Mercaptoethylguanidine and Guanidine Inhibitors of Nitric-oxide Synthase React with Peroxynitrite and Protect against Peroxynitrite-induced Oxidative Damage*

(Received for publication, September 30, 1996, and in revised form, January 9, 1997)

Csaba Szabó‡‡, Gerardo Ferrer-Sueta¶¶, Basilia Zingarelli‡, Garry J. Southan¶, Andrew L. Salzman¶, and Rafael Radi¶

From the ¶¶Division of Critical Care, Children’s Hospital Medical Center, Cincinnati, Ohio 45229 and the ¶Department of Biochemistry, Facultad de Medicina, Universidad de la Republica, 11800 Montevideo, Uruguay

Nitric oxide (NO) produced by the inducible nitric-oxide synthase (iNOS) is responsible for some of the pathophysiological alterations during inflammation. Part of NO-related cytotoxicity is mediated by peroxynitrite, an oxidant species produced from NO and superoxide. Aminoguanidine and mercaptoethylguanidine (MEG) are inhibitors of iNOS and have anti-inflammatory properties. Here we demonstrate that MEG and related compounds are scavengers of peroxynitrite. MEG caused a dose-dependent inhibition of the peroxynitrite-induced oxidation of cytochrome c

\[\text{c} \]

and hydroxylation of benzoate, and nitration of 4-hydroxyphenylacetic acid. MEG reacts with peroxynitrite with a second-order rate constant of 1900 \(\pm \) 64 m\(^{-1}\) s\(^{-1}\) at 37 °C. In cultured macrophages, MEG reduced the suppression of mitochondrial respiration and DNA single strand breakage in response to peroxynitrite. MEG also reduced the degree of vascular hyporeactivity in rat thoracic aortic rings exposed to peroxynitrite. The free thiol plays an important role in the scavenging effect of MEG. Aminoguanidine neither affected the oxidation of cytochrome c nor reacted with ground state peroxynitrite, but inhibited the peroxynitrite-induced benzoate hydroxylation and 4-hydroxyphenylacetic acid nitration, indicating that it reacts with activated peroxynitrous acid or nitrogen dioxide. Compounds that act both as iNOS inhibitors and peroxynitrite scavengers may be useful anti-inflammatory agents.

Nitric oxide (NO),\(^1,2\) a free radical produced by a family of isoenzymes termed nitric-oxide synthases (NOS), has been implicated in a variety of physiological and pathophysiological processes. The cytotoxic effects of NO are mediated in part by peroxynitrite (ONOO\(^-\)),\(^3\) a reactive oxidant species formed from NO and superoxide at an almost diffusion-controlled rate (1–4). Although the biological activity and decomposition of peroxynitrite are very much dependent on cellular or chemical environment (concentration of proteins, thiols, glucose, and carbon dioxide and the ratio of NO to superoxide) (1–11), peroxynitrite is now generally considered a more toxic species than either NO or superoxide alone (12–19). The cytotoxic processes triggered by peroxynitrite include initiation of lipid peroxidation (5, 15, 16), inhibition of mitochondrial respiration (5, 12, 17–19), inhibition of membrane pumps (20), depletion of glutathione (21), and damage to DNA (22–25) with subsequent activation of polynuclear oxidase synthetase and concomitant cellular energy depletion (25–27).

Under certain conditions, NO produced by each of the three major isoforms of NOS can react with superoxide to form peroxynitrite. The constitutive, endothelial NOS isoform mainly serves physiological functions and is necessary for maintaining normal vascular functions, but under conditions of hypoxia/reoxygenation and ischemia/reperfusion injury and in atherosclerosis, peroxynitrite formed from endothelial NOS-derived NO can initiate cytotoxic processes (28–33). Similarly, during neuroinjury in response to excitatory amino acid stimulation, NO produced by the brain NOS isoform and/or by the endothelial NOS isoform present in the neurons can combine with superoxide to produce cytotoxic amounts of peroxynitrite (34–36). The inducible isoform of NOS (iNOS), expressed in macrophages, vascular smooth muscle cells, cardiac myocytes, and other cell types, has been implicated in the development of cellular energetic and vascular contractile failure during conditions of immunostimulation, inflammation, and various forms of circulatory shock (37, 38). iNOS-derived NO has been shown to form peroxynitrite, and the latter species has been implicated in the pathogenesis of tissue injury under inflammatory conditions (4, 10, 24–26, 39–44).

