Article

Three New *Trichoderma* Species in Harzianum Clade Associated with the Contaminated Substrates of Edible Fungi

Zi-Jian Cao 1,2, Wen-Tao Qin 2,*, Juan Zhao 2, Yu Liu 2, Shou-Xian Wang 2 and Su-Yue Zheng 1,*

1 School of Landscape and Ecological Engineering, Hebei University of Engineering, Handan 056038, China
2 Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
* Correspondence: qinwentao@ipepbaafs.cn (W.-T.Q.); zhengsuyue@sina.com (S.-Y.Z.)

Abstract: *Trichoderma* is known worldwide as biocontrol agents of plant diseases, producers of enzymes and antibiotics, and competitive contaminants of edible fungi. In this investigation of contaminated substrates of edible fungi from North China, 39 strains belonging to 10 *Trichoderma* species isolated from four kinds of edible fungi were obtained, and three novel species belonging to the Harzianum clade were isolated from the contaminated substrates of *Auricularia heimuer* and *Pholiota adipose*. They were recognized based on integrated studies of phenotypic features, culture characteristics, and molecular analyses of RNA polymerase II subunit B and translation elongation factor 1-α genes. *Trichoderma auriculariae* was strongly supported as a separate lineage and differed from *T. vermifincola* due to its larger conidia. *Trichoderma miyunense* was closely related to *T. ganodermatigerum* but differed due to its smaller conidia and higher optimum mycelial growth temperature. As a separate lineage, *T. pholiotae* was distinct from *T. guizhouense* and *T. pseudoasiaticum* due to its higher optimum mycelial growth temperature and larger conidia. This study extends the understanding of *Trichoderma* spp. contaminating substrates of edible fungi and updates knowledge of species diversity in the group.

Keywords: Hypocreaceae; *Trichoderma*; phylogeny; morphology; taxonomy

1. Introduction

Trichoderma Pers. is ubiquitous in various niches and around the world. The genus contains at least eight infrageneric clades, of which the Harzianum clade is one of the largest [1]. According to our investigated statistics, the Harzianum clade consists of more than 95 accepted species, which are morphologically heterogeneous and phylogenetically complicated. They play important roles in agriculture, industry, and other fields and are employed as biocides or biofertilizers for plant growth [2–4], act as producers of enzymes and antibiotics, and are endophytic in plants that can resist both physiological stress and pathogen invasion [5,6].

Green mold contamination caused by *Trichoderma* spp. in the cultivation and various growth stages of edible fungi has been one of the biggest biological constraints in the industry since the 1980s [7], with the economic losses accounting for 10–20% of total production [8]. At present, green mold is one of the most devastating diseases in nearly all production areas of cultivated edible fungi due to its high disease incidence and serious economic loss [9,10]. Mycelia of *Trichoderma* spp. show stronger competitiveness than those of edible fungi, and thus they can inhibit mycelial growth or decrease the fruiting rate of edible fungi. Lots of green conidia of *Trichoderma* will gradually cover the contaminated substrates or fruiting bodies, and the contaminated fruiting bodies will eventually shrivel and rot.

In order to better understand the *Trichoderma* species contaminating substrates of edible fungi and preserve biological control resources, substrates of edible fungi contaminated by green mold in North China were investigated, and three undescribed species belonging
to the Harzianum clade were found on contaminated substrates of *Auricularia heimuer* and *Pholiota adipose*. Their phylogenetic positions were determined based on sequence analyses of the combined translation elongation factor 1-alpha (*tef1*-α) and the second largest nuclear RNA polymerase subunit (*rpb2*) genes. Similarities and differences in morphological characteristics between the new species and their closely related species were investigated and compared in detail.

2. Materials and Methods

2.1. Isolates and Specimens

Specimens were separately collected from contaminated substrate of edible fungi in North China from 2020 to 2022 (Table S1), and strains were isolated following the method of a previous study [11]. The ex-type strains were deposited in the culture collection of Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences (JZB culture collection).

2.2. Morphology and Growth Characterization

For morphological studies, growth rates were determined on three different media: potato dextrose agar (PDA; 200 g potato, 18 g dextrose, 18 g agar, and 1 L distilled water), cornmeal dextrose agar (CMD; 40 g cornmeal, 20 g glucose, 18 g agar, and 1 L distilled water), and synthetic low nutrient agar (SNA; 1 g KH$_2$PO$_4$, 1 g KNO$_3$, 0.5 g MgSO$_4$·7H$_2$O, 0.5 g KCl, 0.2 g glucose, 0.2 g sucrose, 18 g agar, and 1 L distilled water) at 25, 30, and 35 °C in darkness. Mycelial discs (5 mm diameter) were incubated in Petri dishes (90 mm diameter) with three replicates for each isolate. Colony diameters were measured after 3 days. The time when mycelia entirely covered the surface of the plate and the morphological characteristics of colonies, such as colony appearance, color, and spore production, were recorded [12]. For microscopic morphology, photographs were taken with an Axio Imager Z2 microscope (Carl Zeiss, Jena, Germany). Microscopic characteristics and micro-morphological data were examined on the cultures grown on SNA and PDA for 7–9 days at 25 °C.

2.3. DNA Extraction, PCR Amplification, and Sequencing

Genomic DNA was extracted from the cultures grown on PDA for 7 days using a plant genomic DNA Kit (DP305, TIANGEN Biotech, Beijing, China). Fragments of *tef1*-α and *rpb2* were amplified with the primer pairs EF1-728F [13] and TEF1LLErev [14] and frRPB2-5f/7cr [15], respectively. Each PCR reaction consisted of 12.5 µL Premix Taq™ (TaKaRa, Dalian, China), 1.0 µL of forward primer (10 µM), 1.0 µL of reverse primer (10 µM), 1.5 µL of DNA, and 9 µL of double-sterilized water. Polymerase chain reaction (PCR) conditions followed Zhu and Zhuang [16]. The products were purified and subjected to sequencing on an ABI 3730 DNA sequencer (Applied Biosystems, Bedford, MA, USA) at SinoGenoMax company. Sequences generated from this study and those retrieved from GenBank are listed in Table 1.

Table 1. Materials including strain numbers and GenBank accessions of sequences used for phylogenetic analyses.

Species	Voucher	GenBank Accession Number	
		rpb2	*tef1*-*α*
T. achlamydosporum	YMF 1.6177	MT052180	MT070156
T. afarasin	CBS 130755	AF348093	
T. afarasin	DIS 314F	FJ442778	
T. afroharzianum	CBS 124620 ET	FJ442691	
T. aggregatum	GJS 04-193	FJ442709	
T. aggregatum	HMAS 248863	KY688001	KY688062
T. aggressivum	HMAS 248864	KY688002	KY688063
T. aggressivum	CBS 100525	AF545541	AF348095
Table 1. Cont.

