Evidence for the decay $\Omega_c^0 \to \pi^+\Omega(1210)^- \to \pi^+(K\Xi^-)$

Y. Li,11 S. S. Tang,11 S. Jia,11 C. P. Shen,11 I. Adachi,17,13 H. Aihara,81 S. Al Said,75, 35 D. M. Asner,3 H. Atmacan,7 V. Aulchenko,4, 62 T.Aushev,19 R. Ayad,75 V. Babu,8 S. Bahinipati,22 P. Behera,24 M. Bessner,16 T. Bilka,5 J. Biswal,33 A. Bozek,50 M. Braćko,48, 33 P. Branchini,30 T. E. Browder,16 A. Budano,30 M. Campajola,29, 54 D. Červenkov,5 M.-C. Chang,10 K. Chilikin,49 A. Chen,56 B. G. Cheon,15 K. Chilikin,42 H. E. Cho,15 K. Cho,37 S.-J. Cho,87 Y. Choi,73 S. Choudhury,23 D. Cinabro,85 S. Cunliffe,8 S. Das,47 N. Dash,24 G. De Nardo,29, 54 G. De Pietro,30 F. Di Capua,29, 54 Z. Doležal,5 T. V. Dong,11 D. Efianov,4, 62 T. Ferber,8 B. G. Fulsom,64 R. Garg,65 V. Gaur,84 A. Giri,23 P. Goldenzweig,34 B. Golob,44, 33 E. Graziani,30 T. Gu,66 K. Gudkova,4, 62 C. Hadjivasiliou,64 S. Halder,79 K. Hayasaka,61 H. Hayashii,55 W.-S. Hou,58 K. Inami,53 A. Ishikawa,17, 13 M. Iwasaki,63 Y. Iwasaki,17 W. W. Jacobs,25 E.-J. Jagel,14 Y. Jin,81 K. K. Joo,6 K. H. Kang,40 G. Karyan,8 C. Kiesling,49 C. H. Kim,15 D. Y. Kim,72 K.-H. Kim,87 S. H. Kim,70 Y.-K. Kim,87 K. Kinoshita,7 P. Kodyš,5 T. Konno,36 A. Korobov,4, 62 S. Korpar,4, 62 T. Kuhr,45 M. Kumar,47 K. Kumara,85 A. Kuzmin,4, 62 Y.-J. Kwon,87 K. Lalwani,47 M. Launzen,30, 88 S. C. Lee,40 C. H. Li,43 L. K. Li,7 L. Li Gioi,49 J. Libby,24 K. Lieret,45 D. Liventsev,85, 17 M. Masuda,80, 67 T. Matsuda,51 D. Matvienko,4, 62 J. T. McNeil,9 M. Merola,29, 54 K. Miyabayashi,55 R. Mizuk,42, 19 G. B. Mohanty,76 T. Mori,53 R. Mussa,31 M. Nakao,17, 13 Z. Nathanian,59 A. Natochii,16 L. Nayak,23 M. Nayak,78 M. Niyama,39 N. K. Nisar,3 S. Nishida,17, 13 K. Nishimura,16 H. Ono,60, 61 Y. Onuki,81 P. Oskin,42 P. Pakhlov,42, 52 G. Pakhlova,10, 42 S. Pardi,29 S.-H. Park,17 A. Passeri,30 S. Paul,77, 49 T. K. Pedlar,46 R. Pestotnik,33 L. E. Piluonen,84 T. Podobnik,44, 33 V. Popov,13 E. Prencipe,20 M. T. Prim,2 N. Rout,42 G. Russo,54 D. Sahoo,76 Y. Sakai,17, 13 S. Sandilya,23 A. Sangal,7 L. Santelj,44, 33 T. Samuk,79 V. Savinov,66 G. Schnell,1, 21 C. Schwanda,27 Y. Seino,61 K. Senyo,86 M. Shapkin,28 C. Sharma,47 V. Shebalin,58 J.-G. Shiu,58 A. Sokolov,28 E. Solovieva,42 M. Starić,53 Z. S. Stottler,84 M. Sunihama,12 T. Sumiyoshi,83 W. Sutcliffe,4 M. Takizawa,71, 18, 68 K. Tanida,32 F. Tenchini,8 K. Trabelsi,41 M. Uchida,92 T. Uglov,42, 19 Y. Unno,15 K. Uno,61 S. Uno,17, 13 Y. Usov,4, 62 S. E. Vahsen,16 R. Van Tonder,2 G. Varner,16 A. Vinokurova,4, 62 E. Waheed,17 C. H. Wang,57 E. Wang,66 M.-Z. Wang,58 P. Wang,26 S. Watanuki,41 O. Werbycka,59 E. Won,38 B. D. Yabsley,74 W. Yan,69 S. B. Yang,38 H. Ye,8 J. Yelton,9 J. H. Yin,38 C. Z. Yuan,26 Y. Yusa,61 Z. P. Zhang,69 V. Zhilich,4, 62 and V. Zhukova12

(The Belle Collaboration)

