Chain method for panchromatic colorings of hypergraphs

Margarita Akhmejanova, József Balogh

Abstract. We deal with an extremal problem concerning panchromatic colorings of hypergraphs. A vertex r-coloring of a hypergraph H is panchromatic if every edge meets every color. We prove that for every $r < \sqrt[3]{\frac{n}{100 \ln n}}$, every n-uniform hypergraph H with $|E(H)| \leq \frac{1}{20n^2} \left(\frac{n}{\ln n} \right)^{\frac{r-1}{r}} (\frac{r}{r-1})^{n-1}$ has a panchromatic coloring with r colors.

Keywords: panchromatic coloring, property B, proper coloring, uniform hypergraph.

1 Introduction and related work

We study colorings of uniform hypergraphs. Let us recall some definitions.

A vertex r-coloring of a hypergraph $H = (V, E)$ is a mapping from the vertex set V to a set of r colors. An r-coloring of H is panchromatic if each edge has at least one vertex of each color.

The first sufficient condition on the existence of a panchromatic coloring of a hypergraph was obtained in 1975 by Erdős and Lováss [8]. They proved that if every edge of an n-uniform hypergraph intersects at most $\frac{r^{n-1}}{4(r-1)^n}$ other edges then the hypergraph has a panchromatic coloring with r colors.

The next generalization of the problem was formulated in 2002 by Kostochka [11], who posed the following question: What is the minimum possible number of edges in an n-uniform hypergraph that does not admit a panchromatic coloring with r colors? He denoted this number by $p(n, r)$.

Following closely behind this problem is a related one: a hypergraph $H = (V, E)$ has property B if there is a coloring of V by 2 colors so that no edge $f \in E$ is monochromatic. Erdős and Hajnal [7] (1961) proposed to find the value $m(n)$ equal to the minimum possible number of edges in a n-uniform hypergraph without property B. Erdős [6] (1963–1964) found bounds $\Omega (2^n) \leq m(n) = O (2^n n^2)$ and Radhakrishnan and Srinivasan [13] (2000) proved $m(n) \geq \Omega (2^n (n/\ln n)^{1/2})$.

Clearly, $m(n) = p(n, 2)$.

*Moscow Institute of Physics and Technology, Laboratory of Combinatorial and Geometric Structures, Laboratory of Advanced Combinatorics and Network Applications, 141700, Institutskiy per. 9, Dolgoprudny, Moscow Region, Russia. E-mail: mechmathrita@gmail.com;
†Department of Mathematical Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA. E-mail: jobal@illinois.edu;
We return to the panchromatic coloring. Kostochka [11] has found connections between $p(n, r)$ and minimum possible number of vertices in a k-partite graph with list chromatic number greater than r. Using results of Erdős, Rubin and Taylor [9] and also Alon’s result [2] Kostochka [11] proved the existence of constants c_1 and c_2 that for every large n and fixed r:

$$\frac{e^{c_1 n}}{r} \leq p(n, r) \leq re^{c_2 r}.$$ (2)

In 2010, bounds (2) were considerably improved in the paper of Shabanov [15]:

$$p(n, r) \geq \frac{\sqrt{21} - 3}{4r} \left(\frac{n}{(r-1)^2 \ln n} \right)^{1/3} \left(\frac{r}{r-1} \right)^n, \quad \text{for all } r < n,$$

$$p(n, r) \leq \frac{1}{r} \left(\frac{r}{r-1} \right)^n \frac{e(\ln r) n^2}{2(r-1)} \varphi_1, \quad \text{when } r = o(\sqrt{n}),$$

$$p(n, r) \leq \frac{1}{r} \left(\frac{r}{r-1} \right)^n e(\ln r) n^{3/2} \varphi_2, \quad \text{when } n = o(r^2),$$

where φ_1, φ_2 some functions of n and $r(n)$, tending to one at $n \to \infty$.

In 2012, Rozovskaya and Shabanov [14] improved Shabanov’s lower bound by proving that for $r < n/(2 \ln n)$:

$$\frac{1}{2r^2} \left(\frac{n}{\ln n} \right)^{1/2} \left(\frac{r}{r-1} \right)^n \leq p(n, r) \leq c_2 n^2 \left(\frac{r}{r-1} \right)^n \ln r.$$ (3)

Further research was conducted by Cherkashin [3] in 2018. In his work, Cherkashin introduced the auxiliary value $p'(n, r)$, which is numerically equal to the minimum number of edges in the class of n-uniform hypergraphs $H = (V, E)$, in which any subset of vertices $V' \subset V$ with $|V'| \geq \lceil \frac{r-1}{r} |V| \rceil$ must contain an edge. Analyzing the value $p'(n, r)$ and using Sidorenko’s [16] estimates on the Turan numbers, Cherkashin proved that for $n \geq 2, r \geq 2$

$$p(n, r) \leq c n^2 \frac{\ln r}{r} \left(\frac{r}{r-1} \right)^n.$$

Cherkashin also proved that for $r \leq c \frac{n}{\ln n}$

$$p(n, r) \geq c \max \left(\frac{n^{1/4}}{r \sqrt{r}}, \frac{1}{\sqrt{n}} \right) \left(\frac{r}{r-1} \right)^n.$$ (4)

And repeating the ideas of Gebauer [10] Cherkashin constructed an example of a hypergraph that has few edges and does not admit a panchromatic coloring in r colors. The reader is referred to the survey [4] for the detailed history of panchromatic colorings.

