GLOBAL EXISTENCE FOR A NONLINEAR SYSTEM WITH FRACTIONAL LAPLACIAN IN BANACH SPACES

MIGUEL LOAYZA AND PAULO F. S. SILVA

Abstract. We consider the Cauchy problem for the fractional power dissipative equation

\[u_t + \left(-\Delta\right)^{\beta/2}u = F(u), \quad \text{where} \quad \beta > 0 \quad \text{and} \quad F(u) = B(u, ..., u) \quad \text{and} \quad B \text{ is a multilinear form on a Banach space } E. \]

We show a global existence result assuming some properties of scaling degree of the multilinear form and the norm of the space \(E \). We extend the ideas used for the treating of the equation to determine the global existence for the system

\[u_t + \left(-\Delta\right)^{\beta/2} = F(v), \quad v_t + \left(-\Delta\right)^{\beta/2} = G(u) \]

where \(F(u) = B_1(u, ..., u) \), \(G(v) = B_2(v, ..., v) \)

Keywords: fractional power equation, Banach spaces, global solution.

1. Introduction

Let \(n \in \mathbb{N}, \beta > 0 \). We consider the Cauchy problem for the semilinear fractional power equation

\[
\begin{aligned}
\partial_t u + \left(-\Delta\right)^{\beta/2} u &= F(u), \quad \text{in } \mathbb{R}^n \times (0, \infty) \\
u(0) &= u_0 \quad \text{in } \mathbb{R}^n,
\end{aligned}
\tag{1.1}
\]

where \(F(u) = B(u, ..., u) \) and \(B : E^p \to \mathbb{R} \) is a \(p \)-linear form, where \(E \) is a Banach space, \(p > 1 \) and \(E^p = E \times ... \times E(p \text{ times}) \). We also assume that the \(p \)-linear form \(B \) acts on \(u \) only with respect to the spacial variable.

The problem (1.1) models several classical problems, for example

(1) The semilinear fractional power dissipative equation

\[u_t + \left(-\Delta\right)^{\beta/2} u = \nu u^p. \]

(2) The generalized Hamilton-Jacobi equation

\[u_t + \left(-\Delta\right)^{\beta/2} = \nabla u \cdot \nabla u. \]

When \(\beta = 2 \), we have the Hamilton-Jacobi equation.

(3) The generalized Navier-Stokes equation

\[u_t + \left(-\Delta u\right)^{\beta/2} - (u \cdot \nabla)u + \nabla P = 0, \quad \nabla \cdot u = 0. \]

(4) The generalized convection-diffusion equation

\[u_t + \left(-\Delta u\right)^{\beta/2} = a \cdot \nabla (u^p), \quad a \in \mathbb{R}^n, a \neq 0 \]

The case \(\beta = 2 \) for the semilinear dissipative equation correspond to the semilinear heat equation and has been studied extensively, see for instance [10], [4], [6], [20], [21], [22]. For \(\beta \neq 2 \) see for example [16], [23], [15]. For the nonlinear Hamilton-Jacobi equation the local well posedness in Lebesgue spaces has been discussed in [2]. Concerning the generalized

Date: May 24, 2016.
Navier-Stokes equation see [5]. Global well posedness including self-similar solutions and the large time behavior have been proved for convection-diffusion in [11] and [9].

Local and global existence and large time behavior for solutions of problem (1.1), with $\beta = 2$ and B a bilinear form on $E \times E$, were studied in a general context in [12]. Specifically, it is assumed that

(i) The norm $\| \cdot \|_E$ has scaling degree equal to a, that is

$$\| u_\lambda \|_E = \lambda^a \| u \|_E$$

(1.2)

for each $u \in E, \lambda > 0$ such that $u_\lambda \in E$, where $u_\lambda(x) = u(\lambda x)$ for $x \in \mathbb{R}^n$.

(ii) The bilinear form B has the following scaling property

$$B((u_1)_\lambda, (u_2)_\lambda) = \lambda^b [B(u_1, u_2)]_\lambda$$

for some $b \in \mathbb{R}, \lambda > 0$, and for every $u_i \in E$ so that $(u_i)_\lambda \in E$ $(i = 1, 2)$.

(iii) The Banach spaces E is adequate to problem (1.1), that is,

(a) $S \subset E \subset S'$ with continuous injections.

(b) The norm is translations invariant, that is, $\| u(\cdot + x) \|_E = \| u \|_E$ for all $u \in E$ and $x \in \mathbb{R}^n$.

(c) For all $u, v \in E$, $B(u, v) \in S'$ and there exist $T_0 > 0$ and a function $w \in L^1(0, T_0)$, $w > 0$ such that

$$\| S(t)B(u, v) \| \leq w(t) \| u \| \| v \|,$$

for any $u, v \in E$. Here, $(S(t))_{t \geq 0}$ is the heat semigroup.

Henceforth, S denotes the space of Schwartz rapidly decreasing functions and S' its dual space, that is, the space of tempered distributions. Some examples of adequate spaces are the Lebesgue space $L^p(\mathbb{R}^n)$, the Marcinkiewicz weak $L^p(\mathbb{R}^n)$ space, the Lorentz space $L^{p,q}(\mathbb{R}^n)$ and the Morrey space $M^p(\mathbb{R}^n)$.

With these concepts it was established the following local existence result.

Theorem 1.1 ([12]). Let $\beta = 2$, E a Banach space and let B be a bilinear form on $E \times E$ with scaling degree $\sigma < 2$. Let $r > n(2 - \sigma)$ and $0 \leq \alpha < \min\{1, 2 - \sigma - n/r, \sigma + n/p\}$. Suppose that E has the following properties:

(i) E is adequate to problem (1.1);

(ii) The norm $\| \cdot \|_E$ has a scaling degree $-\frac{n}{r}$;

(iii) $S(t) : E \to L^q(\mathbb{R}^n)$ is a bounded operator for every $t > 0$ and some $q \in [1, \infty]$

Let $u_0 \in BE^\alpha$. There exists $T = T(u_0)$ and a unique local in time solution of problem (1.1) on $[0, T)$, which is unique in the space

$$\mathcal{F}([0, T), BE^\alpha) \cap \{ u : (0, T) \to E; \sup_{0 < t < T} t^{\alpha/2} \| u(t) \|_E < \infty \}.$$

(1.3)

The space $\mathcal{F}([0, T], BE^\alpha) = \{ u \in L^\infty((0, T), BE^\alpha); u(t) \to u(0) \text{ as } t \to 0 \text{ in } \mathcal{S}' \}$. The spaces BE^α is given by

$$BE^\alpha = \{ f \in S'; \| f \|_{BE^\alpha} = \sup_{t > 0} t^{\alpha/2} \| S(t)f \|_E < \infty \}.$$

(1.4)

For the global existence we have.
We begin with the local existence for problem (1.1).

Our result about global existence is the following.

Theorem 1.4. Let B a $p-$linear form with scaling degree σ and $E \in X$ an adequate Banach space to problem (1.1) with scaling degree a, where

$$\frac{\beta - \sigma}{p - 1} - \frac{\beta}{p} < -a < \frac{\beta - \sigma}{p - 1} \quad \text{and} \quad \alpha = \frac{\beta - \sigma}{p - 1} + a. \quad (1.8)$$
Let $M, R > 0$ such that $R + pKM^{p-1} < M$ with $K > 0$ given explicitly by (3.11). Then for every $u_0 \in BE^\alpha$ with $\|u_0\|_{BE^\alpha} \leq R$, there exists a unique global solution u of problem (1.1) satisfying
\[
\|u\| := \sup_{t > 0} \|u(t)\|_{BE^\alpha} + \sup_{t > 0} t^{\frac{\alpha}{p}} \|u(t)\|_E \leq M. \tag{1.9}
\]
Moreover, if v is other global solution for problem (1.7) satisfying (1.9) and with initial data v_0 with $\|v_0\|_{BE^\alpha} \leq R$, then
\[
\|u - v\| \leq [1 - p(2M)^{p-1}K]^{-1}\|u_0 - v_0\|_{BE^\alpha}.
\]
In addition, if $pK_1M^{p-1} < 1$, where K_1 is given by (3.8), we have
\[
\lim_{t \to \infty} t^{\frac{\alpha}{p}/2}\|u(t) - v(t)\|_E = 0
\]
if and only if $\lim_{t \to \infty} t^{\frac{\alpha}{p}/2}\|S_\beta(u_0 - v_0)\|_E = 0$

Remark 1.5. Here are some comments concerning Theorem 1.4.

(i) It is clear that if $\beta = p = 2$, Theorem 1.4 reduces to Karch’s result.

