Probabilistic purification of noisy coherent states

Petr Marek
School of Mathematics and Physics, The Queen’s University, Belfast BT7 1NN, United Kingdom

Radim Filip
Department of Optics, Palacký University, 17. listopadu 50, 77200 Olomouc, Czech Republic and
Institut für Optik, Information und Photonik, Max-Planck Forschungsgemeinschaft,
Universität Erlangen-Nürnberg, Günther-Scharowsky-Str. 1, 91058, Erlangen, Germany

A basic feasible probabilistic purification of unknown noisy coherent states, outgoing from different state preparations with unknown mean number of thermal photons, is proposed. The scheme is based only on a linear-optical network with an avalanche photo-diode or heterodyne (homodyne) detection used to post-select a successful processing. The suggested probabilistic method can produce an output state with a lower noise than both quantum deterministic and classical probabilistic distillation method. The purification applied in the state preparation can increase classical capacity of communication and security of quantum key distribution.

I. INTRODUCTION:

Quantum information processing with continuous variables (CVs) alternatively renders feasible protocols based previously on discrete variables [1]. In CV quantum information processing with light, continuously modulated coherent states of laser beam are used as carriers of information and homodyne (heterodyne) detection is employed in measuring them. Ideally, such coherent communication schemes offer large information capacity and high transmission rate. However, excess noise present in the coherent states carrying information can substantially reduce the classical capacity [2, 3] and break the security of quantum key distribution [4]. Finding a way to reduce the noise added to coherent states is then clearly a task of interest.

Any communication task consists of three basic steps: quantum state preparation, transmission and detection. Different methods, aimed at reducing the noise, can be applied to each step. When trying to find possible methods to reduce the noise, we are practically limited by our ability to control both a noise and a signal, as well as by experimental limitations.

In coherent-state quantum key distribution, it is necessary to reduce noise to ensure unconditional security [4]. When attempting to securely transmit coherent states through a noisy channel, non-Gaussian CV quantum repeaters (based on entanglement distillation and entanglement swapping) distributed along channel can, in principle, be used to produce highly entangled and pure state shared in between two distant parties, as for qubits [5]. Then, an unknown coherent state can be securely teleported with a high fidelity, using only a noiseless classical communication link [5]. However, CV entanglement distillation of the Gaussian states is not allowed using Gaussian local operations and classical communication [10] alone. Therefore, a hard venture beyond the border of the Gaussian methods is required; for example, by means of high-order nonlinear interaction [11] or single-photon subtraction [12]. Recently, a promising method proposed the use of single-photon subtraction to produce many copies of an entangled non-Gaussian state that are subsequently distilled into a single state with larger entanglement by a Gaussification process [13].

On the other hand, when quantum states are used for classical communication, the most prevalent method of improvement lies in quantum error detection and correction. Naturally, in this case, it is reasonable to assume the lack of an equivalent or better classical channel, because that would undermine the need for using quantum states to communicate. Thus the above listed quantum repeaters, realizing a perfect quantum channel, cannot be used. The simplest classical error detection schemes employ a redundancy. Information carried by multiple copies (repetition code) is transmitted through channels and, afterwards, if obtained values disagree then error is detected [14]. Although perfect copying of quantum states is not possible, due to the no-cloning theorem, a single unknown coherent state may be still spread to many modes, propagating through many channels, and arbitrary erroneous displacement, occurring randomly only in a single unspecified mode, can be corrected [15]. However, these methods work only if in most cases, most of the channels are left undisturbed.

Whereas quantum error detection (correction) is designed to correct the errors in the transmission of a single quantum state, a different approach, called quantum purification of states carrying information, is more suitable for a noise reduction in the state preparation [16, 17]. As opposed to the quantum error correction approach, quantum purification is not restricted by the no-cloning theorem, because the quantum-state preparation starts from a classical signal. Therefore, if we consider coherent state communication, instead of a single unknown coherent state that cannot be copied, our input is a classical complex amplitude that can be used to prepare many copies of the coherent state. A standard method of preparation of any coherent state is by the amplitude and phase electro-optical modulation...
of a laser beam. However, the laser beam itself exhibits low-frequency excess noise \cite{18} and also the electro-optical modulators \cite{19} are devices exhibiting excess phase-insensitive or phase-sensitive noise, especially for high speed and large broadness of modulation \cite{5}. In a combination with a lossy channel, such the noisy encoding decreases secure key rate and may break security of the communication \cite{6, 3}.

Let us assume several imperfect copies of a state, produced in the course of noisy state preparation. Now, continuous-variable version of the symmetrization \cite{16} (which, for qubits, allowed for average error reduction by a factor corresponding to number of copies) can be used to concentrate information from number of noisy copies into a single state. The sender is attempting to prepare a coherent state $|\alpha_0\rangle$. The noisy modulators produce M (generally different) noisy Gaussian states $\rho \otimes \ldots \otimes \rho_M$ with additive white phase-insensitive Gaussian noise described by mean number N_i ($i = 1, \ldots, M$) of thermal photons. The task, the sender is faced with, is to get (at least probabilistically) a single Gaussian state ρ' having maximal fidelity $F' = \langle \alpha_0 | \rho' | \alpha_0 \rangle$ with the target state, using prior knowledge about noise present in the preparation. This unity gain fidelity $F' = 1/(1 + N')$ is function of mean number N' of thermal photons after the purification.

