Intrinsic Riemannian metrics on spaces of curves: theory and computation.

Martin Bauer, Nicolas Charon, Eric Klassen, Alice Le Brigant

March 13, 2020

Abstract

This chapter reviews some past and recent developments in shape comparison and analysis of curves based on the computation of intrinsic Riemannian metrics on the space of curves modulo shape-preserving transformations. We summarize the general construction and theoretical properties of quotient elastic metrics for Euclidean as well as non-Euclidean curves before considering the special case of the square root velocity metric for which the expression of the resulting distance simplifies through a particular transformation. We then examine different numerical approaches that have been proposed to estimate such distances in practice and in particular to quotient out curve reparametrization in the resulting minimization problems.

1 Introduction

Many applications that involve quantitative comparison and statistics over sets of geometric objects like curves often rely on a certain notion of metric on the corresponding shape space. Some of them, such as medical imaging or computer vision, are concerned with the outline of an object, represented by a closed curve, while others, such as trajectory analysis or speech recognition, consider open curves drawing the evolution of a given time process in a certain space, say a manifold. In both cases, it is often interesting when studying these curves to factor out certain transformations (e.g. rotations, translations, reparameterizations), so as to study the shape of the considered object, or to deal with the considered time process regardless of speed or pace.

Beyond computing distances between shapes, a desirable goal in these applications is to perform statistical analysis on a set of shapes, e.g., to compute the mean, perform classification or principal component analysis. For this purpose, considering shapes as elements of a shape manifold that we equip with a Riemannian structure provides a convenient framework. In this infinite-dimensional shape manifold, points represent shapes and the distance between two shapes is given by the length of the shortest path linking them – the geodesic. This approach allows us to do more than simply compute distances: it enables us to define the notion of an optimal deformation between two shapes, and to locally linearize the shape manifold using its tangent space. For instance, given a set of shapes, one can perform methods of standard statistical analysis in the flat representation space given by the tangent space at the barycenter.

The idea of a shape space as a Riemannian manifold was first developed by Kendall [33], who defines shapes as “what is left” of a curve after the effects of translation, rotation and changes of scale are filtered out. Mathematically, this means defining the shape space as a quotient space, where the choice of which transformations to quotient out depends on the application. The shapes considered by Kendall are represented by labelled points in Euclidean space and the shape spaces are finite-dimensional. More recent works deal with continuous curves with values in a Euclidean space or a nonlinear manifold, and thus with infinite-dimensional shape spaces.

There exist two main complementary approaches to define the shape space and its metric. One possibility is to deform shapes by diffeomorphisms of the entire ambient space. In this setting, metrics
are defined on the space of spatial deformations, and are called \textit{extrinsic} (or \textit{outer}) metrics as developed in the works of \cite{26, 56, 10} among other references. Another approach consists in defining metrics directly on the space of curves itself, which are thus called \textit{intrinsic} (or \textit{inner}) metrics. This chapter focuses on the second approach, and studies inner metrics with certain invariance properties. We are specifically interested in the invariance to shape-preserving transformations; in particular to the action of temporal deformations, also called \textit{reparameterizations}, which we represent by diffeomorphisms of the parameter space ($[0,1]$ for open curves, S^1 for closed curves). In the following sections, we will introduce a class of invariant Sobolev metrics we call \textit{elastic} on the space of immersed curves which in turn descend to metrics on the space of shapes. These were initially studied in \cite{44, 46, 41} and in subsequent works. We will then discuss in detail the particular case of the so-called “Square Root Velocity” (SRV) metric \cite{51}, a first-order invariant metric which allows for particularly simple computations not only for curves in Euclidean spaces but also curves with values in homogeneous spaces or even Riemannian manifolds. Finally, we review different methods to factor out the action of the reparametrization group, which, because of its infinite-dimensionality, presents an important challenge in the computation of distances and geodesics in this framework.

2 \ Matching of geometric curves based on reparametrization-invariant Riemannian metrics

2.1 General framework

Let D be either the interval $I = [0,1]$ or the circle S^1 and $(M, \langle ., . \rangle)$ a finite dimensional Riemannian manifold with TM denoting its tangent bundle. In the following we introduce the central object of interest in this book chapter, the infinite dimensional manifold of open (respectively, closed) curves.

\textbf{Lemma 2.1} \cite{42}. The space of smooth, regular curves
\[\text{Imm}(D, M) = \{ c \in C^\infty(D, M) : \langle c'(u), c'(u) \rangle_{c(u)} \neq 0, \forall u \in D \} \]

is a smooth Fréchet manifold with tangent space at c the set of C^∞ vector fields along c, i.e.,
\[T_c \text{Imm}(D, M) = \{ h \in C^\infty(D, TM) : h \circ \pi = c \} , \]

where $\pi : TM \to M$ denotes the foot point projection.
The main difficulties for understanding this result stem from the manifold structure of the ambient space M. For the convenience of the reader we note that for $M = \mathbb{R}^d$ the situation simplifies significantly: in that case $\text{Imm}(D, \mathbb{R}^d)$ is an open subset of the infinite dimensional vector space $C^\infty(D, \mathbb{R}^d)$ and thus tangent vectors to $\text{Imm}(D, \mathbb{R}^d)$ can be identified with smooth functions with values in \mathbb{R}^d as well. See Figure 2 for a schematic explanation of the involved objects.

In most applications in shape analysis one is not interested in the parametrized curve itself, but only in its features after quotienting out the action of shape preserving transformations. Therefore, we introduce the reparametrization group of the domain D:

\[\text{Diff}^+(D) = \{ \gamma \in C^\infty(D, D) : \gamma \text{ is an orientation preserving diffeomorphism} \} \tag{3} \]

Similarly to the space of immersions, this space carries the structure of an infinite-dimensional manifold. In fact it has even more structure, namely it is an infinite-dimensional Lie group [27, Section 4]. This group acts on the space of immersed curves by composition from the right and this action merely changes the parametrization of the curve but not its actual shape. See Figure 2 for an example of different parametrizations of the same geometric curve.

Similarly, we can consider the left action of the group $\text{Isom}(M)$ of isometries of M on $\text{Imm}(D, M)$. Note that the isometry group is always a finite-dimensional group; e.g. for $M = \mathbb{R}^d$ the group $\text{Isom}(M)$ is generated by the set of translations and linear isometries. Thus, the action of the infinite-dimensional group $\text{Diff}^+(D)$ is the most difficult to deal with, both from a theoretical and an algorithmic viewpoint. This allows us now to introduce the shape space of curves:

\[S(D, M) := \text{Imm}(D, M) / (\text{Diff}^+(M) \times \text{Isom}(M)) \tag{4} \]

Note: sometimes we use the phrase “unparametrized shape” to refer to an element of the shape space $S(D, M)$.

Lemma 2.2 ([19, 12]). The shape space $S(D, M)$ is a smooth Frechet manifold and the projection $p : \text{Imm}(D, M) \to S(D, M)$ is a smooth submersion.

We aim to introduce Riemannian metrics on the shape space $S(D, M)$ by defining metrics on the space of parametrized curves that satisfy certain invariance properties. In the literature these metrics are also referred to as elastic metrics, as they account for both bending and stretching of the curve.

A Riemannian metric on $\text{Imm}(D, M)$ is a smooth family of inner products $G_c(\cdot, \cdot)$ on each tangent space $T_c \text{Imm}(D, M)$ and we call such a metric G reparametrization-invariant if it satisfies the relation

\[G_c(h, k) = G_{c \circ \gamma}(h \circ \gamma, k \circ \gamma) \tag{5} \]

\[^1 \text{In some applications one is also interested in moding out the action of the scaling group, which requires a slight modification of the family of elastic metrics. We will not discuss these details here, but refer the interested reader to the literature, e.g. [16].} \]

\[^2 \text{To be mathematically exact, one should limit oneself to the slightly smaller set of free immersions in this definition, as the quotient space has some mild singularities without this restriction. We will, however, ignore this subtlety for the purpose of this book chapter.} \]
for all \(c \in \text{Imm}(D, M) \), \(h, k \in T_c \text{Imm}(D, M) \) and \(\gamma \in \text{Diff}_+(D) \).

In the following we will introduce the class of Sobolev type metrics. For the convenience of the reader we will first discuss the special case of a first order metric and \(M = \mathbb{R}^d \). We will then generalize this to the more complicated situation of curves with values in general manifolds and more general metrics. For a curve \(c \in \text{Imm}(D, \mathbb{R}^d) \) and tangent vectors \(h, k \in \mathcal{C}^\infty(D, \mathbb{R}^d) \) we let

\[
G_c(h, k) = \int_D \left(\langle h, k \rangle + \frac{h' \cdot k'}{|c'|} \right) |c'| \, du = \int_D \langle (h, k) + (D_s h, D_s k) \rangle \, ds ,
\]

where the desired invariance follows directly by integration using substitution. Here \(D_s = \frac{\partial}{|c'|} \) and \(ds = |c'| \, du \) denote differentiation and integration with respect to arc-length. A different way to interpret these two operators is to view the induced pullback metric \(g = \langle c', c' \rangle \) of the curve \(c \) on our domain \(D \). Then \(D_s \) can be interpreted as the covariant derivative of \(g \) in direction of the \(g \)-normalized vector field on \(D \) and similarly \(ds \) can be interpreted as the volume density of the metric. In that way these definitions naturally generalize to curves with values in abstract manifolds. To emphasize this interpretation (as covariant derivative of the pullback metric) we will denote the induced differential operator as \(\nabla_s \).

