Renewable hydrogen and carbon nanotubes from biodiesel waste glycerol

Chunfei Wu1, Zichun Wang2, Paul T. Williams1 & Jun Huang2

1Energy Research Institute, The University of Leeds, Leeds, LS2 9JT, UK, 2Laboratory for Catalysis Engineering, School of Chemical and Biomolecular Engineering, The University of Sydney, NSW 2006, Australia.

In this report, we introduce a novel and commercially viable method to recover renewable hydrogen and carbon nanotubes from waste glycerol produced in the biodiesel process. Gas-phase catalytic reforming converts glycerol to clean hydrogen fuel and by replacing the problematical coke formed on the catalyst with high value carbon nanotubes, added value can be realised. Additional benefits of around 2.8 kg CNTs from the reforming of 1 tonne of glycerol and the production of 500 Nm³ H₂ could have a considerable impact on the economics of glycerol utilization. Thereby, the contribution of this research will be a significant step forward in solving a current major technical and economic challenge faced by the biofuels industry.

Rising energy prices and increasing dependence on energy imports jeopardise the security and competitiveness for many countries e.g. EU Member States which are heavily dependent on importing fossil fuels. “An EU Strategy for Biofuels” has been implemented to fight climate change and energy security1. The EU is one of the world’s leading regions for biodiesel production with an estimated potential production capacity of 23.5 million tonnes (2012)².

However, one challenge for the further development of the biodiesel industry is the large amount of by-product glycerol produced, with around 10% of the weight of the feedstock3,4 with about 0.96 million tonnes of waste glycerol generated in the European in 2010. The surplus of glycerol not only causes storage and waste treatment problems but also substantially influences the glycerol price and biodiesel industry. For example, the glycerol price dropped from a price of 1000–1300 J t⁻¹ between 2000 and 2003 to between 500–700 J t⁻¹ in 2004–20064 and has a current value of around 275–400 J t⁻¹. The price of glycerol may fall to even lower levels with the increase of biodiesel production and thus the economic viability of biodiesel production will be reduced; this has already limited the development of the biodiesel industry². Making profit from biodiesel by-product-glycerol will be an important route to solve the economic and environmental challenges of biofuels production. This has attracted extensive research interest5–7, with efforts focused on production of valuable products from glycerol8.

A number of processes have been explored for converting glycerol to chemicals such as selective oxidation, reforming, esterification, dehydration, fermentation etc.⁴,⁹. Among them, recovery of renewable and clean fuel hydrogen from glycerol reforming is a promising route for glycerol utilisation¹⁰,¹¹. For aqueous phase reforming of glycerol, less catalyst deactivation, lower reforming temperature and lower levels of CO concentration have been reported¹²–¹⁴. However, classic gas phase reforming of glycerol provides a comparatively high H₂ selectivity using conventional reaction systems under more safe atmospheric pressures and is closer to commercialization¹⁵,¹⁶.

During glycerol gas reforming, Pt-based catalysts have been primarily used to promote hydrogen production⁵,¹⁰. Lately, relatively low-cost Ni-catalysts have been introduced into the reforming process¹⁷. While carbon deposition on the catalyst is unavoidable¹⁸,¹⁹, there has been much effort to reduce coke formation. Recently, we reported a process to turn ‘negative’ coke deposition on catalysts to the ‘positive’ of carbon material production²⁰. A process that could replace the conventional removal of coke by combustion which adds to the atmospheric burden of CO₂.

In this paper, the production of renewable H₂ together with high quality carbon nanotubes (CNTs) were generated during the reforming of pure glycerol, which was selected to simplify the investigation. Crude glycerol contains a number of impurities, including spent and excess alkali metal catalysts, salts, excess methanol and unrecovered biodiesel compounds (fatty acid methyl esters). Hydrogen and CNT’s production from real-world crude glycerol would require future extensive investigation. The process conditions which influence the quality and quantity of H₂ and CNTs have been preliminarily investigated by using a two-stage fixed-bed reaction system in the presence of Ni-based catalyst (Schematic diagram of reactor is shown in Supplementary Fig. S1). CNTs
have a promising market future because of their special physical and chemical properties and there are many applications in electronics, energy storage, and composites. Currently, CNTs are regarded as high value products, which will significantly increase the economic benefit of the glycerol reforming process which initially only produces hydrogen at relatively lower value. Thereby, the innovative process described here will make biodiesel production more economically feasible, environmentally friendly, and resource sustainable.

