Is it true that forest and land fires caused the extinction of biodiversity...?

Yanto Santosa* and Catharina Yudea Utami
*Corresponding author: yantohaurjaya@yahoo.co.id

Abstract. Every year forest fire are raging across Indonesia, causing economic and ecological losses. The thought that forest fire is pushing species towards extinction resulted in a lawsuit against fires in industrial forest, although the lawsuit sometimes are not based on scientifically studies. Since 2015 some studies has been held to learn more about the effect of forest fire on species diversity. Based on the word meaning of extinction, it shows that forest fires did not cause an extinction of a species, when a species is extinct or gone in some areas but still can be found in another areas, it is called extirpation. Extinct is when no doubt that the last individual species in the world is died. Furthermore, based on many researches that have been held before, 29% research showed that the fire impact on the decrease of the species number, while 58% showed the increasing impact and 13% resulted in no change. In line with that, the impact on species richness resulted with 27% of decrease, 61% increase, 12% has no change. Meanwhile on the impact of species composition, 33% research mention that there are change 50-75% in species composition and 67% research mention that there are <50% change in species composition. The opposite of the most lawsuit that has been given, it showed that fire impact tends to increase the number of species and species richness, compared to the value of the decrease, with tendencies that the change in species composition is not significant (<50%). In conclusion, forest fire did not result in species extinction, it results in the form of a decrease and or even an increase in the number of species or species richness index and changes in species composition.

1. Introduction
After the 1997/98 El Nino (ENSO) disaster which devastated 25 million hectares of forest worldwide [1], forest and land fires are not only a national issue, but also a regional issue and have even attracted international attention as an environmental and economic issue. Specifically for Indonesia, The World Bank [2] estimates that losses from fires in Indonesia in 2015 are estimated to reach IDR221 trillion or around US $ 16.1 billion. The fires that occurred in Indonesia continued to increase from 2017 to 2019, in 2017 the area of fires from 165,483.92 ha, drastically increased to 1,592,010 in 2019, where the worst area that caught on fire was in Central Kalimantan with total of 303,881 ha and South Sumatera with total of 328,457 ha [3].

Forest and land fires are one of the events that cause the most losses compared to other forest disturbing and destructive factors. Fire is the biggest threat to biodiversity worldwide [4], including in Indonesia. One of the losses from forest fires is the decrease in wildlife diversity due to loss of native habitat [5]. On the other hand, several researchers Komarek [6], Floyd [7], Fredericksen and Fredericksen [8], Purba [9], Nugroho [10] suggested that fires can increase the number of species, both undergrowth and wildlife. This contradiction is very interesting to be studied further through searches of publications on the topic "the impact of forest and land fires on the diversity of wildlife species" so
that it will be able to answer the public question "is it true that forest and land fires cause the extinction of biodiversity…?".

2. Method
The data and information presented in the results and discussion below are all obtained from the results of a literature review of 20 scientific publications both national (9) and international (11). The variables being compared are the number of species and species composition measured/observed in land/burned and unburned areas in pairs. Furthermore, the data were analysed tabulatively in the form of percent so that it can be distinguished what percentage of the total publications examined results show that the impact of fire is positive (increasing the number of species or changing the composition of species) and what percentage if otherwise.

3. Result and Discussion

3.1. Literatures that provide information of forest and land fire impacts on wildlife
In Indonesia forest and land fires are raging in every year and not a few of the origin fires are allegedly related with forest and plantation production activities. There are many law cases regarding that incidents and based on information disclosure to GAKUM KLHK, in 2019 it’s been recorded that legal proceedings were carried out on 55 concessions holder companies and 1 individual [11]. Many charge and accusation related to the biodiversity, where the fires accused to cause species, flora and fauna extinctions that occurred 100%, also change in population that occurred 100%. Meanwhile, in accordance with impact definition, the estimation of the impact on biodiversity can only be done if the condition of the diversity of flora and fauna from the baseline or before the fire is known. Most studies did not provide the estimation of the diversity from the baseline, and it is actually unclear whether these mortality data reflect the deaths of only a few individuals or entire population fires. However, there are some few researches that have been done to value the impact of forest and land fire on wildlife, including mammals, birds, herpetofauna and butterflies. From there, overview of the published research undertaken to date on the effects of fire on wildlife, using examples both from national and international research. Table below shows the list of the literatures.