Species	Voucher	GenBank Accession Number
T. aggressivum	DAOM 222156 ET	FJ442752 AF348098
T. abii	CBS 120633 ET	EU498349 EU498312
T. alpinum	HMAS 248821 T	KY687958 KY688012
T. amazonicum	IB95	HM142368 HM142377
T. amazonicum	CBS126898 ET	HM142367 HM142376
T. anaharzianum	YMF 1.00241	MH262577 MH26493
T. anaharzianum	YMF 1.00352	MH262575 MH26492
T. atrobrunneum	GJS90-254	FJ442735 AF443943
T. atrobrunneum	GJS 05-101	FJ442745 FJ463392
T. atrogelatinosum	CBS 237.63 ET	–
T. atroviride	CBS 119499	KY687984
T. auriculariae	JZBQT1Z7	ON649949 ON649896
T. auriculariae	JZBQT1Z8	ON649950 ON649897
T. auriculariae	JZBQT1Z9	ON649951 ON649898
T. austroindianum	BAFC 3583	– MH352421
T. azavedoi	CEN1422	MK696600
T. bannaense	HMAS 248840 T	KY687979 KY688037
T. bannaense	HMAS 248865	KY688003 KY688038
T. botryosum	COAD 2422	MK044212 MK044119
T. botryosum	COAD 2401	MK044181 MK044088
T. breve	HMAS 248844 T	KY687984 KY688046
T. breve	HMAS 248845	KY687984 KY688046
T. brunneoviride	CBS 121130	EU498358 EU498316
T. brunneoviride	CBS 120928	EU498357 EU498316
T. caeruloviride	COAD 2416	MK044201 MK044108
T. caeruloviride	COAD 2415	MK044202 MK044109
T. cameronense	GJS 99-230	– AF348107
T. catoptron	GJS 02-76	AY391900 AY737726
T. cereum	GJS 95-159	AF545508 AY937437
T. cerinum	DAOM 230012	KJ842184 KJ871242
T. christiani	CBS 132572 ET	KJ665244 KJ665439
T. cinnamomeum	GJS 96-128	KY391916 AY391977
T. cinnamomeum	GJS 97-233	KY391919 AY391978
T. compactum	CBS 121218	KF134789 KF134798
T. corrugatum	HMAS 248833	KY687971 KY688027
T. corniculatum	HMAS 248893	MF371203 MF371218
T. corneum	GJS 97-82 ET	KJ665252 KJ665455
T. daemycellum	WU29044	FJ860533 FJ860633
T. endophyticum	CBS 130733	FJ442722 FJ463326
T. endophyticum	CBS 130733	FJ442690 FJ463330
T. epimyces	CBS120534 ET	EU498360 EU498320
T. ganodermatigerum	CCMJ5245 T	ON567189 ON567195
T. ganodermatigerum	CCMJ5246	ON567190 ON567196
T. globoides	HMAS 248747	KX026955 KX026955
T. guizhouense	HGUPO038 T	JQ091403 JN215484
T. guihiouense	S278	KF134791 KF134799
T. hausknechtii	HGUPO038 T	JQ091403 JN215484
T. harzianum	CBS 226-95	AF545549 AF348101
T. harzianum	GJS 05 107	FJ442708 FJ463329
T. hausknechtii	CBS 133493	KJ665276 KJ665515
T. helicolixii	CBS 133499	KJ665278 KJ665517
T. hengshanicum	HMAS 248852 T	KY687991 KY688054
Species	Voucher	GenBank Accession Number
----------------------	------------------	--------------------------
rpb2		
T. hirsutum	HMAS 248834	KY687972
T. hortense	BMCC LL994	–
T. ingratus	CBS 273-78	FJ442725
T. inhamatum	CBS 132567	KJ655282
T. italicum	HMAS 248256	MN605868
T. koreanum	CGMCC 3.19848	MN605868
T. libertatum	HMAS 248831	KY687969
T. linzhiense	HMAS 248846	KY687985
T. lixi	CBS 110080	KJ655290
T. longifallidicum	LESF 552	KT278955
T. miyunense	JZBQF5	ON649968
T. miyunense	JZBQF7	ON649969
T. neotropicali	LA11 ET	KJ655321
T. paratroviride	S385	KJ665627
T. peregrinicus	CBS 122769 ET	FJ605662
T. peruvianum	CP15-2	MW480153
T. probolpyri	HMAS 273786	KX026962
T. phaeoense	SDBR-CMU349	MW002074
T. philitae	JZBQH11	ON649971
T. philitae	JZBQH13	ON649973
T. pinicola	KACC 48486 ET	MH025999
T. pinicola	SFC20130926-5014	MH025991
T. pleuroticas	CBS 124387 ET	HM142372
T. pleuroticola	CBS 124383 ET	HM142371
T. pseudodensum	LC11682 = LF1542 ET	MF939604
T. polincola	LC11686 = LF2050	MF939605
T. polypori	HMAS 248855	KY687994
T. priscilae	CBS 131487 ET	KJ655333
T. propepolypori	YMF 1.06224 T	M052181
T. pseudodiastictum	YMF 1.06200 T	M052183
T. pseudodensum	HMAS 248828	KY687967
T. pseudogelatinosum	CNUN309 ET	HM920173
T. pseudopyramidale	COAD 2419	MK044206
T. pseudopyramidale	COAD 2506	MK044207
T. purpureum	HMAS 273787 ET	KX026961
T. pyramidal	CBS 135574 ET	KJ655334
T. rifii	CBS 130746	–
T. rifii	DIS 337F	FJ442720
T. rufobrunneum	HMAS 266614 T	KF730010
T. rugulosum	SFC20180301-001 T	MH025986
T. rugulosum	SFC20180301-002	MH025987
T. simile	YMF 1.06201 T	M052184
T. simile	YMF 1.06202 T	M052185
T. simulon	CBS 130431	FJ442757
T. simplex	S7	KJ655337
T. simplex	HMAS 248842	KY687981
T. solutum	HMAS 248848	KY687987
Table 1. Cont.

Species	Voucher	GenBank Accession Number	
		rpb2	
T. stramineum	GJS 02-84	AY391945	AY391999
T. subalni	HMAS 275683	MH612371	MH612377
T. subalni	HMAS 275684	MH612370	MH612376
T. syagri	BAFC 4357	–	MG822711
T. tawa	CBS 114233 ET	AY391956	FJ463313
T. tawa	DAOM 232841	KJ842187	EU279972
T. tenue	HMAS 273785 ET	KX026960	KX026952
T. tomentosum	DAOM 178713a	AF545557	AY750882
T. velutinum	CPK 298	KF134794	KJ665769
T. vermifimicola	DAOM 230013 ET	JN133569	AY937415
T. vermifimicola	CGMCC 3.19850	MN605870	MN605881
T. xixiacum	HMAS 248255	MN605871	MN605882
T. xixiacum	CGMCC 3.19698	MN605875	MN605885
T. zayunense	HMAS 248835 T	KY687974	KY688031
T. zelobreve	HMAS 248254 T	MN605872	MN605883
T. zelobreve	CGMCC 3.19696	MN605873	MN605884
T. zeloharzianum	YMF 1.00268	MH158996	MH183181

Numbers in bold indicate newly submitted sequences in this study. T: type strains. ET: ex-type strains.

