The clinical and imaging features of FLNA positive and negative periventricular nodular heterotopia

Yan-Ting Lu a, Chung-Yao Hsu b, Yo-Tsen Liu c,d,e,f, Chung-Kin Chan g, Yao-Chung Chuang a, Chih-Hsiang Lin a, Kai-Ping Chang h,i, Chen-Jui Ho a, Ching-Ching Ng g, Kheng-Seang Lim j, Meng-Han Tsai a,k,*

a Department of Neurology, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
b Department of Neurology, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
c Division of Epilepsy, Department of Neurology Neurological Institute, Taipei Veterans General Hospital, Taipei, Taiwan
d Department of Neurology, National Yang-Ming University School of Medicine, Taipei, Taiwan
e Institute of Brain Science, National Yang-Ming University, Taipei, Taiwan
f Brain Research Center, National Yang-Ming University, Taipei, Taiwan
g Genetics and Molecular Biology, Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia
h Department of Pediatric, Wei-Gong Memorial Hospital, Miaoli, Taiwan
i Department of Pediatric, National Yang-Ming University School of Medicine, Taipei, Taiwan
j Division of Neurology, Department of Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
k College of Medicine, Chang Gung University, Taoyuan, Taiwan

Article info
Article history:
Received 21 October 2020
Accepted 13 May 2021
Available online 20 May 2021

Keywords:
Periventricular heterotopia
MRI
Epilepsy
Brain malformation
FLNA

Abstract
Background: Periventricular nodular heterotopia (PVNH) is caused by abnormal neuronal migration, resulting in the neurons accumulate as nodules along the surface of the lateral ventricles. PVNH often cause epilepsy, psychomotor development or cognition problem. Mutations in FLNA (Filamin A) is the most common underlying genetic etiology. Our purpose is to delineate the clinical and imaging spectrum that differentiates FLNA-positive and FLNA-negative PVNH patients.

Methods: We included 21 patients with confirmed PVNH. The detailed clinical information, electroencephalography, and other clinical findings were recorded. Detailed brain MR imaging was assessed. Mutation analysis of the FLNA gene was used Sanger sequencing or a next generation sequencing based assay.

Results: FLNA mutations were identified in 9 patients (7 females and 2 males), including two nonsense, two splice site, three frameshift, and two missense mutations. In FLNA-positive group, 8 patients had anterior predominant bilateral symmetric presentation and only one had asymmetrical distribution and dilated ventricles. Extra-cerebral features were more often observed in FLNA-positive group than FLNA-negative group.
Nodular heterotopia (NH) is one of the most common malformations of cortical development (MCD) related to epilepsy [1]. Periventricular nodular heterotopia (PVNH) is the most common type of NH [2]. The neuronal migration abnormality results in the neurons accumulate as nodules along the surface of the lateral ventricles. Patients with PVNH often had epilepsy with multiple epileptogenic zone and variable seizure severity, psychomotor development and/or cognition problem. PVNH is predominantly observed in women, due to an X-linked dominant mutation caused by FLNA (Filamin A) [2]. PVNH is often accompanied by other cerebral malformations such as cerebellar anomaly, ventricular abnormalities, mega cisterna magna and hydropsplasia or agenesis of corpus callosum [2,3]. There are also several associated extra-cerebral findings, including cardiac valvus disease [4], patent duct arteriosus [3,4], joint hyperextensibility [4], chronic constipation [3], chronic obstructive lung disease [3,5], or coagulopathy. Hitherto, mutations in FLNA genes account for only 20–30% of PVNH cases in Western countries [2,6]. Here, we report the percentage of FLNA mutations in Asian PVNH patients as well as to delineate the clinical and imaging spectrum that differentiates the FLNA-positive and FLNA-negative PVNH patients, which could guide the clinicians to select relevant genetic testing.

Conclusion: Genetics of PVNH is heterogenous, and mutations in FLNA gene account for less than half of the patients in our cohort. Our finding between FLNA-positive and FLNA-negative patients could guide the clinicians to select relevant genetic testing.
Statistical analysis

Fisher exact or Chi-Squared test was used to compare the clinical and genetic features between the FLNA positive and negative groups.

