The Past, Present and Future of RNA Respiratory Viruses: Influenza and Coronaviruses.

Vadim Makarov1*, Olga Riabova1, Sean Ekins2, Nikolay Pluzhnikov3, Sergei Chepur3

1Research Center of Biotechnology of the Russian Academy of Sciences, 33-2 Leninsky prospect, Moscow 119071, Russia
2Collaborations Pharmaceuticals, Inc., 840 Main Campus Drive, Lab 3510, Raleigh, NC27606, USA
3State Research Institute of Military Medicine of the Ministry of Defense RF, St. Petersburg 195043, Russia

*Corresponding authors
E-mail address: makarov@inbi.ras.ru (V.A. Makarov)

Abstract
Influenza virus and coronaviruses continue to cause pandemics across the globe. We know have a greater understanding of their function. Unfortunately the number of drugs in our armory to defend us against them are inadequate. This may require us to think about what mechanisms to address. We now review the biological properties of these viruses, their genetic evolution and antiviral therapies that can be used or have been attempted. We will describe several classes of drugs such as serine protease inhibitors, heparin, and heparan sulphate receptor inhibitors, chelating agents, immunomodulators and many others. We also briefly describe some of the drug repurposing efforts which have taken place in an effort to rapidly identify molecules to treat patients with COVID-19. While we have a heavy emphasis on the past and present efforts, we also provide
some thoughts about what we need to do to prepare for respiratory viral threats in the future.

Key words: RNA viruses, coronaviruses, SARS-Cov-2, influenza, chloroquine, serine protease inhibitors, heparan sulfate receptor.

INTRODUCTION

With regularity we face previously unknown strains of virulent respiratory viruses which are life-threatening for large numbers of people. Perhaps the most well-known and recent are the pandemics associated with influenza viruses and coronaviruses which have been in contact with humans for millennia.

It is generally thought that the first large outbreak of a respiratory infection with clinical symptoms similar to those of influenza was described in detail by Hippocrates in the year 412 BC as contagious cough of Perinthus (Kuszewski and Brydak 2000; Pappas 2008). Next a detailed written report of an epidemic respiratory disease similar to influenza was noted in England and named peasant fever and lasted from 1173-1174 (Potter 2001). The first pandemic of influenza was clearly documented in 1580 (Potter 2001; Daly et al. 2007). In the 16th century this infection was named influenza (from the Latin influenza, influence), as this disease was considered a bad influence from the heavens (Broxmeyer 2006). Since this time no less than 31 pandemics of influenza have been documented, including 3 in the 20th century and one in the 21st century (Al-Muharrmi 2010; Daly et al. 2007; Kilbourne 2006) (Table 1).

Although a targeted search for pathogens able to produce an epidemic/pandemic of acute respiratory infections started in the late 19th century (Pfeiffer 1893; Olitsky and
Gates 1921a; Olitsky and Gates, 1921b), it was not until 1933 that the influenza A virus was selected (myxovirus influenza) (Smith et al. 1933). Influenza B and C viruses were identified in 1940 and 1947 respectively (Francis 1940; Taylor 1949), and the influenza D virus was isolated and characterized recently in 2011 (Hause et al. 2012; Ducatez et al. 2015).

Coronaviruses are also very common (Suzuki et al. 2005; Sloots et al. 2006; Koetz et al. 2006; Zhao et al. 2008) and seem to have been in contact with humans from the earliest of times (Wertheim et al. 2013). Until recently, it was thought that coronavirus infections with symptoms of the common cold cause between 15% to 35% seasonal acute respiratory diseases. Children become infected at a rate of 5 to 7 times more often than adults (McIntosh et al. 1970; Callow et al. 1990; Holmes 2001). In humans, respiratory infections can be caused by two species of α-coronaviruses (229E and NL63) and two species of β-coronaviruses (OC43 and HKU1) (Gaunt et al. 2010). In addition, veterinary specialists have known for a long time that coronaviruses are cause fatal respiratory and gastrointestinal infections in animals (Pensaert 1999). Coronaviruses were only recently acknowledged as a potential biological hazard as they are a challenge for medicine. In recent decades, new pandemic strains of coronaviruses have often appeared which are frequently fatal for humans. These include severe acute respiratory syndrome-related coronavirus (SARS-CoV, which occurred from 2002/2003), Middle East respiratory syndrome-related coronavirus (MERS-CoV, which was identified in 2012), and most recently the new pneumonia coronavirus (SARS-CoV-2 which is the ongoing outbreak from 2019/202?) (Table 2). In all cases these three viruses are cause severe bronchiolitis and pneumonia, often with fatal outcomes (Cherry 2004; Ramadan and Shaib 2019; Hui et al. 2020).
Human coronaviruses were for the first time isolated from a patient with acute respiratory diseases in 1965 (Tyrrell and Bynoe 1966; Hamre and Procknow 1966). Their characteristic corona seen under the electronic microscope was reflected in the name *coronaviruses* (Tyrrell et al. 1975). During the next three decades (until the pandemic strains appeared), the coronaviruses were not of any special interest for most scientists.

It is apparent that pandemic outbreaks of respiratory viral infections represented a danger for humanity in the past, and there are no reasons to believe that they would not repeat in the future. It is as yet impossible to predict the time and place of the start of a new pandemic as well as the virulence of pandemic viral strains. However, there are certain factors that increase the potential for these viruses to spillover from other species (Johnson et al. 2020; Bobrowski et al. 2020; Gomes and Ruiz 2020).

BIOLOGICAL PROPERTIES OF INFLUENZA VIRUSES AND CORONAVIRUSES

Influenza viruses belong to the orthomyxoviruses family (Orthomyxoviridae, RNA viruses with segmented genome) and are represented by four monotypic genera: influenza A viruses (*Alphainfluenzavirus*), influenza B viruses (*Betainfluenzavirus*), influenza C viruses (*Gammainfluenzavirus*), and influenza D viruses (*Deltainfluenzavirus*); each genus contains only one type of eponymous virus. It is understood that only type A viruses have pandemic potential (Bouvier and Palese 2008; Spickler 2016; King et al. 2018). Influenza A viruses are further classified to subtypes, depending on the antigenic properties of hemagglutinin (a glycoprotein of the viral envelope which ensures the recognition of target cells and binding of viral particles to the terminal residues of sialic acids of the glycoproteins of plasmamembranes of...
epithelial cells) and neuraminidase (exo-α-sialidase catalyzing the splitting of glycoside bonds of the terminal residues of sialic acids of oligosaccharides, glycoproteins, glycolipids, thus providing release of newly formed influenza virions from the infected cells).

There are 18 known types of hemagglutinin (H1 to H18) and 11 identified serotypes of neuraminidase (N1 to N11), so in theory, 198 diverse combinations of these proteins (and thus subtypes of the influenza A virus) are possible (Skehel 2009; Tong et al. 2013; Quan et al. 2016; Zhao et al. 2019; Kosik and Yewdell 2019); of them, more than 120 combinations have been identified in nature (Tsai and Chen, 2011; Rejmanek et al. 2015).

There are 8 negative polar segments of RNA genome of the influenza virus which code at least 10 structural and 9 regulatory proteins (Varga et al. 2011; Muramoto et al. 2013; Hutchinson et al. 2014; Vasin et al. 2014). Some uncertainty regarding the proteome of the influenza A viruses is related to the fact that, unlike most RNA viruses, the transcription and translation of the genome of these viruses take place in the nucleus and not in the cytoplasm of infected cells. This permits influenza A viruses (Figure 1, A) to use the cellular splicing machinery to form splice-variants of viral mRNA. In addition, to widen their proteome, the influenza A viruses are probably using alternative open reading frames.

Most viral proteins are located inside the lipid envelope while only hemagglutinin (HA), neuraminidase (NA) (in the molar relation about 10:1 (Mitnaul et al. 2000)) and M2 protein, which are built into the virion envelope and present antigenic determinants available for immune antibodies (Kosik and Yewdell 2019). HA and NA molecules are
highly glycosylated proteins which give them functional activity and provides for immune
evasion by shielding antigenic determinants (Kim et al. 2018; York et al. 2019).

Unlike influenza viruses, coronaviruses are enveloped RNA viruses (with non-
segmented positive polar RNA) of the Nidovirales order, Coronaviridae family,
Orthocoronavirinae subfamily (Fehr and Perlman 2015). Coronaviral virions have a
spherical shape with the typical bulbous projections (Bárcena et al. 2009; Neuman et al.
2006). The viral envelope is made of a bilipid layer where S-, M- and E-proteins are
fixed (Lai and Cavanagh 1997; de Haan and Rottier 2005) (Figure 1, B).

The S-protein functions in the form of highly glycosylated three-dimensional complexes
(Zheng et al. 2017; Parsons et al. 2019), providing the interaction of the virion with the
receptors of epithelial cells followed by the internalization of the viral genome (Li 2016).
Also known as the spike protein – for SARS-CoV-2 there are crystal structures
described (Wang Q et al. 2020).

The M-protein functions in the form of a dimer with a glycolyzed N-terminal ectodomain
(Nal et al. 2005) and can be present in two different conformations. The conformers of
this glycoprotein ensure the correct assembly and formation of a viral particle (Neuman
et al. 2011).

The E-protein is a transmembrane protein which is present in low quantities and has
several functions namely in virion assembly, envelope forming and release of a viral
particle from the cell. There is indirect evidence that it has the structure of a glycoprotein
(Schoeman and Fielding 2019).
The N-protein is the only protein present inside the virion; it is responsible for the viral genome packaging (McBride et al. 2014).

The fact that deserves particular attention is that the proteins of both the envelopes of both influenza A viruses and coronaviruses are made up of glycoproteins.

Figure 1. (A) Structural elements of the influenza A virus; (B) Structural elements of the coronavirus (based on betacoronavirus subgroup A)

An influenza virus enters a cell during a process that involves several steps. A critically important moment in the lifecycle of an influenza virus is the recognition of the specific cellular receptors which are glycoproteins or glycolipids containing a terminal α2,6- or α2,3-sialic acid in the glycan (Leung et al. 2012; Byrd-Leotis et al. 2017). When viral HA binds sialic glycoproteins or glycolipids on the plasma membrane of an epithelial cell,
this results in the initiation of several mechanisms of endocytosis which quickly lead to the formation of endosomes, each of which contains a viral particle (Chardonnet and Dales 1970; Matlin et al. 1981; Kartenbeck et al. 1989; Rojek et al. 2008; Nanbo et al. 2010; Watanabe et al. 2010; Boulant et al. 2015).

The next step of the internalization is the release of the viral genome (RNA segments) into the cellular cytoplasm; this phase depends on the activity of Na$^+$/K$^+$-ATPase located in the endosomal membrane and which functions as a proton pump. Na$^+$/K$^+$-ATPase is responsible for the acidification of the internal environment of endosomes/lysosomes (to pH 5.0) (Cain et al. 1989). The acidification of the internal endosomal medium, i.e. the accumulation of protons (H$^+$) inside the endosomes, helps the tetramers of the M2-protein of the viral envelop to realize its potential as a protonophore (Pinto et al. 1992; Sugrue and Hay 1991; Manzoor et al. 2017). When hydrogen ions enter a viral particle, it mediates conformational changes and decomposition of the structural components of the viral envelope, which finally leads to an increase in the lability of its genome (Yoshimura and Ohnishi 1984; Shibata et al. 1983). But the fusion of the viral envelope membrane and the endosomal membrane, which releases the RNA genome of the virus into the cellular cytoplasm, is possible only with the participation of the viral HA after the previous proteolytic processing with serine (secretory trypsin-like) proteases (Klink 1975; Lazarowitz and Choppin 1975; Tashiro et al. 1987; Steinhauer 1999; Kido et al. 2009).

The translocation of RNA segments of the influenza viral genome from the cytoplasm to the nucleus is necessary for their replication, during which viral mRNA exits the nucleus to synthetize viral proteins in the cytoplasm. The viral self-assembly takes place at the
apical surface of the plasma membrane of epithelial cells, where HA and NA molecules are concentrated (Samji 2009; Dou et al. 2018).

The process of internalization of coronaviruses is determined by the functional activity of the S-protein (widely known as the spike protein) of the viral envelope. The S-protein of a coronavirus is a highly glycosylated supramolecular structure which enables the fixation of viral particles on the plasma membrane of epithelial cells, followed by the release of their RNA into the cellular cytoplasm (Li 2016; Watanabe et al. 2020). Each S-protein has two receptor-binding domains located on its S$_1$-subunit; these domains interact either with specific proteins or with sialoglycans of the epithelial cells (Li 2012; Shahwan et al. 2013; Hulswit et al. 2019). For example, MERS-CoV preferentially binds the α$_{2,3}$-bonded sialic acid (and to a lesser degree the α$_{2,6}$-bonded sialic acid) (Li et al. 2017). It seems that SARS-CoV-2 has the same affinity for the α$_{2,3}$-sialic acid conjugates (Ou et al. 2020).

After that, the internalization of the viral genome may proceed by endocytosis of the virion (which is in many respects a similar process to the internalization of the influenza viruses) or by the fusion of the membrane of a coronaviral envelope with the plasma membrane of an epithelial cell, without the formation of endosomes (directly on the plasma membrane). In any case, the release of the viral RNA into the cellular cytoplasm is preceded by the proteolytic (provided by serine proteases) cleavage of S$_1$-subunit and modulation of the S$_2$-subunit of the S-protein (Bosch et al. 2003; Belouzard et al. 2009; Simmons et al. 2013; Heurich et al. 2014; Zumla et al. 2016).

In the cytoplasm of an epithelial cell, the viral RNA genome functions as mRNA, where the complex of replication and transcription is responsible for both RNA genome
replication and synthesis of mRNA of structural viral proteins (Sola et al. 2015; Nakagawa et al. 2016). After the posttranslational glycosylation in the Golgi apparatus cisternae (Nal et al. 2005; Tseng et al. 2010), newly synthesized coronaviral proteins enter the cytoplasm and ensure the self-assembly of viral particles. The latter particles migrate to the cellular membrane inside the cisternae and are released from the cell by exocytosis (Fehr and Perlman 2015; Lim et al. 2016).

Taking into account the importance of serine proteases, glycoproteins and glycolipids in the lifecycle of influenza viruses and coronaviruses, it seems logical to suggest that the factors which modulate the profile of glycosylation of proteins and lipids of epithelial cells and viruses, as well as control the activity of serine proteases on the epithelial lining of respiratory ways, may significantly limit the virulence of influenza viruses and coronaviruses and represent therapeutic drug targets.

GENETIC EVOLUTION OF INFLUENZA A VIRUSES AND CORONAVIRUSES

When influenza viruses circulate in their natural reservoirs, they are characterized by high genetic variability which is reflected in the formation of quasi-subtypes (immunologically different antigenic variants) of type A viruses (Barbezange et al. 2018). This biological characteristic is called antigenic drift (Taubenberger and Kash 2010) and it is explained by the fact that RNA-dependent RNA-polymerase of influenza viruses does not have an active corrective site (Steinhauer et al. 1989; Cheung et al. 2014), which results in a high frequency of point mutations in the process of RNA genome replication (300 times higher than during the replication of bacterial DNA genome) (Drake 1993). Another distinctive characteristic is the high mutational tolerance of glycoproteins of viral envelopes, i.e. the ability of HA and NA to maintain their functional
activity in case of significant changes in the primary structure of the polypeptide chain (Thyagarajan and Bloom 2014; Visher et al. 2016).

An important and prevalent phenomenon in the evolution of influenza A viruses is so-called antigenic shift (Holmes et al. 2005, Dugan et al. 2008). The antigenic shift is the interchange of RNA segments of viral genome which code the HA and/or NA structure, in case of simultaneous infection of a cell by several strains of the influenza A virus (Taubenberger and Kash, 2010). It is the antigenic shift that permits new subtypes of influenza A virus to overcome cross-species barriers (Scholtissek et al. 1978; Garten et al. 2009).