2.4. Phylogenetic Analyses

Sequences for all isolates generated in this study were blasted against the NCBI’s GenBank nucleotide datasets (https://blast.ncbi.nlm.nih.gov/Blast.cgi) and MIST (http://mmit.china-cctc.org/index.php) [17] to obtain an initial identification. To identify the phylogenetic positions of *Trichoderma* species isolated from contaminated substrates of edible fungi, *rpb2* and *tef1-α* sequences of all *Trichoderma* species belonging to the Harzianum clade were combined for the analyses, with *T. atroviride* and *T. paratroviride* selected as out-group taxa. Their sequences of type or ex-type strains based on previous publications were downloaded from NCBI database and assembled using BioEdit 7.0.5.3 [18]. Alignment was generated and converted to nexus files with Clustal X 1.83 [19].

Maximum parsimony (MP) analysis was performed with PAUP 4.0b10. Starting trees were obtained via random stepwise addition with 1000 replicates and subsequent branch-swapping algorithm using tree bisection–reconnection (TBR) [20]. Analyses were performed with all characters treated as unordered and unweighted, and gaps treated as missing data. MaxTrees was set to 1000, and branches collapsed when maximum branch length was zero. Maximum parsimony bootstrap proportion (MPBP) was calculated to test topological confidence of the resulting trees.

Bayesian inference (BI) trees were calculated using MrBayes v. 3.1.2 [21]. The best-fit nucleotide substitution model GTR+I+G was selected using MrModeltest 2.3 [22]. Four chains were run from random trees for 6,000,000 generations and sampled every 100 generations. The first 25% of trees were discarded as the burn-in phase of the analyses, and Bayesian inference posterior probability (BIPP) was determined from the remaining trees. Trees were visualized in FigTree v1.4.3 [23].

3. Results

3.1. Phylogenetic Analyses

The partition homogeneity test of *rpb2* and *tef1-α* sequences indicated that the individual partitions were generally congruent (*p* = 0.01). The combined *rpb2* and *tef1-α* dataset was subsequently used for phylogenetic analysis to determine the positions of the new species. In MP analysis, the dataset contained 140 taxa and 2307 characters, of which 1468 characters were constant, 150 variable characters were parsimony uninformative, and 689 were parsimony informative. Five most parsimonious trees with the same topology
were generated, and one of them is shown in Figure 1 (tree length = 3091, CI = 0.3999, HI = 0.6001, RC = 0.3039, and RI = 0.7600). The BI tree topology was generally the same as that of the MP tree.

Figure 1. Cont.
Figure 1. Maximum parsimony phylogram of the investigated Trichoderma species inferred from the combined sequences of rpb2 and tef1-α. MPBP above 50% (left) and BIPP above 90% (right) are indicated at the nodes. New species proposed are indicated in red font.

A total of 140 sequences representing 95 Trichoderma species, including our three new species, were used for constructing the phylogenetic tree, and T. atroviride and T. paratroviride were used as outgroups. Results showed that all the investigated Trichoderma species formed a strongly supported group (MPBP/BIPP = 100%/100%), which was generally congruent with the previous studies [24].

In the phylogenetic tree (Figure 1), T. auriculariae, T. miyunense, and T. pholiotae were newly added to the T. harzianum clade. Trichoderma auriculariae was distributed as a separate terminal branch (MPBP/BIPP = 100%/100%) among T. vermifimbcola and T. xixiacum. Trichoderma miyunense was a sister of T. ganodermatigerum (MPBP/BIPP = 98%/100%). Trichoderma pholiotae formed a lineage with T. asiaticum, T. guizhouense, T. pseudoasiaticum, and T. simile with high support value (MPBP/BIPP = 92%/100%), and our three strains of T. pholiotae were distributed as a highly supported separate terminal branch (MPBP/BIPP = 100%/100%) among T. pseudoasiaticum and T. guizhouense.

3.2. Taxonomy

Trichoderma auriculariae Z. J. Cao and W.T. Qin, sp. nov.

MycoBank MB845141 (Figure 2).

Etymology: The specific epithet refers to the host from which the fungus was isolated.

Typification: China, Beijing, Tongzhou, from the contaminated substrates of Auricularia hemauer, 26 August 2021, W.T. Qin, Z.J. Cao, L. Cao, J. Li (ex-type strain JZBQT127).

DNA barcodes: ITS = ON653396, rpb2 = ON649949, tef1-α = ON649896.

On CMD after 72 h, colony radius 65–66 mm at 25 °C, 69–70 mm at 30 °C, and 8–10 mm at 35 °C. Colony hyaline and radial, not zonate. Aerial hyphae rare in colony center. A large number of white pustules formed after 2 days. Conidiation formed on aerial hyphae...
and in pustules, abundant, spreaded throughout the colony, then gradually turned green. No diffusing pigment noted.

Figure 2. *Trichoderma auriculariae* (JZBQT1Z7). Cultures at 25 °C after 7 days on (A) CMD, (B) SNA, and (C) PDA; (D,I) conidiophores and phialides; (E,F) conidiation pustules on CMD after 7 days; (G) conidia; (H,K) chlamydospores. Scale bars: (D,I) = 10 µm, (G,H,J,K) = 5 µm.

On PDA after 72 h, colony radius 47–49 mm at 25 °C, 66–68 mm 30 °C, and 5–7 mm at 35 °C. Colony regularly circular, distinctly zonate. Aerial mycelium dense and radial, forming a dense, zonate, floccose mat. Conidial production noted after 2 days, starting around the original inoculum, effuse in aerial hyphae, more abundant along the original inoculum. No diffusing pigment noted, odor fruity.

On SNA after 72 h, colony radius 47–49 mm at 25 °C, 51–55 mm at 30 °C, and 5–7 mm at 35 °C. Colony hyaline, mycelium loose. Conidial production noted after 2 days, starting around the inoculum, effuse in the aerial hyphae, forming a few inconspicuous rings. Small pustules formed around the inoculum, first white, turning green after 3 days, with hairs protruding beyond the surface. No diffusing pigment.

