Separate and combined effects of cold dialysis and intradialytic exercise on the thermoregulatory responses of hemodialysis patients

Argyro A. Krase
University of Thessaly

Andreas D. Flouris
University of Thessaly

Christina Karatzaferi
University of Thessaly

Christoforos D. Giannaki
University of Nicosia

Ioannis Stefanidis
University of Thessaly Faculty of Medicine

Giorgos Sakkas (✉ gsakkas@uth.gr)
University of Thessaly
https://orcid.org/0000-0002-2462-995X

Research article

Keywords: cold dialysis, body temperature during dialysis, dialysis temperature, thermal balance

Posted Date: June 22nd, 2020

DOI: https://doi.org/10.21203/rs.3.rs-25162/v1

License: ☑️ This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License

Version of Record: A version of this preprint was published on December 2nd, 2020. See the published version at https://doi.org/10.1186/s12882-020-02167-z.
Abstract

Background: The separate and combined effects of intradialytic exercise training (IET) and cold dialysis (CD) on patient thermoregulation remain unknown. This study assessed the thermoregulatory responses of hemodialysis patients under four different hemodialysis protocols: a) one typical dialysis (TD) protocol (dialysate temperature at 37°C), b) one cold dialysis (CD) protocol (dialysate temperature at 35°C), c) one typical dialysis protocol which included a single exercise bout (TD+E), d) one cold dialysis protocol which included a single exercise bout (CD+E).

Methods: Ten haemodialysis patients (57.2±14.9 years) participated in the study. Core and skin temperatures were measured using an ingestible telemetric pill and by four wireless iButtons attached on the skin, respectively. Body heat storage (S) calculated using the thermometric method proposed by Burton.

Results: The TD and TD+E protocols were associated with increased S leading to moderate effect size increases in core body temperature (as high as 0.4°C). The low temperature of the dialysate during the CD and the CD+E protocols prevented the rise in S and core temperature (p>0.05), even during the period that IET took place.

Conclusions: TD and IET are accompanied by a moderate level of hyperthermia, which can be offset by CD. We recommended that CD or with IET can prevent the excessive rise of S.

Trial registration: Clinical Trial Registry number: NCT03905551 (clinicaltrials.gov), DOR: 05/04/2019, https://clinicaltrials.gov/ct2/show/NCT03905551?term=NCT03905551&draw=2&rank=1

Background

Hemodialysis (HD) represents a significant challenge for the thermoregulatory system of HD patients (1, 2). Indeed, body temperature rises during HD due to (i) heat transfer into the body via the heated dialysate, (ii) endogenous heat production through normal metabolic processes, and (iii) attenuated heat loss at the skin surface (3). The latter has been hypothesized to occur because cutaneous vessels are constricted during typical dialysis (TD; 37 °C dialysate temperature) due to loss of blood volume towards the extracorporeal circuit (4). This leads to attenuated heat dissipation from the skin surface despite the fact that metabolic heat production remains relatively stable (5). Consequently, heat is accumulated (this is typically referred to as “increased body heat storage”) and, soon, core temperature rises during a typical session of hemodialysis (6). This increased heat storage (S) offsets the vasoconstrictive response to hypovolemia (7) and it is one of the responsible contributing factor which leading to the intradialytic hypotension causing patient discomfort and increased mortality (8, 9).

Lowering the dialysate temperature (35–36 °C; cold dialysis) has been proposed as a simple and useful method to reduce heat storage during hemodialysis and, therefore, decrease the frequency of intradialytic
hypotension episodes (5, 10, 11). Indeed, cold dialysis (CD) attenuates the risk for patient hyperthermia compared to typical dialysis (dialysate temperature at 37 °C; TD) and leads to cutaneous vasoconstriction (12). These observations have led to a growing interest in the thermal and circulatory adaptations occurring during CD (13). Yet, the precise changes in body heat balance during either CD or TD remain poorly documented and understood.

