INTRODUCTION

Sexual dimorphism is widespread in the natural world, and such differences are often underpinned by genetic adaptations that reside on the sex chromosomes (Mank, 2009; Rice, 2006). In mammals and birds, these sex chromosomes tend to be diverged between the sexes, (i.e., the X and Y, or the W and Z), alleviating some of the sexual antagonistic conflicts (Pennell & Morrow, 2013). In insects, the vast diversity of sex chromosome systems which range from the classical male heterogametic XY system in Drosophila, to ZW systems in Lepidoptera (Blackmon, Ross, & Bachtrog, 2017; Kaiser & Bachtrog, 2010). In some insect clades, such as grasshoppers, crickets and cockroaches, the original Y chromosome has been completely lost. In those species, the males carry a single X, whereas females are XX (Kaiser & Bachtrog, 2010). The absence of diverged sex chromosomes poses a nontrivial evolutionary challenge; how can a single genome code for phenotypes that are so fundamentally different as those of males and females? One possible solution is that...
the genes are differentially expressed in the sexes (Charlesworth, 2018; Ellegren & Parsh, 2007; Papa et al., 2017; Wright et al., 2018), and various epigenetic mechanisms have been suggested that could facilitate such expression variation (Allis & Jenuwein, 2016; Grath & Parsh, 2016; Holoch & Moazed, 2015).

Cytosine methylation is an epigenetic mark found in many eukaryotic organisms (Bewick et al., 2017; Bewick, Vogel, Moore, & Schmitz, 2016; Feng et al., 2010; Zemach & Zilberman, 2010). In mammals, cytosine methylation mainly occurs in a CG dinucleotide context (CpG) (Suzuki & Bird, 2008). However, in human embryonic stem cells (Guo et al., 2014), and human and mouse oocytes (Guo et al., 2014; Okae et al., 2014), cytosines are methylated in other sequence contexts (non-CpG). Plants also have high levels of non-CpG methylation that is maintained by a set of specialised chromomethylase enzymes not found in other eukaryotes (Bewick et al., 2017). CpG methylation is extensively detected throughout mammalian and plant genomes; it is often associated with suppression of the expression of genes or transposable elements, although other reasons have been suggested that could explain the correlation between transcriptional activity and demethylation (Bestor, Edwards, & Boulard, 2014). In contrast to the genomes of mammals and plants, insect genomes have sparse cytosine methylation almost exclusively restricted to CpG sites in gene bodies (Zemach, McDaniel, Silva, & Zilberman, 2010). Furthermore, rather than potentially suppressing gene expression, insect CpG methylation is associated with high and stable gene expression (Glastad, Gokhale, Liebig, & Goodisman, 2016; Libbrecht, Oxley, Keller, & Kronauer, 2016; Patalano et al., 2015; Wang et al., 2013; Xiang et al., 2010).

Social Hymenoptera have been used as a model system to study the function of insect DNA methylation and its role in phenotypic plasticity (Yan et al., 2014). However, replicated experimental designs have recently shown random between-sample variation (low repeatability) and no evidence of statistically significant differences in CpG methylation between social insect castes in unreplicated studies (Libbrecht et al., 2016). Furthermore, DNA methylation has a patchy distribution across the insect phylogeny, having been lost in many species, and appears to be dispensable for the evolution of sociality and the eusocial division of labour (Bewick et al., 2016). Besides Hymenoptera, termites (epifamily Termitoidae) have independently evolved sociality in insects, and they have also been studied to investigate patterns of DNA methylation among castes and between the sexes (Glastad et al., 2016). This study found that methylation was considerably higher in termites than in any other social insects, and that many more genes were methylated. Development of additional model systems is therefore desirable to gain a deeper understanding of the function of cytosine methylation in insects.

Aphids have a functional DNA methylation system (Bewick et al., 2016; Hunt, Brisson, Yi, & Goodisman, 2010; Walsh et al., 2010) and are an outgroup to holometabolous insects (Misof et al., 2014), which have been the main focus of research into insect DNA methylation to date. Furthermore, aphids display extraordinary phenotypic plasticity during their life cycle (Dixon, 1977), in the absence of confounding genetic variation, making them ideal for studying epigenetics (Srinivasan & Brisson, 2012). During the summer months, aphids are primarily found as alate, asexually reproducing, females. These asexual females are able to produce morphologically distinct morphs in response to environmental stimuli. This can include the induction of winged individuals in response to crowding (Müller, Williams, & Hardie, 2001), or the production of sexually reproducing individuals, sex is determined by an XO chromosomal system where males are genetically identical to their mothers, apart from the random loss of one copy of the X chromosome (Wilson, Sunnucks, & Hales, 1997). Differences between aphid morphs are known to be associated with large changes in gene expression (Jaquith et al., 2013; Purandare, Bickel, Jaquery, Rispe, & Brisson, 2014), but whether or not changes in cytosine methylation are also involved is unknown.

Here, we performed the first indepth, genome-wide, analysis of aphid DNA methylation. We conducted whole-body analysis, rather than tissue-specific analysis, because the principal aims of our study were to assess whether (a) the X chromosome and autosomes differ in methylation, (b) the sexes differ in methylation, and (c) methylation is correlated to gene expression. However, given that the development of males is induced by changes in daylight conditions, changes in methylation and gene expression could be due to variations in temperature and light, not due to sex. Furthermore, our females (but not our males) may contain embryos at various developmental stages, which could affect methylation (Field, Lyko, Mandrioli, & Prantera, 2004). Unless the age of individuals is standardised, this is a common caveat in these experiments. Hence, we have interpreted the differences in methylation observed between the sexes with caution. The comparison between the X chromosome and autosomes, on the other hand, reflects genuine differences which are unlikely to be biased by our experimental design. We find that asexual females and males have distinct expression and methylation profiles and that changes in methylation differ between the X chromosome and autosomes. In males, the autosomes are hypomethylated relative to asexual females whilst the X chromosome is hypermethylated. Changes in gene expression and methylation between asexual females and males are correlated, and this correlation is strongest for X-linked genes. Taken together, our findings suggest a role for DNA methylation in the regulation of aphid gene expression, and that methylation is intrinsically linked to sexual dimorphism in aphids.

