ERRATUM

Leigh syndrome caused by mutations in MTFMT is associated with a better prognosis

In Hayhurst et al. (2019),1 the authors’ affiliation were incorrectly published on page 515.
The authors’ affiliation should read as:

Hannah Hayhurst1, Irenaeus F. M. de Coo2,11, Dorota Piekutowska-Abramczuk3, Charlotte L. Alston1, Sunil Sharma1, Kyle Thompson1, Rocio Rius4,5, Langping He1, Sila Hopton1, Rafal Ploski3, Elzbieta Ciara3, Nicole J. Lake4,5, Alison G. Compton4,5, Martin B. Delatycki4,5, Aad Verrips6, Penelope E. Bonnen7, Simon A. Jones8, Andrew A. Morris8, David Shakespeare9, John Christodoulou4,5, Dorota Wesoł-Kucharska10, Dariusz Rokicki10, Hubert J. M. Smeets11, Ewa Pronicka3,10, David R. Thorburn4,5, Gráinne S. Gorman1, Robert McFarland1, Robert W. Taylor1, Yi Shiau Ng1

1Wellcome Centre for Mitochondrial Research, Institute of Neuroscience, Newcastle University, Newcastle upon Tyne, United Kingdom
2Department of Neurology, Erasmus Medical Centre, Rotterdam, Netherlands
3Department of Medical Genetics, Warsaw Medical University, 02-106 Warsaw, Poland
4Victorian Clinical Genetics Service and Murdoch Children’s Research Institute, Parkville, Victoria 3052, Australia
5Department of Paediatrics, University of Melbourne, Melbourne, Victoria 3052, Australia
6Department of Neurology, Canisius Wilhelmina Hospital, Nijmegen, The Netherlands
7Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
8Manchester Centre for Genomic Medicine, Manchester University NHS Foundation Trust, Manchester Academic Health Sciences Centre, Manchester, UK
9Neuro-rehabilitation unit, Royal Preston Hospital, Preston, United Kingdom
10Department of Paediatrics, Nutrition and Metabolic Diseases, The Children’s Memorial Health Institute, 04-730 Warsaw, Poland
11Department of Clinical Genomics, Research Schools GROW and MHeNS, Maastricht University, Maastricht, The Netherlands

We apologize for this error.

Reference

1. Hayhurst H, de Coo IF, Piekutowska-Abramczuk D, et al. Leigh syndrome caused by mutations in MTFMT is associated with a better prognosis. Ann Clin Transl Neurol 2019;6:515–524.
Minerva Access is the Institutional Repository of The University of Melbourne

Author/s:
Hayhurst, H; de Coo, IFM; Piekutowska-Abramczuk, D; Alston, CL; Sharma, S; Thompson, K; Rius, R; He, L; Hopton, S; Ploski, R; Ciara, E; Lake, NJ; Compton, AG; Delatycki, MB; Verrips, A; Bonnen, PE; Jones, SA; Morris, AA; Shakespeare, D; Christodoulou, J; Wesol-Kucharska, D; Rokicki, D; Smeets, HJM; Pronicka, E; Thorburn, DR; Gorman, GS; McFarland, R; Taylor, RW; Ng, YS

Title:
Leigh syndrome caused by mutations in MTFMT is associated with a better prognosis (vol 6, pg 515, 2019)

Date:
2019-04-01

Citation:
Hayhurst, H., de Coo, I. F. M., Piekutowska-Abramczuk, D., Alston, C. L., Sharma, S., Thompson, K., Rius, R., He, L., Hopton, S., Ploski, R., Ciara, E., Lake, N. J., Compton, A. G., Delatycki, M. B., Verrips, A., Bonnen, P. E., Jones, S. A., Morris, A. A., Shakespeare, D., ... Ng, Y. S. (2019). Leigh syndrome caused by mutations in MTFMT is associated with a better prognosis (vol 6, pg 515, 2019). ANNALS OF CLINICAL AND TRANSLATIONAL NEUROLOGY, 6 (4), pp.821-821. https://doi.org/10.1002/acn3.780.

Persistent Link:
http://hdl.handle.net/11343/271489

License:
CC BY-NC-ND