Recent geochronological studies in southern Siberia support a Siberian assembly between 2.1 and 1.8 Ga. This broadly coincides with major orogenic events in most other Precambrian continents including Laurentia. In the Mesoproterozoic, Siberia was mainly an area of stable platform sedimentation whereas Laurentia underwent a continental growth from southeast. Lack of traces of the Grenville orogeny in Siberia suggests its peripheral position in Rodinia. The eastern (Uchur–Maya area) and western (Yenisei area) Siberian margins probably faced oceans during the Mesozoic and Neoproterozoic. Recent geological, geochronological, geochemical, and paleomagnetic data suggest integrity of Siberia and Laurentia in the Mesozoic and early Neoproterozoic with the Siberian southern margin close to the northern margin of Laurentia. However, some ‘intervening’ continental blocks were probably located between these two cratons. The 750–720 Ma igneous event was probably related to the rifting between Siberia and Laurentia and the opening of the Paleo-Asian Ocean, causing the development of a passive margin sedimentary succession in southern Siberia.

Introduction

It is generally assumed that the Siberian craton was part of the Mesoproterozoic supercontinent Rodinia (e.g., Hoffman, 1991; Rogers, 1996; Dalziel, 1997; Pisarevsky et al., 2003; Pisarevsky and Natapov, 2003). However, its exact position and the time of its separation from Rodinia are still under debate (see, for example, Pisarevsky and Natapov, 2003 and references therein). Most Rodinian reconstructions place Siberia close to Laurentia, suggesting that both cratons are remnants of a single proto-craton that was assembled during the late Paleoproterozoic. Here we present a brief overview of the geological evolution of the Siberian craton between the late Paleoproterozoic and the Neoproterozoic. We present some geological similarities between Siberia and Laurentia that are useful in evaluating the hypothesis about their common origin. We use the Russian stratigraphic scheme for the Proterozoic (Semikhatov, 1991), according to which the Lower (1650–1350 Ma) and Middle (1350–1000 Ma) Riphean correspond roughly to the Mesoproterozoic of the International Time Scale (Gradstein et al., 2004), and the Upper Riphean corresponds to the Tonian and Cryogenian systems of the Neoproterozoic (1000–630 Ma). The Vendian is an equivalent of the Ediacaran (630–542 Ma).

Siberia assembly

Major tectonic and metamorphic events caused by the assembly of the Siberian craton occurred at ~2.1–1.8 Ga (Rosen et al., 1994; Rosen, 2003). The Laurentian protocraton was assembled roughly at the same time—between 2.00 and 1.80 Ga (Hoffman, 1989). This time interval broadly coincides with important orogenic events on nearly every continent (Zhao et al., 2002), which is possibly related to an assembly of the putative older Paleoproterozoic supercontinent (Condie, 2002; Zhao et al., 2002).

Most Siberian building blocks are Archean (Rosen et al., 1994; Rosen, 2003). As an important exception there are the Hapchan and Berekte blocks (Figure 1), where no Archean ages have been found (Rosen et al., 2000). Building blocks of the craton are welded by ~2.1–1.8 Ga orogenic belts and suture zones (Figure 1). They are characterized by high-grade metamorphic complexes, and collisional and post-collisional granites (Aftalion et al., 1991; Rosen et al., 1994; Mints et al., 2000; Gladkochub et al., 2005; Poller et al., 2004, 2005; Kotov et al., 2004). The ages of the post-collisional granites in the southern Siberian craton are mainly between 1.88 and 1.84 Ga (Donskaya et al., 2002, 2003; Larin et al., 2003; Poller et al., 2004, 2005). A late Paleoproterozoic metamorphic event has reworked the Archean crust in some building blocks (for example, Central Aldan, East Aldan blocks, see Figure 1). Paleoproterozoic juvenile crust has been reported for the Akitkan orogenic belt (Rosen et al., 1994; Condie and Rosen, 1994; Neymark et al., 1998) and the Angara orogenic belt (Gladkochub et al., 2001a). However, an Archean crust, strongly deformed in the late Paleoproterozoic, prevails within these belts.