MATERIALS AND METHODS

2.1 Aphid rearing and sample preparation

An asexual colony of *Myzus persicae* clone O derived from a single apterous asexual female (Mathers et al., 2017) was maintained on *Brassica rapa* plants in long-day conditions (14 hr light, 22°C day time, and 20°C night time, 48% relative humidity). Male morphs were induced by transferring the colony to short-day conditions (8 hr light, 18°C day time, and 16°C night time, 48% relative humidity) and samples collected two months after transfer. Replicate samples were
harvested from the same populations, with each replicate consisting of 20 adults, with apterous asexual females collected from the long-day population, and males from the short-day population. Samples were immediately frozen in liquid nitrogen prior to RNA or DNA extraction. DNA (three biological replicates per morph) was extracted using the CTAB protocol (Marzachi, Veratti, & Bosco, 1998), with the addition of a proteinase K digestion step during the initial extraction. RNA (six biological replicates per morph) was extracted using the Trizol reagent according to the manufacturer’s protocol (Sigma), and further purified using the RNeasy kit with on-column DNase treatment (Qiagen).

2.2 | Transcriptome sequencing

RNA samples were sent for sequencing at the Earlham Institute (Norwich, UK) where 12 nonorientated libraries were constructed using the TruSeq RNA protocol v2 (Illumina #15026495 Rev.F). Total RNA (1 μg) was enriched for mRNA using oligo(dT) beads. The RNA was then fragmented and first strand cDNA synthesised. Following end repair and adapter ligation, each library was subjected to a bead-based size selection using Beckman Coulter XP beads (Beckman Coulter Inc.) before performing PCR to enrich for fragments containing TruSeq adapter sequences. Libraries were then pooled and sequenced on the Illumina HiSeq 2000 platform (Illumina Inc.) (v3 chemistry; 2 × 100 bp), generating between 15 and 57 million paired-end reads per sample. RNA-seq reads have been deposited in the NCBI short read archive (SRA) under accession number PRJNA437622.

2.3 | Gene expression analysis

Raw RNA-seq reads for each sample were trimmed for low quality bases and adapter contamination using trim galore! version 0.4.0 with default settings for paired end reads (www.bioinformatics.babraham.ac.uk/projects/trim_galore/). Gene-level expression quantification was then performed for each sample based on the M. persicae clone O reference genome and gene annotation (Mathers et al., 2017), using RSEM version 1.2.31 (Li & Dewey, 2011) with STAR version 2.5.2a (Dobin et al., 2013). Average expression and the coefficient of variation was calculated per gene for asexual females and males independently in the same way. Samples were assessed using a principle component analysis (PCA) and by

2.4 | Bisulphite sequencing

Bisulphite sequencing library construction was performed using 500 ng genomic DNA per sample with a Bioo Scientific NEXTflex Bisulfite-Seq Kit (Bio Scientific Corporation) according to the manufacturer’s instructions with the following modifications: genomic DNA was sheared to 200–400 bp with a Covaris S2 sonicator (Covaris Inc.) using the following settings: duty cycle 10%, intensity five, 200 cycles per burst for 120 s. The power mode was frequency sweeping, temperature 5–6°C and water level 12. Libraries either received NEXTflex barcode #24 (GGTACC) or #31 (CACCAG). All purified libraries were QC checked with the Bioanalyzer DNA HS assay and further quantified by Qubit dsDNA HS Assay Kit (Life Technologies) before pooling as pairs. Pooled libraries were further quantified by qPCR using a KAPA Library Quantification Kit – Illumina/ABI Prism (Kapa Biosystems Inc.) on a StepOnePlus Real-Time PCR System (Life Technologies). Sequencing was performed at the Earlham Institute (Norwich, UK) on an Illumina HiSeq 2500 (Illumina Inc.) using paired-end sequencing FPKM (v4 chemistry; 2 × 126 bp) with a 15% PhiX spike in, clustering to 650 K/mm². In total, we generated between 70 and 127 million paired-end reads per sample.

2.5 | DNA methylation analysis

Bisulphite treated reads for each sample were trimmed for low quality bases and adapter contamination using trim galore! version 0.4.0 with default settings (www.bioinformatics.babraham.ac.uk/projects/trim_galore/). Read pairs where one or both reads were shorter than 75 bp after trimming were discarded. We then mapped the trimmed reads to the M. persicae clone O reference genome (Mathers et al., 2017) using bismark version 0.16.1 (Krueger & Andrews, 2011). Trimmed reads were also mapped to the genome of the M. persicae strain of the obligate aphid endosymbiont Buchnera aphidicola (Mathers et al., 2017) to estimate the error rate of the C to T conversion. Reads derived from PCR duplicates and that mapped to multiple locations in the genome were removed from downstream analysis. The distribution of methylation across selected scaffolds was visualised using Sushi (PhanstIEL, Boyle, Araya, & Snyder, 2014).

Overall levels of methylation in a CpG, CHG and CHH sequence context were estimated directly from mapped reads with bismark (Krueger & Andrews, 2011). We also characterised CpG methylation levels of features in the M. persicae clone O genome based on the reference annotation (Mathers et al., 2017). Average CpG methylation levels of introns, exons, 5′ UTRs, 3′ UTRs and intergenic regions were calculated with bedtools version 2.25.0 (Quinlan & Hall, 2010), pooling data from all replicates and counting overlapping methylated and unmethylated CpGs. We also calculated per-gene methylation levels for asexual females and males independently in the same way. To assess the genome-wide distribution of methylated CpGs, we filtered CpG sites to those covered by at least five reads in all samples and used a binomial test to identify significantly methylated sites in each sample using the C to T conversion error rate (derived from mapping to Buchnera) as the probability of success and corrected for multiple testing using the BH procedure (Benjamini & Hochberg, 1995), setting the FDR at 5% (BH adjusted p < 0.05).

