Near-infrared studies of the 2010 outburst of the recurrent nova U Scorpii

D. P. K. Banerjee1⋆, R. K. Das1, N. M. Ashok1, M. T. Rushton2, S. P. S. Eyres2, M. P. Maxwell2, H. L. Worters3, A. Evans4, B. E. Schaefer5

1 Astronomy and Astrophysics Division, Physical Research Laboratory, Navrangpura, Ahmedabad - 380009, Gujarat, India
2 Jeremiah Horrocks Institute for Astrophysics and Supercomputing, University of Central Lancashire, Preston, PR1 2HE, UK
3 South African Astronomical Observatory, PO Box 9, 7935 Observatory, South Africa
4 Astrophysics Group, Keele University, Keele, Staffordshire, ST5 5BG, UK
5 Physics and Astronomy, Louisiana State University, Baton Rouge, LA 70803, USA

Accepted Received

ABSTRACT

We present near-IR observations of the 2010 outburst of U Sco. JHK photometry is presented on ten consecutive days starting from 0.59 days after outburst. Such photometry can gainfully be integrated into a larger database of other multi-wavelength data which aim to comprehensively study the evolution of U Sco. Early near-IR spectra, starting from 0.56 days after outburst, are presented and their general characteristics discussed. Early in the eruption, we see very broad wings in several spectral lines, with tails extending up to \(\sim 10000 \text{ km} \text{s}^{-1} \) along the line of sight; it is unexpected to have a nova with ejection velocities equal to those usually thought to be exclusive to supernovae. From recombination analysis, we estimate an upper limit of \(10^{-4.64_{-0.74}^{+0.92}} \) \(M_\odot \) for the ejected mass.

Key words: infrared: stars - novae, cataclysmic variables - stars : individual (U Sco)

1 INTRODUCTION

The well known recurrent nova (RN) U Scorpii has undergone at least six previous outbursts, in 1863, 1906, 1936, 1979, 1987 and 1999 and search of archival data resulted in the detection of three additional outbursts, in 1917, 1945 and 1969 (Schaefer 2010). Its latest outburst, on 2010 January 28.4385 UT, was discovered by B. H. Harris and S. Dvorak (Schaefer et al. 2010b). The last three outbursts of U Sco were well studied, especially in the optical (Barlow et al. 1981; Williams et al. 1981; Sekiguchi et al. 1988; Anupama & Dewangan 2000; Munari et al. 1999; Iijima 2002). The only major IR study of U Sco was during the 1999 outburst by Evans et al. (2001), who obtained spectra between 2.34 and 27.28 days after outburst. An X-ray study of the super-soft phase was also made by Kahabka et al. (1999) for the 1999 eruption. These studies aimed at determining important physical parameters like the mass of the ejecta, spectral type of the secondary, and estimating the He abundance among other parameters. The present outburst was widely anticipated and a major world-wide multi-wavelength campaign was planned well in advance. As a result extensive data have been collected and preliminary results have been reported in the UV and X-rays from SWIFT (Osborne et al. 2010; Schaefer et al. 2010a,b, Schlegel et al. 2010a,b) and CHANDRA observations (Orio et al. 2010), in the optical (Anupama et al. 2010) and the infrared (IR; Ashok, Banerjee & Das 2010; Das, Banerjee & Ashok 2010). In this paper we present near-IR spectroscopic and photometric data during the early

⋆ orion@prl.res.in
Table 1. Photometry of U Sco from Mt. Abu. The mid-time of observations are given in MJD; ∆t is time since outburst, taken to be MJD 5224.9385 (2010 January 28.4385 UT; Schaefer et al. 2010b).

