Chiral p-wave order in Sr$_2$RuO$_4$

Catherine Kallin

Department of Physics and Astronomy, McMaster University, Hamilton ON L8S 4M1, Canada
E-mail: kallin@mcmaster.ca

Received 3 November 2011, in final form 16 February 2012
Published 20 March 2012
Online at stacks.iop.org/RoPP/75/042501

Abstract
Shortly after the discovery in 1994 of superconductivity in Sr$_2$RuO$_4$, it was proposed on theoretical grounds that the superconducting state may have chiral p-wave symmetry analogous to the A phase of superfluid 3He. Substantial experimental evidence has since accumulated in favor of this pairing symmetry, including several interesting recent results related to broken time-reversal symmetry (BTRS) and vortices with half of the usual superconducting flux quantum. Great interest surrounds the possibility of chiral p-wave order in Sr$_2$RuO$_4$, since this state may exhibit topological order analogous to that of a quantum Hall state, and can support such exotic physics as Majorana fermions and non-Abelian winding statistics, which have been proposed as one route to a quantum computer. However, serious discrepancies remain in trying to connect the experimental results to theoretical predictions for chiral p-wave order. In this paper, I review a broad range of experiments on Sr$_2$RuO$_4$ that are sensitive to p-wave pairing, triplet superconductivity and time-reversal symmetry breaking and compare these experiments to each other and to theoretical predictions. In this context, the evidence for triplet pairing is strong, although some puzzles remain. The ‘smoking gun’ experimental results for chiral p-wave order, those which directly look for evidence of BTRS in the superconducting state of Sr$_2$RuO$_4$, are most perplexing when the results are compared with each other and to theoretical predictions. Consequently, the case for chiral p-wave superconductivity in Sr$_2$RuO$_4$ remains unresolved, suggesting the need to consider either significant modifications to the standard chiral p-wave models or possible alternative pairing symmetries. Recent ideas along these lines are discussed.

(Some figures may appear in colour only in the online journal)

This article was invited by L H Greene.

Contents

1. Introduction 1
2. A few key properties of Sr$_2$RuO$_4$ 3
3. Chiral p-wave superconductivity 4
4. Evidence for triplet pairing 5
5. Half-quantum vortices 5
6. Broken time-reversal symmetry 6
7. Where are the surface currents? 8
8. Can experiments be reconciled with chiral p-wave order? 8
9. Conclusions and future directions 10
Acknowledgments 11
References 11

1. Introduction

Explaining conventional superconductivity, as was done by Bardeen, Cooper and Schrieffer (BCS) in 1957, was one of the major scientific accomplishments of the second half of the 20th century [1]. The idea, conceived by Cooper, of an electron pairing instability for even a weak attractive interaction, quickly led to a revolutionary microscopic theory based on a new many-body wave function for the superconducting state. In the particular model that BCS solved, the attraction resulted from interactions of electrons with lattice vibrations, and the resulting Cooper pair wave function, the superconducting order parameter or gap function, had s-wave symmetry. By Fermi statistics, this spatially symmetric state of two electrons must...
combine with an antisymmetric spin singlet part. This form of BCS theory was extremely successful in describing the properties of all superconductors known at that time.

Electrons interact primarily by the Coulomb interaction which has both a direct part, which is repulsive, and an exchange part, which can be attractive. Higher angular momentum pairing wave functions, which vanish at short distance, minimize the direct Coulomb repulsion so that, in principle, p- or d-wave pairing, in which the electrons avoid direct overlap, could be stabilized by electron–electron interactions. This case, where the gap function changes sign and averages to zero around the Fermi surface, is referred to as unconventional superconductivity. Understanding unconventional superconductivity, both in general and in any specific material, is a major theoretical challenge. Exactly how superconductivity results from the Coulomb interaction in a crystalline material can be quite complex and, in contrast to conventional BCS superconductivity, no controlled many-body perturbation method exists for treating this problem [2, 3].

Although there were hints of non-s-wave superconductivity in some of the heavy fermion superconductors, it was not until the discovery of high T_c superconductivity in the cuprates that such behavior was unambiguously identified [4]. The high T_c cuprates were found to have d-wave symmetry, with lobes of the pair wave function along $\pm x$ having the opposite sign to lobes along $\pm y$ [5, 6]. d-wave symmetry implies that the gap vanishes at four nodal points on the 2D Fermi surface relevant to these layered materials. These gapless points give rise to power-law behavior of low temperature thermal properties, in contrast to the s-wave case where the low T behavior is exponential ($e^{-\Delta/T}$). Interesting interference effects can also be observed because of the different phases of the different lobes of the pair wave function. Again for the d-wave case, the spins are paired in singlet states because of the even parity of the d pair wave function.

‘What about p-wave?’, one might ask. In fact, p-wave pairing was observed in the neutral superfluid, 3He, long before high T_c [7]. The potential between two He atoms has a repulsive core, which works against s-wave pairing, and a weak, attractive van der Waals tail. Two 3He atoms, which like electrons are spin $\frac{1}{2}$ fermions, can take advantage of the attraction and avoid the repulsion by pairing in a p-wave state, and the correlations involved in doing this include ferromagnetic spin fluctuations. The spin states that go with p-wave pairing are triplet. Since normal helium is an isotropic liquid, the three p-states, p_x, p_y, and p_z are degenerate, as are the three triplet spin states. In principle, the pairing wave function can be any linear combination of these, but not all linear combinations are equivalent.

Consider, for example, the p_z state. In k-space, the gap vanishes for $k_z = 0$ leaving a ring of gapless excitations on the Fermi surface. Superconductivity is stabilized by the gap at the Fermi surface, and having nodes is costly in condensation energy. The best situation is a fully gapped Fermi surface as happens for the s-wave case. In fact, p-wave pairing can completely gap the Fermi surface. The Balian and Werthamer (BW) state, in which the sum of the Cooper pair orbital and spin angular momenta is zero, has a gap which is uniform in magnitude around the spherical Fermi surface of 3He [8]. It describes the B phase, which is the lowest free energy state of superfluid 3He in zero magnetic field, except for a tiny sliver of the pressure–temperature phase diagram at non-zero pressure on the boundary with the normal state.

Of more direct relevance to this paper is tiny sliver, the A phase. This phase picks out a direction, call this z. In the A phase, the spin state is $S_z = 0$ (i.e. the projection of the triplet spin in the z direction is zero) and the orbital part is of the complex form $p_x + ip_y$ or $p_x - ip_y$. In other words, the A phase first breaks rotational symmetry by picking out the direction z, and it then breaks chiral symmetry by choosing a sense in which the phase of the gap rotates as one moves around the Fermi surface in a plane perpendicular to z. Note that the magnitude of this chiral p-wave gap is not uniform around the Fermi sphere, since it vanishes at the north and south poles, the directions $\pm z$, and is maximal at the equator. However, a thin film of the A phase would be fully gapped.

Superfluidity in 3He is a fragile phenomenon, occurring at millikelvin temperatures, and so the question naturally arose whether a more robust form of triplet p-wave superconductivity, perhaps even chiral p-wave, could occur in a metal. A possible candidate emerged with the discovery of superconductivity in Sr$_2$RuO$_4$ by the group of Maeno in 1994 [9]. Sr$_2$RuO$_4$ is a layered material and the Ru 4d- orbitals give rise to three bands crossing the Fermi energy. As a result, the Fermi surface, which is almost perfectly cylindrical, has three sheets, one of which is an electron surface which is approximately circular in cross section, and two, an electron and a hole Fermi surface, which are more square with rounded corners. (See figure 1.) Since ferromagnetism is observed in closely related strontium ruthenate compounds, the idea that superconductivity in Sr$_2$RuO$_4$ might be triplet seemed appealing [10], and, indeed, a number of experiments, which will be reviewed below, give evidence of triplet pairing and of the broken time-reversal symmetry (BTRS) associated with chiral p-wave superconductivity.

