Chico, RM; Hack, BB; Newport, MJ; Ngulube, E; Chandramohan, D (2013) On the pathway to better birth outcomes? A systematic review of azithromycin and curable sexually transmitted infections. Expert review of anti-infective therapy, 11 (12). pp. 1303-32. ISSN 1478-7210 DOI: 10.1586/14787210.2013.851601

Downloaded from: http://researchonline.lshtm.ac.uk/1319855/

DOI: 10.1586/14787210.2013.851601

Usage Guidelines

Please refer to usage guidelines at http://researchonline.lshtm.ac.uk/policies.html or alternatively contact researchonline@lshtm.ac.uk.

Available under license: Creative Commons Attribution Non-commercial http://creativecommons.org/licenses/by-nc/2.5/
On the pathway to better birth outcomes? A systematic review of azithromycin and curable sexually transmitted infections

R Matthew Chico*1, Berkin B Hack2, Melanie J Newport2, Enesia Ngulube1 and Daniel Chandramohan1

1London School of Hygiene and Tropical Medicine Keppel Street, London, WC1E 7HT, UK
2Brighton and Sussex Medical School, Brighton, East Sussex, BN1 9PX, UK
*Author for correspondence: Tel.: +44 20 7636 8636 ext. 2841 Fax: +44 207 927 2918 matthew.chico@lshtm.ac.uk

The WHO recommends the administration of sulfadoxine-pyrimethamine (SP) to all pregnant women living in areas of moderate (stable) to high malaria transmission during scheduled antenatal visits, beginning in the second trimester and continuing to delivery. Malaria parasites have lost sensitivity to SP in many endemic areas, prompting the investigation of alternatives that include azithromycin-based combination (ABC) therapies. Use of ABC therapies may also confer protection against curable sexually transmitted infections and reproductive tract infections (STIs/RTIs). The magnitude of protection at the population level would depend on the efficacy of the azithromycin-based regimen used and the underlying prevalence of curable STIs/RTIs among pregnant women who receive preventive treatment. This systematic review summarizes the efficacy data of azithromycin against curable STIs/RTIs.

KEYWORDS: azithromycin • bacterial vaginosis • Chlamydia • gonorrhea • malaria • pregnancy • reproductive tract infections • sexually transmitted infections • sub-Saharan Africa • syphilis • trichomoniasis

The WHO recommends the administration of sulfadoxine-pyrimethamine (SP) to all pregnant women who live in areas of moderate (stable) to high malaria transmission during scheduled antenatal care (ANC) visits, beginning in the second trimester and continuing to delivery [1]. This intervention, known as intermittent preventive treatment of malaria in pregnancy (IPTp), is national policy in 36 countries worldwide, 35 of which are in sub-Saharan Africa [2]. The objective of IPTp-SP is to reduce the incidence of low birthweight and maternal anemia attributable to malaria. In recent years, however, malaria parasites have developed resistance to SP such that IPTp no longer reduces the incidence of low birthweight in some epidemiological settings, particularly in East Africa [3]. Evidence suggests that in areas where parasites express the 581G dhps mutation that is associated with SP resistance, the administration of IPTp-SP may even harm fetal growth [4–6]. Thus, the urgency to replace SP has never been greater and azithromycin-based combination (ABC) therapies are among leading candidates to do so.

Azithromycin is a slow-acting analog of erythromycin in the macrolide (azalide) class of drugs, which targets the ribosomal subunit of susceptible microorganisms and causes cellular death by inhibiting protein synthesis [7]. It has in vitro and in vivo antimalarial properties [8] and can be safely administered during pregnancy [9]. Two human challenge studies have published results of azithromycin monotherapy treatment against Plasmodium falciparum infection. The first study reported a protective effect of 40% (n = 10; 95% CI: 12–74%) among immunologically naive patients who received 250 mg azithromycin daily for 2 weeks prior to inoculation and for 1 week more following exposure [10]. When the same regimen was used for one additional week post-inoculation, treatment efficacy was 100% (n = 10) [11]. Despite this finding, comparable results have not been replicated in endemic settings where patients often have...
mixed and multiple infections. However, in vitro evidence suggests that azithromycin may be combined with antimalarial partner drugs to prevent or to cure *P. falciparum* infection [12], the malaria species most prevalent in sub-Saharan Africa and which uniquely adhere to the placenta of pregnant women. In addition to reducing the burden of malaria infection, ABC therapies may also protect against adverse birth outcomes attributable to curable sexually transmitted and reproductive tract infections (STIs/RTIs). This could offer considerable public health impact. A recent meta-analysis suggests that curable STIs/RTIs are as prevalent as malaria parasitemia, if not more so, among pregnant women who attend ANC facilities in sub-Saharan Africa [13]. Five curable STIs/RTIs – *Treponema pallidum*, *Neisseria gonorrhoeae*, *Chlamydia trachomatis*, *Trichomonas vaginalis* and bacterial vaginosis – are associated with adverse birth outcomes that include spontaneous abortion [14–18], stillbirth [19–21], intrauterine growth retardation [20,22,23], preterm birth [17,19,22,23–33] and low birthweight (Table 1) [20,23,24,28,29,33–35]. This paper summarizes azithromycin efficacy and sensitivity against these curable STIs/RTIs and highlights important issues for policymakers to consider while determining the potential use of ABC therapies in IPTp.

Methodology

Between April and May 2013, PubMed, MEDLINE and EMBASE were searched using Medical Subject Headings and free-text terms for publications specific to the curable STIs/RTIs noted above. With each query, the infection and causal organism were used together, for example, ‘Syphilis’ AND ‘*Treponema pallidum*’, and then combined with search terms ‘azithromycin’ OR ‘macrolide’. Because the evidence base is limited with respect to azithromycin and some curable STIs/RTIs, both ‘azithromycin’ and ‘macrolide’ were used as filters.

We had particular interest in randomized clinical trials (RCTs) that compared azithromycin against the current first-line treatments for curable STIs/RTIs in pregnancy, noting that azithromycin is the WHO-recommended treatment for pregnant women infected with *C. trachomatis*. Searches were limited to the English language and strict inclusion and exclusion criteria were applied so as to narrow the number of papers retained. Reference lists were also reviewed for additional documents. Excluded records and full-text articles were in seven categories:

- ‘Unrelated outcomes’ were studies that reported nonclinical aspects of azithromycin use such as cost-effective analysis, noncommunicable diseases such as heart disease or pharmacological outcomes involving a route of administration that is not applicable to this review (e.g., intravenous);
- ‘Unrelated organisms’ were papers dedicated to microbes that are not the focus of this review;
- ‘Not specific to STI/RTT’ were articles on the subject of same genus of interest, for example, *Chlamydia*, but were not specific to the genital tract, for example, *Chlamydia pneumoniae*;
- ‘Not related to azithromycin or close macrolide family’ were papers that did not contain macrolides in their analysis or outcomes, but focused on different antimicrobials against the organisms in question;
- ‘Sequential observations from same source’ involved surveillance reports from which most recent data set was used;
- ‘General discussion papers’ contained information pertinent to the search, but failed to provide specific data for STIs/RTIs.
- ‘Contraindicated in pregnancy’ were papers that reported outcomes of azithromycin combined with antimicrobial compounds that are considered unsafe in pregnancy.

A total of 122 articles met our primary inclusion criteria (Figure 1).

Results

Treponema pallidum

In vivo evidence

The WHO recommends treating pregnant women with syphilis infection using 2.4 million units of benzathine penicillin G (BPG) administered by intramuscular injection [34]. Thus, we summarize the results of the six clinical trials that reported outcomes among nonpregnant adults following treatment with BPG, azithromycin or a combination of BPG and azithromycin (Table 2). The oldest data are from a trial in the USA (1993–1997) in which individuals who discovered they had been exposed to infectious stage syphilis through sexual intercourse in the preceding 30 days were given either 1 g azithromycin (n = 40) or BPG (n = 23). Three months post-treatment, rapid plasma reagin (RPR) and fluorescent treponemal antibody absorption tests (FTA-ABS) were negative for all participants in both treatment groups [37]. Another trial in the USA during the same time period was designed to measure treatment outcomes in a population at high risk of contracting STIs/RTIs. Although diagnostic methods were not reported, the trial was suspended after two of the first 12 patients were provided 1 g azithromycin failed their test of cure while all 13 participants were cured using BPG (p = 0.18) [38]. A three-arm trial of early syphilis in the USA then compared treatment outcomes among patients given BPG, or 2 g azithromycin once or 2 g azithromycin two-times with 1 week in between doses. RPR and FTA-ABS testing showed that cure was achieved in 85.7% (n = 14; 95% CI: 60.0–95.7%) of patients given BPG, 94.1% (n = 17; 95% CI: 72.7–98.6%) among recipients of 2 g azithromycin once and 82.8% (n = 29; 95% CI: 65.3–92.3%) in participants who twice received 2 g azithromycin [39].

In sub-Saharan Africa, three trials have investigated BPG versus azithromycin, the first being a community-randomized trial in Uganda (1994–1998) among nonpregnant adults with serological syphilis. Diagnosis and test of cure were based on toluidine red unheated serum tests (TRUSTs) and *Treponema pallidum* hemagglutination assays. Treatment efficacy varied across regimens depending on TRUST titers at enrolment. Among patients with initial titers ≤1:2, BPG cured 71.0% (n = 93; 95% CI: 61.0–79.2%) of cases compared with 58.5%...
Study (year)	Country	Year(s)	Spontaneous abortion	Stillbirth	IUGR	PROM	Preterm	Low birthweight	Ref.
Treponema pallidum									
Watson-Jones et al. (2002)	Tanzania	1998–2000	NR	18 (5.5–59.6) RR	2.1 (1.0–4.2) RR	NR	6.1 (2.5–15.3) RR	3.3 (2.0–5.4)†	[21]
Temmerman et al. (1995)	Kenya	1991	NR	3.34 RR	NR	NR	NR	4.01†	[120]
McDermott et al. (1993)	Malawi	1987–1990	NR	10.98 RR	NR	NR	NR	NR	[19]
Donders et al. (1993)	South Africa	1988	NR	NR NR NR	NR	NR	33%; 5 of 15 cases	NR	[34]
Elliott et al. (1990)	Kenya	1985	NR	NR NR NR	NR	NR	1.4 (0.5–4.1) RR	NR	[121]
Ratnam et al. (1982)	Zambia	NR	42% of cases	NR NR NR	NR	NR	NR	NR	[15]
Williams et al. (1923)	USA	1923	40% of cases	NR NR NR	NR	NR	NR	NR	[14]
Neisseria gonorrhoeae									
Johnson et al. (2011)	USA	1996–2002	NR	NR NR NR	NR	NR	2.0 (1.0–4.0)	0.8 (0.3–2.3)	[122]
Donders et al. (1993)	South Africa	1988	NR	NR NR NR	NR	NR	56%; 5 of 9 cases	p < 0.005	[34]
Elliott et al. (1990)	Kenya	1985	NR	NR NR NR	NR	NR	3.2 (1.3 to 8.4)	NR	[121]
Chlamydia trachomatis									
Rours et al. (2011)	Netherlands	2003–2005	NR	NR NR NR	NR	NR	4.4 (1.3–15.2)†;	1.0 (0.4–2.2)	[32]
Silveira et al. (2009)	USA	2005–2008	NR	NR NR NR	NR	NR	0.7 (0.4–1.4)	NR	[123]
Wilkowska-Trojniel et al. (2009)	Poland	2003–2006	12 versus 2% p = 0.029	NR NR NR	NR	NR	NR	NR	[18]
Blas et al. (2007)	USA	2003	NR	NR NR NR	1.5 (1.0–2.2) RR	1.5 (1.1–2.0) RR	1.1 (0.7–1.7)	[124]	
Odendaal et al. (2006)	South Africa	2002–2003	NR	NR NR NR	NR	NR	22.2%; 8 of 36 cases versus 10.4%; 32 of 307 cases; p = 0.037	NR	[30]

Results reported as odds ratios unless otherwise noted and 95% confidence intervals in parentheses.
†Preterm delivery before 32 weeks.
‡Preterm delivery before 35 week.
§Preterm delivery before 37 weeks.
Bacterial vaginosis at 16–20 weeks.
Bacterial vaginosis at 28–32 weeks.
Intermediate flora (Nugent scores 4–7) and bacterial vaginosis (Nugent scores 7–10).
IUGR: Intrauterine growth retardation; NR: Not reported; PROM: Premature rupture of membranes; RR: Risk ratio.
Table 1. Effect of curable STIs/RTIs on pregnancy outcomes (cont.).

Study (year)	Country	Year(s)	Spontaneous abortion	Stillbirth	IUGR	PROM	Preterm	Low birthweight	Ref.	
Chlamydia trachomatis (cont.)										
Johnson et al. (2011)	USA	1996–2002	NR	NR	NR	NR	1.0 (0.6–2.0)	2.1 (1.0–4.2)	[122]	
Kovacs et al. (1998)	Hungary	1994–1995	NR	NR	7.3 versus 5.8%	2.0 versus 21%	NR	15.5 versus 13.2%	NR	[125]
Donders et al. (1993)	South Africa	1988	NR	NR	NR	NR	27%; 6 of 22 cases	NR	[34]	
Elliott et al. (1990)	Kenya	1985	NR	NR	NR	NR	0.7 (0.4–1.4)	NR	[121]	
Johns Hopkins et al. (1989)	USA	1983–1985	NR	NR	2.4 (1.3–4.2)	NR	1.6 (1.0–4.2)	NR	[126]	
Gravett et al. (1986)	USA	1983	NR	NR	NR	2.4 (1.7–5.4)	NR	2.7 (1.3–5.7)	[24]	
Trichomonas vaginalis										
Johnson et al. (2011)	USA	1996–2002	NR	NR	NR	NR	1.4 (0.7–2.8)	1.5 (0.9–2.6)	[122]	
Meis et al. (1995)	USA	1992–1994	NR	NR	NR	NR	1.5 (0.1–8.1) week 24; 0.9 (0.2–3.6) week 28	NR	[127]	
Sutton et al. (1999)	DR Congo	1989–1990	NR	NR	NR	NR	NR	2.1 (1.0–4.7)	[35]	
Minkoff et al. (1984)	USA	NR	NR	NR	NR	p < 0.03	NR	NR	[128]	
Catch et al. (1997)	USA	1984–1989	NR	NR	NR	NR	1.3 (1.1–1.4)	1.3 (1.1–1.5)	[28]	
Bacterial vaginosis										
Johnson et al. (2011)	USA	1996–2002	NR	NR	NR	NR	1.3 (0.9–2.1)	1.1 (0.6–1.8)	[122]	
Svare et al. (2006)	Denmark	1998–2002	NR	NR	NR	NR	2.5 (1.6–3.9)	2.0 (1.3–2.9)	[29]	
Watson-Jones et al. (2007)	Tanzania	1997–2000	NR	NR	NR	NR	3.0 (1.3–6.6)	NR	[31]	
Leitch et al. (2003)	Multiple	Multiple	9.9 (2.0–49.3)	NR	NR	NR	2.2 (1.5–3.1)	NR	[17]	
Meis et al. (1995)	USA	1992–1994	NR	NR	NR	NR	1.4 (0.9–2.05) week 24; 1.8 (1.2–3.0) week 28	NR	[127]	

Results reported as odds ratios unless otherwise noted and 95% confidence intervals in parentheses.

