Persister Cells Resuscitate Using Membrane Sensors that Activate Chemotaxis, Lower cAMP Levels, and Revive Ribosomes

Ryota Yamasaki1,†, Sooyeon Song1,†, Michael J. Benedik1, and Thomas K. Wood1,2,*

1Department of Chemical Engineering and 2Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, Pennsylvania, 16802-4400, USA
3Department of Biology, Texas A & M University, College Station, Texas, 77843-3122

*For correspondence. E-mail tuw14@psu.edu
Tel. (+)1 814-863-4811; Fax (1) 814-865-7846

†These authors contributed equally

Running title: Persisters wake via chemotaxis and transport sensors.

Keywords: persisters; alanine; glucose; resuscitation; ribosomes
ABSTRACT

Persistence, the stress-tolerant state, is arguably the most vital phenotype since nearly all cells experience nutrient stress, which causes a sub-population to become dormant. However, how persister cells wake to reconstitute infections is not understood well. Here, using single-cell observations, we determined that *Escherichia coli* persister cells resuscitate primarily when presented with specific carbon sources, rather than spontaneously. In addition, we found that the mechanism of persister cell waking is through sensing nutrients by chemotaxis and phosphotransferase membrane proteins. Furthermore, nutrient transport reduces the level of secondary messenger cAMP through enzyme IIA; this reduction in cAMP levels leads to ribosome resuscitation and rescue. Resuscitating cells also immediately commence chemotaxis toward nutrients, although flagellar motion is not required for waking. Hence, persister cells wake by perceiving nutrients via membrane receptors which relay the signal to ribosomes via the secondary messenger cAMP, and persisters wake and utilize chemotaxis to acquire nutrients.
INTRODUCTION

The persister cell phenotype was first noted by Hobby et al. in 1942 (Hobby et al., 1942) when penicillin did not completely sterilize a *Staphylococcus aureus* culture (1% of the population remained intact). The surviving subpopulation was deemed ‘persisters’ by Bigger et al. in 1944 (Bigger, 1944). Both groups determined that persisters are dormant (Bigger, 1944; Hobby et al., 1942), which has been corroborated (Kwan et al., 2013; Shah et al., 2006), and further research has demonstrated persister cells are not mutants (Chowdhury et al., 2016b; Kwan et al., 2015a) but instead acquire their antibiotic tolerance through this dormancy.

The persister cell phenotype is ubiquitous and has been well described in many bacteria such as *Escherichia coli* (Fisher et al., 2017), *Pseudomonas aeruginosa* (Fisher et al., 2017), *S. aureus* (Fisher et al., 2017) and in Archaea (Megaw and Gilmore, 2017). Critically, the persister state arises not only after antibiotic stress but nutrient stress also creates persister cells (Bernier et al., 2013; Maisonneuve and Gerdes, 2014; Martins et al., 2018); in fact, the classic viable but not culturable state appears to be the same as the persister state (Kim et al., 2018a) so persisters form everywhere as all bacterial cells eventually face nutrient stress (Song and Wood, 2018). Hence, it may be argued that the persister state is one of the most fundamental bacterial phenotypes.

Persister cells form from a reduction in metabolism usually from activation of a toxin of a toxin/antitoxin system. Evidence of this is that the deletion of several toxins of toxin/antitoxin systems such as MqsR (Kim and Wood, 2010; Luidalepp et al., 2011), TisB (Dörr et al., 2010), and YafQ (Harrison et al., 2009) leads to a reduction in persistence. Similarly, production of toxins unrelated to toxin/antitoxin systems can also increase persistence (Chowdhury et al., 2016a).

We have found persister cells resuscitate as soon as instantaneously in rich medium (Kim et al., 2018b) and wake based on their ribosome content (Kim et al., 2018b). For example, persister cells with four fold fewer ribosomes are delayed by several hours in their resuscitation while ribosome levels increase (Kim et al., 2018b). Others have suggested, but not shown, that cells may be resuscitated by reversing the effects of toxins of toxin/antitoxin systems (Cheverton et al., 2016). Hence, it is still unknown what pathway is
involved in persister cell waking in regard to nutrient sensing.

To study persister cells without introducing traits of more prevalent cell phenotypes (e.g., slow-growing, tolerant stationary cells), their concentration needs to be increased so they are the dominant phenotype. Previously, we showed how to create a high percentage of *E. coli* persister cells (up to 70%) via rifampicin-pretreatment to stop transcription, carbonyl cyanide *m*-chlorophenylhydrazone (CCCP) to stop ATP production, or tetracycline to stop translation (Kwan et al., 2013); these cells were shown to be *bona fide* persister cells via eight different assays (multi-drug tolerance, immediate change from persistence to non-persistence in the presence of nutrients, dormancy based on lack of cell division in the absence of nutrients, dormancy via metabolic staining and cell sorting, no change in MIC compared to exponential cells, no resistance phenotype, similar morphology to ampicillin-induced persisters, and similar resuscitation as ampicillin-induced persisters) (Kim et al., 2018b). Several other research groups have used our methods to make persister cells (Cui et al., 2018; Grassi et al., 2017; Narayanaswamy et al., 2018; Sulaiman et al., 2018; Tkhilaishvili et al., 2018); for example, Cui *et. al.* used rifampin and tetracycline to induce persistence for screening the *E. coli* Keio library and found several DNA repair mutants (e.g., *recA*, *recC*, *ruvA*, and *uvrD*) with reduced persistence, Grassi *et. al.* (Grassi et al., 2017) used CCCP to generate *P. aeruginosa* and *S. aureus* persister cells to determine that antibiotic-tolerant phenotypes depend on different classes of antibiotics, and Narayanaswamy *et. al.* (Narayanaswamy et al., 2018) used CCCP to generate *P. aeruginosa* persister cells and found poly (acetyl, arginy1) glucosamine is effective for killing them.

In the present study, we found that rather than waking spontaneously, persister cells wake primarily as a result of sensing nutrients. We then elucidated the waking pathway and found persister cells wake via chemotaxis and transport pathways that serve to reduce cAMP, activate ribosomes, and commence chemotaxis.
RESULTS

Overview. To create a large enough population of persister cells so that we could investigate resuscitation at the single-cell level, we pre-treated exponential cells with rifampicin to stop transcription since this method converts the rare persister phenotype into the dominant cell state; i.e., we increased the number of persister cells by 10^5-fold which enables us to study more readily persister cells at the single-cell level (Kwan et al., 2013). The persister cells induced by rifampicin are isolated from any remaining non-persister cells by ampicillin treatment since the non-persisters cells lyse so that the remaining population consists solely of only persister cells (Kwan et al., 2013).

To study these persister cells, we utilized initially agar plates. We reasoned that if specific persister cells wake faster, larger colonies would form on M9 agar plates since we found previously that once they wake, persister cells grow at the same rate as exponentially-growing cells (Kim et al., 2018b). All of the significant resuscitation results found from the agar plates were confirmed by single-cell experiments. In addition, all of the strains used in this work were tested and shown to produce roughly the same number of persister cells (so there is no defect in the formation of persister cells) and shown to grow similar to the wild-type (so there is no growth defect).

Persister cells wake by recognizing Ala. To elucidate insights about waking using defined medium, we hypothesized that a single amino acid could wake E. coli persister cells since L-alanine revives spores of Bacillus subtilis (Mutlu et al., 2018). Initially, four groups of five amino acids were tested (#1: Ala, Arg, Cys, Phe, Ser; #2: Gly, His, Thr, Val, Tyr; #3: Asn, Ile, Lys, Pro, Trp; and #4: Asp, Glu, Gln, Leu, Met) by plating E. coli persister cells on M9 agar plates with the amino acid combinations as the sole carbon source and checking for growth after four days (Supplemental Fig. 1). Larger colonies were obtained from group #1 compared to groups #3 and #4, indicating faster waking, and persister cells did not wake for group #2 (Supplemental Fig. 1). As expected, there was no persister cell growth with M9 agar that lacks amino acids (negative control). For the two best groups (#1 and #3), each amino acid was tested separately for persister cell waking, and clearly substantially more persister cells were revived with Ala (Supplemental Fig. 2).

To confirm that the macroscopic colonies seen on M9 agar plates reflected faster waking, single E. coli
persister cells were observed on M9 5X Ala agarose gel pads using light microscopy. We found that 18 ± 1% of persister cells began to wake, as evidenced by dividing or elongating within 6 hours (Fig. 1, statistics shown in Table S1). As a negative control, single cell waking was monitored using Asn (5X) from group #3. Unlike with Ala, only 2 ± 2% divided after 6 hours (Fig. 1, Table S1). Hence, persister cells with Ala wake 9-times more frequently than those with Asn. As an additional negative control, waking on agarose gel pads that lack amino acids (and any other carbon source) was investigated, and we found no persister cells wake after 6 h (Fig. 1). This lack of persister cell waking without nutrients also confirms that the persister cells used are bona fide dormant cells since, in contrast, exponential cells can wake in 6 h on agarose pads that lack nutrients (12 ± 4%, Table S1).

Persister cells wake primarily by sensing nutrients rather than spontaneously. Along with waking as a response to a change in environmental conditions (e.g., the addition of nutrients (Kim et al., 2018b)), it has been reported that persister cells wake spontaneously (Balaban et al., 2004); hence, we investigated whether persister cells wake in the absence of Ala. To test this, single persister cells were observed on NaCl, NaCl + ampicillin, and NaCl + ampicillin + Ala agarose gel pads. The rationale is that if the persisters wake, ampicillin will lyse the cells (Uehara et al., 2009) which is seen as a disappearing single cell. We used NaCl buffer rather than M9 buffer so that the effect of ampicillin and Ala would be more clear.

We found that persister cells wake primarily in the presence of Ala since there was 4.4-fold more waking followed by lysis with Ala + ampicillin in 6 hours compared to gel pads that lacked Ala but contained ampicillin (Fig. 2, statistics in Table S2). As expected, for the negative control (NaCl only), there was no cell death seen in 6 hours (Fig. 2A). Therefore, most persister cells do not resuscitate spontaneously but instead sense the carbon source through some pathway. Furthermore, these results suggest the cells do not determine whether the antibiotic is present or not.

