Redox Regulation in Cancer Cells during Metastasis

Alpaslan Tasdogan1, Jessalyn M. Ubellacker1, and Sean J. Morrison1,2

ABSTRACT
Metastasis is an inefficient process in which the vast majority of cancer cells are fated to die, partly because they experience oxidative stress. Metastasizing cancer cells migrate through diverse environments that differ dramatically from their tumor of origin, leading to redox imbalances. The rare metastasizing cells that survive undergo reversible metabolic changes that confer oxidative stress resistance. We review the changes in redox regulation that cancer cells undergo during metastasis. By better understanding these mechanisms, it may be possible to develop pro-oxidant therapies that block disease progression by exacerbating oxidative stress in cancer cells.

Significance: Oxidative stress often limits cancer cell survival during metastasis, raising the possibility of inhibiting cancer progression with pro-oxidant therapies. This is the opposite strategy of treating patients with antioxidants, an approach that worsened outcomes in large clinical trials.

INTRODUCTION
Metastasis is the leading cause of death in patients with cancer because disseminated disease is no longer curable by surgery and is often therapy-resistant (1). Metastasis requires cancer cells to delaminate from their tumor of origin, invade the surrounding tissue, then migrate through tissue, blood, and/or lymph to new sites, all while surviving diverse and changing environments (2). Very few cancer cells survive this process, and many that do are unable to proliferate or persist in metastatic sites (3–6).

Cancer cells must be plastic to survive metastasis (7, 8). Genetic heterogeneity increases with disease progression (9), contributing to therapy resistance (10). Whole-genome duplications, chromosomal rearrangements, and chromosomal instability contribute to the increase in genetic heterogeneity (9, 11, 12). The genetic changes do not appear to confer metastatic competence, but rather arise by chance within primary tumors and are positively or negatively selected during metastasis (8, 11, 13). For example, copy-number changes in MYC (14) or MAPK pathway components (15) can enhance survival during metastasis. Recurrent coding sequence mutations have generally not been observed to arise during metastasis (11, 15–17), suggesting that there are not specific metastasis suppressor mutations. Rather, cancer cells undergo epigenetic (18, 19), transcriptional (7, 20–22), and metabolic (23–25) changes during metastasis. These reversible sources of heterogeneity conspire with genetic heterogeneity to confer fitness upon rare cells to survive and grow in metastatic sites.

Multiple factors contribute to the death of cancer cells during metastasis, including immune-mediated destruction (26, 27), growth factor deprivation (28), and diverse metabolic stresses (29). Redox stress is one important metabolic stress that limits the survival of cancer cells (24, 30). We review the role of redox regulation in metastasis and the metabolic adaptations that confer oxidative stress resistance.

METASTASIZING CELLS EXPERIENCE OXIDATIVE STRESS
Cancer cells experience oxidative stress during certain critical phases of their evolution and progression. The mechanisms that cause cancer cells to experience oxidative stress are poorly understood but likely include hyperactivation of anabolic pathways (31, 32), increased mitochondrial function (33), malfunction of the electron transport chain as a result of mitochondrial DNA mutations (34, 35), and oncogenic pathway activation (36–38). As a consequence, cancer cells are often more dependent than normal cells upon cellular antioxidants including glutathione (39, 40), thioredoxin (39), antioxidant enzymes (e.g., glutathione peroxidase, ref. 41; catalase, ref. 42; and superoxide dismutase, refs. 43, 44), and their transcriptional regulators, such as NRF2 (45, 46) and BACH1 (ref. 47; Fig. 1A). Glutathione is an abundant redox...
buffer that is present mainly in the reduced form within cells. It opposes the development of oxidative stress by neutralizing reactive oxygen species (ROS) including oxygen free radicals, peroxides, and lipid peroxides, as well as by glutathionylating thiol groups on proteins to protect them from oxidation (Fig. 1B). Glutathione can be regenerated from its oxidized form, glutathione disulfide, by glutathione reductase, using a reducing equivalent from NADPH. Consequently, metabolic pathways that generate NADPH from NADP⁺ are important sources of reducing equivalents for oxidative stress resistance (ref. 48; Fig. 1A).

Cancer cells that survive the oxidative stress they experience during transformation (39) are able to bring oxidative stress under control, allowing the activation of anabolic pathways to drive tumor growth (31). However, when cells in primary tumors detach from extracellular matrix during invasion, they experience changes in signaling pathway activation and metabolism that again increase oxidative stress (49–51). There is evidence that cancer cells either proliferate or invade surrounding tissues but generally do not do both at the same time (52, 53), raising the possibility that invasion requires cells to downregulate anabolic pathways.

Oxidative stress likely increases further when metastasizing cancer cells enter the blood (24, 54–57), which has among the highest levels of oxidants in the body, including oxygen and iron. Oxidative stress limits the survival of cancer cells...
during metastasis (24). Treatment of mice with antioxidants increases the frequency of circulating cancer cells in the blood and metastatic disease burden (24, 30, 47, 58, 59). This has been observed in multiple cancers, in patient-derived xenografts growing in immunocompromised mice as well as in mouse cancers growing in syngeneic immunocompetent mice. Consistent with this, cancer cells undergo metabolic changes during invasion and metastasis that would be expected to reduce the generation of ROS (60–65).

Nascent metastatic nodules continue to exhibit signs of oxidative stress, including increased ROS levels and low ratios of glutathione to oxidized glutathione and NADPH to NADP⁺ (24), although the degree of oxidative stress differs among sites of metastasis (66). Oxidative stress is likely to slow the ability of metastatic cells, at least in some sites, to fully reactivate the anabolic pathways required for tumor growth, even after they have extravasated from the blood. For example, lipogenesis requires reducing equivalents from NADPH; inhibiting acetyl-CoA carboxylase decreases NADPH consumption by fatty acid synthesis and preserves NADPH for other cellular processes (67). Cancer cells shut down anabolic pathways during metastasis to conserve reducing equivalents to manage oxidative stress. Indeed, it is conceivable that dormancy in metastatic cells is sometimes caused by a prolonged failure to fully bring oxidative stress under control, leading to prolonged quiescence. Nonetheless, once metastatic tumors have grown beyond a few millimeters in diameter, cancer cells likely have undergone the adaptations needed to control oxidative stress, allowing broad activation of anabolic pathways.

