A generic approach towards afterglow luminescent nanoparticles for ultrasensitive in vivo imaging

Yuyan Jiang¹, Jiaguo Huang¹, Xu Zhen¹, Ziling Zeng¹, Jingchao Li¹, Chen Xie¹, Qingqing Miao¹, Jie Chen¹, Peng Chen¹ & Kanyi Pu¹

Afterglow imaging with long-lasting luminescence after cessation of light excitation provides opportunities for ultrasensitive molecular imaging; however, the lack of biologically compatible afterglow agents has impeded exploitation in clinical settings. This study presents a generic approach to transforming ordinary optical agents (including fluorescent polymers, dyes, and inorganic semiconductors) into afterglow luminescent nanoparticles (ALNPs). This approach integrates a cascade photoreaction into a single-particle entity, enabling ALNPs to chemically store photoenergy and spontaneously decay it in an energy-relay process. Not only can the afterglow profiles of ALNPs be finetuned to afford emission from visible to near-infrared (NIR) region, but also their intensities can be predicted by a mathematical model. The representative NIR ALNPs permit rapid detection of tumors in living mice with a signal-to-background ratio that is more than three orders of magnitude higher than that of NIR fluorescence. The biodegradability of the ALNPs further heightens their potential for ultrasensitive in vivo imaging.
Optical imaging that utilizes photon–electron interactions to decipher biological processes has grown into an indispensable tool in biomedical research and clinical practice. Complementary to tomographic modalities such as magnetic resonance imaging (MRI), computed tomography (CT), and positron emission tomography (PET), optical imaging has the unique advantages of high spatial-temporal resolution and low cost, permitting real-time investigation of pathological processes at molecular level and sensitive detection of diseases for intraoperative imaging-guided surgery. However, most optical techniques detect fluorescent signals generated upon real-time light excitation, wherein the background noise from endogenous molecules in biological subjects are inevitable. Such a flaw challenges reliable detection of signals, giving rise to minimized signal-to-background ratio (SBR), limited penetration depth and consequently compromised imaging sensitivity.

Real-time light-excitation-free optical agents including chemiluminescent, bioluminescent, Cerenkov, and afterglow (or persistent luminescent) probes can circumvent the interference of tissue autofluorescence. However, each has its own trade-offs. For instance, chemiluminescent and bioluminescent agents utilize chemical reactions that, respectively, require reactive oxygen species and enzyme to catalyze the decomposition of substrates to trigger luminescence, and their imaging sensitivity is usually perturbed by cellular environment and substrate availability.

On the contrary, Cerenkov and afterglow agents do not require particular chemical mediator or exogenous enzyme, and thus have higher versatility for imaging applications. However, Cerenkov agents are basically radioisotopes and intrinsically limited to only emit visible light, thus their biomedical applications are challenged by both the biosafety issue of radiotracers and shallow imaging depth due to short-wavelength emission. Afterglow agents act as the optical battery to trap irradiated photoenergy in defects and then slowly release the stored energy by photonic emission upon physical (thermal, mechanical, etc.) activation, eliminating the need of invasive radiotracers or exogenous mediators.

Despite the advantage of afterglow imaging over other excitation-free strategies, there are only two kinds of afterglow nanoagents, which are the rare-earth metal (e.g., Europium, Praseodymium) containing inorganic nanoparticles and poly[2-methoxy-5-(2-ethylhexyloxy)-1,4-phenylenevinylene] (MEHPPV)-based organic nanoparticles. The inorganic agents are limited to the general formulas (e.g., ZnGa2(1−x)Cr2xO4), which may suffer from potential leakage of heavy-metal ions. In contrast, the MEHPPV-based nanoparticles have demonstrated high biocompatibility in living mice. Because of the higher SBR of afterglow relative to fluorescence (up to ~150-fold), these afterglow agents have been utilized for in vivo cell tracking, monitoring of biomarker (e.g., glutathione, ascorbic acid), visualization of vascularization, lymph node mapping, monitoring of drug-induced hepatotoxicity, in vivo temperature indication, and cancer theranostics. However, to fully explore the potential of afterglow imaging in fundamental biology and clinical practice, versatile afterglow agents with bright and tunable emission are of high demand.

Herein, we report a generic approach to transform ordinary fluorescent agents into afterglow luminescent nanoparticles (ALNPs) for in vivo imaging. This approach relies on an intraparticle cascade photo reaction of three key components termed as afterglow initiator, afterglow substrate, and afterglow relay unit (Fig. 1a) to store the photoenergy as the chemical defects for delayed luminescence after cessation of light excitation. Within ALNPs, a photosensitizer serves as the afterglow initiator to absorb and convert photoenergy into signaling singlet oxygen (1O2); a 1O2-reactive molecule serves as the afterglow substrate to absorb and react with 1O2, forming the unstable chemiluminescent intermediate (1,2-dioxetane); and a fluorescent agent behaves as the afterglow relay unit to accept the energy from 1,2-dioxetane via chemically initiated electron exchange luminescence (CIEEL), gradually releasing it in the form of photons. Depending on whether there is an efficient secondary energy transfer (SET) between the fluorescent agent and the photosensitizer, the ultimate afterglow emission spectrum could be close to that of the fluorescent agent or the photosensitizer.

