Supporting Information:

The Effect of Electrolyte Concentration and Pore Size on Ion Current Rectification Inversion

Dominik Duleba†, Pallavi Dutta†, Shekemi Denuga†, Robert P. Johnson† *

School of Chemistry, University College Dublin, Belfield, Dublin 4, Ireland
†These authors contributed equally.
* robert.johnson@ucd.ie
1. Meshing and Boundary Conditions

The meshing is constructed to be small near the tip opening and near the double layer (Figure S1b), while larger meshing is used in the bulk solution and in the further interior of the nanopipette (Figure S2a). The conical region, the double layers, and the space immediately outside the pore are further segregated into separate domains to allow better control of the mesh size. The mesh consists of triangular elements only. Since the tip size is changed between computations, it was important to adapt the mesh size at the tip to ensure that the meshing stays sufficiently fine without the computations becoming too costly. Mesh refinement studies were carried out and no change in rectification was observed upon further reduction of the mesh size, indicating that the mesh is sufficient to resolve the variations in the field variables solved for.

The bulk solution was constructed to be circular so that all bulk solution boundary elements are an equal distance from the tip mouth. Further increases in the length of the nanopipette and the radius of the bulk solutions were found to have no effect on the results of the model.

Boundary conditions were applied as shown in Figure S2. A constant concentration boundary was applied to the bulk solution boundaries and to the interior solution of the nanopipette, a potential boundary condition (+0.6 V or -0.6 V) was applied to the interior of the pipette and a ground boundary condition to the bulk solution. No slip conditions were applied to both the interior and exterior nanopipette walls, and no pressure gradient was applied between the interior and exterior solutions. Lastly, no flux and surface charge boundary conditions of \(\sigma = 1 \text{ mC m}^{-2} \), were applied to both the inside and outside nanopipette walls.
Figure S1 The FEM geometry shown for the (a) whole model and (b) the tip region.

Boundary no.	Boundary Description	Nernst-Planck eq.	Poisson eq.	Navier-Stokes eq.
1	Internal bulk solution	Constant Concentration $c = c_{bulk}$	Constant Potential (applied) $V = \text{volt}$	Pressure = 0
2	Pipette walls	No Flux $\mathbf{n} \cdot \nabla \mathbf{J}_f = 0$	Surface Charge $\mathbf{n} \cdot \nabla \phi = \frac{-\sigma}{\varepsilon}$	No Slip $\mathbf{u} = 0$
3	External bulk solution	Constant Concentration $c = c_{bulk}$	Constant Potential (ground) $V = 0$	Pressure = 0

Figure S2 Boundary conditions applied in the FEM model.
2. The Effect of Electroosmotic Flow

Finite Element Analysis was carried out both with and without the Navier-Stokes equations which include the electroosmotic body force. As visible on Figure S3, the electroosmotic flow has a significant effect for the larger pores where the magnitude of the rectification ratio at the rectification maximum increases and where the peak maximum shifts to slightly lower concentrations. This effect is negligible for the smaller 6 nm pore, where the two curves are superimposed.

![Figure S3](image-url)

Figure S3 The effect of including the Navier-Stokes equations for the largest and the smallest pores.
3. Transference numbers as a function of electrolyte concentration

Figure S4 shows the cation transference number of the pore as a function of electrolyte concentration.

Figure S4 The cation transference number as a function of concentration extracted from the results of the 109 nm pore.
4. Cation and anion traces

Figure S5 shows the cation and anion traces associated with Figure 3 in the main paper. It shows how the cation and anion traces become significantly different as the EDL length increases.
Figure S5 Normalized ion enrichment curves for the cations and anions corresponding the curves shown in Figure 3. The normalized ion enrichment values were extracted from the central axissymmetric axis of the 109 nm pore.
Figure S6 shows that the individual cation and anion enrichment also shifts as a function of electrolyte concentration. At the negative potential, both the cation and anion enrichment peaks shift further outside the pore as the electrolyte concentration is lowered. On the other hand, at the positive potential, the cation enrichment peak shifts inside the pore, while the anion enrichment peak shifts outside as the electrolyte concentration is decreased.

