The Aachen model study course in medicine – development and implementation. Fifteen years of a reformed medical curriculum at RWTH Aachen University

Abstract

Objective: The Aachen model study course in medicine was developed in response to a negative appraisal of the Faculty of Medicine of the RWTH Aachen University by the Science Council in 2000. The aim is to create graduates who are capable of further training and can work in evidence-based and patient-centered health care while incorporating scientific findings.

Methodology: In 2003 the medical degree was fully switched over to the model study course format. This means an annual cohort size of about 280 students. These go through a modularized and integrated curriculum, which is designed as a learning spiral. This requires a special interdisciplinary collaboration of teachers and curriculum planners. In addition to the modules, longitudinal elements such as workplace-based examinations, communication or practical skills are embedded in the curriculum.

Results: The state exam results of the Aachen graduates have already improved significantly even for the first cohort and the university has been able to maintain an almost uninterrupted high level from 2008 to 2018. The students satisfaction with the model course is not only evident in the student course assessment and qualitative group discussions but also in various national rankings.

Conclusion: The complete redesign of the course starting from the first semester onwards posed major challenges for all those involved in the faculty. The implementation of a completely reformed curriculum, such as the model study course, can only succeed through constructive cooperation of the various stakeholders at a faculty. The reorientation was able to address the major flaws of the 2002 report by the Science Council, student dissatisfaction and the poor performance in the nationwide state exams.

Keywords: curriculum development, reformed curricula, problem-based learning

1. Occasion, need

The Faculty of Medicine of RWTH Aachen University was extensively evaluated in 1999 on the basis of a report written by the faculty and an inspection by the Science Council. This evaluation culminated in a statement by the Science Council in December 2000 on the future development of the Faculty of Medicine. In addition to assessing and evaluating the research orientation of the faculty, the medical education of students was also assessed in this context. Overall, the Science Council questioned the academic standards of the faculty and judged that it would not be competitive as a university medical school. This was the beginning of a major reorientation for the faculty. With regard to the teaching and study of medicine, the Scientific Council criticized in particular the below-average exam results of the graduates in the Intermediate Examination in Medical Studies and State Examinations and the poor organization of teaching by the faculty [1]. Both this report by the Science Council, together with the model study course clause of the Medical Licensure Act of 200, laid the foundation for the faculty’s decision to switch the entire medical degree in Aachen to the model study course [https://www.gesetze-im-internet.de/_appro_2002/BJNR240500002.html]. The Aachen model study course in medicine (MSCM) started in the winter semester 2003/2004 with 280 students. The standard degree course of study was successively discontinued [2].

The integrated curriculum of the MSCM was developed under the direction of the former Dean of Studies, Prof. Rolf Rossaint, in cooperation with the medical student council. A key role in its conception was played by Prof. Johann Arias, Prof. Peter Kaufmann from the then Anatomical Institute 2,
who oversaw the MSCM until his death in 2010. The anatomical institutes are still significantly involved in the implementation and further development of the MSCM. Their teaching staff oversee several interdisciplinary modules.

2. Aims

The first training goal of the MSCM is to produce academically qualified doctors capable of further training who have acquired cognitive knowledge, practical skills, scientific and communicative skills and a work attitude that will enable lifelong learning in all of these areas. The MSCM students are to be scientifically trained and familiarized with the process of biological and medical problem solving. Their training is designed in a way that the students do not acquire subject-specific factual knowledge but understand organ systems in their construction, their function and their pathogenetic principles [3].

The second training goal is the acquisition of the ability to learn and think in an integrative cross-disciplinary way and to reflect their own knowledge and experience in a self-critical way. Through interdisciplinary teaching of content, students learn at an early stage to look at biological systems and matters relating to them from different points of view. This should help them in their future activity to incorporate differential diagnostic and therapeutic considerations into their medical practice. These goals are also anchored in the profile of the MSCM, in which the overarching learning objectives have been formulated [4], [5], [6].

The development of the MSCM specific learning objective catalog has also increased the transparency of learning objectives and provided a sound basis for discussions on teaching and studying. The learning objective catalog was adopted at a closed session of the model study course in 2009 and developed in the following two years by the Institute for Medical Information Technology in the form of a Wiki and filled with content by the specialist representatives of the hospitals and institutes. The process was moderated by a working group staffed with representatives from both the clinical and pre-clinical phase of studies. The Wiki format allows the faculty to continue developing the catalog to this day [7].

3. Teaching methods, teaching formats

3.1. Phases of study

Medical studies in the MSCM is divided into four phases of study (see figure 1).

3.1.1. 1. Phase of studies – Homogenization

Medical studies begins with a three-week introductory block. This provides a first insight into the professional field and teaches medical hygiene and emergency procedures. In further courses, the disparate prior scientific knowledge of the students is brought to a comparable level. In this context, the course in cell biology is a fundamental component of the first academic year. An interdisciplinary preparatory course of the organ systems (IPO) provides basic knowledge about the structures and functions of the human body.

3.1.2. 2. Phase of studies – Interdisciplinary modules

The second phase of studies consists of interdisciplinary theoretical-clinical modules. In this phase, clinical content is taught for the first time from the third semester on. Modules deal with organ systems of the body in a modular manner in lectures, seminars, seminars for problem-based learning (Pbl) and internships (see figure 2). The learning spiral is traversed here for the second time starting from the organ. In addition to the interdisciplinary modules, there are cross-sectional subjects that deal with cross-organ content in lectures, exercises and internships.

In the second phase of studies the medical examination course (EC) will be offered parallel to the modules from the third semester onwards. Various examination techniques are first practiced by students amongst themselves or using standardized patients. In the following, patients are examined by students in groups of three under medical supervision, communication techniques are trained and special examination techniques are taught. The skills learned are formally reviewed within the EC using a workplace-based assessment format, the MINI Clinical Evaluation Exercise (Mini-CEX) [6].

Passing the Basic Medical Examination (ÄBP), the M1 equivalent of the MSCM, is a prerequisite for admission to the third phase of studies.

3.1.3 3. Phase of studies – Clinical semesters

In this phase of studies patients and their illnesses are placed at the center of teaching. Sicknesses are no longer viewed from the organs’ point of view but are considered according to the patients and their symptoms. An important part of this phase of studies are the clinical block internships, which take place for half the cohort in the 8th and 9th semesters. The other half of the cohort passes through the so-called “Free Elective Semester”, which offers time for medical internships, the preparation of a doctoral thesis or stays abroad. The 10th semester is dedicated to economic, health, social and ethical aspects of medicine and concludes with the Course of Clinical Competence (CCC). For the students this phase of studies will conclude with the second part of the State Medical Exam (M2).

