Did a 3800-year-old $M_w \sim 9.5$ earthquake trigger major social disruption in the Atacama Desert?

Diego Salazar*, Gabriel Easton*, James Goff, Jean L. Guendon, José González-Alfaro, Pedro Andrade, Ximena Villagrán, Mauricio Fuentes, Tomás León, Manuel Abad, Tatiana Izquierdo, Ximena Power, Luca Sitzia, Gabriel Álvarez, Angelo Villalobos, Laura Olguín, Sebastián Yrarázaval, Gabriel González, Carola Flores, César Borie, Victoria Castro, Jaime Campos

*Corresponding author. Email: dsalazar@uchile.cl (D.S.); geaston@ing.uchile.cl (G.E.)

Published 6 April 2022, Sci. Adv. 8, eabm2996 (2022)
DOI: 10.1126/sciadv.abm2996

This PDF file includes:
- Figs. S1 to S44
- Tables S1 to S13
- References
Fig. S1. Site 1: Pabellón de Pica. View toward the sea of Pabellón de Pica outcrop showing uplifted littoral deposits overlain by a debris flow (see Fig. 2 in main text).
Fig. S2. Site 1: Pabellón de Pica. Detailed photos showing the stratigraphic column of Pabellón de Pica outcrop, with uplifted littoral deposits interpreted as beach berm facies, overlain by two distinctive deposits interpreted as tsunami layers exhibiting grain size gradation, broken shells, incipient stratification and imbrication of clasts towards the sea (see Fig. 2 in main text). Calibrated ages from radiocarbon results are shown at the right side in cal yrs BP. (a) Inland section of the stratigraphic column highlighting tsunami deposit (segmented white lines) and flow direction (blue arrows) (b) near-coastline section of the stratigraphic column highlighting tsunami deposit (segmented white lines) and flow direction (blue arrows). (c) Detailed photo of tsunami backwash deposit in the near-coastline section of the deposit. Note incipient seaward imbrication of clasts and shells.
Fig. S3. Site 2: Paquica. (a) View towards the sea of the coastal geomorphology of Paquica site indicating the location of the outcrop exhibiting an interpreted tsunami deposit. (b) Detail of the stratigraphic context of a distinctive chaotic deposit with reworked broken shells interpreted as a tsunami layer embedded in underlying Mid Holocene archaeological deposits (see Fig. 2 in main text). Calibrated ages from radiocarbon results from in situ and reworked material are also shown in cal yrs BP.
Fig. S4. Site 4: Michilla. (a) View towards the south showing the geomorphological context of uplifted littoral deposits constituting a terrace located at +7 m a.s.l. at Michilla. (b,c) Photograph showing a stratigraphic column with Mid Holocene uplifted littoral deposits at Michilla (modified from 28). Radiocarbon ages are in cal yrs BP.
Fig. S5. Site 5: Playa Grande. (a) View towards the north showing terraces constituted by uplifted littoral deposits. (b) Detail of Mid-Holocene uplifted littoral sediments constituting a terrace located at +7 m a.s.l. (modified from 28). Radiocarbon ages are in cal yrs BP.
Fig. S6. Site 6: Mejillones Peninsula. (a) View towards the north showing the geomorphological context of Mejillones Peninsula site indicating the location of three trenches dug for paleotsunami research. (b) View from inside of the middle trench showing distal facies of alluvium with distinctive sandy deposits exhibiting erosive base, clasts and broken shells interpreted as tsunami layers, overlying supralittoral and intertidal facies. Radiocarbon ages are in cal yrs BP.
Fig. S7. Site 6: Mejillones Peninsula. Photograph from inside the middle trench dug at this site showing distinctive sandy deposit exhibiting erosive base, clasts and broken shells interpreted as Mid-Holocene tsunami layer overlying Mid-Holocene supralittoral and intertidal facies. Calibrated radiocarbon results are shown at the right side, in cal yrs BP.
Fig. S8. Site 7: Aerial view of Zapatero archaeological site from the northwest. Red arrows show the eastern limit of the site. Yellow arrow shows a modern hut. Blue arrow shows contemporary beach berm.
Fig. S9. Site 7: Northern section of Profile 1 excavated at the Zapatero archaeological site. Photograph showing an erosional surface (unconformity), with chaotic deposit of reworked archaeological material, abundant marine micro-faunal remains and inverted ages, interpreted as a tsunami layer, overlying Mid-Holocene archaeological strata (see Fig. 4 in main text). Calibrated radiocarbon results are shown in cal yrs BP.
Fig. S10. Site 7: Eastern section of Profile 4 excavated at the Zapatero archaeological site. Photograph showing a detail of an erosional surface (unconformity), with chaotic deposit of reworked archaeological material and abundant marine micro-faunal remains interpreted as a tsunami layer, overlying Mid-Holocene archaeological strata (see Fig. 4 in main text).
Fig. S11. Site 7: Zapatero archaeological site. Grain size parameters from sedimentary matrix and results from the analysis of micro-remains of biological and mineralogical content in Unit 1 (C1) and Profile 1 (C2) of the Zapatero site (see Fig. 4 in main text). Whole individuals were counted in the case of echinoderm spines. Radiocarbon ages are shown in cal yrs BP.
Fig. S12. Site 7: Unit 2 at the Zapatero archaeological site. Photograph showing a general view (a), and a detail (b), of stones from collapsed Structure 3 imbricated towards the sea. Toppled stones are interbedded within Mid-Holocene archaeological layers interpreted as resulted from tsunami backwash flows (see Fig. 4 in main text).
Fig. S13. Site 7: Zapatero archaeological site. Collapsed stones from Structure 1. Note debris-flow deposit underlying the structure. A radiocarbon age of 4,689 ± 136 cal yrs BP was obtained from inside the cache excavated into the debris flow deposit (centre of the picture). The age corresponds to a pre-tsunami occupation.
Fig. S14. Site 7: Zapatero archaeological site. Toppled stones from Structure 3 identified during the excavation.
Fig. S15. Site 7: Zapatero archaeological site. (a) Excavation units of Structure 2, with the location of the main sections described here. (b) Section 1 stratigraphy.
Fig. S16. Site 7: Zapatero archaeological site. Section 2 of excavation at Structure 2. Note the presence of rip-up clasts in Unit 1.
Fig. S17. Site 7: Zapatero archaeological site. Section 2 and Section 3 of the excavation at Structure 2. Note the small channel filled by sands with few archaeological material.
Fig. S18. Site 7: Zapatero archaeological site. Photograph showing a trench dug at the foot of the western side of the Zapatero archaeological site.
Fig. S19. Site 7: Zapatero archaeological site. Photograph from inside the trench dug at the foot of the western side of the Zapatero archaeological site, showing uplifted Mid-Holocene littoral deposits overlain by chaotic facies interpreted as possible Mid-Holocene tsunami deposits. Littoral deposits are similar to those observed in the modern coastline. Calibrated radiocarbon results are shown in cal yrs BP (see Fig. 4 in main text).
Fig. S20. Site 7: Zapatero archaeological site. Chaotic well rounded gravels are embedded in sandy matrix containing lithics, carbonate fragments and mollusk shells from subtidal-intertidal environments. This overlays sandy sediments with subhorizontal lamination interpreted as supralittoral facies (a) Pit dug at the foot of the Zapatero archaeological site showing (b) chaotic facies with gravel and broken shells interpreted as tsunami deposits overlying supralittoral aeolian sandy facies. Radiocarbon results are shown in cal yrs BP (see Fig. 4 in main text).
Fig. S21. Site 8: San Ramón-15 mine. Photograph showing the geomorphological context of San Ramón-15 mine with an iron oxide-rich vein.
Fig. S22. Site 8: San Ramón-15 mine. Photographs showing the San Ramón-15 mine (a), and a prominent crack cutting Early and Mid-Holocene archaeological strata (b), overlain by a Mid-Holocene thin archaeological layer (see Fig. 2 in main text). Radiocarbon ages are shown in cal yrs BP.
Fig. S23. Site 9: Los Bronces site. Photographs showing the geomorphological context (a) and the trench (b) dug for palaeotsunami research at Los Bronces site (modified from 13).
Fig. S24. Site 9: Los Bronces site. Photograph from inside the trench dug at Los Bronces site, showing distinctive deposits interpreted at tsunami layers. A Mid-Holocene tsunami layer overlies Mid-Holocene uplifted littoral facies (modified from J3). Radiocarbon ages are shown in cal yrs BP.
Fig. S25. Site 10: Hornos de Cal site. Photographs showing the geomorphological context (a) and uplifted littoral deposits (b) (modified from 13). Littoral deposits are composed by rounded gravel and abundant carbonate fragments and mollusk shells. Subangular clasts are more frequent at the surface. Radiocarbon ages are shown in cal yrs BP.
Fig. S26. Site 10: Hornos de Cal site. Photograph from inside the trench dug at Hornos de Cal site, showing a distinctive Mid-Holocene deposit interpreted as a tsunami layer, overlying archaeological strata and uplifted littoral facies (modified from 13). Radiocarbon ages are shown in cal yrs BP.
Fig. 27. Site 11: Playa San Pedro site. Photographs showing the geomorphological context (a) and uplifted littoral deposits (b), from Playa San Pedro site. Radiocarbon ages are shown in cal yrs BP.
Fig. S28. Site 12: Bahía Cisne site. Photographs showing the geomorphological context (a) and location of a trench (b), dug for palaeotsunami research at Bahía Cisne site. Distinctive deposits with erosive base and rip-up clasts from underlying aeolian cemented sandstone, interpreted as Mid-Holocene tsunami layer are shown together with calibrated radiocarbon result (c). Radiocarbon age is shown in cal yrs BP.
Fig. S29. Site 7: Zapatero archaeological site. Geomorphological map of the Zapatero site showing the location of the different excavation units with evidence for a tsunami event dated around 4,000-3,800 cal yrs BP.
Fig. S30. Site 7: Zapatero archaeological site. Unit 1 at the Zapatero archaeological site (at +19 m a.s.l.), showing the sampling process for microstratigraphic analyses (see Fig. 4 in main text).
Fig. S31. Site 7: Zapatero archaeological site. Stratigraphic profile corresponding to the East wall of excavation Unit 1 at Zapatero, with identification of archaeofacies and location of samples for micromorphology. The photographs provide a detailed view of archaeofacies content. Notice the undulated unconformity between archaeofacies 5 and 6.
Fig. S32. Site 7: Zapatero archaeological site. Micromorphology of pre-tsunami sample ZA-15-1 (c. 6931-6746 cal yrs BP): Sediments made of unsorted bone fragments (70%) with signs of heating and dissolution. Other components of the coarse fraction include: angular, coarse sand to granule size rock fragments (5%); well-sorted, subangular coarse sand size quartz grains (5%); unsorted charcoal fragments (2%, 1-9 mm); and very few unsorted shell fragments (<1%). The micromass is composed of secondary phosphates with micritic gypsum, micro-charcoal and organic matter. Gypsum pedofeatures predominantly include microcrystalline nodules (micritic) of rapid formation, and fewer concentrations of lenticular crystals of slow formation. (a) scanned thin section of sample ZA-15-1; (b) groundmass with coarse shell fragments, burnt bone and rocks (PPL); (c) unsorted bone fragments with random distribution and gypsum nodules (PPL); (d) mix of burnt bones and fresh bones with gypsum nodules (PPL); (e) gypsum infilling in between two large bone fragments with signs of dissolution (PPL); (f) same as E in XPL.
Fig. S33. Site 7: Zapatero archaeological site. Micromorphology of pre-tsunami sample ZA-15-3 (c. 6661-6477 cal yrs BP): Sediments composed of large bone fragments, with micritic and lenticular gypsum precipitations inside the pores of the spongy tissue. The main micromorphological differences to ZA-15-1 are: higher frequency of burned bones (50%); lower frequency of rocks (2%) and quartz grains (<1%); smaller grain-size and well sorting for the coarse sand size rock fragments; and fewer unsorted charcoal fragments (<1%). The fine fraction is similar to sample ZA-15-1, consisting of gypsum, organic matter and micro-charcoal. (a) scanned thin section of sample ZA-15-3; (b) groundmass with large bone fragments (PPL); (c) unsorted bone fragments with different colors, indicating various degrees of heating (PPL); (d) burnt bone fragments (PPL); (e) burnt bone fragments with random distribution (PPL); (f) transversal section of bone fragments (PPL).
Fig. S34. Site 7: Zapatero archaeological site. Micromorphology of sample ZA-15-5, interpreted as tsunami deposit: (a) scanned thin section; (b) groundmass with unsorted shell fragments, rocks, bones, gypsum nodules, echinoid spines (radioles) and fragments of calcareous algae (PPL); same as (b) in XPL; phosphatic nodule, a feature only described in this sample, its composition was verified by micro-FTIR analyses (PPL); (e-h) fragments of calcareous algae (PPL); (i-l) basal section of echinoid radioles (PPL).
Fig. S35. Site 7: Zapatero archaeological site. Micromorphology of sample ZA-15-6 interpreted as tsunami deposit: (a) scanned thin section; (b) groundmass with unsorted shell fragments, rocks, bones and echinoid spines (radioles) (PPL); (c) large bone fragments with charcoal and echinoid spine in-between (PPL); bone fragments and echinoid spine with signs of heating (dark brownish gray color) (PPL); (e) oblique section of echinoid spine (PPL); (f) same as (e) in XPL; longitudinal section of echinoid spine (PPL); (h) same as (g) in XPL; basal sections of echinoid spines (PPL).
Fig. S36. Site 7: Zapatero archaeological site. Images obtained with a stereomicroscope of the echinoid radioles counted in the sediment samples collected from the micromorphology blocks. Samples 2b, 1b and 1a did not contain any echinoid spines.
Fig. S37. Site 7: Zapatero archaeological site. Eastern section of Unit 2 at Zapatero, showing *in-situ* deposits corresponding to Archaic IV Period (stratigraphic units 2, 4 and 5) overlying which there is an erosional contact and a sandy deposit corresponding to the Archaic 5 (stratigraphic Unit 6). Note the fine lenses of shell and charcoal amidst a sandy deposit.
Fig. S38. Site 7: Zapatero archaeological site. Comparative values between Archaic III-IV, Archaic V and Archaic VI periods at Zapatero in terms of abundance, richness, diversity and evenness of the archaeofaunal assemblages (marine invertebrates, marine vertebrates and tetrapods). MNI= Minimum number of individuals.
Fig. S39. The coast of the Antofagasta Region showing the main archaeological sites mentioned in the text.
Fig. S40. Western Profile of the habitation site of Mamilla 7, north of Tocopilla, showing archaeologically sterile layers (in white) between 3,734±164 cal yr BP and 796±125 cal yr BP (both ages on charcoal).
Fig. S41. Site 3: Cobija. Geomorphological context of Cobija showing the location of the studied archaeological profile.
Fig. S42. Site 3: Cobija. Western profile of the habitational site of Cobija 1N, showing a chaotic and massive layer with no in situ materials overlying an erosional surface, dated between 4,281 ±315 and 3532 ±288 cal yrs BP. Note the abandonment of the site between the latter age and 485±212 cal yrs BP. All dates are from shells and have been corrected for reservoir effect (Table S1). All radiocarbon ages are shown in cal yrs BP.
Fig. S43. Scheme procedure for obtaining the altitude of reference with respect to sea level (e.g. see Zapatero site map, Fig. 4A in main text). PRIMS = prisma; LSM = Level Sea Medidium, SLM= Sea Level Reference of Tide Table.
Fig. S44. The image shows the four models that best represented the minimum tsunami run-ups estimated from tsunami-deposit altitudes measured on the field. The simulations depict $M_w9.2$ (models 1-2) and $M_w9.5$ (models 3-4) earthquakes. Model 4 best fits available evidence, which is equivalent to a 1000 km rupture that encompasses from Arica (18.5°S) to Isla Chañaral (28.9°S).
Supplementary Tables

