REVIEW ARTICLE

A Catalog of 5’ Fusion Partners in ROS1-Positive NSCLC Circa 2020

Sai-Hong Ignatius Ou, MD PhD,a,* Misako Nagasaka, MD,b,c

aChao Family Comprehensive Cancer Center, Department of Medicine, Division of Hematology-Oncology, University of California Irvine School of Medicine, Orange, California
bDepartment of Oncology, Karmanos Cancer Institute, Wayne State University, Detroit, Michigan
cDepartment of Neurology, St. Marianna University Graduate School of Medicine, Kawasaki, Japan

Received 18 March 2020; revised 13 April 2020; accepted 22 April 2020
Available online - 28 April 2020

ABSTRACT

ROS1 fusion–positive (ROS1+NSCLC) was discovered in 2007, the same year as the discovery of ALK-positive (ALK+) NSCLC but has trailed ALK+NSCLC in terms of development. There seems to be a differential response to ROS1 inhibitors, which depend on fusion partners (CD74, SLC34A2, or SDC4); thus, knowledge of the fusion partners in ROS1+NSCLC is important. To date (end of February 2020), we have identified 24 unique 5’ fusion partners of ROS1 in ROS1+NSCLC from published literature and congress proceedings. Thus, we published this catalog for easy reference.

© 2020 The Authors. Published by Elsevier Inc. on behalf of the International Association for the Study of Lung Cancer. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Keywords: ROS1 fusion partner; Next-generation sequencing; ROS1-positive NSCLC

Introduction

ROS1 fusion–positive (ROS1+) NSCLC was discovered in 2007, the same year as ALK fusion–positive (ALK+) NSCLC.1 It constitutes about 2.9% of all adenocarcinomas of the lung.2 The development of ROS1 TKIs has followed the development of ALK TKIs; but to date, there are only two U.S. Food and Drug Administration–approved ROS1 TKIs (crizotinib and entrectinib).3,4 Neel et al.5 reported that different ROS1 fusion partners determine the subcellular localization of the ROS1 fusion variant and the subsequent oncogenic potency of that ROS1 fusion variant. In addition, Li et al.6 suggested that ROS1 fusion partners (CD74-ROS1 versus non–CD74-ROS1) have a differential response to crizotinib, and, more importantly, have a predilection for central nervous system metastasis. Thus, it is important to have a catalog of fusion partners of ROS1 in ROS1+NSCLC.

Methods and Results

We extensively searched publications in PubMed, conference abstracts and presentations, and the cBioPortal for Cancer Genomics website to identify novel ROS1 fusion partners (including noncoding RNAs). We included only 5’ fusion partners that retained the 3’-ROS1 kinase domain. Overall, a total of 24 distinct ROS1 fusion partners were identified in the literature by the end of February 2020 (Table 1). We did not include one case report, in which the ROS1 fusion variant arose as a resistance mechanism to EGFR TKI, but the fusion partner to ROS1 was a 3’ fusion partner (ROS1-ADGRG6). In that ROS1 fusion variant, the ROS1-ADGRG6 fusion

*Corresponding author.
Disclosure: Dr. Ou has stock ownership and was on the scientific advisory board of Turning Point Therapeutics, Inc. (until Feb 28, 2019); received speaker honorarium from Merck, Roche/Genentech, Astra Zeneca, Takeda/ARIAD and Pfizer; and received advisory fees from Roche/Genentech, Astra Zeneca, Takeda/ARIAD, Pfizer, Foundation Medicine Inc., Daiichi-Sankyo, and Spectrum Pharmaceuticals. Dr. Nagasaka has received honoraria from Astra Zeneca, Caris Life Sciences, Daiichi-Sankyo, Takeda, and Tempus.

Address for correspondence: Sai-Hong Ignatius Ou, MD, PhD, Chao Family Comprehensive Cancer Center, Department of Medicine, Division of Hematology-Oncology, University of California Irvine School of Medicine, 200 South Manchester Avenue, Suite 400, Room 407, Orange, CA 92868-3298. E-mail: siou@hs.uci.edu

Cite this article as: Ou S-HI and Nagasaka M. A Catalog of 5’ Fusion Partners in ROS1-Positive NSCLC Circa 2020. JTO Clin Res Rep 1:100048

© 2020 The Authors. Published by Elsevier Inc. on behalf of the International Association for the Study of Lung Cancer. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

