Co-Doped LaMnO₃ Perovskite Structure Nanoparticles as a Bifunctional Electrocatalysts for Oxygen Reduction/Evolution Reactions

Shaik Mahmammad Rafi, Yong Min Kwon, An Seop Lim

Abstract: Current paper, we have examined lanthanum manganese cobalt (LaMnₓ₋₁⁄₃CoₓO₃) perovskite nanoparticles synthesized by utilizing the sol-gel process and following calcinated at 450 °C for 1h and 900 °C for 7h, respectively. The fabricated alloys show single-phase perovskite structure is an order of LaMnₓ₋₁⁄₃CoₓO₃ (x = 0, 0.2, 0.4, 0.6, 0.8, 1). The synthesized LaMnₓ₋₁⁄₃CoₓO₃ perovskite oxide nanoparticles have the crystal structure, and powder morphology properties were investigated by X-ray diffraction (XRD), and field emission scanning electron microscopy (FESEM), respectively. The perovskite structure has been shown to be particularly effective for the catalytic reactions of ORR and OER in alkaline medium. The merged valence transition metal oxides are bifunctional electrocatalysts which give rise to potential candidates, the electrochemical functioning of the LaMnₓ₋₁⁄₃CoₓO₃ catalyst was entirely investigated. All compounds of ORR polarization curves show that the four-electron pathway, which results in Koutecky-Levich is compatible with these perovskite structures. Current work, we describe B-site extend adding of Co ratio into perovskite structure is an appropriate strategy to increase ORR and OER electrocatalytic performance for application in metal-air batteries.

Keywords: Perovskite Structure, Electrochemical Functioning, Bifunctional Electrocatalysts, Metal-air Batteries.

I. INTRODUCTION

Electronic devices have been developing rapidly, which results in increasing demand for high energy/ power density sources. There is also a capable intension to promote electric vehicles by introducing batteries to overcome their dependence on fuel and reduce tailpipe emissions [1]. At this point, many researchers have been studied rechargeable metal-air battery and it has been considered as one of the much-encouraging energy sources for electric vehicles owing to few attractive benefits, like high power density, low-priced, and environmentally friendly. However, the improvement of rechargeable metal-air batteries is mainly controlled by two inactive procedures, especially, the oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) kinetics of oxygen electrocatalysts [2].

The air cathode designed for the oxygen reduction reaction catalysts (ORRC), gas diffusion layer, and current collector which gives the importance for metal-air batteries [3].

Currently, palladium (Pd) and platinum (Pt) are the mainly utilized favorable electrocatalysts for ORR, there is less activity towards OER. RuO₂ and IrO₂ are considered as the good OER electrocatalyst however show incomplete ORR activity [4]. Therefore, in terms of ORR activities, several non-metallic catalysts have been developed, similar compounds like MnO₂-based catalysts, carbon-based materials, also other transition metal oxides. Among these applicants as perovskite oxides have to be attractive cost-wise, high activity, and environmentally friendly, which gains the interest from science and technology [5]. Transition metal oxides have benefits such as good catalytic activity, controllable conductivity, as well as low cost for ORR and OER [6]. In various bifunctional electrocatalysts, La-based perovskite structure is represented by a chemical formula ABO₃, which is composed of several oxides. Where A-cation is usually rare-earth elements or alkaline earth elements and B-cation are transition metal elements [7].

The application of perovskite structure as oxygen electrocatalysts was initially described in the year of 1970s. Whereas, La-based perovskite structure, as a bifunctional electrocatalyst for ORR and OER which are attracted to more consideration and has developed one of the hot subjects in the electrocatalysis area [8]. In this current work, LaMnₓ₋₁⁄₃CoₓO₃ perovskite structure nanoparticles were synthesized by the sol-gel process. In metal-air batteries and fuel cells, LaMnO₃ is one of the most commonly used catalysts for ORR/OER [9]. LaMnO₃ based materials consist of electrical properties and very attractive electrocatalysts owing to their high electronic conductivity and good ionic conductivity [10]. Literature reports described that LaMnO₃ has good oxygen mobility and defective cation deficient lattice which shows excellent oxygen reduction reaction (ORR) catalytic activity [11].

