Collapse instability of solitons in the nonpolynomial Schrödinger equation with dipole–dipole interactions

G Gligorić1, A Maluckov2, Lj Hadžievski1 and B A Malomed3

1 Vinča Institute of Nuclear Sciences, PO Box 522,11001 Belgrade, Serbia
2 Faculty of Sciences and Mathematics, University of Niš, PO Box 224, 18001 Niš, Serbia
3 Department of Physical Electronics, School of Electrical Engineering, Faculty of Engineering, Tel Aviv University, Tel Aviv 69978, Israel

E-mail: goran79@vinca.rs

Received 20 March 2009, in final form 15 May 2009
Published 17 June 2009
Online at stacks.iop.org/JPhysB/42/145302

Abstract
A model of the Bose–Einstein condensate (BEC) of dipolar atoms, confined in a combination of a cigar-shaped trap and optical lattice acting in the axial direction, is studied in the framework of the one-dimensional (1D) nonpolynomial Schrödinger equation (NPSE) with additional terms describing long-range dipole–dipole (DD) interactions. The NPSE makes it possible to describe the collapse of localized modes, which was experimentally observed in the self-attractive BEC confined in tight traps, in the framework of the 1D description. We study the influence of the DD interactions on the dynamics of bright solitons, especially concerning their collapse-induced instability. Both attractive and repulsive contact and DD interactions are considered. The results are summarized in the form of stability/collapse diagrams in a respective parametric space. In particular, it is shown that the attractive DD interactions may prevent the collapse instability in the condensate with attractive contact interactions.

1. Introduction

In the mean-field approximation, the dynamics of Bose–Einstein condensates (BECs) obeys the 3D Gross–Pitaevskii equation (GPE) [1], from which an effective 1D equation can be derived, in various settings, for condensates trapped in prolate traps [2–7]. In the simplest case, which corresponds to a sufficiently low BEC density, the reduction of the 3D equation for the BEC trapped in the ‘cigar-shaped’ configuration leads to the one-dimensional (1D) cubic nonlinear Schrödinger equation (NLSE) [8]. The main restriction on the use of this equation is its inability to describe the onset of collapse of localized states, which was theoretically predicted in the 3D setting and experimentally observed in the self-attractive BEC [9, 10]. However, without imposing the constraint of a very low density, the reduction of the 3D GPE leads to the 1D equation with a nonpolynomial nonlinearity, alias the nonpolynomial Schrödinger equation (NPSE) [4, 11]. The 1D NPSE with the attractive sign of the nonlinearity enables the description of the collapse dynamics and produces results which are corroborated by direct simulations of the underlying 3D GPE [12].

On the other hand, it is known that the mean-field description of BECs trapped in a very deep optical-lattice (OL) potential can be well described by the corresponding discrete equations. In particular, discrete forms of the 1D GPE with cubic nonlinearity [13–15], and of the 1D NPSE [16] have been studied in detail. Basic features of the 1D continual equations describing BECs trapped in deep OLs find their counterparts in the discrete models. In particular, the ability of the continual 1D NPSE to capture the onset of the collapse is also shared by the corresponding discrete equations.

A new variety of the BEC dynamics, which is dominated by long-range (nonlocal) interactions, occurs in dipolar condensates, which may be formed by magnetically polarized 52Cr atoms [17], dipolar molecules [18] or atoms with electric dipole moments induced by an external field [19]. A review of dynamical effects produced by the dipole–dipole (DD) interactions in condensates can be found in [20]. In particular, conditions for the stability of the trapped dipolar BEC against collapse were studied in detail [21]. A possibility of the
creation of 2D solitons in dipolar condensates was predicted too. Namely, isotropic solitons [22] and solitonic vortices [23] may exist if the sign of the dipole–dipole (DD) interaction is inverted by means of rapid rotation of the dipoles [24]. On the other hand, stable anisotropic solitons can be supported by the ordinary DD interaction, if the dipoles are polarized in the 2D plane [25]. Solitons supported by nonlocal interactions were also predicted and realized in optics, making use of the thermal nonlinearity [26].

