Cohomological classification of Ann-functors

Nguyen Tien Quang and Dang Dinh Hanh

April 27, 2009

Abstract

Regular Ann-functor classification problem has been solved with Shukla cohomology. In this paper, we would like to present a solution to the above problem in the general case and in the case of strong Ann-functors with, respectively, Mac Lane cohomology and Hochschild cohomology.

Mathematics Subject Classifications (2000): 18D10, 13D03.

Key words: Ann-category, Ann-functor, classification, Mac Lane ring cohomology, Hochschild cohomology.

1 Introduction

The definition of Ann-categories was presented by N.T. Quang [7] in 1987, which is regarded as a categorization of ring structure. Each Ann-category \mathcal{A} is Ann-equivalent to its reduced Ann-category. This Ann-category is of the type (R, M, h), where R is a ring of congruence classes of objects of \mathcal{A}, $M = Aut(0)$ is the R-bimodule and h is a 3-cocycle in $Z^3_{Mac}(R, M)$ (due to Mac Lane [6]). Then, there exists a bijection between the set of congruence classes of Ann-categories of the type (R, M) and the cohomology group $H^3_{Mac}(R, M)$ (see [11]).

For the regular Ann-categories (whose the commutativity constraint satisfies $c_{X,X} = id$), then in the above bijection, the group $H^3_{Mac}(R, M)$ is replaced with the Shukla cohomology group $H^3_{Sh}(R, M)$ [14].

In 2006 [4], M. Jibladze and T. Pirashvili presented the definition of categorical rings as a slightly modified version of the definition of Ann-categories and classified them by Mac Lane ring cohomology. However, in [10] authors have showed that, it has not been proved whether the R-bimodule structure on M can be deduced from the axiomatics of categorical rings.

The Ann-functor classification problem has been solved for regular Ann-categories with Shukla cohomology [1, 12]. In this paper, we present a solution for this problem in the general case via low-dimensional cohomology groups of Mac Lane ring cohomology. In proper, Hochschild algebra cohomology used to classification of strong Ann-functor.

In this paper, for convenience, sometimes we denote by XY the tensor product of the two objects X and Y, instead of $X \otimes Y$.
2 Preliminaries

2.1 The basic concepts

The definition of Ann-categories was presented in [7, 10, 11]. We always suppose that \(A \) is an Ann-category with a system of constraints:

\[(a^+, c, (O, g, d), a, (I, l, r), L, R). \]

Definition 1. Let \(A \) and \(A' \) be Ann-categories. An Ann-functor from \(A \) to \(A' \) is a triple \((F, \tilde{F}, \tilde{F}')\), where \((F, \tilde{F}) \) is a symmetric monoidal functor respect to the operation \(\oplus \), \((F, \tilde{F}')\) is an \(A \)-functor (i.e. an associativity functor) respect to the operation \(\circ \), satisfies the two following commutative diagrams:

\[
\begin{align*}
F(X(Y \oplus Z)) & \quad \tilde{F} \quad FX.F(Y \oplus Z) \quad \text{id}_S \tilde{F} \quad FX(FY \oplus FZ) \\
F(XY \oplus XZ) & \quad F \quad F(XY) \oplus F(XZ) \quad \tilde{F} \circ \tilde{F} \quad FX.FY \oplus FX.FZ \\
F((X \oplus Y)Z) & \quad \tilde{F} \quad F(X \oplus Y).FZ \quad \tilde{F} \circ \text{id} \quad (FX \oplus FY).FZ \\
F(XZ \oplus YZ) & \quad \tilde{F} \quad F(XZ) \oplus F(YZ) \quad \tilde{F} \circ \tilde{F} \quad FX.FZ \oplus FY.FZ
\end{align*}
\]

The commutation of the above diagrams are called the compatibility of the functor \(F \) with the distributivity constraints of the two Ann-categories \(A, A' \).

We call \(\varphi: F \rightarrow G \) an Ann-morphism between two Ann-functors \((F, \tilde{F}, \tilde{F}')\) and \((G, \tilde{G}, \tilde{G}')\) if it is an \(\oplus \)-morphism as well as an \(\circ \)-morphism.

An Ann-functor \((F, \tilde{F}, \tilde{F}') : A \rightarrow A'\) is called an Ann-equivalence if there exists an Ann-functor \((F', \tilde{F}', \tilde{F}'') : A' \rightarrow A\) and natural isomorphisms \(\alpha : F \circ F' \cong \text{id}_{A'} \), \(\alpha' : F' \circ F \cong \text{id}_A \).

