Non-canonical function of the Sex-lethal gene controls the protogyny phenotype in Drosophila melanogaster

Ki-Hyeon Seong¹,³,⁎ and Siu Kang²,³

¹RIKEN Cluster for Pioneering Research, RIKEN Tsukuba Institute, Tsukuba, Ibaraki, Japan.
²Graduate School of Science and Engineering, Yamagata University, Jonan, Yonezawa, Yamagata, Japan
³AMED-CREST, AMED, Chiyoda-ku, Tokyo, Japan

#Current address: Institute of Agrobiological Sciences, NARO, Tsukuba, Ibaraki, Japan

⁎Corresponding author

E-mail: ki-hyeon.seong@riken.jp (KHS)

Running title: Sxl non-canonical function controls protogyny
Abstract

Many animal species exhibit sex differences in the time period prior to reaching sexual maturity. However, the underlying mechanism for such biased maturation remains poorly understood. Females of the fruit fly *Drosophila melanogaster* eclose 4 h faster on average than males, owing to differences in the pupal period between the sexes; this characteristic is referred to as the protogyny phenotype. Here, we aimed to elucidate the mechanism underlying the protogyny phenotype in the fruit fly using our newly developed *Drosophila* Individual Activity Monitoring and Detecting System (DIAMonDS), which can continuously detect the precise timing of both pupariation and eclosion of individual flies. Via this system, following the laying of eggs, we detected the precise time points of pupariation and eclosion of a large number of individual flies simultaneously and succeeded in identifying the tiny differences in pupal duration between females and males. We first explored the role of physiological sex by establishing transgender flies via knockdown of the sex-determination gene, *transformer (tra)* and its co-factor *tra2*, which retained the protogyny phenotype. In addition, disruption of dosage compensation by *male-specific lethal (msl-2)* knockdown did not affect the protogyny phenotype. The *Drosophila* master sex switch gene—*Sxl* promotes female differentiation via *tra* and turns off male dosage compensation through the repression of *msl-2*. However, we observed that stage-specific whole-body knockdown and mutation of *Sxl* induced disturbance of the protogyny phenotype. These results suggest that an additional, non-canonical function of *Sxl* involves establishing the protogyny phenotype in *D. melanogaster*.

Author summary

A wide variety of animals show differences in time points of sexual maturation between sexes. For example, in many mammals, including human beings, females mature
faster than males. This maturation often takes several months or years, and precisely
detecting the time point of maturation is challenging, because of the continuity of
growth, especially in mammals. Moreover, the reason behind the difference in sexual
maturation time points between sexes is not fully understood. The fruit fly Drosophila—
a model organism—also shows biased maturation between the sexes, with females
emerging 4 h faster than males (a characteristic known as the protogyny phenotype).
To understand the mechanism underlying the protogyny phenotype, we used our newly
developed system, Drosophila Individual Activity Monitoring and Detecting System
(DIAMonDS), to detect the precise eclosion point in individual fruit flies. Surprisingly,
our analysis of transgender flies obtained by knockdown and overexpression
techniques indicated that a physiological gender might not be necessary requirement
for protogyny and that a non-canonical novel function of the fruit fly master sex switch
gene, Sxl, regulates protogyny in fruit flies.
Introduction

The time taken to reach sexual maturity is often unequal between the sexes of numerous animal species; protogyny refers to the phenotype characterized by females maturing first and protandry refers to the phenotype characterized by males maturing earlier than females [1, 2]. A search of the AnAge database (https://genomics.senescence.info/species/) revealed that approximately one-third of animals throughout the animal kingdom show sexual dimorphism in sexual maturation timing, among which poikilotherms tend to exhibit protandry, whereas homeotherms tend to exhibit protogyny (S1 Table) [3]. Although there is minimal information on arthropods in the AnAge database, several reports have indicated that male adults tend to emerge somewhat earlier than females for many insect species [2, 4-6]. Numerous hypotheses have been proposed to explain the strategy of protogyny and protandry with respect to increasing fitness; however, the detailed mechanism or benefit remains to be elucidated [1, 6-8].

To better understand the evolutionary significance of the sex bias in the sexual maturation time point, it is also important to elucidate the molecular mechanism underlying the protogyny and protandry phenotypes. However, these molecular aspects remain unclear, mainly owing to difficulties in precisely measuring the timing of maturation of individuals simultaneously and for a long period with available techniques.

