Dualities in $D = 5$, $N = 2$ Supergravity, Black Hole Entropy, and AdS Central Charges

Dietmar Klemm

Università degli Studi di Milano, Dipartimento di Fisica, Via Celoria 16, 20133 Milano, Italy

Abstract: The issue of microstate counting for general black holes in $D = 5$, $N = 2$ supergravity coupled to vector multiplets is discussed from various viewpoints. The statistical entropy is computed for the near-extremal case by using the central charge appearing in the asymptotic symmetry algebra of AdS_2. Furthermore, we show that the considered supergravity theory enjoys a duality invariance which connects electrically charged black holes and magnetically charged black strings. The near-horizon geometry of the latter turns out to be $\text{AdS}_3 \times S^2$, which allows a microscopic calculation of their entropy using the Brown-Henneaux central charges in Cardy’s formula. In both approaches we find perfect agreement between statistical and thermodynamical entropy.

1 Introduction

The study of black hole solutions in $N = 2$ five-dimensional supergravity coupled to vector and hypermultiplets plays an important role in the understanding of the non-perturbative structure of string and M-theory [1, 2]. In this setting the interplay between classical and quantum results is exemplified at its best.

In this paper we consider general charged black holes of the $D = 5$, $N = 2$ theories, not necessarily those obtained from compactification of eleven-dimensional supergravity on a Calabi-Yau threefold. The analysis is simplified by the rich geometric structure of the $N = 2$ theories. Black hole solutions are given in terms of a rescaled cubic homogeneous prepotential which defines very special geometry [3]. In the extremal BPS case, half of the vacuum supersymmetries are preserved, while at the horizon supersymmetry is fully restored [4].

Here we focus on the asymptotic symmetries of the near-horizon geometry of the general near-extremal solution: the aim is the computation of the entropy from a counting of microstates to be compared to the macroscopic, thermodynamical entropy.

We will see that the calculation of the microscopic entropy of small excitations above extremality is equivalent to a microstate counting for certain black holes in two-dimensional
anti-de Sitter space. This can then be done by using the central charge of the AdS_2 asymptotic symmetry algebra in Cardy’s formula.

The main result however presented here is an explicit duality transformation, which realizes an invariance of the $N = 2$ supergravity action \[5\]. This duality turns the $AdS_2 \times S^3$ near-horizon geometry of the extremal black hole solution into $AdS_3 \times S^2$. The key point underlying the duality is the fact that the three-sphere can be written as a Hopf fibration over the base S^2. For AdS_3 the counting of microstates is performed using the Brown-Henneaux central charges \[6\] in Cardy’s formula, and it is shown that this reproduces correctly the Bekenstein-Hawking entropy.

In the case where the $D = 5$, $N = 2$ supergravity action is obtained by Calabi-Yau (CY) compactification of M-theory, the considered duality transformation, which maps electrically charged black holes onto magnetically charged black strings, corresponds to the duality between M2 branes wrapping CY two-cycles and M5 branes wrapping CY four-cycles. According to \[7\], M-theory compactified on $AdS_3 \times S^2 \times M$, where M denotes some Calabi-Yau threefold, is dual to a $(0,4)$ superconformal field theory living on an M5 brane wrapping some holomorphic CY four-cycle. This fact has been used in \[8\] to compute the entropy of five-dimensional BPS black holes\[9\]. We stress that our method for microstate counting applies to any near-extremal black hole in $N = 2$, $D = 5$ supergravity, independent of whether it is obtained by CY compactification or not.

In section \[2\] the black hole solutions of $N = 2$, $D = 5$ supergravity coupled to vector multiplets are briefly reviewed. We thereby focus on the STU model as a simple example, which nonetheless retains all the interesting features of the general solutions. In section \[3\] we compute the statistical entropy of small excitations near extremality, using the AdS_2 central charge \[10\], and find perfect agreement with the Bekenstein-Hawking entropy. In section \[4\] we construct the duality transformation for the supergravity action, and in \[5\] we finally perform the state counting, using the fact that the near-horizon geometry of the dual solution includes an AdS_3 factor. In this way, we obtain a microscopic entropy which agrees precisely with the corresponding thermodynamical result.

