Study of the astrophysically important $^{23}\text{Na}(\alpha,p)^{26}\text{Mg}$ and $^{23}\text{Na}(\alpha,n)^{26}\text{Al}$ reactions

M. L. Avila, K. E. Rehm, S. Almaraz-Calderon, A. D. Ayangeakaa, C. Dickerson, C. R. Hoffman, C. L. Jiang, B. P. Kay, J. Lai, O. Nusair, R. C. Pardo, D. Santiago-Gonzalez, R. Talwar, and C. Ugalde

1 Physics Division, Argonne National Laboratory, Argonne IL 60439, USA
2 Department of Physics, Florida State University, Tallahassee, FL 32306, USA
3 Department of Physics and Astronomy, Louisiana State University, Baton Rouge, LA, 70803, USA

(Dated: July 10, 2018)

The $^{23}\text{Na}(\alpha,p)^{26}\text{Mg}$ and $^{23}\text{Na}(\alpha,n)^{26}\text{Al}$ reactions are important for our understanding of the ^{26}Al abundance in massive stars. The aim of this work is to report on a direct and simultaneous measurement of these astrophysically important reactions using an active target system. The reactions were investigated in inverse kinematics using ^3He as the active target gas in the detector. We measured the excitation functions in the energy range of about 2 to 6 MeV in the center of mass. We have found that the cross sections of the $^{23}\text{Na}(\alpha,p)^{26}\text{Mg}$ and the $^{23}\text{Na}(\alpha,n)^{26}\text{Al}$ reactions are in good agreement with previous experiments, and with statistical model calculations.

I. INTRODUCTION

The importance of the radioisotope ^{26}Al in the fields of γ-ray astronomy and chemical cosmology has been well established over the past few years. The γ-rays from the decay of ^{26}Al are direct evidence for the continuing nucleosynthesis in stars providing a unique way of testing the predictive power of theoretical stellar models. Since the half-life of ^{26}Al (7.2×10^{5} years) is small compared to the time scales of Galactic chemical evolution ($\approx 10^{10}$ years), the ^{26}Al found in the interstellar medium is the outcome of relatively recent nucleosynthesis in the Galaxy. ^{26}Al can be traced by measuring the 1.809 MeV γ-ray line associated with its radioactive decay. A complete sky map of the corresponding γ-ray emission has been produced using data gathered by instruments on board the COMPTEL [1] and INTEGRAL [2] satellites. Although the precise source of ^{26}Al is not completely understood, the observations by COMPTEL and INTEGRAL showed that the ^{26}Al distribution is confined towards the Galactic disk, which strongly suggest massive stars ($M > 8M_\odot$) as one of the most likely production sites.

Sensitivity studies performed by Iliadis et al. [3] used around 900 nuclear reaction network calculations to determine the nuclear reactions that affect the ^{26}Al abundance in massive stars. In their work, three different massive star sites were investigated: explosive neon-carbon burning, convective shell carbon burning and convective core hydrogen burning. The $^{23}\text{Na}(\alpha,p)^{26}\text{Mg}$ reaction, along with four other reactions, were suggested as prime targets for experimental measurements. The $^{23}\text{Na}(\alpha,p)^{26}\text{Mg}$ reaction is an important proton source for producing ^{26}Al from ^{25}Mg. Improved experimentally determined reaction rates for the $^{23}\text{Na}(\alpha,p)^{26}\text{Mg}$ reaction were needed at about 2.3 GK for explosive Ne/C burning and 1.4 GK for convective shell C/Ne burning. Although the $^{23}\text{Na}(\alpha,p)^{26}\text{Mg}$ reaction was measured in Refs. [4, 5], the authors of Ref. [3] did not consider the data reliable, due to problems associated with degradation of the NaCl targets used in the experiments, and the reaction rates used in their calculations theoretically estimated.

In Ref. [6], the $^{23}\text{Na}(\alpha,p)^{26}\text{Mg}$ reaction was measured in inverse kinematics using ^{23}Na beams of different energies impinging on a cryogenic ^3He gas target. This study reported a reaction rate which was higher than the recommended rate by about a factor of 40. This result would have significant implications for the ^{26}Al production, suggesting that the abundance of ^{26}Al was larger by a factor of about 3. More recently, this reaction was re-measured [7, 8]. The experiment reported in Ref. [7] used inverse kinematics with a ^{23}Na beam impinging on a ^3He gas target, similar to the experiment of Ref. [6]. The measurement of Ref. [8] was performed in normal kinematics with a ^3He beam of energies between 1.99 and 2.94 MeV bombarding a carbon-backed NaCl target. The measurements of Refs. [7, 8] were found to be in good agreement with each other and with statistical model calculations, however they were in disagreement with the large cross sections found in Ref. [6]. Due to these discrepancies, the data of Ref. [6] was reanalyzed and an error in the normalization was found [9], which overestimated the cross section by a factor of 100. The corrected cross section are in agreement with the results reported in Ref. [7, 8]. The goal of the present work was to repeat the measurement with an independent technique, using an active target and detector system that measures both the ^{26}Mg recoils from the $^{23}\text{Na}(\alpha,p)^{26}\text{Mg}$ reaction and the incoming ^{23}Na beam with the same detector, removing the need for a normalization common to all previous measurements.