†Preterm delivery before 32 weeks.
‡Preterm delivery before 35 weeks.
§Preterm delivery before 37 weeks.
|††Bacterial vaginosis at 16–20 weeks.
‡‡Intermediate flora (Nugent scores 4–7) and bacterial vaginosis (Nugent scores 7–10).
IUGR: Intrauterine growth retardation; NR: Not reported; PROM: Premature rupture of membranes; RR: Risk ratio.
Among recipients of 1 g azithromycin and 70.6% (n = 313; 95% CI: 65.3–75.4%) of participants given 1 g azithromycin plus BPG. If titers at enrolment were >1:4, the efficacy of BPG was reduced to 41.3% (n = 75; 95% CI: 30.9–52.7%). Treatment efficacy was also lower among groups given azithromycin but higher than BPG alone. Recipients of 1 g azithromycin alone had a cure rate of 53.3% (n = 71; 95% CI: 42.0–64.7%), whereas 1 g azithromycin plus BPG cured 54.7% of cases (n = 309; 95% CI: 49.1–60.2%).

These results were followed by a trial carried out in Tanzania (2000–2003) among patients who were recruited by screening high-risk populations. All 328 subjects had a titer of at least 1:8 on RPR test; 106 had baseline titers of >1:64, levels indicative of active syphilitic lesions. Confirmed by RPR test and T. pallidum particle agglutination assay, serological cure was observed in 97.5% (n = 163; 95% CI: 93.9–99.0%) of participants given 2 g azithromycin versus 95.2% (n = 165; 95% CI: 90.7–97.5%) in the BPG group.

The most recent study comparing the efficacy of azithromycin versus BPG is a multicenter trial (2000–2007) in Madagascar (n = 421) and North America (n = 94) among HIV-negative patients with early syphilis. Based on RPR testing, serological cure was reported in 77.6% of subjects given 2 g azithromycin (n = 232; 95% CI: 71.8–82.5%) and 78.5% (n = 237; 95% CI: 72.8–83.3%) in the BPG group. Nonserious adverse events were reported by 61.5% (n = 174; 95% CI: 55.7–67.0%) of individuals treated with 2 g azithromycin, most of whom had self-limiting gastrointestinal discomfort, whereas 46.1% (95% CI: 40.6–52.1%) of BPG recipients reported nonserious adverse events.

In vitro evidence

Fourteen in vitro studies met our inclusion criteria, seven with isolates from low-risk populations (Table 3) and seven from high-risk or mixed-risk groups (Table 4). A report from San Francisco in 2001 was the first to associate azithromycin treatment failure with A→G mutations at the 2,058 position of the 23S rRNA gene of T. pallidum. Retrospective analysis of samples revealed that 4.0% (n = 25; 95% CI: 0.9–19.6%) of isolates had A→G mutations between 1999 and 2002. In 2003, the proportion of isolates with A→G mutations increased to 36.7% (n = 237; 95% CI: 72.8–83.3%) in the BPG group. Nonserious adverse events were reported by 61.5% (n = 174; 95% CI: 55.7–67.0%) of individuals treated with 2 g azithromycin, most of whom had self-limiting gastrointestinal discomfort, whereas 46.1% (95% CI: 40.6–52.1%) of BPG recipients reported nonserious adverse events.

Study (year)	Country	Year(s)	Low birthweight	Premature rupture of membranes	Intrauterine growth retardation	Spontaneous abortion	Stillbirth	IUGR	Preterm	NR
McGregor et al. (1995)	USA	1991–1992	NR	NR	NR	NR	NR	NR		
Hillier et al. (1994)	USA	1984–1989	NR	NR	NR	NR	NR	NR		
Hay et al. (1999)	UK	1995	NR	NR	NR	NR	NR	NR		
Elliott et al. (1990)	USA	1983	NR							
Gravett et al. (1996)	USA	1993	NR							

Results reported as odds ratios unless otherwise noted and 95% confidence intervals in parentheses. †Preterm delivery before 32 weeks. ‡Preterm delivery before 35 weeks. ††Preterm delivery before 37 weeks. †‡Intermediate flora (Nugent scores 4–7) and bacterial vaginosis (Nugent scores 7–10). IUGR: Intrauterine growth retardation; NR: Not reported; PROM: Premature rupture of membranes; RR: Risk ratio.

On the pathway to better birth outcomes? Review

Table 1. Effect of curable STIs/RTIs on pregnancy outcomes (cont.).

Ref.

Table 3. In vitro studies on azithromycin resistance.

(n = 94; 95% CI: 48.4–68.0%) among recipients of 1 g azithromycin and 70.6% (n = 313; 95% CI: 65.3–75.4%) of participants given 1 g azithromycin plus BPG. If titers at enrolment were >1:4, the efficacy of BPG was reduced to 41.3% (n = 75; 95% CI: 30.9–52.7%). Treatment efficacy was also lower among groups given azithromycin but higher than BPG alone. Recipients of 1 g azithromycin alone had a cure rate of 53.3% (n = 71; 95% CI: 42.0–64.7%), whereas 1 g azithromycin plus BPG cured 54.7% of cases (n = 309; 95% CI: 49.1–60.2%).

These results were followed by a trial carried out in Tanzania (2000–2003) among patients who were recruited by screening high-risk populations. All 328 subjects had a titer of at least 1:8 on RPR test; 106 had baseline titers of >1:64, levels indicative of active syphilitic lesions. Confirmed by RPR test and T. pallidum particle agglutination assay, serological cure was observed in 97.5% (n = 163; 95% CI: 93.9–99.0%) of participants given 2 g azithromycin versus 95.2% (n = 165; 95% CI: 90.7–97.5%) in the BPG group.

The most recent study comparing the efficacy of azithromycin versus BPG is a multicenter trial (2000–2007) in Madagascar (n = 421) and North America (n = 94) among HIV-negative patients with early syphilis. Based on RPR testing, serological cure was reported in 77.6% of subjects given 2 g azithromycin (n = 232; 95% CI: 71.8–82.5%) and 78.5% (n = 237; 95% CI: 72.8–83.3%) in the BPG group. Nonserious adverse events were reported by 61.5% (n = 174; 95% CI: 55.7–67.0%) of individuals treated with 2 g azithromycin, most of whom had self-limiting gastrointestinal discomfort, whereas 46.1% (95% CI: 40.6–52.1%) of BPG recipients reported nonserious adverse events.
12 months, whereas 61.2% (n = 98; 95% CI: 51.3–70.4%) of isolates from patients who had not received prior macrolide treatment contained the same mutations [46]. Similar mutations were found among strains of *T. pallidum* in eight cities across China (2008–2011). A2058G was present in 97.0% individuals [48]. The opposite was found in Taiwan (2009–2011) [49]. Although use of macrolides in the previous year was not reported, the Essential Drugs List of the Malagasy Ministry of Health does not include macrolides [301].

Neisseria gonorrhoeae

In vivo evidence

The WHO recommends treating pregnant women with *Neisseria gonorrhoeae* infection using 400 mg cefixime as a single dose or 125 mg ceftriaxone by intramuscular injection [50]. However, azithromycin has been used for the treatment of gonorrhea among nonpregnant adults during the past two decades. Eleven trials were identified through our review (Table 5). Nine trials conducted between the late 1980s and 1999 investigated the use of 1 g azithromycin among individuals attending sexually transmitted infection (STI) clinics. Of these, three were open label without comparators [51–53] and six were two-arm trials that compared azithromycin to ciprofloxacin and/or doxycycline [54–59]. The pooled efficacy of azithromycin against *N. gonorrhoea*, estimated using random effects models [60], was 97.0% (n = 539; 95% CI: 95.5–98.5%). This is slightly higher than 96.5% (n = 539; 95% CI: 94.3%–97.6%) reported in a 2010 review [61] that added numerators and divided the sum of denominators among the same nine trials. Such an approach does not account for heterogeneity across study populations and gives equal weight to all trials regardless of their precision. Regardless of pooling methods, it is unlikely that the same efficacy would be observed today using 1 g azithromycin in high-income countries following 25 years of cumulative drug pressure. However, the epidemiological context in sub-Saharan Africa is likely different.

We identified two RCTs that investigated the use of 2 g azithromycin among individuals attending sexually transmitted infection (STI) clinics. Of these, three were open label without comparators [63]. A similar RCT in New Delhi (2005–2006) involved 42 participants; loss to follow-up was high, 52.4%, but all 22 subjects who returned for a test of cure had their *N. gonorrhoeae* infections cured [64].

In vitro evidence

Over the past decade, *in vitro* studies have documented the loss of *N. gonorrhoeae* sensitivity to azithromycin. There are no standard breakpoints of minimum inhibitory concentrations (MICs) used to categorize *N. gonorrhoeae* resistance to azithromycin, but >1 µg/ml [65] and >2 µg/ml [66] have both been used. In this section, we summarize the key regional observations from 36 *in vitro* studies (Tables 6 & 7).

The Public Health Agency of Canada reported that 0.17% (n = 40,875; 95% CI: 0.001–0.002%) of *N. gonorrhoeae*
Table 2. Randomized clinical trials of azithromycin versus benzathine penicillin G for the treatment of *Treponema pallidum*

Study (year)	Country	Year(s)	Regimen	Number cured of treated	Percent cured	95% CI	Diagnostic methods used	Follow up	Stage of infection	Ref.
Specified low-risk populations										
Hook et al. (2010)	Madagascar, USA	2000–2007	2 g azithromycin 2.4 mu BPG	180/232	77.6%	71.8–82.5%	RPR and FTA-ABS	6 months	Primary, secondary, early latent syphilis	[42]
			2 g azithromycin plus 2.4 mu BPG	186/237	78.5%	72.8–83.2%				
Kiddugavu et al. (2005)	Uganda	1994–1998	1 g azithromycin 2.4 mu BPG	55/94	58.5%	48.4–68.0%	TRUST and TPHA (initial TRUST titers ≤ 1:2)	10 months	Serologic syphilis	[130]
			1 g azithromycin plus 2.4 mu BPG	66/93	71.0%	61.0–79.2%				
				221/313	70.6%	65.3–75.4%				
			1 g azithromycin 2.4 mu BPG	55/94	53.3%	42.0–64.7%	TRUST and TPHA (initial TRUST titers ≥ 1:4)	10 months	Serologic syphilis	
				66/93	41.3%	30.9–52.7%				
			1 g azithromycin plus 2.4 mu BPG	169/309	54.7%	49.1–60.2%				
Unspecified low-risk populations										
Klausner et al. (2006)	USA	2004	1 g azithromycin 2.4 mu BPG	10/12	83.3%	54.6–95.0%	NA	NR	Exposed to infectious syphilis	[38]
				13/13	100%	NA		NR		
Hook et al. (2002)	USA	1995–1997	2 g azithromycin 2.4 mu BPG	14/14	100%	66.4–95.0%	RPR and MHA-TP or FTA-ABS	12 months	Primary, secondary, early latent syphilis	[39]
			2 g azithromycin (two-times) week apart 2.4 mu BPG	19/22	86.4%	NA				
Hook et al. (1999)	USA	1995–1997	1 g azithromycin 2.4 mu BPG	40/40	100%	93.9–99.9%	RPR and FTA-ABS	3 months	Exposed to infectious syphilis	[131]
				23/23	100%	90.7–97.5%				
High-risk population										
Riedner et al. (2005)	Tanzania	2000–2003	2 g azithromycin 2.4 mu BPG	159/163	97.5%	93.9–99.9%	RPR and PCR	9 months	Primary, secondary, higher titer latent syphilis	[132]
				157/165	95.2%	90.7–97.5%				

2.4 mu BPG: 2.4 million units benzathine penicillin G; FTA-ABS: Fluorescent treponemal antibody absorption; MHA-TP: Microhemagglutination assay-Treponema pallidum; NA: Not applicable; NR: Not reported; RPR: Rapid plasma reagin; TPHA: Treponema pallidum hemagglutination; TRUST: Toluidine red unheated serum test.
Table 3. Sensitivity testing of *T. pallidum* isolates to azithromycin and other macrolides.

Study (year)	Country	Year(s)	Specimen source	Sample size	Resistant mutation	Number resistant	Percent resistant	95% CI	Additional details					
Low-risk populations														
Chen *et al.* (2013)	USA	2007-2009	Surveillance	129	2058A 2058G 2059G	83 67 17	64.3% 51.9% 13.2%	55.8–72.1% 43.4–60.4% 8.4–20.1%	From patients with primary of secondary syphilis attending STI clinics	[133]				
Van Damme *et al.* (2009)	Madagascar	NR	Randomized clinical trial	186	23S rRNA	0	0.0%	NA	DNA of *T. pallidum* was detected in 141 samples; 61% of patients were male; 98% were heterosexual	[49]				
Unspecified low-risk populations														
Muller *et al.* (2012)	South Africa, Lesotho	2005–2010	Surveillance	100	A2058G A2059G	1 0	1.0% 0.0%	0.0–5.4%	117 ulcer specimens collected of which 100 were positive for *T. pallidum*	[134]				
A2058G Prevalence Workgroup (2012)	USA	2007–2009	Surveillance	141	A2058G	75	53.1%	45.0–61.2%	From patients with primary of secondary syphilis attending STI clinics; MSM were nearly 6 times more likely to have resistant syphilis compared with heterosexual women and men	[135]				
Matejková *et al.* (2009)	Czech Republic	2005–2008	Passive case detection	22	23S rRNA A2058G A2059G	8 4 4	36.4% 18.2% 18.2%	19.7–57.3% 7.5–38.8% 7.5–38.8%		[136]				
Martin *et al.* (2009)	China	2007–2008	Passive case detection	38	A2058G	38	100%	NA	Patients presenting to STI clinic with symptoms compatible with primary syphilis	[137]				
Lukehart *et al.* (2004)	USA	1999–2002	Surveillance	25	23S rRNA	1	4.0%	1.0–19.6%	PCR to detect 23S rRNA gene mutations; confirmation of azithromycin resistance was conducted through intradermal rabbit inoculation	[44]				
				2003	30	11	36.7%	21.9–54.6%						
				2001–2003	23	3	13.0%	4.7–32.3%						
				1998–2000	19	2	10.5%	3.2–31.7%						
				Ireland	Dublin	Multiple locations	17	23S rRNA	15	88.2%	65.3–96.4%			

DNA: Deoxyribonucleic acid; MSM: Men who has sex with men; NA: Not applicable; NR: Not reported; STI: Sexually transmitted infection.
Table 4. Sensitivity testing of *T. pallidum* isolates to azithromycin and other macrolides.