Inspiration for efficient purification methods arises from the classical data processing. There, information carried by many copies of an unknown noisy signal can be faithfully concentrated and the noise can be reduced by (deterministic) data averaging or (probabilistic) data selection. The deterministic data averaging always produces an output copy with identical signal, but the noise is averaged over all incoming copies. On the other hand, in the data selection method, the output is accepted only if all the copies are similar, otherwise it is discarded. In a direct quantum extension of the averaging method, an optimal measurement of non-orthogonal coherent states introduces a noise penalty. Fortunately, using quantum interference, the averaging can be performed directly without any measurement involved. Based on this idea, a quantum Gaussian purification of noisy coherent states from two identical channels with a superposed Gaussian additive noise has been recently experimentally investigated using only linear optics \cite{20}. A similar method was also recently tested for single photons \cite{21}.

The quantum purification method strongly depends on prior knowledge about multiple noisy state preparations. Even if all of them exhibit common Gaussian additive phase-insensitive noise, they can substantially differ in mean number N_i of thermal photons added to the particular preparation i. If the sender has perfect knowledge about the amount of noise in all the copies, the deterministic purification \cite{20} can be adapted to the situation. However, when dealing with an unstable noise level in the preparation, this is always based on their ability to do it many orders faster than the speed with which noise parameters are changed. Even if the actual amount of noise (N_i) in the particular state (i) is unknown, the sender can still learn about the total statistical distribution of N_i in the state preparations by an long-time probing. But if the change of N_i is fully chaotic, there is no stable statistics of N_i. In this case, the sender cannot adapt the purification method to some particular stable statistics of N and must attempt to devise a more universal scheme improving the state preparation for arbitrary statistics of N_i. This is the task we are interested in, the purification of coherent states carrying information, without any knowledge about the amount of disturbing Gaussian noise. An evaluation of the purification is also limited by this lack of knowledge, an average noise over any particular statistics of N_i cannot be taken as a figure of merit. We can only compare how the output mean number N' of thermal photons depends on N_i. The optimal method will lead to the lowest N' for all values of N_i imaginable.

In this paper we present a feasible probabilistic purification scheme reducing Gaussian additive noise, with unknown mean numbers of thermal photons, in the state preparation of coherent states. We show that this method outperforms the deterministic Gaussian protocol based purely on the mutual interference \cite{20}. In addition, the method also beats probabilistic classical methods based on optimal measurement and preparation. As a figure of merit in our case of additive Gaussian noise we can simply consider the mean number of thermal photons after the purification, which is simply related to fidelity with ideal prepared state. This is also relevant parameter needed to obtain the capacity of the Gaussian channel used by Alice and Bob for coherent state communication \cite{2, 3} and security quantum key.

![FIG. 1: A scheme for probabilistic purification of coherent states (two-copy purification): BS – beam splitter, At. – attenuator with a parameter T.](image-url)
distribution [4]. For the classical capacity, a reduction of the excess noise in the state preparation increases capacity and similarly, in the key distribution protocol, secure key rate can be improved. Even the reduction of noise via the purification can reveal security of the key distribution through lossy channel [11].

The proposed probabilistic purification protocol, representing the quantum analogue of the classical data selection method, is feasible, based on using an avalanche photo-diode or heterodyne detection in the linear-optical setup and appropriate post-selection of the output state. Approaches employing avalanche photo-diodes in the CV experiments have been recently used to produce non-Gaussian statistics from individual pulses of squeezed light by single-photon subtraction [22]. Single-photon subtraction is a basic element of many theoretical proposals based on the squeezed states [12].

Our scheme is based on a post-selection according to the detection of the vacuum state by the avalanche photo-diode (APD), previously used in the Gaussification procedure [13] for entanglement distillation. As an alternative, we show that heterodyne (homodyne) detection, having substantially higher efficiency than the APD, can be used in the proposed purification to achieve a higher fidelity but at the cost of a lower success rate.

II. PURIFICATION METHOD:

In following we will consider the state preparation as a noisy displacement operation

$$\rho = \int \Phi(\beta)D(\alpha_0 + \beta)|0\rangle\langle 0|D^\dagger(\alpha_0 + \beta)\, \mathrm{d}^2\beta,$$

(1)

where $\Phi(\beta)$ is a Gaussian complex probability distribution of the displacement parameter with zero mean value. $D(\gamma)$ stands for the displacement operator $D(\gamma) = \exp(\gamma a^\dagger - \gamma^* a)$, $|\alpha_0 + \beta\rangle = D(\alpha_0 + \beta)|0\rangle$, $|0\rangle$ is the vacuum state and $|\alpha_0 + \beta\rangle$ is a coherent state. After the channel, an input state of our purification device can be written in the form

$$\rho = \int \Phi(\beta)|\beta + \alpha_0\rangle\langle \beta + \alpha_0|\, \mathrm{d}^2\beta.$$

(2)

Now, having only several (at least two) copies, from generally different and unknown Gaussian noisy state preparation and without any possibility to tailor the states going into the channel, our task is to concentrate (deterministically or probabilistically) information from the copies into a single copy with less noise.

A proposed basic two-copy purification scheme is depicted in Fig. 1. The input two-mode density matrix is a tensor product of a pair of matrices [2]. Since this representation exploits a basis of two-mode coherent states, we will study the evolution of the pure state $|\alpha, \alpha'\rangle$ and use the results to obtain a final distilled state. At the first balanced beam splitter the two input modes interfere and produce a state $|\alpha, \alpha'\rangle \rightarrow |\frac{\alpha + \alpha'}{\sqrt{2}}, \frac{\alpha - \alpha'}{\sqrt{2}}\rangle$. The mode created by constructive interference is then passed through an attenuator with a transmittance T_0,

$$|\frac{\alpha + \alpha'}{\sqrt{2}}, \frac{\alpha - \alpha'}{\sqrt{2}}, 0\rangle \rightarrow |\sqrt{T_0}(\alpha + \alpha'), \frac{\alpha - \alpha'}{\sqrt{2}}, \sqrt{1 - T_0}(\alpha + \alpha')\rangle,$$

(3)

where the transmittance can, for any initial state [2], be tuned to the value that leads to the most desirable outcome. We are interested in unity-gain purification to preserve the signal encoded into the coherent states. Since the noise model is considered to be additive, such unity-gain purification is achieved for the value $T_0 = 0.5$ of the attenuation parameter. The product of the distillation setup for fixed states, the states $|\frac{\alpha + \alpha'}{\sqrt{2}}\rangle_1$ and $|\frac{\alpha + \alpha'}{\sqrt{2}}\rangle_2$, is the same as in the Gaussian procedure [20]. That procedure, however, leaves the remaining state $|\frac{\alpha - \alpha'}{\sqrt{2}}\rangle_2$ unmeasured.