Conidiophores pyramidal, with opposing branches borne on a conspicuously broad spindle, less solitary. The main axis and branches terminating in 3–5 cruciate to nearly verticillate disposed phialides. Hyphal septa clearly visible. Phialides ampulliform, sometime lageniform, 4.6–9.9 × (2.2–) 2.7–3.8 µm, l/w 1.4–3.5 (–4.4), 1.4–2.7 µm wide at the base (n = 50). Conidia green, globose or subglobose, sometimes ellipsoidal, smooth, 2.7–3.8 × 2.3–3.1 µm, 1/w 1.0–1.3 (n = 50). Chlamydospores common, intercalary or terminal, variable in shape, ellipsoid, globose or oblong, 4.6–7.5 × 3.8–6.3 µm (n = 20).
Additional strains examined: China, Beijing, Tongzhou, from the contaminated substrates of *A. heimuer*, 26 August 2021, W.T. Qin, Y. Liu, S.X. Wang, JZBQT1Z8; ibid., JZBQT1Z9.

Notes: Phylogenetically, *T. auriculariae* formed a separate group (MPBP/BIPP = 100%/100%) in the Harzianum clade among *T. vermifimicola* and *T. xixiacum*. The *tef1*-α sequences between *T. auriculariae* and *T. vermifimicola* were very similar, but they shared 28 bp divergent among 1117 bp for *rpb2* sequences (97.49%). Phylogenetically, *T. auriculariae* shared a common ancestor with *T. xixiacum*, *T. vermifimicola*, and *T. simmonsi*. *Trichoderma auriculariae* shared typical characteristics of the Harzianum clade in pyramidal conidiophores comprising a long main axis, and 3–5 phialides in whorls arose at the tips of the branches. However, *T. auriculariae* had longer phialides and grew much slower at 35 °C on PDA than *T. simmonsi* [5.2–6.5 mm, 25–55 mm] [25] and had larger conidia than that of *T. vermifimicola* [2.3–2.6 × 2.0–2.4 µm] and *T. xixiacum* [2.3–2.7 × 2.0–2.6] [24]. Meanwhile, chlamydospores were common in *T. auriculariae* (Table S1).

Trichoderma miyunense Z. J. Cao and W.T. Qin, sp. nov.
MycoBank MB845142 (Figure 3).

![Trichoderma miyunense](image)

Figure 3. *Trichoderma miyunense* (JZBQF9). Cultures at 25 °C after 7 days on (A) CMD, (B) SNA, and (C) PDA; (D,F,H) conidiophores and phialides; (E,G) conidiation pustules on SNA after 7 days; (I) chlamydospores. Scale bars: (D,H) = 10 µm, (F,I) = 5 µm.

Etymology: The specific epithet refers to the type locality.

Typification: China, Beijing, Miyun, from the contaminated substrates of *Auricularia heimuer*, 9 September 2020, Y. Liu, W.T. Qin, S. Song (ex-type strain JZBQF9).

DNA barcodes: ITS = ON653404, *rpb2* = ON649970, *tef1*-α = ON649917.
On CMD after 72 h, colony radius 51–52 mm at 25 °C and 65–66 mm at 30 °C. No growth at 35 °C. Colony hyaline, weak, regularly circular, distinctly zonate. Conidiation first formed in white pustules on aerial hyphae, turned green after a few days. No diffusing pigment noted, odor slightly fruity.

On PDA after 72 h, colony radius 42–43 mm at 25 °C and 51–54 mm at 30 °C. No growth at 35 °C. Mycelium white, aerial along the edge, irregularly circular, less with sporulation. No diffusing pigment noted, odor slightly fruity.

On SNA after 72 h, colony radius 30–33 mm at 25 °C and 25–29 mm at 30 °C. No growth at 35 °C. Mycelium hyaline and smooth, dark green to light green pustules, irregular in shape, relatively abundant in the zonation regions, with the formation of 2–3 concentric rings. Aerial hyphae short and inconspicuous. No diffusing pigment, no distinct odor.

Conidiophores pyramidal, with a relatively obvious main axis, multiple branches unpaired, with the longest branches near the base of the main axis. Branches perpendicular to the main axis or at acute angles with the main axis, with septa conspicuous and producing barrel-shaped or cylindrical metulae. Phialides densely disposed at the terminal of branches, often formed in whorls of 2–4, variable in shape and size, ampulliform to lageniform, (5.2–) 5.6–9.7 (–10.3) × 1.9–3.2 (–3.7) μm, l/w 1.9–4.4, 1.0–2.1 (–2.6) wide at the base (n = 80). Conidia green, smooth, ellipsoid, sometimes globose to subglobose, 2.2–3.4 × (1.8–) 2–2.9 μm, l/w 1–1.3 (–1.4) (n = 80). Chlamydospores unobserved.

Additional strains examined: China, Beijing, Miyun, from the contaminated substrates of Auricularia heimuer, 9 September 2020, W.T. Qin, Y. Liu, S. Song, JZBQF5; ibid., JZBQF7.

Notes: Phylogenetically, *T. miyunense* formed a sister group with *T. ganodermatigerum* (Figure 1). They shared 36 bp divergent among 1132 bp for *rpb2* sequences (96.82%) and 35 bp divergent among 1102 bp for *tef1*-α sequences (96.82%). Morphologically, compared to *T. miyunense*, *T. ceratophylletum* possessed shorter phialides (4.1–8.4 μm) and lesser l/w of phialides [(1.0–) 1.2–2.8 (–3.2) μm] [26], while *T. ganodermatigerum* had larger conidia [(3.4–) 3.6–4.8 (–5.3) × (2.9–) 3.2–4.3 (–4.6)], and the optimum temperature was 25 °C [27]. *T. miyunense* was distinctly different from *T. caeruloviride*, which possessed abundant chlamydospores on CMD after 4 days with no concentric rings present [28]. In contrast, *T. confertum* had slightly larger phialides [8.3–12.5 × 2.5–4.2 μm] [29], *T. amazonicum* had distinctly wider phialides [3.3–3.5 μm] and chlamydospore-like structures in the clusters, and *T. pleuroticola* featured diffuse brown pigment and yellow crystals on PDA [30] (Table S2).

Trichoderma pholiotae Z.J. Cao & W.T. Qin, sp. nov.

MycoBank MB845143 (Figure 4).

Etymology: The specific epithet refers to the host from which the fungus was isolated.

Typification: China, Beijing, Haidian, from the contaminated substrates of Pholiota adipose, 25 September 2020, W.T. Qin, Z.J. Cao, L. Gao, J. Li (ex-type strain JZBQH12).

DNA barcodes: ITS = ON653405, rpb2 = ON649972, tef1-α = ON649919.