2 Black Holes in $N = 2$, $D = 5$ Supergravity

$N = 2$, $D = 5$ supergravity coupled to an arbitrary number n of Maxwell supermultiplets was first considered in \[1\]. In this theory, the scalar manifold can be regarded as a hypersurface in an $(n + 1)$-dimensional Riemannian space \mathcal{R} with coordinates X^I. The equation of the hypersurface is $\mathcal{V} = 1$ where \mathcal{V}, the prepotential, is a homogeneous cubic polynomial in the coordinates of \mathcal{R}, $\mathcal{V}(X) = \frac{1}{6} C_{IJK} X^I X^J X^K$. One can then parametrize the hypersurface in terms of the n scalar fields ϕ^i appearing in the vector multiplets, $X^I = X^I(\phi^i)$.

The bosonic part of the Lagrangian is given by

$$
e^{-1} \mathcal{L} = \frac{1}{2} R - \frac{1}{4} G_{IJ} F_{\mu \nu}^I F^{\mu \nu J} - \frac{1}{2} G_{ij} \partial_\mu \phi^i \partial_\mu \phi^j + \frac{e^{-1}}{48} \epsilon_{\mu \nu \rho \sigma \lambda} C_{IJK} F_{\mu \nu}^I F_{\rho \sigma}^J A^K.$$

The vector and scalar metric are completely encoded in the function $\mathcal{V}(X)$,

$$G_{IJ} = -\frac{1}{2} \partial_I \partial_J \ln \mathcal{V}(X)|_{\mathcal{V} = 1}, \quad \mathcal{G}_{ij} = G_{IJ} \partial_i X^I \partial_J X^J |_{\mathcal{V} = 1},$$

\[3\]The work in \[8\] includes as a special case also the results obtained in \[9\].
where \(\partial_i \) and \(\partial_I \) refer, respectively, to partial derivatives with respect to the scalar fields \(\phi^i \) and \(X^I \). Note that for Calabi-Yau compactifications of M-theory, \(C_{IJK} \) denote the topological intersection numbers, \(\mathcal{V}(X) \) represents the intersection form, and \(X^I = \frac{1}{6} C_{IJK} X^J X^K \) correspond, respectively, to the size of the two- and four-cycles of the Calabi-Yau threefold. In what follows, we will concentrate on the STU model \([1, 12]\), i.e. \(X^0 \equiv S, X^1 \equiv T, X^2 \equiv U, \mathcal{V}(X) = STU \). This model can be obtained by compactification of heterotic string theory on \(K_3 \times S^1 \) \([13]\).

The field equations following from the action (1) admit the non-extremal static black hole solutions \([14]\)

\[
 ds^2 = -e^{-4V} f dt^2 + e^{2V} (f^{-1} dr^2 + r^2 d\Omega_3^2), \\
 F^I_{rt} = -H^{-2}_I \partial_r \tilde{H}_I, \quad X^I = H^{-1}_I e^{2V}, \\
\]

where \(d\Omega_3^2 \) denotes the standard metric on the unit \(S^3 \). The \(H_I \) and \(\tilde{H}_I \) are harmonic functions,

\[
 H_I = 1 + \frac{Q_I}{r^2}, \quad \tilde{H}_I = 1 + \frac{\tilde{Q}_I}{r^2}, \\
\]

where the \(\tilde{Q}_I \) denote the physical electric charges. \(V \) and \(f \) read

\[
 e^{2V} = (H_0 H_1 H_2)^{1/3}, \quad f = 1 - \frac{\mu}{r^2}, \\
\]

with the nonextremality parameter \(\mu \). The physical charges are related to the \(Q_I \) by the equations

\[
 Q_I = \frac{\mu}{2} \sinh \beta_I \tanh \frac{\beta_I}{2}, \quad \tilde{Q}_I = \frac{\mu}{2} \sinh \beta_I. \\
\]

The extremal (BPS) limit is reached when \(\beta_I \to \infty, \mu \to 0 \), with \(\mu \sinh \beta_I \) kept fixed.

