Medical research and ethics - Revisited

P Thakkar¹, K S Shringarpure², S Gupte³, A Agrawal⁴

From Department of Pediatrics, ¹Medical College Baroda, Gujarat, ²Gandhi Medical College, Bhopal, Madhya Pradesh, ³Department of PSM, Medical College Baroda, Gujarat, ⁴Consultant Pediatric Endocrinologist, Deenanath Mangeshkar Hospital and D Y Patil Medical College, Pune, Maharastra, India

Correspondence to: Dr. K S Shringarpure, Department of PSM, Medical College Baroda, Gujarat, India. Phone: +91-9824673141. E-mail: kshringarpure@gmail.com

Received - 15 November 2018 Initial Review - 16 December 2018 Published Online - 24 April 2018

ABSTRACT

Ethics in the medical research is known since many years; however, there have been new developments in this area recently. A phenomenal improvement in the health-care system, leading to increased life expectancy, and thereby, newer lifestyle and other health-related diseases has opened avenues for newer drugs and health-care technology. However, these have to be tried and tested in the context of the disease epidemiology, health-care delivery and of course, medical ethics. Monitoring and evaluation of the treatment regimes of well documented effective medicines is also required. This is the core of medical research. With the ever increasing concept of evidence-based medical system, and thereby, a rapid rise in the number of clinical trials; the role of medical ethics is potentially increasing to keep the patients’ interest in mind. The physicians have to consider the health and positive outcome for the patients. This gives rise to conflicting roles and duties; however, physicians’ role and patient commitment must supersede the role of researcher in such cases. The ethical principles, i.e. autonomy, beneficence, and justice apply not only to the physician but also to the medical researcher as well. To monitor the interests of the patients, the ethical review committee sees to it that the clinical trials are conducted with the correct “ethical” approach, giving due consideration to the informed consent process. Refining the regulations and guidelines, especially for individual studies is the core mechanism to strengthen the international medical ethics scenario. This has increasing importance in view of increasing funded research, research involving children, women and prisoners, research related to neurosciences, newer vaccines, organ and tissue transplant, and stem cell transplantation.

Key words: Bioethics, Clinical trials, Research

Medical research is known since many years; however, there have been new developments in this area recently. A phenomenal improvement in the health-care system, leading to increased life expectancy, and thereby, newer lifestyle and other health-related diseases has opened avenues for newer drugs and health-care technology. However, these have to be tried and tested in the context of the disease epidemiology, health-care delivery and of course, medical ethics. Monitoring and evaluation of the treatment regimes of well documented effective medicines is also required. This is the core of medical research. With the ever increasing concept of evidence-based medical system, and thereby, a rapid rise in the number of clinical trials; the role of medical ethics is potentially increasing to keep the patients’ interest in mind. The physicians have to consider the health and positive outcome for the patients. This gives rise to conflicting roles and duties; however, physicians’ role and patient commitment must supersede the role of researcher in such cases. The ethical principles, i.e. autonomy, beneficence, and justice apply not only to the physician but also to the medical researcher as well. To monitor the interests of the patients, the ethical review committee sees to it that the clinical trials are conducted with the correct “ethical” approach, giving due consideration to the informed consent process. Refining the regulations and guidelines, especially for individual studies is the core mechanism to strengthen the international medical ethics scenario. This has increasing importance in view of increasing funded research, research involving children, women and prisoners, research related to neurosciences, newer vaccines, organ and tissue transplant, and stem cell transplantation.

Key words: Bioethics, Clinical trials, Research

EVIDENCE BASED MEDICAL PRACTICE

Physicians need to be updated about all the changes that occur continuously in the medical world. They have to keep reading and improving their knowledge of clinical research, based on the results of medical research; termed as evidence-based practice. Individual professionals need to be informed, trained, and motivated to be on the lookout of and incorporate the latest
evidence into their daily work [4]. However, trying to inculcate
the same changes in their practice requires a basic understanding
of research and its methods [2,5].

