The pregnane X receptor (PXR) and constitutive androstan receptor (CAR), 2 closely related and liver-enriched xenobiotic receptors (NRs), are well-recognized “xenobiotic sensors”. Recent studies have demonstrated that PXR, CAR and AhR also regulate the expression of key proteins involved in endobiotic responses such as the metabolic homeostasis of lipids, glucose, and bile acid, and inflammatory processes. It is suggested that the functions of PXR, CAR and AhR may be closely implicated in the pathogeneses of metabolic vascular diseases, such as hyperlipidemia, atherogenesis, and hypertension. Therefore, manipulation of the activities of these receptors may provide novel strategies for the treatment of vascular diseases. Here, we review the pathophysiological roles of PXR, CAR and AhR in the vascular system. (Circ J 2014; 78: 1520–1530)

Key Words: Aryl hydrocarbon receptor; Constitutive androstan receptor; Pregnane X receptor; Vascular diseases
Xenobiotic Receptors and CVD

Figure 1. Schematic representation of the relationship among xenobiotics, xenobiotic sensors (ie, PXR, CAR and AhR) and vascular disease. AhR, aryl hydrocarbon receptor; CAR, constitutive androstane receptor; PXR, pregnane X receptor.

Figure 2. Schematic representation of a typical nuclear receptor and the structure of the aryl hydrocarbon receptor (AhR). (A) Nuclear receptor domain structure. Beginning at the N-terminus, nuclear receptors include the N-terminal domain, DNA binding domain (DBD), Hinge region, ligand binding domain (LBD) and C-terminal domain. (B) Domain architecture of the AhR protein. Text indicates key domain regions: NLS, nuclear localization sequence; NES, nuclear export sequence; bHLH, basic helix-loop-helix domain, PAS, Per-ARNT-Sim domain (A and B repeat regions); TAD, transactivation domain.
AhR, aryl hydrocarbon receptor; CAR, constitutive androstane receptor; CITCO, 6-(4-chlorophenyl) imidazo [2,1-b][1,3]thiazole-5-carboxylic acid; CYP, cytochrome P450s; IFN, interferon gamma; IL, interleukin; JAK, Janus kinase; MAPK, mitogen-activated protein kinase; MCL, myeloid cell leukemia sequence; MDR, multidrug resistance; PXR, pregnane X receptor; TCDD, 2,3,7,8-tetrachlorodibenzo-p-dioxin; TCPOBOP, 1,4-bis[2-(3,5-dichloropyridyloxy)]benzene.

the major constituents of cigarette tobacco tar and environmental contaminants, are strongly involved in the pathogenesis of vascular diseases. Because PAH and TCDD-induced toxicities are mediated by the activation of AhR, a direct link between AhR and cardiovascular diseases (CVDs) exists in all probability.19 This review summarizes recent advances in elucidating the roles of PXR and CAR and AhR in vascular therapy. The relationship among xenobiotics, PXR, CAR, AhR and vascular disease are summarized in Figure 1.

Genes and Proteins of PXR, CAR and AhR

PXR, also known as steroid and xenobiotic sensing NR (SXR) or NR subfamily 1, group I, member 2 (NR1I2), is a protein that is encoded by the NR1I2 gene in humans.20 The human PXR gene is located on chromosome 3, locus 3q12-q13.3, and spans approximately 20 kb.21,22 CAR, also known as NR subfamily 1, group I, member 3, is a protein that is encoded by the NR1I3 gene. The human CAR gene is located on chromosome 1, locus 1q23.23 PXR and CAR, like all the members of the NRs, are modular proteins sharing common regions, including the N-terminal DBD, the H region, and the C-terminal LBD (Figure 2). AhR is a protein that in humans is encoded by the AHR gene. The human AHR gene is located on chromosome 7; 17.34–17.39 Mb. AhR is a ligand-activated transcriptional factor with the primary function of mediating xenobiotic metabolism through transcriptional activation of Phase I and Phase II drug-metabolizing enzymes, such as CYPIA1, 1A2, 1B1, UGT1A1 and UGT1A6, GSTA2, aldehyde dehydrogenase 3 (ALDH3), or NQOR.5,24,25 AhR also share some common target genes with PXR and CAR, such as CYPIA2 and UGT1A1.26 AhR is the only protein in the HHLH/PAS superfamily that requires activation by an exogenous ligand.

Ligands and Functions of PXR, CAR and AhR

PXR is activated by a large number of endogenous and exogenous chemicals including androstane, coumestrol, phenobarbital (PB), 1,4-bis[2-(3,5-dichloropyridyloxy)]benzene (TCPOBOP), SR12813, pregnenolone 16a-carbonitrile (PCN), taxol, lipoic acid, mifepristone (RU486), steroids (pregnenolone and progesterone), cholesterol metabolites, cafestol from unfiltered coffee, bile acids, and many other herbal compounds such as hyperforin (active constituent of St. John’s Wort), guggulipid, colupulone, and isoflavones.22,27 PXR is highly activated upon ligand binding.22 Unlike PXR, CAR resides in the cytoplasm in the non-induced state23 and is constitutively active in the absence of ligand and regulated by both agonists and inverse agonists. Ligand binding results in translocation of this protein to the nucleus, where it activates or represses target gene transcription. The constitutive activity of CAR was thought to be related to the ligand-independent recruitment of NR coactivators by CAR.25 PXR and CAR regulate gene expression by forming heterodimers with the retinoid X receptor (RXR, NR1B2).

Above all, PXR can be activated by pregnanes, progesterone, and glucocorticoids, whereas CAR is affected by androstane metabolites, estrogens, and progesterone.28,29 For this reason, in addition to functioning as xenobiotic receptors, PXR and CAR are thought to be endobiotic receptors that influence some physiology and diseases.30 PXR activity is also intricately regulated by phosphorylation, SUMOylation and lysine acetylation. Similar to PXR, CAR’s activity is also regulated by phosphorylation.31–34

The synthetic ligands of AhR are some members of the halogenated aromatic hydrocarbons, such as PCBs, polychlorinated dibenzo-p-dioxins (PCDDs) and 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD).45,46 Naturally occurring compounds that have been identified as ligands of AhR include derivatives of tryptophan, bilirubin, biliverdin, tryptamine, indole acetic acid, retinoids, tetracyclines, and some modified low-density lipoproteins (LDLs).35–37 Upon ligand binding, AhR translocates to the nucleus and dimerizes with ARNT. The activated AhR/ARNT heterodimer complex is then capable of either directly or indirectly interacting with DNA by binding to DREs in promoter regions.38

In the absence of these ligands, AhR exists primarily in the cytoplasm as an inactive complex with 290-kDa heat-shock proteins (HSP90), 1 X-associated protein (XAP), and 1 p23 molecular chaperone protein.39 Xenobiotic receptors and activation compounds are summarized in Table. The signaling pathways of PXR, CAR and...
AhR are shown in Figure 3.

