Coarctation of the aorta (CoA) is a congenital heart defect (CHD) characterized by the narrowing of the aorta that can be of varying degree and at any point from the transverse arch to the iliac bifurcation. CoA occurs in about 3 cases per 10,000 births and presents across all age ranges, with varying clinical symptoms, in isolation, or association with other CHDs. Discrepancies between clinical and autopsy diagnoses persist despite progress in medical skills and technology. Hence, we conducted the present study to analyze the level of discrepancy between clinical and autopsy diagnosis of CoA in children.

After taking permission from our institutional ethics committee, we extracted the autopsy records for patients aged 1 day to 12 years diagnosed with coarctation of aorta (by gross and histopathology examination) over 10 years (January 2006 to December 2015). The medical records of these patients were then retrieved from the medical record department and reviewed to check whether a clinical diagnosis of CoA was considered antemortem by the treating physician(s). After a thorough review of each patient’s clinical data, autopsy diagnosis, and the cause of death in the autopsy report, the discrepancy was evaluated as per the Goldmann classification. Data are presented as absolute numbers and percentages for discrete variables and as medians for continuous variables. The study protocol was registered with the clinical trials registry of India (CTRI/2017/10/010293) retrospectively.

ABSTRACT
This retrospective study analyzed the level of concordance between clinical and autopsy diagnosis of coarctation of aorta over 10 years. Utilizing the Goldmann classification, the concordance rate was found to be 16%. Major discrepancies (Class I and II) were found in 56% cases and minor discrepancies (Class III and IV) in 28% cases.

KEY WORDS: Congenital heart defects, diagnostic errors, heart failure, medical audit, transthoracic echocardiography

How often is coarctation of aorta correctly diagnosed antemortem in children with fatal illnesses? A retrospective review of medical and autopsy records

Karande S, Kumar S, Vaideeswar P

Departments of Pediatrics and
1Pathology (Cardiovascular and Thoracic Division),
Seth G. S. Medical College and K. E. M. Hospital, Parel, Mumbai, Maharashtra, India

Address for correspondence:
Dr. Karande S,
E-mail: karandesunil@yahoo.com

Received : 19-02-2020
Review completed : 20-03-2020
Accepted : 03-04-2020
Published : 03-06-2020
The total number of pediatric autopsies performed during the study period was 1907, and in 50/1907 (2.6%) cases CoA was confirmed. The median age of the 50 CoA cases was 2 months (IQR 8.8); 33 males vs. 17 females (male:female ratio 1.9:1). A clinical diagnosis of CoA was considered in 19/50 (38%) cases and the recommended first-line of investigation, namely, a transthoracic echocardiogram (TTE)\(^6\) was done. However, CoA had been detected antemortem in only 8 of these 19 cases.

Our analyses revealed that in only 8/50 (16%) cases the clinical diagnosis of CoA was also confirmed on autopsy to be directly related to death (Class V; no discrepancy).\(^5\) In all these eight cases, a clinical diagnosis of CoA was considered due to the presence of congestive heart failure (CHF) with tachypnea with bilateral weak femoral pulses while a TTE had confirmed the diagnosis. Of these eight cases; four had post-ductal CoA (isolated), one had post-ductal CoA with atrial septal defect (ASD), one had post-ductal CoA with ASD and ventricular septal defect (VSD), and one had pre-ductal CoA with ASD, and were being treated medically awaiting surgery. One case of post-ductal CoA with total anomalous pulmonary venous connection (TAPVC) had died postoperatively.

In 16/50 (32%) cases, the discrepancy was major (Class I) wherein if the correct diagnosis had been done clinically, it would have changed patient management and might have resulted in cure or prolonged survival [Table 1].\(^5\) In only three of these 16 Class I discrepancy cases, a clinical diagnosis of CoA was considered but CoA was not detected on TTE [Table 1].

In 12/50 (24%) cases, the discrepancy was major (Class II) as a missed clinical diagnosis of CoA would have not changed therapy nor impacted survival [Table 1].\(^5\) All 12 cases received appropriate resuscitative management but had succumbed before a TTE could be done.

Table 1: Coarctation of aorta cases with major Class I and II discrepancies\(^5\) identified in the present study (n=16 and 12, respectively)

Age/Sex	DHS	Clinical Diagnosis/Condition	Autopsy Diagnosis
1d/M	1d	RDS	Post-ductal CoA with ASD
2d/F	19h	ACHD with CHF	Pre-ductal CoA (isolated)
2d/M	2d	ACHD with CHF	Post-ductal CoA with ASD
2d/M	3d	ACHD with CHF	Post-ductal CoA with ASD
3d/M	3d	ACHD with CHF*	Post-ductal CoA (isolated)
21d/M	17d	ASD with CHF*	Post-ductal CoA with ASD
40d/M	16d	VSD with CHF*	Post-ductal CoA with VSD
1.5 months/M	8h	DCM with CHF	Post-ductal CoA with TAA
2 months/F	1d	ACHD with CHF with pneumonia	Post-ductal CoA with ASD with pneumonia
2 months/F	6d	VSD with CHF	Post-ductal CoA (isolated)
2.5 months/F	1d	Acute myocarditis	Pre-ductal CoA with ASD
2.5 months/F	2d	ACHD with CHF	Pre-ductal CoA (isolated)
3.5 months/M	11d	VSD with CHF with pneumonia	Pre-ductal CoA with VSD with pneumonia
5 months/F	3h	ACHD with CHF	Pre-ductal CoA (isolated)
5 months/F	6h	ACHD with CHF	Post-ductal CoA with ASD
9 months/F	12h	ACHD with CHF	Post-ductal CoA with VSD

