ON THE KODAIRA DIMENSION OF \overline{M}_{16}

GAVRIL FARKAS AND ALESSANDRO VERRA

ABSTRACT. We prove that the moduli space of curves of genus 16 is not of general type.

The problem of determining the nature of the moduli space \overline{M}_g of stable curves of genus g has long been one of the key questions in the field, motivating important developments in moduli theory. Severi [Sev] observed that \overline{M}_g is unirational for $g \leq 10$, see [AC] for a modern presentation. Much later, in the celebrated series of papers [HM], [H], [EH], Harris, Mumford and Eisenbud showed that \overline{M}_g is of general type for $g \geq 24$. Very recently, it has been showed in [FJP] that both \overline{M}_{22} and \overline{M}_{23} are of general type.

On the other hand, due to work of Sernesi [Ser], Chang-Ran [CR1], [CR2] and Verra [Ve] it is known that \overline{M}_g is unirational also for $11 \leq g \leq 14$. Finally, Bruno and Verra [BV] proved that \overline{M}_{15} is rationally connected. Our result is the following:

Theorem 1. The moduli space \overline{M}_{16} of stable curves of genus 16 is not of general type.

A few comments are in order. The main result of [CR3] claims that \overline{M}_{16} is uniruled. It has been however recently pointed out by Tseng [Ts] that the key calculation in [CR3] contains a fatal error, which genuinely reopens this problem (after 28 years!).

Before explaining our strategy of proving Theorem 1 recall the standard notation $\Delta_0, \ldots, \Delta_{\lfloor g/2 \rfloor}$ for the irreducible boundary divisors on \overline{M}_g, see [HM]. Here Δ_0 denotes the closure in \overline{M}_g of the locus of irreducible 1-nodal curves of arithmetic genus g. Our approach relies on the explicit uniruled parametrization of \overline{M}_{15} found by Bruno and Verra [BV]. Their work establishes that through a general point of \overline{M}_{15} there passes not only a rational curve, but in fact a rational surface. This extra degree of freedom, yields a uniruled parametrization of $\overline{M}_{15,2}$, therefore also a parametrization the boundary divisor Δ_0 inside \overline{M}_{16}. We show the following:

Theorem 2. The boundary divisor Δ_0 of \overline{M}_{16} is uniruled and swept by a family of rational curves, whose general member $\Gamma \subseteq \Delta_0$ satisfies $\Gamma \cdot K_{\overline{M}_{16}} = 0$ and $\Gamma \cdot \Delta_0 > 0$.

Assuming Theorem 2 we easily conclude that \overline{M}_{16} cannot be of general type.

Proof of Theorem 1. Note that in any effective representation of the canonical divisor

$$K_{\overline{M}_{16}} \equiv \alpha \cdot \Delta_0 + D,$$

where $\alpha \in \mathbb{Q}_{>0}$ and D is an effective \mathbb{Q}-divisor on \overline{M}_{16} not containing Δ_0 in its support, we must have $\alpha = 0$. Indeed, we can choose the curve Γ such that $\Gamma \nsubseteq D$, then we write

$$0 = \Gamma \cdot K_{\overline{M}_{16}} = \alpha \Gamma \cdot \Delta_0 + \Gamma \cdot D \geq \alpha \Gamma \cdot \Delta_0 \geq 0,$$

hence $\alpha = 0$.

1
Furthermore, since the singularities of \overline{M}_g do not impose adjunction conditions [HM, Theorem 1], \overline{M}_g is a variety of general type for a given $g \geq 4$ if and only the canonical class $K_{\overline{M}_g}$ is a big divisor class, that is, it can be written as
\[
K_{\overline{M}_g} = A + E,
\]
where A is an ample \mathbb{Q}-divisor and E is an effective \mathbb{Q}-divisor respectively. Assume that $K_{\overline{M}_{15}}$ can be written like in (1). It has already been observed that $\Delta_0 \not\subseteq \text{supp}(E)$, in particular $\Gamma \cdot E \geq 0$. Using Kleiman’s ampleness criterion, $\Gamma \cdot A > 0$, which yields the immediate contradiction $0 = \Gamma \cdot K_{\overline{M}_{15}} = \Gamma \cdot A + \Gamma \cdot E \geq \Gamma \cdot A > 0$. \hfill \Box