Results

Patients

Among 21 patients with PVNH, FLNA mutations were identified in 9 (9/21, 42.9%) patients, including two nonsense mutations (case 1 & 2), two splice site mutations (case 3 & 4), three frameshift mutations (case 5, 6, & 7), and two missense mutations (case 8 & 9). The identified FLNA mutations were detailed in Table 1. Among the FLNA positive patients, seven were females and two were male. As for the remaining 12 patients without FLNA mutations, 6 were females and 6 were males. There was no gender difference between the two groups (p = 0.367).

The most common FLNA mutations were loss-of-function mutations (7/9, 77.8%), such as nonsense, frameshift and splicing, which were predictive to reduce the expression level of filamin A. Additionally, there were two missense mutations: p. Thr608Met and p.Glu1661Lys, which is located in the fourth and 15th repeat of Rod 1 domain, respectively. Both missense variants were predicted to deleterious by multiple in silico prediction algorithms. All of the variants were not presented in ExAc or gnomAD database and classified as pathogenic or likely pathogenic according to ACMG guideline. Interestingly, both missense mutations were identified in male patients in hemizygous status. In patient 8, the mutation was passed on to an affected daughter (heterozygous status) who has epilepsy but normal brain MRI.

The clinical spectrum, epileptic features and neuroimaging findings were summarized in Table 2 (FLNA-positive) and Table 3 (FLNA-negative). All patients in both groups had epilepsy. Among patients with FLNA positive, most (8/9, 88.9%) patients had anterior predominant bilateral PVNH (type 1) on MRI except one had bilateral asymmetric PVNH with adjacent subcortical heterotopia (type 3). None of FLNA positive had inferior type or unilateral PVNH (type 2 and 4). In the FLNA negative group, there were two patients had anterior predominant type (type 1), 4 patients had inferior PVNH (type 2), and 2 patients had type 3 (bilateral asymmetric). Four patients had type 4, including three with unilateral focal nodular PVNH without subcortical heterotopia and one patient had unilateral focal nodule PVNH combined with subcortical heterotopia.

We then compared the associated intracerebral malformation between FLNA positive and negative group. With regard to intracerebral malformations, corpus callosum abnormalities were seen in 3/9 (33.3%) FLNA positive versus 3/12 (25%) negative cases (p = 1); mega cisterna magna in 3/9 (33.3%) positive versus 3/12 (25%) negative cases (p = 1). Besides, posterior fossa abnormality was seen once in both groups (1/9, 11.1% versus 1/12, 8%). Dilated lateral ventricles tend to be more frequent in FLNA negative group (8/12, 66.7% versus 1/9, 11.1%) compared to FLNA positive group (p = 0.0244).

As for the systemic manifestations, the FLNA positive group frequently have variable systemic findings and connective tissue manifestations (7/9, 77.8%), including dysmorphic features, cardiovascular disease, skin and joint abnormality and intestinal dysfunction. On the contrary, there was no systemic, internal organ or connective tissue manifestations observed in FLNA negative group (0/9, p = 0.0003).

In terms of seizure outcome, the FLNA positive group had five (5/9) patients with medical refractory epilepsies, while the FLNA negative group had six (6/12) medical refractory patients (p = 0.8) [16].

Discussion

In our PVNH cohort, pathogenic variants in FLNA gene account for 43% of all cases. Most FLNA positive cases were female with loss-of-function variants; the neuroimaging showed anterior predominant bilateral PVNH. Patients with pathogenic FLNA variants were also more likely to have systemic manifestations, such as dysmorphism, cardiovascular disease, skin and joint abnormality, and intestinal dysfunction.

Among FLNA positive cases, there was an obvious female predominance (female-to-male ratio: 7:2), and loss of function variants. Female predominance was reported to be 93–100% in previous series [2,17], and only a few male patients were identified. In this study, both patients with missense variants were male, which is probably due to individuals with loss of function hemizygous FLNA variants are not viable. Previous reported male patients were all missense or distal truncating variants that have milder deleterious effect on Filamin A protein [18–21]. Interestingly, there was suggestion that male FLNA patients have higher incidence (69% compared to 33.3% in female and 50% in all FLNA mutations) of cardiac or aortic abnormality and may not presented with intellectual disability or epilepsy [3,17,21]. One of our male patients also had cardiac valve insufficiency. The reason for the prevalence of cardiac involvement in male patients remains uncertain. Both of our missense male patients still had seizures and mild intellectual disability.

