Supporting information

Causes of variation among rice models in yield response to CO2 examined with Free-Air CO2 Enrichment and growth chamber experiments

Toshihiro Hasegawa1, Tao Li2, Xinyou Yin3, Yan Zhu4, Kenneth Boote5, Jeffrey Baker7, Simone Bregaglio8, Samuel Buis9, Roberto Confalonieri10, Job Fugice11, Tamon Fumoto12, Donald Gaydon13, Soora Naresh Kumar14, Tanguy Lafarge6, Manuel Marcaida III15, Yuji Masutomi15, Hiroshi Nakagawa12, Philippe Oriol6, Françoise Ruget9, Upendra Singh11, Liang Tang4, Fulu Tao16,17, Hitomi Wakatsuki12, Daniel Wallach18, Yulong Wang19, Lloyd Ted Wilson20, Lianxin Yang19, Yubin Yang20, Hiroe Yoshida12, Zhao Zhang21, Jianguo Zhu22

1 Tohoku Agricultural Research Center, National Agriculture and Food Research Organization, Morioka, Iwate, 020-0198, Japan.
2 International Rice Research Institute, DAPO Box 7777, Metro Manila, Philippines.
3 Centre for Crop Systems Analysis, Wageningen University & Research, Wageningen, PO Box 430, The Netherlands.
4 National Engineering and Technology Center for Information Agriculture, Jiangsu, Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, P.R.China.
5 University of Florida, Gainsville, Florida, 32611-0500, USA.
6 Cirad, UMR AGAP, F-34398 Montpellier, France.
7 United States Department of Agriculture, Agricultural Research Service, Big Spring, Texas, 79720, USA.
8 CREA, Research Center for Agriculture and Environment, Italy.
9 INRA, UMR1114 EMMAH, F-84914 Avignon, France
10 University of Milan, Cassandra lab, Milan, Italy.
11 International Fertilizer Development Center, Muscle Shoals, Alabama, 35662, USA.
12 Institute for Agro-Environmental Sciences, National Agriculture and Food Research Organization, Tsukuba, Ibaraki, 305-8604, Japan
13 CSIRO Agriculture and Food, St Lucia, QLD, 4067, Australia.
14 Indian Agricultural Research Institute, New Delhi, 110012, India
15 Ibaraki University, College of Agriculture, Inashiki, Ibaraki, 300-0393, Japan.
16 Chinese Academy of Sciences, Institute of Geographical Sciences and Natural Resources Research, Beijing, 100101, P.R. China.
17 Natural Resources Institute Finland (Luke), FI-00790 Helsinki, Finland
18 INRA, UMR AGIR, Castanet Tolosan, France
19 Yangzhou University, Hanjiang, Yangzhou, Jiangsu, 225009, China
20 Texas A&M AgriLife Research Center, Beaumont, Texas, 77701, USA.
21 State Key Laboratory of Earth Surface Processes and Resource Ecology, Beijing Normal University, Beijing, 100875 P.R. China.
22 State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Sciences, Chinese Academy of Sciences, Nanjing 210008, China
Corresponding authors:
Toshihiro Hasegawa.
Agro-environmental Research Division
Tohoku Agricultural Research Center, NARO
4 Akahira, Shimokuriyagawa, Morioka, Japan 020-0198
Tel: +81-19-643-3462
Fax: +81-19-641-7794
E-mail: thase@affrc.go.jp

Tao Li
International Rice Research Institute
DAPO Box 7777, Metro Manila, Philippines
Tel: +63(2)-580-5600
Fax: +63(2)-580-5699
Email: t.li@irri.org

Keywords: AgMIP, Free-Air CO\textsubscript{2} enrichment, \textit{Oryza sativa}, Photosynthesis, Radiation use efficiency, SPAR chamber, Uncertainties, Rice simulation model
Table S1. Summary of the experimental conditions for the Japanese and Chinese FACE experiments

Site description	Japan (1998-2000)	China (2001-2003)
Latitude/Longitude	39°38’N/ 140°57’E	31°37’N/120°28’E
Soil type and properties	Andosol	Stagnic anthrosol
Soil type	Sand 43.1%; Silt 31.4%; Clay 25.5%	Sand 9.2%; Silt 65.7%; Clay 25.1%
Bulk density cm$^{-3}$	0.73	1.2
Plow layer cm	12.3	13.0
Total C g kg$^{-1}$	82.5	15.0
Total N g kg$^{-1}$	18	1.59

