Full Length Research Paper

Inappropriate antibacterial use in layer poultry farms in Gombe Metropolis, Northeast Nigeria, may constitute public health challenges

Paul Leonard Mela¹*, Balogun Sulayman Tunde¹, Shamaki Bala Usman²

¹Department of Clinical Pharmacology and Therapeutics, Faculty of Basic Clinical Sciences, College of Medical Sciences, University of Maiduguri, Nigeria.
²Department of Veterinary Pharmacology and Toxicology, Faculty of Veterinary Medicine, University of Maiduguri, Nigeria.

Received 12 March, 2021; Accepted 3 June, 2021

Antibacterial is extensively used in poultry to enhance productivity. Inappropriate use could yield unsafe edible poultry products. The study aimed to investigate the pattern of antibacterial use in commercial layer poultry farms in Gombe metropolis. Semi-structured questionnaire was designed and validated. The questionnaire was administered to 38 layer poultry farms to obtain information on poultry farm practices. Data was analysed by inferential statistics using SPSS (Version 20). Of the 38 administered questionnaires, 33 (86.8%) were returned and analysed. Most farms had over 500 birds (69.7%, 23/33) and Isa Brown was the most predominant strain (x²= 63.11, df=3, p< 0.05). Most farms conduct routine vaccination (93.9%, p<0.05) and use mixed formulations (78.6%, p<0.05) for prophylaxis (87.9%, p<0.05). Seven of the nine used formulations (77.8%, p<0.05) contain unapproved drugs. Farmers were aware of withdrawal period (84.8%) and the consequences of residues (60.6%) but most (75.8%) do not observe withdrawal period. The inappropriate antibacterial use in layer poultry in Gombe was high and oxytetracycline was the most predominant. Such practice could yield unsafe table eggs with dire health consequences.

Key words: Antibacterial, residues, public health risks, layer poultry farms, table eggs.

INTRODUCTION

Poultry egg production in Nigeria provides rich and affordable source of vital dietary remedy and contributes to national food security (Braun, 2000; FAO, 2008). In Gombe, Hamidu et al. (2004) reported that 90% of layer poultry farmers practice the intensive system (using locally made cages) and the mean flock size was 103 layers. Over a decade later, poultry farms have witnessed significant expansion in flock size and output. Antibacterial agents used in animals are quite similar to those for human use. However, some human-licensed drugs which are not indicated for use on the label (extra label) are being used in animals in many countries.
Antibacterial drugs have invaluable role in animal husbandry (especially intensive poultry farming), with remarkable impact on improving productivity and feed efficiency. The use of antibacterial drugs has enabled farmers to produce animal-derived foods at relatively lower cost (Tollefson and Miller, 2000; Singer and Hofacre, 2006). Approximately 80% of food-producing animals receive one form of medication or the other for most or part of their lives (Tollefson and Miller, 2000; Pavlov et al., 2008). The continued extensive use of antibacterial on animals has increased the selection pressure for bacteria resistance. Most resistant pathogenic bacteria are of animal origin (Mellon et al., 2001; Inglis et al., 2005). Antibacterial resistance poses the main threat to antibacterial chemotherapy. With the rapid rate at which bacteria gain resistance as against the relatively slow rate at which newer antibacterial drugs are found, experts have warned of a possible post-antibacterial era should the ugly trend not curtailed (Alanis, 2005; Falagas and Bliziotis, 2007). Besides the development of antibacterial resistance, inappropriate use of antibacterial on food-producing animals may also give rise to edible animal products with toxic levels of antibacterial residues. In poultry, many medications are labelled for use in other birds but only few are approved in laying hens (Singer and Hofacre, 2006; Castanon, 2007). This is because the clearance of drug residues from treated laying hen usually requires several weeks and explains why eggs may be laid with drug residues (Goetting et al., 2011). In developing countries including Nigeria, reports have shown widespread and inappropriate use of antibacterial on farm animals without recourse to veterinary prescription (Sirdar et al., 2012; Darwish et al., 2013). For example, the use of Nitrofurans in all food producing animals had been banned by the National Agency for Food and Drug Administration and Control (NAFDAC) and WHO for their carcinogenic and mutagenic effects but are still being used in poultry in many Nigerian states (Kabir et al., 2004; Ezenduka et al., 2011; Omeiza et al., 2012; Geidam et al., 2012; Galadima, 2016). Commercial poultry farming activities in Gombe has been on the increase over the years. The intensive system of poultry farming is common with insufficient biosecurity measures and birds are prone to infections. Antibacterial drugs are commonly used to control infections and improve yield. Veterinary drugs are readily available and easily accessible in cheap formulations usually sold without veterinary prescriptions. Although veterinary regulations are in place, enforcement is very poor.

