Protective effects of acacetin isolated from Ziziphora clinopodioides Lam. (Xintahua) on neonatal rat cardiomyocytes

Wei-Jun Yang1, Chong Liu1, Zheng-Yi Gu1, Xing-Yue Zhang2, Bo Cheng1, Yan Mao1 and Gui-Peng Xue1*

Abstract

Background: The total flavonoids from ethanol extract of the aerial part of Ziziphora clinopodioides Lam. (Lamiaceae) (Xintahua) showed protective activities against rat acute myocardial ischemia in rats. This study aims to isolate acacetin, a flavonoid, from the aerial part of Z. clinopodioides, to develop an HPLC method for its detection, and to evaluate its protective effects on neonatal rat cardiomyocytes.

Methods: Sephadex LH-20 silica gel and pillar layer chromatography silica gel were applied for the isolation and purification of acacetin and its structure was elucidated on the basis of 1H and 13C NMR spectroscopy. The content of acacetin in Z. clinopodioides collected from three different origins was determined by HPLC. The neonatal rat cardiomyocytes were isolated and cultured in vitro to establish a hypoxia/reoxygenation injury model. The viability of cardiomyocytes was measured by the MTT method. Changes of malondialdehyde (MDA) content in the medium were also determined.

Results: The acacetin content in various batches of Z. clinopodioides ranged from 45.50 to 47.41 μg/g. Acacetin of 25, 10, 5 μg/mL significantly decreased the MDA content in a model of hypoxia/reoxygenation injury (P<0.001, P<0.001 and P=0.033, respectively).

Conclusions: Acacetin protects neonatal cardiomyocytes from the damage induced by hypoxia/reoxygenation stress through reduction of lipid peroxidation and enhancement of the antioxidant activity.

Keywords: Acacetin, Ziziphora clinopodioides, Neonatal rat cardiomyocytes, Hypoxia/reoxygenation, HPLC

Background

Ziziphora clinopodioides Lam. (Lamiaceae) (Xintahua) is among the commonly used herbal drugs in Traditional Uighur Medicine and Traditional Kazak Medicine, with efficacy for the treatment of hypertension, fever, edema, heart disease, neurasthenic, insomnia, tracheitis, lung abscess and hemorrhoids [1,2]. The pharmacologically active ingredients of Z. clinopodioides consist of a large number of iridoids, phenolic and flavonoid compounds, including chrysin 7-O-rutinoside, linarin, diosmin, methyl 4-hydroxy-3,5-dimethoxybenzoate, 7-O-methylsudachitin (4′,5,6-trihydroxy-3′,7,8-trimethoxyflavone), thymonin (4′,5,6-trihydroxy-3′,7,8-trimethoxyflavone), caffeic acid and luteolin (3′,4′,5,7-tetrahydroxyflavone) [3-5].

The trichloromethane (CHCl3) and ethyl acetate (EtOAc) portions from the ethanol extract of the aerial part of Z. clinopodioides showed protective effects on rat acute myocardial ischemia and neonatal rat cardiomyocytes [6]. Detailed analysis indicated that the total flavonoids were the primary contributor to the observed activities [7].

This study aims to isolate acacetin, a flavonoid, from the aerial part of Z. clinopodioides, to develop a HPLC method for its detection, and to evaluate its protective effects on neonatal rat cardiomyocytes.

Methods

Standards and reagents

MTT was purchased from Amresco LLC (Pennsylvania, USA). Trypsin was from Amresco LLC (Pennsylvania, USA).
USA). Streptomycin was produced by North China Pharmaceutical Group Corporation (Shijiazhuang, China). DMEM (high glucose and low glucose) was from Invitrogen Corporation (Carlsbad, USA). Ampicillin sodium for injection was produced from China-promise Pharmaceutical Industry (Shijiazhuang, China). Malondialdehyde (MDA) was provided from the Nanjing Jiancheng Bio-engineering Institute (Nanjing, China). Acacetin was prepared in the Key Laboratory of Xinjiang Uighur Medicine (Urumqi, China). HPLC grade methanol and acetonitrile were purchased from Fisher Scientific (New Jersey, USA). Water (0.055 µS/cm) was purified by a Milli-Q system from Millipore (New Jersey, USA). Sephadex LH-20 silica-gel was from Amersham Pharmacia Biotech (USA). Pillar layer chromatography silica gel (100-200 mesh) was from Qingdao Marine Chemical Plant (China). All other chemicals were of analytical grade.

