He II ABSORPTION AND THE SAWTOOTH SPECTRUM OF THE COSMIC FAR-UV BACKGROUND

PIERO MAĐAU1 AND FRANCESCO HAARDT2

1 Department of Astronomy & Astrophysics, University of California, Santa Cruz, CA 95064, USA
2 Dipartimento di Fisica e Matematica, Università dell’Insubria, Via Valleggio 11, 22100 Como, Italy

Received 2008 December 4; accepted 2009 January 26; published 2009 February 18

ABSTRACT

Cosmic ultraviolet background radiation between 3 and 4 Ryd is reprocessed by resonant line absorption in the Lyman series of intergalactic He II. This process results in a sawtooth modulation of the radiation spectrum from the He II Lyα frequency to the Lyman limit. The size of this modulation is a sensitive probe of the epoch of helium reionization and of the sources that keep the intergalactic medium (IGM) highly ionized. For large absorption opacities, the background intensity will peak at frequencies just above each resonance, go to zero at resonance, and fluctuate greatly just below resonance. The He II sawtooth modulation may be one of the missing ingredients needed in the modeling of the abundances of metal ions such as C III and Si IV observed in the IGM at redshift 3.

Key words: cosmology: theory – diffuse radiation – intergalactic medium – quasars: general

1. INTRODUCTION

The intensity and spectrum of the cosmic ultraviolet background are two of the most uncertain yet critically important astrophysical input parameters for cosmological simulations of the intergalactic medium (IGM) and early reionization. Theoretical models of such a diffuse radiation field can help interpret quasar absorption-line data and derive information on the distribution of primordial baryons (traced by H I, He I, He II transitions) and of the nucleosynthetic products of star formation (C III, C IV, Si III, Si IV, O VI, etc.). Because of the high ionization threshold (54.4 eV) and small photoionization cross section of He II, and of the rapid recombination rate of He III, the double ionization of helium is expected to be completed by hard UV-emitting processes that shape the spectrum of the far-UV background.

With the imminent installation of the Cosmic Origins Spectrograph on board the Hubble Space Telescope, the quantity and quality of far-UV observations of the IGM will improve significantly. Numerical simulations of patchy He II reionization (Paschos et al. 2007; McQuinn et al. 2008) are already shedding new light on the nature of such a late reheating process and its potential impact on observables. In this Letter, we return to the theory of cosmological radiative transfer and to the atomic processes that shape the spectrum of the far-UV background. We address a hitherto unnoticed effect, resonant absorption by the He II Lyman series, and show that this process will produce a sawtooth modulation of the radiation spectrum between 3 and 4 Ryd. The size of this modulation depends sensitively on the abundance of He II in the IGM, and may in turn be a crucial factor in determining the abundance of metal ions such as C III, Si III, and Si IV in the IGM. The analogous modulation between 0.75 and 1 Ryd from hydrogen line absorption was first studied by Haiman et al. (1997) in the limiting case of a fully neutral IGM.

2. SPECTRAL FILTERING BY THE IGM

We treat the radiation field \(J_\nu(z) \) as a uniform, isotropic background, and include the reprocessing of UV radiation in a clumpy IGM (Haardt & Madau 1996, hereafter HM96). The specific intensity (in \(\text{erg} \, \text{cm}^{-2} \, \text{s}^{-1} \, \text{Hz}^{-1} \, \text{sr}^{-1} \)) at redshift \(z_0 \) and observed frequency \(\nu_0 \) is given by

\[
J_{\nu_0}(z_0) = \frac{c}{4 \pi} \int_{z_0}^{\infty} \frac{dt}{dz} \frac{(1+z_0)^3}{(1+z)^3} \epsilon_\nu(z) e^{-\tau},
\]

where \(\nu = \nu_0 (1+z)/(1+z_0) \), \((dt/dz) = [H(z)(1+z)]^{-1} \), \(H(z) \) is the Hubble parameter, \(e^{-\tau} \equiv (e^{-\tau})^\text{e} \) is the average cosmic transmission over all lines of sight, and \(\epsilon_\nu \) (in \(\text{erg} \, \text{s}^{-1} \, \text{Hz}^{-1} \, \text{Mpc}^{-3} \)) is the proper volume emissivity. The effective continuum (LyC) optical depth between \(z_0 \) and \(z \) from Poisson-distributed absorbers is