Similarities in ages between the Paleoproterozoic orogenic belts of Siberia and Laurentia cratons suggest that they could have originated from the same proto-craton. A variety of suggested ‘piercing points’ (e.g., Hoffman, 1991; Condie and Rosen, 1994; Frost et al., 1998) have led to a variety of Siberia–Laurentia reconstructions (Pisarevsky and Natapov, 2003). Unfortunately, the only quantitative method for paleogeographic reconstructions—paleomagnetism—is hardly applicable for the Paleoproterozoic due to the insufficient number of reliable Archean and Paleoproterozoic paleomagnetic data from most of the Laurentian and Siberian building blocks (Pisarevsky, 2005).

Riphean and Vendian sedimentation

The Archean terranes and Paleoproterozoic basement complexes of the Siberian craton are shown in Figure 1. Most of the craton is covered by Riphean and Phanerozoic sediments and the basement is only exposed in four areas: (1) the Anabar shield and the Olenek uplift (north); (2) the Aldan shield and the Stanovoy block (southeast); (3) the Goloustnaya, Baikal, and Sharizgalai uplifts and the Birusa block (south); (4) the Yenisey and Kann uplifts (southwest).
After the final stabilization of the Siberian basement at 1.9–1.8 Ga, a series of extensional events produced several intracratonic sedimentary basins (Figure 1). The oldest one formed at ~1.73–1.68 Ga in the Ulkano–Billikchan graben (rift zone) with volcano-plutonic fill (Larin et al., 1997) and in the Urik–Iya graben with volcano-sedimentary fill intruded by 1.53 Ga anorogenic granites (Gladkochub et al., 2002). Riphean sedimentary successions accumulated in intracratonic basins and along cratonic margins. They gradually thicken toward the cratonic boundaries (e.g., Khomentovsky et al., 1972; Khain, 1985). Most Riphean sediments are overlain by thick Phanerozoic cover and are only exposed in the internal areas of Siberia around the Anabar shield and on the Olenek uplift (Figure 1). Consequently, they are mostly known from drill holes and seismic profiles. As a result, some aspects of their stratigraphic correlation are still under debate (Rundqvist and Mitrofanov, 1993, Surkov and Grishin, 1997). The thicknesses of Riphean sedimentary successions in intracratonic basins range from 1 to 4 km (Surkov et al., 1991), but they increase up to 10–14 km near the cratonic margins (Pisarevsky and Natapov, 2003). Most researchers (Khain, 1985; Zonenshain et al., 1990; Surkov and Grishin, 1997; Kuznetsov, 1997; Rosen, 2002) suggest that the accumulation of the Riphean platform cover commenced at ~1.6 Ga, after almost 200 Ma.
of erosion, but the lack of precise geochronological information makes this suggestion somewhat problematic. The Laurentian protocraton (or Hudsonian craton after Van Schmus et al., 1993) also stabilized after ~1.8 Ga (Hoffman, 1989), with continental growth from the SSE (in present coordinates) followed by the Grenville collision after 1.2 Ga along its southeastern margin. Importantly, no traces of the Grenville-age orogeny have turned up so far in Siberia. Hence, if Siberia and Laurentia were parts of a single continent after ~1.8 Ga, it is likely that the suture zone was located close to present-day north or northwest Laurentia.

