Molecular cytogenetic characterization of *Dasypyrum breviaristatum* chromosomes in wheat background revealing the genomic divergence between *Dasypyrum* species

Guangrong Li, Dan Gao, Hongjun Zhang, Jianbo Li, Hongjin Wang, Shixiao La, jiwei Ma and Zujun Yang*

Abstract

Background: The uncultivated species *Dasypyrum breviaristatum* carries novel diseases resistance and agronomically important genes of potential use for wheat improvement. The development of new wheat-*D. breviaristatum* derivatives lines with disease resistance provides an opportunity for the identification and localization of resistance genes on specific *Dasypyrum* chromosomes. The comparison of wheat-*D. breviaristatum* derivatives to the wheat-*D. villosum* derivatives enables to reveal the genomic divergence between *D. breviaristatum* and *D. villosum*.

Results: The mitotic metaphase of the wheat-*D. breviaristatum* partial amphiploid TDH-2 and durum wheat-*D. villosum* amphiploid TDV-1 were studied using multicolor fluorescent in situ hybridization (FISH). We found that the distribution of FISH signals of telomeric, subtelomeric and centromeric regions on the *D. breviaristatum* chromosomes was different from those of *D. villosum* chromosomes by the probes of Oligo-pSc119.2, Oligo-pTa535, Oligo-(GAA)7 and Oligo-pHv62-1. A wheat line D2139, selected from a cross between wheat lines MY11 and TDH-2, was characterized by FISH and PCR-based molecular markers. FISH analysis demonstrated that D2139 contained 44 chromosomes including a pair of *D. breviaristatum* chromosomes which had originated from the partial amphiploid TDH-2. Molecular markers confirmed that the introduced *D. breviaristatum* chromosomes belonged to homoeologous group 7, indicating that D2139 was a 7Vb disomic addition line. The D2139 displayed high resistance to wheat stripe rust races at adult stage plant, which may be inherited from, *D. breviaristatum* chromosome 7Vb.

Conclusion: The study present here revealed that the large divergence between *D. breviaristatum* and *D. villosum* with respected to the organization of different repetitive sequences. The identified wheat-*D. breviaristatum* chromosome addition line D2139 will be used to produce agronomically desirable germplasm for wheat breeding.

Keywords: *Dasypyrum breviaristatum*, Fluorescence in situ hybridization, Molecular marker, Wheat

Background

The genus *Dasypyrum* (or *Haynaldia*) consists of only two diploid species, the annual *Dasypyrum villosum* and perennial *D. breviaristatum* [1]. The genomes of diploid *D. villosum* and *D. breviaristatum* were assigned the symbols V and Vb, respectively [2, 3]. Based on the sequences comparison of nr5S DNA multigene family, Baum et al. [4] suggested that the genome constitution of 4x *D. breviaristatum* should be considered as an allotetraploid VVVbVb. *Dasypyrum* species possess agronomically important genes such as disease resistance, high protein quality and drought tolerance, all of which represent valuable resources for global wheat breeding [3]. The species *D. villosum* has been extensively hybridized with wheat for at least 6 decades, and several disease resistance genes have been successfully transferred to wheat [5–7]. Above all, over 20 elite cultivars carrying the wheat-*D. villosum* chromosome T6AL-6VS translocation with powdery mildew resistance gene *Pn21* have been released into agricultural production in China [8, 9]. Given the widespread success of this introgression from *D. villosum*, researches...
have been conducted with a similar aim to transfer useful genes from *D. breviaristatum* into wheat. Subsequently, the wheat- *D. breviaristatum* partial amphiploid [10] and wheat- *D. breviaristatum* introgression lines with multiply disease resistances have developed [11, 12].

Molecular and cytogenetic methods have been previously employed to assess the level of chromosomal divergence of these two *Dasypyrum* species [13, 14]. A large number of interspecific and intraspecific chromosome variations and significant genomic diversification were observed among different *Dasypyrum* accessions, probably due to the out-crossing characteristic of these two *Dasypyrum* species [2]. Each pair of *Dasypyrum* chromosomes were transferred into a wheat background after intergeneric hybridizations. The wheat- *D. breviaristatum* chromosome addition lines with different *Dasypyrum* species or accession origins allow comparison of the different *Dasypyrum* genomes in wheat backgrounds. In the present study, fluorescent in situ hybridization (FISH) was carried out to characterize differences between *D. breviaristatum* and *D. villosum* chromosomes by comparing karyotypes between the wheat- *D. breviaristatum* partial amphiploid TDH-2 and *Triticum turgidum* - *D. villosum* amphiploid TDV-1. The FISH and molecular markers were applied to identify new wheat- *D. breviaristatum* addition line with stripe rust resistance, which will be a useful germplasm for wheat genetics and breeding.

