Hidden diversity under morphology–based identifications of widespread invasive species: the case of the 'well–known' hydromedusa Craspedacusta sowerbii Lankester 1880

J. A. Oualid, B. Iazza, N. M. Tamsouri, F. El Aamri, A. Moukrim, P. J. López–González

Oualid, J. A., Iazza, B., Tamsouri, N. M., El Aamri, F., Moukrim, A., López–González, P. J., 2019. Hidden diversity under morphology–based identifications of widespread invasive species: the case of the 'well–known' hydromedusa Craspedacusta sowerbii Lankester 1880. Animal Biodiversity and Conservation, 42.2: 301–316, Doi: https://doi.org/10.32800/abc.2019.42.0301

Abstract
Hidden diversity under morphology–based identifications of widespread invasive species: the case of the 'well–known' hydromedusa Craspedacusta sowerbii Lankester 1880. A relatively scarce number of morphological features available for delimiting closely related species and an increasingly worrisome scenario on Global Climate Change causing the rapid dispersion of invasive alien species can lead to the rapid spread of reports of a given species around the world. Craspedacusta sowerbii Lankester, 1880 is considered the most widespread freshwater jellyfish species and has been reported in numerous locations on all continents except Antarctica. Recently, a few medusae attributed to C. sowerbii were collected from a water reservoir (Bin El Ouidan) in Morocco, this being the first confirmed record of the species from North Africa. The morphology of these newly collected specimens agrees well with previous descriptions, but mitochondrial (Cox1 and 16S) and nuclear ITS (ITS1–5,8S–ITS2) molecular data lead to a discussion of a more complex general view concerning the number of species, synonyms and nomenclatural problems hidden behind the reports of Craspedacusta sowerbii.

Key words: Craspedacusta, Cryptic species, Medusa, Invasive species, NIS, Cox1, 16S, ITS, Morocco

Resumen
La diversidad oculta en las identificaciones basadas en la morfología de especies invasoras de amplia distribución: el caso de la "bien conocida" hidromedusa Craspedacusta sowerbii Lankester 1880. El número relativamente escaso de características morfológicas utilizadas para delimitar especies estrechamente relacionadas y el panorama cada vez más preocupante en el que el cambio climático global provoca la rápida dispersión de especies exóticas invasoras pueden conducir a la difusión precipitada por todo el mundo de informes sobre una especie determinada. Craspedacusta sowerbii Lankester, 1880, que se considera la especie de medusa de agua dulce más extendida, ha sido observada en numerosos lugares en todos los continentes, excepto en la Antártida. Recientemente, se recogieron algunas medusas atribuidas a C. sowerbii en un embalse artificial (Bin El Ouidan) en Marruecos, que representaron el primer registro confirmado de la especie en el norte de África. La morfología de estos especímenes recién recolectados concuerda con las descripciones anteriores, pero los datos moleculares mitocondriales (Cox1 y 16S) y nucleares ITS (ITS1–5,8S–ITS2) suscitan un debate general más complejo con respecto al número de especies, las sinonimias y los problemas nomenclaturales ocultos tras los informes de Craspedacusta sowerbii.

Palabras clave: Craspedacusta, Especies crípticas, Medusa, Invasores, NIS, Cox1, 16S, ITS, Marruecos
Introduction

Among the recommendations suggested by a wide panel of specialists to ensure progress in the management of aquatic NIS (non–indigenous species), the first was the availability of taxonomic expertise (see Ojaveer et al., 2014). Taxonomists produce the basic knowledge for understanding biodiversity (Agríarnsson and Kuntner, 2007; Linse, 2017). The second was the need to use molecular tools, as classical taxonomy often requires additional sources of information for species description and identification (Goldstein and DeSalle, 2011), leading to an integrative taxonomy (DeSalle et al., 2005; Rubinoff et al., 2006a, 2006b; Pires and Marinoni, 2010; Chen et al., 2011).

Despite this, reliable identification of organisms to species level is one of the greatest constraints. The lack of specialists and the inaccuracy of species identifications often result in an erroneous interpretation of the actual biodiversity and inadequate policies, from local to global levels. This is the so–called “taxonomic impediment” (Hogland, 1996; Giangrande, 2003; Dar et al., 2012). Avoiding this problem by limiting OTUs data matrices to higher taxonomic levels or considering functional biodiversity (Cernansky, 2017) is not a viable solution, especially when working on NIS, whose influence at different levels on native ecosystems is well documented (e.g. Bax et al., 2003; Wallentinus and Nyberg, 2007; Walther et al., 2009; Poulin et al., 2011; González–Duarte et al., 2016; among others).

The freshwater genus Craspedacusta includes a still uncertain number of hydromedusan species (Bouillon et al., 2006; Fritz et al., 2009; Jankowski et al., 2008). The most reported species around the world in this genus is Craspedacusta sowerbii Lankester, 1880, which can be found in all continents and subcontinents except Antarctica (Dumont, 1994). This species is native to the Yangtze River basin in China (K ramp, 1961) and is considered a cosmopolitan invasive species. C. sowerbii colonizes all types of freshwater habitats, i.e. streams, freshwater lakes, ponds, reservoirs and rivers (Raposeiro et al., 2011; Karouzas et al., 2015). C. sowerbii was first described from specimens found in a water–lily tank in Regent’s Park, London, England in 1880 (Lankester, 1880a). Later, the species was reported from many different localities: United States (Garman, 1916), Hawaii, South Australia (Thomas, 1950), New Zealand, the Philippines, China, Japan (Acker, 1976), France, Sweden, Portugal (Ferreira, 1985), Canada (McAlpine et al., 2002), Spain (Pérez–Bote et al., 2006; Medina–Gavilán and González–Duarte, 2018), Mexico (Moreno–Leon and Ortega–Rubio, 2009), Brazil (Silva and Roche, 2007), Uruguay (Mañé–Garzón and Carbonell, 1971), India (Riyas and Kumar, 2017), Italy (Schifani et al., 2018), Chile (Fraire–Pacheco et al., 2017; Fuentes et al., 2019), Turkey (Balik et al., 2001; Bekleyen et al., 2011), Israel (Gasith et al., 2011) and Greece (Karouzas et al., 2015). From the African continent, it has been recorded with certainty only from South Africa (Rayner, 1988; Rayner and Appleton, 1989, 1992). The recent record of a Craspedacusta species in Lake Manzala (Delta Nile), reported by Gasith et al. (2011: 147 and SM1), is based on a series of doubtful identifications (initially ascribed to the genus Limnocnida) and comments on a brief mass occurrence of medusae (see Elster et al., 1960; Elster and Vollenweider, 1961; Dumont and Verheye, 1984: 315; Dumont, 1994, 2009: 496 for additional information on that bloom event).

The life cycle of Craspedacusta sowerbii includes both polyp (assuming asexual reproduction) and free–swimming stages (involved in sexual reproduction) (Bekleyen et al., 2011; Gasith et al., 2011). The appearance of the active medusa stage is related to an increase in water temperature (Bekleyen et al., 2011). Occurrences of this pelagic stage are sporadic, lasting only a few weeks, usually in the late summer and autumn (Minchin et al., 2016). The polyp stage is often overlooked because of its small size, having a wide capacity to tolerate different temperature and light conditions (see Payne, 1924; Boulenger and Flower, 1928; Acker, 1976; Acker and Muscat, 1976). The polyp and medusa stages are rarely reported together (see Failla–Siquier et al., 2017). Duggan and Eastwood (2012) established a protocol to find polyp stages that would be usable even in water reservoirs where the medusa stage had not been previously observed. These authors reached the conclusion that C. sowerbii is more common and widespread than is apparent from observations of medusae. Estimating the timing of introduction of this species in a given region is therefore difficult if it is only carried out after jellyfish findings have been recorded.

