Water Resistant Cellulose – Titanium Dioxide Composites for Photocatalysis

Uthpala M. Garusinghe, Vikram S. Raghuvanshi, Warren Batchelor & Gil Garnier

Novel water resistant photocatalytic composites of microfibrillated cellulose (MFC)—polyamide-amine-epichlorohydrin (PAE)—TiO₂ nanoparticles (NPs) were prepared by a simple two-step mixing process. The composites produced are flexible, uniform, reproducible and reusable; they can readily be removed from the pollutant once used. Small amount of TiO₂ NPs are required for the loaded composites to exhibit a remarkable photocatalytic activity which is quantified here as achieving at least 95% of methyl orange degradation under 150 min of UV light irradiation for the composite with best combination. The cellulose network combined with PAE strongly retains NPs and hinders their release in the environment. PAE dosage (10 and 50 mg/g MFC) controls the NP retention in the cellulose fibrous matrix. As TiO₂ content increases, the photocatalytic activity of the composites levels off to a constant; this is reached at 2wt% TiO₂ NPs for 10 mg/g PAE and 20wt% for 50 mg/g PAE. SEM and SAXS analysis confirms the uniform distribution of NPs and their formation of aggregates in the cellulose fibre network. These economical and water resistant photocatalytic paper composites made by a simple, robust and easily scalable process are ideal for applications such as waste water treatment where efficiency, reusability and recyclability are important.

Inorganic nanoparticles-polymer composites have recently gained much attention for engineering functional materials and interfaces. Metals and metal oxides nanoparticles (NPs) such as TiO₂, Au and Fe₂O₃ are distinct materials with size dependent properties in photocatalysis and photoelectronics applications. Among those, TiO₂ NPs are low cost material for industrial applications in photocatalysis, photochemical hydrogen production, water purification and solar energy conversion. There are many recent publications related to TiO₂ photocatalysis.

In 1972, Fujishima and Honda discovered photocatalysis with TiO₂ NPs. Anatase TiO₂ gives high oxidizing power when irradiated by UV light, which has generated tremendous interest thanks to its low cost, high chemical stability and low toxicity. Optical excitation with energy exceeding TiO₂ band gap energy results in the formation of conduction band electrons and valence band holes. Both are powerful reductants and oxidants. Hydroxyl radicals produced in TiO₂ can be used to convert many organic compounds to CO₂ and H₂O. Therefore, TiO₂ has been used to decompose various environmental pollutants. The size and the length scale of these NPs play a major role in its properties and applications.

Nano scale TiO₂ (1–100 nm) possesses high surface area and shows enhanced photocatalytic activity. However, TiO₂ tendency to form agglomerates can significantly decrease its activity. Using bare TiO₂ NPs in water treatment has issues in their collection and poses uncontrolled NPs release as an environmental danger. Incorporating TiO₂ NPs directly into a matrix combines the advantages of NPs stability and retention; this enables water treatment without risk of NPs leaching or contamination.

Previously, researchers have engineered composites with TiO₂ NPs embedded in different networks such as silicon, carbon fibre, cellulose fibre and polypropylene clay. However, these composites have issues either in retention of NPs, are expensive to produce, difficult to recycle, non-biocompatible, lack of reusability or are not showing effective or controlled photocatalytic activity. There is a lack of fundamental understanding of the retention, dispersion and aggregation of NPs for the controlled photocatalysis activity of composites.

Many strategies have been explored for retaining inorganic NPs in sustainable material networks. In this category, microfibrillated cellulose (MFC) is a low cost, biodegradable and recyclable natural fibrous matrix.
having high specific strength and surface area promising good NPs integration31,40,41. MFC is more stable in aqueous environments than conventional wood fibres42,43. Previously, many methods to produce and characterise MFC-NPs composites with high NP loadings (80 wt\%) and controlled nanostructures were reported38,44,45.

We raise the hypothesis that the content and the aggregation state of TiO\textsubscript{2} in MFC composites control their photocatalytic activity when exposed to UV light. Our proposed methodology is to disperse TiO\textsubscript{2} NPs in a MFC network with controlled retention, distribution and agglomeration, while keeping the wet strength of the produced composites. These parameters are believed to be important variables for optimizing the photocatalytic activity of composites. Therefore, a material which serves as both wet strength and NP’s retention aid is required. Polyamide-amine epichlorohydrin (PAE) is a widely used wet-strength agent in the tissue and packaging industries. Its wet strength develops primarily by ester bond formation between the azetidinium groups of PAE with the carboxyl groups of the bleached cellulose fibres and is achieved during the drying process46.

In this study, MFC is investigated as TiO\textsubscript{2} NPs carrier to produce water resistant fibrous composites of varying NPs loading. Here, PAE is used both as wet strength agent to consolidate the MFC structure and as a retention aid for the TiO\textsubscript{2} NPs. Photocatalytic activity of composites with different NPs and PAE dosages is monitored by measuring the degradation kinetics of Methyl Orange (MO) solutions by UV irradiation. By changing the PAE concentration, we aim to vary the TiO\textsubscript{2} aggregation state. Scanning electron microscopy (SEM) and Small angle X-ray Scattering (SAXS) measurements are used to quantify TiO\textsubscript{2} NP distribution in the composites and are analysed in terms of PAE content. Our objective is to produce bio-compatible and reusable TiO\textsubscript{2} NPs/MFC composites of controlled photocatalysis. Further, we aim at exploring TiO\textsubscript{2} catalytic activity in terms of NPs distribution and aggregation state controlled with PAE dosage.

Results

The photocatalytic activity of water resistant, thin and flexible cellulose/PAE/titanium dioxide (TiO\textsubscript{2}) nanoparticles (NPs) composites was investigated by following the UV induced degradation kinetics of Methyl Orange (MO) dye aqueous solutions. Composites varying in TiO\textsubscript{2} NPs and PAE contents were prepared. The UV-vis spectroscopy for MO aqueous solutions denotes two distinct absorption peaks appearing at 275 nm and 500 nm (Fig. 1). The band at 500 nm was selected to measure the effect of photocatalysis on the degradation of MO as this peak decreases rapidly as increases UV light exposure time of the photocatalytic material (Supplementary Fig. S1). In 3 hours, the colour of the MO solution changes from an intense red/orange to colourless, which indicates degradation of MO (Fig. 1 inset).