For the ADM mass \(M_{\text{ADM}} \), the Hawking temperature \(T_H \), and the Bekenstein-Hawking entropy \(S_{\text{BH}} \), one obtains

\[
 M_{\text{ADM}} = \frac{\pi}{4G_5} \left(\sum_I Q_I + \frac{3}{2} \mu \right), \quad T_H = \frac{\mu}{\pi \prod_I (\mu + Q_I)^{1/2}}, \\
 S_{\text{BH}} = \frac{A_{\text{hor}}}{4G_5} = \frac{\pi^2}{2G_5} \prod_I (\mu + Q_I)^{1/2}. \\
\]

In the extremal case, the near-horizon geometry becomes \(AdS_2 \times S^3 \).

3 Statistical Entropy from \(AdS_2 \) Central Charge

We would now like to use the near-horizon geometry \(AdS_2 \times S^3 \) to count the microstates which give rise to the black hole entropy \([8]\). As we are mainly interested in the \(AdS_2 \) factor, we perform a Kaluza-Klein reduction of the \(D = 5, N = 2 \) supergravity action \([4]\) to two dimensions. As we only consider nonrotating black holes carrying electric charge, we can consistently truncate the Chern-Simons term in \([3]\). The reduction ansatz for the metric is

\[
 ds^2 = \Phi^{-\frac{1}{2}} ds_2^2 + l_P^2 \Phi^{\frac{1}{2}} d\Omega_3^2, \\
\]

where \(\Phi \) denotes the dilaton and \(l_P \) is the Planck length in five dimensions. In two dimensions, the field strenghts \(F^I \) are proportional to the volume form and hence they
can be integrated out. In this way, one arrives at the two-dimensional action

$$I = \frac{\pi}{8} \int d^2 x \sqrt{-g} \left[\Phi R + \frac{6}{l_P^2 \Phi^{1/3}} - \Phi G_{ij} \partial_i \phi^j \partial^a \phi^j - \frac{G^{IJ} \tilde{Q}_I \tilde{Q}_J}{l_P^5 \Phi^{5/3}} \right].$$

(10)

Let us now expand the nonextremal black hole solution (3) near extremality. To this end, we introduce an expansion parameter $\epsilon (\epsilon \to 0)$, and set

$$t = \frac{\tilde{t}}{\epsilon}, \quad r = \sqrt{\frac{2l_P^2 \epsilon x}{(\tilde{Q}_0 \tilde{Q}_1 \tilde{Q}_2)^{1/6}}} + \frac{\mu}{2}, \quad \mu = \mu_0 \epsilon,$$

$$\Phi = \frac{(\tilde{Q}_0 \tilde{Q}_1 \tilde{Q}_2)^{1/2}}{l_P^3} + \frac{4}{\pi} \eta \quad (\eta = O(\epsilon)), \quad \phi^j = \tilde{Q}_i^{-1} (\tilde{Q}_0 \tilde{Q}_1 \tilde{Q}_2)^{1/3} + \epsilon \tilde{\phi}^j.$$

(11)

One thus arrives at

$$ds^2 = -(\lambda^2 x^2 - a^2)dt^2 + (\lambda^2 x^2 - a^2)^{-1} dx^2$$

for the two-dimensional metric, with λ and a given by

$$\lambda = \frac{2l_P}{(\tilde{Q}_0 \tilde{Q}_1 \tilde{Q}_2)^{1/3}}, \quad a^2 = \frac{\mu_0^2}{4l_P^2 (\tilde{Q}_0 \tilde{Q}_1 \tilde{Q}_2)^{1/3}}.$$

(13)

The action at lowest order in the expansion parameter ϵ reads

$$I = \frac{1}{2} \int d^2 x \sqrt{-g} \eta [R + 2\lambda^2],$$

(14)

so the leading order is governed by the Jackiw-Teitelboim model (12), together with the linear dilaton

$$\eta = \eta_0 x, \quad \eta_0 = \frac{\Omega_0}{16 \pi l_P^2} (\tilde{Q}_0 \tilde{Q}_1 \tilde{Q}_2)^{2/3} \sum_I \tilde{Q}_I^{-1},$$

