Quantum Instability of the Emergent Universe

Anthony Aguirre∗
Santa Cruz Institute for Particle Physics and Department of Physics,
University of California, Santa Cruz, CA 95064, USA

John Kehayias†
Kavli Institute for the Physics and Mathematics of the Universe (WPI),
Tokai Institutes for Advanced Study, The University of Tokyo, Kashiwa, Chiba 277-8583, Japan
(Dated: May 7, 2014)

We perform a semi-classical analysis of the Emergent Universe scenario for inflation. Fixing the background, and taking the inflaton to be homogeneous, we cast the inflaton’s evolution as a one-dimensional quantum mechanics problem. The potential is taken to be flat or linear, as an approximation to the monotonic and slowly-varying asymptotic behavior of the Emergent Universe potential. We find that the tuning required over a long time scale for this inflationary scenario is unstable quantum mechanically. Considering the inflaton field value as a wavepacket, the spreading of the wavepacket destroys any chance of both starting and ending with a well-formed state. Thus, one cannot have an Einstein static universe to begin with that evolves into a well-defined beginning to inflation a long time later.

I. INTRODUCTION

The ancient question of whether the Universe had a beginning, or has existed eternally, has in recent decades been brought into focus using the tools and knowledge of General Relativity (GR) and modern cosmology. The question’s resolution, however, is still far from clear. The standard Friedmann-Lemaître-Robertson-Walker (FLRW) big-bang cosmology includes an initial singularity, and there is a number of theorems purporting that such singularities are generic [1], suggesting that classical spacetime, at least, has a “beginning” in the sense of a global spacelike surface at which classical GR breaks down. However, these theorems all break various exceptions and loopholes, and several scenarios have been developed that circumvent these theorems and form the basis for classical or semi-classical “past eternal” cosmologies (see [2] for review of some of these involving inflation).

One scenario that has garnered significant attention is the “Emergent Universe” of Ellis & Maartens [3]. This cosmology has several attractive features: there is no initial singularity or “beginning of time,” no horizon problem, and (it is claimed) no quantum gravity era because the curvature scale always greatly exceeds the Planck scale. In this scenario at some early time the Universe is a closed FLRW cosmology that as time $t \to -\infty$ asymptotes to an Einstein static universe, with a negative-pressure energy component that stabilizes the universe against gravitational collapse. Thus the closed universe exists “eternally,” but then at some point begins inflation. That is, the first e-folding of inflation take an unbounded amount of time, but the second and subsequent e-foldings proceed essentially as usual, ending in reheating and ordinary cosmological evolution.

A key question about this scenario is whether the initial state can self-consistently exist for eternity. Classically, the Einstein static universe is unstable to homogeneous perturbations, but stable to inhomogeneous perturbations if the fluid sound speed is sufficiently high [4]. This indicates that eternity is possible in principle, but only if the homogeneous mode of the positive-pressure content precisely balances the negative energy repulsive component of the energy density. This appears problematic, however, in that we might expect that quantum fluctuations can destabilize this careful balance, causing the universe to collapse or expand uncontrollably.

In this note, we examine the simplest version of the Emergent Universe, based on a single rolling scalar field in GR. Our analysis will treat the metric classically (and in fact fixed), and assume the scalar field is homogeneous, but quantized. Treating the metric quantum mechanically (e.g. using the Wheeler-deWitt formalism) or including anisotropic perturbations seems very unlikely to increase the cosmology’s stability. These assumptions allow us to cast the problem as a simple 1D quantum mechanics problem, following the method of [5], where the degree of freedom is the value of the scalar field. This reveals a result that is intuitively perhaps unsurprising: due to the spreading of any wavepacket, it is inconsistent to have a well-defined state (Gaussian wavepacket) in the asymptotic past as an Einstein static universe, as well as a well-defined state at the beginning of inflation (i.e. at the end of the first e-folding). We show this by analyzing both a flat and nearly flat (linear) potential for the wavepacket evolution. Computing the probability of the initial state evolving into a well-defined pre-inflationary state, we see that it is severely suppressed (and effectively zero in the “past eternal” limit). We discuss these calculations and also comment on the Emergent Universe in alternative gravitational theories.

