Coupling hydrodynamics to nonequilibrium degrees of freedom in strongly interacting quark-gluon plasma

Michal P. Heller,1,2,3 Romuald A. Janik,4 Michał Spaliński,3,5 and Przemysław Witaszczyk4

1Instituut voor Theoretische Fysica, Universiteit van Amsterdam, Science Park 904, 1090 GL Amsterdam, The Netherlands
2Perimeter Institute for Theoretical Physics, Waterloo, Ontario N2L 2Y5, Canada
3National Centre for Nuclear Research, Hoża 69, 00-681 Warsaw, Poland
4Institute of Physics, Jagiellonian University, Reymonta 4, 30-059 Kraków, Poland
5Physics Department, University of Białystok, Lipowa 41, 15-424 Białystok, Poland

Relativistic hydrodynamizations of quark-gluon plasma play a pivotal role in our understanding of heavy ion collisions at RHIC and LHC. They are based on a phenomenological description due to Müller, Israel, Stewart (MIS) and others, which incorporates viscous effects and ensures a well-posed initial value problem. Focusing on the case of conformal plasma we propose a generalization which includes, in addition, the dynamics of the least damped far-from-equilibrium degree of freedom found in strongly coupled plasmas through the AdS/CFT correspondence. We formulate new evolution equations for general flows and then test them in the case of $N = 4$ super Yang-Mills plasma by comparing their solutions alongside solutions of MIS theory with numerical computations of isotropization and boost-invariant flow based on holography. In these tests the new equations reproduce the results of MIS theory when initialized close to the hydrodynamic stage of evolution, but give a more accurate description of the dynamics when initial conditions are set in the pre-equilibrium regime.

INTRODUCTION

The successful phenomenological description of soft observables in heavy ion collisions at RHIC and LHC asserts that the quark-gluon plasma phase is formed and in less than one Fermi after the collision subsequent evolution till hadronization is governed by hydrodynamic expansion with a very small shear viscosity [1, 2]. Finding an explanation for the emergence of this collective behavior under experimentally viable conditions based on the microscopic theory, QCD, poses a timely theoretical challenge. In consequence, much attention has recently been devoted to the studies of equilibration processes of non-Abelian gauge fields in a few known tractable situations, such as at strong coupling using holography and a dual gravitational description.

Within this approach it has been shown that viscous hydrodynamics can work remarkably well already after a time of order of the inverse of the local effective temperature despite significant pressure anisotropy in the local rest frame. This finding suggests that the applicability of hydrodynamics is not limited by the size of gradient corrections to the perfect fluid stress tensor, but rather by the presence of degrees of freedom not described by hydrodynamics. This implies that any phenomenological attempts to capture features of pre-equilibrium dynamics in heavy ion collisions need to incorporate effects of these degrees of freedom.

The holographic AdS/CFT description of $N = 4$ supersymmetric Yang-Mills theory provides a direct handle on both hydrodynamic and nonhydrodynamic degrees of freedom in strongly coupled plasma. Understanding the dynamics of these modes generically requires solving numerically five-dimensional Einstein equations, which is a formidable endeavor. The goal of this Letter is to extract the dynamics of the least damped nonhydrodynamic modes from AdS/CFT and to incorporate them in a four-dimensional description in which they are coupled to conventional hydrodynamic quantities: local temperature and flow velocity u^μ. Such a four-dimensional description should be of definite practical utility. Moreover, its novel structural form should have quite general applicability.

The precise distinction between hydrodynamic and nonhydrodynamic modes is hard to make in general, but in the hydrodynamic phase and its vicinity equilibrium concepts are expected to approximately apply. A natural definition of excitations of the equilibrium plasma comes from linear response theory and is expressed in terms of singularities of the retarded stress tensor correlator in the complex frequency plane.

