Introduction

Lignocellulose is among the most important components of plant biomass. It represents more than half of the globally produced organic matter during photosynthesis. In spite of its high abundance and energetic potential, this resource has not been fully utilized (Piotrowska-Cyplik, Czarnecki, 2003; Sanchez, 2009; Marecik et al., 2012). One of the reasons is a complex structure of plant biomass components, which mainly comprises polymeric compounds, such as cellulose, hemicelluloses, lignin and pectin (Sun and Cheng, 2002; Taherzadeh and Karimi, 2008; Hendriks and Zeeman, 2009; Sarkar et al., 2012). Regrettably, the presence of compounds with such a high degree of polymerization restricts their use as a carbon or energy source for animals and typical fermentation microorganisms. Finding a cheap, and safe for environment method of lignocellulosic biomass degradation would allow increasing feed digestibility and improve effectiveness of livestock production or simple conversion of plant biomass to biofuels (Harris and Ramalingam, 2010; Marecik et al., 2015; Chakdar et al., 2016).

Efficient use of the lignocellulosic resource as a source of renewable energy requires the employment of processes, which lead to the release of monosaccharides. This allows for obtaining substrates, which are easily assimilated by microorganisms and bioconverted to liquid or gaseous fuels, such as ethanol, methanol, hydrogen, methane and others (Saxena et al., 2009). A wide variety of methods can be employed for the degradation of the lignocellulosic complex, including physical, chemical or biochemical treatment. Especially, combined physical and chemical methods allow for rapid and efficient depolymerization of lignocelluloses; however, considerable energy expenditure is required possessing a notable threat to the environment (Kumar et al., 2009; Park and Kim, 2012).

The development of biotechnological hydrolyzation methods for the lignocellulosic complex is considered to be promising. These methods utilize unique properties of microorganisms to degrade different organic and...
inorganic or even xenobiotic substances to the simpler or nontoxic ones (Cyplik et al., 2012; Pęziak et al., 2013; Lisiecki et al., 2014). The use of such methods is based on the introduction of specific microorganisms or commercially available enzymatic preparations to the lignocellulosic biomass, what causes release of smaller pentose or hexose components. Enzymatic preparations employed for the decomposition of cellulose or hemicellulose are acquired from the cultivation of selected microbial strains (Aehle, 2007). The complete degradation of cellulose requires cellobiose dehydrogenases (CDHs) enzymes complex containing: endo- and exoglucanases and β-glucosidases. Depending on the producers, CDHs are classified into two classes: class I for CDHs produced by basidiomycetes and class II for CDHs from ascomycetes. Cellobiose dehydrogenases are flavocytochromes and belong to oxidoreductase class of enzymes. The efficient degradation of crystalline cellulose or hemicellulose is strongly related to copper-dependent lytic polysaccharide monooxygenases (LPMOs) (Harreither et al., 2011; Tanx et al., 2015). The preparations used for hemicelluloses hydrolysis are very complex, since they usually consists of a mixture of eight enzymes, such as endo-1,4-β-D-xylanase, exo-1,4-β-D-xylanase, α-L-arabinofuranosidase, endo-1,4-β-D-mannase, β-mannosidase, acetyl xylan esterase, a-glucuronidase and a-galactosidase (Clarke, 1997; Jorgensen et al., 2003; Banerjee et al., 2010). However, many different species of microorganisms capable of cellulolytic and hemicellulolytic enzymes synthesis have been discovered, including bacteria and fungi. It is important to note that the efficiency of lignocellulose decomposition is still unsatisfactory (Sun and Cheng, 2002).

Among the microorganisms, which exhibit the ability to produce hemicellulolytic enzymes, the filamentous fungi belonging to the Trichoderma genus attract particular attention (Xu et al., 1998). Due to substrate induction, these fungi produce and secrete considerable amounts of enzymes, which belong to cel lulases as well as hemicellulases, which is why they are capable of growth under unfavourable environmental conditions (Sandgren et al., 2005). This is a valuable adaptive trait, which allows them to utilize different carbon and energy sources and grow under different temperature regimes, regardless of the presence of light (Polizeli et al., 2005). Due to their various metabolic activity, fungi belonging to the Trichoderma genus have found numerous practical applications e.g. enzyme producers, used as a biofungicides (Vinale et al., 2006; Wojtikowiak-Gbarowski, 2006; Vinale et al., 2008; Harris and Ramalingam, 2010; Chakdar et al., 2016).

The purpose of this study was to examine the ability of Trichoderma fungi isolated from different habitats to production of cellulose and xylan degrading enzyme and determine the activity of those enzymes.

Experimental

Materials and Methods

Fungal collection. The one hundred and twenty-three Trichoderma strains, belonging to eleven species or species complex: Trichoderma atroviride, Trichoderma citrinoviride, Trichoderma hamatum, Trichoderma harzianum, Trichoderma koningii, Trichoderma koningiopsis, Trichoderma longibrachiatum, Trichoderma pseudokoningii, Trichoderma viride, Trichoderma viridescens and Trichoderma virens, were investigated in this study. The one hundred and seven strains were previously identified by Blaszczzyk et al. (2011, 2016) and Jeleń et al. (2014) and deposited in the collection of the Institute of Plant Genetics, Polish Academy of Science, Poznań, Poland. Ten Trichoderma isolates were collected from: wheat kernels (Lublin – AN158 isolate), pieces of decaying wood with white or brown rot (Czerwonak – AN109, AN110 isolates; Golecin Park, Poznań – AN131 isolate; Strzeszyn Park, Poznań – AN177 isolate; Joniec, Warszawa – AN501 isolate) and mushroom compost used for Agaricus bisporus cultivation (Skierniewice – AN186, AN187, AN188 isolates; Poznań – AN204 isolate) in Poland and isolated as described by Blaszczzyk et al. (2011). Other strains including T. pseudokoningii (AN219, ITEM 1416), T. koningiopsis (AN222, ITEM2688), T. harzianum (AN220, ITEM 1328) and T. virens (AN267 – ITEM 1357, AN268 – ITEM 1591, AN269 – ITEM 1594) were kindly supplied by dr. Antonio Logrieco, CNR, ISPA, Bari, Italy. Trichoderma reesei QM 9414, sourced from the Czech Collection of Microorganisms (CCM), Brno, Czech Republic was used as the reference strain.