(15)

represents a black hole solution of this model (10), with mass, thermodynamical entropy and temperature given by

$$M_{(2)} = \frac{1}{2} \eta_0 a^2 \lambda, \quad S_{(2)} = 2\pi \eta_{hor} = 2\pi \eta_0 a, \quad T_{(2)} = \frac{a \lambda}{2\pi}.$$

(16)

This black hole spacetime has constant curvature, i.e. it is locally AdS_2. Now it is known that the asymptotic symmetries of two-dimensional anti-de Sitter space form a Virasoro algebra (10), similar to the case of AdS_3, where one has two copies of Virasoro algebras as asymptotic symmetries (3). This algebra was shown to have a central charge $c = 12 \eta_0$ (15).

Expanding the ADM mass M_{ADM} (4) and Bekenstein-Hawking entropy S_{BH} (8) of the black hole (3) in five dimensions for $\mu \to 0$, one obtains that small excitations above extremality have the energy and entropy

$$\Delta M_{ADM} = \frac{\pi \mu^2}{2l_P^2} \sum_I \tilde{Q}_I^{-1}, \quad \Delta S_{BH} = \frac{\pi^2 \mu}{8l_P^3} (\tilde{Q}_0 \tilde{Q}_1 \tilde{Q}_2)^{1/2} \sum_I \tilde{Q}_I^{-1}.$$

(17)

Comparing this with the two-dimensional results (16), one finds $\Delta S_{BH} = S_{(2)}$ and $\Delta M_{ADM} = \epsilon M_{(2)}$. The factor ϵ appearing in the relation between the two masses stems
from the fact that M_{ADM} was computed with respect to the Killing vector ∂_t, whereas $M_{(2)}$ is related to $\partial_{\tilde{t}} = \epsilon \partial_t$. This means that up to these normalizations the five- and two-dimensional energies and entropies match.

Let us now compute the statistical entropy. Inserting the conformal weight $L_0 = M_{(2)}/\lambda$ together with the central charge in Cardy’s formula $S_{\text{stat}} = 2\pi \sqrt{c L_0}/6$ yields a statistical entropy which agrees precisely with the thermodynamical entropy ΔS_{BH} of the small excitations above extremality.

4 Duality Invariance of the Supergravity Action

In this section we will show that in presence of a Killing vector field ∂_z, the supergravity action (1) is invariant under a certain generalization of T-duality. The key observation is then that the three sphere S^3 appearing in the black hole geometry can be written as a Hopf fibration, i.e. as an S^1 bundle over $\mathbb{C}P^1 \approx S^2$. Performing then a duality transformation along the Hopf fibre untwists the S^3, and transforms the electrically charged black hole into a magnetically charged black string, which has $AdS_3 \times S^2$ as near-horizon limit in the extremal case.

To begin with, we reduce the action (1) to four dimensions, using the usual Kaluza-Klein reduction ansatz for the five-dimensional metric,

$$ds^2 = e^{k/\sqrt{3}} dz^2 + e^{-2k/\sqrt{3}} (dz + A_\alpha dx^\alpha)^2,$$

where k denotes the dilaton, and early greek indices α, β, \ldots refer to four-dimensional spacetime. One thus arrives at the four-dimensional action

$$I_4 \equiv \frac{L}{16\pi G_5} \int d^4x \sqrt{-g_4} \left[R_4 - \frac{1}{2} (\nabla k)^2 - \frac{1}{4} e^{-\sqrt{3}k} F^2 - \frac{1}{2} e^{-k/\sqrt{3}} G_{ij} \partial_\alpha \phi^i \partial^\alpha \phi^j \right] ,$$

where L denotes the length of the circle parametrized by z, \mathcal{F} is the field strength associated to the Kaluza-Klein vector potential A, and

$$\mathcal{F}^2 = F_{\alpha\beta} F^{\alpha\beta}, \quad F^2 = G_{IJ} F^I_{\alpha\beta} F^J{\alpha\beta}.$$