There is virtually no photocatalytic activity shown by composites without TiO\textsubscript{2} (MFC-PAE only) as indicated in Fig. 2 (filled squares). Due to the initial adsorption of the MO dye onto MFC, its concentration initially decreased by ~20\% in about 2 hours as MFC-PAE paper is kept under visible light. The adsorption equilibrium is gradually reached after 4 hours. Therefore, all test samples were kept in MO solutions and in the dark for 2 hours prior to UV light irradiation.

The performance of the TiO\textsubscript{2}-MFC composites made with lower PAE dosage (10 mg/g) is shown in Fig. 2a. As TiO\textsubscript{2} loading increased to 1 and 2 wt\%, the photocatalytic activity systematically increased. At 2 wt\%, a noticeable increase in photocatalytic activity was observed compared to 1 wt\%. Composites with addition levels of 5 to 80 wt\% TiO\textsubscript{2} behaved similarly to 2 wt\% and showed the highest photocatalytic activity for this group. Photocatalytic activity decreased in a weak exponential fashion to 20\% of the original dye concentration after ~120 minutes for the 2–80 wt\% TiO\textsubscript{2} composites group and ~150 minutes for the 1 wt\% TiO\textsubscript{2} composite.

![Figure 1](https://www.nature.com/scientificreports/) UV-visible spectrum of a methyl orange aqueous solution indicating two absorption maxima. The inset illustrates the methyl orange solution colour change by photocatalysis before and after 3 hours UV exposure over TiO\textsubscript{2}-MFC composite.
The degradation curve for 40 wt% TiO$_2$-MFC composite with no PAE is also shown in Fig. 2a (filled diamonds). There is still photocatalytic activity; this suggests that some TiO$_2$ NPs are retained— even with no PAE present.

The performance of TiO$_2$-MFC composites with the high PAE dosage (50 mg/g) is shown in Fig. 2b. The degradation pattern is similar to that of composites with 10 mg/g; however, the photocatalytic activity saturation is reached at 20 wt% TiO$_2$ loading and remains constant thereafter. The overall degradation rate with 20–80 wt% TiO$_2$ was faster than for composites made with 10 mg/g (indicated by plotting the degradation graph for 40 wt% TiO$_2$ sheet with 50 mg/g in Fig. 2a—dotted line). Here, the photocatalytic activity decreased to 20% of the original dye concentration after ~90 minutes for the 20–80 wt% TiO$_2$ composites group and ~120 minutes for the 2–5 wt% TiO$_2$ composite group.

Photocatalysis repeatability. Uniformity of the sheet and photocatalytic activity repeatability was measured by cutting two test strips (2.5 cm × 2.5 cm) from two different locations from the same original composite. Reproducibility of sheet was tested by preparing two different composite sheets with the same TiO$_2$, MFC and PAE content and testing their photocatalytic activity. Figure 3a,b show an excellent repeatability and reproducibility in the MO photocatalytic degradation from composite sheets made with 2 wt% and 5 wt% TiO$_2$ retained with 10 mg PAE/g.

Sheet reusability was measured by testing the photocatalytic activity of the same sample 3 times. After each run, the test piece was washed with deionized water to remove any MO residue and dried. The photocatalytic activity of the composite sheets with 1 wt% TiO$_2$ and PAE 10 mg/g remains identical even after 3 cycles (Fig. 3c).

PAE effect on MFC flocculation. The adsorption isotherm of PAE onto MFC is presented in Fig. 4. PAE has a high affinity for MFC as shown by the initial linear portion of the curve having a slope of 1 (Fig. 4 inset). The linear part of the curve states that all PAE in solution adsorbs onto MFC until a concentration of 10 mg/g. The PAE adsorption then slows down, to eventually reach a plateau at around 15 mg PAE/g. MFC and PAE content and testing their photocatalytic activity. Figure 3a,b show an excellent repeatability and reproducibility in the MO photocatalytic degradation from composite sheets made with 2 wt% and 5 wt% TiO$_2$ retained with 10 mg PAE/g.

Sheet reusability was measured by testing the photocatalytic activity of the same sample 3 times. After each run, the test piece was washed with deionized water to remove any MO residue and dried. The photocatalytic activity of the composite sheets with 1 wt% TiO$_2$ and PAE 10 mg/g remains identical even after 3 cycles (Fig. 3c).

Figure 5 shows the MFC zeta potential as a function of PAE concentration. MFC has a zeta potential of −26 mV, while that of TiO$_2$ is −11 mV (shown by filled square). MFC charge increases linearly with PAE concentration up to 10 mg/g, corresponding to a charge of +25 mV, to level off thereafter and reach a plateau at +40 mV for a PAE dosage of 50 mg/g. Colloids having an absolute charge higher than 25 mV are considered to be stable.
This means that MFC is expected to be stable in solution, while there is a possibility for TiO$_2$ to form some small or weak aggregates in solution, and even to weakly deposit onto MFC. However, MFC and TiO$_2$ NPs fully covered by PAE are expected to be strongly electrostatically stabilized; no TiO$_2$ aggregates nor TiO$_2$ adsorption onto MFC are expected.

Retention efficiency of TiO$_2$ in the composites. Retention efficiency is defined as the actual TiO$_2$ NPs present in the composite sheet over the total amount used. Retention was measured from mass balance during composite preparation. Figure 6 shows the actual TiO$_2$ NPs retention in the composite plotted with respect to NP loading. The retention of NPs increases linearly up to 30 wt% NPs for both PAE dosages. A drop in the retention efficiency for both PAE dosage is observed as increases NPs loading. Afterwards the retention of NPs for 10 mg/g
PAE drops faster than for 50 mg/g PAE. For 80 wt% NP loading, the composite with 10 mg PAE/g retains 50% of the NPs, while that with 50 mg PAE/g retain 60% NPs.