Another important process in nuclear astrophysics is the $^{26}\text{Al}(\alpha,\beta)^{23}\text{Na}$ reaction which is one of the dominant destruction mechanisms of ^{26}Al. The sensitivity studies performed in Ref. [3] have reported a strong dependence of the ^{26}Al yield on this reaction. The experimental efforts measuring this reaction, have mainly focused on the time-inverse $^{23}\text{Na}(\alpha,n)^{26}\text{Al}$ reaction. This is primar-
ily because of difficulties associated with the fabrication of a radioactive 26Al target. Therefore, the study of the 23Na$(\alpha, n)^{26}$Al reaction contributes to our understanding of the 26Al abundance. Refs. [12] and [13] reported on the study of the 23Na$(\alpha, n)^{26}$Al reaction and applied the principle of detailed balance to obtain the contribution of the 23Na$(\alpha, n_0)^{26}$Al reaction. A disadvantage of studying the time-inverse reaction is that it only provides information of the ground state transition of 23Na and contributions from excited states have to be calculated using theoretical models. However, the study of this reaction can be used to apply constraints to the 23Na$(\alpha, n)^{26}$Al reaction.

In the present work the 23Na$(\alpha, p)^{26}$Mg and 23Na$(\alpha, n)^{26}$Al reactions are measured simultaneously. Thus, problems related to different detection systems, efficiencies and normalization of the cross sections are avoided.

II. EXPERIMENTAL SETUP

The experiment was carried out at the ATLAS accelerator at Argonne National Laboratory. The data have been measured using a Multi-Sampling ionization Chamber (MUSIC) detector with a close to 100% detection efficiency. This detector has been previously used for measurements of fusion reactions of astrophysical interest [12]. MUSIC is an active target system with 18 anode strips allowing the measurement of an excitation function covering a large energy range. A full description of the detector and a more detailed explanation of the operation principles can be found in Ref. [12]. The technique for the measurement of α-particle induced reactions has been benchmarked with the 17O$(\alpha, n)^{20}$Ne reaction for which cross sections can be found in the literature [13]. More details about the data analysis of (α, p) and (α, n) reactions (including the 23Na+4He system discussed in the present work) as well as verification of the technique will be published in a separate paper [14].

The experiment was performed in inverse kinematics using 23Na beams with energies of 51.5 and 57.4 MeV, and intensities up to 5000 particles/sec. To reduce the beam intensity, a series of pepper-pot attenuators [15] and the ATLAS beam sweeper, which increased the pulse period of the beam from 82 ns to 41 μs, were used. The beam was delivered to the MUSIC detector which was filled with 403 and 395 Torr of 4He gas for the lower and higher energy measurement, respectively. With these combinations of energies and pressures, an energy range in the center of mass of $E_{c.m.} = 2.2-5.8$ MeV was covered. In this energy range, both (α, p) ($Q = 1.820$ MeV) and (α, n) ($Q = -2.967$ MeV) channels are open, allowing us to measure the 23Na$(\alpha, p)^{26}$Mg and 23Na$(\alpha, n)^{26}$Al reactions simultaneously.

The separation of events from the two reactions is performed by analyzing the differences in the energy loss (ΔE) of the reaction products in each strip of the detector. For example, the ΔE for reactions occurring in strip 4 for a one-hour run from the higher beam energy measurement can be seen in Fig. 1. In this figure, four groups of traces with different ΔE values, which originate from the 23Na beam (black), the (α, p) reaction (red), the (α, n) reaction (blue) and from elastic and inelastic scattering reaction (gray), are visible. For a better visualization only the first 25 events of the (α, α') reaction are shown. The energy of the 23Na ions passing through strip 0 was about 39 MeV and for a pressure of 395 Torr the beam was almost stopped at strip 16, as can be seen in Fig. 1. The experimental traces seen in Fig. 1 are in agreement with simulated traces [13].

To improve the separation of the three reactions we have averaged the ΔE values over a certain number of strips following the strip where the reaction took place, as explained in Ref. [14]. The average is called A_{n} with n indicating the number of strips used to calculate the average. In Fig. 2 a two-dimensional plot of a five-strip average (A_{5}) against a four-strip average (A_{4}) for the whole 1.5 days long run is shown. The sharp cut seen in this figure at 2.3 MeV in the x-axis (A_{5}) is due to a condition applied to the data in order to discard the beam-like events. In this figure, the three groups originating from (α, α'), (α, p) and (α, n) reactions are clearly distinguishable.