![Figure 1. The three sheets of the Fermi surface of Sr$_2$RuO$_4$, labelled α, β and γ, are shown in the (k_x, k_y) (or ab) plane as measured by angle resolved photoemission experiments [21]. The Γ point ($k = 0$) is at the center. The dispersion in k_x (not shown) is very small. Reproduced with permission from [21]. Copyright 2000 by the American Physical Society.](image-url)
Putting aside for a moment the complications implied by a multi-sheet Fermi surface, one might ask which of the possible states of a triplet p-wave superconductor might be stable for Sr$_2$RuO$_4$? Several different linear combinations of the p-wave and triplet states fully gap a 2D or cylindrical Fermi surface, including the 2D analogs of the states describing the A and B phases of 3He. Consequently, any of these would seem to be good candidates with a large condensation energy. However, the chiral p-wave state differs from the BW-type states in that it breaks time-reversal symmetry. It is also thought to have lower energy in the presence of spin–orbit coupling [11]. In addition to its relevance to superfluid 3He and Sr$_2$RuO$_4$, chiral p-wave order is also of interest because it is an example of topological superconductivity [12, 13].

There is currently a great deal of interest in topological order which occurs in topological insulators, quantum Hall systems, superfluid 3He, as well as in chiral p-wave superconductors [13–15]. All of these systems exhibit gap in the bulk, but, because of the topologically ordered nature of the bulk, this gap must collapse to zero at a surface, giving rise to gapless surface modes. For the case of topological insulators, the gapless modes are associated with spin currents. For quantum Hall systems and chiral p-wave states, the states in the gap propagate clockwise or counterclockwise around the edge, depending on the sign of the magnetic field for the quantum Hall case or of the chirality for the chiral p-wave case. For chiral p-wave superconductors, these gapless modes are Majorana fermions, particles that are their own antiparticles and are like half of an ordinary fermion since a single electron occupies two Majorana modes. Majorana zero modes are also expected to exist in the cores of superconducting chiral p-wave vortices. In fact, such a superconductor may support vortices with half of the usual superconducting flux quantum, which obey non-Abelian winding statistics when moved around each other [16]. It has been noted that the extra stability associated with such topological states, in principle, could be used to minimize decoherence effects and hence find application as qubits for quantum computing [17–19].

A large number of experiments have been performed on Sr$_2$RuO$_4$, providing evidence both for triplet superconductivity and for BTRS and the combination of these strongly point toward chiral p-wave order [2]. Much of this paper is devoted to a critical analysis and comparison of the various results, focussing on experiments which most directly connect to evidence for triplet pairing or BTRS, with an emphasis on recent results. To jump ahead to the conclusions of this analysis, although different experiments indeed show evidence of each of the key phenomena, the assumptions made in the analysis of different experiments are sometimes mutually incompatible, casting doubt on some of the conclusions. Furthermore one key signature of chiral p-wave order, spontaneous surface currents whose direction depends on the sign of the chirality, has been conspicuously absent in spite of repeated experimental efforts of increasingly high precision. In the last two sections of this paper, I suggest some avenues for future work and briefly discuss how a more thorough treatment of material-specific properties of Sr$_2$RuO$_4$, such as spin–orbit coupling and the multisheet Fermi surface, could lead to alternative explanations of the different experimental results.

2. A few key properties of Sr$_2$RuO$_4$

Sr$_2$RuO$_4$ has the same tetragonal crystal structure as the cuprate superconductor, La$_2$CuO$_4$ [20] and, like the cuprates, is a highly anisotropic layered material, with good conduction in the RuO$_2$ layers (the tetragonal ab plane, also taken to be the xy plane here) and much weaker conduction along the c- (or z-) axis, perpendicular to these planes. However, other electronic properties of Sr$_2$RuO$_4$ are quite distinct from the cuprates. While the cuprates, over much of their phase diagram, behave very differently from conventional metals described by Fermi liquid theory, Sr$_2$RuO$_4$ behaves like a Fermi liquid below about 50 K, although with substantial mass and susceptibility enhancements, signalling the existence of strong electronic correlations [20]. Furthermore, whereas the cuprates have a single band crossing the Fermi energy, Sr$_2$RuO$_4$ has three bands crossing the Fermi energy. This is a key property which can significantly complicate the determination of the symmetry of the superconducting order. The three sheets of the Fermi surface, labeled as α, β and γ, are shown in figure 1 [21, 22]. The Fermi sheets are shown for momenta in the ab plane and there is very little dispersion along the c-axis, reflecting the weak conduction along the c-axis and the large anisotropy of this material. The γ band is mostly composed of Ru d$_{xy}$ orbitals, whereas the Ru d$_{xz}$ and d$_{yz}$ orbitals form one-dimensional bands which hybridize to give the α and β bands. The β and γ bands are electron-like and the α band is hole-like.

Another property which can complicate the identification of the symmetry of the superconducting order in Sr$_2$RuO$_4$ is the presence of strong spin–orbit coupling. Detailed comparisons between the measured band structure and density functional theory calculations for this material reveal the effect of spin–orbit coupling on the band structure which is significant in the region of k-space where the three Fermi sheets are close to each other—near the diagonals, $k_c = \pm k$: [23, 24]. This analysis yields estimates for the atomic spin–orbit coupling of about 100 meV, or even larger [24], and also shows the effect of spin–orbit coupling to have significant k_c dependence [23].

Sr$_2$RuO$_4$ becomes superconducting below 1.5 K, although the superconducting transition temperature, T_c, is very sensitive to non-magnetic impurities [20], as expected for unconventional superconductivity where scattering around the Fermi surface can average the superconducting order parameter to zero. 1.5 K is the highest T_c observed. Shortly after the discovery of superconductivity in Sr$_2$RuO$_4$ in 1994 [9], experiments found evidence both for triplet pairing and for BTRS as discussed below. Triplet spin pairing implies that the spatial part of the pair wave function is odd. The simplest and, perhaps, most likely possibility is then p-wave pairing, since f-wave and higher angular momenta typically have higher energy, although this depends on the details of the microscopic pairing interaction. Putting together the evidence for triplet pairing and BTRS, along with some energetic considerations, a symmetry analysis for the case of p-wave pairing and a cylindrical Fermi surface uniquely picks out a single pairing
The electron-like γ band is reasonably approximated by a cylindrical Fermi surface and small deviations from this simple approximation gives rise to gap anisotropy, but does not change the chiral p-wave state in a significant way. There is indirect experimental evidence [25], based on the variation of the low temperature specific heat with magnetic field direction, that points to the γ band playing the dominant role in superconductivity, with weaker superconductivity on the α and β bands. Consequently, it is often assumed that one can largely understand the superconductivity within a one-band model, with substantially weaker superconductivity on the α and β bands induced through the proximity effect.

The simple picture of chiral p-wave order is complicated by experimental evidence for nodes or deep minima in the superconducting gap seen in specific heat [25, 26], thermal conductivity [27–29], nuclear spin relaxation [30], penetration depth [31, 32] and ultrasonic attenuation measurements [33], which show power-law behavior at low temperatures. If these are accidental zeros or near zeros which do not correspond to sign changes in the gap function, then they are still compatible with chiral p-wave symmetry. If there are nodes with a sign change, a crucial question is whether these are vertical, running along k_z, or whether they are horizontal, occurring at specific values of k_x. Vertical nodes would be incompatible with chiral p-wave order, whereas horizontal nodes could be compatible with some forms of chiral p-wave order. While it is possible to fit low temperature specific heat data with horizontal nodes, the detailed studies of the anisotropy of the specific heat in a magnetic field [25], mentioned above, support line nodes or near nodes running along k_z. One would like to see additional experiments addressing the issue of exactly where the low-lying excitations are in momentum space, as this connects directly to the issue of the symmetry of the superconducting order and, furthermore, could provide additional information on how active the different bands are in the superconducting state. Although the work of Deguchi and coworkers [25] provides important information which must be taken into account, both the issue of nodes or near nodes and the question of which bands are most important for superconductivity in Sr_2RuO_4 are still controversial. I will return to the possibility of superconductivity on the quasi-one-dimensional α and β bands later, but, first I will discuss the more commonly employed model of chiral p-wave order due to superconductivity primarily on the quasi-2D γ band.