Dietary supplementation with antioxidants has been proposed to provide health benefits, including suppressing the development of cancer by reducing ROS levels (68). Consequently, many clinical trials have been performed to test whether dietary supplementation with antioxidants can suppress the development of cancer. However, dietary antioxidants have consistently failed to reduce cancer incidence or cancer-related deaths in human clinical trials (69). Consistent with the data from experimental models, dietary supplementation with antioxidants in humans tended to increase cancer incidence and cancer-related deaths (70–73). The data thus suggest that antioxidants generally promote the development and progression of cancer in both animal models and in humans.

Although oxidative stress commonly limits the survival of cancer cells during transformation and metastasis, ROS also promotes cancer progression in certain contexts (74). ROS can cause DNA damage, contributing to the formation of oncogenic mutations, and can serve as progrowth signaling molecules (33). Genetic changes that increase the generation of ROS can promote cancer progression, and treatment with antioxidants has sometimes been observed to inhibit metastasis (75–79). For example, inhibition of TIGAR, an enzyme that promotes the entry of glucose into the pentose phosphate pathway, increases ROS levels in pancreatic ductal adenocarcinoma, leading to increased migration, invasion, and metastasis (80). One possibility is that modest increases in ROS levels can promote the activation of signaling pathways that are adaptive for cancer cells (33), particularly in early-stage cancers, while the higher ROS levels observed in metastasizing cancer cells are toxic. Another possibility is that different types of ROS have different effects on cancer cells.

For example, hydrogen peroxide created by mitochondrial ROS might promote metastasis (81), whereas lipid peroxides created by membrane lipid oxidation might undermine survival during metastasis (55). There may also be differences among cancers or model systems, in which oxidative stress limits disease progression in certain cancers while promoting disease progression in others. It is conceivable that mouse models of cancer tend to have lower ROS levels than human cancers due to lower mutation burdens. Cancer cell lines may have been selected for the capacity to withstand oxidative stress as a result of being propagated in culture. These will be important possibilities to consider as the field dissects the role of ROS and oxidative stress in cancer progression.

MECHANISMS OF OXIDATIVE STRESS RESISTANCE DURING METASTASIS

There are heritable, stable, and cell-intrinsic differences among cancers in their metastatic potential based on metabolic and transcriptional differences, including those that confer oxidative stress resistance (54, 82, 83). There is also heterogeneity among cancer cells within the same tumor that influences metastatic potential (54, 84, 85). For example, melanoma cells within hypoxic regions of primary tumors express higher levels of the lactate transporter MCT1, and higher levels of MCT1 confer oxidative stress resistance that increases survival in the blood (54). MCT1 seems to promote oxidative stress resistance by increasing lactate uptake, which decreases intracellular pH and the NAD⁺/NADH ratio. This promotes pentose phosphate pathway function, a major source of NADPH for oxidative stress resistance (86). Consistent with this, hypoxic cells within primary tumors exhibit transcriptional changes that appear to confer an oxidative stress–resistant phenotype that promotes the survival of metastasizing cells in the blood, increasing their potential to form metastatic tumors (87). Increased MCT1 expression may be one element of this phenotype.

De novo serine synthesis (88) and serine degradation (89) both yield NADPH and are used by cancer cells to manage oxidative stress, particularly during hypoxia. Although cancer cells that metastasize through the blood would not be expected to be hypoxic, these pathways nonetheless promote metastasis, potentially by acting in cancer cells within hypoxic environments (e.g., in lymph or after extravasation into metastatic sites). Inhibition of either phosphoglycerate dehydrogenase, an enzyme involved in serine synthesis, or serine hydroxymethyltransferase, an enzyme involved in serine degradation, increases ROS levels and reduces the formation of metastatic tumors (88, 89). Serine biosynthesis also preferentially promotes the growth of metastatic tumors as compared with primary tumors by promoting mTORC1 signaling (90). It is not clear whether the change in mTORC1 signaling contributes to the change in ROS levels. ROS also induces the expression of β-globin, the oxygen-binding protein best known for its function in erythrocytes, in circulating breast cancer cells (57). This appears to protect the cancer cells from oxidative stress, perhaps by scavenging ROS.

There is genetic evidence that some cancers, including melanoma and lung cancer, give rise to polyclonal metastases
Redox Regulation during Metastasis

(91, 92). There are likely multiple cellular mechanisms that contribute to the formation of polyclonal metastases, including metastasis-to-metastasis spread (93). Another mechanism that may contribute to polyclonal metastasis is that some circulating cancer cells move through the blood in clusters. Clustering can occur among cancer cells or between cancer cells and neutrophils. In both cases it increases cancer cell survival and their ability to form metastatic tumors as compared with single circulating cancer cells (94–96). Clustering may promote the survival of cancer cells in the blood partly by reducing their exposure to oxygen, reducing the production of mitochondrial ROS (97). E-cadherin expression by metastasizing cells also promotes survival by limiting oxidative stress (98). It is tempting to speculate that E-cadherin acts by promoting cell–cell interaction, although E-cadherin deletion does not reduce the fraction of cancer cells that are present in cell clusters.

Oxidative stress kills metastasizing cancer cells by inducing ferroptosis (55, 56), a form of cell death marked by lipid oxidation (Fig. 2A; ref. 99). During ferroptosis, polyunsaturated fatty acids (PUFA) in membrane phospholipids are oxidized by redox-active iron. The resulting lipid peroxides can be scavenged by dietary antioxidants such as vitamin E or by certain cellular antioxidant defenses, such as GPX4 (100–102); however, accumulation of the lipid peroxides can overwhelm the cellular antioxidant defenses, leading to the induction of ferroptosis. At least in melanoma, ferroptosis does not appear to limit the growth of primary cutaneous tumors, in which little oxidative stress is evident, but does limit the survival of metastasizing cells (55). Circulating melanoma cells attempt to manage lipid oxidation by increasing the transcription of transferrin, which reduces intracellular iron levels and to limit the growth of primary cutaneous tumors, in which little oxidative stress is evident, but does limit the survival of metastasizing cells (55). Circulating melanoma cells attempt to manage lipid oxidation by increasing the transcription of transferrin, which reduces intracellular iron levels and lipid peroxidation (56), and by increasing the incorporation of monounsaturated fatty acids (MUFAs) into membrane lipids to displace PUFA (55). Ferroptosis sensitivity marks a therapy-resistant cell state that is observed across several cancers, including melanoma, and that involves the increased synthesis of PUFA (103), including polyunsaturated ether phospholipids (104). This raises the possibility that many cancers may become more sensitive to ferroptosis during metastasis and that disease progression could be inhibited by interventions that increase lipid peroxidation (85, 103–105).

