Preface

To cite this article: 2019 J. Phys.: Conf. Ser. 1245 011001

View the article online for updates and enhancements.
Preface

The biannual International Conference on Mathematics and Natural Sciences (ICMNS) is a series of interdisciplinary conference specially organized to celebrate the birthday of the Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, officially founded on the 6th of October 1947. In 2018, it was the 7th ICMNS that was held at the campus of Institut Teknologi Bandung, on November 2-3, 2018. The particular character of this conference is still maintained, i.e., to promote multi-and inter-disciplinary researches in sciences and their applications. So it should cover ‘broad-but-related’ topics in science. Besides to disseminate recent research results in the field of sciences and mathematics, the 7th ICMNS also called special theme, i.e., to encourage the development of sciences and technologies for food, health, and sustainable energy.

In order to create strong interactions of multi-disciplinary areas, we distribute the topics in 11 different areas covering Chemistry, Physics, Mathematics, Material Science, Computational Science, Medical and Pharmaceutical Sciences, Life Sciences, Environmental Sciences, Science of Renewable Energy, Earth and Space Science. As we learned from previous experiences, this should also allow people from faculty of engineering could participate in this conference and make collaboration with those from other related fields.

For the 7th ICMNS, we are mostly honored to have several distinguished invited speakers for selected fields. Therefore, we are indebted to Professor Hans Z. Munthe-Kaas (University of Bergen, Norway), Chair of CIMPA Scientific Council and Chair of Abel Prize Committee and Professor Juan Bisquert (Universitat Jaume I, Spain), Director of Institute of Advanced Materials, as keynote speakers, and several distinguished scientists as plenary speakers, that is, Dr. Ilya Shadrivov (Australian National University College of Science, Australia), Dr. Hadi Susanto (University of Essex, UK), Dr. Avan Suinesiaputra (The University of Auckland, New Zealand), Prof. Matthew Colless (Australian National University, College of Science, Australia), Veinardi Suendo, Ph.D. (Institut Teknologi Bandung, Indonesia), for their special contribution. They have presented recent development in their respected fields to inspire many young scientists, in particular, and all participants in this conference. Accordingly, it is expected to generate cooperation among them.

To facilitate active interaction, like previous event in this series, we also organized mini-symposia, to gather more people in the fields sharing their ideas. The mini-symposia focused themes on: (1) Coastal and Ocean Dynamics, discussing issue related to oceanographic operational system, forecasting and prediction with data assimilation, and numerical modeling result related to coastal and ocean dynamics; (2) Building Indonesian Observatories Network, regarding that some new observatories with permanent telescope building (dome) have been constructed, then it is about the right time for these enthusiasts to share their experience and plan for the future, in this mini-symposium; (3) Various Aspects in Combinatorics, aiming to introduce recent progress of various aspects in Combinatorics to broad audiences, in particular to combinatorialists; (4) Optics, Photonics and Their Applications, intended as forum of scientific communications and interactions among scientists working in optics and photonics science covering a broad spectrum from theory and modeling to biomedical applications; (5) Nonlinear Phenomena, dealing with the dynamics and bifurcations in a system; (6) Science and Technology of Solar
Energy Conversion, intended to facilitate a forum for the researchers in this field to share their results and new research ideas.

We noted that there were 355 registered participants and about half of them are graduate students. The organizer has reviewed 310 abstract accepted as contributed papers, either in oral or poster presentations. For the written versions, after being reviewed and revised, we also regrouped the accepted papers into several categories, and in this edition of physical sciences, we have accepted 94 papers to publish.

Last, but certainly not least, we are extremely grateful to all participants who made the collaborative spirits always high and enjoyable, and we apologize for all shortcomings in the organizations of the conference. The organizing committee appreciates very much all the helps from the SOC as well as the hard work of the LOC.

April 2019

Editors/Organizers
Peer review statement

To cite this article: 2019 J. Phys.: Conf. Ser. 1245 011002

View the article online for updates and enhancements.
Peer review statement

All papers published in this volume of *Journal of Physics: Conference Series* have been peer reviewed through processes administered by the proceedings Editors. Reviews were conducted by expert referees to the professional and scientific standards expected of a proceedings journal published by IOP Publishing.
Table of contents

Volume 1245
2019

International Conference on Mathematics and Natural Sciences (ICMNS)
2–3 November 2018, Institut Teknologi Bandung, West Java, Indonesia

Accepted papers received: 1 May 2019
Published online: 9 October 2019

Preface

OPEN ACCESS
Preface
+ View abstract PDF

OPEN ACCESS
Peer review statement
+ View abstract PDF

Papers

Bio sciences

OPEN ACCESS
Analysis of AGAMOUS Gene Expression in Hibiscus rosasinensis L. Single Pink, Crested Peach, and Double Orange Flowers
A Salamah and I Rostika
+ View abstract PDF

OPEN ACCESS
Survival and Reproductive Value of Hermetia illucens (Diptera: Stratiomyidae) on Vegetable and Fruits Waste Rearing Substrate
U Julita, L L Fitri, R E Putra and A D Permana
+ View abstract PDF

OPEN ACCESS
The effect of drying step in the preparation of Microlejeunea ulicina for scanning electron microscopy observation
F Mawi, D Aulia, A Putrika and A Dwiranti
+ View abstract PDF

OPEN ACCESS
Visualization of Microlejeunea ulicina by using Transmission Electron Microscopy
D M Nabella, D A R Yenti, A P and A Dwiranti
+ View abstract PDF

Computational science

OPEN ACCESS
An artificial neural network approach in predicting career strand of incoming senior high school students
A L Nazareno, M J F Lopez, G A Gestiada, M P Martinez and R M Roxas-Villanueva
+ View abstract PDF
In-Vitro Study of DNA Adduct 8-Hydroxy-2'-Deoxyguanosine Formation from 2'-Deoxyguanosine Exposure Against Benzo[a]pyrene and Ni(II) Compounds Through Fenton-Like Reactions
Ikkio Haidar Farozy, Sri Handayani, Budiarwan and Intan Cahaya Dani
+ View abstract PDF

OPEN ACCESS
Synthesis of Fe3O4 nanoparticles for colour removal of printing ink solution
N R Jannah and D Onggo
+ View abstract PDF

OPEN ACCESS
The Properties of Microcellulose as Enhanced Oil Recovery Agent
Galuh Sukmarani and Mia Ledyastuti
+ View abstract PDF

