TITLE: Patient-Reported Outcome-Based Quality Indicators in Dutch Primary Care Physical Therapy for Patients With Nonspecific Low Back Pain: A Cohort Study

RUNNING HEAD: Outcome-Based Quality Indicators for Patients With NSLBP

TOC CATEGORY: Musculoskeletal

ARTICLE TYPE: Original Research

SUBMITTED: August 3, 2020

REVISED: February 13, 2021

ACCEPTED: April 7, 2021

Keywords: Quality indicators, PROMs, Physical therapy, Nonspecific low back pain

Arie C. Verburg, PT, MSc, Simone A. van Dulmen, PT, PhD, Henri Kiers, PT, PhD, Maria W.G. Nijhuis-van der Sanden, PT, PhD, Philip J. van der Wees, PT, PhD

A.C. Verburg MSc, Dr S.A. van Dulmen, Dr H. Kiers, Prof. Dr M.W.G. Nijhuis-van der Sanden, Prof. Dr P.J. van der Wees

1 Radboud university medical center, Radboud Institute for Health Sciences, IQ healthcare, PO Box 9101, 6500 HB, Nijmegen, Netherlands
2 Utrecht University of Applied Sciences, Institute of Human Movement Studies, Utrecht, Netherlands
3 Association for Quality in Physical Therapy (SKF), Zwolle, Netherlands

The Author(s) 2021. Published by Oxford University Press on behalf of the American Physical Therapy Association.
Abstract

Objective. The purpose of this study was to define and select a core set of outcome-based quality indicators, accepted by stakeholders on usability and perceived added value as a quality improvement tool, and to formulate recommendations for the next implementation step.

Methods. In phase 1, we defined 15 potential quality indicators for patient-reported outcome measures (PROMs) and associated domains, namely the Numeric Pain Rating Scale (NPRS) for pain intensity, the Patient Specific Functioning Scale (PSFS) for physical activity, the Quebec Back Pain Disability Scale (QBPDS) for physical functioning, and the Global Perceived Effect - Dutch Version (GPE-DV) for perceived effect. We described their comparability and discriminatory characteristics using cohort data. In phase 2, a core set of quality indicators was selected based on consensus among stakeholders in focus group meetings.

Results. In total, 65,815 completed treatment episodes for patients with nonspecific low back pain (NSLBP) were provided by 1009 physical therapists from 219 physical therapist practices. The discriminability between physical therapists of all potential 15 quality indicators was adequate with intraclass correlation coefficients between 0.08 and 0.30. Stakeholders selected a final core set of 6 quality indicators: 2 process indicators (the routine measurement of NPRS and the PSFS) and 4 outcome indicators (pretreatment and posttreatment change scores for the NPRS, PSFS, QBPDS, and the minimal clinically important difference of the GPE-DV).

Conclusion. This study described and selected a core set of outcome-based quality indicators for physical therapy in patients with NSLBP. The set was accepted by stakeholders for having added value for daily practice in physical therapy primary care and was found useful for quality improvement initiatives.
Further studies need to focus on improvement of using the core set of outcome-based quality indicators as a quality monitoring and evaluation instrument.

Impact. Patient-reported outcome-based quality indicators developed from routinely collected clinical data are promising for use in quality improvement in daily practice.

Introduction

Quality indicators based on health outcomes can be used as a implementation tool to improve quality of care by monitoring and evaluating treatment trajectories with patient reported outcomes (PROMs).\(^1\) Quality indicators are measurable items to monitor healthcare, referring to structure, processes or outcomes of care.\(^5\) An important requirement is that these outcome based quality indicators are well developed, described and have added value in improving quality of care.\(^3, 6\) Initial development of quality indicators is usually based on a theoretical perspective and consensus between stakeholders, while routinely collected clinical data should be included in the ecological validation process.\(^5\) Currently no core set of outcome-based quality indicators is developed for patients with nonspecific low back pain (NSLB) in primary care physical therapy based on such a comprehensive process.

In a previous study we developed a standard set of outcome domains and patient reported outcome measures (PROMs) for patients with NSLBP in primary care physical therapist practice.\(^7\) PROMs are questionnaires or single item scales to assess PROs in relevant outcome domains, such as pain, physical functioning, or perceived treatment effect.\(^5, 8\) The standard set with PROMs is the basis for our next step in the development and implementation of outcome-based quality indicators, which preferably can be used for large patient groups and are able to show changes in clinical practice over time.\(^3, 7\)

Various standards for development and selection of quality indicators exist.\(^5, 9\) To develop quality indicators, firstly the comparability of the outcomes between physical therapists or practices needs to be adequate. When considering patient characteristics that may influence the outcome, but are not under the control of the physical therapist or practice, case-mix adjustment and stratification in subgroups can be used to improve the population comparability.\(^5, 9, 10\) Secondly, in order to drive quality...
improvement, the quality indicator should be able to discriminate between physical therapists or practices based on the outcomes measures.5,9 Finally, quality indicators need to be accepted by stakeholders (i.e., physical therapists, patients and health insurers) based on the perceived added value and usability for quality improvement in daily practice. We used the Netherlands as a case study for the development of outcome-based quality indicators.

For development of outcome-based quality indicators for patients with NSLBP in Dutch physical therapy primary care practices, the aims of this study are:

a) To define potential outcome-based quality indicators based on the previous selected standard set of outcome domains and selected PROMs, and describe their comparability and discriminability,

b) To select a core set of potential outcome-based quality indicators, accepted by stakeholders on usability and perceived added value as quality improvement tools.

[H1] Method

[H2] Design

In the current study we intended to develop quality indicators in consecutive steps, using a mixed methods approach in a sequential explanatory design. In phase 1 (October 2017-September 2019), we defined potential quality indicators and estimated their comparability and discriminatory characteristics using prospectively collected patient outcomes in a convenience cohort.

In phase 2 (October–December 2019), the outcomes were presented to stakeholders in a qualitative approach to explore the usability by interpreting their comparability, discriminability and perceived added value, in order to select a core set of quality indicators.

[H2] Setting

In total, 1,009 Dutch physical therapists working in 219 primary care practices collected outcomes of treatment trajectories of patients with NSLBP. All graduated, licensed Dutch physical therapists that treated patients with NSLBP could participate in the study, and they needed to be able to provide data to
one of the three data registries, as specified in the subheading data collection. They were recruited using convenience sampling via stakeholder organizations (professional physical therapy associations and health insurers) in Dutch primary physical therapy care and participated voluntarily in the project. All procedures were conducted according to the Declaration of Helsinki. The study protocol was approved by the Medical Ethical Committee of Radboud university medical center (Registration # 2019-5455). Funding support for this study was provided by Dutch health insurers CZ & the Friesland. The sponsors had no influence on the process or outcomes of the paper.