MJD	∆t (d)	J	H	K
5225.5286	0.59	7.00±0.1	6.72±0.2	6.32±0.01
5226.5189	1.58	8.05±0.2	7.88±0.05	7.33±0.06
5227.5402	2.60	8.72±0.08	8.67±0.06	8.09±0.04
5228.5349	3.60	9.13±0.12	9.38±0.11	8.60±0.10
5229.5360	4.60	9.79±0.09	9.82±0.10	9.27±0.15
5230.4666	5.53	10.24±0.11	10.25±0.12	9.65±0.08
5231.4829	6.54	11.06±0.20	10.61±0.17	9.84±0.38
5232.4563	7.52	11.38±0.14	11.23±0.24	10.23±0.59
5233.4805	8.54	12.11±0.15	12.06±0.29	11.07±0.33
5234.4823	9.54	12.53±0.21	11.97±0.19	11.82±0.47

The spectra taken 0.59 days after outburst are the earliest to be recorded for this object in the near-IR.

2 OBSERVATIONS

2.1 Mt. Abu

Near-IR observations were carried out in the JHK bands at the Mt. Abu 1.2m telescope in the early declining phase of the outburst. The comparison star for photometry was SAO 159825 (J = 8.26; H = 7.92; K = 7.88). Spectra in the wavelength range 1.09—2.2 μm were obtained from day 0.56 to day 4.55 at a resolution of ~1000 using a Near-Infrared Imager/Spectrometer with a 256 × 256 HgCdTe NICMOS3 array. Spectral calibration was done using OH sky lines and telluric features that register with the stellar spectra. ω1 Sco (B1V, T_eff = 25400 K) was chosen as the standard star and observed at similar airmass to U Sco to ensure the ratioing process removes telluric lines. Subsequent reduction of the spectra and processing of the photometric data follow a standard procedure that is described for e.g. in Naik, Banerjee & Ashok (2009). All data reduction was done using IRAF tasks.

2.2 ESO

IR spectroscopy was obtained at the 3.6m New Technology Telescope (NTT), using the SOFI IR spectrograph and imaging camera (Moorwood, Cuby & Lidman 1998). Data were obtained on days 5.41 and 9.43 using the blue and red low resolution grisms, giving a wavelength coverage of 1—2.5 μm at R ~ 1000. Flux calibration and the removal of atmospheric features was achieved by the dividing the target spectra by the spectra of the standard star HIP 45652 (B9V) on 2010 February 3 (MJD 5230.6). The data were wavelength calibrated using a Xenon lamp. A log of photometric and spectroscopic observations is given in Tables 1 and 2 respectively.

Table 2. Spectroscopy of U Sco. Integration time in s; for blue and red grisms for SOFI.

MJD	∆t (d)	Site	J	H	K
5225.4959	0.56	MtA	120	120	150
5226.4820	1.54	MtA	200	180	180
5227.4886	2.55	MtA	--	--	250
5228.4850	3.54	MtA	500	500	500
5229.4845	4.55	MtA	600	500	500
5230.3476	5.41	ESO	360	480	
5234.3670	9.43	ESO	720	960	

The JHK lightcurves are shown in Fig. 1 along with a matching portion of the optical lightcurve for comparison. The evolution of the near-IR lightcurve is rather similar to the optical. Since sampling is only on a daily basis, we have interpolated between points to obtain mean (J, H, K) averaged t2 and t3 times of 2.4 and 4.0 days respectively for the near-IR. However these values are likely to be on the high side as we missed the fast declining stage between time zero to 0.59 days (when our first data point was recorded). For the present outburst, Munari, Dallaporta & Castellani (2010) estimate t2 = 1.8 and t3 = 4.1 days in the V band. The distance to U Sco as based on t2 has been presented in a unified manner by Schaefer (2010) to be 37.7 kpc, but this is superceded by the blackbody distance of the companion star during the total eclipse, which is 12 ± 2 kpc (Schaefer 2010).