∗ aguirre@scipp.ucsc.edu
† john.kehayias@ipmu.jp
II. THE EMERGENT UNIVERSE

The Emergent Universe evades relevant singularity theorems [1] by explicitly violating the assumptions that $K = -1, 0$ and $H \equiv \dot{a}/a > 0$. The Emergent Universe is closed, $K = +1$, and has $H = 0$ initially. This scenario does not bounce, but starts as an Einstein static universe with finite size in the infinite past, inflates, and then reheats in the usual manner. In this way it avoids an initial singularity and horizon problem, and the initial size can be large enough for this scenario to avoid a quantum gravity era. Although there is an infinite time for inflation, the amount of inflation is finite (and can be made large).

The simplest setup for the Emergent Universe is an Einstein static universe with a cosmological constant (absorbed into the constant term of the scalar field’s potential, $V(\phi)$) and minimally coupled scalar field, ϕ. The Friedmann equations are

$$\frac{\ddot{a}}{a} = -\frac{8\pi G}{3} \left(\dot{\phi}^2 - V(\phi) \right), \quad (1)$$

$$H^2 = \frac{8\pi G}{3} \left(\frac{1}{2} \dot{\phi}^2 + V(\phi) \right) - \frac{K}{a^2}, \quad (2)$$

where a dot represents a time derivative, G is Newton’s constant, and $a(t)$ is the scale factor using the conventions of [3, 5] (it has units of length1).

A positive minimum for the (initial) scale factor, a_0, has $H_0 = 0$ and

$$\frac{3K}{8\pi Ga_0^3} = \frac{1}{2} \dot{\phi}_0^2 + V_0, \quad (3)$$

where the zero subscript denotes the initial value (the same time as a_0 is defined). Furthermore eq. (1), since $\ddot{a} = 0$, tells us that

$$\dot{\phi}_0^2 = V_0. \quad (4)$$

Then the value of the potential at this minimum, or the initial vacuum energy, is

$$V_0 = \frac{K}{4\pi Ga_0^3} = \dot{\phi}_0^2. \quad (5)$$

Here we see the beginning of a potential problem for the Emergent Universe: the Einstein static universe requires a precise balancing of the kinetic energy of the scalar field with the vacuum energy. This balancing must persist if the universe is to be considered static and thus will be sensitive to quantum fluctuations in the scalar field. In this note we attempt to analyze this problem via a “semi-classical”-like analysis.

One might also worry about the classical stability of the Einstein static universe [4]. For the simplest case we are considering, where there is no matter, the static universe is neutrally stable for inhomogeneous linear perturbations. Homogeneous perturbations will break the balance of the curvature to vacuum energy, leading to inflation, thus to perdure for an indefinite amount of time, this balance in the zero-mode must be mathematically perfect. We do not address concerns about this here.3 Rather, we assume that such a perfect balance is maintainable classically, and investigate the same problem when quantized.

III. INFLATION AS ONE-DIMENSIONAL QUANTUM MECHANICS

First, let us define our setup and conventions, which follows closely from [3, 5]. We will take the simplest case of the universe filled with just a scalar field, ϕ, in a FLRW background with $K = +1$, scale factor $a(t)$, and Hubble expansion rate $H \equiv \dot{a}/a$. The scalar field obeys

$$\ddot{\phi} + 3H\dot{\phi} + V'(\phi) = 0, \quad (6)$$

where the dots denote time derivatives, $V(\phi)$ is the inflaton potential, and the prime denotes a derivative with respect to the argument.

We can cast the evolution of the inflaton as a one-dimensional quantum mechanics problem by making the following simplifications:

- Treat the background geometry classically (and fixed); the scale factor is not treated as a field.
- Take the inflaton to be homogeneous and its value everywhere in space, ϕ, to be the “coordinate.”
- Take the inflaton momentum to also be homogeneous, and its value, $\dot{\phi}$, is proportional to the conjugate momentum.

From this setup, one sees that we are performing a type of “semi-” or “quasi-classical” analysis. For the Emergent Universe scenario in particular, this type of analysis will shed light on the question of stability beyond purely classical considerations by being the next step in sophistication. The Emergent Universe’s behavior in the asymptotic past should be that of a static universe, which then evolves ever so slowly for an infinite amount of time. It makes sense then to treat the background classically and

1 The mass dimension of other quantities is $[\phi] = 1, [\sigma_0] = 1, [T] = 2$.

2 The dominance of the curvature term in the past, for sufficiently long inflation, allows such a solution with $K = +1$ [6].