Results

Comparative FISH karyotype of TDH-2 and TDV-1

The mitotic metaphase chromosomes of the wheat- *D. breviaristatum* partial amphiploid TDH-2, were hybridized with probes Oligo-pSc119.2, Oligo-pTa535, Oligo-(GAA)$_7$ by sequential multicolor-FISH (Fig. 1). As shown in Fig. 1a, the FISH hybridization signals of the probes Oligo-pSc119.2 and Oligo-pTa535 can easily identify the 28 wheat chromosomes from 1A-7A and 1B-7B based on the standard FISH karyotype of wheat chromosomes using the same probes described by Tang et al. [15]. Yang et al. [10] reported that the partial amphiploid TDH-2 was produced by the elimination of some chromosomes from the wheat Chinese Spring (CS)- *D. breviaristatum* decaploid amphiploid. It is likely that the A and B chromosomes of TDH-2 originated from CS. By comparing the FISH patterns of Oligo-pSc119.2 and Oligo-pTa535 probes of TDH-2 to those of CS by Tang et al. [15], we found additional signals corresponding to probe Oligo-pSc119.2 on the terminal regions of 1BS and 2BL in TDH-2 (Fig. 1b). After comparing the (GAA)$_n$ signal distribution on TDH-2 chromosomes with those of CS reported by Danilova et al. [16], we observed that the (GAA)$_n$ signals on chromosome 7A of CS were absent in TDH-2. The results suggest that at least three wheat chromosomes have undergone structural change(s) which may be related to the presence of *D. breviaristatum* chromosomes. Each of the seven pairs of *D. breviaristatum* chromosomes were also distinguished using probes Oligo-pSc119.2, Oligo-pTa535 in TDH-2 (Fig. 1b). These chromosomes were temporarily named Vb1-Vb7 (Fig. 1b).

**FISH using probes Oligo-pSc119.2, Oligo-pTa535, Oligo-(GAA)$_7$ was also carried out on the chromosomes of the *Triticum turgidum* cv. Jorc-69- *D. villosum* amphiploid TDV-1 (Fig. 1c and d). We found that the signals of probe Oligo-pSc119.2 were mainly located on terminal sites, while the hybridization signals of Oligo-pTa535 were distributed along the chromosome arms of *D. villosum*. The probe Oligo-(GAA)$_7$ hybridized to 2V-7V of *D. villosum* chromosomes at their centromeric or sub-terminal regions. Moreover, we produced a high tandem repeat sequences probe Oligo-pHv62-1 as reported by Li et al. [17]. FISH revealed that Oligo-pHv62-1 present in terminal or sub-terminal heterochromatic C-banding regions of *D. villosum* chromosomes in TDV-1, but was absent in *D. breviaristatum* chromosomes of TDH-2 (Fig. 1e and f). The comparative FISH karyotypes of the *D. breviaristatum* and *D. villosum* chromosomes allows easily to distinguish each individual *Dasypyrum* chromosome in wheat background.

FISH of wheat- *D. breviaristatum* addition line D2139

Sequential multi-color ND-FISH by probes Oligo-pSc119.2, Oligo-pTa535, Oligo-(GAA)$_7$ was conducted to characterize the mitotic metaphase cells of D2139 (Fig. 2). The chromosome number of D2139 is 2n = 44, including all the 42 wheat chromosomes and two alien chromosomes added in the wheat background. The probes Oligo-pSc119.2, Oligo-pTa535, showed a pair of chromosomes with faint Oligo-pSc119.2 hybridization signals at the telomeric region of long arm, and strong hybridization signals of Oligo-pTa535 along the long and short arm in D2139 (Fig. 2). The FISH hybridization pattern of the chromosomes was identical to *D. breviaristatum* chromosomes Vb7 (Fig. 1). Therefore, we concluded that the line D2139 was a chromosome Vb7 addition line. Comparing the FISH patterns of D2139 parents MY11 [15] and TDH-2 (Fig. 1), it appeared that the D2139 line inherited the A and B- genome chromosomes from MY11 and/or TDH-2. Based on the FISH patterns, D2139 inherited chromosomes 5A, 7A, 1B, and 7B which were identical to the TDH-2 parent, while 6B, 2B appeared to be from MY11. Since there is no D-genome in the partial amphiploid TDH-2, D2139 would have inherited D-chromosomes from MY11. As shown in Fig. 2c, chromosomes 1D and 3D revealed clear differences in the distribution of Oligo-pSc119.2 signals compared to previously published FISH patterns of D-genome chromosomes of MY11 [15]. The terminal region of 1DL showed strong Oligo-pSc119.2 signals, while the Oligo-pSc119.2 signals were absent from the 3DS terminal.
The observation implies that the transmission of the *D. breviaristatum* chromosomes may be associated with structural changes in wheat chromosomes.

