ABSTRACT

Clostridium difficile is a major cause of nosocomial antibiotic-associated infectious diarrhea and pseudomembranous colitis. Detection of C. difficile by anaerobic bacterial culture and/or cytotoxicity assays has been largely replaced by rapid enzyme immunoassays (EIA). However, due to the lack of sensitivity of stool EIA, we developed a multiplex real-time PCR assay targeting the C. difficile toxin genes tcdB. Stool samples from hospitalized pediatric patients suspected of having C. difficile-associated disease were prospectively collected. Three testing modalities were evaluated, including enriched culture, cepheid Xpert and real-time PCR (tcdB) on stool samples performed with tcdB gene-specific primers and hydrolysis probes. A total of 150 de-identified clinical specimen were analyzed. The sensitivities of stool real-time PCR were 95% against cepheid Xpert C. difficile and 93% against enriched culture respectively, with a specificity of 97% and 94%. The lower limit of detection of the stool real-time PCR was 0.5 cFU/ml of per reaction for tcdB. Direct detection of C. difficile toxin genes in stool samples by real-time PCR showed performance comparable to enriched culture. Real-time PCR of DNA from stool samples is a rapid and cost-effective diagnostic modality for patients that should facilitate appropriate patient management. (Int J Biomed Sci 2016; 12 (3): 83-88)

Keywords: Clostridium difficile; real-time PCR; enzyme immunoassays; tcdB

CORRESPONDING AUTHOR: Brandon Li, Sino US Gene, Inc. 1452 #C, West Holt Ave. Pomona, CA 91768, USA. Tel: 1-(626)-282-8661; E-mail: brandonl@usc.edu.

Received August 10, 2016; Accepted September 15, 2016

Copyright: © 2016 Brandon Li. This is an open-access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.5/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
INTRODUCTION

Clostridium difficile, a Gram-positive spore-forming bacillus, is the most common identifiable etiologic agent of antibiotic-associated diarrhea (13, 18). Initially described as a member of the commensal microbiota of neonates, _C. difficile_ was identified as a causal agent of antibiotic-associated diarrhea in the 1970s (3, 11). The clinical presentation of _C. difficile_-associated disease (CDAD) can range from asymptomatic carriage in the gastrointestinal tract, mild diarrhea, and potentially fatal pseudomembranous colitis (13, 18). Symptoms occur secondary to the production of two exotoxins, toxin A and toxin B, which disrupt the integrity of the colonic mucosa (24).

Alarming changes in the epidemiology of CDAD, including an increase in both the incidence and severity of the disease, have highlighted concerns about patterns of _C. difficile_ infection (17, 18, 19, 21). Analysis of U.S. hospital discharge data revealed that the national rates of CDAD doubled from 2000 to 2003 (17). In 2004, the Centers for Disease Control and Prevention reported that the mortality rate related to CDAD increased from 5.7 deaths per million individuals in 1999 to 23.7 deaths per million individuals (21). In addition to the profound morbidity and mortality, CDAD is also generating a substantial economic burden, with estimates ranging from $1.3 million to more than $3 billion annually (8, 16, 20). Due to the formidable impact of CDAD on the U.S. health care system, rapid and accurate diagnosis is essential for the timely enactment of infection control and treatment measures.

The changing epidemiology of _C. difficile_ infections in the pediatric population is a serious concern. While benign neonatal colonization with toxigenic _C. difficile_ is a well-documented phenomenon, recent studies have suggested an increased incidence of CDAD in children (2, 14, 22, 25). A large study encompassing data collected from 22 children’s hospitals in the United States reported an increased prevalence of CDAD in children, including infants (increased by 53% from 2001 to 2006, with 26% of patients with CDAD ≤1 year of age) (14). Utilizing CDAD data from the Agency for Healthcare and Research Quality, a similar study noted that the highest number of CDAD hospitalizations occurred in patients ≤1 year of age (25).