On CMD after 72 h, colony radius 71–72 mm at 25 °C, 73–74 mm at 30 °C, and 13–18 mm at 35 °C. Colonies hyaline, fan-shaped, tending to aggregate toward the distal parts of the colony. Aerial hyphae loose, sparse, radial. Conidiation effuse in aerial hyphae or in loosely disposed pustules. Pustules minute, irregular in shape, relatively abundant in the zonation regions, formed concentric rings around the outer ring, white at first, then gradually green. No diffusing pigment noted, odor slightly fruity.

On PDA after 72 h, colony radius 67–68 mm at 25 °C, 70–72 mm at 30 °C, and 8–10 mm at 35 °C. Colonies white in the center, with the zone around the central part of the colony forming a distinct circular and green part. Aerial hyphae distinctly radial, abundant, dense, floccose to cottony. Light diffusing yellow pigment, odor slightly fruity.

On SNA after 72 h, colony radius 49–50 mm at 25 °C, 54–55 mm at 30 °C, and 8–10 mm at 35 °C. Colonies translucent and round-like. Aerial hyphae short, radial distribution. Pustules abundant, irregular in shape, from white to green, with the formation of concentric rings. No diffusing pigment noted.
Conidiophores typically pyramidal with opposing branches, formed densely intricate reticulum, with one terminal whorl of generally 3–4 phialides and mostly paired side branches, less frequently solitary. Branches mostly perpendicular to the main axis with septa conspicuous. Phialides varied, borne in regular levels around the axis, some regular ampulliform or lageniform and others apex and inequilateral to curved, (4.1–) 4.9–10.9 (–3.5) µm wide at the base (n = 100). Conidia elliptic to subspheroidal, less globose, green, smooth, 2.6–3.8 (–4.2) × 2.4–3.3 (–3.5) µm, l/w 1–1.3 (n = 80). Chlamydospores common, intercalary or terminal, ellipsoid, globose, 5.0–7.4 (8.3) × (3.9–) 4.9–7.0 µm (n = 25).

Additional strains examined: China, Beijing, Haidian, from the contaminated substrates of Pholiota adipose, 25 September 2020, W.T. Qin, Z.J. Cao, L. Gao, J. Li, JZBQH11; (ibid., JZBQH13.

Notes: Phylogenetically, T. pholiotae formed a lineage with T. asiaticum, T. guizhouense, T. pseudoasiaticum, and T. simile with high support value (MPBP/BIPP = 92%/100%), and our three strains of T. pholiotae were distributed as a highly supported separate terminal branch (MPBP/BIPP = 100%/100%) among T. pseudoasiaticum and T. guizhouense in the Harzianum clade. However, compared to T. pholiotae, T. guizhouense possessed thinner phialides [2.0–3.0 µm] and globose conidia [31]. T. simile had distinct lower optimum growth temperature (25 °C) in the three media, and T. asiaticum had shorter phialides [(3.0–) 4.0–6.0 (–7.0) µm] [12]. In addition, T. pholiotae and T. pseudoasiaticum could be distinguished by the branching pattern, with T. pholiotae being pyramidal and T. pseudoasiaticum being verticillum-like (Table S3).
4. Discussion

During exploration of contaminated substrates of edible fungi in North China, 39 strains representing 10 *Trichoderma* species were isolated from four kinds of edible fungi and examined, and three new species were recognized based on integrated studies of phenotypic and molecular data (Table S1). To explore their taxonomic positions, a phylogenetic tree containing all species of the Harzianum clade was constructed based on analyses of the combined sequences of *rpb2* and *tef1-α*. The three new species were well located in the Harzianum clade with separate terminal branches and were clearly distinguishable from any of the existing species. The results of this study have a number of practical implications to identify and diagnose *Trichoderma* species contaminating edible fungi. This work provides useful information on the epidemiological and geographical distribution of *Trichoderma*, which will help in the development of targeted interventions aimed at comprehensive management and control of green mold contamination of edible fungi.

With further study of *Trichoderma* classification, researchers have reached a consensus that accurate identification of *Trichoderma* species cannot depend only on the morphological identification as sometimes there is high ambiguity in the morphological features of *Trichoderma* spp. [32,33]. *Trichoderma* spp. isolated from the fruiting bodies or substrates of edible fungi is usually anamorph with high morphological similarity with many species, which is not conducive to identification. With DNA-based techniques gradually perfected and widely used, the integrative (polyphasic) taxonomy approach for species delimitation is recommended, including the combination of genealogy and multiparametric phenotypes [34,35], especially for examining the presence of species complexes and cryptic species [31]. Therefore, we hypothesized that *T. harzianum*, which was originally identified by ITS sequence and morphology in previous studies, probably belonged to the *T. harzianum* complex. However, the present study showed that the complex still contained many taxa, indicating that the previous identification was not accurate. Furthermore, it is also difficult to identify species of the Harzianum clade according to exclusive *tef1-α* or *rpb2* sequence data [24,25]. Therefore, the combination of *tef1-α* and *rpb2* sequences for phylogenetic analysis is highly recommended to identify species in the Harzianum clade.

Taxonomy of *Trichoderma* dates back to the late 18th century [36], and some of them cause economic losses in commercial mushroom farms [37]. Over more than a century, successive findings have brought the number of known species of the genus to over 441 [1,23,38]. *Trichoderma* species are located throughout the world, and more than 30 of them are mushroom inhabiting (Figure 1, Table 2). They are isolated from the substrate or fruiting bodies of *Agaricus bisporus*, *Lentinula edodes*, *Pleurotus ostreatus*, *Ganoderma lingzhi*, etc. and are mainly located in the Harzianum, Longibrachiatum, and Viride clades [39]. There may still be many unknown *Trichoderma* species associated with the growth of edible fungi and their related living environment. The phylogenetical difference between *Trichoderma* spp. on edible fungi substrates and from other sources deserves further analysis.

Analysis of the biological characteristics of *Trichoderma* species from contaminated substrates showed that the optimum growth temperature of many *Trichoderma* species was generally around 30 °C, which was consistent with the phenomenon that contamination of *Trichoderma* on edible fungi is more likely to occur at high temperatures. Therefore, reasonable control the growth environment temperature of edible fungi may be a reasonable approach to prevent or delay the outbreak of *Trichoderma* contamination during production. More broadly, research is also needed to analyze the mechanism of occurrence of *Trichoderma* spp. contamination, such as the correlation between contamination occurrence and the growth environment of edible fungi.

With the increased number of species joining the Harzianum clade, understanding of *Trichoderma* spp. will become more sophisticated and intelligible, and reasonable species concepts will be firmly established. Accumulated knowledge of *Trichoderma*, especially the Harzianum clade, will provide useful information for sufficient utilization of resources and for the prevention of contamination of edible fungi.
Table 2. *Trichoderma* spp. associated with the contaminated substrates of edible fungi.