Study (year)	Country	Year(s)	Specimen source	Sample size	Resistant mutation	Number resistant	Percent resistant	95% CI	Additional details	Ref.		
High-risk populations												
Tipple *et al.* (2011)	UK	2006–2008	Cross-sectional survey	18	23S rRNA A2058G	12	66.6%	61.1%	43.4–83.7%	38.4–79.7%	Specimens from men, 94.1% were MSM	[138]
Rekart *et al.* (2003)	Canada	2000	Mass drug administration	25	23S rRNA	0	0.0%	NA	1.8 g azithromycin given to sex workers and clients (n = 4,384)	[139]		
Mixed-risk populations												
Chen *et al.* (2012)	China	2008–2011	Cross-sectional survey	211	A2058G	194	91.9%		87.2–95.1%		391 samples collected; 6.1% from FSW, 71.8% reported sex with FSW and 1.4% were MSM	[47]
Muldoon *et al.* (2012)	Ireland	2009–2010	Cross-sectional survey	29	A2058G	27	93.1%		77.9–97.9%		34.6% (36/104) of samples were positive for *T. pallidum* by PCR; 29 sequenced	[140]
Martin *et al.* (2010)	Canada	2007–2009	Cross-sectional survey	43	A2058G	7	16.3%		8.2–30.1%		449 samples collected from 374 patients; 43 were positive for *T. pallidum* and sequenced	[141]
Mitchell *et al.* (2006)	USA	2000–2002	Retrospective study	25	23S rRNA	1	4.0%		1.0–19.6%		Patients (n = 1,308) diagnosed primary or secondary syphilis; all treatment failure and resistance in MSM/ bisexual patients	[43]
		2003		32		13	40.6%		25.5–57.9%			
		2004		66		37	56.1%		44.0–67.4%			
Morshed *et al.* (2006)	Canada	2000–2003	Retrospective study	47	23S rRNA	1	2.1%		0.5–11.1%		MSM patients presenting to STI clinic with primary or secondary syphilis	[142]
		2004		9		4	44.4%		18.7–73.8%			

FSW: Female sex worker; MSM: Men who have sex with men; NA: Not applicable; STI: sexually transmitted infection.
Table 5. Randomized clinical trials of azithromycin for the treatment of *Neisseria gonorrhoeae*

Study (year)	Country	Year(s)	Azithromycin dose	Number cured of evaluated	Percent cured	95% CI	Diagnostic methods	Additional details	Ref.
Dose of 2 g azithromycin									
Khaki *et al.* (2007)	India	2005–2006	2 g	22/22	100%	NA	>Gram stain	TOC days 5–7	[143]
Handsfield *et al.* (1994)	USA	1991–1992	2 g	370/374	98.9%	97.3–99.6%			[63]
Dose of 1 g azithromycin									
Rustomjee *et al.* (2002)	South Africa	1999	1 g	30/31	96.8%	83.8–99.2%	LCR for NG/CT	TOC day 14	100% (n = 21) NG infections cured; 100% (n = 14) CT infections cured; 90.0% (n = 10; 95% CI: 58.7–97.8%) co-infections cured
Swanston *et al.* (2001)	Trinidad and Tobago	1996	1 gram	125/127	98.4%	94.5–99.5%	ELISA for NG culture for CT; TOC days 7–10	100% (n = 115) NG infections cured; 95.7% (n = 23; 95% CI: 78.9–99.0%) CT infections cured; 88.3% (n = 12; 95% CI: 54.6–95.0%) co-infections cured	[53]
Gruber *et al.* (1997)	Croatia	1994–1995	1 g	48/50	96.0%	86.5–98.8%	Culture and gram stain for NG; TOC day 14		[58]
Gruber *et al.* (1995)	Croatia	1991–1993	1 g	24/24	96.0%	80.4–99.1%	Culture and gram stain for NG; TOC day 14		[57]
Steingrimsson *et al.* (1994)	Iceland	NR	1 g	27/28	96.4%	82.4–99.2%	Culture for NG w/ DFA; Culture for CT; TOC day 28	92.4% (n = 79; 84.4–96.4%) CT infections cured	[56]

CT: *Chlamydia trachomatis*; DFA: Direct fluorescent antibody; ELISA: Enzyme-linked immunosorbent assay; LCR: Ligase chain reaction; mg: milligrams; NA: Not applicable NG: *Neisseria gonorrhoeae*; NR: Not reported; TOC: Test of cure.
Table 5. Randomized clinical trials of azithromycin for the treatment of *Neisseria gonorrhoeae*

Study (year)	Country	Year(s)	Azithromycin dose	Number cured of evaluated	Percent cured	95% CI	Diagnostic methods	Additional details	Ref.
Dose of 1 g azithromycin (cont.)									
Waugh *et al.* (1993)	UK	1990–1991	1 g	85/89	95.5%	89.0–98.2%	Culture and gram stain for NG; culture for CT; TOC day 10	100% (n = 22) NG/CT co-infections cured	[52]
Odugbemi *et al.* (1993)	Nigeria	1989–1990	1 g	114/120	95.0%	89.5–97.6%	Culture for NG; TOC day 14		[51]
Steingrimsson *et al.* (1990)	Iceland	NR	1 g (day 0)	11/12	91.7%	64.0–98.1%	Culture for NG/CT; TOC day 28	97.7% (n = 44; 88.2–99.5%) CT infections cured	[55]
			500 mg (day 0 x 2)	7/8	87.5%	51.8–97.2%		96.3% (n = 27; 81.7–99.1%) CT infections cured	
			500 mg (day 0) 250 mg (days 1 and 2)	7/7	100%	NA		88.0% (n = 25; 69.8–95.6%) CT infections cured	
Lassus *et al.* (1990)	Finland	NR	1 g (day 0)	15/15	100%	NA	Culture and gram stain for NG/CT w/ DFA; TOC day 14	100% (n = 12) CT infections cured 100% (n = 5) co-infections cured 100% (n = 9) CT infections cured 83.3% (n = 6; 95% CI: 42.1–96.3%) co-infections cured	[54]
			500 mg (day 0) 250 mg (days 1 and 2)	14/14	100%	NA			

CT: *Chlamydia trachomatis*; DFA: Direct fluorescent antibody; ELISA: Enzyme-linked immunosorbent assay; LCR: Ligase chain reaction; mg: milligrams; NA: Not applicable NG: *Neisseria gonorrhoeae*; NR: Not reported; TOC: Test of cure.
Table 6. Sensitivity testing of *Neisseria gonorrhoea* isolates to azithromycin.

Study (year)	Country	Year(s)	Sample size	MIC range (µg/ml)	Percent strains susceptible	Additional details
Olsen et al. (2013)	Vietnam	2011	108	NR	62%	11% isolates fully resistant, 29% intermediate susceptibility
Lahra et al. (2012)	Australia	2011	3,293	≤4	98.1%	Isolates from all states in Australia
Sethi et al. (2013)	India/Pakistan/Bhutan	2007–2011	65	0.016–4.0	76.9%	7.7% isolates fully resistant, 15.4% intermediate susceptibility
Lo et al. (2012)	Hong Kong	2010	485	<0.25 to >256	69.7%	
Lefebvre et al. (2011)	Canada	2010	831	≤16	98.7%	
Hottes et al. (2013)	Canada	2006–2011	1,837	0.064–16	99%	Elevated MIC showed increasing trend over time
CDC (2011)	USA	2002–2009	87,566	0.064–16	99.9%	39 (0.04%) had MICs ≥8 µg/ml (25 with 8 µg/mL; 14 with 16 µg/mL)
Yuan et al. (2011)	China	2008–2009	318	NR	94.7%	
Takahashi et al. (2013)	Japan	2007–2009	52	0.016–1	100%	100% of isolates from men†
Herchline et al. (2010)	USA	2006–2008	286	0.032–1.0	99.0%	Median MIC 0.125 µg/ml
Cole et al. (2010)	Europe (17 countries)	2006–2008	3,528	≤256	2.0–7.0%	High resistance (>256 µg/ml) in 4 isolates from Scotland and 1 in Ireland
Olsen et al. (2012)	Guinea-Bissau	2006–2008	31	NR	100%	Of resistant strains, two had MIC >64 µg/mL
Tanaka et al. (2011)	Japan	2001–2009	242	0.004–1.0	99.9%	Modal shift of MIC was 0.25–0.5 µg/mL
Martin et al. (2011)	Canada	2000–2009	40,875	≤64	99.8%	100% isolates susceptible also to sefixime, ceftriaxone and spectinomycin.
Bala et al. (2011)	India	2000–2009	274	NR	99.7%	One isolate was resistant to azithromycin, quinolones and penicillin
Chisholm et al. (2008)	UK	2001–2007	108	<0.03 to >256	94.0%	6/108 isolates had MIC >256 µg/mL; shift to high level resistance
Khaki et al. (2007)	India	2004–2005	60	0.016–0.25	100%	
Enders et al. (2006)	Southern Germany	2004–2005	65	0.016–5.0	100%	100% of isolates susceptible to azithromycin

Unspecified low-risk populations.

†Sexual practices were not reported; isolates are assumed not to be from men who have sex with men;

‡Dislocated males workers are among high-risk populations.

NR: Not reported.
Table 6. Sensitivity testing of *Neisseria gonorrhoeae* isolates to azithromycin (cont.).

Study (year)	Country	Year(s)	Sample size	MIC range (µg/ml)	Percent strains susceptible	Additional details	Ref.
Vorobieva *et al.* (2007)	Russia	2004	76	NR	100%	Although all susceptible, reduced susceptibility seen in 14%	[158]
Sutrisna *et al.* (2006)	Indonesia	2004	163	NR	100%	53% resistant to ciprofloxacin	[159]
Martin *et al.* (2004)	Western Europe	2004	965	NR	91.8%	Variation from 31.2% (Austria 30/96) to 0% (France 0/101, Greece 0/79, Portugal 0/17)	[160]
Chaudhary *et al.* (2005)	Nepal	2003	16	0.008–0.5	100%	No isolates resistant, but 3/16 (19%) had reduced susceptibility	[161]
Chen *et al.* (2009)	Taiwan	1999–2004	65	NR	100%		[162]
Hsueh *et al.* (2005)	Taiwan	1999–2003	55	0.03–9.0	72.7%		[163]
Aydin *et al.* (2005)	Turkey	1998–2002	78	0.004–0.25	100%	100% of isolates from men†	[164]
Moodley *et al.* (2001)	South Africa	1995–2000	58	0.015–1.0	100%	37% (37/100) strains resistant to penicillin; tetracyclines had reduced susceptibility.	[165]
Kobayashi *et al.* (2003)	Japan	1995–1999	699	0.015–1.0	100%	100% of isolates from men†	[166]
Llanes *et al.* (2003)	Cuba	1995–1999	52	0.064–0.5	76.9%	23.1% intermediate susceptibility: MIC=0.125 (10 isolates) MIC=0.5 (2 isolates)	[167]
Sosa *et al.* (2003)	Cuba	1995–1999	91	0.063–4.0	90.1%	Isolates with reduced susceptibility also resistant to penicillin and tetracycline	[168]
Dillon *et al.* (2001)	Brazil	1998	81	0.032–0.5	100%	28% reduced susceptibility	[169]
Zarantonelli *et al.* (1999)	Uruguay	1996–1997	51	0.032–0.5	100%	Decreased susceptibility (MIC 0.025 to 0.5) in 72%; isolates from men†	[170]
Young *et al.* (1997)	Scotland	1996	67	0.023–0.75	100%	Isolates randomly selected from with penicillin MIC≥1	[171]
Mehaffey *et al.* (1996)	USA	NR	105	0.06–2.0	100%	Two tests compared. Data from agar dilution method not Etest.	[172]
Dillon *et al.* (2001)	Guyana & St Vincent	1992–1996	136	0.032–8.0	85.5 and 97.0%	Two isolates had MIC = 8 µg/l. 49% (67/137) reduced susceptibility (combined)	[173]
Van Rijoort-Vos *et al.* (1995)	Netherlands	1991–1993	114	0.03–1.0	100%	One isolate reduced susceptibility	[174]
Ison *et al.* (1993)	South Africa	1989–1990	192	0.03–1.0	100%	Study in migrant mine workers (men only)†	[175]

†Sexual practices were not reported; isolates are assumed not to be from men who have sex with men;‡Dislocated males workers are among high-risk populations.

NR: Not reported.

Unspecified low-risk populations.
samples were resistant to azithromycin between 2000 and 2009, although the modal value of the MIC shifted from 0.25 \(\mu \text{g/ml} \) in 2001 to 0.5 \(\mu \text{g/ml} \) between 2007 and 2009 \cite{67}. During the same 10-year period, the Centers for Disease Control and Prevention in the USA reported that 0.04\% (n = 87,566; 95\% CI: 0.03–0.06\%) of \textit{N. gonorrhoea} isolates tested had MICs \(\geq 8 \mu \text{g/ml} \) (including 25 with 8 \(\mu \text{g/ml} \) and 14 with 16 \(\mu \text{g/ml} \)) \cite{68}. This did not include five cases of azithromycin-resistant \textit{N. gonorrhoea} found between August and October 2009 among men who have sex with men; three had MICs of 8 \(\mu \text{g/ml} \) and two had 16 \(\mu \text{g/ml} \) \cite{69}. Resistance may have appeared in Europe slightly before North America. Analysis of isolates from 17 European countries found that 3.2\% (n = 836; 95\% CI: 0.02–0.05\%) of gonococcal isolates were resistant to azithromycin in 2006. By 2007, 6.8\% (n = 973; 95\% CI: 0.05–0.09) of samples were resistant. The overall proportion of resistant isolates declined in 2008 to 1.8\% (n = 940; 95\% CI: 0.01–0.03\%), although only 5.2\% (95\% CI: 4.1–6.8\%) of strains tested in the same year were fully susceptible to azithromycin and ciprofloxacin. Four isolates from Scotland and one from Ireland exhibited MICs \(>256 \mu \text{g/ml} \) \cite{68}.

Gonococcal isolates examined from South America and Cuba exhibited high but stable levels of resistance between 2000 and 2009 in most settings \cite{70}. Collectively, azithromycin resistance was 13.0\% (n = 8,373; 95\% CI: 12.3–13.7\%) based on data from six countries including Chile, an outlier.

Table 7. Sensitivity testing of \textit{N. gonorrhoea} isolates to azithromycin.

Study (year)	Country	Year(s)	Sample size	MIC range (\(\mu \text{g/ml} \))	Percent of strains susceptible	Additional details	Ref.
High-risk populations							
CDC (2011)	USA	2009	55	NR	90.9\%	9.1\% resistant (95\% CI: 4.0 to 19.6\%); of 5 resistant (all from MSM), 3 had MIC = 8 \(\mu \text{g/ml} \) and two had MIC = 16 \(\mu \text{g/ml} \)	[69]
Starnino et al. (2009)	Italy	2007–2008	219	1.0–256.0	90.0\%	72.7\% (95\% CI: 51.6–86.8\%) of resistant isolates from MSM	[176]
Donegan et al. (2004)	Bali	2004	147	0.013–0.512	100\%	Study in FSWs; prevalence of NG estimated to be 35-60\%	[177]
Morris et al. (2009)	USA	2000–2002	79	0.03–0.5	100\%	Increased MIC values seen in MSM subject isolates	[178]
Leven et al. (2003)	Indonesia	1996	267	0.032–0.5	100\%	Study in FSWs; prevalence of NG estimated to be 18–44\%	[179]
CDC (2000)	USA	1999	12	1.0–4.0	NR	Median MIC was 2.0 \(\mu \text{g/ml} \). 6 of 12 samples were from men who had sex with a CSW; 2 of 12 were from HIV positive men	[180]
Mixed-risk populations							
Bruck et al. (2012)	UK	2005–2006	147	NR	99.3\%	Mixed male heterosexual, MSM and female heterosexual isolates	[181]
Dan et al. (2010)	Israel	2002–2007	406	0.023–8.0	91.8\%	Mixed male heterosexual, MSM and female heterosexual; resistance to azithromycin did not appear to rise over 5 year period	[182]
McLean et al. (2004)	USA	1999–2001	1,248	\(\leq 4 \)	97.4\%	Mixed high- and low-risk population. Median MIC was 2.0\mu/mL	[183]
Arreaza et al. (2003)	Spain	1992–2001	63	0.03–4.0	96.8\%	58.7\% of strains had reduced susceptibility (0.25–1.0 \(\mu \text{g/ml} \)). 50\% of resistant isolates were from FSW	[184]

BV: Bacterial vaginosis; **CSW**: Commercial sex worker (gender not specified); **FSWs**: Female sex workers; **GI**: Gastrointestinal; **MIC**: Minimum inhibitory concentration; **MSM**: Men who have sex with men; **NG**: Neisseria gonorrhoeae; **NR**: Not reported; **PROM**: Preterm premature rupture of the membranes; **SD**: Standard deviation; **TOC**: Test of cure.
Averaged over the decade, 26.7% (n = 3,116; 95% CI 25.2–28.3%) of samples from Chile were resistant, rising to 45.6% (n = 463; 95% CI: 41.1–50.1%) according to the most recent data from 2009. Removing Chile from the regional summary, 4.4% (n = 5,257; 95% CI: 3.9–5.1%) of isolates were resistant over the decade.

