GRAM DETERMINANT OF PLANAR CURVES

JÓZEF H. PRZYTYCKI AND XIAOQI ZHU

Abstract. We investigate the Gram determinant of the bilinear form based on curves in a planar surface, with a focus on the disk with two holes. We prove that the determinant based on \(n - 1 \) curves divides the determinant based on \(n \) curves. Motivated by the work on Gram determinants based on curves in a disk and curves in an annulus (Temperley-Lieb algebra of type \(A \) and \(B \), respectively), we calculate several examples of the Gram determinant based on curves in a disk with two holes and advance conjectures on the complete factorization of Gram determinants.

1. Introduction

Let \(F^n_{0,0} \) be a unit disk with \(2n \) points on its boundary. Let \(B_{n,0} \) be the set of all possible diagrams, up to deformation, in \(F^n_{0,0} \) with \(n \) non-crossing chords connecting these \(2n \) points. It is well-known that \(|B_{n,0}| \) is equal to the \(n \)th Catalan number \(C_n = \frac{1}{n+1} \binom{2n}{n} \) \cite{10}. Accordingly, we will call \(B_{n,0} \) the set of Catalan states.

We will now generalize this setup. Let \(F_{0,k} \subset D^2 \) be a plane surface with \(k + 1 \) boundary components. \(F_{0,0} = D^2 \), and for \(k \geq 1 \), \(F_{0,k} \) is equal to \(D^2 \) with \(k \) holes. Let \(F^n_{0,k} \) be \(F_{0,k} \) with \(2n \) points, \(a_0, \ldots, a_{2n-1} \), arranged counter-clockwise along the outer boundary, cf. Figure 1.

![Figure 1](image)

Figure 1. Throughout the paper, we number the points counter-clockwise beginning at the top of outer boundary. We label and differentiate between the holes.

Let \(B_{n,k} \) be the set of all possible diagrams, up to equivalence, in \(F^n_{0,k} \) with \(n \) non-crossing chords connecting these \(2n \) points. We define equivalence as follows: for each
diagram $b \in \mathcal{B}_{n,k}$, there is a corresponding diagram $\gamma(b) \in \mathcal{B}_{n,0}$ obtained by filling the k holes in b. We call $\gamma(b)$ the underlying Catalan state of b (cf. Figure 2). In addition, a given diagram in $F_{0,k}^n$ partitions $F_{0,k}$ into $n+1$ regions. Two diagrams are equivalent if and only if they have the same underlying Catalan state and the labeled holes are distributed in the same manner across regions. Accordingly, $|\mathcal{B}_{n,k}| = (n+1)^{k-1}(\binom{2n}{n})$. We remark that in the cases $k = 0$ and $k = 1$, two diagrams are equivalent if they are homotopic, but for $k > 2$, this is not the case (for an example, see Figure 3).

In this paper, we define a pairing over $\mathcal{B}_{n,k}$ and investigate the Gram matrix of the pairing. This concept is a generalization of a problem posed by W. B. R. Lickorish for type A (based on a disk, i.e. $k = 0$) Gram determinants, and Rodica Simion for type B (based on an annulus, i.e. $k = 1$) Gram determinants, cf. [4] [5], [7] [8]. Significant research has been completed for the Gram determinants for type A and B. In particular, P. Di Francesco and B. W. Westbury gave a closed formula for the type A Gram determinant [3], [11]; a complete factorization of the type B Gram determinant was conjectured by Gefry Barad and a closed formula was proven by Q. Chen and J. H. Przytycki [1] (see also [6]). The type A Gram determinant was used by Lickorish to find an elementary construction of Reshetikhin-Turaev-Witten invariants of oriented closed 3-manifolds.

We specifically investigate the Gram determinant G_n of the bilinear form defined over $\mathcal{B}_{n,2}$ and prove that $\det G_{n-1}$ divides $\det G_n$ for $n > 1$. Furthermore, we investigate the diagonal entries of G_n and give a method for computing terms of maximal degree in $\det G_n$. We conclude the paper by briefly discussing generalizations of the Gram determinant and presenting some open questions.

2. Definitions for $\mathcal{B}_{n,2}$

Consider $F_{0,2}^n$, a unit disk with two holes, along with $2n$ points along the outer boundary. Denote the holes in $F_{0,2}^n$ by ∂X_1 and ∂Y_1, or more simply, just X_1 and Y_1. To differentiate between the two holes, we will always place X_1 to the left and Y_1 to the right if labels are not present.

Let $\mathcal{B}_n := \mathcal{B}_{n,2} := \{b_1^n, \ldots, b_{(n+1)}^{(2n)}\}$, the set of all possible diagrams, up to equivalence in $F_{0,2}^n$ with n non-crossing chords connecting these $2n$ points. For simplicity, we will often use b_i instead of b_i^n, when the number of points along the outer boundary can be inferred from context.
Let X_2 and Y_2 be the inversions\footnote{Inversion is an involution defined on the sphere $\mathbb{C} \cup \infty$ by $z \mapsto \frac{1}{\overline{z}}$.} of X_1 and Y_1, respectively, with respect to the unit disk, and let $\mathcal{S} = \{X_1, X_2, Y_1, Y_2\}$. Given $b_i \in \mathcal{B}_n$, let b_i^* denote the inversion of b_i. Given $b_i, b_j \in \mathcal{B}_n$, we glue b_i with b_j^* along the outer boundary, respecting the labels of the marked points. b_i and b_j each contains n non-crossing chords, so $b_i \circ b_j^*$ can have at most n closed curves. The resulting diagram, denoted by $b_i \circ b_j^*$, is then a set of up to n closed curves in the 2-dimensional sphere $(D^2 \cup (D^2)^*)$ with four holes: X_1, X_2, Y_1, Y_2 (we disregard the outer boundary, ∂D^2). Each closed curve partitions the set \mathcal{S} into two sets. Two closed curves are of the same type if they partition \mathcal{S} the same way. For each $b_i \circ b_j^*$, there are then up to eight types of disjoint closed curves, whose multiplicities we index by the following variables:

\begin{align*}
n_d &= \text{the number of curves with } \{X_1, X_2, Y_1, Y_2\} \text{ on the same side} \\
n_{x_1} &= \text{the number of curves that separate } \{X_1\} \text{ from } \{X_2, Y_1, Y_2\} \\
n_{x_2} &= \text{the number of curves that separate } \{X_2\} \text{ from } \{X_1, Y_1, Y_2\} \\
n_{y_1} &= \text{the number of curves that separate } \{Y_1\} \text{ from } \{X_1, X_2, Y_2\} \\
n_{y_2} &= \text{the number of curves that separate } \{Y_2\} \text{ from } \{X_1, X_2, Y_1\} \\
n_{z_1} &= \text{the number of curves that separate } \{X_1, X_2\} \text{ from } \{Y_1, Y_2\} \\
n_{z_2} &= \text{the number of curves that separate } \{X_1, Y_1\} \text{ from } \{X_2, Y_2\} \\
n_{z_3} &= \text{the number of curves that separate } \{X_1, Y_2\} \text{ from } \{X_2, Y_1\}
\end{align*}
Let $R := \mathbb{Z}[d, x_1, x_2, y_1, y_2, z_1, z_2, z_3]$, and RB_n be the free module over the ring R with basis B_n. We define a bilinear form $\langle \cdot, \cdot \rangle : RB_n \times RB_n \to R$ by:

$$\langle b_i, b_j \rangle = d^{n_d} x_1^{n_{x_1}} y_1^{n_{y_1}} y_2^{n_{y_2}} z_1^{n_{z_1}} z_2^{n_{z_2}} z_3^{n_{z_3}}$$

$\langle b_i, b_j \rangle$ is a monomial of degree at most n. Some examples of paired diagrams and their corresponding monomials, using examples from Figure 4, are given in Figure 5.