By Theorem 8 [9], an Ann-functor \((F, \tilde{F}, \tilde{F}') : A \rightarrow A'\) is an Ann-equivalence iff \(F \) is a categorical equivalence.

Note that, similar to a ring homomorphism, an Ann-functor \(F \) is not required \(F(1) \cong 1' \). Moreover, note that: in the Definition 1, it is only required that \((F, \tilde{F})\) is an AC-functor (i.e. an \(\oplus \)-functor which is compatible with the associativity and commutativity constraints). Indeed, since \((A, \oplus), (A', \oplus)\) are Gr-categories, each A-functor is compatible with the unitality constraints.

2.2 The third Mac Lane ring cohomology group \(H^3_{Mac}(R, M) \)

Let \(R \) be a ring and \(M \) be an \(R \)-bimodule. From the definition of Mac Lane ring cohomology [6], we may obtain the description of the elements of cohomology group \(H^3_{Mac}(R, M) \).

The group \(Z^3_{Mac}(R, M) \) of 3-cochains of the ring \(R \), with coefficients in \(R \)-bimodules \(M \), consists of quadruples \((\sigma, \alpha, \lambda, \rho)\), functions:

\[\alpha, \lambda, \rho : R^3 \rightarrow M \]

and \(\sigma : R^4 \rightarrow M \) satisfy the following relations:

\[\begin{align*}
\text{M1.} & \quad x\alpha(y, z, t) - \alpha(xy, z, t) + \alpha(x, yz, t) - \alpha(x, y, zt) + \alpha(x, y, z)t = 0 \\
\text{M2.} & \quad \alpha(x, z, t) + \alpha(y, z, t) - \alpha(x + y, z, t) + \rho(xz, yz, t) - \rho(x, y, zt) + \rho(x, y, z)t = 0
\end{align*} \]
\[-\alpha(x, y, t) - \alpha(x, z, t) + \alpha(x, y + z, t) + x\rho(y, z, t) - \rho(xy, xz, t) \\
-\lambda(x, y, t) + \lambda(x, y, z) + \lambda(x, y, z) = 0 \]

\[\alpha(x, y, z) + \alpha(x, y, z + t) + x\lambda(y, z, t) - \lambda(xy, yz, yt) = 0 \]

\[\lambda(x, z, t) + \lambda(y, z, t) - \lambda(x + y, z, t) + \rho(x, y, z) + \rho(x, y, t) - \rho(xy, xz, t) + \sigma(xz, xt, yz, yt) = 0 \]

\[\lambda(x, a, b) + \lambda(x, c, d) - \lambda(x, a + c, b + d) - \lambda(x, a, c) - \lambda(x, b, d) \]
\[+ \lambda(x, a + b, c + d) - x\sigma(a, b, c, d) + \sigma(xa, xb, xc, xd) = 0 \]

\[\rho(a, b, x) + \rho(c, d, x) - \rho(a + c, b + d, x) - \rho(a, c, x) - \rho(b, d, x) \]
\[+ \rho(a + b, c + d, x) - \sigma(ax, bx, cx, dx) + \sigma(a, b, c, d)x = 0 \]

\[\sigma(a, b, c, d) + \sigma(x, y, z, t) - \sigma(a + x, b + y, c + z, d + t) + \sigma(a, b, x, y) + \sigma(c, d, z, t) \]
\[- \sigma(a + c, b + d, x + z, y + t) + \sigma(a, c, x, z) + \sigma(b, d, y, t) - \sigma(a + b, c + d, x + y, z + t) = 0 \]

\[\alpha(0, y, z) = \alpha(x, 0, z) = \alpha(x, y, 0) = 0 \]

\[\sigma(0, 0, z, t) = \sigma(x, y, 0, t) = \sigma(x, 0, z, 0) = \sigma(x, 0, 0, t) = 0. \]

The subgroup \(B^3_{MaL}(R, M) \subset Z^3_{MaL}(R, M) \) of 3-coboundaries consists of the quadruples \((\sigma, \alpha, \lambda, \rho)\) such that there exist the maps \(\mu, \nu : R^2 \to M \) satisfying:

\[\sigma(x, y, z, t) = -\mu(x, y) - \mu(z, t) = \mu(x + y, z + t) + \mu(x, z) + \mu(y, t) \]

\[\alpha(x, y, z) = xv(y, z) - \nu(xy, z) + \nu(xy, z) - \nu(xy, z) \]

\[\lambda(x, y, z) = \nu(x, y) + \nu(x, z) - \nu(x + y, z) + \nu(x + y, z) - \nu(x, xy, z) \]

\[\rho(x, y, z) = \nu(x, y) + \nu(x + y, z) + \nu(xy, xz, t) - \nu(xy, xz, t). \]

Finally, \(H^3_{MaL}(R, M) = Z^3_{MaL}(R, M)/B^3_{MaL}(R, M) \).