Figure S6 Normalized ion enrichment curves for the cations and anions corresponding the curves shown in Figure 4. The normalized ion enrichment values were extracted from the central axisymmetric axis of the 109 nm pore.
Figure S7 shows that the cation and anion ion enrichment traces shift with the pore size. The cation enrichment peaks shift outside the pipette as the pore size is decreased at both the positive and negative potentials. On the other hand, the anion enrichment peak shifts further inside the pipette as the pore size is decreased at both the positive and negative potentials.

Figure S7 Normalized ion enrichment curves for the cations and anions corresponding the curves shown in Figure 5. The normalized ion enrichment values were extracted from the central axissymmetric axis of nanopipette at a 0.001 mM electrolyte concentration for the different pore sizes.
5. Second inversion of rectification

A second inversion of rectification, similar to that reported by Momotenko et al., was also observed by us numerically, however, the experimental observation of this second rectification was beyond our measurement capabilities. The second inversion was predicted to occur at an electrolyte concentration of around 0.0001 mM for the 6 nm pores, however, the noise associated with the measurement of the current-voltage curves at these concentrations would lead to a large uncertainty in the extracted RR which would not allow the reliable experimental observation of the second rectification. Furthermore, at such low concentrations, the uncertainty in the concentration of the prepared solutions also becomes significant.
6. Sample Current-Voltage Curves

A Biologic SP-200 potentiostat was used for collecting the current-voltage curves. Ultra-low current option at a high-speed scan is employed; a filter bandwidth of 50 kHz is used during data collection. Noise is further reduced by numerically filtering the data after their acquisition using a moving average filter with a windows size of 11 points in EC-lab V11.34. The parameter settings for the recorded current-voltage curves includes 3 scans taken at a scan rate of 0.1 V/s within a potential window of -0.6 to +0.6 V.

Figure S8 shows samples of the current-voltage curves for each pore size at the electrolyte concentration where maximum rectification was observed. It is important to point out that the noise is the smallest for the 40 nm pore at maximum rectification. This arises since the noise is proportional to the pore size (larger pores carry larger currents) but inversely proportional to the electrolyte concentration (smaller electrolyte concentrations lead to smaller current magnitudes). Since larger pores have their rectification maximum at lower electrolyte concentrations, the noise at the rectification maximum is minimized for the 40 nm pore.

![Current-Voltage Curves](image)

Figure S8 Sample Current-Voltage curves showing (A) a 6 nm pore at 10 mM concentration, (B) a 40 nm pore at 1 mM concentration, (C) a 251 nm pore at 0.1 mM concentration, and (D) a 109 nm pore at 0.5 mM concentration.
Model: The Effect of Electrolyte Concentration and Pore Size on Ion Current Rectification Inversion
Contents

1. **Global Definitions**
 - 1.1 Parameters ... 3
 - 1.2 Shared Properties ... 3

2. **Component 1**
 - 2.1 Definitions ... 4
 - 2.2 Geometry 1 ... 4
 - 2.3 Materials ... 10
 - 2.4 Electrostatics ... 11
 - 2.5 Transport of Diluted Species ... 18
 - 2.6 Creeping Flow 2 ... 25
 - 2.7 Multiphysics .. 33
 - 2.8 Mesh 1 ... 37
Global Definitions