All 60 gonococcal isolates from India between 2004 and 2005 were susceptible to azithromycin [71]. Pooled analysis of samples collected from India, Pakistan and Bhutan between 2007 and 2011 found that 76.9% (n = 65; 95% CI: 65.3–85.5%) were susceptible. Results were not stratified by country and, therefore, it is not known whether the sensitivity of isolates from India had changed [72]. Applying the more conservative breakpoint of >1 μg/ml to the in vitro studies identified in this review, 35% (7 of 20) of the in vitro studies reported upper range MICs that included gonococcal isolates resistant to azithromycin. This percentage does not include 16 studies we identified and included in Tables 6 & 7 that did not report MICs.

Chlamydia trachomatis

In vivo evidence

The WHO recommends treating pregnant women with Chlamydia trachomatis infection using 1 g azithromycin as a single oral dose [50]. We found eight RCTs in the literature that reported the treatment efficacy of 1 g azithromycin among pregnant women (Table 8) [73–80]. Using random effect models, we estimate the pooled treatment efficacy to be 92.1% (n = 268; 95% CI: 88.4–95.7%). The estimated efficacy would be higher if we excluded two trials that were conducted in the USA. The first trial (1995–1997) reported a 3-week test of cure rate to be 88.1% (n = 42; 95% CI: 74.9–94.7%) [76], whereas the second trial (1998–2000) was terminated early due to poor efficacy, 63.3% (n = 55; 95% CI: 50.4–75.1%), based on test of cure ≥4 weeks post-treatment [74]. These results need to be interpreted with caution because no distinction was made between treatment failures and new infections, sex partners were not treated by trial staff, but were referred to a treatment center, and only 35% of women were seen within 7 days of the scheduled test of cure.

Studies investigating sexual activity following treatment offer some perspectives on post-treatment infections and the extent to which they may be failures or de novo infections. A trial in Seattle (1998–2003) found that persistent or recurrent chlamydial or gonorrheal infection occurred in 7.6% (n = 289; 95% CI: 5.1–4.9%) of female patients who reported no sexual intercourse after treatment [81]. Another study reported that 19.0% (n = 79; 95% CI 11.9–29.0%) of women were positive for C. trachomatis 3 months after treatment using 1 g azithromycin. Of these women, 13.3% (n = 15; 95% CI: 4.0–38.3%) reported being sexually inactive during the post-treatment period [82]. These findings may be attributable to false reporting of sexual contact, or treatment failure or may lend credence to the hypothesis that C. trachomatis enters a latent asymptomatic state that is undetectable by culture or, possibly, Nucleic Acid Amplification Tests, but can later reactivate [83].

In vitro evidence

Thresholds for antimicrobial susceptibility and resistance of C. trachomatis are not universally standardized, although MICs >4 μg/ml are often used to characterize therapeutic failure [84–87]. The lowest concentration of antimicrobial compound needed to inhibit chlamydial formation is between 0.03 and 0.125 μg/ml, whereas the minimum bactericidal concentration (MBC; also referred to as the minimum chlamydial concentration, or MCC) is between 0.06 and 0.5 μg/ml [88,89]. The published in vitro studies of azithromycin collectively suggest the persistence of high and widespread treatment efficacy (Table 9). One noted exception is the study of six isolates from three patients who experienced treatment failure in Russia (2000–2002); four isolates were resistant to azithromycin, doxycycline and ofloxacin at MICs and MBCs >5.12 μg/ml [90]. Not surprisingly, in vitro resistance appears to be more common in individuals with greater severity of disease or recurrent disease. A study in the USA during the early 1990s described decreased susceptibility and emerging resistance to azithromycin and doxycycline in isolates from women with mucopurulent cervicitis but not in isolates from women with asymptomatic infections [91]. Similar observations were reported in 2010 from India; six of eight isolates with modified susceptibility had been obtained from recurrently infected individuals, whereas the remaining two were from nonrecurrently infected patients. MICs and MBCs for azithromycin were 8 μg/ml for two of the patients from which the modified susceptibility isolates were taken. One individual had chronic cervicitis and the other had pelvic inflammatory disease [92].

Trichomonas vaginalis

In vivo evidence

Trichomonas vaginalis is a protozoal infection which causes cervicitis and nongonococcal urethritis. The WHO recommends treating pregnant women with T. vaginalis infection after the first trimester using 2 g metronidazole orally as a single dose, or 400–500 mg twice daily for 7 days or 300 mg clindamycin orally twice a day for 7 days [56]. If treatment is imperative during the first trimester of pregnancy, the single-dose regimen of 2 g metronidazole orally is recommended [56]. Azithromycin has not been used directly for prevention or treatment purposes because T. vaginalis is anaerobic. Nevertheless, azithromycin has demonstrated protection against T. vaginalis in studies of mass STI/RTI treatment (Tables 10 & 11).

In Kenya (1998–2002), 1 g azithromycin or placebo was given once per month to 466 HIV-negative female sex workers [93]. At the end of the trial, HIV incidence was the same across treatment groups, the primary endpoint, but the incidence of T. vaginalis was reduced significantly among those given azithromycin versus placebo (RR: 0.56; 96% CI: 0.40–0.78; p < 0.001). A similar observation was made in a three-arm IPTp trial in Malawi (2003–2006) [94]. Pregnant women received standard IPTp-SP, or monthly IPTp-SP or monthly IPTp-SP plus 1 g azithromycin during two antenatal visits; the prevalence of T. vaginalis at delivery was 16.7% (n = 411;
Table 8. Treatment efficacy studies of 1 g azithromycin for the treatment of *Chlamydia trachomatis* in pregnant women.

Study (year)	Country	Year(s)	Number cured of evaluated	Percent cured	95% CI	Diagnostic method	Birth outcomes	Additional details
Kacmar et al. (2001)	USA	1998–2000	18/19	94.7%	84.4–105.1%	Ligase chain reaction; TOC 28–42 days	NR	52.6% (n = 19; 95% CI: 31.5–72.8%) had side effects; passive or active solicitation not reported; 13.6 weeks (±8.0 SD) mean gestational age at enrolment
Jacobson et al. (2001)	USA	1998–2000	35/55	63.6%	47.7–79.6%	DNA LCx STD assay; TOC 28 days	13.3% (6/45) preterm	10.1% (n = 55; 95% CI: 5.2–21.9%) had side effects; passive or active solicitation not reported; 20.6 weeks (±8.8 SD) mean gestational age at enrolment
Wehbeh et al. (1998)	USA	NR	26/27	96.3%	89.0–103.6%	Culture	NR	100% (n = 27) of partners treated
Adair et al. (1998)	USA	1995–1997	37/42	88.1%	77.7–98.5%	DNA assay; TOC 28 days	NR	11.9% (n = 5; 95% CI: 5.3–25.1%) had side effects; passive or active solicitation not reported; 21.6 weeks (±9.5 SD) mean gestational age at enrolment; 54.8% (n = 23) of partners treated
Edwards et al. (1996)	USA	1993–1994	61/65	93.8%	87.8–99.9%	DNA assay; TOC 14 days	9.2% (6/65) preterm, 3 due to PROM; mean birth age 38.8 weeks ±1.6	20.4 weeks mean gestational age at enrolment
Rosenn et al. (1995)	USA	1994–1995	21/23	91.3%	79.3–103.4%	PCR (Amplicor); TOC 21 days	NR	19.3 weeks (±3.5 SD) mean gestational age at enrolment
Gunter et al. (1996)	USA	NR	22/22	100%	NA	DNA assay; TOC 14 days	NR	13.6% (n = 3; 95% CI: 5.0–33.6%) had gastrointestinal side effects; passive or active solicitation not reported
USA	NR	15/15	100%	NA	NA	NR	[80]	

NR: Not reported; TOC: Test of cure.
95% CI: 13.5–20.7%), 15.1% (n = 411; 95% CI: 12.0–18.9%) and 11.0% (n = 419; 95% CI: 8.3–14.3%), respectively. Thus, women who received azithromycin had 35% (RR: 0.65; 95% CI: 0.46–0.93; p = 0.02) fewer *T. vaginalis* infections at delivery compared with monthly recipients of IPTp-SP.

A cluster randomized trial in Uganda (1994–1998) compared the incidence of HIV infections among nonpregnant adults who received 1 g azithromycin, 250 mg ciprofloxacin and 2 g metronidazole versus multivitamins plus antihelminthics [95]. Although the trial was terminated early for lack of protection against the primary endpoint, the incidence of several curable STIs/RTIs was lower in the control group, most notably *T. vaginalis*. The cumulative incidence of newly diagnosed *T. vaginalis* infection was 4.8/100 person-years (116/2,397 person-years) in the intervention group compared with 9.1/100 person-years (182/1,993 person-years) in the control group (RR: 0.52; 95% CI: 0.35–0.79).

The same combination of antimicrobials was provided to female sex workers in rural Zimbabwe as a one-time treatment followed by 3 monthly check-ups [96]. The prevalence of *T. vaginalis* was just under 20% at baseline, decreased to approximately 5% at visit 2, rose to nearly 13% at visit 3 and lowered again to just over 10%, that is, one-half of the pretreatment levels.

Bacterial vaginosis

The WHO recommends treating bacterial vaginosis in pregnant women, preferably after the first trimester, with 200 or 250 mg metronidazole three-times per day for 7 days, or 5 g metronidazole gel (0.75%) applied intravaginally twice a day for 5 days or 300 mg clindamycin 300 mg orally twice a day for 7 days [36]. As with *T. vaginalis*, if treatment is imperative during the first trimester of pregnancy, 2 g metronidazole orally is recommended [36]. Bacterial vaginosis has no single causative agent, but is thought to result from destabilization of *Lactobacillus* species (spp.) with secondary colonization of anaerobic organisms that include *Gardnerella vaginalis*, *Bacteroides* spp, *Mobiluncus* spp. and *Mycoplasma hominis* alongside an increase in vaginal pH [97,98].

In vivo evidence

Our review identified no trials that have attempted to measure the treatment efficacy of azithromycin alone against bacterial vaginosis. Only one study in the USA (2002–2005) investigated the use of azithromycin as a partner drug with metronidazole for the treatment of symptomatic bacterial vaginosis. Nonpregnant women received one of four treatments: 750 mg metronidazole once per day for 7 days, or metronidazole once per day for 7 days plus 1 g azithromycin on days 1 and 3, or metronidazole for 14 days or metronidazole for 14 days plus azithromycin on days 1 and 3 [99]. No additional benefit of cure was observed among women who received metronidazole plus azithromycin compared with metronidazole alone.

Antibiotic treatment for bacterial vaginosis is challenging, in part, because it is a syndrome that involves multiple
Table 9. Sensitivity testing of *Chlamydia trachomatis* isolates to azithromycin.

Study (year)	Country	Year(s)	Azithromycin	Other macrolides	Additional details	Ref.						
			MIC (µg/ml)	MBC/MCC (µg/ml)								
No resistance observed												
Ljubin-Sternak et al. (2012)	Croatia	2010	0.064 to 0.125	0.064–2.0	Doxycycline: 0.016–0.064	0.032–1.0	24 urogenital strains assessed	[187]				
Donati et al. (2010)	Italy	2005–2006	0.25–0.5	0.5–1.0	Doxycycline: 0.03–0.06	Erythromycin: 0.5–1.0	0.06–0.125	1.0–2.0	All serovars had comparable susceptibilities. Azithromycin and doxycycline bactericidal with MBC at one to two-times the MIC. (50 strains)	[188]		
Hong et al. (2009)	Ethiopia	2006	0.25–0.5	0.25–1.0	Doxycycline: 0.015–0.03	0.03–0.06	Azithromycin unchanged between pre- and post-mass biannual treatment of trachoma (10 strains)	[189]				
Samra et al. (2001)	Israel	1997–1999	0.06–0.125	0.06–0.25	Doxycycline: 0.125–0.25	Tetracyclines: 0.25–0.5	0.125–4.0	0.25–4.0	Smallest MBC and MIC difference in azithromycin versus doxycycline (4 dilutions differences; 50 isolates)	[84]		
Lefèvre et al. (1993)	France	NR	0.06–0.125	0.25–0.5	Clarithromycin: 0.008	Erythromycin: 0.06–0.125	Tetracyclines: 0.125–0.25	0.03–0.125	0.25–2.0	1.0–4.0	15 clinical isolates tested	[190]
Agacfidan et al. (1993)	United States	1993	≤0.06–1	0.12–2.0	Doxycycline: 0.015–0.06	Tetracyclines: 0.03–0.12	0.015–0.06	0.06–0.12	Azithromycin highly active against CT in isolates from urethral and cervical samples (azithromycin 10 strains, doxycycline 22 strains, tetracycline 22 strains)	[191]		
Scieux et al. (1990)	UK	1990	0.064–0.25	2.0–8.0	Doxycycline: 0.016–0.064	Erythromycin: 0.064–0.128	0.5–8.0	0–64.0	10 strains used from the USA	[192]		
Resistance observed												
Bhengraj et al. (2010)	India	2006–2007	0.12–8	≤8.0	Doxycycline: 0.025–8.0	≤8.0	Decreased antimicrobial susceptibility in recurrently infected female patients (21 isolates)	[92]				
Misyurina et al. (2004)	Russia	2000–2002	>5.12	>5.12	Erythromycin: >5.12	>5.12	Isolates from salpingitis, endocervicitis, and urethritis showed resistance (6 isolates)	[90]				
Somani et al. (2000)	USA	1995–1998	0.5 to >4.0	>4.0	Doxycycline: 0.125–>4.0	>4.0	Resistance of strains causing relapsing or persistent infection in 3 patients (3 isolates)	[193]				
Rice et al. (1995)	USA	1995	0.125–2.0	0.5 to >4.0	Doxycycline: 0.008–0.06	0.015–4.0	Isolates susceptible to azithromycin and doxycycline in asymptotic infection	[91]				

Unspecified low-risk populations.
CT: *Chlamydia trachomatis*; MBC: Minimum bactericidal concentration; MCC: Minimum chlamydial concentrations; MIC: Minimum inhibitory concentrations; NR: Not reported; PID: Pelvic inflammatory disease.
Study (year)	Country	Year(s)	Regimen	Number of cases post-treatment (%)	Additional details	Ref.				
				Treponema pallidum†	Neisseria gonorrhoeae	Chlamydia trachomatis	Trichomonas vaginalis	Bacterial vaginosis		
Luntamo et al. (2010)	Malawi	2003–2006	**Intervention** 1 g AZ two-times + SP monthly	NR	0.5% (2/391)	0.3% (1/391)	11.0% (46/419)	NR	Significant protection against *T. vaginalis* \(p = 0.05 \)	[94]
			Intervention SP monthly	NR	2.1% (8/384)	0.3% (1/384)	15.1% (62/411)	NR		
			Control SP two-times	NR	0.7% (3/391)	0.3% (1/391)	16.7% (69/411)	NR		
van den Broek et al. (2009)	Malawi	2004–2005	**Intervention** 1 g AZ two-times + SP two-times	NR	NR	NR	NR	NR	No difference in preterm birth (16.8% versus 17.4%); potential explanatory factors include use of sub-optimal syphilis treatment [194,197]	[194]
			Control SP two-times	NR	NR	NR	NR	NR		
Gray et al. (2001)	Uganda	1994–1998	**Intervention** 1 g AZ + 250 mg CIPX + 2 g MTZ	3.4% (57/1,677)	0.9% (14/1,503)	1.1% (16/1,503)	4.7% (4/1,779)	36.3% (645/1,779)	Neonatal death RR: 0.83; 95% CI: 0.71–0.97; Low birth weight RR: 0.68; 95% CI: 0.53–0.86; Preterm delivery RR: 0.77; 95% CI: 0.56 to 1.05. Vertical transmission of HIV was no different between intervention and control groups	[104]
			Control Iron-folate + 100 mg MBZ two-times	3.3% (46/1,376)	1.7% (24/1,394)	2.7% (38/1,394)	15.9% (248/1,569)	48.5% (764/1,576)		
Wawer et al. (1999)	Uganda	1994–1998	**Intervention** 1 g AZ + 250 mg CIPX + 2 g MTZ	6.0% (80/1,323)	1.0% (8/770)	1.2% (9/770)	5.3% (72/1,350)	39.1% (533/1,364)	Vertical transmission of HIV was no different between intervention and control groups	[95]
			Control Iron-folate + 100 mg MBZ two-times	7.1% (75/1,056)	2.1% (15/714)	3.5% (25/714)	17.4% (198/1,137)	52.8% (609/1,154)		

Low-risk populations

†2.4 mu benzathine Penicillin G was administered to pregnant women in all treatment groups per national guidelines (exception being [194]).

