Backward wave region and negative material parameters of a structure formed by lattices of wires and split-ring resonators

Constantin R. Simovski, Pavel A. Belov, Student Member IEEE, and Sailing He

Abstract—A structure formed by combined lattices of infinitely long wires and split-ring resonators is studied. A dispersion equation is derived and then used to calculate the effective permittivity and permeability in the frequency band where the lattice can be homogenized. The backward wave region in which both the effective permittivity and permeability are negative is analyzed. Some open and controversial questions are discussed. It is shown that previous experimental results confirming the existence of backward waves in such a structure can be in deed explained in terms of negative material parameters. However, these parameters are not quasi-static and thus the known analytical formulas for the effective material parameters of this structure, which have been widely used and discussed in the literature, were not correct, and it was the reason of some objections to the authors of that experiment.

I. INTRODUCTION

Meta-materials with negative permittivity and negative permeability, which were first suggested in [1], have attracted much attention recently. A meta-material which has simultaneously negative permittivity ε and negative permeability μ within a certain frequency band at microwave frequencies has been introduced recently [2]. This structure consists of two lattices: a lattice of infinitely long parallel wires, and a lattice of relatively small (compared to the wavelength λ in the host medium) particles which are called split-ring resonators (SRR:s). In [3] and [4] two analytical models of SRR (similar to each other) have been developed for the resonant permeability at microwave frequencies. Lattices of wires at low frequencies (when the lattice period d is smaller than $\lambda/2$) were considered as homogeneous dielectric media long time ago in [5] and were studied again recently in the low-frequency region [6]. [7]. At these low frequencies the negative permittivity is due to the lattice of wires according to the models of [5], [6], [7] (for waves propagating normally to the wires with the electric field polarized along these wires). These results were combined in [7], [6], [5], [8] to form a simple model predicting simultaneously negative ε and μ within the resonant band of a SRR. In [5] this prediction has been qualitatively confirmed by numerical simulations.

II. EXPERIMENTAL OBSERVATION

Using the MAFIA code, dispersion curves obtained numerically contain the pass-band within the SRR resonant band (due to the presence of the SRR lattice). This pass-band can also be predicted by the analytical model. However, the numerical dispersion data obtained in [5] have not been used to extract the material parameters. The experimental observation of the negative refraction of a wave in such a structure is reported in [8]. The phenomenon of the negative refraction was predicted in [6] for media with $\varepsilon < 0$ and $\mu < 0$, and according to this theory they correspond to the backward wave region (where the Poynting vector of the eigenwave is opposite to the wave vector).

Does the experimental observation of [8] mean that the structure suggested in [8] can be described through ε and μ which are both negative within the SRR resonant band? Based on [8] one can only assert that the backward wave region necessarily exists within this frequency band. Backward waves in a lattice correspond to negative dispersion, i.e., the group velocity (the derivative of the eigenfrequency with respect to the wave number) is in the opposite direction of the phase velocity. Negative dispersion for a lattice is quite common in high frequency bands ($kd > \pi$, where $k = 2\pi/\lambda$ is the wave number in the host medium). However, at low frequencies ($kd < \pi$) negative dispersion is an abnormal phenomenon. When $kd < \pi$ the wavelength λ is high enough as compared to the lattice period and the SRR size and thus the homogenization of the lattice may be possible. In [5], [6] and [7] the lattice at low frequencies was treated as a continuous medium and the concept of the negative dispersion is equivalent to the concept of negative material parameters. However, is it possible to describe the structure formed by lattices of wires and SRR:s (studied in [8]) in terms of ε and μ within the resonant band of SRR:s? This question remains open since the analytical model [5] with which these material parameters were introduced is incomplete and can be wrong.

In [8] the negative refraction was observed only for waves whose electric field is parallel to the wires and the wave vector is perpendicular to the wires. Thus, the permittivity ε considered in [8] and [9] are the xx—component of the permittivity tensor (we assume the wires are along the x-axis) and the permeability μ considered there are the transversal component of the permeability tensor $\mu_{xx} = \mu_{yy} = \mu_{zz}$ (there are two orthogonal SRR:s in each unit cell of the structure studied in [8]). If one considers only the propagation in the transversal plane (i.e., the $y-z$ plane in our case), one can neglect the spatial
indicated that the structure considered in [8] was fortunately adjacent wires and thus there is no quasi-static interaction between the SSR:s and the wires. We consider the non-local interactions are considered among the elements of the structure). Our results have shown that the homogenization is allowed only over part of the resonant band of the SRR scatterers and the homogenization is forbidden in a sub-band inside the SRR resonant band (even though the frequencies of this sub-band are low and the spatial dispersion exists there).

II. SRR with Identical Rings

The SRR particle considered in [3] and [4] is a pair of two coplanar broken rings. Since the two loops are not identical the effective permittivity of a wire medium and its \(\mu \) is the same as the effective permeability of the lattice of SRR:s and wires are neglected). In the present paper, we take into account the electromagnetic interaction (including the plane-wave interaction) between the SSR:s and the wires. We consider the lossless case (corresponding to \(\gamma = 0, \omega_e = 0 \) in Pend1 and Pend2).

In the present paper, we also discuss the following two questions:

- Is it possible to consider the structure formed by lattices of wires and SRR:s as a medium that its \(\varepsilon \) is the same as the effective permittivity of a wire medium and its \(\mu \) is the same as the effective permeability of the lattice of SRR:s (i.e., is it possible to neglect the electromagnetic interaction between the SRR:s and the wires when calculating the material parameters of the whole structure)?

