A scattering quantum circuit for measuring Bell’s time inequality: a nuclear magnetic resonance demonstration using maximally mixed states

A M Souza1,2,3, I S Oliveira2 and R S Sarthour2

1 Fakultät Physik, Technische Universität Dortmund, D-44221 Dortmund, Germany
2 Centro Brasileiro de Pesquisas Físicas, Rua Dr Xavier Sigaud 150, Rio de Janeiro 22290-180, RJ, Brazil
E-mail: amsouza@cbpf.br

\textit{New Journal of Physics} 13 (2011) 053023 (7pp)
Received 11 January 2011
Published 13 May 2011
Online at http://www.njp.org/
doi:10.1088/1367-2630/13/5/053023

\textbf{Abstract.} In 1985, Leggett and Garg (1985 \textit{Phys. Rev. Lett.} 54 857) proposed a Bell-like inequality to test (in)compatibility between two fundamental concepts of quantum mechanics. The first concept is ‘macroscopic realism’, which is the quality of a physical property of a quantum system being independent of observation at the macroscopic level. The second concept is ‘noninvasive measurability’, which is the possibility of performing a measurement without disturbing the subsequent evolution of a system. One of the key requirement for testing the violation of the Leggett–Garg inequality, or Bell’s time inequality, is the ability to perform noninvasive measurements over a qubit state. In this paper, we present a quantum scattering circuit that implements such a measurement for maximally mixed states. The operation of the circuit is demonstrated using liquid-state nuclear magnetic resonance (NMR) in chloroform, in which the time correlations of a qubit are measured on a probe (ancillary) qubit state. The results clearly show a violation region and are in excellent agreement with the predictions of quantum mechanics.

3 Author to whom any correspondence should be addressed.
Palacios-Laloy et al [1] have recently reported an experimental demonstration of Bell’s time inequality violation in superconductors, which is the first experimental test of the original proposal made by Leggett and Garg in 1985 [2]. Experiments of this kind are extremely important for testing the foundations of quantum mechanics. The fundamental ideas addressed in the Leggett–Garg proposal were ‘macroscopic realism’ and ‘noninvasive measurability at the macroscopic level’. The former is the assumption that physical properties are independent of observation at macroscopic level. The latter condition implies the existence of measurements that can determine the state of a macroscopic system, introducing an arbitrarily small perturbation that does not affect the subsequent dynamics. Studying these ideas on the superconducting current in a superconducting quantum inference device (SQUID), the authors of [1] concluded that quantum mechanics is incompatible with these two assumptions. In addition to that, the Leggett–Garg inequality has also been related to the quantumness of computational algorithms [3] and the outcome of operators weakly measured [4]–[6], the so-called weak values [7]. In particular, [4] has shown that strange weak values, those values that exceed the range of eigenvalues associated with the observable in question, can be found if, and only if, a Leggett–Garg inequality is violated.

In its usual form, Bell’s inequality is violated by multipartite quantum systems sharing an entangled state. Given a pure entangled state, it is always possible to find a kind of inequality based on local realism that is violated by quantum mechanics. However, it is important to note that some entangled mixed states do not violate standard Bell’s inequalities, unless additional local actions with classical communication and post-selection (rejecting part of the original ensemble) are performed [8]. On the other hand, a recent work [9] has suggested that quantum entanglement can be produced between thermal states with nearly maximum Bell-inequality violation, even when the temperatures of both systems approach infinity.

On the practical side, entanglement has been recognized as a key ingredient of quantum computation and quantum communication [10], and violation of Bell’s inequality can be used as a criterion for efficiency of quantum communication protocols [11, 12]. Moreover, whereas multipartite quantum systems can exhibit nonlocal correlations introduced by entanglement, a single quantum object, such as a spin-1/2 particle, can exhibit nonclassical time correlations such as those addressed in the Leggett–Garg paper. In order to observe such quantum time correlations during the evolution of a qubit and test the inequality, it is necessary to perform noninvasive measurements. This restriction imposes serious experimental difficulties.

