Intron 4 VNTR (4a/b) Polymorphism of the Endothelial Nitric Oxide Synthase Gene Is Associated with Breast Cancer in Mexican Women

Ramiro Ramírez-Patiño,1,2 Luis Eduardo Figuera,3 Ana María Puebla-Pérez,4 Jorge Iván Delgado-Saucedo,4 Maria Magdalena Legazpí-Macias,5 Rocio Patricia Mariad-Schmidt,6 Adriana Ramos-Silva,1,7 Itzae Adonai Gutiérrez-Hurtado,1,2 Liliana Gómez Flores-Ramos,1,2 Guillermo Moisés Zúñiga-González,6 and Martha Patricia Gallegos-Arreola1

The endothelial nitric oxide synthase (eNOS) gene plays an important role in several biological functions. Polymorphisms of the eNOS gene have been associated with cancer. It has been suggested that the VNTR 4a/b polymorphism may affect the expression of eNOS and contributes to tumor promotion in the mammary gland. We examined the role of the eNOS 4a/b polymorphism by comparing the genotypes of 281 healthy Mexican women with the genotypes of 429 Mexican women with breast cancer (BC). The observed genotype frequencies for control and BC patients were 0.6% and 0.7% for a/a (polymorphic); 87% and 77% for a/a (wild type); and 12% and 22% for a/b respectively. We found that the odds ratio (OR) was 1.9, with a 95% confidence interval (95%CI) of 1.29-2.95, P = 0.001 for genotypes a/a-a/b, b/c. The association was also evident when comparing the distribution of the a/a-a/b genotypes in patients with high levels of glutamate-oxaloacetate transaminase (SGOT) (OR, 1.93; 95% CI, 1.14-3.28; P = 0.015); undergoing menopause with high levels of SGOT (OR, 2.0; 95% CI, 1.1-3.84); and with high levels of glutamic-pyruvic transaminase (SGPT) (OR, 3.5; 95% CI, 1.56-8.22). The genotypes a/a-a/b are associated with BC susceptibility in the analyzed samples from the Mexican population.

Key Words: VNTR, eNOS, Breast Cancer, Mexican Population

INTRODUCTION

Breast cancer (BC) is one of the most common diseases in developing countries. It is estimated that there are millions of asymptomatic women that are affected by BC and millions more currently asymptomatic that will develop cancer (1). Incidence rates are variable in different ethnicities (2). In Mexico, the incidence of BC has increased within the last 7 yr, and BC is now one of the main causes of death in productive age females, only 10% of all cases are detected at stage I (3, 4). BC might result from a combination of abnormal protein interactions and environmental factors (5).

Nitric oxide (NO) is also known as nitrogen monoxide or endothelium-derived relaxing factor (EDRF); acts as a signaling molecule. NO participates in neurotransmission, endothelial vasodilatation, immunity and carcinogenesis. It is synthesized by the nitric oxide synthase (NOS) enzyme family: endothelial NOS (eNOS), neuronal NOS (nNOS) and inducible NOS (iNOS), which have been shown to be involved in promoting or inhibiting the etiology of cancer (6, 7).

Multiple mechanisms have been proposed to understand the role of NO in carcinogenesis. However, several authors have
suggested that NO may have dual roles in cancer. NO is a highly reactive molecule within biological systems that reacts with other free radicals, such as molecular oxygen and heavy metals, causing DNA breakage. NO contributes to cancer development via the generation of peroxynitrite (ONOO−) and NO₂ by p53 accumulation, which induces apoptosis and activates poly (ADP-ribose) polymerase (PARP) by the breakage of DNA strands or by the nitrosative deamination of DNA bases. The iNOS and eNOS isoforms have been studied in carcinogenesis. The NO-mediated upregulation of vascular endothelial growth factor (VEGF) may enhance the stability of the tumor and increase its invasiveness and metastatic ability. In BC, it has been suggested that the expression of iNOS and eNOS is higher in invasive tumors (7).

