THE K-THEORY OF TOEPLITZ C*-ALGEBRAS OF RIGHT-ANGLED ARTIN GROUPS

NIKOLAY A. IVANOV

Abstract. Toeplitz C*-algebras of right-angled Artin groups were studied by Crisp and Laca. They are a special case of the Toeplitz C*-algebras T(G, P) associated with quasi-lattice ordered groups (G, P) introduced by Nica. Crisp and Laca proved that the so called ”boundary quotients” C_Q^*(Γ) of C^*(Γ) are simple and purely infinite. For a certain class of finite graphs Γ we show that C_Q^*(Γ) can be represented as a full corner of a crossed product of an appropriate C* -subalgebra of C_Q^*(Γ) built by using C^*(Γ'), where Γ' is a subgraph of Γ with one less vertex, by the group \(\mathbb{Z} \). Using induction on the number of the vertices of Γ we show that C_Q^*(Γ) are nuclear and belong to the small bootstrap class. We also use the Pimsner-Voiculescu exact sequence to find their K-theory. Finally we use the Kirchberg-Phillips classification theorem to show that those C*-algebras are isomorphic to tensor products of \(\mathcal{O}_n \) with \(1 \leq n \leq \infty \).

1. Introduction

Toeplitz C*-Algebras of right-angled Artin Groups generalize both the Toeplitz algebra and the Cuntz algebras. Coburn showed in [4] that the C*-algebra, generated by a single nonunitary isometry is unique, i.e. every two C*-algebras, each generated by a single nonunitary isometry are \(\ast \)-isomorphic. Similar uniqueness theorems about C*-algebras generated by isometries were proved by Cuntz [7], Douglas [10], Murphy [13], and others. Laca and Raeburn in [12] and Crisp and Laca in [5] proved such uniqueness theorems for a large class of C*-algebras, corresponding to quasi-lattice ordered groups (G, P). One of the key point they use was to project onto the ”diagonal” C* -algebra generated by the range projections of those isometries, an idea originating from [10].

These C*-algebras can be viewed as crossed products of commutative C*-algebras (the C*-algebras generated by the range projections of the isometries) by semigroups of endomorphisms. Crisp and Laca used techniques from [11] about such crossed products together with the uniqueness theorems mentioned above to prove a structure theorem for the universal C*-algebra C*(G, P) (which by the uniqueness theorems is isomorphic to the ”reduced one” T(G, P)) for a large class of quasi-lattice ordered groups (G, P). We will now state [6, Corollary 8.5] and [6, Theorem 6.7] and use them throughout this note. A graph will always mean a simple graph with countable set of vertices.

Date: February 1, 2008.
Theorem 1.1 ([6], Theorem 6.7). Suppose that Γ is a graph with a set of vertices S (finite or infinite) such that Γ^opp has no isolated vertices. Then the universal C^*-algebra with generators $\{V_s|s \in S\}$ subject to the relations:

1. $V_s^*V_s = I$ for each $s \in S$;
2. $V_sV_t = V_tV_s$ and $V_s^*V_t = V_tV_s^*$ if s and t are adjacent in Γ;
3. $V_s^*V_t = 0$ if s and t are distinct and not adjacent in Γ;
4. $\prod_{s \in S_\lambda} (I - V_sV_s^*) = 0$ for each $S_\lambda \subset S$ spanning a finite connected component of Γ^opp.

is purely infinite and simple.

We will denote the C^*-algebra from this theorem by $C^*_Q(\Gamma)$.

Theorem 1.2 ([6], Corollary 8.5). Suppose that Γ is a graph with a set of vertices S (finite or infinite) such that Γ^opp has no isolated vertices. Let $C^*(\Gamma)$ denote the universal C^*-algebra with generators $\{V_s|s \in S\}$ subject to the relations:

1. $V_s^*V_s = I$ for each $s \in S$;
2. $V_sV_t = V_tV_s$ and $V_s^*V_t = V_tV_s^*$ if s and t are adjacent in Γ;
3. $V_s^*V_t = 0$ if s and t are distinct and not adjacent in Γ;
4. $\prod_{s \in S_\lambda} (I - V_sV_s^*) = 0$, where each $S_\lambda \subset S$ spans a finite union of finite connected components of Γ^opp.

Then each quotient of $C^*(\Gamma)$ is obtained by imposing a further collection of relations of the form

(R) $\prod_{s \in S_\lambda} (I - V_sV_s^*) = 0$, where each $S_\lambda \subset S$ spans a finite connected component of Γ^opp.

We remind that by definition the opposite graph of the graph Γ is

\[\Gamma^\text{opp} = \{(v,w) | v, w \in S, (v, w) \notin \Gamma \}. \]

Γ^opp is also called the complement or the inverse of the graph Γ.

Let Γ be a finite graph with set of vertices S such that the opposite graph Γ^opp is connected and has more than 1 vertex. Then $C^*_Q(\Gamma)$ is the quotient of $C^*(\Gamma)$ by the ideal generated by $\prod_{s \in S} (I - V_sV_s^*)$. Let $I_\Gamma : \langle \prod_{s \in S} (I - V_sV_s^*) \rangle_{C^*(\Gamma)} \to C^*(\Gamma)$ be the inclusion map of this ideal, and $Q_\Gamma : C^*(\Gamma) \to C^*_Q(\Gamma)$ be the quotient map. Theorem 1.2 implicitly contains the uniqueness theorem ([5, Theorem 24]). In particular we have the following faithful representation $\pi_\Gamma : C^*(\Gamma) \to B(H_\Gamma)$ which corresponds to $T(A_\Gamma, A_\Gamma^+)$, where $A_\Gamma = \{S|ss' = s's \text{ if } (s, s') \in \Gamma\}$: Let H_Γ be the Hilbert space with an orthonormal basis

\[\{E[s_1, s_2, \ldots, s_n] | n \in \mathbb{N}_0, s_1, \ldots, s_n \in S\} / \sim, \]

where the relation \sim means $E[s_1, s_2, \ldots, s_n] \sim E[s'_1, s'_2, \ldots, s'_m]$ if and only if $V_{s_1} \cdots V_{s_n} = V_{s'_1} \cdots V_{s'_m}$ subject to commutation relation (2) from Theorem 1.2. Let π_Γ be given on a generating family of operators and vectors by

\[\pi_\Gamma(V_s)(E[0]) = E[s], \]

\[\pi_\Gamma(V_s)(E[s_1, s_2, \ldots, s_n]) = E[s, s_1, s_2, \ldots, s_n]. \]

For this representation it is true that the ideal $\langle \pi_\Gamma(\prod_{s \in S} (I - V_sV_s^*)) \rangle_{\pi_\Gamma(C^*(\Gamma))}$ coincides with $\mathcal{K}(H_\Gamma)$ - the compact operators on H_Γ.
In [7] Cuntz introduced a certain type of C^*-algebras O_n, $n = 2, 3, \ldots, \infty$ generated by a set of isometries with mutually orthogonal ranges. He was able to represent $K \otimes O_n$ as a crossed product of an AF-algebra by \mathbb{Z} (K stands for the C^*-algebra of the compact operators on a separable Hilbert space). There have been generalizations of these algebras that depend on the "crossed product by \mathbb{Z}" idea, for example Cuntz-Krieger algebras [9], Cuntz-Pimsner algebras [17] and others.

In our note for a fixed finite graph with at least three vertices Γ with Γ^opp connected we choose a subgraph Γ' one less vertex such that $(\Gamma')^\text{opp}$ is connected. Then we represent $C^*_Q(\Gamma)$ as a full corner of a crossed product of a C^*-algebra, built by using $C^*_Q(\Gamma')$, by the group \mathbb{Z}. After doing so we can use some results about C^*-algebras which are crossed products by \mathbb{Z}. Most importantly we use the Pimsener-Voiculescu exact sequence for the K-theory ([18]). Using induction on the number of the vertices of the graph we conclude that $C^*_Q(\Gamma)$ is nuclear and belong to the small bootstrap class (see [2, IV.3.1], [1, §22]) and thus the classification result for purely infinite simple C^*-algebras of Kirchberg-Phillips [16] applies. From this we conclude that $C^*_Q(\Gamma)$ is isomorphic to $O_{1+|\chi(\Gamma)|}$, where $\chi(\Gamma)$ is an analogue of Euler characteristic, introduced in [6]. Then we extend this result to the case when Γ is an infinite graph with countably many vertices and such that Γ^opp is connected, since this graph can be represented as an increasing sequence of finite subgraphs. The general case is a graph Γ with at least two and at most countably many vertices which is such that Γ^opp has no isolated vertex. It can be treated easily using Theorem 1.1 and the special cases described above. The conclusion is that $C^*_Q(\Gamma)$ is isomorphic to tensor products of O_n for $1 \leq n \leq \infty$, where we define O_1 to be the unital Kirchberg algebra with $K_0(O_1) = \mathbb{Z}[1_{O_1}]$ and $K_1(O_1) = \mathbb{Z}$. A Kirchberg algebra is by definition a separable, nuclear, simple, purely infinite C^*-algebra that satisfies the Universal Coefficient Theorem.

2. Some C^*-Subalgebras of $C^*_Q(\Gamma)$ and the Crossed Product Construction

If Γ has two vertices and no edges, then from the construction of $C^*(\Gamma)$ is clear that $C^*(\Gamma)$ is generated by isometries V_1 and V_2 with orthogonal ranges and such that $V_1V_1^* + V_2V_2^* < I$. This is the C^*-algebra \mathcal{E}_2 from [8] which is an extension of O_2 by the compacts. Thus $C^*_Q(\Gamma) \cong O_2$.

Suppose now that Γ has a set of vertices S such that $2 < \text{card}(S) < \infty$ and suppose that Γ^opp is connected. Since Γ^opp is connected if it is not a tree we can remove an arbitrary edge from its arbitrary cycle and the graph obtained in this way (let’s denote it by Γ^opp_1) will remain connected. Continuing in this fashion in finitely many (say l) steps we will arrive at Γ^opp_l which will be a tree. Let $s \in S$ be a "leaf" for Γ^opp_l. Removing s and the edge that comes out of s from Γ^opp_l will not alter the connectedness. All this shows that if Γ' is the graph, obtained from Γ by removing the vertex s and all the edges that come out of s, then its opposite graph $(\Gamma')^\text{opp}$ will be connected.
Let $S' \subseteq S$ be the set of edges of Γ'. We can suppose that $S = \{1, \ldots, n, n + 1\}$ and that $S' = \{1, \ldots, n\}$ for some $n \geq 2$. We want to describe the words in letters $\{V_1, \ldots, V_n, V_{n+1}, V_1^*, \ldots, V_n^*, V_{n+1}^*\}$.

Lemma 2.1. Every word in letters $\{V_1, \ldots, V_n, V_{n+1}, V_1^*, \ldots, V_n^*, V_{n+1}^*\}$ can be written in the form $w_1w_2^*$, where w_1, w_2 are words in letters $\{V_1, \ldots, V_n, V_{n+1}\}$.

Proof. We will use induction on the length of the words. The words of length one are V_i and V_i^* and they are of such form. Suppose that the statement of the lemma is true for all words of length $m > 1$ and less. Take a word w of length $m + 1$. We have two cases for w:

1) $w = w'V_i^*$ and 2) $w = w'V_i$ for some $1 \leq i \leq n + 1$ and some word w' of length m.

By the induction hypothesis w' can be represented as $w' = w'_1(w'_2)^*$, where w'_1 and w'_2 are words in letters $\{V_1, \ldots, V_n, V_{n+1}\}$. In case 1) $w = w'_1(w'_2)^*V_i^*$, so setting $w_1 = w'_1$ and $w_2 = V_iw'_2$ shows that w can be written in the desired form. For case 2) if the word w'_2 is empty then setting $w_1 = w'_1V_i$ and $w_2 = I$ shows that w has the desired form. If $w'_2 = V_jw'_2'$ with w'_2' a word in letters $\{V_1, \ldots, V_{n+1}\}$ then

$$w = w'_1(w'_2')^*V_j^*V_i = \begin{cases} 0, & \text{if } (i, j) \notin \Gamma \\ w'_1(w'_2')^*, & \text{if } i = j \\ w'_1(w'_2')^*V_j^*V_i, & \text{if } (i, j) \in \Gamma. \end{cases}$$

The first and the second case in the above equation are words of the desired form. In the third case we have that $w'_1(w'_2')^*V_i$ is a word of length m so it can be represented as $\omega_1\omega_2^*$. Then $w'_1(w'_2')^*V_iV_j^* = \omega_1\omega_2^*V_j^*$ is of the desired form. This concludes the induction and proves the lemma. \qed

Let’s denote by V the isometry $V_{n+1} \in C^\circ_Q(\Gamma)$ and suppose without loss of generality that $V^*V_i = 0$ for $k < i \leq n$ (notice that since Γ° is connected, $k < n$). If $k > 0$ then also V commutes and \ast-commutes with V_1, \ldots, V_k.

