهبودی از ناهنجاری‌های درمان‌ناپذیر در شانه‌گرد و دامنه داشته باشد.

نتایج این مطالعه نشان داد که در این دوره تمرینات فوق‌العاده می‌تواند بهبودی از ناهنجاری‌های درمان‌ناپذیر در شانه‌گرد و دامنه داشته باشد.

نتایج این مطالعه نشان داد که در این دوره تمرینات فوق‌العاده می‌تواند بهبودی از ناهنجاری‌های درمان‌ناپذیر در شانه‌گرد و دامنه داشته باشد.

نتایج این مطالعه نشان داد که در این دوره تمرینات فوق‌العاده می‌تواند بهبودی از ناهنجاری‌های درمان‌ناپذیر در شانه‌گرد و دامنه داشته باشد.

نتایج این مطالعه نشان داد که در این دوره تمرینات فوق‌العاده می‌تواند بهبودی از ناهنجاری‌های درمان‌ناپذیر در شانه‌گرد و دامنه داشته باشد.

نتایج این مطالعه نشان داد که در این دوره تمرینات فوق‌العاده می‌تواند بهبودی از ناهنجاری‌های درمان‌ناپذیر در شانه‌گرد و دامنه داشته باشد.

نتایج این مطالعه نشان داد که در این دوره تمرینات فوق‌العاده می‌تواند بهبودی از ناهنجاری‌های درمان‌ناپذیر در شانه‌گرد و دامنه داشته باشد.

نتایج این مطالعه نشان داد که در این دوره تمرینات فوق‌العاده می‌تواند بهبودی از ناهنجاری‌های درمان‌ناپذیر در شانه‌گرد و دامنه داشته باشد.

نتایج این مطالعه نشان داد که در این دوره تمرینات فوق‌العاده می‌تواند بهبودی از ناهنجاری‌های درمان‌ناپذیر در شانه‌گرد و دامنه داشته باشد.

نتایج این مطالعه نشان داد که در این دوره تمرینات فوق‌العاده می‌تواند بهبودی از ناهنجاری‌های درمان‌ناپذیر در شانه‌گرد و دامنه داشته باشد.

نتایج این مطالعه نشان داد که در این دوره تمرینات فوق‌العاده می‌تواند بهبودی از ناهنجاری‌های درمان‌ناپذیر در شانه‌گرد و دامنه داشته باشد.

نتایج این مطالعه نشان داد که در این دوره تمرینات فوق‌العاده می‌تواند بهبودی از ناهنجاری‌های درمان‌ناپذیر در شانه‌گرد و دامنه داشته باشد.

نتایج این مطالعه نشان داد که در این دوره تمرینات فوق‌العاده می‌تواند بهبودی از ناهنجاری‌های درمان‌ناپذیر در شانه‌گرد و دامنه داشته باشد.

نتایج این مطالعه نشان داد که در این دوره تمرینات فوق‌العاده می‌تواند بهبودی از ناهنجاری‌های درمان‌ناپذیر در شانه‌گرد و دامنه داشته باشد.

نتایج این مطالعه نشان داد که در این دوره تمرینات فوق‌العاده می‌تواند بهبودی از ناهنجاری‌های درمان‌ناپذیر در شانه‌گرد و دامنه داشته باشد.
References

[1] Lee HM. Rehabilitation of the proximal crossed syndrome in an elderly blind patient: A case report. Journal of the Canadian Chiropractic Association. 2000; 44(4):223-9. [PMCID]

[2] Sahrmann S, Azevedo DC, Dillen LV. Diagnosis and treatment of movement system impairment syndromes. Brazilian Journal of Physical Therapy. 2017; 21(6):391-9. [DOI:10.1016/j.bjpt.2017.08.001] [PMCID]

[3] Page P, Frank C, Lardner R. Assessment and treatment of muscle imbalance: The janda approach. Champaign: Human kinetics; 2010. [DOI:10.5040/9781718211445]

