THE RESTRICTION PROBLEM FOR A NON-TEMPERED ARTHUR PACKET
AND LOCAL THETA CORRESPONDENCE FOR \((U(1), U(3))\)

JAEHO HAAN

Abstract. In this paper, we study the restriction problem of representations for a non-tempered Arthur packet of \(U(3)\). For a pair of tempered \(L\)-parameters of \((U(n), U(n-1))\), it is known that there is a unique pair of representations in their associated Vogan \(L\)-packets which produces the unique Bessel model of these \(L\)-parameters. We showed that this is true for some pair of \(L\)-parameters involving a non-tempered one.

On the other hand, we give the precise local theta correspondence for \((U(1), U(3))\) not at the level of \(L\)-parameters but of individual representations in the framework of the local Langlands correspondence for unitary group. As an application of these results, we prove an analog of Ichino-Ikeda conjecture for some non-tempered case. The main tools in this work are the see-saw identity, local theta correspondence for (almost) equal rank cases and recent results on the local Gross-Prasad conjecture on both Fourier-Jacobi and Bessel case.

1. Introduction

Let \(E/F\) be a quadratic extension of number fields. Let \(G = U(3)\) be the unitary group relative to \(E/F\). In [21], Rogawski has defined a certain enlarged class of \(L\)-packet, or \(A\)-packet, using the endoscopic transfer of a one-dimensional character of the \(H = U(2) \times U(1)\), which is the unique elliptic endoscopic group for \(G\).

More precisely, let \(\varrho = \otimes_v \varrho_v\) be an one-dimensional automorphic character of \(H\). An \(A\)-packet \(\Pi(\varrho) \simeq \otimes \Pi(\varrho_v)\) is the transfer of \(\varrho\) with respect to functoriality for an embedding of \(L\)-groups \(\xi : L H \to L G\). Then for all place \(\nu\) of \(F\), \(\Pi(\varrho_v)\) contains a certain non-tempered representation \(\pi^n(\varrho_v)\) and for a place which remains prime in \(E\), it has an additional supercuspidal representation \(\pi^s(\varrho_v)\). Gelbart and Rogawski [11] showed that the representations in this \(A\)-packet arise in the Weil representation of \(G\). The main purpose of this article is to study the branching of the representations in this \(A\)-packet when restricted to \(U(2)\) over local fields.

For the branching problem of codimension 1 classical groups, there is the so called Gross-Prasad \((GP)\) conjecture, which was first formulated by Gross and Prasad for orthogonal groups and later together with Gan, they extended it to all classical groups in [5]. But this papers mainly concerns unitary group, we shall state the GP conjecture only for unitary group. To state it, we need some notations:

Let \(E/F\) be a quadratic extension of local fields of characteristic zero. Let \(V_{n+1}\) be a Hermitian space of dimension \(n + 1\) over \(E\) and \(W_n\) a skew-Hermitian space of dimension \(n\) over \(E\). Let \(V_n \subset V_{n+1}\) be a nondegenerate subspace of codimension 1, so that if we set

\[
G_n = U(V_n) \times U(V_{n+1}) \quad \text{or} \quad U(W_n) \times U(W_n)
\]
and
\[H_n = U(V_n) \text{ or } U(W_n), \]
then we have a diagonal embedding
\[\Delta : H_n \hookrightarrow G_n. \]

Let \(\pi \) be an irreducible smooth representation of \(G_n \). In the Hermitian case, one is interested in computing
\[\dim \mathbb{C} \text{Hom}_{\Delta H_n}(\pi, \mathbb{C}). \]

We shall call this the Bessel case (B) of the GP conjecture. To describe the GP conjecture for the skew-Hermitian case, we need another piece of data: a Weil representation \(\omega_{\psi, \chi, W_n} \), where \(\psi \) is a nontrivial additive character of \(F \) and \(\chi \) is a character of \(E^\times \) whose restriction to \(F^\times \) is the quadratic character \(\omega_{E/F} \) associated to \(E/F \) by local class field theory. Then one is interested in computing
\[\dim \mathbb{C} \text{Hom}_{\Delta H_n}(\pi, \omega_{\psi, \chi, W_n}). \]

We shall call this the Fourier–Jacobi case (FJ) of the GP conjecture. To unify notation, we shall let \(\nu = \mathbb{C} \) or \(\omega_{\psi, \chi, W_n} \) in the respective cases.

By the result of [1], it is known
\[\dim \mathbb{C} \text{Hom}_{\Delta H_n}(\pi, \nu) \leq 1 \]
and so we want to specify irreducible smooth representations \(\pi \) such that
\[\text{Hom}_{\Delta H_n}(\pi, \nu) = 1. \]

In [5], Gross, Prasad and Gan has brought this problem into a more general setting using the notion of relevant pure inner forms of \(G_n \) and Vogan L-packets. A pure inner form of \(G_n \) is a group of the form
\[G'_n = U(V'_n) \times U(V'_{n+1}) \text{ or } U(W'_n) \times U(W''_n) \]
where \(V'_n \subset V'_{n+1} \) are \(n \) and \(n+1 \) dimensional hermitian spaces over \(E \) and \(W'_n \) is a \(n \)-dimensional skew hermitian spaces over \(E \).

Furthermore, if
\[V'_{n+1}/V'_n \cong V_{n+1}/V_n \text{ or } W'_n = W''_n, \]
we say that \(G'_n \) is relevant pure inner form.
(Indeed, there are four pure inner forms of \(G_n \) and among them, only two are relevant.)

If \(G'_n \) is relevant, we set
\[H'_n = U(V'_n) \text{ or } U(W'_n), \]
so that we have a diagonal embedding
\[\Delta : H'_n \hookrightarrow G'_n. \]

Now suppose that \(\phi \) is an L-parameter for the group \(G_n \). Then the (relevant) Vogan L-packet \(\Pi_\phi \) associated to \(\phi \) consists of certain irreducible smooth representations of \(G_n \) and its (relevant) pure inner forms \(G'_n \) whose L-parameter is \(\phi \). We denote the relevant Vogan L-packet of \(\phi \) by \(\Pi^R_\phi \).

With these notions, we can state the GP conjecture as follows:

Gross–Prasad conjecture. For a generic L-parameter \(\phi \) of \(G_n \), the followings hold:

(i) \[\sum_{\pi' \in \Pi^R_\phi} \dim \mathbb{C} \text{Hom}_{\Delta H'_n}(\pi', \nu) = 1. \]

(ii) Using the local Langlands correspondence for unitary group, we can pinpoint \(\pi' \in \Pi^R_\phi \) such that
\[\dim \mathbb{C} \text{Hom}_{\Delta H'_n}(\pi', \nu) = 1. \]
For tempered L-parameter ϕ, Beuzart-Plessis [2,3,4] proved (B) case of the GP conjecture and Gan and Ichino [7] proved (FJ) case.

In this paper, we shall investigate (B) case of this conjecture for G_2 when a L-parameter of G_2 involves some non-tempered L-parameter of $U(V_3)$. More precisely, we have

Main Theorem. Denote by π_3 either $\pi^n(\rho_v)$ or $\pi^s(\rho_v)$, which is the representations appearing in the non-tempered A-packet $\Pi(\rho_v)$. For an irreducible smooth representation π_2 of $U(V_2)$, let $\pi = \pi_3 \otimes \pi_2$ as a representation of G_2. Then

(i) $\text{Hom}_{\Delta H_2}(\pi, \mathbb{C}) = 0$ if π_2 does not come from the theta lift of $U(W_1)$.

(ii) Assume that π_2 is the theta lift from $U(W_1)$ and let ϕ be the L-parameter of π. Then

$$\sum_{\pi' \in \Pi^R_\phi} \dim \text{Hom}_{\Delta H_2}(\pi', \mathbb{C}) = 1$$

and using local Langlands correspondence, we can explicitly describe $\pi' \in \Pi^R_\phi$ such that

$$(1.1) \quad \dim \text{Hom}_{\Delta H_2}(\pi', \mathbb{C}) = 1.$$

The main idea for this is to consider the following see-saw diagram:

$$\begin{align*}
 U(W_1) \times U(W_1) & \quad U(V_3) \quad U(V_1) \\
 \text{Hom}_{\Delta H_2}(\pi, \mathbb{C}) & \quad \text{Hom}_{\Delta H_2}(\pi', \mathbb{C})
\end{align*}$$

Since the elements in the A-packet $\Pi(\rho_v)$ can be obtained by the theta lift from $U(W_1)$, we can write $\pi_3 = \Theta_{\psi,\chi,V_3,W_1}(\sigma)$ where σ is an irreducible smooth character of $U(W_1)$ and ψ, χ are some characters, which are needed to fix a relevant Weil representation. Then by the see-saw identity, we have

$$\text{Hom}_{U(V_2)}(\Theta_{\psi,\chi,V_3,W_1}(\sigma), \pi_2) \simeq \text{Hom}_{U(W_1)}(\Theta_{\psi,\chi,W_1,V_2}(\pi_2) \otimes \omega_{\psi,\chi,W_1,V_1}, \sigma).$$

From this, we see that for having $\text{Hom}_{U(V_2)}(\Theta_{\psi,\chi,V_3,W_1}(\sigma), \pi_2) \neq 0$, it should be preceded $\Theta_{\psi,\chi,W_1,V_2}(\pi_2) \neq 0$ and this accounts for (i) in the **Main Theorem**.

If $\Theta_{\psi,\chi,W_1,V_2}(\pi_2) \neq 0$, then we can apply (FJ) for $U(W_1)$ to find the precise representations in the Vogan L-packet associated to the L-parameters of $\Theta_{\psi,\chi,W_1,V_2}(\pi_2)$ and σ. However, to find a representation π' in Π_ϕ, we need to know the precise local theta correspondence between $(U(W_1), U(V_3))$ as well as $(U(W_1), U(V_2))$. For the precise local theta correspondence for $(U(W_1), U(V_2))$, it was suggested and proved by Gan and Ichino in [7]. For $(U(W_1), U(V_3))$, we suggested and proved it in Theorem 3.6 and this is the second main result of this work.

We remark that these two local theta correspondences are both described under the framework of local Langlands correspondence.

As an application of our **Main Theorem**, we could establish the Ichino-Ikeda conjecture of the unitary group for the non-tempered case. In [17], Ichino and Ikeda defined the local period for a pair of tempered representations of orthogonal group using the matrix coefficients and conjectured that its non-vanishing would be equivalent to the existence of its Bessel model. This conjecture was settled by Waldspurger for the non-archimedean case, and Sakellaridis and Venkatesh [22 §6.4] and Plessis [3 §14.3] independently established this conjecture in the setting of unitary group for the non-archimedean case. However, if one consider a pair involving a non-tempered representation, the local period may diverge and so one needs
to regularize it. In [13], the author introduced the regularized local period P_{v}^{reg} for some special pair of non-tempered representations. With this notion of regularised local period, we could prove

\[(1.2) \quad \text{Hom}_{U(V_{2,v})}(\pi_{3,v}, \pi_{2,v}) \neq 0 \iff P_{v}^{\text{reg}} \neq 0 \quad \text{for all non-archimedean places } v \text{ of } F\]

when $\pi_{3,v} = \Theta_{\psi, \chi, V_{3,v}, W_{1,v}}(\sigma)$, $\pi_{2,v} = \Theta_{\psi, \chi, V_{2,v}, W_{1,v}}(\sigma)$ are local theta lifts for some irreducible and trivial representations σ, ψ of $U(W_{1,v})$ respectively. This justifies the soundness of P_{v}^{reg} for regularised local period and as a corollary, we can express the main result of [13] in the form of the original global Gross-Prasad conjecture under the assumption that (1.2) also holds for archimedean places.