In the fruit fly Drosophila melanogaster, adult females emerge quickly, before males (protogyny phenotype), with only a 4-h difference in eclosion timing [9]. Therefore, D. melanogaster offers a potentially useful model to elucidate the molecular mechanism underlying the sexual dimorphism in sexual maturation. We established a new system, Drosophila Individual Activity Monitoring and Detection System (DIAMonDS), which can automatically detect the phase-conversion timing of individual
flies, such as the timing of pupariation, adult eclosion, and death, with high temporal resolution [10]. DIAMonDS enables time-lapse- and multi-scanning to simultaneously determine the time points of pupariation and eclosion in a large number of individuals under several chemical and environmental conditions and against different genetic backgrounds. Using DIAMonDS, we could precisely detect the 4-h difference of eclosion timing between sexes and further revealed that this was solely due to a difference in pupal duration [10].

In this study, we further applied DIAMonDS to evaluate the genetic regulation of the protogyny phenotype of *D. melanogaster*. As fruit flies alter their developmental rates when exposed to different environmental conditions [11-13], we first explored the effect of temperature and nutrients on the protogyny phenotype. We next manipulated the *transformer* (*tra*) gene and its co-factor *transformer-2* (*tra2*)—which play essential roles in determining the physiological sex of cells—to change the sex of the flies and evaluated the effect on the protogyny phenotype. Sex chromosome dosage compensation is also regulated differentially by sex, and the male-specific lethal complex is a key player in the dosage compensation machinery in *Drosophila* [14, 15]. Therefore, we also investigated the possibility that the dosage compensation pathway contributes to the protogyny phenotype by knocking down expression of the *male-specific lethal* (*msl*) 2 gene. Finally, we evaluated the potential role of the Sex-lethal gene (*Sxl*), which encodes an RNA splicing enzyme and acts as a master regulator of the sex-determination pathway [16-18] and also regulates the expression of its downstream genes—*tra* and *msl-2*.

Results

Environmental stability of the protogyny phenotype in *D. melanogaster*
The sexual difference in pupal duration was maintained under a high temperature condition of 29°C (Fig 1A) and was also not altered under several nutritional conditions, including various sugar and yeast concentrations (Fig 1B and C). These results indicated that the sexual difference of pupal duration is a very stable phenotype in *D. melanogaster*. Therefore, we further used this difference to evaluate the molecular and genetic aspects underlying protogyny.

Fig 1. Environmental stability of the protogyny phenotype. A. Effect of rearing temperature of 25°C and 29°C. B. Effect of sugar concentration in the media. High, normal, and low sugar media contain 1 M, 0.15 M, and 0.05 M sugar, respectively, in addition to the other components of the normal medium. C. Effect of yeast concentration in the media. The poor yeast medium contains one-third the yeast concentration of normal fly medium. The number of flies analyzed is indicated in parentheses on each graph. Whiskers indicate minima and maxima (**p < 0.001; *p < 0.01; Student’s unpaired t-test).**

Forced sex change does not affect the protogyny phenotype based on the genotype

A previous study [19] revealed that tra2 knockdown or tra overexpression in the whole body induced a sex transformation so that the phenotypic sex was opposite to the genotypic sex, which also altered body size (Fig 2A). We confirmed that the phenotypic sex transformation of *D. melanogaster* can be controlled by genetic manipulation of tra or tra2 expression independent of the sexual genotype using UAS-tra2 RNA interference (RNAi)-mediated knockdown or UAS-traF overexpression with ubiquitous GAL4 drivers (Fig 2B). Pupal durations were then compared between siblings with XX and XY genotypes, respectively (S1 Fig). The phenotypic transformation induced by
tra2 knockdown or traF overexpression did not alter the sexual difference of pupal duration based on the chromosomal sex (Fig 2C-D). These results suggested that phenotypic sex is not critical for the protogyny phenotype, which is also independent of the tra/tra2 pathway.

Fig 2. Alteration of tra2 and tra expression does not affect the protogyny phenotype. A. Schematic presentation of the sex-determination pathway and effect of alteration of tra2 or traF expression. B. Photographs of external morphological sexual traits of wild-type, act5c>tra2 RNAi #1, act5c>RNAi #2, and da>traF adults. C–E. Effect of act5c>tra2 RNAi #1 (C), act5c>RNAi #2 (D), and da>traF adults (E) on the protogyny phenotype. The number of flies analyzed is indicated in parentheses on each graph. Whiskers indicate minima and maxima (***p < 0.001; **p < 0.01; Student’s unpaired t-test).

Disturbance of the dosage compensation pathway could not alter the protogyny phenotype

Dosage compensation machinery is not assembled in Drosophila females, because msl-2, a key gene of assembly of the MSL complex is not translated. [14, 15, 20]. Thus, next, we investigated the possibility of contribution of the dosage compensation pathway to development of the protogyny phenotype.

