Role of impurity oxygen in superconductivity of “non-doped” \(T'-(\text{La,RE})_2\text{CuO}_4 \)

A. Tsukada\(^a\),*, M. Noda\(^a,b\), H. Yamamoto\(^a\), M. Naito\(^c\)

\(^a\)NTT Basic Research Laboratories, NTT Corporation, 3-1 Morinosato-Wakamiya, Atsugi, Kanagawa 243-0198, Japan

\(^b\)Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan

\(^c\)Department of Applied Physics, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo 184-8588, Japan

Abstract

We have systematically investigated the effect of oxygen nonstoichiometry in a nominally undoped superconductor \(T'-(\text{La,Y})_2\text{CuO}_{4+y} \). In the experiments, the reduction condition was changed after the sample growth by MBE. The superconductivity is very sensitive to the reduction condition. With systematically increasingly reduced atmospheres, resistivity shows a continuous drop and no discontinuity is observed even until the appearance of superconductivity. The absence of the highly insulating state expected for Mott insulators around \(y \sim 0 \) suggests that \(T'-(\text{La,Y})_2\text{CuO}_4 \) has intrinsic carriers. The role of residual apical oxygen, which is detrimental to superconductivity, is also discussed based on the resistivity-temperature characteristics in insufficiently reduced samples.
PACS codes: 74.72.-h, 74.76.Bz, 74.90.+n, 74.62.Dh

Keywords: 214 system, T^*-structure, new superconductors, oxygen nonstoichiometry

*Corresponding author.

Dr. Akio Tsukada

Postal address: Thin-Film Materials Research Group, NTT Basic Research Labs., 3-1 Wakamiya Morinosato, Atsugi-shi, Kanagawa 243-0198, Japan

Phone: +81-46-240-3349
1. Introduction

Superconductivity in cuprates with the Nd$_2$CuO$_4$ (so-called T') structure is very sensitive to impurity oxygen at O(3) sites (apical sites), whose presence is very detrimental to superconductivity. It is well known that as-grown Pr$_{1.85}$Ce$_{0.15}$CuO$_4$ or Nd$_{1.85}$Ce$_{0.15}$CuO$_4$ specimens, which contain a fair amount of impurity oxygen, are never superconducting [1, 2]. In addition, antiferromagnetic (AF) correlations exist in as-grown non-superconducting specimens, but they essentially disappear in reduced superconducting samples [3, 4]. This implies that more complete removal of impurity oxygen weakens AF correlations and thereby expands the superconducting region. It has actually been demonstrated by Brinkman et al. that an enhanced oxygen reduction process in Pr$_{2-x}$Ce$_x$CuO$_{4+y}$ indeed expands the superconducting region down to a doping level of around $x = 0.04$ even with slightly increasing critical temperature [5]. Furthermore, very recently, we have discovered superconductivity by isovalent RE^{3+} doping in T'-La$_2$CuO$_4$ ($RE =$ rare earth element) [6-8]. This discovery seems to imply that superconductivity can be achieved in the really undoped state of T'-cuprates by complete removal of apical oxygen, but there is a possibility that superconductivity might be achieved by effective electron-doping via oxygen deficiencies. In order to examine the latter possibility, we have performed a systematic study of the oxygen nonstoichiometry effect in T'-(La,RE)$_2$CuO$_{4+y}$.

2. Experimental

La$_{1.85}$Y$_{0.15}$CuO$_{4+y}$ thin films were grown in a customer-designed molecular beam epitaxy chamber from metal sources using multiple electron-gun evaporators. The details of our MBE growth are described elsewhere [9]. Briefly, the film growth was
typically performed at the substrate temperature of ~ 650°C with 1 - 5 sccm of ozone gas (10% O$_3$ concentration). The film thickness was typically ~ 900 Å. We used YAlO$_3$ (100) substrates in this study. After the growth, the films were reduced in low partial oxygen pressure to remove interstitial apical oxygen. In order to investigate the oxygen nonstoichiometry effect, the reduction parameters were systematically varied: reduction temperature (T_{red}) from 570 to 650°C; reduction time (t_{red}) from 0 to 60 minutes; reduction atmosphere (partial oxygen pressure, P_{O_2}) from 10^{-4} to 10^{-8} Torr. In addition, some films were oxidized by ozone.