Using this notation, a reparametrization-invariant Sobolev metric of order \(n \) on the space of manifold valued curves can be defined via

\[
G_c(h, k) = \sum_{i=0}^{n} \int_D \langle \nabla_s^i h, \nabla_s^i k \rangle_c \, ds .
\]

More generally we can consider metrics that are defined by an abstract, positive, pseudo-differential operator \(L_c \), that satisfies the equivariance property \(L_c(h) \circ \gamma = L_{c \circ \gamma}(h \circ \gamma) \) for all reparametrizations \(\gamma \), immersions \(c \) and tangent vectors \(h \). The corresponding metric can then be written via

\[
G_c(h, k) = \int_D \langle L_c(h), L_c(k) \rangle_c \, ds .
\]

A particularly important example of such metrics is given by the family of elastic \(G^{a,b}_c \)-metrics – first introduced by Mio et al. \cite{Mio2016} for the case of planar curves:

\[
G^{a,b}_c(h, k) = \int_D a \langle (\nabla_s h)^\perp, (\nabla_s k)^\perp \rangle + b^2 \langle (\nabla_s h)^\perp, (\nabla_s k)^\perp \rangle \, ds ,
\]

where \(a, b > 0 \) are constants and \(\perp \) and \(\top \) denote the projection on the normal (respectively, tangential) part of the tangent vector. Here normal and tangential are calculated with respect to the foot point curve \(c \), cf. Figure \ref{fig:geodesic}

Using the invariance of the metric it is possible to show that these metrics descend to the space of unparametrized shapes:

Theorem 2.3. The reparametrization-invariant metrics \(G^{a,b}_c \) descend to smooth Riemannian metrics on the quotient space \(S(D, M) \) such that the projection \(p \) becomes a Riemannian submersion.

In finite dimensions, the invariance of the Riemannian metric would imply the analogue of this theorem by standard results of Riemannian geometry. In our infinite-dimensional situation the proof is slightly more delicate, as one has to show the existence of the horizontal bundle by hand. This can be done by adapting a variant of Moser’s trick to the present setting, see e.g. \cite{DDH2012} \cite{Mio2016}. The above theorem allows us to develop algorithms on the quotient space \(S(D, M) \), while performing most of the operations on the space of parametrized curves. In the following we will discuss the geodesic distance, the quantity that will serve as our similarity measure on the space of shapes. We will first do this for parametrized curves and then in a second step describe the induced distance on the space of geometric curves. For parametrized curves \(c_0, c_1 \in \text{Imm}(D, M) \) we have

\[
\text{dist}(c_0, c_1) = \inf \int_0^1 \sqrt{G_c(\partial_t c, \partial_t c)} \, dt ,
\]
where the infimum has to be calculated over all paths \(c : [0, 1] \to \text{Imm}(D, M) \) such that \(c(0) = c_0 \) and \(c(1) = c_1 \). In the following we will usually view paths of curves as functions of two variables \(c(t, u) \) where \(t \in [0, 1] \) is the time parameter of the path and \(u \in D \) the curve parameter.

The induced geodesic distance on shape space \(S(D, M) \) can now be calculated via

\[
\text{dist}^S([c_0], [c_1]) = \inf_{\gamma \in \text{Diff}_+^+(D)} \inf_{g \in \text{Isom}(M)} \text{dist}(c_0, g \circ c_1 \circ \gamma) = \inf_{\gamma \in \text{Diff}_+^+(D)} \inf_{g \in \text{Isom}(M)} \text{dist}(g \circ c_0 \circ \gamma, c_1). \tag{11}
\]

Here \([c_i] \in S(D, M)\) is a geometric curve (equivalence class of parametrized curves, resp.). Note that this can be formulated as a joint optimization problem over the path of curves \(c \), the reparametrization function \(\gamma \) and the isometry \(g \in \text{Isom}(M) \).

In finite dimensions, geodesic distance always gives rise to a true distance function, i.e., it is symmetric, positive and satisfies the triangle inequality. On the contrary, this can fail quite spectacularly in this infinite-dimensional situation, as the geodesic distance can vanish identically on the space. This phenomenon has been found first by Eliashberg and Polterovich for the \(W^{-1,2} \)-metric on the symplectomorphism group \([24]\). In the context of reparametrization-invariant metrics on immersions this surprising result has been proven by Michor and Mumford \([43]\). In the following theorem we summarize results on the geodesic distance for the class of Sobolev metrics. See \([46, 2, 9, 31]\) and the references therein for further information on this topic.

Theorem 2.4. The geodesic distance of the reparametrization-invariant \(L^2 \)-metric – as defined in equation \((7)\) with \(n = 0 \) – vanishes on both the space of regular parametrized curves \(\text{Imm}(D, M) \) and on the shape space \(S(D, M) \). On the other hand, the geodesic distance is positive on both of these spaces if the order of the Sobolev metric is at least one.

This result suggests that metrics of order at least one are potentially well-suited for applications in shape analysis. For such applications, one is usually interested in computing numerically the geodesic distance as well as the corresponding optimal path between two given curves. In Riemannian geometry, these optimal paths are called minimizing geodesics and they are locally described by the so-called geodesic equation, which is simply the first order optimality condition for the length-functional as defined in \((10)\). In our context these equations become rather difficult; they are nonlinear PDEs of order \(2n \) (where \(n \) is the order of the metric). Nevertheless, at least for closed curves in \(\mathbb{R}^d \), there exist powerful results on existence of solutions.

In order to formulate these results we need to introduce the space of all immersions of finite Sobolev regularity, i.e., for \(s > \frac{3}{2} \) we consider the space

\[
\text{Imm}^s(S^1, \mathbb{R}^d) := \{ c \in H^s(S^1, \mathbb{R}^d) : |c'| \neq 0 \}, \tag{12}
\]

which is a smooth Banach manifold. Here \(H^s(S^1, \mathbb{R}^d) \) denotes the Sobolev space of order \(s \). Note that the condition \(|c'| \neq 0\) is well-defined as all functions in \(H^s(S^1, \mathbb{R}^d) \) are \(C^1 \) for \(s > \frac{3}{2} \). Now one has the following main result which is of relevance to our applications:

Theorem 2.5 \(([15, 13])\). Let \(\text{dist} \) be the geodesic distance of the Sobolev metric \(G \), as defined in \((7)\), of order \(n \geq 2 \) on the space \(\text{Imm}(S^1, \mathbb{R}^d) \) of smooth regular curves. The following statements hold:

1. The metric \(G \) and its corresponding geodesic distance function extend smoothly to the space of Sobolev immersions \(\text{Imm}^s(S^1, \mathbb{R}^d) \) for all \(s \geq n \).

2. The space \(\text{Imm}^n(S^1, \mathbb{R}^d) \) equipped with the geodesic distance function \(\text{dist} \) (of the Sobolev metric of order \(n \)) is a complete metric space.

3. For any two curves in the same connected component of \(\text{Imm}^n(S^1, \mathbb{R}^d) \) there exists a minimizing geodesic connecting them.

5
As a consequence of the completeness results we also obtain the existence of optimal reparametrizations, i.e., the well-posedness of the matching problem on the space of unparametrized curves. To state our main result on existence of optimal reparametrizations we introduce the quotient space of Sobolev immersions modulo Sobolev diffeomorphisms

$$S^n(D, \mathbb{R}^d) := \text{Imm}^n(S^1, \mathbb{R}^d)/\text{Diff}^+_n(D)/\text{Isom}(M).$$

This space does not appear to carry the structure of a manifold. Nevertheless, we can consider the induced geodesic distance on this space and obtain the following completeness result:

Theorem 2.6 ([13]). Let $n \geq 2$ and let dist be the geodesic distance of the Sobolev metric of order n on $\text{Imm}^n(S^1, \mathbb{R}^d)$. Then $S^n(D, \mathbb{R}^d)$ equipped with quotient distance dist is a complete metric space. Furthermore, given two unparametrized curves $[c_0], [c_1] \in S^n(D, \mathbb{R}^d)$ there exists an optimal reparametrization γ and isometry g, i.e. the infimum

$$\text{dist}^S([c_0], [c_1]) = \inf_{\gamma \in \text{Diff}^+_n(S^1)} \inf_{g \in \text{Isom}(M)} \text{dist}(c_0, g \circ c_1 \circ \gamma)$$

is attained. Here $c_0, c_1 \in \text{Imm}(S^1, \mathbb{R}^d)$ are arbitrary representatives of the geometric curves $[c_0]$ and $[c_1]$.

In the article [13] this result is formulated for the action of the infinite-dimensional group $\text{Diff}^+_n(S^1)$ only. The proof can however be easily adapted to incorporate the action of the compact group $\text{Isom}(M)$.

Remark 2.7 (Open curves and manifold-valued curves). While these results have only been shown to be true on the space of closed curves with values in Euclidean space, we believe that, under some additional assumptions, they should remain valid in the more general situation studied in this article, which is the subject of future work.

For further results on general Sobolev metrics on spaces of curves we refer to the vast literature on the topic, including [55, 5, 35, 46, 59, 8, 58]. An example of a geodesic between two planar closed curves for a second order Sobolev metric is shown in Figure 1 (left), which was computed with the approach described later in Section 3.3.4. In the following section, we will study one particular metric of order one that will lead to explicit formulas for geodesics and geodesic distance on open, parametrized curves. This will in turn allow us to recover the results on existence of geodesics and optimal reparametrizations. These optimal objects will however fail to have the regularity properties that the optimizers in this section were guaranteed to have.

