We retrospectively investigated whether perampanel (PER) could serve as an alternative for treating drug-resistant seizures in lissencephaly. We investigated the following data: age at onset of epilepsy, age at start of PER, etiology, brain MRI findings, seizure type, seizure frequency, adverse effects, and concomitant anti-epileptic drugs. There were 5 patients with lissencephaly, including 2 with Miller–Dieker syndrome. Four out of five patients exhibited ≥50% seizure reduction. Myoclonic seizures disappeared in 1 patient. PER was an effective adjunctive anti-seizure drug in our series of patients with lissencephaly.

© 2019 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
lissencephaly, and 1 in whom the short arm of chromosome 17 was monosomic; FISH analysis confirmed G-banding indicative of Miller–Dieker syndrome. All patients, except patient no. 3, exhibited ≥50% seizure reduction (4/5). Notably, myoclonic seizures were effectively managed in patient no. 5. Adverse effects included respiratory failure in 1 patient and mild sedation in 1 patient. Brain MRI was performed in all patients and is shown in Fig. 1.

3. Discussion

In this retrospective cohort study, PER was effective in the treatment of patients with lissencephaly. A 50% responder rate (50% RR; i.e., at least 50% seizure reduction upon administration of PER) of PER was observed in 4 of 5 patients (80.0%) in our study. A prior adult study reported that the efficacy (50% responder rate) of PER in patients with primary GTCS was 64.2% [7]. Patients with lissencephaly typically exhibit drug-resistant daily seizures. Drug-resistant seizures are a burden to both patients and their caregivers. Most patients with lissencephaly commonly fail to exhibit seizure control, despite the use of many anti-seizure drugs for the resolution of seizures [6]. This case series demonstrated a response to PER in patients with lissencephaly. Interestingly, 1 patient (patient 5) exhibited improvement of daily activities and motor development, including rolling over, and spontaneously began to vocalize. A case report of patients with DRPLA revealed seizure improvement and recovery of activities of daily living [2]. PER might have effects on activities of daily living other than seizure reduction, including for treatment of myoclonic seizure [2–4]. One patient exhibited epileptic myoclonus in our study and was effectively treated with PER.

It is important to consider the mechanism by which PER is effective for the treatment of neuronal migrational disorders. Many reports have surveyed neuronal migration, which is affected by a variety of factors [8]. Glutamate plays an essential role in neuronal migration. Glutamate receptors consist of ionotropic receptors: NMDA, AMPA, kainic, and metabolic receptors. AMPA receptors, but not NMDA receptors, are involved in neuronal migration. AMPA receptors play a key role in neuronal migration [9]. Functional AMPA receptors are reportedly expressed by tangentially migrating interneurons in the developing brain, while metabotropic glutamate receptor primarily appears in radial glial cells [10]. Neurons involved in lissencephaly are thought to be immature migrating cells. PER has recently been shown to act on the AMPA receptor. In this context, PER could selectively affect AMPA receptors in immature migrating interneurons, whereas other anti-seizure drugs with other functional mechanisms, including those that use NMDA receptor blockage, may not be effective for patients with lissencephaly. Moreover, a report of the rat kindling model showed that the anti-ictogenic effect of PER is stronger in immature brain [11]. The authors speculated that low expression of the GluA2 subunit of the AMPA receptor in immature neurons may contribute to this effect.

Adverse effects of PER are largely mild or moderate in severity [12]. Two of 5 patients (40.0%) exhibited adverse effects: sedative effects in 1 patient and respiratory failure in 1 patient. Neuronal migration disorder and complications, concomitant drug treatment, sedative effects and respiratory failure, in the context of the underlying disease, may readily occur in a variety of situations. We regard the PER sedative effect as

Patient no./sex	Etiology	Age at epilepsy onset	Age at the start of PER	Seizure type	Seizure frequency Before PER	Seizure frequency After PER	Concomitant medication	Adverse effect
1/F	MDS	6 m	7 y 4 m	GT	20/d	10/d	VPA, PB	Respiratory failure
2/M	MDS	1 m	7 y 10 m	GT	10/d	2/d	VPA, LEV, TPM, KBr	Sedative effect
3/M	LIS-1	2 m	2 y 8 m	GT	10/d	10/d	VPA, PHT, ZNS	
4/M	Unknown	2 m	4 y 0 m	GT	5/d	1/d	PB, CZP	
5/M	Unknown	4 m	16 y 1 m	GT	5/d	2/d	VPA, TPM, CZP	

Patient no.	Seizure type	Patient no.	Seizure type
1	Myoclonic sz	2	Myoclonic sz

Perampanel, PER; CZP, clonazepam; d, day; GT, generalized tonic seizure; KBr, potassium bromide; LEV, levetiracetam; m, month; MDS, Miller–Dieker syndrome; PB, phenobarbital; PHT, phenytoin; sz, seizure; TPM, topiramate; VPA, valproic acid; w, week; ZNS, zonisamide.