PHASES OF CLINICAL RESEARCH

Clinical trials are the mainstay of medical research for the
practicing physicians [6]. Before a new drug can be approved
by government-mandated regulatory authorities, it must undergo
extensive testing for safety and efficacy. A research hypothesis
is first established, following which, laboratory studies and
animal studies are done. After such an extensive exercise, the
pharmaceutical company has to get its approval to study various
aspects of the drug in human beings. Once approved, the drug
has to pass through four phases. In phase I, the drug is tried on
a small number of human beings who volunteer and are paid in
return. This phase is done to determine dosage, to know how the
body processes the drug (pharmacokinetics) and to know the side
effects. In phase II trial, the drug is used in patients with a particular
disease to determine whether the drug has any beneficial effect
and to know the side effects. In phase III, marketing of the drug is
done and the drug is finally introduced into the market to compare
it with other drugs and/or placebo. After the drug is marketed, it
enters into phase IV called post-marketing surveillance to look
for very long-term side effects [6].

ROLE OF A PHYSICIAN VIS-A-VIS A RESEARCHER

Because of the ever-increasing concept of evidence-based medical
system, there has been a rapid rise in the number of clinical trials,
which entail finding and recruiting large number of patients, as per
the statistical requirements of the trials. Keeping the patients’ interest
in mind, the physicians need to keep several potential problems at
bay. This can be done by anticipating these problems and issues
and trying to avoid them. A researcher is involved in the research
in the first place; however, the role of a physician in the research
is in stark contrast [5]. This is true in terms of the physician–
patient relationship, even if the physician and the researcher are
the same person. The researcher is involved only in generating new
knowledge, while the physician needs to consider the health and
positive outcome for the patients. This gives rise to conflicting roles
and duties; however, physicians’ role and patient commitment must
supersede the role of researcher in such cases [5,7,8].

A potential issue in such cases is conflict of interest [9].
Participation in the medical research is a well-funded enterprise
and physicians are sometimes offered considerable reward for
participating. This includes monetary reward per subject enrolled,
electronic items for data management, and sponsored conferences
as well as authorship in publications of the results. These benefits
may conflict with the physicians’ duty to provide the best possible
treatment to the patients. The patients may not be fully informed
about their rights of taking part in the results and/or the right to
take informed decision of participation in the research or clinical
trial. The ethical principles of the physician, i.e., autonomy,
beneficence, and justice apply to the medical researcher as well.
These need to be fully understood and duly followed by the
physicians as well [10–12].

WHAT IS “THE ETHICAL” APPROACH?

There are broadly two approaches toward ethical issues: non-
reasonable (does not mean irrational, meaning reflective use of
reason in decision-making) and rational.

NON-RATIONAL APPROACHES

Obedience

This is a common way of making decisions on ethical issues;
especially, by children and those who work with authorization
structures (e.g. military, air force). They follow the rules or instructions
of those in authority, whether they agree with them or not [7,13,14].

Imitation

It subordinates one’s judgment about right and wrong to that of
another person.

Feeling or Desire

It is a subjective approach to moral decision-making and behavior.
It is variable from person to person and also from time to time in
the same person.

Intuition

It is the immediate perception of the right way to act in a situation.
It is entirely subjective.

Habit

It is an efficient method of moral decision-making. The advantage
is that there is no need to repeat a systematic decision-making
process each time a moral issue arises.

RATIONAL APPROACHES

Deontology

It involves a search for well-founded rules that can serve as the
basis for making moral decisions. There are specific rules to be
applied in specific situations.

Consequentialism

It bases ethical decision-making on an analysis of the likely
consequences or outcomes of different choices and actions. The
right action is the one that produces the best outcomes. One of
the best-known forms of consequentialism is utilitarianism which
uses utility as its measure and defines this as “the greatest good for the greatest number.” Other measures include quality-adjusted life years or disability-adjusted life years.

Principalism

It uses ethical principles as the basis for making moral decisions. It helps to take decisions as per the situation, rules, and the consequences; helping to choose the right thing. In general, there are four principles; autonomy, beneficence, non-maleficence, and justice [15].

Autonomy

It requires that those who are capable of deliberation about their personal choices should be treated with respect for their capacity for self-determination.

Beneficence

It is ethical obligation to maximize the benefit and to minimize the harm.