An important step towards probabilistic purification for unknown N_1 and N_2 is to integrate a binary type detector into the setup; as is depicted in Fig. 1. Such a detector, that allows us to discriminate between a signal and the vacuum, can be realized either by an avalanche photo-diode (APD) or by a heterodyne (homodyne) detection. In this probabilistic scheme, the result of distillation is accepted if a detector, followed by appropriate processing, affirms the vacuum state in port 2, the probability of which shall be denoted as $P_2(\frac{\alpha - \alpha'}{\sqrt{2}})$, where the subscript \cdot stands for different detectors. A figure of merit of the quality of our binary detector in discriminating the vacuum state from others is the ratio $R_1(\gamma) = P_1(\gamma)/P_1(0)$. We can say that the detector given by R_1 suits our task better than the detector described by R_2 if the probability of post-selection of undesirable states is lower, that is $R_2(\alpha) > R_1(\alpha)$ for all $\alpha \neq 0$. Similarly, mode 3 can be also measured, but in this case both a measurement and the associated benefit strongly depend on a particular form of the noise present in the system, and we will therefore exclude mode 3 from our general analysis. Keep in mind, though, that in certain scenarios the measurement on mode 3 can improve our ability to control the purification. The complete evolution of the considered two-mode coherent state can be then expressed as:

$$|\alpha, \alpha'\rangle\langle \alpha, \alpha'| \rightarrow \mathcal{P}\left(\frac{\alpha - \alpha'}{\sqrt{2}}\right)\left|\frac{\alpha + \alpha'}{2}\right\rangle\left\langle\frac{\alpha + \alpha'}{2}\right| \otimes \left|\frac{\alpha + \alpha'}{2}\right\rangle\left\langle\frac{\alpha + \alpha'}{2}\right|,$$

(4)
The initial state is expressed as a tensor product, $\rho_{in} \otimes \rho_{in}$, of a pair of the density matrices (2) where the noise-introducing channels are generally different. Now, by applying the relation (1) we obtain the total state of the output modes

$$\rho_{tot} = \frac{1}{S} \int \int \Phi_1(\beta_1)\Phi_2(\beta_2)\mathcal{P}\left(\frac{\beta_1 - \beta_2}{\sqrt{2}}\right) |\alpha_0 + \frac{\beta_1 + \beta_2}{2}\rangle \langle \alpha_0 + \frac{\beta_1 + \beta_2}{2}| \otimes |\alpha_0 + \frac{\beta_1 + \beta_2}{2}\rangle \langle \alpha_0 + \frac{\beta_1 + \beta_2}{2}| d^2 \beta_1 d^2 \beta_2,$$

(5)

where S is a normalization factor representing probability of success. Thus, after the purification both previously uncorrelated copies become classically correlated. Due to the symmetry of the scheme both copies are identical after tracing over the other one, and if they are treated independently it can lead to further noise reduction. The particular state of the copy is

$$\rho_{out} = \frac{1}{S} \int \int \Phi_1(\beta_1)\Phi_2(\beta_2)\mathcal{P}\left(\frac{\beta_1 - \beta_2}{\sqrt{2}}\right) |\alpha_0 + \frac{\beta_1 + \beta_2}{2}\rangle \langle \alpha_0 + \frac{\beta_1 + \beta_2}{2}| d^2 \beta_1 d^2 \beta_2,$$

(6)

where S denotes the probability of successful distillation and can be found to be

$$S = \int \int \Phi_1(\beta_1)\Phi_2(\beta_2)\mathcal{P}\left(\frac{\beta_1 - \beta_2}{\sqrt{2}}\right) d^2 \beta_1 d^2 \beta_2.$$

(7)

From Eq. (6), the symmetrizing property (16) in the coherent-state purification is clear. The noise amounts, arising in particular channels, are averaged and symmetrized. If the distributions $\Phi_1(\beta_1)$ and $\Phi_2(\beta_2)$ as well as the filtration function $\mathcal{P}\left(\frac{\beta_1 - \beta_2}{\sqrt{2}}\right)$ are Gaussian functions of the arguments centered around the origin in phase space then the output state is also Gaussian state.

To analyze the improvement we calculate the mean number of thermal photons of the output state

$$N' = \frac{\int \int \Phi_1(\beta_1)\Phi_2(\beta_2)\mathcal{R}\left(\frac{\beta_1 - \beta_2}{\sqrt{2}}\right) \left|\frac{\beta_1 + \beta_2}{2}\right|^2 d^2 \beta_1 d^2 \beta_2}{\int \int \Phi_1(\beta_1)\Phi_2(\beta_2)\mathcal{R}\left(\frac{\beta_1 - \beta_2}{\sqrt{2}}\right) d^2 \beta_1 d^2 \beta_2},$$

(8)

and use it to compare obtained results. Other methods that we will use in our comparison, are the deterministic purification (D) (20) and classical purification methods such as local measurement of two copies with data averaging and subsequent preparation (MP) and, eventually, with post selection according to measured data (PMP). The deterministic Gaussian purification is realized by letting two modes constructively interfere and then attuning the final signal to achieve unity gain. The mean photon number N'_1 can be straightforwardsly obtained from (8) by setting $\mathcal{R} \equiv 1$ and serves as an upper bound for the probabilistic method with detector efficiency approaching zero.

