Investigation of the cumulative number of chromosome aberrations induced by three consecutive CT examinations in eight patients

Yu Abe¹, Hideyoshi Noji², Tomisato Miura³, Misaki Sugai¹, Yumiko Kurosu⁴, Risa Ujiie⁴, Naohiro Tsuyama¹, Aki Yanagi¹, Yukari Yana¹, Takashi Ohba⁵, Tetsuo Ishikawa⁶, Kenji Kamiya⁷, Mitsuaki A. Yoshida⁸ and Akia Sakai¹,*

¹Department of Radiation Life Sciences, Fukushima Medical University School of Medicine, Fukushima, Japan
²Department of Medical Oncology, Fukushima Medical University School of Medicine, Fukushima, Japan
³Department of Bioscience and Laboratory Medicine, Hirosaki University Graduate School of Health Sciences, Hirosaki, Japan
⁴Radiation Medical Science Center for the Fukushima Health Management Survey, Fukushima Medical University, Fukushima, Japan
⁵Department of Radiation Health Management, Fukushima Medical University School of Medicine, Fukushima, Japan
⁶Department of Radiation Physics and Chemistry, Fukushima Medical University School of Medicine, Fukushima, Japan
⁷Department of Experimental Oncology, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima, Japan
⁸Department of Radiation Biology, Institute of Radiation Emergency Medicine, Hiroshima University, Hiroshima, Japan
*Corresponding author. Department of Radiation Life Sciences, Fukushima Medical University School of Medicine, 1 Hikarigaoka, Fukushima, 960-1295 Japan.
Tel: +81-24-547-1420; Fax: +81-24-547-1940; E-mail: sakira@fmu.ac.jp
†Presentation at the American Association for Cancer Research Annual Meeting 2018 in Chicago.
(Received 1 February 2019; revised 16 August 2019; editorial decision 17 August 2019)

ABSTRACT

In our previous study, we found that chromosomes were damaged by the radiation exposure from a single computed tomography (CT) examination, based on an increased number of dicentric chromosomes (Dics) formed in peripheral blood lymphocytes after a CT examination. We then investigated whether a cumulative increase in the frequency of Dics and chromosome translocations (Trs) formation could be observed during three consecutive CT examinations performed over the course of 3–4 years, using lymphocytes in peripheral bloods of eight patients (five males and three females; age range 27–77 years; mean age, 64 years). The effective radiation dose per CT examination estimated from the computational dosimetry system was 22.0–73.5 mSv, and the average dose per case was 40.5 mSv. The frequency of Dics formation significantly increased after a CT examination and tended to decrease before the next examination. Unlike Dics analysis, we found no significant increase in the frequency of Trs formation before and after the CT examination, and we observed no tendency for the frequency to decrease before the next CT examination. The frequency of Trs formation was higher than that of Dics formation regardless of CT examination. Furthermore, neither analysis of Dics nor Trs showed a cumulative increase in the frequency of formation following three consecutive CT examinations.

Keywords: chromosome aberration; dicentric chromosome; chromosome translocation; computed tomography; effective radiation dose

INTRODUCTION

The annual radiation exposure dose of the Japanese population is about 2.1 mSv, which is derived from natural sources, plus about 3.9 mSv, which is derived from artificial ionizing radiation. Almost all of the latter is due to medical radiation exposure, and the majority of it is due to computed tomography (CT) examination [1, 2]. CT examination is a very useful diagnostic method and its use has increased rapidly. However, the radiation exposure dose of abdominal CT examination in an adult is around 20 mSv, and the relationship between radiation exposure from frequent CT examinations and the prevalence of cancer is a concern [3, 4]. Pearce et al. reported that CT examination is a risk factor for development of leukemia and brain tumors in children.
Furthermore, the prevalence of cancer is higher in a group that underwent CT examination compared with a group that did not, according to a cohort study of 11 million children and adolescents [6]. On the other hand, after excluding children with congenital chromosomal aberrations and immunodeficiency such as HIV infection, which are cancer-predisposing factors, no significant increase in the prevalence of cancer was observed [7]. In previous studies, we analyzed dicentric chromosomes (Dics) formation and chromosome translocations (Trs) to determine whether such Dics and Trs are induced by ionizing radiation exposure due to CT examination [8, 9]. We showed an increase in Dics formation after a single CT scan (5.57–60.27 mSv: mean 24.24 mSv), but the frequency of Trs detected before and after the CT scan did not differ significantly. Therefore, the data suggested that DNA double-strand breaks (DSBs) could be induced by the radiation exposure from one CT scan. However, an increase in Trs was not likely to be detected because of the high baseline due to multiple confounding factors in adults. We here investigated whether cumulative Dics and Trs formation could be observed during three consecutive CT examinations performed over the course of 3–4 years, using lymphocytes in peripheral blood (PB).