The spectra are presented in Fig. 2. The spectra are similar to those seen in novae outbursts occurring on
2010 outburst of U Sco

massive white dwarfs, examples of which are V597 Pup, V2491 Cyg and RS Oph (Naik, Banerjee & Ashok 2009; Banerjee, Das & Ashok 2009). The prominent features detected in U Sco are the He\textsc{i} 1.0830 \(\mu\)m and Pa\textsc{γ} 1.0938 \(\mu\)m lines (blended), O\textsc{i} 1.1287 \(\mu\)m, Pa\textsc{β} 1.2818 \(\mu\)m, He\textsc{i} 2.0581 \(\mu\)m and the H\textsc{i} Brackett series lines in the H band. The Brackett series lines in the H band are severely blended due to the large line widths.

A feature at \(\sim 1.163 \mu\)m is likely N\textsc{i} 1.1625, 1.1651 \(\mu\)m. While this feature also coincides with He\textsc{ii} 1.16296, 1.1676 \(\mu\)m, we believe that N\textsc{i} is the more the likely: if it is He\textsc{ii}, its strength is expected to increase with time, as the level of ionization and excitation increases. While such behaviour is seen for the He\textsc{i} 1.083 and 2.0581 \(\mu\)m lines (Fig. 2), it is not seen for the 1.163 \(\mu\)m feature.

U Sco does not seem to show the presence of prominent carbon lines, and in general C lines are weak in optical spectra during outburst (Barlow et al. 1981; Rosino & Iijima 1988). Carbon emission is a defining IR signature of novae occurring on CO white dwarfs, with mass \(\lesssim 1.2 M_\odot\) (the so-called “CO novae”). Typical spectra of CO novae, and their differences from the present spectra, can be seen in the cases of V2274 Cyg (Rudy et al. 2003) and V1280 Sco and V2615 Oph (Das et al. 2008; Das, Banerjee & Ashok 2009). For example, in V2274 Cyg the C\textsc{i} line at 1.44 \(\mu\)m \(^{(\text{P-}D)}\) was comparable in strength with Br\textsc{γ} but there is no evidence for it in U Sco.

The emission lines are remarkably broad and the H\textsc{i} lines (Pa\textsc{β} and Br\textsc{γ}) consist of a core component and possible broad wings, a detailed discussion of which is given in Section 3.2. The core component has a FWZI in the range of 9 000–10 000 km s\(^{-1}\) for all the prominent lines. A triple-peaked profile is seen in the Pa\textsc{β}, Br\textsc{γ} and He\textsc{II} 2.058 \(\mu\)m lines in the earliest spectra, 0.56 days after outburst which, however, disappears by the next day (Figs 2, 3). Similar triple-peaked (“Batmanesque”) structure was seen in H\textsc{α} in early optical spectra (Arai et al. 2010). A triple-peaked profile is also seen in the O\textsc{i} 1.1287 \(\mu\)m line on 2010 January 28.996 UT, but we caution that the region around this line has low atmospheric transmission and artificial structures can be generated in the profile during spectrum extraction.

The line fluxes for day 0.56 are given in Table 3.

Figure 2. The JHK spectra; the time (in days) from outburst is given next to the K-band data.

![Figure 2](image)

3.2 Evidence for high-velocity ejecta

The FWHM of the IR emission lines in the 1999 eruption indicated velocities of \(\sim 2 500\) km s\(^{-1}\) (Evans et al. 2001) and FWZI of \(\sim 9 500\) km s\(^{-1}\) over the first 5 days; likewise the FWZI of the Balmer lines were \(\sim 10 000\) km s\(^{-1}\) in the 1979 (Barlow et al. 1981) and 1999 (Iijima 2002, data obtained on day 0.65, close to our first spectrum) eruptions. Examination of the Br\textsc{γ} profile in the 2010 eruption (Fig. 3) shows a core component with a FWZI of \(\sim 9 500\) km s\(^{-1}\). More interesting however is the very extended blueward wing in the profiles for the first 2 days, which extend to about 10 000 km s\(^{-1}\) from the line center. It is not clear whether an equivalent red wing exists for Br\textsc{γ}, as our spectra do not extend that far redward. For the present we concern ourselves with the 10 000 km s\(^{-1}\) blueward wing.

