Article

The Chemopreventive Effects of Polyphenols and Coffee, Based upon a DMBA Mouse Model with microRNA and mTOR Gene Expression Biomarkers

Richard Molnar 1,2,*, Laszlo Szabo 1,2, Andras Tomesz 1,2, Arpad Deutsch 1, Richard Darago 1, Bence L. Raposa 1, Nowrasteh Ghodratollah 2, Timea Varjas 2,*, Balazs Nemeth 2, Zsuzsanna Orsos 2, Eva Pozsgai 2, Jozsef L. Szentpeteri 3,*, Ferenc Budan 3,4,6,† and Istvan Kiss 2,†

1 Doctoral School of Health Sciences, Faculty of Health Sciences, University of Pécs, 7624 Pécs, Hungary; laszlo.szabo.pte@gmail.com (L.S.); andras.tomesz.pte@gmail.com (A.T.); deutscharpad@gmail.com (A.D.); daragorichard@gmail.com (R.D.); raposa.bence@gmail.com (B.L.R.)
2 Department of Public Health Medicine, Medical School, University of Pécs, 7624 Pécs, Hungary; taytakh@yahoo.com (N.G.); vtimi_68@yahoo.com (T.V.); nem_bal2@hotmail.com (B.N.); zsuzsza.orsos@aok.pte.hu (Z.O.); pozsgay83@gmail.com (E.P.); istvan.kiss@aok.pte.hu (I.K.)
3 Institute of Transdisciplinary Discoveries, Medical School, University of Pécs, 7624 Pécs, Hungary
4 Institute of Physiology, Medical School, University of Pécs, 7624 Pécs, Hungary
* Correspondence: richard.molnar.pte@gmail.com (R.M.); szentpeteri.jozsef@pte.hu (J.L.S.);
budan.ferenc@pte.hu (F.B.)
† These authors contributed equally to this work.

Abstract: Polyphenols are capable of decreasing cancer risk. We examined the chemopreventive effects of a green tea (Camellia sinensis) extract, polyphenol extract (a mixture of blackberry (Rubus fruticosus), blackcurrants (Ribes nigrum), and added resveratrol phytoalexin), Chinese bayberry (Myrica rubra) extract, and a coffee (Coffea arabica) extract on 7,12-dimethylbenz[a]anthracene (DMBA) carcinogen-increased miR-134, miR-132, miR-124-1, miR-9-3, and mTOR gene expressions in the liver, spleen, and kidneys of CBA/Ca mice. The elevation was quenched significantly in the organs, except for miR-132 in the liver of the Chinese bayberry extract-consuming group, and miR-132 in the coffee extract-consuming group, only miR-9-3 and mTOR decreased significantly in the liver; also, miR-134 decreased significantly in the spleen, and, additionally, miR-124-1 decreased significantly in the kidney. Our results are supported by literature data, particularly the DMBA-generated ROS-induced inflammatory and proliferative signal transducers, such as TNF, IL1, IL6, and NF-kB, as well as oncogenes, namely RAS and MYC. The examined chemopreventive agents, besides the obvious antioxidant and anti-inflammatory effects, mainly blocked the mentioned DMBA-activated factors and the mitogen-activated protein kinase (MAPK) as well, and, at the same time, induced PTEN as well as SIRT tumor suppressor genes.

Keywords: miR; carcinogen; 7,12-dimethylbenz[a]anthracene; polyphenol; coffee; miR-134; miR-132; miR-124-1; miR-9-3; mTOR

1. Introduction

Nowadays, the incidence and mortality of cancer in high-income countries (HIC) is decreasing [1,2], but in the low- and middle-income countries (LMIC), the trend-line is still supposed to increase slightly [1]. According to the WHO’s assessment, 30–50% of cancer cases could have been prevented [3]. Indeed, the improving tendency in HIC is the result of successful primer prevention, early detection, and advanced therapies [1]. However, cancer is still, globally, the second leading cause of death (with approximately 9.6 million deaths in 2018) [4] and is also the greatest disease burden.

Therefore, novel chemopreventive strategies are warranted to enhance anticarcinogen mechanisms [5–10]. In vitro studies and in vivo animal experiments suggest antmutagenic
Cells 2022, 11, 1300 and anticarcinogenic effects of flavonoids [11–13]. Moreover, flavonoids are consumed widely, and a negative correlation was found between the total flavonoid intake and the incidence of lung cancer formation among smokers [11].

Among flavonoids, green tea catechin (GTC), polyphenols [14], myricetin (3,5,7,3′,4′,5′-hexahydroxyflavone) [15], and stilbene resveratrol (3,5,4′-trihydroxystilbene), as well as its precursor, the piceid (3,5,4′-trihydroxystilbene-3-O-′-D glucopyranoside) [12], are promising compounds. The anticancer properties of these compounds have been proven by numerous in vitro and in vivo experiments, as well as clinical and epidemiological studies [9,13,16]. In addition, the main components of coffee (Coffea arabica), such as caffeine, chlorogenic acids, hydroxycinnamic acids, melanoids, etc., also exert tumor-suppressive effects [16,17]. However, during the Maillard reactions when coffee is roasted (besides the melanoids), acrylamide and furan are produced in traces [17,18], which are second-class carcinogens [17].

Grapes (Vitis vinifera) are abundant in stilbene phytoalexin molecules, such as resveratrol and piceid, among other polyphenols, namely anthocyanins, flavanols, flavonols, etc. [12,19]. Although resveratrol’s bioavailability is poor, it provided promising anticarcinogen results in preclinical in vitro and in vivo animal tests [20]. Still in a clinical phase I pilot study, the cancer-preventative effects of resveratrol and freeze-dried grape powder were confirmed, as they significantly inhibited (n = 8, p < 0.03) the expression of the WNT oncogene in the colonic mucosa [21]. Catechins of green tea (Camellia sinensis) are among the main anticarcinogenic chemopreventive agents [14], especially the most potent epigallocatechin-3-gallate (EGCG) [14,22,23]. A meta-analysis highlighted that daily consumption of green tea decreased the risk of liver cancers [22] in Asian women (with 5+ cups consumed daily) in a significant manner [23]. Chinese bayberry (Myrica rubra) contains a high amount of myricetin (3,5,7,3′,4′,5′-hexahydroxyflavone), that can be extracted [24]. Based on nutrition surveys, the myricetin intake decreased the relative risk (RR) of prostate cancer between the highest and lowest quartiles of myricetin-consuming men (RR = 0.43 (95% CI: 0.22, 0.86; p for trend = 0.002)) [15]. According to the case-controlled study by Ferruci et al., the regularly high intake of tea combined with coffee reduced the risk of basal cell carcinoma (BCC), compared to proper random control persons (OR = 0.57, 95% CI = 0.34–0.95, p = 0.037) [25].