We use our arguments to analyze the semilinear fractional power system
\[
\begin{aligned}
&\partial_t u + (-\Delta)^{\beta/2} u = B_1(v, \ldots, v), \text{ in } \mathbb{R}^n \times (0, \infty) \\
&\partial_t v + (-\Delta)^{\beta/2} v = B_2(u, \ldots, u), \text{ in } \mathbb{R}^n \times (0, \infty) \\
&u(0) = u_0, v(0) = v_0 \text{ in } \mathbb{R}^n,
\end{aligned} \tag{1.10}
\]
where the B_1, B_2 are multi-linear forms defined on Banach spaces. Problem (1.10) for $\beta = 2$ has been considered by various authors, see for example, [8, 19].

As in the problem (1.1), if $u_0 \in BE^{\alpha_1}, v_0 \in BE^{\alpha_2}$ and $BE^{\alpha_1}, BF^{\alpha_2}$ are Banach spaces, we say that $(u, v) \in L^\infty((0, T); BE^{\alpha_1}) \times L^\infty((0, T); BF^{\alpha_2})$ is a solution of the problem (1.10) if verifies, in some sense, the following system
\[
\begin{aligned}
&u(t) = S_\beta(t)u_0 + \int_0^t S_\beta(t - \tau)B_1(v, \ldots, v)d\tau, \\
v(t) = S_\beta(t)v_0 + \int_0^t S_\beta(t - \tau)B_2(u, \ldots, u)d\tau,
\end{aligned} \tag{1.11}
\]
for every $t \in (0, T)$.

On the global existence for problem (1.10) we have the following result.

Theorem 1.6. Let E, F be Banach spaces, $B_1 : E^q \to \mathbb{R}$ and $B_2 : F^p \to \mathbb{R}$ two forms with scaling degree σ_1 and σ_2 respectively. Assume that $E, F \in X$ have scaling degree a and b respectively and that $E \times F$ is adequate to system (1.10). Let $pq > 1$,
\[
\alpha_1 = \frac{\beta(1 + q)}{pq - 1} + a - \frac{\sigma_1 + q\sigma_2}{pq - 1}, \quad \alpha_2 = \frac{\beta(1 + p)}{pq - 1} + b - \frac{\sigma_2 + p\sigma_1}{pq - 1}. \tag{1.12}
\]
Suppose that

(i) $\alpha_1, \alpha_2 > 0$.
(ii) $\alpha_1 + qb < a + \sigma_1$ and $\alpha_2 + pa < b + \sigma_2$.
(iii) $\alpha_1 < q\alpha_2, \alpha_2 < p\alpha_1$.

Let $M, R > 0$ so that $R + qM^qK_1 + pM^pK_2 < M$. Then, for any $\Phi = (u_0,v_0) \in BE^{\alpha_1} \times BF^{\alpha_2}$ verifying

$$\mathcal{N}(\Phi) := \|u_0\|_{BE^{\alpha_1}} + \|v_0\|_{BF^{\alpha_2}} \leq R,$$

there exists an unique solution $U = (u,v)$ for system (1.11) such that

$$\|U\| := \sup_{t>0} t^{\frac{p}{qM^q-1}} \|u(t)\|_E + \sup_{t>0} t^{\frac{p}{pM^p-1}} \|v(t)\|_F + \|v(t)\|_{BF^{\alpha_2}} \leq M.$$

Moreover, if $\overline{U} = (\overline{u}, \overline{v})$ is a solution for problem (1.11) verifying $\|\overline{U}\| \leq M$ with initial data $\Phi = (\overline{u}_0, \overline{v}_0)$ which verify $\mathcal{N}(\Phi) \leq R$, then

$$\|U - \overline{U}\| \leq [1 - \left(qM^q-1K_1 + pM^p-1K_2 \right)^{-1} \mathcal{N}(\Phi - \Phi)].$$

Remark 1.7. Here are some comment on Theorem 1.6

(i) If $\sigma_1 = \sigma_2 = \sigma$ and $b = \left[(p+1)/(q+1)\right]a$, then $\alpha_1 = \left[(\beta - \sigma)(q+1)/(pq - 1)\right]$, $\alpha_2 = \left[(p+1)/(q+1)\right] \alpha_1$ and conditions (i)-(iv) are reduced to

$$(\beta - \sigma) \frac{q+1}{pq - 1} - \frac{\beta}{p} \gamma < -a < (\beta - \sigma) \frac{q+1}{pq - 1},$$

where $\gamma = \min\{1, [p(q+1)]/[q(p+1)]\}$. In particular, for $p = q$ we have condition (1.8).

(ii) Local existence for problem (1.11) can be obtained modifying slightly the proof of Theorem 1.6. To do this, we assume that

(a) $\alpha_1, \alpha_2 > 0$, $\alpha_1 - q\alpha_2 + \beta + qb > a + \sigma_1$, $-p\alpha_1 + \alpha_2 + \beta + pa > b + \sigma_2$.

(b) $\beta + qb > a + \sigma_1$, $\beta + pa > b + \sigma_2$.

(c) $\beta > q\alpha_2$, $\beta > p\alpha_1$.

(d) $a + \sigma_1 > a + q\beta$ and $b + \sigma_2 > \sigma_2 + pa$.

2. Preliminary results

In this section we extend for $\beta \neq 2$ the definitions considered by Karch in [12, 13] for $\beta = 2$. The arguments used in the proof of Propositions 2.3, 2.4 and 2.11 are similar to Karch’s arguments, but since we are considering situations in that β can be different to two we give them for completeness.

2.1. Scaling properties. Let $(E, \| \cdot \|_E)$ be a Banach space which can be imbedded continuously in S'. We say that the norm $\| \cdot \|_E$ has scaling degree equal to a if equality (1.2) holds. What follows are some examples of Banach spaces with its respective scaling degrees:

(i) Lebesgue spaces, $L^p(\mathbb{R}^n)$: $\|u_\lambda\|_{L^p} = \lambda^{-\frac{np}{p}} \|u\|_{L^p}$, $1 \leq p \leq +\infty$,

(ii) Lorentz spaces, $L^{p,q}(\mathbb{R}^n)$: $\|u_\lambda\|_{L^{p,q}} = \lambda^{-\frac{np}{p}} \|u\|_{L^{p,q}}$, $1 \leq p, q \leq +\infty$,

(iii) Morrey Homogeneous spaces, $L^p_q(\mathbb{R}^n)$: $\|u_\lambda\|_{L^p_q} = \lambda^{-\frac{np}{p}} \|u\|_{L^p_q}$, $1 \leq q \leq p \leq +\infty$,

(iv) Besov Homogeneous spaces, $B^s_{p,q}(\mathbb{R}^n)$: $\|u_\lambda\|_{B^s_{p,q}} = \lambda^{s-\frac{np}{p}} \|u\|_{B^s_{p,q}}$, $1 \leq p, q \leq +\infty$ and $s < 0$
For a study of these spaces see [3] and [11].

We say that a $p-$linear form B defined on $E^p = E \times E \times \ldots \times E (p \text{ times})$ has scaling degree equal to σ if

$$B((u_1)_\lambda, \ldots, (u_p)_\lambda) = \lambda^\sigma [B(u_1, \ldots, u_p)]_\lambda,$$

for every $u_1, u_2, \ldots, u_p \in E$, $\lambda > 0$ and $(u_i)_\lambda = u_i(\lambda \cdot)$, $i = 1, 2, \ldots, p$.

Some examples of $p-$linear forms, with its respective scaling degree σ, are given below:

(i) $B(u_1, \ldots, u_p) = u_1 \cdot \ldots \cdot u_p$, has scaling degree $\sigma = 0$.
(ii) $B(u_1, \ldots, u_p) = (u_1 \cdot \ldots \cdot u_{p-1}) \cdot \nabla u_p$ with $a \in \mathbb{R}^n$ has scaling degree $\sigma = 1$.
(iii) $B(u_1, u_2) = \nabla u_1 \cdot \nabla u_2$ has scaling degree $\sigma = 2$.

In the following result we establish some scaling relations.

Proposition 2.1. Let $\lambda > 0$ and $u \in S'$. Then, $(-\Delta)^{\beta/2}u_\lambda = \lambda^\beta [(-\Delta)^{\beta/2}u]_\lambda$, $S_\beta(t)u_\lambda = [S_\beta(\lambda^\beta t)u]_\lambda$ and $t^{\frac{n}{2}}K_\beta(t, t^{\frac{1}{2}}x) = K_\beta(1, x)$ for $t > 0$, $x \in \mathbb{R}^n$.