3 For example, it seems likely that nonlinear coupling between the modes would leak power from inhomogeneous modes to the homogeneous mode, making the universe effectively unstable to all perturbations [7].
independently from the scalar field. However, the delicate tuning of the scalar field’s kinetic energy leads us to consider any small deviations, especially over the infinite amount of time. Thus, we treat the scalar field in a quantum mechanical manner. And, as we shall see in the following sections, our setup is enough to see a serious instability or inconsistency in the Emergent Universe’s evolution.

The Lagrangian is

$$L = 2\pi a^3(t) \left(\frac{1}{2} \dot{\phi}^2 - V(\phi) \right).$$

After performing the usual Legendre transformation, with conjugate momentum $p \equiv 2\pi^2 a^3(t) \phi$, the Hamiltonian is

$$H = \frac{1}{2} \frac{p^2}{2\pi^2 a^3(t)} + 2\pi^2 a^3(t) V(\phi).$$

We now define our “wavefunction” as $\psi(\phi, t)$ which satisfies the Schrödinger equation from the above Hamiltonian

$$i \frac{\partial \psi}{\partial t} = \frac{1}{2\pi^2 a^3} \frac{\partial^2 \psi}{\partial \phi^2} + 2\pi^2 a^3 V(\phi) \psi.$$

Taking the potential to have at most quadratic terms and after the following (“conformal time”-like) time coordinate change,

$$T = \int \frac{1}{a^3(t')} dt',$$

we rewrite the Schrödinger equation as

$$i \frac{\partial \psi}{\partial T} = -\frac{1}{4\pi^2} \frac{\partial^2 \psi}{\partial \phi^2} + u(\phi, T) \psi,$$

with the potential $u(\phi, T)$ given by

$$u(\phi, T) = 2\pi^2 a^6(T) \left(c_2 \phi^2 + c_1 \phi + c_0 \right),$$

with the only T-dependence coming from the prefactor $2\pi^2 a^6(T)$ and the ϕ-dependence explicit.

We now assume a Gaussian wavepacket form for ψ which we parametrize as

$$\psi(\phi, T) = A(T) e^{-B(T)[\phi - f(T)]^2},$$

with A, B, and f as arbitrary functions of T to be solved for. We plug ψ into the Schrödinger equation, and by matching coefficients of each power of ϕ, we have a set of differential equations for $A, B,$ and f (for more details see [5]).

It will also be useful to think of the wavefunction in momentum space (the conjugate momentum, as defined above), which is given by the usual Fourier transform,

$$\tilde{\psi}(p, T) = \tilde{A}(T) e^{-[p + 2B(T) f(T)]^2/4B(T)},$$

with $\tilde{A}(T) \equiv A(T) \exp[-B(T)f(T)^2]/\sqrt{2B(T)}$.

IV. INSTABILITY OF THE EMERGENT UNIVERSE SCENARIO

We can now apply the above framework to the Emergent Universe. We will model the potential as being composed of sections that are completely flat, and sections with a constant slope. This could model a potential that is perfectly flat as $\phi \to -\infty$, connected to a sloping portion at $\phi > 0$, or one constructed out of segments that have a slope approaching zero as $\phi \to -\infty$. In either case, we will consider the field at some time $T = -T_0$ to be in a Gaussian wavepacket centered at ϕ_0 with initial spread σ_0 and moving with velocity v_0 (which may be zero). We then evolve the wavepacket to later times.

Formulated this way, stability concerns arise almost immediately. For a given value of $V(\phi)$, only one precise value of ϕ yields stability, yet ϕ and $p \propto \phi$ are subject to an uncertainty relation. In momentum-space, the wavepacket has nonzero width $\Delta \propto 1/\sigma_0$, so at a given time, unless $\Delta \to 0$, there is an infinitesimal probability of a measurement yielding the value of ϕ which gives stability. With probability approaching unity, the field velocity would have a value for which the universe would evolve away from the emergent dynamics, into either empty de Sitter space or a big crunch. Yet in the $\Delta \to 0$ limit, the value of ϕ is completely uncertain and one cannot describe the situation as a single classical universe.

