QTL Validation and Development of SNP-based High Throughput Molecular Markers Targeting a Genomic Region Conferring Narrow Root Cone Angle in Aerobic Rice Production Systems

Ricky Vinarao
The University of Queensland School of Agriculture and Food Sciences

Christopher Proud
The University of Queensland School of Agriculture and Food Sciences

Peter Snell
NSW DPI: New South Wales Department of Primary Industries

Shu Fukai
The University of Queensland School of Agriculture and Food Sciences

Jaquie Mitchell (✉ jaquie.mitchell@uq.edu.au)
The University of Queensland School of Agriculture and Food Sciences
https://orcid.org/0000-0001-7641-7935

Research Article

Keywords: QTL validation, KASP, molecular markers, aerobic production, rice, root angle

DOI: https://doi.org/10.21203/rs.3.rs-636404/v1

License: This work is licensed under a Creative Commons Attribution 4.0 International License.
Read Full License
Abstract

Background

Aerobic rice production (AP) is a potential solution to the imminent global water crisis as it consumes less water than traditional permanent water culture. Narrow root cone angle (RCA) and subsequent development of deeper rooting systems are considered AP adaptation traits by enabling water uptake at depth. Quantitative trait loci (QTL), such as \(qRCA4 \), contributing to RCA variation in AP systems have been previously identified. However, their usefulness depends on validation in a range of genetic backgrounds, development of associated molecular markers, and identification of possible donors in other subpopulations.

Results

Using three \(F_2 \) bi-parental populations derived from IRAT109 crossed with three different genetic backgrounds, and genotypes with known \(qRCA \) composition, QTL validation were performed and molecular markers developed. \(qRCA4 \) was shown to be effective in multiple backgrounds, explaining 9.3-17.3% of the genotypic variation in the populations tested and the introgression of the favourable allele resulted in 11.7-15.1° narrower RCA. Novel kompetive allele specific PCR (KASP) molecular markers have been developed associated with narrow RCA. Core molecular marker quality metrics have shown robustness and breeding program specific utility of up to 83%. \(qRCA4 \) was further fine mapped into a 720 kb region. Analysis of candidate genes identified those related with plant response to abiotic stress stimulus together with root development. Available public database search found 178 potential donors representing major rice subpopulations and may be used readily by breeding programs.

Conclusion

This study validated \(qRCA4 \)’s effect in multiple genetic backgrounds further strengthening its value in improvement of rice genotypes for AP adaptation. Furthermore, the development of novel KASP markers has ensured the opportunity for its seamless introgression across pertinent breeding programs. Future research in metabolomic and transcriptomic analysis of QTL positive genotypes should improve the understanding of the physiological mechanisms underpinning narrow RCA and development of deeper rooting. Finally, this work provides the tools and opportunity to accelerate the development of genotypes with narrow RCA through marker assisted selection in breeding programs targeting AP, which may ultimately contribute to more sustainable rice production where water availability is limited.

Background

To feed the increasing number of rice consumers by 2030, world rice production has to increase by 40% (Khush 2005). This is a tall order considering the devastating negative effects of climate change such as looming water crisis brought about by climate change, increasing population, and higher food demand (Elliott et al. 2014). Aerobic rice production (AP) system is a promising technology which may provide
solutions to this conundrum. AP system is an intensive rice farming method consisting of direct seeded rice cultivation under non-flooded conditions and is usually well-irrigated (Kato et al. 2009). Compared with upland cultivation, AP has higher input levels and does not encounter drought (Kato and Katsura 2014). Although water availability in AP system is generally high, transient water deficit may develop between irrigation events. This is distinct from water deficit as commonly perceived in relatively low yielding upland cultivation.

Several physiological and morphological attributes have been postulated to minimise effect of intermittent water deficit and enable stable or increased rice yield in AP systems. These include (1) vigorous biomass production with harvest index ranging from 0.40-0.48, (2) improved yield component traits such as increased number of spikelets per unit area, (3) plants with intermediate height (<130 cm), larger and thicker tillers and leaves, and (4) improved root system architecture (RSA) such as increased rooting depth (Kato and Katsura 2014). RSA is the arrangement of the crop root system in terms of specific geometric configuration across a rooting medium, and is particularly important as it determines anchorage, soil nutrient and water exploitation, and developmental plasticity, which will ultimately affect maximum yield and yield stability. One of the components of RSA is rooting angle – root cone angle (RCA), is the plant's root angle relative to the vertical axis. Genotypes with narrow RCA tend to have deeper rooting systems (Uga et al. 2013a) and is therefore highly relevant for AP adaptation. Several experiments in upland field conditions with drought stress have shown the advantage given by narrow RCA. Using 12 cultivars, it was shown that narrow RCA was associated with development of deeper roots (Kato et al. 2006)). Similarly, genotypes with higher ratio of deep roots (RDR, narrow RCA) tended to have increased rooting depth in an upland field condition with drought stress (Uga et al. 2013a). The advantage of having deeper roots in an AP system was indicated with positive genetic correlations observed between percentage of deep roots and grain yield when a set of 20 diverse cultivars were evaluated (Mitchell et al. 2019). To facilitate the development of genotypes with narrower RCA and deeper rooting and their further inclusion in breeding programs, identification of genes and quantitative trait loci (QTL) governing these traits is imperative.

To date, a number of studies conducted in paddy fields or in transplanted systems identified genomic regions associated with rooting angle. Using Kinandang Patong, several deep rooting QTL (DRO1, DRO2, DRO3, DRO4, and DRO5) located in different chromosomes were identified (Kitomi et al. 2015; Uga et al. 2015; Uga et al. 2013a; Uga et al. 2013b). Of these, only DRO1 was cloned and was shown to increase rooting depth of genotypes with favourable allele, thereby stabilising rice yield in upland conditions and under drought stress. IRAT109, an upland tropical japonica (tropjap) genotype, was also utilised to map QTL for RDR in transplanted systems, identifying qRDR-2 as a genomic region located in chromosome 2 (Lou et al. 2015). Recently, novel, stable, consistently identified across environments and environment-specific genomic regions conferring narrow RCA were identified in AP systems (Vinarao et al. 2021). qRCA4 was found to be a major and stable QTL identified across all environments tested, and qRCA1.1 was a novel QTL which was also expressed in all environments. Of the environment specific QTL, qRCA2.1 and qRCA2.2 were found to be associated in intermittent water stress conditions (IWS) and was shown to have moderate to high effects. In order to facilitate the introgression
of these QTL in relevant breeding programs, it is imperative to demonstrate the effect of these genomic regions in multiple genetic backgrounds (Cobb et al. 2019). Additionally, molecular markers tagging these QTL, and ultimately the target trait – narrow RCA and deeper roots will also be vital for seamless introgression of these loci into breeding programs.