MATERIALS AND METHODS

Ethics statement
The samples and the medical records used in our study have been approved by the Ethics Committee of the Fukushima Medical University School of Medicine (approval number 1577). Written informed consent was obtained from all participants for analysis of PB samples, and the methods were carried out in accordance with approved guidelines of the Council for International Organizations of Medical Science [10].

Blood donors
PB samples were collected from eight patients (five male and three female) aged 27–77 years (mean 64 years) who were followed in the Department of Hematological Internal Medicine at Fukushima Medical University Hospital. A total of six samples were collected from the same patient for analyses before and after three consecutive CT examinations. The follow-up was approximately 1 year after each CT examination.

Lymphocyte culture
Blood samples were taken just before and within a month after each CT examination (Table 1). Mononuclear blood cells were isolated from heparinized PB from each sample using BD Vacutainer CPT tubes (BD Biosciences, San Jose, CA, USA) according to the manufacturer’s instructions. Cells were suspended in RPMI 1640 medium (Nacalai Tesque, Kyoto, Japan) containing 20% fetal bovine serum (Equitech Bio, Keilor East, Australia), 2% phytohaemagglutinin-HA15 (Remel, Lenexa, KS, USA) and 60 μg/ml kanamycin solution (Life Technologies, Carlsbad, CA, USA) in a tube. Lymphocytes were cultured in a 5% humidified CO2 incubator at 37°C for 46 h. Then, colcemid solution (Wako, Osaka, Japan) was added (final concentration: 50 ng/ml or 0.05 μg/ml) and cells were cultured for an additional 2 h. After 48 h of culture, chromosome preparations were made according to the standard cytogenetic procedure [11].

Chromosomes on each slide were stained with two methods. Centromere-fluorescence in situ hybridization (Centromere-FISH) was performed with the Poseidon probe (KRATECH, Amsterdam, The Netherlands) according to the manufacturer’s protocol with slight modifications as described in our previous study [8]. Chromosome painting was performed with the Customized XCP-Mix probe for chromosomes 1, 2 and 4 (Mix-#1R+2G+4RG; MetaSystems, Altlussheim, Germany) according to the manufacturer’s protocol.

Image capturing and scoring
FISH images were captured in the AutoCapt mode using two sets of AXIO Imager Z2 microscopes (Carl Zeiss AG, Oberkochen, Germany) equipped with CCD cameras and Metafer 4 software (MetaSystems GmbH). In total, more than 2000 metaphase chromosomes were scored in the Centromere-FISH slide [8]. Chromosomes were classified as dicentric or multicentrometric (chromosomes with three or more centromeres). Metaphase chromosomes with <45 centromeres were omitted from analysis. For the Trs analysis, >5000 metaphase chromosomes were scored in each sample [9]. Based on a previous report [13], we included apparently one-way Trs in the two-way Trs counts. In the case of complex chromosomal abnormalities, the numbers of Trs were determined based on the number of color junctions [14]. Other chromosome- or chromatid-type aberrations were also recorded such as rings, acentric fragments, breaks and gaps. For scoring, the formula used to calculate the frequency of Trs formation across the whole genome (FG) was based on the formula using three colors (chromosome 1: red, chromosome 2: green, chromosome 4: yellow) for the detection of translocations as follows [12]:

\[F_G = \frac{F_T (1 + 2 + 4)}{2.05 \times \left[f_1 (1-f_1)+f_2 (1-f_2)+f_4 (1-f_4)-f_1 f_2-f_1 f_4-f_2 f_4 \right] + f_3 f_4} \]

\[F_G : \] the whole genome aberration frequency,

\[F_T : \] the translocation frequency detected by FISH,

\[f_i: \] the fraction of the genome hybridized, taking into account the gender of the subjects (female: \(f_p = 0.2234 \), male: \(f_p = 0.2271 \)).

The proportion of the genome occupied by chromosomes 1, 2 and 4 is about 23%. Therefore, \(F_G \) is determined by the following formula:

\[F_G = F_T \times 2.567 \] (Female)
\[F_G = F_T \times 2.533 \] (Male)

To unify the cell numbers for the analysis, we determined \(F_G \) per 2000 cell equivalents, which were obtained according to the above formulas for females or males. For FISH slides, we switched to each captured filter image and carefully checked for the presence or absence of a Trs signal.

Calculation of the effective CT scan radiation dose
A Toshiba Aquilion model 64 CT scanner was used in this study, with a tube voltage of 120 kV. The effective radiation dose was calculated by inputting data regarding age, sex and the initiation and end position of
Table 1. Patient characteristics

Patient No	Sex	Age	Disease	Part of body examined in CT scan	Period between 1st and 2nd (days)	Period between 2nd and 3rd (days)	Days from CT examination to PB collection (1st/2nd/3rd)	DLP (mGy cm)	WAZA-ARI (mSv) (1st/2nd/3rd)	Treatment	Smoking status	Part CT examination	Part other X-ray examinations
1	Male	63	Lymphoma	Cervix, chest, abdomen, pelvis	391	380	8/16/7	3679.70/3695.85/3291.20	46.30/57.88/57.17	(+) Chemo	(−)	(+)	Chest, UGI, PET
2	Female	67	Lymphoma	Cervix, chest, abdomen, pelvis	331	350	9/19/7	1682.30/4354.12/4222.08	30.82/75.22/68.25	(−)	(−)	(+)	Chest, UGI, PET
3	Male	64	Abnormal chest shadow	Cervix, chest, abdomen, pelvis	364	364	7/7/7	5856.00/4119.80/3321.70	54.40/69.47/60.16	(−)	(−)	(+)	Chest, UGI
4	Male	51	Lymphoma	Cervix, chest, abdomen, pelvis	341	352	6/9/7	3319.80/3046.10/2635.20	61.83/50.67/46.72	(−)	(−)	(+)	Chest, UGI
5	Male	73	Lymphoma	Chest, abdomen, pelvis	490	364	7/14/14	2488.40/1990.50/1704.20	46.22/37.25/32.46	(+) Chemo	(−)	(−)	Chest, UGI, PET
6	Female	27	Lymphoma	Cervix, chest, abdomen, pelvis	153	358	6/15/14	1248.00/2039.93/1656.50	27.06/35.95/33.73	(+) Chemo	(−)	(−)	Chest, PET
7	Male	77	CML	Chest, abdomen, pelvis	445	280	11/14/31	3368.50/3064.30/2405.70	62.61/56.59/46.98	(+) TKI	(+)	(+)	Chest, UGI
8	Female	63	Lymphoma	Cervix, chest, abdomen, pelvis	742	700	14/7/7	3265.60/3113.00/2737.00	63.54/64.21/56.96	(+) Chemo, RT	(−)	(−)	Chest, UGI

*aCTDI was defined using 16 cm phantom. All other CTDI were defined using 32 cm phantom.

*b Each effective radiation dose of the CT scan was calculated by the computational dosimetry system (WAZA-ARI).

*c Chemotherapy or radiotherapy had been performed at least 3 years before this study. Chemo = chemotherapy (mainly rituximab plus CHOP = cyclophosphamide, doxorubicin, vincristine and prednisolone); TKI = tyrosine kinase inhibitor; RT = radiotherapy

*d Patients 2, 4 and 7 had stopped smoking 1 year before this study. Patient 3 was still smoking at the beginning of the study.