The best studied Riphean sedimentary successions crop out along the SE Siberian margin, in the Uchur–Maya area (Figure 1). Its combined thickness is about 14 km, and it constitutes the most complete Riphean–Vendian section in Siberia (e.g. Khomentovsky et al., 1972; Semikhatov and Serebryakov, 1983; Khudoley and Guriev, 2003; Pisarevsky and Natapov, 2003). Riphean sediments in the Uchur–Maya area represent several transgressive cycles (Bartley et al., 2001; Khudoley et al., 2001; Pisarevsky and Natapov, 2003). The eastward thickening and apparent progradation of the ancient sedimentary prism suggests that this succession was accumulated at the Meso- to Neoproterozoic passive margin of Siberia (e.g., Parfenov, 1984; Pisarevsky and Natapov, 2003). The radiometric ages of glauconite sandstone in the lower part of the succession range from 1520 to 1000 Ma (Kazakov and Knorre, 1973; Semikhatov and Serebryakov, 1983). The middle part of the succession is intruded by mafic dykes with U–Pb ages in the range of 1074±7 Ma and 1005±4 Ma (Rainbird et al., 1998) and a Sm–Nd whole-rock age of 942±9 Ma (Pavlov et al., 2000). Vendian sediments overlie the Riphean succession along a pronounced angular unconformity, which progressively cuts westward across older Riphean units (Khomentovsky et al., 1972; Semikhatov and Serebryakov, 1983; Khudoley et al., 2001).

The southern part of the Siberian craton consists of three distinct parts: the Aldan–Stanovoy province, the Baikal–Patom area and the Cisbaikalia area. The eastern part comprises the Aldan–Stanovoy province (Figure 1). This province was a passive area during the Riphean, and intracratonic sediments are preserved only on its northern slope. The southern margin including the Magocha and Tynda blocks was tectonically reworked during Mesozoic collisions related to the assembly of Asia. The tectonic overprint destroyed all evidence of the Riphean paleogeography along this Siberian margin. It is not clear whether this region was a continental margin or a part of a larger continental block.

Further to the west, in the Baikal–Patom area (Figure 1) the lower part of the Riphean succession comprises fluvial terrigenous sediments with subordinate volcanic material. This volcanic–sedimentary sequence is covered by Middle and Upper Riphean sediments, representing large stratigraphic cycles. Some of the strata in the lower part of the Middle Riphean succession were deposited in a deep-water continental shelf. In this area there are also continental slope and continental rise facies. Geochronological data are sparse and not reliable, and the stratigraphic subdivision is based mainly on stromatolite and microphytolite assemblages. There are 1602–1542 Ma Pb–Pb isochron ages for the lower part of the Riphean succession (Sharov et al., 1991) and 864–861 Ma Pb–Pb ages on limestones of the upper part (Fefelov et al., 2000). The sediment thickness increases from 2800 m up to 8000 m to the south, suggesting that it was deposited at the Siberian passive margin (Pisarevsky and Natapov, 2003). Neoproterozoic ophiolite and arc-related rocks (Figure 1) may be caused by mid-Neoproterozoic conversion of this margin from passive to active type (e.g., Gusev and Khain, 1996; Rytsk et al., 1999). The succession was deformed during the collision of the Siberian craton and some terranes of the Central Asian orogenic belt in the Vendian–Early Paleozoic (Pisarevsky and Natapov, 2003 and references therein).

In the southernmost part of the Siberian craton, the Riphean succession is located in the Cisbaikalia area (Figure 1) (Mazukabzov et al., 1995). The Riphean succession unconformably overlies the rocks of the Goloustnyaya and Baikal uplifts. The lower part of the succession is composed of dolomites, arkoses, greywackes and conglomerates and includes layers of mafic volcanites (Maslov and Kiechko, 1985). The stratigraphic relations (Chumakov and Semikhatov, 1981; Postnikov, 2001) suggest that this sequence is younger than the lower part of Middle Riphean succession in the nearby Baikal–Patom area and it probably is Upper Riphean in age. The entire Riphean succession in the Cisbaikalia area is up to 3000 m thick and deposited in shelf and continental slope environments.