Table S1. Location and date details for 12 archaeological sites and their respective samples. The sites present sedimentary layers generated by the occurrence of earthquakes (uplifted littoral deposits) and/or tsunamis, which can be directly observed. From the total dates, 46 were obtained by previous works, whilst 61 are direct results of this research.

Site (N-S)	Coordinates	Altitude (m above sea level)	Stratigraphic context	Material	Sample ID	Lab code	Conv. age (yr BP)	SD	δ13C (‰)	DR (yr)	SD (yr)	Calibrated Age (2 sigma cal yr BP)	Reference
Pabellón de Pica	20.88965 70.13702	5	Reworked material within alluvium	Shell	CO1628	UGAMS 31175	1,650	20	0.31	226	98	977 675 1268	This work
	20.88965 70.13702	5	Reworked material from (younger) tsunami deposit	Shell	PPC14180 1	D-AMS 032233	3,530	29	3.0	226	98	3,138 2,862 3,380	
	20.88965 70.13702	5	Reworked material from tsunami deposit	Shell	CO1629	UGAMS 31176	2,620	20	0.02	226	98	2,031 1,640 2,365	
	20.88965 70.13702	5	Reworked material from tsunami deposit	Shell	PPC14180 4	D-AMS 032332	3,786	30	2.2	226	98	3,454 3,190 3,706	
	20.88965 70.13702	5	Uplifted littoral deposits	Shell	CO1630	UGAMS 31178	3,866	30	4.7	226	98	3,548 3,318 3,823	
21.9129 70.17583	14	Reworked material from tsunami deposit	Shell	CO1638	UGAMS 31184	4,990	25	0.8	226	98	5,037 4,629 5,437		
	21.9129 70.17583	14	Archaeological shell midden underlying tsunami deposit	Shell	CO1637	UGAMS 31185	5,230	25	-0.81	226	98	5,351 4,889 5,650	
22.71066 70.27876	6	Uplifted littoral deposits	Shell	T16-08	Beta-446343	6,620	30	-0.5	226	98	6,874 6,499 7,234		
	22.71066 70.27876	6	Uplifted littoral deposits	Shell	T16-09	Beta-446343	6,070	30	1.1	226	98	6,258 5,907 6,595	
22.98375 70.32592	7	Uplifted littoral deposits	Shell	C15-525	LMC14 Saclay	4,050	30	3.1	226	98	3,776 3,385 4,195		
23.47626 70.6083	3	Reworked material within tsunami layer	Shell	CE-C1402A	D-AMS 032939	4,798	31	5.2	226	98	4,770 4,473 5,048		