Morphological and molecular analysis. Ten isolates of Trichoderma sourced from wheat grains, compost used for mushroom cultivation and pieces of decaying wood collected from the floor of forests and parks in eastern and central Poland were identified morphologically following the procedure described by Gams and Bisset (1998). Colony characteristics were examined from cultures grown on PDA and SNA after 3–7 days at a temperature of 25°C. Microscopic observations were performed from cultures grown on SNA. Molecular species identification was based on the sequencing of two different phylogenetic markers: a fragment of the ITS1-5.8S – ITS2 rDNA region and a fragment of the translation-elongation factor 1-alpha (tef1) gene. Mycelium for DNA extraction was obtained as described previously (Blaszczzyk et al., 2011). Isolation of total DNA was performed using the CTAB method (Doohan et al., 1998). The ITS1 and ITS2 region of the rDNA gene cluster was amplified using primers ITS4 and ITS5 (White et al., 1990). A fragment of the 1.2-kb tef1 gene was ampli-
fied using primers Ef728M (Carbone and Kohn, 1999) and TEF1LErev (Jaklitsch et al., 2005). PCR amplification, DNA sequencing and sequence analysis was carried out under the conditions described by Blaszczyk et al. (2011). The sequences were identified by BLASTn (http://blast.ncbi.nlm.nih.gov/) as well as TrichOKEY and TrichoBLAST (http://www.isth.info; Druzhinina et al., 2005; Kopchinskiy et al., 2005). The sequences were deposited in the NCBI GenBank (https://www.ncbi.nlm.nih.gov/genbank/) and listed in Table I.

Cultivation of Trichoderma and induction of enzyme synthesis. For assessing the capability to cellulolytic or hemicellulolytic enzyme production, the fungi were cultivated on medium consisting only of carboxymethylcellulose sodium salt (Akzo Nobel Chemicals) or xylan (10 g/l) as a sole source of carbon. Furthermore, the medium contained: NaNO₃ – 3 g/l, K₂HPO₄ – 1 g/l, MgSO₄ – 0.5 g/l, KCl – 0.5 g/l, FeSO₄ – 7H₂O – 0.01 g/l and pH was adjusted to 5.6 ± 0.1. The inducing enzyme synthesis culture was carried out in 300 ml Erlenmeyer flasks, on a rotary shaker (150 rpm) for five days at a temperature of 25 ± 1°C. After the cultivation process the fungal cells were centrifuged (4500 rpm for 10 min) and obtained supernatants containing crude cellulolytic and xylanolytic enzymes were used for determination of the enzymes activity.

Analysis of cellulolytic and xylanolytic activity of Trichoderma fungi – plate method. The analysis of cellulolytic and hemicellulolytic enzymes activity was carried out using the plate screening method described by Hadkin and Anagnostakis (1977). The method is based on the observation of changes (determination of the size of clearance zones), which occur in the solid medium as a result of enzymatic activity. For determination of the cellulolytic activity, the medium including a 1% solution of carboxymethylcellulose sodium salt and 0.1 g/l of chloramphenicol in 2% solution of agar was used. The media were poured into Petri dishes (diameter of 90 mm) and then, after solidification, the central part was removed using a cork borer to create a well. To evaluate the xylanolytic activity the plates were prepared analogously, however a 1% solution of xylan was used instead of carboxymethylcellulose sodium salt.

The cultures of the Trichoderma fungi were centrifuged at 4500 rpm for 15 min, and then 200 μl of supernatants were placed in the wells. The plates were incubated at 37°C for 48 h and rinsed with 5 ml of a 1% Lugol’s iodine solution. After 15 minutes, the excess of the Lugol’s solution was rinsed with 0.1% solution of NaCl. The areas including non-hydrolyzed carboxymethylcellulose sodium salt or xylan were stained with a deep brown colour, whereas the areas in the direct vicinity of the well were characterized by a visible clearance, due to the enzymatic activity. The size of the clearance in each specific sample reflected the activity of cellulolytic or xylanolytic enzymes. The size of the clearance area, which occurred due to the activity of enzymes secreted by a given strain, was compared with the size of the clearance area obtained for the reference strain with known cellulolytic properties – T. reesei QM9414 (Sazci et al., 1986).

Analysis of cellulolytic activity of Trichoderma fungi – a blotting filter paper method. The overall cellulolytic activity (FPU) of selected fungal strains was also determined using the method recommended by Ghose (1987). Blotting filter paper stripes (Whatman No.1) were placed in test tubes and incubated for 60 minutes at 50°C in the presence of 0.1 mol acetate buffer (pH 4.8) and the post-cultivation medium acquired after cultivation of fungi for 5 days. The amount of reducing sugars released into the supernatant was measured by employing the colorimetric method, using 3,4-dinitrosalicylic acid (DNS) (Miller, 1959). The cellulolytic activity of the post-cultivation medium was expressed as FPU (Filter Paper Unit) according to the International Union of Pure and Applied Chemistry (IUPAC) (Ghose, 1987). The amount of the enzyme, which allowed for the release of 1 μmol of glucose during 1 minute, was adapted as one unit of FPU cellulolytic activity.