Proof. By the change of variable $\xi' = t^{1/\beta} \xi$ we have

$$K_\beta(t, t^{\frac{1}{2}}x) = \int_{\mathbb{R}^n} e^{2\pi i (t^{\frac{1}{2}} x, \xi')} e^{-t|\xi'|^\beta} d\xi'$$

$$= t^{-\frac{n}{2}} \int_{\mathbb{R}^n} e^{2\pi i (x, \xi')} e^{-|\xi'|^\beta} d\xi'.$$

By (1.5) and the change of variables $y' = \lambda y$ and $\xi' = \lambda^{-1} \xi$ we conclude

$$[(-\Delta)^{\beta/2}u_\lambda](x) = \int_{\mathbb{R}^n} e^{2\pi i (x, \xi')} |\xi'|^\beta \mathcal{F}u_\lambda(\xi) d\xi$$

$$= \int_{\mathbb{R}^n} e^{2\pi i (x, \xi')} |\xi'|^\beta \left[\int_{\mathbb{R}^n} e^{-2\pi i (\xi, y)} u(\lambda y) dy \right] d\xi$$

$$= \lambda^\beta \int_{\mathbb{R}^n} e^{2\pi i (\lambda x, \xi')} |\xi'|^\beta \left[\int_{\mathbb{R}^n} e^{-2\pi i (\xi, y')} u(y') \lambda^{-n} dy' \right] \lambda^n d\xi'$$

$$= \lambda^\beta [(-\Delta)^{\beta/2}u](\lambda x)$$

$$= \lambda^\beta [(-\Delta)^{\beta/2}u_\lambda](x)$$

From (1.6)

$$[S_\beta(t)u_\lambda](x) = \int_{\mathbb{R}^n} \mathcal{F}^{-1}(e^{-t|\xi'|^\beta})(x-y) u(\lambda y) dy$$

$$= \int_{\mathbb{R}^n} \mathcal{F}^{-1}(e^{-t|\xi'|^\beta})(x-\lambda^{-1} y') u(y') \lambda^{-n} dy'$$

$$= \int_{\mathbb{R}^n} \left[\int_{\mathbb{R}^n} e^{2\pi i (x-\lambda^{-1} y', \xi')} e^{-t|\xi'|^\beta} u(y') \lambda^{-n} dy' \right] \varphi(y') \lambda^{-n} dy'$$

$$= \int_{\mathbb{R}^n} \left[\int_{\mathbb{R}^n} e^{2\pi i (x-y', \xi')} e^{-t\lambda y'} e^{-t|\xi'|^\beta} \varphi(y') \lambda^{-n} dy' \right] d\xi'$$

$$= \int_{\mathbb{R}^n} \left[\int_{\mathbb{R}^n} e^{2\pi i (x-y', \xi')} e^{-t\lambda |\xi'|^\beta} \varphi(y') \lambda^{-n} dy' \right] u(y') dy'$$

$$= \left[\mathcal{F}^{-1}(e^{-t\lambda |\xi'|^\beta} \varphi)(y') \right] u(y')$$

$$= [S_\beta(\lambda^\beta t)u_\lambda](x)$$

When u is an homogeneous function we have the following result.
Corollary 2.2. If E is a Banach space with scaling degree equal to a and u is an homogeneous function with degree equal to θ, then $S_\beta(t)u = \lambda^{-\theta} [S_\beta(\lambda^t u)]_\lambda$ and $\|S_\beta(1)u\|_E = t^{(a-\theta)/\beta} \|S_\beta(t)u\|_E$.

Proposition 2.3. Let E_a and E_b be Banach spaces with scaling degree a and b respectively. Assume that there exists $t_0 > 0$ such that $S_\beta(t_0) : E_a \to E_b$ is bounded, where $S_\beta(t)$ is defined by (1.6). Then there exists $C = C(a,b,\beta,t_0) > 0$ so that

$$\|S_\beta(t)u\|_{E_b} \leq Ct^{\frac{\beta}{a-b}} \|u\|_{E_a}.$$

for all $t > 0$. Moreover, if $E_b \subset S'$ is imbedded continuously and $b < a$, then $E_a = \{0\}$.

Proof. Since $S_\beta(t_0)$ is bounded, there exists $C' > 0$ such that $\|S_\beta(t_0)u\|_{E_b} \leq C' \|u\|_{E_a}$, for every $u \in E_a$. By Proposition 2.1, we have

$$\|S_\beta(\lambda t_0)u\|_{E_b} \leq C' \|\lambda^{\frac{\beta}{a-b}} u\|_{E_a}$$

Thus, $\|S_\beta(\lambda^t t_0)u\|_{E_b} \leq C' \lambda^{\frac{\beta}{a-b}} \|u\|_{E_a}$ for every $\lambda > 0$. Setting $\lambda = (t/t_0)^{\frac{1}{\beta}}$ we conclude that $\|S_\beta(t)u\|_{E_b} \leq Ct^{\frac{\beta}{a-b}} \|u\|_{E_a}$ for every $t > 0$ with $C = C't_0^{\frac{\beta(b-a)}{\beta}}$.

Note that if $b < a$ and $u \in E_a$, then $S_\beta(t)u \to 0$ as $t \to 0$ in E_b. Since E_b is imbedded continuously in S' follows that $S_\beta(t)u \to 0$ as $t \to 0$ in S'. Since $S_\beta(t)u \to u$ in S' as $t \to 0$, by uniqueness, we conclude that $u = 0$.

Proposition 2.4. Let E be a Banach space with scaling degree a. Suppose that for some $t_0 > 0$ and $r_0 \in [1, +\infty]$ the operator $S_\beta(t_0) : E \to L^{r_0}(\mathbb{R}^n)$ is bounded. Then $S_\beta(t) : E \to L^r(\mathbb{R}^n)$ for all $t > 0$ and $r \geq r_0$. Moreover, there exists a constant $C > 0$ which does not depend of $t > 0$ and

$$\|S_\beta(t)u\|_{L^r} \leq Ct^\left(\frac{1}{r_0} - \frac{\theta}{a}\right) \|u\|_{E},$$

for all $t > 0$ and $u \in E$.

Proof. Since $S_\beta(t_0) : E \to L^{r_0}(\mathbb{R}^n)$ is bounded we have that $\|S_\beta(t_0)u\|_{L^{r_0}} \leq C \|u\|_E$ for every $u \in E$ and some constant $C > 0$. As $L^{r_0}(\mathbb{R}^n)$ has scaling degree $-n/r_0$, by Proposition 2.3, we have $\|S_\beta(t)u\|_{L^{r_0}} \leq Ct^\left(\frac{1}{r_0} - \frac{\theta}{a}\right) \|u\|_{r_0}, \ 1 \leq r_0 \leq r \leq +\infty$ and $t > 0$. Thus

$$\|S_\beta(t)u\|_{L^r} \leq C(t/2)^{-\frac{n}{2} \left(\frac{1}{r_0} - \frac{\theta}{a}\right)} \|S_\beta(t/2)u\|_{L^{r_0}} \leq C(t/2)^{-\frac{n}{2} \left(\frac{1}{r_0} - \frac{\theta}{a}\right)} (t/2)^{\frac{n}{2} \left(\frac{1}{r_0} - \frac{\theta}{a}\right)} \|u\|_{E} = C't^{\frac{n}{2} \left(\frac{1}{r_0} - \frac{\theta}{a}\right)} \|u\|_{E},$$

for all $t > 0$ and $u \in E$.

Remark 2.5. From here on, we denote by X the class of Banach spaces E' which can be imbedded continuously in S' such that there exist t_0 and $r_0 \in [1, +\infty]$ and $S_\beta(t_0) : E \to L^{r_0}(\mathbb{R}^n)$ is bounded.
2.2. The space BE^a. Let $\alpha \geq 0$ and let E be a nontrivial Banach space which can be imbedded continuously in S'. We define BE^a as

$$BE^a = \{ u \in S'; \| u \|_{BE^a} = \sup_{t>0} t^{\alpha/\beta} \| S_\beta(t)u \|_E < \infty \}. \quad (2.3)$$

It is clear that BE^a is a linear space and $\| \cdot \|_{BE^a}$ defines a norm on BE^a. Indeed, $\| u \|_{BE^a} = 0$ implies $\| S_\beta(t)u \|_E = 0$, for every $t > 0$. Since E is imbedded continuously in S' is continuous we conclude that $S_\beta(t)u \to 0$ in S'. Since $S_\beta(t)u \to u$ in S' as $t \to 0$, follows that $u = 0$. The other axioms are easily verified.