A natural extension of the consideration of the dipolar BEC includes the OL potential, which, in the discrete limit, leads to the model with the long-range DD interactions between lattice sites [27–29]. Very recently, 1D solitons [25] have been studied in the framework of the continuum cubic GPE, assuming the competition of local and nonlocal DD interactions, with or without the OL potential [30]. In the discrete limit, 1D solitons supported by the DD interactions were recently studied too, in models with both the cubic [27] and nonpolynomial [28] onsite nonlinearity. In particular, the latter work predicts a possibility of suppressing the collapse by means of the long-range DD forces. The main purpose of the present work is to investigate the influence of the DD interactions on the collapse dynamics in the 1D continual NPSE, which is the most adequate setting for the study of the onset and suppression of the collapse in the dipolar BEC loaded into a cigar-shaped trap.

The paper is structured as follows. The model equation which includes the nonpolynomial local nonlinearity and nonlocal DD interactions, is formulated in section 2, where we also outline numerical techniques that we use in this work. Focusing on the study of fundamental bright solitons, we report basic results for their existence and stability in section 3. The core part of the paper is section 4, where we study the influence of the DD interaction on the solitons’ collapse. The paper is concluded by section 5.

2. The model

The dynamics of a BEC at zero temperature is accurately described by the 3D Gross–Pitaevskii equation (3D GPE) [1]. When the condensate is confined by a harmonic potential with frequency ω_\perp and respective length $a_\perp = (\hbar/m\omega_\perp)^{1/2}$ in the transverse plane, and by generic potential $V(z)$ in the axial direction, it was shown in [4] that the corresponding 3D GPE can be reduced to the 1D NPSE for wavefunction $\psi(z, t)$, which is subject to normalization $\int_{-\infty}^{\infty} |\psi(z)|^2 \, dz = 1$. The equation includes the OL potential, with depth V_0 and wavenumber K, and the long-range DD (cf the 1D equations introduced in [27, 30])

$$\frac{\partial \psi}{\partial t} = -\frac{1}{2} \frac{\partial^2 \psi}{\partial z^2} + V_0 \sin^2(Kz) \psi + \frac{1-\frac{3}{2} \gamma |\psi|^2}{\sqrt{1-\gamma |\psi|^2}} \psi + G \psi(z) \int_{-\infty}^{\infty} \frac{|\psi(z')|^2}{|z-z'|^3} \, dz'.$$

(1)

Here, $\gamma = -2Na_\perp \sqrt{m\omega_\perp}/\hbar$ is the effective strength of the local interaction, with N the total number of atoms in the condensate, and a_\perp the scattering length of atomic collisions ($a_\perp < 0$ corresponds to attraction) [4]. Further, $G = g(1 - 3 \cos^2 \theta)$ is the coefficient which defines the DD interaction, where g is a positive coefficient, and θ the angle between the z-axis and the orientation of the dipoles.

Replacing wavefunction ψ by $f \equiv \sqrt{|\gamma|} \psi$, we transform equation (1) into a normalized form

$$i \frac{\partial f}{\partial t} = -\frac{1}{2} \frac{\partial^2 f}{\partial z^2} + V_0 \sin^2(Kz) f + \frac{1-\frac{3}{2}|f|^2}{\sqrt{1-8|f|^2}} f + \Gamma f(z) \int_{-\infty}^{\infty} \frac{|f(z')|^2}{|z-z'|^3} \, dz'.$$

(2)

where $\gamma = \text{sgn}(\gamma')$ is the sign of the local interaction ($\gamma = +1$ corresponds to the attraction) and $\Gamma = g/|\gamma|$ measures the relative strength of the DD and contact interactions.

