A comparative study of one parameter lifetime distributions

Abstract

In this paper, a comparative study on some selected one parameter distributions has been carried out. The important properties of distributions have been compared using various datasets from engineering, biological sciences and other fields. The lifetime data have been taken from various fields of studies. Various proposed models have been applied on data to check goodness of fit and their behavior have been discussed with graphically.

Keywords: pranav distribution, akash distribution, shanker distribution, lindley distribution, exponential distribution, statistical properties, estimation of parameter, goodness of fit

Introduction

In the new era, uses of different life time distributions have been becoming more important because of increasing varieties of products and their survivors. Especially in reliability analysis, one can know failure rate as well time to survive of products, which can be calculated using different models. One parameter distribution can be applied easily way for any dataset, and its characteristics and mathematical properties can be calculated. Its applications are crucial in biostatistics as well as actuarial sciences and related field. The event may be failure of a piece of equipment, death of a person, development (or remission) of symptoms of disease, health code violation (or compliance). The modeling and statistical analysis of lifetime data are crucial for statisticians, research workers and policy makers in almost all applied sciences including engineering, medical science/biological science, insurance and finance, amongst others. Many statisticians have been proposed many distributions of one parameter and two parameters, but in this study, specially focused on some selected one parameter, most of them have been proposed recently. In this paper, author is tried to compare statistics of one parameter lifetime distributions using different lifetime data-sets from Engineering, medical sciences and social sciences. Different distributions have been proposed by different statisticians. Names of distributions of one parameter and their introducers are given in Table 1.

Table 1 Pdf of distributions and their introducers

Name of distribution	Probability distribution function (pdf)	Introducers
Exponential distribution	\(f(x) = \theta e^{-\theta x} \)	
Lindley distribution	\(f(x) = \frac{\theta^2}{\theta + 1} (1 + x) e^{-\theta x} \)	Lindley¹
Akash distribution	\(f(x) = \frac{\theta^2}{\theta^2 + 2} (1 + x^2) e^{-\theta x} \)	Shanker²
Pranav Distribution	\(f(x) = \frac{\theta^3}{\theta^2 + 2} (1 + x^3) e^{-\theta x} \)	Shukla³
Ishita Distribution	\(f(x) = \frac{\theta^3}{\theta^2 + 2} (\theta + x^2) e^{-\theta x} \)	Shanker & Shukla⁴
Ram Awadh distribution	\(f(x) = \frac{\theta^6}{\theta^6 + 120} (\theta + x^3) e^{-\theta x} \)	Shukla⁵
Prakaamy distribution	\(f(x) = \frac{\theta^6}{\theta^6 + 120} (1 + x^5) e^{-\theta x} \)	Shukla⁶
Sujatha distribution	\(f(x) = \frac{\theta^3}{\theta^2 + \theta + 2} (1 + x + x^2) e^{-\theta x} \)	Shanker⁷

Characteristics of distributions

In this section, different distributions have been compared according to their behavior, moments and dispersion numerically as well as graphically. This section covers behavior of distributions (pdf), coefficient of variation, and coefficient of skewness, kurtosis and index of distribution respectively. Basically these distributions are continuous and known as lifetime distributions can be applied for biological, engineering and agricultural studies. Detailed studies including behavior, moments, stress & strength reliability, parameter estimation and etc. about above mentioned distributions can be shown in their paper. In statistical literature, exponential distribution was first studied by Epstein (1940) and widely used as lifetime model in different fields. The main reason for its wide use and applicability.
A comparative study of one parameter lifetime distributions

as lifetime model because it is simple to apply on any datasets, and
another important use of this distribution is in the reliability field.
Lindley distribution is introduced by Lindley\(1-7\) and further it’s studied
by Ghitani et al.\(1\) where nature and behavior of Lindley distribution
including mathematical properties can be shown in their paper. They
applied Lindley distribution in waiting time of customer in Bank
and showed that its suitability over other distributions. Ram Awadh
distribution has been introduced and studied by Shukla (2018b),\(5\)
and he showed its superiority over other one parameter life time
distribution in his paper. Similarly other one parameter distributions as
above mentioned are also studied in detailed by different researchers
and shows their superiority over other one parameter distributions.

Let \(X\) be a continuous random variable representing the lifetimes
of individuals in some population. The expressions for probability
density function, \(f(x)\), cumulative distribution function, \(F(x)\),
have been presented in Figure 1 and 2. From the Figure 1, it is
clear that pdf of almost all distributions are increasing as increased
value of parameter. Especially pdf of exponential distribution is
increasing more in comparison to other distributions as increased
value of parameter. Pattern of almost all distributions are same except
exponential distribution.
A comparative study of one parameter lifetime distributions

Figure 2 Cdf plots of different distributions for varying value of parameter.

Mathematical constants

Coefficient of variation (C.V.), coefficient of skewness \(\sqrt{\beta} \), coefficient of kurtosis \(2 \beta \), and index of dispersion \(\gamma \) of above mentioned distributions in the Table 1 have been compared. The graphs of C.V., \(\sqrt{\beta} \), \(\beta \), and \(\gamma \) of distributions for varying values of the parameter \(\theta \) are shown in Figure 2.

