Gluten-related disorders

Поремећаји везани за глутен

Biljana Vuletić1,2, Aleksandar Kočović3,4, Marija Mladenović4, Zoran Leković5,6, Vladimir Radlović5,6, Biljana Stojanović7, Nela Đonović8, Nedeljko Radlović9

1University of Kragujevac, Faculty of Medical Sciences, Department of Pediatrics, Kragujevac, Serbia; 2Kragujevac Clinical Center, Pediatric Clinic, Kragujevac, Serbia; 3University of Kragujevac, Faculty of Medical Sciences, Department of Pharmacy, Kragujevac, Serbia; 4Singidunum University, Faculty of Health, Legal and Business Studies, Valjevo, Serbia; 5University of Belgrade, Faculty of Medicine, Belgrade, Serbia; 6University Children’s Hospital, Belgrade, Serbia; 7Higher Education School of Professional Health Studies, Belgrade, Serbia; 8University of Kragujevac, Faculty of Medical Sciences, Department of Hygiene and Ecology, Kragujevac, Serbia; 9Serbian Medical Society, Academy of Medical Sciences, Belgrade, Serbia

Received: August 28, 2020
Revised: November 29, 2021
Accepted: November 30, 2021
Online First: December 8, 2021
DOI: https://doi.org/10.2298/SARH200828100V

*Accepted papers are articles in press that have gone through due peer review process and have been accepted for publication by the Editorial Board of the Serbian Archives of Medicine. They have not yet been copy-edited and/or formatted in the publication house style, and the text may be changed before the final publication. Although accepted papers do not yet have all the accompanying bibliographic details available, they can already be cited using the year of online publication and the DOI, as follows: the author’s last name and initial of the first name, article title, journal title, online first publication month and year, and the DOI; e.g.: Petrović P, Jovanović J. The title of the article. Srp Arh Celok Lek. Online First, February 2017.

When the final article is assigned to volumes/issues of the journal, the Article in Press version will be removed and the final version will appear in the associated published volumes/issues of the journal. The date the article was made available online first will be carried over.

*Correspondence to:
Aleksandar KOČOVIĆ
University of Kragujevac, Faculty of Medical Sciences, 34000 Kragujevac, Serbia
E-mail: salekkg91@gmail.com
Gluten-related disorders

SUMMARY
Gluten-related disorders are a heterogeneous group of clinical entities caused by intolerance of wheat, rye, and barley flour components. They occur in 3-5% of genetically predisposed persons and based on pathogenic and clinical features are classified into celiac disease, non-celiac gluten sensitivity, and wheat allergy. There are also specific entities such as dermatitis herpetiformis or gluten ataxia, which can occur either within the celiac disease or independently. This article based on the current knowledge shows the basic details of the pathogenesis, clinical expression, diagnosis, and treatment of these disorders.

Keywords: celiac disease; wheat allergy; non-celiac gluten sensitivity; gluten ataxia; dermatitis herpetiformis

INTRODUCTION
Gluten-related disorders (GRDs) cover a group of heterogeneous immune-mediated clinical conditions triggered by the ingestion of wheat, rye, and barley flour [1-3]. GRDs are in second place among the most frequent food intolerances. They affect about 3-5% of the genetically predisposed human population. [4-7]. Classification of GRDs based on variations in pathogenesis and clinical expression identified celiac disease, non-celiac gluten sensitivity, and wheat allergy [1–4, 8]. As a specific manifestation of the celiac disease or specific clinical entities within the GRDs, there are separated the gluten ataxia and dermatitis herpetiformis [1, 8–13]. Underlying the pathogenesis of the celiac disease, dermatitis herpetiformis, and gluten ataxia is the immune system's response to gluten intake, IgE-mediated and/or non-IgE-mediated immune response in wheat allergy, and stimulation of the innate immunity with direct cytotoxic effects of gluten and some non-immunological mechanisms in non-celiac gluten sensitivity [1–4, 8, 14]. The basis of the treatment of GRDs is a gluten-free diet [1–4, 8, 15].
CELIAC DISEASE