\[
\bar{\tau}(\nu_0) \equiv \bar{\tau}_c = \int_{z_0}^{z} dz' \int_0^{\infty} dN_{\text{H}I} f(N_{\text{H}I}, z')(1-e^{-\tau_c(z')}),
\]

where \(f(N_{\text{H}I}, z') \) is the bivariate distribution of absorbers in redshift and column density along the line of sight, and \(\tau_c \) is the LyC optical depth through an individual cloud of hydrogen and helium column densities \(N_{\text{H}I}, N_{\text{He}II} \). The effective line absorption optical depth is instead

\[
\bar{\tau}_n(z) = \frac{(1+z)v_n}{c} \int dN_{\text{H}I} f(N_{\text{H}I}, z) W_n,
\]

where \(v_n \) is the frequency of the 1s \(\rightarrow np \) Lyman series transition \((n > 2) \) and \(W_n \) is the rest equivalent width of the line expressed in wavelength units.

2.1. Resonant He II Absorption

The far-UV metagalactic flux has long been known to be partially suppressed by the He II and H I continuum opacity of the IGM (e.g., Miralda-Escudé & Ostriker 1990; Madau 1992), but

[Caption for the figure is not provided.]
little attention has been given to He II line absorption. Photons passing through the He II Lyα resonance are scattered until they redshift out of resonance, without any net absorption: aside from the photoionization of H i and He i, the only other He II Lyα destruction mechanism, two-photon decay, is unimportant in the low-density IGM at the redshifts of interest. This is not true, however, for photons passing through a He II Lyman series resonance between the Lyman limit at energy $hν_L = 4$ Ryd and the He II Lyβ at $hν_β = 3.56$ Ryd. If the opacity of the IGM in the Lyman series lines is large, Lyβ and higher Lyman line photons will be absorbed and degraded via a radiative cascade rather than escaping by redshifting across the line width. The net result is a sawtooth modulation of the spectrum between 3 and 4 Ryd, and a large discontinuous step at the He II Lyβ frequency, as we show below.

Consider, for example, radiation observed at frequency $ν_o < ν_β$ and redshift z_o. The resonant absorption cross section is a narrow, strongly peaked function, different lines dominate the opacity at different absorption redshifts, and the line and continuum transmission can be treated as independent random variables (e.g., Madau 1995). Photons emitted between z_o and $z_β = (1 + z_o)(ν_β/ν_o) − 1$ can reach the observer without undergoing resonant absorption. Photons emitted between $z_β$ and $z_γ = (1 + z_o)(ν_γ/ν_o) − 1$ pass instead through the He II Lyβ resonance at $z_β$ and are absorbed. Photons emitted between $z_γ$ and $z_δ = (1 + z_o)(ν_δ/ν_o) − 1$ pass through both the He II Lyβ and the Lyγ resonances before reaching the observer. The background intensity can then be written as

$$J_{ν_o}(z_o) = I(z_o, z_β) + I(z_β, z_γ)e^{−τ_β} + I(z_γ, z_δ)e^{−τ_β−τ_γ} + \cdots + I(z_L, \infty)e^{−τ_β−\cdots−τ_L},$$

where we denote with the symbol $I(z_i, z_j)$ the right-hand side of Equation (1) integrated between z_i and z_j with $τ = τ_γ$. Here, $z_L = (1 + z_o)(ν_L/ν_o) − 1$, the LyC opacity $τ_γ$ in all I integrals except the last (where He II must be added) includes only H i and He i absorption, and $τ_β, τ_γ, τ_δ, \ldots$ are the He II Lyman series effective opacities at redshift $z_β, z_γ, z_δ, \ldots$. Equation (4) is easily generalized to higher frequencies, e.g., for $ν_o < ν_γ < ν_γ$ the first two terms must be replaced by the integral $I(z_o, z_γ)$.

The effect of the sawtooth modulation is best depicted in the idealized case of negligible continuum absorption, $τ_γ \to 0$, and large line opacity, $τ_γ \to \infty$ (this is similar to the hydrogen case studied by Haiman et al. (1997)). The ensuing radiation flux is shown in Figure 1, where we have also assumed for simplicity that the integrand in Equation (1) is independent of redshift and the proper emissivity is $ε_γ \propto ν^0 = \text{const}$. Note how only sources between the observer and the “screen” redshift $z_s = (1 + z_o)(ν_s/ν_o) − 1$ corresponding to the frequency of the nearest Lyman series line above $ν_o$ are not blocked from view: the background flux peaks at frequencies just above each resonance, as the first integral in Equation (4) extends over the largest redshift path, and goes to zero only at resonance.