Cultivar characteristics and growing conditions

Cultivar	Akitakomachi	Wuxiangjing 14
Mean growth duration	146 d	158 d
Spikelets per panicle	81	155

Daylight hour CO$_2$ concentrations (µmol mol$^{-1}$) at the center of the plot

Year	1998	1999	2000	Mean	2001	2002	2003	Mean
FACE plots	599	568	559	575	578	562	574	571
Ambient plots	368	369	365	367	354	364	375	364

N application rates (g N m$^{-2}$)

Year	1998	1999	2000	2001	2002	2003	Mean
Low	4	4	4	15	15	15	
Standard	8	9	9	25	25	25	
High	12	15	15	-	35	35	

Cultural practices

Sowing dates	1 May	23 April	23 April	18 May
Transplanting dates	21 May	20 May	22 May	13 June
Planting density	19 hills m$^{-2}$	24 hills m$^{-2}$		

Mean daily temperatures (°C)

Year	1998	1999	2000	Mean	2001	2002	2003	Mean
Transplanting to tillering	15.4	17.2	17.7	16.8	26.7	24.9	25.8	25.8
Tillering to panicle initiation	19.9	20.6	21.3	20.6	29.1	28.6	29.4	29.0
Panicle initiation to heading	21.4	25.9	24.7	24.0	26.6	26.6	28.5	27.2
Heading to mid-ripening	21.3	22.5	23.6	22.5	24.1	25.7	26.0	25.3
Mid-ripening to maturity	20.3	19.8	20.9	20.3	20.9	20.3	18.8	20.0
Season mean	19.7	21.0	21.4	20.7	25.2	24.7	25.4	25.1
Stage	Mean daily solar radiation (MJ m\(^{-2}\) d\(^{-1}\))							
--	--							
Transplanting to tillering	14.8, 20.3, 20.3, 17.5, 16.7, 14.9, 12.4, 14.7							
Tillering to panicle initiation	13.9, 15.1, 16.8, 14.4, 22.1, 19.4, 17.1, 19.5							
Panicle initiation to heading	14.7, 19.4, 17.3, 16.5, 17.1, 14.1, 15.0, 15.4							
Heading to mid-ripening	12.3, 10.5, 18.2, 13.2, 17.2, 14.7, 12.5, 14.8							
Mid-ripening to maturity	9.7, 11.4, 9.4, 9.1, 15.7, 13.0, 10.9, 13.2							
Season mean	13.2, 16.2, 16.8, 14.6, 17.6, 14.9, 13.3, 15.2							
Methods for uncertainty quantification

Simulations of growth and yield include two sources of uncertainty. One is the uncertainty caused by the difference between measured and simulated yield (Ubias) and the other is due to the variation among crop models (Umodel). In this study, we quantified both uncertainties by the following two methods:

1. To determine overall Ubias, a pairwise comparison between observed and simulated was made for datasets excluding those used for the model calibration. This was followed by further analysis on the deviations between simulations and observations to quantify the source of Ubias.

2. To determine sources of Umodel, the sum of squares (SS) from different sources was calculated for all simulation results.

FACE study

Simulations vs. observations

In step 1, we compared the measured and simulated yield and biomass under ambient [CO₂]. The bias for grain yield in Shizukuishi was significantly different from 0 (P<0.05), but only about 3.6 % of the measured yield. In Wuxi, simulated and measured yield did not differ significantly, but biomass was underestimated by 1.2 t/ha in Wuxi (P < 0.001), but about 6.7 % of the measured mean of 17.3 t/ha. The bias was consistent over the N treatments (Table S3, Figure S2). The mean bias in biomass of 0.4 t/ha in Shizukuishi was not significant.

The mean enhancement of grain yield in response to elevated [CO₂] was slightly but significantly overestimated in Shizukuishi, by 3 percentage point (P<0.05, Table S3, Figure S3). The bias was greater under low or high N conditions. In Wuxi, there was virtually no bias observed when averaged, but was slightly overestimated in medium N but underestimated in high N (Table S3, Figure S3). Overall, however, the mean biases were mostly not greater than the range of experimental errors (Table S3), suggesting that the mean of models was close to the measurements. We further analysed the sources of variation in the biases by means of analysis of variance, using differences between measured and simulated as a dependent variable and N and models as independent variables (Table S4). In general, more than half of the variation was due to models. These results suggest that Ubias is not large for the model ensemble means, but that for individual models is not negligible.