Results

Hydrogen production. The production of hydrogen from the reforming of glycerol was significantly increased with the introduction of a Ni-Mg-Al catalyst and also increasing reforming temperature. As shown in Fig. 1, hydrogen production was increased from 0.02 to 0.51 m3 kg$^{-1}$ glycerol with increasing reforming temperatures from 500 to 700 °C. At the same time, the liquid yield was decreased from 90.5 to 15.2 wt.% at the higher reforming temperature. The addition of steam to glycerol reforming at 600 °C (water/glycerol ratio: 0.08 g/g) showed only a slight influence on the production of hydrogen (from 0.11 to 0.13 m3 kg$^{-1}$ glycerol) and concentrations of H$_2$ (from 34.9 to 37 Vol.%). With the increase of reforming temperature from 600 to 700 °C in the presence of steam and catalyst, the concentration of CO$_2$ was decreased from 10.7 to 7.5 Vol.%, and CH$_4$ concentration was increased from 3.8 to 5.3 Vol.%, other C$_2$-C$_4$ hydrocarbon gas concentrations decreased from 4.5 to 3.4 Vol.% (gas concentration reported as N$_2$ free (results not shown here)).

SEM and TEM analysis. Scanning electron microscopy (SEM) images shown in Fig. 2 clearly show well distributed filamentous...
carbons on the surface of the Ni-Mg-Al catalyst after glycerol reforming at 600°C. These filamentous carbons could hardly be observed on the catalyst surface at the lower reforming temperature of 500°C as shown in Supplementary Fig. S2. Reforming temperatures higher than 500°C were required for the production of both filamentous carbon and hydrogen. The amount of filamentous carbons was clearly increased as H2 yield increased from 0.02 to 0.13 and 0.51 m3 kg−1 glycerol when reforming temperatures were increased from 500 to 600 and 700°C, respectively, in the presence of the Ni-Mg-Al catalyst and steam. Most of these filamentous carbons were in fact tubular multi-walled carbon nanotubes (MWCNTs) which were confirmed by transmission electron microscopy (TEM) in Fig. 3, where CNTs were found with thick walls (~10 nm) (Fig. S2 (c)). In addition to the production of CNTs, TEM analysis (Fig. 3) also confirms the presence of carbon nanofibres, which are also important materials for various applications e.g. hydrogen storage28 or electrochemical capacitors29. However, the majority of filamentous carbons produced from glycerol reforming are suggested to be CNTs as shown in Fig. S2 (d). In addition, uniform CNTs with lengths of up to 50 μm, and diameters of around 20 nm were observed from SEM and TEM analysis (Fig. 2, Fig. S2 (b) and (d)). Ni particles can be clearly detected at the tip of the CNTs, as shown in Fig. S3(d).

Temperature programmed oxidation (TPO). TPO was used to quantitatively evaluate the CNT production on the catalyst surface: CNTs oxidation occurred at ca. 650°C and the oxidation of amorphous carbons at a lower temperature of around 550°C20. As shown in Fig. 4, differential thermo-gravimetry (DTG)-TPO confirmed the
production of CNTs by showing oxidation peaks at around 650°C for all the reacted catalysts derived from various reforming conditions. CNTs were mostly produced from the reforming of glycerol at 700°C (Fig. 4 (d) and (e)) compared with other reforming temperatures, due to the dominant peak for CNT oxidation shown by the DTG-TPO results at this temperature. Especially for the glycerol reforming temperature of 500°C, TPO peak for oxidation of CNTs was barely observed, which is consistent with the SEM analysis, where almost no CNTs were observed in Fig. S2 (a).

Introduction of water (steam) to the glycerol reforming process showed little influence on the distribution of oxidation peaks from the DTG-TPO results (Fig. 4). However, the total amount of carbon obtained on the surface of the catalyst was reduced with the introduction of water injection. For example carbon formation was reduced from 21.5 to 7.5 wt.% (weight of carbon divided by weight of catalyst) when water was introduced for glycerol reforming at 700°C (Supplementary Fig. S3 (d) and (e)).