3.1.4 4. Phase of studies – Practical Year

The Practical Year (PY) is divided into three 4-month rotations in the MSCM too and these are completed in internal
2. Phase of studies: Theoretical-clinical modules

SV	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Winter semester															
3	Musculoskeletal system	QF Epidemiology	Heart/Cardiovascular system	QF Evidence-based medicine											
	QF Physics (RNSP)	QF Pharmacology	QF Pathology	QF Human Genetics											
	Qualification profiles	Qualification profiles	Qualification profiles	Qualification profiles											
	Examination courses	Examination courses	Examination courses	Examination courses											
Summer semester															
4	Blood and immune defenses	Respiration	Nervous system												
	Qualification profiles	Qualification profiles	Qualification profiles												
	Examination courses	Examination courses	Examination courses												
Winter semester															
5	Microbiology	Gastro-intestinal tract	Urinary tract and reproductive organs	Psyche											
	Virology and Hospital Hygiene course														
	Qualification profiles	Qualification profiles	Qualification profiles												
	Examination courses	Examination courses	Examination courses												
Summer semester															
6	Endocrine system	Skin	Sensory organs and communication												
	Qualification profiles	Qualification profiles	Qualification profiles												
	Examination courses	Examination courses	Examination courses												

3.2. Scientific competences in medical studies

Right from the start of medical studies the MSCM pursues the overarching goal of empowering students to think and act scientifically. Skills such as literature research, hypothesis generation, ambiguity awareness or the creation of scientific manuscripts are taught in an interdisciplinary way. From the 1st to the 10th semester, there are compulsory and optional courses for students dealing with a wide variety of aspects of scientific work. By choosing individual qualification profiles, the MSCM lays the foundation for future scientific activity or later specialization in continuing education. Ten percent of the timetable is reserved for these compulsory electives. By focusing compulsory electives on a certain subject area, acquisition of an individual qualification profile is possible. Further elements of this longitudinal curriculum are the...
Problem-based learning (Pbl)

Problem-based learning (Pbl) is implemented in the curriculum of the MSCM as a longitudinal teaching format from the 1st to the 7th semester. The problem-based and interdisciplinary approach to problems supports the teaching profile of the MSCM and its modularized structure. Using a structured approach, the students practice how to tackle unsolved problems in disease-typical patient cases in a team. In addition, this trains skills that are also essential for scientific work (e.g., hypothesis generation, literature research) [9]. During their studies, MSCM students complete a total of 14 Pbl cases, each with two dates, in groups of ten students.

The AIXTRA skills lab

The AIXTRA training center has established a comprehensive program that uses standardized patients, digital and human, to teach taking a patient’s history and examination techniques; and trains practical and communicative skills with video feedback. Both compulsory courses within the system block framework or other events from the curriculum are offered here as well as optional courses and periods for free practice.

Teaching and learning culture

The modification of the curriculum into a Z-curriculum, in which pre-clinical and clinical content is integrated, brings special changes to the teaching and learning culture at the teaching, collegial and organizational level [10], [11]. Planning and implementation of teaching requires intensive communication between all participants, including the students. Teaching methods such as Pbl promote the students’ own responsibility for their own learning process [1], [12], [13]. New blended learning concepts give students more choice about the time and place of learning, which has a positive impact on motivation [14]. The desire for innovation and continuous development has also driven the degree of professionalization on the part of teachers through qualifications in medical education. Additional emphasis on autonomous learning is provided by the documentation and feedback elements of the student portfolio and the HIP tool (How I Perform).

Examination system

The examination concept of the MSCM is based on summative and formative examination formats. Early practical teaching requires an early review of practical and communicative skills in the curriculum, alongside exam formats that tend to examine cognitive content [15], [12]. The following examination formats are used in the three phases of studies:

- cognitive: Multiple choice exams, structured oral exams (summative), as well as the Progress Test in Medicine (PTM) (formative)
- psychomotor: Objective Structured Practical Examination (OSPE) (summative), as well as workplace-based MiniCEX (formative)

Graded papers and case presentations round off the examination spectrum and promote self-organizational, rhetorical and presentation skills.

Basic Medical Examination (BME)

The Basic Medical Examination (BME) is the MSCM equivalent to the Intermediate Examination in Medical Studies (M1). In accordance with § 41 of the Medical Li-censure Act, this tests the acquisition of knowledge and skills required for the first section of the State Medical Exam. In addition, clinical content and practical skills are also already tested at this stage because of the MSCM’s interdisciplinary approach. The BME consists of a combined oral and practical exam in the form of an OSPE and a multiple choice exam.
In order to ensure adequate quality of this university exam, guidelines have been developed which take into account the quality requirements for objectivity, reliability and validity, in accordance with international standards. The preparation of the exam assignments goes through a threefold review process, in which the exam contents are checked against the learning objective catalog, the wording of the questions and the horizon of expectation is specified; and the scientific and clinical relevance is reflected. Finally, the approximately 100 exam questions of the oral and practical part and the 120 MC questions are approved by the review panel of the examination board. For quality assurance, there is a re-evaluation (item analysis) documented in writing. Corrections to results and suggestions for improvement are prepared for future examination tasks on the basis of content-related criteria and statistical test evaluation results in this re-evaluation (see figure 4).

4.2. Implementation of a longitudinal concept “MiniCEX”

In 2013, students in the medical student council demanded that more practical exams be integrated into the curriculum and that students receive more feedback about their own skills. The MSCM has therefore initiated a project to implement a longitudinal exam format from workplace-based testing, the Mini Clinical Evaluation Exercise (MiniCEX). In MiniCEX, students from the 3rd to the 10th semester are repeatedly observed clinical situations with patients appropriate to their level of training, as part of the clinical examination course and block internships, and receive oral feedback immediately afterwards. This is documented in the form of a standardized questionnaire. This is an exam format which is purely formative [6].

4.3. Progress Test in Medicine

The Progress Test in Medicine (PTM) is designed as a formative knowledge check and each test consists of 200 MC questions at graduate level. The main use of the PTM is longitudinal feedback for students and comparison with other faculties. Feedback is provided through an online feedback tool called HIP (“How I Perform”). The resulting report allows the students to check their own knowledge gain. According to the examination regulations the PTM is an obligatory offering for all students. Participation in the test is a prerequisite for admission to the next phase of studies [16].

5. Evaluation, results

5.1. Group and tutor discussions

At the end of each semester, the cohort coordinators hold group and individual discussions with the students. They receive feedback on the general progress of studies and examinations in these discussions. The coordinators are tasked with conveying the results of the discussions constructively to the lecturers and inform students about support offers and similar assistance. Therefore these discussions contribute to a continuous improvement in the organization of the course of studies and the quality of teaching and supplement the compulsory course evaluation by the students.