Initial strategies to detect _C. difficile_ consisted of anaerobic stool sample culture, usually with cycloserine-cefoxitin-fructose agar (CCFA) or a similar medium with or without a pretreatment alcohol shock step (7). Although this modality was quite sensitive and specific for detecting _C. difficile_, it took up to 5 days to confirm a negative culture and it did not discriminate between toxigenic and nontoxigenic isolates without further testing strategies. Furthermore, colonies with indeterminate colony characteristics were tested with L-proline-aminopeptidase (PRO Disc) or other biochemical tests to ensure the accurate identification of _C. difficile_ (9, 10). The development of the cell culture cytotoxicity assay circumvented stool sample culture by observing cytopathic effects of toxin B directly on cultured cells (4, 6). The cell culture cytotoxicity assay requires a neutralization step for specificity and maintenance of toxin-susceptible mammalian cell lines, and it takes 48 to 72 h to perform the assay (1, 5). Rapid antigen detection assays, consisting of common antigen testing (glutamate dehydrogenase) and toxin immunoassays, have largely replaced culture and the cytotoxic assay; however, neither type has the desired sensitivity or specificity to reliably confirm or rule out CDAD without the need for either serial testing or subsequent testing modalities. Therefore, real-time PCR is being investigated as the preferred diagnostic modality due to its rapid turnaround time and track record of superior sensitivity and specificity.

Toxigenic strains of _C. difficile_ contain a 19.6-kb pathogenicity locus (PaLoc) that includes five contiguous chromosomal genes responsible for the development of CDAD—_tcdABCDE_ (24). _tcdA_ and _tcdB_ encode exotoxins A (enterotoxin) and B (cytotoxin), respectively; _tcdC_ and _tcdD_ encode negative and positive regulators, respectively, that control the level of toxin production; and _tcdE_ is purported to encode a holin-like protein thought to facilitate toxin release from the bacterial cell wall (24). Because toxins A and/or B are implicated in CDAD and genetic diversity of the PaLoc has been reported (23), we developed and clinically validated one hydrolysis probe real-time PCR assays targeting the _tcdB_ genes (12, 15, 24). While the molecular methods utilized by this assay were not novel, the application of molecular testing for _C. difficile_ infection is unique when the stool sample could be tested directly without nuclear acid extraction. This will greatly facilitate quick testing of _C. difficile_ in clinical setting.

MATERIALS AND METHOD

C. difficile Strains: The following strains were used for LoD study: _C. difficile_ ATCC 43255 (ZeptoMetrix), _C. difficile_ NAP1A (ZeptoMetrix).

Extraction, Real-time PCR Amplification and Detection: Lab developed _C. difficile_ Direct Kit contains all reagents for on-board extraction and real-time PCR amplification.
Fifty μL of C. difficile Direct reaction mix was loaded into the reaction port and 50 μL of sample was directly loaded into the sample port on the Amplification cell. All testing was performed using real time PCR. Assay time is about 60 minutes.

Limit of Detection (LoD): The LoD for each C. difficile stock was determined as the lowest concentration with ≥95% detection in negative stool matrix.

Reproducibility: Thirty-six replicates of the following contrived panel in negative stool matrix were tested: C. difficile Low Positive (ATCC 43255), C. difficile Medium Positive (ATCC 43255), C. difficile Low Positive (NAP1A), C. difficile Medium Positive (NAP1A). Low Positive was defined as 1X LoD; medium positive was defined as 3X LoD.

Positive and Negative Agreement: A panel of 150 de-identified clinical specimens was evaluated using the Lab developed C. difficile Direct assay. Lab developed test results were compared to Cepheid Xpert C. difficile and enriched culture results.

Cross-Reactivity: The cross-reactivity panel of 126 different organisms consisted of industry equivalent 106 CFU/mL of bacteria or 105 TCID50/mL of virus in negative stool matrix.

Inhibition/interference: The interference panel was contrived with the ATCC 43255 or NAP1A strain at 4-fold the LoD concentration. Each substance was spiked into the C. difficile contrived stool samples and tested using Lab developed C. difficile Direct.

RESULTS

Limit of Detection: C. difficile ATCC 43255 LoD was 0.5 CFU/mL. C. difficile NAP1A strain LoD was 1.6 CFU/mL in stool matrix (Table 1).

C. difficile Reproducibility: For ATCC 43255 and NAP1A medium- and low-contrived panels, C. difficile strains were detected in 100% of replicates. Standard deviations were <0.99. Percent coefficients of variation were <3.3 (Table 2).

Table 1. C. difficile Limit of Detection

Bacterial Strain	(LoD) Concentration	Detection Rate	Average Ct	Maximum Ct	Minimum Ct
ATCC 43255	0.5 CFU/mL	95% (19/20)	39.1	41	38.5
NAP1A	1.3 CFU/mL	100% (20/20)	39.1	42.0	38.4