Ubiquitous knockdown of msl-2 (Fig 3A) successfully induced male-specific semi-lethality (Fig 3B), which in turn reduced the msl-2 expression level in males (Fig 3C). However, msl-2 knockdown did not change the sexual difference of pupal duration, suggesting that the sex chromosome dosage compensation machinery does not commit to the protogyny phenotype (Fig 3D and E and S2 Fig).
Fig 3. Alteration of msl-2 expression does not affect the protogyny phenotype. A.
Schematic presentation of the dosage compensation pathway and effect of msl-2
expression alteration. B. Proportion of eclosed males of act5c>msl-2 #1 and
act5c>msl-2 #2 lines. C. Relative msl-2 mRNA level of the act5c>msl-2 #1 and
act5c>msl-2 #2 groups. D-E. Effect of act5c>msl-2 RNAi #1 (D) and act5c>msl-2 RNAi
#2 (E) on the protogyny phenotype. The number of flies analyzed is indicated in
parentheses on each graph. Whiskers indicate minima and maxima (***p < 0.001; **p <
0.01; Student’s unpaired t-test).

The protogyny phenotype is determined in an Sxl-dependent manner
Ubiquitous Sxl knockdown using act5c-GAL4 was not successful owing to its lethal
phenotype. Therefore, we further attempted pan-neuronal Sxl knockdown using elav-
GAL4, which did not influence the sexual difference in pupal duration (S3 Fig). To
avoid lethality during larval development, we used a gene-switch system, which can
induce GAL4 by administrating the glucocorticoid receptor antagonist RU486 [21]. F1
larvae were derived from parents of a UAS-Sxl RNAi transgenic fly and an act5c-GS-
GAL4 fly reared in normal condition, and early 3rd-instar larvae were transferred to a
96-well-microplate containing media with or without the RU486. Some adult F1 females
that escaped from the RU486-containing media showed partial sexual transformation
morphologically, indicating that RU486-dependent transformation succeeded in this
condition (S4 Fig). Moreover, only the F1 flies reared in RU486-containing media did
not exhibit the sexual difference of pupal duration, suggesting that Sxl might regulate
the protogyny phenotype (Fig 4A).

Fig 4. Alteration of Sxl expression affects the protogyny phenotype. A. Effect of
act5c-GS>Sxl RNAi on the protogyny phenotype of flies grown in media with or without
RU486. B. Effect of Sxl mutation on the protogyny phenotype in flies with and without the Sxl transgene. The number of flies analyzed is indicated in parentheses on each graph. Whiskers indicate minima and maxima (***p < 0.001; *p < 0.05; n.s., no significant difference; Student’s unpaired t-test).

To confirm this interpretation, we also tried to use trans-heterozygous $Sxl^{M1,Δ33}/Sxl^{f7,M1}$ masculinized females [22-24], which have low viability but exhibit the same revertant eclosion to the adult stage [22]. Using our cross scheme, we were able to produce two genotypes of $Sxl^{M1,Δ33}/Sxl^{f7,M1}$ (Sxl$^+$) flies with and without an extra Sxl transgene (Fig 4B). The Sxl$^+$ flies without an extra Sxl transgene showed a significantly longer pupal duration in comparison with that of Sxl$^+$ females, reaching the same length as that of the male flies. The phenotype of Sxl$^+$ flies completely recovered by introduction of the extra Sxl transgene (Fig 4B).

Discussion

In this study, we applied our recently developed DIAMonDS to explore the molecular mechanism underlying the very small but consistent sex difference in eclosion timing due to a difference of pupal duration.

Many morphological and physiological traits exhibit a sex difference, which may be controlled by a canonical sex-determination pathway [25]. However, the protogyny phenotype was not disturbed in genetically induced transgender flies established by controlling tra or tra2 gene expression or by knockdown of msl-2. These results suggest that a morphological or physiological (dosage compensation) sex difference does not play a central role in controlling the protogyny phenotype, as manipulating these factors did not influence the length of male pupal duration. However, further genetic manipulation experiments demonstrated that the non-
canonical function of Sxl regulates the eclosion timing and produces the protogyny phenotype in *D. melanogaster*, as females with loss-of-function mutations or knockdown of Sxl exhibited a pupal period of the same length as that of males.

Sxl expression is activated in the presence of two X chromosomes in female early embryos, and is maintained via positive auto-regulation [16, 22, 26]. Sxl also regulates splicing of its downstream components, including *tra* and *msl-2*, which play crucial roles in the sex-determination cascade and dosage compensation, respectively [27, 28]. Therefore, our results suggest that recently identified non-canonical Sxl pathways could be involved in the protogyny phenotype.

Indeed, Sxl protein has been suggested to interact with other targets. *Nanos (nos)* RNA can bind directly with Sxl protein in ovarian extracts, and loss-of-function studies suggested that Sxl enables the switch from germline stem cells to committed daughter cells through nos post-transcriptional down-regulation [29]. Sxl protein can also bind with *Notch (N)* mRNA and appears to negatively control the N pathway [30].

