On the problem of differentiation of hyperelliptic functions

Elena Yu. Bunkova

Received: 6 July 2019 / Accepted: 12 July 2019 / Published online: 29 July 2019
© Springer Nature Switzerland AG 2019

Abstract
We describe a construction that leads to an explicit solution of the problem of differentiation of hyperelliptic functions. A classical genus $g = 1$ example of such a solution is the result of Frobenius and Stickelberger (J Reine Angew Math 92:311–337, 1882). Our method follows the works Buchstaber (Proc Steklov Inst Math 294:176–200, 2016) and Bunkova (Eur J Math 4(1):93–112, 2018) that led to constructions of explicit solutions of the problem for genus $g = 2$ and $g = 3$.

Keywords Abelian functions · Elliptic functions · Jacobians · Hyperelliptic curves · Hyperelliptic functions · Lie algebra of derivations · Polynomial vector fields

Mathematics Subject Classification 14H52 · 32N99 · 33E05 · 58J26

1 Introduction
We consider meromorphic functions f in \mathbb{C}^g. A vector $\omega \in \mathbb{C}^g$ is called a period for f if $f(z + \omega) = f(z)$ for any $z \in \mathbb{C}^g$. If the periods of f form a lattice Γ of rank $2g$ in \mathbb{C}^g, then f is called an Abelian function. We say that an Abelian function is a meromorphic function on the complex torus $T^g = \mathbb{C}^g/\Gamma$. We denote the coordinates in \mathbb{C}^g by $(z_1, z_3, \ldots, z_{2g-1})$.

Let us consider hyperelliptic curves of genus g in the model $\mathcal{V}_\lambda = \{(X, Y) \in \mathbb{C}^2 : Y^2 = X^{2g+1} + \lambda_4 X^{2g-1} + \lambda_6 X^{2g-2} + \cdots + \lambda_{4g} X + \lambda_{4g+2}\}.$

Such a curve depends on the parameters $\lambda = (\lambda_4, \lambda_6, \ldots, \lambda_{4g}, \lambda_{4g+2}) \in \mathbb{C}^{2g}$.

Supported in part by the Young Russian Mathematics award and the RFBR Project 17-01-00366 A.

Elena Yu. Bunkova
bunkova@mi.ras.ru

1 Steklov Mathematical Institute of Russian Academy of Sciences, 8 Gubkina St., Moscow, Russia 119991
Denote by $\mathcal{B} \subset \mathbb{C}^{2g}$ the subspace of parameters such that \mathcal{V}_λ is non-singular for $\lambda \in \mathcal{B}$. We have $\mathcal{B} = \mathbb{C}^{2g} \setminus \Sigma$ where Σ is the discriminant hypersurface.

A hyperelliptic function of genus g (see [3,7]) is a meromorphic function in $\mathbb{C}^g \times \mathcal{B}$, such that for each $\lambda \in \mathcal{B}$ its restriction to $\mathbb{C}^g \times \lambda$ is Abelian with T^g the Jacobian \mathcal{J}_λ of \mathcal{V}_λ. We denote the field of hyperelliptic functions of genus g by \mathcal{F}. See [7] for its properties.

Let \mathcal{U} be the space of the fiber bundle $\pi : \mathcal{U} \to \mathcal{B}$ with fiber over $\lambda \in \mathcal{B}$ the Jacobian \mathcal{J}_λ of the curve \mathcal{V}_λ. Thus, a hyperelliptic function is a meromorphic function on \mathcal{U}. According to the Dubrovin–Novikov theorem [13], there is a birational isomorphism between \mathcal{U} and the complex linear space \mathbb{C}^{3g}.

Problem 1.1 ([7]) For each g describe the Lie algebra $\text{Der} \mathcal{F}$ of differentiations of \mathcal{F}, that is find $3g$ independent differential operators \mathcal{L} such that $\mathcal{L} \mathcal{F} \subset \mathcal{F}$.

In the case $g = 1$ the solution to this problem is classical [14]. A method for solving it in general was presented in [9,10]. A good overview of this approach is given in [7]. It turned out that it is hard to follow this method to obtain explicit answers.

Explicit solutions to this problem for $g = 2$ and $g = 3$ were first found in [3] and [12]. These works allow us to present a general method that is useful for any genus. Here we describe the general construction of this method.