The A-site defect perovskite structure is unstable because the vacant lanthanum locations have a high amount in the crystal structure. The perovskite materials have A-site defects which can change the B-site defects [12]. The catalytic reaction caused by the reduction of primary transition metals like Co, Mn, Fe forms the B-site cation. The combining of double dissimilar elements at the B-site guide to synergetic effect with improving electrocatalytic activity. The transition metal has properties of oxidoreduction, and high oxygen mobility associated with the perovskite oxides activity [13]. Through the air cathode application, there has been a special involvement of research on La-based perovskite structure (LaMO₃, M = Mn, Co, Fe). In the current work, we have generalized our research in-depth for lanthanum-based perovskite
oxide nanoparticles in sol-gel synthesis and their characterization of electrocatalytic activities for ORR and OER reactions.

II. EXPERIMENTAL SECTION

A. Materials

Lanthanum nitrate hexahydrate (La(NO₃)₃·6H₂O, 99%+, Aldrich), manganese (II) nitrate tetrahydrate (MnN₂O₄·4H₂O, 98%, Alfa Aesar), cobalt nitrate hexahydrate (Co(NO₃)₂·6H₂O, 97.7%, Alfa Aesar), citric acid anhydrous (C₆H₈O₇, 99.5%, Alfa Aesar), potassium hydroxide (KOH, 85%, Alfa Aesar). All chemicals were used as shown without further treatment.

B. Synthesis of LaMnₓCoₓO₃ Nanoparticles

The preparation of La-based nanoparticles, in an order of [LaMnₓCoₓO₃] (x = 0, 0.2, 0.4, 0.6, 0.8, 1) were synthesized by the sol-gel process. Lanthanum, manganese, cobalt nitrate compounds, and citric acid. Metal nitrates and citric acid having a molar ratio of 1:2 has fixed. Afterward, the whole combined compound solution was kept at 80 °C temperature and mixed with a magnetic stirrer. Until to get the brown gel to continue this stirring process. Afterward, these prepared composition samples can be located in a heated furnace at the temperature of 200 °C to become amorphous precursor, later the desiccated powder has been shifted to a crucible and calcinated at 450 °C for 1 h and 900 °C for 7 h. The collected powders were LaMnₓO₃, LaMnₓCoₓO₃, LaMnₓCoₓO₃, LaMnₓCoₓO₃, LaMnₓCoₓO₃, and LaCoO₃.

C. Characterization Techniques

a. X-ray diffractometer (XRD)

The crystal structure of LaMnₓCoₓO₃ perovskite structure nanoparticles was investigated by XRD (wavelength λ = 1.54 Å, Rigaku Cu Kα radiation) technique within 10° to 80° is the range of 2θ.

b. Field Emission Scanning Electron Microscopy (FESEM)

The morphology, elemental distribution, and average particle size of LaMnₓCoₓO₃ perovskite structure nanoparticles are examined by FESEM (SIGMA 500, ZEISS) and elemental mapping analysis was investigated by EDS (Bruker, XFlash 6130).

