Charge-Transfer Analysis of 2p3d Resonant Inelastic X-ray Scattering of Cobalt Sulfide and Halides

Ru-Pan Wang, ‡ Boyang Liu, ‡ Robert J. Green, ‡ Mario Ulises Delgado-Jaime, ‡ Mahnaz Ghiasi, ‡ Thorsten Schmitt, § Matti M. van Schooneveld, * ‡ and Frank M. F. de Groot * ‡ ‡

‡ Inorganic Chemistry & Catalysis, Debye Institute for Nanomaterials Science, Utrecht University, Univeristeitsweg 99, 3584 CG Utrecht, The Netherlands
‡ Department of Physics & Astronomy, University of British Columbia, V6T 1Z1 Vancouver, British Columbia, Canada
§ Paul Scherrer Institut, Swiss Light Source, CH-5232 Villigen PSI, Switzerland

Supporting Information

1. INTRODUCTION

The ground-state electronic configuration influences the intrinsic chemical and physical properties of a system, including conductivity, magnetism, and chemical bonds. In the ligand−metal charge-transfer (LMCT) model, the 3d states of a transition-metal ion are assumed to be strongly correlated, where the Co2+ ions are approximated with a 3d7 ionic configuration. The 3d7 configuration is affected by the crystal field interaction, and it interacts with the 3dL configuration via LMCT. The LMCT model has been introduced to classify the 3d transition-metal compounds into different types of insulators or conductors according to values of the Hubbard energy (U) and the LMCT energy (Δ). The electronic structure can be investigated with infrared spectroscopy (IR), optical absorption spectroscopy, Raman spectroscopy, and X-ray photoemission spectroscopy (XPS).

2p3d resonant inelastic X-ray scattering (RIXS) is a bulk-sensitive, state- and element-selective measurement able to accurately investigate atomic, crystal field, and charge-transfer information. Earlier 2p3d RIXS experiments had energy resolutions in the range of 200−500 meV but this has improved to 30−200 meV in recent years. The increased resolution implies that dd-excitations and charge-transfer excitations can be analyzed in more detail. In addition, the low-energy excitations (phonons, magnons) become visible, but this is not analyzed in the present paper. We have chosen cobalt dihalides and CoS as prototype materials to investigate the power of 2p3d RIXS experiments. These systems have been investigated by XPS. The charge-transfer parameters influence the Neel temperature (T_N) and are correlated with the crystal structure. Cobalt chalcogenides are widely used as electrodes of pseudocapacitors, hydrogen production catalysts, and quantum dot-sensitized solar cells. The understanding of its essential characteristics, such as local atomic structure, oxidation state, or chemical composition, is complicated by various amorphous and nanostructures. Recently, Kornienko et al. used Raman spectroscopy and X-ray absorption spectroscopy (XAS) to investigate the amorphous cobalt sulfide catalysts, but the electronic structure of the cobalt ions were not discussed in detail. We note that, unlike the cobalt dihalides, cobalt sulfides show metallic behavior. In this study, the 2p3d RIXS spectra of CoF2, CoCl2, CoBr2, and CoS compounds are analyzed systematically using the LMCT model. Although all the crystal structures are different, the cobalt ions in these compounds are surrounded by six ligands in a (distorted) octahedral geometry.
LMCT analysis, we derive relations between covalency, crystal field strength, and peak positions in 2p XAS and 2p3d RIXS.

2. METHODOLOGY

2.1. Experimental Details and Sample Preparation. Cobalt(II) fluoride (powder, >99%, ρ = 4.43 g·cm⁻³), anhydrous cobalt(II) chloride (beads, –10 mesh, 99.999% trace metals basis, ρ = 3.36 g·cm⁻³) and anhydrous cobalt(II) bromide (beads, –10 mesh, 99.99% trace metals basis, ρ = 4.91 g·cm⁻³) were obtained from Sigma-Aldrich. Cobalt(II) sulphide (powder, 99.5%, ρ = 5.45 g·cm⁻³) was obtained from City Chemical LLC. The powders were applied on carbon tape, attached to the sample holder in an argon atmosphere glovebox, and transferred in an anaerobic environment to the RIXS measurement chamber using a dedicated transfer tool designed for the ADRESS beamline. XAS and RIXS spectra were measured at the ADRESS beamline of the Swiss Light Source (SLS). The Co L₂,₃ edge (2p) XAS spectra were measured through the drain current and by a photodiode for total electron yield (TEY). The incident energy scale was calibrated measuring the cobalt 2p XAS spectra of the cobalt monoxide powder and comparing it with literature values. The 2p3d RIXS spectra were measured with the use of the high-resolution Super Advanced X-ray Emission Spectrometer (SAXES) of the ADRESS beamline. A scattering geometry was used in which the angle between the incoming light vector and the outgoing one was 90°. The incoming light was polarized in linear parallel mode (linear horizontal; LH) to the scattering plane with a grazing incident angle of 20°. The total resolution of the 2p3d RIXS spectra
were calibrated by measuring the elastic scattering of a noncobalt containing and amorphous reference with the incoming energy from 765 to 785 eV. The combined energy resolution of the RIXS zero-loss peak was found to be 160 meV of full width at half-maximum (fwhm) at the Co L₂ edge (780 eV). The experiments were performed at room temperature and with a pressure below 10⁻⁹ mbar. The spectra were summed over 6–15 partial spectra that were acquired from 40 to 120 s each (varying to avoid detector saturation). The spot size of the beam was 4 × 52 μm², and the incident flux was estimated as 5 × 10¹² ph/s. Using the spectral acquisition times given in Table S1 of the Supporting Information and the freely available Matlab script XASskinsdose,⁹ the skin doses for each CoF₂, CoCl₂, CoBr₂, and CoS spectrum were estimated to vary between 2.0 and 4.5, 1.9–3.8, and 2.5–7.8 teragay (Tgy), respectively. The accumulated skin doses will be three times higher because typically two different sample spots were used to acquire spectra at six excitation energies. Sample integrity was confirmed by repeated measurements of the 2p XAS spectral shape.