One case of obvious interest for the 1D setting is that when the dipoles are aligned with the z-axis, i.e., $\theta = 0$ and $\Gamma = -2g/|\gamma| < 0$, which means that the DD interaction is attractive. Another relevant case corresponds to the dipoles oriented perpendicular to the z-axis, i.e. $\theta = \pi/2$ and $\Gamma = g/|\gamma| > 0$, which implies the repulsive DD interaction. Thus, the sign of Γ in the present model defines the character of the DD interaction.

Stationary solutions to equation (2), with chemical potential μ, are sought for as $f = u \exp(-i\mu t)$, with function u satisfying the stationary equation

$$\mu u = -\frac{1}{2} \frac{\partial^2 u}{\partial z^2} + V_0 \sin^2(Kz) u + \frac{1-\frac{3}{2}|u|^2}{\sqrt{1-8|u|^2}} u + \Gamma u(z) \int_{-\infty}^{\infty} \frac{|u(z')|^2}{|z-z'|^3} \, dz'.$$

(3)

To present the results for soliton families, we will use the norm defined by

$$P = \int_{-\infty}^{\infty} |u(z)|^2 \, dz$$

(4)

(according to the above definitions, P is identical to $|\gamma|$, but parameter γ is not used below).

Experimentally adjustable coefficients in this model are the relative strength of the DD/contact interactions, Γ, and the norm of the stationary wavefunction, $P \sim N(a_\perp \sqrt{m\omega_\perp})$ [14, 16, 27]. In particular, $P \sim 1$ corresponds to ~ 1000 atoms in the 52Cr condensate [14, 16]. Actually, Γ can be made both positive and negative, and its absolute value may be altered within broad limits by means of the Feshbach resonance (without the application of the Feshbach resonance, $|\Gamma| \geq 0.15$ in the condensate of chromium atoms) [17, 31].

The stationary equation (3) was solved numerically by means of an algorithm based on the shooting method. We restrict the analysis to fundamental solitons with a single maximum. Therefore, we chose the following boundary conditions in the shooting procedure: the first derivative of the wavefunction must be zero at the point of the maximum amplitude, and the wavefunction must decay exponentially at infinity. Note that the integral term in equation (3) has the form of a convolution [32]

$$\int_{-\infty}^{\infty} V(z-z')|u(z')|^2 \, dz' \equiv V(z) \times |u(z)|^2,$$

(5)
where $\hat{\text{next iteration, we used the previous solution to calculate the split-step Fourier method [33]. To that end, equation (2) of the Fourier images of the interaction potential and local edges, which correspond to periodic Bloch waves. The semi-infinite gap is located below the lowest band.

hence its Fourier transform can be calculated as a product of the Fourier images of the interaction potential and local density, $|u(z)|^2$. To calculate the integral term more accurately, we adopted an iterative shooting procedure. For the first iteration, we assumed that the potential of the interaction in equation (3) is tantamount to the Mathieu equation

$$Kz, q = -V_0/2K^2$$ and $p = 2(q - 1/K^2 + \mu/K^2)$, hence the well-known bandgap diagram for the Mathieu equation (see, e.g., [34]) can be used. That diagram, translated into the notation adopted above, is displayed in figure 1. The nonlinear localization of matter waves in the form of gap solitons may occur in gaps of the linear spectrum. In the case of the local attractive nonlinearity, fundamental solitons may occur in gaps of the linear spectrum. In the case of the local attractive nonlinearity, fundamental solitons may occur in gaps of the linear spectrum.

$P(\mu)$ dependence, the norm versus the chemical potential. In particular, as the collapse instability is absent, unstable fundamental solitons can only evolve into breathers. The situation in the case of the repulsion is similar to that in the case of the discrete NPSE [27].

Figure 1. The bandgap diagram for the linearized model. Shaded regions depict the Bloch bands, separated by the gaps, where gap solitons can exist in the nonlinear system. Solid lines depict band edges, which correspond to periodic Bloch waves. The semi-infinite gap is located below the lowest band.