The Bruno-Verra parametrization of \overline{M}_{15}. The parametrization of Δ_0 and the proof of Theorem 1 uses several important results from [BV], which we now recall. We denote by $\mathcal{H}_{15,9}$ the Hurwitz space parametrizing degree 9 covers $C \to \mathbb{P}^1$, where C is a smooth curve of genus 15. Then $\mathcal{H}_{15,9}$ is birational to the parameter space $\mathcal{G}_{15,9}^1$ classifying pairs (C, A), where $[C] \in \overline{M}_{15}$ and $A \in W^1_9(C)$ is a pencil. By residuation, $\mathcal{G}_{15,9}^1$ is isomorphic to the parameter space $\mathcal{G}_{15,19}^6$ classifying pairs (C, L), where C is a smooth curve of genus 15 and $L \in W^3_{19}(C)$. In particular, $\mathcal{G}_{15,19}^6$ is irreducible. Note that the general fibre of the forgetful map $\mathcal{G}_{15,19}^6 \to \overline{M}_{15}$ is 1-dimensional.

We pick a general element $[C, L] \in \mathcal{G}_{15,19}^6$, in particular L is very ample and $h^0(C, L) = 7$. We set $A := \omega_C \otimes L^7 \in W^1_9(C)$. We may assume that A is base point free and the pencil $|A|$ has simple ramification. We consider the multiplication map \[
\phi_L : \text{Sym}^2 H^0(C, L) \to H^0(C, L^2).
\]
Since C is Petri general, $h^1(C, L^2) = 0$, therefore $h^0(C, L^2) = 2 \cdot 19 + 1 - 15 = 24$. Furthermore, via a degeneration argument it is shown in [BV] Theorem 3.11, that for a general choice of (C, L), the map ϕ_L is surjective, hence $h^0(\mathbb{P}^6, \mathcal{I}_C|_{\mathbb{P}^6}(2)) = \dim(\text{Ker}(\phi_L)) = 4$, that is, the degree 19 curve $C \subseteq \mathbb{P}^6$ lies on precisely 4 independent quadrics. We let
\[
S := \text{Bs}|\mathcal{I}_C|_{\mathbb{P}^6}(2)\vert
\]
be the base locus of the system of quadrics containing C. It is further established in [BV] Theorem 3.11 that under our generality assumptions, S is a smooth surface. From the adjunction formula it follows that $\omega_S = \mathcal{O}_S(1)$, that is, S is a canonical surface. We write down the exact sequence
\[
0 \longrightarrow \mathcal{O}_S \longrightarrow \mathcal{O}_S(C) \longrightarrow \mathcal{O}_C(C) \longrightarrow 0.
\]
From the adjunction formula $\mathcal{O}_C(C) \cong \omega_C \otimes \omega_{S/C}^\vee = \omega_C \otimes L^7 = A \in W^3_9(C)$. Since S is a regular surface, by taking cohomology in (3), we obtain
\[
h^0(S, \mathcal{O}_S(C)) = h^0(S, \mathcal{O}_S) + h^0(C, A) = 3.
\]
Observe also from the sequence (3) that the linear system $|\mathcal{O}_S(C)|$ is base point free, for $|\mathcal{O}_C(C)| = |A|$ is so. This concludes our recap of results from [BV], amounting to the fact that through a general point $[C] \in \overline{M}_{15}$ there passes a rational surface, obtained as the image of the moduli map \[
\mathbb{P}^2 \cong |\mathcal{O}_S(C)| \dashrightarrow \overline{M}_{15}.
\]
ON THE KODAIRA DIMENSION OF \overline{M}_{16}

The uniruledness of the boundary divisor Δ_0 in \overline{M}_{16}.