The eNOS (or NOS3) human gene, locus 7q35-36, encodes for a protein of 1203 amino acids; in addition, several polymorphisms have been reported, of which 3 (-786T > C, eNOS 4a/b, and 894G > T) are the most studied and are associated with different diseases, including cancer (8). The eNOS 4a/b polymorphism of the 27-bp VNTR in intron 4 has 2 common alleles: 4a with 4 repeats (GAAGTCTAGACCCTGTC(G/A)GGGGGTGAG) and 4b with 5 repeats. Two less common alleles, which are called 4c and 4*y (with 6 and 3 repeats, respectively), have been found in African and Colombian populations (9, 10).

Some reports indicate that carriers of the 4a variant have lower NO plasma levels and decreased protein expression; however, there is conflict among the different studies. It is possible that the variant is in linkage disequilibrium with other functional variants in regulatory regions of the eNOS gene (6, 11-13). Although the biological impact of the VNTR 4a/b polymorphism is unclear, it has been suggested that this polymorphism would regulate the expression of eNOS by the formation of small RNAs (siRNAs). Endothelial cells containing five copies present high quantities of siRNA and lower levels of mRNA of eNOS, when compared with cells that contain four copies (8, 14).

Different studies have found variability in the allelic frequency of the VNTR 4a/b polymorphism of the eNOS gene among diverse ethnic groups (10, 11, 15-18). The eNOS 4a/b polymorphism has been associated with different pathologies (6, 7, 19, 20), including cancer (11, 21). However, several of the studies that examined the connection between the eNOS 4a/b polymorphism and BC did not reveal any statistically significant associations (8). The aim of this study was to determine the association between the eNOS 4a/b polymorphism and BC in Mexican women.

MATERIAL AND METHODS

DNA was extracted from peripheral blood lymphocytes using standard protocols (22). Blood samples were collected from 281 healthy women that were recruited as volunteer blood donors with an average age of 34 yr. These volunteers were not matched by age with the patient group. Blood samples were also collected from 429 patients with a clinical and histological confirmation of BC, and all of the patients were residents of the metropolitan area of Guadalajara. The patients were recruited from June 2010 to October 2012.

Efforts were taken to ensure that siblings of those patients who were already sampled were excluded. The clinical and demographic data were obtained using written questionnaires. All of the patients were also interviewed to determine occupational exposure and the pharmacological therapeutics used. The database and DNA samples from BC patients were examined for other polymorphisms.

The amplification of the eNOS 4a/b polymorphism of intron 4 was performed by PCR using the following primers: 5′-AGGGCCC TAT GGT AGT GCC TTT-3′ and 5′-TCT CTT AGT GCT GTG GTC AC-3′ (24). The PCR reactions were performed in a total volume of 15 μL, which contained 0.2 mM dNTPs (Invitrogen, Carlsbad, CA, USA), 5 pM of primers, 2.0 mM MgCl₂, 2.5 U Ttaq polymerase (Invitrogen), and 50 ng of genomic DNA. The PCR conditions were 95°C (4 min), followed by 35 cycles of 94°C (1 min), 57°C (1 min), and 72°C (1.5 min), and then a final extension at 72°C (7 min). Using this procedure, we obtained fragments of 393 and 420 base pairs (bp). For the allelic discrimination of the eNOS 4a/b polymorphism, the amplified products were separated on 6% polyacrylamide gels (29:1), followed by silver staining (25). We determined that the 393-bp fragment represented a polymorphic genotype (a/a, 4 repeats). Two fragments at 393- and 420-bp indicated a heterozygous genotype (a/b), and one fragment at 420-bp represented the wild-type genotype (b/b; 5 repeats) (Fig. 1). The allelic frequencies were obtained by direct counting. Hardy-Weinberg equilibrium was tested by a chi-square goodness-of-fit test to compare the observed genotype frequencies with the expected frequencies among control subjects. The odds ratio (OR) and 95% confidence intervals (95% CI) were also calculated. A two-sided P < 0.05 was considered statistically significant. All statistical analyses were performed using the PASW Statistic Base 18 software, 2009 (Chicago, IL, USA).

Ethics statement
All of the samples were obtained with the appropriate written informed consent. This study was approved by the institutional review board of CIBO, IMSS (#1305).