- How to find the frequency region within the resonant band of SRR scatterers in which the homogenization of the whole structure is allowed? At some frequencies within the SRR resonant band the homogenization model may give so high values of the effective permeability that the product \(|\varepsilon\mu|\) becomes very large. Though the wavelength \(\lambda \) in the host medium is much larger than the lattice period \(d \), the effective wavelength \(\lambda/\sqrt{|\varepsilon\mu|} \) of the eigenmode at these frequencies can be of the order of \(d \) or even smaller and thus the homogenization model becomes contradictory. However, within the band of the resonance there are frequencies at which the product \(|\varepsilon\mu|\) is not so large. Thus, the problem is how to separate quantitatively the frequencies at which the homogenization is forbidden from the frequencies at which the homogenization is allowed.

The first question has been considered briefly in [13]. It was indicated that the structure considered in [8] was fortunately built so that each SRR is located exactly at the center of two adjacent wires and thus there is no quasi-static interaction between the wire lattice and the SRR lattice (i.e., the magnetic fields produced by the two adjacent equivalent line currents cancel out at the center where the SRR is located). If one considers \(\varepsilon \) and \(\mu \) as quasi-static parameters (as was done in [13]), the absence of the quasi-static interaction should lead to the following result: the effective permittivity of the structure is identical to the effective permittivity of the lattice of wires and the effective permeability of the structure is identical to the effective permeability of the lattice of SRR:s. However, we will show in the present paper that this is not correct since the electromagnetic interaction between the wires and the SRR:s in such a structure is not quasi-static (or local) and will dramatically influence the effective permittivity. The consideration of structure as lattice of wires positioned in a host negative magnetic suggested in [6] is not adequate, because it also does not describe electromagnetic interaction correctly.

For the second question, one must be very careful in the homogenization of the complex structure studied in [2], [8] and [10]. In fact, the results of [8] can not be interpreted quantitatively in terms of the permittivity and permeability used in [2] and [8]. [2], [8] and [10]. This has been revealed in [13].
made of real metal, the resonant electric polarizability will lead to a dramatic increase in the resistive loss. The resonant electric polarizability also makes the analytical modelling of the whole structure very complicated.

A modified SRR which does not possess bianisotropy was proposed in [19]. This SRR also consists of two loops but they are identical and parallel to each other (located on both sides of a dielectric plate in practice). Fig. 1 shows two kinds of SRR. The left one is the SRR considered in [3] and [4]. The right is the SRR introduced in [19] and the one considered in the present paper. It has been mentioned in [19] that the magnetic resonant frequency of their SRR is lower than that of the SRR considered in [3] and [4] (for the same size). This is because the mutual capacitance C_{mut} between the two parallel broken rings is now the capacitance of a conventional parallel-plate capacitor and is significantly higher than the mutual capacitance of two coplanar split rings considered in [3]. This fact is illustrated in Fig. 1: if the upper half of ring 1 is charged positively the negative induced charges appear in the upper half of ring 2. The same situation happens for the SRR shown in the left part of this figure, but not so effectively since the strips are coplanar and weakly interacted. Therefore, the homogenization is more appropriate within the resonant band of the particle since the ratio of the particle size to λ is small.

There is one more advantage that was not mentioned in [19] for the SRR of two parallel broken rings. The resonances of the electric and magnetic polarizabilities of this particle do not overlap in frequency. Actually, particle suggested in [19] is a special case of the bi-helix particle introduced (with the aim to create novel low-reflective shields) and studied in [17]. Unlike the SRR considered in [19] this bi-helix particle contains four stems orthogonal to the loop planes. Note that the theory of [17] remains valid even if the length of these stems becomes zero.

Both rings 1 and 2 (see the right diagram of Fig. 1) have the same radius r and area $S = \pi r^2$. The impedance Z_0 for each broken ring can be calculated by

$$Z_0 = \frac{1}{Y_{\text{ring}}} + \frac{1}{Y_{\text{split}}},$$

where Y_{ring} is the admittance for the corresponding closed ring and Y_{split} is the admittance for the split (associated with the capacitance between the two broken ends). The magnetization arises due to the magnetic field orthogonal to the ring plane (i.e., the xy plane in Fig. 1). Resonant electric polarization is caused by the y–component of the external local electric field E_{loc}. The x-component of E_{loc} has no influence over the resonant polarization and can be neglected [13]. Thus, voltages (electromotive forces) E^H and E^E will be induced in each loop by the external local electric and magnetic fields, respectively [17], [18]:

$$E^H = -j\omega \mu_0 \phi \bar{H}_{\text{loc}}^x,$$

and

$$E^E = \frac{4r J'_{1}(kr) Z_0}{j\eta A_1(kr)} \left(1 + \frac{j}{\pi \eta (Y_{\text{ring}} + Y_{\text{split}})} \right) E_{\text{loc}}^y,$$

where J'_1 is the derivative (with respect to the argument) of the Bessel function, and A_1 is one of the so-called King’s coefficients known in the theory of loop antennas (see e.g. [18]). Then the induced currents $I_{1,2}$ (due to the changing of the charges at the tips of the split arms) at the split gaps of rings 1 and 2 satisfy the following equations, [17]:

$$I_1 Z_0 + I_2 Z_{\text{mut}} = E^E + E^H,$$

$$I_2 Z_0 + I_1 Z_{\text{mut}} = E^E + E^H,$$

where Z_{mut} is the mutual impedance of the two broken rings.