Celiac disease (CD) is a lifelong systemic autoimmune disorder induced by gliadin and related prolamins of wheat, rye, and barley [1, 16, 17]. Prevalence is about 1% of the general population of European, North African, Indian, and Middle East origin with appropriate genetic foundation [18]. The frequency of CD is more common among close relatives of the diseased, especially those of the first line (~10%) and in patients with other autoimmune diseases (3-10%), such as diabetes mellitus type I, autoimmune thyroiditis, Sjögren's syndrome, Addison's disease, autoimmune liver diseases, juvenile idiopathic arthritis, myasthenia gravis, systemic lupus erythematosus, psoriasis, dilated cardiomyopathy and other [4, 19]. Multiple-major prevalence of the CD is also recorded in the IgA selective deficit, as well as in Down, Turner, and Williams syndrome [20, 21].

Gluten-sensitive enteropathy is one of the most common findings in patients with CD. This type of enteropathy is nonspecific, affects the small intestine and recedes after switching to a gluten-free diet. Enteropathy in patients with CD can be symptomatic and asymptomatic, and various extraintestinal manifestations and complications are possible. [16, 17, 22].

There is no doubt that there is a significant influence of genetic factors in the appearance of CD and its hereditary nature. HLA class II genes have the central role, but it is almost certain that there is an influence of other gene loci as well. [1, 23]. HLA DQ2 haplotype is identified in about 90% and HLA DQ8 haplotype in about 10% of patients with CD [23-25]. However, the disease expression, besides genetic predisposition and exposure to gluten, also requires the influence of other external factors [1, 23, 26]. Gliadin peptide hydrolysate binds to the HLA class II glycoproteins on antigen-presenting cells (APC) inducing the activation of intestinal CD4+ T-lymphocytes which, by secreting proinflammatory cytokines, lead to inflammation of the small intestinal mucosa [23]. This process is preceded by tissue transglutaminase-mediated deamination of the glutamine residue of gliadin hydrolysate, which increases the affinity of their bonding with HLA DQ2 and DQ8 molecules [23]. Humoral immunity also has significant role in the pathogenesis of CD, which is confirmed by the presence of autoantibodies to reticulin, endomysium, tissue transglutaminase, and other body structures [22, 23]. The duodenum and the proximal part of the jejunum are most often affected by changes [23]. According to the modified Marsh criteria inflammation of the small intestinal mucosa is
classified into infiltrative, infiltrative-hyperplastic and destructive [27]. Destructive enteropathy is additionally classified into partial, subtotal and total.

The symptomatic form of the disease has two modes of clinical presentation (classical and non-classical) and is less frequent compared to the asymptomatic form [1]. In the classical clinical presentation, chronic diarrhea, malabsorption, and secondary malnutrition are most often observed, while in the non-classical form, extraintestinal manifestations such as isolated hypertransaminasemia, constipation, iron deficiency anemia, chronic fatigue, abdominal pain, aphthous stomatitis, short stature and delayed puberty, infertility, enamel hypoplasia, decreased bone density (osteopenia or osteoporosis), polyneuropathy, alopecia, epilepsy, depression, anxiety, and others are most common [1, 17, 23, 28, 29]. Newborns and young children usually have the classic clinical form of the disease, unlike older children and adults [23]. In too late-diagnosed or inadequately treated CD, very serious complications are possible, such as in children of the youngest age "cell crisis", i.e. total gastrointestinal insufficiency followed by severe hydro-electrolytic and nutritive disbalance or in adults T-cell small intestinal lymphoma, intestinal adenocarcinoma, ulcerative jejunoileitis and refractory sprue [23, 30].

