Response to the “Letter to the Editor” by Alfred Körblein, “Short term increase in low birthweight babies after Fukushima”

Hagen Scherb1* and Keiji Hayashi2

Keywords: Radiation-induced genetic effects, Scientific logic, Statistical modeling, Statistical inference

Dear Editors,

We wish to thank Alfred Körblein for raising methodological and practical issues as to how to adequately assess possible changes in the trend/s of low birth weight proportions in Japan before and after the Fukushima Daiichi Nuclear Power Plant (FDNPP) accidents [1]. Alfred Körblein’s letter provides an opportunity to explaining in detail several technical and crucial aspects of our approach to data analysis [2].

In his Fig. 1 (upper panel), Körblein fits a 5th degree polynomial logistic regression model to the combined low birth weight data of the five moderately and five highly contaminated prefectures Chiba, Fukushima, Ibaraki, Iwate, Kanagawa, Miyagi, Saitama, Tochigi, Tokyo, and Yamagata. Körblein reports a jump in this trend in 2012 with an odds ratio (OR) of 1.019, 95%-confidence interval (0.994, 1.044), p-value 0.152, which we confirm in principle. However, whereas Körblein employs the t-distribution for computing p-values in this example with 24 data points, 7 parameters (intercept, jump2012, t = time, t², t³, t⁴, t⁵), and 17 degrees of freedom, we consider the Wald-Chi² a more appropriate and less conservative choice. The Wald-Chi² p-values for t⁴ and t⁵ of the 5th degree polynomial are 0.0538 and 0.1331, respectively. By contrast, p for t⁴ in a 4th degree polynomial is only 0.0003, i.e. a more parsimonious polynomial yields a more precise estimate of t⁴. These considerations apply in principle to all four scenarios in Fig. 4 of our paper [2] as per Table 1. Since 4th degree polynomials are more parsimonious and yield more precise estimates (due to lesser variance inflation) of the regression coefficients when compared to 5th degree polynomials, we recommend the use of 4th degree polynomials in this context.

Körblein’s approach is motivated by the truism that a 5th degree polynomial fits the data better than a 4th degree polynomial. However, fit in terms of deviance is not the only important component in this context. If the polynomial degree is increased, variance inflation, over-fitting, and over-adjustment may become problematic. In order to illustrate this, consider the extreme case of a 23rd degree polynomial for the 24 data points in our examples. Such a polynomial would theoretically pass through all given data points, but it would not be possible to compare or mutually test segments of the regression line [3]. Principles that should guide the selection of an appropriate degree of the polynomial include parsimony and the precision of the regression coefficients.

This reply refers to the comment available at https://doi.org/10.1186/s12940-020-00650-6.

* Correspondence: hagen.scherb@gmail.com
1Helmholtz Zentrum München, German Research Center for Environmental Health, Institute of Computational Biology, Ingolstädter Landstr. 1, 85764 Neuherberg, Germany
Full list of author information is available at the end of the article

© The Author(s). 2020 Open Access. This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
before the FDNPP accidents. We consider Körblein’s amalgamating the periods 1985 to 2011 and 2014 to 2018 in order to obtain a baseline trend illogical since the FDNPP accidents released long-lived radioactive elements. This approach also ignores that radiological accidents have been followed by long-term radiation-induced genetic effects [4–14]. Using a 4th degree polynomial in place of a 5th degree polynomial for modeling the low birth weight proportion in the 10 moderately or highly contaminated prefectures reveals a significant jump in 2012 with OR 1.027, (1.004, 1.051), p-value 0.0203, see Fig. 1. The division of the period 2012 to 2018 into two periods, 2012 to 2013 and 2014 to 2018 yields a somewhat weaker and less precisely estimated effect in the second period compared to the former: OR 1.024, (0.991, 1.059), p-value 0.1547. This reduced effect in a later period is compatible with the decrease in exposure due to radioactive decay and decontamination [13].

While Körblein’s statement ‘the significant result for the shift in LBW proportion obtained with model 1 is driven by the peak in 2012-2013’ is true in several selected scenarios within his framework, the p-value of > 0.05 for the jump from 2014 onward in Fig. 1 is certainly not evidence of absence of long-term genetic effects.

Table 1 P-values for t^4 versus t^5 of the 4th and the 5th degree polynomial logistic trend models, respectively; A: Japan; B: Japan excluding 10 exposed prefectures; C: 5 moderately exposed prefectures (Yamagata, Saitama, Tokyo, Kanagawa, Chiba); D: 5 highly exposed prefectures (Fukushima, Miyagi, Ibaraki, Tochigi, Iwate)

Scenario	Variable	4th degree polynomial p-values (Wald Chi^2)	5th degree polynomial p-values (Wald Chi^2)
A	t^4	< 0.0001	0.0080
	t^5	.	0.0503
B	t^4	0.0004	0.0337
	t^5	.	0.0882
C	t^4	< 0.0001	0.0568
	t^5	.	0.1586
D	t^4	0.0926	0.1616
	t^5	.	0.2255
C + D	t^4	0.0003	0.0538
	t^5	.	0.1331
This type of erroneous interpretation of p-values has frequently raised criticism in the past. A more recent critique has been published in *Nature*: ‘Let’s be clear about what must stop: we should never conclude there is ‘no difference’ or ‘no association’ just because a P value is larger than a threshold such as 0.05. Neither should we conclude that two studies conflict because one had a statistically significant result and the other did not. These errors waste research efforts and misinform policy decisions’ [15].