GLOBAL SETTINGS

Name	Expression	Value	Description
surfCharge	-0.001[C/(m*m)]	-0.001 C/m²	Glass Wall Surface Charge
volt	1 [V]	1 V	Applied Potential
zK	1	1	Charge Number of Cation
zCl	-1	-1	Charge Number of Anion
diffCl	2.032e-5[cm^2/s]	2.03E−9 m²/s	chloride diffusion coefficient
diffK	1.957e-5[cm^2/s]	1.95E−9 m²/s	potassium diffusion coefficient
cbulk	0.01[M]	10 mol/m³	Bulk Concentration
pipH	5[um]	5E−6 m	pipette height
theta	10[deg]	0.17453 rad	pipette cone angle
poreR	109[nm]	1.09E−7 m	pipette radius
cylH	5[nm]	5E−9 m	tip cylinder height
bathR	poreR +1[um]	1.109E−6 m	external bath radius
wall	2[nm]	2E−9 m	pipette glass wall thickness
epsilon	78.5	78.5	electrolyte permittivity
T	298	298	Temperature
DLmesh	1[nm]	1E−9 m	double layer mesh distance
pipR	(pipH - cylH)*tan(theta) + poreR	9.8975E−7 m	top pipette width

COMPUTER INFORMATION

Name	Value
CPU	Intel64 Family 6 Model 165 Stepping 5, 8 cores
Operating system	Windows 10

PARAMETERS

Parameters 1

Name	Expression	Value	Description
surfCharge	-0.001[C/(m*m)]	-0.001 C/m²	Glass Wall Surface Charge
volt	1 [V]	1 V	Applied Potential
zK	1	1	Charge Number of Cation
zCl	-1	-1	Charge Number of Anion
diffCl	2.032e-5[cm^2/s]	2.03E−9 m²/s	chloride diffusion coefficient
diffK	1.957e-5[cm^2/s]	1.95E−9 m²/s	potassium diffusion coefficient
cbulk	0.01[M]	10 mol/m³	Bulk Concentration
pipH	5[um]	5E−6 m	pipette height
theta	10[deg]	0.17453 rad	pipette cone angle
poreR	109[nm]	1.09E−7 m	pipette radius
cylH	5[nm]	5E−9 m	tip cylinder height
bathR	poreR +1[um]	1.109E−6 m	external bath radius
wall	2[nm]	2E−9 m	pipette glass wall thickness
epsilon	78.5	78.5	electrolyte permittivity
T	298	298	Temperature
DLmesh	1[nm]	1E−9 m	double layer mesh distance
pipR	(pipH - cylH)*tan(theta) + poreR	9.8975E−7 m	top pipette width

SHARED PROPERTIES

Default Model Inputs

Name	Value
Tag	cminpt
Component 1

SETTINGS

Description	Value
Unit system	Same as global system (SI)

DEFINITIONS

Coordinate Systems

Boundary System 1

Coordinate system type	Boundary system
Tag	sys1

COORDINATE NAMES

First	Second	Third
t1	to	n

GEOMETRY 1

![Geometry 1](image)

Geometry 1

UNITS

Length unit	m
Angular unit	deg

GEOMETRY STATISTICS

Description	Value
Space dimension	2
Number of domains	13
Number of boundaries	42
Number of vertices	30
Conical Pipette Region (pol1)

OBJECT TYPE

Description	Value
Type	Solid

COORDINATES

Description	Value
Data source	Table

COORDINATES

Description	Value
\(r \) (m)	\(z \) (m)
poreR	cylH
\((\text{pipH} - \text{cylH}) \tan(\theta) + \text{poreR}\)	\text{pipH}
0	\text{pipH}
0	\text{cylH}

Cylinder (r1)

POSITION

Description	Value
Position	\(\{0, 0\}\)

SIZE

Description	Value
Width	poreR
Height	cylH

Bulk Solution (c1)

POSITION

Description	Value
Position	\(\{0, -2\times10^{-9}\}\)

ROTATION ANGLE

Description	Value
Rotation	270

SIZE AND SHAPE

Description	Value
Radius	bathR
Sector angle	180

Glass Wall (pol2)

OBJECT TYPE
Description	Value
Type	Solid

COORDINATES

Description	Value
Data source	Table

COORDINATES

Description	Value
r (m)	z (m)
poreR	0
poreR+wall	0
poreR+wall	cylH
poreR+DLmesh+(pipH-cylH)*tan(theta)	pipH
poreR+(pipH-cylH)*tan(theta)	pipH
poreR	cylH

