Health Utility Estimates and Their Application to HIV Prevention in the United States: Implications for Cost-Effectiveness Modeling and Future Research Needs

Hilary K. Whitham, Angela B. Hutchinson, Ram K. Shrestha, Miriam Kuppermann, Birgit Grund, R. Luke Shouse, and Stephanie L. Sansom

Abstract

Objectives. Health utility estimates from the current era of HIV treatment, critical for cost-effectiveness analyses (CEA) informing HIV health policy, are limited. We examined peer-reviewed literature to assess the appropriateness of commonly referenced utilities, present previously unreported quality-of-life data from two studies, and discuss future implications for HIV-related CEA. Methods. We searched a database of cost-effectiveness analyses specific to HIV prevention efforts from 1999 to 2016 to identify the most commonly referenced sources for health utilities and to examine practices around using and reporting health utility data. Additionally, we present new utility estimates from the Centers of Disease Control and Prevention’s Medical Monitoring Project (MMP) and the INSIGHT Strategies for Management of Anti-Retroviral Therapy (SMART) trial. We compare data collection time frames, sample characteristics, assessment methods, and key estimates. Results. Data collection for the most frequently cited utility estimates ranged from 1985 to 1997, predating modern HIV treatment. Reporting practices around utility weights are poor and lack details on participant characteristics, which may be important stratifying factors for CEA. More recent utility estimates derived from MMP and SMART were similar across CD4+ count strata and had a narrower range than pre-antiretroviral therapy (ART) utilities. Conclusions. Despite the widespread use of ART, cost-effectiveness analysis of HIV prevention interventions frequently apply pre-ART health utility weights. Use of utility weights reflecting the current state of the US epidemic are needed to best inform HIV research and public policy decisions. Improved practices around the selection, application, and reporting of health utility data used in HIV prevention CEA are needed to improve transparency.

Keywords

health state utilities, quality-adjusted life years, QALYs, cost-effectiveness analyses, CEA, human immunodeficiency virus, HIV

Introduction

Over the past two decades, major advancements have been achieved in the prevention, diagnosis, and treatment of human immunodeficiency virus (HIV) in the United States. Specifically, the introduction of highly effective antiretroviral therapy (ART) and the subsequent expansion of testing and treatment has led to significant increases in life expectancy for persons with HIV (PWH) and declines in HIV incidence. Nonetheless, HIV continues to present a
significant public health burden. Over one million persons in the United States are living with HIV, and there are disparities in access and adherence to treatment.\(^4\) Additionally, it is estimated that one in six men who have sex with men will be diagnosed with HIV in their lifetime.\(^4\) Given the ongoing public health impact of HIV, and costly treatment and prevention modalities, economic analyses are needed to inform optimal use of prevention resources.

Quality-adjusted life years (QALYs) are the recommended metric for health outcome valuation in cost-effectiveness analyses (CEA).\(^5,6\) To calculate a QALY, utility weights based on preferences for health states (ranging from 1 for perfect health to 0 for death, with negative values for states worse than death) are applied to adjust life-years lived for quality-of-life. As such, QALYs reflect both morbidity and mortality in a single measure of effectiveness. However, it is unclear if commonly used health utility estimates in HIV prevention CEA adequately reflect modern HIV treatment.

Numerous approaches to generating utility weights for QALYs have been described.\(^7–9\) Direct utility estimation asks participants to directly assign utility weights (e.g., standard gamble, time tradeoff). Indirect utility elicitation uses generic health-related quality-of-life (HRQoL) instruments (e.g., short form six dimensions [SF-6D]) that require conversion into utility weights using preferences from other populations. There is debate as to whether utilities should be estimated from the perspective of the “community” (individuals in the general public), or the “patient” (individuals with the health outcome of interest).\(^10\) The US Panel on Cost Effectiveness in Health and Medicine calls for health effects to be measured by community-derived preference-based health utilities, while others maintain that those who are experientially knowledgeable about the condition have a more valid perspective.\(^3,11,12\)

Health utility estimates for PWH may be increasingly outdated as HIV has evolved from an acute, terminal illness into a chronic disease. To understand how health utility estimates are used in economic evaluations, we examined commonly referenced sources for HIV utilities used in HIV prevention CEA, present previously unpublished data from two additional studies, and discuss best practices for future HIV research efforts.