Molecular markers analysis

PLUG primers were designed from rice genomic DNA sequences specific for the syntenic regions, in the expectation that they would presumably amplify fragments from the corresponding linkage group(s) of wheat genomes [18]. Our previous studies showed that the PLUG markers were useful for producing alien chromosome-specific markers [19, 20]. A total of 21 PLUG markers from wheat homoeologous group 7 were tested on D2139 compared to its parents MY11 and TDH-2 (Table 1). Based on the

Fig. 1 FISH and karyotypes of TDH-2 (a, b, f) and TDV-1(c, d, e). The mitotic metaphase chromosomes (a, c) after hybridization with probes Oligo-pTa535 (red) and Oligo-pSc119.2 (green), or (b, d) hybridized with Oligo-(GAA)7 (red) The boxes shows the modified chromosomes compared to its parents. Figures e and f are hybridized by probe of pHv62-3 (green).
amplification of nulli-tetrasomic lines of Chinese Spring, the PLUG markers give rise to the 7A, 7B and 7D specific bands, respectively (Fig. 3). A total of 13 pairs of primers generated the identical bands from \textit{D. breviaristatum} \textit{VbVb} and TDH-2 to those from the disomic addition line D2139. These results suggested that the \textit{D. breviaristatum} chromosome in D2139 belonged to homoeologous group 7. Five markers out of the 13 had previously been mapped onto the short arms and eight mapped onto the long arms of group 7 (Table 1). After combining these PCR results with the FISH patterns, we concluded that the D2139 was a 7V\textit{b} addition line, and the Vb7 was chromosome 7V\textit{b}. The wheat CS - \textit{D. villosum} 7V addition line TA7683 was also used to test the PLUG markers. We found that seven of 13 primer pairs showed polymorphic amplification differences between the \textit{D. breviaristatum} 7V\textit{b} and \textit{D. villosum} 7V chromosomes (Table 1). The results suggested that sequence divergence may have occurred among \textit{Dasypyrum} species during their evolution.

Agronomic traits and rust resistance analysis

The spike phenotype and stripe rust resistance of lines D2139, TDH-2, CS and MY11 were observed. As shown in Fig. 4a, the spike length of D2139 was 11–12 cm, which was longer than the wheat parents (9–10 cm), while the D2139 had 22–22 spikelets per spike, closely resembling MY11. When inoculated with \textit{P. striiformis} f. sp. \textit{tritici} (PST) races CYR32 and CYR33 at adult plant stage, the TDH-2 and D2139 lines were highly resistance to the isolates, whereas wheat MY11 and CS were highly susceptible (Fig. 4b). These results indicated that the stripe rust resistance in D2139 was from the TDH-2 parent, and originates from \textit{D. breviaristatum}.

Discussion

With respect to the genomic relationship between two \textit{Dasypyrum} species, \textit{D. breviaristatum} and \textit{D. villosum}, cytogenetic and molecular evidence has revealed the huge genetic divergence between the two species. Friebe et al. [21] established the C-banded patterns of \textit{D. villosum}, and then Linde-Laursen and Frederiksen [22] observed extensive C-band karyotype differences between the two genomes. De Pace et al. [23] isolated a repeat sequence that was mapped further distally on \textit{D. villosum} chromosomes using FISH compared to wheat chromosomes. Galasso et al. [13] found that the differentiated GISH

Fig. 2 Sequential FISH karyotypes of D2139. Left figure (a) was stained with DAPI (blue), Oligo-pTa535 (red) and Oligo-pSc119.2 (green), while the right figure (b) chromosomes were stained by PI (red) and Oligo-GAA (green). The box shows the modified chromosomes compared to the parent line MY11 (c).
patterns reflected the large genomic divergence between the *D. villosum* and *D. breviaristatum* chromosomes. Liu et al. [14] used FISH probed by a ribosomal DNA sequence and proposed a hypothesis that the diploid *D. villosum* and tetraploid *D. breviaristatum* evolved in parallel from an ancestral species. Recently, we used the pDbC2 probe to hybridize to tetraploid *D. breviaristatum* and diploid *D. villosum* chromosomes, and found more