Each Ann-category \(\mathcal{A} \) of the type \((R, M)\) having the structure \(f \) is a family \(f = (\xi, \eta, \alpha, \lambda, \rho) \), where \(\xi, \alpha, \lambda, \rho : R^3 \to M \) and \(\eta : R^2 \to M \) are functions satisfying 17 the equations (see Proposition 5.8 [11]). Now, we define a function \(\sigma : R^4 \to M \), given by:

\[\sigma(x, y, z, t) = \xi(x + y, z, t) - \xi(x + y, z + t) + \eta(y, z) + \xi(x, y, z) - \xi(x + y, z) \]

This function is respect to the associativity-commutativity constraint \(v \) in the Ann-category \(\mathcal{A} \), where

\[v = v_{X,Y,Z,T} : (X \oplus Y) \oplus (Z \oplus T) \longrightarrow (X \oplus Z) \oplus (Y \oplus T) \]

is given by commutative diagram following:

\[\begin{array}{ccc}
(X \oplus Y) \oplus (Z \oplus T) & \xrightarrow{\alpha_{+}} & ((X \oplus Y) \oplus Z) \oplus T \\
\downarrow v & & \downarrow \alpha_{+} \otimes T \\
(X \oplus Z) \oplus (Y \oplus T) & \xrightarrow{\alpha_{+}} & ((X \oplus Z) \oplus Y) \oplus T \\
\end{array} \]

The quadruple \(h = (\sigma, \alpha, \lambda, \rho) \) is a 3-cocycle of the ring \(R \) with coefficients in \(R \)-bimodule \(M \) due to Mac Lane (Theorem 7.2 [11]) and therefore each reduced Ann-category is of the form \((R, M, h)\).

3 An equivalence criterion of an Ann-functor

First, we show a characterized property of Ann-functors, which is related to the associativity-commutativity constraint \(v \).

3

3
Definition 2. Let \mathcal{A}, \mathcal{A}' be symmetric monoidal $\oplus-$categories. Then, the $\oplus-$functor $(F, \tilde{F}) : \mathcal{A} \to \mathcal{A}'$ is called compatible with the constraints v, v' if the following diagram commutes for all $X, Y, Z, T \in \mathcal{A}$

\[
\begin{array}{c}
F((X \oplus Y) \oplus (Z \oplus T)) \xrightarrow{F} F(X \oplus Y) \oplus F(Z \oplus T) \xrightarrow{F \circ F} (FX \oplus FY) \oplus (FZ \oplus FT) \\
F((X \oplus Z) \oplus (Y \oplus T)) \xrightarrow{F} F(X \oplus Z) \oplus F(Y \oplus T) \xrightarrow{F \circ F} (FX \oplus FZ) \oplus (FY \oplus FT)
\end{array}
\]

(1)

Then **Lemma 3.1.** Let $\oplus-$functor $(F, \tilde{F}) : \mathcal{A} \to \mathcal{A}'$ be compatible with the unitivity constraints. Then (F, \tilde{F}) is an $AC-$functor iff it is compatible with the constraints v, v'.

Proof. The necessary condition was presented by D. B. A. Epstein (Lemma 1.5 [2]).

Now, assume that the diagram (1) commutes. To prove that the pair (F, \tilde{F}) is compatible with the commutativity constraints, we consider the following Diagram 1.

In the Diagram 1, the region (I) commutes thanks to the naturality of the morphism v, the regions (II) and (IV) commute since (F, \tilde{F}) is compatible with the unicity constraints, the regions (III) and (VII) commute thanks to the coherence theorem in a symmetric monoidal category, the regions (VI) and (VIII) commute thanks to the naturality of \tilde{F}, the outside region commutes by the diagram (1). Hence, the region (V) commutes. So (F, \tilde{F}) is compatible with the commutativity constraints.

Next, we consider the following Diagram 2.