Similarly, if we assume that the universe can always be treated in a quasi-classical way (as implicitly assumed by [3]), it should have compact support in both field and field-velocity space. We can then ask: if the wavefunction at time $-T_0 \to -\infty$ is a wavepacket of finite width in both ϕ and $\tilde{\phi}$, is there any probability that it will evolve into a quasi-classical configuration at time $T = 0$ at which inflation starts? This can be computed within our model for either a flat or a constant-slope potential, as detailed in the next section and in Appendix A.

A. In a Flat or Linear Potential

As a simplest calculation, we study the evolution of a wavepacket in a completely flat potential ($c_2 = c_1 = 0$), which mimics the asymptotic behavior of the Emergent Universe. In this case we will need to give the initial wavepacket some “kick” to have an initial non-zero velocity.

The initial state (at time $T = -T_0$) is a Gaussian wavepacket centered at ϕ_0 with initial spread σ_0 and

Note that this is not a Lagrangian density; we’ve already integrated over space, hence the volume factor of $2\pi a^3(t)$.
moving with velocity v_0:

$$\psi(\phi, -T_0) = \left(\frac{1}{2\pi\sigma_0^2} \right)^{1/4} e^{-\frac{(\phi - \phi_0)^2}{4\sigma_0^2} + iv_0\phi_0}. \quad (15)$$

$$\psi(\phi, T) = \frac{1}{(2\pi\sigma_0^2)^{1/4}} \exp \left\{ -\frac{\phi^2}{\sigma^2} + iv_0\phi - \frac{\pi^2}{\sigma(T)} \left(\phi - \phi_0 - \frac{2iv_0\sigma_0^2}{\sigma(T)} \right)^2 - \frac{i}{2} \int_{-T_0}^{T} \frac{1}{\sigma(T')} \left[1 + 2\sigma(T')c(T') \right] dT' \right\}, \quad (16)$$

with

$$\sigma(T) \equiv 4\pi^2\sigma_0^2 + i(T_0 + T),$$

and $c(T) \equiv 2\pi^2 a^6(T)c_0$. The center of the wavepacket, which is $\langle \phi \rangle$, moves with constant velocity v as

$$\langle \phi \rangle = \phi_0 + \frac{(T_0 + T)v_0}{2\pi^2}, \quad (18)$$

and the quantum mechanically uncertainty in ϕ is

$$\sigma^2 = |\sigma|^2 / 16\pi^4 \sigma_0^2; \quad (19)$$

while the conjugate momentum has

$$\langle p \rangle = v_0, \quad \sigma_p = \frac{1}{4\sigma_0}. \quad (20)$$

We now want to calculate the probability that a well-formed initial wavepacket at $T = -T_0$, centered at $\phi = \phi_0$, will evolve into another “nice” wavepacket some time later, $T = 0$, in this potential. For the final state to compare with we will use the initial wavepacket with its center shifted to be lined up with the wavepacket that evolved after time T_0 (to time $T = 0$). In other words, the initial state is $\psi(\phi, -T_0)$ which evolves into $\psi(\phi, 0)$ which we compare to $\psi(\phi, -T_0)\chi = T_0 v_0 / 2\pi^2$. The probability we are calculating is

$$P = \left| \langle \phi, -T_0 \mid \phi, -T_0 \rangle \right|^2 e^{-iHT_0} \left| \phi, -T_0 \right|^2 \right. \left. = \left| \langle \phi, -T_0 \mid \phi, -T_0 \rangle \chi = T_0 v_0 / 2\pi^2 \right| \left. \phi, 0 \right\rangle \right|^2. \quad (21)$$

Before specifying the scale factor, the probability is

$$P = \left(\frac{T_0^2}{\chi} + 1 \right)^{-1/2}, \quad (22)$$

with $\chi \equiv 8\pi^2 \sigma_0^2$. For a static universe the scale factor is a constant, which we set to a_0, and $T = t/a_0^3$. For a long

At a time T the wavepacket evolves to

$$\psi(\phi, -T_0) \approx \chi = T_0 v_0 / 2\pi^2.$$

This can be maximized to go like $\sigma_0 / \sqrt{T_0}$, but only if $\sigma_1 \propto \sqrt{T_0}$, which does not correspond to a well-defined classical configuration for large T_0; this is a more precise version of the argument at the beginning of this section.