Results

Preparation of ALNPs. To examine the generality of the afterglow design, different kinds of substances were chosen for each component to prepare the ALNPs. Three photosensitizers including RB (rose bengal octyl ester) (Supplementary Figs. 1, 2), TPP (meso-tetraphenylporphyrin), and NCBS (silicon 2,3-naphthalocyanine bis(trihexylsilyl oxide)) were used as the representative afterglow initiators (Fig. 1c), which had the excitation and emission maxima at 576 and 391 nm for RB, 418 and 650 nm for TPP, and 774 and 780 nm for NCBS, respectively (Supplementary Figs. 3, 4). Thus, the afterglow luminescence could be triggered by light irradiation at different wavelengths. Three 1O2-responsive chemiluminescent molecules including DO (N,N-dimethyl-4-(3-phenyl-5,6-dihydro-1,4-dioxin-2-yl)aniline), SO (N,N-dimethyl-4-(2-phenyl-5,6-dihydro-1,4-oxathiin-3-yl) aniline), and HBA (3-((1r,3r,5r,7S)-adamantan-2-ylidene(methoxy) methyl)phenol) were chosen as the afterglow substrates (Fig. 1d, Supplementary Figs. 5–7), which had chemiluminescent emission ranging from 350 to 550 nm. Three kinds of commonly used fluorescent agents were tested as the afterglow relay units (Fig. 1e), which included semiconducting polymers (SPs), small-molecule dyes (SMDs), and inorganic fluorophores (IFs), such as semiconductor quantum dots (QDs), graphene quantum dots (GQDs), and carbon quantum dots (CQDs). The fluorescence emissions of these agents ranged from visible to NIR region, providing the feasibility to fine-tune the afterglow profiles of ALNPs.

The afterglow contrast agents were prepared with different combinations of afterglow initiator, substrate, and relay unit through co-nanoprecipitation with an amphiphilic copolymer PEG-b-PPG-b-PEG (Fig. 1f, Supplementary Fig. 8). The doping ratios for each component within the ALNPs were optimized (Supplementary Figs. 9–10). The solutions of resulted 50 kinds of ALNPs were translucent with no obvious precipitates after preparation (Supplementary Figs. 11&12). Dynamic light scattering (DLS) revealed the hydrodynamic diameters of the ALNPs ranged from 80 to 180 nm (Fig. 2a, Supplementary Fig. 11b, c), except for CQD-based ALNPs (12 nm). This should be attributed to the intrinsic hydrophilicity and surface charge of CQD. Furthermore, transmission electron microscope (TEM) revealed the spherical morphology of these ALNPs (Fig. 2a).

Afterglow luminescence of these ALNPs were recorded with optimized light irradiation time (5 s) (Supplementary Fig. 13). Because of different absorption (Supplementary Fig. 14), NCBS-doped ALNPs were irradiated with 808 nm laser (1 W cm⁻²) while RB- or TPP-doped ALNPs were irradiated with white light (0.1 W cm⁻²). As expected, luminescence was detected from ALNPs after cessation of laser irradiation (Fig. 2d), which was barely detectable for the nanoparticles consisting of only afterglow initiator and substrate or relay unit (Fig. 2e, f). This validated the proposed afterglow mechanism and the collaborative roles of three components. Depending on the compositions of ALNPs, the afterglow luminescence spectra ranged from visible to NIR region (Fig. 2b, c). In general, the afterglow spectra of ALNPs were similar to the corresponding fluorescence spectra...
Fig. 1 The design approach toward afterglow luminescent nanoparticles (ALNPs). a Schematic illustration of detailed intraparticle photoreaction processes leading to afterglow. b Illustration of afterglow imaging of ALNPs. c–e Chemical structures of afterglow initiators (c), afterglow substrates (d), afterglow relay units (e), and amphiphilic copolymer (f). PFVA, poly[(9,9′-dioctyl-2,7-divinylfluorene)-alt-(9,10-anthracene)]; PFBT, poly[(9,9′-dioctylfluorenyl-2,7-diyi)-alt-(benzo[2,1,3]thiadiazol-4,7-diyl)]; PFO, poly[(9,9′-dioctylfluorenyl-2,7-diyi)]; PFODBT, poly[2,7-(9,9′-dioctyfluorene)-alt-4,7-bis(thiophen-2-yl)benzo-2,1,3-thiadiazole]; DiO, 3,3′-dioctadecylxocarboxyanine perchlorate; NR, nile red; Reso, resorufin; QD630, CdSe/ZnS core-shell type quantum dot

(Supplementary Figs. 15–17). If there was energy transfer from afterglow relay unit to initiator, the shape of afterglow spectrum could be more like that of the initiator. Otherwise, the afterglow emission was closer to that of the relay unit. For instance, ALNPs consisting of PFO, NCBS, and DO (termed as PFO-N-DO) had a strong NIR afterglow emission at 780 nm because of the secondary energy transfer from PFO to NCBS; whereas ALNPs consisting of PFO, RB, and DO (termed as PFO-R-DO) only had the afterglow emission from PFO due to the inefficient energy transfer from PFO to RB. Discrepancy in the fluorescence and afterglow spectral profiles was observed for several ALNPs (especially TPP-doped ones) such as GQD-N-DO, DiO-TPP-DO (termed as DiO-T-DO), CQD-R-DO, etc. This should be ascribed to the fact that the afterglow photophysical process was different from that of fluorescence (Supplementary Fig. 18): in the fluorescence process, light excitation only led to the emission of the fluorescent agent, which was followed by the potential energy transfer to the photosensitizer; whereas, in the afterglow process, in addition to such a potential energy transfer, the photosensitizer could be directly excited through the energy released from the high-energy intermediate (1,2-dioxetane). Thus, the photophysical interplay between the afterglow initiator and the relay unit offered additional space to fine-tune the afterglow profiles of ALNPs, potentially enabling multiplexed imaging (Supplementary Fig. 19).