RESULTS

The comparative epidemiological data from the BC patients and the control individuals are displayed in Table 1. In the patient group, the observed average age was 55 yr. Oral contraceptive use (OR, 2.9: 95% CI, 1.7-4.9; P < 0.001), menopause (OR,
Table 1. Demographic data from the study groups

Parameters	BC patients (n = 429)	Controls (n = 281)	OR (95%IC) *	\(P\) value	
Age (yr)	Mean (SD)	55.0 (12.0)	34.0 (10.0)		
Menarche (yr)	Mean (SD)	12.54 (1.7)	12.19 (1.0)		
7-10 (No., %)	40 (9)				
11-13 (No., %)	264 (62)				
14-18 (No., %)	125 (29)				
Oral contraceptive use	Yes (No., %)	177 (41)	73 (26)	2.9 (1.7-4.9)	< 0.001
	No (No., %)	252 (59)	208 (74)		
Breastfeeding	No (No., %)	161 (38)	108 (38)	0.10 (0.04-0.23)	< 0.001
	≤ 6 months (No., %)	50 (11)	111 (40)		
	> 6 months (No., %)	218 (51)	62 (22)		
Menopause	Yes (No., %)	296 (69)	24 (9)	17 (9.7-29.9)	< 0.001
	No (No., %)	133 (31)	257 (91)		
Tobacco consumption	Yes (No., %)	90 (21)	44 (16)	NS	
	No (No., %)	339 (79)	237 (84)		
Alcohol consumption	Yes (No., %)	71 (17)	65 (23)	0.43 (0.23-0.78)	0.006
	No (No., %)	358 (83)	216 (77)		
Familial history (FH)	Yes (No., %)	289 (67)	62 (22)	7.9 (4.2-15)	< 0.001
	No (No., %)	140 (33)	219 (78)		

*OR (odds ratio) adjusted regression analysis. NS (No significant difference).

17; 95% CI, 9.7-29.9; \(P < 0.001\), and familial history (FH) (OR, 7.9; 95% CI, 4.2-15; \(P < 0.001\)) were presented as risk factors.

Table 2 shows the general clinical characteristics of the patient group. We observed that 28% of the patients had diabetes mellitus-arterial hypertension (DM-AH), 44% had 1-3 pregnancies, 30% had abortions, 36.4% had IMC of 25-29.9, 28% were positive for hormonal receptors and were negative for Her 2/neu, 89% had ductal histology, 62.5% had stage III-IV tumors, 19% (approx.) had high levels of SGOT, and more than 23% had high levels of alkaline phosphatase (ALP), gamma-glutamyltranspeptidase (GGT) and glucose (data not shown).

Table 3 summarizes the multivariate logistic regression analysis, where the BC group was classified with tumor stages I-II and III-IV as the dependent variables. The risk factors for stage III-VI tumors included the following: age (30-40 yr), hormonal consumption, abortion presence, obesity grade II, metastatic...
Table 2. Clinical data from patients with BC

Parameters	No. (%)	Parameters	No. (%)
Age (yr)		Tumor stage	
30-40	49 (11)	I-II	161 (37.5)
41-51	132 (31)	III-IV	268 (62.5)
52-62	146 (34)	Lymphnode status	
63 or more	102 (24)	Yes	302 (70.4)
		No	127 (29.6)
Personal medical history		Metastasis	
No	200 (47)	Yes	147 (34)
DM-AH	120 (28)	No	282 (66)
Breast fibrosis-myomatosis	99 (23)	Chemotherapy response	
hysterectomy		Yes	279 (65)
Depression, pregnancy, asthma	10 (2)	No	150 (35)
Pregnancies		Chemotherapy type	
No	64 (15)	FEC	326 (76)
1-3	189 (44)	Other	83 (19)
4- and more	176 (41)	No chemotherapy	20 (5)
Abortions		Laboratory test hemoglobin (g/dL)	
Yes	129 (30)	< 11	84 (19.5)
No	300 (70)	11-16.4	345 (80.4)
BMI		Hematocrit (%)	
18.5-24.9	82 (19)	< 37	85 (19.8)
25-29.9 (overweight)	156 (37)	37-47	344 (80.2)
30-34.9 (obesity I)	115 (27)		
35-39.9 (obesity II)	53 (12)		
> 40 (obesity III and IV)	23 (5)		
Tumor localization		Platelets (mm³)	
Unilateral (Right/left)	407 (95)	< 150,000	17 (4)
Bilateral	22 (5)	150,000-450,000	274 (64)
Diagnostic years		> 450,000	138 (32)
1-4 yr	331 (77)	< 150,000	48 (11)
5-9 yr	83 (19)	150,000-500,000	381 (89)
10-15 yr	15 (4)		
Tumoral markers		Leukocytes (mm³)	
Her2/neu, ER, PR	57 (13.5)	< 150,000	43 (10)
Her2/neu, ER	10 (2)	150,000-450,000	386 (90)
Her2/neu, PR	13 (3)	> 45	75 (17.5)
Her2/neu	64 (15)	5-45	354 (82.5)
Triple negative	64 (15)		
ER, PR	150 (35)		
ER	39 (9)		
PR	17 (4)		
No data	15 (3.5)		
History		SGOT (µ/L)	
Ductal	383 (89)	> 35	83 (19)
Lobular	43 (10)	0-35	346 (81)
Mixed	2 (1)		
		SGPT (µ/L)	
		> 45	43 (10)
		5-45	386 (90)
		LDH (µ/L)	
		> 333	75 (17.5)
		105-333	354 (82.5)
		GT (µ/L)	
		> 45	114 (27)
		5-45	315 (73)

