Evaluating the impact of a novel telerehabilitation service to address neurological, musculoskeletal, or coronavirus disease 2019 rehabilitation concerns during the coronavirus disease 2019 pandemic

Katelyn Brehon1, Jay Carriere2, Katie Churchill3, Adalberto Loyola-Sanchez4, Petra O’Connell5, Elisavet Papanasoglou5,6, Rob MacIsaac7, Mahdi Tavakoli8, Chester Ho4,5 and Kiran Pohar Manhas5

Abstract

Introduction: A novel telerehabilitation service provides wayfinding and self-management advice to persons with neurological, musculoskeletal, or coronavirus disease 2019 related rehabilitation needs.

Method: We utilized multiple methods to evaluate the impact of the service. Surveys clarified health outcomes (quality of life, self-efficacy, social support) and patient experience (telehealth usability; general experience) 3-months post-call. We analysed associations between, and within, demographics and survey responses. Secondary analyses described health care utilization during the first 6 months.

Results: Sixty-eight callers completed the survey (42% response rate). Self-efficacy was significantly related to quality of life, interpersonal support and becoming productive quickly using the service. Becoming productive quickly was significantly related to quality of life. Education level was related to ethnicity. Survey respondents’ satisfaction and whether they followed the therapist’s recommendations were not significantly associated with demographics. Administrative data indicated there were 124 callers who visited the emergency department before, on, or after their call. The average (SD) frequency of emergency department visits before was 1.298 times (1.799) compared to 0.863 times (1.428) after.

Discussion: This study offers insights into the potential impact of the telerehabilitation service amidst pandemic restrictions. Usability measurements showed that callers were satisfied, corroborating literature from pre-pandemic contexts. The satisfaction and acceptability of the service does not supplant preferences for in-person visits. The survey sample reported lower quality of life compared with the provincial population, conflicting with pre-pandemic research. Findings may be due to added stressors associated with the pandemic. Future research should include population-level comparators to better clarify impact.

1Department of Physical Therapy, University of Alberta, Edmonton, Canada
2Department of Electrical and Software Engineering, University of Calgary, Edmonton, Canada
3Rehabilitation Care Alliance, Toronto, Ontario, Canada
4Department of Medicine, University of Alberta, Edmonton, Canada
5Neurosciences, Rehabilitation, and Vision Strategic Clinical Network, Alberta Health Services, Calgary, Canada
6Faculty of Nursing, University of Alberta, Edmonton, Canada
7Spinal Cord Injury Alberta, Edmonton, Canada
8Department of Electrical Engineering, University of Alberta, Edmonton, Canada

Corresponding author:
Katelyn Brehon, Department of Physical Therapy, University of Alberta, 77 University Campus, Edmonton, Alberta, T6G2R3.
Email: brehon@ualberta.ca

Creative Commons NonCommercial-NoDerivs CC BY-NC-ND: This article is distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs 4.0 License (https://creativecommons.org/licenses/by-nc-nd/4.0/) which permits non-commercial use, reproduction and distribution of the work as published without adaptation or alteration, without further permission provided the original work is attributed as specified on the SAGE and Open Access page (https://us.sagepub.com/en-us/nam/open-access-at-sage).
Introduction

In 2020, the global rate of disability was 15% with 22% of Canadians experiencing some functional impact on daily activities.\(^1\) Globally mandated social distancing during the coronavirus disease 2019 (COVID-19) pandemic suspended clinics, homecare and other support services, which are critical for individuals with health and medical needs. Vulnerable populations, such as individuals living with chronic health conditions, are at risk for negative health outcomes during the pandemic,\(^1\) such as health deterioration, possible hospitalization and unnecessary emergency department (ED) visits. The COVID-19 pandemic has also inevitably affected rehabilitation services. In order to maintain social distancing and avoid possible contacts, numerous rehabilitation interventions have been postponed.\(^3\)

Rehabilitation is ‘a set of interventions designed to optimize functioning and reduce disability’.\(^4\) COVID-19 survivors will increase demands for rehabilitation due to prevalent and diverse post-acute COVID-19 sequelae.\(^5\)–\(^13\) The Public Health Agency of Canada’s living systematic review (n = 36) suggests that individuals with laboratory-confirmed COVID-19 (both hospitalized and non-hospitalized patients) experience fatigue, general pain or discomfort, shortness of breath, sleep disturbances, anxiety and persistent cough for 4–12 weeks after diagnosis.\(^13\) Minus persistent cough, these symptoms tend to continue longer-term (>12 weeks post-diagnosis) alongside other symptoms: depression, post-traumatic stress disorder and hair loss.\(^13\) These symptoms, along with the continued presence of patients with acute and chronic conditions requiring rehabilitation unrelated to COVID-19, will result in a confluence of increasing rehabilitation needs during, and after, the pandemic.

The pandemic catalysed the rapid adoption of telehealth practices to advance continuity of care.\(^14\) Telehealth initiatives include telephone advice lines; virtual meetings using online platforms; and patient portals, for example. A randomized, single-blinded trial of veterans with stroke (n = 52) found significant improvements in disability (p < 0.05) and near significant improvements in function (p < 0.06) in the telerehabilitation group compared to the normal therapy group.\(^15\) A randomized, controlled trial (n = 52) of a 12-week home-based telerehabilitation programme for stroke survivors demonstrated statistically significant improvements in function in the telerehabilitation group compared to the control group.\(^16\)

Telerehabilitation has been shown to be at least equivalent to in-person care for musculoskeletal conditions, inflammatory arthritis, and orthopedic surgery.\(^17\)–\(^20\) A systematic review (n = 13 studies) found that telerehabilitation for musculoskeletal conditions was effective in improving physical function while being slightly more favourable, compared to traditional therapy.\(^21\) Another systematic review (n = 12 studies) noted similar improvements in motor function with telerehabilitation for total knee arthroplasty.\(^22\)

These studies outline the impact of telerehabilitation. However, little research has been published analysing the impact of telerehabilitation: (a) within a pandemic climate; (b) on health service utilization; or (c) looking at telehealth usability alongside of patient-reported quality of life outcomes.

