Construction of a BALB/c-Nu Mouse Model of Invasive Bladder Carcinoma and Preliminary Studies on the Treatment of Bladder Tumors through Internal Iliac Arterial Infusion of Albumin-Bound Arsenic Trioxide (As$_2$O$_3$)

Yunlong Li1*, Guopeng Yu2,3*, Qiaoxing Li1, Weilu Wang1, Xiangqian Shen5, Hua Liu1,4*, Ruijiang Liu5*

1 Department of Urology, Affiliated Kunshan Hospital of Jiangsu University, Kunshan, Suzhou 215300, P.R. China, 2 Department of Urology, Huashan Hospital, Fudan University, Shanghai 200040, P.R. China, 3 Fudan Institute of Urology, Fudan University, Shanghai 200040, P.R. China, 4 Department of Neurosurgery, Affiliated Kunshan Hospital of Jiangsu University, Kunshan, Suzhou 215300, P.R. China, 5 School of Material Science and Engineering, Jiangsu University, Zhenjiang 212013, P.R. China

*These authors contributed equally to this work.

* urologymed@sina.com (HL); luckystar_lrj@ujs.edu.cn (RL)

OPEN ACCESS

Citation: Li Y, Yu G, Li Q, Wang W, Shen X, Liu H, et al. (2015) Construction of a BALB/c-Nu Mouse Model of Invasive Bladder Carcinoma and Preliminary Studies on the Treatment of Bladder Tumors through Internal Iliac Arterial Infusion of Albumin-Bound Arsenic Trioxide (As$_2$O$_3$). PLoS ONE 10(4): e0124959. doi:10.1371/journal.pone.0124959

Academic Editor: Ying-Jan Wang, National Cheng Kung University, TAIWAN

Received: January 19, 2015
Accepted: March 20, 2015
Published: April 27, 2015

Copyright: © 2015 Li et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Data Availability Statement: All relevant data are within the paper.

Funding: This research was partially supported by Grants-in-Aid for Chinese National Natural Science (30700838). This research was partially supported by Jiangsu province clinical medicine science and technology special funds (BL2014056) and Kunshan social development science and technology plan projects (K1335).

Abstract

To establish a BALB/c-nu mouse model of invasive bladder carcinoma and to investigate the feasibility, efficacy, and side effects of treating the mouse xenografts with internal iliac arterial infusion of albumin-bound arsenic trioxide (As$_2$O$_3$). Bladder tumors were established by intravesicular injection. Color Doppler were used to monitor tumor growth. Albumin-bound As$_2$O$_3$ and bovine serum albumin (BSA) nanoparticles were synthesized by cross-linking. BALB/c-nu mice were randomly divided into four treatment groups: 1) normal saline, 2) BSA nanoparticles, 3) As$_2$O$_3$ injections, and 4) albumin-bound As$_2$O$_3$. In an attempt to replicate the treatment of bladder cancer in humans using internal iliac arterial infusion, the drugs were injected into the mouse abdominal aorta. Tumor xenografts were established successfully. Mice treated with As$_2$O$_3$ injections and with albumin-bound As$_2$O$_3$ had significantly smaller bladders (36.59% and 37.82% smaller, respectively) than mice given normal saline injections ($P < 0.01$). Mice receiving As$_2$O$_3$ injections had lower white blood cell (WBC) and platelet counts compared with mice receiving normal saline injections only ($P < 0.05$). However, mice treated with albumin-bound As$_2$O$_3$ did not experience a significant decrease in WBC or platelet counts compared with control mice. A model of intra-arterial bladder cancer treatment was successfully established in BALB/c-nu mice. In this model, albumin-bound As$_2$O$_3$ appeared to be an effective method for treating bladder tumors, with less severe hematologic side effects compared with As$_2$O$_3$ alone. The infusion of albumin-bound As$_2$O$_3$ through the internal iliac artery is a promising method of bladder cancer therapy.
Introduction

