The INDUSEM Position Paper on the Emerging Electronic Waste Management Emergency

Nayer Jamshed, Praveen Aggarwal, Sagar Galwankar, Sanjeev Bhoi
Department of Emergency Medicine, All India Institute of Medical Sciences, New Delhi, India; Department of Emergency Medicine, Florida State University, Sarasota Memorial Hospital, Sarasota, Florida, USA

Abstract

Electronic waste or e-waste is a serious and concerning issue globally. Exponential increase in the production of these instruments has created a man-made problem of e-waste; United Nations has called it as “tsunami of e-waste.” Informal management and unsafe disposals have compounded the problem further. The hazardous chemicals, metals, and organic pollutants released from e-waste can lead to serious health consequences such as organ damage, genetic defects, neuropsychiatric illness, and cancer. Problem of e-waste is colossal and should be seen as a major public health emergency. In India, use of electronic instruments has increased considerably with less focus on formal waste management and safe disposal. This has created a major health hazard. International health agencies, Indian Council of Medical Research, e-waste regulating bodies, academic institutes, and various government and non-government organizations should join hands together to effectively manage the problems of e-waste. Swachh Bharat Abhiyan started by the honorable Prime Minister should consider e-waste as the topmost priority in terms of its safe management and disposal.

Keywords: Electronic waste, health hazard, recycling, research, waste management

INTRODUCTION

Across the globe, the electronic and electrical devices are being used in staggering quantity.[1] These include numerous products such as computers and laptops, household appliances, batteries, medical devices including cardiac monitors, toys, mother board, mobile phones, and cathode ray tubes.[2] The list is endless; it is just to enumerate few of them. Exponential increase in their utility has created a new man-made problem of electronic waste or e-waste. E-waste contains potentially hazardous substances produced due to unsafe and inappropriate management practices related to dismantling, recycling, and disposal of end-of-life electrical and electronic equipment. As new electronic and electric gadgets are continually introduced into the market, consumers get enticed to change their existing products that are either damaged or outdated. The resulting mass of electronic products discarded has become the fastest-growing waste in the world.[3] Improper electronic waste management, may lead to contaminations in terms of air, soil, water pollution, which may adversely affect human health and environment. Large amount of electronic waste may also cause global warming and climate change which is one of the major challenges faced by both developing as well as developed countries.

MAGNITUDE OF THE PROBLEM

Globally, 50 million metric tons of e-waste was estimated to be generated in 2018.[4] If it remains unchecked, this could reach up to 120 million tonnes by the year 2050; that is why United Nations has called it as “tsunami of e-waste.”[5] According to 2014 estimates, the top e-waste producer was the United States, which generated 7.1 million tonnes (Mt), followed by China, which generated nearly 6.0 Mt. When the amount of e-waste produced was considered per person, the countries within Europe generated an average of 15.6 kg of e-waste, closely followed by Oceania 15.2 kg and American

Address for correspondence: Dr. Praveen Aggarwal, Department of Emergency Medicine, All India Institute of Medical Sciences, New Delhi, India. E-mail: peekay_124@hotmail.com

This is an open access journal, and articles are distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 License, which allows others to remix, tweak, and build upon the work non-commercially, as long as appropriate credit is given and the new creations are licensed under the identical terms.

For reprints contact: reprints@medknow.com

How to cite this article: Jamshed N, Aggarwal P, Galwankar S, Bhoi S. The INDUSEM position paper on the emerging electronic waste management emergency. J Emerg Trauma Shock 2020;13:25-9.

Submitted: 19-Oct-2019. Revised: 22-Oct-2019. Accepted: 22-Oct-2019. Published: 19-Mar-2020.
Constituents of E-Waste

E-waste is extremely hazardous compared to many of the municipal wastes because they contain hundreds of components made of deadly chemicals. Types of pollutants and their source of origin from various sources of e-waste is shown in Table 1.[18-20]

E-Waste in India

India is the fifth largest electronic waste producer in the world, with an estimate of approximately 2 million tons of e-waste generation annually. Undisclosed amount of e-waste, imported from other countries has further compounded the problem.[9] According to Manufacturer’s Association for Information Technology, India, in 2007 an estimated, 50,000 tons of e-waste was imported from developed countries as “charity for reuse.”[10] This imported e-waste mostly ends up in informal recycling facilities either immediately or after the reused product is discarded.