Remark 2.6. (i) If E is a Banach space with scaling degree a, then $\| \cdot \|_{BE^a}$ has scaling degree $a - \alpha$. Indeed, for $\lambda > 0$ and Proposition 2.7,

$$\| u_\lambda \|_{BE^a} = \sup_{t>0} t^{\alpha/\beta} \| S_\beta(t)u_\lambda \|_E = \sup_{t>0} t^{\alpha/\beta} \| S_\beta(\lambda^\beta t)u_\lambda \|_E$$

$$= \lambda^\alpha \sup_{t>0} t^{\alpha/\beta} \| S_\beta(\lambda^\beta t)u \|_E$$

$$= \lambda^{(a-\alpha)} \sup_{t>0} (\lambda^\beta t)^{\alpha/\beta} \| S_\beta(\lambda^\beta t)u \|_E = \lambda^{(a-\alpha)} \| u \|_{BE^a}.$$

(ii) If the norm $\| \cdot \|$ is translation invariant, then $\| \cdot \|_{BE^a}$ is also one. Indeed,

$$\| T_y u \|_{BE^a} = \sup_{t>0} t^{\alpha/\beta} \| S_\beta(t)T_y u \|_E = \sup_{t>0} t^{\alpha/\beta} \| T_{-y} S_\beta(t)u \|_E$$

$$= \sup_{t>0} t^{\alpha/\beta} \| S_\beta(t)u \|_E = \| u \|_{BE^a}.$$

Our objective now is to show that BE^a is a Banach space. To do this, we consider some properties of the homogeneous Besov space $\dot{B}_{p,q}^\gamma(\mathbb{R}^n)$ with $\gamma < 0$.

The following result was proved in [16](Proposition 2.1).

Proposition 2.7. Let $1 \leq r, s \leq +\infty, \gamma < 0$ and $0 < \beta < +\infty$. Then $u \in \dot{B}_{r,s}^\gamma(\mathbb{R}^n)$ if and only if

$$\| u \|_{\dot{B}_{r,s}^\gamma} = \left\{ \begin{array}{l}
\left[\int_0^{+\infty} \left(t^{-\gamma/\beta} \| S_\beta(t)u \|_{L^r} \right)^s \frac{dt}{t} \right]^{1/s}, \quad \text{if } 1 \leq s < \infty,
\sup_{t>0} t^{-\gamma/\beta} \| S_\beta(t)u \|_{L^r}, \quad \text{if } s = +\infty.
\end{array} \right.$$

is finite.

Note that if $E = L^r(\mathbb{R}^n)$ the set $BE^a, \alpha > 0$, is exactly the space $\dot{B}_{r,\infty}^{-\alpha}(\mathbb{R}^n)$.

In the next result we establish a continuous imbedding of BE^a in a homogeneous Besov space.

Proposition 2.8 (Imbedding in Besov spaces). Let E be a nontrivial Banach space continuously imbedded in S'. Let $\alpha \geq 0$, $E \in \mathcal{X}$ with scaling degree a. There exist $r > 1$ such that the imbedding $BE^a \subset \dot{B}_{r,\infty}^\gamma(\mathbb{R}^n)$ is continuous with $\gamma = n/r + a - \alpha < 0$.

Proof. Since $E \in \mathcal{X}$, let $t_0 > 0$ and $r_0 \in [1, +\infty]$ so that $S_\beta(t_0) : E \to L^{r_0}(\mathbb{R}^n)$ is bounded. From Proposition 2.3 we conclude that $a + n/r_0 \leq 0$. Let $r > r_0$ so that $a + n/r < 0$. From Proposition 2.4 there exists $C > 0$ such that

$$\| S_\beta(t)u \|_{L^r} = \| S_\beta(t/2)S_\beta(t/2)u \|_{L^r} \leq C(t/2)^{\frac{1}{r}(a + \frac{n}{r})} \| S_\beta(t/2)u \|_E.$$
Multiplying this inequality by \(t^{-\gamma/\beta} \) with \(\gamma = n/r + a - \alpha \) we obtain

\[
t^{-\frac{\gamma}{\beta}}\|S_\beta(t)u\|_{L^r} \leq C2^{-\frac{\gamma}{\beta}}(t/2)^{\frac{\gamma}{\beta}}\|S_\beta(t/2)u\|_E = C'(t/2)^{\frac{\gamma}{\beta}}\|S_\beta(t/2)u\|_E.
\]

Hence, we get

\[
sup_{t > 0} t^{-\gamma/\beta}\|S_\beta(t)u\|_{L^r} \leq C'\|u\|_{BE^\alpha}.
\]

Now, the result follows from Proposition 2.7.

Finally, we show that \(BE^\alpha \) is a Banach space.

Proposition 2.9 (Completeness of \(BE^\alpha \)). Let \(E \) be a nontrivial Banach space continuously imbedded in \(S' \). Let \(\alpha \geq 0, E \in \mathcal{X} \) with scaling degree \(a \). Then the space \(BE^\alpha \) is a Banach space. Furthermore, there exists \(r > 1 \) so that the imbedding \(BE^\alpha \subset B^{\gamma}_{r,\infty}(\mathbb{R}^n) \) is continuous, with \(\gamma = n/r + a - \alpha \).

Proof. Since \(E \subset S' \) is a normed linear space it is sufficient to show that \(BE^\alpha \) is complete. Let \((u_n)_{n \in \mathbb{N}} \) a Cauchy sequence in \(BE^\alpha \). For every \(t > 0 \) the sequence \((S_\beta(t)u_n)_{n \in \mathbb{N}} \) is a Cauchy sequence in \(E \) because

\[
\|S_\beta(t)u_n - S_\beta(t)u_m\|_E \leq t^{-\frac{\gamma}{\beta}}\|u_n - u_m\|_{BE^\alpha}.
\]

Hence, since \(E \) is a Banach space we have \(u(t) := \lim_{n \to \infty} S_\beta(t)u_n \) in \(E \). Using the fact that the embedding \(E \subset S' \) is continuous, we conclude that \(S_\beta(t)u_n \to u(t) \) in \(S' \).

On the other hand, since \((u_n)_{n \in \mathbb{N}} \) is a Cauchy sequence in \(BE^\alpha \) we obtain a constant \(C > 0 \) such that \(\|u_n(t)\|_E \leq Ct^{-\frac{\gamma}{\beta}} \) for every \(t > 0 \). Thus, \(\|u(t)\|_E \leq Ct^{-\frac{\gamma}{\beta}} \) for every \(t > 0 \).

We show now that there exists \(v \in S' \) so that \(u(t) = S_\beta(t)v \). From Proposition 2.9 the embedding \(BE^\alpha \subset B^{\gamma}_{r,\infty} \) is continuous for some \(r > 1, \gamma = n/r + a - \alpha \). Therefore, the Cauchy sequence \((u_n)_{n \in \mathbb{N}} \) converges in \(B^{\gamma}_{r,\infty} \) for some function \(v \). Since \(B^{\gamma}_{r,\infty} \subset S' \) we have that \(u_n \to u \) and \(S_\beta(t)u_n \to S_\beta(t)v \) in \(S' \). By uniqueness we conclude that \(u(t) = S_\beta(t)v \).

2.3. Adequate spaces.

Let \(E \) be a Banach space and \(B \) a \(p \)-linear form defined on \(E^p \). We say that \(E \) is adequate to problem (1.1) if

(i) \(S \subset E \subset S' \) both with continuous injections.

(ii) The norm \(\| \cdot \|_E \) is invariant by translations, that is, \(\|Tyu\|_E = \|u\|_E \) for every \(u \in E \), \(y \in \mathbb{R}^n \) and \(Tyu = u(-y) \).

(iii) For every \(u_1, \ldots, u_p \in E \), we have \(B(u_1, \ldots, u_p) \in S' \). Moreover,

\[
\|S_\beta(t)B(u_1, \ldots, u_p)\|_E \leq \omega(t)\prod_{i=1}^p \|u_i\|_E
\]

where \(\omega : (0, +\infty) \to (0, +\infty) \) and \(\omega \in L^1(0, T) \) for \(0 < T < +\infty \).

Remark 2.10. If \((E, \| \cdot \|_E) \) is a Banach space satisfying conditions (i) and (ii), then

\[
\|S_\beta(t)u\|_E \leq \|K_{\beta}(1, \cdot)\|_{L^i} \|u\|_E,
\]

since \(K_{\beta}(1, \cdot) \in L^1(\mathbb{R}^n) \), see Lemma 2.1 of [10]. In particular, \(E \) is adequate to problem (1.1) for \(B(u, \ldots, u) = u \).

In the next result we establish estimates for \(S_\beta(t)B(u_1, \ldots, u_p) \) in the spaces \(E \) and \(BE^\alpha \).