In spite of reports on the increased use of antibacterial drugs in animal production, there is inadequate information on the pattern of antibacterial use in Gombe metropolis. Hence, this study will provide base-line information on antibacterial use pattern in layer poultry farms in the area.

MATERIALS AND METHODS

Study area

The study was done in Gombe metropolis, the capital of Gombe State. Gombe is situated on latitude 10° 15’ N and longitude 11° 10’ E North-eastern Nigeria and covers a total area of 20,265 km². Gombe metropolis covers Gombe Local Government Area and parts of Akko Local Government Area of the State. It lies at a level of 460 m (1509 feet) above sea level and has two distinct climates comprising the dry season (November to March) and the rainy season (April to October) with a mean annual rainfall and temperature of 850 mm and about 32°C, respectively (Labaran, 2008; Ikusenmoran et al., 2016). According to the National Population Census (2006), the total human population of Gombe Metropolis was 368,040.

Data collection

A semi-structured questionnaire was designed, validated and used for data collection. Reliability test was also done prior to the administration of the questionnaire. The questionnaire had two sections, A and B. Section A had six questions on the farm’s basic information whereas section B had twenty four general questions on the farm’s poultry practice and antibacterial use. The respondents comprised farm owners and their respective management staff and/or farm veterinarians. The questionnaire sought among others, information on the nature and approval status of the antibacterial use, purpose of use, use of medicated feeds, strains of birds, knowledge and observance of antibacterial withdrawal period, awareness of antibacterial drug residues in table eggs and awareness of the public health risks related to the consumption of eggs with drug residues. A total of thirty eight layer poultry farms were randomly selected and the questionnaires were administered to the farm management staff and/or farm veterinarians. Information was also extracted from empty sachets and bottles of used antibacterial medications collected from the farm premises.

Data analyses

The data collected was compiled and analysed using SPSS statistical tools (IBM® SPSS® Statistics version 20). Chi-square was used to compare percentages. Results were presented using descriptive statistics (frequency and percentage). Differences with p<0.05 were considered statistically significant.

RESULTS

A total of 33 farms out of the 38 farms sampled returned completed questionnaires and they were used for the subsequent analyses. The basic description of the farms indicates that most of the studied farms had over 500 birds (69.7%, p<0.05), keep ISA brown strain (84.8%, p<0.05), conduct routine vaccination (93.9%, p<0.05) and use mixed antibacterial formulations (78.6%, p<0.05) for prophylaxis (87.9%, p<0.05). In addition, the management is aware of withdrawal period (84.8%), drug residues in...
Table 1. Basic description of the selected layer poultry farms in Gombe metropolis.