We first establish that the extended blue wing of Br\textsc{γ}...
is genuine and intrinsic to the line by noting that the \(\text{N} \text{i} \ 1.2461, 1.2470 \umu \text{m} \) lines, also plotted in Fig. 3 exhibit a similar wing. It is difficult to conclude whether other lines have similar wings. \(\text{Pa}\beta \) and \(\text{O} \text{i} \ 1.1287 \umu \text{m} \) are closely flanked on the blue side by other lines. There may be a wing on \(\text{He} \text{i} \ 2.0581 \umu \text{m} \) as there is a small undulation at \(\sim 2.006 \umu \text{m}, \sim -7500 \text{ km s}^{-1}, \) for first 2 days (see Fig. 2); a similar “bump” is seen in the 1999 spectrum of \(\text{Evans et al.} \ 2001 \). But we again caution that the position of this undulation in a region of poor atmospheric transmission. Could the wings in Fig. 3 be caused by additional spectral lines? No such line is expected in the case of the \(\text{N} \text{i} \), but the \(\text{Br} \gamma \) wing is the site of the \(\text{He} \text{i} \ 2.1120, 2.1132 \umu \text{m} \) lines. However the expected positions of these \(\text{He} \text{i} \) lines, marked in Fig. 3 are not too well centered with the extended wing. Thus it is unlikely that they contaminate the wing. Additionally the \(\text{He} \text{i} \ 2.1120 \umu \text{m} \) line may be expected to be weaker by a factor of at least 20 compared to \(\text{He} \text{i} \ 2.0581 \umu \text{m} \) (\text{Benjamin, Skillman & Smith} \ 1999). Observations of other novae (e.g. \(\text{RS Oph} \); \text{Banerjee, Das & Ashok} \ 2009) strongly support this. However, Fig. 3 shows that the strength of the \(\text{Br} \gamma \) blue wing, especially in the spectrum 0.56 days after outburst, is too strong compared to \(\text{He} \text{i} \ 2.0581 \umu \text{m} \), for it to be caused by the \(\text{He} \text{i} \ 2.1120 \umu \text{m} \) line. We thus consider it unlikely that there is any significant presence of \(\text{He} \text{i} \ 2.1120 \umu \text{m} \) and conclude that the broad wing is intrinsic to \(\text{Br} \gamma \) and therefore suggestive of material moving at \(\sim 10000 \text{ km s}^{-1} \); even if this represents the line-of-sight velocity of ejected material, it is well in excess of expected ejecta speeds, even for RNe.

It is possible that this material arises in a bipolar flow. Such bipolar flows have been observed in novae (e.g. \(\text{RS Oph, V445 Pup} \); \text{Bade et al.} \ 2007, \text{Woudt et al.} \ 2009), and are explained on the basis of ejected material encountering density enhancements in the equatorial (orbital) plane compared to the polar direction; the outflowing material thus expands more freely in the polar direction, leading to high velocity polar flows. Such an outflow would be expected to be perpendicular to the orbital plane and, in the case of \(\text{U Sco} \) (as it is an eclipsing binary with inclination angle \(\sim 80^\circ \); \text{Hachisu et al.} \ 2000), close to the plane of the sky. If we assume inclination \(\sim 80^\circ \) and opening angle \(\sim 15^\circ \) for the jet, the \(10000 \text{ km s}^{-1} \) line-of-sight velocity translates to a space velocity of \(\sim 23000 \text{ km s}^{-1} \). Either way a very fast flow is being witnessed, possibly the fastest seen in any nova eruption.

