Symmetric dimethylarginine and renal function analysis in horses with dehydration

Hsiao-Chien Lo*, Judith C. Winter¹,², Heidrun Gehlen¹ and Roswitha Merle³

¹Equine Clinic: Surgery and Radiology, Free University of Berlin, Berlin, Germany;
²SYNLAB.vet GmbH, Berlin, Germany and
³Institute for Veterinary Epidemiology and Biostatistics, Free University of Berlin, Berlin, Germany.

*Corresponding author email: cactusfhky8@gmail.com

Keywords: Acute kidney injury; SDMA; Dehydration; Glomerular filtration rate

Running title: Symmetric dimethylarginine and renal function analysis in horses

This article has been accepted for publication and undergone full peer review but has not been through the copyediting, typesetting, pagination and proofreading process, which may lead to differences between this version and the Version of Record. Please cite this article as doi: 10.1111/EVJ.13484

This article is protected by copyright. All rights reserved
Summary

Background: Acute dehydration caused by a variety of diseases in horses can lead to acute kidney injury. However, current renal biomarkers usually indicate renal damage late in the course of the disease. A novel biomarker would be helpful to diagnose renal disease earlier.

Objectives: 1) To estimate the correlation of serum symmetric dimethylarginine (SDMA) concentrations with the degree of dehydration, traditional renal biomarkers and renal function analysis, and 2) to determine the value of SDMA as a prognostic and early biomarker of renal injury in horses.

Study design: Prospective cohort.

Methods: Serum SDMA, creatinine and urea concentrations and renal function analysis were measured in 41 horses with dehydration at four time points until 48 hours after admission. Horses were grouped according to their dehydration level into mildly, moderately and severely dehydrated groups.

Results: Serum SDMA concentrations at admission correlated with creatinine concentrations (r = 0.412, \(P < 0.001 \)). Differences of SDMA concentrations at admission were detected among dehydration levels but not between survivors and non-survivors. Significant correlations of SDMA concentrations with other markers of renal function analysis and short-term outcome were not observed.

Main limitations: Besides the small sample size and low statistical power, missing urine samples at specific time points were also one of the main limitations. Only one of the horses developed acute kidney injury, which made the evaluation of the predictive value of SDMA difficult.

Conclusions: SDMA concentrations correlated significantly with creatinine concentrations in dehydrated horses. Further research is needed to reveal the application of SDMA in horse.
Introduction

Symmetric dimethylarginine (SDMA) and its enantiomer asymmetric dimethylarginine are both amino acids derived from tissue endogenous proteins. While a major part of asymmetric dimethylarginine is metabolised by the enzyme dimethylarginine dimethylaminohydrolase, more than 90% of SDMA is excreted by the kidneys.\(^1\)-\(^3\) One meta-analysis paper including 18 studies in human medicine showed that plasma SDMA had a significant correlation with the glomerular filtration rate (GFR).\(^4\) Studies in small animals found that SDMA has a better diagnostic value than creatinine for detecting a decrease of GFR since it can detect a decrease <30%, while creatinine only increases after a 75% loss of nephron function.\(^5\)-\(^7\) The plasma concentration of SDMA increased both in dogs with acute kidney injury (AKI) and chronic kidney disease (CKD). Moreover, it was less affected by extra renal factors, such as lean body mass, age and gender, than creatinine in some studies, which makes it more suitable for detecting CKD patients with weight loss.\(^8\),\(^9\) Primary kidney disease is believed to be comparably rare in horses. The prevalence of AKI in hospitalised horses was 14.8% in one study and the severity was lower than in other animal species.\(^10\) However, the risk of developing AKI could be higher in diseases leading to dehydration and hypovolemia, such as colic or diarrhoea.\(^11\) Early detection of renal injury and adequate therapy would be beneficial in these horses and drives researchers to search for a more sensitive biomarker. SDMA has not been widely studied in horses.

The aim of this study was to compare the concentration of SDMA with traditional renal biomarkers and establish its relationship with kidney function analysis in dehydrated horses. We hypothesised that SDMA concentrations would: 1) correlate significantly with dehydration and current renal markers, especially markers that are known to detect a decrease of GFR, and 2) provide a reliable value regarding short-term prognosis. The result should provide a prospective view as to whether SDMA is a potential renal marker to help diagnose early kidney injury in
Materials and methods

Study design and study population

This study was a prospective investigation performed on clinically dehydrated horses. Serum SDMA, urea and creatinine concentrations, urine renal markers and short-term prognosis until discharge were included and analysed. Horses that were presented to the equine clinic, Free University of Berlin, between August 2018 and December 2019 with at least 6% dehydration without primary or history of kidney disease were included in this cohort study. Horses that had at least two or more abnormal criteria on admission were included. The criteria considered were: heart rate >60 beats/min, packed cell volume (PCV) >40%, total protein concentration (TP) >70 g/L, capillary refill time >2 s, lactate >0.9 mmol/L and clinical signs indicative of hypovolemic shock including cold extremities, pale mucous membranes or decreased jugular fill. The assessment of the grade of dehydration was based on the clinical examination, PCV and TP at admission (Table S1). Foals younger than three months were excluded from the study in order to avoid spurious hypercreatininemia in foals.