The afterglow intensities of ALNPs were different from each other (Fig. 2d–f). Comparison of the nanoparticles with the same afterglow initiator (NCBS) and relay unit revealed that DO-doped nanoparticles had the brightest afterglow luminescence among three afterglow substrates (Fig. 2e), which was followed by SO and HBA doped ones. Moreover, among all the tested fluorescence agents, PFVA-based nanoparticles had the highest afterglow intensities provided that other two components were the same. For instance, PFVA-N-DO gave the brightest afterglow luminescence among all NCBS-doped ALNPs, which was 12- and 123-fold higher than that of PFVA-N-SO, and PFVA-N-HBA nanoparticles, respectively. Variation of photosensitizer also impacted the afterglow luminescence of ALNPs, because the ability to generate ¹O₂ was different. NCBS-doped ALNPs generally had brighter afterglow luminescence than TPP- and RB-doped ones when other components were the same (Fig. 2f). However, this was not the case when the fluorescent agent was PFVA. For instance, afterglow intensities of PFVA-R-DO and PFVA-T-DO were 4.6- and 4.1-fold higher than that of PFVA-N-
DO, respectively. This was because of the additional amount of \(^{1}\text{O}_2\) generated by PFVA under white light irradiation but not 808 nm irradiation. Thus, the afterglow intensities of ALNPs were determined by all three components, but independent of particle size if the components were the same (Supplementary Fig. 20). Moreover, the afterglow could be repeatedly induced (Supplementary Fig. 21), or restored after preservation of pre-irradiated ALNPs at \(-20\, ^\circ\text{C}\) (Supplementary Fig. 22).

Quantitative analysis and prediction of afterglow intensity. To quantitatively analyze the factors governing the afterglow intensity of ALNPs, a mathematic model was proposed. Relative afterglow intensity (\(\Phi_{\text{Afterglow}}\)) was defined as the ratio of the afterglow luminescence of individual ALNP to that of the control ALNP which consisted of NCBS and DO without afterglow relay units (termed as N-DO). Based on the detailed afterglow process (Supplementary Fig. 23), four descriptors were retrieved and defined for simulation. First of all, because afterglow process started from photosensitization, the production of \(^{1}\text{O}_2\) by afterglow initiator (\(\Phi_{\text{1}}\)) was defined as the first descriptor (Fig. 3a). As previously reported\(^{39,40}\), chemiluminescent property of afterglow substrate and the oxidation potential of fluorescent agent (afterglow relay unit) are important to CIEEL. Therefore, the chemiluminescent quantum yield of afterglow substrate after reaction with \(^{1}\text{O}_2\) (\(\Phi_{\text{Cl}}\)) was selected as the second descriptor (Fig. 3b); moreover, corresponding to oxidation potential, the energy level of highest occupied molecular orbital (HOMO) of afterglow relay unit (\(E_{\text{HOMO}}\)) with respect to frontier molecular orbital theory (Fig. 3c, Supplementary Fig. 24) was defined as the third descriptor. Because the afterglow emission in this generic approach involved the potential SET between the afterglow relay unit and the afterglow initiator, the relative fluorescence efficiency of ALNP (\(\eta_{\text{Fl}}\)) was defined as the last descriptor. This descriptor was determined by both initiator and relay unit and was quantified by the ratio of the integrated total fluorescence intensity of individual ALNP to that of the control ALNP N-DO (Supplementary Fig. 25). After supervised learning analysis\(^{41,42}\), a
simulated equation which correlated four descriptors with Φ_{Aftglove} was generated as shown below (see Methods for calculation details):

$$\Phi_{\text{Aftglove}} = \Phi_{\text{s}}^{2.76} \times \Phi_{\text{Cl}}^{0.46} \times e^{2.79 \times \text{E}_{\text{HOMO}} + 13.13} \times \eta_{\text{Rlu}}^{0.41}$$

(1)

According to statistical results (Supplementary Fig. 26), all descriptors were strongly correlated with Φ_{Aftglove} (Supplementary Fig. 26c, $P < 0.05$). The calculated Eq. (1) showed an impressive coefficient of determination (R^2) of 0.944 (adjusted $R^2 = 0.936$), and the measured and simulated Φ_{Aftglove} values involved in quantitative analysis showed close proximity to each other (Fig. 3d), both suggesting the excellent fitness of Eq. (1) to this afterglow model. Based on Eq. (1), it was apparent that Φ_{Aftglove} demonstrated non-linear increment with four descriptors related to the cross-talk of three major afterglow components. Basically, increased production of $^{1}O_2$, chemiluminescence of afterglow substrate, HOMO energy level of afterglow relay unit, or fluorescent efficiency of fluorescent units in ALNP could contribute to brightening afterglow. Such a pattern corresponded well with the experimental data in Fig. 2. Thereby, these statistical data demonstrated the rationality of descriptor selection for quantitative analysis and implied the feasibility of Eq. (1) for afterglow prediction.