The susceptibility of metastasizing cancer cells to ferroptosis appears to be influenced by both cell-autonomous lipid metabolism and by lipids taken up from the environment. Fatty acid transporters, including CD36, tend to be more highly expressed by cancer cells as compared with normal cells and promote metastasis or poor prognosis in multiple cancers (106, 107). Stearoyl-CoA desaturase (SCD1) is involved in the conversion of saturated to MUFAs in melanoma cells. Melanomas that are high for the Microphthalmia-associated transcription factor (MITF), which promotes aggressive proliferation but suppresses invasion (108), are dependent upon SCD1, perhaps to sustain membrane lipid biosynthesis (85, 109, 110). In contrast, melanomas that are low for MITF and less proliferative but more invasive are less dependent upon SCD1 (85). One possibility is that these MITF-dependent melanomas become more dependent upon MUFAs taken up from their environment during metastasis (55) because there is less SCD1-mediated production of MUFAs cell-intrinsically. The literature on the effects of a high-fat diet on cancer is mixed (111). Some studies found that high-fat diets (112, 113) or dietary supplementation with palmitic acid, a saturated fatty acid (106), can promote metastasis. Other studies found that ketogenic high-fat diets can reduce metastatic disease burden, partly by increasing oxidative stress in cancer cells (114, 115). One possibility is that variability in outcomes among studies reflects differences in the PUFA or MUFAs content of the diets that were administered. Many factors likely contribute to these differences in outcomes, including differences among high-fat diets in fatty acid, protein, and carbohydrate composition. In addition to the effects of fatty acids on redox homeostasis, fatty acids also play critical roles in membrane biosynthesis and energy metabolism that have effects on cancer progression independent of the effects on redox status (85, 116, 117).

METASTASIS THROUGH LYMPHATICS

Many cancers, including epithelial cancers and melanomas, form metastases in draining lymph nodes prior to forming metastases at distant sites (118–121). Genetic studies in human and mouse cancers have shown that regional lymph node metastases can give rise to distant metastases (91–93, 122). In mouse models, cancer cells in lymph nodes are capable of metastasizing to distant sites through the blood (123–125). However, some distant metastases arise from clones that differ from those in lymph nodes. In these instances, it is possible the metastatic cells entered the blood directly from primary tumors, or transited through lymphatics without forming lymph node tumors (92, 122). Obviously, it is also possible that they formed lymph node tumors that were neither detected nor sampled for analysis.

Lymphatics promote the migration and survival of cancer cells. Some cancers form more tumors after intralymphatic injection as compared with intravenous injection (55, 126). VEGF-C and various chemokines promote the migration of cancer cells into lymphatic vessels, facilitating metastatic spread (127–131). When VEGF is overexpressed in mouse lungs, it increases lymphatic vessel density, increasing the spread of cancer cells from the lung to other organs (131). The capacity to oxidize fatty acids promotes the survival of cancer cells in lymphatics (132) and their formation of metastatic tumors (106). Consistent with this, fatty acid oxidation promotes oxidative stress resistance and metastatic potential in colorectal cancer cells (133).

Melanoma cells that metastasize through lymph are metabolically different from cells that metastasize through blood (55). Melanoma cells in lymph experience less oxidative stress and form more metastases than melanoma cells in the blood (55). One of the ways in which lymph protects from ferroptosis is by having high levels of the MUFA oleic acid, which protects cells from lipid oxidation by reducing the abundance of PUFA in membranes. PUFA, but not MUFAs, are oxidized during ferroptosis due to the bis-allylic hydrogens they contain (Fig. 2B and C; ref. 99). Compared with the blood, lymph also contains lower concentrations of oxygen and iron, oxidants that contribute to ferroptosis (55). These observations suggest that melanoma cells tend to metastasize initially through lymphatics because lymph protects them.
Figure 2. The regulation of ferroptosis.

A. Lipid ROS, including lipid peroxides, arise as a result of the oxidation of polyunsaturated fatty acids (PUFA), driven by Fenton reactions in which redox active iron generates hydroxyl radicals (•OH). These PUFA are present in membrane phospholipids (PL). Cells have multiple antioxidant defenses that oppose the accumulation of lipid ROS including the selenocystine (Se) enzyme, glutathione peroxidase 4 (GPX4), and the reducing agents squalene (100), tetrahydrobipterin (BH4; ref. 105), and ubiquinol/α-tocopherol. Abbreviations include transferrin receptor protein 1 (TFR1), acyl-CoA synthetase long-chain family member 4 (ACSL4), lysophosphatidylcholine acyltransferase 3 (LPCAT3), divalent metal transporter 1 (DMT1), ferroptosis suppressor protein 1 (FSP1; refs. 168, 169), dihydrofolate reductase (DHFR), 3-Hydroxy-3-Methylglutaryl-CoA Reductase (HMGCR), TRNA Isopentenyltransferase 1 (TRIT1), glutathione (GSH), glutathione disulfide (GSSG), farnesyl-diphosphate farnesyltransferase 1 (FDFT1).

B. Schematic of reactions in which iron generates hydroxyl radicals (•OH) that react with bis-allylic hydrogens in PUFA to generate lipid ROS (99).

C. Generation of stable lipids from lipid ROS by GPX4.
from oxidative stress. Moreover, while in lymph, cancer cells increase MUFA incorporation into phospholipids, reducing their susceptibility to ferroptosis when they subsequently enter the blood.

MITOCHONDRIAL FUNCTION AS A DETERMINANT OF METASTASIS

Mitochondrial function has been studied only to a limited extent in cancer cells during metastasis, leaving many questions unanswered. One of the key impediments is that circulating cancer cells are rare, making it difficult to obtain enough cells for many assays. Nonetheless, mitochondria are a major source of ROS in cells and there is increasing evidence that mitochondrial function reduces the survival of metastasizing cancer cells, at least partly by increasing ROS levels (134). Mitochondrial mass and mitochondrial membrane potential decline in circulating melanoma cells in the blood as compared with the primary tumors from which they arise (24). One possibility is that these changes reflect decreased mitochondrial function in an effort to manage the production of mitochondrial ROS. However, flow cytometric measurements of mitochondrial membrane potential do not always correlate with mitochondrial or electron chain function (135). Lung cancer cell lines with metastatic potential have lower mitochondrial membrane potential and reduced mitochondrial function as compared with nonmetastatic lung cancer cell lines (136). PGC1α, a transcription factor that promotes mitochondrial biogenesis, seems to promote invasion and metastasis in some contexts (76) while inhibiting metastasis in others, including in melanoma (84, 137). Melanoma cells in primary tumors are heterogeneous for PGC1α expression, with PGC1αlow cells exhibiting increased metastatic potential, again consistent with the idea that reduced mitochondrial function promotes metastasis (84). However, there are many mechanisms downstream of PGC1α that appear to contribute to its effects on metastasis, including mechanisms independent of mitochondrial function (76, 84, 137). Additional studies of mitochondrial function during metastasis are required.