Alanine is a waking signal. Since persister cells wake in the presence of Ala, we investigated whether Ala acts as a true signal rather than as a carbon and energy source by utilizing an isogenic dadA mutation that abolishes growth on alanine by inactivating D-amino acid dehydrogenase (Franklin and Venables, 1976; Wild and Klopotowski, 1981). We confirmed the dadA mutation abolishes growth on Ala (Supplemental...
and found 4% of the single \textit{dadA} cells wake with Ala whereas no cells wake without Ala (Supplemental Fig. 3, statistics in Table S3); hence, Ala wakes persister cells in the absence of growth. Moreover, we tested whether Ala wakes persister cells in the presence of the additional carbon and energy source pyruvate (final conc. 0.24 wt%) when Ala is not used for growth (i.e., with the \textit{dadA} mutant). We found pyruvate does not wake single \textit{dadA} persister cells whereas Ala wakes \textit{dadA} persister cells, in the presence of pyruvate, to the same extent as in the absence of pyruvate (Supplemental Fig. 3, Table S3). Therefore, Ala is true signal for waking persister cells.

\textbf{Persister cells resuscitate through the chemotaxis apparatus.} Since most persister cells are waking by responding to the presence of Ala as a signal, we investigated the mechanism of how persister cells resuscitate by looking for faster waking when individual proteins are produced. Hence, we pooled all the ASKA plasmids (each pCA24N-derived plasmid produces one \textit{E. coli} protein) and electroporated them into \textit{E. coli} BW25113, formed persister cells, and selected for faster growth on M9 5X Ala agar plates containing chloramphenicol to retain the plasmid. After 3 days, some colonies could be seen and after 8 days, different phenotypes were clearly seen (Supplemental Fig. 4). The faster (bigger) colonies were purified and sequenced and six proteins were identified: PsiF, PanD, YmgF, YjcF, PptA, and CheY.

For these six putative proteins that stimulate persister cell waking, single cells harboring the ASKA plasmid were observed on M9 5X Ala agarose gel pads and compared with persister cells with an empty plasmid (\textit{E. coli} BW25113/pCA24N) (Supplemental Fig. 5, Table S4). Note that due to the metabolic burden of the plasmid, the cells wake slower so the microscopic observations were extended to 18 h. We found single cells that produce PanD (23-fold) and YmgF (18-fold) wake at a higher frequency with Ala, compared to cells containing the empty plasmid (Table S4). Remarkably, all the single persister cells that produced the chemotaxis response regulator CheY resuscitated (33-fold enhancement, Fig. 3, Table S4), and 82% of the single persister cells that produced response regulator CheA resuscitated (27-fold enhancement) (Fig. 3, Table S5); In addition, single cells of deletion mutants ΔcheY and ΔcheA are completely inhibited in their waking on M9 Ala (Supplemental Fig. 6). Critically, the CheY and CheA strains do not have defects in either persister cell formation and growth (Table S6). Together, these results
demonstrate the importance of the chemotaxis system in nutrient recognition and waking in persister cells. To investigate further the link between chemotaxis and persister cell waking, we tested all five of the methyl-accepting chemotaxis proteins (Tsr, Tar, Trg, Tap, and Aer) for waking on agar plates by using isogenic mutants and found inactivating Tar and Trg decreased waking compared to the wild type (Supplemental Fig. 7). Corroborating these results, persister cells that produce Tar and Trg woke faster than those with the empty plasmid and faster than cells producing Aer, Tsr, and Tap (Supplemental Fig. 8).

Single cells producing Tar (9-fold) and Trg (8-fold) also woke with a higher frequency than cells containing the empty plasmid, and single cells producing Tsr woke the same as those with the empty plasmid (Fig. 3, Table S5). Hence, persister cells wake on alanine via the chemotaxis system utilizing methyl-accepting chemotaxis proteins Tar and Trg and response regulators CheY and CheA.

Persistor cell waking does not require flagellar rotation. Since the chemotaxis system involves the flagellum, we investigated its role in persister cell waking. Using agar plates, there was no effect of the flagellum as tested by inactivating the flagella motor MotA (Supplemental Fig. 9), and single persister cells with inactivated flagella motor MotB did not wake significantly differently than wild-type persisters (Supplemental Fig. 10, Table S7). Corroborating these results, inactivating the hook protein FlgE (Brown et al., 2012) had no effect on persister waking (Supplemental Fig. 11), so flagellum movement is not required for persister cells waking. Note the flagella system has been linked previously to persister cell formation (Shan et al., 2015) but not to resuscitation.

In contrast, inactivating FhlD and FliN reduced the frequency of single cell waking by 3-fold (Supplemental Fig. 10, Table S7). In addition, producing FliN in single cells increased the waking frequency by 4.3-fold (Fig. 3, Table S5). Hence, the master transcriptional regulator of flagellar proteins is involved in persister cell waking.

Persistor cells wake by lowering cAMP levels. Having determined that persister cells wake by utilizing the chemotaxis apparatus, we explored how the external nutrient signal was propagated beyond the chemotaxis and flagellum system. Since cells can sense their environment (e.g., surfaces) by cAMP (Lee
et al., 2018), and cAMP has been linked to persistence (Kwan et al., 2015b), we reasoned that persister cell waking may involve this secondary message.

To test the importance of cAMP, we produced the only adenylate cyclase in *E. coli*, CyaA (Tuckerman et al., 2009) via BW25113/pCA24N-cyaA and found using agar plates that cells with elevated cAMP have reduced waking compared to cells with the empty plasmid (Supplemental Fig. 12). Consistently, cells producing the cAMP-specific phosphodiesterase CpdA (Imamura et al., 1996) via BW25113/pCA24N-cpdA have increased waking on M9-Ala agar plates; we showed previously CpdA can eliminate cAMP by reducing its concentration 323-fold (Kwan et al., 2015b). Corroborating these results, cells lacking CpdA (BW25113 ∆cpdA) have reduced waking on M9-Ala plates (Supplemental Fig. 12).

Verifying these agar plate results, single cells producing adenylate phosphodiesterase CpdA before persister formation had a 15-fold greater (0.5 mM IPTG) and 8-fold greater (0 mM IPTG) frequency of waking (Fig. 3, Table S5) by reducing cAMP levels. In addition, producing adenylate cyclase CyaA reduced the frequency of waking by 30% compared to the empty plasmid (Fig. 3, Table S5). In a consistent manner, increasing cAMP levels by inactivating CpdA completely eliminated single cell waking (Supplemental Fig. 13, Table S8) and decreasing cAMP levels by inactivating CyaA led to 4.3-fold greater frequency of waking (78%) (Supplemental Fig. 13, Table S8).

As additional proof of the impact of cAMP, we used the cAMP inhibitor atropine (Huynh et al., 2012) and found single cells wake with atropine (3 mM) at twice the frequency (Supplemental Fig. 14). Consistently, adding exogenous cAMP (2 mM) reduced the frequency of single-cell waking 3-fold (Supplemental Fig. 14). Moreover, combining atropine with production of CpdA to reduce cAMP increased the frequency of waking 4-fold such that 92% of the cells woke in 6 h (Fig. 3, Table S5). Therefore, reducing cAMP levels increases persister cell waking dramatically.

Persister cells wake by resuscitating and rescuing ribosomes. Since reducing levels of cAMP led to faster resuscitation, we explored further the mechanism for their waking. We hypothesized that since elevated cAMP levels increase ribosome hibernation during starvation (Shimada et al., 2013), lowering cAMP levels should lead to ribosome resuscitation; hence, we tested the impact of changing the...
concentration of ribosome resuscitation factor HflX (Gohara and Yap, 2018); HflX also rescues ribosomes from mRNA (Zhang et al., 2015). We utilized ribosome rescue factor ArfB (Abo and Chadani, 2014) as a negative control since it is positively regulated by cAMP (Raghavan et al., 2011). In addition, since trans-translation is used to rescue ribosomes from mRNA that lack a stop codon (Abo and Chadani, 2014), we also investigated the impact of SsrA on persister cell waking, using the strain we constructed (Wang et al., 2009).

For M9 Ala agar plates, we found cells producing HflX woke faster, compared to cells with the empty plasmid whereas cells producing ArfB did not wake, indicating ArfB reduces waking dramatically (Supplemental Fig. 15). Similarly, for single cells, we found inactivating HflX completely inhibited waking (Supplemental Fig. 16, Table S9). In contrast, inactivating ArfB in single cells had no effect (Supplemental Fig. 16, Table S9). Corroborating these results, producing HflX in single cells increased the frequency of waking dramatically (7-fold) (Fig. 3, Table S5).

For ribosome rescue, using agar plates, we found inactivating SsrA led to significantly slower waking (Supplemental Fig. 15). Similarly, for single cells, inactivating SsrA almost completely inhibited waking (frequency of waking reduced to less than 1%) (Supplemental Fig. 16, Table S9). Therefore, resuscitating ribosomes via HflX and SsrA is vital for persister cell resuscitation. Previously, SsrA has been shown to have a modest role (2- to 8-fold) in the formation of persister cells (Shi et al., 2013).

Persister cells wake by recognizing sugars derived from biofilms. Using alanine to wake cells, it was not clear how cAMP levels are reduced; hence, we studied resuscitation with the building blocks of the biofilm matrix since we hypothesized that those materials would be readily available. Initially, we chose four polysaccharide building blocks of the most prevalent polymers of *E. coli* biofilms: D-glucose from cellulose (Klemm et al., 2005), D-glucosamine and N-acetyl-D-glucosamine from poly-N-acetylglucosamine (Pokhis et al., 2015), and α-D-glucose 1-phosphate from colonic acid (Patel et al., 2012; Stevenson et al., 1996). The final concentration of each sugar was kept at 0.4%, and each polysaccharide building block was utilized as the sole carbon and energy source.

Using minimal agar plates that contain these polysaccharides at 0.4 wt% and Ala at 0.04 wt% (0.4 wt%
Ala inhibited waking, we found that persister cells wake more rapidly on biofilm-derived polymers than on Ala since colonies form two days faster on plates with the polysaccharide precursors (Supplementary Fig 17). Since waking with glucose was most rapid, we focused on using it for persister resuscitation. As expected, we found the frequency of single cell waking was higher with glucose compared to Ala; for example, in 6 h, 92 ± 2% cells resuscitate on glucose compared to 18 ± 1% on Ala (Fig. 4, Table S10).