2.2 The SRV framework

2.2.1 Curves in \mathbb{R}^d

The reparametrization-invariant Riemannian metrics discussed above are designed to induce Riemannian metrics on the space of shapes. In general, calculating geodesics and distances with respect to these metrics requires numerical optimization, and is often computation-intensive. However, for the case of open curves in \mathbb{R}^d, one of these metrics provides geodesics and distances that are especially easy to compute. This method is known as the “Square Root Velocity” (SRV) framework.

The main tool in this framework is the map $Q : \text{Imm}(D, \mathbb{R}^d) \to C^\infty(D, \mathbb{R}^d)$, often referred to in the literature as the SRV transform or function, defined by

$$Q(c)(u) = \frac{c'(u)}{\sqrt{|c'(u)|}}.$$

The importance of this map becomes evident in the following theorem by Srivastava et. al. [51], which connects it to the $G^{a,b}$-metric [0] for a particular choice of constants a and b:
A straightforward calculation shows that the unique minimizing geodesic connecting them is given by \(Q \). Furthermore, given any curves \(c_0, c_1 \in AC_0(I, \mathbb{R}^d) \), the unique minimizing geodesic connecting them is given by

\[
c(t, u) = Q^{-1}((1 - t)Q(c_0)(u) + tQ(c_1)(u)),
\]

Theorem 2.8. The mapping \(Q \) as defined above is an isometric immersion from the space of immersions modulo translations \(\text{Imm}(D, \mathbb{R}^d)/\text{Tra} \) with the elastic \(G^{1,1/2} \)-metric to \(C^\infty(D, \mathbb{R}^d) \) with the flat \(L^2 \)-metric.

Remark 2.9. This theorem essentially allows us to transform the computations from a complicated nonlinear manifold to a vector space equipped with a flat metric. In particular, we will see that it leads to explicit formulas for both geodesics and geodesic distance in the case of open curves. For planar curves \((d = 2) \) an analogous transformation for the elastic \(G^{a,b} \)-metric with \(a = b = 1 \) has been found by Younes et. al. [5, 6]. These transformations have been generalized to all parameters satisfying \(a^2 - 4b^2 \geq 0 \) (curves in \(\mathbb{R}^d \)) by Bauer et. al. [4] and more recently to arbitrary parameters (planar curves) by Kurtek and Needham [37]. We will focus in this book chapter solely on the SRV transform, but many of the results are also true for these other transformations and metrics.

In the following we will describe the SRV framework in the case of open curves and we will only comment briefly on applications of the SRV transform to closed curves at the end of the section.

Open Curves. The reason for treating the case of open curves separately is the fact that the mapping \(Q \) becomes a bijection, which will allow us to completely transform all calculations to the image of \(Q \) – a vector space. While we could perform all of these operations in the smooth category, it turns out to be beneficial to consider this method on a much larger space, which will then turn out to be the metric completion of the space of smooth immersions w.r.t. to the SRV-metric.

Henceforth, let \(AC(I, \mathbb{R}^d) \) denote the set of absolutely continuous functions \(I \rightarrow \mathbb{R}^d \). Since the considered metric will be invariant under translation, we standardize all curves to begin at the origin; therefore, let \(AC_0(I, \mathbb{R}^d) \) denote the set of all \(c \in AC(I, \mathbb{R}^d) \) such that \(c(0) = 0 \). We can extend the mapping \(Q \) as defined in (15) to a mapping on this larger space via \(Q : AC_0(I, \mathbb{R}^d) \rightarrow L^2(I, \mathbb{R}^d) \) as follows

\[
Q(c)(u) = \begin{cases}
\frac{c'(u)}{\sqrt{|c'(u)|}} & \text{if } c'(u) \neq 0; \\
0 & \text{if } c'(u) = 0.
\end{cases}
\]

A straightforward calculation shows that \(Q \) has an explicit inverse given by

\[
c(u) = Q^{-1}(q)(u) = \int_0^u |q(y)|q(y)dy,
\]

and, thus, that \(Q \) is a bijection. Diff\(_+\)(I) acts on \(AC_0(I, \mathbb{R}^d) \) from the right by composition; hence, there is a unique right action of Diff\(_+\)(I) on \(L^2(I, \mathbb{R}^d) \) that makes \(Q \) equivariant. The explicit formula for this action is

\[
(q \ast \gamma)(u) = \sqrt{\gamma'(u)}q(\gamma(u)),
\]

where \(q \in L^2(I, \mathbb{R}^d) \) and \(\gamma \in \text{Diff}_+(I) \). Furthermore, the action of Diff\(_+\)(I) on \(L^2(I, \mathbb{R}^d) \) defined by (18) is by linear isometries; this follows directly by an application of integration by substitution. Finally, because \(Q \) is a bijection, we can use it to induce a Hilbert manifold structure (i.e., a smooth structure and a Riemannian metric) on \(AC_0(I, \mathbb{R}^d) \). Note that this Riemannian metric is exactly the extension of the \(G^{1,1/2} \)-metric to the space of absolutely continous curves, cf. Theorem 2.8.

The central theme of the SRV framework is that the isometry \(Q \) enables us to transform many questions involving the geometry of \(AC_0(I, \mathbb{R}^d) \) to questions involving the well-understood geometry of \(L^2(I, \mathbb{R}^d) \). In particular we obtain the following theorem concerning completeness, geodesics and geodesic distance:

Theorem 2.10 (38, 14). The space of absolutely continous curves equipped with the SRV-metric is a geodesically and metrically complete space. Furthermore, given any curves \(c_0, c_1 \in AC_0(I, \mathbb{R}^d) \), the unique minimizing geodesic connecting them is given by

\[
c(t, u) = Q^{-1}((1 - t)Q(c_0)(u) + tQ(c_1)(u)),
\]

where \(t \in [0, 1] \) and \(Q \) is the mapping as defined above.
and thus the geodesic distance between c_0 and c_1 can be calculated via

$$\text{dist}(c_0, c_1) = \sqrt{\int_0^1 |Q(c_0)(u) - Q(c_1)(u)|^2 du}.$$ \hspace{1cm} (20)

Optimal Reparametrizations. In the following we aim to consider the induced metric and the corresponding distance function on the quotient space of curves modulo reparametrizations, i.e., on the space

$$AC_0(I, \mathbb{R}^d)/\text{Diff}_+(I).$$

However, it is apparent that in order to obtain a non-degenerate distance function, it is not enough to collapse each Diff$_+(I)$-orbit to a point, but we must collapse the closure of each orbit to a point.

Hence, we define an equivalence relation on $AC_0(I, \mathbb{R}^d)$ by $c_1 \sim c_2$ if and only if the Diff$_+(I)$ orbits of $Q(c_1)$ and $Q(c_2)$ have the same closure in $L^2(I, \mathbb{R}^d)$. We then define the shape space of open curves in \mathbb{R}^d as

$$S(I, \mathbb{R}^d) = AC_0(I, \mathbb{R}^d)/\sim,$$

and for $c \in AC_0(I, \mathbb{R}^d)$ we let $[c]$ denote the equivalence class of c under \sim.

In order better to understand these equivalence classes, we need an expanded version of Diff$_+(I)$. To be precise, define $\text{Diff}_+(I)$ to be the set of all absolutely continuous functions $\gamma : I \to I$ such that $\gamma(0) = 0$, $\gamma(1) = 1$, and $\gamma'(u) \geq 0$ almost everywhere. Note that Diff$_+(I)$ is only a monoid, not a group, since the only elements of Diff$_+(I)$ that have inverses are those γ such that $\gamma'(u) \neq 0$ almost everywhere. We then have the following description of a general equivalence class of $AC_0(I, \mathbb{R}^d)$ under the relation \sim:

Lemma 2.11 (38). Let $c \in AC_0(I, \mathbb{R}^d)$, and assume that $c'(u) \neq 0$ almost everywhere. Then the equivalence class of c under \sim is equal to

$$\{c \circ \gamma : \gamma \in \text{Diff}_+(I)\}.$$

Note that if $c'(u) = 0$ on a set of nonzero measure, then we cannot directly use Lemma 2.11 to characterize $[c]$; however, we can reparametrize c by arclength to obtain another element \tilde{c} in the same equivalence class as c, and then use Lemma 2.11 to characterize $[c] = [\tilde{c}]$.

We can now define a distance function on the shape space as follows: if $[c_1]$ and $[c_2]$ are elements of $S(I, \mathbb{R}^d)$, then we let

$$\text{dist}^S([c_1], [c_2]) = \inf_{w_1 \in [c_1], w_2 \in [c_2]} \|Q(w_1) - Q(w_2)\|_{L^2}.$$

Note that it seems at first that we need to consider reparametrizations of both c_1 and c_2, because Diff$_+(I)$ is not a group but only a monoid. However, it can be shown that the infimum will be the same if we only consider reparametrizations of one of the curves. See [38, 14]. The optimal reparametrization problem for curves in $AC_0(I, \mathbb{R}^d)$ can now be formulated as follows: suppose c_0 and c_1 are elements of $AC_0(I, \mathbb{R}^d)$, and that both have non-vanishing derivatives almost everywhere. Do there exist γ_1 and γ_2 in Diff$_+(I)$ such that

$$\|Q(c_1 \circ \gamma_1) - Q(c_2 \circ \gamma_2)\|_{L^2} = \text{dist}^S([c_1], [c_2]) ?$$

The following theorem gives the known results about this problem.

Theorem 2.12 (38, 14). Let c_0 and c_1 be elements of $AC_0(I, \mathbb{R}^d)$ with both having non-vanishing derivatives almost everywhere. We have:

1. If at least one of these curves is piecewise linear, then a pair γ_0, γ_1 of optimal reparametrizations exists;
2. if \(c_0 \) and \(c_1 \) are both of class \(C^1 \), then a pair \(\gamma_0, \gamma_1 \) of optimal reparametrizations exists;

3. there exists a pair \(c_0, c_1 \in AC_0(I, \mathbb{R}^d) \), both Lipschitz, for which no pair of optimal reparametrizations exists.