1Department of Physics, University of the Basque Country UPV/EHU, 48080 Bilbao
2University of Bonn, 53115 Bonn
3Brookhaven National Laboratory, Upton, New York 11973
4Budker Institute of Nuclear Physics SB RAS, Novosibirsk 630090
5Faculty of Mathematics and Physics, Charles University, 121 16 Prague
6Chonnam National University, Gwangju 61186
7University of Cincinnati, Cincinnati, Ohio 45221
8Deutsches Elektronen–Synchrotron, 22607 Hamburg
9University of Florida, Gainesville, Florida 32611
10Department of Physics, Fu Jen Catholic University, Taipei 24205
11Key Laboratory of Nuclear Physics and Ion-beam Application (MOE) and Institute of Modern Physics, Fudan University, Shanghai 200433
12Gifu University, Gifu 501-1193
13SOKENDAI (The Graduate University for Advanced Studies), Hayama 240-0193
14Gyeongsang National University, Jinju 52828
15Department of Physics and Institute of Natural Sciences, Hangyang University, Seoul 04763
16University of Hawaii, Honolulu, Hawaii 96822
17High Energy Accelerator Research Organization (KEK), Tsukuba 305-0801
18J-PARC Branch, KEK Theory Center, High Energy Accelerator Research Organization (KEK), Tsukuba 305-0801
19National Research University Higher School of Economics, Moscow 101000
Using a data sample of 980 fb$^{-1}$ collected with the Belle detector operating at the KEKB asymmetric-energy e^+e^- collider, we present evidence for the $\Omega(2012)^-$ in the resonant substructure of $\Omega^0_c \to \pi^+(K\Xi^-) = K^-\Xi^0 + K^0\Xi^-)$. The significance of the $\Omega(2012)^-$ signal is 4.2σ after considering the systematic uncertainties. The ratio of the branching fraction of $\Omega^0_c \to \pi^+\Omega(2012)^- \to \pi^+(K\Xi^-)$ relative to that of $\Omega^0_c \to \pi^+\Omega(2012)^-$ is calculated to be 0.220 ± 0.059 (stat.) ± 0.035 (syst.). The individual ratios of the branching fractions of the two isospin modes are also determined, and found to be $B(\Omega^0_c \to \pi^+\Omega(2012)^-) \times B(\Omega(2012)^- \to K^-\Xi^0)/B(\Omega^0_c \to \pi^+K^-\Xi^0) = (9.6 \pm 3.2$ (stat.) ± 1.8 (syst.))% and $B(\Omega^0_c \to \pi^+\Omega(2012)^-) \times B(\Omega(2012)^- \to K^0\Xi^-)/B(\Omega^0_c \to \pi^+K^0\Xi^-) = (5.5 \pm 2.8$ (stat.) ± 0.7 (syst.))%.

Several excited Ω^- baryons have been observed [1]; the latest addition was an excited Ω^- state decaying into $K^-\Xi^0$ and $K^0_S\Xi^-$ observed by Belle in 2018 using data samples collected at the $\Upsilon(1S)$, $\Upsilon(2S)$, and $\Upsilon(3S)$ resonances [2]. This new excited Ω^- state is called the $\Omega(2012)^-$, and has a measured mass of (2012.4 \pm 0.7 (stat.) \pm 0.6 (syst.)) MeV/c2 and width of (6.4$^{+2.5}_{-2.0}$ (stat.) \pm 1.6 (syst.)) MeV.

Following the discovery of the $\Omega(2012)^-$, several interpretations of the state were suggested [3–9]. The mass and the two-body strong decays of the $\Omega(2012)^-$ were studied in the framework of Quantum Chromodynamics sum rules [3, 4], and this showed that the $\Omega(2012)^-$ could be interpreted as a $1P$ orbital excitation of the ground-state Ω^- baryon with a spin-parity $J^P = 3/2^-$. As the mass of the $\Omega(2012)^-$ is very close to the $(K\Xi(1530)^-)$ threshold, it was interpreted as a $(K\Xi(1530)^-)$ hadronic molecule in Refs. [5–9]. These hadronic molecule models predicted a large decay width for $\Omega(2012)^- \to (K\pi\Xi)^-$. The three-body decay $\Omega(2012)^- \to (K\Xi(1530)^-)^- \to (K\pi\Xi)^-$ has been searched for by Belle [10]. No significant signals were found for the $\Omega(2012)^- \to (K\Xi(1530)^-)^- \to (K\pi\Xi)^-$ decay, and the 90% credibility level (C.L.) upper limit on the ratio of $R_{(K\Xi^-)}^{(K\Xi^-)} = B(\Omega(2012)^- \to (K\Xi(1530)^-)^- \to (K\pi\Xi)^-)$/
$\mathcal{B}(\Omega(2012)^-) \rightarrow (\bar{K}\Xi^-)$ was determined to be 0.119. Based on this upper limit for the ratio $R^{(K\Xi^-)}_{(\bar{K}\Xi^-)}$, the authors in Refs. [11, 12] revisited the $\Omega(2012)^-$ resonance from the molecular perspective, and concluded that the experimental data was still consistent with their molecular picture with a certain set of naturally allowed parameters. On the other hand, the authors of Ref. [13] conducted a dynamical calculation of pentaquark systems with quark contents $sssu\bar{u}$ in the framework of the chiral quark model [14] and the quark delocalization color screening model [15, 16], and concluded that the $\Omega(2012)^-$ is not suitable to be interpreted as a $(\bar{K}\Xi(1530))^{-}$ molecular state.

A theoretical study of the $\Omega(2012)^-$ resonance in the nonleptonic weak decays $\Omega_c^0 \rightarrow \pi^+\bar{K}\Xi(1530)(\eta\Omega) \rightarrow \pi^+(\bar{K}\pi\Xi)^-\pi^+(\bar{K}\Xi^-)$ and $\pi^+(\bar{K}\Xi^-)$ via final-state interactions of the $\bar{K}\Xi(1530)$ and $\eta\Omega$ pairs has been reported [17]. The authors found that the $\Omega_c^0 \rightarrow \pi^+(K\Xi^-)$ decay is not studied well suited to study the $\Omega(2012)^-$ because the dominant contribution is from the $\Omega_c^0 \rightarrow \pi^+(\bar{K}\Xi(1530))^-\pi^-\Xi$ decay at tree level, and this will not contribute to the production of the $\Omega(2012)^-$. On the other hand, they predicted that the $\Omega(2012)^-$ would be visible in the $(\bar{K}\Xi^-)$ invariant mass spectrum of the $\Omega_c^0 \rightarrow \pi^+(\bar{K}\Xi^-)$ decay. It is clear that observing the $\Omega(2012)^-$ in different production mechanisms can not only further confirm its existence but also yield important information that can increase the understanding of its internal structure.

In this paper, we search for the $\Omega(2012)^-$ in the decay $\Omega_c^0 \rightarrow \pi^+\Omega(2012)^- \rightarrow \pi^+(K\Xi^-)$. We first perform analyses separately for the two isospin modes ($\Omega_c^0 \rightarrow \pi^+\Omega(2012)^- \rightarrow \pi^+K^-\Xi^0/\pi^+K_0^0\Xi^-$), and then combine them for further analysis. Throughout this paper, inclusion of charge-conjugate mode is implicitly assumed.

