Rational points of the group of components of a Néron model

Siegfried Bosch and Qing Liu

September 18, 2018

Let A_K be an abelian variety over a discrete valuation field K. Let A be the Néron model of A_K over the ring of integers O_K of K and A_k its special fibre over the residue field k of O_K. Denote by A^0 and A^0_k the corresponding identity components. Then we have an exact sequence

$$0 \to A^0_k \to A_k \to \phi_A \to 0,$$

where ϕ_A is a finite étale group scheme over k. The latter is called the group of components of A. The group of rational points $\phi_A(k)$ counts the number of connected components of the special fibre A_k which are geometrically connected.

In this paper we are interested in “computing” this group and the image of $A_K(K) \to \phi_A(k)$. The starting point of this work is an e-mail of E. Schaefer to the second author. He convinced us of the interest in computing $\phi_A(k)$.

This paper is organized as follows. Section 1 deals with the case where A_K is the Jacobian of a curve X_K over K. Let X be a regular model of X_K over O_K. Then a modified intersection matrix gives an explicit subgroup of $\phi_A(k)$ and the quotient can be controlled by some cohomology groups. The main result of this section is Theorem 1.11 which determines $\phi_A(k)$ when k is finite.

In section 2, we put together some classical results and general remarks about the canonical map $A_K(K) \to \phi_A(k)$.

In sections 3 and 4, we assume that K is complete. First we consider algebraic tori T_K with multiplicative reduction (so T_K is not an abelian variety in this section). Let T be the Néron model of T_K. We show in 3.2 that $\phi_T(k)$ coincides with $\phi_{T_G}(k)$, where $T_{G,K}$ is the biggest split subtorus of T_K, and that $T(O_K)/T^0(O_K) \to \phi_T(k)$ is an isomorphism. If T_K does not admit multiplicative reduction, the same constructions lead to subgroups of finite index; cf. 3.3.

Finally, we add some results on abelian varieties A_K with semi-stable reduction, which are more or less known. When the toric part of A_k is split, then ϕ_A is constant; cf. 4.2. In general, using data coming from the rigid uniformization of A_K, we are able to interpret the image of $A_K(K) \to \phi_A(k)$; see 4.4.

Throughout this paper, we fix a separable closure k^s of k, and we denote by G the absolute Galois group $\text{Gal}(k^s/k)$ of k.

*The second author appreciates the hospitality of the University of Münster where this work was done.
1 Component groups of Jacobians

In this section, we fix a connected, proper, flat and regular curve X over \mathcal{O}_K. Let us start with some notations. Let Γ_i, $i \in I$, be the irreducible components of the special fibre X_k. Denote by \mathbb{Z}^I the free \mathbb{Z}-module generated by the Γ_i's. It can be identified canonically with the group of Weil divisors on X with support in X_k. We denote by d_i the multiplicity of Γ_i in X_k, e_i its geometric multiplicity (see [2], Def. 9.1.3), and let $r_i = [k(\Gamma_i) \cap k^s : k]$. The integer r_i is also the number of irreducible components of $(\Gamma_i)_{k^s}$. For two divisors V_1, V_2 on X, such that at least one of them, say V_1, is vertical (i.e. contained in X_k), we denote by $V_1 \cdot V_2$ their intersection number $\deg_k \mathcal{O}_X(V_2)|_{V_1}$. When it is necessary to refer to the ground field k, we denote this number by $\langle V_1, V_2 \rangle_k$.

Now let us define two homomorphisms of \mathbb{Z}-modules which are essential for the computing of $\phi_A(k)$. First, $\alpha : \mathbb{Z}^I \to \mathbb{Z}^I$ is defined by

$$\alpha(V) = \sum_i r_i^{-1} e_i^{-1} \langle V, \Gamma_i \rangle_k \Gamma_i$$

for any $V \in \mathbb{Z}^I$ (see Lemma 1.2 which shows that α really takes values in \mathbb{Z}^I). Define $\beta : \mathbb{Z}^I \to \mathbb{Z}$ by $\beta(\Gamma_i) = r_i d_i e_i$. Note that α can be defined more canonically as a map $\mathbb{Z}^I \to (\mathbb{Z}^I)'$ using a suitable (not necessarily symmetric) bilinear form. But for our purpose, this seems not be useful.

Let \mathcal{O}_{K}^{sh} denote a strict henselization of \mathcal{O}_K. The residue field of \mathcal{O}_{K}^{sh} is k^s. The base change $X \times \text{Spec} \mathcal{O}_{K}^{sh} \to \text{Spec} \mathcal{O}_{K}^{sh}$ gives rise to a regular surface with special fibre X_{k^s}. Let \mathcal{T} be a set indexing the irreducible components of X_{k^s}. We can define similarly $\overline{\alpha} : \mathbb{Z}^\mathcal{T} \to \mathbb{Z}^\mathcal{T}$ and $\overline{\beta} : \mathbb{Z}^\mathcal{T} \to \mathbb{Z}$. The Galois group G acts on $\mathbb{Z}^\mathcal{T}$ via its action on X_{k^s}. Moreover, it is not hard to check that the action of G commutes with $\overline{\alpha}$ and $\overline{\beta}$. Note that since ϕ_A is étale over k, $\phi_A(k^s) = \phi_A(k^\text{alg})$.

Theorem 1.1 (Raynaud) Let X be a proper flat and regular curve over \mathcal{O}_K, with geometrically irreducible generic fibre. Assume further that either k is perfect or X has an étale quasi-section. Let A be the Néron model of the Jacobian of X_K. Then there exists a canonical exact sequence of G-modules

$$0 \to \text{Im} \overline{\alpha} \to \text{Ker} \overline{\beta} \to \phi_A(k^s) \to 0$$

(1)

Proof. The existence and exactness of the complex as abstract groups are proved in [2], Theorem 9.6.1. Let us just explain quickly why the map $\text{Ker} \overline{\beta} \to \phi_A(k^s)$ commutes with the natural action of G on both sides. To do this, let us go back to the construction of the map $\text{Ker} \overline{\beta} \to \phi_A(k^s)$ as done in [3], Lemma 9.5.9.

