The Jumping Knight and Other (Super) Edge-Magic Constructions

S. C. López, F. A. Muntaner-Batle and M. Rius-Font

Abstract. Let \(G \) be a graph of order \(p \) and size \(q \) with loops allowed. A bijective function \(f : V(G) \cup E(G) \rightarrow \{i\}_{i=1}^{p+q} \) is an edge-magic labeling of \(G \) if the sum \(f(u) + f(uv) + f(v) = k \) is independent of the choice of the edge \(uv \). The constant \(k \) is called either the valence, the magic weight or the magic sum of the labeling \(f \). If a graph admits an edge-magic labeling, then it is called an edge-magic graph. Furthermore, if the function \(f \) meets the extra condition that \(f(V(G)) = \{i\}_{i=1}^{p} \) then \(f \) is called a super edge-magic labeling and \(G \) is called a super edge-magic graph. A digraph \(D \) admits a labeling, namely \(l \), if its underlying graph, \(\text{und}(D) \) admits \(l \). In this paper, we introduce a new construction of super edge-magic labelings which are related to the classical jump of the knight on the chess game. We also use super edge-magic labelings of digraphs together with a generalization of the Kronecker product to get edge-magic labelings of some families of graphs.

Mathematics Subject Classification (2010). Primary 05C78.

Keywords. (Super) edge-magic, Jacobsthal sequence, dual shuffle prime, \(\otimes_{h} \)-product.

1. Introduction

For the undefined concepts and notation used in this paper, we refer the reader to either one the following sources [4,5,11,19]. However, to make this paper reasonably self contained, we mention that by a \((p,q)\)-graph we mean a graph of order \(p \) and size \(q \). We also point out that the graphs and digraphs used in this paper may contain loops. Whenever we refer to graphs without loops, we will call them simple graphs. Let \(C_{n} \) be the cycle of order \(n \). We denote by \(C^{+}_{n} \) and by \(C^{-}_{n} \) the two possible strong orientations of the cycle \(C_{n} \), and we use the expression \(\overrightarrow{G} \) to denote an oriented graph obtained from a graph \(G \). We also denote by \(C_{1} \) a loop graph, that is a graph of order 1 and size 1. A digon formed by two different vertices \(x \) and \(y \) of a digraph is a directed cycle with set of arcs \(\{(x,y),(y,x)\} \).
Kotzig and Rosa [14] introduced in 1970 the concept of edge-magic labelings of simple graphs. Let G be a simple (p, q)-graph and let $f : V(G) \cup E(G) \rightarrow \{i\}_{i=1}^{p+q}$ be a bijective function such that the sum $f(u) + f(uv) + f(v) = k$ for any edge $uv \in E(G)$. Then f is an edge-magic labeling of G, G is called an edge-magic simple graph and k is called either the valence, the magic weight or the magic sum of f (see [4,11,19]).

Later on, motivated by the concept of ‘edge-magicness’, Enomoto et al. [6] defined in 1998 the concept of super edge-magic labelings of simple graphs. Let G be a simple (p, q)-graph. A super edge-magic labeling of G is an edge-magic labeling f of G with the extra property that $f(V(G)) = \{i\}_{i=1}^{p}$. In this case, G is said to be a super edge-magic simple graph. An interesting family of super edge-magic simple graphs that will be of great use in the rest of this paper is the family of cycles of odd order. In fact, a cycle is super edge-magic if and only if its order is odd. It is worth to mention that the concept of super edge-magic graphs was introduced by Enomoto et al. and these authors were unaware of the fact that Acharya and Hegde had introduced in [1] strongly indexable graphs. Although the motivations for introducing these two concepts were different, it is easy to check that the two concepts are equivalent.

The concepts of edge-magic labelings and super edge-magic labelings were generalized to graphs in general [10] in the obvious way. That is to say, the valence of a loop uu equals to $2f(u) + f(uu)$.

It was also in [10] that the concept of (super) edge-magic labeling of a digraph D was introduced as follows: a digraph D is (super) edge-magic if its underlying graph, $\text{und}(D)$, is (super) edge-magic. In general, a digraph is said to admit a labeling l if its underlying graph admits l.

The following characterization of super edge-magic simple graphs was introduced in [7]:

Lemma 1.1. Let G be a simple (p, q)-graph. Then G is super edge-magic if and only if there is a bijective function $g : V(G) \rightarrow \{i\}_{i=1}^{p}$ such that the set $S = \{g(u) + g(v) : uv \in E(G)\}$ is a set of q consecutive integers. In this case, g can be extended to a super edge-magic labeling f of G.

Although the characterization was introduced for simple graphs it is the case that Lemma 1.1 works for graphs as well, and this generalization is so useful that, unless otherwise specified, whenever we refer to a super edge-magic labeling of a graph, from now on, we will refer to a function as the function g described in the statement of Lemma 1.1.

1.1. Dual Shuffle Primes

Mathematicians have been studying permutations for many years. Let $n \in \mathbb{N}$. A permutation π is a bijective mapping $\pi : \{i\}_{i=1}^{n} \rightarrow \{i\}_{i=1}^{n}$. It is well known that a common way to describe permutations is by means of the union of mutually disjoint strongly oriented cycles, in which (i, j) is an arc of an oriented cycle if and only if $\pi(i) = j$. We will refer to this representation simply as the cycle representation of π.
Among permutations, the ones arising from perfectly shuffling a deck of cards have received special attention. Let us define our deck of cards in such a way that each card receives a number from 1 up to \(n \), the number of cards in the deck, the card numbered 1 lying at the bottom of the deck, the card numbered 2 lying on top of the card numbered 1 and so on until we reach the card numbered \(n \). We will call this ordering of the deck \(\alpha_n \) and this will be our initial ordering (the standard word in terms of \([3]\)).

Next, we will describe three possible ways to perfectly shuffle \(\alpha_n \), and we will denote, following Asveld’s notation in \([3]\), these three ways by \(S_\bullet \), \(S \) and \(\bar{S} \). The first perfect shuffle operation, \(S_\bullet \), called the original perfect shuffle operation, consists on cutting a deck of an even number of cards \(n \) into two equal parts, and then interleaving these two parts. Hence, applying this operation to the initial ordering \(\alpha_n \), \(n \) even, we obtain: \(S_\bullet(\alpha_n) = 1, k, 2, k + 1, 3, k + 2, \ldots \), where \(k = \left\lceil (n+1)/2 \right\rceil \). It is clear that \(S_\bullet(\alpha_n) \) can be obtained applying a permutation \(\pi(S) \) to \(\alpha_n \), however \(\pi(S) \) always fixes 1. To avoid this fixed point, we can slightly modify the operation \(S_\bullet \), by changing the way in which we are interleaving the cards. We apply the operation \(S \) on \(\alpha_n \) such that the resulting order is, when \(n \) is even \(S(\alpha_n) = k, 1, k + 1, 2, k + 2, 3, \ldots \), where \(k = \left\lfloor (n+1)/2 \right\rfloor \). When \(n \) is odd, we isolate \(n \) and put it on top of the shuffled deck. Once again, \(S(\alpha_n) \) can be obtained by applying a permutation \(\pi(S) \) on \(\alpha_n \), and in this case, it is not obvious to decide for which even \(n \), \(\pi(S) \) has fixed points. Furthermore, it is not clear when the cycle representation of \(\pi(S) \) consists of a unique oriented cycle, or it is the vertex disjoint union of oriented cycles.