Circular Glass Wall (c2)

POSITION

Description	Value
Position	{1E-9 + poreR, 0}

ROTATION ANGLE

Description	Value
Rotation	180

SIZE AND SHAPE

Description	Value
Radius	1E-9
Sector angle	180

Tip DL for meshing (pt1)

POINT

Description	Value
Point coordinate	{1.080000000000001E-7, 0}

Inner Cylinder DL for meshing (pt2)

POINT

Description	Value
Point coordinate	{1.0800000000000001E-7, 5.0E-9}

Pipette top DL for meshing (pt3)

POINT
Curved tip DL for meshing (c3)

POSITION

Description	Value
Position	\{(\text{wall/2}) + \text{poreR}, 0\}

ROTATION ANGLE

Description	Value
Rotation	180

SIZE AND SHAPE

Description	Value
Radius	\{(\text{wall/2}) + \text{DLmesh}\}
Sector angle	180

Outer cylinder DL for meshing (pt4)

POINT

Description	Value
Point coordinate	\{1.1200000000000001E-7, 5.0E-9\}

Outer Pipette top DL (pt5)

POINT

Description	Value
Point coordinate	\{9.927532686387824E-7, 4.9999999999999996E-6\}

Cone bottom, wall, fix low element quality (pt6)

POINT

Description	Value
Point coordinate	\{1.0988163490354234E-7, 1.0E-8\}

Cone bottom, DL, fix low element quality (pt7)

POINT

Description	Value
Point coordinate	\{1.0888163490354234E-7, 1.0E-8\}

Lower cone region for finer meshing r=0 (pt12)

POINT

Description	Value
Point coordinate	\{0, 5.05E-7\}
Description	Value
---	--
Lower cone region for finer meshing DL (pt13)	Point coordinate: {1.9616349035423253E-7, 5.05E-7}
Lower cone region for finer meshing, wall (pt16)	Point coordinate: {1.9716349035423252E-7, 5.05E-7}
Barrel top, wall, fix low element quality (pt8)	Point coordinate: {1.0900000000000001E-7, 0}
Barrel top, DL, fix low element quality (pt9)	Point coordinate: {1.0800000000000001E-7, 0}
Barrel bottom, wall, fix low element quality (pt10)	Point coordinate: {1.0900000000000001E-7, 5.0E-9}
Barrel bottom, DL, fix low element quality (pt11)	Point coordinate: {1.0800000000000001E-7, 5.0E-9}
Bulk below pipette (meshing) r=0 (pt14)	Point coordinate: {0, -2.5000000000000004E-7}
Bulk below pipette (meshing) (pt15)	Point coordinate: {1.5608174517711627E-7, -2.5000000000000004E-7}
MATERIALS

Water, liquid

SELECTION

Geometric entity level	Domain
Selection	Geometry geom1: Dimension 2: All domains

MATERIAL PARAMETERS

Name	Value	Unit
Dynamic viscosity	\(\eta(T) \)	Pa·s
Density	\(\rho(T) \)	kg/m³
Relative permittivity	80	1

BASIC

Description	Value
Coefficient of thermal expansion	\(\{\alpha_p(T), 0, 0\}, \{0, \alpha_p(T), 0\}, \{0, 0, \alpha_p(T)\} \)
Bulk viscosity	\(\mu_B(T) \)
Dynamic viscosity	\(\eta(T) \)
Ratio of specific heats	\(\gamma_w(T) \)
Electrical conductivity	\(\{5.5\times10^{-6}[S/m], 0, 0\}, \{0, 5.5\times10^{-6}[S/m], 0\}, \{0, 0, 5.5\times10^{-6}[S/m]\} \)
Heat capacity at constant pressure	\(C_p(T) \)
Density	\(\rho(T) \)
Thermal conductivity	\(\{k(T), 0, 0\}, \{0, k(T), 0\}, \{0, 0, k(T)\} \)
Speed of sound	\(cs(T) \)
Relative permittivity	\(\{80, 0, 0\}, \{0, 80, 0\}, \{0, 0, 80\} \)