Considering the physiological functions of these NOS isoforms, inhibition of the activity of the constitutive isoforms of NOS (endothelial and brain), while preventing the formation of peroxynitrite, may also result in undesirable effects, such as vasospasm, enhanced platelet and neutrophil adhesion to the vascular endothelium, or alterations in central nervous system functions. Consequently, when peroxynitrite is formed from constitutive NOS-derived NO, scavenging of peroxynitrite would be preferred to inhibition of NO synthesis. On the other hand, selective inhibition of iNOS, by preventing excessive NO.

and peroxynitrite formation, has been shown to provide distinct therapeutic benefits in a number of inflammatory conditions. Selective iNOS inhibitors, such as aminoxyguanidine, S-methylisothiourea, aminoethylisothiourea (AETU), and l-NAME (1-iminoethylisouline), have been shown to have marked protective effects in a variety of local and systemic inflammatory disorders (42, 44–53).

We have recently reported the spontaneous rearrangement of aminoxyisothiourea NOS inhibitors in aqueous solutions to form mercaptoalkylguanidines (53). Some of the mercaptoalkylguanidines are potent inhibitors of NOS, with selectivity toward the inducible isoform (53). For example, AETU may rearrange to MEG (and a small percentage to the cyclic NOS inhibitor aminoxythiazoline). Oxidation of MEG yields guanidinoethyl disulfide (GED), which is a potent iNOS-selective inhibitor in its own right (46, 47). In this paper, we describe our findings demonstrating that MEG and related compounds are potent scavengers of peroxynitrite. Based on these data, we propose that the combined mode of action (selective inhibition of iNOS and scavenging peroxynitrite) is responsible for the marked protective effects of MEG and other guanidines in pathophysiological conditions associated with iNOS expression and peroxynitrite formation.

EXPERIMENTAL PROCEDURES

Measurement of Peroxynitrite-induced Oxidation of Cytochrome c—The peroxynitrite-dependent oxidation of cytochrome c was measured as described (54, 55). Cytochrome c was reduced by sodium dithionite immediately before use and purified by chromatography on Sephadex G-25 using 100 mM potassium phosphate containing 0.1 mM DTPA, pH 7.2, as the elution buffer. The concentration of cytochrome c was determined spectrophotometrically at 550 nm in the same buffer (ε550 = 21 mM⁻¹ cm⁻¹). Cytochrome c oxidation (50 μM) yields upon addition of peroxynitrite (25 μM initial concentration after mixing) was assessed by reaction mixtures in 100 mM potassium phosphate containing 0.1 mM DTPA, pH 7.2, at 25 °C in the absence or presence of MEG or related compounds (1 μM to 3 mM). Oxidation of cytochrome c was followed at 550 nm using a Beckman DU 640 spectrophotometer. In control, reverse-order experiments, we confirmed that the various compounds used in this study did not interfere with the spectrophotometric measurements at the above wavelengths. Moreover, in control experiments, we confirmed that the compounds tested do not reduce cytochrome c.