We now dualize both \mathcal{F} and F^I, which yields

$$I_4 = \frac{L}{16\pi G_5} \int d^4x \sqrt{-g_4} \left[R_4 - \frac{1}{2} (\nabla k)^2 - \frac{1}{4} e^{-\sqrt{3}k} (\star \mathcal{F})^2
 - \frac{1}{2} e^{k/\sqrt{3}} \frac{1}{4} G^{IJ} \star F_{I\alpha\beta} \star F^\alpha_{\beta} - G_{ij} \partial_\alpha \phi^i \partial^\alpha \phi^j \right] ,$$

where we defined

$$\star F_{\alpha\beta} = \frac{1}{2} e^{-\sqrt{3}k} \epsilon_{\alpha\beta\gamma\delta} F^{\gamma\delta}, \quad \star F_{I\alpha\beta} = e^{-k/\sqrt{3}} G_{I\alpha\beta} \epsilon_{\alpha\beta\gamma\delta} F^{\gamma\delta}.$$

Comparing (22) with (19), we observe that the gravitational and gauge field parts of the four-dimensional action, as well as the dilaton kinetic energy, are invariant under the \mathbb{Z}_4 transformation

$$k \rightarrow -k, \quad F_{\alpha\beta} \rightarrow \star F_{\alpha\beta}, \quad F^I_{\alpha\beta} \rightarrow \star F_{I\alpha\beta}, \quad G_{IJ} \rightarrow \frac{1}{4} G^{IJ}.$$
The \mathbb{Z}_4 is actually a subgroup of the usual symplectic $Sp(2m + 2, \mathbb{R})$ duality group of $D = 4, N = 2$ supergravity (coupled to m vector multiplets). Note that the transformation $G_{IJ} \to G_{IJ}/4$ means that

$$X^I \to 3X_I = \frac{1}{2} C_{IJK} X^J X^K, \quad X_I \to \frac{1}{3} X^I,$$

(24)

so essentially the special coordinates go over into their duals. As (24) does not change the kinetic term of the scalar fields, (23), (24) represent in fact a duality invariance of the four-dimensional action (19). In the special case of the $STU = 1$ model, (24) implies that the moduli ϕ^i go over into their inverse, $\phi^i \to 1/\phi^i$. We now wish to apply the duality (23), (24) to the black hole solution (3). To this end, we consider the S^3 as an S^1 bundle over S^2, and write for its metric

$$d\Omega_3^2 = \frac{1}{4} \left[d\vartheta^2 + \sin^2 \vartheta d\varphi^2 + (d\zeta + \cos \vartheta d\varphi)^2 \right],$$

(25)

where ζ ($0 \leq \zeta \leq 4\pi$) parametrizes the S^1 fibre. Introducing the coordinate $z = \lambda \zeta$, where λ denotes an arbitrary length scale, one can write the 5d metric in the KK form (18), where

$$ds^2_{5} = r e^V \left[-e^{-4V} f dt^2 + e^{2V} f^{-1} dr^2 + e^{2V} r^2 \left(d\vartheta^2 + \sin^2 \vartheta d\varphi^2 \right) \right],$$

(26)

$$e^{-k/\sqrt{3}} = \frac{r e^V}{2\lambda}, \quad \mathcal{A} = \lambda \cos \vartheta d\varphi.$$

We now dualize in 4d according to (23), and then relift the solution to five dimensions. This yields the configuration

$$ds^2 = e^{-2V} \left\{ \frac{\mu}{4\lambda^2} dt^2 + 2dzdt + \frac{4\lambda^2}{r^2} d\zeta^2 \right\} + \frac{r^2}{4\lambda^2} e^{4V} \left[f^{-1} dr^2 + \frac{r^2}{4} d\Omega_2^2 \right],$$

$$F^{I}_{\vartheta\varphi} = \frac{\tilde{Q}_I}{4\lambda} \sin \vartheta, \quad X^I = H_I e^{-2V}.$$

(27)

One effect of the duality transformation is thus the untwisting of the Hopf fibration. One can further simplify (27) by an $SL(2, \mathbb{R})$ transformation

$$\left(\begin{array}{c} t' \\ z' \end{array} \right) = \left(\begin{array}{cc} 0 & -2\lambda \sqrt{\mu} \\ \frac{\sqrt{\mu}}{2\lambda} & 2\lambda \sqrt{\mu} \end{array} \right) \left(\begin{array}{c} t \\ z \end{array} \right).$$