In the Diagram 2, the region (I) commutes thanks to the naturality of the morphism v; the first component of the region (II) commutes since (F, \tilde{F}) is compatible with unicity constraints, the second one commutes thanks to the composition of morphisms, so the region (II) commutes; the regions (III) and (X) commute thanks to the coherence in a symmetric monoidal category; the first component of the region (IV) commutes thanks to the composition of morphisms, the second one commutes since (F, \tilde{F}) is compatible with unicity constraints, so the region (IV) commutes; the region (V) and (VII) commute...
thanks to the composition of morphisms; the regions (VIII) and (IX) commute thanks to
the naturality of \tilde{F}; the outside region commutes thanks to the diagram (1). Therefore, the
region (V) commutes, i.e., the pair (F, \tilde{F}) is compatible with associativity constraints.

\begin{center}
Diagram 2
\end{center}

\[F((X \oplus O) \oplus (Y \oplus Z)) \]
\[F((X \oplus Y) \oplus (O \oplus Z)) \]

\[F(g \oplus id) \]
\[F(id \oplus d) \]

\[F(g') \]
\[F(id \oplus \tilde{F}) \]

\[\tilde{F} \]
\[\tilde{F} \]

\[(X) \]
\[(I) \]

\[a' \]
\[\gamma^{-1} \]

\[(VII) \]
\[(III) \]

\[\tilde{F} \oplus F(d^{-1}) \]

\[(X) \]
\[(I) \]

\[\tilde{F} \oplus \tilde{F} \]

\[(F \oplus d') \]
\[\gamma^{-1} \]

\[\tilde{F} \oplus \tilde{F} \]

\[(F \oplus (O \oplus FZ)) \]
\[(F \oplus (Y \oplus FZ)) \]

\[(F \oplus (Y \oplus O)) \]
\[(F \oplus (O \oplus FZ)) \]

\[(F \oplus (Y \oplus O)) \]
\[(F \oplus (O \oplus FZ)) \]

\[(F \oplus (Y \oplus Z)) \]
\[(F \oplus (O \oplus Z)) \]

\[(F \oplus (Y \oplus O)) \]
\[(F \oplus (O \oplus FZ)) \]

\[(F \oplus (Y \oplus O)) \]
\[(F \oplus (O \oplus FZ)) \]

\[F_0 : \Pi_0(A) \rightarrow \Pi_0(A') ; \quad F_1 : \Pi_1(A) \rightarrow \Pi_1(A') \]

\[clsX \rightarrow clsFX \]
\[u \mapsto \gamma^{-1}_{F_0}(Fu) \]

satisfying

\[F_1(su) = F_0(s)F_1(u); \quad F_1(us) = F_1(u)F_0(s) \]

\[\square \]

Proposition 3.2.

In the definition of Ann-functors, the condition that (F, \tilde{F}) is an symmetric monoidal
\oplus-functor is equivalent to the two following conditions:

1. (F, \tilde{F}) is compatible with the unitality constraints respect to the operation \oplus,
2. (F, \tilde{F}) is compatible with the constraints v, v'.

Proof. Directly deduced from Lemma 3.1. \[\square \]

4 Ann-functors and the low-dimensioned cohomology
groups of rings due to Mac Lane

4.1 Ann-functors of the type (p, q)

Now, we will show that each Ann-functor $(F, \tilde{F}, \tilde{F}) : A \rightarrow A'$ induces a Ann-functor \overline{F}
on their reduced Ann-categories, and this correspondence is 1-1. First, we have

Theorem 4.1. (Theorem 4.6 [11]) Let A and A' be Ann-categories. Then, each Ann-
functor $(F, \tilde{F}, \tilde{F}) : A \rightarrow A'$ induces the pair of ring homomorphisms:

\[F_0 : \Pi_0(A) \rightarrow \Pi_0(A') ; \quad F_1 : \Pi_1(A) \rightarrow \Pi_1(A') \]

\[clsX \rightarrow clsFX \]
\[u \mapsto \gamma^{-1}_{F_0}(Fu) \]

satisfying

\[F_1(su) = F_0(s)F_1(u); \quad F_1(us) = F_1(u)F_0(s) \]
where \(\Pi_1(A) \) is regarded as a ring with the null multiplication. Furthermore, \(F \) is an equivalence if \(F_0, F_1 \) are isomorphisms.

The pair \((F_0, F_1)\) is called the pair of induced homomorphisms of the Ann–functor \((F, \tilde{F}, \bar{F})\). If \(S, S' \) are, respectively, the reduced Ann–categories of \(A, A' \) then the functor \(\mathcal{F} : S \to S' \) given by

\[
\mathcal{F}(s) = F_0(s), \quad \mathcal{F}(s, u) = (F_0 s, F_1 u)
\]

is called the reduced functor of \((F, \tilde{F}, \bar{F})\) on reduced Ann–categories.