[H2] Data collection
Treatment outcomes were anonymously collected through electronical health records (EHRs). All data were collected via three databases, the national data registry (LDK) of the Association for Quality in Physical Therapy (SKF), the national data registry (LDF) of the Royal Dutch Society for Physical Therapy (KNGF), and the database of Spot On Medics (SOM) - which is one of the EHR vendors. Participating physical therapists were instructed to seek informed consent of each included patient to use the data from the EHR for research and quality improvement.

[H3] Patient Reported Outcome Measures (PROMs)
A standard set of PROMs and associated outcome domains was previously selected as relevant for clinical practice and as basis for the development of quality indicators. This standard set included the Numeric Pain Rating Scale (NPRS) for measuring pain intensity, the Patient Specific Functional Scale (PSFS) for measuring physical activity, and the Quebec Back Pain Disability Scale (QBPDS) for measuring physical function, which were collected pretreatment and posttreatment to monitor changes in outcomes over time. The Global Perceived Effect - Dutch Version (GPE-DV) for measuring perceived effect was completed by patients at the end of the treatment episode to evaluate treatment effect. See Supplementary Appendix A for an overview of each measure, measurement protocol and a comprehensive description of all measures.
[H3] Case-mix adjustment and stratification

For each patient we collected the following characteristics for case-mix adjustment: age, sex, and chronicity (expressed in the duration of the complaints before treatment). The Start Back Tool (SBT) was administered at the beginning of the treatment episode, and used to stratify patients in a low, medium or high-risk profile.11

[H3] In- and exclusion criteria

Participating physical therapists and practices included their patients aged ≥18 years with NSLBP. For each patient we aimed to collect the PROMs in the standard set as described in the data collection. The patients received usual care from the participating physical therapists according to the Dutch clinical practice guidelines for NSLBP, meaning that we only measured outcomes of the treatment, the physical therapists individually decided which treatment was needed for their patients.12 Each physical therapist or practice should at least include >5 patients during the data collection period to participate in this study.

We included only patients with a closed treatment episode. An episode was considered as closed when the physical therapist closed the episode in the EHR or if eight weeks had been passed after the last visit. The same patient can have more treatment episodes in a year, which in this study were handled as separate unique episodes.”

[H2] Phase 1: Defining and describing the comparability and discriminability of the quality indicators

[H3] Defining potential quality indicators

Potential quality indicators were defined using national and international standards.5, 9, 10, 13 Quality indicators can be quantified and expressed as a percentage using a denominator and a numerator.3 The denominator usually describes the number of persons in the target group for which the quality indicator is applicable. In the numerator, the number of ‘correct’ scores is described, resulting in a percentage of correct scores.3 See Table 1 for an example of an quality indicator for pain intensity measured with the
NPRS.

For each of the four PROMs in the standard set, we defined four types of quality indicators:

- **Process indicator**: the percentage of patients with low back pain who had physical therapist treatment in which a pretreatment and posttreatment measurement was used. Example 1: in 60% of the patients, pain intensity was measured pretreatment and posttreatment with the NPRS.

- **Mean end scores**: the mean end score (with 95% CI) of patients with low back pain after physical therapy treatment. Example 2: the mean end score on physical function of patients measured with the QBPDS is 15 points (SD = 7).

- **Mean change scores**: the mean change score (with 95% CI) of patients with low back pain between pretreatment and posttreatment. Example 3: the mean change score in physical activity of patients measured with the PSFS is 3.2 points of improvement (SD = 2.1).

- **Minimal clinically important difference**: the percentage (with 95% CI) of patients who experienced a MCID between pretreatment and posttreatment to measure whether improvements in the outcome were clinically relevant. Example 4: in 70% (SD = 7%) of the patients reported an MCID on pain intensity measured with NPRS after treatment.

Monitoring the change score was not applicable for GPE-DV and was measured only posttreatment. Hence, in total we defined fifteen potential quality indicators. See Supplementary Appendix B for an extensive description of each defined potential quality indicator.

[H2] Describing the comparability and discriminability of the quality indicators

[H3] Sample size

To allow a valid comparison of indicator scores between physical therapists and practices, a rule of the thumb in multilevel analysis for general calculation is the 30/30 rule, ie, 30 practices or physical therapists
should include a minimum of 30 patients. We used this rule of thumb as threshold for estimating case-mix adjusted and stratified scores for each quality indicator. Descriptive statistics were used to determine whether thresholds for completion of PROMs were met for estimating (stratified) indicator scores. Physical therapists or physical therapy practices were excluded from the analysis for a specific quality indicator if they included less than 30 patients with NSLBP.

[H3] Comparability

We used linear and logistic multilevel analysis to compare outcomes on an aggregated level, i.e. the level of physical therapists and practices. In this study, patients are clustered through their physical therapists or clustered within practices. To enhance the comparability of physical therapists or practices, the quality indicators were adjusted and stratified for explanatory variations in patient characteristics that influence the outcome, but are not under the control of the physical therapist or practice.

a) Age, sex, chronicity and the baseline score of each PROM were used for adjustment in the multilevel analyses. The analysis aimed to explain the random intercept variance starting with estimating only an intercept and the random variation around the intercept (intercept-only model). Then, explanatory case-mix variables were added to the model (adjusted model), and the influence of the explanatory variables was evaluated by the amount of the random intercept variance that is explained. In this modelling procedure, the outcome of interest is not the regression coefficient of the explanatory variables but the amount of random intercept variance that is explained.

b) The SBT was used to stratify patients for each quality indicator in low, medium and high-risk profiles.

For each physical therapist or practice in the case-mix adjusted multilevel analysis the mean scores were estimated with a 95% CI. For the analysis, we used PROMs measured at the beginning and end of the treatment.
[H3] Discriminative ability

The Intraclass Correlation Coefficient (ICC) was calculated for each quality indicator to estimate the variation in outcomes between physical therapists or between practices. In this study, the ICC for physical therapists is defined as the variance between physical therapists, divided by the total variance. The total variance is the summation of the variance between physical therapists and the variance within the physical therapists. The ICC for physical therapy practices was defined accordingly by dividing the variance between practices by the summation of the variance between and the variance within physical therapy practices. In multilevel analysis, most ICCs are between .05 and .20 and ICCs >.10 can be interpreted as adequate, indicating that the quality indicator is able to discriminate outcomes between physical therapist or practices.