*e All patients underwent CT scanning more than five times during the past 5 years.

*f Treatment with tumor resection without additional chemotherapy or radiotherapy.
the CT scan into the computational dosimetry system (WAZA-ARI: http://waza-ari.nirs.go.jp/waza_ari/) [15–17]. Dose-length products (DLP) were extracted from parameters of the CT scan.

Statistical analyses

The differences in the Dics and Trs frequency between before and after a CT examination were assessed using the Student’s paired t-test. A trend in the Dics and Trs frequency due to an ~1-year interval was also assessed. A P-value of <0.05 was considered significant. Multiple comparisons by Bonferroni’s method were performed to evaluate accumulation of chromosomal abnormalities by continuous CT examination. Specifically, the ‘adjusted significance level ($\alpha’)$′ was obtained by the Bonferroni method, and the probability value of the Student’s paired t-test result of each comparison pair was judged by $\alpha’ (0.017)$. Analyses were performed using IBM SPSS Statistics 25 (IBM Corp. Armonk, NY, USA).

RESULTS

Patient background data

Patient background data are shown in Table 1. Eight patients were assessed, because not many patients remained in remission after chemotherapy and/or radiotherapy, and were followed by CT examination. The eight patients in this study were different from those in a previous study [8, 9]; five patients with malignant lymphoma (ML) were in remission and had not received treatment for more than 3 years after the end of treatment, one patient with ML received tumor resection treatment only, one patient had been followed due to an abnormal lung shadow without treatment, and another one patient with chronic myelogenous leukemia (CML) was receiving treatment with a tyrosine kinase inhibitor (TKI) and showed a major molecular response. This patient underwent consecutive CT examinations for the follow-up after resection of colorectal cancer. Four patients were smokers. CT examination was performed once a year except for patient 8 whose CT examination interval was about 2 years. All patients did not take upper gastrointestinal tract (UGI) examination or positron emission tomography (PET) examination during this research period. The effective radiation dose per CT examination estimated from the computational dosimetry system (WAZA—ARI) was 27.1–75.2 mSv, and the average dose per patient was 51.6 mSv (Tables 1 and 2).

Frequency of Dics formation and effective radiation dose per CT examination

Actual analyzed cell number and the distribution of Trs number are shown in Supplementary Table 1 (see online Supplementary material). The frequency of Trs formation and effective dose per CT examination are shown in Table 2. To calculate the frequency of Trs formation in all chromosomes from those of chromosomes 1, 2 and 4, 5000 cells were analyzed, which corresponds to 2000 cells as in Dics analysis because the DNA content of chromosomes 1, 2 and 4 accounts for 23% of the DNA content in all chromosomes [12]. The frequency of Trs formation on all chromosomes, expressed as the frequency per 100 cells, and the increase/decrease in the frequency of Trs formation before and after each CT examination were determined. Changes in the number of Trs formation converted into the equivalent per 100 cells are shown in Fig. 2A. Unlike Dics analysis, we observed no significant increase in the frequency of Trs formation before and after the CT examination (Fig. 2B), and we found no accumulations of Trs formation after three consecutive CT examinations (Fig. 2C). The frequency of Trs formation was higher than that of Dics formation regardless of CT examination. We suspect that a cause of the high frequency of Trs formation in patient 8 regardless of CT examination (Fig. 2A) was the influence of the combination of chemotherapy and radiotherapy for lymphoma.

We also analyzed the relationship between the increment of chromosomal aberrations frequency and smoking status (Supplementary Table 2, see online Supplementary material) with reference to the research by Zhang et al. [18]. Although the number of samples was small, we could not find a significant relationship between them.

Therefore, a noteworthy point in this study is that a cumulative increase in the frequency of Dics and Trs formation after three consecutive CT examinations was not observed in the eight patients studied; the chromosomes in these patients may have been affected by aging, treatment for their disease and smoking.