An operation on \(\alpha_n \), that we will pay special attention to, is \(S \). This reordering operation, in a way, can be thought as the dual of \(S \), and hence, it is known as the dual shuffle operation:

\[
\bar{S}(\alpha_n) = \begin{cases}
 k - 1, n - 1, k - 2, n - 2, \ldots, 1, k, n, & \text{when } n \text{ odd}, \\
 k - 1, n, k - 2, n - 1, \ldots, 1, k, & \text{when } n \text{ even},
\end{cases}
\]

where \(k = \left\lceil (n+1)/2 \right\rceil \). In this case, it is clear that \(\pi(S) \) can be defined according to the parity of \(n \) as follows: if \(n \) is even then \(\pi(S)(m) \equiv -2m \pmod{n+1} \), and if \(n \) is odd, then \(\pi(S)(m) \equiv -2m \pmod{n} \), for \(1 \leq m < n \), and \(\pi(S)(n) = n \). When the cycle representation associated to the dual shuffle operation on \(\alpha_n \) consists of a unique cycle, we say that \(n \) is a dual shuffle prime. An interesting question is to find an explicit formula for the \(n \)th-dual shuffle prime. We list below the first elements of the set of dual shuffle primes, namely, \(\text{DSP} \). A more complete list can be found in \([18]\).

\[
\text{DSP} = \{4, 6, 12, 22, 28, 36, 46, 52, \ldots \}.
\]

Super edge-magic labelings are of importance among graph labelings due to the great amount of relations that they have with other labelings (see \([7,10,13,15,16]\)). In particular, super edge-magic labelings of 2-regular graphs have proven to be of a great help to find links among labelings. Motivated by this fact, one of the goals of this paper is to use operations on \(\alpha_n \) to be able to find super edge-magic labelings of 2-regular graphs and other related graphs.
1.2. Two Special Partitions

In this paper, two special partitions of the set \{1, 2, \ldots, n\} emerge when studying the graphs obtained by our constructions. One type is of the form \bigcup_{k=1}^{n} \Theta_k, when \(n \) is odd, and the other one is of the form \bigcup_{k=1}^{n} \Phi_k, when \(n \) is even. Those sets, \(\Theta_k \) and \(\Phi_k \) are introduced just before Theorems 2.9 and 3.7, respectively, in a purely arithmetic manner.

1.3. Digraph Products Applied to Labelings

Figueroa-Centeno et al. introduced the following product of digraphs in [10]: let \(D \) be a digraph and let \(\Gamma = \{F_i\}_{i=1}^{m} \) be a family of digraphs such that \(V(F_i) = V \) for every \(i \in \{j\}_{j=1}^{m} \). Consider any function \(h : E(D) \rightarrow \Gamma \). Then the product \(D \otimes_h \Gamma \) is the digraph with vertex set \(V(D) \times V \) and \(((a, b), (c, d)) \in E(D \otimes_h \Gamma) \) if and only if \((a, c) \in E(D) \) and \((b, d) \in E(h(a, c)) \).

The adjacency matrix of \(D \otimes_h \Gamma \), \(A(D \otimes_h \Gamma) \), is obtained by multiplying every 0 entry of \(A(D) \), the adjacency matrix of \(D \), by the \(|V| \times |V| \) null matrix and every 1 entry of \(A(D) \) by \(A(h(a, c)) \), where \((a, c) \) is the arc related to the 1 entry of \(A(D) \). Notice that, when \(h \) is constant, \(A(D \otimes_h \Gamma) \) coincides with the classical Kronecker product of matrices, \(A(D) \otimes A(h(a, c)) \). When \(|\Gamma| = 1 \), we just write \(D \otimes \Gamma \).

Let \(S_n \) denote the set of all 1-regular super edge-magic labeled digraphs of order \(n \) where each vertex takes the name of the label assigned to it. The following results were also introduced in [10]:

Theorem 1.2 [10]. Assume that \(D \) is any (super) edge-magic digraph and let \(h : E(D) \rightarrow S_n \) be any function. Then \(\text{und}(D \otimes_h S_n) \) is (super) edge-magic.

Theorem 1.3 [10]. Let \(h \) be a function that assigns to each of the arcs of the digraph \(C_m^+ \) the same strong orientation of the cycle \(C_n \). Then \(\text{und}(C_m^+ \otimes_h S_n) \cong \text{gcd}(m, n) \cdot C_{\text{lcm}(m, n)} \).

Theorem 1.2 has been extended by replacing the set \(S_n \) by the set \(S_k \) in [16]. A super edge-magic labeled digraph \(F \) is in \(S_k \) if \(|V(F)| = |E(F)| = n \) and the minimum sum of the labels of the adjacent vertices is equal to \(k \). An easy computation shows that \(S_n \subset S_n^{(n+3)/2} \) and, therefore, the next result is a generalization of Theorem 1.2.

Theorem 1.4 [16]. Assume that \(D \) is any (super) edge-magic digraph and let \(h : E(D) \rightarrow S_k \) be any function. Then \(\text{und}(D \otimes_h S_k) \) is (super) edge-magic.

As the title of the paper indicates we will devote these pages to construct edge-magic labelings of some infinite families of graphs. One of the main tools will be the \(\otimes_h \)-product. In what follows, we introduce the necessary notation and terminology as well as a brief survey of what is known about these families.

Let \(G \) and \(H \) be two (di)graphs, and let \(u \) be a distinguished vertex of \(G \). Let \(H \ast uG \) be the (di)graph obtained from \(H \) and \(G \) by gluing a copy of \(G \) to each vertex \(x \) of \(H \), by means of identifying \(x \) with the vertex playing the role of \(u \) in the given copy. Note that, in many circumstances, the resulting (di)graph \(H \ast uG \) is independent of the choice of the vertex \(u \) in \(G \). In Sects. 4
and 5, we concentrate our attention on the cases when \(H \) and \(G \) are both cycles and when \(H \) is a cycle and \(G \) is a path.

Next, we introduce the following related results.

Theorem 1.5 [16]. Let \(m \) and \(n \) be positive odd integers with \(m \equiv 3 \pmod{4} \) and \(n \geq 3 \). If \(m \geq n \) then \(C_n \ast uC_m \) is super edge-magic, \(u \in V(C_m) \).

Let \(P_{2n+1} \) denote the path of order \(2n+1 \). We have the following result.

Theorem 1.6 [16]. If \(C_m \) is (super) edge-magic and \(v \) is the central vertex of \(P_{2n+1} \), then \(C_m \ast vP_{2n+1} \) is (super) edge-magic.

The following open question can be found in [16].

Question 1.1 [16]. Characterize the pairs \((n, m)\) for which \(C_n \ast uC_m, u \in V(C_m) \), is super edge-magic.

In this paper, we introduce the following open question and we devote Sect. 4 to throw some light towards a possible solution.

Question 1.2. Characterize the pairs \((n, m)\) for which \(C_n \ast uC_m, u \in V(C_m) \), is edge-magic.

The next results can be found in [10] and [2].

Theorem 1.7 [10]. Let \(G \) be any bipartite graph with stable sets \(V_1 \) and \(V_2 \), and let \(\overrightarrow{G} \) be the digraph obtained from \(G \) by orienting each edge of \(E(G) \) in such a way that if \((a, b) \in E(G)\) then \(a \in V_1 \) and \(b \in V_2 \). Then \(\text{und}(\overrightarrow{G} \otimes C_n^+) \cong nG \).

Theorem 1.8 [10]. Let \(\overrightarrow{T} \) be any orientation of a tree \(T \), and let \(h : E(\overrightarrow{T}) \to S_n \) be any function. Then \(\text{und}(\overrightarrow{T} \otimes_h S_n) \cong nT \).

Theorem 1.9 [2]. Let \(m, n \in \mathbb{N} \) and consider the product \(C_m^+ \otimes_h \{C_n^+, C_n^-\} \) where \(h : E(C_m^+) \to \{C_n^+, C_n^-\} \). Let \(g \) be a generator of a cyclic subgroup of \(\mathbb{Z}_n \), namely \(\langle g \rangle \), such that \(|\langle g \rangle| = k \). Also let \(N_g(h^-) < m \) be a positive integer that satisfies the following congruence relation \(m - 2N_g(h^-) \equiv g \pmod{n} \).