OPEN ACCESS
Optimization of Coulometric Microdevice for Protein Detection Based on Metallization Principle
I Anshori
+ View abstract PDF

Mathematics

OPEN ACCESS
An Optimal Integrated Vector Control for Prevention the Transmission of Dengue
Kasihwanati, Surya Ningisih, Agustinus Ribal and Fatmawati
+ View abstract PDF

OPEN ACCESS
Bayesian Quantile Regression Method to Construct the Low Birth Weight Model
Ferra Yanaur, Aidilin Zetra, Carin Muharisa, Dodi Devlanto, Arrival Rince Putri and Yudiantri Asdi
+ View abstract PDF

OPEN ACCESS
Aitken's Generalized Least Square Method for Estimating Parameter of Demand Function of Animal Protein In Indonesia
Ftina Virgantari, Hagni Wijayanti and Sonny Koeshendrajana
+ View abstract PDF

OPEN ACCESS
Generalized STAR (1;1) Model with Outlier - Case Study of Begai in Medan, North Sumatera
D Masteriana, M I Riani and U Mukhairyar
+ View abstract PDF

OPEN ACCESS
Global Stability and Sensitivity Analysis of SIA Model for AIDS Disease
Fadillah Ilahi and Nurulhammah
+ View abstract PDF

OPEN ACCESS
Introducing Fermat Sequences
R W Wibowo
+ View abstract PDF

OPEN ACCESS
l-Primal Submodules
Steven
+ View abstract PDF

OPEN ACCESS
Isomorphism between endomorphism rings of modules over a semi simple ring

Table of contents

Volume 1245

2019

* Previous issue Next issue *

International Conference on Mathematics and Natural Sciences (ICMNS)
2–3 November 2018, Institut Teknologi Bandung, West Java, Indonesia

View all abstracts

Accepted papers received: 1 May 2019
Published online: 9 October 2019

Preface

OPEN ACCESS
Preface
+ View abstract PDF

OPEN ACCESS
Peer review statement
+ View abstract PDF

Papers

Bio sciences

OPEN ACCESS
Analysis of AGAMOUS Gene Expression in Hibiscus rosasinensis L. Single Pink, Crested Peach, and Double Orange Flowers
A Salamah and I Rostina
+ View abstract PDF

OPEN ACCESS
Survival and Reproductive Value of Hermetia illucens (Diptera: Stratiomyidae) on Vegetable and Fruits Waste Rearing Substrate
U Julita, L L Fitri, R E Putra and A D Permata
+ View abstract PDF

OPEN ACCESS
The effect of drying step in the preparation of Microtela ulicina for scanning electron microscopy observation
F Fasli, D Aulia, A Putrika and A Dwiranti
+ View abstract PDF

OPEN ACCESS
Visualization of Microtela ulicina by using Transmission Electron Microscopy
D M Nabella, D A R Yenti, A P and A Dwiranti
+ View abstract PDF

Computational science

OPEN ACCESS
An artificial neural network approach in predicting career strand of incoming senior high school students
A L Nazareno, M J F Lopez, G A Gestiada, M P Martinez and R M Roxas-Villanueva
+ View abstract PDF
In-Vitro Study of DNA Adduct 8-Hydroxy-2'-Deoxyguanosine Formation from 2'-Deoxyguanosine Exposure Against Benzopyrene and N(II) Compounds Through Fenton-Like Reactions
Ikkok Hadira Farozi, Sri Handayani, Budawan and Intan Cahaya Dani
+ View abstract PDF 012039

Synthesis of Fe3O4 nanoparticles for colour removal of printing ink solution
N. R. Jannah and D Onggo
+ View abstract PDF 012040

The Properties of Microcellulose as Enhanced Oil Recovery Agent
Galuh Sukmarani and Mia Ledyastuti
+ View abstract PDF 012041

Optimization of Coulometric Microdevice for Protein Detection Based on Metallization Principle
I Anshori
+ View abstract PDF 012042

Mathematics

An Optimal Integrated Vector Control for Prevention the Transmission of Dengue
Kasbawati, Surya Ningkyih, Agustinus Ribal and Fatmawati
+ View abstract PDF 012043

Bayesian Quantile Regression Method to Construct the Low Birth Weight Model
Ferra Yanaur, Aidilin Zetra, Carim Muharisa, Dodi Devianto, Arrival Rince Putri and Yudiantri Asdi
+ View abstract PDF 012044

Aitken's Generalized Least Square Method for Estimating Parameter of Demand Function of Animal Protein In Indonesia
Fitria Virgantari, Hagni Wijayanti and Sonny Koeshendrajana
+ View abstract PDF 012045

Generalized STAR (1:1) Model with Outlier - Case Study of Begai in Medan, North Sumatera
D Masteriana, M I Riani and U Mukhairyar
+ View abstract PDF 012046

Global Stability and Sensitivity Analysis of SIA Model for AIDS Disease
Fadilah Ilahi and Nurhallimah
+ View abstract PDF 012047

Introducing Fermat Sequences
R W Wibowo
+ View abstract PDF 012048

l-Primal Submodules
Steven
+ View abstract PDF 012049

Isomorphism between endomorphism rings of modules over a semi simple ring
+ View abstract PDF 012050
An Optimal Integrated Vector Control for Prevention the Transmission of Dengue

To cite this article: Kasbawati et al 2019 J. Phys.: Conf. Ser. 1245 012043

View the article online for updates and enhancements.
An Optimal Integrated Vector Control for Prevention the Transmission of Dengue

Kasbawati¹, Surya Ningsih¹, Agustinus Ribal¹, Fatmawati²

¹Department of Mathematics, Faculty of Mathematics and Natural Sciences, Hasanuddin University, Jl. Perintis Kemerdekaan Km. 10 Makassar 90245, Indonesia
²Department of Mathematics, Faculty of Science and Technology, Universitas Airlangga, Surabaya 60115, Indonesia

E-mail: fatma47unair@gmail.com

Abstract. Dengue is a tropical infectious disease caused by dengue virus which is transmitted by mosquitoes such as *Aedes Aegypti* and *Aedes Albopictus*. The spread of this disease could be controlled by applying some optimal strategies. In this research, we study optimal strategy in controlling the spread of dengue by taking into consideration an integrated vector control strategy. The strategy combines chemical and non-chemical vector control methods to prevent the transmission of vector-borne disease. If we assume that the control functions are constant functions then numerically we obtain a critical chemical control which leads to the non-endemic condition. When the chemical and non-chemical controls are varying in time, we obtain the analytical form of the both control functions by using Pontryagin Maximum Principle. The numerical simulations are performed using the Steepest Descent method and the results show that the peak of the non-chemical control effect occurs at the end of the observation time. Conversely, the chemical control reaches the maximum effect at the early of the observation time. It indicates that the integrated vector control strategy is a continuous prevention method that successfully ensures the system free from dengue infection.