Methylation differences between asexual females and males were assessed using a principle component analysis (PCA) and by
identifying differentially methylated (DM) sites and genes. PCA was carried out with prcomp, implemented in R version 3.2.2 (R Core Team, 2017), using the methylation levels of CpG sites significantly methylated in a least one sample (binomial test, BH adjusted \(p < .05 \)). We identified DM sites and genes using logistic regression implemented in MethylKit (Akalin et al., 2012) which accepts input directly from \texttt{bismark}. \(p \) values were adjusted to \(Q \)-values using the SLIM method (Wang, Tuominen, & Tsai, 2011) to account for multiple testing. For the site-level analysis, we discarded CpG sites covered by less than five reads and those that fell into the top 0.1% of coverage. We considered sites significantly DM if they had at least a 15% methylation difference at a 5% FDR (\(Q < 0.05 \)). At the gene level, we discarded genes covered by \(<20\) reads which fell into the top 1% of coverage, and called genes as DM if they had at least 10% methylation difference and at a 5% FDR (\(Q < 0.05 \)). A less stringent percent methylation difference was used at the gene-level as the signal of DM may be diluted over the length of the gene body. To assess the rate of false positive methylation calls caused by random variation between samples we generated a null distribution of DM calls at \(Q < 0.05 \). We generated nonredundant pairs of all possible combinations of samples where an asexual female sample is grouped with a male sample (\(n = 18 \)). These pairs were then tested across a range of percentage methylation difference cutoffs to ascertain a threshold of methylation difference. This enabled us to determine whether a site or gene is DM, controlling for the false positive rate (Figure 2a,c). At our chosen minimum methylation difference cutoff of 15% we compared using nonredundant pairs of two replicates grouped by sex (\(n = 9 \)) with the 18 random pairs of one male and one asexual female replicate. We found significantly more DM CpG sites (Mann–Whitney \(U; W = 162, p = 3.44 \times 10^{-5} \)) and genes (Mann–Whitney \(U; W = 162, p = 3.36 \times 10^{-5} \)) when the samples are grouped by sex than when they are grouped randomly (Figure 2b,d).

2.6 | X chromosome identification

We used our whole-genome bisulphite sequencing data for males and asexual females to identify X-linked scaffolds in the \textit{M. persicae} clone O genome assembly based on the ratio of male to asexual female coverage using a procedure similar to Jaquiéry et al. (2018). BAM files generated by MethylKit were merged for each morph using \texttt{picard} version 2.1.1 (http://broadinstitute.github.io/picard/) to maximise the depth of coverage. We then calculated per site sequence depth with \texttt{samtools} v1.3 (Li et al., 2009). The average depth of the pooled asexual female and male samples was \(79x \) and \(90x \), respectively. We then calculated the ratio of male median depth of coverage to asexual female median depth of coverage for all scaffolds longer than 20 Kb, normalising male coverage to that of asexual female coverage (multiplying male median coverage by 79/90). This resulted in a clear bimodal distribution with modes at \(-0.75 \) and \(-1.5 \) (Figure 5a). We applied a cutoff of male to asexual female normalised median coverage ratio <1 to assign scaffolds to the X chromosome and >1 to assign scaffolds to the autosomes. To validate the coverage results, we mapped known X-linked (\(n = 4 \)) and autosomal (\(n = 8 \)) microsatellite loci from Sloane, Sunnucks, Wilson, and Hales (2001) and Wilson et al. (2004) to the clone O genome with blastn and retrieved coverage ratios for their respective scaffolds.

2.7 | Testing for correlation between changes in methylation and expression

To investigate the relationship between changes in gene expression and methylation we compared expression and methylation levels of genes in males and asexual females. Using average expression (FPKM) and methylation levels, we calculated the log2 FC in expression (FC_{\text{Expr}}) and methylation (FC_{\text{Meth}}), and tested for correlation using Spearman’s \(\rho \) (rho). We also investigated the effect of chromosomal location (X chromosome vs. autosomes) on the relationship between gene expression and methylation using a general linear model (GLM). The GLM was formulated with FC_{\text{Expr}} as the response variable, and FC_{\text{Meth}} as a covariate, crossed with chromosome (as fixed factor). This interaction term tests whether the slopes of the regression lines of the X chromosome and autosomes run parallel.

2.8 | Annotation of methyltransferase genes

Amino acid sequences of human DNA methyltransferase genes were blasted against annotated protein sequences of \textit{M. persicae} Clone O (Mathers et al., 2017). The top \textit{M. persicae} clone O hit for each gene was then used to blast against the \textit{M. persicae} protein set in an iterative fashion until no additional genes were identified. The E value were set as 1E-10.

2.9 | GO term enrichment analysis

GO term enrichment analysis of specific gene sets was performed with \texttt{bingo} (Maere, Heymans, & Kuiper, 2005) using the complete \textit{M. persicae} clone O proteome as the reference set. Redundant terms were then removed with \texttt{revigo} (Supek, Bošnjak, Škunca, & Šmuc, 2011).