Theorem 1.1. Let $\pi_{3} = \Theta_{\psi, \chi, V_{3}, W_{1}}(\sigma)$ and $\pi_{2} = \Theta_{\psi, \chi, V_{2}, W_{1}}(\sigma)$ be the global theta lifts of some automorphic character σ and trivial character χ of $U(W_{1})$ to $U(V_{3})$ and $U(V_{2})$, respectively. Assume (1.2) holds for archimedean cases. If $\text{Hom}_{U(V_{2,v})}(\pi_{3,v}, \pi_{2,v}) \neq 0$ for all places v of F, then we have

$$P \neq 0 \iff L_{E}(\frac{1}{2}, \text{BC}(\sigma \otimes \chi)) \neq 0$$

where P is the global period functional of $\pi_{3} \times \pi_{2}$ defined by

$$P(f_{\pi_{3}}, f_{\pi_{2}}) = \int_{U(V_{2})} f_{\pi_{3}}(g) f_{\pi_{2}}(g) dg \quad \text{for } f_{\pi_{3}} \in \pi_{3} \text{ and } f_{\pi_{2}} \in \pi_{2}.$$

The rest of the paper is organised as follows: In Section 2, we shall give a brief sketch of the local Langlands correspondence for unitary group. In Section 3, we collect some results of the local theta correspondence for unitary group which we will use in the proof of our main results. In Section 4, we shall prove Theorem 1.1 under the assumption of Theorem 3.6 whose proof will occupy the next Section 5. Finally, we give an application of our main result in Section 6.

Acknowledgements. The author expresses deep gratitude to his advisors Haseo Ki, Dongho Byeon for their guidance, patience and constant encouragement during his whole graduate years. Without their huge influence on me, this paper would never come out this world. Originally, this paper grew out as an attempt to understand the work of Gan and Ichino [7] and so this was largely inspired by their work. We would like to thank to professor Atsushi Ichino for bringing my attention to this problem and to professor Wee Teck Gan for helpful discussion at 2014 ICM Seoul.

1.1. Notations. We fix some notations we shall use throughout this paper:

- E/F be a quadratic extension of number fields or local fields of characteristic zero.
- c is the non-trivial element of $\text{Gal}(E/F)$.
- Fr_{E} is a Frobenius element of $\text{Gal}(E/E)$.
- Denote by $\text{Tr}_{E/F}$ and $\text{N}_{E/F}$ the trace and norm maps from E to F.
- δ is an element of E such that $\text{Tr}_{E/F}(\delta) = 0$.
- Let ψ be an additive character of \mathbb{A}_{F}/F or F and define
 $$\psi^{E}(x) := \psi\left(\frac{1}{2} \text{Tr}_{E/F}(\delta x)\right) \quad \text{and} \quad \psi_{2}^{E}(x) := \psi(\text{Tr}_{E/F}(\delta x)).$$
- Let χ be a character of $\mathbb{A}_{E}^{\times}/E^{\times}$ or E^{\times} whose restriction to $\mathbb{A}_{F}^{\times}/F^{\times}$ of F^{\times} is $\omega_{E/F}$, which is the quadratic character associated to E/F by global or local class field theory.
- For an linear algebraic group G, denote its F-points by $G(F)$.
- $\bar{1}_{G}$ denotes the trivial representation of G.

2. Local Langlands correspondence

By the recent work of Mok [20], and Kaletha-Mínguez-Shin-White [18], the local Langlands correspondence is now known for unitary group conditional on the stabilization of the twisted trace formula. Since our main results are expressed using the local Langlands correspondence, we shall assume the local Langlands correspondence for unitary group in this paper. Indeed, much of this section are excerpts from Section 2 in [7].

2.1. Hermitian and skew-Hermitian spaces. Throughout the rest of the paper, unless otherwise mentioned, E/F denote the quadratic extension of local fields of characteristic zero. Fix ε either 1 or -1. Let V be a finite n-dimensional vector space over E equipped with a nondegenerate ε-Hermitian ε-sesquilinear form $\langle \cdot, \cdot \rangle : V \times V \to E$. That means for $v, w \in V$ and $a, b \in E$, we have

$$\langle av, bw \rangle_V = ab^\varepsilon \langle v, w \rangle_V, \quad \langle w, v \rangle_V = \varepsilon \cdot \langle v, w \rangle_V.$$

Denote $\text{disc} V = (-1)^{(n-1)n/2} \cdot \det V$, so that

$$\text{disc} V = \begin{cases} F^x/N_{E/F}(E^x) & \text{if } \varepsilon = +1; \\ \delta^n \cdot F^x/N_{E/F}(E^x) & \text{if } \varepsilon = -1. \end{cases}$$

Then we define $\epsilon(V) = \pm 1$ by

$$\epsilon(V) = \begin{cases} \omega_{E/F}(\text{disc} V) & \text{if } \varepsilon = +1; \\ \omega_{E/F}(\delta^{-n} \cdot \text{disc} V) & \text{if } \varepsilon = -1. \end{cases}$$

By a theorem of Landherr, for a given positive integer n, there are exactly two isomorphism classes of hermitian spaces of dimension and they are distinguished form each other by $\epsilon(V)$. Let $U(V)$ be the unitary group of V defined by

$$U(V) = \{ g \in \text{GL}(V) \mid \langle gv, gw \rangle_V = \langle v, w \rangle_V \text{ for } v, w \in V \}.$$

Then $U(V)$ turns out to be connected reductive algebraic group defined over F.

2.2. L-parameters and component groups. Let F be a local field of characteristic 0 and I_F be the inertia subgroup of $\text{Gal}(\bar{F}/F)$. Let $W_F = I_F \ltimes (\text{Fr}_F)$ be the Weil group of F and $WD_F = W_F \times \text{SL}_2(\mathbb{C})$ the Weil-Deligne group of F. For a homomorphism $\phi : WD_F \to \text{GL}_n(\mathbb{C})$, we say that it is a representation of WD_F if

(i) ϕ is trivial on an open subgroup of I_F,

(ii) ϕ is continuous and $\phi(\text{Fr}_F)$ is semisimple,

(iii) the restriction of ϕ to $\text{SL}_2(\mathbb{C})$ is induced by a morphism of algebraic groups $\text{SL}_2 \to \text{GL}_n$.

For a representation ϕ of WD_F, when the image of W_F is bounded, we say that ϕ is tempered. Define ϕ^\vee by $\phi^\vee(w) = \text{tr}^{-1} \phi(w)^{-1}$ and call this the contragredient representation of ϕ. If E/F is a quadratic extension of local fields and ϕ is a representation of WD_E, fix $s \in W_F \setminus W_E$ and define a representation ϕ^c of WD_E by $\phi^c(w) = \phi(sw^{-1})$. It is known that the equivalence class of ϕ^c is independent of the choice of s. Then we say that ϕ is conjugate self-dual if there is an isomorphism $\mathfrak{b} : \phi \mapsto (\phi^\vee)^c$ and for $\varepsilon = \pm 1$, we say that ϕ is conjugate self-dual with sign ε if $\mathfrak{b}^c = \varepsilon \cdot \mathfrak{b}$.

Let V be an n-dimensional ε-hermitian space over E and an L-parameter for the unitary group $U(V)$ is a homomorphism

$$\phi : WD_F \longrightarrow U(V) = \text{GL}_n(\mathbb{C}) \ltimes \text{Gal}(E/F)$$

such that
the composite of \(\phi \) with the projection onto \(GL_n(\mathbb{C}) \) is a representation of \(WD_F \).

The composite of \(\phi \) with the projection onto \(\text{Gal}(E/F) \) is the natural projection of \(WD_F \) to \(\text{Gal}(E/F) \).

The following proposition in [5, §8] enable us to removes the cumbersome \(\text{Gal}(E/F) \)-factor in the definition of \(L \)-parameter of \(U(V) \).

Proposition 2.1. Restriction to \(W_E \) of \(W_F \) in \(WD_F \) gives a bijection between the set of \(L \)-parameters for \(U(V) \) and the set of equivalence classes of conjugate self-dual representations

\[
\phi : WD_E \rightarrow GL_n(\mathbb{C})
\]

of sign \((-1)^{n-1}\).

With this proposition, henceforth, we shall mean an \(L \)-parameter for \(U(V) \) by \(n \)-dimensional conjugate self-dual representation \(\phi \) of \(WD_E \) with sign \((-1)^{n-1}\).

Given an \(L \)-parameter \(\phi \) of \(U(V) \), we can write \(\phi \) as a direct sum

\[
\phi = \bigoplus_i m_i \phi_i
\]

with pairwise inequivalent irreducible representations \(\phi_i \) of \(WD_E \) with multiplicities \(m_i \). We say that \(\phi \) is square-integrable if it has no multiplicity (i.e. \(m_i = 1 \) for all \(i \)) and \(\phi_i \) is conjugate self-dual with sign \((-1)^{n-1}\) for all \(i \).

Given an \(L \)-parameter \(\phi \) for \(U(V) \), we can associate its component group \(S_\phi \) of \(\phi \). As explained in [5, §8], \(S_\phi \) is a finite 2-abelian group and so has a form

\[
S_\phi = \prod_j (\mathbb{Z}/2\mathbb{Z})a_j
\]

with a canonical basis \(\{a_j\} \), where the product ranges over all \(j \) such that \(\phi_j \) is conjugate self-dual with sign \((-1)^{n-1}\). If we denote the image of \(-1 \in GL_n(\mathbb{C})\) in \(S_\phi \) by \(z_\phi \), it is known that

\[
z_\phi = (m_j a_j) \in \prod_j (\mathbb{Z}/2\mathbb{Z})a_j.
\]

2.3. Local Langlands correspondence for unitary group. The aim of the local Langlands correspondence for unitary groups is to classify the irreducible smooth representations of unitary group. To state it, we first introduce some notations.

- Let \(V^+ \) and \(V^- \) be the \(n \)-dimensional \(\varepsilon \)-Hermitian spaces with \(\epsilon(V^+) = +1, \epsilon(V^-) = -1 \) respectively.
- For an \(L \)-parameter \(\phi \) of \(U(V^\pm) \), let \(\Pi_\phi \) be the Vogan \(L \)-packet associated to \(\phi \), which is a finite set of irreducible smooth representations of \(U(V^\pm) \).
- Let \(\text{Irr}(U(V^\pm)) \) be the set of irreducible smooth representations of \(U(V^\pm) \).

Then the local Langlands correspondence in an enhanced form by Vogan [24], say that there is one to one correspondence between

\[
\text{Irr}(U(V^+)) \sqcup \text{Irr}(U(V^-)) \leftrightarrow \bigsqcup_\phi \Pi_\phi,
\]

where \(\phi \) on the right-hand side runs over all equivalence classes of \(L \)-parameters for \(U(V^\pm) \).
Then under the local Langlands correspondence, we may also decompose Π_ϕ as
\[
\Pi_\phi = \Pi_\phi^+ \sqcup \Pi_\phi^-,
\]
where for $\epsilon = \pm 1$, Π_ϕ^ϵ consists of the representations of $U(V^\epsilon)$ in Π_ϕ.

Furthermore, as explained in [5] §12, there is a bijection
\[
J_\psi^\epsilon(\phi) : \Pi_\phi \to \text{Irr}(S_\phi)
\]
which is canonical when n is odd and depends on the choice of an additive character of $\psi : F^\times \to \mathbb{C}$ when n is even. More precisely, such bijection is determined by the $\mathbb{N}_{E/F}(E^\times)$-orbit of nontrivial additive characters
\[
\left\{
\begin{aligned}
\psi^E : E/F &\to \mathbb{C}^\times &\text{if } \epsilon = +1; \\
\psi : F &\to \mathbb{C}^\times &\text{if } \epsilon = -1.
\end{aligned}
\right.
\]
According to this choice, when n is even, we write
\[
J_\psi^\epsilon = \begin{cases}
J_\psi^E &\text{if } \epsilon = +1; \\
J_\psi &\text{if } \epsilon = -1,
\end{cases}
\]
and even when n is odd, we retain the same notation $J_\psi^\epsilon(\phi)$ for the canonical bijection.

Hereafter, if a nontrivial additive character $\psi : F \to \mathbb{C}^\times$ is fixed, we define $\psi^E : E/F \to \mathbb{C}^\times$ by
\[
\psi^E(x) := \psi(\frac{1}{2} \text{Tr}_{E/F}(\delta x))
\]
and using these two characters, we fix once and for all a bijection
\[
J_\psi^\epsilon(\phi) : \Pi_\phi \to \text{Irr}(S_\phi)
\]
as above.