Variable	Frequency (%)
Farm size	
≤500 birds	10 (30.3)
> 500 birds	23 (69.7)
Strain of birds	
ISA brown	28 (84.8)
Shika Brown	2 (6.1)
Brown pullet	2 (6.1)
Others	1 (3.0)
Vaccination	
Yes	31 (93.9)
No	2 (6.1)
Prophylactic Antibiotic use	
Yes	29 (87.9)
No	4 (12.1)
Antibacterial formulation used	
Single	6 (21.4)
Mixed	22 (78.6)
Awareness of Antibiotic withdrawal period	
Yes	28 (84.8)
No	5 (15.2)
Observance of required withdrawal period	
Yes	8 (24.2)
No	25 (75.8)
Awareness of antibacterial residue in table egg	
Yes	24 (72.7)
No	9 (27.3)
Awareness of Public Health risk of antibacterial residues	
Yes	20 (60.6)
No	13 (39.4)
Visitation/Inspection by monitoring Team	
Yes	0 (0.0)
No	33 (100.0)

egg (72.7%), public health risk of antibacterial residues (60.6%) but do not observe required withdrawal period (75.8%) (Table 1).

Furthermore, the survey revealed that nine antibacterial formulations (Table 2) belonging to 7 antibacterial classes are used in the selected farms with the tetracyclines (84.8%) and nitrofurans (6.1%) being the highest and least, respectively (Figure 1). Seven of the nine formulations (77.8%) contain unapproved drug (Table 2) as against 2 approved formulations (22.2%, p<0.05). Two
Table 2. Codex regulatory status of antibacterial use in layer poultry farms in Gombe metropolis.

Antibacterial composition	Frequency (%)	Status
Oxytetracycline,**Chloramphenicol and Neomycin	15 (45.5)	Unapproved
Oxytetracycline, Erythromycin, *Streptomycin and Colistin	2 (6.1)	Unapproved
Oxytetracycline	6 (18.2)	Approved
Oxytetracycline and **Furaltadone	2 (6.1)	Unapproved
Oxytetracycline and Neomycin	1 (3)	Approved
*Doxycycline	7 (21.2)	Unapproved
*Doxycycline and Tylosin	5 (15.2)	Unapproved
*Doxycycline and *Gentamicin	5 (15.2)	Unapproved
*Enrofloxacin	4 (12.1)	Unapproved

*---Unapproved antibacterial in layer poultry, **--- Prohibited antibacterial in layer poultry.

Figure 1. The prevalence of antibacterial use in layer poultry farmers in Gombe metropolis.

of the nine formulations (22.2%) contain prohibited drugs. Oxytetracyline is the most frequently used drug (84.8%) and is often combined with other drugs like chloramphenicol, neomycin, erythromycin, streptomycin and furaltadone (Table 2).