Further in vivo tests are required, with the purpose of possessing knowledge about the chemopreventive agent’s possible additional health-promoting effects in order to develop novel chemopreventive strategies. To perform an in vivo test, the 7,12-dimethylbenz[a]anthracene (DMBA) carcinogen model was utilized [26]. DMBA is a complete, pluripotent carcinogen aromatic hydrocarbon molecule [27], which forms DNA adducts and generates reactive oxygen species (ROS) [28,29], inducing carcinogenesis [30]. Therefore, DMBA causes, in codon 61 of the RAS oncogenes CAA→CTA, transversion mutations [31]. Moreover, DMBA alters the expression patterns of onco- and tumorsuppressor genes in the following manner: DMBA increases the expression levels of oncogenes, which consequently (in most cases) increases the expression of protective tumorsuppressor genes [26,32–35]. Moreover, in vivo experimental data has established some relevant miRNAs (miRs), such as miR-134, miR-132, miR-124-1, and miR-9-3, whose expressions are increased in response to DMBA exposure [36–40]. MiRs are noncoding, single-stranded RNA molecules transcribed from DNA. After maturation, their length is 19–25 nucleotides and they are transported to target cells by the following carriers: apoptosis bodies, exosomes, membrane-derived vesicles, high-density lipoproteins (HDL), and ribonucleoprotein complexes [41]. MiRNAs bind to their target mRNA complementary sequences in the 3′-untranslated region (3′-UTR) of a protein-coding gene, leading to a decrease in protein synthesis [42]. In chemical carcinogen-induced tumorigenesis, dysregulated patterns of miRNAs play crucial roles [41]. For example, DMBA exposure increases the expression of the oncogene RAS family [35], while miRs play an important role in (RAS-involved) mitogen-activated protein kinase (MAPK) pathways, inducing carcinogenesis [43].
Thus, the mentioned molecular epidemiological biomarkers indicate DMBA exposure early and in a reliable manner [26,32,33,35,39,40]. Furthermore, we also examined the gene expression level of the mammalian target of rapamycin (mTOR), which is involved in several cellular homeostasis mechanisms [36,38]. More specifically, the liver, kidneys, and spleen parenchymal organs were studied because the DMBA treatment caused a significantly increased expression on relevant miR-134, miR-132, miR-124-1, miR-9-3, and mTOR in those organs for at least 24 h, based upon earlier research data [36–38]. Moreover, in earlier studies, the examined chemopreventive polyphenol extract, green tea extract, Chinese bayberry extract, and coffee extract ameliorated the DMBA, caused repetitive long interspersed element-1 (LINE-1) DNA hypomethylation [9].

In this study, the preventive effects of several polyphenols, namely the green tea extract (catechin content of 80%), Chinese bayberry extract (myricetin content of 80%), polyphenol extract (with 4 g/100 mL added to resveratrol), and coffee extract were examined in a DMBA-treated mouse model to elucidate the effects of chemopreventive agents on the expression profile of the mentioned miRs and mTOR, in order to decide if their elevation caused by DMBA exposure can be mitigated or not.

2. Materials and Methods

2.1. Animal Treatment

The experimental setting in our study was similar to that described by Szabo et al. 2021 [9]. We utilized six groups of female CBA/Ca mice (n = 6) aged 12 weeks. Pre-feeding was not given to the untreated and DMBA-treated control groups; however, one group received 4 mg/day of the animal green tea (Camellia sinensis) excerpt (Xi’an Longze Biotechnology Co. Ltd., Xi’an, China); one group received 2.5 mg/day of the animal Chinese bayberry (Myrica Rubra) supplement (Xi’an Longze Biotechnology Co. Ltd., Xi’an, China); one group received 30 mg/day of the animal polyphenol extract (common grapevine (Vitis vinifera ‘Cabernet Sauvignon’) seed and peel, blackberry ‘thorn free’ (Rubus fruticosus ‘Thornfree’) seed and peel, and blackcurrants, plus an additional 4 g/100 mL of resveratrol, in particular, FruitCafe™ (Slimbios Ltd., Budapest, Hungary); and one group received a coffee (Coffea arabica) extract for two weeks (30 mg/day/animal, up to 150 mL) in addition to their regular feed. All other five classes of animals received 20 mg/bwkg DMBA intraperitoneally (Sigma-Aldrich, St. Louis, MO, USA), dissolved in 0.1 mL of corn oil, with the exception of the untreated control group. Animals were put to death by cervical dislocation after 24 h of DMBA exposure, and their kidneys, liver, and spleen were extracted. Table 1 summarizes the specifics of the experimental setup, as well as the substances used.

Tomesz et al.’s 2020 publication [36] utilized the same experimental procedure. Animal experimentation standards and criteria were followed when housing mice. All the measures have been taken to avoid unnecessary pain. The experiment was carried out in accordance with current ethical rules (the Animal Welfare Committee of the University of Pecs issued the ethical license no. BA02/2000-79/2017).

2.2. Collective Isolation of RNA

A TRIZOL reagent (Thermo Fisher Scientific, Waltham, MA, USA) was used to isolate total cellular RNA, according to the manufacturer’s guidelines. The quality of the RNA was determined using NanoDrop absorption photometry, and only RNA fractions with A > 2.0 at 260/280 nm were utilized in the RT-PCR (reverse transcription polymerase chain reaction) procedure.
Group	Ip. DMBA	Daily Dose (of 1 Animal)	Producer	Product and Main Components	Latin/Scientific Names	Quantity
Negative Control *(n = 6)*	-	-				
DMBA Control *(n = 6)*	+	-				
Flavonoid Extract + DMBA *(n = 6)*	+	30 mg	Slimbios Ltd.	FruitCafe™		
				Common grape vine seed, peel	Vitis vinifera 'Cabernet Sauvignon'	20 g/100 mL
				Erithritol	(2R,3S)-Butane-1,2,3,4-tetrol trans-3,5,4'-trihydroxystilbene	12 g/100 mL
				Resveratrol	Trihydroxystilbenetrans-3,5,4'-trihydroxystilbene	4 g/100 mL
				Blackberry ‘thornfree’ seed, peel	Rubus fruticosus “thorn-free”	2 g/100 mL
				Black currant seed, peel	Ribes nigrum	2 g/100 mL
				Total polyphenol		4000–5000 mg/100 mL
Green Tea Extract + DMBA *(n = 6)*	+	4 mg	Xi'an Longze Biotechnology Co. Ltd.	Green tea	Camellia sinensis	
				Total polyphenol	98.53%	
				Total catechins	80.42%	
				Epigallocatechin-3-gallate	50.45%	
				Caffeine	1,3,7-Trimethylxantheine	0.28%
				Chlorogenic acid	3-Caffeoylquinic acid	5.03%
				Caffeine	1,3,7-Trimethylxantheine	1.21%
Coffee Extract + DMBA *(n = 6)*	+	30 mg	Xi'an Longze Biotechnology Co. Ltd.	Coffee arabica		
				Myricetin	3,5,7,3',4',5'-Hexahydroxyflavone	80.42%

2.3. Polymerase Chain Reaction in Reverse Transcription (RT-PCR)

On a LightCycler 480 qPCR system (Roche Diagnostics, Indianapolis, IN, USA), one-step PCR, containing a reverse transcription and a target amplification, was done in a 96-well plate using Kapa SYBR FAST One-step qPCR equipment (Kapa Biosystems, Wilmington, MA, USA).