Variation among models (Umodel)

The simulated yield and biomass were further analysed for their sources of variation in a similar manner to the previous variance components (Table S5). Here we used all datasets including those used for calibration because the analyses targeted variation only among the simulated data. Variation in the experimental data is also shown in the table for reference, however.

For simulated yield and biomass, models are a large source of variation, but variation due to year and nitrogen levels were also large sources. The modelled variation follows that in observed yields and biomass. Model by N interactions were relatively small, suggesting that the models tend to behave similarly to different levels of N. The results were similar in both sites.

For yield and biomass enhancements to elevated [CO₂], 60% or more of the variation was due to the models. The main effect of year or N did not account for the variation (7 % or less).
A pairwise comparison between the simulated and observed was first made on the yield and biomass under ambient (330 µmol mol\(^{-1}\)) conditions, using Experiment 1, 2 and 3 under sufficient N conditions (Table S6). For the SPAR study, models were not calibrated except for phenology so all the data were used for this comparison. On average, grain yield was slightly but consistently overestimated by the models but no significant difference was observed for biomass. Models account for 65 % and 55 % of the total variation in the model bias for grain yield and biomass respectively.

Grain yield enhancement was significantly underestimated by the models (P < 0.05) by 4.5 percentage points and biomass was overestimated by 3.8%, but these differences were less than the standard error for the experiments (Table S6). The major source of the variation in the model simulations was models, accounting for more than 60 % of the total variations (Table S7). The model by CO\(_2\) interaction was relatively small ranging from 4 to 6 %, suggesting that relative model performance was similar under two [CO\(_2\)] conditions. These analyses highlight the importance of reducing uncertainties among the models.
Table S2 A paired T-test comparing measurements with simulated yield and aboveground biomass under ambient [CO₂] and enhancement by elevated [CO₂] in the FACE experiments with three N fertilizer levels. The datasets used for model calibration are not included.

Site	Mean difference (measured-simulated)	df	t	P value	SE for the measurements\(^1\)	Difference (measured-simulated) in each N treatment		
						low N	medium N	high N
Shizukuishi	Grain yield (t/ha) (ambient)	0.3	82	-2.39	0.019	0.4	0.0	0.4
	Biomass (ambient) (t/ha)	0.4	71	-1.43	0.156	1.0 a	0.5 ab	0.2 bc
	Grain yield enhancement (%)	-3.0	82	2.50	0.015	-5.3 a	1.0 b	-4.5 a
	Biomass enhancement (%)	-4.1	71	3.04	0.003	-3.5	-5.9	-4.2
Wuxi	Grain yield (ambient) (t/ha)	0.2	57	-1.11	0.271	0.8 a	0.4 ab	-0.9 bc
	Biomass (ambient) (t/ha)	1.2	57	-4.30	0.000	1.1	1.5	0.5
	Grain yield enhancement (%)	-0.9	57	0.83	0.408	-0.7 ab	-3.4 a	2.6 c
	Biomass enhancement (%)	3.7	57	-2.97	0.004	8.8	9.2 a	-6.0 b

1) Standard error for the measurements was obtained from the residual mean square of the analysis of variance using year and N as main factors (see Table S3).

2) The same alphabetic letters followed by the values for each N treatment are not significantly different between the treatments.
Table S3. Sources of variation in the difference between measured and simulated values in the FACE experiments.