Let P be the open subfunctor of $\text{Pic}_X/\mathcal{O}_K$ corresponding to line bundles of total degree 0, then the Néron model A is a quotient of P ([4], Theorem 9.5.4). Since our assertion concerns only the special fibre and since the formation of Néron models commutes with étale base change, we can replace \mathcal{O}_K by a henselization and thus assume that \mathcal{O}_K is henselian. Then \mathcal{O}_{K}^{sh} is Galois over \mathcal{O}_K with group G. Let $S = \text{Spec} \mathcal{O}_{K}^{sh}$, $Y = X \times S$, and let $\mathbb{Z}^\mathcal{T}$ be identified with...
For this purpose, we need some informations on the action of $\rho|_{P(S)}$. This part can also be proved using the projection formula for $\rho|_{P(S)}$. Before going back to groups of components, let us derive the following consequence.

Corollary 1.3 Let Y be a regular, proper scheme over a discrete valuation ring O_K. Let Γ_i, $i \in I$, be the irreducible components of the special fibre Y_k. Denote by d_i the multiplicity of Γ_i in Y_k and set $r_i = [k^s \cap k(\Gamma_i) : k]$. Then for any closed point P of the generic fibre Y_K, the degree $[K(P) : K]$ is divisible by $\gcd\{r_i d_i \mid i \in I\}$.

Proof. Let $C := \overline{\{P\}}$ be the Zariski closure of $\{P\}$ in Y. Then we have

$$\langle \Gamma, C \rangle_k = [k' \cap k(\Gamma) : k] \langle \Gamma', p^* C \rangle_{k'}$$

where p is the canonical projection $Y_{O_{K'}} \to Y$. Moreover, if Y has dimension 2, then the geometric multiplicity e of Γ divides $\langle \Gamma', p^* C \rangle_{k'}$.

Before going back to groups of components, let us derive the following consequence.
\[[K(P) : K] = \langle Y_k, C \rangle_k = \sum_{i \in I} d_i \langle \Gamma_i, C \rangle_k \]

The multiplicity \(r_i \) can be computed on a finite Galois extension \(k'/k \) instead of \(k^s/k \). Enlarging \(k' \) if necessary, the extension \(k'/k \) can be lifted to an étale Galois extension \(\mathcal{O}_{k'}/\mathcal{O}_K \) (here ‘lift’ means that \(k' \) is the residue field of the localization of \(\mathcal{O}_{k'} \) at some maximal ideal). According to Lemma 1.2, this implies that \(r_i \) divides \(\langle \Gamma_i, C \rangle_k \). Thus the corollary is proved. \(\square \)

Remark 1.4 This corollary confirms a prediction of Colliot-Thélène and Saito ([6], Remarque 3.2 (a)). Actually, let \(I_3 = \gcd\{r_id_i \mid i \in I\} \), and let \(I_2 \) be the g.c.d of \([K(P) : K] \), where \(P \) varies over the closed points of \(Y_K \) (see [6], Théorème 3.1). Then Corollary 1.3 is just the divisibility relation \(I_3 \mid I_2 \). We understood that in a forthcoming preprint, they will prove that \(I_1 = I_2 = I_3 \) for \(p \)-adic fields. We think that Corollary 1.3 should still hold if one replaces \(r_i \) by \([k^{alg} \cap k(\Gamma_i) : k] = r_i e_i \).

Corollary 1.5 Let \(X \) be a connected, proper, flat and regular curve over \(\mathcal{O}_K \). Let \(g \) be the genus of the generic fibre \(X_K \) and let \(d' = \gcd\{r_id_i \mid i \in I\} \). Then \(d' \mid 2g - 2 \).

Proof. Let \(\mathcal{O}_{k'} \) be a finite étale Galois extension of \(\mathcal{O}_K \) with a residue field \(k' \) containing \(k^s \cap k(\Gamma_i) \) for all \(i \in I \) (see the proof of Corollary 1.3). Denote by \(p : X_{\mathcal{O}_{k'}} \rightarrow X \) the projection. Let \(\omega_{X/\mathcal{O}_K} \) be the relative dualizing sheaf of \(X \). Consider the divisor \(V := \sum_{i \in I} \frac{r_id_i}{d} \Gamma_{i,0} \) on \(X_{\mathcal{O}_{k'}} \), where \(\Gamma_{i,0} \) is an irreducible component of \((\Gamma_i)_{k'} \). Then we have
\[
\langle p^*\omega_{X/\mathcal{O}_K}, V \rangle_{k'} = \sum_{i \in I} \frac{d_i}{d'} \langle \omega_{X/\mathcal{O}_K}, \Gamma_i \rangle_{k'} = \frac{1}{d'} \langle \omega_{X/\mathcal{O}_K}, X_k \rangle_k = \frac{2g - 2}{d'}
\]
This proves the corollary. \(\square \)

Remark 1.6 It is known that \(d \mid g - 1 \) (apply the adjunction formula to \(\frac{1}{g}X_k \)). It should be noticed that, to the contrary, \(d' \) does not divide \(g - 1 \) in general.

Now let us return to Galois action. Consider the natural injective map \(\lambda : \mathbb{Z}^I \rightarrow \mathbb{Z}^I \) which sends \(\Gamma \) to \(\Gamma^* \).

Proposition 1.7 Let \(X \) be a proper flat and regular curve over \(\mathcal{O}_K \) with geometrically connected generic fibre. Then we have \((\mathbb{Z}^I)^G = \mathbb{Z}^I \). Let \(d = \gcd\{d_i \mid i \in I\} \) and \(V_0 := \frac{1}{d}X_k \). Then we have the following commutative diagram of complexes:

\[
\begin{array}{ccc}
0 & \longrightarrow & V_0\mathbb{Z} \quad \longrightarrow \quad \mathbb{Z}^I \quad \longrightarrow \quad \mathbb{Z}^I \quad \longrightarrow \quad \mathbb{Z} \\
\end{array}
\]

\[
\begin{array}{ccc}
0 & \longrightarrow & V_0\mathbb{Z} \quad \longrightarrow \quad \mathbb{Z}^I \quad \longrightarrow \quad \mathbb{Z}^I \quad \longrightarrow \quad \mathbb{Z} \\
\end{array}
\]
The only non-trivial point is to check that $\overline{\pi} \circ \lambda = \lambda \circ \alpha$. Let $V \in \mathbb{Z}^I$ be considered as a Weil divisor on X. Then $\alpha(V) = \sum_i r_i^{-1} e_i^{-1} \langle V, \Gamma_i \rangle_k \Gamma_i$. Denote by Γ_{ij} the irreducible components of X_{k^s} lying over Γ_i. Then $\lambda(\alpha(V)) = \sum_{i,j} r_i^{-1} e_i^{-1} \langle V, \Gamma_i \rangle_k \Gamma_{ij}$. By Lemma 1.2, $\lambda(\alpha(V)) = \sum_{i,j} e_i^{-1} \langle V, \Gamma_{ij} \rangle_{k^s} \Gamma_{ij}$. (As in the proof of Corollary 1.3, one can reduce to a finite Galois extension before applying Lemma 1.2). Thus $\lambda(\alpha(V)) = \alpha(V_{k^s})$. \square