FEC: 5-Fluorouracil, Epirubicin, Cyclophosphamide; Others: paclitaxel, docetaxel, Herceptin. Body mass index (BMI), estrogen receptor (ER), progesterone receptor (PR), triple negative (absence of ER, PR, Her2/neu).

Table 3. The regression binary logistic of the patient group

Variables	B*	SD	Wald	df	P	OR	95% CI Low	95% CI Upper
Age (30-40 yr)	0.86	0.39	4.73	1	0.029	2.37	1.11	5.17
Hormonal (Consumption)	-0.57	0.25	5.07	1	0.024	0.56	0.34	0.92
Abortions	0.586	0.283	4.297	1	0.038	1.797	1.032	3.127
Obesity grade II	0.778	0.385	4.07	1	0.044	2.186	1.277	3.682
Lymphnode status	0.774	0.270	8.208	1	0.004	3.256	1.551	6.511
Metastasis	3.516	0.479	53.98	1	0.001	33.653	13.17	85.97
LDH (highlevel)	1.072	0.389	7.612	1	0.006	2.921	1.277	3.682
Constant	-0.83	0.273	9.324	1	0.002	0.435		

Variables included in the analysis: Dependent: BC classified by tumor status as I-II and III-IV. Independent: personal medical history, menarche ranges 7-10 yr, 11-13 yr, 14-18 yr; menopause, pregnancies, breastfeeding, oral contraceptive use, tobacco and alcohol consumption, FH, and BMI: 18.5-29.9, > 25-29.9, > 30-34.9, > 35- > 40, lymph node status, metastasis, response to chemotherapy, laboratory tests (hemoglobin, hematocrit, platelets, leukocytes, urea, SGOT, SGPT, LDH, ALP, GT, and glucose), *coefficient B.
The genotypic and allelic frequencies of the eNOS 4a/b polymorphism were different in the control and patient groups (Table 4). The polymorphic genotype (a/a) was observed in 0.7% (3/429) of patients compared with 0.6% (2/281) of the controls. The heterozygous genotype (a/b) was observed in 22% of the patients (94/429) and 34% (12/281) of the controls (OR, 2.0; 95% CI, 1.3-3.1; P = 0.0008), whereas genotype b/c was only observed in the control group 0.4% (1/281). Genotype b/b was observed in 756 (88.1) patients (94/429) and 34% (12/281) of the controls. The genotypic and allelic distributions of the control group were in Hardy-Weinberg equilibrium. All of the samples were genotyped, and all of the genotypes (281 controls and 429 BC patients) were obtained.

