DEVELOPING A NEW APPROACH FOR EVALUATION OF BUSINESS PROCESSES IN A FUZZY ENVIRONMENT

Ghasem BAGHERZADEH a, Kaveh M. CYRUS b, Abdolreza YAZDANI-CHAMZINI c, Algita MIEČINSKIENĖ d

 a,bDepartment of Industrial Engineering & Management Systems, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran
 cYoung Researchers and Elite Club, South Tehran Branch, Islamic Azad University, Tehran, Iran
 dDepartment of Finance Engineering, Faculty of Business Management, Vilnius Gediminas Technical university, Saulėtekio al. 11, LT-10223 Vilnius, Lithuania

Received 11 May 2016; accepted 4 August 2016

Abstract. Evaluation of business processes plays a significant role in business development and improvement. Therefore, organizations need a systematic approach to evaluate all the changes through robust and powerful techniques that can formulate the relationship between the available information and the degree of the inherent uncertainty. In this paper, a set of operational variables are defined. Then, the SPSS software package is utilized to validate the gathered data. After that, the variables are categorized by the use of a clustering technique. Finally, five major factors are determined as the most effective components. According to the inherent uncertainty involved in the process of modelling, fuzzy set theory, a powerful mathematical tool is applied to handle the vagueness. In order to construct a knowledge base based on the fuzzy set theory, the linguistic concepts for each variable are defined. Lastly, membership functions are described and a set of fuzzy rules based on input-output parameters are written in MATLAB software environment. To demonstrate the potential application of the proposed approach, a real case study is illustrated. The results reflect the capability and effectiveness of the approach proposed in this paper.

Keywords: fuzzy inference system, assessment of BPM and BPR, bank payment systems, exploratory factor analysis, process improvement.

JEL Classification: D81, E42, M21, C02.
Introduction

Many productions were made by the skilled craftsmen until the mid-seventeenth century, and all phases of design, manufacture, marketing, sales and service in various industries such as textile, metals, jewellery, etc., was implemented in craftsmen's small workshop. After the invention of the steam engine by James Watt (1775), Adam Smith in his book – An Inquiry into the Nature and Causes of the Wealth of Nations – announced the appearance of industrial revolution (Smith 1776).

In the late of twentieth century, revolution and transformation appeared in organizations and companies. This era was famous for a sudden appearance and a sudden disappearance of wealth because of the continuous revolution. Gary Hamel encouraged managers to destroy – smash – the old models and business strategies and to create new ones (Binesh 2005; Hamel 2009). He believed that for doing so we should not regard a thing which is transforming as a stable thing. He mentioned that we should give up using the old patterns and change our perception. In order to do that, we should quit using current business models which stick to imagination and loyalty and create totally different models to compete with our traditional rivals. In order to reach the highest level of ability and be successful in competitions, organizations need to accept changes and use the cutting-edge technology. They should also reach the stable and continuous level in the business. One of the well-known ways to bring these ideas into practice is process reengineering.

One of the main differences of organization reengineering in comparison to other managerial approaches is the deep transformation that it brings in the way of doing activities in organizations. The implementation and deployment of the approach is more complex than other management approaches. Because of the complexity, approximately 70% of reengineering projects are failed in practice (Champy 1995). Due to this fact, reengineering can considered to be a high risk activity for organizations.

Successful organizations are inevitably forced to change their structure from function-oriented to process-oriented (Obolensky 1997). However, due to the uncertainty in creating additional value in future changes, implementation of temporary or permanent changes is always offending. For this reason, a systematic mechanism is needed to evaluate the designed business process (Podvizek, Podvezko 2014; Susniene, Purvinis 2015; Treki, Urban 2015; Morselli 2015; Meyer, Zimmermann 2011). It is obvious that every qualified person has his/her own design, but in the process restructuring, all the effects and consequences should be considered and experts should comment on it. In fact, these effects and consequences are the influential factors, including all the related aspects, in the success of business processes. Moreover, expert opinions and quantitative data play a key role in formulating a problem. The merit of using the fuzzy logic is to handle the uncertainty arisen from less/lack of information in the process of modelling (Efendigil 2009; Baležentis et al. 2012; Nouri et al. 2015; Stanujkic et al. 2015; Yazdani-Chamzini et al. 2014; Rikhtegar et al. 2014; Khandekar et al. 2015). This tool helps decision makers to express the input-output relationships in the form of a linguistic value instead of a crisp one.

In the beginning of the study, process-related indicators were identified by literature review process (Bausys et al. 2015; Bausys, Zavadskas 2015; Akhavan et al. 2015; Kaya,
Kahraman 2014; Ferreira et al. 2014; Binesh 2005) and interview with the academic and professional experts with a high background in the field of banking payment system. As well as, other indicators and process-related parameters by the use of questionnaires and experts’ information were identified. Then, the indicators by the use of statistical analysis were validated and the related weights were calculated. Next, a set of fuzzy input-output rules were established in MATLAB software environment. Lastly, in the final phase of the process, the priority of the suggested processes of banking payment system was determined by decision maker team. For better understanding, the process is shown in Figure 1. It should be noted that the process is modifiable and reviewable.

In this study, the Cronbach’s alpha in SPSS software was applied to measure the stability of the questionnaires. As well as, factor analysis was used to identify the evaluation indicators in order to find the main and influential factors of the final process.

Likewise, the fuzzy inference system, the heart of the system, is employed for scoring the processes by the use of MATLAB software. In this system, the values and their corresponding weights of each indicator are considered as input parameters for scoring the process.

![Fig. 1. The proposed methodology](image-url)
1. Examining the classified indicators to measure systems

Nowadays, performance measurement has caught the eyes of managers. As Neely mentions, the number of conferences held for measuring business performance by organizations such as the Institute for International Research (IIS) and Business Intelligence are increasing (Neely 1999). Also the Britain’s Royal Society of Arts, Manufacturers and Commerce (RSA) announced in its 1994 agreement that companies should measure their processes performance to achieve business success in the global marketplace.