Measurement of Peroxynitrite-induced Hydroxylation of Benzoate—The peroxynitrite-dependent hydroxylation of benzoate was measured as described (54, 55). Briefly, peroxynitrite (100 μM initial concentration after mixing) was added to a buffer containing 1 mM sodium benzoate in 100 mM potassium phosphate containing 0.1 mM DTPA, pH 7.2, at 25 °C in the absence or presence of MEG or related compounds (1 μM to 3 mM). After a 3-min incubation at 25 °C, fluorescence was measured using a Perkin-Elmer fluorometer (Model LS50B) at an excitation wavelength of 300 nm and emission wavelength of 410 nm (slit widths of 2.5 and 3.0 nm, respectively). In control, reverse-order experiments, we confirmed that the various compounds used in this study did not interfere with the fluorophotometric measurements at the above wavelengths. Moreover, in control experiments, we confirmed that the compounds tested do not reduce cytochrome c.

Nitration Reactions—Nitration of 4-hydroxyphenylacetic acid (4-HPA) in the presence of MEG or aminoxyguanidine was carried out at pH 7.55 and 37 °C in 50 mM phosphate. In a typical experiment, a solution containing 2 mM 4-HPA, 100 μM DTPA, 50 mM phosphate buffer, and 0–20 mM MEG or aminoxyguanidine was rapidly mixed with peroxynitrite (0.6 mM initial concentration after mixing) by vortexing. After 5 min, pH was measured and then adjusted to 0.11 by adding 1 M NaOH. The absorbance at 430 nm was then read. The concentration of the 3-NO₂-4-HPA formed was calculated using ε550 = 4400 mM⁻¹ cm⁻¹ (57, 58).

Stopped-flow Experiments—Peroxynitrite decomposition in the presence of MEG, GED, aminoxyguanidine, and guanidines studied by stopped-flow spectroscopy at 302 nm (Applied Photophysics SF.17MV) with a dead time of <2 ms (15). The kinetics of peroxynitrite decomposition was fitted to a first-order equation by nonlinear regression. A typical run consisted of 400 points collected over more than nine halves so at least 99.9% of the peroxynitrite disappeared. The final pH was measured at the outlet.

Cell Culture—7T7 macrophages were cultured in Dulbecco’s modified Eagle’s medium supplemented with 3.5 mM/liter l-glutamine and 10% fetal calf serum as described (25). Cells were cultured in 96-well plates (200 μl of medium/well) or in 12-well plates (3 ml of medium/well) until confluence. Cells were pretreated with various concentrations of MEG (1–900 μM) for 10 min, followed by the addition of peroxynitrite (1 mM) and peroxynitrite formation and DNA strand breaks were measured at 1 h. In control, reverse-order experiments, MEG was added 10 min after the addition of peroxynitrite. In another set of experiments, cells were exposed to the NO compound S-nitroso-N-acetyl-L- penicillamine (SNAP, 3 mM) for 24 h in the absence or presence of various concentrations of MEG (10–300 μM), and respiration was measured at 24 h.

Measurement of Mitochondrial Respiration—Cell respiration was assessed by the mitochondrion-dependent reduction of MTT to formazan (25). Cells in 96-well plates were incubated at 37 °C with MTT (0.2 mg/ml) for 1 h. Culture medium was removed by aspiration, and the cells were solubilized in MeSO (100 μl). The extent of reduction of MTT to formazan within cells was quantitated by measurement of the absorbance at 550 nm.

Determination of DNA Single Strand Breaks—The formation of strand breaks in double-stranded DNA was determined by the alkaline unwinding method as described previously (25). Under the conditions used, in which ethidium bromide binds preferentially to double-stranded DNA, the percentage of double-stranded DNA (dsDNA) may be determined using the following equation: % dsDNA = 100 × ([F(P)−F(B)]/[F(P)]) where, F(P) is the fluorescence due to all cell components other than double-stranded DNA, and F(T) is the maximum fluorescence.

