Original research article

Novel probiotics: Their effects on growth performance, gut development, microbial community and activity of broiler chickens

Chen G. Olnood a,b, Sleman S.M. Beski a, Mingan Choct a,c, Paul A. Iji a,*

* School of Environmental and Rural Science, Armidale 2351, Australia
b China Animal Husbandry Industry Company, Zhongmu Research Centre, Beijing 100095, China
c Poultry Cooperative Research Centre, Armidale 2351, Australia

ARTICLE INFO

Article history:
Received 6 April 2015
Accepted 24 July 2015
Available online 10 September 2015

Keywords:
Probiotic
Broiler
Performance
Gut development

ABSTRACT

A total of 294 one-day-old Cobb broiler chickens were used to investigate the effects of four Lactobacillus strains on gut microbial profile and production performance. The six dietary treatments, each with 7 replicates were: 1) basal diet (negative control), 2) one of four strains of Lactobacillus (tentatively identified as Lactobacillus johnsonii, Lactobacillus crispatus, Lactobacillus salivarius and an unidentified Lactobacillus sp.) and 3) basal diet with added zinc-bacitracin (ZnB, 50 mg/kg). Results showed that the addition of probiotic Lactobacillus spp. to the feed did not significantly improve weight gain, feed intake and feed conversion rate (FCR) of broiler chickens raised in cages during the 6-week experimental period, but tended to increase the number of total anaerobic bacteria in the ileum and caeca, and the number of lactic acid bacteria and lactobacilli in the caeca; and to significantly increase the small intestinal weight (jejenum and ileum). Furthermore, all 4 probiotics tended to reduce the number of Enterobacteria in the ileum, compared with the control treatments. The probiotics did not affect the pH and the concentrations of short chain fatty acids (SCFA) and lactic acid in both the ileum and caeca.

© 2015 Chinese Association of Animal Science and Veterinary Medicine. Production and hosting by Elsevier B.V. on behalf of KeAi Communications Co., Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

The use of probiotics has become a field of science, medicine and business that is growing rapidly. In agricultural science, probiotic, prebiotics, feed enzymes and organic acids, have been seen as potential alternatives to in-feed antibiotics (IFA) (Choct, 2002).

The addition of either pure Lactobacillus cultures or mixtures of lactobacilli and other bacteria to broiler diets has produced variable results. Kalavathy et al. (2003) found an improvement in body weight gain (BWG) and feed conversion ratio (FCR) of broilers fed a mixture of different Lactobacillus strains from 1 to 42 days of age. A consistent improvement in BWG of chickens fed a culture of Lactobacillus has also been reported (Awad et al., 2009). Feeding broiler chickens up to 6 weeks of age with a diet containing a single strain of Lactobacillus acidophilus or a mixture of lactobacilli significantly improved BWG and FCR (Jin et al., 1998a). Cao et al. (2013) found that supplementation the broiler diets with a single strain of Lactobacillus (Enterococcus faecium) significantly improved the BW and BWG compared to the control. However, Ashayerizadeh et al. (2011) did not find any significant difference in the performance of chickens fed on diets containing a mixture of Lactobacillus cultures and other bacteria, compared with a non-supplemented diet. Variation in the effects of probiotics on growth performance of broiler chickens may be attributed to the differences in the strains of bacteria used as the dietary supplements.

In the present study, the effects of four strains of Lactobacillus spp. on pH, the concentrations of short chain fatty acids (SCFA) and lactic acid, and growth performance of broiler chickens were investigated; the populations of total anaerobic bacteria, lactic acid bacteria, Lactobacilli, Enterobacteria and Clostridium perfringens in gut environment were detected.

* Corresponding author.
E-mail address: Piji@une.edu.au (P.A. Iji).

Peer review under responsibility of Chinese Association of Animal Science and Veterinary Medicine.
2. Materials and methods

2.1. Probiotic strains

A total of 235 *Lactobacillus* isolates were tested using an antagonistic activity assay as described by Schillinger and Lucke (1989), and the four strains of *Lactobacillus* isolates were selected as probiotic candidates by largest inhibition zone appearance with indicator pathogenic strains of *C. perfringens* and *Escherichia coli*. These four strains of *Lactobacillus* were tentatively identified as *Lactobacillus johnsonii*, *Lactobacillus crispatus*, *Lactobacillus salivarius* and one unidentified *Lactobacillus* sp.

All the strains were kept at −20°C in de Man, Rogosa, Sharpe (MRS) broth (Oxoid, CM0359) with 40% glycerol. The culture medium used for growth was MRS agar (Oxoid, CM0361). The overnight culture of each *Lactobacillus* isolate was used as a feed additive probiotic candidate after anaerobic incubation at 39°C for 24 h.

