Abstract

We have constructed the leading order strangeness $S = -1, -2$ baryon-baryon potential in a chiral effective field theory approach. The chiral potential consists of one-pseudoscalar-meson exchanges and non-derivative four-baryon contact terms. The potential, derived using SU(3)$_f$ symmetry constraints, contains six independent low-energy coefficients. We have solved a regularized Lippmann-Schwinger equation and achieved a good description of the available scattering data. Furthermore a correctly bound hypertriton has been obtained.

Key words: Hyperon-nucleon interaction, Hyperon-hyperon interaction, Chiral effective field theory

PACS: 13.75.Ev, 12.39.Fe, 21.30.-x, 21.80.+a

1. Introduction

The derivation of the nuclear force from chiral effective field theory (EFT) has been discussed extensively in the literature since the work of Weinberg [1]. An underlying power counting allows to improve calculations systematically by going to higher orders in a perturbative expansion. In addition, it is possible to derive two- and corresponding three-nucleon forces as well as external current operators in a consistent way. For reviews we refer the reader to [2,3]. Recently the nucleon-nucleon (NN) interaction has been described to a high precision using chiral EFT [4,5].

As of today, the strangeness $S = -1$ hyperon-nucleon (YN) interaction ($Y = \Lambda, \Sigma$) was not investigated extensively using EFT [6]. The strangeness $S = -2$ hyperon-hyperon (YY) and cascade-nucleon (ΞN) interactions had not been investigated using chiral EFT so far. In this contribution we show the results for the recently constructed chiral EFT for the $S = -1, -2$ baryon-baryon (BB) channels [7,8]. At leading order (LO) in the power
counting, the YN, YY and ΞN potentials consist of four-baryon contact terms without derivatives and of one-pseudoscalar-meson exchanges, analogous to the NN potential of [5]. The potentials are derived using SU(3) constraints. We solve a coupled channels Lippmann-Schwinger (LS) equation for the LO potential and fit to the low-energy YN scattering data. Furthermore results for various YY and ΞN cross sections are given.

2. Formalism

We have constructed the chiral potentials for the $S = -1, -2$ sectors at LO using the Weinberg power counting, see [7]. The LO potential consists of four-baryon contact terms without derivatives and of one-pseudoscalar-meson exchanges. The LO SU(3)$_f$ invariant contact terms for the octet baryon-baryon interactions that are Hermitian and invariant under Lorentz transformations were discussed in [7]. The pertinent Lagrangians read

\begin{align}
\mathcal{L}^1 &= C^1_i \langle \bar{B}_a B_b \left(\Gamma, B \right)_a \left(\Gamma, B \right)_b \rangle, \\
\mathcal{L}^2 &= C^2_i \langle \bar{B}_a \left(\Gamma, B \right)_a \bar{B}_b \left(\Gamma, B \right)_b \rangle, \\
\mathcal{L}^3 &= C^3_i \langle \bar{B}_a \left(\Gamma, B \right)_a \rangle \langle \bar{B}_b \left(\Gamma, B \right)_b \rangle.
\end{align}

(1)

Here, the labels a and b are the Dirac indices of the particles, the label i denotes the five elements of the Clifford algebra, B is the usual irreducible octet representation of SU(3)$_f$ (a 3×3-matrix). The Clifford algebra elements are here actually diagonal 3×3-matrices in flavor space. The brackets denote taking the trace in flavor space. In LO the Lagrangians give rise to six independent low-energy coefficients (LECs): C^1_S, C^2_T, C^3_S, C^4_T, C^5_S and C^6_T, where S and T refer to the central and spin-spin parts of the potential respectively.

The contribution of one-pseudoscalar-meson exchanges is discussed extensively in the literature. We do not discuss it here, instead we refer the reader to e.g. [7].

We solve the LS equation for the YN, YY and ΞN systems. The potentials in the LS equation are cut off with a regulator function, $\exp \left[- \left(p'^4 + p^4 \right) / \Lambda^4 \right]$, in order to remove high-energy components of the baryon and pseudoscalar meson fields.

3. Results and discussion

Because of SU(3)$_f$ symmetry, only five of the LECs can be determined in a fit to the YN scattering data. A good description of the 35 low-energy YN scattering data has been obtained for cut-off values $\Lambda = 550, ..., 700$ MeV and for natural values of the LECs. The results are shown in Fig. 1. See [7] for more details. In Fig. 1 the shaded band represents the results of the chiral EFT in the considered cut-off region. For comparison also results for the Jülich '04 meson-exchange model [9] and the Nijmegen NSC97f meson-exchange model [10] are shown. The YN interaction based on chiral EFT yields a correctly bound hypertriton, also reasonable Λ separation energies for $^4\Lambda$H have been predicted [7,11].

The sixth LEC is only present in the isospin zero $S = -2$ channels. There is scarce experimental knowledge in these channels. In the $\Lambda\Lambda$ system, we assume a moderate attraction and exclude bound states or near-threshold resonances. Based on these considerations the sixth LEC was varied in the range of 2.0, ..., -0.05 times the natural value. Various cross sections for $\Lambda = 600$ MeV are shown in Fig. 2. See [8] for more details.

Our findings have shown that the chiral EFT scheme, successfully applied in [5] to the NN interaction, also works well for the $S = -1, -2 BB$ interactions in LO. It will be
interesting to perform a combined \(N N \) and \(Y N \) study in chiral EFT, starting with a next-to-leading order (NLO) calculation. Work in this direction is in progress.

References

[1] S. Weinberg, Phys. Lett. B 251 (1990) 288; Nucl. Phys. B 363 (1991) 3.
[2] P. F. Bedaque, U. van Kolck, Annu. Rev. Nucl. Part. Sci. 52 (2002) 339.
[3] E. Epelbaum, Prog. Nucl. Part. Phys. 57 (2006) 654.
[4] D. R. Entem, R. Machleidt, Phys. Rev. C 68 (2003) 041001.
[5] E. Epelbaum, W. Glöckle, U.-G. Meißner, Nucl. Phys. A 747 (2005) 362.
[6] M. J. Savage, M. B. Wise, Phys. Rev. D 53 (1996) 349; C. L. Korpa, A. E. L. Dieperink, R. G. E. Timmermans, Phys. Rev. C 65 (2001) 015208; H. W. Hammer, Nucl. Phys. A 705 (2002) 173; S. R. Beane, P. F. Bedaque, A. Parreño, M. J. Savage, Nucl. Phys. A 747 (2005) 55.
[7] H. Polinder, J. Haidenbauer and U.-G. Meißner, Nucl. Phys. A 779 (2006) 244.
[8] H. Polinder, J. Haidenbauer and U.-G. Meißner, arXiv:0705.3783 [nucl-th], Phys. Lett. B in print.
[9] J. Haidenbauer, U.-G. Meißner, Phys. Rev. C 72 (2005) 044005.
[10] T. A. Rijken, V. G. J. Stoks, Y. Yamamoto, Phys. Rev. C 59 (1999) 21.

[11] A. Nogga, nucl-th/0611081