DISCUSSION

The present study revealed that majority (69.7%) of the surveyed farms had layer birds between five hundred to a few thousand and such farms are classified as small-medium scale commercial farms (Abimiku, 2008; FAO, 2008). This indicates a significant growth on the previous mean flock size of 103 layer birds reported by Hamidu et al. (2004) in the same study area. Increased antibacterial used in large scale farming across some Nigerian states and African countries have been reported (Fagbamila et al., 2010; Sirdar et al., 2012; Mubito et al., 2014). Prophylactic use of antibacterial in poultry helps to improve productivity and serves as remedy to deficient biosecurity measures in farms (El-Nasir et al., 2012; Omeiza et al., 2012; Mubito et al., 2014). Possible reasons for tetracyclines preference as observed in this study might be due to its broad spectrum of activity, efficacy, availability and relative affordability within the study area. Similar studies have reported tetracyclines as the most widely used antibacterial in poultry in Enugu (Ezenduka, 2014), in Kaduna (Kabir et al., 2004), in Jos (Fagbamila et al., 2010), in Maiduguri (Geidam et al., 2012; Galadima, 2016) and in Ibadan (Olatoye and Saraye, 2012). Similar findings were observed in other African countries by El-Nasir et al. (2012) and Sirdar et al. (2012) in Sudan, Mitema et al. (2001) in Kenya, Nonga...
et al. (2010) and Mubito et al. (2014) in Tanzania, and in the Middle East by Al-Ghamdi et al. (2000) and Al-Wabel (2011) in Saudi Arabia and by Al-Mazeedi et al. (2009) in Kuwait. In spite of the regulations on veterinary drug use in poultry, the unapproved and prohibited antibacterial still constituted a larger proportion of the antibacterial used in the surveyed farms. This is similar to a report by Olatoye et al. (2012) who observed the continued use of chloramphenicol in poultry farms in Ibadan. Many antibacterial used in the farms (Fluoroquinolone, Gentamicin, Doxycycline and Streptomycin) are not approved for layer poultry because of the slow clearance of their residues in laying hens (Goetting et al., 2011). Other antibacterial used (Furaltadone and Chloramphenicol) are prohibited in layer poultry because the safe level of their residues couldn’t be established (Davis et al., 2009). This portends a serious public health risk regarding the safety of table eggs produced in the study area. Chloramphenicol use has been banned for its detrimental health effects including bone marrow toxicity, reproductive disorders and hepatotoxicity (Settepani, 1984; WHO, 1988; Wältner-Toews and McEwen, 1994; Pavlov et al., 2008; Nisha, 2008). Owing to its adverse effect, chloramphenicol was withdrawn almost immediately after licensing. Its major toxicity is dose-dependent bone marrow toxicity with significant reduction in all the cellular components of the blood. The toxic effect is more pronounced in infants resulting in idiosyncratic aplastic anaemia and cardiovascular collapse (Nisha, 2008). Similarly, furaltadone (a nitrofururan) was still in use in some (6.1%) layer poultry farms in Gombe despite prohibition for its carcinogenic and mutagenic effects (Pavlov et al., 2008; Nisha, 2008). In addition, furaltadone residues may result in transmission of antibacterial resistant organisms to humans and failure of chemotherapy. The residues of furaltadone and oxytetracycline can trigger immunopathological reactions such as autoimmune and carcinogenic responses (Nisha, 2008). Similar reports on nitrofurans use in poultry farms in Enugu State (Ezenduka et al., 2011), Kaduna (Omeiza et al., 2012) and Maiduguri (Geidam et al., 2012; Galadima, 2016). In Nigeria, the National Agency for Food and Drug Administration and Control has placed a ban on the use of chloramphenicol and nitrofurans in poultry and livestock since 1996 (NAFDAC, 1996). Toxic effect of the tetracyclines residues include gastrointestinal disturbances, teratogenic risk to the foetus, allergic reactions, development of resistant pathogens for human and animals, permanent discoloration of teeth of young children and immunopathological effects (Shahid et al., 2007; Nisha, 2008).

The observance of antibacterial withdrawal period in this study was low (24.2%) in spite of the high (84.8%) level of awareness. This is in contrast with some studies that attributed the non-observance of antibacterial withdrawal periods to ignorance of the presence of residues in edible eggs and their health effects (El-Nasir et al., 2012; Sirdar et al., 2012; Galadima, 2016). However, it is similar to report from Jos by Fagbamila et al. (2010) who observed high (87.1%) level of awareness of antibacterial residues in eggs and their health implications. The poor observance of withdrawal periods in the present study could be attributed to the absence of monitoring by the state to regulate the activities of layer poultry farmers. Since the regulations on poultry farming activities are not enforced, farmers’ excesses and inappropriate practices are inevitable to maximize yields and profit.

The study concludes that the use of antibacterial in layer poultry was high (mainly for prophylaxis) and oxytetracycline was the most predominantly used. Inappropriate use of antibacterial was common with poor observance of withdrawal periods and the use of unapproved and prohibited antibacterial. The inappropriate use of antibacterial could lead to the emergence and transmission of resistant bacteria, and egg produce with toxic levels of drug residues. The continued use of unapproved and prohibited antibacterial portends toxicological consequences on public health. The study recommends adequate enforcement of the regulations on appropriate farm practices by all concerned stakeholders.