From the Figure 3, it is observed that coefficient of variation, coefficient of skewness and coefficient of kurtosis of Ram Awadh, Prakaamy and Pranav distributions are increasing vastly up to certain points then decreasing as increased value of parameter. As we know that coefficient of variation, coefficient of skewness and coefficient of kurtosis of exponential distribution are independent from theta whereas value of index of dispersion is decreasing for all distributions as increased value of theta. The conditions under which Akash, Shanker and Lindley distributions are over-dispersed \(\mu < \sigma^2 \), equi-dispersed \(\mu = \sigma^2 \), and under-dispersed \(\mu = \sigma^2 \) are summarized in Table 2.

Parameter estimation

In this section, estimation of parameter using maximum likelihood method for Prakaamy, Sujatha, Ram Awadh, Pranav, Akash, Ishita, Lindley and Exponential distributions have been given respectively.

Distribution	Over-dispersion \(\mu < \sigma^2 \)	Equi-dispersion \(\mu = \sigma^2 \)	Under-dispersion \(\mu > \sigma^2 \)
Ram Awadh	\(\theta < 1.044533 \)	\(\theta = 1.044533 \)	\(\theta > 1.044533 \)
Prakaamy	\(\theta = 1.0421856 \)	\(\theta = 1.0421856 \)	\(\theta > 1.0421856 \)
Sujatha	\(\theta < 1.364271 \)	\(\theta = 1.364271 \)	\(\theta > 1.364271 \)
Pranav	\(\theta < 1.9853197 \)	\(\theta = 1.9853197 \)	\(\theta > 1.9853197 \)
Ishita	\(\theta < 1.53565315 \)	\(\theta = 1.53565315 \)	\(\theta > 1.53565315 \)
Akash	\(\theta < 1.515400063 \)	\(\theta = 1.515400063 \)	\(\theta > 1.515400063 \)
Lindley	\(\theta < 1.170086487 \)	\(\theta = 1.170086487 \)	\(\theta > 1.170086487 \)
Exponential	\(\theta < 1 \)	\(\theta = 1 \)	\(\theta > 1 \)

Prakaamy distribution

Let \((t_1, t_2, \ldots, t_n) \) be a random sample of size \(n \) from Prakaamy distribution. The maximum likelihood function, \(L \) of Prakaamy is given by

\[
L = \left(\frac{\theta^n}{\theta^3 + 120} \right) \prod_{i=1}^{n} (1 + t_i) e^{-n\theta}
\]

\[
\ln L = n \left(\ln \theta - \ln(\theta^3 + 120) \right) + \sum_{i=1}^{n} (1 + t_i) - n\theta
\]

Sujatha distribution

Let \((t_1, t_2, \ldots, t_n) \) be a random sample of size \(n \) from Sujatha distribution. The maximum likelihood function, \(L \) of Sujatha is given by

\[
L = \left(\frac{\theta^n}{\theta^3 + 120} \right) \prod_{i=1}^{n} (1 + t_i) e^{-n\theta}
\]

\[
\ln L = n \left(\ln \theta - \ln(\theta^3 + 120) \right) + \sum_{i=1}^{n} (1 + t_i) - n\theta
\]

Citation: Shukla KK. A comparative study of one parameter lifetime distributions. Biom Biostat Int J. 2019;8(4):111–123. DOI: 10.15406/bbij.2019.08.00280
The natural log likelihood function can be obtained as

\[\ln L = n \left(\ln \theta^2 - \ln(\theta^2 + 120) \right) + \sum_{i=1}^{n} (\theta + t^2) - n\theta \tau \]

\[\ln L = n \left(\ln \theta^2 - \ln(\theta^2 + 6) \right) + \sum_{i=1}^{n} (\theta + t^2) - n\theta \tau \]

\[\ln L = n \left(\ln \theta^2 - \ln(\theta^2 + 1) \right) + \sum_{i=1}^{n} (\theta + t^2) - n\theta \tau \]

\[\ln L = n \left(\ln \theta^2 - \ln(\theta^2 + 2) \right) + \sum_{i=1}^{n} (\theta + t^2) - n\theta \tau \]

Pranav distribution

Let \(\{t_1, t_2, t_3, ..., t_n\} \) be a random sample of size \(n \) from Pranav distribution. The maximum likelihood function, \(L \) of Pranav is given by

\[L = \left(\frac{\theta^2}{(\theta^2 + 6)} \right)^n \prod_{i=1}^{n} (\theta + t^2) e^{-n\theta \tau} \]

Akash distribution

Let \(\{t_1, t_2, t_3, ..., t_n\} \) be a random sample of size \(n \) from Akash distribution. The maximum likelihood function, \(L \) of Akash is given by

\[L = \left(\frac{\theta^2}{(\theta^2 + 1)} \right)^n \prod_{i=1}^{n} (1 + t^2) e^{-n\theta \tau} \]