The following temperatures of the program were used:

After a 5-min incubation at 42 °C, a 3-min incubation at 95 °C, 45 cycles (95 °C for 5 s, 56 °C for 15 s, and 72 °C for 30 s) was executed, with a fluorescence reading taken at the finish of each cycle. To improve the specificity of the amplification, a melting curve analysis was done on each run (95 °C for 5 s, 65 °C for 60 s, and 97 °C). The following components were used in the reaction mixture: 10 µL of KAPA SYBR FASTqPCR Master Mix, 0.4 µL of KAPA RT Mix, 0.4 of dUTP, 0.4 µL of primers, and 5 µL of a miR template in a total amount of 20 µL of sterile double-distilled water.

Table 2 summarizes the primer sequences (5ʼ-3′) of the mTORC1 gene, the studied miRs (miR-134, miR-132, miR-124-1, and miR-9-3), and the internal control (the mouse U6 gene). Integrated DNA Technologies (Integrated DNA Technologies Inc., Coralville, Iowa, USA) synthesized the primers, and the sequences were obtained from earlier publications [44,45].

Table 2. The details of the experimental arrangement and applied compounds.
Table 2. Displays of the mTORC1 gene primer sequences (5’-3’), as well as miR-134, miR-132, miR-124-1, miR-9-3, and the internal control (mouse U6 gene).

miR	Forward	Reverse
miR-134	TGTGACTGTTGACCAGAGG	G TGACTAGGTGGCCCACACAG
miR-132	ACCGTGGCTTTCGATTGTTA	GACCATGGCTGTAGACTGTT
miR-124-1	TCTCTCTCGGTGTTCAAGGC	ACCGCGTGCCTTAATTGTAT
miR-9-3	GCCCGTTTCTCTCTTTGGT	TCTAGCTTTATGACGGCTCTGTG
mTORC1	AAGGCCGTATGGGATTTGG	TGCTCAAGTCACGGGGGCAAG
mouse U6	CGCTTCGGCAGCACATAC	TTCACGAATTTGCGTGTCAT

2.4. Calculations and Statistical Analyses

The 2^−\Delta\Delta CT approach was used to determine and compare relative miR expression levels. The Kolmogorov–Smirnov test, Levene’s test, and the T-probe were used to compare averages and test distributions and variances throughout the statistical study. For computations and analyses, the IBM SPSS 21 statistical program (International Business Machines Corporation, Armonk, NY, USA) was utilized. The statistical standard of significance was set at $p < 0.05$.

3. Results

3.1. Effect of Flavonoid Extract and DMBA Treatment in the Liver, Spleen, and Kidneys, Compared to the DMBA Positive Control

In the livers of animals, the consumption of the polyphenol extract significantly reduced the expressions of miR-9-3 ($−41\%$, $p < 0.05$; SD = 11.1%), miR-124-1 ($−68\%$, $p < 0.001$; SD = 10.1%), miR-124-2 ($−62.9\%$, $p = 0.001$; SD = 9.2%), miR-134 ($−77.9\%$, $p < 0.001$; SD = 5.6%), and mTORC1 ($−49\%$, $p < 0.001$; SD = 8.4%) when compared to the positive DMBA control group (Figure 1A). We also observed a significant decrease in the expression of miR-9-3 ($−38\%$, $p < 0.05$; SD = 12.1%), miR-124-1 ($−59\%$, $p < 0.05$; SD = 9.8%), miR-132 ($−62.4\%$, $p < 0.001$; SD = 8%), miR-134 ($−60.4\%$, $p < 0.001$; SD = 8%), and mTORC1 ($−39\%$, $p < 0.001$; SD = 8.6%) in the spleens of animals, compared to the positive DMBA control (Figure 1B). In the kidneys of animals, miR-9-3 ($−59\%$, $p < 0.05$; SD = 7.8%), miR-124-1 ($−62\%$, $p < 0.05$; SD = 13.1%), miR-134 ($−81.4\%$, $p < 0.001$; SD = 3.7%), and mTORC1 ($−59\%$, $p < 0.001$; SD = 6.3%) expressions were significantly lower in response to the polyphenol extract, compared to the positive DMBA control (Figure 1C), while the values for miR-132 ($−27.1\%$, $p = 0.051$; SD = 13.7%) were not statistically significant.

3.2. Effect of Green Tea Extract and DMBA Treatment in the Liver, Spleen, and Kidneys, Compared to the DMBA Positive Control

The consumption of the green tea extract significantly reduced the expression of miR-9-3 ($−33\%$, $p < 0.05$; SD = 12.9%), miR-124-1 ($−69\%$, $p < 0.001$; SD = 7.4%), miR-132 ($−45.4\%$, $p < 0.05$; SD = 10.2%), miR-134 ($−59.2\%$, $p < 0.001$; SD = 8.9%), and mTORC1 ($−57\%$, $p < 0.001$; SD = 6.7%) in the livers of animals, compared to the positive DMBA control (Figure 2A). The green tea extract resulted in a decrease in the expression of miR-9-3 ($−56\%$, $p < 0.001$; SD = 8.5%), miR-124-1 ($−62\%$, $p < 0.001$; SD = 11.3%), miR-132 ($−61.1\%$, $p < 0.001$; SD = 9.1%), miR-134 ($−47.6\%$, $p < 0.05$; SD = 11.2%), and mTORC1 ($−58\%$, $p < 0.001$; SD = 5.1%) in the spleens, compared to the positive DMBA control (Figure 2B). In the kidneys, we also observed a significant decrease in the expression of miR-9-3 ($−48\%$, $p < 0.05$; SD = 11.4%), miR-124-1 ($−36\%$, $p < 0.05$; SD = 16.6%), miR-132 ($−59.6\%$, $p < 0.001$; SD = 10.8%), miR-134 ($−53.3\%$, $p < 0.001$; SD = 11.1%), and mTORC1 ($−57\%$, $p < 0.001$; SD = 5.6%) in the group consuming the green tea extract, compared to the positive DMBA control (Figure 2C).
Figure 1. Expression patterns of miR-9-3, miR-124-1, miR-132, miR-134, and mTORC1 in the liver (A), spleen (B), and kidneys (C) of mice treated with DMBA and polyphenol extract ($n = 6$), compared to the DMBA-induced ($n = 6$) expression (* $p < 0.05$; ** $p < 0.001$).
Figure 2. Expression patterns of miR-9-3, miR-124-1, miR-132, miR-134, and mTORC1 in the liver (A), spleen (B), and kidneys (C) of mice treated with DMBA and green tea extract (n = 6), compared to the DMBA-induced (n = 6) expression (* p < 0.05; ** p < 0.001).
3.3. Effect of Chinese Bayberry Extract and DMBA Treatment in the Liver, Spleen, and Kidneys, Compared to the DMBA Positive Control