Organizational context

In response to the pandemic, provincial rehabilitation stakeholders from a single, provincial health-system in Canada co-designed a novel telerehabilitation service. This telerehabilitation service (the Rehabilitation Advice Line) provides wayfinding (information on rehabilitation services that are open for in-person and/or virtual visits) and self-management advice to adults with musculoskeletal, neurological, or post-COVID-19 needs. The service is staffed with occupational therapists and physiotherapists who provide: (a) information on activities and exercises to address physical concerns; (b) strategies to self-manage daily activities; and (c) referrals to rehabilitation and community services, as needed.

This study aimed to evaluate the mid-term impacts of the service amidst the global pandemic. We wanted to understand callers’ perceived experience of the service 3-months post-call as well as patient health outcomes and health service utilization in the 4 months after using the service.

Methods

We used multiple methods, which are described in detail in a published study protocol.\(^23\) Methods included surveys and secondary data analyses on health service utilization. The University of Alberta Research Ethics Board approved this study (Pro00102178). A waiver of consent was obtained for secondary data analyses. All survey participants provided informed written consent.
Study population

The study population included adult callers who accessed the telerehabilitation service within the first 6 months of operation. Only callers who consented to future contact at the end of their first call were eligible for the follow-up surveys. Inclusion criteria included being able to read and speak English.

Surveys

All callers who consented to future contact were invited to complete follow-up patient-reported measures 3-months post-call. These surveys measured telehealth experience and usability (10-Item Telehealth Usability Questionnaire (TUQ-10))24 and general Patient Experience Survey25; quality of life (European Quality of Life Five Dimension Five Level (EQ-5D-5L))26; social support (12-Item Interpersonal Support Evaluation List (ISEL-12))27; perceived self-efficacy with conditions (6-Item Self-Efficacy for Managing Chronic Disease Scale (SEMCD-6))28,29; and general demographic information (Table 1). The experience and usability surveys targeted the first research aim, while the remaining targeted the second research aim. Survey responses were captured through Research Electronic Data Capture.30 All surveys were compared descriptively to existing population-level data (either provincial, national or international). The surveys are considered valid and reliable in comparable populations (Table 1).24–29

We calculated descriptive statistics, measures of central tendency, or frequency, where relevant. The ED-5D-5L user guide was followed for analysis.26 We conducted analyses to test for associations between survey responses and patient demographics using SPSS 26.

Health service utilization

Secondary data analyses were used to explore mid-term health service use pre- and post-calls. All callers from the first 6 months were included in analyses. Personal health numbers were retrieved from the service’s clinical charts to identify the timing and frequency of ED visits.

We calculated the average frequency of ED visits and the number of unique patients who visited the ED, pre- and post-call. We calculated the average number of days before and after someone visited the ED relative to their call date, as well as the mean difference in days (mean days after minus mean days before). Inferential analyses were not performed due to data limitations.

Results

Surveys

In total, 162 callers were eligible for follow-up survey recruitment; 68 responded (42% response rate). Six (8.82%) returned surveys that contained no responses and eight (11.76%) were partially incomplete. The completeness of survey responses aligned with their order of presentation. The EQ-5D-5L (quality of life) had the most complete responses (n = 62; 91.2%) followed by the SEMCD-6 (self-efficacy; n = 60; 88.2%), the ISEL-12 (social support; n = 58; 85.3%), the Patient Experience Survey (n = 57; 83.8%), the TUQ-10 (telehealth usability; n = 54; 79.4%), and the demographic questionnaire (n = 54; 79.4%).

Survey respondents had a mean [standard deviation (SD)] age of 54.8 [16.4] years, comparable to the population average of 55.3 [18.1] years for all callers from the first 6 months of operation. Most respondents were female (45.6%), married (legal/common-law) (51.5%), from a metropolitan centre (44.1%), of European origin (61.8%), and had at least some post-secondary or apprenticeship training (61.8%). See Appendix A for the range of scores on each survey compared to provincial, national, or international comparators.

Based on the Patient Experience Survey data, if the service did not exist, most respondents would have called a public health centre (14.7%), used the internet (13.3%), or were unsure of what they would have done (14.7%). Most respondents called the service for a new or acute issue (39.7%) or a chronic issue (23.5%). Clinicians provided education and self-management advice to treat at home for 41.1% of respondents; 38.2% of the total respondents (92.9% of those given advice) followed the therapist’s advice.

In the TUQ-10 survey, respondents noted that the telerehabilitation service was highly usable (Figure 1). The majority of respondents were satisfied overall (94.4%) and found the line simple to use (94.4%) while providing them with a tool to express themselves (98.1%). The greatest variability in responses was for the question about whether the encounter was the same as in-person visits (53.7% disagreed, 44.4% agreed).

The mean [SD] EQ-5D-5L Visual Analogue Scale (VAS) score (quality of life) for the survey sample and the general Alberta population was 65.5% [21.9%] and 77.4% [17.1%], respectively. The mean [SD] EQ-5D-5L Index score for the survey sample and the general Alberta population was 0.69 [0.23] and 0.84 [0.14], respectively.