It is thus natural to consider the local case. Formally, the degree of an edge A is the number of hyperedges intersecting A. Let $d(n, r)$ be the minimum possible value of the maximum edge
degree in an n-uniform hypergraph that does not admit panchromatic coloring with r colors. Then, the Erdős and Lovász result (1) can be easily translated into following form:

\[d(n, r) \geq \frac{r^{n-1}}{4(r - 1)^n}. \]

(5)

However, the bound (5) appeared not to be sharp. The restriction on $d(n, r)$ have been improved by Rozovskaya and Shabanov [14]. In their work they achieved that

\[d(n, r) > \sqrt{11 - \frac{3}{4(r - 1)}} \left(\frac{n}{\ln n} \right)^{1/2} \left(\frac{r}{r - 1} \right)^n, \quad \text{when } r \leq n/(2 \ln n). \]

(6)

2 Our results

The main result of our paper improves the estimate (3) as follows.

Theorem 1. Suppose $r \leq \sqrt[3]{\frac{n}{100 \ln n}}$. Then we have

\[p(n, r) \geq \frac{1}{20r^2} \left(\frac{n}{\ln n} \right)^{1/r} \left(\frac{r}{r - 1} \right)^n. \]

(7)

Corollary 1. There is an absolute constant C so that for every $n > 2$ and $\ln n < r < \sqrt[3]{\frac{n}{100 \ln n}}$

\[p(n, r) \geq \frac{Cn}{r^2 \ln n} \cdot e^{\frac{n}{r^2} + \frac{n}{r^2}}. \]

We refine the bound (6) as follows.

Theorem 2. For every $2 < r < \sqrt[3]{\frac{n}{100 \ln n}}$

\[d(n, r) \geq \frac{1}{40r^3} \left(\frac{n}{\ln n} \right)^{1/r} \left(\frac{r}{r - 1} \right)^n. \]

(8)

2.1 Methods

In the work, we propose a new idea based on the Pluhar ordered chain method [12]. In the case of panchromatic coloring, the resulting structure is no longer a real ordered chain, but rather an intricate "snake ball". Nevertheless, with the help of probabilistic analysis, we managed to obtain a strong lower bound.

The rest of this paper is organised as follows. The next section describes a coloring algorithm. Section 4 is devoted to the detailed analysis of the algorithm. In Section 5 we collect some inequalities that will be subsequently useful. The last two sections contain proofs of Theorems 1 and 2.
3 The coloring algorithm

We may and will assume that $r \geq 3$, because case $r = 2$ corresponds to the case $m(n)$. Let $H = (V, E)$ be an n-uniform hypergraph with less than $\frac{1}{20r^2} \left(\frac{n}{\ln n} \right)^{r-1} \left(\frac{r}{r-1} \right)^n$ edges and let $r < \sqrt[3]{\frac{n}{100 \ln n}}$. We will show that H has a panchromatic coloring with r colors.

We define a special random order on the set V of vertices of hypergraph H using a mapping $\sigma : V \to [0, 1]$, where $\sigma(v), v \in V$ i.i.d. with uniform distribution on $[0, 1]$. The value $\sigma(v)$ we will call the weight of the vertex v. Reorder the vertices so that $\sigma(v_1) < \ldots < \sigma(v_{|V|})$. Put

$$p = \left(\frac{1}{r} \right) \cdot \frac{(r-1)^2 \ln \left(\frac{n}{\ln n} \right)}{n}.$$ \hspace{1cm} (9)

We divide the unit interval $[0, 1)$ into subintervals $\Delta_1, \Delta_2, \Delta_2, \ldots, \Delta_r$ as on the Figure 1, i.e.

$$\Delta_i = \left[(i-1) \left(\frac{1-p}{r} \right) + \frac{p}{r-1} \right], \quad \delta_i = \left[i \cdot \frac{1-p}{r} + (i-1) \cdot \frac{p}{r-1} \right], \quad i = 1, \ldots, r;$$

The length of each large subinterval Δ_i is equal to $\frac{1-p}{r}$ and every small subinterval δ_i has length equal to $\frac{p}{r-1}$. Since $p < \frac{1}{100r}$ under the given assumptions on r, we can see that the intervals $\Delta_1, \ldots, \Delta_r$ are each wider than the intervals $\delta_1, \ldots, \delta_{r-1}$. A vertex v is said to belong to a subinterval $[c, d)$, if $\sigma(v) \in [c, d)$. We note that the same division of the segment $[0, 1]$ has already been used by the first author for proving some bounds on proper colorings [1].

![Figure 1: Partition of [0, 1) into $\Delta_1, \delta_1, \Delta_2, \delta_2, \ldots, \Delta_5$ when $r = 5$.](image)

We color the vertices of hypergraph H according to the following algorithm, which consists of two steps.