Taxa	International Literature Source	Taxa	National Literature Source
Mammals and reptile	Letnick et al. [12]	Mammals	Nugroho GG [27]
Mammals	Tony et al. [14]	Mammals	Purba HS [9]
Birds	Peres et al [20]	Mammals and birds	Dima [13]
Birds	Barlow et al [21]	Birds	Kartiko I [28]
Birds	Taylor dan Barmore [22]	Birds	Sugiharti W [29]
Birds	Pfister [23]	Herpetofauna	Maulana P [30]
Birds	Smucker et al. [24]	Herpetofauna	Rejeki SS [31]
Herpetofauna	Fredericksen and Fredericksen	Butterflies	Nuveaestutti A [17]
Herpetofauna	Floyd et al [7]	Butterflies	Nugroho SS [10]
Butterflies	Huntzinger [25]	Butterflies	
Butterflies	Force [26]		
From the total of 20 literatures, 55% or 11 literatures are international and 45% or 9 literatures are domestic. More studies have concerned in birds, whereas fewer studies have examined the effects of fire on herpetofauna and butterflies (Table 1). The studies figured the impacts by comparing the number of diversity in burned area and non-burned area. Where from those literatures the research conducted in various land covers, from hummock grassland [12] some take place in oil palm plantation, production forest, and also forest area, including in national park [13].

3.2. Forest and land fires impact on species diversity and composition
So far forest fires have been seen as a disaster, which caused negative impacts on living things that exist in and around the fires location. Fire is considered as a cause of the diversity loss, even extinction, of both flora and fauna species. However, based on the literatures review, the results show that post-fires effect sometimes didn’t cause any change on wildlife species diversity and sometimes caused the increase of species diversity (Figure 2).

The figure above shows that there are more literatures stated that the fires tend to increase (50%) the diversity and less (15%) stated that after fires effect doesn’t change the species diversity. Tony et al [14] research that has been conducted at the Northern Chihuahuan Desert, stated that the diversity of small mammal species is not affected by fires, which is different from other related studies of mammals, apparently because the study looks only at the short-term effects. Other statements from Floyd et al. [7], Fredericksen and Fredericksen [8] show that the fires doesn’t cause change either, they stated that
amphibians and reptiles were not significantly affected by fire and did not differ significantly between burned and unburned areas. Cited in Stebbins and Cohen [15] that amphibians have moist, permeable skin and eggs, and that helps increase their vulnerability to heat and microhabitat drying. Another research also showed that amphibians and reptiles did not appear to be disturbed by approaching fire, they responded in adaptive manners that minimized mortality [6].

There are 35% literatures stated that the fires negatively impact the species diversity and decreasing the number of species. Fires can cause canopy strata to decrease, which can reduce or eliminate the habitat of some species. In spite of that, greater percentage (75% of the literatures) shows the opposite. Purba [9] and Letnick et al. [12], stated that the number of mammals species, especially for the small mammals were increased. Most small mammals can avoid fires by using protection such as culverts, rocks and wet leaves pile [4]. Small mammals will seek protection under the ground or a place that is protected from fire, but it will be more difficult for large mammals, they must find a safe location outside the fire or in an unburned place. And after the fires the habitat will slowly recuperate and the death trees, also a pile of leaf litter and understorey piles will provide plenty of shelter for small terrestrial mammals and others [16].

Some of the literatures also count the changes in species composition that occurred after the fire. None showed a 100% change, few show significant changes range of changes from 50%-75%, and most of the literatures show a little change (Figure 3).