By reviewing literatures, we can conclude that during these years numerous authors (e.g. Efendigil 2009, Obolensky 1997), have attempted to introduce various aspects of systems and proposed their indicators in accordance to them. Some authors tried to design a system for a specific goal by specifying some indicators and dimensions.

Imagine that there is lack of resources in a personal life; of course, it is a difficult life which people are encountered with a lot of challenges in it. There is more complexity and difficulty in organizations because of the emergence of more and more indicators and acute problems. Flexibility, time, cost and quality are the examples of the effective indicators in organization (Delgado et al. 2014). Also there are more effective indicators such as internal factors (performance) and external factors (effectiveness), lean manufacturing, competition, cost management, jobs creation and added value, growth and raises Viable Corporation.

Various indicators classifications are also done by different researchers (Neely, Gregory 1995; Kaplan, Norton 1992; Brignall et al. 1991; Globerson, Ellis 1996; Maskell 1989; Davis, Blenkinsop 1991; Wisner, Fawcett 1991; Fry, Cox 1989; Neely, Adams 2002; Neely 1998).

The specifications, business processes and the results should be monitored and scored in accordance to the demands of the stakeholders. Therefore, due to the given complexity of the process performance, the organization and its interactions with the environment can be understood. From another viewpoint or prospective, the leading indicators will provide a condition for breeding performance, while the lagging indicators just express the historical events. Therefore, it is essential to use an effective performance measurement system in organizations. The effectiveness of the business process in performance management depends on how to use the collected information (Teymori, Aliakbari 2009). Table 1 shows the total of 30 identified indicators and their references.

According to the key importance of the problem, during the late nineteenth century, a number of researches have been conducted to develop new indicators in order to measure the performance of business process, including Financial Ratio (Foster 1986), Triangular system of proportion of DuPont (Karami, Talaeei 2013), Activity-Based Costing (Neely, Gregory 1995), Performance measurement Matrix (Keegan et al. 1989), Benchmarking (Wainwright et al. 2005), Strategic measurement analysis and reporting technique (Lynch, Cross 1991), Brignall and Ballantine method (Brignall, Ballantine 1996), Balanced Scorecard (Kaplan, Norton 1992), Integrated Dynamic Performance measurement System (Ghelayini et al. 1997), Tableau de bord (Epstein, Manzoni 1997), Performance Prism (Neely et al. 2000), absolute and relative evaluation (Podziezko, Podvezko 2014), Analytical Hierarchy Process (Saaty 1980), the analytic network process (Boran et al. 2008), Fuzzy Analytic Hierarchy Process (Buckley 1985).
Table 1. The effective indicators of business processes

No	References	Process indicators	Corresponding questions in the questionnaire
1	Delgado *et al.* 2014; Kennerley, Neely 2002; Mansar, Reijers 2007; Trkman 2010; Zarandi 2011	Integration	1–2
2	Kennerley, Neely 2002; Delgado *et al.* 2014; Teymori, Aliakbari 2009; Reijers, Mansar 2005; Trkman 2010, Mansar, Reijers 2007; Reijers, Mansar 2005; Temponi, Harris 1998	Flexibility	3
3	Delgado *et al.* 2014; Motamedifar 2008	Security	4–13
4	Delgado *et al.* 2014; Zarandi 2011; Wu 2009	Agility	14
5	Delgado *et al.* 2014; Trkman 2010	Collectivity	15–16
6	Trkman 2010, Wu 2009, Treki, Urban 2015	Risk management	17–20
7	Delgado *et al.* 2014; Mansar, Reijers 2007	Centralization	21–22
8	Mansar, Reijers 2007; Trkman 2010	Bureaucratic formality	23
9	Delgado *et al.* 2014; Mansar, Reijers 2007; Trkman 2010	Team working	24
10	Neely *et al.* 2000; Teymori, Aliakbari, 2009; Trkman 2010	Innovation	25
11	Neely *et al.* 2000; Delgado *et al.* 2014	Internal customer satisfaction	26–29
12	Delgado *et al.* 2014, Teymori, Aliakbari 2009; Reijers, Mansar 2005; Temponi, Harris 1998; Zarandi 2011	Saving time	30
13	Zarandi 2011; Afrazeh 2011	Capital knowledge	31–33
14	Delgado *et al.* 2014; Zarandi 2011; Teymori, Aliakbari 2009; Bourne 2000; Temponi, Harris 1998; Trkman 2010	Profitability	34–35
15	Delgado *et al.* 2014; Reijers, Mansar 2005; Mansar, Reijers 2007; Trkman 2010; Zarandi 2011; Temponi, Harris 1998	Saving money	36–37
16	Wu 2009	Senior management satisfaction	38–39
17	Zarandi 2011; Mansar, Reijers 2007	Senior management support	40–41
18	Delgado *et al.* 2014	User friendly	42–43
19	Delgado *et al.* 2014; Spremic, Zmirak 2008; Mansar, Reijers 2007; Maull 2003	Maturity	44–45
20	Delgado *et al.* 2014; Mansar, Reijers 2007	Self control	46–47
21	Delgado *et al.* 2014; Mansar, Reijers 2007	Contribution	48–50
22	Delgado *et al.* 2014; Trkman 2010	Competition	51
23	Kennerley, Neely 2002; Delgado *et al.* 2014; Mombeini *et al.* 2014	Software and hardware performance	52–54
24	Delgado *et al.* 2014; Teymori, Aliakbari 2009; Susniene, Purvinis 2015	Reliability	55–56
2. An approach for evaluating BPM and BPR by fuzzy inference system

2.1. Exploratory factor analysis results

Descriptive and inferential statistics. In the present study, the techniques of descriptive statistics including frequency tables, the analyzed data related to demographics, Cronbach’s alpha formula and factor analysis are used to investigate the problem under consideration. Some descriptive statics are presented as follows:

- The most frequent ages are between 36–45 years old.
- Levels of education contain of 37.3% college graduate, 61.4% postgraduate, and 1.2% PhD.
- Statistical society comprises of 69.9% expert, 12% deputy director, 4.8% head of department, 4.8% senior management, and 8.4% other positions.
- The highest frequency is related to working experience between 11 and 20 years.
- The rate of gender of respondents is 79.5% male and 20.5% female.