Genome-wide computational screening for Sxl targets also identified an ATP-dependent RNA helicase, Rm62, as a novel potential target [31]. Rm62 was inferred to be involved in alternative splicing regulation and is required for the RNAi machinery [32, 33]. A pan-neuronal RNA-binding protein of the ELAV family, *found in neurons (fnl)*, was also shown to be downregulated by Sxl in female heads, independent of *tra/tra2* regulation [34]. Sxl can enhance nuclear entry of the full-length Cunitus interruptus (Ci) protein, suggesting a contribution to the sex difference in growth rate, although their physical interaction has not been confirmed [35]. However, there is no evidence that these non-canonical targets of Sxl directly affect eclosion timing.

Therefore, further studies are required to demonstrate whether these Sxl targets, or another novel target, could contribute to the protogyny phenotype.
In this study, conditional knockdown of Sxl in the nervous system, fat body, or intestinal stem cells and enteroblasts did not disrupt the protogyny phenotype; only Sxl knockdown induced in the whole body could induce the delayed eclosion in females. As knockdown of Sxl from the early developmental stage strongly affected viability, this toxicity might be one reason for our inability to identify the responsible organ or tissue that regulates the protogyny phenotype in this study.

The independence of the protogyny phenotype from the canonical sex-determination pathway is very intriguing with respect to understanding evolution of the sex difference in sexual maturation. Sxl does not appear to play a role in sex determination in most insects [24, 36-38]. Several reports indicated that orthologs of Sxl had no sex-determinant role in non-Drosophila species, including in Diptera [37, 39, 40]. In Drosophilidae, ancestral Sxl was duplicated to Sxl and sister of sex lethal (ssx); the new ssx gene plays a role of ancestral Sxl, suggesting that Sxl might have evolved to function as a novel sex-determinant gene in Drosophilidae [38]. A detailed phylogenetic study revealed that a male-specific exon, and likely embryo-specific exon, originated after the divergence between the Drosophilidae and Tephritidae families but before the split of the Drosophila and Scaptodrosophila genera [41]. We presume that the implementation of Sxl in the sex-determination pathway may be significantly involved in acquisition of the protogyny phenotype in Drosophila. Therefore, we expect that identification of the target of non-canonical Sxl sex-specific regulation for the protogyny phenotype might help to promote understanding of the evolutionary aspects of protogyny.

Material and methods

Drosophila stocks
All flies were maintained at 25°C on standard laboratory medium as described previously [42]. The following stocks were obtained from the Bloomington *Drosophila* stock center (BDSC): *w*¹¹¹⁸ (wild-type; BDSC 5905), *act5c-GAL4* (BDSC 3954), *da-GAL4* (BDSC8641), *elav-GAL4* (BDSC 458), *elav-GAL4*; *UAS-dcr-2* (BDSC 25750), *P{CaryP} attP2* (BDSC 36303), *UAS-tra2 RNAi #1* (BDSC 56912), *UAS-tra2 RNAi #2* (BDSC 28018), *UAS-traF* (BDSC 4590), *UAS-msl-2 RNAi #1* (BDSC 31627), *UAS-msl-2 RNAi #2* (BDSC 35390), *UAS-Sxl RNAi #1* (BDSC 34393), *UAS-Sxl RNAi #2* (BDSC 38195), *Sxl⁷.M¹; *P{Sxl.+tCa}⁹A/+* (BDSC 58486), and *Sxl⁷.M¹,M³³/Binsinscy* (BDSC 58487). Three gene-switch Gal4 driver lines, *act5c-GS-GAL4*, *S106-GS-GAL4*, and *5961-GS-GAL4*, were a kind gift from Dr. Akagi [43].

Measurement of pupal duration

We used our recently developed DIAMonDS to measure pupa duration at the individual level. The wandering 3rd-instar larvae were collected from rearing vials, and a single larva was placed in the well of a 96-well microplate with normal medium. The plate was then placed on a flatbed CCD scanner to obtain time-lapse images until all flies were eclosed. The time-lapse image dataset was then analyzed using Sapphier software as described previously [10].