Proposition 4.2. Let \(\mathcal{F} \) be the induced functor of the Ann–functor \((F, \tilde{F}, \bar{F}) : A \to A'\). Then the diagram

\[
\begin{array}{ccc}
A & \xrightarrow{F} & A' \\
H \downarrow & & \downarrow G' \\
S & \xrightarrow{\mathcal{F}} & S'
\end{array}
\]

commutes, where \(H, G' \) are canonical Ann-equivalences, and therefore \(\mathcal{F} \) induces an Ann-functor.

Proof. This Proposition is naturally extended of Proposition 2 [8]. \(\square \)

Definition 3. Let \(S = (R, M, h), S' = (R', M', h') \) be Ann–categories. A functor \(F : S \to S' \) is called a functor of the type \((p, q)\) if

\[
F(x) = p(x), \quad F(x, a) = (p(x), q(a)),
\]

where \(p : R \to R' \) is a ring homomorphism and \(q : M \to M' \) is a group homomorphism satisfying

\[
q(ax) = p(x)q(a), q(ax) = q(a)p(x),
\]

for \(x \in R, a \in M \).

Proposition 4.3. Let \(A = (R, M, h), A' = (R', M', h') \) be Ann-categories and \((F, \tilde{F}, \bar{F})\) is an Ann-functor from \(A \) to \(A' \). Then, \((F, \tilde{F}, \bar{F})\) is a functor of the type \((p, q)\).

Proof. For \(x, y \in R \), we have

\[
\tilde{F}_{x,y} : F(x) \oplus F(y) \to F(x \oplus y), \quad \bar{F}_{x,y} : F(x) \otimes F(y) \to F(x \otimes y)
\]

are morphisms in the Ann-category \(A' \). Hence, \(F(x) + F(y) = F(x + y) \) and \(F(x).F(y) = F(xy) \), so the map \(p : R \to R' \) given by \(p(x) = F(x) \) is a ring homomorphism.

Assume that \(F(x, a) = (p(x), q_a(a)) \). Since \((F, \tilde{F})\) is a Gr-functor, according to Theorem 5 [8], \(q_a = q \) for all \(x \in R \). Moreover \(q \) is a group homomorphism:

\[
q(a + b) = q(a) + q(b)
\]

for all \(a, b \in M \).

Since \((F, \tilde{F})\) is a \(\otimes \)-functor, the following diagram

\[
\begin{array}{ccc}
F x \otimes F y & \xrightarrow{\tilde{F}} & F(x \otimes y) \\
F((x,a)) \otimes F((y,b)) \downarrow & & \downarrow F((x,a) \otimes (y,b)) \\
F x \otimes F y & \xrightarrow{\tilde{F}} & F(x \otimes y)
\end{array}
\]
commutes, for all morphisms \((x, a), (y, b)\). So, we have:

\[
F((x, a) \otimes (y, b)) = F(x, a) \otimes F(y, b)
\]

\[
\Leftrightarrow q_{xy}(ay + xb) = q_x(a)F(y) + F(x)q_y(b)
\]

Applying \(q_x = q_y = q_{xy} = q\) to the relation (3), we have:

\[
q(ay + xb) = q(a)F(y) + F(x)q(b)
\]

Applying \(x = 1\) to (4), we have:

\[
q(ay) = q(a)F(y) = q(a)p(y)
\]

Applying \(y = 1\) to (4), we have:

\[
q(xb) = F(x)q(b) = p(x)q(b)
\]

If \(R'\)-bimodule \(M'\) is regarded as an \(R\)-bimodule thanks to the actions \(xa' = p(x)a', a'x = a'p(x)\), from the equations (2), (5), (6) we may show that \(q : M \rightarrow M'\) is a homomorphism between \(R\)-bimodules. \(\square\)

4.2 Classification of Ann-functors

The existence problem of Ann-functors between Ann-categories has been solved for the regular Ann-categories (Theorem 5.1 [13], Theorem 4.2 [1]) thanks to Shukla cohomology. In this section, we will solve that problem in the general case.