This analysis is based on data collected at or near the $\Upsilon(1S), \Upsilon(2S), \Upsilon(3S), \Upsilon(4S),$ and $\Upsilon(5S)$ resonances by the Belle detector [18, 19] at the KEKB asymmetric-energy e^+e^- collider [20, 21]. The total data sample corresponds to an integrated luminosity of 980 fb$^{-1}$ [19]. The Belle detector was a large-solid-angle magnetic spectrometer consisting of a silicon vertex detector, a 50-layer central drift chamber (CDC), an array of aerogel threshold Cherenkov counters (ACC), a barrel-like arrangement of time-of-flight scintillation counters (TOF), and an electromagnetic calorimeter comprising CsI(Tl) crystals (ECL) located inside a superconducting solenoid coil that provides a 1.5 T magnetic field. An iron flux return comprising resistive plate chambers located outside the coil was instrumented to detect K_L^0 mesons and to identify muons. A detailed description of the Belle detector can be found in Refs. [18, 19].

Monte Carlo (MC) simulated signal events are generated using EVTGEN [22] to optimize the signal selection criteria and calculate the reconstruction efficiencies; $e^+e^- \rightarrow c\bar{c}$ events are simulated using PYTHIA [23], where one of the two charm quarks hadronizes into an K^0_S baryon. Both $\Omega_c^0 \rightarrow \pi^+\Omega(2012)^-$ and $\Omega(2012)^- \rightarrow K^-\Xi^0/K_0^0\Xi^-$ decays are isotropic in the rest frame of the parent particle. We also generate the signal MC events of $\Omega_c^0 \rightarrow \pi^+K^-\Xi^0/\pi^+K_0^0\Xi^-$ decays with a phase-space model to estimate the reconstruction efficiencies of the reference modes. The simulated events are processed with a detector simulation based on GEANT3 [24]. Inclusive MC samples of $\Upsilon(1S, 2S, 3S)$ decays, $\Upsilon(4S) \rightarrow B^+B^-/B^0\bar{B}^0$, $\Upsilon(5S) \rightarrow B_s^0\bar{B}_s^0$, and $e^+e^- \rightarrow q\bar{q}$ ($q = u, d, s, c$) at center-of-mass (C.M.) energies of 10.520, 10.580, and 10.867 GeV corresponding to two times the integrated luminosity of data are used to optimize the signal selection criteria and to check possible peaking backgrounds [25].

The impact parameters of the charged particle tracks, except for those of the decay products of K^0_S, Λ, and Ξ^-, measured with respect to the nominal interaction point (IP), are required to be less than 0.2 cm perpendicular to the beam direction, and less than 1 cm parallel to it. For the particle identification (PID) of a well-measured with respect to the nominal interaction point K, π, or η. Kaon candidates are defined as those with $L_{K}/(L_{K}+L_{p}) > 0.8$ and $L_{K}/(L_{K}+L_{\Lambda}) > 0.8$, which is approximately 87% efficient. For protons the requirements are $L_{p}/(L_{p}+L_{K}) > 0.2$ and $L_{p}/(L_{p}+L_{\Lambda}) > 0.2$, while for charged pions $L_{\pi}/(L_{\pi}+L_{K}) > 0.2$ and $L_{\pi}/(L_{\pi}+L_{p}) > 0.2$; these requirements are approximately 99% efficient.

An ECL cluster is taken as a photon candidate if it does not match the extrapolation of any charged track. The π^0 candidates are reconstructed from two photons having energy exceeding 30 MeV in the barrel or 50 MeV in the endcaps. The reconstructed invariant mass of the π^0 candidate is required to be within 10.8 MeV/c2 of the π^0 nominal mass [1], corresponding to approximately twice the resolution (σ). To reduce the large combinatorial backgrounds, the momentum of the π^0 candidate is required to exceed 200 MeV/c [2]. Λ candidates are reconstructed from $p\pi^-$ pairs with a production vertex significantly separated from the IP, and a reconstructed invariant mass within 3.5 MeV/c2 of the Λ nominal mass [1] ($\sim 3\sigma$).

The $\Xi^0 \rightarrow \Lambda\pi^0$ reconstruction is performed as follows. The selected Λ candidate is combined with a π^0 to form a Ξ^0 candidate, and then taking the IP as the point of origin of the Ξ^0, the sum of the Λ and π^0 momenta is taken as the momentum vector of the Ξ^0 candidate. The intersection of this trajectory with the reconstructed Λ trajectory is then found and this position is taken as the decay location of the Ξ^0 baryon. The π^0 is then refit using this location as its point of origin. Only those combinations with the decay location of the Ξ^0 indicating a positive Ξ^0 path length of greater than 2 cm but less
than the distance between the \(\Lambda \) decay vertex and the IP are retained [2]. The \(\Xi^- \) candidate is reconstructed by combining a \(\Lambda \) candidate with a \(\pi^- \). The vertex formed from the \(\Lambda \) and \(\pi^- \) is required to be at least 0.35 cm from the IP, to have a shorter distance from the IP than the \(\Lambda \) decay vertex, and to signify a positive \(\Xi^- \) flight distance [2].

The \(K^0_S \) candidates are first reconstructed from pairs of oppositely charged tracks, which are treated as pions, with a production vertex significantly separated from the average IP, and then selected using an artificial neural network [27] based on two sets of input variables [28].

The \(\Xi^0 \) and \(\Xi^- \) are kinematically constrained to their nominal masses [1], and then combined with a \(K^- \) or \(K^0_S \) to form an \(\Omega(2012)^- \) candidate. Finally, the reconstructed \(\Omega(2012)^- \) candidate is combined with a \(\pi^- \) to form an \(\Omega^0 \) candidate. To improve the momentum resolution and suppress the backgrounds, a vertex fit (the IP is not included in this vertex) is performed for the \(\pi^+(K\Xi^-) \) final state, and then \(\chi^2_{\text{vertex}} \leq 20 \) is required, corresponding to an efficiency exceeding 90%.