Corollary 1.8 If $r_i = 1$ (i.e. Γ_i is geometrically irreducible) for all i, then ϕ_A is a constant algebraic group (or equivalently, $\phi_A(k) = \phi_A(k^s)$).

Remark 1.9 It is known that for modular curves $X_0(N)$ over \mathbb{Q}, the multiplicities r_i are equal to 1 (at least when N is square-free). Thus the component group of the Jacobian $J_0(N)$ is constant. This fact was stated in [10], §1.

Corollary 1.10 We have a canonical exact sequence of groups

$$0 \to \text{Im} \, \alpha \to \text{Ker} \, \beta \to \phi_A(k) \to H^1(G, \text{Im} \, \overline{\pi}) \to H^1(G, \text{Ker} \, \overline{\beta})$$

(2)

Proof. It is clear that $(\text{Ker} \, \overline{\beta})^G = \text{Ker} \, \beta$. Let us show that $(\text{Im} \, \overline{\pi})^G = \text{Im} \, \alpha$. Consider the exact sequence $0 \to V_0 \mathbb{Z} \to \mathbb{Z}^I \to \text{Im} \, \overline{\pi} \to 0$, where V_0 is defined in the statement of Proposition 1.7, and take the long exact sequence of cohomology. It is enough to see that $H^1(G, V_0 \mathbb{Z}) = 0$. This follows immediately from the facts that G acts trivially on $V_0 \mathbb{Z}$, G is profinite and that $V_0 \mathbb{Z}$ has no torsion. Now we get the corollary just by taking Galois cohomology of the exact sequence (1) of Theorem 1.1. \square

Theorem 1.11 Let X be a proper flat and regular curve over \mathcal{O}_K with geometrically irreducible generic fibre X_K. Let $d = \gcd\{d_i \mid i \in I\}$ and $d' = \gcd\{r_i d_i \mid i \in I\}$. Assume that $\text{Gal}(k'/k)$ is procyclic (i.e. any finite extension k'/k is cyclic) and that either k is perfect, or X has an étale quasi-section. Let A be the Néron model of the Jacobian of X_K. Then we have an exact sequence

$$0 \to \text{Ker} \, \beta / \text{Im} \, \alpha \to \phi_A(k) \to qd \mathbb{Z} / d' \mathbb{Z} \to 0$$

with $q = 1$ if $d' \mid g - 1$ and $q = 2$ otherwise.

Remark 1.12 The group $\text{Ker} \, \beta / \text{Im} \, \alpha$ can be determined by means of elementary divisors of the matrix $(e_j^{-1} r_j^{-1} \langle \Gamma_i, \Gamma_j \rangle_k)_{i,j \in I}$ as in [2], Corollary 9.6.3.

The remainder of the section is devoted to the proof of Theorem 1.11.

Lemma 1.13 Let G' be a finite solvable group acting on a finite set J. Let \mathbb{Z}^J be endowed with the natural action of G'. Then $H^1(G', \mathbb{Z}^J) = 0$.

Proof. First assume that \(G' \) has prime order. Then \(\mathbb{Z}^J \) is a direct sum of free \(G' \)-modules and of (free) \(\mathbb{Z} \)-modules with trivial action of \(G' \). Thus \(H^1(G', \mathbb{Z}^J) = 0. \) The general case is easily derived by induction. Note that the lemma is true for any finite group \(G' \) due to Shapira’s lemma (see [5], page 73).

Let \(k'/k \) be a finite Galois extension containing \(k^s \cap k(\Gamma_i) \) for all \(i \in I \). Then the components of \(X_{k'} \) are geometrically irreducible. Thus the exact sequences (1) and (2) can be determined over \(k' \) (Corollary [13]). For simplicity, in the rest of the proof, we denote by \(G \) the group \(\text{Gal}(k'/k) \). Since \(G \) is cyclic, we can determine explicitly each group of this exact sequence. Let us recall some notations and results of [12], VIII, §4. Fix a generator \(\sigma \) of \(G \). Let \(m = |G|, N = \sum_{0 \leq j \leq m-1} \sigma^j \) and \(D = \sigma - 1. \) Recall that for any \(G \)-module \(M \) we have the isomorphisms

\[
H^1(G, M) \simeq N M / DM, \quad H^2(G, M) \simeq M^G / NM
\]

Moreover, if \(0 \to M' \to M \to M'' \to 0 \) is an exact sequence of \(G \)-modules, then the transition homomorphisms

\[
\delta_1 : N M'' / DM'' \to M^G / NM', \quad \delta_0 : M''^G \to N M'/DM'
\]

are given by

\[
\delta_1([x]) = [Ny], \quad \delta_0([x]) = [Dy]
\]

(3)

if \(y \in M \) is in the preimage of \(x \in M'' \).

Lemma 1.14 Recall that \(V_0 = \frac{1}{d} X_k \). The following properties hold:

(i) The map \(H^1(G, \text{Im } \overline{\alpha}) \to \frac{md}{d} \mathbb{V}_0 \mathbb{Z} / m \mathbb{V}_0 \mathbb{Z} \) defined by \([\overline{\alpha}(V)] \mapsto [N(V)] \) is an isomorphism.

