Experimental Study of Radon Content in Networked Natural Gas under the Conditions of Yakutsk

V E Stepanov, K A Naumova

1Department of Electric Power, Institute of the Physical-Technical Problems of the North SB RAS, Republic of Sakha (Yakutia) Oktyabrskaya street 1, Yakutsk 677000, Russian Federation
2Department of Power Supply, Institute of Physics and Technology, M.K. Ammosov North-Eastern Federal University, Kulakovsky street 48, Yakutsk 677000, Russian Federation

E-mail: kristinan_1604@rambler.ru

Abstract. Analyzed the problem of radon safety in residential areas with gas stoves of various companies. Volumetric radon concentrations were obtained and annual dose rates were calculated. Measurements were carried out with two instruments: on the radon gauge Alpha Guard and on the РРА-01М-03 manufactured by NTM Protection. Samples of networked natural gas for measurement were taken using an air sampler [1], [2]. A device and methods for sampling methane from domestic gas cookers in the conditions of the city of Yakutsk have been developed. The sampler consists of a silicone hose with a tubular tip with a solid cap. Silicone hose attached to the standard air sampler with two fittings of the company NTM Protection. The divider and the burner are removed from the tile; the tube with the cap is pressed tightly against the iron gas-conducting pipe. The methane launch valve opens to the stove. A flexible tube is put on the loose fitting and lowered into a bowl of water to control the gas outlet. Experimentally chosen time to achieve the maximum volumetric concentration of radon in the sampler for air. The obtained value of radon volumetric activity is: 116 ± 27 Bq / m³

1. Introduction
It is widely known that radon [3], [4] is emitted when natural gas is burned on domestic gas stoves, but there is no detailed study of radon extraction from network natural gas. Consequently, the study of the problem of radon emanation from natural gas is of fundamental scientific importance, as well as relevant in connection with the implementation of the gasification program in the settlements of Yakutia.

In the present work, radon contents in apartments in the city of Yakutsk and in the village of Maya of the Megino-Kangalassky district are investigated. The results of measuring the radon volumetric concentrations are presented, and the annual limit dose loads in five apartments with different gas cookers are determined. Measurements of the radon volumetric activity were carried out on two devices: the Alpha Guard [6] radon radiometer and the PPA-01М-03 production of the NTM Protection [7]. Calibration experiments were also carried out in a radon chamber [5], comparing the readings of the PPA-01М-03 and Alpha Guard instruments. In Russia, it is customary to calibrate Russian-made radiometers by comparing their readings with the results of measurements on an
AlphaGuard instrument, since it is recognized as the most accurate radar meter in the world. As a result of the calibration, a correction factor was calculated for the readings of the PPA device, on which direct measurement of radon in network natural gas is possible.

2. Measurement of the volumetric activity of radon in networked natural gas
To study of volumetric activity radon in networked natural gas, 2 methods were used. The installation for determining radon OA by direct measurement method (figure 1) consists of an insulating cap 1, a sampling hose with a filter 2 and an instrument 3. Before starting the measurements a cap is placed on the stove and then sealed, then, the air intake tube is passed through the cap and placed in a gas burner slabs. Next, turn on the Alpha Guard and the gas stove. Air is pumped through the sampler hose to the radiometer, then, the measurement results are recorded every 10 minutes.

![Figure 1](image1.png)

Figure 1. Method for direct measurement of volumetric activities with the help of an Alpha Guard radon radiometer.

For the method of measuring the volumetric activities of radon in LNG using an air sampler (figure 2.), an insulating cap 1, an air intake tube 2 and a sampler 3 are used. Natural gas is sampled as in the previous method. The pressurized gas passes through the suction tube into the sampler. After sampling, the radon content in LNG is measured using the PPA-01M-03 device.

![Figure 2](image2.png)

Figure 2. Method for measuring the volumetric activities of radon in LNG using an Air Sampler.

The results are presented in tables 1-5.
Table 1. The results of measurements of radon volumetric activity using the device PPA-01M-03 for residential premises, where a gas stove of the “Beko” company.

Month	Volumetric activity of \(^{222}\text{Rn}, \text{Bq} / \text{m}^3\)	Temperature, °C	Air pressure, mbar	Humidity, %	\(N_\alpha\)	Toron
March	max 79±21, min <20	max 25	max 744	max 23	max 19	max 1
April	max 47±17, min <20	max 28	max 745	max 21	min 3	min 0
May	max 79±21, min <20	max 28	max 740	max 24	max 19	max 0
June	max 41±14, min <20	max 24	max 749	max 24	max 10	max 1

Table 2. Results of radon measurements for residential premises with a gas stove of the company “Bosch”.

