Solar Wind and its Evolution

Takeru K. Suzuki

Department of Physics, Nagoya University, Furo-cho Nagoya, 606-8602, Japan

(Received xxxx xx, 2011; Revised xxxx xx, 2011; Accepted xxxx xx, 2011; Online published Xxxxx xx, 2008)

By using our previous results of magnetohydrodynamical simulations for the solar wind from open flux tubes, I discuss how the solar wind in the past is different from the current solar wind. The simulations are performed in fixed one-dimensional super-radially open magnetic flux tubes by inputting various types of fluctuations from the photosphere, which automatically determines solar wind properties in a forward manner. The three important parameters which determine physical properties of the solar wind are surface fluctuation, magnetic field strengths, and the configuration of magnetic flux tubes. Adjusting these parameters to the sun at earlier times in a qualitative sense, I infer that the quasi-steady-state component of the solar wind in the past was denser and slightly slower if the effect of the magneto-centrifugal force is not significant. I also discuss effects of magneto-centrifugal force and roles of coronal mass ejections.

Key words: atmosphere − MHD − planets − solar corona − solar wind − waves

1. Introduction

Young solar-type stars are generally very active: X-ray flux is up to ~ 1000 times larger than the present-day sun (Güdel et al. 1997, Güdel 2004), and the X-ray temperature is also higher (Ribas et al. 2005, Telleschi et al. 2005). Observations of young main sequence stars show very strong magnetic field strengths with an order of kG or even larger (Donati & Collier Cameron 1997; Saar & Brandenburg 1999; Saar 2001; see also Donati & Landstreet 2009 for recent review), which are much stronger than the average strength of 1-10 G of the current sun. Young stars are generally fast rotators and strong magnetic fields are generated by strong differential rotation through dynamo activities of magnetoconvection (e.g., Brun et al. 2004). As time goes on, a star loses its angular momentum through magnetic stellar wind (Weber & Davis 1967) and the magnetic activities become weak (e.g., Ayres, 1997).

Solar wind is hot plasma emanating from the Sun, and the mass loss rate amounts to ~ 10^{12} g s^{-1} (2 \times 10^{-14} M_{\odot} yr^{-1}) at present. As inferred from high activity of young solar-type stars, I expect that the solar wind was stronger at earlier times. Wood et al. (2002, 2005) observed astrospheres of low-mass stars by the Hubble space telescope and determined the mass loss rates. The estimated mass loss rates show a decreasing trend with time, except for very young stars, thought there is still a large scatter in the data, partly because the observed stars range from very low-mass to near solar-mass stars. At the very early epoch, the mass loss rate seems to be saturated at ~ 100 times of the present solar value, but some very young stars show lower mass loss rates than the present Sun.

The solar wind roughly consists of two components. The first component is called fast solar wind with speed of 700 – 800 km s^{-1} at the earth orbit. Fast solar wind is more steady and streams out from coronal holes which generally corresponds to open magnetic flux tube regions. The other component is slow solar wind with speed \lesssim 400 km s^{-1}. Slow wind is more complex and transient, and in most cases comes from lower latitude regions. Recent HINODE observations show that some portions of the slow wind appear to be originating from open flux tubes near active regions (Sakao et al. 2007, Imada et al. 2007, Harra et al. 2008), while there are still debates of other sources for slow wind.

As other types of magnetized plasma from the sun, coronal mass ejections (CMEs) also are supposed to affect atmospheres of planets especially at early times. In this paper, however, I mainly focus on solar wind from open magnetic flux tubes, and briefly mention effects of CMEs afterward. Our group has carried out forward numerical modeling of the solar wind by using direct magnetohydrodynamical (MHD) simulations, in which we can directly test the response of the solar atmosphere to the surface fluctuations and properties of magnetic fields. By using the results of the simulations with parameters suitable for the younger sun, I discuss the solar wind evolution.