Figure 2. Fundamental solitons for three different cases: in the absence of the DD interaction ($\Gamma = 0, \mu = 1.254$, the solid line); in the presence of the attractive DD interaction ($\Gamma = -0.5, \mu = 0.8$, the dashed line); in the presence of the repulsive DD interaction ($\Gamma = 0.35, \mu = 1.4$, the dotted line). In all the cases, the strength of the optical-lattice potential (shown by gray lines) is $V_0 = 1$, and the soliton’s norm is $P = 1.173$.

3. Fundamental solitons

Stationary wavefunction $u(z)$ was found from the solution of stationary equation (3). In the case of the noninteracting condensate ($\gamma = 0$), and without the DD interactions ($\Gamma = 0$), equation (3) is tantamount to the Mathieu equation

$$\frac{d^2 u}{dy^2} - [2q \cos(2y) - p]u = 0,$$

where $\gamma = Kz, q = -V_0/2K^2$ and $p = 2(q - 1/K^2 + \mu/K^2)$, hence the well-known bandgap diagram for the Mathieu equation (see, e.g., [34]) can be used. That diagram, translated into the notation adopted above, is displayed in figure 1. The nonlinear localization of matter waves in the form of gap solitons may occur in gaps of the linear spectrum. In the case of the local attractive nonlinearity, fundamental solitons populate the semi-infinite gap.

Figure 2 displays typical examples of fundamental solitons, with equal values of the norm, which were obtained as numerical solutions to equation (3) in cases of zero, attractive and repulsive DD interactions. In the presence of the attractive DD interaction, the solitons are narrower and feature a higher amplitude, while in the case of the DD repulsion, they are wider, and have a lower amplitude than the respective soliton in the absence of the DD interaction. The peculiarity of the NPSE in the case of the attractive contact interaction is that the amplitude of the soliton is limited by a critical value. The collapse setting in when the amplitude attains that value [4, 12]. In contrast to that, in the ordinary 1D GPE the amplitude may grow indefinitely without causing the collapse.

If the local interaction is repulsive ($\gamma = -1$), fundamental solitons in the NPSE may only be supported by the attractive DD interaction, which must dominate over the contact repulsion. In that case, the difference between the NPSE and ordinary 1D GPE is not significant. In particular, as the collapse instability is absent, unstable fundamental solitons can only evolve into breathers. The situation in the case of the repulsion is similar to that in the case of the discrete NPSE [27].

4. The influence of the dipole–dipole interactions on the collapse

In this section, we focus on the dynamics of fundamental solitons in the presence of the attractive contact interaction ($\gamma = +1$) and nonlocal DD of either sign. The collapse occurs in this case, as well as in the respective discrete setting [27].

A global characteristic of soliton families is the $P(\mu)$ dependence, the norm versus the chemical potential. In figure 3 we display the $P(\mu)$ curves obtained for different values of Γ. The stability of the soliton may be assessed according to two different conditions: $dP/d\mu \leq 0$ (the Vakhitov–Kolokolov (VK) criterion), and the absence of eigenvalues for small perturbations with positive real parts (the spectral condition), see [35] and references therein.

In the presence of the attractive contact interaction, the $P(\mu)$ dependences feature two different regions, one where the
The spectral stability condition was examined by numerically computing the corresponding eigenvalues, using linearized equations for small perturbations. It has been found that the spectral condition is violated in the entire parameter space which was explored, see figure 4. The eigenvalue spectra are quite similar to those found for inter-site solitons in the discrete version of 1D NPSE [27].