Definition 4. If \(F : (R, M, h) \rightarrow (R', M', h')\) is a functor of the type \((p, q)\), then \(F\) induces 3-cocycles \(h = q, h = q(h), h'^* = p^*h' = h'p\), for example

\[
\sigma^* = (p(x), p(y), p(z), p(t))
\]

\[
\sigma = (x, y, z, t).
\]

The function \(k = p^*h' - q, h\) is called an obstruction of the functor of the type \((p, q)\). Then we have

Theorem 4.4. The functor \(F : (R, M, h) \rightarrow (R', M', h')\) of the type \((p, q)\) is an Ann–functor iff the obstruction \(k = 0\) in \(H^3_{Ann}(R, M')\).

Proof. Let \((F, \tilde{F}, \bar{F}) : (R, M, h) \rightarrow (R', M', h')\) be an Ann–functor of the type \((p, q)\). Since \(\tilde{F}_{x,y} = (\bullet, \mu(x, y)), \bar{F}_{x,y} = (\bullet, \nu(x, y))\) where \(\mu, \nu : R^2 \rightarrow M'\), we may identify \(F, \tilde{F}, \bar{F}\) with \(\mu, \nu\) and call \(\mu, \nu\) the pair of associated functions with \(F, \tilde{F}, \bar{F}\). According to Lemma 3.1, \((F, \tilde{F}, \bar{F})\) is compatible with the pair of constraints \((\nu, \nu')\), i.e. the diagram (1) commutes, so we have:

7. \(\sigma^*(x, y, z, t) - \sigma(x, y, z, t) = \mu(x, y) + \mu(z, t) - \mu(x + z, y + t) - \mu(x, z)
\]

\[
- \mu(y, t) + \mu(x + y, z + t)
\]

Since \(F\) is compatible with the associativity constraint of multiplication, the distributivity constraints of Ann-categories \(A\) and \(A'\), we have:

8. \(\alpha^*(x, y, z) - \alpha(x, y, z) = z\nu(y, z) - \nu(xy, z) + \nu(x, yz) - \nu(x, y)z\)

9. \(\lambda^*(x, y, z) - \lambda(x, y, z) = \nu(x, y + z) - \nu(x, y) - \nu(x, z) + x\mu(y, z) - \mu(xy, xz)\)

10. \(\rho^*(x, y, z) - \rho(x, y, z) = \nu(x + y, z) - \nu(x, z) - \nu(y, z) + \mu(x, y)z - \mu(xz, yz)\)
From the equations (7)-(10), we have:

\[h'^* - h_* = \delta g \quad (11) \]

where \(g = (-\mu, \nu) \). Hence the obstruction of the functor \(F \) vanishes in the cohomology group \(H^3_{\text{MaL}}(R, M) \).

Conversely, assume that the obstruction of the functor \(F \) vanishes in the cohomology group \(H^3_{\text{MaL}}(R, M') \). Then there exists a 2-cochain \(g = (\mu, \nu) \) such that \(h'^* - h_* = \delta g \). Take \(\bar{F}, \tilde{F} \) be functor morphisms associated with the functions \(-\mu, \nu\), we can verify that \((F, \bar{F}, \tilde{F})\) is an Ann-functor. \(\square \)

Theorem 4.5. If there exists an Ann-functor \((F, \bar{F}, \tilde{F}) : A \to A'\), of the type \((p, q)\) then:

1. There exists a bijection between the set of congruence classes of Ann-functors of the type \((p, q)\) and the cohomology group \(H^2_{\text{MaL}}(R, M') \) of the ring \(R \) with coefficients in \(R \)-bimodule \(M' \).

2. There exists a bijection \(\text{Aut}(F) \to Z^1_{\text{MaL}}(R, M') \) between the group of automorphisms of the Ann-functor \(F \) and the group \(Z^1_{\text{MaL}}(R, M') \).

Proof. (a) Suppose that there exists \((F, \bar{F}, \tilde{F}) : A \to A'\), which is an Ann-functor of the type \((p, q)\). According to Theorem 4.4, we have

\[h'^* - h_* = 0. \]

Hence, there exists a 2-cochain \(k \) such that

\[h'^* - h_* = \delta k. \]

Fix 2-cochain \(k \). Now, we assume that

\[(G, \bar{G}, \tilde{G}) : (R, M, h) \to (R', M', h') \]

is an Ann-functor of the type \((p, q)\). Then, from the proof of the Theorem 4.4, we have

\[h'^* - h_* = \delta g. \]

Hence, \(k - g \) is a 2-cocycle. Consider the correspondence:

\[\Phi : \text{class}(G) \mapsto \text{class}(k - g) \]

from the set of the congruence classes of Ann-functors of the type \((p, q)\) to the group \(H^2_{\text{MaL}}(R, M') \).