To reduce combinatorial backgrounds, especially from \(B \)-meson decays, the scaled momentum \(x_p = p^N_{\Omega^0}/p_{\text{max}} \) is required to be larger than 0.6. Here, \(p^N_{\Omega^0} \) is the momentum of \(\Omega^0 \) candidates in the \(e^+e^- \) C.M. frame, and \(p_{\text{max}} = \sqrt{E_{\text{beam}}^2 - M_{\Omega^0}^2 c^4}/c \), where \(E_{\text{beam}} \) is the beam energy in the \(e^+e^- \) C.M. frame and \(M_{\Omega^0} \) is the invariant mass of \(\Omega^0 \) candidates. This criterion is optimized by maximizing the Pumzi figure of merit \(S/(3/2 + \sqrt{B}) \) [29], where \(S \) is the number of expected \(\Omega^0 \rightarrow \pi^0\Omega(2012)^- \rightarrow \pi^+(K\Xi^-) \) signal events from signal MC samples, by performing a two-dimensional (2D) maximum-likelihood fit to \(M(K\Xi^-) \) and \(M(\pi^+\Omega(2012)^-) \) distributions and assuming \(\sigma(e^+e^- \rightarrow \Omega^0 + \text{ anything}) \times B(\Omega^0 \rightarrow \pi^+\Omega(2012)^-) \times B(\Omega(2012)^- \rightarrow (K\Xi^-)^-) = 10 \text{ fb} \), and \(B \) is the number of background events from a 2D fit from inclusive MC samples.

Reconstructed invariant masses for \(\Xi^0 \), \(K^0_S \), and \(\Xi^- \) candidates are required to be within 7.0, 7.0, and 3.5 MeV/c\(^2\) of the corresponding nominal masses [1] (> 94% signal events are retained for each intermediate state), respectively. These requirements are optimized using the same method as was used for scaled momentum.

Finally, if there are multiple \(\Omega^0 \) candidates in an event, all the combinations are retained for further analysis. The fractions of events with multiple combinations for \(\Omega^0 \rightarrow \pi^+\Omega(2012)^- \rightarrow \pi^+K^-\Xi^0 \) and \(\Omega^0 \rightarrow \pi^+\Omega(2012)^- \rightarrow \pi^+K^0_S\Xi^- \) decays are 2.4% and 0.8%, respectively, which are consistent with the signal MC expectations.

After applying the aforementioned event selection criteria, the Dalitz plots of \(M^2(K^-\Xi^0) \) versus \(M^2(\pi^+K^-) \) and \(M^2(K^0_S\Xi^-) \) versus \(M^2(\pi^+K^0_S) \) in the \(\Omega^0 \) signal region are shown in Fig. 1, where the reconstructed invariant mass of \(\Omega^0 \) candidates is required to be within 15 MeV/c\(^2\) of the \(\Omega^0 \) nominal mass [1] (~2.5\(\sigma \)).

![FIG. 1: The Dalitz plots of (a) \(M^2(K^-\Xi^0) \) versus \(M^2(\pi^+K^-) \) and (b) \(M^2(K^0_S\Xi^-) \) versus \(M^2(\pi^+K^0_S) \) from selected \(\Omega^0 \rightarrow \pi^+K^-\Xi^0 \) and \(\Omega^0 \rightarrow \pi^+K^0_S\Xi^- \) candidates.](image)

To extract the \(\Omega(2012)^- \) signal events from \(\Omega^0 \) decay, we perform a 2D unbinned maximum-likelihood fit to \(M(K^-\Xi^0)/M(K^0_S\Xi^-) \) and \(M(\pi^+\Omega(2012)^-) \) distributions. The 2D fitting function \(f(M_1, M_2) \) is expressed as

\[
f(M_1, M_2) = N^\text{sig}_{s1}(s1(M_1)s2(M_2)) + N^\text{bg}_{s1}(b1(M_1)b2(M_2)) + N^\text{bg}_{s2}(s1(M_2)s2(M_2)) + N^\text{bg}_{b1}(b1(M_1)b2(M_2)),
\]

where \(s1(M_1) \) and \(b1(M_1) \) are the signal and background probability density functions (PDFs) for the \(M(K^-\Xi^0)/M(K^0_S\Xi^-) \) and \(M(\pi^+\Omega(2012)^-) \) distributions, respectively, and \(s2(M_2) \) and \(b2(M_2) \) are the corresponding PDFs for the \(M(\pi^+\Omega(2012)^-) \) distributions. Here, \(N^\text{sig}_{s1} \) is the number of signal events, \(N^\text{bg}_{s1} \) and \(N^\text{bg}_{s2} \) denote the numbers of peaking background events in \(M(K^-\Xi^0)/M(K^0_S\Xi^-) \) and \(M(\pi^+\Omega(2012)^-) \) distributions, respectively, and \(N^\text{bg}_{b1} \) is the number of combinatorial background events both for \(\Omega(2012)^- \) and \(\Omega^0 \) candidates. The signal shapes \((s1(M_1) \) and \(s2(M_2) \) of \(\Omega(2012)^- \) and \(\Omega^0 \) candidates are described by a Breit-Wigner (BW) function convolved with a Gaussian function and a double-Gaussian function, respectively, and first-order polynomial functions represent the backgrounds \((b1(M_1) \) and \(b2(M_2) \). The values of signal PDF parameters are fixed to those obtained from the fits to the corresponding simulated signal distributions. The values of the background shape parameters are allowed to float in the fit. The one-dimensional (1D) projections of \(M(K^-\Xi^0)/M(K^0_S\Xi^-) \) in the \(\Omega^0 \) signal region and \(M(\pi^+\Omega(2012)^-) \) in the \(\Omega(2012)^- \) signal region from 2D fits are shown in Fig 2. The signal regions of \(\Omega(2012)^- \) and \(\Omega^0 \) candidates are defined as \(|M(K^-\Xi^0)/M(K^0_S\Xi^-) - m(\Omega(2012)^-)| < 20 \text{ MeV/c}^2 \) (~2.5\(\sigma \)) and \(|M(\pi^+\Omega(2012)^-) - m(\Omega^0)| < 15 \text{ MeV/c}^2 \) (~2.5\(\sigma \)), respectively, where \(m(\Omega(2012)^-) \) and \(m(\Omega^0) \) are the nominal masses of \(\Omega(2012)^- \) and \(\Omega^0 \) [1]. The numbers of fitted \(\Omega^0 \rightarrow \pi^+\Omega(2012)^- \rightarrow \pi^+K^-\Xi^0 \) and \(\Omega^0 \rightarrow \pi^+\Omega(2012)^- \rightarrow \pi^+K^0_S\Xi^- \) signal events are 28.3 ± 8.9 and 17.9 ± 8.9 with statistical significances of 4.0\(\sigma \) and 2.3\(\sigma \), respectively. Here, the statistical significances are
defined as \(\sqrt{-2\ln(L_0/L_{\max})}\), where \(L_0\) and \(L_{\max}\) are the maximized likelihoods without and with a signal component, respectively.