Non-maleficence

It means doing no harm or causing the least harm possible to achieve beneficial outcome.

Justice

It is an ethical obligation to treat each person in accordance with what is morally right and proper.

INFORMED CONSENT

It is the most important aspect in the medical ethics. It came into being; keeping in mind that due respect should be given to patients. In history, the first written consent was obtained by Dr. Walter Reed from the persons involved in his experiment [16].

Informed consent has four elements: disclosure, comprehension, voluntariness, and documentation [2].

Disclosure

Disclosure means informing/disclosing the purpose, details of the procedure, duration of the study, its risks and benefits including monetary gains as well as alternative options and that they can discontinue their participation at any time. Providing all these details may need significant time on the part of researcher, so time constraint remains an important challenge to the disclosure. In addition to time, language and sociocultural barriers can prove to be a challenge.

Comprehension

It is the information to enable a potential participant to make an informed decision about whether to participate in a study is the responsibility of the researcher. Challenges to the comprehension are language barriers, extreme of ages, psychiatric illnesses, subjects with poor decision capacity or inability to fully comprehend, and inability to express one’s choice.

Voluntariness

It is an agreement or willingness to participate without undue influence. The consent for participation in research should be free of coercion and free of undue influence. In addition to undue influence, power dynamics and gender inequalities are challenges to the voluntariness.

Documentation

It should be written documentation of the informed consent. This should include the study summary and rights of research participant and should describe the whole informed consent process. As per the new regulations from Drug Controller General of India, for clinical trials of new chemical entity or a new molecular entity involving vulnerable subjects, audiovisual recording of consent process must be done [17].

INFORMED CONSENT AS A “PROCESS”

Informed consent is not an isolated event; it is an ongoing dialog between the investigator and the research subject. The investigator has a responsibility to address the participants’ concerns, to answer his questions, and to ensure that the patient has understood basic purpose of the study and study procedures.

Developments in Medical Research

Medical research ethics is an area of expertise which is fast evolving. It has also emerged as an area of debate over the past couple of decades. This is more so in case of transnational research collaborations, that is, research funded by institutions based in Europe and North America and implemented together with institutions in Latin America, Asia, Africa, and Eastern Europe. Transnational research often involves enrolling relatively poor study participants in less wealthy countries [18].

Concern regarding the ethics of medical science is not new. It is well known that the Nazis in Germany committed atrocities in the name of science and the African-Americans were denied treatment for syphilis in the Tuskegee trial [19]. Thus were born the ethical codes, namely, Nuremberg Code, the Declaration of Helsinki, and the Belmont Report [10]. The rising awareness about international human rights; rights based on the gender, prisoners, and the economic inequities have increasingly risen the public debate about science [20]. For the same reason, ethical review committees have come into existence to monitor the ethical part of the studies and the clinical trials.

Ethical Review Committee

It is of utmost importance now that each and every study is approved by an ethical committee. This committee oversees whether the
study is proposed and further conducted in an ethical manner and that it does not impinge on the ethical rights of the subjects or patients. It has different names in different countries such as Institutional Ethics Committee, Institutional Review Board, Ethics Review Board, and Research Ethics Board. Its responsibilities are to ensure a competent review of all the ethical aspects of the project proposals received by it in an objective manner, to look for the scientific soundness of the proposed research and its social value. The committee consists of 8–12 members from a multidisciplinary and multi-sectorial background [21]. A minimum of 5 persons are required to form a quorum to take a decision regarding research; especially, clinical trials [6].

Proportionate EC Review: Expedited/Full

Ethical review by the committee is subject to the type and nature of risks involved in the study. It should assess the risk and potential benefits of the research or trial. A balanced review is based on the “minimal risk concept” helping to decide whether a “full board review” or an “expedited review” is required. Minimal risk entails a condition where “The probability and magnitude of harm or discomfort anticipated in the research are not greater than those ordinarily encountered in daily life or during the performance of routine physical or psychological examinations or tests”. [22]

The decision to conduct an expedited review may be made by the chair of the EC while keeping all members informed about the studies approved by expedited review. All clinical trials are initially subject to a full EC review, and usually, the continuing review of trials must be conducted by the full EC. ECs differ in their views about whether continuing reviews, protocol amendments or alterations, safety reports, and multicentric studies are acceptable for expedited review or not [6].