Site	Source	df	SS	MS	%	df	SS	MS	%	df	SS	MS	%
		df	SS	MS	%	df	SS	MS	%	df	SS	MS	%
		df	SS	MS	%	df	SS	MS	%	df	SS	MS	%
		df	SS	MS	%	df	SS	MS	%	df	SS	MS	%
		df	SS	MS	%	df	SS	MS	%	df	SS	MS	%
		df	SS	MS	%	df	SS	MS	%	df	SS	MS	%
		df	SS	MS	%	df	SS	MS	%	df	SS	MS	%
		df	SS	MS	%	df	SS	MS	%	df	SS	MS	%
		df	SS	MS	%	df	SS	MS	%	df	SS	MS	%
		df	SS	MS	%	df	SS	MS	%	df	SS	MS	%
		df	SS	MS	%	df	SS	MS	%	df	SS	MS	%
		df	SS	MS	%	df	SS	MS	%	df	SS	MS	%
		df	SS	MS	%	df	SS	MS	%	df	SS	MS	%
		df	SS	MS	%	df	SS	MS	%	df	SS	MS	%
		df	SS	MS	%	df	SS	MS	%	df	SS	MS	%
		df	SS	MS	%	df	SS	MS	%	df	SS	MS	%
		df	SS	MS	%	df	SS	MS	%	df	SS	MS	%
		df	SS	MS	%	df	SS	MS	%	df	SS	MS	%
		df	SS	MS	%	df	SS	MS	%	df	SS	MS	%
		df	SS	MS	%	df	SS	MS	%	df	SS	MS	%

1) Sum of squares (SS) for the differences between measured and simulated values were calculated by the general liner model procedures (Type I sum of squares).
2) % of SS of the total (corrected by the overall mean).
Table S4 Sum of squares (SS) and mean squares (MS) of the simulated and measured yield and biomass under ambient [CO$_2$] and of enhancement due to elevated [CO$_2$] at two FACE sites.

Site	Source	df	SS	MS	%	df	SS	MS	%	df	SS	MS	%
Shizukuishi	Simulated												
	Year	2	44.1	22.03	21.4	2	108	53.8	15.9	2	904	452	6.7
	Nitrogen (N)	2	63.7	31.84	31.0	2	198	98.8	29.2	2	821	410	6.1
	Year x N	4	3.23	0.81	1.6	4	7.41	1.9	1.1	4	177	44	1.3
	Model	13	64.1	4.93	31.2	13	291	22.4	42.9	13	8006	616	59.6
	Model x Year	26	23.2	0.89	11.3	26	47.1	1.8	7.0	26	1362	52	10.1
	Model x N	20	3.67	0.18	1.8	20	17.1	0.9	2.5	20	1126	56	8.4
	Model x Year x N	40	3.55	0.09	1.7	40	9.23	0.2	1.4	40	1034	26	7.7
	Total	107	205	1.92		107	677	6.3		107	13429	126	117.3
	Measured												
	Year	2	28.1	14.03	50.8	2	22.8	11.4	31.7	2	286	143	11.3
	Block2	3	1.6	0.52	2.8	3	3.3	1.1	4.6	3	43	14	1.7
	Year x Block	6	1.5	0.26	2.8	6	5.9	1.0	8.3	6	258	43	10.2
	N	2	16.9	8.45	30.6	2	24.8	12.4	34.6	2	414	207	16.4
	Year x N	4	0.1	0.01	0.1	4	3.1	1.0	4.3	4	67	17	2.7
	Sub plot error3	18	7.1	0.39	12.8	15	11.9	0.8	16.6	18	1454	81	57.7
	Total	35	55	1.58		31	71.9	27.7		35	2520.6	504.4	
Wuxi	Simulated												
	Year	2	50.6	25.3	22.4	2	186	92.8	34.4	2	256	128.1	4.2
	Block2	3	1.7	0.87	2.8	3	1.7	0.8	1.7	3	152	43	7.2
	Year x Block	4	0.87	0.2	0.4	4	3.79	0.9	0.7	4	21.3	3.3	0.7
	N	13	111	8.5	48.9	13	180	13.8	33.3	13	3775	290.4	62.1
	Model	13	111	8.5	48.9	13	180	13.8	33.3	13	3775	290.4	62.1
	Model x Year	26	32.2	1.2	14.3	26	77.2	3.0	14.3	26	862	331	14.2
	Model x N	20	12.3	0.6	5.5	20	31.9	1.6	5.9	20	649	32.4	10.7
	Model x Year x N	35	1.95	0.1	0.9	35	3.92	0.1	0.7	35	459	13.1	7.6
	Total	102	226	2.22		102	540	5.3		102	6076	59.6	51.1
	Measured												
	Year	2	12.33	6.11	66.3	2	5.71	2.86	20.8	2	9.7	4.8	0.9
	Block2	2	0.06	0.03	0.3	2	0.18	0.09	0.7	2	56.9	28.5	5.0
	Year x Block	4	1.28	0.32	6.9	4	5.20	1.30	18.9	4	174.5	43.6	15.4
	N	2	3.04	1.52	16.5	2	9.13	4.56	33.2	2	140.2	70.1	12.3
	Year x N	3	0.44	0.15	2.4	3	2.70	0.90	9.8	3	198.7	66.2	17.5
	Sub plot error3	10	1.38	0.14	7.5	10	4.59	0.46	16.7	10	555.9	55.6	48.9
	Total	23	18	0.80		23	28	1.20		23	1136	49.39	94.69