Advanced-stage bladder cancer is difficult if not impossible to cure with surgery alone and frequently develops resistance to chemotherapy. More effective chemotherapy is clearly needed to improve cure rates in this disease. Arsenic trioxide (As₂O₃) is commonly used for the treatment of acute promyelocytic leukemia (APL) [1–3] and has recently been investigated as an agent for the treatment of multiple solid tumors [4–8]. As₂O₃ appears to have activity against bladder cancer cells in vitro and as an intravesicular injection for the treatment of superficial bladder tumors. However, intravenous injections of As₂O₃ at therapeutic concentrations cause serious adverse reactions. To decrease the toxicity of treatment and increase the therapeutic effect, we prepared albumin-bound As₂O₃ and injected the drug through the abdominal aorta in order to imitate the optimum method of administration in the clinic. This study combines traditional Chinese and Western medical techniques for the development of a promising new technique for the treatment of bladder cancer.

Material and Methods

Cell line and laboratory animals

The human bladder cancer cell line EJ, obtained from Nanjing KeyGen Biotech Co., was cultured in a RPMI 1640 medium with 10% fetal bovine serum (Sigma Chemicals). Cell concentration was adjusted to 1×10⁶/ml of living cells once the cells were in logarithmic growth phase. A hypodermic injection was performed. Tumor injections were derived from the cell suspension under sterile conditions, and the cell concentration for injection was adjusted to 1×10⁷/ml (in PBS). Four- to six-week-old female BALB/c-nu mice, weighing approximately 16–20 g, were provided by the experimental animal center of Guangxi Medical University. All experiments were performed in accordance with the institution’s animal ethics guidelines. (Certificate of quality No: SCXK (GUI)2009-0002.) Animal use and care protocols, including all operation procedures, were approved by the Animal Care and Use Committee of Soochow University and conformed to the Guide for the Care and Use of Laboratory Animals issued by the National Institutes of Health. The protocols were also conducted in accordance with the Guidance Suggestions for the Care and Use of Laboratory Animals, formulated by the Ministry of Science and Technology of China [9].

Main instruments and reagents

The main instruments and reagents that were used in the study included the following: 3K15 freezing centrifuge (Sigma Chemicals); NANOPHOX(0150 P) Laser Diffraction Size Analyzer (SYMPATEC GmbH); Philips Achieva 3.0T X-series MRI; GE LOGIQ9 color Doppler; LH 750 automated hematology analyzer and LX20 automatic chemistry analyzer (Beckman Coulter Inc.); Highly enriched A₂O₃ (Sigma Chemicals); Arsenic trioxide injection (Beijing SL Pharmaceutical Co. Ltd.); Iopromide Injection (Schering Pharmaceutical Limited); other domestic analytical reagents.

Establishment of the animal model

In attempt to improve the method of Li et al. [10], a hard elbow urinary catheter was designed by the investigators to simplify the injection of tumor cells into the mouse bladders. We established a BALB/c-nu mouse model of invasive bladder carcinoma by using minimal invasive techniques that we drew 20μl (1×10⁷/ml) tumor cell suspension with microinjector and injected into the bladder wall (Fig 1).
Preparation of albumin-bound As$_2$O$_3$

According to the method of Zhou et al. [11], the oily and water phases were prepared. After phacoemulsification for 15 minutes on 400 watt power, a high speed homogenizer was used to stir the solution for 3 minutes at a velocity of 23000 rpm. Immediately after this, the homogenate was placed into 2 mL glutaraldehyde and toluene saturated solution to stir and solidify for 6 hours at low speed (about 500 rpm). After this step, the mixture was centrifuged at 500 rpm.

Fig 1. Establishment and treatment methods of BALB/c-nu mouse model of invasive bladder carcinoma. (a) Insert the hard elbow urinary catheter into the bladder to determine the surgical incision. (b) Cut the abdominal wall layer by layer. (c) Inject tumor cells into the bladder wall. (d) Suture the incision with 4–0 nylon. (e) Inject the drugs into the abdominal aorta of the BALB/c-nu mouse by using a 1 mL insulin syringe.