In the case of strongly coupled holographic plasma, the singularities are single poles leading to nonequilibrium excitations characterized via complex dispersion relations $\omega(k)$. In a dual gravitational picture, $\omega(k)$ are the quasinormal mode (QNM) frequencies of the black brane representing equilibrium plasma [7, 8]. Nonhydrodynamic modes are those which are exponentially damped for any value of momentum and, if excited, typically become physically negligible after time of order of $1/\Im(\omega)$. One also finds that QNMs have $\Re(\omega) \neq 0$ and

1 The hydrodynamization in $1/T$ is phenomenologically attractive, as ballpark quantities characterizing initialization of hydrodynamics codes, $\tau = 0.5$ Fermi and $T = 500$ MeV, obey $\tau = \mathcal{O}(1)/T$. [arXiv:1409.5087v2 [hep-th]] 8 Oct 2014
The focus of interest here is the analog of eq. (3) for the expectation value of the energy momentum tensor, which would be a step toward writing phenomenological equations describing the interactions of the lowest stress tensor QNM with the hydrodynamic degrees of freedom. To this end note that for sufficiently near-equilibrium situations (but not limited to hydrodynamics) the stress tensor can be decomposed in the following way

\[\langle T^\mu{}^\nu \rangle = \mathcal{E} u^\mu u^\nu + \mathcal{P}(\mathcal{E})(\eta^{\mu\nu} + u^\mu u^\nu) + \Pi^{\mu\nu}, \]

where \(u^\mu u^\nu = -1 \) and the symmetric tensor \(\Pi^{\mu\nu} \) obeys the Landau frame condition \(u_\mu \Pi^{\mu\nu} = 0 \). For conformal field theories considered here one also has \(\mathcal{P}(\mathcal{E}) = 1/3 \mathcal{E} \), \(\Pi^{\mu}_{\mu} = 0 \). Furthermore, one defines also the “effective temperature” \(T \) in any state as the temperature of an equilibrium state with the same energy density.

In equilibrium \(\Pi^{\mu\nu} = 0 \) and the system can always be described in the global rest frame, i.e. \(u^\mu = 0 \) for \(\mu \neq t \) and \(\nu = 1 \). Perturbations near-equilibrium are thus \(\delta T \), \(\delta u^\mu \) with \(\delta u^t = 0 \) and \(\delta \Pi^{\mu\nu} \) with \(\delta \Pi^{\mu}_{\mu} = 0 \). Note that the conservation equation of the stress tensor

\[\partial_\nu \langle T^{\mu\nu} \rangle = 0 \]

always allow one to solve for the four variables given by \(\delta T \) and \(\delta u^\mu \).

At nonzero momentum, different combinations of components of \(\delta \Pi^{\mu\nu} \) (different channels) oscillate with different frequencies. However, ultralocality implies that for momenta smaller than \(k \approx 2\pi T \) this effect is negligible and the oscillation frequencies in all channels are approximately the same and coincide with the frequencies in eq. (3). Because of this, each component of \(\delta \Pi^{\mu\nu} \) satisfies the same equation as eq. (3):

\[\left(1 \frac{\partial}{\partial t} \right)^2 + 2 \omega_1 \left(1 \frac{\partial}{\partial t} \right) + |\omega|^2 (O) = 0. \]

Eq. (7) together with eq. (3) describe the evolution of the lowest nonhydrodynamic degree of freedom for small deviations from global thermal equilibrium.

QUASINORMAL MODES IN A HYDRODYNAMIC BACKGROUND

In generic situations one expects that the lowest nonhydrodynamic degree of freedom interacts with hydrodynamic modes and properly accounting for these interactions turns out to require nontrivial modifications of eq. (7). Part of these modifications can be motivated by generalizing eq. (3) to describe late time equilibration of \(\langle O \rangle \) on top of the plasma described by hydrodynamics, i.e. with

\[\Pi^{\mu\nu} = \Pi^{\mu\nu}_{\text{hydro}} = -\eta(T)\sigma^{\mu\nu} + \ldots, \]

2 Here and in the following this will always mean \(\mathcal{N} = 4 \) SYM theory at large \(N_c \) and strong 't Hooft coupling.
where $\eta(T)$ is the shear viscosity, $\sigma^{\mu\nu}$ is the shear tensor and the ellipsis denotes terms containing two and more derivatives of the hydrodynamic fields.