2. Simulation Model

In this section, I briefly describe the simulations of the solar wind. For detail, please refer to Suzuki & Inutsuka (2006, SI06, hereafter). In order to cover the region with huge density contrast from \rho \sim 10^{-7} g cm^{-3} at the photosphere to \rho \sim 10^{-21} g cm^{-3} at the outer simulation boundary located at \approx 0.1 astronomical unit (AU), simple one dimensional (1-D) open flux tubes are adopted. The effects of super-radial expansion of flux tubes are incorporated by tak-
ing into account an expansion factor in the conservation of magnetic flux of radial \((r)\) component, \(B_r\):

\[B_r r^2 f(r) = \text{const.}, \]

where \(f(r)\) is a super-radial expansion factor. Most of the solar surface is covered by closed magnetic loop structure. Then, open flux tubes rapidly open above these loops; \(f\) is introduced to consider this effect. The same function as in [Kopp & Holzer, 1976] is adopted for \(f(r)\) (see SI06 for detail).

In SI06 we input the transverse fluctuations of the field line by the granulations at the photosphere. Amplitude, \(\langle dv_\perp \rangle\), at the photosphere is chosen to be compatible with the observed photospheric velocity amplitude \(\sim 1\text{ km s}^{-1}\) [Holweger et al., 1978]. SI06 tested various types of spectra; in this paper I discuss the results of the power spectra in proportion to \(1/\nu\), where \(\nu\) is frequency. The surface fluctuations generate upgoing Alfvén waves which contribute to the acceleration of the solar wind in upper regions. At the outer boundaries, a non-reflecting condition is imposed for all the MHD waves, which enables us to carry out simulations for a long time until quasi-steady state solutions are obtained without unphysical wave reflection.

SI06 dynamically treat the propagation and dissipation of the waves and the heating and acceleration of the plasma by solving ideal MHD equations with the relevant physical processes, including the sun’s gravity, radiative cooling, and thermal conduction [Suzuki & Inutsuka, 2005, SI06]. I do not take into account stellar rotation, which may be important for very young stars. For the initial condition, we assume a static atmosphere with temperature \(T = 10^4\text{K}\) in order to see whether the atmosphere is heated up to coronal temperature and accelerated to accomplish the transonic flow. From \(t = 0\), the transverse fluctuations are injected from the photosphere and continue the simulations until the quasi-steady states are achieved.

3. Solar Wind Response to Surface Condition

By injecting fluctuations from the photospheric surface, the initially cool and static atmosphere is effectively heated and accelerated by the dissipation of the generated upgoing Alfvén waves. The sharp transition region which divides the cool chromosphere with \(T \sim 10^4\text{K}\) and the hot corona with \(T \sim 10^6\text{K}\) is formed owing to a thermally unstable region around \(T \sim 10^6\text{K}\) in the radiative cooling function [Landini & Monsignori-Fossi, 1999]. The hot corona streams out as the transonic solar wind (see Suzuki & Inutsuka, 2005, & SI06 for detail).

The heating and acceleration of the solar wind plasma in inner heliosphere results from the dissipation of Alfvén waves. In the simple 1-D treatment, Alfvén waves mainly dissipate via nonlinear mode conversion; slow MHD waves are nonlinearly generated from outgoing Alfvén waves and the slow MHD waves are damped by shock formation as a result of steepening of wave shape. The shocks also heat up surrounding plasma, which play a central role in the heating of the solar wind plasma. Magnetic pressure associated with the Alfvén waves decreases with height as a result of the successive dissipation process, which directly pushes the plasma outward (momentum input) in addition to gas pressure.

The young sun is more active than the present-day sun, and therefore, I expect that surface fluctuations are stronger. The properties of the magnetic fields are also supposed to be very different. I discuss how properties of the solar wind are affected by fluctuation amplitudes and magnetic fields at the solar surface.