The ICC was also used to compare the intercept-only model with the adjusted model with explanatory variables (case-mix). For each final analysis, we stratified outcomes using the SBT, hence resulting in three (low-, medium- or high risk) multilevel analysis for each potential quality indicator.

Visual representation of indicator scores

To present for each defined quality indicator the collection of mean outcomes of each participant (physical therapist- or practice level) in one graph, we used caterpillars plots. Caterpillar plots are regarded as user friendly and very suitable to visually display quality indicators. We used relative norms by presenting three colors, blue (95% CI significantly lower than average) purple (no significant 95% CI difference from average) and green (95% CI significantly higher than average). We used the plots to present the outcomes of the cohort data to participants in phase 2 of the study.

[H2] Phase 2: Selecting a core set of quality indicators

Participating physical therapists were purposefully invited for semi-structured interviews in focus groups. We intended to conduct at least three focus group meetings within every session 6 to 10 physical therapists. In addition, we conducted a focus group meeting with Dutch senior physical therapy
researchers that were members of the development team of the revised Dutch physical therapy guideline for low back pain.

In these focus group meetings, participants were asked to choose a core set of quality indicators, selected from the 15 defined potential quality indicators. They reflected on the perceived added value of using the presented indicators in daily practice for quality improvement. In addition, the senior researchers were asked to comment on the set of quality indicators from a scientific perspective.

In all focus group meetings, we started with a visual representation of each potential quality indicator, both at the level of the physical therapist and of the practice in comparison with benchmark data. During the focus group meetings, participants compared, interpreted, and discussed the outcomes with their peers. The usability was evaluated by the participants by interpreting the presented comparability and discriminability of all potential indicators. We also asked if the indicators were capable of making valid comparisons between physical therapists and practices. Furthermore, we were interested if the participants accepted the quality indicators as having added value for quality improvement initiatives. Finally, we asked them to select their preferred quality indicators for the core set.

After each focus group meeting, the chairman (AV) summarized the preferred quality indicators per outcome domain and asked if the group agreed with final proposed selection. The focus group meeting was ended when the majority of the participants reached consensus about the core set.

[H1] Results

[H2] Phase 1: Defining and describing the comparability and discriminability of the quality indicators

[H3] Descriptive statistics

In Table 2, descriptive statistics of included patients are presented for each SBT profile separately, including the number of physical therapists and practices. In total, 65,815 completed treatment episodes were provided by 1,009 physical therapists and 219 physical therapy practices. The patient characteristics per SBT profile in Table 2 show that mean age, chronicity, treatment frequency and treatment weeks are
similar across the profiles, except for the mean treatment frequency of SBT profile I in comparison with profiles II and III. Table 3 presents the provided data for each PROM at physical therapist- and practice level for the total population and stratified for each SBT profile. The change score of the NPRS and PSFS per SBT profile were similar, while the change score on the QBPDS fluctuated between 23.2 (SBT I) and 32.7 (SBT III) points. For the NPRS 22.7, the PSFS 17.5, the QBPDS 12.6, and the GPE 8.17 treatment episodes with repeated measurements were provided, see Supplementary Figure for an overview. The total number of included episodes (N) differed between the selected PROMs, since not all PROMs were registered in each patient record.

[H3] Included cases in multilevel analysis

In total, 140 physical therapists (out of 1009) and 85 physical therapy practices (out of 219) fulfilled the 30/30 rule for at least one PROM with successful follow-up measurement (ie, at least two scores on the PROM in patients that had at least two visits) and could be included in the multilevel analysis. For modeling outcomes of pain intensity using the NPRS, a total of 13,096 (30% of total) treatment episodes were provided. For modeling physical activity measured with the PSFS, 106 physical therapists and 83 physical therapy practices provided a total of 10,633 (25% of total) treatment episodes. For modeling physical functioning measured with the QBPDS, 88 physical therapists and 55 physical therapy practices provided a total of 9,437 (15% of total) treatment episodes. For modeling perceived effect measured with the GPE-DV 53 physical therapists and 48 physical therapy practices, provided a total of 7,121 (11% of total) treatment episodes. The 30:30 inclusion rule was not reached for each PROM and associated outcome domain per SBT subgroup

[H3] Comparability & discriminative ability

Table 4 shows that the ICCs fluctuated between 0.08 and 0.30 and was therefore judged as adequate to discriminate between physical therapists or practices. The adjusted model was used for the visual representation of the quality indicators in the focus group interviews.
[H3] Visual representation of indicator scores

Examples of caterpillar plots from the quality indicators listed above are presented in the Figure. In line with the ICC (range = 0.08 – 0.30), the Supplementary Material and the Figure show adequate variation of treatment outcomes among physical therapist practices. Roughly one third of the physical therapist practices were divided in significantly lower than average, no-difference, or higher than average based on 95% CI. See Supplementary Appendix C for a visual representation of each defined potential quality indicator.

[H2] Phase 2: Selecting a core set of quality indicators

Nineteen physical therapists and four senior researchers participated in four focus group interviews. The mean age was 37 years (range = 25 – 57), the average work experience was 11 years (range = 1 – 31). In general, the participants accepted the quality indicators for having added value in daily practice as quality improvement tools. The relative norms as presented (Figure) were interpreted as user friendly and easy to read. Participants mentioned that using the quality indicators can be a good opportunity to stimulate transparency of variation in outcomes between practices, but emphasized that for learning goals it is very important to create a safe environment for physical therapists when comparing outcomes. Furthermore, physical therapists expressed that, when comparing outcomes with their peers, they were interested in additional information, eg, treatment frequency and recurrences of NSLBP.

The majority of each focus group preferred the process indicators for routine measurement of the NPRS and PSFS, the pre-post treatment change scores of the NPRS, PSFS, QBPDS, and the MCID based on the post-treatment score of the GPE-DV for inclusion in the core set. Hence, the potential indicators with end scores and MCID were not selected for the NPRS, PSFS, and QBPDS. The final core set of quality indicators is presented in Table 5.

