Nitric oxide mediates Cd-dependent induction of signaling-associated genes

Jagna Chmielowska-Bąk and Joanna Deckert*

Department of Plant Ecophysiology; Institute of Experimental Biology, Faculty of Biology; Adam Mickiewicz University; Poznań, Poland

Keywords: cadmium, heavy metal stress, gene expression, signaling, soybean

Cadmium is a heavy metal that exhibits deleterious effect in all organisms. The earliest response to this stress factor is activation of signal transduction pathways leading to the changes in genes expression crucial for acquisition of tolerance. In a recent study we have shown that cadmium causes increase in expression of several signaling-associated genes in the roots of soybean seedlings. A Cd-dependent induction of genes encoding 1-aminocyclopropane-1-carboxylic acid synthase (ACS), mitogen-activated protein kinase 2 (MAPKK2), and DOF1 and MYBZ2 transcription factors was noted after 3 h, while 6 h-long treatment led to the increase in the levels of mRNA encoding nitrate reductase (NR), ACS, MYBZ2, and bZIP62 transcription factors. The obtained results raise the question about signaling molecules mediating the rapid Cd-dependent induction of analyzed genes.

One of the potential candidates is nitric oxide, an important signaling molecule involved in the regulation of the expression of numerous genes. Increase in NO levels in response to short-term cadmium stress has been observed in various plant species. Moreover, it has been shown that nitric oxide is engaged in stimulation of cadmium uptake and mediation of Cd-dependent programmed cell death, and regulation of antioxidant enzymes activity, reactive oxygen species levels, and phytochelatin synthesis in plants exposed to cadmium.

The results of the present study show that treatment with nitric oxide scavenger, N-(carboxyphenyl)-N′,N′-tetramethylimidazoline-1-oxyl-3-oxide (PTIO), reversed the observed increase in expression of all genes induced by cadmium stress in the roots of soybean seedlings after 3 h of treatment (Fig. 1A-D). Interestingly, in the case of genes induced after 6 h of cadmium application, this effect was not observed (Fig. 1E-H). In order to examine the impact of PTIO on genes expression depended on changes in Cd uptake, Cd accumulation has been evaluated in the roots of soybean seedlings. Histochemical staining with Dithizone reagent showed that after 3 h of treatment PTIO slightly increased the amount of accumulated metal (Figs. 2A and 3A), while after longer treatment periods (6 h) it strongly attenuated Cd uptake (Figs. 2B and 3B). The obtained results suggest that, after short treatment periods (3 h), NO mediates Cd-dependent induction of several genes associated with signaling pathways.

On the basis of presented research, earlier studies performed in our laboratory, and literature data, it can be concluded that early signaling events triggered by cadmium stress involve accumulation of NO mediating induction of ACS, MAPKK2, DOF1, and MYBZ2 genes. Exposure to Cd also causes rapid release of Ca to cytoplasm leading to the activation of NADPH oxidase and generation of reactive oxygen species (ROS). All mentioned signaling molecules, NO, Ca, and ROS, are engaged in the stimulation of MAPK cascades observed in response to short-term cadmium stress on both transcription and post-transcription levels. Increase in ACS expression in turn leads to the induction of ethylene biosynthesis. The rapid response to Cd stress also includes stimulation of several transcription factors among others DOF1, MYBZ2, and bZIP62.

Disclosure of Potential Conflicts of Interests
No potential conflicts of interests were disclosed.

Acknowledgments
The project was financed by the National Science Center (Poland) granted on the basis of decision number DEC-2011/03/N/NZ9/00214. Chmielowska-Bąk J is a scholarship holder within the project “Scholarship support for PhD students specializing in majors strategic for Wielkopolska’s development,” Sub-measure 8.2.2 Human Capital Operational Programme, co-financed by the European Union under the European Social Fund.
Figure 1. Relative expression of Cd-inducible genes after 3 (A-D) and 6 (E-H) hours of treatment with distilled water (control), 50μM PTIO, CdCl₂, with cadmium in the concentration of 25 mg L⁻¹ (corresponding to 223μM), or CdCl₂ with cadmium in the concentration of 25 mg L⁻¹ and 50μM PTIO. Genes expression has been measured with the use of real-time PCR technique. The results are means of 2–3 independent experiments ± SE.
Figure 2. Accumulation of cadmium in the roots of soybean seedlings detected by histochemical staining with Dithizone reagent. The seedlings were treated with distilled water (control), 50 μM PTIO (PTIO), CdCl₂ with cadmium in the concentration of 25 mg L⁻¹ (Cd25), or CdCl₂ with cadmium in the concentration of 25 mg L⁻¹ and 50 μM PTIO (Cd25+PTIO) for 3 (A) or 6 (B) hours.

Figure 3. Relative staining intensity of soybean seedlings roots. The seedlings were treated according to the description in Figure 2 for 3 (A) or 6 (B) hours. Densitometric quantification was performed with the use of Science Lab Software. The results are means of 2 independent experiments ± SE.
References

1. Chmielowska-Bąk J, Leftère I, Lutts S, Deckert J. Short term signaling responses in roots of young soybean seedlings exposed to cadmium stress. J Plant Physiol 2013; http://dx.doi.org/10.1016/j.jplph.2013.06.019; PMID:23942356

2. Ahlfors R, Brosché M, Kollist H, Kangasjärvi J. Nitric oxide modulates ozone-induced cell death, hormone biosynthesis and gene expression in Arabidopsis thaliana. Plant J 2009; 58:1-12; PMID:19054359; http://dx.doi.org/10.1111/j.1365-313X.2008.03756.x