Unlike other RNA-viruses, the coronavirus genome replication involves RNA-dependent RNA-polymerase which has 3’-exonuclease corrective activity (Smith et al. 2014). With the objective of immune evasion in humans and maintenance of the genotype in the *Homosapiens* population, as has been demonstrated for the coronaviral strain HCoV-OC43, coronaviruses also maintain the antigenic drift (Ren et al. 2015). In addition, the genome of coronaviruses uses RNA-RNA recombination for its evolution (Keck et al. 1988; Huang et al. 2016; Forni et al. 2017). Homologous RNA recombination represents a redistribution of the genetic material by interchange of RNA segments in the conditions of co-infection (Makino et al. 1986; Lai 1990; Lai and Cavanagh 1997). In addition to evasion from the host immune reactions, RNA recombination lets coronaviruses change the profile of virulence and tissue affinity as well as overcome cross-species barriers (Haijema et al. 2003; Stavrinides and Guttman 2004).
High genetic and phenotypic variability of influenza A viruses and coronaviruses can lead to a situation where these pathogenic agents obtain resistance to specific therapeutics as well as to the sudden appearance of new virulent pandemic strains.

PANDEMIC RESPIRATORY VIRAL INFECTIONS AND THE PROBLEM OF PNEUMONIA

The Influenza pandemic in 1918-1920 became the most fatal disease-related event in human history (to date) which resulted in the death of more than 50 million people (Johnson and Mueller 2002). The mortality during pandemics of influenza and coronaviral infections is largely associated with pneumonia (Morens et al. 2008; Metersky et al. 2012; Yin and Wunderink 2017; Al-Baadani et al. 2019). Primary viral pneumonias are often complicated by bacterial co-infection as they transform to viral-bacterial and bacterial pneumonias (Oswald et al. 1958; Bisno et al. 1971; Palacios et al. 2009; Gill et al. 2010; Martín-Loeches et al. 2011; Cillóniz et al. 2012). The statement by Louis Cruveilhier expressed in 1919 is still common in expert circles: “The influenza awards a sentence, and it is bacterial flora that carries it out” (Cruveilhier 1919).

The clinical picture of severe viral respiratory infections often presents with symptoms of primary viral pneumonia. The development of primary viral pneumonia in case of a viral respiratory infection is probably related to co-expression of glycoproteins and glycolipids which contain glycans with terminal α2,3-linked sialic acid (which plays the role of respiratory virus receptor), and to the transmembrane serine protease TMPRSS2 (which itself plays a role in proteolytically activating viral HA and S-protein) of the epithelial cells of alveoli and bronchioles (Shinya et al. 2006; Ibricevic et al. 2006; Kumlin et al. 2008; Bertram et al. 2010; Tortorici et al. 2019; Limburg et al. 2019).
The vulnerability to bacterial co-infection during respiratory viral pandemics is associated with multiple factors: Virus-induced dysbiosis and disruption of barrier function of the epithelial lining of respiratory airways (Hanada et al. 2018; Sencio et al. 2020; Pittet et al. 2010; Ellis et al. 2015; Nita-Lazar et al. 2015). Virus-induced dysfunction of effector immune cells (McNamee and Harmsen 2006; Small et al. 2010; Ghoneim et al. 2013; Sun and Metzger 2014) and immunosuppressive activity of cytokines in relation to antibacterial immunity (van der Sluijs et al. 2004; Cao et al. 2014; Shepardson et al. 2019). Virus-associated dysfunction of alveolar-capillary barrier (McAuley et al. 2007; Henkel et al. 2010; Kamal et al. 2018; Short et al. 2016) and suppression of activity of ion channels which are responsible for the absorption of fluid from the alveolar lumen (Carlson et al. 2010; Peteranderl et al. 2016; Brand et al. 2018).

Pneumonias associated with respiratory viral infections are an independent factor in disease severity and mortality (Maruyama et al. 2016; Ishiguro et al. 2017). This means that the main problem of severe viral infections, in the past as well as in the present, has been the problem of viral, viral-bacterial, and secondary bacterial pneumonias.

ANTIVIRAL THERAPY

The biology of influenza viruses and coronaviruses inevitably leads to the appearance of new pandemic strains; it is impossible to predict the moment of their development, genomic variability, and antigenic properties. This means that pandemics of new respiratory infections will always start in the absence of immune prophylactics and treatments. This underlines the necessity of prior research and development of treatments for the prevention and treatment of respiratory viral infections and in
particular for coronaviruses and influenza A viruses. Several antiviral drugs that will be described herein are presented in Table 3.

The nature of RNA viruses suggests that systemic interferon alfa-2b might be effective as non-specific background therapy, taking into account the weakened state of patients. The efficacy of topical interferon solutions is doubtful, but they may be considered in case of local symptoms (rhinitis, pharyngitis etc.). Usage of systemic interferon inducers such as tilorone, cycloferon etc. (Ekins et al., Ekins and Madrid 2020) may result in secondary immunosuppression 10 to 14 days later, which can lead to another infection.

Background antiviral therapy also includes targeted agents which affect enzymes of the viral genome replication this includes oseltamivir, and the most potent (but also most toxic of this group) ribavirin, as well as other novel targeted antiviral medications. Anti-replicative activity has been observed for inosine pranobex (Sliva et al. 2019), a purine derivative which is active against influenza A and B viruses.

The current knowledge of the viral nature and pathogenetic properties of the infectious process allows us to consider the possibility of using adjuvant agents, the efficacy of which has been observed in different studies (Ekins et al. 2020).

It is well known that serine proteases participate in the process of internalization of coronaviruses and influenza A viruses into the epithelial cells (Garten et al. 2015; Simmons et al. 2013). The activity of trypsin-like proteinases in the upper respiratory tract significantly depends on the activity of inhibitors of secretory leucoproteinases and in the lower respiratory tract it depends on the surfactant (Kido et al. 2004). Therefore, therapeutics which induce the expression of inhibitors of secretory leucoproteinases and surfactant may significantly inhibit the multicyclic replication of RNA viruses (including influenza and coronaviruses).
Quercetin has such properties. In the micromolar range, in addition to antioxidant effects, it can chelate metals of mixed valency (Gholampour and Saki 2019), stimulate the expression of antioxidant enzymes (Chen et al. 2017), provide direct reduction of free radicals of fatty acid residues of phospholipids and oxidized forms of vitamin E (Ozgen et al. 2016, Chepur et al. 2020), inhibit the activity of serine proteases (Xue et al. 2017; Jo et al. 2015), and shield the active center of HA of the influenza A virus (Wu et al. 2015), which gives it a wide range of antiviral effects (Zakaryan et al. 2017). But in our opinion this compound is highly promiscuous and not a good drug candidate.

Ambroxol (trans-4-[[2-amino-3,5-dibromophenyl]methyl]amino]cyclohexanolhydrochloride) also deserves attention as an additional antiviral agent (Yang et al. 2002; Yamaya et al. 2014). The in vitro inhibitory effects of ambroxol on influenza virus was described in 2014 (Tamaki et al. 2014). The spectrum of pharmacological activity of ambroxol, in addition to its mucolytic effects (Rogers 2007), includes antibacterial and anti-biofilm effects (Lu et al. 2010; Li et al. 2011; Cabral-Romero et al. 2013; Cataldi et al. 2014); the ability to serve as chemical chaperones (Bendikov-Bar et al. 2013; Sanchez-Martinez et al. 2016), modulate surfactant secretion (Yang et al. 2002; Seifart et al. 2005), provide anti-inflammatory (Gibbs et al. 1999; Beeh et al. 2008; Gupta 2010) and antioxidant action (Nowak et al. 1994; Stetinová et al. 2004); and the ability to locally (in the respiratory airways) stimulate the secretion of IgA and IgG (Yang et al. 2002) as well as to provide local anesthetic effect (Kern and Weiser 2015). Due to these diverse effects and high oral bioavailability (Jauch et al. 1978), ambroxol may be included in a list of medications used for the treatment of viral pneumonias.
An important role in the pathogenesis of respiratory infections is being played by the virus-induced oxidative stress (Schwarz 1996; Lin et al. 2006; Liu et al. 2017; Khomich et al. 2019). Xanthine oxidoreductase has an important role in the appearance of the symptoms and complications of virus-associated pneumonias. Xanthine oxidoreductase is a cytosolic enzyme of purine catabolism (Frederiks et al. 2002; Agarwal et al. 2011) and its activity strongly increases in hypoxic conditions (Poss et al. 1996; Terada et al. 1997; Linder et al. 2003) as well as under the influence of proinflammatory mediators and cytokines (Page et al. 1998; Brandes et al. 1999). In pathological conditions, xanthine oxidoreductase is released from the cells to the blood (predominantly in oxidase form (Spiekermann et al. 2003) and fixates at the luminal surface of the plasma membrane of endothelial cells in the area of the inflammation by physical/chemical interaction with glycosaminoglycans (Rouquette et al. 1998; Akaike et al. 1990; Adachi et al. 1993). Xanthine oxidoreductase located on the cytoplasmic membrane of endothelial cells produces a superoxide anion-radical in the process of purine oxidation, and at the same time may redux nitrite- and nitrate- anions to the nitrogen oxide (NO•) at another active site (Jansson et al. 2008; Cantu-Medellin and Kelley 2013), i.e. it can recycle this vasodilating agent. Local production of the prooxidative complex (O2•-, H2O2, NO•, ONOO−) is potentially very dangerous, especially in the vascular bed of the lungs. Nevertheless, the attempts of using allopurinol, an inhibitor of xanthine oxidoreductase (Pacher et al. 2006; George and Struthers 2009), for the treatment of influenza A virus-induced pneumonia in daily doses of 5 to 50 mg/kg has failed. Allopurinol has not shown any effects on the evolution and outcomes of the viral infection (Dolganova and Sharonov 1997). Lack of therapeutic effect in this case is associated with the fact that after the inhibition of (Mo-Co)-containing center of the enzyme by allopurinol, the NADH-oxidative and nitrite-/nitrate-reductive activities of xanthine oxidoreductase, which are realized at the FAD-dependent site of the enzyme,
were not affected (Harris and Massey 1997; Doel et al. 2001; Boueiz et al. 2008). As there are still no approved medications able to inhibit the FAD-dependent activity of xanthine oxidoreductase, administration of heparin seems feasible as prophylaxis of pulmonary embolism with the objective of the desorption of xanthine oxidoreductase from the cytoplasmic membrane of endothelial cells (Povalyaev 2014; Obi et al. 2019).

Another significant source of the active forms and metabolites of oxygen during respiratory viral infections are mitochondria (To et al. 2019). Melatonin is a mitochondrial antioxidant (Reiter et al. 2017) with anti-inflammatory and immunomodulatory activity and has noticeable positive effects on the evolution and outcomes of viral infections under experimental conditions (Srinivasan et al. 2012; Silvestri and Rossi 2013; Tan et al. 2014; Huang et al. 2019; Zhang et al. 2020a). Melatonin is also widely used to promote sleep, so this may be undesirable in an antiviral during the daytime.

The superoxide anion-radical may act on organic and inorganic compounds, depending on their chemical properties, as an oxidant \(\left(E_{0} O_{2}^{−}/H_{2}O_{2} = +0.89 \, \text{V} \right) \) or a reductant \(\left(E_{0} O_{2}/O_{2}^{−} = −0.16 \, \text{V} \right) \) (Wood 1987; Wood 1988). The reductive properties of the superoxide radical is produced in the area of inflammation during viral pneumonias. This may occur via reduction of ferric ions after their release from complexes with biomacromolecules. For example, iron in a molecule of ferritin is represented by \(\text{Fe}^{3+} \) ions which under the influence of the superoxide anion-radical transform into \(\text{Fe}^{2+} \) and leaves the aforementioned protein (Biemond et al. 1984; Bolann and Ulvik 1987). In the presence of free ferric ions and partially reduced forms of oxygen the conditions are created for a kind of catalytic reactor for redox-catabolic production of prooxidants, especially very toxic hydroxyl radicals (Morris et al. 1995). This condition of a biological
system is extremely dangerous because in the presence of free ferric ions biological fluids lose their antibacterial properties (Bullen et al. 1991; Griffiths 1991; Sritharan 2006). The elimination of free ferric ions from the biological media of a body is a life/death issue in case of viral pneumonias. There were earlier attempts to use available complexones (for example, deferoxamine) to bind ferric ions during viral pneumonia; contrary to the expected, not only did they show no positive effects on the pathological process, but they also led to increased mortality (Dolganova and Sharanov 1997). The explanation of this paradox is that deferoxamine (desferal) has approximately the same affinity constant for ferric ions as siderophores of microorganisms (Hallaway et al. 1989; Askwith et al. 1996); for this reason it is unable to limit the availability of \(\text{Fe}^{3+} \) for pathogenic organisms (Kim et al. 2007; Cassat and Skaar 2013). At the same time, it seems that ferric ions chelated by deferoxamine do not completely lose their ability to redox-transformation and thus support the reactions of Fenton and Osipov (Borg and Schaich 1986; Klebanoff et al. 1989; Dulchavsky et al. 1996; Niihara et al. 2002; Francisco et al. 2010).

In contrast, 2-ethyl-6-methyl-3-hydroxypyridine succinate (mexidol, emoxipine) has noticeable iron-chelating activity (Andrusishina et al. 2015), antioxidative activity (Voronina 2001) and the ability to inhibit serine proteases and matrix metalloproteases (Akhmedov et al. 2010). Mexidol has many such biological effects and has been proposed for the effective use as a supportive agent in the treatment of pneumonia (Ilyashenko et al. 2001; Luzhnikov et al. 2006) and viral infections (Pavelkina 2010).

In clinical practice, chloroquine has been widely used as a safe, effective, and affordable medication for more than seven decades (since 1947 [Solomon and Lee 2009]); it is used in the forms of phosphate, hydrochloride, and sulphate for the
following indications: treatment and prevention of malaria (Mengesha and Makonnen 1999; Bello et al. 2010; Waqar et al. 2016); treatment of leprosy (Meinão et al. 1996; Bezerra et al. 2005; Gordon et al. 2018); as an anti-inflammatory agent in patients with rheumatoid arthritis (Augustijns et al. 1992; Schrezenmeier and Dorner 2020); in the treatment of antiphospholipid syndrome (Tektonidou et al. 2019); in the treatment of Sjogren syndrome (Vivino et al. 2016; Shivakumar et al. 2018; Lee et al. 2019); in the treatment of amoebic hepatitis and hepatic abscesses (Sodeman et al. 1951; Cohen and Reynolds 1975); cancer treatment as sensitizing agent (Solomon and Lee 2009; Kimura et al. 2013; Maycotte et al. 2012); and in the treatment of metabolic syndrome (Kastan et al. 2009; McGill et al. 2019) and inflammatory diseases of bacterial nature (in synergy with antibiotics (Crowle and May 1990; Feurle et al. 2012; Jagadeesh et al., 2014; Son and Chung 2014).

Chloroquine and the many analogs of it (such as hydroxychloroquine etc.) have properties of weakly acidic amines in unprotonated form as they easily permeate cellular membranes (Chinappi et al. 2010) and after the protonation accumulate in closed cellular compartments with acidic pH (i.e. endosomes or lysosomes) (Vincent et al. 2005). The level of chloroquine in such compartments may be more than 100 times higher than its concentration in the cell (de Duve et al. 1974). Chloroquine may stay in the isolated intracellular compartments for hundreds of hours (Schrezenmeier and Dorner 2020). Accumulating in endosomes/lysosomes, chloroquine shifts the pH to alkali (Homewood et al. 1972; Ohkuma and Poole 1978; Al-Bari 2017) and inhibits diverse ATPases, including H⁺-ATPase (V-ATPase), which defines the acidification of the environment of endosomes and cisternae of the Golgi apparatus (Chandra et al. 1992; Bhattacharyya and Sen 1999; Holliday 2017). It is possible that these many phenomena define the blockade of the release of RNA genome of influenza viruses
from the lipoproteins of their envelopes (Shibata et al. 1983), which results in the inhibition of viral replication (Ooi et al. 2006; Di Trani et al. 2007). The ability of chloroquine to inhibit the acidification of endosomes which contain respiratory viruses, and thus to block the release of their RNA genomes and following replication, may partially explain its antiviral activity. Chloroquine also has high antiviral activity not only against influenza A viruses (internalized in the endosomes) but also against coronaviruses (Keyaerts et al. 2004; Vincent et al. 2005; de Wilde et al. 2014; Ooi et al. 2006; Yan et al. 2013; Kearney 2020) which are almost exclusively internalized by membrane fusion, i.e. without the formation of endosomes (Matsuyama et al. 2005).