[H1] Discussion
Out of 15 defined potential outcome-based quality indicators, stakeholders selected a final core set of six quality indicators. The core set contains two process indicators, the percentage of completed NPRS for measuring pain intensity and the percentage of completed PSFS for measuring physical activity; and 4 outcome indicators, including change scores for the NPRS, PSFS, QBPDS for measuring pain intensity, physical activity and physical functioning, respectively, and the GPE for measuring perceived effect using the MCID. All previously selected PROMs and associated outcome domains were included in the core set. The discriminability of the outcome-based quality indicators between physical therapists and physical therapy practices was adequate based on the ICCs. The outcome-based quality indicators were accepted by stakeholders for having added value in daily practice and for quality improvement purposes. To our knowledge, this is the first core set of outcome-based quality indicators developed for primary care physical therapists and practices treating patients with NSLBP.

The findings in the present study are supported with the work of other studies in this area. For example the study of Hildon et al (2015), that described views of patients and clinicians on comparing quality indicators for providers of surgery, underlined the value of comparison of outcomes between providers for quality improvement. The visual representation of caterpillars plots and the selection of the change scores and MCID for defining quality indicators based on PROMs has been used in other studies. The main difference with the present study is that our study explicitly focused on collecting and interpreting outcomes of care, while other studies in mainly focused on process indicators, for example by monitoring guideline adherence, the quality of the clinical reasoning process and shared decision making.

Also, although not all physical therapists routinely collected enough data, the amount of participating physical therapists and provided cohort data is significantly higher than in other studies. With physical therapists who did routinely collected data and participated in focus group meetings for selection of the core set, engagement of end-users was optimally stimulated. We therefore believe that the usability and added value of the core set for daily practice is guaranteed, but that more effort is needed to implement the quality indicators in clinical practice.
The selected outcome domains and associated PROMs in the core set, i.e., pain intensity, physical activity, physical functioning and perceived effect, are partly in line with other research regarding the development of core outcome sets (COS) for patients with NSLBP. However, these COS are developed for clinical trial purposes and have not been tested for their relevance and feasibility in daily practice.

To increase the usability of the indicators, we chose to include all available case-mix variables for adjustment in the multilevel analysis, in order to enhance the acceptance of the quality indicators as a quality improvement tool. Excluding these case-mix variables might lead physical therapists to attribute differences in outcomes to these factors (e.g., age of the patient or chronicity of the LBP) instead of to their own treatment decisions.

[H2] Implications for research and practice

As presented, physical therapists and physical therapist practices, who sample routinely enough data, can use this core set for monitoring and comparing treatment outcomes in research and daily practice in order to evaluate and stimulate quality of care. To develop a full picture of the validity and usefulness of the core set of outcome-based quality indicators, further research will be needed in which quality indicators are measured over time. Quality indicator scores can then be used for longitudinal evaluation and monitoring of achievements of physical therapists and practices using outcomes of patients.

An example of an approach for daily practice is comparing outcomes and receiving feedback from supervisors or colleagues in peer-review assessments. In such an approach, it is important to formulate explicit targets and action plans to enhance quality improvement initiatives. A plan-do-study-act (PDSA) cycle is a way to provide a structure for iterative testing and evaluation of change to improve quality of care. When using the PDSA cycle, physical therapists and physical therapy practices can define action plans that are based on their own specific learning goals. The quality indicators can play a key role in this process, thus leading to a substantial improvement in the care for patients with NSLBP.

As also mentioned by participating physical therapists in our focus groups, an important condition for comparing outcomes between peers is creating a safe environment to share and discuss real-world
A safe environment for learning purposes stimulates the possibility to learn from each other, to try different treatment approaches and to learn from mistakes, and thus to increase outcomes for future patients based on the interpretation of outcomes. Recently, Dutch physical therapy associations in physical therapy have developed manuals that guide peer assessment meetings in comparing real-world outcomes data as an instrument for continuous quality improvement. The next step is to investigate the impact of these meetings on quality of care.

[H2] Limitations

The most relevant limitation of our study is that many physical therapists did not reach the threshold of 30 treatment episodes with repeated measurements of PROMs, and they were therefore excluded for the multilevel analysis, and therefore from the comparison between physical therapists and practices. Moreover, the missing values on the SBT prohibited us to perform the multilevel analysis with the subgroups based on the SBT, while these subgroups were judged as clinically relevant by the physical therapists. This was confirmed by the descriptive statistics (Tab. 3) showing differences in baseline and change scores between the subgroups.

There are several possible reasons that many physical therapists did not provide >30 patients with NSLBP, including low motivation for data sampling or having problems with data sampling routines in physical therapists, low motivation or missing skills to answer the questionnaires in patients, and technical issues with data extraction from the EHR to the national registries. Physical therapists in the Netherlands register their data via various EHR vendors that are responsible for providing data to national data registries. Each EHR has its own data infrastructure, interface and privacy policy, which makes it complex to standardize outcomes in national data registries. Hence, standardizing outcomes of patients for each EHR vendor is time-consuming and requires collaboration of all stakeholders, including researchers, physical therapists, policy makers and most importantly the EHR vendors itself to solve technical issues. For example, technical issues can be identified and addressed by conducting end-to-end validations to investigate whether outcomes provided by physical therapists and patients are correctly documented in a national registry.
To implement the use of patient-reported outcome-based quality indicators in daily practice, an analysis of implementation determinants hindering or facilitating the data sampling process is necessary. These determinants are needed to choose strategies to improve the process from data sampling to data evaluation and to change practice routines.\[^{38}\] It is obvious that not a single implementation strategy will be sufficient while differences between practices are large, so the implementation strategies should be tailored to determinants relevant in individual practices. However, studies in the past showed that using implementation strategies considerably increases the registration in physical therapist practice.\[^{2,39,40}\]

Moreover, a qualitative study in physical therapy patients showed that they are motivated to use PROMs if physical therapists explain the added value.\[^{41}\] Therefore, we conclude that the next step should be focused on tailored implementation strategies to enable, motivate and train patients and physical therapists to structurally register PROMs by solving technical and organizational issues with data sampling by patients and data extraction from EHRs.

Another limitation is that our study did not use a formal voting system to reach consensus in the selection of the core set, as is common in Delphi studies for developing quality indicators.\[^{42}\] However, the majority in each of the four focus groups selected the same outcome-based quality indicators. We think the absence of a formal voting system did not affect the selection of the core set of indicators.

In the current study we used convenience sampling for recruiting physical therapists. This may potentially have led to selection bias of Dutch physical therapists enthusiastic for participation in a study collecting and comparing their outcomes with their peers.