Statistical analysis of the results. Each experiment of the enzyme activity analysis was carried out in three replicates. The Levene’s test (the homogeneity of variance test) and Turkey’s test were carried out in order to conduct a statistical verification of the obtained results. The calculations were carried out using Statistica 6.0 software.

Results and Discussion

Trichoderma species identification. Ten isolates of Trichoderma from samples of wheat grains, compost used for mushroom cultivation and decaying wood in Poland were identified at the species level based on morphological as well as ITS1, ITS2 and tef1 sequencing data. Finally, five species or species complex were found to be: T. harzianum species complexes – 3 strains, T. virens – 4 strains, T. viride – 1 strain, T. viridecens – 1 strain and T. hamatum – 1 strain. The identification, origin and NCBI GenBank accession numbers of all Trichoderma isolates (both of ten isolates identified in this study and isolates previously recognized by Blaszczyk et al. (2011, 2016) and Jeleń et al. (2014) originating from the different habitats in Poland are given in Table I.

Cellulolytic activity of the studied fungal strains. The studies regarding the cellulolytic activity based on the plate method described by Hadkin and Anagnostakis (1977) revealed that among the 123 strains belonging to the Trichoderma genus more than 34% exhibited higher cellulolytic activity compared to the reference
Table I
List of isolates originating from the different habitats identified as the *Trichoderma* species and analyzed for their cellulolytic and xylanolytic activity.

Culture code	Origin	NCBI GenBank Accession No.	Cellulolytic activity (the plate method)	Xylanolytic activity (the plate method)				
			Localization	Source	ITS	tef1		
QM9414							1.00	1.00
T. reesei								
AN109*, AN176	Central Poland Forest wood	HQ292923	HQ293010	0.45 ± 0.50	0.70 ± 0.35			
AN141			HQ292922	HQ293008	0.75 ± 0.09	1.75 ± 0.27		
AN142			HQ292920	HQ293009	2.50 ± 0.31	0.67 ± 0.15		
AN179			HQ292924	HQ293011	0.56 ± 0.15	0.55 ± 0.18		
AN 235		Forest soil	HQ292921	HQ293013	0.45 ± 0.15	0.75 ± 0.12		
AN242	Southern Poland Forest wood	JX184121	JX184098	0.55 ± 0.18	0.58 ± 0.15			
AN244, AN249			JX184122	JX184099	0.46 ± 0.10	0.75 ± 0.12		
AN250, AN255			JX184121	JX184098	1.03 ± 0.78	0.77 ± 0.81		
AN248			JX184124	JX184100	0.91 ± 0.17	0.92 ± 0.09		
AN401			JX184121	JX184099	0.75 ± 0.14	0.47 ± 0.21		
T. viride								
AN93	Central Poland Forest wood	HQ292927	HQ292995	0.85 ± 0.21	0.73 ± 0.18			
AN122			HQ292928	HQ292994	0.79 ± 0.12	0.57 ± 0.19		
AN145			HQ292930	HQ292996	0.85 ± 0.17	0.3 ± 0.33		
AN148			HQ292933	HQ292999	0.79 ± 0.23	0.44 ± 0.11		
AN149			HQ292934	HQ293000	0.67 ± 0.20	0.48 ± 0.14		
AN158*	Eastern Poland Wheat kernels	JX184127	JX184103	0.55 ± 0.12	0.76 ± 0.19			
AN227	Central Poland Forest wood	HQ292936	HQ293001	0.67 ± 0.21	0.57 ± 0.13			
AN229			HQ292937	HQ293002	0.83 ± 0.16	0.19 ± 0.08		
AN231			HQ292938	HQ293003	0.50 ± 0.23	0.58 ± 0.13		
AN245	Southern Poland Forest wood	JX184127	JX184103	0.50 ± 0.10	0.56 ± 0.16			
AN248			JX184128	JX184104	0.63 ± 0.15	0.73 ± 0.23		
AN323, AN334, AN405		JX184127	JX184103	0.78 ± 0.85	0.58 ± 0.55			
T. tridescent complex								
AN68	Eastern Poland Garden compost	HQ292943	–	2.09 ± 0.27	1.10 ± 0.11			
AN69			HQ292944	–	1.60 ± 0.19	3.00 ± 0.27		
AN70			HQ292947	–	2.10 ± 0.22	1.10 ± 0.15		
AN73			HQ292945	–	2.75 ± 0.31	1.10 ± 0.18		
AN74			HQ292946	–	1.25 ± 0.12	1.40 ± 0.17		
AN75		Grass root	HQ292948	–	1.53 ± 0.15	1.10 ± 0.13		
AN160			HQ292945	–	0.83 ± 0.18	0.55 ± 0.18		
AN185	Central Poland Mushroom compost	HQ292947	–	0.95 ± 0.12	0.55 ± 0.12			
AN186*, AN187*, AN188*, AN204*	Eastern Poland	HQ292946	–	0.82 ± 0.02	1.00 ± 0.25			
AN267* – ITEM 1357		HQ292948	–	1.35 ± 0.21	1.45 ± 0.17			
AN268* – ITEM 1591		–	1.25 ± 0.17	0.55 ± 0.20				
AN269* – ITEM 1594		–	2.50 ± 0.23	2.70 ± 0.32				
T. vixens								
AN91	Central Poland graden Kompost	HQ292860	–	0.75 ± 0.15	1.15 ± 0.11			
AN94	forest soil	HQ292873	–	0.80 ± 0.12	3.53 ± 0.27			
AN101	forest wood	HQ292868	–	1.60 ± 0.21	2.58 ± 0.23			
AN108/AN110*			HQ292869	–	2.80 ± 1.10	1.80 ± 1.40		
T. harzianum complex								