Of the three types of biological aperiodic polymers (nucleic acids, polypeptides, carbohydrates), aperiodic polymers of carbohydrates (glycans, oligosaccharides) have the highest information capacity, due to their structural properties. This ensures high specificity of ligand-receptor interactions of oligosaccharide conjugates. But the structure of glycans in the eukaryotic genome is coded indirectly. Oligosaccharides are synthetized in the cisternae of Golgi apparatus with the support of secondary protein matrices which form functional heterogenic associations (conveyor lines) of glycosyltransferases (Chepur et al., 2019). Obviously, the spatial structure of such matrix protein molecules and thus their affinity to the enzymes of glycan synthesis may quickly and significantly change under the influence of the dynamics in the pH and oxidative-reductive potential in the cisternae of Golgi apparatus.

For this reason, it is important that chloroquine is able to change the redox status of a cell (Giovanella et al. 2015) and decrease the concentration of protons (increase the pH) in the cisternae of Golgi apparatus by suppression of ATPase activity, including H⁺-ATPase (Reaves and Banting 1994; Hassinen et al. 2011). The function of the Golgi
apparatus which is considered most sensitive to pH changes is the synthesis of aperiodic oligosaccharides (Kellokumpu 2019). A pH increase by 0.2 inside the Golgi apparatus is associated with a disruption in terminal α₂,₃-sialylation of both N-linked and O-conjugated glycans (Rivinoja et al. 2006, 2009). It seems that aberrant glycosylation after the decrease in acidity of intraluminal environment of Golgi complex cisternae is associated with pH-induced changes in the topology/location of glycosyltransferases in multienzyme complexes of aperiodic oligosaccharides synthesis.

As all participants of the interaction between human cells and respiratory RNA viruses (glycoproteins, glycolipids) are richly decorated by glycans with terminal sialic acids, which are recognized by the viral particles as specific receptors, the chloroquine-induced disruption of the processes of sialylation/glycosylation of cellular and viral participants of this interaction is reflected in its antiviral effects.

The participation of glycans in viral adhesion and proliferation are extremely important. A wide array of viruses including coronaviruses (Milewska et al. 2014, 2018; Szczepanski et al. 2019) use a common heparan sulfate-dependent mechanism of the attachment to a cellular membrane. Inhibitors of this attachment could therefore prevent and treat infections. The N,N'-bisheteryl derivative of dispyrotripiperasesine, pyrimidine dispirotripiperasinium, became the first synthetic small molecule (Schmidtke et al. 2004; Novoselova et al. 2019) broad spectrum inhibitor of the replication of viruses of different families which use heparan sulfate to attach to and/or enter a host cell. The inhibition is via mimicking the binding of specific structural parts of heparan sulfate. This investigational class of compounds opens new opportunities for the inhibition of the process of viral transmission, for example, by using them to prevent infection by herpes simplex virus type I.
A method of prevention and treatment of aspiration pneumonias and ventilator-associated pneumonias may be adapted for virus-associated pneumonias. The method involves hypoosmotic (to 200-250 mM) conditioning of red blood cells (RBC) of autogenic blood in a solution of a broad-spectrum antibiotic, with the addition of dimethylsulphoxide (DMSO) and heparin. This approach avoids hemolysis and uses autogenic RBCs as an intravenous depot for the delivery of antibiotics to the area of inflammation (pneumonia), where the tonicity of blood is normalized due to swelling. DMSO increases the fluidity (decreases the microviscosity) and permeability of cellular RBC membranes which helps to deliver antibiotic into the cell. A proposed dose of DMSO (0.3-0.4 ml) does not affect morphology or functional properties of blood cells (Gurtovenko and Anwar 2007). In addition, DMSO inhibits the activation of proinflammatory transcription factors NF-kB, AP-1 and expression of adhesion molecules ICAM-1 (Chang et al. 2001), blocks transcription of the IL-1, IL-6, IL-8 genes, as well as activation of the inflamasomes NLRP3 (Ahn et al. 2014; Elisia et al. 2016) and has noticeable antioxidant activity in extremely low concentrations (Jia et al. 2010; Sanmartín-Suárez et al. 2011).

From the earliest days of the current outbreak of SARS-CoV-2 there has been considerable focus on drug repurposing. A bibliometric analysis of drug repurposing has described the many FDA approved drugs that have been tested for other indications. This analysis highlighted chloroquine as one of the most repurposed drugs as it has been tested against hundreds of diseases (Baker 2018). Not surprisingly, chloroquine has also been identified by several groups (in China, South Korea and the USA) (Jeon et al. 2020; Jin et al. 2020; Liu et al. 2020) to have micromolar activity against SARS-CoV-2. Remdesivir, which had previously failed in clinical trials for Ebola (Mulangu,
2019) but had also recently shown activity against MERS in rhesus macaques (de Wit et al. 2020) was tested *in vitro* against SARS-CoV-2 and shown to be active. Both these drugs (and closely related analogs) are already in many clinical trials globally. There are numerous other drugs proposed including a broad array of nucleoside analogs, neuraminidase inhibitors, peptides, RNA synthesis inhibitors, anti-inflammatory drugs as well as traditional Chinese medicines (Wang et al. 2020; Lu 2020; Zhang and Liu 2020b). In just a few months many papers and preprints have described one of more molecule with *in vitro* data against the virus. To date there are likely >100 drugs that have been tested and described with *in vitro* IC$_{50}$ data in cells from these studies (Jeon et al. 2020; Jin et al. 2020; Liu et al. 2020; Caly et al. 2020; Choy et al. 2020; Yamamoto et al. 2020). These cover large natural product molecules like Ivermectin (Caly et al. 2020) through to an array of small molecules that are primarily lysosomotropic drugs (Weston et al. 2020). Most of these studies use Vero cells for testing and this animal cell type may not be an ideal. We await seeing how the wider use of human cells may impact the discovery of other inhibitors of this virus. Additionally some of these molecules identified may be impractical due to off-target effects or not being able to be used at concentrations similar to their original indication.

CONCLUSIONS

Respiratory RNA viruses are anthropozoonotic infectious pathogens which have natural reservoirs and form dynamic genetic pools. Such a genetic pool suggests the interchange or spillover of genetic material between the genomes of familial RNA viruses of humans and animals. This inevitably leads to the appearance of new, highly virulent strains of pathogens and it is impossible to predict the moment of such appearance and antigenic properties of these strains. This means that epidemics of new
respiratory RNA viral infections will always begin in the absence of medications for their immune-mediated prevention or treatment. This underlines the necessity of continuing to perform research and development of antivirals and other therapeutic drugs that could be used in the treatment of respiratory RNA viral infections. This review has focused on the past and present efforts at addressing these viruses. Clearly our future will be very much defined by such viral outbreaks if we are not able to identify broad spectrum antivirals or vaccines. Looking at the past research may provide some important clues as to how we can identify such therapeutics. The reliance on a single magic bullet for every disease may be unrealistic and we therefore need to consider the combination of diverse antiviral treatments as we currently do for HIV and HBV. Considering molecules that are traditionally not considered ‘antivirals’ may also be critical to open our eyes to accessing additional targets and mechanisms. Host targeted mechanisms may also be of interest such as those that stimulate the immune system. Clearly, we are seeing many drugs that are lysosomotropic, while long term use of such molecules may be detrimental, short term use may prevent viral entry and protect the individual. There is certainly much more research that can be performed to understand how combinations of drugs for these respiratory viruses may work together. While interest in antiviral research and development has apparently languished for decades, the COVID-19 may permanently change that. If we continue to ignore such viruses the cost will be unimaginable and continue to hold back human progress. Will we now see a rebirth in interest and perhaps significant investment in developing antivirals. For years there have been few major drug companies dominating this field. What we have seen with viruses should also serve to remind us that we also face great pressures such as drug resistance for other classes of drugs such as antibiotics. This review should remind us that we need to be ready for the next outbreak and that means having a plentiful supply of drugs that can potentially address any new virus we are faced with. A
relatively small investment in this science could pay big dividends for the future in
preventing catastrophic pandemics, limiting the global financial depressions that result
and providing a degree of security for humanity. We cannot neglect these or other
viruses for they provide other insights that could ultimately be useful in healthcare and
beyond.

ACKNOWLEDGMENTS

We kindly acknowledge NIH NINDS: 1R01NS102164-01, RFBR 17-54-30007, SC RF AAAA-A19-119010590004-2 and NIAID R41AI13456. Authors kindly acknowledge Anna Egorova for help in manuscript preparation.

References

Adachi T, Fukushima T, Usami Y, Hirano K. Binding of human xanthine oxidase to sulphated glycosaminoglycans on the endothelial-cell surface. Biochem J. 1993;289(Pt 2):523-7. DOI: 10.1042/bj2890523.

Agarwal A, Banerjee A, Banerjee UC. Xanthine oxidoreductase: a journey from purine metabolism to cardiovascular excitation-contraction coupling. Crit Rev Biotechnol. 2011;31(3):264-80. DOI: 10.3109/07388551.2010.527823.

Ahn H, Kim J, Jeung EB, Lee GS. Dimethyl sulfoxide inhibits NLRP3 activation. Immunobiology. 2014;219(4):315-22. DOI: 10.1016/j.imbio.2013.11.003.

Akaike T, Ando M, Oda T, Doi T, Ijiri S, Araki S, Maeda H. Dependence on O$_2^-$-generation by xanthine oxidase of pathogenesis of influenza virus infection in mice. J Clin Invest. 1990;85(3):739-45. DOI: 10.1172/JCI114499.

Akhmedov VA, Budygin AV, Dolgikh VT. The matrix metalloproteinase 9 (MMP-9) and TIMP-1 activities in patients with chronic and recurrent pancreatitis. Eksp Klin Gastroenterol. 2010;(6):11-3. PubMed PMID: 20731158.
Al-Baadani AM, Elzein FE, Alhemyadi SA, Khan OA, Albenmousa AH, Idrees MM. Characteristics and outcome of viral pneumonia caused by influenza and Middle East respiratory syndrome-coronavirus infections: a 4-year experience from a tertiary care center. Ann Thorac Med. 2019;14(3):179-185. DOI: 10.4103/atm.ATM_179_18.

Al-Bari MAA. Targeting endosomal acidification by chloroquine analogs as a promising strategy for the treatment of emerging viral diseases. Pharmacol Res Perspect. 2017;5(1):e00293. DOI: 10.1002/prp2.293.

Al-Muharrmi Z. Understanding the influenza AH1N1 2009 pandemic. Sultan Qaboos Univ Med J. 2010;10(2):187-195. PubMed PMID: 21509228; PubMed Central PMCID: PMC3074714.

Andrusishina IN, Vazhnichaya EM, Donchenko EA, Zabozlaev AA, Kurapov YA, Moklyak EV, Oranskaya EI, Samusenko YV, inventors; Farmasoft, assignee. Agent for the treatment of iron overload and hemochromatosis. Russian Federation patent RU 2557959C1. 2014 Jul 09.

Askwith CC, de Silva D, Kaplan J. Molecular biology of iron acquisition in Saccharomyces cerevisiae. Mol Microbiol. 1996;20(1):27-34. DOI: 10.1111/j.1365-2958.1996.tb02485.x.

Augustijns P, Geusens P, Verbeke N. Chloroquine levels in blood during chronic treatment of patients with rheumatoid arthritis. Eur J Clin Pharmacol. 1992;42(4):429-33. DOI: 10.1007/BF00280130.

Baker NC, Ekins S, Williams AJ, Tropsha A. A bibliometric review of drug repurposing. Drug Discov Today. 2018;23(3):661-672. DOI: 10.1016/j.drudis.2018.01.018.

Barbezange C, Jones L, Blanc H, Isakov O, Celniker G, Enouf V, et al. Seasonal genetic drift of human influenza A virus quasispecies revealed by deep sequencing. Front Microbiol. 2018;9:2596. DOI: 10.3389/fmicb.2018.02596.
Bárcena M, Oostergetel GT, Bartelink W, Faas FG, Verkleij A, Rottier PJ, et al. Cryo-electron tomography of mouse hepatitis virus: insights into the structure of the coronavirion. Proc Natl Acad Sci USA. 2009;106(2):582-7. DOI: 10.1073/pnas.0805270106.

Beeh KM, Beier J, Esperester A, Paul LD. Antiinflammatory properties of ambroxol. Eur J Med Res. 2008;13(12):557-62. PubMed PMID: 19073395.

Bello SO, Chika A, Bello AY. Is chloroquine better than artemisinin combination therapy as first line treatment in adult nigerians with uncomplicated malaria? A cost effectiveness analysis. Afr J Infect Dis. 2010;4(2):29-42. DOI: 10.4314/ajid.v4i2.55145.

Belouzard S, Chu VC, Whittaker GR. Activation of the SARS coronavirus spike protein via sequential proteolytic cleavage at two distinct sites. Proc Natl Acad Sci USA. 2009;106(14):5871-6. DOI: 10.1073/pnas.0809524106.

Bendikov-Bar I, Maor G, Filocamo M, Horowitz M. Ambroxol as a pharmacological chaperone for mutant glucocerebrosidase. Blood Cells Mol Dis. 2013;50(2):141-5. DOI: 10.1016/j.bcmd.2012.10.007.

Bertram S, Glowacka I, Blazejewska P, Soilleux E, Allen P, Danisch S, et al. TMPRSS2 and TMPRSS4 facilitate trypsin-independent spread of influenza virus in Caco-2 cells. J Virol. 2010;84(19):10016-25. DOI: 10.1128/JVI.00239-10.

Bezerra EL, Vilar MJ, da Trindado Neto PB, Sato EI. Double-blind, randomized, controlled clinical trial of clofazimine compared with chloroquine in patients with systemic lupus erythematosus. Arthritis Rheum. 2005;52(10):3073-8. DOI: 10.1002/art.21358.

Bhattacharyya D, Sen PC. The effect of binding of chlorpromazine and chloroquine to ion transporting ATPases. Mol Cell Biochem. 1999;198(1-2):179-85. DOI: 10.1023/a:1006902031255.
Biemond P, nan Eijk HG, Swaak AJ, Koster JF. Iron mobilization from ferritin by superoxide derived from stimulated polymorphonuclear leukocytes. Possible mechanism in inflammation diseases. J Clin Invest. 1984;73(6):1576-9. DOI: 10.1172/JCI111364.

Bisno AL, Griffin JP, Van Epps KA, Niell HB, Rytel MW. Pneumonia and Hong Kong influenza: a prospective study of the 1968-1969 epidemic. Am J Med Sci. 1971;261(5):251-63. DOI: 10.1097/00000441-197105000-00004.

Bobrowski, T., Melo-Filho, C. C., Korn, D., Alves, V. M., Popov, K. I., Auerbach, S., Schmitt, C., Moorman, N. J., Muratov, E. N., & Tropsha, A. Learning from history: do not flatten the curve of antiviral research!. Drug discovery today, 2020:S1359-6446(20):30285-3. DOI: 10.1016/j.drudis.2020.07.008

Bolann BJ, Ulvik RJ. Release of iron from ferritin by xanthine oxidase. Role of the superoxide radical. Biochem J. 1987;243(1):55-59. DOI: 10.1042/bj2430055.