DISCUSSION

The important point of this study is that we analyzed whether Dics and Trs formation increase cumulatively with multiple CT examinations in which the radiation exposure dose per CT examination is < 100 mSv. Although the number of analyzed cases was small, the analyzed 2000 genomes per sample for both Dics and Trs analysis was twice the number of analyses in the standard method.

In our previous study, we indirectly found that chromosomes are damaged by radiation exposure from a single CT examination, as shown by an increase in the frequency of Dics formation after CT examination [8]. However, we did not detect a significant increase in Trs formation [9], which are thought to be produced in about an equal ratio as Dics following ionizing radiation exposure [19, 20]. Because cells with Trs are mitotically stable, an increase in Trs induced by a CT examination could be hidden in the frequency of Trs formation due to various confounding factors. On the other hand, the frequency of Trs formation was higher than that of Dics formation both before and after CT examination [9]. The features of these chromosome aberrations were observed similarly in this study.

Cells with Dics are unable to survive for a long time because those cells are mitotically unstable and unable to undergo repeated...
Table 2. Results of dicentric chromosome and translocation analyses

Patient No.	Blood sampling^a	DLP (mGy-cm)	Effective dose (mSv)^b	Analysis of dicentrics (Dics)	Analysis of translocations (Trs)							
				Cell counts	Dics	Frequency^d	Increment	Cell counts	Cell equivalent^c	Trs	Frequency^d	Increment
1	1B	2679.70	46.30	2009	7	0.348	0.1	5120	2021	157	7.767	0.799
	1A	2008		2008	9	0.448		175	2043	175	8.566	
	2B	3695.85	57.88	2005	6	0.299	−0.050	1120	2018	122	6.045	2.382
	2A	2010	5		5	0.249		1100	2017	170	8.427	
	3B	3291.20	57.17	2009	7	0.348	0.101	1149	2033	166	8.166	0.188
	3A	2003	9		9	0.449		1124	2023	169	8.354	
2	1B	1682.30	30.82	2015	11	0.546	0.201	5211	2030	35	1.724	1.052
	1A	2007	15		15	0.747		179	2018	56	2.776	
	2B	4354.12	75.22	2012	9	0.447	0.15	139	2002	39	1.948	1.504
	2A	2009	12		12	0.597		131	1999	69	3.452	
	3B	4222.08	68.25	2008	10	0.498	0.101	132	1999	62	3.101	−0.199
	3A	2005	12		12	0.599		130	1998	58	2.902	
3	1B	5856.00^b	54.40	2011	9	0.448	0.2	5182	2046	155	7.577	2.199
	1A	2005	13		13	0.648		234	2066	202	9.776	
	2B	4119.80	69.47	2006	8	0.399	0.149	215	2059	198	9.617	−1.174
	2A	2008	11		11	0.548		130	2025	171	8.443	
	3B	3321.70	60.16	2007	12	0.598	0.148	105	2015	169	8.385	1.8
	3A	2012	15		15	0.746		521	2180	222	10.185	
4	1B	3319.80	61.83	2007	8	0.399	0.045	5121	2022	40	1.979	1.293
	1A	2025	9		9	0.444		264	2078	68	3.272	
	2B	3046.10	50.67	2003	6	0.3	0.1	272	2081	59	2.835	0.435
	2A	2001	8		8	0.4		154	2232	73	3.27	
	3B	2635.20	46.72	2000	7	0.35	0.099	590	2135	61	2.858	0.207
	3A	2006	9		9	0.449		589	2088	64	3.065	
5	1B	2448.40	46.22	2008	16	0.797	0.098	5520	2179	101	4.635	−0.368
	1A	2012	18		18	0.895		402	2133	91	4.267	
	2B	1990.50	37.25	2005	16	0.798	0.15	204	2054	99	4.819	0.656
	2A	2004	19		19	0.948		228	2064	113	5.475	
	3B	1704.20	32.46	2002	20	0.999	0.151	141	2030	84	4.139	−1.375
	3A	2000	23		23	1.15		132	2026	56	2.764	