Organ Bath Experiments in Aortic Rings—Thoracic aortas from rats were cleared of adhering periadventitial fat and cut into rings of 3–4 mm width. Rings were placed in Krebs solution and exposed to peroxynitrite (1 mM) or a vehicle control in the presence or absence of 300 μM MEG. Following a 30-min incubation, rings were analyzed for isometric contractility. The rings were mounted in organ baths (5 ml) filled with warmed (37 °C), oxygenated (95% O₂ and 5% CO₂) Krebs solution, pH 7.4, consisting of 118 mM NaCl, 4.7 mM KCl, 1.2 mM KH₂PO₄, 1.2 mM MgSO₄, 2.5 mM CaCl₂, 25 mM NaHCO₃, and 11.7 mM glucose in the presence of 10 μM indomethacin. Isometric force was measured with isometric transducers (Kent Scientific Corp., Litchfield, CT), digitized using a MacLab A/D converter (AD Instruments, Milford, MA, and stored and displayed on a Macintosh personal computer. A tension of 1 g was applied, and the rings were equilibrated for 60 min, changing the Krebs solution every 15 min (27). Concentration-response curves to norepinephrine (10⁻⁶ to 10⁻⁴ M) were then obtained. In another set of experiments, the effect of MEG on the relaxant effect of the NO donor SNAP was studied. In these experiments, rings were taken from the animals, mounted for the measurement of isometric tension, treated with MEG (1 mM) or vehicle for 10 min, precontracted with norepinephrine (10⁻⁶ M), and then treated with increasing concentrations of SNAP.

Materials—Dulbecco’s modified Eagle’s medium and fetal calf serum were obtained from Life Technologies, Inc. SNAP was purchased from Calbiochem. AETU and related aminoxyisothioureas were prepared as described previously (46). MEG and mercaptoxypropylguanidine were prepared from AETU and APTU, respectively, as described previously (46). Peroxynitrite was synthesized as described previously (1, 15, 16). Cytochrome c (from bovine heart) and all other chemicals were from Sigma-Aldrich Co., (St. Louis, MO).

Statistical Evaluation—Values in the figures and below are expressed as means ± S.E. or as standard error of the mean of n observations. The numbers presented in the oxidation assays represent pooled data from n = 6–12 determinations obtained on at least 3 different experimental days. Student’s unpaired t test was used to compare means between groups, using the Bonferroni correction for multiple comparisons. A p value less than 0.05 was considered statistically significant.

RESULTS

MEG and Related Compounds Reduce Peroxynitrite-induced Oxidations—As previously reported (54–57), peroxynitrite induced a significant oxidation of cytochrome c and hydroxylation of benzoate. These two targets for peroxynitrite-mediated oxidation react with different reactive intermediates, such as ground state peroxynitrite (cytochrome c²⁺ (54)) and activated peroxynitrous acid (benzoate (55)). Although the reactive...
intermediates were different, both oxidant processes studied were still dose-dependently inhibited by MEG. The EC₅₀ values differed in the two assays mostly due to the different reaction chemistries involved (see “Discussion”). Thus, comparisons of potency of the different tested compounds in absolute terms should be performed only for each assay (vertical comparison in Table I), whereas comparisons within assays (horizontal comparison in Table I) should be used only to give an idea of the preferred reaction mechanisms. In this study, we employed both assays to draw conclusions regarding the nature of the different scavenging mechanisms of MEG and related guanidines during peroxynitrite-induced oxidant processes.

MEG inhibited the oxidant processes in both assays with high potency (Fig. 1 and Table I). S-Methyl-MEG and the disulfide dimer of MEG, GED, also inhibited the oxidation of cytochrome c²⁺ and the hydroxylation of benzoate, but their potency was much weaker when compared with that of MEG (Fig. 1 and Table I). In particular, it is important to note that MEG was ~1000 times more potent than S-methyl-MEG or GED as an inhibitor of peroxynitrite-induced oxidation of cytochrome c²⁺. L-Arginine-based NOS inhibitors, such as N²-methyl-L-arginine, did not inhibit the oxidative processes (data not shown).