Problems in the mobility dimension of the EQ-5D-5L were absent for 35.4% and 72.8% of the survey respondents and the general provincial population, respectively (Figure 2). Similar variability between responses from the survey population and the general provincial population indicating ‘no problems’ was found for the self-care dimension (60.4% and 94.1%, respectively), the usual activity dimension (26.5% and 74.0%, respectively), and the anxiety/depression dimension (33.9% and 62.8%, respectively). The closest ‘no problems’ value to the general provincial population was on the pain/discomfort dimension. Problems were absent for 14.7% of the survey respondents versus 36.0% of the general provincial population.
The mean [SD] SEMCD-6 score (self-efficacy) for the survey sample was 6.56 [2.47]. The mean [SD] SEMCD-6 score for the Canadian comparator is 6.4 [2.3]. Figure 3 compares the mean survey scores on each domain of the SEMCD-6 to the Canadian comparator. The greatest difference between respondents and the national comparator data is in the confidence to manage without medication domain (mean [SD] = 7.3 [2.5] and 6.9 [2.6], respectively). More respondents were confident that they could manage their concerns without medication.

Table 1. Items measuring experience included in follow-up survey package.

Domain of interest	Survey name	Survey details	Validity and reliability
General patient experience	Patient experience survey	This survey was adapted with permission from the Health Link® Patient Satisfaction Survey. Survey objectives include measuring consumer satisfaction with Health Link® and assessing Health Link’s® impact on users’ health knowledge and whether they followed through with nurses’ advice.	This scale has not been previously tested for psychometric properties.
Telehealth usability	TUQ-10	The TUQ-10 measures the following domains: usefulness, ease of use/learnability, interface quality, reliability and satisfaction/future use. Each domain is measured on a scale of 1–5 with 1 indicating ‘strongly disagree’ and 5 indicating ‘strongly agree.’	The TUQ-10 has a Cronbach’s coefficient alpha of ≥ 0.8 which suggests it has a good level of internal consistency reliability.
Demographics	General patient demographics	Self-reported demographic data included age, gender, marital status, education level, current employment status, and ethnicity.	
Quality of life	EQ-5D-5L	The EQ-5D-5L descriptive system includes five levels of severity for five dimensions: mobility, self-care, usual activities, pain/discomfort, and anxiety/depression. The EQ Visual Analogue Scale records the respondent’s self-rated health on a vertical, visual analogue scale from 0 to 100. There is convergent validity between the EQ-5D-5L and the WHO-5 Well Being questionnaire (Spearman rank order coefficients ranging from 0.33 to 0.61 with p < 0.01).	
Self-efficacy	SEMCD-6	6-item scale measuring respondents’ confidence in managing fatigue, pain, and emotional distress and performing certain tasks regularly at the present time. Items are rated on a numerical scale from 1 to 10. The score for the scale is the mean of all items, with higher scores reflecting greater self-efficacy. In a study reviewing eight independent studies, Cronbach’s alpha was a minimum of 0.88 with minimal floor and ceiling effects. Moderate and significant correlations provide convergent validity evidence when measured against selected health indicators.	
Social support	ISEL-12	Each question is measured from one to four with one indicating ‘definitely false’ and four indicating ‘definitely true.’ The ISEL-12 is scored by summing the items to create an overall social support score with high scores indicating high levels of social support. The scale has high internal consistency (Cronbach’s alpha > 0.7).	

TUQ-10: 10-Item Telehealth Usability Questionnaire; EQ-5D-5L: European Quality of Life Five Dimension Five Level; ISEL-12: 12 Item Interpersonal Support Evaluation List; SEMCD-6: 6-Item Self- Efficacy for Managing Chronic Disease; ISEL-12: 12 -Item Interpersonal Support Evaluation List.
in comparison to the national population. This domain had the highest score. The lowest scored domain related to caller confidence in keeping the pain and discomfort from interfering with activities (mean [SD] = 6.1 [2.9]).

The mean total [SD] ISEL-12 score (social support) for the survey sample was 32.72 [6.28]. Regarding perceptions of social support via the ISEL-12 tool, the highest domain score was for the item about having someone to call if stranded (mean [SD] = 3.28 [0.96]). The lowest domain score on the ISEL-12 for callers was for the item related to finding someone to help them move (mean [SD] = 2.04 [1.03]).

Relationships. Spearman’s rank-order correlations were used to determine whether there were any statistically significant relationships between patient demographics and total survey scores. Since the TUQ-10 (telehealth usability) does not have a total score, Spearman’s rank-order correlations examined the associations between each TUQ-10-item and patient demographics or any of the other total survey scores.

Becoming productive quickly using telerehabilitation was significantly related to quality of life (EQ-5D-5L Index Score ($r = 0.428$, $p < 0.01$) and VAS score ($r = 0.399$, $p < 0.01$)) and self-efficacy to manage chronic disease ($r = 0.281$, $p < 0.05$). Self-efficacy for managing chronic disease was significantly related to the quality of life (EQ-5D-5L Index Score ($r = 0.748$, $p < 0.01$) and VAS score ($r = 0.792$, $p < 0.01$)), and interpersonal support (ISEL-12 ($r = 0.323$, $p < 0.05$). Education level was significantly related to ethnicity ($r = 0.337$, $p < 0.05$). Survey respondents’ overall satisfaction with the telerehabilitation service and whether or not they followed the therapist’s recommendations were not associated with age ($p = 0.71$ and 0.28, respectively), gender ($p = 0.59$ and 0.54, respectively), marital status ($p = 0.15$ and 0.66, respectively), geographical location ($p = 0.22$ and 0.61, respectively), employment status ($p = 0.32$ and 0.27, respectively), education level ($p = 0.33$ and 0.99, respectively), or ethnicity ($p = 0.37$ and 0.36, respectively).