PXR, CAR and Vascular Disease

In addition to their conventional roles in xenobiotic metabolism, PXR and CAR have been found in the vasculature where they regulate vascular function, inflammation, bile acid metabolism, lipid and glucose homeostasis.

PXR and CAR in Drug Metabolism

PXR regulates the genes involved in drug and xenobiotic metabolism, including CYPs, GSTs, multidrug resistance protein 1 (MDR1) and SULTs. The circulation can be a hostile milieu, with increased concentrations of xenobiotics and endobiotics resulting from drugs, chemical agents, smoking, air pollution, nutritional metabolites, and pathogenic microbes or their toxins. These circulating endogenous and foreign chemicals can contribute to vascular dysfunction and the development of vascular disease. Recent studies have demonstrated that PXR is not only expressed in the liver and intestine and its role in detoxification is not liver and intestine specific. PXR and numerous CYPs are also present in human, rat and mouse blood vessels and human and rat aortic endothelial and smooth muscle cells. PXR ligands also induce the expression of GSTM1 to decrease oxidative stress in vascular cells. Our recent research also indicated that PXR represented a flow-activated detoxification system protecting ECs against damage by xenobiotics and endobiotics. Laminar shear stress (LSS), the atheroprotective flow, activated PXR in ECs, whereas oscillatory shear stress, the atheroprone flow, suppressed PXR. LSS-activated PXR protects ECs from apoptosis triggered by doxorubicin via the induction of MDR1 and other detoxification genes. PXR can also stimulate defense mechanisms against oxidative stress, promoting cell survival.

Antimetabolic Inflammation of PXR

Excess nutrients and the ensuing obesity can lead to a status of chronic low-grade inflammation, so-called “metabolic inflammation”. Metabolic inflammation is a coordinated response to harmful stimuli that involves many components of the classical inflammatory response to pathogens and includes systemic increases in circulating inflammatory cytokines and acute phase proteins (eg, C-reactive protein [CRP]), recruitment of leukocytes to inflamed tissues, activation of tissue leukocytes, and generation of reparative tissue responses. Metabolic inflammation has been widely recognized as playing a critical role in the initiation, propagation, and development of metabolic diseases such as obesity, diabetes, hypertension and atherosclerosis. Recently, we found that PXR can suppress the expres-
sion of proinflammatory adhesion molecules, such as vascular cell adhesion molecule-1 (VCAM-1) and endothelial leukocyte adhesion molecule-1 (ELAM-1, otherwise known as E-selectin) in response to tumor necrosis factor-α (TNF-α) and lipopolysaccharide (LPS) in ECs. Overexpression of a constitutively active PXR in rat carotid arteries also potently attenuated proinflammatory responses. PXR is also expressed in classical mononuclear cells including monocytes/macrophages and lymphocytes (both T and B cells) and inhibits inflammation. Interleukin-6 (IL-6) and endotoxin all downregulate the expression of PXR and its target genes. The potent human PXR activator, rifampicin, suppresses the expression of typical nuclear factor-kB (NF-kB) target genes, such as cyclooxygenase-2 (COX-2), -α, intercellular adhesion molecule 1 (ICAM-1), and IL-1, 2, 6, and 15 in human hepatocytes. Inflammatory signals also modify PXR at the post-translational level. A recent study showed that the inflammatory response to TNF-α caused SUMOylation of PXR to inhibit the activation of NF-κB.

PXR and CAR in the Metabolism of Bile Acids

Bile acids are the endproducts of cholesterol utilization and can be extremely toxic if their levels become elevated. Bile acids aid the absorption of dietary fats, via active uptake from the intestines and enterohepatic circulation. The relationship between bile acids and vascular disease has been a recent focus of investigation. Sequestering bile acids in the intestinal lumen or preventing their uptake is used therapeutically to lower LDL cholesterol, an independent risk factor for vascular diseases. PXR and CAR activation in hepatocytes is protective against hepatotoxicity induced by bile acids. Accumulation of bile acid and bile acid precursors directly leads to PXR activation. PXR regulates the metabolism of bile acids by (1) decreasing the synthesis of bile acid; (2) increasing bile acid catalysis; and (3) promoting the hepatic uptake of bile acids from the blood and their excretion into bile. The PXR-regulated target genes involving these processes include metabolizing enzymes such as CYP3A11, SULT2A, the transporter multidrug resistance-associated protein3 (MRP3), organic anion transporting polypeptide (OATP2), solute carrier organic anion transporter family member 1B1 (SLCO1B1), adenosine triphosphate (ATP)-binding cassette subfamily B 11 (ABCB11), ATP-binding cassette subfamily C2 (ABCC2) and CYP7A1. CAR can downregulate OATP1A1 and upregulate OATP1A4 and MRPs mRNA expressions to promote bile acids efflux from the hepatocytes. CAR also can increase the mRNA expression of efflux transporters (bile salt export pump [BSEP], breast cancer resistance protein [BCRP], MRP2, MRP3, and MDR1) and decrease the levels of uptake transporters (OATP1B3, OAT2, Na+/taurocholate cotransporting polypeptide [NTCP]) in human hepatocytes. This CAR role occurs in the absence of the key bile acid sensors, FXR and PXR. Therefore, PXR and CAR may offer a target to effectively reduce bile acids and thus limit LDL cholesterol levels.

PXR and CAR in Lipid and Glucose Homeostasis

A number of clinical observations have shown that many drugs, identified as PXR and/or CAR activators, affect lipid or and glucose metabolism in patients. The liver plays a critical role in maintaining blood lipid and glucose homeostasis. PXR and CAR can promote hepatic lipogenesis by downregulating genes involved in lipid oxidation such as carnitine palmitoyltransferase-1A (CPT-1A) and mitochondrial 3-hydroxy-3-methylglutaryl-CoA synthase-2 (HMGS2) and pro-oxidation proteins, peroxisome proliferator activated receptor (PPAR)-α and thiolase. PXR activation causes hepatic steatosis and induces the expression of CD 36 (a fatty acid translocase involved in long-chain fatty acid [LCFA] transport). PXR also upregulates stearyl-CoA-desaturase-1 (SCD-1), spot 14 and PPAR-γ, CAR agonist, PB, decreases the enoyl-CoA isomerase (ECI) mRNA. In addition, CAR and PXR directly affect lipogenic pathways by activating Insig-1, an endoplasmic reticulum (ER) protein involved in sterol-dependent synthesis of cholesterol. PXR agonists do not induce lipogenesis in rat vascular smooth muscle. Diabetes and prediabetic-elevated plasma glucose levels are risk factors for CVD. Genes involved in gluconeogenesis notably include phosphoenolpyruvate carboxykinase (PEPCK) and glucose-6-phosphatase (G6Pase). Activation of PXR in fasting mice decreases serum glucose and suppresses the expression of PEPCK and G6Pase. PB has been shown to decrease plasma glucose levels and improve insulin sensitivity in diabetic patients. Activation of CAR represses the expression of PEPCK by competition with hepatocyte nuclear factor 4α (HNF4α) for the binding of a DR1 element within the PEPCK gene promoter and the inhibition of HNF4α transcriptional activity by the squelching of PPAR-γ coactivator 1α (PGC1α). Forkhead box protein O1 (FoxO1) positively controls the expression of genes involved in gluconeogenesis and it represents the target of insulin’s repressive action on the gluconeogenesis pathway. PXR and CAR can repress the transcriptional activity of FoxO1 by preventing its binding to its responsive element IRS in target gene promoters such as PEPCK and G6Pase, implicating PXR and CAR as negative transcriptional regulator of genes involved in glucose metabolism.

