Combined Mitral Valve Replacement and Ravitch Procedures in a Patient with Previous Pneumonectomy: Case Report and Review of the Literature

Ilyas Kayacioglu¹, MD; Ahmet Can Topcu¹, MD; Kamile Ozeren¹, MD; Yasin Ozden¹, MD; Ahmet Bolukcu¹, MD; Mehmet Yildirim², MD

Abstract
Introduction: Significant anatomical and functional changes occur following pneumonectomy. Mediastinal structures displace toward the side of the resected lung, pulmonary reserve is reduced. Owing to these changes, surgical access to heart and great vessels becomes challenging, and there is increased risk of postoperative pulmonary complications.

Methods: We performed a mitral valve replacement combined with a Ravitch procedure in a young female with previous left pneumonectomy and pectus excavatum.

Results: She was discharged on postoperative day 9 and remains symptom-free 3 months after surgery.

Conclusion: Thorough preoperative evaluation and intensive respiratory physiotherapy are essential before performing cardiac operations on patients with previous pneumonectomy.

Keywords: Chest Wall/surgery. Heart Valve Prosthesis Implantation. Mitral Valve/surgery. Funnel Chest. Pneumonectomy.

Abbreviations, acronyms & symbols
CABG = Coronary artery bypass grafting
CPB = Cardiopulmonary bypass
CT = Computed tomography
Cx = Circumflex
FEV₁ = Forced expiratory volume in 1st second
FVC = Forced vital capacity
LAD = Left anterior descending
LITA = Left internal thoracic artery
MRI = Magnetic resonance imaging

INTRODUCTION
Significant anatomical and functional changes occur following pneumonectomy. Mediastinal structures displace toward the side of the resected lung, pulmonary reserve is reduced, and the remaining lung compensatorily enlarges and herniates over the midline with elevation of the diaphragm[1,2]. Owing to these changes, surgical access to the heart and great vessels becomes challenging, and there is an increased risk of postoperative pulmonary complications.

CASE REPORT
A 24-year-old female patient presented to our clinic with dyspnea. She had undergone a left pneumonectomy for advanced and complicated bronchiectasis 10 years ago.

Clinical Findings
She had marfanoid habitus, pectus excavatum, scoliosis, and a grade 4, pansystolic, high-pitched, blowing murmur best heard at the right sternal border (Figures 1A and B).

Diagnostic Assessment
Transthoracic echocardiogram revealed severe mitral regurgitation due to myxomatous mitral valve with bileaflet prolapse and chordal elongation, secondary pulmonary hypertension, and tricuspid regurgitation with a dilated right
sternotomy was performed. Costal cartilages of the 3rd to 8th ribs were removed. The right lung was retracted from the midline. Cardiopulmonary bypass (CPB) was initiated via ascending aortic and bicaval cannulation, and cardiac arrest was obtained. We did not use topical cardiac hypothermia to prevent phrenic nerve injury. Both atria were relatively easy to expose due to leftward shift and rotation of the heart. A mitral valve replacement and a tricuspid ring annuloplasty was performed using biatrial approach. CPB was terminated. A bar was placed behind the sternum and fixed to the pectoralis muscle fibers bilaterally. After completion of the Ravitch procedure, the sternum was closed. The patient was transferred to a dedicated cardiac surgery intensive care unit and she was successfully extubated at the postoperative 6th hour. Her recovery was uneventful and she was discharged on postoperative day 9 (Figures 3A and B).

Therapeutic Intervention

The patient received intensive chest physiotherapy before surgery to reduce postoperative pulmonary complications.

A vertical midline incision on skin, subcutaneous tissues, and pectoralis fascia was made over the sternum. Following elevation of pectoralis muscles from the anterior chest wall, a median sternotomy was performed. Costal cartilages of the 3rd to 8th ribs were removed. The right lung was retracted from the midline. Cardiopulmonary bypass (CPB) was initiated via ascending aortic and bicaval cannulation, and cardiac arrest was obtained. We did not use topical cardiac hypothermia to prevent phrenic nerve injury. Both atria were relatively easy to expose due to leftward shift and rotation of the heart. A mitral valve replacement and a tricuspid ring annuloplasty was performed using biatrial approach. CPB was terminated. A bar was placed behind the sternum and fixed to the pectoralis muscle fibers bilaterally. After completion of the Ravitch procedure, the sternum was closed. The patient was transferred to a dedicated cardiac surgery intensive care unit and she was successfully extubated at the postoperative 6th hour. Her recovery was uneventful and she was discharged on postoperative day 9 (Figures 3A and B).