3. Results and discussion

Figure 1 shows the temperature (T) dependence of resistivity (ρ) for La$_{1.85}$Y$_{0.15}$CuO$_{4+y}$ films with different T_{red}. For these films, P_{O_2} and t_{red} were fixed at 10^{-8} Torr and 10 min, respectively. The superconducting transition temperature (T_c) is maximized to $T_c \sim 23$ K with $T_{\text{red}} = 600^\circ$C. The film with lower T_{red} (570°C) has a depressed $T_c \sim 16$ K and substantially higher resistivity with low-temperature upturn, whereas the films with higher T_{red} (630°C and 650°C) also have a depressed $T_c \sim 20$ K and 18 K in spite of there being almost no or only a slight increase in resistivity.

Figure 2 shows the temperature dependence of resistivity for La$_{1.85}$Y$_{0.15}$CuO$_{4+y}$ films with different t_{red}. For these films, P_{O_2} and T_{red} were fixed at 10^{-8} Torr and 600°C, respectively. There is a broad maximum (~ 23 K) at $t_{\text{red}} = 10$ min. The T_c and also resistivity do not change much with changing t_{red} from 5 to 20 min. The film with shorter t_{red} (1 min) shows no significant change in the value of room-temperature resistivity, but starts to show upturn in resistivity at low temperatures and has a depressed T_c, and the film with the shortest t_{red} of ~ 0 min shows significantly higher
resistivity with prominent upturn at low temperatures and no superconductivity. It should be noted that both films with short t_{red} of 0 and 1 min have nearly the same slope of the ρ-T curves as the films with optimum t_{red} of 5 and 20 min in the temperature region between 200 and 300 K, indicating that the difference in resistivity of the films with the short and optimum t_{red} is most likely caused by magnetic impurity scattering. On the other hand, the film with prolonged t_{red} of 60 min is qualitatively different, and shows no superconductivity and high resistivity, but no upturn at low temperatures.

Figure 3 shows the temperature dependence of resistivity for La$_{1.85}$Y$_{0.15}$CuO$_{4+y}$ films with different P_{O_2}. The T_{red} and t_{red} were fixed at 630°C and 10 min, respectively. The samples with $P_{O_2} = 10^{-8}$ - 10^{-7} Torr are almost identical and show superconductivity with $T_c > 20$ K, whereas the samples with $P_{O_2} \geq 10^{-6}$ Torr are not superconducting and show monotonically increasing resistivity as P_{O_2} increases, but with metallicity ($d\rho/dT > 0$) maintained above 150 K. Finally, the samples oxidized in ozone pressure show semiconducting behavior ($d\rho/dT < 0$). The ozone-oxidized films certainly have $y > 0$, since the same procedure for T-La$_2$CuO$_{4+y}$ in the same MBE chamber leads to superconductivity at 56 K, indicating y of T-La$_2$CuO$_{4+y}$ is larger than 0.1 [10]. The results in Fig. 3 confirm that excess oxygen atoms in the T'-structure do not provide hole carriers as effective dopants to the CuO$_2$ layers, which is in contrast to excess oxygen atoms at the tetrahedral site in T-La$_2$CuO$_{4+y}$. Instead, excess oxygen atoms occupy the interstitial apical sites [O(3)], where it acts only as a pair breaker and strong scatterer [11]. Figure 4 shows the corresponding lattice constants (a_0 and c_0) for La$_{1.85}$Y$_{0.15}$CuO$_{4+y}$ films with different P_{O_2}. The c_0 shows a very slight but steady decrease with decreasing P_{O_2} in reduction, confirming that interstitial oxygen atoms are more completely removed with lower P_{O_2}.