Guidelines for Research on Human Subjects

1. Ask an answerable research question.
2. Pay attention to the study design.
3. Choose your subjects without bias.
4. Enhance benefits and minimize risks.
5. Respect your subject’s rights [6].

Approaches to Strengthening International Medical Research Ethics

The rising debate about medical research ethics can be answered by refining the regulations and guidelines, especially for the individual studies [23–26]. There is a felt need to build and expand the capacity of local and national bodies for monitoring the ongoing studies. This can be done more efficiently through ethics review committees and community advisory boards [12,25,27–32]. The existing codes have abstract and universal ethical principles which cannot be applied in all contexts for all the geographic areas. Therefore, local and national bodies can act as competent independent specialist bodies in research-related decision-making; especially, in low-income settings [25,27,28,31].

There have been many improvisations in the arena of International Medical Research Ethics wherein, in India, it is now mandatory for all ethics committees which review and approve clinical trials to get registered with the Directorate General of Health Services and Central Drugs Standard Control Organization [33]. Under the Drug and Cosmetics Act, this central authority is responsible for the approval of new drugs, clinical trials in the country, laying down the standards for drugs, and control over the quality of imported drugs.

It is the responsibility of the investigator to report any untoward incidences such as adverse drug reactions (ADRs). The noxious effect of a drug when it is used in the recommended doses is an ADR; if the causal association is not proven, it is termed as an adverse event (AE). An AE or ADR leading to death, hospitalization or its prolongation, disability or incapacity is termed as a Serious Adverse Event (SAE). The ethics committee and regulatory body of the country are bound to uphold the ethical principles of the beneficence, justice, and non-maleficence in such cases. The principal investigator should report the SAE within 24 hours to DCGI, the sponsor, and the chairperson of the ethics committee. Ethics committees investigate and submit their report of SAE to the DCGI and accordingly, the compensation is decided by the DCGI [34,35]. Ethics committees are empowered to hold or stop the ongoing trials when felt necessary for the safety of study subjects. The ethics committees are also responsible for the monitoring the clinical trial sites periodically.

Clinical Trial Registration

Registration of trial before its initiation in publicly available trials registry (viz. Clinical Trials Registry of India) [36] has become mandatory in many countries. Free web-based access to the information about ongoing clinical trials is regarded as an important tool for the public. It also provides a complete picture of the past research, whether it was negative or successful (Cochrane registration or the Prospero website registration). This stands true for the systemic reviews also, which help in combining the results to come to one viewpoint or decision about the usefulness or the implementation of the drugs and medications. The ethics committee may be requested to monitor the compliance of the clinical trial registration according to the local regulations and policies.

Regulatory Authorities and Trial Registration

Since the late 1990s, drug regulatory authorities have put more emphasis on the need to publish essential information about the ongoing clinical trials on publicly searchable trial registries. This has been an explicit concern for those with life-threatening diseases, such as HIV/AIDS and cancer; since it would increase the possibility for the patients to identify trials for the participation. These diseases are worldwide, with the public health aspect being
more important and case based. US-FDA has made it mandatory to register phase II/III trials (not phase I), since the data implicates the application or introduction of the new drugs. Each trial must be registered before its onset, and there is a penalty system in place for the non-compliance.

Scientific Journals and Trial Registration

Since 2004, the International Committee of Medical Journal Editors has set up a policy enforcing the registration of the interventional trials (phases II-IV) in an accepted public trials registry to be considered for the publication in its journals [36]. The policy became mandatory in July 2005. The registration must take place before starting the patient enrolment. This policy has been extended to include phase I trials. However, only a few journals have adopted this policy. Most of the medical journals do not mention the policy in their instructions to the authors [6].