3.1 Dependence on Surface Fluctuation Amplitude

Figure 1 shows the response of the solar wind plasma to the surface fluctuations with different amplitudes, \(\langle dv_\perp \rangle = 0.4\text{ km s}^{-1}\) (blue), \(0.7\text{ km s}^{-1}\) (black dashed), and \(1.4\text{ km s}^{-1}\) (red). I plot solar wind speed, \(v_r\) (top left), temperature, \(T\) (top right), density in logarithmic scale, \(\log(\rho/\text{g cm}^{-3})\) (bottom right), and rms transverse velocity, \(\langle dv_\perp \rangle\) (bottom left). Each variable is averaged with respect to time during 28min (the longest wave period considered).
deeper location around \(r \simeq 0.005 R_\odot \) than the other cases. Thanks to this, the decrease of the density is slower (larger pressure scale height) so that the density around \(r = 1.01 R_\odot \) is two orders of magnitude larger than that of the reference case with \(\langle dv_{\perp} \rangle = 0.7 \text{ km s}^{-1} \). However, the temperature decreases slightly instead of showing a monotonous increase; it cannot go over the peak of the radiative cooling function at \(T \simeq 10^7 \text{K} \) (Landini & Monsignori-Fossi, 1990) because the radiative loss is efficient, owing to the large density. The temperature again increases from \(r \simeq 1.03 R_\odot \) and above there the corona forms. The coronal density is larger than the that of the reference case as explained above.

A striking feature is that the mass flux of solar winds sensitively depends on the input wave amplitude at the solar photosphere. Since the injected energy is proportional to the square of \(dv_{\perp} \), the difference of the input energy between the small amplitude case \(\langle dv_{\perp} \rangle = 0.4 \text{ km s}^{-1} \) and the large amplitude case \(\langle dv_{\perp} \rangle = 1.4 \text{ km s}^{-1} \) is \(\simeq 12 \). However, the output mass flux of the large amplitude case is \(\sim 400 \) times larger than the mass flux of the small amplitude case.

The sensitive behavior on the surface amplitude can be understood by reflection and nonlinear dissipation of Alfvén waves (S106). Because the heating is smaller, the temperature is lower in the smaller \(\langle dv_{\perp} \rangle \) cases. Then, the scale height becomes smaller and the density decreases rapidly. The Alfvén speed, \(v_A = B_\perp/\sqrt{4\pi \rho} \), changes more rapidly due to the rapid decrease of density and the wave shape is largely deformed, which enhances the reflection. When the input wave energy decreases, a positive feedback operates; a smaller fraction of the energy can reach the coronal region. As a result, the density and mass flux of the solar wind becomes much smaller than the decreasing factor of the input energy.

In addition to the effect of the wave reflection, the nonlinear dissipation of the Alfvén waves also plays a role in the sensitive dependence on the input wave energy (S106). When the input wave energy becomes smaller, the density becomes smaller as explained above. Then, the nonlinearity of Alfvén wave, \(dv_{\perp}/v_A \), decreases, not only because the amplitude, \(dv_{\perp} \), is smaller but also because the Alfvén speed, \(v_A \propto 1/\sqrt{\rho} \), is larger. Therefore, the Alfvén waves do not dissipate and the heating is reduced, which further decreases the density; this is another type of positive feedback, which also results in the sensitive dependence of the density on the input wave energy.

3.2 Magnetic Fields

At earlier epochs the sun is expected to have possessed stronger magnetic field than today, as inferred from observations of young stars (Donati & Collier Cameron, 1997; Saar & Brandenburg, 1999). The configuration of magnetic fields as well as field strength plays an essential role in determining the physical solar wind conditions. In the 1-D treatment as adopted in this paper, a super-radial expansion factor, \(f \), determines the geometry of flux tubes. Wang & Sheeley (1990, 1991) showed that the solar wind speed at \(\sim 1 \text{AU} \) is anti-correlated with \(f \) from their long-term observations. This can be naively understood by energetics consideration; since \(f \) directly determines an adiabatic loss of plasma in flux tubes, solar wind plasma in largely expanding (larger \(f \)) flux tubes undergoes larger energy loss.

By the comparison of the outflow speed obtained by interplanetary scintillation measurements with observed photospheric field strength (Kojima et al., 2005) have found that the solar wind velocity is better correlated with surface magnetic field strength, divided by the expansion factor, \(B_{r,0}/f \). They claim that \(B_{r,0}/f \) is a better index for the speed of solar wind than individual \(1/f \) or \(B_{r,0} \). The correlation between \(B_{r,0}/f \) and solar wind speed is well explained by Alfvén waves in expanding flux tubes (Suzuki, 2006). Because the energy flux of input Alfvén waves is proportional to \(B_{r,0} \), the positive correlation of solar wind speed with \(B_{r,0} \) is quite natural. The negative correlation with \(f \) reflects the adiabatic loss of Alfvén waves in expanding tubes as explained above.