The horses were divided into three groups: those with 1) mild dehydration (6–8% dehydration), 2) moderate dehydration (8–10% dehydration) and 3) severe dehydration (>10% or if horses were in hypovolemic shock).

Horses with 6–8% dehydration were rehydrated either with infusion therapy (Ringer-lactate or Ringer’s solution [B Braun Melsungen AG, Melsungen, Germany]) for at least 24 h, as indicated by PCV and TP, or water by nasogastric tube; horses with moderate or severe dehydration were treated with infusion therapy in all cases. Other treatments were chosen based on the horses’ main
Survivors were defined as the horses which survived to discharge; non-survivors were those which died or were euthanised during the hospitalisation. Horses which were euthanised due to financial constraints were excluded from the analysis for the prognostic value of SDMA in order to reduce the statistical error.

AKI was defined as an increase of serum creatinine concentration \(\geq 26.5 \mu\text{mol/L} \) within 48 h, according to the veterinary AKI staging system.\(^{10}\)

Blood sample collection

A total of 10 ml full blood was taken from the external jugular vein at time-point 0 (T\(_0\)) when the horses arrived at the clinic before infusion therapy. Further such samples were also taken at 12, 24 or 48 ± 2 h (T\(_{12}\), T\(_{24}\) and T\(_{48}\), respectively) after admission. Each sample was filled into a serum tube with a clot activator (Sarstedt AG & Co, Nümbrecht, Germany) and centrifuged at 3,800 g for 10 min. Two 1.2 ml samples were frozen at -80°C for each time point for later corrections or estimation if necessary; one sample was kept at 4°C until, sent to an external laboratory (SYNLAB. vet GmbH, Berlin, Germany) and analysed within 24 h. The concentrations of serum creatinine, urea nitrogen, glucose, TP, albumin and electrolytes were measured utilising an automated AU680 clinical chemistry analyser (Beckman Coulter GmbH, Krefeld, Germany). Serum SDMA concentrations were measured with a DLD SDMA ELISA Kit (DLD Diagnostika GmbH, Hamburg, Germany). The latter has been validated in healthy horses and horses with AKI.\(^{14}\)

Urine sample collection

Urine samples were taken from mares at T\(_0\) with a urine catheter before or within the first 30 min of infusion therapy; stallions and geldings’ urine was collected during surgery, if the horse underwent surgery directly after admission or from the midstream of naturally voided urine in the
stable within 30 min of admission. The urine samples at T_{12}, T_{24} and T_{48} were taken in the stable during spontaneous urination after admission. All urine samples were analysed by a dipstick Combur9 Test (Roche Deutschland Holding GmbH, Freiburg, Germany) in the clinic. Urine (10 ml) collected in a sterile urine collection tube (Labor- und Medizintechnik Specht GmbH, Eresing, Germany), was sent to an external laboratory (SYNLAB. vet GmbH) for renal function analysis together with serum samples from the same time point. The urine specific gravity (SG), fractional excretion of electrolytes, urine TP (uTP) and the gamma-glutamyltransferase (GGT)/creatinine ratio were measured by a refractometer and the AU680 clinical chemistry analyser (Beckman Coulter GmbH) within 24 h. Sediment interpretation was performed by technicians with a microscope at an external laboratory (SYNLAB. vet GmbH).

Data analysis

Analysis was performed using IBM SPSS software (IBM Deutschland GmbH, Ehningen, Germany) for Windows, version 25. Serum concentrations of SDMA, creatinine and urea, urine SG, fractional excretion of sodium (FE_{Na^+}), uTP and GGT/creatinine ratio were analysed by Shapiro–Wilk tests to check the distribution of parameters. The Kendall Tau b coefficient test was used to test the correlations between concentrations of SDMA, creatinine and urea and parameters of renal function analysis, respectively, from T_0 to T_{48}. The correlation between changes of SDMA concentrations and other parameters from T_0 to T_{12} was performed by Kendall Tau b test in order to evaluate the reaction of SDMA and renal markers to the initial rehydration therapy. The Kruskal–Wallis test was used to analyse the differences of SDMA concentrations among the three dehydration groups. The distribution of serum creatinine and urea concentrations among three dehydration groups at T_0 were also analysed by Kruskal–Wallis test. The distribution of serum SDMA concentrations at T_0 in survivors/non-survivors groups were analysed by Mann–Whitney U test. Linear mixed regression models with repeat measurement were applied to access the
association between the concentrations of SDMA at four time points and the three dehydration groups independently. Mauchly’s test for sphericity was applied and the Huynh-Feldt correction was used to determine differences between the time points and interactions between time point and group. Model diagnostics included the visual inspection of normality and homoscedasticity of the residuals per time point. The level of significance was set at 5% for all analyses.