Reliability. The designed questionnaire was distributed among 95 experts in the field of processes reengineering and 83 questionnaires were returned (the return rate is 83%). The reliability of the questionnaire was evaluated and the results are presented in Table 2. The total Cronbach’s alpha number for this questionnaire was equal to 0.963, which is a suitable amount for this study.

Validity. Exploratory factor analysis method was employed to ensure the validity of the questionnaires. Generally, it can be said that the exploratory factor analysis pursues three goals (Anderson, Gerbing 1988):

- Data reduction,
- Structure detection,
- Divergent validity.

The results based on the factor analysis show that the Kaiser-Meyer-Olkin (KMO) index is greater than 0.5. This shows that the number of samples is sufficient for factor analysis (Field 2000).
Table 2. Cronbach's alpha indicators

Cronbach's Alpha	Variable	No of items
0.724	Integration	2
0.884	Security	10
0.508	Collectivity	2
0.821	Risk management	4
0.875	Centralization	2
0.851	Internal customer satisfaction	4
0.895	Capital knowledge	3
0.84	Profitability	2
0.504	Saving money	2
0.685	Senior management satisfaction	2
0.794	Senior management support	2
0.834	User friendly	2
0.749	Maturity	2
0.793	Self control	2
0.809	Contribution	2
0.865	Software and hardware performance	2
0.682	Reliability	2
0.827	Transparency	2
0.793	Training courses and continuous	2
0.81	Customer satisfaction	3
0.934	Feedback and monitoring	2
0.963	All	67

The parameters are grouped according to the results of the confirmatory factor analysis. The average indicator for the 67 questions was related to 30 main indicators. The KMO values are calculated for 30 indicators that are shown in Table 3.

Table 3. KMO and Bartlett's Test

Kaiser-Meyer-Olkin Measure of Sampling Adequacy.	0.791	
Bartlett's Test of Sphericity	Approx. Chi-Square	1277.329
	df	435
	Sig.	0.000

The value of 0.791 for the KMO indicator is a confirmation for adequacy of accomplishing a factor analysis method. Then, the numbers of factors are determined. As seen in Table 4, only 5 factors have the special values more than one. These 5 factors together explain 70% of variability and show that they are qualified to be selected.

Each parameter is allocated to these 5 factors by the use of the factor matrix or rotated factor matrix in Table 5.
Table 4. 30 indicators of factor analysis

Initial Eigenvalues	Extraction Sums of Squared Loadings	Rotation Sums of Squared Loadings						
Total	% of Variance	Cumulative %	Total	% of Variance	Cumulative %	Total	% of Variance	Cumulative %
1	12.615	42.051	42.051	12.615	42.051	42.051	5.134	17.114
2	2.398	7.995	50.046	2.398	7.995	50.046	4.792	15.972
3	2.161	7.203	57.249	2.161	7.203	57.249	4.411	14.704
4	1.540	5.132	62.381	1.540	5.132	62.381	4.196	13.987
5	1.363	4.544	66.924	1.363	4.544	66.924	1.544	5.148
6	0.998	3.816	70.741					
7	0.980	3.266	74.007					
8	0.896	2.988	76.995					
9	0.791	2.636	79.630					
10	0.708	2.360	81.990					
11	0.653	2.177	84.167					
12	0.633	2.109	86.276					
13	0.495	1.649	87.925					
14	0.469	1.564	89.489					
15	0.408	1.360	90.849					
16	0.394	1.314	92.163					
17	0.365	1.218	93.381					
18	0.284	0.948	94.329					
19	0.269	0.898	95.226					
20	0.255	0.848	96.075					
21	0.225	0.750	96.825					
22	0.186	0.621	97.446					
23	0.175	0.585	98.030					
24	0.135	0.451	98.481					
25	0.126	0.420	98.901					
26	0.105	0.351	99.252					
27	0.079	0.263	99.515					
28	0.059	0.196	99.712					
29	0.047	0.158	99.870					
30	0.039	0.130	100.000					
Table 5. Factor rotation for 30 indicators

Component	1	2	3	4	5
var1	-0.123	0.450	0.550	0.375	-0.064
var2	0.302	0.259	0.658	-0.041	-0.060
var3	-0.016	0.786	0.152	0.090	-0.059
var4	0.100	0.083	0.786	0.323	0.128
var5	0.296	0.281	0.649	0.202	-0.224
var6	0.147	0.606	0.491	0.231	-0.075
var7	0.015	0.215	0.229	0.279	-0.681
var8	0.072	0.174	0.749	0.213	-0.048
var9	-0.006	-0.012	0.066	0.762	-0.313
var10	0.115	0.049	0.451	0.680	0.012
var11	0.335	0.232	0.206	0.625	0.164
var12	0.220	0.689	0.095	0.277	-0.197
var13	0.284	0.223	0.217	0.797	-0.113
var14	0.053	0.509	0.149	0.413	0.604
var15	0.293	0.645	0.226	0.176	0.053
var16	0.413	0.233	0.210	0.580	0.173
var17	0.511	0.249	0.616	0.187	0.044
var18	0.299	0.707	0.186	0.073	0.076
var19	0.424	0.241	0.071	0.568	0.127
var20	0.340	0.482	0.452	-0.033	0.159
var21	0.596	0.161	0.233	0.440	0.017
var22	0.407	-0.063	0.355	0.388	0.404
var23	0.666	0.291	0.336	0.133	0.064
var24	0.458	0.643	0.160	0.016	0.014
var25	0.614	0.467	0.215	0.159	-0.178
var26	0.610	0.116	0.044	0.427	0.045
var27	0.873	0.069	-0.014	0.157	-0.098
var28	0.524	0.345	0.328	0.199	0.200
var29	0.578	0.512	0.135	-0.011	0.339
var30	0.670	0.256	0.470	0.202	0.060
Based on the exploratory factor analysis and the rotation factor loadings, 30 indicators were classified into 5 groups, as described in Table 6.

