The Collaborative Roots of Corruption? A Replication of Weisel & Shalvi (2015)

Jeroen Wouda, Gijsbert Bijlstra, Willem E. Frankenhuis and Daniel H. J. Wigboldus

The present contribution highlights the importance of context while investigating dishonesty in collaborative settings.

Keywords: Dishonesty; Lying; Collaboration; Behavioral norm; Decision Making

People are social animals; many of our good and bad behaviors take place in groups. A recent study by Weisel and Shalvi shows that “collaborative settings led people to engage in excessive dishonest behavior” (2015, p. 10655). The effects are large, spurring concern about harmful real-life consequences. Here, we report two preregistered studies that replicate the original findings, but with a smaller effect size. Moreover, our findings suggest that context moderates corruption in collaboration.

Weisel and Shalvi (2015) examined corrupt collaboration using a novel sequential dyadic die-rolling paradigm. In their Aligned outcomes condition, player A privately rolls a die and reports the outcome to player B (anonymously). Next, player B privately rolls a die and reports the outcome to player A (anonymously). If both players reported the same number, they earned money; otherwise, they earned nothing. This interaction was repeated for 20 trials. The number of reported doubles was the dependent variable. Participants reported a double on 81.5% of trials. This is a staggering 489% more than the chance expectation of 16.7%, and vastly more than the 54.9% doubles that lone players throwing twice report.

Weisel and Shalvi (2015) tested students used to participating in economic studies. In Study 1, we conducted a preregistered replication study of their Aligned outcomes condition to test whether their effect generalizes to students used to participating in psychological but not economic studies (see Simons, Shoda, & Lindsay, in press). Our results are consistent with those of Weisel and Shalvi: participants reported a higher percentage of doubles (29.6%) than expected by chance (16.7%; generalized linear mixed model (GLMM): \(\chi^2(1) = 10.63, p < .002; \) see Appendix A for details). However, our results indicate a lower rate of corruption, with participants reporting fewer doubles than found by Weisel and Shalvi (GLMM: \(\chi^2(1) = 31.01, p < .001; \) Table 1).

There are multiple, mutually compatible explanations for the observed difference in effect sizes. Research shows that published effect sizes tend to overestimate true effect sizes, and such overestimation tends to be greater in pioneering studies that are the first to report an effect, a ‘decline effect’ (Anderson, Kelley, & Maxwell, 2017; Ioannidis, 2008; Simonsohn, 2015). It is possible that the effect sizes observed by Weisel and Shalvi (2015) overestimated the true effect. Further, contextual factors may have affected the difference in effect sizes, and behavioral norms in particular (e.g., Grube, Morgan, & McGree, 1986; Nucifora, Gallois, & Kashima, 1993). Some research suggests that the norm for students used to participating in economic studies is to maximize payoffs, more so than for students used to participating in psychological studies (Cappelen, Nygaard, Sorensen, & Tungodden, 2015; Carter & Irons, 1991; Gerlach, 2017). We do not compare the behavioral norms of these groups. Rather, we directly examine whether causally manipulating behavioral norms affects corruption in collaboration.

To this end, we included norms as a moderator in Study 2. We manipulated the norm by showing participants a visual representation of the findings of the two previous studies (for a similar manipulation, see Kroher & Wolbring, 2015; Rauhut, 2013). Participants were either shown a representation of a distribution of results in which participants lied very often (High behavioral norm), i.e., Weisel and Shalvi’s (2015) data, or less often (Low Behavioral norm), i.e., Weisel and Shalvi’s (2015) data, or less often (Low Behavioral norm), i.e., Weisel and Shalvi’s (2015) data, or less often (Low Behavioral norm), i.e., Weisel and Shalvi’s (2015) data, or less often (Low Behavioral norm), i.e., Weisel and Shalvi’s (2015) data, or less often (Low Behavioral norm), i.e., Weisel and Shalvi’s (2015) data, or less often (Low Behavioral norm), i.e., Weisel and Shalvi’s (2015) data, or less often (Low Behavioral norm), i.e., Weisel and Shalvi’s (2015) data, or less often (Low Behavioral norm), i.e., Weisel and Shalvi’s (2015) data, or less often (Low Behavioral norm), i.e., Weisel and Shalvi’s (2015) data, or less often (Low Behavioral norm), i.e., Weisel and Shalvi’s (2015) data, or less often (Low Behavioral norm), i.e., Weisel and Shalvi’s (2015) data, or less often (Low Behavioral norm), i.e., Weisel and Shalvi’s (2015) data, or less often (Low Behavioral norm), i.e., Weisel and Shalvi’s (2015) data, or less often (Low Behavioral norm), i.e., Weisel and Shalvi’s (2015) data, or less often (Low Behavioral norm), i.e., Weisel and Shalvi’s (2015) data, or less often (Low Behavioral norm), i.e., Weisel and Shalvi’s (2015) data, or less often (Low Behavioral norm), i.e., Weisel and Shalvi’s (2015) data, or less often (Low Behavioral norm), i.e., Weisel and Shalvi’s (2015) data, or less often (Low Behavioral norm), i.e., Weisel and Shalvi’s (2015) data, or less often (Low Behavioral norm), i.e., Weisel and Shalvi’s (2015) data, or less often (Low Behavioral norm), i.e., Weisel and Shalvi’s (2015) data, or less often (Low Behavioral norm), i.e., Weisel and Shalvi’s (2015) data. The results showed that participants in the High behavioral norm condition reported more doubles (\(M = 67\%\), \(SD = 31\%\)) than participants in the Low behavioral norm condition (\(M = 47\%\), \(SD = 30\%\); see Table 1).