Results

Study Population

A total of 57 horses met the inclusion criteria. Sixteen were excluded due to lack of obvious laboratory changes which made grading of the accurate dehydration status impossible. The remaining 41 horses were included in the analyses. Patient data and final diagnosis can be seen in Table 1. Most horses were admitted as emergency cases. Thirteen horses were assigned to the mild dehydration group with 6–8% dehydration according to PCV/TP and clinical characterisations. Sixteen horses were in the moderately dehydrated group with 8–10% dehydration. Twelve horses were in hypovolemic shock on admission and belonged to the severely dehydrated group. A total of 46.3% (19/41) of horses in the current study underwent surgery because of the primary disease: 18 had colic surgery and one had orthopaedic surgery. Seventeen horses were treated with gentamicin during the sampling period and 33 horses received non-steroidal anti-inflammatory drugs.

Renal parameters and renal function analysis

A total of 26.8% (11/41) of the horses had increased serum concentrations of SDMA at T₀ using a cut-off at 0.75 μmol/L. Of the horses with increased SDMA concentrations, the median concentration was 0.99 (IQR: 0.87–1.70) μmol/L. A total of 22% (9/41) of horses had serum
creatinine concentrations above the reference range (71–159 µmol/L, reference range from external laboratory [SYNLAB. vet GmbH]) with a median value of 185.0 (IQR: 167.7–344.7) µmol/L, six of these nine horses also had increased serum SDMA concentrations. A total of 26.8% (11/41) horses had increased urea concentrations (3.2–8.2 mmol/L, reference range from external laboratory [SYNLAB. vet GmbH]) with a median concentration of 9.21 (IQR:8.68–10.76) mmol/L, five of these horses had increased SDMA concentrations. A total of 45.5% (5/11) of horses with increased SDMA concentrations still had creatinine concentrations within the reference range, while 33.3% (3/9) of horses with increased creatinine concentrations had SDMA concentrations within the normal range. A total of 12.2% (5/41) horses had increased serum concentrations of SDMA, creatinine and urea simultaneously on admission. The results of serum SDMA concentration and other renal markers in the three dehydration groups are presented in Table 2.

Urine samples were collected from 28 horses at T₀; samples in the other 13 horses could not be obtained at this time point. A total of 17.9% (5/28) of horses were sampled before the beginning of infusion therapy at T₀. The urine SG and uTP were increased in 42.9% (12/28) and 17.9% (5/28) of horses, respectively. One patient’s urine was too concentrated to carry through the whole renal function analysis. Unfortunately, even after dilution of the sample, a homogeneous solution was not formed and could not be analysed by the laboratory equipment. Therefore, the FE_{Na⁺} and GGT/creatinine ratio were measured in 27 horses and found to be increased in 18.5% (5/27) of patients.

Serum SDMA concentrations correlated moderately with creatinine concentrations (r = 0.412, P<0.001; Figure 1) but not serum urea concentrations (r = 0.142, P = 0.2) at T₀. Creatinine concentrations had a positive correlation with serum urea concentrations (r = 0.406, P<0.001). There were no correlations between SDMA and creatinine or urea concentrations from T₁₂ to T₄₈.
No significant correlations at T_0 were identified between SDMA concentrations and the parameters of renal function analysis: urine SG, FE_{Na^+}, uTP and GGT/creatinine ratio. The urine TP had a moderate correlation with SDMA concentrations at T_{12} ($r = 0.394$, $P = 0.04$) and T_{48} ($r = 0.565$, $P = 0.01$). The GGT/creatinine ratio at T_{24} correlated significantly with SDMA concentrations ($r = 0.547$, $P = 0.02$). Neither urine SG nor FE_{Na^+} correlated with SDMA concentrations from T_0 to T_{48} (Table S2).

In order to compare the response of each marker to the rehydrated therapy, changes in serum SDMA concentrations and other renal markers from T_0 to T_{12} were analysed. The SDMA and creatinine concentrations of most patients decreased after infusion therapy at T_{12}. Changes of SDMA concentrations within 12 h were positively correlated with changes in the concentrations of creatinine ($r = 0.441$, $P = 0.001$) and the GGT/creatinine ratio ($r = 0.691$, $P = 0.02$). Similar correlations were not examined after T_{12} because the different therapy and progress of the primary disease of each patient could result in more study errors.

One horse had creatinine concentrations above the reference range persistently until T_{48}, which fit the criteria of AKI. The SDMA concentrations above the cut-off value over 48 h were observed in two horses, one of them was the horse with AKI, while another one had increased creatinine concentrations only until T_{12}. Two horses that did not have increased SDMA concentrations at T_0 developed increased SDMA concentrations above the cut-off value at T_{24} and T_{48}, respectively, meanwhile, they both had normal creatinine concentrations persistently throughout the study period.

A total of 25% (7/28) of horses had no urine casts according to the sediment examination. The rest of the horses (19/28) had calcium-carbonate, -oxalate and struvite within the physiological amount. Since the sediment examinations were all carried out in an external laboratory, although
examined within 24 h, the rapid degeneration of the cast in alkaline urine could not be totally avoided in this study. In addition, the estimation of sediment amounts and types with numerical SDMA data is difficult and imprecise. Regardless of the type of the urine cast, there were no significant correlations between the SDMA concentrations and amounts of cast from T₀ to T₄₈. Findings of the other indicators including erythrocytes and leucocytes made the analysis between these indicators and SDMA concentrations impossible: pathologically increased erythrocytes and leucocytes were only found in one and two horses respectively throughout 48 h, meanwhile, the rest of the patients had no or acceptable normal amounts of erythrocytes and leucocytes in their urine. Without convincing statistical estimation, the results of the sediment examinations are not discussed further.