In the liver, a statistically significant decrease was observed in miR-9-3 (−58%; \(p < 0.001; \) SD = 9.1%), miR-124-1 (−43%; \(p < 0.05; \) SD = 14.6%), miR-134 (−40.6%; \(p < 0.05; \) SD = 16.8%), and mTORC1 (−39%; \(p < 0.001; \) SD = 9.6%) in the Chinese bayberry extract group compared to the positive DMBA control, while the decrease in miR-132 (−19.1%; \(p = 0.14; \) SD = 14.9%) was not statistically significant (Figure 3A). There were statistically significant downward changes for miR-9-3 (−46%; \(p < 0.05; \) SD = 11.1%), miR-124-1 (−57%; \(p < 0.05; \) SD = 12.9%), miR-132 (−32.3%; \(p < 0.05; \) SD = 15.1%), miR-134 (−51.8%; \(p < 0.001; \) SD = 10.3%), and mTORC1 (−32%; \(p < 0.001; \) SD = 8.6%) in the spleens of the Chinese bayberry extract-consuming group, compared to the positive DMBA control (Figure 3B). In the kidneys, compared to the positive DMBA control, a statistically significant decrease could be observed for miR-9-3 (−40%; \(p < 0.05; \) SD = 13.2%), miR-124-1 (−51%; \(p < 0.05; \) SD = 14%), miR-132 (−57.9%; \(p < 0.001; \) SD = 10.5%), miR-134 (−28.8%; \(p < 0.05; \) SD = 12.8%), and mTORC1 (−22%; \(p < 0.05; \) SD = 11.9%) in the Chinese bayberry extract group (Figure 3C).

Figure 3. Cont.
Figure 3. Expression patterns of miR-9-3, miR-124-1, miR-132, miR-134, and mTORC1 in the liver (A), spleen (B), and kidneys (C) of mice treated with DMBA and Chinese bayberry extract (n = 6), compared to the DMBA-induced (n = 6) expression (* p < 0.05; *** p < 0.001).

3.4. Effect of Coffee Extract and DMBA Treatment in the Liver, Spleen, and Kidneys, Compared to the DMBA Positive Control

In the livers, we observed a significant decrease in miR-9-3 (−37%; p < 0.05; SD = 19.8%) and mTORC1 (−37%; p < 0.05; SD = 14%) expressions in the group consuming the coffee extract, compared to the positive DMBA control, while the results for miR-124-1 (−21%; p = 0.21; SD = 23.6%), miR-132 (−16.7%; p = 0.24; SD = 19.4%), and miR-134 (−12.7%; p = 0.32; SD = 16.7%) were not statistically significant (Figure 4A). In the spleens, the expression of miR-9-3 (−46%; p < 0.05; SD = 10.7%), miR-134 (−38.9%; p < 0.05; SD = 12.7%), and mTORC1 (−20%; p < 0.05; SD = 8.9%) showed a statistically significant decrease in the coffee extract-consuming group, compared to the positive DMBA control, while the decrease in the expression of miR-124-1 (−15%; p = 0.37; SD = 22.9%) and the slight increase in the expression of miR-132 (13.1%; p = 0.40; SD = 23%) was not statistically significant (Figure 4B). In the kidneys, statistically significant decreases could be observed in miR-9-3 (−31%; p < 0.05; SD = 12.8%), miR-124-1 (−47%; p < 0.05; SD = 13.6%), miR-134 (−31.6%; p < 0.05; SD = 13.5%), and mTORC1 (−22%; p < 0.05; SD = 8.7%) in the coffee extract group, compared to the positive DMBA control, while the slight increase in miR-132 (22.1%; p = 0.18; SD = 25.4%) was not statistically significant (Figure 4C).
Figure 4. Expression patterns of miR-9-3, miR-124-1, miR-132, miR-134, and mTORC1 in the liver (A), spleen (B), and kidneys (C) of mice treated with DMBA and coffee extract (n = 6), compared to the DMBA-induced (n = 6) expression (*p < 0.05).

Table 3 shows the summary of expression changes caused by feeding in the observed DMBA pretreated organs.
Table 3. Summary table of expression changes caused by feeding in the observed DMBA pretreated organs (* decreasing significantly \(p < 0.05; *** \) decreasing significantly \(p < 0.001; D \) decrease was not significant; O decrease was questionably; I increase was questionably).

	miR-9-3	miR-124-1	miR-132	miR-134	mTORC1
Polyphenol extract					
Liver	*	***	***	***	***
Spleen	*	*	***	***	***
Kidneys	***	*	D	***	***
Green tea					
Liver	*	***	*	***	***
Spleen	***	***	***	*	***
Kidneys	*	*	***	***	***
Chinese bayberry					
Liver	***	*	D	*	***
Spleen	*	*	***	***	***
Kidneys	*	*	***	*	***
Coffee extract					
Liver	*	O	O	O	*
Spleen	*	O	I	*	*
Kidneys	*	*	I	*	*

4. Discussion

DMBA induces cellular damage by releasing reactive oxygen species (ROS), which triggers the production of cytokines (such as TNF, IL1, IL6) and transcription factors (such as NF-κB) [29,38,46], as well as lowering the protective glutathione (GSH) level [29,38,46,47]. These consequences result in redundantly activated inflammatory and proliferative secondary signal transduction pathways that are self-induced.

According to in vitro studies, resveratrol, EGCG, and myricetin inhibit CYP 1A1 and 1A2 enzymes [48–50], which activate DMBA [35]. If the DMBA activation is hindered, then the consequent HA-RAS and C-MYC oncogene overexpression is also blocked [32].

Polyphenol structures are generally ROS-scavenging antioxidants that also exert anti-inflammatory effects [51,52]. Thus, molecular features of flavonoids [53], chlorogenic acids, hydroxycinnamic acids, and the caffeine content of coffee [54] and melanoids [17] exert antioxidant (ROS-quenching) effects, directly mitigating the ROS-induced cellular damage [55–58]. Moreover, resveratrol [59], myricetin [53,58], GTC [60], and chlorogenic acid [61] induce the protective superoxide-dismutase (SOD) and glutathione-S-transferase (GST) enzymes. Furthermore, both resveratrol, as well as chlorogenic acids, decrease IL-1β, IL-6, and TNF-α expressions [62,63] among others. Flavonoids thereby regulate the carcinogen and/or inflammatory effect-activated signal transduction pathways; for example, they inhibit protein tyrosine and focal adhesion kinases, as well as matrix metalloproteinases (MMPs) [57,64].

Resveratrol [62] and myricetin [65] up-regulate cAMP-response element-binding proteins (CREB) through the activated silent Information Regulator T1 (SIRT1)-dependent pathway [66,67] resulting in a decrease in miR-134, miR-124, and mTOR expressions [68]. In contrast, the EGCG inhibited SIRT1, and both EGCG and resveratrol inhibited NF-κB activity as well [62,63,69], while NF-κB generally decreases miR-124 [70] and miR-132 [71]. Theoretically, decreased NF-κB activity (in a seemingly mutually exclusive mechanism) increases the expression of the anticarcinogen miR-134 [72]. However, NF-κB, TNF-α, and IL-1β increase miR-9 expression, which downregulates NF-κB expression in a negative feedback loop [73].

Moreover, in the coffee consuming group, the chlorogenic acids exert a kidney protective effect by inducing miR-134 [74], which suppresses MMP-9 and MMP-7 [75], ultimately decreasing cyclin D1 [76], which is encoded by CCND1 and is in inverse correlation with miR-134 [74]. In addition, resveratrol [77], EGCG [78], and caffeine [79] induce phosphatase and tensin homolog (PTEN) gene activity, which decreases cyclin D1 cell cycle proteins [80].
as well. Still, the stronger negative feedback regulation of miRs [36,37,81–83] prevail, ultimately decreasing miR-134 expression [36,38,81].