Figure 3 Forest and land fire impact on wildlife species composition based on literatures

Significant changes in species composition can occur due to changes in the habitat and environment as well. Post-fire vegetation has a structure and composition that is not always identical to vegetation before the fire so that it can affect the presence of existing species. In reference [17], the number of species that found was small, 7 species in unburned area and 6 species in burned area, so that even a little different of the species from the baseline, can make a great changes. Meanwhile 75% of literatures show that changes do happen but not significant, it shows that the species can survive the fires and after the fires they will come back to their habitat. Big mammals return to their burnt habitats because they are already familiar with the area before burning, in addition many large mammals return because of the quantity and quality of food in the area. Some changes happen because the growth of new vegetation after a fire can cause abundant forage for certain species, so it allows the appearance of certain types of specialists and change species composition, as in Hutto's research [18], stated that seed-eating birds, such as (*Nucifraga Columbiana*), (*Carpodacus cassinni*), (*Loxia curvirostra*), and (*Carduelis pine*), which are more abundant in recently burnt forest areas in the first year after the fire disaster.

Overall none of the literatures cited that extinction of a species occurred. Extinction in biology means the loss of the existence of a species or group of taxon. A species is declared extinct if the last member of the species dies, which means it only occurs when there are no more living creatures of that species that can breed and form generations. IUCN [19] states ‘Extinct’ if there is no doubt that the last individual is dead and there is a term ‘Extinct in the wild’ (EW) when the taxon is known can only be found in certain captivity and no subjects are present in natural habitats. Meanwhile, if the extinction
only occurred in a study area, but this species can still be found elsewhere called extirpation. Fires allow the emergence of different resources and heterogeneity at the landscape level. This is what causes differences in species composition on land before and after burning, also bring through the loss or gain of new species and decreasing or increasing the amount of species diversity after fires.

4. Conclusion
Forest and land fires do not result in the extinction of all species of fauna, but only in the form of a decline and or even an increase in the number of species or species richness index and changes in species composition. As fire character and diversity of flora and fauna are site-specific, then a study of the impact of fires and their compensation calculations must be carried out specifically for each fire location. In accordance with impact definition, the estimation of the impact on biodiversity can only be done if the condition of the diversity of flora and fauna before the fire is known.