A number of molecular markers have been developed and used extensively in rice improvement efforts (Collard and Mackill 2008; Mackill and McNally 2004) including restriction fragment length polymorphism, random amplified polymorphic DNA, cleaved-amplified polymorphic sequence, simple sequence repeat (SSR), and single nucleotide polymorphism (SNP) markers. Numerous SSR markers were developed by McCouch et al. (2002) and their corresponding sequences are available online (https://archive.gramene.org/markers/). SSRs are most widely used markers in major cereals crops as they are highly reproducible, co-dominant, relatively simple and cheap to use, and generally highly polymorphic. SSRs do come with some disadvantages such that they generally give information to a single locus only per assay, have difficulty in merging data across platforms and cumbersome curation of allele sizes into databases. With the advent of whole genome sequence information, SNPs became the marker of choice for majority of high throughput genotyping applications because of (1) they are ubiquitous in eukaryotic genomes, (2) cost effectiveness in terms of assay and automation, and (3) simple allele calling, data analysis and curation into databases due to their bi-allelic nature (Thomson et al. 2017). Recently, high-density SNP chip called the Cornell-IR RiceLD Array have been developed at the International Rice Research Institute (IRRI) in collaboration with Cornell University (https://isl.irri.org/services/genotyping/7k). This chip allows for the simultaneous genotyping of a sample across 7,000 SNP loci including 21 gene-based SNP diagnostic for submergence tolerance SUB1A gene, grain quality characteristics, and loci for resistance to bacterial leaf blight, blast, brown planthopper, and tungro. One disadvantage of this SNP chip is that it is fixed (SNP markers and traits), similar to an amplicon-based SNP genotyping assay developed recently (Arbelaez et al. 2019a). On the other hand, there are a number of available high-throughput technologies able to run flexible sets of SNP markers. Kompetitive allele-specific polymerase chain reaction (KASP) marker assay is a single-step genotyping technology that uses two competing allele-specific forward primers, one reverse primer, and a master mix with a fluorescence resonance energy transfer cassette and Taq DNA polymerase. With this, pre-identified, co-dominant alleles for SNPs and insertion/deletion variants between parents, progeny, and other genotypes being tested are determined (Semagn et al. 2014). The Genotyping Services lab of IRRI have developed and validated trait based KASP SNP markers for the following: yield components (grain number, grain size, and panicle architecture), grain quality (amylose, chalk, and gelatinization temperature), abiotic stress tolerance (anaerobic germination, drought, cold, and submergence), and disease and pest resistance (bacterial blight, blast, brown planthopper, and tungro) (https://isl.irri.org/services/genotyping/development-based-genotyping). To our knowledge, KASP SNP markers targeting root angle, whether in conventional flooded or AP systems, have not been developed and validated to date. Using genotypes with known qRCA composition and newly developed segregating populations, this study was carried out to validate the effect of qRCA QTL across several genetic backgrounds and to develop KASP-based SNP markers targeting qRCA QTL for its precise introgression
into various genetic backgrounds pertinent to rice breeding programs, particularly targeting environments exposed to transient water deficit. Additionally, this study also determined molecular marker quality metrics of the newly developed markers and identified potential donors using publicly available databases.

Methods

Plant materials

To validate the effect of target QTL in different genetic backgrounds, progenies were produced between IRAT109 and three recipient parents (RP), RL11, Langi, and Norin PL8. F_1s were produced by crossing IRAT109 with RPs, and subsequently, F_2 progenies were produced by selfing F_1s. A total of 810 F_2 progenies were genotyped and evaluated for RCA. Of these, 283, 196, and 331 were derived from crosses between IRAT109/Norin PL8 (IRNO), IRAT109/Langi (IRLA), and IRAT109/RL11 (IRRL), respectively. A total of 60 genotypes were utilised to test the molecular marker quality metrics of the newly developed markers. Of these, six were either released varieties or donors of high importance to the Australian breeding program – IRAT109, Sherpa, Reiziq, Langi, RL11, and Norin PL8. The other 54 genotypes were recombinant inbred lines (RILs) derived from Sherpa/IRAT109 and were previously identified to have varying combinations of QTL for RCA (Vinarao et al. 2021).

Phenotyping for RCA

Three experiments were carried out to evaluate the segregating populations developed above, along with the six varieties/checks following the clear pot method described by Vinarao et al. (2021), with some modifications, at the University of Queensland (UQ) St Lucia (27.4975° S, 153.0137° E) campus. Briefly, single seeds of F_2s and check genotypes were direct seeded in 4L clear pots (ANOVApot®, 200 mm diameter, 190 mm height, http://www.anovapot.com/php/anovapot.php) filled with pine bark potting media (70% composted pine bark 0–5 mm, 30% coco peat, pH 6.35, EC = 650 ppm, nitrate = 0, ammonia < 6 ppm and phosphorus = 50 ppm) with 3g/L Osmocote Exact 3-4M (19-9-10 + 2MgO + TE, ICL Specialty Fertilizers), 2g/L Osmocote Exact 5-6M (15-9-12 + 2MgO + TE) and 0.82g/L Suscon Maxi Green (Nufarm, Australia). Using a pair of forceps, seeds were sown vertically at a depth of 3 cm along the pot wall with a final density of 12 plants per pot. In every experiment, parental genotypes for each specific F_2 population were replicated in every pot, while the other check genotypes were replicated every incomplete block (four clear pots/incomplete block). To prevent penetration of light, similar sized black pots were used to cover the clear pots. Pots were placed on a table and a constant layer of water (~ 4 cm from the base of the inner pot) was maintained to mimic aerobic growing conditions. The experiments were carried out in a temperature-controlled glasshouse set at 28°C/21°C day/night temperatures with natural light. RCA were measured manually 35, 42, and 49 days after sowing (DAS) using a protractor, by measuring the cone angle between the two most external nodal roots.

Development of KASP SNP molecular markers
SNP variations across target QTL regions were investigated using the 3K Rice Genome Project (3KRGP) database which included IRAT109, the main donor genotype in this study as well as six varieties relevant to the Australian breeding program (M7, M102, M401, M203, Calrose 76, and YRM6-2). For \(qRCA4 \), SNPs unique to IRAT109 were identified along the region, ± 100kb upstream and downstream the QTL's confidence interval. Using the SNPs identified, linkage disequilibrium (LD) in the region was investigated using TASSEL (Bradbury et al. 2007) by computing the standardised disequilibrium coefficient (D') from the full matrix, in both the japonica sub-group and all the genotypes included in 3KRGP. Additionally, allele frequencies of the selected SNPs were also determined using the SNP-Seek database (Mansueto et al. 2017). Their relative allele frequencies were noted in different populations: tropjap, subtropical japonica (subtrop), temperate japonica (tempjap), and in all 3KRGP (japonica, indica, and admixed, all3K). SNPs having the desired allele frequencies were selected and analysed further. DNA sequence surrounding the SNP of interest (± 200 bp) were downloaded from the SNP-Seek database and multiple sequence alignment was carried out using CLUSTALW implemented in Molecular Evolutionary Genetic Analysis X (Kumar et al. 2018) software to ascertain that the region surrounding the target SNP was fairly conserved or with minimal variation. Finally, the downloaded IRAT109 sequence was aligned through basic local alignment search tool with the Nipponbare sequence implemented in the Rice Annotation Project Database (RAP-DB) to confirm that the regions selected were unique and only occurred in the target chromosome. SNPs and their surrounding sequences which passed the criteria described above were compiled and sent to Intertek, Australia (https://www.intertek.com/agriculture/agritech/) for subsequent development of KASP molecular markers. To constitute a plate to validate newly designed molecular markers, IRAT109 and Sherpa were replicated four times while Reiziq, Langi, RL11, and Norin PL8 were replicated thrice. Leaf samples of IRAT109 were also combined with other genotypes (Sherpa, Reiziq, Langi, RL11, and Norin PL8) to create heterozygotes (a total of 20 samples). To complete the set, leaf samples of the 54 RILs derived from IRAT109/Sherpa were also included, bringing the total to 94. Two 4–6 mm leaf samples were sampled and placed per well of an Abgene™ 96 deepwell storage plate (ThermoFisher Scientific, USA) to constitute the validation plate. Leaf samples were subsequently freeze-dried at -55°C for 48 h using Alpha 1–2 LDplus (Martin Christ, Germany) and then sealed using 96-well sealing mats (ThermoFisher Scientific, USA). Upon selection of well-performing markers, a similar method was used to prepare the F\(_2\) segregating genotypes. KASP genotyping of validation genotypes and segregating population was carried out at the Intertek, Australia laboratory following standard manufacturer specifications.