ELECTROSTATICS

USED PRODUCTS
Electrostatics

SELECTION

Geometric entity level	Domain
Selection	Geometry geom1: Dimension 2: All domains

EQUATIONS

\[\nabla \cdot D = \rho_v \]

\[E = -\nabla V \]

Interface Settings

Discretization

Description	Value
Electric potential	Quadratic

Manual Terminal Sweep Settings

Description	Value
Use manual terminal sweep	Off
Reference impedance	50[ohm]
Charge Conservation 1

SELECTION

Description	Value
Geometric entity level	Domain
Selection	Geometry geom1: Dimension 2: All domains

EQUATIONS

\[\mathbf{E} = -\nabla \psi \]

\[\mathbf{\nabla} \cdot (\varepsilon_0 \varepsilon \mathbf{E}) = \rho_v \]

Constitutive Relation D-E

SETTINGS

Description	Value
Dielectric model	Relative permittivity
Relative permittivity	From material

Coordinate System Selection

SETTINGS

Description	Value
Coordinate system	Global coordinate system

PROPERTIES FROM MATERIAL

Property	Material	Property group
Relative permittivity	Water, liquid	Basic
Axial Symmetry 1

SELECTION

Geometric entity level	Boundary
Selection	Geometry geom1: Dimension 1: All boundaries

Zero Charge 1

SELECTION

Geometric entity level	Boundary
Selection	Geometry geom1: Dimension 1: All boundaries

EQUATIONS

\[\mathbf{n} \cdot \mathbf{D} = 0 \]
Initial Values 1

SELECTION

Geometric entity level	Domain
Selection	Geometry geom1: Dimension 2: All domains

SETTINGS

Description	Value
Electric potential	0

Space Charge Density 1

SELECTION

Geometric entity level	Domain
Selection	Geometry geom1: Dimension 2: All domains
EQUATIONS
\[\nabla \cdot \mathbf{D} = \rho_v \]

Coordinate System Selection

SETTINGS
Description
Coordinate system

Ground 1

SELECTION

Geometric entity level	Boundary
Selection	Geometry geom1: Dimension 1: Boundaries 34, 41–42

EQUATIONS

\[V = 0. \]

Constraint Settings

SETTINGS
Description
Apply reaction terms on
Use weak constraints
Applied Potential

SELECTION

- Geometric entity level: Boundary
- Selection: Geometry geom1: Dimension 1: Boundaries 12, 33

EQUATIONS

\[V = V_0 \]

Electric Potential

SETTINGS

Description	Value
Electric potential	volt

Constraint Settings

SETTINGS

Description	Value
Apply reaction terms on	All physics (symmetric)
Use weak constraints	On
Surface Charge Density

SELECTION

Geometric entity level	Boundary
Selection	Geometry geom1: Dimension 1: Boundaries 19–22, 24, 30, 32, 37, 39

EQUATIONS

\[\mathbf{n} \cdot (\mathbf{D}_1 - \mathbf{D}_2) = \rho_s \]

SETTINGS

Description	Value
Surface charge density	surfCharge

Coordinate System Selection

Description	Value
Coordinate system	Global coordinate system

TRANSPORT OF DILUTED SPECIES

USED PRODUCTS

- Electrochemistry Module
- COMSOL Multiphysics
Transport of Diluted Species

SELECTION

Geometric entity level	Domain
Selection	Geometry geom1: Dimension 2: All domains

EQUATIONS

\[
\nabla \cdot \mathbf{J} + \mathbf{u} \cdot \nabla c_i = R_i \\
\mathbf{J}_i = -D_i \nabla c_i - z_i \mu_i f c_i \nabla \nabla
\]