Ishita distribution

Let \(\{t_1, t_2, t_3, ..., t_n\} \) be a random sample of size \(n \) from Ishita distribution. The maximum likelihood function, \(L \) of Ishita is given by

\[L = \left(\frac{\theta^3}{(\theta^3 + 2)} \right)^n \prod_{i=1}^{n} (\theta + t^2) e^{-n\theta \tau} \]

\[\ln L = n \left(\ln \theta^3 - \ln(\theta^3 + 2) \right) + \sum_{i=1}^{n} (\theta + t^2) - n\theta \tau \]

Lindley distribution

Let \(\{t_1, t_2, t_3, ..., t_n\} \) be a random sample of size \(n \) from Lindley distribution. The maximum likelihood function, \(L \) of Lindley is given by
The natural log likelihood function can be obtained as
\[
\ln L = n \ln \theta^2 - n \ln(\theta + 1) + \sum_{i = 1}^{n} (1 + t_i e^{-\theta t_i})
\]

Applications and goodness of Fit

In this section the goodness of fit test of Prakaamy, Sujatha, Ram Awadh, Pranav, Akash, Ishita, Lindley and exponential distributions for following eighteen real lifetime data-sets using maximum likelihood estimate have been discussed.

Data set 1: The data set represents the strength of 1.5cm glass fibers measured at the National Physical Laboratory, England. Unfortunately, the units of measurements are not given in the paper, and they are taken from Smith and Naylor. The data set is as follows:

0.55 0.93 1.25 1.36 1.49 1.52 1.58 1.61 1.64 1.68 1.73 1.81 2.00 0.74 1.04 1.27 1.39 1.49 1.53 1.59 1.61 1.66 1.68 1.76 1.82 2.01 0.77 1.11

Data set 2: The data is given by Birnbaum and Saunders on the fatigue life of 6061 – T6 aluminum coupons cut parallel to the direction of rolling and oscillated at 18 cycles per second. The data set consists of 101 observations with maximum stress per cycle 31,000 psi. The data \((5 \times 10^3)\) are presented below (after subtracting 65).

5 25 31 32 34 35 38 39 39 40 42 43 43
43 44 44 47 47 48 49 49 49 51 54 55 55
55 56 56 56 58 59 59 59 59 63 63 64
64 65 65 65 66 66 66 66 66 67 67 67 68
69 69 69 69 71 71 72 73 73 74 74 76
76 77 77 77 77 77 77 79 79 80 81 83 83
84 86 86 87 90 91 92 92 92 93 94 97
98 98 99 101 103 109 136 147

Data Set 3: The data set is from Lawless. The data given arose in tests on endurance of deep groove ball bearings. The data are the number of millions revolutions before failure for each of the 23 ball bearings in the life tests and they are:

17.88 28.92 33.00 41.52 42.12 45.60 48.80 51.84 51.96 54.12 55.56 67.80
68.44 68.64 68.88 84.12 93.12 98.64 105.12 105.84 127.92 128.04 173.40

Data set 4: The data is from Picciotto and arose in test on the cycle at which the Yarn failed. The data are the number of cycles until failure of the yarn and they are:

8 66 146 251 653 98 249 400 292 131 169 175 176 76
264 15 364 195 262 88 264 157 220 42 321 180 198
38 20 61 121 282 224 149 180 325 250 196 90 229
166 38 337 65 151 341 40 40 135 597 246 211 180
93 315 353 571 124 279 81 186 497 182 423 185 229
400 338 290 398 71 246 185 188 568 55 55 61 244
20 284 393 396 203 829 239 236 286 194 277 143 198
264 105 203 124 137 135 350 193 188

Citation: Shukla KK. A comparative study of one parameter lifetime distributions. Biom Biostat Int J. 2019;8(4):111–123. DOI: 10.15406/bbij.2019.08.00280
Data set 5: This data represents the survival times (in days) of 72 guinea pigs infected with virulent tubercle bacilli, observed and reported by Bjerkedal.13

12 15 22 24 24 32 32 33 34 38 38 43 44
48 52 53 54 54 55 56 57 58 58 59 60 60
60 60 61 62 63 65 65 67 68 70 70 72 73
75 76 76 81 83 84 85 87 91 95 96 98 99
109 110 121 127 129 131 143 146 146 175 175 211 233
258 258 263 297 341 341 341 376

Data set 6: This data is related with behavioral sciences, collected by N. Balakrishnan, Victor Leiva and Antonio Sanhueza.14 The scale “General Rating of Affective Symptoms for Preschoolers (GRASP)” measures behavioral and emotional problems of children, which can be classified with depressive condition or not according to this scale. A study conducted by the authors in a city located at the south part of Chile has allowed collecting real data corresponding to the scores of the GRASP scale of children with frequency in parenthesis, which are:

19(16) 20(15) 21(14) 22(9) 23(12) 24(10) 25(6) 26(9) 27(8) 28(5) 29(6) 30(4)
31(3) 32(4) 33 34 35(4) 36(2) 37(2) 39 42 44

Data set 7: The data set reported by Efron15 represent the survival times of a group of patients suffering from Head and Neck cancer disease and treated using radiotherapy (RT)

5.63 7 10.42 14.48 16.10 22.70 34 41.55 42 45.28 49.40 53.62 63
64 83 84 91 108 112 129 133 133 139 140 140 146
149 154 157 160 160 165 149 154 157 160 160 165
173 176 218 225 241 248 273 277 297 405 417 420 440
523 583 594 1101 1146 1417

Data set 8: The data set reported by Efron15 represent the survival times of a group of patients suffering from Head and Neck cancer disease and treated using a combination of radiotherapy and chemotherapy (RT+CT).

12.20 23.56 23.74 25.87 31.98 37 41.35 47.38 55.46 58.36 63.47 68.46 78.26
74.47 81.43 84 92 94 92 110 112 129 133 133 139 140 140 146
155 159 173 179 194 195 209 249 281 319 339 342 469
519 633 725 817 1776

Data set 9: This data set represents remission times (in months) of a random sample of 128 bladder cancer patients reported in Lee and Wang.16

0.08 2.09 3.48 4.87 6.94 8.66 13.11 23.63 0.20 2.23 3.52 4.98 6.97
9.02 13.29 0.40 2.26 3.57 5.06 7.09 9.22 13.80 25.74 0.50 2.46 3.64
5.09 7.26 9.47 14.24 25.82 0.51 2.54 3.70 5.17 7.28 9.74 14.76 6.31
0.81 2.62 3.82 5.32 7.32 10.06 14.77 32.15 2.64 3.88 5.32 7.39 10.34
14.83 34.26 0.90 2.69 4.18 5.34 7.59 10.66 15.96 36.66 1.05 2.69 4.23
5.41 7.62 10.75 16.62 43.01 1.19 2.75 4.26 5.41 7.63 17.12 46.12 1.26
2.83 4.33 5.49 7.66 11.25 17.14 79.05 1.35 2.87 5.62 7.87 11.64 17.36
1.40 3.02 4.34 5.71 7.93 11.79 18.10 1.46 4.40 5.85 8.26 11.98 19.13
1.76 3.25 4.50 6.25 8.37 12.02 2.02 3.31 4.51 6.54 8.53 12.03 20.28
2.02 3.36 6.76 12.07 21.73 2.07 3.36 6.93 8.65 12.63 22.69

Data set 10: This data set is given by Linhart and Zucchini,17 which represents the failure times of the air conditioning system of an airplane:

23 261 87 7 120 14 62 47 225 71 246 21 42
20 5 12 120 11 3 14 71 11 14 11 16 90 1
16 52 95

Citation: Shukla KK. A comparative study of one parameter lifetime distributions. Biom Biostat Int J. 2019;8(4):111–123. DOI: 10.15406/bbij.2019.08.00280
Data set 11: This data set used by Bhaumik et al., is vinyl chloride data obtained from clean upgradient monitoring wells in mg/l:

Value
5.1
1.2
1.3
0.6
0.5
2.4
0.5
1.1
8
0.8
0.4
0.6
0.9
0.4
2
4
6.8
1.2
0.4
0.2

Data set 12: This data set represents the waiting times (in minutes) before service of 100 Bank customers and examined and analyzed by Ghitany et al., for fitting the Lindley (1958) distribution.

Value
0.8
0.8
1.3
1.5
1.8
1.9
2.1
2.6
2.7
2.9
3.1
3.2
3.3
3.5
4.0
4.1
4.2
4.3
4.4
4.6
4.7
4.7
4.8
4.9
5.0
5.3
5.5
5.7
6.1
6.2
6.2
6.3
6.7
6.9
7.1
7.1
7.1
7.4
7.6
7.7
8.0
8.2
8.6
8.6
8.8
8.8
8.9
8.9
9.5
9.6
9.7
9.8
10.7
10.9
11.0
11.0
11.1
11.2
11.2
11.5
11.9
12.4
12.5
12.9
13.0
13.1
13.3
13.6
13.7
13.9
14.1
15.4
15.4
17.3
17.3
18.1
18.2
18.4
18.9
19.0
19.9
20.6
21.3
21.4
21.9
23.0
27.0
31.6
33.1
38.5

Data set 13: This data is for the times between successive failures of air conditioning equipment in a Boeing 720 airplane, Proschan:

Value
74
57
48
29
502
12
70
21
29
386
59
27
153
26
326

Data set 14: This data set represents the lifetime’s data relating to relief times (in minutes) of 20 patients receiving an analgesic and reported by Gross and Clark:

Value
1.1
1.4
1.3
1.7
1.9
1.8
1.6
2.2
1.7
2.7
4.1
1.8
1.5
1.2
1.4
3
1.7
2.3
1.6

Data Set 15: This data set is the strength data of glass of the aircraft window reported by Fuller et al:

Value
18.83
20.8
21.657
23.03
23.23
24.05
24.321
25.5
25.52
25.8
26.69
26.77
26.78
27.05
27.67
29.9
31.11
33.2
33.73
33.76
33.89
34.76
35.75
35.91
36.98
37.08
37.09
39.58
44.045
45.29
45.381

Data set 16: The following data represent the tensile strength, measured in GPa, of 69 carbon fibers tested under tension at gauge lengths of 20mm (Bader and Priest:

Value
1.312
1.314
1.479
1.552
1.700
1.803
1.861
1.865
1.944
1.958
1.966
1.997
2.006
2.021
2.027
2.055
2.063
2.098
2.140
2.179
2.224
2.240
2.253
2.270
2.272
2.274
2.301
2.301
2.359
2.382
2.382
2.426
2.434
2.435
2.478
2.490
2.511
2.514
2.535
2.554
2.566
2.570
2.586
2.629
2.633
2.642
2.648
2.684
2.697
2.726
2.770
2.773
2.800
2.809
2.818
2.821
2.848
2.880
2.954
3.012
3.067
3.084
3.090
3.096
3.128
3.233
3.433
3.585
3.858

Data set 17: The first set of data represents the failure times (in minutes) for a sample of 15 electronic components in an accelerated life test Lawless and the data are

Value
1.4
5.1
6.3
10.8
12.1
18.5
19.7
22.2
23.0
30.6
37.3
46.3
53.9
59.8
66.2

Data set 18: The following data set represents the number of cycles to failure for 25 100-cm specimens of yarn, tested at a particular strain level.

Value
15
20
38
42
61
76
86
98
121
146
149
157
175
180
180
198
220
224
251
264
282
321
325
653

Citation: Shukla KK. A comparative study of one parameter lifetime distributions. Biom Biostat Int J. 2019;8(4):111–123. DOI: 10.15406/bbij.2019.08.00280
Goodness of Fit

In order to compare the goodness of fit of all distributions, \(-2\ln L\), AIC (Akaike Information Criterion), BIC (Bayesian Information Criterion), K-S Statistics (Kolmogorov-Smirnov Statistics) for all eighteen real lifetime data- sets have been computed and presented in Table 3. The formulae for computing AIC, BIC, and K-S Statistics are as follows:

\[
AIC = -2\ln L + 2k, \quad BIC = -2\ln L + k \ln n \quad \text{and} \quad D = \sup_x \left| F_n(x) - F_0(x) \right|
\]

Where \(k = \) the number of parameters, \(n = \) the sample size and \(F_n(x) \) is the empirical distribution function. The best distribution is the distribution which corresponds to lower values of \(-2\ln L\), AIC, BIC, and K-S statistics.

Table 3 MLEs, -2ln L, AIC, BIC, K-S Statistics of the fitted distributions of datasets 1-18

Model	Parameter estimate	-2ln L	AIC	BIC	K-S statistic	
Data 1	Prakaamy	2.49738	186.05	188.05	190.29	0.467
	Sujatha	1.3500	154.80	156.80	158.72	0.430
	Ram Awadh	2.0794	212.42	214.42	214.62	0.468
Pranav	1.56071	180.96	182.96	184.87	0.355	0.488
Akash	1.35544	163.73	165.73	169.93	0.355	0.468
Ishita	1.25202	168.28	170.28	172.19	0.355	0.468
Lindley	0.99611	162.56	164.56	166.70	0.355	0.468
Exponential	0.66364	177.66	179.66	181.80	0.355	0.468
Prakaamy	0.087813	918.72	920.72	922.95	0.355	0.468
Sujatha	0.04357	951.78	953.78	955.69	0.355	0.468
Ram Awadh	0.087811	918.70	920.70	920.91	0.355	0.468
Data 2	Pranav	0.05854	934.06	936.06	937.97	0.355
Akash	0.048376	950.97	952.97	955.58	0.355	0.468
Ishita	0.043906	950.90	952.90	954.83	0.355	0.468
Lindley	0.028859	983.11	985.11	987.71	0.355	0.468
Exponential	0.014635	1044.87	1046.87	1049.48	0.355	0.468
Prakaamy	0.083070	228.29	230.29	232.53	0.355	0.468
Sujatha	0.041229	227.17	229.17	231.08	0.355	0.468
Ram Awadh	0.083070	228.29	230.29	230.49	0.355	0.468
Data 3	Pranav	0.055384	226.05	228.05	229.96	0.355
Akash	0.041510	227.06	229.06	230.20	0.355	0.468
Ishita	0.041533	227.03	229.03	230.95	0.355	0.468
Lindley	0.027321	231.47	233.47	234.61	0.355	0.468
Exponential	0.013845	242.87	244.87	246.01	0.355	0.468
Prakaamy	0.027162	1329.86	1331.86	1334.10	0.355	0.468
Sujatha	0.013491	1255.53	1257.53	1259.44	0.355	0.468
Ram Awadh	0.027041	1327.50	1329.50	1329.76	0.355	0.468
Data 4	Pranav	0.01803	1273.63	1275.63	1277.54	0.355
Akash	0.013514	1255.83	1257.83	1260.43	0.355	0.468
Ishita	0.013514	1255.84	1257.84	1259.75	0.355	0.468
Lindley	0.008970	1251.34	1253.34	1255.95	0.355	0.468