Molecular marker and QTL validation

Cluster graph for each SNP genotyping assay was visualised using KlusterCaller™ and SNPviewer software (LGC Biosearch Technologies, UK). In some instances where automated SNP genotype calling of the software classified some individuals into ‘uncallable’ but were clearly belonging into a cluster, these were manually called into their respective cluster genotypes. Newly developed KASP molecular markers were evaluated for core quality metrics as described by Platten et al. (2019), which included call rate, false positive rate (FPR), false negative rate (FNR) and utility. FPR was the proportion (percent, %) of
known genotypes (recipients) which were incorrectly classified as having the QTL, and was computed with the following equation:

\[FPR(\%) = \frac{\# of recipients with favourable allele}{Total \# of known recipients} \times 100 \]

On the other hand, FNR was the proportion of donor genotypes (known to harbour QTL) which were incorrectly classified to not possess the QTL due to not having the favourable allele of a marker, and was given by the following equation:

\[FNR(\%) = \frac{\# of donors with unfavourable allele}{Total \# of known donors} \times 100 \]

To estimate these molecular marker metrics, a set of 60 genotypes identical to the genotypes specified above were assembled and genotyped using the newly designed KASP markers targeting \textit{qRCA4, qRCA1.1, qRCA2.1, and qRCA2.2}. Of the 54 RILs, 23, 22, 21, and 30 of them had \textit{qRCA4, qRCA1.1, qRCA2.1, and qRCA2.2}, respectively. Based on the QTL composition of the RILs, FPR and FNR of the individual markers were analysed and were subsequently used to select markers used to genotype the segregating F\textsubscript{2} populations for succeeding QTL validation.

Three F\textsubscript{2} populations: IRLA, IRNO and IRRL were genotyped with selected markers to validate the effect of \textit{qRCA} QTL across genetic backgrounds. Composite interval mapping was carried out to validate the effect of \textit{qRCA4} across multiple genetic backgrounds, and then stepwiseqtl, refineqtl, and fitqtl functions in R/qtl were used to estimate the QTL effect (Broman et al. 2003). Bayesian credible confidence interval was determined using bayesint function of R/qtl. Single marker analysis (SMA) was carried out in R (R Core Team 2019) to test for the association of marker with RCA in case of \textit{qRCA1.1, qRCA2.1, and qRCA2.2} and \(R^2 \) was computed to estimate the proportion of phenotypic variation contributed by individual markers to the phenotype.

Identification of candidate genes and possible donors present in 3KRGP

Using the new confidence interval calculated for \textit{qRCA4}, details of the annotated genes located within the region were batch downloaded from RAP-DB which included information such as gene ID, gene function, strand, physical position, and gene ontology (Sakai et al. 2013). Possible candidate genes controlling \textit{qRCA4}-mediated reduction in RCA were identified based on the gene function along with ontology, giving priority with those involved in root development as well as those related with response to abiotic stress stimulus.

Allele frequencies of the candidate SNP molecular markers were investigated using the 3KRGP data available online (Mansueto et al. 2017). Genotypes possessing the favourable \textit{qRCA4} allele were
identified in each subpopulation which may represent donors for breeding programs dealing with specific subpopulations.

Statistical analysis

A multiplicative mixed linear model was carried out for the analysis of the phenotype data per population which was executed in ASReml (V4.1; VSNi, UK) package running in the R environment (R Core Team 2019). Parents of the respective F₂ population and other checks were treated as fixed effects while the F₂ plants were treated as random effects. Best linear unbiased predictors were then calculated after accounting for the randomisation and other blocking parameters. Heritability for each experiment (F₂ population) was computed as specified by Smith et al. (2006). Additionally, chi-square test for deviation from expected Mendelian F₂ segregation ratios (1:2:1) of the SNP genotype data was carried out across the three populations to show either conformance or deviation with expected ratios.

Results

Phenotypic variation of the segregating populations

Highly significant variation ($P<0.001$) for RCA was observed in all three F₂ populations across each of the three measurement times, with 42 DAS showing the highest heritability ranging from 0.67–0.69 (Table 1). Highly significant positive correlations were also observed between measurement times in the three populations for IRNO ($r=0.61–0.82^{**}$), IRLA ($r=0.68–0.87^{**}$), and IRRL ($r=0.76–0.89^{**}$) populations, respectively with the highest correlation between RCA measured at 42 and 49 DAS for each population. With these results across the populations tested and the relatively high heritability, the data collected from 42 DAS was used in subsequent analyses.
Table 1

RCA (°) statistics of F$_2$s derived from crossing IRAT109 with three recipient parents.

	IRLA (n = 196)	IRRL (n = 331)	IRNO (n = 283)
Mean	90	98	85
Min	67	68	63
Max	124	130	116
P value	< 0.0001	< 0.0001	< 0.0001
Heritability	0.69	0.67	0.68

Check Genotypes

	IRAT109	Langi	RL11	Norin PL8	Sherpa	Reiziq
	71	111	ND	93	108	121
	79	106	122	98	117	124
	77	102	95	94	101	117

RCA- root cone angle; IRLA- IRAT109/Langi F$_2$; IRRL- IRAT109/RL11 F$_2$; IRNO- IRAT109/Norin PL8 F$_2$; ND- No Data

Examining the phenotypic data of the populations, IRRL showed the largest range in terms of RCA, followed by IRLA, and IRNO with the smallest range (Table 1). In terms of the population mean, a similar trend was also observed with IRRL which had a mean RCA of 98°, followed by IRLA with 90°, and then IRNO with 85°. Significant genotypic variation was also observed in the checks included in the evaluation.

Of the checks, IRAT109 produced the narrowest RCA ranging from 71–79°. Norin PL8 tended to have relatively narrow RCA ranging from 93–98°. All the other checks (Langi, Reiziq, RL11, and Sherpa) included in the experiments showed relatively wide RCA, ranging from 102–111°, 117–124°, 95–122°, and 101–117°, respectively.