The main way to diagnose CD is enterobiopsy with subsequent pathohistological analysis of the small intestinal mucosa [31]. According to the latest recommendations of the European Society for Pediatric Gastroenterology, Hepatology and Nutrition (ESPGHAN) defined in 2010, this procedure is not necessary only in patients with symptoms and/or signs corresponding to CD, but also with present IgA antibodies to tissue transglutaminase (AtTG) above 100 U/ml, positive anti-endomysial antibodies and "celiac HLA“ (DQ2 and/or DQ8) [32, 33]. Diagnosis of CD could be verified by the clinical recovery and AtTG disappearance after introducing a gluten-free diet [16]. Such attitude in the CD diagnostics is based, not only on high sensitivity and specificity of IgA AtTG as a serological marker of the disease (>95%) but also on a highly significant correlation of their titer with the degree of small intestinal mucosa damage, as well as on the almost unavoidable (>98%) presence of HLA DQ2 and/or DQ8 [16]. Serological indicators of the disease, such as autoantibodies to endomysium and tissue transglutaminase, and antibodies to deamminated gliadin peptides have a high sensitivity and specificity, but not also an absolute diagnostic validity [16]. Therefore, they are primarily used in the detection of asymptomatic and atypical forms of the disease, as well as in the assessment of the consistency of elimination diet in cases with the already verified disease [32]. Latest ESPGHAN criteria recommend gluten provocation test and subsequentional
pathohistological analysis for confirmation or exclusion CD in cases where gluten-free diet was introduced before enterobiopsy, in cases where pathohistological findings were not typical, and in cases where samples for pathohistological analysis were too small or inadequate for final decision. This procedure should not be conducted before the sixth year of life and during puberty because of the negative influence on permanent teeth and growth [16, 31].

Because CD is a lifelong disorder, the gluten-free diet is the foundation of successful treatment [1, 16, 33]. Some additional treatment such as supplementation of iron and folic acid as well as other vitamins and microelements could be required especially during the initial phase of treatment. Restriction of lactose intake may also be required in some patients [34]. Semi-elementary and/or additional parenteral nutrition, edema removal, and stabilization of water-salt balance could be required in patients with severe forms of the disease. Sometimes, short-term glucocorticoid therapy is used [35].

GLUTEN ATAXIA

Gluten ataxia (GA) is one of the most frequent and serious gluten-induced autoimmune neurological diseases with clinical presentation mainly in middle and late adult age [1, 9, 10]. It occurs as a result of damage to the cerebellum as one, and sometimes the only manifestation of the CD [8, 36]. Gluten-induced ataxia also occurs in the absence of CD [37, 38]. Antibody cross-reactivity may be one of the mechanisms involved in GA pathogenesis because of the similarity between gluten proteins and antigenic epitopes on Purkinje cells [36]. Diagnostic delay leads to irreversible loss of Purkinje cells followed by permanent neurological damage [8, 39]. GA is most often manifested with dysarthria, pyramidal dysfunction, gait problems, limb ataxia, pyramidal dysfunction, altered eye motions, progressive loss of stability, and inability to stand straight [8, 9]. Less than 10% of GA patients have gastrointestinal symptoms and about half small intestinal histology compatible with CD [39]. Immunoassays of patients with GA show positive IgA and/or IgG antigliadin antibodies, presence of antibodies to TTG2 (from the gut), and TTG6 (from brain tissue) [8]. In most patients at the time of diagnosis, brain magnetic resonance revealed cerebellar atrophy [8, 9]. GA therapy involves a rigorous gluten-free diet throughout life which reduces disability and prevents further progression of the disease.
When the diet does not give satisfactory results, immunosuppressive drugs can be used. [37].