1. Introduction

One of the most common problems in the community is the emergence of various infectious diseases that threaten people's lives. One type of infectious disease that becomes endemic in Indonesia is dengue haemorrhagic fever (DHF). Dengue haemorrhagic disease in Indonesia was first discovered in Surabaya and Jakarta in 1968 [1]. The disease then spread to various regions throughout the country, except areas that have a height of more than 1000 meters above the sea level. The spread of dengue haemorrhagic fever in Indonesia is heavily influenced by population mobility, population density, and environmental conditions such as the presence of artificial or natural containers in landfills or other waste bins [1].

The incidence of dengue has grown dramatically around the world in the last few decades. According to WHO (2017) [2] data, there are estimated to be 290 million dengue infections per year (95% between 284-528 million), of which 96 million (67-136 million) are clinically manifested (with disease severity). Another study on the prevalence of dengue fever estimated that 3.9 billion people in 128 countries were at risk of being infected with dengue virus [2].
The phenomenon of dengue hemorrhagic fever spread is interesting to be studied through mathematical modeling approach. Mathematical modeling is one of applied field of mathematics that aims to represent and explain a physical system or problem in the real world into a mathematical expression such as dynamics of malaria [3,4], tuberculosis [5,6], and TB-HIV co-infection [7,8]. Through mathematical modeling, information about how basic mechanisms affect disease spread and control strategies can be assessed. The study of mathematical modeling of dengue hemorrhagic disease is continuously studied and developed. The models could be used to identify main factors of endemic diseases. Some researchers examined modeling of the DHF [9,10]. Some models partially applied various mathematical theories such as the application of optimal control theory [10-13]. Development of DHF vaccine was also mathematically studied to determine effect of vaccinations on human associated with complex human immune systems [14]. The study will provide theoretical results on the DHF endemic.

In this paper, a modeling study on DHF spread was also conducted to complement mathematical analysis presented by previous researchers. The model was constructed by taking into account a control strategy that was recently introduced by WHO namely Integrated Vector Management (IVM) [15]. This method promotes multi-sectoral approaches to human health. There are five key elements for the successful implementation of IVM. One of them is integrating chemical and non-chemical vector control methods to minimize the transmission of vector-borne disease such as dengue [15]. The chemical control includes space spraying using a suitable insecticide for rapid destruction of the adult vector (mosquito) population. While the non-chemical control performs an environmental management strategy that prevents the transmission of disease by changing human habitat or behavior i.e. an action needed for restriction the human-vector contact. In this study, effects of the chemical and non-chemical controls are modeled as control functions. Optimal control theory is applied on the epidemiological models to obtain the optimal strategies that can suppress the spread of the virus both in human and mosquito populations. The dynamic of mosquito larvae is also considered by taking into consideration reduction of mosquito larvae caused by cleaning activities carried out by humans.

We organize the paper as follows. In Section 2, we formulate the mathematical model by involving the integrated vector control strategy. In Section 3, analytical results are presented to study the steady state condition of the system. Optimal control study is presented in Section 4 and numerical simulation and some discussions are presented in Section 5. Conclusions are then presented in the last section.

2. Model Formulation
In this section, we present the modeling formulation of dengue hemorrhagic fever spread. The built model is in line with the model from Rodrigues et al. (2014) [13]. The model development is carried out by taking into account the integrated vector control for reducing the transmission of dengue. Here, the integrated vector control is defined as a combination of chemical and non-chemical control strategies.

Suppose the human population is divided into three compartments, namely \(S_h(t) \) represents number of susceptible humans at time \(t \), \(I_h(t) \) represents number of infected humans with dengue virus at time \(t \), and \(R_h(t) \) represents number of humans recovered from dengue hemorrhagic fever at time \(t \). The mosquito population is divided into three compartments, i.e. number of mosquitoes in the water phase including eggs, larvae, and pupae at time \(t \) \((A_m(t)), \) number of susceptible mosquitoes that do not carry dengue virus at time \(t \) \((S_m(t)), \) and number of dengue virus-infected mosquitoes that can spread the virus to human at time \(t \) \((I_m(t)). \) In general the interactions between human populations and the mosquitoes are illustrated in the schematic diagram given in Figure 1. It is assumed that individual displacements occur only from one compartment to another. It is assumed that no migration factor exits and into the system so that the total population is constant.

Number of susceptible human \((S_h) \) could naturally increase through birth process with the rate \(\mu_h S_h \) individual/time unit. Number of susceptible human could decrease through naturally death with constant rate \(\mu_h \) per time unit. It is assumed that mosquitoes could produce larvae with the constant rate
\(\varphi \) per time unit. Number of larvae \((A_m)\) produced by mosquitoes is influenced by number of eggs from susceptible mosquitoes and dengue virus-infected mosquitoes. The mosquito population could naturally decrease through naturally death with constant rate \(\mu_m \) per time unit. Larvae of the mosquito population will naturally decrease with constant rate of \(\mu_L \) per time unit. In addition, larvae population could change into adult mosquito population with constant rate \(\eta_m \) per time unit. It is also assumed that the larvae population will be reduced by the direct action carried out by humans with a proportion of \(\frac{A_m}{kNa} \), so that the average number of surviving larvae is \(\varphi \left(1 - \frac{A_m}{kNa} \right) \) per time unit.

\[
\begin{align*}
\theta_1(u_1(t))S_h(t) & \quad \mu_S S_h(t) \\
I_h(t) & \quad \mu_I I_h(t) \\
R_h(t) & \quad \mu_R R_h(t) \\
\end{align*}
\]

\[
\begin{align*}
\begin{pmatrix} S_h(t) \\ I_h(t) \\ R_h(t) \end{pmatrix} & \quad \begin{pmatrix} \mu_S S_h(t) \\ \mu_I I_h(t) \\ \mu_R R_h(t) \end{pmatrix} \\
\begin{pmatrix} A_m(t) \\ S_m(t) \end{pmatrix} & \quad \begin{pmatrix} \mu_m A_m(t) \\ \mu_m S_m(t) \end{pmatrix} \\
\begin{pmatrix} \mu_a A_m(t) \\ \mu a S_m(t) \end{pmatrix} & \quad \begin{pmatrix} \mu_m R_h(t) \\ \mu_a I_m(t) \end{pmatrix} \\
\end{align*}
\]

Figure 1. Schematic diagram of the interaction between human population and the mosquito on the spread of dengue hemorrhagic fever. The solid line represents interaction between humans or between mosquitoes, while the dashed lines represents interaction between mosquitoes and humans.