Let $T_0 = C^\ast(V_1, \ldots, V_n)$. Then from Theorem 1.2 it is easy to see that $T_0 \cong C^\ast(\Gamma')$. Define by induction T_m to be the closed linear span of elements of $C^\circ_Q(\Gamma)$ of the form $wVt_{m-1}V^*(w')^*$, where w, w' are words in letters $\{V_1, \ldots, V_n\}$ and $t_{m-1} \in T_{m-1}$. The following lemma characterizes the sets T_m.

Lemma 2.2. T_m is a \ast-subalgebra of $C^\ast(\Gamma)$, isomorphic to $K^\circ_{m} \otimes T_0 \cong K \otimes C^\ast(\Gamma')$.

Proof. Let us denote by Ω the set of all words ω in letters $\{V_1, \ldots, V_n\}$ such that the letters of the word ωV cannot be commuted pass V, i.e. $\omega V = \omega_1V\omega_2$ for some words ω_1, ω_2 in letters $\{V_1, \ldots, V_n\}$ implies $\omega_2 = I$. It is easy to see that from the connectedness of Γ° follows that Ω is an infinite countable set therefore we can enumerate its elements: $\Omega = \{\omega_0, \omega_1, \omega_2, \ldots\}$, setting $\omega_0 = I$. We assume that the words in Ω don’t repeat, i.e. $\omega_p \neq \omega_q$ for $p \neq q$ after using the commutation relation. Suppose by induction that $T_{m-1} \cong K^\circ_{(m-1)} \otimes T_0$ for some $m \geq 1$. We want to show that $T_m \cong K \otimes T_{m-1}$. Clearly $\{\omega_pVt_{m-1}V^*\omega_q^*|p, q \in \mathbb{N}_0\}$ is a \ast-closed set. It is easy to see that each element $wVt_{m-1}V^*w^*$ of T_m after applying the commutation relations (2) from Theorem 1.2 can be written in the form $\omega_pVt_{m-1}^pV^*\omega_q^*$ for some $p, q \in \mathbb{N}_0$.

and some $t'_{m-1} \in T_{m-1}$. Therefore $\{\omega_p V_{t_{m-1}} V^* \omega_q^* | p, q \in \mathbb{N}_0, t_{m-1} \in T_{m-1}\}$ spans a dense subset of T_m. We conclude that T_m is *-closed.

We want to show now that $V^* \omega_q^* \omega_p V = \delta_{p,q} I$. Write $\omega_p = V_{j_1} \cdots V_{j_s}$ and $\omega_q = V_{i_1} \cdots V_{i_t}$. Then $V^* \omega_q^* \omega_p V = V^* V_{i_t}^* \cdots V_{i_1}^* V_{j_1} V_{j_2} \cdots V_{j_s} V$. There are three cases:

1) If V_{j_1} commutes with $V_{i_1}^*, \ldots, V_{i_r}^* (1 \leq r < t)$ and $i_{r+1} = j_1$ then $V_{i_r}^*$ will commute with $V_{i_1}^*, \ldots, V_{i_r}^*$, so the word ω_q can be written in the form $\omega_q = V_{i_1} V_{i_2} \cdots V_{i_t}$, with $i_1 = j_1$. Then we can write $V^* \omega_q^* \omega_p V = V^* V_{i_t} \cdots V_{i_2} V_{j_2} \cdots V_{j_s} V$ and continue the argument with this word.

2) If V_{j_1} commutes with $V_{i_1}^*, \ldots, V_{i_r}^* (1 \leq r < t)$ and $(j_1, i_{r+1}) \notin \Gamma$, then $V^* \omega_q^* \omega_p V = 0$.

Also if $j_1 > k$ and V_{j_1} commutes with $V_{i_1}^*, \ldots, V_{i_t}^*$ we also have $V^* \omega_q^* \omega_p V = 0$.

3) If V_{j_2} commutes with V_{i_1}, \ldots, V_{i_t} and V clearly then $j_1 \leq k$ and from the definition of Ω follows that V_{j_1} doesn’t commute with all V_{j_2}, \ldots, V_{j_s}. Suppose that V_{j_1} doesn’t commute with V_{j_r} $(2 \leq r \leq s)$ and if $r > 2 V_{j_2}$ commutes with $V_{j_3}, \ldots, V_{j_{r-1}}$. Notice that $j_r \notin \{i_1, \ldots, i_t\}$ since V_{j_2} commutes with $V_{i_1}^*, \ldots, V_{i_t}^*$ and not with V_{j_r}.

Suppose that $V^* \omega_q^* \omega_p V \neq 0$. Then suppose that V_{j_1}, \ldots, V_{j_r} can be dealt with by using repeatedly case 1). If $r_1 = s = t$ then $V^* \omega_q^* \omega_p V = \delta_{p,q} I$ is proven. If $r_1 = s < t$ then $V^* \omega_q^* \omega_p V$ reduces to $V^* V_{i_t}^* \cdots V_{i_s}^* V$. If $i_t \leq k$ then $V_{i_t}^*$ would commute with V^* contradicting the fact that $\omega_q \in \Omega$. $i_t > k$ implies immediately $V^* V_{i_t}^* \cdots V_{i_s}^* V = 0$ because V does not commute with all of $V_{i_1}^*, \ldots, V_{i_{s+1}}^*$ so it has an orthogonal range with some of them. The case $r_1 = t < s$ is similar. If $r_1 < s$ and $r_1 < t$ then suppose that for V_{j_1+1} case 3) applies. We will obtain a contradiction with the fact that $\omega_p \in \Omega$. By case 3) we can find $r_2 > r_1 + 1$ such that V_{j_1+1} doesn’t commute with $V_{j_{r_2}}$ and if $r_2 > r_1 + 2$ then $V_{j_{r_1+1}}$ commutes with $V_{j_{r_2}+1}, \ldots, V_{j_{r_2-1}}$. Also $j_{r_2} \notin \{i_{r_1+1}, \ldots, i_t\}$ ($V_{j_{r_1+1}}$ commutes with $V_{i_{r_1+1}}, \ldots, V_{i_t}$ and not with $V_{j_{r_2}}$) and so case 1) cannot be applied to $V_{j_{r_2}}$. We can repeat this process finitely many times until we reach the isometry V_{j_s} for which case 3) must apply since case 1) cannot be applied as we saw above and case 2) cannot be applied by assumption. But then $j_s \leq k$ and V_{j_s} commutes with V which contradicts $\omega_p \in \Omega$. This proves $V^* \omega_q^* \omega_p V = \delta_{p,q} I$.

It follows that $\omega_p V_{t_{m-1}} V^* \omega_q^* \omega_p V_{t_{m-1}} V^* \omega_q^* = \delta_{p,q} V_{t_{m-1}} V^* \omega_q^* \omega_p V_{t_{m-1}} V^* \omega_q^*$ and thus T_m is a C^*-algebra. The equation $V^* \omega_q^* \omega_p V = \delta_{p,q} I$ implies that $C^*(\{\omega_p V V^* \omega_q^* | 0 \leq p, q \leq l - 1\}) \cong M_l(\mathbb{C})$. It is clear that $V T_{m-1} V^*$ is a C^*-algebra, isomorphic to T_{m-1}. Therefore

$$C^*(\{\omega_p V_{t_{m-1}} V^* \omega_q^* | 0 \leq p, q \leq l - 1, t_{m-1} \in T_{m-1}\}) \cong$$

$$C^*(\{\sum_{i=0}^{l-1} (\omega_i V_{t_{m-1}} V^* \omega_i^*) | t_{m-1} \in T_{m-1}\}) \otimes C^*(\{\omega_p V V^* \omega_q^* | 0 \leq p, q \leq l - 1\})$$

$$\cong T_{m-1} \otimes M_l(\mathbb{C}) = M_l(T_{m-1}),$$

since $\sum_{i=0}^{l-1} (\omega_i V_{t_{m-1}} V^* \omega_i^*)$ commutes with $\omega_p V V^* \omega_q^*$ for each $0 \leq p, q \leq l - 1$ and each $t_{m-1} \in T_{m-1}$. Taking limit $l \to \infty$ concludes the proof of the lemma.

From the proof of this lemma easily follows that T_m is the closed linear span of

$$\{\omega_{p_1} V \cdots V \omega_{p_m} V_{t_0} V^* \omega_{q_1} V^* \cdots V^* \omega_{q_m}^* | \omega_{p_1}, \ldots, \omega_{p_m}, \omega_{q_1}, \ldots, \omega_{q_m} \in \Omega, t_0 \in T_0\}.$$
This implies that \(T_m \cdot T_l \subseteq T_m \) and \(T_l \cdot T_m \subseteq T_l \) for each \(m \geq l \geq 0 \).

Now we introduce the following \(C^* \)-subalgebras of \(C^*_Q(\Gamma) \). Define \(B_0 = T_0 \) and \(B_m = C^*(B_m-1 \cup T_m) = C^*(T_0 \cup \cdots \cup T_m) \). From what we said above is clear that \(T_m \) is an ideal of \(B_m \). Therefore we have an extension
\[
0 \rightarrow T_m \xrightarrow{i_m} B_m \xrightarrow{p_m} B_m/T_m \rightarrow 0,
\]
where \(i_m : T_m \rightarrow B_m \) is the inclusion map and \(p_m : B_m \rightarrow B_m/T_m \) is the quotient map.

From [14, Theorem 3.1.7] (or [2] Corollary II.5.1.3] follows that \(B_m = B_{m-1} + T_m \) as a linear space. From [14, Remark 3.1.3] follows that the map \(\pi_m : B_{m-1}/(B_{m-1} \cap T_m) \rightarrow B_m/T_m \) given by \(b_{m-1} + B_{m-1} \cap T_m \mapsto b_{m-1} + T_m \) is an isomorphism \((b_{m-1} \in B_{m-1}) \).

Define \(\mathcal{I}_m \overset{def}{=} \langle V^n \prod_{i=1}^n (I - V_i V_i^*) \rangle \mathcal{I}_m \). Since \(T_0 \cong C^*(\Gamma') \) from Theorem 1.2 follows that \(\mathcal{I}_0 \) is the unique nontrivial ideal of \(T_0 \) and it is isomorphic to \(\mathcal{K} \). Then from Lemma 2.2 follows that \(\mathcal{I}_m \) is the unique nontrivial ideal of \(T_m \) and it is isomorphic to \(\mathcal{K}^\otimes m \otimes \mathcal{K} \). The ideal \(\mathcal{I}_m \) can be described as the closed linear span of
\[
\{ \omega_{p_1} V \cdots V \omega_{q_1} V_{l_0} V^* \omega_{q_2} V^* \cdots V^* \omega_{q_m} | \omega_{p_1}, \ldots, \omega_{p_m}, \omega_{q_1}, \ldots, \omega_{q_m} \in \Omega, l_0 \in \mathcal{I}_0 \}.
\]
Therefore it is easy to see that \(V^n \prod_{i=1}^n (I - V_i V_i^*) = V^n \mathcal{I}_0 (V^*)^m = V^n \mathcal{I}_0 (V^*)^m \).

By the definition of \(C^*_Q(\Gamma) \) we have \((I - V V^*) \prod_{i=1}^n (I - V_i V_i^*) = 0 \) or \(\prod_{i=1}^n (I - V_i V_i^*) = V V^* \prod_{i=1}^n (I - V_i V_i^*) \). Therefore using relations (2) and (3) from Theorem 1.1 we get
\[
\prod_{i=1}^n (I - V_i V_i^*) = V V^* \prod_{i=1}^n (I - V_i V_i^*) = V \prod_{i=1}^k (I - V_i V_i^*) \prod_{i=k+1}^n (I - V_i V_i^*) = V \prod_{i=1}^k (I - V_i V_i^*) V^* \in T_1.
\]

It follows also that \(V^n \prod_{i=1}^k (I - V_i V_i^*) V^* (V^*)^m = V^m T_1 (V^*)^m \subset T_{m+1} \). It is easy to see that \(T_{m+1} \cdot B_m \subset T_{m+1} \) and \(B_m \cdot T_m \subset T_m \). This implies that \(T_m \cap T_{m+1} \) is an ideal of \(T_m \) and that \(T_m \cap T_{m+1} \) is an ideal of \(B_m \). From this we can conclude that \(\mathcal{I}_m \subset (T_m \cap T_{m+1}) \) for each \(m \in \mathbb{N} \). The reverse inclusion is also true:

Lemma 2.3. \(B_m \cap T_{m+1} = \mathcal{I}_m \) for each \(m \in \mathbb{N}_0 \).

Proof. Since \(\mathcal{I}_0 \) is the unique nontrivial ideal of \(T_0 \) and since \(T_0 \cap T_1 \) is an ideal of \(T_0 \), then if we assume that \(\mathcal{I}_0 \subset T_0 \cap T_1 \) it will follow that \(T_0 = T_0 \cap T_1 \). Then \(I = 1_{\mathcal{I}_0} = 1_{C^*_Q(\Gamma)} \in T_0 \subset T_1 \). This will imply that \(T_1 \cong \mathcal{K} \otimes T_0 \) is a unital \(C^* \)-algebra which is a contradiction. Therefore \(\mathcal{I}_0 = T_0 \cap T_1 \).