FIG. 2: The 1D projections of the 2D fits of (a) \(M(K^-\Xi^0)/M(K_S^0\Xi^-)\), and (b) \(M(\pi^+\Omega(2012)^{-})\) distributions for (1) \(\Omega_c^0\to\pi^+\Omega(2012)^{-}\to\pi^+K^-\Xi^0\) and (2) \(\Omega_c^0\to\pi^+\Omega(2012)^{-}\to\pi^+K^-\Xi^-\) decays in data. All components are indicated in the legend and described in the text.

For \(\Omega_c^0\to\pi^+K^-\Xi^0\) and \(\Omega_c^0\to\pi^+K_S^0\Xi^-\) decays, the \(M(\pi^+K^-\Xi^0)\) and \(M(\pi^+K_S^0\Xi^-)\) distributions are shown in Fig. 3, together with the fitted results. The signal shapes of \(\Omega_c^0\) are described by double-Gaussian functions, where the parameters are fixed to those obtained from the fits to the corresponding simulated signal distributions. The backgrounds are parameterized by first-order polynomial functions. The fitted \(\Omega_c^0\to\pi^+K^-\Xi^0\) and \(\Omega_c^0\to\pi^+K_S^0\Xi^-\) signal yields are 279 ± 27 and 317 ± 32, respectively.

The branching fraction ratios are calculated according to the formulae

\[
\mathcal{R}_1 = \frac{B(\Omega_c^0 \to \pi^+\Omega(2012)^{-}\to K^-\Xi^0)}{B(\Omega_c^0 \to \pi^+K^-\Xi^0)} = \frac{N_{\text{obs}}^{\pi^+\Omega(2012)^{-}\to K^-\Xi^0} \times \epsilon_{\pi^+K^-\Xi^0}}{N_{\text{obs}}^{\pi^+K^-\Xi^-} \times \epsilon_{\pi^+K^-\Xi^-}} = (9.6 \pm 3.2\text{(stat.)} \pm 1.8\text{(syst.)})\%.
\]

and

\[
\mathcal{R}_2 = \frac{B(\Omega_c^0 \to \pi^+\Omega(2012)^{-}\to K^0\Xi^-)}{B(\Omega_c^0 \to \pi^+K^0\Xi^-)} = \frac{N_{\text{obs}}^{\pi^+\Omega(2012)^{-}\to K^0\Xi^-} \times \epsilon_{\pi^+K^0\Xi^-}}{N_{\text{obs}}^{\pi^+K^0\Xi^-} \times \epsilon_{\pi^+K^0\Xi^-}} = (5.5 \pm 2.8\text{(stat.)} \pm 0.7\text{(syst.)})\%.
\]

Here, \(N_{\text{obs}}^{\pi^+\Omega(2012)^{-}\to K^-\Xi^0}\), \(N_{\text{obs}}^{\pi^+\Omega(2012)^{-}\to K^0\Xi^-}\), \(N_{\text{obs}}^{\pi^+K^-\Xi^0}\), and \(N_{\text{obs}}^{\pi^+K^0\Xi^-}\) are the fitted signal yields in the decay modes \(\Omega_c^0\to\pi^+\Omega(2012)^{-}\to\pi^+K^-\Xi^0\), \(\Omega_c^0\to\pi^+\Omega(2012)^{-}\to\pi^+K_S^0\Xi^-\), \(\Omega_c^0\to\pi^+K^-\Xi^0\), and \(\Omega_c^0\to\pi^+K_S^0\Xi^-\), respectively; \(\epsilon_{\pi^+\Omega(2012)^{-}\to K^-\Xi^0}\), \(\epsilon_{\pi^+\Omega(2012)^{-}\to K^0\Xi^-}\), \(\epsilon_{\pi^+K^-\Xi^0}\), and \(\epsilon_{\pi^+K_S^0\Xi^-}\) are the corresponding reconstruction efficiencies, which are obtained from the signal MC simulations and are listed in Table I. The systematic uncertainties are discussed below.

TABLE I: Summary of the fitted signal yields (\(N_{\text{obs}}\)) and reconstruction efficiencies (\(\epsilon\)). All the uncertainties here are statistical only.

Mode	\(N_{\text{obs}}\)	\(\epsilon(\%)\)
\(\Omega_c^0\to\pi^+\Omega(2012)^{-}\to\pi^+K^-\Xi^0\)	28.3 ± 8.9	3.59
\(\Omega_c^0\to\pi^+\Omega(2012)^{-}\to\pi^+K_S^0\Xi^-\)	17.9 ± 8.9	7.68
\(\Omega_c^0\to\pi^+K^-\Xi^0\)	279 ± 27	3.41
\(\Omega_c^0\to\pi^+K_S^0\Xi^-\)	317 ± 32	7.41

From these fitted signal yields and reconstruction efficiencies, and the intermediate state branching fractions of \(\Omega_c^0\to\pi^+\Omega(2012)^{-}\to\pi^+K^-\Xi^0\) and \(\Omega_c^0\to\pi^+\Omega(2012)^{-}\to\pi^+K_S^0\Xi^-\) decays [1], the branching fraction ratio \(B(\Omega(2012)^{-}\to K^-\Xi^0)/B(\Omega(2012)^{-}\to K^0\Xi^-)\) is determined to be 1.19 ± 0.70(stat.), which is consistent with the expectation of isospin symmetry and the previously measured value of 1.2 ± 0.3 by Belle [2].

