Special aspects of coagulation and floculation processes in wastewater treatment

T Yu Gumerov¹, L N Gorina²

¹Department of Industrial and Environmental Safety, Kazan National Research Technical University Named after A.N. Tupolev-KAI, 10, K. Marx St., Kazan 420111, Russia
²Department of Industrial and Ecological Safety, Federal State Budgetary Educational Institution of Higher Education Togliatti State University, 14, Belorusskaya St., Togliatti 445020, Russia

E-mail: tt-timofei@mail.ru

Abstract. Nowadays the high development of the industry leads to the inevitable pollution of the environment all over the world. First of all, it has a negative effect on the hydrosphere because, anyway, waste water falls into a reservoir or go into the ground water through the soil. The paper explores the issue of optimizing the removal of protein and lipid impurities from wastewater under exposure to the compositions of coagulants and flocculants; in this case anionic acrylamide/sodium acrylate copolymers were analyzed. It was established that by adding compositions of coagulants with flocculants to wastewater it is possible to significantly reduce the content of protein and lipid impurities. The authors determined the efficiency of the coagulant-flocculant compositions, which depend on the conditions of reagent introduction, special qualities of wastewater, nature of the coagulant, concentration, molecular weight and charge.

1. Introduction
Over the last years, wastewater-related problems have been getting even more pressing and relevant throughout the world, including the Russian Federation. In the course of its economic activities, the modern society consumes considerable quantities of water, and as a result, most of it becomes contaminated with various substances. When these substances are released into the environment, they cause an immense harm to it, and, therefore, they must be treated. To ensure this treatment is done as required, it is necessary to use special equipment and technological complexes, which help to meet the established limits for wastewater contamination, as defined by the relevant documents [1,2].

2. Relevance
Manufacturing facilities are the source of many environmental problems associated with wastewater disposal. Production processes of almost all industries involve a generation of effluents contaminated with various substances. Today, industrial pollution of wastewater is one of the paramount threats to the ecological state. According to the current legislation, manufacturing enterprises must use waste treatment facilities to correct the adverse effects of wastewater, however, this requirement is not always fully fulfilled. Pollution indexes of discharges coming from industrial facilities are often
significantly higher than the established standards. This is caused by the outdated waste treatment facilities, which are subject to reconstruction and reequipment [3].

The environmental problems of agricultural wastewater are also very grave. Wastewater often discharged into the environment by agro-industrial enterprises has such indicators of the presence of mechanical, chemical and biological impurities, which is many times the maximum permitted concentration. Reducing the concentration of the agricultural runoffs contamination to the required level should be ensured by their thorough treatment using modern equipment. Only this could ensure the quantitative and qualitative pollution indexes of this type of wastewater, which would allow for its discharge without harming the environment. The specific aspect of the agricultural industry is that its cattle-breeding and crop-growing sectors produce wastewater, which has a completely different composition of polluting agents: first, organic and biological impurities are predominant and, second, there are pollutants of inorganic origin. Therefore, the approach to their treatment, the used methods and the equipment configuration should be different [4].

Prevention of the waters contamination, along with protection of surface waters from pollution by wastewater, are the most important tasks for the present-day society. Their efficient and comprehensive solution is only possible with the use of the advanced treatment technologies [5].

The goal of the work is to optimize the removal of protein and lipid impurities contained in wastewater using the compositions of coagulants and flocculants of polyacrylamide nature. As a study subject, the authors examined wastewater of one of the enterprises of Kazan, which is characterized by an over-the-limit content of protein and lipid components. The main characteristics of wastewater are given in Table 1. As the Table shows, all the core indicators are several times higher than the regulatory criteria [6].

Table 1. Main Characteristics of Wastewater.