Plant materials
Two batches of *Z. clinopodioides* were collected at the Astronomical Observatory (87°10′40″E, 43°28′14″N, with altitude of 2076 m) and the Chrysanthemum terrace (87°08′38″E, 43°27′14″N, with altitude of 2308 m), South Mountain of Tianshan Mountains in Urumqi, China, in September and August 2010. Another batch was from Xiao Dong Gou (88°07′57″E, 47°56′46″N, with altitude of 970 m) of Altai Mountains in Alaty, China, in August 2010. The plant materials were identified by associate researcher Jiang He (Xinjiang Institute of Materia Medica, Urumqi, China), according to Hudaberbi et al. [8], and voucher specimens (no. 100954, 100988, 100990, successively) were deposited in the plant herbarium, Institute of Metaria Medica.

Apparatus
NMR nuclear magnetic resonance was measured using JEOL ECP-500, INOVA400 and INOVA-600 (Varian, USA). Melting points were measured with a semi-automatic melting point apparatus (Yanagimoto MFG Co., uncorrected). HPLC analysis was performed using a Shimadzu-LC 2010C HPLC (Shimadzu, Japan) system. A BS124S Electronic Balance (Sartorius, Germany) was used for analysis. A DG-5031 ELISA Reader (Nanjing Huadong Electronics Group Medical Equipment Co., Ltd., China) and Shimadzu UV-2501 (Shimadzu, Japan) were used for cardiomyocyte experiments.

Animals
Neonatal Sprague-Dawley rats (1-3 days old) of either sex were maintained under standard environmental conditions. All animals were purchased from the Experimental Animal Centre of Xinjiang Medical University (Urumqi, China). Certificate Number: SCXK (Xin) 2003-2001. The study protocols were approved by the Ethics Committee on Animal Experiments, Xinjiang Material Medica, China (no.20110515).

Extraction and isolation
The air-dried aerial portion of *Z. clinopodioides* (10 kg) was extracted with water and then the residue was extracted with methanol (MeOH) under reflux. The methanol extract was suspended in water and then successively extracted with CHCl₃ and EtOAc. Then, the solution was vacuum-distilled using a rotary vacuum evaporator (Rotavapor R-220; Buchi, Switzerland) to yield the CHCl₃ fraction (142.5 g) and EtOAc fraction (138.5 g). The EtOAc fraction was purified on silica gel eluted with a gradient of CHCl₃-MeOH. Eluates were combined according to thin layer chromatography (TLC) behavior using two solvent systems CHCl₃-MeOH (9:7:3) to offer compound 1 (320 mg).

Sample preparation for determination of acacetin
Dried powder (1.0 g) of the aerial portion of *Z. clinopodioides* was refluxed in 30 mL of methanol for 1 h after soaking for 20 min. After extraction, solvent was added to the extraction vessel until the final weight was equal to the starting weight to counter solvent loss. The extract was thoroughly mixed on a vortex mixer, and filtered through a 0.45 µm syringe filter prior to HPLC injection.

HPLC analysis of acacetin
All experiments were conducted with a Shimadzu-LC 2010C HPLC system. The mobile phase consisted of acetonitrile (A) and water with 1.0% glacial acetic acid (B), with the proportion of A:B held at 37:63. The chromatographic separation was performed using a YMC-Pack ODS-A (4.6 × 250 mm, 5 µm) column with a flow rate of 1.0 mL/min. The column temperature was maintained at 35°C. All analytes were monitored at 326 nm.

Calibration curves
Stock standard solutions of acacetin were prepared in MeOH and diluted to different concentrations to build calibration curves, e.g., plotting the peak areas versus the concentrations of each analyte.

Stability test
Sample was analyzed using the developed method to verify the stability of the sample. The stability test was carried out by analyzing the sample at 0, 2, 4, 8, and 24 h. The relative standard deviations (RSDs) of peak areas at different times were calculated.

Precision test
Intra-day and inter-day variations were used to determine the precision of the developed method. The intra-day precision or inter-day precision was determined by
analyzing replicated samples) on 1 day or over 3 consecutive days, respectively.

Accuracy test
The accuracy of the developed method was evaluated by spike recovery. Acacetin was added into 0.5 g of sample. Then, the mixtures were extracted and analyzed. The spiked recovery was calculated as follows:

\[
\text{Recovery (\%)} = \left(\frac{\text{amount yield} - \text{amount original}}{\text{amount spiked}} \right) \times 100\%
\]

Cell culture
Primary cultures of neonatal rat cardiomyocytes were prepared from the ventricles of 1 to 3-day-old Sprague-Dawley rats as previously described [9,10]. The cells were pre-plated three times for 30 min in a humidified incubator (95% air/5% CO\textsubscript{2} at 37°C) in DMEM supplemented with 2 mmol/L L-glutamine, 10% (v/v) foetal calf serum and penicillin/streptomycin (100 U/mL) to minimise fibroblast contamination. Cardiomyocyte-rich cultures (>90%) were plated onto fibronectin-coated 96-well plates, 100 μL per well, at a final density of 1.00 × 105 cells per cm2 in supplemented DMEM [11,12].