AZ: Azithromycin; CIPX: Ciprofloxacin; NR: Not reported; RR: Risk ratio; SP: Sulfadoxine-pyrimethamine.
Table 11. Trials using azithromycin alone and in combination with other antimicrobial therapies not contraindicated in pregnancy and reporting protection curable STIs/RTIs among commercial sex workers.

Study (year)	Country	Year(s)	Regimen	Proportion of cases cured (cases pre-treatment/cases post-treatment)	Additional details	Ref.
Kaul et al. (2004)	Kenya	1998–2002	Intervention 1 g AZ monthly (multi-yr pd)	Treponema pallidum† 3.9% (2.6%) Neisseria gonorrhoeae 1.1% Chlamydia trachomatis 11.3% Trichomonas vaginalis 53.0% Bacterial vaginosis 53.0%	Incidence reported per 100 women-years	[93]
Labbe et al. (2012)	Benin Ghana	2001	Intervention 1 g AZ or 500 g CIPX monthly for 9 months alternating AZ & CIPX	Treponema pallidum† 5.6% (7/126) Neisseria gonorrhoeae 1.6% (2/126)	Significant protection against N. gonorrhoeae p = 0.05	[197]
Cowan et al. (2005)	Zimbabwe	NR	Intervention 1 g AZ+2 g MTZ+500 mg CIPX	Treponema pallidum† 5.0% (2.8–8.7%); Neisseria gonorrhoeae 1.9% (0.5–3.4%); Chlamydia trachomatis 1.7% (0.3–3.0%); Trichomonas vaginalis 1.7% (0.3–3.0%); Bacterial vaginosis 19.3% (15.2–23.4%); V2: 4.3% (7.7–2.2%); V3: 12.6% (17.7–8.8%); V4: 11.5% (15.7–7.8%)	Visible inaccuracies in graphs; cannot estimate	[96]
Wi et al. (2006)	Philippines	2001	Intervention 1 g AZ one time Prior to intervention 1 month post-intervention	Treponema pallidum† 18.3% (207/1,130) Neisseria gonorrhoeae 11.9% (82/687) Chlamydia trachomatis 28.6% (323/1,130)	HIV prevalence among CSW in the mining community was 68.6%	[198]
Williams et al. (2003)	South Africa	1998–2000	Intervention 1 g AZ nine-times in 9 months Prior to intervention 9-month post-intervention	Treponema pallidum† 9.8% (68/691) Neisseria gonorrhoeae 18.7% (166/893) Chlamydia trachomatis 7.9% (55/691)	HIV prevalence among CSW in the mining community was 68.6%	[199]
Steen et al. (2000)	South Africa	1996–1997	Intervention 1 g AZ every month for 9 months Prior to intervention 9-month post-intervention	Treponema pallidum† 17.3% (70/407) Neisseria gonorrhoeae 4.7% (5/108)	Pre-intervention NG and/or CT = 24.9% (101/407); Post-intervention NG and/or CT = 5.7% (5/108)	[200]

Italicized values are approximate based on enlarged graphs published in Cowan et al. and percentages in parentheses reflect the 95% confidence interval. AZ: Azithromycin; NR: Not reported; CIPX: Ciprofloxacin; CT: C. trachomatis; CSW: Commercial sex worker; MTZ: Metronidazole; NG: Neisseria gonorrhoeae.
†2.4 mm benzathine Penicillin G was administered to commercial sex workers who tested positive for syphilis in all treatment groups per national guidelines.

Chico, Hack, Newport, Ngulube & Chandramohan

Review

doi: 10.1586/14787210.2013.851601

Expert Rev. Anti Infect. Ther.
Table 12. Sensitivity of macrolides and structurally related agents against key causative organisms in bacterial vaginosis

Study (year)	Country	Year(s)	Minimum inhibitory concentrations of specific macrolides (μg/ml)	Ref.					
			Azithromycin	Erythromycin	Clarithromycin	Roxithromycin	Clindamycin†	Telithromycin†	
Gardnerella vaginalis									
Jones et al. (1998)	UK	NR	<0.03–0.125	<0.03–0.06	NR	NR	NR	NR	[201]
Shanker et al. (1982)	Australia	NR	NR	0.007–0.06	NR	NR	0.007–0.06	NR	[202]
King† et al. (1987)	NR	NR	0.008–0.016	NR	0.016	NR	NR		[203]
Bacteroides species									
Jones et al. (1998)	UK	NR	0.06–16	<0.03–32	NR	NR	NR	NR	[201]
Dubreuil et al. (1987)	England, France, Germany, Japan	NR	NR	0.003–>64	NR	0.003–>64	NR	NR	[204]
Maskell et al. (1990)	UK	NR	0.5–>16	<0.25–16	NR	NR	NR	NR	[205]
Chang et al. (1995)	Taiwan	1989–1992	1–>256	0.25–>256	≤0.03–>256	0.25–>256	NR	NR	[206]
Ednie et al. (1997)	USA	NR	1–>64	0.5–>64	0.5–>64	2–>64	≤0.06–>64	NR	[207]
Mikamo et al. (2003)	Japan	2000	0.125–32	0.125–32	0.063 to16	NR	NR	0.032–16	[208]
Marina et al. (2009)	Bulgaria	1983–2007	NR	0.5–>64	NR	NR	0.125–32	NR	[209]
Chen et al. (1992)	Australia	1986–1991	0.5 to128	0.25–128	NR	NR	NR	NR	[210]
Wexler et al. (2001)	USA	NR	NR	NR	NR	NR	0.25–>64		[211]
Mycoplasma hominis									
Ridgway et al. (1987)	UK	NR	>32	NR	8 to16	NR	NR		[203]
Mobinculus species									
Spiegel et al. (1987)	USA	NR	NR	≤0.2–>200	NR	NR	≤0.015–4	NR	[212]

†Not a macrolide but has similar mechanism of action and included for comparability.
NR: Not reported.
microorganisms rather than a single etiological agent. Comparable data from other macrolides suggest potential therapeutic value for azithromycin against bacterial vaginosis (Table 12). Analysis of azithromycin against the anaerobic and carboxyphilic bacteria that replace the normal vaginal flora may provide a better understanding as to the potential role of azithromycin against bacterial vaginosis.

Discussion
Azithromycin has been used against curable STIs/RTIs for 25 years. It has been an attractive option for preventive and curative treatment because it is efficacious as a single dose and offers reasonable tolerability against *T. pallidum*, *N. gonorrhoeae* and *C. trachomatis*. During the 1990s, and prior to the advent of antiretroviral therapies for HIV, the management of curable STIs/RTIs received renewed importance, particularly as trials showed that treatment of *N. gonorrhoeae*, *C. trachomatis* and *T. vaginalis* reduced the genital viral load of HIV among men and women [100–103]. Groups at high risk for transmitting HIV have since been targeted by treatment campaigns using 1 g azithromycin. Thus, it is not a surprise that changes in azithromycin sensitivity within high-income settings have often been observed first among members of high-risk groups. Pregnant women attending ANC facilities in sub-Saharan Africa do not have the same risk profile. Thus, on this basis alone, it is less likely that the use of ABC therapies in IPTp would be a catalyst for the rapid emergence of azithromycin resistance, although its emergence cannot be ruled out. The potential benefits of ABC therapies may be best viewed through prior experience with mass drug administration among pregnant women. In the context of the AIDS epidemic and before the age of antiretroviral therapies, researchers attempted to prevent maternal-to-child transmission (MTCT) of HIV by providing pregnant women in Uganda 1 g azithromycin, in combination with 250 mg ciprofloxacin and 2 g metronidazole [104]. The data safety monitoring board suspended the trial early for reasons of futility, despite having cut neonatal deaths by 17% (RR: 0.83; 95% CI: 0.71–0.97), decreased the incidence of low birthweight by 32% (RR: 0.68; 95% CI: 0.53–0.86), and reduced the incidence of preterm delivery by 23% (RR: 0.77; 95% CI: 0.56–1.05). These impressive results were achieved at a time when neither IPTp-SP nor insecticide treated bed nets for the control of malaria in pregnancy had been deployed.

If ABC therapies are used in IPTp, then there are several key factors to consider that are pathogen specific. Regarding syphilis, 1 g azithromycin should be used alongside 2.4 μg BPG for three reasons: combination therapy has been shown to achieve higher rates of cure than either therapy alone [105]; use of ABC therapy with BPG would likely reduce selection of the A→G mutation associated with azithromycin and preserve *T. pallidum* sensitivity; and only BPG can be expected to cure congenital infection if the placenta has been invaded by spirochetes [106]. As for *N. gonorrhoeae*, 1 g azithromycin may be just above the MIC of fully susceptible strains. Thus, ABC therapies containing >1 g azithromycin may be preferable from the standpoint of reducing selection pressure. However, a single 2 g dose may not be well tolerated as 6 in 10 patients reported self-limiting gastrointestinal discomfort when treated for syphilis infection with such a regimen [102]. The dose could be split over 2 days to improve tolerability. ABC therapies that contain 2 g azithromycin, either a single- or split-dose, would be protective against *C. trachomatis*. Although the data are limited and the mechanism of action is not understood, ABC therapies that have 1 g azithromycin may protect against *T. vaginalis* based on reports from Malawi among pregnant women [107] and commercial sex workers in Kenya [93]. It is curious, however, that *T. vaginalis* infection during pregnancy is associated with adverse birth outcomes, but the first-line treatment of 2 g metronidazole does not always improve birth outcomes. A trial in Uganda reported that pregnant women treated for *T. vaginalis* infection were 2.5-times more likely to deliver a low birthweight infant than untreated women (RR: 2.49; 95% CI: 1.12–5.50) [108]. The authors suggest that this may be attributable to metronidazole exposure. Another trial in the USA reported an increase in the risk of preterm delivery among pregnant women exposed to metronidazole for the treatment of asymptomatic trichomoniasis compared with those who were not treated (RR: 1.8; 95% CI: 1.2–2.7) [109]. In contrast to these findings from high-income settings, data from a multicenter trial in sub-Saharan Africa indicate that treatment of *T. vaginalis* infection using metronidazole does not increase the chances of preterm birth [110]. Apart from bacterial vaginosis, which is not transmitted through sexual contact, re-infection will remain a risk for pregnant women and, therefore, providers should continue to offer education and screening as appropriate.

None of the studies identified in this review indicate that azithromycin offers preventive or curative effect against bacterial vaginosis, the most prevalent of curable STIs/RTIs. Antibiotic therapy has only been shown to reduce the risk of preterm delivery by one-half (RR: 0.53; 95% CI: 0.34–0.84) among pregnant women with bacterial vaginosis (Nugent scores 7–10) or intermediate flora (Nugent scores 4–6) [111]. A Nugent score of 0–3 is considered normal [112] for which no protection against adverse birth outcomes has been observed.

Conclusions
ABC therapies are among leading candidates to replace SP for use in IPTp and may offer important public health benefits by also reducing the burden of curable STIs/RTIs in pregnancy. Evidence from nonpregnant adults suggests that ABC therapies containing 1 g azithromycin may cure maternal *T. pallidum* infection. BPG should still be administered with azithromycin because the combination has been shown to be more efficacious in nonpregnant adults than either treatment alone. Moreover, evidence from pregnant women indicates that eradication of congenital syphilis may require BPG treatment. *Neisseria gonorrhoeae* infection among pregnant women in sub-Saharan Africa, where strains are likely to be fully sensitive to azithromycin, is likely to be cured by ABC therapies containing 1 g azithromycin. However, 2 g may be needed to reduce persistent and/or
recurrent infection, and opportunities for the emergence of drug resistance. ABC therapy containing 1 g azithromycin would be curative of C. trachomatis infection, whereas some protection against T. vaginalis infection could be expected with the same dose. It remains unknown whether ABC therapies could offer protection against bacterial vaginosis if administered during the first half of pregnancy. ABC therapies merit investigation for the use in IPTp given their potential to reduce the dual burden of malaria and curable STIs/RTIs in pregnancy and improve maternal, fetal, and neonatal health.

Expert commentary

Current strategies for addressing the dual-burden of malaria and curable STIs/RTIs in pregnancy are suboptimal. In West Africa, IPTp-SP continues to provide protection against the effects of malaria infection but, as previously noted, malaria parasites in East Africa have developed resistance so that IPTp-SP no longer protects against the malaria attributable fraction of low birthweight [5]. Some evidence suggests that IPTp-SP may even be harmful in areas where parasites express the 581G dhps mutation [4-6]. ABC therapies are likely to be more efficacious against malaria parasites in these settings. However, there is an urgent need for trials of ABC therapies to be conducted by independent researchers for policymakers to review alongside the results of trials produced and reported by industry.

In the case of curable STIs/RTIs, the focused ANC package recommended by the WHO includes screening for syphilis and the provision of BPG to women who test positive [50]. Screening would need to continue even if ABC therapies were used in IPTp. The WHO currently recommends the use of rapid point of care tests for syphilis in the ANC setting [111]. Using such tests will expedite case finding and treatment with BPG because results are available during the same consultation. As for the four other curable STIs/RTIs of this review, health care providers are limited to the use of a syndrome-based management algorithm to diagnose and to treat suspected infections. However, 80% of gonococcal and 70–75% chlamydial infections in women are asymptomatic [114] and, therefore, rarely recognized using the syndromic approach. As a result, the diagnostic algorithm has a low sensitivity (30–80%) and specificity (40–80%) for N. gonorrhoeae and C. trachomatis among pregnant women [115-117]. The sensitivity for T. vaginalis (54–83%) and bacterial vaginosis (51–69%) is slightly higher, with moderate specificity for T. vaginalis (40–54%) and bacterial vaginosis (40–58%) [118]. Given the evidence of this review, ABC therapies used in IPTp could be expected to mitigate a considerable proportion of this unattended burden of curable STIs/RTIs.