Metabolic pathways associated with mitochondrial function influence metastatic potential. For example, increased asparagine availability, either from the diet or from biosynthesis, promotes metastasis (138). Asparagine is synthesized from aspartate, and aspartate synthesis depends on electron transport chain function (139–141). This raises the possibility that asparagine is limiting in metastasizing cancer cells because mitochondrial function is limited in an effort to manage oxidative stress (136).

PRO-OXIDANT THERAPIES

The studies above suggest that cancer progression might be inhibited with pro-oxidant therapies that exacerbate oxidative stress in cancer cells or block the metabolic adaptations that confer oxidative stress resistance (ref. 142; Fig. 3). The anticancer activity of radiation reflects, in part, the formation of hydroxyl radicals that attack DNA (143). Widely used chemotherapies, including procarbazine, paclitaxel, daunorubicin, and doxorubicin, kill cancer cells partly by promoting oxidative stress (144–146). Many small-molecule drugs with direct or indirect pro-oxidant effects have been tested in clinical trials for a wide range of cancers (147), and new strategies for developing prooxidant small molecules are being explored (148, 149). For example, Imexon is a small molecule that binds to thiols, depleting glutathione and increasing ROS levels, which has been tested for activity against non-Hodgkin lymphoma (150). Arsenic trioxide is used for the treatment of acute promyelocytic leukemia and may act partly by impairing electron transport chain function, leading to electron leakage and the generation of superoxide (151). These ROS-generating agents might damage mitochondrial DNA, which is more vulnerable to ROS than nuclear DNA (152), further increasing the generation of ROS as a result of defects in electron transport chain function (153). While a number of effective anticancer therapies have pro-oxidant effects, it is uncertain to what extent their anticancer activities reflect these pro-oxidant activities as compared with other activities independent of ROS.

Ascorbate (vitamin C) is generally considered an antioxidant, but it exists in oxidized and reduced forms and when it is infused intravenously it selectively kills cancer cells by acting as a pro-oxidant (154). This is because the superphysiologic levels of ascorbate that can be achieved by intravenous infusion lead to the uptake of the fully oxidized form of ascorbate, dehydroascorbate, via the GLUT1 transporter, which is highly expressed in cancer cells with MAPK pathway activation. Once taken up by the cancer cells, dehydroascorbate is reduced back to ascorbate, inducing oxidative stress by consuming reducing equivalents. Ascorbate also alters the activity of epigenetic enzymes, such as TET2, which use ascorbate as a cofactor (155, 156). Building on the original studies by Linus Pauling that reported prolonged survival in patients with cancer administered high-dose intravenous ascorbate (157), the recent work demonstrating the pro-oxidant and epigenetic effects of high-dose ascorbate has led to a number of clinical trials testing activity against a wide range of cancers (158).
Dietary interventions could also have pro-oxidant effects. Ketogenic diets may suppress metastasis partly by increasing oxidative stress in cancer cells (114). Ketogenic diets are designed to minimize dietary carbohydrates, reducing blood glucose and insulin levels (159). However, ketogenic diets also increase dietary fat, commonly increasing PUFA levels. Increased incorporation of PUFA into membrane phospholipids renders cancer cells more susceptible to the accumulation of lipid ROS and ferroptosis (160). This raises the possibility that ketogenic diets may exert anticancer effects partly by altering lipid metabolism (161) or by increasing PUFA levels in the membranes of cancer cells (162). Nonetheless, it remains to be tested whether a high PUFA diet or other approaches to promote PUFA incorporation into cancer cells could inhibit disease progression.

FUTURE DIRECTIONS

New technical approaches to study metastasis, including whole-body imaging of metastasis patterns (163), improved techniques for the isolation of circulating cancer cells from patients (164), screens to identify gene products that modulate metastasis (165, 166), and lineage tracing of bar-coded cancer cells to trace routes of metastasis (83), are accelerating progress.

In at least some cancers, metastasizing cells appear to experience unusually high levels of oxidative stress, raising the possibility that these cells might be particularly sensitive to pro-oxidant therapies. It is an open question whether such therapies could prevent disease progression in patients with high-risk primary or regionally metastatic lesions. Nonetheless, this merits deeper study in preclinical models. Beyond this big-picture question, there are a number of pressing biological questions central to understanding redox regulation during metastasis:

- Does oxidative stress limit the survival of metastasizing cells from all cancers or only certain cancers?
- What causes the oxidative stress experienced by metastasizing cells?
- Are anabolic pathways downregulated in metastasizing cells to preserve reducing equivalents? Does this sometimes lead to dormancy in metastatic cells?
- How is mitochondrial function modulated in metastasizing cancer cells as compared with the primary tumors from which they arise?
- Do micrometastases continue to experience oxidative stress? For how long?
- To what extent do interactions with immune and stromal cells influence oxidative stress in cancer cells?
- Do differences in oxidative stress among distinct metastatic sites influence organotropism?

Authors’ Disclosures

S.J. Morrison reports personal fees from Kojin Therapeutics and other support from G1 Therapeutics outside the submitted work. No disclosures were reported by the other authors.

Acknowledgments

S.J. Morrison is a Howard Hughes Medical Institute Investigator, the Mary McDermott Cook Chair in Pediatric Genetics, the Kathryn and Gene Bishop Distinguished Chair in Pediatric Research, the director of the Hamon Laboratory for Stem Cells and Cancer, and a Cancer Prevention and Research Institute of Texas Scholar. This work was supported by the Cancer Prevention and Research Institute of Texas (RP170114 and RP180778) and by the NIH (U01 CA228608). A. Tasdogan was supported by the Leopoldina Fellowship (LPDS 2016-16) from the German National Academy of Sciences and the Fritz Thyssen Foundation. All figures were generated using BioRender (paid license).

Received April 28, 2021; revised June 15, 2021; accepted July 7, 2021; published first October 14, 2021.