If the function \(h \) assigns \(C_n^- \) to exactly \(N_g(h^-) \) arcs of \(C_m^+ \), then the product \(C_m^+ \otimes_h \{C_n^+, C_n^-\} \) consists of exactly \(n/k \) disjoint copies of a strongly oriented cycle \(C_{mk}^+ \). In particular if \(\gcd(g, n) = 1 \), then \(\langle g \rangle = \mathbb{Z}_n \) and if the function \(h \) assigns \(C_n^- \) to exactly \(N_g(h^-) \) arcs of \(C_m^+ \) then

\[
C_m^+ \otimes_h \{C_n^+, C_n^-\} \cong C_{mk}^+.
\]

(1.1)

The organization of the paper is the following one. We construct super edge-magic labelings of 2-regular graphs using the classical jump of the knight on the chess game in Sect. 2. With a slight modification, we obtain super edge-magic labelings of the union of 2-regular graphs with a \(K_2 \) in Sect. 3.

In Sects. 4 and 5, we study the edge-magicness of \(C_n \ast uC_m \) and \(C_n \ast uP_m \), respectively, using the \(\otimes_h \)-product of digraphs. Some further results obtained from the previous sections are given in Sect. 6. A more detailed summary of the results presented in the paper is given in the final Sect. 6.1.
2. Super Edge-Magic Labelings of 2-Regular Graphs

It is well known that if a \((p, q)\)-graph \(G\) is super edge-magic then \(q \leq 2p - 3\) (see [6]). If \(G\) is bipartite, then this bound can be improved to \(q \leq 2p - 5\) (see [8]). These bounds imply that if an \(r\)-regular graph is super edge-magic, then \(r \in \{0, 1, 2, 3\}\). It is clear that 0-regular graphs are of no interest in this context. Furthermore, 1-regular super edge-magic graphs have been completely characterized in [14] by Kotzig and Rosa. Therefore, it seems to be a natural question to ask which 2-regular graphs are super edge-magic. This is what was in the minds of Figueroa-Centeno et al. in [9] when they conjectured that the graph \(C_m \cup C_n\) is super edge-magic if and only if \(m + n\) is odd and greater than 1. Holden et al. went further into this conjecture, although they arrived to it from a different point of view, when they conjectured in [12] that all 2-regular graphs of odd order are strong vertex total magic, excluding \(C_3 \cup C_4, 3C_3 \cup C_4\) and \(2C_3 \cup C_5\), which is in fact equivalent to saying that they are super edge-magic.

In this section, we establish a new relationship between super edge-magic labelings of 2-regular graphs and \(\pi(\bar{S})\). Let \(D_\lambda\) be a super edge-magic digraph \(D\) with a super edge-magic labeling \(\lambda\), such that each vertex of \(D\) takes the name of its label under \(\lambda\). Then, the adjacency matrix of \(D_\lambda\), \(A(D_\lambda) = (a_{ij})\), is defined as follows: if \((i, j) \in E(D_\lambda)\) then \(a_{ij} = 1\), otherwise \(a_{ij} = 0\). From Lemma 1.1, it is clear that, if we let the diagonals from left to right and bottom to top be the counterdiagonals, then the set of counterdiagonals containing a 1 is a consecutive set. Furthermore, each counterdiagonal contains at most a 1. If \(D_\lambda\) is a digraph obtained from a 2-regular graph by attaching a cyclic orientation to each component, that is to say, \(D_\lambda\) is a 1-regular digraph, then \(A(D_\lambda)\) has the extra property that each column and each row contains exactly a 1. Moreover, it is clear that if a square matrix \(A\) of 0’s and 1’s meets the following properties: (i) each counterdiagonal contains at most one 1, (ii) the counterdiagonals containing exactly a 1 form a set of consecutive counterdiagonals, and (iii) each row and each column of the matrix have all entries being 0, except for exactly one entry which is 1, then \(A\) is the adjacency matrix of some super edge-magic labeled 1-regular digraph.

2.1. The Jumping Knight

Let \(A_n = (a_{ij})\) be the square matrix of dimension \(n\) defined by \(a_{ij} = 1\) if \(j \equiv -2i + 2 \pmod{n}\) and \(a_{ij} = 0\), otherwise. Similarly, let \(A'_n = (a'_{ij})\) be the square matrix of dimension \(n\) defined by \(a'_{ij} = 1\) if \(j \equiv -2i + 1 \pmod{n}\) and \(a'_{ij} = 0\), otherwise. Observe that the positions of the 1 entries of the matrices \(A_n\) and \(A'_n\) so defined, correspond to the jump of the knight on the \(n \times n\) chessboard, when the matrices are viewed as chessboards with exactly \(n^2\) squares.

Let \(G_n\) and \(G'_n\) be the digraphs with vertex sets \(V(G_n) = V(G'_n) = \{1, 2, \ldots, n\}\) and adjacency matrices \(A_n\) and \(A'_n\), respectively. The function \(f(x) = n + 1 - x\) from \(V(G_n)\) onto \(V(G'_n)\) defines an isomorphism of the digraphs \(G_n\) and \(G'_n\). Clearly, there is an arc \((i, j) \in E(G_n)\) if and only if,
\[j \equiv -2i + 2 \pmod{n} \]. Similarly, there is an arc \((n + 1 - i, j')\) in \(E(G'_n)\) if and only if, \(j' \equiv -2(n + 1 - i) + 1 \pmod{n}\), that is, if and only if, \(j' = n + 1 - j\).

Lemma 2.1. Let \(n\) be an odd integer. Then the digraph \(G_n\) is a 1-regular super edge-magic digraph.

Proof. It is clear since its adjacency matrix meets the three properties mentioned above. \(\square\)

Lemma 2.2. Let \(n\) be an odd integer. The digraph \(G_n\) contains a cycle of length \(k\) if and only if there exists \(x \in \{1, 2, \ldots, n\}\) such that \(k\) is the minimum \(i\) with

\[((-2)^i - 1)x \equiv \sum_{j=1}^{i} (-2)^j \pmod{n}.\]

Proof. Let \(x \in \{1, 2, \ldots, n\}\) and consider the sequence \(x_0, x_1, \ldots, x_k\), where \(x_0 = x\) and \(x_j \equiv -2x_{j-1} + 2 \pmod{n}\), for \(j = 1, 2, \ldots, k\). Thus, recursively, we obtain that \(x_j \equiv (-2)^j x - \sum_{i=1}^{j} (-2)^i (\pmod{n})\). By construction, \(x\) is in a cycle of length \(k\) if and only if \(x_j \neq x\), for \(j = 1, 2, \ldots, k - 1\) and \(x_k = x\). Therefore, \(x\) is in a cycle of length \(k\) if and only if \(k\) is the minimum \(i\) such that \((-2)^i - 1)x \equiv \sum_{i=1}^{i} (-2)^i \pmod{n}\). \(\square\)

The next lemma introduces a nice integer sequence that will be used to study the cycle structure of the digraph \(G_n\).

Lemma 2.3. Let \((a_i)\) be the integer sequence defined by, \(a_1 = a_2 = 1\) and \(a_i = a_{i-1} + 2a_{i-2}\), for \(i \geq 3\). Then

(i) \(a_i = (2^i + (-1)^{i+1})/3\), for each \(i \geq 1\).

(ii) \(3^l\) is a divisor of \(a_{3^l}\) and \(3^{l+1}\) is not.