With this fixed bijection, we could label all irreducible smooth representations of $U(V^\pm)$ with $\pi(\phi, \eta)$ for some unique L-parameter ϕ of $U(V^\pm)$ and $\eta \in \text{Irr}(S_\phi)$.

2.4. Properties of the local Langlands correspondence. We briefly list some properties of the local Langlands correspondence for unitary group, which we will use in this paper:

- $\pi(\phi, \eta)$ is a representation of $U(V^\epsilon)$ if and only if $\eta(z_\phi) = \epsilon$.
- $\pi(\phi, \eta)$ is tempered if and only if ϕ is tempered.
- $\pi(\phi, \eta)$ is square-integrable if and only if ϕ is square-integrable.
- The component groups S_ϕ and S_ϕ^\vee are canonically identified. Under this canonical identification, if $\pi = \pi(\phi, \eta)$, then its contragradient representation π^\vee is $\pi(\phi^\vee, \eta \cdot \nu)$ where
\[
\nu(a_j) = \begin{cases}
\omega_{E/F}(-1)^{\dim \phi_\eta} &\text{if } \dim_{\mathbb{C}} \phi \text{ is even}; \\
1 &\text{if } \dim_{\mathbb{C}} \phi \text{ is odd}.
\end{cases}
\]
- If ϕ is a non-tempered L-parameter, we can decompose
\[
\phi = \phi_1 \oplus \cdots \oplus \phi_r \oplus \phi_0 \oplus (\phi_0^c)^\vee \oplus \cdots \oplus (\phi_1^c)^\vee,
\]
where
- for $1 \leq i \leq r$, ϕ_i is a k_i-dimensional representation of WD_E of the form $\phi_i = \phi_i^t \otimes |\cdot|^e_i$ for some tempered representation ϕ_i^t of WD_E and some real number e_i such that $e_1 > \cdots > e_r > 0$,
- ϕ_0 is a tempered L-parameter for $U(V^\pm_0)$, where V^\pm_0 are the ϵ-Hermitian spaces of dimension $n - 2(k_1 + \cdots + k_r)$ over E.
We note that the natural map $S_{\phi_0} \to S_{\phi}$ is an isomorphism.

3. Local theta correspondence

In this section, we state the local theta correspondence for three pairs of unitary group, namely, $(U(1), U(1))$, $(U(1), U(2))$, $(U(1), U(3))$. From now on, for $\epsilon = \pm 1$, we shall denote by V_n^ϵ the n-dimensional Hermitian space with $\epsilon(V_n^+) = \epsilon$ and by W_n^ϵ the n-dimensional skew-Hermitian space with $\epsilon(W_n^+) = \epsilon$, so that $W_n^\epsilon = \delta \cdot V_n^\epsilon$.

3.1. The Weil representation for Unitary groups. In this subsection, we introduce the Weil representation. Since the constructions of global and local Weil representation are similar, we will treat both of them simultaneously. If the same statement can be applied to both the local and global cases, we will not use the distinguished notation $U(V)(F)$ and $U(V)(\mathbb{A}_F)$, but just refer them to $U(V)$.

Let E/F be a quadratic extension of local or global fields and $(V, \langle \cdot, \cdot \rangle_V)$ be a Hermitian space and $(W, \langle \cdot, \cdot \rangle_W)$ a skew-Hermitian space over E.

Define the symplectic space

$$\mathbb{W}_{V,W} := \text{Res}_{E/F} V \otimes_E W$$

with the symplectic form

$$\langle v \otimes w, v' \otimes w' \rangle_{\mathbb{W}_{V,W}} := \frac{1}{2} \text{tr}_{E/F} \left(\langle v, v' \rangle_V \otimes \langle w, w' \rangle_W \right).$$

We also consider the associated symplectic group $Sp(\mathbb{W}_{V,W})$ preserving $\langle \cdot, \cdot \rangle_{\mathbb{W}_{V,W}}$ and the metaplectic group $\widetilde{Sp}(\mathbb{W}_{V,W})$ satisfying the following short exact sequence:

$$1 \to \mathbb{C}^\times \to \widetilde{Sp}(\mathbb{W}_{V,W}) \to Sp(\mathbb{W}_{V,W}) \to 1.$$

Let $X_{V,W}$ be a Lagrangian subspace of $\mathbb{W}_{V,W}$ and we fix an additive character $\psi : X_{V,W} \to \mathbb{C}^\times$ (globally) or $\psi : F \to \mathbb{C}^\times$ (locally). Then we have a Schrödinger model of the Weil Representation ω_ψ of $\widetilde{Sp}(\mathbb{W})$ on $S(X_{V,W})$, where S is the Schwartz-Bruhat function space.

Once and for all, we fix an unitary character χ of $\mathbb{A}_E^/E^\times$ or E^\times whose restriction to $\mathbb{A}_F^/F^\times$ of F^\times is $\omega_{E/F}$. Let χ_V, χ_W be unitary characters of $\mathbb{A}_E^/E^\times$ or E^\times such that

$$\chi_V|_{\mathbb{A}_E^/F^\times \text{ or } F^\times} := \omega_{E/F}^{\dim_E V} \quad \text{and} \quad \chi_W|_{\mathbb{A}_E^/F^\times \text{ or } F^\times} := \omega_{E/F}^{\dim_E W}.$$

By [14, §1], such a choice (χ_V, χ_W) determines a splitting homomorphism

$$\iota_{\chi_V, \chi_W} : U(V) \times U(W) \to \widetilde{Sp}(\mathbb{W}_{V,W})$$

and so by composing this to ω_ψ, we have a Weil representation $\omega_\psi \circ \iota_{\chi_V, \chi_W}$ of $U(V) \times U(W)$ on $S(X_{V,W})$.

Throughout the rest of the paper, when it comes to a Weil representations of $U(V) \times U(W)$, we shall denote $\omega_\psi \circ \iota_{\chi_V, \chi_W}$ by $\omega_{\psi, V,W}$ with understanding the choices of characters (χ_V, χ_W) was made as follows:

$$\chi_V = \chi^{\dim_E V} \quad \text{and} \quad \chi_W = \chi^{\dim_E W}.$$

Remark 3.1. When $\dim_E W = 1$, the image of $U(W)$ in $\widetilde{Sp}(\mathbb{W}_{V,W})$ coincides with the image of the center of $U(V)$, so we can regard the Weil representation of $U(V) \times U(W)$ as the representation of $U(V)$ and we denote the Weil representation as just $\omega_{\psi, V}$.
3.2. Local theta correspondence. Given a Weil representation $\omega_{\psi,V,W}$ of $U(V) \times U(W)$ and an irreducible smooth representation π of $U(W)$, the maximal π-isotypic quotient of $\omega_{\psi,V,W}$, say $S(\pi)$, is of the form

$$S(\pi) \cong \Theta_{\psi,V,W}(\pi) \boxtimes \pi$$

for some smooth representation $\Theta_{\psi,V,W}(\pi)$ of $U(V)$ of finite length. By the Howe duality, which was first proved by Waldspurger [25] except for $p \neq 2$ and recently completed by Gan and Takeda in [8], [9], the maximal semisimple quotient $\theta_{\psi,V,W}(\pi)$ of $\Theta_{\psi,V,W}(\pi)$ is either zero or irreducible.

In this paper, we consider three kinds of theta correspondences for $U(V) \times U(W)$:

(i) $\dim V = 1$, $\dim W = 1$
(ii) $\dim V = 2$, $\dim W = 1$
(iii) $\dim V = 3$, $\dim W = 1$

For the cases $|\dim V - \dim W| = 0$ and 1, D. Prasad conjectured the local theta correspondence in terms of the local Langlands correspondence and quite recently, Gan and Ichino proved both cases in [6], [7]. For what follows, we fix an additive character $\psi : F \to \mathbb{C}^\times$.

3.3. Case (i). We first consider the theta correspondence for $U(V_1^\varepsilon) \times U(W_1^\varepsilon)$. The following summarises some results of [6], [7], which are specialised to this case.

Theorem 3.2. Let ϕ be an L-parameter for $U(W_1^\pm)$. Then we have:

(i) For any fixed $\pi \in \Pi_{\phi}',$ exactly one of $\Theta_{\psi,V_1^\varepsilon,W_1^\varepsilon}(\pi)$ or $\Theta_{\psi,V_1^\varepsilon,W_1^\varepsilon}(\pi)$ is nonzero.

(ii) $\Theta_{\psi,V_1^\varepsilon,W_1^\varepsilon}(\pi) \neq 0$ if and only if

$$\epsilon(\frac{1}{2}, \phi \otimes \chi^{-1}, \psi_2^E) = \epsilon \cdot \epsilon',$$

where

$$\psi_2^E(x) = \psi(\text{Tr}_{E/F}(\delta x)).$$

(iii) If $\Theta_{\psi,V_1^\varepsilon,W_1^\varepsilon}(\pi)$ is nonzero, then $\theta_{\psi,V_1^\varepsilon,W_1^\varepsilon}(\pi)$ has L-parameter

$$\theta(\phi) = \phi.$$

(iv) The theta correspondence $\pi \mapsto \theta_{\psi,V_1^\varepsilon,W_1^\varepsilon}(\pi)$ gives a bijection

$$\Pi_\phi \longleftrightarrow \Pi_{\theta(\phi)}.$$

(v) Let $S_\phi = S_{\theta(\phi)} = (\mathbb{Z}/2\mathbb{Z})a_1$. Since $n = 1$ and $\phi = \theta(\phi)$, there is the same bijection

$$J^\psi(\phi) : \Pi_\phi \longleftrightarrow \text{Irr}(S_\phi) \quad \text{and} \quad J^\psi(\phi) : \Pi_{\theta(\phi)} \longleftrightarrow \text{Irr}(S_{\theta(\phi)}).$$

With this bijection J^ψ, we can describe

$$\text{Irr}(S_\phi) \longleftrightarrow \text{Irr}(S_{\theta(\phi)})$$

induced by the theta correspondence in (iv) as follows:

$$\theta(\eta)(a_1) = \eta(a_1) \cdot \epsilon(\frac{1}{2}, \phi \otimes \chi^{-1}, \psi_2^E).$$

(vi) If $\Theta_{\psi,V_1^\varepsilon,W_1^\varepsilon}(\pi)$ is nonzero, then $\Theta_{\psi,V_1^\varepsilon,W_1^\varepsilon}(\pi)$ is irreducible and so $\Theta_{\psi,V_1^\varepsilon,W_1^\varepsilon}(\pi) = \theta_{\psi,V_1^\varepsilon,W_1^\varepsilon}(\pi)$.

3.4. Case (ii). Now we shall consider the theta correspondence for $U(V_2^\pm) \times U(W_1^\pm)$. The following summarises some results of [6], [7], which are specialised to this case.