To compare the effect of *Sxl* mutation on pupal duration, *Sxl⁷.M¹; *P{Sxl.+tCa}⁹A/+* females were crossed with *w¹¹¹⁸/Y* males. The F1 progeny *Sxl⁷.M¹/Y*; *P{Sxl.+tCa}⁹A/+* males were then crossed with *Sxl⁷.M¹,M³³/Binsinscy* females. Each genotype of the F2 flies was then assessed for pupal duration using the DIAMonDS. To induce the gene-switch Gal4 driver, RU486 (Mifepristone, Sigma, St. Louis, MO, USA) reagent was dissolved in ethanol and added to the medium at a final concentration of 100 µg/ml.
To detect the sex genotype of the flies, genomic DNA was extracted from single adults by homogenization in 50 μl of squishing buffer (10 mM Tris-HCl [pH 8.2], 1 mM EDTA, 25 mM NaCl, 200 μg/ml proteinase K), and incubated at room temperature for 20 min, followed by inactivation at 95°C for 5 min. The extracted genomic DNA was subjected to polymerase chain reaction (PCR) analysis using a WD repeat-containing protein on Y chromosome (WDY-) and Rp49-specific primer mix by ampliTaq Gold 360 master mix (Applied Biosystems, Foster City, CA, USA), and then the amplified DNA fragments were separated by 2% agarose gel electrophoresis (S1 Fig).

Reverse transcription-quantitative PCR (RT-qPCR)

Total RNA was extracted from the whole adult body (for measuring msl-2 expression knocked down by act5c-GAL4) and from the dissected larval central nervous system (for measuring Sxl expression knocked down by elav-GAL4) using Isogen II (Nippon Gene, Tokyo, Japan), and then RT-qPCR was performed using a One Step SYBR PrimeScript PLUS RT-PCR kit (Takara Bio, Shiga, Japan) and Applied Biosystems ABI Prism 7000 Sequence Detection System. All mRNA expression levels were normalized to the levels of rp49 mRNA. We used the following primers for qPCR (5'-3') for detecting msl-2 and Sxl mRNA levels: Sxl, forward primer (5'-CCAATCTGCCGCGTACCATA-3'), reverse primer (5'-AATGGAACCGTACTTGCCGCA-3'); msl-2, forward primer (5'-CACTGCAGTCACACTGGCTTCGCTCAG-3'), reverse primer (5'-CTCCTGGGCTAGTTACCTGCAATTCCTC-3'); and rp49, forward primer (5'-GATGACCATCCGCCAGCATA-3'), reverse primer (5'-AGTAAACGCGGTTCTGCATGAGC-3').

Statistical analysis
All data were analyzed and graphs were plotted using Prism version 8 (GraphPad Software, San Diego, CA, USA). Data are presented as means ± standard deviation. Student's unpaired two-tailed t-test was performed to compare differences between two groups in each experiment, and Dunnett's one-way analysis of variance was used for multiple comparisons; p < 0.05 was considered to indicate a statistically significant difference.

Acknowledgments

The authors are deeply grateful to Tadashi Uemura (Kyoto University) for the helpful support. They also thank Yuko Iijima and Taishi Matsumura for their technical assistance. We received generous support from Yoichi Shinkai (RIKEN CPR) and Shunsuke Ishii (RIKEN CPR). This work was also supported by the AMED (Japan Agency for Medical Research and Development) [JP18gm1110001 to KHS. and SK].

References

1. Thornhill R, Alcock J. The evolution of insect mating systems. Cambridge, Mass.: Harvard University Press; 1983. ix, 547 p. p.
2. Morbey YE, Ydenberg RC. Protandrous arrival timing to breeding areas: a review. Ecol Lett. 2001;4(6):663-73. https://doi.org/DOI 10.1046/j.1461-0248.2001.00265.x PMID: WOS:000172341500019
3. de Magalhaes JP, Costa J. A database of vertebrate longevity records and their relation to other life-history traits. J Evolution Biol. 2009;22(8):1770-4. https://doi.org/10.1111/j.1420-9101.2009.01783.x PMID: WOS:000268029800019
4. Thornhill R, Alcock J. The Evolution of Insect Mating Systems: Harvard University Press; 2014.
5. Rhainds M. Female mating failures in insects. Entomol Exp Appl. 2010;136(3):211-26. https://doi.org/10.1111/j.1570-7458.2010.01032.x PMID:
6. Wiklund C, Fagerstrom T. Why Do Males Emerge before Females - Hypothesis to Explain Incidence of Protandry in Butterflies. Oecologia. 1977;31(2):153-8. https://doi.org/10.1007/Bf00346917 PMID: WOS:A1977EF53200002

7. Degen T, Hovestadt T, Mitesser O, Holker F. High female survival promotes evolution of protogyny and sexual conflict. Plos One. 2015;10(3):e0118354. https://doi.org/10.1371/journal.pone.0118354 PMID: 25775473

8. Rhainds M. Ecology of female mating failure/lifelong virginity: a review of causal mechanisms in insects and arachnids. Entomol Exp Appl. 2019;167(1):73-84. https://doi.org/10.1111/eea.12759 PMID: WOS:000458530900007