TiO₂ and MFC morphology in composites. Scanning electron microscopy (SEM) was performed on all MFC/TiO₂ composites with PAE dosage of 10 mg/g and 50 mg/g and different TiO₂ NP's content (Figs 7 and 8). For 10 mg PAE/g, individual NPs or very small TiO₂ aggregate are present on the composite surface for 1–2 wt%
TiO$_2$ loadings (Fig. 7a,b). Relatively large TiO$_2$ aggregates are observed for 5–80 wt% TiO$_2$ loadings (Fig. 7c–f); the NP surface coverage seems to be similar for 40 wt% TiO$_2$ loadings and higher.

For composites with 50 mg PAE/g, individual TiO$_2$ NPs are seen up to 5 wt% loading (Fig. 8a,b), beyond which NPs aggregates into big clusters (Fig. 8c,d). Again, the surface coverage of TiO$_2$ present at higher loadings (20–80 wt%) all looks identical but higher than those made with the lower PAE dosage (10 mg/g).

Interestingly, TiO$_2$ NPs aggregates are present on the surface of MFC fibres rather than in the pores formed between fibres (Figs 7 and 8). This is due to the preparation method, where PAE is added first to MFC to create a PAE monolayer on MFC, followed by TiO$_2$ addition onto the MFC-PAE suspensions. The aggregates are irregular in shape and size. The MFC fibre structure does not change even at high TiO$_2$ loading; TiO$_2$ NPs do not accommodate themselves in the pores between fibres.

Small angle X-ray scattering (SAXS). Small angle X-ray scattering (SAXS) was performed on all composites to measure the average NPs distribution per unit volume. Figure 9 shows SAXS curves for samples prepared with 10 mg PAE/g and different TiO$_2$ loading (0.5–80 wt%). The SAXS curves intensity increases with the concentration of TiO$_2$ NPs in the composites. All SAXS curves show a kink at $q^* = 0.035$ Å$^{-1}$ which divides SAXS curves into two different slope regions referred to as low and high q region (shown by dashed line).
Figure 8. SEM images of TiO$_2$ composites with 50 mg PAE/g MFC: (a) 2 wt%, (b) 5 wt%, (c) 20 wt%, and (d) 80 wt% TiO$_2$.

Figure 9. SAXS curves for the MFC/TiO$_2$ composites with 10 mg/g of PAE and different loading of NPs from 0.5 to 80 wt%.
The slopes in SAXS curves represent the fractal dimensions at different length scales. At high q region, the slope represents the surface scattering/fractals (smoothness of surface) and at lower q values, the slope shows the scattering from aggregates/mass fractals. Slope varies as the power-law exponent (q^{α}) of scattering intensity. For the mass fractals, value of α lies within $0 < \alpha < 3$, and $3 < \alpha < 4$ for surface fractals.

In Fig. 9, the slope in the high q region is q^{-4} ($q^* > q$) which shows the surface fractal region while $\alpha = 4$ reveals that the NPs surface is smooth. The slope for the low q region is $q^{-2.6}$ ($q^* < q$) and represents the mass fractal region ($\alpha = 2.6$) which is interpreted as evidence of the formation of NPs aggregates.

Discussion

Quality and durability of MFC-PAE-TiO$_2$ composites. TiO$_2$ paper composites of different TiO$_2$ nanoparticles (NPs) content were prepared with two PAE dosages (10 mg and 50 mg PAE/g MFC). The photocatalytic activity was tested under standard conditions using aqueous solutions of methyl orange (MO) dye. MO is an azo dye of relatively high toxicity and poor biodegradability which provides a good reference for waste water residues from the printing and dying industries. The effect of TiO$_2$ NPs (30–50 nm) and their aggregates distribution as influenced by PAE was analysed by combining scanning electron microscopy (SEM), small angle X-ray scattering (SAXS) and photocatalytic kinetics. NPs aggregation is crucial as it influences the ability of the material to absorb and scatter incoming radiation, which greatly affects the photocatalytic activity.

Here, the addition of PAE was part of the strategy to engineer paper wet strength to develop durable MFC-TiO$_2$ composites able to sustain harsh applications in aqueous environments. PAE serves two functions. First, it cross-links cellulosic fibres, producing non-woven materials that remain durable when used wet and under long UV light exposure; second, it retains TiO$_2$ NPs onto the MFC fibres and within the fibrous composite structure. Previous work done with PAE in cellulose paper systems has proven that an addition of 10 mg PAE/g fibre retain the wet-strength of the paper, making it water resistant. MFC-PAE-TiO$_2$ composites are very efficient at degrading organic dye in solution and have the sufficient wet strength to be robustly manipulated. The photocatalysis results in Fig. 2 also indicates that neither PAE nor MFC contributes to the photocatalytic activity which is solely based on the presence and distribution of TiO$_2$.

The flexible TiO$_2$ composite sheets investigated are simpler to produce than most methods described in literature that use dopants, carbon and other materials and tedious preparation methods. The composites show excellent photocatalytic activity in degrading MO and are uniform, reproducible and re-usable (Fig. 3). In the reusability test cycles, no noticeable mass loss of TiO$_2$ NPs or broken MFC structure was observed. The composites can easily be removed from the polluted water after the reaction is completed and are expected to be fully recyclable using current equipment and processes.

Effect of PAE on TiO$_2$ nanoparticle retention. We raised two hypotheses in this study. The first is that the distribution and aggregation of TiO$_2$ NPs both affect the TiO$_2$-MFC composite photocatalytic activity; the second is that PAE dosage governs the retention of TiO$_2$ NPs. PAE adsorption onto MFC reaches the maximum capacity of adsorption at 15 mg/g (Fig. 4). This is about twice the value reported for PAE adsorption onto eucalyptus fibres (8.6 mg/g). Assuming MFC to be uniform cylinders of 10.37 μm long and of average diameter 73 nm, the specific surface area of MFC is 36.5 m2/g. The surface area reported for MFC characterized through mercury porosimetry and BET are 31.1 m2/g and 35 m2/g, respectively. A specific PAE adsorption of 0.41 mg/m2 results for MFC which is consistent with the range of polyelectrolyte adsorption (0.4–1 mg/m2).