Intriguingly, the missense variant in case 8 was inherited from the proband to his daughter, who does not have PVNH but had a few self-limited seizures without the need of anti-epileptic drug. A previous study also reported a father-daughter pair with missense FLNA variant and milder phenotype [2]. For missense variant, the survival of male patients and mild phenotype in female patients is probably due to the presence of a normal allele as well as residual function of missense Filamin A compared to loss of function variants [18,20,21].

All FLNA positive patients in our cohort had anterior predominant PVNH except one who had subcortical heterotopia on the same side of PVNH (the father of hemizygous missense variant). A few patients with FLNA variants without anterior predominant PVNH have been reported [2,6,21]. On the
contrary, there were also two (2/10, 20%) of all anterior pre-
dominant PVNH patients were negative for FLNA. Previous
studies also reported that 51–74% of anterior predominant
PVNH were negative for FLNA variants [2,17,22].

As for other associated features, we found that FLNA
positive cases are likely to have more systemic manifesta-
tions (~78%) while none of the FLNA negative patients had
associated internal organ abnormality or cardiovascular
abnormality [23–25]. The most common extracerebral fea-
tures are cardiac abnormalities followed by gut dysfunction
and joint hypermobility. FLNA encodes for Filamin A pro-
tein, which is highly expressed in the arteries, gastrointes-
tinal (esophagus and colon) and urogenital system (uterus
and bladder) based on GTEx data. FLNA is an actin-binding
protein that links actins to membrane glycoproteins,
which plays an important role in the remodeling the
cytoskeleton and cell-cell adhesions. Therefore, it is
possible that the systemic manifestations are due to the
non-CNS expression and function of FLNA. Whereas the
genetic cause of FLNA negative PVNH cases remain un-
known, it is possible that the causative genes have a more
limited expression and function in the brain. On the con-
trary, the intracerebral malformation was not significantly
different in the two groups, except for the enlarged ventricle
which is more prominent in FLNA negative group. This is
informative in the clinics where bilateral anterior predom-
inant PVNH associated with systemic features is more likely
to be positive for FLNA gene screening.

There was no difference of seizure outcomes between the
two groups, and nearly half patients had refractory seizure
using multiple antiseizure medications (ASMs). This is in
accordance with previous studies where near a third patients

No.	Chr	Position	Ref	Alt	Type	Coding change (NM_00115566)	AA change	Mutation status	Inheritance	Significance	Age of presentation	Sex	Seizure type	EGS	Neuroimaging	Epilepsy control		
1	X	153954857	G	C	nonsense	c.1098C>G	P74X	Not present	Inherited	Pathogenic	16 F	FAS, FIAS with RTCS	Bilateral temporal independent epileptiform discharge	Anterior predominant bilateral PVNH; mega cisterna magna	Drugs resistant	LTC 500mg/day	CBE 600mg/day	
2	X	153954857	G	C	nonsense	c.1098C>G	P74X	Not present	Inherited	Pathogenic	11 F	FAS	Frequent spike and wave complexes and multifocal sharp waves	Anterior predominant bilateral PVNH; mega cisterna magna	Drugs resistant	LVE 1500mg/day	VPA 750mg/day	CBE 400mg/day
3	X	153955756	C	T	Splice	c.884+4G>A	N/A	Not present	De novo	Pathogenic	23 F	FAS	N/A	Anterior predominant bilateral PVNH	N/A			
4	X	153775963	C	G	Splice	c.702G>C	p.G127R	Not present	N/A	Likely pathogenic	13 F	FAS with RTCS	Frequent right fronto-temporal spike-wave complexes	Anterior predominant bilateral PVNH	Seizure free for 20 months with CBZ 600mg/day			
5	X	153955870	T	-	Frameshift	c.813delA	p.A709X	Not present	De novo	Pathogenic	29 F	RTCS	Right temporal epileptiform discharge	Anterior predominant bilateral PVNH	Seizure free for 1 year with LUG 150mg/day			
6	X	153581808	CA TA	-	Frameshift	c.8277→8280delTA	p.Met2760P→fs*10	Not present	De novo	Pathogenic	25 F	FAS	Normal	Anterior predominant bilateral PVNH; mega cisterna magna	Seizure free for 6 years			
7	X	153581308	CA TA	-	Frameshift	c.8777→8800delTA	p.Met2925P→fs*3	Not present	De novo	Likely pathogenic	17 F	FAS	Multifocal interictal epileptiform discharge over P4 and (17)F-T area	Anterior predominant bilateral PVNH; posterior fossa arachnoid cyst	Seizure free for 6 months with OXC 1200mg/day	LTG 400mg/day	LVE 3500mg/day	
8	X	153933194	G	A	Missense	c.1823C>T	p.Thr608Met	Not present	Inherited	Likely pathogenic	47 M	FIAS	Lateralized periodic discharges over left parieto-central area	Bilateral asymmetric PVNM; enlarged ventricle; subcortical heterotopia	Seizure free for 1 year with LVE 2000mg/day	VPA 1200mg/day		
9	X	153585402	C	T	Missense	c.1981G>A	p.Glu661Lys	Not present	N/A	Likely pathogenic	32 M	FIAS	Normal	Anterior predominant bilateral PVNH; a cavernous about 8 mm in size in left parieto-occipital junction	N/A			