Interface Settings

Discretization

SETTINGS

Description	Value
Concentration	Quadratic

SETTINGS

Description	Value
Equation form	Study controlled

Transport Mechanisms

SETTINGS

Description	Value
Convection	On
Migration in electric field	On
Mass transfer in porous media	Off
Transport Properties 1

SELECTION

Geometric entity level	Domain
Selection	Geometry geom1: Dimension 2: All domains

EQUATIONS

\[\nabla \cdot \mathbf{j} + \mathbf{u} \cdot \nabla c = R_i \]

\[\mathbf{j}_i = -D_i \nabla c_i - z_i \mu_m F c_i \nabla V \]

SETTINGS

Description	Value
Velocity field	Velocity field (rfd1)

Diffusion

SETTINGS

Description	Value
Source	Material
Material	Water, liquid (mat1)
Diffusion coefficient	User defined
Diffusion coefficient	{{diffK, 0, 0}, {0, diffK, 0}, {0, 0, diffK}}
Diffusion coefficient	User defined
Diffusion coefficient	{{diffCl, 0, 0}, {0, diffCl, 0}, (0, 0, diffCl)}

Migration in Electric Field

SETTINGS

Description	Value
Mobility	Nernst - Einstein relation
Charge number	(1, -1)
Coordinate System Selection

SETTINGS

Description	Value
Coordinate system	Global coordinate system

Model Input

SETTINGS

Description	Value
Temperature	User defined
Temperature	T

Axial Symmetry 1

SELECTION

Geometric entity level	Boundary
Selection	Geometry geom1: Dimension 1: All boundaries
No Flux 1

SELECTION

Geometric entity level	Selection
Boundary	Geometry geom1: Dimension 1: All boundaries

EQUATIONS

\[-n \cdot (j + uc) = 0\]

Convection

SETTINGS

Description	Value
Include	On

Initial Values 1
SELECTION

Geometric entity level	Domain
Selection	Geometry geom1: Dimension 2: All domains

Initial Values

SETTINGS

Description	Value
Concentration	\{c_{bulk}, c_{bulk}\}

Concentration, bulk solution

SELECTION

Geometric entity level	Boundary
Selection	Geometry geom1: Dimension 1: Boundaries 34, 41–42

EQUATIONS

\[c_j = c_{_{\text{bulk}}} \]

Concentration

SETTINGS

Description	Value
Species cK	On
Species cCl	On
Concentration	\{c_{bulk}, c_{bulk}\}

Constraint Settings

SETTINGS

Description	Value
Apply reaction terms on	All physics (symmetric)
Use weak constraints	On
Concentration, pipette top

SELECTION

Geometric entity level	Boundary
Selection	Geometry geom1: Dimension 1: Boundaries 12, 33

EQUATIONS

\[c_i = c_{bulk} \]

Concentration

SETTINGS

Description	Value
Species cK	On
Species cCl	On
Concentration	\{c_{bulk}, c_{bulk} \}

Constraint Settings

SETTINGS

Description	Value
Apply reaction terms on	All physics (symmetric)
Use weak constraints	On

CREEPING FLOW 2

USED PRODUCTS

- Electrochemistry Module
- COMSOL Multiphysics
Creeping Flow 2

SELECTION

Geometric entity level	Domain
Selection	Geometry geom1: Dimension 2: All domains

EQUATIONS

\[
\begin{align*}
0 &= \nabla \cdot (\rho \mathbf{l} \mathbf{t} + \mathbf{K}) + \mathbf{F} \\
\rho \nabla \cdot \mathbf{u} &= 0
\end{align*}
\]

Interface Settings

Discretization

SETTINGS

Description	Value
Discretization of fluids	P2 + P1

SETTINGS

Description	Value
Equation form	Study controlled

Physical Model

SETTINGS

Description	Value
Neglect inertial term (Stokes flow)	On
Compressibility	Incompressible flow
Enable porous media domains	Off
Include gravity	Off
Reference temperature	User defined
Reference temperature	293.15[K]
Reference pressure level	1[atm]
Turbulence