(ii) Let \(U \in \mathbb{Z}^T \). Then \(DU \in N \text{Ker } \overline{\beta}, \) and the map \([DU] \mapsto [\overline{\beta}(U)] \) induces an isomorphism \(H^1(G, \text{Ker } \overline{\beta}) \simeq d \mathbb{Z} / d' \mathbb{Z}. \)

Proof. (i) We have an exact sequence

\[
0 \to H^1(G, \text{Im } \overline{\alpha}) \to H^2(G, V_0 \mathbb{Z}) = V_0 \mathbb{Z} / m V_0 \mathbb{Z} \to H^2(G, \mathbb{Z}^T)
\]

Let \(J_i \) denote the set of irreducible components of \((\Gamma_i)_{k'}. \) Then

\[
H^2(G, \mathbb{Z}^T) = \bigoplus_{i \in I} H^2(G, \mathbb{Z}^T_i) = \bigoplus_{i \in I} \Gamma_i \mathbb{Z} / m r^{-1} \Gamma_i \mathbb{Z}
\]

and the homomorphism \(H^2(G, V_0 \mathbb{Z}) \to H^2(G, \mathbb{Z}^T) \) sends \([V_0]\) to \(([d_i d^{-1} \Gamma_i]), \)

Then it is not hard to check (i) using the definition of \(\delta_i. \)

(ii) We have the exact sequence \(0 \to \text{Ker } \overline{\beta} \to \mathbb{Z}^T \to d \mathbb{Z} \to 0. \) Taking Galois cohomology we get

\[
0 \to \text{Im } \beta = d' \mathbb{Z} \to d \mathbb{Z} \to H^1(G, \text{Ker } \overline{\beta}) \to H^1(G, \mathbb{Z}^T) = 0
\]

(Lemma [1.13]).
Proof of Theorem $\[1.1\]$. Let us first describe the map $\psi : H^1(G, \text{Im} \bar{\alpha}) \to H^1(G, \text{Ker} \bar{\beta})$ in the exact sequence $\[2\]$. One should notice that while these groups are isomorphic, ψ is not an isomorphism in general. Let $L : DZ^T \to \mathbb{Z}^T$ be a section of $D : \mathbb{Z}^T \to D\mathbb{Z}^T$. Let $\bar{\alpha}(V) \in N \text{Im} \bar{\alpha}$. Since $H^1(G, \mathbb{Z}^T) = 0$, one has $\bar{\alpha}(V) \in D\mathbb{Z}^T$, and thus $\bar{\alpha}(V) = D(L \circ \bar{\alpha}(V))$. Hence using Lemma $\[1.14\] (ii), we see that ψ is given by the formula

$$\psi(\bar{\alpha}(V)) = [\bar{\beta}(L \circ \bar{\alpha}(V))] \in H^1(G, \text{Ker} \bar{\beta}) \simeq d\mathbb{Z}/d'\mathbb{Z}.$$

Fix for each $i \in I$ an irreducible component $\Gamma_{i,0}$ of $(\Gamma_i)_{k'}$, and put $\Gamma_{i,j} := \sigma^j(\Gamma_{i,0})$. Let $V_i := \sum_i \frac{rd_i}{d} \Gamma_{i,0}$. Since $N(V_i) = \frac{md}{d'} V_0$, Lemma $\[1.14\] (i) implies that $H^1(G, \text{Im} \bar{\alpha}) = [\bar{\alpha}(V_i)]d\mathbb{Z}/d'\mathbb{Z}$. Put $n := \bar{\beta}(L \circ \bar{\alpha}(V_i)) \in \mathbb{Z}$. Then $\ker \psi$ is generated by $q[\bar{\alpha}(V_i)]$, where q is the smallest positive integer such that $d' \mid qn$. Using Corollary $\[1.3\]$, we see that to prove the theorem, it is enough to show that $n \equiv g - 1 \mod d'$.

Now let us construct a section of $D : \mathbb{Z}^T \to D\mathbb{Z}^T$. Since the set

$$\{\Gamma_{i,0}, D\Gamma_{i,j} \mid i \in I, 0 \leq j \leq r_i - 2\}$$

form a basis of \mathbb{Z}^T, we have a well-defined \mathbb{Z}-linear map $L' : \mathbb{Z}^T \to \mathbb{Z}^T$ given by $L'(\Gamma_{i,0}) = 0$, $L'(D\Gamma_{i,j}) = \Gamma_{i,j}$ for any $i \in I$ and $0 \leq j \leq r_i - 2$. By construction it is clear that $L := L'|_{D\mathbb{Z}^T}$ is a section of $D : \mathbb{Z}^T \to D\mathbb{Z}^T$. Replacing $D\Gamma_{i,j}$ by $\Gamma_{i,j+1} - \Gamma_{i,j}$, we see that $L'(\Gamma_{i,j}) = \sum_{0 \leq l \leq j - 1} \Gamma_{i,l}$ for any $i \in I$ and $0 \leq j \leq r_i - 1$.

Let us compute the integer n. Applying the definitions of $\bar{\alpha}$ and L, we get

$$n = \sum_{i \in I, 0 \leq j \leq r_i - 1} e_i^{-1}(V_i \cdot \Gamma_{i,j}) \bar{\beta} \circ L'(\Gamma_{i,j}) = \sum_{i,j} j d_i(V_i \cdot \Gamma_{i,j}) = \sum_i d_i(V_i \cdot U_i), \quad (4)$$

where $U_i := \sum_{0 \leq j \leq r_i - 1} j \Gamma_{i,j}$. Consider $W_i := \sum_{0 \leq j \leq m - 1} j \Gamma_{i,j}$. Since $\Gamma_{i,j} = \Gamma_{i,j'}$ if $j \equiv j'$ modulo r_i, we have (put $a = mr_i^{-1}$)

$$W_i = \sum_{0 \leq l \leq a - 1} \sum_{0 \leq h \leq r_i - 1} (lr_i + h) \Gamma_{i,h} = \frac{a(a - 1)}{2} r_i \Gamma_i + a U_i.$$

Since $N(V_i) = \frac{md}{d'} V_0 \in V_0 \mathbb{Q}$, we see that $V_i \cdot \Gamma_i = m^{-1}(N(V_i) \cdot \Gamma_i) = 0$. So replacing in the equality $\[4\]$ the divisor U_i by $r_i m^{-1} W_i$, and then V_i by its definition, we get

$$n = \sum_{i \in I} \frac{r_i d_i r_i d_i}{md'} \sum_{1 \leq j \leq m - 1} j (\Gamma_{i,j} \cdot \Gamma_{i,0})$$

