HfAlO$_x$/Al$_2$O$_3$ Bilayer Dielectrics for a Field Effect Transistor on a Hydrogen-Terminated Diamond

Minghui Zhang 1,2, Fang Lin 1,2, Wei Wang 1,2,*, Feng Wen 1,2, Genqiang Chen 1,2, Shi He 1,2, Yanfeng Wang 1,2, Shuwei Fan 1,2, Renan Bu 1,2 and Hongxing Wang *

1 Key Lab for Physical Electronics and Devices, Ministry of Education, Xi’an Jiaotong University, Xi’an 710049, China; zhangminghuiu@stu.xjtu.edu.cn (M.Z.); lef-lin@mail.xjtu.edu.cn (F.L.); fengwen@mail.xjtu.edu.cn (F.W.); genqiangchen@stu.xjtu.edu.cn (G.C.); theke@stu.xjtu.edu.cn (S.H.);
yangfengwang@stu.xjtu.edu.cn (Y.W.); shifan@mail.xjtu.edu.cn (S.F.); bura@stu.xjtu.edu.cn (R.B.)

2 Institute of Wide Band Gap Semiconductors, School of Electronics and Information Engineering, Xi’an Jiaotong University, Xi’an 710049, China

* Correspondence: wei_wang2014@mail.xjtu.edu.cn (W.W.); hxwangcn@mail.xjtu.edu.cn (H.W.)

Abstract: In this work, a hydrogen-terminated (H-terminated) diamond field effect transistor (FET) with HfAlO$_x$/Al$_2$O$_3$ bilayer dielectrics is fabricated and characterized. The HfAlO$_x$/Al$_2$O$_3$ bilayer dielectrics are deposited by the atomic layer deposition (ALD) technique, which can protect the H-terminated diamond two-dimensional hole gas (2DHG) channel. The device demonstrates normally-on characteristics, whose threshold voltage (V_{TH}) is 8.3 V. The maximum drain source current density ($I_{DS,max}$), transconductance (G_m), capacitance (C_{OX}) and carrier density (ρ) are ρ = 6.3 mA/mm, 0.73 mS/mm, 0.22 μF/cm2 and 1.53 \times 1013 cm$^{-2}$, respectively.

Keywords: hydrogen-terminated diamond; field effect transistor; HfAlO$_x$

1. Introduction

The diamond is considered as an ultimate semiconductor with ultrawide bandgap of 5.47 eV, extremely high breakdown field of 10 MV/cm, highest thermal conductivity of 22 W/cm$^\circ$K, high carrier mobility (electrons of 4500 cm2/V\cdots, holes of 3800 cm2/V\cdots) and large carrier saturation velocity (electrons of 1.5–2.7 \times 107 cm/s, holes of 0.85–1.2 \times 107 cm/s) [1–4]. Since the dopants cannot be activated at room temperature with high activation energy (boron of 370 meV and phosphorous of 650 meV) [5], the application of diamonds has been greatly hindered. In this case, δ-doping comes into being. However, this technique requires the precise control of the doping thickness, and the carrier mobility is not ideal [5]. Fortunately, a hydrogen-terminated (H-terminated) diamond with two-dimensional hole gas (2DHG) channel provides a new solution to overcome these problems, which demonstrates a high carrier density of 1013 cm$^{-2}$ and large carrier mobility of 50–200 cm2/V\cdots [3,6]. To date, as a promising structure of diamond-based electronic devices, the H-terminated diamond field effect transistor (FET) has aroused the great interest of researchers [7–21].

Since a H-terminated diamond is thermally and chemically instable, it is necessary to stabilize the hole carriers for a H-terminated diamond FET with a dielectric layer [8]. Furthermore, the dielectric material with high dielectric constant can control large charge responses at a small bias effectively [14]. To date, many high dielectric constant materials have been employed for the fabrication of a H-terminated diamond FET [10,15]. However, there are few reports on using HfAlO$_x$ as dielectric with a high dielectric constant, high crystallization temperature and large band gap (5.8–6.2 eV) [22].