Follow-up and Outcomes

The patient remains symptom-free 3 months after surgery and she is scheduled to have a bar removal 3 months later (Figures 4A and B).
The Figure 5 presents a timeline of interventions and outcomes.

A 24-year-old female with a 10-year history of a left pneumonectomy presented to our clinic with dyspnea.

Physical examination:
- Marfanoid habitus
- Pectus excavatum
- Scoliosis
- Cardiac murmur
 - Grade 4
 - Pansystolic
 - High-pitched
 - Blowing
 - Best heard at the right sternal border

Transthoracic echocardiogram:
- Myxomatous mitral valve with bileaflet prolapse
- Chordal elongation
- Secondary pulmonary hypertension and tricuspid regurgitation with a dilated right atrium
- Ejection fraction 35%
- Left ventricle end-diastolic diameter 72 mm
- Left ventricle end-systolic diameter 59 mm
- Ascending aortic diameter 40 mm

Pulmonary function test:
- FVC: 1.11 L (31.7% predicted)
- FEV1: 1.05 L (34.6% predicted)

Contrast-enhanced computed tomography scan:
- Heart and great vessels displaced to the left
- Right lung enlarged and crossing the midline, anterior to the heart
- Proximal ascending aortic diameter 40 mm
- Chronic type B aortic dissection
- Ascending aorta, and the superior and inferior vena cavae suitable for cannulation

Intensive chest physiotherapy to reduce postoperative pulmonary complications

Combined mitral valve replacement, tricuspid ring annuloplasty and Ravitch procedures

Successful extubation

Discharge from hospital

Symptom-free during a routine visit

Scheduled to have a bar removal

Fig. 5 – Timeline of interventions and outcomes.

FEV1 = forced expiratory volume in 1st second; FVC = forced vital capacity
DISCUSSION

After conducting a Medline search from 1966 to April 2018 using the search terms “pneumonectomy” and “open heart surgery” or “coronary artery bypass” or “mitral valve” or “aortic valve” or “revascularization”, we identified 30 articles in English language[3-14]. A total of 42 cardiac operations were performed on 38 patients, including the current one (Table 1). The mean patient age was 65.2 years (range: 24-83 years). Twenty-one (76.3%) patients were male. There were 20 (47.6%) isolated coronary artery bypass grafting (CABG) procedures, 18 (42.8%) valvular procedures, and 4 (9.5%) combined CABG and valvular procedures. Two of these operations were transapical aortic valve implantation procedures (patients 29 and 30)[26,27].

Fifteen (39.4%) patients had a previous right pneumonectomy. The most common indication for pneumonectomy was cancer (n=27, 71%), followed by tuberculosis (n=5, 13.1%), trauma (n=2, 5.2%), bronchiectasis (n=2, 5.2%), scimitar syndrome (n=1, 2.6%), and unknown etiology (n=1, 2.6%). Preoperative FEV1 values were available for 28 patients and averaged 49% of predicted (range: 21-77%). Preoperative FVC values were available for 25 patients and averaged 49.2% of predicted (range: 27-70.3%).

The preferred surgical incision was a median sternotomy in 26 (61.9%) cases, a left thoracotomy in 9 (21.4%) cases, and it was not specified in 1 (2.3%) case. Patients 35 and 37 underwent surgery utilizing video-assisted right thoracotomy[32,34]. Among 24 CABG operations, a left internal thoracic artery was used as a bypass conduit in 7 (29.1%) cases. The use of a right internal thoracic artery was not reported. Complete arterial revascularization was performed in 2 (8.3%) cases. Among 20 isolated CABG operations, 7 (35%) were carried out without the use of CPB.

Length of hospital stay data was available in 32 cases and averaged 12 days (range: 4-57 days). Postoperative complications were experienced after 11 (26.1%) operations. The most common complication was atrial fibrillation (n=5, 11.9%), followed by respiratory failure requiring re-intubation (n=4, 9.5%), pneumothorax (n=2, 4.7%), pneumonia (n=2, 4.7%), and bleeding requiring re-exploration (n=2, 4.7%). Two (5.2%) patients did not survive to discharge.