Methods

Using Centers of Disease Control and Prevention’s (CDC) Cost-Effectiveness of HIV/AIDS Prevention Database (CHAD),\(^13\) we identified utility sources most commonly cited in US CEA pertaining to HIV prevention. CHAD is populated with economic evaluations identified by a systematic search of the HIV prevention literature. Relevant studies were identified using a broad search strategy including the following keywords: “cost,” “cost effectiveness,” and “HIV prevention” in six electronic databases (PubMed, PsycINFO, EMBASE, Cochrane, CINAHL, and EconLit). For this analysis, we completed a three-stage selection process. First, we included modeling studies published after 1999 (when ART became widely available) through 2016, yielding 136 studies. Second, we conducted a detailed review of abstracts to identify CEA (using the following key words: “utility,” “health status,” or “quality”), yielding 103 studies. Third, full-text reviews were conducted to identify and abstract the utility source(s) referenced. Two studies were determined not to have used utilities, and four studies lacked sufficient detail for assessment. From the final sample of 97 studies, we present details on health utilities for the most frequently referenced sources, representing the majority of utility references in HIV prevention CEAs. In addition, we noted common practices around reporting health utilities in HIV modeling and cost-effectiveness studies.

We also present previously unreported utility estimates from the INSIGHT Strategies for Management of Anti-Retroviral Therapy (SMART) trial and CDC’s Medical Monitoring Project (MMP). SMART was a randomized controlled trial that compared clinical outcomes of continuous versus intermittent CD4+ count-guided ART. HRQoL using the Short Form 12 Health Survey (SF-12) was assessed at baseline clinic visits for US participants enrolled between 2002 and 2006.\(^14–16\) MMP is an ongoing multisite supplemental surveillance system of PWH receiving medical care in the United States, which

National Center for HIV/AIDS, Viral Hepatitis, STD, and TB Prevention, Centers for Disease Control and Prevention, Atlanta, Georgia (HKW, ABH, RKS, RLS, SLS); Departments of Obstetrics, Gynecology, and Reproductive Sciences; and Epidemiology and Biostatistics, University of California, San Francisco, California (MK); School of Statistics, University of Minnesota, Minneapolis, Minnesota (BG). The author(s) disclosed no potential conflicts of interest with respect to the research, authorship, and/or publication of this article. The author(s) disclosed receipt of the following financial support for the research, authorship, and/or publication of this article: The INSIGHT SMART trial was funded through NIH NIAID U01 AI068641, U01 AI042170, and U01 AI046362. Funding for the Medical Monitoring Project is provided by a cooperative agreement from the Centers for Disease Control and Prevention. These funding agreements ensured independence in study design, interpreting the data, writing, and publishing the report. The findings and conclusions in this report are those of the authors and do not necessarily represent the official position of the Centers for Disease Control and Prevention.
included the SF-12 Version 2 (SF-12v2) HRQoL in 2007. SMART and MMP data were converted into SF-6D health utility weights using an algorithm developed by Brazier and Roberts for the SF-12 with slight modification for the SF-12v2. For all sources examined, we compare health utility reporting practices, data collection time frames, sample characteristics, assessment methods, and utility estimates.

Results

Over half of the published CEAs reviewed referenced more than one source for health utilities (mean of 2 sources, with a maximum of 7). In many cases, estimates were derived from multiple sources using different assessment approaches, and it was often unclear how specific estimates were applied. Details on sample characteristics were limited for many studies, specifically with regards to key HIV transmission categories and treatment status.

Five studies were most frequently cited as health utility sources in the HIV prevention literature (Table 1). Data collection for all five pre-date 1998 and the widespread use of ART. There were differences in how studies classified disease status with earlier studies using symptomatic, asymptomatic, and AIDS and/or CD4 strata, and later studies using CD4 strata alone (Table 1). Three of five pre-ART studies used direct elicitation, including a meta-analysis that provided pooled utility estimates based on multinational data collected as early as 1985. Two studies reported both community-based and patient-based estimates, with community-based estimates yielding lower utilities for a given health state. Among these previously published sources, there was a wide variation in utility weights, even within the same disease state (e.g., estimates for CD4 < 200 ranged from 0.44 to 0.85).

In contrast, utility estimates derived from SMART (2002–2006) SF-12 and MMP (2007) SF-12V2 data were similar to each other and exhibited little variation across stages of HIV disease (ranging from 0.67 to 0.77). These indirect, community utility estimates also had a considerably smaller range across disease stages than pre-ART studies (0.44–0.97).