The transmission rate of susceptible human to infected humans is influenced by the interaction between infected mosquitoes with susceptible humans. The interaction is influenced by the probability of dengue virus transmitting from mosquito to human \((\beta_{mh}) \). Similarly, the transmission rate of susceptible mosquitoes to infected mosquitoes is influenced by the interaction between susceptible mosquitoes with infected humans. The interaction is a multiplication of probability of dengue virus transmitting from human to mosquito \((\beta_{hm}) \) and number of mosquito biting per time unit \((B) \). It is assumed that the viremic amount (virus contained in the human body) decreases with the rate of \(\eta_h I_h(t) \) individual per time unit. The decrease rate resulted in the infected human population moved into recovered human population from dengue hemorrhagic fever \((R_h) \).

Furthermore, as we have stated before that recently WHO has promoting Integrated Vector Management (IVM) as a control strategy to prevent the transmission of vector-borne disease such as dengue. Chemical control strategy is one of operational strategies at IVM applied for controlling mosquitos in adult stages. Space spray using a suitable insecticide is recommended for controlling adult vector population. Integrated with the non-chemical control strategy, interrupting human-vector contact is the other control strategy that was recommended by IVM for reducing dengue virus transmission. This includes transmission control activities especially at the public places where the transmission could be occur such as schools, hospitals and workplaces. Environmental management is the IVM’s control strategy seeking to change the environment in order to prevent or minimize the human-vector contact [16]. One of the three types of environmental management recommended by WHO is by changing the human habitat or behavior such as installing mosquito screening on windows, doors and other entry points, and using mosquito nets while sleeping during daytime [16]. If we assume that the environmental management as the non-chemical control strategy is successfully applied in the system then there exists \(u \) percent of susceptible individuals who will be free from the infection. This is due to the prevention
strategy applied for reducing the contact with the vector-pathogen. Moreover, if we assume that the space spray strategy also works properly for suppressing the growth rate of the vector population then the mosquito population will decrease at \(u_2 S_m \) and \(u_2 I_m \) individuals per time unit. By using these assumptions, we then derive the epidemic model for dengue as follows:

\[
\frac{dS_h(t)}{dt} = \mu_h N_h - \left(B \beta_{mh} \frac{I_m(t)}{N_h} (1 - u_1(t)) + \mu_h \right) S_h(t) + \theta R_h(t),
\]

\[
\frac{dI_h(t)}{dt} = B \beta_{mh} \frac{I_m(t)}{N_h} S_h(t) (1 - u_1(t)) - (\eta_h + \mu_h) I_h(t),
\]

\[
\frac{dR_h(t)}{dt} = \eta_h I_h(t) - (\theta + \mu_h) R_h(t),
\]

\[
\frac{dA_m(t)}{dt} = \varphi \left(1 - \frac{A_m(t)}{kN_h} \right) (S_m(t) + I_m(t)) - (\eta_A + \mu_A) A_m(t),
\]

\[
\frac{dS_m(t)}{dt} = \eta_A A_m(t) - \left(B \beta_{hm} \frac{I_h(t)}{N_h} + \mu_m + u_2(t) \right) S_m(t),
\]

\[
\frac{dI_m(t)}{dt} = \left(B \beta_{hm} \frac{I_h(t)}{N_h} \right) S_m(t) - (\mu_m + u_2(t)) I_m(t).
\]

Here \(N_h \) is the total human population and \(N_m \) is the total population of adult mosquitoes. We assume that the total human population in the system is constant so that \(N_h = S_h + I_h + R_h \). In addition, total population of adult mosquitoes is assumed constant, i.e. \(N_m = S_m + I_m \) hence it is obtained that the number of larvae in the system lies in the interval \(0 \leq A_m \leq \left(\frac{\mu_m + u_2}{\eta_A} \right) N_m \). Initial values for each variable are assumed as follows:

\[
S_h(0) = S_{h0}, I_h(0) = I_{h0}, R_h(0) = R_{h0}, A_m(0) = A_{m0}, S_m(0) = S_{m0}, I_m(0) = I_{m0},
\]

where \(S_{h0}, I_{h0}, R_{h0}, A_{m0}, S_{m0}, I_{m0} \geq 0 \). It is assumed that all parameters in the model are positive. A description of all variables and parameters in the model (1) is given in Table 1. To simplify our model and to make our analysis interpretable, it is convenient to introduce new variables, i.e.

\[
x_1 = \frac{S_h}{N_h}, x_2 = \frac{I_h}{N_h}, x_3 = \frac{R_h}{N_h}, x_4 = \frac{A_m}{N_m}, x_5 = \frac{S_m}{N_m}, x_6 = \frac{I_m}{N_m},
\]

which represent the proportion of population in both human and mosquito populations. If the dimensionless variables (2) are substituted into model (1) then we obtain a new model with dimensionless variables i.e.

\[
\dot{x}(t) = \begin{bmatrix}
\mu_h - \left(B \beta_{mh} \frac{N_m}{N_h} x_6 (1 - u_1(t)) + \mu_h \right) x_1 + \theta x_3 \\
B \beta_{mh} \frac{N_m}{N_h} x_6 x_1 (1 - u_1(t)) - (\eta_h + \mu_h) x_2 \\
\eta_h x_2 - (\theta + \mu_h) x_3 \\
\varphi \left(1 - \frac{N_m}{kN_h} \right) x_5 + x_6 - (\eta_A + \mu_A) x_4 \\
\eta_A x_4 - \left(B \beta_{hm} x_2 + \mu_m + u_2 \right) x_5 \\
B \beta_{hm} x_2 x_5 - (\mu_m + u_2) x_6
\end{bmatrix},
\]

where \(x = (x_1, x_2, x_3, x_4, x_5, x_6) \) and dimensionless initial values

\[
x_1(0) = x_{d1}, x_2(0) = x_{d2}, x_3(0) = x_{d3}, x_4(0) = x_{d4}, x_5(0) = x_{d5}, x_6(0) = x_{d6}.
\]