Health service utilization

There were 124 callers (23.1%) who visited the ED before, on, or after their call (94 before call and 54 after). The average (SD) number of ED visits before was 1.298 times (1.799), with the highest number of visits being 17. The maximum and minimum number of days between the call and the ED visit was 104 days before and 1 days before, respectively.

The average (SD) number of ED visits after was 0.863 times (1.428), with the highest number of visits being 8. The maximum and minimum number of days visited on or after the call were 114 days after and 1 days after, respectively.

The average (SD) mean difference in days between visiting...
Figure 2. European Quality of Life Five Dimension Five Level (EQ-5D-5L) scores by dimension and population.

Figure 3. Six-Item Self-Efficacy for Managing Chronic Disease Scale (SEMCD-6) average scores and Canadian comparisons.
the ED post-call and visiting the ED pre-call was 38.952 days (29.416).

Discussion

This study offers insights into the potential mid-term impacts of a novel telerehabilitation service amidst pandemic restrictions. Measurement of the usability of the service showed that callers were satisfied and found it acceptable. This corroborates literature from pre-pandemic contexts. A study assessing a telephone-based physiotherapy service found that participants viewed it as acceptable since it was defined by their preferences and priorities. However, a randomized, controlled trial and that it prevented rapport-development compared to participants found a physiotherapy phone line impersonal the most variability in responses. In another study, some about the service being comparable to in-person visits. However, this satisfaction and acceptability of telerehabilitation did not supplant preferences for in-person visits. In the current study, the survey question about the service being comparable to in-person visits had the most variability in responses. In another study, some participants found a physiotherapy phone line impersonal and that it prevented rapport-development compared to in-person visits. However, a randomized, controlled trial found that service satisfaction for both telerehabilitation and in-person therapy was similar and was high (over 85%) which may support the idea that there is a role for both telerehabilitation and traditional in-person therapy, especially as health systems transition to a new normal post-pandemic that values virtual care delivery.

The follow-up survey data showed similar perceived self-efficacy with chronic illness scores to a study assessing whether a telehealth chronic disease self-management programme would improve self-efficacy in Northern Ontario, Canada. The authors utilized the same SEMCD-6 measure as we used in the current evaluation. This study had both baseline and follow-up SEMCD-6 scores and reported a statistically significant increase in self-efficacy among the study population after experiencing the telehealth self-management programme. Our study results show very similar self-efficacy scores, which suggest that we may have had similar findings if we collected data on the SEMCD-6 at two timepoints instead of cross-sectional. However, the lack of pre-telehealth SEMCD-6 scores limits the interpretation therein.

Our results show that there is a lower quality of life between the survey respondents and the general provincial population (taken in pre-pandemic times). The number of responses indicating ‘no problems’ on the EQ-5D-5L was the most similar between the survey respondents and the provincial population on the pain and discomfort domain. However, survey respondents still had higher levels of pain compared to the provincial population. The survey results indicated a higher presence of problems in all domains compared to the provincial population. This result conflicts pre-pandemic literature. A prospective study assessing the effect of a telephone-based intervention on the quality of life among elderly individuals with multiple chronic conditions showed that there was a significantly better quality of life in the telehealth group compared to the control group at follow-up. Our findings may be due to a number of factors including the added stressors associated with the pandemic. An ongoing study aims to clarify the effects of the COVID-19 pandemic on quality of life using the EQ-5D-5L. While this study’s results are pending, another study utilizing the EQ-5D-5L to measure the quality of life during the pandemic has shown an increase in reported problems, which corroborates our findings. Because our study did not include pandemic-era controls, it is unclear whether the telerehabilitation service had an impact on quality of life (positive or negative), or if the callers are sicker and have more needs than the provincial population.

Our correlational analyses showed that self-efficacy was significantly related to the quality of life, social support, and the ability to become productive quickly. This finding is not surprising. It is more likely that someone with high self-efficacy to manage chronic conditions would seek social support as required to help them manage. In addition, quality of life would be a direct reflection of someone’s ability to manage their condition. This finding is consistent with the literature. A study of individuals with spinal cord injury found that those with higher perceived levels of health, self-efficacy, and social support also had high levels of subjective well-being. This finding is significant because if the telerehabilitation service improves patients’ self-efficacy by providing them with self-management and wayfinding advice, this may influence their overall well-being. Our results also showed that becoming productive quickly using the telerehabilitation service was related to the quality of life. This finding is also not surprising as productivity is a common goal and the inability to be productive can negatively impact someone’s quality of life. Our results also indicated that survey respondents’ overall satisfaction with the service and whether or not they followed the therapist’s recommendations were not associated with age, gender, marital status, location, employment status, education level, or ethnicity in a statistically significant manner. This finding suggests that empowering individuals with self-management and wayfinding advice through the service is possible no matter their background or demographics.

Limitations

The current study lacked control groups for comparison to clarify confounding factors. A control group would have
been ideal for both the 3-month follow-up surveys as well as the health care utilization pre- and post-analyses. This study notes associations, but cannot prescribe causal relationships. Second, we could not connect the issues that callers contacted the service for versus the issues for which they visited the ED. Third, selection bias was possible. However, for the immediate and follow-up surveys, the non-responder populations had similar age and gender distributions. Other important personal or experiential characteristics may have distinguished non-responders from the study participants. Recall bias may have impacted participants recall on telehealth usability and experience at 3-months post-call, but for feasibility and to promote response rates, the study was limited to one follow-up point for the health outcome surveys.