ISSN: 2666-3643
https://doi.org/10.1016/j.jtocrr.2020.100048

JTO Clinical and Research Reports Vol. 1 No. 3: 1-5
Table 1. Catalog of Fusion Partners in ROS1-Positive NSCLC

No.	Fusion Partner	Year Published in Print/Presented	Chromosomal Location	Fusion Breakpoint	Tumor Source	Method of Detection	Variant Frequency in Tumor (%)	References
1	CD74	2007	5q33.1	(C6, R34)	FFPE	5' RACE RT-PCR	NR	+/NR
2	SLC34A2	2007	4p15.2	(S4, R34)	HCC78 cell line	5' RACE RT-PCR	NR	+/NR
3	EZR	2012	6q25.3	(E10, R34)	FFPE	5' RACE RT-PCR	NR	+/NR
4	LRG3	2012	12q14.1	(L16, R35)	FFPE	5' RACE RT-PCR	NR	+/NR
5	SDC4	2012	20q13.12	(S2, R32)	FFPE	5' RACE RT-PCR	NR	+/NR
6	TPM3	2012	1q21.3	(T8, R35)	FFPE	5' RACE RT-PCR	NR	+/NR
7	GOPC (FIG)	2012	6q22.1	NR	FFPE	RT-PCR	NR	+/+
8	KDREL2	2012	7p22.1	NR	PPPE	DNA NGS	NR	NR/NR
9	CCDC6	2012	10q21.2	(C6, R34)	PPPE	DNA NGS	NR	NR/NR
10	LIMA1	2012	12q13.12	NR	FFPE	Targeted RNA sequencing	NR	+/+
11	MSN	2012	Xq12	(M9, R34)	FFPE	Targeted RNA sequencing	NR	+/+
12	CLTC	2014	17q23.1	(C31, R35)	FFPE	RNA sequencing	NR	NR/NR
13	TMEM106B	2015	7p21.3	(T3, R35)	FFPE	DNA NGS	NR	NR/NR
14	TPDS2L1	2016	6q22.31	(T3, R33)	FFPE	DNA NGS	NR	NR/NR
15	SLCE6A17	2017	1p13.3	NR	FFPE	NGS	NR	NR/NR
16	CEP72	2018	5p15.33	(C11, R23)	FFPE	DNA NGS	NR	NR/NR
17	ZCCHC8	2018	12q24.31	NR	FFPE	NGS	NR	NR/NR
18	SLMAP	2018	3p14.3	(S7, R35)	FFPE	NGS	NR	NR/NR
19	MYOSC	2018	15q21.2	(M2, R35)	FFPE	NGS	NR	NR/NR
20	TFG	2018	3q12.2	NR	FFPE	NGS	19.3	NR/NR
21	WNK1	2019	12p13.33	(W25, R34)	FFPE	NGS	NR	NR/NR

(continued)
Year	Chromosomal Breakpoint	Fusion Partner	Response to crizotinib	Method of Detection	Tumor Source	Frequency in Tumor (%)	References
2019	7q36.1	NR	NR	Plasma	NGS	NR/NR	Dagogo-Jack et al.32
2019	3	NR	NR	Plasma	NGS	NR/NR	Dagogo-Jack et al.32
2020	8p12 (R1, R32)	Response to crizotinib	FFPE	23.7	NR/NR	Zhang et al.33	

*Both fusions were detected and treated in the crizotinib phase 2 trial. The ROS1 fusion identified in the 2 reports was likely the same identical fusion variant. One report described the technique of its identification while the other report reported its response to crizotinib in the expand crizotinib phase 1 trial.

Discussion

The number of ROS1 fusion partners identified in ROS1+ NSCLC as of February 2020 is approximately 24, which is lower than that reported for ALK+ and RET+ NSCLC.10,11 It is quite surprising, given the fact that ROS1+ NSCLC was discovered in 2007, whereas RET+ NSCLC was discovered only in 2012, although RET fusions have been identified in other solid tumors, especially in thyroid cancer. The ROS1 gene is located on chromosome 6q22.1 and only two fusion partners are located near ROS1 (GOPC, TPD52L1), and one fusion partner, ERZ, is located on 6q25.3. Unlike ALK+ and RET+ NSCLC, only one intergenic rearrangement has been reported in ROS1+ NSCLC (Table 2).