The above-mentioned benefits of CD in thermoregulatory and cardiovascular stability are highlighted even further due to the well accepted adoption of intra-dialytic exercise training programs (14). It has been well-established that intra-dialytic exercise leads to benefits in strength and endurance (14–16) as well as improved clearance (Kt/v), (17) hemodynamic stability, and patient quality of life (14). The beneficial effects of intradialytic-exercise are due to increased muscle blood flow and reduced inter-compartmental resistance by peripheral vasodilation (18, 19). Overcoming this resistance seems to be the single most effective method for improved toxin removal during hemodialysis (20, 21). Nevertheless, this vasodilation is augmented further during TD by the exercise-induced hyperthermia (18) and may, therefore, increase the frequency of intradialytic hypotension episodes. As indicated above, we hypothesized that CD may be able to minimize the need for peripheral vasodilation, leading to improved patient thermoregulatory and cardiovascular stability. However, despite a strong rationale for the implementation of intradialytic exercise training programs and the aforementioned benefits of CD, the separate and combined effects of these protocols on patient thermoregulation have not been investigated to date.

Methods

Aims

The aim of the current study was to assess the thermoregulatory responses of hemodialysis patients under four different hemodialysis (240 min) protocols: a) one typical dialysis (TD) protocol (dialysate temperature at 37 °C), b) one cold dialysis (CD) protocol (dialysate temperature at 35 °C), c) one typical dialysis protocol which included a single exercise bout (TD + E), d) one cold dialysis protocol which included a single exercise bout (CD + E).

Study Design

Ten haemodialysis patients were recruited from a single haemodialysis unit at the General Hospital of Trikala, Thessaly, Greece. All study measurements were performed at a hospital climate control room using the metabolic ward of the General Hospital of Trikala, Greece. The mean age was 57.2 ± 14.9 years (Table 1). Patients enrolled by a research assistant assigned into the study while the order that the patients assigned to the first scenario was random using a computer random number generator. Each patient was monitored during a) one protocol of typical dialysis with dialysate temperature at 37 °C (TD), b) one protocol of cold dialysis with dialysate temperature at 35 °C (CD), c) one protocol of typical dialysis which included a single exercise bout (TD + EP) and d) one protocol of cold dialysis which included a single exercise bout (CD + EP). The patient participants underwent hemodialysis therapy
Fresenius 4008B, Oberursel, Germany) three times per week with low flux, hollow fiber dialyzers and bicarbonate buffer, with the hemodialysis protocol lasting 4 hours. The dialysis protocols were performed using dialysis flow at 550 ml/min and mean average of conductivity dialysance at 137–140 mEq/L. The net ultrafiltration weight was the same in all sessions. All patients were clinically stable and they had received regular hemodialysis treatment for at least 3 months, with adequate dialysis delivery Kt/V > 1.1 and good compliance of dialysis treatment, the serum albumin was > 2.5 g/dL, hemoglobin ≥ 11 g/dL and treated with rHuEPO. Patients were not eligible for participation in the study if they had a reason to be in a catabolic state, such as hyperthyroidism, active vasculitis, malignancies, pregnant, HIV, opportunistic infections, musculoskeletal contraindication to exercise, requirement for systemic anticoagulation, participant or participated in an investigational drug or medical device study within 30 days or five half-lives or inflammations, that required intravenous antibiotics within 3 months prior to enrollment, diabetics receiving insulin therapy, New York Heart Association grade IV heart failure, and mental incapacity to consent.