Borg DC, Schaich KM. Prooxidant action of desferrioxamine: Fenton-like production of hydroxyl radicals by reduced ferrioxamine. J Free Radic Biol Med. 1986;2(4):237-43. DOI: 10.1016/s0748-5514(86)80004-6.

Bosch BJ, van der Zee R, de Haan CA, Rottier PJ. The coronavirus spike protein is a class I virus fusion protein: structural and functional characterization of the fusion core complex. J Virol. 2003;77(16):8801-11. DOI: 10.1128/jvi.77.16.8801-8811.2003.

Boueiz A, Damarla M, Hassoun PM. Xanthine oxidoreductase in respiratory and cardiovascular disorder. Am J Physiol Lung Cell Mol Physiol. 2008;294(5):L830-40. DOI: 10.1152/ajplung.00007.2008.

Boulant S, Stanifer M, Lozach PY. Dynamics of virus-receptor interactions in virus binding, signaling, and endocytosis. Viruses. 2015;7(6):2794-2815. DOI: 10.3390/v7062747.
Bouvier NM, Palese P. The biology of influenza viruses. Vaccine. 2008;26(Suppl 4):D49-53. DOI: 10.1016/j.vaccine.2008.07.039.

Brand JD, Lazrak A, Trombley JE, Shei RJ, Adewale AT, Tipper JL. Influenza-mediated reduction of lung epithelial ion channel activity leads to dysregulated pulmonary fluid homeostasis. JCI Insight. 2018;3(20). pii: 123467. DOI: 10.1172/jci.insight.123467.

Brandes RP, Koddenberg G, Gwinner W, Kim Dy, Kruse HJ, Busse R, Mügge A. Role of increased production of superoxide anions by NAD(P)H oxidase and xanthine oxidase in prolonged endotoxemia. Hypertension. 1999;33(5):1243-9. DOI: 10.1161/01.hyp.33.5.1243.

Broxmeyer L. Bird flu, influenza and 1918: the case for mutant Avian tuberculosis. Med Hypotheses. 2006;67(5):1006-15. DOI: 10.1016/j.mehy.2006.05.002.

Bullen JJ, Ward CG, Rogers HJ. The critical role of iron in some clinical infections. Eur J Clin Microbiol Infect Dis. 1991;10(8):613-7. DOI: 10.1007/BF01975810.

Byrd-Leotis L, Cummings RD, Steinhauer DA. The interplay between the host receptor and influenza virus hemagglutinin and neuraminidase. Int J Mol Sci. 2017;18(7). pii: E1541. DOI: 10.3390/ijms18071541.

Cabral-Romero C, Martínez-Sanmiguel JJ, Reséndez-Pérez D, Flores-González MdS, Hernandez-Delgadillo R. Antibacterial and anti-biofilm activities of ambroxol against oral bacteria. The Pharma Innovation Journal. 2013;2(3):52-58.

Cain CC, Sipe DM, Murphy RF. Regulation of endocytic pH by the Na+,K+-ATPase in living cells. Proc Natl Acad Sci USA. 1989;86(2):544-8. DOI: 10.1073/pnas.86.2.544.

Callow KA, Parry HF, Sergeant M, Tyrrell DA. The time course of the immune response to experimental coronavirus infection of man. Epidemiol Infect. 1990;105(2):435-46. DOI: 10.1017/s0950268800048019.
Caly L, Druce JD, Catton MG, Jans DA, Wagstaff KM. The FDA-approved Drug Ivermectin inhibits the replication of SARS-CoV-2 in vitro. Antiviral Res. 2020;178:104787. doi: 10.1016/j.antiviral.2020.104787.

Cantu-Medellin N, Kelley EE. Xanthine oxidoreductase-catalyzed reduction of nitrite to nitric oxide: insights regarding where, when and how. Nitric Oxide. 2013;34:19-26. DOI: 10.1016/j.niox.2013.02.081.

Cao J, Wang D, Xu F, Gong Y, Wang H, Song Z, et al. Activation of IL-27 signaling promotes development of postinfluenza pneumococcal pneumonia. EMBO Mol Med. 2014;6(1):120-40. DOI: 10.1002/emmm.201302890.

Carlson CM, Turpin EA, Moser LA, O'Brien KB, Cline TD, Jones JC, et al. Transforming growth factor-β: activation by neuraminidase and role in highly pathogenic H5N1 influenza pathogenesis. PLoS Pathog. 2010;6(10):e1001136. DOI: 10.1371/journal.ppat.1001136.

Cassat JE, Skaar EP. Iron in infection and immunity. Cell Host Microbe. 2013;13(5):509-519. DOI: 10.1016/j.chom.2013.04.010.

Cataldi M, Sblendorio V, Leo A, Piazza O. Biofilm-dependent airway infections: a role for ambroxol? Pulm Pharmacol Ther. 2014;28(2):98-108. DOI: 10.1016/j.pupt.2013.11.002.

Chandra S, Adhikary G, Sikdar R, Sen PC. The in vivo inhibition of transport enzyme activities by chloroquine in different organs of rat is reversible. Mol Cell Biochem. 1992;118(1):15-21. DOI: 10.1007/BF00249690.

Chang CK, Albarillo MV, Schumer W. Therapeutic effect of dimethyl sulfoxide on ICAM-1 gene expression and activation of NF-κB and AP-1 in septic rats. J Surg Res. 2001;95(2):181-7. DOI: 10.1006/jsre.2000.6033.
Chardonnet Y, Dales S. Early events in the interaction of adenoviruses with Hela cells: I. Penetration of type 5 and intracellular release of the DNA genome. Virology. 1970;40(3):462-77. DOI: 10.1016/0042-6822(70)90189-3.

Chen BH, Park JH, Ahn JH, Cho JH, Kim IH, Lee JC, et al. Pretreated quercetin protects gerbil hippocampal CA1 pyramidal neurons from transient cerebral ischemic injury by increasing the expression of antioxidant enzymes. Neural Regen Res. 2017;12(2):220-227. DOI: 10.4103/1673-5374.200805.

Chepur SV, Pluzhnikov NN, Saiganov SA, Chubar OV, Bakulina LS, Litvinenko IV, Yudin MA, Nikiforov AS. Mechanisms of implementation of alpha-tocopherol antioxidant effects. Advances in current biology. 2020;140(2):149-65. Russian. DOI: 10.31857/S0042132420020039.

Chepur SV, Pluzhnikov NN, Saiganov SA, Bakulina LS, Chubar OV, Yudin MA, Nikiforov AS. The hypothesis of the aperiodic polysaccharides matrix synthesis. Advances in current biology. 2019;139(6):583-93. Russian. DOI: 10.1134/S0042132419060012.

Cherry JD. The chronology of the 2002-2003 SARS mini pandemic. Paediatr Respir Rev. 2004;5(4):262-9. DOI: 10.1016/j.prrv.2004.07.009.

Cheung PP, Watson SJ, Choy KT, Fun Sia S, Wong DD1, Poon LL, et al. Generation and characterization of influenza A viruses with altered polymerase fidelity. Nat Commun. 2014;5:4794. DOI: 10.1038/ncomms5794.

Chinappi M, Via A, Marcatili P, Tramontano A. On the mechanism of chloroquine resistance in Plasmodium falciparum. PLoS One. 2010;5(11):e14064. DOI: 10.1371/journal.pone.0014064.

Choy KT, Wong AY, Kaewpreedee P, Sia SF, Chen D, Hui KPY, et al. Remdesivir, lopinavir, emetine, and homoharringtonine inhibit SARS-CoV-2 replication in vitro. Antiviral Res. 2020;178:104786. DOI: 10.1016/j.antiviral.2020.104786.
Cillóniz C, Ewig S, Menéndez R, Ferrer M, Polverino E, Reyes S, et al. Bacterial co-infection with H1N1 infection in patients admitted with community acquired pneumonia. J Infect. 2012;65(3):223-30. DOI: 10.1016/j.jinf.2012.04.009.

Cohen HG, Reynolds TB. Comparison of metronidazole and chloroquine for the treatment of amoebic liver abscess. A controlled trial. Gastroenterology. 1975;69(1):35-41. PubMed PMID: 168120

Crowle AJ, May MH. Inhibition of tubercle bacilli in cultured human macrophages by chloroquine used alone and in combination with streptomycin, isoniazid, pyrazinamide, and two metabolites of vitamin D₃. Antimicrob Agents Chemother. 1990;34(11):2217-22. DOI: 10.1128/aac.34.11.2217

Cruveilhier L. Action du serum antipneumococcique au cours de la pneumonie et dans les complications de la grippe. Ann Inst Pasteur. 1919;33:448-61. French.

Daly P, Gustafson R, Kendall P. Introduction to pandemic influenza. BC Med. J. 2007;49:240-4.

de Duve C, de Barsy T, Poole B, Trouet A, Tulkens P, Van Hoof F. Commentary. Lysosomotropic agents. Biochem Pharmacol. 1974;23(18):2495-531. DOI: 10.1016/0006-2952(74)90174-9.

de Haan CA, Rottier PJ. Molecular interactions in the assembly of coronaviruses. Adv Virus Res. 2005;64:165-230. DOI: 10.1016/S0065-3527(05)64006-7.

de Wilde AH, Jochmans D, Posthuma CC, Zevenhoven-Dobbe JC, van Nieuwkoop S, Bestebroer TM, et al. Screening of an FDA-approved compound library identifies four small-molecule inhibitors of Middle East respiratory syndrome coronavirus replication in cell culture. Antimicrob Agents Chemother. 2014;58(8):4875-84. DOI: 10.1128/AAC.03011-14.

Di Trani L, Savarino A, Campitelli L, Norelli S, Puzelli S, D'Ostilio D, et al. Different pH requirements are associated with divergent inhibitory effects of chloroquine...
on human and avian influenza A viruses. Virol J. 2007;4:39. DOI: 10.1186/1743-422X-4-39.

Doel JJ, Godberg BL, Eisenthal R, Harrison R. Reduction of organic nitrates catalyzed by xanthine oxidoreductase under anaerobic conditions. Biochim Biophys Acta. 2001;1527(1-2): 81-7. DOI: 10.1016/S0304-4165(01)00148-9.

Dolganova A, Sharonov BP. Application of various antioxidants in the treatment of influenza. Braz J Med Biol Res. 1997;30(11):1333-6. DOI: 10.1590/S0100-879X1997001100012.

Dou D, Revol R, Östbye H, Wang H, Daniels R. Influenza A virus cell entry, replication, virion assembly and movement. Front Immunol. 2018;9:1581. DOI: 10.3389/fimmu.2018.01581.

Drake JW. Rates of spontaneous mutation among RNA viruses. Proc Natl Acad Sci USA. 1993;90(9):4171-5. DOI: 10.1073/pnas.90.9.4171.

Ducatez MF, Pelletier C, Meyer G. Influenza D virus in cattle, France, 2011-2014. Emerg Infect Dis. 2015;21(2):368-71. DOI: 10.3201/eid2102.141449.

Dugan VG, Chen R, Spiro DJ, Sengamalay N, Zaborsky J, Ghedin E, et al. The evolutionary genetics and emergence of avian influenza viruses in wild birds. PLoS Pathog. 2008;4(5):e1000076. DOI: 10.1371/journal.ppat.1000076

Dulchavsky SA, Davidson SB, Cullen WJ, Devasagayam TPA, Diebel LN, Dutta S. Effects of deferoxamine on H₂O₂-induced oxidative stress in isolated rat heart. Basic Res Cardiol. 1996;91:418-24 DOI:10.1007/BF00788722.

Ekins S, Lane TR, Madrid PB. Tilorone: a broad-spectrum antiviral invented in the USA and commercialized in Russia and beyond. Pharm Res. 2020;37(4):71. DOI: 10.1007/s11095-020-02799-8.
Ekins S, Madrid PB. Tilorone: a broad-spectrum antiviral for emerging viruses. Antimicrob Agents Chemother. 2020;64(5). pii: e00440-20. DOI: 10.1128/AAC.00440-20.

Ekins, S., Mottin, M., Ramos, P., Sousa, B., Neves, B. J., Foil, D. H., Zorn, K. M., Braga, R. C., Coffee, M., Southan, C., Puhl, A. C., & Andrade, C. H. Déjà vu: Stimulating open drug discovery for SARS-CoV-2. Drug discovery today, 2020;25(5):928–941. DOI: 10.1016/j.drudis.2020.03.019

Elisia I, Nakamura H, Lam V, Hofs E, Cederberg R, Cait J, et al. DMSO represses inflammatory cytokine production from human blood cells and reduces autoimmune arthritis. PLoS One. 2016;11(3):e0152538. DOI: 10.1371/journal.pone.0152538.

Ellis GT, Davidson S, Crotta S, Branzk N, Papayannopoulos V, Wack A. TRAIL+ monocytes and monocyte-related cells cause lung damage and thereby increase susceptibility to influenza-Streptococcus pneumoniae coinfection. EMBO Rep. 2015;16(9):1203-18. DOI: 10.15252/embr.201540473.

Fehr AR, Perlman S. Coronaviruses: an overview of their replication and pathogenesis. Methods Mol Biol. 2015;1282:1-23. DOI: 10.1007/978-1-4939-2438-7_1.

Feurle GE, Moos V, Schneider T, Fenollar F, Raoult D. The combination of chloroquine and micocycline, a therapeutic option in cerebrospinal infection of Whipple’s disease refractory to treatment with ceftriaxone, meropenem and cotrimoxazole. J Antimicrob Chemother. 2012;67(5):1295-6. DOI: 10.1093/jac/dks008.

Forni D, Cagliani R, Clerici M, Sironi M. Molecular evolution of human coronavirus genomes. Trends Microbiol. 2017;25(1):35-48. DOI: 10.1016/j.tim.2016.09.001.

Francis T. A new type of virus from epidemic influenza. Science. 1940;92(2392):405-8. DOI: 10.1126/science.92.2392.405.
Francisco AF, de Abreu Vieira PM, Arantes JM, Silva M, Pedrosa ML, Elói-Santos SM, et al. Increase of reactive oxygen species by desferrioxamine during experimental Chagas’ disease. Redox Rep. 2010;15(4):185-90. DOI: 10.1179/174329210X12650506623528.

Frederiks WM, Vreeling-Sindelarova H. Ultrastructural localization of xanthine oxidoreductase activity in isolated rat liver cells. Acta Histochem. 2002; 104(1), 29-37. DOI: 10.1078/0065-1281-00629.

Garten RJ, Davis CT, Russell CA, Shu B, Lindstrom S, Balish A, et al. Antigenic and genetic characteristics of swine-origin A(H1N1) influenza viruses circulating in humans. Science. 2009;325(5937):197-201. DOI: 10.1126/science.1176225.

Garten W, Braden C, Arendt A, Peitsch C, Baron J, Lu Y, et al. Influenza virus activating host proteases: identification, localization and inhibitors as potential therapeutics. Eur J Cell Biol. 2015;94(7-9):375-83. DOI: 10.1016/j.ejcb.2015.05.013.

Gaunt ER, Hardie A, Claas ECJ, Simmonds P, Templeton KE. Epidemiology and clinical presentation of the four human coronaviruses 229E, HKU1, NL63, and OC43 detected over 3 years using a novel multiplex real-time PCR method. J Clin Microbiol. 2010;48(8):2940-7. DOI: 10.1128/JCM.00636-10.

George J, Struthers AD. Role of urate, xanthine oxidase and the effects of allopurinol in vascular oxidative stress. Vasc Health Risk Manag. 2009;5(1):265-72. DOI: 10.2147/vhrm.s4265.

Gholampour F, Saki N. Hepatic and renal protective effects of quercetin in ferrous sulfate-induced toxicity. Gen Physiol Biophys. 2019;38(1):27-38. DOI: 10.4149/gpb_2018038.