The idea of Leggett–Garg is to measure time correlation functions of an observable O (which has eigenvalues $±1$), $C_{k,m} = \langle O(t_k)O(t_m) \rangle$, at different instants of time, t_k and t_m, during which the system evolves under the action of a time-independent Hamiltonian, \mathcal{H}, according to the Schrödinger equation $|\psi(t)\rangle = \exp(-i\mathcal{H}t/\hbar)|\psi(0)\rangle$ ($|\psi(0)\rangle = |\psi(t = 0)\rangle = |\psi_0\rangle$).

The Leggett–Garg inequality, of Wigner type [13], states that for a chosen set of three different instants of time, $t_1 < t_2 < t_3$, macroscopic realism imposes that

$$K \equiv C_{1,2} + C_{2,3} - C_{1,3} \leq 1.$$ \hspace{1cm} (1)

The condition for observing violations of this inequality, as demonstrated by Kofler and Brukner [13], is that the initial state of the system, $|\psi_0\rangle$, cannot be an eigenvector of \mathcal{H}. The dichotomic observable O is then defined in terms of the initial state as $O \equiv 2|\psi_0\rangle \langle \psi_0 | - I$, with I being the identity matrix. Under time evolution, a measurement of this observable, $M(O)$, will indicate whether the system is still in $|\psi_0\rangle$ ($M(O) = +1$) or not ($M(O) = -1$). After performing measurements for three different times such as $t_2 - t_1 = t_3 - t_2 = \Delta t$, inequality (1) can then be

New Journal of Physics 13 (2011) 053023 (http://www.njp.org/)
Figure 1. Evolution of the spins in the preparation of a maximally mixed state. (a) The Bloch vector of the spins are initially prepared in the state $|0\rangle$. (b) A $\pi/2$ rotation takes the Bloch vector from the state $|0\rangle$ to the xy-plane. (c) A field gradient is applied, since the field varies along the z-axis, spins in different positions in the sample start to process with different angular velocities. (d) After some time the distribution of Bloch vectors is completely randomized, corresponding to a maximally mixed state.

written as [13]

$$K = 2 \cos \left(\frac{\Delta E \Delta t}{\hbar} \right) - \cos \left(2 \frac{\Delta E \Delta t}{\hbar} \right) \leq 1,$$

where ΔE is the energy separation between the qubit energy levels. This inequality is clearly violated for $0 < \Delta E \Delta t/\hbar < \pi/2$, and is maximally violated for $\Delta E \Delta t/\hbar = \pi/3$.

Since the work of Leggett–Garg [2], a great deal of effort has been put to find ways to implement noninvasive measurements [14]–[17] and verify the violation of inequality (1). In particular, the proposal of weak measurements of [15] has been implemented in the experiment of Palacios-Laloy et al [1]. In spite of the successful demonstration of Bell’s time inequality violation in [1], the literature still lacks an example of a full quantum protocol with noninvasive measurements. The proposal of this paper is to present a scattering quantum circuit based on [13] which performs such a test for a maximally mixed state, and to demonstrate its implementation using the well-established nuclear magnetic resonance (NMR) techniques [18, 19].

The circuit proposed in this paper correlates a single microscopic qubit (ancillary) to a quantum ensemble at infinite temperature. This is similar to the quantum Schrödinger’s cat paradox, where the macroscopic ‘cat’ corresponds to a thermal state at infinite temperature, a state that is often believed to not exhibit quantum properties. The ancillary qubit probes the time correlations of the ensemble without disturbing its subsequent dynamics.

An early example of a NMR application of the quantum scattering circuit appeared in the context of measuring Wigner functions on phase space on liquid trichloroethylene, a well-known three-qubit system [20]. On a scattering circuit, a probe qubit (ancillary), prepared in a known initial state, interacts with the system in such a way that a measurement over its state after the interaction brings information about the system state. For this, it is necessary that (i) the input state of the probing qubit can be known and (ii) the interaction can be controlled. Figure 2 shows a scattering circuit to obtain the time correlation function of a qubit by measuring the state of the probing qubit, which interacts with it. For a noninvasive measurement, it is necessary to prepare the system input state in such a way that the controlled interaction does not affect it.
Figure 2. Quantum scattering circuit for measuring time correlation functions \(\langle \mathcal{O}(t_m) \mathcal{O}(t_k) \rangle \), at instants \(t_m \) and \(t_k \) where \(h \) stands for \(\hbar \). The correlation can be obtained by measuring the expected value \(\langle \sigma_z \rangle \) of the ancillary qubit.