We use the theory of hyperelliptic Kleinian functions (see [2,4–6], and [15] for elliptic functions). Take the coordinates $(z, \lambda) = (z_1, z_2, \ldots, z_{2g-1}, \lambda_4, \lambda_6, \ldots, \lambda_{4g}, \lambda_{4g+2})$ in $\mathbb{C}^g \times \mathcal{B} \subset \mathbb{C}^{3g}$. Let $\sigma(z, \lambda)$ be the hyperelliptic sigma function (or elliptic sigma function in the genus $g = 1$ case). We denote $\partial_k = \frac{\partial}{\partial z_k}$. Following [3,7,12], we use the notation

\[
\xi_k = \partial_k \ln \sigma(z, \lambda), \quad \wp_{i; k_1, \ldots, k_n} = -\partial_i^{1} \partial_{k_1} \cdots \partial_{k_n} \ln \sigma(z, \lambda),
\]

where $n \geq 0$, $i + n \geq 2$, $k_s \in \{1, 3, \ldots, 2g - 1\}$. In the case $n = 0$ we will skip the semicolon. Note that our notation for the variables z_k differs from the one in [4–6] as $u_i = z_{2g+1-i}$. The functions $\wp_{i; k_1, \ldots, k_n}$ provide us with examples of hyperelliptic functions.

A key to our approach to the problem is the following theorem.

Theorem 1.2 ([5]) For $i, k \in \{1, 3, \ldots, 2g - 1\}$ we have the relations

\[
\wp_{3; i} = 6 \wp_2 \wp_{1; i} + 6 \wp_{1; i+2} - 2 \wp_{0; 3, i} + 2 \lambda_4 \delta_{i, 1},
\]

\[
\wp_{2; i} \wp_{2; k} = 4 \left(\wp_2 \wp_{1; i} \wp_{1; k} + \wp_{1; k} \wp_{1; i+2} + \wp_{1; i} \wp_{1; k+2} + \wp_{0; k+2, i+2} \right) - 2 \left(\wp_{1; i} \wp_{0; 3, k} + \wp_{1; k} \wp_{0; 3, i} + \wp_{0; k, i+4} + \wp_{0; i, k+4} \right) + 2 \lambda_4 (\delta_{i, 1} \wp_{1; k} + \delta_{k, 1} \wp_{1; i}) + 2 \lambda_{i+4, k+4} (2 \delta_{i, k} + \delta_{k, i-2} + \delta_{i, k-2}).
\]

Proof In [5] we have formulas (4.1) and (4.8). Using the notation (1) we get (2) from (4.1) and (3) from (4.8). □
2 The problem for polynomial vector fields

The work [8] constructs the theory of polynomial Lie algebras. Here we describe its connection with Problem 1.1.

Consider the complex space \mathbb{C}^{3g} with coordinates $x = (x_{i,j})$, where $i \in \{1, 2, 3\}$, $j \in \{1, 3, \ldots, 2g - 1\}$. We define the map $\varphi : \mathcal{U} \rightarrow \mathbb{C}^{3g}$ by

$$\varphi : (z, \lambda) \mapsto (x_{i,j}) = (\varphi_{i,j}(z, \lambda)).$$

This map has the following property, observed by Buchstaber (see [3]).

Theorem 2.1 The functions $\varphi^*(x_{i,j})$ give a set of generators of \mathcal{F}.

Proof Let us show that the functions $\varphi_{i,j}(z, \lambda)$, where $i \in \{1, 2, 3\}$, $j \in \{1, 3, \ldots, 2g - 1\}$, give a set of generators of \mathcal{F}. We use a fundamental result from the theory of hyperelliptic Abelian functions (see [6, Chapter 5]): Any hyperelliptic function can be presented as a rational function in $\varphi_{1,k}$ and $\varphi_{2,k}$, where $k \in \{1, 3, \ldots, 2g - 1\}$. Theorem 1.2 gives a set of relations between the derivatives of these functions.