It is easy to see that for each \(m \in \mathbb{N} \) we have \(V^n (V^*)^m T_m V^n (V^*)^m = V^m T_0 (V^*)^m \cong T_0 \) and that \(V^n (V^*)^m T_{m+1} V^n (V^*)^m = V^m T_1 (V^*)^m \cong T_1 \). Thus if we assume that \(T_m = T_m \cap T_{m+1} \) it will follow that \(V^n T_0 (V^*)^m \subset V^m T_1 (V^*)^m \) and therefore that
This is a contradiction with what we proved in the last paragraph. Therefore \(T_m \cap T_{m+1} \subsetneq T_m \) and thus \(T_m \cap T_{m+1} = \mathcal{I}_m \).

To conclude the proof of the lemma we have to show that \(T_{m+1} \cap T_j = 0 \) for each \(0 \leq j < m \). In this case we have once again that \(T_{m+1} \cap T_j \) is an ideal of \(T_j \). Therefore the assumption \(T_{m+1} \cap T_j \neq 0 \) implies that \(T_{m+1} \) contains the minimal nonzero ideal of \(T_j \), \(\mathcal{I}_j \). In particular \(V_j^n (I - V_i V_i^*) (V_i^*)^j = V_j^{j+1} \prod_{i=1}^k (I - V_i V_i^*) (V_i^*)^{j+1} \in T_{m+1} \).

This implies

\[
V_j^{j+1} \prod_{i=1}^k (I - V_i V_i^*) (V_i^*)^{j+1} = V_j^{j+1} (V_i^*)^{j+1} \prod_{i=1}^k (I - V_i V_i^*) (V_i^*)^{j+1} V_j^{j+1} (V_i^*)^{j+1} \\
\in V_j^{j+1} (V_i^*)^{j+1} T_j V_j^{j+1} (V_i^*)^{j+1} = V_j^{j+1} T_{j-1} (V_i^*)^{j+1}.
\]

Therefore \(\prod_{i=1}^k (I - V_i V_i^*) \in T_{m-j} \). Since also \(\prod_{l=1}^k (I - V_i V_i^*) \in T_0 \), then the ideal \(T_0 \cap T_{m-j} \) of \(T_0 \) contains \(\prod_{i=1}^k (I - V_i V_i^*) \). We will show that \(\prod_{i=1}^k (I - V_i V_i^*) \notin \mathcal{I}_0 \) this will imply that \(T_0 \subset T_{m-j} \) for \(m-j > 0 \) and therefore obtaining a contradiction with the fact that \(T_{m-j} \) is not unital for \(m-j > 0 \).

Suppose that \(\prod_{i=1}^k (I - V_i V_i^*) \in \mathcal{I}_0 \). Then since \(T_0 = C^*(\Gamma') \) we have \(Q_{\Gamma'}(\prod_{i=1}^k (I - V_i V_i^*)) = 0 \). From the connectedness of \((\Gamma')^{opp}\) follows that we can find \(j, 1 \leq j \leq k \) and \(l, k < l \leq n \) with \((j, l) \notin \Gamma'\). Then

\[
0 = Q_{\Gamma'}(V_i^*) Q_{\Gamma'}(\prod_{i=1}^k (I - V_i V_i^*)) Q_{\Gamma'}(V_i) = Q_{\Gamma'}(V_i^*) Q_{\Gamma'}(\prod_{(i,j) \in \Gamma'}^{1 \leq i \leq k} (I - V_i V_i^*)) Q_{\Gamma'}(V_i) = Q_{\Gamma'}(V_i^* V_i) Q_{\Gamma'}(\prod_{(i,j) \in \Gamma'}^{1 \leq i \leq k} (I - V_i V_i^*)) = Q_{\Gamma'}(\prod_{(i,j) \in \Gamma'}^{1 \leq i \leq k} (I - V_i V_i^*)).
\]

By repeating this argument finitely many times we will arrive at the equality \(Q_{\Gamma'}(I) = 0 \) which is a contradiction. Therefore \(\prod_{i=1}^k (I - V_i V_i^*) \notin \mathcal{I}_0 \). This completes the proof of the lemma. \(\square \)

This lemma shows that we have an extension

\[
(2) \quad 0 \to \mathcal{I}_{m-1} \overset{i_m'}{\to} B_{m-1} \overset{p_m'}{\to} B_{m-1}/\mathcal{I}_{m-1} \to 0,
\]

where \(i_m' : \mathcal{I}_{m-1} \to B_{m-1} \) is the inclusion map and \(p'_m : B_{m-1} \to B_{m-1}/\mathcal{I}_{m-1} \) is the quotient map.
From equations (1) and (2) we have the commutative diagram with exact rows:

\[
\begin{array}{cccccc}
0 & \longrightarrow & \mathcal{I}_{m-1} & \xrightarrow{i_m} & B_{m-1} & \xrightarrow{p_m} & B_{m-1}/\mathcal{I}_{m-1} & \longrightarrow & 0 \\
& & t_m \downarrow & & t_m \downarrow & & \cong \downarrow \pi_m & & \\
0 & \longrightarrow & T_m & \xrightarrow{i_m} & B_m & \xrightarrow{p_m} & B_m/T_m & \longrightarrow & 0,
\end{array}
\]

where \(I'_m : \mathcal{I}_{m-1} \rightarrow T_m \) and \(I_m : B_{m-1} \rightarrow B_m \) are the inclusion maps.

Define \(\tilde{B} \overset{\text{def}}{=} \bigcup_{i=0}^{\infty} B_i \subset C^*(\Gamma) \) or in other words \(\tilde{B} \overset{\text{def}}{=} \lim_{m \to \infty}(B_m, I_m) \). Notice that if \(t_m \in T_m \) then \(V_{t_m} \in T_{m+1} \). Thus we have a well defined injective endomorphism \(\beta : B \to B \) given by \(b \mapsto VbV^* \).

Similarly to the Cuntz' construction from [7] we define \(\tilde{B} \overset{\text{def}}{=} \lim_{m \to \infty}(B_m, \alpha_m) \) as the limit of the sequence (which is also a commutative diagram)

\[
\begin{align*}
\ldots & \xrightarrow{\alpha_{m-1}} B^{-m} \xrightarrow{\alpha_m} \ldots \xrightarrow{\alpha_1} B^0 \xrightarrow{\alpha_0} B^1 \xrightarrow{\alpha_1} \ldots \xrightarrow{\alpha_m} B^m \xrightarrow{\alpha_m} \ldots \\
& \xrightarrow{j_m \cong} \ldots \xrightarrow{j_1 \cong} \ldots \xrightarrow{j_0 \cong} \ldots \xrightarrow{j_m \cong} \ldots \\
\ldots & \xrightarrow{\beta} B \xrightarrow{\beta} \ldots \xrightarrow{\beta} B \xrightarrow{\beta} \ldots \xrightarrow{\beta} B \xrightarrow{\beta} \ldots ,
\end{align*}
\]

where \(j_m : B^m \to B \) are \(*\)-isomorphisms. Since \(\tilde{B} \) is a limit \(C^*\)-algebra we have \(*\)-homomorphisms \(\alpha_m : B^m \to \tilde{B} \), s.t. \(\alpha_m = \alpha^{m+1} \circ \alpha_m \) for all \(m \in \mathbb{Z} \).

Now we define a \(*\)-homomorphism \(\Phi \) of \(\tilde{B} \) to itself, which is induced by "shift to the left" on \(\mathbb{I} \). In other words if we have a stabilizing sequence \((b^m)_{m=-\infty}^{+\infty} \), where \(b^m \in B^m \) for each \(m \), then \(\Phi((b^m)_{m=-\infty}^{+\infty}) = (j_{m-1} \circ j_{m+1}(b^m))_{m=-\infty}^{+\infty} \). In particular for \(b \in B \) the element \(\alpha_m \circ j_m(b) \) can be represented as the sequence \((0, \ldots, 0, j_{m-1}(b), \alpha_m \circ j_m(b), \alpha_{m+1} \circ \alpha_m \circ j_m(b), \ldots) = (0, \ldots, 0, j_{m-1}(b), j_m \circ \beta(b), j_{m+1} \circ \beta(b), \ldots) \).

Therefore \(\Phi(\alpha_m \circ j_m(b)) \) can be represented as the sequence \((0, \ldots, 0, j_{m-1}(b), j_m \circ \beta(b), j_{m+1} \circ \beta(b), \ldots) \). This shows that \(\Phi(\alpha_m \circ j_m(b)) = \alpha_m \circ j^{-1}_m \circ \beta(b) \).

The extension of this map to the whole of \(\tilde{B} \) (we call it \(\Phi \) also) is a \(*\)-isomorphism, because \(\Phi \) is isometric on the dense set of all stabilizing sequences (since \(j_m \) are all isomorphisms).

Now let \(\tilde{A} \) be the crossed product of \(\tilde{B} \) by the automorphism \(\Phi \). We represent \(\tilde{A} \) faithfully on a Hilbert space \(\mathfrak{H} \) so that \(\Phi \) is implemented by a unitary \(U \) on \(\mathfrak{H} \): \(\Phi(b) = UbU^* \) for \(b \in \tilde{B} \). Then \(\tilde{A} = C^*(\tilde{B} \cup \{U\}) \).

Every element of \(\tilde{A} \) is a limit of elements of the form \(\tilde{a} = \sum_{i=-N}^{N} b_i U^i = U^{i} b_i + b_0 + \sum_{i=1}^{N} b_i U^i \), with \(b_i \in \tilde{B} \), where \(\tilde{a} = U^{-i}b_i U^i \in \tilde{B} \) for \(i = -N, \ldots, -1 \). Therefore the set of the elements of \(\tilde{A} \) of the above form is dense in \(\tilde{A} \).

Set \(\tilde{P}_m \overset{\text{def}}{=} \alpha_m(1_{B^m}) \in \tilde{B} \) for each \(m \in \mathbb{Z} \). Notice that \(\alpha_m(1_{B^m}) = \alpha_m \circ j_m^{-1}(I) = \alpha^{m+1} \circ \alpha_m \circ j_m^{-1}(I) = \alpha^{m+1} \circ j_{m+1}^{-1}(\beta(I)) \).

By induction

\[
\tilde{P}_m = \alpha^{m+i} \circ j_{m+i}^{-1}(\beta^i(I)), \quad m \in \mathbb{Z}, \quad i \in \mathbb{N}.
\]
Therefore we can write

\[\hat{P}_m = \Phi^{-m}(\hat{P}_0), \quad m \in \mathbb{Z}. \]

Consider the C^*-algebra $\hat{P}_0 \tilde{A} \hat{P}_0$. Clearly $\hat{P}_0 \tilde{B} \hat{P}_0 \subset \hat{P}_0 \tilde{A} \hat{P}_0$. Since elements of the form $\tilde{a} = \sum_{i=-N}^{1} U^i b_i + b_0 + \sum_{i=1}^{N} b_i U^i (b_i \in \tilde{B})$ are dense in \tilde{A}, then elements of the form

\[\hat{P}_0 \tilde{a} \hat{P}_0 = \sum_{i=-N}^{-1} \hat{P}_0 U^i b_i \hat{P}_0 + \hat{P}_0 b_0 \hat{P}_0 + \hat{P}_0 \sum_{i=1}^{N} b_i U^i \hat{P}_0 \]

are dense in $\hat{P}_0 \tilde{A} \hat{P}_0$. It is easy to see that $U \hat{P}_0 U^* = \Phi(\hat{P}_0) < \hat{P}_0$, so the range of $U \hat{P}_0$ is contained in \hat{P}_0 and therefore $\hat{P}_0 U \hat{P}_0 = U \hat{P}_0$. Then

\[\hat{P}_0 \tilde{a} \hat{P}_0 = \sum_{i=-N}^{-1} \hat{P}_0 U^i b_i \hat{P}_0 + \hat{P}_0 b_0 \hat{P}_0 + \hat{P}_0 \sum_{i=1}^{N} b_i U^i \hat{P}_0 = \]

\[= \sum_{i=-N}^{-1} (\hat{P}_0 U^i)(\hat{P}_0 b_i \hat{P}_0) + \hat{P}_0 b_0 \hat{P}_0 + \hat{P}_0 \sum_{i=1}^{N} (\hat{P}_0 b_i \hat{P}_0)(U^i \hat{P}_0). \]

This shows that if we set $S \overset{def}{=} U \hat{P}_0$ then $\hat{P}_0 \tilde{A} \hat{P}_0 = C^*(\hat{P}_0 \tilde{B} \hat{P}_0 \cup \{S\})$. Let us also set $S_i \overset{def}{=} \alpha^0(j_0^{-1}(V_i)), \quad i = 1, \ldots, n$.

