Birth weight percentiles by sex and gestational age for twins born in southern China

Huazhang Miao¹, Fei Yao¹, Yuntao Wu¹, Xiu Zhang², Rubi He³, Bing Li² & Qingguo Zhao⁴

Mean birth weight of twins is known to be lower than that of singletons, however, southern China lacks a twin-specific birth weight reference. In this paper, we use data from the Birth Certificate System in southern China, collected between January 1st 2014 and December 31st 2017 and including 161,076 twins, to calculate sex- and gestational week-specific birth weight percentiles (the 3rd, 10th, 25th, 50th, 75th, 90th, and 97th). We applied generalized additive models for location, scale and shape (GAMLSS) when calculating the birth weight percentiles, and calculated percentiles for monochorionic and dichorionic twins separately. We next used data collected between Jan 1st 2018 and Apr 30th 2018, encompassing 12,371 live births, to calculate the SGA and LGA ratios using birth weight references in Australia, South Korea and China (based on birth defects surveillance system) and birth weight percentiles calculated in this study. Compared to dichorionic twins, monochorionic twins had lower birth weights at 25 to 42 weeks of gestation. The calculated SGA and LGA ratios were relatively stable compared to the other references.

In recent years, due to the development of assisted reproductive technologies, the twin pregnancy rate continues to rise¹. Twins have higher risks of preterm birth, perinatal morbidity and mortality². Twins account for 2–4% of all infants, and the problems associated with twin pregnancies have attracted increased global attention. According to a report from the National Health and Planning Commission in China, the twin pregnancy rate increased by 4.1% in 2016³. Chorionicity complicates twin health further. The risk of adverse pregnancy outcomes (e.g. congenital anomalies, growth restrictions, perinatal death) and complications of fetus during pregnancy (e.g. twin-to-twin transfusion syndrome) is higher among monochorionic twins than among dichoronic twins⁴. Therefore, chorionicity must be taken into account when establishing birth weight references for twins.

Birth weight is still the most commonly used indicator of fetal development. Infants are commonly defined as SGA or LGA if their birth weight percentile falls below the 10th percentile or above the 90th percentile of the reference standard⁵. SGA and LGA are associated with increased perinatal and infant mortality and morbidity, as well as long-term health problems. Twin birth weights were consistently lower than those of singletons⁶. In addition, multiple pregnancies are a risk factor associated with SGA⁷. Therefore, proper use of birth weights reference percentiles to classify birth weight is of great significance for clinical work and research.

Several countries, including Japan, Australia, South Korea, south India, Norway and the United States of America have developed population-based twin birth weight references to assist in accurately evaluating the growth of twins⁸-¹³. Findings in these countries have demonstrated the importance of the development of national birth weight standards for twins. Researchers have suggested that gestational age-specific birth weight reference percentiles should be updated every 5–10 years¹⁴. However, there is still no reference standard for twin birth weights in southern China.