The spectral stability condition was examined by numerically computing the corresponding eigenvalues, using linearized equations for small perturbations. It has been found that the spectral condition is violated in the entire parameter space which was explored, see figure 4. The eigenvalue spectra are quite similar to those found for inter-site solitons in the discrete version of 1D NPSE [27]. Note that the spectra for solitons in the NPSE exhibit an abrupt (quasi-exponential) growth of real parts of the eigenvalues (see figure 4(a)), which does not happen in the respective GPE with the cubic nonlinearity, cf figure 4(b). An interesting fact revealed by the numerical analysis is that the threshold of the abrupt growth of the real part of the complex eigenvalues corresponds to the onset of the collapse instability of the solitons. Indeed, direct simulations of equation (2) show that unstable solitons with \(\mu \) higher than the threshold value evolve into robust localized breathers (figure 5(a)), while the solitons with \(\mu \) taken below the threshold exhibit the collapse instability, which manifests itself through simultaneous decrease of the soliton’s width and growth of the amplitude towards the limit value, as seen in figure 5(b). Points of the onset of the collapse instability are also marked in figure 3. It is worthy to note that the instability sets in earlier than the norm attains the maximum values (full curves \(P(\mu) \) could be drawn in spite of the instability, as they were obtained from the numerical solution of stationary equation (3)).

With the increase of the strength of the attractive DD interaction, the threshold value of \(\mu \) becomes lower, hence the region in the parameter space where unstable solitons do not collapse but rather evolve into breathers expands. These results are presented as the collapse diagram in the \((\Gamma, \mu)\) plane (see figure 6), where the borderline separates the collapse region from that where the formation of breathers takes place. Qualitatively, the nearly linear dependence of the threshold on \(\Gamma(\mu) \) can be understood, assuming that the nonlocality range is very large, covering the entire soliton. Indeed, in that case the last term in equation (3) is proportional to \(\Gamma P(\mu) \), which implies a linear shift of \(\mu \).

Thus, the collapse instability of the fundamental solitons may be suppressed by using sufficiently strong attractive DD interactions. This prediction of the stability analysis based on the computation of the eigenvalues was fully corroborated by direct simulations of equation (2).

5. Conclusion

The purpose of this work was to achieve a better understanding of the influence of the nonlocal DD (dipole–dipole) interactions on the stability and collapse of localized nonlinear modes in the BEC trapped in a combination of a tight transverse parabolic potential and a relatively loose periodic OL potential acting in the axial direction. To this end, we have introduced the model based on the one-dimensional NPSE (nonpolynomial Schrödinger equation), which includes the
References

[1] Leggett A J 2006 Quantum Liquids (Oxford: Oxford University Press)
[2] Pérez-García V M, Michinel H and Herrero H 1998 Phys. Rev. A 57 3837

Acknowledgments

GG, AM and LjH acknowledge support from the Ministry of Science, Serbia (through project 141034). The work of BAM was supported, in part, by the German–Israel Foundation, through grant No 149/2006. This author appreciates hospitality of the Vinča Institute of Nuclear Sciences (Belgrade, Serbia).

References

[1] Leggett A J 2006 Quantum Liquids (Oxford: Oxford University Press)
[2] Pérez-García V M, Michinel H and Herrero H 1998 Phys. Rev. A 57 3837

Contact and DD interaction terms, as well as the OL potential. Both attractive and repulsive signs of the contact and DD interactions were considered. The analysis was focused on fundamental solitons in the semi-infinite gap. While all the stationary solitons are unstable, an essential conclusion is that the attractive DD interactions may prevent the collapse instability of the fundamental solitons, replacing the onset of the collapse by the transformation of the solitons into robust breathers. This general result is consistent with findings recently reported for the 1D discrete version of the NPSE.

Figure 5. Illustration of the evolution of unstable fundamental solitons into breathers, or onset of the collapse. In the former case (a) the oscillating amplitude of the breather, and in the latter case (b) the monotonously growing soliton amplitude are plotted by the solid curves. Dashed and dotted lines in (a) depict the smallest and largest values of the FWHM (full width at half maximum) for the breather, while in (b) the FWHM of the collapsing soliton is depicted by the dashed line. In all the cases the unit of FWHM is the period, T_{lat} and $V_0 = 1$.

