Supplementary Data for:

Investigation of DNA sequence recognition by a streptomycete MarR family transcriptional regulator through surface plasmon resonance and X-ray crystallography

Clare E. M. Stevenson1*, Aoun Assaad1, Govind Chandra2, Tung B. K. Le2, Sandra J. Greive1, Mervyn J. Bibb2, and David M. Lawson1*

1Department of Biological Chemistry, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
2Department of Molecular Microbiology, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK

* To whom correspondence should be addressed. David M Lawson, Tel: +44 1603 450725; Fax: +44 1603 450018; email: david.lawson@jic.ac.uk. Correspondence may also be addressed to Clare E. M. Stevenson, Tel: +44 1603 450734; Fax: +44 1603 450018; email: clare.stevenson@jic.ac.uk

Present addresses:
Tung B. Le, Massachusetts Institute of Technology, Department of Biology, 68-570, 77 Massachusetts Avenue, Cambridge, MA 02139. USA
Sandra J. Greive, York Structural Biology Laboratory, Department of Chemistry, University of York, York, YO10 5DD, UK
SUPPLEMENTARY METHODS

Determination of the oligomeric state of SCO3205

Dynamic Light Scattering was used to monitor the solution properties of the purified protein. For this purpose, approximately 30 μl of the sample was filtered through a 0.1 μm Ultrafree-MC filter (Millipore) to remove particulate material before introduction into a 12 μl cuvette. The cuvette was placed in a DynaPro Titan molecular sizing instrument at 20°C (Wyatt Technology). A minimum of ten scattering measurements were obtained and the resulting data were analyzed using the DYNAMICS software package (Wyatt Technology). The sample exhibited a monomodal size distribution, with a polydispersity of 11.2% and a molecular-size estimate of 48.0 kDa. This was very close to the value of 47.7 kDa estimated from the gel filtration column, which had been calibrated with a Gel Filtration LMW Calibration Kit (GE Healthcare). This suggests that SCO3205 exists as a homodimer (calculated molecular mass 41.1 kDa for the His-tagged dimer), in agreement with other characterized MarR homologues.

DNA preparation for SPR experiments

Four types of DNA oligomer were used:

(a) ReDCaT linker: 20 nt 5’-biotinylated oligomer [designed to have no secondary structure or tendency to form dimers, as assessed by the Sigma-Aldrich website (www.sigma-aldrich.com/calc/DNACalc.asp); see Supplementary Table S2 for the sequence].
(b) Complement to the ReDCaT linker.
(c) Strand 1 of test DNA (forward strand by default).
(d) Strand 2 of test DNA (reverse strand by default) with the complement to the ReDCaT linker attached to the 3’ end.

The test DNA samples were prepared by annealing together oligomers of type (c) and (d) using a slight excess (1.2:1) of type (c) to minimize the likelihood of free type (d) that would compete with annealed test DNA for the immobilized linker. Oligomers of type (a) and (b) were annealed to use as a reference in the affinity experiments (see below). The annealing procedure consisted of mixing the complementary oligomers and heating to 95°C for 10 min, before cooling to 20°C. The various DNA oligomers were diluted to their working concentrations using HBS-EP+ buffer [150 mM NaCl, 3 mM EDTA, 0.05% (v/v) surfactant P20, 10 mM HEPES pH 7.4; GE Healthcare]. Throughout the SPR procedures, this will be referred to simply as "buffer".

SPR measurements

Preliminary experiments with SCO3205 had established that salt washes were frequently not sufficient to remove all of the bound protein from the test DNA. Thus, to ensure consistency, the test DNA was stripped and re-captured between each cycle, even if the same test DNA was to be used again. The following protocols were automated through the appropriate "wizards" in the Biacore T200 BiaEvaluation software version 1.0 (GE Healthcare).

Protocol 1 - preparation of the ReDCaT Chip for the screening experiments:
1. To remove any unconjugated streptavidin, the chip surface was washed using three injections of 1.0 M NaCl, 50 mM NaOH for 60 s, each followed by buffer for 60 s (all at 10 µl min\(^{-1}\)).

2. The ReDCaT linker (100 nM) was injected at 5 µl min\(^{-1}\) over FC\(_{\text{ref}}\) and FC\(_{\text{test}}\) to give a relatively high immobilization level (approx. 500 RU).

Protocol 2 - use of the ReDCaT Chip for the screening experiments:

The flow rate was 30 µl min\(^{-1}\) unless stated otherwise. Step 3 was optional.

1. Test DNA (1.0 µM) was injected over FC\(_{\text{test}}\) at a flow rate of 10 µl min\(^{-1}\) for 60 s, followed by buffer for 120 s.

2. Protein at the required concentration (or buffer-only control) was injected over FC\(_{\text{ref}}\) and FC\(_{\text{test}}\) for 60 s, followed by buffer for 360 s.

3. To examine the effect of NaCl on the protein-DNA interaction, 0.5 M NaCl was injected for 60 s over FC\(_{\text{ref}}\) and FC\(_{\text{test}}\) followed by buffer for 60 s. In some cases, the NaCl injection was repeated.

4. The test DNA (together with any remaining bound protein) was then removed by injecting 1.0 M NaCl, 50 mM NaOH over FC\(_{\text{ref}}\) and FC\(_{\text{test}}\) at a flow rate of 10 µl min\(^{-1}\) to leave only the ReDCaT linker (the response should return to the level prior to step 1). Buffer was flowed over both flow cells for a further 120 s.

Cycles 1-4 were repeated as many times as required (e.g. with different DNA and protein samples), without any further user intervention. When the experiment was completed, the chip was removed from the instrument and stored in buffer at 4°C until required again.

Protocol 3 - preparation of the ReDCaT Chip for the affinity experiments:

1. To remove any unconjugated streptavidin, the chip surface was washed using three injections of 1.0 M NaCl, 50 mM NaOH for 60 s, each followed by buffer for 60 s (all at 10 µl min\(^{-1}\)).

2. The ReDCaT linker, pre-annealed to its complement, was injected at 5 µl min\(^{-1}\) over FC\(_{\text{test}}\) to give a relatively low immobilization level (approx. 50 RU).

3. The ReDCaT linker (10 nM) was injected at 5 µl min\(^{-1}\) over FC\(_{\text{ref}}\) to give a relatively low immobilization level (approx. 130 RU).

Protocol 4 - use of the ReDCaT Chip for the affinity experiments:

The flow rate was 100 µl min\(^{-1}\) unless stated otherwise.

1. Test DNA (0.5 µM) was injected over FC\(_{\text{test}}\) at a flow rate of 10 µl min\(^{-1}\) for 30 s and the baseline was allowed to stabilize with buffer flowing for a further 60 s.

2. Protein at the required concentration (or buffer-only control) was injected over FC\(_{\text{ref}}\) and FC\(_{\text{test}}\), for 210 s, followed by buffer for 600 s to monitor the protein dissociation.

3. The test DNA (together with any remaining bound protein) was then removed by injecting 1.0 M NaCl, 50 mM NaOH over FC\(_{\text{test}}\) at a flow rate of 10 µl min\(^{-1}\) for 60 s to leave only the ReDCaT linker (the
response should return to the level prior to step 1). Buffer was flowed over both FC_ref and FC_test for a further 90s.

Cycles 1-3 were repeated in triplicate for a range of protein concentrations spanning either side of the expected K_D (estimated from preliminary experiments). When the experiment was completed, the chip was removed from the instrument and stored in buffer at 4°C until required again.

SPR data analysis

All sensorgrams were analysed using Biacore T200 BiaEvaluation software version 1.0 (GE Healthcare). The data were then plotted using Microsoft Excel.

Normalizing responses due to protein binding in SPR experiments

In order to readily compare the results from the SPR experiments, the responses recorded due to protein binding were normalized as described below.