doi:10.1371/journal.pone.0124959.g001

Preparation of albumin-bound As$_2$O$_3$

According to the method of Zhou et al. [11], the oily and water phases were prepared. After phacoemulsification for 15 minutes on 400 watt power, a high speed homogenizer was used to stir the solution for 3 minutes at a velocity of 23000 rpm. Immediately after this, the homogenate was placed into 2 mL glutaraldehyde and toluene saturated solution to stir and solidify for 6 hours at low speed (about 500 rpm). After this step, the mixture was centrifuged at 500 rpm.
and 1000 rpm for 5 minutes, allowing the larger microspheres to be removed. The mixture was centrifuged again at 5500 rpm for 5 minutes. Following this step, cyclohexane and acetone were used to wash the solution 3 times. Microspheres were then collected and subjected to dry heat sterilization for 4 hours at 120°C[12]. The microspheres were then re-suspended in saline. Uniform dispersion of the microspheres was verified by microscopy at high magnification. Particle disparity was mostly in the range of 180 nm (Fig 2), and the drug loading range was 6.55%. BSA nanoparticles were prepared in a similar fashion.

Fig 2. Albumin-bound As$_2$O$_3$ microscopy images and Laser Diffraction Size Analyzer. (a), (b) Show albumin-bound As$_2$O$_3$ microscopy images by scanning electron microscope and transmission electron microscope respectively. (c) Laser Diffraction Size Analyzer showed the particle size of albumin-bound As$_2$O$_3$.

doi:10.1371/journal.pone.0124959.g002
Experimental classification
Fifty female BALB/c-nu mice, approximately week old and body weight, were chosen at random to establish the animal model. Tumor growth was measured with color Doppler and MRI on the tenth day after the EJ cell transplantation procedure. Forty female BALB/c-nu mice with similar tumor sizes were chosen to be randomly divided into four equal groups for intra-arterial injection of normal saline, BSA nanoparticles, As$_2$O$_3$ injection, or albumin-bound As$_2$O$_3$.

Internal iliac arterial infusion of albumin-bound As$_2$O$_3$
On the eleventh day after tumor injection, the mice were anesthetized, and the operative sites were sterilized as detailed above. A surgical incision was made to open the abdominal cavity, and a mouse abdominal wall retractor (designed by the investigator) was used to retract the omentum and intestines into the right upper quadrant of the abdominal cavity, exposing the abdominal aorta. The aorta was occluded, and at the same time, a vascular clip device (also made by the investigator) was used to compress both external iliac artery branches in order to prevent the flow of drug into these vessels. Drugs were injected into the abdominal aorta using a 1 mL insulin syringe (Fig 1E). After finishing the injection, the needle was withdrawn, and the entry point was compressed for 1 minute. Once bleeding had stopped, the arterial clips were removed. Then, 1mL of low molecular weight dextran was injected into the abdomen to prevent adhesions. The incision was closed with layers of interrupted sutures. Upper abdominal incision with drug injection was performed at day 3 after the operation, and at day 6 after the operation, injections were performed via a lateral rectus abdominis muscle incision. On day 9, the cycle of injections was repeated beginning with the original midline incision. A total of six injections were performed. After the operation, all the mice were maintained in a laminar air-flow cabinet under pathogen-free conditions.

Color Doppler
The color Doppler ultra-wide-range linear-array transducer with frequency 12 MHz was then used to scan the bladder (Fig 3A).

MRI examination
MRI of the bladder was performed according to scanning parameters that have been described previously[13].

Observation time
Diet and mental state were observed every day. Bedding was changed, and dressing changes were performed on alternate days. Twenty-eight days after the initial implant of bladder cancer cells, the experiment was concluded, and all the BALB/c-nu mice were sacrificed.

Biochemical analysis of the BALB/c-nu mice
At the end of experiment, blood samples were collected from the hearts of all the mice. Routine blood counts and chemistries were performed, including white blood cell count (WBC), hemoglobin (Hb) levels, platelet (PLT) count, alanine aminotransferase (ALT), serum total protein (TP), and blood urea nitrogen (BUN) levels.
Pathological examination

The urethra was ligatured after 10% formaldehyde solution was infused into the bladder per the urethra. The bladder was excised and cut into 4–5 μm sections after fixation in paraffin and routine H&E staining. Pathologic examinations of the lungs, liver, kidney, spleen and pelvic lymph nodes were also performed.