In this work, we study a H-terminated diamond FET with HfAlO$_x$/Al$_2$O$_3$ bilayer dielectrics, and its electrical properties were evaluated by semiconductor analyzer.
2. Materials and Methods

The fabrication process of the H-terminated diamond FET with HfAlO₃/Al₂O₃ bilayer dielectrics is displayed in Figure 1. A high temperature and high pressure (HPHT) single crystal diamond substrate was cleaned by various solutions before growth [9]. Then, a 200 nm homoepitaxy layer was grown on the substrate with the dimensions of $3 \times 3 \times 0.5 \text{ mm}^3$ by the microwave plasma chemical vapor deposition (MPCVD) technique. The growth conditions were declared in our previous work [9]. Afterwards, 150 nm Au electrodes with 20 μm source drain gap (L_{SD}) were realized by photolithography, electron beam evaporation (EB) and the lift-off technique. Next, isolation was carried out with 20 min UV/ozone treatment. After that, a 4 nm Al₂O₃ film was deposited to protect the H-terminated channel, and a 30 nm HfAlOₓ film was deposited by the ALD technique sequentially. The atomic percentage of HfAlOₓ is Hf:Al:O = 2:23:75, evaluated by the energy dispersive X-ray spectroscopy (EDS) technique. Finally, 150 nm Al gate electrode was deposited on the gate region with 4 μm gate length (L_C) and 100 μm gate width (W_C). The electrical properties of this device were characterized by Agilent B1505A. Figure 2 demonstrates the schematic diagram of the H-terminated diamond FET with HfAlOₓ/Al₂O₃ bilayer dielectrics. The electrical contacts for the source, drain and gate electrodes are exhibited, and the hole carriers of the channel are illustrated.

![Fabrication process of the H-terminated diamond FET with HfAlOₓ/Al₂O₃ bilayer dielectrics.](image1)

Figure 1. Fabrication process of the H-terminated diamond FET with HfAlOₓ/Al₂O₃ bilayer dielectrics.

![Schematic diagram of the H-terminated diamond FET with HfAlOₓ/Al₂O₃ bilayer dielectrics.](image2)

Figure 2. Schematic diagram of the H-terminated diamond FET with HfAlOₓ/Al₂O₃ bilayer dielectrics.

3. Results and Discussion

Figure 3a demonstrates the drain source current density (I_{DS}) versus drain source voltage (V_{DS}) at different gate voltages (V_{GS}) of the H-terminated diamond FET with HfAlOₓ/Al₂O₃ bilayer dielectrics. The gate length (L_C), gate width (W_C) and L_{SD} for the device are 4 μm, 100 μm and 20 μm, respectively. The V_{CS} varies from 8 to −6 V in a step of −2 V. The absolute value of I_{DS} ($|I_{DS}|$) increases as the absolute value of the V_{GS} ($|V_{GS}|$) increases, indicating the existence of a p-type channel. The maximum I_{DS} ($I_{DS\text{max}}$) is −6.3 mA/mm obtained at a V_{CS} of −6 V and a V_{DS} of −20 V. The $I_{DS\text{max}}$ is relatively large compared with our previous work [13,23], and the reason may be attributed to the undamaged 2DHG conduction channel protected by Al₂O₃.
Figure 3. Characteristics of the H-terminated diamond FET with HfAlOx/Al2O3 bilayer dielectrics: (a) output and (b) transfer.

In Figure 3b, the transfer characteristic of the H-terminated diamond FET with HfAlOx/Al2O3 bilayer dielectrics is presented. The threshold voltage \(V_{TH} \) is extrapolated to be 8.3 V at a \(V_{DS} \) of −20 V based on the relationship between \(I_{DS}^{1/2} \) and \(V_{GS} \), demonstrating normally-on characteristics [14]. The maximum transconductance \((G_m) \) is 0.73 mS/mm.

The leakage current density \((I_{GS}) \) in the log coordinate of the H-terminated diamond FET with HfAlOx/Al2O3 bilayer dielectrics is shown in Figure 4a. The \(I_{GS} \) changes from −6 to 8 V, and the absolute value of \(I_{GS} \) \(|I_{GS}| \) is \(7.95 \times 10^{-7} \, \text{A/cm}^2 \) at a \(V_{GS} \) of −6 V, demonstrating a low \(|I_{GS}| \). Table 1 demonstrates the \(|I_{GS}| \) comparison with the reported H-terminated FETs. The \(|I_{GS}| \) for the MoO3, LiF/Al2O3, Ta2O5/Al2O3 and ZrO2/Al2O3 H-terminated diamond FET are \(3.33 \times 10^{-4} \, \text{A/cm}^2 \), \(1 \times 10^{-6} \, \text{A/cm}^2 \), \(7.6 \times 10^{-4} \, \text{A/cm}^2 \) and \(4.8 \times 10^{-5} \, \text{A/cm}^2 \), respectively [21,24–26]. Their values are larger than those of the HfAlOx/Al2O3 FET. As shown in Figure 4b, the relationship between \(I_{GS} \) and \(V_{GS} \) can be described by the thermionic field emission (TFE) model (1) [9]:

\[
J_{TFE} = J_S \exp(V/P)[1 - \exp(-eV/kT)]
\]

where \(J_{TFE} \) means the \(I_{GS} \) caused by TFE model; \(J_S \) represents the saturation current; and \(P \) is a parameter associated with the carrier tunneling probability and temperature [9]. In Figure 4b, the \(\ln J_{TFE}/J_S(-\exp(qV/kT)) \) and \(V_{GS} \) exhibit a linear relationship under the TFE model.

Figure 4. \(I_{GS} \) characteristics of the H-terminated diamond FET with HfAlOx/Al2O3 bilayer dielectrics: (a) \(|I_{GS}| \) and (b) TFE.
Table 1. The $|I_{GS}|$ comparison between this work and the reported H-terminated diamond FETs.

Gate Materials	MoO$_3$	LiF/Al$_2$O$_3$	Ta$_2$O$_5$/Al$_2$O$_3$	Zr$_2$O$_5$/Al$_2$O$_3$	HfAlO$_x$/Al$_2$O$_3$		
$	I_{GS}	$ (A/cm2)	3.33×10^{-4}	1×10^{-6}	7.6×10^{-4}	4.8×10^{-5}	7.95×10^{-7}
Ref.	[21]	[24]	[25]	[26]	This work		

Figure 5a displays the capacitance-voltage (C-V) curve measured at 1 MHz of the H-terminated diamond FET with HfAlO$_x$/Al$_2$O$_3$ bilayer dielectrics. Evident accumulation and depletion regions can be observed. The maximum capacitance (C_{OX}) is 0.22 µF/cm2 at V_{GS} of −2 V. Based on the method $d^2C/dV_{GS} = 0$, the flat band voltage (V_{FB}) is determined to be 8.5 V and 7.6 V in the forward and reverse directions, respectively [18]. The trapped charge density is evaluated to be 1.24×10^{13} cm$^{-2}$ at V_{GS} of −2 V measured at 1 MHz: (a) C-V and (b) ρ.

4. Conclusions

In summary, the electrical properties of H-terminated diamond FET with HfAlO$_x$/Al$_2$O$_3$ bilayer dielectrics were investigated. The output characteristics exhibit an evident p-type channel, and the $I_{DS,max}$ is −6.3 mA/mm obtained at V_{GS} of −6 V. The transfer characteristics exhibits the V_{TH} of 8.3 V, indicating normally-on characteristics. The $|I_{GS}|$ is 7.95×10^{-7} A/cm2 at V_{GS} of −6 V, demonstrating a low $|I_{GS}|$. In addition, the C_{OX} is 0.22 µF/cm2 based on the C-V curve. Additionally, the ρ is 1.50×10^{13} cm$^{-2}$ at a V_{GS} of −2 V. The results are meaningful for the research of a H-terminated diamond FET, and the electrical performance of HfAlO$_x$/Al$_2$O$_3$ FET will be further improved by optimizing the fabrication process in our future work.

Author Contributions: Conceptualization, M.Z., W.W. and S.F.; methodology, M.Z. and F.L.; software, M.Z. and G.C.; validation, W.W. and H.W.; formal analysis, F.W.; investigation, M.Z. and S.H.; resources, M.Z. and Y.W.; data curation, M.Z. and F.L.; writing—original draft preparation, M.Z.; writing—review and editing, M.Z., W.W. and H.W.; visualization, R.B.; supervision, W.W. and H.W.; project administration, M.Z.; funding acquisition, W.W. and H.W. All authors have read and agreed to the published version of the manuscript.
Funding: This work was funded by National Key R&D Program of China (No. 2018YFE0125900), National Natural Science Foundation of China (No. 61627812, 61804122 and 62074127), China Postdoctoral Science Foundation (No. 2019M660256 and 2020M683485), and Key R&D Program of Shaanxi Province (No. 2021GY-223).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Data are contained within the article.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Isberg, J.; Hammersberg, J.; Johansson, E.; Wikström, T.; Twitchen, D.J.; Whitehead, A.J.; Coe, S.E.; Scarsbrook, G.A. High carrier mobility in single-crystal plasma-deposited diamond. Science 2002, 297, 1670–1672. [CrossRef] [PubMed]