Ghoneim HE, Thomas PG, McCullers JA. Depletion of alveolar macrophages during influenza infection facilitates bacterial superinfection. J Immunol. 2013;191(3):1250-9. DOI: 10.4049/jimmunol.1300014.
Gibbs BF, Schmutzler W, Vollrath IB, Brosthardt P, Braam U, Wolff HH, Zwadlo-Klarwasser G. Ambroxol inhibits the release of histamine, leukotrienes and cytokines from human leukocytes and mast cells. Inflamm Res. 1999;48(2):86-93. DOI: 10.1007/s000110050421.

Gill JR, Sheng ZM, Ely SF, Guinee DG, Beasley MB, Suh J, et al. Pulmonary pathologic findings of fatal 2009 pandemic influenza A/H1N1 viral infections. Arch Pathol Lab Med. 2010;134(2):235-43. DOI: 10.1043/1543-2165-134.2.235.

Giovanella F, Ferreira GK, de Prá SD, Carvalho-Silva M, Gomes LM, Scaini G, et al. Effects of primaquine and chloroquine on oxidative stress parameters in rats. An Acad Bras Cienc. 2015;87(2 Suppl):1487-96. DOI: 10.1590/0001-3765201520140637.

Gomes, C., & Ruiz, J. Research inequities: avoiding the next pandemic. Pathogens and global health, 2020; 1–2. Advance online publication. DOI: 10.1080/20477724.2020.1802189

Gordon C, Amissah-Arthur MB, Gayed M, Brown S, Bruce IN, D'Cruz D, et al. The British Society for Rheumatology guideline for the management of systemic lupus erythematosus in adults. Rheumatology (Oxford). 2018;57(1):e1-e45. DOI: 10.1093/rheumatology/kex286.

Griffiths E. Iron and bacterial virulence – a brief overview. Biol Met. 1991;4(1):7-13. DOI: 10.1007/BF01135551.

Gupta PR. Ambroxol – resurgence of an old molecule as an anti-inflammatory agent in chronic obstructive airway diseases. Lung India. 2010;27(2): 46-8. DOI: 10.4103/0970-2113.63603.

Gurtovenko AA, Anwar J. Modulating the structure and properties of cell membranes: the molecular mechanism of action of dimethyl sulfoxide. J Phys Chem B. 2007;111(35):10453-60. DOI: 10.1021/jp073113e.
Haijema BJ, Volders H, Rottier PJ. Switching species tropism: an effective way to manipulate the feline coronavirus genome. J Virol. 2003;77(8):4528-38. DOI: 10.1128/jvi.77.8.4528-4538.2003.

Hallaway PE, Eaton JW, Panter SS, Hedlund BE. Modulation of deferoxamine toxicity and clearance by covalent attachment to biocompatible polymers. Proc Natl Acad Sci USA. 1989;86(24):10108-12. DOI: 10.1073/pnas.86.24.10108.

Hamre D, Procknow JJ. A new virus isolated from the human respiratory tract. Proc Soc Exp Biol Med. 1966;121(1):190-3. DOI: 10.3181/00379727-121-30734.

Hanada S, Pirzadeh M, Carver KY, Deng JC. Respiratory viral infection-induced microbiome alterations and secondary bacterial pneumonia. Front Immunol. 2018;9:2640. DOI: 10.3389/fimmu.2018.02640.

Harris CM, Massey V. The reaction of reduced xanthine dehydrogenase with molecular oxygen. Reaction kinetics and measurement of superoxide radical. J Biol Chem. 1997;272(13):8370-9. DOI: 10.1074/jbc.272.13.8370.

Hassinen A, Pujol FM, Kokkonen N, Pieters C, Kihlström M, Korhonen K, Kellokumpu S. Functional organization of Golgi N- and O-glycosylation pathways involves pH-dependent complex formation that is impaired in cancer cells. J Biol Chem. 2011;286(44):38329-40. DOI: 10.1074/jbc.M111.277681.

Hause BM, Ducatez M, Collin EA, Ran Z, Liu R, Sheng Z, et al. Isolation of a novel swine influenza virus from Oklahoma in 2011 which is distantly related to human influenza C virus. PLoS Pathog. 2013;9(2):e1003176. DOI: 10.1371/journal.ppat.1003176.

Henkel M, Mitzner D, Henklein P, Meyer-Almes FJ, Moroni A, DiFrancesco ML, et al. The proapoptotic influenza A virus protein PB1-F2 forms a nonselective ion channels. PLoS One. 2010;5(6):e11112. DOI: 10.1371/journal.pone.0011112.
Heurich A, Hofmann-Winkler H, Gierer S, Liepold T, Jahn O, Pöhlmann S. TMPRSS2 and ADAM17 cleave ACE2 differentially and only proteolysis by TMPRSS2 augments entry driven by the severe acute respiratory syndrome coronavirus spike protein. J Virol. 2014;88(2):1293-307. DOI: 10.1128/JVI.02202-13.

Holliday LS. Vacuolar H⁺-ATPases (V-ATPases) as therapeutic targets: a brief review and recent developments. Biotarget. 2017;1:18. DOI: 10.21037/biotarget.2017.12.01.

Holmes EC, Ghedin E, Miller N, Taylor J, Bao Y, St George K, et al. Whole-genome analysis of human influenza A virus reveals multiple persistent lineages and reassortment among recent H3N2 viruses. PLoS Biol. 2005;3(9):e300. DOI: 10.1371/journal.pbio.0030300.

Holmes KV. Coronaviruses. In: Knipe DM, Howley PM, Griffin DE, Lamb RA, Martin MA, Roizman B, Straus SE, editors. Fields Virology: 4th Edition. Philadelphia: Lippincott Williams and Wilkins; 2001. p. 1187-1203.

Homewood CA, Warhurst DC, Peters W, Baggaley VC. Lysosomes, pH and the anti-malarial action of chloroquine. Nature. 1972 Jan 7;235(5332):50-2. DOI: 10.1038/235050a0.

Huang C, Liu WJ, Xu W, Jin T, Zhao Y, Jingdong Song J, et al. A bat-derived putative cross-family recombinant coronavirus with a reovirus gene. PLoS Pathog. 2016;12(9):e1005883. DOI: 10.1371/journal.ppat.1005883.

Huang SH, Liao CL, Chen SJ, Shi LG, Lin L, Chen YW, et al. Melatonin possesses an anti-influenza potential through its immune modulatory effect. J. Funct. Foods. 2019;58:189-98. DOI: 10.1016/j.jff.2019.04.062.

Hui DS, I Azhar E, Madani TA, Ntoumi F, Kock R, Dar O, et al. The continuing 2019-nCoV epidemic threat of a novel coronaviruses to global health – the latest 2019
novel coronavirus outbreak in Wuhan, China. Int J Infect Dis. 2020;91:264-6. DOI: 10.1016/j.ijid.2020.01.009.

Hulswit RJG, Lang Y, Bakkers MJG, Li W, Li Z, Schouten A, et al. Human coronaviruses OC43 and HKU1 bind to 9-O-acetylated sialic acid via a conserved receptor-binding site in spike protein domain A. Proc Natl Acad Sci USA. 2019;116(7):2681-90. DOI: 10.1073/pnas.1809667116.

Hutchinson EC, Charles PD, Hester SS, Thomas B, Trudgian D, Martínez-Alonso M, Fodor E. Conserved and host-specific features of influenza virion architecture. Nat Commun. 2014;5:4816. DOI: 10.1038/ncomms5816.

Ibricevic A, Pekosz A, Walter MJ, Newby C, Battaile JT, Brown EG, et al. Influenza virus receptor specificity and cell tropism in mouse and human airway epithelial cells. J Virol. 2006;80(15):7469-80. DOI: 10.1128/JVI.02677-05.

Ilyashenko KK, Luzhnikov EA, Abakumov MM, Golikov PP, Davydov BV, Promonenko VK, Melnichenko VI, Kalyanova NA, Emokhina TV, inventors; Trinity Pharma, N.V. Sklifosovsky Research Institute for Emergency Medicine, assignees. Russian Federation patent RU 2205641C2. 2001 Jun 21.

Ishiguro T, Kagiyama N, Uozumi R, Odashima K, Takaku Y, Kurashima K, et al. Clinical characteristics of influenza-associated pneumonia of adults: clinical features and factors contributing to severity and mortality. Yale J Biol Med. 2017;90(2):165-181. PubMed PMID: 28656006; PubMed Central PMCID: PMC5482296.

Jagadeesh K., Saivisveswar KN, Revankar SP. Efficacy of Chloroquine against Escherichia coli and Proteus vulgaris: An in vitro study. Sch J App Med Sci. 2014; 2(6C):3046-50.

Jansson EA, Huang L, Malkey R, Govoni M, Nihlén C, Olsson A, et al. A mammalian functional reductase that regulates nitrite and nitric oxide homeostasis. Nat Chem Biol. 2008;4(7):411-7. DOI: 10.1038/nchembio.92.
Jauch R, Bozler G, Hammer R, Koss FW, Karlsson M, Vitek E, et al. Ambroxol, studies of biotransformation in man and determination in biological samples. Arzneimittelforschung. 1978;28(5a):904-11. German. PubMed PMID: 581989.

Jeon S, Ko M, Lee J, Choi I, Byun SY, Park S, et al. Identification of antiviral drug candidates against SARS-CoV-2 from FDA-approved drugs. Antimicrob Agents Chemother. 2020 May 4. pii: AAC.00819-20. DOI: 10.1128/AAC.00819-20.

Jia Z, Zhu H, Li Y, Misra HP. Potent inhibition of peroxynitrite-induced DNA strand breakage and hydroxyl radical formation by dimethyl sulfoxide at very low concentration. Exp Biol Med (Maywood). 2010;235(5):614-22. DOI: 10.1258/ebm.2010.009368.

Jin Z, Du X, Xu Y, Deng Y, Liu M, Zhao Y, et al. Structure of Mpro from 1 COVID-19 virus and discovery of its inhibitors. Nature. 2020 Apr 9. DOI: 10.1038/s41586-020-2223-y.

Jo S, Kim H, Kim S, Shin DH, Kim MS. Characteristics of flavonoids as potent MERS-CoV 3C-like protease inhibitors. Chem Biol Drug Des. 2019;94(6):2023-30. DOI: 10.1111/cbdd.13604.

Johnson CK, Hitchens PL, Pandit PS, Rushmore J, Evans TS. Young CCW, Doyle MM. Global shifts in mammalian population trends reveal key predictors of virus spillover risk. Proc Biol Sci. 2020;287(1924):20192736. DOI: 10.1098/rspb.2019.2736.

Johnson NP, Mueller J. Updating the accounts: global mortality of the 1918-1920 «Spanish» influenza pandemic. Bull Hist Med. 2002;76(1):105-15. DOI: 10.1353/bhm.2002.0022.

Kamal RP, Alymova IV, York IA. Evolution and virulence of influenza A virus protein PB1-F2. Int J Mol Sci. 2017;19(1). pii: E96. DOI: 10.3390/ijms19010096.
Kartenbeck J, Stukenbrok H, Helenius A. Endocytosis of simian virus 40 into the endoplasmic reticulum. J Cell Biol. 1989;109(6 Pt 1):2721-9. DOI: 10.1083/jcb.109.6.2721.

Kastan MB, Semenkovich CF, Schneider J, inventors; St. Jude Children's Research Hospital–Washington University, assignee. Use of chloroquine to treat metabolic syndrome. United States patent US 20080319010A1. 2008 Dec 25.

Kearney J. Chloroquine as a potential treatment and prevention measure for the 2019 novel coronavirus: a review. Preprints:2020030275 [Preprint]. 2020 [cited 2020 May 07]. Available from: preprints.org/manuscript/202003.0275/v1.

Keck JG, Matsushima GK, Makino S, Fleming JO, Vannier DM, Stohlman SA, Lai MM. In vivo RNA-RNA recombination of coronavirus in mouse brain. J Virol. 1988;62(5):1810-3. PubMed PMID: 2833625; PubMed Central PMCID: PMC253235.

Kellokumpu S. Golgi, pH, ion and redox homeostasis: how much do they really matter? Front Cell Dev Biol. 2019;7:93. DOI: 10.3389/fcell.2019.00093.

Kern KU, Weiser T. Topical ambroxol for the treatment of neuropathic pain. An initial clinical observation. Schmerz. 2015;29:89-96. DOI: 10.1007/s00482-015-0060.

Keyaerts E, Vijgen L, Maes P, Neyts J, Van Ranst M. In vitro inhibition of severe acute respiratory syndrome coronavirus by chloroquine. Biochem Biophys Res Commun. 2004;323(1):264-8. DOI: 10.1016/j.bbrc.2004.08.085.

Khomich OA, Kochetkov SN, Bartosch B, Ivanov AV. Redox biology of respiratory viral infections. Viruses. 2018;10(8). pii: E392. DOI: 10.3390/v10080392.

Kido H, Okumura Y, Takahashi E, Pan HY, Wang S, Chida J, et al. Host envelope glycoprotein processing proteases are indispensable for entry into human cells by seasonal and highly pathogenic avian influenza viruses. J Mol Genet Med. 2008;3(1):167-75. PubMed PMID: 19565019; PubMed Central PMCID: PMC2702071.
Kido H, Okumura Y, Yamada H, Mizuno D, Higashi Y, Yano M. Secretory leukoprotease inhibitor and pulmonary surfactant serve as principal defenses against influenza A virus infection in the airway and chemical agents up-regulating their levels may have therapeutic potential. Biol Chem. 2004;385(11):1029-34. DOI: 10.1515/BC.2004.133.

Kilbourne ED. Influenza pandemics of the 20th century. Emerg Infect Dis. 2006;12(1):9-14. DOI: 10.3201/eid1201.051254.

Kim CM, Park YJ, Shin SH. A widespread deferoxamine-mediated iron-uptake system in Vibrio vulnificus. J Infect Dis. 2007;196(10):1537-45. DOI: 10.1086/523108.

Kim P, Jang YH, Kwon SB, Lee CM, Han G, Seong BL. Glycosylation of hemagglutinin and neuraminidase of influenza A virus as signature for ecological spillover and adaptation among influenza reservoirs. Viruses. 2018;10(4). pii: E183. DOI: 10.3390/v10040183.

Kimura T, Takabatake Y, Takahashi A, Isaka Y. Chloroquine in cancer therapy: a double-edged sword of autophagy. Cancer Res. 2013;73(1):3-7. DOI: 10.1158/0008-5472.CAN-12-2464.

King AMQ, Lefkowitz EJ, Mushegian AR, Adams MJ, Dutilh BE, Gorbalenya AE, et al. Changes to taxonomy and the international code of virus classification and nomenclature ratified by the International Committee on Taxonomy of Viruses. Arch Virol. 2018;163(9):2601-31. DOI: 10.1007/s00705-018-3847-1.

Klebanoff SJ, Waltersdorph AM, Michel BR, Rosen H. Oxygen-based free radicals generation by ferrous ions and deferoxamine. J Biol Chem. 1989;264(33):19765-71. PubMed PMID: 2555330.

Klink HD, Rott R, Orlich M, Blödorn J. Activation of influenza A viruses by trypsin treatment. Virology. 1975;68(2):426-39. DOI: 10.1016/0042-6822(75)90284-6.
Koetz A, Nilsson P, Lindén M, van der Hoek L, Ripa T. Detection of human coronavirus NL63, human metapneumovirus and respiratory syncytial virus in children with respiratory tract infections in south-west Sweden. Clin Microbiol Infect. 2006;12(11):1089-96. DOI: 10.1111/j.1469-0691.2006.01506.x.

Kosik I, Yewdell JW. Influenza hemagglutinin and neuraminidase: Yin-Yang proteins coevolving to thwart immunity. Viruses. 2019;11(4). pii: E346. DOI: 10.3390/v11040346.