2.2. Experimental design and bird management

A total of 294 one-day-old male Cobb broiler chickens vaccinated against Marek’s disease, infectious bronchitis, and Newcastle disease were randomly assigned to 6 diets each with 7 replicates with 7 birds per replicate. Chickens were reared in multi-tiered brooder cages placed in a climate-controlled room up to 21 d, and then the birds were transferred to a metabolic cage room to 35 d. Feed and water leftovers and birds were weighed on a weekly basis for calculation of average feed intake and body weight. Mortality was recorded when it occurred and FCR (feed intake/weight gain) was corrected for mortality. On d 21 and 35, two birds from each cage were randomly selected and killed by cervical dislocation. The abdominal cavity was opened and visceral organs were weighed. The weight and the length of the full small intestine and then the empty weight of each intestinal segment were recorded.

Representative samples from all experimental feeds were tested as above for bacterial concentrations before being added to the probiotic candidates to make up six different treatments.

2.4. Sample collection and processing

Feed leftovers and birds were weighed on a weekly basis for calculation of average feed intake and body weight. Mortality was recorded when it occurred and FCR (feed intake/weight gain) was corrected for mortality. On d 21 and 35, two birds from each cage were randomly selected and killed by cervical dislocation. The abdominal cavity was opened and visceral organs were weighed. The weight and the length of the full small intestine and then the empty weight of each intestinal segment were recorded.

The contents of the gizzard were collected into plastic containers. An approximately 2 cm piece of the proximal ileum was flushed with ice-cold PBS at pH 7.4 and fixed in 10% formalin for morphological measurements. The contents of the ileum and caeca were collected, and then stored at −20°C until volatile fatty acids (VFA) analysis was performed.

2.5. Enumeration of intestinal bacteria

About 1 g of fresh digesta samples from the ileum and caeca were transferred into 15 mL MacCartney bottles containing 10 mL of anaerobic broth. The suspension was homogenized for 2 min in CO2-flushed plastic bags using a bag mixer (Interscience, St. Norm, France) and serially diluted in 10-fold increments in anaerobic broth according to the technique of Miller and Wolin (1974). One millilitre of the homogenized suspension was then transferred into 9 mL of
anaerobic broth and serially diluted from 10^{-1} to 10^{-5} (for the ileal samples) or 10^{-1} to 10^{-6} (for the caecal samples). From the last three diluted samples, 0.1 mL each was plated on the appropriate medium (10 mL) for enumeration of microbial populations.

Total anaerobic bacteria were determined using anaerobic roll tubes containing 3 mL of Wilkins-Chalgren anaerobe agar (Oxoid, CM0619) incubated at 39°C for 7 days. Lactic acid bacteria were enumerated on MRS agar (Oxoid, CM0361) incubated in anaerobic conditions at 39°C for 48 h. Coliforms and lactose-negative Enterobacteria were counted on MacConkey agar (Oxoid, CM 0007) incubated aerobically at 39°C for 24 h as red and colourless colonies, respectively. Lactobacilli were enumerated on Rogosa agar (Oxoid, SR0047) and Perfringens (TSC) selective supplement (Oxoid, SR0088E) according to the pour-plate technique, where plates were overlaid with the same agar after spreading the inoculums and incubated anaerobically at 39°C for 24 h. All plates were incubated in the anaerobic cabinet (Model SJ-3, Kalter Pty. Ltd., Edwarsdown, SA, Australia) and bacterial number counted using colony counter (Selby, Model SCC100, Biolab Australia, Sydney, NSW, Australia).

2.6. Gut histomorphology

Tissue samples were collected from the proximal ileum and flushed with buffered saline and fixed in 10% neutral buffered formalin for histomorphological analysis. Samples were embedded in paraffin wax, sectioned and stained with haematoxylin and eosin. Sample sections were captured at 10× magnification using a Leica DM LB microscope (Leica Microscope GmbH, Wetzlar, Germany) and morphometric indices were determined as described by Iji et al. (2001). Each sample was measured in 15 vertically well-oriented, intact villi, muscle depth and crypts photo-micrographs of a stage micrometer recorded at 5× magnification.

2.7. Digesta pH, VFA, lactic acid and succinic acid analyses

Intestinal pH was measured immediately after death and excision of viscera at d 21 and 35. The pH of ileal and caecal contents was determined by the modified procedure of Corrier et al. (1990). After thawing at room temperature, the concentrations of SCFA and lactic acid of each digesta sample from the ileum and caeca were measured using gas chromatography (Varian CP-3800, Netherlands) according to the method described by Jensen et al. (1995).

2.8. Statistical analysis

Data were subjected to one-way analysis of variance (ANOVA) (StatGraphics Plus version 5.1 – Professional Edition, Manugistics Inc., Rockville, Maryland, USA) and the differences between mean values were identified by the least significant difference (LSD). Differences between treatments were deemed to be significant only if the P value was < 0.05. All results were expressed as means. Bacterial counts were transformed to log_{10} values.

2.9. Animal ethics

The Animal Ethics Committee of the University of New England approved this study (authority number AEC 06/093). Health and animal husbandry practices complied with the ‘Australian code of the care of animals for scientific purposes’ issued by the National Health and Medical Research Council (NHMRC, 2004).