It is clear from \bar{p}_{pp} and \bar{d}_{hh} that there are two eigenmodes of currents in the SRR. The first mode corresponds to $I_1 = I_2$ when the electric dipole moment of the SRR is zero and the magnetic dipole moment $m = 2m_0 = 2m_0$ is twice the magnetic moment of a single ring (see Fig. 1). The second mode corresponds to $I_1 = -I_2$ when the magnetic moment is zero and the electric dipole moment $p = p_0$ of the SRR is twice the electric dipole moment of a single ring. The first mode in the SRR is excited by the local magnetic field, and the second mode is excited by the local electric field. The more the two rings are mutually coupled, the more is the difference between the resonant frequencies of the electric and magnetic resonators [17]. The electric resonant frequency (at which the electric polarizability resonates) is always higher than the magnetic resonant frequency [17]. The relative difference of these two resonant frequencies may exceed 50% [17]. If the distance h between the two parallel broken rings is very small, we can assume that the mutual coupling is so strong that the electric polarizability of the SSR is negligible within the frequency band of the magnetic resonance. Note that h is also the thickness of the dielectric layer between the two parallel broken rings in Fig. 1 since the rings are assumed to be perfectly conducting with infinitesimal thickness.

Therefore, unlike the SSR considered in [3] and [4], the SSR suggested in [19] is appropriate for creating artificial magnetic resonance without resonant electric properties within the frequency band of interest. This is the reason why we choose the SSR shown in the right part of Fig. 1 to study in the present paper (the analysis will be much simpler).

In the present paper we introduce an analytical model for an individual SRR particle used in [13]. This model is simpler than...
the one considered in [17] (due to the absence of the stems). Assume that the SRR shown in Figure 1 is made of perfectly conducting strip and is excited by magnetic field \(H_z^{loc} \). Also assume that the dielectric plate separating the two parallel rings has the same permittivity as the background medium (then we can avoid the influence of the dielectric plate which can be very strong if there is a mismatch in the permittivity). The model used in this section is quasi-static since it refers to an isolated particle of small size (with respect to the wavelength).

If the non-uniformity of the azimuthal current distribution in both rings and SRR:s can be neglected, the magnetic polarizability can be written as

\[
a_{mm} = \frac{m}{H_z^{loc}} = \frac{2I_0 J_0 S}{H_z^{loc}}
\]

where \(I = I_1 = I_2 \). From \(\hat{\epsilon}_{ppp} \) and \(\hat{\eta}_{agg} \) it follows that

\[
I = \frac{\mathcal{E}H}{Z_0 + Z_{mut}} = \frac{-j \omega S \mu_0 H_z^{loc}}{Z_0 + Z_{mut}}
\]

Calculating the total impedance of the loop by taking into account the mutual coupling of the loops (as it was done in [15] and [19] for SRR of coplanar rings), we obtain

\[
Z_{tot} = Z_0 + Z_{mut} = j \omega (L + L_{mut}) + \frac{1}{j \omega C_{tot}} + R_r
\]

Here \(R_r \) is the radiation resistance of the whole particle, \(L \) is the ring inductance:

\[
L = \mu_0 r \left(\log \frac{32r}{w} - 2 \right)
\]

where \(w \) is the width of the strip from which the ring is made of, and \(L_{mut} \) is the mutual inductance of the two parallel coaxial rings:

\[
L_{mut} = \mu_0 r \left[\left(1 + \frac{3 \xi^2}{4} \right) \log \frac{4}{\xi} - 2 \right]
\]

where \(\xi = h/2r \). The total capacitance \(C_{tot} \) attributed to the split can be calculated (taking into account the capacitive mutual coupling; cf. [13] and [19]) as half of the mutual capacitance formed by the two parallel rings

\[
C_{tot} = \frac{C_{mut}}{2} = \frac{\varepsilon_0 \varepsilon w \pi r}{2h}
\]

In this formula the capacitance of the split is neglected since it is small as compared to \(C_{mut} \).

From eq. and fok we obtain

\[
a_{mm} = \frac{2 \mu_0 S^2}{(L + L_{mut}) \left(\frac{\omega_0^2}{\omega^2} - 1 \right) - j \frac{R_r}{\omega}}
\]

where

\[
\omega_0^2 = \frac{1}{C_{tot}(L + L_{mut})}
\]

In a similar way one can show that the electric polarizability resonates at the frequency \(\omega_1 \) (see also [17]):

\[
\omega_1^2 = \frac{1}{C_{tot}(L - L_{mut})}
\]

Fig. 2
LEFT: FRONT VIEW OF THE LATTICE OF SRR:s (SHOWN AS DISKS; THEIR MAGNETIC DIPOLPES ARE INDICATED WITH ARROWS) AND STRAIGHT WIRES. RIGHT: TOP VIEW. THE WAVE PROPAGATION IS IN THE Y - Z PLANE.

and \(\omega_0 < \omega_1 \).

We will also use the following result of \(\hat{\alpha}_{ppm} \):

\[
\text{Re} \left(\frac{1}{a_{mm}} \right) = \frac{(L + L_{mut}) \left(\frac{\omega_0^2}{\omega^2} - 1 \right)}{2 \mu_0 S^2}
\]

The radiation resistance \(R_r \) can be found from the following condition [22], [23], [24]:

\[
\text{Im} \left(\frac{1}{a_{mm}} \right) = \frac{k^2}{6 \pi \mu_0}
\]

In the dispersion equation for a lattice, \(R_r \) cancels out and does not influence the result.

III. THE STRUCTURE

The structure we study in the present paper is similar to the one studied experimentally in [3], however, instead of the coplanar SRR:s we use the parallel SRR:s (as described in the previous section).