2.2. Theory and Simulations. The 2p3d RIXS spectra are calculated with the Kramers–Heisenberg formula.

\[I(\alpha_i, \alpha_f) = \sum_f \sum_m \left(\frac{1}{\hbar} \langle \Omega m \rangle \langle \Omega | \Omega i \rangle \right)^2 \]

\[\times \delta(E_i + \alpha_i - E_f - \alpha_f) \]

(1)

Here, \(\alpha_i \) and \(\alpha_f \) are the energies of the incident and the emitted photons; \(E_i, E_f \) and \(E_m \) are the eigenvalues of the initial state \(\langle i \rangle \), the final state \(\langle f \rangle \), and the intermediate state \(\langle m \rangle \) respectively; \(\Gamma_m \) gives the lifetime broadening of the intermediate state, and \(\Omega \) is the transition operator, for which the dipole transitions were implied for the case of the 2p3d X-ray absorption and the LMCT-simulated 2p3d RIXS spectra (section 3 of the Supporting Information), where the intensity of the simulation was normalized to the exponential function is a mixture of the \(d^\text{ff} \) and \(d^\text{ff}L \) configurations, where an electron has been transferred from the ligand valence band while preserving spin and symmetry.⁹ The LMCT energy (\(\Delta \)) is the ionic energy difference between the two configurations, and the electron hopping integrals (\(T \)) describe their coupling. The resulting ground-state wave function is a mixture of the \(d^\text{ff} \) and \(d^\text{ff}L \) configurations, which is given as \(\Psi_{G}\text{ff} = \alpha d^\text{ff} + \beta d^\text{ff}\text{L} \) with an eigen energy \(E_{G}\text{ff} \).

3. RESULTS

3.1. 2p3d RIXS Experiments. The top panel in Figure 1 shows the 2p (L₂,₃) XAS spectra of CoF₂, CoCl₂, CoBr₂, and CoS. All four spectra show the clear signature of a \(^1T \) high-spin Co³⁺ ground state, equivalent to CoO.¹⁰,¹¹ One can observe that the multiplet states are more and more compressed in the series CoF₂ < CoCl₂ < CoBr₂ < CoS. To measure the 2p3d RIXS spectra, the incident photon energies were selected in the 2p XAS spectra and labeled with capital symbols A–G (top panels of Figure 1). The chosen incident energies correspond to the different peaks and features of the XAS spectra, as indicated. The incident energies A–F correspond to the 2p₃/₂ edge. At the 2p₁/₂ edge, only the highest peak energy G was selected for the 2p3d RIXS measurements. In the case of CoS, the multiplet states are compressed, which makes peak B invisible; therefore, no 2p3d RIXS was measured at energy B for CoS.

The bottom panels in Figure 1 present both the experimental and the LMCT-simulated 2p3d RIXS spectra (section 3 of the Supporting Information), where the intensity of the simulation was normalized to the first dd-excitation at approximately 0.7 eV. For CoF₂, a series of sharp features are observable over the whole energy range from 0.0 to 9.0 eV. In fact the peaks continue above 9.0 eV, but the spectra are limited to this energy range to make the low-energy peaks better visible. CoBr₂ and CoS also contain the same series of sharp peaks, but they are limited to the range between 0.0 and 3.0 eV. Between 3.0 and 7.0 eV, broader features are visible. The 2p3d RIXS final states relate to excitations of the \(^1T \) Co³⁺ ions. One can make a direct comparison to optical spectroscopy and relate the sharp peaks with dd-excitations and the broad peaks with charge-transfer excitations. A difference with optical spectroscopy is that the dd-excitations are dipole-forbidden in direct optical absorption, which makes them weak in intensity.⁶⁻⁸ Because 2p3d RIXS is a dipole excitation plus dipole decay transition, the dd-excitations are strong. In fact, for CoF₂ and CoCl₂ the dd-excitations are stronger than the charge-transfer excitations. Experimentally we conclude that in 2p3d RIXS we reach equivalent final states as in optical absorption with an inverted

obtain exact solutions of the charge-transfer Hamiltonian.¹³ XAS calculations were performed with CTM4XAS.⁴⁴ The charge-transfer RIXS calculations were performed with the use of a dedicated Matlab program.⁴⁵ CTM4DOC was used to project the states to their individual basis and to analyze the expansion coefficients in terms of different basis sets.⁴⁶ In a CTM calculation, the following interactions are used: atomic electron–electron interactions, spin–orbit coupling, the crystal field potential, the charge-transfer hybridization, and the broadening parameters. The Slater integrals (F₃d₋₃d, F₃d₋₄p, G₃d₋₄d, and G₄d₋₄d) describe the atomic electron–electron interactions in the initial, intermediate, and final states. Alternatively one can use the Racah parameters B and C that are linear combinations of F₃d₂ and F₄d₂ (B = (9 F₃d₂ − 5 F₄d₂)/441 and C = 5 F₄d₂/63).⁴⁷,⁴⁸ The LMCT effect is included by the single impurity Anderson model⁴⁹,⁵⁰ considering the interactions between dⁿ and dⁿ₋¹L configurations, where an electron has been transferred from the ligand valence band while preserving spin and symmetry.⁹ The LMCT energy (\(\Delta \)) is the ionic energy difference between the two configurations, and the electron hopping integrals (\(T \)) describe their coupling. The resulting ground-state wave function is a mixture of the dⁿ and dⁿ₋¹L configurations, which is given as \(\Psi_{G}\text{ff} = \alpha d^n + \beta d^{n-1}\text{L} \) with an eigen energy \(E_{G}\text{ff} \).
intensity strength where dd-excitations are stronger than charge-transfer excitations.