1. First, each $v \in \Delta_i$ is colored with color i for every $i \in [r]$.

2. Then, moving with the growth of σ, we color a vertex $v \in \delta_i$ with color i if there exists an edge $e, v \in e$ such that e does not have color i in the current coloring. Otherwise we color v with color $i + 1$.

4
4 Analysis of the algorithm

4.1 Short edge

We say that an edge A is short if $A \cap (\Delta_i \cup \delta_i) = \emptyset$ or $A \cap (\Delta_{i+1} \cup \delta_i) = \emptyset$ for some $i \in [r-1]$. The probability of this event for fixed edge A and fixed i is at most $2 \left(1 - \left(\frac{1-p}{r} + \frac{p}{r-1} \right) \right)^n$. Summing up this upper bound over all edges and $i \in [r-1]^n$ we get

$$2(r-1)|E| \left(1 - \left(\frac{1-p}{r} + \frac{p}{r-1} \right) \right)^n \leq \frac{2(r-1)}{20r^2} \left(\frac{n}{\ln n} \right)^{\frac{r-1}{r}} \left(\frac{r}{r-1} \right)^n.$$

Hence, we conclude that the expected number of short edges is less than $1/10r$, hence with probability at least $1 - 1/10r$ there is no short edge.

4.2 Snake ball

Suppose our algorithm fails to produce a panchromatic r-coloring and there is no short edges. Let A be an edge, which does not contain some color i.

Now we have two possibilities:

- $i < r$, in this situation edge A is disjoint from the interval $\Delta_i \cup \delta_i$, which means that A is short, a contradiction.

- $i = r$.

![Figure 2: Edges A and B in a snake ball.](image)

Edge A is not short, so $A \cap (\delta_{r-1} \cup \Delta_r) \neq \emptyset$. Since A does not contain color r we have $A \cap \Delta_r = \emptyset$. Denote v_A the last vertex of $A \cap \delta_{r-1}$. We note that v_A could receive color $r - 1$ only if at the moment of coloring v_A there was an edge B without color $r - 1$ and v_A was the first vertex of $B \cap \delta_{r-1}$. In this situation we say that the pair (A, B) is conflicting in δ_{r-1} and the vertex v_A is dangerous vertex in δ_{r-1}.

Again, edge B is not short and did not contain color $r - 1$ at the moment of coloring v_A, so $B \cap (\delta_{r-2} \cup \Delta_{r-1}) \neq \emptyset$ and $B \cap \Delta_{r-1} = \emptyset$. For v_B, the last vertex of $B \cap \delta_{r-2}$, there exists an edge C, which at the moment of coloring v_B was without color $r - 2$ and v_B was the first vertex of $C \cap \delta_{r-2}$. We get (B, C) is conflicting pair in δ_{r-2} and v_B is dangerous vertex in δ_{r-2}.
Repeating the above arguments, we obtain a construction called *snake ball*. It is an edge sequence $H' = (C_1 = A, C_2 = B, \ldots, C_r)$ such that consecutive edges (C_i, C_{i+1}) form conflicting pairs in δ_{r-i}.

Summarizing the above, we can say that

Claim 1. If for injective $\sigma : V \to [0; 1)$ there are neither snack balls nor short edges then Algorithm 1 produces a panchromatic r-coloring.

Lemma 1. Let $H' = (C_1, \ldots, C_r)$ be an ordered r-tuple of edges in the hypergraph H. Then the probability of the event that H' forms a snake ball and all the edges C_1, \ldots, C_r are not short does not exceed

$$
\left(\frac{p}{r-1} \right)^{r-1} \left(\frac{r-1}{r} \right)^{(n-2)r} \prod_{v \in H' : s(v) \geq 2} \left(\frac{1 - s(v) \frac{1-p}{r}}{1 - \left(\frac{1-p}{r} + \frac{2p}{r-1} \right)} \right)^{s(v)} \prod_{i=1}^{r-1} |C_i \cap C_{i+1}|,
$$

where $s(v)$ is the number of edges of H' that contain vertex v.

Before we present the proof of this lemma, we introduce some facts and give the basic scheme of the proof. Note that if $v \in C_i$ then $\sigma(v) \notin \Delta_{r-i+1}$. Furthermore, for each v its weight $\sigma(v)$ belongs to the subintervals of total length at most

$$
1 - s(v) \frac{1-p}{r}. \quad (10)
$$

The scheme of the proof is following:

- fix vertex $v_j \in C_j \cap C_{j+1}$ and its weight $\sigma(v_j)$ for all $j = 1, \ldots, r-1$. Assuming that v_j is the dangerous vertex in δ_{r-j} calculate conditional probability given weights of dangerous vertices.

- sum up (integrate) the previous probability over all possible values of weights, using that $\sigma(v_j) \in \delta_{r-j}$, as this is needed for H' to be a snake ball.

- Finally, sum over all choices of v_1, \ldots, v_{r-1}.