Finally, after accomplishing the exploratory factor analysis, based on the experts’ opinion, the following factors have been selected as the representation of those 30 indicators and the obtained average weights are shown in Table 7:

- Time,
- Reliability,
- Flexibility,
- Human Factor,
- Profitability.

Table 6. The table of the business process with average indicators

Factor 1	Accelerate the process	Feedback and monitoring	Software and hardware performance	Transparency	Training courses and continuous	Contribution	Customer satisfaction	Adaptation	Senior management support	Competition
	2.922	3.075	3.164	2.865	2.623	2.793	3.1	2.951	2.969	2.924

Factor 2	Security	User friendly	Saving time	Saving money	Reliability	Risk reduction	Self-control
	3.243	2.914	3.086	2.774	3.176	3.115	3.085

Factor 3	Agility	Bureaucratic formality	Flexibility	Collectivity	Integration	Knowledge capital	Team working	Innovation	Employee satisfaction	Senior management satisfaction	Maturity	Centralization
	2.986	3.182	3.026	3.12	3.222							

Factor 4	Knowledge capital	Team working	Innovation	Employee satisfaction	Senior management satisfaction	Maturity	Centralization
	2.877	2.812	2.839	2.739	2.853	2.746	2.762

Factor 5	Profitability
	2.913

Table 7. Final average weight

Factor	Time (T)	Reliability (R)	Flexibility (F)	Human (H)	Profitability (P)
Mean	2.9381	3.0523	3.1146	2.8063	2.9135
Number					
2.2. **Fuzzy Inference System is designed for system measurement**

Generally, the fuzzification takes place in the first phase of fuzzy systems by membership functions; so that, the input indicators are converted to linguistic variables. Then, using fuzzy rules, the fuzzy input is converted to the fuzzy output, which is done by the inference engine. Then in the final stage, the output of the fuzzy inference engine is defuzzified by using a defuzzification process. These steps are depicted in Figure 2.

![Fig. 2. Overview of the fuzzy systems](image)

Fuzzy sets and membership functions are defined to design a fuzzy inference system. Since the main five factors time, reliability, flexibility, human and profitability, which are the most effective factors on business process, were identified as the five factors of fuzzy set for the implementation of the process of the business evaluation. In order to construct the fuzzy model, the input and output parameters using membership functions are defined and then the fuzzy rules are written. At last, the output values were produced by using centroid defuzzification method.

The overview of the fuzzy inference system is shown in Figure 3. The left side graph shows the membership function of the fuzzy sets that is used as the input of the fuzzy inference system. The middle graph represents the inference rules that derive the system and convert the inputs into outputs. The right side graph represents the evaluation process of the organization. In this paper, MATLAB software package (2011 version) is used to analyze and design the fuzzy inference system.

In the following section, the membership functions of the fuzzy sets are described. There are three ways to select the membership functions (Zarandi 2010):

- Ask an expert about fitting of the sample with membership function.
- Using curve-fitting method for determining the best compliance with the selected sample and selecting the membership functions such as triangular functions, trapezoidal, bell or etc.
- Using techniques of fuzzy and neural-fuzzy network for creating and optimizing the parametric membership functions.

In this paper, the experts’ opinion is applied to select the type of membership function. According to the experts’ opinion, the triangular membership function is adopted. For achieving the aim, three linguistic terms including low (L), medium (M) and high (H) for each of the membership functions are defined. Table 8 represents how to use these linguistic variables.
Table 8. Triangular membership function

TFN	Linguistic variable
(0,3,5)	Low
(3,5,7)	Average
(5,7,10)	High

Figure 4 graphically shows the membership functions defined for input and output variables.

Fig. 3. Input and output of the fuzzy inference system engine

Fig. 4. Membership function of the input and output variables
Each of the variables of the fuzzy set is defined between 1 and 10. Each of the numbers in the range of functions is between zero and one. As above-mentioned, the functions are individually designed and used for each of the input and output parameters.

2.3. Fuzzy inference system rules definition

Then, it is necessary to define fuzzy inference rules to design the fuzzy inference system. Fuzzy inference rules are defined in the form of the IF – THEN rules. These rules show the relation between fuzzy sets and the effectiveness of each of them on the final rating measurement process. In other words, the input data are converted to output data by the use of these rules. To generate the rules, the first questionnaire is designed to define the relationship between input and output components. As well as, the weighting factors for indicators are allocated to obtain the calculated average (final weight of each factor over the total weight of the factors). It should be noted that the upper weight of each variable is applied to calculate the weight of each linguistic variable. In accordance to the adopted factors, each linguistic variable has a different weight as mentioned in Table 9.

T	R	F	H	P	Total	
factor	time	reliability	flexibility	human	profitability	
average number	2.9381	3.0523	3.1146	2.8063	2.9135	14.8248
normal number	0.198189	0.205893	0.210090	0.189296	0.196533	1

The weight of each factor is multiplied with the upper bound of each linguistic variable to obtain the rules. The following example is provided to clarify the matter.

The relative weight of T is considered between zero and one. Regarding to 3 terms of the linguistic variables, the first step should be determining the weight of T in low, medium and high intervals. This process is repeated for the next 4 factors.

Finally, the results of the different combinations of these 5 factors are concluded. For example, when the T is low, the R is medium, the F is low, the H is medium and the P is high, the output value is M.

A number of the rules were defined according to the determined levels in order to define the fuzzy rules. Then, by using the current data, some rules were set to calculate the output for the determined input. In other words, a matrix for each of the factors is needed that is resulted from multiplying the linguistic values with the weight of each factor in order to create the fuzzy rules. According to the five final inputs and three linguistic variables, the number of all possible rules is \((3 \times 3 \times 3 \times 3 \times 3) = 243\). Some fuzzy rules are shown in Table 10.