We have compared the potencies of MEG and a number of related mercaptoalkylguanidines with the potencies of other compounds containing a free thiol (Table I). We have observed that, in both assays, the potencies of the free thiol-containing compounds were approximately 2 orders of magnitude greater than those that cannot undergo a rearrangement to yield free thiols (46), such as S-(dimethylaminopropyl)-AETU (Table I) and S-(dimethylaminoethyl)-AETU (data not shown). Similarly, alkylation of the sulfur (S-methyl-MEG) or its oxidation to disulfide (GED) reduced the effectiveness of the compounds as scavengers of peroxynitrite. These reductions were more pronounced in the cytochrome c²⁺ assay and less pronounced in the benzoate hydroxylation assay (Fig. 1 and Table I), in agreement with the different oxidation mechanisms involved (54, 55). Thus, the free thiol appears to be crucial to the inhibitory effect of mercaptoalkylguanidines on the peroxynitrite-induced oxidation of cytochrome c²⁺. MEG, as a scavenger of peroxynitrite, had comparable potency to other thiol-containing scavengers, namely glutathione, cysteine, and penicillamine (Table I) and also cysteamine, cysteine ethyl ester, and cysteine methyl ester (data not shown).

Replacement of the sulfur with selenium yielded comparable inhibitory potency to MEG in all assays used, in line with the concept that seleno compounds can also scavenge peroxynitrite (58, 59). In most instances, N-methylation of MEG or mercaptopropylguanidine tended to reduce the potency when compared with the parent compound (Table I).

Aminoguanidine caused a modest, dose-dependent reduction of the peroxynitrite-induced hydroxylation of benzoate. However, aminoguanidine exhibited negligible potency against the peroxynitrite-induced oxidation of cytochrome c²⁺ (Fig. 1 and Table I).

Effect of Guanidines on Nitration Reactions—MEG and aminoguanidine (less potently) caused a dose-dependent inhibition of the nitration of 4-HPA by peroxynitrite (Fig. 2). The yield of 3-NO₂-4-HPA, measured as percent of initial peroxynitrite concentration, decreased from 10.7% to 6.7% ([aminoguanidine] = 20 mM) and 0% ([MEG] = 0.5 mM) (Fig. 2), representing a 37% and 100% inhibition, respectively. On the other hand, aminoguanidine up to 5 mM failed to protect cysteine from peroxynitrite-mediated oxidation (data not shown).

Kinetics of Oxidation of MEG by Peroxynitrite—In the presence of a 10–25-fold excess of MEG 2HBr, the disappearance of peroxynitrite followed pseudo first-order kinetics when monitored at 302 nm by stopped-flow spectroscopy. Under these conditions, the spontaneous decomposition of peroxynitrite appeared as a non-zero intercept in a plot of k_{obs} versus [MEG] (Fig. 3A). The slope of this plot yields the apparent second-order rate constant for the reaction at a given pH. The pH dependence of the second-order rate constant (Fig. 3B) follows a bell-shaped curve, as previously observed for the reaction of cysteine with peroxynitrite anion (15). Thus, the data shown in Fig. 3 suggest that MEG readily reacts with peroxynitrite anion. Indeed, the second-order rate constant for the reaction as a function of hydrogen ion concentration obeys the following equation:

\[
k_{2} = k_{2}(K_{a1}/K_{a1} + [H^+])([H^+]/(K_{s2} + [H^+]))
\]

where k₂ is the apparent rate constant at a given pH, k₁ is the second-order rate constant of the reaction of MEG with peroxynitrite anion, K_{a1} is the ionization constant of peroxynitrous acid, and K_{s2} would correspond to the ionization constant of the sulfhydryl group of MEG. The best fit of the data shown in Fig. 3 gives k₂
Mercaptoalkylguanidines Are Scavengers of Peroxynitrite

![Figure 2](image2.png)

FIG. 2. MEG and aminoguanidine inhibit the peroxynitrite-mediated nitration of 4-HPA. Nitration experiments were performed in 50 mM potassium phosphate containing 100 µM DTPA, pH 7.5, at 37 °C in the presence of 2 mM 4-HPA. The initial peroxynitrite concentration was 0.6 mM. Each data point represents the mean ± S.E. of four determinations.