It is easy to see that $\text{Span}(\bigcup_{l=0}^{\infty} T_l)$ is dense in B. Then it follows that $\text{Span}(\bigcup_{l=0}^{\infty} \alpha^i \circ j_i^{-1}(\bigcup_{l=0}^{\infty} T_l))$ is dense in \tilde{B}. Therefore $\hat{P}_0 \text{Span}(\bigcup_{l=0}^{\infty} \alpha^i \circ j_i^{-1}(\bigcup_{l=0}^{\infty} T_l)) \hat{P}_0 = \text{Span}(\hat{P}_0 \bigcup_{l=0}^{\infty} \alpha^i \circ j_i^{-1}(\bigcup_{l=0}^{\infty} T_l))$ is dense in $\hat{P}_0 \tilde{B} \hat{P}_0$. For each $i \in \mathbb{N}$ we have

\[\hat{P}_0 \alpha^i \circ j_i^{-1}(\bigcup_{l=0}^{\infty} T_l) \hat{P}_0 = \alpha^i \circ j_i^{-1}(\beta^i(I)) \alpha^i \circ j_i^{-1}(\bigcup_{l=0}^{\infty} T_l) \alpha^i \circ j_i^{-1}(\beta^i(I)) = \]

\[= \alpha^i \circ j_i^{-1}(\beta^i(I)) (\bigcup_{l=0}^{\infty} T_l) \beta^i(I)) = \alpha^i \circ j_i^{-1}(V^i(V^*)^i) (\bigcup_{l=0}^{\infty} T_l) (V^i(V^*)^i) = \]

\[= \alpha^i \circ j_i^{-1}((V^i(V^*)^i)^2 (\bigcup_{l=0}^{\infty} T_l)(V^i(V^*)^i)^2) \subset \alpha^i \circ j_i^{-1}((V^i(V^*)^i T_l)(\bigcup_{l=0}^{\infty} T_l)(V^i(V^*)^i)) \subset \]

\[\subset \alpha_i \circ j_i^{-1}(V^i(V^*)^i) (\bigcup_{l=0}^{\infty} T_l) (V^i(V^*)^i) = \alpha^i \circ j_i^{-1}(V^i(\bigcup_{l=0}^{\infty} T_l))(V^i(V^*)^i) = \alpha^i \circ j_i^{-1}(\beta^i(\bigcup_{l=0}^{\infty} T_l)) = \]

\[= \alpha^i \circ \alpha_{i-1} \circ \alpha_{i-2} \circ \cdots \circ \alpha_1 \circ \alpha_0 \circ j_0^{-1}(\bigcup_{l=0}^{\infty} T_l) = \alpha^0 \circ j_0^{-1}(\bigcup_{l=0}^{\infty} T_l). \]

From this it follows that $\alpha_0 \circ j_0^{-1}(\text{Span}(\bigcup_{l=0}^{\infty} T_l))$ is dense in $\hat{P}_0 \tilde{B} \hat{P}_0$ and therefore also that $\alpha^0(B^0) = \hat{P}_0 \tilde{B} \hat{P}_0$. This shows that $\hat{P}_0 \tilde{A} \hat{P}_0 = C^*(\alpha_0 \circ j_0^{-1}(\bigcup_{l=0}^{\infty} T_l) \cup \{S\})$.\]
Observe that

\[(6) \quad S\alpha^0 \circ j_0^{-1}(b)S^* = U\tilde{P}_0\alpha^0 \circ j_0^{-1}(b)\tilde{P}_0U^* = U\alpha^0 \circ j_0^{-1}(b)U^* = \Phi(\alpha^0 \circ j_0^{-1}(b)) =
\]

\[= \alpha^0 \circ j_0^{-1} \circ \beta(b) = \alpha^0 \circ j_0^{-1}(VbV^*).
\]

Since for every \(m > 0\) \(T_m\) can be constructed from \(T_0\) and "Ad(V)" equation \(\text{(6)}\) shows that \(\tilde{P}_0\tilde{\Delta}\tilde{P}_0 = C^*(\alpha_0 \circ j_0^{-1}(\bigcup_{i=0}^{\infty} T_i) \cup \{S\}) = C^*(\alpha_0 \circ j_0^{-1}(T_0) \cup \{S\}) = C^*(\{S_1, \ldots, S_n, S\})\).

We want to apply now Theorem 1.1 to the C*-algebra \(A \overset{\text{def}}{=} \tilde{P}_0\tilde{\Delta}\tilde{P}_0\). \(S_i = \alpha^0 \circ j_0^{-1}(V_i)\) are clearly isometries \((i = 1, \ldots, n)\). \(S^*S = \tilde{P}_0U^*U\tilde{P}_0 = \tilde{P}_0\) and therefore \(S\) is also an isometry. Thus condition (1) holds. It is clear from \(\text{(6)}\) that \(SS^* = \alpha^0 \circ j_0^{-1}(VV^*)\). Therefore

\[0 = \alpha^0 \circ j_0^{-1}(0) = \alpha^0 \circ j_0^{-1}((I - VV^*) \prod_{i=1}^{n} (I - V_iV_i^*)) =
\]

\[(\tilde{P}_0 - \alpha^0 \circ j_0^{-1}(VV^*)) \prod_{i=1}^{n} (\tilde{P}_0 - \alpha^0 \circ j_0^{-1}(V_iV_i^*)) = (\tilde{P}_0 - SS^*) \prod_{i=1}^{n} (\tilde{P}_0 - S_iS_i^*).\]

This proves that condition (4) holds. Conditions (2) and (3) obviously hold for all pairs of isometries from \(\{S_1, \ldots, S_n\}\). If \(n \geq i > k\) then \(S_iS_i^*SS^* = \alpha^0 \circ j_0^{-1}(V_iV_i^*VV^*) = 0\), so condition (3) holds also for all pairs \((S_i, S)\) with \(k < i \leq n\). For \(1 \leq i \leq k\) one has

\[SS_i = S\alpha^0 \circ j_0^{-1}(V_i) = S\alpha^0 \circ j_0^{-1}(V_i)S^*S = \Phi(\alpha^0 \circ j_0^{-1}(V_i))S = \alpha^0 \circ j_0^{-1}(VV_iV^*)S =
\]

\[= \alpha^0 \circ j_0^{-1}(V_iVV^*)S = \alpha^0 \circ j_0^{-1}(V_i)\alpha^0 \circ j_0^{-1}(VV^*)S = S_iSS^*S = S_iS.
\]

This shows that \(SS_i = S_iS\). In the same way one can show that \(SS_i^* = S_i^*S\). Therefore condition (4) holds for all pairs \((S_i, S)\) with \(1 \leq i \leq k\). Applying Theorem 1.1 we get \(A \cong C_Q^*(\Gamma)\). Obviously we also have \(C_Q^*(\Gamma) \cong \tilde{P}_m\tilde{\Delta}\tilde{P}_m\) for each \(m \in \mathbb{Z}\).

We reming here (see [2] IV.3.1, [11, §22]) that each C*-algebra in the small bootstrap class \(\mathfrak{M}\) satisfies the Universal Coefficient Theorem. The small bootstrap class \(\mathfrak{M}\) is the smallest class of C*-algebras that satisfy:

(i) \(\mathbb{C} \in \mathfrak{M}\).

(ii) \(\mathfrak{M}\) is closed under stable isomorphism.

(iii) \(\mathfrak{M}\) is closed under inductive limits.

(iv) \(\mathfrak{M}\) is closed under crossed-products by \(\mathbb{Z}\).

(v) If \(0 \rightarrow \mathcal{J} \rightarrow \mathfrak{A} \rightarrow \mathfrak{A}/\mathcal{J} \rightarrow 0\) is an exact sequence, and two of \(\mathcal{J}, \mathfrak{A}, \mathfrak{A}/\mathcal{J}\) are in \(\mathfrak{M}\), so is the third.

The C*-algebras in this class are all nuclear.

The following proposition holds:

Proposition 2.4. In the above settings: \(\tilde{A} \cong \tilde{B} \times_{\varphi} \mathbb{Z}\) and \(A \cong C_Q^*(\Gamma)\) is Morita equivalent to \(\tilde{A}\). Both of the C*-algebras \(A\) and \(\tilde{A}\) are simple, belong to \(\mathfrak{M}\) and
$K_*(\tilde{A}) = K_*(A)$. Also if we suppose that $[\tilde{P}_0]_0$ generates $K_0(\tilde{A})$ then it follows that $[\tilde{P}_0]_0$ generates $K_0(A)$.

Proof. We showed above that $\tilde{P}_m\tilde{A}\tilde{P}_m \cong C^*_Q(\Gamma)$ for each $m \in \mathbb{Z}$. It is easy to see that $\tilde{A} = \bigcup_{m=0}^{\infty} \tilde{P}_m\tilde{A}\tilde{P}_m$ and since each $\tilde{P}_m\tilde{A}\tilde{P}_m$ is simple from this follows that \tilde{A} is simple too. Therefore every projection in \tilde{A} is full. In particular \tilde{P}_0 is a full projection and therefore $A = \tilde{P}_0\tilde{A}\tilde{P}_0$ is a full corner of \tilde{A} and is therefore Morita equivalent to \tilde{A}. It follows that A and \tilde{A} are stably isomorphic (by Brown’s Theorem [3]) and therefore $K_*(A) = K_*(\tilde{A})$.

If \tilde{A} belongs to \mathfrak{N} then from the definition follows that A also does since it is stably isomorphic to \tilde{A}.

To conclude the proof of the lemma it remains to show that starting from any finite graph G with G^opp connected and going through the above construction the C^*-algebra (let us denote it by \tilde{A}_G - the analogue of \tilde{A} for G) belongs to \mathfrak{N}. We will do this by using induction on the number of the vertices of G. If G has only two vertices and no edges then $C^*_Q(G) \cong O_2$ and $C^*_G(G) \cong E_2$ so the statement for this graph is true. Suppose that the statement is true for any graph G with at most $n \geq 2$ vertices such that its opposite graph G^opp is connected. In particular $C^*_Q(\Gamma')$ (and therefore also $C^*(\Gamma')$) belong to \mathfrak{N}. Then $T_0 \cong C^*(\Gamma')$ as constructed above also does. Since the bootstrap category is closed under stabilization, extensions, inductive limits and crossed products by \mathbb{Z} we conclude using induction that the C^*-algebra \tilde{A} is also nuclear and belong to the small bootstrap class (we use diagram (3) together with Lemma 2.2 and the fact that π_m is an isomorphism for all $m \in \mathbb{N}$). Finally as we showed in the last paragraph this implies that A belongs to \mathfrak{N}. This concludes the inductive step because $A \cong C^*_Q(\Gamma)$ and Γ is an arbitrary graph with $n+1$ vertices such that Γ^opp is connected.

The final statement of the proposition is obvious.

The proposition is proved. \qed

3. The Computation of the K-Theory

For a finite graph G with G^opp connected Crisp and Laca conjectured in [6] that the order of $[1_{C^*_Q(G)}]_0$ in $K_0(C^*_Q(G))$ is $|\chi(G)|$, where $\chi(G)$ is the Euler characteristics of G. $\chi(G)$ is defined as

$$\chi(G) = 1 - \sum_{j=1}^{\infty} (-1)^{j-1} \times \{ \text{number of complete subgraphs of } G \text{ on } j \text{ vertices} \}.$$

We will use the settings from the previous section. Denote $P_m \overset{\text{def}}{=} V^m(V^*)^m$, $m \in \mathbb{N}_0$. Denote also $Q \overset{\text{def}}{=} \prod_{i=1}^{k} (I - V_iV_i^*)$. Let $\Gamma_k = \{(i,j) | 1 \leq i, j \leq k, (i,j) \in \Gamma'\} \subset \Gamma'$.

Since the vertex \(n + 1 \) of \(\Gamma \) is connected with each of the vertices \(1, \ldots, k \) and none of the others we have

\[
\chi(\Gamma) = 1 - \sum_{j=1}^{n} (-1)^{j-1} \times \{ \text{number of complete subgraphs of } \Gamma' \text{ on } j \text{ vertices} \} - \\
(1 - \sum_{j=1}^{k} (-1)^{j-1} \times \{ \text{number of complete subgraphs of } \Gamma_k \text{ on } j \text{ vertices} \}).
\]

Therefore

\[
(7) \quad \chi(\Gamma) = \chi(\Gamma') - \chi(\Gamma_k).
\]

The following lemma is based on the "Euler characteristics idea" and is essentially due to Crisp and Laca:

Lemma 3.1. If \(E \) is a \(C^* \)-subalgebra of \(B \) that contains \(T_m \) (for \(m \in \mathbb{N}_0 \)) we have

\[
(8) \quad \chi(\Gamma')[P_m]_0 = [P_{m+1}Q]_0 \text{ (in } K_0(E)).
\]

If \(E \) is a \(C^* \)-subalgebra of \(B \) that contains \(T_m \) and \(T_{m+1} \) (for \(m \in \mathbb{N}_0 \)) we have

\[
(9) \quad \chi(\Gamma')[P_m]_0 = \chi(\Gamma_k)[P_{m+1}]_0 \text{ (in } K_0(E)).
\]

If \(E \) is a \(C^* \)-subalgebra of \(B \) that contains \(T_{m+1} \) (for \(m \in \mathbb{N}_0 \)) we have

\[
(10) \quad [P_{m+1}Q]_0 = \chi(\Gamma_k)[P_{m+1}]_0 \text{ (in } K_0(E)).
\]

Proof. In the last section we showed that

\[
(11) \quad \prod_{i=1}^{n}(I - V_iV_i^*) = V \prod_{i=1}^{k}(I - V_iV_i^*)V^*.
\]