Previous pneumonectomy adds two major risks to cardiac operations: (1) there is an increased risk of postoperative pulmonary complications due to reduced lung capacity; (2) heart and great vessels are displaced and rotated, making surgical exposure more difficult.

Six months after pneumonectomy, FVC decreases by 36% and FEV1 by 34%. These parameters do not significantly improve beyond 6 months[35]. Considering that the pulmonary function may deteriorate significantly after cardiac surgery even in patients who have normal preoperative respiratory function, previous pneumonectomy poses a great risk of postoperative pulmonary complications[35,36]. Hulzebos et al.[36] found preoperative inspiratory muscle training to be effective in preventing postoperative pulmonary complications in high-risk patients undergoing elective CABG surgery. Conventional measures such as avoidance of phrenic nerve injury and fluid overload, early extubation, early mobilization, and postoperative chest physiotherapy should be utilized. Central venous line should be placed on the side of the pneumonectomy to avoid pneumothorax.

Considerable anatomical changes occur in long-term survivors after pneumonectomy. Smulders et al.[1] evaluated the function and position of the heart using dynamic magnetic resonance imaging (MRI) in 15 patients who underwent pneumonectomy at least 5 years ago. They reported that although varying degrees of mediastinal shift occur in all patients, right-sided pneumonectomy is mostly associated with a lateral shift and only a minor rotation, whereas left-sided pneumonectomy leads to a greater degree of rotation[11]. Whether the patient had a left or right pneumonectomy, it affects the choice of surgical approach. For instance, in the case of a previous left pneumonectomy, it may be easier to bypass left-sided coronary arteries through a left thoracotomy, rather than a median sternotomy, and mitral and tricuspid valves may be inaccessible from the usual right thoracotomy. Stoller et al.[19] reported difficult exposure of the mitral valve through a median sternotomy in a patient who underwent a left pneumonectomy 9 years ago. However, we found it relatively easy to perform a mitral valve surgery in a similar setting. Because long-term anatomical changes after pneumonectomy vary considerably among patients, preoperative CT and/or MRI should be performed to assess the exact locations of cardiac structures and cannulation sites[37]. Decision of surgical approach should only be made after carefully examining the extent of the shift and the rotation of the cardiac structures.

Another subject that needs addressing is the concomitant pectus excavatum. Schmidt et al.[38] advocate simultaneous correction of the pectus excavatum in patients requiring cardiac surgery. We resected deformed cartilages prior to sternotomy to improve surgical exposure as previously reported by Sacco-Casamassima et al.[39].

Cardiac operations on patients with previous pneumonectomy can be performed with a favourable outcome. Thorough preoperative evaluation with imaging studies to assess cardiac position and function and intensive respiratory physiotherapy are essential.

Authors’ roles & responsibilities

Authors’ roles & responsibilities	IK	ACT	KO	YO	AB	MY
IK Substantial contributions to the conception or design of the work; or the acquisition, analysis, or interpretation of data for the work; drafting the work or revising it critically for important intellectual content; final approval of the version to be published	ACT Substantial contributions to the conception or design of the work; final approval of the version to be published	KO Substantial contributions to the conception or design of the work; final approval of the version to be published	YO Substantial contributions to the conception or design of the work; final approval of the version to be published	AB Substantial contributions to the conception or design of the work; final approval of the version to be published	MY Substantial contributions to the conception or design of the work; final approval of the version to be published	
Table 1. Summary of 38 patients with previous pneumonectomy who underwent cardiac surgery.