DERMATITIS HERPETIFORMIS

Dermatitis herpetiformis (DH) is an autoimmune skin disease that usually occurs within a CD and manifests with blistering rash and cutaneous IgA deposits. It may present at any age, but the most predominant is in middle-aged people [1, 13, 25]. It was found to be more frequent in men than the women, contrary to other autoimmune diseases but some recent studies point that gender imbalance may reduce with incising age, and may not be so profound [40]. Also, an Italian large study revealed interesting findings of the high prevalence of DH within the pediatric population that is usually underreported [13]. DH is characterized by cutaneous lesions that are polymorphic in nature, relapsing and itching, localized on the face, shoulders, knees, elbows, buttocks, and sacral region. Typical CD HLA haplotypes (DQ2 and DQ8) are usual for patients with DH. Although the gastrointestinal symptoms in DH are rare and mild, a higher number of intraepithelial lymphocytes and celiac-type intestinal atrophy are present in almost 70% of patients with apparently normal biopsy findings. Tissue transglutaminase (TTG2) specific autoantibodies could be found in small bowel mucosa and serum of patients with DH and CD, but in DH skin biopsy show typical TTG3-(epidermal transglutaminase) targeted IgA antibodies [13]. Strict and timely introduced lifelong gluten-free diet alleviates cutaneous symptoms, improved enteropathy, and minimizes the risk for complications, especially small intestinal B-cell lymphoma [17]. For the same patients, Dapson helps ease itching and controls the development of cutaneous lesions [17, 41].

WHEAT ALLERGY

Wheat allergy (WA) is IgE-mediated and/or non-IgE-mediated allergic adverse reaction to wheat proteins. According to clinical manifestation, WA can be divided into (1) classical form of food allergy with the involvement of gastrointestinal tract, skin, and possibly respiratory tract, (2) inhalant allergy (Baker’s asthma and rhinitis), (3) wheat-dependent, exercise-induced anaphylaxis (WDEIA) and (4) contact urticaria. In Europe, the reported prevalence of WA is 3.6% for all ages [8].
WA is characterized with the following symptoms: skin rash, wheezing, itching, and swelling in the mouth, nose, eyes, and throat (typical IgE-mediated allergy symptoms), gastrointestinal symptoms like cramps, bloating, diarrhea, but sometimes WA can manifest itself with anaphylactic shock. Allergens that most commonly trigger WDEIA are alfa-amylase inhibitors and a subtype of grain protein, ω-5 gliadin [8, 42].

In establishing WA on wheat proteins can be measured by specific IgE antibodies and skin reactions. An oral provocation test is usually required to confirm the diagnosis since the level of specific IgE antibodies and skin reactions exhibit low specificity and sensitivity. A double-blind placebo-controlled trial is considered a gold standard for the diagnosis of food allergy but, in clinical practice, the reduction in symptoms associated with a wheat-free diet indicates that WA is present. In those who have exhibited wheat-induced anaphylaxis, oral provocation should never be done [8, 14].

Usually, patients with WA are not allergic to other cereal prolamines in rye, barley, and oats, and their diet is less restrictive than in CD. Elimination of wheat products is the basis of treatment of WA. In children with predominant gastrointestinal manifestations, as with other food allergies, 75% of wheat tolerance develops in adolescence [14, 17].