The theoretical maximum response, R_{max}, for SCO3205 (the "analyte") binding to the test DNA (the "ligand") was calculated using the formula:

\[
\text{theoretical } R_{\text{max}} = \left(\frac{\text{mol. mass analyte}}{\text{mol. mass ligand}} \right) \times (\text{response for ligand capture}) \times (\text{stoichiometry})
\]

However, when the ligand is DNA, it has been suggested that the result needs to be multiplied by a factor of 0.78 because the response associated with nucleic acid binding to the surface is not the same as that for a protein of equivalent mass (10,12). This correction was made in all the R_{max} calculations in the present study. Moreover, all calculations were made assuming a stoichiometry of one SCO3205 dimer binding to one ds oligomer of test DNA. Thus, for this system:

\[
\text{theoretical } R_{\text{max}} = \left(\frac{\text{mol. mass SCO3205 dimer}}{\text{mol. mass test DNA}} \right) \times \text{DNA captured} \times 1 \times 0.78
\]

Then, the percentage of R_{max} measured upon protein binding is calculated as follows:

\[
\% \text{ of } R_{\text{max}} \text{ measured} = \left(\frac{\text{measured } R}{\text{theoretical } R_{\text{max}}} \right) \times 100
\]

For example in the intergenic screening, for fragment 5, replicate 1 at 100 nM SCO3205 (data highlighted in Supplementary Tables S2 and S3):

\[
\text{theoretical } R_{\text{max}} = \left(\frac{41046}{23787} \right) \times 420.1 \times 1 \times 0.78 = 565.4 \text{ RU}
\]

\[
\% \text{ of } R_{\text{max}} \text{ measured} = \left(\frac{655.8}{565.4} \right) \times 100 = 116.0\%
\]
This figure of greater than 100% of R_{max} could be attributed to a small amount of additional non-specific binding giving rise to more than one protein dimer binding per immobilized DNA duplex. Alternatively, it could be due to an underestimation of the theoretical R_{max}. Indeed, it has been suggested that the 0.78 correction factor is not necessary (52), which would give rise to the following adjusted values:

\[
\text{theoretical } R_{\text{max}} = \left(\frac{41046}{23787}\right) \times 420.1 \times 1 = \mathbf{724.9 \, RU}
\]

\[
\% \text{ of } R_{\text{max}} \text{ measured} = \left(\frac{655.8}{724.9}\right) \times 100 = \mathbf{90.5\%}
\]

This would indicate that full 1:1 binding has not been achieved in this experiment. However, for the purposes of the analysis presented herein, the absolute values of these normalized responses are not crucial. Instead, it is their relative values that enable us to determine which of the intergenic screening fragments contain putative operator sites, and which of the footprinting truncated oligomers define the borders of these operator sites. Nevertheless, normalized response values approaching 200%, for example, could be indicative of specific 2:1 binding i.e. two protein dimers binding per ds DNA oligomer.
Table S1. Putative regulon members for SCO3205 predicted using MAST

Closest downstream gene	Hits using O_{3204} motif	Hits using O_{3205} motif	Gene annotation		
	MAST score	expect value	MAST score	expect value	
sco3204	1699	3.58 x 10^{-8}	2877	1.62 x 10^{-14}	hypothetical protein with homology to Class III extradiol dioxygenases
sco3205	2315	2.23 x 10^{-10}	1132	8.59 x 10^{-11}	MarR family transcriptional regulator
sco5533	2186	8.07 x 10^{-10}	1321	3.62 x 10^{-7}	hypothetical protein with homology to a base-induced periplasmic protein that binds a polyisoprenoid
sco5049	1771	2.22 x 10^{-8}	1267	4.70 x 10^{-7}	hypothetical protein with homology to malonic semialdehyde reductase
sco7727	640	4.51 x 10^{-9}	848	2.48 x 10^{-9}	MarR family transcriptional regulator
sco7728	68	2.21 x 10^{-5}	104	1.92 x 10^{-3}	hypothetical protein belonging to N-acyltransferase superfamily
sco5405	425	8.53 x 10^{-8}	347	1.02 x 10^{-8}	MarR family transcriptional regulator (AbsC)
sco7681	454	7.87 x 10^{-8}	-	-	AMP-binding ligase from coelibactin cluster

Selected hits found by MAST using the O_{3204} and O_{3205} motifs identified by MEME. The full MAST output is given in Supplementary Dataset S1.
screening oligo	length (bases)	sequence 5' to 3'	molecular mass (Da)	F+R annealed molecular mass (Da)
ReDeCaT linker	20	Biotin-gcaggaggagctaggtagg	8718	-
ReDeCaT linker complement	20	cctaccctagctctctgc	5925	14642
fragment_1_F	29	CGCCTCCGGAGCAGCGCGCGCCATGCTGA	8925	-
fragment_1_R	49	TAGCCATGGCGCGCGCTCCGGAGGCCTaccctagctctctgc	14872	23797
fragment_2_F	29	CGACGCCAGCGCGCGCATGGCTACTCCTAAT	8908	-
fragment_2_R	49	ATGGAGTACCGATGGCGCGCCGCGCTaccctagctctctgc	14866	23794
fragment_3_F	29	CGCGCGCGATGGCGCTACTCCTAATATCTGAGA	8866	-
fragment_3_R	49	TTAAGTATTGAGTGAGTTCCATGGCTaccctagctctctgc	14925	23791
fragment_4_F	29	CATGGCTCTCCGGAATGGTGCCTACTCCTAAT	8785	-
fragment_4_R	49	TTGAAGTCTCGGATGGATGGCTaccctagctctctgc	15003	23788
fragment_5_F	29	ACTCCGCGCTACCTCTACTCCTGAGAGCT	8735	-
fragment_5_R	49	GUAAAGTTGAGGTCAATGGTTGAGTTaccctagctctctgc	15052	23787
fragment_6_F	29	TACTTGCAGCTCTCAATTTTACGTCGCTACT	8797	-
fragment_6_R	49	ACGCGACGTAAAGATTGAGTTCCAATGAATctaccctagctctctgc	14991	23788
fragment_7_F	29	ACTCTACTCTCCGGAATGGTGCCTACTCCTAAT	8766	-
fragment_7_R	49	TAGATTGACGCACGAATAGCTGGAGTGctaccctagctctctgc	15022	23788
fragment_8_F	29	ATCTTACCAGCCGCTACCTACTACGCGAT	8807	-
fragment_8_R	49	ATCCGGTGATATGGAGCGCCGACTAAAGATGctaccctagctctctgc	14982	23789
fragment_9_F	29	CGCGCGCGCTACCTCTACTCCTGAGAGCT	8829	-
fragment_9_R	49	AAACAAATCGCTAGATTTGAGCGCATGGCTaccctagctctctgc	14961	23790
fragment_10_F	29	TCAATCTAGTGCGTATTTTGTATAATGTC	8827	-
fragment_10_R	49	GAACATTTAAACAAATCGCGTAGAATGGAcctaccctagctctctgc	14959	23786
fragment_11_F	29	CGCGCGATTTTGTATAATGTCGAGAAGCCG	8911	-
fragment_11_R	49	GTTCTGCGGACTATTTAAATTTTCTGGCGGCTaccctagctctctgc	14876	23787
fragment_12_F	29	TTTGGTGTATTTTTACTCAGGGAGACTGCGCTCG	8892	-
fragment_12_R	49	CGAGAGCGGGTCTGCTTGAATTTATTTAAAACAAActaccctagctctctgc	14895	23787
fragment_13_F	29	TATGGGTCTGAAGGACCGCTCGTCTACCACTG	8921	-
fragment_13_R	49	CGACTGAGACGCGGCTTGTGTAACTCACTCAGCTGctaccctagctctctgc	14868	23789
fragment_14_F	29	CAAGGAAACGCTCTCTCACTGACTGGACACCA	8925	-
fragment_14_R	49	GTGTCCCACGTCTAGCAGACGGCGTGTCTCCTGctaccctagctctctgc	14867	23792