SETTINGS

Description	Value
Turbulence model type	None

Fluid Properties 1

SELECTION

Geometric entity level	Domain
Selection	Geometry geom1: Dimension 2: All domains

EQUATIONS

\[
0 = \nabla \cdot \left(\rho \mathbf{u} \mathbf{u} + \mathbf{K} \right) + \mathbf{F} \\
\rho \nabla \cdot \mathbf{u} = 0 \\
\mathbf{K} = \mu \left(\nabla \mathbf{u} + (\nabla \mathbf{u})^T \right)
\]

Model Input

SETTINGS

Description	Value	
Temperature	Common model input	
Property	Material	Property group
------------------------	----------------	----------------
Density	Water, liquid	Basic
Dynamic viscosity	Water, liquid	Basic

Initial Values 1

SELECTION

Geometric entity level	Domain
Selection	Geometry geom1: Dimension 2: All domains

Initial Values

SETTINGS

Description	Value
Velocity field, r component	0
Velocity field, phi component	0
Velocity field, z component	0
Pressure	0

Coordinate System Selection

SETTINGS

Description	Value
Coordinate system	Global coordinate system
Axial Symmetry 1

SELECTION

Geometric entity level	Boundary
Selection	Geometry geom1: Dimension 1: All boundaries

Pipette Wall

SELECTION

Geometric entity level	Boundary
Selection	Geometry geom1: Dimension 1: All boundaries

EQUATIONS

\[u_2 = 0 \]
Boundary Condition

SETTINGS

Description	Value
Wall condition	No slip

Wall Movement

SETTINGS

Description	Value
Translational velocity	Automatic from frame
Sliding wall	Off

Bulk Solution Inlet

SELECTION

Geometric entity level	Boundary
Selection	Geometry geom1: Dimension 1: Boundaries 12, 33

EQUATIONS

\[
\mathbf{n}(-p\mathbf{I} + \mathbf{K})\mathbf{n} = -p_0 \\
\mathbf{u}_2 \cdot \mathbf{t} = 0
\]

Boundary Condition

SETTINGS

Description	Value
Boundary condition	Pressure
Pipette Top Outlet

Selection

Geometric entity level	Boundary
Selection	Geometry geom1: Dimension 1: Boundaries 34, 41–42

Equations

\[
\mathbf{n}^T \left(\mathbf{p}_2 \mathbf{I} + \mathbf{K} \right) \mathbf{n} = \mathbf{\hat{p}}_0 \\
\mathbf{\hat{p}}_0 \leq \rho_0, \quad \mathbf{u}_2 \cdot \mathbf{t} = 0
\]

Boundary Condition

Settings

Description	Value
Boundary condition	Pressure

Pressure Conditions

Settings

Description	Value
Pressure	Static
Pressure	0
Normal flow	On
Suppress backflow	On
EQUATIONS

\[0 = \nabla \cdot \left(-p \mathbf{I} + \mathbf{K} \right) + \mathbf{F}. \]

Variables

Name	Expression	Unit	Description	Selection	Details
spf2.FR	es.Er*es.rhoq	N/m³	Volume force, r component	Domains 1–13	+ operation
spf2.Fphi	0	N/m³	Volume force, phi component	Domains 1–13	+ operation
spf2.Fz	es.Ez*es.rhoq	N/m³	Volume force, z component	Domains 1–13	+ operation

MULTIPHYSICS

Potential Coupling 1

USED PRODUCTS

COMSOL Multiphysics
Potential Coupling 1

SELECTION

Geometric entity level	Domain
Selection	Geometry geom1: Dimension 2: All domains

Coupled Interfaces

SETTINGS

Description	Value
Source	Electrostatics (es)
Destination	Transport of Diluted Species (tds)

Variables

Name	Expression	Unit	Description	Selection
pc1.V	V	V	Electric potential	Domains 1–13