Table 1

The primers used to localize the Vb7 specific amplification in D2139

No.	Primers name	Primer sequences (5’–3’)	Wheat bin map	Restriction enzyme	Length of Vb7 bands
1	TNAC1776	F: ATCATCCTGTGCTACTGTGC	7AS2-0.73–0.85	Primer sequences	–
		R: CCTTCTCAGTTAGGCTAGTT			
			4AL2-0.75–0.80		
			7DS4-0.73–1.00		
2	TNAC1782	F: TCACCTGAACGGCCTAGCATG	7AS2-0.73–0.85	Primer sequences	690 bp
		R: ATTCGCAGACCGCCTCATC			
			7BS2-0.27–1.00	Primer sequences	
			7DS4-0.73–1.00	Primer sequences	
3	TNAC1803	F: TGCCACAGTCCTTTGAAAT	C-7AL1-0.39	Haell	800 bp*
		R: GTCGGAGCTGTGATCCTAGT		Primer sequences	
			7BL2-0.38–0.63	Primer sequences	
			7DL5-0.30–0.61	Primer sequences	
4	TNAC1806	F: ATTCCTCGTGAATTGCTGG	7AS8-0.45–0.59	TaqI	350 bp*
		R: TCTGCAGTTAGGACCTTGGA		Primer sequences	
			7BS2-0.27–1.00	Primer sequences	
			7DS2-0.61–0.73	Primer sequences	
5	TNAC1811	F: CTGTCACGGCCATCCATGCAC	7AL1-0.39–0.63	TaqI	740 bp
		R: TGGAGTCGAGCTTTGAAAT		Primer sequences	
			7BL2-0.38–0.63	Primer sequences	
			7DL5-0.30–0.61	Primer sequences	
6	TNAC1812	F: ACTTCGCTGTGCTCTCTCAAT	7AL5-0.63–0.77	TaqI	860 bp
		R: GGAAGCTGTGCACATCCAAA		Primer sequences	
			7BL7-0.63–0.78	Primer sequences	
			7DL5-0.30–0.61	Primer sequences	
7	TNAC1815	F: AGCAGAATACGCAAGTTTGA	7AL1-0.39–0.63	TaqI	600 bp*
		R: ACTGACACGCGCATGATTGAC	7BL2-0.38–0.63	TaqI	
			7DL5-0.30–0.61	TaqI	
8	TNAC1822	F: CCCTCCGTCGTGCAAT	7AL5-0.63–0.71	TaqI	730 bp*
		R: GGCTGATGATGAGAGCGTG		Primer sequences	
			7BL2-0.38–0.63	Primer sequences	
			7DL2-0.61–0.82	Primer sequences	
9	TNAC1867	F: GCCTTCCTTTGGTAGTCTGG	C-7AL1-0.39	–	840 bp
		R: CGATCCAAATGTCCCTGAAGA	7BL2-0.38–0.63	TaqI	
			7DL1-0.14–0.30	TaqI	
10	TNAC1903	F: TCGCTTTCTGTGCTGTCTCT	C-7AL1-0.39	–	920 bp*
		R: CTGCTACTAGGCCACCCAAA	7BL2-0.38–0.38	TaqI	
			7DL1-0.14–0.30	TaqI	
11	TNAC1926	F: CGTCAGCTACAGCAGCACTCTA	C-7AS8-0.45	TaqI	700 bp*
		R: AACCTGAGCAGCGGTGTT	7BS2-0.27–1.00	TaqI	
			7DS3-0.15–0.36	TaqI	
12	TNAC1943	F: GCTGCTATGGTCCACGAATT	7AS5-0.59–0.73	Haell	600 bp*
		R: AGAGTATGATCCGGAATT	7BS2-0.27–1.00	Haell	
			7DS4-0.73–1.00	Primer sequences	
13	TNAC1957	F: TCAAACATTTGCAAGATTGCA	7AL2-1.07–0.86	–	730 bp
		R: TTTGACAGGAAACGCTGTA	7BL10-0.78–0.84	–	
			7DL2-0.61–0.82	–	

The primers and the location in wheat bin map were referred to Ishikawa et al. [18]. The star indicated the Vb7 specific bands were polymorphic to 7V band.

D. villosum and tetraploid *D. breviaristatum* evolved in parallel from an ancestral species. Recently, we used the pDbC2 probe to hybridize to tetraploid *D. breviaristatum* and diploid *D. villosum* chromosomes, and found more
Ty3-gypsy retrotransposon copy numbers in centromeric regions of *D. villosum* than those in *D. breviaristatum* [24]. In the present study, we compared *D. breviaristatum* and diploid *D. villosum* chromosomes through the distribution of FISH signals of Oligo-pSc119.2, Oligo-pTa535, Oligo-(GAA)$_7$ by sequential multicolor-FISH (Fig. 1) and the molecular markers (Table 1) by PCR. The results suggested that strong evolutionary divergence involving copy number of repeated sequences and nucleotide sequence rearrangement may have occurred among *Dasypyrum* species during species evolution. Moreover, the Oligo-pHv62-1 can hybridize *D. villosum* chromosomes in TDV-1 (Fig. 1e). It confirmed that the high tandem repeat sequences present largely in telomeric heterochromatin regions of *D. villosum* as reported by Li et al. [17]. However, FISH revealed that Oligo-pHv62-1 was absent in *D. breviaristatum* chromosomes of TDH-2 (Fig. 1f). This significant amplification of different types of repetitive sequences between the *D. villosum* and *D. breviaristatum* chromosomes may be related to adaptation of the plant species to their environments [3]. The cytogenetic and molecular markers which are species-specific can be used
to identify and characterize the introgression of *D. villosum* and *D. breviaristatum* chromosome segments into a wheat background.

