THE HOMOLOGICAL DETERMINANT OF QUATUM GROUPS OF
TYPE A

PH `UNG H ` Ô H AÎ

INTRODUCTION

Let \(V \) be a vector space over a field \(k \) and \(G = GL(V) \), the general linear group. Let \(n = \dim_k V \). It is well known that elements of \(G \) acts on the \(n \)-th homogeneous component of the exterior over \(V \) by means of the determinant. More precisely, let \(x_1, x_2, \ldots, x_n \) be a basis of \(V \). Then \(\Lambda^n(V) \) is one-dimensional and a non-zero vector is \(x_1 \wedge x_2 \ldots \wedge x_n \). If \(g \in G \) has the matrix \(A \) with respect to this basis, then
\[
g \cdot (x_1 \wedge x_2 \ldots \wedge x_n) = \det A \cdot x_1 \wedge x_2 \ldots \wedge x_n.
\]

Let now \(V \) be a supervector space of dimension \((m|n)\). The (super)determinant of an endomorphism of \(V \) was introduced by Berezin. Fix a homogeneous basis of \(V \), \(x_1, x_2, \ldots, x_{m+n} \) where the first \(m \) elements are even and the rest are odd (such a basis is called distinguished). Then an endomorphism of \(V \), with respect to this basis, has the matrix of the following form
\[
Z = \begin{pmatrix} A & B \\ C & D \end{pmatrix}
\]
where \(A, D \) are square matrices of dimension \(m \times m \) and \(n \times n \), respectively, whose entries are even, and \(B, D \) are matrices of type \(m \times n \) and \(n \times m \), whose entries are odd elements. Assume that \(D \) is invertible in the usual sense, define the super determinant of \(Z \) to be
\[
\text{Ber}_q Z = \det T^{-1} \det(A - CD^{-1}B).
\]
It is shown that the the matrix \(Z \) is invertible iff its super determinant is and that the super determinant is multiplicative. It is however not clear why the definition of \(\text{Ber}_q \) is independent of the choice of bases (our basis is a distinguished basis).

In [19] Manin suggested the following construction to define the super determinant. Let \(V^* \) denote the vector space to dual \(V \) with the dual basis \(\xi^1, \xi^2, \ldots, \xi^n \), \(\xi^i(x_j) = \delta^i_j \). Manin introduced the following Koszul complex; its \((k,l)\)-term is given by \(K^{k,l} := \Lambda^k \otimes S^l \), where \(\Lambda^n \) and \(S^n \) are the \(n \)-th homogeneous components of the exterior and the symmetric tensor algebra over \(V \). The differential \(d^{k,l} : K^{k,l} \rightarrow K^{k+1,l+1} \) is given by
\[
d^{k,l}(h \otimes \phi) = \sum_i h x_i \otimes \xi^i \wedge \phi.
\]
It is easy to check that \(d_{k,l} \) is \(G \)-equivariant hence the homology groups of this complex are representations of \(G \). On the other hand, one can show that this complex is exact everywhere except at the term \((m,n)\), where the homology group is one-dimensional, thus, it defines a one-dimensional representation of \(G \). It turns out that elements of \(G \) acts on this representation by means of its super determinant, in other words, the definition of the super determinant is basis free.

The quantum semigroup of type \(A \) is the “spectrum” of the quadractic algebra
\[
E := k(\langle z_1^i \rangle)/(R_{iuv}^j z_i^u z_j^v = z_i^1 z_j^2 R_{12}^{i,j})
\]

2000 Mathematics Subject Classification. Primary 16W30, 17B37, Secondary 17A45, 17A70.
This work is supported by the National Program of Basic Sciences Research of Vietnam.
where R is a Hecke symmetry (see [1]). The Hecke symmetry resembles the usual flipping operator $a \otimes b \mapsto b \otimes a$ or $a \otimes b \mapsto (-1)^{ab} b \otimes a \ (a, b \text{ are homogeneous})$ in super symmetry.

In [6, 15], a Koszul complex is defined for R. For that, one first has to define the quantum exterior and quantum symmetric tensor algebra by means of certain projectors on $V^{\otimes n}$. It is still an open question, whether this complex has the homology group concentrated at a certain term and its dimension is one. Some efforts have been made. Gurevich [6] showed this for even Hecke symmetries (i.e., those which induce finite-dimensional exterior algebra), Lyubashenko and Sudbery [15] showed this for Hecke sums of an odd and an even Hecke symmetries.