Relationship between SDMA and dehydration groups within 48 hours

The Kruskal–Wallis test revealed that there were significant differences of SDMA concentrations at T₀ among dehydration groups (P = 0.03; Figure 2, Table 2). Moderately dehydrated animals had the highest SDMA concentrations and differed significantly from mildly dehydrated horses (Bonferroni corrected post hoc test, P = 0.03). No significant differences were observed between mild and severe dehydration groups (P = 0.3), or between moderate and severe dehydration groups (P > 0.9). Moderately and severely dehydrated horses had a median concentration of SDMA of 0.68 (IQR: 0.58–0.80) and 0.60 (IQR: 0.46–0.78) µmol/L at T₀, respectively, higher than mildly dehydrated patients with a median SDMA concentration of 0.4 (IQR: 0.34–0.62) µmol/L. After adding the animal as a random factor and running a linear mixed regression model, there was no statistically significant difference of the SDMA concentrations between the different dehydration groups (P = 0.3). Neither the time point (P = 0.2) nor the interaction between the groups and time point (P = 0.3) showed any statistically significant effects. In conclusion, the differences of the SDMA concentrations in the three dehydration groups was only significant at T₀ but not at any of the other time points.
the other time points. Although higher mean concentrations of SDMA could be observed in the moderately and severely dehydrated group from T₀ to T₄₈, the distribution of SDMA concentrations in the three groups overlapped easily with each other. The intraclass correlation coefficient was calculated as 81.2%. This means that 81.2% of the variance was due to the variance between horses whereas values did not differ much between the individual horses.

Besides SDMA, there were also significant differences of the serum creatinine and urea concentrations among three dehydration groups at T₀ (P<0.001 and P = 0.04, respectively, Table 2).

Prognostic value of SDMA

Twenty-eight of the 41 horses included in the analyses were alive until T₁₂, 25 horses at T₂₄ and 21 horses survived to T₄₈. Two horses that were euthanised due to financial constraints were excluded from the statistical estimation. A total of 53.8% (21/39) horses were euthanised in accordance with animal welfare and poor prognosis or deceased during hospitalisation, and 46.2% (18/39) of horses were discharged.

With the Mann–Whitney U test, there was no statistical significance in the association between SDMA concentrations at T₀ and survival (P = 0.1). The median concentration of SDMA at T₀ in the survivor group was 0.58 (IQR: 0.40–0.69,) µmol/L, while the median in the non-survivor group was 0.67 (IQR: 0.54–0.84) µmol/L. A total of 63.6% (7/11) of horses with increased SDMA concentrations at T₀ were euthanised or died, while 50% (14/28) of horses did not survive to discharge despite normal SDMA concentrations.

Discussion

Relationship between SDMA and current renal biomarkers

This study aimed to examine the association of SDMA concentrations with other markers of renal
function in dehydrated horses to test its value as a potential marker of early kidney injury. We found a moderate correlation between SDMA and creatinine concentrations at T₀, while there was no significant correlation between SDMA and serum urea concentrations from T₀ to T₄₈. The moderate correlation between SDMA and creatinine concentrations was similar to a study in dogs with AKI. Furthermore, the changes in the SDMA and creatinine concentrations after rehydration therapy measured at 12 h were positively correlated, indicating that both SDMA and creatinine might have the similar ability to detect the decrease of GFR. There were inconsistencies between SDMA, creatinine and urea concentrations in some patients, results which may relate to extra-renal factors: 3 of 9 horses with increased creatinine concentrations at T₀ had SDMA concentrations within the normal range. Serum creatinine concentrations can increase due to not only the kidney injury but also the dehydrated status of the patients. Although the authors in one study of dehydrated dogs concluded that SDMA might be influenced by the prerenal volume status in dogs with azotaemia, we postulate that hydration status may not impact SDMA as much as creatinine. We observed clearer differentiation in creatinine concentrations than SDMA concentrations among the three dehydration groups, suggesting that creatinine might be affected by dehydration more easily than SDMA. However, since 2 of these 3 horses died shortly after T₀, it remains unknown whether the hydrated status led to any effect on either biomarker within 12 h in the current study. These 3 horses were of middle age and with normal to obese body condition score. On the other hand, 5 of 11 horses with increased SDMA concentrations had creatinine concentrations within the normal reference range. Four of these horses were older than 20 years and one was estimated to have a body condition score of 2 out of 9. Decreased liver function, older age and less muscle mass, might contribute towards the differences in our observations between creatinine and SDMA and may explain why which might cause the concentration of creatinine to remain within the normal range with a potential kidney injury or decrease of GFR. Serum urea
nitrogen is not a sensitive marker of GFR and is also affected by different extrarenal variations. Serum urea and creatinine are impacted by similar extrarenal factors and were found to have moderate correlation with each other.