¹Department of Healthcare, Guangdong Women and Children Hospital, No.521 Xingnan Road, Guangzhou, Guangdong, 511442, China. ²Department of Physical Examination, Guangdong Women and Children Hospital, No.521 Xingnan Road, Guangzhou, Guangdong, 511442, China. ³Department of Obstetrics, Guangdong Women and Children Hospital, No.521 Xingnan Road, Guangzhou, Guangdong, 511442, China. ⁴Department of Obstetrics, Guangdong Women and Children Hospital, No.521 Xingnan Road, Guangzhou, Guangdong, 511442, China. ⁵Epidemiological Research Office of Key Laboratory of Male Reproduction and Genetics (National Health and Family Planning Commission), Family Planning Research Institute of Guangdong Province, No.17 Meidong Road, Guangzhou, Guangdong, 510600, China. Huazhang Miao, Fei Yao and Yuntao Wu contributed equally. Correspondence and requests for materials should be addressed to B.L. (email: pumpli587@163.com) or Q.Z. (email: zqgfrost@126.com)
Monochorionic Dichorionic Total* Monochorionic Dichorionic Total*
Number of mothers 17384 8830 44130 15946 7952 33330 16782 83940 83940
Maternal age (years)
≤ 20 835(4.8) 200(2.3) 1035(2.3) 1408(3.5) 375(2.2) 1783(3.5) 2731(3.1)
21–25 4383(25.2) 1482(16.8) 5865(26.6) 7668(19.3) 2543(6.3) 10211(23.8) 24051(28.7)
26–30 6543(37.6) 3459(39.2) 10002(45.2) 15026(37.8) 12465(31.5) 27491(62.3) 31454(37.5)
31–35 4038(23.2) 2669(30.2) 6707(30.1) 11199(28.1) 7622(19.9) 18821(41.4) 24051(28.7)
36–40 1344(7.7) 880(10.0) 2224(9.9) 2543(7.6) 1674(10.0) 4217(9.4) 8093(9.6)
≥ 46 213(1.2) 112(1.3) 325(1.4) 211(1.3) 211(1.3) 422(0.9) 633(0.8)
Maternal ethnicity
Han 16816(96.7) 8469(95.9) 25285(95.0) 15434(96.8) 7666(96.4) 37857(95.1) 32250(96.8) 16135(96.1) 79716(95.0)
Minorities 568(3.3) 361(4.1) 929(3.6) 512(3.2) 286(3.6) 1949(4.9) 1080(3.2) 647(3.9) 4224(5.0)
Parity
Nulliparous 3951(22.7) 2373(26.9) 6324(29.1) 3806(23.9) 2140(26.9) 10710(26.9) 7757(23.3) 4513(26.9) 22172(26.4)
Parous 13433(77.3) 6457(73.1) 20220(88.9) 12140(76.1) 5812(73.1) 18144(45.1) 12269(73.1) 9839(58.6) 22172(26.4)
Method of delivery
Caesarean section 9912(57.0) 5215(59.1) 15127(54.7) 8794(55.2) 4624(58.2) 13418(34.0) 9839(58.6) 49684(59.2)
Viginal 3297(19.0) 1095(12.4) 4392(15.5) 3440(21.6) 1028(12.9) 4468(11.4) 2123(12.7) 15654(18.6)
Un-know 34338(19.0) 2520(28.5) 36858(14.8) 3712(23.3) 2300(28.9) 6012(15.6) 4820(28.7) 18602(22.2)
Gestational age (weeks)
25–27 102(0.3) 68(0.4) 170(0.4) 45(0.1) 46(0.3) 91(0.2) 114(0.4) 610(0.4)
28–32 1976(5.8) 940(5.6) 2916(6.1) 1454(4.6) 833(5.4) 2287(5.5) 7757(23.3) 4513(26.9) 22172(26.4)
33–36 13160(38.3) 6347(38.0) 19507(41.6) 11415(36.1) 5760(37.2) 17175(43.3) 12087(37.5) 64701(40.2)
37–42 19100(55.6) 9365(56.0) 28465(52.5) 18653(59.1) 8867(57.3) 27520(70.8) 18232(56.6) 10176(61.0)
Birth weight (g)
< 1500 1094(3.2) 481(2.9) 1575(3.6) 599(3.5) 2926(3.5) 8922(2.2) 11406(36.1) 5760(37.2) 27538(38.5)
1500–1999 3852(11.2) 1525(9.1) 5377(10.5) 4933(8.5) 20893(8.2) 61566(8.2) 25360(38.5) 12776(39.7) 61566(38.2)
≥ 2000 3545(10.3) 2387(14.3) 5932(10.5) 1947(6.2) 1330(8.6) 5617(7.3) 3717(11.5) 15402(9.6)

Table 1. Maternal and neonatal characteristics of twin births in this study (2014–2017). *Total: include monochorionic, dichorionic, and un-know chorionic placentation.

The current study aims to construct the sex- and gestational age (week)-specific birth weight reference percentiles for twins born in southern China, stratified by placental chorionicity (monochorionic and dichorionic placentation).