2.2. He II Lyα Re-emission

The usual assumption that each photon entering a Lyman series resonance causes a radiative cascade that terminates in a Lyα photon requires full l-mixing of the $2s − 2p$ levels (Seaton 1959). Collisions are infrequent in the low-density IGM, however, and most radiative cascades from an np state terminate instead in two-photon $2s \to 1s$ emission (Hirata 2006). The fraction, f_n, of decays that generates Lyα photons can be determined from the selection rules and the decay probabilities, and it is $f_n = (1, 0, 0.2609, 0.3078, 0.3259, \ldots)$ for $n = (2, 3, 4, 5, \ldots)$ (Pritcher & Furlanetto 2006). Without l-mixing, the quantum selection rules forbid Lyβ photons from being converted into Lyα, while at large n the conversion...
fraction asymptotes to 0.36. Let now \(J_{\alpha}(z_{a}) \) be the background intensity measured just above the He \(\alpha \) Ly\(\alpha \) resonance at redshift \(z_{a} = (1 + z_{a})(v_{oa}/v_{a})^{-1} \). The flux that is absorbed and converted into He \(\alpha \) Ly\(\alpha \) is then \(f_{a} \times J_{\alpha}(z_{a}) \left[1 - e^{-\tau_{Ly\alpha}(z_{a})} \right] \). The additional flux observed at frequency \(v_{a} \leq v_{o} \) and redshift \(z_{o} \) from this process is then

\[
\Delta J_{v_{o}}(z_{o}) = \left(\frac{v_{o}}{v_{a}} \right)^{3} e^{-\tau_{Ly\alpha}(v_{o},z_{a},z_{o})} \left[f_{a} \times J_{\alpha}(z_{a}) \left(1 - e^{-\tau_{Ly\alpha}(z_{a})} \right) \right].
\]

(5)

When summing up over all He \(\alpha \) Lyman series lines, the term in square brackets must be replaced by \(\sum_{n>3} \left(f_{n} \times J_{\alpha}(z_{a}) \left(1 - e^{-\tau_{Ly\alpha}(z_{a})} \right) \right) \) if a depression between 3 and 4 Ryd in order to enhance the observed Si IV/Si III abundance ratios (Levshakov et al. 2003; Tyl调节a). The adopted proper emissivity becomes \(\epsilon_{\alpha}(z) = (1 + z)^{3} \epsilon_{\alpha}(z) (h\nu/1 \text{ Ryd})^{-1} \). To compute the opacity of the IGM we use the standard parameterization for the distribution of absorbers along the line of sight,

\[
f(N_{HI}) = A N_{HI}^{-\beta} (1 + z)^{\gamma},
\]

(7)

with \((A, \beta, \gamma) = (1.4, 1.5, 2.9)\) over the column density range \(10^{11} < N_{HI} < 10^{17.2} \text{ cm}^{-2} \), and \((A, \beta, \gamma) = (5, 1.5, 1.5)\) for \(N_{HI} > 10^{17.2} \text{ cm}^{-2} \) (e.g., Kim et al. 1997; Hu et al. 1995; Meiksin \\& Madau 1993; Petitjean et al. 1993; Tytler 1987). Here, the normalization \(A \) is expressed in units of \(10^{7} \text{ cm}^{-2} \text{ Hz}^{-1} \text{ Mpc}^{-3} \). The high column density distribution agrees with the results of Stengler-Larrea et al. (1995), while the low column density distribution produces an \(H I \) Ly\(\alpha \) effective opacity at \(z = 3 \) of 0.41 as in Faucher-Giguere et al. (2008). The detailed redshift evolution of the quasar emissivity and IGM opacity are not important for the problem at hand, since the measured—at 1 Ryd—and inferred—at 4 Ryd—absorption distances for ionizing radiation at redshift 3 are quite small, and the background flux in the relevant energy range is largely determined by local sources.