We also consider a linear potential with slope $-b$. Here we will very briefly summarize the results, while the details of this calculation can be found in Appendix A. The field now starts at rest and accelerates down the potential. The final state we take the overlap with will still have a velocity. If this velocity exactly matches the velocity of the wavepacket which was evolved in the potential, then the probability is the same as above, eq. (23). If the velocities do not match, there is an additional exponential suppression which depends on the slope $-b$. Any constraint on the final velocity of the wavepacket will then also constrain the length of the linear potential (i.e. amount of time the field evolves in the linear potential).

V. DISCUSSION AND CONCLUSIONS

The “Emergent Universe” paradigm represents an intriguing effort to construct a cosmology without a past classical singularity. In this paper we have analyzed a version of this model in which a scalar field evolves in a potential that is flat or has a constant slope, to approximate the asymptotic behavior of the Emergent Universe potential. Assuming a Gaussian wavepacket form for the
wavefunction of the homogenous mode of the inflaton, we have derived the evolution of the wavepacket in these two types of potentials with a fixed background geometry. We then answered the following question: what is the probability of a well-defined initial wavepacket evolving into well-defined state after a time t_0? In both cases the probability is proportional to $1/t_0$ for large t_0. The Emergent Universe is built on an infinite past, and thus this probability goes to zero.

It thus appears inconsistent to have both a well-defined semi-classical approximation to the field and also have infinite past nonsingular time. If the field has a well-defined value at any given time (which might be posed as a boundary condition) then evolving back in time the wave functional was spread over a range of values. The field velocity will also always have a spread of different values, most of which do not balance the negative pressure term. If we were to then include gravity, at yet earlier times the universe would presumably be a superposition dominated by expanding (from a singularity) or contracting states.

We stress that we have analyzed only one version of the Emergent Universe, with a simplified model. Nonetheless, we believe that the effect that this analysis points to may be rather generic. For example, consider alternative theories of gravity. The Emergent Universe has been studied extensively in theories such as Hořava-Lifshitz, $f(R)$, Loop Quantum Gravity, and others (see, for instance, [8–11], respectively). There have also been several studies of the stability of the Einstein static universe in alternative theories (see [12], for example). However, in our framework we have, in a sense, decoupled gravity – it enters only when assessing the affect of the spreading wave-functional. Even in alternative theories in which the Einstein static universe is more stable than in standard General Relativity, we anticipate that once the wavefunctional has spread enough, the geometry must follow, and the spacetime becomes classically ill-defined as well as containing portions corresponding to singularities. Therefore, this seems like a generic (and perhaps expected, given our construction of the scenario) problem with such an eternal and precisely tuned inflationary scheme.

To avoid this behavior, the field velocity would have to be stabilized by some mechanism at the correct value, while still allowing for the field value to evolve appropriately. The potential would have to remain constant for a static universe, and thus some sort of (classical) driving and damping terms seems to be necessary. It would also still be difficult to arrange the appropriate initial conditions. It is not immediately obvious how one can successfully achieve this. Another alternative is perhaps a tunneling scenario (for instance, [13]). However, then the universe is necessarily not eternal.

Models in which the field dynamics and material content are very different would require separate analysis, but may lead to a similar basic conclusion. For example, Graham et al. [14] construct static and oscillating universes with a specific non-perfect-fluid energy component that are stable against small perturbations. However, Mithani & Vilenkin [15] have shown that this model is unstable to decay via tunneling.

Although we have analyzed only one version of the Emergent Universe, we would argue that our analysis is pointing to a more general problem: it is very difficult to devise a system – especially a quantum one – that does nothing “forever,” then evolves. A truly stationary or periodic quantum state, which would last forever, would never evolve, whereas one with any instability will not endure for an indefinite time. Moreover, the tendency of quantum effects to destabilize even classically stable configurations suggests that even if an emergent model were possible, it would have to be posed at the quantum (and quantum-gravitational) level, largely undermining the motivation to provide an early state in which quantum gravitational effects are not crucial.