Indicators using the MCID were expressed as the percentage (with 95% CI) of patients who experienced a MCID between pretreatment and posttreatment to measure whether improvements in the outcome were clinically relevant. Natural history and regression to the mean are potential confounders that may influence indicator scores. However, we did not aim to perform an effectiveness study in a controlled setting, and we \textit{explored} for the explained variation of real-world outcomes on the level of physical therapist practice. Still, when using MCID scores in quality indicators, the minimal detectable change (MDC) needs also be taken into account because the MCID scores may be smaller than the minimal detectable changes (MDCs) of investigated PROMs. In the current study, the MDC of included
measures where all within or the same as the MCID, for the PSFS: 1.443 (MCID 2 points) QBPDS 15.8 points 44 (MCID 20 points) NPRS 2 points 45 (MCID 2 points).

Future work is required to identify more patient characteristics that could influence treatment outcomes of physical therapists or physical therapy practices. For example, socioeconomic status (SES) or recurrences of episodes in the same patient could be used as a case-mix variable in the multilevel analysis.

[H2] Conclusion

This study has defined, described and selected a core set of outcome-based quality indicators based on cohort data and consensus. The core set was accepted by users and stakeholders for having added value for daily practice in physical therapy primary care and was found useful for quality improvement initiatives. Further studies should focus on further tailored implementation strategies that stimulate the use of the core set of outcome-based quality indicators, to register PROMs routinely for monitoring the quality of physical therapy care, and to use the indicators in plan-do-study-act cycles by evaluating specific improvement goals at the level of physical therapists or physical therapy practices.

Author Contributions
Concept/idea/research design: A.C. Verburg, S. Dulmen, H. Kiers, P. van der Wees
Writing: A.C. Verburg, S. Dulmen, H. Kiers, M. Nijhuis-van der Sanden
Data collection: A.C. Verburg, S. Dulmen, H. Kiers
Data analysis: A.C. Verburg
Project management: A.C. Verburg, P. van der Wees
Fund procurement: S. Dulmen, H. Kiers
Providing participants: A.C. Verburg, S. Dulmen, H. Kiers
Providing facilities/equipment: A.C. Verburg, S. Dulmen, H. Kiers
Providing institutional liaisons: A.C. Verburg, S. Dulmen, H. Kiers, P. van der Wees
Clerical/secretarial support: A.C. Verburg,
Consultation (including review of manuscript before submitting): S. Dulmen, H. Kiers, P. van der Wees

Acknowledgments
The authors acknowledge the following individuals: Juliette Crujsberg and Janine Liefers, research members; Francois Maissan, Bob van den Meiracker, Jasper Bier, and Harald Miedema, senior researchers; and all physical therapists who participated and provided data or participated in the focus group meetings.

Funding
Funding support for this study was provided by Dutch health insurers CZ & the Friesland.

Ethical Approval
All procedures were conducted according to the Declaration of Helsinki. The study protocol was approved by the Medical Ethical Committee of Radboud University Medical Center (registration no. 2019-5455).

Disclosures
The authors completed the ICMJE Form for Disclosure of Potential Conflicts of Interest and reported no conflicts of interest.

H. Kiers is a member of the board of directors of the Association for Quality in Physical Therapy (SKF), which made the data of participating physical therapists available for this study free of charge.

P. van der Wees serves on the Editorial Board of PTJ and on the American Physical Therapy Association’s Scientific Advisory Panel.
References

