Study on High Accuracy Topographic Mapping via UAV-based Images

Yun-Yao Chi 1, Ya-Fen Lee 2, Shang-En Tsai 3,

1 No.1, Changda Rd., Gueiren District, Tainan City 71101, Taiwan
2 No.51, Sec. 2, Xuefu Rd., Puzi City, Chiayi County 61363, Taiwan
3 No.1, Changda Rd., Gueiren District, Tainan City 71101, Taiwan

E-mail address: 2007LR03@mail.toko.edu.tw

Abstract. Unmanned aerial vehicle (UAV) provides a promising tool for the acquisition of such multi-temporal aerial stereo photos and high-resolution digital surface models. Recently, the flight of UAVs operates with high degrees of autonomy by the global position system and onboard digit camera and computer. The UAV-based mapping can be obtained faster and cheaper, but its accuracy is anxious. This paper aims to identify the integration ability of high accuracy topographic map via the image of quad-rotors UAV and ground control points (GCPs). The living survey data is collected in the Ern river basins area in Tainan, Taiwan. The high accuracy UAV-based topographic in the study area is calibrated by the local coordinate of GCPs using the total station with the accuracy less than 1/2000. The comparison results show the accuracy of UAV-based topographic is accepted by overlapping. The results can be a reference for the practice works of mapping survey in earth.

1. Introduction

Recently, spatial database place emphasis on renewability and instantaneously in applications of land surveys, hazard mitigation, sources investigations, land-use, and 3D reconstruction. It is one of important issues to develop a lower cost data collection platform in aerial remote sensing for spatial data collection. Much of current land, engineering and survey work via global position system (GPS) and total station are often labour intensive and the completeness of the data captured often depends on the time and cost allotted to the survey project. Traditional GPS and total station geographic data collection technical are accurate enough to design civil engineering and architectural plans. This style of data collection is often time consuming and by natural expensive. Unmanned aerial vehicle (UAV), an important way of aerial remote sensing, has been widely used in various fields with the unique technological advantages such as flexibility, convenience and low cost. UAV provides a promising tool for the acquisition of such multi-temporal aerial stereo photos and high-resolution digital surface models. Recently, the flight of UAVs operates with high degrees of autonomy by the global position system and onboard digit camera and computer. However, compared to traditional aerial photography, the flight attitude of UAV is not ideal, and the aerial coverage is small. UAV mainly comes to rapid puzzles; little involves the high accuracy topographic mapping tasks. As engineers and planners, we need to see if UAV-based photogrammetry would be accurate enough to map high accuracy topographic to replace current GPS and total station.
2. Reviews

Applications of unmanned aerial vehicle (UAV) have been increased considerably in recent years due to their greater availability and the miniaturization of sensors, GPS, inertial measurement units, and other hardware [1, 2] has demonstrated the UAV’s ability to revisit permanent plot locations and obtain high quality, high resolution images. The UAV-based imaging which could take very-high resolution images economically in restricted areas as polar regions compared to satellite and aerial photography will be used to various fields of study [3].

Both multi-rotors and fixed-wing aircrafts types of light-weight UAVs are currently commercially available. Fixed-wing UAV, equipped with light-weight digital cameras is more suitable for capturing stereographic images of larger areas. Multi-rotors can often carry more payload, resulting in the possibility of installing more advanced remote sensing systems, but their relatively low flight speed and high battery drain are limited [4]. Mancini, et al. [5] shows using the structure from motion technique to a low-altitude hexa-rotors produced a point cloud and derived digit surface model representing with high topographic quality, comparable with GPS survey data.

Walter et al. [6] shows UAV-based ortho-images allow for a detailed large scaled analysis of landslide materials and fissure structures. Such fissure structures have been clearly detected and could be related to fracture processes in the landslide material. Additionally, high-resolution textural information in UAV-based images could possibly permit a soil moisture analysis of the surface of landslides. [7].

3. Equipment

3.1. Quad-rotor UAV

Comparing to conventional helicopters, quad-rotor systems are more stable in flight with reduced vibration and have the mechanical advantage of not requiring a large, variable pitch rotor-unit. A quad-rotor open source project [8] has been used and improved by modifications of the software and the electronic circuit in order to comply with the requirements for this study.

Figure 1 shows the quad-rotor UAV equipment used in this paper. The fly height of UAVs is about equal to 60m above ground surface.