Patient no.	Author	Publication year	Sex	Age	Pneumonectomy site	Years elapsed after pneumonectomy	Indication for pneumonectomy	Preoperative data	Operation	Operative details	Complications	Length of hospital stay (days)	
1	Berrizbeitia et al.	1994	M	61	Right	42	Bronchiectasis	FEV1 21	CABG	3 SVGs to LAD, OMB, and PDA	None	8	
2	Shibata et al.	1994	M	67	Left	13	Cancer	FVC 77, FEV1 55	CABG	3 SVGs	None	None	57
3	Medalion et al.	1994	F	70	Left	40	Tuberculosis	CABG	LITA and 3 SVGs	CABG	None	None	11
4	Demirtas et al.	1995	M	63	Left	20	Cancer	CABG	- LITA and 3 SVGs	CABG	None	None	12
5	Izzat et al.	1995	M	65	Right	10	Cancer	CABG	N/A	CABG	Approach to mitral valve through left atrial appendage	None	7
6	Sofanian et al.	1998	F	70	Left	19	Cancer	CABG	N/A	N/A	None	None	7
No.	Study	Year	Gender	Age	Side	Cause	Valve Procedure	Technique	Complications				
-----	----------------------------	------	--------	------	------	-------	-----------------	------------	---				
7	Lippmann and Au²	2000	M	68	Left	Cancer	CABG	Median	None				
8			M	73	Left	Cancer	CABG	Median	Postoperative bleeding requiring re-exploration				
9	Golbasi et al.⁶	2001	M	58	Right	Cancer	CABG	Median	None				
10	Diab et al.¹⁵, Jamaeddine and Obeid¹⁶	2001	M	64	Right	Cancer	CABG	Median	Respiratory failure requiring re-intubation	6			
11	El-Hamamy et al.¹⁷	2003	F	65	Right	Tuberculosis	CABG	Median	Pneumothorax requiring chest tube insertion				
12			F	71	Right	Tuberculosis	CABG	Median	None				
13	Kumar et al.¹⁸	2003	M	70	Left	Cancer	CABG	Median	None				
14	Eidil et al.¹⁵	2004	M	51	Right	Tuberculosis	CABG	Median	None				
15	Shanker et al.¹⁵	2005	M	80	Left	Cancer	CABG	Median	None				
16	Bernet et al.¹⁵	2006	M	58	Right	Cancer	CABG	Median	None				
Case	Last Name	Gender	Age	Side	Tumor	Year of Surgery	Procedure Details
17	Hukus et al.	M	74	Left	15	2006	- UTA and SVG to LAD, Cx, and RCA
- Median sternotomy
- Off-pump
- None
- 7 |
| 18 | F | 54 | Left | 3 | Cancer | 61 | CABG
- 3 SVGs to LAD, Cx, and RCA
- Median sternotomy
- On-pump
- Respiratory failure requiring prolonged mechanical ventilation and extracorporeal membrane oxygenation
- None
- 5 |
| 19 | Stoller et al. | M | 48 | Left | Cancer | 2007 | - Right atriotomy and transseptal approach
- Mitral valve replacement and tricuspid valve annuloplasty
- On-pump, deep hypothermic circulatory arrest
- Atrial fibrillation
- N/A |
| 20 | M | 71 | Left | 7 | Cancer | 33 | CABG
- Mitral valve replacement and tricuspid valve annuloplasty
- On-pump
- Renal failure and atrial fibrillation
- N/A |
| 21 | F | 74 | Left | 37 | Cancer | 75 | CABG
- 4 SVGs to LAD, OMBs, and RCA
- Left thoracotomy
- Off-pump
- None
- 6 |
| 22 | Slelatty et al.| M | 71 | Right | 20 | 2007 | - SVG to diagonal artery
- Mitral valve annuloplasty
- Aortic valve replacement
- Aortic valve replacement
- On-pump, deep hypothermic circulatory arrest
- Atrial fibrillation
- N/A |
| 23 | Barreda et al.| M | 68 | Left | 4 | 2008 | - Left anterior isomyocardiectomy
- Left posterior isomyocardiectomy
- On-pump
- Re-exploration for worsening of preoperative mitral insufficiency due to leaflet tethering 1 day after aortic valve replacement
- Postoperative bleeding requiring re-exploration and atrial fibrillation
- N/A |
| 24 | Ghoskar et al. | M | 71 | Left | 18 | 2008 | - SVG to LAD and PDA