Notes
- Med Prob: Median Probability
- Min age: Minimum Age
- Max age: Maximum Age
- DR: Delta Age
- SD: Standard Deviation
- Calibrated Age: Calibrated Age
- This work: Indicates results from this study.
| Caleta Errázuri z | 23.47626 | 70.6083 | 3 | Littoral deposit | Shell | CE-C1401 | D-AMS 032938 | 5,196 | 31 | 3.9 | 226 | 98 | 5,306 | 5,015 | 5,564 |
|-------------------|----------|----------|---|-----------------|-------|----------|---------------|--------|----|----|------|-----|-------|-------|-------|
| 24.9287 | 70.51668 | 9 | Disturbed human burial | Human bone | - | UGAMS 15978 | 1,280 | 25 | -12.0 | 226 | 98 | 626 | 474 | 815 |
| 24.9284 | 70.51592 | 4,5 | Anthropogenic hearth overlaying tsunami deposit | Marine mammal bone | - | D-AMS 014901 | 3,439 | 26 | -7.1 | 226 | 98 | 3,024 | 2,772 | 3,274 |
| 24.9287 | 70.51668 | 4 | Uplifted littoral deposit | Shell | T 1606 | Beta-446340 | 4,000 | 30 | 2.6 | 226 | 98 | 3,716 | 3,376 | 3,967 |
| 24.9284 | 70.51592 | 9 | Organic horizon overlaying tsunami deposit | Bulk organic matter | - | D-AMS 014907 | 4,309 | 29 | -28.2 | - | - | 4,842 | 4,809 | 4,881 |
| 24.9284 | 70.51592 | 8 | Hearth overlaying tsunami deposit | Charcoal | - | D-AMS 014905 | 3,388 | 35 | -19.7 | - | - | 3,583 | 3,543 | 3,643 |
| 24.9287 | 70.51668 | 8 | Uplifted littoral deposit or reworked material within tsunami layer? | Shell | TA 1719 | UGAMS 31199 | 4,180 | 20 | 5.49 | 226 | 98 | 3,951 | 3,560 | 4,378 |
| 24.9284 | 70.51592 | 7.5 | Reworked material on tsunami layer | Shell | TA 1714 | UGAMS 31196 | 4,470 | 25 | 1.13 | 226 | 98 | 4,342 | 3,923 | 4,788 |
| | | | | | TA 1713 | UGAMS 31195 | 4,840 | 25 | 5.18 | 226 | 98 | 4,834 | 4,426 | 5,265 |
| | | | | | TA 1717 | UGAMS 31198 | 5,410 | 25 | -0.47 | 226 | 98 | 5,539 | 5,204 | 5,897 |
| 24.9284 | 70.51642 | 7.5 | Uplifted littoral deposits | Shell | TA 1716 | UGAMS 31197 | 4,970 | 25 | 1.3 | 226 | 98 | 5,012 | 4,599 | 5,425 |
| 24.9286 | 70.51609 | 18 | Hearth overlaying collapsed structure | Charcoal | - | D-AMS 014900 | 3,846 | 29 | -13.3 | - | - | 4,192 | 4,083 | 4,299 |
| 24.9286 | 70.51609 | 18 | Hearth underlying structure (pre-collapse) | Charcoal | - | D-AMS 010133 | 4,947 | 40 | - | - | - | 5,589 | 5,436 | 5,747 |
| 24.9286 | 70.51609 | 17 | Shell midden overlaying collapsed structure | Shell | - | NAU1230 | 4,645 | 20 | - | 226 | 98 | 4,589 | 4,155 | 4,945 |
| | | | | Charcoal | - | D-AMS 010134 | 4,188 | 24 | -22.9 | - | - | 4,889 | 4,570 | 4,825 |
| | | | | Shell | - | NAU1228 | 5,685 | 20 | - | 226 | 98 | 5,829 | 5,524 | 6,195 |
| | | | | Charcoal | - | Beta-312879 | 5,780 | 30 | -24.0 | - | - | 6,534 | 6,441 | 6,638 |
| 24.9287 | 70.51668 | 18 | Shell | ZA1806 | D-AMS 032237 | 5,618 | 31 | 4.4 | 226 | 98 | 5,764 | 5,560 | 5,987 |
| Date | Zone | Event Description | Material Type | ID/Code | Age (Cal BC) | Standard Deviation | Uncertainty | Height/Weight |
|--------------|----------|----------------------------|---------------|---------|--------------|-------------------|-------------|--------------|
| 25.3838 | 70.44168 | Layer overlying the crack | Shell | - | 4,150 | 30 | - | 3,910 |
| | | | TA 1725 | D-AMS | 4,070 | 32 | 4.1 | 3,802 |
| | | | | 032330 | 226 | 98 | 5,356 | 4,087 |
| | | | - | - | 3,776 | - | - | 3,908 |
| | | | - | D-AMS | 3,692 | 28 | - | 3,876 |
| | | | | 008356 | 3,776 | - | - | 4,064 |
| | | | - | Beta- | 4,124 | - | - | 3,959 |
| | | | | 261667 | 4,124 | - | - | 4,200 |
| | | | - | UGAMS | 3,850 | 31 | - | 4,198 |
| | | | | 5439 | 3,850 | - | - | 4,198 |
| | | | - | UGAMS | 3,850 | 31 | - | 4,198 |
| | | | | 5443 | 3,850 | 31 | - | 4,200 |
| | | | - | Beta- | 4,198 | - | - | 4,200 |
| | | | | 312875 | 4,198 | - | - | 4,432 |
| | | | - | UGAMS5 | 4,198 | - | - | 4,300 |
| | | | | 40 | 4,198 | - | - | 4,300 |

68
Los Bronces	70.52271	6-7	Reworked material within (younger) tsunami layer	Shell	T1635A	UGAMS3 1162	2,160	20	2.05	226	98	1,488	1,200	1,842
Shell	T1635B	UGAMS3 1159	4,200	20	1.09	226	98	3,978	3,582	4,395				
Reworked material within (younger) tsunami layer	Shell	T1634	UGAMS3 1155	3,930	25	-21.9	-	-	4,328	4,152	4,435			
Shell	T1633	UGAMS3 1160	4,190	20	0.44	226	98	3,964	3,571	4,386				
Archaeological material at the base of tsunami deposit	Charcoal	T1628	UGAMS3 1161	3,880	25	-18.0	-	-	4,244	4,139	4,416			
Uplifted littoral deposits	Shell	T1627	UGAMS3 1154	4,260	20	2.91	226	98	4,059	3,635	4,449			
In-situ archaeological layers underlying tsunami deposits	Charcoal	T1629	UGAMS3 1156	4,240	20	1.72	226	98	4,031	3,619	4,425			

Hornos de Cal	70.61572	10	Antropic hearth overlying tsunami deposit	Charcoal	TA1710 A	UGAMS 31193	3,990	20	-21.6	-	-	4,412	4,291	4,447
Antropic hearth underlying tsunami deposit	Charcoal	T1630	UGAMS3 1157	4,210	20	-0.48	226	98	3,991	3,594	4,402			
Shell midden underlying tsunami deposit	Charcoal	T1629	UGAMS3 1156	4,240	20	1.72	226	98	4,031	3,619	4,425			

| Hornos de Cal | 70.61572 | 10 | Antropic hearth overlying tsunami deposit | Charcoal | - | D-AMS 024530 | 4,820 | 20 | 2.91 | 226 | 98 | 4,031 | 3,619 | 4,425 |

| Hornos de Cal | 70.61572 | 10 | Antropic hearth underlying tsunami deposit | Charcoal | - | D-AMS 024526 | 5,272 | 34 | - | - | - | 5,979 | 5,911 | 6,030 |