Cell viability
The culture solution was discarded after 24 h co-cultivation of myocardial cells and different concentrations of acacetin, and then 180 μL DMEM and 20 μL MTT were added to each well for 4 h cultivation. The supernatant was discarded and 150 μL DMSO was added to each well, mixed evenly, and the absorbance (A) was measured at 570 nm within 10 min using a DG-5031 ELISA Reader [13].

Model of hypoxia/reoxygenation injury
After cultivation for 72 h, the medium was exchanged with one that was hypoxic (culture medium saturated with high concentrations of N\textsubscript{2} in advance), and the solution was placed in a hypoxic culture box (99.99% N\textsubscript{2}) for 120 min. Then, the medium was replaced with one saturated with pure O\textsubscript{2}, and the cells were exposed to a normoxic atmosphere containing 95% air and 5% CO\textsubscript{2} at 37°C (reoxygenation) for 30 min. A thiobarbituric acid (TBA) method was used to determine the content of MDA [6].

Cell experimental protocol
Experimental doses of acacetin were investigated using a cell viability test. The cells were divided into five experimental groups: group I served as a control (normal cell culture group, incubation for 3 h in the incubator), group II served as the myocardial cell injury control group (hypoxic 2 h, and reoxygenation 1 h), groups III, IV and V were treated with three different doses (25, 10, and 5 μg/mL, respectively) of acacetin (hypoxic 2 h, and reoxygenation 1 h). The inhibition rate was calculated from the absorbance of the medium containing added acacetin over the medium of the control (group I).

Statistical analysis
The results were reported as the mean ± standard derivation (SD) of at least three measurements. The analysis of MDA data was performed with the SPSS 10.0 statistical package (IBM, USA), while simple linear regression was performed in Excel (Microsoft, Redmond, WA, USA). Results with \(P \) values less than 0.05 were considered significant.

Results

| Table 1 Accuracy of the HPLC method for the determination of acacetin |
|------------------|------------------|------------------|
| Original acacetin (mg) | Spiked acacetin (mg) | Found acacetin (mg) | Recovery (%) |
| 0.02386 | 0.01168 | 0.03471 | 103.92 |
| 0.02357 | 0.01168 | 0.03425 | 101.88 |
| 0.02266 | 0.01168 | 0.03430 | 103.10 |
| 0.02213 | 0.02336 | 0.04566 | 100.72 |
| 0.02195 | 0.02336 | 0.04488 | 98.14 |
| 0.02186 | 0.02336 | 0.04460 | 97.33 |
| 0.02252 | 0.03504 | 0.05735 | 99.40 |
| 0.02253 | 0.03504 | 0.05827 | 102.01 |
| 0.02222 | 0.03504 | 0.05773 | 101.35 |
Stability test
The RSD of peak areas at different times were less than 1.13%, indicating that the sample was stable for at least 24 h.

Precision test
The RSD value of intra-day and inter-day precision was 0.11% and 1.64%, respectively, which suggested that the developed method was precise enough for determining acacetin in *Z. clinopodioides*.

Accuracy test
The recoveries of acacetin were 97.33-103.92%, which indicated the developed method was suitable for determination of acacetin in *Z. clinopodioides* (Table 1).

Quantitative analysis
Figure 1A shows an HPLC chromatogram for Acacetin, Figure 1B shows a chromatogram of extract of sample. The results of the quantitative analysis of three batches of *Z. clinopodioides* are shown in Table 2. No significant differences of acacetin content in *Z. clinopodioides* were found from one batch to another (ranging from 45.50 to 47.41 μg/g) (Table 2).

Cell viability result
The cardiomyocyte viability was greater than 50% when subjected to an acacetin dose less than 12.5 μg/mL (Table 3).