Metropolitan cities produce the major chunk of these e-waste with 24% of the estimated e-waste produced from Mumbai, while Delhi, Bengaluru and Chennai production of e-waste were 21.2%, 10.1% and 9.1%, respectively.[11] Majority of e-waste in India is generated from computer devices which account for nearly 70% of the e-waste, while 12% comes from the telecom sector, 8% from medical equipment and 7% from electric equipment. The government, public sector companies, and private sector companies generate nearly 75% of electronic waste, with the contribution of individual household being only 16%.[12]

In India, use of mobile phones, tablets, and laptops are on the exponential rise. According to estimates, 1.012 billion active mobile connections were present in January 2018.[13] With changing consumer behavior and rapid economic growth, it is estimated that India will generate 5.2 million tonnes of e-waste by 2020.[14]

Recycling of Electronic Waste

E-waste is often used for possible refurbishment, remanufacture and reuse various parts for repair. It is estimated that only 25% of valuable metals are recovered during informal e-waste recycling while 75% of this waste are junks.[15] Formal recycling of e-waste which does not compromise the health of workers and the environment, is resource intensive, and is rarely practiced. Instead, informal recycling is often practiced to retrieve valuable elements such as gold, platinum, silver, palladium, and copper without the use of technology required to minimize exposure or protective equipment. This dismantling process leads to the release of dangerous chemicals, carcinogen, heavy metals, and gases which can adversely affect human health and environment.[16,17]

Types of pollutants	Components of e-waste
Brominated flame retardants	Fire retardants for electric and electronic equipment
Polychlorinated biphenyls	Electric motors
Dioxins	Combustion byproduct, capacitors
Polyaromatic hydrocarbons	Byproduct of combustion
Lead	Cathode ray tubes, television, and circuit boards
Chromium	Data tapes and floppy
Cadmium	Switches, batteries, and mobile phones
Nickel and lithium	Batteries
Mercury	Monitors, thermostats, sensors, and fluorescent lamps
Barium	Cathode ray tubes and fluorescent lamps
Beryllium	Computers, X-ray machines, and power supply boxes
Zink	Metal coatings and cathode ray tube
Polyvinyl chloride	Cable insulation
Free carbon radicals	Tones of printer
Rare earth metals	Cathode ray tubes
such as polychlorinated biphenyls, polybrominated diphenyl ethers, metallic nickel, chromium, cadmium and some polycyclic aromatic hydrocarbons are possibly carcinogenic and may cause cancer. Significant association has been reported between changes in mental health and e-waste pollutants. It includes behavioral disturbances, attention deficit hyperactivity disorder, aggressive behavior, and violent crimes.

Various health effects caused by e-waste pollutants are summarized in Table 2.

BIOTRANSFORMATION EFFECT OF E-WASTE

Soil microbes act as crucial moderators of geochemical cycling processes and pollutant remediation. Microbes are extremely crucial to the functioning of all the ecosystems and follow the hypothesis of “everything is everywhere,” hence can diffuse easily at a global scale. Microbial community diversity has a definite role in stress adaptation and functional stability of the ecosystem. These microbes may be severely affected by the e-waste contaminants. E-waste chemicals and metals inhibit microbial enzyme and their metabolic activities. It also weakens the resistance of soil microbial community, decreases microbial community diversity and their community structure. Ecotoxicological effect of e-waste has been shown in Guiyu region of South China where significant decrease in microbial biomass, nutrient cycling and basal respiration had been noted. Significant damage of the microbes by e-waste will affect the balance of the ecosystem, and it will not be limited to the contaminated area alone but will spread to a large area posing significant health issues.

E-WASTE CONTROL IN INDIA

Ministry of Environment and Forest has placed legal liability for reducing and recycling electronic waste with producers for the first time under the E-waste (Management and Handling) Rules 2011. The rule is effective from May 1, 2012. According to this regulation, producers will have to issue consumers with information on disposing of equipment after use to prevent e-waste from being dropped in domestic waste, and must make the public aware of the hazardous components present. Commercial consumers and government departments are now responsible for recycling the e-waste they generate. In 2018, government has amended the e-waste (management) rules in a move to facilitate and effectively implement the environmentally sound management of e-waste in India. Major objective of the amendment was to channelize the e-waste generated in the country towards authorized dismantlers and recyclers in order to formalize the e-waste recycling sector. Ministry of Environment has also directed the industrial sector to collect 10% of e-wastes through Extended Producer Responsibility Plan. Plan “Karo Sambhav” was started by integrating many non-government organizations and agencies, with an aim to enable people and institution to ethically recycle the e-wastes carefully while fortifying sustainable livelihoods for waste pickers. Swachh Bharat Abhiyan initiated by the honorable Prime Minister of India, also emphasized strongly on awareness to adverse effect of e-waste and aims to ensure 100% collection, scientific processing, recycling and safe disposal of these e-waste. In 2018, another rule was drafted by the Ministry to ban the import of second hand electronic equipment for charity and possible reuse, unfortunately ministry removed this clause from the final regulation of 2018. Despite the rules, they are openly flouted either deliberately or due to ignorance.