We now lift the construction discussed above from \overline{M}_{15} to the moduli space $\overline{M}_{15,2}$ of 2-pointed stable curves of genus 15. We start with a general curve C of genus 15 and consider the correspondence

$$\Sigma := \left\{ (A, x + y) \in W_9^1(C) \times C_2 : H^0(C, A(-x - y)) \neq 0 \right\},$$

endowed with the projections $\pi_1: \Sigma \to W_9^1(C)$ and $\pi_2: \Sigma \to C_2$ respectively. Here C_2 is the second symmetric product of C. It follows that Σ is an irreducible surface and that π_2 is generically finite. Indeed, for a general point $2x \in C_2$, we can invoke for instance [EH, Theorem 1.1] to conclude that $\pi_2^{-1}(2x)$ is finite. The fibre $\pi_1^{-1}(A)$ is irreducible whenever A has simple ramification.

We now fix a general element $[C, x, y] \in \overline{M}_{15,2}$. Then there exist finitely many pencils $A \in W_9^1(C)$ containing both points x and y in the same fibre. Furthermore, each of these pencils A can be assumed to be base point free with simple ramification and general enough such that $L := \omega_C \otimes A^r \in W_9^6(C)$ is very ample and in the embedding

$$\varphi_L: C \hookrightarrow \mathbb{P}^6$$

the curve C lies on precisely 4 independent quadrics intersecting in a smooth canonical surface S defined by (2).

Proposition 3. With the notation above, if $h^0(C, A(-x - y)) = 1$, then $\dim |I_{\{x,y\}}(C)| = 1$.

Proof. It follows from the commutativity of the following diagram, keeping in mind that $h^0(S, \mathcal{O}_S(C)) = 3$ and that the first column is injective.

$$
\begin{array}{ccc}
0 & \longrightarrow & H^0(S, I_{\{x,y\}}(C)) \\
\downarrow & & \downarrow \text{res} \\
0 & \longrightarrow & H^0(C, A(-x - y))
\end{array}
\begin{array}{ccc}
& & \longrightarrow H^0(S, \mathcal{O}_S(C)) \\
& & \downarrow \cong \\
& & H^0(\mathcal{O}_{\{x,y\}}(C))
\end{array}
$$

\square

We now introduce the moduli map of the pencil introduced in Proposition 3.

(4) $m: \mathbb{P} = |I_{\{x,y\}}(C)| \to \overline{M}_{15,2},$

where the marked points of the pencil are the base points x and y respectively. Composing m with the clutching map $\overline{M}_{15,2} \to \Delta_0 \subseteq \overline{M}_{16}$, we obtain a pencil $\xi: \mathbb{P} \to \Delta_0$.

We set

(5) $R := m^*(\mathbb{P}) \subseteq \overline{M}_{15,2}$ and $\Gamma := \xi^*(\mathbb{P}) \subseteq \overline{M}_{16}$.

Proposition 4. Every curve inside the pencil $\Gamma \subseteq \overline{M}_{16}$ corresponds to a nodal curve which does not belong to any of the boundary divisors $\Delta_1, \ldots, \Delta_8$.

Proof. Keeping the notation above, for a generic choice of $(A, x + y) \in \Sigma$, the pencil

$$P := |I_{\{x,y\}}(C)|$$

corresponds to a generic line inside $|\mathcal{O}_S(C)|$. As already pointed out, $|\mathcal{O}_S(C)|$ is base point free on the surface S defined by (2), giving rise to a regular map of degree 9

(6) $f: S \to \mathbb{P}^2 = |\mathcal{O}_S(C)|^\vee.$
It suffices to show that the inverse image P under f of a general pencil of lines in P^2 consists only of integral curves with at most one node. This is achieved in several steps.

(i) We rule out the possibility that P contains a reducible 1-nodal curve $C' = F + M$, where F and M are integral smooth curves on S such that $F \cdot M = 1$. Assume this is the case. By the Hodge Index Theorem, we have $F^2 \cdot M^2 < 1$. Assume $F^2 = 0$. For a general element $C' \in P$, we have $F \cdot C' = 1$. Moreover a general C' intersects F at one point q such that $O_F(C') \cong O_F(q)$. If $h^0(F, O_F(q)) = 1$, then it is easily seen that q is a base point of $|O_S(C)|$, therefore q is a base point of $|A| = |O_C(C)|$. This contradicts the generality of the genus 15 curve C, which has gonality 9. If, on the other hand, $h^0(F, O_F(q)) \geq 2$, then F is a smooth rational curve. Since $F^2 = 0$, it follows $F \cdot K_S = -2$, contradicting the very ampleness of K_S. The same argument works if $M^2 = 0$, hence we may assume $F^2 \cdot M^2 \neq 0$.