Proof. Fix dangerous vertex $v_j \in C_j \cap C_{j+1}$ for each $j = 1, \ldots, r-1$. Put $[\alpha_j, \beta_j] = \delta_j$, $\beta_j - \alpha_j = p/(r-1)$ and $y_j = \beta_j - \alpha_j - \sigma(v_j)$. Recall that $0 \leq y_j \leq p/(r-1)$.

Fix for a moment variables y_1, \ldots, y_{r-1}. Then, for $v \in C_i$ with $s(v) = 1$ its weight $\sigma(v)$ belongs to the subinterval of total length at most

$$
1 - \left(\frac{1-p}{r} + y_{i+1} + \frac{p}{r-1} - y_i \right) \quad \text{if} \quad i \in [2, r-1].
$$

And similarly, $1 - \left(\frac{1-p}{r} + y_1 \right)$ for $i = 1$ and $1 - \left(\frac{1-p}{r} + \frac{p}{r-1} - y_{r-1} \right)$ for $i = r$.

Now we are ready to give an upper bound for the probability of the event that “H' forms a snake ball”, conditional on the value taken by y_1, \ldots, y_{r-1}:
Here we estimated as if all the rest of the vertices have \(s(v) = 1 \) (factors \((11)\) and factor \((12)\)), and then using \((10)\), edited for vertices with \(s(v) > 1 \) by multiplying by \(1 - s(v) \frac{1-p}{r} \) and divided by \((1 - \frac{1-p}{r} + \frac{2p}{r-1}) \). The factor \(1 - \frac{1-p}{r} + \frac{2p}{r-1} \) is obviously no more than any factor for \(s(v) = 1 \), so we get a correct upper bound.

Taking out factor \((r-1)/r)^{(n-2)r+2}\) in the above equation and using estimate \((1 + y)^n \leq \exp\{ys\}\), we get the following upper bound on product of \((11)\) and \((12)\):

\[
\left(\frac{r-1}{r}\right)^{r(n-2)+2} \exp\left(\frac{(n-1)p - (n-2)p}{r-1} - \frac{p}{(r-1)^2} - \frac{ry_1 + ry_r-1}{r-1} \right) \leq \left(\frac{r-1}{r}\right)^{r(n-2)+2} \exp\left(\frac{p(r-2)}{(r-1)^2} + \frac{rp}{(r-1)^2} \right) = \left(\frac{r-1}{r}\right)^{r(n-2)+2} \exp\left(\frac{2p}{r-1} \right) < \left(\frac{r-1}{r}\right)^{r(n-2)}.
\]

To obtain the final estimate, we have to integrate over the weights \(y_1, y_2, \ldots y_{r-1} \) (factor \((p/(r-1))^{r-1}\)) and sum up over all possible choices for the \(v_1, \ldots, v_{r-1} \) (factor \(\prod_{i=1}^{r-1} |C_i \cap C_{i+1}| \)).

\[\Box\]

5 Auxiliary calculations

Under the assumptions of Theorem 1 we will formulate and prove three auxiliary lemmas needed to prove Theorem 1. In particular, in Lemma 2, we replace product of pairwise intersections on their sum \(\sum_{i<j} |C_i \cap C_j| \) and in Lemma 4, we will use double-counting for estimating the sum \(\sum_{i<j} |C_i \cap C_j| \), which can be large with \(n \), by special bounded terms.

Lemma 2. Let \(H' = (C_1, \ldots, C_r) \) be an ordered \(r \)-tuple of edges in the hypergraph \(H \). Then

\[
\sum_{\pi \in S_r} |C_{i_1} \cap C_{i_2}||C_{i_2} \cap C_{i_3}| \cdots |C_{i_{r-1}} \cap C_{i_r}| \leq \left(\frac{2 \sum_{i<j} |C_i \cap C_j| + r}{r} \right)^r, \quad (14)
\]

where \(S_r \) denotes all permutations \(\pi = (i_1, \ldots, i_r) \) of \((1, 2, \ldots, r) \).
Proof. Denote the cardinality of the edge intersection $|C_i \cap C_j|$ by $x_{i,j}$. Then, we have to prove that

$$\sum_{\pi \in S_r} x_{i_1,i_2} x_{i_2,i_3} \cdots x_{i_{r-1},i_r} \leq \left(\frac{2 \sum_{i<j} x_{i,j} + r}{r} \right)^r.$$

First, we will show that

$$\sum_{\pi \in S_r} x_{i_1,i_2} x_{i_2,i_3} \cdots x_{i_{r-1},i_r} \leq (x_{1,2} + \ldots + x_{1,r} + 1) \cdots (x_{r,1} + \ldots + x_{r,r-1} + 1). \quad (15)$$

Let us call $(x_{i,1} + \ldots + x_{i,r} + 1)$ from (15) the \textit{bracket number} i. We define a mapping f between elements from the left-hand side of (15) and ordered sets that are obtained after performing the multiplication in (15).