The sequences of the linker, and its complement, are shown in lower case. Data highlighted in red were used in the Supplementary Methods. F = forward strand; R = reverse strand.
Table S3. SCO3205 binding to fragments of the sco3204-3205 intergenic region

screening oligo	protein binding	replicate 1	replicate 2	protein binding	replicate 1	replicate 2		
	DNA captured (RU)	theoretical Rmax (RU)	measured R (RU)	theoretical Rmax (RU)	measured R (RU)	% of Rmax measured		
SCO3205 protein at 10 nM								
1	384.6	517.4	0.4	0.1	427	574.5	0.1	0.0
2	408.2	549.3	0.2	0.0	435.5	586.0	0.0	0.0
3	409.1	550.5	0.4	0.1	441.1	593.6	0.0	0.0
4	410.4	552.4	36.3	6.6	442.3	595.3	36.4	6.1
5	400.0	538.4	139.5	25.9	431.5	580.8	137.7	23.7
6	382.2	514.4	140.1	27.2	403	542.4	137.3	25.3
7	413.3	556.3	2	0.4	435.6	586.3	1.4	0.2
8	386.4	520.0	0.3	0.1	411.7	554.1	0.2	0.04
9	414.4	557.7	0.2	0.0	432.6	582.2	0.1	0.0
10	407.3	548.2	3	0.5	428.2	576.4	2.7	0.5
11	422.8	569.1	138.8	24.4	455.8	613.5	135.3	22.1
12	415.7	559.5	139.4	24.9	436.9	588.0	135.6	23.1
13	416.9	561.1	0.1	0.0	439.8	591.9	0.0	0.0
14	400.7	539.2	4.6	0.9	416.7	560.7	2.5	0.5
SCO3205 protein at 50 nM								
1	413.0	555.6	1.5	0.3	431.6	580.7	1.1	0.2
2	423.2	569.4	0.9	0.2	444.1	597.6	0.7	0.1
3	421.8	567.6	1.3	0.2	442.4	595.3	0.9	0.2
4	423.4	569.9	148.8	26.1	445.5	599.6	157.3	26.2
5	413.2	556.1	637.9	114.7	433.4	583.3	666.3	114.2
6	389.0	523.6	590.5	112.8	403.4	542.9	608.0	112.0
7	427.4	575.2	10.1	1.8	440.3	592.6	8.9	1.5
8	394.8	531.3	2.7	0.5	409.3	550.9	2.0	0.4
9	425.9	573.2	1.5	0.3	439.0	590.8	1.2	0.2
10	419.7	564.9	15.0	2.7	434.2	584.4	15.2	2.6
11	432.7	582.4	626.3	107.5	454.0	611.1	660.1	106.4
12	428.1	576.2	723.3	125.5	444.1	597.7	743.6	124.4
13	427.5	575.3	1.8	0.3	440.0	592.2	1.5	0.3
14	399.2	537.2	2.4	0.4	415.9	559.7	0.9	0.2
SCO3205 protein at 100 nM								
1	420.9	566.3	3.3	0.6	434.9	585.1	2.9	0.5
2	429.3	577.6	2.6	0.5	450.5	606.2	2.3	0.4
3	431.1	580.1	3.1	0.5	450.8	606.7	2.8	0.5
4	438.4	590.0	213.1	36.1	452.8	609.4	215.4	35.3
5	420.1	565.4	655.8	116.0	438.4	590.1	682.2	115.6
6	400.7	539.3	616.0	114.2	409.1	550.6	625.5	113.6
7	431.2	580.4	19.1	3.3	444.0	597.6	17.0	2.8
8	403.9	543.6	5.6	1.0	411.8	554.2	4.9	0.9
9	428.8	577.1	3.4	0.6	442.2	597.8	3.3	0.6
10	426.4	573.9	28.9	5.0	440.3	592.6	29.6	5.0
11	448.2	603.3	664.4	110.1	457.6	615.9	672.9	109.3
12	437.2	588.5	751.2	127.7	443.5	596.9	757.1	126.8
13	435.9	586.7	4.2	0.7	446.8	601.3	3.9	0.6
14	400.7	539.2	4.6	0.9	416.7	560.7	2.5	0.5