Resveratrol [13,63] and EGCG [84] inhibit antiapoptotic cascades by suppressing MAPK pathways [84]. This induces cell cycle arrest in the G0/G1 phase, which down-regulates miR-132 and upregulates miR-9 [84]. In all examined groups, the presumably decreased cyclin D1 level led to the decrease in mTOR expression [85]. In addition, myricetin blocks phosphoinositide 3-kinase (PI3K) [86], ultimately decreasing mTOR expression [87].

MiR-132 inhibits the RAS p21 protein activator GTPase activating protein 1 (RASA1), which inhibits NRAS expression and HRAS activation [88]; thus, miR-132 ultimately supports the MAPK cascade in this context. Therefore, the silencing of miR-132 expression could mediate the chemopreventive effect of resveratrol and EGCG. However, miR-9 blocks neurofibromin, which inhibits NRAS activation [88]. Thus, the induction of miR-9 seems to contradict the chemopreventive effect of resveratrol and EGCG in this context. The same is true for the pro-inflammatory cytokines’ increased intercellular adhesion molecule-1 (ICAM1) expression [83], which is blocked by resveratrol [89]. Despite that, ICAM1 positively modulates anti-inflammatory miR-124 expression [83], which inhibits MAPK signal transduction [88]. The MAPK signaling pathway upregulates C-MYC, which activates AKT and cyclinD1 [90,91]. Still, CREB downregulates miR-9 strongly in a negative feedback minicircuitry [92], while miR-9 is also negatively correlated with NF-κB1 activity [93], which decreases miR-124 [69], corresponding to the results of this study.

Myricetin in liver cells as a pro-oxidant increases hydroxyl radicals (OH) if catalase (CAT) and SOD enzymes are blocked [94]. Aromatic hydrocarbons (such as DMBA) produce singlet molecular oxygen [95] that reacts with the histidine group of CAT and SOD, deteriorating these enzymes [96], leading to further increased OH levels, which induces protective miR-132 expression [97] in coherence with the results of this study.

Moreover, in the coffee consuming group, the traces of acrylamide and furan exert antagonistic effects against the examined chemopreventive agents; namely, acrylamide (≤100 μmol/L) in vitro, which significantly increases the proliferation of human HCC HepG2 cells and induces the EGFR/PI3K/AKT/cyclin D1 pathway, leading to decreased PTEN levels [98]. The epigenetic carcinogen furan also alters relevant cell cycles, as well as the apoptosis regulator gene expression in the rat’s liver [99], and forms metabolites, which decreases GSH levels with chemical reactions [100].

The above-mentioned experimental materials and their decay products, substrates, enzymes, proteins, and signal transducer molecules orchestrate the observed expression patterns of miRs and mTORs, as well as influencing the cell proliferation (Figure 5).
5. Conclusions

In all the examined organs in the green tea, myricetin, and flavonoid extract-treated groups, the DMBA elevated expression levels of miR-134, miR-132, miR-124-1, miR-9-3, and mTOR decreased significantly—except for miR-132 in the liver of the Chinese bayberry extract-consuming group, and miR-132 in the kidneys of the flavonoid fed group. However, in the coffee consuming group, only miR-9-3 and mTOR decreased significantly in the liver, miR-134 decreased in the spleen, and additionally, miR-124-1 decreased in the kidneys (Table 3).

These experimental agents possess similar chemopreventive molecular mechanisms, including ROS scavenging, as well as signal transduction modulating effects; namely, both DMBA induced inflammatory and proliferative pathways were inhibited, presumably through deactivating TNF, IL1, IL6, and NF-κB [29,38,46,101]. According to the literature, chemopreventive agents presumably decrease all expressions of the examined miRs and mTOR [68,70,71,93] by induced CREB and decreased NF-κB activities [62,63,65,69]. However, miR-134 was expected to increase with decreased NF-κB activity [72,74] and anti-inflammatory mir-124 should have been positively modulated by ICAM1 [83], contradicting our results.

Individual molecular features were indicated also; for example, the liver-specific pro-oxidant effect of myricetin increased only in the liver the ROS sensitive miR-132 expression, in comparison with other studied organs [97]. In the coffee consuming group, the effects of beneficial flavonoids, chlorogenic acids, and melanoidins [17] were most likely partly antagonized by the carcinogen acrylamide and furan content of coffee [98,99].

Moreover, the results could be deceptive, since in the late stages, malignant tumors mostly also downregulated anticarcinogen miRs, for example, miR-134 in invasive and
metastatic HCC and RCC [102], or both miR-124 and miR-134 in glioblastoma, and miR-124 in squamous cell carcinoma [88]. However, miR-9 is upregulated in glioma [88]. Therefore, we can suppose that expression levels of mTOR and miRs are biomarkers, rather than relevant signal transducers, in this context [103].

In summary, the novel finding of this study is that the expression patterns of miR-9-3, miR-124-1, miR-132, miR-134, and mTOR, as molecular epidemiological biomarkers, indicated the early carcinogen effect of DMBA and the anticarcinogen effects of the polyphenol extract, green tea extract, Chinese bayberry extract, and coffee extract, which are chemopreventive agents against DMBA exposure, in accordance with the specific molecular features of the contained compounds. Our results contribute to the research of chemoprevention by assuming that the regular consumption of a diet abundant in polyphenols, as well as coffee, exerts anti-inflammatory and anti-cancer effects. These assumptions may form further investigations to improve our eating habits.

Author Contributions: Conceptualization, R.M., L.S., A.T. and I.K.; Data curation, R.M., L.S., T.V., Z.O. and I.K.; Investigation, R.M., L.S., A.T., A.D., R.D. and N.G.; Supervision, R.M., F.B. and I.K.; Visualization, R.M.; Writing—original draft, R.M. and I.K.; Writing—review & editing, R.M., B.L.R., T.V., B.N., Z.O., E.P., J.L.S., F.B. and I.K. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: The experiment was approved by Regional Animal Ethical Committee Pécs and conducted according to the current ethical regulations. (Ethical permission no.: BA02/2000-79/2017).

Acknowledgments: This research was supported by the European Union’s Horizon 2020 OPEN FET RIA (NEURAM, No. 712821). The authors would like to emphasize their heartfelt gratitude to Péter Lajoshazi for his invaluable technical assistance.

Conflicts of Interest: The note that they have no conflict of interest.