Tumor growth inhibiting rate and relative weight determination of bladder

Inhibitory rate was calculated using the following formula:

\[
\frac{\text{bladder weight in the normalsalinegroup} - \text{bladder weight in the treatmentgroup}}{\text{bladder weight in the normalsalinegroup}} \times 100%.
\]
Bladder relative weight was calculated using the following formula:

\[
\text{bladderweight} / \text{total bodyweight}.
\]

Statistical Analysis

Measurement data were measured by (X±s). Statistical analysis was performed using SPSS 13.0 software. A \(p \) value of less than 0.05 was considered to be statistically significant.

Results

General conditions

Following drug injection, one mouse in each treatment group died of excessive anesthesia, and one mouse in each group died of infection. Twenty-six days after tumor cell injection, all surviving mice in the normal saline-treated control group were obviously thin, with low spirits and rigid back arching. Three of the mice were on the edge of death. Mice in the BSA nanoparticle-treated control group were in similar condition, with two mice on the edge of death. Mice receiving As\(_2\)O\(_3\) injection (7) had less severe symptoms than the control mice. Mice in the albumin-bound As\(_2\)O\(_3\) group (8) were in good spirits, and their eating, drinking and relieving were normal.

Results of MRI and color Doppler

On the tenth day after EJ cell transplantation, MRI detected thickening of the bladder wall and various degrees of bladder filling defects (Fig 3C and 3D). Color Doppler showed similar results, with significant thickening of the bladder wall (Fig 3C).

Pathohistological changes

At the end of experiment, mice had developed thickened bladder walls and had solid masses within the bladder (Fig 4A and 4B). Pathological examination showed tumor had extensive serous membrane and muscularis propria diffuse invasion, with tumor cells loss of polarity and arranged disorder. This showed significant cytologic atypia. The enlarged nuclei of tumor cells showed pleomorphism with hyperchromatic, irregular nuclei, inconsistency of shape and size, irregular clumped chromatin with uneven distribution, increased ratio of nucleus to cytoplasm, and prominent enlarged nucleoli. (Fig 4C and 4D). No metastases were found in the lungs, liver, kidney, spleen or pelvic lymph nodes.

Growth inhibition of bladder tumor

Because the tumors were obviously invading normal structures in most of the mice, the whole bladders were sectioned for comparison. The average bladder weight in mice receiving As\(_2\)O\(_3\) injections was 41.68±1.72 mg and in mice treated with albumin-bound As\(_2\)O\(_3\) was 40.87±1.90 mg. These weights are significantly lower than the bladder weights in mice receiving normal saline injections (\(P < 0.01 \)). There was no marked difference between mice treated with normal saline and those receiving BSA nanoparticles. The tumor inhibitory rates were 36.59% and 37.82% in mice receiving As\(_2\)O\(_3\) and those receiving albumin-bound As\(_2\)O\(_3\), respectively (Table 1).
Side effects (hematologic and blood chemistries)

Mice who received As$_2$O$_3$ injections and those which received albumin-bound As$_2$O$_3$ had lower WBC, platelet counts, and hemoglobin levels compared with mice receiving normal saline injections (Table 2). Compared with the albumin-bound As$_2$O$_3$ group, mice in the As$_2$O$_3$ injection had lower WBC ($P < 0.05$) and platelet counts ($P < 0.01$). Mice receiving As$_2$O$_3$ injection had elevated ALT compared with the normal saline, but albumin-bound As$_2$O$_3$ groups was the highest among the four groups. Based on an analysis to the Data of ALT, it is concluded from the statistical analysis that the four groups were not significant difference each other ($P > 0.05$). Total protein and BUN levels were similar among all treatment groups.