Table 2. Lab developed C. difficile Direct Quantitative Reproducibility

Channel/Detector	Sample Name	N	Mean Ct	Between Instrument	Between Operator	Between Run	Within Run	Total		
			SD	%CV	SD	%CV	SD	%CV		
C. diff (FAM)	Low Pos 43255	36	38.7	0	0	0	0.87	2.6	0.94	2.7
	Low Pos NAP1A	36	38.8	0	0	0	0.76	1.8	0.74	1.9
	Med Pos 43255	36	38	0.31	0.9	0	0.53	2	0.83	2.3
	Med Pos NAP1A	36	37.2	0.16	0.2	0	0.58	1.7	0.52	1.2
	Pos Control	36	31.2	0.27	0.5	0	0.37	1.6	0.38	1.6
IC (Q670)	Low Pos 43255	36	29.9	0	0	0	0.87	3.1	0.99	3.1
	Low Pos NAP1A	36	29.8	0.28	0.9	0	0.74	2.3	0.76	2.8
	Med Pos 43255	36	29.6	0.26	0.5	0	0.62	2.3	0.69	2.4
	Med Pos NAP1A	36	29.9	0.35	1.5	0	0.6	2.4	0.75	2.6
	Negative	36	30.1	0.12	0.4	0	0.79	2.8	0.81	2.5
	Pos Control	36	30.8	0.33	1	0	0.7	2.2	0.76	2.9
C. difficile Positive and Negative Agreement: Results from Lab developed C. difficile Direct and Cepheid Xpert C. difficile were in agreement for 95% of positive specimens and 97% of negative specimens (Tables 3 and 4).

Results from Lab developed C. difficile Direct and enriched culture were in agreement for 93% of positive specimens and 94% of negative specimens (Tables 3 and 5).

Cross-Reactivity: No cross-reactivity was detected with the 126 pathogens tested (subset of representative strains listed in Table 6).

Substance Interference: No interference was detected with the substances tested (Table 7).

Table 3. Lab developed C. difficile Direct Positive and Negative Agreement

	Lab developed C. difficile Direct vs Cepheid Xpert C. difficile (n=150)	Lab developed C. difficile Direct vs Enriched Culture (n=110)
Positive Agreement (Sensitivity)	95%	93%
Negative Agreement (Specificity)	97%	94%

Table 4. Lab developed C. difficile Direct Agreement with Cepheid Xpert C. difficile

	Positive	Negative	Total
Lab developed C. difficile Direct	32	3	35
	2	113	115
Total	34	116	150

Table 5. Lab developed C. difficile Direct Agreement with Enriched Toxigenic Culture

	Positive	Negative	Total
Lab developed C. difficile Direct	41	6	47
	3	100	103
Total	44	106	150

Table 6. C. difficile Cross-Reactivity Pathogens Tested in Stool Matrix (Representative Strains)

Pathogen
Abiotrophia defectiva
Acinetobacter baumannii
Acinetobacter Iwofii
Aeromonas hydrophila
Alcaligenes faecalis subsp. Faecalis
Bifidobacterium longum
Campylobacter coli
Campylobacter jejuni sub sp. jejuni
Candida albicans
Candida catenulate
Clostridium bifermentans
Clostridium bolteae
Clostridium butyricum
Clostridium chauvoei
Clostridium fallax
Clostridium ramosurn
Clostridium scindens
Clostridium septicum
Clostridium tetani
Clostridium difficile (non-toxigenic ATCC43593)
Desulfovibrio piper
Edwardsiella tarda
Eggerthellalenta
Enterobacter aerogenes
Enterobacter cloacae
CONCLUSION

Lab developed *C. difficile* Direct can provide an option for simplified *C. difficile* testing on the real time PCR. This test was also comparable to both Xpert *C. difficile* and enriched toxigenic culture for identifying *C. difficile*.