Two horses developed increased SDMA concentrations above the cut-off value at T24 and T48 with persisting normal creatinine concentrations. Although neither horse was defined as having AKI according to traditional creatinine criteria, it could still indicate that SDMA might detect an early kidney injury prior to creatinine.

Most studies in small animals and humans with AKI and CKD focused on the relationship between SDMA and creatinine or GFR. In the current study, we also compared SDMA concentrations with parameters of renal function measured in urine. No significant correlations of SDMA concentrations with urine SG, FE\(_{\text{Na}^+}\), uTP and the GGT/creatinine ratio were found in the present study from T0 to T48, except for the correlation with uTP at T12 and T48 and the GGT/creatinine ratio at T24. A lack of complete urine sampling throughout the whole study period might have been a factor affecting these results. In addition, different external factors, such as infusion therapy with and without electrolytes, or medications which have an impact on the renal parameters.

Urine SG has been used in the estimation of dehydration for a long time. In our study, urine SG was the parameter which showed the highest proportional increase at T0 in 42.9% (12/28) of dehydrated horses. Although urine SG is sensitive to acute hypertonic dehydration, it could still lead to misclassified results. The urine in the bladder in horses with acute dehydration could still be physiologically diluted and then mixed with urine produced in the dehydrated state. Furthermore, the SG is also affected by the infusion therapy, medications such as alpha-2-agonists from T12 to T48, thus interpretation of our data was only possible at T0. The FE\(_{\text{Na}^+}\) indicates the function and damage of the proximal tubule. However, it can be affected by breed, age, exercise,
medication or crystalloid fluid therapy in horses. Only 5 horses were sampled before the beginning of sodium-containing infusions at T₀. Two horses had increased GGT/creatinine ratios and FE\textsubscript{Na⁺} until T\textsubscript{24} and T\textsubscript{48} respectively, indicating advanced tubular damage. These two patients also had increased SDMA and creatinine concentrations at T₀ and a relatively high concentration of SDMA within the reference range until T\textsubscript{48}, while their creatinine concentrations decreased continuously into the normal range after T\textsubscript{12}. We postulate that SDMA might also reflect the tubular damage, while creatinine does not. A total of 18.5% (5/27) of horses had an increased GGT/creatinine ratio at T₀. One study showed that the GGT/creatinine ratio was increased in all colic horses that underwent surgery. By contrast, only one of the 18 horses that underwent colic surgery had an increased GGT/creatinine ratio in the current study. The five horses with an increased GGT/creatinine ratio all had different primary complaints, ranging from colic to orthopaedic problems. The reason for the significant correlation between the GGT/creatinine ratio and SDMA concentrations only at T\textsubscript{24} is unclear. The positive correlation between changes in SDMA concentrations and the GGT/creatinine ratio within the first 12 h could be related to the acute temporary disturbance of the renal tubule caused by renal ischaemia during dehydration, but administration of potential nephrotoxic aminoglycosides, such as gentamicin, may also have influenced our results. Proteinuria occurs in glomerular disease, bacteriuria or pyuria, and it may increase in equine urine after exercise. Only one of the five horses that showed increased uTP at T₀ had an increased uTP at T\textsubscript{12} as well. Other than that, increased urine protein seemed to be a coincidental and transient result in each patient at different time points and the moderate correlation between uTP and SDMA concentrations at T\textsubscript{12} and T\textsubscript{48} might be an accidental result.

Several studies showed that SDMA might be eliminated by the liver and other non-renal enzymatic degradation in humans. Furthermore, SDMA showed neither an advantage in predicting CKD in dogs with Leishmaniosisis, nor the ability to detect CKD in cats with diabetes.
mellitus in several studies.26,27 These results indicate that, in addition to being a potential marker of renal function, SDMA might also be involved in other physiological or pathological processes in human beings and small animals. Similarly, the elimination process of SDMA might not only be limited to the kidneys in horses, which might have influenced the SDMA’s correlation with renal function in the current study.

Although SDMA concentrations varied significantly among three dehydration groups at T_0, most differences were observed between the mild and moderate dehydration groups. Since the subgrouping of the patients depended only on their PCV/TP and clinical characteristics but not plasma osmolality, the wrong assignment could not be totally avoided which might have contributed to these statistical observations.

Prognostic value

No significant association was identified in this study between the SDMA concentrations and outcome whereas SDMA has been shown to be an independent prognostic indicator for long-term mortality in critical human patients and was associated with adverse clinical outcome 30 days after an ischaemic stroke.28,29 In critically ill dogs, no significant difference in serum SDMA concentrations between survivors or non-survivors was found.30 We did not show difference in SDMA concentrations in survivors compared to non-survivors. However, relying only on the absolute concentration of the marker at one time point might not be enough to identify the prognostic value. Serial monitoring has been recommended for early detection of renal injury earlier in dogs and may be worthy of further research in horses.31,32

Limitations

The collection of the urine samples at T_0 was challenging despite our use of extended time zone (± 2 h). The lack of urine samples in some patients, especially at T_0, could have influenced the correlations between the renal parameter and SDMA concentrations. In addition to the lack of
complete urine and serum samples from all horses until T_{48}, the small sample size provides limited statistical power. Only one horse in the moderately dehydrated group had persistent azotaemia and increased creatinine concentrations accompanied by increased SDMA concentrations until T_{48} indicating AKI. Due to the low statistical power, the results of this study should be interpreted cautiously.