Let $f : x_{i_1,i_2} x_{i_2,i_3} \cdots x_{i_{r-1},i_r} \mapsto x_{i_1,t_1} x_{i_2,t_2} \cdots x_{r,t_r}$, where $x_{i_1,t_1} x_{i_2,t_2} \cdots x_{r,t_r}$ is the product of the following r elements: x_{i_{r-1},i_r} from the bracket number i_{r-1}, $x_{i_{r-2},i_{r-1}}$ from the bracket number i_{r-2} and so forth, finally we take the factor 1 from the unused bracket. For example,

$$x_{5,6} x_{6,1} x_{1,4} x_{4,3} x_{3,2}$$

is mapped to $x_{1,4} \cdot 1 \cdot x_{3,2} \cdot x_{4,3} \cdot x_{5,6} \cdot x_{6,1}$.

We note that f is an injection. Indeed, for each $x_{i_1,t_1} x_{i_2,t_2} \cdots x_{r,t_r}$ there exists at most one sequence $x_{i_1,i_2} x_{i_2,i_3} \cdots x_{i_{r-1},i_r}$, with $i_1 \neq i_2 \ldots \neq i_r$, such as $f(x_{i_1,i_2} x_{i_2,i_3} \cdots x_{i_{r-1},i_r}) = x_{i_1,t_1} x_{i_2,t_2} \cdots x_{r,t_r}$.

So, since f does not change the product and f is an injection we get that the right-hand side of (15) is not less than the left-hand side.

Finally, by the inequality on the arithmetic-geometric means and by $x_{i,j} = x_{j,i}$

$$(x_{1,2} + \ldots + x_{1,r} + 1) \cdots (x_{r,1} + \ldots + x_{r,r-1} + 1) \leq \left(\frac{2 \sum_{i<j} x_{i,j} + r}{r} \right)^r.$$

\[\square\]

\textbf{Lemma 3.} For all $s \in \{2, \ldots, r-1\}$

$$\frac{(1 - \frac{s(1-p)}{r})}{(1 - (\frac{1-p}{r} + \frac{2p}{r-1}))} \leq e^{-\frac{s^2}{20r^2}}. \quad (16)$$

\textbf{Proof.} First prove the case $s \geq 3$.

$$\frac{(1 - \frac{s(1-p)}{r})^s}{(1 - (\frac{1-p}{r} + \frac{2p}{r-1}))^s} = \frac{(1 - \frac{s(1-p)}{r})}{(1 - (\frac{1-p}{r}))^s} \frac{(1 - \frac{2pr}{(r-1)(r-1+p)})}{(1 - \frac{2pr}{(r-1)^2})^s} \leq \frac{(1 - \frac{s(1-p)}{r})}{(1 - \frac{1-p}{r-1+p})^s} \frac{(1 + \frac{1-p}{r-1+p})^s}{(1 - \frac{2pr}{(r-1)^2})^s}. \quad (17)$$
Now we deal with factors in (17) separately:

\[
\left(1 + \frac{1 - p}{r - 1 + p}\right)^s \leq \left(1 + \frac{1 - p}{r - 1}\right)^s = \text{Apply Taylor’s formula with Lagrange Remainder} = \]

\[
1 + \frac{s(1 - p)}{r - 1} + \frac{s(s - 1)(1 - p)^2}{2(r - 1)^2} + \frac{s(s - 1)(s - 2)(1 - p)^3(1 + \theta \cdot \frac{1 - p}{r - 1})^{s - 3}}{6(r - 1)^3} \leq
\]

bound \((s - 1)/(r - 1)\) by \(s/r\), \((s - 1)(s - 2)/(r - 1)^2\) by \(s^2/r^2\) and \((1 + \theta/(r - 1))^{s - 3}\) by \(e\).

Hence, the numerator of (17) does not exceed

\[
\left(1 - \frac{s(1 - p)}{r}\right) \left(1 + \frac{s(1 - p)}{r - 1} + \frac{s^2(1 - p)}{2r(r - 1)} + \frac{s^3(1 - p)^2}{2r^2(r - 1)}\right) \leq 1 - \frac{s^2(1 - p)}{r(r - 1)} \left(1 - p - 1/2\right) + \frac{s(1 - p)}{r(r - 1)} (1/2 - 1/s - p) > 1 - \frac{s^2(1/6 - p)(1 - p)}{r^2} < 1 - \frac{s^2}{7r^2} \leq \exp \left\{-\frac{s^2}{7r^2}\right\}.
\]

Using bounds \(1/(1 - x) < 1 + 2x\) for \(x < 1/2\) and estimating \(pr < 1/100\), which follows from restrictions on \(r\), we finally get

\[
\frac{(1 - s^{1 - p}/r)}{(1 - (1 - p) + 2p\cdot r^{-1})^s} \leq \exp \left\{-\frac{s^2}{7r^2}\right\} \left(1 - \frac{2pr}{(r - 1)^2}\right)^s < \exp \left\{-\frac{s^2}{7r^2}\right\} \left(1 + \frac{4pr}{(r - 1)^2}\right)^s \leq \exp \left\{-\frac{s^2}{7r^2}\right\} \leq \exp \left\{-\frac{s^2}{7r^2}\right\}.
\]

Consider the case \(s = 2\).