Glucose waking requires transporters PtsG and MglB and chemotaxis. For waking on Ala, we discovered that the methyl-accepting chemotaxis proteins Trg and Tar are used for persister resuscitation. Hence, we hypothesized that the glucose phosphotransferase transport protein PtsG, which interacts indirectly with the chemotaxis system via chemoeffector CheA (Neumann et al., 2012), may be responsible for waking with glucose. Supporting this hypothesis, we found that inactivating PtsG reduced waking on agar plates (Supplementary Fig. 18) and nearly abolished the frequency of single cell waking on glucose (70-fold reduction, Fig. 5, Table S11). In addition, production of PtsG from pCA24N-ptsG abolished glucose waking indicating the stoichiometry of the PtsG proteins in the inner membrane are critical (Fig. 6, Table S12). As a negative control, the frequency of waking was tested for the maltose PTS transporter by inactivating MalE; as expected, deletion of malE had no impact on waking with glucose (Fig. 5, Table S11). Hence, persister cell waking glucose transport through the phosphotransferase system.

Since persister waking on glucose occurs via PtsG, we tested whether the chemotaxis system was involved since the transported glucose stimulates chemotaxis (Neumann et al., 2012). By producing chemoeffector CheY, we found the frequency of single-cell waking increased dramatically (16-fold) (Fig. 6, Table S12). Hence, persister cell waking with glucose also depends on an active chemotaxis system.

We also tested whether the resuscitation of persister cells on glucose depends on the chemotaxis ABC glucose transporter MglB found a 1.2-fold reduction in the frequency of single-cell waking upon inactivating MglG (Fig. 5). Corroborating this result, deleting the methyl-accepting chemotaxis protein Trg, which interacts with glucose from MglB (Neumann et al., 2012), reduced the frequency of single-cell waking by 5-fold (Fig. 5, Table S11). Hence, persister cell resuscitation on glucose requires both well-known glucose transport systems as well as the chemotaxis system.
Glucose waking requires reduced cAMP. Since Ala resuscitation requires the cell to lower cAMP levels, we explored if this occurs with glucose and found again that low cAMP levels are needed since adding 2 mM cAMP as well as inactivating phosphodiesterase CpdA (Imamura et al., 1996) to increase cAMP levels, reduces waking on glucose on agar plates (Supplementary Fig. 19). Corroborating these plate results, producing CpdA to lower cAMP levels increased the frequency of waking of single cells dramatically (16-fold) on glucose (Fig. 6, Table S12), and inactivating adenylate cyclase CyaA (Tuckerman et al., 2009) to eliminate cAMP, increased the frequency of waking on glucose substantially (2.3-fold) (Fig. 5, Table S11). In addition, inactivating CpdA reduced the frequency of single cell waking by 4-fold (Fig. 5, Table S11). Therefore, cAMP levels must be low for persister cells to wake with glucose.

Glucose transport lowers cAMP concentrations. We hypothesized that the requisite reduction in cAMP upon resuscitation with glucose is a result of glucose transport with PtsG, since the associated phosphotransferase system enzyme EIIAGlc becomes unphosphorylated; unphosphorylated EIIAGlc inactivates adenylate cyclase CyaA and leads to low cAMP (Deutscher, 2008; Yao et al., 2011) (a well-known aspect of catabolite repression). In support of this model, we tested the \textit{crr} isogenic mutant (\textit{crr} encodes EIIAGlc) with single cells and found that inactivating EIIAGlc reduced the frequency of single-cell waking 2-fold (Fig. 5). In addition, single cells producing EIIA (pCA24N-crr) had 0.6-fold reduced waking frequency (Fig. 6). Therefore, reducing cAMP concentrations through EIIAGlc is important for persister cell waking.

Glucose waking requires ribosome resuscitation. Since waking on Ala requires cells to rescue ribosomes from corrupt mRNA and from dimerization via HflX and to rescue ribosomes from corrupt mRNA via SsrA, we tested whether these proteins are also necessary for persister cell resuscitation on glucose. For waking on agar plates, inactivating trans-translation (i.e., SsrA) abolished waking (Supplementary Fig. 20). For single-cell waking with glucose, there was only a small positive effect of producing HflX (Fig. 6, Table S12); however, inactivating trans-translation (\textit{\textDelta ssrA}) reduced waking dramatically (-3-fold) (Fig. 5, Table S11). Therefore, ribosome resuscitation through SsrA is primarily responsible for waking with glucose.
Cells wake and begin chemotaxis simultaneously. To determine if persister cells resuscitate and undergo chemotaxis simultaneously, we observed single persister cell waking inside motility agar with a glucose gradient; therefore, unlike the previous results where persister cells resuscitated on the surface of agarose gel pads, here persisters resuscitate and move planktonically inside a 0.3% agar (motility) gel. Note that the movement of the cells in these experiments is not due to fluid flow or random motion since the cell movement is always toward glucose in many repeated trials and since there is no fluid flow in this static 0.3% gel which is a semi-solid rather than a liquid.

Critically, we found that 20 ± 6% of the wild-type persister cells resuscitate and undergo chemotaxis immediately toward the glucose (Supplementary video 1). As expected, wild-type persister cells do not move without glucose. Since reducing cAMP by inactivating cyaA increases waking (Fig. 5, Supplementary Fig. 13), we hypothesized that the cyaA mutation would magnify this effect of instantaneous waking; strikingly, 94 ± 2% of the cyaA persister cells moved immediately toward glucose, indicating that the reduction of cAMP primes the cells for waking and chemotaxis. Furthermore, we reasoned that inactivating EIIA would also reduce cAMP and stimulate waking and found 96 ± 6% of the crr cells woke and began chemotaxis to glucose (Supplementary video 1). Critically the crr mutant cells wake instantaneously without glucose and show random movement in the M9 motility agar that lacks glucose confirming that low cAMP levels lead to more active resuscitation. The crr mutants still formed persister cells since any non-persister cells were removed during the 3 h ampicillin treatment. Therefore, the persister cells that resuscitate immediately begin moving toward nutrients.

DISCUSSION

Spores are the ultimate bacterial resting state, and L-alanine revives spores of Bacillus subtilis (Mutlu et al., 2018). Hence, we hypothesized that L-alanine or another amino acid may wake E. coli persisters. By investigating all 20 amino acids, we found that L-alanine wakes E. coli persister cells much faster than other amino acids (Supplemental Fig. S1, S2). To determine insights into how L-alanine wakes E. coli persisters, we pooled the ASKA clones, isolated their plasmids, electroporated them into E. coli BW25113, made
persister cells, and selected for faster waking. From this selection, six proteins were identified that increased waking: PsiF, PanD, YmgF, YjcF, PptA, and CheY. From these six proteins, we found PanD and YmgF increase waking 20-fold. PanD (aspartate 1-decarboxylase) (Cronan, 1980) which catalyzes the reaction of L-aspartate to β-alanine; hence, PanD produces an alanine-like compound. YmgF is related to an inner membrane division septum protein (Karimova et al., 2009); therefore, the persister cells wake and are primed for cell division. Critically, we determined the chemotaxis response regulator CheY and the chemotaxis methyl-accepting chemotaxis proteins Tar and Trg are utilized for persister resuscitation. Surprisingly, the chemotaxis methyl-accepting protein Tsr, which is primarily responsible for Ala chemotaxis (Tajima et al., 2011), was not involved in persister waking; however, Tar is also utilized for Ala chemotaxis (Yang et al., 2015). Therefore, persister cells wake through the same nutrient sensors they utilize for chemotaxis. Once resuscitated, the cells then rapidly move toward nutrients since the chemotaxis system is primed immediately, and the lack of nutrients (and energy for protein production) is what caused the dormancy in the first place (Kwan et al., 2013).

CAMP activates ribosome hibernation as 100S dimers during starvation by activating ribosome-binding protein RMF (Shimada et al., 2013) so it makes sense for cells to reverse this process (as we find here) and reduce CAMP levels to wake in the presence of nutrients, since we identified that the activity of ribosomes dictates the speed of persister resuscitation (Kim et al., 2018b). Supporting this insight, we found that inactivation of the ribosome rescue factor HflX (heat shock-induced ribosome-dependent GTPase) completely stopped waking of single cells and production of HflX increased the frequency of waking dramatically; hflX (in the same operon as hfq) is repressed by CAMP-Crp (Lin et al., 2011). In contrast, ribosome rescue factor Arfb (peptidyl-tRNA hydrolase) had no effect because it is induced by CAMP-Crp (Raghavan et al., 2011). Critically, all bacteria have mechanisms for rescuing ribosomes since without rescue, all ribosomes would be depleted in less than one generation (Moore and Sauer, 2007), and we found that without ribosome rescue via the trans-translation system (SsrA), persister cell waking is almost completely inhibited for Ala (Supplementary Fig. 16) and reduced for glucose (Fig. 5). Hence, ribosome rescue during persister cell resuscitation may be a general mechanism and should provide ample ribosomes.
for resuscitation.

Although it is counter intuitive, in regard to the formation of persister cells, high concentrations of cAMP allow ribosomes to hibernate and prepare the cell for nutrient-depleted conditions; yet, high concentrations of cAMP actually reduce persistence (Kwan et al., 2015b) (reduce cell dormancy). This is because cells with high cAMP concentrations are more prepared for stress and have less need to become dormant; i.e., more fit cells have dramatically less persistence (Hong et al., 2012).

Overall, by studying persister cell resuscitation with alanine, we have identified that (i) persister cells wake primarily in response to nutrient stimulus (rather than spontaneously), (ii) Ala is the most suitable amino acid signal for waking E. coli persister cells, (iii) this nutrient signal is perceived through the chemotaxis system via CheY, Trg, and Tar, (iv) second messenger cAMP concentrations are reduced for waking, and (v) ribosomes are restored for waking (Fig. 7). By studying persister cell resuscitation with glucose, we confirmed that chemotaxis and ribosome rescue are important for persister waking. Critically, the phosphotransferase system that imports glucose serves to reduce cAMP concentrations by dephosphorylating EIIAGlc, which allows ribosomes to resuscitate. Notably, the same mechanism for cAMP reduction is possible for alanine resuscitation via the chemotaxis system which detects it, since CheA, which we found to be critical for resuscitation with alanine, interacts directly with unphosphorylated EIIAGlc (Neumann et al., 2012). Therefore, persister cell resuscitation is an elegant (i.e., highly-regulated) response in which nutrients are perceived as environmental signals via membrane receptors; this environmental signal is propagated to ribosomes via the secondary metabolite cAMP, and persister cells commence foraging for food as the wake.