Let $F^2 \leq -2$ then $F \cdot C' \leq -1$ and F is a fixed component of $|O_S(C)|$, a contradiction again. Finally, assume $F^2 = -1$ and then $F \cdot C' = 0$. Choose a general point $z \in F \setminus M$. Since $|O_S(C)|$ is base point free, it follows that $|T_{\{z\}}(C)|$ is a pencil. Each curve of this pencil must contain F, thus that $|M| = |C - F|$ is a pencil and $h^0(F, O_F(M)) = 2$. Hence F is an exceptional line on the minimal surface S, a contradiction. Summarizing, P can only contain any curves of compact type.

(ii) The essential step in our argument involves proving that P contains no curves with singularities worse than nodes. Precisely, we show that $|O_S(C)|$ contains only finitely many non-nodal curves. Note first that the branch curve $B \subseteq P^2$ of f is reduced, else we contradict the assumption that the pencil $A \in W_0^1(C)$ on C has simple ramification. We distinguish two cases, depending on whether the map $f : S \to P^2$ given by $[5]$ is finite or not. Assume first f is finite. We introduce the discriminant curve

$$J := \left\{ C' \in |O_S(C)| : C' \text{ is singular} \right\}.$$

The dual curve B^\vee is contained in J. Since B is reduced, the general tangent line to B is tangent at exactly one point $p \in B$ and with multiplicity 2. A standard local calculation shows that $f^* (T_p B) \in |O_S(C)|$ is a one-nodal curve, singular at exactly one point $z \in f^{-1}(p)$. The complement $J \setminus B^\vee$ is the (possibly empty) union of (some of) the pencils P_b, where $b \in B_{\text{sing}}$ and P_b is defined as the pull-back by f of the pencil of lines in P^2 through b. In view of the numerical situation at hand (that is, $C^2 = 9$), the geometric possibilities for a pencil $P_b \subset J$ are quite constrained. Since f is finite, the pencil P_b has no fixed component. Let $Z := \text{Bs}(P_b)$. Then a general $C' \in P_b$ is integral and smooth along $C' \setminus Z$. Moreover, each $C' \in P_b$ is singular at a given point $z \in Z$ and a general such C' has multiplicity $m \geq 2$ at z. Necessarily, the differential $df_z : T_z(S) \to T_p(P^2)$ is zero. Since $m^2 \leq C^2 = (C')^2 = 9$, we find $m \leq 3$. We discuss the possible cases. Let

$$\sigma : S' \to S$$

be the blow-up of S at z and denote by $E \subseteq S'$ the exceptional divisor. The pencil $|O_{S'}(\sigma^* C - mE)|$ is the strict transform of P_b. Observe that the restriction map

$$r : H^0(S', O_{S'}(\sigma^* C - mE)) \to H^0(E, O_E(m))$$
is not zero, hence \(\text{Im}(\nu) \) defines a linear series \(p_b \) on \(E \cong \mathbb{P}^1 \). Either \(p_b \) is a pencil or a constant divisor of degree \(m \in \{2, 3\} \).

If \(m = 3 \), then \(\text{supp}(Z) = \{z\} \). This point is an ordinary triple point for any curve \(C' \in P_b \). If \(m = 2 \), then either each \(C' \in P_b \) has a node, or else, each \(C' \in P_b \) has a cusp at \(z \). Indeed, if \(p_b \) is a pencil on \(E \), then each \(C' \in P_b \) is nodal at \(z \). If \(p_b = \{u_1 + u_2\} \) consists of a fixed divisor, then \(P_b \) contains a unique curve \(C_z \) having multiplicity at least 3 at \(z \). If \(u_1 \neq u_2 \), all other curves \(C' \in P_b \setminus \{C_z\} \) are nodal at \(z \), whereas if \(u_1 = u_2 \), then all such \(C' \) are cuspidal at \(z \). Summarizing, since \(C_9 = 9 \), the general curve \(C' \in P_b \) either has a unique triple point, or at most two singular points of multiplicity 2. All these cases can be ruled out by a parameter count, that ultimately contradicts the generality of the pair \((C, A) \in \mathcal{H}_{15, 9} \) we started with. For instance, assuming each \(C' \in P_b \) is cuspidal at \(z \), passing to the normalization \(\nu: \tilde{C} \to C' \), setting \(z := \nu^{-1}(z) \), we obtain that \(A := \nu^*(\mathcal{O}_{C'}(C')) \in W_9^1(\tilde{C}) \) verifies \(h^0(\tilde{C}, A(-4z)) \geq 1 \). This implies that the pair \([C', \omega_S \otimes \mathcal{O}_{C'}]\) lies in a codimension two subvariety of the Hilbert scheme of degree 19 curves of genus 15 in \(\mathbb{P}^6 \), thus contradicting the general choice of \((C, A) \in \mathcal{H}_{15, 9} \). The remaining cases can be dealt with similarly.