On the other hand, $\Gamma_{i,j} \cdot \Gamma_{i,0} = \sigma^{m-j}(\Gamma_{i,j}) \cdot \sigma^{m-j}(\Gamma_{i,0}) = \Gamma_{i,0} \cdot \Gamma_{i,m-j}$. So

$$n = \sum_{i \in I} \frac{r_i d_i r_i d_i}{md'} \sum_{1 \leq j \leq m - 1} (m - j) (\Gamma_{i,0} \cdot \Gamma_{i,j})$$

7
Adding these two equalities leads to

\[2n = \sum_{i,j \in I} r_i d_r j l d_i (mr_i^{-1} \Gamma_i - \Gamma_{i,0}) \cdot \Gamma_{l,0} = \left(\sum_{i \in I} mr_i d_i d' X_k, \cdot \Gamma_{l,0} \right) - d' V^2 = -d' V^2 \]

Using the adjunction formula, and with the notations of the proof of Corollary \[1.5\], we see that \(V^2 \) is congruent to \(\langle p^* \omega_X / \mathcal{O}_K, V \rangle \mod 2 \). The latter is equal to \(\frac{1}{2}(2g-2) \) as calculated in the proof of Corollary \[1.5\]. This achieves the proof of Theorem \[1.1\]. \(\square \)

Remark 1.15 Let \(X_k \) be an elliptic curve over \(K \). Let \(X \) be its minimal regular model over \(\mathcal{O}_K \). One can apply Theorem \[1.1\] and Remark \[1.12\] to compute \(\phi_A(k) \). But one can also determine directly \(\phi_A(k) \) as a subset of \(\phi_A(k^*) \) using the fact that the Néron model \(A \) of \(X_k \) is the smooth locus of \(X \).

Example 1.16 Assume that \(k \) is perfect and \(\text{char}(k) \neq 2 \). Let \(a, b \in \mathcal{O}_K \) be invertible and such that the class \(\bar{a} \in k \) is not a square. Let \(n \geq 1 \) be an integer. Consider the elliptic curve \(A^t \) given by the equation

\[y^2 = (x^2 - b\pi^{2n})(x + a) \]

where \(\pi \) is a uniformizing element of \(\mathcal{O}_K \). Then the minimal regular model of \(A^t \) over \(\mathcal{O}_K \) consists of a projective line \(\Gamma_1 \) over \(k \), followed by a chain of \(n-1 \) projective lines over \(k(\sqrt{\bar{a}}) \), and ends with the conic \(\Gamma_2n \) given by the equation \(\pi = (u^2 - b^2)\bar{a} \). Thus \(\phi_A(k^*) = \mathbb{Z}/2n\mathbb{Z}, \phi_A(k) = \mathbb{Z}/2\mathbb{Z} \), and \(A_k(k)/A^t_k(k) = \mathbb{Z}/2\mathbb{Z} \) or 0 depending on \(\Gamma_{2n} \) has a rational point or not. This shows that one cannot expect a good control of the order of \(\phi_A(k^*)/\phi_A(k) \).

Example 1.17 Assume \(\text{char}(k) \neq 2 \). Let \(g \geq 1 \), let \(X_K \) be the hyperelliptic curve defined by an equation \(y^2 = a_0 \prod_{1 \leq i \leq g+1} (x - a_i)^2 + \pi \), where \(a_i \in \mathcal{O}_K \) are such that their images \(\bar{a}_i \in k \) are pairwise distinct and \(\bar{a}_0 \) is not a square. Finally \(\pi \) is a uniformizing element of \(\mathcal{O}_K \). Let \(X \) be the minimal regular model of \(X_K \) over \(\mathcal{O}_K \). Then \(X_k \) is integral with \(g + 1 \) ordinary double points. Over \(k' = k[\sqrt{a_0}] \), \(X_{k'} \) splits into two components isomorphic to \(\mathbb{P}^1_{k'} \), intersecting transversally at \(g + 1 \) points. Thus using Theorems \[1.1\] \[1.1\] and Remark \[1.12\], we see that \(\phi_A(k^*) = \mathbb{Z}/(g + 1)\mathbb{Z} \) and \(\phi_A(k) = 0 \).

2 The homomorphism \(A_K(K) \to \phi_A(k) \)

In this section, \(A_K \) is an abelian variety over \(K \). Let \(A \) be the Néron model of \(A_K \) over \(\mathcal{O}_K \). We would like to discuss some relationships between \(A(K) \) and \(\phi_A(k) \). By the properties of Néron models, \(A(\mathcal{O}_K) = A_K(K) \). The specialization map gives rise to a homomorphism of groups \(A_K(K) \to A_k(k) \). The second
group maps canonically to \(\phi_A(k) \). In general, the map \(A_k(k) \rightarrow \phi_A(k) \) is not surjective. The reason is that \(\phi_A(k) \) counts the number of geometrically connected components of \(A_k \), while the image of \(A_k(k) \) in \(\phi_A(k) \) (which is isomorphic to \(A_k(k)/A_k^0(k) \)) parameterizes the components with rational points. Each geometrically connected component is a torsor under \(A_k^0 \). But such a torsor may be non-trivial (that is, without rational point).

Lemma 2.1 Let \(A_K \) be an abelian variety over \(K \).

(i) If \(K \) is henselian (e.g. complete), then \(A_K(K) \rightarrow A_k(k) \) is surjective.

(ii) If \(k \) is finite, or if \(A_k^0 \) is an extension of a unipotent group by a split torus with \(k \) perfect, then \(A_k(k) \rightarrow \phi_A(k) \) is surjective.

Proof. (i) Since \(K \) is henselian and \(A \) is smooth, the map \(A(O_K) \rightarrow A_k(k) \) is surjective (see for instance [2], Prop. 2.3.5).