3. Chiral p-wave superconductivity

For a triplet superconductor, one needs to specify the pair wave function or order parameter for each of the three triplet states and this is typically done by expressing the order parameter in terms of a ‘d-vector’, which rotates if the spins rotate. Each component of the d-vector represents the k dependent gap amplitude for the spin state that has zero projection along the corresponding spatial direction. In this notation, the BW state of the B phase of ³He is simply, \(d(p) = \Delta_0 p / p_F \), where \(p_F \) is the Fermi momentum and \(|d| = \Delta_0 \) is the magnitude of the gap around the Fermi sphere. The analog of this state for a cylindrical Fermi surface has exactly the same form, but \(p \) is a two-component momentum perpendicular to the cylinder axis. This state fully gaps the Fermi surface but does not break time-reversal symmetry.

While there are many different p-wave states compatible with a cylindrical Fermi surface and tetragonal symmetry, only one of these, the chiral p-wave state, both breaks time-reversal symmetry and is unitary [2, 10]. The non-unitary states, defined by non-zero \(d \times d \), have different energy gaps for up- and down-spins and break time-reversal symmetry. However, in zero magnetic field, the non-unitary states are expected to have a higher energy than the unitary states [34], and, consequently, the chiral p-wave state is singled out based on a combination of energetics and evidence of BTRS.

The d-vector describing the chiral p-wave order proposed for Sr_2RuO_4 is

\[
d(p) = \Delta_0 (p_x \pm i p_y) \hat{z} / p_F,
\]

where \(\hat{z} \) is the direction normal to the layers. The spin is zero along the direction of \(d \), so equation (1) describes Cooper pairs in an \(S_z = 0 \) state with the orbital part winding by ±2π around the Fermi surface. The ± corresponds to the two chiralities, which are degenerate and may coexist, although there is an energy cost associated with domain walls between the two chiralities [35]. As mentioned earlier, the quasiparticle energy spectrum is fully gapped in the bulk, or everywhere for a system with periodic boundary conditions. For a system with an edge, a chiral edge mode appears, which splits off the bulk states below the gap and disperses across the gap, having exactly zero energy where the momentum, \(p \), along the edge is zero [36, 37]. The direction of this mode, whether it crosses from below the gap to above or vice versa, depends on the chirality of the gap function. The wave functions corresponding to these states in the gap are localized near the surface in a distance corresponding to the superconducting coherence length, and they carry a supercurrent along the edge. In addition, the bulk states, which are necessarily orthogonal to the surface states, also contribute to the surface current [37].

The discussion so far, refers to states of a single layer. For a 3D superconductor, consisting of a macroscopic stack of layers, the surface currents will generate a magnetic field at the surface which will be screened by diamagnetic screening currents of the bulk superconductor so that the net field inside the sample is zero [38]. Thus one expects a sheath of non-zero B-field at the surface which grows up over a coherence length and then falls to zero on the scale of the penetration depth. The existence of surface currents is a robust consequence of the topology of the gap function, although the magnitude of these currents is not topologically protected.

It is also possible to have domains of positive and negative chirality in a single sample, in which case spontaneous supercurrents flow around each domain, giving rise to non-zero magnetic fields localized near the domain walls. Domains are energetically costly because of the interfacial energy between domains. Unlike in a ferromagnet, there is no compensating energetics driving domain formation. However, provided there are inhomogeneities which can pin domain walls, domains...
nucleated at the superconducting transition can then be trapped in the sample at low temperature.

The spontaneous edge currents and their associated magnetic fields are not expected to be a small effect in superconducting \(\text{Sr}_2\text{RuO}_4 \). Given the size of the gap, the Fermi velocity and the superfluid density, it is straightforward to estimate their magnitude and spatial distribution. Expected values of the field are of the order of 10 G over a region whose width is the coherence length plus penetration depth [35, 38]. Such fields should be observable by scanning superconducting quantum interference device (SQUID) or Hall probes.

4. Evidence for triplet pairing

A key piece of information about the pairing symmetry is whether the electron spins in a Cooper pair form a singlet or a triplet. A measurement of the spin susceptibility can distinguish between these two possibilities. In a singlet superconductor, the spin susceptibility drops for any direction of applied field as singlet pairs are formed below \(T_c \), whereas, for a triplet superconductor, the change in spin susceptibility from the metallic state depends on the particular triplet state and on the direction of the field. The spin susceptibility contributes to the Knight shift which is measured by nuclear magnetic resonance (NMR) experiments. NMR experiments on \(\text{Sr}_2\text{RuO}_4 \) with the applied field in the \(ab \) plane, measure a Knight shift which is unchanged as the temperature is lowered through \(T_c \) [39]. The observed Knight shift is large and negative which implies that it is dominated by the electron spin susceptibility. For a triplet state with negative \(g \)-factor, the spins lie in the \(xy \) or \(ab \) plane and one expects no change in the spin susceptibility for applied fields in the \(ab \) plane. Therefore, the NMR data are taken as compelling evidence for triplet pairing. Polarized neutron experiments also see no change in the spin susceptibility as the temperature is lowered below \(T_c \) [40].

More recently, nuclear quadrupole resonance (NQR) experiments measured the Knight shift in a field along \(c \) [41]. Again, to within the error bars, no drop in the Knight shift below \(T_c \) was observed. This is not what is expected for the chiral \(p \)-wave state with the \(d \)-vector along \(c \). It has been proposed that the applied NQR fields, about 250 G, may rotate the \(d \)-vector into the \(ab \) plane, while remaining in the chiral \(p \)-wave state, as a similar effect is observed in \(^3\text{He} \), where it is energetically favourable for the \(d \)-vector to be perpendicular to the applied field. The pinning of the \(d \)-vector in the superconducting state is expected to be orders of magnitude weaker than the atomic spin–orbit coupling [42], so that fields of 250 G may be sufficient to rotate the \(d \)-vector. However, another possibility is that a field along the \(c \)-axis tilts the balance between different \(p \)-wave states, perhaps stabilizing the \(\text{BW-like state, } d \propto p \), which has the \(d \)-vector lying in the \(ab \) plane. While a definitive interpretation of the NQR results is lacking, the NMR, NQR and polarized neutron data do not seem compatible with singlet pairing and seem to suggest a mostly triplet state that depends on the direction of the applied field.

In addition to looking for evidence for singlet versus triplet pairing, one can also look for evidence of even versus odd-parity pairing. This was done by connecting a conventional superconductor to \(\text{Sr}_2\text{RuO}_4 \) through two Josephson junctions on opposite \(ac \) faces of the \(\text{Sr}_2\text{RuO}_4 \) sample, and measuring the current as a function of magnetic field through the junctions [43]. The tunneling current between an \(s \)-wave and \(p \)-wave superconductor can be non-zero because of spin–orbit coupling [44]. The current at zero field is expected to be a maximum (minimum) for even (odd) parity. The observed signal is compatible with odd parity, implying triplet pairing, and is compatible with chiral \(p \)-wave order provided the entire sample is a single domain or, at least, only a few domains [43]. With many domains, one would expect the modulation with field to be greatly reduced, with maxima and minima at zero field occurring roughly equally as the measurement is repeated through successive cool downs.