REFERENCES

1. Lambert AW, Patrakiranma DR, Weinberg RA. Emerging biological principles of metastasis. Cell 2017;168:670–91.
2. Vanharanta S, Massague J. Origins of metastatic traits. Cancer Cell 2013;24:410–21.
3. Luzzi KJ, MacDonald IC, Schmidt EE, Kerkvliet N, Morris VL, Chambers AF, et al. Multistage nature of metastatic inefficiency: dormancy of solitary cells after successful extravasation and limited survival of early micrometastases. Am J Pathol 1998;153:865–73.
4. Cameron MD, Schmidt EE, Kerkvliet N, Nadkarni KV, Morris VL, Groom AC, et al. Temporal progression of metastasis in lung: cell survival, dormancy, and location dependence of metastatic inefficiency. Cancer Res 2000;60:2541–6.
5. Kienast Y, von Baumgarten L, Fuhrmann M, Klinkert WE, Goldbrunner R, Herms J, et al. Real-time imaging reveals the single steps of brain metastasis formation. Nat Med 2010;16:116–22.
6. Sela Y, Li J, Kuri P, Merrell AJ, Li N, Lengner C, et al. Dissecting phenotypic transitions in metastatic disease via photoconversion-based isolation. Elife 2021;10:e65270.
7. Marjanovic ND, Hofree M, Chan JE, Canner D, Wu K, Trakala M, et al. Emergence of a high-plasticity cell state during lung cancer evolution. Cancer Cell 2020;38:229–46.
8. Ganesh K, Massague J. Targeting metastatic cancer. Nat Med 2021;27:34–44.
9. Bailey C, Black JRM, Reading JL, Litchfield K, Turajlic S, McGranahan N, et al. Tracking cancer evolution through the disease course. Cancer Discov 2021;11:916–32.
10. Salguesero L, Buccellini C, Rowland K, Somogyi K, Kandala S, Korbel JO, et al. Acquisition of chromosome instability is a mechanism to evade oncogene addiction. EMBO Mol Med 2020;12:e10941.
11. Priestley P, Baber J, Lolkema MP, Steeghs N, de Bruijn E, Shale C, et al. Pan-cancer whole-genome analyses of metastatic solid tumours. Nature 2019;575:210–6.
12. Watkins TKB, Lim ELK, Perkovic M, Elizalde S, Birkbak NJ, Wilson GA, et al. Pervasive chromosomal instability and karyotype order in tumour evolution. Nature 2020;587:126–32.
13. Jacob LS, Vanharanta S, Obenauf AC, Pirun M, Viale A, Socci ND, et al. Metastatic competence can emerge with selection of preexisting oncogenic alleles without a need of new mutations. Cancer Res 2015;75:3713–9.
14. Shih DJH, Nayar N, Bihun I, Dagogo-Jack I, Gill CM, Aquilanti E, et al. Genomic characterization of human brain metastases identifies drivers of metastatic lung adenocarcinoma. Nat Genet 2020;52:371–7.
15. Shain AH, Joseph NM, Yu R, Benhamida J, Liu S, Prow T, et al. Genomic and transcriptomic analysis reveals incremental disruption of key signaling pathways during melanoma evolution. Cancer Cell 2018;34:45–55.
16. Hu Z, Li Z, Ma Z, Curtis C. Multi-cancer analysis of clonality and the timing of systemic spread in paired primary tumors and metastases. Nat Genet 2020;52:701–8.
17. Reiter JG, Makohon-Moore AP, Gerold JM, Heyde A, Attiyeh MA, Kohutek ZA, et al. Minimal functional driver gene heterogeneity among untreated metastases. Science 2018;361:1033–7.
Redox Regulation during Metastasis

18. McDonald OG, Li X, Saunders T, Tryggvadottir R, Metcht SJ, Warmoes MO, et al. Epigenomic reprogramming during pancreatic cancer progression links anabolic glucose metabolism to distant metastasis. Nat Genet 2017;49:367–76.

19. Vanharanta S, Shu W, Brenner F, Hakimi AA, Heguy A, Viale A, et al. Epigenetic expansion of VHL-HIF signal output drives multiguan metastasis in renal cancer. Nat Med 2013;19:50–6.

20. Roe JS, Hwang CI, Somerville TDD, Milazzo JP, Lee EJ, Da Silva B, et al. Enhancer reprogramming promotes pancreatic cancer metastasis. Cell 2017;170:875–88.

21. Whittle MC, Izardjeane K, Rani PG, Feng L, Carlsson MA, DelGiorno KE, et al. RUNX3 controls a metastatic switch in pancreatic ductal adenocarcinoma. Cell 2015;161:1345–60.

22. Denny SK, Yang D, Chuang CH, Brady JJ, Lim JS, Gruner BM, et al. Nfib promotes metastasis through a widespread increase in chromatin accessibility. Cell 2016;166:328–42.

23. Shi X, Tasdogan A, Huang F, Hu Z, Morrison SJ, DeBerardinis RJ. The abundance of metabolites related to protein methylation correlates with the metastatic capacity of human melanoma xenografts. Sci Adv 2017;3:eaaq5268.

24. Piskounova E, Agathocleous M, Murphy MM, Hu Z, Huddleston SE, Zhao Z, et al. Oxidative stress inhibits distant metastasis by human melanoma cells. Nature 2015;527:186–91.

25. Lehuede C, Dupuy F, Rabinovitch R, Jones RG, Siegel PM. Metabolic plasticity as a determinant of tumor growth and metastasis. Cancer Res 2016;76:8201–8.

26. Laughney AM, Hu J, Campbell NR, Bakhoum SF, Setty M, Lavallee VP, et al. Regenerative lineages and immune-mediated pruning in lung cancer metastasis. Nat Med 2020;26:259–69.

27. Garner H, de Visser KE. Immune crosstalk in cancer progression and metastatic spread: a complex conversation. Nat Rev Immunol 2020;20:483–97.

28. Lowery FJ, Yu D. Growth factor signaling in metastasis: current understanding and future opportunities. Cancer Metastasis Rev 2012;31:479–91.

29. Bergers G, Fengt SM. The metabolism of cancer cells during metastasis. Nat Rev Cancer 2021;21:162–80.

30. Le Gal K, Ibrahim MX, Wiel C, Sayin VI, Akula MK, Karlsson C, et al. Antioxidants can increase melanoma metastasis in mice. Sci Transl Med 2020;12:eabc97.

31. Mizusawa Y, Taguchi K, Kawatani Y, Shibata T, Nukiwa T, Aburatani H, et al. Nrf2 redirects glucose and glutamine into anabolic pathways in metabolic reprogramming. Cancer Cell 2012;22:66–79.

32. Ju HQ, Lin JF, Tian T, Xie D, Xu RH. NADPH homeostasis in cancer. Cancer Metab 2014;2:17.

33. Sullivan LB, Chandel NS. Mitochondrial reactive oxygen species and metabolic signaling mediated by oxidants in Ras-transformed fibroblasts. J Biol Chem 1997;272:217–21.