When the wave propagates along the \(z \)-axis the electric field excites the \(x \)-directed current \(I_{n_x,n_z} \) in the wire numbered \((n_y,n_z) \) (for the reference wire we have \(n_y = n_z = 0 \)). The magnetic field excites those SRR:s which are parallel to the \(x - z \) plane. Their magnetic moments are parallel to the \(y \) axis. Then the lattice can be considered as a set of 2D grids parallel to the \(x - y \) plane and orthogonal to the propagation direction. Each grid contains magnetic and electric polarizations.

The magnetic moments as well as the currents are tangential to the grid plane, and each grid can be considered as a sheet of surface magnetic moment \(\mathbf{M} = M_{x0} \) and a surface electric current \(\mathbf{J} = J_{x0} \) (or surface electric polarization \(P = J/j \omega \)). Similar situation holds for the wave propagation along the \(y \) axis. Then one has \(\mathbf{M} = M_{y0} \) and \(\mathbf{J} = J_{y0} \), and the electric and magnetic polarizations for each 2D grid (parallel to the \(x - z \) plane) is again tangential to the grid and orthogonal to the propagation direction. The wire lattice and the SRR lattice have the same periods along the \(y \) and \(z \) axes and are denoted as \(b \) and \(d \), respectively. The period of the SRR lattice along the
x axis is denoted as a. Fig. 1 shows the two orthogonal sets of SRR:s separated with each other by $a/2$ along the x axis. This separation plays no role in our model since we do not consider the electromagnetic interaction between these two orthogonal sets of magnetic dipoles. When the wave propagates along the z axis or y axis, one of the two sets of SRR:s is not excited and the interaction is completely absent.

In the case $b = d$ such a structure behaves (within the frequency band where the homogenization is possible) like a uniaxial magneto-dielectric medium with relative axial permittivity ε_{xx} (mainly due to the presence of the wires) and relative transversal permeability $\mu_{yy} = \mu_{zz} = \mu_t$ (mainly due to the SRR particles). This indicates that in order to find the effective material parameters of the whole structure we can consider only the case of the normal propagation (along the x or y axis).

Note that the transversal permittivity and the axial permittivity of the structure are equal to those of the background vacuum. For simplicity we assume this background medium is vacuum.

We will see that the SRR:s strongly interact with the wires at each frequency. Their interaction is not quasi-static and influences the propagation constant starting from zero frequency. In this way it influences the material parameters of the whole structure.

IV. Dispersion equation

Let the wave propagate along the z axis with propagation factor β (to be determined). Consider the whole structure as a set of parallel 2D grids which are parallel to the $x - y$ plane and denote the surface magnetic moments $M(n_z)$ and the surface currents $J(n_z)$ at those grids numbered n_z. Then we choose an arbitrary SRR in the grid with $n_z = 0$ as the reference particle and an arbitrarily chosen wire (in the same grid) as the reference wire.

When we evaluate the magnetic moment m of the reference SRR (which is related to the surface magnetic moment M by $m = Mab$), we take into account its electromagnetic interaction with all the other SRR:s following the work of [24] where a simple model of 3D dipole lattice was suggested. As to the influence of the wires to the reference SRR, we can replace each grid of wires with a sheet of current $J(n_z)$ because of the absence of the a quasi-static interaction between SRR:s and wires. This gives the well-known plane-wave approximation of the electromagnetic interaction in lattices (see [24] and the references cited there).

When we evaluate the current I of the reference wire (which is related to the surface electric current by $I = Jb$), we take into account its interaction with all the other wires following the work of [20] where a simple model of doubly-periodic wire lattice was suggested. The influence of the SRR lattice on the reference wire is taken into account under the plane-wave approximation and the reciprocity principle is satisfied.

Each sheet of electric or magnetic polarization produces a plane wave [21]. Since $M(n_z)$ and $J(n_z)$ satisfy

$$M(n_z) = M e^{-jn_z\beta d} \quad (14)$$

$$J(n_z) = J e^{-jn_z\beta d} \quad (15)$$

we can write the following relations for the $x-$component of the electric field (produced by all the sheets of magnetic moment M and acting on the reference wire) and the $y-$component of the magnetic field (produced by all the sheets of current J and acting on the reference SRR):

$$E^M_x = \sum_{n_z = -\infty}^{\infty} \text{sign}(n_z) \frac{j\omega M}{2} e^{-jn_z\beta d - jk|n_z|d} \quad (16)$$

$$H^J_y = \sum_{n_z = -\infty}^{\infty} \text{sign}(n_z) \frac{J}{2} e^{-jn_z\beta d - jk|n_z|d} \quad (17)$$

Both series can be analytically carried out and we easily obtain

$$E^M_x = -\frac{\omega M}{2} \sin \beta d \quad (18)$$

$$H^J_y = \frac{J}{2} \sin \beta d \quad (19)$$

The local electric field acting on the reference wire is the sum of E^M_x and the contribution of the wires:

$$E^{loc}_x = E^M_x + C_w I = E^M_x + C_w b J \quad (20)$$

where C_w (the interaction factor of the wire lattice) was determined in [20]:

$$C_w = \frac{-j\eta}{2b} \left[\frac{\sin kd}{\cos kd - \cos \beta d} + \frac{kb}{\pi} \left(\log \frac{kb}{4\pi} + \gamma \right) + \frac{kb}{2} \right] \quad (21)$$

Here η is the wave impedance of the host material and $\gamma = 0.5772$ is the Euler constant.