Month	Volumetric activity of \(^{222}\text{Rn}, \text{Bq} / \text{m}^3\)	Temperature, °C	Air pressure, mbar	Humidity, %	\(N_\alpha\)	Toron
March	max 50±16, min 26±12	max 28	max 753	max 20	max 12	max 1
April	max 45±15, min 33±12	max 28	max 752	max 19	max 11	max 1
May	max 64±19, min <20	max 24	max 749	max 28	max 15	max 1
June	max 104±26, min=20±9	max 22	max 747	max 33	max 25	max 1

Table 3. The results of measurements of the volumetric activities of radon for residential premises in which the gas stove of the company “Hotpoint-Ariston” is used.

Month	Volumetric activity of \(^{222}\text{Rn}, \text{Bq} / \text{m}^3\)	Temperature, °C	Air pressure, mbar	Humidity, %	\(N_\alpha\)	Toron
March	max 104±26, min <20	max 23	max 744	max 27	max 25	max 0
April	max 90±24, min 38±15	max 24	max 746	max 24	max 22	max 1
May	max 87±21, min 28±11	max 24	max 747	max 31	max 21	max 1
June	max 106±27, min 20±9	max 23	max 749	max 30	max 25	max 1

Table 4. Radon measurements for residential premises where the gas stove of “Zanussi” company is used.

Month	Volumetric activity of \(^{222}\text{Rn}, \text{Bq} / \text{m}^3\)	Temperature, °C	Air pressure, mbar	Humidity, %	\(N_\alpha\)	Toron
March	max 141±32, min 42±15	max 21	max 737	max 31	max 34	max 1
April	max 84±24, min 37±13	max 24	max 744	max 31	max 16	max 4
May	max 62±18, min 29±11	max 24	max 744	max 29	max 15	max 1
June	max 94±26, min 35±14	max 24	max 749	max 31	max 23	max 1
Table 5. The results of measurements of the volumetric activities of radon for residential premises where an “Ardo” gas stove is used.

Month	Volumetric activity of ^{222}Rn, Bq / m3	Temperature, $°\text{C}$	Air pressure, mbar	Humidity, %	N_α	Toron
March	max 62±18	max 20	max 744	max 41	max 15	max 0
	min 33±12	min 20	min 743	min 41	min 8	min 0
April	max 91±23	max 21	max 746	max 38	max 22	max 0
	min <20	min 21	min 746	min 37	min 4	min 0
May	max 54±17	max 23	max 748	max 32	max 13	max 1
	min <20	min 22	min 747	min 31	min 2	min 0
June	max 108±27	max 24	max 747	max 30	max 26	max 2
	min <20	min 23	min 747	min 30	min 4	min 0

Tables 1-5 show the results of measurements of radon volumetric activity in houses where household gas stoves of five different firms are installed using the PPA-01M-03 device. The maximum value of radon VA, 141 ± 32 Bq / m3, was found in the house where the Zanussi stove is installed. The results of experimental studies show that in all studied residential buildings the effective equilibrium volume activity of radon (1) is at the level of maximum permissible radon concentration for new buildings and below the permissible level for buildings in operation.

3. Determination of radiation dose from radon for the population of Yakutsk

The calculation of the individual annual effective dose of internal exposure of adult residents of a settlement (district, etc.) due to short-lived daughter products of radon isotopes in the air is made according to measurements of equivalent equilibrium volume activity (EEVA) of radon isotopes in indoor air and atmospheric air in the territory of the settlement (district and so on. p.) according to the formula [9]:

$$E_{\text{internal}, \text{Rn}} = 9.5 \cdot 10^{-6} \cdot 8760 \cdot (0.2 \cdot EEVA_{\text{street}} + 0.8 \cdot EEVA_{\text{building}})$$ (1)

where $9.5 \cdot 10^{-6}$ is the dose ratio (in units (mSv/m3) / (hour \cdot Bq)); 8760 - the number of hours per year; 0.2 and 0.8 is the share of time spent by people in the premises and on the street, respectively; if for atmospheric air in the territory of a given locality (district, etc.) there are no data on EEVAstreet values, then for calculating population exposure doses due to this factor EEVA$\text{street} = 6.5$ Bq / m3 should be taken in accordance with the data on average world EEVA of radon isotopes in the surface layer of atmospheric air [10].