The southwestern Siberian margin in the Pre-Sayan area (Figure 1) is separated by a large dextral strike-slip fault from terranes of the Central Asian orogenic belt with Neoproterozoic rhyolitic rocks and island arc complexes (Figure 1) (Khain et al., 2003). Here basement rocks of the Birusa block are overlain by the ~ 3700 m thick upper Riphean succession which has been interpreted to have been formed at a passive continental margin (Sklyarova et al., 2001). The lower and middle parts of this succession contain coarse sandstone, arkose, and conglomerate intercalated with volcanic rocks, and may represent the rift stage of continental breakup. This part of the succession is also intruded by mafic dykes and sills, some of which have recently been dated by 40Ar–39Ar method at 741±4 Ma (Glodkochub et al., 2006). Some intrusions exhibit evidence of emplacement into wet, unconsolidated sediment (Domyshiev, 1976). The upper part of this succession contains turbidites and silicic and carbonate sediments (Sklyarova et al., 2001). Thicknesses of the Upper Riphean succession increase to the southwest, broadly consistent with the existence of a Neoproterozoic passive margin along the southwestern Siberian boundary (Sklyarova et al., 2001; Pisarevsky and Natapov, 2003). However, this passive margin sedimentation probably commenced later—in the Neoproterozoic. Passive margin related sediments along northern Laurentia have been studied in northern Greenland and in the Ellesmere Island, and they are significantly younger — of Vendian age (Dewing et al., 2004). This contradicts reconstructions that place Siberia close to north of Laurentia (e.g. Frost et al., 1998). However, if some ‘buffering’ of continental blocks between Siberia and Laurentia was involved (Pisarevsky and Natapov, 2003; Glodkochub et al., 2006), the traces of Laurentian Neoproterozoic passive margin could be concealed in northern Alaska and the Chukchi Peninsula, which drifted away from North America in the Tertiary (Embry, 1998).

In the southern part of the western Siberian margin the Lower Riphean successions are located within the Yenisei area (Figure 1) and unconformably overlie the Paleoproterozoic granite–gneiss of the Kan and Yenisei uplifts. These sediments were deformed in late Riphean and Vendian times, combining a complex fold and thrust belt. This makes it difficult to reconstruct the paleogeographic environment. However, the general thickening of the Riphean successions to the west and the presence of deep-water facies in the western part suggest the presence of a passive margin here in the Neoproterozoic and early Neoproterozoic (Pisarevsky and Natapov, 2003; Vernikovsky et al., 2004). This suggestion is supported by the westward progradation of the paleoshelf, which can be traced by palaeoreefs (Ruchkin and Konkin, 1998). After ~900 Ma the passive margin in this area was transformed into an active margin (e.g. Volobuev, 1993; Vernikovsky et al., 2004). This is indicated by 880 and 760 Ma collisional granites and late Riphean–Vendian ophiolites that occur to the west from the Yenisei uplift (Figure 1) (Volobuev, 1993; Khain et al., 1997; Vernikovsky et al., 2004 and references therein). Eastward from the Yenisei uplift, Riphean sediments of the passive margin are unconformably overlain by late Riphean molasse and Vendian–Cambrian carbonates (Vernikovsky et al., 2004 and references therein). The northern part of the western Siberian margin is studied in the Turukhansk and Igarka areas (Figure 1). Recent ~1035–1025 Ma Pb–Pb ages for carbonates (Semikhatov et al., 2000; Ovchinnikova et al., 1995) and correlations with Uchur–Maya area on the stromatolite and microphytolite assemblages (e.g. Bartley et al., 2001) suggest that Mesoproterozoic sedimentation commenced here in the Middle Riphean. Volcanic rocks in the bottom part of Riphean succession in the Igarka area may indicate a rifting stage. The age of these volcanics is unclear (Kovrigina, 1996; Bogdanov et al., 1998). The thicknesses here are smaller than in the southern sections. However, the thickness increases to the west, and the sedimentological
characteristics fit the suggestion about there being a Riphean passive margin here (Bogdanov et al., 1998; Pisarevsky and Natapov, 2003). Collision with some unidentified continental block occurred in the late Riphean (pre-Vendian), and resulted in folding and thrusting of the Riphean successions.