Raman spectroscopy analysis. Production of CNTs from glycerol reforming has been confirmed by Raman analysis of the reacted catalysts (Fig. 5). The D band at around 1345 cm⁻¹ is due to disordered amorphous carbon structures, while the G band at about 1568 cm⁻¹ corresponds to tangential vibrations of the graphite carbons (i.e. crystallinity)⁶⁰. The second order Raman spectrum G' band at around 2684 cm⁻¹ is ascribed to the two-photon elastic scattering process⁶¹. The intensity of the D band normalized to the G band (I_D/I_G) is used to evaluate the degree of graphitization of CNTs⁶⁰. More amorphous carbons and impurities, due to higher intensity of the D band (I_D/I_G of 1.12) was observed for the reacted Ni-Mg-Al catalyst from glycerol reforming at 700°C without water addition.

The addition of water injection in the glycerol reforming process resulted in a higher purity of CNTs formed during glycerol steam reforming. CNTs were mostly produced from the reforming of glycerol at 700°C (Fig. 4 (d) and (e)) compared with other reforming temperatures, due to the dominant peak for CNT oxidation shown by the DTG-TPO results at this temperature. Especially for the glycerol reforming temperature of 500°C, TPO peak for oxidation of CNTs was barely observed, which is consistent with the SEM analysis, where almost no CNTs were observed in Fig. S2 (a).

Figure 5 | Raman analysis to the reacted Ni-Mg-Al catalyst. (a) Reforming temperature of 600°C with water addition. (b) Reforming temperature of 600°C without water. (c) Reforming temperature of 700°C without water. (d) Reforming temperature of 700°C with water. Higher purity of CNTs was obtained at a reforming temperature of 700°C compared with 600°C, as a lower intensity of D peak was observed. The addition of water in the glycerol reforming process resulted in the reduction of intensity ratio (I_D/I_G) indicating the improvement of CNT purity.

Discussion

CNTs were produced and, confirmed by TEM and Raman analysis, with a quantity of around 10 wt.% of the weight of the Ni-Mg-Al catalyst, when glycerol was reformed with a feeding rate of 18 g h⁻¹ for 1 h at the reforming temperature of 700°C. From the hydrogen production results (Fig. 1) and Raman analysis (Fig. 4), it is proposed that higher reforming temperatures (>500°C) should be used for higher yields of hydrogen and CNTs production.

Raman analysis showed that the purity of CNTs was improved by the addition of water to the reforming process; however, the quantity of CNTs produced was reduced (TPO analysis shown in Supplementary Fig. S3, e.g. reduced from 21.5 to 7.5 wt.% at a reforming temperature of 700°C), while the hydrogen production was only slightly changed. This is ascribed to the etching effect of steam on carbons⁶² formed during glycerol steam reforming. Therefore, the production yield and quality of CNTs can be tuned within the glycerol reforming process by controlling the water content, thereby producing different types of CNTs according to application specifications and end-markets.

In addition to the investigation of reforming temperature and water addition, it was also found that the production of CNTs and hydrogen were influenced by the type of catalyst and glycerol/catalyst ratio; higher quantities of CNTs were obtained with a Ni-Al (1:2) catalyst at a reforming temperature of 600°C, while more amorphous carbons were obtained with the Ni-Mg-Al catalyst at this temperature (TPO results from Supplementary Fig. S4, S5). In addition, a higher ratio of glycerol/catalyst during glycerol reforming generated a higher production of carbons; however with a lower production of hydrogen (Fig. S4, S6). Therefore, optimization of glycerol feeding rate and type of catalyst etc. is also believed to generate high quality CNTs and/or high yields of hydrogen.