5. Half-quantum vortices

New evidence in favor of chiral \(p \)-wave order, or more precisely, in favour of two-component triplet superconductivity, in \(\text{Sr}_2\text{RuO}_4 \) has come in the rather exotic form of evidence in favor of half-quantum vortices (HQV). Vortices in conventional superconductors are quantized in units of the superconductivity flux quantum, \(\phi_0 = \hbar c/2e \), since this is the smallest flux compatible with the superconducting, or Cooper pair, wave function being single valued. The phase of the wave function winds by \(2\pi \) around the vortex, corresponding to the Bohm–Aharonov phase of a charge 2e Cooper pair encircling flux \(\phi_0 \). However in a triplet superconductor, both the orbital and the spin part of the wave function can wind around the vortex. For example, consider

\[
\psi = \Delta(p) e^{i\theta/2}[-e^{i\theta/2}|\uparrow\uparrow\rangle + e^{-i\theta/2}|\downarrow\downarrow\rangle],
\]

where \(|\uparrow\uparrow\rangle\) is the state with both spins up along some direction, \(\hat{n} \). For \(\theta = 0 \) and \(\hat{n} = \hat{x} \), the spin part of \(\psi \) is the \(S_z = 0 \) state, and, for \(\Delta(p) = \Delta_0(p_s \pm i p_l)/p_f \), \(\psi \) is just the chiral \(p \)-wave order parameter. If \(\theta \) is the angle around a vortex, this wave function is single valued and has a winding of \(2\pi \) for up-spins and no winding for down-spins. In other words, it is a vortex only in one spin component. Since only the orbital part couples to the magnetic flux and the orbital part only winds by \(\pi \), this vortex corresponds to half of the usual superconducting flux quantum, or \(\phi_0/2 \).

Chiral \(p \)-wave is not the only order which can support HQV since \(\Delta(p) \) in equation (2) could be non-chiral—for example, equal to \(\Delta_0 p_s / p_f \). The essential feature for HQV is that the superconductor have two components, each of whose phase can wind [8]. Chiral \(p \)-wave is one example of such a state, whereas the BW-type triplet state is not (although linear combinations of BW-type states may be). So, some triplet superconductors (or superfluids) can support HQV. However the energetics are such that HQV are not usually stable and, in fact, have never been observed in \(^3\text{He} \). Because HQV have both charge and spin currents, and only the charge current is screened, the energy of an isolated HQV grows logarithmically.
with system size [45]. Therefore, one needs to look for HQV in samples that are not much larger than the penetration depth. Even then, the energy of two HQV is typically expected to be higher than that of a single full vortex. Since the spin part of the wave function in equation (2) winds around the HQV, this implies the d-vector rotates around the HQV, which costs energy. There is also an energy cost associated with suppressing the superconductivity at two half-quantum vortex cores relative to at one full vortex core.

Budakian and collaborators did ultra-high precision measurements of the magnetization of fabricated sub-micrometer sized Sr$_2$RuO$_4$ samples in an annular geometry, with an external field applied along c (or z) [46]. This is the classic flux quantization experiment, where the applied flux through the annulus plus the flux corresponding to the induced screening currents must sum to an integer number of flux quanta. One can think of this as ‘vortices’, which sit in the center hole of the annulus, with their associated supercurrents flowing in the annular sample. As expected, jumps in the magnetization, μ_z, were observed as the field was varied, with the step height corresponding to integer flux quanta. The surprising finding was that, when the experiment was repeated in the presence of an additional magnetic field in the ab plane, these steps split into two half-steps. The explanation provided in [46] connects to a theoretical prediction made concurrently with the experiments. Vakuruk and Leggett pointed out that HQV in a triplet superconductor necessarily have spontaneous spin polarization [47]. This is due to the fact that only one spin component is actively involved in the vortex, so that the superfluid velocity is spin dependent and, consequently, in equilibrium, there are different occupations or densities of the two spin components. For an $S_z = 0$ state, this polarization is in the ab plane. The interpretation of the experiment is then that this polarization couples linearly to the in-plane field, lowering the energy of HQV with increasing in-plane field.

This is a beautiful experiment with an exciting interpretation and, if the interpretation is correct, this is the first observation of HQV in the bulk of any superconductor. Of course, one needs to be careful about other possible interpretations and it is important to see this result independently confirmed. Very recent transport measurements on small annular samples studied close to T_c (i.e. a Little–Parks-type experiment) did not reveal evidence for HQV, but also could not rule them out [48].

If confirmed, these experiments would provide further evidence for triplet pairing. Together with other experiments, they strongly suggest chiral p-wave order, since the other unitary, two-component triplet states compatible with tetragonal symmetry do not break time-reversal symmetry. If Sr$_2$RuO$_4$ is a topological chiral p-wave superconductor and if these are HQV formed under conditions where Sr$_2$RuO$_4$ remains in the chiral p-wave state, then there must be Majorana modes at the edge of the superconducting annulus. One would then expect exotic features when two such HQV are moved around each other, since the HQV-Majorana fermion composites obey non-Abelian winding statistics [16]. It has been proposed that one might probe this physics through interference effects [49].

![Figure 2](image-url)
Figure 2. The temperature dependence of the muon spin relaxation rate measured in zero magnetic field for two samples of Sr$_2$RuO$_4$ with T_c of 1.45 K (upper) and 1.1 K (lower) is shown. The lines are guides to the eye. The extra relaxation below T_c indicates additional internal magnetic fields and, consequently, suggests the superconducting state has BTRS. Reproduced with permission from the Canadian Association of Physicists (CAP) and [51].

6. Broken time-reversal symmetry

Within a few years of the discovery of superconductivity in Sr$_2$RuO$_4$, evidence that the superconducting state breaks time-reversal symmetry was found in muon spin relaxation (µSR) experiments, which probe local magnetic fields inside the sample [50]. Figure 2 shows µSR data for two different Sr$_2$RuO$_4$ samples, with disorder added in one case to reduce T_c [51]. The extra muon relaxation below T_c indicates additional internal fields and fits of the data are consistent with large but sparse magnetic fields that grow up below T_c. While Meissner screening ensures that an ideal, single domain chiral p-wave superconductor has no spontaneous magnetic fields inside the bulk, magnetic fields are expected to exist near impurities, defects and domain walls. No detailed calculations for chiral p-wave superconductivity exist which directly connect to the µSR data, but one can extract some general information from the data. If it is assumed that the µSR signal is due completely to chiral p-wave domain walls, the fact that most muons see magnetic fields of a fraction of a Gauss or more suggests domains that, on average, are several micrometers or less in size. This estimate of domain size is also consistent with the average field extracted from the muon data, assuming the field at domain walls is as predicted from the simple, single band chiral p-wave model [35]. More recent µSR data are consistent with this result [52], and fits show that these data can also be well fit by assuming both domain walls and the muons themselves generate local fields [52]. The fact that, in all cases, the extra muon relaxation associated with these internal fields turns on at T_c, even when T_c is reduced by the addition of impurities strongly suggests that the superconducting state has BTRS [51], although one always has to be careful about alternative explanations. For example, a change in lattice parameters as one cools through T_c (which has not been observed in Sr$_2$RuO$_4$) could cause a change in the local fields due to nuclei.
The polar Kerr experiment is strong, direct evidence of BTRS that turns on with the superconducting order and behaves qualitatively as expected for chiral p-wave domains. However, there is still a puzzle about the source of the effect. Even though chiral p-wave breaks time-reversal symmetry, an ideal (one-band) chiral p-wave superconductor does not give a non-zero polar Kerr effect [36, 56]. This can be understood from the fact that the polar Kerr effect is, to a good approximation, proportional to the off-diagonal conductivity response, \(\sigma_{xy}(\omega) \). In a system with translational symmetry, \(\sigma_{xy} \) vanishes because the external field only couples to the center of mass momentum and, consequently, the conductivity is that of an ideal metal, i.e. a delta-function at \(\omega = 0 \) in the real part of the diagonal conductivity. Therefore, one needs to explicitly invoke a mechanism which breaks translation symmetry to obtain a non-zero \(\sigma_{xy} \) or Kerr angle in a chiral p-wave superconductor and the magnitude of the Kerr angle will depend on the magnitude of the translational symmetry breaking.