Materials and Methods
All birth data were obtained from the Guangdong Provincial Birth Certificate System between Jan 1st, 2014 and Dec 31st, 2017. The system covers more than 1900 medical institutions and collects all information about mothers and infants. After birth, maternity medical workers place newborn infants on electronic scales to obtain stable weight data (weighing accuracy is within 1 g). In some cases, health care attendants or midwives fill in the newborns’ information in the regional maternal and child information system. The system sets logic correction to ensure that the entered birth weight falls within a feasible range. Finally, regional maternal and child information are uploaded to the Guangdong Provincial Birth Certificate System. The Chief of Midwives and the Chief of Physicians in hospitals then confirm the information entered into the data system. Before the birth certificate is issued, the Department of Medical Administration and parents are also asked to confirm the birth information. All of the information is verified by medical professionals. The birth registry database includes the child’s date of birth, gestational age (week) at birth, birth weight, infant sex, parents’ ages, registered residence, method of delivery and placenta chorionicity, etc. From the database, we obtained 161,134 cases of twins. We excluded still-births (48 cases) and deaths within seven days (10 cases), which together accounted for about 0.04% (58 cases) in all twins. The final analytical sample included 161,076 twin births. Because this study is based on administrative data collected from a large population, it was not possible to obtain informed consents; however, the study was reviewed and approved by the Ethics Committee of Guangdong Women and Children Hospital.

We analyzed the raw data of all twin newborns (40,090 in 2014, 38,285 in 2015, 42,241 in 2016 and 40,460 in 2017). The gestational age (week) was determined by combining mother-reported last menstrual period,
Table 2. Smoothed percentiles for birth weight (g) of male and female twins.

GA (weeks)	Male twin babies smoothed percentiles	Female twin babies smoothed percentiles																			
	N	C3	C10	C25	C50	C75	C90	Mean	SD	N	C3	C10	C25	C50	C75	C90	Mean	SD			
25	34	670	761	837	926	1011	1077	1150	924	214	35	632	689	745	805	875	926	975	813	231	
26	117	793	832	918	1017	1112	1184	1262	1021	238	75	696	765	833	904	986	1046	1105	901	241	
27	221	794	897	1004	1114	1208	1298	1372	1123	256	130	763	847	927	1012	1106	1177	1247	1008	248	
28	421	878	993	1099	1219	1322	1410	1524	1232	273	332	833	933	1027	1125	1232	1314	1395	1124	293	
29	597	962	1087	1203	1333	1443	1551	1692	1340	292	433	908	1026	1135	1247	1367	1462	1554	1249	290	
30	863	1069	1220	1360	1492	1616	1733	1848	1492	324	372	799	911	1131	1258	1388	1523	1632	1740	1385	322
31	1193	1176	1337	1492	1641	1794	1918	2042	1648	346	489	1084	1250	1396	1544	1696	1821	1947	1549	333	
32	2891	3130	1494	1685	1816	1992	2129	2257	1811	369	416	1167	1192	1378	1540	1704	1871	2030	2151	1705	360
33	3146	1439	1628	1810	1992	2132	2263	2464	1968	382	450	1867	1748	1964	2071	2035	2202	2355	1847	379	
34	5451	1567	1779	1971	2168	2352	2510	2646	2175	400	4685	1648	1674	1858	2047	2229	2399	2561	2035	396	
35	8745	1737	1952	2153	2360	2555	2722	2880	2364	423	7767	1639	1843	2032	2229	2430	2597	2763	2325	404	
36	17097	1910	2123	2324	2534	2732	2901	3062	2527	421	15071	1811	2011	2203	2406	2614	2787	2955	2410	412	
37	24503	2036	2249	2451	2663	2863	3036	3200	2674	427	22086	1938	2138	2332	2541	2755	2884	3057	2539	417	
38	11127	2086	2311	2524	2749	2961	3145	3319	2745	466	11003	1993	2199	2403	2624	2852	2961	3146	2618	446	
39	4420	2097	2330	2565	2771	3015	3162	3362	2801	532	4717	2002	2225	2448	2691	2892	3015	3222	2695	507	
40	3810	2090	2322	2588	2785	3077	3283	3467	2792	535	4055	1991	2234	2479	2728	2928	3069	3289	2732	516	
41	344	2084	2314	2608	2803	3010	3334	3532	2820	540	376	1978	2229	2493	2747	2964	3097	3327	2752	556	
42	56	2080	2302	2617	2825	3136	3539	3585	2832	535	42	1969	2211	2489	2578	2987	3120	3371	2761	540	

ultrasound examination, and postnatal gestational age (week) assessment. The chorionicity of the placenta was judged by ultrasound data collected during the first trimester (about 6–7 weeks of gestation) and confirmed by data collected during examination of the placenta after birth.