Much is debated about the utility of a syndrome-based approach to diagnosing and treating many STIs/RTIs. Its short-comings, as described above, illuminate a much-needed area for research. Specifically, more refined definitions of diagnosis need to be used when characterizing adverse birth outcomes. This is particularly so with T. vaginalis for which successful treatment does not necessarily reduce the risk of adverse birth outcomes. Similarly with bacterial vaginosis, treatment of women who have Nugent scores of 1–3 has not reduced the incidence of preterm birth. With both of these infections, is the recommended regimen of metronidazole inadequate for radical cure? Is it administered too late in pregnancy to alter the course of events? Or are asymptomatic infections simply much less virulent and, therefore, treatment has a marginal effect on selected downstream measures of the adverse birth outcome? Studies of descriptive epidemiology are needed to understand better the extent to which symptomatic versus asymptomatic curable STIs/RTIs contribute to adverse birth outcomes. Such descriptive epidemiology, however, would be incomplete if the prevalence of co-infections were not also considered. The apparent failure to reduce the incidence of adverse birth outcomes following treatment for one infection may be masked by the presence of co-infection(s) that will only be mitigated with the use of combination therapies and consideration of downstream outcomes. The trial in Uganda that failed to reduce the incidence of MTCT of HIV is illustrative. HIV transmission was not interrupted for providing combination treatment against curable STIs/RTIs, but significant reductions were observed in the incidence of neonatal deaths by 17% (RR: 0.83; 95% CI: 0.71–0.97) and low birthweight by 32% (RR: 0.68; 95% CI: 0.53–0.86) [104].

Five-year view

Discussion of the future of IPTp needs to be placed in the context of broader malaria elimination efforts. IPTp-SP has long been considered a malaria control intervention that can be expected to protect less against the fraction of low birthweight attributable to malaria infection as malaria transmission decreases. Recent evidence suggests that IPTp-SP continues to protect against low birthweight among multigravidae in areas where the prevalence of malaria parasitemia measured in children is between 7 and 8%, whereas protection is conferred by IPTp-SP among paucigravidae until very low levels of transmission [119]. Unpublished results from a recently completed multicenter trial in West Africa, where there remain malaria parasites sensitive to SP, indicate that an approach of intermittent screening and treatment (IST) of malaria in pregnancy is noninferior to IPTp-SP (Manuscript under review/personal communication with D. Chandramohan). Thus, there is an urgent need for clinical trials in an area of high SP resistance in East Africa, designed to compare ABC therapies versus IST versus IPTp-SP. ABC therapies, given their action against malaria and curable STIs/RTIs, would be superior to IST and IST would be superior to IPTp-SP, potentially paving the way for adoption of an integrated malaria and curable STI/RTI control package that employs the use of combination treatment.

Financial & competing interests disclosure

RM Chico receives funding from Medicines for Malaria Venture, a non-profit foundation based in Geneva, Switzerland. E Ngulube is a Commonwealth Scholar. The authors have no other relevant affiliations or financial involvement with any organization or entity with a financial interest in or financial conflict with the subject matter or materials discussed in the manuscript apart from those disclosed.

No writing assistance was utilized in the production of this manuscript.

www.expert-reviews.com
doi: 10.1586/14787210.2013.851601
Key issues

- Use of azithromycin-based combination (ABC) therapies may have a transformative effect on maternal, fetal and newborn health by mitigating the dual-burden of malaria and curable sexually transmitted infections and reproductive tract infections sexually transmitted infections and reproductive tract infections (STIs/RTIs) in pregnancy.

- ABC therapies containing two or more grams of azithromycin may be less likely to select for resistance when exposed to Treponema pallidum, Neisseria gonorrhoeae and potentially, Chlamydia trachomatis.

- In the absence of evidence that azithromycin is curative of congenital syphilis, not simply maternal infection, benzathine penicillin G (BPG) will still need to be administered to pregnant women who have a syphilis infection; however, the combination of azithromycin plus BPG is more efficacious that BPG alone.

- ABC therapies may be preventive of Treponema vaginalis infection during pregnancy, although its impact on birth outcomes needs to be investigated.

- The most prevalent of all STIs/RTIs, bacterial vaginosis, may or may not be mitigated by the use of ABC therapies.

- Studies of descriptive epidemiology are needed to understand better the extent to which symptomatic versus asymptomatic curable STIs/RTIs contribute to adverse birth outcomes. There is an urgent need for clinical trials in an area of high sulfadoxine-pyrimethamine resistance in East Africa, designed to compare ABC therapies versus IPTp-SP versus providing IST for malaria in pregnancy during ANC visits.

References

1. WHO. WHO Policy Recommendation: Intermittent Preventive Treatment of Malaria in Pregnancy using Sulfadoxine-Pyrimethamine (IPTp-SP). 11 April 2013 (2013).
2. World Health Organization. World malaria report: 2012. World Health Organization, Geneva (2012).
3. Chico RM and Chandramohan D. Intermittent preventive treatment of malaria in pregnancy: at the crossroads of public health policy. Trop. Med. Int. Health 16(7), 774–785 (2011).
4. Harrington WE, Mutabingwa TK, Muchenbach A et al. Competitive facilitation of drug-resistant Plasmodium falciparum malaria parasites in pregnant women who receive preventive treatment. Proc. Natl Acad. Sci. USA 106(22), 9027–9032 (2009).
5. Harrington WE, Mutabingwa TK, Kabyemela E, Fried M and Dufey PE. Intermittent treatment to prevent pregnancy malaria does not confer benefit in an area of widespread drug resistance. Clin. Infect. Dis. 53(3), 224–230 (2011).
6. Harrington WE, Morrison R, Fried M and Dufey PE. Intermittent preventive treatment in pregnant women is associated with increased risk of severe malaria in their offspring. PLoS ONE, 8(2), e56183 (2013).
7. Whitman MS and Tunkel AR. Azithromycin and clarithromycin: overview and comparison with erythromycin. Infect. Control Hosp. Epidemiol. 13(6), 357–368 (1992).
8. Chico RM, Pittrof R, Greenwood B and Chandramohan D. Azithromycin-chloroquine and the intermittent preventive treatment of malaria in pregnancy. Malar. J. 7(1), 255 (2008).
9. Sarkar M, Woodland C, Koren G and Einarson AR. Pregnancy outcome following gestational exposure to azithromycin. BMC Pregnancy Childbirth 6, 18 (2006).
10. Kuschner R, Heppner D, Andersen S et al. Azithromycin prophylaxis against a chloroquine resistant strain of Plasmodium falciparum. Lancet 343(8910), 1396–1397 (1994).
11. Anderson S, Berman J, Kuschner R et al. Prophylaxis of Plasmodium falciparum malaria with azithromycin administered to volunteers. Ann. Intern. Med. 123, 771–773 (1995).
12. Ohr C, Willingham G, Lee P, Kinisch C and Milhous W. Assessment of azithromycin in combination with other antimalarial drugs against Plasmodium falciparum in vitro. Antimicrob. Agents Chemother. 46, 2518–2524 (2002).
13. Chico R M, Mayaudo P, Ariit C, Mabey D, Ronsmans C, Chandramohan D. Prevalence of malaria and sexually transmitted and reproductive tract infections in pregnancy in sub-saharan Africa. JAMA 307(19), 2079–2086 (2012).
14. Williams JW. A textbook of obstetrics. D Appleton & Co, New York, USA 1923.
15. Ratnam AV, Din SN, Hira SK et al. Effect of a syphilis control programme on pregnancy outcome in Nairobi, Kenya. Sex. Transm. Infect. 76(2), 117–121 (2000).
16. Watson-Jones D CJ, Balthazar G, Weiss H et al. Syphilis in pregnancy in Tanzania. I. Impact of maternal syphilis on outcome of pregnancy. J. Infect. Dis. 186, 940–947 (2002).
17. Leitch H, Bodner-Adler B, Brunbauer M, Kaider A, Egarter C, Husslein P. Bacterial vaginosis as a risk factor for preterm delivery: a meta-analysis. Am. J. Obstet. Gynecol. 189(1), 139–147 (2003).
18. Wilkowska-Trojniel M, Zdrodowska-Stefanow B, Ostaszewska-Puchalska I, Redzko S, Przepiesc J, Zdrodowski M. The influence of Chlamydia trachomatis infection on spontaneous abortions. Adv. Med. Sci. 54(1), 86–90 (2009).
19. Ohr C, Willingham G, Lee P, Kinisch C and Milhous W. Assessment of azithromycin in combination with other antimalarial drugs against Plasmodium falciparum in vitro. Antimicrob. Agents Chemother. 46, 2518–2524 (2002).
20. Anderson S, Berman J, Kuschner R et al. Prophylaxis of Plasmodium falciparum malaria with azithromycin administered to volunteers. Ann. Intern. Med. 123, 771–773 (1995).
21. McDermott J, Stekete R, Larsen S and Wirima J. Syphilis-associated perinatal and infant mortality in rural Malawi. Bull. World Health Organ. 71(6), 773–780 (1993).
22. Temmerman M, Gichangi P, Fonck K et al. Effect of a syphilis control programme on pregnancy outcome in Nairobi, Kenya. Sex. Transm. Infect. 76(2), 117–121 (2000).
23. Watson-Jones D CJ, Balthazar G, Weiss H et al. Syphilis in pregnancy in Tanzania. I. Impact of maternal syphilis on outcome of pregnancy. J. Infect. Dis. 186, 940–947 (2002).
24. Association of Chlamydia trachomatis and Mycoplasma hominis with intrauterine growth retardation and preterm delivery. The John Hopkins Study of Cervicitis and Adverse Pregnancy Outcome. Am. J. Epidemiol. 129(6), 1247–1257 (1989).
25. Watson-Jones D, Chagalucha J, Gumodoka B et al. Syphilis in pregnancy in Tanzania. I. Impact of maternal syphilis on
outcome of pregnancy. *J. Infect. Dis.* 186(7), 940–947 (2002).

24 Gravett MG, Nelson HP, DeRouen T, Critchlow C, Eschenbach DA and Holmes KK. Independent associations of bacterial vaginosis and Chlamydia trachomatis infection with adverse pregnancy outcome. *JAMA* 256(14), 1899–1903 (1986).

25 McGregor JA, French JJ, Parker R et al. Prevention of premature birth by screening and treatment or common genital tract infections: results of a prospective controlled evaluation. *Am. J. Obstet. Gynecol.* 173(1), 157–167 (1995).

26 Blas MM, Canchihuaman FA, Alva IE, Hawes SE. Pregnancy outcomes in women infected with Chlamydia trachomatis: A population-based cohort study in Washington State. *Sex. Transm. Infect.* 83(4), 314–318 (2007).

27 Elliott B, Brunham RC, Laga M et al. Maternal gonococcal infection as a preventable risk factor for low birth weight. *J. Infect. Dis.* 161(3), 531–536 (1990).

28 Cotch MF, Pastorek JG 2nd, Nagent RP et al. Trichomonas vaginalis associated with low birth weight and preterm delivery. The vaginal infections and prematurity study group. *Sex. Transm. Dis.* 24(6), 353–360 (1997).

29 Svare JA, Schmidt H, Hansen BB, Lose G. Bacterial vaginosis in a cohort of Danish pregnant women: prevalence and relationship with preterm delivery, low birthweight and perinatal infections. *B/JOG* 113(12), 1419–1425 (2006).

30 Odendaal HJ, Schoeman J, Grove D et al. The association between Chlamydia trachomatis genital infection and spontaneous preterm labour. *S. Afr. J. Obstet. Gynaecol.* 12(3), 146–149 (2006).

31 Watson-Jones D, Weiss HA, Changalucha JM et al. Adverse birth outcomes in United Republic of Tanzania–impact and prevention of maternal risk factors. *Bull. World Health Organ.* 85(1), 9–18 (2007).

32 Rours GI, Dujits L, Moll HA et al. Chlamydia trachomatis infection during pregnancy associated with preterm delivery: a population-based prospective cohort study. *Eur. J. Epidemiol.* 26(6), 493–502 (2011).

33 Johnson HL, Ghanem KG, Zenilman JM, Erbelding EJ. Sexually transmitted infections and adverse pregnancy outcomes among women attending inner city public sexually transmitted diseases clinics. *Sex. Transm. Dis.* 38(3), 167–171 (2011).

34 Donders GG, Desmyter J, De Wet DH, Van Asche FA. The association of gonorrhoea and syphilis with premature birth and low birthweight. *Genitourin. Med.* 69(2), 98–101 (1993).

35 Sutton MY, Sternberg M, Nsami M, Behets F, Nelson AM, St Louis ME. Trichomoniasis in pregnant human immunodeficiency virus-infected and human immunodeficiency virus-uninfected congolese women: prevalence, risk factors, and association with low birth weight. *Am J Obstet Gynecol.* 181(3), 656-662 (1999).

36 Organization WH. Guidelines for the Management of Sexually Transmitted Infections. Switzerland (2003).

37 Hook EW 3rd, Stephens J, Ennis DM. Azithromycin compared with penicillin G benzathine for treatment of incubating syphilis. *Ann. Intern. Med.* 136(6), 434–437 (1999).

38 Klausner JD, Kohn RP, Kent CK. Azithromycin versus penicillin for early syphilis. *N. Engl. J. Med.* 354(2), 203–205 (2006).

39 Hook EW 3rd, Martin DH, Stephens J, Smith BS and Smith K. A randomized, comparative pilot study of azithromycin versus benzathine penicillin G for treatment of early syphilis. *Sex. Transm. Dis.* 29(8), 486–490 (2002).

40 Kiddugavu MG, Kiwanuka N, Waver MJ et al. Effectiveness of syphilis treatment using azithromycin and/or benzathine penicillin in Rakati, Uganda. *Sex. Transm. Dis.* 32(1), 1–6 (2005).

41 Riedner G, Rusioka M, Todd J et al. Single-dose azithromycin versus penicillin G benzathine for the treatment of early syphilis. *N. Engl. J. Med.* 355(12), 1236–1244 (2005).

42 Hook EW 3rd, Behets F, Van Damme K et al. A phase III equivalence trial of azithromycin versus benzathine penicillin for treatment of early syphilis. *J. Infect. Dis.* 201(11), 1729–1735 (2010).

43 Mitchell SJ, Engelman J, Kent CK, Lukehart SA, Godornes C, Klausner JD. Azithromycin-resistant syphilis infection: San Francisco, California, 2000–2004. *Clin. Infect. Dis.* 42(3), 337–345 (2006).

44 Lukehart SA, Godornes C, Molini BJ et al. Macrolide resistance in Treponema pallidum in the United States and Ireland. *N. Engl. J. Med.* 351(2), 154–158 (2004).

45 Marra CM, Colina AP, Godornes C et al. Antibiotic selection may contribute to increases in macrolide-resistant Treponema pallidum. *J. Infect. Dis.* 194(12), 1771–1773 (2006).

46 Grimes M, Sahi SK, Godornes BC et al. Two mutations associated with macrolide resistance in Treponema pallidum: increasing prevalence and correlation with molecular strain type in Seattle, Washington. *Sex. Transm. Dis.* 39(12), 954–958 (2012).

47 Chen XS, Yin YP, Wei WH et al. High prevalence of azithromycin resistance to Treponema pallidum in geographically different areas in China. *Clin. Microbiol. Infect.* 8(10), 1469–0691 (2012).

48 Wu H, Chang SY, Lee NY et al. Evaluation of macrolide resistance and enhanced molecular typing of Treponema pallidum in patients with syphilis in Taiwan: a prospective multicenter study. *J. Clin. Microbiol.* 50(7), 2299–2304 (2012).

49 Van Damme K, Behets F, Ravelomanana N et al. Evaluation of azithromycin resistance in Treponema pallidum specimens from Madagascar. *Sex. Transm. Dis.* 36(12), 775–776 (2009).

50 World Health Organization. Sexually transmitted and other reproductive tract infections: Guide to essential practice. Department of Reproductive Health and Research, World Health Organization, Geneva (2005).