Table 1
Individual characteristics of the study group

Patient (n)	Age (yr)	Dry Weight (kg)	Height (cm)	Body surface area (m²)	Cause of end-stage renal disease
1	82	69.7	161	1.77	Glomerulonephritis
2	51	73.6	175	1.90	Nephrectomy
3	65	69.0	185	1.88	Polycystic kidney disease
4	63	80.0	175	1.97	Glomerulonephritis
5	61	80.5	178	2.00	Glomerulonephritis
6	61	64.2	158	1.68	Polycystic kidney disease
7	32	66.0	173	1.78	IgA nephropathy
8	53	85.3	174	2.03	Polycystic kidney disease
9	68	78.8	172	1.94	Unknown causes
10	36	48.3	145	1.39	Glomerulosclerosis

Note: mean ± sd; Age: 57.2 ± 14.9; Dry Weight: 71.4 ± 10.0; Height: 169.6 ± 11.6; Body Surface: 1.83 ± 0.18

Dialysis protocols were performed in a random order at the same time and day of the week to minimize differences in ultrafiltration volume between the four protocols. The ambient temperature in the room was 25.2–25.9 °C. Food consumption was not allowed during the dialysis procedure and all participants was wearing standardized clothing to secure the same insulating properties of clothing during the different dialysis protocols. During the different dialysis protocols, core temperature (T°C) and mean skin
temperature (T_{sk}) were recorded. The body heat storage (S) for every minute was calculated during all conditions using the thermometric method proposed by Burton (22). The data recording lasted five hours for each patient (1 hour before dialysis protocol and 4 hours during the dialysis protocol). The exercise program during TD + E and CD + E was performed between the 60th and the 120th minute of the dialysis protocol.

Core Temperature Measurements (t)

Core temperature (T_c) was measured at the gastrointestinal tract using an ingestible telemetric pill. Data recorded continuously at 1-minute intervals, throughout the course of the experimental intervention. The telemetric pill was ingested by the patients 7-hour before arriving in the hospital (23, 24).

Mean Skin Temperature Measurements (t)

Skin temperature was measured at 1-minute intervals by wireless iButtons (iButton, Maxim, USA). The iButtons were programmed before their application on the skin, as outlined by the manufacturer. The iButton resolution was set at 0.06°C and the iButton real-time clock was synchronized with a laptop computer. The iButtons were attached on the skin using water-resistant, medical-grade tape. In total four iButtons were attached on the skin, at the following anatomic locations: on the biceps, pectoralis major, rectus femoris, and gastrocnemius, and were used to calculate mean skin temperature (T_{sk}) using Ramanathan Eq. (22).

Body Heat Storage (s)

Body heat storage for every minute was calculated during all conditions using the thermometric method proposed by Burton:

$$S = 3.47 \cdot m_b \cdot \Delta Tb$$

where 3.47 is the average specific heat of body tissues (in kJ·kg$^{-1}$·°C$^{-1}$), m_b is the patient's body mass (in kg), and ΔTb is the rate of change in mean body temperature (T_b) at time t from the beginning of HD (initial T_b at time 0) (25).

Intradialytic Exercise Program

The patients performed cycling for 60 minutes in the supine position during the TD + EP and CD + EP protocols. Patients were asked to pedal on a bedside cycle ergometer (Model 881 Monark Rehab Trainer, Monark Exercise AB, Varberg, Sweden) at 60% of their pre-assessed maximum power capacity. The exercise regime started 1 h after the commencement of the hemodialysis session. The patients’ maximum power capacity was determined by a modified version of the Åstrand Bicycle Ergometer Test protocol at bedside on a previous dialysis session during hemodialysis. Exercise was well tolerated by all patients, and no adverse reactions were reported.

Sample Size Estimation

The minimum required sample size was determined using data from a previous study (26) where 17 hemodialysis patients underwent CD aiming to reduce TC from $36.4 \pm 0.4 \, ^\circ C$ at baseline to $36.1 \pm 0.1 \, ^\circ C$
at the end of the dialysis protocol. Sample size calculations were conducted using G*Power 3.0 (27). The “Means: difference between two dependent means” method was used to calculate the power of the within effect. A two-tailed test selected. Statistical power and α error probability were set to 0.80 and 0.05, respectively. The minimum required sample size was determined by calculating the effect size d. Using the aforementioned published data, the resulting minimum required sample size was 10 participants.