E-WASTE: WHAT IS THE WAY FORWARD

E-waste is a serious and concerning issue globally. It should be considered as a major public health emergency. It affects almost every organ, with increased genetic defect, neuropsychiatric

Table 2: E-waste pollutants and their health risks
E-waste pollutant
Polybrominated diphenyl ether and polybrominated biphenyls
Polychlorinated dibenzodioxins and polychlorinated dibenzo-p-dioxins
Polycyclic aromatic hydrocarbons
Lead
Chromium
Cadmium
Nickel
Manganese
Beryllium
Aluminum
Lithium
illnesses and malignancies. Collaborative efforts must be made to counteract the dangerous effect of e-waste on human health and environment. International health agencies, Indian Council of Medical Research, e-waste regulating bodies, academic institutes, and nongovernment organizations should join hands together with the national government to effectively manage the problems of e-waste. To reduce the health and environmental hazards of e-waste, following steps are recommended:

1. Create an E-Waste task force under the Indian Council of Medical Research involving experts from the Ministry of Electronic and Information Technology, Ministry of Environment and Forest, Ministry of Health, Public Health, Toxicology, Electronic industries, Judiciary, etc. It should have specific agenda to counter the danger posed by e-waste. It will create a health interface, to design, implement, and regulate policies and processes related to e-waste management. The task force should review the existing interventions and their effectiveness in protecting the health of e-waste workers and their families, and then try to find the knowledge gaps and technological shortcomings. It would formulate effective policies on requisite infrastructure and technical assistance to the industries for safe disposal of e-waste. It would recommend how to make the legislation to curb the unlawful import and recycling of the e-wastes effective. It would also suggest possible ways to minimize e-waste like redesigning of electric and electronic instruments to increase product life. Another objective of the task force would be to frame guidelines to improve diagnosis and management of persons exposed to e-waste.

2. One of the objectives of the task force will be to formulate research questions so as to increase the body of evidence of the health effects of e-waste exposure.

3. Increase funding to carry forward the research on e-waste and their adverse effect on living being and environment.

4. Develop affordable technologies to recycle e-wastes and their safe disposal.

5. Increase the number of e-waste recycling centers in India. Even though 178 registered e-waste recyclers accredited by the government exist, but for a population of 1.3 billion, it is grossly inadequate.

6. E-waste management centers should be governed with strict regulation under expert supervision. Experts should also include toxicologist to supervise the effects of e-waste.

7. E-waste management should be given top priority under the Swachh Bharat Abhiyan for the effective management and safe disposal.

Conclusion

Staggering production and use of electronic equipment has created the problem of e-waste. Contamination of the environment, persistence and bioaccumulation of these chemical pollutants warrant consideration to perceive it as a global public threat to health. E-waste is a major health hazard for children and vulnerable population like pregnant women, old age and people with co-morbid illnesses. Serious knowledge gaps exist between e-waste exposure and health outcomes which justify investment in research. Improved waste recovery methods, formal cycling and compliance to international norms will help in reducing the menace of e-waste.

Financial support and sponsorship

Nil.

Conflicts of interest

There are no conflicts of interest.

References

1. United Nations Environment Programme. E-Waste: Inventory Assessment Manual. Vol 1. Osaka, Japan: United Nations Environmental Programme, Division of Technology, Industry and Economics, International Environmental Technology Centre, 2007.

2. Council of the European Parliament. Directive 2002/96/EC of the European parliament and of the council of 27 January 2003 on waste electrical and electronic equipment (WEEE). Offical J Eur U. 2003;37:24-38.

3. Lundgren K. The Global Impact of e-Waste: Addressing the Challenge. International Labour Office, Programme on Safety and Health at Work and the Environment (Safe Work), Sectoral Activities Department (SECTOR). Geneva: International Labour Office; 2012. Available from: http://www.ilo.org/wcmsp5/groups/public/–eddialogue/–sector/documents/publication/wcms_196105.pdf. [Last accessed on 2019 Aug 25].

4. Baldé CP, Wang F, Kuehr R, Huisman J. The Global E-Waste Monitor 2014: Quantities, Flows and Resources; A Report, UNU-IAS institute for the Advanced Study Sustainability: Bonn, Germany: United Nations University; 2015. p. 1-74.