Because of its low molecular weight (200 kDa) and chemical composition with 2 interacting functionalities (primary and secondary amines and azetidinium), PAE is expected to transfer to some extent from MFC to TiO$_2$ upon collision. This would result in TiO$_2$ aggregate formation. Such TiO$_2$ aggregates can be seen by SEM, especially at the high TiO$_2$ loadings.

Adding 10 mg PAE/g saturates all MFC fibres which induces a charge reversal to $+25$ mV—charge of opposite sign but equivalent magnitude to the original (Fig. 5). At this dosage, all PAE is adsorbed onto MFC (Fig. 4). No excess free PAE is expected in solution. Under those conditions, all TiO$_2$ NPs are anticipated to adsorb onto MFC with a high retention efficiency. This means that the TiO$_2$ content on MFC fibres should increase pseudo linearly with TiO$_2$ add-on.

At 50 mg PAE/g, all the MFC fibres are saturated with PAE and there is an important excess free PAE remaining in solution. PAE adsorbs at 15 mg/g MFC; this means 18 mg is consumed by MFC fibres, leaving 42 mg PAE in solution. Assuming PAE adsorbs onto TiO$_2$ in the same morphology/conformation as on MFC, at 0.41 mg/m2 (specific PAE adsorption on MFC), then the free PAE in solution can cover 102 m2 of TiO$_2$, or nearly 2.88 g of TiO$_2$ which corresponds to 67 wt% loading in the composites. This means for TiO$_2$ content lower than 67 wt%, all TiO$_2$ NPs are expected to be fully covered by PAE, as are the MFC fibres to which PAE was previously adsorbed; no TiO$_2$ retention due to electrostatic interactions is expected.

Figure 5 shows the zeta potential of $+40$ mV at 50 mg PAE/g of suspension. This reveals a strongly electrostatically stabilised system, and no adsorption of TiO$_2$ onto MFC, or homocoagulation of TiO$_2$, or MFC fibres are expected. That was not the case. SEM (Fig. 8) and photocatalysis activity (Fig. 2b) contradict this expectation. For one, TiO$_2$ NPs and aggregates are seen by SEM to be present on MFC surfaces. Also, photocatalysis is at the highest for composites containing 20 to 80 wt% TiO$_2$. Further, there is photocatalysis and TiO$_2$ retention even for the
Composite type	Degrading medium	UV lamp conditions	Time taken to degrade by 90%	Reference
40 wt% TiO₂ nanobelt paper | Methyl Orange | 30 W, 294 nm | ~2.5 hours | 37 |
TiO₂ particle size: 21 nm | 20 mL | 0.02 g/L | 30 W | ~7 hours | 33 |
Test piece: 1 × 1 cm² | | | | |
TiO₂/cellulose fibre composite | Methyl Orange | 20 mL | 30 W | ~7 hours | 33 |
Test piece: 1 × 3 cm² | | | | |
TiO₂/regenerated cellulose paper | 20 mg/L | | | |
Test piece: 1 × 8 cm² | | | | |
10 wt% TiO₂/bleached softwood cellulose fibre composite | Methyl Orange | 320 mL | 25 W, 253 nm, 67.2 mg/L | ~102 hours | 61 |
Test piece: 2 × 0.7 cm² | 0.25 mM in 4 ml water | 320–400 nm | | |
TiO₂ nanorods/regenerated cellulose films | Methylene blue | 150 mL | 30 W, 312 nm | ~4 hours | 33 |
10 mg TiO₂/bleached softwood cellulose fibre composite | | 40 mg/L | | |

Table 1. Literature comparison of the material performances. Note: the independent variable is radiation intensity; photon per unit area per time. Geometry of the system, particularly the distance from surface and the diffusion angle, affects this a lot.

very low loadings (2 to 5 wt% TiO₂) for which not only are both components of the system saturated with PAE, but there is also a large excess of PAE in solution. These results state that PAE does not follow trivial polyelectrolyte adsorption behaviour. PAE very likely adsorbs as partial multilayer at very high concentrations. Adsorption isotherm was thus further quantified under the exceptional conditions of 120 mg PAE/g MFC. A slight increase in adsorption capacity was indeed recorded (Supplementary Fig. S2). PAE is known for its ability to self-cross link during drying, which suggests some ability to assemble at very high concentrations.

The PAE adsorption, TiO₂ retention and TiO₂ coagulation expectations from fundamental principles clearly contradict the photocatalytic, retention efficiency measurements as well as the SEM results. This means that PAE behaves differently from the trivial polyelectrolyte adsorption behaviour previously discussed.

Composites photocatalysis activity. Photocatalysis is a surface phenomenon. Only the TiO₂ NPs retained on the composite external surface, which is irradiated by UV light, can take part in the photocatalysis process. At 10 mg PAE/g, all PAE is adsorbed onto MFC (Fig. 4) creating a monolayer of PAE on MFC. Since maximum adsorption results at 15 mg PAE/g, this means that at 10 mg PAE/g some of the MFC surface is still not coated by PAE. As TiO₂ NPs are added, the amount of TiO₂ that can be retained on the surface for 10 mg of PAE is less than at 50 mg PAE. This can be seen by the higher retention found for the 50 mg PAE/g as compared to those made with 10 mg PAE/g (Fig. 6).

However, at 50 mg PAE/g, the entire MFC surface is completely covered by PAE and there is excess in solution. This excess PAE interacts firstly with the incoming TiO₂ NPs and hinders their agglomeration into large agglomerates by electro-steric stabilisation. This increases the TiO₂ surface area available for photocatalysis; this also accounts for the higher photocatalysis for composites made with 50 mg PAE/g.