Table 5 shows that the patients with the a/a-a/b genotypes were associated with the presence of high levels of SGOT (OR, 1.936; 95% CI, 1.14-3.26; P = 0.015) along with the variables listed in Tables 1 and 2 as risk factors. Additionally, when patients were classified with more than two clinical variables, we observed that the a/a-a/b genotype was associated with the following risk factors: the presence of a metastatic lymph node with high levels of SGOT (OR, 2.1; 95% CI, 1.18-3.94) and SGPT (OR, 2.9; 95% CI, 1.34-6.42); metastasis with high levels of SGPT (OR, 4.0; 95% CI, 1.55-10.49); menopause with high levels of SGOT (OR 2.0, 95% CI; 1.1-3.84) and SGPT (OR, 3.59; 95% CI, 1.56-8.2) (data no shown).

DISCUSSION

The results of this study were consistent with those described by other authors. We observed the presence of BC at an average age of 55 yr (25), with oral contraceptive use (26, 27), menopause, pregnancies, abortion, breastfeeding, oral contraceptive use, tobacco and alcohol consumption, HF, and BMI: 18.5-24.9, ≥ 25-29.9, ≥ 30-34.9, ≥ 35- > 40, lymph node status, metastasis, response to chemotherapy, laboratory tests (hemoglobin, hematocrit, platelets, leukocytes, urea, SGOT, SGPT, LDH, ALP, GGT, and glucose, *coefficient B.

Variables included in the analysis: Dependent: BC patients classified by a/a-a/b genotype. Independent: personal medical history, menarche ranges 7-10 yr, 11-13 yr, 14-18 yr; menopause, pregnancies, abortion, breastfeeding, oral contraceptive use, tobacco and alcohol consumption, HF, and BMI: 18.5-24.9, ≥ 25-29.9, ≥ 30-34.9, ≥ 35- > 40, lymph node status, metastasis, response to chemotherapy, laboratory tests (hemoglobin, hematocrit, platelets, leukocytes, urea, SGOT, SGPT, LDH, ALP, GGT, and glucose, *coefficient B.
tory process independently of estrogen. In addition, peripheral circulating estrogens (from aromatization of androgens) are elevated in obese postmenopausal women. Another current hypothesis proposes that obesity is associated with metabolic syndrome, which activates molecular processes that are mitogenic in breast epithelial cells and stimulates neoplasia. A third hypothesis suggests that adipocytes and their autocrine mechanisms are important for BC development (18, 19).

Additionally, the presence of lymph node metastases and metastasis emerged as risk factors in patients with stages III-IV BC. The tumor stage of BC is important for determining the type of chemotherapy treatment and predicting survival. Moreover, the number of positive axillary nodes is an important prognostic factor in cases of invasive carcinoma that are treated with mastectomy and is related to survival, recurrence rate and treatment failure (22, 23). In addition, other associated factors included the high expression of LDH as indicative of a poor response in patients with later stages of BC. The elevated expression of these enzymes is thought to reflect tumor aggressiveness (24).

Advances in molecular and genetic epidemiology have increased our knowledge of the mechanisms underlying breast carcinogenesis and the relation between exposure to carcinogens, diet, and individual genetic variations in susceptibility. Polymorphisms, which are low penetrance genes, are risk factors in BC. NO metabolism has been proposed to act as a pleiotropic regulator that is involved in carcinogenesis; the high concentrations of NO and its metabolites contribute as promoters of gene transcription and protein activation that join specific DNA sequences, producing DNA breakage and promoting tumor angiogenesis and metastasis (7). However, the exact mechanism of these contributions is unknown. The eNOS enzyme is calcium-dependent and participates in the regulation of blood pressure, platelet aggregation, leukocyte adherence, vascular smooth muscle cell mitogenesis and angiogenesis (32). The eNOS intron 4a/b polymorphism has been associated with the risk of several diseases, including cancer, and is associated with reduced enzymatic activity (6, 7, 14). In this study, the allelic frequency of the eNOS 4 a/b polymorphism was 0.06 in controls and 0.11 in BC patients with associated risk factors. This result most likely suggests that this polymorphism contributes to the angiogenic capacity of the tumor tissue, which could be responsible for tumor growth. However, low levels of NO might also contribute to carcinogenesis (33).