The sedimentary successions along the northern Siberian margin (present-day coordinates) have lesser thicknesses and poor age constraints. They cannot be unequivocally recognized as indicators of Mesoproterozoic passive margins, but such an interpretation is possible (Pisarevsky and Natapov, 2003). The Riphean sediments north of the Anabar shield are concealed under the thick younger cover so their depositional environments are unclear.

Neoproterozoic magmatism

Extensive tectonic and magmatic activities and rapid sedimentation processes were characteristic for the late Riphean and Vendian stages of the Siberian evolution. They could be related to the Neoproterozoic Rodinia breakup and opening of the Paleo-Asian Ocean (Zonenshain et al., 1990; Berzin and Dobretsov, 1993). Neoproterozoic mafic dyke swarms are widespread over the southeastern and southern parts of the Siberian craton. These mafic dykes swarms are known in the Uchur–Maya area, Baikal and Sharihalgaj uplifts and within Pre-Sayan area (Gladochub et al., 2000, 2001b; Pavlov et al., 2000).

Recent geochronological studies have revealed 40Ar–39Ar plagioclase ages of mafic dyke swarms of the southern Siberian craton close to 780–740 Ma (Skyarov et al., 2003; Gladkochub et al., 2006). The youngest intrusions are slightly older than the ~723 Ma Franklin intrusions of northern Laurentia (Heaman et al., 1992). However, the 40Ar–39Ar ages of the of the Siberian intrusions are probably less than the Franklin U–Pb age, so knowledge of the U–Pb geochronology of the Siberian intrusions would facilitate a more meaningful comparison. The age difference could be also explained by a progressive opening of the basin between Siberia and Laurentia at 780–720 Ma from east to west (in present-day coordinates). Geochemical studies of south Siberian Neoproterozoic dykes and North American Franklin dykes suggest that they could have originated from the same mantle plume (Gladkochub et al., 2006).

Paleogeographic implications

Recent data (Gallet et al., 2000; Pavlov et al., 2001) suggests that Siberia and Laurentia–Greenland could be parts of some larger continent aged between ~1.05 and ~0.95 Ga. Using these data, Pisarevsky and Natapov (2003) proposed a new Siberia–Laurentia fit. The southern Siberian margin in their reconstruction faces the northern Laurentian margin. A similar fit has been proposed by Frost et al. (1998) (Figure 2), but the main difference is the gap between Siberia and Laurentia, which leaves room for other crustal blocks (e.g., northern Alaska, Chukchi Peninsula and others) that were juxtaposed against northern Laurentia prior to the ~125 Ma opening of the Canadian basin (e.g., Zonenshain et al., 1990; Embry, 1998; Natal’ in, 2004; Drachev, 2004). Gladkochub et al. (2006) have slightly modified this reconstruction using comparisons of mafic igneous complexes in the two cratons (Figure 2). Unfortunately, older reliable Siberian (Ernst et al., 2000; Didenko et al., 2003) and Laurentian (summarized in Pesonen et al., 2003) paleopoles are too sparse and sometimes too controversial, to trace the Laurentia–Siberia reconstruction back in time. However, main geological arguments for a direct Laurentia–Siberia connection (e.g., Frost et al., 1998; Gallet et al., 2000; Pavlov et al., 2001), or indirect (Pisarevsky and Natapov, 2003; Gladkochub et al., 2006) connection, include similarities between Archean and Paleoproterozoic continental blocks and orogenic belts. Hence, if Siberia and Siberia were connected at the end of the Mesoproterozoic, this connection should have been in existence since ~1.8 Ga — the supposed time of assembly of these cratons.