5.2. Evaluation by the students

The student course evaluation has been carried out since the winter semester 2004/05. The results of the course evaluation are submitted to the study commission and the faculty council and discussed by the student council.

5.3. Overall findings

Since the beginning of the MSCM, the Faculty of Medicine has been continuously pursuing evidence-based development and improvement of the curriculum. Criticism from the Science Council report of 2000 was successfully addressed. The performance of MSCM graduates today is usually far above the national average [17]. Student satisfaction with the MSCM and its organizational concept is reflected in the various rankings and the lectures. A cross-sectional study also showed that fulfilled expectations are linked to a higher degree of identification with the model study course [18].

The next milestones for the faculty are a mapping of their own learning objective catalog to the National Competence-Based Catalog of Learning Objectives (NKLM) [http://www.nklm.de], [19] as well as the implementation of the Masterplan 2020 [20].

In October 2018, the Medical Faculty was re-evaluated by the Science Council. The resulting report will show how the Faculty has improved through the introduction of the model study course. Criticisms by the Science Council will feed into the development work in the coming years (see figure 5).

6. Miscellaneous

6.1. Involved parties

6.1.1. Office of the Dean and Office of the Dean of Studies

The Office of the Dean runs the Faculty of Medicine. The Office of the Dean and Office of the Dean of Studies’ tasks include ensuring the completeness of the teaching on offer, adherence to teaching obligations as well as study and examination organization, creating drafts of study and examination regulations and carrying out evaluations. In the MSCM, as a higher-level of organization the Office of the Dean plays an important role in the implementation of the curriculum, in innovations and in the motivation of lecturers and students.
6.1.2. Teaching Coordination Group

In order to ensure quality control and further development of the MSCM, a weekly meeting of the professorial MSCM coordination group was initiated. The so-called coordination group, together with the employees of the Office of the Dean of Studies and student representatives, deals with all immediate problems of study and teaching. Discussion topics include, for example, questions and further developments of the curriculum, event evaluation, failure rates in exams, special cases as well as detailed questions that arise in the organization of studies and teaching.

6.1.3. Cohort coordinators

Each academic year is supervised by a cohort coordinator. The tasks of the cohort coordinators include counseling and supervision of students, timetable design and organization of the academic year in cooperation with the lecturers and module administrators. The introduction of cohort coordinators has introduced a new role to the Office of the Dean of Studies. In addition, there are exam, elective and international coordinators who support counseling in their respective areas [21], [22], [23].
6.1.4. Module leaders

Various institutes and hospitals are involved in the theoretical clinical modules. Their management plays an important role due to the resulting high need for coordination of the individual courses within a block. They are members of the teaching staff of the key hospital/institute involved in the respective course. Together with the lecturers and the cohort coordinators, they design the event contents, also with regard to redundancies and links with other teaching events and compile the exam questions.

6.1.5. Tutors

The introduction of the Aachen Model Study Course in Medicine required a high degree of willingness on behalf of the lecturers for interdisciplinary work and cooperation amongst themselves and with the Office of the Dean of Studies. In order to avoid redundancies and gaps in the design of courses, intensive and continuous communication is necessary between all participants. The high degree of structuring of medical studies and the associated need for coordination of the teaching content led and still leads to discussions in the continuing development of the curriculum.

6.1.6. Students/Student Council

The students were very involved in the design and implementation of the MSCM from the very beginning. They participate in the meetings of the Coordination Group and are represented in all committees involved in teaching (for example, the Advisory Council) [24].

7. Discussion

The Aachen Model Study Course in Medicine was developed by the Medical Faculty of the RWTH Aachen under strong pressure for innovation and improvement [2]. The complete redesign of the course starting from the first semester onwards posed major challenges for all those involved in the faculty. The implementation of a completely reformed curriculum, such as the model study course, can only succeed through constructive cooperation of the various stakeholders at a faculty. The new focus has been able to address the major flaws of the 2002 Science Council report, student dissatisfaction and the poor performance in the nationwide exam comparison [17].

8. Conclusion

The Faculty of Medicine of the RWTH Aachen University will continue the model study course in medicine as long as the formal requirements of the licensing regulations allow this. When the model study course clause expires, elements and experiences of the Model study course may be used for the development of new curricula.

Competing interests

The authors declare that they have no competing interests.

References

1. Wissenschaftsrat. Stellungnahme zur weiteren Entwicklung der Medizinischen Fakultät der Rheinisch-Westfälischen Technischen Hochschule Aachen. Dresden: Wissenschaftsrat; 2014.
2. Groß D, Kleinmanns J, Schwanke E. 50 Jahre Medizinische Fakultät 1966 – 2016, RWTH Aachen. Herzogenrath: Shaker-Verlag; 2016.
3. RWTH Aachen. Studien- und Prüfungsordnung für den Modellstudiengang Medizin der Rheinisch-Westfälischen Technischen Hochschule Aachen mit dem Abschluss "Ärztliche Prüfung" vom 05.11.2008. Aachen: RWTH Aachen University; 2018.
4. RWTH Aachen. Profil des Studium der Humanmedizin an der RWTH Aachen: RWTH Aachen. Zugänglich unter/available from: http://www.medizin.rwth-aachen.de/cms/Medizin/ Studium/Studiengaenge/ModellstudiengangMedizin/~vhl/Ziele/
5. Frank JR, Danoff D, The CanMEDS initiative: implementing an outcomes-based framework of physician competencies. Med Teach. 2007;29(7):627-642. DOI: 10.1080/01421590701746983
6. Epstein RM. Assessment in Medical Education. N Engl J Med. 2007;356(4):387-396. DOI: 10.1056/NEJMra054784
7. Spreckelsen C, Döpke R, Sárándi I. Zuordnung von Nationalem Kompetenzbasiertem Lernzielkatalog und fakultätspezifischen Lernzielkatalogen durch automatische Textverarbeitung. Jahrestagung der Gesellschaft für Medizinische Ausbildung (GMA). Hamburg; 25.-27.09.2014. Düsseldorf: German Medical Science GMS Publishing House; 2014. DocP447. DOI: 10.3205/14gma172
8. Medizinische Fakultät Mannheim der Universität Heidelberg. Manuel für PJ-Betreuer: Informationen rund ums Praktische Jahr. 1. Aufl. Mannheim: MERLIN - Medical Education Research - Lehrforschung im Netz BW; 2015.
9. Stanford University. Problem-Based Learning. Speak Teach 2001;11(1):1-6.
10. Davis MH, Harden RM. Planning and implementing an undergraduate medical curriculum: the lessons learned. Med Teach. 2003;25(6):596-608. DOI: 10.1080/0142159032000144383
11. Harden RM, Grant J, Buckley G, Hart IR. BEME Guide No. 1: Best Evidence Medical Education. Med Teach. 1999;21(6):553-562. DOI: 10.1080/014215999789860
12. Gesellschaft für Medizinische Ausbildung, GMA-Ausschuss Prüfungen, Kompetenzzentrum Prüfungen Baden-Württemberg, Fischer MR. Leitlinie für Fakultäts-interne Leistungsnachweise während des Medizinstudiums: Ein Positionspapier des GMA-Ausschusses Prüfungen und des Kompetenzzentrums Prüfungen Baden-Württemberg. GMS Z Med Ausbild. 2008;25(1):Doc74. Zugänglich unter/available from: https://www.egms.de/static/de/journals/zma/2008-25/zma000558.shtml
13. Savery JR. Overview of Problem-based Learning: Definitions and Distinctions. Interdiscip J Probl Based Learn. 2006;1(1):9-20. DOI: 10.7771/1541-5015.1002
14. Brahmm T, Jenert T, Meier C. Hochschulentwicklung als Gestaltung von Lehr- und Lernkultur: Eine institutionweise Herangehensweise an lehrbezogene Veränderungsprojekte an Hochschulen. St. Gallen: Institut für Wirtschaftspädagogik; 2010.
15. Coombes L, Ricketts C, Freeman A, Stratford J. Beyond assessment: feedback for individuals and institutions based on the progress test. Med Teach. 2010;32(6):486-490. DOI: 10.3109/0142159X.2010.485652