AhR and Vasculary Disease

The AhR protein is expressed in most tissues, with the highest mRNA and protein levels found in the lung, liver, kidney, and placenta, and lower levels in the heart and endothelium. Activation of AhR signaling is recognized as the body’s primary molecular defense following environmental toxicant exposure. Exposures to AhR ligands can lead to some major metabolic diseases including vascular disease and cancer. AhR and Atherosclerosis

Atherosclerosis is considered a chronic inflammatory disease of the vessel wall characterized by chemokine-driven mononuclear cell recruitment into the subendothelial space, where the mononuclear cells differentiate into macrophages. Macrophages and ECs play key roles in atherogenesis by releasing proinflammatory cytokines and forming foam cells in subendothelial lesions. Exposure to some AhR ligands (e.g., dioxins, TCDD, PAH) causes inflammatory responses in macrophages and may lead to the formation of foam cells and is associated with progression of atherosclerosis.

Exposure of ApoE-/- mice to TCDD time-dependently accelerated the progression of atherosclerosis. TCDD promotes foam cell formation and induces the expression of inflammatory mediators including NF-κB, COX-2, IL-1β, TNF-α, IL-8 and metalloproteinase 12 (MMP-12). Urban dust also activates AhR and increases the production of CRP and IL-6 in human macrophages. TCDD-induced inflammation can be further enhanced by a high-fat diet in mice and deteriorates the formation of complex atheromas. Conversely, the AhR antagonist, TCDD, significantly suppresses the expression of COX-2 and CYP1A1 induced by these particles and their organic extracts. Recently, the IL-8 receptor (IL8R), also known
as CXCR2 (a G protein-coupled receptor), was implicated as a contributory factor and is considered to play a pivotal role in inflammatory diseases\(^5\) and ultimately, production of the CXCR2 target gene VEGF mediates the atherogenic activity of environmental pollutants through the induction of a vascular inflammatory response by activating the AhR-signaling pathway.\(^101,102\) Besides the function of macrophages, vascular endothelial dysfunction is the initiation step in atherosclerosis, which is characterized by increased adhesiveness caused by the presentation of cellular adhesion molecules, such as ICAM-1 and VCAM-1.\(^103,104\) By regulating AP-1, MEK and p38-MAPK, benzo\[a\]pyrene (BP) is able to increase ICAM-1 protein only after pretreatment with an AhR agonist, \(\beta\)-naphthoﬂavone (\(\beta\)-NF).\(^105\) Indoxyl sulfate (IS), an endogenous agonist for AhR, induces monocyte chemoattractant protein-1 (MCP-1) expression through reactive oxygen species production in human umbilical vein ECs and contributes to the development of atherogenesis.\(^106\) These studies strongly support the hypothesis that AhR may be a therapeutic target for downregulation of vascular inflammatory responses such as atherosclerosis.\(^16\)

\textbf{AhR and Hypertension}

A recent study conducted by researchers at Boston University found that increased exposure to air pollution makes humans more prone to developing hypertension.\(^107\) AhR and AhR-regulated phase I/II genes in the endothelium are critically involved in blood pressure regulation and are required to maintain normal basal levels of blood pressure.\(^108\) The AhR agonist, TCDD, induces high blood pressure and AhR-mediated CYP overexpression.\(^109,113\) AhR null mice have signiﬁcantly elevated mean arterial pressures (MAP) as well as increased circulating angiotensin II (AngII) and plasma endothelin-1 (ET-1) levels.\(^114\) Hypothensive AhR resistant mice exhibit a significantly lower level of endothelial nitric oxide synthase (eNOS) and enhanced vascular nitric oxide (NO) production.\(^112\) TCDD exposure of ECs increases the production of ROS, and decreases acetylcholine-stimulated NO production by inducing CYP1A1 and CYP1B1.\(^116\) AhR could serve as a target in the treatment of high blood pressure and other NO-dependent vascular diseases.

Recently, it was reported that AhR signaling played an important role in regulatory T cells. AhR participates in Th17 cell differentiation through regulating Stat1 activation.\(^117\) T cells also play important roles in hypertension. Mice lacking T cells have blunted hypertension during AngII infusion. Hypertension increased the T-lymphocyte production of TNF-\(\alpha\), and inhibited TNF-\(\alpha\) could prevent the hypertension caused by AngII.\(^118\) These results indicate that AhR signaling in T cells might be a novel therapeutic target for the treatment of high blood pressure.

\textbf{Clinical Importance of PXR, CAR and AhR}

Drug uptake transporters are now increasingly recognized as clinically relevant determinants of variable drug responsiveness and unexpected drug-drug interactions. Activation of these transporters during vascular therapy is likely to affect the effectiveness of many drugs and there is growing evidence for tissue-specific enhancement of the malignant phenotype.\(^119,120\) Exposure to some environmental factors (xenobiotics), such as pesticides and toxic compounds, has been shown to play an important role in the pathogenesis of vascular disease. The enzymes implicated in xenobiotic metabolism are regulated by an endogenous defense system comprising PXR, CAR and AhR. Both their levels and functional structures are determined by their coding genes or other molecules regulating their expressions. With the revelation of human genome sequences and frequency of sequence variations in the population, it is clear that the DNA sequences of these genes vary from subject to subject. Thus, genetic variation in these TFs may modify the regulation of relevant environmental factors and the associated risk of vascular disease. Genes in the CYP superfamily are highly polymorphic and mutations in CYP1A1, 1B1, CYP2A, 2B, 2C, 2E 2J, CYP3A, CYP4A, 4B, 4F, CYP5A1, CYP7A1, 7B1 and CYP8A1 are associated with vascular disease.\(^121-123\) Clopidogrel was selected for testing whether PXR regulation of vascular drug-metabolizing enzymes has a functional effect on the efficacy of cardiovascular drugs directly in the vessel wall.\(^122,124,125\) Clinical observations showed that PXR activation enhanced...
responsiveness to clopidogrel. Polymorphic PXR expression correlates with clopidogrel non-responsiveness. The allelic variant CYP2C19*17 increases the bioactivation and patient responsiveness to clopidogrel. Hagedorn et al indicated that activation of PXR by progesterone metabolites, PXR-dependently increases vasorelaxation in pregnancy.\(^{126}\)