![Figure 5](image)

Figure 5. From left to right:

$\langle b_2, b_4 \rangle = x_1$ $\langle b_5, b_2 \rangle = x_1 x_2$ $\langle b_6, b_2 \rangle = d z_1$ $\langle b_1, b_3 \rangle = x_2$

Let

$$G_n = (g_{ij}) = (\langle b_i, b_j \rangle)_{1 \leq i, j \leq (n+1)/2}$$

be the Gram matrix of the pairing on B_n. For example,

$$G_1 = \begin{bmatrix}
 d & y_2 & x_2 & z_2 \\
 y_1 & z_1 & z_3 & x_1 \\
 x_1 & z_3 & z_1 & y_1 \\
 z_2 & x_2 & y_2 & d
\end{bmatrix} \quad \text{up to ordering of } B_1 \text{ and}$$

$$\det G_1 = \det ((d + z_2)(z_1 + z_3) - (x_1 + y_1)(x_2 + y_2))$$

We remark that for $b_i, b_j \in B_n$, $\langle b_j, b_i \rangle$ can be obtained by taking $b_i \circ b_j^*$ and interchanging the roles of X_1 and Y_1 with X_2 and Y_2, respectively. Let h_t be an involution on the entries of G_n which interchanges the variables x_1 with x_2 and y_1 with y_2. It follows that $\langle b_i, b_j \rangle = h_t(\langle b_j, b_i \rangle)$. The transpose matrix is then given by:

$$^{t}G_n = (h_t((b_i, b_j)))$$

We note that the variables d, z_1, z_2, z_3 are preserved by h_t (cf. Theorem 3.2(4)).

We can define more generally: given $A = \{b_{i_1}, b_{i_2}, \ldots, b_{i_p} \} \subseteq B_n$ and $B = \{b_{m_1}, b_{m_2}, \ldots, b_{m_q} \} \subseteq B_n$, let $\langle A, B \rangle$ be an $p \times q$ submatrix of G_n given by:

$$\langle A, B \rangle = (\langle b_{i_j}, b_{m_j} \rangle)_{1 \leq i \leq p, 1 \leq j \leq q}$$

For example, we can express the matrix G_n as $\langle B_n, B_n \rangle$. The i^{th} row of G_n can be written as $\langle b_i, B_n \rangle$.
This paper is mostly devoted to exploring possible factorizations of $\det G_n$, and is the first step toward computing $\det G_n$ in full generality, which we conjecture to have a nice decomposition.

Let $i_0 : B_n \to B_{n+1}$ be the embedding map defined as follows: for $b_i \in B_n$, $i_0(b_i) \in B_{n+1}$ is given by adjoining to b_i a non-crossing chord close to the outer boundary that intersects the outer circle at two points between a_0 and a_{2n-1}, cf. upper part of Figure 8.

We will also use a generalization of i_0, for which we need first the following definition. For any real number α, consider the homeomorphism $r_\alpha : \mathbb{C} \to \mathbb{C}$ on the annulus $R' \leq |z| \leq 1$, which we call the α-Dehn Twist, defined by:

$$r_\alpha(z) = ze^{i\alpha(1-(1-|z|)/(1-R'))}$$

Note that $r_\alpha(z) = z$ as $|z| = R'$. Therefore, we can extend the domain of r_α to D^2 by defining $r_\alpha(z) = z$ for $0 \leq |z| \leq R'$. Fix R' such that a circle of radius R' encloses X_1 and Y_1. Then r_α acts on $b_i \in B_n$ as a clockwise rotation of a diagram close to the outer boundary.

![Figure 7. A $\pi/4$-Dehn Twist. Note that $r_{2\pi}(b_i) = b_i$ (cf. Figure 3).](image-url)

Figure 6. A pictorial representation of curves used to define G_1.
Consider the \(k \)-conjugated embedding \(i_k : B_n \rightarrow B_{n+1} \) defined by:

\[
i_k(b_i) = r_{\pi/n+1}^{-k}i_0r_{\pi/n}^{-k}(b_i)
\]

Intuitively, if for \(b_i \in B_{n+1} \) there exists \(b_j \in B_n \) such that \(i_k(b_j) = b_i \), then \(b_i \) is composed of \(b_j \) and a non-crossing chord close to the outer boundary connecting \(a_k \) and \(a_{k-1} \). Figure 8.

![Figure 8](image)

Figure 8. An embedding \(b_i \mapsto i_0(b_i) \), top; a 1-conjugated embedding \(b_i \mapsto i_1(b_i) \), bottom; \(b_i \in B_4 \).

For every \(b_i \in B_n \), let \(p_k(b_i) \) be the diagram obtained by gluing to \(b_i \) a non-crossing chord connecting \(a_k \) and \(a_{k-1} \) outside the circle, and pushing the chord inside the circle. The properties of \(p_k \) will be explored in greater detail in Section 4. We conclude this section with a basic identity linking \(i_0 \) and \(p_0 \):

Proposition 2.1. For any \(b_i \in B_n \), \(b_j \in B_{n-1} \), \(b_i \circ i_0(b_j)^* = p_0(b_i) \circ b_j^* \).

3. Basic Properties of Gram Determinant

In this section, we prove basic properties of \(\det G_n \). In particular, we show that the determinant of \(G_n \) is nonzero.

Lemma 3.1. \(\langle b_i, b_j \rangle \) is a monomial of maximal degree if and only if \(\gamma(b_i) = \gamma(b_j) \).

Proof. \(b_i \circ b_j^* \) has \(n \) closed curves if and only if each closed curve is formed by exactly two arcs, one in \(b_i \) and one in \(b_j^* \). Hence, any two points connected by a chord in \(b_i \) must also be connected by a chord in \(b_j \), so \(\gamma(b_i) = \gamma(b_j) \). \(\square \)

Theorem 3.1. \(\det G_n \neq 0 \) for all integers \(n \geq 1 \).

\(^2\)Throughout this paper, we use \(a_k \) and \(a_{k-1} \) to denote two adjacent points along the outer boundary, where \(k \) is taken modulo 2n.
Proof. Assume \(\langle b_i, b_j \rangle \) is a monomial of maximal degree consisting only of the variables \(d \) and \(z_1 \). Because \(\gamma(b_i) = \gamma(b_j) \) by Lemma 3.1, it follows that any two points connected in \(b_i \) are also connected in \(b_j \). Each connection in \(b_i \) can be drawn in four different ways with respect to \(X \) and \(Y \), since there are two ways to position the chord relative to each hole. Because \(\langle b_i, b_j \rangle \) is assumed to consist only of the variables \(d \) and \(z_1 \), it follows that each pair of arcs that form a closed curve in \(b_i \circ b_j^* \) either separates \(\{X_1, X_2\} \) from \(\{Y_1, Y_2\} \) or has \(\{X_1, X_2, Y_1, Y_2\} \) on the same side of the curve. One can check each of the four cases to see that this condition implies that any two arcs that form a closed curve in \(b_i \circ b_j^* \) must be equal, so \(b_i = b_j \). Using Laplacian expansion, this implies that the product of the diagonal of \(G_n \) is the unique summand of degree \(n(n+1)(2^n) \) in \(\det G_n \) consisting only of the variables \(d \) and \(z_1 \).