Such a state can be worked out as follows. Consider the input state,

\[
\rho_{\text{in}} = \rho_{\text{probe}} \otimes \rho_{\text{sys}} = |0\rangle \langle 0| \otimes |\psi_0\rangle \langle \psi_0|,
\]
where the first qubit on the left is the probe, entering the circuit on \(|0\rangle \), and the other one is the system, prepared in the state \(|\psi_0\rangle \). Upon the transformations shown in figure 2, the output of the scattering circuit will be

\[
\rho_{\text{out}} = |\varphi\rangle \langle \varphi|,
\]
where \(|\varphi\rangle = |0\rangle \otimes (I + U) |\psi_0\rangle + |1\rangle \otimes (I - U) |\psi_0\rangle \), where \(U = e^{i\mathcal{H}_m/\hbar} \mathcal{O} e^{-i\mathcal{H}_m/\hbar} e^{i\mathcal{H}_k/\hbar} \mathcal{O} e^{-i\mathcal{H}_k/\hbar} \).

The real part of the expected value of the spin \(z \)-component for the probing qubit is \(\langle \sigma_z \rangle = \text{Tr}(\rho_{\text{sys}} U) \) and therefore

\[
\langle \sigma_z \rangle = \langle \psi_0| e^{i\mathcal{H}_m/\hbar} \mathcal{O} e^{-i\mathcal{H}_m/\hbar} e^{i\mathcal{H}_k/\hbar} \mathcal{O} e^{-i\mathcal{H}_k/\hbar} |\psi_0\rangle,
\]
which implies that

\[
\langle \sigma_z \rangle = \langle \mathcal{O}(t_m) \mathcal{O}(t_k) \rangle.
\]

According to Kofler and Brukner [13], any combination of two states that are orthogonal to the eigenvectors of \(\mathcal{H} \) will lead to the violation of inequality (1). Thus, both states \(|0\rangle \) and \(|1\rangle \) will lead to a violation when choosing \(\mathcal{H} = \hbar \omega \sigma_x \), with \(\sigma_x \) being one of the Pauli matrices. It is interesting to note that the theoretical prediction of the quantity \(K \), defined in (1), as a function of \(\Delta t \) is identical for both states and is given by equation (2). Therefore, any statistical mixture of those states, \(p_0|0\rangle \langle 0| + p_1|1\rangle \langle 1| \), will also violate the same inequality. Although the violation of the Leggett–Garg inequality does not depend on the degree of mixedness, most states cannot be used in an experimental test using the scheme proposed here because the application of the circuit of figure 2 in a general state will not implement a noninvasive measurement. Only the completely mixed state \((p_0 = p_1 = 1/2) \) does not undergo any change during the application of the circuit. Hence, this particular state is ideal for a macroscopic realism test. The probe qubit, however, is initialized on a pure state. This situation corresponds to the model of computation known as deterministic quantum computation with one quantum bit (DQC1) [21].

The ability of NMR to generate quantum states and unitary transformations of quantum circuits is well established in the literature [19, 20]. To implement the circuit of figure 2 and demonstrate our proposal, we used a well-known two-qubit NMR quantum processor: the chloroform molecule, CHCl$_3$. A liquid sample of 99.99% carbon labeled diluted in deuterated acetone was used. The experiment was performed at room temperature, in a Varian 500 MHz.

New Journal of Physics 13 (2011) 053023 (http://www.njp.org/)
Figure 3. Experimental tomographed input deviation density matrix \(\Delta \rho = |0\rangle \langle 0 | \otimes \mathcal{I}/2 - \mathcal{I}/4 \). The fidelity between the experimental and theoretical matrices is \(\approx 0.99 \).