Note: The table entries include various types of material and their corresponding dates and locations. The numbers represent dates in cal BP, with the older dates on the left and the younger dates on the right.
Site	Latitude	Longitude	Quantity	Stratigraphic Unit	Material	Age (cal BP)	Radiocarbon Date	AMS Number	Microscope Length (μm)	Microscope Width (μm)	This Work		
Playa San Pedro	27.24970	70.62441	6	Uplifted Litoral Deposits	Shell midden	T1604	Beta-446337	3,710	30	1.0	226 98 3,361	2,942 3,748	This work
				Uplifted Litoral Deposits	Shell midden	T1604B	Beta-588824	4,360	30	3.1	226 98 4,009	3,698 4,328	This work
Bahía Cisne	27.24970	70.95620	16	Shell within tsunami deposit	Shell (Scuria viridula)	BC3-2	CNA4390, 1.1	4,350	30	-	226 98 4,183	3,884 4,447	This work
Cobija	22.55272	70.26432	19	Shell midden	Shell CO1602	UCAMS31163	1,180	20	0.43	355 105 283	33 493	This work	
				Shell midden	Shell CO1606	UCAMS31164	1,270	20	1.14	355 105 365	102 576	This work	
				Shell midden	Shell CO1610	UCAMS31165	1,420	20	1.91	355 105 498	273 696	This work	
				Shell midden	Shell CO1611	UCAMS31165	3,980	30	0.4	226 98 3,522	3,244 3,820	This work	
				Shell midden overlying tsunami deposit	Shell CO1612	UCAMS31165	3,830	30	-0.1	226 98 3,336	3,041 3,627	This work	
				Shell midden overlying tsunami deposit	Shell CO1613	UCAMS31165	4,570	30	-0.6	226 98 4,285	3,966 4,596	This work	
				Shell midden overlying tsunami deposit	Shell CO1615B 1	UCAMS31165	5,520	25	1.16	226 98 5,465	5,206 5,734	This work	
				Shell midden overlying tsunami deposit	Shell CO1615B 2	UCAMS31165	7,700	30	-1.8	511 278 7483	6871 8048	This work	

Information not available is indicated with a (-) symbol.

Table S2. Quantifications of the echinoid radioles (both basal and longitudinal sections) and fragments of calcareous algae (red algae) on the thin sections and bulk sediment samples collected from the micromorphology blocks. The depth values correspond to the upper and lower boundary of the micromorphology block.
Thin section quantification

Micromorphology sample	Exc.*	Wall	Depth (cm)	Echinoid radioles	Red algae	Bulk sample	Weight (g)	Spicules	Spicules per gram	Spicules per AF**
ZA-15-6	1	East	30-40	68	29	6a	3	19	6.33	10.6
ZA-15-5	1	East	45-55	32	17	6b	4	55	13.75	
ZA-15-4	1	East	85-98	8	0	5a	5	7	1.4	4.38
ZA-15-3	1	East	128-141	8	0	5b	3	28	9.33	
ZA-15-2	1	East	135-145	1	0	4	6	23	3.83	3.83
ZA-15-1	1	East	180-190	0	0	3a	3	10	3.33	3.33

*Exc. = excavation unit.

**AF = archaeofacies.

Bulk Sample Quantification

Sample	Voids	Microstructure	c/f ratio*	c/f rel. distr.**	Coarse fraction	Fine fraction	Pedofeatures						
					Bones	Rocks	Quartz	Shell	Red algae	Echinoid spine	Charcoal		
1	30%	Integrain microaggregate	80/20	Enaulic	70%	10%	5%	-	-	-	2%	Phosphates and gypsum with organic matter and microcharcoal inclusions	Lenticular gypsum crystals and micritic gypsum nodules
2	20%	Integrain microaggregate	60/40	Enaulic	50%	2%	5%	3%	-	-	<1%	Gypsum with organic matter and microcharcoal inclusions	Lenticular gypsum crystals and nodules

Table S3. Summary of the micromorphological descriptions of six undisturbed blocks from Zapatero.
3	20%	Integrain microaggregate	70/30	Enaulic	68%	2%	<1%	-	-	<1%	Gypsum organic matter and microcharcoal inclusions	Micritic gypsum nodules and lenticular gypsum crystals	
4	15%	Integrain microaggregate	15/75	Enaulic	7%	<1%	-	3%	-	-	5%	1) Ashes with microcharcoal; 2) Phosphates	Lenticular gypsum
5	20%	Integrain microaggregate	30/70	Enaulic	22%	1%	-	3%	2%	1%	1%	1) Phosphates; 2) Clay with gypsum crystals	Lenticular and micritic gypsum nodules and crystals
6	50%	Integrain microaggregate	40/60	Enaulic	25%	1%	-	10%	1%	2%	<1%	Clay with organic matter and microcharcoal inclusions	Lenticular gypsum

*c/f = coarse/fine; **c/f rel. distr. = c/f related distribution.

Table S4. Synthesis of the historical trajectories of hunting-gathering-fishing communities in the Antofagasta Region coast modified after (26, 78).

Geologic timescale	Early Holocene (12,000-8,200 BP)	Middle Holocene (8,200-4,200 BP)	Late Holocene (4,200 BP-to the present)			
Period	Archaic I (12-10 cal ka BP)	Archaic II (8.5-7.5 cal ka BP)	Archaic III (7.5-5.7 cal ka BP)			
	Archaic IV (5.7-4.0 cal ka BP)	Archaic V (4.0-2.7 cal ka BP)	Archaic VI (2.7-1.3 cal ka BP)			
Base camp settlement	Rockshelters and open air-sites (?)	Open-air sites	Open-air sites	Open air-sites, stone-built architecture and rockshelters	Open-air sites	Open-air sites and rockshelters
Subsistence activities	Broad-spectrum economy; shellfish harvesting and inshore fishing; also, mammals and birds exploitation.	Greater orientation towards marine resources; inshore and offshore fishing, with a moderate dominance of pelagic fishes (i.e., jack mackerel); also, mammals and birds exploitation.	Littoral and maritime specialization; shellfish harvesting; inshore and offshore fishing; intensification on pelagic fishes (i.e., jack mackerel) and exploitation of oceanic fishes (i.e., swordfish and striped marlin); also, mammals and birds exploitation.	Littoral and maritime specialization; shellfish harvesting; inshore and offshore fishing (moderate predominance of jack mackerel, presence of oceanic species); also, mammals and birds exploitation.	Littoral and maritime specialization; shellfish harvesting and inshore fishing; also, mammals and birds exploitation.	Littoral and maritime specialization; shellfish harvesting and inshore fishing; also, mammals and birds exploitation.
Technology	Diversified technology: formal and informal lithic tools; few bone and shell artifacts linked to coastal-maritime exploitation activities.	Diversified technology: formal and informal lithic tools; few bone and shell artifacts linked to coastal-maritime exploitation activities.	Specialized technology: lithic, bone, shell and archaeobotanical tools associated with coastal-maritime hunting, gathering and fishing, including craft technology; also, informal and formal lithic artifacts. Special artifacts, i.e., large bifacial knives ("hojas Taltaloides"); shell, bone and lithic beads; figurines, pigments, exotic items, among others.	Specialized technology: informal and formal lithic tools; few bone tools associated with coastal-maritime hunting and fishing activities.	Specialized technology: lithic, bone, archaeobotanical and a few metal artifacts associated with coastal-maritime hunting, gathering and fishing; also, informal and formal lithic artifacts; large bifacial knives; shell, bone and lithic beads; widespread of non-local items (ceramics, metal, exotic minerals and stones, among others).	
Mobility, sociality and territoriality patterns	Low demography at local and regional scale; high residential mobility; small base camps; social aggregation sites at the regional scale; multiple burials in open-air sites.	Low demography (?) at local and regional scale; high residential mobility; small base camps (?); no burials have been identified.	High demography at local and regional scale; high residential mobility linked to social dispersion and settlement diversification; small base camps and social aggregation sites; individual and multiple burials inside stone-built structures, and individual burials in rockshelters and open-air sites.	Low demography (?); high residential mobility; small base camps; individual burials in rockshelters and open-air sites, and multiple burials in mounded cemeteries ("túmulos") at local and regional scale.		
---	---	---	---	---		
Social networks	Atacama Desert coast, coastal Cordillera and interior desert; Semiarid North coast of Chile	Atacama Desert coast, coastal Cordillera and interior desert (?)	Atacama Desert coast, coastal Cordillera and interior desert; valley and highland communities of Atacama Desert; Semiarid North of Chile	Atacama Desert coast, coastal Cordillera and interior desert; valley and highland communities of Atacama Desert; Semiarid North of Chile.		
Table S5. Frequency of known sites for Archaic IV, Archaic V and Archaic VI periods from the Taltal-Paposo area.

	5,700-4,000 cal yr BP	4,000-2,700 cal yr BP	2,700-1,500 cal yr BP
Total Number of Sites	29	10	28
Agglutinated cemeteries	12	0	7
Isolated burials	2	3	4

Table S6. List of all known sites for Archaic IV, Archaic V and Archaic VI periods in the Tarapacá, Antofagasta and northern Atacama region coastline.