METHODS

Bacterial strain and growth conditions. The bacterial strains and plasmids used in this study are listed in Table S13. E. coli BW25113 and its isogenic mutants (Baba et al., 2006), and the pCA24N-based plasmids from the E. coli ASKA collection (Kitagawa et al., 2005) were used. Lysogeny broth (Sambrook et al., 1989) was used for routine cell growth, and M9 medium supplemented with amino acids (Rodriguez and...
Tait, 1983) was used for waking studies; strains were grown at 37 °C. Each of the 20 amino acids stock solutions were prepared as indicated in Table S14 (Rodriguez and Tait, 1983).

Observation of persister cells on agarose gel pads. We utilized our previous method for converting up 70% of the cell population into persister cells (Kim et al., 2018a; Kim et al., 2018b; Kwan et al., 2013): exponentially-growing cells (turbidity of 0.8 at 600 nm) were treated with rifampicin (100 µg/mL for 30 min) to form persister cells by stopping transcription and non-persister cells were removed by lysis via ampicillin treatment (100 µg/mL for 3 h). Cells were harvested at 17,000 g for 1 min and washed with 1x phosphate buffered saline buffer (Dulbecco and Vogt, 1954) (PBS) buffer twice to remove all possible carbon sources, then re-suspended with 1 mL of 1x PBS. Gel pads of 1.5% agarose were prepared (Kim et al., 2018b) and 5 µL of persister cells were added, kept at 37°C, and observed using a light microscope (Zeiss Axio Scope.A1, bl_ph channel at 1000 ms exposure) every hour.

Observation of persister cells on motility gel pads. An M9-gradient glucose motility gel pad (0.3% agar) was prepared by solidifying for 1.5 hours and adding 10 µL of 5 wt% glucose and 10 µL of persister cells. The movement of the persister cell was observed using light microscopy (Zeiss Axio Scope.A1, bl_ph channel at 1000 ms exposure).

Persister resuscitation screen. All 4,267 ASKA clones (GFP-) (Kitagawa et al., 2005) were combined, grown to a turbidity of 2 at 600 nm in LB medium, and their plasmids isolated using a plasmid DNA Mini Kit I (OMEGA Bio-tek, Norcross, GA, USA). The pooled ASKA plasmids (1 µL containing 30 ng of DNA) was electroporated into 50 µL of *E. coli* BW25113 competent cells, 1 mL LB medium was added, and the cells were grown to a turbidity of 0.5 in LB medium. Chloramphenicol was added (final conc. 30 µg/mL) to the culture, and the cells were incubated at 250 rpm to a turbidity of 0.8. Rifampicin followed by ampicillin was added to make persister cells, the persister cells were washed twice with 1x PBS buffer, diluted 100-fold 1x PBS buffer, and 100 µL was plated on M9 5X Ala (Cm) agar plates and incubated at 37°C; faster colony appearance indicated faster persister resuscitation.
AUTHOR’S CONTRIBUTIONS

RY and SYS performed the experiments. RY, SYS, MJB, and TKW designed the experiments.

AVAILABILITY OF DATA AND MATERIALS

All data are present in the manuscript.

COMPETING INTERESTS

The authors declare no competing interests.

ACKNOWLEDGEMENTS

This work was supported by funds derived from the Biotechnology Endowed Professorship at the Pennsylvania State University. We thank Prof. John Parkinson and Prof. Pushkar Lele and for fruitful discussions about chemotaxis.

REFERENCES

Abo, T., and Chadani, Y. (2014). The fail-safe system to rescue the stalled ribosomes in Escherichia coli. Front Microbiol 5.

Baba, T., Ara, T., Hasegawa, M., Takai, Y., Okumura, Y., Baba, M., Datsenko, K.A., Tomita, M., Wanner, B.L., and Mori, H. (2006). Construction of Escherichia coli K-12 in-frame, single-gene knockout mutants: the Keio collection. Mol Syst Biol 2, 2006 0008.

Balaban, N.Q., Merrin, J., Chait, R., Kowalik, L., and Leibler, S. (2004). Bacterial persistence as a phenotypic switch. Science 305, 1622 - 1625.

Balnier, S.P., Lebeaux, D., DeFrancesco, A.S., Valomon, A., Soubigou, G., Coppee, J.Y., Ghigo, J.M., and Beloin, C. (2013). Starvation, together with the SOS response, mediates high biofilm-specific tolerance to the fluoroquinolone ofloxacin. PLoS Genet 9, e1003144.

Bigger, J.W. (1944). Treatment of staphylococcal infections with penicillin - By intermittent sterilisation. Lancet 2, 497-500.

Brown, M.T., Steel, B.C., Silvestrin, C., Wilkinson, D.A., Delalez, N.J., Lumb, C.N., Obara, B., Armitage, J.P., and Berry, R.M. (2012). Flagellar Hook Flexibility Is Essential for Bundle Formation in Swimming Escherichia coli Cells. J Bacteriol 194, 3495-3501.

Cheverton, Angela M., Gollan, B., Przydacz, M., Wong, Chi T., Mylona, A., Hare, Stephen A., and Helaine, S. (2016). A Salmonella Toxin Promotes Persister Formation through Acetylation of tRNA. Mol Cell 63, 86-96.

Chowdhury, N., Kwan, B.W., and Wood, T.K. (2016a). Persistence Increases in the Absence of the Alarmone Guanosine Tetraphosphate by Reducing Cell Growth. Sci Rep 6.

Chowdhury, N., Wood, T.L., Martinez-Vazquez, M., Garcia-Contreras, R., and Wood, T.K. (2016b). DNA-crosslinker cisplatin eradicates bacterial persister cells. Biotechnol Bioeng 113, 1984-1992.

Cronan, J.E. (1980). Beta-Alanine Synthesis in Escherichia-Coli. J Bacteriol 141, 1291-1297.

Cui, P., Niu, H., Shi, W., Zhang, S., Zhang, W., and Zhang, Y. (2018). Identification of Genes Involved in Bacteriostatic Antibiotic-Induced Persister Formation. Front Microbiol 9, 413.

Deutscher, J. (2008). The mechanisms of carbon catabolite repression in bacteria. Curr Opin Microbiol 11, 87-93.
Dörr, T., Vulić, M., and Lewis, K. (2010). Ciprofloxacin causes persister formation by inducing the TisB toxin in *Escherichia coli*. PLoS Biol 8, e1000317.

Dulbecco, R., and Vogt, M. (1954). Plaque formation and isolation of pure lines with poliomyelitis viruses. J Exp Med 99, 167-182.

Fisher, R.A., Gollan, B., and Helaine, S. (2017). Persistent bacterial infections and persister cells. Nat Rev Microbiol 15, 453-464.

Franklin, F.C.H., and Venables, W.A. (1976). Biochemical, Genetic, and Regulatory Studies of Alanine Catabolism in *Escherichia coli* K12. Mol Gen Genet 149, 229-237.

Gohara, D.W., and Yap, M.-N.F. (2018). Survival of the drowsiest: the hibernating 100S ribosome in bacterial stress management. Curr Genet 64, 753-760.

Grassi, L., Di Luca, M., Maisetta, G., Rinaldi, A.C., Esin, S., Trampuz, A., and Batoni, G. (2017). Generation of Persister Cells of *Pseudomonas aeruginosa* and *Staphylococcus aureus* by Chemical Treatment and Evaluation of Their Susceptibility to Membrane-Targeting Agents. Front Microbiol 8, 1917.

Harrison, J.J., Wade, W.D., Akierman, S., Vacchi-Suzzi, C., Stremick, C.A., Turner, R.J., and Ceri, H. (2009). The chromosomal toxin gene yafQ is a determinant of multidrug tolerance for *Escherichia coli* growing in a biofilm. Antimicrob Agents Chemother 53, 2253-2258.

Hobby, G.L., Meyer, K., and Chaffee, E. (1942). Observations on the mechanism of action of penicillin. Proc Soc Exp Biol Med 50, 281-285.

Hong, S.H., Wang, X., O'Connor, H.F., Benedik, M.J., and Wood, T.K. (2012). Bacterial persistence increases as environmental fitness decreases. Microb Biotechnol 5, 509-522.

Huynh, T.T., McDougald, D., Klebensberger, J., Al Qarni, B., Barraud, N., Rice, S.A., Kjelleberg, S., and Schleheck, D. (2012). Glucose Starvation-Induced Dispersal of *Pseudomonas aeruginosa* Biofilms Is cAMP and Energy Dependent. PLOS ONE 7, e42874.

Imamura, R., Yamanaka, K., Ogura, T., Hiraga, S., Fujita, N., Ishihama, A., and Niki, H. (1996). Identification of the *cpdA* gene encoding cyclic 3’,5’-adenosine monophosphate phosphodiesterase in *Escherichia coli*. J Biol Chem 271, 25423-25429.

Karimova, G., Robichon, C., and Ladant, D. (2009). Characterization of YmgF, a 72-residue inner membrane protein that associates with the *Escherichia coli* cell division machinery. J Bacteriol 191, 333-346.

Kim, J.-S., Chowdhury, N., Yamasaki, R., and Wood, T.K. (2018a). Viable But Non-Culturable and Persistence Describe the Same Bacterial Stress State. Environ Microbiol 20, 2038-2048.

Kim, J.-S., Yamasaki, R., Song, S., Zhang, W., and Wood, T.K. (2018b). Single cell observations show persister cells wake based on ribosome content. Environ Microbiol 20, 2085-2098.

Kim, Y., and Wood, T.K. (2010). Toxins Hha and CspD and small RNA regulator Hfq are involved in persister cell formation through MqsR in *Escherichia coli*. Biochem Biophys Res Commun 391, 209-213.