CONFLICT OF INTERESTS

The authors have not declared any conflict of interests.

ACKNOWLEDGEMENT

The authors appreciate all the participants especially Veterinarians (in the field) and regulatory bodies that provided valuable information during the study.

REFERENCES

Abimiku JY (2008). An Overview of the early impact of highly pathogenic avian influenza (HPAI) H5NI in Nigeria. Department of Agricultural Economics, University of Agriculture Makurdi.

Alanis AJ (2005). Resistance to antibiotics: Are we in the post antibiotic era? Archives of medical research 36(6):697-705.

Al-Ghamdi MS, Al-mustafa ZH, El-Morsy F, Al-Faky A, Haider I, Essa H (2000). Residues of tetracycline compounds in poultry products in the eastern province of Saudi Arabia. Public Health 114(4):300-304.

Al-Mazeedi HM, Abbas AB, Alomirah HF, Al-Jouhar WY, Al-Mufty SA, Ezereal MM, Al-Owaish RA (2009). Screening of tetracycline residues in food products of animal origin in the state of kuwait using Charm II radio-immunoeassay and LC/MS/MS methods. Journal of feed additives and contaminants 25:1-11.

AL-Wabel NA (2011). Monitoring of tetracycline residues in table eggs collected from Qassim region, KSA. Journal of Agriculture and Veterinary Sciences 4(2):109-123.

Braun P (2000). Freshness of table eggs during storage. World Poultry 16(10):41-42.
Castanon JIR (2007). History of the use of antibiotics as growth promoter in European poultry feeds. Poultry Science 86(11):2466-2471.

Darwish SW, Elsaid AE, Mohamed TEA, Yoshinori I, Shouta N, Mayumi I (2013). Antibiotic residues in food: The African scenerio. Japanese Journal of Veterinary Research 61(Supplement):S13-S22.

Davis JL, Smith GW, Baynes RE, Tell LA, Webb AI, Riviere JE (2009). Update on drugs prohibited from extra label use in food animals. Journal of American Veterinary Medical Association 235(5):528-534.

El-Nasir A, Salman M, Osman AM (2012). Detection of antibiotic residues in table eggs using disc assay and premi test in Khartoum state, Sudan. Journal of Veterinary medicine and Animal production 3(2):16-27.

Ezenduka EV, Oboegbulem SI, Nwanta JA, Onunkwo JI (2011). Prevalence of antimicrobial residues in raw table eggs from farms and retail outlets in Enugu State, Nigeria. Tropical Animal Health use in livestock. Union of concerned Scientists, Cambridge, MA.

Falagas ME, Bliziotis IA (2007). Pandrug resistant gram-negative bacteria: The dawn of the post antibiotic era. International Journal of Antimicrobial Agents 29(6):630-636.

Food and Agriculture Organization (FAO) (2008). Assessment of the importance. American Journal of Research communication 2(4):51-73.

Geidam YA, Ibrahim UI, Grema HA, Sanda K A, Suleiman A, Manzo DL (2004). Economic analysis of the human health impact. Journal of AOAC International 83(1):245-256.

Ghelardini TA, Ibrahim UI, Grema HA, Sanda KA, Suleiman A, Manzo DL (2012). Pattern of antibiotic sales by drug stores and usage in poultry farms: a questionnaire-based survey in Maiduguri, Northeastern Nigeria. Journal of Animal and Veterinary Advances 11(6).

Goetting V, Lee KA, Tell LA (2011). Pharmacokinetics of veterinary drugs in Laying hens and residue in eggs; a review of the Literature. Journal of Veterinary Pharmacology Therapeutics 34(6):521-556.

Hamidu BM, Sani RM, Mohammed A (2004). Economic analysis of small scale egg production in Gombe LGA, Gombe State. African Journal online (http://www.ajol.info), Accessed on October 9, 2016, by 2 pm.