Urine samples analysed here were collected by catheterisation or spontaneous voiding. Minor contamination of the samples could have had an impact on parameters of the renal function analysis. Our patients had a range of primary complaints and medications such as gentamicin, non-steroidal anti-inflammatory drugs and anaesthetic agents which have unknown influence on the results.

Conclusion

We observed moderate correlation between SDMA and serum creatinine concentrations but no persistently significant associations between renal function parameters and SDMA concentrations in dehydrated horses. SDMA concentrations were different between groups with different hydration status but SDMA was not different between survivors and non-survivors. Extra-renal factors are likely to have influenced our results and further studies of SDMA including serial monitoring will help clarify the role of this biomarker in equine renal disease.

Authors’ declaration of interests

Author Hsiao-Chien, Lo received support for this work from SYNLAB.vet GmbH, Berlin, including part of study design, measurement of Symmetric dimethylarginine (SDMA; object Biomarker) and renal functional analysis with the coordination of co-author Judith C. Winter.
This article is protected by copyright. All rights reserved

author has full access to the study data and take complete responsibility for the integrity of the data and accuracy of data analysis. Other co-authors have declared no competing interests.

Ethical animal research

This study was approved by the Ethics Committee of Free University Berlin.

Informed consent:

Owners consented for their horses to take part in this study.

Date accessibility statement

The data that support the findings of this study are available from the corresponding author upon reasonable request.

Source of funding

The measurement of Symmetric dimethylarginine (SDMA, object Biomarker in this study), renal functional analysis were provided and executed by SYNLAB.vet GmbH, Berlin.

Acknowledgements

We would like to thank Racem B. Romdhane from Institute for Veterinary Epidemiology and Biostatistics, Free University of Berlin for the helpful consultation of data analysis. Many thanks to Tanja Ahrens and the veterinarians, veterinary assistants from Equine Clinic in Free University Berlin who helped collect the samples, as well as the owners, horses and grooms that made this study possible.
Authorship

Hsiao-Chien, Lo was the principal author and contributed to study design, data collection, and data analysis, and manuscript preparation. J.C. Winter contributed to study design, project coordination and revising the content. M. Roswitha contributed to data analysis and interpretation. H. Gehlen was the senior author and contributed to overall study design, project coordination, data analysis and revising the manuscript. All authors gave their final approval of the manuscript.
TABLE 1 Patient data, final diagnosis, main treatment and prognosis

Variable	6–8% Dehydration N (%)	8–10% Dehydration N (%)	>10% Dehydration and shock N (%)
Sex	N = 13	N = 16	N = 12
Mare	7 (53.8)	8 (50)	7 (58.4)
Gelding	6 (46.2)	8 (50)	4 (33.3)
Stallion			1 (8.3)
Age(years) (median and range)	16 (5–28)	14 (7–26)	15.5 (8–27)a
BCS (median and range)	5 (2–6)	6 (4–8)	5 (4–7)
Breed			
Thoroughbred	1 (7.7)	2 (12.5)	3 (25)
Warmblood	6 (46.1)	5 (31.3)	2 (16.7)
Pony	1 (7.7)	5 (31.3)	5 (41.7)
Draught horse	1 (7.7)	1 (6.2)	1 (8.3)
Other	4 (30.8)	3 (18.7)	1 (8.3)
Primary diagnosis			
Intestinal tract disease	9 (69.2)	12 (75)	10 (83.4)
Tumour	1 (7.7)		
Orthopaedic problem		1 (6.2)	
Intoxication		2 (12.6)	
Respiratory disease			1 (8.3)
Other	3 (23.1)	1 (6.2)	1 (8.3)
Main treatment			
Surgery	7 (53.8)	7 (43.8)	5 (41.7)
Conservative treatment	6 (46.2)	9 (56.2)	7 (58.3)
NSAID	11 (84.6)	13 (81.3)	9 (75)
Aminoglycoside	8 (61.5)	3 (18.8)	6 (50)
Short-term outcomeb			
Survivors	8 (72.7)	5 (31.2)	5 (41.7)
Non-survivors	3 (27.3)	11 (68.8)	7 (58.3)

Abbreviations: BCS = body condition score; N = number of subset.

aIncluded one 4-month-old stallion that was excluded from the calculation of median age.

bSurvivors were defined as horses which survived to discharge; non-survivors died or were euthanised during hospitalisation. Two horses in the mild dehydration group that were euthanised due to financial constraints were excluded.
TABLE 2 Concentrations of symmetric dimethylarginine and renal parameters at time-point 0 in three dehydration groups