The local magnetic field acting on the reference SRR is the sum of H^M_y and the contribution of the SRR particles:

$$H^{loc}_y = H^J_y + C_d m = H^J_y + C_d ab M \quad (22)$$

where C_d (the interaction factor of the lattice of magnetic dipoles) is given by [24]

$$C_d = \frac{\omega q}{2ab\eta} + j \frac{k^3}{6\pi m u_0} + \frac{\omega}{2ab\eta} \frac{\sin kd}{\cos kd - \cos \beta d} \quad (23)$$

A similar relation has been given in [24] for a lattice of electric dipoles (the only difference as compared to bbb is the factor η^2). Here q denotes the real part of the dimensionless interaction factor of a 2D grid of dipoles with periods a, b. In [24] the closed-form expression for q is given for the case $a = b$:

$$q_0 = \frac{1}{2} \frac{\cos kas - \cos kas}{kas} \quad (24)$$

where the number s is approximately equal to $1/1.4380 = 0.6954$. Relation bbb is very accurate for the case $d \gg a$, and in the case $d = a$ its error is still quite small [24].

The responses of the reference SRR and the reference wire to the local fields can be written as

$$m = a_{nm} H^{loc} \quad (24)$$

$$I = \frac{E^{loc}}{Z_w} \quad (25)$$
where Z_w is given by [20]

$$Z_w = \frac{k n}{4} \left[1 - \frac{2j}{\pi} \left(\log \frac{kr_0}{2} + \gamma \right) \right]$$

(26)

where r_0 is the effective radius of the wire ($r_0 = w/4$ if made from a strip with width w).

To obtain the dispersion equation we substitute formulas $\hat{\epsilon}_{loc}$, $\hat{\mu}_{loc}$, $\hat{\sigma}_{aa}$, $\hat{\sigma}_{bb}$ and \hat{h}_{sum} into $\hat{\epsilon}_{ref}$ and \hat{h}_{ref}. Since $m = M ab$ and $I = J_b$ we obtain the following system of equations:

$$M \left(\frac{1}{a_{mm}} - A - j \frac{k^3}{6\pi\mu_0} \right) = j \frac{BJ}{ab}$$

(27)

$$J(Z_w - C_w) = -\omega BM$$

(28)

where

$$A = \frac{\omega}{2ab\eta} \left(\frac{\sin kd}{\cos kd - \cos \beta d} + q \right)$$

and

$$B = \frac{1}{2} \frac{\sin \beta d}{\cos kd - \cos \beta d}$$

The parameter B describes the interaction between the currents in the wires and the magnetic moments of the SRR:s. B is not a quasi-static parameter even at low frequencies since it does not approach zero at zero frequency. Its presence in the dispersion equation strongly influences the result for the propagation constant β at all frequencies.

Relations ima and \hat{z}_{wire} lead to the cancellation of the imaginary part at the left-hand side of $\hat{\epsilon}1$ and the real part at the left-hand side of $\hat{\epsilon}2$. Thus, system of equations $\hat{\epsilon}1$ and $\hat{\epsilon}2$ gives the following real-valued dispersion equation:

$$(\text{Im}(Z_w) - \text{Im}(C_w)) \left[\text{Re} \left(\frac{1}{a_{mm}} \right) - A \right] = -\frac{\omega^2 B^2}{ab}$$

It can be re-written as the following quadratic equation with respect to $\cos \beta d$:

$$\left[\frac{2ab}{\omega\eta} \text{Re} \left(\frac{1}{a_{mm}} \right) - q \right] (\cos kd - \cos \beta d) \sin kd$$

$$- \left(1 + \frac{kb}{\pi} \log \frac{b}{2\pi r_0} \right) \sin^2 kd - \cos^2 \beta d + 1 = 0$$

(29)

There are two roots $\beta_{1,2}$ for the dispersion equation $\hat{\exp}$ at each frequency. One of them is exactly equal to k (the wavenumber in the host medium). This root corresponds to the wave with polarization $E = E_{y0}$ and $H = H_{x0}$. This wave excites neither wires nor SRR:s and does not interact with the structure. Another root corresponds to the wave with polarization $E = E_{x0}$ and $H = H_{y0}$. This is the interacting wave which is of interest. In our dispersion curves we keep both solutions of $\hat{\exp}$.

V. DISPERSION CURVES

As numerical examples we choose the following parameters for the structure shown in Fig. 2: the size of SRR particle (outer diameter of the rings) is $D = 3.8$ mm, the width of the strip (forming the rings) is $w = 1$ mm, the radius of wire cross section is $r_0 = 0.2$ mm, the distance between the rings (which is chosen so that the resonance of a_{mm} is at 6 GHz) is $h = 0.84$ mm. Lattice periods $a = b = 8$ mm and $d = 16$ mm are chosen in our first example. In the second example, we choose $a = b = d = 8$ mm. In the third example, we choose $a = b = d = 4$ mm.

Fig. 3 gives the dispersion curve in a form commonly used in the literature of photonic crystals (see e.g. [20]). It represents the dependence of the eigenfrequencies on the normalized propagation factor $\beta d/\pi$ over the first Brillouin zone ($0 < \beta < \pi/d$) for the case when $d = 2a = 2b = 16$ mm. Straight lines correspond to non-interacting waves. Curved lines correspond to interacting waves. The only difference of this curve as compared to the well-known plot for the wire medium (see e.g. [23] and [25]) is the mini-band at about 6 GHz, in which the group velocity is negative. In this narrow frequency band wave propagation is prohibited in the lattice of wires. Therefore, the mini-band is due to the presence of SRR:s and the resonant magnetization of the SRR lattice. The eigenfrequencies (associated with waves with $E = E_{y0}$ and $H = H_{y0}$) within this pass-band are shown by the crosses.