Proof. Equality (i) is an easy exercise. Since \(a_3 = 3\), condition (ii) clearly holds for \(l = 1\). Suppose that it holds for \(1 \leq i \leq l\) and consider the equalities

\[
\frac{a_{3^{l+1}}}{a_{3^l}} = \frac{2^{3^{l+1}} + 1}{2^{3^l} + 1} = (2^{3^l})^2 - 2^{3^l} + 1 = (2^{3^l} + 1)^2 - 3 \cdot 2^{3^l}.
\]

Thus, we obtain that \(a_{3^{l+1}}/a_{3^l} = (a_{3^l})^2 - 3 \cdot 2^{3^l}\). Hence, 3 is a divisor of \(a_{3^{l+1}}/a_{3^l}\) and 9 is not. Therefore, and by the induction hypothesis, we obtain that \(3^{l+1}\) is a divisor of \(a_{3^{l+1}}\) and \(3^{l+2}\) is not. \(\square\)

By replacing \(z\) by \(-2\) in the polynomial factorization \(z^i - 1 = (z - 1)(\sum_{l=0}^{i-1} z^l)\), for all \(i \in \mathbb{N}\), we obtain that

\[(-2)^i - 1 = -3 \sum_{l=0}^{i-1} (-2)^l.\] \((2.1)\)

Remark 2.4. The integer sequence introduced in Lemma 2.3 is called the Jacobsthal sequence (or Jacobsthal numbers). This sequence, which appears in [18] as ‘A001045’, has connections with multiple applications, some of them can be found in [18]. The next result shows another one.
Corollary 2.5. Let n be an odd positive integer and let (a_i) be the Jacobsthal sequence. Then, the digraph G_n contains a cycle of length k if and only if there exists $x \in \{1, 2, \ldots, n\}$ such that k is the minimum i with $3a_i x \equiv 2a_i \pmod{n}$.

Proof. The result follows from Lemma 2.2, (2.1) and the equality $(-1)^i a_i = ((-2)^i - 1)/3$.

The next lemma characterizes the positive integers n for which the digraph G_n contains a cycle of length 3^i.

Lemma 2.6. Let n be an odd integer. Then, G_n does not contain digons. Moreover,

(i) If $\gcd(3, n) = 1$ then C_1 is a subgraph of $\text{und}(G_n)$.
(ii) If $n = 3^k n_1$ and $\gcd(3, n_1) = 1$ then C_{3^k} is a subgraph of $\text{und}(G_n)$.
(iii) If n is a power of 3 then $\text{und}(G_n) \cong C_n$.

Proof. Lemma 2.1 implies that the digraph G_n does not contain any digon, since otherwise it is not super edge-magic. Statement (i) clearly holds, since by Corollary 2.5, C_1 is a subgraph of $\text{und}(G_n)$ if and only if the equation $3x \equiv 2 \pmod{n}$ has a solution. Suppose now that $n = 3^k n_1$ and $\gcd(3, n_1) = 1$. Then C_{3^s} is not a subgraph of $\text{und}(G_n)$, for each $1 \leq s \leq k - 1$, otherwise by Corollary 2.5 we have $3a_{3^s} x \equiv 2a_{3^s} \pmod{n}$, for some $x \in \{1, 2, \ldots, n\}$ and, by Lemma 2.3 (ii), we would obtain that $3^{s+1} m x \equiv 2 \cdot 3^s m \pmod{n}$, where $a_{3^s} = 3^s m$ and $\gcd(3, m) = 1$. Thus, by multiplying by $3^{k-1-s} n_1$, the congruence $0 \equiv 2 \cdot 3^{k-1} n_1 m \pmod{n}$ follows, a contradiction. Let us see now that C_{3^k} is a subgraph of $\text{und}(G_n)$. Let x be a solution of $3x \equiv 2 \pmod{n_1}$. Thus, we obtain that $3^{k+1} m x \equiv 2 \cdot 3^k m \pmod{3^k n_1}$, where $a_{3^k} = 3^k m$. Hence, by Corollary 2.5, there is a cycle of length 3^k. This proves (ii). Finally, let us see (iii). Let $n = 3^k$. By using a similar proof as in (ii), it is clear that $\text{und}(G_n)$ does not contain a cycle of length 3^s, for $1 \leq s < k$. Moreover, each $x \in \{1, 2, \ldots, n\}$ is a solution of the trivial equation $3a_{3^k} x \equiv 2 \cdot a_{3^k} \pmod{n}$, since $a_{3^k} \equiv 0 \pmod{n}$.

Notice that from the previous proof, we also conclude that G_n contains a cycle of length 3^k, for some integer $k \geq 0$, if and only if 3^k is a divisor of n and 3^{k+1} is not. The characterization of the cycle structure of G_n is provided in the next three results.

Proposition 2.7. Let n be an odd prime. Let k be the minimum i such that $(-2)^i \equiv 1 \pmod{n}$. Then,

$$\text{und}(G_n) \cong \frac{n-1}{k} C_k \cup C_1.$$

Proof. Consider the congruence relation obtained in Corollary 2.5, $3a_i x \equiv 2a_i \pmod{n}$. Hence, since n is prime, either $a_i \equiv 0 \pmod{n}$, or $3x \equiv 2 \pmod{n}$. That is, either $(-2)^i \equiv 1 \pmod{n}$, or $3x \equiv 2 \pmod{n}$. Therefore, $\text{und}(G_n) \cong (n-1)/k C_k \cup C_1$, where C_1 is the graph defined by a loop in the only $x \in \{1, 2, \ldots, n\}$ such that $3x \equiv 2 \pmod{n}$.

Corollary 2.8. Let $n + 1$ be a prime. Then, n is a dual shuffle prime if and only if, $\text{und}(G_{n+1}) \cong C_n \cup C_1$.

Proof. Consider the congruence relation obtained in Corollary 2.5, $3a_i x \equiv 2a_i \pmod{n}$. Hence, since n is prime, either $a_i \equiv 0 \pmod{n}$, or $3x \equiv 2 \pmod{n}$. That is, either $(-2)^i \equiv 1 \pmod{n}$, or $3x \equiv 2 \pmod{n}$. Therefore, $\text{und}(G_n) \cong (n-1)/k C_k \cup C_1$, where C_1 is the graph defined by a loop in the only $x \in \{1, 2, \ldots, n\}$ such that $3x \equiv 2 \pmod{n}$.
Proof. By Theorem 2.11 in [3], n is a dual shuffle prime if and only if, $n + 1$ is prime and -2 generates the multiplicative group \mathbb{Z}_{n+1}^*. Thus, by Proposition 2.7, this is the case, if and only if, $\text{und}(G_{n+1}) \cong C_n \cup C_1$. \qed

Let n be an odd integer, (a_i) the Jacobsthal sequence and let Θ_k be a subset of $\{1, 2, \ldots, n\}$ defined by $x \in \Theta_k$ if k is the minimum i with $3a_i x \equiv 2 \mod n$. Then, from Corollary 2.5, it is easy to obtain the following result.

Theorem 2.9. Let n be an odd integer. Then,

$$\text{und}(G_n) \cong \bigcup_{k=1}^{n} \frac{|\Theta_k|}{k} C_k.$$\nonumber

Theorem 2.9 and Lemma 2.1 imply the next result.

Theorem 2.10. Let n be an odd integer. Then, the graph $\bigcup_{k=1}^{n} (|\Theta_k|/k) C_k$ is super edge-magic.

Notice that, by Theorem 2.9, we immediately obtain that the sets Θ_k, for $1 \leq k \leq n$, partition the set $\{1, 2, \ldots, n\}$, when n is odd. However, this does not hold when n is even.

3. Super Edge-Magic Labelings of 2-Regular Graphs Union K_2

The construction shown in Sect. 2.1 can be slightly modified to give super edge-magic labelings of the union of K_2 and 2-regular graphs, we feel that this is interesting since Wallis proposes in [19] the following open question that appears in his book as research problem 2.15.

Question 3.1 [19]. For which values of n is $C_n \cup K_2$ edge-magic?

Using this technique, we are able to find values of n for which $C_n \cup K_2$ is super edge-magic, and therefore edge-magic.