Remark 2.13. Later in this chapter numerical techniques for approximating optimal reparametrizations are discussed. However, we note here that in \([38]\) an algorithm is developed for determining precise optimal reparametrizations for the case in which both \(c_0 \) and \(c_1 \) are piecewise linear curves. Nevertheless, since this algorithm is computationally rather expensive, usually the numerical methods described in Section 3 are used to solve the matching problem in practice. Furthermore, all of the algorithms that we discuss in Section 3 solve only for one reparametrization function (as opposed to a pair of optimal reparametrization functions as required by the above theorem). Thus the existence of minimizers for these algorithms is only guaranteed for metrics of order two or higher (by the results of Theorem 2.6). For lower order metrics, such as the SRV-metric, the computed distances can approximate the true geodesic distances of arbitrary precision by the density of \(\text{Diff}_+(I) \) in \(\mathbf{Diff}_+(I) \).

Closed curves. For applications in which curves correspond to boundaries of planar regions, the SRV framework can be adapted to the space of closed curves. A priori, it is natural to describe a closed curve as an immersion of the circle \(S^1 \) into \(\mathbb{R}^d \); then the natural group of reparametrizations is \(\text{Diff}_+(S^1) \). However, in order to apply the SRV methods already outlined, we will describe a closed curve by an open curve whose initial and endpoints happen to coincide. Hence, define the set of immersed closed curves by

\[
\text{Imm}(I, \mathbb{R}^d)_{cl} = \{ c \in \text{Imm}(I, \mathbb{R}^d) : c(0) = c(1) \},
\]

which is a codimension \(d \) submanifold of \(\text{Imm}(I, \mathbb{R}^d) \). In order to endow \(\text{Imm}(I, \mathbb{R}^d)_{cl} \) with a Riemannian structure, we simply restrict the SRV-metric on \(\text{Imm}(I, \mathbb{R}^d) \) to this submanifold. Unfortunately, \(\text{Imm}(I, \mathbb{R}^d)_{cl} \) is not a geodesically convex submanifold, so computing geodesics and geodesic distances is not as straightforward as it is in \(\text{Imm}(I, \mathbb{R}^d) \).

Fortunately, the necessary analytical tools have been developed to solve this problem. To find a geodesic between two curves \(c_0 \) and \(c_1 \) in \(\text{Imm}(I, \mathbb{R}^d)_{cl} \), on can use the following procedure:

1. Calculate a geodesic \(\{ c_t \} \) between \(c_0 \) and \(c_1 \) in \(\text{Imm}(I, \mathbb{R}^d) \) using Theorem 2.10.

2. For each \(t \in [0, 1] \), project \(c_t \) to a nearby point \(\tilde{c}_t \) in \(\text{Imm}(I, \mathbb{R}^d)_{cl} \). This requires a gradient algorithm as described in \([51] [50]\).

3. Deform \(\{ \tilde{c}_t \} \) to a geodesic in \(\text{Imm}(I, \mathbb{R}^d)_{cl} \) using the path-straightening procedure, as described in \([51] [50]\).

In practice, Step 3 is often omitted to save computation, because the path produced by Step 2 is generally very close to a geodesic. In order to find optimal reparametrizations for a pair of closed curves, it is not enough to consider the methods developed for open curves, because of the freedom to choose any point on a closed curve to be its starting and ending point (i.e. the point \(c(0) = c(1) \)). To remedy this, the algorithms discussed for open curves need to be implemented along a densely spaced set of points on one of the curves in order to choose the matching that leads to the shortest geodesic between the curves. For details, see \([50]\).

2.2.2 Curves in Lie groups and homogenous spaces

We now discuss methods for extending the SRV framework to curves in Lie groups and homogenous spaces. We start by considering curves with values in Lie groups, for which the existence of a designated tangent space, the Lie algebra, makes the generalization of the SRV framework straightforward, cf. \([15] [54]\). Consider a finite-dimensional Lie group \(\mathfrak{G} \) with Lie algebra \(\mathfrak{g} = T_e \mathfrak{G} \), where \(e \in \mathfrak{G} \) denotes the
neutral element. We will assume that g has been equipped with an inner product and that this inner product has been extended to a left-invariant Riemannian metric on \mathcal{G}. There is a natural inclusion

$$\text{Imm}(I, \mathcal{G}) \rightarrow \mathcal{G} \times C^\infty(I, g)$$

defined by

$$c \mapsto (c(0), q),$$

where

$$q(u) = dL_{c(u)^{-1}} \left(\frac{c'(u)}{\sqrt{|c'(u)|}} \right).$$

Note that $L_{c(u)^{-1}}$ denotes left translation on \mathcal{G} by $c(u)^{-1}$, which is added to transport the whole curve to the same tangent space g. Note that the second part of this transformation is simply the generalization of the SRV transform for curves in a Euclidean space to curves with values in a Lie group and the first factor is added to keep track of the starting point.

We put a product metric on $\mathcal{G} \times C^\infty(I, g)$ coming from the left-invariant metric on \mathcal{G} and the L^2-metric on $C^\infty(I, g)$. Then the pullback Riemannian metric on $\text{Imm}(I, \mathcal{G})$ is invariant under the action of $\text{Diff}_+(I)$ and also under the left action of \mathcal{G}. Similarly to the Euclidean situation, this leads to explicit formulas for geodesics and geodesic distance and thus allows for efficient numerical implementations. For the relation of the resulting metric to the class of elastic metrics as defined in equation (7) we refer to the articles [54, 18].

For homogeneous spaces the situation becomes slightly more complicated and will require an additional minimization over a finite-dimensional group. We first recall the definition of a homogenous space. A homogeneous space $M = \mathcal{G}/\mathcal{K}$ is a quotient of a Lie group \mathcal{G} by a closed Lie subgroup \mathcal{K}. Note that this quotient is interpreted only as a set of left cosets; it cannot be thought of as a quotient group, since there is no assumption that \mathcal{K} is a normal subgroup. For purposes of this chapter, we will assume that the subgroup \mathcal{K} is compact. Examples of homogeneous spaces include spheres, Grassmannians, hyperbolic spaces, and spaces of positive definite symmetric matrices which occur in many applications. There is a natural left action of \mathcal{G} on $M = \mathcal{G}/\mathcal{K}$. In the following, we will endow M with a Riemannian metric that is invariant under this \mathcal{G}-action. First, we put a Riemannian metric on \mathcal{G} that is left-invariant under the action of \mathcal{G} and bi-invariant under the action of \mathcal{K}. This is always possible using an averaging argument and the compactness of \mathcal{K}. This metric then descends to a metric on M that is invariant under the left action of \mathcal{G}. In order to study the shape space of curves with values in the homogeneous space M, we wish to put a Riemannian metric on the space $\text{Imm}(I, M)$ that is invariant under the action of $\text{Diff}_+(I)$ and the natural left action of \mathcal{G}. This is accomplished in [17, 54] using a natural adaptation of the SRV approach. The key idea is to lift curves in M to curves in \mathcal{G} that are horizontal (i.e., orthogonal to each coset that they meet), and then to use the ideas described above for curves in Lie groups. The computation of horizontal lifts of curves requires a minimization over the finite dimensional, compact group \mathcal{K}, which can be achieved using standard methods of (numerical) optimization. Using this construction yields efficiently computable formulas for geodesics and geodesic distances, see [17, 54]. Furthermore analogues of the optimal reparametrization results, cf. Theorem 2.12, have been proven, see [54].

2.2.3 Curves in Riemannian manifolds

Let us focus again on open curves, i.e. when D is the interval $I = [0, 1]$. For manifold-valued curves, the generalization of the SRV framework is no longer straightforward. Here we discuss three different generalizations. The first method builds on the elastic $G^{1,1/2}$-metric, replacing ordinary derivatives by covariant derivatives with respect to the connection ∇ of the base manifold M. The two other methods, while not implementing the precise elastic method, are less computationally expensive, and often yield useful comparisons between curves. Both of these methods replace each curve in the Riemannian manifold M by a curve in a single tangent space of M, thus moving the computations to that tangent space, while in the first one, computations are done directly in the base manifold.
Method 1. In the case of curves with values in a general manifold, the elastic $G^{1,\frac{1}{2}}$-metric is no longer a flat metric. However it can still be obtained as a pullback of a metric on the tangent bundle $T\text{Imm}(I,M)$ by the SRV transform $Q : \text{Imm}(I,M) \to T\text{Imm}(I,M)$, $Q(c)(u) = c'(u)/\sqrt{|c'(u)|}$. This metric is defined for any pair $(c,h) \in T\text{Imm}(I,M)$, and any infinitesimal deformations $\xi, \eta \in T_{(c,h)}T\text{Imm}(I,M)$ of the pair (c,h), as
\[G^{1,\frac{1}{2}}_{c,h} (\xi, \eta) = \langle \xi(0), \eta(0) \rangle + \int_0^1 \langle \xi(u), \eta(u) \rangle du, \]
where $\xi(u), \eta(u) \in TM$ and $\xi(0), \eta(0) \in TM$ are the horizontal and vertical projections of the tangent vector $\xi(u) \in T(c(u), h(u))TM$ for all $u \in I$. Intuitively, the horizontal projection of a vector of $T(p,w)TM$ for any $(p,w) \in TM$ corresponds to the way it moves the base point p, and its vertical projection, to the way it linearly moves w. This pullback property is expressed by
\[G^{1,\frac{1}{2}}_c (h,k) = \tilde{G}_{\mathcal{Q}(c)}(T_c Q(h), T_c Q(k)) = \langle h(0), k(0) \rangle + \int_0^1 \langle \nabla_{h(u)} Q(c), \nabla_{k(u)} Q(c) \rangle du, \]
for any curve $c \in \text{Imm}(I,M)$ and $h, k \in T_c \text{Imm}(I,M)$, where $\nabla_{h(u)} Q(c)$ denotes the covariant derivative in M of the vector field $Q(c)$ in the direction of the vector field h. Notice that here we add a position term to the integral term of the definition of the $G^{1,\frac{1}{2}}$-metric in order to take into account translations.