Data highlighted in red were used in the Supplementary Methods, which explains how "theoretical R_{max}" and "% of R_{max} measured" were calculated.
footprinting oligo	length (bases)	sequence 5' to 3' molecular mass (Da)	F+R annealed molecular mass (Da)
O3204_RH_F	36	ACTCCAATCTTGAAGTTGAAGTTGAGTCATGTTGAGTCCTACTCTTACGTCGTCGTCTTC	10909
O3204_RH_R	56	ACGGCAGCTGAAGATTGAGTTGAGAGTTGAGTCATGTTGAGTCCTACTCTTACGTCGTCGTCTTC	17204 28113
O3204_RH Δ2_F	34	ACTCCAATCTTGAAGTTGAAGTTGAGTCATGTTGAGTCCTACTCTTACGTCGTCGTCTTC	10276
O3204_RH Δ2_R	54	GCGCAGCTGAAGATTGAGTTGAGAGTTGAGTCATGTTGAGTCCTACTCTTACGTCGTCGTCTTC	16602 26878
O3204_RH Δ4_F	32	ACTCCAATCTTGAAGTTGAAGTTGAGTCATGTTGAGTCCTACTCTTACGTCGTCGTCTTC	9697
O3204_RH Δ4_R	52	CAGTGAGCTGAAGATTGAGTTGAGAGTTGAGTCATGTTGAGTCCTACTCTTACGTCGTCGTCTTC	15943 25640
O3204_RH Δ6_F	30	ACTCCAATCTTGAAGTTGAAGTTGAGTCATGTTGAGTCCTACTCTTACGTCGTCGTCTTC	9064
O3204_RH Δ6_R	50	CGGAGCGCTGAAGATTGAGTTGAGAGTTGAGTCATGTTGAGTCCTACTCTTACGTCGTCGTCTTC	15341 24405
O3204_RH Δ8_F	28	ACTCCAATCTTGAAGTTGAAGTTGAGTCATGTTGAGTCCTACTCTTACGTCGTCGTCTTC	7828
O3204_RH Δ8_R	48	TAAAGTAGTGAATGGATATTGAGTTGAGTCATGTTGAGTCCTACTCTTACGTCGTCGTCTTC	14722 23167
O3204_RH Δ10_F	26	ACTCCAATCTTGAAGTTGAAGTTGAGTCATGTTGAGTCCTACTCTTACGTCGTCGTCTTC	7219
O3204_RH Δ10_R	46	AAGATTGAGAGTTGAGTTGAGTTGAGTCATGTTGAGTCCTACTCTTACGTCGTCGTCTTC	14105 21933
O3204_RH Δ12_F	24	ACTCCAATCTTGAAGTTGAAGTTGAGTCATGTTGAGTCCTACTCTTACGTCGTCGTCTTC	11217
O3204_RH Δ12_R	44	GATTTGAGAGTTGAGTTGAGTTGAGTCATGTTGAGTCCTACTCTTACGTCGTCGTCTTC	13478 20697
O3204_RH Δ14_F	22	ACTCCAATCTTGAAGTTGAAGTTGAGTCATGTTGAGTCCTACTCTTACGTCGTCGTCTTC	6626
O3204_RH Δ14_R	42	TTTGAGCTGAAGATTGAGTTGAGTTGAGTCATGTTGAGTCCTACTCTTACGTCGTCGTCTTC	12835 19461
O3204_RH Δ16_F	20	ACTCCAATCTTGAAGTTGAAGTTGAGTCATGTTGAGTCCTACTCTTACGTCGTCGTCTTC	5999
O3204_RH Δ16_R	40	GAGATTGAGAGTTGAGTTGAGTTGAGTCATGTTGAGTCCTACTCTTACGTCGTCGTCTTC	12227 18226
O3204_LH_F	36	ACGGCAGCTGAAGATTGAGTTGAGTTGAGTCATGTTGAGTCCTACTCTTACGTCGTCGTCTTC	11217
O3204_LH_R	56	ACTCCAATCTTGAAGTTGAAGTTGAGTCATGTTGAGTCCTACTCTTACGTCGTCGTCTTC	16897 28114
O3204_LH Δ2_F	34	ACGGCAGCTGAAGATTGAGTTGAGTTGAGTCATGTTGAGTCCTACTCTTACGTCGTCGTCTTC	10583
O3204_LH Δ2_R	54	TCCAACTTGAAGTTGAGTTGAGTTGAGTCATGTTGAGTCCTACTCTTACGTCGTCGTCTTC	16294 26877
O3204_LH Δ4_F	32	ACGGCAGCTGAAGATTGAGTTGAGTTGAGTCATGTTGAGTCCTACTCTTACGTCGTCGTCTTC	9941
O3204_LH Δ4_R	52	CAACTGAGTTGAGTTGAGTTGAGTTGAGTCATGTTGAGTCCTACTCTTACGTCGTCGTCTTC	15701 25642
O3204_LH Δ6_F	30	ACGGCAGCTGAAGATTGAGTTGAGTTGAGTCATGTTGAGTCCTACTCTTACGTCGTCGTCTTC	9307
O3204_LH Δ6_R	50	ATACCTTGAAGTTGAGTTGAGTTGAGTTGAGTCATGTTGAGTCCTACTCTTACGTCGTCGTCTTC	15098 24405
O3204_LH Δ8_F	28	ACGGCAGCTGAAGATTGAGTTGAGTTGAGTCATGTTGAGTCCTACTCTTACGTCGTCGTCTTC	8690
O3204_LH Δ8_R	48	ACTGAGCTTGAAGATTGAGTTGAGTTGAGTTGAGTCATGTTGAGTCCTACTCTTACGTCGTCGTCTTC	14481 23171
O3204_LH Δ10_F	26	ACGGCAGCTGAAGATTGAGTTGAGTTGAGTCATGTTGAGTCCTACTCTTACGTCGTCGTCTTC	8056
O3204_LH Δ10_R	46	TTGAAGCTTGAAGATTGAGTTGAGTTGAGTTGAGTCATGTTGAGTCCTACTCTTACGTCGTCGTCTTC	13878 21934
O3204_LH Δ12_F	24	ACGGCAGCTGAAGATTGAGTTGAGTTGAGTCATGTTGAGTCCTACTCTTACGTCGTCGTCTTC	7430
O3204_LH Δ12_R	44	GAACTTGAAGTTGAGTTGAGTTGAGTTGAGTCATGTTGAGTCCTACTCTTACGTCGTCGTCTTC	13270 20700
O3204_LH Δ14_F	22	ACGGCAGCTGAAGATTGAGTTGAGTTGAGTCATGTTGAGTCCTACTCTTACGTCGTCGTCTTC	6836
O3204_LH Δ14_R	42	ACTCTTGAAGTTGAGTTGAGTTGAGTTGAGTCATGTTGAGTCCTACTCTTACGTCGTCGTCTTC	12627 19463
O3204_LH Δ16_F	20	ACGGCAGCTGAAGATTGAGTTGAGTTGAGTTGAGTCATGTTGAGTCCTACTCTTACGTCGTCGTCTTC	6203
O3204_LH Δ16_R	40	TCCAACTTGAAGTTGAGTTGAGTTGAGTTGAGTCATGTTGAGTCCTACTCTTACGTCGTCGTCTTC	12024 18227

The sequence of the linker complement is shown in lower case.
Table S5. SCO3205 binding to O3204 footprinting oligomers

footpring oligo	SC03205 protein at 10 nM				SC03205 protein at 50 nM				SC03205 protein at 100 nM				
	DNA captured (RU)	theoretical R_{max} (RU)	measured R (RU)	% of R_{max} measured	DNA captured (RU)	theoretical R_{max} (RU)	measured R (RU)	% of R_{max} measured	DNA captured (RU)	theoretical R_{max} (RU)	measured R (RU)	% of R_{max} measured	
O3204 RH	451.6	514.3	129.1	25.1	446.9	508.9	572.7	112.5	438.7	499.6	574.9	115.1	
O3204 RH Δ2	439.4	523.4	127.5	24.4	436.6	520.1	556.2	106.9	427.9	509.7	559.0	109.7	
O3204 RH Δ4	430.2	537.2	127.9	23.8	426.7	532.8	560.8	105.3	418.2	522.2	565.8	108.3	
O3204 RH Δ6	431.7	566.3	127.4	22.5	429.8	563.8	656.8	116.5	420.3	551.4	658.4	119.4	
O3204 RH Δ8	410.7	567.6	126.4	22.3	405.9	560.9	627.4	111.8	399.6	552.2	632.6	114.6	
O3204 RH Δ10	408.2	595.9	122.4	20.5	403.7	589.3	664.5	112.8	397.4	580.1	672.7	116.0	
O3204 RH Δ12	426.5	659.8	117.0	17.7	424.2	656.2	576.7	87.9	417.2	645.4	598.5	92.7	
O3204 RH Δ14	418.5	688.5	41.5	6.0	417.8	687.3	207.6	30.2	411.2	676.5	279.4	41.3	
O3204 RH Δ16	415.7	730.2	4.4	0.6	414.0	727.2	30.0	4.1	408.5	717.6	56.3	7.8	
O3204 LH	435.1	495.5	122.3	24.7	431.2	491.1	523.1	106.5	426.2	485.4	535.7	110.4	
O3204 LH Δ2	419.2	499.4	121.7	24.4	416.2	495.8	552.9	111.5	409.4	487.7	563.9	115.6	
O3204 LH Δ4	428.7	535.3	120.2	22.5	426.7	532.8	572.9	107.5	420.7	525.3	587.6	111.9	
O3204 LH Δ6	425.2	557.8	105.2	18.9	424.0	556.2	466.6	83.9	417.7	548.0	481.7	87.9	
O3204 LH Δ8	414.6	572.9	88.5	15.4	412.6	570.1	435.1	76.3	406.0	561.0	451.2	80.4	
O3204 LH Δ10	425.2	620.6	1.0	0.2	424.9	620.2	15.0	2.4	418.5	610.9	29.0	4.7	
O3204 LH Δ12	415.3	642.3	-0.2	0.0	414.0	640.3	5.1	0.8	407.8	630.7	9.4	1.5	
O3204 LH Δ14	410.8	675.8	-0.3	0.0	412.4	678.4	4.2	0.6	406.0	667.9	9.4	1.4	
O3204 LH Δ16	424.9	746.3	-0.1	0.0	426.6	749.3	4.7	0.6	419.1	736.2	10.1	1.4	