- Median sternotomy
- On-pump
- Bioprosthetic aortic valve
- None
- N/A |
| 25 | F | 77 | Right | 1 | Cancer | 64 | CABG
- Bioprosthetic aortic valve
- None
- N/A |
| No. | Authors | Year | Gender | Age | Side | Diagnosis | Heart Rate | SBP | Procedure Details | Postoperative Course | | |
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 26 | Zhao et al. | 2008 | M | 57 | Left | Cancer | 61.9 | 703 | CABG - 2 SVGs to LAD, RCA, and OMB - Left posterolateral thoracotomy - Off-pump | None |
| 27 | Us et al. | 2010 | M | 65 | Left | N/A | 45 | 50 | Mitral valve replacement and subaortic membrane resection - transseptal approach and aortotomy - mechanical mitral valve prosthesis - median sternotomy - on-pump | None |
| 28 | Stamou et al. | 2010 | M | 83 | Left | Cancer | 48 | N/A | CABG and aortic valve replacement - left anterolateral thoracotomy - on-pump | None |
| 29 | Ferrari et al. | 2011 | M | 64 | Left | Cancer | N/A | N/A | Transapical aortic valve implantation - left anterolateral thoracotomy - off-pump | None |
| 30 | Raja et al. | 2011 | F | 67 | Right| Cancer | 49 | N/A | Transapical aortic valve implantation - right posterior thoracotomy - off-pump | None |
| 31 | Ushijima et al. | 2011 | M | 82 | Left | Cancer | 63.8 | 63.8| CABG - LITA, RA and RGEA to LAD, PL, and PDA - left thoracotomy - off-pump | None |
| 32 | Wilhelmi et al. | 2013 | M | 68 | Right| Cancer | 56 | 58 | Aortic valve replacement - bioprosthetic aortic valve - right anterolateral thoracotomy - on-pump | None |
| 33 | Dag et al. | 2013 | M | 72 | Left | Cancer | N/A | N/A | CABG and mitral valve replacement - SVG to LAD and RCA - standard left atrial approach - mechanical mitral valve prosthesis - median sternotomy - on-pump | None |
| | Author(s) | Year | Gender | Age | Side | Diagnosis | Mitral Valve Procedure | Tricuspid Valve Procedure | Access | Approach | Adjuvant Procedure | Complications |
|---|-----------|------|--------|-----|------|-----------|------------------------|--------------------------|-------|----------|-------------------|---------------|
| 34 | Gennari et al. [31] | 2014 | M | 71 | Left | Cancer | Mitral and Tricuspid Valve Repair | - Median Sternotomy - On-Pump | None | None | 11 |
| 35 | Rose et al. [32] | 2015 | M | 31 | Right | Cancer | Mitral Valve Repair | - Left Atrial Approach - Video-Assisted Right Thoracotomy - On-Pump | None | None | 8 |
| 36 | Takahashi et al. [33] | 2016 | M | 72 | Right | Tuberculosis | Mitral Valve Replacement | - Right Thoracotomy - On-Pump | Periprosthetic Leak | N/A |
| | | | | | | | Repair of Mitral Periprosthetic Leak (2 Months After Valve Replacement) | - Right Thoracotomy - On-Pump | None | N/A |
| | | | | | | | Repair of Mitral Periprosthetic Leak (8 Years After Valve Replacement) | - Cranial-Sided Approach to Left Atrium - Median Sternotomy - On-Pump | None | N/A |
| 37 | Sinha et al. [34] | 2016 | M | 61 | Right | Scimitar Syndrome | Mitral Valve Repair | - Left Atrial Approach - Video-Assisted Right Thoracotomy - On-Pump | None | None | 5 |
| 38 | Current Patient | 2018 | F | 24 | Left | Bronchiectasis | Mitral Valve Replacement and Tricuspid Valve Annuloplasty | - Standard Left Atrial Approach - Median Sternotomy Combined with Ravitch Procedure - On-Pump | None | None | 9 |