(iii) Assume now \(f \) is not finite and that for \(p \in B_{\text{reg}} \) as before, \(f^{-1}(p) \) decomposes as \(F \cup Z \), where \(F \) is of pure dimension one and \(Z \) is zero-dimensional. Moreover, \(\text{supp}(F) \cap \text{supp}(Z) = \emptyset \) and \(F \) is reduced. The pencil \(|\mathcal{O}_F(C - F)| \) is base point free. Then a general \(C' \in |\mathbb{I}_{f^{-1}(p)}(C)| \) is a reducible nodal curve that is smooth along \(\text{supp}(Z) \) and contains \(F \) as a component. Writing \(C' = F + M \), then \(M \) is a smooth integral integral. As we have seen, \(F \cdot M > 1 \), hence \(C' \) cannot be of compact type, which completes our proof.

Before stating our next result, recall that one sets \(\delta_i := [\Delta_i] \in CH^1(\overline{\mathcal{M}}_g) \) for \(0 \leq i \leq \lfloor g/2 \rfloor \). We denote as usual by \(\lambda \in CH^1(\overline{\mathcal{M}}_g) \) the Hodge class. Recall also the formula [HM] for the canonical class of \(\overline{\mathcal{M}}_g \):

\[
K_{\overline{\mathcal{M}}_g} \equiv 13\lambda - 2\delta_0 - 3\delta_1 - 2\delta_2 - \cdots - 2\delta_1^{g/2} \in CH^1(\overline{\mathcal{M}}_g).
\]

Proposition 5. The rational curve \(\Gamma \) is a sweeping pencil for the boundary divisor \(\Delta_0 \). Its intersection numbers with the standard generators of \(CH^1(\overline{\mathcal{M}}_{16}) \) are as follows:

\[
\Gamma \cdot \lambda = 22, \quad \Gamma \cdot \delta_0 = 143, \quad \Gamma \cdot \delta_j = 0 \quad \text{for} \quad j = 2, \ldots, 8.
\]

Proof. First we construct a fibration whose moduli map is precisely the rational curve \(m: \mathbb{P}^1 \to \overline{\mathcal{M}}_{15, 2} \) considered in [3]. We consider the curve \(C \subseteq S \) and observe that since \(\mathcal{O}_C(C) \cong A \in W_9^1(C) \), we have that \(C^2 = 9 \), that is, the pencil \(|\mathbb{I}_{x,y}(C)| \) has precisely 9 base points, namely \(x, y \), as well as the 7 further points lying in the same fibre of the pencil \(|A| \) as \(x \) and \(y \). We consider the blow-up surface \(\epsilon: \tilde{S} = \text{Bl}_9(S) \to S \) at these 9 points. It comes equipped with a fibration

\[
\pi: \tilde{S} \to \mathbb{P}^1,
\]
as well as with two sections \(E_x, E_y \subseteq \tilde{S} \) corresponding to the exceptional divisors at \(x \) and \(y \) respectively.