9. Bainbridge SP, Bownes M. Staging the metamorphosis of Drosophila melanogaster. J Embryol Exp Morphol. 1981;66:57-80. PMID: 6802923

10. Seong K-H, Matsumura T, Shimada-Niwa Y, Niwa R, Kang S. The Drosophila Individual Activity Monitoring and Detection System (DIAMonDS). eLife. 2020;9. https://doi.org/10.7554/eLife.58630 PMID: 33168136

11. Musselman LP, Fink JL, Narzinski K, Ramachandran PV, Hathiramani SS, Cagan RL, et al. A high-sugar diet produces obesity and insulin resistance in wild-type Drosophila. Dis Model Mech. 2011;4(6):842-9. https://doi.org/10.1242/dmm.007948 PMID: 21719444

12. Northrop JH. The role of yeast in the nutrition of an insect (Drosophila). Journal of Biological Chemistry. 1917;30(2):0181-7. PMID: WOS:000187518600002

13. Schou MF, Kristensen TN, Pedersen A, Karlsson BG, Loeschcke V, Malmendal A. Metabolic and functional characterization of effects of developmental temperature in Drosophila melanogaster. Am J Physiol Regul Integr Comp Physiol. 2017;312(2):R211-R22. https://doi.org/10.1152/ajpregu.00268.2016 PMID: 27927623

14. Zhou S, Yang Y, Scott MJ, Pannuti A, Fehr KC, Eisen A, et al. Male-specific lethal 2, a dosage compensation gene of Drosophila, undergoes sex-specific regulation and encodes a protein with a RING finger and a metallothionein-like cysteine cluster. EMBO J. 1995;14(12):2884-95. PMID: 7796814

15. Kelley RL, Solovyeva I, Lyman LM, Richman R, Solovyev V, Kuroda MI. Expression of Msl-2 Causes Assembly of Dosage Compensation Regulators on the X-Chromosomes and Female Lethality in Drosophila. Cell. 1995;81(6):867-77. https://doi.org/10.1016/0092-8674(95)90007-1 PMID: WOS:A1995RD76800008
16. Bell LR, Horabin JI, Schedl P, Cline TW. Positive autoregulation of sex-lethal by alternative splicing maintains the female determined state in Drosophila. Cell. 1991;65(2):229-39. https://doi.org/10.1016/0092-8674(91)90157-t PMID: 2015624

17. Schutt C, Nothiger R. Structure, function and evolution of sex-determining systems in Dipteran insects. Development. 2000;127(4):667-77. PMID: 10648226

18. Salz HK. Sex determination in insects: a binary decision based on alternative splicing. Curr Opin Genet Dev. 2011;21(4):395-400. https://doi.org/10.1016/j.gde.2011.03.001 PMID: 21474300

19. Rideout EJ, Narsaiya MS, Grewal SS. The Sex Determination Gene transformer Regulates Male-Female Differences in Drosophila Body Size. PLoS Genet. 2015;11(12):e1005683. https://doi.org/10.1371/journal.pgen.1005683 PMID: 26710087

20. Bashaw GJ, Baker BS. The regulation of the Drosophila msl-2 gene reveals a function for Sex-lethal in translational control. Cell. 1997;89(5):789-98. https://doi.org/10.1016/s0092-8674(00)80262-7 PMID: 9182767

21. Roman G, Endo K, Zong L, Davis RL. P[Switch], a system for spatial and temporal control of gene expression in Drosophila melanogaster. Proc Natl Acad Sci U S A. 2001;98(22):12602-7. https://doi.org/10.1073/pnas.221303998 PMID: 11675496

22. Cline TW. Autoregulatory Functioning of a Drosophila Gene-Product That Establishes and Maintains the Sexually Determined State. Genetics. 1984;107(2):231-77. PMID: WOS:A1984ST06000004

23. Sawala A, Gould AP. The sex of specific neurons controls female body growth in Drosophila. Plos Biology. 2017;15(10). https://doi.org/ARTN e2002252

24. Evans DS, Cline TW. Drosophila switch gene Sex-lethal can bypass its switch-gene target transformer to regulate aspects of female behavior. P Natl Acad Sci USA. 2013;110(47):E4474-E81. https://doi.org/10.1073/pnas.1319063110 PMID: WOS:000327100600012

25. Millington JW, Rideout EJ. Sex differences in Drosophila development and physiology. Current Opinion in Physiology. 2018;6:46–56. https://doi.org/10.1016/j.cophys.2018.04.002

26. Erickson JW, Quintero JJ. Indirect effects of ploidy suggest X chromosome dose, not the X:A ratio, signals sex in Drosophila. PLoS Biol. 2007;5(12):e332. https://doi.org/10.1371/journal.pbio.0050332 PMID: 18162044
27. Salz HK, Erickson JW. Sex determination in Drosophila: The view from the top. Fly (Austin). 2010;4(1):60-70. https://doi.org/10.4161/fly.4.1.11277 PMID: 20160499