Another unique feature of ROS1+ NSCLC is the high incidence of venous thromboembolic events.12-14 Given the potential role of fusion partners in affecting different oncogenic potencies on the ROS1 fusion variant,5 the potential differential response to crizotinib, and the predilection for central nervous system metastasis,7 identifying ROS1 fusion partners is essential to further advance the science and management of ROS1+ NSCLC. Although five fusion partners (CD74, SLC34A2, SDC4, ERZ, TPM3) made up most of the ROS1+ patients with NSCLC who were enrolled in the entrectinib trials, 23% of the patients diagnosed with ROS1+ NSCLC had unknown fusion partners.4 Thus, it is important for future prospective studies of ROS1 TKIs to identify the fusion partners as much as possible, so that future translational studies can be performed from hypotheses generated from the subgroup analysis of these trials.
Conclusions

1. **ROS1+ NSCLC** is a heterogeneous disease with at least 24 distinct fusion partners identified in the literature up until February 2020; but fewer fusion partners were identified compared with **ALK+** and **RET+ NSCLC**.

2. It is likely that many more fusion partners and intergenic rearrangements will be identified with the ever-increasing adoption of targeted RNA sequencing and whole transcriptome sequencing owing to the increasing demands of identifying rare, actionable fusions, such as **NTRK** and **NRG1** fusions.

3. We recommend clinicians worldwide to continue to report these novel fusions/intergenic rearrangements, with information on exon breakpoints/ fusions, response to ROS1 TKI and allele frequency, and, if possible, whether the tumor is **ROS1**-positive on fluorescence in situ hybridization (FISH) and immunohistochemistry (IHC).

4. In this **ROS1** fusion partner catalog, most of the **ROS1+ NSCLC** did not undergo any FISH or IHC testing. Currently, the companion diagnostic test for **ROS1** rearrangement approved by the U.S. Food and Drug Administration is next-generation sequencing (Oncomine Dx Target test, PMA numberP160045). But given that FISH and IHC are still routinely used to detect **ROS1** fusion, we continue to encourage clinicians when they report novel 5’ **ROS1** fusion partners to describe the FISH or IHC results if they had been performed.

5. Drilon A, Siena S, Dziadziuszko R, et al. Entrectinib in **ROS1** fusion-positive non-small-cell lung cancer: integrated analysis of three phase 1-2 trials. Lancet Oncol. 2020;21:261-270.

6. Neel DS, Allegaenko DV, Olivas V, et al. Differential subcellular localization regulates oncogenic signaling by **ROS1** kinase fusion proteins. Cancer Res. 2019;79:546-556.

7. Li Z, Shen L, Ding D, et al. Efficacy of crizotinib among different types of **ROS1** fusion partners in patients with **ROS1**-rearranged non-small cell lung cancer. J Thorac Oncol. 2018;13:987-995.

8. Xu S, Wang W, Xu C, et al. **ROS1-ADGRG6**: a case report of a novel **ROS1** oncogenic fusion variant in lung adenocarcinoma and the response to crizotinib. BMC Cancer. 2019;19:769.

9. Marks EJ, Pamaryth S, Dizon D, et al. **ROS1-GOPC/FIG**: a novel gene fusion in hepatic angiosarcoma. Oncotarget. 2019;10:245-251.

10. Ou S-HI, Zhu VW. Catalog of 5’ fusion partners in **ALK**-positive NSCLC circa 2020. JTO Clin Res Rep. 2020;1:100015.

11. Ou S-HI, Zhu VW. Catalog of 5’ fusion partners in **RET**-positive NSCLC circa 2020. JTO Clin Res Rep. 2020;1:100037.

12. Ng TL, Smith DE, Mushiata R, et al. **ROS1** gene rearrangements are associated with an elevated risk of peridagnosis thromboembolic events. J Thorac Oncol. 2019;14:596-605.

13. Chiari R, Ricciuti B, Landi L, et al. **ROS1**-rearranged non-small-cell lung cancer is associated with a high rate of venous thromboembolism: analysis from a phase II, prospective, multicenter, two-arms trial (METROS). Clin Lung Cancer. 2020;21:15-20.

14. Alexander M, Pavlakis N, John T, et al. A multicenter study of thromboembolic events among patients diagnosed with **ROS1**-rearranged non-small cell lung cancer. Lung Cancer. 2020;142:34-40.