We need the following notation for the next theorem: let \(f : \alpha_1 \leftrightarrow \alpha_2 \) denote a function \(f \) which acts on the entries of \(G_n \) by interchanging variables \(\alpha_1 \) with \(\alpha_2 \). We can extend the domain of \(f \) to \(G_n \). Let \(f(G_n) \) denote the matrix formed by applying \(f \) to all the individual entries of \(G_n \).

Let \(h_1, h_2, h_3 \) be involutions acting on the entries of \(G_n \) with the following definitions:

1. \(h_1 : x_1 \leftrightarrow y_1 \quad z_1 \leftrightarrow z_3 \)
2. \(h_2 : x_2 \leftrightarrow y_2 \quad z_1 \leftrightarrow z_3 \)
3. \(h_3 = h_1 h_2 \) \(: x_1 \leftrightarrow y_1 \quad x_2 \leftrightarrow y_2 \)
4. \(h_t : x_1 \leftrightarrow x_2 \quad y_1 \leftrightarrow y_2 \)

Theorem 3.2.

1. \(\det h_1(G_1) = -\det G_1 \), and for \(n > 1 \), \(\det h_1(G_n) = \det G_n \).
2. \(\det h_2(G_1) = -\det G_1 \), and for \(n > 1 \), \(\det h_2(G_n) = \det G_n \).
3. \(\det h_3(G_n) = \det G_n \).
4. \(\det h_t(G_n) = \det G_n \).

Proof. For (1), note that \(h_1(G_n) \) corresponds to exchanging the positions of the holes \(X_1 \) and \(Y_1 \) for all \(b_i \in B_n \). \(b_j^* \) is unchanged, so \(h_1 \) can be realized by a permutation of rows. For states where \(X_1 \) and \(Y_1 \) lie in the same region, their corresponding rows are unchanged by \(h_1 \). The number of such states is given by \(\frac{1}{n+1} |B_n| \). Thus, the total number of row transpositions is equal to

\[
\frac{1}{2} \left(|B_n| - \left(\frac{1}{n+1} \right) |B_n| \right) = \frac{n}{2} \binom{2n}{n} = \binom{n(n+1)}{2} C_n
\]

where \(C_n = \frac{1}{n+1} \binom{2n}{n} \). It is a known combinatorial fact that \(C_n \) is odd if and only if \(n = 2^m - 1 \) for some \(m \), \(\mathbb{Z} \). Hence, \(C_n \) is odd implies that

\[
\frac{n(n+1)}{2} = \frac{2^m(2^m-1)}{2} = 2^{m-1}(2^m - 1)
\]

which is even for all \(m > 1 \). Thus, \(h_1(G_n) \) can be obtained from \(G_n \) by an even permutation of rows for \(n > 1 \), so \(\det h_1(G_n) = \det G_n \). \(h_1(G_1) \) is given by an odd number of row
transpositions on \(G_1 \), so \(\det h_1(G_1) = - \det G_1 \).

(2) can be shown using the same method of proof as before. \(h_2(G_n) \) corresponds to exchanging the positions of the holes \(X_2 \) and \(Y_2 \) for all \(b_i \in B_n \). \(h_2 \) can thus be realized by a permutation of columns, and the rest of the proof follows in a similar fashion as the previous one. Since \(h_2(G_n) \) can be obtained from \(G_n \) by an even permutation of columns for \(n > 1 \), \(\det h_2(G_n) = \det G_n \). \(h_2(G_2) \) is given by an odd number of column transpositions on \(G_1 \), so \(\det h_2(G_1) = - \det G_1 \), which proves (2).

Since \(h_3 = h_1 h_2 \), it follows immediately that \(\det h_3(G_n) = \det G_n \) for \(n > 1 \). The sum of two odd permutations is even, so the equality also holds for \(n = 1 \), which proves (3). (4) follows because \(\det h_t(G_n) = (\det t G_n) = \det G_n \).

\[\begin{align*}
(1) \quad g_1 &: x_1 \leftrightarrow -x_1, x_2 \leftrightarrow -x_2, z_2 \leftrightarrow -z_2, z_3 \leftrightarrow -z_3 \\
(2) \quad g_2 &: y_1 \leftrightarrow -y_1, y_2 \leftrightarrow -y_2, z_2 \leftrightarrow -z_2, z_3 \leftrightarrow -z_3 \\
(3) \quad g_3 &: x_1 \leftrightarrow -x_1, y_2 \leftrightarrow -y_2, z_1 \leftrightarrow -z_1, z_2 \leftrightarrow -z_2 \\
(4) \quad g_1 g_2 &: x_1 \leftrightarrow -x_1, x_2 \leftrightarrow -x_2, y_1 \leftrightarrow -y_1, y_2 \leftrightarrow -y_2 \\
(5) \quad g_1 g_3 &: x_2 \leftrightarrow -x_2, y_2 \leftrightarrow -y_2, z_1 \leftrightarrow -z_1, z_3 \leftrightarrow -z_3 \\
(6) \quad g_2 g_3 &: x_1 \leftrightarrow -x_1, y_1 \leftrightarrow -y_1, z_1 \leftrightarrow -z_1, z_3 \leftrightarrow -z_3 \\
(7) \quad g_1 g_2 g_3 &: x_2 \leftrightarrow -x_2, y_1 \leftrightarrow -y_1, z_1 \leftrightarrow -z_1, z_2 \leftrightarrow -z_2
\end{align*} \]

Theorem 3.3. \(\det G_n \) is preserved under the following involutions on variables:

1. \(g_1 : x_1 \leftrightarrow -x_1, x_2 \leftrightarrow -x_2, z_2 \leftrightarrow -z_2, z_3 \leftrightarrow -z_3 \)
2. \(g_2 : y_1 \leftrightarrow -y_1, y_2 \leftrightarrow -y_2, z_2 \leftrightarrow -z_2, z_3 \leftrightarrow -z_3 \)
3. \(g_3 : x_1 \leftrightarrow -x_1, y_2 \leftrightarrow -y_2, z_1 \leftrightarrow -z_1, z_2 \leftrightarrow -z_2 \)
4. \(g_1 g_2 : x_1 \leftrightarrow -x_1, x_2 \leftrightarrow -x_2, y_1 \leftrightarrow -y_1, y_2 \leftrightarrow -y_2 \)
5. \(g_1 g_3 : x_2 \leftrightarrow -x_2, y_2 \leftrightarrow -y_2, z_1 \leftrightarrow -z_1, z_3 \leftrightarrow -z_3 \)
6. \(g_2 g_3 : x_1 \leftrightarrow -x_1, y_1 \leftrightarrow -y_1, z_1 \leftrightarrow -z_1, z_3 \leftrightarrow -z_3 \)
7. \(g_1 g_2 g_3 : x_2 \leftrightarrow -x_2, y_1 \leftrightarrow -y_1, z_1 \leftrightarrow -z_1, z_2 \leftrightarrow -z_2 \)

Proof. To prove (1), we show that \(g_1 \) can be realized by conjugating the matrix \(G_n \) by a diagonal matrix \(P_n \) of all diagonal entries equal to \(\pm 1 \). The diagonal entries of \(P_n \) are defined as

\[p_{ii} = (-1)^{q(b_i, F_x)} \]

where \(q(b_i, F_x) \) is the number of times \(b_i \) intersects \(F_x \) modulo 2, cf. Figure 9. The theorem follows because curves corresponding to the variables \(x_1, x_2, z_2 \) and \(z_3 \) intersect \(F_x \cup F_x^* \) in an odd number of points, whereas curves corresponding to the variables \(d, z_2, y_1 \) and \(y_2 \) cut it an even number of times.