3. Stability of the Disease-Free Equilibrium (DFE)

In this section we study the stability of the disease-free equilibrium of the generated model. Along this analysis, we assume the control functions as a constant. By setting the right-hand sides of the equations (3) to zero, we get the DFE of the model, i.e.

\[
E_0(x_1^*, x_2^*, x_3^*, x_4^*, x_5^*, x_6^*) = \left(1, 1, 0, \frac{\varphi \eta_A - (\eta_A + \mu_A) (\mu_m + u_2)}{\eta_A \varphi N_m k N_h}, \frac{\varphi \eta_A - (\eta_A + \mu_A) (\mu_m + u_2)}{(\mu_m + u_2) \varphi N_m}, 0 \right).
\]
The DFE exists if \(\varphi \eta_A > (\eta_A + \mu_A)(\mu_m + u_2) \). The stability of the DFE \(E_0 \) can be established using the basic reproduction number of model (3). It can be determined by using the next generation operator method (see for instance [17] and [18]).

By collecting the classes of non-infected individuals, infected individuals who do not transmit the disease, and infected individuals capable transmitting the disease [18], we get two functions, \(\mathcal{F}_i(X) \) and

Variable	Description	Initial Value (in millions)	References
\(S_h \)	Susceptible population	\(S_h(0) = 45360 \)	Assumed
\(I_h \)	Infected population	\(I_h(0) = 240 \)	Assumed
\(R_h \)	Recovered population	\(R_h(0) = 240 \)	Assumed
\(A_m \)	Larvae of mosquito	\(A_m(0) = 50 \)	Assumed
\(S_m \)	Susceptible mosquito	\(S_m(0) = 50 \)	Assumed
\(I_m \)	Infected mosquito	\(I_m(0) = 0 \)	Assumed

Parameter	Description	Baseline value	References
\(1/\mu_h \)	average lifespan of humans (days)	71 * 365	[13]
\(N_h \)	Total of human population	48000	Assumed
\(N_m \)	Total of mosquito population	500000	Assumed
\(B \)	average number of bites on humans by mosquitoes, per day	0.8	[13]
\(\beta_{mh} \)	transmission probability from infected human (per bite)	0.35	[13]
\(\beta_{hm} \)	transmission probability from infected mosquito (per bite)	0.375	[13]
\(\theta \)	decreasing rate of human immunity per day	0.05	Assumed
\(1/\eta_h \)	mean of viremic period (in days)	3	[13]
\(\eta_A \)	maturation rate from larvae to adult (per day)	0.08	[13]
\(\varphi \)	number of eggs at each deposit per capita (per day); number of dismissed larvae per human	10	Assumed
\(k \)	natural mortality of larvae (in day)	6	Assumed
\(1/\mu_A \)	average lifespan of adult mosquitoes (in days)	4	[13]
\(1/\mu_m \)		10	[13]

Table 1. Variables and parameters of model (1).
\(V_i(X) \), which respectively contain the rate of new infections at compartment \(i \) and the rate of transfer of individuals between the compartment \(i \) as follow,

\[
F_i(X) = \begin{bmatrix}
B\beta_{mh} \frac{N_m}{N_h} x_6 x_1 (1 - u_1) \\
B\beta_{hm} x_2 x_5 \\
0 \\
0 \\
0 \\
\end{bmatrix},
\]

\[
V_i(X) = \begin{bmatrix}
(\eta_h + \mu_h) x_2 \\
(\mu_m + u_2) x_6 \\
-\mu_h + \left(B\beta_{mh} \frac{N_m}{N_h} x_6 (1 - u_1) + \mu_h\right) x_1 - \theta x_3 \\
-\eta_h x_2 + (\theta + \mu_h) x_3 \\
-\varphi \left(1 - \frac{N_m}{k \mu m} x_4\right) (x_5 + x_6) + (\eta_A + \mu_A) x_4 \\
-\eta_A x_4 + \left(B\beta_{hm} x_2 + \mu_m + u_2\right) x_5
\end{bmatrix},
\]

where \(X = (x_2, x_6, x_1, x_3, x_4, x_5) \). By taking the Jacobian matrices of \(F_i(X) \) and \(V_i(X) \) which are evaluated at \(E_0 \), we respectively get the following block matrices,

\[
\begin{align*}
DF_i(E_0) &= \begin{bmatrix} F & 0 \\ 0 & 0 \end{bmatrix} \\
DV(E_0) &= \begin{bmatrix} V & 0 \\ J_1 & J_2 \end{bmatrix}
\end{align*}
\]

where

\[
F = \begin{bmatrix}
0 & B\beta_{mh} \frac{N_m}{N_h} (1 - u_1) & 0 & 0 \\
0 & (\mu_m + u_2) \phi N_m & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{bmatrix},
\]

\[
V = \begin{bmatrix}
\eta_h + \mu_h & 0 & 0 & 0 \\
0 & \mu_m + u_2 & 0 & 0 \\
0 & 0 & B\beta_{mh} \frac{N_m}{N_h} (1 - u_1) & \mu_h - \theta \\
-\eta_h & 0 & 0 & \theta + \mu_h
\end{bmatrix},
\]

\[
J_1 = \begin{bmatrix}
0 & \phi \frac{\eta_A - (\eta_A + \mu_A)(\mu_m + u_2)}{\eta_A} - \phi & 0 & 0 \\
0 & \phi \frac{\eta_A - (\eta_A + \mu_A)(\mu_m + u_2)}{\eta_A} - \phi & 0 & 0
\end{bmatrix},
\]

\[
J_2 = \begin{bmatrix}
\frac{(\eta_A + \mu_A)(\mu_m + u_2) - \phi \eta_A}{\phi \eta_A} + (\eta_A + \mu_A) & \frac{\phi \frac{\eta_A - (\eta_A + \mu_A)(\mu_m + u_2)}{\eta_A} - \phi}{\eta_A} \\
-\eta_A & \mu_m + u_2
\end{bmatrix},
\]