We note that most of the spectral studies of the 1999 outburst showed the \(\text{H} \alpha \) profile to have similar broad wings. The doubt again arises whether these are intrinsic to the \(\text{H} \alpha \) line or caused by additional lines. For example \(\text{Iijima} \ 2002 \), in a spectrum taken 16 hrs after maximum, assigns the \(\text{N} \text{ii} \) line at 6482\AA as a possible cause for the extended blue wing of the \(\text{H} \alpha \) profile. However, if it is an intrinsic structure and not really \(\text{N} \text{ii} \ 6482\AA \) which is contributing, then it is seen that the wing extends to about \(10900 \text{ km s}^{-1} \) from the line center (Figure 2 of \text{Iijima} \ 2002). This is in good agreement with the above discussion, and is supporting evidence for a very fast flow.

Table 3. Line fluxes for day 0.56, dereddened for \(E(B-V) = 0.2 \). A full version of this table is available in the on-line version.

Line	Flux (\(10^{-18} \) W cm\(^{-2} \))	Uncertainty (\(10^{-18} \) W cm\(^{-2} \))
\(\text{O} \text{i} \ 1.1287 \)	5.80	\(\pm 0.17 \)
\(\text{N} \text{i} \ 1.1625, 1.1651 \)	3.43	\(\pm 0.10 \)
\(\text{N} \text{i} \ 1.2461, 1.2470 \)	4.50	\(\pm 0.8 \)
\(\text{P} \beta \ 1.2818 \)	4.10	\(\pm 0.18 \)
\(\text{Br} \text{i} \ 1.6806 \)	1.50	\(\pm 0.03 \)
\(\text{He} \text{i} \ 2.0581 \)	0.59	\(\pm 0.04 \)
\(\text{Br} \gamma \ 2.1655 \)	2.25	\(\pm 0.08 \)

3.3 Mass estimate using recombination analysis

In the analysis below we are able to set a useful upper limit on the ejecta mass; an exact determination is difficult due to uncertainty in the conditions in the ejecta, and the range of velocities present. For the recombination analysis we use the data for 2010 February 2.8 (day 5.41); we consider this to be the most favourable epoch, because the lines are more likely to be optically thick at earlier times, while the hydrogen lines for day 9.43 are likely contaminated by \(\text{He} \text{ii} \) Pickering lines, which occur at the same wavelengths as the \(\text{H} \text{ii} \) lines. We use the best-defined lines from our data for this epoch, namely \(\text{Br} \gamma, \text{Pa}\beta \) and \(\text{Br} \text{ii} \ 1.6806 \umu \text{m} \). The strengths of the other Brackett series lines in the \(\text{H} \) band are difficult to assess because of blending. We assume there is no significant contribution to the strength of these \(\text{H} \text{ii} \) lines from the \(\text{He} \text{ii} \) Pickering lines on day 5.41.

We proceed on the assumption that the ejecta are optically thin in the \(\text{Pa}\beta, \text{Br} \gamma \) and \(\text{Br} \text{ii} \) lines. It is expected that nova ejecta have density in the range \(n_e = 10^{10} \text{ to } 10^{12} \text{ cm}^{-3} \).
in the early stages. Thus, for example, for $n_e = 10^{11} \, \text{cm}^{-3}$ and $T = 10^5 \, \text{K}$, Case B predicts ratios of 4.76 and 3.8 for Paβ/Brγ and Brγ/Br11 respectively. The observed ratios in U Sco for Paβ/Brγ (4.29 ± 0.15) and Brγ/Br11 (2.69 ± 0.80) are reasonably in agreement with these predictions, although there is no plausible combination of n_e and T_e that has the Paβ/Brγ ratio as low as ~4.3 (the Case B emissivities at $n_e = 10^{11} \, \text{cm}^{-3}$, $T = 10^5 \, \text{K}$ are 3.1×10^{-26}, 6.5×10^{-25} and $1.7 \times 10^{-27} \, \text{erg cm}^{-3} \text{s}^{-1}$ for the Paβ, Brγ and Br11 lines respectively; [Storey & Hummer 1995]). If the lines under consideration are largely optically thick, considerable changes are seen in the ratios (especially in the the Brγ/Br11 ratio which can even drop below unity; see Banerjee, Das & Ashok 2009).