Statistical analysis

A Multivariate Analysis of Variance (MANOVA) followed by post-hoc paired-samples t tests were used to assess the effects of time (-30, 0, 30, 60, 90, 120, 150, 180, 210, 240) and protocol (TD, CD, TD + E, CD + E) on T_c, T_{sk}, and S. The MANOVA results demonstrated no statistically significant main or interaction effects. However, the observed power in these tests ranged between 0.17 and 0.67 (with the exception of the protocol main effect in T_c which was 0.96). Given the very low power of these tests, the analysis was focused exclusively in the post-hoc paired-samples t tests. To further strengthen the analysis, Cohen's d effect sizes (0.2–0.5: small effect; 0.5–0.8: moderate effect; >0.80: large effect) were also used to identify paired differences between protocols and times. Data are expressed in mean ± SD. A p value < 0.05 was considered statistically significant. All analyses were carried out using the Statistical Package SPSS 21.

Results

Ten stable chronic hemodialysis patients were eligible and consent to participated in the study. All participants completed all 4 dialysis protocols on a random order. The patient's characteristics are presented in Table 1.

Changes in Core Body Temperature (T_c) under four dialysis protocols

The typical dialysis (TD) protocol resulted in an increase of core body temperature (T_c) compared to cold dialysis protocol (CD) (TD: 36.9 ± 0.1 °C; CD: 36.7 ± 0.2 °C). This was evident by statistically significant differences between CD and TD from 0 to 180 min ($p < 0.05$) as well as large effect sizes ($d > 0.8$) observed from 0 to 150 min and a moderate effect size ($d = 0.5–0.8$) observed at 180 min (Fig. 2).

However, the T_c remained similar during the TD + E and the TD protocols (TD: 36.9 ± 0.1 °C; TD + E: 36.9 ± 0.2 °C) except during the period that exercise training took place, where a slight increase in T_c was evident (TD: 36.9 ± 0.1 °C; TD + E: 37.0 ± 0.1 °C) resulting in a medium effect size observed at the end of exercise (Fig. 2).

The T_c during the CD + E protocol was lower than during the TD (TD: 36.9 ± 0.1 °C; CD + E: 36.6 ± 0.2 °C), which was evident by significant reductions ($p < 0.05$) and moderate/large effect sizes until 180 min into the protocol (Fig. 2). These differences were also observed during the exercise period of the CD + E (TD: 36.9 ± 0.1 °C; CD + E: 36.7 ± 0.1 °C).
The T_C increased almost throughout the TD + E protocol compared to the CD (CD: 36.7 ± 0.2 °C; TD + E: 36.9 ± 0.2 °C), which was evident by statistically significant differences ($p < 0.05$) and moderate/large effect sizes (Fig. 2).

During the exercise period of the CD + E protocol (CD: 36.5 ± 0.1 °C; CD + E: 36.7 ± 0.1 °C), the T_C was significantly increased compared to the CD ($p < 0.05$ and moderate effect sizes from 60 to 90 min), yet the low dialysate temperature used in the CD + E was able to disseminate this additional amount of heat (Fig. 2). As a result, the T_C was similar across the CD and the CD + E protocols (CD: 36.7 ± 0.2 °C; CD + E: 36.6 ± 0.2 °C)