Birth weight percentiles were created by using the Lambda Mu Sigma (LMS) method, which were fit using the GAMLSS package, based on the assumption that birth weight had a Box–Cox Cole and Green (BCCG) distribution.\(^\text{14}\) The GAMLSS method allows modeling of various kurtosis asymmetric distribution and the estimation of smooth percentiles to establish birth weight percentile curves for newborns of both genders. According to Cole's report,\(^\text{16}\) a sample size of n > 1000 is needed to use the GAMLSS technique to fit a curve. The Schwarz Bayesian criterion, which entails stricter curve smoothing, can be used to judge the pros and cons of the model, as well as to ensure the smoothness and accuracy of the model. GAMLSS is based on the LMS method with a specific distribution of \(\mu(t,\gamma,\tau)\). We used Box-Cox t (BCT) to model birth weight, a method that combines Box-Cox-Cole-Green (BCCG) with the Box-Cox-power-exponential (BCPE) distribution. Note that we take into account the skewness and kurtosis of the data to express the value of the predictor. In addition, we made the model residuals better.
modified and the shape of the curve tends to be smoother. Model selection was based on the generalized Akaike Information Standard (G-AIC). That is, we selected the model with the smallest G-AIC value. The smoothed data were represented by birth weight percentile curves. The curves appeared in intervals of one gestational week. We estimated mean birth weights and corresponding standard deviations for twins at the 3rd, 5th, 10th, 25th, 50th, 75th, 90th, 95th, and 97th percentiles from 25 to 42 completed weeks based on the smoothed, estimated curves. The percentiles were estimated separately by infant sex (male and female) and by chorionicity; SGA and LGA were defined as birth weights below the 10th or above the 90th percentile values at a given sex- and gestational week, respectively.

Next, we used twin birth weight data collected between Jan 1st, 2018 and Apr 30st, 2018, encompassing 12,371 twin births, to verify the reliability of the four standards. We accomplished this by calculating the SGA ratio and the LGA ratio according to the standards’ 10th and 90th percentile values. If standards are reliable, the gestational age (week)-specific SGA and LGA ratios should fluctuate around 10%. We also compared the SGA and LGA ratios we generated using birth weight references from Australia, South Korea and China (established based on a birth defects surveillance system). Since birth weight may differ by race and ethnicity, the birth weight standards from other countries may differ from those we produced. Moreover, given that birth weights in China may have changed since the implementation of the two-child policy in China in 2016, previously produced birth weight standards in China may be outdated. In both cases, this could result in inaccuracies in the classification of infants as SGA or LGA.

The GAMLLS package (version 5.0.6) for R statistical software (version 3.4.2) was used for analysis.

Results

As showed in Table 1, a total of 83,940 pregnant women and 161,076 twin births included in analysis. Of the pregnant women, 55,505 (66.2%) were 34-36 years old and 2.0% were above age 40; 79,716 (95.0%) mothers were members of the Han ethnic group and 61,768 (73.6%) mothers were multipara. Vaginal delivery and cesarean section delivery accounted for 18.6% and 59.2% of all births respectively, while the remaining delivery modes were unclear. Of the twin births, 84,208 (52.3%) were male twins and 76868 (47.7%) were female twins. Of the 98,111 twin births which chorionic placentalation were known, 34,338 were monochorionic male twins, 31,567 were monochorionic female twins, 16,720 were dichorionic male twins and 15,486 were dichorionic female twins. The mean birth weights and associated standard deviations (SD) for male twins with monochorionic and dichorionic placentalation were (2436 ± 453) g and (2506 ± 480) g, respectively. While the mean birth weights and associated standard deviations (SD) of female twins with monochorionic and dichorionic placentalation were (2361 ± 423) g and (2400 ± 459) g, respectively. Premature twins born at 28–36 weeks and term twins born at ≥37 weeks accounted for 45.9% and 53.7% of all twins, respectively. Low birth weight twin births (birth weight <2500 g) and normal birth weight twin births (birth weight ≥2500 g) accounted for 52.2% and 47.8% of all twins, respectively.