Figure 6. The collapse diagram for fundamental solitons in the NPSE with the attractive sign of both the contact and DD interactions ($V_0 = 1$). The plotted line separates parameter regions where solitons evolve into breathers, and regions where solitons suffer the collapse.

[3] Murychev A E, Shlyapnikov G V, Ertmer W, Sengstock K and Lewenstein M 2002 Phys. Rev. Lett. 89 110401
[4] Salasnich L 2002 Laser Phys. 12 198
Salasnich L and Malomed B A 2006 Phys. Rev. A 74 053610
Salasnich L, Cetoli A, Malomed B A and Toigo F 2007 Phys. Rev. A 75 033622
Salasnich L, Cetoli A, Malomed B A, Toigo F and Reatto L 2007 Phys. Rev. A 76 013623
Salasnich L, Malomed B A and Toigo F 2007 Phys. Rev. A 76 063614
[5] Sinha S, Cherny A Y, Kovrizhin D and Brand J 2006 Phys. Rev. Lett. 96 030406
[6] Khaykovich L and Malomed B A 2006 Phys. Rev. A 74 023607
[7] De Nicola S, Malomed B A and Fedele R 2006 Phys. Lett. A 360 164
De Nicola S, Fedele R, Javanovic D, Malomed B A, Man‘ko M A, Man‘ko V I and Shukla P K 2006 Eur. Phys. J. B 54 113
[8] Carretero-González R, Frantzeskakis D J and Kevrekidis P G 2008 Nonlinearity 21 R139–202
[9] Strecker K E, Partridge G B, Truscott A G and Hulet R G 2002 Nature 417 150
see also Strecker K E, Partridge G B, Truscott A G and Hulet R G 2003 New J. Phys. 5 73
[10] Cornish S L, Thompson S T and Wieman C E 2006 Phys. Rev. Lett. 96 170401
[11] Mateo A M and Delgado V 2006 Phys. Rev. Lett. 97 180409
Mateo A M and Delgado V 2008 Phys. Rev. A 77 013617
[12] Salasnich L, Parola A and Reatto L 2002 Phys. Rev. A 66 043603
Salasnich L 2004 Phys. Rev. A 70 053617
[13] Trombettoni A and Smerzi A 2001 Phys. Rev. Lett. 86 2353
Abdullaev F Kh, Baizakov B B, Darmanyan S A, Konotop V V and Salerno M 2001 Phys. Rev. A 64 043606
Alfimov G L, Kevrekidis P G, Konotop V V and Salerno M 2002 Phys. Rev. E 66 046608
Carretero-González R and Promislov K 2002 Phys. Rev. A 66 033610
Effremidis N K and Christodoulides D N 2003 Phys. Rev. A 67 063608
[14] Gligorić G, Maluckov A, Hadžievski Lj and Malomed B A 2008 Phys. Rev. A 78 063615
[15] Porter M A, Carretero-González R, Kevrekidis P G and Malomed B A 2005 Chaos 15 015115
[16] Maluckov A, Hadžievski Lj, Malomed B A and Salasnich L 2008 Phys. Rev. A 78 013616
[17] Griesmaier A, Werner J, Hensler S, Stuhler J and Pfau T 2005 Phys. Rev. Lett. 94 160401
Stuhler J, Griesmaier A, Koch T, Fattori M, Pfau T, Giovanazzi S, Pedri F and Santos L 2005 Phys. Rev. Lett. 95 150406
Werner J, Griesmaier A, Hensler S, Stuhler J and Pfau T 2005
Phys. Rev. Lett. 94 130201
Griesmaier A, Stuhler J, Koch T, Fattori M, Pfau T and Giovanazzi S 2006
Phys. Rev. Lett. 97 250402
Lahaye T, Koch T, Fröhlich B, Fattori M, Metz J, Griesmaier A, Giovanazzi S and Pfau T 2007 Nature 448 672