Species	Cultivated Mushroom	Reference
T. aggressivum	Agaricus bisporus	[40,41]
T. asperellum	A. bisporus	[9,42]
T. atroviride	*L. edodes*, Pleurotus ostreatus, *A.* bisporus, *Ganoderma lingzhi*	[8,9,43]
T. aureoviride	Flammulina filiformis, *L. edodes*	
T. brevi	*L. edodes*	[45]
T. capillare	*Agaricus sp.*	[46]
T. citriniride	*L. edodes*, *P. ostreatus*	[43,47]
T. deliquesce	*L. edodes*	[11]
T. ganodermatigerum	*G. sichuanense*	[27]
T. glaneus	*A. bisporus*	[9]
T. guizhouense	*P. ostreatus*	[48]
T. hamatum	*A. bisporus*	[49]
T. harzianum	*L. edodes*, *A. bisporus*, *P. ostreatus*, *Agrocybe aegerita*	[43,50]
T. hengshanicum	*G. lingzhi*	[51]
T. hirsutum	*L. edodes*	[45]
T. koningii	*P. ostreatus*, *A. bisporus*	[37,40]
T. koningiopsis	Dictyophora rubrovolvata, *P. eryngii*	[52,53]
T. lentinelae	*L. edodes*	[24]
T. longibrachiatum	*L. edodes*, *P. ostreatus*, *A. aegerita*	[9,43,50]
T. oblongisporum	*L. edodes*	[54]
T. patella	*P. ostreatus*	[55]
T. pleuroti	*P. ostreatus*	[36]
T. pleuroticola	*P. ostreatus*, *L. edodes*, *G. lingzhi*	[50,54,56]
T. polysporum	*L. edodes*	[57]
T. pseudogelatinosum	*L. edodes*	[58]
T. pseudokoningii	*P. ostreatus*	[37]
T. pseudolacteam	*L. edodes*	[59]
T. pseudostaminecum	*L. edodes*	[58]
T. reesei	*P. ostreatus*	[60]
T. stramineum	*L. edodes*	[57]
T. stromaticum	*A. bisporus*	[49]
T. viridens	*P. ostreatus*, *A. bisporus*	[37,40]
T. viride	*L. edodes*	[54]

5. Conclusions

In this study, 39 strains belonging to 10 *Trichoderma* species isolated from four kinds of edible fungi in North China were obtained, and three novel species belonging to the Harzianum clade were isolated from the contaminated substrates of *Auricularia heimuer* and *Pholiota adipose*. More than 30 mushroom-inhabiting *Trichoderma* species throughout the world mainly located in the Harzianum, Longibrachiatum, and Viride clades were indicated. This study enrich the biodiversity of *Trichoderma* and provide important support for systematic development of the Harzianum clade.

Supplementary Materials: The following supporting information can be downloaded at: https://www.mdpi.com/article/10.3390/jof8111154/s1. Table S1: Strain information and their accession numbers. Table S2: Comparison of the morphological characteristics of *Trichoderma auriculariae* and its relatives. Table S3: Comparison of the morphological characteristics of *Trichoderma niyuanense* and its relatives. Table S4: Comparison of the morphological characteristics of *Trichoderma pholiota* and its relatives. Table S5: The growth rate of three new species in this study incubated at different temperatures and media.
Author Contributions: Conceptualization, W.-T.Q. and S.-Y.Z.; methodology, W.-T.Q.; software, Z.-J.C. and J.Z.; validation, W.-T.Q. and Y.L.; formal analysis, Z.-J.C.; investigation, Z.-J.C. and S.-X.W.; data curation, Z.-J.C. and J.Z.; writing—original draft preparation, Z.-J.C.; writing—review and editing, W.-T.Q. and S.-Y.Z.; visualization, Z.-J.C. and J.Z.; supervision, W.-T.Q. and S.-X.W.; project administration, W.-T.Q. and Y.L.; funding acquisition, W.-T.Q. All authors have read and agreed to the published version of the manuscript.

Funding: This study was funded by the Beijing Academy of Agriculture and Forestry Sciences, China (KJ20220415), the National Natural Science Foundation of China (32002106), and the Rural Revitalization Project of Beijing Municipal Bureau of Agriculture (BJXZX20221229).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: The authors are thankful to Xing-Hong Li and Wei Zhang for technical assistance and thankful to all the sample collectors in this study.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Cai, F.; Druzhinina, I.S. In honor of John Bissett: Authoritative guidelines on molecular identification of Trichoderma. Fungal Divers. 2021, 107, 1–69. [CrossRef]
2. Druzhinina, I.S.; Seidl-Seiboth, V.; Herrera-Estrella, A.; Horwitz, B.A.; Kenerley, C.M.; Monte, E.; Mukherjee, P.K.; Zeilinger, S.; Grigoriev, I.V.; Kubicek, C.P. Trichoderma: The genomics of opportunistic success. Nat. Rev. Microbiol. 2011, 9, 749–759. [CrossRef] [PubMed]
3. Gupta, S.; Smith, P.; Boughton, B.; Twt, R.; Sha, N.; Roessner, U. Inoculation of barley with Trichoderma harzianum T-22 modifies lipids and metabolites to improve salt tolerance. J. Exp. Bot. 2021, 72, 7229–7246. [CrossRef]
4. Samuel, G.J.; Dodd, S.L.; Gams, W.; Castlebury, L.A.; Petrini, O. Trichoderma species associated with the green mold epidemic of commercially grown Agaricus bisporus. Mycologia 2002, 94, 146–170. [CrossRef]
5. Yan, Y.; Zhong, C.; Moodley, O.; Zhang, L.; Xu, J. Green mold caused by Trichoderma atroviride on the lingzhi medicinal mushroom, Ganoderma lingzhi (Agaricomycetes). Int. J. Med. Mushrooms 2019, 21, 515–521. [CrossRef]
6. Hatvani, L.; Antal, Z.; Manczinger, L.; Szekeres, A.; Druzhinina, I.S.; Kubicek, C.P.; Nagy, A.; Nagy, E.; Vagvolgyi, C.; Kredics, L. Green mold diseases of Agaricus and Pleurotus spp. are caused by related but phylogenetically different Trichoderma species. Mycopathology 2007, 97, 532–537. [CrossRef]
7. Komon-Zelazowska, M.; Bissett, J.; Zafari, D.; Hatvani, L.; Manczinger, L.; Woo, S.; Lorito, M.; Kredics, L.; Kubicek, C.P.; Druzhinina, I.S. Genetically closely related but phenotypically divergent Trichoderma species cause green mold disease in oyster mushroom farms worldwide. Appl. Environ. Microb. 2007, 73, 7415–7426. [CrossRef]
8. Kim, J.Y.; Yun, Y.H.; Hyun, M.W.; Kim, M.H.; Kim, S.H. Identification and characterization of Gloeocladium viride isolated from mushroom fly infested oak log beds used for shiitake cultivation. Mycobiology 2010, 38, 7–12. [CrossRef] [PubMed]
9. Zheng, H.; Qiao, M.; Lv, Y.F.; Du, X.; Zhang, K.Q.; Yu, Z.F. New species of Trichoderma isolated as endophytes and sapropores from southwest China. J. Fungi 2021, 7, 467. [CrossRef] [PubMed]
10. Ignazio, C.; Linda, M.K. A method for designing primer sets for speciation studies in filamentous ascomycetes. Mycologia 1999, 91, 553–556.
11. Jaklitsch, W.M.; Komon, M.; Kubicek, C.P.; Druzhinina, I.S. Hypocreavoglnayrii sp. nov. from the Austrian Alps represents a new phylogenetic clade in Hypocreales/Trichoderma. Mycologia 2005, 97, 1365–1378. [CrossRef] [PubMed]
12. Liu, Y.J.; Whelen, S.; Hall, B.D. Phylogenetic relationships among ascomycetes. Evidence from an RNA polymerase II subunit. Mol. Biol. Evol. 1999, 16, 1799–1808. [CrossRef]
13. Zhu, Z.; Zhuang, W.Y. Trichoderma (Hypocreavoglnayrii) species with green ascospores from China. Persoonia 2015, 34, 113–129. [CrossRef]
14. Dou, K.; Lu, Z.; Wu, Q.; Ni, M.; Yu, C.; Wang, M.; Li, Y.; Wang, X.; Xie, H.; Chen, J.; et al. MIST: A multilocus identification system for Trichoderma. Appl. Environ. Microb. 2020, 86, e01532-20. [CrossRef]
18. Hall, T.A. BioEdit: A user-friendly biological sequence alignment editor and analysis program for windows 95/98/NT. *Nucleic Acids Symp.* **1999**, 41, 95–98.