15. United States Food and Drug Administration. List of Cleared or Approved Companion Diagnostic Devices (In Vitro and Imaging Tools). https://www.fda.gov/medical-devices/vitro-diagnostics/list-cleared-or-approved-companion-diagnostic-devices-vitro-and-imaging-tools. Accessed April 13, 2020.

16. Takeuchi K, Soda M, Togashi Y, et al. **RET**, **ROS1** and **ALK** fusions in lung cancer. Nat Med. 2012;18:378-381.

Table 2. List of Chromosomal Location of Intergenic Translocations With Potential **ROS1 Fusion Partners***

No.	Year Published in Print/Presented	Chromosomal Location	Potential Fusion Partner Gene	**RET** Exon Fusion	Response to ALK TKI At the Time of Publication	Method of Detection	Variant Frequency in Tumor	FISH/IHC	Reference
1	2019	6q22.1	**DCBLD1**	R35	NR	FFPE	DNA NGS	NR/ NR	Xu et al. 34

*DCBLD1 intergenic rearrangement - **ROS1** was identified as a potential resistance RTK fusion to osimertinib in an EGFR+ patient with NSCLC (Del 19, T790M) in addition to RP11-56SP22.6-NTRK1 fusion.

FFPE, formalin-fixed paraffin embedded; FISH, fluorescence in situ hybridization; IHC, immunohistochemistry; NGS, next-generation sequencing; NR, not reported; TKI, tyrosine kinase inhibitor.

References

1. Rikova K, Guo A, Zeng Q, et al. Global survey of phosphotyrosine signaling identifies oncogenic kinases in lung cancer. Cell. 2007;131:1190-1203.

2. Zhu Q, Zhan P, Zhang X, Lv T, Song Y. Clinicopathologic characteristics of patients with **ROS1** fusion gene in non-small cell lung cancer: a meta-analysis. Transl Lung Cancer Res. 2015;4:300-309.

3. Kazandjian D, Blumenthal GM, Luo L, et al. Benefit-risk summary of crizotinib for the treatment of patients with **ROS1** alteration-positive, metastatic non-small cell lung cancer. Oncologist. 2016;21:974-980.

4. Drilon A, Siena S, Dziadziuszko R, et al. Entrectinib in **ROS1** fusion-positive non-small-cell lung cancer: integrated analysis of three phase 1-2 trials. Lancet Oncol. 2020;21:261-270.

5. Neel DS, Allegaenko DV, Olivas V, et al. Differential subcellular localization regulates oncogenic signaling by **ROS1** kinase fusion proteins. Cancer Res. 2019;79:546-556.

6. Li Z, Shen L, Ding D, et al. Efficacy of crizotinib among different types of **ROS1** fusion partners in patients with **ROS1**-rearranged non-small cell lung cancer. J Thorac Oncol. 2018;13:987-995.

7. Xu S, Wang W, Xu C, et al. **ROS1-ADGRG6**: a case report of a novel **ROS1** oncogenic fusion variant in lung adenocarcinoma and the response to crizotinib. BMC Cancer. 2019;19:769.

8. Marks EJ, Pamaryth S, Dizon D, et al. **ROS1-GOPC/FIG**: a novel gene fusion in hepatic angiosarcoma. Oncotarget. 2019;10:245-251.

9. cbioPortal for Cancer Genomics. www.cbioportal.org. Accessed March 3, 2020.

10. Ou S-HI, Zhu VW, Nagasaka M. Catalog of 5’ fusion partners in **ALK**-positive NSCLC circa 2020. JTO Clin Res Rep. 2020;1:100015.

11. Ou S-HI, Zhu VW. Catalog of 5’ fusion partners in **RET**-positive NSCLC circa 2020. JTO Clin Res Rep. 2020;1:100037.

12. Ng TL, Smith DE, Mushiata R, et al. **ROS1** gene rearrangements are associated with an elevated risk of peridagnosis thromboembolic events. J Thorac Oncol. 2019;14:596-605.

13. Chiari R, Ricciuti B, Landi L, et al. **ROS1**-rearranged non-small-cell lung cancer is associated with a high rate of venous thromboembolism: analysis from a phase II, prospective, multicenter, two-arms trial (METROS). Clin Lung Cancer. 2020;21:15-20.

14. Alexander M, Pavlakis N, John T, et al. A multicenter study of thromboembolic events among patients diagnosed with **ROS1**-rearranged non-small cell lung cancer. Lung Cancer. 2020;142:34-40.