Since \(V^m \prod_{i=1}^{n}(I - V_iV_i^*)(V^*)^m = \prod_{i=1}^{n}(V^m(V^*)^m - V^mV_iV_i^*(V^*)^m) \) then by multiplying equation (11) by \(V^m \) on the left and by \((V^*)^m \) on the right we get

\[
\prod_{i=1}^{n}(V^m(V^*)^m - V^mV_iV_i^*(V^*)^m) = V^{m+1}\prod_{i=1}^{k}(I - V_iV_i^*)(V^*)^{m+1} = \\
= V^{m+1}(V^*)^{m+1}Q.
\]

This equation is actually three equations which hold in certain \(C^* \)-subalgebras of \(B \). We record them here:

If \(E \) is a \(C^* \)-subalgebra of \(B \) that contains \(T_m \) (for \(m \in \mathbb{N}_0 \)) we have

\[
(12) \quad \prod_{i=1}^{n}(V^m(V^*)^m - V^mV_iV_i^*(V^*)^m) = V^{m+1}(V^*)^{m+1}Q.
\]

If \(E \) is a \(C^* \)-subalgebra of \(B \) that contains \(T_m \) and \(T_{m+1} \) (for \(m \in \mathbb{N}_0 \)) we have

\[
(13) \quad \prod_{i=1}^{n}(V^m(V^*)^m - V^mV_iV_i^*(V^*)^m) = V^{m+1}\prod_{i=1}^{k}(I - V_iV_i^*)(V^*)^{m+1}.
\]
If E is a C^*-subalgebra of B that contains T_{m+1} (for $m \in \mathbb{N}_0$) we have

\begin{equation}
V^{m+1} \prod_{i=1}^{k} (I - V_i V_i^*) (V^*)^{m+1} = V^{m+1} (V^*)^{m+1} Q.
\end{equation}

Note that if E is an appropriate C^*-subalgebra of B then for each projection P that commutes with $V_1 V_1^*$ we have $[V^m P (V^*)^m - V^m P V_1 V_1^* (V^*)^m]_0 = [V^m P (V^*)^m]_0 - [V^m P V_1 V_1^* (V^*)^m]_0$. Suppose by induction that for some $n > l \geq 1$ if P is a projection that commutes with $V_1 V_1^*, \ldots, V_l V_l^*$ we have

\begin{equation}
[V^m \prod_{i=1}^{l} (P - P V_i V_i^*) (V^*)^m]_0 = [V^m P (V^*)^m]_0 - \sum_{i=1}^{l} [V^m P V_i V_i^* (V^*)^m]_0 + \\
+ \sum_{j=2}^{l} (-1)^j \left(\sum_{1 \leq i_1 < \cdots < i_j \leq l \atop (i_s, i_t) \in \Gamma', 1 \leq s < t \leq j} [V^m P V_{i_1} \cdots V_{i_{j-1}} V_{i_j} V_{i_j}^* \cdots V_{i_1}^* (V^*)^m]_0 \right).
\end{equation}

We know that $V_{l+1} V_{l+1}^*$ commutes with each of $V_1 V_1^*, \ldots, V_l V_l^*$. If P commutes with $V_1 V_1^*, \ldots, V_{l+1} V_{l+1}^*$ then we can apply \([15]\) to the family $V_1 V_1^*, \ldots, V_l V_l^*$ and the projection $P V_{l+1} V_{l+1}^*$ to obtain the following equation:

\begin{align*}
[V^m \prod_{i=1}^{l} (P - P V_i V_i^*) (V^*)^m]_0 &= [V^m \prod_{i=1}^{l} (P V_{l+1} V_{l+1}^* - P V_{l+1} V_{l+1}^* V_i V_i^*) (V^*)^m]_0 = \\
&= [V^m P V_{l+1} V_{l+1}^* (V^*)^m]_0 - \sum_{i=1}^{l} [V^m P V_{l+1} V_{l+1}^* V_i V_i^* (V^*)^m]_0 + \\
+ \sum_{j=2}^{l} (-1)^j \left(\sum_{1 \leq i_1 < \cdots < i_j \leq l \atop (i_s, i_t) \in \Gamma', 1 \leq s < t \leq j} [V^m P V_{l+1} V_{l+1}^* V_{i_1} \cdots V_{i_{j-1}} V_{i_j} V_{i_j}^* \cdots V_{i_1}^* (V^*)^m]_0 \right).
\end{align*}
Now since $V^m V_{l+1} V_{l+1}^* \prod_{i=1}^l (P - PV_i V_i^*) (V^*)^m < V^m \prod_{i=1}^l (P - PV_i V_i^*) (V^*)^m$ it is easy to see that we have

$$[V^m (P - PV_{l+1} V_{l+1}^*) \prod_{i=1}^l (P - PV_i V_i^*) (V^*)^m]_0 =$$

$$= [V^m \prod_{i=1}^l (P - PV_i V_i^*) (V^*)^m - V^m V_{l+1} V_{l+1}^* \prod_{i=1}^l (P - PV_i V_i^*) (V^*)^m]_0 =$$

$$= [V^m \prod_{i=1}^l (P - PV_i V_i^*) (V^*)^m]_0 - [V^m V_{l+1} V_{l+1}^* \prod_{i=1}^l (P - PV_i V_i^*) (V^*)^m]_0 =$$

$$= [V^m P (V^*)^m]_0 - \sum_{i=1}^l [V^m PV_i V_i^* (V^*)^m]_0 +$$

$$+ \sum_{j=2}^l (-1)^j \sum_{1 \leq i_1 < \cdots < i_j \leq l, (i_s, i_l) \in \Gamma^*, 1 \leq s \leq t \leq j} [V^m PV_{i_1} \cdots V_{i_j} V_{i_1}^* \cdots V_{i_j}^* (V^*)^m]_0 - [V^m PV_{l+1} V_{l+1}^* (V^*)^m]_0 =$$

$$- \sum_{j=2}^l (-1)^j \sum_{1 \leq i_1 < \cdots < i_j \leq l, (i_s, i_l) \in \Gamma^*, 1 \leq s \leq t \leq j} [V^m PV_{i_1} \cdots V_{i_j} V_{i_1}^* \cdots V_{i_j}^* (V^*)^m]_0 =$$

$$= [V^m P (V^*)^m]_0 - \sum_{i=1}^{l+1} [V^m PV_i V_i^* (V^*)^m]_0 +$$

$$+ \sum_{j=2}^{l+1} (-1)^j \sum_{1 \leq i_1 < \cdots < i_j \leq l+1, (i_s, i_l) \in \Gamma^*, 1 \leq s \leq t \leq j} [V^m PV_{i_1} \cdots V_{i_j} V_{i_1}^* \cdots V_{i_j}^* (V^*)^m]_0.$$

Then by induction follows that for $l = k$ or $l = n$ we get

$$[\prod_{i=1}^l (V^m (V^*)^m - V^m V_i V_i^* (V^*)^m)]_0 =$$

$$= [l]_0 - \sum_{i=1}^l [V^m V_i V_i^* (V^*)^m]_0 + \sum_{j=2}^l (-1)^j \sum_{1 \leq i_1 < \cdots < i_j \leq l, (i_s, i_l) \in \Gamma^*, 1 \leq s \leq t \leq j} [V^m V_{i_1} \cdots V_{i_j} V_{i_1}^* \cdots V_{i_j}^* (V^*)^m]_0.$$

Combining the last equation with equations (12), (13) and (14) we obtain the following equations:
If E is a C^*-subalgebra of B that contains T_m (for $m \in \mathbb{N}_0$) we have

\begin{equation}
[V^m(V^*)^m]_0 - \sum_{i=1}^{n} [V^m V_i V_i^* (V^*)^m]_0 + \sum_{j=2}^{n} (-1)^j \left(\sum_{1 \leq i_1 < \ldots < i_j \leq n} [V^m V_{i_1} \cdots V_{i_j} V_{i_j}^* \cdots V_{i_1}^*(V^*)^m]_0 \right) = [V^{m+1}(V^*)^{m+1}Q]_0.
\end{equation}

If E is a C^*-subalgebra of B that contains T_m and T_{m+1} (for $m \in \mathbb{N}_0$) we have

\begin{equation}
[V^m(V^*)^m]_0 - \sum_{i=1}^{n} [V^m V_i V_i^* (V^*)^m]_0 + \sum_{j=2}^{n} (-1)^j \left(\sum_{1 \leq i_1 < \ldots < i_j \leq n} [V^m V_{i_1} \cdots V_{i_j} V_{i_j}^* \cdots V_{i_1}^*(V^*)^m]_0 \right) = [V^{m+1}(V^*)^{m+1}]_0 - \sum_{i=1}^{k} [V^{m+1} V_i V_i^* (V^*)^{m+1}]_0 + \sum_{j=2}^{k} (-1)^j \left(\sum_{1 \leq i_1 < \ldots < i_j \leq k} [V^{m+1} V_{i_1} \cdots V_{i_j} V_{i_j}^* \cdots V_{i_1}^*(V^*)^{m+1}]_0 \right).
\end{equation}

If E is a C^*-subalgebra of B that contains T_{m+1} (for $m \in \mathbb{N}_0$) we have

\begin{equation}
[V^{m+1}(V^*)^{m+1}]_0 - \sum_{i=1}^{k} [V^{m+1} V_i V_i^* (V^*)^{m+1}]_0 + \sum_{j=2}^{k} (-1)^j \left(\sum_{1 \leq i_1 < \ldots < i_j \leq k} [V^{m+1} V_{i_1} \cdots V_{i_j} V_{i_j}^* \cdots V_{i_1}^*(V^*)^{m+1}]_0 \right) = [V^{m+1}(V^*)^{m+1}Q]_0.
\end{equation}

It is easy to see that in each C^*-subalgebra of B that contains T_m the projection $V^m V_{i_1} \cdots V_{i_j} V_{i_j}^* \cdots V_{i_1}^*(V^*)^m$ is Murray - von Neumann equivalent to $V^m(V^*)^m$ via the partial isometry $V^m V_{i_1} \cdots V_{i_j} (V^*)^m \in T_m$, where $\{i_1, \ldots, i_j\} \subset \{1, \ldots, n\}$.

This observation together with equations (16), (17) and (18) give:

If E is a C^*-subalgebra of B that contains T_m we have

\begin{equation}
[P_m]_0 - \sum_{i=1}^{n} [P_m]_0 + \sum_{j=2}^{n} (-1)^j \left(\sum_{1 \leq i_1 < \ldots < i_j \leq n} [P_m]_0 \right) = [P_{m+1}Q]_0.
\end{equation}
If E is a C^*-subalgebra of B that contains T_m and T_{m+1} then we have

$$ (20) \quad [P_m]_0 - \sum_{i=1}^{n} [P_m]_0 + \sum_{j=2}^{n} (-1)^j \left(\sum_{1 \leq i_1 < \cdots < i_j \leq n} [P_m]_0 \right) = $$

$$ = [P_{m+1}]_0 - \sum_{i=1}^{k} [P_{m+1}]_0 + \sum_{j=2}^{k} (-1)^j \left(\sum_{1 \leq i_1 < \cdots < i_j \leq k} [P_{m+1}]_0 \right). $$

If E is a C^*-subalgebra of B that contains T_{m+1} we have

$$ (21) \quad [P_{m+1}]_0 - \sum_{i=1}^{k} [P_{m+1}]_0 + \sum_{j=2}^{k} (-1)^j \left(\sum_{1 \leq i_1 < \cdots < i_j \leq k} [P_{m+1}]_0 \right) = [P_{m+1}Q]_0. $$

The last three equations are what we had to prove. \qed

Remark 3.2. It also follows from this lemma that if we denote the isometries that generate $C^*(\Gamma)$ by $\tilde{V}, \tilde{V}_1, \ldots, \tilde{V}_n$, then

$$ [(I - \tilde{V}V^*) \prod_{i=1}^{n} (I - \tilde{V}_i \tilde{V}_i^*)]_0 = \chi(\Gamma)[I]_0 \text{ (in } K_0(C^*(\Gamma))) \text{.} $$

Therefore in the extension

$$ (22) \quad 0 \to \langle (I - \tilde{V}V^*) \prod_{i=1}^{n} (I - \tilde{V}_i \tilde{V}_i^*) \rangle \xrightarrow{\text{tr}} C^*(\Gamma) \xrightarrow{Q} C_Q^*(\Gamma) \to 0 $$

the map I_{Γ^*} on K_0 is given by

$$ [(I - \tilde{V}V^*) \prod_{i=1}^{n} (I - \tilde{V}_i \tilde{V}_i^*)]_0 \mapsto \chi(\Gamma)[I]_0. $$

Now we can state and prove the following

Proposition 3.3. Suppose that G is a finite graph with at least two vertices and suppose that G^{opp} is connected. Then

$$ (23) \quad K_0(C_Q^*(G)) = \begin{cases} \mathbb{Z}_{\chi(G)}, & \text{if } \chi(G) \neq 0, \\ \mathbb{Z}, & \text{if } \chi(G) = 0, \end{cases} \quad K_1(C_Q^*(G)) = \begin{cases} 0, & \text{if } \chi(G) \neq 0, \\ \mathbb{Z}, & \text{if } \chi(G) = 0, \end{cases} $$

and $[1_{C_Q^*(G)}]_0$ generates $K_0(C_Q^*(G))$ in all cases.