(ii) Let \(k'/k \) be a finite Galois extension of \(k \) such that \(A_k(k') \rightarrow \phi_A(k') \) is surjective (such an extension exists because \(\phi_A \) is finite). Then it is enough to show that \(H^1(\text{Gal}(k'/k), A_k^0(k')) = 0 \). The case \(k \) finite is a theorem of Lang ([8], Theorem 2). The remaining case is Hilbert’s 90th Theorem (see [12], Chap. X, §1) with induction on the dimension of \(A_k^0 \). \(\square \)

3 Algebraic tori

In this section we consider an algebraic torus \(T_K \) over \(K \), its Néron model \(T \) over the ring of integers \(\mathcal{O}_K \) of \(K \), and the associated component group \(\phi_T \). As the formation of Néron models is compatible with passing from \(K \) to its completion by [2], 10.1.3, \(\phi_T \) remains unchanged under this process, and we will assume in the following that \(\mathcal{O}_K \) and \(K \) are *complete*. Writing \(\mathcal{O}_K^{sh} \) for a strict henselization of \(\mathcal{O}_K \) and \(K^{sh} \) for the field of fractions of \(\mathcal{O}_K^{sh} \), we know then that the extension \(K^{sh}/K \) is Galois. The attached Galois group \(G \) is canonically identified with the one of \(k^{s}/k \), the residue extension of \(K^{sh}/K \).

Let us first assume that \(T_K \) has multiplicative reduction, so that the identity component \(T_k^0 \) of the special fibre \(T_k \) is a torus. Then \(T_K \) splits over \(K^{sh} \), and we can view the group of characters \(X \) of \(T_K \) as a \(G \)-module. It is well-known that in this case we have an isomorphism of \(G \)-modules

\[\phi_T \simeq \text{Hom}(X, \mathbb{Z}); \]

see for example [13], 1.1. In particular, if \(T_K \) is split over \(K \), the action of \(G \) on \(X \) is trivial, and \(\phi_T \) is isomorphic to the constant group \(\mathbb{Z}^d \) with \(d = \dim T_K \).

Lemma 3.1 Let \(X_G \) be the biggest \(\mathbb{Z} \)-free quotient of \(X \) which is fixed by \(G \). Then the projection \(X \rightarrow X_G \) gives rise to an isomorphism

\[\text{Hom}(X_G, \mathbb{Z}) \rightarrow \text{Hom}(X, \mathbb{Z})^G \]

of groups which canonically can be identified with \(\phi_T(k) \), the group of \(k \)-rational points of \(\phi_T \).
Proof. The epimorphism $X \rightarrow X_G$ induces injections
\[\text{Hom}(X_G, \mathbb{Z}) \hookrightarrow \text{Hom}(X, \mathbb{Z})^G \hookrightarrow \text{Hom}(X, \mathbb{Z}), \]
and we have to show that the left injection is, in fact, a bijection. To do this, consider a G-morphism $f: X \rightarrow \mathbb{Z}$ which is fixed by G. Then f factors through a G-morphism $X/W \rightarrow \mathbb{Z}$ where $W \subset X$ is the submodule generated by all elements of type $x - \sigma(x)$ with $x \in X$ and $\sigma \in G$. As X_G is obtained from X/W by dividing out its torsion part and as \mathbb{Z} is torsion-free, we see that f must factor through X_G. Hence, the map $\text{Hom}(X_G, \mathbb{Z}) \hookrightarrow \text{Hom}(X, \mathbb{Z})^G$ is bijective, as claimed. □

Now let $T_{G,K}$ be the torus with group of characters X_G. The projection $X \rightarrow X_G$ defines $T_{G,K}$ as the biggest subtorus of T_K which is split over K, and we can identify the associated morphism $\text{Hom}(X_G, \mathbb{Z}) \rightarrow \text{Hom}(X, \mathbb{Z})$ with the corresponding morphism of component groups $\phi_{T_G} \rightarrow \phi_T$. Thereby we can conclude from 3.1:

Proposition 3.2 Let T_K be a torus with multiplicative reduction, and let $T_{G,K}$ be the biggest subtorus which is split over K. Assume that K is complete. Then the injection $T_{G,K} \hookrightarrow T_K$ and the associated morphism of Néron models $T_G \rightarrow T$ induce a monomorphism of component groups $\phi_{T_G} \rightarrow \phi_T$ and an isomorphism $\phi_{T_G}(k) \approx \phi_T(k)$ between groups of k-rational points.

Furthermore, the canonical map $T_K(K) \rightarrow \phi_T(k)$ is surjective, as the same is true for the split torus $T_{G,K}$.

What can be said if, in the situation of 3.2, T_K does not have multiplicative reduction? In this case we can still view the group of characters X of T_K as a Galois module under the absolute Galois group of K. Similarly as above, we can use the inertia group I and look at the biggest subtorus $T_{I,K} \subset T_K$ which splits over the maximal unramified extension K^{sh} of K. We get an exact sequence of tori
\[0 \rightarrow T_{I,K} \rightarrow T_K \rightarrow \tilde{T}_K \rightarrow 0 \]
with a torus \tilde{T}_K such that $\tilde{T}_K \otimes_K K^{sh}$ does not admit a subgroup of type \mathbb{G}_m. The Néron model \tilde{T} of \tilde{T}_K is quasi-compact by [3], 10.2.1, and, hence, the component group $\phi_{\tilde{T}}$ must be finite.

We view now Néron models as sheaves with respect to the étale (or smooth) topology on \mathcal{O}_K. Then the above exact sequence of tori induces a sequence of Néron models
\[0 \rightarrow T_I \rightarrow T \rightarrow \tilde{T} \rightarrow 0 \]
which is exact by [4], 4.2. Furthermore, using the right exactness of the formation of component groups, see [4], 4.10, in conjunction with the facts that $T_{I,K}$ has multiplicative reduction and, hence, that the component group ϕ_{T_I} cannot have torsion, we get an exact sequence of component groups
\[0 \rightarrow \phi_{T_I} \rightarrow \phi_T \rightarrow \phi_{\tilde{T}} \rightarrow 0. \]
Restriction to k-rational points preserves the exactness,

$$0 \rightarrow \phi_{T_I}(k) \rightarrow \phi_T(k) \rightarrow \phi_{\tilde{T}}(k) \rightarrow 0,$$

as $H^1(G',\mathbb{Z}^d) = \text{Hom}(G',\mathbb{Z}^d) = 0$ for any finite group G' acting trivially on \mathbb{Z}^d.