Proposition 2.11. Let \(B \) be a \(p \)-linear form with scaling degree \(\sigma \) and let \(E \) be a Banach space adequate to problem (1.1) with scaling degree \(a \).
(i) There exists a constant $C_1 = C_1(a, \sigma, \beta, p) > 0$ such that

$$\|S_\beta(t)B(u_1, ..., u_p)\|_E \leq C_1 t^{(p-1)a-\sigma}/\beta \prod_{i=1}^{p} \|u_i\|_E. \quad (2.5)$$

(ii) Assume that $0 \leq \alpha \leq -(p-1)a + \sigma$. Then there exists $C_2 = C_2(a, \sigma, \beta, p) > 0$ such that

$$\|S_\beta(t)B(u_1, ..., u_p)\|_{BE^\alpha} \leq C_2 t^{(p-1)a-\sigma}/\beta \prod_{i=1}^{p} \|u_i\|_E. \quad (2.6)$$

Proof. (i) Let $u_i \in E_a$, $i = 1, ..., p$ and $t_0 > 0$. Since B has scaling degree σ, we obtain from Proposition 2.1, $S_\beta(t_0)B((u_1)_\lambda, ..., (u_p)_\lambda) = \lambda^\sigma[S_\beta(\lambda^\beta t_0)B((u_1), ..., (u_p))]$. Hence, using Proposition 2.1, the facts that B is adequate and E has scaling degree a, we have

$$\lambda^{\sigma + a} \|S_\beta(\lambda^\beta t_0)B(u_1, ..., u_p)\|_E = \|\lambda^\sigma[S_\beta(\lambda^\beta t_0)B(u_1, ..., u_p)]\|_E$$

$$= \|S_\beta(t_0)B((u_1)_\lambda, ..., (u_p)_\lambda)\|_E$$

$$\leq \omega(t_0) \prod_{i=1}^{p} \|(u_i)_\lambda\|_E$$

$$= \omega(t_0) \lambda^{\alpha a} \prod_{i=1}^{p} \|u_i\|_E.$$

Thus, $\|S_\beta(\lambda^\beta t_0)B(u_1, ..., u_p)\|_E \leq \omega(t_0)\lambda^{[p-1]a-\sigma} \prod_{i=1}^{p} \|u_i\|_E$, for all $\lambda > 0$. Setting $\lambda = (t/t_0)^{\frac{1}{\beta}}$ with $t > 0$, we obtain (2.5) with $C_1 = \omega(t_0)t_0^{-\frac{a}{\beta}}$.

(ii) We first claim that there exists a constant $C' = C'(t) > 0$ such that for all $\tau > 0$,

$$\tau^\frac{\alpha}{\beta} \|S_\beta(\tau)S_\beta(t)B(u_1, ..., u_p)\|_E \leq C'(t) \prod_{i=1}^{p} \|u_i\|_E.$$

Indeed, since $\alpha \geq 0$, (2.4) holds and B is adequate, we have for $0 < \tau \leq 1$,

$$\tau^\frac{\alpha}{\beta} \|S_\beta(\tau)S_\beta(t)B(u_1, ..., u_p)\|_{E_a} \leq \|S_\beta(\tau)S_\beta(t)B(u_1, ..., u_p)\|_{E_a}$$

$$\leq \tilde{C}\|S_\beta(t)B(u_1, ..., u_p)\|_{E_a}$$

$$\leq \tilde{C}\omega(t) \prod_{i=1}^{p} \|u_i\|_{E_a}.$$

On the other hand, from bound (2.4), estimate (2.5) and $\alpha + (p-1)a - \sigma \leq 0$ we obtain for $\tau > 1$,

$$\tau^\frac{\alpha}{\beta} \|S_\beta(\tau)S_\beta(t)B(u_1, ..., u_p)\|_E = \tau^\frac{\alpha}{\beta} \|S_\beta(t)S_\beta(\tau)B(u_1, ..., u_p)\|_E$$

$$\leq \tilde{C}\tau^\frac{\alpha}{\beta} \|S_\beta(\tau)B(u_1, ..., u_p)\|_E$$

$$\leq \tilde{C}\tau^{\alpha + (p-1)a - \sigma} \prod_{i=1}^{p} \|u_i\|_E$$

$$\leq \tilde{C} \prod_{i=1}^{p} \|u_i\|_E.$$
Thus, the claim holds for \(C'(t) = \max \{ Cw(t), \tilde{C} \} \).

Fix now \(t_0 > 0 \). Since

\[
C'(t_0) \lambda^p \prod_{i=1}^{p} \| u_i \|_E = C'(t_0) \prod_{i=1}^{p} \| (u_i)_{\lambda} \|_E
\]

\[
\geq \tau^\frac{\alpha}{\beta} \| S_\beta(\tau)S_\beta(t_0)B((u_\lambda)_1, ..., (u_\lambda)_p) \|_E
\]

\[
= \lambda^{\sigma + \alpha} \tau^\frac{\alpha}{\beta} \| S_\beta(\lambda^\beta \tau)S_\beta(\lambda^\beta t_0)B(u_1, ..., u_p) \|_E
\]

\[
= \lambda^{\sigma + \alpha - \alpha} \| S_\beta(\lambda^\beta \tau)S_\beta(\lambda^\beta t_0)B(u_1, ..., u_p) \|_E
\]

we have \((\lambda^\beta \tau)^{\alpha/\beta} \| S_\beta(\lambda^\beta \tau)S_\beta(\lambda^\beta t_0)B(u_1, ..., u_p) \|_E \leq C'(t_0)\lambda^{\alpha + (p-1)\sigma} \prod_{i=1}^{p} \| u_i \|_E\). Taking the supreme on \(\tau \) and setting \(\lambda = (t/t_0)^{1/\beta} \) we get (2.6) with \(C_2 = C'(t_0) t_0^{1-\beta} \).

3. Local and global existence for problem (1.1)

The existence, local and global, of solutions for problem (1.1) is based in following abstract result.

Lemma 3.1. Assume that \(X \) is a Banach space and \(A: X \times ... \times X \to X \) is a \(p \)-linear form \((p > 1)\) verifying

\[
\| A(u_1, ..., u_p) \| \leq K \prod_{i=1}^{p} \| u_i \|, \tag{3.1}
\]

for all \(u_i \in X, \ i = 1, ..., p \) and for some constant \(K > 0 \). Let \(M, R > 0 \) such that

\[
R + pKM^p < M. \tag{3.2}
\]

Then, for every \(y \in X \) with \(\| y \| \leq R \) the equation

\[
u = y + A(u, ..., u) \tag{3.3}
\]

has a unique solution \(u \in X \) and \(\| u \| \leq M \). Moreover, the solution \(u \) depends continuously in the sense that, if \(v \) is a solution of (3.3), with \(y_1 \) in place of \(y \), and \(\| y \| \leq R, \| v \| \leq M \), then

\[
\| u - v \| \leq (1 - pKM^{p-1})^{-1} \| y - y_1 \|. \tag{3.4}
\]

Proof. Set \(B_M = \{ u \in X; \| u \| \leq M \} \). Consider the mapping \(\mathcal{G}_y: B_M \to X \) defined by \(\mathcal{G}_y(u) = y + A(u, ..., u) \). Since \(A \) is \(p \)-linear and verify inequality (3.1) we deduce

\[
\| A(u, ..., u) - A(v, ..., v) \| \leq K \left(\sum_{k=0}^{p-1} \| u \|^{p-1-k} \| v \|^{k} \right) \| u - v \|.
\]

Hence,

\[
\| \mathcal{G}_y(u) - \mathcal{G}_y(v) \| \leq \| y - y_1 \| + K \left(\sum_{k=0}^{p-1} \| u \|^{p-1-k} \| v \|^{k} \right) \| u - v \|. \tag{3.5}
\]

Setting \(y_1 = v = 0 \) in (3.5), we conclude by (3.2) that \(\| \mathcal{G}_y u \| \leq \| y \| + K \| u \|^p \leq R + KM^p < M \). From (3.5), for \(y_1 = y \) we have that \(\| \mathcal{G}_y(u) - \mathcal{G}_y(v) \| \leq pKM^{p-1} \| u - v \| \), where \(KM^{p-1} < 1 \), by (3.2). Therefore, \(\mathcal{G}_y \) is a strict contraction on \(B_M \). Thus, \(\mathcal{G}_y \) has a fixed point. The continuous dependence follows directly from (3.5).
Lemma 3.2. Let \(p > 1, \beta > 0, a, \sigma \in \mathbb{R} \) and \(\alpha = (\beta - \sigma)/(p - 1) + a \). Assume that \(0 < \alpha + (p - 1)a < \sigma \). Then,

(i) \(\beta + (p - 1)a = \sigma + (p - 1)\alpha \).

(ii) \(\beta + (p - 1)a > \sigma, \beta > p\alpha \) and \(\beta + (p - 1)a > \sigma - \alpha \).