To test the predictive capability of the proposed equation, another fluorescent agent, CPV, was used as the afterglow relay unit. Note that CPV hardly emitted afterglow luminescence by itself22. However, after the nanoformulation through doping CPV with afterglow initiator (NCBS) and substrate (DO, SO, or HBA), intense afterglow luminescence was detected (Supplementary Fig. 27). The comparison of experimentally measured and Eq. (1) simulated Φ_{Aftglove} of CPV-based ALNPs was shown in Fig. 3e. Impressively, no significant difference was observed between the measured and estimated $\ln(\Phi_{\text{Aftglove}})$ ($P > 0.05$), validating the prediction reliability of Eq. (1) to estimate afterglow luminescence for this generic afterglow approach.

Tissue penetration of afterglow luminescence. To assess the imaging capability of ALNPs, we examined the imaging performance of ALNPs in comparison with NIR fluorescence at different tissue depths. Moreover, the afterglow performance was benchmarked against the reported afterglow agent SPN-NCBS. SPN-NCBS was similarly prepared via nanoprecipitation, wherein MEHPPV was doped with 5 w/v% NCBS using PEG-b-PPG-b-PEG as the matrix22. Considering strong afterglow
luminescence and NIR emission at 780 nm, PFVA-N series with long-term stability and good cytocompatibility were selected as the representative ALNPs (Supplementary Figs. 28–30). With the increase of tissue depth, both NIR fluorescence and afterglow luminescence intensities from the buried ALNPs significantly decreased (Fig. 4a). Because of the minimized background noise of afterglow imaging, the SBRs of afterglow or fluorescence images in (a) at different tissue depths. c Schematic illustration of optical imaging through a living mouse. Afterglow and NIR fluorescence images of PFVA-based ALNPs or SPN-NCBS5 were captured after penetrating through a living mouse. Concentrations of nanoparticles were identical to those in (b). d Afterglow and fluorescence images of PFVA-based ALNPs penetrating through a living mouse. Concentrations of nanoparticles were identical to those in (b) and (d). Both the PFVA-based ALNPs and SPN-NCBS5 nanoparticles were pre-irradiated at 808 nm for 5 s (at 1 W cm$^{-2}$) before imaging. Fluorescence images were captured at 780 nm upon excitation at 710 nm. Error bars indicated standard deviations of three separate measurements.

These results not only indicated the advantage of PFVA-N ALNPs over SPN-NCBS5 for afterglow imaging, but also emphasized the design flexibility of ALNPs to further promote penetration depth and imaging sensitivity.

The deep-tissue imaging capability of PFVA-N ALNPs was further validated in living animals. As illustrated in Fig. 4c, nanoparticle solutions were placed beneath a living mouse wherein the tissue depth was measured to be 1.5 cm. Because of the strongest afterglow intensity and low background noise (Fig. 4d), the afterglow of PFVA-N-DO had the highest SBR (1136 ± 19), followed by PFVA-N-SO (272 ± 3) and PFVA-N-HBA (131 ± 3) (Fig. 4e). Remarkably, the afterglow SBR of PFVA-N-DO exceeded that of SPN-NCBS5 (131 ± 3) by 8.7 times. On the other hand, the NIR fluorescence from PFVA-N-DO could hardly be differentiated from the background (tissue autofluorescence). These data thus corresponded well with in vitro tissue penetration study, validating the ability of ALNPs for ultrasensitive deep-issue afterglow imaging.

In vivo tumor imaging and biodegradation study. To evaluate afterglow performance of ALNPs for in vivo imaging, PFVA-N-DO was selected as the representative ALNP to image tumor in living mice in comparison with NIR fluorescence. After systemic administration of PFVA-N-DO, the afterglow SBR in tumor region...
dramatically increased, leading to the visualization of tumor at 1 h post injection (Fig. 5a). In contrast, the NIR fluorescence SBR slightly increased (Fig. 5b), and thus the tumor was only detectable at 4 h post injection. Note that at 1 h post injection, the afterglow SBR in tumor region (2922 ± 121) was three orders of magnitude higher than that of NIR fluorescence (~1). Such a afterglow SBR was not only higher than fluorescence imaging in both first and second NIR window (SBRs up to ~135)\(^8\), but also significantly exceeded the SBRs of other excitation-free imaging modalities including chemiluminescence (up to ~20)\(^4\), bioluminescence (up to ~1000)\(^8\), and Cerenkov luminescence imaging (up to ~154) (Supplementary Table 1)\(^8\). This should be mainly attributed to the fact that chemiluminescence, bioluminescence, and Cerenkov luminescence imaging usually rely on visible emission. Ex vivo data revealed that the uptake of PFVA-N-DO in tumor was 0.58-fold that in liver (Supplementary Fig. 31), further confirming its ability to passively target tumor. These data highlighted that by PFVA-N-DO mediated afterglow imaging allowed for rapid detection of tumor with the superior contrast and sensitivity over other optical agents.