16. Nouns ZM, Brauns K. Progress-Testing - ein Verfahren zur detaillierten Leistungsdarstellung und Lehrevaluation auf Basis der Wissensentwicklung von Studierenden. In: Dany S, Szczyrba B, Wildt J, editors. Prüfungen auf die Agenda!: Hochschuldidaktische Perspektiven auf Reformen im Prüfungswesen. Bielefeld: W. Bertelsmann Verlag GmbH & Co KG; 2008. S.114-129

17. IMPP. Archiv Ergebnisse Medizin. Mainz: IMPP. Zugänglich unter/available from: https://www.impp.de/pruefungen/medizin/archiv-medizin.html

18. Bergemann J. Zusammenhänge zwischen der Wahrnehmung spezifischer Strukturmerkmale des Aachener Modellstudienangs Medizin (AMM) und der Identifikation der Studierenden mit dem Studiengang. Aachen: RWTH Aachen; 2018. Zugänglich unter/available from: http://publications.rwth-aachen.de/record/224289

19. von Jagow G, Lohölter R. Die neue Ärztliche Approbationsordnung: Schwerpunkte der Reform und erste Erfahrungen mit der Umsetzung. Bundesgesundheitsbl. 2006;49(4):330-336. DOI: 10.1007/s00103-006-1245-4

20. Bundesministerium für Bildung und Forschung. Masterplan Medizinstudium 2020. Berlin: Bundesministerium für Bildung und Forschung; 2017. Zugänglich unter/available from: https://www.bmbf.de/de/masterplan-medizinstudium-2020-4024.html

21. Salden P. Der Third Space als Handlungsfeld in Hochschulen: Konzept und Perspektive. In: Barnat M, Hofhues S, Kenneweg AC, Merkt M, Salden P, Urban D, editors. Junge Hochschul- und Mediendidaktik: Forschung und Praxis im Dialog. Hamburg: Universität Hamburg; 2013.

22. Carstensen D. Third Space in Hochschulen: Ein Raum für neue Aufgaben. Wissensschaftsman. 2015;1:50-51.

23. Meinel FG, Dimitriadi K, Borch Pvd, Störmann S, Niedermayer S, Fischer MR. More mentoring needed? A cross-sectional study of mentoring programs for medical students in Germany. BMC Med Educ. 2011;11:68. DOI: 10.1186/1472-6920-11-68

24. Gale R, Grant J. AMEE Medical Education Guide No. 10: Managing change in a medical context: Guidelines for action. Med Teach. 1997;19(4):239-249. DOI: 10.3109/0142159790934200

25. Schwartz P. Problem-based Learning, London: Routledge; 2001.

Corresponding author:
Dr. med. vet. Melanie Simon, MME
RWTH Aachen University, Faculty of Medicine, Office of the Dean of Studies, Pauwelsstr. 30, D-52074 Aachen, Germany, Phone: +49 (0)241/80-89190, Fax: +49 (0)241/80-338190
msimon@ukaachen.de

Please cite as
Simon M, Martens A, Finsterer S, Sudmann S, Arias J. The Aachen model study course in medicine – development and implementation. Fifteen years of a reformed medical curriculum at RWTH Aachen University. GMS J Med Educ. 2019;36(5):Doc60. DOI: 10.3205/zma001268, URN: urn:nbn:de:0183-zma0012681

This article is freely available from https://www.egms.de/en/journals/zma/2019-36/zma001268.shtml

Received: 2018-11-01
Revised: 2019-07-30
Accepted: 2019-08-06
Published: 2019-10-15

Copyright ©2019 Simon et al. This is an Open Access article distributed under the terms of the Creative Commons Attribution 4.0 License. See license information at http://creativecommons.org/licenses/by/4.0/.
Der Aachener Modellstudiengang Medizin – Entwicklung und Implementierung. 15 Jahre reformiertes Medizinstudium an der RWTH Aachen

Zusammenfassung

Zielsetzung: Der Aachener Modellstudiengang Medizin wurde als Reaktion der Medizinischen Fakultät der RWTH Aachen auf eine negative Beurteilung durch den Wissenschaftsrat im Jahr 2000 entwickelt. Ziel sind weiterbildungsfähige Absolventen und Absolventinnen, die in der Lage sind, evidenzbasierte und patientzentrierte Krankenversorgung zu betreiben und dabei wissenschaftliche Erkenntnisse einbeziehen.

Methodik: Das Studium der Humanmedizin wurde im Jahr 2003 insgesamt auf den Modellstudiengang umgestellt. Dies bedeutet eine jährliche Kohortengröße von ca. 280 Studierenden. Diese durchlaufen ein modularisiertes und integriertes Curriculum, welches sich im Sinne einer Lernspirale gestaltet. Dies erfordert eine besondere interdisziplinäre Zusammenarbeit von Lehrenden und Curriculumsplanern. Neben den Modulen sind longitudinaline Elemente wie das arbeitsplatzbasierte Prüfen, die Kommunikation oder praktische Fertigkeiten in das Curriculum eingebettet.