3.2. 2p3d RIXS Simulations

The spectral features are calculated with the Kramers–Heisenberg equation using the incident photon energies from the experiments. The general procedure in the 2p3d RIXS calculations is the following:

1. We calculate the atomic parameters for the Co\(^{5+}\) ion, using the common approach in CTM4XAS of using 80% of the Hartree–Fock calculated values for the Slater integrals plus the spin–orbit couplings as calculated for the free ion.
2. We use the 2p3d RIXS spectra of each compound to determine the value of 10Dq.
3. We use the 2d3p RIXS spectra of each compound to determine Δ.
4. Keeping the optimized 10Dq and Δ, the atomic parameters were optimized to obtain the best fit for both the 2p XAS and all 2p3d RIXS spectra, where the same parameters are used for all four systems.

First we describe the comparison with the 2p3d RIXS experiments. In section 3.3 we describe the procedure to determine the value of 10Dq. In section 3.4 we describe the procedure to determine the value of Δ and the consequence of charge transfer on the crystal field splitting.

All CTM calculations were performed in C\(_4\) symmetry at 300 K using a small exchange field (\(M \sim 2\) meV) to take the antiferromagnetic order \((T_N \sim 10–40\) K) into account.\(^{27–29}\)

The 300 K results were calculated by considering the first six energy states and summing them with a Boltzmann distribution weighting. Because of the contraction of the 3d wave function due to the core hole, the 10Dq value is reduced with 15% for the intermediate state.\(^{32}\)

The charge-transfer parameters include the charge-transfer energy Δ, the Hubbard Coulomb repulsion between the 3d electrons \(U_{dd}\) (U), the core hole potential \(U_{pd}\) (Q), and the electron hopping parameters T. In this article, the parameters were fixed by using \(U = 6\) eV, \(Q = 7\) eV, \(T_{eg} = 1\) eV, and \(T_{t2g} = 2\) eV. Note that 2p XAS and 2p3d RIXS are not sensitive to the values of U and Q, but only to their energy difference. For Co\(^{5+}\), only 3d\(^7\) and 3d\(^8\) configurations were considered in the calculations. The 3d\(^3\)L\(^2\) and 3d\(^4\)L\(^3\) configurations were neglected when reproducing the 2p XAS and the 2p3d RIXS spectral shapes.\(^{33}\)

As described above, the initial calculations were performed with atomic Slater integrals, defined as 80% of their Hartree–Fock value. 2p3d RIXS allows for a refinement of the atomic parameters: The combination of (a) its 160 meV resolution, (b) the multiple resonant spectra, and (c) the large number of spectral features allows for a further refinement of the atomic interactions. The optimized values of the Slater integrals are given in Table 1 (see section 4d of the Supporting Information), where we note that in \(O_L\) symmetry the exchange interaction for \(e_g\) and \(t_{2g}\) states is not exactly the same.\(^{34}\) The \(F_{dd}\) and \(F_{qq}\) are not necessarily reduced by the similar reduction values. The lifetime of the 2p core states is approximately constant for the \(L_3\) edge.\(^{55,56}\)

Table 1. Slater Integral and Spin–Orbit Coupling Energies in the Simulation (in eV)

Configuration	\(F_{dd}\)	\(F_{qq}\)	\(G_{dd}\)	\(G_{qq}\)	\(\zeta_p\)	\(\zeta_d\)	
\(2p^3 3d^7\)	9.470	6.805	–	–	–	0.066	
\(2p^3 3d^8\)	8.512	6.072	–	–	–	0.059	
\(2p^3 3d^9\)	10.115	7.276	6.398	4.318	2.701	9.748	0.083
\(2p^3 3d^{10}\)	–	–	5.83	3.895	2.435	9.750	0.075

The slater integrals values \(F_{dd}\), \(F_{qq}\), \(G_{dd}\), and \(G_{qq}\) are 82%, 94%, 88%, 80%, and 88% of the Hartree–Fock values, respectively.

yellow block indicates the region of the charge-transfer excitations, where a large charge-transfer energy Δ shifts them to higher excitation energies. The charge-transfer peaks provide a determination for the hybridization information and will be further discussed in section 3.4. In general, the energy and shape of the excitations are well-reproduced, especially in the first 2 eV. The peaks at higher excitation energies above 3.0 eV were not simulated as accurately, which is related to the approximations to the 3d\(^3\)L\(^2\) charge-transfer band due to limitations in computer power. The full charge-transfer band has been approximated with three charge-transfer states that yield features that are too sharp at energies above 3.0 eV.

With Figure 2 we emphasize the excitation selectivity. At incident energies \(A–E\), the 0–2 eV excitations dominate, but at incident energy \(F\), more intensity is found at the higher excitation energies. In the case of CoF\(_2\), the spectra at energy F gives dd-excitation in the whole energy loss region between 0 and 8 eV (Figure 2a).

Table 2. RIXS-Derived State Symmetry Term Symbols and Energies (in eV) and Their Comparison to Calculations

Configuration	CoF\(_2\)	CoCl\(_2\)	CoBr\(_2\)	CoS	Quartet
\(4T_1\)	0.00/0.00	0.00/0.00	0.00/0.00	0.00/0.00	0.00/0.00
\(4T_2\)	0.85/0.81	0.77/0.72	0.71/0.68	0.67/0.65	
\(4A_2\)	1.71/1.76	1.60/1.61	1.52/1.54	1.44/1.51	
\(4T_1\)	2.27/2.35	2.11/2.14	1.98/2.02	1.79/1.83	

The 3d\(^3\)L\(^2\) charge-transfer band due to limitations in computer power. The full charge-transfer band has been approximated with three charge-transfer states that yield features that are too sharp at energies above 3.0 eV.