III. DETECTION AND POST-SELECTION:

To calculate the N' for a particular channel we will need a proper expression for the post-selection probability $\mathcal{P}_{\ast}(\alpha)$. One way to distinguish a vacuum state is by an avalanche photo diode (APD). The action of a perfect APD can be described by a pair of projection operators $\Pi_0 = |0\rangle \langle 0|$ and $\Pi_\ast = 1 - |0\rangle \langle 0|$, which correspond to measurement outcomes of ‘no click’ and ‘click’, respectively. The probability that an ideal APD will not produce a click if the coherent state $|\alpha\rangle$ has arrived, is $\mathcal{P}_{APD}(\alpha) = e^{-|\alpha|^2}$. An imperfect detector can be modelled by a beam-splitter, with transmissivity equal to the quantum efficiency η_{APD}, in front of an ideal APD, and with a thermal state with mean number of chaotic photons $n_{ch} = p_d/[1 - (1 - p_d)(1 - \eta_{APD})]$ in a free port of the beam-splitter, simulating dark counts with a rate p_d (probability of a dark count occurrence). The total positive operator valued measure (POVM) for the imperfect detector is

$$\Pi = 1 - (1 - p_d) \sum_{n=0}^\infty (1 - \eta_{APD}(1 - p_d))^n |n\rangle \langle n|.$$

(9)

The no-click probability is then obtained as

$$\mathcal{P}'_{APD}(\alpha) = (1 - p_d) \exp\left[-(1 - p_d)\eta_{APD}|\alpha|^2\right].$$

(10)
Considering realistic common APDs having parameters $\eta_{APD} \approx 0.4$ and $p_d \approx 10^{-4}$, the dark counts, causing solely the reduction of the rate of the process, can be omitted. However, the reduced efficiency η_{APD} may, for the weak coherent signals, lead to accepting wrong results and thus increase the noise of the obtained state. For the usual low dark count rate, $P_{APD}(0) \approx 1$ and $R_{APD} \approx \exp(-\eta_{APD}|\alpha|^2)$, it is evident that with increasing efficiency the ability of an APD, to distinguish vacuum state from other coherent states, improves.

An alternative to a low efficiency avalanche photo-diode can be found in the higher efficiency of heterodyne detection (eight-port homodyne detection), which typically is $\eta_{HET} > 0.95$. The heterodyne detection measures simultaneously both the complementary quadratures, X and P ($a = X + iP$, $[X, P] = i/2$), of the optical signal, after splitting the signal into two equally intense parts. The high efficiency and low dark noise of homodyne detectors arise from a sufficiently intense local oscillator. Also, additive Gaussian noise in a local-oscillator channel is not a problem, in balanced homodyne detection the fluctuations of the LO are completely suppressed [24].

In frequency multiplexed channels, many of these pairs of sidebands are employed to improve the situation. It is also noteworthy that the APD is a broadband detector, measuring an entire spectrum of the signal, whereas the homodyne (heterodyne) detection can be used to detect the signal encoded in a pair of narrow-band frequency sidebands [25].

A cost of decreasing success rate. This expression is identical to that for an APD

where $a = |\alpha|\sqrt{\eta_{HET}}\cos \phi$. An interesting property of heterodyne detection of coherent states becomes apparent when R tends to zero. Using $R_{HET} = P_{HET}(\alpha)/P_{HET}(0)$ to compare the binary detectors, R_{HET} approaches $R_{HET} = \exp(-\eta_{HET}|\alpha|^2)$, at the cost of decreasing success rate. This expression is identical to that for an APD detection up to the detection efficiency. The detector efficiency of heterodyne detection is usually significantly greater than the efficiency of APDs. This can lead to an improvement in fidelity if the rate of purification is not a major issue.

Alternatively, a phase-randomized single quadrature homodyne detection could be considered as a possible detection method. In this situation, the signal is post-selected if the measured value falls within an interval $(-d, d)$. The probability of post-selection is then

Calculating the ratio R_{HOM} in the limit $d \to 0$, we get

where J_0 is the Bessel function of first order. Assuming that heterodyne detection consists of two homodyne detectors with the same efficiency, η_{HOM}, we have $\eta_{HET} = \eta_{HOM}$, and we find that for any detectors having $\eta_{HOM} > 0$, $R_{HOM}(\alpha) > R_{HET}(\alpha)$ for arbitrary $|\alpha| \neq 0$. Thus, for the proposed purification, the phase-randomized heterodyne detection is better than phase-randomized homodyne detection.
However, if the noise is presented only in a single known quadrature (for example, phase-quadrature P), one can, once more, think about homodyne detection (not phase-randomized) as an alternative for a distillation measurement. In this case, the probability of the post-selection is

$$P_{HOM}(\alpha) = \sqrt{\frac{2}{\pi}} \int_{-d}^{d} \exp \left(-2(p - |\alpha| \sin \theta)^2\right) dp,$$

where $\alpha = |\alpha| \exp(i\theta)$ is a complex amplitude of the coherent state, and the factor $R_{HOM}(\alpha)$ is then

$$R_{HOM}(\alpha) = \exp \left(-2\eta_{HOM}|\alpha|^2 \sin^2 \theta\right).$$

If the homodyne detection can be locked to the quadrature suffering from noise then $\theta = \pi/2$ and the homodyne detection with efficiency η_{HOM} gives qualitatively the same results as heterodyne measurement with $\eta_{HET} = \eta_{HOM}/2$. It is then obvious that, in case of noise presented in a single known quadrature, the use of homodyne detection can be advantageous.