Figure 4. Correlation functions obtained in three different experiments. With extra ancillary qubits it is possible to measure them all in a single run. The \(x \)-axis corresponds to a full \(2\pi \) cycle; \(\theta \) stands for \(\Delta E \Delta t / \hbar \).

shielded NMR spectrometer. It is worth noting that the entire protocol lasts about 10 ms, whereas the characteristic decoherence time for this system is \(T_2 \approx 3 \) s for hydrogen and \(T_2 \approx 0.8 \) s for carbon. Therefore, decoherence can be neglected during the application of the protocol.

To observe time correlations and the violation of inequality (1), we have used the Hamiltonian \(\mathcal{H} = \hbar \omega \sigma_x \). In NMR, this Hamiltonian is simply implemented by radio-frequency pulses applied on the resonance of the qubit spins. The tested ensemble corresponds to an ensemble of nuclear spins 1/2 in a maximally mixed state, produced by a single \(\pi/2 \) pulse, followed by a field gradient, as illustrated in figure 1. Due to the low polarization of the nuclear spins at room temperature, the probe qubit is not initialized in a pure state but rather in the pseudo-pure state \((1 - \epsilon)\mathcal{I}/2 + \epsilon |0\rangle \langle 0 | \). Since \((1 - \epsilon)\mathcal{I}/2 \) is not observed, the probe qubit in such a mixed state produces the same result as would be observed if the probe were in a pure state and the detection efficiency of the measurement apparatus were \(\epsilon \). The data analysis here is analogous to the post-selecting procedure used in experiments with low-efficiency detection [8]. In NMR, post-selection is accomplished by normalizing the signal to a reference.

Figure 3 shows the quantum state tomography of the system input deviation density matrix \(\Delta \rho = |0\rangle \langle 0 | \otimes \mathcal{I}/2 - \mathcal{I}/4 \). Figure 4 shows the correlation functions \(C_{12} \) (3a), \(C_{23} \) (3b) and \(C_{13} \) (3c) and the quantity \(K \), defined in equation (1), is shown in figure 5. The continuous line is the quantum mechanical prediction. The results clearly show a violation region and are in excellent
agreement with the quantum mechanical predictions. However, the need for a normalization, or post-selection procedure, introduces a detection loophole [8] and thus the violation of realism can only be assumed upon the fair sampling hypothesis, i.e. the hypothesis that the sample of detected events is representative of the entire system. Most of the experiments testing the standard Bell’s inequalities are run under this assumption. A remarkable fact concerning NMR is that the low-spin polarization implies the existence of a local and realistic hidden variable model [22, 23]. On the other hand, one must note that truly quantum correlations can be present between the probe and the tested ensemble [24, 25].

The NMR technique has been extremely useful in testing fundamental ideas on quantum information. In particular, studies of entanglement and fundamental quantum mechanics have been exploited in various NMR works (see for example [23, 26, 27]). Much less exploited than multipartite entangled states are the time quantum correlations proposed by Leggett and Garg. Understanding such correlations is of great relevance to fundamental physics, as well as for quantum computation and communication. From an experimental point of view, testing time correlations is simpler, because it can be done over a single qubit.

In conclusion, the results shown in this paper reveal that even in the extreme situation of a maximally mixed state, time quantum correlations persist. We have proposed, and demonstrated with a NMR quantum information processor, a scheme based on a microscopic qubit probe to test Bell’s time inequalities of quantum ensembles in a maximally mixed state. It would be interesting to see the implementation of such a scheme in recently reported experimental setups [9, 28] where a thermal state can be correlated to pure microscopic qubits. It is tempting to associate our results with the power of one-qubit computation [21, 24, 29], and this is certainly a subject worth pursuing in further experiments. Finally, we would like to mention that the scattering quantum circuit presented here can be easily adapted to measure the three correlation functions simultaneously, using more ancillary qubits.