c. Electrochemical Measurements

The synthesized LaMnₓCoₓO₃ perovskite structure nanoparticles for ORR and OER electrocatalytic performance, the rotating ring disk electrode (RRDE) technique was examined by using the electrochemical measurements which are attached to the workstation (BAS Inc.). An electrochemical cell that consists of a saturated three-electrode test system of an RRDE which consists of a graphite rod, glassy carbon (GC) substrate of a diameter 6.0 mm, 3.0 mm and saturated calomel electrode (SCE). The role of these three-electrode system plays as a counter, working, and reference electrodes. Aqueous KOH solution of a ratio 0.1 M is used as the electrolyte. To build a homogeneous ink by using prepared catalyst ink solution consist a mixture of Vulcan-XC72 carbon (2 mg) and LaMnₓCoₓO₃ perovskite structure (2 mg) were diffused in 1 mL of ethyl alcohol and combined with 0.15 mL of Nafion® solution. On a clean polishing cloth (R&B Inc.) RRDE GC disk electrode was cleaned initially with a 0.05 μm alumina abrasive suspension (R&B Inc.) frequently cleaned with DI water, later kept in the oven to dry. After the preparation of homogeneous ink in ultrasonication for 1 h, the glassy carbon electrode is coated with 0.36 μL of catalyst ink. In RRDE experiments, the electrolyte has been saturated with the purging of high purity oxygen gas (99.99%) for 30 minutes. By using a CHI electrochemical workstation, the polarization curves for the LaMnₓCoₓO₃ of ORR was tested at 500, 1000, 1500, 2000, and 2500 rpm rotational speed, and the 1500 rpm rotational speed for oxygen evolution reaction (OER) with a scan rate is 0.005 V s⁻¹. The frequency range of the electrochemical resistivity measurements is carried out between 0.1 Hz to 100 kHz with a voltage bias of 5 mV amplitude. The overall reaction mechanism of ORR is to understand through the electron transfer number (n) by using the equation of Koutecky-Levich: [7]

\[
\frac{1}{J} = \frac{1}{J_k} + \frac{1}{J_d} = \frac{1}{nFkCo_2} + \frac{1}{0.62nFD_0^{2/3}ω^{1/2}v^{-1/6}C_0^{2/3}} 
\]

Where J is the current density, J_k is the kinetic current density, J_d is the diffusion-limiting current density, n is the electron number, F is the Faraday constant, k is the ORR rate constant, C_0 is the oxygen concentration (1.14×10⁻⁶ mol cm⁻³), D_0 is the oxygen diffusion coefficient (1.73×10⁻⁶ cm² s⁻¹), ω is the rotation rate of the electrode (rad/s), v is the electrolyte kinetic viscosity (0.01 cm² s⁻¹).
III. RESULTS AND DISCUSSION

The phase and crystal structure of the LaMn$_{1-x}$Co$_x$O$_3$ perovskite structure nanoparticles calcinated at 450 °C for 1 h and 900 °C for 7 h were characterized by using XRD, as shown in Fig. 2(a). All compounds demonstrated the single-phase cubic crystal structure, which confirmed from hygienic LaMnO$_3$ JCPDS-ICDD file no: 073-8342. No specific peak of lanthanum oxide or manganese oxide was detected, no effect is shown in the phase structure with the difference of La/Mn molar ratio. We detected that there is a clear peak shift towards a higher 2θ angle (right shift) with extend adding of Co ratio into LaMnO$_3$ like (0, 0.2, 0.4, 0.6, 0.8, 1).

Figure 2. XRD sample of the (a) LaMn$_{1-x}$Co$_x$O$_3$ upon 10° to 80° is the range of 2θ, (b) magnified XRD peak between 30° and 35°.

The LaMn$_{1-x}$Co$_x$O$_3$ perovskite structure nanoparticles of surface morphology were characterized by using FESEM as shown in Fig. 3(a-b). The identical single or double layers of the particle size are few hundreds of nanometers. For example, the (x = 0, 0.2, 0.4, 0.6, 0.8, 1) compounds showing a particle size of 451 nm, 156.26 nm, 133.96 nm, 256.8 nm, 320.06 nm, and 350.13 nm. The particles have shown unsystematic structures and uneven distribution. The change in the particle sizes is probably associated with the sequence of changes in perovskite. The elemental mapping is shown in Fig. 3(g) of perovskite structure LaMn$_{1-x}$Co$_x$O$_3$ under the FESEM method which presents the 1:1 atomic ratio for La: M (Mn, Co) catalysts. The chemical components in the perovskite structure are distributed regularly.