(28)

Introducing also the new radial coordinate $\rho = r^2/(4\lambda)$, we then get for the metric

$$ds^2 = e^{-2V} \left(-ft'dt'^2 + dz'^2 \right) + e^{4V} \left(f^{-1}d\rho^2 + \rho^2 d\Omega_2^2 \right).$$

(29)

(29), together with the gauge and scalar fields given in (27), represents a nonextremal generalization of the supersymmetric magnetic black string found in [4]. The duality (23) thus maps electrically charged black holes onto magnetically charged black strings.

5The fact that Hopf bundles can be untwisted by T-dualities was observed in [17]. The idea of untwisting and twisting fibres to relate strings and black holes, and thus to gain new insights into black hole microscopics, was also explored in [18].
5 Microstate Counting from AdS3 Gravity

We now want to use the near-horizon geometry of the dual solution (29) to count the microstates giving rise to the Bekenstein-Hawking entropy. In [4] it was shown that in the extremal case, the geometry becomes $AdS_3 \times S^2$ near the event horizon. The idea is now to use the central charge of AdS_3 gravity [6] in Cardy’s formula, in order to compute the statistical entropy, like it was done by Strominger [19] for the BTZ black hole. As only the AdS_3 part is relevant, we would like to reduce the supergravity action from five to three dimensions. To this end, we first Hodge-dualize the magnetic two-form field strength in (27). For the solution under consideration, the field strengths H_I dual to the F_I do not depend on the coordinates of the internal S^2. Furthermore, in 3d the three-forms H_I are proportional to the volume form and can be integrated out. For the metric, we use the reduction ansatz

$$ds^2 = \Phi^{-1} ds_3^2 + l_p^2 \Phi^2 d\Omega_2^2,$$

where $d\Omega_2^2$ denotes the standard metric on the unit S^2. This gives the reduced action

$$I = \frac{1}{4l_p} \int d^3x \sqrt{-g} \Phi^\frac{3}{2} \left[R + \frac{2}{l_p^2 \Phi^3} - \frac{3}{2} \Phi^2 (\nabla \Phi)^2 - \frac{G_{IJ} P_I P_J}{\Phi^3 l_p^3} - G_{ij} \partial_\alpha \phi^i \partial^\alpha \phi^j \right],$$

where we introduced the magnetic charges $P_I = \tilde{Q}_I / (4\lambda)$. The idea is now to expand the 3d metric ds_3^2 near the horizon and near extremality. This can be done by setting

$$t' = t'' (2\lambda)^4 \sqrt{\frac{l_p}{\mu_0 \lambda \tilde{Q}_0 \tilde{Q}_1 \tilde{Q}_2}}, \quad z' = z'' (2\lambda)^2 \sqrt{\frac{l_p}{\mu_0}}, \quad \rho = \epsilon \tilde{r}^2 \mu_0 l_p (2\lambda)^4, \quad \mu = \mu_0 \epsilon,$$

and taking the limit $\epsilon \to 0$. This leads to the metric

$$ds_3^2 = -\tilde{r}^2 - \tilde{z}^2 dt''^2 + \tilde{r}^2 dz''^2 + \frac{l_{eff}^2 d\tilde{r}^2}{\tilde{r}^2 - \tilde{r}_+^2},$$

where we introduced

$$\tilde{r}_+^2 = \frac{4\lambda^3}{l_p}, \quad l_{eff}^2 = \frac{\tilde{Q}_0 \tilde{Q}_1 \tilde{Q}_2}{16l_p \lambda^3}.$$

We recognize (33) as the BTZ black hole, with event horizon at $\tilde{r} = \tilde{r}_+$. $\Lambda_{eff} = -l_{eff}^2$ is the effective cosmological constant. The effective 3d Newton constant can be read off from the action (31), yielding

$$\frac{1}{16\pi G_{eff}} = \frac{1}{4l_p} \Phi_{hor}^{3/2},$$

where the subscript indicates that the dilaton Φ is to be evaluated at the horizon. The BTZ black hole mass is given by

$$M_{(3)} = \frac{\lambda^3}{2l_p G_{eff} l_{eff}^2}.$$

We can now apply Strominger’s counting of microstates [19] to reproduce the Bekenstein-Hawking entropy. To this end, one first observes that the central charge appearing in the