The geodesic equation of the $G^{1,\frac{1}{2}}$-metric on manifold-valued curves takes the following form.

Proposition 2.14 ([39]). A path of curves $[0, 1] \ni t \mapsto c(t)$ is a geodesic for the $G^{1,\frac{1}{2}}$-metric if and only if its SRV representation $q(t) = Q(c(t))$ verifies the following equations:
\[\nabla_t \partial_t c(t,0) + r(t,0) = 0, \quad \forall t \in [0,1], \]
\[\nabla^2 q(t,u) + |q(t,u)| (r(t,u) + r(t,u)^T) = 0, \quad \forall (t,u) \in [0,1] \times I, \]
where the vector field r depends on the curvature tensor \mathcal{R} of the base manifold M and on the parallel transport $\partial_c c(t,v)^{r,w}$ of the vector field $\partial_c c(t,\cdot)$ along $c(t,v)$ from $c(t,v)$ to $c(t,u)$:
\[r(t,u) = \int_u^1 \mathcal{R}(q, \nabla_t q) \partial_c c(t,v)^{r,w} dv. \]

Here, $\nabla_t h$ denotes the covariant derivative in M of a vector field $t \mapsto h(t,u)$ along a curve $t \mapsto c(t,u)$, i.e. $\nabla_t h = \nabla_{\partial_t c} h$. In the flat case $M = \mathbb{R}^d$, the curvature term r in the geodesic equation vanishes and we obtain $\nabla_t c(t,0) = \partial^2 c(t,0) = 0$, $\nabla^2 q(t,u) = \partial^2 q(t,u) = 0$ for all $(t,u) \in [0,1] \times I$. We then recover the fact that the geodesic for the SRV-metric between two curves in \mathbb{R}^d links their starting points with a straight line and linearly interpolates between their SRV representations. In the case where the base manifold M has constant sectional curvature, a comprehensive discrete framework was proposed in [40] that correctly approximates the continuous setting and makes numerical computations easier.

Method 2. In this method, one builds a vector bundle $\pi : \mathcal{C} \to M$ in which, for each $x \in M$, $\pi^{-1}(x) = C^\infty(I,T_x M)$. One defines a map $Q : \text{Imm}(I,M) \to \mathcal{C}$ by $Q(c) = q \in \pi^{-1}(c(0))$ where, for each $u \in I$, $q(u)$ is obtained by parallel translating the vector $c'(u)/\sqrt{|c'(u)|}$ along the curve c from $c(u)$ to $c(0)$. \mathcal{C} is endowed with a metric that is a pointwise version of the Sasaki metric on TM. It is easily shown that the pullback of this metric to $\text{Imm}(I,M)$ is invariant under reparametrizations and under the group of isometries of M. The difficulty of implementing this method depends on the particular manifold M. See [62] for applications of this method to curves in the sphere S^2, and [63] for applications to curves in the space of positive definite symmetric matrices.
Method 3. In this method, one begins by choosing a particular reference point \(p \in M \). One defines a map \(\Psi : \text{Imm}(I, M) \to C^\infty(I, T_p M) \) by \(\Psi(c) = q \), where \(q(u) \) is obtained by parallel translating the vector \(c'(u)/\sqrt{|c'(u)|} \) along the shortest geodesic in \(M \) from \(c(u) \) to \(p \). One then defines the distance between two curves \(c_0 \) and \(c_1 \) to be the \(L^2 \) distance between \(\Psi(c_0) \) and \(\Psi(c_1) \). This distance function is invariant under reparametrizations of the curves, but it is not invariant under isometries of \(M \). The main advantage of this method is computational speed. A disadvantage is that it depends heavily on the choice of the reference point \(p \), and may induce serious distortions for curves that venture far away from \(p \). Finally, there can be problems with the definition of \(\Psi \) itself, since there can be more than one minimizing geodesic between \(c(u) \) and \(p \), and parallel translation along these different geodesics can yield different results. In general, if all the curves being compared are not too far from the reference point \(p \), this method can yield useful results at low computational cost; see [52] for applications to curves in \(S^2 \).

3 Implementation

In this section we will discuss the computation of the geodesic distance. We will first briefly address the case of parametrized curves. In the second part we will then describe the main difficulty in this context which is the minimization over reparametrizations in the group \(\text{Diff}_+(D) \). In particular we will describe several different approaches that have been developed to tackle this highly non-trivial task.

3.1 The geodesic boundary value problem on parametrized curves

For open curves with values in Euclidean space, Lie groups or homogeneous spaces and the SRV-metric, there exist analytic solution formulas for these operations and thus these computations become trivial. For most of the other situations discussed in this chapter, the absence of such formulas requires one to solve these problems using numerical optimization. Therefore, one first has to choose a discretization for all of the involved objects, i.e., one has to discretize the path of curves \(c(t, u) \) for \(t \in [0,1] \) and \(u \in D \). A standard approach for this task consists of choosing B-splines in both time and space, i.e.

\[
c(t, u) = \sum_{i,j} c_{i,j} B_i(t) C_j(u)
\]

where \(B_i \) and \(C_j \) are the chosen B-spline basis functions and where \(c_{i,j} \) for \(i = 0 \ldots N_t \) and \(j = 0 \ldots N_u \) are the coefficients. Note that this includes as a special case the discretization of regular curves as piecewise linear functions. This procedure then reduces the calculation of the geodesic distance (10) to an unconstrained minimization problem of the discretized length functional, where the control points \(c_{i,j} \) for \(i = 1 \ldots N_t - 1 \) and \(j = 0 \ldots N_u \) of the B-splines are the free variables. Here the control points of the boundary curves \(c_0j \) and \(c_{N_t,j} \) are chosen as fixed parameters and are not changed in the optimization procedure. After this discretization step one can use standard methods of numerical optimization, such as the L-BFGS method, to approximate the solution of the finite-dimensional unconstrained minimization problem. For further information, in the notation of this chapter, we refer the reader to the article [3]. See also [1, 48, 45].

3.2 Normalization by isometries

The shape space \(S(D, M) \) in [1] involves quotienting out isometric transformations of \(M \), in other words one has to technically minimize in [11] the elastic distance over \(g \in \text{Isom}(M) \). This is a finite-dimensional group which, for most manifolds \(M \) encountered in practice, usually has a simple parametric representation.

One common approach being used, although not rigorously equivalent to the optimization in [11], is to pre-align the two shapes with respect to isometries of \(M \) prior to estimating the elastic distance.
When \(M = \mathbb{R}^d \), this amounts to finding the optimal rotation and translation that best align them, which is classically addressed by Procrustes analysis, cf. for example [22].

Alternatively, one can parametrize the group \(\text{Isom}(M) \) and perform the minimization over \(g \) within the estimation of the distance itself, i.e. jointly with reparametrizations. For planar curves, this simply amounts to optimizing over a two-dimensional translation vector and the angle of rotation, which is the approach used, in particular, in [31, 32]. Note that for general \(\mathbb{R}^d \), a similar strategy is also possible by representing rotations as the exponential of antisymmetric matrices. In the case of manifold-valued curves however, normalizing with respect to isometries of \(M \) may not always be relevant or can be harder to deal with in practice. This typically depends on the availability of convenient representations of the isometry group \(\text{Isom}(M) \), we refer the reader to [54] where some simple examples are considered.

3.3 Minimization over the reparametrization group

In addition to isometries of \(M \), computation of distances and geodesics on the quotient space \(\mathcal{S}(D, M) \) also requires to minimize the metric over reparametrizations in the group \(\text{Diff}^+(D) \), which is here infinite-dimensional. Several different approaches have been proposed to tackle this specific issue, which we review in the following paragraphs.

3.3.1 Dynamic programming approach

A first method, which was introduced initially in [47], is to convert this problem into a discrete optimization one. Considering piecewise linear (i.e. polygonal) curves, one may in turn choose to look for an optimal reparametrization of \(\text{Diff}^+(D) \) that is also piecewise linear. For curves in a Euclidean space and the SRV-metric, this is in part supported by the recent work of [38] where authors show that such optimal piecewise linear reparametrizations exist. In general, as piecewise linear functions are a dense set in the space of absolutely continuous functions, it is reasonable in practice to restrict the search to reparametrizations of this form.

More specifically, assume that the two curves \(c_0 \) and \(c_1 \) are both piecewise linear. For simplicity, let’s also assume that \(D = [0, 1] \) and that both curves are sampled uniformly on \(D \), namely that \(c_0 \) and \(c_1 \) are linear on each of the subintervals \(D_i = [t_i, t_{i+1}] \) for all \(i = 0, \ldots, N - 1 \) where \(t_i = i/N \). One may then approximate positive diffeomorphisms in \(\text{Diff}^+(D) \) by piecewise linear homeomorphisms of \(D \) with nodes in the set \(\{0, t_1, t_2, \ldots, t_N\} \). Writing \(J = \{t_0, t_1, t_2, \ldots, t_N\} \), we can equivalently consider all the polygonal paths defined on the grid \(J \times J \) joining \((0,0)\) to \((1,1)\) and which are the graph of an increasing piecewise linear function with nodes in \(J \). This set \(\Gamma \) is now finite albeit containing a very large number of possible paths.