3. Results

3.1. Lactic acid bacterial (LAB) concentration in feed samples

The experimental diets were prepared weekly. The concentration of LAB reached 8.57 lg cfu/mL (the highest) when the probiotic candidates were re-suspended in PBS solution (Table 2). Furthermore, the high concentrations of LAB (> 5.04 lg cfu/g feed, the highest being 6.83 lg cfu/g feed) were observed from the probiotic treatments compared with the negative and positive control treatments.

The concentration of LAB in feed decreased as each feeding week progressed (probiotic-containing diets were freshly made on a weekly basis, typically at the beginning of the week).

3.2. Gross response

There were no significant (P > 0.05) effects on BWG, feed intake (FI) or FCR when the probiotic candidates were added into the feed during the 6-week experimental period (Table 3). Although there were no major differences in mortalities in the different treatments (range 0 to 7.14%).

3.3. Visceral organ weights

Probiotics increased (P < 0.01) the relative weight of the jejunum and ileum in 21-day-old chickens (Table 4), as well as that of the ileum in 42-day-old birds compared with controls. The weights of liver, spleen, pancreas, bursa, gizzard and duodenum were not affected by the treatments.

Item	Diet	NC	PC	ISO461	ISO69	ISO709	ISO1286
Week 1	1st day	4.04	3.75	6.64	6.23	6.68	6.73
	3rd day	4.13	3.89	5.74	5.53	5.49	5.36
	7th day	4.21	3.93	5.88	5.56	5.29	5.20
Week 2	1st day	3.99	3.69	6.75	6.37	6.74	6.70
	3rd day	4.01	3.58	6.67	5.68	5.49	5.47
	7th day	4.09	3.83	5.83	5.12	5.37	5.34
Week 3	1st day	4.09	3.93	6.83	6.53	6.81	6.71
	3rd day	3.83	4.09	5.94	5.26	5.52	5.39
	7th day	3.98	3.98	5.58	5.33	5.04	5.16
Week 4	1st day	4.13	3.96	6.58	6.57	6.53	6.67
	3rd day	4.04	3.90	5.83	5.20	5.60	5.49
	7th day	3.75	4.16	5.84	5.37	5.32	5.26
Week 5	1st day	3.90	4.03	6.76	6.53	6.56	6.65
	3rd day	4.23	3.92	5.72	5.72	5.43	5.52
	7th day	3.45	3.89	5.68	5.51	5.21	5.32
Week 6	1st day	3.87	3.68	6.55	6.51	5.56	6.68
	3rd day	3.77	3.83	5.82	5.38	5.81	5.47
	7th day	4.09	3.92	5.62	5.40	5.37	5.26

PBS = phosphate buffered saline; NC = negative control, with no additives added to the basal feed; PC = positive control, with the antibiotic, zinc-bactracin (ZnB, 50 mg/kg) added; ISO461 = isolate treatments, with probiotic No. 461 unidentified Lactobacillus sp; ISO69 = isolate treatments, with probiotic No. 697 L. salivarius; ISO709 = isolate treatments, with probiotic No. 709 L. crispatus; ISO1286 = isolate treatments, with probiotic No. 1286 L. johnsonii added to the feed, respectively.
3.4. Intestinal pH and SCFA concentrations

The probiotic treatments did not affect the intestinal pH (Table 5). As expected, the pH changed from acidic to alkaline from the proximal to the distal regions of the gastrointestinal tract (GIT), with a slight reversal of the trend in the caeca. Thus, at 3 weeks of age, digesta pH was 3.19, 7.45 and 6.67 in the gizzard, ileum and caeca, respectively. The corresponding values at 5 weeks of age were 3.06, 8.11 and 6.96. It was also observed that pH values in the ileum and caeca were generally higher in older birds (35 days of age) than younger birds (21 days of age).

The concentrations of VFA, formic acid and lactic acids did not differ in any part of the intestine.

Table 4
Relative organ weights (% body weight) of broiler chickens on d 21 and 35.

Item	Diet	SE	P-value
	NC	PC	iso461
BWG, g/bird	d 1 to 21	811	827
	d 22 to 42	1,423	1,485
FI, g/bird	d 1 to 21	2,134	2,412
	d 22 to 42	2,889	2,970
FCR, g feed intake/g weight gain	d 1 to 21	1.44	1.42
	d 22 to 42	2.03	2.00
Mortality, %	d 1 to 21	1.73	1.71
	d 22 to 42	1.73	1.71

SE = standard error of means; NC = negative control, with no additives added to the basal feed; PC = positive control, with the antibiotic, zinc-bacitracin (ZnB, 50 mg/kg) added; iso461 = isolate treatments, with probiotic No. 461 unidentified Lactobacillus sp; iso697 = isolate treatments, with probiotic No. 697 L. salivarius; iso709 = isolate treatments, with probiotic No. 709 L. crispatus; iso1286 = isolate treatments, with probiotic No. 1286 L. johnsonii added to the feed, respectively.