In this paper, assuming that R depends algebraically on q, where q runs in \mathbb{C}, we give the affirmative answer to this question for an algebraically dense set of value of q. Our tactic is first to use a new result of Deligne [1] to check the case $q = 1$. Then using standard arguments we show that for a dense set of values of q, the homology group of K has the dimension less than that of the corresponding homology groups when $q = 1$. In other words, for an algebraically dense subset of \mathbb{C}, the homology has dimension at most 1. It remains to show the non-vanishing of the homology. Taking the tensor product of the complex with a suitably chosen comodule we obtain a new complex whose terms are all E-comodules. We decompose these comodule using the Littlewood-Richardson formula and derive the non-vanishing of the homology.

1. Hecke symmetries and the associated quantum groups

We work over an algebraically closed field k of characteristic zero. Let V be a vector space over k of finite dimension d. Let $R : V \otimes V \rightarrow V \otimes V$ be an invertible operator. R is called a Hecke symmetry if the following conditions are fulfilled:

- $R_1 R_2 R_1 = R_2 R_1 R_2$, where $R_1 := R \otimes \id_V, R_2 := \id_V \otimes R$,
- $(R + 1)(R - q) = 0$ for some $q \in k$,
- The half adjoint to R, $R^k : V^* \otimes V \rightarrow V \otimes V^*$; $\langle R^k (\xi \otimes v), w \rangle = \langle \xi, Rv \otimes w \rangle$, is invertible.

Through out this work we will assume that q is not a root of unity other then the unity itself. If $q = 1$, R is called vector symmetry. Vector symmetries were introduced by Lyubashenko [14] and generalized to Hecke symmetries by Gurevich [6].

Let us fix a basis x_1, x_2, \ldots, x_d of V. Then R can be given in terms of a matrix, also denoted by R, $R(x_i \otimes x_j) = x_k \otimes x_l R_{ij}^{kl}$, we adopt the convention of summing up after the indices that appear both in the lower and upper places. The matrix R_{ij}^{kl} is given by $R_{ij}^{kl} = R_{jl}^{ki}$. Therefore, the invertibility of R^k can be expressed as follows: there exists a matrix P such that $P_{jm}^i R_{ml}^{nk} = \delta^i_j \delta^k_l$.

To a Hecke symmetry R, there associated the following quadratic algebras:

\begin{align*}
S &:= k\langle x_1, x_2, \ldots, x_d \rangle / \langle x_i x_j R_{ij}^{kl} = q x_i x_j \rangle \\
\Lambda &:= k\langle x_1, x_2, \ldots, x_d \rangle / \langle x_i x_j R_{ij}^{kl} = q x_i x_j \rangle \\
E &:= k\langle z_1^i, z_2^j, \ldots, z_d^l \rangle / \langle z_m^i z_n^j R_{mn}^{kl} = R_{pq}^{ij} R_{kl}^{pq} \rangle
\end{align*}

S and Λ are called respectively the function algebra and the exterior-algebra on the corresponding quantum space and E is called the function algebra on the corresponding quantum endomorphism space or the matrix quantum semi-group.

E_R is a coquasitriangular bialgebra [13, 15]. The coproduct on E_R is given by $\Delta(Z) = Z \otimes Z$. The coquasitriangular structure is given by $r(z_j^i, z_k^l) = R_{jl}^{ki}$. S, Λ and all their homogenous components are right E-comodules. In particular, V is a comodule and the induced braiding on $V \otimes V$ is exactly R.

E_R is naturally \mathbb{N}-graded, let E_n be its n-th homogenous component. Then E_n is a coalgebra and $V^{\otimes n}$ is its comodule, hence an E_n^*-module.
On the other hand, \(R \) induces a representation of the Hecke algebra \(\mathcal{H}_n \) (see, e.g., \[2\]) on \(V^\otimes n \), denoted by \(\rho_n : \mathcal{H}_n \to \text{End}(V^\otimes n) \), for any \(n \geq 2 \). Explicitly, \(\rho \) maps the generator \(T_i \) of \(\mathcal{H}_n \) to the operator \(R_i := \text{id}^{\otimes i-1} \otimes R \otimes \text{id}^{n-i-1} \). We have the following “Double centralizer theorem” \[4\]

1.1. The algebras \(\rho_n(\mathcal{H}_n) \) and \(E_n \) are centralizers of each other in \(\text{End}_k(V^\otimes n) \).