In order to compute the intersection numbers of \(R = m(\mathbb{P}) \) with the tautological classes on \(\overline{\mathcal{M}}_{15, 2} \), we use for instance [Tan]. The subscript indicates the moduli space.
on which the intersection number is computed.

\[(R \cdot \lambda)_{\overline{M}_{15,2}} = \chi(S, O_S) + g - 1 = h^2(S, O_S) + g = h^3(S, O_S) + 15 = 22.\]

Here we have used \(H^1(S, O_S) = H^1(S, O_S) = 0\), as well as the fact that \(S\) is a canonical surface, hence \(\omega_S = O_S(1)\), therefore \(h^2(S, O_S) = h^2(S, O_S) = 7\). Furthermore, recalling that all curves in the fibres of \(m\) are irreducible, we find via [Tan] that

\[(R \cdot \delta_0)_{\overline{M}_{15,2}} = c_2(S) + 4(g - 1) = c_2(S) + 56.\]

From the Euler formula, \(c_2(S) = 12 \chi(S, O_S) - K_S^2\). We have already computed that \(\chi(S, O_S) = 8\), whereas \(K_S^2 = K_S^2 - 9 = \text{deg}(S) - 9 = 7\), for \(S\) an intersection of 4 quadrics. Thus \(c_2(S) = 12 \cdot 8 - 7 = 89\), leading to \((R \cdot \delta_0)_{\overline{M}_{15,2}} = 89 + 4 \cdot 14 = 145\).

If we denote by \(\psi_x, \psi_y \in CH^1(\overline{M}_{15,2})\) the cotangent classes corresponding to the marked points labelled by \(x\) and \(y\) respectively, we compute furthermore

\[R \cdot \psi_x = -E^2_x = 1 \quad \text{and} \quad R \cdot \psi_y = -E^2_y = 1.\]

We now pass to the pencil \(\xi: P^1 \to \overline{M}_{16}\) obtained from \(m\) by identifying pointwise the disjoint sections \(E_x\) and \(E_y\) on the surface \(\tilde{S}\). First, using (8) we observe that

\[\Gamma \cdot \lambda = \xi(P) \cdot \lambda = (R \cdot \lambda)_{\overline{M}_{15,2}} = 22.\]

Furthermore, using Proposition [4] we conclude that \(\Gamma \cdot \delta_i = 0\) for \(i = 1, \ldots, 8\). Finally, invoking for instance [CR3, page 271], we find that

\[\Gamma \cdot \delta_0 = (R \cdot \delta_0)_{\overline{M}_{15,2}} = (R \cdot \psi_x)_{\overline{M}_{15,2}} = (R \cdot \psi_y)_{\overline{M}_{15,2}} = 145 - 2 = 143.\]

\[\square\]

Proof of Theorem 2. Since the image of \(m\) passes through a general point of \(\overline{M}_{15,2}\), the rational curve \(\Gamma \subseteq \overline{M}_{16}\) constructed in Proposition 5 is a sweeping curve for the boundary divisor \(\Delta_0\). Using the expression (7) for the canonical divisor of \(\overline{M}_{16}\), we compute

\[\Gamma \cdot K_{\overline{M}_{16}} = 13 \Gamma \cdot \lambda - 2 \Gamma \cdot \delta_0 = 13 \cdot 122 - 2 \cdot 143 = 0.\]

Also \(\Gamma \cdot \Delta_0 = 143 > 0\), which finishes the proof. \[\square\]

The slope of \(\overline{M}_{16}\).

The slope of an effective divisor \(D\) on the moduli space \(\overline{M}_g\) not containing any boundary divisor \(\Delta_i\) in its support is defined as the quantity \(s(D) := \frac{a}{\min_{i \geq 0} b_i}\), where \([D] = a\lambda - \sum_{i=0}^{8} b_i \delta_i \in CH^1(\overline{M}_g)\), with \(a, b_i \geq 0\). Then the slope \(s(\overline{M}_g)\) of the moduli space \(\overline{M}_g\) is defined as the infimum of the slopes \(s(D)\) over such effective divisors \(D\).

Corollary 6. We have that \(s(\overline{M}_{16}) \geq \frac{13}{2}\).