SNP selection using 3KRGP

A total of 40 SNPs unique to IRAT109 were identified across the $qRCA4$ region ± 100 kb of the confidence interval. Initially, all 40 SNPs showed that the average IRAT109 SNP allele frequency was 44.7%, 33.9%, 3.6%, and 13.6% in tropjap, subtrop, tempjap, and all3K, respectively. An LD map was constructed using these 40 SNPs and based on the D’ values, the $qRCA4$ region was found to have three linkage blocks whether the analysis was carried out using the japonica subgroup or all3K genotypes (Fig. S1). This was indicative that a total of three SNP markers were required to track the introgression of the whole $qRCA4$
region. After filtering for low allele frequencies, a total of 12 SNPs were retained with an average allele frequency of 24.6%, 5.4%, 1.5%, and 3.7% in tropjap, subtrop, tempjap, and all3K, respectively. Marker development for \textit{qRCA4} was prioritised since it was shown to be a major genomic region associated with narrow RCA, although SNP markers for other genomic regions were also developed. For \textit{qRCA1.1}, \textit{qRCA2.1}, and \textit{qRCA2.2}, two, one, and one SNP were selected near the peak marker previously reported, respectively. The strategy for selection of SNP for \textit{qRCA2.2} was similar to that of \textit{qRCA4}, while it was a bit different for \textit{qRCA1.1} and \textit{qRCA2.1}, where SNPs selected had moderate allele frequencies in tempjap since the favourable allele for these loci came from Sherpa, a tempjap genotype. In total, a set of 16 SNPs were selected and subsequent KASP marker assays were developed targeting \textit{qRCA1.1}, \textit{qRCA2.1}, \textit{qRCA2.2}, and \textit{qRCA4}.

Molecular marker development and quality metrics of KASP markers targeting qRCA QTL

SNP genotype information from the validation plate was processed and visualised to identify well-performing markers and cull-out poor performing ones. Upon visual inspection, of the 16 markers, two markers - snpOS00936 and snpOS00943 were immediately discarded as they were monomorphic and unable to call heterozygotes, respectively (Fig. S2). On the other hand, molecular markers snpOS00939 and snpOS00948 were polymorphic but showed close clustering among alleles and further inspection was carried out. All other markers showed acceptable clustering and were considered for further analysis. Using the known QTL composition of 54 RILs included in the validation plate, FPR and FNR were computed per molecular marker. From this analysis, two molecular markers were further discarded as they showed high FPR. The SNP marker snpOS00939, which also showed close clustering, had an FPR of 26.1% and an FNR of 6.5%. Another discarded marker was snpOS00948, which initially showed good clustering, but further analysis showed a very high FPR of 54.5% and an FNR of 3.1%. In total 12 markers showed acceptable FPR and FNR and were considered good candidates to validate the effect of QTL mentioned above across multiple genetic backgrounds (Table 2). On average, the newly developed KASP-based SNP molecular markers showed excellent call rates of 99.56% and ranged from 97.87–100.00%. FNR was also relatively low with an average of 2.27%, ranging from 0.0–8.3%. Finally, FPR ranged from 3.3–9.5%, with an average of 7.61%. In summary, nine markers (snpOS00933, snpOS00934, snpOS00935, snpOS00937, snpOS00938, snpOS00940, snpOS00941, snpOS00942, and snpOS00944) targeting \textit{qRCA4} and one each for \textit{qRCA1.1} (snpOS00945), \textit{qRCA2.1} (snpOS00947), and \textit{qRCA2.2} (snpOS00948) were used to validate their respective effects across genetic backgrounds. For \textit{qRCA4}, the nine markers were distributed across the previously reported confidence interval of the QTL. Two of the markers, snpOS00933 and snpOS00944 were designed to be flanking the QTL, while the other seven were designed within the QTL. On average, the physical inter-marker distance was 136.7 kilobase (kb), with the highest distance (273.3 kb) observed between snpOS00933 and snpOS00934 and the lowest (41.2 kb) between snpOS00940 and snpOS00941.
Table 2
Molecular marker quality metrics of newly developed KASP-based SNP markers targeting qRCA QTL.

SNP ID	Chr_bp	QTL	SNP	Favourable Allele	Call Rate	FPR (%)	FNR (%)
snpOS00933	Chr04_29670314	qRCA4	T/A	T	98.94	4.3	6.5
snpOS00934	Chr04_29943687	qRCA4	A/C	A	97.87	8.7	3.2
snpOS00935	Chr04_30001385	qRCA4	C/T	C	100.00	8.7	0.0
snpOS00937	Chr04_30193259	qRCA4	G/C	G	100.00	8.7	0.0
snpOS00938	Chr04_30302635	qRCA4	A/G	A	98.94	8.7	0.0
snpOS00940	Chr04_30420667	qRCA4	A/C	A	100.00	8.7	0.0
snpOS00941	Chr04_30461857	qRCA4	T/A	T	100.00	8.7	0.0
snpOS00942	Chr04_30524467	qRCA4	A/G	A	100.00	8.7	0.0
snpOS00944	Chr04_30764226	qRCA4	G/A	G	98.94	8.7	0.0
snpOS00945	Chr01_39443793	qRCA1.1	G/A	A	100.00	4.5	3.1
snpOS00947	Chr02_27974625	qRCA2.1	C/T	T	100.00	9.5	6.1
snpOS00948	Chr02_30450101	qRCA2.2	A/T	A	100.00	3.3	8.3

FPR- false positive rate; FNR- false negative rate; KASP- Kompetitive Allele-Specific PCR; SNP- single nucleotide polymorphism; Chr_bp- chromosome_base pairs

Examining the genotype composition of the six varieties, the nine markers targeting qRCA4 were shown to be polymorphic between the donor IRAT109, and other genotypes – Langi, Reiziq, RL11, and Sherpa. In the case of Norin PL8, of the nine markers, six were shown to be polymorphic, while the other three (snpOS00934, snpOS00938, and snpOS00941) were monomorphic. For qRCA1.1, Reiziq and RL11, including IRAT109, showed unfavourable allele, while for qRCA2.1, only IRAT109 showed unfavourable allele. Lastly, for qRCA2.2, except for IRAT109, all genotypes have unfavourable allele.

QTL validation and effects across genetic backgrounds

Three F2 populations were used to validate the effects of qRCA QTL in different genetic backgrounds. Of the nine qRCA4 markers developed, two (snpOS00937 and snpOS00942) were excluded from the analysis as they were calling IRAT109 as heterozygote. Downstream analysis was carried out using the remaining seven markers. Across the three populations, all the seven markers followed the expected Mendelian segregation ratio of F2 (χ^2_[1:2:1] = 0.57–4.86, P>0.05) populations (Table S1). This indicated conformance of both the molecular makers and the populations with expected ratios. Estimation of the genetic distance between the markers revealed a total of 5.70 centiMorgan (cM) distance between the two flanking markers, with an average distance of 0.97 cM between markers. Evaluation of the effect of qRCA4 across the three populations using these markers revealed significant associations in two
populations: IRLA and IRRL, while there was no significant association detected in the IRNO population (Table 3). Examining the individual populations, significant association was revealed in IRRL population with logarithm of odds (LOD) of 13.36. Introgession of the favourable IRAT109 allele (BB) suggested an effect of narrower RCA of about 15.12°. Additionally, a significant dominance effect was also detected, indicating the heterozygotes have 4.08° narrower RCA than expected, based on the estimated additive effects of the IRAT109 allele. In this population, using these molecular markers, \(q_{RCA4} \) was also shown to explain 17.27% of the genotypic variation present in IRRL. Furthermore, the effect of \(q_{RCA4} \) in IRLA had a LOD of 4.13 and the introgression of the IRAT109 allele showed an estimated effect of 11.87° narrower RCA, compared with that of the unfavourable allele (AA). A significant dominance effect was also detected, with heterozygotes having 1.02° narrower RCA and the region also explained 9.25% of the variation present in IRLA population. In terms of the third population, no significant association was detected, indicating that the other parent in this population (Norin PL8) may already possess the \(q_{RCA4} \) locus, which is further supported by the presence of three monomorphic markers between the parents and is also congruent with the phenotypic observations for Norin PL8’s RCA carried out above.