Let $B_m = (b_{ij})$ be the square matrix of dimension m defined by $b_{ij} = 1$ if either $i \leq m/2$ and $j \equiv -2i + 2 \mod m$ or $m > i > m/2$ and $j \equiv -2i + 1 \mod m$ and, $b_{ij} = 0$, otherwise. Let H_m be the digraph with vertex set $V(H_m) = \{1, 2, \ldots, m\}$ and adjacency matrix B_m. Denote by $D_m = (d_{ij})$ the square matrix of dimension m defined by $d_{ij} = 1$ if $j \equiv -2i \mod m + 1$ and $d_{ij} = 0$ otherwise.

Lemma 3.1. Let m be an even integer. Then the digraph H_m is isomorphic to the union of one arc together with a 1-regular digraph J_{m-2}, where $V(J_{m-2}) = \{i\}_{i=1}^{m-2}$ and $A(J_{m-2}) = D_{m-2}$. Furthermore, the digraph H_m is super edge-magic.

Proof. By definition, it is clear that $(1, m) \in E(H_m)$. Moreover, an easy check shows that the function $f : V(J_{m-2}) \to V(H_m)$ defined by $f(x) = x + 1$ is an isomorphism of J_{m-2} and of the subdigraph of H_m induced by $\{2, 3, \ldots, m-1\}$. \qed
Lemma 3.2. Let n be an even integer. The digraph J_n contains a cycle of length k if and only if there exists $x \in \{1, 2, \ldots, n\}$ such that k is the minimum i with

$$((-2)^i - 1)x \equiv 0 \pmod{n + 1}.$$

Proof. Let $x \in \{1, 2, \ldots, n\}$ and consider the sequence x_0, x_1, \ldots, x_k, where $x_0 = x$ and $x_j \equiv -2x_{j-1} \pmod{n + 1}$, for $j = 1, 2, \ldots, k$. Thus, we obtain that $x_j \equiv (-2)^i x \pmod{n + 1}$. By construction, x is in a cycle of length k if and only if $x_j \equiv x$, for $j = 1, 2, \ldots, k - 1$ and $x_k = x$. Therefore, x is in a cycle of length k if and only if k is the minimum i such that $((-2)^i - 1)x \equiv 0 \pmod{n + 1}$. \hfill \square

Proposition 3.3. Let n be an even integer such that $n + 1$ is prime. Let k be the minimum i such that $(-2)^i \equiv 1 \pmod{n + 1}$. Then,

$$\text{und}(H_n) \cong \frac{n - 1}{k} C_k \cup K_2.$$

Proof. Let k be the minimum i such that $(-2)^i \equiv 1 \pmod{n + 1}$. By Lemma 3.2, we know that $\text{und}(J_n)$ contains a component isomorphic to a cycle of order k as a subgraph. Furthermore, 1 is in the vertex set of this component. Suppose that $x \in \{1, 2, \ldots, n\}$ belongs to a component of $\text{und}(J_n)$ isomorphic to a cycle of order r, then r is the minimum i such that $((-2)^i - 1)x \equiv 0 \pmod{n + 1}$. Thus, since $n + 1$ is prime, we have that r is the minimum i such that $(-2)^i - 1 \equiv 0 \pmod{n + 1}$. That is, by hypothesis $r = k$. \hfill \square

Corollary 3.4. Let $n + 1$ be a prime number. Then, n is a dual shuffle prime if and only if, $\text{und}(H_{n+1}) \cong C_n \cup K_2$.

Proof. By Theorem 2.11 in [3], n is a dual shuffle prime if and only if, -2 generates the multiplicative group \mathbb{Z}_{n+1}^*. Thus, by Proposition 3.3, n is a dual shuffle prime if and only if, $\text{und}(H_{n+1}) \cong C_n \cup K_2$. \hfill \square

Lemma 3.5. Let n be an even integer. If $n \equiv 0 \pmod{4}$ then $C_n \cup K_2$ is super edge-magic.

Proof. Suppose that $n \equiv 0 \pmod{4}$. Let $V(C_n \cup K_2) = \{v_i\}_{i=1}^n \cup \{x, y\}$ and $E(C_n \cup K_2) = \{v_iv_{i+1}\}_{i=1}^{n-1} \cup \{vn_1, xy\}$. Consider the labeling $f : V(C_n \cup K_2) \to \{i\}_{i=1}^{n+2}$ defined by, $f(x) = 1$, $f(y) = n + 2$ and:

$$f(v) = \begin{cases}
 i + 1, & \text{if } v = v_{2i-1} \text{ and } 1 \leq i \leq n/4, \\
 i + 1, & \text{if } v = v_{2i} \text{ and } n/4 + 1 \leq i \leq n/2, \\
 i + 1 + n/2, & \text{if } v = v_{2i} \text{ and } 1 \leq i \leq n/4, \\
 i + 1 + n/2, & \text{if } v = v_{2i-1} \text{ and } n/4 + 1 \leq i \leq n/2.
\end{cases}$$

Then, f is a super edge-magic labeling of $C_n \cup K_2$. \hfill \square

The next corollary is an easy consequence of the previous lemma together with Corollary 3.4 and Lemma 3.1.

Corollary 3.6. Let n be an integer. If $n \equiv 0 \pmod{4}$ or n is a dual shuffle prime then $C_n \cup K_2$ is super edge-magic.
It is worth mentioning, that Park et al. gave a super edge-magic labeling of $C_n \cup K_2$, for n even, $n \neq 10$, in [17]. However, their description was somewhat more complicated. Furthermore, the smallest and the largest labels in our labelings are assigned to the vertices of K_2. Next, we introduce a result that is, in fact, easily deduced from Lemma 3.2.

Let n be an even integer and let $\Phi_k \subset \{1, 2, \ldots, n\}$ such that $x \in \Phi_k$ if k is the minimum i with the property that $((-2)^i - 1)x \equiv 0 \pmod{n + 1}$.

Theorem 3.7. Let n be an even integer. Then,

$$J_n \cong \bigcup_{k=1}^{n} \frac{|\Phi_k|}{k} C_k.$$

Finally, we have the following result that can be obtained from Theorem 3.7 and Lemma 3.1.

Theorem 3.8. Let n be an even integer. Then, the graph $K_2 \cup (\bigcup_{k=1}^{n} (|\Phi_k|/k)) C_k$ is super edge-magic.

Notice that, by Theorem 3.7, we immediately obtain that the sets Φ_k, for $1 \leq k \leq n$, partition the set $\{1, 2, \ldots, n\}$, when n is even. However, this does not hold when n is odd. The following open question is motivated by Question 1.1 and by the work conducted in this section.

Question 3.2. Characterize the (super) edge-magic graphs of the form $G \cup K_2$ for some 2-regular graph G.

4. The Edge-Magicness of $C_n * uC_m$

Denote by C_m^u the cycle C_m with exactly one loop attached to some of its vertices u, that is $C_m^u \cong C_1 * uC_m$. The main goal of this section is to state and prove the following result.

Theorem 4.1. Let $n \geq 3$ be odd and let $m \in \mathbb{N} \setminus \{1, 2\}$. Assume that either m is even or, m is odd and $m \geq n$. If C_m^u is (super) edge-magic, $u \in V(C_m)$, then the graph $C_n * uC_m$ is (super) edge-magic.

To prove this theorem, first of all we will state and prove the following two lemmas.

Lemma 4.2. Let m be an even integer and let D be the oriented graph obtained from C_m^u induced by an orientation of C_m in which the arrows go from one stable set of C_m to the other one. Then there is a function $h : E(D) \rightarrow \{C_n^+, C_n^-\}$ such that $und(D \otimes_h \{C_n^+, C_n^\}) \cong C_n * uC_m$.