[18] Köhler T, Góral K and Julienne P S 2006 Rev. Mod. Phys. 78 1311
Sage J, Sainis S, Bergeman T and DeMille D 2005 Phys. Rev. Lett. 94 203001
Ospelkaus C, Humbert L, Ernst P, Sengstock K and Bongs K 2006 Phys. Rev. Lett. 97 120402
Deiglmayr J, Grochola A, Repp M, Mörtlauer K, Glück K, Lange J, Dulieu O, Wester R and Weidemüller M 2008
Phys. Rev. Lett. 101 133004
[19] Marinescu M and You L 1998 Phys. Rev. Lett. 81 4596
Giovanazzi S, O’Dell D and Kurizki G 2002 Phys. Rev. Lett. 88 130402
Mazets I E, O’Dell D, Kurizki G, Davidson N and Schleich W P 2004 J. Phys. B: At. Mol. Opt. Phys. 37 S155
[20] Menotti C, Lewenstein M, Lahaye T and Pfau T 2008 Dynamics and Thermodynamics of Systems with Long-range Interaction: Theory and Experiments ed A Campa, A Cianfani, G Morigi and F S Labini (CP970: New York: AIP) p 332
[21] Santos L, Shlyapnikov G V, Zoller P and Lewenstein M 2000 Phys. Rev. Lett. 85 1791
Santos L, Shlyapnikov G V, Zoller P and Lewenstein M 2002 Phys. Rev. Lett. 88 139904 (erratum)
Góral K and Santos L 2002 Phys. Rev. A 66 023613
Lushnikov P M 2002 Phys. Rev. A 66 051601
Lahaye T, Metz J, Fröhlich B, Koch T, Meister M, Griesmaier A, Pfau T, Saito H, Kawaguchi Y and Ueda M 2008 Phys. Rev. Lett. 101 080401
[22] Pedri P and Santos L 2005 Phys. Rev. Lett. 95 200404
Nath R, Pedri P and Santos L 2007 Phys. Rev. A 76 013606
[23] Tikhonenkov I, Malomed B A and Vardi A 2008 Phys. Rev. A 78 043614
[24] Giovanazzi S, Görlich A and Pfau T 2002 Phys. Rev. Lett. 89 130401
Micheli A, Pupillo G, Büchler H P and Zoller P 2007 Phys. Rev. A 76 043604
[25] Tikhonenkov I, Malomed B A and Vardi A 2008 Phys. Rev. Lett. 100 090406
[26] Rotschild C, Cohen O, Manel O and Segev M 2005 Phys. Rev. Lett. 95 213904
Briedis D, Petersen D E, Edmundson D, Królakowski W and Bang O 2005 Opt. Exp. 13 435
[27] Gligorić G, Maluckov A, Hadžievski Lj and Malomed B A 2008 Phys. Rev. A 78 063615
[28] Gligorić G, Maluckov A, Hadžievski Lj and Malomed B A 2009 Phys. Rev. A 79 05360
[29] Klawunn M and Santos L 2008 arXiv:0812.3543
[30] Cuevas J, Malomed B A, Kevekidis P G and Frantzeskakis D J 2009 Phys. Rev. A 79 053608
[31] Koch T, Lahaye T, Metz J, Fröhlich B, Griesmaier A and Pfau T 2008 Nature Phys. 4 218
[32] Goral K, Razazewski K and Pfau T 2000 Phys. Rev. A 61 051601
[33] Taha T A and Ablowitz M J 1984 J. Comput. Phys. 55 203
[34] Baizakov B B, Konotop V V and Salerno M 2002 J. Phys. B: At. Mol. Opt. Phys. 35 5105
Carusotto I, Embriaco D and La Rocca G C 2002 Phys. Rev. A 65 053611
Louis P J Y, Ostrovskaya E A, Savage C M and Kivshar Yu S 2003 Phys. Rev. A 67 013602
[35] Sivan Y, Ilan B and Fibich G 2008 Phys. Rev. E 78 046602