Table 3

Validation of \(q_{RCA4} \) effects across different genetic backgrounds using F\(_2\) populations derived from IRAT109.

Population	N	LOD	AE	DE	\(R^2 \)
IRLA	196	4.13	-5.87	-1.02	9.25
IRRL	331	13.63	-7.56	-4.08	17.27
IRNO	283	NS	NS	NS	NS

N - number of F\(_2\) plants tested; LOD - logarithm of odds; AE - additive effect of the allele from IRAT109; DE - dominance effect of the allele from IRAT109; \(R^2 \) - percentage of genotypic variation explained by QTL; NS - not significant

Bayesian credible confidence intervals were also estimated using the association detected in the two populations above. Using the IRRL population, the \(q_{RCA4} \) confidence interval was delimited between 1.13–5.70 cM, translating between 29.88–30.76 megabase (Mb) physical position of chromosome 4. For IRLA population, \(q_{RCA4} \) was delimited between 1.92–5.70 cM (30.04–30.76 Mb). Combining these two results, it was shown that \(q_{RCA4} \) was fine mapped into ~720 kb region of chromosome 4 (Fig. 1). Compared with previous results, we can now confidently indicate that this valuable genetic region is flanked between snpOS00935 and snpOS00944.

In terms of the validation of effects of \(q_{RCA1.1} \), \(q_{RCA2.1} \), and \(q_{RCA2.2} \), SNP markers snpOS00945, snpOS00947, and snpOS00948 were used, respectively. It was noted that for IRNO, snpOS00947 did not follow expected Mendelian segregation ratio for \((\chi^2_{[1:2:1]} = 39.13, P < 0.05) \) and for IRLA, both snpOS00945 and snpOS00947 also did not follow expected ratios \((\chi^2_{[1:2:1]} = 7.08–16.35, P < 0.05) \). On the other hand, snpOS00948 followed the expected F\(_2\) ratio \((\chi^2_{[1:2:1]} = 0.21–1.88, P > 0.05) \). Unfortunately,
SMA carried out using these markers indicated no significant effect in the RCA across three populations tested. With these results, no downstream analyses were carried out for these loci and SNP markers.

Performance of newly developed KASP markers targeting qRCA4 locus

Utilising the F$_2$ SNP genotyping data, molecular marker quality metrics were analysed for the seven markers. On average, the $qRCA4$ targeting markers showed a call rate of 99.21%, with snpOS00940 and snpOS00944 showing the highest call rates at 99.51%, while snpOS00933 had 98.64% (Fig. 2). An additional 13 genotypes important to the Australian breeding program were also genotyped for $qRCA4$ markers. This analysis showed three genotypes (55A, Moroberekan, and YRF210) possess the $qRCA4$ favourable alleles. Bringing these results together with the checks previously genotyped, it can be noted that the breeding program specific utility of these markers were at about 83%.

Identification of candidate genes and possible donors qRCA4 in 3K in all subpopulations

Through the 3KRGP, potential donors for $qRCA4$ were identified among different rice subpopulations. Since the original donor, IRAT109, is a tropjap genotype, it was expected that there were more donors in this subpopulation. Indeed, 157 out of 372 (42.2%) tropical japonicas possessed the favourable alleles of $qRCA4$. In terms of the other subpopulations, a total of 21 potential donors were identified (Table S2). A single donor, Y134, from the indica subpopulation was identified while two, IAS 22 – 8 Palmar and CX578, were identified for the tempjap subpopulation. The remaining 18 were representatives of the subtrop population, majority of which (13) originated from Lao People's Democratic Republic, two from Thailand, and a single accession from China.

Examining the annotated genes within the $qRCA4$ region, it was found that there were 111 genes with transcript evidence, with 22 of them having alternative transcripts or splice variants. Of the 111 genes, 83 have been identified to have known molecular and/or biological functions or have been shown to have high similarity with known proteins, while the other 28 code for hypothetical genes or non-protein coding transcript. Of those identified with known functions, four have been identified to be associated with plant response to abiotic stress stimulus (LOC_Os04g50820, LOC_Os04g50880, LOC_Os04g50990, and LOC_Os04g51330). The SNP marker, snpOS00938 sits within the sequence of LOC_Os04g51172, and is predicted to be an intron variant of the gene. Additionally, it was noted that snpOS00941 is a downstream gene variant of LOC_Os04g51440, a putative villin protein and have been shown to be important regulator of actin. It is orthologous to the *Arabidopsis* gene AT4G30160 with a putative villin 4 function.

Discussion

$qRCA4$ is effective across multiple genetic backgrounds
Due to variation in genetic backgrounds, a genomic region identified to be effective in one mapping population may not necessarily be identified in other genetic backgrounds. Validation of the effect of these QTL in multiple genetic background is necessary before more downstream work can be carried out i.e., gene cloning and integration in breeding programs. This study utilised F$_2$ segregating populations derived from three different genetic backgrounds to validate the effect of a major genomic region, qRCA4, controlling narrow root cone angle in AP systems. This region was shown to have significant effects in two (RL11 and Langi) out of three genetic backgrounds, with effects ranging from a decrease of 11.7° – 15.1° in RCA, explaining between 9.3–17.3% of the genetic variation present, further strengthening its significance and utility in improving rice AP adaptation. In rice, similar strategies have been carried out, such as the case of SUB1A QTL mapping and molecular breeding. SUB1 was first mapped using F$_3$s derived from IR40931-26/PI543581 (Xu and Mackill 1996), and then several independent studies confirmed this QTL across several genetic backgrounds (Nandi et al. 1997; Siangliw et al. 2003). These laid down the foundation towards breeding for Sub1 mega-varieties through the subsequent identification of causative gene and SNP molecular markers which enabled transfer through marker assisted selection (MAS) (Bailey-Serres et al. 2010). Following this, validation of qRCA4 is therefore a critical step not only to ensure its effectiveness across several genetic backgrounds but to also warrant its utility in breeding programs through MAS. Similar to the present results, DRO2 was also detected in three genetic backgrounds, ARC5955, Pinulupot 1, and Tupa729, and was shown to be related with deeper rooting in transplanted systems (Uga et al. 2013b). In the population derived from Norin PL8, no significant association was detected although significant phenotypic variation existed in the F$_2$ indicating that other genomic regions may play a role in the control of RCA in this population. It can also be noted that three markers utilised in this study were monomorphic between IRAT109 and Norin PL8, in addition to Norin PL8 showing narrower RCA compared with the other checks evaluated in this study. This further supports the notion that Norin PL8 already possess the qRCA4 locus.