Space Charge Density Coupling 1

USED PRODUCTS

COMSOL Multiphysics
Space Charge Density Coupling 1

SELECTION

Geometric entity level	Domain
Selection	Geometry geom1: Dimension 2: All domains

EQUATIONS

\[\nabla \cdot \mathbf{D} = \rho_{\text{r}}, \quad \rho_{\text{r}} = F \sum_{i} z_{i} c_{i} \]

Coupled Interfaces

SETTINGS

Description	Value
Source	Transport of Diluted Species (tds)
Destination	Electrostatics (es)

Reacting Flow, Diluted Species 1

USED PRODUCTS

- COMSOL Multiphysics
Reacting Flow, Diluted Species 1

SELECTION

Geometric entity level	Domain
Selection	Geometry geom1: Dimension 2: All domains

Coupled Interfaces

SETTINGS

Description	Value
Fluid flow	Creeping Flow 2 (spf2)
Species transport	Transport of Diluted Species (tds)

MESH 1

Mesh 1

Size

SETTINGS
Description	Value
Calibrate for	Fluid dynamics
Maximum element size	1.69E-7
Minimum element size	7.57E-10
Curvature factor	0.3
Maximum element growth rate	1.3
Predefined size	Extra fine
Custom element size	Custom

Pore mouth vicinity (ftri1)

SELECTION

Geometric entity level	Domain
Selection	Geometry geom1: Dimension 2: Domains 2–4, 7–10, 12–13

Pore mouth vicinity

SETTINGS

Description	Value	
Number of iterations	4	
Maximum element depth to process	4	
Last build time	2	
Built with	COMSOL 6.0.0.312 (win64)	2022 - 02 - 01T10:40:26.516535200

Cylinder (size1)

SELECTION

Geometric entity level	Domain
Selection	Geometry geom1: Dimension 2: Domains 3, 7
Cylinder

SETTINGS

Description	Value
Maximum element size	0.5e-9
Minimum element size	1.81E-9
Minimum element size	Off
Curvature factor	0.3
Curvature factor	Off
Resolution of narrow regions	Off
Maximum element growth rate	1.3
Maximum element growth rate	Off
Custom element size	Custom

SELECTION

Geometric entity level	Domain
Selection	Geometry geom1: Dimension 2: Domains 2, 4, 8–10
Size 2

SETTINGS

Description	Value
Maximum element size	2e-9
Minimum element size	1.81E-9
Minimum element size	Off
Curvature factor	0.3
Curvature factor	Off
Resolution of narrow regions	Off
Maximum element growth rate	1.3
Maximum element growth rate	Off
Custom element size	Custom

Extra nodes for more continuous curve extraction (dis1)

SELECTION

Geometric entity level	Boundary
Selection	Geometry geom1: Dimension 1: Boundary 7
Extra nodes for more continuous curve extraction

SETTINGS

Description	Value
Number of elements	1000

Further inside the pipette (ftri2)

SELECTION

Geometric entity level	Domain
Selection	Geometry geom1: Dimension 2: Domain 5

Further inside the pipette

SETTINGS

Description	Value
Number of iterations	4
Maximum element depth to process	4
Size 1 (size1)

SELECTION

Geometric entity level	Domain
Selection	Geometry geom1: Dimension 2: Domain 5

SETTINGS

Description	Value
Maximum element size	20e-9
Minimum element size	1.81E-9
Minimum element size	Off
Curvature factor	0.3
Curvature factor	Off
Resolution of narrow regions	Off
Maximum element growth rate	1.3
Maximum element growth rate	Off
Custom element size	Custom

Interior and exterior bulk (ftri3)

SELECTION

Geometric entity level	Domain
Selection	Remaining
Interior and exterior bulk

SETTNGS

Description	Value	
Number of iterations	4	
Maximum element depth to process	4	
Last build time	2	
Built with	COMSOL 6.0.0.312 (win64)	2022 - 02 - 01T10:40:29.565042800