Saturation of the photocatalytic activity after reaching a critical TiO₂ loading (at a particular PAE dosage) might be due to the formation of large agglomerates which constrain the effective surface area available for photocatalysis. SEM showed (Fig. 7) that at 2 wt% TiO₂ (10 PAE mg/g), there are less individual NPs compared to composites with 40–80 wt% TiO₂.

The influence of wet strength resins on photocatalytic activity was first studied by Zhang et al. (2013) who claimed that PAE addition slightly decreased photocatalytic activity due to a reduction in TiO₂ retention in paper33. This statement contradicts our results. We found that PAE helps retain more TiO₂ NPs in paper (Fig. 6) which is in agreement with the SAXS results (Fig. 8). However, comparison of photocatalytic activity results is not direct nor straightforward; many variables influencing catalytic activity. This is illustrated in Table 1 which compares the photocatalytic dye degradation in aqueous solution from selected studies with TiO₂/cellulose composites.

Figure 10 shows the rate constant normalized per grams of TiO₂ NPs present in the composite samples tested in this study. The graph indicates that low TiO₂ loadings provide the best photocatalytic activity per unit TiO₂. This material performed best at 0.5–2 wt% TiO₂ loading. The photocatalytic activity of the TiO₂–MFC composites prepared at this work is very effective under UV irradiation; only a small amount of TiO₂ is needed to effectively degrade MO.

TiO₂-cellulose composites were engineered to be easy to manufacture by process straightforwardly scalable; the composites produced are water resistant, flexible, cost effective, and most importantly, reproducible. These composites are green and can be used in applications such as waste water treatment, antibacterial, drug delivery and medical10,62.

Conclusion

Water resistant microfibrillated cellulose (MFC)—polyamide-amine-epichlorohydrin (PAE)—titanium dioxide (TiO₂) composites were prepared by a simple two-step process, where PAE was first added to a MFC suspension, followed by TiO₂ addition. These composites are simple to prepare, economical and the process is easily scalable.
Photocatalytic activity of the composites produced was tested by following the degradation of methyl orange (MO) aqueous solutions under UV irradiation. Results show that neither MFC nor PAE or their combination contributed to photocatalytic activity; only the TiO$_2$ nanoparticles (NPs) embedded in the sheets do. TiO$_2$ NPs are uniformly distributed within the composite sheets as shown by the excellent special repeatability in photocatalysis measured. Further, these composites are reusable; the same reproducible photocatalytic efficiency was achieved by testing a same test strip 3 times with no loss of TiO$_2$ NPs leaching into solution.

Comparing photocatalytic activity of composites with two different dosage of PAE (10 and 50 mg PAE/g of MFC) revealed a higher activity and TiO$_2$ NPs retention for the high PAE dosage. MO degraded to 5% of its original concentration in 180 min for composites with low PAE and 150 min for composites with high PAE. Photocatalytic is a non-monotonous function of TiO$_2$ content. For composites made with 10 and 50 mg PAE/g and various amounts of NP, the photocatalytic activity increased up to 2 and 20 wt% TiO$_2$ NP and remained constant thereafter. SEM indicated that at low TiO$_2$ loading, NPs retain as individual particles on MFC, whereas TiO$_2$ aggregates at higher loadings. SAXS showed the formation of mass fractals aggregates at different NPs loading. PAE adsorption isotherms revealed a maximum PAE adsorption on MFC (Γ_{max}) at 15 mg/g. Expectation resulting from PAE steric and bridging mechanism with maximum coagulation at half surface coverage contradicted the TiO$_2$ retention efficiency measurements. This suggests that PAE does not follow trivial polyelectrolyte adsorption behaviour. The current study provides a novel insight in engineering NPs embedded cellulose based biodegradable, flexible and recyclable composites with high potential for applications requiring photocatalysis without any residual contamination.

Experimental Materials. Microfibrillated cellulose (MFC) was purchased from DAICEL Chemical Industries Limited, Japan (grade Celish KY-100G). MFC was supplied at 25 wt% solids and stored at 5°C as received. The mean diameter and the aspect ratio of MFC was 73 nm and 100–150, respectively. Anatase titanium dioxide (TiO$_2$) was purchased from US Research Nanomaterials, USA. The nanoparticle (NP) size ranged within 30–50 nm and was received at 40 wt% solids. The commercial polyamide-amine-epichlorohydrin (PAE) was provided by Nopco Paper Technology Pty Ltd, Australia (33 wt% solids). Methyl Orange (MO) was purchased as a powder from Sigma Aldrich.

Methods. **MFC sheet preparation.** MFC sheets were prepared using a standard British hand sheet maker (model T205). The hand sheet maker was equipped with a woven filter with an average opening of 74 microns. A Whatman wet strengthened filter paper (WHAT1114-185) with a pore size of 25 microns was placed on top of the woven filter and a 0.3 wt% MFC suspension (with 1.2 g dry mass of MFC) was poured into the column. Once the water drained under gravity, the wet film was taken out using blotter papers, the filter paper was removed, and the sheet was pressed at 385 kPa for 5 minutes and then dried at 105 °C using a sheet drier.

MFC-PAE-TiO$_2$ composite sheet preparation. Two sets of MFC-PAE-TiO$_2$ composites were produced:

1. Composites with low PAE dosage: 0.3 wt% MFC (1.2 g fixed), 0.01 wt% PAE (10 mg PAE/g MFC fixed) and with varying TiO$_2$ loading at 0.5, 1, 2, 5, 10, 40 and 80 wt%.
2. Composites with high PAE dosage: 0.3 wt% MFC (1.2 g fixed), 0.03 wt% PAE (50 mg PAE/g MFC fixed) and with varying TiO$_2$ loading at 2, 5, 20, 40 and 80 wt%.