Rapid genomic and epigenomic changes have been commonly found in some newly synthesized wheat-alien amphiploids [25, 26]. Alterations of alien chromosomal structure in wheat background have also been described especially wheat-rye chromosome addition, substitution and translocation lines [27, 28]. However, the variations in the karyotype of wheat chromosomes have been less reported. Recently, Fu et al. [29] reported that pSc119.2 FISH signals could be observed at the telomeric regions of 3DS arms which was not observed in the current material, and structural variation and abnormal mitotic behavior of the 3D chromosome were detected in the selfed progeny of wheat "MY11"-rye 6Sr monosomic addition line. Furthermore, Fu et al. [30] reported the occurrence of 14 chromosomal rearrangements in wheat -rye hybrids. Our studies found that chromosomes 1B, 2B and 7A of the wheat- *D. breviaristatum* partial amphiploid TDH-2 (Fig. 1), and chromosomes 1D and 3D of the 7Vb addition lines D2139 (Fig. 2) showed apparent structural changes revealed by FISH patterns compared to the parental lines. Patokar et al. [31] characterized several novel wheat-*Thinopyrum bessarabicum* recombinant lines carrying intercalary translocations and did not report any observable wheat chromosomal rearrangements using FISH. It is likely that the distant species of genera *Secale* and *Dasypyrum* may induce such structural changes while present in a wheat background, while chromosomes derived from *Thinopyrum* species may not have the same effect due to their close relationship to wheat [32]. Thus, we suggest that the introgression of chromosomes from closely related species may not lead to the significant structural changes of wheat chromosomes, although the introduction of closely related *Aegilops* chromosomes causes massive deletions of wheat chromosomes [33], which were mainly useful for physical mapping of genes. There is the other possibility that the recipient wheat genotype may also increase the chromosomal rearrangement with visible changes of representative repeats. Taking advantage of fast multicolor FISH methods [15], we recently identified some chromosomal changes in high yielding elite cultivars originating from wheat distant hybridization. The association between the visibly rearranged wheat chromosomes and the yield or disease resistances are being verified for breeding purpose.

D. villosum chromosomes are known to contain genetic variability of value for incorporation into wheat. At least three sets of *D. villosum* chromosomes addition lines in wheat background have been developed [34–36]. Novel genes including disease resistance and quality-related characters have been found in different wheat- *D. villosum* derived lines [7]. With the aim to transfer novel genes from *D. breviaristatum* to wheat, we identified the two *D. breviaristatum* chromosomes addition lines Y93-1-A6-4 and Y93-1-6-6, which showed novel resistance to powdery mildew isolates and stem rust Ug99 (pathotype TTKSK) [11]. Molecular marker and GISH analysis revealed that those introduced *D. breviaristatum* chromosomes were rearranged chromosomes involved groups 2, 6 and 7. Recently, Li et al. [12] reported a wheat - *D. breviaristatum* substitution line D11-5 possessing a pair of 2Vb chromosomes which had replaced wheat 2D. Based on the FISH analysis, we found that the 2Vb chromosome in line D11-5 was identical to chromosome Vb2 of TDH-2 (Fig. 1). We thus suggest that chromosome Vb2 can be provisionally assigned to linkage group 2, subject to confirmation using other genetic markers.

In the present study, we identified line D2139 which contained a pair of *D. breviaristatum* chromosomes confirmed herein to be "7Vb". This disomic substitution line D2139 may be potentially useful germplasm for agronomic traits including enhance spike length and the stripe rust resistance from the *D. breviaristatum* 7Vb into the wheat genome using marker-assisted chromosome engineering [37]. The divergence between the individual *D. villosum* 7V and *D. breviaristatum* 7Vb chromosomes was revealed by FISH and molecular markers in wheat background, which will provide the basis for future detailed comparative genomics analysis. Guo et al. [38] compared chromosomes 7el1, 7el2, 7E(e), and 7E derived from different *Thinopyrum* species by molecular and cytological methods. In a similar manner, we intend to create hybrid populations between wheat- *Dasypyrum* 7 V and 7Vb addition lines for further and direct localization of genes on these alien chromosomes.

Conclusions

In summary, the different FISH patterns between *D. breviaristatum* and *D. villosum* chromosomes were observed clearly by using different repetitive sequences as probes, which allows to identify the individual *Dasypyrum* chromosomes in wheat background. The changes of FISH patterns of wheat chromosomes were induced by the introgression of *D. breviaristatum* to wheat. The *D. breviaristatum* specific molecular markers can be used to assign the homologous group of *D. breviaristatum* to wheat. We identified wheat- *D. breviaristatum* chromosome 7Vb addition line with novel stripe rust resistances will be potential useful for wheat breeding. The molecular and cytogenetic markers will assist to trace the *D. breviaristatum* chromatin in wheat background.