First, we prove that the above correspondence is a map. Indeed, suppose that

\[(G', \bar{G}', \tilde{G}') : (R, M, h) \to (R', M', h') \]

is also an Ann-functor of the type \((p, q)\) and \(u : G \to G' \) is an Ann-morphism. Since \(u \) is an \(\oplus \)-morphism as well as an \(\otimes \)-morphism, we have:

\[g' = g - \delta(u) \quad (12) \]

So

\[k - g' = k - g + \delta(u). \]
Thus $k - g = k - g' \in H^2_{MaL}(R, M')$.

Now, we prove that Φ is an injection. Assume that

$$(G, \tilde{G}, \tilde{G}'), (G', \tilde{G}', \tilde{G}') : (R, M, h) \to (R', M', h')$$

are Ann-functors of the type (p, q) and satisfying

$$k - g = k - g' \in H^2_{MaL}(R, M').$$

Then, there exists an 1-cochain u such that

$$k - g = k - g' - \delta(u)$$

That means

$$g' = g - \delta(u).$$

Hence, the following diagrams:

\[
\begin{array}{ccc}
G(x) \oplus G(y) & \xrightarrow{\bar{G}} & G(x \oplus y) \\
\downarrow u_x \oplus u_y & & \downarrow u_x \oplus u_y \\
G'(x) \oplus G'(y) & \xrightarrow{\bar{G}'} & G'(x \oplus y)
\end{array}
\]

\[
\begin{array}{ccc}
G(x) \otimes G(y) & \xrightarrow{\tilde{G}} & G(x \otimes y) \\
\downarrow u_x \otimes u_y & & \downarrow u_x \otimes u_y \\
G'(x) \otimes G'(y) & \xrightarrow{\tilde{G}'} & G'(x \otimes y)
\end{array}
\]

commute, it means that $u : G \to G'$ is an Ann-morphism. Therefore,

$$\text{class}(G) = \text{class}(G').$$

Finally, we must prove that the correspondence Φ is a surjection. Indeed, assume that g is an arbitrary 2-cocycle. We have:

$$\delta(k - g) = \delta k - \delta g = \delta k = h'^* - h^*.$$

Then, according to Theorem 4.4, there exists an Ann-functor

$$(G, \tilde{G}, \tilde{G}) : (R, M, h) \to (R', M', h')$$

of the type (p, q), and the pair of isomorphisms \tilde{G}, \tilde{G} associated with the 2-cochain $k - g$.

Clearly, $\Phi(G) = \mathcal{A}$. So Φ is a surjection.

(b) Assume that $F = (F, \bar{F}, \bar{F}) : (R, M, h) \to (R', M', h')$ is an Ann-functor of the type (p, q) and $u \in \text{Aut}(F)$. Then, from the equation (12) with $g' = g$, we have $\delta(u) = 0$, i.e.,

$$u \in Z^1_{MaL}(R, M').$$

5 Ann-functors and Hochschild cohomology

In this section, we will consider special Ann-functors which are related to the low-dimensioned Hochschild groups.

Following, we will find a condition for the existence of Ann-functors of the form

$$F = (F, id, \bar{F}) : (R, M, h) \to (R', M', h')$$

of the type $(p, 0)$, where $p : R \to R'$ is a ring homomorphism.

Suppose that there exists an Ann-functor

$$F = (F, id, \bar{F} = \nu) : (R, M, h) \to (R', M', h')$$

of the type $(p, 0)$. Then, the equations (7) - (10) turn into:
13. $\sigma'(x, y, z, t) = 0$
14. $\alpha'(x, y, z) = xy + yz + xz$
15. $\lambda'(x, y, z) = x^2 + y^2 + z^2$
16. $\rho'(x, y, z) = x^2 + y^2 + z^2$

and the Theorem 4.4 turns into

Corollry 5.1. Let $p : R \rightarrow R'$ be a ring homomorphism. There exists an Ann-functor (F, id, \tilde{F}) from (R, M, h) to (R', M', h') of the type $(p, 0)$ iff $h'^* = 0 \in H^3_{Hochs}(R, M')$.

Each cocycle of Z-algebras due to Hochschild is a multi-linear function. This suggests us the following definition:

Definition 5. An Ann-functor

$$(F, id, \tilde{F}) : (R, M, h) \rightarrow (R', M', h')$$

of the type $(p, 0)$ is called a **strong** Ann-functor if the function $\nu : R^2 \rightarrow M'$ corresponding to \tilde{F} is bi-additive.