Moreover $K_0(C^*(G)) = \mathbb{Z}$, $K_1(C^*(G)) = 0$ and $[1_{C^*(G)}]_0$ generates $K_0(C^*(G))$ in all cases.

Proof. We will use induction on the number of vertices of G. If G has two vertices (and no edges) then $C_Q^*(G) = \mathcal{O}_2$ and $C^*(G) = \mathcal{E}_2$ and in this case certainly the statement is true. Suppose that the statement is true for all graphs G with at most $n \geq 2$ vertices and with G^{opp} connected. The graph Γ considered above was a randomly
chosen graph with $n + 1$ vertices and with the property that Γ^{opp} is connected. If we show that the statement holds for Γ than this will prove the statement by induction.

We note that from Lemma 2.2 and the assumption follows that $K_0(T_m) = \mathbb{Z}[P_m]_0$ and $K_1(T_m) = 0$ for all $m \in \mathbb{N}_0$. Also since $I_m \cong K$ we have $K_0(I_m) = \mathbb{Z}[P_mQ]_0$ and $K_1(I_m) = 0$ for all $m \in \mathbb{N}_0$. Finally we remind that π_m is an isomorphism for all $m \in \mathbb{N}_0$.

From the K-theory six term exact sequences for the two exact rows of (3) we have the following commutative diagram:

\[
\begin{array}{cccc}
K_0(I_{m-1}) & \xrightarrow{i_{m*}} & K_0(B_{m-1}) & \xrightarrow{p_{m*}} & K_0(B_{m-1}/I_{m-1}) \\
\downarrow I'_{m*} & & \downarrow I_{m*} & & \cong \downarrow \pi_{m*} \\
K_0(T_m) & \xrightarrow{i_{m*}} & K_0(B_m) & \xrightarrow{p_{m*}} & K_0(B_m/I_m) \\
\uparrow \gamma_{m\text{ind}} & & \uparrow \delta_{m\text{ind}} & & \downarrow \\
K_1(B_m/I_m) & \xrightarrow{p_{m*}} & K_1(B_m) & \leftarrow & 0 \\
\cong \uparrow \pi_{m*} & & \uparrow I_{m*} & & \end{array}
\]

where $\gamma_{m\text{ind}}$ and $\delta_{m\text{ind}}$ are the index maps for the corresponding six term exact sequences.

Since I_{m-1} is generated by P_mQ from Lemma 3.1 follows that the map $i_{m*} : K_0(I_{m-1}) \rightarrow K_0(B_{m-1})$ is induced by $[P_mQ]_{K_0(I_{m-1})} \mapsto \chi(\Gamma')[P_{m-1}]_{K_0(B_{m-1})}$. Also the map $I'_{m*} : K_0(I_{m-1}) \rightarrow K_0(T_m)$ is induced by $[P_mQ]_{K_0(I_{m-1})} \mapsto \chi(\Gamma_k)[P_m]_{K_0(T_m)}$.

When we “apply” β to equations (1) and (2) we obtain the following commutative diagrams with exact rows:

\[
\begin{array}{ccc}
0 & \rightarrow & I_{m-1} \xrightarrow{i_{m*}} B_{m-1} \xrightarrow{p_{m*}} B_{m-1}/I_{m-1} \rightarrow 0 \\
\beta & \downarrow & \beta & \downarrow \beta \\
0 & \rightarrow & I_m \xrightarrow{i_{m+1}} B_m \xrightarrow{p_{m+1}} B_m/I_m \rightarrow 0
\end{array}
\]

and

\[
\begin{array}{ccc}
0 & \rightarrow & T_m \xrightarrow{i_m} B_m \xrightarrow{p_m} B_m/T_m \rightarrow 0 \\
\beta & \downarrow & \beta & \downarrow \beta \\
0 & \rightarrow & T_{m+1} \xrightarrow{i_{m+1}} B_{m+1} \xrightarrow{p_{m+1}} B_{m+1}/T_{m+1} \rightarrow 0
\end{array}
\]
where $\bar{\beta}$ and $\bar{\beta}'$ are induced by β on the above quotients.

We can now start examining the five different cases depending on $\chi(\Gamma')$ and $\chi(\Gamma_k)$:

(case I): $\chi(\Gamma') = 0$ and $\chi(\Gamma_k) = 0$.

By assumption $i_m^* = 0 = I_m^*$. From (24) is easy to see that $\delta_m^\text{ind} = 0$. Therefore (24) splits into two:

$$
\cdots \xrightarrow{i_m^*=0} K_0(B_{m-1}) \xrightarrow{p_m^* = \cong} K_0(B_{m-1}/T_{m-1}) \longrightarrow 0
$$

(27)

$$
\xrightarrow{\delta_m^\text{ind}=0} \quad K_0(T_m) \xrightarrow{i_m^*} K_0(B_m) \xrightarrow{p_m^*} K_0(B_m/T_m) \longrightarrow 0,
$$

$$
0 \longrightarrow K_1(B_{m-1}) \xrightarrow{p_m^*} K_1(B_{m-1}/T_{m-1}) \xrightarrow{\delta_m^\text{ind}=0} K_0(T_{m-1}) \xrightarrow{i_m^*=0} \cdots
$$

(28)

$$
0 \longrightarrow K_1(B_m) \xrightarrow{p_m^*} K_1(B_m/T_m) \xrightarrow{\delta_m^\text{ind}=0} \cdots .
$$

Suppose by induction that $K_0(B_{m-1}) = \mathbb{Z}[P_0] \oplus \cdots \oplus \mathbb{Z}[P_{m-1}]$. Notice that for $m = 1$ we have $K_0(B_0) = \mathbb{Z}[P_0]$. Then from (27) follows that $K_0(B_m) = I_m^*(K_0(B_{m-1})) \oplus i_m^*(K_0(T_m))$ since all extensions of free abelian groups are trivial. Noting that $K_0(T_m) = \mathbb{Z}[P_m]$ concludes the induction. Therefore $K_0(B_m) = \mathbb{Z}[P_0] \oplus \cdots \oplus \mathbb{Z}[P_m]$ for each $m \in \mathbb{N}$. Notice that we can write $K_0(B_m) = \mathbb{Z}[P_0] \oplus \cdots \oplus \mathbb{Z}[\beta_m^\text{ind}([P_0])]$

Suppose by induction that

$$
K_1(B_{m-1}) = \mathbb{Z}(p_{1*})^{-1} \circ \pi_{1*} \circ (\gamma_1^\text{ind})^{-1}([P_1Q]_0) \oplus \cdots
$$

$$
\cdots \oplus \mathbb{Z}(p_{m-1*})^{-1} \circ \pi_{m-1*} \circ (\gamma_m^\text{ind})^{-1}([P_{m-1}Q]_0).
$$

This is trivially true for $m = 1$. From (28) we see that $K_1(B_m) = (p_m^*)^{-1} \circ \pi_m^* (K_1(B_{m-1}/T_{m-1}))$. Since all groups are free abelian all the extensions are trivial and therefore $K_1(B_m) = I_m^*(K(B_{m-1})) \oplus \mathbb{Z}(p_m^*)^{-1} \circ \pi_m^* \circ (\gamma_m^\text{ind})^{-1}([P_mQ]_0)$. This concludes the induction. From the functoriality of the index map and from equations (25) and (26) follows that $(p_m^*)^{-1} \circ \pi_m^* \circ (\gamma_m^\text{ind})^{-1}([P_mQ]_0) = (p_m^*)^{-1} \circ \pi_m^* \circ (\gamma_m^\text{ind})^{-1} \circ \beta^*(P_{m-1}Q_0) = \beta \circ (p_{m-1})^{-1} \circ \pi_{m-1*} \circ (\gamma_{m-1})^{-1}([P_{m-1}Q]_0)$. Therefore we can write

$$
K_1(B_m) = \mathbb{Z}(p_{1*})^{-1} \circ \pi_{1*} \circ (\gamma_1^\text{ind})^{-1}([P_1Q]_0) \oplus \cdots
$$

$$
\cdots \oplus \mathbb{Z}(p_{m-1*})^{-1} \circ \pi_{m-1*} \circ (\gamma_{m-1})^{-1}([P_{m-1}Q]_0).
$$

If $u \in B_1$ is a unitary with $[u]_1 = (p_{1*})^{-1} \circ \pi_{1*} \circ (\gamma_1^\text{ind})^{-1}([P_1Q]_0)$ then we can write

$$
K_1(B_m) = \mathbb{Z}[u]_1 \oplus \cdots \oplus \mathbb{Z}[\beta_{m-1}^\text{ind}([u]_1)].
$$
From this we get $K_0(B) = \bigoplus_{i=0}^{\infty} \mathbb{Z} \beta_+^i([I_0])$ and $K_1(B) = \bigoplus_{i=1}^{\infty} \mathbb{Z} \beta_+^{i-1}([u_1])$.

Let $\tilde{u} = \alpha^0 \circ j_0(u) \in \tilde{B}$. Then it is easy to see that $K_0(\tilde{B}) = \bigoplus_{i=\infty}^{\infty} \mathbb{Z} \Phi^i([\tilde{P}_0])$ and $K_1(\tilde{B}) = \bigoplus_{i=\infty}^{\infty} \mathbb{Z} \Phi^i([-\tilde{u}_1])$.

The Pimsner-Voiculescu gives

$$
\begin{array}{cccc}
\bigoplus_{i=\infty}^{\infty} \mathbb{Z} \Phi^i([\tilde{P}_0]) & \xrightarrow{id_{\mathbb{Z}}-\Phi_*} & \bigoplus_{i=\infty}^{\infty} \mathbb{Z} \Phi^i([\tilde{P}_0]) & \longrightarrow & K_0(\tilde{A}) \\
\uparrow & & \downarrow & & \\
K_1(\tilde{A}) & \xleftarrow{id_{\mathbb{Z}}-\Phi_*} & \bigoplus_{i=\infty}^{\infty} \mathbb{Z} \Phi^i([-\tilde{u}_1]) & \xrightarrow{id_{\mathbb{Z}}-\Phi_*} & \bigoplus_{i=\infty}^{\infty} \mathbb{Z} \Phi^i([-\tilde{u}_1]).
\end{array}
$$

From this we can conclude that $K_0(\tilde{A}) = \mathbb{Z}[\tilde{P}_0], \ K_1(\tilde{A}) = \mathbb{Z}$. From Proposition 2.4 follows that $K_0(\tilde{A}) \cong K_0(C^*_Q(\Gamma)) = \mathbb{Z}$ and $K_1(\tilde{A}) \cong K_1(C^*_Q(\Gamma)) = \mathbb{Z}$ and that $[1_{C_2(\Gamma)}_0]$ generates $K_0(C^*_Q(\Gamma))$.

From Remark 3.2 follows that in the extension (22) the map I_{Γ_0} on K_0 is zero. This shows that $K_0(C^*_r(\Gamma)) = \mathbb{Z}[1_{C^*_r(\Gamma)}_0]$ and $K_1(C^*_r(\Gamma)) = 0$.

This concludes the proof of (case I).

(case II): $\chi(\Gamma') \neq 0$ and $\chi(\Gamma_k) = 0$.

By assumption $K_0(B_0) = \mathbb{Z}[P_0], \ K_0(B_0/I_0) = \mathbb{Z}1_{\chi(\Gamma')}p_1([P_0]), \ K_1(B_0) = 0$ and $K_1(B_0/I_0) = 0$.

Suppose by induction that

$$K_0(B_{m-1}) = \mathbb{Z}[P_{m-1}]_{0} \oplus \mathbb{Z}1_{\chi(\Gamma')}[P_{m-2}]_{0} \oplus \cdots \oplus \mathbb{Z}1_{\chi(\Gamma')}[P_0],$$

$$K_0(B_{m-1}/I_{m-1}) = \mathbb{Z}1_{\chi(\Gamma')}p_{m*}([P_{m-1}]_{0}) \oplus \mathbb{Z}1_{\chi(\Gamma')}p_{m*}([P_{m-2}]_{0}) \oplus \cdots \oplus \mathbb{Z}1_{\chi(\Gamma')}p_{m*}([P_0]),$$

$$K_1(B_{m-1}) = 0 \text{ and } K_1(B_{m-1}/I_{m-1}) = 0.$$

Then from diagram (24) immediately follows that $K_1(B_m) = 0$ and $K_1(B_m/I_{m}) = 0$.