The resonant pass-band becomes wider if the period d decreases. From Fig. 3 one can see the dependence of the propagation factor on the frequency in the vicinity of the SRR resonance for the case $a = b = d = 8$ mm. The solid line in this figure corresponds to the non-interacting wave.

The backward-wave region corresponds to the frequencies 5.980-6.045 GHz, whereas the resonant frequency of $\text{Re}(a_{mm})$ is 6.000 GHz. $\text{Re}(a_{mm})$ becomes negative at 6.000 GHz. Thus, within the backward-wave band $\text{Re}(a_{mm})$ is
mainly negative. The group velocity of the backward wave is relatively small (it approximately equals $5.3 \cdot 10^{-3} c$, where c is the speed of light).

In order to understand whether it is possible to homogenize the structure at the frequencies when the backward-wave region exists, we studied β for both propagating and decaying modes.

Fig. 5 shows the frequency dependence of both the real and imaginary parts of the normalized propagation factor $\beta d/\pi$ for the case $a = b = d = 8$ mm. It is clear that outside the SRR resonant band the eigenmodes of the structure are the same as those of the wire medium [20]. The thick straight line corresponds to the non-interacting wave.

From Fig. 5 one can see that the eigenmodes within the frequency band $5.92-5.98$ GHz are complex. The lower limit of the backward-wave region ($5.980-6.045$ GHz) is the upper limit of the complex-mode band. Complex modes cannot exist in continuous media. These modes are known for electromagnetic crystals with different geometries (see, e.g. [20], [23]). These are decaying modes though the real part of the propagation factor $Re \beta = \pi/d$. The existence of this real part of β reflects the fact that the directions of the currents in the wires are alternating along the propagation axis (two adjacent currents have opposite directions and this can be interpreted as the phase shift π between them due to the real part of the complex propagation factor).

Therefore, the homogenization is possible within one (the upper) half of the SRR resonant band but impossible within another (the lower) half of the SRR resonant band (though for these frequencies the structure periods are much smaller than the wavelength in the background medium).

VI. HOMOGENIZATION

Let us try to consider the structure (in the case $a = b = d$) as a uniaxial magneto-dielectric medium. Then the interacting wave (propagating along the z axis with $E = E_x x_0, H = H_y y_0$) also satisfies the following constitutive equations:

$$D_x = \varepsilon_0 E_x + P_{x}^{\text{bulk}} = \varepsilon_0 \varepsilon_{xx} E_x$$

$$B_y = \mu_0 H_y + M_{y}^{\text{bulk}} = \mu_0 \mu_t H_y$$

Define the following ratio:

$$\alpha = \eta \frac{P_{x}^{\text{bulk}}}{M_{y}^{\text{bulk}}} = \frac{1}{\eta} \frac{(\varepsilon_{xx} - 1) E_x}{(\mu_t - 1) H_y} \quad (30)$$

where E_x and H_y are the field components averaged over the cubic cell $a \times a \times a$. P_{x}^{bulk} and M_{y}^{bulk} are the bulk electric and magnetic polarizations related with the surface current J and surface magnetic polarization:

$$P_{x}^{\text{bulk}} = \frac{J}{j \omega d} \quad M_{y}^{\text{bulk}} = \frac{M}{d}$$

From Maxwell’s equations we easily obtain

$$\frac{E_x}{H_y} = \eta \sqrt{\frac{\mu_t}{\varepsilon_{xx}}} \quad (31)$$

Substituting α and β into Eq. 2, we obtain:

$$\alpha(\omega) = \frac{\eta J}{j \omega M} = \frac{\eta B}{j (Z_w - C_w)} =$$

$$\pi \sin \beta d \frac{\beta d}{\pi k d + kb \log \frac{b}{2\pi r_0} (\cos kd - \cos \beta d)} \quad (32)$$
From \hat{r} and $\hat{\text{imp}}$ it follows that

$$\alpha = \left(\frac{\epsilon_{xx} - 1}{\mu_{t} - 1}\right) \sqrt{\frac{\mu_{t}}{\epsilon_{xx}}} \quad (33)$$

In the above equation $\beta(\omega)$ is already known from the dispersion curve and $k = \omega \sqrt{\epsilon_{0} \mu_{0}} = \omega / c$.

Equating the propagation factor β to the value $\omega \sqrt{\epsilon_{0} \mu_{0} \epsilon_{xx} \mu_{t}}$, we obtain

$$\mu_{t} = \frac{\beta^{2}}{k^{2} \epsilon_{xx}} \quad (34)$$

Substituting this expression for μ_{t} into α, we obtain:

$$\epsilon_{xx}(\omega) = \frac{\epsilon^{2} \beta^{2}(\omega)}{\omega^{2}} + \frac{\epsilon \beta}{\omega \alpha(\omega)} \quad 1 + \frac{\beta(\omega)}{\kappa_{n}(\omega)} \quad (35)$$

After ϵ_{xx} is found, we then evaluate μ_{t} through (cf. $\hat{\epsilon}$ and $\hat{\mu}$)

$$\mu_{t}(\omega) = \frac{1 + \frac{\epsilon \beta}{\omega \alpha(\omega)}}{1 + \frac{\epsilon \beta}{\kappa_{n}(\omega) \alpha(\omega)}} \quad (36)$$

We have taken into account the non-local interaction in the structure in formulas $\hat{\epsilon}$ and $\hat{\mu}$ though the effective permittivity and permeability are introduced as the parameters relating B, D with E, H at the same point. Therefore, unlike formulas $\hat{\epsilon}$1 and $\hat{\mu}$2, our material parameters are not quasi-static.