Conclusion

In conclusion, this study illuminates an early experience of providing self-management and wayfinding advice via tele-rehabilitation services during pandemics, wherein social distancing limits access to in-person services. Providing self-management advice allows callers to take ownership of their health care. Since self-efficacy is directly related to self-management and was found to be significantly related to the quality of life, future efforts should focus on evaluating the effectiveness of the self-management advice provided to callers using the tele-rehabilitation service in order to understand how it directly impacts the quality of life. At 3-months post-call, callers revealed comparable levels of social support and self-efficacy, but lower levels of quality of life, relative to established population comparators. However, all comparator data is from pre-pandemic contexts and the ultimate impact of the tele-rehabilitation service remains unclear, thus warranting future research.

Acknowledgments: We would like to acknowledge the Rehabilitation Advice Line steering committee and leadership as well as PRAXIS Spinal Cord Institute for funding this study.

Contributorship: The manuscript was prepared by KB, JC and KPM. KC, ALS, PO, EP, RM, MT, CH and KPM contributed to the conception and outline of the manuscript. KB is the Guarantor for this study. All authors contributed to manuscript revision as well as read and approved the submitted version.

Declaration of Conflicting Interests: The authors declared no potential conflicts of interest with respect to the research, authorship and/or publication of this article.

Funding: The authors disclosed receipt of the following financial support for the research, authorship and/or publication of this article: This work was supported by the PRAXIS Spinal Cord Institute (grant number G2021-22).

Ethical approval: The University of Alberta Research Ethics Board approved this study (Pro00102178).

Informed consent: All survey participants provided written informed consent to participate in this study.

ORCID iD: Katelyn Brehon https://orcid.org/0000-0002-0023-4451

References

1. Lebrasseur A, Fortin-Bédard N, Lettre J, et al. Impact of COVID-19 on people with physical disabilities: a rapid review. Disabil Health J 2021; 14: 1–9.
2. Okonkwo NE, Aguwa UT, Jang M, et al. COVID-19 and the US response: accelerating health inequities. BMJ Evid Based Med 2020; 0: 1–4.
3. Agostini F, Mangone M, Ruiu P, et al. Rehabilitation settings during and after COVID-19: an overview of recommendations. J Rehabil Med 2021: 53: 1–10. Foundation for Rehabilitation Information.
4. World Health Organization. Rehabilitation [Internet]. World Health Organizations. 2021 [cited 2021 Sep 15]. Available from: https://www.who.int/news-room/fact-sheets/detail/rehabilitation
5. Mao L, Jin H, Wang M, et al. Neurologic manifestations of hospitalized patients with coronavirus disease 2019 in wuhan, China. JAMA Neurol 2020; 77: 683–690.
6. Wang L, He W, Yu X, et al. Coronavirus disease 2019 in elderly patients: characteristics and prognostic factors based on 4-week follow-up. J Infect 2020; 80: 639–645.
7. Yang X, Yu Y, Xu J, et al. Clinical course and outcomes of critically ill patients with SARS-CoV-2 pneumonia in wuhan,China: a single-centered, retrospective, observational study. Lancet Respir Med 2020; 8: 475–481.
8. Turner-stokes PL. Rehabilitation in the wake of COVID-19 - A phoenix from the ashes. BSRM 2020; 1: 1–19.
9. Adhikari SP, Meng S, Wu YJ, et al. Epidemiology, causes, clinical manifestation and diagnosis, prevention and control of coronavirus disease (COVID-19) during the early outbreak period: a scoping review. Infect Dis Poverty 2020; 9: 1–12.
10. Singhal T. A review of coronavirus disease-2019 (COVID-19). Indian J Pediatr 2020; 87: 281–286.
11. Alberta Health Services COVID-19 Scientific Advisory Group. COVID-19 Scientific advisory group rapid response report. Alberta Health Services. 2020.
12. Liu C and Chang MC. Interventions within the scope of occupational therapy practice to improve performance of daily activities for older adults with low vision: a systematic review. In: Am J occup ther. Chiuang-ju Liu, PhD, OTR/L, FGSA, was Associate Professor, School of Human and Health Sciences, Indiana University, Indianapolis, at the time of the study. She is now Associate Professor, College of Public Health and Health Professions, University of Flori; 2020. p. 7401185010p1–18.
13. Domingo FR, Waddell LA, Cheung AM, et al. Prevalence of long-term effects in individuals diagnosed with COVID-19: a living systematic review. medRxiv. 2021; June:1–31.
14. Wosik J, Fudim M, Cameron B, et al. Telehealth transformation: COVID-19 and the rise of virtual care. J Am Med Inform Assc 2020; 27: 957–962.
15. Chumbler NR, Quigley P, Li X, et al. Effects of telerehabilitation on physical function and disability for stroke patients: a randomized, controlled trial. Stroke 2012; 43: 2168–2174.
16. Chen J, Sun D, Zhang S, et al. Effects of home-based telerehabilitation in patients with stroke: a randomized controlled trial. Neurology 2020; 95: e2318–e2330.
17. Alberta Health Services Provincial Rehabilitation Forum. Rehabilitation Strategic Plan 2016–2019. 2016.
18. Lee A, Davenport T and Randall K. Telehealth physical therapy in musculoskeletal practice. J Orthop Sports Phys Ther 2018; 48: 736–739.
19. Taylor-Gjevre R, Nair B, Bath B, et al. Addressing rural and remote access disparities for patients with inflammatory arthritis through video-conferencing and innovative interprofessional care models. Musculoskeletal Care 2018; 16: 90–95.
20. Pastora-Bernal JM, Martín-Valero R, Barón-Lópe FJ, et al. Evidence of benefit of telerehabilitation after orthopedic surgery: a systematic review. J Med Internet Res 2017; 19: 1–13.
21. Cottrell MA, Galea OA, O’Leary SP, et al. Real-time telerehabilitation for the treatment of musculoskeletal conditions is effective and comparable to standard practice: a systematic review and meta-analysis. Clin Rehabil 2017; 31: 625–638.
22. Agostini M, Moja L, Banzi R, et al. Telerehabilitation and recovery of motor function: a systematic review and meta-analysis. J Telemed Telecare 2015; 21: 202–213.
23. Brehon K, Carriere J, Churchill K, et al. Evaluating community-facing virtual modalities to support Complex neurological populations during the COVID-19 pandemic: a protocol. JMIR Res Protoc 2021; 10(7): e28267.
24. Parmanto B, Lewis ANJr., Graham KM, et al. Development of the telehealth usability questionnaire (TUQ). Int J Telerehab 2016; 8: 3–10.
25. Alberta Health Services. Health Link Alberta Caller Satisfaction Survey. 2014.
26. van Reenan M and Janssen B. EQ-5D–5L User Guide. 2015.
27. Merz E, Roesch S, Malcarne V, et al. Validation of interpersonal support evaluation list-12 (ISEL-12) scores among English- and spanish-speaking hispanics/latinos from the HCHS/SOL sociocultural ancillary study. Psychol Assess 2014; 26: 384–394.
28. Ritter PL and Lorig K. The English and spanish self-efficacy to manage chronic disease scale measures were validated using multiple studies. J Clin Epidemiol 2014; 67: 1265–1273.
29. Riem K, Kwakkenbos L, Carrier ME, et al. Validation of the self-efficacy for managing chronic disease scale: a Scleroderma patient-centered intervention network cohort study. Arthritis Care Res 2016; 68: 1195–1200.
30. Harris P, Taylor R, Thielke R, et al. Research electronic data capture (REDCap) - A metadata-driven methodology and workflow process for providing translational research informatics support. J Biomed Inform 2009; 42: 377–381.
31. Pearson J, Richardson J, Callahan M, et al. The acceptability to patients of PhysioDirect telephone assessment and advice services; A qualitative interview study. BMC Health Serv Res 2016; 16: 1–11.
32. Kruse CS, Krowski N, Rodriguez B, et al. Telehealth and patient satisfaction: a systematic review and narrative analysis. BMJ Open 2017; 7: 1–12.
33. Moffet H, Tousignant M, Nadeau S, et al. Patient satisfaction with in-home telerehabilitation after total knee arthroplasty: results from a randomized controlled trial. Telemed J E Health 2017; 23: 80–87.
34. Jaglal SB, Guilcher SJ, Hawker G, et al. Impact of a chronic disease self-management program on health care utilization in rural communities: a retrospective cohort study using linked administrative data. BMC Health Serv Res 2014; 14: 1–8.
35. Valdivieso B, Garcia-Sempere A, Sanfelix-Gimeno G, et al. The effect of telehealth, telephone support or usual care on quality of life, mortality and healthcare utilization in elderly high-risk patients with multiple chronic conditions. A prospective study. Med Clin (Barc) 2018; 151: 308–314.
36. Gisi D, Betschart M, Resek S, et al. Quality of life and physical performance after novel coronavirus infection (COVID-19). 2020.
37. Lim SL, Woo KL, Lim E, et al. Impact of COVID-19 on health-related quality of life in patients with cardiovascular disease: a multi-ethnic Asian study. Health Qual Life Outcomes 2020; 18: 1–7.
38. Hampton NZ. Subjective well-being among people with spinal cord injuries: the role of self-efficacy, perceived social support, and perceived health. Rehabil Couns Bull. 2004;48:31–37.
Appendix