Fig. 1. Representative brain magnetic resonance imaging (MRI) findings in T2-weighted images. Each number indicates patient number in Table 1.
mild. Indeed, sedative effects and respiratory failure in those patients resolved soon after discontinuation of PER.

A principal limitation of this study is the small number of patients. However, neuronal migrational disorders are relatively rare. In addition, evaluation of anti-seizure drugs was limited to the subjective assessments of seizure frequency dependent on observations by caregivers. Moreover, the mechanism underlying the effectiveness of PER for lissencephaly-associated epilepsy is unknown. Therefore, our study findings are preliminary, and we speculate that PER may be effective.

In conclusion, PER was an effective adjunctive anti-seizure drug in our series of patients with lissencephaly.

Acknowledgments

This research was supported by a grant-in-aid for the Kawano Masanori Memorial Foundation for Promotion of Pediatrics and Research on Measures for Intractable Diseases, No. H29-Nanchi-Ippan-10, from the Ministry of Health, Labour and Welfare, Japan.

Declarations of interest

None.

Ethical statement

We confirm that we have read the Journal’s position on issues involved in ethical publication and affirm that this report is consistent with those guidelines.

References

[1] Rogawski MA. Revisiting AMPA receptors as an antiepileptic drug target. Epilepsy Curr 2011;11:56–63.
[2] Goldsmith D, Minassian BA. Efficacy and tolerability of perampanel in ten patients with Lafora disease. Epilepsy Behav 2016;62:132–5.
[3] Shiraiishi H. Efficacy of perampanel for controlling seizures and improving neurological dysfunction in a patient with dentatorubral–pallidoluysian atrophy (DRPLA). Epilepsy Behav Case Rep 2017;8:44–6.
[4] Crespel A, Gelisse P, Tang NP, Genton P. Perampanel in 12 patients with Unverricht–Lundborg disease. Epilepsia 2017;58:543–7.
[5] Fogli A, Guerini R, Moro F, Fernandez-Alvarez E, Livet MO, Renieri A, et al. Intracellular levels of the LIS1 protein correlate with clinical and neuroradiological findings in patients with classical lissencephaly. Ann Neurol 1999;45:154–61.
[6] Herbt S. LIS-1 associated classic lissencephaly: a retrospective, multicenter survey of the epileptic phenotype and response to antiepileptic drugs. Brain Dev 2016;38:399–406.
[7] French J, Krauss G, Wechsler R, Wang X, DiVentura B, Brandt C. Adjunctive perampanel (PER) for treatment of drug-resistant primary generalized tonic–clonic (PCTC) seizures in patients (PTS) with idiopathic generalized epilepsy (IGE): a double-blind, randomized, placebo-controlled phase III trial. Epilepsy Curr 2015;15:367.
[8] Jansson LC, Louhivuori L, Wigren HK, Nordström T, Louhivuori V, Castrén ML, et al. Effect of glutamate receptor antagonists on migrating neural progenitor cells. Eur J Neurosci 2013;37:1369–82.
[9] Manent JB. Glutamate acting on AMPA but not NMDA receptors modulates the migration of hippocampal interneurons. J Neurosci 2006;31:5901–9.
[10] Youzi M, Tabata H, Künig N, Nakajima K. Migratory behaviour of presumptive interneurons is affected by AMPA receptor activation in slice cultures of embryonic neocortex. Dev Neurosci 2008;30:105–16.
[11] Dupuis N, Enderlin J, Desnos B, Desnos B, Dournaut P, Allorge D, et al. Antiepileptic and antiepileptogenic properties of perampanel in mature and immature rats. Epilepsia 2017;58:1985–92.
[12] Plosker GL. Perampanel: as adjunctive therapy in patients with partial-onset seizures. CNS Drugs 2012;26:1085–96.