In sequence to analyze the catalytic activities of LaMn$_{1-x}$Co$_x$O$_3$ perovskite structure nanoparticles for ORR and OER reactions. The RRDE measurements have been investigated through the linear sweep voltammetry (LSV) in oxygen saturated 0.1 M KOH electrolyte at different speed of rotations like 500, 1000, 1500, 2000, and 2500 rpm. LaMn$_{1-x}$Co$_x$O$_3$ perovskite structure nanoparticle’s current density is shown in Fig. 4(a), all samples of ORR current densities are with a scan rate is 0.005 V at 2500 rpm speed of rotation in -1.0 V to 0.0 V vs. SCE is the potential range. The highest diffusion-limited current density is indicating to LaMn$_{0.2}$Co$_{0.8}$O$_3$ that reduces in the order of LaCoO$_3$ > LaMn$_{0.8}$Co$_{0.2}$O$_3$ > LaMn$_{0.4}$Co$_{0.6}$O$_3$ > LaMn$_{0.6}$Co$_{0.4}$O$_3$ > LaMnO$_3$. The initial potential of all samples is approximately -0.30 V. The OER activities for the
Co-Doped LaMnO$_3$ Perovskite Structure Nanoparticles as a Bifunctional Electrocatalysts for Oxygen Reduction/Evolution Reactions

The ORR kinetics of the electrocatalysts processes and more quantitative analysis by LaMn$_{1-x}$Co$_x$O$_3$ perovskite structure, we have calculated the Koutecky-Levich plots at -0.80 V vs. SCE through the LSV test derive from ORR polarization curves is shown in Fig. 4(d). By using Eq. (1) the electron transfer number ($n$) has been studied through the incline of the Koutecky-Levich analysis for LaMn$_{1-x}$Co$_x$O$_3$ is shown in Fig. 4(d) which are 3.8, 4.1, 4.0, 4.1, 4.4, and 4.1 respectively. The theoretical value (4.0) is very close to each sample of ORR in alkaline medium. A certain quantity of Co doping can forward the ORR procedure from a 2-electron dominated pathway in the electrolyte medium ($O_2$ to $HO_2^-$) is the reducing of the 4-electron dominated pathway from $O_2$ to $OH^{-1}$.

IV. CONCLUSIONS

In this study, by using the sol-gel process the LaMn$_{1-x}$Co$_x$O$_3$ was synthesized, which reduces the certain amount of the Mn ratio and increments the certain amount of the Co ratio. The observation outcomes specify the LaMn$_{1-x}$Co$_x$O$_3$ demonstrated the single-phase perovskite cubic crystal structure, indicating higher 2θ angle have clear peak shift with extend adding of Co ratio like ($x$ = 0, 0.2, 0.4, 0.6, 0.8, 1) into LaMnO$_3$, and the identical single or double layers of the particle size is showing few hundreds of nanometers. The ORR and OER curves of electrochemical tests were investigated by using all
synthesized perovskite structure in 0.1 M KOH electrolyte. LaMn$_{0.8}$Co$_{0.2}$O$_3$ is shown the highest diffusion-limiting current density for ORR based on the LSV curves. The OER has explained each electrocatalyst in the potential region between 0.0 V to 1.0 V vs. SCE. At 0.60 V the kinetics of LaMn$_{0.8}$Co$_{0.2}$O$_3$ is suddenly growing. Similarly, all compounds of ORR polarization curves show that the four-electron pathway corresponds to the Koutecky-Levich results. In metal-air batteries, for air cathode, the low-cost electrocatalyst is provided by Co-doped LaMnO$_3$.

**ACKNOWLEDGEMENTS**

This research was supported by National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIP) (No. 2015R1C1A101051733).

**REFERENCES**

1. U. Megha, K. Shijina, and G. Varghese, “Nanosized LaCo$_x$Fe$_{3-2x}$O$_7$ perovskites synthesized by citrate sol gel auto combustion method,” Processing and Application of Ceramics, vol. 8, Jun. 2014, pp. 87-92.