3 | RESULTS

3.1 | Extensive sex-biased expression between asexual females and males

To identify genes with sex-biased expression in \textit{M. persicae} clone O, we sequenced the transcriptomes of asexual females and males (six biological replicates each) using RNA-seq (Table S1). After mapping these reads to the \textit{M. persicae} clone O genome (Mathers et al., 2017), we conducted differential expression analysis with edgeR (Robinson et al., 2009). Genes were classified based on whether their expression was significantly biased (edgeR; Benjamini-Hochberg [BH] corrected \(p < .05 \) and absolute fold change [FC] > 1.5) towards asexual females (FAB genes) or males (MB genes). We also considered the
magnitude of sex bias, classifying genes as either moderately sex-biased (1.5 ≤ FC < 10, for FAB or MB) or extremely sex-biased (FC ≥ 10, for FAB+ or MB+). Of note is that we used whole-body samples of multiple individuals collected at the same developmental stage, rather than tissue-specific samples. However, given that aphids are parthenogenetic, the analysis of females may include transcripts of embryos. In contrast, the analysis of males is based on groups of single individuals, sampled at the same developmental stage. In total, 3,433 genes exhibited sex-biased expression (Figure 1a, Table S2), representing 19% of all annotated *M. persicae* genes and 33% of all genes with detectable expression (>2 counts per million in at least three samples, n = 10,334). MB genes outnumbered FAB genes by three samples, genes with detectable expression (>2 counts per million in at least 1.02 × 10–6) and only a handful of FAB+ genes (15) were observed compared to 135 MB+ genes (binomial test; p = 1.02 × 10–6) and only a handful of FAB+ genes (15) were observed compared to 135 MB+ genes (binomial test; p = 1.02 × 10–6) and only a handful of FAB+ genes (15) were observed compared to 135 MB+ genes (binomial test; p = 1.28 × 10–25). Full of FAB+ genes (15) were observed compared to 135 MB+ genes (binomial test; p = 1.02 × 10–6). The relative sex-biased expression towards males is noteworthy given that the male samples represent transcriptomes of individuals at the same developmental stage, whereas females may contain embryos of different developmental stages. The male-biased expression is consistent with patterns of gene expression in the pea aphid (Purandare et al., 2014) and other invertebrates such as *Caenorhabditis* (Albritton et al., 2014; Thomas et al., 2012) and *Drosophila* (Zhang, Sturgill, Parisi, Kumar, & Oliver, 2007), which also show a tendency towards an excess of male-biased genes.

3.2 | Differentially expressed methylation genes

Next, we used our transcriptome data to investigate expression patterns of known methylation genes in *M. persicae* asexual females and males. Genome-wide patterns of DNA methylation in animals are maintained by a toolkit of DNA methyltransferase genes (Schübler, 2015). De novo DNA methylation is established by DNMT3 and DNA methylation patterns are maintained by DNMT1 (Law & Jacobsen, 2010). An additional homolog of DNMT1 and DNMT3, DNMT2, is responsible for tRNA methylation (Goll et al., 2006) and not involved in DNA methylation. Conservation of the DNA methylation toolkit varies across insects (Bewick et al., 2016) with DNMT1 being associated with the presence of detectable levels of DNA methylation. Aphid genomes contain a full complement of DNA methylation genes with two copies of DNMT1, a single copy of DNMT2, and two copies of DNMT3 (Mathers et al., 2017; Nicholson et al., 2015; Walsh et al., 2010). We found that DNMT1a was downregulated in males, relative to asexual females (edgeR; BH corrected p = 5.84 × 10–40, abs. FC = 2.25), and DNMT3a upregulated in males (edgeR; BH corrected p = 3.18 × 10–14, abs. FC = 2.44) (Figure 1c). DNMT1b and DNMT3b were also downregulated in males (edgeR; BH corrected p = 6.35 × 10–8 and 0.039, respectively); however, the FC of these genes fell below our 1.5-fold threshold. In contrast, the tRNA methyltransferase DNMT2 was uniformly expressed (edgeR; BH corrected p = .067). These results suggest that changes in DNA methylation may be involved in the establishment of sexual dimorphism in *M. persicae*. Given that females (but not the males) contain embryos of different developmental stages, the observed difference in methylation between the sexes could also be due to a larger variation in developmental stages in the females.

3.3 | Genome-wide methylation patterns in *M. persicae*

DNA methylation has been poorly studied in insects outside of Holometabola and only been superficially described in Hemiptera as part of a broad scale comparative analysis (Bewick et al., 2016). We therefore first sought to characterise genome-wide patterns of methylation in *M. persicae* before going on to investigate sex-specific changes in DNA methylation levels between asexual female and male morphs. To characterise genome-wide DNA methylation levels at base-level resolution, we sequenced bisulphite-treated DNA extracted from whole bodies of asexual females and males (three biological replicates each) derived from the same clonally reproducing population (clone O), and mapped these reads to the *M. persicae* clone O genome (Mathers et al., 2017) using *bismark* (Krueger & Andrews, 2011). After removal of ambiguously mapped reads and PCR duplicates, each replicate was sequenced to between 24× and 37× average read depth (Table S3), resulting in 7,836,993 CpG sites covered by at least five reads in all samples.

Myzus persicae individuals harbour an obligate endosymbiont, *B. aphidicola*. The *Buchnera* genus underwent an extensive genome reduction (Chong, Park, & Moran, 2019; Chong et al., 2019; van Ham et al., 2003), and lacks a functional DNA methylation system (van Ham et al., 2003). We made use of *Buchnera* derived reads in each sample to establish rates of false positive methylation calls caused by incomplete cytosine conversions by mapping each sample to the *M. persicae* Buchnera genome (Mathers et al., 2017) and quantifying methylation levels (Table S4). The average methylation level in *Buchnera* for Cs in any sequence context was 0.45% ± 0.68 (mean ± SD). This confirms that without a functioning DNA methylation pathway (van Ham et al., 2003), *B. aphidicola* cannot methylate its genes. It also indicates that bisulphite treatment of the aphid DNA was 99.55% efficient (i.e., a 0.45% false positive rate), and that it was consistent across samples. Based on this, we assessed methylation levels in *M. persicae* for Cs in a CpG, CHH and CHG context. Only Cs in a CpG context had methylation levels higher than the false positive rate in *B. aphidicola*, indicating that CpG methylation is the predominant form of DNA methylation in *M. persicae* (Figure 2a). Overall, global CpG methylation levels (2.93% ± 0.32% of Cs; mean ± SD) were similar to those reported in other hemipteran insects (2%–4%) and higher than in Hymenoptera (0.1%–2.2%) (Bewick et al., 2016). Exons were highly enriched for methylated CpGs relative to the rest of the genome (χ² = 1.07 × 105, df = 1, p < 2.2 × 10–16), with only 7.7% of methylated CpGs occurring in intergenic regions (Figure 2b,c). Identification of significantly methylated CpG sites using a binomial test that incorporates the false positive methylation rate (derived from *Buchnera*) showed that methylation is nonrandomly distributed across *M. persicae* gene bodies. Methylated CpG sites are biased towards the 3’ end of genes despite the total number of CpG sites being much higher at the 5’ ends of genes, particularly around the...
transcription start site (TSS) (Figure 2d). As methylation is known to
elevate the mutation rate at CpG sites (Tyekucheva et al., 2008)
the difference in density of CpG sites between the TSS and the rest
of the gene body suggests that methylation at the 3′ end of M. per‐
sicae genes has been a consistent feature over evolutionary time.
This may explain the preferential loss of CpG sites at the 3′ of genes
but not the TSS. Interestingly, methylation bias towards the 3′ end
of genes is also seen in termites (Glastad et al., 2016), but not in
holometabolous insects such as Lepidoptera (Zemach et al., 2010)
and Hymenoptera (Bonasio et al., 2012; Wang et al., 2013; Zemach
et al., 2010). 3′ methylation bias may therefore be a unique feature
of hemimetabolous insects. In M. persicae, this is likely driven by high
rates of methylation in 3′ UTRs (Figure 2c).