1. Westby MD, Klemm A, Li LC, Jones CA. Emerging role of quality indicators in physical therapist practice and health service delivery. Physical Therapy. 2016;96(1):90-100.
2. Meerhoff GA, van Dulmen SA, Maas MJM, Heijblom K, Nijhuis-van der Sanden MWG, Van der Wees PJ. Development and Evaluation of an Implementation Strategy for Collecting Data in a National Registry and the Use of Patient-Reported Outcome Measures in Physical Therapist Practices: Quality Improvement Study. Physical Therapy. 2017;97(8):837-51.
3. van der Wees PJ, Verkerk EW, Verbiest MEA, Zuidgeest M, Bakker C, Braspennning J, et al. Development of a framework with tools to support the selection and implementation of patient-reported outcome measures. Journal of Patient-Reported Outcomes. 2019;3(1):75.
4. Cella D, Hahn EA, Jensen SE, Butt Z, Nowinski CJ, Rothrock N, editors. Methodological issues in the selection, administration, and use of patient-reported outcomes in performance measurement in health care settings. NQF (NQF), Washington, DC: National Quality Forum (NQF); 2012.
5. Patient Reported Outcomes (PROs) in Performance Measurement: National Quality Forum (NQF); 2012.
6. Campbell SM, Braspennning J, Hutchinson A, Marshall MN. Research methods used in developing and applying quality indicators in primary care. BMJ. 2003;326(7393):816-9.
7. Verburg AC, van Dulmen SA, Kiers H, Nijhuis-van der Sanden MWG, van der Wees PJ. Development of a standard set of outcome measures for non-specific low back pain in Dutch primary care physiotherapy practices: a Delphi study. European Spine Journal. 2019;28(7):1550-64.
8. Weldring T, Smith SM. Patient-Reported Outcomes (PROs) and Patient-Reported Outcome Measures (PROMs). Health Serv Insights. 2013;6:61-8.
9. Kessel P, Triemstra, M., Boer, D. de. Handreiking voor het meten van kwaliteit van zorg met Patient Reported Outcome Measures 2014. Accessed April 14, 2021. https://nivel.nl/sites/default/files/bestanden/Handreiking-meten-kwaliteit-zorg-met-Patient-Reported-Outcome-Measures.pdf.
10. Greenhalgh J, Dalkin S, Gooding K, Gibbons E, Wright J, Meads D, et al. Health Services and Delivery Research. Functionality and feedback: a realist synthesis of the collation, interpretation and utilisation of patient-reported outcome measures data to improve patient care. Southampton (UK): NIHR Journals Library; 2017.
11. Hill JC, Dunn KM, Lewis M, Mullis R, Main CJ, Foster NE, et al. A primary care back pain screening tool: identifying patient subgroups for initial treatment. Arthritis and Rheumatism. 2008;59(5):632-41.
12. Staal J, Hendriks E, Heijmans M, Kiers H, Lutgers-Boomsma G, Rutten G. KNGF-richtlijn Lage rugpijn Verantwoording en toelichting. KNGF. 2013;21.
13. Hildon Z, Neuburger J, Allwood D, van der Meulen J, Black N. Clinicians' and patients' views of metrics of change derived from patient reported outcome measures (PROMs) for comparing providers' performance of surgery. BMC health services research. 2012;12:171.
14. Ali A, Ali S, Khan SA, Khan DM, Abbas K, Khalil A, et al. Sample size issues in multilevel logistic regression models. PloS one. 2019;14(11):e0225427-e.
15. Koolman X, Zuidegeest M, Visser J, Appelman M. Indicatorstandaard 2.0: Methodologische criteria voor de ontwikkeling van betrouwbare kwaliteitsindicatoren in de zorg. 2012.
16. Twisk JWR. Applied Mixed Model Analysis: A Practical Guide. 2 ed. Cambridge: Cambridge University Press; 2019.
17. Boer D, Triemstra M, Koopman L, Zuidegeest M. Tool Analyses ; voor het vergelijken van patiëntervaringen tussen zorgaanbieders | versie 1.0 2016
18. Goldstein H, Michael JRH. The Graphical Presentation of a Collection of Means. Journal of the Royal Statistical Society Series A (Statistics in Society). 1995;158(1):175-7.
19. Hildon Z, Allwood D, Black N. Making data more meaningful: patients' views of the format and content of quality indicators comparing health care providers. Patient education and counseling. 2012;88(2):298-304.
20. Hildon Z, Allwood D, Black N. Patients' and clinicians' views of comparing the performance of providers of surgery: a qualitative study. Health Expect. 2015;18(3):366-78.
21. Petersson IF, Strombeck B, Andersen L, Cimmino M, Greiff R, Loza E, et al. Development of healthcare quality indicators for rheumatoid arthritis in Europe: the eumusc.net project. Ann Rheum Dis. 2014;73(5):906-8.
22. Westby MD, Marshall DA, Jones CA. Development of quality indicators for hip and knee arthroplasty rehabilitation. Osteoarthritis and cartilage. 2018;26(3):370-82.
23. Peter WF, Hurkmans EJ, Wees PJvd, Hendriks EJM, Bodegom-Vos Lv, Vlieland TPMV. Healthcare Quality Indicators for Physiotherapy Management in Hip and Knee Osteoarthritis and Rheumatoid Arthritis: A Delphi Study. Musculoskeletal Care. 2016;14(4):219-32.
24. Scholte M, Neeleman-van der Steen CW, Hendriks EJ, Nijhuis-van der Sanden MW, Braspenning J. Evaluating quality indicators for physical therapy in primary care. International journal for quality in health care: journal of the International Society for Quality in Health Care. 2014;26(3):261-70.
25. Oostendorp RA, Rutten GM, Dommerholt J, Nijhuis-van der Sanden MW, Harting J. Guideline-based development and practice test of quality indicators for physiotherapy care in patients with neck pain. J Eval Clin Pract. 2013;19(6):1044-53.
26. Oostendorp RAB, Elvers JWH, van Trijffel E, Rutten GM, Scholten-Peeters GGM, Heijmans M, et al. Relationships Between Context, Process, and Outcome Indicators to Assess Quality of Physiotherapy Care in Patients with Whiplash-Associated Disorders: Applying Donabedian's Model of Care. Patient Prefer Adherence. 2020;14:425-42.
27. Chiarotto A, Boers M, Deyo RA, Buchbinder R, Corbin TP, Costa LOP, et al. Core outcome measurement instruments for clinical trials in nonspecific low back pain. Pain. 2018;159(3):481-95.
28. Chiarotto A, Deyo RA, Terwee CB, Boers M, Buchbinder R, Corbin TP, et al. Core outcome domains for clinical trials in non-specific low back pain. European Spine Journal. 2015;24(6):1127-42.
29. Clement RC, Welander A, Stowell C, Cha TD, Chen JL, Davies M, et al. A proposed set of metrics for standardized outcome reporting in the management of low back pain. Acta orthopaedica. 2015;86(5):523-33.
30. Deyo RA, Battie M, Beurskens AJ, Bombardier C, Croft P, Koes B, et al. Outcome measures for low back pain research. A proposal for standardized use. Spine. 1998;23(18):2003-13.
31. Bombardier C. Outcome assessments in the evaluation of treatment of spinal disorders: summary and general recommendations. Spine. 2000;25(24):3100-3.
32. Ivers N, Jamtvedt G, Flottorp S, Young JM, Olggaard-Jensen J, French SD, et al. Audit and feedback: effects on professional practice and healthcare outcomes. The Cochrane database of systematic reviews. 2012(6):Cd000259.
33. Maas MJM, Driehuis F, Meerhoff GA, Heerkens YF, van der Vleuten CPM, Nijhuis-van der Sanden MWG, et al. Impact of Self- and Peer Assessment on the Clinical Performance of Physiotherapists in Primary Care: A Cohort Study. Physiother Can. 2018;70(4):393-401.
34. Taylor MJ, McNicholas C, Nicolay C, Darzi A, Bell D, Reed JE. Systematic review of the application of the plan-do-study-act method to improve quality in healthcare. BMJ Qual Saf. 2014;23(4):290-8.
35. Maas MJ, Nijhuis-van der Sanden MW, Driehuis F, Heerkens YF, van der Vleuten CP, van der Wees PJ. Feasibility of peer assessment and clinical audit to self-regulate the quality of physiotherapy services: a mixed methods study. BMJ open. 2017;7(2):e013726.
36. Maas MJ, de Leur M, Wees PJvd, Kiers H. Peer review - meetinformatie gebruiken om te leren en verbeteren 2020. Accessed April 14, 2021. https://www.keurmerkfysiotherapie.nl/wp-content/uploads/2020/06/peer-review-2020-thema-1-data-1.0.pdf.
37. Maas MJ, van Poelgeest E, Weymans C, Wees PJvd. Module 3 feedback op proces en uitkomsten KNGF. 2018.
38. van Achterberg T, Schoonhoven L, Grol R. Nursing implementation science: how evidence-based nursing requires evidence-based implementation. J Nurs Scholarsh. 2008;40(4):302-10.
39. Baker R, Camosso-Stefinovic J, Gillies C, Shaw EJ, Cheater F, Flottorp S, et al. Tailored interventions to address determinants of practice. The Cochrane database of systematic reviews. 2015;2015(4):Cd005470.
40. Bosch M, van der Weijden T, Wensing M, Grol R. Tailoring quality improvement interventions to identified barriers: a multiple case analysis. J Eval Clin Pract. 2007;13(2):161-8.
41. Meerhoff GA, van Dulmen SA, Maas MJM, Bakker-Jacobs A, Nijhuis-Van der Sanden MWG, van der Wees PJ. Exploring the perspective of patients with musculoskeletal health problems in primary care on the use of patient-reported outcome measures to stimulate quality improvement in physiotherapist practice; a qualitative study. Physiotherapy theory and practice. 2019:1-12.
42. Boukkedid R, Abdoul H, Loustau M, Sibony O, Alberti C. Using and Reporting the Delphi Method for Selecting Healthcare Quality Indicators: A Systematic Review. PLOS ONE. 2011;6(6):e20476.
43. Maughan EF, Lewis JS. Outcome measures in chronic low back pain. European spine journal : official publication of the European Spine Society, the European Spinal Deformity Society, and the European Section of the Cervical Spine Research Society. 2010;19(9):1484-94.