Changes in Mean Skin Temperature (Tsk) under four dialysis protocols

The mean skin temperature (Tsk) were similar during typical dialysis (TD) and cold dialysis (CD) protocols (T_{sk}; TD: 31.0 ± 0.6 °C; CD: 31.3 ± 0.4 °C; $p > 0.05$) as well as between typical dialysis (TD) and cold dialysis which included a single exercise bout (CD + E) (T_{sk}; TD: 31.0 ± 0.6 °C; CD + E: 31.3 ± 0.9 °C; $p > 0.05$). However, T_{sk} was increased during the typical dialysis which included a single exercise bout (TD + E) compared with typical dialysis (TD) protocol (TD: 31.0 ± 0.6 °C; TD + E: 31.7 ± 0.8 °C) resulting in moderate effect sizes observed at 30, 210, and 240 minutes in the protocol (Fig. 3). In addition, the TD + E protocol resulted in somewhat increased in T_{sk} compared with CD (CD: 31.3 ± 0.4 °C; TD + E: 31.7 ± 0.8 °C) which was observed via moderate effect sizes at different points (i.e., 30, 120, and 210 min) during the protocol.

Also, T_{sk} slightly increased during the exercise period of the CD + E protocol compares with cold dialysis (CD) protocol (CD: 31.3 ± 0.4 °C; CD + E: 31.7 ± 0.9 °C), paralleled with a p value of 0.08 and a moderate effect size at 120 (Fig. 3). However, there was no overall T_{sk} differences between the CD and the CD + E protocols (CD: 31.3 ± 0.4 °C; CD + E: 31.3 ± 0.9 °C). Regarding comparison between TD + E protocol and CD + E resulted in somewhat increased T_{sk} (TD + E: 31.7 ± 0.8 °C; CD + E: 31.3 ± 0.9 °C; (Fig. 3).

Changes in Body Heat Storage (S) under four dialysis protocols

The body heat storage (S) were similar during the typical dialysis (TD) and cold dialysis (CD) protocol (TD: 5.5 ± 40.5 W; CD: 19.3 ± 37.7 W; $p > 0.05$ and $d < 0.4$). Overall, the S was slightly increased during the TD + E protocol (TD: 5.5 ± 40.5W; TD + E: 11.2 ± 141.4W) and particularly during the exercise period, as indicated by moderate effect sizes compared with typical dialysis (TD) protocol (Fig. 4). Additionally S were similar between typical dialysis (TD) and cold dialysis (CD) which included a single exercise bout (TD: 5.5 ± 40.5 W; CD + E: 2.2 ± 112.5 W; $p > 0.05$ and $d < 0.4$). During the typical dialysis (TD) which included a single exercise bout (TD + E) the body heat storage (S) was somewhat increased compared to cold dialysis (CD) (CD: 19.3 ± 37.7W; TD + E: 11.2 ± 141.4W), observed via moderate effect sizes at different points (i.e., 30, 150, and 240 min) during the protocol. The slight increases in T_C and T_{sk} during the cold dialysis which included a single exercise bout (CD + E) were also evident in terms of S, where moderate/large effect sizes were observed at different time points (i.e., 30, 60, 120, 150, and 240 min)
compared with cold dialysis (CD). However, as a whole, there were no major differences in S between the two protocols (CD: 19.3 ± 37.7W; CD + E: 2.2 ± 112.5W). In terms of S, the CD + E led to attenuated values compared to TD + E, particularly during the exercise phase, as evidenced by moderate effect sizes (Fig. 4).

Discussion

The present study sought to examine for the first time the separate and combined effects of cold dialysis and intradialytic exercise training on the thermoregulatory responses (core temperature, skin temperature, and body heat storage) of stable hemodialysis patients using for the first-time whole-body direct temperature assessment tools. Our results demonstrated that the TD and TD + E protocols are associated with increased body heat storage leading to moderate increases in core temperature (as high as 0.4 °C). Such changes in body heat storage and core temperature are known to cause peripheral vasodilation (28, 29) and may offset the vasoconstrictive response to hypovolemia (7) which is responsible for intradialytic hypotension causing patient discomfort and increased mortality (8, 9). Therefore, the present detailed thermoregulatory assessment results confirm previous evidence suggesting that TD represents a challenge for the thermoregulatory system of patients with end-stage renal disease especially in developing countries where dialysis units ambient conditions are inadequately controlled (1, 2). In contrast, the low temperature of the dialysate during the CD and the CD + E protocols prevented the rise in body heat storage and core temperature, even during the period that exercise training took place.