\[
\frac{1 - 2(1 - p)/r}{(1 - (1 - p) + 2p\cdot r^{-1})} \leq \frac{1 - 2(1 - p)/r}{1 - \frac{2(1 - p)}{r} - \frac{4p}{r^2} + \frac{1}{r^2}} \leq \frac{1 - 2(1 - p)/r}{1 - \frac{2(1 - p)}{r} - \frac{1}{r^2} + \frac{1}{2r^2}} = 1 - \frac{1/4r^2}{1 - 2\cdot \frac{1 - 1/4r^2}{r^2}} \leq 1 - 1/4r^2 \leq \exp \{-1/4r^2\} < \exp \{-1/5r^2\},
\]

where we used that \(4p/(r - 1) < 8p/r = 8pr/r^2 < 8/100r^2 < 1/4r^2\).

\[\square\]

\textbf{Lemma 4.}

\[
\left(\prod_{v \in H:s(v) \geq 2} \left(1 - s(v)\frac{1 - p}{r}\right)\right) \cdot \sum_{\sigma \in S_r} |C_{i_1} \cap C_{i_2} \cap \ldots \cap C_{i_r}| \leq 20^r e^{-r + 1}
\]

\[
\tag{18}
\]

\textbf{Proof.} By Lemmas 2 and 3 the left hand side of (18) does not exceed

\[
\exp \left\{-\sum_{v \in H:s(v) \geq 2} s^2(v) \cdot \left(\frac{2 \sum_{i < j} |C_i \cap C_j| + r^2}{20r^2}\right)^r\right\}.
\]

9
Now we will use the following double-counting: \(\sum_{i<j} |C_i \cap C_j| \) is equal to \(\sum_{v \in H': s(v) \geq r} \left(\frac{s(v)}{2} \right) < 1/2 \sum_{v \in H': s(v) \geq r} s^2(v) \). Hence,

\[
\exp \left\{ - \sum_{v \in H': s(v) \geq r} \frac{s^2(v)}{20r^2} \right\} \leq \exp \left\{ - \sum_{v \in H': s(v) \geq r} \frac{s^2(v)}{20r^2} \right\} \cdot r^r.
\]

\[
\left(\sum_{v \in H': s(v) \geq r} s^2(v) \right) \leq r^r e^{-t/20} (t+1)^r \leq \frac{20r^2}{e^{t-1}},
\]

where we used \(t = \sum_{v \in H': s(v) \geq r} s^2(v) / r^2 \) and observed that the expression \(((t+1)^r e^{-t/20}) \) is maximized when \(t = 20r - 1 \). \(\square \)

6 Proof of Theorem 1

We want to show that there is a positive probability that no edge is short and no tuple of edges forms a snake ball.

Denote \(\sum^* \) the sum over all \(r \)-sets \(J \subseteq (1, 2, \ldots, |E|) \), \(\sum^o \) the sum over all ordered \(r \)-tuples \((j_1, \ldots, j_r) \), with \(\{j_1, \ldots, j_r\} \) forming such a \(J \) and \(\sum_{\pi \in S_r} \) denote the sum over all permutations \(\pi = (i_1, \ldots, i_r) \) of \((1, 2, \ldots, r) \).

In Section 4.1 we already proved that the expected number of short edges does not exceed \(1/(10r) \). The expected number of snake ball can be upper bounded as follows:

\[
\sum^o \mathbb{P} ((C_{j_1}, \ldots, C_{j_r}) \text{ forms a snake ball}) = \sum^* \sum_{\pi \in S_r} \mathbb{P} ((C_{i_1}, \ldots, C_{i_r}) \text{ forms a snake ball}).
\]

On the other hand,

\[
\sum_{\pi \in S_r} \mathbb{P} ((C_{i_1}, \ldots, C_{i_r}) \text{ forms a snake ball}) \leq \sum_{\pi \in S_r} \left(\frac{p}{r-1} \right)^{r-1} \left(\frac{r-1}{r} \right)^{n-2r} \prod_{v \in H': s(v) \geq r} \frac{(1 - s(v) \frac{1-p}{r})}{\left((1 - (\frac{1-p}{r} + \frac{2p}{r-1}) s(v) \right) |C_{i_1} \cap C_{i_2}| \ldots |C_{i_{r-1}} \cap C_{i_r}|} \right.
\]

\[
= \left(\frac{p}{r-1} \right)^{r-1} \left(\frac{r-1}{r} \right)^{n-2r} \prod_{v \in H': s(v) \geq r} \frac{(1 - s(v) \frac{1-p}{r})}{(1 - (\frac{1-p}{r} + \frac{2p}{r-1}) s(v) \right) \sum_{\pi \in S_r} |C_{i_1} \cap C_{i_2}| \ldots |C_{i_{r-1}} \cap C_{i_r}| \right. \]

\[
\leq \left(\frac{p}{r-1} \right)^{r-1} \left(\frac{r-1}{r} \right)^{n-2r} 20r^2 e^{r-1} \leq \left(\frac{(r-1)^2 \ln(n \ln n)}{rn} \right)^{r-1}, \left(\frac{r-1}{r} \right)^{(n-2)r} \cdot 20r^2 e^{r-1},
\]

where for the first inequality we used Lemma 1 and for the second Lemma 4 and in the final
inequality we took p from 9. Finally,