Citation: Shukla KK. A comparative study of one parameter lifetime distributions. Biom Biostat Int J. 2019;8(4):111–123. DOI: 10.15406/bbij.2019.08.00280
Table Continued

Exponential	0.004505	1280.52	1282.52	1285.12	0.190	
Data 5 Prakaamy	0.033935	873.53	875.53	877.77	0.168	
	Sujatha	0.016919	851.58	853.58	855.49	0.096
	Ram Awadh	0.033935	873.54	875.54	875.73	0.168
Akash	0.016966	851.62	853.62	855.53	0.095	
Ishita	0.016985	851.63	853.63	855.54	0.095	
Lindley	0.01127	858.55	860.55	862.46	0.162	
	Exponential	0.005684	889.22	891.22	893.13	0.296
	Prakaamy	0.24035	899.93	901.93	904.53	0.308
	Sujatha	0.11745	985.69	987.69	989.60	0.403
	Ram Awadh	0.240359	899.92	901.92	902.12	0.308
Data 6 Pranav	0.16022	945.03	947.03	948.94	0.362	
	Akash	0.119610	981.28	983.28	986.18	0.393
	Ishita	0.120089	980.02	982.02	983.93	0.399
	Lindley	0.077247	1041.64	1043.64	1046.54	0.448
	Exponential	0.040060	1130.26	1132.26	1135.16	0.525
	Prakaamy	0.026533	955.97	957.97	960.20	0.400
	Sujatha	0.013257	802.84	804.84	806.75	0.297
	Ram Awadh	0.026534	955.97	957.97	958.16	0.400
Data 7 Pranav	0.017704	851.06	853.16	855.07	0.339	
	Akash	0.013263	803.96	805.96	810.01	0.298
	Ishita	0.013269	804.08	806.08	807.99	0.298
	Lindley	0.008804	763.75	765.75	767.81	0.245
	Exponential	0.004421	744.87	746.87	748.93	0.166
	Prakaamy	0.026860	726.69	728.69	730.93	0.393
	Sujatha	0.013415	609.38	611.38	613.29	0.278
	Ram Awadh	0.026860	726.69	728.69	728.89	0.393
Data 8 Pranav	0.01791	646.17	648.17	650.08	0.327	
	Akash	0.013423	609.93	611.93	613.71	0.280
	Ishita	0.013448	609.95	611.95	613.86	0.279
	Lindley	0.008910	579.16	581.16	582.95	0.219

Citation: Shukla KK. A comparative study of one parameter lifetime distributions. Biom Biostat Int J. 2019;8(4):111–123. DOI: 10.15406/bbij.2019.08.00280
Exponential	0.004475	0.65098	1.11677	1.11877	1.12100	0.957
Data 9	Prakaamy	0.303635	0.87322	0.87522	0.87713	0.922
	Sujatha	0.65728	1.12319	1.12519	1.12539	0.957
	Ram Awadh	0.43771	0.96242	0.96442	0.96633	0.943
	Pranav	0.310500	0.88789	0.88989	0.89274	0.198
	Akash	0.326152	0.89412	0.89612	0.89803	0.928
	Ishita	0.196045	0.83906	0.84106	0.84391	0.116
Exponential	0.106773	0.82868	0.83068	0.83354	0.077	
	Prakaamy	0.10067	0.46494	0.46694	0.46918	0.966
	Sujatha	0.04989	0.35246	0.35446	0.35637	0.966
	Ram Awadh	0.10072	0.46615	0.46815	0.46834	0.966
Data 10	Pranav	0.067146	0.39123	0.39323	0.39515	0.966
	Ishita	0.050362	0.35652	0.35852	0.36043	0.966
	Shanker	0.033569	0.32574	0.32774	0.32914	0.351
	Lindley	0.033021	0.32327	0.32527	0.32667	0.345
Exponential	0.016779	0.30526	0.30726	0.30866	0.213	
	Prakaamy	2.28430	1.2914	1.3114	1.3337	0.980
	Sujatha	1.14606	1.1554	1.1754	1.1945	0.963
	Ram Awadh	2.10944	1.2388	1.2588	1.2608	0.975
Data 11	Pranav	1.46645	1.1667	1.1867	1.2058	0.965
	Akash	1.165719	1.1515	1.1715	1.1868	0.156
	Ishita	1.157035	1.1460	1.1660	1.1851	0.961
	Lindley	0.823821	1.1261	1.1461	1.1613	0.133
Exponential	0.532081	0.11091	0.11291	0.11443	0.089	
	Prakaamy	0.60712	0.72794	0.72994	0.73217	0.221
	Sujatha	0.28461	0.63963	0.64163	0.64355	0.088
	Ram Awadh	0.60887	0.72970	0.73170	0.73190	0.221
Data 12	Pranav	0.46478	0.66591	0.66791	0.66982	0.129
	Akash	0.295277	0.64193	0.64393	0.64593	0.100
	Ishita	0.30157	0.64369	0.64569	0.64761	0.108
	Lindley	0.186571	0.63807	0.64007	0.64268	0.058