1 Each value represents the mean of 7 replicates.

4. Discussion

4.1. Growth performance

All the birds were in very good health during the experimental period of 6 weeks, and dietary supplementation with probiotics resulted in numerically higher BWG compared to the negative control group. There was no significant effect on growth performance of broiler chickens when the probiotic candidates were administered via feed. These results were in line with those of Huang et al. (2004) who supplemented either Lactobacillus casei or L. acidophilus with or without cobalt in the diets of broiler chickens. There have also been several studies in which no positive results were found when broilers were fed with probiotic supplements. For example, Watkins and Kratzer, 1984; Maiolino et al., 1992; Panda et al., 2000 did not find any significant difference in the BWG of chickens given feed containing host-specific probiotics (KTM, 74/1 and 59), L. acidophilus and Streptococcus faecium compared with those given a non-supplemented diet.
Variation in the effects of probiotics on growth performance of broiler chickens may be attributed to differences in the strains of bacteria used as the dietary supplements. Several health benefits, resulting from improved digestion, have been claimed for both bacteria used as dietary supplements and increase the bioavailability of calcium, resulting from improved digestion, have been claimed for both bacteria used as dietary supplements. Several health benefits, resulting from improved digestion, have been claimed for both bacteria used as dietary supplements.

Table 5
The pH and organic acids (µmol/g) in gizzard, ileum and caeca digesta on d 21 and 35 of birds fed on experimental diets.

Item	Diet	SE	P-value				
	NC	PC	Iso461	Iso697	Iso709	Iso1286	
Day 21							
	Gizzard						
	pH	3.44	3.13	3.10	3.20	3.25	3.03
	pH	7.33	7.52	7.50	7.78	7.37	7.17
	Formic acid	0.47	0.35	0.24	0.47	0.37	0.39
	Acetic acid	2.32	2.58	2.46	2.69	2.50	2.64
	Lactic acid	6.8	6.16	10.40	6.80	7.23	8.16
	Ceca						
	pH	6.50	6.39	6.86	6.75	6.89	6.60
	Acetic acid	60.39	58.26	44.23	36.71	61.46	52.03
	Propionic acid	3.10	2.73	2.11	3.64	3.23	2.16
	Butyric acid	14.55	12.14	11.00	11.84	15.10	13.48
	Succinic acid	2.53	4.73	4.28	2.84	3.06	6.87
	Iso-SCFA	3.34	6.21	1.49	10.94	1.36	4.77
Day 35							
	Gizzard						
	pH	2.99	3.06	2.99	3.13	3.10	3.08
	pH	8.03	8.3	7.91	8.02	8.16	8.22
	Formic acid	0.98	2.14	1.18	0.76	1.49	0.74
	Acetic acid	2.11	2.42	2.21	1.74	2.36	1.67
	Lactic acid	3.76	2.39	2.19	3.49	4.75	1.79
	Ceca						
	pH	7.23	6.88	6.95	6.88	6.89	6.92
	Acetic acid	67.67	56.29	46.97	48.89	63.51	63.78
	Propionic acid	5.26	4.45	3.52	3.71	3.13	3.85
	Butyric acid	11.18	9.46	11.46	9.52	12.46	13.71
	Succinic acid	4.68	3.00	5.11	3.48	4.09	4.19
	Iso-SCFA	1.45	1.02	1.42	0.83	1.00	0.61

SE = standard error of mean; NC = negative control, with no additives added to the basal feed; PC = positive control, with the antibiotic, zinc-bacitracin (288, 50 mg/kg) added; Iso461 = isolate treatments, with probiotic No. 461 unidentified lactobacillus sp; Iso697 = isolate treatments, with probiotic No. 697 L. salivarius; Iso709 = isolate treatments, with probiotic No. 709 L. crispatus; Iso1286 = isolate treatments, with probiotic No. 1286 L. johnsonii added to the feed, respectively; SCFA = short-chain fatty acid.

1 Each values represents the mean of 7 replicates.

On the other hand, there are numerous studies that report positive effects of various probiotics on bird performance. For example, BWG of broiler was improved by a culture of L. acidophilus (Jin et al., 2000), and by a single strain of Lactobacillus (E. faecium) (Cao et al., 2013) or a mixture of Lactobacillus (Jin et al., 1998b; Kalavathy et al., 2003). The magnitude of improvement depends on the type of probiotics added and the conditions under which they are used. It was reported by Mohan et al. (1996) that the BWG could range from 5 to 9% higher and FI 2% lower when chickens were fed with probiotic supplements.

Variation in the effects of probiotics on growth performance of broiler chickens may be attributed to differences in the strains of bacteria used as the dietary supplements. Several health benefits, resulting from improved digestion, have been claimed for both Lactobacillus spp. and Bifidobacterium spp. At the nutritional level, they increase the digestibility of fermented milk products in humans (Deeth and Tamine, 1981) and increase the bioavailability of calcium, iron, copper, phosphorus, zinc and manganese in rats (McDonough et al., 1983). Furthermore, Yeo and Kim (1997) reported that feeding a diet containing a probiotic (L. casei) significantly increased average intake of broiler chickens during the first 3 weeks but not during 4 to 6 weeks of age. Chickens gained more weight as a result of mixing L. salivarius with another two Lactobacillus spp. in their diets (Lan et al., 2003). Yeo et al. (2008) reported that L. johnsonii improved growth performance significantly, acting as an antimicrobial addition in feed for broiler chickens.