Theorem 3.3. Let ϕ be an L-parameter for $U(W_1^\pm)$. Then we have:

(i) Suppose that $\phi = \chi^2$.
 (a) For any $\pi \in \Pi_\phi^\epsilon$, $\Theta_{\psi,V_2^\pm,W_1^\epsilon}(\pi)$ is nonzero and $\theta_{\psi,V_2^\pm,W_1^\epsilon}(\pi)$ has L-parameter
 $$\theta(\phi) = (\phi \otimes \chi^{-1}) \oplus \chi.$$
 (b) For each $\epsilon = \pm 1$, the theta correspondence $\pi \mapsto \theta_{\psi,V_2^\pm,W_1^\epsilon}(\pi)$ gives a bijection
 $$\Pi_\phi \leftrightarrow \Pi_{\theta(\phi)}^\epsilon.$$

(ii) Suppose that ϕ contains χ^2.
 (a) For any fixed $\pi \in \Pi_\phi^\epsilon$, exactly one of $\Theta_{\psi,V_2^+,W_1^\epsilon}(\pi)$ or $\Theta_{\psi,V_2^-,W_1^\epsilon}(\pi)$ is nonzero.
 (b) If $\Theta_{\psi,V_2^+,W_1^\epsilon}(\pi)$ is nonzero, then $\theta_{\psi,V_2^+,W_1^\epsilon}(\pi)$ has L-parameter
 $$\theta(\phi) = (\phi \otimes \chi^{-1}) \oplus \chi.$$
 (c) The theta correspondence $\pi \mapsto \theta_{\psi,V_2^+,W_1^\epsilon}(\pi)$ gives a bijection
 $$\Pi_\phi \leftrightarrow \Pi_{\theta(\phi)}^\epsilon.$$

(iii) If $\phi \neq \chi^2$, let
 $$S_\phi = (\mathbb{Z}/2\mathbb{Z})b_1, \quad S_{\theta(\phi)} = (\mathbb{Z}/2\mathbb{Z})b_1 \times (\mathbb{Z}/2\mathbb{Z})b_2,$$
 where the extra copy of $\mathbb{Z}/2\mathbb{Z}$ of $S_{\theta(\phi)}$ arises from the summand χ in $\theta(\phi)$. Using the two bijections
 $$J^\psi(\phi) : \Pi_\phi \leftrightarrow \text{Irr}(S_\phi) \quad \text{and} \quad J^\psi(\theta(\phi)) : \Pi_{\theta(\phi)} \leftrightarrow \text{Irr}(S_{\theta(\phi)}),$$
 we obtain a bijection
 $$\text{Irr}(S_\phi) \leftrightarrow \text{Irr}^\epsilon(S_{\theta(\phi)})$$
 $$\eta \leftrightarrow \theta(\eta)$$
 induced by the theta correspondence, where $\text{Irr}^\epsilon(S_{\theta(\phi)})$ is the set of irreducible characters η' of $S_{\theta(\phi)}$ such that $\eta'(z_{\theta(\phi)}) = \eta'((b_1,1)) \cdot \eta'((1,b_2)) = \epsilon$, and the bijection is determined by
 $$\theta(\eta)|_{S_\phi} = \eta.$$

 • If $\phi = \chi^2$, then $\phi \otimes \chi^{-1} = \chi$, and so
 $$S_{\theta(\phi)} = S_\phi.$$
 Thus, one has a canonical bijection
 $$\text{Irr}(S_\phi) \leftrightarrow \text{Irr}(S_{\theta(\phi)})$$
 $$\eta \leftrightarrow \theta(\eta)$$
 induced by the theta correspondence and it is given by
 $$\theta(\eta) = \eta.$$

(iv) If $\Theta_{\psi,V_2^+,W_1^\epsilon}(\pi)$ is nonzero, then $\Theta_{\psi,V_2^+,W_1^\epsilon}(\pi)$ is irreducible and so $\Theta_{\psi,V_2^+,W_1^\epsilon}(\pi) = \theta_{\psi,V_2^+,W_1^\epsilon}(\pi)$.
3.5. **Case (iii).** Now we shall consider the theta correspondence for \(U(V_3') \times U(W_1') \). The following summarises some results of \([11],[12],[14]\).

Theorem 3.4. Let \(\phi \) be a \(L \)-parameter of \(U(W_1^\pm) \). Then we have:

(i) For any \(\epsilon, \epsilon' = \pm 1 \) and any \(\pi \in \Pi'_\phi \), \(\Theta_{\psi,V_3',W_1'}(\pi) \) is nonzero and irreducible.

(ii) \(\Theta_{\psi,V_3',W_1'}(\pi) = \begin{cases}
\text{a non-tempered representation} & \text{if } \epsilon(\frac{1}{2}, \phi \otimes \chi^{-3}, \psi^E_2) = \epsilon \cdot \epsilon' \\
\text{a supercuspidal representation} & \text{if } \epsilon(\frac{1}{2}, \phi \otimes \chi^{-3}, \psi^E_2) = -\epsilon \cdot \epsilon'.
\end{cases} \)

(iii) The \(L \)-parameter \(\theta(\phi) \) of \(\Theta_{\psi,V_3',W_1'}(\pi) \) has the following two forms:

\[
\theta(\phi) = \begin{cases}
\theta_1(\phi) = \chi | \frac{1}{E} I \otimes \phi \cdot \chi^{-2} + \chi| \ | \frac{1}{E} | & \text{if } \epsilon(\frac{1}{2}, \phi \otimes \chi^{-3}, \psi^E_2) = \epsilon \cdot \epsilon' \\
\theta_2(\phi) = \phi \cdot \chi^{-2} + \chi \otimes S_2 & \text{if } \epsilon(\frac{1}{2}, \phi \otimes \chi^{-3}, \psi^E_2) = -\epsilon \cdot \epsilon'.
\end{cases}
\]

where \(S_2 : SL_2(\mathbb{C}) \rightarrow GL_2(\mathbb{C}) \) is the tautological 2-dimensional representation of \(SL_2(\mathbb{C}) \).

Remark 3.5. The property (i) follows from the Proposition 2.5.1 (b) in \([12]\). The Proposition 5.2.2 in \([12]\) asserts that \(\Theta_{\psi,V_3',W_1'}(\pi) \) is supercuspidal if and only if \(\epsilon(\frac{1}{2}, \phi \otimes \chi^{-3}, \psi^E_2) = 0 \). This condition is equivalent to

\[
(\frac{1}{2}, \phi \otimes \chi^{-3}, \psi^E_2) = -\epsilon \cdot \epsilon'
\]

by Theorem 3.2(ii) and it accounts for the second property. The third property follows from the description of \(L \)-parameters of \(\Theta_{\psi,V_3',W_1'}(\pi) \) in \([14] \S 7\). (see page 985)

The following theorem explicates a precise local theta correspondence between \((U(W_1'), U(V_3')) \). The proof of this will be given in Section 5.

Theorem 3.6. Let \(\phi \) be a \(L \)-parameter of \(U(W_1^\pm) \) and for \(\pi \in \Pi'_\phi \), let \(\theta_1(\phi) \), \(\theta_2(\phi) \) be the two possible \(L \)-parameters of \(\Theta_{\psi,V_3',W_1'}(\pi) \) as above. Then we have

(i) For \(\epsilon, \epsilon' \) such that \(\epsilon(\frac{1}{2}, \phi \otimes \chi^{-3}, \psi^E_2) = \epsilon \cdot \epsilon' \), the theta correspondence \(\pi \mapsto \theta_{\psi,V_3',W_1'}(\pi) \) gives a bijection

\[
\Pi_\phi \leftrightarrow \Pi_{\theta_1(\phi)}.
\]

(ii) For \(\epsilon, \epsilon' \) such that \(\epsilon(\frac{1}{2}, \phi \otimes \chi^{-3}, \psi^E_2) = -\epsilon \cdot \epsilon' \), the theta correspondence \(\pi \mapsto \theta_{\psi,V_3',W_1'}(\pi) \) gives an injection

\[
\Pi_\phi \hookrightarrow \Pi_{\theta_2(\phi)}.
\]

Write

\[
\begin{align*}
S_\phi &= (\mathbb{Z}/2\mathbb{Z})a_1 \\
S_{\theta_1(\phi)} &= (\mathbb{Z}/2\mathbb{Z})a_1 \quad \text{if } \epsilon(\frac{1}{2}, \phi \otimes \chi^{-3}, \psi^E_2) = \epsilon \cdot \epsilon' \\
S_{\theta_2(\phi)} &= (\mathbb{Z}/2\mathbb{Z})a_1 \times (\mathbb{Z}/2\mathbb{Z})a_2 \quad \text{if } \epsilon(\frac{1}{2}, \phi \otimes \chi^{-3}, \psi^E_2) = -\epsilon \cdot \epsilon'.
\end{align*}
\]

(Note \(\theta_2(\phi) \) is the square-integrable \(L \)-parameter of \(U(V_3') \) and so \((\mathbb{Z}/2\mathbb{Z})a_2 \) of \(S_{\theta_2(\phi)} \) arises from the summand \(\chi \otimes S_2 \) in \(\theta_2(\phi) \).)

Using three bijections

\[
\begin{align*}
J^\psi(\phi) : & \Pi_\phi \leftrightarrow \text{Irr}(S_\phi) \\
J^\psi(\theta_1(\phi)) : & \Pi_{\theta_1(\phi)} \leftrightarrow \text{Irr}(S_{\theta_1(\phi)}) \\
J^\psi(\theta_2(\phi)) : & \Pi_{\theta_2(\phi)} \leftrightarrow \text{Irr}(S_{\theta_2(\phi)}).
\end{align*}
\]
the following bijection and inclusion induced by the theta correspondence
\[\text{Irr}(S_\phi) \leftrightarrow \text{Irr}(S_{\theta_1(\phi)}) \]
\[\eta \leftrightarrow \theta_1(\eta), \]
\[\text{Irr}(S_\phi) \leftrightarrow \text{Irr}(S_{\theta_2(\phi)}) \]
\[\eta \mapsto \theta_2(\eta), \]
can be explicated as follows:
\[(3.1) \quad \theta_1(\eta)(a_1) = \eta(a_1) \cdot \epsilon(\frac{1}{2}, \phi \otimes \chi^{-3}, \psi_2^E), \]
\[(3.2) \quad \theta_2(\eta)(a_1) = \eta(a_1) \cdot \epsilon(\frac{1}{2}, \phi \otimes \chi^{-3}, \psi_2^E), \quad \theta_2(\eta)(a_2) = -1. \]

4. Main Theorem

In this section, we prove our main theorem. Before to state our main theorem, we first elaborate on the results of Plessis and Gan-Ichino for the Gross–Prasad conjecture for unitary groups, some of which we will use in the proof our main theorem. In [7 §3], Gan and Ichino made a neat exposition on this, we quote their treatment here. Throughout this section, we fix a nontrivial additive character \(\psi : F \to \mathbb{C}^\times \) and make a tacit use \(J^\psi \) for the bijection in the local Langlands correspondence.

4.1. Pairs of spaces. To explain both the (Bessel) and (Fourier-Jacobi) cases of the Gross–Prasad conjecture simultaneously, we consider the pair of spaces:
\[V^+_n \subset V^+_{n+1} \text{ or } W^+_n = W^+_{n+1}. \]
Then their relevant pure inner form (other than itself) are
\[V^-_n \subset V^-_{n+1} \text{ or } W^-_n = W^-_{n+1}. \]
For \(a \in F^\times \), if we set \(L_a \) denotes the a 1-dimensional Hermitian space with form \(a \cdot N_{E/F} \), then
\[V^\epsilon_{n+1}/V^\epsilon_n \simeq L_{(-1)^n}. \]
Write
\[G^\epsilon_n = U(V^\epsilon_n) \times U(V^\epsilon_{n+1}) \text{ or } U(W^\epsilon_n) \times U(W^\epsilon_{n+1}), \]
\[H^\epsilon_n = U(V^\epsilon_n) \text{ or } U(W^\epsilon_n), \]
and we have a diagonal embedding
\[\Delta : H^\epsilon_n \hookrightarrow G^\epsilon_n. \]
For an \(L \)-parameter \(\phi = \phi^\circ \times \phi^\vee \) for \(G_n^\pm \), its associated component group is:
\[S_\phi = S_{\phi^\circ} \times S_{\phi^\vee}. \]
Let \(\eta \) be a component character of \(S_\phi \). Then under the local Langlands correspondence, the representation \(\pi(\eta) \in \Pi_\phi \) is a representation of a relevant pure inner form if and only if
\[\eta(z_{\phi^\circ}, z_{\phi^\vee}) = 1, \]
and \(\pi(\eta) \) is a representation of \(G^\epsilon_n \) if and only if
\[\eta(z_{\phi^\circ}, 1) = \eta(1, z_{\phi^\vee}) = \epsilon. \]
4.2. The recipe. In this subsection, we define the distinguished characters for the recipe of the GP conjecture. For an L-parameter $\phi = \phi^\circ \times \phi^\circ$ of G_n, write

$$S_{\phi^\circ} = \prod_i (\mathbb{Z}/2\mathbb{Z})a_i$$

and

$$S_{\phi^\circ} = \prod_j (\mathbb{Z}/2\mathbb{Z})b_j.$$

Then $\eta \in S_{\phi}$ is completely determined by the signs $\eta(a_i) = \pm 1$ and $\eta(b_j) = \pm 1$.