The naive covariantization of eq. (3) by taking $\partial_t \rightarrow u^\mu \partial_\mu$ and using T and u^μ solving eq. (6) with $\Pi^{\mu\nu}$ in hydrodynamic form, does not preserve the Weyl-covariance of the microscopic theory.\footnote{We neglect here the effects of the Weyl-anomaly, as in [9, 10].} The latter is the statement that under Weyl-rescaling of the background metric

$$\eta_{\mu\nu} \rightarrow e^{-2\omega(x)} \eta_{\mu\nu}$$

both O and $T^{\mu\nu}$ transform homogeneously. In general, a field ϕ is said to transform with Weyl weight w if

$$\phi \rightarrow e^{w\omega(x)} \phi.$$ \hspace{1cm} (10)

Thus, for example, the metric components $g_{\mu\nu}$ transform with weight -2, while $T^{\mu\nu}$ transform with weight 6. These properties have led to the development of the Weyl-covariant formulation\footnote{A general formula can be found in [11].}, in which the equations of conformal hydrodynamics assume a very compact formalism. This formalism makes use of the (nondynamical) “Weyl connection”

$$A_\mu = u^\lambda \nabla_\lambda v_\mu - \frac{1}{3} \nabla_\lambda u^\lambda u_\mu.$$ \hspace{1cm} (11)

to define a derivative operator, denoted here by D_μ, which is covariant under Weyl-transformation.\footnote{We neglect here the effects of the Weyl-anomaly, as in [9, 10].}

We have checked, by performing an explicit gravitational calculation of the lowest quasineutral mode in the viscous fluid background\footnote{A general formula can be found in [11].}, that the covariantization of eq. (3) with the use of the Weyl-covariant derivative, i.e. $\partial_t \rightarrow D = u^\mu \partial_\mu$, reproduces the correct result. Hence, the natural generalization of eq. (7) is

$$\left(\frac{1}{T} D\right)^2 \tilde{\Pi}_{\mu\nu} + 2\omega \frac{1}{T} D \tilde{\Pi}_{\mu\nu} + |\omega|^2 \tilde{\Pi}_{\mu\nu} = 0,$$ \hspace{1cm} (12)

where the role of $\delta \Pi$ is now taken on by

$$\tilde{\Pi}^{\mu\nu} = \Pi^{\mu\nu} - \Pi^{\mu\nu}_{\text{hydro}}$$

and

$$D \tilde{\Pi}_{\mu\nu} = u^\lambda \left(\nabla_\lambda + 4 A_\lambda \right) \tilde{\Pi}_{\mu\nu} - 2 A_\lambda u^{(\mu} \tilde{\Pi}^{\nu)\lambda}.$$ \hspace{1cm} (14)

This formula also defines the action of D on $\frac{1}{T} D \tilde{\Pi}^{\mu\nu}$, since the latter object has the same Weyl weight as $\tilde{\Pi}_{\mu\nu}$.

Equation (12) has two key features. First, it is consistent with $\Pi^{\mu\nu}$ transforming homogeneously under Weyl transformations. Second, it preserves its transversality and tracelessness due to the fact that $D u^\mu = 0$.

As a nontrivial test of equation (12) we have checked that it is obeyed by the QNM computed in [13] for the strongly coupled plasma undergoing Bjorken expansion\footnote{We neglect here the effects of the Weyl-anomaly, as in [9, 10].}. Even though this is a special flow with a high degree of symmetry, already in this case the terms coming from the Weyl connection are nontrivial.

The Landau-Lifschitz theory of relativistic viscous hydrodynamics is defined by adopting as the evolution equation the conservation of the stress tensor (5) with $\Pi^{\mu\nu}$ given by eq. (8). However this system of differential equations is not hyperbolic and in general does not have a well-posed initial value problem\footnote{A general formula can be found in [11].}.