One can understand the correlation more specifically from nonlinear dissipation of Alfvén waves as well. The nonlinearity of the Alfvén waves, \((dv_{\perp})/v_A \), is controlled by \(v_A \propto B_\perp \propto B_{r,0}/f \) in the outer region where the flux tube is already super-radially open. Wave energy does not effectively dissipate in the larger \(B_{r,0}/f \) case in the subsonic region because of relatively small nonlinearity, and more energy remains in the supersonic region. In general, energy and momentum inputs in the supersonic region result in higher wind speed, while those in the subsonic region raise the mass flux \((\rho v_\perp) \) of the wind by increasing density (Lamers & Cassinelli, 1999). This indicates that the solar wind speed is positively correlated with \(B_{r,0}/f \).

4. Evolution of Solar Wind

I have described based on our numerical simulations that the solar wind from open magnetic flux tubes is mainly controlled by the three parameters: surface fluctuation amplitude, \(\langle dv_{\perp} \rangle \), radial magnetic field strength at the photosphere, \(B_{r,0} \), and super-radial expansion factor, \(f \), of flux tubes. Thus, if I can determine these parameters for the young sun, I can estimate the properties of solar wind at that
time.

4.1 Surface Fluctuation Amplitude

I can speculate that $\langle dv_{\perp} \rangle$ was larger at earlier times from circumstantial evidences. First, the rotation of the sun should be faster at earlier times because of loss of angular momentum with time. Hence, in addition to surface convection, interior differential rotation will lead to stronger surface fluctuations. From observational facts, younger stars shows higher X-ray activities as discussed in the introduction section, which also anticipates larger $\langle dv_{\perp} \rangle$. An important issue is that a small increase of $\langle dv_{\perp} \rangle$ leads to a large increase of mass flux of solar wind.

4.2 Magnetic Field – $B_{r,0} f f$

$B_{r,0}$ is also supposed to be larger than today as implied from observations of young stars [Donati & Collier Cameron, 1997; Saar & Brandenburg, 1999]. Rossby number, R_0, which is defined as the ratio of stellar rotation period to convective turn-over time, is an important index which describes stellar magnetic activities [Noyes et al., 1984]. Surface magnetic field strength, B_{ph}, multiplied by a magnetic areal filling factor, f, is well-correlated with R_0^{-1}. Stars with small $R_0 < 0.1$, which correspond to fast rotating young stars, have $B_{ph} f = 1$-10 kG [Saar, 2001]. In some stars f's are obtained and the values are 50-70%, which shows that B_{ph} is an order of 10 kG in these stars.

If all the magnetic flux is open to the interplanetary space, I can set $f = 1/f; \text{in reality, however, closed loop structure is more dominant, and then, it is expected that } f \gg 1/f$. I speculate that super-radial expansion, f, of the young sun was larger as discussed from now, although it is not simple to pin down the specific value. Recently, the configuration of magnetic field has been observed in a number of low-mass stars (e.g. Donati et al., 2008). Fast rotating solar mass stars possess non-axisymmetric poloidal components with substantial toroidal fields (see Fig.3 of Donati & Landstreet, 2009). This implies that the field configuration is quite complicated, and is very different from ordered dipole structure. In comparison with 11-year periodicities of present-day solar activity, the properties of magnetic field of the earlier sun resemble the condition of the present-day solar maximum rather than the solar minimum.

During the solar minimum periods, the solar wind consists of fast wind which is from mid- to high-latitude regions, and slow wind from lower-latitude regions. On the other hand, during the solar maximum periods, most of the regions are occupied by transient slow wind (McComas et al., 2008). At the solar maximum magnetic fields are dominated by a dipole component, while at the solar minimum higher multi-pole moments become more important showing more complex field configuration (Hakamada et al., 2005). Because the surface is mostly covered with closed magnetic fields during the solar maximum, the field strength in the outer regions is not as strong as that at the solar minimum although the field strength at the photosphere is stronger. This fact shows that f is larger during the solar maximum. The speed of the solar wind during the solar maximum is slower, which is consistent with the observational trend [Kojima et al., 2005], because of larger adiabatic loss in open magnetic flux tubes.