Then (24) reduces to the following commutative diagram with exact rows:

$$
\begin{array}{cccc}
0 & \longrightarrow & K_0(I_{m-1}) & \xrightarrow{i_{m*}} & K_0(B_{m-1}) & \xrightarrow{p_{m*}} & K_0(B_{m-1}/I_{m-1}) & \longrightarrow & 0 \\
0 & \xrightarrow{I_{m*}} & K_0(T_{m}) & \xrightarrow{i_{m*}} & K_0(B_{m}) & \xrightarrow{p_{m*}} & K_0(B_{m}/T_{m}) & \longrightarrow & 0.
\end{array}
$$

(29)

From Lemma 3.3 we have that $\chi(\Gamma')1_{P_0} = 0$ in $K_0(B_m)$ for $l = 0, \ldots, m - 1$. Since π_{m*} is an isomorphism then by the induction hypothesis and (29) it is easy to see that p_{m*} restricted to $\mathcal{G} = \langle [P_0], \ldots, [P_{m-1}]_0 \rangle$ is an isomorphism. This fact also implies that there are no relations between $[P_m]_0$ and \mathcal{G} (since the bottom row of (29) is exact). Since i_{m*} is injective then $[P_m]_0$ in of infinite order in $K_0(B_m)$. Clearly $K_0(B_m)$ is generated by $[P_m]_0$ and \mathcal{G}. Therefore

$$K_0(B_m) = \mathbb{Z}[P_m]_0 \oplus \mathbb{Z}1_{\chi(\Gamma')}[P_{m-1}]_{0} \oplus \cdots \oplus \mathbb{Z}1_{\chi(\Gamma')}[P_0].$$
From the following six term exact sequence
\[
\begin{array}{c}
K_0(I_m) \xrightarrow{i_{m*}} K_0(B_m) \xrightarrow{p_{m*}} K_0(B_m/I_m) \\
\uparrow \quad \q
We conclude that δ_m^{ind} is "multiplication by $\chi(\Gamma_k)"$. Thus $[P_m]_0$ in $K_0(B_m)$ is of order $\chi(\Gamma_k)$ (as should be by Lemma 3.1). Therefore

$$K_0(B_m) = \mathbb{Z}[P_0]_0 \oplus \mathbb{Z}_{[\chi(\Gamma_k)]}[P_1]_0 \oplus \cdots \oplus \mathbb{Z}_{[\chi(\Gamma_k)]}[P_m]_0.$$

We also showed that δ_m^{ind} is injective and therefore $K_1(B_m) = 0$.

Now we easily get $K_0(B) = \mathbb{Z}[P_0]_0 \oplus \mathbb{Z}_{[\chi(\Gamma_k)]}[P_1]_0$ and $K_1(B) = 0$. From this follows that $K_0(\tilde{B}) = \oplus_{i=1}^{\infty} \mathbb{Z}_{[\chi(\Gamma_k)]}[\tilde{P}_0]_0$ and $K_1(\tilde{B}) = 0$.

The Pimsner-Voiculescu exact sequence gives

$$\begin{array}{c}
\mathbb{Z}_{[\chi(\Gamma_k)]}[\tilde{P}_0]_0 \\ \mathbb{Z}_{[\chi(\Gamma_k)]}[\tilde{P}_0]_0 \oplus \mathbb{Z}_{[\chi(\Gamma_k)]}[\tilde{P}_0]_0 \\
\mathbb{Z}_{[\chi(\Gamma_k)]}[\tilde{P}_0]_0 \oplus \mathbb{Z}_{[\chi(\Gamma_k)]}[\tilde{P}_0]_0 \\
\end{array}$$

From Proposition 2.3 we get $K_0(C^*_\Gamma(\Gamma)) = \mathbb{Z}_{[\chi(\Gamma)]}[1_{C^*_\Gamma(\Gamma)}]_0$ and $K_1(C^*_\Gamma(\Gamma)) = 0$ (notice that $\chi(\Gamma) = \chi(\Gamma') - \chi(\Gamma_k) = 0 - \chi(\Gamma_k)$).

From Remark 3.2 follows that I_{Γ_*} is "multiplication by $\chi(\Gamma)"$, so $K_0(C^*_\Gamma(\Gamma)) = \mathbb{Z}_{[1_{C^*_\Gamma(\Gamma)}]}_0$ and $K_1(C^*_\Gamma(\Gamma)) = 0$.

This concludes the proof of (Case III).

(cases IV and V): $\chi(\Gamma') \neq 0, \chi(\Gamma_k) \neq 0$.

Let's denote $x = \chi(\Gamma'), y = \chi(\Gamma_k)$ and let $\text{GCD}(x, y) = d > 0$ be the greatest common divisor of x and y. Then by the Bézout’s identity there exist $a, b \in \mathbb{Z}$ such that $ax + by = d$. Denote also $x' = x/d$ and $y' = y/d$. Then $ax' + by' = 1$.

By assumption we have that $K_0(B_0) = \mathbb{Z}[P_0]_0$, $K_1(B_0/\mathcal{I}_0) = 0$, $K_1(B_0) = 0$ and $K_0(B_0/\mathcal{I}_0) = \mathbb{Z}[x]_{P_1}[P_0]_0$.

Then $0 = K_1(B_0/\mathcal{I}_0) \cong K_1(B_1/T_1)$ which implies $K_1(B_1) = 0$. Diagram (21) for $m = 1$ reduces to

$$\begin{array}{c}
0 \rightarrow K_0(\mathcal{I}_0) \rightarrow K_0(B_0) \rightarrow K_0(\mathcal{I}_0/T_0) \rightarrow 0 \\
0 \rightarrow K_0(T_1) \rightarrow K_0(B_1) \rightarrow K_0(\mathcal{I}_0/B_1) \rightarrow 0. \\
\end{array}$$

Clearly in $K_0(B_1)$ we have $x[P_0]_0 - y[P_1]_0 = 0$. Consider $g = b[P_0]_0 + a[P_1]_0$, $g' = x'[P_0]_0 - y'[P_1]_0 \in K_0(B_1)$. Since $ag' + y'g = (ax' + y'b)[P_0]_0 = [P_0]_0$ and $x'g - bg' = (x'a + y'b)[P_1]_0 = [P_1]_0$ it follows that g and g' generate $K_0(B_1)$. Since i_{1*} is injective on K_0 it follows that $K_0(B_1)$ is an infinite group. Clearly $dg' = dx'[P_0]_0 - dy'[P_1]_0 = 0$. Therefore g is of infinite order in $K_0(B_1)$ and moreover g and g' are not related (or otherwise g would be of finite order). If we suppose that $0 < d' \mid d$ and $d'g' = 0$ then it will follow that $d'x'[P_0]_0 = d'y'[P_1]_0 \in \ker(p_{1*})$. But the order of $p_{1*}([P_0]_0)$ in $K_0(B_1/T_1)$ is $|x|$, so $d'x' \geq x$ or $d' \geq d$. Therefore $d' = d$ and $K_0(B_1) = \mathbb{Z}(b[P_0]_0 + a[P_1]_0) \oplus \mathbb{Z}[x'[P_0]_0 - y'[P_1]_0]$.
Therefore we showed that \(K_0(B_1) = \{\mathbb{Z}[P_0]_0 \oplus \mathbb{Z}[P_1]_0 | x[P_0]_0 - y[P_1]_0 = 0\}\). Suppose by induction that for \(m \geq 2\), \(K_1(B_{m-1}) = 0\) and that
\[K_0(B_{m-1}) = \{\mathbb{Z}[P_0]_0 \oplus \cdots \oplus \mathbb{Z}[P_{m-1}]_0 | x[P_0]_0 - y[P_1]_0 = 0, \ldots, x[P_{m-2}]_0 - y[P_{m-1}]_0 = 0\}\).

From the induction hypothesis follows that \([P_{m-1}]_0\) is of infinite order in \(K_0(B_{m-1})\) and therefore that \(i_{m*} : K_0(\mathcal{I}_{m-1}) \rightarrow K_0(B_{m-1})\) is injective and therefore \(0 = K_1(B_{m-1}/I_{m-1}) \cong K_1(B_m/T_m)\). This shows that \(K_1(B_m) = 0\) and that (24) reduces to
\[
\begin{align*}
0 & \longrightarrow K_0(I_{m-1}) \xrightarrow{i_{m*}} K_0(B_{m-1}) \xrightarrow{i_{m*}} K_0(B_{m-1}/I_{m-1}) \longrightarrow 0 \\
& \begin{array}{c}
0 \longrightarrow K_0(T_m) \xrightarrow{i_{m*}} K_0(B_m) \xrightarrow{p_{m*}} K_0(B_m/T_m) \longrightarrow 0.
\end{array}
\end{align*}
\]

It is easy to see that
\[K_0(B_{m-1}/I_{m-1}) = \{\mathbb{Z}P'_{m*}([P_{m-1}]_0) \oplus \cdots \oplus \mathbb{Z}P'_{m*}([P_0]_0) | xP'_{m*}([P_{m-1}]_0) = 0, \ldots, xP'_{m*}([P_0]_0) = 0\}\]. Since \(i'_{m*}\) is “multiplication by \(\chi(\Gamma_k)\)” and therefore injective then by the Five Lemma follows that \(I_{m*}\) is also injective. Therefore if we denote \(G = I_{m*}(K_0(B_{m-1}))\) then \(K_0(B_m) = ([P_0]_0, G)\). One obvious relation in \(K_0(B_m)\) beside the relations that come from \(K_0(B_{m-1})\) is \(x[P_{m-1}]_0 - y[P_0]_0 = 0\) and this relation follows from Lemma 3.1. Therefore \(K_0(B_m)\) is a quotient of the group
\[F = \{\mathbb{Z}\rho_0 \oplus \cdots \oplus \mathbb{Z}\rho_m | x\rho_{m-1} - y\rho_m = 0, \ldots, x\rho_0 - y\rho_1 = 0\}\], where the quotient map \(f : F \rightarrow K_0(B_m)\) is defined on the generators as \(\rho_l \mapsto [P_l]_0\), \(l = 0, \ldots, m\). Then if \(F' = \mathbb{Z}\rho_m\) the quotient \(F' = F/F'\) is isomorphic to
\[F_q = \{\mathbb{Z}\rho_0 \oplus \cdots \oplus \mathbb{Z}\rho_m | x\rho_{m-1} - y\rho_m = 0, \ldots, x\rho_0 - y\rho_1 = 0, \rho_m = 0\} = \{\mathbb{Z}\rho_0 \oplus \cdots \oplus \mathbb{Z}\rho_{m-1} | x\rho_{m-1} = 0, x\rho_{m-2} - y\rho_{m-1} = 0, \ldots, x\rho_0 - y\rho_1 = 0\}\].

Obviously we have the commutative diagram of abelian groups with exact rows
\[
\begin{array}{c}
0 \longrightarrow F' \xrightarrow{f'} \longrightarrow F \xrightarrow{f} \longrightarrow F_q \longrightarrow 0 \\
0 \longrightarrow K_0(T_m) \xrightarrow{i_{m*}} K_0(B_m) \xrightarrow{p_{m*}} K_0(B_m/T_m) \longrightarrow 0,
\end{array}
\]

where \(f_q\) is the homomorphism induced by \(f\) and \(f'\) is the restriction of \(f\) to \(F'\). Then obviously \(f'\) and \(f_q\) are isomorphisms (since \(\pi_{m*}\) is an isomorphism). Therefore by the Five Lemma follows that \(f\) is also an isomorphism.

This shows that
\[K_0(B_m) = \{\mathbb{Z}[P_0]_0 \oplus \cdots \oplus \mathbb{Z}[P_{m}]_0 | x[P_0]_0 - y[P_1]_0 = 0, \ldots, x[P_{m-1}]_0 - y[P_m]_0 = 0\}\]. We also showed above that \(K_1(B_m) = 0\) and this concludes the induction.

Now it is easy to see that \(K_1(B) = 0\) and that
\[K_0(B) = \{\oplus_{i=0}^{\infty} \mathbb{Z}\beta^i_\tau([P_0]_0) | \chi(\Gamma')\beta^i_\tau([P_0]_0) - \chi(\Gamma_k)\beta^{i+1}_\tau([P_0]_0) = 0, i \in \mathbb{N}_0\}\].
Then $K_1(\tilde{B}) = 0$ and
\[
K_0(\tilde{B}) = \{ \sum_{i=-\infty}^{\infty} \mathbb{Z}\Phi_i^*([\tilde{P}_0]_0)|\chi(\Gamma')\Phi_i^*([\tilde{P}_0]_0) - \chi(\Gamma_k)\Phi_i^*([\tilde{P}_0]_0) = 0, \ i \in \mathbb{Z} \}.
\]

The Pimsner-Voiculescu exact sequence gives
\[
\begin{array}{cccc}
K_0(\tilde{B}) & \xrightarrow{id_* - \Phi_*} & K_0(\tilde{B}) & \xrightarrow{} K_0(\tilde{A}) \\
\uparrow & & \downarrow & \\
K_1(\tilde{A}) & \leftarrow 0 & \leftarrow 0.
\end{array}
\]

(Case IV): $\chi(\Gamma') \neq 0$, $\chi(\Gamma_k) \neq 0$ and $\chi(\Gamma') = \chi(\Gamma_k)$.