Hyperbolic theories of hydrodynamics, postulated by Müller, Israel, Stewart and others\footnote{A general formula can be found in [11].}, instead of using (8) assume that the shear tensor is replaced by a new dynamical object, $\Pi_{\text{MIS}}^{\mu\nu}$ which obeys an evolution equation involving additional phenomenological parameters. A prototypical example of such an equation is

$$\left(\frac{\tau_1}{T} D + 1 \right) \Pi_{\text{MIS}}^{\mu\nu} = - \eta \sigma^{\mu\nu},$$

(15)

where τ_1 is a dimensionless constant and the combination $\frac{\tau_1}{T} D + 1$ has been referred to in the literature as the relaxation time. Eq. (15) can be supplemented with terms quadratic in $\Pi^{\mu\nu}$ and gradients of hydrodynamic fields in such a way that solving it recursively in the gradient expansion gives the correct form of the hydrodynamic stress tensor up to second order in derivatives (when referring to MIS theory in the following we will always mean this formulation). In this approach the relaxation time is identified with one of the second order transport coefficients. Assuming $\eta/s = 1/(4\pi)$, the linearized theory is causal as long as $\tau_1 \geq 1/(2\nu)$. The drawback of the MIS formulation, however, is that it introduces a spurious nonphysical decaying mode with a frequency given by the relaxation time: $\omega = iT/\tau_1$.

The simplest way to incorporate additional physical nonequilibrium degrees of freedom into a causal hyperbolic description is to set

$$\Pi^{\mu\nu} = \Pi_{\text{MIS}}^{\mu\nu} + \tilde{\Pi}^{\mu\nu},$$

(16)

with $\Pi_{\text{MIS}}^{\mu\nu}$ satisfying (15) and $\tilde{\Pi}^{\mu\nu}$ obeying (12). These traceless and transverse quantities are coupled together by the conservation law (6).

The resulting theory satisfies the same causality and stability properties as the MIS formulation. At the linearized level, in addition to the standard hydrodynamic modes it contains the damped modes corresponding to QNM as seen in AdS/CFT. However, as a byproduct of using the MIS formulation we have in addition the spurious decaying mode of MIS theory discussed above. In order to minimize its impact, we always set $- \eta(T) \sigma^{\mu\nu}$ as the initial condition for $\Pi_{\text{MIS}}^{\mu\nu}$. Moreover we set the τ_1 parameter to the smallest value allowed by causality in order to maximize the damping of this mode.

The above formulation is the simplest generalization of MIS hydrodynamics. The equations presented here should provide a useful extension of hydrodynamics in
situations, where only a single QNM dominates the approach to equilibrium. Setting vanishing initial conditions for $\Pi^{\mu\nu}$ reduces the theory to standard MIS, while incorporating some nontrivial initial conditions allows us to examine the physical effects of the least damped non-hydrodynamic degrees of freedom. This theory could be used as an alternative to MIS hydrodynamics in situations, when an account of early pre-equilibrium dynamics including modes with $\Re(\omega) \neq 0$ is relevant. We perform various tests of this theory in the following section.

Before that however, we would like to mention a possible alternative which aims to get rid of the nonphysical MIS mode altogether and use the physical nonequilibrium degrees of freedom as a means of ensuring hyperbolicity. Note that since the QNM have a sizable real frequency, one can never describe them using the MIS decaying mode. This has already been emphasized in [19].

Heuristically one could proceed by using eq. (13) and (8) in eq. (12) to find
\[
\left(\frac{1}{T} D\right)^2 + 2\omega I \frac{1}{T} D + |\omega|^2 \right) \Pi^{\mu\nu} = -\eta |\omega|^2 \sigma^{\mu\nu} - c_\sigma \frac{1}{T} D (\eta \sigma^{\mu\nu}) + \ldots \tag{17}
\]
where the ellipsis denotes contributions of second and higher order in gradients. Of all possible second order terms only one term has been kept, with a coefficient c_σ, which is treated as an arbitrary parameter. This term is included explicitly, since it improves the stability of (17).

The key property of eq. (17) is that linearization around an equilibrium background leads to a system of partial differential equations which is hyperbolic for $c_\sigma \geq 0$. The characteristic velocity in the sound channel is found to be
\[
v = \frac{1}{\sqrt{3}} \left(1 + \frac{c_\sigma}{\pi}\right)^{1/2}, \tag{18}
\]
so for causality one must further impose $c_\sigma \leq 2\pi$ (this in fact ensures causality in all channels).

For a numerical treatment of Eq. (17) it is important that exponentially growing modes be absent. Whether Eq. (17) is stable in this sense depends on the values of parameters such as the QNM frequencies and the viscosity to entropy ratio. This is similar the case the MIS equations.