Until very recently, the most promising explanation that reconciled the Kerr effect experiments with chiral p-wave order involved impurity scattering [57]. This effect is expected to be rather small since \(\text{Sr}_2\text{RuO}_4 \) is necessarily in the clean limit in order to achieve a \(T_c \) of 1.5 K and, consequently, the electron scattering rate due to impurities cannot be too large. Furthermore, the usual dominant Born contribution to impurity scattering, which is proportional to \(n_i(U^2) \), where \(n_i \) is the density of impurities and \(U \) is the impurity potential, gives a tiny contribution to \(\sigma_{xy} \) because it also requires particle-hole asymmetry [58]. The dominant impurity contribution comes from ‘skew-scattering’ terms proportional to \(n_i(U^3) \) [57, 58]. At the experimental probing frequency, the Kerr angle depends rather sensitively on parameters which are not well known, so it is still an open question as to how well this model describes the experiment [59].

Experiments on purposely disordered samples would help determine whether disorder is playing the key role. Recently, it was shown that a multiband chiral p-wave superconductor can give rise to a non-zero Kerr effect, even in the absence of disorder [60]. For \(\text{Sr}_2\text{RuO}_4 \), this effect requires substantial superconductivity on the \(\alpha \) and \(\beta \) bands and is discussed below, in section 8, in connection with multiband models of superconductivity.

Another experiment which can give information about time-reversal symmetry breaking is Josephson tunnelling between a conventional superconductor and \(\text{Sr}_2\text{RuO}_4 \). A configuration which gave information about the parity of the superconducting order was discussed above under triplet pairing [43]. In a corner junction geometry, the two junctions connect an \(ac \) face to a \(bc \) face, thereby probing the phase change in the \(\text{Sr}_2\text{RuO}_4 \) order parameter associated with a change in angle of \(\pi/2 \). For chiral p-wave superconductivity this would be probing the \(\pm i \), or, in other words, directly probing the time-reversal symmetry breaking of the order parameter. The magnetic field dependence expected for a phase change of \(\pi/2 \) was seen in one such corner junction.
measurement, whereas more complicated field dependence was seen in other corner junction measurements [43]. On one hand, it is difficult to imagine how the expected signature for $\pi/2$ would be generated except through an order parameter with a phase structure like chiral p-wave. On the other hand, the fact that this signature was not reproduced, leaves the corner junction signature somewhat open. Certainly domains could complicate this experiment and possibly explain the results. However, the same experiment in another geometry yielded evidence for odd parity and appears not to have been complicated by domains [43].

One can also put the two junctions on the same ac face of the crystal. In the absence of domains, for any pairing symmetry, one would expect to see the classic Franhofer pattern, peaked at zero field, corresponding to no phase change of the superconductor between the two junctions. Instead, quite a complicated pattern with applied field was observed, but one which can be qualitatively replicated within a chiral p-wave model, if one assumes small domains, of the order of 1 μm, which intersect the crystal surface at oblique or acute angles (not 90°) [61, 62]. These domains must also be dynamic, as features in the pattern changed on the timescale of several seconds. In principle, strong surface disorder could partially pin a dense array of domains near the surface.

7. Where are the surface currents?

A striking consequence of chiral p-wave order is the existence of spontaneous supercurrents at sample edges and at domain walls [35, 37, 38]. Although μSR data are interpreted as evidence for such currents, direct searches for these supercurrents at sample edges and surfaces, as well as in micrometer size samples, have yielded null results. Scanning SQUID and Hall bar probes [63–65] and cantilever magnetometry [46] have been employed in the search for a signal due to spontaneous supercurrents. Figure 4 shows the result of one such experiment, comparing the measured magnetic flux from a SQUID scan across the edge of a Sr$_2$RuO$_4$ crystal to the theoretical prediction for a simple chiral p-wave model appropriate for superconductivity on the γ band. These experiments, as well as more recent scanning SQUID experiments [65], have placed a bound on the maximum value of the magnetization at the edge or at a domain wall intersecting the ab surface that is three orders of magnitude smaller than predicted, assuming domains larger than a few micrometers in size. Alternatively, if the magnetization is of the predicted size, then these experiments would imply that the domains are 300 Å or less in size for a random arrangement of domains. The magnetometry measurements were done on micrometer sized samples and also conclude that the spontaneous currents need to be reduced by roughly three orders of magnitude if the sample were a single domain chiral p-wave superconductor [46]. Given the small sample size, this null result would also require surprisingly small domain sizes, as a few random domains would not so precisely cancel the expected signal. On the other hand, the Kerr effect [53, 54] and odd-parity tunneling [43] experiments require domains which are substantially larger than a few micrometers in size in order to be compatible with chiral p-wave order. Taken together, these experiments suggest that if Sr$_2$RuO$_4$ is a chiral p-wave superconductor, the spontaneous supercurrents are dramatically smaller than expected for the simple chiral p-wave model.

Disorder, band anisotropy, scattering at the surface, or other surface effects such as nucleating a competing order parameter near the surface, can all reduce the magnitude of the spontaneous currents at the edge and, in some cases, at domain walls. These effects have been studied with Ginzburg–Landau theory, and shown to typically give only a modest change in the magnitude of the spontaneous currents for a one-band model and Ginzburg–Landau parameters which are physically plausible [66]. Nucleating a different order at the surface might explain the null scanning results if this surface order persisted to the penetration depth, but this would then leave other experiments unexplained, such as the Kerr effect in the case of a (001) surface or tunnelling in the case of (1 0 0) surfaces. In the special case of chiral p-wave order and complete retroflection at the surface, the edge currents can be fully suppressed [67]. The more typical case of rough surfaces and diffuse scattering may cause more significant changes in the currents in the case of multiband superconductivity and this is discussed in the next section.

8. Can experiments be reconciled with chiral p-wave order?

The evidence that Sr$_2$RuO$_4$ is an unconventional superconductor with triplet pairing is fairly strong. However, the case for chiral p-wave order remains murky, in large part because the evidence for BTRS either does not directly connect to calculations for chiral p-wave order or requires conflicting and/or special assumptions about chiral domains [68].
One of the more striking discrepancies between experiment and the assumption of chiral p-wave order is the multiple null results for observable effects due to spontaneous supercurrents. In principle, the null results could be explained by sufficiently small domain size since they are either probed with a finite size pickup loop, as in the scanning Hall bar and SQUID measurements \cite{64,65}, or averaged over the entire sample, as in the cantilever magnetometry measurements \cite{46}. However, the experiments now put quite stringent bounds on domain size as discussed above. Not only are such small domains incompatible with the interpretation of the Kerr and tunnelling experiments, but they would also be surprising since there is no identified energetic driving force for domain formation, as there is in a ferromagnet, and the samples are in the clean limit. An ideal, defect-free crystal cooled sufficiently slowly through \(T_c \) is expected to be a single domain. Hicks \textit{et al.} \cite{65} discuss the possibility of spatially periodic domains which can be substantially larger and still escape detection as the resultant fields at the surface would be noticeably smaller than for spatially random domains of similar size. This possibility may not be ruled out by existing experiments, but, in the absence of some energetic driving force that favors domain formation, one would not expect periodic domains.