34. Irani K, Xia Y, Zweier JL, Sollott SJ, Der CJ; Fearon ER, et al. Mitogenic signaling mediated by oxidants in Ras-transformed fibroblasts. Science 1997;275:1649–52.

35. Vafa A, Wade M, Kern S, Beeche M, Pandita TK, Hampton GM, et al. c-Myc can induce DNA damage, increase reactive oxygen species, and mitigate p53 function: a mechanism for oncogene-induced genetic instability. Mol Cell 2002;9:1031–44.

36. Harris IS, Treharre AO, Inoue S, Sasaki M, Gorrini C, Lee KC, et al. Glutathione and thioredoxin antioxidant pathways synergize to drive cancer initiation and progression. Cancer Cell 2015;27:211–22.

40. Cramer SL, Saha A, Liu J, Tadi S, Tiziani S, Yan W, et al. Systemic depletion of L-cyst(e)ine with cyst(e)inase increases reactive oxygen species and suppresses tumor growth. Nat Med 2017;23:120–7.

41. Barrett CW, Ning W, Chen X, Smith JJ, Washington MK, Hill KE, et al. Tumor suppressor function of the plasma glutathione peroxidase gpx3 in colitis-associated carcinoma. Cancer Res 2013;73:31245–55.

42. Davison GT, Durbin SM, Thau MR, Zeller VR, Chapman SE, Diener J, et al. Antioxidant enzymes mediate survival of breast cancer cells deprived of extracellular matrix. Cancer Res 2013;73:3704–15.

43. Gomez ML, Shah N, Penny JC, Jenkins EC Jr, Germain D. SOD1 is essential for oncogene-driven mammary tumor formation but dispensable for normal development and proliferation. Oncogene 2019;38:5751–65.

44. Wang X, Zhang H, Sapio R, Yang J, Wong J, Zhang X, et al. SOD1 regulates ribosome biogenesis in KRAS mutant non-small cell lung cancer. Nat Commun 2021;12:2259.

45. DeNicola GM, Karreth FA, Humpston TJ, Gopinathana A, Wei C, Frese K, et al. Oncogene-induced Nrf2 transcription promotes ROS detoxification and tumorigenesis. Nature 2011;475:106–9.

46. Ignigno L, LeBoeuf SE, Homer H, Jiang S, Askenazi M, Karakousi TR, et al. Nrf2 activation promotes lung cancer metastasis by inhibiting the degradation of Bcl-2. Cell 2019;178:316–29.

47. Welt C, Le Gal K, Ibrahim MX, Jahangir CA, Kashif M, Yao H, et al. BACH1 stabilization by antioxidants stimulates lung cancer metastasis. Cell 2019;178:330–45.

48. Fan J, Ye J, Kamphorst JJ, Shlomi T, Thompson CB, Rabinowitz JD. Quantitative flux analysis reveals folate-dependent NADPH production. Nature 2014;510:298–302.

49. Schafer ZT, Grassian AR, Song L, Jiang Z, Gerhart-Hines Z, Irvine HE, et al. Antioxidant and oncogene rescue of metabolic defects caused by loss of matrix attachment. Nature 2009;461:109–13.

50. Hawk MA, Schafer ZT. Mechanisms of redox metabolism and cancer cell survival during extracellular matrix detachment. J Biol Chem 2018;293:7531–7.

51. Jiang L, Sheshot AA, Swain P, Yang C, Parker SJ, Wang QA, et al. Reductive carboxylation supports redox homeostasis during anchorage-independent growth. Nature 2016;532:255–8.

52. Kohrman A, Matus DQ. Divide or conquer: cell cycle regulation of invasive behavior. Trends Cell Biol 2017;27:12–25.

53. Matus DQ, Lohmer LL, Kelley LC, Schindler AJ, Kohrman A, et al. Invasive cell fate requires G1 cell-cycle arrest and histone deacetylase-mediated changes in gene expression. Dev Cell 2015;35:162–74.

54. Tasdogan A, Aubert B, Ramesh V, Ubellacker J, Shen B, Solmonson A, et al. Metabolic heterogeneity confers differences in melanoma metastatic potential. Nature 2020;577:115–20.

55. Ubellacker JM, Tasdogan A, Ramesh V, Shen B, Mitchell EC, Martin-Sandoval MS, et al. Lymph protests metastasizing melanoma cells from ferroptosis. Nature 2020;585:113–8.

56. Hong X, Roh W, Sullivan RJ, Wong KH, Wittner BS, Guo H, et al. The lipogenic regulator SREBP2 induces transferrin in circulating melanoma cells and suppresses ferroptosis. Cancer Discov 2021;11:678–95.

57. Zheng Y, Miyamoto DT, Wittner BS, Sullivan JP, Aceto N, Jordan NV, et al. Expression of beta-globin by cancer cells promotes cell survival during blood-borne dissemination. Nat Commun 2017;8:14344.

58. Sayin VI, Ibrahim MX, Larsson E, Nilsson JA, Lindahl P, Bergo MO. Nrf2 activation promotes lung cancer metastasis through a widespread increase in chromatin accessibility. Cell 2016;166:328–42.
Tasdogan et al.

62. Kamarajugadda S, Cai Q, Chen H, Nayak S, Zhu J, He M, et al. Manganese superoxide dismutase promotes anokis resistance and tumor metastasis. Cell Death Dis 2013;4:e504.

63. Qu Y, Wang J, Ray PS, Guo H, Huang J, Shin-Sim M, et al. Thioredoxin-like 2 regulates human cancer cell growth and metastasis via redox homeostasis and NF-kappaB signaling. J Clin Invest 2011; 121:212–25.

64. Chen EI, Hewel J, Krueger JS, Tirabily C, Weber MR, Kralli A, et al. Adaptation of energy metabolism in breast cancer brain metastases. Cancer Res 2007;67:1472–86.

65. Lu X, Bennet B, Mu E, Rabinowitz J, Kang Y. Metabolic changes accompanying transformation and acquisition of metastatic potential in a syngeneic mouse mammary tumor model. J Biol Chem 2010;285:9317–21.

66. Bannet H, Tsan L, Ganesh K, Huang YH, Macalinao DG, Brogi E, et al. Flura-seq identifies organ-specific metabolic adaptations during early metastatic colonization. Elife 2019;8:e43627.

67. Jeon SM, Chandel NS, Hay N. AMPK regulates NADPH homeostasis to promote tumour cell survival during energy stress. Nature 2012;485:661–5.

68. Goodman M, Bostick RM, Kucuk O, Jones DP. Clinical trials of antioxidants as cancer prevention agents: past, present, and future. Free Radic Biol Med 2011;51:1068–84.