Table 2 displays smoothed percentiles for birth weights by gestational age (week) for male and female twins. We next grouped all monochorionic twins based on gestational age (week) and present the resulting data at the 3rd, 10th, 25th, 50th, 75th, 90th, and 97th percentiles in Table 3. Dichorionic twins were plotted in the same way, with Table 4 displaying smoothed percentiles for birth weights (in grams) of dichorionic male twins and dichorionic female twins. As the gestational age (week) increases, the growth curves for various percentiles become smoother and increasingly steadily. In the 10th, 50th, and 90th percentile graphs of monochorionic twins and dichorionic twins, male twins showed higher BWs than females in the total infant graphs at each GA. Twins showed the most

Table 4. Smoothed percentiles for birth weight (g) of dichorionic male and female twins.
weight gain at 34–35 weeks, with growth slowing after 38 weeks (Fig. 1). Table 4 provides the sex-specific proportions of births at 25–42 gestational weeks.

Table 5 provides the SGA and LGA ratios of four standards. The curves showing the incidence of SGA at different gestational ages were used to produce criteria, which were then compared to the previous criteria in China, as well as the criteria from Australia and South Korea (Fig. 2). Since Australia and South Korea’s standards only cover gestational ages ranging from 25–40 weeks, we only use these references to calculate SGA and LGA at 25–40 weeks. Moreover, the China birth defects surveillance system standards only cover gestational ages between 28–42 weeks. As a result, we only use this reference to calculate SGA and LGA at 28–42 weeks. As expected, the thresholds derived from Australia standards captured a greater proportion of SGA births (45.9%) in 40 gestational age (week), while included only 4.1% in 28 gestational age (week) among the gestation ranges.

Figure 1. Smoothed percentiles of birth weight (gms) by gestational weeks for: (A) overall male twins; (B) overall female twins; (C) monochorionic male twins; (D) monochorionic female twins; (E) dichorionic male twins; and (F) dichorionic female twins.
in their research dataset. On the other hand, the thresholds derived from South Korea standards below the 10th and above the 90th percentile across all gestational age (week) categories were from 3.3% to 37.9%. The thresholds derived from China birth defects surveillance system standards captured a greater proportion of LGA births (46.7% in 41 gestational age (week)), while included only 6.7% (40 gestational age (week)) within the gestation ranges in their research dataset. In our research, the 10th and 90th-percentile proportions of birth weight for gestational week which got by Birth weight percentiles of southern China were relatively stable. The maximum value was found in SGA of 27 and 41 gestational age (week) (13.3%), while the minimum value is found in LGA of 27 gestational age (week) (6.7%).

Discussion

In this study, we constructed new birth weight percentage curves for twins born in southern China. We have estimated percentage curves separately by chorionicity in order to account for chorionic membranes during twin births. Our comparison of percentile curves by chorionicity showed that birth weights of dichorionic twins were higher than monochorionic twins at 25 to 42 weeks of gestation. This finding is consistent with research conducted in south India and the US. The low birth weight of monochorinic twins can be attributed to a reduction in weight due to a shared placenta, as well as to reduce effectiveness of the placenta.
The average birth weight of male infants is greater than that of female infants for both monochorionic twins and dichorionic twins. The overall pattern of change in birth weight over gestational age is characterized by a rapid increase in birth weight up until week 37, followed by a reduced rate of change afterward. Both male and female infants grew at the fastest rate between 34 and 35 weeks, gaining an average of 192 g and 182 g per week, respectively. Studies of twin pregnancies in the US have found that twin infants have the fastest weight gain between 32 weeks and 34 weeks, while the East Flanders Prospective Twin Survey (EFPTS) found that the most rapid period of infant weight gain occurred between 32 weeks and 34 weeks, with 156 g gained per week.