$$
\sum_{\pi \in S_r} \prod_{i=1}^{s} \mathbb{P}(C_i, ..., C_r \text{ forms a snake ball}) \leq
$$

$$
\left(\frac{|E|}{r}\right) \cdot \left(\frac{(r - 1)^2 \ln\left(\frac{n}{rn}\right)}{\frac{rr_n}{r!}}\right)^{r - 1} \cdot \left(\frac{r - 1}{r}\right)^{(n - 2)r} \cdot \frac{20r^2 r}{e^{r - 1}} \leq
$$

$$
\left(\frac{1}{20r^2} \left(\frac{n}{\ln n}\right)^{r - 1} \left(\frac{r}{r - 1}\right)^n\right)^r \cdot \left(\frac{(r - 1)^2 \ln\left(\frac{n}{rn}\right)}{\frac{rr_n}{r!}}\right)^{r - 1} \cdot \left(\frac{r - 1}{r}\right)^{(n - 2)r} \cdot \frac{20r^2 r}{e^{r - 1}} \leq \frac{1}{r} \left(\frac{r}{r - 1}\right)^2.
$$

Since $1 - \frac{1}{10r} - \frac{1}{r} \left(\frac{r}{r - 1}\right)^2 > 0$, with positive probability the Algorithm creates a panchromatic coloring with r colors, which proves Theorem 1.

Corollary 2. There is an absolute constant c so that for every $n > 2$ and $\ln n < r < \sqrt[3]{\frac{n}{100 \ln n}}$

$$
p(n, r) \geq c \frac{n}{r^2 (\ln n)} \cdot e^{\frac{2}{r} + \frac{\ln r}{2r^2}}.
$$

Proof. By applying Taylor’s formula with Peano remainder, we obtain

$$
\left(1 + \frac{1}{r - 1}\right) e^{-\frac{1}{r - 1}} = 1 + \frac{1}{3r^3} + O\left(\frac{1}{r^4}\right).
$$

Thus, $\left(1 + \frac{1}{r - 1}\right) > e^{\frac{2}{r} + \frac{\ln r}{2r^2}}$. Finally, we use $\left(\frac{n}{\ln n}\right)^{-\frac{1}{r}} > \frac{1}{e}$ when $r > \ln n$ and Theorem 1. \qed

7 Local variant: proof of Theorem 2

A useful parameter of H is its maximal edge degree

$$
D := D(H) = \max_{e \in E(H)} |\{e' \in E(H) : e \cap e' \neq \emptyset\}|.
$$

We show that for $3 < r < \sqrt[3]{\frac{n}{100 \ln n}}$ every n-uniform hypergraph with $D \leq \frac{1}{40r^2} \left(\frac{n}{\ln n}\right)^{r - 1} \left(\frac{r}{r - 1}\right)^n$ has a panchromatic coloring with r colors, which implies Theorem 2.

Let us recall Lovász Local Lemma, which shows a useful sufficient condition for simultaneously avoiding a set A_1, A_2, \ldots, A_N of “bad” events:

Lemma 5 (The Local Lemma; General Case, [8]). Let A_1, A_2, \ldots, A_n be events in an arbitrary probability space. A directed graph $\overrightarrow{D} = (V, E)$ on the set of vertices $V = \{1, 2, \ldots, n\}$ is a dependency digraph for the events A_1, \ldots, A_n if for each i, $1 \leq i \leq n$, the event A_i is mutually independent of all the events $\{A_j : (i, j) \notin E\}$. Suppose that $\overrightarrow{D} = (V, E)$ is a dependency digraph
for the above events and suppose there are real numbers \(x_1, \ldots, x_n \) such that \(0 \leq x_i < 1 \) and
\[\mathbb{P}[A_i] \leq x_i \prod_{(i,j) \in E} (1 - x_j) \]
for all \(1 \leq i \leq n \). Then
\[\mathbb{P} \left[\bigwedge_{i=1}^{n} \overline{A_i} \right] \geq \prod_{i=1}^{n} (1 - x_i). \]

In particular, with positive probability, no event \(A_i \) holds.

To prove Theorem 2 we will use the following generalization of Lemma 5.

Lemma 6. If all events have probability \(\mathbb{P}(A_i) \leq \frac{1}{2} \), and for all \(i \)
\[\sum_{j: (i,j) \in E} \mathbb{P}(A_j) \leq \frac{1}{4}, \]
(19)
then there is a positive probability that no \(A_i \) holds.

For the sake of completeness, we give the proof of Lemma 6 here.