Kumlin U, Olofsson S, Dimock K, Arnberg N. Sialic acid tissue distribution and influenza virus tropism. Influenza Other Respir Viruses. 2008;2(5):147-54. DOI: 10.1111/j.1750-2659.2008.00051.x.

Kuszewski K, Brydak L. The epidemiology and history of influenza. Biomed Pharmacother. 2000;54(4):188-95. DOI: 10.1016/S0753-3322(00)89025-3.

Lai MM. Coronavirus: organization, replication and expression of genome. Annu Rev Microbiol. 1990;44:303-33. DOI: 10.1146/annurev.mi.44.100190.001511.

Lai MM, Cavanagh D. The molecular biology of coronaviruses. Adv Virus Res. 1997;48:1-100. PubMed PMID: 9233431; PubMed Central PMCID: PMC7130985.

Lazarowitz SG, Choppin PW. Enhancement of the infectivity of influenza A and B viruses by proteolytic cleavage of the hemagglutinin polypeptide. Virology. 1975;68(2):440-54. DOI: 10.1016/0042-6822(75)90285-8.

Lee HJ, Shin S, Yoon SG, Cheon EJ, Chung SH. The effect of chloroquine on the development of dry eye in Sjogren syndrome animal model. Invest Ophthalmol Vis Sci. 2019;60(12):3708-16. DOI: 10.1167/iovs.19-27469.

Leung HS, Li OT, Chan RW, Chan MC, Nicholls JM, Poon LL. Entry of influenza A virus with a α2,6-linked sialic acid binding preference requires host fibronectin. J Virol. 2012;86(19):10704-13. DOI: 10.1128/JVI.01166-12.
Li F, Wang W, Hu L, Li L, Yu J. Effect of ambroxol on pneumonia caused by Pseudomonas aeruginosa with biofilm formation in an endotracheal intubation rat model. Chemotherapy. 2011;57(2):173-80. DOI: 10.1159/000323622.

Li F. Evidence for a common evolutionary origin of coronavirus spike protein receptor-binding subunits. J Virol. 2012;86(5):2856-8. DOI: 10.1128/JVI.06882-11.

Li F. Structure, function, and evolution of coronavirus spike proteins. Annu Rev Virol. 2016;3(1):237-61. DOI: 10.1146/annurev-virology-110615-042301.

Li W, Hulswit RJG, Widjaja I, Raj VS, McBride R, Peng W, et al. Identification of sialic acid-binding function for the Middle East respiratory syndrome coronavirus spike glycoprotein. Proc Natl Acad Sci USA. 2017;114(40):E8508-E8517. DOI: 10.1073/pnas.1712592114.

Lim YX, Ng YL, Tam JP, Liu DX. Human coronaviruses: a review of virus-host interactions. Diseases. 2016;4(3). pii: E26. DOI: 10.3390/diseases4030026.

Limburg H, Harbig A, Bestle D, Stein DA, Moulton HM, Jaeger J, et al. TMPRSS2 is the major activating protease of influenza A virus in primary human airway cells and influenza B virus in human type II pneumocytes. J Virol. 2019;93(21). pii: e00649-19. DOI: 10.1128/JVI.00649-19.

Lin CW, Lin KH, Hsieh TH, Shiu SY, Li JY. Severe acute respiratory syndrome coronavirus 3C-like protease-induced apoptosis. FEMS Immunol Med Microbiol. 2006;46(3):375-80. DOI: 10.1111/j.1574-695X.2006.00045.x.

Linder N, Martelin E, Lapatto R, Raivio KO. Posttranslational inactivation of human xanthine oxidoreductase by oxygen under standard cell culture conditions. Am J Physiol Cell Physiol. 2003;285(1):C48-55. DOI: 10.1152/ajpcell.00561.2002.

Liu J, Cao R, Xu M, Wang X, Zhang H, Hu H, et al. Hydroxychloroquine, a less toxic derivative of chloroquine, is effective in inhibiting SARS-CoV-2 infection in vitro. Cell Discov. 2020;6:16. DOI: 10.1038/s41421-020-0156-0.
Liu M, Chen F, Liu T, Chen F, Liu S, Yang J. The role of oxidative stress in influenza virus infection. Microbes Infect. 2017;19(12):580-586. DOI: 10.1016/j.micinf.2017.08.008.

Lu H. Drug treatment options for the 2019-new coronavirus (2019-nCoV). Biosci Trends. 2020;14(1):69-71. DOI: 10.5582/bst.2020.01020.

Lu Q, Yu J, Yang X, Wang J, Wang L, Lin Y, Lin L. Ambroxol interferes with Pseudomonas aeruginosa quorum sensing. Int J Antimicrob Agents. 2010;36(3):211-5. doi: 10.1016/j.ijantimicag.2010.05.007.

Luzhnikov EA, Ilyashenko KK, Pinchuk TP, Ermokhina TV. The use of "Mexidol" in comprehensive treating patients with acute exogenous poisoning. Bulletin of Experimental Biology and Medicine. 2006;Supl. 1:190-198. Russian.

Makino S, Keck JG, Stohlman SA, Lai MM. High-frequency RNA recombination of murine coronaviruses. J Virol. 1986;57(3):729-37. PubMed PMID: 3005623; PubMed Central PMCID: PMC252799.

Manzoor R, Igarashi M, Takada A. Influenza A virus M2 protein: roles from ingress to egress. Int J Mol Sci. 2017;18(12). pii: E2649. DOI: 10.3390/ijms18122649.

Martín-Loeches I, Sanchez-Corral A, Diaz E, Granada RM, Zaragoza R, Villavicencio C, et al. Community-acquired respiratory coinfection in critically ill patients with pandemic 2009 influenza A(H1N1) virus. Chest. 2011;139(3):555-562. DOI: 10.1378/chest.10-1396.

Maruyama T, Fujisawa T, Suga S, Nakamura H, Nagao M, Taniguchi K, et al. Outcomes and prognostic features of patients with influenza requiring hospitalization and receiving early antiviral therapy: a prospective multicenter cohort study. Chest. 2016;149(2):526-534. DOI: 10.1378/chest.14-2768.
Matlin KS, Reggio H, Helenius A, Simons K. Infectious entry pathway of influenza virus in a canine kidney cell line. J Cell Biol. 1981;91(3 Pt 1):601-13. DOI: 10.1083/jcb.91.3.601.

Matsuyama S, Ujike M, Morikawa S, Tashiro M, Taguchi F. Protease-mediated enhancement of severe acute respiratory syndrome coronavirus infection. Proc Natl Acad Sci USA. 2005;102(35):12543-7. DOI: 10.1073/pnas.0503203102.

Maycotte P, Aryal S, Cummings CT, Thorburn J, Morgan MJ, Thorburn A. Chloroquine sensitizes breast cancer cells to chemotherapy independent of autophagy. Autophagy. 2012;8(2):200-12. DOI: 10.4161/auto.8.2.18554.

McAuley JL, Hornung F, Boyd KL, Smith AM, McKeon R, Bennink J, et al. Expression of the 1918 influenza A virus PB1-F2 enhances the pathogenesis of viral and secondary bacterial pneumonia. Cell Host Microbe. 2007;2(4):240-9. DOI: 10.1016/j.chom.2007.09.001.

McBride R, van Zyl M, Fielding BC. The coronavirus nucleocapsid is a multifunctional protein. Viruses. 2014;6(8):2991-3018. DOI: 10.3390/v6082991.

McGill JB, Johnson M, Hurst S, Cade WT, Yarasheski KE, Ostlund RE, et al. Low dose chloroquine decreases insulin resistance in human metabolic syndrome but does not reduce carotid intima-media thickness. Diabetol Metab Syndr. 2019;11:61. DOI: 10.1186/s13098-019-0456-4.

McIntosh K, Kapikian AZ, Turner HC, Hartley JW, Parrott RH, Chanock RM. Seroepidemiological studies of coronavirus infection in adults and children. Am J Epidemiol. 1970;91(6):585-92. DOI: 10.1093/oxfordjournals.aje.a121171.

McNamee LA, Harmsen AG. Both influenza-induced neutrophil dysfunction and neutrophil-independent mechanisms contribute to increased susceptibility to a secondary Streptococcus pneumoniae infection. Infect Immun. 2006;74(12):6707-21. DOI: 10.1128/IAI.00789-06.
Meinão IM, Sato EI, Andrade LE, Ferraz MB, Atra E. Controlled trial with chloroquine diphosphate in systemic lupus erythematosus. Lupus. 1996;5(3):237-41. DOI: 10.1177/096120339600500313.

Mengesha T, Makonnen E. Comparative efficacy and safety of chloroquine and alternative antimalarial drugs: a meta-analysis from six African countries. East Afr Med J. 1999;76(6):314-9. PubMed PMID: 10750517.

Metersky ML, Masterton RG, Lode H, File TM Jr, Babinchak T. Epidemiology, microbiology, and treatment considerations for bacterial pneumonia complicating influenza. Int J Infect Dis. 2012;16(5):e321-31. DOI: 10.1016/j.ijid.2012.01.003.

Milewska A, Zarebski M, Nowak P, Stozek K, Potempa J, Pyrc K. Human coronavirus NL63 utilizes heparan sulfate proteoglycans for attachment to target cells. J Virol. 2014;88(22):13221-30. DOI: 10.1128/JVI.02078-14.

Milewska A, Nowak P, Owczarek K, Szczepanski A, Zarebski M, Hoang A, et al. Entry of human coronavirus NL63 into the cell. J Virol. 2018;92(3). pii: e01933-17. DOI: 10.1128/JVI.01933-17.

Mitnau LJ, Matrosovich MN, Castrucci MR, Tuzikov AB, Bovin NV, Kobasa D, Kawaoka Y. Balanced hemagglutinin and neuraminidase activities are critical for efficient replication of influenza A virus. J Virol. 2000;74(13):6015-20. DOI: 10.1128/jvi.74.13.6015-6020.2000.

Morens DM, Taubenberger JK, Fauci AS. Predominant role of bacterial pneumonia as a cause of death in pandemic influenza: implications for pandemic influenza preparedness. J Infect Dis. 2008;198(7):962-70. DOI: 10.1086/591708.

Morris CJ, Earl JR, Trenam C., Blake DR. Reactive oxygen species and iron – a dangerous partnership in inflammation. Int J Biochem Cell Biol. 1995;27(2):109-22. DOI: 10.1016/1357-2725(94)00084-o.
Mulangu S, Dodd LE, Davey RT, Jr., Tshiani Mbaya O, Proschlan M, Mukadi D, et al. A randomized, controlled trial of Ebola virus disease therapeutics. N Engl J Med. 2019;381(24):2293-303. DOI: 10.1056/NEJMoa1910993.

Muramoto Y, Noda T, Kawakami E, Akkina R, Kawaoka Y. Identification of novel influenza A virus proteins translated from PA mRNA. J Virol. 2013;87(5):2455-62. DOI: 10.1128/JVI.02656-12.

Nakagawa K, Lokugamage KG, Makino S. Viral and cellular mRNA translation in coronavirus-infected cells. Adv Virus Res. 2016;96:165-92. DOI: 10.1016/bs.aivir.2016.08.001.

Nal B, Chan C, Kien F, Siu L, Tse J, Chu K, et al. Differential maturation and subcellular localization of severe acute respiratory syndrome coronavirus surface proteins S, M and E. J Gen Virol. 2005;86(Pt 5):1423-1434. DOI: 10.1099/vir.0.80671-0.

Nanbo A, Imai M, Watanabe S, Noda T, Takahashi K, Neumann G, et al. Ebola virus is internalized into host cells via macropinocytosis in a viral glycoprotein-dependent manner. PLoS Pathog. 2010;6(9):e1001121. DOI: 10.1371/journal.ppat.1001121.

Neuman BW, Adair BD, Yoshioka C, Quispe JD, Orca G, Kuhn P, et al. Supramolecular architecture of severe acute respiratory syndrome coronavirus revealed by electron cryomicroscopy. J Virol. 2006;80(16):7918-28. DOI: 10.1128/JVI.00645-06.

Neuman BW, Kiss G, Kunding AH, Bhella D, Baksh MF, Connelly S, et al. A structural analysis of M protein in coronavirus assembly and morphology. J Struct Biol. 2011;174(1):11-22. DOI: 10.1016/j.jsb.2010.11.021.

Niihara Y, Ge J, Shalev O, Wu H, Tu A, Tanaka KR. Desferrioxamine decreases NAD redox potential of intact red blood cells: evidence for desferrioxamine as an inducer of oxidant stress in red blood cells. BMC Clin Pharmacol. 2002;2:8. DOI: 10.1186/1472-6904-2-8.
Nita-Lazar M, Banerjee A, Feng C, Amin MN, Frieman MB, Chen WH, et al. Desialylation of airway epithelial cells during influenza virus infection enhances pneumococcal adhesion via galectins binding. Mol Immunol. 2015;65(1):1-16. DOI: 10.1016/j.molimm.2014.12.010.

Novoselova EA, Riabova OB, Leneva IA, Nesterenko VG, Bolgarin RN, Makarov VA. Antiretroviral activity of a novel pyrimidyl-di(diazaspiroalkane) derivative. Acta Naturae. 2017;9(1):105-7. PubMed PMID: 28461981; PubMed Central PMCID: PMC5406667.

Nowak D, Antczak A, Król M, Bialasiewicz P, Pietras T. Antioxidant properties of ambroxol. Free Radic Biol Med. 1994;16(4):517-22. DOI: 10.1016/0891-5849(94)90130-9.

Obi AT, Tignanelli CJ, Jacobs BN, Arya S, Park PK, Wakefield TW, et al. Empirical systemic anticoagulation is associated with decreased venous thromboembolism in critically ill influenza A H1N1 acute respiratory distress syndrome patients. J Vasc Surg Venous Lymphat Disord. 2019;7(3):317-324. DOI: 10.1016/j.jvsv.2018.08.010.

Ohkuma S, Poole B. Fluorescence probe measurement of the intralysosomal pH in living cells and the perturbation of pH by various agents. Proc Natl Acad Sci USA. 1978;75(7):3327-31. DOI: 10.1073/pnas.75.7.3327.

Olitsky PK, Gates FL. Experimental studies of the nasopharyngeal secretions from influenza patients: I. Transmission experiments with nasopharyngeal washings. J Exp Med. 1921;33(2):125-45. DOI: 10.1084/jem.33.2.125.

Olitsky PK, Gates FL. Experimental studies of the nasopharyngeal secretions from influenza patients: II. Filterability and resistance to glycerol. J Exp Med. 1921;33(3):361-72. DOI: 10.1084/jem.33.3.361.
Ooi EE, Chew JS, Loh JP, Chua RC. In vitro inhibition of human influenza A virus replication by chloroquine. Virol J. 2006;3:39. DOI: 10.1186/1743-422X-3-39.

Oswald NC, Shooter RA, Curwen MP. Pneumonia complicating Asian influenza. Br Med J. 1958;2(5108):1305-11. DOI: 10.1136/bmj.2.5108.1305.

Ozgen S, Kilinc OK, Selamoglu Z. Antioxidant activity of quercetin: a mechanistic review. Turkish JAF Sci Tech. 2016;4(12):1134-8. DOI: 10.24925/turjaf.v4i12.1134-1138.1069.

Ou X, Liu Y, Lei X, Li P, Mi D, Ren L, et al. Characterization of spike glycoprotein of SARS-CoV-2 on virus entry and its immune cross-reactivity with SARS-CoV. Nat Commun. 2020;11(1):1620. DOI: 10.1038/s41467-020-15562-9.

Pacher P, Novorozhkin A, Szabo C. Therapeutic effects of xanthine oxidase inhibitors: renaissance half a century after the discovery of allopurinol. Pharmacol Rev. 2006;58(1):87-114. DOI: 10.1124/pr.58.1.6.