Frequency dependencies of both ϵ_{xx} and μ_{t} are shown in Fig. 6 for the case $a = b = d = 8 \text{ mm}$. Outside the resonant band of the SRR particles the frequency dependence of the permittivity repeats the known result for wire media (treated as artificial dielectric media) [5]. The permeability is practically equal to the unity outside the resonant band of SRR:s. Within the complex-mode band the homogenization is forbidden [22], [23] and this frequency region is removed in this figure (both ϵ_{xx} and μ_{t} calculated through $\hat{\epsilon}$ and $\hat{\mu}$ are complex within this band).

Let us consider the resonant frequency behavior of the material parameters in details. Fig. 6 shows the same curves as those in Fig. 5 however, in another scale starting from the upper limit of the complex-mode band. From Fig. 6 one sees that the permittivity and permeability are both negative between 5.970 and 6.020 GHz. From Fig. 6 it follows that the backward wave propagates between 5.980 GHz and 6.045 GHz. Thus, the backward-wave region almost coincides with the region where both the permittivity and permeability are negative. Note that this coincidence is only approximate.

Also we have indicated in Fig. 6 the point at which permittivity and permeability are equal (at about 6.005 GHz). At this frequency, the medium is impedance-matched with the free space (this is useful for some applications) and the values of ϵ_{xx} and μ_{t} are not very high (the homogenization is then allowed).

As a main result, one can see from Fig. 6 that the permittivity does not follow (within the resonant band) the law (even qualitatively) suggested in [5], [6] and [10]: it’s the frequency dependence of the permittivity is non-monotonous (from Fig. 6 one sees that ϵ_{xx} decreases over 5.96-6.09 and increases after 6.090 GHz as the frequency increases).

In the theory of continuous media one can prove that both the permittivity and permeability must grow as the frequency increases in the lossless case [27]. In our case the permeability grows everywhere as the frequency increases (until the first spatial resonance of the lattice, i.e., $kd = \pi$ when it loses the physical meaning). Thus, the frequency behavior of the permeability is normal. However, the permittivity grows as the frequency increases only at the frequencies when the magnetization of SRR is small and the interaction of the SRR:s and wires is negligible. Within the band of the backward wave the permeability decreases as the frequency increases. Therefore, the homogenization procedure we have developed is not completely consistent with the theory of [27]. The reason for this disagreement is that the material parameters considered in [27] are quasi-static (i.e., the polarization of the medium at a given point is determined by the field at this point) while our model takes into account the non-local interaction of the SRR lattice and the wire lattice. We found that the visible difference between the quasi-static model and our model is within the SRR resonant band. However, the influence of the non-local interaction is revealed in the permittivity of the wire lattice disturbed by the presence of the SRR:s.

The lattice of infinite wires is spatially dispersive at all frequencies since the wires are longer than any possible wavelength. When the wave propagates strictly in the plane orthogonal to the axis of the wires one can still neglect the spatial dispersion since all parameters are independent of the x-coordinate. Thus, the problem is two-dimensional and possible to be homogenized [5]. However, if there is a lattice of scatterers with which the wires interact, the situation becomes quite different (even for propagation orthogonal to the wires). Here the problem is not two-dimensional and the wire current is influenced by all the SRR particles positioned along its infinite
length. It results in the abnormal frequency behavior of the effective permittivity of the structure.

VII. CONCLUSION

In the present paper we have developed an analytical model for a structure similar to the one for which the negative refraction at microwave frequencies was first observed (formed by combined lattices of infinitely long wires and split-ring resonators) [8]. We have derived a self-consistent dispersion equation and studied the dispersion properties of the lattice. The explicit dispersion equation clearly confirms the existence of the narrow pass-band within the resonant band of the split-ring resonators. In this pass-band the group and phase velocities of the propagating wave are in opposite directions (i.e., a backward wave instead of the negative values of permittivity and studied the dispersion properties of the lattice. The obtained dispersion curves have been used to calculate correctly the effective permittivity and permeability in the whole structure is the same as that of the wire lattice and the permittivity and permeability are negative. Outside the resonant band of the SRR particles, the effective permittivity of the whole structure is the same as that of the wire lattice and the effective permeability is equal to 1. However, within the SRR resonant band, there is a sub-band where the homogenization is forbidden since the complex mode satisfies the dispersion equation at these frequencies. We found that the frequency region in which both \(\epsilon \) and \(\mu \) are negative coincides approximately with the backward wave band. In this region the frequency dependence of the effective permittivity is abnormal. We interpret this as the result of the low-frequency spatial dispersion which is inherent for the wire medium in the presence of the resonant scatterers.

ACKNOWLEDGEMENT

The support of C.R. Simovski by Swedish Royal Academy of Science (KVA) and Russian Foundation for Basic Research (grant 01-02-16856) is gratefully acknowledged. P.A. Belov thanks SUMMA Foundation for support of his studies by SUMMA Graduate Fellowship in Advanced Electromagnetics.

REFERENCES

[1] V.G. Veselago, “The electrodynamics of substances with simultaneously negative values of \(\epsilon \) and \(\mu \), Soviet Physics Uspekhi, Vol. 10, pp. 509-514, 1968 (originally published in Russian in Uspekhi Fizicheskikh Nauk, Vol. 92, pp. 517-526, 1967).

[2] D.R. Smith and N. Kroll, “Negative refractive index in left-handed materials”, Phys. Rev. Lett., Vol. 85, pp. 2933-2936, 2000.