An explanation of how "theoretical R_{max}" and "% of R_{max} measured" were calculated is given in the Supplementary Methods.
Table S6. Sequences of footprinting oligomers used to define the boundaries of O3205

footprinting oligo	length (bases)	sequence 5’ to 3’ molecular mass (Da)	F+R annealed molecular mass (Da)	
O3205_RH_F	36	ACGCCGATTTTGTATAATGTCAAGGAACCGTCTCG	11045	
O3205_RH_R	56	CGAGACGCTTCTGGAATCAAACAAAAATCGGCCTGCtctaccctaagtctctctgc	17069	28114
O3205_RH_Δ2_F	34	ACGCCGATTTTGTATAATGTCAAGGAACCGTCT	10427	
O3205_RH_Δ2_R	54	AGACGCTTCTGGAATCAAACAAAAATCGGCCTGCtctaccctaagtctctctgc	16451	26878
O3205_RH_Δ4_F	32	ACGCCGATTTTGTATAATGTCAAGGAACCGTCT	9833	
O3205_RH_Δ4_R	52	ACGCCGATTTTGTATAATGTCAAGGAACCGTCT	15808	
O3205_RH_Δ6_F	30	ACGCCGATTTTGTATAATGTCAAGGAACCGTCT	9200	
O3205_RH_Δ6_R	50	ACGCCGATTTTGTATAATGTCAAGGAACCGTCT	15206	
O3205_RH_Δ8_F	28	ACGCCGATTTTGTATAATGTCAAGGAACCGTCT	14547	
O3205_RH_Δ8_R	48	ACGCCGATTTTGTATAATGTCAAGGAACCGTCT	12752	
O3205_RH_Δ10_F	26	ACGCCGATTTTGTATAATGTCAAGGAACCGTCT	7995	
O3205_RH_Δ10_R	46	ACGCCGATTTTGTATAATGTCAAGGAACCGTCT	13939	
O3205_RH_Δ12_F	24	ACGCCGATTTTGTATAATGTCAAGGAACCGTCT	7336	
O3205_RH_Δ12_R	44	ACGCCGATTTTGTATAATGTCAAGGAACCGTCT	13360	
O3205_RH_Δ14_F	22	ACGCCGATTTTGTATAATGTCAAGGAACCGTCT	6709	
O3205_RH_Δ14_R	42	ACGCCGATTTTGTATAATGTCAAGGAACCGTCT	12752	
O3205_LH_F	36	CGAGACGCTTCTGGAATCAAACAAAAATCGGCCTGCtctaccctaagtctctctgc	11082	-
O3205_LH_R	56	CGAGACGCTTCTGGAATCAAACAAAAATCGGCCTGCtctaccctaagtctctctgc	17033	28115
O3205_LH_Δ2_F	34	CGAGACGCTTCTGGAATCAAACAAAAATCGGCCTGCtctaccctaagtctctctgc	10448	-
O3205_LH_Δ2_R	54	CGAGACGCTTCTGGAATCAAACAAAAATCGGCCTGCtctaccctaagtctctctgc	16430	26878
O3205_LH_Δ4_F	32	CGAGACGCTTCTGGAATCAAACAAAAATCGGCCTGCtctaccctaagtctctctgc	9830	-
O3205_LH_Δ4_R	52	CGAGACGCTTCTGGAATCAAACAAAAATCGGCCTGCtctaccctaagtctctctgc	15812	25642
O3205_LH_Δ6_F	30	CGAGACGCTTCTGGAATCAAACAAAAATCGGCCTGCtctaccctaagtctctctgc	9211	-
O3205_LH_Δ6_R	50	CGAGACGCTTCTGGAATCAAACAAAAATCGGCCTGCtctaccctaagtctctctgc	15193	24404
O3205_LH_Δ8_F	28	CGAGACGCTTCTGGAATCAAACAAAAATCGGCCTGCtctaccctaagtctctctgc	8594	-
O3205_LH_Δ8_R	48	CGAGACGCTTCTGGAATCAAACAAAAATCGGCCTGCtctaccctaagtctctctgc	14576	23170
O3205_LH_Δ10_F	26	CGAGACGCTTCTGGAATCAAACAAAAATCGGCCTGCtctaccctaagtctctctgc	7967	-
O3205_LH_Δ10_R	46	CGAGACGCTTCTGGAATCAAACAAAAATCGGCCTGCtctaccctaagtctctctgc	13967	21934
O3205_LH_Δ12_F	24	CGAGACGCTTCTGGAATCAAACAAAAATCGGCCTGCtctaccctaagtctctctgc	7365	-
O3205_LH_Δ12_R	44	CGAGACGCTTCTGGAATCAAACAAAAATCGGCCTGCtctaccctaagtctctctgc	13334	20699
O3205_LH_Δ14_F	22	CGAGACGCTTCTGGAATCAAACAAAAATCGGCCTGCtctaccctaagtctctctgc	6738	-
O3205_LH_Δ14_R	42	CGAGACGCTTCTGGAATCAAACAAAAATCGGCCTGCtctaccctaagtctctctgc	12725	19463

The sequence of the linker complement is shown in lower case.
Table S7. SCO3205 binding to O3205 footprinting oligomers

oligo	DNA captured (RU)	protein binding	DNA captured (RU)	protein binding	DNA captured (RU)	protein binding		
	theoretical R_{max} (RU)	measured R (RU)	% of R_{max} measured	theoretical R_{max} (RU)	measured R (RU)	% of R_{max} measured		
O3205_RH*	475.6	541.6	109.3	20.2	476.2	542.3	117.5	20.2
O3205_RH Δ2	436.1	519.5	108.7	20.9	435.3	518.5	90.3	18.1
O3205_RH Δ4	419.6	523.9	108.1	20.6	417.6	521.4	107.6	20.2
O3205_RH Δ6	405.2	531.5	107.3	20.2	406.3	533.0	109.5	20.2
O3205_RH Δ8	408.3	564.2	98.0	17.4	406.5	561.7	90.2	17.4
O3205_RH Δ10	414.9	605.6	83.0	13.7	412.8	602.5	54.2	11.7
O3205_RH Δ12	414.4	641.1	8.3	1.3	414.3	640.9	117.9	20.2
O3205_RH Δ14	417.3	686.5	0.9	0.1	416.3	684.9	17.2	2.5
O3205_LH	459.9	523.7	102.6	19.6	458.7	522.3	105.0	19.6
O3205_LH Δ2	443.9	528.8	101.1	19.1	442.2	526.7	109.7	19.1
O3205_LH Δ4	446.9	558.0	132.5	23.7	444.0	554.4	106.0	23.7
O3205_LH Δ6	439.0	575.9	132.2	23.0	437.0	573.3	98.7	23.0
O3205_LH Δ8	450.0	621.8	29.7	4.8	450.4	622.4	62.6	4.8
O3205_LH Δ10	417.2	609.0	92.0	15.1	415.1	605.9	63.0	15.1
O3205_LH Δ12	426.3	659.4	14.8	2.2	424.5	656.6	14.4	2.2
O3205_LH Δ14	426.0	700.8	0.1	0.0	424.7	698.6	0.7	0.0

An explanation of how "theoretical R_{max}" and "% of R_{max} measured" were calculated is given in the Supplementary Methods. *O3205_RH gave an anomalously low normalized maximum response, which we are unable to explain.
affinity oligo	length (bases)	sequence 5' to 3'	molecular mass (Da)	F+R annealed molecular mass (Da)
O3204_24mer_F	24	CAATCTTGAACTCTCAATCTTTA	7249	-
O3204_24mer_R	44	TAAAGATTGAGAGTCAAGTTGcctacctacgctcctgc	13446	20695
O3205_24mer_F	24	ATTTTTAATTTCAAGGACC	7357	-
O3205_24mer_R	44	GGTTCCTTGAAACATTTAACAATcctacctacgctcctgc	13331	20687

The sequence of the linker complement is shown in lower case.