This table is applied to calculate an output level for each input combination. In this step, fuzzy logic toolbox in MATLAB software is used to define fuzzy inference rules. The AND operator was used to define rules due to the fact that there is reasonable and appropriate level of co-expression at the same time. Figure 5 shows fuzzy logic toolbox rules that the output is based on the input combinations in Table 10.
Table 10. Making rules based on factors

Role	The weight of each factor + Fuzzy number	Time	Reliability	Flexibility	Human	Profitability	Total	Output
1	0.06606 0.06863 0.07003 0.06310 0.06551	Low	Low	Low	Low	Low	0.33333	Low
2	0.06606 0.06863 0.07003 0.13102	Low	Low	Low	Low	Medium	0.39884	Medium
3	0.06606 0.06863 0.07003 0.12620 0.06551	Low	Low	Medium	Low	Low	0.39643	Medium
4	0.06606 0.06863 0.07003 0.1930 0.06551	Low	Low	Low	High	Low	0.45953	Medium
5	0.06606 0.06863 0.07003 0.12620 0.19653	Low	Low	Low	High	Low	0.52745	Medium
6	0.06606 0.06863 0.07003 0.13102	Low	Low	Low	Medium	Low	0.52504	Medium
7	0.06606 0.06863 0.07003 0.12620 0.13102	Low	Low	Medium	Low	Medium	0.46194	Medium
8	0.06606 0.06863 0.07003 0.12620 0.13102	Low	Low	Medium	Low	Medium	0.46194	Medium
9	0.06606 0.06863 0.07003 0.12620 0.13102	Low	Low	Medium	Low	Medium	0.46194	Medium
10	0.06606 0.06863 0.07003 0.12620 0.13102	Low	Low	Medium	Low	Medium	0.46194	Medium
11	0.06606 0.06863 0.07003 0.12620 0.13102	Low	Low	Medium	Low	Medium	0.46194	Medium
12	0.06606 0.06863 0.07003 0.12620 0.13102	Low	Low	Medium	Low	Medium	0.46194	Medium
13	0.06606 0.06863 0.07003 0.12620 0.13102	Low	Low	Medium	Low	Medium	0.46194	Medium
14	0.06606 0.06863 0.07003 0.12620 0.13102	Low	Low	Medium	Low	Medium	0.46194	Medium
15	0.06606 0.06863 0.07003 0.12620 0.13102	Low	Low	Medium	Low	Medium	0.46194	Medium
16	0.06606 0.06863 0.07003 0.12620 0.13102	Low	Low	Medium	Low	Medium	0.46194	Medium
17	0.06606 0.06863 0.07003 0.12620 0.13102	Low	Low	Medium	Low	Medium	0.46194	Medium
18	0.06606 0.06863 0.07003 0.12620 0.13102	Low	Low	Medium	Low	Medium	0.46194	Medium
19	0.06606 0.06863 0.07003 0.12620 0.13102	Low	Low	Medium	Low	Medium	0.46194	Medium
20	0.06606 0.06863 0.07003 0.12620 0.13102	Low	Low	Medium	Low	Medium	0.46194	Medium
21	0.06606 0.06863 0.07003 0.12620 0.13102	Low	Low	Medium	Low	Medium	0.46194	Medium
22	0.06606 0.06863 0.07003 0.12620 0.13102	Low	Low	Medium	Low	Medium	0.46194	Medium
23	0.06606 0.06863 0.07003 0.12620 0.13102	Low	Low	Medium	Low	Medium	0.46194	Medium
24	0.06606 0.06863 0.07003 0.12620 0.13102	Low	Low	Medium	Low	Medium	0.46194	Medium
25	0.06606 0.06863 0.07003 0.12620 0.13102	Low	Low	Medium	Low	Medium	0.46194	Medium

For example, this condition is assigned to the first fuzzy rule: “IF time factor in the implementation is low, reliability is low, flexibility is low, human factor is low and profitability is low, THEN the success evaluation of the business process is low.”
Fig. 5. Part of the fuzzy rules definition of fuzzy inference systems in MATLAB
3. Designing the business process for payment system (Case Study)

The second questionnaire (with the same question from the first questionnaire) which is designed to scoring the business process in the area of payment systems was distributed among experts. We asked the expert team to assign a score between one and ten based on each indicator for each of the business processes. Then, the weight of the five main factors was calculated.

It should be noted that the Interbank Information Transfer Network (IITN) system is an electronic banking clearance and automated payments system used in Iran (Named SHETAB). The SHETAB system was introduced in 2002 with the intention of creating a uniform backbone for the Iranian banking system to handle ATM, POS and other card-based transactions.

The primary business process is shown in Figure 6. It is improved and shown in Figure 7 and the reengineering is shown in Figure 9. Designing the processes is done by the use of Visual Paradigm software that supports Business Process Model and Notation (BPMN). The main goal is to reduce delays and prevent organizations from paying additional costs. Also, the goal is to divide the primary activity into simpler activities to combine the two consecutive operations and to eliminate the couple loops and cycles (Zarandi 2011).

The improved business process, in which the role of information technology and information sending via internet is emphasized, is depicted in Figure 7. The business process reengineering, as shown in Figure 9, illustrates how to eliminate the customers’ presence in order to reduce the duration of the business process from 2 days to 3 hours. It should be noted that when there is a discrepancy in IITN, the problem is resolved within 2 working days.

Each of the other indicators is in interaction with business process and experts’ opinions are reflected through questionnaires in the fuzzy system.

3.1. Analysis of the first business process

The first business process in Figure 7 is actually the reformed version of the previous business process in Figure 6.

Based on Figure 7, the results of the business process evaluation are shown in Table 11. The input function domain, a number between 0 and 10, is the system input.

Factor	weight
Time	4.56
Reliability	5.15
Flexibility	3.48
Human	5.16
Profitability	6.17
After calculating the factors weight and inserting them in MATLAB software, the score of the reformed business process can be obtained. The weights of the five factors in fuzzy logic toolbox of MATLAB software can be seen in Figure 8. Each of the lines in the figure shows a rule and each column is related to an input variable which is shown on the left side. The value of the output variable is shown on the right side. The red vertical lines can be used to set the input.