2. Maier, F.; Riedel, M.; Mantel, B.; Ristein, J.; Ley, L. Origin of surface conductivity in diamond. Phys. Rev. Lett. 2000, 85, 3472–3475. [CrossRef] [PubMed]

3. Crawford, K.G.; Weil, J.D.; Shah, P.B.; Ruzmetov, D.A.; Neupane, M.R.; Kingkeo, K.; Birdwell, A.G.; Ivanv, T.G. Diamond field-effect transistors with V2O5-induced transfer doping: Scaling to 50-nm gate length. IEEE Trans. Electron Devices 2020, 67, 2270–2275. [CrossRef]

4. Liu, J.W.; Teraji, T.; Da, B.; Ohsato, H.; Koide, Y. Effect of annealing temperature on performances of boron-doped diamond metal-semiconductor field-effect transistors. IEEE Trans. Electron Devices 2020, 67, 1680–1685. [CrossRef]

5. Wang, W.; Fu, K.; Hu, C.; Li, F.N.; Liu, Z.C.; Li, S.Y.; Lin, F.; Fu, J.; Wang, J.J.; Wang, H.X. Diamond based field-effect transistors with SiNx and ZrO2 double dielectric layers. Diam. Relat. Mater. 2016, 69, 237–240. [CrossRef]

6. Kawarada, H. Hydrogen-terminated diamond surfaces and interfaces. Surf. Sci. Rep. 1996, 26, 205–259. [CrossRef]

7. Liao, M.Y.; Sang, L.W.; Shimaoka, T.; Imura, M.; Koizumi, S.; Koide, Y. Energy-efficient metal-insulator-metal-semiconductor field-effect transistors based on 2D carrier gases. Adv. Electron. Mater. 2019, 5, 1800832. [CrossRef]

8. Wang, W.; Wang, Y.F.; Zhang, M.H.; Wang, R.Z.; Chen, G.Q.; Chang, X.H.; Lin, F.; Wen, F.; Jia, K.; Wang, H.X. An enhancement-mode hydrogen-terminated diamond field-effect transistor with lanthanum hexaboride gate material. IEEE Electron Device Lett. 2020, 41, 585–588. [CrossRef]

9. Zhang, M.H.; Wang, W.; Fan, S.W.; Chen, G.Q.; Abbasi, H.N.; Lin, F.; Wen, F.; Zhang, J.W.; Bu, R.A.; Wang, H.X. Normally-off hydrogen-terminated diamond field effect transistor with yttrium gate. Carbon 2021, 176, 307–312. [CrossRef]

10. Liu, J.W.; Liao, M.Y.; Imura, M.; Koide, Y. High-k ZrO2 / Al2O3 bilayer on hydrogenated diamond: Band configuration, breakdown field, and electrical properties of field-effect transistors. J. Appl. Phys. 2016, 120, 124504. [CrossRef]

11. Liu, J.W.; Liao, M.Y.; Imura, M.; Koide, Y. High-k ZrO2 / Al2O3 bilayer on hydrogenated diamond: Band configuration, breakdown field, and electrical properties of field-effect transistors. J. Appl. Phys. 2016, 120, 124504. [CrossRef]

12. Liu, J.W.; Liao, M.Y.; Imura, M.; Koide, Y. High-k ZrO2 / Al2O3 bilayer on hydrogenated diamond: Band configuration, breakdown field, and electrical properties of field-effect transistors. J. Appl. Phys. 2016, 120, 124504. [CrossRef]

13. Zhang, M.H.; Wang, W.; Chen, G.Q.; Abbasi, H.N.; Lin, F.; Wen, F.; Wang, K.Y.; Zhang, J.W.; Bu, R.A.; Wang, H.X. Electrical properties of yttrium gate hydrogen-terminated diamond field effect transistor with Al2O3 dielectric layer. Appl. Phys. Lett. 2021, 118, 053506. [CrossRef]