19. Higgins, D.G.; Jeanmougin, F.; Gibson, T.J.; Plewniak, F.; Thompson, J.D. The Clustal X windows interface: Flexible strategies for multiple sequence alignment aided by quality analysis tools. *Nucleic Acids Symp.* 1997, **25**, 4876–4882.

20. Swofford, D.L. PAUP*: Phylogenetic Analysis Using Parsimony (and Other Methods); Version 4.0; Sinauer Associates: Sunderland, MA, USA, 2002.

21. Ronquist, F.; Huelsenbeck, J.P. MrBayes 3: Bayesian phylogenetic inference under mixed models. *Bioinformatics* **2003**, 19, 1572–1574. [CrossRef]

22. Nylander, J.A.A. MrModeltest v2. Program Distributed by the Author. 2004. Available online: http://paup.csit.fsu.edu (accessed on 1 January 2018).

23. Rambaut, A. FigTree. Tree Figure Drawing Tool, v. 1.4.3. 2016. Available online: http://tree.bio.ed.ac.uk/ (accessed on 1 January 2018).

24. Gu, X.; Wang, R.; Sun, Q.; Wu, B.; Sun, J.-Z. Four new species of *Trichoderma* in the Harzianum clade from northern China. *Mycokeys* **2020**, 73, 109–132. [CrossRef] [PubMed]

25. Chaverri, P.; Branco-Rocha, F.; Jaklitsch, W.; Gazis, R.; Samuels, G.J. Systematics of the *Trichoderma harzianum* species complex and the re-identification of commercial biocontrol strains. *Mycolologia* **2015**, 107, 558–590. [CrossRef] [PubMed]

26. Yuan, H.S.; Lu, X.; Dai, Y.C.; Kudoh, B.; Kan, Y.H.; Kusan, I.; He, S.H.; Liu, N.G.; Sarma, V.V.; Zhao, C.L.; et al. Fungal diversity notes 1277–1366: Taxonomic and phylogenetic contributions to fungal taxa. *Fungal Divers.* 2020, **104**, 1–266. [CrossRef]

27. An, X.Y.; Cheng, G.H.; Gao, H.X.; Li, D.; Li, Y. Phylogenetic analysis of *Trichoderma* species associated with green mold disease on mushrooms and two new pathogens on *Ganoderma sichuanense*. *J. Fungi* **2022**, 8, 704. [CrossRef] [PubMed]

28. Rodriguez, M.D.H.; Evans, H.C.; De Abreu, L.M.; De Macedo, D.M.; Ndacnou, M.K.; Bekele, K.B.; Barreto, R.W. New species and records of *Trichoderma* isolated as mycoparasites and endophytes from cultivated and wild coffee in Africa. *Sci. Rep.* **2021**, 11, 5671. [CrossRef]

29. Chen, K.; Zhuang, W.Y. Seven new species of *Trichoderma* from soil in China. *Mycosistema* **2017**, 36, 1441–1462.

30. Chaverri, P.; Gazis, R.O.; Samuels, G.J. *Trichoderma amazonicum*, a new endophytic species on *Hevea brasiliensis* and *H. guianensis* from the Amazon basin. *Mycolologia* **2011**, 103, 139–151. [CrossRef] [PubMed]

31. Li, Q.R.; Tan, P.; Jiang, Y.L.; Hyde, K.D.; Mekenzi, E.H.C.; Bahkali, A.H.; Kang, J.C.; Wang, Y. A novel *Trichoderma* species isolated from soil in Guizhou, *T. guizhouense*. *Mycol. Prog.* **2013**, 12, 167–172. [CrossRef]

32. Chaverri, P.; Samuels, G.J. *Hypocrea* (*Hypocreaceae*): Species with green ascospores. *Stud. Mycol.* **2003**, 48, 1–116.

33. Jaklitsch, W.M.; Samuels, G.J.; Dodd, S.L.; Lu, B.S.; Druzhinina, I.S. *Hypocrea rufa/Trichoderma virida*: A reassessment, and description of five closely related species with and without warted conidia. *Stud. Mycol.* **2006**, 56, 135–177. [CrossRef]

34. Luecking, R.; Ame, M.C.; Robbertse, B.; Miller, A.N.; Ariyawansa, H.A.; Aoki, T.; Cardinali, G.; Crous, P.W.; Druzhinina, I.S.; Geiser, D.M.; et al. Unambiguous identification of fungi: Where do we stand and how accurate and precise is fungal DNA barcoding? *IMA Fungus* **2020**, 11, 14. [CrossRef] [PubMed]

35. Druzhinina, I.; Kubicek, C.P. Species concepts and biodiversity in *Trichoderma* and *Hypocrea*: From aggregate species to species clusters? *J. Zhejiang Univ. Sci. B* **2005**, 6, 100–112. [CrossRef] [PubMed]