Parameter/Unit	Dehydration groups	N	Minimum	Maximum	Median	IQR	P value^b
Serum SDMA (µmol/L)	Mild	13	0.18	0.99	0.40	0.34–0.62	0.03
	Moderate	16	0.43	3.00	0.68	0.58–0.80	
	Severe	12	0.41	2.28	0.60	0.46–0.78	
	Survivor	18	0.18	1.30	0.58	0.40–0.69	0.1
	Non-survivor	21	0.41	3.00	0.67	0.54–0.84	
Serum creatinine (µmol/L)	Mild	13	60.6	131.4	83.5	79.8–101.2	<0.001
	Moderate	16	91.6	438.2	149.2	116.5–163.7	
	Severe	12	96.8	399.5	134.7	113.8–166.3	
Serum urea nitrogen (mmol/L)	Mild	13	3.28	8.90	5.00	4.26–6.12	0.04
	Moderate	16	3.63	13.87	6.32	5.17–8.07	
	Severe	12	4.96	10.78	7.62	5.93–9.48	
uSG (g/mL)	Mild	12	1.022	1.087	1.040	1.034–1.050	0.4
	Moderate	11	1.008	1.050	1.035	1.030–1.044	
	Severe	5	1.017	1.054	1.032	1.030–1.050	
Urine total protein (mg/L)	Mild	12	182.0	11164.0	621.0	395.8–988.8	0.4
	Moderate	11	201.0	5604.0	298.0	256.5–647.0	
	Severe	5	429.0	839.0	571.0	523.0–749.0	
FE_{Na+} (%)	Mild	11	0.02	2.04	0.21	0.10–0.94	0.5
	Moderate	11	0.06	11.55	0.18	0.11–0.36	
	Severe	5	0.11	1.83	0.46	0.028–0.69	0.1
GGT/creatinine ratio	Mild	11	1.0	21.0	7.0	3.5–9.0	
	Moderate	11	4.0	133.0	11.0	5.0–28.0	
	Severe	5	5.0	53.0	22.0	7.0–46.0	

Abbreviations: FE_{Na+} = fractional excretion of sodium; GGT = gamma glutamyl transpeptidase; IQR = interquartile range; N = number of subset; SDMA = symmetric dimethylarginine; uSG = urine specific gravity.

^aReference range from external laboratory that conducted the examinations.

^bP values indicate the differences between groups.
Figure legends

Figure 1: Correlation between serum symmetric dimethylarginine (SDMA) and creatinine concentrations at time-point 0. Creatinine concentrations correlated moderately with SDMA ($r = 0.412, P<0.001$)
Figure 2: Distribution of symmetric dimethylarginine (SDMA) concentrations at time-point 0 according to dehydration status. The SDMA concentrations varied significantly among three dehydration groups ($P = 0.03$)

Supporting Information

Table S1: Parameters used for estimation of dehydration in the horse

Table S2: Correlations between SDMA concentrations and other parameters
References

1. Oliva-Damason E, Oliva-Damaso N, Rodriguez-Esparragon F, et al. Asymmetric (ADMA) and symmetric (SDMA) dimethylarginines in chronic kidney disease: a clinical approach. Int J Mol Sci. 2019;20(15):3668.

2. Pedersen LG, Tarnow I, Olsen LH, Teerlink T, Pedersen HD. Body size, but neither age nor asymptomatic mitral regurgitation influences plasma concentrations of dimethylarginines in dogs. Res Vet Sci. 2006;80(3):336-342.

3. Schwedhelm E, Böger RH. The role of asymmetric and symmetric dimethylarginines in renal disease. Nat Rev Nephrol. 2011;7(5):275-285.

4. Kielstein JT, Salpeter SR, Bode-Boeger SM, Cooke JP, Fliser D. Symmetric dimethylarginine (SDMA) as endogenous marker of renal function—a meta-analysis. Nephrol Dial Transplant. 2006;21(9):2446-2451.

5. Hokamp JA, Nabity MB. Renal biomarkers in domestic species. Vet Clin Pathol. 2016;45(1):28-56.

6. Nabity MB, Lees GE, Boggess MM, et al. Symmetric dimethylarginine assay validation, stability, and evaluation as a marker for the early detection of chronic kidney disease in dogs. J Vet Intern Med. 2015;29(4):1036-1044.

7. Chen H, Avital Y, Segev G. Biomarkers of acute kidney injury. Isr J Med Sci.
8. Dahlem DP, Neiger R, Schweighauser A, et al. Plasma symmetric dimethylarginine concentration in dogs with acute kidney injury and chronic kidney disease. *J Vet Intern Med.* 2017;31(3):799-804.

9. Hall JA, Yerramilli M, Obare E, Yerramilli M, Melendez LD, Jewell DE. Relationship between lean body mass and serum renal biomarkers in healthy dogs. *J Vet Intern Med.* 2015;29(3):808-814.

10. Savage VL, Marr CM, Bailey M, Smith S. Prevalence of acute kidney injury in a population of hospitalized horses. *J Vet Intern Med.* 2019;33(5):2294-2301.