IV. RESULTS:

Phase-insensitive excess noise is the most common additive noise disturbing state preparation. The additive Gaussian excess noise in the laser beam and in the modulators can be represented by as a single source of noise in a classical-quantum channel described by Eq. (1) with a noise distribution

$$\Phi_N(\beta) = \frac{1}{\pi N} \exp(-|\beta|^2/N),$$

where N corresponds to the mean number of thermal photons. The fidelity of coherent state preparation is then given by $F' = 1/(1 + N^2)$. Let us assume a simple continuous-variable communication protocol with the coherent states and heterodyne detection. The sender is preparing coherent states from the prior Gaussian distribution having mean number n of signal photons and N of thermal photons, and the receiver is using the heterodyne detection to decode transmitted information. Optimal detection in this case is heterodyne detection described by the POVM $\Pi = \frac{1}{2} |\gamma\rangle \langle \gamma |$, where γ is the detected amplitude. The classical capacity of such communication through narrow-band ideal channel was actually calculated in as $C = \ln(1 + n/(1 + N))$ [3]. The capacity is a monotonically decreasing function of the mean value of thermal photons N. A more deep impact has excess noise in the coherent state key distribution protocol through lossy channel. An excess noise in the trusted state preparation decreases secure key rate and can even break security for a given attenuation of the channel [6].

There are two basic classical purification strategies based on optimal measurement by heterodyne detection of every copy: data processing and state re-preparation. If the actual N_1 and N_2 are not known, it is impossible to tailor the purification method and it has to be symmetric with respect to the states. The first method, already described in [20], reduces noise deterministically by data averaging: measured results forming complex numbers α_1 and α_2 are averaged, $\alpha' = (\alpha_1 + \alpha_2)/2$, and used to prepare a new coherent state $|\alpha'\rangle$. The deterministic measurement-preparation (MP) strategy results in a mean number of thermal photons

$$N'_{MP} = \frac{N_1 + N_2}{4} + \frac{1}{2}$$

in a single re-prepared copy.

To get some improvement, one could devise a classical filtering scheme: re-preparing the signal only if the complex measured values α_1 and α_2 satisfy $|\alpha_1 - \alpha_2| < \Delta$, where Δ is some small number serving as a threshold. If we assume perfect heterodyne detection, then as Δ tends to zero, the mean value of thermal photons can be found to satisfy

$$\frac{1}{N'_{PMP}} = \frac{1}{1 + N_1} + \frac{1}{1 + N_2},$$

at a cost ofically rapidly decreasing success rate. Since $N'_{PMP} \leq N'_{MP}$ for all N_1, N_2, where equality occurs for $N_1 = N_2$, the probabilistic MP (PMP) method can improve the deterministic MP method. For small mean photon numbers $N_1, N_2 \ll 1$, the added noise by this method approaches $N'_{PMP} \approx N_{MP}$. On the other hand, if $N_1, N_2 \gg 1$ then $N'_{PMP} \approx N_1 N_2/(N_1 + N_2)$ and we can conditionally approach the noise reduction corresponding to a case when both N_1 and N_2 are precisely known, as can be seen below.

It is important to emphasized that any classical method (MP, PMP), based on measurement and re-preparation, cannot be used in the state preparation, because the new state would be again disturbed by the same preparation
respectively, are properly adjusted as photon number from this method is simply N_{BS} to achieve the best performance. If both the beam splitter and the heterodyne detection, if a lower success rate is acceptable. If unit efficiency measurements using heterodyne detection and benefit from its higher efficiency, as has been discussed in the previous section. It is an interesting result since for our task we can substitute detection of vacuum state using the APD by probabilistic purification with an APD leads to the best results. However, it is also possible to implement such methods characterized by unknown, mean chaotic photon numbers N_1 and N_2, of all the methods we considered, the probabilistic purification with an APD leads to the best result. However, it is also possible to implement such measurements using heterodyne detection and benefit from its higher efficiency, as has been discussed in the previous section. It is an interesting result since for our task we can substitute detection of vacuum state using the APD by the heterodyne detection, if a lower success rate is accepted. If unit efficiency $\eta_{APD,HET} = 1$ is approached, the mean photon number from this method is simply $N_{APD}' = N_{PMP}' - 1/2$.

In Fig. 2, the mean number N_{APD}' of thermal photons and success rate S are plotted against N_1 and N_2 for $\eta_{APD} = 1$. For comparison, Fig. 3 shows behavior of N_D' and N_T'. We can observe that, for a weak noise $N_1, N_2 \ll 1$, an improvement of the probabilistic method over the deterministic method is only moderate, because N_{APD}' approaches N_D'. On the other hand, for $N_1, N_2 \gg 1$, the mean photon number N_{APD}' approaches N_T', that is, the noise reduction is almost as good as in the case when Clare precisely knows N_1 and N_2. The tailored deterministic method, based on precise knowledge of N_1 and N_2, will always surpass the probabilistic method, but in the limit of large $N_1 + N_2$ and strongly asymmetric channels, the difference in mean numbers of thermal photons

$$N_{APD} - N_T = \frac{(N_1 - N_2)^2}{2(N_1 + N_2)(N_1 + N_2 + 2)}.$$

\(N_D' = \frac{N_1 + N_2}{4}\). \hfill (20)

Evidently this is better than the MP strategy, but comparing (20) and (19), $N_{PMP} > N_D$ only if

$$\frac{(N_1 - N_2)^2}{2(N_1 + N_2) + 4} < 1. \hfill (21)$$

Thus especially for highly asymmetrical channels with large total mean photon number $N_1 + N_2$, N_{PMP}' can be substantially lower than N_{APD}'.