Citation: Shukla KK. A comparative study of one parameter lifetime distributions. Biom Biostat Int J. 2019;8(4):111–123. DOI: 10.15406/bbij.2019.08.00280
Data 13	Prakaamy	0.049484	241.20	243.20	245.43	0.931
Data 13	Sujatha	0.024637	193.93	195.93	197.85	0.904
Data 13	Ram Awadh	0.04948	241.20	243.20	243.40	0.931
Data 13	Pranav	0.03298	209.03	211.03	212.94	0.921
Data 13	Akash	0.024734	194.30	196.30	197.01	0.456
Data 13	Ishita	0.024745	194.32	196.32	198.23	0.905
Exponential	Lindley	0.016360	181.34	183.34	184.05	0.386
Data 13	Exponential	0.008246	173.94	175.94	176.65	0.277
Data 13	Prakaamy	2.27350	61.43	63.43	65.67	0.515
Data 13	Sujatha	1.13674	57.49	59.49	61.40	0.442
Data 13	Ram Awadh	2.04587	68.52	70.52	70.72	0.514
Data 13	Pranav	1.401401	62.38	64.38	66.29	0.485
Data 13	Akash	1.156923	59.52	61.52	62.51	0.320
Data 13	Ishita	1.094847	60.16	62.16	64.07	0.325
Data 13	Lindley	0.816118	60.50	62.50	63.49	0.341
Exponential	Exponential	0.526316	65.67	67.67	68.67	0.389
Data 13	Prakaamy	0.194733	223.07	225.07	227.31	0.197
Data 13	Sujatha	0.095613	241.50	243.50	245.41	0.302
Data 13	Ram Awadh	0.19473	223.07	225.07	225.27	0.197
Data 13	Pranav	0.12981	232.77	234.77	236.68	0.253
Data 13	Akash	0.097062	240.68	242.68	244.11	0.266
Data 13	Ishita	0.097328	240.48	242.48	244.39	0.297
Data 13	Lindley	0.062988	253.99	255.99	257.42	0.333
Data 13	Exponential	0.032455	274.53	276.53	277.96	0.426
Data 13	Prakaamy	2.00984	188.77	190.77	193.00	0.261
Data 13	Sujatha	0.936119	221.60	223.60	225.52	0.364
Data 13	Ram Awadh	1.84921	207.41	209.41	209.60	0.303
Data 13	Pranav	1.225139	217.12	219.12	221.03	0.303
Data 13	Akash	0.964726	224.28	226.28	228.51	0.348
Data 13	Ishita	0.931565	223.14	225.14	227.05	0.330
Data 13	Lindley	0.659000	238.38	240.38	242.61	0.390
Exponential	Exponential	0.407941	261.74	263.74	265.97	0.434

Citation: Shukla KK. A comparative study of one parameter lifetime distributions. Biom Biostat Int J. 2019;8(4):111–123. DOI: 10.15406/bbij.2019.08.00280
A comparative study of one parameter lifetime distributions

The best fitting has been shown by making -2ln L, AIC, BIC, and K-S Statistics in bold.

Data17

Prakaamy	0.21781	158.03	160.03	162.26	0.281
Sujatha	0.10668	132.86	134.86	136.78	0.177
Ram Awadh	0.21790	158.29	160.29	160.49	0.281
Pranav	0.145325	141.44	143.44	145.35	0.231
Akash	0.108478	133.68	135.68	137.59	0.184
Ishita	0.10898	134.40	136.40	138.31	0.185
Lindley	0.070223	128.81	130.81	132.72	0.110
Exponential	0.036300	129.47	131.47	133.38	0.155
Prakaamy	0.033657	336.97	338.97	341.21	0.206
Sujatha	0.01677	309.23	311.23	313.14	0.124
Ram Awadh	0.03365	336.97	338.97	339.17	0.206
Pranav	0.023255	249.54	251.54	253.45	0.144

Data18

Pranav	0.016822	309.41	311.41	313.32	0.125
Akash	0.016839	309.42	311.42	313.33	0.124
Ishita	0.011183	305.01	307.01	308.92	0.129
Lindley	0.005622	309.17	311.17	313.09	0.199
Exponential	0.033657	336.97	338.97	341.21	0.206