![Figure 9](image-url)

More precisely, for

\[g_{ij} = \langle b_i, b_j \rangle = d^{n_d x_1^{n_{x_1}} x_2^{n_{x_2}} y_1^{n_{y_1}} y_2^{n_{y_2}} z_1^{n_{z_1}} z_2^{n_{z_2}} z_3^{n_{z_3}}}, \]
the entry g'_{ij} of $P_n G_n P_n^{-1}$ satisfies:
\[
g'_{ij} = p_{ij}p_{ij}p_{ij} = p_{ij}p_{ij}g_{ij}
\]
\[
= (-1)^{q(b_i, F_x) + q(b_j, F_x)} g_{ij}
\]
\[
= (-1)^{n_x_1 + n_x_2 + n_z_2 + n_z_3} g_{ij}
\]
\[
= d^{n_d} (-x_1)^{n_x_1} (-x_2)^{n_x_2} g_1^{n_y_1} g_2^{n_y_2} z_1^{n_z_1} (-z_2)^{n_z_2} (-z_3)^{n_z_3}
\]

For (2) and (3), we use the same method of proof as for (1). In (2), we use F_y and $F_y \cup F_y^*$. In (3), we use F_x and $F_x \cup F_y^*$. (4) through (7) follow directly from (1), (2) and (3). \qed

4. Terms of Maximal Degree in det G_n

Theorem 3.1 proves that the product of the diagonal entries of G_n is the unique term of maximal degree, $n(n+1)\binom{2n}{n}$, in det G_n consisting only of the variables d and z_1. More precisely, the product of the diagonal of G_n is given by
\[
\delta(n) = \prod_{b_i \in B_n} (b_i, b_i) = d^{1\alpha(n)} z_1^{\beta(n)}
\]
with $\alpha(n) + \beta(n) = n(n+1)\binom{2n}{n}$. $\delta(n)$ for the first few n are given here:
\[
\delta(1) = d^2 z_1^2 \quad \delta(2) = d^{20} z_1^{16} \quad \delta(3) = d^{144} z_1^{96} \quad \delta(4) = d^{888} z_1^{512}
\]

Computing the general formula for $\delta(n)$ can be reduced to a purely combinatorial problem. We conjectured that $\beta(n) = (2n)^{4n-1}$ and this was in fact proven by Louis Shapiro using an involved generating function argument [9]. The result is stated formally below.

Theorem 4.1.
\[
\delta(n) = d^{n(n+1)\binom{2n}{n} - (2n)^{4n-1} z_1^{(2n)^{4n-1}}}
\]

Let $h(\det G_n)$ denote the truncation of $\det G_n$ to terms of maximal degree, that is, of degree $n(n+1)\binom{2n}{n}$. Each term is a product of $(n+1)\binom{2n}{n}$ entries in G_n, each of which is a monomial of degree n. By Lemma 3.1, (b_i, b_j) has degree n if and only if b_i and b_j have the same underlying Catalan state. There are $C_n = \frac{1}{n+1} \binom{2n}{n}$ elements in B_n. Divide B_n into subsets corresponding to underlying Catalan states, that is, into subsets A_1, \ldots, A_{C_n}, such that for all $b_i, b_j \in A_k$, $\gamma(b_i) = \gamma(b_j)$. Then from Lemma 3.1 we have

Proposition 4.1.
\[
h(\det G_n) = \prod_{k=1}^{C_n} \det(A_k, A_k)
\]

Note that $\langle A_k, A_k \rangle$ are simply blocks in G_n whose determinants can be multiplied together to give the highest terms in det G_n. Finding the terms of maximal degree in det G_n can give insight into decomposition of det G_n for large n.
Example 1. B_1 corresponds to the single Catalan state in $B_{1,0}$. Thus, $\det G_1 = h(\det G_1)$, a homogeneous polynomial of degree 4.

Example 2. B_2 can be divided into two subsets, corresponding to the two Catalan states in $B_{2,0}$. We can thus find $h(\det G_2)$ by computing two 9×9 block determinants. The two Catalan states in $B_{2,0}$ are equivalent up to rotation, so the two block determinants are equal. Specifically, we have:

\[h(\det G_2) = d^6(x_1 x_2 + x_2 y_1 + x_1 y_2 + y_1 y_2 - dz_1 - z_1 z_2 - d z_3 - z_2 z_3)^4 \\
- x_1 x_2 + x_2 y_1 + y_1 y_2 - dz_1 - z_1 z_2 - d z_3 - z_2 z_3)^4 \\
- x_1 x_2 z_1 - y_1 y_2 z_1 + dz_1^2 + x_2 y_1 z_3 + x_1 y_2 z_3 - dz_3^2)^2 \\
- 2 x_1 x_2 y_1 y_2 + dx_1 x_2 z_1 + dy_1 y_2 z_1 - d^2 z_1^2 + dx_2 y_1 z_3 + dx_1 y_2 z_3 - d^2 z_3^2)^2 \\
= d^6 \det G_1^4 \left(-x_1 x_2 z_1 - y_1 y_2 z_1 + dz_1^2 + x_2 y_1 z_3 + x_1 y_2 z_3 - dz_3^2 \right)^2 \\
\left(-2 x_1 x_2 y_1 y_2 + dx_1 x_2 z_1 + dy_1 y_2 z_1 - d^2 z_1^2 + dx_2 y_1 z_3 + dx_1 y_2 z_3 - d^2 z_3^2 \right)^2 \\

Example 3. B_3 can be divided into five subsets, corresponding to the five Catalan states in $B_{3,0}$. We can thus find $h(\det G_3)$ by computing the determinants of five blocks in B_3. The determinant of each block gives a homogeneous polynomial of degree 240/5 = 48. $B_{3,0}$ forms two equivalence classes up to rotation, so there are only two unique block determinants. For precise terms, we refer the reader to the Appendix.

5. $\det G_{n-1}$ DIVIDES $\det G_n$

In this section, we prove that the Gram determinant for $n - 1$ chords divides the Gram determinant for n chords. We need several lemmas:

Lemma 5.1. For any $b_i \in B_n$, $p_0(b_i) \in B_{n-1}$ if and only if b_i contains no chord connecting a_0 and a_{2n-1}.

Proof. Suppose a_0 and a_{2n-1} are not connected by a chord in b_i, say, a_0 is connected to a_j and a_{2n-1} is connected to a_k. Then $p_0(b_i)$ connects a_0 and a_{2n-1} by a chord outside the outer boundary, and this chord does not form a closed curve. Because a_j is connected to a_0 and a_k is connected to a_{2n-1}, $p_0(b_i)$ contains single path from a_k to a_j, which we can deform through isotopy so that it fits inside the outer circle. Thus, $p_0(b_i) \in B_{n-1}$, cf. Figure 10.