[4] Neupane S, Ali U, Mathew A. Text neck syndrome-systematic review. Imperial Journal of Interdisciplinary Research. 2017; 3(7):141-8. [Link]

[5] Perri MA, Halford E. Pain and faulty breathing: A pilot study. Journal of Bodywork and Movement Therapies. 2004; 8(4):297-306. [DOI:10.1016/S1360-8592(03)00085-8]

[6] Scoppa F. Glosso-postural syndrome. Annali di Stomatologia. 2005; 54(1):27-34. [Link]

[7] Arboleda BM, Frederick AL. Considerations for maintenance of postural alignment for voice production. Journal of Voice. 2008; 22(1):90-9. [DOI:10.1016/j.jvoice.2006.08.001] [PMID]

[8] Minguéz-Zuazo A, Grande-Alonso M, Saiz BM, La Touche R, Lara SL. Therapeutic patient education and exercise therapy in patients with cervicogenic dizziness: A prospective case series clinical study. Journal of Exercise Rehabilitation. 2016; 12(3):216-25. [DOI:10.12965/jer.1632564.282] [PMCID]

[9] Kim MS, Cha YJ, Choi JD. Correlation between forward head posture and respiratory functions, and respiratory accessory muscles in young adults. Journal of Back and Musculoskeletal Rehabilitation. 2017; 30(4):711-5. [DOI:10.3233/BMR-140253] [PMCID]

[10] Kahlæe AH, Ghamkhar L, Arab AM. The association between neck pain and pulmonary function: A systematic review. American Journal of Physical Medicine & Rehabilitation. 2017; 96(3):203-10. [DOI:10.1097/PHM.0000000000000608] [PMID]

[11] Wirth B, Amstalden M, Perk M, Boutilier U, Humphreys BK. Respiratory dysfunction in patients with chronic neck pain-Influence of thoracic spine and chest mobility. Manual Therapy. 2014; 19(5):440-4. [DOI:10.1016/j.math.2014.04.011] [PMID]

[12] Oliveira AC, Silva AG. Neck muscle endurance and head posture: A comparison between adolescents with and without neck pain. Manual Therapy. 2016; 22:62-7. [DOI:10.1016/j.math.2015.10.002] [PMID]

[13] Harman K, Hubley-Kozer CL, Butler H. Effectiveness of an exercise program to improve forward head posture in normal adults: A randomized, controlled 10-week trial. Journal of Manual & Manipulative Therapy. 2005; 13(3):163-76. [DOI:10.1179/106698105790824888]

[14] Kamali F, Shirazi SA, Ebrahimis M, Mirshamsi M, Ghanbari A. Comparison of manual therapy and exercise therapy for postural hyperkyphosis: A randomized clinical trial. Physiotherapy Theory and Practice. 2016; 32(2):92-7. [DOI:10.3109/09593985.2015.1110739] [PMID]

[15] Ruivo RM, Pezarat-Correia P, Carita Al. Effects of a resistance and stretching training program on forward head and protracted shoulder posture in adolescents. Journal of Manipulative and Physiological Therapeutics. 2017; 40(1):1-10. [DOI:10.1016/j.jmpt.2016.10.005] [PMID]

[16] Bae WS, Lee HO, Shin JW, Lee KC. The effect of middle and lower trapezius strength exercises and levator scapulae and upper trapezius stretching exercises in upper crossed syndrome. Journal of Physical Therapy Science. 2016; 28(5):1636-9. [DOI:10.1589/jpts.28.1636] [PMID]

[17] Park HC, Kim YS, Seok SH, Lee SK. The effect of complex training on the children with all of the deformities including forward head, rounded shoulder posture, and lumbar lordosis. Journal of Exercise Rehabilitation. 2014; 10(3):172-5. [DOI:10.12965/jer.140113] [PMID]