Conclusion

In this paper an attempt has been made to find the suitability of Prakaamy, Sujatha, Ram Awadh, Pranav, Akash, Ishita, Lindley and exponential distributions for modeling real lifetime data from engineering, medical science and other fields of knowledge. Nature and behavior of distributions have been presented graphically. Coefficient of Variation, Coefficient of Skewness, coefficient of kurtosis and Index of dispersion of distributions have also been presented graphically. The conditions under which different distributions are over-dispersed, equi-dispersed, and under-dispersed have also been given. The goodness of fit has been tested of above mentioned distributions on eighteen real lifetime datasets for their suitability for modeling lifetime data. It is observed that Exponential distribution gives good fits over other distributions for six datasets, whereas three datasets are related to biological fields, and three datasets are related chemical and engineering fields. Lindley distribution give better fit than other considered distributions for three datasets, whereas one of them is related to biological field and two of them are related to engineering fields. Ram Awadh distribution gives closer fit over other considered distributions for three datasets, whereas two of them are related to engineering and one dataset is related to biological field. Pranav distribution gives good fit over other considered distributions for two datasets, which are related to medical science and engineering fields. Prakaamy distribution gives close fit over other considered distributions for three datasets, which are related to medical science and engineering fields. Prakaamy distribution gives good fit over other considered distributions for one dataset which is related to engineering field. From the goodness of fit test, it can be observed that exponential and Lindley distribution can be considered as good model for biological as well as engineering studies. Ram Awadh and Sujatha distribution can also be considered good model for biological and engineering fields whereas Pranav and Prakaamy distribution can been considered good model for engineering filed.

Acknowledments

None.

Conflicts of interest

Author declares that there are no conflicts of interest.

References

1. Lindley DV. Fiducial distributions and Bayes’ Theorem. Journal of the Royal Statistical Society. Series B. 1958;20(1):102–107.
2. Shanker R. Akash distribution and Its Applications. International Journal of Probability and Statistics. 2015;4(3):65–75.
3. Shukla KK. Pranav distribution with properties and its applications. Biom Biostat Int J. 2018;7(3):244–254.
4. Shanker R, Shukla KK. Ishita distribution and its applications. Biom Biostat Int J. 2017;5(2):1–9.
5. Shukla KK. Ram Awadh distribution and its applications. Biom Biostat Int J. 2018;7(6):515–523.
6. Shukla KK. Prakaamy distribution and its applications. JAQM. 2018;13(2):30–38.

Citation: Shukla KK. A comparative study of one parameter lifetime distributions. Biom Biostat Int J. 2019;8(4):111–123. DOI: 10.15406/bbij.2019.08.00280
A comparative study of one parameter lifetime distributions

7. Shanker R. Sujatha distribution: Statistics In Transition New Series. 2016;17(3):391–410.
8. Ghitany ME, Atieh B, Nadarajah S. Lindley distribution and its Applications. Mathematics Computing and Simulation, 2008;78(4):493–506.
9. Smith RL, Naylor JC. A comparison of Maximum likelihood and Bayesian estimators for the three parameter Weibull distribution. Applied statistics. 1987;36(3):358–369.
10. Birnbaum ZW, Saunders SC. Estimation for a family of life distributions with applications to fatigue. Journal of Applied Probability. 1969;6(2):328–347.
11. Lawless JF. Statistical models and methods for lifetime data, John Wiley and Sons, New York, 1982.
12. Picciotto R. Tensile fatigue characteristics of a sized polyester/viscose yarn and their effect on weaving performance, Master thesis, North Carolina State, University of Raleigh. 1970.
13. Bjerkedal T. Acquisition of resistance in guinea pigs infected with different doses of virulent tubercle bacilli. American Journal of Epidemiology. 1960;72(1):130–148.
14. Balakrishnan N, Victor L, Antonio S. A mixture model based on Birnbaum-Saunders Distributions, A study conducted by Authors regarding the Scores of the GRASP (General Rating of Affective Symptoms for Preschoolers), in a city located at South Part of the Chile. 2010.
15. Efron B. Logistic regression, survival analysis and the Kaplan-Meier curve. Journal of the American Statistical Association. 1988;83(40):414–425.
16. Lee ET, Wang JW. Statistical methods for survival data analysis, 3rd edition, John Wiley and Sons, New York, NY, USA, 2003.
17. Linhart H, Zucchini W. Model Selection, John Wiley, New York, 1986.
18. Bhaumik DK, Kapur K, Gibbons RD. Testing Parameters of a Gamma Distribution for Small Samples. Technometrics. 2009;51(3):326-334.
19. Proschan F. Theoretical explanation of observed decreasing failure rate. Technometrics. 1963;5(3):375-383.
20. Gross AJ, Clark VA. Survival Distributions: Reliability Applications in the Bimetrical Sciences, John Wiley, New York, 1975.
21. Fuller EJ, Frieman S, Quinn J, et al. Fracture mechanics approach to the design of glass aircraft windows: A case study. SPIE Proc. 1994;2286:419–430.
22. Bader MG, Priest AM. Statistical aspects of fiber and bundle strength in hybrid composites, In: Hayashi T, Kawata K, Umekawa, S, editors, Progress in Science in Engineering Composites, IC CM-IV, Tokyo, 1982. p.1129–1136.