Furthermore, we observed an association of the a/a-a/b genotype as a risk factor in patients with high levels of SGOT. In this respect, the relation between a high level of SGOT and BC is complex; SGOT has been associated with several factors, which include alcohol consumption, metastasis, diet and chemotherapy. This observation could possibly be explained by the participation of SGOT as a marker for liver metastases and hepatotoxicity by chemotherapy in BC patients. A high level of SGOT has been proposed as a biomarker of the progression of tumor growth. SGOT is required in glycolysis metabolism, which is increased with several oncogenes in cancer cells. Cytoplasmic SGOT and mitochondrial SGOT function in tandem with malate dehydrogenase to cycle the malate-aspartate shuttle, which is active in the neoplastic cells of several types of tumors (34).

In contrast, the high levels of NO production in breast cancer and chemotherapy may result in high cytotoxic activity. NO promotes cancer progression by activating several oncogenic signaling pathways, such as extracellular signal-regulated kinases and phosphoinositide 3-kinases. The upregulation of eNOS and elevated production of NO affect the redox state of cells and can induce protein, lipid, and DNA modifications. A release of variable amounts of NO into the tumor microenvironment can activate oncogenic pathways and stimulate tumor microvascularization. The eNOS 4a/b polymorphism could most likely be related to breast carcinogenesis due to the overproduction of eNOS and NO levels and, consequently, the overproduction of ROS, which could lead to genetic instability, tumor progression, and metastasis by triggering an oncogenic pathway that, in turn, activates glycolysis metabolism (34, 35).

Chemotherapeutic drugs not only increase the formation of free radicals but also decrease the ability to detoxify ROS. These chemotherapeutic drugs are hydrophilic and cannot penetrate the inner membrane of cells, where NADH located on the inner membrane surface would reduce them. The increment in serum transaminase enzyme levels suggests an increased leakage of this enzyme from mitochondria because of the toxicity induced by chemotherapy treatments. Amin et al. (35) revealed that oxidative stress and cardiotoxicity development might facilitate breast cancer progression, most likely mediated through catalase, GSH, MDA, NO, LDH, transaminases, and CK activity.

Our results show that the frequencies of the heterozygous genotypes of the eNOS intron 4 a/b polymorphism are significantly higher in BC patients when compared with controls. The differences were most evident in patients with high SGOT levels; additionally, in the analyzed sample from the Mexican population, the BC patients with metastasis seem to have a significantly higher susceptibility to develop BC. However, further studies are required to confirm or reject these observations.

ACKNOWLEDGMENTS

We thank Dr. Efrain Salas and the nurses from the UMAE Hospital de Gineco-Obstetricia, CMNO, IMSS for providing the facilities for sample collection.

DISCLOSURE

The authors have no conflicts of interest to disclose.
REFERENCES

1. Siegel R, DeSantis C, Virgo K, Stein K, Mariotto A, Smith T, Cooper D, Gansler T, Lerro C, Fedewa S, et al. Cancer treatment and survivorship statistics, 2012. CA Cancer J Clin 2012; 62: 220-41.

2. Miller JW, King JB, Joseph DA, Richardson LC; Centers for Disease Control and Prevention (CDC). Breast cancer screening among adult women: Behavioral Risk Factor Surveillance System, United States, 2010. MMWR Morb Mortal Wkly Rep 2012; 61: 46-50.

3. Chiavari-Guerra V, Villarreal-Garza G, Liedke PE, Knaul F, Mohar A, Finkelstein DM, Goss PE. Breast cancer in Mexico: a growing challenge to health and the health system. Lancet Oncol 2012; 13: e335-43.

4. Knaul FM, Nigenda G, Lozano R, Areola-Ornelas H, Langer A, Frenk J. Breast cancer in Mexico: an urgent priority. Salud Publica Mex 2009; 51: s335-44.

5. Ma Q, Lu AX. Pharmacogenetics, pharmacogenomics, and individualized medicine. Pharmacol Rev 2011; 63: 437-59.

6. Casas JP, Cavalleri GL, Bautista LE, Smeeth L, Humphries SE, Hingorani AD. Endothelial nitric oxide synthase gene polymorphisms and cardiovascular disease: a HuGE review. Am J Epidemiol 2006; 164: 921-35.

7. Xu W, Liu LZ, Loizidou M, Ahmed M, Charles IG. Nitric oxide synthase and ischemic cerebrovascular diseases in Henan Han ethnicity. Life Sci J 2007; 4: 26-9.