(Continued)
Table 2. Continued

Patient No	Blood sampling^a	DLP (mGy·cm^{−1})	Effective dose (mSv^b)	Analysis of dicentrics (Dics)	Analysis of translocations (Trs)							
				Cell counts	Dics	Frequency^c	Increment	Cell counts	Cell equivalent^e	Trs	Frequency^d	Increment
6	1B	1248.00	27.06	2001	5	0.25	0.149	$109	990	95	4.773	−0.632
	1A	2005	0.399	2003	8	0.25	0.246	$145	2004	83	4.141	
	2B	2059.93	35.95	2015	10	0.496	−0.632	$168	2013	112	5.563	
	2A	1656.50	32.73	2002	4	0.2	−0.050	$210	2030	48	2.365	1.178
	3A	2001	0.15					$216	2032	72	3.543	
7	1B	3368.50	62.61	2004	6	0.299	0.1	$192	2050	89	4.342	3.185
	1A	3064.30	56.59	2003	8	0.399	0.049	$115	2019	152	7.527	
	2B	2405.70	46.98	2006	4	0.199	0.095	$162	2038	171	8.391	
	3A	2405.70	46.98	2004	4	0.195	0.095	$222	2062	146	7.082	
8	1B	3265.60	63.54	2000	17	0.85	0.15	$112	1991	681	34.197	0.735
	1A	2000	1	2001	14	0.7	0.1	$144	2004	700	34.932	
	2B	3113.00	64.21	2002	16	0.8	0.1	$232	2038	589	28.898	3.414
	2A	2757.60	56.96	2005	12	0.599	0.15	$137	2001	730	36.479	5.925
	3A	2003	0.749					$194	2023	858	42.404	

^a Blood sampling either before (B) or after (A) the first (1), second (2) third (3) CT examination.

^b CTDI was defined using 16 cm phantom. All other CTDI were defined using 32 cm phantom.

^c Estimated effective radiation dose (whole body exposure dose) according to ICRP 103 using WAZA-ARI.

^d Frequency in 100 cells.

^e Cell counts were converted to the equivalent number of cells as described in the Materials and Methods section.
Chromosome aberration in consecutive CT scans

Fig. 1 Frequency of Dics formation and changes in frequency with three consecutive CT examinations. (A) Analysis of Dics formation before and after each of three CT examinations. The light colored bar indicates the frequency before CT and the dark colored bar indicates the frequency after CT. 1st-B, 2nd-B and 3rd-B: before 1st CT, 2nd CT and 3rd CT, respectively. 1st-A, 2nd-A and 3rd-A: after 1st CT, 2nd CT and 3rd CT, respectively. (B) Comparison of the frequency of Dics formation before and after each CT examination. The frequency of Dics formation increased significantly after each CT examination: (a) 1st CT examination, \(P = 0.0003 \); (b) 2nd CT examination, \(P = 0.008 \); (c) 3rd CT examination, \(P = 0.007 \). (C) Comparison of the frequency of Dics formation before the 1st CT and after the 3rd CT. No significant difference was found \((P > 0.05) \).
Fig. 2 Frequency of Trs formation and changes in frequency with three consecutive CT examinations. (A) Analysis of Trs formation before and after each of three CT examinations. The light colored bar indicates the frequency of Trs formation before CT and the dark colored bar indicates the frequencies after CT. 1st-B, 2nd-B and 3rd-B: before 1st CT, 2nd CT and 3rd CT, respectively. 1st-A, 2nd-A and 3rd-A: after 1st CT, 2nd CT and 3rd CT, respectively. CE = cell number converted to the equivalent of 100 cells. (B) Comparison of the frequency of Trs formation before and after each CT examination. No significant difference was found in the frequency of Trs formation in each CT examination. (C) Comparison of the frequency of Trs formation before the 1st CT and after the 3rd CT. No significant difference was found (P > 0.05).
Previous studies revealed DNA DSBs using the Dics analysis or γ-H2AX foci staining following CT examination. The frequency of Dics formation increased transiently following a CT examination, and then decreased, and a cumulative increase in the frequency of Dics formation by three consecutive CT examinations was not observed. Exceptionally, those two factors were not correlated in second and third CT examination in patient 1 (Table 2). We suspect that the difference in CTDIvol due to different parameters at CT examination was a cause.