By following [17] and [18], the basic reproduction number \((R_0) \) of the system (3) is the spectral radius of the next generation matrix \(FV^{-1} \) such that we have

\[
R_0 = \frac{\beta^2 k \beta_{mh} \beta_{hm} \phi \eta_A - (\eta_A + \mu_A)(\mu_m + u_2)(1 - u_1)}{\phi (\eta_h + \mu_h)(\mu_m + u_2)^2}.
\]
Furthermore, we found that the DFE E_0 is locally asymptotically stable if $R_0 < 1$ and unstable if $R_0 > 1$. We can observe that R_0 is linearly depending on $(1 - u_1)$ meaning that the greater u_1 the lower R_0, vice versa. While for u_2, we observe numerically its sensitivity to the R_0 using parameter values given in Table 1. For simulation observation, we choose several values of u_1 and u_2 as shown in Figure 2. We could observe that for the chosen parameter values and for the varied u_1, there exists a certain value of u_1 in which R_0 will be lower than one (see the bottom picture in Figure 2). The greater u_1, the lower u_2 to produce $R_0 < 1$, vice versa. Similar behavior is found for the sensitivity of u_1 to generate $R_0 < 1$ (see the top picture in Figure 2). In the next section, we discuss the optimal value of the both controls when we assume they are varying in time.

4. Optimal Control Problem
In this section we will examine an optimal control problem of the model given in equation (1) by assuming that the controls u_1 and u_2 are time-dependent functions. As described in the previous section, there are two control variables applied in the model, namely chemical and non-chemical control strategies that are integrated for reducing the transmission of dengue. It is assumed that part of susceptible human population can be released from DHF virus infection such that the $u_1(t)$ function defined at interval $0 \leq u_1 \leq 1$. It represents the percentage of individuals who will be free from the infection caused by environment management where human-vector contact can be interrupted. Moreover, the function $u_2(t)$ is a control function that represents the proportion of susceptible mosquitoes and infected mosquitoes dying due to chemical control strategy per unit of time. It is also assumed that the value is defined at interval $0 \leq u_2 \leq 1$. So if $u_i(t) = 0$, $i = 1, 2$, then the chemical and non-chemical control strategies does not have any effects on reducing the number of infected humans.
and mosquitoes. On the contrary, when \(u_i(t) = 1, i = 1,2 \), it indicates that the chemical and non-chemical control strategies were totally making the system free from infections.

To obtain the optimal pair of values from both control functions, optimal control theory is applied to obtain the optimal chemical and non-chemical control effects that can reduce the transmission of dengue. In line with objective of the control functions, we then defined the objective function that should be minimized i.e.

\[
\min_{(u_1, u_2)} \int_{t_0}^{t_f} \left[a_1 \dot{N}_1(t) + a_2 \dot{N}_2(t) + a_3 u_1^2(t) + a_4 u_2^2(t) \right] dt,
\]

where \(a_i (i = 1,2,3,4) \) are the weighting constants for infected human, infected mosquitoes, non-chemical and chemical control efforts respectively. In the dimensionless model, the objective function (4) could be written as follows:

\[
\min_{(u_1, u_2)} \int_{t_0}^{t_f} \left[a_1 N_h^2 x_2^2(t) + a_2 N_m^2 x_6^2 + a_3 u_1^2 + a_4 u_2^2(t) \right] dt.
\]

The optimal control search \(u^* \) could be performed using the Pontryagin maximum principle [19-20]. The principle provides the necessary conditions for optimal control problem (5) corresponding to the system given in equation (3). The Hamiltonian function of the system is given as follows:

\[
H = a_1 N_h^2 x_2^2 + a_2 N_m^2 x_6^2 + a_3 u_1^2 + a_4 u_2^2
+ \lambda_1 \left(\mu_h - \left(\frac{N_m}{N_h} \right) x_6 (1 - u_1) + \mu_h \right) x_1 + \theta x_3
+ \lambda_2 \left(\beta_{mh} \frac{N_m}{N_h} x_6 x_1 (1 - u_1) - \left(\eta_h + \mu_h \right) x_2 \right)
+ \lambda_3 \left(\eta_h x_2 - (\theta + \mu_h) x_3 \right) + \lambda_4 \left(\eta_1 \left(1 - \frac{N_m}{k N_h} x_4 \right) x_5 + \eta_6 \right) - (\eta_A + \mu_A) x_4
+ \lambda_5 \left(\eta_A x_4 - (\beta_{hm} x_2 + \mu_m + u_2) x_5 \right) + \lambda_6 \left(\beta_{hm} x_2 x_5 - (\mu_m + u_2) x_6 \right),
\]

where \(\lambda_1, \lambda_2, ..., \lambda_6 \) are adjoint variables. Dynamics of the adjoint variables are given by the following differential equations

\[
\dot{\lambda} = -\frac{\partial H}{\partial x} = \left(-\frac{\partial H}{\partial x_1}, -\frac{\partial H}{\partial x_2}, -\frac{\partial H}{\partial x_3}, -\frac{\partial H}{\partial x_4}, -\frac{\partial H}{\partial x_5}, -\frac{\partial H}{\partial x_6} \right).
\]

Hence, we found the following costate equations:

\[
\dot{\lambda}_1 = -\lambda_1 \left(-\beta_{mh} \frac{N_m}{N_h} x_6 (1 - u_1) - \mu_h \right) - \lambda_2 \beta_{mh} \frac{N_m}{N_h} x_6 (1 - u_1)
, \\
\dot{\lambda}_2 = -2a_1 N_h^2 x_2 - \lambda_2 \left(-\eta_h - \mu_h \right) - \lambda_3 \eta_h + (\lambda_5 - \lambda_6) \beta_{hm} x_5
, \\
\dot{\lambda}_3 = -\lambda_1 \theta - \lambda_3 \left(-\mu_h \right), \\
\dot{\lambda}_4 = -\lambda_4 \left(\eta_1 \left(1 - \frac{N_m}{k N_h} x_4 \right) x_5 + \eta_6 \right) - \lambda_5 \eta_A,
\]

\[
\dot{\lambda}_5 = -\lambda_4 \left(\eta_1 \left(1 - \frac{N_m}{k N_h} x_4 \right) x_5 + \eta_6 \right) - \lambda_5 \left(-\beta_{hm} x_2 - \mu_m - u_2 \right) - \lambda_6 \beta_{hm} x_2,
\]

\[
\dot{\lambda}_6 = -2a_2 N_m^2 x_6 + (\lambda_1 - \lambda_2) \beta_{mh} \frac{N_m}{N_h} x_1 (1 - u_1) - \lambda_4 \left(1 - \frac{N_m}{k N_h} x_4 \right) - \lambda_6 \left(-\mu_m - u_2 \right).
\]