6Cf. also [20], where similar computations for black strings in six dimensions with BTZ $\times S^3$ near-horizon geometry were performed.
asymptotic symmetry algebra of \(AdS_3 \) in our case reads \(c = 3l_{\text{eff}}/(2G_{\text{eff}}) \). Furthermore, we have the relations

\[
M_{(3)} = \frac{1}{l_{\text{eff}}}(L_0 + \bar{L}_0), \quad J = L_0 - \bar{L}_0 = 0
\]

for the mass and angular momentum. We then obtain from Cardy’s formula a statistical entropy which coincides precisely with the thermodynamical entropy \((3) \) of the 5d black hole \((3) \).

Acknowledgements
I would like to thank my collaborators on the work which was the subject of this talk, S. Cacciatori, W. A. Sabra and D. Zanon. This work has been partly supported by MURST and by the European Commission RTN program HPRN-CT-2000-00131, in which the author is associated to the University of Torino.

References
[1] A. Chou, R. Kallosh, J. Rahmfeld, S. -J. Rey, M. Shmakova, and W. K. Wong, Nucl. Phys. \textbf{B508} (1997) 147.
[2] I. Gaida, S. Mahapatra, T. Mohaupt, and W. A. Sabra, Class. Quant. Grav. \textbf{16} (1999) 419.
[3] B. de Wit and A. Van Proeyen, Phys. Lett. \textbf{B293} (1992) 94.
[4] A. H. Chamseddine and W. A. Sabra, Phys. Lett. \textbf{B460} (1999) 63.
[5] S. Cacciatori, D. Klemm, W. A. Sabra, and D. Zanon, Nucl. Phys. \textbf{B587} (2000) 277.
[6] J. D. Brown and M. Henneaux, Commun. Math. Phys. \textbf{104} (1986) 207.
[7] J. M. Maldacena, Adv. Theor. Math. Phys. \textbf{2} (1998) 231.
[8] C. Vafa, Adv. Theor. Math. Phys. \textbf{2} (1998) 207.
[9] A. Strominger and C. Vafa, Phys. Lett. \textbf{B379} (1996) 99.
[10] M. Cadoni and S. Mignemi, Phys. Rev. \textbf{D59} (1999) 081501; Nucl. Phys. \textbf{B557} (1999) 165.
[11] M. G"unaydin, G. Sierra, and P. K. Townsend, Nucl. Phys. \textbf{B242} (1984) 244.
[12] W. A. Sabra, Mod. Phys. Lett. \textbf{A13} (1998) 239.
[13] I. Antoniadis, S. Ferrara, and T. R. Taylor, Nucl. Phys. \textbf{B460} (1996) 489.
[14] K. Behrndt, M. Cvetič, and W. A. Sabra, Nucl. Phys. \textbf{B553} (1999) 317.
[15] M. Cadoni and M. Cavaglià, \texttt{hep-th/0005173}; \texttt{hep-th/0008084}; M. Caldarelli, G. Catelani, and L. Vanzo, JHEP \textbf{0010} (2000) 005; M. Cadoni, P. Carta, D. Klemm, and S. Mignemi, \texttt{hep-th/0009185}.
[16] B. Craps, F. Roose, W. Troost, and A. Van Proeyen, Nucl. Phys. \textbf{B503} (1997) 565.
[17] M. J. Duff, H. Lü, and C. N. Pope, Nucl. Phys. B532 (1998) 181; Nucl. Phys. B544 (1999) 145; E. Halyo, Mod. Phys. Lett. A15 (2000) 397.

[18] M. Cvetiç, H. Lü, and C. N. Pope, Nucl. Phys. B549 (1999) 194.

[19] A. Strominger, JHEP 9802 (1998) 009.

[20] M. Cvetiç and F. Larsen, Nucl. Phys. B531 (1998) 239.