The composites were prepared in a two-step process. Firstly, the PAE suspension was added at a constant flowrate of 30 mL/min into a beaker containing 0.3 wt% (1.2 g fixed) MFC, while stirring the suspension using a hand stirrer (high shear mixing). Second, 0.1 wt% TiO$_2$ suspensions were strongly sonicated (sonicator model:...
VCX750 purchased from John Morris Scientific Pty Ltd for, used for 10 minutes at 80% amplitude) and added to the MFC-PAE suspension at a constant flowrate of 20 mL/min, while stirring the entire suspension. Suspensions were poured into the British hand sheet maker and the composite sheets were made as described above.

Photo-degradation of methyl orange. The photocatalytic degradation tests were carried out at room temperature using MO as a model dye. A 100 W lamp (365 nm wavelength) was used as the light source. The samples were cut into 2.5 cm × 2.5 cm pieces and dispersed in a 50 mL beaker filled with 15 mL of 5 ppm pH 3 MO aqueous solution. The sample immersed in the beaker was kept in the dark for 2 hours until the maximum adsorption of MO by MFC prior to photocatalytic experiment was reached. The beaker was then subjected to UV radiation for MO photocatalytic degradation. The distance between the liquid surface and the light source was 19 cm. At given irradiation time intervals, the solution was collected for analysis using UV-vis spectroscopy (Model: Cary 60 UV-Vis, Agilent Technologies). Experimental set up is shown in Fig. 11.

Characterization. Structure and morphology study. Scanning electron microscopy (SEM) analysis of the composite sheets was performed using a FEI Magellan 400 FEGSEM. Samples were cut into 3 mm × 3 mm mounted onto a metal sample holder and coated with a thin layer of Iridium prior to imaging.

Particle and colloid charge. The zeta potential measurements of MFC, TiO₂ and PAE were performed with a Nanobrook Omni (Brookhaven Instruments) in a cuvette cell at 25 °C. The zeta potential was calculated, using the supplied software, by determining electrophoretic mobility from an electrophoresis experiment using laser Doppler velocimetry and applying the Smoluchowski equation. PAE at 0.01 wt% concentration was added at different dosages to a 0.3 wt% MFC suspension and mixed using a hand stirrer for 3 minutes. MFC-PAE suspension was centrifuged at 4400 rpm for 20 minutes to remove big agglomerates and the supernatant was used to measure zeta potential.

PAE adsorption on MFC. This method is adopted, as described by Peng and Garnier. Particle charge detector (Mutek PCD-03, BGT Instruments) was used to titrate the amount of PAE in the supernatant after centrifugation using an opposite charged polyelectrolyte until point of zero charge is met. The polyelectrolyte used was PES-Na of known concentration (0.000125 N), and was added at 10 mL dosages to the PAE-MFC supernatant. Titrant consumption was measured in mL and converted into PAE concentration through a standard curve method.

Small angle X-ray scattering (SAXS). SAXS measurements were made on a Laboratory Bruker N8 Horizon using a CuKα (λ = 0.154 nm) micro-source. The sample to detector distance was 0.6 m covering the q range between ~0.15 to 3.7 nm⁻¹. The scattered photons after interacting with the sample were collected using a 2D Vantec-500 detector (pixel size ~70 μm × 70 μm). Final scattering curves were obtained after data reduction and radial averaging using Bruker EVA software.

References

1. Kemell, M., Pore, V., Ritala, M., Leskelä, M. & Lindén, M. Atomic layer deposition in nanometer-level replication of cellulose substances and preparation of photocatalytic TiO₂/cellulose composites. *Journal of the American Chemical Society* **127**, 14178–14179 (2005).
2. Shin, Y., Bae, I.-T., Arey, B. W. & Exarhos, G. J. Facile stabilization of gold-silver alloy nanoparticles on cellulose nanocrystal. *The Journal of Physical Chemistry C* **112**, 4844–4848 (2008).
3. Liu, S. et al. Fiberlike Fe₃O₄ macroporous nanomaterials fabricated by calcining regenerate cellulose composite fibers. *Chemistry of Materials* **20**, 3623–3628 (2008).
Zhao, Z.-J.

Kuang, D.

Savage, N. & Diallo, M. S. Nanomaterials and water purification: opportunities and challenges. *Chinese Journal of Catalysis* 36, 1211–2218 (2015).

Wang, X., Yu, R., Wang, K., Yang, G. & Yu, H. Facile template-induced synthesis of Ag-modified TiO2 hollow octahedra with high photocatalytic activity. *Chinese Journal of Catalysis* 36, 846–854 (2016).

Levcuk, I. et al. TiO2/ScSiO2 porous composite thin films: Role of TiO2 areal loading and modification with gold nanoparticles on the photocatalytic activity. *Applied Surface Science* 383, 367–374 (2016).

Wu, F. et al. Enhanced photocatalytic degradation and adsorption of methyl blue via TiO2 nanocrystals supported on graphene-like bamboo charcoal. *Applied Surface Science* 358, 425–435 (2015).

Hu, M., Cao, Y., Li, Z., Yang, S. & Xing, Z. Ti3+ self-doped mesoporous black TiO2/ScO2 nanocomposite as remarkable visible light photocatalyst. *Applied Surface Science* 426, 734–744 (2017).

Wen, J. et al. Photocatalysis fundamentals and surface modification of TiO2 nanomaterials. *Chinese Journal of Catalysis* 36, 2049–2070 (2015).

Zhao, Z.-J. et al. Three-dimensional plasmonic Ag/TiO2 nanocomposite architectures on flexible substrates for visible-light photocatalytic activity. *Scientific Reports* 7, 8015 (2017).

Yang, L., Gao, Y., Wang, F., Liu, P. & Hu, S. Enhanced photocatalytic performance of cemenitious material with TiO2@Ag modified fly ash micro-aggregates. *Chinese Journal of Catalysis* 38, 357–364 (2017).

Zhang, L. et al. Cu2S-Cu-TiO2 mesoporous carbon composites for the degradation of high concentration of methyl orange under visible light. *Applied Surface Science* 422, 1093–1101 (2017).

Fujishima, A. & Honda, K. Electrochemical photolysis of water at a semiconductor electrode. *Nature* 238, 37–38 (1972).