Our studies have several strengths, such as being preregistered and replicating a reported large effect, which may have real-life consequences. However, our studies also have limitations. First, we did not include Wiesel and
Table 1: Median, mean, standard deviation and percentages across studies over 20 trials.

Study	Median	Mean (SD)	Percentage
Study 1 (N = 46)	6.0	5.9(3.8)	30%
Study 2 Low behavioral norm (N = 42)	8.0	9.3(5.9)	47%
Study 2 High behavioral norm (N = 40)	13.0	12.6(6.2)	67%
Weisel and Shalvi (2015): Aligned-outcomes (N = 40)	19.5	16.3(5.1)	82%

a Sample used to participating in psychological studies.

b Sample used to participating in economic studies.

Shalvi’s (2015) Individuals condition in our studies. Hence, we did not replicate their core finding that collaboration increases cheating relative to solitary play. Second, we used a lower monetary compensation than Weisel and Shalvi, possibly reducing our participants’ motivation to lie. Although higher incentives do not necessarily increase the magnitude of lies (Fischbacher & Föllmi-Heusi, 2013; Mazar, Amir, & Ariely, 2008), future research may systematically examine the extent to which size of incentives influence the magnitude of dishonesty in collaborative settings. Finally, our results converge with the idea that collaborative settings can lead to dishonest behavior. Corrupt collaboration can have significant real-life consequences, but the severity of these consequences is likely to depend on context. Previous research highlights the role of social norms and beliefs about such norms in the spreading of dishonest behavior (Keizer, Lindenberg, & Steg, 2008; Rauhut, 2013). Here, we provided evidence suggesting that norms can shape dishonest behavior in a collaborative setting. Investigating what norms increase or decrease dishonesty in real-life settings is a promising avenue for future research.

Data accessibility statement
The data has been uploaded to the Open Science Framework (www.osf.io/gh5pd).

Additional Files
The additional files for this article can be found as follows:

- Appendix A. Details analysis Study 1. DOI: https://doi.org/10.1525/collabra.97.s1
- Appendix B. Behavioral norm manipulation. DOI: https://doi.org/10.1525/collabra.97.s2
- Appendix C. Additional analyses. DOI: https://doi.org/10.1525/collabra.97.s3
- Appendix D. Details analysis Study 2. DOI: https://doi.org/10.1525/collabra.97.s4

Notes
1 www.osf.io/gh5pd.
2 All data was processed and analyzed in RStudio (RStudio, 2012), which is an integrated development environment for R (R Core Team, 2015). Analyses were run with either MLwiN (Rasbash, Charlton, Browne, Healy, & Cameron, 2009) and / or the lme4 package (Bates, Mächler, Bolker, & Walker, 2015).
3 For Studies 1 and 2, we also investigated whether the dishonesty of player A would influence the dishonesty of player B. These results are discussed in Appendix C.
4 We used to two different models to analyze the data (see Appendix D for details of these models). The results were similar, both indicating a difference between the two conditions (model 1: \(\chi^2(1) = 4.18, p = .09 \); model 2: \(\chi^2(1) = 3.04, p = .09 \)).

Acknowledgements
We thank Ori Weisel and Shaul Shalvi for their correspondence and sharing of study materials.

Funding Information
WF was supported by a Veni grant from the Netherlands Organization for Scientific Research (016.155.195).

Competing Interests
The authors have no competing interests to declare.