Table 2 Content of acacetin in the aerial portion of *Z. clinopodioides* from different locations in Xinjiang (*n* = 3)

Species	Location	Acacetin (μg/g)
Z. clinopodioides	AO*, South Mountain, Urumqi	45.60 ± 0.04
Z. clinopodioides	CT*, South Mountain, Urumqi	45.50 ± 0.10
Z. clinopodioides	Altai Mountain, Altay	47.41 ± 0.18

AO: Astronomical observatory.
CT: Chrysanthemum terrace.
Effects of acacetin on neonatal rat cardiomyocytes

The MDA content was significantly increased from 0.14 ± 2.13 to 30.72 ± 1.40 nmol/L after myocardial cell injury (Table 4). Compared with Group II (30.72 ± 1.40 nmol/L), the MDA content of Group III, Group V, and Group V were reduced to 4.00 ± 2.91 nmol/L (P < 0.001), 10.64 ± 3.54 nmol/L (P < 0.001) and 15.45 ± 14.62 nmol/L (P = 0.033), respectively. These results confirmed that as the treatment concentration of acacetin increased, the MDA content in cardiomyocytes decreased. At 25 and 10 μg/mL acacetin, a significant reduction was observed (P < 0.001 and P < 0.001, respectively) (Table 4).

Discussion

Flavonoids are polyphenol compounds, which are widely distributed in a variety of plants and have many pharmacological activities associated with cardiovascular protection such as antioxidation [16], anti-inflammatory, blood vessel expansion, arrhythmia inhibition, and antiplatelet aggregation [17]. Some flavonoids also have antitumor activities [18,19].

Acacetin exists in plants of asteraceae [20-22], and violaceae [23], but was rarely identified in lamiaceae. Acacetin is an atrium-selective agent that prolongs the atrial refractory period without prolonging the corrected QT interval such as antioxidation [16], anti-inflammatory, blood vessel expansion, arrhythmia inhibition, and antiplatelet aggregation [17]. Some flavonoids also have antitumor activities [18,19].

In cardiomyocyte injury induced by hypoxia/reoxygenation, which is similar to heart ischemia-reperfusion injury in vitro, free radical injury was involved [25]. After myocardial ischemia-reperfusion, the body produces oxygen free radicals (OFR), and OFR-mediated cell membranes and subcellular membrane lipid peroxidation (LPO), while MDA is the LPO reaction product induced by OFR attacking the biomembrane. The amount of MDA reflects the degree of LPO, and is usually used to evaluate the degree of exposure to OFR [26]. In this study, after subjecting the cardiomyocytes to hypoxia/reoxygenation, the content of MDA in the medium increased significantly. Treatment with acacetin prevented the increase in MDA content, hence improving the antioxidant capacity of the myocardial cells.

Conclusions

Acacetin protects neonatal cardiomyocytes from the damage induced by hypoxia/reoxygenation stress through reduction of lipid peroxidation and enhancement of the antioxidant activity.

Table 3 Effects of different acacetin concentrations on cardiomyocyte viability

Concentration (μg/mL)	Viability (%)	MDA (nmol/L)
1	54.78	0.14 ± 2.13
5	52.37	0.14 ± 2.13
10	52.93	30.72 ± 1.40
20	47.76	10.64 ± 3.54
40	45.48	15.45 ± 14.62
60	43.11	15.45 ± 14.62

1Results are expressed as the mean ± S.D (n = 6).

2P < 0.05, significant difference vs. group II.

3P < 0.01 significant difference vs. group II.

Table 4 The effect of acacetin on the MDA content in neonatal rat cardiomyocytes subjected to hypoxia/reoxygenation injury

Groups	Acacetin (μg/mL)	MDA (nmol/L)
I	—	0.14 ± 2.13
II	—	30.72 ± 1.40
III	25	4.00 ± 2.79
IV	10	10.64 ± 3.54
V	5	15.45 ± 14.62

1Results are expressed as the mean ± S.D (n = 6).

2P < 0.05, significant difference vs. group II.

3P < 0.01 significant difference vs. group II.
6. Yang WJ, Hasimu H, Sun YH, He J, Hairl M, Abudushalamu: Protective effects of Ziziphus clinopodioides on rat acute myocardial ischemia and neonatal rat cardiomyocytes. Xiandai Yaowu Yu Linchuang 2015, 25:194–198.

7. Liao JJ, Xu JG, Yang WJ, Liu C, Tursun D, Hairl M. Antioxidant activity and protective effects of flavonoids from Ziziphus clinopodioides on neonatal rat cardiomyocytes. Huanghu Zhongyiyao 2011, 4256–259.

8. Hudarender M, Pan XL. Labiatae: Zizipha L. In Flora Xinjiangensis, Volume 4. 1st edition. Edited by commissione redactorum floriae Xinjiangensis. Unumqi: Xinjiang Sciene & Technology Publishing House; 2004:327.

9. Yamauchi-Takihara K, Ibara Y, Ogata A, Yohizaki K, Azuma J, Kishimoto T. Hypoxic stress induces cardiac myocyte derived interleukin-6. Circulation 1995, 91:1520–1524.