Next, we investigated the relationship between genome-wide
patterns of DNA methylation and gene expression using data for
asexual females (Table S5). We found that the presence of DNA
methylation was positively associated with gene expression, with
methylated genes having significantly higher expression than un‐
methylated genes (Figure 2e). We also found that methylated genes
were more stably expressed than unmethylated genes (Figure 2f),
even after accounting for the higher expression of methylated genes
(Figure 2g). The same patterns were also observed using male meth‐
ylation and gene expression data (Figure S1). Taken together, these
data suggest that DNA methylation in aphids may be involved in
establishing and stabilising high gene expression, as has been sug‐
gested in corals (Liew et al., 2017) and holometabolous insects
(Libbrecht et al., 2016; Patalano et al., 2015; Wang et al., 2013; Xiang
et al., 2010).

3.4 | Asexual females and males have distinct
methylation profiles
To gain an overview of methylation differences between asexual
female and male M. persicae morphs, we conducted principle com‐
ponent analysis based on methylation levels of 350,782 CpG sites
significantly methylated (binomial test, BH-corrected \(p < .05 \)) in
at least one sample. Male and asexual female morphs clearly
formed distinct clusters, indicating reproducible differences in
global CpG methylation (Figure 3a). To further characterise methylation differences between asexual females and males we conducted site-wise differential methylation (DM) analysis, identifying 20,964 DM CpG sites (>15% methylation difference, BH corrected $p < .05$; Table S6), 79% of which show a reduction in methylation (hypomethylation) in males relative to asexual females and 21% the opposite (Figure 3b). This was significantly higher than expected by chance (see Figure S2), and indicates that differences in methylation between asexual female and male morphs are unlikely to be due to random between-sample variation. Rather, alterations
in CpG methylation appear to be associated with the differentiation between sexual morphs in aphids. These findings are striking given the lack of evidence for significant levels of sex-biased or caste-biased methylation in many other insect systems (Herb et al., 2012; Libbrecht et al., 2016; Patalano et al., 2015; Wang, Werren, & Clark, 2015), although sex biased methylation has been observed in termites (Glastad et al., 2016).

Overlap analysis revealed that the majority (92%) of DM CpG sites between asexual females and males were located in gene bodies (±1 Kb flanking region), DM, differentially methylated. (d) The distribution of DM CpG sites along M. persicae gene bodies. TSS, transcription start site; TES, transcription end site [Colour figure can be viewed at wileyonlinelibrary.com]
These DM CpG sites were nonrandomly distributed along gene bodies, being biased towards the 5’ end of genes (Figure 3d). As such, whilst overall methylation levels are biased towards the 3’ end of genes, sites with variable methylation are more likely to be at the 5’ end. To directly correlate gene body methylation levels with gene expression, we also performed DM analysis at the gene level (Table S7). This identified 1,344 DM genes with >10% methylation difference (BH corrected $p < .05$), of which 205 showed significant male-biased methylation and 1,129 asexual female-biased methylation (Figure 4a,b). Considering genes with variable methylation, males have undergone a global loss of gene body methylation relative to asexual females (Wilcoxon signed-rank test, $p < 2.2 \times 10^{-22}$; Figure 4c).

Gene ontology (GO) term enrichment analysis showed that asexual female-biased methylation and male-biased methylation genes were both enriched for GO terms relating to core biological processes, including metabolism and regulation of gene expression (Figure 4d, Figure S3, Table S8). Protein SUMOylation is enriched among genes with male-biased methylation. This is interesting because protein SUMOylation is essential for dosage compensation of the Caenorhabditis elegans sex chromosome (Pferdehirt &
Meyer, 2013) and plays a key role in insect development and metamorphosis (Ureña et al., 2015). Changes in methylation appear to be associated with core processes in aphid polyphenism and sex determination. Consistent with this, we also found enrichment of hormone signalling amongst genes with male-biased methylation, with three insulin genes hypermethylated in males (two not expressed, one has male-specific expression). Insulin receptors determine alternative wing morphs in planthoppers (Xu et al., 2015) and have been shown to interact with the core sex determination gene TRANSFORMER-2 (Zhuo et al., 2017).