Hashimoto, K. et al. Photocatalytic oxidation of nitrogen oxide over titania–zeolite composite catalyst to remove nitrogen oxides in the atmosphere. *Applied Catalysis B: Environmental* 30, 429–436 (2001).

Manassah, J. Treatment of highly polluted paper mill waste water by solar photocatalytic oxidation with synthesized nano TiO2. 2011 International Conference on Green Technology and Environmental Conservation (GETEC 2011) India. Chennai, https://doi.org/10.1080/16666204.2012.1336103. 259 (2012).

Wei, F., Zeng, Z., Cui, P., Peng, S. & Cheng, T. Various TiO2 microcrystals: controlled synthesis and enhanced photocatalytic activities. *Chemical Engineering Journal* 144, 119–123 (2008).

Serpone, N. & Emeline, A. Suggested terms and definitions in photocatalysis and radiocatalysis. *International Journal of Photoenergy* 4, 91–151 (2002).

Nimlos, M. R., Jacoby, W. A., Blake, D. M. & Milne, T. A. Direct mass spectrometric studies of the destruction of hazardous wastes. *Gas-phase photocatalytic oxidation of trichloroethylene over titanium oxide: products and mechanisms. Environmental Science & technology* 27, 732–740 (1993).

Fujishima, A., Rao, T. N. & Tryk, D. A. Titanium dioxide photocatalysis. *Journal of Photochemistry and Photobiology C: Photochemistry Reviews* 1, 1–21 (2000).

Zhang, H. et al. A facile one-step synthesis of TiO2/graphene composites for photodegradation of methyl orange. *Nano Research* 4, 274–283 (2011).

Mandzy, N., Grulke, E. & Druffel, T. Breakage of TiO2 agglomerates in electrostatically stabilized aqueous dispersions. *Powder technology* 160, 121–126 (2005).

Zhang, X., Chen, W., Lin, Z., Yao, J. & Tan, S. Preparation and photocatalysis properties of bacterial cellulose/TiO2 composite membrane doped with rare earth elements. *Synthesis and Reactivity in Inorganic, Metal-Organic, and Nano-Metal Chemistry* 41, 997–1004 (2011).

Li, G. et al. Laccase-immobilized bacterial cellulose/TiO2 functionalized composite membranes: Evaluation for photo- and biocatalytic dye degradation. *Journal of Membrane Science* 525, 89–98 (2017).

Alrousan, D. M., Dunlop, P. S., McMurray, T. A. & Byrne, J. A. Photocatalytic inactivation of *E. coli* in surface water using immobilised nanofibre TiO2 films. *Water research* 43, 47–54 (2009).

Long, T. C., Saleh, N., Tilton, R. D., Lowery, G. V. & Veronesi, B. Titanium dioxide (P25) produces reactive oxygen species in immortalized brain microglia (BV2): implications for nanoparticle neurotoxicity. *Environmental Science & Technology* 40, 4346–4352 (2006).

Lovern, S. B., Strickler, J. R. & Klaper, R. Behavioral and physiological changes in Daphnia magna when exposed to nanoparticle suspensions (titanium dioxide, nano-C60, and C60H14T70H16s). *Environmental science & technology* 41, 4465–4470 (2007).

Mohamed, M. A. et al. Incorporation of N-doped TiO2 nanorods in regenerated cellulose thin films fabricated from recycled newspaper as a green portable photocatalyst. *Carbohydrate polymers* 133, 429–437 (2015).

Snyder, A., Bo, Z., Moon, R., Rochet, J.-C. & Stanciu, L. Reusable photocatalytic titanium dioxide–cellulose nanofiber films. *Journal of colloid and interface science* 399, 92–98 (2013).

Zhang, J., Liu, W., Wang, P. & Qian, K. Photocatalytic behavior of cellulose-based paper with TiO2 loaded on carbon fibers. *Journal of Environmental Chemical Engineering* 1, 175–182 (2013).

Shi, J., Zheng, J., Wu, P. & Ji, X. Immobilization of TiO2 films on activated carbon fiber and their photocatalytic degradation properties for dye compounds with different molecular size. *Catalysis Communications* 9, 1846–1850 (2008).

Ochiai, T. et al. Fabrication of a TiO2 nanoparticles impregnated titanium mesh filter and its application for environmental purification. *Catalysis Science & Technology* 1, 1324–1327 (2011).

Li, J., Chen, C., Zhao, J., Zhu, H. & Orthman, J. Photodegradation of dye pollutants on TiO2 nanoparticles dispersed in silicate under UV–VIS irradiation. *Applied Catalysis B: Environmental* 37, 331–338 (2002).

Wang, J. et al. Preparation of cellulose film–TiO2 nanobelt–silver nanoparticle hierarchically structured hybrid paper and its photocatalytic and antibacterial properties. *Chemical engineering journal* 228, 272–280 (2013).

Garasgehore, U. M. et al. Assembly of nanoparticles-polyelectrolyte complexes in nanoparticle cellulose structures. *Colloids and Surfaces A: Physicochemical and Engineering Aspects* 513, 373–379 (2017).

Li, S. & Huang, J. Cellulose-Rich Nanofiber-Based Functional Nanochip structures. *Advanced Materials* 21, 1143–1158 (2009).

Hoang, E., Denneulin, A. & Bras, J. Use of nanocellulose in printed electronics: a review. *Nanoscale* 8, 13131–13135 (2016).

Ngo, Y. H., Li, D., Simon, G. P. & Garnier, G. Paper surfaces functionalized by nanoparticles. *Advances in colloid and interface science* 163, 23–38 (2011).

Su, J., Mosse, W. K., Sharman, S., Batchelor, W. & Garnier, G. Paper strength development and recyclability with polyamidoamine-epichlorohydrin (PAE). *BioResources* 7, 9013–9024 (2012).