Page S, Powell D, Benboubetra M, Stevens CR, Blake DR, Selase F, et al. Xanthine oxidoreductase in human mammary epithelial cells: activation in response to inflammatory cytokines. Biochim Biophys Acta. 1998;1381(2):191-202. DOI: 10.1016/s0304-4165(98)00028-2.

Palacios G, Hornig M, Cisterna D, Savji N, Bussetti AV, Kapoor V, et al. Streptococcus pneumoniae coinfection is correlated with the severity of HINI pandemic influenza. PLoS One. 2009;4(12):e8540. DOI: 10.1371/journal.pone.0008540.

Pappas G, Kiriaze IJ., Falagas ME. Insights into infectious disease in the era of Hippocrates. Int J Infect Dis. 2008;12(4):347-50. DOI: 10.1016/j.ijid.2007.11.003.

Parsons L, Bouwman KM, Azurmendi H, de Vries RP, Cipollo JF, Verheije MH. Glycosylation of the viral attachment protein of avian coronavirus is essential for host cell and receptor binding. J Biol Chem. 2019;294(19):7797-809. DOI: 10.1074/jbc.RA119.007532.
Pavelkina V, Yerovichenkov A, Pak S. Optimization of pathogenetic therapy in the diseases of viral and bacterial etiology. Farmateka. 2010;4:64-71. Russian.

Pensaert MB. Porcine epidemic diarrhea. In: Straw BE, D’Allaire S, Mengeling WL, Taylor DJ, editors. Diseases of Swine: 8th ed. Ames, Iowa: Iowa State University Press; 1999. p. 179-85.

Peteranderl C, Morales-Nebreda L, Selvakumar B, Lecuona E, Vadász I, Morty RE, et al. Macrophage-epithelial paracrine crosstalk inhibits lung edema clearance during influenza infection. J Clin Invest. 2016;126(4):1566-80. DOI: 10.1172/JCI83931.

Pfeiffer RFJ. Die Aetiologie der Influenza. Zeitschrift für Hygiene und Infektionskrankheiten 1893;13:357-86. German.

Pinto LH, Holsinger LJ, Lamb RA. Influenza virus M2 protein has ion channel activity. Cell. 1992;69(3):517-28. DOI: 10.1016/0092-8674(92)90452-i.

Pittet LA, Hall-Stoodley L, Rutkowski MR, Harmsen AG. Influenza virus infection decreases tracheal mucociliary velocity and clearance of Streptococcus pneumonia. Am J Respir Cell Mol Biol. 2010;42(4):450-60. DOI: 10.1165/rcmb.2007-0417OC.

Poss WB, Huecksteadt TP, Panus PC, Freeman BA, Hoidal JR. Regulation of xanthine dehydrogenase and xanthine oxidase activity by hypoxia. Am J Physiol. 1996;270(6 Pt 1):L941-6. DOI: 10.1152/ajplung.1996.270.6.L941

Potter CW. A history of influenza. J Appl Microbiol. 2001;91(4):572-9. DOI: 10.1046/j.1365-2672.2001.01492.x.

Povalyaev D. The efficacy of adjuvant use low molecular weight heparins in patients with community-acquired pneumonia. Eur Respir J. 2014;44(Suppl 58):P2503.

Quan FS, Lee YT, Kim KH, Kim MC, Kang SM. Progress in developing virus-like particle influenza vaccines. Expert Rev Vaccines. 2016;15(10):1281-93. DOI: 10.1080/14760584.2016.1175942.
Ramadan N, Shaib H. Middle East respiratory syndrome coronavirus (MERS-CoV): a review. Germs. 2019;9(1):35-42. DOI: 10.18683/germs.2019.1155.

Reaves B, Banting G. Vacuolar ATPase inactivation blocks recycling to the trans-Golgi network from the plasma membrane. FEBS Lett. 1994;345(1):61-6. DOI: 10.1016/0014-5793(94)00437-4.

Reiter RJ, Rosales-Corral S, Tan DX, Jou MJ, Galano A, Xu B. Melatonin as a mitochondria-targeted antioxidant: one of evolution`s best ideas. Cell Mol Life Sci. 2017;74(21):3863-3881. DOI: 10.1007/s00018-017-2609-7.

Rejmanek D, Hosseini PR, Mazet JA, Daszak P, Goldstein T. Evolutionary dynamics and global diversity of influenza A virus. J Virol. 2015;89(21):10993-1001. DOI: 10.1128/JVI.01573-15.

Ren L, Zhang Y, Li J, Xiao Y, Zhang J, Wang Y, et al. Genetic drift of human coronavirus OC43 spike gene during adaptive evolution. Sci Rep. 2015;5:11451. DOI: 10.1038/srep11451.

Rivinoja A, Hassinen A, Kokkonen N, Kauppila A, Kellokumpu S. Elevated Golgi pH impairs terminal N-glycosylation by inducing mislocalization of Golgi glycosyltransferases. J Cell Physiol. 2009;220(1):144-54. DOI: 10.1002/jcp.21744.

Rivinoja A, Kokkonen N, Kellokumpu I, Kellokumpu S. Elevated Golgi pH in breast and colorectal cancer cells correlates with the expression of oncofetal carbohydrate T-antigen. J Cell Physiol. 2006;208(1):167-74. DOI: 10.1002/jcp.20653.

Rogers DF. Mucoactive agents for airway mucus hypersecretory diseases. Respir Care. 2007;52(9):1176-93. PubMed PMID: 17716385.

Rojek JM, Perez M, Kunz S. Cellular entry of lymphocytic choriomeningitis virus. J Virol. 2008;82(3):1505-17. DOI: 10.1128/JVI.01331-07.

Rouquette M, Page S, Bryant R, Benboubetra M, Stevens CR, Blake DR, et al. Xanthine oxidoreductase is asymmetrically localized on the outer surface of human
endothelial and epithelial cells in culture. FEBS Lett. 1998;426(3):397-401. DOI: 10.1016/s0014-5793(98)00385-8.

Samji T. Influenza A: understanding the viral life cycle. Yale J Biol Med. 2009;82(4):153-9. PubMed PMID: 20027280; PubMed Central PMCID: PMC2794490.

Sanchez-Martinez A, Beavan M, Gegg ME, Chau KY, Whitworth AJ, Schapira AH. Parkinson disease-linked GBA mutation effects reversed by molecular chaperones in human cell and fly models. Sci Rep. 2016;6:31380. DOI: 10.1038/srep31380.

Sanmartín-Suárez C, Soto-Otero R, Sánchez-Sellero I, Méndez-Álvarez E. Antioxidant properties of dimethyl sulfoxide and its viability as a solvent in the evaluation of neuroprotective antioxidants. J Pharmacol Toxicol Methods. 2011;63(2):209-15. DOI: 10.1016/j.vascn.2010.10.004.

Schoeman D, Fielding BC. Coronavirus envelope protein: current knowledge. Virol J. 2019;16(1):69. DOI: 10.1186/s12985-019-1182-0.

Scholtissek C, Rohde W, Von Hoyningen V, Rott R. On the origin of the human influenza virus subtypes H2N2 and H3N2. Virology. 1978;87(1):13-20. DOI: 10.1016/0042-6822(78)90153-8.

Schrezenmeier E, Dorner T. Mechanisms of action of hydroxychloroquine and chloroquine: implications for rheumatology. Nat Rev Rheumatol. 2020;16(3):155-166. DOI: 10.1038/s41584-020-0372-x.

Schwarz KB. Oxidative stress during viral infection: a review. Free Radic Biol Med. 1996;21(5):641-9. DOI: 10.1016/0891-5849(96)00131-1.

Seifart C, Clostermann U, Seifart U, Müller B, Vogelmeier C, von Wichert P, Fehrenbach H. Cell-specific modulation of surfactant proteins by ambroxol treatment. Toxicol Appl Pharmacol. 2005;203(1):27-35. DOI: 10.1016/j.taap.2004.07.015.

Sencio V, Barthelemy A, Tavares LP, Machado MG3, Soulard D, Cuinat C, et al. Gut dysbiosis during influenza contributes to pulmonary pneumococcal superinfection
through altered short-chain fatty acid production. Cell Rep. 2020;30(9):2934-47.e6. DOI: 10.1016/j.celrep.2020.02.013.

Shahwan K, Hesse M, Mork AK, Herrler G, Winter C. Sialic acid binding properties of soluble coronavirus spike (S1) proteins: differences between infectious bronchitis virus and transmissible gastroenteritis virus. Viruses. 2013;5(8):1924-33. DOI: 10.3390/v5081924.

Shepardson K, Larson K, Cho H, Johns LL, Malkoc Z, Stanek K, et al. A novel role for PDZ-binding motif of influenza A virus nonstructural protein 1 in regulation of host susceptibility to postinfluenza bacterial superinfections. Viral Immunol. 2019;32(3):131-143. DOI: 10.1089/vim.2018.0118.

Shibata M, Aoki H, Tsurumi T, Sugiura Y, Nishiyama Y, Suzuki S, Maeno K. Mechanisms of uncoating of influenza B virus in MDCK cells: action of chloroquine. J Gen Virol. 1983;64(Pt 5):1149-56. DOI: 10.1099/0022-1317-64-5-1149.

Shinya K, Ebina M, Yamada S, Ono M, Kasai N, Kawaoka Y. Avian flu: influenza virus receptors in the human airway. Nature. 2006;440(7083):435-6. DOI: 10.1038/440435a.

Shivakumar S, Panigrahi T, Shetty R, Subramani M, Ghosh A, Jeyabalan N. Chloroquine protects human corneal epithelial cells from desiccation stress induced inflammation without altering the autophagy flux. Biomed Res Int. 2018;2018:7627329. DOI: 10.1155/2018/7627329.

Schmidtke M, Wutzler P, Makarov, V. Novel opportunities to study and block interactions between viruses and cell surface heparan sulfates. Lett. Drug Design Discov. 2004;1(4):35-44. DOI : 10.2174/1570180043398768.

Short KR, Kasper J, van der Aa S, Andeweg AC, Zaaraoui-Boutahar F, Goeijenbier M, et al. Influenza virus damages the alveolar barrier by disrupting epithelial tight junctions. Eur Respir J. 2016;47(3):954-66. DOI: 10.1183/13993003.01282-2015.
Silvestri M, Rossi GA. Melatonin: its possible role in the management of viral infections– a brief review. Ital J Pediatr. 2013;39:61. DOI: 10.1186/1824-7288-39-61.

Simmons G, Zmora P, Gierer S, Heurich A, Pöhlmann S. Proteolytic activation of the SARS-coronavirus spike protein: cutting enzymes at the cutting edge of antiviral research. Antiviral Res. 2013;100(3):605-14. DOI: 10.1016/j.antiviral.2013.09.028.

Skehel J. An overview of influenza haemagglutinin and neuraminidase. Biologicals. 2009;37(3):177-8. DOI: 10.1016/j.biologicals.2009.02.012.

Sliva J, Pantzartzi CN, Votava M. Inosine Pranobex: A Key Player in the Game Against a Wide Range of Viral Infections and Non-Infectious Diseases. Adv Ther. 2019;36(8):1878-1905. DOI: 10.1007/s12325-019-00995-6.-6

Sloots TP, McErlean P, Speicher DJ, Arden KE, Nissen MD, Mackay IM. Evidence of human coronavirus HKU1 and human bocavirus in Australian children. J Clin Virol. 2006;35(1):99-102. DOI: 10.1016/j.jcv.2005.09.008.

Small CL, Shaler CR, McCormick S, Jeyanathan M, Damjanovic D, Brown EG, et al. Influenza infection leads to increased susceptibility to subsequent bacterial superinfection by impairing NK cell responses in the lung. J Immunol. 2010;184(4):2048-56. DOI: 10.4049/jimmunol.0902772.

Smith EC, Sexton NR, Denison MR. Thinking outside the triangle: replication fidelity of the largest RNA viruses. Annu Rev Virol. 2014;1(1):111-32. DOI: 10.1146/annurev-virology-031413-085507.

Smith W, Andrewes CH, Laidlaw PP. A virus obtained from influenza patients. Lancet. 1933;222(5732):66-8. DOI: 10.1002/rmv.1980050402.

Sodeman WA, Doerner AA, Gordon EM, Gillikin CM. Chloroquine in hepatic amebiasis. Ann Intern Med. 1951;35(2):331-41. DOI: 10.7326/0003-4819-35-2-331.
Sola I, Almazán F, Zúñiga S, Enjuanes L. Continuous and discontinuous RNA synthesis in coronaviruses. Annu Rev Virol. 2015;2(1):265-88. DOI: 10.1146/annurev-virology-100114-055218.

Solomon VR, Lee H. Chloroquine and its analogs: a new promise of an old drug for effective and safe cancer therapies. Eur J Pharmacol. 2009;625(1-3):220-33. DOI: 10.1016/j.ejphar.2009.06.063.

Son D, Chung MH. In vitro synergism between chloroquine and antibiotics against Orientia tsutsugamushi. Infect Chemother. 2014;46(3):182-8. DOI: 10.3947/ic.2014.46.3.182.

Spickler AR. Influenza. Flu, grippe, avian influenza, grippe aviaire, fowl plaque, swine influenza, hog flu, pig flu, equine influenza, canine influenza. 2016. [cited 2020 April 07]. Available from: cfsph.iastate.edu/Factsheets/pdfs/influenza.pdf

Spiekermann S, Landmesser U, Dikalov S, Bredt M, Gamez G, Tatge H, et al. Electron spin resonance characterization of vascular xanthine and NAD(P)H oxidase activity in patients with coronary artery disease. Circulation. 2003;107(10):1383-9. DOI: 10.1161/01.cir.0000056762.69302.46.

Srinivasan V, Mohamed M, Kato H. Melatonin in bacterial and viral infections with focus on sepsis: a review. Recent Pat Endocr Metab Immune Drug Discov. 2012;6(1):30-9. DOI: 10.2174/187221412799015317.

Sritharan M. Iron and bacterial virulence. Indian J Med Microbiol. 2006;24(3):163-4. PubMed PMID: 16912433.

Stavrinides J, Guttman DS. Mosaic evolution of the severe acute respiratory syndrome coronavirus. J Virol. 2004;78(1):76-82. DOI: 10.1128/jvi.78.1.76-82.2004.

Steinhauer DA, de la Torre JC, Holland JJ. High nucleotide substitution error frequencies in clonal pools of vesicular stomatitis virus. J Virol. 1989;63(5):2063-71. PubMed PMID: 2539502; PubMed Central PMCID: PMC250622.
Steinhauer DA. Role of hemagglutinin cleavage for the pathogenicity of influenza virus. Virology. 1999;258(1):1-20. DOI: 10.1006/viro.1999.9716.

Stetinová V, Herout V, Kvetina J. In vitro and in vivo antioxidant activity of ambroxol. Clin Exp Med. 2004;4(3):152-8. DOI: 10.1007/s10238-004-0050-3.

Sugrue RJ, Hay AJ. Structural characteristics of the M2 protein of influenza A viruses: evidence that it forms a tetrameric channel. Virology. 1991;180(2):617-24. DOI: 10.1016/0042-6822(91)90075-m.

Sun K, Metzger DW. Influenza infection suppresses NADPH oxidase-dependent phagocytic bacterial clearance and enhances susceptibility to secondary methicillin-resistant Staphylococcus aureus infection. J Immunol. 2014;192(7):3301-7. DOI: 10.4049/jimmunol.1303049.

Suzuki A, Okamoto M, Ohmi A, Watanabe O, Miyabayashi S, Nishimura H. Detection of human coronavirus-NL63 in children in Japan. Pediatr Infect Dis J. 2005;24(7):645-6. DOI: 10.1097/01.inf.0000168846.71517.ee.

Szczepanski A, Owczarek K, Bzowska M, Gula K, Drebot I, Ochman M, et al. Canine Respiratory Coronavirus, Bovine Coronavirus, and Human Coronavirus OC43: Receptors and Attachment Factors. Viruses. 2019;11(4). pii: E328. DOI: 10.3390/v11040328.