Methods

Plant materials

D. breviaristatum accession PI 546317 was obtained from the National Small Grains Collection at Aberdeen,
Idaho, USA. The wheat–*D. breviaristatum* partial amphiploid TDH-2 (genome AABB[V]) was as described by Yang et al. [10]. The accession of *Dasypyrum villosum* TA10220 and the Chinese Spring–*D. villosum* chromosome 7 V addition line TA7683 [39] were obtained from Dr. Bernd Friebe of Wheat Genetic and Genomic Resources Center at Kansas State University, Manhattan, KS, USA. The *T. turgidum* cv. Jorc-69–*D. villosum* amphiploid TDV-1 (genome AABBBV) was developed and provided by Prof. Hua-Ren Jiang at Sichuan Agricultural University, China [40]. Line D2139 was obtained from a BC$_1$F$_5$ generation of the crosses between wheat cultivar ‘Mianyang 11’ (MY11) and TDH-2.

Fluorescence in situ hybridization (FISH)

Seeding root tips were collected and then treated with nitrous oxide followed by enzyme digestion, using the procedure of Han et al. [41]. The synthesized oligonucleotide probes Oligo-pSc119.2, Oligo-pTa535, Oligo(GAA)$_3$ were used for identifying the wheat chromosomes according to the description of Tang et al. [15]. A new probe, Oligo-pHv62-1 (5’ CGAAGGATTG AAAAAAGG AA CAAITTCGCA CTTACAGCTC AAAAAATA TG GGACA 3’) was synthesized and labeled at 5’ 6-carboxyfluorescein (FAM) based on high tandem repeat sequences pHv62 in *D. villosum* as reported by Li et al. [17]. The protocol of non-denaturing FISH by the synthesized probes was described by Fu et al. [30]. Photomicrographs of FISH chromosomes were taken with an Olympus BX-51 microscope equipped with a DP-70 CCD camera.

Molecular marker analysis

DNA was extracted from young leaves of *D. breviaristatum*, TDH-2, TDV-1, lines D11-5 and CS [42]. PCR-based Landmark Unique Gene (PLUG) primers were designed according to Ishikawa et al. [18]. Polymerase chain reaction (PCR) was performed in an icycler thermalcycler (Bio-RAD Laboratories, Emeryville, CA) in a 25 μl reaction, containing 10 mmol Tris–HCl (pH 8.3), 2.5 mmol MgCl$_2$, 200 μmol of each dNTP, 100 ng template DNA, 0.2 U Taq polymerase (Takara, Japan) and 400 nmol of each primer. The cycling parameters were 94 °C for 3 min for denaturation; followed by 35 cycles at 94 °C for 1 min, 55 °C for 1 min, 72 °C for 2 min; and a final extension at 72 °C for 10 min. The amplified products were separated by 8 % PAGE gel as described by Hu et al. [43].

Disease resistance screening

Wheat–*D. breviaristatum* derivative lines were evaluated for adult-plant resistance to *Pst* strains CYR32 and CYR33 during the 2013 and 2015 cropping seasons as described by Li et al. [12].

Competing interests

The authors declare that they have no competing interests.

Authors’ contributions

GL and ZY designed the study, GL, DG, HZ, J. L. conducted the experiments. HW, SL and JM helped to conduct experiment and data analysis. GL and ZY participated in paper writing. All authors read and approved the final manuscript.

Acknowledgement

We particularly thank Dr. I. Dundas at University of Adelaide, Australia, for reviewing the manuscript. We thank the National Natural Science Foundation of China (No. 31171542), and Sichuan wheat breeding community for the financial support.

Received: 3 December 2015 Accepted: 19 January 2016

References

1. Frederiksen S. Taxonomic studies in *Dasypyrum* (Poaceae). Nord J Bot. 1991;11:35–42.

2. Gradzielewska A. The genus *Dasypyrum*–part 1. The taxonomy and relationships within *Dasypyrum* and with Triticeae species. Euphytica. 2006;152:429–40.

3. De Pace C, Vaccino P, Cioni PG, Pasquini M, Bizzarri M, Qualiet CD. *Dasypyrum*. In: Cole C, editor. Wild Crop Relatives. Genomic and Breeding Resources, Cereals, vol. 4. Heidelberg: Springer; 2011. p. 185–292.

4. Baum BR, Edwards T, Johnson DA. What does the nss5 DNA multigene family tell us about the genomic relationship between *Dasypyrum breviaristatum* and *D. villosum*? (Triticaceae Poaceae)? Mol Genet Genomics. 2014;289:553–63.