(a)Values expressed as mean ± standard error.
Table I. Continued

Culture code	Origin	Source	NCBI GenBank Accession No.	Cellulolytic activity (the plate method)	Xylanolytic activity (the plate method)
AN131*	Central Poland	forest wood	HQ292870 -	1.10 ± 0.16	0.60 ± 0.09
AN132			HQ292867 -	0.78 ± 0.12	0.60 ± 0.07
AN133			HQ292874 -	2.05 ± 0.26	1.70 ± 0.21
AN134			HQ292875 -	1.01 ± 0.11	1.00 ± 0.17
AN135			HQ292876 -	0.81 ± 0.13	1.65 ± 0.14
AN136			HQ292901 -	2.40 ± 0.22	2.04 ± 0.18
AN137			HQ292877 -	1.60 ± 0.13	1.03 ± 0.12
AN138			HQ292861 -	1.00 ± 0.10	1.41 ± 0.16
AN139			HQ292878 -	0.87 ± 0.08	1.67 ± 0.16
AN177*			HQ292883 -	1.25 ± 0.15	1.40 ± 0.11
AN181			HQ292875 -	1.66 ± 0.12	2.25 ± 0.22
AN203	mushroom compost		HQ292879 -	1.66 ± 0.13	1.00 ± 0.18
AN205			HQ292880 -	1.36 ± 0.17	2.45 ± 0.25
AN207			HQ292881 -	1.50 ± 0.13	1.00 ± 0.17
AN211			HQ292882 -	1.10 ± 0.11	0.20 ± 0.11
AN223			HQ292902 -	1.25 ± 0.10	1.05 ± 0.20
AN225, AN238	Forest soil		HQ292944 -	1.10 ± 0.18	1.28 ± 0.11
			HQ292995 -	1.35 ± 0.29	1.30 ± 0.13
AN349	Southern Poland	Forest wood	JX184111 JX184089	1.05 ± 0.09	1.38 ± 0.24
AN360, AN367, AN373, AN3811			JX184113 JX184090	2.20±1.70/1.70	1.27/1.40/1.75
AN220 – ITEM 1328	Bari, Italy			0.25 ± 0.16	1.60 ± 0.13

T. hamatum (E)

Culture code	Origin	Source	NCBI GenBank Accession No.	Cellulolytic activity (the plate method)	Xylanolytic activity (the plate method)
AN118	Central Poland	Forest wood	HQ292854 -	0.66 ± 0.21	0.61 ± 0.19
AN155	Eastern Poland	Ryder Rhizosphere	HQ292851 -	0.82 ± 0.18	0.51 ± 0.11
AN175	Central Poland	Forest wood	HQ292854 -	0.53 ± 0.12	0.28 ± 0.10
AN227, AN279, AN501*	Forest soil	HQ292853 -	0.41 ± 0.21	0.84 ± 0.29	
AN521	Northern Poland	Forest wood	HQ292856 -	0.50/0.18/0.41	2.30/0.72/0.61

T. atroviride (F)

Culture code	Origin	Source	NCBI GenBank Accession No.	Cellulolytic activity (the plate method)	Xylanolytic activity (the plate method)
AN19	Central Poland	Forest soil	HQ292786 HQ292963	0.67 ± 0.13	1.04 ± 0.16
AN35			HQ292787 HQ292953	0.35 ± 0.09	0.80 ± 0.19
AN90			HQ292788 HQ292954	0.49 ± 0.12	0.35 ± 0.12
AN95			HQ292789 HQ292955	0.90 ± 0.17	1.30 ± 0.18
AN96			HQ292790 HQ292956	0.95 ± 0.15	0.70 ± 0.14
AN111			HQ292791 HQ292964	0.37 ± 0.13	0.75 ± 0.21
strain *T. reesei* and that these differences were statistically significant (p ≤ 0.05) (Fig. 1A). *T. harzianum* can be included as a species with high cellulolytic activity. Among the representatives of this species up to 21 out of 39 strains displayed a higher activity compared to the reference *T. reesei* strain. The highest activity was observed for strains AN108, AN133, AN136, and AN360. The activity of these strains exceeded the activity of the reference strain by 2.4 times on the average. An activity exceeding 50% was noted for strains AN101, AN137, and AN367. All of these efficient *T. harzianum* strains were isolated from different locations of forest wood. Another species, which included very active strains with regard to degradation of cellulose, was *T. virens*, especially isolated from garden or mushroom compost. Among these species, 12 out of 15 strains were more active compared to the reference strain. The activity exceeding that of the reference strain by 2.6 times was observed for strains AN73, AN187, and AN268. Additionally, the degradation of cellulose

Culture code	Origin	NCBI GenBank Accession No.	Cellulolytic activity (the plate method)	Xylanolytic activity (the plate method)
AN152	Central Poland	HQ292972, HQ292957	0.59 ± 0.19	1.85 ± 0.30
AN155	Central Poland	HQ292793, HQ292958	0.58 ± 0.10	0.57 ± 0.12
AN182	Forest wood	HQ292794, HQ292965	0.57 ± 0.12	0.45 ± 0.23
AN206	Mushroom compost	HQ292804, HQ292960	0.40 ± 0.19	1.02 ± 0.11
AN212	HQ292795, HQ292966	0.68 ± 0.21	1.27 ± 0.21	
AN215	HQ292796, HQ292967	1.10 ± 0.16	1.19 ± 0.14	
AN224	Southern Poland	HQ292799, HQ292970	0.36 ± 0.09	0.58 ± 0.13
AN240	Mushroom compost	JX184119, JX184096	0.23 ± 0.19	0.57 ± 0.17
AN287	Central Poland	HQ292798	0.41 ± 0.11	0.58 ± 0.12