Biodegradation and in vivo clearance study were subsequently performed to examine the biosafety of PFVA-N-DO. To mimic in vivo environment, myeloperoxidase (MPO) abundantly expressed in phagocytes was used as the oxidative enzyme for in vitro biodegradation (Fig. 5c). In the presence of hydrogen peroxide (H\(_2\)O\(_2\)), MPO catalyzes the production of hypochlorous acid (HClO) to digest foreign substances\(^46\). After overnight incubation of PFVA-N-DO with MPO and H\(_2\)O\(_2\), the absorbance

![Image](https://doi.org/10.1038/s41467-019-10119-x)
at 450 nm assigned to PFVA significantly dropped (Fig. 5d), suggesting the fragmentation of PFVA by MPO. The biodegradation was further confirmed by gel permeation chromatography (GPC), as indicated by the evidently decreased molecular weight of PFVA after MPO treatment (Fig. 5e). Such an efficient degradation should be ascribed to the oxidation induced cleavage of double bonds in the conjugated backbones of PFVA (Fig. 5c), which was previously reported. To monitor the in vivo clearance of PFVA-N-DO, they were systemically administered into mice followed by long-term NIR fluorescence recording (Fig. 5b). After administration, NIR fluorescent signals from liver increased over time and reached the maximum at 3 days post injection. Later, the NIR fluorescence from liver continuously decreased to almost undetectable level at 33 days post injection (Supplementary Fig. 32). These results indicated the long-term clearance of PFVA-N-DO via hepato- biliary excretion in living animals. Furthermore, no noticeable histological damage was observed in the major organs of living mice after system administration of PFVA-N-DO for 33 days (Fig. 5g), suggesting the good biocompatibility of PFVA-N-DO.

Methods

Chemicals and characterization. All materials were purchased from Sigma-Aldrich Pte. Ltd. unless otherwise noted. PFVA, PFO, and PFBT were purchased from Luminescence Technology Corp. DO and SO were purchased from Aberjona Laboratories, Inc. DLS profiles of nanoparticles were measured by Malvern Nano-ZS Particle Sizer. TEM images of nanoparticles were captured by JEOL JEM 1400 TEM with an acceleration rate of 100 kV. Proton nuclear magnetic resonance (1H NMR) spectra were measured by Bruker Avance 300 MHz NMR. Electrospray ionization mass spectrometry (ESI-MS) spectrum of RB was measured by ThermoFinnigan LCO Fleet MS equipped with Thermo Accela LC and ESI source. Absorption spectra were measured on a Shimadzu UV-2450 spectrophotometer. Fluorescence spectra and fluorescence efficiency were acquired on a Fluorolog 3 spectrophluorometer (HORIBA, Ltd.). Chemiluminescence of afterglow substrates was recorded with a Luminos Spectrometer (Promega, USA). Protein adsorption was measured by BCA assay. In vitro biodegradation studies were characterized by GPC using THF as the eluent and polysytrene as the standard. White light source for afterglow luminescence was supplied by an LED Fiber Optic Illuminator (L-150A) with an output power density of 0.1 W cm$^{-2}$ (wavelength range: 400–800 nm). Fiber coupled 808 nm laser system was purchased from Changchun New Industries Optoelectronics Tech. Co., Ltd. NIR fluorescence and afterglow images were acquired by IVIS SpectrumCT In Vivo Imaging System (PerkinElmer, Inc.).

Synthesis of RB. Compound 1 (1.0 g; 1.0 mmol) and 2-ethylhexyl bromide (0.5 g; 2.6 mmol) were dissolved and magnetically stirred in DMF at 80 °C. After 6 h, excess 2-ethylhexyl bromide and DMF were removed by rotary evaporation. The residue was then dissolved in diethyl ether. To remove compound 6 and inorganic salts, the residue in diethyl ether was washed with water for three times followed by desiccation using anhydrous Na$_2$SO$_4$. The obtained residue was further purified by column chromatography using ethyl acetate as the eluent to afford the final product RB in deep purple color. 1H NMR (300 MHz, DMSO-d$_6$, Supplementary Fig. 2) δ (ppm): δ = 7.88–0.83 (m, 6H), 1.24 (m, 8H), 1.45 (m, 1H), 3.86–3.88 (d, J = 6 Hz, 2H), 7.51–7.52 (2H). ESI-MS (m/z): calculated: 1084.61; found: 1084.95.

Synthesis of HBA. HBA was synthesized following the method in literature. Briefly, synthesis of HBA started from the commercially available 3-hydroxybenzaldehyde by protecting with trimethyl orthoformate to afford 3-(dimethoxymethyl)phenol, which was followed by additional protection of the phenol group with tert-butyl(dimethyl)siloxane (TBS-Cl) to give tert-butyl-(3-(dimethoxymethyl)phenoxy)dimethylsilane. This compound was reacted with tri- methylphosphite to produce a phosphonate derivative, and then condensed with 2-lipoic acid via the Wittig-Horner reaction to provide the precursor. At last, deprotection of the TBS group of the resulted precursor gave HBA. 1H NMR (300 MHz, CDCl$_3$, Supplementary Fig. 4) δ (ppm): δ = 1.78–1.96 (m, 12H), 2.65 (s, 1H), 3.24 (s, 1H), 3.32 (s, 3H), 5.35 (s, 1H), 6.76–6.79 (d, J = 9 Hz, 1H), 6.85–6.89 (m, 2H), 7.21 (t, 1H).