44. Demoulin C, Ostelo R, Kottnerus JA, Smeets RJ. Quebec Back Pain Disability Scale was responsive and showed reasonable interpretability after a multidisciplinary treatment. J Clin Epidemiol. 2010;63(11):1249-55.

45. Childs JD, Piva SR, Fritz JM. Responsiveness of the numeric pain rating scale in patients with low back pain. Spine. 2005;30(11):1331-4.

46. Ostelo RW, Deyo RA, Stratford P, Waddell G, Croft P, Von Korff M, et al. Interpreting change scores for pain and functional status in low back pain: towards international consensus regarding minimal important change. Spine. 2008;33(1):90-4.

47. Farrar JT, Young JP, Jr., LaMoneaux L, Werth JL, Poole RM. Clinical importance of changes in chronic pain intensity measured on an 11-point numerical pain rating scale. Pain. 2001;94:149-58.

48. van Dulmen SA, van der Wees PJ, Bart Staal J, Braspenninck JCC, Nijhuis-van der Sanden MWG. Patient reported outcome measures (PROMs) for goalsetting and outcome measurement in primary care physiotherapy, an explorative field study. Physiotherapy. 2017;103:66-72.

49. Schoppink LE, van Tulder MW, Koes BW, Beurskens SA, de Bie RA. Reliability and validity of the Dutch adaptation of the Quebec Back Pain Disability Scale. Phys Ther. 1996;76:268-75.

50. Ostelo RW, de Vet HC. Clinically important outcomes in low back pain. Best practice & research Clinical rheumatology. 2005;19:593-607.

51. McCaffery M. Using the 0-to-10 pain rating scale. The American journal of nursing. 2001;101:81-2.

52. Froud R, Fawkes C, Foss J, Underwood M, Carnes D. Responsiveness, Reliability, and Minimally Important and Minimal Detectable Changes of 3 Electronic Patient-Reported Outcome Measures for Low Back Pain: Validation Study. J Med Internet Res. 2018;20:e272-e.

53. Beurskens AJ, de Vet HC, Koke AJ, Lindeman E, van der Heijden GJ, Regttop W, et al. A patient-specific approach for measuring functional status in low back pain. Journal of manipulative and physiological therapeutics. 1999;22:144-8.

54. Barten JA, Pisters MF, Huisman PA, Takken T, Veenhof C. Measurement properties of patient-specific instruments measuring physical function. J Clin Epidemiol. 2012;65:590-601.

55. Hudak PL, Wright JG. The characteristics of patient satisfaction measures. Spine. 2000;25:3167-77.

56. Kamper SJ, Ostelo RW, Knol DL, Maher CG, de Vet HC, Hancock MJ. Global Perceived Effect scales provided reliable assessments of health transition in people with musculoskeletal disorders, but ratings are strongly influenced by current status. J Clin Epidemiol. 2010;63:760-6.e1.

57. Kopec JA, Esdaile JM, Abrahamowicz M, Abenhaim L, Wood-Dauphinee S, Lamping DL, et al. The Quebec Back Pain Disability Scale. Measurement properties. Spine. 1995;20:341-52.

58. Fairbank JC, Couper J, Davies JB, O’Brien JP. The Oswestry low back pain disability questionnaire. Physiotherapy. 1980;66:271-3.
59. Chiarotto A, Maxwell LJ, Terwee CB, Wells GA, Tugwell P, Ostelo RW. Roland-Morris Disability Questionnaire and Oswestry Disability Index: Which Has Better Measurement Properties for Measuring Physical Functioning in Nonspecific Low Back Pain? Systematic Review and Meta-Analysis. Phys Ther. 2016;96:1620-37.
Table 1. Example of a Quality Indicator Monitoring the Process for Pain Intensity Measured with the Numeric Pain Rating Scale (NPRS)

Definition	The percentage of patients with low back pain who received physical therapist treatment and who completed the NPRS pretreatment and posttreatment to evaluate pain intensity.
Rationale	Pain reduction is an important goal after physical therapist treatment. Pain management is measured with the NPRS.
Numerator	The number of patients who received physical therapist treatment and who completed the NPRS pretreatment and posttreatment.
Denominator	All patients who received physical therapist treatment.
Specification	Pain intensity is measured in all patients using an 11-point NPRS, with 0 points being no pain at all and 10 points being unbearable pain.
Type of indicator	Process.

Table 2. Descriptive Statistics of Included Patients and Number of Participating Physical Therapists and Practices, Stratified Per Start Back Tool Profile and for the Total Population

Number of treatment episodes in the dataset	Total N = 72,226	SBT I N = 10,807	SBT II N = 5310	SBT III N = 1412
Number of completed treatment episodes	Total N = 65,815	SBT I N = 9580	SBT II N = 4703	SBT III N = 1300
Percentage of female patients	52.5%	47.3%	53.9%	55.5%
Mean age of patients (SD)	51.3 (16.9)	50.1 (16.3)	52.9 (16.1)	54.1 (16.2)
Percentage of patients with complaints <3 months	78.7%*	83.7%	88.6%	72.8%
Mean treatment frequency	7.0 (7.3)	5.6 (5.0)	7.1 (6.5)	7.6 (7.3)
Mean treatment weeks	9.2 (12.8)	7.2 (9.8)	8.3 (10.2)	8.7 (10.7)
Number of physical therapists who provided the data	1009	687	579	313
Number of physical therapy practices that provided the data	219	179	181	130

*MCID = minimal clinically important difference.