KASP-based SNP markers tagging qRCA4 were developed

Molecular markers are essential for the seamless introgression of target traits into recipient genotypes carried out through MAS in a typical molecular breeding program. In rice, a suite of molecular markers has been designed and developed tagging high value traits such as yield components, grain quality, and disease resistance (Steele et al. 2018; Yang et al. 2019). This study, for the first time, reports the simultaneous validation and development of KASP based SNP markers targeting qRCA4, a highly valuable genomic region for AP adaptation. With the advent of more cost-effective whole genome sequencing technologies, SNPs became the marker of choice in many breeding programs. Using the Fluidigm SNP genotyping platform, Kim et al. (2016) developed SNP markers targeting yield enhancing loci – Gn1a, SPL14, Ghd7, GS5, and GS3. Gel-based SNP markers have also been developed targeting blast and bacterial blight resistance genes, Pita and xa5, respectively (Ramkumar et al. 2015). These other SNP genotyping platforms were also available but KASP has been in the forefront of these as it is more preferred due to its cost effectivity, assay conversion rate, accuracy, and flexibility (Semagn et al. 2014), especially in the context of marker assisted backcrossing and marker assisted recurrent selection applications. KASP technology have also been shown to work using single seed genotyping in rice,
further facilitating its adoption in breeding programs by allowing breeders to combine rapid generation advance techniques more effectively (Arbelaez et al. 2019b). To our knowledge, these are the first high throughput SNP markers targeting root growth angle traits developed, whether in traditional flooded or in AP systems. KASP markers have been developed at IRRI, but have not included root traits such as RCA. An independent work by Steele et al. (2018) also developed KASP markers but only included disease resistance and grain quality traits. Additionally, Yang et al. (2019) also developed a core KASP SNP set tailored for rice varietal assessment, genetic diversity analysis, and also included markers for agronomic traits such as yield, quality, resistance, fertility, and phenology.

Using the newly developed KASP markers, this present study also further delimited the confidence interval of the qRCA4 QTL into ~720 kb region, from a previous ~910 kb region. This new confidence interval is flanked by markers snpOS00935 and snpOS00944. Additionally, SNP markers snpOS00938 and snpOS00941, may also be the most useful markers as they may represent the variation that is indicative of the presence of qRCA4. In terms of qRCA1.1, qRCA2.1, and qRCA2.2, no markers were developed associated with these as the markers used did not show significant association with RCA in the tested populations. This may be due to several reasons. First, the markers tested were very limited, only one each for the individual QTL and may warrant the design of additional markers to saturate each region. Second is that these QTL might be background specific which further highlights the importance of this QTL validation exercise. Lastly, in terms of qRCA2.1 and qRCA2.2, the markers targeting them may have not shown effect since these QTL were only shown to be significant in IWS conditions (Vinarao et al. 2021). Further testing of the designed markers in IWS conditions should be carried out to definitively check the association of these markers with RCA.

Examining the LD map for qRCA4, the four markers identified above represent the three linkage groups detected and are therefore enough to ascertain the introgression of the qRCA4 locus. Molecular marker quality metrics (as described by Platten et al. (2019)) of these four markers also showed high call rates, low FNR, and relatively low FPR. By genotyping lines relevant to the Australian breeding program, it has also shown the predicted high utility of these markers. The KASP assay, compared with other fixed SNP arrays, are flexible and individual markers can be run together with other markers. By developing qRCA4 markers in KASP system, this also ensures its seamless integration in breeding programs and can be easily pyramided with other high-value AP adaptation genes/QTL such as those for cold tolerance.

3KRGP and database search facilitated the identification of potential donors and candidate genes

In any breeding program, the availability of donor and favourable alleles for traits of interest is very important. In cases where these alleles/traits are not available, exotic germplasm such as wild progenitors may be used but this would take an arduous effort to transfer the traits into cultivated germplasm. It is therefore highly important to identify readily available donor genotypes for use in specific breeding programs. Using the publicly available 3KRGP SNP genotyping data (Mansueto et al. 2017), allele mining was carried out to identify possible donors within specific subpopulations. Donors in
various subpopulations were identified including indica, tempjap, tropjap, and subtrop. These donors are available at IRRI and may be requested if deemed useful for the particular program. This study also highlights the utility of publicly available databases to augment in discovery process and help breeders make more informed decisions, as in this case, donor parent selection.

Using the newly determined confidence interval, candidate genes along the \textit{qRCA4} region were also identified through RAPDB (Sakai et al. 2013). Genes related with plant response to abiotic stress stimulus were identified, including \textit{LOC_Os04g51330}. \textit{LOC_Os04g51330} was similar to a maltose excess protein, a probable maltose transporter vital for the conversion of starch to sucrose in leaves at night (Niittyla et al. 2004) and more importantly, an orthologue of the \textit{Arabidopsis} root cap protein 1. On the other hand, \textit{LOC_Os04g51440}, was identified which is an orthologue of to the \textit{Arabidopsis} gene AT4G30160 (putative VILLIN 4). In \textit{Arabidopsis}, VILLIN 4 proteins have been to be involved in root hair growth through the regulation of actin organisation (Zhang et al. 2011), and in rice, VILLIN 2 was shown to be important in regulating plant architecture through the modulation of microfilament dynamics and polar auxin transport (Wu et al. 2015). These genes represent excellent targets for downstream cloning experiments to characterise the molecular function of the gene associated with \textit{qRCA4} and narrow RCA in AP systems. Emerging technologies for gene cloning such as CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats) with CRISPR-associated protein Cas9 (CRISPR-Cas9) holds promise and may be utilised to precisely engineer and target variations present in the \textit{qRCA4} region and candidate genes of interest (Zafar et al. 2020). Non-targeted metabolic profiling of genotypes with contrasting RCA phenotypes and \textit{qRCA} composition across several environmental conditions may also reveal biochemical pathways and specific metabolites which may aid in understanding mechanisms related with rice plant’s ability to cope with and tolerate stress involving transient water deficit. Finally, transcriptomic profiling and network analysis of contrasting genotypes may show differentially expressed genes in modules and along with metabolic profiling, may provide a systems level understanding of rice response to transient water deficit, and ultimately, AP adaptation.

Conclusions

This study validated the effect of \textit{qRCA4} in multiple genetic backgrounds further reinforcing its value in improvement of rice genotypes for AP adaptation. Simultaneously, high-throughput KASP SNP molecular markers were also developed to tag this genomic region which will facilitate its seamless introgression into target recipient genotypes especially in breeding programs where AP adaptation traits are important. This study reports for the first time the development of such markers associated with root traits, whether in traditional transplanted flooded or in AP systems. Molecular marker quality metrics also show marker robustness and possible high utility in breeding programs. Using 3KRGP, potential donors across subpopulations were identified representing readily available donors for use of prospective breeding programs. Candidate genes along the \textit{qRCA4} region were also identified and were shown to either be associated with plant response to abiotic stress stimulus or related with root development. Physiological analysis of the relationship of RCA and this locus with grain yield and key traits such as those related to photosynthetic rates and metabolic activities under different environmental conditions will shed some
light on mechanisms related to its action and further increase the value of this genomic region and associated molecular markers, specifically in AP systems. This study provides the tools to breeders for the development of genotypes with narrow rooting angle and greater depth, through MAS, ultimately for more sustainable rice production in environments where rice is exposed to transient water deficit.

Abbreviations

3KRGP
3K Rice Genome Project
AP
aerobic rice production
DAS
days after sowing
FNR
false negative rate
FPR
false positive rate
IRLA
IRAT109/Langi
IRNO
IRAT109/Norin PL8
IRRI
International Rice Research Institute
IRRL
IRAT109/RL 11
IWS
intermittent water stress
KASP
kompetsive allele-specific PCR
LD
linkage disequilibrium
LOD
logarithm of odds
MAS
marker assisted selection
QTL
quantitative trait loci
RAP-DB
Rice Annotation Project Database
RCA
Declarations

Funding

This work was funded by AgriFutures under project number: PRJ-011067.

Competing interests

The authors declare no conflicts of interest in this study.