A few individuals of a hydromedusa species were recently detected in a Moroccan reservoir. These specimens were initially identified (based on morphological characters) as the well–known alien widespread species Craspedacusta sowerbii. This record is the first confirmed finding of this species in North Africa. However, a molecular study of this material and its comparison to previously available information revealed a more complex scenario, with nomenclatural and biogeographic implications. As this hydromedusa species is often reported in lists of alien species, the correct specific identification of the different Craspedacusta lineages becomes an urgent challenge to correctly understand how many invasion events and species could be involved.

The present paper aims to stress the risks linked to the current trend of exponentially increasing numbers of morphology–based reports of invasive species. An integrative view, including both morphology and molecular information, should be applied as a rule for checking the current identity of these ‘well known’ species as there are several examples of cryptic species that are difficult or impossible to delimit due to overlapping morphological characters.

Material and methods

Sample collection

Bin El Ouidan reservoir is located in Azilal province (coordinates: 6º 27’ 50” W; 32º 6’ 24” N), at 810 m a.s.l.
It covers 3,740 ha and has a maximum depth of nearly 100 m. The total volume reaches 1,384 million m3.

In December 2015 we surveyed two sites (fig. 1), and found medusa stages attributable to the genus *Craspedacusta* at site S1 (6° 26’ 13’’ W; 32° 05’ 33’’ N). In total, four specimens were collected by scuba divers from the water-column between 1 and 5 m of depth. The water temperature, as indicated by the dive computer, was 20 ºC and the visibility was 3 m.

Two specimens were fixed in absolute ethanol for the molecular study, while the other two were fixed in formalin 4 % for morphological observations.

Nomenclatural remarks

Despite the precise nomenclatural comments by Fritz et al. (2007: 54) about the discovery, first descriptions of this jellyfish species (see also Allman, 1880; Lankester, 1880a, 1880b), and ICZN decision (see also Allen, 1910; Stiles, 1910), several subsequent authors still reported the species with the specific epithet 'sowerbyi'.

In the original description, Lankester (1880a: 148) used the spelling *Craspedacusta sowerbii* in honour of Mr. Sowerby, understanding the genitive singular of the complete latinization of Sowerby to Sowerbius. The use of the form 'sowerbyi' must be considered an erroneous spelling (Zarazaga, pers. comm.). In this case, Article 33.3.1 of the ICZN (1999) about the predominant use of erroneous spellings cannot be applied (indeed, according to Fritz et al. (2009) it is about 40 % of all references). Thus, in order to avoid the use of 'sowerbyi', all references to the species of Lankester in this paper will be made with the original spelling.

Morphological observations and measurements

Observation and photography of different parts of the medusae were performed with a camera (ToupCam™) attached to light microscopy (Olympus CX41). A Panasonic Lumix FZ28 camera was used for macroscopic photography. Measurements of bell and gametogenic tissues and tentacle length were performed using ImageJ 1.46r software (NIH, Bethesda, MD, USA).

Phylogenetic analysis

Total genomic DNA was extracted from two EtOH–preserved specimens using the E.Z.N.A. DNA kit (OmegaBiotech) following the manufacturer’s instructions. The *Cox1* and 16S mitochondrial regions as well as the nuclear *ITS* region (*ITS1–5.8S–ITS2*) were sequenced as proposed by Fritz et al. (2009) and Karouzas et al. (2015) for comparative purposes.
The Coxl region was amplified using the primers dglCO1490 5′--GGT CAA CAA ATC ATA AAG AYA TYG G–3′ and dgHC02198 5′--TAA ACT TCA GGG TGA CCA AAR AAY CA–3′ (Meyer et al., 2005), the 16S region was amplified using the primers 16S. Cunningham.F: 5′-AGC GAA TGA ACTCAAATC ATG TAA G–3′ and 16S. Cunningham.R: 5′--TGG ACT GTT TAC AAA CAT A–3′ (Bridge et al., 1995). An 800 bp partial DNA was amplified using the forward primer 5′--CCCTTGTGACACCGC CCCTGC--3′ and the reverse primer 5′--CTTTGGGCTGCA GTCCCA AGCAACC CGAC T–3′ (Odorico and Miller, 1997).

This last partial sequence included parts of the 18S rDNA and 28S rDNA, the complete ITS1 and ITS2 regions as well as the 5.8S rDNA region (Odorico and Miller, 1997; Fritz et al., 2009). Each PCR used 1 U of MyTaq Red DNA Polymerase (Bioline), 10 µ M of each primer, approximately 30 ng of genomic DNA, and was brought to a final volume of 25 µL with H₂O. Coxl PCR was carried out using the following cycle profile: initial denaturation at 95 °C for 1 min, 40 cycles of denaturation at 95 °C for 15 s, annealing at 42 °C for 15 s, and extension at 72 °C for 10 s, and a final extension at 72 °C for 5 min. The 16S and ITS PCRs used the same cycle profile, but 58 °C and 60 °C as annealing temperatures respectively. PCR products were purified using ExoSAP--IT™ PCR Product Cleanup Reagent (ThermoFisher Scientific) following the manufacturer’s instructions. Purified products were electrophoresed on an ABI PRISM® 3730xl Genetic Analyzer and sequence traces were edited using Sequencher™ v4.0. The obtained sequences were compared with homologous sequences from EMBL–Bank of other Olinidae species. Available sequences of campanulariid Obelia species were used as out–group in the implemented phylogenetic analyses. The alignments of the different sets of sequences were carried out using MUSCLE, as implemented in MEGA6 (Tamura et al., 2013). After alignment, the best nucleotide substitution model was selected using Modeltest as implemented in MEGA6, according to the Akaike Information Criterion (AIC) and hierarchical likelihood ratio test (hLRT). The 16S dataset (40 olindidi + 1 campanulariid sequences) had 554 positions, with a total of 276 variable and 232 parsimony–informative sites. The Coxl dataset (64 olindidi + 1 campanulariid sequences) had 680 positions, with a total of 270 variable and 232 parsimony–informative sites. The ITS dataset sequences (55 Craspedacusta + 1 campanulariid sequences) had 933 positions, with a total of 378 variable and 209 parsimony–informative sites. The phylogenetic reconstructions were obtained applying Maximum Likelihood (ML) and Bayesian inference methods. ML method was carried out in MEGA6, and based on the T92 + G model (16S), GTR + I (Cox1), and K2 + G model (ITS) (Kimura, 1980; Tamura, 1992; Nei and Kumar, 2000) using the NNI heuristic method (Nearest Neighbor Interchange) and 1000 bootstrap replicates (Felsenstein 1985). The Bayesian Inference was carried out in MrBayes v3.1.2 (Huelsenbeck and Ronquist, 2001; Ronquist and Huelsenbeck, 2003), using the model GTR + G (Iset nst = 6 rates = gamma), 10⁷ generations and discarding 25% initial trees.