Now by [12, Corollary 5.2], the functions $(\varphi^*(x_{i,j}), \varphi^*(w_{k,l}), \varphi^*(\lambda_{s}))$ in the notation of this corollary give a set of generators of \mathcal{F}. By [12, Theorem 5.3] we obtain the claim of Theorem 2.1. \qed

Another property of φ follows from [12, Corollary 5.5]. For each g there is a polynomial map $p : \mathbb{C}^{3g} \rightarrow \mathbb{C}^{2g}$, such that we get the diagram

$$\begin{array}{ccc}
\mathcal{U} & \xrightarrow{\varphi} & \mathbb{C}^{3g} \\
\pi \downarrow & & \downarrow p \\
\mathcal{B} & \hookrightarrow & \mathbb{C}^{2g}.
\end{array}$$

Here $\mathcal{B} \subset \mathbb{C}^{2g}$ is the inclusion like in Sect. 1, with coordinates λ in \mathbb{C}^{2g}.

We note that the proof of [12, Theorem 5.3] gives a construction to obtain the polynomial maps p explicitly. Examples of these maps for $g = 1, 2, 3$ are given in [12]. The work [7, Theorem 3.2] claims that these polynomial maps are of degree at most 3.

We refer the reader to [8] for the theory of polynomial Lie algebras. Denote the ring of polynomials in $\lambda \in \mathbb{C}^{2g}$ by \mathcal{P}. Let us consider the polynomial map $p : \mathbb{C}^{3g} \rightarrow \mathbb{C}^{2g}$. A vector field \mathcal{L} in \mathbb{C}^{3g} will be called projectable for p if there exists a vector field L in \mathbb{C}^{2g} such that

$$\mathcal{L}(p^*f) = p^*L(f) \quad \text{for any } f \in \mathcal{P}.$$

The vector field L will be called the pushforward of \mathcal{L}. A corollary of this definition is that for a projectable vector field \mathcal{L} we have $\mathcal{L}(p^*\mathcal{P}) \subset p^*\mathcal{P}$.

\@ Springer
Problem 2.2 ([12, Problem 6.1]) Find $3g$ polynomial vector fields in \mathbb{C}^{3g} projectable for $p : \mathbb{C}^{3g} \to \mathbb{C}^{2g}$ and independent at any point in $p^{-1}(\mathcal{B})$. Construct their polynomial Lie algebra.

The connection of this problem to Problem 1.1 is straightforward. Given a solution to Problem 2.2 for each of the $3g$ vector fields \mathcal{L}_k with pushforwards L_k, we will restore the vector fields \mathcal{L}_k projectable for π with pushforwards L_k and such that $\mathcal{L}_k(\phi^s x_{i,j}) = \phi^s \mathcal{L}_k(x_{i,j})$ for the coordinate functions $x_{i,j}$ in \mathbb{C}^{3g}. As $\phi^s x_{i,j}$ are the generators of \mathcal{F} and $\mathcal{L}_k(x_{i,j})$ is a polynomial in $x_{i,j}$, this gives $\mathcal{L}_k(\phi^s x_{i,j}) \in \mathcal{F}$ and $\mathcal{L}_k \in \text{Der } \mathcal{F}$.

The plan to solve Problem 2.2 is the following. For each g:

- Find the “odd polynomial vector fields”, i.e., the g independent polynomial vector fields $\mathcal{L}_1, \mathcal{L}_3, \ldots, \mathcal{L}_{2g-1}$ projectable for p with zero pushforward.
- Define $2g$ independent polynomial vector fields $L_0, L_2, L_4, \ldots, L_{4g-2}$ in \mathcal{B}.
- Find the “even polynomial vector fields”, i.e., the $2g$ polynomial vector fields $\mathcal{L}_0, \mathcal{L}_2, \mathcal{L}_4, \ldots, \mathcal{L}_{4g-2}$ projectable for p with pushforwards $L_0, L_2, L_4, \ldots, L_{4g-2}$.
- Construct their polynomial Lie algebra.

We will do these steps in the following sections. Namely, in Sect. 3 we deal with the first step, while Sect. 4 gives an approach to the third step for some classical vector fields taken in the second step. It is based on a condition for the polynomial Lie algebra in the last step. In Sect. 5 we give the explicit solutions to Problem 1.1 that can be constructed by this method (see [12]).