References
1. Torre, L.A.; Siegel, R.L.; Ward, E.M.; Jemal, A. Global Cancer Incidence and Mortality Rates and Trends—An Update. Cancer Epidemiol. Biomark. Prev. 2016, 25, 16–27. [CrossRef] [PubMed]
2. Hashim, D.; Boffetta, P.; La Vecchia, C.; Rota, M.; Bertuccio, P.; Malvezzi, M.; Negri, E. The global decrease in cancer mortality: Trends and disparities. Ann. Oncol. 2016, 27, 926–933. [CrossRef] [PubMed]
3. Danaei, G.; Vander Hoorn, S.; Lopez, A.D.; Murray, C.J.; Ezzati, M.; Comparative Risk Assessment Collaborating Group (Cancers). Causes of cancer in the world: Comparative risk assessment of nine behavioural and environmental risk factors. Lancet 2008, 366, 1784–1793. [CrossRef]
4. Bray, F.; Ferlay, J.; Soerjomataram, I.; Siegel, R.L.; Torre, L.A.; Jemal, A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2018, 68, 394–424, Erratum in CA Cancer J. Clin. 2020, 70, 313. [CrossRef] [PubMed]
5. Hanahan, D.; Weinberg, R.A. Hallmarks of cancer: The next generation. Cell 2011, 144, 646–674. [CrossRef]
6. Budán, F.; Szabó, I.; Varjas, T.; Nowrasteh, G.; Dávid, T.; Gergely, P.; Varga, Z.; Molnár, K.; Kádár, B.; Orsós, Z.; et al. Mixtures of Uncaria and Tabebuia extracts are potentially chemopreventive in CBA/Ca mice: A long-term experiment. Phytother. Res. 2011, 25, 493–500. [CrossRef]
7. Varjas, T.; Nowrasteh, G.; Budán, F.; Nadasí, E.; Horváth, G.; Makai, S.; Gracza, T.; Cseh, J.; Ember, I. Chemopreventive effect of Panax ginseng. Phytother. Res. 2009, 23, 1399–1403. [CrossRef]
8. Varjas, T.; Nowrasteh, G.; Budán, F.; Horváth, G.; Cseh, J.; Gyöngyi, Z.; Makai, S.; Ember, I. The effect of fenugreek on the gene expression of arachidonic acid metabolizing enzymes. Phytother. Res. 2011, 25, 221–227. [CrossRef]
9. Szabo, L.; Molnár, R.; Toemesz, A.; Deutsch, A.; Darago, R.; Nowrasteh, G.; Varjas, T.; Nemeth, B.; Budan, F.; Kiss, I. The effects of flavonoids, green tea polyphenols and coffee on DMBA induced LINE-1 DNA hypomethylation. PLoS ONE 2021, 16, e0250157. [CrossRef]
10. Szabo, L.; Molnár, R.; Toemesz, A.; Deutsch, A.; Darago, R.; Varjas, T.; Ritter, Z.; Szentpeteri, J.L.; Andreidesz, K.; Mathe, D.; et al. Olive Oil Improves While Trans Fatty Acids Further Aggravate the Hypomethylation of LINE-1 Retrotransposon DNA in an Environmental Carcinogen Model. Nutrients 2022, 14, 908. [CrossRef]
11. Cui, Y.; Morgenstern, H.; Greenland, S.; Tashkin, D.P.; Mao, J.T.; Cai, L.; Cozen, W.; Mack, T.M.; Lu, Q.Y.; Zhang, Z.F. Dietary flavonoid intake and lung cancer—A population-based case-control study. Cancer 2008, 112, 2241–2248. [CrossRef] [PubMed]
40. Luk, J.M.; Burchard, J.; Zhang, C.; Liu, A.M.; Wong, K.F.; Shek, F.H.; Lee, N.P.; Fan, S.T.; Poon, R.T.; Ivanovska, I.; et al. DLK1-DIO3 genomic imprint microRNA cluster at 14q32.2 defines a stemlike subtype of hepatocellular carcinoma associated with poor survival. J. Biol. Chem. 2011, 286, 30706–30713. [CrossRef]

41. Li, M.; Huo, X.; Davuligari, C.B.; Dai, Q.; Xu, X. MicroRNAs and their role in environmental chemical carcinogenesis. Environ. Geochim. Health 2019, 41, 225–247. [CrossRef] [PubMed]

42. Oliveto, S.; Mancino, M.; Manfrini, N.; Bilfo, S. Role of microRNAs in translation regulation and cancer. World J. Biol. Chem. 2017, 8, 45–56. [CrossRef] [PubMed]

43. Shi, L.; Middleton, J.; Jeon, Y.J.; Magee, P.; Veneziano, D.; Lagana, A.; Leong, H.S.; Sahoo, S.; Fassan, M.; Booton, R.; et al. KRS induces lung tumorigenesis through microRNAs modulation. Cell Death Dis. 2018, 9, 219. [CrossRef] [PubMed]

44. Shor, B.; Cavender, D.; Harris, C. A kinase-dead knock-in mutation in mTOR leads to early embryonic lethality and is dispensable for the immune system in heterozygous mice. BMC Immunol. 2009, 10, 28. [CrossRef] [PubMed]

45. Uchida, S.; Hara, K.; Kobayashi, A.; Funato, H.; Hobara, T.; Otsuki, K.; Yamagata, H.; McEwen, B.S.; Watanabe, Y. Early life stress enhances behavioral vulnerability to stress through the activation of REST4-mediated gene transcription in the medial prefrontal cortex of rodents. J. Neurosci. 2010, 30, 15007–15018. [CrossRef] [PubMed]

46. Reuter, S.; Gupta, S.C.; Chaturvedi, M.M.; Aggarwal, B.B. Oxidative stress, inflammation, and cancer: How are they linked? Free Radic. Biol. Med. 2010, 49, 1603–1616. [CrossRef]

47. Lu, S.C. Regulation of glutathione synthesis. Mol. Asp. Med. 2009, 30, 42–59. [CrossRef]

50. Santes-Palacios, R.; Marroquin-Pérez, A.L.; Hernández-Ojeda, S.L.; Camacho-Carranza, R.; Govezensky, T.; Espinosa-Aguirre, J.J. Human CYP1A1 inhibition by flavonoids. Toxicol. In Vitro 2020, 62, 104681. [CrossRef]

51. Diehl, T.; Steinberg, C.E.W.; Fan, B.; Perminova, I.V.; Meinelt, T.; Knopf, K.; Kloas, W. Phenol-rich fulvic acid as a water additive enhances growth, reduces stress, and stimulates the immune system of fish in aquaculture. Sci. Rep. 2021, 11, 174. [CrossRef]

52. Hadjirdik, P.; Pályi, B.; Kis, Z.; Kovács, N.; Veres, D.S.; Szigeti, K.; Budán, F.; Hegedüs, I.; Kovács, T.; Bergmann, R.; et al. In Vitro Determination of Inhibitory Effects of Humic Substances Complexing Zn and Se on SARS-CoV-2 Virus Replication. Foods 2022, 11, 694. [CrossRef] [PubMed]

53. Ross, J.A.; Kasum, C.M. Dietary flavonoids: Bioavailability, metabolic effects, and safety. Annu. Rev. Nutr. 2002, 22, 19–34. [CrossRef]

54. Capek, P.; Paulovičová, E.; Matulová, M.; Mislovičová, D.; Navarini, L.; Suggi-Liverani, F. Coffea arabica instant coffee—Chemical view and immunomodulating properties. Carbohydr. Polym. 2014, 103, 418–426. [CrossRef] [PubMed]