Proof. It follows directly since

\[
\beta + (p - 1)a - \sigma = (p - 1)\alpha > 0
\]

\[
\beta - p\alpha = -(p - 1)a + \sigma - \alpha > 0
\]

\[
\beta + (p - 1)a - \sigma - \alpha = p\alpha > 0.
\]

Proof of the Theorem 1.4. Let \(u_0 \in BE^\alpha \) and

\[
X = L^\infty((0, \infty); BE^\alpha) \cap \left\{ u : (0, \infty) \rightarrow E; \sup_{t > 0} t^{\alpha/\beta} \| u(t) \|_E < \infty \right\}
\]

with the norm \(\| u \|_X = \sup_{t > 0} \| u(t) \|_{BE^\alpha} + \sup_{t > 0} t^{\alpha/\beta} \| u(t) \|_E \). For \(u_i \in E, i = 1, 2, \ldots, p \) set

\[
y = S_\beta(t)u_0 \text{ and } A(u_1, \ldots, u_p)(t) = \int_0^t S_\beta(t - \tau)B(u(\tau), \ldots, u(\tau))d\tau.
\]

(3.6)

Since \(E \in X \), by Proposition 2.9, \(BE^\alpha \) is a Banach space. Therefore, \(X \) is also a Banach space. From Proposition 2.11 and Lemma 3.2

\[
t^\alpha \| A(u_1, \ldots, u_p)(t) \|_E \leq t^\alpha \int_0^t C_1(t - \tau) \left(\prod_{i=1}^p \| u_i(\tau) \|_{BE^\alpha} \right) d\tau
\]

\[
\leq t^\alpha \left(\int_0^t C_1(t - \tau) \left(\prod_{i=1}^p \| u_i(\tau) \|_E \right) d\tau \right) \leq t^{\alpha/(\alpha - \beta)} \left(\prod_{i=1}^p \| u_i \|_X \right)
\]

\[
= K_1 \prod_{i=1}^p \| u_i \|_X,
\]

(3.7)

where

\[
K_1 = \int_0^1 C_1(1 - \tau) \left(\prod_{i=1}^p \| u_i \|_X \right) d\tau.
\]

(3.8)

Similarly, by Proposition 2.11 and the definition of \(\alpha \) we obtain

\[
\| A(u_1, \ldots, u_p) \|_{BE^\alpha} \leq C_2 \int_0^t (t - \tau) \left(\prod_{i=1}^p \| u_i(\tau) \|_{BE^\alpha} \right) d\tau
\]

\[
\leq C_2 t^{\alpha/(\alpha - \beta)} \left(\prod_{i=1}^p \| u_i \|_X \right) \int_0^1 (1 - \tau) \left(\prod_{i=1}^p \| u_i \|_X \right) d\tau
\]

(3.9)

\[
= K_2 \prod_{i=1}^p \| u_i \|_X
\]
where
\[K_2 = \int_0^1 C_2(1 - \tau)^{-\frac{(p-1)a-\sigma}{\beta}} \tau^{-\frac{p\alpha}{\beta}} d\tau. \] (3.10)
Lemma 3.2 provides that \(K_1, K_2 < \infty \). Hence, taking
\[K = K_1 + K_2 \] (3.11)
we conclude that \(\|A(u_1, ..., u_p)\|_X \leq K \prod_{i=1}^p \|u_i\|_X \). From Lemma 3.1 the global existence and continuous dependence follows.

To show, the asymptotic behavior we argue as [12]. Arguing as (3.7) and using (3.5) it is possible to conclude
\[
t^\alpha/\beta \|u(t) - v(t)\|_E \leq t^\alpha/\beta \|S_\beta(t)(u_0 - v_0)\|_E + C_1 \int_0^t (t - \tau)^{(p-1)a-\sigma-\sigma/\beta} \left(\sum_{k=0}^{p-1} \|u\|_{BE}^{p-1-k} \|v\|_E^{k} \right) \|u(\tau) - v(\tau)\|_E d\tau
\]
\[
\leq C_1 p M^{p-1} \int_0^1 (1 - \tau)^{(p-1)a-\sigma-\sigma/\beta} \tau^{-\frac{p\alpha}{\beta}} \left[(\tau t)^{\alpha/\beta} \|u(\tau t) - v(\tau t)\|_E \right] d\tau.
\]
Similarly,
\[
t^\alpha/\beta \|u(t) - v(t) - S_\beta(t)(u_0 - v_0)\|_E \leq C_1 p M^{p-1} \int_0^1 (1 - \tau)^{(p-1)a-\sigma-\sigma/\beta} \tau^{-\frac{p\alpha}{\beta}} \left[(\tau t)^{\alpha/\beta} \|u(\tau t) - v(\tau t)\|_E \right] d\tau.
\]
From these estimates and Lemma 6.1 of [12] the conclusion follows.

Proof of Theorem 1.3 Let \(u_0 \in BE^\alpha \) and
\[X_T = L^\infty((0, T); BE^\alpha) \cap \left\{ u : (0, T) \to E; \sup_{0 < t < T} t^\alpha/\beta \|u(t)\|_E < \infty \right\} \]
with the norm \(\|u\| = \sup_{0 < t < T} \|u(t)\|_{BE^\alpha} + \sup_{0 < t < T} t^\alpha/\beta \|u(t)\|_E \). For \(u_i \in E, i = 1, 2, ..., p \) set \(y \) and \(A \) given by (3.6). Arguing as in the derivation of (3.7) we obtain
\[
t^\alpha/\beta \|A(u_1, ..., u_p)\|_E \leq K_1 T^{1+\frac{(p-1)(a-\alpha)-\sigma}{\beta}} \prod_{i=1}^p \|u_i\|_X,
\]
where \(K_1 \) is given by (3.8). Similarly, arguing as in the derivation of (3.9) we conclude
\[
\|A(u_1, ..., u_p)\|_{BE^\alpha} \leq K_2 T^{1+\frac{(p-1)(a-\alpha)-\sigma}{\beta}} \prod_{i=1}^p \|u_i\|_X,
\]
where \(K_2 \) is given by (3.10). Hypotheses guarantee that constants \(K_1, K_2 \) are finite and that \(1 + [(p-1)(a-\alpha) - \sigma]/\beta > 0 \). Thus, we have \(\|A(u_1, ..., u_p)\|_a \leq K \prod_{i=1}^p \|u_i\|_X \), with \(K = (K_1 + K_2) T^{1+\frac{(p-1)(a-\alpha)-\sigma}{\beta}} \). From Lemma 3.1 we have the desired result.
4. Global existence for system (1.11)

We extend the concept of adequate space for problem (1.1) given in subsection 2.3. Let E and F be Banach spaces and let B_1 and B_2 be q–linear form and p–linear form respectively. We say that $E \times F$ is adequate to system (1.10), if

(i) The inclusions $\mathcal{S} \subset E, F \subset \mathcal{S}'$ are continuous.
(ii) The norms $\| \cdot \|_E$ and $\| \cdot \|_F$ are invariants for translations.
(iii) $B_1(v_1, ..., v_q), B_2(u_1, ..., u_p) \in \mathcal{S}'$, for every $u_i \in E$, $i = 1, ..., p$ and $v_j \in F$, $j = 1, ..., q$, and

$$
\|S_\beta(t)B_1(v_1, ..., v_q)\|_E \leq \omega_1(t) \prod_{i=1}^{q} \|v_i\|_F,
$$

$$
\|S_\beta(t)B_2(u_1, ..., u_p)\|_F \leq \omega_2(t) \prod_{i=1}^{p} \|u_i\|_E
$$

where $\omega_1, \omega_2 : (0, +\infty) \rightarrow (0, +\infty)$ so that $\omega_1, \omega_2 \in L^1(0, T)$, for every $0 < T < +\infty$.