Note, if there is a possibility of estimating N_1 and N_2, the symmetrical deterministic protocol can be tailored to achieve the best performance. If both the beam splitter BS and attenuator with the transmissivity T and T_0, respectively, are properly adjusted as

$$T = \frac{N_2^2}{N_1^2 + N_2^2}, \quad T_0 = \frac{N_1^2 + N_2^2}{(N_1 + N_2)^2}, \hfill (22)$$

then one can approach the following reduction of noise excess:

$$\frac{1}{N_T'} = \frac{1}{N_1} + \frac{1}{N_2}. \hfill (23)$$

As such the protocol is still Gaussian and completely deterministic.

In the case where N_1 and N_2 are unknown, the deterministic method can be overcome by a probabilistic strategy, at a cost of the preparation rate. If we consider the purification scheme as on Fig. 1, with the APD having detection efficiency η_{APD} in mode 2, the resulting mean photon number is given by (8) with (10) and satisfies

$$\frac{1}{N_{APD}'} + \frac{1}{\eta_{APD} N_1} = \frac{1}{\eta_{APD} N_1} + \frac{1}{\eta_{APD} N_2}. \hfill (24)$$

The distillation will succeed with a probability

$$S = \frac{2}{2 + \eta_{APD}(N_1 + N_2)}. \hfill (25)$$

Comparison of (24) with (20) yields that, for arbitrary $\eta_{APD} > 0$, the probabilistic purification always beats the deterministic purification as long as $N_1 \neq N_2$. For $N_1 = N_2$ both the methods give the same result as the deterministic method $N_{APD}' = N_{D}' = N/2$, independently on η_{APD}. Note, to overcome PMP method for any N_1 and N_2 ($N_{PMP} > N_{APD}$), it is necessary to use an APD with $\eta_{APD} > 1/2$. But then we get a better noise reduction with finite probability of success, not only asymptotically as for the PMP method. Thus, for a pair of Gaussian channels characterized by unknown, mean chaotic photon numbers N_1 and N_2, of all the methods we considered, the probabilistic purification with an APD leads to the best result. However, it is also possible to implement such measurements using heterodyne detection and benefit from its higher efficiency, as has been discussed in the previous section. It is an interesting result since for our task we can substitute detection of vacuum state using the APD by the heterodyne detection, if a lower success rate is accepted. If unit efficiency $\eta_{APD,HET} = 1$ is approached, the mean photon number from this method is simply $N_{APD}' = N_{PMP}' - 1/2$.

In Fig. 2, the mean number N_{APD}' of thermal photons and success rate S are plotted against N_1 and N_2 for $\eta_{APD} = 1$. For comparison, Fig. 3 shows behavior of N_D' and N_T'. We can observe that, for a weak noise $N_1, N_2 \ll 1$, an improvement of the probabilistic method over the deterministic method is only moderate, because N_{APD}' approaches N_D'. On the other hand, for $N_1, N_2 \gg 1$, the mean photon number N_{APD}' approaches N_T', that is, the noise reduction is almost as good as in the case when Clare precisely knows N_1 and N_2. The tailored deterministic method, based on precise knowledge of N_1 and N_2, will always surpass the probabilistic method, but in the limit of large $N_1 + N_2$ and strongly asymmetric channels, the difference in mean numbers of thermal photons

$$N_{APD} - N_T = \frac{(N_1 - N_2)^2}{2(N_1 + N_2)(N_1 + N_2 + 2)}.$$

\(N_D' = \frac{N_1 + N_2}{4}\). \hfill (20)
Let us now consider another example. If the coherent state is encoded by a relatively weak modulation of a bright carrier beam with fixed amplitude but exhibiting phase fluctuation, a different type of noise can occur. The noise distribution is

\[\Phi_N(\beta) = \frac{1}{\sqrt{2\pi N}} \exp\left(-\frac{\beta_R^2}{2N}\right)\delta(\beta_I), \]

with \(\beta = \beta_R + i\beta_I \), and corresponds to perfect transmission in one quadrature (amplitude) and Gaussian fluctuation in the other (phase). The \(N \) stands again for the mean number of thermal photons added in the state preparation. For phase fluctuations which are weak relative to the amplitude of the carrier, the amplitude quadrature \(X \) will
remain uninfluenced, and only additive noise will be introduced in the phase quadrature P. Therefore, we are going to be interested only in the improvement of the P quadrature and so make the reasonable request that distillation should not add any noise into the quadrature X. Note that this demand cannot be satisfied by any method utilizing measurement and re-preparation.

As well as for the phase-sensitive noise, the deterministic Gaussian method gives $N'_D = (N_1 + N_2)/4$. As in the previous case, if $N_1 = N_2$, then nothing can be gained by the probabilistic protocol. However, if, in general, $N_1 \neq N_2$, the use of an APD (or heterodyne detection) can reduce the mean number of chaotic photons to

$$\frac{1}{N'_{APD} + \frac{1}{4 \eta_{APD}}} = \frac{1}{2 N'_{APD} + N_1} + \frac{1}{2 N'_{APD} + N_2}. \tag{28}$$

Furthermore, since we have assumed the noise to occur only in a single known quadrature, we can implement another type of measurement. If we decide to measure the P quadrature by homodyne detection and post-select the signal only if the detected value falls into an interval $(-d, d)$, then as d tends to 0, the mean number of chaotic photons in the purified state approaches

$$\frac{1}{N'_{HOM} + \frac{1}{8 \eta_{HOM}}} = \frac{1}{4 N'_{HOM} + N_1} + \frac{1}{4 N'_{HOM} + N_2}. \tag{29}$$

By comparing (28) and (29) we can see that, if we are able to provide a phase-locked local oscillator to perform proper homodyne detection, we may benefit from double the efficiency of phase-randomized heterodyne measurement, implemented by the same detectors. Therefore, for any $\eta > 0$, we have $N'_{HOM} \leq N'_{APD} \leq N'_D$, where the $\eta_{APD} = \eta_{HOM} = \eta$. The equality holds only for $N_1 = N_2$.