5
The results shown in Fig. 1 to 3 confirm that superconductivity in La$_{1.85}$Y$_{0.15}$CuO$_{4+y}$ is very sensitive to oxygen nonstoichiometry. The superconductivity degrades with either insufficient reduction (low T_{red}, short t_{red}, or high P_{O_2}) or excessive reduction (high T_{red} or long t_{red}), although it degrades in a different way. In either case, T_c is suppressed and the resistivity increases more or less. But the distinguishable feature between insufficient and excessive reduction is the behavior of low-temperature resistivity: the upturn in resistivity is present in the films with insufficient reduction and absent with excessive reduction. The results can be interpreted as follows. In insufficient reduction, removal of impurity oxygen at the apical site is not complete. We speculate that the low-temperature upturn in resistivity seen in this case is due to magnetic impurity (Kondo) scattering, which seems to be caused by Cu spins induced just beneath apical oxygen [12, 13]. On the other hand, in excessive reduction, the removal of apical oxygen is almost complete, but oxygen in the CuO$_2$ plane [O(1)] starts to come out. Further reduction eventually leads to irreversible decomposition. It may be argued that removal of oxygen in the (La(RE)$_2$O$_2$ layers [O(2)], instead O(1), might lead to a similar suppression of T_c by overdoping. If this were the case, the resistivity would also be lowered by overdoping. However, our experimental results indicate that the suppression in T_c accompanies the increase in resistivity. Hence, we think that the presence of oxygen deficiencies at O(1) is the reason for the degradation of superconductivity in excessive reduction. It seems that the difference in the binding energies for O(1) and O(3) is subtle, which makes the complete removal of O(3) with O(1) intact difficult.

Our present investigations of the oxygen nonstoichiometry effect in $T'-(\text{La(RE)}_2\text{CuO}_{4+y}$ indicate that electron doping via oxygen deficiencies at O(2) is not a
source of superconductivity in nominally undoped $T'-(\text{La},\text{RE})_2\text{CuO}_4$. This is because with a fixed composition, the highest T_c can be achieved in the films with the lowest residual resistivity. The O(2) deficiency model cannot explain this experimental result. Further, in Fig. 4, the dependence of the lattice constants on the reduction atmosphere argues against electron doping. It is because electron doping stretches the Cu-O bond and thereby expands a_0 by adding electrons to the Cu-O $dp\sigma$ anti-bonding bands [14, 15]. Actually, the a_0 is almost constant independent of P_{O_2}. In addition, it is important to emphasize that we see no indication of an expected Mott-Hubbard transition to a highly insulating state around $y \sim 0$. Namely, the films reduced in high molecular oxygen pressure lose superconductivity, but stay metallic above 150 K. Our oxygen nonstoichiometry experiments indicate that the behaviour in $T'-(\text{La},\text{RE})_2\text{CuO}_{4+y}$ cannot be explained by progressive carrier doping due to increased oxygen deficiencies by lowering P_{O_2} in reduction, but it can be explained in the other way around, namely, by progressive carrier localization due to increased impurity oxygen atoms by increasing P_{O_2} in reduction. The impurity oxygen at apical sites seems to cause strong magnetic impurity scattering by Cu3d spins induced just beneath apical oxygen atoms.

4. Summary

We have systematically investigated the oxygen nonstoichiometry effect on $T'-$La$_{1.85}$Y$_{0.15}$CuO$_{4+y}$. The superconducting properties are strongly affected by the oxygen nonstoichiometry. The highest T_c and lowest resistivity are simultaneously achieved with the optimum reduction. Either insufficient reduction or excessive reduction reduces T_c and also increases resistivity. An upturn in resistivity is observed in the case of insufficient reduction, but not in the case of excessive reduction. We did
not see a maximum of resistivity at “hypothetical” zero doping for a Mott insulator by varying \(P_{O_2} \) reduction. Our results can be systematically understood by postulating that \(T’-(\text{La,RE})_2\text{CuO}_{4+y} \) with \(y \sim 0 \) has a metallic (superconducting) ground state, which is significantly modified by the presence of apical oxygen that is a strong pair breaker and strong scatterer.