Now, taking into account that $T_{I,K}$ has multiplicative reduction and that $\phi_{\tilde{T}}(k)$ is finite, we can conclude from 3.2:

Corollary 3.3 Let T_K be an algebraic torus, let $T_{G,K}$ be the biggest subtorus which is split over K, and let \tilde{T}_K be defined as above. Assume that K is complete. Then the canonical sequence

$$0 \rightarrow \phi_{T_G}(k) \rightarrow \phi_T(k) \rightarrow \phi_{\tilde{T}}(k) \rightarrow 0,$$

is exact with $\phi_{T_G}(k)$ being free and $\phi_{\tilde{T}}(k)$ finite.

In particular, the image of $T_{G,K}(K)$ is of finite index in $\phi_T(k)$, and the same is true for the image of $T_K(K)$.

4 Abelian varieties with semi-stable reduction

Let A_K be an abelian variety over the base field K, which is assumed to be complete. We will view A_K as a rigid K-group and use its uniformization in the sense of rigid geometry; cf. [11] and [4], Sect. 1. So A_K can be expressed as a quotient E_K/M_K of rigid K-groups with the following properties:

(i) E_K is a semi-abelian variety sitting in a short exact sequence

$$0 \rightarrow T_K \rightarrow E_K \rightarrow B_K \rightarrow 0,$$

where T_K is an algebraic torus and B_K an abelian variety with potentially good reduction.

(ii) M_K is a lattice in E_K of maximal rank; i.e., a closed analytic subgroup of E_K which, after finite separable extension of K, becomes isomorphic to the constant group \mathbb{Z}^d with $d = \dim T_K$.

Let A be the Néron model of A_K and A^0 its identity component. Recall that A_K is said to have semi-stable reduction if the special fibre A^0_k of A^0 is semi-abelian. Furthermore, let us talk about a split semi-stable reduction if the toric part of A^0_k is split over k. The property of semi-stable reduction is reflected on the uniformization of A_K in the following way:

Proposition 4.1 The abelian variety A_K has semi-stable (resp. split semi-stable) reduction over K if and only if the following hold:

(i) The torus T_K splits over a finite unramified extension of K (resp. over K).

(ii) The abelian variety B_K has good reduction over K.

If the above conditions are satisfied with T_K being split over K, the same is true for the lattice $M_K \subset E_K$; i.e., M_K is then isomorphic to the constant K-group \mathbb{Z}^d, where $d = \dim T_K$.

11
Proof. As any abelian variety with semi-stable reduction acquires split semi-stable reduction over a finite unramified extension of K, we need only to consider the case of split semi-stable reduction. So assume that A_K has split semi-stable reduction. Then we have an exact sequence

$$0 \to T_k \to A^0_k \to B_k \to 0,$$

where T_k is a split torus and B_k an abelian variety over k. Let A be the formal completion of A along A_k and A^0 its identity component. Using the infinitesimal lifting property of tori, see [7], exp. IX, 3.6, and working in terms of formal Néron models in the sense of [3], we see that T_k lifts to a split formal subgroup torus $T \subset A^0$ such that the quotient $B = A^0 / T$ is a formal abelian scheme lifting B_k. The theory of uniformizations, as explained for example in [1], Sect. 1, says now that the exact sequence

$$0 \to T \to A^0 \to B \to 0,$$

coincides with the one obtained from

$$0 \to T_k \to E_k \to B_k \to 0$$

by passing to identity components of associated formal Néron models. As the group of characters of T_k coincides with the one of T, we see that T_K is a split torus. Furthermore, B is algebraizable with generic fibre B_K and, thus, B_K has good reduction over K.

Let us show that in this situation M_K will be constant. Indeed, writing K^s for a separable closure of K, we choose free generators of the group of characters of T_K and look at the associated “valuation”

$$\nu: E_K(K^s) \longrightarrow |K^s|^d \longrightarrow \log \longrightarrow \mathbb{R}^d,$$

where $d = \dim T_K$. One knows that M_K being a lattice (of maximal rank) in E_K means that M_K is of dimension zero and that $M_K(K^s)$ is mapped bijectively under ν onto a lattice (of maximal rank) in \mathbb{R}^d.

Now let us look at the action of the absolute Galois group $G_K := \text{Gal}(K^s/K)$ of K on $M_K(K^s)$ and show that M_K is constant. As K is complete, the action of G_K is trivial on $|K^s|$. Hence, it respects the map ν. Therefore ν can only be injective if the action of G_K on $M_K(K^s)$ is trivial. However, then all points of M_K must be rational, and M_K is constant.

The converse, that conditions (i) and (ii) imply semi-stable reduction for A_K, follows from [4], 5.1. \(\square\)

Let us consider now an abelian variety A_K with semi-abelian reduction and with uniformization given by the exact sequence

$$0 \to M_K \to E_K \to A_K \to 0.$$

Then, by [4, 5], M_K becomes constant over an unramified extension of K, and the associated sequence of formal Néron models
0 \rightarrow \mathcal{M} \rightarrow \mathcal{E} \rightarrow \mathcal{A} \rightarrow 0

is exact due to [4], 4.4. As the component group \(\phi_M \) is torsion-free, and as the formation of component groups is right-exact, see [4], 4.10, the induced sequence

\[(*) \quad 0 \rightarrow \phi_M \rightarrow \phi_E \rightarrow \phi_A \rightarrow 0 \]

is exact, so that \(\phi_A \) may be identified with the quotient \(\phi_E / \phi_M \). Thus, if we view the objects of the latter sequence as Galois modules under \(G = \text{Gal}(K^{ab}/K) \) and apply Galois cohomology, we see:

Lemma 4.2 As before, let \(A_K \) be an abelian variety with semi-stable reduction. Then the uniformization of \(A_K \), in particular, the above sequence \((*)\), gives rise to an exact sequence

\[0 \rightarrow \phi_M(k) \rightarrow \phi_E(k) \rightarrow \phi_A(k) \rightarrow H^1(G, M_K) \rightarrow \ldots \]

If \(A_K \) has split semi-stable reduction, \(M_K \) is constant and, hence, \(H^1(G, M_K) \) is trivial.

Thus, the quotient \(\phi_E(k)/\phi_M(k) \) may be viewed as a subgroup of the group of \(k \)-rational points of \(\phi_A \), and it coincides with \(\phi_A(k) \) in the case of split semi-stable reduction.