28. Bashaw GJ, Baker BS. Dosage compensation and chromatin structure in Drosophila. Current Opinion in Genetics & Development. 1996;6(4):496-501. https://doi.org/10.1016/S0959-437X(96)80073-6 PMID: WOS:A1996VD29200016

29. Chau J, Kulnane LS, Salz HK. Sex-letal enables germline stem cell differentiation by down-regulating Nanos protein levels during Drosophila oogenesis. Proc Natl Acad Sci USA. 2012;109(24):9465-70. https://doi.org/10.1073/pnas.1120473109 PMID: WOS:000305511300055

30. Penn JKM, Schedl P. The master switch gene Sex-letal promotes female development by negatively regulating the n-signaling pathway. Dev Cell. 2007;12(2):275-86. https://doi.org/10.1016/j.devcel.2007.01.009 PMID: WOS:000245087200015

31. Robida MD, Rahn A, Singh R. Genome-wide identification of alternatively spliced mRNA targets of specific RNA-binding proteins. Plos One. 2007;2(6):e520. https://doi.org/10.1371/journal.pone.0000520 PMID: 17565373

32. Park JW, Parisky K, Celotto AM, Reenan RA, Graveley BR. Identification of alternative splicing regulators by RNA interference in Drosophila. Proc Natl Acad Sci U S A. 2004;101(45):15974-9. https://doi.org/10.1073/pnas.0407004101 PMID: 15492211

33. Ishizuka A, Siomi MC, Siomi H. A Drosophila fragile X protein interacts with components of RNAi and ribosomal proteins. Genes Dev. 2002;16(19):2497-508. https://doi.org/10.1101/gad.1022002 PMID: 12368261

34. Sun X, Yang HW, Sturgill D, Oliver B, Rabinow L, Samson ML. Sxl-Dependent, tra/tra2-Independent Alternative Splicing of the Drosophila melanogaster X-Linked Gene found in neurons. G3-Genes Genom Genet. 2015;5(12):2865-74. https://doi.org/10.1534/g3.115.023721 PMID: WOS:000367257500034

35. Horabin JI. Splitting the hedgehog signal: sex and patterning in Drosophila. Development. 2005;132(21):4801-10. https://doi.org/10.1242/dev.02054 PMID: WOS:000233544400015

36. Morita S, Ando T, Maeno A, Mizutani T, Mase M, Shigenobu S, et al. Precise staging of beetle horn formation in Trypoxylus dichotomus reveals the pleiotropic roles of doublesex depending on the spatiotemporal developmental contexts. PLoS Genet.
37. Meise M, Hilfiker-Kleiner D, Dubendorfer A, Brunner C, Nothiger R, Bopp D. Sex-lethal, the master sex-determining gene in Drosophila, is not sex-specifically regulated in Musca domestica. Development. 1998;125(8):1487-94. PMID: WOS:000073772800013

38. Traut W, Mimi T, Ikeo K, Sahara K. Phylogeny of the sex-determining gene Sex-lethal in insects. Genome. 2006;49(3):254-62. https://doi.org/10.1139/G05-107 PMID: WOS:000238190200008

39. Saccone G, Peluso I, Artiaco D, Giordano E, Bopp D, Polito LC. The Ceratitis capitata homologue of the Drosophila sex-determining gene sex-lethal is structurally conserved, but not sex-specifically regulated. Development. 1998;125(8):1495-500. PMID: 9502730

40. Sievert V, Kuhn S, Paululat A, Traut W. Sequence conservation and expression of the sex-lethal homologue in the fly Megaselia scalaris. Genome. 2000;43(2):382-90. https://doi.org/10.1139/g99-132 PMID: 10791828

41. Zhang Z, Klein J, Nei M. Evolution of the sex-lethal gene in insects and origin of the sex-determination system in Drosophila. J Mol Evol. 2014;78(1):50-65. https://doi.org/10.1007/s00239-013-9599-3 PMID: 24271947

42. Seong KH, Ly NH, Katou Y, Yokota N, Nakato R, Murakami S, et al. Paternal restraint stress affects offspring metabolism via ATF-2 dependent mechanisms in Drosophila melanogaster germ cells. Commun Biol. 2020;3(1):208. https://doi.org/10.1038/s42003-020-0935-z PMID: 32367035

43. Akagi K, Wilson KA, Katewa SD, Ortega M, Simons J, Hilsabeck TA, et al. Dietary restriction improves intestinal cellular fitness to enhance gut barrier function and lifespan in D. melanogaster. PLoS Genet. 2018;14(11):e1007777. https://doi.org/10.1371/journal.pgen.1007777 PMID: 30383748

Supporting information

S1 Fig. Detection of the sex genotype of single flies. A. WDY primer sets and results of single-fly PCR for females and males of w^{118}, act5c>tra2 RNAi #1,
act5c>RNAi #2, and da>traF fly lines. B. Results of single-fly PCR for act5c>tra2 RNAi #1. C. Results of single-fly PCR for da>traF.