2. R-H. Yuan, Y. He, W. He, M. Ni, and M. K. H. Leung, “Bifunctional electrocatalytic activity of La$_{0.2}$Sr$_{0.8}$MnO$_3$-based perovskite with the A-site deficiency for oxygen reduction and evolution reactions in alkaline media,” Applied Energy, vol. 251, Oct. 2019, pp. 113406.

3. S. Sun, H. Miao, Y. Xue, Q. Wang, S. Li, and Z. Liu, “Oxygen reduction reaction catalyst of manganese oxide decorated by silver nanoparticles for aluminum-air batteries,” Electrochimica Acta, vol. 214, Oct. 2016, pp. 49-55.

4. H. Wang, M. Zhou, P. Choudhury, and H. Luo, “Perovskite oxides as bifunctional oxygen electrocatalysts for oxygen evolution/reduction reactions – A mini review,” Applied Materials Today, vol. 16, Sep. 2019, pp. 56-71.

5. J. Hu, L. Wang, L. Shi, and H. Huang, “Oxygen reduction reaction activity of LaMn$_{1-x}$Co$_x$O$_3$-graphene nanocomposite for zinc-air battery,” Electrochimica Acta, vol. 161, Apr. 2015, pp. 115-123.

6. Y. Da, L. Zeng, C. Wang, C. Gong, and L. Cui, “A simple approach to tailor OER activity of SrCo$_{0.8}$Fe$_{0.2}$O$_3$ perovskite catalysts,” Electrochimica Acta, vol. 300, Mar. 2019, pp. 85-92.

7. S. M. Rafi, “Transition Metal Oxide-Based Perovskite Structures as a Bifunctional Oxygen Electrocatalysts: Fe Doped LaCoO$_3$ Nanoparticles,” International Journal of Engineering and Advanced Technology (IJEAT), vol. 9, Dec. 2019, pp. 2249-8958.

8. H. Wang, W. Xu, S. Richuns, K. Liaw, L. Yan, and M. Zhou, “Polymer-assisted approach to LaCo$_{1-x}$Ni$_x$O$_3$ network nanostructures as bifunctional oxygen electrocatalysts,” Electrochimica Acta, vol. 296, Feb. 2019, pp. 945-953.

9. Y. Xue, H. Miao, S. Sun, Q. Wang, S. Li, and Z. Liu, “(La$_{0.2}$Sr$_{0.8}$)MnO$_3$ perovskite with A-site deficiencies toward oxygen reduction reaction in aluminum-air batteries,” Journal of Power Sources, vol. 342, Feb. 2017, pp. 192-201.

10. F. M. Figueiredo, F.M.B. Marques, and J.R. Frade, “Electrochemical permeability of La$_{0.2}$Sr$_{0.8}$CoO$_{3-δ}$ materials,” Solid State Ionics, vol. 111, Sep. 1998, pp. 273-281.

11. H. Huang, Q. Liu, B. Lu, X. Wang, and J. Hu, “LaMnO$_3$-diamond composites as efficient oxygen reduction reaction catalyst for Zn-air battery,” Diamond & Related Materials, vol. 91, Jan. 2019, pp. 199-206.

12. A. N. Bugrov, L. D. Abdulaeva, O. I. Silyukov, A. A. Burovikhina, E. N. Latysheva, Y. S. Manucharov, and I. A. Zvereva, “Soft chemistry synthesis and dielectric properties of A-site deficient perovskite-type compound La$_{0.2}$TiO$_{3-n}$” Ceramics International, vol. 42, Jan. 2016, pp. 1698-1704.

13. D. Zhang, J. B. Goodenough, Y. Song, Z. Du, L. Wang, and Y. Li, “Active LaNi$_{1-x}$Fe$_x$O$_3$ bifunctional catalysts for air cathodes in alkaline media,” Journal of Materials Chemistry A, vol. 3, Mar. 2015, pp. 9421-9426.