Ethics approval and consent to participate

Not applicable

Consent for publication

Not applicable

Availability of Data and Materials

The datasets used and/or analysed during the current study are available from the corresponding author on reasonable request.
Code availability

Not applicable

Authors’ contributions

All authors contributed to the study design. C.P. developed the segregating populations utilised in this paper. R.V. carried out glasshouse experiments, R.V. and C.P. performed data analysis and linkage mapping. The first draft of the manuscript was written by R.V. and all authors commented on subsequent versions of the manuscript. All authors read and approved the final manuscript.

Acknowledgments

The authors would like to thank the UQ’s Central Glasshouse Services, Dr. Lisa Xian, and Dr. Venea Dara Daygon for their technical support. The authors would also like to thank the New South Wales Department of Primary Industries for providing the fixed genotypes utilised in this study. R.V. was supported by the Australian Government Research Training Program Scholarship and the Charles Morphett Pegler Scholarship.

References

Arbelaez JD et al. (2019a) 1k-RiCA (1K-Rice Custom Amplicon) a novel genotyping amplicon-based SNP assay for genetics and breeding applications in rice. Rice 12:55. doi:10.1186/s12284-019-0311-0

Arbelaez JD et al. (2019b) Methodology: ssb-MASS: a single seed-based sampling strategy for marker-assisted selection in rice. Plant Methods 15. doi:10.1186/s13007-019-0464-2

Bailey-Serres J, Fukao T, Ronald P, Ismail A, Heuer S, Mackill D (2010) Submergence tolerant rice: SUB1’s journey from landrace to modern cultivar. Rice 3:138-147. doi:10.1007/s12284-010-9048-5

Bradbury PJ, Zhang Z, Kroon DE, Casstevens TM, Ramdoss Y, Buckler ES (2007) TASSEL: software for association mapping of complex traits in diverse samples. Bioinformatics 23:2633-2635

Broman KW, Wu H, Sen S, Churchill GA (2003) R/qtl: QTL mapping in experimental crosses. Bioinformatics 19:889-890. doi:10.1093/bioinformatics/btg112

Cobb JN, Biswas PS, Platten JD (2019) Back to the future: revisiting MAS as a tool for modern plant breeding. Theor Appl Genet 132:647-667. doi:10.1007/s00122-018-3266-4

Collard BCY, Mackill DJ (2008) Marker-assisted selection: an approach for precision plant breeding in the twenty-first century. Philos Trans R Soc B-Biol Sci 363:557-572. doi:10.1098/rstb.2007.2170
Elliott J et al. (2014) Constraints and potentials of future irrigation water availability on agricultural production under climate change. Proc Natl Acad Sci U S A 111:3239-3244. doi:10.1073/pnas.1222474110

Kato Y, Abe J, Kamoshita A, Yamagishi J (2006) Genotypic variation in root growth angle in rice (Oryza sativa L.) and its association with deep root development in upland fields with different water regimes. Plant Soil 287:117-129. doi:10.1007/s11104-006-9008-4

Kato Y, Katsura K (2014) Rice adaptation to aerobic soils: physiological considerations and implications for agronomy. Plant Prod Sci 17:1-12. doi:10.1626/pps.17.1

Kato Y, Okami M, Katsura K (2009) Yield potential and water use efficiency of aerobic rice (Oryza sativa L.) in Japan. Field Crop Res 113:328-334. doi:10.1016/j.fcr.2009.06.010

Khush GS (2005) What it will take to feed 5.0 billion rice consumers in 2030. Plant molecular biology 59:1-6. doi:10.1007/s11103-005-2159-5

Kim SR et al. (2016) Development and validation of allele-specific SNP/indel markers for eight yield-enhancing genes using whole-genome sequencing strategy to increase yield potential of rice, Oryza sativa L. Rice 9. doi:10.1186/s12284-016-0084-7

Kitomi Y, Kanno N, Kawai S, Mizubayashi T, Fukuoka S, Uga Y (2015) QTLs underlying natural variation of root growth angle among rice cultivars with the same functional allele of DEEPER ROOTING 1. Rice 8:12. doi:10.1186/s12284-015-0049-2

Kumar S, Stecher G, Li M, Knyaz C, Tamura K (2018) MEGA X: Molecular Evolutionary Genetics Analysis across computing platforms. Molecular Biology and Evolution 35:1547-1549. doi:10.1093/molbev/msy096

Lou QJ et al. (2015) Quantitative trait locus mapping of deep rooting by linkage and association analysis in rice. J Exp Bot 66:4749-4757. doi:10.1093/jxberv246

Mackill DJ, McNally KL (2004) A model crop species: Molecular markers in rice. In: Molecular marker systems in plant breeding and crop improvement. Springer, pp 39-54

Mansueto L et al. (2017) Rice SNP-seek database update: new SNPs, indels, and queries. Nucleic Acids Res 45:D1075-D1081. doi:10.1093/nar/gkw1135

McCouch SR et al. (2002) Development and mapping of 2240 new SSR markers for rice (Oryza sativa L.). DNA Res 9:199-207. doi:10.1093/dnares/9.6.199

Mitchell JH, Proud C, Nguyen TM, Fukai S (2019) Traits of importance for aerobic rice Paper presented at the Proceedings of the 19th Australian Society of Agronomy Conference, Wagga Wagga, NSW, Australia,
Nandi S, Subudhi PK, Senadhira D, Manigbas NL, Sen-Mandi S, Huang N (1997) Mapping QTLs for submergence tolerance in rice by AFLP analysis and selective genotyping. Molecular and General Genetics MGG 255:1-8. doi:10.1007/s004380050468

Nittyla T, Messerli G, Trevisan M, Chen J, Smith AM, Zeeman SC (2004) A previously unknown maltose transporter essential for starch degradation in leaves. Science 303:87-89. doi:10.1126/science.1091811

Platten JD, Cobb JN, Zantua RE (2019) Criteria for evaluating molecular markers: Comprehensive quality metrics to improve marker-assisted selection. PLoS One 14:e0210529. doi:10.1371/journal.pone.0210529

R Core Team (2019) R: A language and environment for statistical computing. R Foundation for Statistical Computing.

Rakumar G, Prahalada GD, Hechanova SL, Vinarao R, Jena KK (2015) Development and validation of SNP-based functional codominant markers for two major disease resistance genes in rice (O. sativa L.). Mol Breed 35:129. doi:10.1007/s11032-015-0323-4

Sakai H et al. (2013) Rice Annotation Project Database (RAP-DB): An integrative and interactive database for rice genomics. Plant Cell Physiol 54:E6. doi:10.1093/pcp/pcs183

Semagn K, Babu R, Hearne S, Olsen M (2014) Single nucleotide polymorphism genotyping using Kompetitive Allele Specific PCR (KASP): overview of the technology and its application in crop improvement. Mol Breed 33:1-14. doi:10.1007/s11032-013-9917-x

Siangliw M, Toojinda T, Tragoonrung S, Vanavichit A (2003) Thai jasmine rice carrying QTLch9 (SubQTL) is submergence tolerant. Ann Bot 91:255-261. doi:10.1093/aob/mcf123

Smith AB, Liw P, Cullis BR (2006) The design and analysis of multi-phase plant breeding experiments. Journal of Agricultural Science 144:393-409. doi:10.1017/s0021859606006319