Discussion

We find that after 20 years of ART, cost-effectiveness analyses of HIV prevention interventions in the United States frequently use pre-ART health utility weights which may have limited relevance today as HIV has evolved into a manageable, chronic disease. While there are few direct utility estimates from US populations in the current era of treatment, algorithms are available to map quality-of-life data to predict health utility scores.

We also present post-ART health utility estimates that could be useful for economic evaluation. While MMP and SMART estimates were lower and had a more narrow range (0.67–0.77) than that of pre-ART studies, they are similar to estimates reported for ART clinical trial participants using similar indirect utility estimation (0.74–0.79). These results are also consistent lower utility values reported in other studies that used indirect and community-based preferences. Additionally, we found a relatively low utility valuation (0.73 and 0.77) for the healthiest disease stage (CD4 > 500) in the MMP and SMART data. This could be related to the conversion algorithm from the SF-12 HRQoL questionnaire to health utilities for current, healthier populations. Diminished HRQoL among PWH who have been effectively treated compared to the general population has been observed in other populations. In addition to methodological considerations, it is important to consider differences in other aspects of HRQoL over the course of the epidemic. For example, socioeconomic considerations such as access to treatment and services are important as the epidemic increasingly affects marginalized communities.

Our study builds on previous research by identifying deficiencies in practices around applying and citing health utility data. Improvements are needed in the application and reporting of health utility data used in economic evaluations in HIV prevention. These include improved citation practices including citing original sources, clear identification of the specific utilities used from each source and providing information on the population from which the utilities were derived. Editors and reviewers should critically examine health utility citations and require transparency.

In addition to improved citation practices, cost-effectiveness analyses could include sensitivity analyses and unadjusted life years to address uncertainty in health state valuation for HIV. Incorporating sensitivity analyses that include both direct and indirect utility weights as well as estimates derived from the current era of treatment would be important to understand how these inputs affect cost-effectiveness findings and policy implications.

This study has limitations. Some studies focusing on HIV clinical care may not have been captured in the present analysis as the CHAD review process was developed to focus on HIV prevention. Differences in the
Table 1 Health Utility Estimates for Persons With HIV in the United States

	Tengs et al.18	Holtgrave et al.19	Freedberg et al.20,a	Schackman et al.21	Honiden et al.22	SMART Trial	MMP	
Data collection period	1985–19977b	1986–1996	1987–1994c	1996–1997	1997	2002–2006	2007	
Published	2002	1998	2002	2006				
Location	Multinational	USA	Multinational	USA	USA	USA	USA	
Perspective	Patient and community	Mixed7f	Patient	Patient and community7f	Patient	Community	Community	
Sample size	NR8	803 (64% HIV +)	NR	2,864 (100% HIV +)	66 (100% HIV +)	3,944 (100% HIV +)	1,202 (100% HIV +)	3,944 (100% HIV +)
Male	NR	NR	NR	NR	95%	75%	72%	
MSM	NR	NR	NR	NR	NR	NR	NR	
PWID	NR	NR	NR	NR	NR	NR	NR	
HET	NR	NR	NR	NR	31%	64%	60%	
Racial minorities	NR	NR	NR	NR	33%	60%	60%	
Age	NR	NR	NR	NR	Median: 35–44 years	Median: 44 years	Median: 45 years	
ART use	NR	NR	NR	NR	24%	97%	85%	
Study method	Meta-analysis	Literature review	Participant surveys	Participant surveys	Participant surveys	Participant surveys	Participant surveys	
Measurement reported	HLM estimates	NR	Mean7m	NR	Mean	Mean	Mean	
Stage of HIV:								
Asymptomatic	0.94	0.68	CD4 200–499	0.76	CD4 201–300	0.94	0.76	
Symptomatic	0.82	0.56	Asymptomatic, CD4 <200	0.60	CD4 101–200	0.87	0.60	
AIDS	0.70	0.44	Symptomatic, CD4 <200	0.59	CD4 51–100	0.81	0.59	

ART, antiretroviral therapy; C, community; DX, diagnosis; HET, heterosexual; HLM, hierarchical linear model; MSM, men who have sex with men; NA, not available; NR, not reported; P, patient; PWID, persons who inject drugs; RS, rating scale; SF, Short-Form; SG, standard gamble; TTO, time tradeoff; UNS, unspecified; WBS, Quality of Well Being Scale.