In the current study, strains of L. johnsonii, L. crispatus, L. salivarius and one unidentified L. sp. tended to improve BWG, FI and FCR in broiler chickens. It is viewed that the effects of probiotics on the growth performance, feed conversion or production of farm animals are, even in specific situations, not consistent enough to consider their use due to economic considerations (Veldman, 1992). The current study was based on a laboratory scale experiment under clean conditions, which may have masked any growth promoting effect of the probiotics. Another possibility is the concentration of the probiotics in the diet. In the current study, the concentration of the probiotic candidates in the experimental feed was around 10^6 cfu/g of feed, which were few folds lower than is usually recommended as the inclusion rate (10^6 cfu/g of products) of commercial probiotic feed additives. This was due to the limited fermentation capacity for amplification of the probiotic candidates in the current study. It is possible that higher concentrations of the probiotic candidates in the feed may exert a more profound positive response on growth performance, especially if the infection pressure from pathogenic bacteria, such as C. perfringens, is high. However, this needs to be investigated in future studies.

4.2. Organ weights and intestinal histomorphology

In the current study, the relative weights of the major digestive and immune organs were not affected by probiotic treatments compared with the controls. However, probiotic supplementation significantly increased the relative weight of the jejunum and ileum on d 21 and that of the ileum on d 42. Such findings have been reported in the literature. For example, Pedroso et al. (2003) added Lactobacillus reuteri and L. johnsonii into drinking water and reported a significant increase in intestinal weight in 21-day-old broilers. The mechanism by which this occurs is not known as the effect of probiotics on organ weights in animals is equivocal. Thus, Jin et al. (1998a) and Guan et al. (2003)
Table 6
Effects of experimental diets on bacterial counts (log cfu/g) in digesta of birds on d 21 and 35.

Item	Diet	SE	P-value					
	NC	PC	Iso461	Iso697	Iso709	Iso1286		
Day 21								
Gizzard								
Total anaerobes	6.61	6.12	5.42	6.52	6.33	6.49	0.33	0.161
LBA	6.51	6.36	5.83	6.37	6.24	6.49	0.32	0.680
Lactobacilli	6.28	5.98	5.77	6.37	6.03	6.43	0.33	0.681
Enterobacteria	3.10	3.29	2.95	3.37	3.23	3.22	0.12	0.223
C. perfringens	3.05	3.06	3.06	3.11	3.23	3.03	0.07	0.175
LBA	7.91	7.68	7.49	8.05	8.28	8.42	0.37	0.491
Lactobacilli	7.87	7.16	7.45	8.00	8.12	8.43	0.45	0.399
Enterobacteria	5.39	5.50	4.08	4.78	4.39	4.67	0.40	0.121
C. perfringens	3.47	3.49	3.10	3.52	4.09	3.26	0.27	0.210
Caeca	8.96	9.28	9.39	8.87	9.10	9.29	0.14	0.079
Ileum	7.91	7.68	7.49	8.05	8.28	8.42	0.37	0.491
Lactobacilli	7.88	9.26	9.25	9.12	9.23	9.35	0.12	0.086
Enterobacteria	8.09	8.22	8.23	7.83	8.20	8.20	0.19	0.590
C. perfringens	4.25	4.04	5.13	4.85	4.35	4.36	0.38	0.365
Day 35								
Gizzard								
Total anaerobes	7.19	6.90	7.07	7.76	6.79	6.16	0.37	0.458
LAB	7.05	6.91	7.23	6.76	6.93	6.39	0.32	0.556
Lactobacilli	7.19	7.04	7.15	6.91	6.98	6.20	0.32	0.277
Enterobacteria	3.39	3.87	3.52	3.96	3.23	3.16	0.19	0.040
C. perfringens	3.01	3.05	2.99	2.99	3.00	3.03	0.04	0.791
Caeca	8.96	9.28	9.39	8.87	9.10	9.29	0.14	0.079
Ileum	7.91	7.68	7.49	8.05	8.28	8.42	0.37	0.491
Lactobacilli	7.88	9.26	9.25	9.12	9.23	9.35	0.12	0.086
Enterobacteria	8.09	8.22	8.23	7.83	8.20	8.20	0.19	0.590
C. perfringens	4.25	4.04	5.13	4.85	4.35	4.36	0.38	0.365

SE = standard error of means; NC = negative control; PC = positive control, with the antibiotic, zinc-bacitracin (ZnB, 50 mg/kg) added; Iso461 = isolate treatments, with probiotic No. 461 unidentiﬁed Lactobacillus sp; Iso697 = isolate treatments, with probiotic No. 697 L. salivarius; Iso709 = isolate treatments, with probiotic No. 709 L. crispatus; Iso1286 = isolate treatments, with probiotic No. 1286 L. johnsonii added to the feed. Each value represents the mean of 7 replicates.

a,b,c Means within a row not sharing the same superscript letter are signiﬁcantly different (P < 0.05).