Preparation of ALNPs and SPN-NCBS5. ALNPs were prepared at the optimized doping ratios of different components. Afterglow initiator (0.0025 mg), afterglow substrate (0.05 mg), afterglow relay unit (0.1 mg), and PEG-b-PPG-b-PEG (10 mg) were dissolved in THF, respectively, and then mixed together under sonication. Then THF solvent was removed by rotary evaporation to afford a thin film. The obtained film was hydrated in distilled deionized water (2 mL) under vigorous sonication to prepare ALNPs. The resulted ALNP solutions were filtered through 0.22 μm Millipore poly(ether sulfone) syringe driven filter to remove impurities and then concentrated by ultraconcentrifugation. The concentrated ALNP solutions were diluted in 1× PBS buffer (pH 7.4) and stored in dark at 4 °C.

NIR fluorescence and afterglow imaging. NIR fluorescence images of ALNPs were acquired by IVIS SpectrumCT In Vivo Imaging System under fluorescence mode with exposure time for 0.1 s. Fluorescence signals were collected with excitation at 710 nm and emission at 780 nm. Afterglow images of ALNPs were acquired by IVIS SpectrumCT In Vivo Imaging System within 5 s after laser irradiation under bioluminescence mode with open filter (exposure time: 1 s). Afterglow spectra of ALNPs were acquired at similar conditions yet with specific emission filters. Both fluorescence and afterglow intensities were quantified by region of interest (ROI) analysis using Living Imaging 4.3 Software.

Definition and measurement of afterglow descriptors. Afterglow descriptors were measured and calculated using N-DO ALNPs as the reference. Relative afterglow intensity ($\Phi_{\text{afterglow}}$) was calculated as the ratio of absolute afterglow intensity of individual ALNP (I_{ALNP}) to that of N-DO ($I_{\text{N-DO}}$) under identical mass concentration and laser condition [(afterglow initiator) = 0.75 μg mL$^{-1}$, [afterglow substrate] = 15 μg mL$^{-1}$; laser condition: 808 nm laser at 1 W cm$^{-2}$ for NCBs-doped ALNPs while white light at 0.1 W cm$^{-2}$ for TPP and RB-doped ALNPs for 5 s]. Equation was listed as follows (Eq. (2)): $\Phi_{\text{afterglow}} = \frac{I_{\text{ALNP}}}{I_{\text{N-DO}}}$.
Signal-to-background ratio (SBR) is calculated as the ratio of luminescence (fluorescence or afterglow) in tumor region after i.v. injection of ALNPs to that of tissue background before injection.

Biodistribution method. After 6 h post injection of PFVA-N-DO ([PFVA] = 250 µg mL\(^{-1}\), [DO] = 125 µg mL\(^{-1}\), [NCBS] = 6.25 µg mL\(^{-1}\), 250 µL, n = 3), mice were euthanized by CO\(_2\) asphyxiation. Tumors and major organs (livers, hearts, spleens, kidneys, lungs, and intestines) were collected for ex vivo NIR fluorescence imaging (exposure time: 0.1 s) with excitation and emission wavelengths at 710 and 780 nm, respectively. Quantification of fluorescence signal of individual tumor/organ was performed by ROI analysis using Living Imaging 4.3 Software.

In vivo clearance of PFVA-N-DO. 6-week-old female NCr nude mice were intravenously administered with PFVA-N-DO ([PFVA] = 250 µg mL\(^{-1}\), [DO] = 125 µg mL\(^{-1}\), [NCBS] = 6.25 µg mL\(^{-1}\), 250 µL, n = 3). NIR fluorescence images of mice in supine position were then long-termly monitored by IVIS SpectrumCT In Vivo Imaging System (exposure time: 0.1 s) with excitation and emission wavelengths at 710 and 780 nm, respectively. Representative images were captured at t = 1, 1/6, 3, 7/13, 14, 18, 20, 26, 33 day after administration of PFVA-N-DO. Fluorescence intensities were quantified by ROI analysis using Living Imaging 4.3 Software.

Histological studies. After 33 days post injection of PFVA-N-DO ([PFVA] = 250 µg mL\(^{-1}\), [DO] = 125 µg mL\(^{-1}\), [NCBS] = 6.25 µg mL\(^{-1}\), 250 µL, n = 3) or saline (250 µL, n = 3), female NCr nude mice were euthanized by CO\(_2\) asphyxiation and major organs (hearts, livers, spleens, lungs, and kidneys) were collected. These organs were then fixed in 4% paraformaldehyde followed by embedment in paraffin and 10-µm sectioning. H & E staining was then performed to tissue sections referring to standard procedure. Optical images were captured by Nikon Eclipse 80i microscope (Nikon Instruments Inc., NY, USA).

Data analysis. Statistical analysis was performed by IBM SPSS Statistics software. Results were demonstrated as mean ± SD. Statistical significance was evaluated by two-tailed Student’s t test. For all tests, a P value smaller than 0.05 was regarded as statistically significant. NIR fluorescence and afterglow images were analyzed using Living Imaging 4.3 Software.

Data availability

The authors declare that all data related to this study are available in the article/and or its Supplementary Information files or from the authors upon reasonable request.