Item	Lipids, mg/l	Proteins, mg/l	COD	BOD₅	Suspended substances, mg/l	pH
Wastewater	750	242	1980	1670	780	6.5-7.0
Regulatory limits	10	0	265	177	186	6.5-8.5

*Decision of the Executive Committee of the municipal settlement of Kazan No. 2334 dated April 7, 2009, On the Rules for Using the Collecting System of Sewage Waters Discharge and (or) Drainage Water in the City of Kazan (with amendments as of: Oct 14, 2010)

Al₂(SO₄)₃ solution [7] was chosen as a coagulant (Y), and anionic acrylamide/sodium acrylate copolymers obtained through alkaline hydrolysis of polyacrylamide were examined as flocculants (F). Properties of the flocculants are presented in Table 2 [8].

Table 2. Properties of flocculants.

Grade	DKS	PS₁	PS₁Ι	PS₁ΙΙ	PS₁ΙΙΙ	PS₁ΙV	PS₅	PS₅Ι
Viscosity {[η]}, cm³/g	1970	1880	1800	1600	1600	1020	990	
Molecular weight Mₙ*10⁶	12.7	4.8	4.4	4.3	4.3	3.8	2.9	
Amount of ionogenic links, mol %	19.7	28	19	27	27	12	4	
The authors used the known methods of physical and chemical analysis (HTC8 –2015): primary flocculation, spectrophotometry, sedimentation test, Soxhlet and Kjeldahl methods for determining protein and lipid impurities. Based upon a comparison of the above methods, the optimal concentrations of flocculants were determined. As a result of a chemical testing on the Soxhlet and Kjeldahl apparatuses, it was revealed that the content of protein and lipid impurities in the wastewater is significantly above the limits (Table 1) [9].

The use of flocculants of polyacrylamide nature is one of the most efficient methods of reagent treatment during primary flocculation and sedimentation. From a practical point of view, both flocculants, and coagulant compositions with flocculants are used in optimal ratios for wastewater treatment [10].

3. Results
Using the spectrophotometry and sedimentation test methods, the processes of wastewater coagulation and flocculation with various protein and lipid impurities were studied. It has been established that with the introduction of optimal concentrations of coagulant compositions with flocculants, clarification and wastewater purification from impurities is more effective in contrast to using only coagulants. In addition, it was determined that there is a representative decrease in the values of optical density and speed of primary flocculation when the compositions of coagulants with flocculants are introduced. The inflection points on the curves of Figure 1 make it possible to determine the optimal reagent concentration. When a composition of a coagulant with flocculants is added (figure 1, curves 2-8) to the systems under consideration, it leads to a noticeable decrease in the values of optical density. Figure 2 shows the kinetic curves of sedimentation test, which indicate an increase in the rate of sedimentation when the optimal reagent concentrations are introduced into the system. The highest sedimentation rate is observed when Y + DKS compositions are introduced into the systems (figure 2, curve 2). The obtained result is explained by the high molecular weight of the used polymer additive (DKS) (Table 2) [11].

![Figure 1](image.png)

Figure 1. Dependence of Optical Density D on the Optimal Reagent Concentrations: 1 – Y 0.03%; 2 – Y +DKS 0.000045%; 3 - Y +PSI 0.0005%; 4 - Y+PSI 0.0005%; 5 - Y+PSIII 0.0006%; 6 – Y+PSIV 0.0006%; 7 – Y+PSV 0.0007%; 8 – Y+PSVI 0.00075%.
Figure 2. Sedimentation Test Curves in Coordinates Q/Q_{max} of t (min) (where Q and Q_{max} are, respectively, the current and maximum values of the residual matter weight on the torsion-balance pan; t is the exposure time): 1 – Y-Al$_2$(SO$_4$)$_3$ 0.03%; 2 – Y + DKS 0.000045%; 3 – Y + PsI 0.0005%; 4 – Y +PsII 0.0005%; 5 – Y +PsIII 0.0006%; 6 – Y +PsIV 0.0006%; 7 – Y +PsV 0.0007%; 8 – Y +PsVI 0.00075%.