3.2. Total Station

Total station is a combination of electromagnetic distance measuring instrument and electronic theodolite. The total station can be used to measure horizontal and vertical angles as well as sloping distance of object to the instrument. Microprocessor unit processes the data collected to compute: (1) average of multiple angles measured, (2) average of multiple distance measured, (3) horizontal distance, (4) distance between any two points, (5) elevation of objects, and (6) all the three coordinates of the observed points. In this study, one such instrument is used by type OS-101 manufactured TOPCON Co. Ltd. Tokyo, Japan.
4. Study Area
Figure 2 shows the study area is located in the Ern river basins in Tainan, Taiwan. The living survey data is collected in the study area. Outstanding building corners are set as both the ground control points for UAV-based photographic and the ground control points for the closed traverse surveying works. The accuracy of the closed traverse surveying is less than 1/2000 according to Taiwan surveying codes.

5. Results and discussions
5.1. Ground Control Points
In Taiwan, Satellite Survey Center, Department of Land Administration, M.O.I. (SSC) is the governing organization for national survey. For sound national fundamental control measurement system, the SSC planning covers both the continuity and development of a series of fundamental control measurement plans since 1999 to 2007. Most of the survey point corrections are within 0.4 mm/m. This means the good survey quality. In this paper, these ground control points (GCP) constructed by SSC hear the study area are corrected and located as the basic points (BP) for ground survey and UAV-based image. Figure 3 shows some GCP located at the campus of Chang Jung University in study area.

5.2. Ground Survey
The traverse points are surveyed by the closed traverse surveying technical based on the basic points (BP). Figure 4(a) shows five BPs (C1, D1, F1, G1, H1) and three GCPs (RQ884, RQ843, and RQ846). Table 1 shows the results of the closed traverse surveying. The ratio of closure is equal to 0.00047 less than 0.0005 (1/2000). This accuracy means the good survey quality. The works are repeated at other sites, as showed in Figure 4(b)–(d) in the study area and all survey quality is good steady.
Table 1. The results of the closed traverse surveying

point	X(m)	Y(m)	point	X(m)	Y(m)	Error of X	Error of Y	
RQ846	175262.5562	2533897.176	C1	175262.5562	2533897.176	0	0	
175252.0815	2533976.455	175253.3854	2534038.673	175252.0815	2533976.455	0	0	
175425.1473	2534058.185	A	175429.835	2533914.356	175427.0458	2533900.341	0	0
RQ843	175429.835	2533914.356	A	175429.8118	2533914.478	0.0232270	0.1218626	
175427.0458	2533900.341	H1	175427.0458	2533900.341	175427.0458	2533900.341	0	0
RQ844	175278.866	2533880.319	B1	175278.866	2533880.319	0	0	

Total error = \(0.2899659 \) \(\pm 0.1450082 \)

Total Distance = 687.192

Error of closure = 0.3242031

Ratio of closure = 0.0004718

Figure 4. The results of ground survey

5.3. UAV-based Topographic

The high resolution photographic can be obtained by the quad-rotor UAV equipment (e.g. Figure 5). Figure 5 shows the overlap of UAV-based ortho-photographic and topographic. Figure 6 shows the
reconstructed topographic via the UAV-based ortho-photographic. The points of outstanding building comers, list in Table 2, are used to check the accuracy of the UAV-based topographic. Table 2 shows both the average absolute error of X-coordinate and Y-coordinate for ground survey and UAV-based topographic are less than 0.02% mm. The accuracy of UAV-based topographic is less than 0.0005 (1/2000) similar to the accuracy of the closure ratio of ground survey. This accuracy means the good UAV-based topographic quality. The result shows that UAV-based photogrammetry would be accurate enough to map high accuracy topographic. The UAV-based surveying may be to replace current GPS and total station in the future.

![Figure 5. The overlap of UAV-based image and topographic](image1)

![Figure 6. The UAV-based topographic with high accuracy](image2)