Acknowledgements

The authors are indeed grateful to Prof. L. Alff of Vienna University and Mr. Y. Krockenberger of Max-Plank-Institute for Solid State Research for fruitful discussions. They also thank Dr. T. Yamada, Dr. H. Sato, Dr. H. Shibata, Dr. S. Karimoto, Dr. K. Ueda, Dr. J. Kurian, and Dr. A. Matsuda for helpful discussions, and Dr. T. Makimoto and Dr. H. Takayanagi for their support and encouragement.
REFERENCES

[1] Y. Tokura, H. Takagi, S. Uchida, Nature (London) 337 (1989) 345.

[2] H. Takagi, S. Uchida, Y. Tokura, Phys. Rev. Lett. 62 (1989) 1197.

[3] K. Kumagai, M. Abe, S. Tanaka, Y. Maeno, T. Fujita, K. Kadowaki, Physica B 165-166 (1990) 1297.

[4] M. Matsuura, P. Dai, H. J. Kang, J. W. Lynn, D. N. Argyriou, K. Prokes, Y. Onose, Y. Tokura, Phys. Rev. B 68 (2003) 144503.

[5] M. Brinkmann, T. Rex, H. Bach, K. Westerholt, Phys. Rev. Lett. 74 (1995) 4927.

[6] A. Tsukada, Y. Krockenberger, H. Yamamoto, M. Naito, cond-mat 0311380, *ibid* 0401120.

[7] A. Tsukada, Y. Krockenberger, M. Noda, D. Manske, L. Alff, M. Naito, submitted to Phys. Rev. Lett.

[8] A. Tsukada, Y. Krockenberger, H. Yamamoto, D. Manske, L. Alff, M. Naito, Solid State Commun. 133 (2005) 427.

[9] M. Naito, H. Sato, H. Yamamoto, Physica C 293 (1997) 36.

[10] A. Tsukada, T. Greibe, M. Naito, Phys. Rev. B 66 (2002) 184515.

[11] M. Imada, A. Fujimori, Y. Tokura, Rev. Mod. Phys. 70 (1998) 1039.

[12] T. Sekitani, N. Miura, M. Naito, Int. J. Mod. Phys. B 16 (2002) 3216.

[13] T. Sekitani, M. Naito, N. Miura, Phys. Rev. B 67 (2003) 174503.
[14] Y. Tokura, H. Takagi, S. Uchida, Nature (London) 337 (1989) 345.

[15] E. Wang, J.-M. Tarascon, L. H. Greene, G. W. Hull, W. R. McKinnon, Phys. Rev. B 41 (1990) 6582.
Figure captions

Fig. 1. Temperature dependence of the resistivity for La$_{1.85}$Y$_{0.15}$CuO$_{4+y}$ films with different annealing temperature (T_{red}) (●: $T_{\text{red}} = 650^\circ$C; ■: 630$^\circ$C; ♦: 600$^\circ$C; ▲: 570$^\circ$C).

Fig. 2. Temperature dependence of the resistivity for La$_{1.85}$Y$_{0.15}$CuO$_{4+y}$ films with different annealing time (t_{red}) (●: $t_{\text{red}} = 0$ min; ■: 1 min; ♦: 5 min; ▲: 10 min; ○: 20 min; □: 60 min).

Fig. 3. Temperature dependence of the resistivity for La$_{1.85}$Y$_{0.15}$CuO$_{4+y}$ films with different annealing atmosphere (P_{O_2} or P_{O_3}) (▲: $P_{O_2} = 10^{-8}$ Torr; ▼: 10^{-7} Torr; ♦: 10^{-6} Torr; ●: 10^{-5} Torr; ■: 10^{-4} Torr; ○: $P_{O_3} = 10^{-5}$ Torr; □: 10^{-4} Torr). Solid and broken lines represent the films annealed in oxygen (O$_2$) and ozone (O$_2$ + 10%O$_3$) atmosphere, respectively.

Fig. 4. a-axis and c-axis lattice constants (a_0 and c_0) of T'-La$_{2-x}$Y$_x$CuO$_4$ films as a function of annealing atmosphere (P_{O_2}). Closed circles and squares represent a_0 and c_0, respectively.
Figure 1, Tsukada et al.
Figure 2, Tsukada et al.
Figure 3, Tsukada et al.
Figure 4, Tsukada \textit{et al.}