Chronology (cal yr BP)	Archaeological site	Region
	Pisagua Viejo 4	Tarapacá
	Cañamo 1	Tarapacá
	Patache J	Tarapacá
	Patache E	Tarapacá
	Caramucho 3	Tarapacá
	Chipana	Tarapacá
	Los Canastos 3	Tarapacá
	Caleta Huelén 42	Tarapacá
	Caleta Huelén 75	Tarapacá
	Zapatero	Antofagasta
	San Ramon 15	Antofagasta
	Punta Negra 1a	Antofagasta
	Hornos de Cal	Antofagasta
	Alero 228/230	Antofagasta
	Caleta Bandurrias	Antofagasta
	Los Bronces 1	Antofagasta
	Paso Malo Arcaico	Antofagasta
	Paposo Norte 9	Antofagasta
	Pta Salitre J4	Antofagasta
	Mantos de la Luna	Antofagasta
Depth Range	Locality	Region
------------	---------------------------------	----------
5,700 to 4,000	Cobija S1	Antofagasta
	Copaca 1	Antofagasta
	Chacaya 2	Antofagasta
	Punta Blanca	Antofagasta
	Punta Guasilla 1	Antofagasta
	Gualagual 4	Antofagasta
	Cobija 13	Antofagasta
	Paquica	Antofagasta
	Abtao 1	Antofagasta
	Abtao 2	Antofagasta
	Los Bronces Trinchera	Antofagasta
	Alero 224A	Antofagasta
	Poza Bahamondes 4	Antofagasta
	Los Bronces 5	Antofagasta
	San Pedro Alto 2	Antofagasta
	Alero Oliva	Antofagasta
	Punta Morada	Antofagasta
	Guasilla P28	Antofagasta
	Conchal Aguada	Antofagasta
	Quebrada agua de cascabeles	Antofagasta
	Atacama 1	Antofagasta
	San Pedro	Antofagasta
	Punta Guanillo	Antofagasta
	Rocas Negras	Antofagasta
	Punta Grande	Antofagasta
	Aguada de Morro Moreno	Antofagasta
	Manto Verde	Atacama
4,000 to 2,700	Cánamo 1	Tarapacá
	Patache P	Tarapacá
	Punta Pichalo	Tarapacá
	Zapatero	Antofagasta
	Paposo Norte 9	Antofagasta
	Paso Malo Arcaico	Antofagasta
	Morro Colorado	Antofagasta
	Poza Bahamondes 4	Antofagasta
Location	Region	
-------------------------------	--------------	
Punta Morada	Antofagasta	
Sitio 183	Antofagasta	
San Ramon 7	Antofagasta	
Punta Guanillo	Antofagasta	
Punta Totoralillo	Copiapó	
Abtao 1	Antofagasta	
San Lorenzo 1 (Agua Dulce)	Antofagasta	
San Ramon 15	Antofagasta	
Mamilla 7	Antofagasta	
Los Médanos 2	Copiapó	
Pisagua 7	Tarapacá	
Patache N	Tarapacá	
Patache G	Tarapacá	
Patache A	Tarapacá	
Caleta Huelén Alto	Tarapacá	
Patache M	Tarapacá	
Patache P	Tarapacá	
Chipana	Tarapacá	
Caleta Huelén 7	Tarapacá	
Caleta Huelén 10	Tarapacá	
Caleta Huelén 43	Tarapacá	
Caleta Huelén 10A	Tarapacá	
Caleta Huelén 20	Tarapacá	
Alero 224A	Antofagasta	
El Hueso	Antofagasta	
Punta Cañas Norte	Antofagasta	
Paposo Norte 9	Antofagasta	
El Gaucho	Antofagasta	
PDLLDLM	Antofagasta	
Plaza de Indios Norte	Antofagasta	
San Lorenzo 3	Antofagasta	
Portezuelo Choluto 4	Antofagasta	
Las Tórtolas	Antofagasta	
Michilla 4	Antofagasta	
Caleta Abtao 5	Antofagasta	
Cobija 10	Antofagasta	

2,700 to 1,300
Location	Region
Hornitos 1	Antofagasta
Caleta Urcu 1	Antofagasta
Gualaguala 1	Antofagasta
A299	Antofagasta
Michilla 2	Antofagasta
Guaque 2	Antofagasta
Gualaguala 4	Antofagasta
Punta Guanillo	Antofagasta
Punta Blanca	Antofagasta
ENAEX	Antofagasta
Guasilla 29	Antofagasta
Koppers 1	Antofagasta
TGN-1	Antofagasta
Punta Morada	Antofagasta
Morro Colorado	Antofagasta
Caleta Indigena	Antofagasta
Guanillo del Sur	Antofagasta
Bandurria	Antofagasta
Punta Grande	Antofagasta
Punta Guasilla	Antofagasta
Punta Chungungo	Antofagasta
Punta Yayes	Antofagasta
Las Loberas	Antofagasta
Morro Moreno	Antofagasta
Hueso Parado	Antofagasta
Los Bronces 2	Antofagasta
El Gritón	Antofagasta
Las Guaneras	Antofagasta
Cifuncho	Antofagasta
Ballenita Sur	Antofagasta
Ballena	Antofagasta
Esmeralda	Antofagasta
Pan de Azucar	Atacama
Obispito	Atacama
Table S7. NISP, MNI and density values for shell remains from Archaic IV, Archaic V and Archaic VI periods at Zapatero.

Periods	Excavated Units	Vol (m3)	Shell					
			NISP	MNI	MNI/m3	Time Span (ka)	NISP/Time Span	MNI/Time Span
Archaic III-IV	Structure 2: Units 1-2-3-4	2.17	15159	1202	24040.0	1.7	8917.1	707.1
	Column sample Structure 2 Subtotal	0.05, 2.22						
		Subtotal	2.22					
Archaic V	Unit 2: A1-A2-B1-B2-C1-C2	1.5	7251	530	3840.6	1.3	5577.7	407.7
	Column sample Unit 2 Subtotal	0.14, 1.64						
		Subtotal	1.64					
Archaic VI	Unit 2: A1-A2-B1-B2	1.40	9428	783	12428.6	1.4	6734.3	559.3
	Column sample Unit 2 Subtotal	0.063, 1.46						
		Subtotal	1.46					

Table S8. NISP, MNI and density values for fish remains from Archaic IV, Archaic V and Archaic VI periods at Zapatero.

Periods	Excavated Units	Vol (m3)	Fish					
			NISP	MNI	MNI/m3	Time Span (ka)	NISP/Time Span	MNI/Time Span
Archaic III-IV	Structure 2: Units 1-2-3-4	2.17	273	36	16.6	1.7	160.6	21.2
	Column sample Structure 2 Subtotal	0.05, 2.22						
		Subtotal	2.22					
Archaic V	Unit 2: A1-A2-B1-B2-C1-C2	1.5	99	23	15.3	1.3	76.2	17.7
Table S9. NISP, MNI and density values for tetrapod remains from Archaic IV, Archaic V and Archaic VI periods at Zapatero.

Periods	Excavated Units	Vol (m³)	Tetrapod NISP	Tetrapod MNI/m³	Time Span (ka)	NISP/Time Span	MNI/Time Span
Archaic III-IV	Structure 2: Units 1-2-3-4	2,17	406	9,2	1,7	238,8	11,8
	Column sample Structure 2 Subtotal	0,05	20	2,22			
Archaic V	Unit 2: A1-A2-B1-B2-C1-C2	1,5	46	8,0	1,3	35,4	9,2
	Column sample Unit 2 Subtotal	0,14	12	1,64			
Archaic VI	Unit 2: A1-A2-B1-B2	1,40	42	11,4	1,4	30,0	11,4
	Column sample Unit 2 Subtotal	0,063	16	1,46			

Table S10. Lithic frequencies and density from Archaic IV, V and VI periods at the Zapatero site. Lithic remains from the column samples are not included.

Period	Vol (m³)	Lithic debitage	Lithic tools	Total lithics	Lithic density (LVD)	Standardized density
Table S11. Comparison between density of artifacts and ecofacts in Archaic IV, Archaic V and Archaic VI residential occupations of the Taltal/Paposo area (modified from 20).

Residential Site /Period	Density of lithic instruments	Density of marine mammals	Density of fish	Density of terrestrial mammals
Pta. Morada (Archaic IV)	14.3	33.7	92	1.1
228/230 (Archaic IV)	25.6	27.3	13.3	9.3
183 (Archaic V)	5	1.2	15	0
Paso Malo Alfarero			26.7	7.5
(Archaic VI)				
Pza. Indios Norte			117.2	5.8
(Archaic VI)				