If b_i contains an arc connecting a_0 and a_{2n-1}, then $p_0(b_i)$ contains a closed curve enclosing some subset of $\{X_1, Y_1\}$, and cannot be in B_n. \hfill \Box

Lemma 5.2. For any $b_i \in B_n$, if $p_0(b_i) \notin B_{n-1}$, there exists $b_{\alpha(i)} \in B_{n-1}$ such that, for all $b_j \in B_{n-1}$, one of the following is true:

1. $\langle p_0(b_i), b_j \rangle = d(b_{\alpha(i)}, b_j)$
2. $\langle p_0(b_i), b_j \rangle = x_1 \langle b_{\alpha(i)}, b_j \rangle$
3. $\langle p_0(b_i), b_j \rangle = y_1 \langle b_{\alpha(i)}, b_j \rangle$
4. $\langle p_0(b_i), b_j \rangle = z_2 \langle b_{\alpha(i)}, b_j \rangle$.
Figure 10. From b_i, we obtain $p_0(b_i)$ by adjoining a chord outside the outer boundary between a_0 and a_{2n-1}, and pushing the chord inside the boundary. If b_i does not contain a chord connecting a_0 and a_{2n-1}, then $p_0(b_i) \in B_{n-1}$.

Proof. By Lemma 5.1, b_i contains a chord connecting points a_0 and a_{2n-1}, so $p_0(b_i)$ must consist of some diagram in B_{n-1} and a closed curve enclosing some subset of $\{X_1, Y_1\}$. The former is given by $\langle b_{\alpha(i)}(i) \rangle$ for some $b_{\alpha(i)} \in B_{n-1}$, and the latter curve is given by one of the following variables: d, x_1, y_1, z_2.

The previous two lemmas, combined with Proposition 2.1, leads to the following corollary.

Corollary 5.1. Let $A = \{1, d, x_1, y_1, z_2\}$. For any $b_i \in B_n$, there exists $b_{\alpha(i)} \in B_{n-1}$ and $c \in A$ such that $\langle b_{\alpha(i)}, i_0(B_{n-1}) \rangle = c \langle b_{\alpha(i)}(i), i_0(B_{n-1}) \rangle$.

That is, the rows of $\langle B_n, i_0(B_{n-1}) \rangle$ are each either equal to some row of G_{n-1}, or to some row of G_{n-1} multiplied by one of the following variables: d, x_1, y_1, z_2. We now have all the lemmas needed for our main result of this section.

Theorem 5.1. For $n > 1$, $\det G_{n-1} | \det G_n$.

Proof. We begin by proving that for every row of the matrix G_{n-1}, there exists an equivalent row in the submatrix $\langle B_n, i_0(B_{n-1}) \rangle$ of G_n. Fix $b_i \in B_{n-1}$ and take the row of G_{n-1} given by $\langle b_i, B_{n-1} \rangle$. We claim that the row in $\langle B_n, i_0(B_{n-1}) \rangle$ given by $\langle i_1(b_i), i_0(B_{n-1}) \rangle$ is equal to $\langle b_i, B_{n-1} \rangle$. In other words, $\langle i_1(b_i), i_0(B_{n-1}) \rangle$ is equal to the ith row of G_{n-1}, a fact which we leave to the reader for the moment, but will demonstrate explicitly in the next section, cf. Theorem 6.1.

Reorder the elements of B_n so that $\langle i_0(B_{n-1}), i_0(B_{n-1}) \rangle$ forms an upper-leftmost block of G_n and $\langle i_1(B_{n-1}), i_0(B_{n-1}) \rangle$ forms a block directly underneath $\langle i_0(B_{n-1}), i_0(B_{n-1}) \rangle$.
This is illustrated below:

\[
G_n = \begin{pmatrix}
\langle \mathbf{B}_n, \mathbf{0} \rangle, \mathbf{B}_n^{-1} & \ast & \ast & \ast & \ast \\
\langle \mathbf{B}_n, \mathbf{B}_n^{-1} \rangle & \ast & \ast & \ast & \ast \\
0 & \ast & \ast & \ast & \ast \\
\end{pmatrix}
\]

Corollary 5.1 implies that every row of \(\langle \mathbf{B}_n, \mathbf{0} \rangle \) is a multiple of some row in \(G_{n-1} \). Let \(j_1, \ldots, j_k \) denote the indices of all rows of \(\langle \mathbf{B}_n, \mathbf{0} \rangle \) other than those in \(\langle \mathbf{B}_n, \mathbf{B}_n^{-1} \rangle \). Let \(G_n' \) be the matrix obtained by properly subtracting multiples of rows in \(\langle \mathbf{B}_n, \mathbf{0} \rangle \) from rows \(j_1, \ldots, j_k \) of \(G_n \) so that the submatrix obtained by restricting \(G_n' \) to rows \(j_1, \ldots, j_k \) and columns corresponding to states in \(\mathbf{0} \) is equal to 0:

\[
G_n' = \begin{pmatrix}
0 & \ast & \ast & \ast & \ast \\
G_{n-1} & \ast & \ast & \ast & \ast \\
0 & \ast & \ast & \ast & \ast \\
0 & \ast & \ast & \ast & \ast \\
0 & \ast & \ast & \ast & \ast \\
\end{pmatrix}
\]

Thus, \(G_n' \) restricted to the columns corresponding to states in \(\mathbf{0} \) contains precisely \(n^{2n-2} \) nonzero rows, each equal to some unique row of \(G_{n-1} \). The determinant of this submatrix is equal to \(\det G_{n-1} \). Since \(\det G_{n-1} \det G_n' \) and \(\det G_n' = \det G_n \), this completes the proof.

6. Further Relation Between \(\det G_{n-1} \) and \(\det G_n \)

As was first noted in the proof of Theorem 5.1, there exists a submatrix of \(G_n \) equal to \(G_{n-1} \). This section will be focused on identifying multiple nonoverlapping submatrices in \(G_{n-1} \) equal to multiples of \(G_{n-1} \). This will prove useful for simplifying the computation of \(\det G_n \). We start with the main lemma for this section and for Theorem 5.1.

Lemma 6.1. For any \(b_i, b_j \in \mathbf{B}_{n-1} \), \(\langle i_0(b_i), i_0(b_j) \rangle = \langle i_1(b_i), i_0(b_j) \rangle = \langle b_i, b_j \rangle \).

Proof. We begin with the equality \(\langle i_1(b_i), i_0(b_j) \rangle = \langle b_i, b_j \rangle \). By Proposition 2.1, \(i_1(b_i) \circ i_0(b_j) = p_0i_1(b_i) \circ b_j \ast \), so it suffices to prove that \(p_0i_1(b_i) = p_0r_{\pi n}i_0r_{\pi n-1}^{-1}(b_i) = b_i \). This is demonstrated pictorially:
Thus, \(\langle i_1(b_i), i_0(b_j) \rangle = \langle b_i, b_j \rangle \). Recall that \(\langle b_i, b_j \rangle = h_t(\langle b_j, b_i \rangle) \). From this and the previous equality, it follows that
\[
\langle i_0(b_i), i_0(b_j) \rangle = h_t(\langle i_1(b_j), i_0(b_i) \rangle) = h_t(\langle b_j, b_i \rangle) = h_t^2(\langle b_i, b_j \rangle) = \langle b_i, b_j \rangle.
\]
□

Corollary 6.1. \(\langle i_0(B_{n-1}), i_1(B_{n-1}) \rangle = \langle i_1(B_{n-1}), i_0(B_{n-1}) \rangle = G_{n-1} \).