Let \(x_n \in \mathcal{H}_n \) be the central idempotent that induces the trivial representation, \(x_n = \sum_{w \in S_n} (-q)^{-l(w)} T_w/[n]_q \), where \(T_w \) are the generators of \(\mathcal{H}_n \) as a \(k \)-vector space, indexed by elements of the symmetric group \(S_n \). The operator \(X_n := \rho_n(x_n) \) is called the \(q \)-symmetrizer, it is a projection on \(V^\otimes n \). The projection \(V^\otimes n \to S^n \) restricted to \(\text{Im} X_n \) is an isomorphism. Since \(R \) is a morphism of \(E \)-comodules the above isomorphisms are isomorphism of \(E \)-comodules, too.

Analogously, let \(y_n \in \mathcal{H}_n \) be the central idempotent that induces the signature representation of \(\mathcal{H}_n \): \(y_n := [(n)_{1/q}^{-1} \sum_{w \in S_n} (-q)^{-l(w)} T_w \). The operator \(Y_n := \rho_n(y_n) \) is called the \(q \)-anti-symmetrizer, it is a projection on \(V^\otimes n \). The projection \(V^\otimes n \to \Lambda^n \) restricted to \(\text{Im} Y_n \) is an isomorphism.

A Hecke symmetry \(R \) is called even (resp. odd) Hecke symmetry of rank \(r \) iff \(Y_{r+1} = 0 \), and \(Y_r \neq 0 \) (resp. \(X_{r+1} = 0 \) and \(X_r \neq 0 \)). One can show that, in this case, \(Y_r \) (resp. \(X_r \)) has rank 1 \[3\].

By means of the above double centralizer theorem, \(E \) is cosemisimple (i.e. its comodules are semisimple) and simple \(E \)-comodules can be described by primitive idempotents of the Hecke algebras, thus, partitions. For partitions \(\lambda, \mu \) and \(\gamma \), the multiplicity of \(M_\lambda \) (the simple \(E_R \) comodule corresponding to \(\gamma \)) in \(M_\lambda \otimes M_\mu \) does not depend on \(R \); in fact, it is equal to the corresponding Littlewood-Richardson coefficient \(\ell^{(1)}_{\lambda \mu} = (s_\lambda s_\mu, s_\gamma) \), where \(s_\lambda \) are the Schur functions (cf. \[17\]). Note that however that not any partition defines a simple comodule, some of them may give zero-modules.

To have more precise information on the simple comodules of \(E \), we need the Poincaré series of \(S, \Lambda \). Using theory of symmetric functions \[17\] and a theorem of Edrei \[5\] we have the following \[3\]:

1.2. \(P_\lambda(t) \) is a rational function having negative roots and positive poles. Assume that \(P_\lambda \) has \(m \) roots and \(n \) poles, then simple \(E_R \)-comodules are parameterized by partitions \(\lambda \) for which \(\lambda_{m+1} \leq n \).

Definition. The pair \((m, n) \) is called the birank of \(R \).

Examples. The following are so far examples of Hecke symmetries.

- The solutions of the Yang-Baxter equation of series \(A \), due to Drinfel’d and Jimbo \[12\] is an example of even Hecke symmetries. The associated quantum groups are called standard deformations of \(GL(n) \).
- Cramer and Gevais \[4\] found another series of solution which are also even Hecke symmetries.
- Hecke sums of odd and even Hecke symmetries are examples of non-even, non-odd Hecke symmetries \[13\].
- Takeuchi and Tambara found a Hecke symmetry which is neither even nor a Hecke sum of an odd and an even Hecke symmetries \[20\].
- Even Hecke symmetries of rank 2 was classified by Gurevich \[8\]. He also show that on each vector space of dimension \(\geq 2 \), there exists an even Hecke symmetries of rank 2.
- Hecke symmetry of birank \((1, 1)\) was classified by the author \[10\].

The quantum group of type \(A \) is define to be the “spectrum” of the subsequently defined Hopf algebra. Let \(T = (t^i_j) \) be a \(d \times d \) matrix of new variables. The Hopf algebra associated
to R is a factor algebra of the free associative algebra over entries of Z and T:

\[(1) \quad H_R := T(Z, T) / (RZ_1Z_2 = Z_1Z_2R, TZ = ZT = \text{id})\]

H_R is a Hopf algebra, the antipode is given by $S(Z) = T$. The coquasitriangular structure on E_R can be extended on to H_R thanks to the closedness of R.