Nevertheless, an efficient way to determine an optimal discrete reparametrization is through dynamic programming. This is well-suited to situations where the energy to minimize can be written as an additive function over the different segments of the discrete path, which is made possible by the SRV transform in the case of elastic \(C^{1,1/2} \) metrics (or more generally for the \(C^{\alpha,\beta} \)-metric using the transforms of [37, 4]). We want to note here that this method is not well-suited to cases in which \(\gamma \) does not have access to an explicitly computable distance function, such as for the higher-order elastic metrics.

Indeed, if \(\gamma \in \Gamma \) is piecewise linear on the \(K \) consecutive segments of vertices \((t_{i_0}, t_{j_0}) = (0,0)\), \((t_{i_1}, t_{j_1}), \ldots, (t_{i_K}, t_{j_K}) = (1,1)\) with \(t_{i_0} < t_{i_1} < \cdots < t_{i_K} \) and \(t_{j_0} < t_{j_1} < \cdots < t_{j_K} \), then the discrete energy to be minimized is expressed as:

\[
E(\gamma) = \|Q(c_0) - Q(c_1 \circ \gamma)\|_{L_2}^2 = \sum_{m=0}^{K-1} E(\gamma_{i_m,j_m}^{i_{m+1},j_{m+1}})
\]

where \(E(\gamma_{i_m,j_m}^{i_{m+1},j_{m+1}}) \) is the energy of the linear path from vertex \((t_{i_m}, t_{j_m})\) to \((t_{i_{m+1}}, t_{j_{m+1}})\) and is given...
by

\[E(i_{m+1},j_{m+1}) = \frac{1}{N} \sum_{k=i_m}^{i_m+1} \left| Q(c_0)(t_k) - \sqrt{\frac{t_{j_{m+1}} - t_{j_m}}{t_{i_{m+1}} - t_{i_m}}} Q(c_1)(t_k) \right|^2. \]

Now the generic dynamic programming method first computes the minimal energy among all paths in \(\Gamma \) going from \((0,0)\) to any given vertex \((t_i,t_j)\), which we write \(E^{i,j} \), through the following iterative procedure on \(i \):

1. Set \(E^{(0,0)} = 0 \).
2. For a given \(i \in \{1, \ldots, N\} \) and all \(j \in \{1, \ldots, N\} \), compute \(E^{(i,j)} \) and \(P^{(i,j)} \) as:

\[
E^{(i,j)} = \min_{(k,l) \in N_{ij}} E^{(k,l)} + E^{(i,j)}_{(k,l)}, \quad P^{(i,j)} = \arg\min_{(k,l) \in N_{ij}} E^{(k,l)} + E^{(i,j)}_{(k,l)}
\]

where \(E^{(i,j)} \) denotes in short the energy of the linear path from vertex \((t_k,t_l)\) to vertex \((t_i,t_j)\), and \(N_{ij} \) is a set of admissible vertex indices connecting to \((i,j)\).

At the end of this process, one obtains the minimal energy \(E^{(N,N)} \). A corresponding optimal path \(\gamma \in \Gamma \) can be simply recovered by backtracking from the final vertex \((1,1)\) to \((0,0)\), the index of the vertices in \(\gamma \) being specifically \((i_q,j_q) = (N,N)\), \((i_{q-1},j_{q-1}) = P^{(i_q,j_q)}\), \ldots, \((i_1,j_1) = P^{(i_2,j_2)}\) and \((i_0,j_0) = P^{(i_1,j_1)} = (0,0)\).

The choice of search neighborhood \(N_{ij} \) in the above procedure has a critical impact on the resulting complexity. To find the true minimum over all possible paths in \(\Gamma \), one should technically take in \((22)\), \(N_{ij} = \{(k,l) : 0 \leq k \leq i - 1, 0 \leq k \leq j - 1\} \) for any \(1 \leq i, j \leq N - 1 \). This would result however in a high numerical cost of the order \(O(N^4) \). It can be significantly reduced by restricting \(N_{ij} \) to a smaller set of admissible neighboring vertices. For instance, authors in \([47] \) propose to limit the search to a small square of size \(3 \times 3 \) with upper right vertex \((i-1,j-1)\). While this constrains the possible minimal and maximal slope of the estimated \(\gamma \), it is generally sufficient in most cases and reduces the numerical complexity to \(O(N^2) \), making the whole approach efficient in practice. Note that alternative dynamic programming algorithms have been investigated more recently, in particular in the work of \([11] \) which makes use of adaptive strips neighborhoods to further reduce the complexity to \(O(N) \).

3.3.2 Discretizing the diffeomorphism group and using gradient based methods

A second method, which has been proposed in the context of the SRV-metric in \([28, 29] \) and for higher-order Sobolev metrics in \([3] \), is also based on a direct discretization of the diffeomorphism group and the space of curves. However, in contrast with the previous section where diffeomorphisms of \(D \) were discretized as piecewise linear functions, this method offers more flexibility. For example one could choose – similarly to Section 3.1 – B-spline representations of reparametrizations. Considering the distance function \([14] \) on the space of unparametrized curves in this discretization leads again to a finite-dimensional minimization problem, which can be tackled by standard methods.

In the case when one has no access to an explicit formula for the geodesic distance – such as for higher-order Sobolev metrics – it is computationally efficient to view this problem as a joint minimization problem over the (discretized) path of curves

\[
c(t,u) = \sum_{i,j} c_{ij} B_i(t) C_j(u)
\]

and the reparametrization function

\[
\gamma(u) = \sum_k \gamma_k D_k(u).
\]

Here \(B_i, C_j \) and \(D_k \) are the chosen basis functions for the discretization of the path of curves and the reparametrization function respectively. One difficulty in this context is that the composition of the (discretized) target \(c(1,u) \) and the (discretized) reparametrization function \(\gamma(u) \) typically leaves
Figure 3: Principal bundle structure formed by the space of curves and their shapes. The horizontal geodesic c_h between c_0 and the optimally matched $c_1 \circ \gamma$ projects to a geodesic $[c] = p(c_h)$ between the corresponding shapes.

the chosen discretization space. Thus one has to consider the corresponding projection operator that projects this reparametrized curve back to the discretization space. This procedure can lead to numerical phenomena such as loss of features in the target curve. For more details we refer to the presentation in [3].

3.3.3 Iterative “horizontalization” method

Another possibility is to exploit the principal bundle structure formed by the space of parameterized curves and their shapes. The fibers of this bundle are the sets of all the curves that are identical modulo reparametrization, i.e. that project onto the same shape (Figure 3). Any tangent vector $h \in T_c \text{Imm}(D,M)$ can be decomposed as the sum of a vertical part $h^{\text{ver}} \in \text{Ver}_c$ tangent to the fiber, which has an action of reparameterizing the curve without changing its shape, and a horizontal part $h^{\text{hor}} \in \text{Hor}_c = (\text{Ver}_c)^\perp_{G}$, G-orthogonal to the fiber. While the horizontal subspace depends on the choice of the reparametrization invariant metric G, the vertical subspace is always the same:

$$\text{Ver}_c = \ker T_c \pi = \{mv := mc'/|c'|: m \in C^\infty([0,1], R), m(0) = m(1) = 0\}.$$

Paths of curves with horizontal velocity vectors are called horizontal, and horizontal geodesics for G project onto geodesics of the shape space for the Riemannian metric induced by the Riemannian submersion $p : \text{Imm}([0,1], M) \to S([0,1], M)$, see e.g. [43, Section 26.12]. A natural way to solve the boundary value problem in the shape space is by fixing the parameterization c_0 of one of the curves and computing the horizontal geodesic linking c_0 to the closest reparametrization $c_1 \circ \gamma$ of the second curve c_1, by iterative ”horizontalizations” of geodesics. Proofs of the statements made here regarding this approach can be found in [40]. The idea is to decompose any path of curves $t \mapsto c(t) \in \text{Imm}(D,M)$ as

$$c(t,u) = c^{\text{hor}}(t,\gamma(t,u)) \quad \forall (t,u) \in [0,1] \times D,$$

where $t \mapsto c^{\text{hor}}(t)$ is a horizontal path and is reparameterized by a path of diffeomorphisms $t \mapsto \gamma(t) \in \text{Diff}^+(D)$. By taking the horizontal part of a path, one decreases the length.

Proposition 3.1. Let G be a reparametrization invariant metric. The horizontal part c^{hor} of a path of curves c is at most the same length for G as c:

$$L_G(c^{\text{hor}}) \leq L_G(c).$$

Therefore, by taking the horizontal part of the geodesic linking two curves c_0 and c_1, we obtain a shorter, horizontal path linking c_0 to the fiber of c_1, which gives a closer (in terms of G) representative $\tilde{c}_1 = c_1 \circ \gamma(1)$ of the target curve. However it is no longer a geodesic path. By computing the geodesic between c_0 and this new representative \tilde{c}_1, we are guaranteed to reduce once more the distance to the
fiber. The optimal matching algorithm simply iterates these two steps, and converges to a horizontal geodesic. At each step, the horizontal part of the geodesic can be computed using the following result.