In a single band model of chiral p-wave superconductivity, it is difficult to escape having substantial edge currents at low temperatures. A significant fraction of the edge current is provided by the edge modes whose key features are topologically protected, i.e. they are chiral with a linear dispersion at low energy. While the current can be reduced by disorder or band anisotropy, these effects are generally relatively small since the chiral nature of the edge modes implies that they cannot be localized by disorder. The special case of perfect retroreflective surface scattering does have a dramatic effect, driving the edge mode dispersion to zero \cite{67}. This special case is not likely to apply to \(\text{Sr}_2\text{RuO}_4 \) samples and, in any case, would not explain the lack of any observable currents due to domain walls intersecting the (1 0 0) surface. In the absence of disorder and in a simple geometry (e.g. a disc), the magnitude of the spontaneous edge current (which is screened in a charged superconductor) corresponds to the macroscopic angular momentum, \(L = N \hbar/2 \), where \(N \) is the total number of conduction electrons. This macroscopic angular momentum has been extensively discussed in the literature as the ‘angular momentum paradox’ \cite{69}. In the strong coupling limit, all conduction electrons condense into non-overlapping pairs, each with angular momentum \(\hbar \), and \(L = N \hbar/2 \) follows immediately. It may seem counterintuitive that for an arbitrarily weak pairing interaction, where only a tiny fraction of electrons are paired, the same macroscopic angular momentum characterizes the condensed state. In fact, predictions for the magnitude of \(L \) in an ideal chiral p-wave state have ranged over six orders of magnitude \cite{69}. Most of these predictions preceded our understanding of the topological nature of the chiral p-wave state, and the macroscopic angular momentum for the ideal case appears to no longer be in dispute, at least within the BCS formalism \cite{36,37}. Leggett has suggested that if one moves beyond the BCS or Bogliubov–de Gennes formalism used to describe the chiral p-wave state, a reduction by orders of magnitude may be possible \cite{69}. While such a suggestion is intriguing, given the lack of experimental evidence for edge currents, a competing theoretical framework would necessarily have to explicitly treat an edge or boundary in order to have a well-defined \(L \), and this is a formidable task when one moves beyond the simplicity of the BCS paired state. There is no uncertainty that the A phase of \(^3\text{He} \) is chiral p-wave and, consequently, that it is expected to exhibit this macroscopic angular momentum when confined to a thin disc. However, it is a difficult experimental challenge to detect this angular momentum or mass flow in a neutral system, and direct confirmation of this property in \(^3\text{He} \) is also still an outstanding problem.

Unlike \(^3\text{He} \), \(\text{Sr}_2\text{RuO}_4 \) has multiple bands near the Fermi energy, which can significantly change the predictions made for a single band model. The one-band model is an approximation for the case where superconductivity is predominantly on the \(\gamma \) band, with weak, induced superconductivity on the \(\alpha \) and \(\beta \) bands. If all three bands are gapped, many of the properties discussed above, including the existence of substantial edge currents, are not expected to be significantly changed by including the effect of all three bands. On the other hand, if nodes or near nodes are present, as the experiments imply \cite{27–33}, this could noticeably change the prediction for edge currents by mixing the chiral edge modes with other low-lying states in the presence of disorder, although this effect has not been studied in any detail.

Models with superconductivity primarily on the quasi-1D \(\alpha \) and \(\beta \) bands have also been studied \cite{70}, and this possibility has recently been given prominence by a renormalization group approach which predicts chiral p-wave order on the quasi-1D bands in the weak coupling limit \cite{71}. This changes things considerably, since the \(\alpha \) band is electron-like while the \(\beta \) band is hole-like. The topological invariant which characterizes chiral p-wave order depends not only on the chirality, but also on the sign of the charge carriers. Therefore the net topological invariant for these two bands is zero, which means the state is topologically trivial \cite{71}. Although there are still Andreev bound states at the edge, they are non-chiral and not topologically protected. Since the edge modes are quasi-1D, they will be localized by disorder, causing a noticeable reduction in the edge currents. In general, the bulk states also contribute to the edge currents, but this contribution is expected to be noticeably smaller than it is for superconductivity on the \(\gamma \) band since it depends on interorbital mixing and it may also be further reduced if the edge modes are localized by disorder.

Even if the pairing interaction only acts on the \(\alpha \) and \(\beta \) bands, one expects superconductivity to be induced on the \(\gamma \) band, although this is expected to be weak because the \(\gamma \) band does not mix with the other two bands in the absence of spin–orbit coupling. In this case, one might need to go to quite low temperatures to see superconductivity developed on all three bands. At sufficiently low temperatures, however, one would still expect large edge currents, since the net topological invariant for all three bands is non-zero, giving rise to one chiral edge mode. Again, the caveat about mixing of these edge modes with low-lying bulk excitations would apply, since the
quasi-1D theory predicts deep minima or near nodes in the gap along the $(1, \pm 1)$ directions [71].

The quasi-1D model for superconducting Sr$_2$RuO$_4$ is an interesting proposal which could explain some of the experimental puzzles. This model very naturally gives rise to deep minima or near nodes in the superconducting gap and, so, would give rise to power-law behavior at the low temperatures probed by experiments. In addition, this model is likely to yield substantially reduced spontaneous currents at the temperatures studied by existing experiments, although this is yet to be verified by detailed calculations. There is no reason to expect the Kerr effect to be similarly reduced, since the Kerr effect more directly probes the chirality of quasiparticle excitations and not the local fields induced by supercurrents. In fact, recent work has shown that this model can give rise to a substantial Kerr effect even in the absence of any disorder [60, 72]. The size of this intrinsic Kerr effect is proportional to the square of the maximum gap on the α and β bands, while the γ band only pays an indirect role with little effect on the Kerr angle [60]. Experiments on purposely disordered samples should be able to determine whether this intrinsic effect or the previously identified disorder effect dominates. If the intrinsic effect is found to dominate in Sr$_2$RuO$_4$, this would be compelling evidence for substantial chiral superconductivity on the quasi-1D bands.

Both classes of models discussed, the γ band model and the quasi-1D model, exhibit chiral p-wave order described by the order parameter of equation (1), although more accurately the gap function, $\Delta(p)$, would have a band index and an anisotropic magnitude around the Fermi surface. Furthermore, for strong spin–orbit coupling, the direction of the d-vector should be thought of as specifying a pseudospin triplet state. Other possible triplet order parameters include the BW-like states, of which there are actually four, $d \propto (p_\alpha \hat{x} \pm p_\beta \hat{y}) \cdot (p_\beta \hat{x} \pm p_\alpha \hat{y})$. These states are all fully gapped, but expected to lie somewhat higher in energy than the chiral state in the presence of spin–orbit coupling [34]. None of these states have BTRS, although one can form a linear combinations of these which do exhibit BTRS and which correspond to chiral p-wave order with the d-vector lying in the xy plane. Since these four states are not expected to be degenerate in the presence of general spin–orbit interactions, it seems unlikely that this linear combination would be a ground state in zero magnetic field. More generally, depending on the microscopic pairing mechanism, the superconducting order parameter for Sr$_2$RuO$_4$ may not be simply characterized by s-, p- or d-wave symmetry, and may mix singlet and triplet states, because of the combined effects of multiple bands and spin–orbit coupling. For example, Puetter and Kee [73] recently included multiband effects and spin–orbit coupling in a model where the pairing mechanism is Hund’s coupling between different t_{2g} orbitals on the same ion. Although time-reversal symmetry is not broken in this state, there is a non-trivial phase relation between different components of the gap function which could lead to interesting interference effects. Consequently, this model does not describe the μSR and polar Kerr measurements, but could explain the Josephson junction experiments which are also taken as evidence of BTRS. More generally, this model shows some of the complexity that can arise even within an onsite pairing model, and, like the quasi-1D model, it also can give rise to near nodes. Puetter and Kee argue that the addition of nearest neighbor pairing interactions to this model could bring in BTRS and signatures of that have been identified with chiral p-wave order.