8. Ma Q, Lu AX. Endothelial nitric oxide synthase gene polymorphisms in breast cancer. Breast Cancer Res Treat 2008; 109: 181-2.

9. Thameem F, Puppala S, Arar NH, Stern MP, Blangero J, Duggirala R, Pickup JC. Frequency of eNOS polymorphisms in the Colombian general population. BMC Genet 2010; 11: 54.

10. Yeh CC, Santella RM, Hsieh LL, Sung FC, Tang R. Molecular variation in endothelial nitric oxide synthase gene (eNOS) in western Mediterranean populations. BMC Genet 2010; 11: 54.

11. Yeh CC, Santella RM, Hsieh LL, Sung FC, Tang R. Endothelial nitric oxide synthase gene intron 4, 27 bp repeat polymorphism and essential hypertension in the Kazakh Chinese population. Acta Biochim Biophys Sin (Shanghai) 2007; 39: 311-6.

12. Yeh CC, Santella RM, Hsieh LL, Sung FC, Tang R. Endothelial nitric oxide synthase gene intron 4, 27 bp repeat polymorphism and essential hypertension in the Kazakh Chinese population. Acta Biochim Biophys Sin (Shanghai) 2007; 39: 311-6.

13. Serrano NC, Díaz LA, Casas JP, Hingorani AD, Moreno de Lucca D, Pérez-MC. Frequency of eNOS polymorphisms in the Colombian general population. BMC Genet 2010; 11: 54.

14. Thameem F, Puppala S, Arar NH, Stern MP, Blangero J, Duggirala R, Abboud HE. Promoter polymorphism (−386T>C) in the endothelial nitric oxide synthase gene is associated with risk of sporadic breast cancer in non-Hispanic white women age younger than 55 years. Cancer 2006; 107: 2245-53.

15. Via M, González-Pérez E, Esteban E, López-Alomar A, Vaccá L, Vona G, Dugoujon JM, Harich N, Moral P. An intron 4 VNTR polymorphism of the endothelial nitric oxide synthase gene is associated with early-onset colorectal cancer. Int J Cancer 2009; 124: 1565-71.

16. Vanamanda K, Boggs PB, Thurmon TE, Lewis D, Bocchini JA Jr, Dhani MA. Novel allele of the endothelial nitric oxide synthase gene polymorphism in Caucasian asthmatics. Biochem Biophys Res Commun 2005; 335: 545-9.

17. Li A, Song B, Zheng H, Zhang X, He Y, Xu Y. Association between the variable number of tandem repeat polymorphisms of endothelial nitric oxide synthase and ischemic cerebrovascular diseases in Henan Han ethnicity. Life Sci J 2007; 4: 26-9.

18. Li A, Song B, Zheng H, Zhang X, He Y, Xu Y. Association between the variable number of tandem repeat polymorphisms of endothelial nitric oxide synthase and ischemic cerebrovascular diseases in Henan Han ethnicity. Life Sci J 2007; 4: 26-9.

19. Liu J, Wei Q, Bondy ML, Yu TK, Li D, Brewster A, Shete S, Sahin A, Mercie-Bernstam F, Wang LE. The role of nitric oxide synthase and endothelial nitric oxide synthase and ischemic cerebrovascular diseases in Henan Han ethnicity. Life Sci J 2007; 4: 26-9.

20. Liu J, Wei Q, Bondy ML, Yu TK, Li D, Brewster A, Shete S, Sahin A, Mercie-Bernstam F, Wang LE. The role of nitric oxide synthase and endothelial nitric oxide synthase and ischemic cerebrovascular diseases in Henan Han ethnicity. Life Sci J 2007; 4: 26-9.

21. Liu J, Wei Q, Bondy ML, Yu TK, Li D, Brewster A, Shete S, Sahin A, Mercie-Bernstam F, Wang LE. The role of nitric oxide synthase and endothelial nitric oxide synthase and ischemic cerebrovascular diseases in Henan Han ethnicity. Life Sci J 2007; 4: 26-9.