Authors Contributions
- Contributed to conception and design: JW, GB, WF, DW
- Contributed to acquisition of data: JW
- Contributed to analysis and interpretation of data: JW
- Drafted and/or revised the article: JW, GB, WF, DW
- Approved the submitted version for publication: JW, GB, WF, DW

References
Anderson, S. F., Kelley, K., & Maxwell, S. E. (2017). Sample-size planning for more accurate statistical power: A method adjusting sample effect sizes for publication bias and uncertainty. *Psychological Science*. DOI: https://doi.org/10.1177/0956797617723724
Bates, D., Mächler, M., Bolker, B., & Walker, S. (2015). Fitting linear mixed-effects models using lme4. *Journal of Statistical Software*, 67(1), 1–48. DOI: https://doi.org/10.18637/jss.v067.i01
Cappelen, A. W., Nygaard, K., Sørensen, E. Ø., & Tungodden, B. (2015). Social preferences in the lab: A comparison of students and a representative population. *The Scandinavian Journal of Economics*, 117(4), 1306–1326. DOI: https://doi.org/10.1111/sjoe.12114
Carter, J. R., & Irons, M. D. (1991). Are economists different, and if so, why? *The Journal of Economic Perspectives*, 5(2), 171–177. DOI: https://doi.org/10.1257/jep.5.2.171
Fischbacher, U., & Föllmi-Heusi, F. (2013). Lies in disguise: An experimental study on cheating. *Journal of the European Economic Association, 11*(3), 525–547. DOI: https://doi.org/10.1111/jeea.12014

Gerlach, P. (2017). The games economists play: Why economics students behave more selfishly than other students. *PLoS ONE, 12*(9), e0183814. DOI: https://doi.org/10.1371/journal.pone.0183814

Greiner, B. (2015). Subject pool recruitment procedures: organizing experiments with ORSEE. *Journal of the Economic Science Association, 1*(1), 114–125. DOI: https://doi.org/10.1007/s40881-015-0004-4

Grube, J. W., Morgan, M., & McGree, S. T. (1986). Attitudes and normative beliefs as predictors of smoking intentions and behaviours: A test of three models. *British Journal of Social Psychology, 25*(2), 81–93. DOI: https://doi.org/10.1111/j.2044-8309.1986.tb00707.x

Ioannidis, J. P. (2008). Why most discovered true associations are inflated. *Epidemiology, 19*(5), 640–648. DOI: https://doi.org/10.1097/EDE.0b013e31818131e7

Keizer, K., Lindenberg, S., & Steg, L. (2008). The spreading of disorder. *Science, 322*(5908), 1681–1685. DOI: https://doi.org/10.1126/science.1161405

Kroher, M., & Wolbring, T. (2015). Social control, social learning, and cheating: Evidence from lab and online experiments on dishonesty. *Social Science Research, 53*, 311–324. DOI: https://doi.org/10.1016/j.ssresearch.2015.06.003

Mazar, N., Amir, O., & Ariely, D. (2008). The dishonesty of honest people: A theory of self-concept maintenance. *Journal of Marketing Research, 45*(6), 633–644. DOI: https://doi.org/10.1509/jmkr.45.6.633

Nucifora, J., Gallois, C., & Kashima, Y. (1993). Influences on condom use among undergraduates: Testing the theories of reasoned action and planned behavior. In Terry, D. J., Gallois, C., & McCamish, M. (Eds.), *The theory of reasoned action: Its application to AIDS-preventive behavior*. New York: Pergamon, pp. 47–64.

Rasbash, J., Charleston, C., Browne, W. J., Healy, M., & Cameron, B. (2009). *MLwiN Version 2.10*. Centre for Multilevel Modelling, University of Bristol.

Rauhut, H. (2013). Beliefs about lying and spreading of dishonesty: Undetected lies and their constructive and destructive social dynamics in dice experiments. *PLoS ONE, 8*(11): e77878. DOI: https://doi.org/10.1371/journal.pone.0077878

R Core Team. (2015). *R: A language and environment for statistical computing*. R Foundation for Statistical Computing, Vienna, Austria.

RStudio. (2012). *RStudio: Integrated development environment for R* [Version 0.96.122] [Computer software]. Boston, MA. Retrieved November 4, 2014.

Simons, D. J., Shoda, Y., & Lindsay, D. S. (in press). Constraints on Generality (COG): A proposed addition to all empirical papers. *Perspectives on Psychological Science*. DOI: https://doi.org/10.1177/1745691617708630

Simonsohn, U. (2015). Small telescopes: Detectability and the evaluation of replication results. *Psychological Science, 26*(5), 559–569. DOI: https://doi.org/10.1177/0956797614567341

Weisel, O., & Shalvi, S. (2015). The collaborative roots of corruption. *Proceedings of the National Academy of Sciences, 112*(34), 10651–10656. DOI: https://doi.org/10.1073/pnas.1423035112