Fig. 6. The primary IITN (SHETAB) business process
Fig. 7. The improved IITN (SHETAB) business process

Fig. 8. Final score of IITN in the reformed business process
Finally, the software reflects the final score of the output variable. The software examines the fuzzy inference rules after receiving the input. Then, it determines the output level by finding the related rule. The output should be defuzzified to show the system score in the form of a crisp number. The centroid method is used for the defuzzification process. The centroid point is the area that its right and left surface under the arc are the same. It is automatically determined by the software.

As shown in Figure 8, the value of 5.94 is obtained as the first business process scoring by entering the weight of the business factors as inputs of fuzzy inference system.

3.2. Analysis of the second business process

The designed business reengineering process can be seen in Figure 9.

The results of the second questionnaire of business reengineering process (Fig. 9) can be seen in Table 12.

It's time to calculate the IITN business reengineering process score by entering the results in MATLAB software. The results can be seen in Figure 10.

![Fig. 9. IITN (SHETAB) Reengineering](image_url)
Table 12. Weights of the reengineering business process factors

Factor	weight
Time	6.46
Reliability	8.16
Flexibility	7.18
Human	7.29
Profitability	6.68

As seen in Figure 10, the value of 7.37 is obtained as the second business process scoring by entering the weight of the IITN business reengineering process factors as the inputs of fuzzy inference system.

Table 13. Final score of business process

Process	Final score
Modified	5.94
Reengineering	7.37

It can be seen in Table 13 that business reengineering process score is higher.
Conclusions

The present study has the following results and advantages in comparison to the previous studies:

- Providing a useful system to enable organizations to reach success by entering their own input indicators.
- The collected indicators that are effective in business process selection are more comprehensive than the indicators in previous studies.
- Previous studies were forced to eliminate some of the indicators, but in this study – because of its approach – there was no need to eliminate any indicator.
- The fuzzy approach and fuzzy inference system that are used to score the business processes are more useful approaches for obtaining the better results.
- Fuzzy logic approach increases the reliability of the business process evaluation and prevents the organizations from paying additional costs.
- Because of using experts’ opinion and determined indicators, this approach can be used in all generative and service-provided organizations.

Therefore, organizations should evaluate their own designed processes in banking payment systems by using the five factors in order to be successful.

According to the results of the present study, the following recommendations seem necessary for future research:

- The weight of each indicator in non-linear form in addition to the selected and codified indicators helps to the clarification of the business process score.
- Using a larger Statistical population and examining more banks and organizations helps to the system be comprehensively evaluated.
- The results of the present study should be evaluated by a wider community of experts and, if possible, at the international level.
- We need intelligent systems and a combination of fuzzy logics and neural networks to optimize the system. If it is done, the system will provide us with the best business processes.
- The organizations can localize the main factors in their own business processes by using exploratory factor analysis and fuzzy logic methods.

References

Afrazeh, A. 2011. Knowledge management. Tehran: Amirkabir University of Technology.

Akhavan, P.; Barak, S.; Maghsoudlou, H.; Antucheviciene, J. 2015. FQSPM-SWOT for strategic alliance planning and partner selection; case study in a holding car manufacturer company, Technological and Economic Development of Economy 21(2): 165–185. http://dx.doi.org/10.3846/20294913.2014.965240

Anderson, J. C.; Gerbing, D. W. 1988. Structural equation modeling in practice: a review and recommended two-step approach, Psychological Bulletin 103: 411–423. http://dx.doi.org/10.1037/0033-2909.103.3.411
Azizi, F.; Bagherzadeh, G.; Mombeini, H. 2014. Relationship marketing strategy and customers’ satisfaction in the third millennium organizations (case study: banking Industry), *International Journal of Scientific Management and Development* 2(12): 728–732.

Baležentis, A.; Baležentis, T.; Brauers, W. K. M. 2012. MULTIMOORA-FG: a multi-objective decision making method for linguistic reasoning with an application to personnel selection. *Informatica* 23(2): 173–190.

Bausys, R.; Zavadskas, E. K. 2015. Multicriteria decision making approach by VIKOR under interval neutrosophic set environment, *Economic Computation and Economic Cybernetics Studies and Research* 49(4): 33–48.

Bausys, R.; Zavadskas, E. K.; Kaklauskas, A. 2015. Application of neutrosophic set to multicriteria decision making by COPRAS, *Economic Computation and Economic Cybernetics Studies and Research* 49(2): 91–105.

Binshe, M. 2005. Gary Hamel ideas, *Tadbir Monthly Magazine* 157: 55–59.

Boran, S.; Göztepe K.; Yavuz, E. A study on election of personnel based on performance measurement by using analytic network process (ANP). *International Journal of Computer Science and Network Security* 8(4): 333–338.

Bourne, M. 2000. Designing, implementing and updating performance measurement systems, *International Journal of Operations & Production Management* 20(7): 754–771. http://dx.doi.org/10.1108/01443570010330739

Brignall, S.; Ballantine, J. 1996. Performance measurement in service business revisited, *International Journal of Service Industry Management* 7(1): 6–31. http://dx.doi.org/10.1108/09564239610109393

Brignall, T. J.; Fitzgerald, L.; Johnston, R.; Silvestro, R. 1991. Product costing in service organisations, *Management Accounting Research* 2(4): 227–248. http://dx.doi.org/10.1016/S1044-5005(91)70036-X

Buckley, J. J. 1985. Fuzzy hierarchical analysis, *Fuzzy Sets and Systems* 17(3): 233–247. http://dx.doi.org/10.1016/S0165-0114(85)90090-9

Champy, J. 1995. *Reengineering management: the mandate for new leadership*. New York: Harper Business.