It has been well-established that intra-dialytic exercise leads to benefits in physical performance and quality of life in hemodialysis patient (14–16). Our results demonstrated that during exercise phase and especially when the dialysis temperature was at 37 °C, body heat storage slightly increased (Fig. 1). Studies show that during the intradialytic exercise an increased in skin blood flow limits the cardiovascular adjustment needed for work, because skin circulation participated both in hemodynamic control and thermoregulation (14).

Even though the uniqueness of our study as well as the laborious methodology and highly skilled personnel required a number of limitations unfortunately still remain. It is important to denote that we were unable to obtain peripheral/skin blood flow data assessing the blood redistribution occurred during the 4 different scenarios. Therefore, our inferences regarding peripheral vasoconstriction/vasodilation stem from skin temperature measurements. Nevertheless, it is well known that skin temperature is very well correlated with changes in the cutaneous circulation (28, 29). Another issue to consider is the effect of fixed reduction in dialysate temperature. As a consequence, the dialysis treatment must be adapted to the patient’s individual condition and response to treatment. Indeed, recent reports support the link between cold dialysis and low intradialytic hypotension episodes in the hypotensive HD patients (30).

However, the used of ingestible telemetric pill (temperature sensor) represents a valid index of body core temperature (Tc) that is convenient and shows excellent utility for prove valuable in field studies, in investigations requiring frequent measurements over long periods, or if the subject needs to be entirely free during the observations (31).
Conclusions

In conclusion, the results of the present study demonstrate that typical dialysis and intradialytic exercise are accompanied by a moderate level of hyperthermia, which can be offset by cold dialysis. Based on these findings, we observed that hemodialysis sessions which incorporate cold dialysis alone or supplemented with intradialytic exercise can prevent the rise of body heat storage. The latter has been shown to be a major factor for developing intradialytic hypotension, which is due to both hemodynamic responses (hypovolaemia stress) and thermoregulatory responses (thermal stress) during hemodialysis.

Abbreviations

IET - intradialytic exercise training
CD - cold dialysis
TD - typical dialysis
S - Body heat storage
HD - Hemodialysis
T_{sk} - mean skin temperature
m_b - Patient's body mass (in kg),
ΔTb - the rate of change in mean body temperature
Tb - mean body temperature
MANOVA - Multivariate Analysis of Variance
SD - standard deviation

Declarations

Ethics Approval and Consent to Participate: The study was approved by the Human Research and Ethics Committee of the University of Thessaly, and by the bioethics committee of the General Hospital of Trikala, Greece (protocol No 921/05-11-2014). All patients gave their written informed consent prior to study participation.

Consent for Publication. There are no individual person’s data in the manuscript.

Availability of Data or Materials. The datasets of the current study are available from the corresponding author on reasonable request.
Competing Interests. There are no financial or non-financial competing interests associated with this study.

Funding: This study received funding from the European Union’s Horizon 2020 programme (grant agreement No.645710). Also supported by the European Union Horizon 2020 Research and Innovation Programme “H2020 MSCAS-RISE-Muscle Stress Relief” (grant agreement No. 645648). Funders did not have any involvement in aspects related to study design, data acquisition, data analysis or interpretation.

Author Contributions:

A.A.K, A.D.F, G.K.S led the to the substantial conception and design of the study. A.D.F, G.K.S coordinated the project. A.A.K, C.D.G and G.K.S, designed the field experiments and A.A.K, contributed to the acquisition of the data. A.D.F C.D.G and A.A.K. conducted the data analysis. C.K and I.S led the quality assessment. All authors contributed to data interpretation. G.K.S, and A.D.F, led the manuscript writing. A.A.K, A.D.F, contributed to writing the manuscript. All authors contributed to the revision, final formulation of the manuscript and to the final approval of the version to be published.