Because of improvement in medical care facilities and nutrition in China, the proportion of twins with fetal growth restriction has declined, while perinatal survival has improved. Furthermore, due to the large sample size used in our analysis, the birth weight standard we have produced can shed new light on the current situation of twins in southern China.

According to the twin birth weight standard we have constructed for southern China, the highest prevalence (13.3%) of SGA was observed at 41 weeks of gestation, while the lowest (9.1%) was observed at 26 weeks of gestation. Relative to the other three standards, our standard led to a more stable estimate of the prevalence of LGA, which ranged from 6.7% to 11.5%. If we were to use only one of the other three standards, we would likely misclassify SGA and LGA across all gestational age groups. In particular, the other standards lead to very different estimates of the SGA rate between 39 and 40 weeks of gestation. Compared to southern China’s twin birth weight standard, a smaller number of twins were classified as LGA by the Australian and Korean standards. However, a larger number of twins were defined as LGA if we were to use the Chinese standard (based on birth defects surveillance system). This suggests that twin growth standards for healthy twins developed in other countries are not applicable to the population of southern China. Moreover, it is important to regularly update the reference, in order to identify changes in birth weight distributions of twins over time. In addition, previous research has suggested that choriocity should be taken into account when assessing twin fetal development. In particular, fetal growth appears to differ for twins with monochorionic and dichorionic placentation. Until now, classification of choriocity was not established for twin birth weight standards in southern China.

Due to the lack of appropriate reference tools, birth weight percentiles for singleton are commonly used in clinical practice in China. In this study, the use of a large, nationally representative population-based sample of twins ensures a more representative and accurate estimate of percentiles.

Unfortunately, we did not collect data on environmental factors that may have affected the pregnant women and fetuses in the study, including socio-economic conditions, diet or nutritional status. Therefore, we cannot directly analyze the relationship between environmental factors and birth weight distributions. Secondly, as with other population-based studies, our data are based on birth registry data, rather than longitudinal measurement of the development of the same fetuses over the course of pregnancy. That is, we have not measured in utero fetal growth. Birth weight percentiles are not the same as intrauterine growth percentiles in that birth weight percentiles do not reflect fetal growth but rather size at birth. The birth weight of premature babies may be affected by the pathological process leading to premature birth and the developmental status during the period of extrauterine growth to full term may be different from that of intrauterine growth until full term. It has been suggested that preterm births should be assessed using estimated utero fetal growth trajectories rather than birth weight percentile, given that preterm neonates are likely affected by fetal growth restriction. However, it is difficult to estimate utero fetal growth weight, due to challenges in obtaining accurate measurements, including estimates for fetal weight calculations and the formulas needed for the calculations.