FIG. 3. Rate constants for the reaction of peroxynitrite with MEG. A, pseudo first-order rate constants for peroxynitrite decomposition shown as a function of MEG concentration (▪). An apparent second-order rate constant was determined from the slope of the plot. No reaction was detectable with either GED (▲) or bromide anion (□) in the same concentration range. B, pH dependence. Peroxynitrite (0.2–0.4 mM) was added to 2.8 mM MEG in 50 mM potassium phosphate containing 100 µM DTPA at different pH values at 37 °C. Data have been corrected for spontaneous decomposition of peroxynitrite. Each data point represents the mean ± S.E. of 8–10 determinations.

![Figure 3](image3.png)

FIG. 4. Effect of MEG (10, 30, 100, and 300 µM) on the peroxynitrite-induced (1 mM) suppression of mitochondrial respiration in J774 cells. Data are expressed as percent of mitochondrial respiration in untreated (control) cells. Data are expressed as means ± S.E. (n = six to nine wells). There was a significant (p < 0.01) suppression of mitochondrial respiration in response to peroxynitrite. MEG was added either 10 min prior to or 10 min after peroxynitrite. * and **, significant protective effect of MEG against peroxynitrite-induced suppression of mitochondrial respiration (p < 0.05 and p < 0.01, respectively).

![Figure 4](image4.png)

FIG. 5. Effect of MEG (300 µM) on the peroxynitrite-induced (1 mM) DNA single strand breakage in J774 cells. Data are expressed as percent of maximal DNA single strand breakage in vehicle-treated control cells, in peroxynitrite-treated cells, and in peroxynitrite- and MEG-treated cells. Data are expressed as means ± S.E. (n = six to nine wells). **, significant DNA strand breakage in response to peroxynitrite (p < 0.01); #, significant protective effect of MEG against peroxynitrite-induced DNA single strand breakage (p < 0.05).

DISCUSSION

Our results demonstrate that MEG and related mercaptoalkylguanidines are potent scavengers of peroxynitrite and inhibit multiple peroxynitrite-induced oxidative processes (Fig. 5).
Peroxynitrite significantly decreased contractility at 0.1–10 μM pretreatment; peroxynitrite treatment; effect of in vitro pretreatment with MEG (300 μM) on the response. □, vehicle-treated controls; ■, MEG-treated rings without peroxynitrite treatment; Δ, peroxynitrite-treated rings without MEG pretreatment; ▲, peroxynitrite-treated rings with MEG pretreatment. Peroxynitrite significantly decreased contractility at 0.1–10 μM (p < 0.01). *, significant protection by MEG against the peroxynitrite-induced vascular hyporeactivity (p < 0.01). Data are expressed as means ± S.E. (n = 4–10 vascular rings).

8). The potency of MEG appears to be comparable with that of the currently known peroxynitrite scavengers glutathione, cysteine, cysteine methyl ester, and penicillamine (2, 4, 15). The structure-activity relationship of the potencies of MEG and related compounds shows that the free thiol is crucial in this inhibitory effect. In addition, replacement of the sulfur with selenium or N-methylation of MEG tends to cause a slight reduction in the inhibitory potency (Table I). It is conceivable that N-methylation of the guanidine nitrogen may change the pKa of the thiol and thus change the bell shape of the curve determining the rate constant.

Aminoguanidine did not inhibit the oxidation of cytochrome c2+, but reduced the peroxynitrite-induced hydroxylation of benzoate and the nitrination of 4-HPA. Moreover, we observed no second-order reaction between peroxynitrite and aminoguanidine or GED in the stopped-flow experiments. These findings are consistent with the view that cytochrome c2+ oxidation detects primarily second-order oxidative processes (first-order on peroxynitrite and first-order in the target molecule), and benzoate hydroxylation detects primarily first-order processes (zero-order in the target molecule) (see also Refs. 54, 55, 60, and 61). Thus, based on our results, we propose that the free thiol group of MEG and related compounds is crucial in the inhibition of reactions depending on the ground state form of peroxynitrite, while the guanidine or hydrazine group interferes in processes depending on the activated intermediate derived from peroxynitrous acid (ONOOH−), as indicated in Fig. 8. In the latter effect, the strong reducing properties of the hydrazine moiety (-NH-NH2) may play an important role. As accessory mechanism, guanidines could also react with the 1-electron reduction product of peroxynitrite, nitrogen dioxide (NO2).