69. Chandel NS, Tuveson DA. The promise and perils of antioxidants relates with clinical outcome in patients. Sci Transl Med 2012;4:159ra49.

70. Fullen DR, et al. Human melanoma metastasis in NSG mice correlates with clinical outcome in patients. Sci Transl Med 2012;4:159ra49.

82. Quintana E, Piskounova E, Shackleton M, Weinberg D, Eskiocak U, Fullen DR, et al. Human melanoma metastasis in NSG mice correlates with clinical outcome in patients. Sci Transl Med 2012;4:159ra49.

83. Quintan M, Jones MG, Okimoto RA, Nanjo S, Chan MM, Yosef N, et al. Single-cell lineages reveal the rates, routes, and drivers of metastasis in cancer xenographs. Science 2021;371:eabc1944.

84. Luo C, Lim JH, Lee Y, Grant SR, Thomas A, Vazquez F, et al. A PGGC1alpha-mediated transcriptional axis suppresses melanoma metastasis. Nature 2016;537:422–6.

85. Vigas-Garcia Y, Falletta P, Liebing J, Louphrasitiphil P, Feng Y, Chauhan J, et al. Lineage-regulated suppression of SCD and fatty acid saturation by MIF controls melanoma phenotypic plasticity. Mol Cell 2020;77:120–37.

86. Chen L, Zhang Z, Hoshino A, Zheng HD, Morley M, Arany Z, et al. NADPH production by the oxidative pentose-phosphate pathway supports folate metabolism. Nat Metab 2019;1:404–15.

87. Goder I, Shin YJ, Ju JA, Ye IC, Wang G, Gilkes DM. Fate-mapping post-hypoxic tumor cells reveals a ROS-resistant phenotype that promotes metastasis. Nat Commun 2019;10:4862.

88. Samanta D, Park Y, Andrabli SA, Shelton LM, Gilkes DM, Semenza GL. PHGDH expression is required for mitochondrial redox homeostasis, breast cancer stem cell maintenance, and lung metastasis. Cancer Res 2016;76:4430–42.

89. Ye J, Fan J, Venetti S, Wan YW, Patel BR, Zhang J, et al. Serine catabolism regulates mitochondrial redox control during hypoxia. Cancer Discov 2014;4:1406–17.

90. Rinaldi G, Pranzini E, Van Ellen J, Broekaert D, Funk CM, Planque M, et al. In vivo evidence for serine biosynthesis-defined sensitivity of lung metastasis, but not of primary breast tumors, to mTORC1 inhibition. Mol Cell 2021;81:386–97.

91. Lander JS, Chung J, Burd D, Wang NJ, Kakavand H, Willmost JT, et al. Phylogenetic analyses of melanoma reveal complex patterns of metastatic dissemination. Proc Natl Acad Sci U S A 2015;112:10995–1000.

92. Sanborn JT, Chung J, Purdom E, Wang NJ, Kakavand H, Willmost JT, et al. Phylogenetic analyses of melanoma reveal complex patterns of metastatic dissemination. Proc Natl Acad Sci U S A 2015;112:10995–1000.
Redox Regulation during Metastasis

105. Soula M, Weber RA, Zilka O, Alwaseem H, La K, Yin F, et al. Meta-
bolectic determinants of cancer cell sensitivity to canonical ferroptosis
inducers. Nat Chem Biol 2020;16:1351–60.

106. Pascual G, Augustinova A, Mejetta S, Martin M, Castellanos A,
Attolini CS, et al. Targeting metastasis-initiating cells through the
fatty acid receptor CD36. Nature 2017;541:41–5.

107. Kovundzija N, Poulogiannis G. Reprogramming of fatty acid
metabolism in cancer. Br J Cancer 2020;122:4–22.

108. Carreia S, Goodall J, Denat L, Rodriguez M, Nuñezo P, Hoek KS,
et al. Mif1 regulation of Dia1 controls melanoma proliferation and
invasiveness. Genes Dev 2006;20:3426–39.

109. Carreia S, Goodall J, Aksan I, La Rocca SA, Galibert MD, Denat L,
et al. Mif1 cooperates with Rb1 and activates p21Cip1 expression to
regulate cell cycle progression. Nature 2005;433:764–9.

110. Pereira ER, Kedrin D, Seano G, Gautier O, Meijer EFJ, Jones D,
et al. Evidence for an alternative fatty acid desaturation pathway
mediated fatty acid oxidation promotes colorectal cancer cell metastasis
by inhibiting anoikis. Oncogene 2018;37:6025–40.

111. Lee CK, Jeong SH, Jang C, Bae H, Kim YH, Park I, et al. Tumor
metastasis to lymph nodes requires VAP-dependent metabolic adap-
tation. Science 2019;363:644–9.

112. Wagner LA, Boskovic ZV, Theriault JR, Wang AJ, Stern AM, Wagner
et al. Sensor/effector drug design with potential rel-
edged roles of ROS in cancer prevention and therapy. Theranostics
2020;10:1576–89.

113. Birsoy K, Wang T, Chen WW, Freinkman E, Abu-Remaileh M,
et al. Mitf regulation of Dia1 controls melanoma proliferation and
invasiveness. Genes Dev 2006;19:3905–13.

114. Leong SP, Gershenwald JE, Soong SJ, Schadendorf D, Tarhini AA,
et al. The spread of tumours in the human body. London,
1971;28:657.

115. Alitalo A, Detmar M. Interaction of tumor cells and lymphatic ves-
tacles in cancer progression. Curr Pharm Des 2006;12:4479–99.

116. Leong SP, Gershenwald JE, Soong SJ, Schadendorf D, Tarhini AA,
et al. The molecular
117. Vriens K, Christen S, Parik S, Broekaert D, Yoshinaga K, Talebi A,
et al. Copper-binding small molecule induces oxidative stress and
and creates an exploitable vulnerability. Cancer Res 2021;81:567–79.

118. Torrono V, Valcárcel-Jimenez L, Cortazar AR, Liu X, Urosevic J,
et al. The metabolic co-regulator PGC1 alpha suppresses prostate cancer metastasis. Nat Cell Biol 2016;18:645–56.

119. Chung CH, Dorsch M, Duijardin P, Silas S, Ueffing K, Holjen JM,
et al. Altered mitochondria functionality defines a metastatic cell
state in lung cancer and creates an exploitable vulnerability. Cancer
Res 2015;162:540–51.

120. Sullivan LB, Gui DY, Hossios AM, Bush LN, Freinkman E, Vander
Heiden MG. Supporting aspartate biosynthesis is an essential func-
tion of respiration in proliferating cells. Cell 2015;162:552–63.