5. United Nations Environment Programme. Video of Achim Steiner. Available from: https://learning.climate-kic.org/en/courses/e-waste-moc. [Last accessed on 2019 Sep 26].

6. Breivik K, Armitage JM, Wania F, Jones KC. Tracking the global generation and exports of e-waste. Do existing estimates add up? Environ Sci Technol 2014;48:8735-43.

7. Perkins DN, Brune Dizzie MN, Nxele T, Sly PD. E-waste: A global hazard. Ann Glob Health 2014;80:286-95.

8. International Monetary Fund. World Economic Outlook, GDP, Current Prices, [Data Mapper]. Available from: www.imf.org/external/datamapper/NGDPD@WEO/OEMDC/ADVEC/WEOWORLD. [Last Accessed on 2018 Sep 26].

9. Joon V, Shahrawat R, Kapahi M. The emerging environmental and public health problem of electronic waste in India. J Health Pollut 2013;7:1-7.

10. MAIT. Third Quarter PC Sales Cross 1.39 Million Units; 2007. Available from: http://www.mait.com/pressupdate1.jsp?Id=69 viewed on 25/09/2019. [Last Accessed on 2018 Sep 25].

11. Sivaramanan S. E-waste management, disposal and its impacts on the environment. Univers J Environ Res Technol 2013;3:531-7.

12. Park M. Electronic Waste is Recycled in Appalling Conditions in India. The Conversation. Available from: www.downtoearth.org.in. [Last retrieved on 2019 Mar 27].

13. E-Waste Disposal Methods and How to Do It? Blog. Electronic Waste in India; 10 January, 2019. Available from: https://en.wikipedia.org/w/index.php?title=Electronic_waste_in_India&oldid=918595765. [Last retrieved on 2019 Sep 11].

14. India to Generate Over 5 Million Tonnes of e-Waste Next Year: ASSOCHAM-EY Study. The Asian Age; 3 March, 2019. Available from: https://en.wikipedia.org/w/index.php?title=Electronic_waste_in_India&oldid=918595765. [Last retrieved on 2019 Mar 26].

15. United Nations Environment Programme. Bali Declaration on Waste
Management for Human Health and Livelihood. Ninth Meeting of the Conference of the Parties to the Basel Convention on the Control of Transboundary Movements of Hazardous Wastes and their Disposal. Bali, Indonesia: United Nations Environment Programme; 23-27 Jun, 2008. Available from: http://www.basel.int/Portals/4/Basel%20Convention/docs/meetings/cop/cop9/bali-declaration/BaliDeclaration.pdf. [Last accessed on 2019 Sep 25].

16. Wong CS, Duzgoren-Aydin NS, Aydin A, Wong MH. Evidence of excessive releases of metals from primitive e-waste processing in Guiyu, China. Environ Pollut 2007;148:62-72.

17. Fu J, Zhou Q, Liu J, Liu W, Wang T, Zhang Q, et al. High levels of heavy metals in rice (Oryza sativa L.) from a typical E-waste recycling area in Southeast China and its potential risk to human health. Chemosphere 2008;71:1269-75.

18. Frazzoli C, Orisakwe OE, Dragone R, Mantovani A. Diagnostic health risk assessment of electronic waste on the general population in developing countries’ scenarios. Environ Impact Assess Rev 2010;30:388-99.

19. Liu G, Niu Z, Van Niekerk D, Xue J, Zheng L. Polycyclic aromatic hydrocarbons (PAHs) from coal combustion: Emissions, analysis, and toxicology. Rev Environ Contam Toxicol 2008;192:1-28.

20. Begum JA. Electronic waste (E-Waste) management in India: A review. IOSR J Humanit Soc Sci 2013;10:46-57.

21. Grant K, Goldizen FC, Sly PD, Brune MN, Neira M, van den Berg M, et al. Health consequences of exposure to e-waste: A systematic review. Lancet Glob Health 2013;1:e350-61.

22. Pronczuk de Garbino J, editor. Children’s Health and the Environment: A Global Perspective. A Resource Manual for the Health Sector. New York: World Health Organization; 2004.

23. Sepúlveda A, Schluep M, Renoud FG, Streicher M, Kuehr R, Hagelüken C, et al. A review of the environmental fate and effects of hazardous substances released from electrical and electronic equipments during recycling: Examples from China and India. Environ Impact Assess Rev 2010;30:28-41.

24. Zhang XL, Luo XJ, Liu HY, Yu LH, Chen SJ, Mai B. Bioaccumulation of several brominated flame retardants and decichlorane plus in waterbirds from an e-waste recycling region in South China: Associated with trophic level and diet sources. Environ Sci Technol 2011;45:400-5.