10. Kuniioka K, Tone E, Fujio Y, Matsui H, Yamauchi-Takihara K, Kishimoto T. Activation of gp130 transduces hypertrophic signals via STAT3 in cardiac myocytes. Circulation 1998, 98:346–352.

11. Germack R, Dickenson JM. Characterization of ERK1/2 signalling pathways induced by adenosine receptor subtypes in newborn rat cardiomyocytes. Br J Pharmacol 2004, 141:329–339.

12. Germack R, Griffin M, Dickenson JM. Activation of protein kinase B by adenosine A, and A receptors in newborn rat cardiomyocytes. J Mol Cell Cardiol 2004, 37:899–900.

13. Germack R, Dickenson JM. Adenosine triggers preconditioning through MEK/ERK1/2 signalling pathway during hypoxia/reoxygenation in neonatal rat cardiomyocytes. J Mol Cell Cardiol 2005, 39:429–442.

14. Gong FJ, Wang GL, Wang YW. Chemical constituents of the flowers of Dendranthema indicum var. aromaticum. Wuhan Zhwuxue Yanyu 2005, 23:610–612.

15. Qu GR, Liu J, Li XX, Wang SX, Wu LI, Li X. Flavonoids constituents of Sonchusarvensis L. Zhong Cao Yao 1995, 26:233–235.

16. Guler A, Sahin MA, Yucel O, Yokusoglu M, Gamsizkan, Ozal E, Demirkilic FU, Arslan M. Proanthocyanidin prevents myocardial ischemic injury in adult rats. Med Sci Monit 2011, 17:BR336–BR331.

17. Chen QH, Li Q, Yang WJ, Zhao Y, Zhang XY. Protective effects of flavonoids from Ziziphora clinopodioides on neonatal rat cardiomyocytes. Zhongguo Zhongyao Zazhi 2011, 36:1051–1053.

18. Prasad R, Vaid M, Katiyar SK. Grape proanthocyanidin inhibit pancreatic cancer cell growth in vitro and in vivo through induction of apoptosis and by targeting the PI3K/Akt pathway. PLoS One 2012, 7:e43064.

19. Chiyomaru T, Yamamura S, Majid S, Hirata H, Ueno K, Chang I, Tanaka Y, Tabatabai ZL, Enokida H, Nakagawa M, Dahiya R. Genistein suppresses prostate cancer growth through inhibition of oncogenic micro RNA-51. PLoS One 2012, 7:e38312.

20. Zhang J, Ding AW, Li YB, Qian DW, Duan JA, Yin ZQ. Two New Flavonoid Glycosides from Chrysanthemum morifolium. Chin Chem Lett 2006, 17:1051–1053.

21. Wu JS, Wu DL, Yu NJ, Zhang W, Jin CS, Dai WL. Simultaneous determination of three kinds of flavonoids in Chrysanthemum morifolium Ramat from Bozhou City by RP-HPLC. Zhong Cheng Yao 2013, 35:774–776.

22. Wang HB, Chiu WJ, Li GR, Lau CP, Qin GW. Chemical constituents of Saussurea lancelops. Chin J Nat Med 2008, 6:357–361.

23. Xu JZ, Zeng SS, Qu HB. Chemical constituents from Viola yedoensis. Zhong Cao Yao 2010, 41:1423–1425.

24. Li GR, Wang HB, Qin GW, Jin MW, Sun HY, Du XL, Dang XL, Zhang XH, Chen JB, Chen L, Xu XH, Cheng LC, Chu SW, Tse HF, Vanhoutte PM, Lau CP. Acacetin, a Natural Flavone, Selectively Inhibits Human Atrial Repolarization Potassium Currents and Prevents Atrial Fibrillation in Dogs. Circulation 2008, 117:2425–2427.

25. Ni L, Chen F. Antioxidant effect of Yindan Xinnaotong on cardiomyocytes injury induced by hypoxia/reoxygenation. Zhongxiyi Jiehe Xinnaoxueguan Zazhi 2008, 6:1095–1009.

26. Liang QM, Qu SC, Yu XF, Xu HL, Sui DY. Acanthopanax senticosus saponins hydrogen peroxide in ameliorates oxidative damage induced by neonatal rat cardiomyocytes. Zhongguo Zhongyao Zazhi 2009, 34:2489–2493.

doi:10.1186/s13020-014-0028-3

Cite this article as: Yang et al. Protective effects of acacetin isolated from Ziziphus clinopodioides Lam. (Xintahua) on neonatal rat cardiomyocytes. Chinese Medicine 2014 9:28.