Acknowledgments:

We would like to thank all hemodialysis patients who volunteered for the purposes of this study, as well as the staff at the hemodialysis unit of the General Hospital of Trikala, Greece, for their expert advice and valuable help.

Disclosures:

None

References

1. Schneditz D, Levin NW. Keep your temper: how to avoid heat accumulation in haemodialysis. Nephrol Dial Transplant. 2001;16:7-9.
2. Schneditz D. Temperature and thermal balance in hemodialysis. Semin Dial 2001;14:357-64.
3. Passlick-Deetjen J, Bedenbender-Stoll E. Why thermosensing? A primer on thermoregulation. Nephrol Dial Transplant 2005;20:1784-9.
4. van der Sande FM, Rosales LM, Brener Z, Kooman JP, Kuhlmann M, Handelman G, et al. Effect of ultrafiltration on thermal variables, skin temperature, skin blood flow, and energy expenditure during ultrapure hemodialysis. J Am Soc Nephrol 2005;16:1824-31.
5. Maggiore Q, Pizzarelli F, Sisca S, Catalano C, Delfino D. Vascular stability and heat in dialysis patients. Contrib Nephrol 1984;41:398-402.
6. Donauer J, Böhler J. Rationale for the use of blood volume and temperature control devices during hemodialysis. Kidney Blood Press Res. 2003;26:82-9.
7. Maggiore Q, Pizzarelli F, Santoro A, Panzetta G, Bonforte G, Hannedouche T, et al. The effects of control of thermal balance on vascular stability in hemodialysis patients: results of the European randomized clinical trial. Am J Kidney Dis. 2002;40:280-90.

8. Roumelioti ME, Unruh ML. Lower Dialysate Temperature in Hemodialysis: Is It a Cool Idea? Clin J Am Soc Nephrol 2015;10:1318-20.

9. Goodkin DA, Bragg-Gresham JL, Koenig KG, Wolfe RA, Akiba T, Andreucci VE, et al. Association of comorbid conditions and mortality in hemodialysis patients in Europe, Japan, and the United States: the Dialysis Outcomes and Practice Patterns Study (DOPPS). J Am Soc Nephrol 2003;14:3270-7.

10. Sherman RA, Rubin MP, Cody RP, Eisinger RP. Amelioration of hemodialysis-associated hypotension by the use of cool dialysate. Am J Kidney Dis 1985;5:124-7.

11. Orofino L, Marcén R, Quereda C, Villafruela JJ, Sabater J, Matesanz R, et al. Epidemiology of symptomatic hypotension in hemodialysis: is cool dialysate beneficial for all patients? Am J Nephrol 1990;10:177-80.

12. Selby NM, McIntyre CW. A systematic review of the clinical effects of reducing dialysate fluid temperature. Nephrol Dial Transplant 2006;21:1883-98.

13. Droog RP, Kingma BR, van Marken Lichtenbelt WD, Kooman JP, van der Sande FM, Levin NW, et al. Mathematical modeling of thermal and circulatory effects during hemodialysis. Artif Organs 2012;36:797-811.

14. Cheema BS, Singh MA. Exercise training in patients receiving maintenance hemodialysis: a systematic review of clinical trials. Am J Nephrol. 2005;25:352-64.

15. Morishita Y, Nagata D. Strategies to improve physical activity by exercise training in patients with chronic kidney Int J Nephrol Renovasc Dis 2015;10:19-24.

16. Malagoni AM, Catizone L, Mandini S, Soffritti S, Manfredini R, Boari B, et al. Acute and long-term effects of an exercise program for dialysis patients prescribed in hospital and performed at home. J Nephrol. 2008;21:871-8.

17. Giannaki CD, Stefanidis I, Karatzafiri C, Liakos N, Roka V, Ntente I, et al. The effect of prolonged intradialytic exercise in hemodialysis efficiency indices. ASAIO J 2011;57:213-8.