22. Liu J, Wei Q, Bondy ML, Yu TK, Li D, Brewster A, Shete S, Sahin A, Mercie-Bernstam F, Wang LE. The role of nitric oxide synthase and endothelial nitric oxide synthase and ischemic cerebrovascular diseases in Henan Han ethnicity. Life Sci J 2007; 4: 26-9.

23. Liu J, Wei Q, Bondy ML, Yu TK, Li D, Brewster A, Shete S, Sahin A, Mercie-Bernstam F, Wang LE. The role of nitric oxide synthase and endothelial nitric oxide synthase and ischemic cerebrovascular diseases in Henan Han ethnicity. Life Sci J 2007; 4: 26-9.

24. Liu J, Wei Q, Bondy ML, Yu TK, Li D, Brewster A, Shete S, Sahin A, Mercie-Bernstam F, Wang LE. The role of nitric oxide synthase and endothelial nitric oxide synthase and ischemic cerebrovascular diseases in Henan Han ethnicity. Life Sci J 2007; 4: 26-9.

25. Liu J, Wei Q, Bondy ML, Yu TK, Li D, Brewster A, Shete S, Sahin A, Mercie-Bernstam F, Wang LE. The role of nitric oxide synthase and endothelial nitric oxide synthase and ischemic cerebrovascular diseases in Henan Han ethnicity. Life Sci J 2007; 4: 26-9.

26. Liu J, Wei Q, Bondy ML, Yu TK, Li D, Brewster A, Shete S, Sahin A, Mercie-Bernstam F, Wang LE. The role of nitric oxide synthase and endothelial nitric oxide synthase and ischemic cerebrovascular diseases in Henan Han ethnicity. Life Sci J 2007; 4: 26-9.

27. Liu J, Wei Q, Bondy ML, Yu TK, Li D, Brewster A, Shete S, Sahin A, Mercie-Bernstam F, Wang LE. The role of nitric oxide synthase and endothelial nitric oxide synthase and ischemic cerebrovascular diseases in Henan Han ethnicity. Life Sci J 2007; 4: 26-9.

28. Liu J, Wei Q, Bondy ML, Yu TK, Li D, Brewster A, Shete S, Sahin A, Mercie-Bernstam F, Wang LE. The role of nitric oxide synthase and endothelial nitric oxide synthase and ischemic cerebrovascular diseases in Henan Han ethnicity. Life Sci J 2007; 4: 26-9.

29. Liu J, Wei Q, Bondy ML, Yu TK, Li D, Brewster A, Shete S, Sahin A, Mercie-Bernstam F, Wang LE. The role of nitric oxide synthase and endothelial nitric oxide synthase and ischemic cerebrovascular diseases in Henan Han ethnicity. Life Sci J 2007; 4: 26-9.

30. Liu J, Wei Q, Bondy ML, Yu TK, Li D, Brewster A, Shete S, Sahin A, Mercie-Bernstam F, Wang LE. The role of nitric oxide synthase and endothelial nitric oxide synthase and ischemic cerebrovascular diseases in Henan Han ethnicity. Life Sci J 2007; 4: 26-9.

31. Liu J, Wei Q, Bondy ML, Yu TK, Li D, Brewster A, Shete S, Sahin A, Mercie-Bernstam F, Wang LE. The role of nitric oxide synthase and endothelial nitric oxide synthase and ischemic cerebrovascular diseases in Henan Han ethnicity. Life Sci J 2007; 4: 26-9.

32. Liu J, Wei Q, Bondy ML, Yu TK, Li D, Brewster A, Shete S, Sahin A, Mercie-Bernstam F, Wang LE. The role of nitric oxide synthase and endothelial nitric oxide synthase and ischemic cerebrovascular diseases in Henan Han ethnicity. Life Sci J 2007; 4: 26-9.
tric cancer. Turk J Gastroenterol 2010; 21: 338-44.
34. Thornburg JM, Nelson KK, Clem BE, Lane AN, Arumugam S, Simmons A, Eaton JW, Telang S, Chesney J. Targeting aspartate aminotransferase in breast cancer. Breast Cancer Res 2008; 10: R84.
35. Amin KA, Mohamed BM, El-Wakil MA, Ibrahem SO. Impact of breast cancer and combination chemotherapy on oxidative stress, hepatic and cardiac markers. J Breast Cancer 2012; 15: 306-12.