References
[1] FAO 2001 State of World’s Forest: 2001 Rome: Food and Agriculture Organisation of the United Nations
[2] The World Bank 2015 Indonesia Economic Quarterly: Reforming amid uncertainty p.21
[3] Ministry of Environment and Forestry 2019 Rekapitulasi luas kebakaran hutan dan lahan (ha) per provinsi di Indonesia tahun 2014-2019 (in Bahasa) Retrieved from October 6 2019 http://sipongi.menlhk.go.id/hotspot/luas_kebakaran
[4] Langford G J, Borden J A, Major C S, Nelson D H 2007 Effects of Prescribed Fire on the Herpetofauna of a Southern Mississippi Pine Savanna Herpetological Conservation and Biology 2(2) 135-143
[5] Kinnaird M F, O’Brien T G 1998 Ecological effects of wildfire on lowland rainforest in Sumatra Conserv Biol 12 954–956
[6] Komarek, E V 1969 Fire and animal behaviour Proceedings of the Tall Timbers Fire Ecology Conference 9 161-207
[7] Floyd T M, Russell K R, Moorman C E, Van Lear D H, Guynn D C Jr., dan Lanham J D 2002 Effects of prescribed fire on herpetofauna within hardwood forests of the Upper Piedmont of South Carolina: a preliminary analysis. In: Outcalt, K.W., ed. Proceedings of the eleventh biennial southern silvicultural research conference Gen. Tech. Rep. SRS-48. Asheville, NC: U.S. Department of Agriculture, Forest Service, Southern Research Station 123-127
[8] Fredericksen N J, Fredericksen T S 2002 Terrestrial wildlife responses to logging and fire in a Bolivian tropical humid forest Biodiversity and Conservation 11 27–38
[9] Purba H S 2017 Comparison of Mammals Diversity on Burned Land and Unburned Land in Oil Palm Plantation PT Waimusi AgroIndah, South Sumatera [thesis] Bogor (ID): IPB University
[10] Nugroho S S 2017 The Comparison Butterfly Diversity between Post-Burnt Area and Unburnt Area in Industrial Plantation Forest PT National Sago Prima, Riau Province [thesis] Bogor (ID): IPB University
[11] GAKUM KLHK. 2019. Rekapitulasi Penegakan Hukum Terkait Karhutla berdasarkan Jenis Perseroan (in Bahasa) Retrieved from October 6, 2019, https://www.scribd.com/document/439472610/Gakum-Karhutla-Perseroan-250919-Rev-03
[12] Letnic M, Dickman C, Tischler M, Tamayo B, Beh C 2004 The responses of small mammals and lizards to post-fire succession and rainfall in arid Australia Journal of Arid Environments 59 85-114
[13] Dima D 1999 Studi keanekaragaman Jenis Satwaliar pada Areal Bekas Kebakaran di Taman Nasional Way Kambas Propinsi Lampung [thesis] (in Bahasa) Bogor (ID): Bogor Agricultural University
[14] Tony J, Demarais S, Jeffrey J, and Carlton M. Britton 2010 Short-Term Fire Effects on Small Mammal Populations and Vegetation of the Northern Chihuahuan Desert International Journal of Ecology Volume 2010 Texas (US): Hindawi Publishing Corporation
[15] Stebbins RC, Cohen NW 1995 A natural history of amphibians Princeton University, Princeton, New Jersey
[16] Stawki C, Kortner G, and Geiser Fritz 2015 The Importance of Mammalian Torpor for Survival in a Post-Fire Landscape Conservation Biology 11 20150134
[17] Noveastuti A 2019 Comparison of Butterflies Diversity between Burnt and Unburnt Land in PT Waimus Agroindah [thesis] Bogor (ID): IPB University
[18] Hutto, Richard L 1995 Composition of bird communities following stand replacement fires in northern Rocky Mountain conifer forests Conservation Biology 9(5) 1041-1058
[19] IUCN (2001) IUCN Red List Categories and Criteria: Version 3.1. IUCN Species Survival Commission IUCN, Gland, Switzerland
[20] Peres C A, Barlow J, Haugaasen T 2003 Vertebrate responses to surface wildfires in a central Amazonian forest Oryx, 37(1), 97–109
[21] Barlow J, Haugaasen T, Peres CA 2002 Effects of ground fires on understorey bird assemblages in Amazonian forests Biological Conservation 105: 157–169
[22] Taylor D L and W J Barmore 1980 Post-fire succession of avifauna in coniferous forests of Yellowstone and Grand Teton National Parks, Wyoming Pages 130–140 in R. M. DeGraff, editor Workshop Proceedings: Management of western forests and grasslands for nongame birds. USDA Forest Service, Ogden, Utah, USA.
[23] Pfister A 1980 Postfire avian ecology in Yellowstone National Park [thesis] (USA): Washington State University, Pullman, Washington, USA
[24] Smucker M K, Hutto R L, Steele B M 2005 Changes in bird abundance after wildfire: importance of fire severity and time since fire Ecological Applications 15(5) 1535-1549
[25] Huntzinger M 2002 Effects of fire management practices on butterfly diversity in the forested western United States Biological Conservation 113 (2003) 1– 12
[26] Force D C 1981 Postfire insect succession in southern California chaparral. Am. Nat. 117 575–582
[27] Nugroho G G V V 2017 Comparison of Mammals Diversity between Post-Burned Land and Unburned Land at PT. National Sago Prima Industrial Forest, Riau Province [thesis] Bogor (ID): IPB University
[28] Kartiko I 2017 Comparison of Bird Diversity between Post Burning Land and Unburned at HTI PT National Sago Prima, Riau Province [thesis] Bogor (ID): IPB University
[29] Sugiharti W 2017 Comparison of Diversity Species of Birds between Burnt and Unburnt land In Oil Palm Plantation of PT Waimusi Agroindah, South Sumatera [thesis] Bogor (ID): IPB University
[30] Maulana P 2017 Diversity Comparison of Herpetofauna between Burnt and Unburnt Areas in Industrial Forest Plantation PT National Sago Prima, Riau Province [thesis] Bogor (ID): IPB University
[31] Rejeki S S 2017 Hepetofauna Diversity Comparison between Post Burnt and Unburnt Area in Oil Palm Plantation of PT Waimus Agroindah, South Sumatera [thesis] Bogor (ID): IPB University