ACKNOWLEDGMENTS

The authors would like to thank George Ellis and Roy Maartens for useful comments on an earlier version of this manuscript. JK would like to thank Shinji Mukohyama for useful discussions and to acknowledge the UC Santa Cruz Physics Department and SCIPP for their support during recent visits while this work was completed. AA was supported by NSF Grant PHY-0757911, by a Foundational Questions in Physics and Cosmology grant from the John Templeton Foundation, and by a New Frontier in Astronomy and Cosmology Grant #FP050136. This work was supported by the World Premier International Research Center Initiative (WPI Initiative), MEXT, Japan.

Appendix A: Linear Potential Calculation

Here we analyze a potential with a small slope, so the field rolls down the potential without a need for any initial push as in Section IV A. The potential is given by

$$u(\phi, T) = 2\pi^2 a^6(T) (-b\phi + c), \quad (A1)$$

and the initial condition is similar to the flat potential case,

$$\psi(\phi, -T_0) = \left(\frac{1}{2\pi\sigma_0} \right)^{1/4} e^{-\frac{(\phi - \phi_0)^2}{4\pi\sigma_0}} . \quad (A2)$$

The wavefunction that solves the Schrödinger equation in this potential with this initial condition is
\[
\psi(\phi, T) = \frac{1}{(2\pi \sigma_0^2)^{1/4}} \exp \left\{ \frac{-\pi^2}{\sigma(T)} \left(\phi - \phi_0 - ib \int_{-T_0}^{T} \sigma(T') \alpha^6(T') dT' \right)^2 \right\} \]

\[
- \frac{i}{2} \int_{-T_0}^{T} \frac{1}{\sigma(T')} \left[1 + 4\pi^2 \left(c - b\phi_0 - ib \int_{-T_0}^{T} \sigma(T') \alpha^6(T') dT' \right) \sigma(T') \alpha^6(T') \right] dT' \quad (A3)
\]

with the same \(\sigma(T)\) as in eq. (17).

We compute the same probability as in Section IV A, except that in this case the wavepacket’s center moves as

\[
\langle \phi \rangle = \phi_0 + \frac{b(T_0 + T)^2}{2}, \quad (A4)
\]

and the momentum changes as

\[
\langle p \rangle = 2\pi^2 a_0^6 b(T_0 + T), \quad (A5)
\]

where we again assume a constant scale factor (set to \(a_0\)). The uncertainties, \(\sigma_\phi\) and \(\sigma_p\), are the same as for the constant potential.

Compared to the flat potential, here the field velocity increases with time, as

\[
\langle \dot{\phi} \rangle = b(t_0 + t). \quad (A6)
\]

If one wants the field velocity to remain below some critical value (e.g. a slow roll condition), then this constrains both the potential and the amount of time the field evolves in the potential.

To compute the probability as we did previously, the final state shifted wavepacket needs an additional phase to account for a change in the momentum,

\[
\exp \left[2\pi i x a_0^6 b(T_0 + T) \phi \right], \quad (A7)
\]

where \(x\) is an arbitrary positive real number scaling the momentum of the wavepacket. With \(\chi \equiv 8\pi^2 a_0^2\) as in Section IV A, we find the probability at \(T = 0\) to be

\[
P = \frac{\chi}{\sqrt{T_0^2 + \chi^2}} \exp \left[-\pi^2 a_0^2 (x - 1)^2 \frac{T_0^2}{T_0^2 + \chi^2} \left(T_0^2 + \frac{1}{2} \chi^2 \right) \right]. \quad (A8)
\]

For large \(T_0\) (again \(T_0 = t_0/a_0^2 \gg \chi\)) the probability is

\[
P \approx \frac{a_0^2 \chi}{t_0} \exp \left[-\pi^2 a_0^6 b^2 (x - 1)^2 t_0^2 \right], \quad (A9)
\]

which falls exponentially fast, unless \(x = 1\) (maximizing the probability with respect to \(x\)). In this case the wavepackets have the same final momentum, and the probability reduces to the result of the flat potential,\(^8\)

\[
P \approx \frac{a_0^2 \chi}{t_0}. \quad (A10)
\]

Therefore, at best the linear potential can have the same probability, proportional to \(1/t_0\), as the flat potential.