Unresolved Issues

There are certain aspects of the medical science which do not get a general consensus. In areas such as genetics, neurosciences, newer vaccines, organ and tissue transplant, and stem cell transplantation, there are no readymade answers for the questions arising. However, there have been some guidelines framed for the stem cell research and research in the children, recently [13,23,26]. Despite all these potential problems, the medical research is a valuable and rewarding activity for the physicians and medical students as well as for the research subjects themselves. These results when extrapolated have greater rewarding results for the general public. Every level, the individual or the committee, do face their own individual issues and problems. These need a case-based resolving approach [14]. A rising concern is the need for soft skills while interacting with the subjects; at the same time not encroaching on their ethical rights [37].

There is not much funding for the research-oriented work, and where it is there, they may sometimes be led by conflicts of the interest. Furthermore, there is inequity in the research health funding and diseases affiliating more than 90% of the world’s population get <10% of the global funding for the research. This disparity of more spending on diseases affecting the rich rather than poor countries is known as “the 10/90 gap” [38].

CONCLUSION

Medical Science is ever evolving and so medical ethics also needs to be flexible and open to change and adjustment, as indeed it has been for quite some time now. However, we hope that its basic principles will remain in place; especially, the values of compassion, competence, and autonomy, along with its concern for the fundamental human rights and its devotion to the professionalism.

REFERENCES

1. Lakhoria SC, Anand A. Excellence in medical research—can we make it in India? Ann Neurosci 2015;22:55-7.
2. Williams JR. Ethics and Medical Research. In: Medical Ethics Manual; 2009. p. 97-109. Available from: http://www.wma.net/en/30publications/30ethicsmanual/pdf/chap_5_en.pdf. [Last cited on 2018 Apr 12].
3. De Costa A, D’Souza N, Krishnan S, Chhabra MS, Shihaam I, Goswami K. Community based trials and informed consent in rural north India. J Med Ethics 2004;30:318-23.
4. Richard G, Michel W. What drives change? Barriers to and incentives for achieving evidence-based practice. Med J Aust Pymont 2004;180:S57-60. Available from: https://www.search.proquest.com/openview/bb5d30f6cc2db3964f232a1decb36194/1?pq-origsite=gscholar&cbl=40810. [Last cited on 2017 Nov 04].
5. Williams JR. Medical ethics in contemporary clinical practice. J Chin Med Assoe 2005;68:495-9.
6. Karlberg J, Speers M, editors. Reviewing Clinical Trials: A Guide for the Ethics Committee. Association for the Accreditation of Human Research Protection Programs, Inc. Washington., Hong Kong SAR, PR China, Washington, DC, USA: Clinical Trials Centre, The University of Hong Kong, Association for the Accreditation of Human Research Protection Programs, Inc.; 2010. p. 1-160. Available from: http://www.ctmagnifier.com/Text/Ethics-Guide-Sample.pdf?uuid=c5e15e1e-40b6-4b4b-8d2b-4f85dca3d5f0. [Last cited on 2017 Nov 04].
7. Agarwal RK. Ethics and ethical conflicts in contemporary medical practice. Indian Pediatr 2008;45:177-9.
8. Aksselrod H. The physician-researcher’s dilemma. Virtual Mentor 2010;12:192-6.
9. Shrivington V. Ethics and conflict of interest and duties. Soc Sci Med 2006; 4120. Available from: http://www.ethics.ubc.ca. [Last cited on 2017 Nov 04].
10. Maria A, Copete G, Hernández DB, Jonas H. Basic ethical considerations and principles in the development of Biomedical research and Gastroenterology. Rev Col Gastroenterol 2012;27:329-34.
11. Research Ethics. University of Washington; 2014. Available from: https://www.depts.washington.edu/bioethx/topics/resrch.html.
12. Denholm JT, Bissell K, Viney K, Durand AM, Cash HL, Roseveare C, et al. Research ethics committees in the Pacific Islands: Gaps and opportunities for health sector strengthening. J Public Heal Action 2017;7:6-9.
13. Thakkar PA, Phanse S. Bioethics in paediatric practice. Sri Lanka J Child Heal 2012;41:109-13.
14. Shelley-Egan C. Ethics Assessment in Different Fields Public Health Ethics Ethical Assessment of Research and Innovation: A Comparative Analysis of Practices and Institutions in the eu and Selected other Countries; 2015. Available from: http://www.satoriproject.eu/media/2.c.5-Public-health-ethics.pdf. [Last cited on 2017 Oct 15].
15. Lawrence DJ. The four principles of biomedical ethics: A foundation for current bioethical debate. J Chiropr Humanit 2007;14:34-40. Available from: http://www.journalchirohumanities.com/article/S1556-3499(13)60161-8/pdf. [Lat cited on 2017 Nov 04].
16. Roots of Informed Consent. Available from: https://www.highschoolbioethics.georgetown.edu/units/cases/unit5_5.html. [Last cited on 2018 Apr 12].
17. Gogtay NJ, Ravi R, Thatte UM. Regulatory requirements for clinical trials in india: What academicians need to know. Indian J Anaesth 2017;61:192-9.
18. Benatar SR. Reflections and recommendations on research ethics in developing countries. Soc Sci Med 2002;54:1131-41.
19. Revery SM. “Special treatment”: BiDil, Tuskgee, and the Logic of Race. J Law Med Ethics 2008;36:478-84. Available from: http://www.journals.sagepub.com/doi/10.1111/j.1749-720X.2008.294.x. [Last cited on 2018 Apr 13].
20. Molyneux S, Geissler PW. Ethics and the ethnography of medical research in Africa. Soc Sci Med 2008;67:685-95.
21. Indian Council of Medical Research. Ethical Guidelines for Biomedical Research on Human Participants. New Delhi: Director-General Indian Council of Medical Research; 2006. Available from: http://www.icmr.nic.in/ethical_guidelines.pdf. [Last cited on 2017 Nov 14].
22. National Institutes of Health. Protecting Human Research Participants. NIH
Office of Extramural Research; 2017. Available from: https://www.phrp.nihtraining.com/codes/01_codes.php. [Last cited on 2017 Nov 04].