1) % of SS of the total (corrected by the overall mean).
2) Randomized complete block design for the N treatments each year at each site.
3) Residual variance of the experiment.
Table S5. A paired comparison between measured and simulated yield and aboveground under 330 µmol mol\(^{-1}\) and between measured and simulated enhancements due to elevated CO\(_2\) (660 & 500 µmol mol\(^{-1}\)) in the SPAR experiment

Variables compared	Mean difference (measured-simulated)	df	t	P value	Standard error for the measurements
Grain yield (t/ha) (330µmol mol\(^{-1}\))	-1.28	41	-3.41	0.001	1.29
Biomass (t/ha) (330µmol mol\(^{-1}\))	-0.21	41	-0.33	0.742	1.79
Grain yield enhancement (%)	4.47	57	2.22	0.031	5.24
Biomass enhancement (%)	-3.83	57	-2.06	0.044	6.05

Table S6. Sum of squares (SS) and mean square (MS) of yield and biomass under ambient [CO\(_2\)] (330µmol mol-1) and of enhancement due to elevated CO\(_2\) (660 & 500 µmol mol-1) in SPAR experiment

Source	Grain yield (330 µmol mol\(^{-1}\)) (t/ha\(^2\))	Biomass (330 µmol mol\(^{-1}\)) (t/ha\(^2\))	Yield Enhancement (%)\(^2\)	Biomass Enhancement (%)\(^2\)													
	df	SS	MS	%													
CO\(_2\)	2	26.5	13.3	11.9	2	125	62.4	19.5	1	1051	1051	11.4	1	1402	1402	14.0	
Experiment	14	158	11.3	71.1	14	366	26.1	57.1	1	5915	422	64.1	1	6756	483	67.6	
CO2×Experiment	1	0.554	0.554	0.006	1	3.33	3.33	0.03	1	3.33	3.33	0.03	1	3.33	3.33	0.03	
Model	14	158	11.3	71.1	14	366	26.1	57.1	1	5915	422	64.1	1	6756	483	67.6	
Model × CO\(_2\)	1	0.554	0.554	0.006	1	3.33	3.33	0.03	1	3.33	3.33	0.03	1	3.33	3.33	0.03	
Error	25	37.8	1.51	17.0	25	151	6.02	23.5	39	1129	28.9	12.2	39	803	20.6	8.04	
Corrected Total	41	222	12010		71	9231		9992		71	9992						
Figure S1. Responses of leaf photosynthesis or radiation use efficiency used in 16 rice models. Values expressed as % increase with a [CO$_2$] elevation by 200 µmol mol$^{-1}$ from 367 µmol mol$^{-1}$ to Red, LRC (light response curve-type photosynthesis model); Yellow, FvCB (Farquhar, von Caemmerer & Berry photosynthesis model); Green, RUE (Radiation use efficiency). Analysis of variance testing the difference among model types showed no significant differences.
Figure S2. Simulated and observed yield (a) and biomass (b) under ambient [CO₂].
Box-whiskers represent the variation among simulated values by 14 rice models and red dots and bars represent the measured mean ±80% confidence intervals. The 80% confidence intervals are to compare the whiskers of the simulated values ranging from 10 to 90 percentiles. Datasets not used for the calibration are shown. Measurements for biomass in LN at Shizukuishi in 1998 and for yield and biomass in HN in 2001 were not available.
Figure S3. Simulated and observed yield (a) and biomass (b) enhancement by elevated [CO₂]
Box-whiskers represent the range of simulated values by 14 rice models and red dots and bars represent the measured mean ±80% confidence intervals. The 80% confidence intervals are to compare the whiskers of the simulated values ranging from 10 to 90 percentiles. Datasets not used for the calibration are shown. Measurements for biomass in LN at Shizukuishi in 1998 and for yield and biomass in HN in 2001 were not available.
Figure S4. Simulated yield enhancements due to elevated [CO\(_2\)] for individual models at Shizukuishi (a) and Wuxi (b).
Variation within each model derives from differences in simulated yields under different N or years. Values expressed as % increase with a [CO\(_2\)] elevation by 200 µmol mol\(^{-1}\) from 367 µmol mol\(^{-1}\) to 567 µmol mol\(^{-1}\). LRC, light response curve-type photosynthesis model; FvCB, Farquhar, von Caemmerer & Berry photosynthesis model; RUE, radiation use efficiency.