We define the relevant distinguished characters of S_{ϕ} for the Bessel and Fourier–Jacobi cases as follows:

(i) **Bessel case.** We set $\psi_{E_2}(x) = \psi(- \text{Tr}_{E/F}(\delta x))$ and define $\eta^{\bullet} \in \text{Irr}(S_{\phi})$ as follows:

$$\begin{align*}
\eta^{\bullet}(a_i) &= \epsilon \left(\frac{1}{2}, \phi_i^\circ \otimes \phi^\circ, \psi_{E_2} \right); \\
\eta^{\bullet}(b_j) &= \epsilon \left(\frac{1}{2}, \phi^\circ \otimes \phi_j^\circ, \psi_{-E_2} \right).
\end{align*}$$

(ii) **Fourier–Jacobi case.** We set $\psi_{E_2}(x) = \psi(\text{Tr}_{E/F}(\delta x))$ and $\psi_{E}(x) = \psi(\frac{1}{2} \text{Tr}_{E/F}(\delta x))$. The distinguished character η^{\bullet} of S_{ϕ} depends on the parity of $n = \dim W_n^\varepsilon$ as follows:

- If n is odd, recall that $\det W_n^+ \in \delta \cdot N_{E/F}(E^\times)$ and we set

$$\begin{align*}
\eta^{\bullet}(a_i) &= \epsilon \left(\frac{1}{2}, \phi_i^\circ \otimes \phi^\circ \otimes \chi^{-1}, \psi_{E_2} \right); \\
\eta^{\bullet}(b_j) &= \epsilon \left(\frac{1}{2}, \phi^\circ \otimes \phi_j^\circ \otimes \chi^{-1}, \psi_{E_2} \right).
\end{align*}$$

- If n is even, we set

$$\begin{align*}
\eta^{\bullet}(a_i) &= \epsilon \left(\frac{1}{2}, \phi_i^\circ \otimes \phi^\circ \otimes \chi^{-1}, \psi_{E} \right); \\
\eta^{\bullet}(b_j) &= \epsilon \left(\frac{1}{2}, \phi^\circ \otimes \phi_j^\circ \otimes \chi^{-1}, \psi_{E} \right).
\end{align*}$$

4.3. **Theorem (B) and (FJ) for tempered parameter.** We state the results of Plessis and Gan-Ichino on the GP conjecture.

(B)$_n$ Given a tempered L-parameter ϕ for $G_n^\pm = U(V_n^\pm) \times U(V_{n+1}^\pm)$ and a representation $\pi(\eta) \in \Pi_\phi$ of a relevant pure inner form G_n^ϕ,

$$\text{Hom}_{\Delta H^1}(\pi(\eta), C) \neq 0 \iff \eta = \eta^{\bullet}.$$

(FJ)$_n$ Given a tempered L-parameter ϕ for $G_n^\pm = U(W_n^\pm) \times U(W_{n+1}^\pm)$ and a representation $\pi(\eta) \in \Pi_\phi$ of a relevant pure inner form G_n^ϕ,

$$\text{Hom}_{\Delta H^1}(\pi(\eta), \nu) \neq 0 \iff \eta = \eta^{\bullet}.$$

We denote by (B) the collection of statements (B)$_n$ for all $n \geq 0$, and by (FJ) the collection of statements (FJ)$_n$ for all $n \geq 0$. We remark that (FJ) was proved by Gan and Ichino in [7] and (B) was proved by Beuzart Plessis in [2, 3, 4].

The main theorem of this paper investigates the (Bessel case) of the conjecture for some endoscopic L-parameters for $U(V_3^\pm) \times U(V_2^\pm)$ involving a non-tempered one.

Theorem 4.1. Let ϕ_1, ϕ_2 be a L-parameter of $U(W_1^\pm)$ such that $\phi_2 \neq \chi^2$ and let

$$\theta_1(\phi_1) = \chi \cdot 1_E^\circ \otimes \phi_1 \otimes \chi^{-2} \oplus \chi \cdot 1_{E^\circ}^\circ;$$

$$\theta_2(\phi_1) = \phi_1 \cdot \chi^{-2} \oplus \chi \otimes S_2$$

be the two L-parameters of $U(V_3^\pm)$ appeared in Theorem [3.2] (iii) and let

$$\theta(\phi_2) = \phi_2 \otimes \chi^{-1} \oplus \chi$$
be the L-parameters of $U(V_2^\pm)$ appeared in Theorem 3.3 (ii). Write
\[
\begin{align*}
S_{\theta_1}(\phi_1) &= (\mathbb{Z}/2\mathbb{Z})a_1; \\
S_{\theta_2}(\phi_1) &= (\mathbb{Z}/2\mathbb{Z})a_1 \times (\mathbb{Z}/2\mathbb{Z})a_2; \\
S_{\theta_3}(\phi_2) &= (\mathbb{Z}/2\mathbb{Z})b_1 \times (\mathbb{Z}/2\mathbb{Z})b_2.
\end{align*}
\]
Then for $i = 1, 2$, and for $(\pi_i^1, \pi_i^2) \in \Pi_{\theta_1}(\phi_1) \times \Pi_{\theta_2}(\phi_2)$,
\[
\text{Hom}_{U(V_2^i)}(\pi_i^1, \pi_i^2) \neq 0 \iff (\pi_i^1, \pi_i^2) = (\pi_{\theta_1}(\phi_1)(\eta_i^{\bigtriangledown}), \pi_{\theta_2}(\phi_2)(\eta_i^{\bigtriangledown}))
\]
where the pair of component characters $(\eta_i^{\bigtriangledown}, \eta_i^{\bigtriangledown'}) \in \text{Irr}(S_{\theta_1}(\phi_1)) \times \text{Irr}(S_{\theta_2}(\phi_2))$ is specified as follows;
\[
\begin{align*}
\eta_i^{\bigtriangledown}(a_1) &= \epsilon(\frac{1}{2}, \phi_1^{-1} \otimes \phi_1 \otimes \chi^{-1}, \psi_2^E) \cdot \epsilon(\frac{1}{2}, \phi_1 \otimes \chi^{-3}, \psi_2^E); \\
\eta_i^{\bigtriangledown}(b_1) &= \epsilon(\frac{1}{2}, \phi_2^{-1} \otimes \phi_1 \otimes \chi^{-1}, \psi_2^E); \\
\eta_i^{\bigtriangledown}(b_2) &= \epsilon(\frac{1}{2}, \phi_1 \otimes \chi^{-3}, \psi_2^E),
\end{align*}
\]
and
\[
\begin{align*}
\eta_i^{\bigtriangledown}(a_1) &= \epsilon(\frac{1}{2}, \phi_2^{-1} \otimes \phi_1 \otimes \chi^{-1}, \psi_2^E) \cdot \epsilon(\frac{1}{2}, \phi_1 \otimes \chi^{-3}, \psi_2^E); \\
\eta_i^{\bigtriangledown}(a_2) &= -1; \\
\eta_i^{\bigtriangledown}(b_1) &= \epsilon(\frac{1}{2}, \phi_2^{-1} \otimes \phi_1 \otimes \chi^{-1}, \psi_2^E); \\
\eta_i^{\bigtriangledown}(b_2) &= -\epsilon(\frac{1}{2}, \phi_1 \otimes \chi^{-3}, \psi_2^E).
\end{align*}
\]

Proof. In this proof, we assume Theorem 3.6 whose proof will be given in the next section.

We first prove the existence of some ϵ and $(\pi_i^1, \pi_i^2) \in \Pi_{\theta_1}(\phi_1) \times \Pi_{\theta_2}(\phi_2)$ such that $\text{Hom}_{U(V_2^i)}(\pi_i^1, \pi_i^2) \neq 0$ for each $i = 1, 2$.

One has the see-saw diagram : (ϵ, ϵ' will be determined soon)
\[
\begin{array}{ccc}
U(W_1^\epsilon) \times U(W_1^{\epsilon'}) & \to & U(V_3^\epsilon) \\
\downarrow & & \downarrow \\
U(W_1^{\epsilon'}) & \to & U(V_2^\epsilon) \times U(L_1)
\end{array}
\]
We consider the three theta correspondence in this diagram :

(i) $U(V_3^\epsilon) \times U(W_1^\epsilon)$ relative to the pair of characters (χ^3, χ);
(ii) $U(V_2^\epsilon) \times U(W_1^{\epsilon'})$ relative to the pair of characters (χ^2, χ);
(iii) $U(L_1) \times U(W_1^\epsilon)$ relative to the pair of characters (χ, χ).

Let us take $\epsilon' = \epsilon(\frac{1}{2}, \phi_2^{-1} \otimes \phi_1 \otimes \chi^{-1}, \psi_2^E)$. Then by $(FJ)_1$, we have
\[
\text{Hom}_{U(W_1^{\epsilon'})}(\pi_\phi^{-1} \otimes \pi_1, \omega_\psi, W_1^{\epsilon'}) \neq 0.
\]
(here, $\pi_\phi^{-1}, \pi_1 \in \Pi_{\phi_2^{-1}} \times \Pi_{\phi_1}$ and note that the set $\Pi_{\phi_2^{-1}} \times \Pi_{\phi_1}$ is singleton.)

Since π_ϕ^{-1}, π_1 are both unitary, one has
\[
\text{Hom}_{U(W_1^{\epsilon'})}(\pi_\phi^{-1} \otimes \omega_\psi, W_1^{\epsilon'}, \pi_1) \neq 0.
\]
and the \(L \)-parameter of \((\pi_{\phi_2}^{-1})^\vee\) is \(\phi_2\).

For any \(\epsilon = \pm 1\), Theorem 3.3 (i) asserts that there is \(\tau \in \Pi_{\theta(\phi_2)}^\epsilon\) such that \(\Theta_{\psi, W_1', V_2}(\tau) = (\pi_{\phi_2}^{-1})^\vee\). Then by the see-saw identity, one has

\[
0 \neq \text{Hom}_{U(W_1')}((\pi_{\phi_2}^{-1})^\vee \otimes \omega_{\psi, W_1'}, \pi_{\phi_1}) = \text{Hom}_{U(V_2')}(\Theta_{V_3', W_1'}(\pi_{\phi_1}), \tau).
\]

By Theorem 3.6, the \(L \)-parameter of \(\Theta_{V_3', W_1'}(\pi_{\phi_1})\) depends on \(\epsilon\) as follows:

\[
(4.3) \quad \text{the } L\text{-parameter of }\Theta_{V_3', W_1'}(\pi_{\phi_1}) = \begin{cases}
\theta_1(\phi_1) & \text{if } \epsilon = \epsilon' \cdot \epsilon(\frac{1}{2}, \phi_1 \otimes \chi^{-3}, \psi_{E}^2), \\
\theta_2(\phi_1) & \text{if } \epsilon = -\epsilon' \cdot \epsilon(\frac{1}{2}, \phi_1 \otimes \chi^{-3}, \psi_{E}^2).
\end{cases}
\]

Thus we proved the existence \((\pi_1^i, \pi_2^i) \in \Pi_{\theta_i(\phi_1)}^\epsilon \times \Pi_{\theta_i(\phi_2)}^\epsilon\) such that \(\text{Hom}_{U(V_2')}((\pi_3^i, \pi_2^i) \neq 0)\) for each \(i = 1, 2\).

Next, we shall show that such a pair \((\pi_3^i, \pi_2^i)\) is unique and their component characters are exactly the same one suggested in (4.1), (4.2).

For \(i = 2\), the uniqueness directly follows from (B)_2 because \(\theta^{(2)}(\phi_1)\) is a tempered \(L\)-parameter. (Note that supercuspidal \(L\)-parameter of \(U(V_3')\) is tempered because the center of \(U(V_3')\) is compact.)

Thus we if set

\[
\epsilon' = \epsilon(\frac{1}{2}, \phi_2^{-1} \otimes \phi_1 \otimes \chi^{-1}, \psi_2^E), \\
\epsilon = -\epsilon(\frac{1}{2}, \phi_2^{-1} \otimes \phi_1 \otimes \chi^{-1}, \psi_2^E) \cdot \epsilon(\frac{1}{2}, \phi_1 \otimes \chi^{-3}, \psi_2^E),
\]

the pair \((\Theta_{V_3', W_1'}(\pi_{\phi_1}), \tau)\) in the above argument is the very one which makes \(\text{Hom}_{U(V_2')}((\pi_3^2, \pi_2^2) \neq 0)\).