The mass of the emitting gas is given by

$$M = \sqrt{4\pi D^2 \, m_H \, (fV/\epsilon)}$$

where D is the distance, m_H the proton mass, f the observed flux in a particular line, ϵ the corresponding case B emissivity; V is the volume of the emitting gas, which is $\left(\frac{4\pi}{3}\epsilon[v^1] \phi \right)$ where ϕ, v and t are the filling factor, velocity and time after outburst respectively. We use $D = 12 \pm 2 \, \text{kpc}$ (Schaefer 2010), $v = 5000 \, \text{km s}^{-1}$ (although a range of a factor 2 either side of this value is implied by our data) and values of $f = (7.31 \pm 0.01) \times 10^{-12}$, $(1.70 \pm 0.06) \times 10^{-12}$ and $(6.3 \pm 0.2) \times 10^{-13} \, \text{ergs s}^{-1} \text{cm}^{-2}$ measured for the core components of the Paβ, Brγ and Br11 lines respectively.

The greatest uncertainty in our analysis arises from our ignorance of the electron density and temperature in the ejecta, and from our assumption that Case B applies. If we suppose that $10^{5} < n_e (\text{cm}^{-3}) < 10^{12}$ and $10^{5} < T_e (\text{K}) < 3 \times 10^{4}$, then the mean log ϵ (in erg s$^{-1}$ cm$^{-3}$) is $-25.90^{+0.59}_{-0.52}$, $-26.68^{+0.32}_{-0.37}$ and $-27.23^{+0.46}_{-0.37}$ for Paβ, Brγ and Br11 respectively, where the “error bars” represent the range of values. Over this range of n_e and T_e the Case B ratios for Paβ/Brγ and Br11/Brγ range from 4.8 to 8.4, and 2.7 to 4.5 respectively. As already noted, the observed Pβ/Brγ ratio is less than the lowest value expected for Case B, possibly indicating that Paβ may not be optically thick; the mass derived from Paβ may therefore be an underestimate. We find $\log M = -4.71^{+0.55}_{-0.49} \, \phi$ M$_\odot$, $\log M = -4.64^{+0.53}_{-0.50} \, \phi$ M$_\odot$ and $\log M = -4.58^{+0.50}_{-0.53} \, \phi$ M$_\odot$, from Paβ, Brγ and Br11 respectively. The errors in f, D, v and the uncertainties in ϵ have been added in quadrature, although we recognise that this is not necessarily robust (e.g. the errors are asymmetric (see Barlow 2003, for a discussion of this point), while the uncertainties in ϵ are not in any sense “errors” and are not distributed normally). Our best estimate of the ejecta mass is therefore $10^{-4.64^{+0.92}_{-0.74}} \, \phi$ M$_\odot$, ($\sim 2.2 \times 10^{-5} \, \phi$ M$_\odot$); since we must have that $\phi < 1$, $M < 10^{-4.64^{+0.92}_{-0.74}} \, \phi$ M$_\odot$.

An alternative estimate of the ejected mass can be provided by free-free (f–f) emission (cf. Evans et al. 2001, who found $M \sim$ a few$\times 10^{-7}$ M$_\odot$). We constructed the SED using V magnitudes from AAVSO, our near-IR magnitudes, and reddening $E(B-V)$ in the range 0.2 to 0.56 ([Barlow et al. 1981, Hachisu et al. 2000]). We have searched for a f–f excess on the first six days, where the errors on the JHK magnitudes are small. Depending on the reddening, blackbody fits with effective temperatures in the range 6000 – 8000 K reasonably fit the data. However, while our analysis shows that a f–f excess might be present in the data, especially in the K band, it is marginal and difficult to quantify. In view of this we do not use f–f to estimate a mass. Observations at mid-IR wavelengths should reveal any f–f emission as the emissivity is proportional to λ^2.