If we consider $B_1(v_1, ..., v_q) = u_1u_2 \cdots u_p$ and $B_2(u_1, ..., u_p) = u_1u_2 \cdots u_p$, then the spaces $L^r(\mathbb{R}^n) \times L^s(\mathbb{R}^n)$ and $L^{(r,s_1)}(\mathbb{R}^n) \times L^{(s,s_1)}(\mathbb{R}^n)$, with $s = s(q + 1)/(p + 1) > n(pq - 1)/(\beta + 1)$, are adequate to system (1.10). This fact, follows from the following estimates

$$
\|S_\beta(t)B_1(v_1, v_2, ..., v_q)\|_r \leq Ct^{-\frac{\sigma_1(q - 1)}{\beta}} \|v_1v_2 \cdots v_q\|_q
$$

$$
\leq Ct^{-\frac{\sigma_1(q - 1)}{\beta}} \prod_{i=1}^{q} \|v_i\|_s,
$$

$$
\|S_\beta(t)B_1(v_1, v_2, ..., v_q)\|_{(r,s_1)} \leq Ct^{-\frac{\sigma_1(q - 1)}{\beta}} \|v_1v_2 \cdots v_q\|_{(s_1,s_1)}
$$

$$
\leq Ct^{-\frac{\sigma_1(q - 1)}{\beta}} \prod_{i=1}^{q} \|v_i\|_{(s,s_1)}.
$$

Lemma 4.1. Let B_1 and B_2 be q and p–linear forms with scaling degree σ_1 and σ_2 respectively. Assume that E and F are Banach spaces with scaling degree α and β respectively and that $E \times F$ is adequate to system (1.10). Then,

(i) There exist positive constants C_1 and C_2 such that

$$
\|S_\beta(t)B_1(v_1, ..., v_q)\|_E \leq C_1t^{(q\beta-a-\sigma_1)/\beta} \prod_{i=1}^{q} \|v_i\|_F
$$

$$
\|S_\beta(t)B_2(u_1, ..., u_p)\|_E \leq C_2t^{(p\beta-b-\sigma_2)/\beta} \prod_{i=1}^{p} \|u_i\|_E
$$

(ii) If $\alpha_1, \alpha_2 > 0$ and

$$
\alpha_1 + q\beta \leq a + \sigma_1, \alpha_2 + p\beta \leq b + \sigma_2.
$$
Then there exist positive constants C_1 and C_2 such that
\[
\|S_\beta(t)B_1(v_1, \ldots, v_q)\|_{BE^{\alpha_1}} \leq C_1 t^{(\alpha_1-a+q b-\sigma_1)/\beta} \prod_{i=1}^q \|v_i\|_F
\]
\[
\|S_\beta(t)B_2(u_1, \ldots, u_p)\|_{BE^{\alpha_2}} \leq C_2 t^{(\alpha_2-b+p a-\sigma_2)/\beta} \prod_{i=1}^p \|u_i\|_E
\]

Proof. The proof follows the same arguments used in the proof of Proposition 2.11.

We need also of the following technical result.

Lemma 4.2. Let E and F be Banach spaces. Consider the system
\[
\begin{align*}
 x &= x_0 + B_1(y, \ldots, y) \\
 y &= y_0 + B_2(x, \ldots, x)
\end{align*}
\]
where $B_1 : F \times \cdots \times F \to E$ and $B_2 : E \times \cdots \times E \to F$ are a p–linear and a q–linear forms respectively. Assume that there exist $K_1, K_2 > 0$ such that
\[
\|A_1(y_1, \ldots, y_q)\|_E \leq K_1 \prod_{i=1}^q \|y_i\|_F
\]
\[
\|A_2(x_1, \ldots, x_p)\|_F \leq K_2 \prod_{i=1}^p \|x_i\|_E
\]

Let $M, R > 0$ verifying
\[
R + qM^q K_1 + pM^p K_2 < M.
\]

Then, for every $(x_0, y_0) \in E \times F$ so that $\|(x_0, y_0)\|_{E \times F} = \|x_0\|_E + \|y_0\|_F \leq R$, there exists a unique solution $(x, y) \in E \times F$ for the system \((4.1)\) such that $\|(x, y)\|_{E \times F} \leq M$. Moreover, if $\|(\bar{x}, \bar{y})\|_{E \times F} \leq R$ and (\bar{x}, \bar{y}) is the corresponding solution of \((4.1)\) with $\|(\bar{x}, \bar{y})\|_{E \times F} \leq M$, then
\[
\|(x, y) - (\bar{x}, \bar{y})\|_{E \times F} \leq [1 - (qM^{q-1} K_1 + pM^{p-1} K_2)]^{-1} \|(x_0, y_0) - (\bar{x}_0, \bar{y}_0)\|_{E \times F}.
\]

Proof. Set $B_M = \{(x, y) \in E \times F; \|(x, y)\|_{E \times F} = \|x\|_E + \|y\|_F \leq M\}$. Define $G_{(x_0, y_0)} : B_M \to E \times F$ by $G_{(x_0, y_0)}(x, y) = (F_{x_0}(x, y), G_{y_0}(x, y))$, with
\[
\begin{align*}
 F_{x_0}(x, y) &= x_0 + A_1(y, \ldots, y), \\
 G_{y_0}(x, y) &= y_0 + A_2(x, \ldots, x).
\end{align*}
\]

Since
\[
\|A_1(y, \ldots, y) - A_1(\bar{y}, \ldots, \bar{y})\|_E \leq K_1 \left(\sum_{k=0}^{q-1} \|y\|_F^{q-1-k} \|\bar{y}\|_F^k \right) \|y - \bar{y}\|_F,
\]
\[
\|A_2(x, \ldots, x) - A_2(\bar{x}, \ldots, \bar{x})\|_F \leq K_2 \left(\sum_{k=0}^{p-1} \|x\|_E^{p-1-k} \|\bar{x}\|_E^k \right) \|x - \bar{x}\|_E,
\]
we obtain
\[
\|F_{x_0}(x, y) - F_{\bar{x}_0}(\bar{x}, \bar{y})\|_E \leq \|x_0 - \bar{x}_0\|_E + qM^{q-1} K_1 \|y - \bar{y}\|_F,
\]
\[
\|G_{y_0}(x, y) - G_{\bar{y}_0}(\bar{x}, \bar{y})\|_F \leq \|y_0 - \bar{y}_0\|_F + pM^{p-1} K_2 \|x - \bar{x}\|_E.
\]
Consider \(X, Y\), \(x \in X\) and \(y \in Y\). The similar argument can be used to show the other inequalities.

Proof.

Follows directly since

\[
\beta > q\alpha
\]

Thus, for \((x_0, y_0) = (\bar{x}, \bar{y})\) we have

\[
\|G(x_0, y_0)(x, y) - G(x_0, y_0)(\bar{x}, \bar{y})\|_{E \times F} \leq \|G(x_0, y_0)(x, y) - (\bar{x}, \bar{y})\|_{E \times F}.
\]

Therefore, from inequality (4.4), \(G(x_0, y_0)\) is a strict contraction.

On the other hand, for \((\bar{x}, \bar{y}) = (0, 0)\)

\[
\|G(x_0, y_0)(x, y)\|_{E \times F} \leq \|G(x_0, y_0)(x, y)\|_{E \times F} + \{qM^q - 1K_1 + pM^p - 1K_2\} \|((x, y) - (\bar{x}, \bar{y}))\|_{E \times F} \leq R + qM^qK_1 + pM^pK_2 \leq M.
\]

So, \(G(x_0, y_0)(B_M) \subseteq B_M\) and the existence follows by fixed point theorem.

Continuous dependence follows from (4.4).

Lemma 4.3. Let \(p, q \geq 1\) such that \(pq > 1\), \(\beta > 0, a, b, \sigma_1, \sigma_2 \in \mathbb{R}\). Set

\[
\alpha_1 = \frac{\beta(q + 1)}{pq - 1} + a - \frac{\sigma_1 + q\sigma_2}{pq - 1}, \quad \alpha_2 = \frac{\beta(p + 1)}{pq - 1} + b - \frac{\sigma_2 + p\sigma_1}{pq - 1}.
\]

Suppose that

(i) \(\alpha_1, \alpha_2 > 0\).

(ii) \(\alpha_1 + qb < a + \sigma_1, \alpha_2 + pa < b + \sigma_2\).

(iii) \(\alpha_1 < q\alpha_2, \alpha_2 < p\alpha_1\).

Then,

(i) \(\beta - a + \alpha_1 - \alpha_2q = -qb + \sigma_1, \beta - b - \alpha_1p + \alpha_2 = -pa + \sigma_2\).

(ii) \(\beta - a > -qb + \sigma_1, \beta - b > -pa + \sigma_2\).

(iii) \(\beta > q\alpha_2, \beta > p\alpha_1\).

(iv) \(\beta + \alpha_1 - a > -qb + \sigma_1, \beta + \alpha_2 - b > -pa + \sigma_2\).

Proof.

Follows directly since

\[
\beta - a + qb - \sigma_1 = q\alpha_2 - \alpha_1
\]

\[
\beta - q\alpha_2 = -\alpha_1 + a - qb + \sigma_1
\]

\[
\beta + \alpha_1 - a + qb - \sigma_1 = q\alpha_2.
\]

Similar argument can be used to show the other inequalities.