This work proposes an innovative solution for a problematic waste, glycerol, from biodiesel production. The proposed process provides for production of renewable hydrogen and CNTs having high-end applications such as energy storage and use in fuel cells from the reforming of glycerol; e.g. around 2.8 kg of CNTs and 500 Nm³ H₂ could be produced from the reforming of 1 tonne of glycerol at a reforming temperature of 700°C in the presence of a Ni-Mg-Al (1:1:1) catalyst. By controlling processing conditions such as water content and reforming temperature and the type of catalyst, hydrogen production and the quality of CNTs could be potentially manipulated to adjust to the market demands for hydrogen and/or...
of biomass-derived hydrocarbons in liquid water. Angewandte Chemie International Edition 46, 4434–4440 (2007).

3. Coombs, A. Glycerin bioprocessing goes green. Nat Biotechnol 25, 953–954 (2007).

4. Behr, A., Endt, J., Irawadi, K., Leschinski, J. & Lindner, F. Improved utilisation of renewable resources: New important derivatives of glycerol. Green Chemistry 10, 13–30 (2008).

5. Huber, G. W., Shabaker, J. W. & Dumesic, J. A. Raney Ni-Sn Catalyst for H2 Production from Biomass-Derived Hydrocarbons. Science 300, 2073–2077 (2003).

6. Simonetti, D. A., Kuness, E. L. & Dumesic, J. A. Gas-phase conversion of glycerol to synthesis gas over carbon-supported platinum and platinum–rhodium catalysts. Journal of Catalysis 247, 298–306 (2007).

7. Shabaker, J. W., Simonetti, D. A., Cortright, R. D. & Dumesic, J. A. Sn-modified Ni catalysts for aqueous-phase reforming: Characterization and deactivation studies. Journal of Catalysis 231, 67–76 (2005).

8. Haas, M. J., McAlloon, A. J., Yee, W. C. & Foglia, T. A. A process model to estimate biodiesel production costs. Bioresource Technology 97, 671–678 (2006).

9. Pagliaro, M., Ciriminna, R., Kimura, H., Rossi, M. & Della Pina, C. From Glycerol to Value-Added Products. Angewandte Chemie International Edition 46, 4434–4440 (2007).

10. Soares, R. R., Simonetti, D. A. & Dumesic, J. A. Glycerol as a Source for Fuels and Chemicals by Low-Temperature Catalytic Processing. Angewandte Chemie International Edition 45, 3982–3985 (2006).

11. Jacobsen, H. “Heterogeneous” Chemistry: Catalysts for Hydrogen Production from Biomass. Angewandte Chemie International Edition 43, 1912–1914 (2004).

12. Cortright, R. D., Davda, R. R. & Dumesic, J. A. Hydrogen from catalytic reforming of biomass-derived hydrocarbons in liquid water. Nature 418, 964–967 (2002).

13. Zhang, L. et al. Correlation of Pt-Re surface properties with reaction pathways for the aqueous phase reforming of glycerol. Journal of Catalysis 287, 37–43 (2012).

14. Coombs, A. J. N., Huber, G. W. & Dumesic, J. A. Liquid-Phase Catalytic Processing of Biomass-Derived Oxygenated Hydrocarbons to Fuels and Chemicals. Angewandte Chemie International Edition 46, 7164–7183 (2007).

15. Hirai, T., Ikenaga, N.-O., Miyake, T. & Suzuki, T. Production of Hydrogen by Steam Reforming of Glycerin on Ruthenium Catalyst. Energy & Fuels 19, 1761–1762 (2005).

16. Cui, Y., Galvita, V., Riihko-Struckmann, L., Lorenz, H. & Sundmacher, K. Steam reforming of glycerol: The experimental activity of La1–xCexNiO3 catalysts in comparison to the thermodynamic reaction equilibrium. Applied Catalysis B: Environmental 90, 29–37 (2009).

17. Kim, S. M. & Woo, S. I. Sustainable Production of Syngas from Biomass-Derived Glycerol by Steam Reforming over Highly Stable Ni/SiC. ChemSusChem 5, 1513–1522 (2012).

18. Ioriodo, A. et al. Glycerol liquid phase conversion over monometallic and bimetallic catalysts: Effect of metal, support type and reaction temperatures. Applied Catalysis B: Environmental 63, 83–93 (2006).

19. Huber, G. W., Shabaker, J. W., Evans, S. T. & Dumesic, J. A. Aqueous-phase reforming of ethylene glycol over supported Pt and Pd bimetallic catalysts. Applied Catalysis B: Environmental 62, 226–235 (2006).