We have used the cosmological radiative transfer code CUBA to follow the propagation of UV radiation through a partially ionized inhomogeneous medium (HM96). The code uses a multizoned approximation to model the physical conditions within absorbing systems and infer the amount of singly ionized helium that is present along the line of sight from the well-measured \(N_{HI} \) distribution. We include the reprocessing into He \(\alpha \) Ly\(\alpha \) and two-photon continuum from resonant absorption in the Lyman series (as detailed in the preceding section) as well as continuum absorption, and assume photoionization equilibrium with a uniform radiation field. The resulting far-UV background intensity at redshift 3 is shown in Figure 1 for model “HM,” where resonant absorption from the Lyman series of He \(\alpha \) is neglected, and model “HM+S,” where the sawtooth modulation was added. Both these models yield a value of He \(\alpha \)/HI = 35 in optically thin absorbers. In the HM+S case, the effective He \(\alpha \) Ly\(\beta \) line opacity is 0.43, and the sawtooth modulation causes a small decrease in the metagalactic flux, by at most a factor of 2, relative to the old HM spectrum. We have also run three other representative cases, termed “DR” for “delayed reionization.” These models ignore the patchy nature of the reionization process and assume that a larger fraction of intergalactic helium at redshift 3 is in He \(\alpha \): this is obtained by artificially increasing the He \(\alpha \)/HI ratios computed by CUBA to 160, 250, and 530, respectively. Resonant absorption from the Lyman series now causes a reduction of the background intensity between 3 and 4 Ryd by as much as 1 dex (off-resonance) compared to the HM spectrum.

4 DISCUSSION

Since the pioneering work of Chaffee et al. (1986) and Bergeron \\& Stasinska (1986), many studies have used observations of intervening metal absorption systems to reconstruct the shape of the photoionizing radiation field at \(z \leq 3 \). The many modifications to the HM96 background intensity that have been proposed include: (1) a stronger He \(\alpha \) Ly\(\alpha \) feature in order to match the observed Si IV/Si III abundance ratios (Levshakov et al. 2003; 2) a depression between 3 and 4 Ryd in order to enhance the predicted C III/C IV and C III/C IV ratios, incorrectly attributed by Agafonova et al. (2007) to a He \(\alpha \) Ly\(\beta \) Gunn–Peterson effect; (3) a softer far-UV spectrum in order to predict [O/III] values that are consistent with theoretical yields (Aguirre et al. 2008). A detailed modeling of the abundances of intergalactic metals is beyond the scope of this Letter: here, we just want to point out that the sawtooth modulation, if as large as computed in the DR models, may provide a better match to the observations. At the top of the right panel of Figure 1 we have indicated the positions of the ionization thresholds of Si III (33.5 eV), Si IV (45.1 eV), C III (47.9 eV), C IV (64.5 eV), O III (35.1 eV), and O IV (54.9 eV) ions. The reprocessing of Lyman series and Lyman continuum photons increases He \(\alpha \) Ly\(\alpha \) in the DR spectra by a factor of 1.7 compared to the HM case. The flux at the Si IV ionization threshold decreases by a factor of 2, boosting the predicted abundance of Si IV. An even larger boost is expected in the abundance of C III, whose ionization threshold lies exactly within the He \(\alpha \) Ly\(\beta \) deep absorption feature, and of O III, whose threshold lies just beyond the He \(\alpha \) Ly\(\alpha \) limit.

The above results show that line absorption from the Lyman series of intergalactic helium may be an important, so far neglected, process shaping the spectrum of the cosmic radiation background above 3 Ryd. The large resonant cross sections for far-UV light scattering make the sawtooth modulation a sensitive probe of the epoch of helium reionization and of the sources that keep the IGM highly ionized. The He \(\alpha \) sawtooth may be one of the crucial missing ingredients in the modeling of the abundances of metal ions such as C III and Si IV observed in the IGM at redshift 3. In the case of large line opacities, substantial fluctuations are expected in the far-UV background intensity near each resonance, as the first integral in Equation (4) extends over a small absorption distance, and just a few quasars are expected to contribute to the local
emissivity. Such fluctuations may cause large variations in, e.g., the observed C III abundances. In future work, we intend to study such fluctuations and address how the contribution of star-forming galaxies to the background may affect the He II/H I ratio in the IGM and the predicted sawtooth modulation.

Support for this work was provided by NASA through grants HST-AR-11268.01-A1 and NNX08AV68G (P.M.). We thank Steve Furlanetto, Zoltan Haiman, and Avery Meiksin for useful discussions. The spectra plotted in Figure 1 are available upon request.