Abbreviations: BTCS: bilateral tonic-clonic seizures; CBZ: Carbamazepine; EEG: electroencephalography; FAS: focal aware seizures; FIAS: focal impaired awareness seizures; LVE: Levetiracetam; LTG: Lamotrigine; N/A: not applicable; OXC: oxcarbazepine; PVNH: periventricular nodular heterotopia; VPA: Valproic acid.
with FLNA mutations were unable to reach seizure free despite multiple ASMs [3].

Our FLNA mutation positive rate is higher than previous reports in Western countries ranged from 21 to 33% [2,6]. This is probably because the referral bias. More than half cases were unsolved and may have hitherto unidentified genetic causes, which indicates the genetic heterogeneity of PVNH. Several genes, such as MAP1B, TMTC3, MEN1, NEDD4L, ACTG1, and ARFGEF2 have been recently associated with FLNA negative PVNH [26–31]. Our study has some limitations: first, the patient number is limited due to the rare occurrence of PVNH. Due to small number in each group, the statistics may not have the power to show minor differences. Lastly, we only captured and sequenced the FLNA gene, deletion or copy number variations of FLNA gene may be missed. Further studies using advanced techniques, such as multiplex ligation-dependent probe amplification (MLPA) or whole genome/whole exome sequencing (WGS/WES), may be required to identify the underlying genetic cause of unsolved cases.

Table 2 Clinical and brain MRI features of FLNA positive patients.

PI	Cardiovascular anomalies	Cardiac echo	Joint hyporeactivity	Skin hyporeactivity	Other musculoskeletal finding	Gastrointestinal dysfunction	Mega cisterna magna	Other abnormal finding	Corpus callosum abnormality
1	N	N	N	N	N	N	+	-	Hypoplasia
2	Atrial septal defect	N	N	N	N	N	N	-	Hypoplasia
3	N	N	N	N	N	N	N	-	N
4	N/A	N/A	N	N	N	N	N	-	N
5	Patent ductus arteriosus	N/A	N	N	N	N	N	-	N
6	N	N/A	N	N	N	N	N	-	N
7	Dilated LA; tricuspid MR	N/A	N	N	N	N	N	-	N
8	Dilated LA; tricuspid MR	N/A	N	N	N	N	N	-	N

Abbreviations: IVS: interventricular septum; LA: left atrial; LV: left ventricle; MR: mitral regurgitation; N: normal; N/A: not applicable; PVNH: periventricular nodular heterotopia; TR: tricuspid regurgitation; +: present; -: absent.

Table 3 Summary of imaging finding of FLNA negative patients.

PI	Case	Sex	Heart topology finding	Heart topology	Mega cisterna magna	Posterior horn of lateral ventricle thickened	Corpus callosum abnormality	Posterior fossa abnormality	Dilated ventricle	Type
10	619	F	x	x	x	x	x	-	-	3
11	619	F	x	x	x	x	x	-	-	3
12	625	M	x	x	x	x	x	-	-	2
13	633	M	+	+	+	+	+	-	-	2
14	671	M	+	+	+	+	+	-	-	2
15	53	F	+	x	N/A	N/A	N/A	N/A	N/A	4
16	516	F	+	x	N/A	x	x	x	x	4
17	521	M	+	+	x	N/A	N/A	N/A	N/A	3
18	5239	M	x	x	x	x	x	x	x	3
19	8709	F	x	x	x	x	x	x	x	1
20	62241	F	x	x	x	x	x	x	x	1

Abbreviations: N/A: not applicable; +: present; x: absent.
Conflicts of interest

There is no conflict of interest regarding the publication of this study.