Kitagawa, M., Ara, T., Arifuzzaman, M., Ioka-Nakamichi, T., Inamoto, E., Toyonaga, H., and Mori, H. (2005). Complete set of ORF clones of *Escherichia coli* ASKA library (a complete set of *E. coli* K-12 ORF archive): unique resources for biological research. DNA Res 12, 291-299.

Klemm, D., Heublein, B., Fink, H.P., and Bohn, A. (2005). Cellulose: fascinating biopolymer and sustainable raw material. Angew Chem Int Ed Engl 44, 3358-3393.

Kwan, B.W., Chowdhury, N., and Wood, T.K. (2015a). Combatting bacterial infections by killing persister cells with mitomycin C. Environ Microbiol 17, 4406-4414.

Kwan, B.W., Osbourne, D.O., Hu, Y., Benedik, M.J., and Wood, T.K. (2015b). Phosphodiesterase DosP increases persistence by reducing cAMP which reduces the signal indole. Biotechnol Bioeng 112, 588-600.

Kwan, B.W., Valetna, J.A., Benedik, M.J., and Wood, T.K. (2013). Arrested protein synthesis increases persister-like cell formation. Antimicrob Agents Chemother 57, 1468-1473.
Lee, C.K., de Anda, J., Baker, A.E., Bennett, R.R., Luo, Y., Lee, E.Y., Keefe, J.A., Helali, J.S., Ma, J., Zhao, K., et al. (2018). Multigenerational memory and adaptive adhesion in early bacterial biofilm communities. Proc Natl Acad Sci U S A 115, 4471-4476.

Lin, H.H., Hsu, C.C., Yang, C.D., Ju, Y.W., Chen, Y.P., and Tseng, C.P. (2011). Negative effect of glucose on ompA mRNA stability: a potential role of cyclic AMP in the repression of hfq in Escherichia coli. J Bacteriol 193, 5833-5840.

Luidalepp, H., Jõers, A., Kaldalu, N., and Tenson, T. (2011). Age of Inoculum Strongly Influences Persister Frequency and Can Mask Effects of Mutations Implicated in Altered Persistence. J Bacteriol 193, 3598-3605.

Maisonneuve, E., and Gerdes, K. (2014). Molecular mechanisms underlying bacterial persisters. Cell 157, 539-548.

Martins, P.M.M., Merfa, M.V., Takita, M.A., and De Souza, A.A. (2018). Persistence in Phytopathogenic Bacteria: Do We Know Enough? Front Microbiol 9.

Megaw, J., and Gilmore, B.F. (2017). Archaeal Persisters: Persister Cell Formation as a Stress Response in Haloferax volcanii. Front Microbiol 8.

Moore, S.D., and Sauer, R.T. (2007). The tmRNA System for Translational Surveillance and Ribosome Rescue. Annu Rev Biochem 76, 101-124.

Mutlu, A., Trauth, S., Ziesack, M., Nagler, K., Bergeest, J.P., Rohr, K., Becker, N., Hofer, T., and Bischofs, I.B. (2018). Phenotypic memory in Bacillus subtilis links dormancy entry and exit by a spore quantity-quality tradeoff. Nat Commun 9.

Narayanaswamy, V.P., Keagy, L.L., Duris, K., Wiesmann, W., Loughran, A.J., Townsend, S.M., and Baker, S. (2018). Novel Glycopolymer Eradicates Antibiotic- and CCCP-Induced Persistor Cells in Pseudomonas aeruginosa. Front Microbiol 9, 1724.

Neumann, S., Grosse, K., and Sourjik, V. (2012). Chemotactic signaling via carbohydrate phosphotransferase systems in Escherichia coli. Proc Natl Acad Sci U S A 109, 12159-12164.

Patel, K.B., Toh, E., Fernandez, X.B., Hanuszkiewicz, A., Hardy, G.G., Brun, Y.V., Bernards, M.A., and Valvano, M.A. (2012). Functional Characterization of UDP-Glucose:Undecaprenyl-Phosphate Glucose-1-Phosphate Transferases of Escherichia coli and Caulobacter crescentus. J Bacteriol 194, 2646-2657.

Pokhis, K., Bitterlich, N., Cornelli, U., and Cassano, G. (2015). Efficacy of polyglucosamine for weight loss--confirmed in a randomized double-blind, placebo-controlled clinical investigation. BMC Obes 2, 25.

Raghavan, R., Sage, A., and Ochman, H. (2011). Genome-wide identification of transcription start sites yields a novel thermosensing RNA and new cyclic AMP receptor protein-regulated genes in Escherichia coli. J Bacteriol 193, 2871-2874.

Rodriguez, R.L., and Tait, R.C. (1983). Recombinant DNA Techniques: An Introduction (Menlo Park, CA: Benjamin/Cummings Publishing).

Sambrook, J., Fritsch, E.F., and Maniatis, T. (1989). Molecular cloning: a laboratory manual (Cold spring harbor laboratory press).

Shah, D., Zhang, Z., Khodursky, A., Kaldalu, N., Kurg, K., and Lewis, K. (2006). Persisters: a distinct physiological state of E. coli. BMC Microbiol 6, 53.

Shan, Y., Lazinski, D., Rowe, S., Camilli, A., and Lewis, K. (2015). Genetic Basis of Persister Tolerance to Aminoglycosides in Escherichia coli. mBio 6, e00078-00015.

Shi, W., Li, J., Ji, L., Zhang, Y., and Xie, J. (2013). Trans-translation mediates tolerance to multiple antibiotics and stresses in Escherichia coli. J Antimicrob Chemother 68, 2477-2481.

Shimada, T., Yoshida, H., and Ishihama, A. (2013). Involvement of Cyclic AMP Receptor Protein in Regulation of the rmf Gene Encoding the Ribosome Modulation Factor in Escherichia coli. J Bacteriol 195, 2212-2219.

Song, S., and Wood, T.K. (2018). Post-segregational Killing and Phage Inhibition Are Not Mediated by Cell Death Through Toxin/Antitoxin Systems. Front Microbiol 9, 814.
Stevenson, G., Andrianopoulos, K., Hobbs, M., and Reeves, P.R. (1996). Organization of the Escherichia coli K-12 gene cluster responsible for production of the extracellular polysaccharide colanic acid. J Bacteriol 178, 4885-4893.

Sulaiman, J.E., Hao, C., and Lam, H. (2018). Specific Enrichment and Proteomics Analysis of Escherichia coli Persisters from Rifampin Pretreatment. J Proteome Res DOI: 10.1021/acs.jproteome.8b00625.

Tajima, H., Imada, K., Sakuma, M., Hattori, F., Nara, T., Kamo, N., Homma, M., and Kawagishi, I. (2011). Ligand specificity determined by differentially arranged common ligand-binding residues in bacterial amino acid chemoreceptors Tsr and Tar. J Biol Chem 286, 42200-42210.

Tkhiiaishvili, T., Lombardi, L., Klatt, A.-B., Trampuz, A., and Di Luca, M. (2018). Bacteriophage Sb-1 enhances antibiotic activity against biofilm, degrades exopolysaccharide matrix and targets persisters of Staphylococcus aureus. Int J Antimicrob Agents https://doi.org/10.1016/j.ijantimicag.2018.09.006.

Tuckerman, J.R., Gonzalez, G., Sousa, E.H.S., Wan, X., Saito, J.A., Alam, M., and Gilles-Gonzalez, M.-A. (2009). An oxygen-sensing diguanylate cyclase and phosphodiesterase couple for c-di-GMP control. Biochemistry 48, 9764-9774.

Uehara, T., Dinh, T., and Bernhardt, T.G. (2009). LytM-domain factors are required for daughter cell separation and rapid ampicillin-induced lysis in Escherichia coli. J Bacteriol 191, 5094-5107.

Wang, X., Kim, Y., and Wood, T.K. (2009). Control and Benefits of CP4-57 Prophage Excision in Escherichia coli Biofilms. ISME J 3, 1164-1179.

Wild, J., and Klopotowski, T. (1981). D-Amino Acid Dehydrogenase of Escherichia coli K12: Positive Selection of Mutants Defective in Enzyme Activity and Localization of the Structural Gene. Mol Gen Genet 181, 373-378.

Yang, Y., M. Pollard, A., Höfler, C., Poschet, G., Wirtz, M., Hell, R., and Sourjik, V. (2015). Relation between chemotaxis and consumption of amino acids in bacteria. Mol Microbiol 96, 1272-1282.

Yao, R., Hirose, Y., Sarkar, D., Nakahigashi, K., Ye, Q., and Shimizu, K. (2011). Catabolic regulation analysis of Escherichia coli and its crp, mlc, mgsA, pgi and ptsG mutants. Microb Cell Fact 10, 67.

Zhang, Y., Mandava, C.S., Cao, W., Li, X., Zhang, D., Li, N., Zhang, Y., Zhang, X., Qin, Y., Mi, K., et al. (2015). HflX is a ribosome-splitting factor rescuing stalled ribosomes under stress conditions. Nat Struct Mol Biol 22, 906.
FIGURE LEGENDS

Fig. 1. Single persister cells wake with Ala. *E. coli* BW25113 persister cells were incubated at 37 °C on M9 5X Ala agarose gel pads and images were captured at 0 h and 6 h. Black arrows indicate cells that resuscitate. Scale bar indicates 10 µm. Representative results from two independent cultures are shown. Tabulated cell numbers are shown in Table S1.

Fig. 2. Single persister cells wake primarily by sensing nutrients rather than spontaneously. *E. coli* BW25113 persister cells were incubated at 37 °C on NaCl, NaCl + ampicillin (Amp), and NaCl + Amp + Ala agarose gel pads for 6 hours. Panel I: Cells first resuscitate (black arrows) and then lyse in the presence of ampicillin (red arrows). Scale bar indicates 10 µm. Representative results from two independent cultures are shown. Panel II: Persister cell waking (%) after 6 hours incubation. Tabulated cell numbers are shown in Table S2.