Ergebnisse: Die Staatsexamensergebnisse der Aachener Absolventen und Absolventinnen haben sich schon ab dem ersten Jahrgang deutlich verbessert und konnten ein hohes Niveau von 2008 bis 2018 fast ununterbrochen halten. Die Studierenden drücken ihre Zufriedenheit mit dem Modellstudiengang nicht nur in der studentischen Lehrveranstaltungsbewertung und in qualitativen Gruppengesprächen, sondern auch in diversen nationalen Rankings aus.

Schlussfolgerung: Die völlige Neukonzeptionierung des Studiengangs ab dem ersten Semester aufbauend stellte alle Beteiligten an der Fakultät vor große Herausforderungen. Die Umsetzung eines komplett reformierten Curriculums, wie sie die Einführung des MSG darstellte, gelingt nur durch eine konstruktive Zusammenarbeit verschiedener Akteure einer Fakultät. Die neue Ausrichtung konnte die Hauptmängel des WR Berichtes aus dem Jahre 2002, die Unzufriedenheit der Studierenden und das schlechte Abschneiden im Examen im bundesweiten Vergleich, beheben.

Schlüsselwörter: Modellstudiengang, Curriculumsentwicklung, Problemorientiertes Lernen

1. Anlass, Bedarf

Die Medizinische Fakultät der RWTH Aachen wurde im Jahr 1999 umfangreich auf der Basis eines durch die Fakultät verfassten Berichts sowie einer Begehung durch den Wissenschaftsrat (WR) evaluiert. Diese Evaluation mündete im Dezember 2000 in eine Stellungnahme des WR zur weiteren Entwicklung der Medizinischen Fakultät. Neben der Beurteilung und Bewertung der Forschungssichtung der Fakultät in diesem Rahmen auch die medizinische Ausbildung von Studierenden begutachtet. Insgesamt stellte der WR den akademischen Anspruch der Fakultät in Frage und urteilte, dass die Wettbewerbsfähigkeit als universitätsmedizinischer Standort nicht gegeben wäre. Dies war für die Fakultät der Beginn einer umfassenden Neuorientierung. Im Bereich Studium und Lehre bemängelte der WR insbesondere die unterdurchschnittlichen Prüfungsergebnisse der Absolventen in Physikum und Staatsexamen, und zum anderen die ungünstige Organisation der Lehrveranstaltungen durch die Fakultät [1].

Dieser Bericht des WR legte gemeinsam mit der Modellstudiengangsklausel der Ärztlichen Approbationsordnung von 2002 den Grundstein für die Entscheidung der Fakultät, das Studium der Humanmedizin in Aachen konsequent auf einen Modellstudiengang umzustellen [https:
2. Ziele

Erstes Ausbildungsziel im MSG sind akademisch ausgebildete, zur Weiterbildung befähigte Ärzte und Ärztinnen, die kognitives Wissen, praktische Fertigkeiten, wissenschaftliche und kommunikative Fähigkeiten und eine Haltung zum Beruf erlangt haben, die ein lebenslanges Lernen in allen genannten Bereichen ermöglichen. Die Studierenden des MSG werden wissenschaftlich geschult und mit dem Prozess des biologischen und medizinischen Problemlösens vertraut gemacht. Die Ausbildung ist so gestaltet, dass die Studierenden nicht fachspezifisches Faktenwissen erwerben, sondern Organ- und Organsysteme in ihrem Bau, ihrer Funktion und ihren pathogenetischen Prinzipien verstehen [3].

Zweites Ausbildungsziel ist der Erwerb der Fähigkeit, fachübergreifend integrativ zu lernen und zu denken und den eigenen Wissens- und Erfahrungsstand selbstkritisch zu reflektieren. Durch die interdisziplinäre Stoffvermittlung lernen die Studierenden frühzeitig, biologische Systeme und deren Sachverhalte von verschiedenen Standpunkten aus zu betrachten. Dies soll ihnen helfen, in ihrer späteren Tätigkeit differentialdiagnostische und therapeutische Überlegungen in ihr ärztliches Handeln einfließen zu lassen. Diese Ziele sind auch im Profil des MSG verankert, in der die übergeordneten Lernziele formulierte worden sind [4], [5], [6].

Die Entwicklung des MSG spezifischen Lernzielkatalogs konnte außerdem die Transparenz der Lernziele erhöhen und eine fundierte Grundlage für Diskussionen zu Lehre und Studium schaffen. Der Lernzielkatalog wurde auf einer Klausauswertung des Modellstudiengangs im Jahr 2009 beschlossen und in den folgenden beiden Jahren durch das Institut für medizinische Informatik in Form eines Wikis entwickelt und durch die Fachvertreter der Kliniken und Institute mit Inhalten gefüllt. Moderiert wurde der Prozess durch eine Arbeitsgruppe, die sowohl mit klinischen als auch vorklinischen Vertretern besetzt war. Das Wiki-Format ermöglicht es der Fakultät, den Katalog bis heute kontinuierlich weiterzuentwickeln [7].

3. Lehrmethoden, Lehrformate

3.1. Studienabschnitte

Das Studium im MSG ist in vier Studienabschnitte unterteilt (siehe Abbildung 1).

3.1.1. 1. Studienabschnitt – Homogenisierung

Das Studium beginnt mit einem dreiwöchigen Einführungsblock. Dieser bietet einen ersten Einblick in das Berufsfeld und vermittelt medizinischen Hygiene- und Notfallmaßnahmen. In weiteren Kursen werden die heterogenen naturwissenschaftlichen Vorkenntnisse der Studierenden auf ein vergleichbares Niveau gebracht. Dabei ist der Kurs der Zellbiologie grundlegenden Bestandteil des ersten Studienjahres. In einem interdisziplinären Propädeutikurs der Organsysteme (IPO) wird Grundwissen über den Bau und die Funktionen des menschlichen Körpers vermittelt.