S2 Fig. Effect of da>msl-2 RNAi #1 and da>msl-2 RNAi #2 on the protogyny phenotype. The number of flies analyzed is indicated in parentheses in each graph. Whiskers indicate minima and maxima (**p < 0.001; Student’s unpaired t-test).

S3 Fig. Alteration of Sxl expression in the central nervous system does not affect the protogyny phenotype. A, B. Relative Sxl mRNA levels of the elav>Sxl RNAi #1/#2; dcr2 (A) and elav>Sxl RNAi #1/# (B) fly lines. C. Effect of elav>Sxl RNAi #1 and elav>Sxl RNAi #2 on the protogyny phenotype. D. Effect of S106-GS>Sxl RNAi #1 and 5961-GS>Sxl RNAi #2 on the protogyny phenotype. The number of flies analyzed is indicated in parentheses on each graph. Whiskers indicate minima and maxima (**p < 0.001; **p < 0.01; *p < 0.05; n.s., no significant difference; Student’s unpaired t-test).

S4 Fig. Photographs of external morphological sexual traits of act5c-GS>Sxl RNAi #1 flies in medium with and without RU486.
Figure 1.
Figure 2.

A. Sex determination

- **2X:2A**
 - Sxl OFF
 - TRA2 + TRA
 - Female

- **1X:2A**
 - Sxl OFF
 - TRA2 + TRA
 - Male

- **act5c>tra2RNAi**
 - XX
 - Sxl OFF
 - TRA2 + TRA
 - Male

- **da>traF**
 - XX
 - Sxl OFF
 - TRA2 + TRA
 - Female

B. Wildtype, tra2 RNAi #1, tra2 RNAi #2, da>traF

- Wildtype
 - XX
 - XY

- **tra2 RNAi #1**
 - XX
 - XY

- **tra2 RNAi #2**
 - XX
 - XY

- **da>traF**
 - XX
 - XY

C. Relative pupal duration

- **tra2 RNAi #1**
 - XX: (6) +, (14) -
 - XY: (10) +, (9) -

- **tra2 RNAi #2**
 - XX: (9) +, (10) -
 - XY: (8) +, (5) -

- **da>traF**
 - XX: (24) +, (20) -
 - XY: ***

D. Relative pupal duration

- XX: *****
- XY: ***

E. Relative pupal duration

- XX: ****
- XY: *****

*** p < 0.001
** p < 0.01
* p < 0.05
A. Dosage compensation

B. Proportion of males

C. Relative mRNA level

D. Relative pupal duration

E. Relative pupal duration
A

Relative Pupal duration

	Female	Male
EtOH	0.8	1.0
RU486	1.2	1.0

(17) (14) (5) (23)

act5c-GS>sxl RNAi

B

Relative Pupal duration

	XX	XY
Sxl	+++	--
Sxl transgene	+	+
Genotypic sex	Female	Male

(39) (37) (12) (27) (47)
S1 Table. Abundance of Protandry and Protogyny in vertebrate species

Class	Protandry	Protogyny	No bias	Total (number of species)
Poikilotherm				
Chondrichthyes	43	8	10	61
Teleostei	58	27	150	235
Amphibia	20	2	56	78
Reptilia	14	1	55	70
Homeotherm				
Aves	12	21	645	678
Mammalia	77	233	264	574
Total	224	292	1180	1696

Calculated from dataset of AnAge Database (https://genomics.senescence.info/species/)

[CC-BY 4.0 International license](https://creativecommons.org/licenses/by/4.0/)
Y chromosome specific gene: WDY

Forward primer: 5'-TGGACGACGATGACTCCTCTC-3'
Reverse primer: 5'-TTGAACCTGCCCTGGTTGTT-3'

Figure 2-Supplementary figure 1.
Relative pupal duration

Female
Male

msl-2 RNAi #1 msl-2 RNAi #2

da-GAL4

(24) (22) (27) (17)
	+EtOH	+RU486
Dorsal habitus	![Dorsal Female](image1)	![Dorsal Male](image2)
Ventral habitus	![Ventral Female](image3)	![Ventral Male](image4)
Lateral habitus	![Lateral Female](image5)	![Lateral Male](image6)
First legs	![Female](image7)	![Male](image8)