REFERENCES

[1] Arvind Borde and Alexander Vilenkin, “Eternal inflation and the initial singularity,” Phys.Rev.Lett. 72, 3305–3309 (1994), arXiv:gr-qc/0312022 [gr-qc]; “Singularities in inflationary cosmology: A Review,” Int.J.Mod.Phys. D5, 813–824 (1996), arXiv:gr-qc/9612036 [gr-qc]; “Violations of the weak energy condition in inflating space-times,” Phys.Rev. D56, 717–723 (1997), arXiv:gr-qc/9702019 [gr-qc]; Alan H. Guth, “Eternal inflation,” (1999), arXiv:astro-ph/0101507 [astro-ph]; Arvind Borde, Alan H. Guth, and Alexander Vilenkin, “Inflationary space-times are incomplete in past directions,” Phys.Rev.Lett. 90, 151301 (2003), arXiv:gr-qc/0110012 [gr-qc]; Alexander Vilenkin, “Quantum cosmology and eternal inflation,” , 649–666 (2002), arXiv:gr-qc/0204061 [gr-qc].

[2] Anthony Aguirre, “Eternal Inflation, past and future,” (2007), arXiv:0712.0571 [hep-th].

[3] George F.R. Ellis and Roy Maartens, “The emergent universe: Inflationary cosmology with no singularity,” Class.Quant.Grav. 21, 223–232 (2004), arXiv:gr-qc/0211082 [gr-qc]; George F.R. Ellis, Jeff Murugan, and Christos G. Tsagas, “The Emergent universe: An Explicit construction,” Class.Quant.Grav. 21, 233–250 (2004), arXiv:gr-qc/0307112 [gr-qc].

[4] A.S. Eddington, “On the Instability of Einstein’s Spherical World,” Mon.Not.Roy.Astron.Soc. 90, 668–678 (1930); E.R. Harrison, “Normal Modes of Vibrations of the Universe,” Rev.Mod.Phys. 39, 862–882 (1967);

\(^{7}\) In a quantum theory of gravity, the quantum aspect of our analysis may be modified. In this case, our framework would take place in a classical GR limit of quantum gravity (for instance, the size of the initial universe is large) or cosmological setting.

\(^{8}\) As a check, setting \(b = 0\), so the potential is a constant, also reproduces the result of the previous section.
G.W. Gibbons, “The entropy and stability of the universe,” Nucl.Phys. B292, 784 (1987); “Sobolev’s inequality, Jensen’s theorem and the mass and entropy of the universe,” Nucl.Phys. B310, 636 (1988); John D. Barrow, George F.R. Ellis, Roy Maartens, and Christos G. Tsagas, “On the stability of the Einstein static universe,” Class.Quant.Grav. 20, L155–L164 (2003), arXiv:gr-qc/0302094 [gr-qc].

[5] T. Padmanabhan and T.R. Seshadri, “Probing the origin of large inhomogeneities in inflation using a toy quantum mechanical model,” Phys.Rev. D34, 951–958 (1986); T. Padmanabhan, “Quantum mechanics in the de sitter spacetime and inflationary scenario,” J.Astron.Astrophys. 6, 239–246 (1985).

[6] G.F.R. Ellis, S.J. Stoeger, William R., P. McEwan, and P. Dunsby, “Dynamics of inflationary universes with positive spatial curvature,” Gen.Rel.Grav. 34, 1445–1459 (2002), arXiv:gr-qc/0109023 [gr-qc].

[7] B. Losic and W.G. Unruh, “On the initial value problem for second order scalar fluctuations in Einstein static,” Phys.Rev. D71, 044011 (2005), arXiv:gr-qc/0408011 [gr-qc].

[8] Puxun Wu and Hong Wei Yu, “Emergent universe from the Horava-Lifshitz gravity,” Phys.Rev. D81, 103522 (2010), arXiv:0909.2821 [gr-qc].

[9] Surajit Chattopadhyay and Ujjal Debnath, “Emergent universe in chameleon, f(R) and f(T) gravity theories,” Int.J.Mod.Phys. D20, 1135–1152 (2011), arXiv:1105.1091 [gr-qc].