5. Chen PD, Qi LL, Zhang SZ, Liu DJ. Development and molecular cytogenetic analysis of wheat-*Haynaldia villosa* 6V/6AL translocation lines specifying resistance to powdery mildew. Theor Appl Genet. 1995;91:1125–8.

6. Yildirim A, Jones SS, Murray TD. Mapping a gene conferring resistance to *Pyrenophora graminea* on chromosome 4 V of *Dasypyrum villosum* in a wheat background. Genome. 1998;41:1–6.

7. Qi LL, Pumphrey MO, Friebe B, Zhang P, Qian C, Bowden RL, et al. A novel Robertsonian translocation event leads to transfer of a stem rust resistance gene (Sr52) effective against race Ug99 from *Dasypyrum villosum* into bread wheat. Theor Appl Genet. 2011;123:159–67.

8. He ZH, Xia XC, Chen XM, Zhuang QS. Progress of wheat breeding in China and the future perspective. Acta Agron Sin. 2011;37:202–15.

9. Bie T, Zhao R, Zhu S, Chen S, Chen B, Zhang B, et al. Efficient marker-assisted screening of structural changes involving *Haynaldia villosa* chromosome 6V using a double-distal-marker strategy. Mol Breeding. 2015;35:34.

10. Yang ZJ, Li GR, Feng J, Jiang HR, Ren ZL. Molecular cytogenetic characterization and disease resistance observation of wheat–*Dasypyrum breviaristatum* partial amphiploid and its derivatives. Hereditas. 2005;143:280–28.

11. Liu C, Li G, Yan H, Zhou J, Hu L, Lei M, et al. Molecular and cytogenetic identification of new wheat–*D. breviaristatum* additions conferring resistance to stem rust and powdery mildew. Breeding Sci. 2011;61:366–72.

12. Li GR, Zhao JM, Li DH, Yang EN, Huang YF, Liu C, et al. A novel wheat–*Dasypyrum breviaristatum* substitution line with stripe rust resistance. Cytogenet Genome Res. 2014;143:280–7.

13. Galasso I, Blanco A, Katsiotis A, Pignone D, Heslop-Harrison HS. Genomic organization and phylogenetic relationships in the genus *Dasypyrum* analysed by Southern and in situ hybridization of total genomic and cloned DNA probes. Chromosoma. 1997;106:53–61.

14. Liu C, Li GR, Sunish S, Jia QJ, Yang ZJ, Friebe B, et al. Genome relationships in the genus *Dasypyrum*: evidence from molecular phylogenetic analysis and in situ hybridization. Plant Syst Evol. 2010;288:149–56.

15. Tang ZX, Yang ZJ, Fu SL. Oligonucleotides replacing the roles of repetitive sequences pAs1, pSc119.2, pTa-535, pTa71, CCS1, and pAWRC.1 for FISH hybridization and genome analysis of wheat. *Theor Appl Genet*. 2014;5:342–80.

16. Danilova TV, Friebe B, Gill BS. Single-copy gene fluorescence in situ hybridization and genome analysis: Acc-2 loci mark evolutionary chromosomal rearrangements in wheat. Chromosoma. 2012;121:597–611.

17. Li WL, Chen PD, Qi LL, Liu DJ. Isolation, characterization and application of a species-specific repeated sequence from *Haynaldia villosa* *Theor Appl Genet*. 1995;90:526–33.