3.1.2. 2. Studienabschnitt - Interdisziplinäre Systemblöcke

Der zweite Studienabschnitt besteht aus interdisziplinären theoretisch-klinischen Systemblöcken. Hier werden ab dem dritten Semester erstmals klinische Inhalte im Studium unterrichtet. Systemblöcke behandeln modularisiert einzelne Organsysteme des Körpers in Vorlesungen, Seminaren, Seminaren zum problemorientierten Lernen (POL) und Praktika (siehe Abbildung 2). Die Lernspirale wird hier ausgehend vom Organ zum zweiten Mal durchlaufen. Neben den Systemblöcken gibt es Querschnittsfächer, die organübergreifende Inhalte in Vorlesungen, Übungen und Praktika behandeln. Im zweiten Studienabschnitt wird parallel zu den Systemblöcken ab dem dritten Semester der Untersuchungskurs (UK) angeboten. Verschiedene Untersuchungstechniken werden zunächst von Studierenden untereinander oder an Simulationspatienten und Simulationspatientinnen erlernt. Im zweiten Schritt werden Patienten und Patientinnen von Studierenden in 3-er Gruppen unter ärztlicher Anleitung untersucht, Kommunikationstechniken trainiert und spezielle Untersuchungstechniken vermittelt. Die gelernten Fertigkeiten werden im Rahmen des UK mittels eines arbeitsplatzbasierten Prüfungsformates, des MINI Clinical Evaluation Exercise (Mini-CEX) formativ geprüft [6]. Das Bestehen der Ärztlichen Basisprüfung (ÄBP), dem M1-Äquivalent des MSG, ist Zulassungsvoraussetzung für den Übergang in den dritten Studienabschnitt.

3.1.3. 3. Studienabschnitt - Klinische Semester

In diesem Studienabschnitt werden Patienten und Patientinnen und ihre Erkrankungen ins Zentrum der Lehre gerückt. Krankheitsentitäten werden nicht mehr ausgehend vom Organ, sondern von Patienten und Patientinnen und deren Symptomen betrachtet. Ein wichtiger Teil die-
Abbildung 1: Lernspirale im Modellstudiengang Medizin

Abbildung 2: 2. Studienabschnitt: Theoretisch – klinische Systemblöcke

3.1.4. 4. Studienabschnitt - Praktisches Jahr

Das Praktische Jahr (PJ) ist auch im MSG in drei Tertiale aufgeteilt, die in der Inneren Medizin, der Chirurgie und einem Wahlfach abgeleistet werden. Eingelegt wird das PJ von einem PJ-Vorbereitungskurs, in dem die praktischen Fertigkeiten der PJler und PJlerinnen zu Beginn des Praktischen Jahres aufgefrischt werden. Das PJ kann nicht nur am Aachener Universitätsklinikum, sondern auch an Akademischen Lehrkrankenhäusern durchgeführt werden. Im Wahlfach Allgemeinmedizin wird das Tertial in Akademischen Lehrpraxen abgeleistet [8].

3.2. Wissenschaftlichkeit im Medizinstudium

Der MSG verfolgt von Beginn des Studiums an das übergeordnete Ziel, die Studierenden zu wissenschaftlichem Denken und Handeln zu befähigen. Inhalte wie z.B. die Literaturrecherche, Hypothesengenerierung, Ambiguitätsbewusstsein oder das Erstellen von wissenschaftlichen Manuskripten werden fächerübergreifend gelehrt. Vom ersten bis zum zehnten Semester gibt es für die Studierenden obligatorische und fakultative Veranstaltungen, die sich mit den verschiedensten Aspekten des wissenschaftlichen Arbeitens auseinandersetzen. Durch die Wahl individueller Qualifikationsprofile wird im MSG der Grundstein für eine zukünftige wissenschaftliche Tätigkeit
oder spätere Spezialisierung in der Weiterbildung gelegt. Zehn Prozent des Stundenplans sind für diese Wahlpflichtveranstaltungen reserviert. Durch eine Schwerpunktbildung beim Besuch dieser Wahlpflichtveranstaltungen ist der Erwerb eines individuellen Qualifikationsprofils möglich. Weitere Elemente dieses longitudinalen Curriculums sind das POL, How to Read und How to Write a paper sowie das Science Skillslab (siehe Abbildung 3).

3.3. Problemorientiertes Lernen (POL)

Das Problemorientierte Lernen (POL) ist im Curriculum des MSG als longitudinalines Lehrformat vom 1. bis 7. Semester implementiert. Die problembasierte und interdisziplinäre Herangehensweise an Probleme unterstützt das Lehrprofil des MSG und seinen modularisierten Aufbau. Die Studierenden trainieren an krankheitstypischen Patientenfällen in einer strukturierten Vorgehensweise die Herangehensweise an ungelöste Probleme im Team. Zusätzlich werden hier Skills trainiert, die auch für das wissenschaftliche Arbeiten essentiell sind (z.B. Hypothesengenerierung, Literaturrecherche, etc.) [9]. Die Studierenden des MSG durchlaufen im Laufe ihres Studiums insgesamt 14 POL-Fälle mit jeweils zwei Terminen in Gruppen mit zehn Studierenden.

3.4. Skillslab AIXTRA

Das Trainingszentrum AIXTRA hat ein umfangreiches Programm etabliert, in welchem unter Einsatz von Simulationspatienten und Simulationspatientinnen und digitalen Simulatoren Anamnese- und Untersuchungstechniken vermittelt werden und praktische und kommunikative Fertigkeiten mit Video-Feedback trainiert werden. Hier werden sowohl verpflichtende Kurse im Rahmen der Systemblöcke oder anderer Veranstaltungen aus dem Curriculum als auch fakultative Kurse und Zeiten zum freien Üben angeboten.

3.5. Lehr- und Lernkultur

Die Modifikation des Curriculums hin zu einem Z-Curriculum, in welchem vorklinische und klinische Inhalte integriert vermittelt werden, bringt eine besondere Veränderung der Lehr- und Lernkultur auf unterrichtlicher, kollegialer und organisatorischer Ebene mit sich [10], [11]. Planung und Durchführung der Lehre bedürfen einer intensiven Kommunikation aller Beteiligten einschließlich der Studierenden. Unterrichtsformen wie das POL fördern die Eigenverantwortlichkeit der Studierenden, während die Studierenden mehr Wahlmöglichkeiten zu Ort und Zeit des Lernens, was sich positiv auf die Motivation auswirkt [14]. Der Wunsch nach Innovationen und kontinuierlicher Weiterentwicklung hat zudem den Professionalisierungsgrad auf Seiten der Lehrenden durch medizindidaktische Qualifizierungen vorangetrieben.

Eine weitere Betonung des eigenverantwortlichen Lernens stellen die Dokumentations- und Feedbackelemente Studierendenportfolio und HIP-Tool (How I Perform) dar.

4. Prüfungswesen

Das Prüfungskonzept des MSG baut auf summativen und formativen Prüfungsformaten auf. Der frühe Praxisbezug erfordert eine frühe Überprüfung der praktischen und kommunikativen Fertigkeiten im Curriculum neben Prüfungsformaten, die eher kognitive Inhalte prüfen [15], [12]. In den drei Studienabschnitten werden folgende Prüfungsformate durchgeführt:

- kognitiv: Multiple Choice Klausuren, strukturierte mündliche Prüfungen (summativ), sowie der Progress Test Medizin (PTM) (formativ)
- psychomotorisch: Objective structured practical examination (OSPE) (summativ), sowie arbeitsplatzbasierte MiniCEX (formativ)
Benotete Referate und Fallvorstellungen ergänzen das Prüfungsspektrum und fördern selbstorganisatorische, rhetorische und präsentationstechnische Fähigkeiten.