15. United States Food and Drug Administration. List of Cleared or Approved Companion Diagnostic Devices (In Vitro and Imaging Tools). https://www.fda.gov/medical-devices/vitro-diagnostics/list-cleared-or-approved-companion-diagnostic-devices-vitro-and-imaging-tools. Accessed April 13, 2020.

16. Takeuchi K, Soda M, Togashi Y, et al. **RET**, **ROS1** and **ALK** fusions in lung cancer. Nat Med. 2012;18:378-381.
17. Rimkunas VM, Crosby KE, Li D, et al. Analysis of receptor tyrosine kinase ROS1-positive tumors in non-small cell lung cancer: identification of a FIG-ROS1 fusion. Clin Cancer Res. 2012;18:4449-4457.
18. Suehara Y, Arcila M, Wang L, et al. Identification of KIF5B-RET and GOPC-ROS1 fusions in lung adenocarcinomas through a comprehensive mRNA-based screen for tyrosine kinase fusions. Clin Cancer Res. 2012;18:6599-6608.
19. Govindan R, Ding L, Griffith M, et al. Genomic landscape of non-small cell lung cancer in smokers and never-smokers. Cell. 2012;150:1121-1134.
20. Seo JS, Ju YS, Lee WC, et al. The transcriptional landscape and mutational profile of lung adenocarcinoma. Genome Res. 2012;22:2109-2119.
21. Shaw AT, Ou SH, Bang YJ, et al. Crizotinib in ROS1-rearranged non-small-cell lung cancer. N Engl J Med. 2014;371:1963–1971.
22. Zheng Z, Liebers M, Zhelyazkova B, et al. Anchored multiplex PCR for targeted next-generation sequencing. Nat Med. 2014;20:1479-1484.
23. Cancer Genome Atlas Research Network. Comprehensive molecular profiling of lung adenocarcinoma. Nature. 2014;511:543-550.
24. Ou SH, Chalmers ZR, Azada MC, et al. Identification of a novel TMEM106B-ROS1 fusion variant in lung adenocarcinoma by comprehensive genomic profiling. Lung Cancer. 2015;88:352-354.
25. Zhu VW, Upadhyay D, Schrock AB, Gowen K, Ali SM, Ou SH. TPD52L1-ROS1, a new ROS1 fusion variant in lung adenosquamous cell carcinoma identified by comprehensive genomic profiling. Lung Cancer. 2016;97:48-50.
26. Zehir A, Benayed R, Shah RH, et al. Mutational landscape of metastatic cancer revealed from prospective clinical sequencing of 10,000 patients. Nat Med. 2017;23:703-713.
27. Zhu YC, Zhou YF, Wang WX, et al. CEP72-ROS1: A novel ROS1 oncogenic fusion variant in lung adenocarcinoma identified by next-generation sequencing. Thorac Cancer. 2018;9:652-655.
28. Park S, Ahn BC, Lim SW, et al. Characteristics and outcome of ROS1-positive non-small cell lung cancer patients in routine clinical practice. J Thorac Oncol. 2018;13:1373-1382.
29. Hicks JK, Boyle ALA, Albacker LA, Madison R, Frampton G, Creelan BC. Clinical activity of crizotinib in lung adenocarcinoma harboring a rare ZCHC8-ROS1 fusion. J Thorac Oncol. 2018;13:e148-e150.
30. Zhu YC, Wang WX, Xu CW, et al. A novel co-existing ZCHC8-ROS1 and de-novo MET amplification dual driver in advanced lung adenocarcinoma with a good response to crizotinib. Cancer Biol Ther. 2018;19:1097-1101.
31. Liu Y, Liu T, Li N, Wang T, Pu Y, Lin R. Identification of a novel WNK1-ROS1 fusion in a lung adenocarcinoma sensitive to crizotinib. Lung Cancer. 2019;129:82-88.
32. Dagogo-Jack I, Rooney M, Nagy RJ, et al. Molecular analysis of plasma from patients with ROS1 positive NSCLC. J Thorac Oncol. 2019;14:816-824.
33. Zhang Y, Yu M, Yuan M, Chen R, Huang MJ. Identification of a novel RBPMS-ROS1 fusion in an adolescent patient with microsatellite-instable advanced lung adenocarcinoma sensitive to crizotinib: A case report. Clin Lung Cancer. 2020;21:e78-e83.