Corrigendum

TriTag: an integrative tool to correlate chromatin dynamics and gene expression in living cells

Haiyue Xu1, Junyan Wang1, Ying Liang1, Yujuan Fu1, Sihui Li1, Jinghan Huang2, Heng Xu2,3, Wei Zou4,5 and Baohui Chen1,6,7,8,*

1Department of Cell Biology, and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China, 2School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, China, 3Institute of Natural Sciences, Shanghai Jiao Tong University, Shanghai 200240, China, 4The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu 322000, China, 5Institute of Translational Medicine, Zhejiang University, Hangzhou 310003, China, 6Institute of Hematology, Zhejiang University & Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou 310058, China, 7Zhejiang Laboratory for Systems & Precision Medicine, Zhejiang University Medical Center, Hangzhou 311121, China and 8Zhejiang Provincial Key Laboratory of Genetic & Developmental Disorders, Hangzhou 310058, China

Nucleic Acids Research, gkaa906, https://doi.org/10.1093/nar/gkaa906

Objects hidden behind the images in the submitted version of Figure 4 appear on top of the images in the published figure. The Author wish to replace Figure 4 with a clean version as shown below.

The published article has been updated. This error does not affect the conclusions of the article.

*To whom correspondence should be addressed. Baohui Chen. Tel: +86 571 88208304; Fax: +86 571 88208022; Email: baohuichen@zju.edu.cn

© The Author(s) 2020. Published by Oxford University Press on behalf of Nucleic Acids Research. This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact journals.permissions@oup.com
Figure 4. TriTag monitors allele-specific transcriptional bursting across the cell cycle. (A) Fluorescent images of a cell showing DNA labeling of two LMNA alleles labeled by dCas9-GFP14X and their transcriptional kinetics indicated by stdMCP-tdTomato at multiple time points. See Movie S3 for dynamics. (B, C) Line scan of intensity profiles illustrating dynamic labeling of DNA (green) and nascent RNAs (red) of locus 1 (B) and locus 2 (C) indicated in (A). (D) Representative images revealing three distinct transcriptional states of sister chromatid pairs identified by co-labeling of dCas9-GFP14X and stdMCPtdTomato. (E) Line scan of intensity profiles showing dynamic labeling of DNA and nascent RNAs at corresponding sister chromatid points by arrows in (D). (F) Sister chromatids of the same allele have correlated transcription activity. Intensities of both transcription sites were plotted, with each dot representing a different pair of sister chromatids, n = 240 pairs. Green line denotes the linear fit. R^2 represents the coefficient of determination. (G) Bar graph showing transcription states of two LMNA alleles in the same cell (case in A, n = 284 cells) or pairs of sister chromatids (case in D, n = 229 cells). (H) Snapshots of the transcription activity of LMNA gene in HeLa cells at indicated time points through mitosis. See Movie S4 and S5 for dynamics. (I) Transcriptional activity of the mother cell and its daughter cells at LMNA loci was quantified to generate the scatter plot. Each dot represents a pair of the mother cell and one of its daughter cells, n = 90 pairs. Green line denotes the linear fit. R^2 represents the coefficient of determination. (J) Bar graph showing quantifications of transcriptional activity in daughter cells derived from three groups of mother cells with no, low and high transcription of LMNA gene, respectively. n ≥ 52 cells. All scale bars: 5 μm.