Received: 20 October 2018 Accepted: 18 April 2019
Published online: 02 May 2019

References

1. Park, S.-M., Aalipour, A., Vermesh, O., Yu, J. H. & Gambhir, S. S. Towards clinically translatable in vivo nanodiagnosics. Nat. Rev. Mol. Cell Biol. 17, 701–714 (2017).
2. Smith, B. R. & Gambhir, S. S. Nanomaterials for in vivo imaging. Chem. Rev. 117, 901–986 (2017).
3. Ntziahristos, V., Ripoll, J., Wang, L. V. & Weisleder, R. Looking and listening to light: the evolution of whole-body photonic imaging. Nat. Biotechnol. 32, 313–320 (2005).
4. Ryan, H. et al. Structure-invariant targeting of near-infrared fluorophores for parathyroid and thyroid gland imaging. Nat. Med. 21, 192–197 (2015).
5. Choi, H. S. et al. Targeted twobitronic near-infrared fluorophores for improved optical imaging. Nat. Biotechnol. 31, 148–153 (2013).
6. He, S., Song, J., Qiu, J. & Cheng, Z. Crucial breakthrough of second near-infrared biological window fluorophores: design and synthesis toward multimodal imaging and theranostics. Chem. Soc. Rev. 47, 4258–4278 (2018).
7. Yong, G., Antars, A. L. & Dai, H. Near-infrared fluorophores for biomedical imaging. Nat. Biomed. Eng. 1, 0010 (2017).
8. Smith, A. M., Mancini, M. C. & Nie, S. Second window for in vivo imaging. Nat. Nanotechnol. 4, 710–711 (2009).
9. Miao, Q. & Pu, K. Organic semiconducting agents for deep-tissue molecular imaging: second near-infrared fluorescence, self-luminescence, and photoacoustics. Adv. Mater. 30, 1801778 (2018).
10. So, M.-K., Xu, C., Loening, A. M., Gambhir, S. S. & Rao, J. Self-illuminating quantum dot conjugates for in vivo imaging. Nat. Biotechnol. 24, 339–343 (2006).
11. Shuhendler, A. J., Pu, K., Cui, L., Uetrecht, J. P. & Rao, J. Real-time imaging of oxidative and nitrative stress in the liver of live animals for drug-toxicity testing. Nat. Biotechnol. 32, 373–380 (2014).
Badr, C. E. & Tannous, B. A. Bioluminescence imaging: progress and applications. *Trends Biotechnol.* 29, 624–633 (2011).

Suzuki, K. & Nagai, T. Recent progress in expanding the chemiluminescent toolbox for bioimaging. *Curr. Opin. Biotechnol.* 48, 135–141 (2017).

Ruggiero, A., Holland, J. P., Lewis, J. S. & Grimm, J. Cerenkov luminescence imaging of medical isopes. *J. Nucl. Med.* 51, 1123–1130 (2010).

Mitchell, G. S., Gill, R. K., Boucher, D. L., Li, C. & Cherry, S. R. In vivo Cerenkov luminescence imaging: a new tool for molecular imaging. *Philos. Trans. R. Soc. A* 369, 4605–4619 (2011).

Xu, S., Chen, R., Zheng, C. & Huang, W. Excited state modulation for organic afterglow: materials and applications. *Adv. Mater.* 28, 9920–9940 (2016).

Jiang, Y. & Pu, K. Multimodal biophotons of semiconducting polymer nanoparticles. *Acc. Chem. Res.* 51, 1840–1849 (2018).

Leszyk, T. et al. Chemically engineered persistent luminescence nanoprobes for bioimaging. *Terroranics* 6, 2488–2524 (2016).

Li, Z. et al. Direct aequous-phase synthesis of sub-10 nm “luminoorous” particles with enhanced in vivo wearable near-Infrared persistent luminescence. *J. Am. Chem. Soc.* 137, 5304–5307 (2015).

Maldiney, T. et al. Controlling electron trap depth to enhance optical properties of persistent luminescence nanoparticles for in vivo imaging. *J. Am. Chem. Soc.* 133, 11810–11815 (2011).

Viana, B. et al. Long term in vivo imaging with Cr3+ doped spinel nanoparticles exhibiting persistent luminescence.* J. Lumin.* 170, 879–887 (2016).

Miao, Q. et al. Molecular afterglow imaging with bright, biodegradable polymer nanoparticles. *Nat. Biotechnol.* 35, 1102–1110 (2017).

Liu, J. et al. Imaging and therapeutic applications of persistent luminescence nanomaterials. *Adv. Drug Deliv. Rev.* 138, 193–210 (2019).

Maldiney, T. et al. The in vivo activation of persistent nanophosphors for optical imaging of vascularization, tumors and grafted cells. *Nat. Mater.* 13, 418–426 (2014).

Ramirez-Garcia, G. et al. Long-term toxicological effects of persistent luminescence nanoparticles after intravenous injection in mice. *Int. J. Pharm.* 532, 686–695 (2017).

Chuang, Y.-J. et al. Photostimulable near-infrared persistent luminescent nanoprobes for ultrasensitive and longitudinal deep-tissue bio-imaging. *Terroranics* 21112–11122 (2014).

Wu, S.-Q., Yang, C.-X. & Yan, X.-P. A dual-functional persistently luminescent nanocomposite enables engineering of mesenchymal stem cells for homing and gene therapy of glioblastoma. *Adv. Funct. Mater.* 27, 1604992 (2017).