With this approach the cross sections of the 23Na$(\alpha, p)^{26}$Mg and 23Na$(\alpha, n)^{26}$Al reactions have been determined covering the energy range $E_{c.m.} \approx 2-6$ MeV in the center-of-mass frame. The normalization of the cross section is performed by using the number of beam particles (black traces in Fig. 1) which are simultaneously measured in the detector.

![Experimental traces](image-url)
III. RESULTS

The excitation functions of angle- and excitation-energy-integrated cross sections of the 23Na(α,p)26Mg and 23Na(α,n)26Al reactions were measured in two runs lasting about 1.5 days each for the higher and lower energy, respectively. The results are presented in Fig. 3, where the (α,p) data are shown by red circles for the lower beam energy and by red triangles for the higher beam energy. Similarly, the (α,n) cross sections are shown by blue diamonds for the lower energy and blue squares for the higher beam energy, respectively. The uncertainties in the cross sections are statistical and the uncertainties in the center of mass energy are due to the energy range in each anode strip. The dashed lines are the cross sections predicted for the two reactions by the statistical model calculations.

FIG. 2. (Color online) Two-dimensional plot of ΔE values for events occurring in strip 4, averaged over five (Av_4) and four strips (Av_3) in order to improve the separation of events from the 23Na(α,α')23Na, the 23Na(α,p)26Mg and the 23Na(α,n)26Al reactions.

A. The 23Na(α,p)26Mg reaction

The 23Na(α,p)26Mg reaction was previously studied in the energy range of about 1.7-3 MeV in the center-of-mass system. Our experiment overlaps with previous measurements in the energy range of about 2-3 MeV. The cross section obtained in this work is found to be in good agreement with the experiments of Refs. [7-9] and with the statistical model calculations of Ref. [16]. Moreover, our experiment was able to extend the measurements towards higher energies (up to 6 MeV) where no experimental data existed. In this energy region we again notice that the cross sections measured are in agreement with the statistical model calculations of Ref. [16]. A comparison of the 23Na(α,p)26Mg cross sections from this experiment with previous measurements is presented in Fig. 4.

Our work confirms the cross sections and the reaction rates obtained in previous experiments and from statistical models calculations.

B. The 23Na(α,n)26Al reaction

In our experiment we have measured the 23Na(α,n)26Al reaction together with the 23Na(α,p)26Mg reaction. Fig. 5 gives a comparison of the total cross section of the 23Na(α,n)26Al reaction obtained in this work and previous measurements by Norman et al. [10], Skelton et al. [11] and statistical model calculations performed by Mohr [16]. While the cross sections of Refs. [10] and [11] are taken in small energy steps (for $E_{c.m.}$ <4 MeV), we have verified that the average of their data over the energy width of an individual strips of the MUSIC detector agrees with our measurement. Therefore, a good agreement is obtained between the measurements of this study using the MUSIC detector and previous experiments, as well as with statistical model predictions. Although we have...
not calculated the contribution from the ground state of the $^{23}\text{Na}(\alpha, n)^{26}\text{Al}$ reaction as it was done in Refs. 10 and 11, our work confirm the total cross section obtained in their work.

IV. SUMMARY

We have performed a simultaneous measurement of excitation functions of the $^{23}\text{Na}(\alpha, p)^{26}\text{Mg}$ and $^{23}\text{Na}(\alpha, n)^{26}\text{Al}$ reactions, which are important for the understanding of ^{26}Al production in massive stars. The experiment was carried out making use of a Multi-Sampling Ionization Chamber and the advantages of inverse kinematics, which gives $\sim 100\%$ detection efficiency of the reaction products. The cross sections measured for these reactions were found to be in good agreement with previous measurements and statistical model calculations for both, the $^{23}\text{Na}(\alpha, p)^{26}\text{Mg}$ and $^{23}\text{Na}(\alpha, n)^{26}\text{Al}$ reactions. Furthermore, the cross section of the $^{23}\text{Na}(\alpha, p)^{26}\text{Mg}$ reaction was extended to higher energies. Discrepancies of the cross sections for the $^{23}\text{Na}(\alpha, p)^{26}\text{Mg}$ reactions in previous measurements have now been settled.

In addition, we have presented a technique to measure simultaneously excitation functions of angle and excitation-energy integrated cross sections of (α, p) and (α, n) reactions. Because the beam particles and the reaction products are measured in the same detector, problems with normalization of the cross section are avoided. This is an efficient way to study astrophysically important reactions because a large range of the excitation function for two different reactions is covered with a single beam energy.