Based on 34,460 patients in the dataset due to missing data. The total number of provided patient records, physical therapists and practices differs between the SBTs and total data, as an SBT was not registered in the data in all provided patient records.
Table 3. Descriptive Statistics of Mean PROM Scores (Unadjusted) for the Total Population and Stratified Per SBT Profile

	NPRS	PSFS	QBPDS	GPE-DV\(^a\)
Percentage of female patients	51.9%	52.1%	51.1%	50.2%
Mean age patients (SD)	51.9 (16.8)	50.8 (16.7)	51.5 (16.4)	51.4 (16.4)
Percentage of patients with complaints <3 months	79.2%	78.9%	79.3%	80.8%
Number treatment episodes with baseline measures	44,251	46,016	26,142	-
Mean baseline score (SD)	6.3 (1.8)	6.8 (1.92)	36.8 (19.1)	-
Included patients with end scores	22,740	17,540	12,620	8,171
Mean end score	3.3 (2.8)	2.8 (2.4)	12.6 (15.3)	
Mean change Tend-T0 (SD)	30 (3.1)	4.2 (2.6)	26.1 (19.2)	1.8\(^b\)
MCID of each PROM (reference)	>2 points (46, 47)	>2 points (48)	>20 points (46, 49)	Score 1 or 2 (50)
Percentage patients improved\(^c\)	71.5%	83.8%	57.5%	84.8%
Percentage patients stabilized\(^c\)	20%	14.9%	41.7%	15.1%
Percentage patients deteriorated\(^c\)	8.5%	1.3%	0.8%	0.1%
Number of physical therapists that provided data	935	967	879	543
Number of practices that provided data	202	210	202	145
Number of treatment episodes profile SBT I	7177	7485	6699	2448
SBT I: mean change Tend-T0 (SD)	4.0 (2.2)	4.4 (2.3)	23.2 (17.4)	-
Number of treatment episodes profile SBT II	4189	4215	3799	1718
SBT II: mean change Tend-T0 (SD)	4.3 (2.3)	4.7 (2.6)	28.6 (19.3)	-
Number of treatment episodes profile SBT III	1,195	1,196	1,044	294
SBT III: mean change Tend-T0 (SD)	4.1 (2.5)	4.5 (3.7)	32.7 (23.4)	-
aGPE-DV = Global Perceived Effect - Dutch Version; MCID = minimal clinically important difference; NPRS = Numeric Pain Rating Scale; PROM = patient-reported outcome measures; PSFS = Patient Specific Functional Scale; QBPDS = Quebec Back Pain Disability Scale; SBT = Start Back Tool.
bGPE is monitored only at the end of the treatment.
cImproved, stabilized, or deteriorated based on MCID cutoff points.

Table 4. Intraclass Correlation Coefficients for Intercept-Only Model and Adjusted Model for Change, End, and MCID Scores for Each PROMa

Physical Therapist Level	Practice Level	Intercept-only model	Adjusted model	Intercept-only model	Adjusted model
NPRS end score		0.12	0.12	0.08	0.08
NPRS change score		0.08	0.12^a	0.06	0.08^b
NPRS MCID		0.11	0.12^b	0.09	0.10^b
PSK end score		0.12	0.12	0.09	0.09
PSK change score		0.13	0.16^b	0.08	0.11^b
PSK MCID		0.16	0.17^a	0.11	0.12^a
QBPDS end score		0.15	0.16^a	0.15	0.15
QBPDS change score		0.20	0.30^b	0.12	0.21^b
QBPDS MCID^c		0.10	0.13^b	0.10	0.13^b
GPE-DV end score		0.18	0.18	0.10	0.10
GPE-DV MCID		0.14	0.14	0.13	0.13

With repeated measures for the total population on practice level and physical therapist level that provided >30 patients. GPE-DV = Global Perceived Effect – Dutch Version; MCID = minimal clinically important difference; NPRS = Numeric Pain Rating Scale; PSFS: Patient Specific Functional Scale; QBPDS = Quebec Back Pain Disability Scale; SBT = Start Back Tool.

^bIncrement of the ICC in comparison with the intercept-only model with adjustment for case-mix variables age, sex, chronicity, and begin score of the PROM.

^cFor the multilevel analysis of the QBPDS, an MCID of >20 points was used.
Table 5. Selected Core Set of Quality Indicators That is Accepted By Stakeholders on Usability and Perceived Added Value as Quality Improvement Tools Added

Type of indicator	PROM	Domain	Quality Indicator Description	Mean/Percentage	Range (SD)
Process	NPRS	Pain intensity	The percentage of patients with nonspecific low back pain who received physical therapy treatment and who completed the NPRS pretreatment and posttreatment to evaluate pain intensity	30%	0-80%
Process	PSFS	Physical activity	The percentage of patients with nonspecific low back pain who received physical therapy treatment and who completed the PSFS pretreatment and posttreatment with the PSFS to evaluate physical activity	25%	0-75%
Change	NPRS	Pain intensity	The mean change score + 95% CI of patients with nonspecific low back pain who received physical therapy treatment and are pre- and post-measured with the NPRS to evaluate pain intensity	3.8 (0.6)	2.3 - 5.8
Change	PSFS	Physical activity	The mean change + 95% CI score of patients with nonspecific low back pain who received physical therapy treatment and are pre- and post-measured with the PSFS to evaluate physical activity	4.2 (0.7)	2.7 – 7.0
Change	QBPDS	Physical function	The mean change score + 95% CI of patients with nonspecific low back pain who received physical therapy treatment and are pre- and post-measured with the QBPDS to evaluate physical functioning	24.6 (6.6)	11.2 – 43.4
MCID	GPE-DV	Perceived effect	The percentage of patients with nonspecific low back pain who received physical therapy treatment and experienced a MCID effect on the GPE-DV	88%	58% – 96%

CI = Confidence Interval; GPE-DV = Global Perceived Effect – Dutch Version; NPRS = Numeric Pain Rating Scale; PSFS = Patient Specific Functional Scale; QBPDS = Quebec Back Pain Disability Scale.
The mean/percentage and range are the outcomes of the cohort data that was used for describing and selecting the quality indicators for the core set.

Figure Caption

Process indicator:

End score outcome indicator:

Change score outcome indicator:

Experienced MCID score outcome indicator:

Figure. Visual representation of potential quality indicators at practice level.
\(^a\) The percentage of patients with low back pain who received physical therapist treatment in which a pre and/or post NPRS was used.
\(^b\) The mean end score with 95% CI on QBPDS of patients with nonspecific low back pain after physical therapist treatment.
\(^c\) The mean change score with 95% CI on PSFS of patients with nonspecific low back pain between pretreatment and posttreatment.
\(^d\) The percentage with 95% CI of patients with nonspecific low back pain who experienced a MCID on the NPRS between pretreatment and posttreatment. To measure whether improvements in the outcome were clinically relevant