The material studied here has been deposited in the Museu de Ciències Naturals in Barcelona (MZB), the collection of the first author (JAO–UIZ) at the University Ibn Zohr of Agadir, Morocco, and the collection of the research team Biodiversidad y Ecología Acuática in the University of Seville, Spain (BECA).

Results

Systematics

Phylum Cnidaria
Class Hydrozoa
Subclass Trachylinae
Order Limnomedusae
Family Olinidiidae Haeckel, 1879
Genus Craspedacusta Lankester 1880
Craspedacusta sowerbii Lankester 1880

See Lewis et al. (2012) and Jankowski (2001) for a complete list of synonyms.

Material examined

MZB 2018–0758 one specimen formalin fixed. MZB 2018–0757 one specimen fixed in absolute ethanol. JAO–UIZ(H1) one specimen formalin fixed. BECA(H1) one specimen fixed in absolute ethanol. Moreover, total DNA extraction from the specimen in MZB 2018–0757 [in BECA as BECA(H2)] and from BECA(H1) are kept within the molecular DNA collection of BECA. All specimens with the same sampling data as above described in the section Material and methods.

Morphological remarks

The medusa was the only stage recovered (fig. 2A). No polyps were found, and all specimens are female. The average bell/umbrella diameter is 20 ± 1 mm (19–21), flattened form. The mouth has four slightly folded lips overpassing the umbrella margin. Four gametogenic tissues pouch–like structures (7–11 mm length) are hanging from the radial canals. They are opaque in the basal fold–like part and translucent and voluminous in the apical part, giving a triangular shape (fig. 2B). The tentacles have no organs of adhesion and are connected to the marginal end of the umbrella on the ring canal (fig. 2E). Four long perradial tentacles (7–9 mm in length) emerging from the end of the four radial canals at the umbrella margin. About 60 medium tentacles (2.0–4.5 mm in length) arising from the pole of the bell were counted between the four long tentacles. Approximately 420 shorter tentacles (0.5–1.5 mm in length) extend around the bell edge. The three different sizes of tentacles are organized in a regular distribution along the umbrella edge. Along the tentacles, nematocysts are grouped in patches that
are arranged in spaced parallel rings (fig. 2E, 2B), distances between consecutive rings are distinctly reduced distally (fig. 2G).

Phylogenetic analyses

Cox1 analyses (fig. 3) placed the sequences obtained in this work for the two Moroccan specimens in a well–supported clade (Bootstrap [Bts.] 99, posterior probability [PP] 0.99) with the German sequences and a Chinese (Sichuan province) sequence constituted, with an internal p–distance (German–Moroccan to Chinese sequence) of 0.3%. This last German–Moroccan–Chinese clade is the sister group of a relatively poorly supported clade with two well defined groups, a Switzerland sequence and a well–supported clade (Bts. 100, PP 1) including a conglomerate of Chilean–Italian–Indian–Grecian–Chinese sequences (all of which were also attributed to *C. sowerbii*), average uncorrected p–distance between these last two clades 17.5%. Average uncorrected p–distance between German–Moroccan–Chinese clade and Switzerland sequence 13.6%. Average uncorrected p–distance between German–Moroccan–Chinese clade and Chilean–Italian–Indian–Grecian–Chinese clade was 16.3%. Phylogenetic hypotheses based in Cox1 suggest that there are at least three *Crasedacusta* species in Europe.
The 16S analyses (fig. 4) indicate that the analyzed Moroccan individuals merge well among other Craspedacusta sequences. There is very little previous 16S information on Craspedacusta sowerbii, just a sequence from Lake Huato (USA), another from Uruguay, two sequences from Switzerland, and a sequence of unknown locality (KY077294). Moroccan sequences form a well-supported clade (Bts. 99, PP. 1) with the sequence KY077294 and the two Switzerland sequences. Uncorrected p-distance between Morocco–unknown locality and Switzerland sequences is 0.2%. This last European clade (having in mind the unknown origin of one of the sequences) is the sister group of the clade formed by both American sequences (USA + Uruguay), which are identical. All these mentioned sequences, all identified as C. sowerbii, are related to another two Craspedacusta species (C. sinensis and C. ziguiensis) in a relatively well-supported clade (Bts. 82, PP. 0.95).

The clade grouping all Craspedacusta species is the sister group of Limnocnida tanganjicae, with high support (Bst. 90, PP. 0.99). Mean uncorrected p-distance between American populations attributed to C. sowerbii (USA and Uruguay) and the Moroccan–Switzerland–unknown–origin sequences is 4.3% ± 0.1 (range 4.2–4.5%). The genetic distance between the other two Craspedacusta species (C. sinensis and C. sowerbii) is 6.2%, and the distance between the Moroccan specimens and the latter species is 6.8% and 8.3%, respectively. In general, all Olindiidae genera are well supported in this 16S phylogenetic hypothesis. Inter–genera genetic distances (uncorrected p-distances) in 16S seem to be around 13–30%. According to 16S' knowledge, a single species occurs in Morocco and Switzerland that is different from that present in America (USA + Uruguay).

The ITS phylogenetic analyses (fig. 5) benefit from a higher number of sequences; thus, the analyses is here focused on the genus Craspedacusta instead of the whole available olindid taxa. Craspedacusta sequences are mainly obtained from central Europe and China, although recent sequences from Chile and Sicily (Italy) have been published. Three main clades can be detected, all of them including Chinese specimens. Clade I (Bts. 99, PP. 1), includes Chinese sequences attributed to C. kiatangii and C. sichuanensis, as well as all German sequences attributed to C. sowerbii and the sequences obtained in this study from Moroccan specimens. The sister group of Clade I is composed of a single sequence of C. ziguiensis from China [support between both sister groups (Bts. 99, PP. 1)]. On the other hand, Clade II (Bts. 99, PP. 1), includes Chinese sequences attributed to C. sinensis and C. brevinema, while Clade III (Bts. 90, PP. 0.56) includes Chinese sequences attributed to C. sowerbii and C. xinyangensis, as well as sequences from Italy and Chile.

Sequences from Clade I (where the Moroccan specimens are included) have genetic distances (uncorrected p-distances) between 0.0 and 0.9% (mean and SD 0.1% ± 0.2), while this Clade I is 3.8% ± 0.1 (range 3.6–4.2%) distant from its sister group (C. ziguiensis). Uncorrected p-distances between Clade I and Clade II are 19.9% ± 0.4 (range 18.9–20.6%), while distances between Clade I and Clade III are 11.3% ± 0.31 (range 10.0–12.4%), finally, distances between Clade II and Clade III are 17.7% ± 0.37 (range 15.8–18.5%).

According to our current ITS knowledge, four main lineages (species) can be detected, two of them (Clades I and III) including specimens identified as C. sowerbii. At least two species are present in Europe, while the known American sequences (Chile) and those from Central Europe and North Africa are definitively different lineages (Clades I and III, respectively).

Unfortunately, there is no homogenous knowledge of the three genetic markers here examined along the entire distributional area where specimens attributed to C. sowerbii have been reported. Figure 6 shows the worldwide distribution of the main clades detected in the separate analyses of the three markers (see also fig. 3, 4, and 5 for comparison).