Lemma 6.2. For any \(b_i, b_j \in B_{n-1} \), \(\langle i_0(b_i), i_0(b_j) \rangle = \langle i_1(b_i), i_1(b_j) \rangle = d \langle b_i, b_j \rangle \).

Proof. \(i_0(b_i) \circ i_0(b_j)^* \) is composed of \(b_i \circ b_j^* \) in addition to a chord close to the boundary glued with its inverse. The latter pairing gives a trivial circle. Thus, \(\langle i_0(b_i), i_0(b_j) \rangle = d \langle b_i, b_j \rangle \) for all \(b_i, b_j \in B_{n-1} \).

By symmetry, \(\langle i_1(B_{n-1}), i_1(B_{n-1}) \rangle = d G_{n-1} \). □

Corollary 6.2. \(\langle i_0(B_{n-1}), i_0(B_{n-1}) \rangle = \langle i_1(B_{n-1}), i_1(B_{n-1}) \rangle = d G_{n-1} \).

Using these two facts, we can construct from \(G_n \) a \((|B_n| - 2|B_{n-1}|) \times (|B_n| - 2|B_{n-1}|)\) matrix whose determinant is equal to \(\det G_n/(1 - d^2)^{n-1} \det G_{n-1}^2 \). This allows us to compute \(\det G_n \) with greater ease, assuming we know \(\det G_{n-1} \). This process is shown in the next theorem.

Theorem 6.1. There exists an integer \(k \geq 3 \) such that, for all integers \(n > 1 \),
\[
\det G_{n-1}^2 \mid \det G_n(1 - d^2)^k.
\]

3Clearly \(k \) is bounded above by \((n + 1)(2^n) \), or even better, by \(|B_n| - 2|B_{n-1}| \). There are obviously better approximations possible, but we do not address them in this paper.
Proof. Order the elements of B_n, (or equivalently, the rows and columns of G_n) as shown in Theorem 5.1. We apply the procedure from Theorem 5.1 to construct G_n', whose form is given roughly below:

$$
G_n' = \begin{pmatrix}
0 & (1 - d^2)G_{n-1} & * & * & * \\
G_{n-1} & dG_{n-1} & * & * & * \\
0 & * & * & * & * \\
0 & * & * & * & * \\
0 & * & * & * & * \\
0 & * & * & * & * \\
\end{pmatrix}
$$

Consider the block in G_n' whose columns correspond to states in $i_1(B_{n-1})$ and whose rows correspond to states in neither $i_0(B_{n-1})$ nor $i_1(B_{n-1})$ (boxed above). Every row in this submatrix is a linear combination of two rows from G_{n-1}. More precisely, each row is of the form $a_1l_1 - a_2dl_2$, where l_1 and l_2 are two rows, not necessarily distinct, in G_{n-1}, and $a_1, a_2 \in A = \{1, d, x_1, y_1, z_2\}$. If we assume $(1 - d^2)$ is invertible in our ring, then each row is a linear combination of two rows from $(1 - d^2)G_{n-1}$. We then simplify G_n' as follows:

Let G_n'' be the matrix obtained by properly subtracting linear combinations of the first $n\binom{2n-2}{n-1}$ rows of G_n' from the rows which correspond to states in neither $i_0(B_{n-1})$ nor $i_1(B_{n-1})$ so that the submatrix obtained by restricting G_n'' to columns corresponding to states in $i_1(B_{n-1})$ and rows corresponding to states in neither $i_0(B_{n-1})$ nor $i_1(B_{n-1})$ is equal to 0:

$$
G_n'' = \begin{pmatrix}
0 & (1 - d^2)G_{n-1} & * & * & * \\
G_{n-1} & dG_{n-1} & * & * & * \\
0 & 0 & * & * & * \\
0 & 0 & * & * & * \\
0 & 0 & * & * & * \\
0 & 0 & * & * & * \\
\end{pmatrix}
$$

The block decomposition at this point proves that det G_n'' is equal to $(1 - d^2)^{n\binom{2n-2}{n-1}}(\det G_{n-1})^2$ times the determinant of the boxed block, which we denote by \overline{G}_n. The latter contains a power of $(1 - d^2)^{-1}$, whose degree is unspecified. Thus, $\det G_{n-1}^2|\det G_n''(1 - d^2)^k$ for some integer $k \geq 0$. We remind the reader that G_n'' is obtained from G_n' via determinant preserving operations, and hence $\det G_n' = \det G_n$.

Note that if $\det G_n$ has fewer than $n\binom{2n-2}{n-1}$ powers of $(1 - d^2)^{-1}$, then $\det G_{n-1}^2|\det G_n$. It remains an open problem as to whether this is true. For an example of this decomposition, we refer the reader to the Appendix.

7. Future Directions

In this section, we discuss briefly generalizations of the Gram determinant and present a number of open questions and conjectures.
7.1. The case of a disk with \(k \) holes. We can generalize our setup by considering \(F_{0,k}^n \), a unit disk with \(k \) holes, in addition to \(2n \) points, \(a_0, \ldots, a_{2n-1} \), arranged in a similar way to points in \(F_{0,2}^n \). For \(b_i, b_j \in B_{n,k} \), let \(b_i \circ b_j^* \) be defined in the same way as before. Each paired diagram \(b_i \circ b_j^* \) consists of up to \(n \) closed curves on the 2-sphere \((D^2 \cup (D^2)^*)\) with \(2k \) holes. Let \(S \) denote the set of all \(2k \) holes. We differentiate between the closed curves based on how they partition \(S \). We define a bilinear form by counting the multiplicities of each type of closed curve in the paired diagram. In the case \(k = 2 \), we assigned to each paired diagram a corresponding element in a polynomial ring of eight variables, each variable representing a type of closed curve. In the general case, the number of types of closed curves is equal to

\[
\frac{2|S|}{2} = 2^k = 2^{2k-1}
\]

so we can define the Gram matrix of the bilinear form for a disk with \(k \) holes and \(2n \) points with \((n + 1)^{k-1}(2n) \times (n + 1)^{k-1}(2n)\) entries, each belonging to a polynomial ring of \(2^{2k-1} \) variables. We denote this Gram matrix by \(G_{F_{0,k}}^n \). For \(n = 1 \) and \(k = 3 \), we can easily write this \(8 \times 8 \) Gram matrix. For purposes of notation, let us denote the holes in \(F_{0,3}^n \) by \(\partial_1, \partial_2 \) and \(\partial_3 \), and their inversions by \(\partial_{-1}, \partial_{-2} \) and \(\partial_{-3} \), respectively. Hence, each closed curve in the surface encloses some subset of \(S = \{ \partial_1, \partial_{-1}, \partial_2, \partial_{-2}, \partial_3, \partial_{-3} \} \). Let \(x_{a_1,a_2,a_3} \) denote a curve separating the set of holes \(\{ \partial_{a_1}, \partial_{a_2}, \partial_{a_3} \} \) from \(S - \{ \partial_{a_1}, \partial_{a_2}, \partial_{a_3} \} \). We can similarly define \(x_{a_1,a_2} \) and \(x_{a_1} \). The Gram matrix is then:

\[
G_{F_{0,3}}^1 = \begin{pmatrix}
 d & x_{-3} & x_{-2} & x_{-2,-3} & x_{-1} & x_{-1,-3} & x_{-1,-2} & x_{1,2,3} \\
 x_{3} & x_{3,-3} & x_{2,-3} & x_{1,-1,2} & x_{1,-1,3} & x_{1,1,2} & x_{1,1,3} & x_{1,1,2,3} \\
 x_{2} & x_{2,-3} & x_{2,-2} & x_{1,-1,2} & x_{1,-1,3} & x_{1,1,2} & x_{1,1,3} & x_{1,1,2,3} \\
 x_{2,3} & x_{1,-1,-2} & x_{1,-1,-3} & x_{1,-1} & x_{1,-1,-3} & x_{1,-1,-2} & x_{1,-1} & x_{1,-1,-3} \\
 x_{1} & x_{1,-1,3} & x_{1,-1,2} & x_{1,-2,3} & x_{1,-2,1} & x_{1,-2,3} & x_{1,-2,1} & x_{1,-2,3} \\
 x_{1,3} & x_{1,3,-3} & x_{1,-2,3} & x_{1,-1,3} & x_{1,-1,2} & x_{1,-1,3} & x_{1,-1,2} & x_{1,-1,3} \\
 x_{1,2} & x_{1,2,-3} & x_{1,-2,3} & x_{1,-1,3} & x_{1,-1,2} & x_{1,-1,3} & x_{1,-1,2} & x_{1,-1,3} \\
 x_{1,2,3} & x_{1,-1,-2} & x_{1,-1,-3} & x_{1,-1} & x_{1,-2,3} & x_{1,-2,1} & x_{1,-2,3} & x_{1,-2,1} \\
\end{pmatrix}
\]

It would be tempting to conjecture that the determinant of the above matrix has a straightforward decomposition of the form \((u + v)(u - v)\). We found that it is the case for the substitution \(x_{a_1} = x_{a_1,a_2} = 0 \) with \(a_1, a_2 \in \{-3, -2, -1, 1, 2, 3\} \) (see Appendix). However in general, the preliminary calculation suggests that \(\det G_{F_{0,3}}^1 \) may be an irreducible polynomial.

Finally, we observe that many results we have proven for \(\det G_{n}^{F_{0,2}} \) holds for general \(\det G_{n}^{F_{0,k}} \). For example, \(\det G_{n}^{F_{0,k}} \neq 0 \) and \(\det G_{n}^{F_{0,k-1}} | \det G_{n}^{F_{0,k}} \). In the specific case of \(\det G_{n}^{F_{0,3}} \) we conjecture that the diagonal term is of the form \(\delta(n) = d^{a(n)}(x_{-1,-1}x_{2,-2}x_{3,-3})^{\beta(n)} \), where \(a(n) + 3\beta(n) = n(n + 1)^2(2n) \) and \(\beta(n) = n(n + 1)^4(n + 1) \).

7.2. Speculation on factorization of \(\det G_{n} \). Section 5 establishes that \(\det G_{n-1} | \det G_{n} \), but we conjecture that there are many more powers of \(\det G_{n-1} \) in \(\det G_{n} \). Indeed, even
in the base case, \(\det G_1^k \mid \det G_2 \) for \(k \) up to 4. Finding the maximal power of \(\det G_{n-1} \) in \(\det G_n \) in the general case is an open problem and can be helpful toward computing the full decomposition of \(\det G_n \).

Examining the terms of highest degree in \(\det G_n \), that is, \(h(\det G_n) \) may also yield helpful hints toward the full decomposition. In particular, we note that:

\[
\det G_1^4 | h(\det G_2) \quad \text{and} \quad \left(\frac{h(\det G_2)^6}{\det G_1^9} \right) | h(\det G_3)
\]

We can conjecture that

\[
\left(\frac{\det G_2^6}{\det G_1^9} \right) | \det G_3
\]

so it follows that \(\det G_1^{15} \mid \det G_3 \). We therefore offer the following conjecture:

Conjecture 1. \(\det G_1^{(\frac{2^n}{n-1})} \mid \det G_n \) for \(n \geq 1 \).

In addition, we also offer the following conjecture, motivated by observations of \(\det G_1 \) and \(\det G_2 \):

Conjecture 2. Let \(H_n \) denote the factors of \(\det G_n \) not in \(\det G_{n-1} \), that is, \(H_n \mid \det G_n \) and \(\gcd(H_n, \det G_{n-1}) = 0 \). Then \((H_n)^{2n} \mid \det G_n \).

Conjecture 3. Let, as before, \(R = \mathbb{Z}[d, x_1, x_2, y_1, y_2, z_1, z_2, z_3] \) and \(R_1 \) be a subgroup of \(R \) of elements invariant under \(h_1, h_2, h_t \), and \(g_1, g_2, g_3 \). Similarly, let \(R_2 \) be a subgroup of \(R \) composed of elements \(w \in R \) such that \(h_1(w) = h_2(w) = -w \) and \(h_t(w) = g_1(w) = g_2(w) = g_3(w) \). Then

1. \(\det G_n = u^2 - v^2 \), where \(u \in R_1 \) and \(v \in R_2 \).
2. \(\det G_n = \prod \alpha(u^2_\alpha - v^2_\alpha) \), where \(u_\alpha \in R_1 \) and \(v_\alpha \in R_2 \), and \(u_\alpha - v_\alpha \) and \(u_\alpha + v_\alpha \) are irreducible polynomials.
3. \(\det G_n = \prod_{i=1}^{n}(u_i^2 - v_i^2)^{(\alpha_{i-1})} \), where \(u_i \in R_1 \) and \(v_i \in R_2 \).

Notice that if \(w_1 = u_1^2 - v_1^2 \) and \(w_2 = u_2^2 - v_2^2 \), then \(w_1 w_2 = (u_1 u_2 + v_1 v_2)^2 - (u_1 v_2 + u_2 v_1)^2 \).

We have little confidence in Conjecture 3(3). It is closely, maybe too closely, influenced by the Gram determinant of type B (\(\det G^B_n = \det G_n^{F_{0,1}} \)). That is

Theorem 7.1. (\[14\])

\[
\det G_n^B = \prod_{i=1}^{n} (T_i(d)^2 - a^2)^{(2^{n-1})}
\]

where \(T_i(d) \) is the Chebyshev polynomial of the first kind:

\[
T_0 = 2, \quad T_1 = d, \quad T_i = d T_{i-1} - T_{i-2};
\]

\(d \) and \(a \) in the formula, correspond to the trivial and the nontrivial curves in the annulus \(F_{0,1} \), respectively.
8.3. \hat{G}_2 (defined in Theorem 6.1), after simplification

\[
\left\{ \begin{array}{l}
x_{2y_2} - dz_2 \\
0 \\
-dx_1 + x_2 z_1 - y_1 z_2 + y_2 z_3 \\
-x_1^2 + y_1^2 + z_1^2 + z_2^2 \\
-dy_1 + y_2 z_1 - x_1 z_2 + x_2 z_3 \\
0 \\
-d^2 + x_2^2 + y_2^2 - z_2^2 \\
y_2 - dx_2 z_2 \\
-x_2 z_2 + x_1 z_3 \\
dy_2 - x_2 z_2 \\
-dx_1 + x_2 z_1 - x_2 y_2 + y_2 z_3 \\
-x_1^2 + y_1^2 + z_1^2 + z_2^2 \\
-y_2 y_1 + dy_2 \\
2y_2 - d^2 y_2 - dx_2 z_2 \\
2y_1 - dz_2 + x_1 z_1 \\
dx_1 + x_2 z_1 - x_2 y_2 + y_2 z_3 \\
-x_1^2 + y_1^2 + z_1^2 + z_2^2 \\
\end{array} \right.
\]

\[
\det \hat{G}_2 = \frac{\det G_2}{(1 - d^2)^4 \det G_1^2}
\]