[18] Quek J, Pua YH, Clark RA, Bryant AL. Effects of thoracic kyphosis and forward head posture on cervical range of motion in older adults. Manual Therapy. 2013; 18(1):65-71. [DOI:10.1016/j.math.2012.07.005] [PMID]

[19] Sahrmann S. Movement system impairment syndromes of the extremities, cervical and thoracic spines. Amsterdam; Elsevier; 2011. [Link]

[20] Singla D, Veqar Z. Association between forward head, rounded shoulders, and increased thoracic kyphosis: A review of the literature. Journal of Chiropractic Medicine. 2017; 16(3):220-9. [DOI:10.1016/j.jcm.2017.03.004] [PMID]

[21] Valli J. Chiropractic management of a 46-year-old type 1 diabetic patient with upper crossed syndrome and adhesive capsulitis. Journal of Chiropractic Medicine. 2004; 3(4):138-44. [DOI:10.1016/S0899-3467(07)60101-3]

[22] Sakinepoor A, Naderi A, Mazidi M, Hashemian AH, Mirzaei M, Letafatkar A. [Effect of resistance and aquatic exercises on diabetic patients with cervicalgia and scapula capsulitis]. Journal of Diabetes Nursing. 2019; 7(4):968-982. [Link]

[23] Torres-Ronda L, i del Alcázar XS. The properties of water and their applications for training. Journal of Human Kinetics. 2014; 44(1):237-48. [DOI:10.2478/hukin-2014-0129] [PMID]

[24] Becker BE. Aquatic therapy: Scientific foundations and clinical rehabilitation applications. PM&R. 2009; (9):859-72. [DOI:10.1016/j.pmrj.2009.05.017] [PMID]

[25] Azizi A, Mahdavinejhad R, Taheri-tizani A, Jafarzadeh T, Rezaeinasab A. [The effect of 8 weeks specific aquatic therapy on kyphosis angle and some pulmonary indices in male university students with kyphosis (Persian)]. Journal of Kerman University of Medical Sciences. 2012; 19(5):440-50. [Link]

[26] Sedaghati N, Hematfar A, Behpour N. [The effect of selected spinal core-muscle stabilization training in water on pain intensity and lumbar lordosis (Persian)]. FEYZ. 2013; 17(3):267-74. [Link]
[27] Murta BA, Santos TR, Araujo PA, Resende RA, Ocarino JM. Influence of reducing anterior pelvic tilt on shoulder posture and the electromyographic activity of scapular upward rotators. Brazilian Journal of Physical Therapy. 2020; 24(2):135-43. [DOI:10.1016/j.bjpt.2019.02.002] [PMID] [PMCID]

[28] Faul F, Erdfelder E, Lang AG, Buchner A. G* Power 3: A flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behavior Research Methods. 2007; 39(2):175-91. [DOI:10.3758/BF03193146] [PMID]

[29] Grande-Alonso M, Saiz BM, Zuazo AM, Lara SL, La Touche R. Biobehavioral analysis of the vestibular system and posture control in patients with cervicogenic dizziness. A cross-sectional study. Neurologia (English Edition). 2018; 33(2):98-106. [DOI:10.1016/j.nrleg.2016.06.006]

[30] Cohen J. Statistical power analysis for the behavioral sciences. New York: Routledge; 2013. [DOI:10.4324/9780203771587]

[31] Thigpen CA, Padua DA, Michener LA, Gusiewicz K, Giuliani C, Keener JD, et al. Head and shoulder posture affect scapular mechanics and muscle activity in overhead tasks. Journal of Electromyography and Kinesiology. 2010; 20(4):701-9. [DOI:10.1016/j.jelekin.2009.12.003] [PMID]

[32] Barrett E, McCreesh K, Lewis J. Reliability and validity of non-radiographic methods of thoracic kyphosis measurement: A systematic review. Manual Therapy. 2014; 19(1):10-7. [DOI:10.1016/j.math.2013.09.003] [PMID]