In this case
\[
K_0(\tilde{A}) = \{ \sum_{i=-\infty}^{\infty} \mathbb{Z}\Phi_i^*([\tilde{P}_0]_0)|\chi(\Gamma')\Phi_i^*([\tilde{P}_0]_0) - \chi(\Gamma_k)\Phi_i^*([\tilde{P}_0]_0) = 0,
\]
\[
\Phi_i^*([\tilde{P}_0]_0) - \Phi_i^*([\tilde{P}_0]_0) = 0, \ i \in \mathbb{Z} \} =
\]
\[
\{ \sum_{i=-\infty}^{\infty} \mathbb{Z}\Phi_i^*([\tilde{P}_0]_0)|\Phi_i^*([\tilde{P}_0]_0) - \Phi_i^*([\tilde{P}_0]_0) = 0, \ i \in \mathbb{Z} \} = \mathbb{Z}[\tilde{P}_0]_0.
\]

To examine $\ker(id_* - \Phi_*)$ take $\omega = \sum_{i=-j}^{j} t_i\Phi_i^*([\tilde{P}_0]_0) \in \ker(id_* - \Phi_*)$, where $t_i \in \mathbb{Z}$. Then
\[
0 = (id_* - \Phi_*)(\omega) = \sum_{i=-j}^{j} t_i(id_* - \Phi_*)(\Phi_i^*([\tilde{P}_0]_0)) = \sum_{i=-j}^{j} t_i(\Phi_i^*([\tilde{P}_0]_0) - \Phi_i^*([\tilde{P}_0]_0)).
\]

Therefore $t_i = s_i|\chi(\Gamma')|$ for some integers $s_i, \ i = -j, \ldots, j$. From this easily follows that $\omega = \sum_{i=-j}^{j} s_i|\chi(\Gamma')|[\tilde{P}_0]_0$. Thus $\ker(id_* - \Phi_*) = |\chi(\Gamma')|\mathbb{Z}[\tilde{P}_0]_0$. This shows that $K_1(\tilde{A}) = \mathbb{Z}$.

From Proposition 2.4 follows that $K_0(\tilde{A}) \cong K_0(C^*_Q(\Gamma)) = \mathbb{Z}$, $K_1(\tilde{A}) \cong K_1(C^*_Q(\Gamma)) = \mathbb{Z}$ and that $[1_{C^*_Q(\Gamma)}]_0$ generates $K_0(C^*_Q(\Gamma))$.

From Remark 3.2 follows that in the extension (22) the map I_{Γ_*} on K_0 is zero (since $\chi(\Gamma) = \chi(\Gamma') - \chi(\Gamma_k) = 0$). Therefore $K_0(C^*(\Gamma)) = \mathbb{Z}[1_{C^*(\Gamma)}]_0$ and $K_1(C^*(\Gamma)) = 0$.

This concludes the proof of (case IV).

(cas eV): $\chi(\Gamma') \neq 0$, $\chi(\Gamma_k) \neq 0$ and $\chi(\Gamma') \neq \chi(\Gamma_k)$.

In this case
\[
K_0(\tilde{A}) = \{ \sum_{i=-\infty}^{\infty} \mathbb{Z}\Phi_i^*([\tilde{P}_0]_0)|\chi(\Gamma')\Phi_i^*([\tilde{P}_0]_0) - \chi(\Gamma_k)\Phi_i^*([\tilde{P}_0]_0) = 0,
\]
\[
\Phi_i^*([\tilde{P}_0]_0) - \Phi_i^*([\tilde{P}_0]_0) = 0, \ i \in \mathbb{Z} \} =
\]
\[
\{ \mathbb{Z}[\tilde{P}_0]_0|\chi(\Gamma')\tilde{P}_0 - \chi(\Gamma_k)[\tilde{P}_0]_0 = 0 \} = \mathbb{Z}[\chi(\Gamma')\tilde{P}_0]_0 = \mathbb{Z}[\chi(\Gamma)][\tilde{P}_0]_0.
\]
We only need to show that $K_1(\tilde{A}) = 0$ or that $\text{id}_* - \Phi_*$ is injective.

Take $\omega = \sum_{i=-j}^j t_j \Phi_*^i([\tilde{P}_0]_0)$, $t_i \in \mathbb{Z}$ and suppose that $(\text{id}_* - \Phi_*) (\omega) = 0$. Then

$$0 = (\text{id}_* - \Phi_*) (\omega) = \sum_{i=-j}^j t_j (\Phi_*^i([\tilde{P}_0]_0) - \Phi_*^{i+1}([\tilde{P}_0]_0)) =$$

$$= t_{-j} \Phi_*^{-j}([\tilde{P}_0]_0) + \sum_{i=-j+1}^j (t_i - t_{i-1}) \Phi_*^i([\tilde{P}_0]_0) - t_j \Phi_*^{i+1}([\tilde{P}_0]_0).$$

If $\chi(\Gamma')$ doesn’t divide t_{-j} then the equality $-t_{-j} \Phi_*^{-j}([\tilde{P}_0]_0) = (t_i - t_{i-1}) \Phi_*^i([\tilde{P}_0]_0) - t_j \Phi_*^{i+1}([\tilde{P}_0]_0)$ is impossible. If $\chi(\Gamma')$ divides t_{-j} then ω can be expressed in terms of $\Phi_*^{-j}([\tilde{P}_0]_0), \ldots, \Phi_*^j([\tilde{P}_0]_0)$. By induction we see that we can write $\omega = t[\tilde{P}_0]_0$ for some $t \in \mathbb{Z}$. But then clearly $(\text{id}_* - \Phi_*) (\omega) = 0$ is possible if and only if $t = 0$. This shows that $\text{id}_* - \Phi_*$ is injective and therefore that $K_1(\tilde{A}) = 0$.

From Proposition 2.4 we get $K_0(C_0^*(\Gamma)) = \mathbb{Z}[\chi(\Gamma)][1_{C_0^*(\Gamma)}]_0$ and $K_1(C_0^*(\Gamma)) = 0$.

From Remark 3.2 follows that I_{Γ_*} is “multiplication by $\chi(\Gamma)$”, so $K_0(C_*^*(\Gamma)) = \mathbb{Z}[1_{C_*^*(\Gamma)}]_0$ and $K_1(C^*(\Gamma)) = 0$.

This concludes the proof of (Case V).

The Proposition is proved. □

Now we can apply the Kirchberg-Phillips Classification theorem ([16]) to $C_*^*(G)$ for a finite graph G such that G^opp is connected and with at least two vertices, using Theorem 1.1, Proposition 2.4 and Proposition 3.3. We obtain

$$C_*^*(G) \cong \mathcal{O}_{1+|\chi(G)|}.$$ (33)

For infinite graphs with connected opposite graphs we can argue similarly as in [8, Corollary 3.11] to prove the following:

Proposition 3.4. Let G an infinite graph with countably many vertices and such that G^opp is connected. Then $C^*(G) (= C_0^*(G))$ is nuclear and belongs to the small bootstrap class. Moreover $K_0(C_*^*(G)) = \mathbb{Z}[1_{C_*^*(G)}]_0$ and $K_1(C^*(G)) = 0$.

Proof. By induction we will find a increasing sequence G_n of subgraphs of G with n vertices, $n \geq 2$ which are such that G_n^{opp} is connected for each $n \geq 2$ and also $G_n \xrightarrow{n \rightarrow \infty} G$. Obviously we can find two vertices v_1 and v_2 that are not connected (since G^{opp} is connected). Then we chose G_2 to be the graph with vertices v_1 and v_2 and no edges. Suppose we have defined the subgraph G_n for some $n \geq 2$. Let v_1, \ldots, v_n be the vertices of G_n. Since G^{opp} is connected we can find a vertex v_{n+1} of G different from v_1, \ldots, v_n such that v_{n+1} is not connected with all of the vertices v_1, \ldots, v_n. Then obviously the subgraph G_{n+1} of G on vertices v_1, \ldots, v_{n+1} and edges coming from G is such that G_{n+1}^{opp} is connected. This completes the induction.

From Proposition 3.3 we have $K_0(C_*^*(G_n)) = \mathbb{Z}[1_{C_*^*(G_n)}]_0$ and $K_1(C^*(G_n)) = 0$. It is easy to see that $C^*(G) = \lim_{n \rightarrow \infty} C^*(G_n)$. Therefore from Proposition 2.4 we get that $C_*^*(G)$ is nuclear and belongs to the small bootstrap category \mathcal{N}. Also $K_0(C^*(G)) = \lim_{n \rightarrow \infty} K_0(C^*(G_n)) = \mathbb{Z}[1_{C^*(G)}]_0$ and $K_1(C^*(G)) = \lim_{n \rightarrow \infty} K_1(C^*(G_n)) = 0$.

This proves the proposition. □
From Theorem 1.1 we know that $C^*(G) = C^*_Q(G)$ is purely infinite and simple. Again using Kirchberg-Phillips theorem we get that if G is an infinite graph on countably many vertices such that G^{op} is connected then $C^*(G) = C^*_Q(G) \cong O_\infty$. If we define for an infinite countable graph G with G^{op} connected $\chi(G) \overset{def}{=} \infty$ then we can write once again $C^*_Q(G) \cong O_{1+|\chi(G)|}$.

Remark 3.5. Let G_1 and G_2 be two disjoint graphs. Then by $G_1 \ast G_2$ we denote their join which is the graph obtained from G_1 and G_2 by connecting each vertex of G_1 with each vertex of G_2. Then if we start with a graph G on countably many vertices which is such that G^{op} doesn’t have any isolated vertices then we can find a sequence of subgraphs G_n, $n \in \mathbb{N}$ (some of G_n’s can have zero vertices) such that G^{op} are all connected and such that $G = \bigast_{n=1}^\infty G_n$. For a graph F with zero vertices we write $C^*_Q(F) = \mathbb{C}$.

Then from Theorem 1.1 easily follows that $C^*_Q(G) = \bigotimes_{n=1}^\infty C^*_Q(G_n)$.

Now we can record our main result:

Theorem 3.6. Let G be a graph with at least two and at most countably many vertices such that G^{op} has no isolated vertices. Write $G = \bigast_{n=1}^\infty G_n$ as in Remark 3.5 with G_n being a subgraph of G such that G_n^{op} is connected.

Then

$$C^*_Q(G) = \bigotimes_{n=1}^\infty C^*_Q(G_n) \cong \bigotimes_{n=1}^\infty O_{1+|\chi(G_n)|}.$$ \hfill (34)

Acknowledgements. Most of the work on this paper was done when I was a graduate student at Texas A&M University. I would like to thank Ron Douglas for choosing this research topic and for the many useful conversations I had with him. I want to thank Marcelo Laca for sending me hardcopies of some of his papers on the subject. Finally I want to thank Ken Dykema, Marcelo Laca and George Elliott for some discussions.

References

[1] B. Blackadar, *K-Theory for Operator Algebras, second edition*, Cambridge University Press, 1998.
[2] B. Blackadar, *Operator Algebras*, Enc. of Math. Sci., vol. 122, Springer-Verlag, Berlin, 2006.
[3] L. G. Brown, *Stable Isomorphism of Hereditary Subalgebras of C*-algebras*, Pacific J. of Math., 71, No 2, (1977).
[4] L. A. Coburn, *The C*-Algebra Generated by an Isometry I*, Bull. Amer. Math. Soc. 73, (1967), 722-726.
[5] J. Crisp, M. Laca, *On the Toeplitz Algebras of Right-Angled and Finite-Type Artin Groups*, J. Austral Math. Soc., 72, (2002), 223-245.
[6] J. Crisp, M. Laca, *Boundary Quotients and Ideals of Toeplitz C*-Algebras of Artin Groups*, JFA, 242, (2007), 127-156.
[7] J. Cuntz, *Simple C*-Algebras Generated by Isometries*, Communications in Mathematical Physics, 57, 1977, 173-185.
[8] J. Cuntz, *K-Theory for Certain C*-Algebras*, Ann. of Math., 113, (1981), 181-197.
[9] J. Cuntz, W. Krieger, A Class of C^*-Algebras and Topological Markov Chains, Invent. Math., 56, 251-268, (1980).
[10] R. G. Douglas, On the C^*-Algebra of a One-parameter Semigroup of Isometries, Acta Math., 128, (1972), 143-152.
[11] R. Exel, M. Laca, J. Quigg, Partial Dynamical Systems and C^*-Algebras Generated by Partial Isometries, J. Operator Theory, 47, (2002), 169-186.
[12] M. Laca, I. Raeburn, Semigroup Crossed Products and Toeplitz Algebras of Nonabelian Groups, JFA, 139, (1996), 415-440.
[13] G. Murphy, Ordered Groups and Toeplitz Algebras, J. Operator Theory, 18, (1987), 303-326.
[14] G. Murphy, C^*-Algebras and Operator Theory, Academic Press, 1990.
[15] A. Nica, C^*-algebras Generated by Isometries and Wiener-Hopf Operators, J. Operator Theory, 27, (1992), 17-52.
[16] N. Christopher Phillips, A Classification Theorem for Nuclear Simple C^*-Algebras, Documenta Mathematica, 5, 2000, 49-114.
[17] M. Pimsner, A Class of C^*-Algebras Generalizing Both Cuntz-Krieger Algebras and Crossed Products by \mathbb{Z}, Fields Inst. Commun., 12, (1997), 189–212.
[18] M. Pimsner, D. Voiculescu, Exact Sequences for K-Groups and Ext-Groups of Certain Cross-product C^*-Algebras, J. Operator Theory, 4, 1980, 93-118.

Nikolay Ivanov, Department of Mathematics, University of Toronto, Toronto, Ontario, Canada, M5S 2E4
E-mail address: nivanov@fields.utoronto.ca