NON-CELIAC GLUTEN SENSITIVITY

In the past decade, non-celiac gluten sensitivity (NCGS) has received growing attention. Studies report prevalence ranges from 0.63-6% because the diagnosis is challenging [4, 42, 43]. The diagnosis of NCGS is established when CD and WA are excluded, and the same improvement in extraintestinal and gastrointestinal symptoms is observed after the introduction of a gluten-free diet. [1]. Also, symptoms display significant overlap with irritable bowel syndrome. Although CD and NSGS may have similar symptoms, the careful retrospective investigation revealed that there are some differences in the clinical presentation of patients with NCGS and CD. NCGS patients rarer have a nutrient deficiency, malabsorptive symptoms, and autoimmune diseases compared with CD patients. Abdominal discomfort, bloating, meteorism, diarrhea, ‘foggy mind’, fatigue, headache, and joint pain are most commonly reported as symptoms in patients with NCGS [4]. The pathogenesis of the disease is not clear,
but some explanations include activation of innate immune response and mediation of immunological system. [44]. Regarding genetic susceptibility, HLA-DQ2 and HLA-DQ8 haplotypes could be found in half of the patients with NCGS, which is lower than in CD patients, but not as low as in the general population [45]. NCGS frequently occurs in parents, siblings, and children of patients with CD, predominantly in females [46]. Serological tests show that more than half of the patients with NCGS have anti-gliadin antibodies (AGA) IgG antibodies in circulation which disappear after gluten withdrawal. In clinical practice, physicians have to be aware that AGA IgG is not a reliable serologic marker for NSGS because it can be detected in various autoimmune diseases, and among healthy people, as well [47].

Although gluten and other protein components of grain cereals (α-amylase trypsin inhibitor) can be responsible, they are not the only ones that could cause symptoms. Some grains and cereals are rich in fermentable oligosaccharides, disaccharides, monosaccharides and polyols (FODMAPs), which can cause gastrointestinal symptoms as well. Intake of food with low levels of FODMAPs can lead to a significant reduction in symptoms even if gluten has not been eliminated from the diet. Although groceries without gluten often have low levels of FODMAPs, patients recognized as NCGS are suffer from irritable bowel syndrome with symptoms resulting from consuming FODMAPs rather than gluten [17].

For now, the diagnosis is still based only on the exclusion of CD and WA in addition to the double-blind placebo-controlled study, which is ideal but not always possible in clinical practice [17]. Starting a gluten-free diet establishes improvement in most patients, but the diet does not need to be strict, because inadvertently introduced traces of gluten usually does not cause symptoms [4, 8]. It is still unknown whether NCGS is a permanent condition in all patients [48, 49, 50].

CONCLUSION

GRDs make a heterogeneous group of clinical entities caused by genetically determined intolerance of wheat, rye and barley flour components. After an adult form of lactose intolerance is the most common food-related disorder. The pathogenesis of CD, GA and DH is based on the gluten-activated autoimmune process, WA on IgE and / or non-IgE mediated reaction to gluten and other proteins of said cereals, while NCGS is the result of stimulation of
the innate immunity and some non-immunological mechanisms. The basis of treatment GRDs makes gluten-free diets, in autoimmune forms of disorders lifelong and WA, especially if it occurs in the youngest age, it is mostly transitory. For now, it is not clear whether all patients with NCGS must be on long-life gluten-free diet.

Conflict of interest: None declared.
REFERENCES

1. Ludvigsson JF, Leffler DA, Bai JC, Biagi F, Fasano A, Green PH, et al. The Oslo definitions for coeliac disease and related terms. Gut. 2013;62(1):43-52. doi: 10.1136/gutjnl-2011-301346.

2. Gasbarrini G, Mangiola F. United European Gastroenterol J. Wheat-related disorders: A broad spectrum of 'evolving' diseases. 2014;24(2):254-62. doi: 10.1177/2050640614535929.

3. Marchioni Beery RM, Birk JW. Wheat-related disorders reviewed: making a grain of sense. Expert Rev Gastroenterol Hepatol. 2015;9(6):851-64. doi: 10.1586/17474124.2015.1032252

4. Sergi C, Villanacci V, Carroccio A. Non-celiac wheat sensitivity: rationality and irrationality of a gluten-free diet in individuals affected with non-celiac disease: a review. BMC Gastroenterol. 2021;21(1):5. doi: 10.1186/s12876-020-01568-6.

5. Ellı L, Villalta D, Roncoroni L, Barisani D, Ferrero S, Pellegrini N, et al. Nomenclature and diagnosis of gluten-related disorders: A position statement by the Italian Association of Hospital Gastroenterologists and Endoscopists (AIGO). Dig Liver Dis. 2017;49(2):138-46. doi: 10.1016/j.dld.2016.10.016

6. Bayless TM, Brown E, Paige DM. Lactase non-persistence and lactose intolerance. Curr Gastroenterol Rep. 2017;19(5):23. doi: 10.1007/s11894-017-0558-9.