ACKNOWLEDGEMENTS

The research at PRL is funded by the Dept. of Space, Government of India. We acknowledge with thanks the use of AAVSO data.

REFERENCES

Anupama G. C., 2010, ATel, 2411
Anupama G. C., Dewangan G. C., 2000, AJ, 119, 1359
Arai A., Yamanaka M., Sasada M., Itoh R., 2010, CBET, 2152
Ashok N. M., Banerjee D. P. K., Das R. K., 2010, CBET 2153
Banerjee D. P. K., Das R. K., Ashok N. M., 2009, MNRAS, 399, 357
Barlow M. et al. 1981, MNRAS, 195, 61
Barlow R., 2003, PHYSTAT2003, SLAC, Stanford, California
Benjamin R. A., Skillman E. A., Smits D. P., 1999, ApJ, 514, 307
Bode M. F., Harman D. J., O’Brien T. J., Bond H. E., Starrfield S., Darnley M. J., Evans A., Eyres S. P. S., 2007, ApJ, 665, L63
Das R. K., Banerjee D. P. K., Ashok N. M., Chesneau O., 2008, MNRAS, 391, 1874
Das R. K., Banerjee D. P. K., Ashok N. M., 2009, MNRAS, 398, 375
Das R. K., Banerjee D. P. K., Ashok N. M., 2010, CBET 2157
Evans A., Krautter J., Vanzi L., Starrfield, S., 2001, A&A, 378, 132
Hachisu I., Kato M., Kato T., Matsumoto K., 2000, ApJ, 528, L97
Hachisu I., Kato M., Nomoto K., Umeda H., 1999, ApJ, 519, 314
Iijima T., 2002, A&A, 387, 1013
Kahabka P., Hartmann H. W., Parmar A. N., Negueruela I., 1999, A&A, 347, L43
Kato M., Hachisu I., 2003, ApJ, 587, L39
Moorewood, A., Cuby, J. G., Lidman, C. 1998, The ESO Messenger, 91, 9
Munari U. et al, 1999, A&A, 399, 357
Munari U., Dallaporta, S., Castellani F., 2010, IBVS, 5930
Naik S., Banerjee D. P. K., Ashok N. M., 2009, MNRAS, 394, 1551
Orio M., Nelson T., Luna J., Schaefer B., Page K., Beardmore A., Osborne J., 2010, ATel, 2451
Osborne J. et al., 2010, ATel, 2442
Rosino, L., Iijima, T., 1988, A&A, 201, 89
Rudy R. J., Dimpf W. L., Lynch D. K., Mazuk S., Venturini C. C., Wilson J. C., Puetter R. C., Perry R. B., 2003, ApJ, 596, 1229
Schaefer B. E. & Ringwald F. A., 1995, ApJ, 447, L45
Schaefer B. E., 2005, ApJ, 621, L53
Schaefer B. E., 2010, ApJS, 187, 275
Schaefer B. E. et al., 2010a, ATel, 2452
Schaefer B. E. et al., 2010b, AJ, in press (arXiv:1004.2842)
Schlegel E. M., et al., 2010a, ATel, 2419
Schlegel E. M. et al., 2010b, ATel, 2430
Sekiguchi K., Feast M. W., Whitelock P. A., Overbeek M. D., Wargau W., Jones, J. S., 1988, MNRAS, 234, 281
Starrfield S., Sparks W. M., Shaviv G., 1988, ApJ, 325, L55
Storey P. J., Hummer D.G., 1995, MNRAS, 272, 41
Williams R. E., Sparks W. M., Gallagher J. S., Ney, E. P., Starrfield, S. G., Truran, J. W., 1981, ApJ, 251, 221
Woudt P. A., et al., 2009, ApJ, 706, 738