operator oligo	length (bases)	sequence 5' to 3'	molecular mass (Da)	F+R annealed molecular mass (Da)
O5049_24mer_F	24	AAGAAGTTCAAGCTTCAACAAAA	7351	-
O5049_24mer_R	44	TTGGTTGAAGCTTCAACTCTTcctacctacgctcctgc	13345	20696
O5533_24mer_F	24	TTAGTTGAAATTTCAAGCAGTC	7361	-
O5533_24mer_R	44	GACTGGTTGAACATTTACCAATCActacctacgctcctgc	13336	20697
O7815_24mer_F	24	GACCTGTCAAGCTCAAGCAGAA	7359	-
O7815_24mer_R	44	TTCTGCTTGAGGTGACCTTTAAGGTCcctacctacgctcctgc	13340	20699

The sequence of the linker complement is shown in lower case.
Table S10. Comparison of SCO3205 binding to \(O_{3204}\) with binding to other putative regulon members

operator	SCO3205 protein at 10 nM	SCO3205 protein at 50 nM	SCO3205 protein at 100 nM									
	DNA captured (RU)	theoretical R\(_{\text{max}}\) (RU)	measured R (RU)	% of R\(_{\text{max}}\) measured	DNA captured (RU)	theoretical R\(_{\text{max}}\) (RU)	measured R (RU)	% of R\(_{\text{max}}\) measured	DNA captured (RU)	theoretical R\(_{\text{max}}\) (RU)	measured R (RU)	% of R\(_{\text{max}}\) measured
\(O_{3204}\) 24mer	403.7	667.1	189.7	28.4	426.7	660.1	664.7	100.7	431.5	667.6	674.3	101.0
\(O_{5049}\) 24mer	396.5	624.5	170.1	27.2	404.1	625.1	573.5	91.7	404.4	625.6	595.5	95.2
\(O_{5033}\) 24mer	408.0	613.3	191.2	31.2	396.8	613.8	717.3	116.9	397	614.1	725.4	118.1
\(O_{7815}\) 24mer	431.2	631.1	80.3	12.7	408.6	632.0	244.4	38.7	408.3	631.5	306	48.5

An explanation of how "theoretical R\(_{\text{max}}\)" and "% of R\(_{\text{max}}\) measured" were calculated is given in the Supplementary Methods.

Table S11. Comparison of SCO3205 dissociation from \(O_{3204}\) with dissociation from other putative regulon members

operator	SCO3205 protein at 10 nM	SCO3205 protein at 50 nM	SCO3205 protein at 100 nM						
	% remaining after dissociation	% remaining after wash 1	% remaining after wash 2	% remaining after dissociation	% remaining after wash 1	% remaining after wash 2	% remaining after dissociation	% remaining after wash 1	% remaining after wash 2
\(O_{3204}\) 24mer	97.9	83.9	78.1	82.2	67.2	60.8	81.4	66.4	60.1
\(O_{5049}\) 24mer	80.5	0.6	0.0	53.1	1.5	0.2	51.6	1.6	0.3
\(O_{5033}\) 24mer	97.0	78.2	71.1	87.2	73.1	65.5	86.7	72.6	64.9
\(O_{7815}\) 24mer	0.0	0.0	0.0	1.0	0.0	0.0	1.3	0.0	0.0
Table S12. Sequences of oligomers used for testing substitutions within the consensus motif of O$_{2004}$

consensus testing oligo	length (bases)	sequence 5' to 3'	molecular mass (Da)	F+R annealed molecular mass (Da)
O$_{2004}$ WT F	24	CAATACCTGAACTCTCAATCTTTA	7249	-
O$_{2004}$ WT R	44	TAAAGATGAGAGTCAGTATGctacctacgctctctgc	13446	20695
O$_{2004}$ T6G F	24	CAATACCTGAACTCTCAATCTTTA	7249	-
O$_{2004}$ T6G R	44	TAAAGATGAGAGTCAGTATGctacctacgctctctgc	13422	20697
O$_{2004}$ T6C F	24	CAATACCTGAACTCTCAATCTTTA	7249	-
O$_{2004}$ T6C R	44	TAAAGATGAGAGTCAGTATGctacctacgctctctgc	13462	20696
O$_{2004}$ T8A F	24	CAATACCTGAACTCTCAATCTTTA	7259	-
O$_{2004}$ T8A R	44	TAAAGATGAGAGTCAGTATGctacctacgctctctgc	13437	20696
O$_{2004}$ T7G F	24	CAATACCTGAACTCTCAATCTTTA	7240	-
O$_{2004}$ T7G R	44	TAAAGATGAGAGTCAGTATGctacctacgctctctgc	13422	20697
O$_{2004}$ T7C F	24	CAATACCTGAACTCTCAATCTTTA	7240	-
O$_{2004}$ T7C R	44	TAAAGATGAGAGTCAGTATGctacctacgctctctgc	13462	20696
O$_{2004}$ T7A F	24	CAATACCTGAACTCTCAATCTTTA	7259	-
O$_{2004}$ T7A R	44	TAAAGATGAGAGTCAGTATGctacctacgctctctgc	13437	20696
O$_{2004}$ A9T F	24	CAATACCTGAACTCTCAATCTTTA	7240	-
O$_{2004}$ A9T R	44	TAAAGATGAGAGTCAGTATGctacctacgctctctgc	13455	20695
O$_{2004}$ A9G F	24	CAATACCTGAACTCTCAATCTTTA	7265	-
O$_{2004}$ A9G R	44	TAAAGATGAGAGTCAGTATGctacctacgctctctgc	13431	20696
O$_{2004}$ A9C F	24	CAATACCTGAACTCTCAATCTTTA	7225	-
O$_{2004}$ A9C R	44	TAAAGATGAGAGTCAGTATGctacctacgctctctgc	13471	20697
O$_{2004}$ A10F F	24	CAATACCTGAACTCTCAATCTTTA	7240	-
O$_{2004}$ A10T F	44	TAAAGATGAGAGTCAGTATGctacctacgctctctgc	13455	20695
O$_{2004}$ A10G F	24	CAATACCTGAACTCTCAATCTTTA	7265	-
O$_{2004}$ A10G R	44	TAAAGATGAGAGTCAGTATGctacctacgctctctgc	13431	20696
O$_{2004}$ A10C F	24	CAATACCTGAACTCTCAATCTTTA	7225	-
O$_{2004}$ A10C R	44	TAAAGATGAGAGTCAGTATGctacctacgctctctgc	13471	20697
O$_{2004}$ A14F F	24	CAATACCTGAACTCTCAATCTTTA	7240	-
O$_{2004}$ A14T F	44	TAAAGATGAGAGTCAGTATGctacctacgctctctgc	13422	20697
O$_{2004}$ A14C F	24	CAATACCTGAACTCTCAATCTTTA	7240	-
O$_{2004}$ A14C R	44	TAAAGATGAGAGTCAGTATGctacctacgctctctgc	13422	20697
O$_{2004}$ A15F F	24	CAATACCTGAACTCTCAATCTTTA	7265	-
O$_{2004}$ A15T F	44	TAAAGATGAGAGTCAGTATGctacctacgctctctgc	13430	20695
O$_{2004}$ A15G F	24	CAATACCTGAACTCTCAATCTTTA	7290	-
O$_{2004}$ A15G R	44	TAAAGATGAGAGTCAGTATGctacctacgctctctgc	13406	20696
O$_{2004}$ A15C F	24	CAATACCTGAACTCTCAATCTTTA	7274	-
O$_{2004}$ A15C R	44	TAAAGATGAGAGTCAGTATGctacctacgctctctgc	13421	20697
O$_{2004}$ A17F F	24	CAATACCTGAACTCTCAATCTTTA	7240	-
O$_{2004}$ A17T F	44	TAAAGATGAGAGTCAGTATGctacctacgctctctgc	13455	20695
O$_{2004}$ A17G F	24	CAATACCTGAACTCTCAATCTTTA	7265	-
O$_{2004}$ A17G R	44	TAAAGATGAGAGTCAGTATGctacctacgctctctgc	13431	20696
O$_{2004}$ A17C F	24	CAATACCTGAACTCTCAATCTTTA	7225	-
O$_{2004}$ A17C R	44	TAAAGATGAGAGTCAGTATGctacctacgctctctgc	13471	20697