Appendix A. Survey Analysis

Table A1. Caller European Quality of Life Five Dimension Five Level (EQ-5D-5L) profile data (N = 62).

EQ-5D-5L dimension	Level	N (%)	Alberta provincial comparisons
Mobility	Level 1	24 (35.4%)	72.8%
	Level 2	16 (23.5%)	15.2%
	Level 3	16 (23.5%)	8.5%
	Level 4	6 (8.8%)	3.0%
	Level 5	0 (0%)	0.5%
	Missing	6 (8.8%)	
Self-Care	Level 1	41 (60.4%)	94.1%
	Level 2	13 (19.1%)	3.7%
	Level 3	6 (8.8%)	1.8%
	Level 4	2 (2.9%)	0.3%
	Level 5	0 (0%)	0.2%
	Missing	6 (8.8%)	
Usual activity	Level 1	18 (26.5%)	74.0%
	Level 2	17 (25.0%)	15.3%
	Level 3	17 (25.0%)	8.0%
	Level 4	8 (11.8%)	1.8%
	Level 5	2 (2.9%)	0.9%
	Missing	6 (8.8%)	
Pain/discomfort	Level 1	10 (14.7%)	36.0%
	Level 2	24 (35.3%)	38.8%
	Level 3	16 (23.5%)	19.4%
	Level 4	11 (16.2%)	4.5%
	Level 5	1 (1.5%)	1.2%
	Missing	6 (8.8%)	

(continued)
Table A1. EQ-5D-5L dimension continued.

Level	N (%)	Alberta provincial comparisons
Anxiety/depression		
Level 1	23 (33.9%)	62.8%
Level 2	20 (29.6%)	23.6%
Level 3	13 (19.1%)	10.8%
Level 4	4 (5.9%)	1.9%
Level 5	2 (2.9%)	0.9%
Missing	6 (8.8%)	

Table A2. Caller 6-Item Self-Efficacy for Managing Chronic Disease (SEMCD-6) data (N=60).