Comparing this method (with ideal detector) with the tailored deterministic method, resulting in $N'_T = N_1 N_2/(N_1 + N_2)$, the difference of the photon numbers

$$N_{HOM} - N_T = \frac{(N_1 - N_2)^2}{8(N_1 + N_2)(\frac{1}{2} + N_1 + N_2)} \tag{30}$$

behaves similarly as for the phase insensitive noise discussed above. That is, in limiting cases $N_1, N_2 \ll 1$ ($N_1, N_2 \gg 1$), the mean photon number approaches $N_{HOM} \approx N_D$ ($N_{HOM} \approx N_T$).

![FIG. 4: A scheme for probabilistic purification of coherent states (multi-copy purification, $M = 5$): D1-D4 - avalanche photodiodes or heterodyne (homodyne) detection.](image)

The probabilistic purification scheme can be straightforwardly extended for setups involving a greater number of copies, as is schematically depicted at Fig. 4. The input modes can be combined at an array of the beam splitters with $T_j = (j-1)/j$, $j = 2, \ldots, M$, and all outputs, except the one where the constructive interference occurs, are detected by the APDs (or heterodyne detections). The final state is only accepted if all the detectors confirm zero signal. Then the output with constructive interference is properly attenuated ($T_0 = 1/M$) to achieve the unity gain regime. Similarly as in the two-copy case, M classically correlated copies with reduced noise are actually produced.

Using M copies of noisy state with mean numbers of thermal photons N_1, \ldots, N_M, the deterministic purification leads to an output state with mean value of thermal photons

$$N'_D = \frac{1}{M^2} \sum_{i=1}^{M} N_i. \tag{31}$$

The result of the probabilistic method ($\eta_{APD} = 1$) can be expressed as

$$\frac{1}{N'_{APD} + \frac{1}{M}} = \sum_{i=1}^{M} \frac{1}{1 + N_i} \tag{32}$$
with the probability of success

\[S = \frac{M}{M + (M - 1) \sum_{i=1}^{M} N_i + (M - 2) \sum_{i=1}^{M} N_i N_{j\neq i} + (M - 3) \sum_{i=1}^{M} N_i N_{j\neq i} N_{k\neq i,j} + \ldots} \]

(33)

If \(N_1, \ldots, N_M \) are known, it is again possible to tailor the transmissivities \(T_i \) in the deterministic purification and achieve \(N'_T \) given by:

\[\frac{1}{N'_T} = \sum_{i=1}^{M} \frac{1}{N_i} \]

(34)

As in the two-mode case, if \(N_1, \ldots, N_M \ll 1 \), \(N'_{APD} \) approaches \(N'_T \) and it is sufficient to use the deterministic method. On the other hand, for \(N_1, \ldots, N_M \gg 1 \), the \(N'_{APD} \) approaches \(N'_T \) and the probabilistic method can lead to noise reduction almost at the level of perfect knowledge, if preparation rate is sacrificed. In the limit of large \(M \), the probabilistic quantum method approaches

\[\frac{1}{N'_{APD}} = \sum_{i=1}^{M} \frac{1}{1 + N_i} \]

(35)

independently of values of \(N_i \). Similar results and discussion can be analogously performed for phase-sensitive noise.

V. CONCLUSION:

In summary, we have demonstrated a feasible probabilistic purification method can reduce Gaussian additive excess noise noise in the coherent-state preparation and overcome previous deterministic method [20]. Since the excess noise can be unstable and its actual level can be unknown we extended original idea to such the realistic case. Based on previously experimentally tested deterministic purification of coherent states [20], the method relies on using interference of two noisy modes on a balanced beam splitter and post selecting one of the modes (BS output with constructive interference) if there is no signal from the avalanche photo-diode (APD) measuring the other mode (BS output with destructive interference). It was also shown that heterodyne detection (approaching unit efficiency) can be used instead of the APD, if reduction in transmission rate can be accepted. Also, for the phase sensitive noise, post-selection according to the homodyne detection can reduce the noise even further. An extension of the scheme arbitrary number of noisy copies is presented. It has a direct application in an improving classical capacity of the coherent-state communication. Since the trusted state preparation is assumed to be under full control of the sender, the proposed quantum purification can be used to reduce excess noise in the CV secure key distribution [4].

Acknowledgments The work was supported by the project 202/03/D239 of Grant Agency of Czech Republic, project MSM6198959213 of Czech Ministry of Education and EU project FP6-511004 COVAQIAL. R.F. thanks the Alexander von Humboldt fellowship and P.M. acknowledges support from the European Social Fund.