Proof. Let $\overline{C_m}^b$ be an orientation of C_m in which the arrows go from one stable set of C_m to the other one, when m is even. Notice that, by the definition of $*$, it is clear that $E(D) = E(C_1^+) \cup E(\overline{C_m}^b)$, where $D \cong C_1^+ * u\overline{C_m}^b$, $u \in V(C_m)$. Moreover, by the definition of the \otimes_h-product,

$$E(D \otimes_h \{C_n^+, C_n^\}) = E(C_1^+ \otimes_{h|E(C_1^+)} \{C_n^+, C_n^-\}) \cup E(\overline{C_m}^b \otimes_{h|E(\overline{C_m}^b)} \{C_n^+, C_n^-\})$$
and $C_1^+ \otimes_{h_{E(C_1^+)}(C_1^+)} \{C_n^+, C_n^-\} \cong h(E(C_1^+))$. Hence, we only have to find a function $h_1 : E(C_m^+) \to \{C_n^+, C_n^-\}$ such that $\text{und}(C_m^+ \otimes h_1 \{C_n^+, C_n^-\}) \cong nC_m$. By Theorem 1.7, the graph induced by the product is $\text{und}(C_m^+ \otimes \{C_n^+, C_n^-\}) \cong nC_m$ and, each copy of C_m contains a vertex of the form (u, i), for $i \in \{1, 2, \ldots, n\}$. Therefore, if we let h_1 be the constant function defined by $h_1(e) = C_n^+$, for each $e \in E(C_m^+)$ the result follows.

Lemma 4.3. Let m and n be odd integers with $m \geq n$. Let $E(C_m^+)$ be the orientation of C_m^+ induced by a strong orientation of the cycle C_m. Then there is a function $h : E(C_m^+) \to \{C_n^+, C_n^-\}$ such that $\text{und}(C_m^+ \otimes h \{C_n^+, C_n^-\}) \cong nC_m$.

Proof. As in the previous proof, we only need to find a function $h_1 : E(C_m^+) \to \{C_n^+, C_n^-\}$ such that $\text{und}(C_m^+ \otimes h_1 \{C_n^+, C_n^-\}) \cong nC_m$. Assume that $m \neq n$, otherwise the result holds by Theorem 1.3. Since n is odd, we have that the congruence relation

$$m - 2r \equiv 0 \pmod{n}$$

can be solved for some r such that $0 < r < m$. Therefore, inheriting the notation of Theorem 1.9, by considering any function h_1 with $N_2(h_1^-) = r$, we have that Theorem 1.9 implies that $\text{und}(C_m^+ \otimes h_1 \{C_n^+, C_n^-\}) \cong nC_m$. □

Now, we are ready to prove Theorem 4.1.

Proof of Theorem 4.1. If $m \equiv 3 \pmod{4}$ and $m \geq n$, by Theorem 1.5, we know that $C_n \ast uC_m$, $u \in V(C_m)$ is super edge-magic, and hence edge-magic. In fact, using Theorem 1.2, Lemma 4.3 and the hypothesis on C_m^u we obtain that $C_n \ast uC_m$ is (super) edge-magic for each odd integer m, with $m \geq n$. Thus, we only need to concentrate on the case when m is even. This case follows from Theorem 1.2 and Lemma 4.2. □

Consider the edge-magic labelings of C_4^u and C_6^u that appear in Fig. 1. Hence, we immediately obtain the following corollary of Theorem 4.1

Corollary 4.4. Let n be an odd integer. Then,

(i) $C_n \ast uC_4$ is edge-magic, $u \in V(C_4)$.

(ii) $C_n \ast uC_6$ is edge-magic, $u \in V(C_6)$.

Figure 1. Edge-magic labelings of C_4^u and C_6^u
5. The Edge-Magicness of $C_n \ast uP_m$

Let the graph P^l_m be the path of order m with a loop attached to one of the leaves, l, of P_m. Then we introduce the following lemma.

Lemma 5.1. The graph P^l_m is edge-magic for every $m \in \mathbb{N}$, where l is a leaf of P_m.

Proof. We will consider two cases, depending on the parity of m. Let $V(P^l_m) = \{v_i\}_{i=1}^m$ and $E(P^l_m) = \{v_i v_{i+1}\}_{i=1}^{m-1} \cup \{v_m v_l\}$.

Case m is even. For m even, consider the function $f : V(P^l_m) \cup E(P^l_m) \to \{i\}_{i=1}^{2m}$ defined by the rule:

$$f(v_i) = \begin{cases} (i + 1)/2, & \text{if } i \text{ is odd,} \\ (i + m + 2)/2, & \text{if } i \text{ is even,} \end{cases}$$

$$f(v_i v_j) = \frac{5m + 6}{2} - f(v_i) - f(v_j), \quad v_i v_j \in E(P^l_m).$$

Then f is an edge-magic labeling of P^l_m.

Case m is odd. For m odd, consider the function $f : V(P^l_m) \cup E(P^l_m) \to \{i\}_{i=1}^{2m+1}$ defined by the rule:

$$f(v_i) = \begin{cases} (i + m + 2)/2, & \text{if } i \text{ is odd,} \\ i/2, & \text{if } i \text{ is even,} \end{cases}$$

$$f(v_i v_j) = \frac{5m + 5}{2} - f(v_i) - f(v_j), \quad v_i v_j \in E(P^l_m).$$

Then f is an edge-magic labeling of P^l_m. \qed

At this point, we are ready to state and prove the following theorem.

Theorem 5.2. Let $n \geq 3$ be an odd integer and consider the cycle C_n. Also consider any path P_m and let l be any leaf of P_m. Then the graph $C_n \ast lP_m$ is edge-magic.

Proof. Let \overrightarrow{P}_m be an orientation of P_m that allows us to travel from one leaf of P_m to the other one following the direction of the arrows. Let $\Gamma = \{C^+_n, C^-_n\}$ and consider any function $h : E(\overrightarrow{P}_m) \to \Gamma$, where \overrightarrow{P}_m is the digraph obtained from \overrightarrow{P}_m by attaching a loop at vertex l. Clearly, $E(\overrightarrow{P}_m) = E(\overrightarrow{P}_m) \cup \{(l, l)\}$ and, by definition of the \otimes_h-product,

$$E(\overrightarrow{P}_m \otimes_h \Gamma) = E(\overrightarrow{P}_m \otimes_{h|_{E(\overrightarrow{P}_m)}} \Gamma) \cup E(\{(l, l)\} \otimes_{h|_{\{(l, l)\}}} \Gamma).$$

Thus, by Theorem 1.8 we have that $\text{und}(\overrightarrow{P}_m \otimes_h \Gamma) \cong nP_m$ and, since each copy of P_m contains a vertex of the form (l, i), for $i \in \{1, 2, \ldots, n\}$, we get

$$\text{und}(\overrightarrow{P}_m \otimes_h \Gamma) \cong C_n \ast lP_m.$$

Since both elements of Γ are super edge-magic and, by Lemma 5.1, \overrightarrow{P}_m is edge-magic for every $n \in \mathbb{N}$, Theorem 1.2 implies that $C_n \ast lP_m$ is edge-magic. \qed
Lemma 5.3. The graph P_m^l is super edge-magic for every $m \in \mathbb{N}$, with $m \equiv 2 \pmod{4}$.

Proof. Let $V(P_m^l) = \{v_i\}_{i=1}^m$ and $E(P_m^l) = \{v_i v_{i+1}\}_{i=1}^{m-1} \cup \{v_m v_m\}$. The result is trivial for P_4^l. Assume that $m \geq 6$ and consider $k \in \mathbb{N}$ with $m = 2(2k + 1)$, $k \geq 1$. Let $f : V(P_m^l) \rightarrow \{i\}_{i=1}^m$ be defined by

$$f(v_i) = \begin{cases}
 k + 1, & \text{if } i = 1, \\
 k + j, & \text{if } i = 2j, \quad j = 1, \ldots, k - 1, \\
 3k + j, & \text{if } i = 2j + 1, \quad j = 1, \ldots, k - 2, \\
 1, & \text{if } i = 2k - 1, \\
 4k - 1, & \text{if } i = 2k, \\
 4k + 1 - f(v_{2k + 1 - j}), & \text{if } i = 2k + j, \quad j = 1, \ldots, k.
\end{cases}$$

Then f is a super edge-magic labeling of P_m^l. \qed

Corollary 5.4. Let $n \geq 3$ be an odd integer and let $m \equiv 2 \pmod{4}$. Then the graph $C_n \ast lP_m$ is super edge-magic, where l is any leaf of P_m.