Fig 4. Pathological examination. (a), (b) Gross photographs show the mouse bladder was invaded by the tumor cells and enlarged. And bladder wall was diffuse thickening. (c) Pathological examination showed tumor with extensive serous membrane, muscularis propria diffuse invasion, tumor cells with loss of polarity and arranged disorder. This showed significant cytologic atypia without obvious necrosis. And it was solid tumor on the left side (H×200). (d) Tumor cells invading the submucosa and muscular layer on the left side. The enlarged nuclei of tumor cells showed pleomorphism with hyperchromatic, irregular nuclei, inconsistency of shape and size, irregular clumped chromat in with uneven distribution, increased ratio of nucleus to cytoplasm, and prominent enlarged nucleoli. And it was normal mucosa on the right side (H×400).

doi:10.1371/journal.pone.0124959.g004
Discussion

Effective translational research is essential in bringing promising in vitro cancer therapies into the clinic[14]. This study attempted to use an animal model to test a new formulation of As$_2$O$_3$ (albumin-bound), administered via an existing clinical treatment method (intra-arterial chemotherapy injection). This study design allowed us to evaluate the cytotoxicity of this therapy, observe side effects, and test the efficacy of this particular animal model.

Invasive bladder cancer refers to cancers classified as T2, T3, and T4 stages, representing up to 20% of bladder cancers[15, 16]. The American cancer association shows that there were around 70530 new bladder cancer patients, and 14680 patients died of bladder cancer in 2010[17]. In the all-male tumors, the incidence of bladder cancer was the fifth, but it was the eighth in the women tumors[18]. Radical resection is the major treatment for invasive bladder cancer, but surgical mortality may be as high as 34%[19]. Bladder cancer patients tend to be older, with multiple medical comorbidities, and many are not able to tolerate surgical resections[20]. Research is increasingly focused on the development of new chemotherapy drugs and techniques of administration[21]. Considering this goal, we performed an animal study by establishing a BALB/c-nu mouse model of invasive bladder carcinoma and treating it through internal iliac arterial infusion of albumin-bound As$_2$O$_3$. A major advantage of this technique is the fact that it allows the achievement of a high drug concentration in the lymphatic vessels and microcirculation of the tumor[22].

Originally, we attempted to inject the drugs through the femoral artery. However, the diameter of the mouse femoral artery is smaller than the needle of a 1mL syringe, making this impossible. Therefore, we injected through the abdominal aorta under a microscope while occluding the bilateral external iliac arteries to prevent bypass circulation of the drug. For the preliminary experiments, x-rays were taken immediately after a contrast medium of iopromide was injected using the above technique. Imaging showed that contrast was concentrated in the pelvic blood vessels and bladder region (Fig 5D). Similarly, the bladder artery was clearly visible after injecting ink (Fig 5A and 5B). As$_2$O$_3$ is the major active ingredient of arsenic, an

Group	Bladder absolute weight (mg)	Bladder relative weights (mg/g)	Inhibitory rates (%)
Normal saline	65.73±2.71	3.65±0.16	
BSA nanoparticles	64.98±2.78	3.68±0.29	
As$_2$O$_3$ injection	41.68±1.72**	2.36±0.13**	36.59
Albumin-bound As$_2$O$_3$	40.87±1.90**	2.27±0.13**	37.82

(Compared with the normal saline group: **P<0.01)

doi:10.1371/journal.pone.0124959.t001

Group	WBC(×10^9/L)	PLT(×10^9/L)	Hb(g/L)	ALT(U/L)	TP(g/L)	BUN(mmol/L)
Normal saline	5.05±0.22	421.19±9.62	124.81±2.44	72.56±3.36	48.26±4.09	7.53±0.39
BSA nanoparticles	5.00±0.25	416.91±9.46	124.61±2.71	71.75±4.68	46.21±6.27	7.35±0.35
As$_2$O$_3$ injection	2.45±0.39**	330.80±14.41**	120.70±4.01*	73.29±3.40	45.13±3.32	7.56±0.23
Albumin-bound As$_2$O$_3$	4.56±0.28** ⋆⋆Δ ⋆Δ	408.15±13.43⋆Δ ⋆Δ	121.55±4.26	75.25±3.85	45.03±3.25	7.18±0.30