Discussion

Morphological remarks

Craspedacusta sowerbii has been recorded in several localities around the world. However, many identifications are not fully reliable since the records do not give detailed morphological characters (Moreno–Leon and Ortega–Rubio, 2009; Jakovčev–Todorović et al., 2010; Stefani et al., 2010; Gasith et al., 2011; Souza and Ladeira, 2011; Galarce et al., 2013; Gomes–Pereira and Dionisio, 2013; Fraire–Pacheco et al., 2017). Moreover, many hydromedusae species have several similar morphological characters especially within the genus Craspedacusta (Jankowski, 2001), and only a few records gave more detailed descriptions of specific morphological characters (Kramp, 1950; Jankowski, 2001; Lewis et al., 2012). Indeed, up to eleven Craspedacusta species have been described, mostly recorded from China only (Jankowski, 2001). However, according to Bouillon et al. (2006) and Jankowski et al. (2008), many species may not be valid and are likely to be just morphological variations of the same species. Jankowski (2001) studied all the species recorded within Craspedacusta in detail and found that only three should be considered valid (C. sowerbii, C. iseanum Oka and Hara, 1922 and C. sinensis Gaw and Kung, 1939), and two are uncertain (C. sichuanensis He and Kou, 1984 and C. ziguiensis He and Xü, 1985); the rest seem to be synonyms of C. sowerbii, keeping in mind that two other species were synonymised [the marine species C. vovasi Naumov and Stepanjants, 1971 and the brackish water one C. marginata Modeer, 1791 (see Hummelinck, 1938). In the present paper, the morphological characteristics of our specimens coincide with the typical characters of the medusae belonging to the genus Craspedacusta (Russell, 1953; Bouillon and Boero, 2000; Bouillon et al., 2004, 2006). They have, apart from a well–developed marginal nematocysts ring, four simple radial canals from which pouch–like gametogenic tissues are hanging, and centripetal vesicles embedded in the
Fig. 3. Análisis molecular mediante el método de la máxima verosimilitud. Relación entre especies de olindidos utilizando Obelia geniculata como grupo externo; el análisis se basa en Cox1. El árbol está dibujado a escala y la longitud de las ramas indica el número de sustituciones por sitio. La flecha blanca indica el clado en el que se insertan las secuencias marroquíes; nótese que existe una ligera diferencia en la ordenación de las secuencias obtenidas mediante el método bayesiano (subárbol en la esquina inferior derecha de la imagen). Los símbolos de las agrupaciones o clados son los mismos que aparecen en el mapa Cox1 de la figura 6.
velum as internal closed ecto–endodermal statocysts. Because these common similar characters within the Craspedacusta species lead to confusion and doubts when identifying a specimen and ascribing it to a determined species, the application of more specific characters is needed. The here–observed specimens identified as *C. sowerbii* have four prominent large radial tentacles, which are clearly shorter in *C. sinensis* (Kramp, 1950; Jankowski, 2001). This latter species, also found in China, is very similar to *C. sowerbii*. According to Kramp (1950), it differs from *C. sowerbii* also in having a markedly irregular distribution of the different tentacle sizes (which are evenly distributed in our medusae), as well as a characteristic nematocyst distribution on tentacles. In our specimens, transverse belts of clustered groups of two to 10 nematocysts cover the tentacles, while in *C. sinensis*, nematocysts are located at the end of elongated cylindrical papillae that are not arranged in transverse rings on tentacles (Kramp, 1950; Jankowski, 2001). Moreover, in active swimming specimens, *C. sinensis* is easily recognizable by its remarkable changes in the umbrella diameter. This species actually varies from 0.48 cm at systole (contracted bell–shaped umbrella) to 1.8 cm during diastole (maximum dilated flattened umbrella) (Kramp, 1950). On the other hand, the observed extended tubular statocysts of different lengths and embedded in the velum of the here–studied specimens confirm our identification and discard the possibility of ascribing our medusae to *C. iseanum*. This species, found in Japan, is also very similar to *C. sowerbii*. According to Uchida (1955), the statocysts in *C. iseanum* are oval–shaped. Moreover, adult specimens in this species vary from five to 18 mm of umbrella diameter and have up to

Fig. 4. Molecular analysis by the ML method. Relationship of olindid species using *Obelia bidentata* as outgroup, the analysis is based on 16S. The tree is drawn to scale, with branch lengths measured in the number of substitutions per site. Symbols of groupings/clades correspond to the 16S map in figure 6.

Fig. 4. Análisis molecular mediante el método de la máxima verosimilitud. Relación entre especies de olíndidos utilizando *Obelia bidentata* como grupo externo; el análisis se basa en 16S. El árbol está dibujado a escala y la longitud de las ramas indica el número de sustituciones por sitio. Los símbolos de las agrupaciones o clados son los mismos que aparecen en el mapa 16S de la figura 6.
El árbol está dibujado a escala y la longitud de las ramas indica el número de sustituciones por sitio. Los símbolos de las agrupaciones o clados son los mismos que aparecen en el mapa ITS en la figura 6.

Fig. 5. Análisis molecular mediante el método de la máxima verosimilitud. Relación entre especies de Craspedacusta utilizando Obelia dichotoma como grupo externo; el análisis se basa en ITS. El árbol está dibujado a escala y la longitud de las ramas indica el número de sustituciones por sitio. Los símbolos de las agrupaciones o clados son los mismos que aparecen en el mapa ITS de la figura 6.

Phylogenetic analyses

Despite the abundant literature reporting the occurrence of *Craspedacusta sowerbii* around the world (see Dumont, 1994; Didžiulis and Żurek, 2013 for additional references), available molecular information is relatively scarce. Part of this information is published as a representation of the genus (or family) for general phylogenetic papers about different cnidarian taxa (e.g. Collins, 2002; Kayal et al., 2015; Grange...
et al., 2017), and there are few specific papers on the phylogeny, molecular systematics, diversity and distribution of the genus Craspedacusta (Zou et al., 2012; Fritz et al., 2009; Zhang et al., 2009). A number of sequences can be obtained in databases such as GenBank, ca. 55 of them for the ITS region (for seven putative species), ca. 50 sequences are for the Cox1 fragment (all of them attributed to C. sowerbii), and seven are for the 16S (ascribed to three different species).

As previously commented, recent morphological (Jankowski 2001) or molecular (Fritz et al., 2009; Zhang et al., 2009) contributions drastically reduced the number of species to three (or maybe five). On one hand, for Jankowski (2001), only C. sowerbii, C. iseanum, and C. sinensis (and perhaps C. sichuanensis and C. ziguensis) could be considered valid. On the other hand, the two simultaneous contributions by Fritz et al. (2009) and Zhang et al. (2009) pointed out the existence of different lineages (in the former) and species (in the later), thus stressing the lack of consensus on the real diversity and systematics of the genus.

Fritz et al. (2009) considered that the morphology of their German and Austrian samples agrees with C. sowerbii, and hence the Chinese ITS sequences (identical to their European material) attributed to C. kiatingi should be considered as C. sowerbii var. kiatingi (Gaw and Kung, 1939; Kramp, 1950). Fritz et al., (2009) identified three main clusters within their dataset: 'sinensis' [for C. sinensis, and C. brevinema (considered by these authors as a variety of the former)], 'sowerbyi' [sic, for Chinese sequences of C. sowerbii and C. xianyangensis (considered by these authors as a variety of the former)], and "kiatingi" (for the German and Austrian sequences of C. sowerbii, and the Chinese sequences of C. sichuanensis and C. kiatingi (considered by these authors as a variety of their European C. sowerbii), remaining as doubtful the status of C. ziguensis. In short, for Fritz et al. (2009) the *"data support the assumption that there are three valid species, with the possibility of C. ziguensis being a fourth one, and several, morphological quite different sub--species or variations of the freshwater jellyfish C. sowerbii". Although the identification of C. sinensis and C. ziguensis as different species seems to be clearly stated, the assignable different specific name to be used for the two other Clades ("kiatingi" and 'sowerby') is not so clearly defined in this last paper.