1 Enterobacteria are coliform and lactose negative Enterobacteria.

Table 7
Effects of experimental diets on the ileal morphometry.

Item	Diet	SE	P-value					
	NC	PC	Iso461	Iso697	Iso709	Iso1286		
Day 21								
Villus height, μm	723	770	745	773	754	781	66.43	0.332
Crypt depth, μm	129	134	124	124	126	127	7.45	0.176
Villus:crypt ratio	5.61	5.73	6.01	6.23	5.98	6.15	0.89	0.032
Muscle depth, μm	278	302	289	267	298	285	17.26	0.423
Day 35								
Villus height, μm	789	825	827	894	871	938	21.30	0.870
Crypt depth, μm	138	143	136	144	139	149	11.20	0.365
Villus:crypt ratio	5.72	5.77	6.09	6.21	6.27	6.29	0.62	0.017
Muscle depth, μm	367	421	384	362	409	396	19.21	0.587

SE = standard error of means; NC = negative control, with no additives added to the basal feed; PC = positive control, with the antibiotic, zinc-bacitracin (ZnB, 50 mg/kg) added; Iso461 = isolate treatments, with probiotic No. 461 unidentiﬁed Lactobacillus sp; Iso697 = isolate treatments, with probiotic No. 697 L. salivarius; Iso709 = isolate treatments, with probiotic No. 709 L. crispatus; Iso1286 = isolate treatments, with probiotic No. 1286 L. johnsonii added to the feed. Each value represents the mean of 7 replicates.

a,b,c Means within a row not sharing a common superscript letter are signiﬁcantly different (P < 0.05).
found that supplementation of broiler diets with lactobacilli did not affect the weight of the intestine.

On the other hand, probiotics appear to influence the microstructure of the gut more consistently. The current study showed that probiotics significantly affected villus height to crypt depth ratio in the ileum compared with control diets. This indicates that the absorptive function in the ileum of these chickens was higher compared with control treatments. Li et al. (2001) found that, at d 21, the ileal villi were significantly longer in chickens fed a less viscous diet although they were not different during the first 7 days of the experiment. The intestine can change its surface area by growing in length, and/or by increasing or decreasing the height of its villi when probiotics are supplied in the diet. Shortening and fusion of villi will result in loss of surface area for digestion and absorption of food (van Dijk et al., 2002), whereas the converse is true with longer villi and shallower crypts (Chiou et al., 1996).

The GIT has the ability to adapt or to react morphologically to changing conditions such as altered diet (Huisman et al., 1990; van der Klis and Van der voorst, 1993). Of course, it is well-known that dietary probiotics lead to marked changes in the gut microflora, often favouring the host. The influence of probiotics on the gut microflora will be discussed in the following section.

4.3. Bacterial populations in GIT and bacterial activities

The current study demonstrates that Enterobacteria make up only a minor proportion of the ileal and caecal microflora in broilers on the sampling days (d 21 and 35). Probiotic supplementation reduced the population of Enterobacteria in the ileum and caeca compared to the control groups. This is in agreement with the findings of Mulder et al. (1997) who reported that inoculation with a probiotic strain of L. reuteri significantly reduced the number of Enterobacteria in broiler chickens. A similar finding was presented by Lin et al. (2003) with a mixture of L. acidophilus/gallinarum, Lactobacillus agilis, L. salivarius, and Lactobacillus spp.

Probiotics, such as L. crispatus, L. salivarius and L. johnsonii, have antimicrobial activities against Enterobacteria (Garriga et al., 1998; Pascual et al., 1999; Veldman, 1992; Van der Wielen et al., 2002). Cao et al. (2013) reported that broiler chickens fed diets supplemented with Lactobacilli spp. were more resistant to the pathogenic effects of E. coli. The antimicrobial effects of probiotics come from the VFA and other organic acids such as lactate and succinate produced (Thompson et al., 1998; Kubena et al., 2001) and through the production of bacteriocins and phage-displayed peptides (Ingham et al., 2003; Joerger, 2003; Sakai et al., 2006). The probiotic candidates used in the current study tended to increase the number of lactic acid bacteria and lactobacilli in the ileum and caeca on d 21. Furthermore, all probiotic candidates, except Iso461, tended to increase the concentration of acetic and lactic acids in the ileum compared with the control treatments. Other potential antimicrobial agents such as bacteriocins and decencies were not measured in the current study.