T. longibrachiatum (G)

| AN197 | Eastern Poland | Mushroom factory | HQ292780 | 0.77 ± 0.19 | 1.40 ± 0.22 |
| AN213 | Central Poland | Mushroom compost | HQ292781 | 0.30 ± 0.16 | 2.70 ± 0.31 |

T. citrinoviride (H)

AN89	Central Poland	Garden soil	HQ292841	0.50 ± 0.14	1.25 ± 0.27
AN98	Forest wood	HQ292843	1.55 ± 0.13	1.07 ± 0.19	
AN198	Mushroom factory	HQ292845	0.57 ± 0.17	0.47 ± 0.13	
AN199	HQ292846	0.95 ± 0.12	2.07 ± 0.26		
AN201	HQ292849	1.10 ± 0.21	2.08 ± 0.29		

| AN262, AN303, AN393, AN500 | Southern Poland | Forest wood | JX184109 | 2.26 ± 0.85/1.75 ± 0.90 | 2.88 ± 0.61/0.63 ± 0.80 |

T. pseudokoningii (I)

| AN219 – ITEM1416 | Rari, Italy | – | – | 1.42 ± 0.19 | 2.10 ± 0.22 |

T. koningii (I)

AN100	Central Poland	Forest wood	HQ292803, HQ292975	0.35 ± 0.17	0.40 ± 0.17
AN105	HQ292905, HQ292977	0.17 ± 0.08	0.58 ± 0.14		
AN106	HQ292906	1.16 ± 0.19	0.40 ± 0.16		
AN121	HQ292913, HQ292985	0.58 ± 0.11	1.41 ± 0.27		
AN128	HQ292918, HQ292989	0.31 ± 0.09	0.48 ± 0.12		
AN151	HQ292919, HQ292990	0.47 ± 0.11	0.55 ± 0.12		

T. koningiopsis (K)

| AN222 – ITEM2688 | Rari, Italy | – | – | 0.20 ± 0.10 | 0.30 ± 0.12 |

a The isolates identified in this study by a combination of morphological and molecular analyses

1 – The identical accession numbers refer to identical sequences

2 – The pieces of decaying wood collected from the floor of forests/parks

3 – The compost used for *Agaricus bisporus* cultivation

A. B. C. … – corresponds to particular species presented in fig. 1.
Screening and identification of Trichoderma strains

was approximately twice as efficient for strains AN68, AN70, and AN188. Higher cellulolytic activity compared to the reference T. reesei strain was also observed in the case of three strains belonging to the T. viride and T. citrinoviride species as well as strain from the T. pseudokoningii (AN219). Among these species, a particularly high activity was exhibited by AN262 belonging to T. citrinoviride species and AN142 belonging to the T. viride species, both collected from forest wood. The cellulolytic activity of strains belonging to the remaining species, identified as T. viridescens, T. hamatum, T. koningii, T. koningopsis and T. atroviride were usually at a much lower level compared to the reference strain. High cellulolytic activity of the selected fungal strains belonging to the Trichoderma genus was also confirmed using the blotting filter paper method described by Ghose (1987). The selected strains characterized by the highest cellulolytic activity were presented in Table II.

Table II

Strains of Trichoderma	T. reesei	T. virens	T. atroviride							
Cellulolytic activity (FPU/ml)	QM 9414	AN 68	AN 69	AN 73	AN 108	AN 187	AN 188	AN 268	AN 94	AN 108
2.11 ± 0.25	4.41 ± 0.31	3.21 ± 0.15	6.05 ± 0.46	5.62 ± 0.41	4.42 ± 0.39	6.36 ± 0.48	1.69 ± 0.09	7.15 ± 0.30		

* The value corresponding to difference in clearing zone diameter between analyzed strains
Xylanolytic activity of the studied fungal strains.

The studies regarding the xylanolytic activity of the selected fungal strains belonging to the *Trichoderma* genus revealed that 56 out of 123 studied isolates were characterized by higher activity compared to the reference *T. reesei* strain (Fig. 1B). *T. harzianum* exhibited the highest activity. Up to 31 strains of these species displayed higher activity compared to the reference strain. Among these strains the highest activity was observed for strain AN94 obtained from forest soil, which was capable of degrading xylan over 3.5 times more efficiently compared to the reference strain. A notable xylanolytic activity was also observed in the case of strains AN101 and AN205. These strains exhibited activity, which was over 2.5 times higher compared to the reference strain. *T. citrinoviride* was another species, which included strains with high xylanolytic activity. The strain AN262 that belonged to this species, was capable of degrading xylan over 2 times more efficiently compared to the reference strain. High xylanolytic activity was also noted for AN213, belonging to *T. longibrachiatum* species, AN69 of *T. virens* species and AN277 of *T. hamatum* species.

For both activities analyzed, no direct dependence between particular source of fungi strains and their degradative potential was observed; however, the strains isolated from forest wood, forest soil and compost were the most effective.