The sequence of the linker complement is shown in lower case. The sequence numbering is relative to the 22-mer used to determine the crystal structure (Figure 5).
Table S13. The effects of substitutions within the consensus motif of O₃₂₀₄ on the binding of SCO3205

consensus testing oligo	DNA captured (RU)	theoretical Rₘₐₓ (RU)	measured R (RU)	% of Rₘₐₓ measured	% remaining after dissociation	% remaining after wash 1	% remaining after wash 2
O₃₂₀₄ WT	432.5	669.1	663.3	99.1	82.4	67.3	60.9
O₃₂₀₄ T6G	422.5	653.6	634.3	97.1	70.8	20.1	7.2
O₃₂₀₄ T6C	431.0	666.7	604.8	90.7	60.8	8.5	1.8
O₃₂₀₄ T6A	417.1	645.2	575.6	89.2	63.6	10.1	1.9
O₃₂₀₄ WT	432.5	669.1	661.1	98.8	82.4	66.8	60.4
O₃₂₀₄ T7G	426.2	659.3	580.9	88.1	62.3	8.5	1.8
O₃₂₀₄ T7C	426.7	660.1	490.1	74.2	23.0	-0.1	-0.7
O₃₂₀₄ T7A	415.0	642.0	619.4	96.5	67.5	15.3	4.0
O₃₂₀₄ A9T	419.3	648.7	645.1	99.4	71.3	16.9	5.1
O₃₂₀₄ A9G	438.7	678.7	534.3	78.7	31.0	-0.9	-1.3
O₃₂₀₄ A9C	439.1	679.3	631.8	93.0	66.5	6.6	0.8
O₃₂₀₄ WT	433.9	671.3	663.8	98.9	82.1	66.2	60.3
O₃₂₀₄ A10T	424.9	657.3	685.2	104.2	76.9	48.6	34.5
O₃₂₀₄ A10G	412.8	638.6	610.8	95.6	70.5	31.1	15.9
O₃₂₀₄ A10C	417.0	645.1	619.4	96.0	67.3	13.5	3.6
O₃₂₀₄ WT	431.8	668.0	653.8	97.9	82.3	66.5	60.0
O₃₂₀₄ WT	431.6	667.7	658.5	98.6	82.3	66.5	60.1
O₃₂₀₄ T14G	424.1	656.0	714.9	109.0	74.5	26.2	11.2
O₃₂₀₄ T14C	416.6	644.5	550.0	85.3	35.0	-0.5	-1.1
O₃₂₀₄ T14A	411.0	635.8	691.4	108.7	70.7	18.8	6.6
O₃₂₀₄ C15T	417.0	645.1	655.2	101.6	71.8	31.0	15.6
O₃₂₀₄ C15G	418.5	647.4	617.6	95.4	55.7	4.0	0.7
O₃₂₀₄ WT	432.6	669.3	660.2	98.6	82.4	67.3	60.9
O₃₂₀₄ C15A	408.3	631.7	700.1	110.8	81.7	66.3	57.1
O₃₂₀₄ A16T	431.4	667.4	693.8	104.0	72.1	24.4	10.3
O₃₂₀₄ A16G	415.7	643.1	471.4	73.3	28.2	0.2	-0.5
O₃₂₀₄ A16C	410.9	635.7	646.8	101.8	68.8	16.7	5.7
O₃₂₀₄ WT	432.8	669.6	659.1	98.4	82.0	67.0	60.7
O₃₂₀₄ A17T	433.5	670.6	672.4	100.3	74.1	35.1	19.1
O₃₂₀₄ A17G	416.6	647.6	677.9	104.7	72.7	26.3	11.4
O₃₂₀₄ A17C	413.9	640.3	660.5	103.2	72.1	25.8	11.3
O₃₂₀₄ WT	432.6	669.3	658.2	98.3	82.1	67.1	60.7

An explanation of how “theoretical Rₘₐₓ” and “% of Rₘₐₓ measured” were calculated is given in the Supplementary Methods. The sequence numbering is relative to the 22-mer used to determine the crystal structure (see Figure 5).
Table S14. X-ray data collection and refinement statistics

Data set	SCO3205-DNA (22-mer)
Data collection	
Beamline	I24, Diamond Light Source, UK
Wavelength (Å)	0.9780
Detector	Pilatus 6M
Resolution range\(^a\) (Å)	69.68 - 2.80 (2.87 - 2.80)
Space Group	P6\(^5\)
Cell parameters (Å)	a = b = 70.80, c = 557.48
Total no. of measured intensities\(^a\)	324262 (6687)
Unique reflections\(^a\)	37192 (2206)
Multiplicity\(^a\)	8.7 (3.0)
Mean \(l/\sigma(I)\)	13.7 (1.9)
Completeness\(^a\) (%)	96.0 (78.2)
\(R_{\text{merge}}\)\(^a,\(^b\)	0.102 (0.370)
\(R_{\text{meas}}\)\(^a,\(^c\)	0.119 (0.488)
\(CC_{\frac{1}{2}}\)\(^a,\(^d\)	0.997 (0.608)
Wilson B value (Å\(^2\))	80.9
Refinement	
Resolution range\(^a\) (Å)	59.88 - 2.80 (2.87 - 2.80)
Reflections: working/free\(^a\)	35209/1848
\(R_{\text{work}}/R_{\text{free}}\)\(^a,\(^f\)	0.176/0.196 (0.300/0.401)
Ramachandran plot: favoured/allowed/disallowed (outliers)\(^g\) (%)	96.6/3.1/0.3 (2)
R.m.s. bond distance deviation (Å)	0.008
R.m.s. bond angle deviation (º)	1.35
No. of protein residues (ranges): chains A/B/E/F	159 (5-163)/ 159 (5-163)/ 160 (2-154,157-163)/ 160 (2-154,157-163)
No. of DNA bases (ranges): chains C/D/G/H	22 (1-22) for all chains
No. of water molecules/phosphate ions	14/4
Mean \(B\) factors: protein/DNA/water/phosphate/overall (Å\(^2\))	62.1/57.4/48.8/87.6/60.9
Refined twin fraction (h, k, l / k, h, -l)	0.67/0.33
PDB accession code	3ZPL

\(^a\) Figures in parentheses indicate values for the outer resolution shell.

\(^b\) \(R_{\text{merge}} = \sum_{hkl} \left[\sum_i I_i(hkl) - \langle I(hkl) \rangle \right] / \sum_{hkl} \sum_i I_i(hkl)\).

\(^c\) \(R_{\text{meas}} = \sum_{hkl} \left[N(N - 1) \right]^{1/2} \times \sum_i \left| I_i(hkl) - \langle I(hkl) \rangle \right| / \sum_{hkl} \sum_i I_i(hkl)\), where \(I_i(hkl)\) is the \(i\)th observation of reflection \(hkl\), \(\langle I(hkl) \rangle\) is the weighted average intensity for all observations \(i\) of reflection \(hkl\) and \(N\) is the number of observations of reflection \(hkl\).

\(^d\) \(CC_{\frac{1}{2}}\) is the correlation coefficient between intensities taken from random halves of the dataset.

\(^e\) The data set was split into "working" and "free" sets consisting of 95 and 5% of the data, respectively. The free set was not used for refinement.

\(^f\) The R-factors \(R_{\text{work}}\) and \(R_{\text{free}}\) are calculated as follows: \(R = \sum \left| F_{\text{obs}} - F_{\text{calc}} \right| / \sum F_{\text{obs}} \times 100\), where \(F_{\text{obs}}\) and \(F_{\text{calc}}\) are the observed and calculated structure factor amplitudes, respectively.