Transversality conditions for the costate equations are: \(\lambda_1(t_f) = 0, \lambda_2(t_f) = 0, \lambda_3(t_f) = 0, \lambda_4(t_f) = 0, \lambda_5(t_f) = 0, \lambda_6(t_f) = 0 \). The optimality conditions on the interior of the control set \(U \) at an optimal control pair \((u_1^*, u_2^*) \) are

\[
0 = \frac{\partial H}{\partial u_1} = 2u_1 a_3 + (\lambda_1 - \lambda_2) \beta_{mh} \frac{N_m}{N_h} x_6 x_1,
\]

\[
0 = \frac{\partial H}{\partial u_2} = 2u_2 a_4 + \frac{\partial H}{\partial x_5}.
\]
\[
0 = \frac{\partial H}{\partial u_2} = 2u_2a_4 - \lambda_5x_5 + \lambda_6x_6.
\]

Since \(0 \leq u_1 \leq 1\) and \(0 \leq u_2 \leq 1\), then we have
\[
u_1^* = \begin{cases}
0, & \text{if } u_1 < 0 \\
1, & \text{if } u_1 > 1
\end{cases}
\]
and
\[
u_2^* = \begin{cases}
u_2, & \text{if } 0 \leq u_2 \leq 1 \\
0, & \text{if } u_2 < 0 \\
1, & \text{if } u_2 > 1
\end{cases}
\]

where
\[
u_1 = \frac{n_m}{n_h} \left(\frac{(\lambda_2-\lambda_1)\beta_{mh}x_6x_1}{2a_3} \right) \quad \text{and} \quad \nu_2 = \frac{\lambda_5x_5+\lambda_6x_6}{2a_4}.
\]

5. Numerical Result

In this section, the optimal system control problem will be numerically solved using the Steepest Descent method (see Petrova and Solov’ev (1997) for details about the method [21]). This method requires an initial guess for the control function so that the state equation can be obtained by solving system (3) forward in time. Simulation of model (3) is performed using initial values and parameter values given in Table 1. The weights of each objective function are \(a_1=0.9\), \(a_2=0.9\), \(a_3=0.1\), and \(a_4=0.1\). The weights indicate that the emphasis of the optimal control problem is focused to reduce the number of infected humans and infected mosquitoes.

The numerical results show that the non-chemical control strategy for susceptible human population and the chemical control strategy for mosquito population give a significant effect in reducing number of DHF patients. Figure 3-(a-1) shows the comparison of proportion of susceptible human population with control and without control. It is found that after applying the control, proportion of susceptible human population increases around 35% compared to without control. Although the non-chemical control does not have an effect at the beginning time, but after specific time, increasing of susceptible human population is significant. A different dynamic is found in the infected population. In Figure 3-(a-2) it is found that number of infected humans with dengue hemorrhagic fever increases in the absence of the control or after applying the control. However, as time is increased, effect of the control strategy could be observed where the number of infected humans decreases and the remaining infected is around 6% of the total population. It means that the strategy is not directly affect the system. So the environment management control must be applied continuously to see the effects in the future (see also the control profile at the left picture in Figure 4). Furthermore, for recovered humans, number of removed human in the absence of control is greater than the number of removed (recovered from DHF) human after control is applied (see Figure 3-(a-3)). This is certainly due to the condition that without control the number of infective population is high enough. If the immune system in humans who have recovered from dengue hemorrhagic fever decreases, then the recovered human population will move back into susceptible human population.

In the mosquito population, the chemical control does not significantly affect the number of mosquito larvae population. However, applying of space spray is very influential on the decreasing the number of susceptible mosquitoes and infected mosquitoes (adult mosquitoes). It could be seen in Figure 3-(b-2) that the number of susceptible mosquitoes after being controlled is less than before applying the control. In addition, the number of infected mosquitoes after applying space spray control is less than before applying the control (Figure 3-(b-3)). It indicates that the existence of controls in the system has an effect on the decreasing number of infected population, both in human and in mosquito populations.
Figure 3. Simulation results for model (3) with control (dashed line) and without control (solid line) when $\beta_{mh} = 0.35$ for human population (a) and mosquito population (b).

Profile of the non-chemical control function u_1 and chemical control function u_2 can be seen in Figure 4. It is found that at the beginning of time, the environmental management effect is quite small. Over time, the control effect increased, resulting in a reduction number of infected human population. On the contrary, for the chemical control profile (u_2), it will directly affect the average value of number of died mosquitoes caused by the space spraying using a suitable insecticide. The peaks of the non-chemical control effects (environmental management strategy) occurred at the end of the observation
time. At the time, number of infected humans decreased and number of susceptible humans significantly increased. Conversely, the peak of the chemical control effect occurs at early of the observation time. This result implies that the chemical control effect can be directly affect to the mosquito population where after $t = 40$ days, number of susceptible mosquitoes and infected mosquitoes are significantly reduced. While the non-chemical control is not directly affect the human system such that the control management should be applied continually to see the effect in the future. It indicates that campaigns related to the healthy lifestyles should be encouraged, so does for the changing human behavior especially at the public places where the transmission of the disease could be occur.

Figure 4. Graph of non-chemical (left) and chemical (right) control functions in human and mosquito populations, respectively when $\beta_{mh} = 0.35$.

In the next simulation, probability of DHF virus transmission is varying. Figure 5 presents result of the simulation when the probability value (β_{mh}) is increased twice from the previous value. In general, profile of the system solution (before and after the control) is the same as the previous simulation. It can be seen in Figure 5-(a) that the maximum number of infected individuals increases as a result of an increased probability of infection transmission. Change of the transmission probability also affects to the control variables functions u_1 and u_2 (see Figure 6), where the greater probability, the greater proportion of healthy susceptible humans should be controlled will be. Increasing of the non-chemical control proportion will reduce the number of susceptible human population that infected by DHF virus. In addition, the greater transmission probability, the greater chemical control effort should be applied will be. Increasing of the space spray effort will suppress the increasing rate of the number of infected mosquitoes (vector of the DHF virus spread) (see Figure 5-(b)). From the simulation, it is found that the more endemic the condition of a system, the greater effort should be performed to overcome the disease spread will be.
Figure 5. Simulation results for model (3) with control (dashed line) and without control (solid line) when $\beta_{mh} = 0.75$ for human population (a) and mosquito population (b).
Figure 6. Graph of non-chemical (left) and chemical (right) control functions in human and mosquito populations, respectively when $\beta_{mh} = 0.75$.