3.3. Determination of the Crystal Field Value 10Dq from 2p3d RIXS Experiments

In our CTM simulation, 10Dq and Δ are the only two free parameters that are used in addition to the fixed atomic parameters. From the Tanabe–Sugano diagram it is known that the effective value of 10Dq is...
close to the splitting between the ground state and the first dd-excitations. In other words, the first peak in the dd-excitations will be close to the value of 10Dq. We will investigate the relation between the first dd-excitation energy and 10Dq. In the Co²⁺ (3d⁷) high-spin Tanabe–Sugano diagram (Figure S5), the energy difference between the 4T₁ and 4T₂ states is linear in 10Dq between 0.2 and 1 eV. This energy difference corresponds to the first dd-excitation in the 2p₃d RIXS spectra. As such, one can track the 10Dq value by locating the first dd excitation peak, which is more reliable than fitting the 2p XAS spectrum. The energy difference between the 4T₁ and 4T₂ states has been collected in Figure 3b. From these data points, the following relation regarding the crystal field splitting was derived (see section 4 of the Supporting Information for more details):

\[\Delta E = 0.865 \times 10Dq + 0.0534 \]

This equation shows that the difference between 4T₁ and 4T₂ states is not exactly equal to 10Dq, but they are correlated with a linear relationship. From this relation we can determine the 10Dq value experimentally from the first dd-excitation of the 2p₃d RIXS spectra. The peak maxima of the first dd-excitations are 0.85, 0.77, 0.71, and 0.67 eV for CoF₂, CoCl₂, CoBr₂, and CoS, respectively (the 4T₂ state in Figure 4a). In all cases the first peak relates to the 4T₂ state. The 10Dq values of the compounds were converted using eq 2, and they are 0.92, 0.81, 0.75, and 0.70 eV for CoF₂, CoCl₂, CoBr₂, and CoS, respectively. This relates to an increase with respect to first dd-excitation by 0.07, 0.04, 0.04, and 0.03 eV, respectively.

3.4. Ionic and Covalent Contribution to the Crystal Field Splitting. When the LMCT effect is considered, the charge transfer contributes to the e_g−t₂g splitting, i.e., the overall effective crystal field is caused by both ionic and charge-transfer contributions. The total crystal field splitting (10Dq_re) should be reconsidered as the effect from two components:

1. The ionic crystal field value (10Dq_ion)
2. The charge-transfer contribution (\(\Delta E_{CT} \))

Figure 3a shows the ionic and charge-transfer contributions of the crystal field splitting. In the simulations we relate the first dd-peak to the total crystal field splitting, which implies that after the determination of the charge-transfer energy \(\Delta \), we...
have to adjust $10D_{q_{ion}}$. Figure 3c shows the results for a series of calculations as a function of Δ. One can observe a linear trend between the value of Δ and $(10D_{q_{eff}} - 10D_{q_{ion}})$. This implies that there is a linear relation between the charge-transfer contribution (ΔE_{CT}) and Δ (cf. Figure 3c):

$$\Delta E_{CT} = 10D_{q_{eff}} - 10D_{q_{ion}} \approx 0.43 - 0.0239 \times \Delta$$ \hspace{1cm} (3)

We optimized the Δ values by comparing the calculated charge-transfer peak to the experimental spectra. In Table 3 the Δ and ΔE_{CT} values are given, and after eq 3 was applied, the ionic crystal energy $10D_{q_{ion}}$ was obtained. Figure 4c summaries the contributions of $10D_{q_{eff}}$ (filled bars), $10D_{q_{ion}}$ (striped bars), and ΔE_{CT} (slide bars) in a graphical presentation.

4. DISCUSSION

4.1. Width of the Elastic Peak. An interesting observation is that the width of the elastic peak in CoF$_2$ (fwhm \sim 280 meV) is larger than that in CoS (fwhm 230 meV), whereas the experiment resolution was 160 meV with an uncertainty of less than 10 meV. In other words, the observed elastic peak broadenings are larger than the experiment resolution. This implies that there are additional broadening mechanisms due to (1) 3d spin−orbit coupling, (2) magnetic exchange, (3) symmetry distortions, and/or (4) vibrations. The effects 1−3 split the T_1 ground state.\(^5\)\(^1\) Infrared spectroscopy results\(^2\) show that the highest energy of the spin−orbit coupling peak (interacting with the exchange field) is 0.173 eV for CoF$_2$, while the energies for CoCl$_2$ and CoBr$_2$ are 0.148 and 0.143 eV, respectively, confirming the 0.03 eV broadening difference in Figure 4a. One possible reason for this effect is that when the Δ value is smaller, the d^7 and $d^8\text{L}$ configurations are more hybridized, leading to an effective reduction of the 3d spin−orbit coupling. An alternative scenario is that the more ionic the compound, the larger the effect of a crystal field distortion.

4.2. Ground-State Analysis and Differential Orbital Covalency. The LMCT energies listed in Table 3 were determined according to the charge-transfer excitations as emphasized in Figure 4b. A trend of the charge-transfer excitations is visible as a function of Δ. The obtained Δ values were 8, 3.6, 2.4, and 0.8 eV with respect to the CoF$_2$, CoCl$_2$, CoBr$_2$, and CoS samples. The center of the features were extracted from the spectra and are given in Table 2. A smaller Δ value leads to a stronger hybridization of ground state between the $3d^7$ and $3d^8\text{L}$ configurations, in which the ground state can

Table 3. Experimental First dd-Excitation and its Relation to Different 10Dq Values and Δ

Sample	first dd	$10D_{q_{eff}}$	$10D_{q_{ion}}$	ΔE_{CT}	Δ
CoF$_2$	0.85	0.92	0.70	0.22	8.8
CoCl$_2$	0.77	0.81	0.38	0.34	3.6
CoBr$_2$	0.71	0.75	0.38	0.37	2.4
CoS	0.67	0.70	0.29	0.41	0.8

ΔE_{CT} values are given, and after eq 3 was applied, the ionic crystal energy $10D_{q_{ion}}$ was obtained. Figure 4c summaries the contributions of $10D_{q_{eff}}$ (filled bars), $10D_{q_{ion}}$ (striped bars), and ΔE_{CT} (slide bars) in a graphical presentation.