Shi et al. analyzed chromosomal aberrations, dicentric and ring chromosomes in patients with ischemic heart disease before and after a CT scan procedure [29]. Similar to our results, they observed a significant increase in the number of dicentrics and rings that changes in a time-dependent manner after their formation, which depend on types of aberrations.

Furthermore, because the data may contain uncertainties concerning the estimation of dosimetry and the limited number of cases, further study is needed to generalize the conclusions in the present study.

Supplementary Data

Supplementary data is available at *Journal of Radiation Research* online.

Acknowledgments

We thank the radiologists, at the University Hospital of Fukushima Medical University School of Medicine for data collection.
CONFLICT OF INTEREST

None declared.

FUNDING

This work was supported in part by a Grant-in-Aid for Scientific Research (C) [No. 16 K09870], and a Grant-in-Aid for Young Scientists (B) [No. 15 K19804] by funds from the Japanese Ministry of Education, Culture, Sports, Science, and Technology for the development of methods for monitoring exposure to low-dose radioactivity.

REFERENCES

1. United Nations Scientific Committee on the Effects of Atomic Radiation. Sources and effects of ionizing radiation, UNSCEAR. Report (Scientific Annex B, Exposures of the public and workers from various source of radiation) vol I, Vol. 2011. New York: United Nations, 2008, 339.
2. NSRA. Radiation at living environment. Calculation of dosage of radio-activity affecting Japanese peoples 2011. Tokyo: Nuclear Safety Research Association, 2011, 155.
3. Brenner DJ, Hall EJ. Computed tomography—an increasing source of radiation exposure. N Engl J Med. 2007;357:2277–84.
4. Fazel R, Krumholz HM, Wang Y et al. Exposure to low-dose ionizing radiation from medical imaging procedures. N Engl J Med. 2009;361:849–57.
5. Pearce MS, Salotti JA, Little MP et al. Radiation exposure from CT scans in childhood and subsequent risk of leukaemia and brain tumours: A retrospective cohort study. Lancet. 2012;380:499–505.
6. Mathews JD, Forsythe AV, Brady Z et al. Cancer risk in 680,000 people exposed to computed tomography scans in childhood or adolescence: Data linkage study of 11 million Australians. BMJ. 2013;346:f2360.
7. Journy N, Relher JL, Ducou Le Pointe H et al. Are the studies on cancer risk from CT scans biased by indication? Elements of answer from a large-scale cohort study in France. Br J Cancer. 2015;112:185–93.
8. Abe Y, Miura T, Yoshida MA et al. Increase in dicentric chromosome formation after a single CT scan in adults. Sci Rep. 2015;5:13882.
9. Abe Y, Miura T, Yoshida MA et al. Analysis of chromosome translocation frequency after a single CT scan in adults. J Radiat Res. 2016;57:220–6.
10. International guidelines for ethical review of epidemiological studies. Law Med Health Care. 1991;19:247–58.
11. IAEA. Cytogenetic Analysis for Radiation Dose Assessment. A Manual. Technical Reports Series No. 405. Vienna: International Atomic Energy Agency, 2001, 27–59.
12. IAEA. Cytogenetic dosimetry: applications in preparedness for and response to radiation emergencies, EPR-biosimetry. Vienna: International Atomic Energy Agency, 2011, 53-63 and 81-9.
13. Fomina J, Darroudi F, Boei JJ et al. Discrimination between complete and incomplete chromosome exchanges in X-irradiated human lymphocytes using FISH with pan-centromeric and chromosome specific DNA probes in combination with telomeric PNA probe. Int J Radiat Biol. 2000;76:807–13.