Table 2. The coordination of points of outstanding building comers

No. of point	Ground survey(GS)	UAV-based	UAV-based vs GS			
	X(m)	Y(m)	X(m)	Y(m)	Error of X(mm)	Error of Y(mm)
L1	175420.71890000	2533973.10100000	175420.71889930	2533973.10100005	0.070%	0.005%
L2	175410.19990000	2533950.60800000	175410.19989990	2533950.60799982	0.010%	0.018%
L3	175372.42970000	2533947.06500000	175372.42970000	2533947.06499950	0.000%	0.050%
L4	175303.99140000	2533923.37200000	175303.99139997	2533923.3719999	0.001%	0.002%
L5	175278.28330000	2533926.75500000	175278.28329990	2533926.75499991	0.010%	0.009%
L6	175274.25630000	2533957.10400000	175274.25619998	2533957.10399988	0.002%	0.012%
L7	175277.26840000	2533970.88700000	175277.26839999	2533970.88699991	0.001%	0.009%
L8	175372.24540000	2533985.23000000	175372.24539998	2533985.22999988	0.002%	0.012%
L9	175266.31370000	2534006.63800000	175266.31369999	2534006.63799980	0.001%	0.120%
L10	175263.90190000	2534025.15400000	175263.90190000	2534025.15399998	0.000%	0.002%
L11	175372.16620000	2534039.53700000	175372.16619994	2534039.53699980	0.006%	0.020%
L12	175383.48370000	2534037.08500000	175383.48370000	2534037.08499998	0.000%	0.002%
L13	175419.97640000	2534015.99500000	175419.97639997	2534015.99499988	0.003%	0.012%
L14	175421.82380000	2534001.73300000	175421.82379999	2534001.73299998	0.001%	0.002%

Average of absolute error = 0.008% 0.020%

World Multidisciplinary Earth Sciences Symposium (WMESS 2016) IOP Publishing
IOP Conf. Series: Earth and Environmental Science 44 (2016) 032006 doi:10.1088/1755-1315/44/3/032006
6. Conclusions
The UAV which could take very-high resolution UAV-based photographic economically in restricted areas as polar regions compared to satellite and aerial photography will be used to various fields. In this paper, the living survey data is collected in the study area in Tainan, Taiwan. The high accuracy UAV-based topographic in the study area is calibrated by the local coordinate of GCPs using the total station survey with the accuracy less than 1/2000. The comparison results show the accuracy of UAV-based topographic is good. The UAV-based surveying may be to replace current GPS and total station in the future.

Acknowledgment
The authors wish to acknowledge financial support of the Ministry of Science and Technology (MOST), Taiwan through Grant No. MOST 104-2632-E-309 -001. For this assistance, the authors are very grateful.

References
[1] Lambers, K. H., Eisenbeiss, M Sauerbier, D Kupferschmidt, T Gaisecker, S Sotoodeh & T Hanusch, 2007. Combining photogrammetry and laser scanning for the recording and modeling of the late intermediate period site of Pinchango Alto, Palpa, Peru. *Journal of Archaeological Science* 34, 1702-1712.

[2] Laliberte, A S, J E Herrick, A S Rango & C Winters, 2010. Acquisition, orthorectification, and object-based classification of Unmanned Aerial Vehicle (UAV) imagery for Rangeland monitoring. *Photogrammetric Engineering & Remote Sensing* 76, 661-672.

[3] Park, Hong Lyun, Se-Young Park, Chang-Uk Hyun, Hyun-Cheol Kim, Soon Gyu Hong, Ryong Lee, 2014. UAV Based Very-High-Resolution Imaging on Barton Peninsula Antarctica, EARSel 34th Symposium Proceedings, 16-20.

[4] Anders, Niels, Rens Masselink, Saskia Keesstra, Juha Suomalainen (2013), High-Res Digital Surface Modeling using Fixed-Wing UAV-based Photogrammetry, Geomorphometry.org, O-2-1-O-2-4.

[5] Mancini, F., Dubbini, M., Gattelli, F., Fabbri, S.and Gabbianelli, G., 2013. Using Unmanned Aerial Vehicles (UAV) for High-Resolution Reconstruction of Topography: The Structure from Motion Approach on Coastal Environments, Remote Sens. 2013, 5, 6880-6898; doi:10.3390/rs5126880.

[6] Walter, M., Niethammer, U., Rothmund, S., Joswig, M., 2009. Joint analysis of the Super-Sauze (French Alps) mudslide by nanoseismic monitoring and UAV-based remote sensing. EAGE First Break 27(8), pp. 75-82.

[7] Niethammer, U., Rothmund, S., Joswig, M., 2009. UAV-based remote sensing of the slow-moving landslide Super-Sauze. In: Malet, J.-P., Remaître, A., Boogard, T. (Eds) Proceedings of the International Conference on Landslide Processes: from geomorphologic mapping to dynamic modeling, Strasbourg, CERG Editions, pp. 69-74.

[8] Mikrokopter, 2010. Official Mikrokopter open source quad-rotor homepage. http://www.mikrokopter.com. (Accessed 10 March 2016)