Table 4. Orbital Occupation and Covalency Analysis of CoF$_2$, CoCl$_2$, CoBr$_2$, and CoS

	id^1	id^2L	metal covalency
	$t_2^5e_2^3$	$t_2^0e_2^5\text{L}$	T_{2g} E_{1g} DOC (η)
CoF$_2$	85.3	8.6	97.5 91.7 5.8 7.06
CoCl$_2$	75.7	8.3	93.1 78.6 14.4 7.16
CoBr$_2$	71.0	8.1	90.9 72.3 18.6 7.21
CoS	62.5	7.4	86.7 60.5 26.2 7.30
be described by \(\psi_{\text{CS}} = \alpha (3d^7) + \beta 3d^{\text{L}} \) with the population coefficient values \(\alpha \) and \(\beta \). This gives the hybridization percentages of the original multiplet \((l\alpha t')\) and the ligand hole multiplet configuration \((l\beta t')\).

To obtain the hybridization percentages, the microstates of the ground state are projected into separate 3d\(^2\) and 3d\(^L\) configurations of specific orbitals derived from symmetry (in octahedral symmetry, for example, in terms of \(e_g \) and \(t_{2g} \) orbitals).\(^{46}\) The results are shown in Table 4. It is observed therein that the percentage of the 3d\(^2\) states on the cobalt ion decreases with decreasing \(\Delta \). The percentage of ligand-hybridized 3d\(^L\) states for CoS is \(\sim 30\% \). From these numbers, the metal covalency of the \(e_g \) and \(t_{2g} \) orbitals can be estimated. Here we consider only one-electron hopping from the ligand to the metal ion \(e_g \) or \(t_{2g} \) orbitals. Hence, only the 3d\(^2\) ground state \(\left| l_{2g} e_g \right\rangle \) and the ligand hole \(e_g \left| l_{2g} e_g e_g \right\rangle \) and \(t_{2g} \left| l_{2g} e_g e_g \right\rangle \) states are taken into account. The covalence fraction of cobalt within \(e_g \) orbitals is then given by

\[
C(e_g) = 100\% - \frac{3}{2} \left(\frac{P_{t_{2g} e_g}}{P_{t_{2g} e_g} + P_{t_{2g} t_{2g} e_g} + P_{t_{2g} t_{2g} e_g}} \right)
\]

where \(\frac{1}{2} \) is a renormalization factor (2 out of 3 holes in the d\(^7\) configuration are in \(e_g \) orbitals) and \(P_{t_{2g} e_g} \) are the percentages for configuration \(t_{2g} e_g \) as given in Table 4. This implies that the covalence fraction of cobalt within the \(e_g \) orbitals is reduced from 100% by the corresponding fraction of ligand character within these \(e_g \) orbitals. Similarly, the covalence fraction of cobalt in the \(t_{2g} \) orbitals is then given by

\[
C(t_{2g}) = 100\% - \frac{3}{1} \left(\frac{P_{t_{2g} e_g}}{P_{t_{2g} e_g} + P_{t_{2g} t_{2g} e_g} + P_{t_{2g} t_{2g} e_g}} \right)
\]

It follows that, when going through the series from CoF\(_2\) to CoS, the cobalt ion character in the \(e_g \) orbitals decreases faster than that in the \(t_{2g} \) orbitals (Figure 4c). In octahedral symmetry, the ligand 2p orbitals overlap strongly with the cobalt 3d \((d_{x^2-y^2} \text{ and } d_{z^2}) \) orbitals; thus, ligand hybridization is affecting \(e_g \) orbitals more than \(t_{2g} \) orbitals. By subtracting the \(e_g \) from the \(t_{2g} \) covalency one obtains the differential orbital covalency (DOC)\(^{58}\) as given in Table 4. The DOC values are dependent on crystal field symmetry and strength, as well as charge-transfer hopping energies. Note that we obtain a similar DOC value for CoS as obtained for \([\text{FeCl}_6]\)\(^{3-}\) with similar symmetry and charge-transfer settings:\(^{18}\) CoS (\(\Delta = 0.8 \) eV; \(T_{e_g}, T_{t_{2g}} = 2:1 \)) and \([\text{FeCl}_6]\)\(^{3-}\) (\(\Delta = 0.1 \) eV; \(T_{e_g}, T_{t_{2g}} = 2:1 \)) have DOC values of 25–27%.

4.3. Charge-Transfer Parameters Derived from 2p3d RIXS Compared with 2p XPS

When the \(\Delta \) values in Table 2 are compared with XPS-derived \(\Delta \) values,\(^a\) only the value for CoF\(_2\) is found to be equal (RIXS, 8.8 eV vs XPS, 8.6 eV). CoCl\(_2\) (RIXS, 3.6 eV vs XPS, 4.5 eV) and CoBr\(_2\) (RIXS, 2.4 eV vs XPS, 3.5 eV) show less agreement. For CoS, a small \(\Delta \) value (0.8 eV) was found, which is related to the sample exhibiting metallic behavior.\(^{34}\) First, a simulation including the third configuration 3d\(^L\)\(^2\) has been tested (Figure S11). In the case of CoBr\(_2\), the three-configuration calculation shifts the charge-transfer excitation \(\sim 0.3 \) eV lower than the two-configuration calculation with the same \(\Delta \) value. In other words, the \(\Delta \) value should be \(\sim 2.7 \) eV (2.4 + 0.3) for CoBr\(_2\) when we consider the third configuration. This brings the \(\Delta \) value a bit closer to, but smaller than, the XPS value (3.5 eV).