Conclusions

In summary, the main characteristics of the late Paleoproterozoic to Neoproterozoic evolution of the Siberian craton are:

1. Siberia was assembled between 2.1 and 1.8 Ga by the collision of several Archaean and early Paleoproterozoic building blocks. These events could be related to the assembly of the Paleoproterozoic supercontinent.

2. Some minor extensional events in Siberia occurred in the early Mesoproterozoic, extending the appearance of intra-continental basins. Stable platform sedimentation commenced after ~1.8 Ga. Laurentia also was stable from ~1.8 Ga, with continental growth from the SSE. Hence, if Siberia and Laurentia were parts of a single continent after ~1.8 Ga, it is likely that the Siberian part was located close to northern Laurentia.

3. No traces of the Grenville-age orogeny have been found in Siberia, implying that this craton was on the periphery of Rodinia.

4. The southern parts of the eastern (Uchur–Maya area) and western (Yenisei area) cratonic boundaries have probably faced the ocean since the Early Mesoproterozoic. Evidence for Mesoproterozoic passive margins in the northern part of Siberia is less convincing.

5. Passive margin developed along the southwestern Siberian boundary later, in the Neoproterozoic. It could be caused by the breakup of Rodinia and opening of the Paleo-Asian Ocean. The Franklin igneous event could have been a trigger for this breakup. Traces of the coeval Laurentian passive margin are yet to be found in northern Alaska and/or the Chukchi Peninsula.

6. Paleomagnetic data support a unity of Siberia and Laurentia between 1100 and 950 Ma, but not direct connection (Figure 2). Other continental blocks (northern Alaska, the Chukchi Peninsula) probably were located between them.

Acknowledgements

Establishing the most significant part of the argument in this paper, especially in terms of the Neoproterozoic evolution of the Siberian craton, would not have been possible without the support of IGCP-440 and the leaders of this Project S.V. Bogdanova and Z.X. Li. The research was supported in part by grants from the Russian Foundation for Basic Research (04-05-64412), the Russian Science Support Foundation, and the Russian Ministry of Education (NSH 7417.2006.5; MD 1720.2005.5). Tectonics Special Research Centre Publication #384.
Mazukabzov, A.M., Stanевич, A.M., Postnikov, A.A., Sklyarov, E.V., Gladkochub, D.P., Donskaya, T.V., and Kornilova, T.A., 2001, The base of the Baikal group stratotype: syn- and postdepositional history: Doklady Earth Sciences, v. 378, no. 4, pp. 406–409.

Mints, M.V.; Rundquist, D.V.; Linin, A.M.; Novachov, V.M.; Rytsk, E.Yu.; Turchenko, S.I., and Chernyshev, N.M., 2000, Evolution trends of geodynamic environments, formation of ore-bearing structures and metallogeny of Aldan–Stanovoy shield, L.N. and A.M. concentrated mainly on the regional tectonics.

Natalńin, R.A., 2004, Phanerozoic tectonic evolution of the Chukotka-Arctic block: problems of the rotational model (abs): AGU Fall Meet Supplement, Abstract GP43C-04.

Neymark, I.A., Linin, A.M., Nemchin, A.A., Ovchinnikova, G.V., and Rytsk, E.Yu., 1998, Anorogenic nature of magmatism in the Northern Baikal volcanic belt: evidence from geochemical, geochronological (U-Pb), and isotopic (Pb, Nd) data: Petrology, v. 6, no. 2, pp. 124–148.

Ovchinnikova, G.V., Semikhatov, M.A., Gorokhov, I.M., Belyatskii, B.V., Vasil'eva, I.M., and Lesvki, L.K., 1995: U-Pb systematics of Precambrian carbonates: the Riphean Sukhaya Tunguska Formation in the Turukhansk Uplift, Siberia: Lithology and Mineral Resources, no. 5, pp. 525–536.

Parfenov, L.M., 1984, Continental margins and islands arcs of Mesozoides of the North-East Asia: Novosibirs. Nauka Press, 192 pp. (in Russian).