Filamentous fungi exhibit a broad spectrum of secondary metabolic activity representing important for the people – enzymes or antibiotics production, but also secretion of some dangerous, toxic or carcinogetic substances like mycotoxins (Jae-Hyuk and Keller, 2005; Błaszczyk et al., 2011, 2013, 2016) as well as food or wood industry (Harris and Ramalingam, 2010). Developing biofuel industry (biogas, bioethanol) is also the area of cellulose and hemicellulose enzymes application to increase of the fermentation efficiency (Chakdar et al., 2016). These are the reasons that new and more effective sources of these enzymes are still studied. Many of the microorganisms are saprotrophs and contribute to the decay of organic matter exhibiting the possibility to cellulose and hemicellulose enzymes production (Crowther et al., 2012). However, despite that different microorganisms like bacteria, actinomycetes, yeast or even algae or insects are able to secrete these enzymes, filamentous fungi are especially worth of attention (Polizeli et al., 2005). The genus *Aspergillus* and *Trichoderma* secrete these enzymes directly into the environment at the remarkably higher than other microorganisms efficiency. The ability of different fungi strains belonging to the *Trichoderma* to produce cellulolytic and hemicellulolytic enzymes was extensively studied (Clarke, 1997; Xu et al., 1998; Sandgren et al., 2005; Banerjee et al., 2010). Such enzymes are obtained on industrial scale by aerobic cultivation of fungi, such as *T. reesei* and *Humicola insolens* or from recombinant strains (Liming and Xueliang, 2010). The strains of filamentous fungi isolated from soil, decaying wood and sawdust were analyzed by Inuwa Ja’afaru (2013). Up to 42.6% of the 110 identified isolates belonged to the *Trichoderma* genus. The highest xylanolytic activity was exhibited by *T. viride* Fd18 strain, whereas the highest cellulytic activity was observed for *Trichoderma* sp. F4 strain. The high potential of fungi belonging to the *Trichoderma* to produce cellulolytic and hemicellulolytic enzymes was confirmed in further studies (Wen et al., 2005; Chandel et al., 2013). Additionally, 23 out of 36 fungal isolates originating from compost also displayed cellulolytic activity. The isolates were identified as *Trichoderma*, *Aspergillus*, *Rhizopus* and *Penicillium* species (Chandel et al., 2013). The ability to synthesize cellulolytic enzymes by the modified *T. reesei* RUT-C30 strain QM 9414 with the use of cow manure as a substrate was confirmed by Wen et al. (2005). This strain was characterized by a higher production of cellulose compared to the reference *T. reesei* QM 9414 strain.

In summary, the results obtained in our study confirmed that numerous strains from the *Trichoderma* species are characterized by high lignocellulose degradation potential. The studies performed on forest soil, decaying wood or different kind of compost indicate
a source of effective degraders of cellulose and hemicellulose. Due to potentially benefits related to the production of cellulolytic and hemicellulolytic enzymes and a relatively good growth rate, which is a characteristic trait of such microorganisms; these fungi may be helpful in the industrial practice. For this reason the screening of new producers and study of molecular mechanisms of metabolite secretion regulation should be continued.

Acknowledgements
This work was supported by strategic program of the National (Polish) Center for Research and Development (NCBiR), Advanced Technologies for Energy Generation. Task 4: Elaboration of Integrated Technologies for the Production of Fuels and Energy from Biomass, Agricultural Waste and other Waste Materials.