3 Odd polynomial vector fields

Lemma 3.1 ([12, Lemmas 6.2 and 6.3]) We have

$$\mathcal{L}_1 = \sum_j x_{2,j} \frac{\partial}{\partial x_{1,j}} + x_{3,j} \frac{\partial}{\partial x_{2,j}} + 4(2x_2x_{2,j} + x_3x_{1,j} + x_{2,j+2}) \frac{\partial}{\partial x_{3,j}}$$

where $x_{2,2g+1} = 0$. For $s = 3, 5, \ldots, 2g - 1$ we have

$$\mathcal{L}_s = x_{2,s} \frac{\partial}{\partial x_2} + x_{3,s} \frac{\partial}{\partial x_3} + \mathcal{L}_1(x_{3,s}) \frac{\partial}{\partial x_4} + \sum_{k=1}^{g-1} z_{1,s,2k+1} \frac{\partial}{\partial x_{1,2k+1}}$$

$$+ \mathcal{L}_1(z_{1,s,2k+1}) \frac{\partial}{\partial x_{2,2k+1}} + \mathcal{L}_1(\mathcal{L}_1(z_{1,s,2k+1})) \frac{\partial}{\partial x_{3,2k+1}}$$

for some $y_{1,s,2k+1} = \mathcal{L}_s(x_{1,2k+1})$.

This lemma determines the odd polynomial vector fields, given the value $\mathcal{L}_s(x_{1,2k+1})$. For this value we use the construction of Korteweg–de Vries hierarchy [4, Section 4.4].

The Korteweg–de Vries equation

$$u_t = 6uu_x - u_{xxx}$$
for \(x = z_1, -4t = z_3, \Phi_2 = \frac{1}{2} u, \Phi_4 = -\frac{3}{2} \Phi_2^2 + \frac{1}{4} \partial_1 \Phi_2 \) takes the form
\[
\partial_3 \Phi_2 = \partial_1 \Phi_4.
\]
It is the first equation of the Korteweg–de Vries hierarchy, which is an infinite system of differential equations
\[
\partial_{2k-1} \Phi_2 = \partial_1 \Phi_{2k}, \quad k = 2, 3, 4, \ldots,
\]
where
\[
\partial_1 \Phi_{2k+2} = \mathcal{R} \partial_1 \Phi_{2k} \quad \text{and} \quad \mathcal{R} = \frac{1}{4} \partial_1^2 - 2 \Phi_2 - \Phi'_2 \partial_1^{-1}.
\]

Theorem 3.2 ([4, Theorem 4.12]) *The function \(u = 2\wp_2(z) \) is a g-gap solution of the Korteweg–de Vries system.*

This gives us a system of equations
\[
\mathcal{L}_s(x_2) = \mathcal{L}_1 \Phi_s(x_2)
\]
with differential polynomials \(\Phi_s \). Thus in Lemma 3.1 we have
\[
\mathcal{L}_s(x_{1,2k+1}) = \mathcal{L}_s(\Phi_{2k}(x_2)).
\]
This determines \(y_{1,2k+1} \).

4 Even polynomial vector fields

First we define the polynomial vector fields in \(\mathcal{B} \). Recall \(\mathcal{B} = \mathbb{C}^{2g} \setminus \Sigma \) where \(\Sigma \) is the discriminant hypersurface. For the vector fields \(L_0, L_2, L_4, \ldots, L_{4g-2} \) in \(\mathcal{B} \) we take the vector fields tangent to \(\Sigma \), that are obtained from the convolution of invariants of the group \(A_{2g} \), see the construction by Fuchs in [1, Section 4]. See also [8,11].

We consider \(\mathbb{C}^{2g} \) with coordinates \((\lambda_4, \lambda_6, \ldots, \lambda_{4g}, \lambda_{4g+2}) \) and set \(\lambda_s = 0 \) for every \(s \notin \{4, 6, \ldots, 4g, 4g+2\} \). For \(k, m \in \{1, 2, \ldots, 2g\}, k \leq m \) set
\[
T_{2k,2m} = 2(k + m) \lambda_{2k+2m} + \sum_{s=2}^{k-1} 2(k + m - 2s) \lambda_{2s} \lambda_{2k+2m-2s} - \frac{2k(2g - m + 1)}{2g + 1} \lambda_{2k} \lambda_{2m},
\]
and for \(k > m \) set \(T_{2k,2m} = T_{2m,2k} \). For \(k = 0, 1, 2, \ldots, 2g - 1 \) we have the vector fields
\[
L_{2k} = \sum_{s=2}^{2g+1} T_{2k+2,2s-2} \frac{\partial}{\partial \lambda_{2s}}. \tag{4}
\]
The expressions (4) give polynomial vector fields tangent to the discriminant hypersurface.