Based on these considerations, namely (i) the magnetic field strength of the young sun more resembles the current solar maximum than the solar minimum, and (ii) open flux tubes show larger expansion during the solar maximum because larger surface area is occupied by closed structure, I infer that open magnetic flux tubes of the young sun have much larger f. I speculate that, even though the magnetic field strength at the footpoints is stronger, $B_{r,0}/f$, is smaller at earlier time.

4.3 Solar Wind in the Past

I would like to discuss how the properties of solar wind change in the past based on the simulation results. I have stated that $\langle dv_{\perp} \rangle$ was larger and $B_{r,0}/f$ was smaller at earlier times. These conditions imply considerably denser but slightly slower solar wind in the past, although it is quite difficult to quantitatively determine the physical condition.

4.4 Limitations

In this paper I neglect the effect of magneto-centrifugal force in driving winds [Weber & Davis, 1967; Mestel, 1968]. Under the typical solar condition, if the rotation period is 4 days (6-7 times faster than the present sun) or less, magneto-centrifugal force plays an important role and the wind speed becomes significantly higher [Newkirk, 1980].

Recently, Holzwarth & Jardine (2007) calculated the evolution of solar wind by considering magneto-centrifugal force. They concluded that the solar wind in the past was faster but not so much denser than today, which are different from my conclusion. Holzwarth & Jardine (2007) adopted the density at a 'reference point', 1.1 times of the stellar radius, in a parameterized way; they assume power-law dependence on stellar rotation rate. Since the basal density strongly constrains the mass loss rate (see, e.g. section 3 of Lamers & Cassinelli, 1999) and the adopted dependence in their standard case is rather weak, the derived mass loss rate shows weak dependence with time. In a strict sense, the density at the coronal base, accordingly the density at the reference level, is determined by the energy balance among heating, thermal conduction, and radiative cooling (SI06; see also Suzuki 2007 for different types of stars). The base densities of young active stars are larger than those of quiescent stars, and the mass loss rates are supposed to be significantly larger. In this case the wind speed becomes slower because more mass needs to be pushed away. The same tendency on the coronal base density is also reported by Stereborg et al. (2011) who performed 3D MHD simulations for a young sun.

It is not still possible to discuss the wind speed in a quantitative sense at the moment. My conclusion of the slightly slower wind in the past might be corrected because magneto-centrifugal force could be significant. On the other hand, I suppose that the wind speed is not so high as estimated by Holzwarth & Jardine (2007) because the coronal base density should larger at that time than their assumption. Accordingly, the density of the solar wind could be larger than those calculated in Holzwarth & Jardine (2007).

In this paper I focus on quasi-steady-state solar wind from open magnetic flux regions, and do not consider CMEs.

I would like to note that the 11-year duration is modulated with time depending activity even in last several hundred years (Miyahara et al., 2008)
While the quasi-steady-state component contributes the total mass loss from the present-day sun than CMEs, at early times CMEs might play a more important role because of stronger magnetic activities. From the fossil record on the lunar surface, it is inferred that the speed of solar wind was faster in the past ([Ray & Heymann, 1980; Newkirk, 1980]. I infer that the fossil record comprises effects of both quasi-steady state component and CMEs. If strong CMEs dominantly contribute to the mass loss, the bulk speed of plasma flow from the sun would be recognized as higher. I speculate that the fossil imprint on the moon is connected with high CME activities at early epochs.

5. Summary

Based on our previous results of MHD simulations, I discuss the evolution of the quasi-steady-state component of solar wind from open flux tubes. The properties of the solar wind are determined by the three parameters, surface fluctuation amplitude, magnetic field strength, and expansion of open flux tube. Referring to observational data of young low-mass stars, I suppose that the surface amplitude was larger and the ratio of field strength to flux tube expansion was smaller. Following this speculation, the solar wind in the past was dense and slightly slower than today, while if the effect of magneto-centrifugal force is taken into account, the speed of the solar wind might be higher at very early epoch than my conclusion. CMEs are also supposed play a more important role in the past than today because of higher magnetic activities. In order to understand the effects of solar magnetized plasma on the atmospheres of planets, we need to understand the evolution of CMEs as well as the evolution of quasi-steady-state solar wind.