Some endogenous substances and other naturally occurring compounds also act as ligands for PXR and CAR.\(^3\) The initial discovery was that St. John’s Wort and yin zhi huang are capable of activating PXR and CAR.\(^{127,128}\) Salvia miltiorrhiza, also known as danshen, has been reported to activate human PXR transcriptional activity to treat various vascular diseases, including hypertension, stroke, and hyperlipidemia.\(^{129,130}\) Garlic, guggul and Ginkgo biloba, commonly known as herbal medicines, are characterized as activators of CAR, which provides a molecular basis for the traditional therapeutic use of this herbal medicine in the treatment of many metabolic diseases.\(^{131}\) AhR is capable of activating PXR and CAR, which alters the metabolism and pharmacokinetics of some drugs,\(^{132}\) which has implications for clinical practice. Flavonoids are present in fruits, vegetables, and beverages derived from plants, such as tea and red wine, which have been recognized as health-promoting and atherosclerotic vascular disease-preventing dietary supplements.\(^{133}\) Flavonoids inhibit the activity of CYP1A1, 1A2, 2E1, and 3A4.\(^{134}\) Sulforaphane (SFN) present in cruciferous vegetables shows a protective effect on inflammatory damage induced by LPS in human vascular ECs.\(^{135}\) SFN revealed activation of AhR transformation and induced CYP1A1 mRNA expression.\(^{136}\) Besides the exogenous compounds, various classes of endogenous compounds, such as eicosanoids, indirubin, bilirubin, biliverdin, tryptophan and cAMP, are able to activate AhR and thus play vital roles in vascular health and the immune system.\(^{49,137-140}\)

Conclusions

Recent findings from many laboratories have clearly suggested that the xenobiotic NRs, PXR and CAR, not only have their “conventional” functions, but also have interesting crosstalk in their participation in drug metabolism, inflammation, lipid and glucose homeostasis and bile acid metabolism. These discoveries suggest PXR as a novel target for vascular diseases through protection from circulating toxins and oxidative stress, anti-inflammatory role and promoting bile acid and cholesterol metabolism and efflux. The health or vascular benefits of a number of natural products or drugs (eg, statins) may, in part, be via vascular PXR activation (Figure 4). Local upregulation of CYPs in the vasculature suggests that generally PXR may protect the vasculature from disruptions to vascular homeostasis and inflammation, and regulate tone. Zhou et al found that PXR activation in wild-type mice increased the levels of the atherogenic lipoproteins, very-low-density lipoprotein (VLDL) and LDL, whereas in ApoE−/− mice, PXR increased atherosclerosis by diminishing the levels of the antiatherogenic ApoA-IV and increasing lipid accumulation in macrophages.\(^{141}\) The therapeutic potential of CAR in vascular disease, however, remains to be defined (Figure 5). CAR has been determined as a potential target in the prevention and treatment of atherosclerosis.\(^{142}\) However, there is limited information on the relative contribution of CAR in reduction of atherosclerosis systemically vs. locally in the vessel wall because the vasculature system expresses all AhR-regulated genes in a species- and tissue-specific manner. Nowadays, genetic, clinical and basic scientific studies all support the theory that AhR activation contributes to the development and progression of atherosclerosis and hypertension (Figure 6). AhR is also a link between the development of CVD and the “detoxification” system. Therefore, PXR, CAR and AhR have the potential to be both novel therapeutic targets for vascular disorders and be utilized by a number of current drugs and natural products to give vascular protection.
Xenobiotic Receptors and CVD

1527

Circulation Journal Vol.78, July 2014

Acknowledgments

We thank Professor Nanping Wang, Xi’an Jiaotong University Cardiovascular Research Center for helpful discussions and suggestions. We also apologize for omitting many worthy references because of space limitations.

Grants

Research projects from the laboratory of the authors were supported by National Natural Science Foundation Grants 81300242, 81220108005 and 81302426.