Assuming \(B(\Omega(2012)^{-}\to K^-\Xi^0) = B(\Omega(2012)^{-}\to K^0\Xi^-)\) based on isospin symmetry, the ratio of the expected signal yields of \(\Omega_c^0\to\pi^+\Omega(2012)^{-}\to\pi^+K^-\Xi^0\) and \(\Omega_c^0\to\pi^+\Omega(2012)^{-}\to\pi^+K_S^0\Xi^-\) decays is 57.1%:42.9% after considering the products of detection efficiency and intermediate-state branching fractions \(\epsilon_i B_i\) \((i = 1, 2)\), where \(\epsilon_1\) and \(\epsilon_2\) are the corresponding detection efficiencies, \(B_1 = B(\Xi^0 \to \Lambda\pi^0) \times B(\pi^0 \to \gamma\gamma)\), and \(B_2 = B(\Xi^- \to \Lambda\pi^-) \times B(K^0 \to K_S^0) \times B(K_S^0 \to \pi^+\pi^-)\) [1]. We perform a 2D unbinned...
maximum-likelihood simultaneous fit to $M((K\Xi)^-)\)$ and $M(\pi^+\Omega(2012)^-)\)$ distributions, where the ratio of the expected signal yields of two isospin modes is fixed to 57.1\%:42.9\%, and the functions used to describe the signal and background shapes are parameterized as before. The 1D projections of $M((K\Xi)^-)\)$ in the Ω^0_c signal region and $M(\pi^+\Omega(2012)^-)\)$ in the $\Omega(2012)^-$ signal region from the 2D simultaneous fit are shown in Fig. 4, corresponding to a total signal yield of 46.6 ± 12.3. The statistical significance of the $\Omega(2012)^-$ signal in $\Omega^0_c \rightarrow \pi^+(\Omega(2012)^-) \rightarrow \pi^+(K\Xi)^-$ decay is 4.2\$. The fitting ranges and background shapes are the dominant systematic uncertainties for the estimate of the signal significance. If the background shapes are replaced by second-order polynomial functions and fitting ranges are changed, the $\Omega(2012)^-$ signal significance in the simultaneous fit is reduced to 4.2\$ corresponding to a total signal yield of 44.7 ± 12.4. We take this value as the signal significance with systematic uncertainties included.

![Graph](image)

FIG. 4: The 1D projections of the 2D simultaneous fit of (a) $M((K\Xi)^-)$ and (b) $M(\pi^+\Omega(2012)^-)$ distributions in data. All components are indicated in the legends and described in the text.

The $\Omega(2012)^-$ was first observed in data taken at the $\Upsilon(1S)$, $\Upsilon(2S)$, and $\Upsilon(3S)$ resonances [2]. In order to make a statistically independent check of its existence, we exclude these data sets from our sample and repeat the fitting procedure used to produce Fig. 4. The total number of signal events of $\Omega^0_c \rightarrow \pi^+\Omega(2012)^- \rightarrow \pi^+(K\Xi)^-$ is 38.9 ± 11.2 in this reduced data sample which corresponds to an integrated luminosity of 949.5 fb^{-1}, and the statistical significance of the signal is 4.2\$. We prefer to use the entire data set for our investigation of the branching fractions of the Ω^0_c. The ratio of the branching fraction of $\Omega^0_c \rightarrow \pi^+\Omega(2012)^- \rightarrow \pi^+(K\Xi)^-$ relative to that of $\Omega^0_c \rightarrow \pi^+\Omega^-$ decay is also calculated from the following formula

$$R_3 = \frac{B(\Omega^0_c \rightarrow \pi^+\Omega(2012)^-) \times B(\Omega(2012)^- \rightarrow (K\Xi)^-)}{B(\Omega^0_c \rightarrow \pi^+\Omega^-)} = \frac{N_{\text{obs}}^{\pi^+\Omega^+ \Omega^-}}{N_{\text{obs}}^{\pi^+\Omega^+ \Omega^-} \times (f_1 \times \epsilon_1 \times B_1 + f_2 \times \epsilon_2 \times B_2)} = 0.220 \pm 0.059(\text{stat.}) \pm 0.035(\text{syst.})$$

where $N_{\text{obs}}^{\pi^+\Omega^+ \Omega^-}$ is the fitted signal yield from the simultaneous fit in the decay $\Omega^0_c \rightarrow \pi^+\Omega(2012)^- \rightarrow \pi^+(K\Xi)^-\); ϵ_1 and ϵ_2 are the corresponding reconstruction efficiencies from the signal MC simulations; according to isospin symmetry, $f_1 = B(\Omega(2012)^- \rightarrow K^-\Xi^0)/B(\Omega(2012)^- \rightarrow (K\Xi)^-) = 0.5$, $f_2 = B(\Omega(2012)^- \rightarrow K^0\Xi^-)/B(\Omega(2012)^- \rightarrow (K\Xi)^-) = 0.5$; B_1 and B_2 are the corresponding products of secondary branching fractions defined above; $N_{\text{obs}}^{\pi^+\Omega^-}$ is 691 ± 29 and $\epsilon_{\pi^+\Omega^-} = 10.08\%$ are the number of signal events and detection efficiency of $\Omega^0_c \rightarrow \pi^+\Omega^-$ decay taken from Ref. [30].

There are several sources of systematic uncertainties for the measurements of branching fraction ratios R_1, R_2, and R_3 as listed in Table II, including detection-efficiency-related uncertainties, the statistical uncertainty of the MC efficiency, the modeling of MC event generation, the branching fractions of intermediate states, the $\Omega(2012)^-$ resonance parameters, the uncertainty in the Ξ^0 mass (as evaluated from the difference between the reconstructed value and the world average value), as well as the overall fit uncertainty.

The detection-efficiency-related uncertainties include those for tracking efficiency (0.35\% per track), PID efficiency (1.2\% per kaon, 1.0\% or 1.2\% per pion depending on the specific decay mode), K^0_S selection efficiency (1.7\%), as well as π^0 reconstruction efficiency (2.25\%). For the measurements of R_1 and R_2, the detection-efficiency-related sources can cancel. For the measurement of R_3, the common sources of systematic uncertainties such as Λ selection cancel; to determine the total detection-efficiency-related uncertainties, the above individual uncertainties from different reconstructed modes ($\sigma_{(i/\pi^+\Omega^-)}$) are added using the following standard error propagation formula

$$\sigma_{\text{DER}}^R = \sqrt{\sigma_{R_i}^2 + \sigma_{R_j}^2}$$

where W_i ($W_1 = f_1 \times \epsilon_1 \times B_1$, $W_2 = f_2 \times \epsilon_2 \times B_2$) is the weight factor for the i-th $(i = 1, 2)$ mode of $\Omega^0_c \rightarrow \pi^+\Omega(2012)^- \rightarrow \pi^+(K\Xi)^-$ decays. Assuming these sources are independent and adding them in quadrature, the final uncertainty related to the reconstruction efficiency in the measurement of R_3 is 2.2\%.