Acknowledgments. This work was supported in part by Grants-in-Aid for Scientific Research from the MEXT of Japan, 19015004, 20740100, 22864006, and Inamori Foundation. The author thanks two anonymous reviewers for many constructive suggestions to improve the paper. Guest editor M. Yamauchi thanks two anonymous reviewers in evaluating this paper. (Received February 3, 2011; Revised April 6, 2011; Accepted April 11, 2011.)

References

Ayres, T. R., Evolution of the solar ionizing flux, J. Geophys. Res., 102, 1641 - 1652, 1997
Brun, A., S., Miesch, M. S., Toomre, J., Global-Scale Turbulent Convection and Magnetic Dynamo Action in the Solar Envelope, Astrophys. J., 614, 1073 - 1098, 2004
Donati, J.-F. & Collier Cameron, A., Differential rotation and magnetic polarity patterns on AB Doradus, Mon. Not. Roy. Astron. Soc., 291, 1 - 19, 1997
Donati, J.-F. et al., Large-scale magnetic topologies of early M dwarfs, Mon. Not. Roy. Astron. Soc., 390, 545 - 560
Donati, J.-F. & Landstreet, J. D., Magnetic Field of Nondegenerate Stars, Ann. Rev. Astron. Astrophys., 47, 333 - 370
Güdel, M. X-ray astronomy of stellar coronae, Astron. Astrophys. Rev., 12, 71 - 237, 2004
Güdel, M., Guinan, E. F., Skinner, S. L., The X-Ray Sun in Time: A Study of the Long-Term Evolution of Coronae of Solar-Type Stars, Astrophys. J., 483, 947 - 960, 1997
Hakamada, K., Kojima, M., Ohmi, T., Tokumaru, M. Fujiki, K., Correlation between Expansion Rate of the Coronal Magnetic Field and Solar Wind Speed in a Solar Activity Cycle Sol. Phys., 227, 387 - 399, 2005
Harra, L. K. et al. Outflows at the Edges of Active Regions: Contribution to Solar Wind Formation?, Astrophys. J. Lett., 676, 1-150, 2008
Holweger, H., Gehlsen, M., & Ruland, F.: Spatially-averaged properties of the photospheric velocity field, Astron. Astrophys., 70, 537 - 542, 1978
Holzwarth, V. & Jardine, M., Theoretical Mass Loss Rates of Cool Main-sequence Stars, Astron. Astrophys., 463, 11 - 21, 2007
Imada, S. et al., Discovery of a Temperature-Dependent Upflow in the Plage Region During a Gradual Phase of the X-Class Flare., Pub. Astron. Soc. Japan, 59, S793 - 799, 2007
Johns-Jrull, C. M., The Magnetic Fields of Classical T Tauri Stars, Astrophys. J., 664, 975 - 985, 2007
Kojima, M., K. Fujiki, M. Hirano, M. Tokumaru, T. Ohmi, and K. Hakamada, Solar Wind properties from IPS observations, The Sun and the heliosphere as an Integrated System, Giannini, Poletto and Steven T. Suess, Eds, Kluwer Academic Publishers, 147 - 181, 2005
Kopp, R. A. & Holzer, T. E., Dynamics of coronal hole regions. I – Steady polytropic flows with multiple critical points, Sol. Phys., 49, 43 - 56, 1976
Lamers, H. J. G. L. M. & Cassinelli, J. P., Introduction to Stellar Wind, Cambridge, 1999
Landini, M. & Monsignori-Fossi, B. C.: The X-UV spectrum of thin plasmas., Astron. Astrophys. Suppl., 82, 229 - 260, 1990
McComas, Ebert, R. W., Elliot, H. A., Golestein, B. E., Cosling, J. T., Schwadron, N. ., Skoug, R. M., Weaker solar wind from the polar coronal holes and the whole Sun., Geophys. Res. Lett., 35, L18103
Mestel, L., Magnetic Braking by a Stellar Wind - I., Mon. Not. Roy. Astron. Soc., 138, 359 - 391
Miyahara, H., Yokoyama, Y., Masuda, K., Possible link between multi-decadal climate cycles and periodic reversals of solar magnetic field polarity, Earth. Planet. Sci. Lett., 272, 290 - 295
Newkirk, Gordon Jr., Solar Variability on Time Scale of 10^5 years to 10^9,6 years, Proc. Conf. Ancient Sun, 293 - 320, 1980
Noyes, R. W., Hartmann, L. W., Baliunas, S. L., Duncan, D. K., & Vaughan, A. H., Rotation, Convection, and Magnetic Activity in Main-sequence Stars, Astrophys. J., 279, 763 - 777, 1984
Ray, J. & Heymann, D., A Model for Nitrogen Isotopic Variations in the Lunar Regolith: Possible Solar System Contributions from a Nearby Planetary Nebula, Proc. Conf. Ancient Sun, 491 - 512, 1980
Ribas, I., Guinan, E. F., Güdel, M., Audard, M., Evolution of the Solar Activity over Time and Effects on Planetary Atmospheres. I. High-Energy Irradiances (1-1700nA), Astrophys. J., 622, 680 - 694, 2005
Saar, S. H., Recent Measurements of (and Inferences about) Magnetic Fields on K and M stars, the 11th Cool Stars, Stellar Systems and the Sun, ASP Conf. Series, 223, 292 - 299, 2001
Saar, S. H. & Brandenburg, A., The Evolution of the Magnetic Activity Cycle Period. II. Results for an Expanded Stellar Sample, Astrophys. J., 524, 295 - 310, 1999
Sakao, T. et al., Continuous Plasma Outflows from the Edge of a Solar Active Region as a Possible Source of Solar Wind, *Science*, 318, 1585 - 1588, 2007