The second-order rate constant for the reaction of MEG with peroxynitrite was determined to be 1900 M−1 s−1 and is similar to those previously found for the reaction of peroxynitrite with cysteine, glutathione, and the single thiol group of albumin (15) (5000, 1500, and 2700 M−1 s−1, respectively). Interestingly, the corresponding disulfide of MEG, GED, did not react in a second-order process, further supporting the view that the second-order reactivity of MEG with peroxynitrite relies on the reaction with the free thiol. The data with GED are also consistent with the lack of increased peroxynitrite decomposition rate in the presence of aminoguanidine and guanidine since the guanidine moiety would be present in GED and aminoguanidine as well.

Our data demonstrate that MEG protects cells and tissues against peroxynitrite-induced cytotoxic effects. Since MEG reacts with peroxynitrite at rates comparable to that of glutathione (the intracellular concentration of which can be as high as 10 mM), while many other guanidines including aminoguanidine do not react in second-order kinetics with peroxynitrite, it is not kinetically apparent how these inhibitors inhibit peroxynitrite-dependent oxidation processes in cellular systems. A likely possibility is the extracellular trapping of peroxynitrite and/or its oxidation products. In addition, at the intracellular level, the inhibitors may well accumulate manyfold to efficiently out-compete other targets of peroxynitrite such as met-
Mercaptoalkylguanidines Are Scavengers of Peroxynitrite

Peroxynitrous acid (ONOO\(^{-}\)). Peroxynitrous acid directly reacts with neutral anaerobic solutions, NO does not react with thiols under anaerobic conditions, the formation of ONOO\(^{-}\) from a reaction with intermediates generated in the NO/O\(_2\) reaction (64). In the experiments with cultured J774 macrophages, MEG failed to prevent the suppression of mitochondrial respiration in response to SNAP. Under our experimental conditions, MEG did not inhibit the vascular relaxations elicited by SNAP, but, on the contrary, we observed a slight but significant enhancement. These observations indicate that MEG is not a direct scavenger of NO. We have previously demonstrated that MEG enhances the endothelium-dependent relaxations in response to acetylcholine (46), a finding that we were unable to explain at that point. One possibility is that MEG enhances the release of NO from SNAP. Another possibility is that MEG, by scavenging peroxynitrite (which is known to be produced when endothelial cells are stimulated with the endothelium-dependent relaxant agent; see Ref. 65), or scavenging oxyradicals (see below) may enhance the relaxations in response to SNAP.

While MEG is not a scavenger of NO, MEG may scavenge various oxyradicals (66, 67). In this respect, previous studies have demonstrated that MEG inhibits radiation-induced DNA injury and cytotoxicity and acts as a modest radioprotective agent in rodents (66, 67). However, neither the exact nature of the oxygen-derived species that react with MEG nor the chemistry of these reactions has been established in these prior studies. In any case, as previously suggested (49, 50), oxyradical scavenging by MEG may reduce the amount of peroxynitrite formed and thus can be considered an additional mode of anti-inflammatory action of these compounds.