14. Wang, W.; Hu, C.; Li, S.Y.; Li, F.N.; Liu, Z.C.; Wang, F.; Fu, J.; Wang, H.X. Diamond based field—Effect transistors of Zr gate with SiNx dielectric layers. J. Nanomater. 2015, 2015, 124640. [CrossRef]

15. Liu, J.W.; Liao, M.Y.; Imura, M.; Koide, Y. Normally-off HfO2-gated diamond field effect transistors. Appl. Phys. Lett. 2013, 103, 092905. [CrossRef]

16. Dong, H.K.; Shi, L.B. Impact of native defects in the high dielectric constant oxide HfSiO4 on MOS device performance. Chin. Phys. Lett. 2016, 33, 016101. [CrossRef]

17. Liu, J.W.; Oosato, H.; Liao, M.Y.; Koide, Y. Enhancement-mode hydrogenated diamond metal-oxide-semiconductor field-effect transistors with Y2O3 oxide insulator grown by electron beam evaporator. Appl. Phys. Lett. 2017, 110, 203502. [CrossRef]

18. Hayashi, K.; Yamanaka, S.; Watanabe, H.; Sekiguchi, T.; Okushi, H.; Kajimura, K. Investigation of the effect of hydrogen on electrical and optical properties in chemical vapor deposited on homoepitaxial diamond films. J. Appl. Phys. 1997, 81, 744–753. [CrossRef]

19. Zhang, J.F.; Chen, W.J.; Ren, Z.Y.; Su, K.; Yang, P.Z.; Hu, Z.Z.; Zhang, J.C.; Hao, Y. Characterization and mobility analysis of normally off hydrogen-terminated diamond metal–oxide–semiconductor field-effect transistors. Phys. Status Solidi A 2020, 217, 1900462. [CrossRef]

20. Chicot, G.; Marechal, A.; Motte, R.; Muret, P.; Gheeraert, E.; Pernot, J. Metal oxide semiconductor structure using oxygen-terminated diamond. Appl. Phys. Lett. 2013, 102, 242108. [CrossRef]

21. Fei, W.X.; Bi, T.; Iwatani, M.; Imanishi, S.; Kawarada, H. Oxidized Si terminated diamond and its MOSFET operation with SiO2 gate insulator. Appl. Phys. Lett. 2020, 116, 269901. [CrossRef]
22. Mallik, S.; Mahata, C.; Hota, M.K.; Dalapati, G.K.; Chi, D.Z.; Sarkar, C.K.; Maiti, C.K. HfAlO$_x$ high-k gate dielectric on SiGe: Interfacial reaction, energy-band alignment, and charge trapping properties. *Microelectron. Eng.* 2010, 87, 2234–2240. [CrossRef]

23. Wang, Y.F.; Wang, W.; Chang, X.H.; Abbasi, H.N.; Zhang, X.F.; Wang, R.Z.; Wang, H.X. Performance of hydrogen-terminated diamond MOSFET with bilayer dielectrics of YSZ/Al$_2$O$_3$. *Diam. Relat. Mater.* 2019, 99, 107532. [CrossRef]

24. Wang, Y.F.; Wang, W.; Abbasi, H.N.; Chang, X.H.; Zhang, X.F.; Zhu, T.F.; Liu, Z.C.; Song, W.Z.; Chen, G.Q.; Wang, H.X. LiF/Al$_2$O$_3$ as dielectrics for MOSFET on single crystal hydrogen-terminated diamond. *IEEE Electron Device Lett.* 2020, 41, 808–811. [CrossRef]

25. Liu, J.W.; Liao, M.Y.; Imura, M.; Watanabe, E.; Oosato, H.; Koide, Y. Diamond field effect transistors with a high-dielectric constant Ta$_2$O$_5$ as gate material. *J. Phys. D Appl. Phys.* 2014, 47, 245102. [CrossRef]

26. Liu, J.W.; Liao, M.Y.; Imura, M., Tanaka, A., Iwai, H.; Koide, Y. Low on-resistance diamond field effect transistor with high-k ZrO$_2$ as dielectric. *Sci. Rep.* 2014, 4, 6395. [CrossRef]