However, unlike that case, for the values of η/s and $\omega_{R,I}$ characteristic of $N = 4$ SYM, eq. (17) contains exponentially unstable modes with high k. This renders these equations (as they stand) unsuitable for numerical evaluation and comparison to the results of simulations based on the AdS/CFT correspondence. Let us emphasize, however, that these unstable modes appear far outside the range of applicability of the long wavelength description (e.g. with wave vectors $k > 18.57$ if one chooses $c_\sigma = 2\pi$). It would be interesting to investigate whether one could modify Eq. (17) to cure this pathology. This question is set aside for the moment, and we henceforth concentrate on the simplest formulation given by Eq. (16) and Eq. (12).

TESTS

An essential part of this Letter is testing the equations (16) and (12) against microscopic numerical computations of $N = 4$ SYM plasma based on the AdS/CFT correspondence. This requires setting the parameters to appropriate values, i.e. $\eta/s = 1/4\pi$ and $\omega_{R,I}$ as in eq. (4). We also set $\tau_0 = 1/(2\pi)$, which is the smallest value allowed by causality.

Here we consider two particularly symmetric configurations: homogeneous isotropization and boost-invariant flow. It is worth emphasizing at this point that homogeneous isotropization cannot be described at all by conventional Landau-Lifshitz viscous hydrodynamics.

The AdS/CFT computations are based on numerical solutions of $(4 + 1)$-dimensional Einstein’s equations with negative cosmological constant obtained following the methods developed in [20, 21] and [5, 22]. This we compare to numerical solutions of the new phenomenological equations initialized by specifying just the energy, pressure anisotropy and its time derivative which we take to agree with the values extracted from a particular numerical solution of Einstein equations at the specific initialization time.

The results for holographic isotropization, depicted on Fig. 1, show that for late enough initialization, eq. (16) captures both the qualitative and quantitative features of the pressure anisotropy relaxation. Comparison to a solution of linearized Einstein’s equations, which can be superficially thought of as a sum over all quasinormal modes in this system, demonstrates that the applicability of the new equations is not limited by the far-from-equilibrium nonlinear effects not captured by it, but rather by the presence of the higher quasinormal modes (as clearly seen in the center and right plots in Fig. 1).

The case of boost-invariant flow is presented in Fig. 2, which shows clearly that the MIS approach captures the late time tail very well, as do the new equations proposed here. However, at earlier times eq. (16) provides a much more accurate picture. Estimates of the final temperature are also more accurate if eq. (16) is used. For initial conditions involving many QNMs the agreement at early times should not be as good (in analogy with what is seen in Fig. 1). Also, for initial conditions where no no-hydrodynamic modes are excited at early times, effects of second and higher order (or possibly resummed [23]) hydrodynamics may become important.

\footnote{Solving eq. (8) in the gradient expansion shows that c_σ contributes to second order transport coefficients.}
The stress tensor for homogeneous isotropization is \(\langle T^\mu{}_{\nu}\rangle = \text{diag} (E, 1_2 E - \frac{1}{3} \Delta P(t), \frac{1}{3} E + \frac{1}{3} \Delta P(t), \frac{1}{3} E + \frac{1}{3} \Delta P(t)^{\mu\nu} \). The effective temperature remains constant throughout evolution, which is entirely specified by providing \(E \) or \(T \) and \(\Delta P(t) \). The gray curve denotes the numerical solution of Einstein’s equations. The dotted yellow curves denote solutions of linearized Einstein’s equations (including all the QNM), dot-dashed magenta curves are solutions of MIS theory and the dashed blue curves represent solutions of the new theory given by eq. (16). The initialization times are \(tT = 0.4 \) (left), 0.5 (centre) and 0.6 (right). The sum of the QNM describes the evolution of the system very well already at \(tT = 0.3 \). This is in line with the findings in [20, 21]. For late enough initialization the new equations do a much better job in describing the dynamics of the pressure anisotropy than MIS theory, which can underestimate the isotropization time by more than a factor of 2 (centre).