3.5 | The X chromosome has distinct patterns of expression and methylation

We identified X-linked scaffolds in the *M. persicae* genome assembly based on the ratio of male to asexual female bisulphite sequencing coverage. This approach takes advantage of the hemizygous condition of the X chromosome in males, which should result in X-linked scaffolds having half the read depth of autosomal scaffolds (Jaquiéry et al., 2018). As expected, we observe a bimodal distribution in the ratio of male to asexual female scaffold coverage, with
the lower coverage peak falling at approximately half the relative coverage of the higher coverage peak (Figure 5a, Table S9). Scaffolds in this lower coverage peak are putatively derived from the X chromosome. To validate the coverage results, we mapped known X-linked (n = 4) and autosomal (n = 8) microsatellite loci to the clone O genome and retrieved the male to asexual female coverage ratios of their corresponding scaffolds. The coverage of these known sex-linked scaffolds also exactly matches expectations (Figure 5a, Table S10). Using a cutoff in the ratio of adjusted male to asexual female coverage of one, we identified 748 X-linked scaffolds and 1,852 autosomal scaffolds, totalling 68.7 and 239.7 Mb of sequence respectively (Figure S4). Scaffolds assigned to the X chromosome therefore account for 22.3% of the assembled scaffolds (≥ 20 Kb) M. persicae clone O genome. This is in line with expectations given the most common M. persicae karyotype of 2n = 12 and that the X chromosome is larger than the autosomes (Blackman, 1971a). Using the chromosomal assignment of scaffolds, we were able to assign 3,110 gene models to the X chromosome and 10,768 to autosomes, leaving 4,555 (24.7%) gene models on unassigned scaffolds shorter than 20 Kb. The number of identified X-linked genes was not different to expectations based on the assembled size of the respective chromosomal regions (binomial test, p = 0.65). However, we found that the X chromosome is depleted in coding sequence (CDS) compared to the autosomes (6.3% vs. 6.5%; χ² = 5.821.5, df = 1, p < 2.2 × 10⁻¹⁵). This is due to the reduced CDS length of X-linked genes (Wilcoxon signed-rank test, p = 4.2 × 10⁻⁴; Figure S5).

Strikingly, the X chromosome has a distinct methylation landscape compared to the autosomes (Anderson-Darling k-sample test, p = 1.35 × 10⁻⁶⁵; Figure 5b), with fewer highly methylated genes. We also found opposing dynamics of sex-biased methylation between the X chromosome and autosomes. The X chromosome is significantly enriched for genes with male-biased methylation and depleted for genes with female-biased methylation (χ² = 176.65, df = 2, p < 2.2 × 10⁻¹⁶; Figure 5c). Overall, X chromosome genes are hypermethylated in males (Wilcoxon signed-rank test, p = 8.6 × 10⁻⁴; Figure 5d) compared to the genome-wide pattern of hypomethylation (Wilcoxon signed-rank test, p < 2.2 × 10⁻¹⁶). Mirroring differences in methylation between the X chromosome and the autosomes, we also found that the X chromosome was enriched for genes with extreme male-biased expression (χ² = 42.38, df = 1, p = 7.5 × 10⁻¹¹; Figure 5c), a phenomenon also observed in the pea aphid (Jaquiéry et al., 2013). Male-biased expression of X-linked genes is therefore conserved across two distantly related aphid species, and, at least in the case of M. persicae, this also extends to patterns of DNA methylation.

Finally, we investigated whether changes in methylation between M. persicae asexual females and males are associated with changes in gene expression. The relationship between gene expression and gene body methylation is an open question in invertebrates and few studies have directly tested for changes in expression and methylation. We found that DM genes were significantly enriched for DE genes (χ² = 7.84, df = 1, p = .005), suggesting that methylation changes may be involved in the regulation of at least a subset of sex-biased genes. In support of this, we found a weak but significant positive correlation between changes in expression and methylation between asexual females and males when considering genes methylated (>1%) and expressed (>1 FPKM) in at least one of the sexes (n = 6,699; Spearman’s ρ = 0.089, p = 2.7 × 10⁻¹³; Figure 6a). Interestingly, this correlation was driven by X-linked genes which show a significantly stronger correlation between changes in expression and methylation.
than autosomal genes (GLM: $F_{1,6,185} = 93.07, p < 0.0001$; Figure 6b). Combined with recent results demonstrating a role for chromatin accessibility in the sex-specific regulation of genes on the X chromosome and dosage compensation in the pea aphid (Richard et al., 2017), our findings suggest a key role for epigenetics in establishing patterns of X-linked gene expression in aphids.

4 | DISCUSSION

Here, we present the first detailed analysis of genome-wide methylation patterns in an aphid, evaluating its importance for gene expression and sexual differentiation. We found that 3,433 genes (19% of the annotated genome) were differentially expressed between the males and asexual females, and that there was a significant excess of male-biased genes. We also found evidence suggesting that methylation plays an important role in sexual differentiation of aphids, showing that DNMT1a and b are significantly downregulated in males, whereas DNMT3a is upregulated in males. CpG methylation is the predominant form of DNA methylation in *M. persicae* and, in contrast to other insects, exons were highly enriched for methylated CpGs at the 3’ end rather than the 5’ end of genes. Methylation is positively associated with gene expression, and in addition, methylated genes are more stably expressed than unmethylated genes. Methylation was significantly reduced in males compared to asexual females, yet remarkably, the X chromosome genes of males were hypermethylated. Given that differentially methylated genes were also significantly differentially expressed between the sexes, we propose that changes in DNA methylation are associated with *M. persicae* sexual differentiation. Our findings pave the way for future functional studies of DNA methylation in aphids, and its potential role in the remarkable evolutionary potential of these insects, and their extraordinary phenotypic plasticity.

ACKNOWLEDGEMENTS

This work was supported by a BBSRC Industrial Partnership Award (BB/L002108/1) to S.H., D.S., and C.v.O and cofunded by Syngenta, the Plant Health Institute Strategy Programme (BB/P012574/1) awarded to the John Innes Centre, Gatsby Charitable Foundation funding to S.H., a BBSRC award (BB/N02317X/1) to C.v.O, as well as support by the Earth & Life Systems Alliance (ELSA). Next-generation sequencing and library construction was delivered via the Biotechnology and Biological Sciences Research Council (BBSRC) National Capability in Genomics and Single Cell (BB/CCG1720/1) at Earlham Institute by members of the Genomics Pipelines Group. We thank Anna Jordan at the JIC insectary for assistance with aphid rearing and identification of aphid morphs.

AUTHOR CONTRIBUTIONS

T.C.M., S.T.M., Y.C., D.S., S.H., and C.v.O conceived the study. T.C.M. performed bioinformatics analysis with additional analysis performed by C.v.O. G.K., and Y.C. S.T.M. performed aphid morph phenotyping and extracted DNA and RNA. L.P.A. constructed bisulphite sequencing libraries. T.C.M., C.v.O., and S.H. wrote the manuscript. All authors read, edited and approved the final manuscript.