Figure 5. Violation of Leggett–Garg inequality, equation (1). The x-axis corresponds to a full 2π cycle; θ stands for $\Delta E \Delta t / \hbar$. The maximum violation occurs at $\pi/3$ and $5\pi/3$.
Acknowledgments

We acknowledge support from CNPq, the Brazilian Quantum Information Project (INCT), the Rio de Janeiro Funding Agency (FAPERJ) and the PCI-CBPF program. AMS also acknowledges support from the German funding agency DFG through Su 192/24-1.

References

[1] Palacios-Laloy A, Mallet F, Nguyen F, Berteta P, Vion D, Esteve D and Korotkov A N 2010 Nat. Phys. 6 442
[2] Leggett A J and Garg A 1985 Phys. Rev. Lett. 54 857
[3] Mirokoshi F 2006 Phys. Rev. A 73 052308
[4] Williams N S and Jordan A N 2008 Phys. Rev. Lett. 100 026804
[5] Dressel J, Broadbent C J, Howell J C and Jordan A N 2011 Phys. Rev. Lett. 106 040402
[6] Goggin M E, Almeida M P, Barbieri M, Lanyon B P, O’Brien J L, White A G and Pryde G J 2011 Proc. Natl Acad. Sci. USA 108 1256
[7] Aharonov Y, Albert D Z and Vaidman L 1988 Phys. Rev. Lett. 60 1351
[8] Genovese M 2005 Phys. Rep. 413 319
[9] Jeong H and Ralph T C 2006 Phys. Rev. Lett. 97 100401
[10] Linden N and Popescu S 2001 Phys. Rev. Lett. 87 047901
[11] Buhman H, Cleve R, Massar S and Wolf R 2010 Rev. Mod. Phys. 82 665
[12] Gisin N, Ribordy G, Tittel W and Zbinden H 2002 Rev. Mod. Phys. 74 145
[13] Koller J and Brukner C 2008 Phys. Rev. Lett. 101 090403
[14] Paz J P and Mahler G 1993 Phys. Rev. Lett. 71 3235
[15] Huelga S F, Marshall T W and Santos E 1995 Phys. Rev. A 52 R2497
[16] Ruskov R, Korotkov A N and Mizel A 2006 Phys. Rev. Lett. 96 200404
[17] Jordan A N, Korotkov A N and Buttiker M 2006 Phys. Rev. Lett. 97 026805
[18] Oliveira I S, Bonagamba T J, Sarthour R S, Freitas J C C and deAzevedo E R 2007 NMR Quantum Information Processing (Amsterdam: Elsevier)
[19] Stolze J and Suter D 2004 Quantum Computing: A Short Course from Theory to Experiment (New York: Wiley)
[20] Miquel C, Paz J P, Saraceno M, Knill E, Laflamme R and Negrevergne C 2002 Nature 418 59
[21] Knill E and Laflamme R 1998 Phys. Rev. Lett. 81 5672
[22] Menicucci N C and Caves C M 2002 Phys. Rev. Lett. 88 167901
[23] Souza A M, Magalhães A, Teles J, deAzevedo E R, Bonagamba T J, Oliveira I S and Sarthour R S 2008 New J. Phys. 10 033020
[24] Datta A, Shaji A and Caves C M 2008 Phys. Rev. Lett. 100 050502
[25] Soares-Pinto D O, Céleri L C, Auccaise R, Fanchini F F, deAzevedo E R, Maziero J, Bonagamba T J and Serra R M 2010 Phys. Rev. A 81 062118
[26] Nelson R J, Cory D G and Lloyd S 2000 Phys. Rev. A 61 022106
[27] Moussa O, Ryan C A, Cory D G and Laflamme R 2010 Phys. Rev. Lett. 104 160501
[28] Auffeves A, Maioli P, Meunier T, Gleyzes S, Nogues G, Brune M, Raimond J M and Haroche S 2003 Phys. Rev. Lett. 91 230405
[29] Datta A, Flammini S T and Caves C M 2005 Phys. Rev. A 72 042316