Stereborg, M. G., Cohen, O., Drake, J. J., Gombosi, T. I., Modeling the Young Sun’s Solar Wind and Its Interaction with Earth’s Paleomagnetosphere, *J. Geophys. Res.*, 116, A01217, 2011

Suzuki, T. K., Forcasting Solar Wind Speeds, *Astrophys. J. Lett.*, 640, L75 - L78, 2006

Suzuki, T. K., Structured Red Giant Winds with Magnetized Hot Bubbles and the Corona/Cool Wind Dividing Line, *Astrophys. J.*, 659, 1592 - 1610

Suzuki, T. K. & Inutsuka, S.: Making the corona and the fast solar wind: a self-consistent simulation for the low-frequency Alfvén waves from photosphere to 0.3AU, *Astrophys. J. Lett.*, 632, L49 - L52, 2005

Suzuki, T. K. & Inutsuka, S.: Solar Winds Driven by Nonlinear Low-Frequency Alfvén Waves from the Photosphere: Parametric Study for Fast/Slow Winds and Disappearance of Solar Winds, *J. Geophys. Res.*, 111, A6, A06101, 2006 (SI06)

Telleschi, A. Güdel, M., Briggs, K., Audard, M., Ness, J.-U., Skinner, S. L., Coronal Evolution of the Sun in Time: High-Resolution X-Ray Spectroscopy of Solar Analogs with Different Ages, *Astrophys. J.*, 622, 653 - 679, 2005

Wang, Y.-M. & Sheeley, Jr, N. R., Solar wind speed and coronal flux-tube expansion, *Astrophys. J.*, 355, 726 - 732, 1990

Wang, Y.-M. & Sheeley, Jr, N. R., Why fast solar wind originates from slowly expanding coronal flux tubes, *Astrophys. J. Lett.*, 372, L45 - L48, 1991

Weber, E. J., Davis, L. Jr. The Angular Momentum of the Solar Wind, *Astrophys. J.*, 148, 217 - 227, 1967

Wood, B. E., Müller, H.-R., Zink, G. P., Linsky, J. L., Measured Mass-Loss Rates of Solar-like Stars as a Function of Age and Activity, *Astrophys. J.*, 574, 412 - 425, 2002

Wood, B. E., Müller, H.-R., Zink, G. P., Linsky, J. L., Redfield, S., New Mass-Loss Measurements from Atmospheric Lyα Absorption, *Astrophys. J. Lett.*, 628, L143 - L146, 2005

T.K.Suzuki (e-mail: stakeru@nagoya-u.jp)