4.1. Die Ärztliche Basisprüfung (ÄBP)

Die Ärztliche Basisprüfung (ÄBP) stellt das Physikumsäquivalent (M1) des MSG dar. Hier werden entsprechend des §41 der ÄAppO die im Ersten Abschnitt der Ärztlichen Prüfung nachzuweisenden Kenntnisse und Fertigkeiten geprüft. Darüber hinaus sind aufgrund des interdisziplinären Ansatzes des MSG bereits klinische Inhalte und praktische Fertigkeiten prüfungsrelevant. Die ÄBP besteht aus einer kombinierten mündlich-praktischen Prüfung in Form einer OSPE und einer Multiple-Choice-Klausur. Um eine angemessene Qualität dieser universitären Prüfung sicherzustellen, wurden Leitlinien entwickelt, welche die Qualitätsanforderungen an Objektivität, Reliabilität und Validität unter Berücksichtigung internationaler Standards berücksichtigen.

Die Erstellung der Prüfungsaufgaben durchläuft einen dreifachen Review Prozess, in dem die Prüfungsinhalte mit dem Lernzielkatalog abgeglichen werden, die Formulierung der Fragen und des Erwartungshorizontes präzisiert und die naturwissenschaftliche und klinische Relevanz reflektiert wird. Abschließend werden die ca. 100 Prüfungsaufgaben des mündlich-praktischen Teils und die 120 MC-Fragen vom Review Board des Prüfungsausschusses verabschiedet. Zur Qualitätssicherung finden die 120 MC-Fragen vom Review Board des Prüfungsausschusses eine schriftliche Nachbewertung (Itemanalyse) statt. Anhand inhaltlicher Kriterien und teststatistischer Auswertungsergebnisse werden in dieser Nachbewertung Ergebniskorrekturen und Verbesserungsvorschläge für künftige Prüfungsaufgaben erarbeitet (siehe Abbildung 4).

4.2. Implementierung eines longitudinalen Konzeptes „MiniCEX“

Die Studierenden der Fachschaft Medizin haben 2013 gefordert, dass mehr praktische Prüfungen in das Curriculum integriert werden und die Studierenden mehr Feedback über die eigenen Fertigkeiten erhalten. Der MSG hat deshalb ein Projekt zur Implementierung eines longitudinalen Prüfungsformates aus dem Arbeitsplatzbasierten Prüfen, die Mini-Clinical-Evaluation-Exercise (MiniCEX) initiiert. Hierbei werden Studierende vom dritten bis zum zehnten Semester im Rahmen des Untersuchungskurses und der Blockpraktika wiederholt in ihrem Ausbildungsstand entsprechenden klinischen Situationen mit Patienten und Patientinnen beobachtet und erhalten im direkten Anschluss ein mündliches Feedback. Dieses wird in Form eines standardisierten Fragebogens dokumentiert. Es handelt sich hierbei um ein Prüfungsformat, welches rein formativ angelegt ist [6].

4.3. Progress Test Medizin

Der Progress Test Medizin (PTM) ist als formative Wissensüberprüfung konzipiert und basiert pro Test auf 200 MC-Fragen auf Absolventenniveau. Hauptanwendung des PTM ist ein longitudinalues Feedback für die Studierenden und der Vergleich mit anderen Fakultäten. Das Feedback wird durch ein Online-Feedback-Tool namens HIP („How I Perform“) ermöglicht. Den Studierenden ermöglicht der Ergebnisbericht die Überprüfung des eigenen Wissenszuwachses. Der PTM wird laut Prüfungsordnung verpflichtend für alle Studierenden angeboten. Die Teilnahme am Test ist Voraussetzung für die Zulassung zum jeweils nächsten Studienabschnitt [16].

5. Evaluation, Ergebnisse

Am Ende jedes Semesters führen die Jahrgangskoordinatoren Gruppen- und Einzelgespräche mit den Studierenden. In den Gesprächen erhalten sie ein Feedback zum allgemeinen Studienverlauf und zu Prüfungen. Die Koordinatoren und Koordinatorinnen übernehmen die Aufgabe, Ergebnisse aus den Gesprächen konstruktiv an die Dozierenden weiterzuleiten und unterbreiten den Studierenden Angebote zur Förderung und ähnliche Hilfestellungen. Diese Gespräche tragen daher zu einer kontinuierlichen Verbesserung der Organisation des Studienablaufs und der Qualität der Lehre bei und ergänzen die obligatorische studentische Lehrveranstaltungsbewertung.

5.2. Evaluierung durch die Studierenden

Die Studentische Lehrveranstaltungsbewertung wird seit dem WS 2004/05 durchgeführt. Die Ergebnisse der Lehrveranstaltungsbewertung werden der Studienkommission und dem Fakultätsrat vorgelegt und von der Fachschaft diskutiert.

5.3. Gesamtergebnisse

Seit Beginn des MSG verfolgt die Medizinische Fakultät kontinuierlich die evidenzbasierte Weiterentwicklung und Verbesserung des Curriculums. Kritikpunkte aus dem WR-Bericht von 2000 konnten erfolgreich angegangen werden. Das Abschneiden der Absolventen und Absolventinnen des MSG liegt heute i.d.R. weit über dem bundesweiten Durchschnitt [22].Die Zufriedenheit der Studierenden mit dem MSG und seines organisatorischen Konzeptes spiegelt sich in verschiedenen Rankings und der Lehrveranstaltung wieder. Auch eine Querschnittsstudie machte deutlich, dass erfüllte Erwartungen mit einer höheren Identifikation mit dem Modellstudiengang zusammenhängen [18].

Nächste Meilensteine stellen für die Fakultät ein Mapping des eigenen Lernzielkatalogs mit dem Nationalen Kompetenzbasierten Lernzielkatalog (NKLM) [http://www.nklm.de], [19] sowie die Umsetzung des Masterplans 2020 dar [20].
Abbildung 4: Aufbau der Gremien zur Fragenerstellung für die Ärztliche Basisprüfung

Im Oktober 2018 wurde die Medizinische Fakultät erneut durch den WR begutachtet. Der noch ausstehende Bericht wird zeigen, inwiefern sich die Fakultät durch die Einführung des Modellstudiengangs verbessern konnte. Kritikpunkte des WR werden dann in die Weiterentwicklung der kommenden Jahre einfließen (siehe Abbildung 5).