Zhang et al. (2009) analysed eight putative Craspedacusta species using the nuclear marker ITS. Obviously, the trees obtained by these authors show similar conclusions, as both research groups shared a similar set of sequences: C. xianyangensis should be the synonym of C. sowerbii, C. sichuanensis the synonym of C. kiatingi and C. brevinema the synonym of C. sini-
nessis, while the taxonomic status of C. ziguensis is still uncertain. However, the main difference between the two contributions is the implications of those Austrian and German sequences, defining a clade C. kiatingi–C. sowerbii. The Chinese authors were probably unaware at that moment that a number of European sequences could be attributed to their C. kiatingi.

Recently, Schifani et al. (2018) and Fuentes et al. (2019) obtained sequences from specimens identified as C. sowerbii from Sicily (Italy) and Chile, respectively. In their Cox1 analyses, Schifani et al. (2018) identified a Sicilian–Grecian–Chinese clade as C. sowerbii, a second German–Chinese clade as C. kiatingi, and a third clade of unknown origin as Craspedacusta sp. (actually, this last sequence was deposited by Dr. P. Schuchert from a polyp stage specimen collected in Ringwiler Weier (Canton Zurich, Switzerland) (see also features part of this sequence in GenBank Accession number MF000493). The ITS analyses of these authors also identify a Sicilian–Chinese C. sowerbii clade and a German–Chinese C. kiatingi clade (the origin of the sequence FJ423632 is indicated to be German Donau (Danube) in GenBank.

It is somehow ironic that the type locality of this considered--to--be invader alien species was a water--lily tank in the Botanical Garden in Regent's Park, London (Lankester, 1880a), while the origin of the species (and the diversity hot–spot of the genus Craspedacusta) is currently supposed to occur in the Yangtze River valley in China (e.g. Didziulis and Žurek, 2013). Many changes have occurred since the late 19th century in the type locality, which finally disappeared in 1932 (C. Magdalena, pers. comm.). Anyway, the species was subsequently reported also from Southern England (Broom Water, Teddington), only a few kilometres away from the type locality (Green, 1998). Thus, it is plausible that future sequences obtained from a specimen collected in the London area could be considered a toptype (or a neotype could be established, since the original type material seems not to have been deposited in any institution), and could help to soundly and univocally define C. sowerbii. The nomenclatural consequences of the current absence of molecular data from the area of the type locality are in fact very important.

For the moment, according to the ITS phylogenetic hypothesis, mainland Europe and Morocco share the same haplotype, which is also shared with specimens identified as C. kiatingi and C. sichuanensis from China, the diversity hot–spot of this hydromedusa genus. Most Chinese specimens identified as C. sowerbii are in a well separated clade (see fig. 5). It is possible to speculate on two scenarios: 1) the South England sequences are identical (or similar) to those from mainland Europe and Morocco (Clade I); and 2) the South England sequences are different from those from mainland Europe and Morocco, but identical (or similar) to those identified as C. sowerbii by Zhang et al. (2009) and that from Sicily (Clade III). The direct consequence of the first scenario would be that C. kiatingi and C. sichuanensis sequences from Zhang et al. (2009) must instead be attributed to C. sowerbii, while another available name should be selected for those sequences identified as C. sowerbii by Zhang et al. (2009), the Clade "sowerbyi" of Fritz et al. (2009), including the Sicilian and Chilean specimens (Clade III in this paper). Conversely, the consequences of the second scenario suggest that at least two species of Craspedacusta occur in Europe and North Africa, C. sowerbii in Southern England,
Fig. 6. Known worldwide distribution of the observed groupings (similar sequences, or clades) attributed to *Craspedacusta sowerbii* in the different phylogenetic analyses carried out in this paper (see comparatively fig. 3, 4, and 5).

Fig. 6. Distribución mundial conocida de las agrupaciones observadas (secuencias similares o clados) atribuidas a *Craspedacusta sowerbii* en los diferentes análisis filogenéticos llevados a cabo en este trabajo (compárense las fig. 3, 4 y 5).
and *C. kiatingi* [or another available name according to the ICZN (1999)] in the rest of this area, as well as in China. For the moment we have no *ITS* information from the specimens collected in Switzerland, Greece, or India.

The *Cox1* phylogenetic hypothesis clearly shows that Europe experienced the invasion of at least three *Craspedacusta* species, one of them in central Europe (Germany) and Morocco, the second one is currently present in Greece and Sicily, while the third one is found in Switzerland (see fig. 3 and 6). The two first invasions are connected (or simply share similar sequence) with their respective Chinese populations. This was already detected by Karaouzas et al. (2015), suggesting that the phylogeny of the genus is in need of further investigations, as genetic distances between the *C. sowerbii* clades are around 15%. In the available *Cox1* information for ollinid species, all genera except *Craspedacusta* are represented by a single species or haplotype, making difficult to discuss about the expected range of genetic distances at species level. In our phylogenetic hypothesis uncorrected *p*-distances between ollinid genera varies between 15 and 26%. As in the previous discussion, the name to be used for each *Craspedacusta* species will depend on the knowledge of a (still unknown) *Cox1* sequence from a putative Southern England population, possibly after the establishment of a neotype.

Information based on our 16S phylogenetic hypothesis about *Craspedacusta* species delimitation is scarce, but it is well defined that a single species that can currently be identified in America (Lake Huato, USA and Uruguay) is different from the one present in North Africa (Morocco), Switzerland, and an unknown locality (sequence KY077294, see Grange et al., 2017). The same problem already discussed in assigning the name of *C. sowerbii* to one or another clade is present here. For this marker it is possible to discuss about the relative genetic distances (uncorrected *p*-distances) that are recognized between species of another ollinid genus, the genus *Olindias* (see Bouillon et al., 2004; 206, 2006: 435). Genetic distances between the three species of *Olindias*, from which 16S sequences are available, vary from 5.5–5.7% (*O. phosphorica* to *O. sambaquensis*) to 9.8–10.0% (*O. formosus* to *O. sambaquensis*) (see also Collins et al., 2005, 2008). The genetic distance observed between North African–Switzerland and American sequences identified as *C. sowerbii* is 4.2–4.5%, between North African–Switzerland and *C. ziguiensis* and *C. sinensis* it is 7.8–8.9% and 6.8–7.4%, respectively; and between the latter two species it is 6.2%. This suggests that American specimens attributed to *C. sowerbii* should perhaps be considered a different species from the specimens analysed here from North Africa, as well as from those from Switzerland.

Final remarks

The described scenario could be much more complicated when considering that in the type locality of *C. sowerbii*, the aquatic plants of the water–lily tank in Regent's Park (i.e. the potential dispersal vector of this hydromedusa species) were imported from Brazil, and not from China (C. Magdalena. pers. comm.). At present, it is difficult to know when the dispersion of *Craspedacusta* species from Easter Asia began, and most of the proposed vectors are in part speculative. Perhaps there was a combination of initial introduction by trade of aquatic plants and a subsequent natural dispersion by aquatic animals (e.g. birds, insects). For this reason, to solve this unstable nomenclatural and biodiversity problem, it is highly desirable to start with an important (or at least representative) field and molecular sampling programme in Southern England, in order to decide which haplotype (or set of related haplotypes) could be considered the true *Craspedacusta sowerbii*.