[3] M.V. Kostin and V.V. Shevchenko, “Theory of artificial magnetic substances based on ring currents”, Soviet Journal of Communication Technology and Electronics, Vol. 38, No. 5, pp. 78-83, 1993.

[4] J.B. Pendry, A.J. Holden, D.J. Robbins and W.J. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena”, IEEE Trans. Microw. Theory Tech., Vol. MTT-47, No. 11, pp. 195-225, 1999.

[5] J. Brown, “Artificial dielectrics”, in Progress in Dielectrics 2, IEE, pp. 195-225, 1960.

[6] J.B. Pendry, A.J. Holden, W.J. Stewart and I. Youngs, “Extremely low-frequency plasmons in metallic mesostructures”, Phys. Rev. Lett., Vol. 78, No. 25, pp. 4773-4776, 1996.

[7] S.I. Maslovski, S.A. Tretyakov and P.A. Belov, “Wire media with negative effective permittivity: a quasi-static model”, Microw. and Optical Technol. Lett., Vol. 35, No. 1, pp. 47-51, 2002.

[8] R.A. Shelby, D.R. Smith and S. Schultz, “Experimental verification of a negative index of refraction”, Science, Vol. 292, pp. 77-79, 2001.

[9] T. Weiland, R. Schuhmann, R.B. Gregoor, C.G. Parazzoli, A.M. Vetter, D.R. Smith, D.C. Vier and S. Schultz, “Ab initio numerical simulation of left-handed metamaterials: comparison of calculations and experiments”, J. Appl. Phys., Vol. 90, 5419, 2001.

[10] D.R. Smith, W.J. Padilla, D.C. Vier, S.C. Nemat-Nasser and S. Schultz, “Composite media with simultaneously negative permeability and permittivity”, Phys. Rev. Lett., Vol. 84, pp. 4184-4187, 2000.

[11] D. Smith, D.C. Vier, N. Knoll and S. Schultz, “Direct calculation of permeability and permittivity for left-handed metamaterial”, Appl. Phys. Lett., Vol. 77, 2246, 2000.

[12] R.A. Shelby, D.R. Smith, S.C. Nemat-Nasser and S. Schultz, “Microwave transmission through a two-dimensional, isotropic, left-handed material”, Appl. Phys. Lett., Vol. 78, 489, 2001.

[13] S.A. Tretyakov, I.S. Nefedov, C.R. Simovski, S.I. Maslovski “Modelling and microwave properties of artificial materials with negative parameters”, in Advances in Electromagnetics of Complex Media and Materials, Editors: S. Zouhdi, A. Sihvola, and M. Arsalane, Kluwer Academy Publishers, pp. 99-122, 2002.

[14] N. Garcia and M. Nieto-Vesperinas, “Is there an experimental verification of a negative index of refraction yet?”, Optics Lett., Vol. 27, No. 11, pp. 885-887, 2002.

[15] C.R. Simovski and B. Sauviac, “Toward creating the isotropic media with negative refraction”, Phys. Rev. B, in print, 2002.

[16] A.L. Pokrovsky and A.L. Efros, “Electrodynamics of metallic photonic crystals and the problem of left-handed materials”, Phys. Rev. Lett., Vol. 89, No. 9, 092901, 2002.

[17] A.N. Lagarkov, V.N. Semenenko, V.A. Chistyakov, D.E. Ryabov, S.A. Tretyakov and C.R. Simovski, “Resonance properties of bi-helix media at microwaves”, Electromagnetics, Vol. 17, No. 3, pp. 213-237, 1997.

[18] S.A. Tretyakov, F. Mariotte, C.R. Simovski, T.G. Kharina, J.-P. Heliot, “Analytical antenna model for chiral scatterers: Comparison with numerical and experimental data”, IEEE Trans. Antennas Propagat., Vol. 44, No. 5, pp. 1006-1014, 1996.

[19] R. Marques, F. Medina and B.R. El-Erdissi, “Role of bianisotropy in negative permeability and left-handed metamaterials”, Phys. Rev. B, Vol. 65, 14440, 2002.
[20] P.A. Belov, S.A. Tretyakov and A.J. Viitanen, “Dispersion and reflection properties of artificial media formed by regular lattices of ideally conducting wires”, J. Electromagn. Waves Applicat., Vol. 16, pp. 1153-1170, 2002.

[21] I.V. Lindell, Methods of electromagnetic field analysis, Oxford University Press snd IEEE Press, 1995.

[22] J.E. Sipe and J. Van Kranendonk, “Macroscopic electromagnetic theory of resonant dielectrics”, Phys. Rev. A, Vol. 9, pp. 1806-1822, 1974.

[23] P.A. Belov, S.A. Tretyakov and A.J. Viitanen, “Nonreciprocal microwave bandgap structures”, Phys. Rev. E, Vol. 66, 016608, 2002.

[24] S.A. Tretyakov and A.J. Viitanen, “Plane waves in regular arrays of dipole scatterers and effective medium modelling”, J. Opt. Soc. Am. A, Vol. 17, pp. 1791-1799, 2000.

[25] C.A. Moses and N. Engheta, “Electromagnetic wave propagation in the wire medium: a complex medium with long thin inclusions”, Wave Motion, Vol. 34, pp. 301-317, 2001.

[26] J.D. Joannopoulos, R.D. Mead and J.N. Winn, Photonic crystals, Princeton University, 1995.

[27] L.D. Landau, E.M. Lifschitz and L.P. Pitaevski, Electrodynamics of continuous media, Pergamon Press, 1984.