(Compared to the normal saline group: **P<0.01; ⋆P<0.05)
(Compared to the As$_2$O$_3$ injection and albumin-bound As$_2$O$_3$ groups: ⋆⋆P<0.01)

doi:10.1371/journal.pone.0124959.t002
important element of traditional Chinese medicine. Arsenic has been considered a highly poisonous drug and is not widely utilized in Western medicine[23]. However, because As$_2$O$_3$ is effective in the treatment of acute promyelocytic leukemia (APL), it has become a subject of increasing oncologic investigation. It is the main cause that unlimited proliferation[24]. As$_2$O$_3$ can induce tumor cells apoptosis[25]. Arsenic may inhibit the growth, invasion and metastasis of tumor but have minimal effects on normal cells, and it has been shown to have a powerful antitumor effect without cross-resistance between other chemotherapeutics[26]. Arsenic’s effect on apoptosis correlates positively with drug concentration and exposure time[27–29].

In this new dosage form, preparation of albumin-bound As$_2$O$_3$ was completed by cross-linkage. Ahn, et al[30] used liposomes vesicles making nanoparticles to encapsulate As$_2$O$_3$, which could improve As$_2$O$_3$ pharmacokinetics in vivo and anti-tumor effect, and provides the basis for the clinical application. The albumin nanoparticles drug delivery system is the most compelling in the field of antitumor drug, which can increased the targeted, improve curative effect, reduce side effects[31]. We adjusted the parameters of dispersion speed, rate of lipid/aqueous phases, concentration of albumin and agitation/solidification times. Previous reports have described the filtration of nanoballs with a 0.22 μm membrane. However, large microspheres may block these filters, rendering them ineffective. In this report, we describe a different technique for creating nanoballs of uniform diameter.

In this experiment, we demonstrated significant shrinkage of bladder tumors in mice through internal iliac arterial infusion of albumin-bound As$_2$O$_3$ with minimal adverse effects. As$_2$O$_3$ injections had lower white blood cell (WBC) and platelet counts compared with mice receiving normal saline injections only, which caused serious myelosuppression. The ALT, TP, and BUN levels were not significantly different between the groups treated with albumin-bound As$_2$O$_3$ and As$_2$O$_3$ injections. In the case of active targeting, the albumin contained in the nanoparticle albumin-bound (nab)-paclitaxel is thought to facilitate receptor-mediated endothelial transcytosis of albumin-bound plasma constituents or albumin-based nanoparticles into the extravascular space. Eventually, the albumin will be actively and selectively recognized and bound by the proteins-rich tumor tissues.

When the albumin-bound As$_2$O$_3$ flows into the circulatory system, it is released slowly and the suppressive effect of the bone marrow cells can be reduced considerably. The entry of injected As$_2$O$_3$ into the blood vessels of the bladder results in instantaneous very high increase in the concentration of As$_2$O$_3$ around the bladder cancer cells; this high concentration of As$_2$O$_3$ destroys the tumor cells. The As$_2$O$_3$ concentration drops gradually as it enters the bloodstream. Approximately 95% of the drug integrates with hemoglobin and is distributed to all parts of the body, leading to a decrease in WBC and PLT counts and in Hb levels. In this experiment, the BALB/c-nu mouse model for invasive bladder carcinoma implanted with human bladder cancer cells was treated with infusion of albumin-bound As$_2$O$_3$ through the internal iliac artery. In the human body, the internal iliac artery has a relatively slow blood flow and it allows the direct delivery of chemotherapeutic agents into the bladder[26], making it the preferred vessel for delivering antineoplasic drugs into the bladder[32].
Conclusion
This experiment demonstrates the successful establishment of a BALB/c-nu mouse model of invasive bladder carcinoma, and shows that albumin-bound As$_2$O$_3$ is a promising drug for the treatment of bladder cancer. Further study of intra-arterial injection of albumin-bound As$_2$O$_3$ is needed before this therapy can be utilized in humans. However, we are hopeful that this promising therapy can be brought to the clinic.

Acknowledgments
This research was partially supported by Grants-in-Aid for Chinese National Natural Science (30700836). This research was partially supported by Jiangsu province clinical medicine science and technology special funds (BL2014056) and Kunshan social development science and technology plan projects (KS1335).