\(^g\) As calculated using MolProbity (53).
Table S15. Selected structural homologs of SCO3205

Protein	Source	DNA bound	PDB code	Resolution (Å)	DALI output	R.m.s. deviation (Å)/aligned residues	Reference			
SCO5405	*Streptomyces coelicolor*	No	3ZMD	1.95	1	19.5	43	0.99/142	1.09/282	Stevenson et al., unpublished
SCO5413	*Streptomyces coelicolor*	No	4B8X	1.25	2	16.7	20	2.01/135	2.22/265	(45)
BldR	*Sulfolobus solfataricus*	No	3F3X	1.90	3	16.4	19	2.06/133	2.90/270	(55)
OhrR	*Bacillus subtilis*	Yes	1Z9C	2.64	4	16.3	15	1.97/121	2.18/233	(1)
SlyA	*Salmonella enterica*	Yes	3Q5F	2.96	5	16.1	15	1.70/138	2.66/266	(5)
MosR	*Mycobacterium tuberculosis*	Yes	4FX4	3.10	12	15.4	20	2.11/122	2.26/247	(18)
Figure S1. Nucleotide sequence of the synthetic sco3205 gene with optimized codon usage for expression in E. coli. The sequence contains two stop codons to ensure efficient termination. This construct was subcloned into pET21a before transformation into E. coli BL21 (DE3) cells. The translated amino acid sequence is shown below, where the full wild-type sequence is shown in bold and the N-terminal His-tag is shown in plain text. Also shown are potential restriction sites.
Figure S2. The 119 nt sequence of the sco3204-sco3205 intergenic region was fragmented using a Perl script, termed POOP (Perl Overlapping Oligo Producer). Part of the program output is shown above. Each fragment oligomer is 29 nt long and overlaps with its neighbour(s) by 22 nt. The 3’ adenine of fragment 14 actually corresponds to the first nt of the start codon for sco3205. POOP also produces a text file containing all the required oligomer fragments in a format suitable for ordering for synthesis, including the complement to the ReDCaT linker (see Supplementary Table S2), which was attached to the 3’ ends of the reverse strands in all cases. POOP is available as part of this submission (Supplementary Program 1) and should run on any Unix operating system.
Figure S3. SPR screening for the binding of SCO3205 to fragments of the sco3204-sco3205 intergenic region. (A) The responses were normalized and expressed as a percentage of the theoretical R_{max} (see Supplementary Methods). In each case, the test DNA oligomers were 29 bp in length. SCO3205 binding was measured at concentrations of 10 nM (pale blue), 50 nM (mid blue) and 100 nM (dark blue). All measurements were carried out in duplicate. The oligomer sequences and the SPR data are given in Supplementary Tables S2 and S3. (B) Selected sensorgrams showing protein binding and dissociation phases for a non-binding sequence (fragment 2) a partial hit (fragment 4) and a full hit (fragment 6), each at both 10 nM and 100 nM SCO3205 concentration. Note that the relatively short injection time used in the screening prevented the 10 nM injection of SCO3205 over fragment 6 from saturating.
Figure S4. SPR footprinting of O2205. Serially truncated oligomers were used to define the extent of the O2205 binding site. Panels (A) and (B) display the data for defining the right-hand border, and panels (C) and (D) display the data for defining the left-hand border. Panels (A) and (C) show the normalized responses for each test oligomer at SCO3205 concentrations of 10 nM (pale blue), 50 nM (mid blue) and 100 nM (dark blue). The vertical dashed lines indicate the proposed footprint boundaries. Panels (B) and (D) show the corresponding sensorgrams for 100 nM SCO3205 only. The complete "ReDCaT cycle" is shown for each, where: a = test DNA capture, b = protein binding, c = protein dissociation, d = salt wash, e = stripping of test DNA. Key sensorgrams are coloured, where red represents the one chosen to represent the footprint boundary, and purple and green represent the next two truncations, respectively. The remaining sensorgrams are coloured grey. N.B. No correction has been made to account for the length or quantity of test DNA captured. Thus, the maximum responses in the sensorgrams are not directly comparable.
Figure S5. Footprints of O_{3204} and O_{3205} as determined by SPR compared to their corresponding MEME motifs. The full sequences shown represent the 36-mers used at the start of the footprinting procedure, and the blue arrows indicate where the boundaries were chosen as a result of these experiments. The prominent TT/AA palindromic sequence present in both operators is highlighted in red.
Figure S6. SPR sensorgrams showing affinity measurements for SCO3205 binding to (A) O\textsubscript{3204} and (B) O\textsubscript{3205}.

For both sequences, the test DNA was re-captured for each cycle. A range of SCO3205 concentrations was used (0.39, 0.78, 1.56, 3.13, 6.25, 12.5, 25 and 50 nM) and all samples were run in triplicate together with buffer only controls. The protein binding and dissociation phases for all sensorgrams are shown.
Figure S7. Binding of SCO3205 to putative regulon members. (A) Normalized protein binding at 10 nM (light blue), 50 nM (mid blue), and 100 nM (dark blue) is shown for each site. (B) The percentage of SCO3205 still bound after the dissociation phase (coloured light, mid and dark blue for 10, 50 and 100 nM SCO3205, respectively) and after each 1 M NaCl wash. In each case the first wash is coloured yellow and the second wash orange. The bars corresponding to each SCO3205 injection concentration have been overlaid.
Figure S8. The effects of single substitutions within the consensus motif of O$_{3204}$ on the binding of SCO3205. (A) Normalized binding of SCO3205 (at 50 nM) to each of the sequences in Supplementary Table S12. For each, the wild-type sequence is shown in blue. All the mutated sequences are shown in grey. (B) The percentage of SCO3205 still bound after the dissociation phase (coloured blue for the wild-type replicates, and grey for mutated sequences) and after each 1 M NaCl wash (yellow and orange, respectively). The bars for each sequence have been overlaid. The sequence numbering is relative to the 22-mer used to determine the crystal structure (see Figure 5).
Figure S9. Secondary structure analysis of protein chain A from the SCO3205-DNA complex as output by the PDBSUM server (http://www.ebi.ac.uk/thornton-srv/databases/pdbsum/Generate.html)(54).
Figure S10. Cartoon stereoview representations of the SCO3205-DNA complex together with other known MFR-DNA complexes (displayed in the same relative orientation using the same colour scheme as for Figure 7). Also shown as grey dots are the helical axes for each DNA duplex as determined using CURVES+ (56).
Figure S11. Stereoviews showing least-squares superpositions of the right-hand subunits taken from the MFR-DNA complexes shown in Supplementary Figure S10, (A) in the same orientation as in Supplementary Figure S10 and (B) after rotation through 90° about the vertical axis. SCO3205 is depicted in solid red, whilst the other three are shown in semi-transparent colours, where brown = OhrR, blue = SlyA and green = MosR. Note that in the SCO3205 structure both the N- and C-termini are extended relative to those of the other structures.
Figure S12. Stereoview close-up images focusing on key regions of the protein-DNA interface in the SCO3205-DNA complex. (A) Interactions between the recognition helix (α4) and the major groove. (B) Interactions between the wing, in particular Arg98, and the minor groove. (C) Indirect interactions between the C-terminal tail and the phosphate backbone: Asp158 interacts through Arg32, and the C-terminal residue, Arg163, interacts through Arg72 via its carboxyl group.
Figure S13. Widths of major (red) and minor (green) grooves for one DNA duplex in the asymmetric unit of the SCO3205-DNA complex, as calculated using the CURVES+ server (http://gbio-pbil.ibcp.fr/cgi/Curves_plus/)(56). The dashed lines show the corresponding widths in ideal B-form DNA. Very similar plots were obtained using the second DNA duplex in the ASU (data not shown).