Table S12. A random sample of agglutinated cemeteries from the Archaic IV and Archaic VI periods from the Antofagasta region, showing altitude and distance from the shore. Altitude in meters above mean sea level.
Site	Period	Latitude	Archaic IV altitude (m.a.s.l.)	m a.s.l. for min.	m a.s.l. for max.	Archaic VI altitude (m a.s.l.)	+/-	Archaic IV distance from shore (m)	Archaic VI distance from shore (m)
Pisagua Viejo	Archaic IV	19.559550	23					88	
Punta Chipana	Archaic IV	21.338230	15					110	
Chipana 3	Formative (Archaic VI)	21.339920	24	28	26	2		570	
Chipana 5b	Formative (Archaic VI)	21.343830	25	27	26	1		392	
Chipana 5a	Formative (Archaic VI)	21.344430	21	26	23.5	2.5		275	
Caleta Huelén 20	Formative (Archaic VI)	21.468380	21	24	22.5	1.5		670	
Caleta Urcu	Formative (Archaic VI)	21.760680	16	21	18.5	2.5		463	
Punta Guanillos	Archaic IV	21.973020	19						70
Copaca 1	Archaic IV	22.335850	11					160	
Guanillos del Sur	Formative (Archaic VI)	22.340860	37	39	38	1		510	
Camping Indígena	Formative (Archaic VI)	22.350670	26	31	28.5	2.5		492	
Bandurrias 1A	Formative (Archaic VI)	22.409520	18	19	18.5	0.5		235	
Bandurrias 1B	Formative (Archaic VI)	22.410490	28	29	28.5	0.5		303	
Bandurrias Arcaico	Archaic IV	22.413770	21					120	
Cobija 13	Archaic IV	22.552450	15					80	
Site Name	Phase	Coordinates	Duration (Yrs)	Depth (m)	Volume (m³)				
----------------------------------	-------------	-------------	----------------	----------	-------------				
Cobija 10	Formative (Archaic VI)	22.556540	31 36 33.5	2.5	488				
Punta Guasilla 1	Archaic IV	22.571520	13		26				
Caleta El Fierro 1 Alero 1	Formative (Archaic VI)	22.645270	21 21		177				
Caleta El Fierro 4b	Formative (Archaic VI)	22.646680	29 33 31	2	359				
Michilla 11	Formative (Archaic VI)	22.739230	25 30 27.5	2.5	185				
Punta Yayes 108b		22.753680	11 13 12	1	141				
Hornitos 1	Formative (Archaic VI)	22.922490	32 38 35	3	467				
Punta Chacaya 2	Archaic IV	22.961030	15		245				
Punta Negra	Archaic IV	25.043875	13		109				
Caleta Bandurrias	Archaic IV	25.204567	21 21		263				
Punta Morada	Archaic IV	25.374921	23		131				
Morro Colorado	Archaic IV	25.387016	3		50				
Los Bronces 2	Formative (Archaic VI)	25.458783	27 29 28	1	304				
Los Bronces 5	Formative (Archaic VI)	25.462875	36 36		332				
Los Bronces Túmulo Norte	Formative (Archaic VI)	25.462991	33 34 33.5	0.5	330				
Los Bronces 1	Archaic IV	25.464623	14		174				
Aguada de Los Perros 1	Formative (Archaic VI)	25.487616	45 47 46	1	371				
Site	Time Period	Latitude	Longitude	16	20	18	2	142	
-------------------	----------------------	------------	-----------	----	----	----	---	-----	
El Gritón 3?	Formative (Archaic VI)	25.504539		16	20	18	2	142	
El Gritón 2	Archaic IV	25.507258						154	
San Pedro 2	Archaic IV	25.509125						150	
El Gritón 1?	Formative (Archaic VI)	25.509144	30	35	32.5	2.5		313	
San Pedro Alto 2	Formative (Archaic VI)	25.510148	45	47	46	1		262	
San Pedro Alto 1	Formative (Archaic VI)	25.510392	48	50	49	1		277	
Table S13. Corrections by secondary ports (Pub. 3009 SHOA).

Nº	Locality	Position	Tide variations	E. P. (hr min)	Tidal range in Syzygias (m)				
		Latitude (°S)	Longitude (°W)	High tide	Low tide	High tide	Low tide		
210	Rada de Arica	18.29	70.19	-	8 32	1.40			
215	Caleta Vitor	18.45	70.21	(-)0 08	(-)0 08	(-)0.23	(-)0.44	8 29	1.20
220	Caleta Chica	19.21	70.17	(-)0 09	(-)0 09	(-)0.08	(-)0.03	8 17	1.20
225	Bahía de Pisagua	19.36	70.16	(-)0 10	(-)0 10	(+)0.02	(-)0.02	8 42	1.42
230	Caleta Junín	19.39	70.11	(-)0 20	(-)0 20	(-)0.12	(-)0.24	8 30	1.22
235	Bahía de Iquique	20.13	70.10	-				8 55	1.50
240	Caleta Molle	20.17	70.08	(-)0 11	(-)0 11	(-)0.13	(-)0.06	8 20	1.31
241	Caleta Patillos	20.44	70.11	(-)0 18	(-)0 18	(-)0.06	(-)0.08	8 40	1.31
245	Caleta Lobos	21.01	70.10	(-)0 25	(-)0 25	(+)0.12	(-)0.03	9 13	1.20
250	Puerto Tocopilla	22.06	70.14	(-)0 03	(-)0 03	(-)0.21	(-)0.14	8 21	1.20
255	Rada de Cobija	22.34	70.18	(-)0 05	(-)0 05	(-)0.12	(-)0.24	-	1.20
260	Bahía Mejillones del Sur	23.06	70.28	(-)0 07	(-)0 07	(-)0.03	(-)0.03	8 43	1.60
265	Rada de Antofagasta	23.39	70.25	-				8 46	1.60
270	Caleta Blanco Encalada	24.22	70.32	(+)0 35	(+)0 35	(-)0.27	(-)0.30	-	1.00
275	Rada Paposo	25.02	70.28	(+)0 40	(+)0 40	(+)0.12	(-)0.24	9 24	1.52
280	Puerto Taltal	25.25	70.29	(+)0 30	(+)0 30	(+)0.12	(-)0.24	9 07	1.18
281	Caleta Cifuncho	25.39	70.39	(+)0 12	(+)0 12	(+)0.01	(-)0.04	9 00	1.40
REFERENCES AND NOTES

1. S. M. Hoffmann, A. Oliver-Smith, *Catastrophe and Culture: The Anthropology of Disaster* (School of American Research Press, 2002)

2. W. Adger, T. Hughes, C. Folke, S. Carpenter, J. Rockström, Social-ecological resilience to coastal disasters. *Science* **309**, 1036–1039 (2005).

3. B. E. Tucker, Reducing earthquake risk. *Science* **341**, 1070–1072 (2013).

4. T. Stahl, M. K. Clark, D. Zekkos, A. Athanasopoulos-Zekkos, M. Willis, W. Medwedeff, L. Knoper, K. Townsend, J. Jin, Earthquake science in resilient societies. *Tectonics* **36**, 749–753 (2017).

5. Y. Y. Kagan, D. D. Jackson, Tohoku earthquake: A surprise? *Bull. Seismol. Soc. Am.* **103**, 1181–1194 (2013).

6. M. Cisternas, B. F. Atwater, F. Torrejón, Y. Sawai, G. Machuca, M. Lagos, A. Eipert, C. Youlton, I. Salgado, T. Kamataki, M. Shishikura, C. P. Rajendran, J. K. Malik, Y. Rizal, M. Husni, Predecessors of the giant 1960 Chile earthquake. *Nature* **437**, 404–407 (2005).

7. C. Goldfinger, Y. Ikeda, R. S. Yeats, J. Ren, Superquakes and supercycles. *Seismol. Res. Lett.* **84**, 24–32 (2013).

8. T. Dura, M. Cisternas, B. P. Horton, L. L. Ely, A. R. Nelson, R. L. Wesson, J. E. Pilarczyk, Coastal evidence for Holocene subduction-zone earthquakes and tsunamis in central Chile. *Quat. Sci Rev.* **113**, 93–111 (2015).

9. D. Angermann, J. Klotz, C. Reigber, Space-geodetic estimation of the Nazca-South America Euler vector. *Earth Planet. Sci. Lett.* **171**, 329–334 (1999).

10. M. Métois, C. Vigny, A. Socquet, Interseismic coupling, megathrust earthquakes and Seismic swarms along the Chilean subduction zone (38°–18°S). *Pure Appl. Geophys.* **173**, 1431–1449 (2016).
11. G. Vargas, L. Ortlieb, E. Chapron, J. Valdes, C. Marquardt, Paleoseismic inferences from a high-resolution marine sedimentary record in northern Chile (23°S). *Tectonophysics* **399**, 381–398 (2005).

12. A. Baker, R. W. Allmendinger, L. A. Owen, J. A. Rech, Permanent deformation caused by subduction earthquakes in northern Chile. *Nat. Geosci.* **6**, 492–496 (2013).

13. T. León, G. Vargas, D. Salazar, J. Goff, J. L. Guendon, P. Andrade, G. Alvarez, Geo-archaeological records of large Holocene tsunamis along the hyperarid coastal Atacama Desert in the major northern Chile seismic gap. *Quat. Sci. Rev.* **220**, 335–358 (2019).

14. M. Abad, T. Izquierdo, M. Cáceres, E. Bernárdez, J. Rodríguez-Vidal, Coastal boulder deposit as evidence of an ocean-wide prehistoric tsunami originated on the Atacama Desert coast (northern Chile). *Sedimentology* **67**, 1505–1528 (2020).

15. C. L. Redman, Resilience theory in archaeology. *Am. Anthropol.* **107**, 70–77 (2005).

16. R. E. Barrios, Resilience: A commentary from the vantage point of anthropology. *Annals Antropol. Pract.* **40**, 28–38 (2016).