121. Krall AS, Mullen PJ, Surjono F, Momcilovic M, Schmid EW,
et al. The double-
edged roles of ROS in cancer prevention and therapy. Theranostics
2021;11:4839–57.

122. Wallen AC, Hollenberg NK. The transplantability of tumours by
intravenous and intralymphatic routes. Br J Cancer 1965;19:338–42.

123. Issa A, Le TK, Shoushtarian AN, Shield JD, Swartz MA. Vascular
endothelial growth factor C and C-C chemokine receptor 7 in
tumor cell-lymphatic cross-talk promote invasive phenotype. Can-
cer Res 2009;69:349–57.

124. Burton JB, Priceman SJ, Sung JL, Brakenhinel E, An DS, Pytowski
B, et al. Suppression of prostate cancer nodal and systemic meta-
tasis by blockade of the lymphangiogenic axis. Cancer Res 2008;68:
7828–37.

125. Hoshida T, Isaka N, Hagendoorn J, di Tomaso E, Chen YL,
Pytowski B, et al. Imaging steps of lymphatic metastasis reveals
that vascular endothelial growth factor-C increases metastasis by
increasing delivery of cancer cells to lymph nodes: therapeutic
promises. Cancer Res 2006;66:8065–75.

126. Wallace AC, Wallen AC, Hellenberg NK. The transplantability of
tumours by intravenous and intralymphatic routes. Br J Cancer
1965;19:338–42.

127. Issa A, Le TK, Shoushtarian AN, Shield JD, Swartz MA. Vascular
endothelial growth factor C and C-C chemokine receptor 7 in
tumor cell-lymphatic cross-talk promote invasive phenotype. Can-
cer Res 2009;69:349–57.

128. Burton JB, Priceman SJ, Sung JL, Brakenhinel E, An DS, Pytowski
B, et al. Suppression of prostate cancer nodal and systemic meta-
tasis by blockade of the lymphangiogenic axis. Cancer Res 2008;68:
7828–37.
150. Barr PM, Miller TP, Friedberg JW, Peterson DR, Baran AM, Herr M, et al. Phase 2 study of imexon, a prooxidant molecule, in relapsed and refractory B-cell non-Hodgkin lymphoma. Blood 2014;124:1259–65.

151. Pelicano H, Feng L, Zhou Y, Carew JS, Hileman EO, Plunkett W, et al. Inhibition of mitochondrial respiration: a novel strategy to enhance drug-induced apoptosis in human leukemia cells by a reactive oxygen species-mediated mechanism. J Biol Chem 2003;278:37832–9.

152. Alexeyev M, Shokolenko I, Wilson G, LeDoux S. The maintenance of mitochondrial DNA integrity—critical analysis and update. Cold Spring Harb Perspect Biol 2013;5:a012641.

153. Pelicano H, Carney D, Huang P. ROS stress in cancer cells and therapeutic implications. Drug Resist Updat 2004;7:97–110.

154. Yun J, Mullarky E, Li Z, Bosch KN, Kavalier A, Rivera K, et al. Vitamin C selectively kills KRAS and BRAF mutant colorectal cancer cells by targeting GAPDH. Science 2015;350:1391–6.

155. Agathocleous M, Meacham CE, Burgess RJ, Piskounova E, Zhao Z, Crane GM, et al. Ascorbate regulates hematopoietic stem cell function and leukaemogenesis. Nature 2017;549:476–81.

156. Cimmino L, Dolgalev I, Wang Y, Yoshimi A, Martin GH, Wang J, et al. Restoration of TET2 function blocks aberrant self-renewal and leukemia progression. Cell 2017;170:1079–95.

157. Cameron E, Pauling L. Supplemental ascorbate in the supportive treatment of cancer: prolongation of survival times in terminal human cancer. Proc Natl Acad Sci U S A 1976;73:3685–9.

158. Ngo B, Van Riper JM, Cantley LC, Yun J. Targeting cancer vulnerabilities with high-dose vitamin C. Nat Rev Cancer 2019;19:271–82.

159. Hopkins BD, Paula C, Du X, Wang DG, Li X, Wu D, et al. Suppression of insulin feedback enhances the efficacy of PI3K inhibitors. Nature 2018;560:499–503.

160. Doll S, Proneth B, Tyurina YY, Panziliius E, Kobayashi S, Ingold I, et al. AC3L4 dictates ferroptosis sensitivity by shaping cellular lipid composition. Nat Chem Biol 2017;13:91–8.

161. Lien EC, Westermark AM, Li Z, Sapp KM, Heiden MGV. Caloric restriction alters lipid metabolism to contribute to tumor growth inhibition. bioRxiv 2021.

162. Perez MA, Magtanong L, Dixon SJ, Watts JL. Dietary lipids induce ferroptosis in caenorhabditis elegans and human cancer cells. Dev Cell 2020;54:447–54.

163. Olmeda D, Cerezo-Wallis D, Rivero-Falkenbach E, Penncachi PC, Contreras-Alcalde M, Ibarz N, et al. Whole-body imaging of lympho-vascular niches identifies pre-metastatic roles of midkine. Nature 2017;546:676–80.

164. Girotti MR, Gremel G, Lee R, Galvani E, Rothwell D, Viros A, et al. Application of sequencing, liquid biopsies, and patient-derived xenografts for personalized medicine in melanoma. Cancer Discov 2016;6:286–99.

165. Chen S, Sanjana NE, Zheng K, Shalem O, Lee K, Shi X, et al. Genome-wide CRISPR screen in a mouse model of tumor growth and metastasis. Cell 2015;160:1246–60.

166. van der Weyden L, Arends MJ, Campbell AD, Bald T, Wardle-Jones H, Griggs N, et al. Genome-wide in vivo screen identifies novel host regulators of metastatic colonization. Nature 2017;541:233–6.

167. Hoxhaj G, Ben-Sahra I, Lockwood SE, Timson BC, Byles V, Henning GT, et al. Direct stimulation of NADP(+) synthesis through Akt-mediated phosphorylation of NAD kinase. Science 2019;363:1088–92.

168. Doll S, Freitas FP, Shah R, Aldrovandi M, da Silva MC, Ingold I, et al. FSP1 is a glutathione-independent ferroptosis suppressor. Nature 2019;575:693–8.

169. Bersuker K, Hendricks JM, Li Z, Magtanong L, Ford B, Tang PH, et al. The CoQ oxidoreductase FSP1 acts parallel to GPX4 to inhibit ferroptosis. Nature 2019;575:688–92.