DATA AVAILABILITY STATEMENT

Raw RNA-seq and BS-seq data generated for this study have been deposited in the NCBI short read archive under accession number PRJNA437622.

ORCID

Thomas C. Mathers https://orcid.org/0000-0002-8637-3515
Sam T. Mugford https://orcid.org/0000-0002-8537-5578
Lawrence Percival-Alwyn https://orcid.org/0000-0001-7725-9203
Yazhou Chen https://orcid.org/0000-0001-6519-4692
Gemy Kaithakottil https://orcid.org/0000-0003-1360-7808
David Swarbreck https://orcid.org/0000-0002-5453-1013
Saskia A. Hogenhout https://orcid.org/0000-0003-1371-5606
Cock Oosterhout https://orcid.org/0000-0002-5653-738X

REFERENCES

Akalin, A., Kormaksson, M., Li, S., Garrett-Bakelman, F. E., Figueroa, M. E., Melnick, A., & Mason, C. E. (2012). methylKit: A comprehensive R package for the analysis of genome-wide DNA methylation profiles. Genome Biology, 13, R87. https://doi.org/10.1186/gb-2012-13-10-r87
Albritton, S. E., Kranz, A. L., Rao, P., Kramer, M., Dieterich, C., & Erkan, S. (2014). Sex-biased gene expression and evolution of the X chromosome in nematodes. Genetics, 197, 865–883. https://doi.org/10.1534/genetics.114.163311
Allis, C. D., & Jenuwein, T. (2016). The molecular hallmarks of epigenetic control. Nature Reviews Genetics, 17, 487-500. https://doi.org/10.1038/nrg.2016.59
Benjamini, Y., & Hochberg, Y. (1995). Controlling the false discovery rate: A practical and powerful approach to multiple testing. Journal of the Royal Statistical Society, 57, 289–300. https://doi.org/10.1111/j.2517-6161.1995.tb02031.x
Bestor, T. H., Edwards, J. R., & Boulard, M. (2014). Notes on the role of dynamic DNA methylation in mammalian development. Proceedings of the National Academy of Sciences of the USA, 112, 6796–6799.
Bewick, A. J., Niederhuth, C. E., Ji, L., Rohr, N. A., Griffin, P. T., Leebens-Mack, J., & Schnitz, R. J. (2017). The evolution of CHROMOMETHYLASES and gene body DNA methylation in plants. Genome Biology, 18, 65. https://doi.org/10.1186/s13059-017-1195-1
Bewick, A. J., Vogel, K. J., Moore, A. J., & Schnitz, R. J. (2016). Evolution of DNA methylation across insects. Molecular Biology Evolution, 34, 654–665. https://doi.org/10.1093/molbev/msw264
Blackman, R. L. (1971a). Chromosomal abnormalities in an anholocyclic biotype of Myzus persicae (Sulzer). Experientia, 27, 704–706. https://doi.org/10.1007/BF02136974
Blackman, R. L. (1971b). Variation in the photoperiodic response within natural populations of Myzus persicae (Sulz.). Bulletin of Entomological Research, 60, 533–546.
Pferdehirt, R. R., & Meyer, B. J. (2013). SUMOylation is essential for sex-specific assembly and function of the Caenorhabditis elegans dosage compensation complex on X chromosomes. *Proceedings of the National Academy of Sciences of the USA*, 110, E3810–E3819.

Phanstiel, D. H., Boyle, A. P., Araya, C. L., & Snyder, M. P. (2014). Sushi.R: Flexible, quantitative and integrative genomic visualizations for publication-quality multi-panel figures. *Bioinformatics*, 30, 2808–2810. https://doi.org/10.1093/bioinformatics/btu379

Purandare, S. R., Bickel, R. D., Jaquieri, J., Rispe, C., & Brisson, J. A. (2014). Accelerated evolution of morph-biased genes in pea aphids. *Molecular Biology and Evolution*, 31, 2073–2083. https://doi.org/10.1093/molbev/msu149

Quinlan, A. R., & Hall, I. M. (2010). BEDTools: A flexible suite of utilities for comparing genomic features. *Bioinformatics*, 26, 841–842. https://doi.org/10.1093/bioinformatics/btp033

R Core Team (2017). *R: A Language and Environment for Statistical Computing*. Retrieved from https://www.r-project.org/

Rice, W. R. (2006). Sex chromosomes and the evolution of sexual dimorphism. *Evolution*, 38, 735.

Richard, G., Legreai, F., Prunier-Leterme, N., Bretaudeau, A., Tagu, D., Jaquiéry, J., & Le Tronnaire, G. (2017). Dosage compensation and sex-specific epigenetic landscape of the X chromosome in the pea aphid. *Epigenetics Chromatin*, 10, 30. https://doi.org/10.1186/s13072-017-0137-1

Robinson, M. D., McCarthy, D. J., Smyth, G. K. (2009). edgeR: A Bioconductor package for differential expression analysis of digital gene expression data. *Bioinformatics*, 26, 139–140. https://doi.org/10.1093/bioinformatics/btp616

Schübeler, D. (2015). Function and information content of DNA methylation. *Nature*, 517, 321–326. https://doi.org/10.1038/nature14192

Sloane, M. A., Sunnucks, P., Wilson, A. C., & Hales, D. F. (2001). Microsatellite isolation, linkage group identification and determination of recombination frequency in the peach-potato aphid, Myzus persicae (Sulzer) (Hemiptera: Aphididae). *Genetic Research*, 77, 251–260. https://doi.org/10.1017/S0016672301005018

Srinivasan, D. G., & Brisson, J. A. (2012). Aphids: A model for polyphenism and epigenetics. *Genetics Research International*, 2012, 431531. https://doi.org/10.1155/2012/431531