51 Odugbemi T, Oywole F, Isichei CS, Onwukeme KF and Adeyemi-Duro FO. Single oral dose of azithromycin for therapy of susceptible sexually transmitted diseases: a multicenter open evaluation. *West Afr. J. Med.* 12(3), 136–140 (1993).

52 Waugh MA. Open study of the safety and efficacy of a single oral dose of azithromycin for the treatment of uncomplicated gonorrhoea in men and women. *J. Antimicrob. Chemother.* 31(Suppl. E), 193–198 (1993).

53 Swanston WH, Prabhakar P, Barrow L, Mahabir BS, Furlonge C. Single dose (direct observed) azithromycin therapy for Neisseria gonorrhoeae and Chlamydia trachomatis in STD clinic attenders with genital discharge in Trinidad and Tobago. *West Indian Med. J.* 50(3), 198–202 (2001).

54 Lassus A. Comparative studies of azithromycin in skin and soft-tissue infections and sexually transmitted infections by Neisseria and Chlamydia species. *J. Antimicrob. Chemother.* 25(Suppl. A), 115–121 (1990).

55 Steingrimsson O, Olafsson JH, Thorarinson H, Ryan RW, Johnson RB and Tilton RC. Azithromycin in the
treatment of sexually transmitted disease. J. Antimicrob. Chemother. 25(Suppl. A), 109–114 (1990).

56 Steingrimsson O, Olafsson JH, Thorarinsson H, Ryan RW, Johnson RB and Tilton RC. Single dose azithromycin treatment of gonorrhoea and infections caused by C. trachomatis and U. urealyticum in men. Sex. Transm. Dis. 21(1), 43–46 (1994).

57 Gruber F, Grubisic-Greblo H, Jonjic A et al. Treatment of gonococcal and chlamydial urethritis with azithromycin or doxycycline. Chron. Derm. (Roma) 5, 213–218 (1995).

58 Gruber F, Brajac I, Jonjic A, Grubisic-Greblo H, Lenkovic M, Stasic A. Comparative trial of azithromycin and ciprofloxacin in the treatment of gonorrhoea. J. Chemother. 9(4), 263–266 (1997).

59 Rustomjee R, Kharsany AB, Connolly CA, Gruber F, Brajac I, Jonjic A, Gruber F, Grubisic-Greblo H, Jonjic A et al. Correlation between in vitro susceptibility and treatment outcome with azithromycin in Neisseria gonorrhoeae. Sex. Transm. Infect. 86(6), 427–432 (2010).

60 Centers for Disease Control and Prevention. Neisseria gonorrhoeae with reduced susceptibility to azithromycin — San Diego County, California, 2009. MMWR Morb. Mortal. Wkly Rep. 60(18), 579–581 (2011).

61 Starsini S, Galzara P, Carvallo ME et al. Retrospective analysis of antimicrobial susceptibility trends (2000-2009) in Neisseria gonorrhoeae isolates from countries in Latin America and the Caribbean shows evolving resistance to ciprofloxacin, azithromycin and decreased susceptibility to ceftriaxone. Sex. Transm. Dis. 39(10), 813–821 (2012).

62 Khaki P, Bhalla P, Sharma P, Chawla R, Bhal A. Epidemilogical analysis of Neisseria gonorrhoeae isolates by auxotyping and serotyping. Indian J. Med. Microbiol. 25(3), 225–229 (2007).

63 World Health Organization, London School of Hygiene and Tropical Medicine and International Trachoma Initiative. Trachoma control: A guide for programme managers. World Health Organization, Switzerland (2006).

64 Handsfield HH, Dalu ZA, Martin DH, Douglas JM Jr, McCarty JM, Schlossberg D. Multicenter trial of single-dose azithromycin vs. cefixime in the treatment of uncomplicated gonorrhea. Azithromycin Gonorrhea Study Group. Sex. Transm. Infect. 86(6), 422–426 (2010).

65 Kacmar J, Cheh E, Montagno A and Peipert JF. A randomized trial of azithromycin versus amoxicillin for the treatment of Chlamydia trachomatis in pregnancy. Infect. Dis. Obstet. Gynecol. 9(4), 197–202 (2001).

66 Jacobson GF, Autry AM, Kirby RS, Liverman EM, Motley RU. A randomized controlled trial comparing amoxicillin and azithromycin for the treatment of Chlamydia trachomatis in pregnancy. Am. J. Obstet. Gynecol. 184(7), 1352–1354, discussion 1354–1356 (2001).

67 Wehbe HA, Ruggeriero RM, Shahem S, Lopez G, Ali Y. Single-dose azithromycin for Chlamydia in pregnant women. J. Reprod. Med. 43(6), 509–514 (1998).

68 Adair CD, Gunter M, Stovall TG, McElroy G, Veile JC, Ernest JM. Chlamydia in pregnancy: a randomized trial of azithromycin and erythromycin. Obstet. Gynecol. 91(2), 165–168 (1998).

69 Chino, Hack, Newport, Ngulube & Chandramohan. Expert Rev. Anti Infect. Ther.
multiple antibiotics. J. Infect. Dis. 162(6), 1309–1315 (1990).

88 Dreses-Werringloer U, Padubrin I, Zeidler H, Kohler L. Effects of azithromycin and rifampin on Chlamydia trachomatis infection in vitro. Antimicrob. Agents Chemother. 45(11), 3001–3008 (2001).

89 Donati M, Rodriguez Fermin M, Olmo A, D’Apolo L, Cevenini R. Comparative in-vitro activity of moxifloxacin, minocycline and azithromycin against Chlamydia spp. J. Antimicrob. Chemother. 43(6), 825–827 (1999).

90 Miyurina OY, Chipitsyna EV, Finashutina YP et al. Mutations in a 23S rRNA gene of Chlamydia trachomatis associated with resistance to macrolides. Antimicrob. Agents Chemother. 48(4), 1347–1349 (2004).

91 Rice RJ, Bhullar V, Mitchell SH, Bullard J, Kaul R, Kimani J, Nagelkerke NJ et al. Monthly antibiotic chemoprophylaxis and HIV-1 infection in Kenyan sex workers: a randomized controlled trial. J. Acquir. Immune Defic. Syndr. 29(1), 2555–2562 (2004).

92 Bhengraj AR, Vardhan H, Srivastava P, Salhan S, Mittal A. Decreased susceptibility to azithromycin and doxycycline in clinical isolates of Chlamydia trachomatis obtained from recurrently infected female patients in India. Chemotherapy 56(5), 371–377 (2010).

93 Kaul R, Kimani J, Nagelkerke NJ et al. Monthly antibiotic chemoprophylaxis and incidence of sexually transmitted infections and HIV-1 infection in Kenyan sex workers: a randomized controlled trial. JAMA 291(21), 2555–2562 (2004).

94 Luntamo M, Kulmala T, Mbewe B, Cheung YB, Maleta K, Ashorn P. Effect of repeated treatment of pregnant women with sulfadoxine-pyrimethamine and azithromycin on preterm delivery in Malawi: a randomized controlled trial. Am. J. Trop. Med. Hyg. 83(6), 1212–1220 (2010).

95 Wawer MJ, Sewankambo NK, Serwadda D et al. Control of sexually transmitted diseases for AIDS prevention in Uganda: a randomised community trial. Rakai Project Study Group. Lancet 353(9152), 525–535 (1999).

96 Cowan FM, Hargrove JW, Langhaug LF et al. The appropriateness of core group interventions using presumptive periodic treatment among rural Zimbabwean women who exchange sex for gifts or money. J. Acquir. Immune Defic. Syndr. 38(2), 202–207 (2005).

97 Hay PE. Therapy of bacterial vaginosis. J. Antimicrob. Chemother. 41(1), 6–9 (1998).

98 Eschenbach DA. Bacterial vaginosis: resistance, recurrence, and/or reinfection? Clin. Infect. Dis. 44(2), 220–221 (2007).

99 Scheweke JR and Desmond RA. A randomized trial of the duration of therapy with metronidazole plus or minus azithromycin for treatment of symptomatic bacterial vaginosis. Clin. Infect. Dis. 44(2), 213–219 (2007).

100 Cohen MS, Hoffman IF, Royce RA et al. Reduction of concentration of HIV-1 in semen after treatment of urethritis: implications for prevention of sexual transmission of HIV-1. AIDS Res. Hum. Retroviruses 15(1), 105–110 (2001).

101 McClelland RS, Wang CC, Mandalia K et al. Treatment of cervicitis is associated with decreased cervical shedding of HIV-1. AIDS (Lond., Engl.) 15(1), 105–110 (2001).

102 Wang CC, McClelland RS, Reilly M et al. The effect of treatment of vaginal infections on shedding of human immunodeficiency virus type 1. J. Infect. Dis. 183(7), 1017–1022 (2001).

103 Price MA, Zimba D, Hoffman IF et al. Addition of treatment for trichomoniass to syndromic management of urethritis in Malawi: a randomized clinical trial. Sex. Transm. Dis. 30(6), 516–522 (2003).

104 Gray RH, Wabwire-Mangen F, Kiogoi G et al. Randomized trial of presumptive sexually transmitted disease therapy during pregnancy in Rakai, Uganda. Am. J. Obstet. Gynecol. 185(5), 1209–1217 (2001).

105 Aire F, Soares RP and Bernardo WM. Efficacy of azithromycin on the treatment of syphilis. Rev. Assoc. Med. Bras. 56(5), 496 (2010).

106 Zhou P, Qian Y, Xu J, Gu Z and Liao K. The effect of treatment of vaginal infections on occurrence of congenital syphilis after maternal treatment with azithromycin during pregnancy. Sex. Transm. Dis. 34(7), 472–474 (2007).

107 Luntamo M, Kulmala T, Mbewe B, Cheung YB, Maleta K, Ashorn P. Effect of Repeated Treatment of Pregnant Women with Sulfadoxine-Pyrimethamine and Azithromycin on Preterm Delivery in Malawi: A Randomized Controlled Trial. Am. J. Trop. Med. Hyg. 83, 1212–1220 (2010).

108 Kiogoi GG, Brahmbhatt H, Wabwire-Mangen F et al. Treatment of Trichomonas in pregnancy and adverse outcomes of pregnancy: a subanalysis of a randomized trial in Rakai, Uganda. Am. J. Obstet. Gynecol. 189(5), 1398–1400 (2003).

109 Klubanoff MA, Carey JC, Hauth JC et al. Failure of metronidazole to prevent preterm delivery among pregnant women with asymptomatic Trichomonas vaginalis infection. N. Engl. J. Med. 345(7), 487–493 (2001).

110 Stringer E, Read JS, Hoffman I, Valentine M, Aboud S, Goldenberg RL. Treatment of trichomoniass in pregnancy in sub-Saharan Africa does not appear to be associated with low birth weight or preterm birth. Samj South Afr. Med. J. 100(1), 58–64 (2010).

111 Brocklehurst P, Gordon A, Healey E, Milan SJ. Antibiotics for treating bacterial vaginosis in pregnancy. Cochrane Database Syst. Rev. 1, CD000262 (2013).

112 Nugent RP, Krohn MA, Hillier SL. Reliability of diagnosing bacterial vaginosis is improved by a standardized method of gram stain interpretation. J. Clin. Microbiol. 29(2), 297–301 (1991).

113 World Health Organization and Special Programme for Research and Training in Tropical Diseases. The use of rapid syphilis tests. WHO, Geneva (2003).

114 World Health Organization. Global Prevalence and Incidence of Selected Curable Sexually Transmitted Infections: Overview and Estimates. World Health Organization, Geneva (2001).

115 Mayaud P, ka-Gina G, Cornelissen J et al. Validation of a WHO algorithm with risk assessment for the clinical management of vaginal discharge in Mwanza, Tanzania. Sex. Transm. Infect. 74(Suppl. 74), S77–S84 (1998).

116 Vuytske B, Laga M, Alary M et al. Clinical algorithms for the screening of women for gonococcal and chlamydial infection: evaluation of pregnant women and prostitutes in Zaire. Clin. Infect. Dis. 17(1), 82–88 (1993).

117 Costello Daly C, Wangel AM, Hoffman IF et al. Validation of the WHO diagnostic algorithm and development of an alternative scoring system for the management of women presenting with vaginal discharge in Malawi. Sex. Transm. Infect. 74(Suppl. 74), S50–S58 (1998).

118 Tann CJ, Mpairwe H, Morison L et al. Lack of effectiveness of syndromic management in targeting vaginal infections in pregnancy in Entebbe, Uganda. Sex. Transm. Infect. 82(4), 285–289 (2006).
Minkoff H, Grunebaum AN, Schwarz RH et al. Risk factors for prematurity and premature rupture of membranes: a prospective study of the vaginal flora in pregnancy. Am. J. Obstet. Gynecol. 150(8), 965–972 (1984).

119 Chico RM, Ariri C, Cano J, Chandramohan D, Greenwood B. Malaria transmission intensity and the protective effect of intermittent preventive therapy using sulphadoxine-pyrimethamine. Evidence Review Group of the World Health Organization (2013).

120 Temmerman M, Ngaji E, Nagellerke N, Ndinya-Achola J, Plummer FA, Meheus A. Mass antimicrobial treatment in pregnancy. A randomized, placebo-controlled trial in a population with high rates of sexually transmitted diseases. J. Reprod. Med. 40(3), 176–180 (1995).

121 Elliott B, Brunham RC, Laguna M et al. Maternal gonococcal infection as a preventable risk factor for low birth weight. J. Infect. Dis. 161(3), 531–536 (1990).

122 Johnson HL, Ghanem KG, Zenilman JM, Erbelding EJ. Sexually transmitted infections and adverse pregnancy outcomes among women attending inner city public sexually transmitted diseases clinics. Sex. Transm. Dis. 38(3), 167–171 (2011).

123 Silveira MF, Ghanem KG, Erbelding EJ et al. Chlamydia trachomatis infection during pregnancy and the risk of preterm birth: A case-control study. Int. J. STD AIDS 20(7), 465–469 (2009).

124 Blas MM, Canchihuaman FA, Alva IE, Hawes SE. Pregnancy outcomes in women infected with Chlamydia trachomatis: A population-based cohort study in Washington State. Sex. Transm. Infect. 83(4), 314–318 (2007).

125 Kovacs L, Nagy E, Berbik I, Meszaros G, Blas MM, Canchihuaman FA, Alva IE, Johnson HL, Ghanem KG, Zenilman JM, et al. Association of Chlamydia trachomatis and Cervicitis and Adverse Pregnancy Outcome. Int. J. Gynaecol. Obstet. 83(4), 314–318 (2007).

126 Investigators of the Johns Hopkins Study of Prematurity and Preterm Delivery of a Low-Birth-Weight Infant. The Vaginal Infections and Prematurity Study Group. N. Engl. J. Med. 333(26), 1737–1742 (1995).

127 Kiddugavu MG, Kiwanuka N, Wawer MJ et al. Effectiveness of syphilis treatment using azithromycin and/or benzathine penicillin in Rakai, Uganda. Sex. Transm. Dis. 32(1), 1–6 (2005).

128 Hook EW 3rd, Stephens J, Ennis DM. Azithromycin compared with penicillin G benzathine for treatment of incubating syphilis. Ann. Int. Med. 131(6), 434–437 (1999).

129 Riedner G, Ruszkoza M, Todd J et al. Single-dose azithromycin versus penicillin G benzathine for the treatment of early syphilis. N. Engl. J. Med. 353(12), 1236–1244 (2005).

130 Chen CY, Chi KH, Pillay A, Nachamkin E, Su JR, Ballard RC. Detection of the A2058G and A2059G 23S rRNA gene point mutations associated with azithromycin resistance in Treponema pallidum by use of a TaqMan real-time multiplex PCR assay. J. Clin. Microbiol. 51(3), 908–913 (2013).