Tan DX, Kormaz A, Reiter RJ, Manchester LC. Ebola virus disease: potential use of melatonin as a treatment. J Pineal Res. 2014;57(4):381-4. DOI: 10.1111/jpi.12186.

Tashiro M, Ciborowski P, Reinacher M, Pulverer G, Klenk HD, Rott R. Synergistic role of staphylococcal proteases in the induction of influenza virus pathogenicity. Virology. 1987;157(2):421-30. DOI: 10.1016/0042-6822(87)90284-4.

Taubenberger JK, Kash JC. Influenza virus evolution, host adaptation and pandemic formation. Cell Host Microbe. 2010;7(6):440-51. DOI: 10.1016/j.chom.2010.05.009.
Taylor RM. Studies on survival of influenza virus between epidemics and antigenic variants of the virus. Am J Public Health Nations Health. 1949;39(2):171-8. DOI: 10.2105/ajph.39.2.171.

Tektonidou MG, Andreoli L, Limper M, Amoura Z, Cervera R, Costedoat-Chalumeau N, et al. EULAR recommendations for the management of antiphospholipid syndrome in adults. Ann Rheum Dis. 2019;78(10):1296-1304. DOI: 10.1136/annrheumdis-2019-215213.

Terada LS, Piermattei D, Shibao GN, McManaman JL, Wright RM. Hypoxia regulates xanthine dehydrogenase activity at pre-and posttranslational levels. Arch Biochem Biophys. 1997;348(1):163-8. DOI: 10.1006/abbi.1997.0367.

Thyagarajan B, Bloom JD. The inherent mutational tolerance and antigenic evolvability of influenza hemagglutinin. Elife. 2014;3. DOI: 10.7554/eLife.03300.

To EE, Erlich JR, Liong F, Luong R, Liong S, Esaq E, et al. Mitochondrial reactive oxygen species contribute to pathological inflammation during influenza A virus infection in mice. Antioxid Redox Signal. 2020;32(13):929-942. DOI: 10.1089/ars.2019.7727.

Tong S, Zhu X, Li Y, Shi M, Zhang J, Bourgeois M, et al. New world bats harbor diverse influenza A viruses. PLoS Pathog. 2013;9(10):e1003657. DOI: 10.1371/journal.ppat.1003657.

Tortorici MA, Walls AC, Lang Y, Wang C, Li Z, Koerhuis D, et al. Structural basis for human coronavirus attachment to sialic acid receptors. Nat Struct Mol Biol. 2019;26(6):481-9. DOI: 10.1038/s41594-019-0233-y.

Tsai KN, Chen GW. Influenza genome diversity and evolution. Microbes Infect. 2011;13(5):479-88. DOI: 10.1016/j.micinf.2011.01.013.

Tseng YT, Wang SM, Huang KJ, Lee AI, Chiang CC, Wang CT. Self-assembly of severe acute respiratory syndrome coronavirus membrane protein. J Biol Chem. 2010;285(17):12862-72. DOI: 10.1074/jbc.M109.030270.
Tyrrell DA, Bynoe ML. Cultivation of viruses from a high proportion of patients with colds. Lancet. 1966;1(7428):76-7. DOI: 10.1016/s0140-6736(66)92364-6.

Tyrrell DA, Almeida JD, Cunningham CH, Dowdle WR, Hofstad MS, McIntosh K, et al. Coronaviridae. Intervirology. 1975;5(1-2):76-82. DOI: 10.1159/000149883.

van der Sluijs KF, van Elden LJ, Nijhuis M, Schuurman R, Pater JM, Florquin S, et al. IL-10 is an important mediator of the enhanced susceptibility to pneumococcal pneumonia after influenza infection. J Immunol. 2004;172(12):7603-9. DOI: 10.4049/jimmunol.172.12.7603.

Varga ZT, Ramos I, Hai R, Schmolke M, García-Sastre A, Fernandez-Sesma A, Palese P. The influenza virus protein PB1-F2 inhibits the induction of type I interferon at the level of the MAVS adaptor protein. PLoS Pathog. 2011;7(6):e1002067. DOI: 10.1371/journal.ppat.1002067.

Vasin AV, Temkina OA, Egorov VV, Klotchenko SA, Plotnikova MA, Kiselev OI. Molecular mechanisms enhancing the proteome of influenza A viruses: an overview of recently discovered proteins. Virus Res. 2014;185:53-63. DOI: 10.1016/j.virusres.2014.03.015.

Vincent MJ, Bergeron E, Benjannet S, Erickson BR, Rollin PE, Ksiazek TJ, et al. Chloroquine is a potent inhibitor of SARS coronavirus infection and spread. Virol J. 2005;2:69. DOI: 10.1186/1743-422X-2-69.

Visher E, Whitefield SE, McCrone JT, Fitzsimmons W, Lauring AS. The mutational robustness of influenza A virus. PLoS Pathog. 2016;12(8):e1005856. DOI: 10.1371/journal.ppat.1005856.

Vivino FB, Carsons SE, Foulks G, Daniels TE, Parke A, Brennan MT, et al. New treatment guidelines for Sjogren`s disease. Rheum Dis Clin North Am. 2016;42(3):531-51. DOI: 10.1016/j.rdc.2016.03.010.
Voronina TA. Antioxidant Mexidol. The basic neuropsychotropic effects and mechanism of action. Psychopharmacol Biol Narkol. 2001;1(1):2-12. Russian.

Waqar T, Khushdil A, Haque K. Efficacy of chloroquine as a first line agent in the treatment of uncomplicated malaria due to Plasmodium Vivax in children and treatment practices in Pakistan: a pilot study. J Pak Med Assoc. 2016;66(1):30-3. PubMed PMID: 26712176.

Wang M, Cao R, Zhang L, Yang X, Liu J, Xu M, et al. Remdesivir and chloroquine effectively inhibit the recently emerged novel coronavirus (2019-nCoV) in vitro. Cell Res. 2020;30(3):269-271. DOI: 10.1038/s41422-020-0282-0.

Wang Q, Zhang Y, Wu L, Niu S, Song C, Zhang Z, et al. Structural and functional basis of SARS-CoV-2 entry by using human ACE2. Cell. 2020 pii: S0092-8674(20)30338-X. DOI: 10.1016/j.cell.2020.03.045.

Watanabe T, Watanabe S, Kawaoka Y. Cellular networks involved in the influenza virus life cycle. Cell Host Microbe. 2010;7(6):427-39. DOI: 10.1016/j.chom.2010.05.008.

Watanabe Y, Berndsen ZT, Raghwani J, Seabright GE, Allen JD, McLellan JS, et al. Vulnerabilities in coronavirus glycan shields despite extensive glycosylation. BioRxiv 2020.02.20.957472 [Preprint]. 2020 [cited 2020 May 06]. Available from: biorxiv.org/content/10.1101/2020.02.20.957472v1.

Wertheim JO, Chu DKW, Peiris JSM, Kosakovsky Pond SL, Poon LLM. A case for the ancient origin of coronaviruses. J Virol. 2013;87(12):7039-45. DOI: 10.1128/JVI.03273-12.

Weston S, Haupt R, Logue J, Matthews K, Frieman MB. FDA approved drugs with broad anti-coronaviral activity inhibit SARS-CoV-2 in vitro. BioRxiv 2020.03.25.008482 [Preprint]. 2020 [cited 2020 May 06]. Available from: biorxiv.org/content/10.1101/2020.03.25.008482v1.
de Wit E, Feldmann F, Cronin J, Jordan R, Okumura A, Thomas T, et al. Prophylactic and therapeutic remdesivir (GS-5734) treatment in the rhesus macaque model of MERS-CoV infection. Proc Natl Acad Sci USA. 2020;117(12):6771-6. DOI: 10.1073/pnas.1922083117.

Wood PM. The two redox potentials for oxygen reduction to superoxide. Trends Biochem Sci. 1987;12(7):250-1. DOI: 10.1016/0968-0004(87)90123-X.

Wood PM. The potential diagram for oxygen at pH 7. Biochem J. 1988;253(1):287-9. DOI: 10.1042/bj2530287.

Wu W, Li R, Li X, He J, Jiang S, Liu S, Yang J. Quercetin as an antiviral agent inhibits influenza A virus (IAV) entry. Viruses. 2015;8(1). pii: E6. DOI: 10.3390/v8010006.

Xue G, Gong L, Yuan C, Xu M, Wang X, Jiang L, Huang M. A structural mechanism of flavonoids in inhibiting serine proteases. Food Funct. 2017;8(7):2437-2443. DOI: 10.1039/c6fo01825d.

Yamamoto N, Matsuyama S, Hoshino T, Yamamoto N. Nelfinavir inhibits replication of severe acute respiratory syndrome coronavirus 2 in vitro. BioRxiv 2020.04.06.026476 [Preprint]. 2020 [cited 2020 May 06]. Available from: biorxiv.org/content/10.1101/2020.04.06.026476v1.

Yamaya M, Nishimura H, Nadine LK, Ota C, Kubo H, Nagatomi R. Ambroxol inhibits rhinovirus infection in primary cultures of human tracheal epithelial cells. Arch Pharm Res. 2014;37(4):520-9. DOI: 10.1007/s12272-013-0210-7.

Yan Y, Zou Z, Sun Y, Li X, Xu KF, Wei Y, et al. Anti-malaria drug chloroquine is highly effective in treating avian influenza A H5N1 virus infection in an animal model. Cell Res. 2013;23(2):300-2. DOI: 10.1038/cr.2012.165.
Yang B, Yao DF, Ohuchi M, Ide M, Yano M, Okumura Y, Kido H. Ambroxol suppresses influenza-virus proliferation in the mouse airway by increasing antiviral factor levels. Eur Respir J. 2002;19(5):952-8. DOI: 10.1183/09031936.02.00253302.

Yin Y, Wunderink RG. MERS, SARS and other coronaviruses as causes of pneumonia. Respirology. 2018;23(2):130-137. DOI: 10.1111/resp.13196.

York IA, Stevens J, Aymoiva IV. Influenza virus N-linked glycosylation and innate immunity. Biosci Rep. 2019;39(1). pii: BSR20171505. DOI: 10.1042/BSR20171505.

Yoshimura A, Ohnishi S. Uncoating of influenza virus in endosomes. J Virol. 1984;51(2):497-504. PubMed PMID: 6431119; PubMed Central PMCID: PMC254465.

Zakaryan H, Arabyan E, Oo A, Zandi K. Flavonoids: promising natural compounds against viral infection. Arch Virol. 2017;162(9):2539-51. DOI: 10.1007/s00705-017-3417-y.

Zhang R, Wang X, Ni L, Di X, Ma B, Niu S, et al. COVID-19: melatonin as potential adjuvant treatment. Life Sci. 2020;250:117583. DOI: 10.1016/j.lfs.2020.117583.

Zhang L, Liu Y. Potential Interventions for Novel Coronavirus in China: A Systemic Review. J Med Virol. 2020;92(5):479-490. DOI: 10.1002/jmv.25707.

Zhao P, Sun L, Xiong J, Wang C, Chen L, Yang P, et al. Semiaquatic mammals might be intermediate hosts to spread avian influenza virus from avian to human. Sci Rep. 2019;9(1):11641. DOI: 10.1038/s41598-019-48255-5.

Zhao Q, Li S, Xue F, Zou Y, Chen C, Bartlam M, Rao Z. Structure of the main protease from a global infectious human coronavirus, HCoV-HKU1. J Virol. 2008;82(17):8647-55. DOI: 10.1128/JVI.00298-08.

Zheng J, Yamada Y, Fung TS, Huang M, Chia R, Liu DX. Identification of N-linked glycosylation sites in the spike protein and their functional impact on the
replication and infectivity of coronavirus infectious bronchitis virus in cell culture. Virology. 2018;513:65-74. DOI: 10.1016/j.virol.2017.10.003.

Zumla A, Chan JF, Azhar EI, Hui DS, Yuen KY. Coronaviruses – drug discovery and therapeutic options. Nat Rev Drug Discov. 2016;15(5):327-47. DOI: 10.1038/nrd.2015.37.
Table 1. Influenza pandemics in the last 100 years

Name of the pandemic	Years	Strain	Number of deaths (millions)
Spanish flu	1918-1920	H1N1	40-50
Asian flu	1957-1958	H2N2	1-2
Hong Kong flu	1968-1970	H3N2	0.5-2
Swine flu	2009-2010	H1N1	0.5
Name of the epi/pandemic	Years	Strain	Number of deaths (hundreds)
-------------------------	-------------	--------------	----------------------------
2002–04 SARS outbreak	2002-2004	SARS-CoV-1	774
2012 Middle East respiratory syndrome coronavirus outbreak	2012-present	MERS-CoV	862 (as of 2020 Jan 13, WHO)
COVID-19 pandemic	2019-present	SARS-CoV-2	280,431 (as of 2020 May 9, WHO)
Table 3. Chemical structures of selected drugs described in this review

INN	Chemical structure	Brand name	Key reference
Tilorone	![Chemical structure of Tilorone](image)	Amixin, Lavomax	Ekins, 2020,
			Jeon, 2020
Meglumine	![Chemical structure of Meglumine](image)	Cycloferon	Ekins, 2020
Acridine acetate	![Chemical structure of Acridine acetate](image)		
Oseltamivir	![Chemical structure of Oseltamivir](image)	Tamiflu	Sliva, 2019
Ribavirin	![Chemical structure of Ribavirin](image)	Copegus, Rebetol,	Sliva, 2019
		Ribosphere, Vilona,	
		Virazole	
Inosine	![Chemical structure of Inosine](image)	Methisoprinol	Sliva, 2019
Pranobex	![Chemical structure of Pranobex](image)		
Compound	Chemical Structure	Uses	References
---------------	--------------------	--	---
Quercetin	![Quercetin structure](image)	Muciclar, Mucosolvan, Mucobrox, Mucol, Lasolvan, Mucoangin, Surbronc, Brontex, Ambolar, Lysopain	Zakaryan et al., 2017
Ambroxol	![Ambroxol structure](image)	Muciclar, Mucosolvan, Mucobrox, Mucol, Lasolvan, Mucoangin, Surbronc, Brontex, Ambolar, Lysopain	Yang et al., 2002, Yamaya et al., 2014
Allopurinol	![Allopurinol structure](image)	Allohexal, Allosig, Milurit, Alloril, Progout, Ürikoliz, Zyloprim, Zylic, Zyrik, and Aluron	Pacher et al., 2006; George, Struthers, 2009
Melatonin	![Melatonin structure](image)	Reiter et al., 2017	
Deferoxamine	![Deferoxamine structure](image)	Desferal	Borg, Schaich, 1986; Klebanoff et al., 1989; Dulchavsky et al., 1996; Niihara et al., 2002; Francisco

Downloaded from https://academic.oup.com/femspd/advance-article/doi/10.1093/femspd/ftaa046/5899055 by guest on 09 September 2020
Drug	Chemical Structure	Active Ingredients	References
Mexidol	![Mexidol Structure](image)	Emoxipine, Emoxypin, Epigid	Pavelkina, 2010; Laseeva, 2009
Chloroquine	![Chloroquine Structure](image)	Chloroquine FNA, Resochin, Dawaquin, Lariago, Delagil	Jeon, 2020; Jin, 2020; Liu, 2020
Hydroxychloroquine	![Hydroxychloroquine Structure](image)	Plaquenil, Hydroquin, Axemal, Dolquine, Quensyl, Quinoric, Immard	Liu et al., 2020
Mefloquine	![Mefloquine Structure](image)	Lariam	
Remdesivir	![Remdesivir Structure](image)	GS-5734	Wang, 2020; Lu, 2020; Zhang, 2020
Ivermectin	Stromectol		
------------	------------		
![Ivermectin Structure](image)	![Stromectol Structure](image)		

Caly, 2020