Author Contributions
Conceived and designed the experiments: HL RL. Performed the experiments: YL GY QL WW. Analyzed the data: YL GY HL RL. Contributed reagents/materials/analysis tools: XS. Wrote the paper: YL GY. Critical revision: HL RL.

References
1. Leu L, Mohassel L. Arsenic trioxide as first-line treatment for acute promyelocytic leukemia. American journal of health-system pharmacy: AJHP: official journal of the American Society of Health-System Pharmacists. 2009; 66:1913–8.
2. Zhang XH, Feng R, Lv M, Jiang Q, Zhu HH, Qing YZ, et al. Arsenic trioxide induces apoptosis in B-cell chronic lymphocytic leukemia cells through down-regulation of survivin via the p53-dependent signaling pathway. Leukemia research. 2013; 37:1719–25. doi: 10.1016/j.leukres.2013.09.019 PMID: 24211095
3. Zhang Y, Fan H. The clinical observation about Arsenic trioxide and Thalidomide for the treatment of acceleration period low-risk myelodysplastic syndromes(MDS). China Modern Medicine. 2011; 18:59–60.
4. Ai ZL, Qin XY. Advances in the study of Arsenic trioxide applied in solid tumors. Clinical Medical Journal of China. 2006; 13:429–30.
5. Ji XY, Ding LN, Wang JR, Liu L. Study on the Expression of Cancer Associated Gene Induced by Arsenic Trioxide. Chinese Journal of Clinical Medicine. 2006; 13:949–50.
6. Chen G, Wang K, Yang BY, Tang B, Chen JX, Hua ZC. Synergistic antitumor activity of oridonin and arsenic trioxide on hepatocellular carcinoma cells. International journal of oncology. 2012; 40:139–47. doi: 10.3892/ijo.2011.1210 PMID: 21947421
7. Kchour G, Rezaee R, Farid R, Ghantous A, Rafatpanah H, Tarhini M, et al. The combination of arsenic, interferon-alpha, and zidovudine restores an “immunocompetent-like” cytokine expression profile in patients with adult T-cell leukemia lymphoma. Retrovirology. 2013; 10:91. doi: 10.1186/1742-4690-10-91 PMID: 23962110
8. Li Y, Feng L, Jiang W, Shan N, Wang X. Artesunate possesses anti-leukemia properties that can be enhanced by arsenic trioxide. Leukemia & lymphoma. 2014; 55:1366–72.
9. The Ministry of Science and Technology of the People’s Republic of China. Guidance Suggestions for the Care and Use of Laboratory Animals. 2006 Sep 30.
10. Li L, Xu P, Wang F, Xie KC, Chen XF, Gu Q, et al. A novel mouse bladder cancer model with high metastases. Chinese Journal of Experimental Surgery. 2002; 19:78–9.
11. Zhou J, Zeng PQ, Gao X, Xie SS, Wei SL. Preparation and the release characteristic in vitro of arsenic trioxide albumin nanospheres. Chinese Journal of New Drugs 2005; 14:54–7.
12. Liu HB, Bao XN, Li HQ. Optimization of preparation technique of methotrexate human serum albumin microspheres. China Pharmacy. 2000; 11:155.
13. Yang SM, Wen DG, Hou JQ, He J, Cen JN, Chen JH. Establishment and application of an orthotopic murine bladder cancer model. Chinese Journal of Cancer 2007; 26:341–5. PMID: 17430648
14. Maeda H, Nakamura H, Fang J. The EPR effect for macromolecular drug delivery to solid tumors: Improvement of tumor uptake, lowering of systemic toxicity, and distinct tumor imaging in vivo. Advanced drug delivery reviews. 2013; 65:71–9. doi: 10.1016/j.addr.2012.10.002 PMID: 23088862
15. Orntoft TF. Personalised treatment for bladder cancer. The Lancet Oncology. 2011; 12:111–2. doi: 10.1016/S1470-2045(11)70001-8 PMID: 21256082