6. Conclusions
In this research we have developed an epidemiology model of dengue hemorrhagic fever by including effects of the integrated vector management in term of combination of chemical and non-chemical control for reducing the transmission of the disease in the system. When the control function was considered as a constant, we found that there exists certain conditions in which controlling endemic of the system depends only on the chemical treatment. There is a critical value of chemical control effect that causes basic reproduction number value of the model is larger or smaller than one. When the chemical and non-chemical controls were considered as time dependent functions, we found analytical form of the both control functions that depend on the state and co-state of the system. The numerical simulations were performed using the Steepest Descent method to confirm the analytical results. By applying optimal control profiles, we numerically found that the peak of the non-chemical control effect occurs at the end of the observation time, while the chemical control effect reaches the maximum effect at early of the observation time. It indicated that to continuously maintain the security of the system from the endemic condition, the integrated vector control strategy should be considered as the recommended method of prevention and control Aedes mosquitoes. The combination of chemical and non-chemical control strategies was a relevant method in controlling of dengue infections. The greater the probability of DHF virus transmission, the greater the effort to prevent occurrence of endemic conditions in the system will be.

Acknowledgment
This work was financially supported by the Hibah Riset Mandat, Universitas Airlangga 2017 according to SK Rektor No. 569/UN3/2017.

References
[1] Fatih, Keman S and Wahyuni C U 2005 Peran faktor lingkungan dan perilaku terhadap penularan demam berdarah dengue di kota Mataram J. Kesehatan Ling. 21 pp 1-10
[2] World Health Organization 2017 Fact sheet on the Dengue and severe dengue [Online] Available from: http://www.who.int/mediacentre/factsheets/fs117/en/ [Accesed on 10th July, 2017]
[3] Fatmawati and Tasman H 2015 An optimal control strategy to reduce the spread of malaria resistance Math. Bio. 262 pp 73-79
[4] Beay L K, Kasbawati and Toaha S 2017 Effects of human and mosquito migrations on the dynamical behavior of the spread of malaria AIP Conf. Proc. 1825 1 020006
[5] Ahmadin and Fatmawati 2014 Mathematical modelling of drug resistance in tuberculosis transmission and optimal control App. Math. Sci. 8 92 pp 4547–59
[6] Huo H F and Zou M X 2016 Modelling effects of treatment at home on tuberculosis transmission dynamics App. Math. Model. 40 pp 9474-84
[7] Fatmawati and Tasman H 2016 An optimal treatment control of TB-HIV coinfection Int. J. of Math. and Math. Sci. 2016 Article ID 8261208
[8] Fatmawati and Tasman H 2017 Optimal control of HIV resistance and tuberculosis co-infection using treatment intervention Asian Pac. J. of Trop. Dis. 7 6 pp 366-73
[9] Nuraini N, Tasman H, Soewono E and Sidardo K A 2009 A with-in host dengue infection model with immune response Math. Comput. Model. 49 5–6 pp 1148–55
[10] Chávez J P, Götz T, Siegmund S and Wijaya K P 2017 An SIR-dengue transmission model with seasonal effects and impulsive control Math. Biosci. 289 pp. 29–39
[11] Rodrigues H S, Monteiro M T T and Torres D F M 2010 Dynamics of dengue epidemics when using optimal control Math. Comput. Model 52 9–10 pp 1667–73
[12] Aldila D, Götz T and Soewono E 2013 An optimal control problem arising from a dengue disease transmission model Math. Biosci. 242 1 pp 9–16
[13] Rodrigues H S, Monteiro M T T and Torres D F M 2014 Vaccination models and optimal control strategies to dengue Math. Biosci. 247 1 pp 1–12
[14] Christofferson R C and Mores C N 2015 A role for vector control in dengue vaccine programs Vaccine 33 50 pp 7069–74
[15] World Health Organization 2017 Dengue control [online] available from: http://www.who.int/denguecontrol/control_strategies/en/ [accessed on 10th July, 2017]
[16] World Health Organization 2017 Neglected tropical diseases [online] available from: http://www.who.int/neglected_diseases/vector_ecology/ivm_concept/en/ [accessed on 10th July, 2017]
[17] Diekmann O, Heesterbeek J A P and Metz J A P 1990 On the denition and computation of the basic reproduction ratio R_0 in models for infectious diseases in heterogeneous populations J. Math. Biol. 28 pp 503-522
[18] van den Driessche P and Watmough J 2002 Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission Math. Biosci. 180 pp 29-48
[19] Pontryagin L S, Boltyanskii V G, Gamkrelidze R V and Mishchenko E F 1962 The Mathematical Theory of Optimal Processes (Interscience Publishers)
[20] Lenhart S and Workman J T 2007 Optimal Control Applied to Biological Models 1st Edition (Chapmanand Hall/CRC)
[21] Petrova S S and Solov'ev A D 1997 The origin of the method of steepest descent Hist. Math. 24 4 pp 361-75
Journal of Physics: Conference Series

Country: United Kingdom

Subject Area and Category: Physics and Astronomy, Physics and Astronomy (miscellaneous)

Publisher: Institute of Physics

Publication type: Journals

ISSN: 17426588, 17426596

Coverage: 2005-ongoing

Scope: The open access Journal of Physics: Conference Series (JPICS) provides a fast, versatile and cost-effective proceedings publication service.

Quartiles:

Physics and Astronomy (miscellaneous)

SJR:

Citations per document:

Total Cites: 12k

Self-Cites:
Dear HUSEYIN,

Citable documents Non-citable documents

Cited documents Uncited documents

Show this widget in your own website

Thomson Reuters?

Just copy the code below and paste within your html code:

Thomson and Country Rank uses Scopus data, our impact indicator is the SJR. Check our web to locate the journal. We suggest you to consult the Journal Citation Report for other indicators (like Impact Factor) with a Web of Science data source. Best Regards, SCImago Team

ThangNguyen 1 month ago

Dear, Editorial Board!

Our paper was published in the Journal of Physics: Conference Series, 11/2019. But now, we cannot find it on site Scopus.com. Question to you: is this paper was included in the scopus database or not?

Thank you very much!

reply