The MC statistical uncertainties are all 1.0\% or less. We assume that both $\Omega^0_c \rightarrow \pi^+\Omega(2012)^-$ and $\Omega(2012)^- \rightarrow K^-\Xi^0/K^0\Xi^-\) decays are isotropic in the rest frame of the parent particle, and a phase space model is used to generate signal events. Since the signal efficiency is independent of the decay angular distributions of π^+ in Ω^0_c C.M. and K^-/K^0_S in $\Omega(2012)^-$ C.M., the model-dependent uncertainty has negligible effect on efficiency. For the measurement of R_3, the uncertainties from the $B(\Xi^0 \rightarrow \Lambda\pi^0)$, $B(\Xi^- \rightarrow \Lambda\pi^-)$, $B(K^0_S \rightarrow \pi^+\pi^-)$, and $B(\pi^0 \rightarrow \gamma\gamma)$ are 0.012\%, 0.035\%, 0.072\%, and 0.035\% [1], respectively, which are small and neglected. The uncertainties related to the mass and width of $\Omega(2012)^-$ resonance are considered
as different sources, and are estimated by changing the values of resonance mass and width by ±1σ and refitting [2]. The largest differences compared to the nominal fit results are added in quadrature as systematic uncertainty. The uncertainty in the Ξ(0) mass is estimated by comparing the signal yields of Ω(0) → π+Ω(125)− → π+K−Σ0/π+(KΣ)− for the case where the reconstructed Σ0 mass is fixed at the found peak value versus the case where the mass is fixed at the nominal mass [1].

The systematic uncertainties associated with the fit range, background shape, and mass resolution are considered as follows. To consider the uncertainty due to mass resolution, we enlarge the mass resolution of signal by 10% and take the difference in the number of signal events as the systematic uncertainty. The order of the background polynomial is replaced by a higher-order Chebyshev function and the fit range is changed. The largest deviation compared to the nominal fit results is taken as the systematic uncertainty. For each mode, all the above uncertainties are summed in quadrature to obtain the total systematic uncertainty due to the fit. Finally, the fit uncertainties of signal and reference modes are added in quadrature as total fit uncertainties in the measurements of branching fraction ratios.

We estimate the uncertainty in R3 associated with the ratio of the expected signal yields of the Ω(0) → π+Ω(125)− → π+K−Σ0 and Ω(0) → π+Ω(125)− → π+KΣ− decays by constraining the ratio of B(Ω(125)− → K−Σ0);B(Ω(125)− → KΣ−) to 1.2:1 [2] rather than taking the value of 1:1 which assumes exact isospin symmetry. The resultant change in R3 is 2.3%, which is taken as the systematic uncertainty.

Assuming all the sources are independent and adding them in quadrature, the total systematic uncertainties are obtained. All the systematical uncertainties are summarized in Table II.

TABLE II: Relative systematic uncertainties (%) on the measurements of R1, R2, and R3.

Sources	R1	R2	R3
Detection-efficiency-related	-	-	2.2
MC statistics	1.0	1.0	1.0
Ω(125) resonance parameters	14.3	9.2	12.8
Ξ(0) mass	4.2	-	3.2
Fit	10.4	9.9	7.8
Ratio	-	-	2.3
Sum in quadrature	18.2	13.6	15.7

In summary, using the entire data sample of 980 fb−1 integrated luminosity collected with the Belle detector, we search for the Ω(125)− resonance in Ω(0) → π+Ω(125)− → π+K−Σ0, the only evidence for the Ω(125)− in the K−Σ0 invariant mass spectrum with a statistical significance of 4.0σ. In Ω(0) → π+Ω(125)− → π+KΣ−, a marginal Ω(125)− signal can be seen in the KΣ− invariant mass spectrum with a statistical significance of 2.3σ. We perform a 2D simultaneous fit to the two isospin decay modes, and the significance of Ω(125)− in Ω(0) → π+Ω(125)− → π+(KΣ)− is 4.2σ, including the systematic uncertainties. The ratios of the branching fractions B(Ω(0) → π+Ω(125)− → K−Σ0)/B(Ω(0) → π+K−Σ0), B(Ω(0) → π+Ω(125)− → K0Σ−)/B(Ω(0) → π+K0Σ−), and B(Ω(0) → π+Ω(125)− → KΣ−)/B(Ω(0) → π+Ω(125)−) are measured to be (9.6 ± 3.2(stat.) ± 1.8(syst.))%, (5.5 ± 2.8(stat.) ± 0.7(syst.))%, and 0.220 ± 0.059(stat.) ± 0.035(syst.), respectively.