SUMMARY AND CONCLUSIONS

The new phenomenological equations presented in this Letter generalize relativistic Navier Stokes theory by including leading nonhydrodynamic modes expected in theories of strongly coupled plasma with gravity duals. In these theories the nonhydrodynamic modes correspond to QNMs of black branes in asymptotically AdS space. The weak dependence of QNM frequencies on momenta suggests the ultralocality assumption, which we have used to identify the second order equation satisfied by the QNM contribution to the shear stress tensor. This equation is the essential new element, which makes it possible to go beyond the observations made in reference [19, 24], where generalizations of hydrodynamics were pursued having noted the significance of the analytic structure of retarded correlators in theories with gravity duals.

The use of a conventional hydrodynamic description implicitly assumes that all nonequilibrium collective excitations in the quark-gluon plasma are set to zero. The proposed equations provide a means of relaxing this assumption and exploring their influence on subsequent hydrodynamic evolution. For some observables (such as the final multiplicities) this may not be quantitatively important. However for observables sensitive to the pre-equilibrium stages of evolution (such as photon [25, 26] or dilepton emission [27, 28] capturing the early time dynamics may be valuable. An important step toward such applications will be to develop an effective heuristic for setting initial conditions for the nonhydrodynamic modes in our new evolution equations. One of the possible approaches might be to extract these initial conditions from...
the early post-collision state following from the numerical simulations of [29] or [30].

Acknowledgments. We would like to thank U. Heinz, M. Martinez, S. Mrówczyński, J. Noronha, R. Peschaniski, K. Rajagopal, P. Romatschke, W. van der Schee, M. Strickland, D. Teaney, A. Vitorin, U. Wiedemann, L. Yaffe and A. Yarom for valuable discussions and correspondence. MPH is supported by the Netherlands Organization for Scientific Research under the NWO Veni scheme (UVA). This work was supported by the National Science Centre grants 2012/07/B/ST2/03794 (MPH and MS), 2012/06/A/ST2/00396 (RJ) and 2013/11/N/ST2/03812 (PW). Research at Perimeter Institute is supported by the Government of Canada through Industry Canada and by the Province of Ontario through the Ministry of Research & Innovation.