References

1. Gao J, Xie W. Targeting xenobiotic receptors PXR and CAR for metabolic diseases. Trends Pharmacol Sci 2012; 33: 552 – 558.
2. Fuhr U. Induction of drug metabolising enzymes: Pharmacokinetic and toxicological consequences in humans. Clin Pharmacokinet 2000; 38: 493 – 504.
3. Dixit SG, Tirona RG, Kim RB. Beyond CAR and PXR. Adv Drug Deliv Rev 2005; 6: 385 – 397.
4. Chang TK, Waxman DJ. Synthetic drugs and natural products as modulators of constitutive androstane receptor (CAR) and pregnane X receptor (PXR). Drug Metab Rev 2006; 38: 51 – 73.
5. Moreau A, Vilarem MJ, Maurel P, Pascussi JM. Xenoreceptors CAR and PXR activation and consequences on lipid metabolism, glucose homeostasis, and inflammatory response. Mol Phar 2008; 5: 35 – 41.
6. Francis GA, Fayard E, PiCarF D, Awuex J. Nuclear receptors and the control of metabolism. Anna Rev Physiol 2003; 65: 261 – 311.
7. Rendic S, Di Carlo FJ. Human cytochrome p450 enzymes: A status report summarizing their reactions, substrates, inducers, and inhibitors. Drug Metab Rev 1997; 29: 413 – 580.
8. Oesch F, Herrero ME, Hengstler JG, Lohmann M, Arand M. Metabolism of drugs and drug-like compounds. Nat Rev Drug Discov 2002; 1: 259 – 266.
9. McCarver DG, Hines RN. The ontogeny of human drug-metabolizing enzymes: Phase II conjugation enzymes and regulatory mechanisms. J Pharmacol Exp Ther 2002; 300: 361 – 366.
10. Tolson AH, Wang H. Regulation of drug-metabolizing enzymes by xenobiotic receptors: PXR and CAR. Adv Drug Deliv Rev 2010; 62: 362 – 376.
11. Hao N, Whitelaw ML. The emerging roles of AHR in physiology and immunity. Biochem Pharmacol 2013; 86: 561 – 570.
12. Hoffman EC, Reyes H, Chu FF, Sander F, Conley LH, Brooks BA, et al. Cloning of a factor required for activity of the Ah (dioxin) receptor. Science 1991; 252: 954 – 958.
13. Fujisawa-Sehara A, Sogawa K, Yamane M, Fujii-Kuriyama Y. Characterization of xenobiotic responsive elements upstream from the drug-metabolizing cytochrome p450 gene: A similarity to glucocorticoid regulatory elements. Nucleic Acids Res 1987; 15: 4179 – 4191.
14. Sherr DH. Another important biological function for the aryl hydrocarbon receptor. Arterioscler Thromb Vasc Biol 2011; 31: 1247 – 1248.
15. Ihunnah CA, Jiang M, Xie W. Nuclear receptor PXR, transcriptional circuits and metabolic relevance. Biochim Biophys Acta 2011; 1812: 959 – 963.
16. Kodama S, Kioka C, Negishi M, Yamamoto Y. Nuclear receptors CAR and PXR cross talk with FOXP1 to regulate genes that encode drug-metabolizing and gluconeogenic enzymes. Mol Cell Biol 2004; 24: 7931 – 7940.
17. Korashy HM, El-Kadi AO. The role of aryl hydrocarbon receptor in the pathogenesis of cardiovascular diseases. Drug Metab Rev 2006; 38: 411 – 450.
18. Bertilsson G, Heidrich J, Svensson K, Asman M, Jendeborg L, Sydow-Backman M, et al. Identification of a human nuclear receptor defines a new signaling pathway for CYP3A induction. Proc Natl Acad Sci USA 1998; 95: 12208 – 12213.
19. Hustert E, Zibat A, Prescan-Siedel E, Eiselt R, Mueller R, Fuss C, et al. Natural protein variants of pregnane X receptor with altered transactivation activity toward CYP3A4. Drug Metab Dispos 2001; 29: 493 – 504.
20. Kliewer SA, Goodwin B, Willson TM. The nuclear pregnane X receptor: A key regulator of xenobiotic metabolism. Endocr Rev 2012; 23: 687 – 702.
21. Baes M, Gulick T, Choi HS, Martonilli MG, Simha D, Moore DD. A new orphan member of the nuclear hormone receptor superfamily that interacts with a subset of retinoic acid response elements. Mol Cell Biol 1994; 14: 1544 – 1552.
22. Alexander DL, Eltnon SE, Jefcoate CR. Ah receptor regulation of CYP1B1 expression in primary mouse embryoid-derived cells. Cancer Res 1997; 57: 4498 – 4506.
23. Hankinson O. Role of coactivators in transcriptional activation by the aryl hydrocarbon receptor. Arch Biochem Biophys 2005; 433: 379 – 386.
24. Nakata K, Tanaka Y, Nakano T, Adachi T, Tanaka H, Kaminuma T, et al. Nuclear receptor-mediated transcriptional regulation in phase I, II, and III xenobiotic metabolizing systems. Drug Metab Pharmacokinet 2006; 21: 437 – 457.
25. Moore LB, Parks DJ, Jones SA, Bledsoe RK, Consler TG, Stimmel JB, et al. Orphan nuclear receptors constitutive androstane receptor and pregnane X receptor share xenobiotic and steroid ligands. J Biol Chem 2000; 275: 15122 – 15127.
26. Howe K, Sanat F, Thurner AE, Coleman T, Plant N. The statin class of HMG-CoA reductase inhibitors demonstrate differential activation of the nuclear receptors PXR, CAR and PXR, as well as their downstream target genes. Xenobiotica 2011; 41: 519 – 529.
27. Synold TW, Dussault I, Forman BM. The orphan nuclear receptor SXR coordinates drug metabolism and efflux. Nat Med 2001; 7: 584 – 590.
28. Kobayashi K, Yamakata Y, Iwazaki N, Nakajo I, Hosokawa M, Negishi M, et al. Identification of HMG-CoA reductase inhibitors as activators for human, mouse and rat constitutive androstane receptor. Drug Metab Dispos 2005; 33: 924 – 929.
29. Poland RE, Rubin RT. Radioimmunoassay of haloperidol in human serum: Correlation of serum haloperidol with serum prolactin. Life Sci 1981; 29: 1837 – 1845.
30. Tontonoz P, Mangelsdorf DJ. Liver X receptor signaling pathways in cardiovascular disease. Mol Endocrinol 2003; 17: 985 – 993.
31. Jacobs MN, Dickins M, Lewis DF. Homology modelling of the nuclear receptors: Human oestrogen receptor beta (HERbeta), the human pregnane-X-receptor (PXR), the ah receptor (AhR) and the constitutive androstane receptor (CAR) ligand binding domains from the human oestrogen receptor alpha (HERalpha) crystal structure, and the human peroxisome proliferator activated receptor alpha (PPARalpha) ligand binding domain from the human PPAR-gamma crystalline structure. J Steroid Biochem Mol Biol 2003; 84: 117 – 132.
32. Xie W, Barbwick JL, Simon CM, Pierce AM, Safe S, Blumberg B, et al. Reciprocal activation of xenobiotic response genes by nuclear receptors: SXR/XR and CAR Genes Dev 2000; 14: 1231 – 1241.
33. Wei P, Zhang J, Dowhan DH, Han Y, Moore DD. Specific and overlapping functions of the nuclear hormone receptors CAR and PXR in xenobiotic response. Pharmacogenomics J 2002; 2: 117 – 126.
34. Moore LT, Moore LB, Maglich JM, Kliewer SA. Functional and structural comparison of PXR and CAR. Biochim Biophys Acta 2003; 1619: 235 – 238.
35. Forman BM, Tzameli I, Choi HS, Chen J, Simha D, Seol W, et al. Androstane metabolites bind to and deactivate the nuclear receptor CAR-beta. Nature 1998; 395: 612 – 615.
36. Kakizaki S, Yamazaki Y, Takizawa D, Negishi M. New insights on the xenobiotic-sensing nuclear receptors in liver diseases; CAR and PXR. Curr Drug Metab 2008; 9: 614 – 621.
37. Qatanani M, Zhang J, Moore DD. Role of the constitutive androstane receptor in xenobiotic-induced thyroid hormone metabolism. Endocrinology 2005; 146: 1495 – 1503.
38. Ma X, Idle JR, Gonzalez FJ. The pregnane X receptor: From bench to bedside. Expert Opin Drug Metab Toxicol 2008; 4: 895 – 908.
39. Lichti-Kaiser K, Brobst D, Xu C, Staudinger J. A systematic analysis of predicted phosphorylation sites within the human pregnane X receptor protein. J Pharmacol Exp Ther 2000; 301: 65 – 76.
40. Staudinger JL, Xu C, Biswas A, Mani S. Post-translational modification of pregnane X receptor. Pharmacol Res 2011; 64: 4 – 10.
41. Biswas A, Pasquel D, Tyagi RK, Mani S. Acetylation of pregnane X receptor protein determines selective function independent of ligand activation. Biochem Pharmacol 2011; 80: 527 – 537.
42. Hosseinpour F, Moore RR, Negishi M, Suyeshi T. Serine 202 regulates the nuclear translocation of constitutive active/androstane receptor. Mol Pharmacol 2006; 69: 1095 – 1103.
43. Denison MS, Pandini A, Nagy SR, Baldwin EP, Bonati L. Ligand binding and activation of the Ah receptor. Chem Biol Interact 2002;
46. Denison MS, Nagy SR. Activation of the aryl hydrocarbon receptor by structurally diverse exogenous and endogenous chemicals. Drug Metab Dispos 2003; 31: 309 – 316.