Let \(T_K \) be the toric and \(B_K \) the abelian part of \(E_K \). Then we have an exact sequence

\[0 \rightarrow T_K \rightarrow E_K \rightarrow B_K \rightarrow 0 \]

of algebraic \(K \)-groups and, associated to it, a sequence of Néron models

\[0 \rightarrow T \rightarrow E \rightarrow B \rightarrow 0. \]

In terms of sheaves for the étale (or smooth) topology on \(\mathcal{O}_K \), the latter is exact due to [4], 4.2, as \(A_K \) having semi-abelian reduction implies that \(T_K \) splits over an unramified extension of \(K \); use [4], 1.1 and [4], 5.1. Similarly as before, we get an exact sequence of component groups

\[0 \rightarrow \phi_T \rightarrow \phi_E \rightarrow \phi_B \rightarrow 0, \]

where \(\phi_B \) is trivial, since \(B_K \) has good reduction. Thus, the morphism \(T \rightarrow E \) induces an isomorphism \(\phi_T \rightarrow \phi_E \) and, using the above exact sequence \((*)\), we can view \(\phi_A = \phi_E / \phi_M \) as a quotient \(\phi_T / \phi_M \), although the morphism \(M \rightarrow E \) might not factor through \(T \).

Proposition 4.3 Let \(A_K \) be an abelian variety with split semi-stable reduction; i.e., we assume that the identity component \(A^0_k \) of the special fibre of the Néron model \(A \) of \(A_K \) is extension of an abelian variety by a split algebraic torus. Then:

(i) The component group \(\phi_A \) is constant (also valid if \(K \) is not necessarily complete).

(ii) The canonical map \(A_K(K) \rightarrow \phi_A(k) \) is surjective.
Proof. It follows from [3, I] that M_K is constant and that T_K is split. Thus, the k-groups ϕ_T and ϕ_M are constant, and so is their quotient ϕ_A. If K is not complete, we may pass to the completion of \overline{K} without changing the reduction of A_K and its type. This establishes assertion (i). Furthermore, assertion (ii) is due to the fact that the map $T_K(K) \to \phi_A(k)$ is surjective, as T_K is a split torus. \hfill \square

If the semi-stable reduction of A_K is not necessarily split, the quotient $\phi_T(k)/\phi_M(k)$ will, in general, be a proper subgroup of $\phi_A(k)$; its index is controlled by the cohomology group $H^1(G, M_K)$. To make this subgroup more explicit, let X be the group of characters of the toric part T_K of E_K. As is explained in [3], Sect. 3 or [4], Sect. 5, we can evaluate characters of X semi-stable reduction. H injectively into ϕ in the image of A_K, controlled by the cohomology group A of X, and its type. This establishes assertion (i). Furthermore, assertion (ii) is due to the fact that the map $T_K(K) \to \phi_A(k)$ is surjective, as T_K is a split torus.

Proposition 4.4 Let A_K be an abelian variety with semi-stable reduction and with uniformization $A_K = E_K/M_K$. Let X be the group of characters of the toric part of E_K. Then $\Sigma = \text{Hom}(X, \mathbb{Z})/M_K^\Sigma$ is a subgroup of $\phi_A(k)$, contained in the image of $A_K(K) \to \phi_A(k)$, such that the quotient $\phi_A(k)/\Sigma$ is mapped injectively into $H^1(G, M_K)$. Furthermore, Σ coincides with $\phi_A(k)$ if A_K has split semi-stable reduction.

If the abelian variety does not admit semi-stable reduction, we still have maps

$$\phi_{T_G} \to \phi_{T_I} \to \phi_T \to \phi_E \to \phi_A,$$

where $T_{G,K}$ stands for the maximal subtorus of T_K which is split over K and, likewise, $T_{I,K}$ for the maximal subtorus of T_K which splits over K^{sh}. The image in ϕ_A of each of these groups gives rise to a subgroup of ϕ_A, and we thereby get a filtration of ϕ_A. Up to the term ϕ_{T_G}, this filtration was dealt with in [4],...
Sect. 5; it goes back to Lorenzini [9]. Subsequent factors of the filtration are controlled by suitable first cohomology groups or by the component group of B_K; cf. [4], 5.5. So, to make general statements about k-rational points seems to be a little bit out of reach. However, the groups ϕ_{T_0} and ϕ_{T_2} are accessible, and this leads to the understanding of rational components in the semi-stable reduction case.

References

[1] Bosch, S., Lütkebohmert, W.: Degenerating abelian varieties. Topology 30, 653–698 (1991)

[2] Bosch, S., Lütkebohmert, W., Raynaud, M.: Néron Models. Ergebnisse der Math., 3. Folge, Bd. 21, Springer (1990)

[3] Bosch, S., Schlöter, K.: Néron models in the setting of formal and rigid geometry. Math. Ann. 301, 339–362 (1995)

[4] Bosch, S., Xarles, X.: Component groups of Néron models via rigid uniformization. Math. Ann. 306, 459–486 (1996)

[5] Brown, K.: Cohomology of groups. Graduate Texts in Math., 87, Springer Verlag (1982)

[6] Colliot-Thélène, J.-L., Saito, S.: Zéro-cycles sur les variétés p-adiques et groupe de Brauer, Internat. Math. Res. Notices, no. 4, 151–160 (1996)

[7] Grothendieck, A.: Schémas en Groupes, SGA 3, I, II, III. Lecture Notes in Mathematics 151, 152, 153, Springer (1970)

[8] Lang, S.: Algebraic groups over finite fields, Amer. J. Math., 78, 555–563 (1956)

[9] Lorenzini, D.: On the group of components of a Néron model. J. reine angew. Math. 445, 109–160 (1993)

[10] Mazur, B., Rapoport, M.: Appendix to “Modular curves and the Eisenstein ideal”, Publ. Math. IHES, 47, 173–186 (1977)

[11] Raynaud, M.: Variétés abéliennes et géométrie rigide. Actes du congrès international de Nice 1970, tome 1, 473–477

[12] Serre, J.-P.: Corps locaux, Herman, Paris, deuxième édition, 1968.

[13] Xarles, X.: The scheme of connected components of the Néron model of an algebraic torus. J. reine angew. Math. 437, 167–179 (1993)