9. Conclusions and future directions

So what can we conclude about whether or not Sr$_2$RuO$_4$ is a chiral p-wave superconductor with an order parameter similar to that of equation (1)? If one takes the evidence for triplet pairing at face value, the key experiments which favor a positive conclusion are the spontaneous appearance of random magnetic fields below T_c, observed in μSR, the observation of a polar Kerr effect below T_c and a variety of interference patterns detected by Josephson tunnelling.

Firstly, the μSR results are attributed to spontaneous currents generated at domain walls and defects. This interpretation is undercut by the distinct absence of spontaneous surface currents which would be expected to occur for identical reasons. Secondly, the observation of a polar Kerr effect would be more compelling as evidence for chiral p-wave order if more detailed connections between theory and experiment could be made, both in the magnitude of the effect and in the role of disorder. The recent prediction of an intrinsic Kerr effect due to superconductivity on the quasi-1D bands opens up an alternative explanation for the existing experiments and gives additional impetus for further experimental studies. As mentioned previously, detailed comparisons between theory and experiment on purposely disordered samples might shed light on the important question of which bands are primarily responsible for the superconductivity. Thirdly, the interference effects observed by Josephson coupling require a fairly specific domain pattern to be understood within the chiral p-wave model. They suggest that some complicated phase relationships occur between different points on the crystal surface, but the link between this and chiral p-wave order is not straightforward.

In my opinion, the mechanism or mechanisms which give rise to the μSR, polar Kerr effect and Josephson interference effects observed in Sr$_2$RuO$_4$, in other words all the experiments directly connected to time-reversal symmetry breaking, are not sufficiently understood. Information on the local magnetic fields as a function of the depth into the sample, such as might come from slow muons or β-NMR, for example, could, in principle, help resolve the puzzle of reconciling the null scanning probe results with the positive μSR results. Detailed calculations of the local fields associated with various chiral p-wave domain patterns could make closer contact to the μSR results, much as is done in extracting information from μSR in the mixed state of Sr$_2$RuO$_4$ and other superconductors. Finally, direct observation of domain walls would be most interesting. The experiments which probe time-reversal symmetry breaking need to make specific assumptions about the existence of domain walls which are not mutually compatible with each other and with other experiments as they assume domain sizes which differ by up to four or
five orders of magnitude in size. Different samples and different cooling rates and residual fields can affect domain size and some attempt has been made to study possible domain alignment with magnetic field cooling in Sr$_2$RuO$_4$ Josephson junctions [74]. Additional studies which attempt to directly control and observe possible domain walls in Sr$_2$RuO$_4$ would be very useful.

Furthermore, there is an important feature that is clearly observed in superconducting Sr$_2$RuO$_4$ which has implications for the chiral p-wave picture. That is the obvious presence of line nodes or near nodes in the superconducting gap. Although horizontal nodes would be compatible with chiral p-wave order, it is not clear why they would arise in this highly layered material, and, as noted above, vertical nodes with a sign change are not compatible with chiral p-wave superconductivity. Near nodes, or deep gap minima, along the k_z direction, do arise within some multiband models [71, 73], which suggests that further experiments which address the location in momentum space of the lowest lying excitations could provide key information on the order parameter symmetry and on which bands are participating. Angle resolved photoemission is the obvious probe for this information and the technique has been very successful in providing momentum dependent information on the superconducting gap and low-lying excitations in the curates and pnictides, but it does not presently have the required resolution to address the same issue in Sr$_2$RuO$_4$, where weak coupling BCS theory would predict a maximum gap of only 0.23 eV.

A number of probes can offer less direct evidence of which bands are participating in the superconductivity. The already mentioned specific heat measurements in a magnetic field are interpreted as evidence that the superconductivity is primarily on the γ band, not the quasi-1D bands [25]. In addition, inelastic neutron scattering studies found no change in the magnetic response below T_c [75]. Since nesting of the α and β bands is most likely responsible for the strong anferromagnetic fluctuations observed, this study might suggest that no significant gap opens on these quasi-1D bands. However, a weak coupling gap would be near the limit of the energy resolution for these experiments and the maximal gap is not predicted to occur at the wave vectors where the antiferromagnetic fluctuations are strongest. Higher resolution at low energies would be needed to fully address this issue.

Tunneling has the advantage that it has the resolution to detect very small energy gaps, but as already noted, tunnelling data on SRO is often not simple to interpret and may involve poorly understood matrix elements. Interestingly, the c-axis tunneling on Sr$_2$RuO$_4$ shows a full gap, with no low-lying density of states, and with a gap magnitude of 0.28 meV, fairly close to the weak coupling BCS value [76]. Since the γ band has much weaker c-axis dispersion than the quasi-1D bands, one would expect the c-axis tunneling to be dominated by the quasi-1D bands. If this is the case, this experiment lends support to the quasi-1D model. In-plane (ab) tunnelling data have been interpreted as evidence for chiral p-wave edge modes [77]. However, the features which are expected to signal the gap magnitude are observed at energies as large as 0.93 eV, about four times larger than the BCS value, and this energy scale varies little with temperature below T_c, making it difficult to unambiguously interpret the results. Nevertheless, all these different experiments are examples of the type of experiments which can, in principle, yield new insights into the nature of the superconducting order and, in particular, into which bands are participating.

On the theoretical side, recent work has provided new insights into multiband pairing and spin–orbit effects [60, 71–73]. For example, the quasi-1D model might resolve the puzzles associated with BTRS and with nodes within a model of chiral p-wave pairing [71]. However, in that case, it would still appear that the μSR would need an alternative explanation. It also seems that multiband and spin–orbit effects are required to understand the combined NMR and NQR data, discussed earlier, which shows no drop in the Knight shift at low temperatures for any field orientation.

In summary, many puzzles remain regarding the symmetry of the superconducting order parameter in Sr$_2$RuO$_4$. Meanwhile, experiments on Sr$_2$RuO$_4$ continue to provide us with surprises, such a the recent magnetometry measurements taken as evidence of HQV [46]. More experiments of the types described here and new theoretical work, particularly on multiband models that include spin–orbit coupling, are needed to directly address the puzzles highlighted in this paper and to unambiguously determine whether the order is chiral p-wave.

However, in the meantime, one can still take the approach of forging ahead under the assumption of chiral p-wave order, possibly exploiting the geometry used in the magnetometry measurements to see half flux jumps, and looking directly for some of the more exotic physics associated with Majorana fermions and non-Abelian winding statistics.

Acknowledgments

I have benefitted from comments and discussions with many colleagues, particularly with John Berlinsky, Raffi Budakian, Clifford Hicks, John Kirtley, Graeme Luke, Yoshi Maeno, Kathryn Moler and Manfred Sigrist. This work was supported in part by the Natural Science and Engineering Research Council of Canada and by the Canadian Institute for Advanced Research.