Figure S5. Grain yield response to changes in [CO\(_2\)] under three N levels in SPAR experiment (Exp. 3).
Pink, LRC (light response curve-type photosynthesis model); Yellow, FvCB (Farquhar, von Caemmerer & Berry photosynthesis model); Green, RUE (Radiation use efficiency). Numbers above or below the bars correspond to the individual models listed in Table S1.
Figure S6. Factors affecting the simulated enhancements of grain yield due to E-[CO2] in high N treatment in the FACE experiments at two sites. (a) grain yield enhancement versus biomass enhancement, (b) grain yield enhancement versus harvest index enhancement, (c) biomass enhancement versus primary [CO2] enhancement (leaf CO2 assimilation rate, CAR, or radiation use efficiency, RUE), and (d) biomass enhancement versus maximum LAI enhancement. The data from all N treatments at two sites are included. Symbols with a single color are for Shizukuishi and those that are half-filled in black are for Wuxi. LRC, light response curve-type photosynthesis model; FvCB, Farquhar, von Caemmerer & Berry photosynthesis model; RUE, radiation use efficiency.
Figure S7. Relationship between grain yield and biomass responses to various levels of [CO$_2$] ((a) 900 µmol mol$^{-1}$, (b) 660 µmol mol$^{-1}$, (c) 500 µmol mol$^{-1}$, (d) 660 µmol mol$^{-1}$, (e) 160 µmol mol$^{-1}$) in the SPAR chamber experiments (Ex.1 & 2).

% changes are relative to the value at 367 µmol mol$^{-1}$. LRC, light response curve-type photosynthesis model; FvCB, Farquhar, von Caemmerer & Berry photosynthesis model; RUE, radiation use efficiency.
Figure S8. Relationship between grain yield and harvest index responses to various levels of [CO₂] ((a) 900 µmol mol⁻¹, (b) 660 µmol mol⁻¹, (c) 500 µmol mol⁻¹, (d) 660 µmol mol⁻¹, (e) 160 µmol mol⁻¹) in the SPAR chamber experiments (Ex.1 & 2).

% changes are relative to the value at 367 µmol mol⁻¹. LRC, light response curve-type photosynthesis model; FvCB, Farquhar, von Caemmerer & Berry photosynthesis model; RUE, radiation use efficiency.
Figure S9. Relationship between primary $[\text{CO}_2]$ of each model and biomass response to various levels of $[\text{CO}_2]$ (a) 900 µmol mol$^{-1}$, (b) 660 µmol mol$^{-1}$, (c) 500 µmol mol$^{-1}$, (d) 660 µmol mol$^{-1}$, (e) 160 µmol mol$^{-1}$) in the SPAR chamber experiments (Ex 1 & 2).

% changes are relative to the value at 367 µmol mol$^{-1}$. LRC, light response curve-type photosynthesis model; FvCB, Farquhar, von Caemmerer & Berry photosynthesis model; RUE, radiation use efficiency.
Figure S10. Relationship between maximum LAI response and biomass response to various levels of $[\text{CO}_2]$ (a) 900 µmol mol$^{-1}$, (b) 660 µmol mol$^{-1}$, (c) 500 µmol mol$^{-1}$, (d) 660 µmol mol$^{-1}$, (e) 160 µmol mol$^{-1}$) in the SPAR chamber experiments (Ex 1 & 2).

% changes are relative to the value at 367 µmol mol$^{-1}$. LRC, light response curve-type photosynthesis model; FvCB, Farquhar, von Caemmerer & Berry photosynthesis model; RUE, radiation use efficiency.