Acknowledgments

We thank the patients and their families for participating in this study. This research was funded by CMRPG8G0252 to MHT and CMRPG8J0781 to YTJ from Kaohsiung Chang Gung Memorial Hospital, Taiwan.

The Genotype-Tissue Expression (GTEx) Project was supported by the Common Fund of the Office of the Director of the National Institutes of Health, and by NCI, NHGRI, NHLBI, NIDA, NIMH, and NINDS. The data used for the analyses described in this manuscript were obtained from: the GTEx Portal on 2021/03/31.

References

[1] Gonzalez G, Vedolin L, Barry B, Poduri A, Walsh C, Barkovich AJ. Location of periventricular nodular heterotopia is related to the malformation phenotype on MRI. AJNR Am J Neuroradiol 2013;34:877–83.

[2] Parrini E, Ramazzotti A, Dobyns WB, Mei D, Moro F, Veggio P, et al. Periventricular heterotopia: phenotypic heterogeneity and correlation with Filamin A mutations. Brain 2006;129:1392–906.

[3] Lange M, Kasper B, Bohring A, Rutsch F, Kluger G, Hoffjan S, et al. 47 patients with FLNA associated periventricular nodular heterotopia. Orphanet J Rare Dis 2015;10:134.

[4] Reinstein E, Frenzt S, Morgan T, Garcia-Minaur S, Leventer RJ, McGillivray G, et al. Vascular and connective tissue anomalies associated with X-linked periventricular heterotopia due to mutations in Filamin A. Eur J Hum Genet 2013;21:494–502.

[5] Eltahir S, Ahmad KS, Al-Balawi MM, Buh存量n H, Al-Mobairek K, Alotabi W, et al. Lung disease associated with filamin A gene mutation: a case report. J Med Case Rep 2016;10:97.

[6] Gonzalez-Moron D, Vishnepolska S, Consalvo D, Medina N, Marti M, Cordoba M, et al. Germline and somatic mutations in cortical malformations: molecular defects in Argentinian patients with neuronal migration disorders. PLoS One 2017;12:e0185103.

[7] Srou M, Rioux MF, Varga C, Lortie A, Major P, Robitaille Y, et al. The clinical spectrum of nodular heterotopias in children: report of 31 patients. Epilepsia 2011;52:728–37.

[8] Abdel Razek AA, Kendall AY, Elsorogy LG, Elmony A, Basett AA. Disorders of cortical formation: MR imaging features. AJNR Am J Neuroradiol 2009;30:4–11.

[9] Barkovich AJ, Guerrini R, Kuzniecky RI, Jackson GD, Dobyns WB. A developmental and genetic classification for malformations of cortical development: update 2012. Brain 2012;135:1348–69.

[10] Tsai MH, Chan CK, Chang YC, Yu YT, Chuang ST, Fan WL, et al. DEPDC5 mutations in familial and sporadic focal epilepsy. Clin Genet 2017;92:397–404.

[11] Ng PC, Henikoff S. SIFT: predicting amino acid changes that affect protein function. Nucleic Acids Res 2003;31:3812–4.

[12] Adzhubei IA, Schmidt S, Peshkin L, Ramensky VE, Gerassimova A, Bork P, et al. A method and server for predicting damaging missense mutations. Nat Methods 2010;7:248–9.

[13] Schwarz JM, Cooper DN, Schuelke M, Seelow D. MutationTaster2: mutation prediction for the deep-sequencing age. Nat Methods 2014;11:361–2.

[14] Kircher M, Witten DM, Jain P, O’Roak BJ, Cooper GM, Shendure J. A general framework for estimating the relative pathogenicity of human genetic variants. Nat Genet 2014;46:310–5.

[15] Richards S, Aziz N, Bale S, Bick D, Das S, Gastier-Foster J, et al. Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American college of medical genetics and genomics and the association for molecular pathology. Genet Med 2015;17:405–24.