References

[1] Bardeen J, Cooper L N and Schrieffer J R 1957 Phys. Rev. 108 1175
[2] Sigrist M and Ueda K 1991 Rev. Mod. Phys. 63 239
[3] Norman M R 2011 Science 332 196
[4] Bednorz T G and Müller K A 1986 Z. Phys. B 399
[5] Bednorz J G and Lichtenberg F 1994 Rev. Mod. Phys. 67 515
[6] Osheroff D D, Richardson R C and Lee D M 1972 Phys. Rev. Lett. 28 885
[7] Osheroff D D, Richardson R C and Lee D M 1972 Phys. Rev. Lett. 28 885
[8] See Leggett A J 1975 Rev. Mod. Phys. 47 331
[9] Maeno Y, Hashimoto H, Yoshida K, Nishizaki S, Fujita T, Bednorz J G and Lichtenberg F 1994 Nature 372 532
[10] Rice T M and Sigrist M 1995 J. Phys.: Condens. Matter 7 L643
[11] Ng K K and Sigrist M 2000 Europhys. Lett. 49 473
[12] Qi X-L, Hughes T L, Raghu S and Zhang S-C 2009 Phys. Rev. Lett. 102 187001
[13] Kallin C 2011 Physique Can. 67 113
[14] Wen X-G 1990 Int. J. Mod. Phys. B 4 239
[15] Moore J 2010 Nature 464 194
[16] Zhang S-C 2008 Physics 1 6
[17] Ivanov D A 2001 Phys. Rev. Lett. 86 268
[18] Kitaev A 2003 Ann. Phys. 303 2
[19] Nayak C, Simon S H, Stern A, Freedman M and Sigrist M 2008 Rev. Mod. Phys. 80 1083
[20] For a thorough review of the properties of Sr$_2$RuO$_4$ and early experiments, see Mackenzie A P and Maeno Y 2003 Rev. Mod. Phys. 75 657
[21] Damascelli A et al 2000 Phys. Rev. Lett. 85 5194
[22] Bergemann C, Julian S R, Mackenzie A P, Nishizaki S and Maeno Y 2000 Phys. Rev. Lett. 84 2662
[23] Haverkort M W, Efetov I S, Tjeng L H, Sawatzky G A and Damascelli A 2008 Phys. Rev. Lett. 101 026406
[24] Rozbicki E J, Annett J F, Souquet J-R and Mackenzie A P 2011 J. Phys.: Condens. Matter 23 094201
[25] Deguchi K, Mao Z Q, Yaguchi H and Maeno Y 2004 Phys. Rev. Lett. 92 047002
[26] Deguchi K, Mao Z Q and Maeno Y 2004 J. Phys. Soc. Japan 73 1313
[27] Nishizaki S, Maeno Y and Mao Z 2000 J. Phys. Soc. Japan 69 572
[28] Tanatar M et al 2001 Phys. Rev. B 63 064505
[29] Tanatar M et al 2001 Phys. Rev. Lett. 86 2649
[30] Izawa K et al 2001 Phys. Rev. Lett. 86 2653
[31] Ishida K, Mukuda H, Kitaoka Y, Mao Z Q, Mori Y and Maeno Y 2000 Phys. Rev. Lett. 84 5387
[32] Bonalde I, Yanoff B D, Salamon M B, van Harlingen D J, Chia E M E, Mao Z Q and Maeno Y 2000 Phys. Rev. Lett. 85 4775
[33] Baker P J, Ormeno R J, Gough C E, Mao Z Q, Nishizaki S and Maeno Y 2009 Phys. Rev. B 80 115126
[34] Lupien C, MacFarlane W A, Proust C and Taillefer L 2001 Phys. Rev. Lett. 86 5986
[35] Sigrist M and Zhitomirsky M E 1996 J. Phys.: Condens. Matter 8 3425
[36] Matsumoto M and Sigrist M 1999 J. Phys. Soc. Japan 68 994
[37] Matsumoto M and Sigrist M 1999 J. Phys. Soc. Japan 68 3120 (erratum)
[38] Read N and Green D 2000 Phys. Rev. B 61 10267
[39] Stone M and Roy R 2004 Phys. Rev. B 69 184511
[40] Kwon H-J, Yakovenko V M and Sengupta K 2003 Phys. Rev. Lett. 91 137001
[41] Ishida K, Mukuda H, Kitaoka Y, Asayama K, Mao Z Q, Mori Y and Maeno Y 1998 Nature 396 658
[42] Duffy J A, Hayden S M, Maeno Y, Mao Z, Kulda J and McIntyre G J 2000 Phys. Rev. Lett. 85 5412
[43] Murakawa H, Ishida K, Kitagawa K, Mao Z Q and Maeno Y 2004 Phys. Rev. Lett. 93 176404
[44] Ishida K et al 2008 J. Phys. Chem. Solids 69 3108
[45] Nielson K D, Mao Z Q, Maeno Y and Liu Y 2004 Science 306 1151
[46] Liu Y 2010 New. J. Phys. 12 075001
[47] Geshkenbein V B and Larkin A I 1988 IETP Lett. 43 395
[48] Chung S B, Bluhm H and Kim E-H 2007 Phys. Rev. Lett. 99 197002
[49] Jang J, Ferguson D G, Vakaryuk V, Budakian R, Chung S B, Goldbart P M and Maeno Y 2011 Science 331 186
[50] Vakaryuk V and Leggett A J 2009 Phys. Rev. Lett. 103 057003
[51] Cai X, Ying Y A, Staley N E, Xin Y, Fobes D, Liu T, Mao Z Q and Liu Y 2012 arXiv:1202.3146
[52] Grosfeld E, Seradjeh B and Visheshwara S 2011 Phys. Rev. B 83 104513
[53] Luke G M et al 1998 Nature 394 558
[54] Luke G M and Sonier J 2011 Physique Can. 67 93
[55] Hiigemoto W et al 2011 unpublished
[56] Xia J, Maeno Y, Beyerstedt P T, Fejer M M and Kapitulnik A 2006 Phys. Rev. Lett. 97 167002
[57] Kapitulnik A, Xia J, Schemm E and Palevski A 2009 New. J. Phys. 11 055060
[58] Ichikawa M, Matsunaga Y and Machida K 2005 Phys. Rev. B 71 172510
[59] Roy R and Kallin C 2008 Phys. Rev. B 77 174513
[60] Goryo J 2008 Phys. Rev. B 78 060501(R)
[61] Goryo J 2010 Mod. Phys. Lett. B 012504
[62] Lutchyn R M, Nagornykh P and Yakovenko V M 2009 Phys. Rev. B 80 104508
[63] Goryo J 2011 private communication
[64] Taylor E and Kallin C 2011 arXiv:1111.4471
[65] Kidwingira F, Strand J D, van Harlingen D J and Maeno Y 2006 Science 314 1267
[66] Bouhon A and Sigrist M 2010 New. J. Phys. 12 043031
[67] Björnsson P G, Maeno Y, Huber M E and Moler K A 2005 Phys. Rev. B 72 012504
[68] Kirtley J R, Kallin C, Hicks C W, Kim E-A, Liu Y, Moler K A, Maeno Y and Nelson K D 2007 Phys. Rev. B 76 014526
[69] Hicks C W, Kirtley J R, Lippman T M, Koshnick N C, Huber M E, Maeno Y, Yuhzas W M, Maple M B and Moler K A 2010 Phys. Rev. B 81 214501
[70] Ashby P E C and Kallin C 2009 Phys. Rev. B 79 224509
[71] Sauls J A 2011 Phys. Rev. B 84 214501
[72] Kallin C and Berlinsky A 2009 J. Phys.: Condens. Matter 21 164210
[73] Leggett A J 2006 Quantum Liquids: Bose Condensation and Cooper Pairing in Condensed-Matter Systems (Oxford: Oxford University Press)
[74] Takimoto T 2000 Phys. Rev. B 62 R14641
[75] Kuroki K, Ogata M, Arita R and Aoki H 2001 Phys. Rev. B 63 060506(R)
[76] Annett J F, Litak G, Györffy B L and Wysokinski K I 2002 Phys. Rev. B 66 134514
[77] Raghuram Y, Kapitulnik A and Kivelson S A 2010 Phys. Rev. Lett. 105 136401
[78] Wysokinski K I, Annett J F and Györffy B L 2011 arXiv:1111.5309
[79] Puettner C M and Kee H-Y 2011 arXiv:1101.4656
[80] Kidwingira F, Strand J D, van Harlingen D J and Maeno Y 2010 arXiv:1002.1430
[81] Braden M, Sidis Y, Bourges P, Pfeuty P, Kulda J, Mao Z and Bourges P 2003 Europhys. Lett. 67 331
[82] Grothaus C, Gimsa B, Scharf K, Fichtner A, Fichter T and Brinkmann H 2011 Phys. Rev. B 83 174504
[83] Brinkmann H 2010 unpublished