18. Maheshwari V, Samavedham L, Rangaiah GP, Loy Y, Ling LH, Sethi S, et al. Comparison of toxin removal outcomes in online hemodiafiltration and intra-dialytic exercise in high-flux hemodialysis: a prospective randomized open-label clinical study protocol. BMC Nephrol 2012;13:doi: 10.1186/471-2369-13-156.

19. Wong J, Davis P, Patidar A, Zhang Y, Vilar E, Finkelman M, et al. The Effect of Intra-Dialytic Exercise on Inflammation and Blood Endotoxin Levels. Blood Purif 2017;44(1):51-9.

20. Maheshwari V, LauT, Samavedham L, Rangaiah GP. Effect of cool vs. warm dialysate on toxin removal: rationale and study design. BMC Nephrol 2015;16:doi: 10.1186/s12882-015-0017-5.

21. Vaithilingam I, Polkinghorne KR, Atkins RC, PG. K. Time and exercise improve phosphate removal in hemodialysis patients. Am J Kidney Dis 2004;43(1):85-9.
22. Ramanathan NL. A New Weighting System For Mean Surface Temperature of the human body. J Appl Physiol 1964;19:531-3.
23. O'Brien C, Hoyt RW, Buller MJ, Castellani JW, Young AJ. Telemetry pill measurement of core temperature in humans during active heating and cooling. Med Sci Sports Exerc. 1998;30:468-72.
24. Byrne C, Lim CL. The ingestible telemetric body core temperature sensor: a review of validity and exercise applications. Br J Sports Med. 2007;41:126-33.
25. Burton AC. Human Calorimetry: II. The Average Temperature of the Tissues of the Body: Three Figures. J Nutr. 1935;9:261-80.
26. van der Sande FM, Wystrychowski G, Kooman JP, Rosales L, Raimann J, Kotanko P, et al. Control of core temperature and blood pressure stability during hemodialysis. Clin J Am Soc Nephrol 2009;4:93-8.
27. Faul F, Erdfelder E, Lang AG, Buchner A. G*Power 3: a flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behav Res Methods 2007;39:175-91.
28. Flouris AD, Cheung SS. Thermal basis of finger blood flow adaptations during abrupt perturbations in thermal Send to Microcirculation 2011;18:56-62.
29. Carrillo AE, Cheung SS, Flouris AD. A novel model to predict cutaneous finger blood flow via finger and rectal temperatures. Microcirculation. 2011;18:670-6.
30. Sakkas GK, Krase AA, Giannaki CD, Karatzaferi C. Cold dialysis and its impact on renal patients' health: An evidence-based mini review. World J Nephrol 2017;6:119-22.
31. Byrne C, CL. L. The ingestible telemetric body core temperature sensor: a review of validity and exercise applications. Br J Sports Med 2007;41(13):126-33.

Figures
Figure 1

Flow chat of the study
Figure 2

Core Body temperature (Tc) during 4 different dialysis protocols. *Statistical significant differences between TD vs CD protocol. ^ Statistical significant differences between TD vs CD +E protocol. + Statistical significant differences between TD +E vs CD protocol. # Statistical significant differences between CD +E vs CD protocol during exercise period.

Figure 3

Mean skin temperature (Tsk) during 4 different dialysis protocols. ~ Moderate effect size (d:50-80) at time points 30, 210 and 240 minutes between TD vs TD+E and CD vs TD+E protocols. # Statistical significant differences between CD +E vs CD protocol at time point 120 min.
Figure 4

Body heat storage (S) during 4 different dialysis protocols. ~ Moderate effect size (d:50-80) at time points 30 - 210 minute between TD vs TD+E and CD vs TD+E protocols. × Statistical significant differences between CD +E vs CD protocol at time point 30, 60, 120, 150 and 240 minutes.