[1] for overview, "Quantum Information Theory with Continuous Variables", edited by Samuel L. Braunstein and Arun K. Pati, Kluwer Academic Publishers, Dodrecht 2002; Samuel L. Braunstein and Peter van Loock Rev. Mod. Phys. 77, 513 (2005).
[2] C.E. Shannon, Bell Sys. Tech. Journal 27, 379, 623 (1948), C.M. Caves and P.D. Drummond, Rev. Mod. Phys. 66, 481 (1994).
[3] M. J. W. Hall, Phys. Rev. A 50, 3295 (1994);
[4] F. Grosshans, G. Van Assche, J. Wenger, R. Broui, N.J. Cerf, Ph. Grangier, Nature (London) 421, 238 (2003); Ch. Weedbrook, A.M. Lance, W.P. Bowen, T. Symul, T.C. Ralph and P.K. Lam, Phys. Rev. Lett. 93, 170504 (2004).
[5] J. Lodewyck, T. Debuisschert, R. Tualle-Brouri, and P. Grangier, Phys. Rev. A 72, 050303 (2005).
[6] F. Grosshans, N.J. Cerf, J. Wenger, R. Tualle-Brouri and Ph. Grangier, Quant. Inf. Comp. 3, 535 (2003).
[7] M. Navascués and A. Acín, Phys. Rev. Lett. 94, 020505 (2005) R. García-Patrón and N.J. Cerf, Phys. Rev. Lett. 97, 190503 (2006).
[8] H.-J. Briegel, W. Dur, J.I. Cirac, and P. Zoller, Phys. Rev. Lett. 81, 5932 (1998).
[9] L. Vaidman, Phys. Rev. A 49, 1473 (1994); S.L. Braunstein and H.J. Kimble, Phys. Rev. Lett. 80, 869, (1998); A. Furusawa et al., Science 282, 706 (1998); W. P. Bowen et al., Phys. Rev. A 67, 032302 (2003); T. C. Zhang et al., Phys. Rev. A 67, 033802 (2003); N. Takei et al., Phys. Rev. Lett. 94, 220502 (2005).
[10] J. Eisert, et al., Phys. Rev. Lett. 89, 137903 (2002); J. Fiurášek, Phys. Rev. Lett. 89, 137904 (2002); G. Giedke and J.I. Cirac, Phys. Rev. A 66, 032316 (2002).

[11] L.-M. Duan et al., Phys. Rev. Lett. 84, 4002-4005 (2000); L.-M. Duan et al., Phys. Rev. A 62, 032304 (2000); J. Fiurášek et al., Phys. Rev. A 67, 022304 (2003).

[12] M. Dakna et al., Phys. Rev. A 55, 3184 (1997); T. Opatrný, G. Kurizki and D.G. Welsch, Phys. Rev. A 61, 032302 (2000); J. Fiurášek, Phys. Rev. A 65, 053818 (2002); S. Olivares, M. G. A. Paris, and R. Bonifacio, Phys. Rev. A 67, 032314 (2003); J. Laurat et al., Phys. Rev. Lett. 91, 213601 (2003); S. A. Babichev, B. Brezger, and A.I. Lvovsky Phys. Rev. Lett. 92, 047903 (2004); A. P. Lund et al., Phys. Rev. A 70, 020101 (2004); R. Garcia-Patron et al., Phys. Rev. Lett. 93, 130409 (2004); J. Wenger et al., Phys. Rev. A 70, 053812 (2004); H. Jeong et al., Phys. Rev. A 70, 061801 (2004); A. P. Lund and T. C. Ralph Phys. Rev. A 71, 032305 (2006).

[13] D.E. Browne et al., Phys. Rev. A 67, 062320 (2003); J. Eisert et al., Annals of Physics (NY) 311, 431 (2004);

[14] for example, D. MacKay, Information Theory, Inference, and Learning Algorithms, Cambridge University Press, 2003.

[15] S.L. Braunstein, Nature 394, 47-49 (1998); S. Lloyd and J.-E. Slotine Phys. Rev. Lett. 80, 4084 (1998); S. Lloyd and J.-E. Slotine Phys. Rev. Lett. 80, 4088 (1998).

[16] A. Berthiaume, D. Deutsch, and R. Jozsa, The stabilisation of quantum computation, in Proceedings of the Workshop on Physics and Computation, PhysComp94 , IEEE Computer Society Press (1994), 6062; A. Barenco, A. Berthiaume, D. Deutsch, A. Ekert, R. Jozsa, Ch. Macchiavello, SIAM J. Comput. 26, 1541 (1997), quant-ph/9604028; A. Peres, Int.J.Theor.Phys. 38, 799 (1999), quant-ph/9611046.

[17] J.I. Cirac et al., Phys. Rev. Lett. 82, 4344 (1999); H. Mack et al., Phys. Rev. A 62, 042301 (2000); D.G. Fisher et al., Phys. Rev. A 63, 042305 (2001).

[18] H.-A. Bachor and T.C. Ralph, A Guide to Experiments in Quantum Optics, (Wiley-VCH, Weinheim, 2004), p. 159,162.

[19] H.-A. Bachor and T.C. Ralph, A Guide to Experiments in Quantum Optics, (Wiley-VCH, Weinheim, 2004), p. 141.

[20] U.L. Andersen, R. Filip, J. Fiurášek, V. Josse and G. Leuchs, Phys. Rev. A 72, 060301 (2005).

[21] M. Ricci, F. De Martini, N.J. Cerf, R. Filip, J. Fiurasek and C. Macchiavello, Phys. Rev. Lett. 93, 170501 (2004).

[22] J. Wenger, R. Tualle-Brouri and P. Grangier, Phys. Rev. Lett. 92, 153601 (2004); J. S. Neergaard-Nielsen, B. Melholt Nielsen, C. Hettich, K. Moelmer and E. S. Polzik, quant-ph/0602198; A. Ourjoumtsev, R. Tualle-Brouri, P. Grangier, quant-ph/0602284.

[23] U. Leonhardt and I. Jex, Phys. Rev. A 49, R1555 (1994); M. Munroe, D. Boggavarapu, M.E. Anderson and M.G. Raymer, Phys. Rev. A 52, R924 (1995); K. Banaszek and K. Wdowiak, Phys. Rev. A 55, 3117-3123 (1997); K. Banaszek, Phys. Rev. A 57, 5013 (1998); K. Banaszek, Phys. Rev. A 59, 4797 (1999).

[24] H.-A. Bachor and T.C. Ralph, A Guide to Experiments in Quantum Optics, (Wiley-VCH, Weinheim, 2004), p. 207.

[25] H.-A. Bachor and T.C. Ralph, A Guide to Experiments in Quantum Optics, (Wiley-VCH, Weinheim, 2004), p. 190.