Davis, L.; Blenkinsop, S. 1991. The road to continuous improvement, *Insight* 4(3): 23–26. http://dx.doi.org/10.1057/ori.1991.21

Delgado, A.; Weber, B.; Ruiz, F.; Guzmán, I. G. R.; Piattini, M. 2014. An integrated approach based on execution measures for the continuous improvement of business processes realized by services, *Information and Software Technology* 56(2): 134–162. http://dx.doi.org/10.1016/j.infsof.2013.08.003

Efendigil, O. S. K. C. 2009. A decision support system for demand forecasting with artificial neural networks and neuro-fuzzy models: a comparative analysis, *Expert Systems with Applications* 36(3): 6697–6707. http://dx.doi.org/10.1016/j.eswa.2008.08.058

Epstein, M. J.; Manzoni, J. F. 1997. The balanced scorecard and tableau de bord: translating strategy into action, *Management Accounting* (August): 28–36.

Ferreira, F. A. F.; Santos, S. P.; Rodrigues, P. M. M.; Spahr, R. W. 2014. How to create indices for bank branch financial performance measurement using MCDA techniques: an illustrative example, *Journal of Business Economics and Management* 15(4): 708–728. http://dx.doi.org/10.3846/16111699.2012.701230

Field, A. 2000. *Discovering statistics using SPSS for Windows*. New Delhi: Sage Publication.

Foster, G. 1986. *Financial statement analysis*. 2nd ed. New Jersey: Prentice Hall.

Fry, T. D.; Cox, J. F. 1989. Manufacturing performance; local versus global measures, *Production and Inventory Management Journal* 2: 52–56.
Ghalayini, A. M.; Noble, J. S.; Crowe, T. J. 1997. An integrated dynamic performance measurement system for improving manufacturing competitiveness, *International Journal of Production Economics* 48(3): 207–225. http://dx.doi.org/10.1016/S0925-5273(96)00093-X

Globerson, S.; Ellis, S. 1996. Analysis of learning profiles in project environments, in *Project Management Institute Conference*, October 1996, Boston.

Hamel, G. 2009. The architects of the digital age, *Tadbir Monthly Magazine* 155: 78–83.

Kaplan, R. S.; Norton, D. P. 1992. The balanced scorecard measures that drive performance, *Harvard Business Review* 70(1): 71–79.

Karami, G. R.; Talaei, L. 2013. Predictability of stock returns using financial ratios in the companies listed in Tehran Stock Exchange, *International Research Journal of Applied and Basic Sciences* 5(3): 360–372.

Kaya, I.; Kahraman, C. 2014. A comparison of fuzzy multicriteria decision making methods for intelligent building assessment, *Journal of Civil Engineering and Management* 20(1): 59–69. http://dx.doi.org/10.3846/13923730.2013.801906

Keegan, D. P.; Eiler, R. G.; Jones, C. R. 1989. Are your performance measures obsolete?, *Management Accounting* 70(12): 45–50.

Kennerley, M.; Neely, A. 2002. A framework of the factors affecting the evolution of performance measurement systems, *International Journal of Operations & Production Management* 22(11): 1222–1245. http://dx.doi.org/10.1108/01443570210450293

Khandekar, A. V.; Antuchevičienė, J.; Shankar, Ch. 2015. Small hydro-power plant project selection using fuzzy axiomatic design principles, *Technological and Economic Development of Economy* 21(5): 756–772. http://dx.doi.org/10.15837/ijccc.2011.3.2128

Lynch, R. L.; Cross, K. F. 1991. *Measure up! Yardsticks for continuous improvement.* Oxford: Basil Blackwell.

Mansar, L. S.; Reijers, H. A. 2007. Best practices in business process redesign: use and impact, *Business Process Management Journal* 13(2): 193–213. http://dx.doi.org/10.1108/14637150710740455

Maskell, B. 1989. Just in time: the new strategy. Carol Stream-Illinois, United States: Hitchcock Publishing.

Mau, R. 2003. Factors characterising the maturity of BPR programmes, *International Journal of Operations & Production Management* 23(6): 596–624. http://dx.doi.org/10.1108/01443570310476645

Meyer, A.; Zimmermann, H. 2011. Applications of fuzzy technology in business intelligence, *International Journal of Computers Communications & Control* 6(3): 428–441. http://dx.doi.org/10.15837/ijccc.2011.3.2128

Mombeini, H.; Bagherzadeh, G.; Ghorbani, R. 2014. The role of information technology in enhancing partnerships of manager – employee, *International Journal of Management and Humanity Sciences* 3(11): 3579–3585

Morselli, A. 2015. The decision-making process between convention and cognition, *Economic & Sociology* 8(1): 205–221. http://dx.doi.org/10.14254/2071-789X.2015/8-1/16

Motamedifar, M. 2008. *Implementation of information security standard (ISO 27001) in organizations.* Tehran: Scientific-Educational Center of Applied Industrial Research of Iran.

Neely, A. 1998. Three models of measurement: theory and practice, *International Journal of Business Performance Management* 1(1): 47–64. http://dx.doi.org/10.1504/IJBPM.1998.004544

Neely, A. 1999. The performance measurement revolution: why now and what next?, *International Journal of Operations & Production Management* 19: 205–228. http://dx.doi.org/10.1108/01443579910247437

Neely, A. D.; Adams, C. 2002. *The performance prism: the scorecard for measuring and managing business success.* Financial Times Prentice Hall.
Neely, A. D.; Bourne, M.; Kennerley, M. 2000. Performance measurement system design: developing and testing a process-based approach, *International Journal of Operations & Production Management* 20(10): 1119–1145. http://dx.doi.org/10.1108/0143570010343708

Neely, A.; Gregory, M. 1995. Performance measurement system design: a literature review and research agenda, *International Journal of Operations & Production Management* 15(4): 80–116. http://dx.doi.org/10.1108/014357951083622

Nouri, A. F.; Khalili Esbouei, S.; Antucheviciene, J. 2015. A hybrid MCDM approach based on fuzzy ANP and fuzzy TOPSIS for technology selection, *Informatica* 26(3): 369–388. http://dx.doi.org/10.15388/Informatica.2015.53

Obolensky, N. 1997. *Re-engineering and managing change in organizations*. First Edition. Tehran: Arvin published.