The radon EEVA for a nonequilibrium mixture of short-lived daughter decay products in air is calculated by the following formula [11]:

$$EEVA_{\text{Rn}} = VA_{\text{Rn}} \cdot F$$ (2)

where, VA_{Rn} is the radon volume activity, F is the equilibrium coefficient between radon and its decay products, which can take values from 0 to 1. In the absence of experimental data on the average value of this coefficient, take $F = 0.5$.

Table 6 presents the results of calculated dose load indications, depending on the installed gas stove under the conditions of the city of Yakutsk.

Table 6. Radon dose rates.

Types of gas stoves	$VA^{222}\text{Rn}$, Bq / m3 (max. value)	$EEVA^{222}\text{Rn}$, Bq / m3	E_{internal}, Rn, mSv / year	The ratio of E_{internal} to PAED
Beko	19	9,5	0,74	0,074
Bosch	31	15,5	1,14	0,114
Hotpoint-Ariston	14	7	0,57	0,057
Zanussi	27	13,5	1	0,1
Ardo	30	15	1,1	0,11
In all investigated homes, and the average radiation dose to people less than the permissible annual effective dose (PAED) of 10 mSv/year [12]. In the house where the Beko stove is used, the radon volumetric activity value is 13.5 times smaller than the PAED, in the house where the Bosch stove is installed, the radon volumetric activity value is 87.7 times smaller. In homes where Hotpoint-Ariston, Zanussi, and Ardo slabs are installed, the radon volumetric activity values are less than the allowable annual effective dose of 175.4, 100 and 90.9 times, respectively.

Table 7 presents the results of the measurement of radon OA in gas burners of gas stoves of various firms by the method of direct measurements using the AlphaGUARD instrument. The highest values for radon activity were found in the Hotpoint-Ariston gas stove.

Table 7. The results of direct measurements on the device AlphaGUARD.

Locality	The name of the gas stove	Radon activity levels
Yakutsk city	Bosch	Max 66±5.9 Bq/m³
		Min 29±2.6 Bq/m³
Yakutsk city	Hotpoint-Ariston	Max 81±7.3 Bq/m³
		Min 47±4.2 Bq/m³
Yakutsk city	Beko	Max 47±4.2 Bq/m³
		Min 36±3.2 Bq/m³
Yakutsk city	Ardo	Max 45±4.1 Bq/m³
		Min 36±3.2 Bq/m³
Yakutsk city	Indesit	Max 48.35±6.43 Bq/m³
		Min 6.35±0.84 Bq/m³
Maya village	Lada	Max 10±0.9 Bq/m³
		Min 2±0.2 Bq/m³
Maya village	Mechta	Max 23±2.1 Bq/m³
		Min 6±0.5 Bq/m³
Maya village	Omich	Max 39±3.5 Bq/m³
		Min 8±0.7 Bq/m³
Maya village	KSTG	Max 8±0.7 Bq/m³
		Min 0 Bq/m³

As shown in table 7, the maximum value of the radon activity in bulk, using direct measurements as shown in figure 1, was shown by a Hotpoint-Ariston gas stove 81 ± 7.3 Bq/m³.

Table 8 shows the results of measurements of the method of radon volumetric activity in networked natural gas using an Air Sampler (figure 2.)

Table 8. The results of direct measurements of radon volumetric activities for the city of Yakutsk.

Locality	The name of the gas stove	Radon activity levels
Yakutsk city	Indesit	Max 91±23 Bq/m³
		Min 41±14 Bq/m³
Yakutsk city	Gorenje	Max 48±16 Bq/m³
		Min 25±11 Bq/m³
Yakutsk city	Gefest	Max 116±27 Bq/m³
		Min 26±12 Bq/m³
Yakutsk city	Mechta	Max 54±29 Bq/m³
		Min 16±7 Bq/m³
Yakutsk city	Beko	Max 48±16 Bq/m³
		Min 21±9 Bq/m³
Yakutsk city	Ardo	Max 49±17 Bq/m³
		Min 28±9 Bq/m³
From table 8, it follows that the maximum volumetric activity that was determined experimentally as shown in figure 2 was obtained in a Gefest slab of 116 ± 27 Bq/m³.

4. Conclusions
In this paper, we analyzed the problem of radon security in residential areas with gas stoves of various companies. In the present paper, we tested various methods for measuring radon VA in networked natural gas.

Radon dose loads for residential premises using gas stoves from five different firms were determined. In the house where Beko's stove is used, the annual actual dose load is 13.5 times less than the annual intake limit (10 mSv/year); 17 times less than annual income limit. For apartments in which Zanussi and Ardo plates are installed, dose loads are 10 and 9 times less than the annual income limit, respectively. In this situation, radon appears in the kitchen when burning natural gas while cooking. In addition, an installation was designed and a method for direct measurement of radon in network gas was developed by direct sampling of methane from kitchen gas stoves.