ACKNOWLEDGMENTS

The authors are grateful to Dr. P. Mohr for helpful discussions. This material is based upon work supported by the U.S. Department of Energy, Office of Science, Office of Nuclear Physics, under contract number DE-AC02-06CH11357. The authors J. L. and D. S. G. also acknowledge the support by the U.S. Department of Energy, Office of Science, Office of Nuclear Science, under Award No. DE-FG02-96ER40978. This research used resources of ANL’s ATLAS facility, which is DOE Office of Science User Facility.

[1] R. Diehl, C. Dupraz, K. Bennett, H. Bloemen, W. Hermens, J. Knödlseder, G. Lichti, V. Schönfelder, H. Steinle, A. Strong, B. Swansenburg, M. Varendorff, and C. Winkler, Astronomy & Astrophysics 298, 445 (1995).
[2] R. Diehl, H. Halloin, K. Kretschmer, G. G. Lichti, V. Schönfelder, A. W. Strong, A. von Kienlin, W. Wang, P. Jean, J. Knödlseder, J.-P. Roques, G. Weidenspointner, S. Schanne, D. H. Hartmann, C. Winkler, and C. Wunderer, [Nature 439, 45 (2006)]
[3] C. Iliadis, A. Champagne, A. Chieffi, and M. Limongi, ApJS 193, 16 (2011).
[4] J. Kuperus, Physica (Amsterdam) 30, 2253 (1964).
[5] D. P. Whitmire and C. N. Davids, Phys. Rev. C 9, 996 (1974).
[6] S. Almaraz-Calderon, P. F. Bertone, M. Alcorta, M. Al-
bers, C. M. Deibel, C. R. Hoffman, C. L. Jiang, S. T. Marley, K. E. Rehm, and C. Ugalde, Phys. Rev. Lett. 112, 152701 (2014).

[7] J. R. Tomlinson, J. Fallis, A. M. Laird, S. P. Fox, C. Akers, M. Alcorta, M. A. Bentley, G. Christian, B. Davids, T. Davinson, B. R. Fulton, N. Galinski, A. Rojas, C. Ruiz, N. de Sérvile, M. Shen, and A. C. Shotter, Phys. Rev. Lett. 115, 052702 (2015).

[8] A. M. Howard, M. Munch, H. O. U. Fynbo, O. S. Kirsebom, K. L. Laursen, C. A. Diget, and N. J. Hubbard, Phys. Rev. Lett. 115, 052701 (2015).

[9] S. Almaraz-Calderon, P. F. Bertone, M. Alcorta, M. Albers, C. M. Deibel, C. R. Hoffman, C. L. Jiang, S. T. Marley, K. E. Rehm, and C. Ugalde, Phys. Rev. Lett. 115, 179901 (2015).

[10] E. B. Norman, E. C. Timothy, K. T. Lesko, and S. Peter, Nucl. Phys. A 390, 561 (1982).

[11] R. T. Skelton, R. W. Kavanagh, and D. G. Sargood, Phys. Rev. C 35, 45 (1987).

[12] P. F. F. Carnelli, S. Almaraz-Calderon, K. E. Rehm, M. Albers, M. Alcorta, P. F. Bertone, B. Digiovine, H. Esbensen, J. Fernandez Niello, D. Henderson, C. L. Jiang, J. Lai, S. T. Marley, O. Nusair, T. Palchan-Hazan, R. C. Pardo, M. Paul, and C. Ugalde, Nucl. Inst. and Meth. in Phys. Res. Section A 799, 197 (2015).

[13] J. K. Bair and F. X. Haas, Phys. Rev. C 7, 1356 (1973).

[14] M. L. Avila, K. E. Rehm, S. Almaraz-Calderon, A. D. Ayangealkaa, C. Dickerson, C. R. Hoffman, C. L. Jiang, B. P. Kay, J. Lai, O. Nusair, R. C. Pardo, D. Santiago-Gonzalez, R. Talwar, and C. Ugalde, Nucl. Inst. and Meth. in Phys. Res. Section A (To be published).

[15] P. W. Kubik, D. Elmore, T. K. Hemmick, H. E. Gove, U. Fehn, R. T. Teng, S. Jiang, and S. Tullai, Nucl. Inst. and Meth. in Phys. Res. Section B 29, 138 (1987).

[16] P. Mohr, EpJ A 51, 1 (2015) and private communication.

[17] J. F. Ziegler, M. D. Ziegler, and B. J. P., Nucl. Inst. and Meth. in Phys. Res. Section B 268, 1818 (2010).

[18] O. B. Tarsov and D. Bazin, Nucl. Inst. and Meth. in Phys. Res. Section B 266, 4657 (2008).