Literature

Aehle W. 2007. Enzymes in industry. Third edition, Wiley-VCH Verlag GmbH & Co. KGaA.
Altnik H.H. 2009. In vitro production of fumonisin B1 and B2 by Fusarium moniliforme and the biocontrol activity of Trichoderma harzianum. Ann. Microbiol. 59(3): 509–516.
Amore A., S. Giacobbe and V. Faraco. 2013. Regulation of cellulase and hemicellulase gene expression in fungi. Curr. Genomics. 14: 230–249.
Banerjee S., S. Mudliar, R. Sen, B. Giri, D. Satpute, T. Chakrabarti and R.A. Pandey. 2010. Commercializing lignocellulosic bioethanol: technology bottlenecks and possible remedies. Biorefr. 19: 241–255.
Beg Q., B. Bhushan, M. Kapoor and G.S. Hoondal. 2009. Evolution and ecophysiology of the industrial producer Hypocrea jecorina (Anamorph Trichoderma reesei) and a new sympatric agamospecies related to it. PLOS ONE. 5(2): e9191. doi:10.1371/journal.pone.0009191.
Blight of wheat. Plant Pathol. 47: 197–205.
Błaszczyk L., A.G. Kopchinskiy, M. Komon, J. Bissett, G. Szałkowska and C.P. Kubicek. 2005. An oligonucleotide barcode for species identification in Trichoderma and Hypocre. Fungal Genet. Biol. 42: 813–828.
Błaszczyk L., M. Siwulski, K. Sobieralski and D. Frużyńska-Błaszczyk L., D. Popiel, J. Chełkowski, G. Koczyk, G.J. Samuels, Beg Q., B. Bhushan, M. Kapoor and G.S. Hoondal. Biorefr. 19: 241–255.
Blight of wheat. Plant Pathol. 47: 197–205.
Błaszczyk L., A.G. Kopchinskiy, M. Komon, J. Bissett, G. Szałkowska and C.P. Kubicek. 2005. An oligonucleotide barcode for species identification in Trichoderma and Hypocre. Fungal Genet. Biol. 42: 813–828.
Druzhinina I.S., M. Komon–Zelazowska, L. Atanasova, V. Seidl and Ch.P. Kubicek. 2010. Evolution and ecophysiology of the industrial producer Hypocrea jecorina (Anamorph Trichoderma reesei) and a new sympatric agamospecies related to it. PLOS ONE. 5(2): e9191. doi:10.1371/journal.pone.0009191.
Druzhinina I.S., M. Komon–Zelazowska, L. Atanasova, V. Seidl and Ch.P. Kubicek. 2010. Evolution and ecophysiology of the industrial producer Hypocrea jecorina (Anamorph Trichoderma reesei) and a new sympatric agamospecies related to it. PLOS ONE. 5(2): e9191. doi:10.1371/journal.pone.0009191.
Druzhinina I.S., M. Komon–Zelazowska, L. Atanasova, V. Seidl and Ch.P. Kubicek. 2010. Evolution and ecophysiology of the industrial producer Hypocrea jecorina (Anamorph Trichoderma reesei) and a new sympatric agamospecies related to it. PLOS ONE. 5(2): e9191. doi:10.1371/journal.pone.0009191.
Druzhinina I.S., M. Komon–Zelazowska, L. Atanasova, V. Seidl and Ch.P. Kubicek. 2010. Evolution and ecophysiology of the industrial producer Hypocrea jecorina (Anamorph Trichoderma reesei) and a new sympatric agamospecies related to it. PLOS ONE. 5(2): e9191. doi:10.1371/journal.pone.0009191.
Druzhinina I.S., M. Komon–Zelazowska, L. Atanasova, V. Seidl and Ch.P. Kubicek. 2010. Evolution and ecophysiology of the industrial producer Hypocrea jecorina (Anamorph Trichoderma reesei) and a new sympatric agamospecies related to it. PLOS ONE. 5(2): e9191. doi:10.1371/journal.pone.0009191.
Druzhinina I.S., M. Komon–Zelazowska, L. Atanasova, V. Seidl and Ch.P. Kubicek. 2010. Evolution and ecophysiology of the industrial producer Hypocrea jecorina (Anamorph Trichoderma reesei) and a new sympatric agamospecies related to it. PLOS ONE. 5(2): e9191. doi:10.1371/journal.pone.0009191.
Druzhinina I.S., M. Komon–Zelazowska, L. Atanasova, V. Seidl and Ch.P. Kubicek. 2010. Evolution and ecophysiology of the industrial producer Hypocrea jecorina (Anamorph Trichoderma reesei) and a new sympatric agamospecies related to it. PLOS ONE. 5(2): e9191. doi:10.1371/journal.pone.0009191.
Druzhinina I.S., M. Komon–Zelazowska, L. Atanasova, V. Seidl and Ch.P. Kubicek. 2010. Evolution and ecophysiology of the industrial producer Hypocrea jecorina (Anamorph Trichoderma reesei) and a new sympatric agamospecies related to it. PLOS ONE. 5(2): e9191. doi:10.1371/journal.pone.0009191.
Druzhinina I.S., M. Komon–Zelazowska, L. Atanasova, V. Seidl and Ch.P. Kubicek. 2010. Evolution and ecophysiology of the industrial producer Hypocrea jecorina (Anamorph Trichoderma reesei) and a new sympatric agamospecies related to it. PLOS ONE. 5(2): e9191. doi:10.1371/journal.pone.0009191.
Druzhinina I.S., M. Komon–Zelazowska, L. Atanasova, V. Seidl and Ch.P. Kubicek. 2010. Evolution and ecophysiology of the industrial producer Hypocrea jecorina (Anamorph Trichoderma reesei) and a new sympatric agamospecies related to it. PLOS ONE. 5(2): e9191. doi:10.1371/journal.pone.0009191.
Druzhinina I.S., M. Komon–Zelazowska, L. Atanasova, V. Seidl and Ch.P. Kubicek. 2010. Evolution and ecophysiology of the industrial producer Hypocrea jecorina (Anamorph Trichoderma reesei) and a new sympatric agamospecies related to it. PLOS ONE. 5(2): e9191. doi:10.1371/journal.pone.0009191.
Druzhinina I.S., M. Komon–Zelazowska, L. Atanasova, V. Seidl and Ch.P. Kubicek. 2010. Evolution and ecophysiology of the industrial producer Hypocrea jecorina (Anamorph Trichoderma reesei) and a new sympatric agamospecies related to it. PLOS ONE. 5(2): e9191. doi:10.1371/journal.pone.0009191.
Druzhinina I.S., M. Komon–Zelazowska, L. Atanasova, V. Seidl and Ch.P. Kubicek. 2010. Evolution and ecophysiology of the industrial producer Hypocrea jecorina (Anamorph Trichoderma reesei) and a new sympatric agamospecies related to it. PLOS ONE. 5(2): e9191. doi:10.1371/journal.pone.0009191.
Druzhinina I.S., M. Komon–Zelazowska, L. Atanasova, V. Seidl and Ch.P. Kubicek. 2010. Evolution and ecophysiology of the industrial producer Hypocrea jecorina (Anamorph Trichoderma reesei) and a new sympatric agamospecies related to it. PLOS ONE. 5(2): e9191. doi:10.1371/journal.pone.0009191.
Druzhinina I.S., M. Komon–Zelazowska, L. Atanasova, V. Seidl and Ch.P. Kubicek. 2010. Evolution and ecophysiology of the industrial producer Hypocrea jecorina (Anamorph Trichoderma reesei) and a new sympatric agamospecies related to it. PLOS ONE. 5(2): e9191. doi:10.1371/journal.pone.0009191.
Druzhinina I.S., M. Komon–Zelazowska, L. Atanasova, V. Seidl and Ch.P. Kubicek. 2010. Evolution and ecophysiology of the industrial producer Hypocrea jecorina (Anamorph Trichoderma reesei) and a new sympatric agamospecies related to it. PLOS ONE. 5(2): e9191. doi:10.1371/journal.pone.0009191.
Druzhinina I.S., M. Komon–Zelazowska, L. Atanasova, V. Seidl and Ch.P. Kubicek. 2010. Evolution and ecophysiology of the industrial producer Hypocrea jecorina (Anamorph Trichoderma reesei) and a new sympatric agamospecies related to it. PLOS ONE. 5(2): e9191. doi:10.1371/journal.pone.0009191.
Lisiecki P., L. Chrzanowski, A. Szulc, L. Ławniczak, W. Białas, M. Dziadas, M. Owsiąk, J. Staniewski, P. Cyplik, R. Marecik and others. 2014. Biodegradation of diesel/biodiesel blends in saturated sand microcosms. Fuel. 116: 321–327.

