Genome Sequence of *Roseovarius* sp. Strain MCTG156(2b) Isolated from a Phytoplankton Net Trawl on the Scottish West Coast

Tony Gutierrez,* William B. Whitman,† Marcel Huntemann,*, Alex Copeland,*, Amy Chen,*, Neha Vargese,*, Nikos C. Kyripides,*, Manoj Pillay,*, Natalia Ivanova,*, Natalia Mikhailova,*, Supratim Mukherjee,*, Dimitrios Stamatis,† T. B. K. Reddy,*, Chew Yee Ngan,*, Mansi Chovatia,*, Chris Daum,*, Nicole Shapiro,*, Tanja Woyke*
School of Engineering and Physical Sciences, Heriot Watt University, Edinburgh, United Kingdom; Department of Microbiology, University of Georgia, Athens, Georgia, USA; DOE Joint Genome Institute, Walnut Creek, California, USA

ABSTRACT *Roseovarius* sp. strain MCTG156(2b) was isolated from a phytoplankton net sample collected on the west coast of Scotland and was selected based on its ability to degrade polycyclic aromatic hydrocarbons. Here, we present the genome sequence of this strain, which is 5,113,782 bp, with 5,142 genes and an average G+C content of 60.7%.

R *oseovarius* sp. strain MCTG156(2b) was isolated from a phytoplankton net sample that was trawled in 2009 at a sampling station designated LY1, located on the west coast of Scotland near Oban, Argyll. The strain was isolated by enrichment with phenanthrene in Zobell’s 2216 marine medium at a 10-fold dilution. Colonies on agar plates sprayed with phenanthrene produced distinct halos that indicated the strain’s ability to degrade the hydrocarbon. Based on 16S rRNA gene sequence identity, the closest type species was *Roseovarius mucosus* strain DFL-24, which had also been isolated from a laboratory culture of a dinoflagellate (1).

Here, we report the genome sequence of *Roseovarius* sp. strain MCTG156(2b). Genomic DNA was sequenced through the DOE Joint Genome Institute 2014 Genomic encyclopedia of type strains phase III study (2) using Pacific Biosciences (PacBio) technology. A PacBio SMRTbell library was constructed and sequenced on the PacBio RS platform, which generated 170,293 filtered subreads totaling 598.2 Mbp. All general aspects of library construction and sequencing performed at the JGI can be found at http://www.jgi.doe.gov. The raw reads were assembled using HGAP (version 2.1.1) (3). The final draft assembly produced 8 scaffolds containing 8 contigs totaling 5.1 Mbp in size, with input read coverage of 121.5×.

Project information is available in the Genomes OnLine Database (4). Genes were identified using Prodigal (5), as part of the Joint Genome Institute (JGI) Microbial Annotation Pipeline (6). The predicted coding sequences (CDSs) were translated and used to search the National Center for Biotechnology Information (NCBI) nonredundant, UniProt, TIGRfam, Pfam, KEGG, COG, and InterPro databases. The trNAscan-SE tool (7) was used to find tRNA genes, whereas ribosomal RNA genes were found by searches against models of the ribosomal RNA genes built from SILVA (8). Other noncoding RNAs, such as the RNA components of the protein secretion complex and RNase P, were identified by searching the genome for the corresponding Pfam profiles using Infernal (http://infernal.janelia.org). Additional analysis and manual functional annotation were performed within the Integrated Microbial Genomes-Expert Review

Received 5 July 2017 Accepted 7 July 2017 Published 31 August 2017
(IMG-ER) platform developed by the Joint Genome Institute, Walnut Creek, CA, USA (9).

The complete genome sequence length was 5,113,782 bp, with a G+C content of 60.7%. The genome contained 5,142 genes (5,078 protein-coding genes), with functional predictions for 4,198 of them. A total of 64 RNA genes were detected. Other genes characteristic for the genus are given in the IMG database (10).

Accession number(s). The draft genome sequence of Roseovarius sp. strain MCTG156(2b) obtained in this study was deposited in GenBank as part of BioProject no. PRJNA224116, with individual genome sequences submitted as whole-genome shotgun projects under the accession no. JQLS00000000.