Using the methods of primary flocculation, clarification, sedimentation and spectrophotometry, the efficiency of the coagulant-flocculant compositions was established: DKS > PsI > PsII > PsIII > PsIV > PsV > PsVI.

Note that a coagulant composition with all the considered polymer reagents is characterized by an effective action in the treatment of the selected wastewater; nevertheless, the best compositions are those of a coagulant with DKS and PsI flocculants (their molecular weight is, respectively, 12.7 and 4.8×10^6).

To verify the choice of optimal concentrations, curves of potentiometric titration of coagulant solutions were obtained in the presence of flocculants of polyacrylamide nature (DKS, PsI) within the range of pH 3–12. Moreover, the authors created a mathematical model of the main equilibrium processes in the system of Y (III) –H$_2$O–OH–flocculant, which made it possible to estimate the values of the equilibrium constants, as well as to take into account the presence of polynuclear entities and heteroligand compounds in the system [12,13].

By combining the experimental and theoretical titration curves, the existence domains of the compounds were established depending on the solution pH, and the initial coagulant and flocculant (F) concentrations. The values of equilibrium constants were evaluated; the importance of taking into account polynuclear entities and heteroligand compounds in the system simulation is shown.

It was determined that when the molarity of a flocculant is less than the optimal concentration, being within the range of pH = 2.7–4.8 (figure 3, curve 3), the destruction of polynuclear coagulant entities is observed, manifesting in the transformed potentiometric titration curves (PTC) through a shift into the alkaline region (figure 3). With an increase in the flocculant concentration, the PTCs shift into the acidic region due to the formation of new polynuclear entities with the flocculant. If flocculants (DKS, PsI) are added within the pH = 4.5–12 range, it leads to sedimentation of the constant composition. Processing of potentiometric titration curves using the method of mathematical modeling allows for a determination of the type, number and nature of distribution of the resulting complexes. Mathematical modeling demonstrated that in the acidic region of pH = 2.7–4.8, the flocculant forms the compounds...
\(\text{Y}_{12} (\text{OH})_{24}\text{F}_{12} \) and \(\text{Y}_{32}(\text{OH})_{64}\text{F}_{32} \). This composition was determined by the shape of the curves within the range of pH = 2.7–4.8 [14-17].

Figure 3. Experimental Curves of Potentiometric Titration of Flocculant Solutions with a NaOH (0.05mol l\(^{-1}\)) Standard Solution, Converted into Coordinates of the “Function of n\(_L\) Formation of the pH Value”: 1 – Y 0.03%; 2 – Y +PsI 0.00045%; 3 – Y +PsI 0.0045% 4 –Y +PsI 0.045%.

4. Conclusion
In the course of this work it was revealed that when the flocculant concentration is less than optimal, a shift of PTC to the alkaline region is observed. When the flocculant concentration is optimal, the PTCs shift to the acidic region, and when the flocculant concentration is higher than the optimal by more than 2 times, no shift of the curves is observed. Apparently, this is due to the formation of heteroligand compounds of the coagulant with all the flocculant compounds. The influence of the compositions of coagulants with flocculants on the behavior of wastewater containing protein and lipid impurities was studied. The efficacy of the compositions of coagulants with flocculants was established [18].

Using the method of sedimentation test and spectroscopy, the optimal concentrations of the compositions of coagulants with flocculants were determined. Using the method of mathematical modeling, the structure of the compounds formed in the considered pH range was determined [19, 20].