Item	Average score (Standard deviation)	Canadian comparisons (29)
Fatigue	6.21 (2.93)	5.9 (2.9)
Physical discomfort/pain	6.03 (2.82)	5.9 (2.8)
Emotional distress	6.82 (2.77)	7.0 (2.6)
Other symptoms or problems	6.38 (2.63)	6.0 (2.7)
Manage with tasks and activities	6.62 (2.81)	6.8 (2.6)
Manage with medication	7.25 (2.54)	6.9 (2.6)

Table A3. Caller 12-Item Interpersonal Support Evaluation List (ISEL-12) data (N=58).

Item	Average score (standard deviation)	USA comparisons (27)
Hard time finding companion for day trip	2.05 (1.10)	2.10 (0.98)
No one to share fears with	3.14 (1.02)	2.27 (0.97)
Could find help with chores if sick	2.81 (1.07)	2.09 (0.97)
Have someone to give advice about family issues	2.74 (1.13)	2.34 (0.88)
Could find someone to go to a movie with	2.71 (1.08)	2.16 (.93)
Have someone to turn to about personal issue	2.91 (1.02)	2.43 (0.80)
Don’t often get invited to do things with others	2.74 (1.09)	1.89 (1.04)
Hard time finding someone to watch house if gone	2.81 (1.07)	1.89 (1.09)
Could easily find someone to have lunch with	2.91 (0.90)	2.32 (0.84)
Have someone to call if stranded	3.28 (0.96)	2.38 (0.84)
Difficult to find someone to help in family crisis	2.83 (1.13)	1.88 (1.10)
Have a hard time finding someone to help move	2.04 (1.03)	2.08 (1.03)
Table A4. Caller RAL-PEQ data (N = 57).

Question	Possible answers	N (%)
What would you have done without the RAL?	Called a Public Health Centre	10 (14.7%)
	Used internet	9 (13.3%)
	Treated at home	6 (8.8%)
	Gone to emergency room	6 (8.8%)
	Contacted/phoned someone	3 (4.4%)
	Gone to walk in	6 (8.8%)
	Not sure	10 (14.7%)
	Nothing, other or missing	18 (26.5%)
Reason for call	Rehabilitation advice for chronic issue	16 (23.5%)
	Rehabilitation advice for new/acute issue	27 (39.7%)
	Question about access/wayfinding to a rehabilitation	7 (10.3%)
	Other, blank, or missing	18 (26.5%)
Therapist’s advice	Gave education, exercises or resources to self-manage at home	28 (41.1%)
	Gave wayfinding or information about a service	7 (10.3%)
	Follow-Up with doctor/health care provider or emergency services	7 (10.3%)
	Other, cannot remember, blank, or missing	26 (38.3%)
What did you do?	Treated at home	19 (27.9%)
	Contacted/phoned—Not Health care professional	3 (4.4%)
	Went to doctor/health care provider office or emergency	11 (16.2%)
	Went to walk-in or contacted/phoned health care provider	4 (5.8%)
	Used internet/publications, cannot remember, other, or nothing	5 (7.4%)
	Blank or missing	26 (38.3%)
Follow therapist’s advice	Yes	26 (38.2%)
	No	14 (20.6%)
	Unclear, blank or missing	28 (41.2%)
Table A5. Caller TUQ-10 data ($N=54$).

Question	Level 0	Level 1	Level 2	Level 3	Level 4	Level 5	Missing	N (%)
Improved access	5 (7.3%)	1 (1.5%)	2 (2.9%)	7 (10.3%)	23 (33.9%)	16 (23.5%)	14 (20.6%)	
Provided for need	1 (1.5%)	1 (1.5%)	0 (0%)	8 (11.8%)	29 (42.5%)	15 (22.1%)	14 (20.6%)	
Simple to use	2 (2.9%)	1 (1.5%)	0 (0%)	0 (0%)	27 (39.7%)	26 (35.3%)	14 (20.6%)	
Easy to learn	4 (5.8%)	0 (0%)	0 (0%)	5 (7.3%)	24 (35.3%)	21 (31.0%)	14 (20.6%)	
Table A5. Continued.

Question	Level 0	Level 1	Level 2	Level 3	Level 4	Level 5	Missing
Become productive quickly	1 (1.5%)	2 (2.9%)	4 (5.8%)	10 (14.7%)	26 (38.2%)	11 (16.3%)	14 (20.6%)
Easily talk	1 (1.5%)	0 (0%)	1 (1.5%)	3 (4.4%)	20 (29.4%)	29 (42.5%)	14 (20.6%)
Able to express myself	0 (0%)	0 (0%)	0 (0%)	1 (1.5%)	25 (36.7%)	28 (41.2%)	14 (20.6%)
Same as in-person visits	1 (1.5%)	4 (5.8%)	10 (14.7%)	15 (22.1%)	17 (25.0%)	7 (10.3%)	14 (20.6%)

(continued)
Question	Level	N (%)
Acceptable way to receive services	Level 0	0 (0%)
	Level 1	0 (0%)
	Level 2	1 (1.5%)
	Level 3	6 (8.8%)
	Level 4	32 (47.0%)
	Level 5	15 (22.1%)
	Missing	14 (20.6%)
Satisfied overall	Level 0	0 (0%)
	Level 1	0 (0%)
	Level 2	1 (1.5%)
	Level 3	2 (2.9%)
	Level 4	31 (45.6%)
	Level 5	20 (29.4%)
	Missing	14 (20.6%)
Table A6. Spearman rank-order correlational analyses.