Proposition 3.2. The path of diffeomorphisms \(t \mapsto \gamma(t) \in \text{Diff}_+(D) \) that transforms a path \(t \mapsto c(t) \in \text{Imm}(D, M) \) into a horizontal path is solution of the PDE

\[
\partial_t \gamma(t, u) = \frac{m(t, u)}{\|\partial_u c(t, u)\|} \partial_u \gamma(t, u),
\]

with initial condition \(\gamma(0) = \text{Id} \), and where \(m(t, u) := |\partial u c^{\text{err}}(t, u)| \).

This method can be applied as long as the horizontal part of a tangent vector (or equivalently, the norm of the vertical component \(m \)) can be computed. For the class of \(C^{a,b} \)-elastic metrics, and for the SRV-metric in particular, \(m \) can be found by solving an ODE. An example of geodesic between curves in the hyperbolic plane estimated with this approach is shown in Figure 3 (right).

3.3.4 Relaxation of the exact matching problem

A last possible approach to deal with reparametrization invariance in the computation of geodesics and distances on the quotient space (without directly optimizing over reparametrizations) is to introduce a relaxation term for the end time constraint providing a measure of discrepancy up to reparametrization to the target curve \(c_1 \). This is inspired by similar methods used earlier on in diffeomorphic registration frameworks, see e.g. [25, 23, 21, 49, 32] among other references. But it can also be applied in the context of elastic metric matching, as recent works such as [11, 6] have shown. In this section, we will assume that curves are immersed in the Euclidean space \(\mathbb{R}^d \).

Going back to the original formulation of the geodesic distance given by (10) and (11), the idea is to start by replacing the end time boundary constraint that \(c(1) = c_1 \circ \gamma \) for some \(\gamma \in \text{Diff}_+(D) \) using a surrogate fidelity (or discrepancy) term \(\tilde{d}(c(1), c_1) \). Assuming that \(\tilde{d}(c(1), c_1) \) is invariant to the parametrization of both \(c(1) \) and \(c_1 \), i.e. that \(\tilde{d} \) defines a distance on the quotient space, one gets the equivalence between the above boundary condition and \(\tilde{d}(c(1), c_1) = 0 \). Then we may choose to relax the constraint and consider the alternative variational problem:

\[
\inf \int_0^1 G_c(\partial_t c, \partial_t c) dt + \lambda \tilde{d}(c(1), c_0)^2
\]

over all paths \(c : [0, 1] \to \text{Imm}(D, \mathbb{R}^d) \) such that \(c(0) = c_0 \). Note that minimization over \(\gamma \in \text{Diff}_+(D) \) is no longer needed here and a minimizing path \(c \) of (25) is by construction a geodesic between \(c_0 \) and \(c(1) \approx c_1 \) in the quotient space \(S(D, \mathbb{R}^d) \). In the above, \(\lambda > 0 \) denotes a fixed weighting coefficient between the two terms which controls the accuracy of the matching to the target \(c_1 \). Other strategies such as augmented Lagrangian methods can also be used to adapt the choice of this parameter in order to reach a prescribed matching accuracy, cf. [4].

Remark 3.3. In the specific case of the SRV-metric of Section 2.2.1, the variational problem (25) can be even further simplified to a minimization problem over the end curve \(c_1 = c(1) \in \text{Imm}(D, \mathbb{R}^d) \) instead of a full curve path. Indeed, using the properties of the SRV transform, it is easy to see that the problem can be equivalently rewritten as:

\[
\inf_{c_1} \|Q(c_1) - Q(c_0)\|^2_{L^2} + \lambda \tilde{d}(c_1, c_0)^2
\]

and leads, after discretization, to a simple minimization problem over the vertices of the deformed curve. This formulation is for instance implemented in [2]. Note that this could also apply in principle to other simplifying transforms associated to different choices of elastic parameters.

This entire approach relies on the discrepancy distance \(\tilde{d} \) which, in particular, needs to be itself independent of curve parametrization. This may sound redundant as this is also the purpose of the
quotient metric construction we have been discussing all along in this chapter. Yet one can construct discrepancy metrics that are both simple and easy to compute in practice, i.e. that do not require solving an extra optimization problem, which makes them ideally suited as auxiliary terms within the elastic matching problem. While different approaches are possible, the key strategy developed in the aforementioned references consists in embedding any unparametrized curve into a certain measure space and recovering explicit distances from kernel metrics on this measure space. We will however not elaborate on the actual construction of such embeddings and metrics; the interested reader may refer to the recent survey of [20].

Unlike the methods discussed in the previous sections, this relaxed approach does not necessarily compute the exact distance between the two curves. Yet it can prove particularly useful in situations where one or both curves are corrupted by noise or small topological perturbations that may otherwise considerably affect the estimated value of the distance.

3.4 Open source implementations
Several of the methods and algorithms described above are available in open source software packages. Here is a (non-exhaustive) list of some of these:

- **Second order elastic metrics for curves in** \(\mathbb{R}^d \): Implementation of a three-parameter family of metric (including in particular the family of \(G^{a,b} \)-metric) is available at:

 https://github.com/h2metrics/h2metrics

 Both the inexact matching approach of Section 3.3.4 and the gradient based approach of Section 3.3.2 are implemented.

- **SRV framework for curves in** \(\mathbb{R}^d \): several different implementations for this classical method exist. This includes in particular the R-package by J. Tucker

 https://cran.r-project.org/web/packages/fdasrvf/

 and the Matlab implementation of M. Bruveris as available on github:

 https://github.com/martinsbruveris/libsrvf

 In the second one, both the dynamic programming approach of Section 3.3.1 and the explicit solution formula discussed in Remark 2.13 are implemented.

- **SRV metric for curves in homogenous spaces and Lie groups**: Code for several choices for the target space \(M \) can be found at:

 https://github.com/zhesu1/SRVFhomogeneous

 Optimal reparametrizations are estimated using the dynamic programming approach of Section 3.3.1.

4 Conclusion
In this chapter, we reviewed the current state-of-the-art of curve comparison through intrinsic quotient Riemannian metrics for Euclidean as well as non-Euclidean curves. We discussed the theoretical framework, in particular the questions of non-degeneracy of Sobolev metrics and geodesic completeness of the corresponding infinite-dimensional manifolds before analyzing more specifically the case of the SRV-metric for which the variational expression of the distance considerably simplifies. We also
discussed several numerical approaches that have been proposed for the computation of such metrics in the different settings and for which several open source implementations are available.

There are many directions in which this framework can be extended. One is the construction and computation of corresponding intrinsic metrics between surfaces modulo reparametrizations. Due to their significantly more complex structure than curves, this is a subject of ongoing and active investigations both from the mathematical and numerical side: we refer interested readers e.g. to [30, 36, 53, 57, 34].

Going back to curves, as noted in Remark 2.9, there have been several extensions and variations of the SRV framework which introduced simplifying transforms for other first-order metrics than the specific one considered in Section 2.2. We finally mention the recent work of [60] which explored the possibility to combine intrinsic Sobolev metrics with extrinsic diffeomorphism-based metrics within a hybrid framework.

Acknowledgements

M. Bauer was partially supported by nsf-grant 1912037 (collaborative research in connection with nsf-grant 1912030). N. Charon is supported by nsf-grant 1819131. Eric Klassen gratefully acknowledges the support of the Simons Foundation-grant 317865.

References

[1] M. Bauer, M. Bruveris, N. Charon, and J. Møller-Andersen. A relaxed approach for curve matching with elastic metrics. *ESAIM: Control, Optimization and Calculus of Variations*, 25:72, 2019.

[2] M. Bauer, M. Bruveris, P. Harms, and P. W. Michor. Vanishing geodesic distance for the Riemannian metric with geodesic equation the KdV-equation. *Annals of Global Analysis and Geometry*, 41(4):461–472, 2012.

[3] M. Bauer, M. Bruveris, P. Harms, and J. Møller-Andersen. A numerical framework for Sobolev metrics on the space of curves. *SIAM J. Imaging Sci.*, 10(1):47–73, 2017.

[4] M. Bauer, M. Bruveris, S. Marsland, and P. W. Michor. Constructing reparameterization invariant metrics on spaces of plane curves. *Differential Geom. Appl.*, 34:139–165, 2014.

[5] M. Bauer, M. Bruveris, and P. W. Michor. Overview of the geometries of shape spaces and diffeomorphism groups. *Journal of Mathematical Imaging and Vision*, 50(1-2):60–97, 2014.

[6] M. Bauer, N. Charon, and P. Harms. Inexact elastic shape matching in the square root normal field framework. In *Geometric Science of Information*, pages 13–20, 2019.

[7] M. Bauer, P. Harms, and P. W. Michor. Sobolev metrics on shape space of surfaces. *J. Geom. Mech.*, 3(4):389–438, 2011.

[8] M. Bauer, P. Harms, and P. W. Michor. Fractional sobolev metrics on spaces of immersions. *arXiv preprint arXiv:1909.08657*, 2019.

[9] M. Bauer, P. Harms, and S. C. Preston. Vanishing distance phenomena and the geometric approach to SQG. *arXiv preprint arXiv:1805.04401 To appear in ARMA*, 2018.

[10] M. F. Beg, M. I. Miller, A. Trouvé, and L. Younes. Computing large deformation metric mappings via geodesic flows of diffeomorphisms. *International journal of computer vision*, 61:139–157, 2005.

[11] J. Bernal, G. Dogan, and C. R. Hagwood. Fast dynamic programming for elastic registration of curves. In *2016 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW)*, pages 1066–1073, 2016.
[12] E. Binz and H. R. Fischer. The manifold of embeddings of a closed manifold. In *Differential geometric methods in mathematical physics*, pages 310–325. Springer, 1981.