7. Szilagyi A, Ishayek N. Lactose Intolerance, Dairy Avoidance, and Treatment Options. Nutrients. 2018;10(12):1994. doi: 10.3390/nu10121994.

8. Sabenca C, Ribeiro M, Sousa T, Poeta P, Bagulho AS, Igrejas G. Wheat/ Gluten-Related Disorders and Gluten-Free Diet Misconceptions: A Review. Foods. 2021;10(8):1765. doi: 10.3390/foods10081765.

9. Vinagre-Aragón A, Zis P, Grunewald RA, Hadjivassiliou M. Movement Disorders Related to Gluten Sensitivity: A Systematic Review. Nutrients. 2018;10(8):1034. doi: 10.3390/nu10081034.

10. Mearns ES, Taylor A, Thomas Craig KJ, Puglielli S, Leffler DA, et al. Neurological manifestations of neuropathy and ataxia in celiac disease: a systematic review. Nutrients. 2019;11(2). pii: E380. doi: 10.3390/nu11020380.

11. Popp A, Maki M. Gluten-induced extra-intestinal manifestations in potential celiac disease-celiac trait. Nutrients. 2019;11(2). pii: E320. doi: 10.3390/nu11020320.

12. Collin P, Salmi TT, Hervonen K, Kaukinen K, Reunala T. Dermatitis herpetiformis: a cutaneous manifestation of coeliac disease. Ann Med. 2017;49(1):23-31. doi: 10.1080/07853890.2016.1222450.

13. Reunala T, Salmi TT, Hervonen K, Kaukinen K, Collin P. Dermatitis herpetiformis: An common extraintestinal manifestation of coeliac disease. Nutrients. 2018;10(5). pii: E602. doi: 10.3390/nu10050602.

14. Radlović N, Leković Z, Radlović V, Simić D, Ristić D, Vuletić B. Food allergy in children. Srp Arh Celok Lek. 2016;144(1-2):99-103. PMID:27276868.

15. Radlović N, Mladenović M, Leković Z, Živković D, Brdar R, Radlović V, et al. Effect of gluten-free diet on the growth and nutritional status of children with coeliac disease. Srp Arh Celok Lek. 2009;137(11-12):632-7.

16. Husby S, Koletzko S, Korponay-Szabó IR, Mearin M, Phillips A, Shamir R, et al; ESPGHAN Working Group on Coeliac Disease Diagnosis; ESPGHAN Gastroenterology Committee; European Society for Pediatric Gastroenterology, Hepatology, and Nutrition. J Pediatr Gastroenterol Nutr. 2012;54(1):136-60. doi: 10.1097/MPG.0b013e31821a23d0.

17. Hill JD, Fasano A, Guandalini S, Hoffenberg E, Levy J, Reilly N, et al. NASPGHAN clinical report on the diagnosis and treatment of gluten-related disorders. J Pediatr Gastroenterol Nutr. 2016;63(1):156-65. doi: 10.1097/MPG.0000000000001216.

18. Lionetti E, Gatti S, Pulvirenti A, Catassi C. Celiac disease from a global perspective. Best Pract Res Clin Gastroenterol. 2015;29(3):63-79. doi: 10.1016/j.bpg.2015.05.004.

19. Ludvigsson JF, Card TR, Kaukinen K, Bai J, Zingone F, Sanders DS, et al. Screening for celiac disease in the general population and in high-risk groups. United European Gastroenterol J. 2015;3(2):106-20. doi: 10.1177/2050640614561668.