20. Wu, C., Wang, Z., Wang, L., Williams, P. T. & Huang, J. Sustainable processing of waste plastics to produce high yield hydrogen-rich synthesis gas and high quality carbon nanotubes. RSC Advances 2, 4045–4047 (2012).

21. Brown, M. Carbon nanotubes for hydrogen storage. Chemistry World 8, 20–20 (2011).

22. Noked, M., Okashy, S., Zamrin, T. & Aubarch, D. Composite Carbon Nanotube/Carbon Electrodes for Electrical Double-Layer Super Capacitors. Angewandte Chemie-International Edition 51, 1568–1571 (2012).

23. Baughman, R. H., Zakhidov, A. A. & de Heer, W. A. Carbon Nanotubes – A review. Materials Science and Engineering R: Report 39, 15–35 (2003).

24. Fang, W. et al. Ce-Ni mixed oxide as efficient catalyst for H2 production and nanofibrous carbon material from ethanol in the presence of water. RSC Advances 2, 9264–9265 (2012).

25. Dasgupta, K., Joshi, J. B. & Banerjee, S. Fluidized bed synthesis of carbon nanotubes – A review. Chemical Engineering Journal 171, 841–869 (2011).

26. Noorden, R. V. The trials of new carbon. Nature 456, 14–16 (2011).

27. Vispute, T. P., Zhang, H., Sanna, A., Xiao, R. & Huber, G. W. Renewable Chemical Commodity Feedstocks from Integrated Catalytic Processing of Pyrolysis Oils. Science 330, 1222–1227 (2010).

28. Blackman, B. M., McElligott, P. J. et al. Sensitivity of single-wall carbon nanotubes to chemical damage. Nature 444, 7164–7183 (2007).

29. Yang, L., Hou, L. R., Zhang, Y. W. & Yuan, C. Z. Facile synthesis of mesoporous carbon nanofibres towards high-performance electrochemical capacitors. Materials Letters 79, 97–99 (2013).

30. DeLeo, R. A., Landi, R. J. & Raffaide, R. P. Purity assessment of multiwalled carbon nanotubes by Raman spectroscopy. Journal of Applied Physics 101, 064307–064305 (2007).

31. Saito, R. et al. Double resonance Raman spectroscopy of single-wall carbon nanotubes. New Journal of Physics 15, 157–115 (2013).

32. Hata, K. et al. Water-Assisted Highly Efficient Synthesis of Impurity-Free Single-Walled Carbon Nanotubes. Science 306, 1362–1364 (2004).

33. Monthioux, M. et al. Sensitivity of single-wall carbon nanotubes to chemical processing: An electron microscopy investigation. Carbon 39, 1251–1272 (2001).

34. Zimmerman, J. L., Bradley, R. K., Huffman, C. B., Hauge, R. H. & Margrave, J. L. Gas-Phase Purification of Single-Wall Carbon Nanotubes. Chemistry of Materials 12, 1361–1366 (2000).

35. Arnold, M. S., Green, A. A., Huftal, J. F., Stupp, S. I. & Hersam, M. C. Sorting carbon nanotubes by electronic structure using density differentiation. Nat. Nanotechnol. 1, 60–65 (2006).
Acknowledgements

This work was supported by the International Exchange Scheme from the Royal Society (IE110273), and the Early Career Research Scheme from the University of Sydney. Authors acknowledge Lisha Dong for her assistance during experiments.

Author contributions

Z.W. and C.W. conducted the experiments. C.W. designed the experiments, analysed the data and wrote the manuscript. J.H. and P.W. supervised the project and contributed to manuscript modification. All authors contributed to the discussions of the results.

Additional information

Supplementary information accompanies this paper at http://www.nature.com/ scientificreports

Competing financial interests: The authors declare no competing financial interests.

How to cite this article: Wu, C., Wang, Z., Williams, P.T. & Huang, J. Renewable hydrogen and carbon nanotubes from biodiesel waste glycerol. Sci. Rep. 3, 2742; DOI:10.1038/srep02742 (2013).

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Unported license. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-nd/3.0