Proof. Put \(x_i = 2 \mathbb{P}(A_i) \). Then, for all \(i \)
\[x_i \prod_{(i,j) \in E} (1 - x_j) = 2 \mathbb{P}(A_i) \prod_{(i,j) \in E} (1 - 2 \mathbb{P}(A_j)) \geq \mathbb{P}(A_i). \]

\[\square \]

In our case the set of bad events has two types: short edges and snake balls. Let \(Q(C) \) be the event “edge \(C \) is short” and \(W(C_1, \ldots, C_r) \) be the event “(\(C_1, \ldots, C_r \)) forms a snake ball and all the edges \(C_1, \ldots, C_r \) are not short”. Note that \(Q(C) \) depends on at most \(D + 1 \) events \(Q(C') \) and at most \(2r(D + 1)D^{r-1} \) events \(W(C_1, \ldots, C_r) \). Similarly, \(W(C_1, \ldots, C_r) \) depends at most on \(r(D + 1) \) events \(Q(C') \) and at most on \(2r^2(D + 1)D^{r-1} \) events \(W(C_1', \ldots, C_r') \). Hence, using bounds from Sections 4.1 and 6 we get the following upper bounds:

1. if \(A_i = W(C_1, \ldots, C_r) \):
\[\sum_{j: (i,j) \in E} \mathbb{P}(A_j) \leq r(D + 1) \cdot 2(r - 1) \left(1 - \left(\frac{1 - p}{r} + \frac{p}{r - 1} \right) \right)^n + \]
\[+ 2r^2(D + 1)D^{r-1} \cdot \left(\frac{r - 1}{r} \right)^{(n-2)r} \left(\frac{p}{r - 1} \right)^{r-1} \frac{20^r r^2 e^{r-1}}{e^{r-1}} < \frac{2 r^2}{40 r^3} + \frac{2 r^2}{r^2 e^{r-1}} < \frac{1}{4}. \]

2. if \(A_i = Q(C) \):
\[\sum_{j: (i,j) \in E} \mathbb{P}(A_j) \leq (D + 1) \cdot 2(r - 1) \left(1 - \left(\frac{1 - p}{r} + \frac{p}{r - 1} \right) \right)^n + \]
\[+ 2r(D + 1)D^{r-1} \cdot \left(\frac{r - 1}{r} \right)^{(n-2)r} \left(\frac{p}{r - 1} \right)^{r-1} \frac{20^r r^2 e^{r-1}}{e^{r-1}} < \frac{1}{4}. \]

In both cases inequality (19) holds, completing the proof of Theorem 2.
8 Acknowledgements

The work of the first was funded by RFBR, project number 20-31-70039 (Theorem 1) and the Council for the Support of Leading Scientific Schools of the President of the Russian Federation, grant no. N.Sh.-2540.2020.1 (Theorem 2). The first author is a Young Russian Mathematics award winner and would like to thank its sponsors and jury.

References

[1] M. Akhmejanova, D.A. Shabanov, “Equitable colorings of hypergraphs with few edges”, Discrete Applied Mathematics, 276, 2020, 2–12.
[2] N. Alon, “Choice number of graphs: a probabilistic approach”, Combin. Probab. Comput., 1:2, 1992, 107–114.
[3] D. Cherkashin, “A note on panchromatic colorings”, Discrete Mathematics, 341:3, 2018, 652–657.
[4] Raigorodskii, A., Cherkashin, D, “Extremal problems in hypergraph colourings”, Russian Mathematical Surveys, 75:1, 2020, 89–146.
[5] D. Cherkashin, J. Kozik, “A note on random greedy coloring of uniform hypergraphs”, Random Struct. Alg., 47:3, 2015, 407–413.
[6] P. Erdős, “On a combinatorial problem, II. In J. Spencer, editor, Paul Erdős: The Art of Counting”, MIT Press, 1973, 445–447.
[7] P. Erdős, A. Hajnal, “On a property of families of sets”, Acta Math. Hung., 12:1, 1961, 87–123.
[8] P. Erdős, L. Lovász, “Problems and results on 3-chromatic hypergraphs and some related questions”, Infinite and Finite Sets, Coll Math Soc J Bolyai, 10, 1975, 609–627.
[9] P. Erdős, A. Rubin, H. Taylor, ”Choosability in graphs”, Proceedings of the West Coast Conference on Combinatorics, Graph Theory and Computing (Humboldt State Univ., Arcata, Calif., 1979) , Congr. Numer., 26, Utilitas Math. Publ., Winnipeg, Man., 1980, 125–157.
[10] H. Gebauer, “On the construction of 3-chromatic hypergraphs with few edges”, Journal of Combinatorial Theory, Series A, 120:7, 2013, 1483–1490.
[11] A. Kostochka, “On a theorem of Erdős, Rubin, and Taylor on choosability of complete bipartite graphs”, Electron. J. Combin., 9:1, 2002, 1–4.
[12] A. Pluhár, “Greedy colorings for uniform hypergraphs”, Random Struct. Alg., 35:2, 2009, 216–221.
[13] J. Radhakrishnan, A. Srinivasan, “Improved bounds and algorithms for hypergraph two-coloring”, Random Struct. Alg., 16:1, 2000, 4–32.
[14] A. Rozovskaya, D. Shabanov, “Extremal problems for panchromatic colourings of uniform hypergraphs”, Discrete Math. Appl., 22:2, 2012, 185–206.
[15] D. Shabanov, “On a generalization of Rubin’s theorem.”, J. Graph Theory, 67:3, 2011, 226–234.
[16] A.Sidorenko, “What we know and what we do not know about Turan numbers”, Graphs and Combinatorics, 11:2, 1995, 179–199.