We thank the KEKB group for the excellent operation of the accelerator; the KEK cryogenics group for the efficient operation of the solenoid; and the KEK computer group, and the Pacific Northwest National Laboratory (PNNL) Environmental Molecular Sciences Laboratory (EMSL) computing group for strong computing support; and the National Institute of Informatics, and Science Information NETwork 5 (SINET5) for valuable network support. We acknowledge support from the Ministry of Education, Culture, Sports, Science, and Technology (MEXT) of Japan, the Japan Society for the Promotion of Science (JSPS), and the Tau-Lepton Physics Research Center of Nagoya University; the Australian Research Council including grants DP180102629, DP170102389, DP170102204, DP150103061, FT130100303; Austrian Science Fund (FWF); the National Natural Science Foundation of China under Contracts No. 11435013, No. 11475187, No. 11521505, No. 11575017, No. 11675166, No. 11705209; No. 11761141009; No. 11975076; No. 12042509; Key Research Program of Frontier Sciences, Chinese Academy of Sciences (CAS), Grant No. QYZDJ-SSW-SLH011; the CAS Center for Excellence in Particle Physics (CCEPP); the Shanghai Pujiang Program under Grant No. 18PJ1401000; the Ministry of Education, Youth and Sports of the Czech Republic under Contract No. LTT17020; the Carl Zeiss Foundation, the Deutsche Forschungsgemeinschaft, the Excellence Cluster Universe, and the VolkswagenStiftung; the Department of Science and Technology of India; the Istituto Nazionale di Fisica Nucleare of Italy; National Research Foundation (NRF) of Korea Grant Nos. 2016R1D1A1B01010135, 2016R1D1A1B02012900, 2018R1A2B3003643, 2018R1A6A1A06024970, 2018R1D1A1B07047294, 2019K1A3A7A0903840, 2019R1I1A3A01058933; Radiation Science Research Institute, Foreign Large-size Research Facility Application Supporting project, the KEK computer group, and the Pacific Northwest National Laboratory (PNNL) Environmental Molecular Sciences Laboratory (EMSL) computing group for valuable network support. We acknowledge support from the Ministry of Education, Culture, Sports, Science, and Technology (MEXT) of Japan, the Japan Society for the Promotion of Science (JSPS), and the Tau-Lepton Physics Research Center of Nagoya University; the Australian Research Council including grants DP180102629, DP170102389, DP170102204, DP150103061, FT130100303; Austrian Science Fund (FWF); the National Natural Science Foundation of China under Contracts No. 11435013, No. 11475187, No. 11521505, No. 11575017, No. 11675166, No. 11705209; No. 11761141009; No. 11975076; No. 12042509; Key Research Program of Frontier Sciences, Chinese Academy of Sciences (CAS), Grant No. QYZDJ-SSW-SLH011; the CAS Center for Excellence in Particle Physics (CCEPP); the Shanghai Pujiang Program under Grant No. 18PJ1401000; the Ministry of Education, Youth and Sports of the Czech Republic under Contract No. LTT17020; the Carl Zeiss Foundation, the Deutsche Forschungsgemeinschaft, the Excellence Cluster Universe, and the VolkswagenStiftung; the Department of Science and Technology of India; the Istituto Nazionale di Fisica Nucleare of Italy; National Research Foundation (NRF) of Korea Grant Nos. 2016R1D1A1B01010135, 2016R1D1A1B02012900, 2018R1A2B3003643, 2018R1A6A1A06024970, 2018R1D1A1B07047294, 2019K1A3A7A0903840, 2019R1I1A3A01058933; Radiation Science Research Institute, Foreign Large-size Research Facility Application Supporting project, the Global Science Experimental Data Hub Center of the Korea Institute of Science and Technology Information and KREONET/GLORIAD; the Polish Ministry of Science and Higher Education and the National Science Center; the Ministry of Science and Higher Education of the Russian Federation, Agreement 14.W03.31.0026; the Slovenian Research Agency; Ikerbasque, Basque Foundation for Science, Spain; the Swiss National Science Foundation; the Ministry of Education and the
Ministry of Science and Technology of Taiwan; and the United States Department of Energy and the National Science Foundation.

[1] P. A. Zyla et al. (Particle Data Group), Prog. Theor. Exp. Phys. 2020, 083C01 (2020).
[2] J. Yelton et al. (Belle Collaboration), Phys. Rev. Lett. 121, 052003 (2018).
[3] T. M. Aliev, K. Azizi, Y. Sarac, and H. Sundu, Phys. Rev. D 98, 014031 (2018).
[4] T. M. Aliev, K. Azizi, Y. Sarac, and H. Sundu, Eur. Phys. J. C 78, 894 (2018).
[5] Y. H. Lin and B. S. Zou, Phys. Rev. D 98, 056013 (2018).
[6] M. P. Valderrama, Phys. Rev. D 98, 054009 (2018).
[7] Y. Huang, M. Z. Liu, J. X. Lu, J. J. Xie, and L. S. Geng, Phys. Rev. D 98, 076012 (2018).
[8] R. Pavao and E. Oset, Eur. Phys. J. C 78, 857 (2018).
[9] M. V. Polyakov, H. D. Son, B. D. Sun, and A. Tandogan, Phys. Lett. B 792, 315 (2019).
[10] S. Jia et al. (Belle Collaboration), Phys. Rev. D 100, 032006 (2019).
[11] N. Ikeno, G. Toledo, and E. Oset, Phys. Rev. D 101, 094016 (2020).
[12] J. X. Lu, C. H. Zeng, E. Wang, J. J. Xie, and L. S. Geng, Eur. Phys. J. C 80, 361 (2020).
[13] X. J. Liu, H. X. Huang, J. L. Ping, and D. Y. Chen, Phys. Rev. C 103, 025202 (2021).
[14] A. Valcarce, H. Garcilazo, F. Fernandez and P. Gonzalez, Rept. Prog. Phys. 68, 965 (2005) and references therein.
[15] F. Wang, G. H. Wu, L. J. Teng and J. T. Goldman, Phys. Rev. Lett. 69 2901, (1992).
[16] G. h. Wu, J. L. Ping, L. J. Teng, F. Wang and J. T. Goldman, Nucl. Phys. A 673, 279 (2000).
[17] C. H. Zeng, J. X. Lu, E. Wang, J. J. Xie, and L. S. Geng, Phys. Rev. D 102, 076009 (2020).
[18] A. Abashian et al. (Belle Collaboration), Nucl. Instrum. Methods Phys. Res., Sect. A 479, 117 (2002).
[19] J. Brodzicka et al., Prog. Theor. Exp. Phys. 2012, 04D001 (2012).
[20] S. Kurokawa and E. Kikutani, Nucl. Instrum. Methods Phys. Res., Sect. A 499, 1 (2003), and other papers included in this volume.
[21] T. Abe et al., Prog. Theor. Exp. Phys. 2013, 03A001 (2013), and references therein.
[22] D. J. Lange, Nucl. Instrum. Methods Phys. Res., Sect. A 462, 152 (2001).
[23] T. Sjöstrand et al., Comput. Phys. Commun. 135, 238 (2001).
[24] R. Brun et al., GEANT 3: user’s guide Geant 3.10, Geant 3.11, CERN Report No. DD/EE/84-1, 1984.
[25] X. Y. Zhou, S. X. Du, G. Li, and C. P. Shen, Comput. Phys. Commun. 258, 107540 (2021).
[26] E. Nakano, Nucl. Instrum. Methods Phys. Res., Sect. A 494, 402 (2002).
[27] M. Feindt and U. Kerzel, Nucl. Instrum. Methods Phys. Res., Sect. A 559, 190 (2006).
[28] H. Nakano, Ph.D Thesis, Tohoku University (2014) Chapter 4, unpublished, https://tohoku.repo.nii.ac.jp/?action=repository_view_main&active_action=repository_view_main_item_detail&item_id =70563&item_no=1&page_id=33&block_id=38.
[29] G. Punzi, eConf C030908, MODT002 (2003).
[30] J. Yelton et al. (Belle Collaboration), Phys. Rev. D 97, 032001 (2018).