Li, N. et al. MnO2-modified persistent luminescence nanoparticles for detection and imaging of glutathione in living cells and in vivo. *Chem. Eur. J.* 20, 16488–16491 (2014).

Li, N. et al. A highly selective and instantaneous nanoprobes for detection and imaging of ascorbic acid in living cells and in vivo. *Anal. Chem.* 86, 3924–3930 (2014).

Xie, C., Zhen, X., Miao, Q., Lyu, Y. & Pu, K. Self-assembled semiconductor polymer nanoparticles for ultrasensitive near-infrared afterglow imaging of metastatic tumors. *Adv. Mater.* 30, 1801331 (2018).

Zhen, X., Xie, C. & Pu, K. Temperature-correlated afterglow of a semiconducting polymer nanococoktail for imaging-guided photothermal therapy. *Angew. Chem. Int. Ed.* 57, 9338–9342 (2018).

Sun, S.-K., Wang, H.-F. & Yan, X.-P. Engineering persistent luminescence nanoparticles for biological applications: from biosensing/bioimaging to theranostics. *Acc. Chem. Res.* 51, 1131–1143 (2018).

Fan, W. et al. Enhanced afterglow performance of persistent luminescence implants for efficient repeatable photodynamic therapy. *ACS Nano* 11, 5864–5872 (2017).

Shi, J. et al. Multifunctional near-infrared-emitting long-persistence luminescent nanoparticles for drug delivery and targeted tumor imaging. *Biomateruls* 37, 260–270 (2015).

Wang, J., Li, J., Yu, J., Zhang, H. & Zhang, B. Large hollow cavity luminescent nanoparticles with near-infrared persistent luminescence and tunable sizes for tumor afterglow imaging and chemo-/photodynamic therapies. *ACS Nano* 12, 4246–4258 (2018).

Hu, L. et al. Near-infrared rechargeable “optical battery” implant for irradiation-free photodynamic therapy. *Biomateruls* 163, 154–162 (2018).

Green, O. et al. Opening a gateway for chemiluminescence cell imaging: Distinctive methodology for design of bright chemiluminescent dioxetane probes. *ACS Cent. Sci.* 3, 349–359 (2017).

Ullman, E. F. et al. Luminescent oxygen channeling immunooassay: measurement of particle binding kinetics by chemiluminescence. *Proc. Natl. Acad. Sci. USA* 91, 5426–5430 (1994).

Zhen, X. et al. Intraparticle energy level alignment of semiconducting polymer nanoparticles to amplify chemiluminescence for ultrasensitive in vivo imaging of reactive oxygen species. *ACS Nano* 10, 6400–6409 (2016).

Vacher, M. et al. Chemi- and bioluminescence of cyclic peroxides. *Chem. Rev.* 118, 6927–6974 (2018).

Biamonte, J. et al. Quantum machine learning. *Nature* 549, 195–202 (2017).

Schneider, D. R. & Kern, A. D. Supervised machine learning for population genetics: a new paradigm. *Trends Genet.* 34, 301–312 (2018).

Ghosh, D. et al. Deep, noninvasive imaging and surgical guidance of submillimeter tumors using targeted M13-stabilized single-walled carbon nanotubes. *Proc. Natl. Acad. Sci. USA* 111, 13948–13953 (2014).

Green, O. et al. Near-infrared dioxidetane luminophores with direct chemiluminescence emission mode. *J. Am. Chem. Soc.* 139, 13243–13248 (2017).

Thorek, D. L. J., Ogirala, A., Beattie, B. J. & Grimm, J. Quantitative imaging of disease signatures through radioactive decay signal conversion. *Nat. Med.* 19, 1345–1350 (2013).

Eiserrich, J. et al. Formation of nitric oxide-derived inflammatory oxidants by myeloperoxidase in neutrophils. *Nature* 391, 393–397 (1998).

Tao, Y. T., Ko, C. W. & Balasubramaniam, E. Energy transfer vs. carrier trapping: emission mechanism in dye-doped organic light emitting diodes. *Thin Solid Films* 417, 61–66 (2002).

Itaya, A., van der Auwerda, M., Verschuer, B. & De Schuyver, F. C. Influence of the ionization potential and of the interfacial electric field on photoinduced hole transfer processes in langmuir-billett films. *Ist. J. Chem.* 31, 169–175 (1991).

Acknowledgements

K.P. thanks Nanyang Technological University (Start-up grant (NTU-SUG) M4081627.120) and Singapore Ministry of Education, Academic Research Fund Tier 1 (2017-T1-002-34-RG147/17) and Academic Research Fund Tier 2 (MOE2016-T2-1-098) for financial support.

Author contributions

K.P. and Y.J. conceived the research plan. Y.J. and K.P. synthesized carbon dots. Y.J. analyzed the data. J.C. and C.P. performed the experiments. J.C. and C.P. wrote the manuscript. All authors contributed to the discussion of results and comments on manuscript revision.

Additional information

Supplementary Information accompanies this paper at https://doi.org/10.1038/s41467-019-10119-x.

Competing interests: The authors declare no competing interests.

Reprints and permission information is available online at http://nature.nature.com/reprintsandpermissions/

Journal peer review information: Nature Communications thanks Takeharu Nagai, Cyrille Richard and other anonymous reviewer(s) for their contribution to the peer review of this work.

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2019