The structure of H_R-comodules is, in general, much more complicated than the one of E_R-comodules. The best handled case is when R is an even Hecke symmetry, i.e., when $P_\lambda(t)$ is a polynomial. We have, however the following result [9].

1.3. The natural map $E_R \rightarrow H_R$ is injective. Consequently, every simple E_R-comodule is a simple H_R-comodule.

Among H_R-comodules which are not E-comodules, the super determinant plays an important role. The well-known tool for defining the quantum super determinant serves the Koszul complex (of second type) introduced by Manin [19]. This is a (bi-)complex, whose (k, l) term is $\Lambda^k \otimes S^{*l}$. The differential is induced from the dual basis map. The homology group of this complex is an H_R-comodule, if it is one dimensional over k, it defines a group-like element in H_R called homological determinant or quantum super determinant or, in some cases, quantum Berezinian.

2. The Koszul complex

We begin with the description of the Koszul complex. For convenience, we first fix the following notion of the dual comodule of a tensor product of two or more comodules. For two (rigid) comodules V, W, the dual to $V \otimes W$ is defined to be $W^* \otimes V^*$ with the evaluation map $ev_{V \otimes W} = ev_W \circ (W^* \otimes ev_V \otimes W)$. Analogously, one defines the dual to longer tensor products.

Fix a basis x_1, x_2, \ldots, x_n of V and let $\xi_1, \xi_2, \ldots, \xi_n$ be the dual basis in V^*, we define the dual basis map $db : k \rightarrow V \otimes V^*$, $db(1) = \sum_i x_i \otimes \xi_i$. This map does not depend on the choice of basis. The term $K^{k,l}$ of the Koszul complex associated to R is $\Lambda^k \otimes S^{*l}$, the differential $d_{k,l}$ is given by:

$$\Lambda^k \otimes S^{*l} \rightarrow V^\otimes l \otimes V^* \otimes l \text{id} \otimes db \otimes \text{id} \otimes d_{k,l}$$

where X_i, Y_k are the q-symmetrizer operators introduced in the previous section. One defines another differential d' as follows:

$$\Lambda^k \otimes S^{*l} \rightarrow V^\otimes l \otimes V^* \otimes l \text{id} \otimes ev_{V^*} \otimes \tau_{V, V^*} \otimes id$$

where τ_{V, V^*} denotes the braiding on $V \otimes V^*$ induced from the coquasitriangular structure on H_R, its matrix is given by $P: R^m_n P_{nl} = \delta_{l}^{n} \delta_{l}^{n}$. Then d and d' satisfy [6]

$$(qdd' + d'd) |_{K^{k,l}} = q^k (\text{rank}_q R + [l-k]_q) \text{id}.$$

where $\text{rank}_q R := P^m_n$. Hence, if $\text{rank}_q R \neq [l-k]_q$, the cohomology group at the term (k, l) vanishes. Thus, all complexes except at most one are acyclic.

Theorem 1. Let R be a Hecke symmetry of birank (m, n). Then $\text{rank}_q R = \lfloor n - m \rfloor_q$ and the homology of the Koszul complex at the term (m, n) is non-vanishing. Consequently, on the Hopf algebra H, there exists a non-zero integral and the simple H-comodule M_λ is injective and projective if and only if $\lambda_m \geq n$.

Proof. Since R has birank (m, n), simple E-comodules are parameterized by partions satisfying $\lambda_m + 1 \leq n$. Using this fact and the Littlewood-Richardson formula, we can easily
show that
\[\text{Hom}^E(M_{((n+1)^m}) \otimes S^n, M_{(n+1)} \otimes \Lambda^m) = k \]
\[\text{Hom}^E(M_{((n+1)^m}) \otimes S^{n-1}, M_{(n+1)} \otimes \Lambda^{m+1}) = 0 \]
\[\text{Hom}^E(M_{((n+1)^m}) \otimes S^{n+1}, M_{(n+1)} \otimes \Lambda^{m+1}) = 0. \]

As a consequence, \(M_{(n+1)^m} \otimes \Lambda^m \otimes S^{n*} \) contains \(M_{((n+1)^m)} \) while the comodules \(M_{(n+1)} \otimes \Lambda^{m-1} \otimes S^{n*} \), \(M_{(n+1)} \otimes \Lambda^{m+1} \otimes S^{m+1*} \) do not.