131 Muller EE, Paz-Bailey G and Lewis DA. Macrolide resistance testing and molecular subtyping of Treponema pallidum strains from southern Africa. Sex. Transm. Infect. 88(6), 470–474 (2012).

132 Matejkova P, Flasarova M, Zakuucka H et al. Macrolide treatment failure in a case of secondary syphilis: a novel A2059G mutation in the 23S rRNA gene of Treponema pallidum subspp. pallidum. J. Med. Microbiol. 58(Pt 6), 832–836 (2009).

133 Martin IE, Gu W, Yang Y, Tsang RS. Macrolide resistance and molecular types of Treponema pallidum causing primary syphilis in Shanghai, China. Clin. Infect. Dis. 49(4), 515–521 (2009).

134 Deak J, Nyari T. The frequency and the prevalence of macrolide resistant Treponema pallidum strains in a London centre. Sex. Transm. Dis. 32(1), 47–50 (1995).

135 The A2058G Prevalence Workgroup. Prevalence of the 23S rRNA A2058G point mutation and molecular subtypes in Treponema pallidum from southern Africa. Sex. Transm. Infect. 62(1), 47–50 (1998).

136 Lahra MM. Annual report of the Australian Gonococcal Surveillance Programme, 2011. Commun. Dis. Intell. Q Rep. 36(2), E166–E173. (2012).

137 Martin IE, Tsang RS, Sutherland K et al. Molecular typing of Treponema pallidum strains in western Canada: predominance of 14d subtypes. Sex. Transm. Dis. 37(9), 544–548 (2010).

138 Kham H, Jones HD. Treponema pallidum macrodilute resistance in BC. CMAJ 174(3), 349 (2006).

139 Khaki P, Bhalla P, Sharma A, Kumar V. Correlation between In vitro susceptibility and treatment outcome with azithromycin in gonorrhea: a prospective study. Indian J. Med. Microbiol. 25(4), 354–357 (2007).

140 Olsen B, Pham TL, Gojparian D, Johansson E, Tran HK, Unemo M. Antimicrobial susceptibility and genetic characteristics of Neisseria gonorrhoeae isolates from Vietnam. 2011. BMC Infect. Dis. 13, 40 (2013).

141 Lefebvre B, Bourgault AM. Targeted mass treatment for syphilis. Ann. Int. Med. 32(1), 1–6 (2005).

142 Lefebvre B, Bourgault AM. Targeted mass treatment for syphilis. Ann. Int. Med. 32(1), 1–6 (2005).

143 Morshed MG and Jones HD. Treponema pallidum macrodilute resistance in BC. CMAJ 174(3), 349 (2006).

144 Lo JY, Ho KM, Lo AC. Surveillance of gonococcal antimicrobial susceptibility resulting in early detection of emerging resistance. J. Antimicrob. Chemother. 67(6), 1422–1426 (2012).

145 Lefebvre B, Bourgault AM. P1-44 Antimicrobial susceptibility profile of Neisseria gonorrhoeae isolates in the Province of Quebec - 2010. Sex. Transm. Infect. 87 (Suppl. 87), A117 (2011).

146 Hottes TS, Lester RT, Hoang LM et al. Cephalosporin and azithromycin susceptibility in Neisseria gonorrhoeae isolates by site of infection, British Columbia, 2006 to 2011. Sex. Transm. Infect. 40(1), 46–51 (2013).

147 Chinese Prevention and Control of STDs. J. Infect. Chemother. 19(1), 50–56 (2013).

148 Herchline TE, Inkrott BP. Resistance trends in Neisseria gonorrhoeae in southwestern United States: 1996 to 2011. J. Infect. Dis. 198(9), 1357–1364 (2008).

149 Chico RM, Ariri C, Cano J, Chandramohan D, Greenwood B. Malaria transmission intensity and the protective effect of intermittent preventive therapy using sulphadoxine-pyrimethamine. Evidence Review Group of the World Health Organization (2013).

150 Vyas S, Srinivasan R, Narenda S et al. Maternal gonococcal infection as a preventable risk factor for low birth weight. J. Infect. Dis. 161(3), 531–536 (1990).

151 Chico RM, Ariri C, Cano J, Chandramohan D, Greenwood B. Malaria transmission intensity and the protective effect of intermittent preventive therapy using sulphadoxine-pyrimethamine. Evidence Review Group of the World Health Organization (2013).
The pathway to better birth outcomes?

Olsen B, Mansson F, Camara C et al. Phenotypic and genetic characterisation of bacterial sexually transmitted infections in Bissau, Guinea-Bissau, West Africa: a prospective cohort study. BMJ Open. 2(2), e006362 (2012).

Tanaka M, Koga Y, Nakayama H et al. Antibiotic-resistant phenotypes and genotypes of Neisseria gonorrhoeae isolates in Japan: identification of strain clusters with multidrug-resistant phenotypes. Sex. Transm. Dis. 38(9), 871–875 (2011).

Bala M. Characterization of profile of multidrug-resistant Neisseria gonorrhoeae using old and new definitions in India over a decade: 2000–2009. Sex. Transm. Dis. 38(11), 1056–1058 (2011).

Chisholm SA, Neal TJ, Alawartegama AB, Birley HD, Howe RA, Ison CA. Emergence of high-level azithromycin resistance in Neisseria gonorrhoeae in England and Wales. J. Antimicrob. Chemother. 64(2), 353–358 (2009).

Khaki P, Bhatta P, Sharma P, Chawla R, Bhatta K. Epidemiological analysis of Neisseria gonorrhoeae isolates by antimicrobial susceptibility testing, auxotyping and serotyping. Indian J. Med. Microbiol. 25–229 (2007).

Enders M, Turnwald-Maschler A, Regnath T. Antimicrobial resistance of Neisseria gonorrhoeae isolates from the Stuttgart and Heidelberg areas of southern Germany. Eur. J. Clin. Microbiol. Infect. Dis. 23(5), 318–322 (2006).

Vorobjeva V, Firsova N, Ababkova T et al. Antibiotic susceptibility of Neisseria gonorrhoeae isolates in Arkhangelsk, Russia. Sex. Transm. Infect. 83(2), 133–135 (2007).

Sutrisna A, Soebjakto O, Wignall FS et al. Increasing resistance to ciprofloxacin and other antibiotics in Neisseria gonorrhoeae from East Java and Papua, Indonesia, in 2004 - implications for treatment. J. Clin. Pathol. 60(1), 90–91 (2007).

Martin IM, Hoffmann S, Ison CA. European Surveillance of Sexually Transmitted Infections (ESSTI): the first combined antimicrobial susceptibility data for Neisseria gonorrhoeae in Western Europe. J. Antimicrob. Chemother. 58(3), 587–593 (2006).

Chaudhary C, Hasan Chaudhary FA, Pandy AR et al. A pilot study on antimicrobial susceptibility of Neisseria gonorrhoeae isolates from Nepal. Sex. Transm. Dis. 32(10), 641–643 (2005).

Chen PL, Hsieh YH, Lee HC et al. Suboptimal therapy and clinical management of gonorrhoea in an area with high-level antimicrobial resistance. Int. J. STD AIDS 20(4), 225–228 (2009).

Hsueh PR, Tseng SP, Teng LJ, Ho SW. High prevalence of ciprofloxacin-resistant Neisseria gonorrhoeae in Northern Taiwan. Clin. Infect. Dis. 40(1), 188–192 (2005).

Aydin D, Kucukbasmaci O, Goulu N, Akas Z. Susceptibilities of Neisseria gonorrhoeae and Ureaplasma urealyticum isolates from male patients with urethritis to several antibiotics including telithromycin. Clin. Infect. Dis. 40(11), 1608–1616 (2005).

Moodley P, Pillay C, Goga R, Kharsany AB, Sturm AW. Evolution in the trends of antimicrobial resistance in Neisseria gonorrhoeae isolated in Durban over a 5 year period: impact of the introduction of syndromic management. J. Antimicrob. Chemother. 48(6), 853–859 (2001).

Kobyashi I, Kanayama A, Saika T et al. Tendency toward increase in the frequency of isolation of beta-lactamase-nonproducing Neisseria gonorrhoeae exhibiting penicillin resistance, and recent emergence of multidrug-resistant isolates in Japan. Pediatr. Infect. 112(1 Pt 1), 87–95 (2003).

Llanes R, Sosa J, Guzman D et al. Antimicrobial susceptibility of Neisseria gonorrhoeae in Cuba (1995-1999): implications for treatment of gonorrhoea. Sex. Transm. Dis. 30(1), 25–29 (2003).

Sosa J, Ramirez-Arcos S, Ruben M et al. High percentages of resistance to tetracycline and penicillin and reduced susceptibility to azithromycin characterize the majority of strain types of Neisseria gonorrhoeae isolates in Cuba, 1995-1998. Sex. Transm. Dis. 30(5), 443–448 (2003).

Dillon JA, Rubabaza JP, Benzaken AS et al. Reduced susceptibility to azithromycin and high percentages of penicillin and tetracycline resistance in Neisseria gonorrhoeae isolates from Manaus, Brazil, 1998. Sex. Transm. Dis. 28(9), 521–526 (2001).

Zarantonelli L, Borthagaray G, Lee EH, Shafer WM. Decreased azithromycin susceptibility of Neisseria gonorrhoeae due to mtrR mutations. J. Antimicrob. Chemother. 44(3), 411–414 (1999).

Young H, Moys A, McMillan A. Azithromycin and erythromycin resistant Neisseria gonorrhoeae following treatment with azithromycin. J. Antimicrob. Chemother. 39(5), 623–630. (1997).

Mehaffey PC, Putnam SD, Barrett MS, Jones RN. Evaluation of in vitro spectra of activity of azithromycin, clarithromycin, and erythromycin tested against strains of Neisseria gonorrhoeae by reference agar dilution, disk diffusion, and Etest methods. Clin. Infect. Dis. 22(2), 233–239. (1996).

Dillon JA, Li H, Sealy J, Ruben M, Prabhakar P. Antimicrobial susceptibility of Neisseria gonorrhoeae isolates from three Caribbean countries: Trinidad, Guyana, and St. Vincent. Sex. Transm. Dis. 28(9), 508–514 (2001).

van Rijssort-Vos JH, Stolz E, Verbrugh HA, Kluymans JA. In-vitro activity of a new quinolone (CP-99,219) compared with ciprofloxacin, pefloxacin, azithromycin and penicillin against Neisseria gonorrhoeae. J. Antimicrob. Chemother. 36(1), 215–218 (1995).

Ison CA, Roos NS, Dangor Y, Radebe F, Ballard R. Antimicrobial susceptibilities and serotyping of Neisseria gonorrhoeae in southern Africa: influence of geographical source of infection. Epidemiol. Infect. 110(2), 297–305 (1993).

Starssino S, Stefaneli P. Azithromycin-resistant Neisseria gonorrhoeae strains recently isolated in Italy. J. Antimicrob. Chemother. 63(6), 1200–1204 (2009).

Donegan EA, Wirawan DN, Mulawvan P et al. Fluoroquinolone-resistant Neisseria gonorrhoeae in Bali, Indonesia: 2004. Sex. Transm. Dis. 33(10), 625–629 (2006).

Morris SR, Moore DF, Hannah PB et al. Strain typing and antimicrobial resistance of fluoroquinolone-resistant Neisseria gonorrhoeae causing a California infection outbreak. J. Clin. Microbiol. 47(9), 2944–2949 (2009).

Ieven M, Van Looveren M, Suidgouda S et al. Antimicrobial susceptibilities of Neisseria gonorrhoeae strains isolated in Java, Indonesia. Sex. Transm. Dis. 30(1), 25–29 (2003).

Centers for Disease C and Prevention. Fluoroquinolone-resistance in Neisseria gonorrhoeae, Hawaii, 1999, and decreased susceptibility to azithromycin in N. gonorrhoeae, Missouri, 1999. MMWR Morb. Mortal. Wkly Rep. 49(37), 833–837 (2000).

Bruck PE, Robertson C, Allan PS. Management of Neisseria gonorrhoeae infection over 12 months in a genitourinary medicine setting against British Association for Sexual Health and HIV audible outcome measures. Int. J. STD AIDS 23(3), e30–e32 (2012).
Agacfidan A, Moncada J, Schachter J. In Azithromycin in a country with high azithromycin consumption rate. Folia Microbiol 53(7), 451–453 (2010).

McLean CA, Wang SA, Hoff GL. In vitro activity of azithromycin and clarithromycin and lomefloxacin against Chlamydia trachomatis. J. Antimicrob. Chemother. 54(12), 621–625 (2009).

In vitro activity of azithromycin, clarithromycin and dirithromycin against Chlamydia trachomatis. J. Antimicrob. Chemother. 21(2), 273–279 (1988).

Chico RM, Chandramohan D. Azithromycin plus chloroquine: combination therapy for protection against malaria and sexually transmitted infections in pregnancy. Expert Opin. Drug Metab. Toxicol. 7(9), 1153–1167 (2011).

Labbe AC, Pepin J, Khonde N et al. In vitro susceptibility of anaerobic bacteria in Bulgaria. Anaerobe 18(1), 29–32 (2012).

Review of the in-vitro activity of roxithromycin against drug-resistant Chlamydia trachomatis associated with clinical treatment failure. J. Infect. Dis. 181(4), 1421–1427 (2000).

van den Broek NR, White SA, Goodall M et al. The APPLe Study: A Randomized, Community-Based, Placebo-Controlled Trial of Azithromycin for the Prevention of Preterm Birth, with Meta-Analysis. PLoS Med. 6(12), e1000191 (2009).

Luntamo M, Kulmala T, Cheung YB et al. In vitro activity of azithromycin and erythromycin against Gram-positive cocci, Haemophilus influenzae and anaerobes. J. Antimicrob. Chemother. 25(Suppl. A), 19–24 (1990).

Chang SC, Chen YC, Luh KT, Hsieh WC. Macrolides resistance of common bacteria isolated from Taiwan. Diag. Microbiol. Infect. Dis. 23(4), 147–154 (1995).

Ednie LM, Spangler SK, Jacobs MR, Appelbaum PC. Antianaerobic activity of the ketolide RU 64004 compared to activities of four macrolides, five beta-lactams, clindamycin, and metronidazole. Antimicrob. Agents Chemother. 41(5), 1037–1041 (1997).

Mikamo H, Yin XH, Ninomiya M, Tamaya T. In vitro and in vivo antibacterial activities of telithromycin. Chemotherapy 49(1–2), 62–65 (2003).

Marina M, Ivanova M, Kantardiev T. Antimicrobial susceptibility of anaerobic bacteria in Bulgaria. Anaerobe 15(4), 127–132 (2009).

Chen SC, Gottlieb T, Palmer JM, Morris G, Gilbert GL. Antimicrobial susceptibility of anaerobic bacteria in Australia. J. Antimicrob. Chemother. 30(6), 811–820 (1992).

Wexler HM, Molitoris E, Molitoris D, Chen SC, Gottlieb T, Palmer JM, Morris G, Gilbert GL. Antimicrobial susceptibility of anaerobic bacteria in Australia. J. Antimicrob. Chemother. 30(6), 811–820 (1992).

Spiegel CA. Susceptibility of Mobiluncus species to 23 antimicrobial agents and 15 other compounds. Antimicrob. Agents Chemother. 31(2), 249–252 (1987).

Website

301 ReMeD (Network for Medicine and Development). Essential Medicines: Madagascar. World Health Organization www.who.int/selection_medicines/country_lists/mdg/en/.