6. Sonstiges

6.1. Beteiligte Akteure

6.1.1. Dekanat und Studiendekanat

Das Dekanat leitet die Medizinische Fakultät. Aufgaben des Dekanats und des Studiendekanats sind unter anderem die Sicherstellung der Vollständigkeit des Lehrangebotes, die Einhaltung von Lehrverpflichtungen sowie der Studien- und Prüfungsorganisation, die Erstellung der Entwürfe zu Studien- und Prüfungsordnungen und die Durchführung der Evaluierung. Im MSG spielt das Dekanat als übergeordnetes Organisationsorgan eine wichtige Rolle bei der Umsetzung des Curriculums, bei Innovationen und bei der Motivation von Lehrenden und Studierenden.

6.1.2. Koordinierungsgruppe Lehre

Um die Qualitätskontrolle und Weiterentwicklung des MSG zu gewährleisten, wurde eine wöchentlich tagende professorale Koordinierungsgruppe MSG initiiert. Die so genannte KO-Gruppe behandelt gemeinsam mit den Beschäftigten des Studiendekanats und Fachschaftsvertretern alle akuten Probleme des Studien- und Lehrrahmens. Diskussionspunkte sind beispielsweise curriculare Fragestellungen und Weiterentwicklungen, Evaluierungen von Veranstaltungen, Durchfallquoten bei Prüfungen, Sonderfälle sowie Detailfragen, die bei der Organisation von Studium und Lehre auftreten.

6.1.3. Jahrgangskoordinatoren und Jahrgangskoordinatorinnen

Jedes Studienjahr wird von einem Jahrgangskoordinator bzw. einer Jahrgangskoordinatorin betreut. Zu den Aufgaben der Jahrgangskoordinatoren und Jahrgangskoordinatorinnen gehört die Beratung und Betreuung der Studierenden, die Stundenplangestaltung und die Organisation des Studienjahres in Zusammenarbeit mit den Lehrenden und Systemblockleitungen. Mit der Einführung der Jahrgangskoordinatoren und Jahrgangskoordinatorinnen ist ein neues Berufsbild im Studiendekanat entstanden. Darüber hinaus gibt es Prüfungs-, Wahlfach- und Auslandskoordinatoren und Prüfungs-, Wahlfach- und Auslandskoordinatorinnen, die in den jeweiligen Schwerpunkten die Beratung unterstützen [21], [22], [23].

6.1.4. Systemblockleiter und Systemblockleiterinnen

An den theoretisch-klinischen Systemblöcken sind verschiedene Institute und Kliniken beteiligt. Aufgrund des daraus resultierenden hohen Abstimmungsbedarfs der einzelnen Lehrveranstaltungen innerhalb eines Blocks kommt der Systemblockleitung eine wichtige Rolle zu. Sie sind Mitglieder des Lehrkörpers der/des am entsprechenden Kurs maßgeblich beteiligten Klinik/Institutes. Gemeinsam mit den Dozierenden des Systemblacks und den Jahrgangskoordinatoren und Jahrgangskoordinatorinnen gestalten sie die Inhalte der Veranstaltung, auch im Hinblick auf Redundanzen und Verknüpfungen mit anderen Veranstaltungen und stellen die Prüfungsfragen zusammen.
6.1.5. Lehrende

Die Einführung des Aachener Modellstudiengangs Medizin verlangte von den Dozierenden eine hohe Bereitschaft zur Interdisziplinarität und zur Zusammenarbeit untereinander sowie mit dem Studiendekanat. Um Redundanzen und Defizite bei der Konzeption von Lehrveranstaltungen zu vermeiden, ist eine intensive und kontinuierliche Kommunikation zwischen den Beteiligten notwendig. Der hohe Strukturierungsgrad des Studiums und der damit verbundene Abstimmungsbedarf der Lehrinhalte führten und führen nach wie vor zu Diskussionen bei der Weiterentwicklung des Curriculums. Die Systemblockleitung und die Studiengangsleitung moderieren in solchen Fällen.

7. Diskussion

Der Aachener Modellstudiengang Medizin wurde von der Medizinischen Fakultät der RWTH Aachen unter starkem Innovations- und Verbesserungsdruck entwickelt [2]. Die völlige Neukonzeptionierung des Studiengangs ab dem ersten Semester aufbauend stellte alle Beteiligten an der Fakultät vor große Herausforderungen. Die Umsetzung eines komplett reformierten Curriculums, wie sie die Einführung des MSG darstellte, gelingt nur durch eine konstruktive Zusammenarbeit verschiedener Akteure einer Fakultät. Die neue Ausrichtung konnte die Hauptmängel des WR Berichtes aus dem Jahre 2002, die Unzufriedenheit der Studierenden und das schlechte Abschneiden im Examen im bundesweiten Vergleich, beheben [17].

8. Schlussfolgerung

Die Medizinische Fakultät der RWTH Aachen wird den Modellstudiengang Medizin fortführen, solange die formalen Vorgaben der Approbationsordnung dies ermöglichen. Am Ende der Modellstudiengangsklausel können Elemente und Erfahrungen des MSG für die Entwicklung neuer Curricula dienen.

Interessenkonflikt

Die Autoren erklären, dass sie keine Interessenkonflikte im Zusammenhang mit diesem Artikel haben.

Literatur

1. Wissenschaftsrat. Stellungnahme zur weiteren Entwicklung der Medizinischen Fakultät der Rheinisch-Westfälischen Technischen Hochschule Aachen. Dresden: Wissenschaftsrat; 2014.
2. Groß D, Kleinmanns J, Schwanke E. 50 Jahre Medizinische Fakultät 1966 - 2016, RWTH Aachen. Herzogenrath: Shaker-Verlag; 2016.
3. RWTH Aachen. Studien- und Prüfungsordnung für den Modellstudiengang Medizin der Rheinisch-Westfälischen Technischen Hochschule Aachen mit dem Abschluss "Ärztliche Prüfung" vom 05.11.2008. Aachen: RWTH Aachen University; 2018.
4. RWTH Aachen. Profil des Studiums der Humanmedizin an der RWTH Aachen. Aachen: RWTH Aachen. Zugänglich unter/available from: http://www.medizin.rwth-aachen.de/cms/Medizin/Studium/Studiengangene/MedizinstudiengangMedizin/~vhl/Ziele/
5. Frank JR, Danoff D. The CanMEDS initiative: implementing an outcomes-based framework of physician competencies. Med Teach. 2007;29(7):627-642. DOI: 10.1080/01421590701746983