Podviezko, A.; Podvezko, V. 2014. Absolute and relative evaluation of socio-economic objects based on multiple criteria decision making methods, *Inzinerine ekonomika-Engineering economics* 25(5): 522–529. http://dx.doi.org/10.5755/j01.ee.25.5.6624

Reijers, H. A.; Mansar, L. S. 2005. Best practices in business process redesign: an overview and qualitative evaluation of successful redesign heuristics, *International Journal of Management Science* 33(4): 283–306. http://dx.doi.org/10.1016/j.omega.2004.04.012

Rikhtegar, N.; Mansouri, N.; Oroumieh, A. A.; Yazdani-Chamzini, A.; Zavadskas, E. K.; Kildiene, S. 2014. Environmental impact assessment based on group decision-making methods in mining projects, *Economic Research-Ekonomska Istrazivanja* 27(1): 378–392. http://dx.doi.org/10.1080/1331677X.2014.966971

Saaty, T. L. 1980. *The analytic hierarchy process*. New York: McGraw Hill.

Smith, A. 1776. *An inquiry into the nature and causes of the wealth of nations*. 1st ed. London: W. Strahan. http://dx.doi.org/10.1093/oseo/instance.00043218

Spremic, M.; Zmirak, Z. 2008. IT and business process performance management: case study of ITIL implementation in finance service industry, in *30th International Conference on Information Technology Interfaces*, 23–26 June 2008, Cavtat, Croatia. http://dx.doi.org/10.1109/iti.2008.4588415

Stanujkic, D.; Zavadskas, E. K.; Tamosaityte, J. 2015. An approach to measuring website quality in the rural tourism industry based on Atanassov Intuitionistic Fuzzy Sets, *E & M Ekonomie a Management* 18(4): 184–199. http://dx.doi.org/10.15240/tul/001/2015-4-013

Susniene, D.; Purvinis, O. 2015. Empirical insights on understanding stakeholder influence, *Journal of Business Economics and Management* 16(4): 845–860. http://dx.doi.org/10.3846/16111699.2013.785974

Temponi, C.; Harris, C. 1998. Overview of fuzzy systems in reengineering in *Fuzzy Information Processing Society – NAIPS*, 1998 Conference of the North American, 20–21 August 1998, 110–114. http://dx.doi.org/10.1109/NAIPS.1998.715547

Teymori, E.; Aliakbari, M. H. 2009. *Measuring business performance*. Tehran: Science and Technology University.

Treki, A.; Urban, B. 2015. Drivers of effective renewable energy policies, *Engineering Economics* 26(3): 306–314.

Trkman, P. 2010. The critical success factors of business process management, *International Journal of Information Management* 30(2): 125–134. http://dx.doi.org/10.1016/j.ijinfomgt.2009.07.003

Wainwright, D.; Green, G.; Mitchell, E.; Yarrow, D. 2005. Towards a framework for benchmarking ICT practice, competence and performance in small firms, *The International Journal for Library and Information Services* 6(1): 39–52. http://dx.doi.org/10.1080/14678040510588580

Wisner, J. D.; Fawcett, S. E. 1991. Linking firm strategy to operating decisions through performance measurement, *Production and Inventory Management Journal* (Third quarter): 5–11.
Wu, D. 2009. Measuring performance in Small and Medium Enterprises in the information and communication technology industries. Doctoral thesis, RMIT University.

Yazdani-Chamzini, A.; Shariati, Sh.; Yakhchali, S. H.; Zavadskas, E. K. 2014. Proposing a new methodology for prioritising the investment strategies in the private sector of Iran, Economic Research-Ekonomska Istrazivanja 27(1): 320–345. http://dx.doi.org/10.1080/1331677X.2014.947150

Zarandi, F. M. H. 2011. Modeling of large organizations: principles and applications. Tehran: Amirkabir University of Technology.

Zarandi, F. M. H. 2010. Fuzzy set theory principles and functions. Tehran: Amirkabir University of Technology.

Ghasem BAGHERZADEH is a graduate of M.S. from IE & MS in Amirkabir University of Technology, Tehran, Iran. He has published some papers and articles regarding banking industry. He is working in R & D division in bank Keshavarzi of Iran (BKI). He has done some projects related to Payment systems. His main interests are BPR & BPM, Information Technology and Fuzzy Systems.

Kaveh M. CYRUS is the tenure Assistance Professor at Department of Industrial Engineering & Management Systems (IE & MS) Department in Amirkabir University of Technology, Tehran, Iran, since 1990. He has obtained his PhD from Amirkabir University of Technology and his ED and MS from University of Southern California. He has been the director of Pars Engineering Management Research Center since 2006. He has published three books related to Strategic Management, Leadership and Organization and has published and presented many papers and articles regarding Enterprise Integration Engineering and the above-mentioned subjects in International Journals, Conferences and Seminars. He has developed and published a competitive model for local companies and organizations strategic planning facing country entering WTO (World Trading Organization). He is the member of Iranian Society of Industrial Engineering (co-founder and one of first Board of Directors’ members) and Iran Management Association (ex-Chairman of the Board of Directors).

Abdolreza YAZDANI-CHAMZINI is PhD student in the Dept of Management, Research Assistant of Fateh Research Group, Tehran-Iran. Author of more than 60 research papers. In 2011 he graduated from the Science and Engineering Faculty at Tarbiat Modares University, Tehran-Iran. His research interests include decision making, forecasting, modeling, and optimization.

Algita MIEČINSKIENĖ is PhD in Economics (Vilnius Gediminas Technical University, Lithuania), an Associate Professor at the Department of Finance Engineering, a head of Finance Engineering Department at Vilnius Gediminas Technical University (Lithuania). She is an author of more than 50 research papers. Her research interests are business decisions in uncertain environment, multinational corporate economics and finance, effective pricing, foreign direct investment (greenfield investment, mergers and acquisitions) and finance engineering.