3. Badri DV, Loyola-Vargas VM, Du J, Stermitz FR, Broeckling CD, Iglesias-Andreu L, Vivanco JM. Transcriptome analysis of Arabidopsis roots treated with signaling compounds: a focus on signal transduction, metabolic regulation and secretion. New Phytol 2008; 179:209-23; PMID:18442389; http://dx.doi.org/10.1111/j.1469-8137.2008.02458.x

4. Besson-Bard A, Gravot A, Richard P, Aurroy P, Duc C, Gaymard F, Taconnat L, Renou J-P, Pugin A, Wendehenne D. Nitric oxide contributes to cadmium toxicity in Arabidopsis by promoting cadmium accumulation in roots and by up-regulating genes related to iron uptake. Plant Physiol 2009; 149:1302-15; PMID:19168643; http://dx.doi.org/10.1111/j.1365-3040.2009.01571.x

5. Arasimowicz-Jelonek M, Floryszak-Wieczorek J, Deckert J, Raciszko-Sobkowiak R, Gzył J, Pawlak-Prada S, Abramowski D, Jeloniec T, Gwoździa EA. Nitric oxide implication in cadmium-induced programmed cell death in roots and signaling response of yellow lupine plants. Plant Physiol Biochem 2012; 58:124-34; PMID:22819859; http://dx.doi.org/10.1016/j.plaphy.2012.06.018

6. Ma W, Xu W, Xu H, Chen Y, He Z, Ma M. Nitric oxide modulates cadmium influx during cadmium-induced programmed cell death in tobacco BY-2 cells. Planta 2010; 232:325-35; PMID:20449606; http://dx.doi.org/10.1007/s00425-010-1177-y

7. Balestrazzi A, Macovei A, Testoni C, Raimondi E, Donà M, Carbonera D. Nitric oxide biosynthesis in white poplar (Populus alba L.) suspension cultures challenged with heavy metals. Plant Stress 2009; 3:1-6

8. Mahmood T, Gupta KJ, Kaiser WM. Cadmium stress stimulates nitric oxide production in wheat roots. Pak J Bot 2009; 41:1285-90

9. Chen F, Wang F, Sun H, Gai Y, Mao W, Zhang G, Vincze E, Wu F. Genotype-dependent effect of exogenous nitric oxide on Cd-induced changes in antioxidative metabolism, ultrastructure, and photosynthetic performance in barley seedlings (Hordeum vulgare). J Plant Growth Regul 2010; 29:394-408; http://dx.doi.org/10.1007/s00344-010-9151-2

10. De Michele R, Vurro E, Rigo G, Valentin M, Caerri M, Zoritini M, Sanità di Toppi L, Lo Schiavo F. Nitric oxide is involved in cadmium-induced programmed cell death in Arabidopsis suspension cultures. Plant Physiol 2009; 150:217-28; PMID:19261736; http://dx.doi.org/10.1104/pp.108.133397

11. Balestrazzi A, Macovei A, Testoni C, Raimondi E, Donà M, Carbonera D. Nitric oxide biosynthesis in white poplar (Populus alba L.) suspension cultures challenged with heavy metals. Plant Stress 2009; 3:1-6

12. Garnier L, Simon-Plas F, Thulueau P, Agnel J-P, Blein J-P, Ranjева R, Montillet J-L. Cadmium affects tobacco cells by a series of three waves of reactive oxygen species that contribute to cytotoxicity. Plant Cell Environ 2006; 29:1956-69; PMID:16930321; http://dx.doi.org/10.1111/j.1365-3040.2006.01371.x

13. Yeh C-M, Chien P-S, Huang HJ. Distinct signalling pathways for induction of MAP kinase activities by cadmium and copper in rice roots. J Exp Bot 2007; 58:659-71; PMID:17259646; http://dx.doi.org/10.1093/jxb/erl240

14. Jonak C, Nakagami H, Hirt H. Heavy metal stress. Activation of distinct mitogen-activated protein kinase pathways by copper and cadmium. Plant Physiol 2004; 136:3276-83; PMID:15448198; http://dx.doi.org/10.1104/pp.104.045724

15. Kim J-A, Agrawal GK, Rakwal R, Han K-S, Kim K-N, Yun Ch-H, Heu S, Park S-Y, Lee Y-H, Jwa N-S. Molecular cloning and mRNA expression analysis of novel rice (Oryza sativa L.) MAPK kinase, OsEDR1, an ortholog of Arabidopsis AtEDR1, reveal its role in defense/stress signaling pathways and development. Bioch Biophys Res Co 2003; 300:868-76; http://dx.doi.org/10.1016/S0006-291X(02)02944-3

16. Liu XM, Kim KE, Kim K-CH, Nguyen XC, Han HJ, Jung MS, Kim HS, Park HC, Yun D-J, et al. Cadmium activates Arabidopsis MPK3 and MPK6 via accumulation of reactive oxygen species. Phytochemistry 2010; 71:644-8; PMID:21066811; http://dx.doi.org/10.1016/j.phytochem.2010.01.005

17. Ye Y, Li Z, Xing D. Nitric oxide promotes MPK6-mediated caspase-3-like activation in cadmium-induced Arabidopsis thaliana programmed cell death. Plant Cell Environ 2013; 36:1-15; PMID:22621159; http://dx.doi.org/10.1111/j.1365-3040.2012.02543.x

18. DaCorso G, Farinati S, Furini A. Regulatory networks of cadmium stress in plants. Plant Signal Behav 2010; 5:663-7; PMID:20404494; http://dx.doi.org/10.4161/jsb.5.6.11425