Fig. 3. Single persister cell waking on Ala after producing chemotaxis-related, cAMP-related, and ribosome-resuscitation-related proteins. Panel I: *E. coli* BW25113 persister cells containing (A) pCA24N, (B) pCA24N_cheA, (C) pCA24N_cheY, (D) pCA24N_tar, (E) pCA24N_trg, (F) pCA24N_tsr, (G) pCA24N_cpdA, (H) pCA24N_cpdA induced by 0.5 mM IPTG, (I) pCA24N_cpdA with 3 mM atropine, (J) pCA24N_cyaA, (K) pCA24N_fliN, and (L) pCA24N_hflX were incubated at 37 °C on M9 5X Ala agarose gel pads for 18 h. Black arrows indicate cells that resuscitate. Scale bar indicates 10 µm. Representative results from two independent cultures are shown. Prior to forming persister cells, cultures were grown without IPTG with 30 µg/mL Cm. Panel II: Persister cell waking (%) after incubating for 18 h. Tabulated cell numbers are shown in Table S4.

Fig. 4. Single persister cells wake with glucose. Panel I: *E. coli* BW25113 persister cells were incubated at 37 °C on M9 0.4% glucose agarose gel pads and images were captured at 0, 3, and 6 h. Black arrows indicate cells that resuscitate. Scale bar indicates 10 µm. Representative results from two independent cultures are shown. Tabulated cell numbers are shown in Table S1. Panel II: Comparison of single *E. coli* BW25113 persister cells waking on minimal medium with 0.4% glucose and 0.04% alanine for 6 h.

Fig. 5. Single persister cell waking on glucose after inactivating proteins related to transport, cAMP, sRNA, and ribosome rescue. Panel I: *E. coli* BW25113 persister cells (A) and isogenic deletion mutants (B) Δtrg, (C) ΔptsG, (D) Δcrr, (E) ΔmglB, (F) ΔmalE, (G) ΔcpdA, (F) ΔcyA, (I) Δhfq, (J) ΔsmpB, and (K) ΔssrA were incubated at 37 °C on 0.4% glucose agarose gel pads for 3 h. Black arrows indicate cells that resuscitate. Scale bar indicates 10 µm. Representative results from two independent cultures are shown. Panel II: Persister cell waking (%) after incubating for 3 h.
Tabulated cell numbers are shown in Table S11.

Fig. 6. Single persister cell waking on glucose after producing proteins related to transport, chemotaxis, cAMP, ribosome resuscitation, and sRNA. Panel I: *E. coli* BW25113 persister cells containing (A) pCA24N, (B) pCA24N(ptsG), (C) pCA24N_crr, (D) pCA24N_cheY, (E) pCA24N_cpdA, (F) pCA24N_hflX, and (G) pCA24N_hfq were incubated at 37 °C on M9 0.4% glucose agarose gel pads for 5 h. Black arrows indicate cells that resuscitate. Scale bar indicates 10 µm. Representative results from two independent cultures are shown. Prior to forming persister cells, cultures were grown without IPTG with 30 µg/mL Cm. Panel II: Persister cell waking (%) after incubating for 5 h. Tabulated cell numbers are shown in Table S12.

Fig. 7. Schematic of persister cell waking via alanine and glucose. For alanine resuscitation, methyl-accepting chemotaxis proteins Tar and Trg sense the amino acid and relay this to chemotaxis response regulators CheA and CheY, which stimulate chemotaxis. For glucose resuscitation, phosphotransferase protein PtsG imports the sugar, which results in dephosphorylation of EIIA, reduction in cAMP, activation of chemotaxis, and ribosome rescue via HflX and SsrA. Spheres indicate proteins, diamonds indicate amino acids, hexagons indicate glucose, [P] indicates phosphate, → indicates induction, and ← indicates repression.
Figure 1

(A) Ala

(B) Asn

(C) No amino acids
Figure 2
Figure 3

(I) (A) Empty

(B) CheA

(C) CheY

(D) Tar

(E) Trg

Yamasaki et. al., Pennsylvania State University
Figure 3 (cont.)
Figure 3 (cont.)
Figure 4
Figure 5
Figure 5 (cont.)
Figure 6

(A) Empty

(B) PtsG

(C) Crr

(D) CheY

All rights reserved. No reuse allowed without permission.
Figure 6 (cont.)

(E) CpdA

(F) HflX

(G) Hfq

(H) Graph showing % waking for different conditions:
- Empty
- PtsG
- Crr
- CheY
- CpdA
- HflX
- Hfq

45 40 35 30 25 20 15 10 5 0

% waking
Figure 7
Supporting Information

Persister Cells Resuscitate Using Membrane Sensors that Activate Chemotaxis, Lower cAMP Levels, and Revive Ribosomes

Ryota Yamasaki1,\dagger, Sooyeon Song1,\dagger, Michael J. Benedik1, and Thomas K. Wood1,2,*

1Department of Chemical Engineering and 2Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, Pennsylvania, 16802-4400, USA

3Department of Biology, Texas A & M University, College Station, Texas, 77843-3122

*For correspondence. E-mail tuw14@psu.edu

Tel. (+)1 814-863-4811; Fax (1) 814-865-7846

\dagger These authors contributed equally
Table S1. **Single *E. coli* persister cell waking by Ala.** Single persister cells were observed using light microscopy (Zeiss Axio Scope.A1). The total number of *E. coli* BW25113 persister cells that wake on M9 5X Ala, M9 5X Asn, and no amino acid (aa) gel pads is shown after 6 h at 37 °C. Also, growth of exponential cells on gel pads that lack amino acids is shown after 6 h at 37 °C. 5X Ala and 5X Asn is 375 µg/mL. Total waking cells indicates the number of dividing or elongating cells. These results are the combined observations from two independent experiments. The microscope images are shown in Fig. 1.

	Total cells	Dividing cells	Elongating cells	Total waking cells	% waking	Fold-change
Ala	51	7	2	9	18 ± 1	9
Asn	46	1	0	1	2 ± 2	1
no aa	56	0	0	0	0 ± 0	∞
no aa (expon. cells)	104	12	0	12	12 ± 4	-
Table S2. Single persister cells wake primarily by sensing nutrients rather than spontaneously.

Single persister cells were observed using light microscopy (Zeiss Axio Scope.A1). The total number of *E. coli* BW25113 wild type persister cells on the NaCl, NaCl + Amp, and NaCl + Amp + Ala agarose gel pads is shown after 6 h at 37 °C. Dead cells were identified by their disappearance. The concentration of NaCl was 0.85 %, Amp was 100 µg/mL, and Ala was 375 µg/mL. Fold-changes was based on NaCl + Amp. These results are the combined observations from two independent experiments. The microscope images are shown in Fig. 2.

	Total cells	Dead cells	% of dead cells	Fold-change
NaCl	144	0	0 ± 0	-
NaCl + Amp	164	13	7.5 ± 0.7	1
NaCl + Amp + Ala	135	47	33 ± 6	4.4
Table S3. **Single persister cells wake with alanine as a signal.** Single persister cells were observed using light microscopy (Zeiss Axio Scope.A1). The total number and waking number of persister cells of BW25113 ΔdadA on M9 10X Ala, no nutrients, pyruvate (final conc. 0.24%) + 10 X Ala, and pyruvate (final conc. 0.24%) agarose gel pads are shown after 6 h at 37°C. These results are the combined observations from two independent experiments. The microscope images are shown in **Supplementary Figure 3**.

Condition	Total Cells	Total Waking Cells	% Waking	Fold-change
ΔdadA + Ala	345	16	4 ± 1	1
ΔdadA (no nutrients)	223	0	0 ± 0	-∞
ΔdadA + pyruvate + Ala	303	14	4.5 ± 0.5	1.1
ΔdadA + pyruvate	327	3	0.7 ± 1.1	-5.7
Table S4. Enhanced single persister cell waking on Ala via proteins identified by the ASKA library search. Single persister cells were observed using light microscopy (Zeiss Axio Scope.A1). The total number and waking number of persister cells of BW25113 producing the indicated proteins (PsiF, PanD, YmgF, YjcF, PptA, and CheY) are shown. Fold-change in waking is relative to BW25113 with the empty plasmid pCA24N. These results are the combined observations from two independent experiments after 18 hours. The microscope images are shown in Supplementary Figure 5.

	Total cells	Waking cells	% waking	Fold-change
Empty	103	2	3 ± 5	1
PsiF	91	10	11 ± 3	6.1
PanD	105	43	40 ± 30	22.8
YmgF	87	28	30 ± 10	17.9
YjcF	120	14	11.7 ± 0.3	6.5
PptA	118	15	8 ± 6	7.1
CheY	93	93	100 ± 0	33
Table S5. Single persister cell waking on Ala after producing chemotaxis-related, cAMP-related, and ribosome-resuscitation-related proteins. Single persister cells were observed using light microscopy (Zeiss Axio Scope.A1). The total number and waking number of persister cells are shown. Fold-change in waking is relative to BW25113 with the empty plasmid pCA24N (empty vector data from Table S4). IPTG was used only for producing CpdA as indicted, otherwise, protein production was from the leaky promoter. M9 5X Ala with 3 mM atropine in the agarose gel pad was used with cells producing CpdA. These results are the combined observations from two independent experiments after 18 hours. The microscope images are shown in Fig. 3.

Protein	Total cells	Waking cells	% waking	Fold-change
Empty	103	2	3 ± 5	1
CheA	93	77	82 ± 2	27
CheY	93	93	100 ± 0	33
Tar	123	33	28 ± 7	9
Trg	97	23	24 ± 7	8
Tsr	144	4	2.78 ± 0.05	-1.1
CpdA	128	21	25 ± 24	8
CpdA (0.5 mM IPTG)	115	52	45 ± 1	15
CpdA + 3 mM atropine	77	71	92 ± 3	31
CyaA	137	3	2.1 ± 0.5	-1.4
FliN	142	18	13 ± 2	4
HflX	126	25	20.0 ± 0.7	7
Table S6. Persister cell formation on LB. Persister cells were observed on LB plates after 1 day, and the percentage of persister cell formation indicates the number of persisters formed relative to the BW25113 wild-type strain. “+” indicates roughly the same growth of the strain compared with the wild type. These results are the combined observations from two independent experiments.