At this moment, for the present contribution, the most parsimonious solution would be the existence of a single species (clade) in England and the relatively close Central Europe (also shared by the Moroccan examined specimens). If this is correct, this clade should retain the specific epithet *sowerbii*, and then, as in the same group of sequences there are some attributed to *C. kiatingi* by Zhang et al. (2009), these sequences and individuals should also be assigned to *C. sowerbii*. According to these considerations, all materials included in the ‘sowerbii’ clade of Fritz et al. (2009) and the clade included all sequences attributed to *C. sowerbii* by Zhang et al. (2009) (including the Chilean and Sicilian sequences) should be assigned to a different species, which should be selected among the available names after a complete bibliographical and morphological review. It has also become clear that according to *Cox1*, at least three *Craspedacusta* species are present in Europe (see fig. 6, *Cox1*): one in central Europe (and Morocco), one in Greece and Sicily (for the moment *ITS* sequences from the Greek specimens are not available), and one in Switzerland (for the moment *ITS* information is not available). Unfortunately, no geographical information is currently available for a 16S sequence (KY077294, see Grange et al., 2017) and a *Cox1* sequence (LN901194, see Kayal et al., 2015). In the future, knowing the origin of these and other additional sequences would provide important information on invasion events concerning this intriguing hydromedusa species.

The possible introduction vectors of *Craspedacusta sowerbii* in the recorded new sites generally remain unidentified. Accordingly, several hypotheses about the possible introduction paths have been mentioned in different reports and works on this species (Dumont, 1994; Angradi, 1998; Karaouzas et al., 2015). They can mainly be resumed in two possible vectors: 1) vectors facilitated by human activities, and 2) natural vectors. With regard to the former, the most likely dispersal vector may be the transfer of the species polyp stage, or the result of a resistance structure in aquaria or exhibition tanks, or an association with commercial ornamental aquatic plants or animals (Oscoz et al., 2010; Gasith et al., 2011; Gomes–Peireira and Dionisio, 2013; Minchin et al., 2016). The minuscule and hardly recognizable resting forms of the species make its unintentional human–mediated
dispersal likely. Some authors reported observations of *C. sowerbii* (medusa or polyp stage) coinciding with the introduction of stocked fish or aquatic plants (Parent, 1982). As for the second possible vector, desiccated podocysts attached to body parts of aquatic invertebrates and vertebrates (including birds) could have allowed this species to colonize near freshwater reservoirs (Jankowski, 2001; Jankowski et al., 2008). The cysts are able to survive for about 40 years while being completely desiccated (Bouillon and Boero, 2000; Bouillon et al., 2006; Lewis et al., 2012). These resting bodies may accidentally be transferred to new sites on bird’s feet or plumage. Then, in favorable conditions, cysts turn into medusae and podocysts become polyps that can lead to more budding. This makes the aerial passive dispersal a possible introduction path for *C. sowerbii* (Parent 1982; Dumont 1994; Oscoz et al., 2010; Đidžiulis and Žurek 2013; Faila–Siquier et al., 2017).

The characteristic drought–resistant forms of the species suggest that the natural aerial dispersal vector by migrating birds (see Reynolds et al., 2015; Green, 2016) may be an important factor in the introduction of alien species such as *C. sowerbii* into Bin El Ouidan, although in this reservoir, in order to limit the proliferation of algae as well as to enhance the biodiversity within the reservoir ecosystem, many exotic species including fish and aquatic plants (e.g. *Oncorhynchus mykiss* Walbaum, 1792; *Barbus barbus* Linnaeus, 1758; *Micropterus dolomieu* Lacepède, 1802; *Sander lucioperca* Linnaeus, 1758; *Hypophthalmichthys molitrix* Valenciennes, 1844; *Ctenopharyngodon idella* Valenciennes, 1844 and *Cyprinus carpio* Linnaeus, 1758) started to be introduced in the reservoir one year after its construction (Rabii Souiлем, pers. comm.).

Acknowledgements

The authors thank Mustapha R. Habiballah and Rabii Souiлем, Technical manager of the fish farming company ‘Asmak Nile’ in Béni Meallal (both members of Moroccan Royal Federation of Diving and Underwater Activities, FRMPAS) for their invaluable help and especially for the sampling trip carried out during December 2015. Thanks also to Dr. Allen Collins (Smithsonian Institution; National Museum of Natural History, in Washington) for kindly facilitating sampling information on some *C. sowerbii* sequences from USA localities, and Dr. Miguel Angel Alonso Zarazaga (Museo Nacional de Ciencias Naturales, Madrid) for helping us on nomenclatural questions relating to the correct specific epithet that should be used in the hydromedusan species here discussed. We are also very grateful to Dr. Carlos Magdalena (Royal Botanical Gardens, Kew, London) for useful comments on the vicissitudes of Regent’s Park water–lily tanks during the early 20th century, and additional literature on the presence of *C. sowerbii* around the type locality. We wish to thank the Editors and two anonymous reviewers for useful comments and criticisms on an early draft of this paper, and also Mr. Tony Krupa for reviewing the English version of the manuscript.

References

Acker, T. S., 1976. *Craspedacusta sowerbyi* : an analysis of an introduced species. In: *Coelenterate Ecology and Behavior*: 219–226 (G. O. Mackie, Ed.), Plenum Press, New York.

Acker, T. S., Muscat, A. M., 1976. The ecology of *Craspedacusta sowerbii* Lankester, a freshwater hydrozoan. *The American Midland Naturalist*, 95(2): 323–336.

Agnarsson, I., Kuntnner, M., 2007. Taxonomy in a changing world: Seeking solutions for a science in crisis. *Systematic Biology*, 56: 531–539.

Allen, J. A., 1910. Opinions rendered by the International Commission on Zoological Nomenclature. *Science*, 32: 380–382.

Allman, G. J., 1880. The freshwater medusa. *Nature*, 22: 218.

Angradi, T. R., 1998. Observations of freshwater jellyfish, *Craspedacusta sowerbyi* Lankester (Trachylina: Petasidae), in a West Virginia reservoir. *Brimleyna*, 25: 34–42.

Balki, S., Ustaoglu, M. R., Özbek, M., 2001. A new locality for the freshwater jellyfish *Craspedacusta sowerbyi* Lankester, 1880 in turkey. *Zoology in the Middle East*, 22: 133–134.

Bax, N., Williamson, A. Aguero, M., Gonzalez, E., Geves, W., 2003. Marine invasive alien species: A threat to global biodiversity. *Marine Policy*, 27: 313–323.

Bekleyen, A., Varol, M., Gokot, B., 2011. A new record of the freshwater jellyfish *Craspedacusta sowerbii* Lankester, 1880 (*Hydrozoa*) in Southeastern Anatolia (Turkey). *Chinese Journal of Oceanology and Limnology*, 29: 366–368.

Bouillon, J., Boero, F., 2000. Synopsis of the families and genera of the Hydromedusae of the world, with a list of the worldwide species. *Thalassia Salentina*, 24: 47–296.