17. G. Vargas, J. Rutllant, L. Ortlieb, ENSO tropical–extratropical climate teleconnections and mechanisms for Holocene debris flows along the hyperarid coast of western South America (17°–24°S). *Earth Planet. Sci. Lett.* **249**, 467–483 (2006).

18. M. Thiel, E. Macaya, E. Acuña, W. Arntz, H. Bastías, K. Brokordt, P. Camus, J. Castilla, L. Castro, M. Cortés, C. Dumont, R. Escribano, M. Fernández, J. A. Gajardo, C. F. Gaymer, I. Gómez, A. Gonzalez, H. González, P. Haye, J. Illanes, J. Iriarte, D. Lancellotti, G. Luna-Jorquera, C. Luxoro, P. Manríquez, V. Marín, P. Muñoz, S. Navarrete, E. Pérez, E. Poulin, J. Sellanes, H. Sepúlveda, W. Stotz, F. Tala, A. Thomas, C. Vargas, J. Vásquez, J. Vega, The Humboldt current system of northern and central Chile. Oceanographic processes, ecological interactions and socioeconomic feedback. *Oceanogr. Mar. Biol.* **45**, 195–344 (2007).

19. A. Llagostera, Early occupations and the emergence of fishermen on the Pacific Coast of South America. *Andean Past* **3**, 87–109 (1992).
20. J. Castelleti, “Los Hijos de la Camanchaca: La ‘otra’ historia-prehistoria de la costa del Desierto de Atacama,” thesis, Universidad Autónoma de México, Mexico City (2018).

21. P. Andrade, R. Fernandes, K. Codjambassis, J. Urrea, L. Olguín, S. Rebolledo, F. Lira, C. Aravena, M. Berrios, Subsistence continuity linked to consumption of marine protein in the Formative period in the interfluvic coast of northern Chile: Re-assessing contacts with agropastoral groups from highlands. Radiocarbon 57, 679–688 (2015).

22. D. H. Sandweiss, R. S. Solís, M. E. Moseley, D. K. Keefer, C. R. Ortloff, Environmental change and economic development in coastal Peru between 5,800 and 3,600 years ago. Proc. Natl. Acad. Sci. U.S.A. 106, 1359–1363 (2008).

23. C. H. Scholz, J. Campos, The seismic coupling of subduction zones revisited. J. Geophys. Res. 117, B05310 (2012).

24. D. Comte, M. Pardo, Reappraisal of great historical earthquakes in the northern Chile and southern Peru seismic gaps. Nat. Hazards 4, 23–44 (1991).

25. S. Ruiz, R. Madariaga, Historical and recent large megathrust earthquakes in Chile. Tectonophysics 733, 37–56 (2018).

26. D. Salazar, et al., Economic organization and social dynamics of Middle-Holocene Hunter-Gatherer-Fisher communities on the coast of the Atacama Desert (Taltal, Northern Chile), in Maritime Communities of the Ancient Andes, G. Prieto, D. H. Sandweiss, Eds. (University Press of Florida, USA, 2020).

27. Y. Tsuji, Catalog of distant tsunamis reaching Japan from Chile and Peru. Tsunami Eng. 30, 61–68 (2013).

28. J. González-Alfaro, G. Vargas, L. Ortlieb, G. González, S. Ruiz, J. C. Báez, M. Mandeng-Yogo, S. Caquineau, G. Álvarez, F. del Campo, I. del Río, Abrupt increase in the coastal uplift and earthquake rate since ~40 ka at the northern Chile seismic gap in the Central Andes. Earth Planet. Sci. Lett. 502, 32–45 (2018).
29. Power et al., Ritual stone-built architecture and shell midden foundation: A semi-subterranean structure in hyperarid Atacama Desert coast, Northern Chile. Geoarchaeol. (2021).

30. S. Urbina, L. Adán, C. Moragas, S. Olmos, R. Ajata, Arquitectura de asentamientos de la costa de Tarapacá, norte de Chile. Estud. Atacam. 41, 63–96 (2011).

31. K. Lambeck, H. Rouby, A. Purcell, Y. Sun, M. Sambridge, Sea level and global ice volumes from the Last Glacial Maximum to the Holocene. Proc. Natl. Acad. Sci. U.S.A. 111, 15296–15303 (2014).

32. E. Garrett, D. Melnick, T. Dura, M. Cisternas, L. L. Ely, R. L. Wesson, J. Jara-Muñoz, P. L. Whitehouse, Holocene relative sea-level change along the tectonically active Chilean coast. Quat. Sci. Rev. 236, 106281 (2020).

33. U. Radtke, Marine Terrassen und Korallenriffe-Das Problem der quartären Meeresspiegelschwankungen erläutert an Fallstudien aus Chile, Argentinien und Barbados (Dü sseldorf, Geographische Schriften, Düsseldorf, 1989).

34. L. Ortlieb, C. Zazo, J. L. Godoy, C. Hillaire-Marcel, B. Ghaleb, L. Cournoyer, Coastal deformation and sea-level changes in the northern Chile subduction area (23°S) during the last 330 ky. Quat. Sci. Rev. 15, 819–831 (1996).

35. M. Spiske, et al., The sedimentology and geometry of fine-grained tsunami deposits from onshore environments), in Geological Records of Tsunamis and Other Extreme Waves, M. Engels, J. Pilarczyk, S. M. May, D. Brill, E. Garrett, Eds. (Elsevier, UK, 2020).

36. L. Ortlieb, G. Vargas, J. Saliege, Marine radiocarbon reservoir effect along the northern Chile-southern Peru coast (14–24°S) throughout the Holocene. Quatern. Res. 75, 91–103 (2011).

37. J. Goff, C. Chague-Goff, D. Dominey-Howes, B. McAdoo, S. Cronin, M. Bonte-Grapetin, S. Nichol, M. Horrocks, M. Cisternas, G. Lamarche, B. Pelletier, B. E. Jaffe, W. Dudley, Palaeotsunamis in the Pacific Island. Earth Sci. Rev. 107, 141–146 (2011).
38. X. S. Villagrán, *et al.*, Microstratigraphy and faunal records from a shell midden on the hyperarid coast of the Atacama Desert (Taltal, Chile), in *South American Contributions to Global Archaeology*, M. Bonomo, S. Achila, Eds. (Springer-Nature, Switzerland, 2021).

39. P. Kempf, J. Moernaut, M. van Daele, W. Vandoorne, M. Pino, R. Urrutia, M. de Batist, Coastal lake sediments reveal 5500 years of tsunami history in south central Chile. *Quat. Sci. Rev.* **161**, 99–116 (2017).

40. D. Salazar, D. Jackson, J. L. Guendon, H. Salinas, D. Morata, V. Figueroa, G. Manríquez, V. Castro, Early evidence (ca. 12,000 BP) for iron oxide mining on the Pacific coast of South America. *Curr. Anthropol.* **52**, 463–475 (2011).

41. T. Seno, Stress drop as a criterion to differentiate subduction zones where Mw 9 earthquakes can occur. *Tectonophysics* **621**, 198–210 (2014).

42. S. Colombelli, A. Zollo, G. Festa, M. Picozzi, Evidence for a difference in rupture initiation between small and large earthquakes. *Nat. Commun.* **5**, 3958 (2014).

43. M. S. Moreno, J. Bolte, J. Klotz, D. Melnick, Impact of megathrust geometry on inversion of coseismic slip from geodetic data: Application to the 1960 Chile earthquake. *Geophys. Res. Lett.* **36**, L16310 (2009).

44. M. Metois, A. Socquet, C. Vigny, D. Carrizo, S. Peyrat, A. Delorme, E. Maureira, M.-C. Valderas-Bermejo, I. Ortega, Revisiting the North Chile seismic gap segmentation using GPS-derived interseismic coupling. *Geophys. J. Int.* **194**, 1283–1294 (2013).

45. M. Metois, C. Vigny, A. Socquet, A. Delorme, S. Morvan, I. Ortega, C.-M. Valderas-Bermejo, GPS-derived interseismic coupling on the subduction and seismic hazards in the Atacama region, Chile. *Geophys. J. Int.* **196**, 644–655 (2014).

46. F. Corbi, F. Funiciello, S. Brizzi, S. Lallemand, M. Rosenau, Control of asperities size and spacing on seismic behavior of subduction megathrusts. *Geophys. Res. Lett.* **44**, 8227–8235 (2017).
47. M. N. Shrivastava, G. González, M. Moreno, H. Soto, B. Schurr, P. Salazar, J. C. Báez, Earthquake segmentation in northern Chile correlates with curved plate geometry. Sci. Rep. 9, 4403 (2019).

48. T. Abe, K. Goto, D. Sugawara, Relationship between the maximum extent of tsunami sand and the inundation limit of the 2011 Tohoku-oki tsunami on the Sendai Plain, Japan. Sediment. Geol. 282, 142–150 (2012).

49. J. Goff, R. Witter, J. Terry, M. Spiske, Palaeotsunamis in the Sino-Pacific region. Earth Sci. Rev. 210, 103352 (2020).