Steele KA et al. (2018) Accelerating public sector rice breeding with high-density KASP markers derived from whole genome sequencing of indica rice. Mol Breed 38. doi:10.1007/s11032-018-0777-2

Thomson MJ et al. (2017) Large-scale deployment of a rice 6 K SNP array for genetics and breeding applications. Rice 10:40. doi:10.1186/s12284-017-0181-2

Uga Y, Kitomi Y, Yamamoto E, Kanno N, Kawai S, Mizubayashi T, Fukuoka S (2015) A QTL for root growth angle on rice chromosome 7 is involved in the genetic pathway of DEEPER ROOTING 1. Rice 8. doi:10.1186/s12284-015-0044-7

Uga Y et al. (2013a) Control of root system architecture by DEEPER ROOTING 1 increases rice yield under drought conditions. Nature Genet 45:1097. doi:10.1038/ng.2725
Uga Y, Yamamoto E, Kanno N, Kawai S, Mizubayashi T, Fukuoka S (2013b) A major QTL controlling deep rooting on rice chromosome 4. Sci Rep 3. doi:10.1038/srep03040

Vinarao R, Proud C, Zhang X, Snell P, Fukai S, Mitchell J (2021) Stable and novel quantitative trait loci (QTL) confer narrow root cone angle in an aerobic rice (Oryza sativa L.) production system. Rice 14:28. doi:10.1186/s12284-021-00471-2

Wu SY et al. (2015) VLN2 regulates plant architecture by affecting microfilament dynamics and polar auxin transport in rice. Plant Cell 27:2829-2845. doi:10.1105/tpc.15.00581

Xu K, Mackill DJ (1996) A major locus for submergence tolerance mapped on rice chromosome 9. Mol Breed 2:219-224. doi:10.1007/BF00564199

Yang G et al. (2019) Development of a core SNP arrays based on the KASP method for molecular breeding of rice. Rice 12:21. doi:10.1186/s12284-019-0272-3

Zafar K et al. (2020) Genome editing technologies for rice improvement: progress, prospects, pand safety concerns. Frontiers in Genome Editing 2:5. doi:10.3389/fgeed.2020.00005

Zhang Y, Xiao YY, Du F, Cao LJ, Dong HJ, Ren H (2011) Arabidopsis VILLIN4 is involved in root hair growth through regulating actin organization in a Ca2+-dependent manner. New Phytol 190:667-682. doi:10.1111/j.1469-8137.2010.03632.x

Supplementary Tables

Table S1 Chi-square analysis of the observed and expected Mendelian segregation ratio for unfavourable (AA), favourable (BB), and heterozygote (AB) alleles in the F2 populations (POP).
SNP ID	POP	AA	AB	BB	Chi-Square	P Value
snpOS00933	IRLA	50	101	42	1.08	0.582
snpOS00934	IRLA	49	103	43	0.99	0.610
snpOS00935	IRLA	49	104	41	1.67	0.434
snpOS00938	IRLA	44	109	43	2.48	0.289
snpOS00940	IRLA	44	107	45	1.66	0.435
snpOS00941	IRLA	44	107	45	1.66	0.435
snpOS00944	IRLA	44	106	46	1.35	0.510
snpOS00945	IRLA	47	111	33	7.08	0.029*
snpOS00947	IRLA	46	118	25	16.35	0.000*
snpOS00948	IRLA	54	91	48	1.00	0.607
snpOS00933	IRNO	65	134	82	2.66	0.265
snpOS00935	IRNO	66	137	80	1.67	0.434
snpOS00940	IRNO	65	138	79	1.52	0.468
snpOS00944	IRNO	66	141	75	0.57	0.750
snpOS00945	IRNO	70	151	58	2.93	0.231
snpOS00947	IRNO	70	179	26	39.13	0.000*
snpOS00948	IRNO	61	146	76	1.88	0.391
snpOS00933	IRRL	87	171	67	3.35	0.187
snpOS00934	IRRL	89	166	69	2.67	0.264
snpOS00935	IRRL	89	168	71	2.17	0.338
snpOS00938	IRRL	92	168	65	4.86	0.088
snpOS00940	IRRL	91	170	67	3.95	0.139
snpOS00941	IRRL	91	168	67	3.84	0.147
snpOS00944	IRRL	89	170	69	2.88	0.237
snpOS00947	IRRL	74	169	65	3.45	0.178
snpOS00948	IRRL	77	155	82	0.21	0.900

*: P < 0.05
Genotype/Variety	3KRGP IRIS ID	Country of Origin	Chr04:30302635	Chr04:30461857	Subpopulation
Y134	CX15	-	A	T	Indica
IAS 22-8 PALMAR::IRGC 26058-1	IRIS 313-10967	Brazil	A	T	Temperate japonica
CX578	CX578	-	A	T	Temperate japonica
LEUANG GLIANG::IRGC 71271-1	IRIS 313-9123	Thailand	A	T	Subtropical japonica
NAM ROO::IRGC 66996-1	IRIS 313-10176	Thailand	A	T	Subtropical japonica
CHA LOY OE::C1	IRIS 313-7856	-	A	T	Subtropical japonica
KAO SONG HAI::IRGC 61827-1	IRIS 313-11623	China	A	T	Subtropical japonica
SI NAM PUENG::IRGC 75165-1	IRIS 313-11926	Thailand	A	T	Subtropical japonica
XIENG KANG::IRGC 82533-1	IRIS 313-12063	Lao PDR	A	T	Subtropical japonica
THATENG::IRGC 86377-1	IRIS 313-12134	Lao PDR	A	T	Subtropical japonica
SET::IRGC 92200-1	IRIS 313-12227	Lao PDR	A	T	Subtropical japonica
A MOUK::IRGC 94474-1	IRIS 313-12252	Lao PDR	A	T	Subtropical japonica
BAN BONG::IRGC 94565-1	IRIS 313-12254	Lao PDR	A	T	Subtropical japonica
NYAE::IRGC 95302-1	IRIS 313-12262	Lao PDR	A	T	Subtropical japonica
TA SENG::IRGC 99176-1	IRIS 313-12312	Lao PDR	A	T	Subtropical japonica
Code	IRGC	Lao PDR	A/T	Subtropical japonica	
-----------------	----------	---------	-------	-----------------------	
BAN KEO::IRGC	IRIS 313-12323	Lao PDR	A	T	
99953-1					
DENG NYAY::IRGC	IRIS 313-12332	Lao PDR	A	T	
106907-1					
HAI NA::IRGC	IRIS 313-12342	Lao PDR	A	T	
107117-1					
LAB::IRGC	IRIS 313-12346	Lao PDR	A	T	
107468-1					
KHAO TAM::IRGC	IRIS 313-10679	Lao PDR	A	T	
30085-2					

Table S2. Potential donors of \(qRCA4\) locus identified using SNP genotype data publicly available through the 3K Rice Genotyping Project (3KRGP).

Figures
Figure 1

Molecular map of qRCA4 using newly designed molecular markers and validation results from two populations. Black lines indicate polymorphic markers between IRAT109 and other check genotypes used, while blue lines indicate monomorphic markers between IRAT109 and Norin PL8. Red dashed lines indicate the new confidence interval computed.
Figure 2

Cluster genotype of KASP molecular markers (A) snpOS00938 and (B) snpOS00941 using F2 segregating population.

Supplementary Files

This is a list of supplementary files associated with this preprint. Click to download.

- Fig.S1.png
- Fig.S2.png