AIDS case series reported aggregate data from four AIDS Clinical Trials Group protocols (019, 108, 157, and 204). Sample information is based on secondary sources for each protocol. It was not possible to accurately calculate some characteristics for the aggregate sample based on the information available (e.g., one study reported that 91% of the sample was male and 71% identified as homosexual; however, we cannot determine how many of those who identified as homosexual were male in order to calculate the percent of MSM). https://pubmed.ncbi.nlm.nih.gov/9817129/.

*Based on publication year for those studies included in the meta-analysis (with data collection likely pre-dating this time period).

*Results from a community perspective and a patient perspective were separately reported.

*Both patient and community data (physician) were included in the analysis.

*Subjects diagnosed between 1986 and 1995, and asked retrospectively to assess their quality of life relative to the time of their diagnosis.

*The total sample size included in the review was 1956 people (35% of whom were HIV-negative) with 74 utility estimates. Twenty percent of utilities were elicited with the TTO method (15 utilities from various sources). The sample size for this subset was not reported in the manuscript.

*Sample size reflects US participants from both trial arms.

*Participation limited to those receiving medical care.

*Not reported; however, ART uptake was likely rare due to the timing of ART FDA approval and rollout relative to the timing of utility assessment.

*Reported ART status at baseline.

*Data were converted to SF-6D utility weight estimates with published utility mapping algorithms (e.g., Torrance7 and Brazier et al.29).

*Summary measures are reported based on a collection of studies utilizing different assessment methods. Clinical data were used to inform CD4 stratified estimates (presented). Median estimates were also provided (0.76, 0.65, and 0.62 across stages of the disease). Additional estimates were extrapolated based on a series of assumptions for various strata for CD4 >499 (not presented, range: 0.82–0.91).

*Results based on analyses with sampling weights used to improve the national representativeness of results.

*Patient-based SF-6D results were converted to community-based results using an earlier algorithm developed by Brazier et al.29.

*Assessed on average of 7.5 years after HIV diagnosis.
classification of health states across studies and a lack of
availability of data in certain health states limit the ability
to make comparisons across studies. Thus, caution
should be used in interpreting direct comparisons.

Conclusion

Cost-effectiveness analyses in HIV prevention use health
utility weights that do not reflect the current state of the
epidemic as it has evolved from an acute, terminal illness
into a chronic disease. Sensitivity analyses that incorpo-
rate both direct and indirect utility weights as well as pre-
senting life years in addition to QALYs would increase
transparency and better inform HIV prevention policy.

Authors’ Note

Parts of this work were presented at the 2016 Society for
Medical Decision Making Conference in Vancouver, Canada
(PS 1-46).

ORCID iD

Hilary K. Whitham https://orcid.org/0000-0002-8980-9433

References

1. Antiretroviral Therapy Cohort Collaboration; Zwahlen M,
Harris R, et al. Mortality of HIV-infected patients starting
potent antiretroviral therapy: comparison with the general
population in nine industrialized countries. Int J Epide-
imol. 2009;38(6):1624–33.
2. Deeks SG, Lewin SR, Havlir DV. The end of AIDS:
HIV infection as a chronic disease. Lancet. 2013;382(9903):
1525–33.
3. Centers for Disease Control and Prevention. HIV surveil-
ance supplemental report: estimated HIV incidence and
prevalence in the United States, 2010–2015. HIV Surveil-
ance Supplemental Report. 2018:23. Accessed June 29, 2020.
Available from: http://www.cdc.gov/hiv/library/reports/hiv-
surveillance.html
4. Hess KL, Hu X, Lansky A, Mermin J, Hall HI. Lifetime
risk of a diagnosis of HIV infection in the United States.
Ann Epidemiol. 2017;27(4):238–43.
5. Neumann PJ, Sanders GD, Russell LB, Seigel JE, Ganiats
TG. Cost-Effectiveness in Health and Medicine. 2nd ed.
Oxford University Press; 2017.
6. Sanders GD, Neumann PJ, Basu A, et al. Recommenda-
tions for conduct, methodological practices, and reporting
of cost-effectiveness analyses: second panel on cost-
effectiveness in health and medicine. JAMA. 2016;316(10):
1093–103.
7. Torrance GW. Measurement of health state utilities for
economic appraisal. J Health Econ. 1986;5(1):1–30.
8. Horsman J, Furlong W, Feeny D, Torrance G. The Health
Utilities Index (HUI): concepts, measurement properties
and applications. Health Qual Life Outcomes. 2003;1:54.
9. Froberg DG, Kane RL. Methodology for measuring health-state
preferences—I: Measurement strategies. J Clin Epidemiol.
1989;42(4):345–54.
10. Arnold D, Girling A, Stevens A, Lilford R. Comparison of
direct and indirect methods of estimating health state utili-
ties for resource allocation: review and empirical analysis.
BMJ. 2009;339:b2688.
11. Gold MR. Cost-Effectiveness in Health and Medicine.
Oxford University Press; 1996.
12. Rowen D, Azzabi Zuaraq I, Chevrou-Severe H, van Hout
B. International regulations and recommendations for utility
data for health technology assessment. Pharmacoeco-
nomics. 2017;35(Suppl 1):11–19.
13. Huang YL, Lasry A, Hutchinson AB, Sansom SL. A system-
etic review on cost effectiveness of HIV prevention interven-
tions in the United States. Appl Health Econ Health Policy.
2015;13(2):149–56.
14. Strategies for Management of Antiretroviral Therapy
Study Group; El-Sadr WM, Lundgren JD, et al. CD4+
count-guided interruption of antiretroviral treatment. N
Engl J Med. 2006;355(22):2283–96.
15. Ware J Jr, Kosinski M, Keller SD. A 12-Item Short-Form
Health Survey: construction of scales and preliminary tests
of reliability and validity. Med Care. 1996;34(3):220–33.
16. Burman W, Grund B, Neuhaus J, et al. Episodic antiretro-