If we combine this with Theorem 3.3 and Theorem 3.6, we can easily check that their associated component characters are \(\eta_2^\ast, \eta_2^\circ\) in (4.2).

Now, we suppose \(\text{Hom}_{U(V_2')}((\pi_3^1, \pi_2^1) \neq 0)\) for some \((\pi_3^1, \pi_2^1) \in \Pi_{\theta^{(1)}(\phi_1)} \times \Pi_{\theta^{(2)}(\phi_2)}\).

By Theorem 3.6, we can write \(\pi_3^1 = \Theta_{\psi, V_3', W_1'}(\sigma)\) for some \(\sigma \in \Pi_{\phi_1}^{\epsilon_1}\) and using the see-saw identity, one has

\[
\text{Hom}_{U(V_2')}((\pi_3^1, \pi_2^1) = \text{Hom}_{U(W_1')}((\Theta_{\psi, W_1', V_2}(\pi_{\phi_1}^1) \otimes \omega_{\psi, W_1'}, \sigma) \neq 0).
\]

In particular, we see \(\Theta_{\psi, W_1', V_2}(\pi_{\phi_1}^1) \neq 0\).

Since \(\Theta_{\psi, W_1', V_2}(\pi_{\phi_1}^1)\) and \(\sigma\) are both unitary, we have

\[
\text{Hom}_{U(W_1')}((\Theta_{\psi, W_1', V_2}(\pi_{\phi_1}^1) \otimes \sigma, \omega_{\psi, W_1'} \neq 0)
\]

and by Theorem 3.3 (i), the \(L\)-parameter of \(\Theta_{\psi, W_1', V_2}(\pi_{\phi_1}^1)\) is \(\phi_2^{-1}\). Thus by (FJ)_1, we see that

\[
\epsilon' = \epsilon(\frac{1}{2}, \phi_2^{-1} \otimes \phi_1 \otimes \chi^{-1}, \psi_{E}^2).
\]

By Theorem 3.3 and Theorem 3.6, one has

\[
\eta_1^\ast(a_1) = \epsilon = \epsilon(\frac{1}{2}, \phi_2^{-1} \otimes \phi_1 \otimes \chi^{-1}, \psi_{E}^2) \cdot \epsilon(\frac{1}{2}, \phi_1 \otimes \chi^{-3}, \psi_{E}^2), \\
\eta_1^\circ(b_1) = \epsilon(\frac{1}{2}, \phi_2^{-1} \otimes \phi_1 \otimes \chi^{-1}, \psi_{E}^2), \\
\eta_1^\circ(b_2) = \epsilon(\frac{1}{2}, \phi_1 \otimes \chi^{-3}, \psi_{E}^2).
\]
Remark 4.2. If $\pi_3 = \Theta_{\psi,V_3',W_1'}(\phi_1)$, $\pi_2 = \Theta_{\psi,V_2',W_1'}(\phi_2)$ for some L-parameters ϕ_1, ϕ_2 of $U(W_1')$, then the above result is condensed into one sentence as follows:

$$\text{Hom}_{U(V_2')}(\pi_3, \pi_2) \neq 0 \text{ if and only if } \epsilon' = \epsilon(\frac{1}{2}, \phi_2^{-1} \otimes \phi_1 \otimes \chi^{-1}, \psi_2^E).$$

Remark 4.3. In the proof of Theorem 4.1, the unique pair of representations $(\pi_3^2, \pi_2^2) \in \Pi_{\theta(\phi_1)} \times \Pi_{\theta(\phi_2)}$ such that

$$\text{Hom}_{U(V_2')}(\pi_3^2, \pi_2^2) \neq 0$$

are obtained by the theta lifts from $U(W_1')$. However, if $\phi_2 = \chi^2$, the following proposition says that this is not true.

Proposition 4.4. We retain the same notation as in Theorem 4.1 except for $\phi_2 = \chi^2$ so that

$$\theta(\phi_2) = \chi \oplus \chi$$

and

$$S_{\theta(\phi_2)} = (\mathbb{Z}/2\mathbb{Z})b_1.$$

Then,

$$\text{Hom}_{U(V_2')}(\pi_3^1, \pi_2^1) \neq 0 \Leftrightarrow (\pi_3^1, \pi_2^1) = (\pi_{\theta(\phi_1)}(\eta_1^\triangledown), \pi_{\theta(\phi_2)}(\eta_1^\triangledown))$$

where

$$\begin{cases}
\eta_1^\triangledown(a_1) = 1, \\
\eta_1^\triangledown(b_1) = \epsilon(\frac{1}{2}, \phi_1 \otimes \chi^{-3}, \psi_2^E).
\end{cases}$$

Furthermore, $(\pi_3^2(\eta_2^\triangledown), \pi_2^2(\eta_2^\triangledown)) \in \Pi_{\theta(\phi_1)} \times \Pi_{\theta(\phi_2)}$, which suggested in the recipe of (B)$_2$ in this case, does not come from the theta lifts of $U(W_1')$.

Proof. We first note that $z_{\theta(\phi_2)}$, the image of $-1 \in GL_2(\mathbb{C})$ in $S_{\theta(\phi_2)}$, is $2b_1$ and so for every $\eta \in S_{\theta(\phi_2)}$, one has $\eta(z_{\theta(\phi_2)}) = 1$ and $\Pi_{\theta(\phi_2)} = \Pi_{\theta(\phi_2)}$. Thus every nonzero $\pi_2 \in \Pi_{\theta(\phi_2)}$ is indeed in $\Pi_{\theta(\phi_2)}$.

By Theorem 3.6, all element $\pi_3^1 \in \Pi_{\theta(\phi_1)}$ can be written $\pi_3^1 = \Theta_{\psi,V_3',W_1'}(\sigma)$ for some $\epsilon, \epsilon' \in \{\pm 1\}$ such that $\epsilon \cdot \epsilon' = \epsilon(\frac{1}{2}, \phi_1 \otimes \chi^{-3}, \psi_2^E)$ and $\sigma \in \Pi_{\phi_1}$.

Thus in order to have $\text{Hom}_{U(V_2')}(\pi_3^1, \pi_2^1) \neq 0$, there is no choice but to choose $\epsilon = 1$ and so ϵ' should be $\epsilon(\frac{1}{2}, \phi_1 \otimes \chi^{-3}, \psi_2^E)$ when writing π_3^1 as the theta lift from $U(W_1')$.

With these choices of $\epsilon = 1, \epsilon' = \epsilon(\frac{1}{2}, \phi_1 \otimes \chi^{-3}, \psi_2^E)$, the see-saw identity gives

$$\text{Hom}_{U(V_2')}(\pi_3^1, \pi_2^1) \simeq \text{Hom}_{U(W_1')}(\Theta_{\psi,W_1',V_2}(\pi_3^1) \otimes \omega_{\psi,W_1'}).$$

For having $\text{Hom}_{U(V_2')}(\pi_3^1, \pi_2^1) \neq 0$, $\Theta_{\psi,W_1',V_2}(\pi_2^1)$ should be nonzero and in view of Theorem 3.3 (ii), π_2^1 should be $\Theta_{\psi,W_1'}(\tau)$, where τ is the unique nonzero representation π in Π_{ϕ_2} (Note that Π_{ϕ_2} is singleton.) Since $\text{Hom}_{U(W_1')}(\Theta_{\psi,W_1',V_2}(\pi_3^1) \otimes \omega_{\psi,W_1'}, \sigma) \simeq \text{Hom}_{U(W_1')}(\Theta_{\psi',W_1',V_2}(\pi_2^1) \otimes \sigma, \omega_{\psi,W_1'})$ and

$$\Theta_{\psi',W_1',V_2}(\pi_2^1) = \tau'$$

has L-parameter ϕ_2^{-1}, our choice $\epsilon' = \epsilon(\frac{1}{2}, \phi_1 \otimes \chi^{-3}, \psi_2^E)$ and (FJ)$_1$ implies

$$\text{Hom}_{U(W_1')}(\Theta_{\psi',W_1',V_2}(\pi_2^1) \otimes \sigma, \omega_{\psi,W_1'}) \neq 0.$$
Thus we have constructed the unique pair
\[
(\Theta_{\psi, V_1'}, W_1')(\sigma, \Theta_{\psi, V_1'}, W_1')(\tau) \in \Pi_{\phi_1}(\phi_1) \times \Pi_{\phi_2}(\phi_2)
\] where \(\epsilon = 1, \epsilon' = \epsilon(\frac{1}{2}, \phi_1 \otimes \chi^{-3}, \psi_2^E) \)
which makes \(\text{Hom}_{U(V_2')}(\pi_1^1, \pi_1^2) \neq 0 \) and using Theorem 3.3 and Theorem 3.6 one can easily check that their component characters are as in (4.4).

Next, we suppose that there is \((\sigma, \tau) \in \Pi_{\phi_1} \times \Pi_{\phi_2'}\) such that
\[
\text{Hom}_{U(V_2')}((\Theta_{\psi, V_1'}, W_1')(\sigma), (\Theta_{\psi, V_1'}, W_1')(\tau)) \neq 0.
\]
By the see-saw identity, \(\text{Hom}_{U(W_1')}(\Theta_{\psi, V_1'}, W_1')(\Theta_{\psi, V_1'}, W_1')(\tau) \otimes \omega_{\psi, W_1'}, \sigma) \neq 0 \) and so
\[
\Theta_{\psi, W_1'}, V_1'(\Theta_{\psi, V_1'}, W_1')(\tau) \neq 0.
\]
If \(\epsilon' \neq \epsilon'' \), then by Theorem 3.3 (ii), we see that \(\Theta_{V_2', W_1'}(\Theta_{V_2', W_1'}(\tau)) = 0 \) and so \(\epsilon' = \epsilon'' \).
As in the above discussion, we also know that \(\Pi_{\phi_2}(\phi_2) = \Pi_{\phi_2'}(\phi_2) \) and so \(\epsilon \) should be 1.
Since \(\Theta_{V_2', W_1'}(\Theta_{V_2', W_1'}(\tau)) = \tau \in \Pi_{\phi_2} \) and \(\text{Hom}_{U(V_1')}(\tau \otimes \omega_{\psi, W_1'}, \sigma) \simeq \text{Hom}_{U(W_1')}(\tau \otimes \sigma, \omega_{\psi, W_1'}) \), (FJ)1 implies that
\[
\text{Hom}_{U(W_1')}(\tau \otimes \omega_{\psi, W_1'}, \sigma) \neq 0 \iff \epsilon' = \epsilon=(\frac{1}{2}, \phi_1 \otimes \chi^{-3}, \psi_2^E).
\]
However, by Theorem 3.6 \(\epsilon' \cdot \epsilon' = -\epsilon(\frac{1}{2}, \phi_1 \otimes \chi^{-3}, \psi_2^E) \) and so we have a contradiction.
Thus we see that the recipe given in (B) does not obtained by the theta lift from \(U(W_1') \).

\[\square \]

5. Proof of Theorem 3.6

In this section we prove Theorem 3.6 using the (FJ)1 and see-saw identity.

The first two statements on the existence of bijection and injection are quite immediate from Theorem 3.4 (ii). To find the precise maps using the local Langlands correspondence, we consider the see-saw diagram:

\[
\begin{array}{ccc}
U(W_1') \times U(W_1') & U(V_3') & \\
\downarrow & & \downarrow \\
U(W_1') & U(V_2') \times U(L_1)
\end{array}
\]
Recall that we are given an \(L \)-parameter \(\phi \) for \(U(W_1^+) \) and \(\pi = \pi(\phi, \eta) \in \Pi_{\phi} \) where \(\eta(a_1) = \epsilon' \).
Suppose
\[
\epsilon(\frac{1}{2}, \phi \otimes \chi^{-3}, \psi_2^E) = \epsilon' \cdot \epsilon'.
\]
By Theorem 3.3 we know that \(\Theta_{\psi, V_1', W_1'}(\pi(\phi, \eta)) \) is non-tempered and \(\eta(a_1) = \epsilon' \), and \(\theta_1(\eta)(a_1) = \epsilon \) and so the local theta correspondence would follow easily in this case.