55. Kandaswami, C.; Middleton, E., Jr. Dietary Lawrence. Adv. Exp. Med. Biol. 1994, 366, 351–376. [CrossRef] [PubMed]

56. Rice-Evans, C.A.; Miller, N.J.; Paganga, G. Structure-antioxidant activity relationships of flavonoids and phenolic acids. Plant Cell Tissue Organ Cult. 1996, 45, 25–39. [CrossRef] [PubMed]

57. Middleton, E., Jr.; Kandaswami, C.; Theoharides, T.C. The effects of plant flavonoids on mammalian cells: Implications for inflammation, heart disease, and cancer. Pharmacol. Res. 2000, 52, 673–751. [CrossRef]

58. Pastore, R.L.; Fratellone, P. Potential health benefits of green tea (Camellia sinensis): A narrative review. Explore 2006, 2, 531–539. [CrossRef] [PubMed]

59. Li, N.; Kitts, D.D. Role of Chlorogenic Acids in Controlling Oxidative and Inflammatory Stress Conditions. Nutrients 2015, 8, 45. [CrossRef] [PubMed]

60. Yeung, F.; Hoberg, J.E.; Ramsey, C.S.; Keller, M.D.; Jones, D.R.; Frye, R.A.; Mayo, M.W. Modulation of NF-kappaB-dependent transcription and cell survival by the SIRT1 deacetylase. EMBO J. 2004, 23, 2369–2380. [CrossRef] [PubMed]

61. Zhang, G.; Liu, Y.; Xu, I.; Sha, C.; Zhang, H.; Xu, W. Resveratrol alleviates lipopolysaccharide-induced inflammation in PC-12 cells and in rat model. BMC Biotechnol. 2019, 19, 10. [CrossRef] [PubMed]

62. Kandaswami, C.; Lee, L.T.; Lee, P.P.; Hwang, J.I.; Ke, F.C.; Huang, Y.T.; Lee, M.T. The antitumor activities of flavonoids. In Vivo 2005, 19, 895–909. Erratum in In Vivo 2007, 21, 533 Erratum in In Vivo 2007, 21, 1172.

63. Jung, H.Y.; Lee, D.; Ryu, H.G.; Choi, B.H.; Cho, Y.; Lee, N.; Lee, D.; Son, H.G.; Jeon, J.; Kim, S.H.; et al. Myricetin enhances endurance capacity and mitochondrial density by activating SIRT1 and PGC-1α. Sci. Rep. 2017, 7, 6237. [CrossRef] [PubMed]

64. Zhao, Y.N.; Li, W.F.; Li, F.; Zhang, Z.; Dai, Y.D.; Xu, A.L.; Qi, C.; Gao, J.M.; Gao, J. Resveratrol improves learning and memory in normally aged mice through microRNA-CREB pathway. Biochem. Biophys. Res. Commun. 2013, 435, 597–602. [CrossRef] [PubMed]
67. Shen, J.; Xu, L.; Qu, C.; Sun, H.; Zhang, J. Resveratrol prevents cognitive deficits induced by chronic unpredictable mild stress: Sirt1/miR-134 signalling pathway regulates CREB/BDNF expression in hippocampus in vivo and in vitro. Behav. Brain Res. 2018, 349, 1–7. [CrossRef]
68. Ghosh, H.S.; McBurney, M.; Robbins, P.D. SIRT1 negatively regulates the mammalian target of rapamycin. PLoS ONE 2010, 5, e9199. [CrossRef]
69. Chung, S.; Yao, H.; Caito, S.; Hwang, J.W.; Arunachalam, G.; Rahman, I. Regulation of SIRT1 in cellular functions: Role of polyphenols. Arch. Biochem. Biophys. 2010, 501, 79–90. [CrossRef]
70. Sun, Y.; Ai, X.; Shen, S.; Lu, S. NF-κB-mediated miR-124 suppresses metastasis of non-small-cell lung cancer by targeting MYO10. Oncotarget 2015, 6, 8244–8254. [CrossRef]
71. De la Rica, L.; Garcia-Gomez, A.; Comet, N.R.; Rodriguez-Ubreva, J.; Ciudad, L.; Vento-Tormo, R.; Company, C.; Alvarez-Erro, D.; Garcia, M.; Gómez-Vaquero, C.; et al. NF-κB-direct activation of microRNAs with repressive effects on monocyte-specific genes is critical for osteoclast differentiation. Genome Biol. 2015, 16, 2. [CrossRef] [PubMed]
72. Shuang, T.; Wang, M.; Zhou, Y.; Shi, C.; Wang, D. NF-kB1, c-Rel, and ELK1 inhibit miR-134 expression leading to TAB1 upregulation in paclitaxel-resistant human ovarian carcinoma. Oncotarget 2017, 8, 24853–24868. [CrossRef] [PubMed]
73. Bazzoni, F.; Rossato, M.; Fabbri, M.; Gaudiosi, D.; Mirolo, M.; Mori, L.; Tamassia, N.; Mantovani, A.; Cassatella, M.A.; Locati, M. Induction and regulatory function of miR-9 in human monocytes and neutrophils exposed to proinflammatory signals. Proc. Natl. Acad. Sci. USA 2009, 106, 5282–5287. [CrossRef] [PubMed]
74. Sun, C.C.; Li, S.J.; Li, D.J. Hsa-miR-134 suppresses non-small cell lung cancer (NSCLC) development through down-regulation of CCND1. Oncotarget 2016, 7, 35960–35978. [CrossRef]
75. Merchant, N.; Nagaraju, G.P.; Rajitha, B.; Lammata, S.; Jella, K.K.; Buchwald, Z.S.; Lakka, S.S.; Ali, A.N. Matrix metalloproteinases: Their functional role in lung cancer. Cancerogenesis 2017, 38, 766–780. [CrossRef]
76. Domitrovic, R.; Cvijanovic, O.; Sušnić, V.; Katalinić, N. Renoprotective mechanisms of chlorogenic acid in cisplatin-induced kidney injury. Toxicology 2014, 324, 98–107. [CrossRef]
77. Shankar, S.; Singh, G.; Srivastava, R.K. Chemoprevention by resveratrol: Molecular mechanisms and therapeutic potential. Front. Biosci. 2007, 12, 4839–4854. [CrossRef]
78. Liu, S.; Wang, X.J.; Liu, Y.; Cui, Y.F. PI3K/AKT/mTOR signaling is involved in (-)-epigallocatechin-3-gallate-induced apoptosis of human pancreatic carcinoma cells. Am. J. Chin. Med. 2013, 41, 629–642. [CrossRef]
79. Miwa, S.; Sugimoto, N.; Shirai, T.; Hayashi, K.; Nishida, H.; Ohnari, I.; Takeuchi, A.; Yachie, A.; Tsuchiya, H. Caffeine activates tumor suppressor PTEN in sarcoma cells. Int. J. Oncol. 2011, 39, 465–472. [CrossRef]
80. Radu, A.; Neubauer, V.; Akagi, T.; Hanafusa, H.; Georgescu, M.M. PTEN induces cell cycle arrest by decreasing the level and nuclear localization of cyclin D1. Mol. Cell. Biol. 2003, 23, 6139–6149. [CrossRef]
81. Szpechcinski, A.; Florczuk, M.; Duk, K.; Zdral, A.; Rudzinski, S.; Bryl, M.; Czyzewicz, G.; Rudzinski, P.; Kupis, W.; Wojda, E.; et al. The expression of circulating miR-504 is associated with EGFR mutation status in non-small-cell lung carcinoma patients. Cell Mol. Life Sci. 2019, 76, 3641–3658. [CrossRef] [PubMed]
82. Cao, J.; Qiu, J.; Wang, X.; Du, W.; Li, X.; Liu, Q.; Fan, H.; Han, X.; et al. Identification of microRNA-124 in regulation of Hepatocellular carcinoma through BIRC3 and the NF-κB pathway. Oncotarget 2017, 8, 111882–111901. [CrossRef] [PubMed]
83. Bhardwaj, V.; Mandal, A.K.A. Next-Generation Sequencing Reveals the Role of Epigallocatechin-3-Gallate in Regulating Putative and Novel microRNAs Which Target the MAPK Pathway in Non-Small-Cell Lung Cancer A549 Cells. Molecules 2019, 24, 368. [CrossRef] [PubMed]
84. Hall, M.N. mTOR-what does it do? Transpl. Proc. 2008, 40 (Suppl. 10), S5–S8. [CrossRef]
85. Walker, E.H.; Pacold, M.E.; Perisic, O.; Stephens, L.; Hawkins, P.T.; Wymann, M.P.; Williams, R.L. Structural determinants of phosphoinositide 3-kinase inhibition by wortmannin, LY294002, quercetin, myricetin, and staurosporine. Mol. Cell 2000, 6, 909–919. [CrossRef]
86. Chappell, W.H.; Steelman, L.S.; Long, J.M.; Kempf, R.C.; Abrams, S.L.; Franklin, R.A.; Bäsecke, J.; Stivala, F.; Donia, M.; Fagone, P.; et al. Ras/Raf/MEK/ERK and PI3K/PTEN/Akt/mTOR inhibitors: Rationale and importance to inhibiting these pathways in human health. Oncotarget 2011, 2, 135–164. [CrossRef]
87. Chappell, W.H.; Steelman, L.S.; Long, J.M.; Kempf, R.C.; Abrams, S.L.; Franklin, R.A.; Bäsecke, J.; Stivala, F.; Donia, M.; Fagone, P.; et al. Ras/Raf/MEK/ERK and PI3K/PTEN/Akt/mTOR inhibitors: Rationale and importance to inhibiting these pathways in human health. Oncotarget 2011, 2, 135–164. [CrossRef]
88. Shaw, R.I.; Ragan, D.A.; Downward, J. MAPK signaling regulates c-MYC for melanoma cell adaptation to asparagine restriction. EMBO Rep. 2021, 22, e51436. [CrossRef]
89. Zhao, Q.; Assimopoulou, A.N.; Klauck, S.M.; Damianakis, H.; Chinou, I.; Kretschmer, N.; Rios, J.L.; Papageorgiou, V.P.; Bauer, R.; Effert, T. Inhibition of c-MYC with involvement of ERK/JNK/MAPK and AKT pathways as a novel mechanism for shikonin and its derivatives in killing leukemia cells. Oncotarget 2015, 6, 38934–38951. [CrossRef] [PubMed]
92. Tan, X.; Wang, S.; Yang, B.; Zhu, L.; Yin, B.; Chao, T.; Zhao, J.; Yuan, J.; Qiang, B.; Peng, X. The CREB-miR-9 negative feedback minicircuitry coordinates the migration and proliferation of glioma cells. *PLoS ONE* **2012**, *7*, e49570. [CrossRef] [PubMed]