5. References
[1] The problem of environmental pollution by wastewater and its solution http://www.flotenk.ru/articles/problema-zagryazneniya-okruzhayushchey-sredy-stochnymi-vodami-i-ee-reshenie/
[2] Muraveva E V, Sibgatulina D Sh and Chabanova A A 2016 Reducing environmental risks during the operation of water development facilities using optronic monitoring equipment J. Quality and life \(^3 \) 76–79
[3] Muraveva E V, Stepuschenco O A and Sibgatulina D Sh 2017 8nd Proc. Int. Conf. on Ecology and Life Protection of Industrial-Transport Complex (Samara-Togliatti: ELPIT: Edition in Publishing House of Samara Scientific Centre) \(^1 \) p 401
[4] Shakirova A I 2018 Proc. Int. Conf on Sendai Framework Program for Disaster Risk Mitigation for 2015-2030 vol 1 (Kazan: Pub. by KNRTU-KAI) pp 191–197
[5] Romanovsky V L and Gumerov T Yu 2018 Innovative Methods Of Risk Analysis In The Evaluation Of Survivability Of Complex Technical Systems J. Modern Journal of Language Teaching Methods \(^8 \) 155–162
[6] Kuzmin A V 2014 Application of innovative methods of risk analysis to reduce emergency situations in the Republic of Tatarstan J. Life Safety Research Center. \(^3 \) 14–19
[7] GOST 12966-85 Technical purified aluminum sulphate. Specifications (Moscow: Publishing House of Standards) p 12
[8] GOST R ISO 24511-2009 Activities relating to drinking water and wastewater services. Guidelines for the management of wastewater utilities and for the assessment of wastewater services (Moscow: Standartinform) p 50

[9] ITS8–2015 Wastewater treatment in manufacture of products (goods), performance of works and provision of services in large enterprises (Moscow: Buro NDT) p 129

[10] GOST R 56226-2014 Resources saving. Sewage sludge. Methods of sampling and sample preparation (Moscow: Standartinform) p 12

[11] Arefyeva E V 2007 Regulation of ground water conditions in case of project and built-up area inundation J. Industrial and Civil Engineering 11 47–48

[12] Gumerov T Yu, Dobrynina A F and Yusupov R A 2006 Features of complexing in the Al(III)-H\(_2\)O-OH⁻-Cl⁻/(SO\(_4\))₂⁻-Flocculant system in the presence of the fat-containing disperse phase J. of Water Chemistry and Technology 28 19–24

[13] Muravyeva E V and Romanovsky V L 2014 Urban Risks: Ability to Analyze and Forecast J. Izvestia of Samara Scientific Center of the Russian Academy of Sciences 1 121–125

[14] МР 2.1.4.0032-11. 2.1.4 Integral estimate of drinking water in centralized water supply systems in terms of chemical safety Drinking water and water supply to populated areas. Guidelines http://www.consultant.ru

[15] Zagrebina Ye I 2014 Proc. Int. Conf. on State-of-the-Art Technology to Alert People of Emergencies (Kazan: Pub. by KNRTU-KAI) pp 261–264

[16] Muraveva E V, Sibgatulina D Sh and Galimova A I 2017 Risks associated with operation of water development facilities – industrial waste storages: problems and solutions J. Life safety 5 52–58

[17] Kuzmin A V, Muraveva E V and Romanovsky V L 2017 8nd Proc. Int. Conf. on Ecology and Life Protection of Industrial-Transport Complex (Samara-Togliatti: ELPIT: Edition in Publishing House of Samara Scientific Centre) I p 441

[18] Muraveva E V, Stepuschenco O A and Nureev I I 2017 8nd Proc. Int. Conf. on Ecology and Life Protection of Industrial-Transport Complex (Samara-Togliatti: ELPIT: Edition in Publishing House of Samara Scientific Centre) I p 473

[19] Sibgatova K I, Khismatova A T, Golovko M V, Maslennikova N N and Biktemirova E I 2018 Risk-Thinking Forming In The Aspect Of The Sendai Program Requirements J Modern Journal of Language Teaching Methods 8 48–51

[20] Gumerov T Yu, Dobrynina A F, Yusupov R A and Barabanov V P 2006 Coagulation in lipid-and protein – containing systems J. of Applied Chemistry 79 1935–39