If ν is a normal bi-additive function then ν is a 2-cocycle of the Z-algebra R with coefficients in R-bimodule M' due to Hochschild. Then, in the equations (13)-(16), α'^* is a normal multi-linear function and other functions are equal to 0. So, we can identify $h'^* = \alpha'^* = \delta(\nu)$.

in which $\delta(\nu)$ is an 3-coboundary of the ring R with coefficients in R-bimodule M' due to Hochschild. Then, we have the following proposition, as a direct corollary of Theorem 4.4.

Proposition 5.2. Let $F : (R, M, h) \rightarrow (R', M', h')$ be a functor of the type $(p, 0)$. There exists a strong Ann-functor (F, id, \tilde{F}) iff its cohomology class $h'^* = 0$ in the cohomology group $H^3_{Hochs}(R, M')$.

Theorem 5.3. If there exists an strong Ann-functor $(F, id, \tilde{F}) : (R, M, h) \rightarrow (R', M', h')$, of the type $(p, 0)$, then:

1. There exists a bijection between the set of congruence classes of strong Ann-functors of the type $(p, 0)$ and the cohomology group $H^2_{Hochs}(R, M')$ of the ring R with coefficients in R-bimodule M'.

2. There exists a bijection

$$\text{Aut}(F) \rightarrow Z^1_{Hochs}(R, M')$$

between the group of automorphisms of the Ann-functor F and the group $Z^1_{Hochs}(R, M')$.

Proof. (a) The restriction Φ_H of the map Φ, refered in Theorem 4.5, on the set of congruence classes of strong Ann-functors, gives us an injection to the group $H^2_{Hochs}(R, M')$. Moreover, it is easy to see that Φ_H is also a surjection.
(b) Assume that \(F = (F, id, \bar{F}) : (R, M, h) \rightarrow (R', M', h') \) is an strong \(Ann \)–functor of the type \((p, 0)\) and \(u \in Aut(F) \). Then \(u \) is bi-linear respect to the \(\oplus \). So \(u \in Z^1_{Hochs}(R, M') \). The converse also holds.

\[\square \]

References

[1] T. P. Dung, Doctoral dissertation, Hanoi, Vietnamese, 1992.

[2] D. B. A. Epstein, Functors between tensored categories, Invent. math. 1, 221-228 (1966).

[3] G. Hochschild, On the cohomology groups of an associative algebra, Ann. of Math. (2) 46, (1945), 58-67.

[4] M. Jibladze and T. Pirashvili, Third Mac Lane cohomology via categorical rings, arxiv. math. KT/0608519 v1, 21 Aug 2006.

[5] S. Mac Lane, Extensions and Obstruction for rings, Illinois J. Mathematics, 2 (1958), 316-345.

[6] S. Mac Lane, Homologie des anneaux et des modules, Colloque de Topologie algébrique, Louvain (1956), 55-88.

[7] N. T. Quang, Doctoral dissertation, Hanoi, Vietnamese, 1988.

[8] N. T. Quang, On Gr-functors between Gr-categories: Obstruction theory for Gr-functors of the type \((\varphi, f)\), arXiv: 0708.1348 v2 [math.CT] 18 Apr 2009

[9] N. T. Quang and P. L. Hong Anh, On monoidal equivalences and Ann-equivalences, arXiv: 0705.0736 v1 [math. CT] 5 May 2007.

[10] N. T. Quang, D. D. Hanh and N. T. Thuy, On the axiomatics of Ann-categories, JP Journal of Algebra, Number Theory and applications, Vol 11, No 1, 2008, 59 - 72.

[11] N. T. Quang, Structure of Ann-categories, arXiv. 0805. 1505 v3 [math. CT] 6 Apr 2009.

[12] N. T. Quang, Ann-categories and the Mac Lane-Shukla cohomology of rings, Abelian groups and modules No 11,12 (Russian), 166 - 183, Tomsk. Gos. Univ., Tomsk, 1994 .

[13] N. T. Quang, Structure of Ann-categories and Mac Lane-Shukla cohomology, East-West, J. of Math. 5 (2003), 51-66.

[14] U. Shukla, Cohomologie des algèbres associatives, Ann. Sci. cole Norm. Sup. (3) 78 (1961), 163 - 209.

Dept. of Mathematics, Hanoi National University of Education, Viet Nam

Email: nguyenquang272002@gmail.com
ddhanhthanh@gmail.com