Bouillon, J., Gravili, C., Pagès, F., Gili, J. M., Boero, F., 2006. An introduction to Hydrozoa. *Muséum National d’Histoire Naturelle*, 194: 1–591.

Bouillon, J., Medel, M. D., Pagès, F., Gili, J. M., Boero, F., Gravili, C., 2004. Fauna of the Mediterranean Hydrozoa. *Scientia Marina*, 68: 5–438.

Boulenger, C., Flower, W., 1928. The Regent’s Park medusa, *Craspedacusta sowerbii*, and its identity with *C. (Microhydra) ryderi*. *Journal of Zoology*, 98: 1005–1014.

Bridge, D., Cunningham, C. W., DeSalle, R., Buss, L. W., 1995. Class–level relationships in the phylum Cnidaria: Molecular and morphological evidence. *Molecular Biology and Evolution*, 12: 679–689.

Cermansky, R., 2017. The biodiversity revolution. *Nature*, 546: 22–24.

Chen, J., Li, Q., Kong, L., Yu, H., 2011. How DNA barcodes complement taxonomy and explore species diversity: The case study of a poorly understood marine fauna. *Plos One*, 6: e21326.

Collins, A. G., 2002. Phylogeny of Medusozoa and the evolution of cnidian life cycles. *Journal of Evolutionary Biology*, 15: 418–432.

Collins, A. G., Bentlage, B., Lindner, A., Lindsay, D., Haddock, S. H. D., Jarms, Norenburg, G., J. L.,
Jankowski, T., Cartwright, P., 2008. Phylogenetics of Trachyliina (Cnidaria: Hydrozoa) with new insights on the evolution of some problematical taxa. *Journal of the Marine Biological Association of the United Kingdom*, 88: 1673–1685.

Collins, A. G., Winkelman, S., Hadrys, H., Schierwater, B., 2005. Phylogeny of Capitata and Corynidae (Cnidaria, Hydrozoa) in light of mitochondrial 16S rDNA data. *Zoologica Scripta*, 34: 91–99.

Dar, G. H., Khuroo, A. A., Reddy, C. S., Malik, A. H., 2012. Impediment to taxonomy and its impact on biodiversity science: an Indian perspective. *Proceedings of the National Academy of Sciences, India Section B: Biological Sciences*, 82(2): 235–240.

DeSalle, R., Egan, M. G., Siddall, M., 2005. The unholy trinity: taxonomy, species delimitation and DNA barcoding. *Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences*, 360: 1905–1916.

Dideul, V., Zurek, R., 2013. NOBANIS–Invasive alien species fact sheet—*Craspedacusta sowerbii* from: Online database of the North European and Baltic Network on Invasive Alien Species–NOBANIS, http://www.nobanis.org [Accessed 14 November 2017]

Duggan, I. C., Eastwood, K. R., 2012. Detection and distribution of *Craspedacusta sowerbii*: Observations of medusa are not enough. *Aquatic Inversions*, 7: 271–275.

Dumont, H. J., 1994. The distribution and ecology of the fresh- and brackish-water medusae of the world. *Hydrobiologia*, 272: 1–12.

– 2009. The Cnidaria of the Nile Basin. In: *The Nile. Monographiae Biologicae*, 89: 495–498 (H. J. Dumont, Ed.). Springer, Dordrecht.

Dumont, H. J., Verheyen, H. M., 1984. The nature and origin of the crustacean zooplankton of Sahelian Africa, with a note on the Limnomedusa. *Hydrobiologia*, 113: 313–325.

Elster, H., Hawary, M., Schroeder, R., Schwoerbel, J., 1960. Populations dynamics on zooplankton in the Nozha hydrodrome near Alexandria Arctodiaptomus salinus Daday and Diaphanosoma excisum Sars. The Alexandria Institute of Hydrobiology, 50: 1–27.

Elster, H., Vollenweider, R., 1961. Beitrag zur Limnologie Aygptens. *Archiv für Hydrobiologie*, 57(3): 241–343.

Failla–Squier, M. G., Serra Alanis, W. S., Martinez Debat, C., 2017. First record of *Craspedacusta sowerbii* Lankester, 1880 (Hydrozoa, Limnomedusae) in a natural freshwater lagoon of Uruguay, with notes on polyp stage in captivity. *Brazilian Journal of Biology*, 77: 665–672.

Felsenstein, J., 1985. Confidence limits on phylogenies: an approach using the bootstrap. *Evolution*, 39: 783–791.

Ferreira, M. T., 1985. Occurrence of the freshwater medusa *Craspedacusta sowerbii* Lank, 1880 (Hydrozoa: Olindiidae) in Portuguese reservoirs. *Boletim da Sociedade Portuguesa de Ciências Naturais*, 22: 41–46.

Fraire–Pacheco, Arancibia–Avila, K., P., Concha, J., Echeverría, F., Salazar, M. L., Figueroa, C., Espinoza, M., Sepúlveda, J., Jara–Zapata, P., Jeldres–Urra, J., Vega–Román, E., 2017. A new report of *Craspedacusta sowerbii* (Lankester, 1880) in southern chile. *BioInvasions Records*, 6: 25–31.

Fritz, G. B., Pfannkuchen, M., Reuner, A., Schill, R. O., Brümmer, F., 2009. *Craspedacusta sowerbii*, Lankester 1880—Population dispersal analysis using COI and ITS sequences. *Journal of Limnology*, 68: 46–52.

Fritz, G. B., Schill, R. O., Pfannkuchen, M., Brümmer, F., 2007. The freshwater jellyfish *Craspedacusta sowerbii* Lankester, 1880 (Limnomedusa: Olindiiidae) in Germany, with a brief note on its nomenclature. *Journal of Limnology*, 66: 54–59.

Fuentes, R., Cárdenas, L., Abarzuza, A., Caputo, L., 2019. Southward invasion of *Craspedacusta sowerbii* across mesotrophic lakes in Chile: geographical distribution and genetic diversity for the medusa phase. *Freshwater Science* (in press).

Galacze, L. C., Riquelme, K. V., Osman, D. Y., Fuentes, R. A., 2013. A new record of the non indigenous freshwater jellyfish *Craspedacusta sowerbii* Lankester, 1880 (Cnidaria) in northern Patagonia (40° S, Chile). *BioInvasions Records*, 2: 263–270.

Garman, H., 1916. The sudden appearance of great numbers of fresh-water medusa in a Kentucky creek. *Science*, 44: 858–860.

Gasith, A., Gafny, S., Hershkovitz, Y., Goldstein, H., Galil, B. S., 2011. The invasive freshwater medusa *Craspedacusta sowerbii* Lankester, 1880 (Hydrozoa: Olindiidae) in Israel. *Aquatic Invasions*, 6: S147–S152.

Gaw, H. Z., Kung, L. H., 1939. Studies on the freshwater medusa found in Kiatingi, Szechuen. *Scientific Reports of Nature of Wuhan University (Biological Sciences)*, 1: 1–12.

Giangrande, A., 2003. Biodiversity, conservation, and the ‘taxonomic impediment’. *Aquat Conserv: Marine and Freshwater Ecosystems*, 13: 451–459.

Goldstein, P. Z., DeSalle, R., 2011. Integrating DNA barcode data and taxonomic practice: Determination, discovery, and description. *Bioessays*, 33: 135–147.

Gomes–Pereira, J. N., Dionisio, G., 2013. *Craspedacusta sowerbii* Lankester, 1880 in Southern Portugal. *BioInvasions Records*, 2: 133–136.