47. Adachi J, Mori Y, Matsui S, Takigami H, Fujino J, Kitagawa H, et al. Indurbin and indigot are potent aryl hydrocarbon receptor ligands present in human urine. J Biol Chem 2001; 276: 31475 – 31478.

48. Sinal CJ, Bend JR. Aryl hydrocarbon receptor-dependent induction of CYP1A1 by bilirubin in mouse hepatoma HEPA 1c17 cells. Mol Pharmacol 1997; 52: 590 – 599.

49. Seidel SD, Winters GM, Rogers WJ, Ziccardi MH, Li V, Kester B, et al. Activation of the Ah receptor signaling pathway by prostanoids. J Biochem Mol Toxicol 2001; 15: 187 – 196.

50. Zhang N. The role of endogenous aryl hydrocarbon receptor signaling in cardiovascular physiology. J Cardiovasc Dis Res 2011; 2: 91 – 95.

51. Zhou C, Tabb MM, Nelson EL, Grun F, Verma S, Sadatrafiei A, et al. An interleukin homologue of the IL-8 receptor CXCR2 mediates the accumulation of macrophages in athersclerotic lesions of LDL receptor-deficient mice. J Clin Invest 1998; 101: 353 – 363.

52. Swales KE, Bishop-Bailey D. The potential use of the pregnane X receptor in cardiovascular therapy. Expert Rev Cardiovasc Ther 2010; 10: 1079 – 1092.

53. Wang X, Fang X, Zhou J, Chen Z, Zhao B, Xiao L, et al. Shear stress activation of nuclear receptor PXR in endothelial detoxification. Proc Natl Acad Sci USA 2013; 110: 13174 – 13179.

54. Swales KE, Moore R, Truss NJ, Tucker A, Warner TD, Negishi M, et al. Pregnan X receptor regulates drug metabolism and transport in the vasculature and protects from oxidative stress. Cardiovasc Res 2012; 93: 674 – 681.

55. Zhou J, Zhai Y, Mu Y, Gong H, Uppal H, Toma D, et al. A novel interleukin receptor domain-containing adaptor protein in toll-like receptor signaling in primary human hepatocytes. Drug Metab Dispos 2006; 34: 1756 – 1763.

56. Olinga P, Elferink MG, Draaisma AL, Merata MT, Castell JV, Perez G, et al. Coordinated induction of drug transporters and phase I and II metabolism in human liver slices. Eur J Pharm Sci 2008; 33: 380 – 389.

57. Richert L, Tuschl G, Abadie C, Blanchard N, Pekhtong D, Manton G, et al. Use of mRNA expression to detect the induction of drug metabolising enzymes in rat and human hepatocytes. Toxicol Appl Pharmacol 2009; 239: 1806 – 1815.

58. Kiewer SA, Moore JT, Wade L, Staudinger JL, Watson MA, Jones SA, et al. An orphan nuclear receptor activated by pregnane defines a novel steroid signaling pathway. Cell 1998; 92: 73 – 82.

59. Makishima M, Okamoto AT, Rep JU, Tu H, Learned RM, Luk A, et al. Identification of a nuclear receptor for bile acids. Science 1999; 284: 1362 – 1365.

60. Kassam A, Winrow CJ, Fernandez-Rubchinski F, Capone JP, Rubchinski RA. The peroxisome proliferator response element of the gene encoding the peroxisomal beta-oxidation enzyme enoyl-CoA hydratase/3-hydroxyacyl-CoA dehydrogenase is a target for constitutive androstane receptor beta/9-cis retinoic acid receptor-mediated transactivation. J Biol Chem 2000; 275: 4345– 4340.

61. Ueda A, Hamadeh HK, Webb HK, Yamamoto Y, Sueyoshi T, Ahsafi CA, et al. Diverse roles of the nuclear orphan receptor CAR in regulating hepatic genes in response to phenobarbital. Mol Pharmacol 2002; 61: 1 – 6.

62. Sui Y, Xu J, Rios-Pilier J, Zhou C. Deficiency of PXR decreases interleukin-1 receptor domain-containing adaptor protein 3 (MRP3). FEBS Lett 1998; 433: 149 – 152.

63. Denison MS, Nagy SR. Activation of the aryl hydrocarbon receptor by prostanoids. J Biochem Mol Toxicol 2001; 15: 187 – 196.

64. Xiao A, Orloval O, Gandhi A, Shah P, Shrohacker K, Carpenter KC, et al. Role of high-fat diet in regulation of expression of hepatic cyto- kines and drug-metabolizing enzymes. Drug Metabol Dispos 2011; 39: 874 – 881.

65. Ghose R, Omoloubi O, Gandhi A, Shah P, Shrohacker K, Carpenter KC, et al. Role of high-fat diet in regulation of expression of drug metabolizing enzymes and transporters. Life Sci 2011; 1806: 57 – 64.

66. Zhou C, Tabb MM, Nelson EL, Grun F, Verma S, Sadatrafiei A, et al. Mutual repression between steroid and xenobiotic receptor and NF-kappaB signaling pathways links xenobiotic metabolism and inflammation. J Clin Invest 2006; 116: 2280 – 2289.

67. Hofmann AF, Bregstrom B. The intestinal phase of fat digestion in man: The lipid content of the micellar and oil phases of intestinal content obtained during fat digestion and absorption. J Clin Invest 1964; 43: 247 – 257.

68. Mhiaylovova B, Emberson J, Blackwell L, Keech A, Simes JR, EH, et al. The effects of lowering LDL cholesterol with statin therapy in people at low risk of vascular disease: Meta-analysis of individual data from 27 randomised trials. Lancet 2012; 380: 581 – 590.

69. Staudinger JL, Goodwin B, Jones SA, Hawkins-Brown D, MacKenzie KJ, LaTour A, et al. The nuclear receptor PXR is a lipophilic allosteric sensor that protects against liver toxicity. Proc Natl Acad Sci USA 2001; 98: 3369 – 3374.

70. Xie W, Radominska-Pandya A, Shi Y, Simon CM, Nelson MC, Ong ES, et al. An essential role for nuclear receptors SXR/PXR in detoxification of cholesteryl bile acids. Proc Natl Acad Sci USA 2001; 98: 3375 – 3380.