Proof of Theorem 1.6 Let \(\alpha_1, \alpha_2\) defined by (1.12), and let \((u_0, v_0) \in BE^{\alpha_1} \times BF^{\alpha_2}\). Set \(x_0 = S_\beta(t)u_0, y_0 = S_\beta(t)v_0\) and

\[
A_1(v_1, \ldots, v_q)(t) = \int_0^t S_\beta(t - \tau)B_1(v_1(\tau), \ldots, v_q(\tau))d\tau,
\]

\[
A_2(u_1, \ldots, u_p)(t) = \int_0^t S_\beta(t - \tau)B_2(u_1(\tau), \ldots, u_p(\tau))d\tau.
\]

Consider \(X, Y\) given by

\[
X = \left\{ u : (0, +\infty) \to E; \|u\|_X = \sup_{t > 0} t^{\alpha_1/\beta} \|u(t)\|_E + \sup_{t > 0} \|u(t)\|_{BE^{\alpha_1}} \leq +\infty \right\},
\]

\[
Y = \left\{ v : (0, +\infty) \to F; \|v\|_2 = \sup_{t > 0} t^{\alpha_2/\beta} \|v(t)\|_F + \sup_{t > 0} \|v(t)\|_{BF^{\alpha_2}} \leq +\infty \right\}.
\]
Since $E, F \in X$, from Proposition \ref{prop:Banach_spaces}, we conclude that BE^{α_1} and BF^{α_2} are Banach spaces. Therefore, $(X, \| \cdot \|_1)$ and $(Y, \| \cdot \|_2)$ are Banach spaces. Thus, $X \times Y$ is also a Banach space with the norm

$$
\|(u, v)\|_{X \times Y} := \|u\|_X + \|v\|_Y.
$$

Since $\alpha_1 + qa < a + \sigma_1$ and $\alpha_2 + pa \leq b + \sigma_2$, Lemma \ref{lemma:4.1} can be used. Note that

$$
\beta + \alpha_1 + qa - a - \sigma_1 - \alpha_2 q = 0, \quad \beta + \alpha_2 + pa - b - \sigma_2 - p \alpha_1 = 0.
$$

By Lemma \ref{lemma:4.1}(i) we have

$$
t^{\alpha_1/\beta} \|A_1(v_1, ..., v_q)(t)\|_E \leq K_1 \left(\prod_{i=1}^{q} \|v_i\|_2 \right),
$$

(4.5)

$$
t^{\alpha_2/\beta} \|A_2(u_1, ..., u_p)(t)\|_F \leq K_2 \left(\prod_{i=1}^{p} \|u_i\|_1 \right),
$$

(4.6)

where

$$
K_1 = C_1 \int_0^1 (1-s)^{\frac{q a - a - \sigma_1}{\beta}} s^{-\frac{\alpha_2}{\beta}} ds < +\infty,
$$

$$
K_2 = C_2 \int_0^1 (1-s)^{\frac{p a - b - \sigma_2}{\beta}} s^{-\frac{p \alpha_1}{\beta}} ds < +\infty.
$$

By Lemma \ref{lemma:4.1}(ii) we have

$$
\|A_1(v_1, ..., v_q)(t)\|_{BE^{\alpha_1}} \leq \bar{K}_1 \left(\prod_{i=1}^{q} \|v_i\|_2 \right),
$$

(4.7)

$$
\|A_2(u_1, ..., u_p)(t)\|_{BF^{\alpha_2}} \leq \bar{K}_2 \left(\prod_{i=1}^{p} \|u_i\|_1 \right),
$$

(4.8)

where

$$
\bar{K}_1 = C_1 \int_0^1 (1-s)^{\frac{\alpha_1 + qa - a - \sigma_1}{\beta}} s^{-\frac{\alpha_2}{\beta}} ds,
$$

$$
\bar{K}_2 = C_2 \int_0^1 (1-s)^{\frac{\alpha_2 + pa - b - \sigma_2}{\beta}} s^{-\frac{p \alpha_1}{\beta}} ds,
$$

Therefore,

$$
\|A_1(v_1, ..., v_q)\|_1 \leq K'_1 \left(\prod_{i=1}^{p} \|v_i\|_2 \right),
$$

$$
\|A_2(u_1, ..., u_p)\|_2 \leq K'_2 \left(\prod_{i=1}^{p} \|u_i\|_1 \right),
$$

where $K'_i = K_i + \bar{K}_i$, $i = 1, 2$. A finiteness of $K_1, K_2, \bar{K}_1, \bar{K}_2$ are consequences of Lemma \ref{lemma:4.3}. Moreover, the right side of estimates (4.5)-(4.8) do not depend of t. Thus, the result follows from Lemma \ref{lemma:4.2}.
REFERENCES

[1] J. Aguirre, M. Escobedo and E. Zuazua, Self-similar solutions of a convection diffusion equations and related elliptic problems, Comm. Partial Differential Equations 15, 139-157 (1990).

[2] M. Ben-Artzi, P. Souplet and F. B. Weissler. The local theory for viscous Hamilton Jacobi equations in Lebesgue space, J. Math. Pures Appl. (9) 81, 343-378, (2002).

[3] J. Bergh, J. Lköstom, Interpolation Spaces, an introduction, Springer-Verlag, New York, 1976.

[4] H. Brezis and T. Cazenave, A nonlinear heat equation with singular initial data, J. Anal. Math. 68 (1996), 277-304.

[5] M. Cannone and G. Karch, About the regularized Navier-Stokes equations, J. Math. Fluid Mech. 7 (2005) 1-28.

[6] T. Cazenave and F. B. Weissler, Asymptotically self-similar global solutions of the nonlinear Schrödinger and heat equations, Math. Z. 228, 83-120, (1998).

[7] A. S. Chandrasekhar, Stochastic problems in physics and astronomy, Rev. Mod. Phys. vol.15 (1943), 1-89.

[8] M. Escobedo, M.A. Herrero, Boundedness and blow up for a semilinear reaction diffusion system, J. Differential Equations, 89 (1991), 176-202.

[9] M. Escobedo and E. Zuazua, Large time behavior for convection-diffusion equations in \mathbb{R}^N, J. Differential Equations 100, 119-161 (1991).

[10] H. Fujita, On the blowing up of solutions of the Cauchy problem for $u_t = \Delta u + u^{1+\alpha}$, J. Fac. Sci. Univ. Tokyo Sect. A Math. 16 (1966) 105-113.

[11] L. Grafakos, Modern Fourier Analysis, Ed. 2a, Springer-Verlag, New York, 2009.

[12] G. Karch, Scaling in nonlinear parabolic equations, J. Math. Anal. Appl. 234, 534-558 (1999).

[13] G. Karch, Scalling in nonlinear parabolic equations: locality versus globality

[14] A. A. Kilbas, H.M. Srivastava, J.J. Trujillo, Theory and Applications of Fractional Diferential Equations, Vol. 204 (North-Holland Mathematics Studies), 2006.

[15] C. Miao, B. Yuan, Solutions to some nonlinear parabolic equations in pseudomeasure spaces, Math. Nachr. 280 (2007) 171-186.

[16] C. Miao, B. Yuan, B. Zhang, Well-posedness of the Cauchy problem for the fractional power dissipative equations, Nonlinear Anal. 68, 461-484 (2008)

[17] C. A. Roberts, W. E. Olmstead, Blow-up in a subdiffusive medium of infinite extent. Fract. Calc. Appl. Anal. 12 (2009), no. 2, 179-194.

[18] S. Snoussi, S. Tayachi, Fred B. Weissler, Asymptotically self-similar global solutions of a semilinear parabolic equation with a nonlinear gradient term, Proc. Royal Soc. Edinburgh Sect. A., 129 (1999), 419-440.

[19] S. Snoussi, S. Tayachi, Global existence, asymptotic behavior and self-similar solutions for a class of semilinear parabolic systems, Nonlinear Analysis, 48 (2002), 13-35.

[20] S. Snoussi, S. Tayachi, Fred B. Weissler, Asymptotically self-similar global solutions of a general semilinear heat equation, Math. Ann. 321,(2001) 131-155.

[21] F. B. Weissler, semilinear evolution equations in Banach spaces, J. Funct. Anal. 32 (1979), 277-296.

[22] F. B. Weissler, Local existence and nonexistence for semilinear parabolic equations in L^p, Indiana Univ. Math. J. 29 (1980), 79-102.

[23] G. Wu, Jia Yuan, Well-posedness of the Cauchy problem for the fractional power dissipative equation in critical Besov spaces, J. Math. Anal. Appl. 340, 1326-1335 (2008).

Departamento de Matemática, Universidade Federal de Pernambuco - UFPE, 50740-540, Recife, PE, Brazil

E-mail address: miguel@mat.ufpe.br

Departamento de Matemática, Universidade Federal do Rio Grande do Norte - UFRN, 50078-970, Natal, PE, Brazil

E-mail address: paulorfss@ccet.ufrn.br