CABG = Coronary artery bypass grafting; Cx = Circumflex; FEV1 = Forced expiratory volume in 1st second; FVC = Forced vital capacity; LAD = Left anterior descending; LITA = Left internal thoracic artery; OMB = Obtuse marginal branch; PDA = Posterior descending artery; RAs = Radial arteries; RCA = Right coronary artery; SVG = Saphenous vein graft
Year	Authors	Patients	Side	Disease	Procedure	Operative Access	Associated Procedures
2015	Gennari	34	None	11	Mitral repair	Approach	
2015	Rose et al.	32	Right	Cancer	on-pump right thoracotomy		
2015	Shibata T, Sueno S, Kimura E, Nishizawa H, Minamimura H, Kinoshita H	35	Mitral coronary valve bypass grafting	13 years after pneumectomy			
2016	Takahashi et al.	33	Right	Scimitar syndrome	Mitral valve replacement	Median sternotomy	
2018	Current patient	2018	Left	Bronchiectasis	Mitral valve annuloplasty	Right thoracotomy	

REFERENCES

1. Smulders SA, Holverda S, Vonk-Noordegraaf A, van den Bosch HC, Post JC, Marcus JT, et al. Cardiac function and position more than 5 years after pneumonectomy. Ann Thorac Surg. 2007;83(6):1986-92.
2. Bolliger CT, Jordan P, Soler M, Stulz P, Tamm M, Wyser C, et al. Pulmonary function and exercise capacity after lung resection. Eur Respir J. 1996;9(3):415-21.
3. Berrizbeitia LD, Anderson WA, Laub GW, McGrath LB. Coronary artery bypass grafting after pneumonectomy. Ann Thorac Surg. 1994;58(5):1538-40.
4. Shibata T, Sueno S, Kimura E, Nishizawa H, Minamimura H, Kinoshita H. Coronary artery bypass grafting: 13 years after pneumonectomy. Nihon Kyobu Geka Gakkai Zasshi. 1999;42(7):1105-7.
5. Medallion B, Elami A, Milgalter E, Merin G. Open heart operation after pneumonectomy. Ann Thorac Surg. 1994;58(3):882-4.
6. Demirtas MM, Akar H, Kaplan M, Dagsali S. Coronary artery bypass operation after pneumonectomy. Ann Thorac Surg. 1995;60(1):232-3.
7. Izzat MB, Rezagul IA, Angelini GD. Mitral valve replacement after previous right pneumonectomy. Ann Thorac Surg. 1995;59(1):222-7.
8. Solitariyan H, Sanders JH Jr, Robb JC, Marrin CA. Hybrid myocardial revascularization after previous left pneumonectomy. Ann Thorac Surg. 1998;65(5):259-60.
9. Lippmann M, Au J. Coronary artery bypass surgery after pneumonectomy: two case reports. Scand Cardiovasc J. 2003;34(5):541-2.
10. Göllbasi I, Täkärı C, Säihin N, Öz N, Akbulut E, Gülmez H, et al. Coronary artery bypass grafting nine months after pneumonectomy. Tex Heart Inst J. 2001;28(2):146-8.
11. Dab KA, Khatib MF, Obeid M, Jamealdeidine GW. Coronary artery bypass grafting after pneumonectomy. Eur J Cardiothorac Surg. 2001;19(3):362-4.
12. Jamealdeidine GW, Obeid M. Reply to Pizzella. Eur J Cardiothorac Surg. 2001;20(2):890.
13. El-Hamarsy J, Stevens LM, Renault LR, Carrier M. Right pneumonectomy and thoracoplasty followed by coronary artery bypass grafting and mitral valve replacement. J Thorac Cardiovasc Surg. 2003;125(1):215-6.
14. Kumar P, Swift SJ, Athanasou T, Nelson JS, Gravell B. CABG 15 years after left pneumonectomy: feasibility of off-pump approach. Cardiovasc Surg. 2003;11(4):305-7.
15. Erdil N, Nisanoglu V, Toprak HI, Gürmek H, Battaloglu B. Arterial myocardial revascularization using bilateral radial artery 17 years after right pneumonectomy. Tex Heart Inst J. 2004;31(1):96-8.
16. Shankar VR, Yadav S, Hodgson AJ. Coronary artery bypass grafting with valvular heart surgery after pneumonectomy. ANZ J Surg. 2005;75(1-2):890.
17. Bernet FH, Reineke DC, Grawosy MT, Zerowski HR. OPCAB surgery after right pneumonectomy. J Card Surg. 2006;21(1):92-3.
18. Hulusi U, Maslan Y, Ozek C, Basaran M, Yildiz Y, Ogus T, et al. Coronary artery bypass grafting after left pneumonectomy. J Cardiothorac Vasc Anesth. 2006;20(5):709-11.