Figure 5 displays the final state configurations of the XAS, XPS, and RIXS processes. It shows the energy differences between the ionic configuration and the two charge-transfer configurations. The notations EG and EF refer to ground and final states, respectively. The numbers 1, 2, and 3 refer to configurations with zero, one, and two ligand hole(s), respectively. The charge-transfer configurations show that the core–hole potential (\(Q \)) needs to be taken into account in the case of XAS and XPS spectra. This implies that we have to optimize \(Q \) (in addition to \(\Delta \)) to simulate the XAS and XPS spectra. Because of the larger screening effects, at least three charge-transfer configurations need to be taken into account for XPS spectra.\(^{21,59}\) On the other hand, the relative final state energy of the first LMCT configuration in valence RIXS is \(\Delta \). Being independent of \(Q \), the core–hole will not contribute to the relative configuration energy in 2p3d RIXS, where we note that via its influence on 2p XAS \(Q \) could influence the intensities. We ignore the second LMCT configuration in the RIXS calculations. As indicated in Figure 5, the relative initial and final state energies of the second LMCT configuration are \(2\Delta + U \) in RIXS. In the vast majority of cases, its relative energy will be significantly higher than that of the first LMCT configuration and will play a negligible role in the spectral shape. Finally, we note that our \(\Delta \) and 10D\(_{q}\) determinations
X-ray emission, the RIXS signal follows the process:

\[
2p_{1/2}^2 2p_{3/2}^4 3d^3 \xrightarrow{L_3 \text{ absorption}} 2p_{1/2}^1 2p_{3/2}^3 3d^8 \\
\xrightarrow{\text{CK Auger}} 2p_{1/2}^1 2p_{3/2}^3 3d^8 \xrightarrow{L_1 \text{ emission}} 2p_{1/2}^2 2p_{3/2}^3 3d^7
\]

The scattering cross section is proportional to the radiative decay. In the case of the nonresonant channel, a Coster–Kronig Auger channel is involved in the first step of the decay process:

\[
2p_{1/2}^2 2p_{3/2}^4 3d^3 \xrightarrow{L_3 \text{ absorption}} 2p_{1/2}^1 2p_{3/2}^3 3d^8 \\
\xrightarrow{\text{CK Auger}} 2p_{1/2}^1 2p_{3/2}^3 3d^8 \xrightarrow{L_1 \text{ emission}} 2p_{1/2}^2 2p_{3/2}^3 3d^7
\]

The 3d2p1/2 X-ray emission intensity is proportional to the strength of the Coster–Kronig Auger channel, where the other Auger channels are equivalent in strength for the L1 and the L2 edges.18,49,55 The large L1 X-ray emission for CoS implies that the Coster–Kronig channel is strong, which is correlated with the large charge-transfer effects. This behavior has also been studied on cobalt clusters in SiO2.60–62 Our conclusion is that the intensity of the Coster–Kronig induced nonresonant X-ray emission is a measure of the covalency of a system, where further study is required to quantify this effect for different elements.

5. CONCLUSIONS

We have measured high-resolution 2p3d RIXS results of CoF2, CoCl2, CoBr2, and CoS. Charge-transfer multiplet calculations are able to accurately reproduce the spectral shapes. The analysis revealed accurate values of the charge-transfer energy \(\Delta \) and the crystal field value 10Dq, where the crystal field is split into ionic and charge-transfer contributions. In comparison with XPS, 2p3d RIXS is a more accurate method to determine the charge-transfer energy (\(\Delta \)). In addition, it is more precise regarding the crystal field value 10Dq and also in determining the electronic–electron interactions (Slater integrals).

From the simulations, the orbital occupancies of the different states are given, and the corresponding differential orbital covalency analysis confirms that CoS is significantly more covalent than CoF2. It is observed experimentally that the broadening of the quasi-elastic peak becomes gradually smaller while going from ionic CoF2 to covalent CoS, due to either an effective reduced 3d spin–orbit coupling and/or symmetry distortions.

The L2 edge RIXS spectra are analyzed with respect to the integrated intensity ratio between resonant (2p1/23d) and nonresonant (2p1/23d) X-ray emissions, which are \(\sim0.55, \sim1.06, \sim1.22, \) and \(\sim1.71 \) for CoF2, CoCl2, CoBr2, and CoS, respectively. These numbers show that the Coster–Kronig channel is stronger in CoS, and we conclude that the ratio between resonant and nonresonant decay is a potential tool to probe the effects of electron delocalization.

ASSOCIATED CONTENT

Supporting Information

The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acs.jpcc.7b06882.

Applied X-ray skin doses, charge-transfer multiplet calculation and single-impurity Anderson model, details on the experimental and simulated results, Tanabe–Sugano diagrams and the effects of charge transfer (PDF).

AUTHOR INFORMATION

*E-mail: M.M.vanshooneveld@gmail.com. Tel: (+31) 302537400.

*E-mail: F.M.F.deGroot@uu.nl. Tel: (+31) 302537400.
The authors declare no competing financial interest.

■ ACKNOWLEDGMENTS

Experiments have been performed at the ADRESS beamline of the Swiss Light Source at the Paul Scherrer Institut, Villigen, Switzerland. We thank C. Monney for his assistance during the measurements. Financial support was provided through Rubicon Grant 680-50-1206 of The Netherlands Organization for Scientific Research (NWO) and the ERC advanced grant XRAYOnACTIVE, Number 340279.