González–Duarte, M. M., Megina, C., López–González, P. J., Galil, B., 2016. Cnidarian alien species in expansion. In: *The Cnidaria, past, present and future*: 139–160 (S. Goffredo, Z. Dubinsky, Eds.). Springer, Switzerland.

Grange, L. J., Smith, C. R., Lindsay, D. J., Bentlage, B., Youngbluth, M. J., 2017. High abundance of the epibenthic trachymedusa *Plychogastria polaris* Allman, 1878 (Hydrozoa, Trachylina) in subpolar Fjords along the West Antarctic Peninsula. *Plos One*, 12: 1–21.

Green, A. J., 2016. The importance of waterbirds as an overlooked pathway of invasion for alien species. *Diversity and Distributions*, 22: 239–247.

Green, J., 1998. Plankton associated with medusae of the freshwater jellyfish *Craspedacusta sowerbii* (Lankester) in a Thames backwater. *Freshwater
Animal Biodiversity and Conservation 42.2 (2019) 315

Hoagland, K. E., 1996. The taxonomic impediment and the convention on biodiversity. *Association of Systematics Collections Newsletter*, 24: 61–62.

Huelsenbeck, J. P., Ronquist, F., 2001. MrBAYES: Bayesian inference of phylogenetic trees. *Bioinformatics*, 17: 794–795.

Hummelinck, P. W., 1938. Ein niederländischer Fund von *Crasedacusta marginata* (Modeer) im Jahre 1762. *Zoológischer Anzeiger*, 124: 333–336.

ICZN (International Commission on Zoological Nomenclature), 1999. *International Code of Zoological Nomenclature* (4rd ed.) International Trust for Zoological Nomenclature, London.

Jakovcev–Todorovic, D., Dikanovic, V., Skoric, S., Cakic, P., 2010. Freshwater jellyfish *Crasedacusta sowerbyi* Lankester, 1880 (hydrozoa, olindiidae) – 50 years’ observations in Serbia. *Archives of Biological Sciences*, 62: 123–128.

Jankowski, T., 2001. The freshwater medusae of the world – A taxonomic and systematic literature study with some remarks on other inland water jellyfish. *Hydrobiologia*, 462: 91–113.

Jankowski, T., Collins, A. G., Campbell, R., 2008. Global diversity of inland water cnidarians. *Hydrobiologia*, 595: 35–40.

Karayiorgou, I., Zopris, S., Lopes–Lima, M., Froufe, E., Varandas, S., Teixeira, A., Sousa, R., 2015. First record of the freshwater jellyfish *Crasedacusta sowerbii* Lankester, 1880 in Greece suggests distinct European invasion events. *Limnology*, 16: 171–177.

Kayal, E., Bentlage, B., Cartwright, P., Yanagihara, A. A., Lindsay, D. J., Hopcroft, R. R., Collins, A. G., 2015. Phylogenetic analysis of higher–level relationships within Hydroidolina (Cnidaria: Hydrozoa) using mitochondrial genome data and insight into their mitochondrial transcription. *PeerJ*, 3: e1403.

Kimura, M., 1980. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. *Journal of Molecular Evolution*, 16: 111–120.

Kram, P. L., 1950. Freshwater medusae in China. *Journal of Zoology*, 120: 165–184.

Kram, P. L., 1950. Synopsis of the medusae of the world. *Journal of the Marine Biological Association of the United Kingdom*, 40: 7–382.

Lankester, E. R., 1880a. On a new jelly–fish of the order Trachomedusae, living in fresh water. *Nature*, 22: 147–148.

– 1880b. On *Linnocodium* (Crasedacusta) sowerbii, a new Trachomedusa inhabiting freshwater. *The Quarterly Journal of Microscopical Science*, 20: 351–371.

Lewis, C., Migita, M., Hashimoto, H., Collins, A. G., 2012. On the occurrence of freshwater jellyfish in Japan 1928–2011: eighty–three years of records of mamizu kurage (Limnomedusae, Olindiidae). *Proceedings of the Biological Society of Washington*, 125: 165–179.

Linse, K., 2017. Antarctic Marine Biodiversity – A taxonomic crisis? *Antarctic Science*, 20 (3): 209. Márñé–Garczón, F., Carbonell, C. S., 1971. Sobre la medusa de agua dulce *Crasedacusta sowerbyi* Lank, 1880, en el Uruguay. *Boletín de la Sociedad Zoológica del Uruguay*, 1: 10.

McAlpine, D. F., Peard, T. L., Fletcher, T. J., Hanson, G., 2002. First reports of the freshwater jellyfish *crasedacusta sowerbyi* (hydrozoa: Olindiidae) from maritime Canada with a review of Canadian occurrences. *Journal of Freshwater Ecology*, 17: 341–344.

Medina–Gavilán, J. L., González–Duarte, M. M., 2018. A synthesis of known Iberian localities for *Craspedacusta sowerbii* Lankester, 1880 (Cnidaria: Hydrozoa): new record for Spain from low Guadalquivir River. *Graellsia*, 74(2): e072.

Meyer, C. P., Geller, J. B., Paulay, G., 2005. Fine scale endemism on coral reefs: archipelagic differentiation in turbinid gastropods. *Evolution*, 59: 113–125.

Minchin, D., Caffrey, J. M., Haberlin, D., Germaine, D., Walsh, C., Boelens, R., Doyle, T. K., 2016. First observations of the freshwater jellyfish *Craspedacusta sowerbii* Lankester, 1880 in Ireland coincides with unusually high water temperatures. *Biol Invasions Records*, 5: 67–74.

Moreno–Leon, M. A., Ortega–Rubio, A., 2009. First record of *Craspedacusta sowerbyi* Lankester, 1880 (Cnidaria: Limnomedusae: Olindiidae) in Mexico (Adolfo Lopez Mateos reservoir), with notes on their feeding habits and limnological dates. *Biological Invasions*, 11: 1827–1834.

Nei, M., Kumar, S., 2000. *Molecular evolution and phylogenetics*. Oxford University Press, New York.

Odorico, D. M., Miller, D. J., 1997. Variation in the ribosomal internal transcribed spacers and 5.8S rDNA among five species of *Acropora* (Cnidaria; Scleractinia): Patterns of variation consistent with reticulate evolution. *Molecular Biology and Evolution*, 14: 465–473.

Ojaveer, H., Graells, J., Tomás, P., Durán, C., 2010. Review and new records of non–indigenous freshwater invertebrates in the Ebro River basin (Northeast Spain). *Aquatic Invasions*, 5: 263–284.

Parent, G., 1982. Une page d’histoire des sciences contemporaines: un siècle d’observations sur la méduse d’eau douce, *Craspedacusta sowerbyi* Lank. *Bulletin mensuel de la Société linnéenne de Lyon*, 51: 47–63.

Payne, F., 1924. A study of the fresh–water medusa, *Craspedacusta ryderi*. *Journal of Morphology*, 38: 387–429.

Pérez–Bote, J. L., Muñoz, A., Morán, R., Roso, R., Romero, A. J., 2006. First record of *Craspedacusta sowerbyi* Lankester, 1880 (Cnidaria: Limnomedusae: Olindiidae) in the Proserpina reservoir (Extremadura, SW Spain) with notes on their feeding
and phylogenetics of Lankester with...