Proof. For any effective divisor \(D\) on \(\overline{M}_{16}\) containing no boundary divisor in its support, we may assume that the curve \(\Gamma\) constructed in Proposition 5 does not lie inside \(D\), hence \(\Gamma \cdot D \geq 0\). Writing \([D] = a\lambda - \sum_{i=0}^{8} b_i \delta_i\), using Theorem 2 we obtain \(\frac{a}{b_0} \geq \frac{13}{2}\). Furthermore, using [FP] Theorem 1.4, we conclude that for this divisor \(D\) we have \(b_i \geq b_0\) for \(i = 1, \ldots, 8\), that is, \(s(D) = \frac{a}{b_0} \geq \frac{13}{2}\). \[\square\]
Final remarks: Our results establish that \overline{M}_{16} is not of general type. Showing that the Kodaira dimension of \overline{M}_{16} is non-negative amounts to constructing an effective divisor D on \overline{M}_{16} having slope $s(D) \leq s(K_{\overline{M}_{16}}) = \frac{13}{2}$. Currently the known effective divisor on \overline{M}_{16} of smallest slope is the closure in \overline{M}_{16} of the Koszul divisor Z_{16} consisting of curves C having a linear system $L \in W^7_1(C)$ such that the image curve $\varphi_L: C \to \mathbb{P}^6$ is ideal-theoretically not cut out by quadrics. It is shown in [F1, Theorem 1.1] that Z_{16} is an effective divisor on \overline{M}_{16} and $s(Z_{16}) = \frac{407}{61} = 6.705...$. In a related direction, it is shown in [F2] that the canonical class of the space of admissible covers \overline{M}_{16} is effective.

Note that one has a generically finite cover $\overline{M}_{16,9} \to \overline{M}_{16}$.

REFERENCES

[AC] E. Arbarello and M. Cornalba, Footnotes to a paper of Beniamino Segre, Mathematische Annalen 256 (1981), 341–362.

[BV] A. Bruno and A. Verra, \overline{M}_{15} is rationally connected, in: Projective varieties with unexpected properties, 51–65, Walter de Gruyter 2005.

[CR1] M. C. Chang and Z. Ran, Unirationality of the moduli space of curves of genus 11, 13 (and 12), Inventiones Math. 76 (1984), 41–54.

[CR2] M. C. Chang and Z. Ran, The Kodaira dimension of the moduli space of curves of genus 15, Journal of Differential Geometry 24 (1986), 205–220.

[CR3] M. C. Chang and Z. Ran, On the slope and Kodaira dimension of \overline{M}_g for small g, Journal of Differential Geometry 34 (1991), 267–274.

[EH] D. Eisenbud and J. Harris, The Kodaira dimension of the moduli space of curves of genus ≥ 23, Inventiones Math. 90 (1987), 359–387.

[F1] G. Farkas, Syzygies of curves and the effective cone of \overline{M}_g, Duke Mathematical Journal 135 (2006), 53–98.

[F2] G. Farkas, Effective divisors on Hurwitz spaces, arXiv:1804.01898v3, to appear in Facets in Algebraic Geometry, a volume in honor of Fulton’s 80th birthday.

[FJP] G. Farkas, D. Jensen and S. Payne, The Kodaira dimension of \overline{M}_{22} and \overline{M}_{23}, arXiv:2005.00622.

[FP] G. Farkas and M. Popa, Effective divisors on \overline{M}_g, curves on $K3$ surfaces and the Slope Conjecture, Journal of Algebraic Geometry 14 (2005), 151–174.

[H] J. Harris, On the Kodaira dimension of the moduli space of curves II: The even genus case, Inventiones Math. 75 (1984), 437–466.

[HM] J. Harris and D. Mumford, On the Kodaira dimension of \overline{M}_g, Inventiones Math. 67 (1982), 23–88.

[Ser] E. Sernesi, L’unirazionalità della varietà dei moduli delle curve di genere 12, Annali della Scuola Normale Superiore di Pisa 8 (1981), 405–439.

[Sev] F. Severi, Sulla classificazione delle curve algebriche e sul teorema d’esistenza di Riemann, Rendiconti della Reale Accademia Naz. Lincei 24 (1915), 877–888.

[Tan] S.-L. Tan, On the slopes of the moduli space of curves, International Journal of Mathematics 9 (1998), 119–127.

[Ts] D. Tseng, On the slope of the moduli space of genus 15 and 16 curves, arXiv:1905.00449.

[Ve] A. Verra, The unirationality of the moduli space of curves of genus ≤ 14, Compositio Mathematica 141 (2005), 1425–1444.