18. Ishikawa G, Nakamura T, Ashida T, Saito M, Nasuda S, Endo T, et al. Localization of anchor loci representing five hundred annotated rice genes to wheat chromosomes using PLUG markers. Theor Appl Genet. 2009;118:499–514.
19. Jia J, Li G, Liu C, Zhou J, Yang Z. Sequence variations of P0H4A1 gene in Triticeae species allow for identifying wheat-alien introgression lines. Frontiers Agric China. 2010;6:137–44.
20. Hu Li, Liu C, Zeng ZK, Li GR, Song XJ, Yang ZJ. Genomic rearrangement between wheat and Thinospyrum elongatum revealed by mapped functional molecular markers. Genes Genomics. 2012;34:67–75.
21. Friebe B, Cermeño MC, Zeller FJ. C-banding polymorphism and the analysis of nucleolar activity in Dasypyrum villosum (L.) Candargy, its added chromosomes to hexaploid wheat and the amphiploid Triticum dicoccum-D. villosum. Theor Appl Genet. 1987;73:337–42.
22. Linde Laursen B, Frederiksen S. Comparison of the Giemsa C-banded karyotypes of Dasypyrum villosum (2x) and D. breviaristatum (4x) from Greece. Hereditas. 1991;114:237–44.
23. De Pace C, Defre V, Scarascia Mugnozza GT, Qualset CO, Cremonini R, Frediani M, et al. Molecular and chromosomal characterization of repeated and single copy DNA sequences in the genome of Dasypyrum villosum. Hereditas. 1992;116:55–65.
24. Li GR, Liu C, Wei P, Song XJ, Yang ZJ. Chromosomal distribution of a new centromeric Ty3-gypsy retrotransposon sequence in Dasypyrum and related Triticeae species. J Genet. 2012;91:343–8.
25. Gustafson JP, Lukaszewski AJ, Bennett MD. Somatic deletion and redistribution of telomeric heterochromatin in the genus Secale and in Triticale. Chromosoma. 1983;88:293–8.
26. Dou QW, Tanaka H, Nakata N, Tsujimoto H. Molecular cytogenetic analyses of hexaploid lines spontaneously appearing in octoploid Triticale. Theor Appl Genet. 2006;114:1–7.
27. Alkhimova AG, Heslop-Harrison JS, Shchapova AL, Vershinin AV. Rye chromosome telomeric sequence in Dasypyrum and related Triticeae species. J Genet. 2012;91:343–8.
28. Bento M, Gustafson P, Viegas W, Silva M. Genome merger: from sequence rearrangements in triticale to their elimination in wheat-rye addition lines. Theor Appl Genet. 2010;121:89–97.
29. Fu S, Yang M, Fei Y, Tan F, Ren Z, Yan B, et al. Alterations and abnormal mitosis of wheat chromosomes induced by wheat-rye monosomic addition lines. PLoS One. 2013;8:e70483.
30. Chen PD, Liu DJ. Identification of a wheat stem rust resistance gene by DNA marker-assisted chromosome engineering. Genetics. 2011;187:1011–23.
31. Niu Z, Klindworth DL, Friesen TL, Chao S, Jin Y, Cai X, et al. Targeted introgression of a wheat stem rust resistance gene by DNA marker-assisted chromosome engineering. Genetics. 2011;187:1011–23.
32. Guo J, He F, Cai JY, Wang HW, Li AF, Wang HG, et al. Molecular and Cytological Comparisons of Chromosomes 7E1, 7E2, 7E3, and 7E4 Derived from Thinospyrum. Cytogenet Genome Res. 2015;145:68–74.
33. Liu C, QI L, Liu W, Zhao W, Wilson J, Friebe B, et al. Development of a set of Triticum aestivum–Dasypyrum villosum Robertsonian translocation lines. Genome. 2011;54:836–44.
34. Jiang HR, Dai DQ, Sun DF, Xiao SH. New artificial genetic resources of wheat: several polyploids of Triticum–Dasypyrum. Sci Agric Sin. 1992;25:89.
35. Han FP, Lamb JC, Bichler JA. High frequency of centromere inactivation resulting in stable dicentric chromosomes of maize. Proc Natl Acad Sci U S A. 2006;103:3238–43.
36. Yang ZJ, Liu C, Feng J, Li GR, Deng KJ, Zhou JP, et al. Studies on genome relationship and species-specific PCR marker for Dasypyrum breviaristatum in Triticeae. Hereditas. 2006;143:47–54.
37. Hu Li, Li GR, Zeng ZK, Chang ZJ, Liu C, Zhou JP, et al. Molecular cytogenetic identification of a new wheat-Thinopyrum substitution line with stripe rust resistance. Euphytica. 2011;177:169–77.
38. Guo J, Li G, Liu C, Zhou J, Yang Z. Sequence variations of P0H4A1 gene in Triticeae species allow for identifying wheat-alien introgression lines. Frontiers Agric China. 2010;6:137–44.
39. Han FP, Lamb JC, Bichler JA. High frequency of centromere inactivation resulting in stable dicentric chromosomes of maize. Proc Natl Acad Sci U S A. 2006;103:3238–43.
41. Liu C, Qi L, Liu W, Zhao W, Wilson J, Friebe B, et al. Development of a set of Triticum aestivum–Dasypyrum villosum Robertsonian translocation lines. Genome. 2011;54:836–44.
42. Yang ZJ, Liu C, Feng J, Li GR, Deng KJ, Zhou JP, et al. Studies on genome relationship and species-specific PCR marker for Dasypyrum breviaristatum in Triticeae. Hereditas. 2006;143:47–54.
43. Hu Li, Li GR, Zeng ZK, Chang ZJ, Liu C, Zhou JP, et al. Molecular cytogenetic identification of a new wheat-Thinopyrum substitution line with stripe rust resistance. Euphytica. 2011;177:169–77.
44. Lan J, Li GR, Zeng ZK, Zhao W, Liu C, Zhou JP, et al. Molecular cytogenetic identification of a new wheat-Thinopyrum substitution line with stripe rust resistance. Euphytica. 2011;177:169–77.