Marecik R., R. Dembczyński, W. Juzwa, L. Chrzanowski and P. Cyplik. 2015. Removal of nitrates from processing wastewater by cryoconcentration combined with biological denitrification. Desalin. Water Treat. 54(7): 1903–1911.

Marecik R., J. Wojtora-Kwizor, L. Ławniczak, P. Cyplik, A. Szulc, A. Piotrowska-Cyplik and L. Chrzanowski. 2012. Rhamnolipids increase the phytotoxicity of diesel oil towards four common plant species in a terrestrial environment. Water Air Soil Poll. 223(7): 4275–4282.

Miller G.L. 1959. Use of dinitrosalicilic acid reagent for determination of reducing sugar. Anal. Chem. 31: 426–428.

Park Y.C. and J.S. Kim. 2012. Comparison of various alkaline pretreatment methods of lignocellulosic biomass. Energy. 47(1): 31–35.

Pęziak D., A. Piotrowska, R. Marecik, P. Lisiecki, M. Woźniak, A. Szulc, L. Ławniczak and L. Chrzanowski. 2013. Biodisponibility of hydrocarbons to bacterial consortia during Triton X-100 mediated biodegradation in aqueous media. Acta Biochim. Pol. 60(4): 789–793.

Piotrowska-Cyplik A. and Z. Czarnecki. 2003. Phytoextraction of heavy metals by hemp during anaerobic sewage sludge management in the non-industrial sites. Pol. J. Environ. Stud. 12(6): 779–784.

Polizeli M., A. Rizzatti, R. Monti, H. Terenzi, J.A. Jorge and D. Amorim. 2010. Xylanases from fungi: properties and industrial applications. Appl. Microbiol. Biotechnol. 67: 577–591.

Sanchez C. 2009. Lignocellulosic residues: Biodegradation and bioconversion by fungi. Biotechnol. Adv. 27: 185–194.

Sandgren M., J. Stålhberg and C. Mitchinson. 2005. Structural and biochemical studies of GH family 12 cellulases: improved thermal stability, and ligand complexes. Prog. Biophys. Mol. Biol. 89: 246–291.

Sarkar N., S. Kumar, S. Bannerjee and K. Aikat. 2012. Bioethanol production from agricultural wastes: An overview. Prog. Biophys. Mol. Biol. 109: 19–27.

Saxena R., D. Adhikari and H. Goyal. 2009. Biomass-based energy fuel through biochemical routes: A review. Renew. Sust. Energ. Rev. 13: 168–178.

Sazci A., A. Radford and K. Erenler. 1986. Detection of cellulytic fungi by using Congo-red as an indicator: a comparative study with the dinitrosalicilic acid reagent method. J. Appl. Bacteriol. 61: 559–562.

Sun Y. and J. Cheng. 2002. Hydrolysis of lignocellulosic material for ethanol production: a review. Bioresour. Technol. 96: 673–686.

Taherrzadeh M. and K. Karimi. 2008. Pretreatment of lignocellulosic wastes to improve ethanol and biogas production: a review. Int. J. Mol. Sci. 9: 1621–1651.

Than T.-C., D. Kracher, R. Gandini, Ch. Szymund, R. Kittl, D. Haltrich, B. M. Hällberg, R. Ludwig and Ch. Divine. 2015. Structural basis for cellbiose dehydrogenase action during oxidative cellulose degradation. Nat. Commun. 6: 7342. doi: 10.1038/ncomms8542.

Qin W.T. and W.Y. Zhuang. 2016. Seven wood-inhabiting new species of the genus Trichoderma (Fungi, Ascomycota) in Viride clade. Sci. Rep. 6, 27074. doi: 10.1038/srep27074.

Vinales F., R. Marra, F. Scala, E. Ghisalberti, M. Lorito and K. Sivasithamparam. 2006. Major secondary metabolites produced by two commercial Trichoderma strains active against different phytopathogens. Lett. Appl. Microbiol. 43: 143–148.

Vinales F., K. Sivasithamparam, E.L. Ghisalberti, R. Marra, S.L. Woo and M. Lorito. 2008. Trichoderma-plant-pathogen interactions. Soil Biol. Biochem. 40: 1–10.

Wen Z., W. Liao and S. Chen. 2005. Production of cellulase by Trichoderma reesei from dairy manure. Bioresour. Technol. 96(4): 491–499.

White T.J., T. Bruns, S. Lee and J.W. Taylor. 1990. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics, pp. 315–322. In: Innis M.A., D.H. Gelfand, J.J. Shinsky, T.J. White (eds). PCR protocols: a guide to methods and applications. Academic, San Diego.

Wilson D.B. 2009. Cellulases and biofuels. Curr. Opin. Biotechnol. 20: 295–299.

Wojtkowiak-Gębarowska E. 2006. Mechanizmy zwalczania fitopatogenów glebowych przez grzyby z rodzaju Trichoderma. Post. Mikrobiol. 45(4): 261–273.

Xu J., N. Takakuwa, M. Nogawa, H. Okada and Y. Morikawa. 1998. A third xylanase from Trichoderma reesei PC-3-7. Appl. Microbiol. Biotechnol. 49: 718–724.

Ziemiński K., I. Romanowska and M. Kowalska. 2012. Enzymatic pretreatment of lignocellulosic wastes to improve biogas production. Waste Manag. 32: 1131–1137.