[33] de Oliveira TS, Candotti CT, La Torre M, Pelinson FP, Furlanetto TS, Kutchak FM, et al. Validity and reproducibility of the measurements obtained using the flexi curve instrument to evaluate the angles of thoracic and lumbar curvatures of the spine in the sagittal plane. Rehabilitation Research and Practice. 2012; 2012:186156. [DOI:10.1155/2012/186156] [PMID] [PMCID]

[34] Dockrell S, Bennett K, Culleton-Quinn E. Computer use and musculoskeletal symptoms among undergraduate university students. Computers & Education. 2015; 85:102-9. [DOI:10.1016/j.compedu.2015.02.001]

[35] Seidi F, Rajabi R, Ebrahimi I, Alizadeh MH, Minoonejad H. The efficiency of corrective exercise interventions on thoracic hyper-kyphosis angle. Journal of Back and Musculoskeletal Rehabilitation. 2014; 27(1):7-16. [DOI:10.3233/BMR-130411] [PMID]

[36] Ruivo RM, Pezarat-Correia P, Carita AI. Intrarater and interrater reliability of photographic measurement of upper-body standing posture of adolescents. Journal of Manipulative and Physiological Therapeutics. 2015; 38(1):74-80. [DOI:10.1016/j.jmpt.2014.10.009] [PMID]

[37] Seidi F, Rajabi R, Ebrahimi E, Alizadeh MH, Daneshmandi H. The effect of a 10-week selected corrective exercise program on postural thoracic kyphosis deformity [Persian]. Journal of Exercise Science and Medicine. 2013; 5(1):5-22. [DOI:10.22059/jsmed.2013.32159]

[38] Teixeira FA, Carvalho GA. Reliability and validity of thoracic kyphosis measurements using flexi curve method. Brazilian Journal of Physical Therapy. 2007; 11(3):199-204. [DOI:10.1590/S1413-35552007000300005]

[39] Kisner C, Colby LA, Borstad J. Therapeutic exercise: Foundations and techniques. Philadelphia: Fa Davis; 2017. [Link]

[40] Rivas Neira S, Pasqual Marques A, Pegito Pérez I, Fernández Cervantes R, Vivas Costa J. Effectiveness of aquatic therapy vs land-based therapy for balance and pain in women with fibromyalgia: A study protocol for a randomised controlled trial. BMC Musculoskeletal Disorders. 2017; 18(1):22. [DOI:10.1186/s12891-016-1364-5] [PMID] [PMCID]

[41] Prentice WE. Rehabilitation techniques for sports medicine and athletic training. New York: McGraw-Hill Education; 2010. [Link]

[42] Beardsley C, Škarabot J. Effects of self-myofascial release: A systematic review. Journal of Bodywork and Movement Therapies. 2015; 19(4):747-58. [DOI:10.1016/j.jbmt.2015.08.007] [PMID]

[43] Koren Y, Kalichman L. Deep tissue massage: What are we talking about? Journal of Bodywork and Movement Therapies. 2018; 22(2):247-51. [DOI:10.1016/j.jbmt.2017.05.006] [PMID]

[44] Clark M, Lucett S. NASM essentials of corrective exercise training. Baltimore: Lippincott Williams & Wilkins; 2010. [Link]

[45] McMaster MJ, Glasby MA, Singh H, Cunningham S. Lung function in congenital kyphosis and kyphoscoliosis. Journal of Spinal Disorders and Techniques. 2007; 20(3):203-8. [DOI:10.1097/01.bsd.0000211270.51368.43] [PMID]

[46] Gu SY, Hwangbo G, Lee JH. Relationship between position sense and reposition errors according to the degree of upper crossed syndrome. Journal of Physical Therapy Science. 2016; 28(2):438-41. [DOI:10.1589/jpts.28.438] [PMID] [PMCID]