The combined effect of MEG as a selective iNOS inhibitor (46) and peroxynitrite scavenger (this study) may be extremely useful in pathophysiological conditions associated with induction of iNOS and peroxynitrite production. In fact, there are in vivo data with the isothiourea AETU (which rearranges to form MEG) or with authentic MEG that show that these agents have remarkable protective effects against the vascular failure, hypotension, mortality, and hepatic failure in endotoxic shock (46, 47, 53, 55) and hemorrhagic shock (68). The relative contribution of the iNOS inhibitory versus peroxynitrite-scavenging effect in the protective actions remains to be further investigated, but it appears likely that MEG reduces the amounts of NO formed by inhibiting iNOS and also scavenges part of the peroxynitrite produced by residual iNOS activity or from NO produced by constitutive NOS isoforms. Since our data also demonstrate that aminoguanidine is an inhibitor of the peroxynitrite-induced oxidation of benzene and inhibits the nitration of 4-hydroxyphenylacetic acid, it is possible that some of the previously reported anti-inflammatory effects of aminoguanidine in a variety of experimental models (see the Introduction) may be related to inhibition of peroxynitrite-induced oxidative processes, in addition to direct inhibition of the enzymatic activity of iNOS.

In conclusion, here we have demonstrated that certain guanidine-based NOS inhibitors (in particular, mercaptoalkylguanidines) are potent scavengers of peroxynitrite and protect biological systems against the cytotoxic effects of authentic peroxynitrite. We propose that a combined mode of action (iNOS inhibition, peroxynitrite scavenging, and oxyradical scavenging) is likely to explain their previously reported protective effects in various models of shock and inflammation.

Acknowledgments—The technical assistance of Paul Hake and Michael O’Connor is appreciated.

REFERENCES

1. Beckman, J. S., Beckman, T. W., Chen, J., Marshall, P. A., and Freeman, B. A. (1990) Proc. Natl. Acad. Sci. U. S. A. 87, 1620–1624
2. Pyyro, W., and Squadrito, G. (1995) Am. J. Physiol. 268, L699–L722
3. Crow, J. F., and Beckman, J. S. (1995) Curr. Top. Microbiol. Immunol. 196, 57–73
4. Szabó, C. (1996) Shock 6, 79–88
5. Rubbo, H., Radi, R., Trujillo, M., Telieri, R., Kalyanaraman, B., Barnes, S., Kirkby, B., and Freeman, B. A. (1994) J. Biol. Chem. 269, 26966–26975
6. Villa, L. M., Salas, E., Darley-Usmar, M., Radomski, M. W., and Moncada, S. (1994) Proc. Natl. Acad. Sci. U. S. A. 91, 12383–12387
7. Merio, M. A., Darley-Usmar, V. M., Goodman, D. A., Read, N. G., Zamora-Pino, R., Peelisch, M., Radomski, M. W., and Moncada, S. (1994) Proc. Natl. Acad. Sci. U. S. A. 91, 6702–6706
8. Merio, M. A., Darley-Usmar, V. M., Lázaroain, I., Su, Y., Knowles, R. G., Radomski, M. W., and Moncada, S. (1995) Br. J. Pharmacol. 116, 1999–2004
9. Lyman, S. V., and Hurst, J. K. (1995) J. Am. Chem. Soc. 117, 8867–8868
10. Szabó, C., Salzman, A. L., and Ischiropoulos, H. (1995) FEBS Lett. 373, 48–50

\(^{4}\) R. Radi, unpublished observations.
Mercaptoethylguanidine and Guanidine Inhibitors of Nitric-oxide Synthase React with Peroxynitrite and Protect against Peroxynitrite-induced Oxidative Damage

Csaba Szabó, Gerardo Ferrer-Sueta, Basilia Zingarelli, Garry J. Southan, Andrew L. Salzman and Rafael Radi

J. Biol. Chem. 1997, 272:9030-9036.
doi: 10.1074/jbc.272.14.9030

Access the most updated version of this article at http://www.jbc.org/content/272/14/9030

Alerts:
- When this article is cited
- When a correction for this article is posted

Click here to choose from all of JBC’s e-mail alerts

This article cites 69 references, 18 of which can be accessed free at http://www.jbc.org/content/272/14/9030.full.html#ref-list-1