93. Aires, V.; Delmas, D.; Djouadi, F.; Bastin, J.; Cherkouï-Malki, M.; Latruffe, N. Resveratrol-Induced Changes in MicroRNA Expression in Primary Human Fibroblasts Harboring Carnitine-Palmitoyl Transferase-2 Gene Mutation, Leading to Fatty Acid Oxidation Deficiency. *Molecules* **2017**, *23*, 7. [CrossRef]

94. Laughton, M.J.; Halliwell, B.; Evans, P.J.; Hoult, J.R. Antioxidant and pro-oxidant actions of the plant phenolics quercetin, gossypol and myricetin. Effects on lipid peroxidation, hydroxyl radical generation and bleomycin-dependent damage to DNA. *Biochem. Pharmacol.* **1989**, *38*, 2859–2865. [CrossRef]

95. Stevens, B.; Algar, B.E. Photoperoxidation of unsaturated organic molecules. II. Autoperoxidation of aromatic hydrocarbons. *J. Phys. Chem.* **1968**, *72*, 3468–3474. [CrossRef]

96. Ma, X.; Deng, D.; Chen, W. Inhibitors and Activators of SOD, GSH-Px, and CAT. In *Enzyme Inhibitors and Activators*; Senturk, M., Ed.; IntechOpen: London, UK; Available online: https://www.intechopen.com/books/enzyme-inhibitors-and-activators/inhibitors-and-activators-of-sod-gsh-px-and-cat (accessed on 29 March 2017). [CrossRef]

97. Zhou, Y.; Li, K.S.; Liu, L.; Li, S.L. MicroRNA 132 promotes oxidative stress induced pyroptosis by targeting sirtuin 1 in myocardial ischaemia reperfusion injury. *Int. J. Mol. Med.* **2020**, *45*, 1942–1950. [CrossRef]

98. Xu, Y.; Wang, P.; Xu, C.; Shan, X.; Feng, Q. Acrylamide induces HepG2 cell proliferation through upregulation of miR-21 expression. *J. Biomed. Res.* **2019**, *33*, 181–191. [CrossRef]

99. Chen, T.; Mally, A.; Ozden, S.; Chipman, J.K. Low doses of the carcinogen furan alter cell cycle and apoptosis gene expression in rat liver independent of DNA methylation. *Environ. Health Perspect.* **2010**, *118*, 1597–1602. [CrossRef]

100. Peterson, L.A. Reactive metabolites in the biotransformation of molecules containing a furan ring. *Chem. Res. Toxicol.* **2013**, *26*, 6–25. [CrossRef]

101. Pikarsky, E.; Forat, R.M.; Stein, I.; Abramovitch, R.; Amit, S.; Kasem, S.; Gutkovitch-Pyest, E.; Urieli-Shoval, S.; Galun, E.; Ben-Neriah, Y. NF-kappaB functions as a tumour promoter in inflammation-associated cancer. *Nature* **2004**, *431*, 461–466. [CrossRef]

102. Pan, J.Y.; Zhang, F.; Sun, C.C.; Li, S.J.; Li, G.; Gong, F.Y.; Bo, T.; He, J.; Hua, R.X.; Hu, W.D.; et al. miR-134: A Human Cancer Suppressor? *Mol. Ther. Nucleic Acids* **2017**, *6*, 140–149. [CrossRef] [PubMed]

103. Park, E.J.; Pezzuto, J.M. The pharmacology of resveratrol in animals and humans. *Biochim. Biophys. Acta* **2015**, *1852*, 1071–1113. [CrossRef] [PubMed]