23. Indian Council of Medical Research. In: Rasaily R, editor. National Ethical Guidelines for Biomedical Research Involving Children. New Delhi: Director General Indian Council of Medical Research; 2017.

24. Indian Council of Medical Research. National Ethical Guidelines for Biomedical and Health Research involving Human Participants. New Delhi: Director-General Indian Council of Medical Research; 2017.

25. Council for International Organizations of Medical Sciences (CIOMS). International Ethical Guidelines for Epidemiological Studies. Biomedical Research; 2016. p. 1921-31. Available from: http://www.sciencedirect.com/science/article/B6VC6-45F5X202-9C/2/e44bc37a6e392634b1ef436105978f01. [Last cited on 2017 Oct 15].

26. Alberti KG. Multicentre research ethics committees: Has the cure been worse than the disease. BMJ 2000;320:1157-8.

27. Emanuel EJ, Wendler D, Killen J, Grady C. What makes clinical research in developing countries ethical? The benchmarks of ethical research. J Infect Dis 2004;189:930-7. Available from: https://www.academic.oup.com/jid/article-lookup/doi/10.1086/381709. [Last cited on 2017 Oct 15].

28. Rothman KJ, Michels KB. Declaration of Helsinki should be strengthened. Br Med J 2001;323:1449-53.

29. Jotwani DG, Das SD, editors. National Guidelines for Stem Cell Research. Indian Council of Medical Research and Department of Biotechnology. New Delhi: Division of Publication and Information on behalf of the Secretary DHR and DG IC MR; 2017. p. 1-84.

30. Joffe S, Cook EF, Cleary PD, Clark JW, Weeks JC. Quality of informed consent in cancer clinical trials: A cross-sectional survey. Lancet 2001;358:1772-7. Available from: http://www.sciencedirect.com/science/article/pii/S0140673601068052.

31. Shendurnikar N, Thakkar PA. Communication skills to ensure patient satisfaction. Indian J Pediatr 2013;80:938-43.

32. Vidyasagar D. Globalnotes: The10/90gap disparitiesinglobalhealthresearch. J Perinatol 2006;26:55-6. Available from: https://www.sciencedirect.com/science/article/doi/10.1088/381709. [Last cited on 2017 Nov 04].