Ikusemoran M, Bala BW, Lazarus AM (2016). Geospatial techniques for the terrain analysis of Gombe State, Nigeria. International Journal of Geography, Environment and Earth science 6(1):1-20, ISSN:2454-7351.

Inglis GD, Mccallister TA, Busz HW, Yanke LJ, Morck DW, Olson LE, Read RR (2005). Effect of sub-therapeutic administration of antimicrobial to beef cattle on the prevalence of antimicrobial resistance in Compylobacter jejuni and Compylobacter hyointestinalis. Applied and Environmental Microbiology 71(7):3872-3881.

Kabir J, Umoh VJ, Audu-Oko E, Kwaga JKP (2004). Veterinary drug use in poultry farms and determination of antimicrobial residues in commercial eggs and poultry chicken in Kaduna State, Nigeria. Food Control 15(2):99-105.

Labaran SS (2008). Profile of the Jewel Gombe State. http://www.google.ng/gombeprofile.html, Accessed on 21st May, 2016, by 12.30 pm.

Mellon MG, Benbrook C, Benbrook KL (2001). Hogging it: Estimate of antimicrobial abuse in livestock. Union of concerned Scientists, Cambridge, MA.

Mitema E, Wegener HC, Stohr K (2001). An assessment of antimicrobial consumption in food producing animals in Kenya. Journal of Veterinary pharmacology and Therapeutics 24(6):385-390.

Nisha AR (2008). Antibiotic residues: A Global health hazard. Veterinary World 1(12):375-377.

Nonga HE, Simon C, Karimuribo ED, Mdgeela RH (2010). Assessment of antimicrobial usage and residues in commercial chicken eggs from small holder poultry keepers in Morogoro municipality, Tanzania . Zoonoses and Public Health 57(5):339-344.

Olayo AO, Oyelakin EF, Adepoyi IG, Call DR (2012). Chloramphenicol use and prevalence of its residues in broiler chickens and eggs in Ibadan, Nigeria. Veterinary Journal 33(4):643-650.

Olayo AO, Saraye TK (2012). Oxytetracycline residues in retail chicken eggs in Ibadan. Food Additives and Contaminants 5(4):255-259.

Omeiza GK, Kabir J, Mammam M, Ibrahim H, Fagbamila IO (2012). Response of Nigerian farmers to a questionnaire on chloramphenicol application in commercial layers. Veterinaria Italiana, 48(1):87-93.

Pavlou A, Lashev L, Vachin I, Rusev V (2008). Residues of antimicrobial drugs in chicken meat and offals. Trakia Journal of Sciences 6(l):23-25.

Settepani JA (1984). The Hazard of using chloramphenicol in food animals. Journal of American Veterinary Medical Association. 184(8):930-932.

Shahid MA, Sadiq M, Abubakar M, Arshed MJ, Asif M, Ahmad A (2007). Status of oxytetracyline residues in chicken meat in Rawalpindi/Islamabad Area of Pakistan. Asian Journal of Poultry Science 8(1):8-15.

Singer RS, Hofacre CL (2006). Potential impact of antibiotic use in poultry production. Avian Diseases 50(2):161-172.

Sirdar MM, Picard J, Bisschop S, Alexander R, Jambalang BG (2012). A survey of antimicrobial residues in table eggs in Khartoum State, Sudan, 2007-2008. Journal of Veterinary Research 79(1):1-9.

Tollefsen L, Miller M (2000). Antibiotic use in food animals: Controlling the human health impact. Journal of AOAC International 83(1):245-256.

Waltner-Toews D, McEwen S (1994). Resistance of antibacterial and antiparasitic drugs in food of animal origin: A risk assessment. Preventive Veterinary Medicine 20(3):219-234.

World Health Organization (WHO) (1988). Evaluation of certain veterinary drug residues in food. 32nd Report of the Joint FAO/WHO Expert Committee on Food Additives, WHO Technical report Serieseno, Geneva.