20. Pavlovic M, Benenki J, Bukurov M. Screening of celiac disease in Down syndrome - Old and new dilemmas. World J Clin Cases. 2017;5(7):264-9. doi: 10.12998/wjcc.v5.i7.264.

21. Safi MA. Celiac disease among at-risk individuals in Saudi Arabia. Saudi Med J. 2019;40(1):9-18. doi: 10.15537/smj.2019.1.23892.

22. Radlović N. Celiac disease. Srp Arh Celok Lek. 2013;141(1-2):122-6. PMID: 23539923.

23. Green PH, Cellier C. Celiac disease. N Engl J Med. 2007;357(17):1731-43. DOI: 10.1056/NEJMra071600.

24. Sallese M, Lopetuso LR, Efthymakis K, Neri M. Beyond the HLA Genes in Gluten-Related Disorders. Front Nutr. 2020;7:575844. doi: 10.3389/fnut.2020.575844.

25. Stanković B, Radlović N, Leković Z, Ristić D, Radlović V, Nikčević G, et al. HLA genotyping in pediatric celiac disease patients. Bosn J Basic Med Sci. 2014;14(3):171-6. doi: 10.17305/bjms.2014.3.28.

26. Balasopoulou A, Stanković B, Panagiota A, Nikčević G, Peters BA, John A, et al. Novel genetic risk variants for pediatric celiac disease. Hum Genomics. 2016;10(1):34. PMID:27836013

27. Oberhuber G, Granditsch G, Vogelsang H. The histopathology of coeliac disease: time for a standardized report scheme for pathologists. Eur J Gastroenterol Hepatol. 1999;11(10):1185-94. PMID:10524652
28. Laurikka P, Nurminen S, Kivelä L, Kurppa K. Extraintestinal manifestations of celiac disease: Early detection for better long-term outcomes. Nutrients. 2018;10(8). pii: E1015. doi: 10.3390/nu10081015.

29. Radlović N, Leković Z, Mladenović M, Radlović V, Vuletić B, Dučić S, et al. Frequency, severity and type of anemia in children with classical celiac disease. Srp Arh Celok Lek. 2019. doi: https://www.dx.doi.org/10.2298/SARH181203021R.

30. Radlović N, Leković Z, Radlović V, Simić D, Vuletić B, Dujcic S, et al. Celiac crisis in children in Serbia. Ital J Pediatr. 2016;42:25. doi: 10.1186/s13052-016-0233-z.

31. Revised criteria for diagnosis of coeliac disease. Report of Working Group of European Society of Paediatric Gastroenterology and Nutrition. Arch Dis Child. 1990;65(8):909-11. DOI:10.1136/adc.65.8.909.

32. Aggarwal S, Lebwohl B, Green PH. Screening for celiac disease in average-risk and high-risk populations. Therap Adv Gastroenterol. 2012;5(1):37-47. doi: 10.1177/1756283X11417038.

33. Stojanović B, Kočović A, Radlović N, Leković Z, Prokić D, Donović N, et al. Assessment of quality of life, anxiety and depressive symptoms in Serbian children with celiac disease and their parents. Indian J Pediatr. 2019;86(5):427-32. doi: 10.1007/s12098-018-2836-4.

34. Radlović N, Mladenović M, Leković Z, Ristić D, Pavlović M, Stojšić Z, et al. Lactose intolerance in infants with gluten-sensitive enteropathy: frequency and clinical characteristics. Srp Arh Celok Lek. 2009;137(1-2):33-7. PMID:19370963.

35. Radlović NP, Mladenović MM, Stojšić ZM, Brdar RS. Short-term corticosteroids for celiac crisis in infants. Indian Pediatr. 2011;48(8):641-2. PMID:21918269.

36. Osman D, Umar S, Muhammad H, Nikfekr E, Rostami K, Ishaq S. Neurological manifestation of coeliac disease with particular emphasis on gluten ataxia and immunological injury: a review article. Gastroenterol Hepatol Bed Bench. 2021;14(1):1-7. PMID: 33868603.