Now we need to find polynomial vector fields \mathcal{L}_{2k} projectable for p with pushforwards L_{2k}. The vector field \mathcal{L}_0 is the Euler vector field on \mathbb{C}^{3g}, we have

$$\mathcal{L}_0 = \sum_j (j + 1) x_{1,j} \frac{\partial}{\partial x_{1,j}} + (j + 2) x_{2,j} \frac{\partial}{\partial x_{2,j}} + (j + 3) x_{3,j} \frac{\partial}{\partial x_{3,j}}.$$

All the other vector fields are determined using the condition on the polynomial Lie algebra

$$\begin{pmatrix}
[L_1, L_0] & [L_1, L_2] & [L_1, L_4] & [L_1, L_6] & \cdots & [L_1, L_{4g-4}] & [L_1, L_{4g-2}]
\end{pmatrix} =
\begin{pmatrix}
-1 & 0 & 0 & \cdots & 0
x_{1,1} & -1 & 0 & \cdots & 0
x_{1,3} & x_{1,1} & -1 & \cdots & 0
x_{1,5} & x_{1,3} & x_{1,1} & \cdots & 0
\cdots & \cdots & \cdots & \cdots & \cdots
0 & 0 & \cdots & x_{1,2g-3} & x_{1,2g-1}
0 & 0 & \cdots & 0 & x_{1,2g-1}
\end{pmatrix} \cdot
\begin{pmatrix}
L_1
L_3
\vdots
L_{2g-1}
\end{pmatrix}.$$

A demonstration of this method for genus $g = 4$ will follow in our upcoming works.

5 Explicit solutions of the problem of differentiation of hyperelliptic functions

5.1 Genus 1

See [14]. The generators of the \mathcal{F}-module $	ext{Der} \mathcal{F}$ are

$$\mathcal{L}_0 = L_0 - \zeta_1 \partial_1, \quad \mathcal{L}_1 = \partial_1, \quad \mathcal{L}_2 = L_2 - \zeta_1 \partial_1.$$

Their Lie algebra is $[\mathcal{L}_0, \mathcal{L}_1] = \mathcal{L}_1, [\mathcal{L}_0, \mathcal{L}_2] = 2 \mathcal{L}_2, [\mathcal{L}_1, \mathcal{L}_2] = \varphi_2 \mathcal{L}_1$.

5.2 Genus 2

The generators of the \mathcal{F}-module $	ext{Der} \mathcal{F}$ are (see [3, Theorem 29]):

$$\mathcal{L}_0 = L_0 - \zeta_1 \partial_1 - 3 \zeta_3 \partial_3, \quad \mathcal{L}_2 = L_2 + \left(- \zeta_1 + \frac{4}{5} \lambda_4 \zeta_3 \right) \partial_1 - \zeta_1 \partial_3,$$

$$\mathcal{L}_1 = \partial_1, \quad \mathcal{L}_4 = L_4 + \left(- \zeta_3 + \frac{6}{5} \lambda_6 \zeta_3 \right) \partial_1 - (\zeta_1 + \lambda_4 \zeta_3) \partial_3,$$

$$\mathcal{L}_3 = \partial_3, \quad \mathcal{L}_6 = L_6 + \frac{3}{5} \lambda_8 \zeta_3 \partial_1 - \zeta_3 \partial_3.$$

Their Lie algebra can be found in [3, Theorem 32].
5.3 Genus 3

The generators of the \mathcal{F}-module $\text{Der} \mathcal{F}$ are (see [12, Theorem 10.1]):