	% persister formation	Growth
Wild type	100.0 ± 0.1	+
ΔarfB	98.9 ± 0.9	+
ΔcheA	99 ± 1	+
ΔcheY	101.6 ± 0.1	+
ΔcpdA	100.8 ± 0.3	+
Δcrp	102 ± 1	+
ΔcytA	93.9 ± 2.4	+
ΔdadA	97 ± 4	+
ΔflgE	101.2 ± 0.6	+
ΔflhD	101.1 ± 0.2	+
ΔfliN	98.1 ± 0.8	+
ΔhflX	100.4 ± 0.2	+
ΔmotB	100.7 ± 0.4	+
ΔmotA	99.1 ± 0.2	+
ΔssrA’	101 ± 2	+
Δtar	98.3 ± 0.1	+
Δtrg	98.7 ± 0.4	+
ΔptsG	97 ± 2	+
Δcrr	97 ± 1	+
ΔmglB	98 ± 2	+
ΔmalE	100.8 ± 0.4	+
ΔsmpB	96 ± 2	+
pCA24N	100.0 ± 0.5	+
ArfB	97.4 ± 0.7	+
CheA	95.6 ± 0.6	+
CheY	99.6 ± 0.5	+
CpdA	99.7 ± 0.5	+
Crp	98.2 ± 0.7	+
CyaA	99.7 ± 0.7	+
FlhD	98.0 ± 0.7	+
FliN	97.6 ± 0.6	+
HflX	97.7 ± 0.9	+
Tar	98.8 ± 0.8	+
Trg	97.9 ± 0.7	+
PtsG	97 ± 1	+
Crr	93.6 ± 0.2	+
Table S7. Single persister cell waking on Ala after inactivating flagellar proteins MotB, FhlD, and FliN. Single persister cells were observed using light microscopy (Zeiss Axio Scope.A1). The total number and waking number of persister cells are shown. Fold-change in waking is relative to wild-type BW25113 (wild-type data from Table S1). These results are the combined observations from two independent experiments after 6 hours. The microscope images are shown in Supplementary Figure 10.

	Total cells	Waking cells	% waking	Fold-change
Wild type	51	9	18 ± 1	1
ΔmotB	57	17	30 ± 10	1.7
ΔfhlD	81	5	6.1 ± 0.4	-3
ΔfliN	96	5	5 ± 2	-3.6
Table S8. Single persister cell waking on Ala after inactivating CpdA and CyaA. Single persister cells were observed using light microscopy (Zeiss Axio Scope.A1). The total number and waking number of persister cells are shown. Fold-change in waking is relative to wild-type BW25113 (wild-type data from Table S1). These results are the combined observations from two independent experiments after 6 hours. The microscope images are shown in Supplementary Figure 13.

	Total cells	Waking cells	% waking	Fold-change
Wild type	51	9	18 ± 1	1
ΔcpdA	79	0	0 ± 0	-∞
ΔcyaA	93	68	74 ± 8	4.1
Table S9. Single persister cell waking on Ala after inactivating ribosome rescue proteins HflX and ArfB and inactivating trans-translation (SsrA). Single persister cells were observed using light microscopy (Zeiss Axio Scope.A1). The total number and waking number of persister cells are shown. Fold-change in waking is relative to wild-type BW25113 (wild-type data from Table S1). These results are the combined observations from two independent experiments after 6 hours. The microscope images are shown in Supplementary Figure 16.

	Total cells	Waking cells	% waking	Fold-change
Wild type	51	9	18 ± 1	1
ΔhflX	96	0	0 ± 0	-∞
ΔarfB	101	15	15 ± 2	-1.2
ΔssrA	123	1	0.8 ± 1.1	-22.5
Table S10. Single persister cell waking on glucose or alanine gel pads. Single wild-type persister cells were observed using light microscopy (Zeiss Axio Scope.A1). The total number and waking number of persister cells on minimal medium with 0.4% glucose and 0.04% alanine are shown (0.4% glucose inhibited resuscitation with Ala). Fold-change in waking is relative to alanine (wild-type Ala data from Table S1). These results are the combined observations from two independent experiments after 6 hours. The microscope images are shown in Figure 4.

	Glucose	Alanine
Total cells	354	51
Waking cells	326	9
Waking %	92 ± 2	18 ± 1
Fold-change	5.1	1
Table S11. **Single persister cell waking on glucose gel pads.** Single persister cells were observed using light microscopy (Zeiss Axio Scope.A1). The total number and waking number of persister cells are shown. Fold-change in waking is relative to wild-type BW25113 (same field of view with 354 cells as in Table S10 but cells wake here for only 3 h vs. 6 h in Table S10). These results are the combined observations from two independent experiments after 3 hours. The microscope images are shown in Figure 5.

	Total cells	Waking cells	% waking	Fold-change
wild type	354	74	22 ± 3	1
Δtrg	283	12	5 ± 1	-4.6
ΔptsG	212	1	0.3 ± 0.5	-69.2
Δcrr	369	44	11±3	-2
ΔmglB	311	55	17.8 ± 0.5	-1.2
ΔmalE	329	77	23.3 ± 0.5	1.1
ΔcpdA	305	20	6 ± 2	-3.7
ΔcyA	279	139	50 ± 2	2.3
Δhfq	201	23	12 ± 1	-1.9
ΔsmpB	352	132	35 ± 5	1.6
ΔssrA	316	22	6.9 ± 0.1	-3.2
Table S12. **Single persister cell waking on glucose gel pads.** Single persister cells were observed using light microscopy (Zeiss Axio Scope.A1). The total number and waking number of persister cells are shown. Fold-change in waking is relative to BW25113 with the empty plasmid pCA24N. These results are the combined observations from two independent experiments after 5 hours. The microscope images are shown in Figure 6.

	Total cells	Waking cells	% waking	Fold-change
Empty	284	7	2.5 ± 0.3	1
PtsG	195	0	0 ± 0	∞
Crr	356	5	1.4 ± 0.2	-1.8
CheY	339	129	39 ± 4	15.9
CpdA	269	104	39 ± 1	15.9
HflX	321	11	3.41 ± 0.07	1.4
Hfq	207	11	5.0 ± 0.9	2
Table S13. Bacterial strains and plasmids used in this study.

Strains and Plasmids	Features	Source
E. coli BW25113	Wild type	(Baba et al., 2006)
E. coli BW25113 ΔarfB	ΔarfB, KmR	(Baba et al., 2006)
E. coli BW25113 ΔcheA	ΔcheA, KmR	(Baba et al., 2006)
E. coli BW25113 ΔcheY	ΔcheY, KmR	(Baba et al., 2006)
E. coli BW25113 ΔcpdA	ΔcpdA, KmR	(Baba et al., 2006)
E. coli BW25113 Δerp	Δerp, KmR	(Baba et al., 2006)
E. coli BW25113 ΔcyaA	ΔcyaA, KmR	(Baba et al., 2006)
E. coli BW25113 ΔdadA	ΔdadA, KmR	(Baba et al., 2006)
E. coli BW25113 ΔflgE	ΔflgE, KmR	(Baba et al., 2006)
E. coli BW25113 ΔflhD	ΔflhD, KmR	(Baba et al., 2006)
E. coli BW25113 ΔfliN	ΔfliN, KmR	(Baba et al., 2006)
E. coli BW25113 ΔhflX	ΔhflX, KmR	(Baba et al., 2006)
E. coli BW25113 ΔmotA	ΔmotA, KmR	(Baba et al., 2006)
E. coli BW25113 ΔmotB	ΔmotB, KmR	(Baba et al., 2006)
E. coli BW25113 ΔssrA*	ΔssrA, KmR (161 of 363 nt deleted with attL intact)	(Wang et al., 2009)
E. coli BW25113 Δtar	Δtar, KmR	(Baba et al., 2006)
E. coli BW25113 Δtrg	Δtrg, KmR	(Baba et al., 2006)
E. coli BW25113 ΔarfB	ΔarfB, KmR	(Baba et al., 2006)
E. coli BW25113 ΔpsdG	ΔpsdG, KmR	(Baba et al., 2006)
E. coli BW25113 ΔmglB	ΔmglB, KmR	(Baba et al., 2006)
E. coli BW25113 ΔmalE	ΔmalE, KmR	(Baba et al., 2006)
E. coli BW25113 ΔsmpB	ΔsmpB, KmR	(Baba et al., 2006)

Plasmids

- pCA24N: CmR; lacF (Kitagawa et al., 2005)
- pCA24N Aer: CmR; lacF, Pr5-lac::aer (Kitagawa et al., 2005)
- pCA24N ARD: CmR; lacF, Pr5-lac::arfB (Kitagawa et al., 2005)
- pCA24N CheA: CmR; lacF, Pr5-lac::cheA (Kitagawa et al., 2005)
- pCA24N CHEY: CmR; lacF, Pr5-lac::cheY (Kitagawa et al., 2005)
- pCA24N CPDA: CmR; lacF, Pr5-lac::cpdA (Kitagawa et al., 2005)
- pCA24N CRP: CmR; lacF, Pr5-lac::crp (Kitagawa et al., 2005)
- pCA24N CYA A: CmR; lacF, Pr5-lac::cyaA (Kitagawa et al., 2005)
- pCA24N FLH D: CmR; lacF, Pr5-lac::flhD (Kitagawa et al., 2005)
- pCA24N FLIN: CmR; lacF, Pr5-lac::fliN (Kitagawa et al., 2005)
- pCA24N HFLX: CmR; lacF, Pr5-lac::hflX (Kitagawa et al., 2005)
- pCA24N PAN D: CmR; lacF, Pr5-lac::panD (Kitagawa et al., 2005)
- pCA24N PPT A: CmR; lacF, Pr5-lac::pptA (Kitagawa et al., 2005)
- pCA24N PSI F: CmR; lacF, Pr5-lac::psiF (Kitagawa et al., 2005)
- pCA24N TAP: CmR; lacF, Pr5-lac::tap (Kitagawa et al., 2005)
- pCA24N TAR: CmR; lacF, Pr5-lac::tar (Kitagawa et al., 2005)
- pCA24N TRG: CmR; lacF, Pr5-lac::trg (Kitagawa et al., 2005)
- pCA24N TSR: CmR; lacF, Pr5-lac::tsr (Kitagawa et al., 2005)

Yamasaki et al., Pennsylvania State University
KmR and CmR indicate kanamycin and chloramphenicol resistance, respectively.
Table S14. Supplementation levels (1X) for amino acids in M9 minimal medium.