ACKNOWLEDGMENTS

T.G. was supported by a Marie Curie International Outgoing Fellowship (PIOF-GA-2008-220129) within the Seventh European Community Framework Program. Partial support was also provided by the European Union’s Horizon 2020 research and innovation program under grant agreement no. 635340. The work was conducted by the U.S. Department of Energy Joint Genome Institute, a DOE Office of Science User Facility, which is supported by the Office of Science of the U.S. Department of Energy under contract no. DE-AC02-05CH11231.

REFERENCES

1. Biebl H, Allgaier M, Lünsdorf H, Pukall R, Tindall BJ, Wagner-Döbler I. 2005. Roseovarius mucosus sp. nov., a member of the Roseobacter clade with trace amounts of bacteriochlorophyll a. Int J Syst Evol Microbiol 55:2377–2383. https://doi.org/10.1099/ijs.0.63832-0.

2. Whitman WB, Wayke T, Klenk HP, Zhou Y, Lilburn TG, Beck BJ, De Vos P, Vandamme P, Eisen JA, Garrity G, Hugenholtz P, Kyrpides NC. 2015. Genomic encyclopedia of bacterial and archaeal type strains, phase III: the genomes of soil and plant-associated and newly described type strains. Stand Genomic Sci 10:26. https://doi.org/10.1186/s40793-015-0017-x.

3. Chin CS, Alexander DH, Marks P, Klammer AA, Drake J, Heiner C, Clum A, Copeland A, Huddleston J, Eichler EE, Turner SW, Korlach J. 2013. Non-hybrid, finished microbial genome assemblies from long-read SMRT sequencing data. Nat Methods 10:563–569. https://doi.org/10.1038/nmeth.2474.

4. Mukherjee S, Stamatis D, Bertsch J, Ovchinnikova G, Verszemetka O, Isbandi M, Thomas AD, Ali R, Sharma K, Kyrpides NC, Reddy TB. 2017. Genomes OnLine Database (GOLD) v.6: data updates and feature enhancements. Nucleic Acids Res 45:D446–D456. https://doi.org/10.1093/nar/gkw992.

5. Hyatt D, Chen GL, Locascio PF, Land ML, Larimer FW, Hauser LJ. 2010. Prodigal: prokaryotic gene recognition and translation initiation site identification. BMC Bioinformatics 11:119. https://doi.org/10.1186/1471-2105-11-119.

6. Huntemann M, Ivanova NN, Mavromatis K, Tripp HJ, Paez-Espino D, Palaniappan K, Szeto E, Pillay M, Chen IM-a, Pati A, Nielsen T, Markowitz VM, Kyrpides NC. 2015. The standard operating procedure of the DOE-JGI microbial genome annotation pipeline (MGAP v4). Stand Genomic Sci 10:86. https://doi.org/10.1186/s40793-015-0077-y.

7. Lowe TM, Eddy SR. 1997. tRNAscan-SE: a program for improved detection of transfer RNA genes in genomic sequence. Nucleic Acids Res 25:955–964.

8. Pruesse E, Quast C, Knittel FB, Ludwig W, Peplies J, Glöckner FO. 2007. SILVA: a comprehensive online resource for quality checked and aligned ribosomal RNA sequence data compatible with ARB. Nucleic Acids Res 35:7188 –7196. https://doi.org/10.1093/nar/gkm864.

9. Markowitz VM, Mavromatis K, Ivanova NN, Chen IMA, Chu K, Kyrpides NC. 2009. IMG-ER: a system for microbial genome annotation expert review and curation. Bioinformatics 25:2271–2278. https://doi.org/10.1093/bioinformatics/btp393.

10. Chen IA, Markowitz VM, Chu K, Palaniappan K, Szeto E, Pillay M, Ratner A, Huang J, Andersen E, Huntemann M, Varghese N, Hadjithomas M, Tennessen K, Nielsen T, Ivanova NN, Kyrpides NC. 2017. IMG/M: integrated genome and metagenome comparative data analysis system. Nucleic Acids Res 45:D507–D516. https://doi.org/10.1093/nar/gkw929.