viral therapy increases HIV transmission risk compared
with continuous therapy: results of a randomized controlled
trial. J Acquir Immune Defic Syndr. 2008;49(2):142–50.
17. Brazier JE, Roberts J. The estimation of a preference-based
measure of health from the SF-12. Med Care. 2004;42(9):
851–9.
18. Tengs TO, Lin TH. A meta-analysis of utility estimates for
HIV/AIDS. Med Decis Making. 2002;22(6):475–81.
19. Holgraves DR, Pinkerton SD. Updates of cost of illness
and quality of life estimates for use in economic evalua-
tions of HIV prevention programs. J Acquir Immune Defic
Syndr Hum Retrovirol. 1997;16(1):54–62.
20. Freedberg KA, Scharfstein JA, Seage GR 3rd, et al. The
cost-effectiveness of preventing AIDS-related opportunistic
infections. JAMA. 1998;279(2):130–6.
21. Schackman BR, Goldie SJ, Freedberg KA, Losina E, Bra-
zier J, Weinstein MC. Comparison of health state utilities
using community and patient preference weights derived
from a survey of patients with HIV/AIDS. Med Decis
Making. 2002;22(1):27–38.
22. Honiden S, Sundaram V, Nease RF, et al. The effect of
diagnosis with HIV infection on health-related quality of
life. Qual Life Res. 2006;15(1):69–82.
23. Joyce VR, Sun H, Barnett PG, et al. Mapping MOS-HIV
to HUI3 and EQ-5D-3L in patients with HIV. MDM Pol-
icy Pract. 2017;2(2):2381468317716440.
24. Shi Y, Thompson J, Walker AS, Paton NI, Cheung YB,
Team ET. Mapping the medical outcomes study HIV health
survey (MOS-HIV) to the EuroQoL 5 Dimension (EQ-5D-3L) utility index. *Health Qual Life Outcomes*. 2019;17(1):83.

25. Kauf TL, Roskell N, Shearer A, et al. A predictive model of health state utilities for HIV patients in the modern era of highly active antiretroviral therapy. *Value Health*. 2008;11(7):1144–53.

26. Tran BX, Nguyen LH, Ohinmaa A, Maher RM, Nong VM, Latkin CA. Longitudinal and cross sectional assessments of health utility in adults with HIV/AIDS: a systematic review and meta-analysis. *BMC Health Serv Res*. 2015;15:7.

27. Prosser LA, Grosse SD, Wittenberg E. Health utility elicitation: is there still a role for direct methods? *Pharmacoconomics*. 2012;30(2):83–6.

28. Miners A, Phillips A, Kreif N, et al. Health-related quality-of-life of people with HIV in the era of combination antiretroviral treatment: a cross-sectional comparison with the general population. *Lancet HIV*. 2014;1(1):e32–e40.

29. Brazier J, Usherwood T, Harper R, Thomas K. Deriving a preference-based single index from the UK SF-36 Health Survey. *J Clin Epidemiol*. 1998;51:1115-28.