37. Hadjivassiliou M, Aeschlimann P, Sanders DS, Mäki M, Kaukinen K, Grunewald RA, et al. Transglutaminase 6 antibodies in the diagnosis of gluten ataxia. Neurology. 2013;80(19):1740-5. doi: 10.1212/WMN.0b013e3182919070.

38. Gibson PR, Skodje GI, Lundin KE. Non-coeliac gluten sensitivity. J Gastroenterol Hepatol. 2017;32 Suppl 1:86-89. doi: 10.1111/jgh.13705.

39. Zis P, Hadjivassiliou M. Treatment of neurological manifestations of gluten sensitivity and coeliac disease. Curr Treat Options Neurol. 2019;21(3):10. doi: 10.1007/s11940-019-0552-7.

40. Reunala T, Salminen TT, Hervonen K, Kaukinen K, Collin P. Dermatitis Herpetiformis: A Common Extraintestinal Manifestation of Coeliac Disease. Nutrients. 2018;10(5):602. doi: 10.3390/nu10050602.

41. Collin P, Salminen TT, Hervonen K, Kaukinen K, Reunala T. Dermatitis herpetiformis: a cutaneous manifestation of celiac disease. Ann Med. 2017;49(1):23-31. doi: 10.1080/07853890.2016.1222450.

42. Burkhardt JG, Chapa-Rodriguez A, Bahna SL. Gluten sensitivities and the allergist: Threshing the grain from the husks. Allergy. 2018;73(7):1359-68. doi: 10.1111/all.13354.

43. Jericho H, Assiri A, Guandalini S. Celiac disease and wheat intolerance syndrome: A critical update and reappraisal. J Pediatr Gastroenterol Nutr. 2017;64(1):15-21. doi: 10.1097/MPG.0000000000001312.

44. Anderson RP. Innate and adaptive immunity in celiac disease. Curr Opin Gastroenterol. 2020;36(6):470-478. doi: 10.1097/MOG.0000000000000672.

45. Roszkowska A, Pawlicka M, Mroczek A, Balubeszuk K, Nieradko-Iwanicka B. Non-Celiac Gluten Sensitivity: A Review. Medicina (Kaunas). 2019;55(8):222. doi: 10.3390/medicina5506222.

46. Catassi C, Alaeddini A, Bojarski C, Bonaz B, Bouma G, Carroccio A, et al. The overlapping area of non-celiac gluten sensitivity (NCGS) and wheat-sensitive irritable bowel syndrome (IBS): An update. Nutrients. 2017;21(9):11. pii: E1268. doi: 10.3390/nu9111268.

47. Volta U, Tovoli F, Cicola R, Parisi C, Fabbri A, Piscaglia M, et al. Serological tests in gluten sensitivity (nonceliac gluten intolerance). J Clin Gastroenterol. 2012;46: 680-5. DOI: 10.1097/MCG.0b013e3182372541.

48. Volta U, Caio G, Karunaratne TB, Alaeddini A, De Giorgio R. Non-coeliac gluten/wheat sensitivity: advances in knowledge and relevant questions. Expert Rev Gastroenterol Hepatol. 2017;11(1):9-18. doi: 10.1080/17474124.2017.1260003.

49. Carroccio A, D’Alcamo A, Iacono G, Soresi M, Iacobucci R, Arini A, et al. Persistence of nonceliac wheat sensitivity, based on long-term follow-up. Gastroenterology. 2017;153(1):56-58.e3. doi: 10.1053/j.gastro.2017.03.034.

50. Roncoroni L, Bascuñán KA, Vecchi M, Doneda L, Bardella MT, Lombardo V, et al. Exposure to different amounts of dietary gluten in patients with non-celiac gluten sensitivity (NCGS): An exploratory study. Nutrients. 2019;11(1). pii: E136. doi: 10.3390/nu11010136.