Lemma 5.3 suggests the following open question.

Question 5.1. For which values of m is the graph P_m^l super edge-magic?

Let $P_m^{l,s}$ be the path of order m with a loop attached to each of the leaves, l and s, of P_m. Then we introduce the following lemma.

Lemma 5.5. The graph $P_m^{l,s}$ is super edge-magic for every even $m \in \mathbb{N}$, where l and s are the leaves of P_m.

Proof. Let $V(P_m^{l,s}) = \{v_i\}_{i=1}^m$ and $E(P_m^{l,s}) = \{v_i v_{i+1}\}_{i=1}^{m-1} \cup \{v_1 v_1 \cup \{v_m v_m\}}$. The result is trivial for $P_2^{l,s}$. For $m = 4$ and $m = 8$ the sequences $2 - 1 - 4 - 3$ and $3 - 4 - 1 - 7 - 2 - 8 - 5 - 6$, define a super edge-magic labeling of $P_4^{l,s}$ and $P_8^{l,s}$, respectively. For the remaining values of m, we will consider two cases.

Case $m = 4k$ ($k > 2$). We consider the function $f : V(P_m^{l,s}) \rightarrow \{i\}_{i=1}^m$ defined by the rule:

$$f(v_i) = \begin{cases}
 k + 1, & \text{if } i = 1, \\
 k + j, & \text{if } i = 2j, \quad j = 1, \ldots, k - 1, \\
 3k + j, & \text{if } i = 2j + 1, \quad j = 1, \ldots, k - 2, \\
 1, & \text{if } i = 2k - 1, \\
 4k - 1, & \text{if } i = 2k, \\
 4k + 1 - f(v_{2k + 1 - j}), & \text{if } i = 2k + j, \quad j = 1, \ldots, k.
\end{cases}$$

Then f is a super edge-magic labeling of $P_m^{l,s}$.

Case $m = 4k + 2$ ($k \geq 1$). We consider the function $f : V(P_m^{l,s}) \rightarrow \{i\}_{i=1}^m$ defined by the rule:

$$f(v_i) = \begin{cases}
 k + 2 - j, & \text{if } i = 2j - 1, \quad j = 1, \ldots, k + 1, \\
 3k + 2 - j, & \text{if } i = 2j, \quad j = 1, \ldots, k, \\
 4k + 3 - f(v_{2k + 3 - j}), & \text{if } i = 2k + j, \quad j = 2, \ldots, 2k + 2.
\end{cases}$$

Then f is a super edge-magic labeling of $P_m^{l,s}$ \qed
Notice that the graph \(\text{und}(P_{m,n}^* \otimes C_n^+) \) is isomorphic to the graph obtained from \(P_2 \times C_n \) by replacing each edge joining two vertices of the different copies of \(C_n \) by a path of order \(m \). By Theorem 1.2 and Lemma 5.5 we obtain the next result.

Corollary 5.6. Let \(m \) be an even integer and \(n \) be odd. Then, the graph \(\text{und}(P_{m,n}^* \otimes C_n^+) \) is super edge-magic.

6. Further Results and Conclusions

Using similar techniques as the ones presented in Sects. 4 and 5, we can extend the family of super edge-magic graphs. In particular, we can extend the family of 2-regular super edge-magic graphs. For instance, when \(m \) is a dual shuffle prime we can obtain the following result, which is a particular case of a more general result found in [16].

Theorem 6.1. Let \(m \) be a dual shuffle prime and let \(n \) be an odd integer \(n \geq 3 \). Then \(C_{mn} \cup C_n \) is super edge-magic.

Proof. Lemma 2.1 and Corollary 2.8 imply that \(C_m \cup C_1 \) is super edge-magic. Thus, by Theorem 1.2, for any function \(h : E(C_n^+) \to \{C_m^+ \cup C_1^+, C_m^- \cup C_1^-\} \), the graph \(\text{und}(C_n^+ \otimes h \{C_m^+ \cup C_1^+, C_m^- \cup C_1^-\}) \) is super edge-magic. Moreover, by definition of the \(\otimes_h \)-product,

\[
C_n^+ \otimes h \{C_m^+ \cup C_1^+, C_m^- \cup C_1^-\} \cong (C_n^+ \otimes h' \{C_m^+ \cup C_1^+, C_m^- \cup C_1^-\}) \cup C_n^+,
\]

for some function \(h' : E(C_n^+) \to \{C_m^+, C_m^-\} \). Thus, we only have to find a function \(h' : E(C_n^+) \to \{C_m^+, C_m^-\} \) such that \(\text{und}(C_n^+ \otimes h' \{C_m^+, C_m^-\}) \cong C_{mn} \).

Since \(n \) is odd, we have that \(r = (n - 1)/2 \) satisfies the congruence relation \(n - 2r \equiv 1 \mod m \). Hence, inheriting the notation of Theorem 1.9, by considering any function \(h' \) with \(N_2(h') = r \), we have that Theorem 1.9 implies that \(\text{und}(C_n^+ \otimes h' \{C_m^+, C_m^-\}) \cong C_{mn} \). Therefore, the result follows. \(\square \)

Similarly, by Theorem 1.3 or Theorem 1.9 and the fact that \(C_m \cup K_2 \) is super edge-magic [17], for \(m \) even and \(m \neq 10 \), we obtain the next result.

Theorem 6.2. Let \(m \geq 3 \) and \(n \geq 4 \) be integers with \(m \) even, \(m \neq 10 \), \(n \) odd and either \(\gcd(m, n) = 1 \) or \(m > n \). Then \(C_{mn} \cup nK_2 \) is super edge-magic.

Proof. Lemma 3.1 and Corollary 3.6 imply that \(C_m \cup K_2 \) is super edge-magic. Thus, by Theorem 1.2, for any function \(h : E(C_m^+ \cup \overline{K_2}) \to \{C_m^+, C_n^-\} \), the graph \(\text{und}((C_m^+ \cup \overline{K_2}) \otimes h \{C_m^+, C_n^-\}) \) is super edge-magic. Moreover, by definition of the \(\otimes_h \)-product,

\[
(C_m^+ \cup \overline{K_2}) \otimes h \{C_m^+, C_n^-\} \cong (C_m^+ \otimes h_{|E(C_m^+)} \{C_m^+, C_n^-\}) \cup (\overline{K_2} \otimes h_{|E(\overline{K_2})} \{C_m^+, C_n^-\}),
\]

and by Theorem 1.8, \(\text{und}(\overline{K_2} \otimes h_{|E(\overline{K_2})} \{C_m^+, C_n^-\}) \cong nK_2 \). Thus, we only have to find a function \(h_1 : E(C_m^+) \to \{C_m^+, C_n^-\} \) such that \(\text{und}(C_m^+ \otimes h_1 \)
\(\{C_n^+, C_n^-\} \cong C_{mn} \). If \(\gcd(m, n) = 1 \) then, by Theorem 1.3, any constant function \(h_1 \) satisfies this property. Suppose now that \(m > n \). Since \(m \) is even and \(n \) is odd, we have that the congruence relation \(m - 2r \equiv 1 \pmod{n} \) can be solved with \(0 < r < m \). Hence, inheriting the notation of Theorem 1.9, by considering any function \(h_1^* \) with \(N_2(h_1^*) = r \), we have that Theorem 1.9 implies that \(\text{und}(C_m^+ \otimes h_1^* \{C_n^+, C_n^-\}) \cong C_{mn} \). Therefore, the result follows.