Class II discrepancies

Age/Sex	DHS	Clinical Diagnosis/Condition	Autopsy Diagnosis
NB/M	30 min	Gassing soon after birth	Post-ductal CoA (isolated)
NB/F	30 min	Gassing soon after birth	Post-ductal CoA with ASD
1d/F	2h	Gassing soon after birth	Post-ductal CoA with ASD
1d/M	3h	Admitted in critical condition	Post-ductal CoA with CAVC
3d/M	1h	Admitted in critical condition	Post-ductal CoA with ASD/VSD
4d/M	3h	Admitted in critical condition	Post-ductal CoA with PAPVVC
4d/M	3h	Admitted in critical condition	Pre-ductal CoA with VSD
1.5 months/M	4.5 h	Admitted in critical condition	Pre-ductal CoA with ASD/VSD
2 months/M	30 min	Admitted in critical condition	Post-ductal CoA (isolated)
15 months/M	1h	Admitted in critical condition	Ductal CoA with VSD
3 years/M	30 min	Admitted in critical condition	Post-ductal CoA (isolated)
3 years/M	30 min	Admitted in critical condition	Post-ductal CoA with TAA

*Transthoracic Echocardiogram was done but CoA not detected. min: minutes; h: hour(s); d: day(s); M: male; F: female; DHS: duration of hospital stay; RDS: respiratory distress syndrome; CoA: coarctation of aorta; ASD: atrial septal defect; ACHD: acyanotic congenital heart defect; CHF: congestive heart failure; VSD: ventricular septal defect; DCM: dilated cardiomyopathy; TAA: tubular hypoplasia of transverse aortic arch; NB: newborn; CAVC: complete atrioventricular canal defect; PAPVVC: partial anomalous pulmonary venous connection.
In 8/50 (16%) cases, the discrepancy was minor (Class III) and the missed clinical diagnosis of CoA was not directly related to death but related to the terminal disease process, namely, pulmonary hypertension (PH) leading to CHF. All these eight cases had already developed pulmonary hypertension before admission due to an associated dominant CHD (three had post-ductal CoA with VSD; two had post-ductal CoA with ASD and VSD, one had post-ductal CoA with double outlet right ventricle, one had post-ductal CoA with transposition of great arteries and one had pre-ductal CoA with VSD) and were being treated medically. One case of post-ductal CoA with VSD with PH and CHF had died postoperatively due to renal failure. Besides, TTE did not detect the CoA in any of these eight cases.

In 6/50 (12%) cases, the discrepancy was minor (Class IV) and the missed clinical diagnosis of CoA was not directly related to death nor the terminal disease process. Of these six cases, four had sepsis due to intestinal perforation, one had bilateral choanal atresia with imperforate anus, and one had hypoxic-ischemic encephalopathy. TTE was not done in these six cases.

To our knowledge, no study has analyzed the level of discrepancy between clinical and autopsy diagnosis of CoA in children. Our results reiterate that CoA is a commonly missed diagnosis, especially in neonates and young infants. Routine evaluation of lower limb pulses and the use of pulse oximeter to measure SpO2 and thorough TTE screening of the aortic arch are urgently needed to avoid oversight of CoA.

There are limitations to our study. It is a single-center study wherein documentation had been completed by different attending physicians and pathologists. Moreover, an autopsy is usually requested when the cause of death is uncertain. This might have led to a false high incidence of major diagnostic errors detected in our study.

Financial support and sponsorship Nil.

Conflicts of interest Dr. Sunil Karande was the Editor of the Journal of Postgraduate Medicine at the time of acceptance of this manuscript.

References

1. Torok RD, Campbell MJ, Fleming GA, Hill KD. Coarctation of the aorta: Management from infancy to adulthood. World J Cardiol 2015;7:765-75.
2. Dijkema EJ, Leiner T, Grotenhuis HB. Diagnosis, imaging and clinical management of aortic coarctation. Heart 2017;103:1148-55.
3. Hoffman JI. The challenge in diagnosing coarctation of the aorta. Cardiovasc J Afr 2018;29:252-6.
4. Zerbini T, Singer JM, Leyton V. Evaluation of the discrepancy between clinical diagnostic hypotheses and anatomopathological diagnoses resulting from autopsies. Clinics (Sao Paulo) 2019;74:e1197.
5. Goldman L, Sayson R, Robbins S, Cohn LH, Bettmann M, Weisberg M. The value of the autopsy in three medical eras. N Engl J Med 1983;308:1000-5.
6. Sun Z, Cheng TO, Li L, Zhang L, Wang X, Dong N, et al. Diagnostic value of transthoracic echocardiography in patients with coarctation of aorta: The Chinese experience in 53 patients studied between 2008 and 2012 in one major medical center. PLoS One 2015;10:e0127399.
7. Levene R, Pollak-Christian E, Garg A, Keenaghan M. It is not always sepsis: Fatal tachypnea in a newborn. Case Rep Pediatr 2018;2018:7858192.