REFERENCES

Agafonova, I. I., Levshakov, S. A., Reimers, D., Fechner, C., Tytler, D., Simcoe, R. A., & Songaila, A. 2007, A&A, 461, 893
Aguirre, A., Dow-Hygeland, C., Schaye, J., & Theuns, T. 2008, ApJ, 689, 851
Bergeron, J., & Stasinska, G. 1986, A&A, 169, 1
Bernardi, M., et al. 2003, AJ, 125, 32
Boksenberg, A., Sargent, W. L. W., & Rauch, M. 2003, arXiv:0307557
Chaffee, F. H., Jr. Foltz, C. B., Bechtold, J., & Weymann, R. J. 1986, ApJ, 301, 116
Faucher-Giguere, C.-A., Prochaska, J. X., Lidz, A., Hernquist, L., & Zaldarriaga, M. 2008, ApJ, 681, 831
Haardt, F., & Madau, P. 1996, ApJ, 461, 20 (HM96)
Haiman, Z., Rees, M. J., & Loeb, A. 1997, ApJ, 476, 458
Heap, S. R., Williger, G. M., Smette, A., Hubeny, I., Sahu, M., Jenkins, E. B., Tripp, T. M., & Winkler, J. N. 2000, ApJ, 534, 69
Hirata, C. M. 2006, MNRAS, 367, 259
Hopkins, P. F., Richards, G. T., & Hernquist, L. 2007, ApJ, 654, 731
Hu, E. M., Kim, T.-S., Cowie, L. L., Songaila, A., & Rauch, M. 1995, AJ, 110, 1526
Jakobsen, P., Boksenberg, A., Deharveng, J. M., Greenfield, P., Jedrzejewski, R., & Paresce, F. 1994, Nature, 370, 35
Kallman, T., & McCray, R. 1980, ApJ, 242, 615
Kim, T.-S., Hu, E. M., Cowie, L. L., & Songaila, A. 1997, AJ, 114, 1
Levshakov, S. A., Agafonova, I. I., Centurión, M., & Molaro, P. 2003, A&A, 397, 851
Madau, P. 1992, ApJ, 389, L1
Madau, P. 1995, ApJ, 441, 18
Madau, P., Haardt, F., & Rees, M. J. 1999, ApJ, 514, 648
Madau, P., & Meiksin, A. 1994, ApJ, 433, L53
McDonald, P., Miralda Escudé, J., Rauch, M., Sargent, W. L. W., Barlow, T. A., & Cen, R. 2001, ApJ, 562, S2
McQuinn, M., Lidz, A., Zaldarriaga, M., Hernquist, L., Hopkins, P. F., Dutta, S., & Faucher-Giguere, C.-A. 2008, ApJ, submitted (arXiv:0807.2799)
Meiksin, A., & Madau, P. 1993, ApJ, 412, 34
Miralda Escudé, J., & Ostriker, J. P. 1990, ApJ, 350, 1
Paschos, P., Norman, M. L., Bordner, J. O., & Harkness, R. 2007, ApJ, submitted (arXiv:0711.1904)
Petitjean, P., Webb, J. K., Rauch, M., Carswell, R. F., & Lanzetta, K. M. 1993, MNRAS, 262, 499
Pritchard, J. R., & Furlanetto, S. R. 2006, MNRAS, 367, 1057
Reimers, D., Kohler, S., Wisotzki, L., Grote, D., Rodriguez-Pascual, P., & Wannemaker, W. 1997, A&A, 327, 890
Ricotti, M., Gnedin, N. Y., & Shull, J. M. 2000, ApJ, 534, 41
Schaye, J., Theuns, T., Rauch, M., Efstathiou, G., & Sargent, W. L. W. 2000, MNRAS, 318, 817
Seaton, M. J. 1959, MNRAS, 119, 90
Smette, A., Heap, S. R., Williger, G. M., Tripp, T. M., Jenkins, E. B., & Songaila, A. 2002, ApJ, 564, 542
Sokasian, A., Abel, T., & Hernquist, L. 2002, MNRAS, 332, 601
Songaila, A. 1998, AJ, 115, 2184
Stengler-Larrea, E., et al. 1995, ApJ, 444, 64
Telfer, R. C., Zheng, W.,Kriss, G. A., & Davidsen, A. F. 2002, ApJ, 565, 773
Theuns, T., Bernardi, M., Frieman, J., Hewett, P., Schaye, J., Sheth, R. K., & Subbarao, M. 2002, ApJ, 574, L11
Tytler, D. 1987, ApJ, 321, 49
Zaldarriaga, M., Hui, L., & Tegmark, M. 2001, ApJ, 557, 519