References
[1] Naumova K A, Maksimov N A, Stepanov V E 2018 Study of radon emanation in networked natural gas Problems and prospects of development of the Arctic zone of the North-East of Russia: Materials of the International Scientific and Practical Conference (Anadyr) pp 45-47
[2] Naumova K A, Stepanov V E 2018 Radon emanations in networked natural gas in the conditions of the city of Yakutsk Thermal power engineering. “Energy-2018” The thirteenth international scientific-technical conference of students, graduate students and young scientists (Ivanovo) p 41
[3] Gonzalez Abel X, Andere J 1989 Comparative analysis of radiation sources in the environment IAEA BULLETIN vol 2 pp 23-35
[4] Anikin V M 2013 Radiophysical model of the process of accumulation of radon and its decay products in the body Heteromagnetic microelectronics (Saratov)
[5] Khristoforova S E, Naumova K A, Stepanov V E, Timofeev V E 2018 Investigation of current radiation dose from radon when heating residential buildings with natural gas Scientific information magazine on radiation safety ANRI (Apparatus and news of radiation measurements) (Moscow) vol 2 pp 56-65
[6] Operation manual 03.2014 AlphaGUARD Portable radon meter Frankfurt/Maine p 54
[7] Operation manual Radon Radiometer PPA-01M-03 МГФК 412124.003 РЭ (Moscow)
[8] Description of the type of measuring instruments for the state registry Radiometer volumetric activity of radon-222 AlphaGuard mod.PQ2000
[9] 2002 Estimation of individual effective doses to the public due to natural sources of ionizing radiation MUK 2.6.1.1088-02 Guidelines Ministry of Health of Russia (Moscow) p 22
[10] Khristoforova S E, Timofeev V, Naumova K, Stepanov V 2018 Radon during natural heating gas houses 18th International multidisciplinary scientific GEO conference SGEM 2018 (Albena, Bulgaria) vol 18 pp 763-770
[11] Yakovleva V S 2011 Methods for measuring the flux density of radon and toron from the surface of porous materials A monograph (Tomsk) p 174
[12] Lekomte J-F, Solomon S, Takala J, Jung T, Strand P, Mürit C, Kiselev S, Zhuo V, Shannon F, Janssens A 2015 Radiological protection from exposure to radon under Ed. M V Zhukovskogo, I V Yarmoshenko, S M Kiseleva Translation of publication 126 of the ICRP (Moscow) p 92
[13] Beckman I Radon: enemy, doctor and assistant Course of lectures Lecture Radon therapy P 23
[14] 2009 Radiation safety standards NRB-99/2009 SanPin 2.6.1.2523-09
[15] Khristoforova S E, Timofeev V, Naumova K, Stepanov V 2017 Study of radiation dose from radon when heating rural homes with natural gas using the example of the village of Nemyugyuntsy (Khangalassky district) Proceedings of the XVIII All-Russian Scientific and Practical Conference of Young Scientists, Postgraduates and Students in Neryungri, with
international participation, dedicated to the 25th anniversary of the establishment of the Technical Institute (branch) of NEFU. Sections 1-3 pp 113-118

[16] Khristoforova S E, Naumova K A, Stepanov V E, Rafailova N A 2016 Study of radon content in networked natural gas under the conditions of Yakutia on the example of the village of Oi Khangalassky ulus Modern problems of physics and technology. V-th International Youth Scientific School-Conference (Moscow) 2 pp 326-328

[17] 2008 Sampling device POU-04 Recommendations (Moscow)

[18] Levin M N, Negrobov O P, Gitlin V R, Selivanova O V, Ivanova O A 2008 Radon Educational Edition (Voronezh) p 42

[19] Shuleikin V N, Shukin G G, Kupovych G V 2015 The development of methods and means of applied geophysics - atmospheric-electrical monitoring of geological heterogeneities and zones of geodynamic processes Monograph (St. Petersburg) pp 206

[20] Yegorova S E, Stepanov V E, Borisova N N 2014 Study of the content of radon in Yakutsk. “EREL-2014”: Materials of the All-Russian Conference of Scientific Youth (Yakutsk) vol 1 pp 262

[21] 2016 Methodical instructions: Determination of average annual values of EES of radon isotopes in indoor air from measurements of different durations ME 2.6.1. 037 p 48