50. R. Ajata, P. Méndez-Quiroz, Buscando el Formativo en la costa tarapaqueña: Prospección arqueológica y gestión de datos en sistemas de información geográfica (Actas del XVIII Congreso Nacional de Arqueología Chilena, 2012).

51. F. Gallardo, B. Ballester, N. Fuenzalida, Monumentos funerarios y flujos de información social costera, in En Monumentos funerarios de la costa del desierto de Atacama. Los cazadores-recolectores marinos y sus intercambios (500 a.C.-700 d.C.) (CIIR & SCHA, 2017).

52. B. Ballester, F. Gallardo, Prehistoric and historic networks on the Atacama Desert coast (northern Chile). Antiquity 85, 875–889 (2011).

53. G. Cain, J. Goff, B. G. McFadgen, Prehistoric mass burials: Did death come in waves? J. Archaeol. Method Theory 26, 714–754 (2019).

54. G. Smits, Danger in the lowground: Historical context for the March 11, 2011 Tōhoku Earthquake and tsunami. Asia Pac. J. 9, 3531 (2011).

55. H. Saino, Tsunami disasters of Yayoi period and Heian period in the Sendai Plain, in Proceedings of the Symposium on Traces and Experiences of Past Tsunami Disasters in the Pacific Rim, and the Succession of Knowledge, (UN World Conference on Disaster Risk Reduction, 2015).
56. J. Goff, B. G. McFadgen, N. Marriner, Landscape archaeology—The value of context to archaeological interpretation: A case study from Waitore, New Zealand. *Geoarchaeology* 36, 768–779 (2021).

57. V. Standen, L. Núñez, Indicadores antropológico-físicos y culturales del cementerio precerámico Tiliviche-2 (norte de Chile). *Chungará* 12, 135–154 (1984).

58. L. Núñez, Registro regional de fechas radiocarbónicas del norte de Chile. *Estud. Atacam.* 4, 69–111 (1976).

59. L. Cornejo, D. Jackson, M. Saavedra, Cazadores-recolectores arcaicos al sur del desierto (ca. 11,000 a 300 años a. C.), in *Prehistoria en Chile. Desde sus Primeros Habitantes hasta los Incas*, F. Falabella, M. Uribe, L. Sanhueza, C. Aldunate, J. Hidalgo, Eds. (Editorial Universitaria, 2016).

60. H. Hikichi, Y. Sawada, T. Tsuboya, J. Aida, K. Kondo, S. Koyama, I. Kawachi, Residential relocation and change in social capital: A natural experiment from the 2011 Great East Japan Earthquake and Tsunami. *Sci. Adv.* 3, e1700426 (2017).

61. L. Ye, H. Kanamori, T. Lay, Global variations of large megathrust earthquake rupture characteristics. *Sci. Adv.* 4, eaa04915 (2018).

62. R. McCaffrey, Global frequency of magnitude 9 earthquakes. *Geology* 36, 263–266 (2008).

63. Y. Rong, D. D. Jackson, H. Magistrale, C. Goldfinger, Magnitude limits of subduction zone earthquakes. *Bull. Seismol. Soc. Am.* 104, 2359–2377 (2014).

64. H. Romero, Vulnerabilidad, resiliencia y ordenamiento territorial de los desastres socionaturales en Chile. *Rev. Geogr.* 26, 87–110 (2014).

65. J. L. Drake, Y. Y. Kontar, J. C. Eichelberger, T. C. Rupp, K. M. Taylor, *Communicating Climate-Change and Natural Hazard Risk and Cultivating Resilience. Case of Studies for a Multi-disciplinary Approach* (Advances in Natural and Technological Hazards Research Series, Springer, 2016).
66. A. G. Hogg, Q. Hua, P. G. Blackwell, M. Niu, C. E. Buck, T. P. Guilderson, T. J. Heaton, J. G. Palmer, P. J. Reimer, R. W. Reimer, C. S. M. Turney, S. R. H. Zimmerman, SHCal13 Southern Hemisphere calibration, 0–50,000 years cal BP. *Radiocarbon* **55**, 1889–1903 (2013).

67. E. M. Gayo, C. Latorre, C. Santoro, Timing of occupation and regional settlement patterns revealed by time-series analyses of an archaeological radiocarbon database for the South-Central Andes (16°–25°S). *Quat. Int.* **356**, 4–14 (2015).

68. D. Salazar, V. Figueroa, P. Andrade, H. Salinas, L. Olguín, X. Power, S. Rebolledo, S. Parra, H. Orellana, J. Urrea, Cronología y organización económica de las poblaciones arcaicas de la costa de Taltal. *Estud. Atacam.* **50**, 7–46 (2015).

69. R. W. Casteel, Some archaeological uses of fish remains. *Am. Antiq.* **37**, 404–419 (1972).

70. L. Guzmán, S. Saá, L. Ortlieb, Catálogo descriptivo de los moluscos litorales (Gastrópoda y Pelecypoda) de la zona de Antofagasta, 23°S (Chile). *Estud. Oceán.* **17**, 17–86 (1998).

71. V. Sierpe, *Atlas osteológico del guanaco (Lama guanicoe)* (Ediciones Universidad de Magallanes, Punta Arenas, 2015).

72. L. Binford, Butchering, sharing, and the archaeological record. *J. Anthropol. Archaeol.* **3**, 235–257 (1984).

73. D. K. Grayson, *Quantitative Zooarchaeology. Topics in the Analysis of Archaeological Faunas* (Academic Press, 1984).

74. A. Wheeler, A. Jones, *Fishes* (Cambridge, 1989).

75. E. J. Reitz, E. S. Wing, *Zooarchaeology* (Cambridge Manuals in Archaeology, Cambridge Univ. Press, 1999).

76. W. Andrefsky, *Lithics* (Cambridge Univ. Press, 1998).
77. P. Hiscock, Quantifying the size of artefact assemblages. *J. Archaeol. Sci.* **29**, 251–258 (2002).

78. C. A. Aschero, L. M. Manzi, A. G. Gómez. Producción de recursos líticos y uso del espacio en el nivel 2b4 de Quebrada Seca 3. *Relaciones de la Sociedad Argentina de Antropología* **19**, 191–214 (1993–1994).

79. G. A. Clark, C. M. Barton, Lithics, landscapes & la Longue-durée–Curation & expediency as expressions of forager mobility. *Quat. Int.* **450**, 137–149 (2017).

80. Ø. Hammer, D. A. T. Harper, P. D. Ryan, PAST: Paleontological statistics software package for education and data analysis. *Palaeontol. Electron.* **4**, 4 (2001).

81. G. Stoops, *Guidelines for Analysis and Description of Soil and Regolith Thin Sections* (Soil Science Society of America, Madison, 2003).

82. A. Herrero, P. Bernard, A kinematic self-similar rupture process for earthquakes. *Bull. Seismol. Soc. Am.* **84**, 1216–1228 (1994).

83. G. Hayes, D. Wald, R. Johnson, Slab1.0: A three-dimensional model of global subduction zone geometries. *J. Geophys. Res. Solid Earth* **117**, B01302 (2012).

84. E. L. Geist, Complex earthquake rupture and local tsunamis. *J. Geophys. Res. Solid Earth* **107** 10.1029/2000JB000139 (2002).

85. J. A. Ruiz, M. Fuentes, S. Riquelme, J. Campos, A. Cisternas, Numerical simulation of tsunami runup in northern Chile based on non-uniform k^−2 slip distributions. *Nat. Hazards* **79**, 1177–1198 (2015).

86. Y. Okada, Surface deformation due to shear and tensile faults in a half-space. *Bull. Seismol. Soc. Am.* **75**, 1135–1154 (1985).

87. Y. Tanioka, K. Satake, Tsunami generation by horizontal displacement of ocean bottom. *Geophys. Res. Lett.* **23**, 861–864 (1996).
88. Y. Yamazaki, Z. Kowalik, K. F. Cheung, Depth-integrated, non-hydrostatic model for wave breaking and run-up. *Int. J. Numer. Methods Fluids* **61**, 473–497 (2009).

89. Y. Yamazaki, K. F. Cheung, Z. Kowalik, Depth-integrated, non-hydrostatic model with grid nesting for tsunami generation, propagation, and run-up. *Int. J. Numer. Methods Fluids* **67**, 2081–2107 (2011).

90. S. V. Donato, E. G. Reinhardt, J. I. Boyce, R. Rothaus, T. Vosmer, Identifying tsunami deposits using bivalve shell taphonomy. *Geology* **3**, 199–202 (2008).

91. E. Leonard, J. Wehmiller, Geochronology of marine terrace at Caleta Michilla, northern Chile; implications for Late Pleistocene and Holocene uplift. *Andean Geol.* **18**, 81–86 (1991).

92. R. Contreras, P. Nunez, A. Llagostera, J. Cruz, A. San Francisco, B. Ballester, O. Rodriguez, G. Becerra, Un conglomerado del periodo Arciaco costero medio del area Taltal Paposo, Norte de Chile. *Taltalia* **4**, 7–31 (2011).