Supplementary Information

Transcriptional processing of an unnatural base pair by eukaryotic RNA polymerase II

Juntaek Oh1, Ji Shin1,7,\#, Ilona Christy Unarta2,\#, Wei Wang1,8, Aaron W. Feldman3, Rebekah J. Karadeema3, Liang Xu1,9, Jun Xu1, Jenny Chong1, Ramanarayanan Krishnamurthy3, Xuhui Huang2, Floyd E. Romesberg4, Dong Wang1,5,6,*

1Division of Pharmaceutical Sciences, Skaggs School of Pharmacy & Pharmaceutical Sciences; University of California, San Diego, La Jolla, California 92093, United States
2Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
3Department of Chemistry, The Scripps Research Institute, La Jolla, California 92037, United States
4Synthorx, a Sanofi Company, La Jolla, CA 92037, United States
5Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, California 92093, United States
6Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093, United States
7Present Address: Department of Molecular Microbiology, Center for Advanced Laboratory Medicine (CALM), University of California, San Diego, La Jolla, California, 92093
8Present Address: Advanced Medical Research Institute, Shandong University, Jinan 250012, China
9Present Address: Department of Chemistry, Sun Yat-Sen University, Guangzhou 510275, China

* To whom correspondence should be addressed. Tel: +1 858 822 5561; Fax: +1 858 822 1953; Email: dongwang@ucsd.edu, DW: https://orcid.org/0000-0002-2829-1546

\# These authors contributed equally.

This file contains Supplementary Tables 1-3
Supplementary Tables

Supplementary Table 1. Kinetic parameters of incorporation and selectivity of unnatural nucleotide triphosphate over natural nucleotide triphosphate incorporation. The observed rate constant K_{obs} (hr $^{-1}$) values of single nucleotide incorporation (at 1 mM) were calculated from one-phase association regression by using Prism 6 (Fig 1c). All experiments were performed independently three times. Results in Table S1 are shown as means with standard deviation errors. Discrimination power of rNaMTP in dTPT3 template against natural NTPs is defined as ratios of the K_{obs} of an unnatural nucleotide triphosphate over the K_{obs} of a natural nucleotide triphosphate at same concentration. For example, the discrimination of rNaMTP over ATP is calculated by $K_{\text{obs, rNaMTP}} / K_{\text{obs, ATP}}$.

Template	Substrate	K_{obs} (hr $^{-1}$)	Discrimination	
dTPT3	rNaMTP	1.3 ± 0.1	rNaMTP/ rNaMTP	1
	ATP	0.052 ± 0.004	rNaMTP/ATP	25
	UTP	0.047 ± 0.006	rNaMTP/UTP	28
	GTP	0.041 ± 0.006	rNaMTP/GTP	32
	CTP	0.002 ± 0.014	rNaMTP/CTP	650
dNaM	rTPT3TP	1.0 ± 0.1	rTPT3TP/ rTPT3TP	1
	ATP	0.73 ± 0.05	rTPT3TP/ATP	1.4
	UTP	0.11 ± 0.09	rTPT3TP/UTP	9.1
	GTP	0.15 ± 0.02	rTPT3TP/GTP	6.7
	CTP	0.072 ± 0.003	rTPT3TP/CTP	14
Supplementary Table 2. Crystallographic data collection and refinement statistics.

	dTPT3_apo	dTPT3_rNaMTP	dTPT3_rNaM
PDB ID	7KED	7KEE	7KEF
Data collection			
Space group	C 1 2 1		
Cell dimensions			
\(a, b, c\) (Å)	169.9 223.0 194.7	169.5 222.7 194.7	167.7 221.7 193.3
\(\beta\) (°, \(\alpha, \gamma = 90°\))	101.6	101.9	101.8
Resolution (Å)	71.2 – 3.6 (3.73 – 3.6)\(^a\)	49.2 - 3.45 (3.57 - 3.45)	48.1 - 3.89 (4.03 -3.89)
\(R_{merge}\)	0.27 (1.29)	0.25 (1.27)	0.35 (1.65)
\(I / \sigma I\)	2.3 (0.8)	4.24 (0.75)	2.51 (0.45)
CC1/2\(^b\)	0.89 (0.32)	0.95 (0.30)	0.90 (0.32)
Completeness (%)	96.9 (97.0)	99.8 (99.3)	98.6 (88.5)
Redundancy	3.2 (3.1)	2.0 (2.0)	2.0 (2.0)

Refinement

No. reflections	79871 (7823)	92635 (9202)	62514 (5590)
\(R_{work} / R_{free}\)	0.266 / 0.306	0.259 / 0.302	0.268 / 0.325
No. atoms			
Protein	28907	28997	29169
Ligand/ion	9	42	33
B-factors			
Protein	81.6	88.9	115.3
Ligand/ion	95.3	131.7	116.9
R.m.s. deviations			
Bond lengths (Å)	0.005	0.006	0.005
Bond angles (°)	1.04	1.22	1.05

\(^a\)Values in parentheses are for the highest-resolution shell.

\(^b\)CC1/2, half correlation coefficient is used to define high resolution cutoff.
Supplementary Table 3. Number of atoms, water molecules, sodium and chloride ions for each type of MD simulation.

Type of Simulation	Total No. of Atoms	No. of water molecules	No. of Na\(^+\) ions	No. of Cl\(^-\) ions
dTPT3				
rNaMTP	440,208	126,375	505	400
ATP	440,204	126,376	505	400
GTP	440,205	126,376	505	400
UTP	440,201	126,376	505	400
CTP	440,202	126,376	505	400
dNaM				
rTPT3TP	440,673	126,530	505	400
ATP	440,673	126,530	505	400