[16] Berg AT, Vickrey BG, Testa FM, Levy SR, Shinnar S, DiMario F, et al. How long does it take for epilepsy to become intractable? A prospective investigation. Ann Neurol 2006;60:73–9.

[17] Sole G, Coupry I, Rooyck C, Gerumeo E, Martins F, Deves S, et al. Bilateral periventricular nodular heterotopia in France: frequency of mutations in FLNA, phenotypic heterogeneity and spectrum of mutations. J Neurol Neurosurg Psychiatr 2009;80:1394–8.

[18] Sheen VL, Dixon PH, Fox JW, Hong SE, Kinton L, Sisodiya SM, et al. Mutations in the X-linked filamin 1 gene cause periventricular nodular heterotopia in males as well as females. Hum Mol Genet 2001;10:1775–83.

[19] Moro F, Carrozzo R, Veggio P, Tortorella G, Toniole D, Volzone A, et al. Familial periventricular heterotopia: missense and distal truncating mutations of the FLN1 gene. Neurology 2002;58:916–21.

[20] Guerrini R, Mei D, Sisodiya S, Sicca F, Harding B, Takahashi Y, et al. Germline and mosaic mutations of FLN1 in men with periventricular heterotopia. Neurology 2004;63:51–6.

[21] Fergelot P, Coupry I, Rooyck C, Deforges J, Mauclerat E, Sole G, et al. Atypical male and female presentations of FLNA-related periventricular nodular heterotopia. Eur J Med Genet 2012;55:313–8.

[22] Fox JW, Lamperti ED, Eksioglu YZ, Hong SE, Fenn Y, Graham DA, et al. Mutations in filamin 1 prevent migration of cerebral cortical neurons in human periventricular heterotopia. Neuron 1998;21:1315–25.

[23] Pisano T, Barkovich AJ, Leventer RJ, Squier W, Scheffer IE, Parrini E, et al. Peritrigonal and temporal-occipital heterotopia with corpus callosum and cerebellar dysgenesis. Neurology 2012;79:1244–51.

[24] Mandelstam SA, Leventer RJ, Sandow A, McGillivray G, van Middlesworth H, Guerrini R, et al. Bilateral posterior periventricular nodular heterotopia: a recognizable cortical malformation with a spectrum of associated brain abnormalities. AJNR Am J Neuroradiol 2013;34:432–8.

[25] Fallil Z, Pardoe H, Bachman R, Cunningham B, Parulkar I, Shain C, et al. Phenotypic and imaging features of FLNA-negative patients with bilateral periventricular nodular heterotopia and epilepsy. Epilepsy Behav : E &B 2015;51:321–7.

[26] Sheen VL, Ganesh VS, Topcu M, Sebire G, Bodell A, Hill RS, et al. Mutations in ARFGEF2 implicate vesicle trafficking in neural progenitor proliferation and migration in the human cerebral cortex. Nat Genet 2004;36:69–76.

[27] Brox I, Jagline H, Ivanova E, Schmucker S, Drouet N, Clayton-Smith J, et al. Mutations in the HECT domain of NEDD4L lead to AKT-mTOR pathway deregulation and cause periventricular nodular heterotopia. Nat Genet 2016;48:1349–58.
[28] Farhan SMK, Nixon KCJ, Everest M, Edwards TN, Long S, Segal D, et al. Identification of a novel synaptic protein, TMTC3, involved in periventricular nodular heterotopia with intellectual disability and epilepsy. Hum Mol Genet 2017;26:e89.

[29] Heinzen EL, O’Neill AC, Zhu X, Allen AS, Bahlo M, Chelly J, et al. De novo and inherited private variants in MAP1B in periventricular nodular heterotopia. PLoS Genet 2018;14:e1007281.

[30] Montier L, Haneef Z, Gavvala J, Yoshor D, North R, Verla T, et al. A somatic mutation in MEN1 gene detected in periventricular nodular heterotopia tissue obtained from depth electrodes. Epilepsia 2019;60:e104–9.

[31] Vontell R, Supramaniam VG, Davidson A, Thornton C, Marnerides A, Holder-Espinasse M, et al. Post-mortem characterisation of a case with an ACTG1 variant, agenesis of the corpus callosum and neuronal heterotopia. Front Physiol 2019;10:623.