\[
\begin{align*}
\mathcal{L}_1 &= \partial_1, \quad \mathcal{L}_3 = \partial_3, \quad \mathcal{L}_5 = \partial_5, \\
\mathcal{L}_0 &= L_0 - z_1 \partial_1 - 3z_3 \partial_3 - 5z_5 \partial_5, \\
\mathcal{L}_2 &= L_2 - \left(\xi_1 - \frac{8}{7} \lambda_4 z_3 \right) \partial_1 - \left(z_1 - \frac{4}{7} \lambda_4 z_5 \right) \partial_3 - 3z_3 \partial_5, \\
\mathcal{L}_4 &= L_4 - \left(\xi_3 - \frac{12}{7} \lambda_6 z_3 \right) \partial_1 - \left(\xi_1 + \lambda_4 z_3 - \frac{6}{7} \lambda_6 z_5 \right) \partial_3 - (z_1 + 3\lambda_4 z_5) \partial_5, \\
\mathcal{L}_6 &= L_6 - \left(\xi_5 - \frac{9}{7} \lambda_8 z_3 \right) \partial_1 - \left(\xi_3 - \frac{8}{7} \lambda_8 z_5 \right) \partial_3 - (\xi_1 + \lambda_4 z_3 + 2\lambda_6 z_5) \partial_5, \\
\mathcal{L}_8 &= L_8 + \left(\frac{6}{7} \lambda_{10} z_3 - \lambda_{12} z_5 \right) \partial_1 - \left(\xi_5 - \frac{10}{7} \lambda_{10} z_5 \right) \partial_3 - (\xi_3 + \lambda_8 z_5) \partial_5, \\
\mathcal{L}_{10} &= L_{10} + \left(\frac{3}{7} \lambda_{12} z_3 - 2\lambda_{14} z_5 \right) \partial_1 + \frac{5}{7} \lambda_{12} z_5 \partial_3 - \xi_5 \partial_5.
\end{align*}
\]

Their Lie algebra can be found in [12, Corollary 10.2].

References

1. Arnold, V.I.: Singularities of Caustics and Wave Fronts. Mathematics and its Applications (Soviet Series), vol. 62. Kluwer, Dordrecht (1990)
2. Baker, H.F.: On the hyperelliptic sigma functions. Amer. J. Math. 20(4), 301–384 (1898)
3. Buchstaber, V.M.: Polynomial dynamical systems and Korteweg–de Vries equation. Proc. Steklov Inst. Math. 294, 176–200 (2016)
4. Buchstaber, V.M., Enolski˘ı, V.Z., Le˘ıkin, D.V.: Hyperelliptic Kleinian functions and applications. In: Buchstaber, V.M., Novikov, S.P. (eds.) Solitons, Geometry and Topology: On the Crossroad. American Mathematical Society Translations Series 2, vol. 179, pp. 1–33. American Mathematical Society, Providence (1997)
5. Buchstaber, V.M., Enolskii, V.Z., Leykin, D.V.: Kleinian functions, hyperelliptic Jacobians and applications. In: Novikov, S.P., Krichever, I.M. (eds.) Reviews in Mathematics and Mathematical Physics, vol. 10, no 2, pp. 3–120. Gordon and Breach, London (1997)
6. Buchstaber, V.M., Enolskii, V.Z., Leykin, D.V.: Multi-dimensional sigma-functions (2012). arXiv:1208.0990
7. Buchstaber, V., Enolskii, V., Leykin, D.: Multi-variable sigma-functions: old and new results (2018). arXiv: 1810.11079
8. Buchstaber, V.M., Leykin, D.V.: Polynomial Lie algebras. Funct. Anal. Appl. 36(4), 267–280 (2002)
9. Buchstaber, V.M., Leykin, D.V.: Differentiation of Abelian functions with respect to parameters. Russian Math. Surveys 62(4), 787–789 (2007)
10. Buchstaber, V.M., Le˘ıkin, D.V.: Solution of the problem of differentiation of Abelian functions over parameters for families of (α, s)-curves. Funct. Anal. Appl. 42(4), 268–278 (2008)
11. Buchstaber, V.M., Mikhailov, A.V.: Infinite-dimensional Lie algebras determined by the space of symmetric squares of hyperelliptic curves. Funct. Anal. Appl. 51(1), 2–21 (2017)
12. Bunkova, E.Yu.: Differentiation of genus 3 hyperelliptic functions. Eur. J. Math. 4(1), 93–112 (2018)
13. Dubrovin, B.A., Novikov, S.P.: A periodic problem for the Korteweg–de Vries and Sturm–Liouville equations. Their connection with algebraic geometry. Dokl. Akad. Nauk SSSR 219(3), 531–534 (1974) (in Russian)
14. Frobenius, F.G., Stickelberger, L.: Ueber die Differentiation der elliptischen Functionen nach den Perioden und Invarianten. J. Reine Angew. Math. 92, 311–337 (1882)
15. Whittaker, E.T., Watson, G.N.: A Course of Modern Analysis. Cambridge Mathematical Library, 4th edn. Cambridge University Press, Cambridge (1996)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.