36. Persoon, C.H. *Neurospora* genetic nomenclature. *Romers Neues Mag.* Bot. **1794**, 1, 81–128.

37. Jhune, C.S.; Leem, H.T.; Park, H.S.; Lee, C.J.; Weon, H.Y.; Seok, S.J.; Yoo, K.H.; Sung, G.H. Identification of oyster mushroom green mold pathogen that causes and pathological characteristics. *J. Mushrooms* **2014**, 12, 132–137. [CrossRef]

38. Barrera, V.A.; Iannone, L.; Romero, A.I.; Chaverri, P. Expanding the *Trichoderma harzianum* species complex: Three new species from Argentine natural and cultivated ecosystems. *Mycolologia* **2021**, 113, 1136–1155. [CrossRef]

39. Allaga, H.; Zhumakayev, A.; Buchner, R.; Kocsube, S.; Szucs, A.; Vagvolgyi, C.; Kredics, L.; Hatvani, L. Members of the *Trichoderma harzianum* species complex with mushroom pathogenic potential. *Agronomy* **2021**, 11, 2434. [CrossRef]

40. Kosanovic, D.; Potocnik, I.; Duduk, B.; Vukojевич, J.; Stajic, M.; Rekanovic, E.; Milijasevic-Marcic, S. *Trichoderma* species on *Agaricus bisporus* farms in Serbia and their biocontrol. *Ann. Appl. Biol.* **2013**, 163, 218–230. [CrossRef]

41. Marik, T.; Urban, P.; Tyagi, C.; Szekeres, A.; Leitgeb, B.; Vagvolgyi, M.; Manczinger, L.; Druzhinina, I.S.; Vagvolgyi, C.; Kredics, L. Diversity profile and dynamics of peptaibols produced by green mould pathogen that causes *Trichoderma* species in interactions with their hosts *Agaricus bisporus* and *Pleurotus ostreatus*. *Chem. Biodivers.* **2017**, 14, e170033. [CrossRef]

42. Wu, X.J.; Hu, F.P.; He, H.Z.; Xie, B.G. Identification of *Trichoderma* species associated with cultivated edible fungi. *J. Agric. Biotechnol.* **2008**, 16, 1048–1055.

43. Kim, C.S.; Park, M.S.; Kim, S.C.; Maekawa, N.; Yu, S.H. Identification of *Trichoderma*, a competitor of shiitake mushroom (*Lentinula edodes*), and competition between *Lentinula edodes* and *Trichoderma* species in Korea. *Plant Pathol.* J. **2012**, 28, 137–148. [CrossRef]

44. Cui, L.H. Isolation, Identification and Diversity Analysis of the Contaminating Fungi from the Edible Mushroom-Growing Synthetic Wood Logs. Master’s Thesis, Liaoning Normal University, Dalian, China, 2017.

45. Wang, Y. Identification of the Pathogen of *Lentinus edodes* Sticks Rot and Preliminary Study on Its Occurrence. Master’s Thesis, Guizhou University, Guiyang, China, 2021.
46. Samuels, G.J.; Ismaiel, A.; Mulaw, T.B.; Szakacs, G.; Druzhinina, I.S.; Kubicek, C.P.; Jaklitsch, W.M. The Longibrachiatum clade of Trichoderma: A revision with new species. *Fungal Divers.* 2012, 55, 77–108. [CrossRef] [PubMed]

47. Park, M.S.; Seo, G.S.; Bae, K.S.; Yu, S.H. Characterization of *Trichoderma* spp. associated with green mold of oyster mushroom by PCR-RFLP and sequence analysis of ITS regions of rDNA. *Plant Pathol.* J. 2005, 21, 229–236. [CrossRef]

48. Innocenti, G.; Montanari, M.; Righini, H.; Roberti, R. *Trichoderma* species associated with green mold disease of *Pleurotus ostreatus* and their sensitivity to prochloraz. *Plant Pathol.* 2019, 68, 392–398. [CrossRef]

49. Park, M.S.; Seo, G.S.; Bae, K.S.; Yu, S.H. Characterization of *Trichoderma* spp. associated with green mold of oyster mushroom by PCR-RFLP and sequence analysis of ITS regions of rDNA. *Plant Pathol.* J. 2005, 21, 229–236. [CrossRef]

50. Choi, I.Y.; Choi, J.N.; Hyu, L.W.; Sharma, P.K. Isolation and identification of mushroom pathogens from *Agrocybe aegerita*. *Mycobiology* 2010, 38, 310–315. [CrossRef]

51. Cai, M.; Idrees, M.; Zhou, Y.; Zhang, C.; Xu, J. First report of green mold disease caused by *Trichoderma hengshanicum* on *Ganoderma lingzhi*. *Mycobiology* 2020, 48, 427–430. [CrossRef]

52. Chen, X.; Zhou, X.; Zhao, J.; Tang, X.; Pasquali, M.; Migheli, Q.; Berg, G.; Cernava, T. Occurrence of green mold disease on *Dictyophora rubrovolvata* caused by *Trichoderma koningii*. *J. Plant Pathol.* 2021, 103, 981–984. [CrossRef]

53. Kim, S.W.; Kim, S.; Lee, H.J.; Park, J.W.; Ro, H.S. Isolation of fungal pathogens to an edible mushroom, *Pleurotus eryngii*, and development of specific ITS primers. *Mycobiology* 2013, 41, 252–255. [CrossRef]

54. Kim, S.W.; Bae, K.S.; Yu, S.H. Two new species of *Trichoderma* associated with green mold of oyster mushroom cultivation in Korea. *Mycobiology* 2006, 34, 111–113. [CrossRef] [PubMed]

55. Miyazaki, K.; Tsuchiya, Y.; Okuda, T. Specific PCR assays for the detection of *Trichoderma harzianum* causing green mold disease during mushroom cultivation. *Mycoscience* 2009, 50, 94–99. [CrossRef]

56. Kim, C.S.; Yu, S.H.; Nakagiri, A.; Shirouzu, T.; Sotome, K.; Kim, S.C.; Maekawa, N. Re-evaluation of *Hypocrea pseudogelatinosa* and *H. pseudostriaminea* isolated from shiitake mushroom (*Lentinula edodes*) cultivation in Korea and Japan. *Plant Pathol.* J. 2012, 28, 341–356. [CrossRef]

57. Kim, C.S.; Shirouzu, T.; Nakagiri, A.; Sotome, K.; Maekawa, N. *Trichoderma eijii* and *T. pseudolacteum*, two new species from Japan. *Mycol. Prog.* 2013, 12, 739–753. [CrossRef]

58. Lan, B.M. Isolation and identification of *Trichoderma* on oyster mushroom in Quanzhou. *Chin. J. Trop. Agric.* 2022, 42, 81–85.