■ REFERENCES

(1) Zaanen, J.; Sawatzky, G. A.; Allen, J. W. Band Gaps and Electronic Structure of Transition-metal Compounds. Phys. Rev. Lett. 1985, 55, 418–421.
(2) Newman, R.; Chrenko, R. M. Infrared Absorption from L-S SplitTINGS in Ce²⁺ Salts. Phys. Rev. 1959, 115, 1147–1152.
(3) Tanabe, Y.; Sugano, S. On the Absorption Spectrum of Complex Ions II. J. Phys. Soc. Jpn. 1954, 9, 766–779.
(4) Ferguson, J.; Wood, D. L.; Knox, K. Crystal-field spectra of d⁴, d⁵ Ions. II. KCO₆, CoCl₂, CoBr₂, and CoWO₄. J. Chem. Phys. 1963, 39, 881–889.
(5) Zimring, L. J.; Stout, J. W. Polarized Crystal Spectra of CoF₂ and Co₅₀ₓZn₄₀xF₂. J. Chem. Phys. 1969, 51, 4197–4209.
(6) Blunt, R. F. Optical Absorption of Cobalt in Manganese Fluoride. J. Chem. Phys. 1966, 44, 2317–2320.
(7) Lockwood, D. J.; Mischler, G.; Johnstone, I. W.; Schmidt, M. C. Raman Scattering from Electronic Excitations and Phonons in Paramagnetic and Antiferromagnetic CoBr₂. J. Phys. C: Solid State Phys. 1979, 12, 1955–1975.
(8) Kinsinger, V.; Zimmermann, R.; Hüfner, S.; Steiner, P. Core Level Exchange Splitting in Transition Metal Compounds. Z. Phys. B: Condens. Matter 1992, 89, 21–27.
(9) de Groot, F. M. F. Multiplet Effects in X-ray Spectroscopy. Coord. Chem. Rev. 2005, 249, 31–63.
(10) Magnuson, M.; Botorin, S. M.; Guo, J.-H.; Nordgren, J. Electronic Structure Investigation of CoO by Means of Soft X-ray Scattering. Phys. Rev. B: Condens. Matter Mater. Phys. 2002, 65, 205104.
(11) Botorin, S. M.; Guo, J.-H.; Magnuson, M.; Nordgren, J. Resonant Inelastic Soft X-ray Scattering from Valence-band Excitations by High Resolution RIXS at the L₃ Edge of Cu, Ni and Mn. Eur. Phys. J.: Spec. Top. 2009, 169, 199–205.
(12) Chiuzbain, S. G.; Schmitt, T.; Matsubara, M.; Kotani, A.; Ghiringhelli, G.; Dallera, C.; Tagliaferri, A.; Braichov, L.; Sagnol, V.; Brookes, N. B. et al. Combined M- and L-edge Resonant Inelastic X-ray Scattering for Studies of 3d Transition Metal Compounds. Phys. Rev. B: Condens. Matter Mater. Phys. 2008, 78, 245102.
(13) van der Laan, G.; Zaanen, J.; Sawatzky, G. A.; Karntak, R.; Esteva, J.-M. Comparison of X-ray Absorption With X-ray Photoemission of Nickel Dihalides and NiO. Phys. Rev. B: Condens. Matter Mater. Phys. 1986, 33, 4253–4263.
(14) van der Laan, G.; Zaanen, J.; Sawatzky, G. A.; Karntak, R.; Esteva, J.-M. Correlation Effect, Charge-Transfer Energy and Covalency in Nickel Compounds as Determined by X-ray Absorption Spectroscopy. Solid State Commun. 1985, 56, 673–676.
(15) Wyckoff, R. W. G. Crystal Structures; John Wiley: New York, 1963.
(16) Costa, M. M. R.; Paixão, J. A. de; Almeida, M. J. M.; Andrade, L. C. R. Charge Densities of Two Rutile Structures: NiF₂ and CoF₂. Acta Crystallogr., Sect. B: Struct. Sci. 1993, 49, 591–599.
(17) Ramos, C. A.; Lederman, D.; King, A. R.; Jaccarino, V. New Antiferromagnetic Insulator Superlattices: Structural and Magnetic Characterization of (FeF₃)ₓ(CoF₂)₁₋ₓ. Phys. Rev. Lett. 1990, 65, 2913–2915.
(18) van Uitert, L. G.; Williams, H. J.; Sherwood, R. C.; Rubin, J. J. Graphical Correlation of the Neél Temperatures of Chlorides, Bromides, and Iodides of Divalent 3d Transition Metal Ions. J. Appl. Phys. 1965, 36, 1029–1030.
(19) Macfarlane, R. M. Raman Light Scattering from Excitons and Magnons in Cobalt Fluoride. Phys. Rev. Lett. 1970, 25, 1454–1457.
(20) Meng, X.; Deng, J.; Zhu, J.; Bi, H.; Kan, E.; Wang, X. Cobalt Sulfide/Graphene Composite Hydrogel as Electrode for High-performance Pseudocapacitors. Sci. Rep. 2016, 6, 21717.
(21) Tao, F.; Zhao, Y.-Q.; Zhang, G.-Q.; Liu, H.-L. Electrochemical Characterization on Cobalt Sulfide for Electrochemical Super-capacitors. Electrochem. Commun. 2007, 9, 1282–1287.
(22) Kornienko, N.; Resasco, J.; Becknell, N.; Jiang, C.-M.; Liu, Y.-S.; Nie, K.; Sun, X.; Guo, J.; Leone, S. R.; Yang, P. Operando Spectroscopic Analysis of an Amorphous Cobalt Sulfide Hydrogen Evolution Electrocatalyst. J. Am. Chem. Soc. 2015, 137, 7448–7455.
(23) Merki, D.; Fierro, S.; Vruble, H.; Hu, X. Amorphous Molybdenum Sulfide Films as Catalysts for Electrochemical Hydrogen Production in Water. Chem. Sci. 2011, 2, 1262–1267.
(24) Faber, M. S.; Park, K.; Cabán-Acevedo, M.; Santra, P. K.; Jin, S. Earth-abundant Cobalt Pyrite (Co₄S₄) Thin Film on Glass as a Robust, High-performance Counter Electrode for Quantum Dot-Sensitized Solar Cells. J. Phys. Chem. Lett. 2013, 4, 1843–1849.
(25) Sugiuira, C.; Golshiyi, Y.; Suzuki, I. Sulfur K-edge X-ray Emission Spectra and Electronic Structures of some Metal Sulfides. Phys. Rev. B 1974, 10, 338–343.
The High Sensitivity of 2p3d Resonant X-ray Emission Spectroscopy: A Multispectroscopic Study of 3d Orbitals in Cobalt Carboxylates: Samarai, M. A.; Monney, C.; Zhou, K. J.; Schmitt, T.; de Groot, F. M. F. University of California Press: Berkeley, CA, 1981.