No.	Amino acid	Final concentration (µg/mL)
1	1 % L-alanine	75
2	2 % L-arginine	145
3	1 % L-asparagine	75
4	1 % L-aspartic acid	75
5	2 % L-cysteine	50
6	2 % L-histidine	42
7	1 % L-glutamic acid	75
8	1 % L-glutamine	75
9	2 % glycine	110
10	1 % L-isoleucine	42
11	1 % L-leucine	41
12	1 % L-lysine	75
13	2 % L-methionine	25
14	1 % L-phenylalanine	75
15	4 % L-proline	164
16	2 % L-serine	42
17	2 % L-threonine	82
18	0.25 % L-tryptophan	18
19	1 % L-tyrosine	75
20	1 % L-valine	42
Supplementary Figure 1. Persister cells waking on agar plates with groups of amino acids. *E. coli* BW25113 persister cells were incubated at 37 °C for 4 days on M9 agar plates with groups of five different amino acids: (A) #1: Arg, Ser, Cys, Ala, and Phe, (B) #2: His, Thr, Gly, Val, and Tyr, (C) #3: Lys, Asn, Pro, Ile, and Trp, (D) #4: Asp, Glu, Gln, Leu, and Met, and (E) no amino acids. These amino acids were used at 1X concentration (*Table S14*). One representative plate of two independent cultures is shown.
Supplementary Figure 2. Persister cells waking on agar plates with alanine. *E. coli* BW25113 persister cells were incubated at 37 °C for 4 days on M9 agar plates with 10 different amino acids (Arg, Ser, Cys, Ala, Phe, Lys, Asn, Pro, Ile, and Trp). These amino acids were used at 1X concentration (Table S14). One representative plate of two independent cultures is shown.
Supplementary Figure 3 (continued next page)
Supplementary Figure 3. Alanine is a waking signal. (I) Exponential wild-type *E. coli* BW25113 (A), exponential BW25113 Δ*dadA* (B), persister wild-type *E. coli* BW25113 (C), and persister BW25113 Δ*dadA* (D) incubated at 37 °C on M9 5X Ala agar plates for 3 days. (II) Persister cells of BW25113 Δ*dadA* on M9 10X Ala gel pads (A), on M9 no nutrient gel pads (B), on M9 10X Ala with 0.24% pyruvate (C), and on M9 with 0.24% pyruvate (D) after 6 h at 37°C. Black arrows indicate cells that resuscitate. Scale bar indicates 10 µm. One representative plate of two independent cultures is shown. (III) *dadA* persister cell waking (%) after 6 hours. Tabulated cell numbers are shown in Supplementary Table 3.
Supplementary Figure 4. Screening persister cell waking with the pooled ASKA plasmids on Ala. *E. coli* BW25113 persisters containing each of the pooled ASKA plasmids were incubated at 37 °C on M9 5X Ala agar plates with 30 µg/mL Cm for (A) 3 days and (B) 8 days. Faster growing colonies are indicated with black arrows. Prior to forming persister cells, cultures were grown without IPTG with 30 µg/mL Cm. One representative plate of two independent cultures is shown.
Supplementary Figure 5. (continued next page)
Supplementary Figure 5. Single persister cell waking on Ala related to the ASKA screen. (I) E. coli BW25113 persister cells containing (A) pCA24N (empty plasmid control), (B) pCA24N_psiF, (C) pCA24N_panD, (D) pCA24N_ymgF, (E) pCA24N_yjfF, (F) pCA24N_pptA, and (G) pCA24N_cheY were incubated at 37°C on M9 5X Ala agarose gel pads for 18 h. Scale bar indicates 10 µm. Representative results from two independent cultures are shown. Prior to forming persister cells, cultures were grown without IPTG with 30 µg/mL Cm. (II) Persister cell waking (%) after 18 hours.
Supplementary Figure 6. Single persister cell waking on Ala after inactivating chemotaxis proteins CheA and CheY. (I) Persister cells of (A) BW25113 ΔcheA and (B) BW25113 ΔcheY waking on M9 5X Ala agarose gel pads after 6 h at 37°C. Scale bar indicates 10 µm. Representative results from two independent cultures are shown. (II) Persister cell waking (%) after 6 hours.
Supplementary Figure 7. Persister cell waking on Ala agar plates after inactivating the chemotaxis-related proteins Tar, Trg, and CheY. Persister cells were incubated at 37 °C on M9 5X Ala agar plates for 2 days. (A) wild type BW25113, (B) BW25113 Δtar, (C) BW25113 Δtrg, and (D) BW25113 ΔcheY. One representative plate of two independent cultures is shown.
Supplementary Figure 8. Persister cell waking on Ala agar plates after producing chemotaxis proteins. Persister waking after 4 days (upper panel) and after 6 days (lower panel) incubation at 37 °C on M9 5X Ala agar plates. (A) BW25113/pCA24N, (B) BW25113/pCA24N_{tsr}, (C) BW25113/pCA24N_{tar}, (D) BW25113/pCA24N_{trg}, (E) BW25113/pCA24N_{tap}, and (F) BW25113/pCA24N_{aer}. Prior to forming persister cells, cultures were grown without IPTG with 30 µg/mL Cm. One representative plate of two independent cultures is shown.
Supplementary Figure 9. Persister cell waking on Ala agar plates after inactivating flagellar motor complex proteins MotA. Cells were incubated at 37 °C on M9 5X Ala agar plates for 3 days. Upper panel: Exponential cells (A) wild type BW25113 and (B) BW25113 ΔmotA. Lower panel: Persister cells of (A) wild type BW25113 and (B) BW25113 ΔmotA. One representative plate of two independent cultures is shown.
Supplementary Figure 10. Single persister cell waking on Ala after inactivating flagellar proteins MotB, FhlD, and FliN. (I) Persister cells of (A) BW25113 ΔmotB, (B) BW25113 ΔfhlD, and (C) BW25113 ΔfliN waking on M9 5X Ala agarose gel pads after 6 h at 37°C. Black arrows indicate cells that resuscitate. Scale bar indicates 10 µm. Representative results from two independent cultures are shown. (II) Persister cell waking (%) after 6 hours.
Supplementary Figure 11. Persister cell waking on Ala agar plates after inactivating the FlgE flagellum hook protein. *E. coli* BW25113 persister cells of (A) wild type BW25113 and (B) BW25113 ΔflgE were incubated at 37 °C on M9 5X Ala agar plates for 2 days. One representative plate of two independent cultures is shown.
Supplementary Figure 12. Persister cell waking on Ala agar plates after inactivating or producing proteins related cAMP. *E. coli* BW25113 persister cells with (A) pCA24N after 4 days, (B) pCA24N_cpdA after 4 days, (C) pCA24N after 5 days, (D) pCA24N_cyaA after 5 days, (E) wild type BW25113 after 3 days, and (F) BW25113 ΔcpdA after 3 days. Plates were incubated at 37 °C and contain M9 5X Ala. One representative plate of two independent cultures is shown.
Supplementary Figure 13. Single persister cell waking on Ala after inactivating cAMP-related proteins CpdA and CyaA. (I) Persister cells of (A) BW25113 ΔcpdA and (B) BW25113 ΔcyaA waking on M9 5X Ala agarose gel pads after 6 h at 37°C. Scale bar indicates 10 µm. Representative results from two independent cultures are shown. (II) Persister cell waking (%) after 6 hours.
Supplementary Figure 14. Single persister cell waking on Ala with exogenous atropine and cAMP. (I) Persister cells of wild-type BW25113 waking on M9 5X Ala on agarose gel pads with (A) 3 mM atropine or (B) 2 mM cAMP after 6 h at 37°C. Black arrows indicate cells that resuscitate. Scale bar indicates 10 µm. Representative results from two independent cultures are shown. (II) Persister cell waking (%) after 6 hours.
Supplementary Figure 15. Persister cells waking on Ala agar plates after producing HflX and ArfB and inactivating SsrA. (I) *E. coli* BW25113 persister cells with (A) empty plasmid, (B) pCA24N_hflX, and (C) pCA24N_arfB were incubated at 37 °C on M9 5X Ala agar plates for 6 days. (II) *E. coli* BW25113 persister cells with (A) wild type and (B) BW25113 ΔssrA′. One representative plate of two independent cultures is shown.
Supplementary Figure 16. Single persister cell waking on Ala after inactivating ribosome rescue proteins. (I) Persister cells of (A) BW25113 ΔhflX, (B) BW25113 ΔarfB, and (C) BW25113 ΔssrA, waking on M9 5X Ala agarose gel pads after 6 h at 37°C. Black arrows indicate cells that resuscitate. Scale bar indicates 10 µm. Representative results from two independent cultures are shown. (II) Persister cell waking (%) after 6 hours.
Supplementary Figure 17. Persister cell waking on agar plates with polysaccharides as the sole carbon source. Persister cell waking of the wild type on M9 agar plates with alanine, glucose, glucosamine (D-glucosamine and N-acetyl-D-glucosamine), and α-D-glucose 1-phosphate (0.4%). Plates were incubated at 37 °C for 3 days. One representative plate of two independent cultures is shown.
Supplementary Figure 18. Persister cell waking on glucose agar plates after inactivating PtsG.
Persister cell waking of the wild type (left panel) and the ΔptsG mutant (right panel) on M9 0.4% glucose agar plates incubated at 37 °C for 2 days. One representative plate of two independent cultures is shown.
Supplementary Figure 19. Persister cell waking on glucose agar plates after increasing cAMP. Persister cell waking of (I) wild type and the ΔcpdA mutant and (II) wild type with 0 mM and 2 mM cAMP on M9 0.4% glucose agar plates incubated at 37 °C on for 2 days. One representative plate of two independent cultures is shown.
Supplementary Figure 20. Persister cell waking on glucose agar plates for ΔssrA. Persister cell waking for the wild type (left panel) and the ΔssrA mutant (right panel) on M9 0.4% glucose agar plates incubated at 37 °C for 2 days. One representative plate of two independent cultures is shown.
Supplemental video 1. Persister cell resuscitation in a glucose gradient leads to chemotaxis. The video shows the resuscitation of wild type, ΔcytA, and Δcrr persister cells in motility agar with a glucose gradient (0 to 5%, with the glucose at high concentrations on the left-hand side). One representative video of two independent cultures is shown.