[10] David J. Mulryne, Reza Tavakol, James E. Lidsey, and George F.R. Ellis, “An Emergent Universe from a loop,” Phys.Rev. D71, 123512 (2005), arXiv:astro-ph/0502589 [astro-ph].

[11] Sergio del Campo, Ramon Herrera, and Pedro Labrana, “Emergent universe in a Jordan-Brans-Dicke theory,” JCAP 0711, 030 (2007), arXiv:0711.1559 [gr-qc]; S. Mukherjee, B.C. Paul, S.D. Maharaj, and A. Beesham, “Emergent universe in Starobinsky model,” (2005), arXiv:gr-qc/0505103 [gr-qc]; B.C. Paul and S. Ghose, “Emergent Universe Scenario in the Einstein-Gauss-Bonnet Gravity with Dilaton,” Gen.Rel.Grav. 42, 795–812 (2010), arXiv:0809.4131 [hep-th]; Asit Banerjee, Tanwi Bandyopadhyay, and Subenoy Chakraborty, “Emergent Universe in Brane World Scenario,” Grav.Cosmol. 13, 290–292 (2007), arXiv:0705.3933 [gr-qc]; Yi-Fu Cai, Mingzhe Li, and Xinmin Zhang, “Emergent Universe Scenario via Quintom Matter,” Phys.Lett. B718, 248–254 (2012), arXiv:1209.3437 [hep-th].

[12] Christian G. Boehmer and Francisco S.N. Lobo, “Stability of the Einstein static universe in IR modified Horava gravity,” Eur.Phys.J. C70, 1111–1118 (2010), arXiv:0909.3986 [gr-qc]; Christian G. Boehmer, Lukas Holleinen, and Francisco S.N. Lobo, “Stability of the Einstein static universe in f(R) gravity,” Phys.Rev. D76, 084005 (2007), arXiv:0706.1663 [gr-qc]; Sanjeev S. Seahra and Christian G. Boehmer, “Einstein static universes are unstable in generic f(R) models,” Phys.Rev. D79, 064009 (2009), arXiv:0901.0892 [gr-qc]; Luca Parisi, Marco Bruni, Roy Maartens, and Kevin Vandersloot, “The Einstein static universe in Loop Quantum Cosmology,” Class.Quant.Grav. 24, 6243–6254 (2007), arXiv:0706.4431 [gr-qc]; Christian G. Boehmer and Francisco S.N. Lobo, “Stability of the Einstein static universe in modified Gauss-Bonnet gravity,” Phys.Rev. D79, 067504 (2009), arXiv:0902.2982 [gr-qc]; Puxun Wu and Hongwei Yu, “The Stability of the Einstein static state in f(T) gravity,” Phys.Lett. B703, 223–227 (2011), arXiv:1108.5908 [gr-qc]; Christian G. Boehmer, Lukas Holleinen, Francisco S.N. Lobo, and Sanjeev S. Seahra, “Stability of the Einstein static universe in modified theories of gravity,” (2010), arXiv:1001.1206 [gr-qc]; Rituparno Goswami, Naureen Goheer, and Peter K.S. Dunsby, “The Existence of Einstein Static Universes and their Stability in Fourth order Theories of Gravity,” Phys.Rev. D78, 044011 (2008), arXiv:0804.3528 [gr-qc]; Luca Parisi, Ninfa Radicella, and Gaetano Vilasi, “On the stability of the Einstein Static Universe in Massive Gravity,” Phys.Rev. D86, 024035 (2012), arXiv:1207.3922 [gr-qc].

[13] Pedro Labrana, “Emergent Universe by Tunneling,” Phys.Rev. D86, 083524 (2012), arXiv:1111.5360 [gr-qc].

[14] Peter W. Graham, Bart Horn, Shamit Kachru, Surjeet Rajendran, and Gonzalo Torroba, “A Simple Harmonic Universe,” (2011), arXiv:1109.0282 [hep-th].

[15] Audrey T. Mithani and Alexander Vilenkin, “Collapse of simple harmonic universe,” JCAP 1201, 028 (2012), arXiv:1110.4096 [hep-th]; Audrey Mithani and Alexander Vilenkin, “Did the universe have a beginning?” (2012), arXiv:1204.4658 [hep-th].