[1] U. W. Heinz, “Thermalization at RHIC,” *AIP Conf.Proc.* 739 (2005) 163–180. arXiv:nucl-th/0407067 [nucl-th]
[2] U. A. Wiedemann, “Introductory Overview of Quark Matter 2012,” *Nucl.Phys.* A904-905 (2013) 3c–10c. arXiv:1212.3306 [hep-th]
[3] P. M. Chesler and L. G. Yaffe, “Boost invariant flow, black hole formation, and far-from-equilibrium dynamics in N = 4 supersymmetric Yang-Mills theory,” *Phys.Rev.* D82 (2010) 096006. arXiv:0906.4426 [hep-th]
[4] P. M. Chesler and L. G. Yaffe, “Holography and colliding gravitational shock waves in asymptotically AdS, spacetime,” *Phys.Rev.Lett.* 106 (2011) 021601. arXiv:1011.3562 [hep-th]
[5] M. P. Heller, R. A. Janik, and P. Witaszczyk, “The characteristics of thermalization of boost-invariant plasma from holography,” *Phys.Rev.Lett.* 108 (2012) 201602. arXiv:1103.3452 [hep-th]
[6] J. Casalderrey-Solana, M. P. Heller, D. Mateos, and W. van der Schee, “From full stopping to transparency in a holographic model of heavy ion collisions,” *Phys.Rev.Lett.* 111 (2013) 181601. arXiv:1305.4919 [hep-th]
[7] D. T. Son and A. O. Starinets, “Minkowski space correlators in AdS / CFT correspondence: Recipe and applications,” *JHEP* 0209 (2002) 042. arXiv:hep-th/0205051 [hep-th]
[8] P. K. Kovtun and A. O. Starinets, “Quasinormal modes and holography,” *Phys.Rev.* D72 (2005) 086009. arXiv:hep-th/0506184 [hep-th]
[9] J. J. Friess, S. S. Gubser, G. Michalogiorgakis, and S. S. Pufu, “Expanding plasmas and quasinormal modes of anti-de Sitter black holes,” *JHEP* 0704 (2007) 080. arXiv:hep-th/0611005 [hep-th]
[10] R. Baier, P. Romatschke, D. T. Son, A. O. Starinets, and M. A. Stephanov, “Relativistic viscous hydrodynamics, conformal invariance, and holography,” *JHEP* 0804 (2008) 100. arXiv:0712.2451 [hep-th]
[11] R. Loganayagam, “Entropy Current in Conformal Hydrodynamics,” *JHEP* 0805 (2008) 087. arXiv:0801.3701 [hep-th]
[12] S. Bhattacharyya, V. E. Hubeny, S. Minwalla, and M. Rangamani, “Nonlinear Fluid Dynamics from Gravity,” *JHEP* 0802 (2008) 045. arXiv:0712.2466 [hep-th]
[13] M. P. Heller, R. A. Janik, and P. Witaszczyk, “Hydrodynamic Gradient Expansion in Gauge Theory Plasmas,” *Phys.Rev.Lett.* 110 (2013) no. 21, 211602. arXiv:1302.0697 [hep-th]
[14] J. Bjorken, “Highly Relativistic Nucleus-Nucleus Collisions: The Central Rapidity Region,” *Phys.Rev.* D27 (1983) 140–151.
[15] W. A. Hiscock and L. Lindblom, “Generic instabilities in first-order dissipative relativistic fluid theories,” *Phys.Rev.* D31 (1985) 725–733.
[16] P. Kostädt and M. Lüt, “Causality and stability of the relativistic diffusion equation,” *Phys.Rev.* D62 (2000) 023003. arXiv:cond-mat/0010276.
[17] I. Muller, “Zum Paradoxon der Warmeleitungstheorie,” *Z.Phys.* 198 (1967) 329–344.
[18] W. Israel and J. Stewart, “Transient relativistic thermodynamics and kinetic theory,” *Annals Phys.* 118 (1979) 341–372.
[19] J. Noronha and G. S. Denicol, “Transient Fluid Dynamics of the Quark-Gluon Plasma According to AdS/CFT,” arXiv:1104.2415 [hep-th]
[20] M. P. Heller, D. Mateos, W. van der Schee, and D. Trancanelli, “Strong Coupling Isotropization of Non-Abelian Plasmas Simplified,” *Phys.Rev.Lett.* 108 (2012) 191601. arXiv:1202.0881 [hep-th]
[21] M. P. Heller, D. Mateos, W. van der Schee, and M. Triana, “Holographic isotropization linearized,” *JHEP* 1309 (2013) 026. arXiv:1304.5172 [hep-th]
[22] M. P. Heller and M. Spalinski, “Unpublished.”
[23] M. Lublinsky and E. Shuryak, “How much entropy is produced in strongly coupled Quark-Gluon Plasma (sQGP) by dissipative effects?,” *Phys.Rev.* C76 (2007) 021901. arXiv:0704.1647 [hep-ph]
[24] G. S. Denicol, J. Noronha, H. Niemi, and D. H. Rischke, “Origin of the Relaxation Time in Dissipative Fluid Dynamics,” *Phys.Rev.* D83 (2011) 074019. arXiv:1102.4780 [hep-th]
[25] B. Schenke and M. Strickland, “Photon production from an anisotropic quark-gluon plasma,” *Phys.Rev.* D76 (2007) 052023. arXiv:hep-ph/0611332 [hep-ph]
[26] L. McLerran and B. Schenke, “The Glasma, Photons and the Implications of Anisotropy,” arXiv:1403.7462 [hep-ph]
[27] M. Martinez and M. Strickland, “Pre-equilibrium dilepton production from an anisotropic quark-gluon plasma,” *Phys.Rev.* C78 (2008) 034917. arXiv:0805.4552 [hep-ph]
[28] E. Shuryak, “Monitoring parton equilibration in heavy ion collisions via dilepton polarization,” arXiv:1203.1012 [nucl-th]
[29] T. Epelbaum and F. Gelis, “Pressure isotropization in high energy heavy ion collisions,” *Phys.Rev.Lett.* 113 (2014) 232301. arXiv:1307.2214 [hep-ph]
[30] J. Berges, K. Boguslavski, S. Schlichting, and R. Venugopalan, “Universal attractor in a highly occupied non-Abelian plasma,” *Phys.Rev.* D89 (2014) 114007. arXiv:1311.3005 [hep-ph]