Supek, F., Bošnjak, M., Škunca, N., & Šmuc, T. (2011). Revigo summarizes and visualizes long lists of gene ontology terms. *PLoS ONE*, 6, e21800. https://doi.org/10.1371/journal.pone.0021800

Suzuki, M. M., & Bird, A. (2008). DNA methylation landscapes: Provocative insights from epigenomics. *Nature Reviews Genetics*, 9, 465–476. https://doi.org/10.1038/nrg2341

Thomas, C. G., Li, R., Smith, H. E., Woodruff, G. C., Oliver, B., & Haag, E. S. (2012). Simplification and desexualization of gene expression in self-fertile nematodes. *Current Biology*, 22, 2167–2172. https://doi.org/10.1016/j.cub.2012.09.038

Tyeckuicheva, S., Makova, K. D., Karro, J. E., Hardison, R. C., Miller, W., & Chiaromonte, F. (2008). Human-macaque comparisons illuminate variation in neutral substitution rates. *Genome Biology*, 9, R76. https://doi.org/10.1186/gb-2008-9-4-r76

Ureña, E., Pirone, L., Chafino, S., Pérez, C., Sutherland, J. D., Lang, V., Martin, D. (2015). Evolution of SUMO function and chain formation in insects. *Molecular Biology and Evolution*, 32, mv242.

van Ham, R. C. H. J., Kamerbeek, J., Palacios, C., Rausell, C., Abascal, F., Bastolla, U., … Moya, A. (2003). Reductive genome evolution in *Buchnera aphidicola*. *Proceedings of the National Academy of Sciences of the USA*, 100, 581–586.

Walsh, T. K., Brisson, J. A., Robertson, H. M., Gordon, K., Jaubert-Possamai, S., Tagu, D., & Edwards, O. R. (2010). A functional DNA methylation system in the pea aphid, *Acyrthosiphon pisum*. *Insect Molecular Biology*, 19, 215–228. https://doi.org/10.1111/j.1365-2583.2009.00974.x

Wang, H. Q., Tuominen, L. K., & Tsai, C. J. (2011). SLIM: A sliding linear model for estimating the proportion of true null hypotheses in datasets with dependence structures. *Bioinformatics*, 27, 225–231. https://doi.org/10.1093/bioinformatics/btq560

Wang, X., Werren, J. H., & Clark, A. G. (2015). Genetic and epigenetic architecture of sex-biased expression in the wasp wasps *Nasonia vitripennis* and *giraulti*. *Proceedings of the National Academy of Sciences of the USA*, 112, E3545–E3554.

Wang, X. U., Wheeler, D. A., Avery, A., Rago, A., Choi, J.-H., Colbourne, J. K., … Werren, J. H. (2013). Function and Evolution of DNA Methylation in *Nasonia vitripennis*. *PLoS Genetics*, 9(10), e1003872. https://doi.org/10.1371/journal.pgen.1003872

Wilson, A. C. C., Massonnet, B., Simon, J.-C., Prunier-Leterme, N., Dolatti, L., Llewellyn, K. S., … Sunnucks, P. (2004). Cross-species amplification of microsatellite loci in aphids: Assessment and application. *Molecular Ecology*, 4, 104–109. https://doi.org/10.1046/j.1471-8286.2004.00584.x

Wilson, A., Sunnucks, P., & Hales, D. (1997). Random loss of X chromosome at male determination in an aphid, *Sitobion near fragariae*, detected using an X-linked polymorphic microsatellite marker. *Genetic Research*, 69, 233–236.

Wright, A. E., Fumagalli, M., Cooney, C. R., Bloch, N. I., Vieira, F. G., Buechel, S. D., Mank, J. E. (2018). Male-biased gene expression resolves sexual conflict through the evolution of sex-specific genetic architecture. *Evolution Letters*, 2, 52–61. https://doi.org/10.1002/evl3.39

Xiang, H., Zhu, J., Chen, Q., Dai, F., Li, X., Li, M., … Wang, J. (2010). Single base-resolution methylome of the silkworm reveals a sparse epigenomic map. *Nature Biotechnology*, 28, 516–520. https://doi.org/10.1038/nbt.1626

Xu, H.-J., Xue, J., Lu, B. O., Zhang, X.-C., Zhuo, J.-C., He, S.-F., … Zhang, C.-X. (2015). Two insulin receptors determine alternative wing morphs in planthoppers. *Nature*, 519, 464–467. https://doi.org/10.1038/nature14286

Yan, H., Simola, D. F., Bonasio, R., Liebig, J., Berger, S. L., & Reinberg, D. (2014). Eusocial insects as emerging models for behavioural epigenetics. *Nature Reviews Genetics*, 15, 677–688. https://doi.org/10.1038/nrg3787

Zemach, A., McDaniel, I. E., Silva, P., & Zilberman, D. (2010). Genome-wide evolutionary analysis of eukaryotic DNA methylation. *Science*, 328, 916–919. https://doi.org/10.1126/science.1186366

Zemach, A., & Zilberman, D. (2010). Evolution of Eukaryotic DNA methylation and the pursuit of safer sex. *Current Biology*, 20, R780–R785. https://doi.org/10.1016/j.cub.2010.07.007

Zhang, Y., Sturgill, D., Parisi, M., Kumar, S., & Oliver, B. (2007). Constraint and turnover in sex-biased gene expression in the genus *Drosophila*. *Nature*, 450, 233–237. https://doi.org/10.1038/nature06323

Zhuo, J. C., Lei, C., Shi, J. K., Xu, N., Xue, W. H., Zhang, M. Q., … Zhang, C. X. (2017). Tra-2 mediates cross-talk between sex determination and wing polyphenism in female *Nila parvata lugens*. *Genetics*, 207, 1067–1078.

SUPPORTING INFORMATION

Additional supporting information may be found online in the Supporting Information section at the end of the article.

How to cite this article: Mathers TC, Mugford ST, Percival-Alwyn L, et al. Sex-specific changes in the aphid DNA methylation landscape. *Mol Ecol*. 2019;28:4228–4241. https://doi.org/10.1111/mec.15216