11. May A, Schmitz RR, Gehlen H. Akutes Nierenversagen bei Pferden mit Kolik, [Acute renal failure in horses with gastrointestinal disease]. *Pferdeheilkunde.* 2012;28(4):459-465.

12. Reed SM, Bayly WM, Sellon DC. *Equine Internal Medicine.* 4th ed. St. Louis, Missouri: Elsevier Inc.; 2018.

13. Chaney KP, Holcombe SJ, Schott 2nd HC, Barr BS. Spurious hypercreatininemia: 28 neonatal foals (2000^2008). *J Vet Emerg Crit Care (San Antonio).* 2010;20(2):244-249.

14. Siwinska N, Zak A, Slowikowska M, Niedzwiedz A, Paslawska U. Serum symmetric dimethylarginine concentration in healthy horses and horses with acute kidney injury. *BMC Vet Res.* 2020;16(1):396.

15. Choi WJ, Kang JH, Kim H, et al. Serum concentration of symmetric dimethylarginine in dogs with dehydration. *J Vet Intern Med.* 2017;(31):1324-1325.

16. Toribio RE. Essentials of equine renal and urinary tract physiology. *Vet Clin North Am Equine Pract.* 2007;23(3):533-561.

17. Muffert MT. *Analyse der Nierenfunktionsparameter von Pferden aus den Jahren 2003 bis 2016* [dissertation in Germany]. Hanover, IL: The University of Veterinary Medicine.
18. Oppliger RA, Magnes SA, Popowski LA, Gisolfi CV. Accuracy of urine specific gravity and osmolality as indicators of hydration status. *Int J Sport Nutr Exerc Metab.* 2005;15(3):236-251.

19. Steiner MJ, Nager AL, Wang VJ. Urine specific gravity and other urinary indices inaccurate tests for dehydration. *Pediatr Emerg Care.* 2007;23(5):298-303.

20. Lefebvre HP, Dossin O, Trumel C, Braun JP. Fractional excretion tests: a critical review of methods and applications in domestic animals. *Vet Clin Pathol.* 2008;37(1):4-20.

21. Arosalo BM, Raekallio M, Rajamäki M, et al. Detecting early kidney damage in horses with colic by measuring matrix metalloproteinase -9 and -2, other enzymes, urinary glucose and total proteins. *Acta Vet Scand.* 2007;49(1):4.

22. Van der Harst MR, Bull S, Laffont CM, Klein WR. Gentamicin nephrotoxicity – a comparison of in vitro findings with in vivo experiments in equines. *Vet Res Commun.* 2005;29(3):247-261.

23. Siroen MPC, van der Sijp JRM, Teerlink T, van Schaik C, Nijveldt RJ, van Leeuwen PAM. The human liver clears both asymmetric and symmetric dimethylarginine. *Hepatology.* 2005;41(3):559-565.

24. Guess SC. *Symmetric dimethylarginine: a novel renal biomarker* [dissertation]. Manhattan, IL: Department of Clinical Science College of Veterinary Medicine, Kansas State University; 2016.

25. Schepers E, Barreto DV, Liaeuf S, et al. Symmetric dimethylarginine as a proinflammatory agent in chronic kidney disease. *Clin J Am Soc Nephrol.* 2011;6(10):2374-2383.

26. Torrent E, Planellas M, Ordeix L, Pastor J, Rodon J, Solano-Gallego L. Serum symmetric dimethylarginine as an early marker of excretory dysfunction in canine Leishmaniosis.
(L. infantum) induced nephropathy. *Vet Med Int.* 2018;(2018):7517359.

27. Langhorn R, Kieler IN, Koch J, Christiansen LB, Jessen LR. Symmetric dimethylarginine in cats with hypertrophic cardiomyopathy and diabetes mellitus. *J Vet Intern Med.* 2018;32(1):57-63.

28. Koch A, Weiskirchen R, Bruensing J, et al. Regulation and prognostic relevance of symmetric dimethylarginine serum concentrations in critical illness and sepsis. *Mediators Inflamm.* 2013;(2013):413826.

29. Lüneburg N, von Holten RA, Töpper RF, Schwedhelm E, Maas R, Böger RH. Symmetric dimethylarginine is a marker of detrimental outcome in the acute phase after ischaemic stroke: role of renal function. *Clin Sci (Lond).* 2012;122(3):105-111.

30. Köster LS, Peda A, Fraites T, Sithole F. A preliminary investigation into the prognostic relevance of symmetric dimethylarginine in critically ill dogs. *J Vet Emerg Crit Care (San Antonio).* 2018;28(6):527-531.

31. Kopke MA, Burchell RK, Ruaux CG, Burton SE, Lopez-Villalobos N, Gal A. Variability of symmetric dimethylarginine in apparently healthy dogs. *J Vet Intern Med.* 2018;32(2):736-742.

32. Savarese A, Probo M, Locatelli C, et al. Reliability of symmetric dimethylarginine in dogs with myxomatous mitral valve disease as kidney biomarker. *Open Vet J.* 2018;8(3):318-324.
evj_13484_f2.jpg