8.4. $\det G_2$

\[
\det G_2 = -d^6 (-x_1 x_2 + x_2 y_1 + x_1 y_2 - y_1 y_2 + d_1 - z_1 z_2 - d_3 + x_2 z_3) (x_1 x_2 - x_2 y_1 - x_1 y_2 - y_1 y_2 + d_1 + z_1 z_2 + d_3 + x_2 z_3)
\]

\[
(8d^2 - 24 - 8y_1 + 2d_1^2 y_1^2 - 8x_2^2 + 2d_2^2 y_2^2 + 2x_1^2 x_2^2 + 2d_3^2 y_3^2 + 2d_1 d_2 y_1 y_2 - 8y_1^2 + 2d_1^2 y_2^2 + 2y_2^2 y_3^2 + 8x_1 y_1 y_2 - 2d_1^2 y_1^2 y_2^2 - 2y_1^2 y_2^2)
\]

\[
(8d^2 - 24 - 8y_1 + 2d_1^2 y_1^2 - 8x_2^2 + 2d_2^2 y_2^2 + 2x_1^2 x_2^2 + 2d_3^2 y_3^2 + 2d_1 d_2 y_1 y_2 - 8y_1^2 + 2d_1^2 y_2^2 + 2y_2^2 y_3^2 + 8x_1 y_1 y_2 - 2d_1^2 y_1^2 y_2^2 - 2y_1^2 y_2^2)
\]
8.5. Terms of maximal degree in \(\det G_3 \)

\[h(\det G_3) = h(\det G_2) \cdot \det G_1^{30} - 2 \cdot \det G_1^{30} \cdot \omega^3 \]

\[= d^{66} (-x_1 x_2 + x_2 y_1 + x_1 y_2 - y_1 y_2 + d z_1 - z_1 z_2 + z_2 z_3)^{15} \]

\[(-x_1 x_2 - x_2 y_1 - x_1 y_2 + y_1 y_2 + z_1 z_2 + z_2 z_3)^{15} \]

\[(-x_1 x_2 z_1 - y_1 y_2 z_1 + d z_1^2 + x_2 y_1 z_3 + x_1 y_2 z_3 - d z_3^2)^{12} \]

\[(2 x_1 x_2 y_1 y_2 - d x_1 x_2 z_1 - d y_1 y_2 z_1 + d^2 z_1^2 - d x_1 y_2 z_3 - d x_1 y_2 z_3 + d^2 z_3^2)^{12} \]

\[(x_1 x_2 y_1 y_2 z_1 - d x_1 x_2 z_1^2 - d y_1 y_2 z_1^2 + d^2 z_1^3 - x_1 x_2 y_1 y_2 z_3 + d x_2 y_1 z_3^2 + d x_1 y_2 z_3^2 - d^2 z_3^3)^{3} \]

\[(x_1 x_2 y_1 y_2 z_1 - d x_1 x_2 z_1^2 - d y_1 y_2 z_1^2 + d^2 z_1^3 + x_1 x_2 y_1 y_2 z_3 - d x_2 y_1 z_3^2 - d x_1 y_2 z_3^2 + d^2 z_3^3)^{3} \]

8.6. \(\det G_3 \) with substitution \(x_1 = x_2 = y_1 = y_2 = z_2 = 0 \)

\[\det G_3 |_{x_1 = x_2 = y_1 = y_2 = z_2 = 0} = (-2 + d)^{16}(-1 + d)^{30} (1 + d)^{4}(2 + d)^{16}(-3 + d)^{30}(z_1 - z_3)^{30}(z_1 + z_3)^{30} \]

\[(z_1^2 - z_1 z_3 + z_3^2)(z_1^2 + z_1 z_3 + z_3^2)(-2d^2 - 2z_1^2 + d^2 z_1^2 - 2z_3^2 + d^2 z_3^2)^{12} \]

\[(-3d^2 - z_1^2 + d^2 z_1^2 + z_1 z_3 - d^2 z_1 z_3 - z_3^2 + d^2 z_3^2)^2(-3d^2 - z_1^2 + d^2 z_1^2 - z_1 z_3 + d^2 z_1 z_3 - z_3^2 + d^2 z_3^2)^2 \]

8.7. \(\det G_1^{F_{0,3}} \) with substitution \(x_{a_1} = x_{a_1 a_2} = 0 \) for all variables of the form \(x_{a_1} \) and \(x_{a_1 a_2} \)

\[\det G_1^{F_{0,3}} |_{x_{a_1} = x_{a_1 a_2} = 0} = -(d - x_1, 2, 3)(d + x_1, 2, 3) \]

\[(x_1, 2, -2, 3, -1, 3, -1, 2, -x_1, 3, -3, x_1, -1, -1, -3 - x_1, 2, -3, x_1, -1, -1, -3 - x_1, 1, -2, x_1, -1, -2, -3 - x_1, 2, -2, x_1, 3, -3, x_1, -2, -3 + x_1, 2, -3, x_1, -2, 3, x_1, -2, -3)^2 \]
References

[1] Q. Chen and J. H. Przytycki, The Gram determinant of the type B Temperley-Lieb algebra, e-print, http://arxiv.org/abs/0802.1083v2
[2] E. Deutsch and B. E. Sagan, Congruences for Catalan and Motzkin numbers and related sequences, J. Number Theory, 117, 2006, 191–215.
[3] P. Di Francesco, Meander determinants, Comm. Math. Phys., 191, 1998, 543-583.
[4] W. B. R. Lickorish, Invariants for 3-manifolds from the combinatorics of the Jones polynomial, Pacific Journ. Math., 149(2), 337–347, 1991.
[5] W. B. R. Lickorish. An introduction to knot theory, volume 175 of Graduate Texts in Mathematics. Springer-Verlag, New York, 1997.
[6] P. P. Martin, H. Saleur, On an Algebraic Approach to Higher Dimensional Statistical Mechanics, Commun. Math. Phys. 158, 1993, 155-190.
[7] F. Schmidt, Problems related to type-A and type-B matrices of chromatic joins, Advances in Applied Mathematics, 32:(380–390), 2004.
[8] R. Simion, Noncrossing partitions, Discrete Math., 217, 2000, 367-409.
[9] L. Shapiro, Personal communications (email 2 Sep 2008), and talk at GWU combinatorics seminar, 25 Sep 2008.
[10] R. P. Stanley. Enumerative combinatorics, vol. 2. Cambridge University Press, New York, 1999.
[11] B. W. Westbury, The representation theory of the Temperley-Lieb algebras. Math. Z., 219(4):539–565, 1995.

Department of Mathematics
The George Washington University
Washington, DC 20052, USA
przytyck@gwu.edu

Department of Mathematics
Harvard University
Cambridge, MA 02138, USA
xzhu@fas.harvard.edu