Pavlov, V.E., Gallet, Y., and Shatsillo, A.V., 2000, Paleomagnetism of the upper Riphean Lakhandinskaya Group of the Uchuro-Maiskii area and the hypothesis of the late Proterozoic supercontinent: Izvestiya, Physics of the Solid Earth, v. 36, no. 8, pp. 638–648.

Pesonen, L.J., Elming, S.-A., Mertanen, S., Pisarevsky, S.A., D’Agrella-Filho, M., 2003, Models of Rodinia assembly and fragmentation, in: Yoshida M., Windley B.F., Upton J.D.G. and T.D. focused specifically on the Proterozoic: Tectonophysics, v. 375, pp. 289–324.

Pisarevsky, S.A., 2005, New edition of the Global Paleomagnetic Database: EOS transactions, v. 86, pp. 170.

Pisarevsky, S.A., and McElhinny, M.W., 2003, Global Paleomagnetic Data Base developed into its visual form: EOS Transactions, v. 84, p. 192.

Pisarevsky, S.A., and Natapov, L.M., 2003, Siberia and Rodinia: Tectonophysics, v. 375, pp. 225–245.

Poller, U., Gladkochub, D.P., Donskaya, T.V., Mazukabzov, A.M., Sklyarov, E.V., and Todt, W., 2004, Timing of Early Proterozoic magmatism along the margins of the Siberian Craton (Koty area): Transactions of the Royal Society of Edinburgh: Earth Sciences, v. 95, pp. 215–225.

Ponikov, A.A., 2001, The history of the Baikal–Vilyuy basin in late Precambrian (abs), in Abstract volume “Supercontinents and geological evolution of Precambrian”: Izurutik, Institute of the Earth CRST BAS, pp. 207–210 (in Russian).

Rainbird, R.H., Stern, R.A., Khudoley, A.K., Kropachev, A.P., Heaman, L.M., and Sukhorukov, V.I., 1998, U-Pb geochronology of Riphean sandstone and gabbro from southern Siberia and its bearing on the Laurentia-Siberia connection: Earth and Planetary Science Letters, v. 164, pp. 409–420.

Rogers, J.W., 1996, A history of continents in the past three billion years: The Journal of Geology, v. 104, pp. 91–107.

Rosen, O.M., 2003, The Siberian craton: tectonic zonation and stages of evolution: Geotectonics, v. 37, no. 3, pp. 175–192.

Rosen, O.M., 2002, Siberian craton—a fragment of a Paleoproterozoic supercontinent: Russian Journal of Earth Sciences, v. 4, no. 2, pp. 103–119.

Rozen, O.M., Zhuravlev, D.Z., Sukhanov, M.K., Bibikova, E.V., and Zlobin, V.L., 2000, Early Proterozoic terranes, collision zones, and associated anorthosites in the northeastern Siberian craton: isotope geochemistry and age characteristics: Russian Geology and Geophysics, v. 41, no. 2, pp. 163–180.

Rozen, O.M., Condé, K.C., Natapov, L.M., and Nozhkin, A.D., 1994, Archean and Early Proterozoic evolution of the Siberian craton: a preliminary assessment, in Condé, K.C., ed, Archean Crustal Evolution: Amsterdam, Elsevier, pp. 411–459.

Ruchkin, G.B., and Konkín, V.D., 1998, Mineralogy of sedimentary basins of continents and their margins, Yenissey Range, Baikal–Vilyuy fold belt: Moscow–St. Petersburg, VSEGEI Cartographic Press, pp. 320–402 (in Russian).

Rundquist, D.V., and Mitrofanov, F.P., 1993, Precambrian Geology of the USSR: Amsterdam, Elsevier, 536 pp.