On the other hand, we suppose
\[
\epsilon(\frac{1}{2}, \phi \otimes \chi^{-3}, \psi_2^E) = -\epsilon' \cdot \epsilon'.
\]
We choose a L-parameter $\phi_0 \neq \chi^2$ of $U(W_{1''}^\prime)$ such that
\[\epsilon\left(\frac{1}{2}, \phi_0^{-1} \otimes \phi \otimes \chi^{-1}, \psi_2^E\right) = \epsilon'. \]

Since ϕ, ϕ_0 are unitary, for $\pi(\phi_0, \eta_0) \in \Pi_{\phi_0}^{\prime}$, we know that
\[\text{Hom}_{U(W_{1''}^\prime)}(\pi(\phi_0, \eta_0) \otimes \omega_\psi, W_{1''}^\prime, \pi(\phi, \eta)) = \text{Hom}_{U(W_{1''}^\prime)}(\pi^\prime(\phi_0, \eta_0) \otimes \pi(\phi, \eta), \omega_\psi, W_{1''}^\prime) \neq 0 \]
(the second equality follows from the $(FJ)_1$ because the L-parameter of $\pi^\prime(\phi_0, \eta_0)$ is ϕ_0^{-1}.)

Then by the see-saw identity, we have
\[\text{Hom}_{U(V_{2'}^\prime)}(\Theta_{\psi, V_{2}', W_{1}'}(\pi(\phi, \eta)), \Phi_{\psi, V_{2}', W_{1}'}(\pi(\phi_0, \eta_0))) \neq 0. \]

In particular,
\[\Theta_{\psi, V_{2}', W_{1}'}(\pi(\phi_0, \eta_0)) \neq 0 \]
and by Theorem 3.3 (i), it has L-parameter
\[\phi_0 \cdot \chi^{-1} \oplus \chi \]
and denote its component group by
\[(\mathbb{Z}/2\mathbb{Z})b_1 \times (\mathbb{Z}/2\mathbb{Z})b_2. \]

Note that the theta lift $\Theta_{\psi, V_{2}', W_{1}'}(\pi(\phi, \eta))$ is supercuspidal and since $U(W_{1''}^\prime)$ is compact, it is tempered representation. Furthermore since $\Theta_{\psi, V_{2}', W_{1}'}(\pi(\phi_0, \eta_0))$ is tempered, $(B)_2$ implies
\[\theta_2(\eta)(a_1) = \epsilon\left(\frac{1}{2}, \phi_0^{-1} \otimes \phi \otimes \chi^{-1}, \psi_2^E\right) \cdot \epsilon\left(\frac{1}{2}, \phi \otimes \chi^{-3}, \psi_2^E\right), \]
\[\theta_2(\eta)(a_2) = \epsilon\left(\frac{1}{2}, \phi_0^{-1} \otimes \chi^2 \boxtimes S_2, \psi_2^E\right) \cdot \epsilon\left(\frac{1}{2}, S_2, \psi_2^E\right), \]
\[\theta^\prime_{\psi, V_{2}', W_{1}'}(\eta_0)(b_1) = \epsilon\left(\frac{1}{2}, \phi_0^{-1} \otimes \phi \otimes \chi^{-1}, \psi_2^E\right) \cdot \epsilon\left(\frac{1}{2}, \phi_0^{-1} \otimes \chi^2 \boxtimes S_2, \psi_2^E\right), \]
\[\theta^\prime_{\psi, V_{2}', W_{1}'}(\eta_0)(b_2) = \epsilon\left(\frac{1}{2}, \phi \otimes \chi^{-3}, \psi_2^E\right) \cdot \epsilon\left(\frac{1}{2}, S_2, \psi_2^E\right), \]
where $\psi_2^E(x) = \psi^E(-2x)$.

Recall that for an L-parameter φ of $U(V_n)$ or $U(W_n)$,
\[\epsilon\left(\frac{1}{2}, \varphi, \psi_2^E\right) = (\omega_{E/F}(-1))^{\eta} \cdot \epsilon\left(\frac{1}{2}, \varphi, \psi_2^E\right). \]

Thus we have
\[\epsilon\left(\frac{1}{2}, \phi_0^{-1} \otimes \phi \otimes \chi^{-1}, \psi_2^E\right) = \omega_{E/F}(-1) \cdot \epsilon\left(\frac{1}{2}, \phi_0^{-1} \otimes \phi \otimes \chi^{-1}, \psi_2^E\right), \]
\[\epsilon\left(\frac{1}{2}, \phi \otimes \chi^{-3}, \psi_2^E\right) = \omega_{E/F}(-1) \cdot \epsilon\left(\frac{1}{2}, \phi \otimes \chi^{-3}, \psi_2^E\right), \]
and so we see
\[\theta_2(\eta)(a_1) = \epsilon' \cdot \epsilon\left(\frac{1}{2}, \phi \otimes \chi^{-3}, \psi_2^E\right) = \eta(a_1) \cdot \epsilon\left(\frac{1}{2}, \phi \otimes \chi^{-3}, \psi_2^E\right). \]

On the other hand, from Theorem 3.3,
\[\theta^\prime_{V_{2}', W_{1}'}(\eta_0)(b_1) = \omega_{E/F}(-1) \cdot \theta^\prime_{V_{2}', W_{1}'}(\eta_0)(b_1) = \omega_{E/F}(-1) \cdot \epsilon\left(\frac{1}{2}, \phi_0^{-1} \otimes \phi \otimes \chi^{-1}, \psi_2^E\right) = \epsilon\left(\frac{1}{2}, \phi_0^{-1} \otimes \phi \otimes \chi^{-1}, \psi_2^E\right) \]
and so we have
\[\epsilon_1^2, \phi_0^{-1} \otimes S_2, \psi^{-E} = 1. \]
Since
\[\theta_{\psi, V_1^2, W_1^r}(h_0)(b_1) \cdot \theta_{\psi, V_2^1, W_2^r}(h_0)(b_2) = \epsilon' \]
we see that
\[\theta_{\psi, V_1^2, W_1^r}(h_0)(b_2) = \omega_{E/F}(-1) \cdot \theta_{\psi, V_2^1, W_1^r}(h_0)(b_2) = \omega_{E/F}(-1) \cdot \epsilon' = -\omega_{E/F}(-1) \cdot \epsilon_1^2, \phi \otimes \chi^{-3}, \psi^E \]
and it forces
\[\epsilon_1^2, S_2, \psi^{-E} = -1. \]
From these things, one can deduce
\[\theta_2(h)(a_2) = -1 \]
as we claimed.

6. Ichino-Ikeda Conjecture for the Non-Tempered Case

In this section, we give an analog of the Ichino-Ikeda conjecture for some non-tempered case using Theorem 4.1. To state our result, we review the notion of regularised local period introduced in [13].

Let \(E/F \) be a quadratic extension of number fields with \(A_E, A_F \) their adele rings. For a place \(v \) of \(F \), let \(F_v \) be the completion of \(F \) at \(v \) and \(E_v = E \otimes_F F_v \). For a (skew) hermitian space \(V \) over \(E \) and a place \(v \in F \), consider \(V_v := V \otimes_F F_v \) as a (skew) hermitian space over \(E_v \). Then we have a decomposition
\[V := V \otimes_F A_E \simeq \bigotimes_v V_v^{e_v} \]
where \(v \) runs over all place of \(F \) and \(e_v := \begin{cases} \epsilon(V_v) & \text{for } v \text{ which remains prime in } E, \\ 1 & \text{for } v \text{ which splits in } E \end{cases} \)
With this decomposition, we have
\[U(V)(A_E) \simeq \Pi_v U(V_v^{e_v})(F_v) \]
and if \(\pi \) is an automorphic representation of \(U(V)(A_E) \), we also have its decomposition \(\pi \simeq \bigotimes_v \pi_v \) where \(\pi_v \) is an irreducible admissible representation of \(U(V_v^{e_v})(F_v) \).
Let \(V_2 \) be a 2-dimension hermitian space over \(E \), \(W_1 \) be a 1-dimension skew-hermitian space over \(E \) and \(L \) be a hermitian line over \(E \) with a form \(N_{E/F} \). Define \(V_3 := V_2 \oplus L \). Note that \(\epsilon(V_3, v) = \epsilon(V_2, v) \) for all \(v \), because \(\epsilon(L_v) = 1 \) for all \(v \).

Let us see the following see-saw diagram
\[\begin{array}{ccc} U(W_1) \times U(W_1) & U(V_3) & U(V_2) \\ U(W_1) & U(V_2) \times U(L_1) \end{array} \]
In this diagram, we consider the three local and global theta correspondence:

(i) \(U(V_3) \times U(W_1) \) relative to the pair of characters \((\psi, \chi^2, \chi) \);
(ii) \(U(V_2) \times U(W_1) \) relative to the pair of characters \((\psi, \chi^2, \chi) \);
(iii) \(U(L_1) \times U(W_1) \) relative to the pair of characters \((\psi, \chi, \chi) \).
where ψ, χ are those we defined in Section 1.1. For what follows, we suppress these choices from the notation.

Let $\sigma = \otimes_v \sigma_v$ be an automorphic character of $U(W_1)(\mathbb{A}_F)$ and $\mathbb{I} = \otimes_v \mathbb{I}_v$ be the trivial character of $U(W_1)(\mathbb{A}_F)$.

Let $\pi_3 := \Theta_{V_3,W_1}(\sigma)$ and $\pi_2 := \Theta_{V_2,W_1}(\mathbb{I})$ be the non-trivial global theta lifts of σ, \mathbb{I} to $U(V_3)(\mathbb{A}_F)$ and $U(V_2)(\mathbb{A}_F)$ respectively. For all place v of F, if we set
\begin{equation}
(6.1) \quad \pi_{3,v} := \theta_{V_{3,v},W_{1,v}}(\sigma_v), \quad \pi_{2,v} := \theta_{V_{2,v},W_{1,v}}(\mathbb{I}_v)
\end{equation}
then by Howe duality, one has $\pi_i \simeq \otimes_v \pi_{i,v}$ for $i = 2, 3$.

Note that the two maps
$$
\theta_{V_{3,v},W_{1,v}} : \omega_{V_{3,v},W_{1,v}} \otimes \sigma_v \to \Theta_{V_{3,v},W_{1,v}}(\sigma_v), \quad \theta_{V_{2,v},W_{1,v}} : \omega_{V_{2,v},W_{1,v}} \otimes \mathbb{I}_v \to \Theta_{V_{2,v},W_{1,v}}(\mathbb{I}_v)
$$
are $U(V_3)(F_v) \times U(W_1)(F_v)$ and $U(V_2)(F_v) \times U(W_1)(F_v)$ equivariant surjective maps and by Theorem 3.3 and 3.4 the big theta lifts $\Theta_{V_{3,v},W_{1,v}}(\sigma_v), \Theta_{V_{2,v},W_{1,v}}(\mathbb{I}_v)$ are both irreducible. Thus we can define the local inner products $\mathcal{B}_{\pi_{i,v}}$ on $\pi_{i,v}$ for $i = 2, 3$ as follows:

For $\varphi^3_{1,v}, \varphi^3_{2,v} \in S(X_{V_3,W_1}(F_v)), f^3_{1,v}, f^3_{2,v} \in \sigma_v$ and $f^3_{1,v}, f^3_{2,v} \in \mathbb{I}_v$, let
$$
\mathcal{B}_{\pi_3,v}(\theta_{v,V_3,W_1}(\varphi^3_{1,v}, f^3_{1,v}), \theta_{v,V_3,W_1}(\varphi^3_{2,v}, f^3_{2,v})) := \int_{U(W_1)(F_v)} \mathcal{B}_{\omega_{V_3,W_1}}(\omega_v(h_v) \cdot \varphi^3_{1,v}, \varphi^3_{2,v}) \cdot \mathcal{B}_{\sigma_v}(\sigma_v(h_v) \cdot f^3_{1,v}, f^3_{2,v}) dh_v
$$
and
$$
\mathcal{B}_{\pi_2,v}(\theta_{v,V_2,W_1}(\varphi^3_{1,v}, f^3_{1,v}), \theta_{v,V_2,W_1}(\varphi^3_{2,v}, f^3_{2,v})) := \int_{U(W_1)(F_v)} \mathcal{B}_{\omega_{V_2,W_1}}(\omega_v(h_v) \cdot \varphi^3_{1,v}, \varphi^3_{2,v}) \cdot \mathcal{B}_{\mathbb{I}_v}(\mathbb{I}_v(h_v) \cdot f^3_{1,v}, f^3_{2,v}) dh_v
$$
where $\mathcal{B}_{\omega_{V_i,W_1}}$ for $i = 2, 3$ are the local inner products of the Weil representations and $\mathcal{B}_{\sigma_v}, \mathcal{B}_{\mathbb{I}_v}$ are the local inner products of σ_v, \mathbb{I}_v respectively.