In summary, Körblein’s conclusions hereunder evolve from misinterpreted analysis:

- ‘An analysis of low birth weight (LBW) births in ten contaminated prefectures of Japan, 1995-2018, finds a statistically significant increase in the LBW proportion in 2012-2013, but no increase after 2013.’
- ‘The claim by Scherb that their result is evidence of a genetic radiation effect is challenged by the present analysis.’

Sincerely,
Hagen Scherb and Keiji Hayashi

Abbreviations
95%-CI or (,..): 95%-confidence interval; FDNPP: Fukushima Daichi Nuclear Power Plant; LBW: Low birth weight; OR: Odds ratio; p: p-value; SAS: Statistical Analysis System, software produced by SAS Institute Inc

Acknowledgements
We are most grateful to Victor Grech for detailed suggestions improving our initial draft.

Ethical approval and consent to participate
Not applicable. Ethics approval and consent to participate are not required and not necessary, since only publicly available data and previously published information is being used.

Authors’ contributions
Both authors contributed equally to the Letter to the Editor. Both authors approved the final manuscript.

Funding
The authors declare that they have no funding for this study.

Availability of data and materials
The employed data has exclusively been published previously and/or it is contained in the Tables and in the Figures included in this paper.

Consent for publication
Not applicable. Only anonymous data is being used.

Competing interests
The authors declare that they have no conflicts of interest.

Author details
1Helmholtz Zentrum München, German Research Center for Environmental Health, Institute of Computational Biology, Ingolstädter Landstr. 1, 85764 Neuherberg, Germany. 2Hayashi Children’s Clinic, 4-6-11-1F. Nagata, Joto-ku Osaka-Shi, Osaka 536-0022, Japan.

References
1. Körblein A. Letter to the Editor: Short term increase in low birthweight babies after Fukushima. Environ Health. 2020;ENHE-D:20-03316.
2. Scherb H, Hayashi K. Spatiotemporal association of low birth weight with Cs-137 deposition at the prefecture level in Japan after the Fukushima nuclear power plant accidents: an analytical-ecologic epidemiological study. Environ Health. 2020;19(1):82.
3. Turner SL, Karahalios A, Forbes AB, Taljaard M, Grimshaw JM, Cheng AC, Bero L, McKenzie JE. Design characteristics and statistical methods used in interrupted time series studies evaluating public health interventions: a review. J Clin Epidemiol. 2020;122:1–11.
4. Scherb H, Weigelt E, Brüseke-Hohfeld I. European stillbirth proportions before and after the Chernobyl accident. Int J Epidemiol. 1999;28(5):932–40.
5. Scherb H, Weigelt E. Congenital malformation and stillbirth in Germany and Europe before and after the Chernobyl nuclear power plant accident. Environ Sci Pollut Res Spec Issue. 2003;1:117–25.
6. Sperling K, Neitzel H, Scherb H. Evidence for an increase in trisomy 21 (Down syndrome) in Europe after the Chernobyl reactor accident. Genet Epidemiol. 2012;36(1):48–55.
7. Scherb H, Voigt K. The human sex odds at birth after the atmospheric atomic bomb tests, after Chernobyl, and in the vicinity of nuclear facilities. Environ Sci Pollut Res Int. 2011;18(5):697–707.
8. Grech V. The Chernobyl accident, the male to female ratio at birth and birth rates. Acta Med (Hradec Kralove). 2014;57(2):62–7.
9. Grech V. Births and male/female birth ratio in Scandinavia and the United Kingdom after the Windscale fire of October 1957. Int J Risk Saf Med. 2014;26(1):45–53.
10. Scherb H, Kusmierz R, Voigt K. Increased sex ratio in Russia and Cuba after Chernobyl: a radiological hypothesis. Environ Health. 2013;12:63.
11. Scherb H, Kusmierz R, Voigt K. Secondary sex ratio and trends in the associated gender-specific births near nuclear facilities in France and Germany: update of birth counts. Reprod Toxicol. 2019;89:159–67.
12. Scherb H, Mori K, Hayashi K. Comment on ‘Perinatal mortality after the Fukushima accident’. J Radiol Prot. 2019;39(2):647–9.
13. Hayama S-I, Tsuchiya M, Ochii K, Nakiri S, Nakashima S, Ishii N, Kato T, Tanaka A, Konno F, Kawamoto Y, et al. Small head size and delayed body weight growth in wild Japanese monkey fetuses after the Fukushima Daichii nuclear disaster. Sci Rep. 2017;7(1):3528.
14. Konakov AV, Geger EV,lagerev DG, Pugach LI, Moussau TA. De novo congenital malformation frequencies in children from the Byansk region following the Chernobyl disaster (2000–2017). Heliyon. 2020;6(8):e04616.
15. Amrhein V, Greenland S, McShane B. Scientists rise up against statistical significance. Nature. 2019;567(7748):305–7.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.