Although the population of lactobacilli was larger in the ileal and caecal contents of the treatment groups fed probiotic supplements, the current study does not demonstrate an improvement in growth performance of birds. The impact of lactobacilli on animal health and performance is controversial. Whilst many Lactobacillus spp. act via a number of mechanisms, including competitive exclusion, to reduce the number of pathogens in the GIT, leading to improvement in bird performance (Jin et al., 1998a,b; Schniets and Hakkinen, 1998), other species seem to be neutral in their effects on birds performance (Gunal et al., 2006). The metabolic activity of common lactobacilli results in the production of end-products such as lactate, succinate, H2, CO2 and CH4 and SCFA, acetate, propionate and butyrate, as well as bacterial biomass. It was shown by De Vries and Stouthammer (1968) that most of the VFA formed by intestinal bacteria are absorbed and metabolized by the birds, thus contributing to host energy requirements (Fooks and Gibson, 2002). However, it is possible that the competition for nutrients by a large number of lactobacilli in the GIT of birds may offset some or all of the beneficial effects of probiotics on nutrient digestibility and absorption. This hypothesis will require investigation in the future.

5. Conclusion

Four Lactobacillus probiotic candidates had no adverse on the general health status of broiler chickens and altered the gut microflora of birds resulting in a reduction in the number of enterobacteria in the ileum and an increase in the weight of the jejunum and the ileum. However, there were no other significant effects of these probiotics on the growth performance and gut development of birds, due probably to the hygienic experimental conditions of the current study.

References

Ashayerizadeh H, Dahiri N, Mirzadeh Kh, Ghorbani MR. Effects of dietary inclusion of several biological feed additives on growth response of broiler chickens. Cell Anim Biol 2011:5:61–5.
Awad WA, Ghareeb K, Abdel-Raheem S, Bo hm J. Effects of dietary inclusion of probiotic and synbiotic on growth performance, organ weights, and intestinal histomorphology of broiler chickens. Poult Sci 2009;88:49–55.
Cao GT, Zeng XF, Chen AG, Zhou L, Zhang L, Xiao YP, et al. Effects of a probiotic, Enterococcus faecium, on growth performance, intestinal morphology, immune response, and cecal microflora in broiler chickens challenged with Escherichia coli K88. Poult Sci 2013;92:2549–55.
Chiou PW, Lu TW, Hus JC, Yu B. Effect of different sources of fibre on the intestinal morphology of domestic geese. Asian-Australas J Anim Sci 1996;9:430–4.
Choct M. Effects of organic acid, probiotics and enzymes on control of necrotic enteritis and performance of broiler chickens. In: AVPA Conference (proceedings), Cold Coast, Qld; 2002. p. 4–11.
Corrier DE, Hinton AJ, Ziprin RL, Beier RC, Deloach JR. Effect of dietary lactose on cecal pH, bacteriostatic volatile fatty acids and Salmonella typhimurium colonisation of broiler chicks. Avian Dis 1990;34:617–25.
De Vries W, Stouthammer AH. Fermentation of glucose, lactose, mannitol and xylose by bifidobacteria. J Bacteriol 1968;96:472–8.
Deeth HC, Tamine AV. Yogurt: nutritive and therapeutic aspects. J Food Prot 1981:44:78–86.
Fooks LJ, Gibson G. Probiotics as modulators of the gut flora. Br J Nutr 2002;88:39–45.
Garriga M, Pascual M, Monfort JM, Hugas M. Selection of lactobacilli for chicken probiotic adjuncts. J Appl Microbiol 1998;84:125–32.
Gunal M, Yayli G, Kaya O, Karahan N, Sulak O. The effects of probiotic additive on growth performance and immune responses in broiler chickens. In: J Poult Sci 2006;5:149–55.
Huang MK, Choi YJ, Houde R, Lee JW, Lee B, Zhao X. Effects of lactobacilli and an antimicrobial agent on growth performance, organ weight and blood variables in piglets, tats and chickens. Br J Nutr 1995;73:55–64.
Iji PA, Saki AA, Tiove DR. Intestinal development and body growth of broiler chicks on diets supplemented with non-starch polysaccharides. Anim Feed Sci Technol 2001;89:175–88.
Ingham A, Ford M, Moore BJ, Tizard M. The bacteriocin piscicolin 126 retains antilisterial activity in vivo. J Antimicrob Chemother 2003;51:1365–71.
Jensen M, Cox R, Jensen BB. Probiotic production of skatole in the hind gut of pigs. Feed Sci Technol 1998b;70:197.
Jensen M, Cox R, Jensen BB. Microbial production of skatole in the hind gut of pigs. Br J Nutr 2002;88:39–45.
Jin LZ, Ho YW, Abdullah N, Jalaludin S. Effects of adherent Lactobacillus cultures on growth, weight of organs and intestinal microflora and VFA in broilers. Anim Feed Sci Technol 1998b;70:197–209.
Joerger RD. Alternatives to antibiotics: bacteriocins, antimicrobial peptides and bacteriophages. Poult Sci 2003;82:640–7.
Kalavathy R, Abdullahi N, Jalaludin S, Ho YW. Effects of Lactobacillus cultures on growth performance, abdominal fat deposition, serum lipids and weight of broiler chickens. Br Poult Sci 2003;44:139–44.

Kubena LF, Bailey RH, Byrd JA, Young CR, Corrier DE, Stanker LH, et al. Cecal volatile fatty acids and broiler chicks susceptibility to Salmonella typhimurium, colonization as affected by aflatoxins and T-2 toxin. Poult Sci 2001;80:411–7.