Varanasi, S. & Batchelor, W. Superior non-woven sheet forming characteristics of low-density cationic polymer-cellulose nanofibre colloids. *Cellulose* 21, 3541–3550 (2014).
44. Garusinghe, U. M., Varanasi, S., Garnier, G. & Batchelor, W. Strong cellulose nanofibre–nanosilica composites with controllable pore structure. *Cellulose* **24**, 2511–2521 (2017).
45. Raghuvanshi, V. S., Garusinghe, U. M., Ilavsky, J., Batchelor, W. J. & Garnier, G. Effect of nanoparticles size and polyelectrolyte on nanoparticles aggregation in a cellulose fibrous matrix. *Journal of Colloid and Interface Science* **510**, 190–198 (2018).
46. Obokata, T. & Isozai, A. The mechanism of wet-strength development of cellulose sheets prepared with polyamideamine-epichlorohydrin (PAE) resin. *Colloids and Surfaces A: Physicochemical and Engineering Aspects* **302**, 525–531 (2007).
47. Raj, P. et al. Effect of polyelectrolyte morphology and adsorption on the mechanism of nanocellulose flocculation. *Journal of colloid and interface science* **481**, 158–167 (2016).
48. Peng, P. & Garnier, G. Effect of cationic polyacrylamide adsorption kinetics and ionic strength on precipitated calcium carbonate flocculation. *Langmuir* **26**, 16949–16956 (2010).
49. Cherny, A. Y., Anitas, E., Osipov, V. & Kuklin, A. Small-angle scattering from multimode fractals. *Journal of Applied Crystallography* **47**, 198–206 (2014).
50. Rieker, T. P., Hindermann-Bischoff, M. & Ehrburger-Dolle, F. Small-angle X-ray scattering study of the morphology of carbon black mass fractal aggregates in polymeric composites. *Langmuir* **16**, 5588–5592 (2000).
51. Beaucge, G. Small-angle scattering from polymeric mass fractals of arbitrary mass-fractal dimension. *Journal of Applied Crystallography* **29**, 134–146 (1996).
52. Pellegrino E. et al. Influence of Agglomerated and Aggregation on the Photocatalytic Activity of TiO2 Nanoparticles. *Applied Catalysis B: Environmental* **216**, 80–87 (2017).
53. An, X. et al. Synthesis of nano-fibrillated cellulose/magnette/tituanium dioxide (NFC@ Fe 3 O 4 @ TNP) nanocomposites and their application in the photocatalytic hydrogen generation. *Applied Catalysis B: Environmental* **206**, 53–64 (2017).
54. Weng, C.-C. & Wei, K.-H. Selective distribution of surface-modified TiO2 nanoparticles in polystyrene-b-poly (methyl methacrylate) diblock copolymer. *Chemistry of materials* **15**, 2936–2941 (2003).
55. Huang, Z., Zengenbach, T., Tian, J., Shen, W. & Garnier, G. The role of polyaminoamide-epichlorohydrin (PAE) in antibody longevity in bioactive paper. *Colloids and Surfaces B: Biointerfaces* **158**, 197–202 (2017).
56. Varanasi, S., He, R. & Batchelor, W. Estimation of cellulose nanofibre aspect ratio from measurements of fibre suspension gel point. *Cellulose* **20**, 1885–1896 (2013).
57. Raj, P., Varanasi, S., Batchelor, W. & Garnier, G. Effect of cationic polyacrylamide on the processing and properties of nanocellulose films. *Journal of colloid and interface science* **447**, 113–119 (2015).
58. Sehaqui, H., Salajkova, M., Zhou, Q. & Berglund, L. A. Biomimetic aerogels from microfibrillated cellulose and xylolucan. *17th International Conference on Composite Materials*. (Edinburgh, United Kingdom. ICMC, July 27–31, 2009).
59. Pleer, G., Staart, M. C., Scheutjens, J., Cosgrove, T. & Vincent, B. Polymers at interfaces. (eds). *Polymers at interfaces*. (Ed Chapman & Hall 1993).
60. Asselman, T. & Garnier, G. Mechanism of polyelectrolyte transfer during heteroflocculation. *Langmuir* **16**, 4871–4876 (2000).
61. Galkina, O., Ivanov, V., Agafonov, A., Seisenbaeva, G. & Kessler, V. Cellulose nanofiber–titania nanocomposites as potential drug delivery systems for dental applications. *Journal of Materials Chemistry B* **3**, 1688–1698 (2015).
62. Galkina, O. et al. Antibacterial and photothermal properties of cellulose nanofiber–titania nanocomposites loaded with two different types of antibiotic medicines. *Journal of Materials Chemistry B* **3**, 7125–7134 (2015).
63. Zeng, J., Liu, S., Cai, J. & Zhang, L. TiO2 immobilized in cellulose matrix for photocatalytic degradation of phenol under weak UV light irradiation. *The Journal of Physical Chemistry C* **114**, 7806–7811 (2010).
64. Chauman, I. & Mohanty, P. In situ decoration of TiO2 nanoparticles on the surface of cellulose fibers and study of their photocatalytic and antibacterial activities. *Cellulose* **22**, 507–519 (2015).

Acknowledgements

The financial support of the Australian research council, Australian paper, Carter Holt Harvey, Circa, Orora, Norske Skog and Visy through the ARC Industry Transformation Research Hub – Biomanchurising Advanced Materials Initiative (BAMI) grant IIF130100016 is acknowledged. Thanks to Monash University for MGS and FEIPRS scholarships and the MCEM centre for electron microscopy. The authors gratefully acknowledge Dr. Jisheng Ma for helping in SAXS measurements at the Bruker N8 Horizon SAXS funded from ARC LIEF LE130100072.

Author Contributions

U.G.S. and V.S.R. wrote the manuscript. U.G.S. conducted experiments on TiO2/cellulose composites sheets preparation and testing for the photo-catalytic activity. V.S.R. conducted the SAXS experiments. G.G., V.S.R., W.B. and U.G.S. were involved in the data analysis and discussions.

Additional Information

Supplementary information accompanies this paper at https://doi.org/10.1038/s41598-018-20569-w.

Competing Interests: The authors declare that they have no competing interests.

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

© The Author(s) 2018