Reduction and Intense Luminescence in Co and Mn Ion-implanted SiO2. Gavrilov, N. V.; Zatsepin, A. F.; Moewes, A. Electronic Band Gap Metastability Limitations in Nonaqueous Li-O2 Batteries. Staval, J.; Strocov, V. N.; Schmitt, T.; de Groot, F. M. F. Electronic Structure using Wannier Orbitals. Schlappa, J.; Strocov, V. N.; Schmitt, T.; de Groot, F. M. F. F. Electronic Structure Analysis from X-ray Spectroscopy. CTM4DOC: Electronic Structure Analysis from X-ray Spectroscopy.

Structure of CoO Nanocrystals and a Single Crystal Probed by L-edge Spectroscopy. E.; et al. Ligand Field Strengths and Oxidation States from Manganese K-edge XANES. Kipke, C. A.; Eichhorn, D. M.; Chan, M. K.; Armstrong, W. H.; Libby, E.; et al. SAXES, a High Resolution Spectrometer for Resonant X-ray Emission in the 400–1600 eV Energy Range. Rev. Sci. Instrum. 2006, 77, 113108.

van Schooneveld, M. M.; DeBeer, S. A close look at dose: Toward L-edge XAS Spectral Uniformity, Dose Quantification and Prediction of Metal Ion Photo-reduction. J. Electron Spectrosc. Relat. Phenom. 2015, 198, 51–56.

Kramers, H. A.; Heisenberg, W. Über die Streuung von Strahlung durch Atome. Z. Phys. 1925, 31, 681.

Cowen, R. D. Theoretical Calculation of Atomic Spectra Using Digital Computers. J. Opt. Soc. Am. 1968, 58, 808–818.

Thole, B. T.; van der Laan, G.; Butler, P. H. Spin-mixed Ground State of Fe Phthalocyanine and the Temperature-dependent Branching Ratio in X-ray Absorption Spectroscopy. Chem. Phys. Lett. 1988, 149, 295–299.

Green, R. J. Transition Metal Impurities in Semiconductors: Induced Magnetism and Band Gap Engineering. Ph.D. Thesis, University of Saskatchewan, Saskatoon, 2013.

Stavitski, E.; de Groot, F. M. F. The CTM4XAS Program for EELS and XAS Spectral Shape Analysis of Transition Metal L Edges. Microon 2010, 41, 687–694.

Glattel, P. Computer Code; European Synchrotron Radiation Facility: Grenoble, France.

Delgado-Jaime, M. U.; Zhang, K.; Vura-Weis, J.; de Groot, F. M. F. CTM4DOC: Electronic Structure Analysis from X-ray Spectroscopy. J. Synchrotron Radiat. 2016, 23, 1264–1271.

Slater, J. C. The Theory of Complex Spectra. Phys. Rev. 1929, 34, 1293–1322.

Cowen, R. D. The Theory of Atomic Structure and Spectra; University of California Press: Berkeley, CA, 1981.

Green, R. J.; Zatsepin, D. A.; St. Onge, D. J.; Kurmaev, E. Z.; Gavriliov, N. V.; Zatsepin, A. F.; Moewes, A. Electronic Band Gap Reduction and Intense Luminescence in Co and Mn Ion-implanted SiO2. J. Appl. Phys. 2014, 115, 103708.

Anderson, P. W. Localized Magnetic States in Metals. Phys. Rev. 1961, 124, 41–53.

van Schooneveld, M. M.; Kurian, R.; Juhin, A.; Zhou, K.; Schlappa, J.; Strocov, V. N.; Schmitt, T.; de Groot, F. M. F. Electronic Structure of CoO Nanocrystals and a Single Crystal Probed by Resonant X-ray Emission Spectroscopy. J. Phys. Chem. C 2012, 116, 15218–15230.

Cramer, S. P.; de Groot, F. M. F.; Ma, Y.; Chen, C. T.; Sette, F.; Kipke, C. A.; Eichhorn, D. M.; Chan, M. K.; Armstrong, W. H.; Libby, E.; et al. Ligand Field Strengths and Oxidation States from Manganese L-edge Spectroscopy. J. Am. Chem. Soc. 1991, 113, 7937–7940.

van Schooneveld, M. M.; Gosselink, R. W.; Eggenhuisen, T. M.; Samari, M. A.; Monney, C.; Zhou, K. J.; Schmitt, T.; de Groot, F. M. F. A Multispectroscopic Study of 3d Orbitals in Cobalt Carboxylates: The High Sensitivity of 2p3d Resonant X-ray Emission Spectroscopy to the Ligand Field. Angew. Chem., Int. Ed. 2013, 52, 1170–1174.

Haverkort, M. W.; Zwierzycki, M.; Andersen, O. K. Multiplet Ligand-field Theory Using Wannier Orbitals. Phys. Rev. B: Condens. Matter Mater. Phys. 2012, 85, 165113.

de Groot, F. M. F.; Arno, M. A.; Saintavit, Ph.; Cartier, Ch.; Chen, C. T. Fluorescence Yield Detection: Why it does not Measure the X-ray Absorption Cross Section. Solid State Commun. 1994, 92, 991–995.

de Groot, F. M. F.; Ruus, R.; Elango, M. Charge-transfer Multiplet Analysis of the Resonant 2g2p3p Auger Spectra of CaFe2. Phys. Rev. B: Condens. Matter Mater. Phys. 1995, 51, 14062–14068.