71. Uppal H, Toma D, Saini SP, Ren S, Jones TJ, Xie W. Combined loss of orphan receptors PXR and CAR highlights sensitivity to toxic bile acids in mice. Hepatology 2005; 41: 168 – 176.

72. Cheng X, Maher J, Dieter MZ, Klaassen CD. Regulation of mouse organic anion-transporting polypeptides (OATPs) in liver by prototypical micromosomal enzyme inducers that activate distinct transcription factor pathways. Drug Metab Dispos 2003; 31: 1276 – 1282.

73. Uppal H, Toma D, Saini SP, Ren S, Jones TJ, Xie W. Combined loss of orphan receptors PXR and CAR highlights sensitivity to toxic bile acids in mice. Hepatology 2005; 41: 168 – 176.

74. Goodwin B, Gauthier KC, Utseton M, Watson MA, LOchansky MI, Collins JL, et al. Identification of bile acid precursors as endogenous ligands for the nuclear xenobiotic pregnane X receptor. Proc Natl Acad Sci USA 2003; 100: 223 – 228.

75. Zhou C, Verma S, Blumberg B. The steroid and xenobiotic receptor (SXR), beyond xenobiotic detoxification. Nucl Recept Signal 2007; 9: e001, doi:10.1152/nrs.00701.

76. Cheng X, Maher J, Looser R, Winrow CJ, Fernandez-Rubchinski F, Capone JP, et al. Use of mRNA expression to detect the induction of drug metabolising enzymes in rat and human hepatocytes. Toxicol Appl Pharmacol 2009; 235: 86 – 96.

77. Kiewer SA, Moore JT, Wade L, Staudinger JL, Watson MA, Jones SA, et al. An orphan nuclear receptor activated by pregnane defines a novel steroid signaling pathway. Cell 1998; 92: 73 – 82.

78. Makishima M, Okamoto AT, Rep JU, Tu H, Learned RM, Luk A, et al. Identification of a nuclear receptor for bile acids. Science 1999; 284: 1362 – 1365.

79. Kassam A, Winrow CJ, Fernandez-Rubchinski F, Capone JP, Rubchinski RA. The peroxisome proliferator response element of the gene encoding the peroxisomal beta-oxidation enzyme enoyl-CoA hydratase/3-hydroxyacyl-CoA dehydrogenase is a target for constitutive androstane receptor beta/9-cis retinoic acid receptor-mediated transactivation. J Biol Chem 2000; 275: 4345– 4340.

80. Ueda A, Hamadeh HK, Webb HK, Yamamoto Y, Sueyoshi T, Ahsafi CA, et al. Diverse roles of the nuclear orphan receptor CAR in regulating hepatic genes in response to phenobarbital. Mol Pharmacol 2002; 61: 1 – 6.

81. Sui Y, Xu J, Rios-Pilier J, Zhou C. Deficiency of PXR decreases interleukin-1 receptor domain-containing adaptor protein 3 (MRP3). FEBS Lett 1998; 433: 149 – 152.
88. Mehrabi MR, Steiner GE, Dellinger C, Koller A, Schaufer K, Tamadon F, et al. The arylhydrocarbon receptor (AhR), but not the AhR-nuclear translocator (ARNT), is increased in hearts of patients with cardiomyopathy. *Vircnchos Arch* 2002; 441: 481 – 489.

89. Takahashi Y, Nakayama K, Shimojima T, Itoh S, Kamataki T. Expression of aryl hydrocarbon receptor (AhR) and aryl hydrocarbon receptor nuclear translocator (ARNT) in adult rabbits known to be non-responsive to the carcinogen benzo[a]pyrene 3,4 diol epoxide (CYP1A1) inducers. *Eur J Biochem* 1996; 242: 512 – 518.

90. Hankinson O. Dominant and recessive aryl hydrocarbon hydroxylase-deficient mutants of mouse hepatoma line, HEPA-1, and assignment of recessive mutants to three complementation groups. *Somatic Cell Genet* 1983; 9: 497 – 514.

91. Poland AP, Glover E, Robinson JR, Nebert DW. Genetic expression of aryl hydrocarbon hydroxylase activity: Induction of mono-oxygenase activities and cytochrome p-450 formation by 2,3,7,8-tetrachlorodibenzo-p-dioxin in mice genetically “nonresponsive” to other aromatic hydrocarbons. *J Biol Chem* 1974; 249: 5599 – 5606.

92. Nebert DW, Gielen JE. Genetic regulation of aryl hydrocarbon hydroxylation induction in the mouse. *Fed Proc* 1972; 31: 1315 – 1325.

93. Vogel CF, Scialli E, Matsumura F. Activation of inflammatory mediators and potential role of Ah-receptor ligands in foam cell formation. *Cardiovasc Toxicol* 2004; 4: 363 – 373.

94. Liu S, Abdelrahim M, Khan S, Ariazi E, Jordan VC, Safe S. Aryl hydrocarbon receptor regulates eicosanoid synthesis. *Biochem Biophys Res Commun* 2003; 310: 363 – 369.

95. Schlezinger JJ, Liu D, Farago M, Seldin DC, Belguise K, Neilson RO, et al. Aryl hydrocarbon receptor as a target for estrogen receptor-negative breast cancer chemotherapy. *Endocr Relat Cancer* 2009; 16: 835 – 844.

96. Schlezinger JJ, Stegeman JJ. Dose and inducer-dependent induction of aryl hydrocarbon receptor-gamma in atherosclerosis: An update. *Drug Metab Dispos* 2007; 35: 226 – 234.

97. Zhang S, Lei P, Liu X, Li X, Walker K, Kotha K, et al. The aryl hydrocarbon receptor regulates STAT1 activation and participates in the development of Th17 cells. *Proc Natl Acad Sci USA* 2008; 105: 9721 – 9726.

98. Vogel CF, Scialli E, Wong P, Kuzmicky P, Kado N, Matsumura F. Induction of proinflammatory cytokines and C-reactive protein in human macrophage cell line U937 exposed to air pollution particulates. *Environ Health Perspect* 2005; 113: 1536 – 1541.

99. Pelcova D, Fenclova Z, Preiss J, Prochazka B, Spacil J, Dubska Z, et al. Lipid metabolism and neuropsychological follow-up study of workers exposed to 2,3,7,8-tetrachlorodibeno-p-dioxin. *Int Arch Occup Environ Health* 2002; 75(Suppl): S60 – S66.

100. Mathiesen M, Pedersen EK, Bjørsnes O, Egberg WW, Sversen T. Air pollution reduces caused reduction in its ability to stimulate release of IL-8 and TNFalpha in in vitro compared to non-heated dust. *Indoor Air* 2004; 14: 226 – 234.