Notice that, since the super edge-magic labeling of \(C_n \cup K_2 \) obtained in Sect. 3 assigns the smallest and the largest labels to the vertices of \(K_2 \), by removing the labels of \(K_2 \) and shifting the labels of \(C_n \) by one unit down, we can obtain a labeling of \(C_n \) with one chord (which is not necessarily unique). In particular, we can obtain the next results.

Lemma 6.3. Let \(m \) be an even integer. If \(m \) is a shuffle prime then the cycle \(C_m \) with exactly one chord joining antipodal vertices is super edge-magic. Moreover, it admits at least \(m/2 \) nonisomorphic super edge-magic labelings.

Proof. Consider the labeling of \(C_m \cup K_2 \) introduced in Sect. 3, recall that the smallest and the largest labels are assigned to the vertices of \(K_2 \). An easy check shows that the sum \(f(a) + f(b) \), where \(a, b \in V(K_2) \) is the same as the sum \(f(u) + f(v) \), for any pair of antipodal vertices of the cycle \(C_m \). Thus, by removing the labels of \(K_2 \) and shifting the labels of \(C_n \) by one unit down, we can obtain a labeling of \(C_n \) with one chord, by joining any pair of antipodal vertices.

Using a similar idea to the one used in the proof of the previous lemma, the next result can be easily proved from the labeling of \(C_m \cup K_2 \) introduced in Lemma 3.5.

Lemma 6.4. Let \(m \) be an integer with \(m \equiv 0 \pmod{4} \). Then the cycle \(C_m \) with exactly one chord joining two vertices at distance \(2 + 4i \), for some \(i = 0, 1, \ldots, \lfloor m/8 \rfloor \), is super edge-magic.

Similarly, it can be checked that, in Theorem 6.2, the labeling of \(C_{mn} \cup mK_2 \) induced by the product [10] (a vertex \((u, i)\) receives the label \(n(f(u) - 1) + i \), where \(f \) is the labeling of \(C_m \cup K_2 \) introduced in Sect. 3 and each vertex of \(C_n \) is identified with its label in a given super edge-magic labeling), assigns the smallest and the largest labels to the vertices of \(mK_2 \). Hence, by shifting the labels of the cycle \(m \) units down, we can obtain a super edge-magic labeling of a circle \(C_m \) together with \(m \) chords (which is not necessarily unique). Figures 2 and 3 show an example of these constructions.

It is worth mentioning that Baća and Miller paid special attention to super edge-magic labelings of cycles with chords, in [4]. In this paper, we have obtained some of their results, but by using absolutely different techniques, that seem to be very promising for future work. The interested reader can consult this source for further information on this problem.
6.1. Conclusions

In this paper, we have used operations on strings to obtain super edge-magic labelings of 2-regular graphs (Theorem 2.10), and of 2-regular graphs union K_2 (Theorem 3.8). Our point of view has singled out two interesting relations with sequences of integers, one of such relations being with dual shuffle primes (Corollaries 2.8 and 3.4) and the other one being with the Jacobsthal sequence (Corollary 2.5 and Theorem 2.9). By using the \otimes_h-product of digraphs, we have also studied the edge-magicness of $C_n \ast uC_m, u \in V(C_m)$ (Theorem 4.1) and of $C_n \ast lP_m, l$ a leaf of P_m (Theorem 5.2). Moreover, the combination of the \otimes_h-product together with the labelings introduced in Sects. 2 and 3 has allowed us to present results on the edge-magicness of $C_m \cup nK_2$ (Theorem 6.2) and of cycles with chords.

Acknowledgments.

The authors want to thank the anonymous referees for their careful reading of the paper and the suggestions they made, which helped to increase the quality of the paper. The research conducted in this document by the first and third authors has been supported by the Spanish Research Council under project MTM2011-28800-C02-01 and by the Catalan Research Council under grant 2009SGR1387.
References

[1] Acharya, B.D., Hegde, S.M.: Strongly indexable graphs. Discrete Math. 93, 123–129 (1991)
[2] Ahmad, A., Muntaner-Batle, F.A., Rius-Font, M.: On the product $C_n^+ \otimes_h C_n^-$ and other related topics. Ars Combin. (2013, in press)
[3] Asveld, P.R.J.: Permuting operations on strings and their relation to prime numbers. Discrete Appl. Math. 159(17), 1915–1932 (2011)
[4] Baca, M., Miller, M.: Super Edge-Antimagic Graphs. BrownWalker Press, Boca Raton (2008)
[5] Chartrand, G., Lesniak, L.: Graphs and Digraphs, 2nd edn. Wadsworth & Brooks/Cole Advanced Books and Software, Monterey (1986)
[6] Enomoto, H., Lladó, A., Nakamigawa, T., Ringel, G.: Super edge-magic graphs. SUT J. Math. 34, 105–109 (1998)
[7] Figueroa-Centeno, R.M., Ichishima, R., Muntaner-Batle, F.A.: The place of super edge-magic labelings among other classes of labelings. Discrete Math. 231(1–3), 153–168 (2001)
[8] Figueroa-Centeno, R.M., Ichishima, R., Muntaner-Batle, F.A.: On super edge-magic labelings of certain disjoint unions of graphs. Australas.J. Combin 32, 225–242 (2005)
[9] Figueroa-Centeno, R.M., Ichishima, R., Muntaner-Batle, F.A., Oshima, A.: A magical approach to some labeling conjectures. Discuss. Math. Graph Theory 311, 79–113 (2011)
[10] Figueroa-Centeno, R.M., Ichishima, R., Muntaner-Batle, F.A., Rius-Font, M.: Labeling generating matrices. J. Combin. Math. Combin. Comput. 67, 189–216 (2008)
[11] Gallian, J.A.: A dynamic survey of graph labeling. Electron. J. Combin. 14 (2011) (♯DS6)
[12] Holden, J., McQuillan, D., McQuillan, J.M.: A conjecture on strong magic labelings of 2-regular graphs. Discrete Math. 309, 4130–4136 (2009)
[13] Ichishima, R., López, S.C., Muntaner-Batle, F.A., Rius-Font, M.: The power of digraph products applied to labelings. Discrete Math. 312, 221–228 (2012)
[14] Kotzig, A., Rosa, A.: Magic valuations of finite graphs. Can. Math. Bull. 13, 451–461 (1970)
[15] López, S.C., Muntaner-Batle, F.A., Rius-Font, M.: Bi-magic and other generalizations of super edge-magic labelings. Bull. Aust. Math. Soc 84, 137–152 (2011)
[16] López, S.C., Muntaner-Batle, F.A., Rius-Font, M.: Labeling constructions using the \otimes_h-product. Discrete Appl. Math. (2013). doi:10.1016/j.bbr.2011.03.031
[17] Park, J.Y., Choi, J.H., Bae, J.-H.: On super edge-magic labeling of some graphs. Bull. Korean Math. Soc. 45(1), 11–21 (2008)
[18] Sloane, N.J.A.: On-Line Encyclopedia of Integer Sequences. http://oeis.org/Seis.html
[19] Wallis, W.D.: Magic Graphs. Birkhaüser, Boston (2001)
S. C. López and M. Rius-Font
Dept. Matemàtica Apl. IV
Universitat Politècnica de Catalunya, BarcelonaTech
Esteve Terrades 5
08860 Castelldefels
Spain
e-mail: susana@ma4.upc.edu

M. Rius-Font
e-mail: mriusfont@gmail.com

F. A. Muntaner-Batle
Graph Theory and Applications Research Group, Faculty of Engineering and Built
Environment, School of Electrical Engineering and Computer Science
The University of Newcastle
2308 Newcastle
NSW
Australia
e-mail: fambles@yahoo.es

Received: December 3, 2012.
Revised: October 17, 2013.
Accepted: October 21, 2013.