References
1. Zhang, B. et al. Birth weight percentiles for twin birth neonates by gestational age in China. Sci rep uk 6(1), https://doi.org/10.1038/srep31290 (2016).
2. Cheong-See, F. et al. Prospective risk of stillbirth and neonatal complications in twin pregnancies: systematic review and meta-analysis. BJM 354, 14353 (2016).
3. Team, N. H. A. F., Limei, J., Shanshan, L., Caixia, L. & Chong, Q. Ultrasound Examination of Twin Pregnancy Technical Specifications (2017). Chinese Journal of Practical Gynecology and Obstetrics, 08, 815–818 (2017).
4. Sherer, D. M. Adverse perinatal outcome of twin pregnancies according to chorionicity: review of the literature. Am J Perinatal 18(1), 23–37 (2001).
5. Saenger, P., Czerneckich, P., Hughes, I. & Reiter, E. O. Small for gestational age: short stature and beyond. Endocr rev 28(2), 219 (2007).
6. Weight, B. Large for Gestational Age. (AlphaScript Publishing, 2010).
7. Premkumar, P. et al. Birth weight centiles by gestational age for twins born in south India. Bmc pregnancy childb 16(1), https://doi.org/10.1186/s12884-016-0850-y (2016).
8. Lipecka-Kidawska, E., Gottwald, L. & Niewiadomska-Jarosik, K. Intrauterine growth restriction. Int J Gynecol Obstet 62(7), 713 (2005).
9. Kato, N. & Uchiyama, Y. Reference birth-length range for multiple-birth neonates in Japan. J Obstet Gynaecol Res 31(1), 43–49, https://doi.org/10.1111/j.1447-0756.2005.00248.x (2005).
10. Li, Z., Umstad, M. P., Hilder, L., Xu, F. & Sullivan, E. A. Australian national birth weight percentiles by sex and gestational age for twins, 2001–2010. Bmc pediatr 15, 148, https://doi.org/10.1186/s12887-015-0464-y (2015).
11. Lim, J. S. et al. New Korean reference for birth weight by gestational age and sex: data from the Korean Statistical Information Service (2008–2012). Annals of Pediatric Endocrinology & Metabolism 19(3), 146, https://doi.org/10.6065/apem.2014.19.3.146 (2014).
12. Glimiana, S. V., Skjaerven, R. & Magnus, P. Birth weight percentiles by gestational age in multiple births. A population-based study of Norwegian twins and triplets. Acta Obset Gynecol Scand 79(6), 450–458 (2000).
13. Mikołajczyk, R. T. et al. A global reference for fetal-weight and birth weight percentiles. Lancet 377(9780), 1855–1861, https://doi.org/10.1016/S0140-6736(11)60364-4 (2011).
14. Platt, R. W. et al. Detecting and eliminating erroneous gestational ages: a normal mixture model. Stat med 20(23), 3491–3503 (2001).
15. Miklos D. S., Robert A. R., Gillian Z. H., V. V. & B. F. D. Centile estimation in Flexible Regression and Smoothing Using GAMLSS in R 4.49–480 (chapman & Hall/CRC, 2017).
16. Cole, T. J. et al. Age- and size-related reference ranges: a case study of spirometry through childhood and adulthood. *Stat med* **28**(5), 880–898, https://doi.org/10.1002/sim.3504 (2009).
17. Ananth, C. V., Vintzileos, A. M., Shen-Schwarz, S., Smulian, J. C. & Lai, Y. L. Standards of birth weight in twin gestations stratified by placental chorionicity. *Obstet gynecol* **91**(6), 917–924 (1998).
18. Ramos-Arroyo, M. A., Ulbright, T. M., Yu, P. L. & Christian, J. C. Twin study: relationship between birth weight, zygosity, placentation, and pathologic placental changes. *Acta Genet Med Gemellol (Roma)* **37**(3–4), 229–238 (1988).
19. Loos, R. J. et al. Determinants of birth weight and intrauterine growth in liveborn twins. *Paediatric & Perinatal Epidemiology*, **19**(3), 15–22 (2005).
20. Cooke, R. W. Conventional birth weight standards obscure fetal growth restriction in preterm infants. *Arch Dis Child Fetal Neonatal Ed* **92**(3), F189–F192, https://doi.org/10.1136/adc.2005.089698 (2007).
21. Ehrenkranz, R. A. Estimated fetal weights versus birth weights: should the reference intrauterine growth curves based on birth weights be retired? *Arch Dis Child Fetal Neonatal Ed* **92**(3), F161–F162, https://doi.org/10.1136/adc.2006.109439 (2007).

Author Contributions
Professor Zhao and Bing Li devised the idea, conceptualization, and design of the study. Moreover, they developed the data collection instruments, coordinated and supervised data collection, provided comments on the manuscript, and approved the final manuscript for submission. Huazhang Miao carried out data processing and analysis, drafted the initial manuscript, and approved the final manuscript for submission. Fei Yao, Yuntao Wu, Xiu Zhang and Rubi He participated in data collection, carried out initial analyses and revised the manuscript. In addition to their other contributions to the project, Professor Zhao and Bing Li assisted in data processing and model construction. All authors have reviewed and approved the current manuscript for submission. Special thanks to Dr. Natalie Young for helping us to revise the language of manuscript.

Additional Information

Competing Interests: The authors declare no competing interests.

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2019