14. Nakano M, Kodama Y, Ohtaki K et al. Detection of stable chromosome aberrations by FISH in A-bomb survivors: Comparison with previous solid Giemsa staining data on the same 230 individuals. Int J Radiat Biol. 2001;77:971–7.
15. Takahashi F, Sato K, Endo A et al. WAZA-ARI: Computational dosimetry system for X-ray CT examinations. I. Radiation transport calculation for organ and tissue doses evaluation using JM phantom. Radiat Prot Dosimetry. 2011;146:241–3.
16. Ban N, Takahashi F, Ono K et al. WAZA-ARI: Computational dosimetry system for X-ray CT examinations II: Development of web-based system. Radiat Prot Dosimetry. 2011;146:244–7.
17. Ban N, Takahashi F, Sato K et al. Development of a web-based CT dose calculator: WAZA-ARI. Radiat Prot Dosimetry. 2011;147:333–7.
18. Zhang W, Wang C, Chen D et al. Effect of smoking on chromosomes compared with that of radiation in the residents of a high-background radiation area in China. J Radiat Res. 2004;45:441–6.
19. Kanda R, Hayata I. Comparison of the yields of translocations and dicentrics measured using conventional Giemsa staining and chromosome painting. Int J Radiat Biol. 1996;69:701–5.
20. Zhang W, Hayata I. Preferential reduction of dicentrics in reciprocal exchanges due to the combination of the size of broken chromosome segments by radiation. J Hum Genet. 2003;48:531–4.
21. Kanda R, Minamihisamatsu M, Hayata I. Dynamic analysis of chromosome aberrations in three victims of the Tokai-mura criticality accident. Int J Radiat Biol. 2002;78:857–62.
22. Cho MS, Lee JK, Bae KS et al. Retrospective biosimetry using translocation frequency in a stable cell of occupationally exposed to ionizing radiation. J Radiat Res. 2015;56:709–16.
23. Hayata I, Wang C, Zhang W et al. Effect of high-level natural radiation on chromosomes of residents in southern China. Cytogenet Genome Res. 2004;104:237–9.
24. Jiang T, Hayata I, Wang C, et al. Dose-effect relationship of dicentric and ring chromosomes in lymphocytes of individuals living in the high background radiation areas in China. J Radiat Res. 2000;41:Suppl 63–8.
25. Zakeri F, Rajabpour MR, Haeri SA, et al. Chromosome aberrations in peripheral blood lymphocytes of individuals living in high background radiation areas of Ramsar, Iran. Radiat Environ Biophys. 2011; 50 (4): 571–78.
26. Stephan G, Schneider K, Panzer W et al. Enhanced yield of chromosome aberrations after CT examinations in paediatric patients. Int J Radiat Biol. 2007;83:281–7.
27. Golliot S, Jost G, Pietsch H et al. Dicentric chromosomes and gamma-H2AX foci formation in lymphocytes of human blood samples exposed to a CT scanner: A direct comparison of dose response relationships. Radiat Prot Dosimetry. 2009;134:55–61.
28. Valentijn J, International Commission on Radiation Protection. Managing patient dose in multi-detector computed tomography (MDCT). ICRP publication 102. Ann ICRP 2007;37:1–79 iii.
29. Shi L, FujioKA, Sakurai-Ozato N et al. Chromosomal abnormalities in human lymphocytes after computed tomography scan procedure. J Radiat Res. 2018;190:424–32.
30. Rampinelli C, De Marco P, Origgi D et al. Exposure to low dose computed tomography for lung cancer screening and risk of cancer: Secondary analysis of trial data and risk-benefit analysis. BMJ. 2017;356:j347.

31. Alexandrov LB, Nik-Zainal S, Wedge DC et al. Signatures of mutational processes in human cancer. Nature. 2013;500:415–21.

32. Makishima H, Yoshizato T, Yoshida K et al. Dynamics of clonal evolution in myelodysplastic syndrome. Nat Genet. 2017;49:204–12.

33. da Silva-Coelho P, Kroeze LJ, Yoshida K et al. Clonal evolution in myelodysplastic syndromes. Nat Commun. 2017;8:15099.