Rytsk, E.Yu., Shalov, I.S., and Krymsky, R.S., 1999, Baikal-Muya fold belt: the fragment of the late Precambrian continental margin (abs), in Geological Development of the Proterozoic Peri-Cratonic and Paleoceanic Structures of the Northern Eurasia: St. Petersburg, Tema, pp. 136–138 (in Russian).

Semikhatov, M.A., 1991, General problems of Proterozoic stratigraphy in the USSR: Soviet Scientific Review, Section B, Geology Reviews, Harwood Acad. Publ., 189 p.

Semikhatov, M.A., and Serebrjakov, S.N., 1983, Siberian Hyposтратotype of Riphean: Moscow, Nauka Press, 356 pp. (in Russian).

Semikhatov, M.A., Ovchinnikova, G.V., Gorokhov, I.M., Kuznetsov, A.B., Vasil'eva, I.M., Gorokhovskii, B.M., and Podkovyrov, V.V., 2000, Isotopic age of the middle–upper Riphean boundary: Pb-Pb geochronology of the Lakhanda Group carbonates, Eastern Siberia: Doklady Earth Sciences, v. 372, no. 4, pp. 625–629.

Sharov, V.N., Fefelov, N.I., Zarudnov, N.V., Rusakova, V.A., and Brandt, S.B., 1991, Pb–Pb dating of the Mama synclinorium schists: Patom highland: Doklady Akademii Nauk SSSR, v. 319, pp. 209–212 (in Russian).

Sklyarov, E.V., Gladkochub, D.P., Mazukabzov, A.M., Stanевич, A.M., Donskaya, T.V., Konstantinov, K.M., and Sinzov, A.V., 2001, Indicator complexes of supercontinent Rodinia break up: Geological excursion guide of workshop ‘Supercontinents and geological evolution of Precambrian’: Irkutsk, Institute of the Earth CRST BAS, 75 pp. (in Russian).

Sklyarov, E.V., Gladkochub, D.P., Mazukabzov, A.M., Menshaghin, Yu. V., Watanabe, T., and Pisarevsky, S.A., 2003, Neoproterozoic mafic dike swarms of the Sharyzhalgai metamorphic massif, southern Siberian craton: Precambrian Research, v. 122, pp. 359–376.

Surkov, V.S., and Grishin, M.P., 1997, Structure of the Riphean sedimentary basins on the Siberian platform: Geology and Geophysics, v. 38, no. 11, pp. 1712–1715 (in Russian).

Surkov, V.S., Grishin, M.P., Larichev, A.L., Melnikov, N.V., Kontorovich, A.E., Trophimuk, A.A., and Zolotov A.N., 1991, The Riphean sedimentary basins of the eastern Siberia. Province and their petroleum potential: Precambrian Research, v. 54, pp. 37–44.

Van Schmus, W.R., and Bickford, M.E., eds, 1993, Transcontinental Proterozoic provinces, in Reed, J.C. et al., eds, Precambrian: Continental US, Boulder, Colorado, Geological Society of America, Geology of North America, C-2, pp. 171–334.

Vernikovsky, L.P., Kuzmin, M.I., Pease, V.L., and Lee, D.G., 2004, Neoproterozoic orogeny along the margins of Siberia, in Gee, D.G. and Pease, V.L., eds, The Neoproterozoic Timanide orogen of Eastern Baltic: Geological Society, London, Memoirs, v. 30, pp. 233–247.

Volobuev, M.I., 1993, Riphean ophiolite complex of the Yenisey Ridge: Geotectonica, no. 6, pp. 82–87 (in Russian).

Zhao, G., Caswood, P.A., Wilde, S.A., and Sun, M., 2002, Review of global 2.1–1.8 Ga orogens: implications for a pre-Rodinia supercontinent: Earth-Science Reviews, v. 59, pp. 125–162.

Zonenshain, L.P., Kuzmin, M.I., and Natapov, L.M., 1990, Geology of the USSR: A Plate-Tectonic Synthesis: Geodynamics Series, 21, AGU, Washington, D.C., 242 pp.