Lan PT, Binh LT, Benno Y. Impact of two probiotic Lactobacillus strains feeding on faecal lactobacilli and weight gains in chicken. J Gen Appl Microbiol 2003;49:29–36.

Maolino R, Fioretti A, Menna LF, Meo C. Research on the efficiency of probiotics in diets for broiler chickens. Nutr Abstr Rev Ser B 1992;62:482.

McDonough F, Wells P, Wong N, Hitchins A, Bodewell C. Role of vitamins and minerals in growth stimulation of rats fed with yoghurt. Fed Proc 1983;42:556–8.

Miller TL, Wolin MJA. Serum bottle modification of the Hungate technique for cultivating obligate anaerobes. J Appl Environ Microbiol 1974;27:985–7.

Mohan B, Kadirvel R, Natarajan A, Bhaskaran M. Effect of probiotic supplementation on growth nitrogen utilisation and serum cholesterol in broilers. Br Poult Sci 1996;37:395–401.

Mulder RW, Havenaar R, Huis in’t Veldt JH. Intervention strategies: the use of probiotics and competitive exclusion of microflora against contamination with pathogens in pigs and poultry. In: Fuller R, editor. Probiotics 2–Applications and practical aspects. London: Chapman & Hall; 1997. p. 187–207.

National Health and Medical Research Council. Australian Code of Practice for the care and use of animals for scientific purposes. Canberra, Australia: Commonwealth Scientific and Industrial Research Organisation, Australian Agricultural Council (Australian Govt. Pub. Service); 2004.

Panda AK, Reddy MR, Rama Rao SV, Raju MV, Praharaj NK. Growth, carcass characteristics, immunocompetence and response to Escherichia coli of broiler chickens fed diets with various levels of probiotics. Arch Geflügelkd 2000;64:152–6.

Pascual M, Hugas M, Badiola JI, Monfort JM, Garriga M. Lactobacillus sake CTCC2197 prevents Salmonella enteritidis colonization in chickens. J Appl Environ Microbiol 1999;65:4981–6.

Pedroso AA, Menten JF, Racanucci AM, Longo FA, Sorbara JO, Gaiotto JR. Performance and organ morphology of broilers fed microbial or antimicrobial additives and raised in batteries of floor pens. Rev Bras Cienc Avic 2003;5:2–10.

Sakai Y, Tsukahara T, Matsubara N, Ushida K. A cell wall preparation of Enterococcus faecalis strain EC-12 stimulates β-defensin expression in newly hatched broiler chicks. Anim Sci J 2006;78:92–7.

Schillinger U, Lucke F. Antibacterial activity of Lactobacillus sake isolated from meat. J Appl Environ Microbiol 1989;68:1901–6.

Schneitz C, Hakkinen M. Comparison of two different types of competitive exclusion products. Lett Appl Microbiol 1998;26:338–41.

Teo AF, Tan H. Inhibition of Clostridium perfringens by a novel strain of Bacillus subtilis isolated from the gastrointestinal tracts of healthy chickens. J Appl Environ Microbiol 2005;71:4185–90.

Thompson JS, Quigley EM, Adrian TE. Qualitative changes in enteric flora and short chain fatty acids after intestinal resection. Dig Dis Sci 1988;43:624–31.

van der Klis JD, Van der Voorst A. The effect of carboxymethylcellulose (a soluble polysaccharide) on the rate of marker excretion from the gastrointestinal tract of broilers. Poult Sci 1993;72:303–12.

van der Wielten PWJJ, Lipman LJA, van Knopen F, Biesterveld S. Competitive exclusion of Salmonella enterica serovar enteritidis by Lactobacillus crispatus and Clostridium lactatifermentans in a sequencing fed-batch culture. J Appl Environ Microbiol 2002;68:555–9.

van Dijk JE, Huisman J, Koninkx J. Structure and functional aspects of a healthy gastrointestinal tract. In: Block MC, Vahl HA, De Lange L, Van de Braak AE, Hemke G, et al., editors. Nutrition and health of the gastrointestinal tract. Wageningen, Netherlands: Wageningen Academic Publishers; 2002. p. 71–92.

Veldman A. Probiotics. Tijdschr Diergeneeskd 1992;117:345–55.

Wageningen, Netherlands: Wageningen Academic Publishers; 2002. p. 71–92.

Watkins BA, Kratzer FH. Drinking water treatment with a commercial preparation of a concentrated Lactobacillus culture for broiler chickens. Poult Sci 1984;63:1671–3.

Yeo J, Kim YI. Effect of feeding diets containing an antibiotic, a probiotic, or yucca extract on growth and intestinal urease activity in broiler chicks. Poult Sci 1997;76:381–5.

Yeo WM, Tan WL, Tan HM. Evaluating the antimicrobial property of Lactobacillus johnsonii D115. World Poult Congr Abstr 2008;64(Suppl. 2):489.