19. Stoller JK, Blackstone E, Petterson G, Mihaljevic T. Coronary artery bypass graft and/or valvular operations following pneumonectomy: report of four new patients and review of the literature. Chest. 2007;132(1):295-301.
20. Skelatayo G, Yagi A, El Asmar B, Haj-Chahine J, Nakad J, Madi-Jebara S, et al. Combined coronary surgery and aortic valve replacement after previous right pneumonectomy. J Med Liban. 2007;55(2):101-3.
21. Barreda T, Laali M, Dorent R, Acar C. Left thoracotomy for aortic and mitral valve surgery in a case of mediastinal displacement due to pneumonectomy. J Heart Valve Dis. 2008;17(2):239-42.
22. Ghotkar S, Aker S, Mediavilla N. Cardiac surgery in patients with previous pneumonectomy. J Cardiothorac Vasc Anesth. 2008;31(1).
23. Zhao BQ, Chen HR, Song JP. Coronary artery bypass grafting after pneumonectomy. Tex Heart Inst J. 2008;35(4):470-1.
24. Us MH, Ugurlu M, Basaran M, Selimoglu O, Kocalil A. Mitral valve replacement and subaortic membrane resection following pneumonectomy. Case Rep Med. 2010;2010:480703.
25. Stamou SC, Murphy MC, Koukouskos NT. Aortic valve replacement and coronary artery bypass graft and coronary artery bypass graft following previous left pneumonectomy. J Thorac Cardiovasc Surg. 2010;140(3):719-20.
26. Ferreri E, Sulzer C, Marucci C, Qnanday SL, Locca D, Berdajs D, et al. Transapical aortic valve implantation following left pneumonectomy. J Card Surg. 2011;26(1):28-30.
27. Raja Y, Masaro J, Doshi SN. Successful implantation of the Edwards Sapien THV via direct aortic access in a patient with previous pneumonectomy and no other access. Catheter Cardiovasc Interv. 2011;78(7):1008-12.
28. Ushijima T, Kikuchi Y, Ikeeda C, Takata M, Yamamoto Y, Watanabe G. Totally arterial off-pump coronary artery bypass grafting after pneumonectomy. Ann Thorac Cardiovasc Surg. 2011;17(3):320-2.
29. Wilhelmi M, Rodt T, Ismael I, Haverich A. Aortic valve replacement via right anterolateral thoracotomy in the case of a patient with extreme mediastinal right-shift following pneumonectomy. J Cardiothorac Vasc Surg. 2013;8:20.
30. Dag O, Kaygin MA, Arslan U, Kymaz A, Kahraman N, Erkut B. Mitral valve and coronary artery bypass surgeries 13 years after pneumonectomy for lung cancer. Cardiovasc J Afr. 2013;24(1):e1-4.
31. Gennari M, Kassem S, Teruzzi G, Agrifoglio M. Coronary artery disease associated with severe mitral and tricuspid valve regurgitation after left pneumonectomy: report of a successful hybrid procedure. Interact Cardiovasc Thorac Surg. 2014;19(2):318-20.
32. Rose D, Liew CK, Zacharias J. Mitral valve repair after a right pneumonectomy: a minimally invasive approach. Interact Cardiovasc Thorac Surg. 2015;24(4):551-3.
33. Takahashi Y, Shibata T, Sasaki Y, Kato Y, Motoki M, Morisaki A, et al. A cranial-sided approach for repeated mitral periprosthetic leak after right pneumonectomy. Ann Thorac Surg. 2016;101(3):1174-6.
34. Sinha S, Morgan-Hughes N, O’Toole L, Hunter S. Minimal access mitral valve repair in a patient with a right pneumonectomy for Scimitar syndrome. Interact Cardiovasc Thorac Surg. 2016;22(6):851-3.
35. Westerdahl E, Lindmark B, Bryngelson I, Tenling A. Pulmonary function 4 months after coronary artery bypass graft surgery. Respir Med. 2003;97(4):317-22.
36. Hulzebos EH, Helders PJ, Favié NJ, De Bie R, Bruel de la Riviere A, Van Meerenderen NL. Preoperative intensive inspiratory muscle training to prevent postoperative pulmonary complications in high-risk patients undergoing CABG surgery: a randomized clinical trial. JAMA. 2006;296(15):1851-7.
37. Kopiec SE, Irwin RS, Umali-Torres CB, Balikian JP, Conlan AA. Cardiac Surgery after Pneumonectomy. Braz J Cardiovasc Surg 2018;33(6):608-17.