	EQ-5D-5L Index Score	VAS Score	Total SEMCD-6 Score	Total ISEL-12 Score	Follow advice Q1	TUQ-10 Q2	TUQ-10 Q3	TUQ-10 Q4	TUQ-10 Q5	TUQ-10 Q6	TUQ-10 Q7	TUQ-10 Q8	TUQ-10 Q9	TUQ-10 Q10	Age	Gender status	Marital status	Location status	Emp’nt status	Ethn’ty level	
EQ-5D-5L Index Score	0.748		0.092	-0.120	0.065	0.123	0.0116	0.428	-0.068	-0.106	-0.010	0.048	0.088	0.145	0.049	0.107	0.213	-0.067	-0.121	-0.158	
VAS Score	0.792		0.158	-0.261	-0.001	0.183	0.187	0.399	-0.186	-0.199	-0.107	-0.011	-0.034	0.169	-0.012	0.052	0.128	0.003	-0.220	-0.232	
Total	0.748	0.792	0.323	-0.260	-0.097	0.211	0.171	0.281	-0.139	-0.037	-0.017	-0.026	0.026	0.263	0.096	0.106	0.023	-0.088	0.046	-0.185	
Follow	-0.120	-0.261	-0.260	0.079	-0.163	-0.273	-0.017	-0.271	-0.163	-0.144	-0.263	-0.060	0.005	-0.169	-0.172	0.101	-0.073	-0.084	0.180	0.152	0.000
TUQ-10 Q1	0.065	-0.001	-0.097	0.184	-0.163	--	--	--	--	--	--	--	--	-0.130	-0.231	-0.167	0.198	-0.200	-0.222	-0.036	
TUQ-10 Q2	0.123	0.183	0.211	0.225	-0.273	--	--	--	--	--	--	--	--	0.062	-0.078	-0.075	0.240	-0.221	-0.151	0.007	
TUQ-10 Q3	-0.095	-0.180	-0.061	-0.197	-0.017	--	--	--	--	--	--	--	--	-0.063	0.212	-0.104	0.247	-0.159	-0.035	0.107	
TUQ-10 Q4	0.116	0.187	0.171	0.125	-0.271	--	--	--	--	--	--	--	--	-0.003	0.222	0.064	0.012	-0.098	0.032	0.090	
TUQ-10 Q5	0.428	0.399	0.281	0.209	-0.163	--	--	--	--	--	--	--	--	0.060	-0.249	0.068	0.150	-0.002	-0.154	0.007	
TUQ-10 Q6	-0.068	-0.186	-0.139	0.135	-0.144	--	--	--	--	--	--	--	--	0.114	0.240	-0.004	0.238	-0.170	-0.123	0.373	
TUQ-10 Q7	-0.106	-0.199	-0.037	0.094	-0.263	--	--	--	--	--	--	--	--	0.055	0.135	0.044	-0.090	-0.031	0.089	0.271	
TUQ-10 Q8	-0.010	-0.107	-0.017	0.132	-0.060	--	--	--	--	--	--	--	--	0.124	0.008	0.155	0.170	-0.031	-0.098	0.191	
TUQ-10 Q9	0.048	-0.011	-0.026	0.083	0.005	--	--	--	--	--	--	--	--	0.009	-0.088	0.082	0.047	0.142	0.162	0.055	0.185

(continued)
EQ-5D-5L Index Score	VAS Score	Total SEMCD-6 Score	Total ISEL-12 Score	Follow advice	TUQ-10 Q1	TUQ-10 Q2	TUQ-10 Q3	TUQ-10 Q4	TUQ-10 Q5	TUQ-10 Q6	TUQ-10 Q7	TUQ-10 Q8	TUQ-10 Q9	TUQ-10 Q10	Age	Gender	Marital status	Location status	Emp’nt status	Ethn’ly level	Educ’n Level	
TUQ-10 Q10	0.008	-0.034	0.026	-0.167	--	--	--	--	--	--	--	--	--	--	0.051	0.078	0.211	0.180	-0.147	-0.133	0.143	
Age	0.145	0.169	0.243	-0.055	-0.172	-0.130	0.042	-0.063	-0.003	0.060	0.114	0.055	0.124	0.009	0.051	--	-0.169	0.154	0.068	0.023	0.192	0.026
Gender	0.049	-0.012	0.096	0.237	0.101	-0.231	-0.078	0.212	0.222	-0.249	0.240	0.135	0.008	-0.088	0.078	-0.169	--	-0.140	0.096	0.385	0.006	-0.057
Marital Status	0.107	0.052	0.106	-0.082	-0.073	-0.167	-0.075	-0.104	0.064	0.068	-0.004	0.044	0.155	0.082	0.211	0.154	-0.140	--	0.029	-0.080	0.046	0.123
Location	0.213	0.128	0.023	0.029	-0.084	0.198	0.240	0.247	0.012	0.150	0.238	-0.090	0.170	0.047	0.180	0.068	0.096	0.029	--	-0.317	-0.174	-0.187
Emp’nt Status	-0.067	0.003	-0.088	-0.212	0.180	-0.200	-0.221	-0.159	-0.098	-0.002	-0.170	-0.031	-0.031	0.142	-0.147	0.023	0.385	-0.080	-0.317	--	0.011	-0.130
Ethn’ly	-0.121	-0.220	0.046	-0.007	0.152	-0.222	-0.151	-0.035	0.032	-0.154	-0.123	-0.089	-0.098	-0.055	-0.133	0.192	0.006	-0.046	-0.174	0.011	--	0.337
Educ’n Level	-0.158	-0.232	-0.185	-0.143	0.000	-0.036	0.007	0.107	0.090	0.007	0.373	0.271	0.191	0.185	0.143	0.026	-0.057	0.123	-0.187	-0.130	0.337	--

Bold & underlined values correspond to correlations that were significant at p < 0.01. Bold values correspond to correlations that were significant at p < 0.05.