REFERENCE

1. Aldeen WE, et al. Comparison of the TOX A/B test to a cell culture cytotoxicity assay for the detection of Clostridium difficile in stools. *Diagn. Microbiol. Infect. Dis.* 2000; 36: 211–213.
2. Baker SS, Faden H, Sayej W, Patel R, et al. Increasing incidence of community-associated atypical Clostridium difficile disease in children. *Clin. Pediatr. (Phila.)* 2010; 49: 644–647.
3. Bartlett JG, Chang TW, Taylor NS, Onderdonk AB. Antibiotic-associated pseudomembranous colitis due to toxin-producing clostridia. *N. Engl. J. Med.* 1978; 298: 531–534.
4. Bartlett JG, Onderdonk AB, Cisneros RL, Kasper DL. Clindamycin-associated colitis due to a toxin-producing species of Clostridium in hamsters. *J. Infect. Dis.* 1977; 136: 526–529.
5. Belanger SD, Boissinot M, Clairoux N, Picard FJ, et al. Rapid detection of Clostridium difficile in feces by real-time PCR. *J. Clin. Microbiol.* 2003; 41: 730–734.
6. Chang TW, Bartlett JG, Gorbach SL, Onderdonk AB. Clindamycin-induced enterocolitis in hamsters as a model of pseudomembranous colitis in patients. *Infect. Immun.* 1978; 20: 526–529.
7. Clabots CR, Gerding SJ, Olsen MM, Peterson LR, et al. Detection of asymptomatic Clostridium difficile carriage by an alcohol shock procedure. *J. Clin. Microbiol.* 1989; 27: 2386–2387.
8. Dubberke ER, Reske KA, Olsen MA, McDonald LC, et al. Short- and long-term attributable costs of Clostridium difficile-associated disease in nonsurgical inpatients. *Clin. Infect. Dis.* 2008; 46: 497–504.
9. Fedorko DP, Williams EC. Use of cycloserine-cefoxitin-fructose agar and L-proline-aminopeptidase (PRO Discs) in the rapid identification...
of Clostridium difficile. *J. Clin. Microbiol.* 1997; 35: 1258–1259.
10. Garcia A, Garcia T, Perez JL. Proline-aminopeptidase test for rapid screening of Clostridium difficile. *J. Clin. Microbiol.* 1997; 35: 3007.
11. Hall IC, O’Toole E. Intestinal flora in newborn infants with a description of a new pathogenic anaerobe, *Bacillus difficilis*. *Am. J. Dis. Child.* 1935; 49: 390–402.
12. Kato H, *et al.* Identification of toxin A-negative, toxin B-positive *Clostridium difficile* by PCR. *J. Clin. Microbiol.* 1998; 36: 2178–2182.
13. Kelly CP, Pothoulakis C, LaMont JT. *Clostridium difficile* colitis. *N. Engl. J. Med.* 1994; 330: 257–262.
14. Kim J, *et al.* Epidemiological features of *Clostridium difficile*-associated disease among inpatients at children’s hospitals in the United States, 2001–2006. *Pediatrics.* 2008; 122: 1266–1270.
15. Knudsen JD, Tvede M. Demonstration of toxin A and B by polymerase chain reaction and McCoy cell assay in clinical isolates of *Clostridium difficile* from Denmark. *J. Clin. Microbiol.* 1993; 101: 18–22.
16. Kyne L, Hamel MB, Polavaram R, Kelly CP. Health care costs and mortality associated with nosocomial diarrhea due to *Clostridium difficile*. *Clin. Infect. Dis.* 2002; 34: 346–353.
17. Loo VG, *et al.* A predominantly clonal multi-institutional outbreak of *Clostridium difficile*-associated diarrhea with high morbidity and mortality. *N. Engl. J. Med.* 2005; 353: 2442–2449.
18. McDonald LC, *et al.* An epidemic, toxin gene-variant strain of *Clostridium difficile*. *N. Engl. J. Med.* 2005; 353: 2433–2441.
19. McDonald LC, Owings M, Jernigan DB. *Clostridium difficile* infection in patients discharged from US short-stay hospitals, 1996–2003. *Emerg. Infect. Dis.* 2006; 12: 409–415.
20. O’Brien JA, Lahue BJ, Caro JJ, Davidson DM. The emerging infectious challenge of *Clostridium difficile*-associated disease in Massachusetts hospitals: clinical and economic consequences. *Infect. Control Hosp. Epidemiol.* 2007; 28: 1219–1227.
21. Redelings MD, Sorvillo F, Mascola L. Increase in *Clostridium difficile*-related mortality rates, United States, 1999–2004. *Emerg. Infect. Dis.* 2007; 13: 1417–1419.
22. Rexach CE, Tang-Feldman YJ, Cantrell MC, Cohen SH. Epidemiologic surveillance of *Clostridium difficile* diarrhea in a freestanding pediatric hospital and a pediatric hospital at a university medical center. *Diagn. Microbiol. Infect. Dis.* 2006; 56: 109–114.
23. Stabler RA, *et al.* Comparative phylogenomics of *Clostridium difficile* reveals clade specificity and microevolution of hypervirulent strains. *J. Bacteriol.* 2006; 188: 7297–7305.
24. Voth DE, Ballard JD. *Clostridium difficile* toxins: mechanism of action and role in disease. *Clin. Microbiol. Rev.* 2005; 18: 247–263.
25. Zilberberg MD, Tillotson GS, McDonald C. *Clostridium difficile* infections among hospitalized children, United States, 1997–2006. *Emerg. Infect. Dis.* 2010; 16: 604–609.