With these choices of local inner products, Haan [13] defined the regularised local period \mathcal{P}^reg_v as follows:

For $f^3_{3,v} \in \pi_{3,v}$ and $f^3_{2,v} \in \pi_{2,v}$, let
$$
\mathcal{P}^\text{reg}_v(f^3_{3,v}, f^3_{2,v}) := c_v \cdot \lim_{s \to 0} \frac{\zeta_v(2s)}{L_v(s, BC(\pi_{3,v}) \otimes \chi_v)} \int_{U(\mathbb{I}_v)} \mathcal{B}_{\pi_{3,v}}(g_v \cdot f^3_{3,v}, f^3_{3,v}) \cdot \mathcal{B}_{\pi_{2,v}}(g_v \cdot f^3_{2,v}, f^3_{2,v}) \cdot \Delta(g_v)^s dg_v
$$
(here, c_v is a non-zero constant for each v and $\Delta(g_v)$ is some determinant map appearing in the doubling method. For the precise definition of c_v and $\Delta(g_v)$, we refer the reader to section 3.2 in [13].)

From (Step 2) in the proof of the Theorem 1.2 in [13], we easily see that the regularised local period \mathcal{P}^reg_v is just the unfolding expression of the multiplication of two local zeta integrals, that is,
$$
\mathcal{P}^\text{reg}_v(\Theta_{V_{3,v},W_{1,v}}(f_{\sigma_v}, \varphi_{3,v}), f_{\pi_2,v}) = Z^2_{v,s=-1/2}(s, f_{\pi_2,v}, f_{\pi_2,v}, \varphi_{2,v}, \varphi_{2,v}) \cdot Z^2_{v}(0, f_{\sigma_v}, f_{\sigma_v}, \varphi_{1,v}, \varphi_{1,v})
$$
where $f_{\pi_2,v} \in \pi_{3,v}, f_{\sigma_v} \in \sigma_v, \varphi_{3,v} \simeq \varphi_{2,v} \otimes \varphi_{1,v} \in S(X_{V_3,W_1,v}) \simeq S(X_{V_2,W_1,v}) \otimes S(X_{L_1,W_1,v})$ and
$$
Z^2_{v,s=-1/2}(s, f_{\pi_2,v}, f_{\pi_2,v}, \varphi_{2,v}, \varphi_{2,v}) = \lim_{s \to 0} \frac{L_{F_v}(2s + 1, \omega_{E_v/F_v}) \cdot \zeta_v(2s)}{L_{E_v}(s, BC(\pi_{2,v}) \otimes \chi_v)} \cdot \int_{U(V_2)(F_v)} \mathcal{B}_{\omega_{V_2,W_2}}(\omega_v(h_v) \cdot \varphi_{2,v}, \varphi_{2,v}) \cdot \mathcal{B}_{\pi_{2,v}}(\pi_{2,v} \cdot f_{\pi_2,v}, f_{\pi_2,v}) \cdot \Delta(g_v)^s dg_v\,
$$
$$
Z^2_{v}(0, f_{\sigma_v}, f_{\sigma_v}, \varphi_{1,v}, \varphi_{1,v}) = \int_{U(\mathbb{I}_1)(F_v)} \mathcal{B}_{\omega_{V_1,W_1}}(\omega_v(h_v) \cdot \varphi_{1,v}, \varphi_{1,v}) \cdot \mathcal{B}_{\sigma_v}(\sigma_v(h_v) \cdot f_{\sigma_v}, f_{\sigma_v}) dh_v.\,
$$
By Proposition 11.6 in [10], we see that the non-vanishing of these two local zeta integrals \(Z_{v,s}^\varnothing = 1 \), \(Z_{v,s}^\varnothing = 1 \) is equivalent to the non-vanishing of the local theta lifts \(\Theta_{\Pi_{1,v},\Pi_{2,v}}(\Pi_{2,v}) \), \(\Theta_{\Pi_{1,v},\Pi_{3,v}}(\Pi_{3,v}) \) respectively. Thus one has

\[
P_v^{reg} \neq 0 \iff \Theta_{\Pi_{1,v},\Pi_{2,v}}(\Pi_{2,v}) \neq 0 \text{ and } \Theta_{\Pi_{1,v},\Pi_{3,v}}(\Pi_{3,v}) \neq 0.
\]

However, since \(\Pi_{2,v} \) is the non-trivial theta lift from the trivial character \(\mathbb{I}_v \) of \(U(W_1)(F_v) \),

\[
\Theta_{\Pi_{1,v},\Pi_{2,v}}(\Pi_{2,v}) = \mathbb{I}_v \neq 0
\]

and so the non-vanishing of \(P_v^{reg} \) solely depends on the non-vanishing of \(\Theta_{\Pi_{1,v},\Pi_{3,v}}(\Pi_{3,v}) \). From this observation, we have the following theorem.

Theorem 6.1. Using the notation as in the [10], for non-archimedean place \(v \), we have

\[
\text{Hom}_{U(V_2)(F_v)}(\Pi_{3,v}, \Pi_{2,v}) \neq 0 \iff P_v^{reg} \neq 0
\]

Proof. If \(v \) is split, all relevant groups are general linear groups and so we consider the following see-saw diagram:

\[
\begin{CD}
\text{GL}(W_1) \times \text{GL}(W_1) @>>> \text{GL}(W_3)
\end{CD}
\]

\[
\begin{CD}
\text{GL}(W_1) \downarrow @>>> \text{GL}(W_2) \times \text{GL}(L_1)
\end{CD}
\]

Thus by the see-saw identity,

\[
\text{Hom}_{\text{GL}(V_2)(F_v)}(\Pi_{3,v}, \Pi_{2,v}) \simeq \text{Hom}_{\text{GL}(W_1)}(\mathbb{I}_v \otimes \omega_{v,W_1,L_1}, \sigma_v).
\]

From the Theorem 17.2 in [3],

\[
\text{Hom}_{\text{GL}(W_1)}(\mathbb{I}_v \otimes \omega_{v,W_1,L_1}, \sigma_v) \neq 0
\]

and so one has

\[
\text{Hom}_{\text{GL}(V_2)(F_v)}(\Pi_{3,v}, \Pi_{2,v}) \neq 0.
\]

On the other hand, if one follows the similar argument as in the Proposition 2.6.1 in [12], one can have \(\Theta_{\Pi_{1,v},\Pi_{3,v}}(\Pi_{3,v}) \neq 0 \). (Indeed, it is known that the theta lift from \(GL_n(F_v) \) to \(GL_n(F_v) \) just taking its contragradient representation.) Thus we see that the theorem holds for splitting places \(v \).

Next, suppose that \(v \) remains prime in \(E \). Then by Remark [12] we have

\[
\text{Hom}_{U(V_2)(F_v)}(\Pi_{3,v}, \Pi_{2,v}) \neq 0 \iff \epsilon(W_1,v) = \epsilon\left(\frac{1}{2}, \sigma \otimes \chi^{-1}, \psi_E^\varnothing\right).
\]

On the other hand, from Theorem [3,2] one has

\[
\Theta_{\Pi_{1,v},\Pi_{3,v}}(\Pi_{3,v}) \neq 0 \iff \epsilon(W_1,v) = \epsilon\left(\frac{1}{2}, \sigma \otimes \chi^{-1}, \psi_E^\varnothing\right).
\]

Thus we verified our claim for primes \(v \) which inerts in \(E \).

\[\square\]

References

[1] A. Aizenbud, D. Gourevitch, S. Rallis, and G. Schiffmann, *Multiplicity one theorems*, Ann. of Math. **172** (2010), 1407–1434

[2] R. Beuzart-Plessis, *Expression d’un facteur epsilon de paire par une formule integrale*, Canad. J. Math. **66** (2014), 993–1049.

[3] , *La conjecture locale de Gross–Prasad pour les representations temperees des groupes unitaires*, arXiv:1205.2987.

[4] , *Endoscopie et conjecture raffine de Gan–Gross–Prasad pour les groupes unitaires*, arXiv:1212.0951.
[5] Wee Teck Gan, Benedict Gross and Dipendra Prasad. **Symplectic local root numbers, central critical L-values, and restriction problems in the representation theory of classical groups**, Asterisque **346** (2012), 1-110

[6] __________. **Formal degrees and local theta correspondence**, Invent. Math. **195** (2014), 509–672.

[7] A. Ichino, W. T. Gan. **The Gross-Prasad conjecture and local theta correspondence**, arXiv:1409.6824

[8] W. T. Gan and S. Takeda, **On the Howe duality conjecture in classical theta correspondence**, arXiv:1405.2826

[9] __________. **A proof of the Howe duality conjecture**, arXiv:1407.1995

[10] Wee Teck Gan, Yaman Qiu and Shuichiro Takeda. **The regularized Siegel-Weil formula and the Rallis inner product formula**, to appear in Inventiones

[11] Gelbart, S., Rogawski, J. **L-functions and Fourier-Jacobi coefficients for the unitary group U(3)**, Inventiones. **105** (1991), 445–472.

[12] __________. **Exceptional representations and Shimura’s integral for the local unitary group U(3)**, In Festschrift in honor of Piatetski-Shapiro, volume **2** (1990), pages 19-75, Israel Math. Conf. Proc.

[13] J. Haan, **The Bessel Period of U(3) and U(2) involving a non-tempered representation**, arXiv:1403.5061

[14] M. Harris, S.S. Kudla, J. Sweet , **Theta dichotomy for unitary groups**, Journal of the A.M.S vol.9 (1996), 941-1004

[15] M. Harris and R. Taylor, **The geometry and cohomology of some simple Shimura varieties**, Annals of Mathematics Studies **151** (2001), Princeton University Press.

[16] G. Henniart, **Une preuve simple des conjectures de Langlands pour GL(n) sur un corps p-adique**, Invent. Math. **139** (2000), 439–455.

[17] A. Ichino and T. Ikeda. **On the periods of automorphic forms on special orthogonal groups and the Gross-Prasad conjecture**, Geometric Functional Analysis **19**, no. 5 (2010), 1378–1425

[18] T. Kaletha, A. Mı́nuez, S. W. Shin, and P.-J. White. **Endoscopic classification of representations: inner forms of unitary groups**, arXiv:1409.3731.

[19] C. Moeglin and J. L. Waldspurger, **La conjecture locale de Gross-Prasad pour les groupes spéciaux orthogonaux: le cas général**, Asterisque **347** (2012)

[20] C. Mok, **Endoscopic classification of representations of quasi-split unitary groups**, to appear in the Memoirs of the American Mathematical Society.

[21] Rogawski, J., **Automorphic representations of unitary group in three variables**, Annals of Math. Studies vol.123 (1990). Princeton University Press

[22] Y. Sakellaridis, A. Venkatesh, **Periods and harmonic analysis on spherical varieties**, arXiv:1203.0039

[23] P. Scholze, **The local Langlands correspondence for GLn over p-adic fields**, Invent. Math. **192** (2013), 663–715.

[24] D. A. Vogan, Jr., **The local Langlands conjecture**, Representation theory of groups and algebras, Contemp. Math. **145** (1993), 305–379, Amer. Math. Soc.

[25] J.-L. Waldspurger, **Démonstration d’une conjecture de dualité de Howe dans le cas p-adique, p ≠ 2**, Festschrift in honor of I. I. Piatetski-Shapiro on the occasion of his sixtieth birthday, Part I, Israel Math. Conf. Proc. **2** (1990), pp. 267–324, Weizmann.

E-mail address: jaeho_haan@gmail.com