16. Weizer AZ, Tallman C, Montgomery JS. Long-term outcomes of intravesical therapy for non-muscle invasive bladder cancer. World journal of urology. 2011; 29:59–71. doi: 10.1007/s00345-010-0617-4 PMID: 21113783
17. Rink M, Xylinas E, Babjuk M, Pycha A, Karakiewicz PI, Novara G, et al. Smoking Reduces the Efficacy of Intravesical Bacillus Calmette-Guérin Immunotherapy in Non–muscle-invasive Bladder Cancer. European urology. 2012; 62:104–6. doi: 10.1016/j.eurouro.2012.08.057 PMID: 22980442
18. Jemal A, Bray F, Center MM, Ferlay J, Ward E, Forman D. Global cancer statistics. CA: a cancer journal for clinicians. 2011; 61:69–90. doi: 10.3322/caac.20107 PMID: 21296855
19. Shah JB, McKiernan JM. Novel therapeutics in the treatment of bladder cancer. Current opinion in urology. 2004; 14:287–93. PMID:15300149
20. Sun H, Li XG, Jin ZY, Yang N, Liu W, Pan J, et al. Transcatheter bilateral iliac arterial perfusion chemotherapy for the treatment of invasive bladder cancer. J Intervent Radiol. 2010; 19:454–7.
21. Tong QS, Zeng PQ, Lu GC, Zhu ZH. Experimental study of the growth inhibition in vitro on human bladder cancer cell line BIU-87 by arsenic trioxide. Journal of Clinical Urology. 2000; 15:72–4.
22. Huang PC, Wang LS. Regional chemotherapy bladder cancer through intra artery infusion. Foreign Medical Sciences(Urology and Nephrology Foreign Medical Sciences) 2000; 20:226–7.
23. Feng QJ, Ma WL, Zheng WL. Research advances on effect of arsenic trioxide on tumor. Chinese Journal of Cancer 2002; 21:1386–9. PMID:12520754
24. Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011; 144:646–74. doi: 10.1016/j.cell.2011.02.013 PMID: 21376230
25. Qu X, Du J, Zhang C, Fu W, Xi H, Zou J, et al. Arsenic trioxide exerts an antitumor effect by inhibiting activity in the cytoplasmic substrates of histone deacetylase 6. PloS one. 2012; 7:e32215. doi: 10.1371/journal.pone.0032215 PMID: 22384180
26. Du CW, Li DR, Lin YC, Wu MY. Inhibition of arsenic trioxide on human nasopharyngeal cancer cells in scid mice in vivo. Chinese Journal of Cancer Prevention and Treatment 2002; 9:350–3.
27. Waxman S, Anderson KC. History of the development of arsenic derivatives in cancer therapy. The oncologist. 2001; 6 Suppl 2:3–10. PMID: 11331434
28. Chen GC, Guan LS, Hu WL, Wang ZY. Functional repression of estrogen receptor a by arsenic trioxide in human breast cancer cells. Anticancer research. 2002; 22:633–8. PMID: 12014631
29. Soignet SL, Maslak P, Wang ZG, Jhanwar S, Calleja E, Dardashti LJ, et al. Complete remission after treatment of acute promyelocytic leukemia with arsenic trioxide. The New England journal of medicine. 1998; 339:1341–8. PMID: 9801394
30. Ahn RW, Barrett SL, Raja MR, Jozefik JK, Spaho L, Chen H, et al. Nano-encapsulation of arsenic trioxide enhances efficacy against murine lymphoma model while minimizing its impact on ovarian reserve in vivo. PLoS one. 2013; 8:e58491. doi: 10.1371/journal.pone.0058491 PMID: 23526987
31. Ulbrich K, Michaelis M, Rothweiler F, Knoblach T, Sthitharam P, Cinat DJ, et al. Interaction of folate-conjugated human serum albumin (HSA) nanoparticles with tumour cells. International journal of pharmaceutics. 2011; 406:128–34. doi: 10.1016/j.ijpharm.2010.12.023 PMID: 21185364
32. Zhu J, Wu HX, Qiu JX, Fan Y, Tan JM. Bladder preservation by internal iliac arterial infusion chemotherapy and radiotherapy in invasive bladder carcinoma. Journal of Clinical Urology. 2004; 19:83–4,6.