101. Wu D, Nishimura K, Kuo V, Fiehn O, Shahbaz S, Van Winkle L, et al. Aryl hydrocarbon receptor activates hepatic drug metabolism enzymes p450 (CYP) as a susceptibility factor for drug response, toxicity, and cancer risk. *Arq Hig Rada Toxicol* 2009; 60: 217 – 242.

102. Kazui M, Nishiya Y, Ishizuka T, Hagihara K, Farid NA, Okazaki O, et al. Identification of the human cytochrome p450 enzymes involved in the oxidation steps in the bioactivation of chloroprene to its pharmacologically active metabolite. *Drug Metabol Dispos* 2010; 38: 92 – 99.

103. Mani S, Dou W, Redinbo MR. PXR antagonists and implication in drug metabolism. *Drug Metab Rev* 2013; 45: 60 – 72.

104. Chen T. Overcoming drug resistance by regulating nuclear receptors. *Adv Drug Deliv Rev* 2010; 62: 1257 – 1264.

105. Wang XL, Raveendran M, Wang J. Genetic influence on cigarette-induced cardiovascular disease. *Prog Cardiovasc Dis* 2003; 45: 361 – 382.

106. Zordoky BN, El-Kadi AO. Effect of cytophrome p450 polymorphism on arachidonic acid metabolism and their impact on cardiovascular diseases. *Pharmacol Ther* 2010; 125: 446 – 463.

107. Bozina N, Bradmanovic M. Genetic polymorphism of metabolic enzymes p450 (CYP) as a susceptibility factor for drug response, toxicity, and cancer risk. *Arq Hig Rada Toxicol* 2009; 60: 217 – 242.

108. Luu WC, Gurbel PA, Watkins PB, Neer CJ, Hopp AS, Carville DG, et al. Contribution of hepatic cytochrome c50 si44 metabolic activity to the phenomenon of clopidogrel resistance. *Circulation* 2004; 109: 166 – 171.

109. Hagedorn KA, Cooke CL, Falck JR, Mitchell BF, Davidge ST. Regulation of vascular tone during pregnancy: A novel role for the pregnancy X receptor. *Hypertension* 2007; 49: 328 – 333.

110. Wu D, Zhang L, He X, Zhang J, Moore DD. A traditional herbal medicine enhances reactive oxygen species production in human endothelial cells via induction of cytochrome p450 1a1. *Cytoskeleton* 2009; 66: 131 – 138.

111. Kim JS, Lim HS, Cho SI, Cheong HK, Lim MK. Impact of agent exposure among Korean Vietnam veterans. *Am J Ind Med* 2006; 49: 559 – 566.

112. Kang HK, Dalager NA, Needham LL, Patterson DG Jr, Lees PS, Yates K, et al. Health status of Army Chemical Corps Vietnam veterans who sprayed defoliant in Vietnam. *Am J Ind Med* 2006; 49: 559 – 566.

113. Kim JS, Lim HS, Cho SI, Cheong HK, Lim MK. Impact of agent exposure among Korean Vietnam veterans. *Adv Drug Deliv Rev* 2011; 82: 514 – 523.

114. Kopf PG, Huwe JK, Walker MK. Hypertension, cardiac hypertrophy, and impaired vascular relaxation induced by 2,3,7,8-tetrachlorodibenzofuran in mice with increased superseroxide. *Cardiovasc Toxicol* 2008; 8: 181 – 193.

115. Wang XL, Raveendran M, Wang J. Genetic influence on cigarette-induced cardiovascular disease. *Prog Cardiovasc Dis* 2003; 45: 361 – 382.

116. Hagedorn KA, Cooke CL, Falck JR, Mitchell BF, Davidge ST. Regulation of vascular tone during pregnancy: A novel role for the pregnancy X receptor. *Hypertension* 2007; 49: 328 – 333.

117. Huang W, Zhang J, Moore DD. A traditional herbal medicine enhances reactive oxygen species production in human endothelial cells via induction of cytochrome p450 1a1. *Cytoskeleton* 2009; 66: 131 – 138.
133. Folts JD. Potential health benefits from the flavonoids in grape products on vascular disease. *Adv Exp Med Biol* 2002; 505: 95–111.

134. Medjakovic S, Jungbauer A. Red clover isoflavones biochanin A and formononetin are potent ligands of the human aryl hydrocarbon receptor. *J Steroid Biochem Mol Biol* 2008; 108: 171–177.

135. Shan Y, Zhao R, Geng W, Lin N, Wang X, Du X, et al. Protective effect of sulforaphane on human vascular endothelial cells against lipopolysaccharide-induced inflammatory damage. *Cardiovasc Toxicol* 2010; 10: 139–145.

136. Anwar-Mohamed A, El-Kadi AO. Sulforaphane induces CYP1a1 mRNA, protein, and catalytic activity levels via an AhR-dependent pathway in murine hepatoma HEPA1clc7 and human HEPG2 cells. *Cancer Lett* 2009; 275: 93–101.

137. Gielen JE, Nebert DW. Aryl hydrocarbon hydroxylase induction in mammalian liver cell culture. I: Stimulation of enzyme activity in nonhepatic cells and in hepatic cells by phenobarbital, polycyclic hydrocarbons, and 2,2-bis(p-chlorophenyl)-1,1,1-trichloroethane. *J Biol Chem* 1971; 246: 5189–5198.

138. Zatoukalova J, Svitalkova-Sindlerova L, Kozubik A, Krcmar P, Machala M, Vondracek J. Beta-naphthoflavone and 3'-methoxy-4'-nitrofluorone exert ambiguous effects on Ah receptor-dependent cell proliferation and gene expression in rat liver 'stem-like' cells.

139. Barouki R, Coumoul X, Fernandez-Salguero PM. The aryl hydrocarbon receptor, more than a xenobiotic-interacting protein. *FEBS Lett* 2007; 581: 3608–3615.

140. Bittinger MA, Nguyen LP, Bradfield CA. Aspartate aminotransferase generates progamonts of the aryl hydrocarbon receptor. *Mol Pharmacol* 2003; 64: 550–556.

141. Zhou C, King N, Chen KY, Breslow JL. Activation of PXR induces hypercholesterolemia in wild-type and accelerates atherosclerosis in ApoE deficient mice. *J Lipid Res* 2009; 50: 2004–2013.

142. Sberna AL, Assem M, Xiao R, Ayers S, Gautier T, Guii B, et al. Constitutive androstane receptor activation decreases plasma apolipoprotein B-containing lipoproteins and atherosclerosis in low-density lipoprotein receptor-deficient mice. *Arterioscler Thromb Vasc Biol* 2011; 31: 2232–2239.

Supplementary Files

Supplementary File 1

Non-standard abbreviations and acronyms

Please find supplementary file(s); http://dx.doi.org/10.1253/circj.CJ-14-0343