[13] M. Bruveris. Completeness properties of Sobolev metrics on the space of curves. *J. Geom. Mech.*, 7(2):125–150, 2015.

[14] M. Bruveris. Optimal reparametrizations in the square root velocity framework. *SIAM Journal on Mathematical Analysis*, 48(6):4335–4354, 2016.

[15] M. Bruveris, P. W. Michor, and D. Mumford. Geodesic completeness for Sobolev metrics on the space of immersed plane curves. In *Forum of Mathematics, Sigma*, volume 2. Cambridge University Press, 2014.

[16] M. Bruveris and J. Møller-Andersen. Completeness of length-weighted Sobolev metrics on the space of curves, 2017. arXiv:1705.07976.

[17] E. Celledoni, S. Eidnes, and A. Schmeding. Shape analysis on homogeneous spaces: a generalised srvt framework. In *The Abel Symposium*, pages 187–220. Springer, 2016.

[18] E. Celledoni, M. Eslitzbichler, and A. Schmeding. Shape analysis on lie groups with applications in computer animation. *Journal of Geometric Mechanics*, 8(3):273–304, 2016.

[19] V. Cervera, F. Mascaro, and P. W. Michor. The action of the diffeomorphism group on the space of immersions. *Differential Geometry and its Applications*, 1(4):391–401, 1991.

[20] N. Charon, B. Charlier, J. Glaunès, P. Gori, and P. Roussillon. Fidelity metrics between curves and surfaces: currents, varifolds, and normal cycles. In *Riemannian Geometric Statistics in Medical Image Analysis*, pages 441 – 477. Academic Press, 2020.

[21] N. Charon and A. Trouvé. The varifold representation of non-oriented shapes for diffeomorphic registration. *SIAM journal of Imaging Science*, 6(4):2547–2580, 2013.

[22] I. L. Dryden and K. V. Mardia. *Statistical Shape Analysis, with Applications in R*. Second Edition. John Wiley and Sons, Chichester, 2016.

[23] S. Durrleman, P. Fillard, X. Pennec, A. Trouvé, and N. Ayache. Registration, atlas estimation and variability analysis of white matter fiber bundles modeled as currents. *NeuroImage*, 55(3):1073–1090, 2010.

[24] Y. Eliashberg and L. Polterovich. Bi-invariant metrics on the group of Hamiltonian diffeomorphisms. *Internat. J. Math*, 4(5):727–738, 1993.

[25] J. Glaunès, A. Qiu, M. Miller, and L. Younes. Large deformation diffeomorphic metric curve mapping. *International Journal of Computer Vision*, 80(3):317–336, 2008.

[26] U. Grenander. *General pattern theory: A mathematical study of regular structures*. Clarendon Press Oxford, 1993.

[27] R. S. Hamilton. The inverse function theorem of Nash and Moser. *American Mathematical Society*, 7(1):65–122, 1982.

[28] W. Huang, K. A. Gallivan, A. Srivastava, and P.-A. Absil. Riemannian optimization for registration of curves in elastic shape analysis. *Journal of Mathematical Imaging and Vision*, 54(3):320–343, 2016.

[29] W. Huang, K. A. Gallivan, A. Srivastava, P.-A. Absil, et al. Riemannian optimization for elastic shape analysis. In *Mathematical theory of Networks and Systems*, 2014.
[30] I. H. Jermyn, S. Kurtek, H. Laga, and A. Srivastava. Elastic shape analysis of three-dimensional objects. *Synthesis Lectures on Computer Vision*, 12(1):1–185, 2017.

[31] R. L. Jerrard and C. Maor. Vanishing geodesic distance for right-invariant sobolev metrics on diffeomorphism groups. *Annals of Global Analysis and Geometry*, 55(4):631–656, 2019.

[32] I. Kaltenmark, B. Charlier, and N. Charon. A general framework for curve and surface comparison and registration with oriented varifolds. *Computer Vision and Pattern Recognition (CVPR)*, 2017.

[33] D. G. Kendall. Shape manifolds, procrustean metrics, and complex projective spaces. *Bulletin of the London Mathematical Society*, 16(2):81–121, 1984.

[34] M. Kilian, N. J. Mitra, and H. Pottmann. Geometric modeling in shape space. In *ACM Transactions on Graphics (TOG)*, volume 26, page 64. ACM, 2007.

[35] E. Klassen, A. Srivastava, M. Mio, and S. H. Joshi. Analysis of planar shapes using geodesic paths on shape spaces. *IEEE transactions on pattern analysis and machine intelligence*, 26(3):372–383, 2004.

[36] S. Kurtek, E. Klassen, Z. Ding, S. W. Jacobson, J. L. Jacobson, M. J. Avison, and A. Srivastava. Parameterization-invariant shape comparisons of anatomical surfaces. *IEEE Transactions on Medical Imaging*, 30(3):849–858, 2011.

[37] S. Kurtek and T. Needham. Simplifying transforms for general elastic metrics on the space of plane curves. Preprint, 2018.

[38] S. Lahiri, D. Robinson, and E. Klassen. Precise matching of PL curves in \mathbb{R}^N in the square root velocity framework. *Geometry, Imaging and Computing*, 2(3):133–186, 2015.

[39] A. Le Brigant. Computing distances and geodesics between manifold-valued curves in the SRV framework. *Journal of Geometric Mechanics*, 9(2):131–156, 2017.

[40] A. Le Brigant. A discrete framework to find the optimal matching between manifold-valued curves. *Journal of Mathematical Imaging and Vision*, 61(1):40–70, 2019.

[41] A. C. Mennucci, A. Yezzi, and G. Sundaramoorthi. Properties of Sobolev-type metrics in the space of curves. *Interfaces Free Bound.*, 10(4):423–445, 2008.

[42] P. W. Michor. *Manifolds of differentiable mappings*, volume 3. Birkhauser, 1980.

[43] P. W. Michor. *Topics in differential geometry*, volume 93. American Mathematical Soc., 2008.

[44] P. W. Michor and D. Mumford. Vanishing geodesic distance on spaces of submanifolds and diffeomorphisms. *Doc. Math.*, 10:217–245, 2005.

[45] P. W. Michor and D. Mumford. Riemannian geometries on spaces of plane curves. *J. Eur. Math. Soc.*, 8:1–48, 2006.

[46] P. W. Michor and D. Mumford. An overview of the riemannian metrics on spaces of curves using the Hamiltonian approach. *Applied and Computational Harmonic Analysis*, 23(1):74–113, 2007.

[47] W. Mio, A. Srivastava, and S. Joshi. On shape of plane elastic curves. *Int. J. Comput. Vision*, 73(3):307–324, July 2007.

[48] G. Nardi, G. Peyré, and F.-X. Vialard. Geodesics on shape spaces with bounded variation and Sobolev metrics. *SIAM Journal on Imaging Sciences*, 9(1):238–274, 2016.

[49] P. Roussillon and J. Glaunès. Kernel metrics on normal cycles and application to curve matching. *SIAM Journal on Imaging Sciences*, 9(4):1991–2038, 2016.
[50] A. Srivastava and E. Klassen. *Functional and Shape Data Analysis*. Springer Series in Statistics, 2016.

[51] A. Srivastava, E. Klassen, S. H. Joshi, and I. H. Jermyn. Shape analysis of elastic curves in Euclidean spaces. *IEEE T. Pattern Anal.*, 33(7):1415–1428, 2011.

[52] J. Su, S. Kurtek, E. Klassen, and A. Srivastava. Statistical analysis of trajectories on Riemannian manifolds: bird migration, hurricane tracking and video surveillance. *Ann. Appl. Stat.*, 8(1):530–552, 2014.

[53] Z. Su, M. Bauer, S. C. Preston, H. Laga, and E. Klassen. Shape analysis of surfaces using general elastic metrics. *ArXiv preprint*, 2019.

[54] Z. Su, E. Klassen, and M. Bauer. Comparing curves in homogeneous spaces. *Differential Geometry and its Applications*, 60:9–32, 2018.

[55] G. Sundaramoorthi, A. Yezzi, and A. C. Mennucci. Sobolev active contours. *International Journal of Computer Vision*, 73(3):345–366, 2007.

[56] A. Trouvè. Diffeomorphisms groups and pattern matching in image analysis. *Intern. Jour. of Computer Vision*, 28(3):213–221, 1998.

[57] A. B. Tumpach, H. Drira, M. Daoudi, and A. Srivastava. Gauge invariant framework for shape analysis of surfaces. *IEEE transactions on pattern analysis and machine intelligence*, 38(1):46–59, 2015.

[58] A. B. Tumpach and S. C. Preston. Quotient elastic metrics on the manifold of arc-length parameterized plane curves. *Journal of Geometric Mechanics*, 9(2):227–256, 2017.

[59] L. Younes. Computable elastic distances between shapes. *SIAM Journal on Applied Mathematics*, 58(2):565–586, 1998.

[60] L. Younes. Hybrid Riemannian metrics for diffeomorphic shape registration. *Annals of Mathematical Sciences and Applications*, 3(1):189–210, 2018.

[61] L. Younes, P. W. Michor, J. Shah, and D. Mumford. A metric on shape space with explicit geodesics. *Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur.*, 19(1):25–57, 2008.

[62] Z. Zhang, E. Klassen, and A. Srivastava. Phase-amplitude separation and modeling of spherical trajectories. *Journal of Computational and Graphical Statistics*, 27(1):85–97, 2018.

[63] Z. Zhang, J. Su, E. Klassen, H. Le, and A. Srivastava. Rate-invariant analysis of covariance trajectories. *Journal of Mathematical Imaging and Vision*, 60(8):1306–1323, 2018.