Assume that \(\text{rank}_q R \neq [n - m]_q \). Then the complex is exact at \(K^{m,n} \) and \(dd' + d'd = q^m(\text{rank}_q R + [n - m]_q)\text{id} \neq 0. \)

On the other hand, since \(M_{(n+1)^m} \) cannot be a submodule of \(M_{(n+1)^m} \otimes \Lambda^{m+1} \otimes S^{n+1*} \), the restriction of \(\text{id}_{M_{((n+1)^m)}} \otimes d^{m,n} \) on it should be zero. Analogously, the restriction of \(\text{id}_{M_{((n+1)^m)}} \otimes d^{m,n} \) on \(M_{(n+1)^m} \) is 0. Thus, the restriction of \(dd' + d'd \) on \(M_{(n+1)^m} \) is zero, a contradiction. Therefore \(\text{rank}_q R = [n - m]_q \).

According to a result of \([11]\) if \(\text{rank}_q R = [n - m]_q \) then \(H \) possesses a non-zero integral and in this case, according to a result of \([10]\), \(M_\lambda \) is a splitting comodule (i.e., injective and projective in \(H\)-comod) iff \(\lambda_m \geq n \). Thus, \(M_{((n+1)^m)} \) is projective hence cannot be a subquotient of \(M_{((n+1)^m)} \otimes \Lambda^{m-1} \otimes S^{n-1*} \), in particular, it cannot be a submodule of \(M_{(n+1)^m} \otimes \text{Im}d^{m-1,n-1} \). Therefore
\[M_{(n+1)^m} \otimes \text{Im}d^{m-1,n-1} \neq M_{(n+1)^m} \otimes \text{Ker}d^{m,n}. \]

Thus, the sequence
\[M_{(n+1)^m} \otimes \Lambda^{m-1} \otimes S^{n*} \rightarrow M_{(n+1)^m} \otimes \Lambda^m \otimes S^{n*} \rightarrow M_{(n+1)^m} \otimes \Lambda^{m+1} \otimes S^{m+1*} \]
which is obtained by tensoring \(K^\sim \) with \(M_{(n+1)^m} \) is not exact at the term \((m,n)\), whence neither is \(K^\sim \).

3. The case \(q = 1 \)

Assume in this section, \(q = 1 \), thus, \(R^2 = 1 \) and \(H\)-comod is a tensor category (i.e., symmetric rigid monoidal). By a theorem of Deligne, there exists a faithful and exact, tensor (i.e., symmetric monoidal) functor \(F \) from \(H\)-comod to the category of vector superspaces. Under this functor, \(V \) is mapped to a certain vector super space \(\overline{V} \) and \(R \) is mapped to the supersymmetry on \(\overline{V} \otimes \overline{V} \), denoted by \(T \).

We can therefore reconstruct a super bialgebra \(\overline{E} \) and a Hopf super algebra \(\overline{H} \) from \(V \) and \(T \). We will show that this Hopf superalgebra is isomorphic to the function algebra over the general linear supergroups \(GL(n) \), where \((m,n)\) is the birank of \(R \), or, in other words, the super dimension of \(V \) is \((m|n)\). Indeed, \(\overline{E} \) is the function algebra on \(\text{End}(\overline{V}) \) and the image of \(M_\lambda \) under the embedding \(F \) are simple \(\overline{E}\)-comodules. Since \(F \) is faithful and exact and since \(M_\lambda \neq 0 \Leftrightarrow \lambda_m + 1 < n \), we conclude that \(\overline{E} \) is isomorphic to the function algebra on \(M(m|n) \). Hence \(\overline{H} \) is isomorphic to the function algebra on \(GL(m|n) \), by virtue of \([13]\).

Let \(\overline{K} \) denote the image of the complex \(K^\sim \). Then the homology of \(\overline{K} \) is concentrated at the term \((m,n)\), and is one-dimensional; it defines the super determinant. As a consequence, the homology of \(K^\sim \) is also concentrated at the term \((m,n)\), for \(F \) is faithful and exact. Let \(D \) denote the homology of \(K^\sim \). Then \(\overline{D} \), the image of \(D \) under \(F \), is one-dimensional and hence invertible, consequently,
\[F(D^* \otimes D) \cong F(D^*) \otimes F(D) \cong D^* \otimes D \cong k, \]
where the last isomorphism is given by the evaluation morphism, that is the image of ev\(_D\) under \(F \). Since \(F \) is faithful and exact, we conclude that \(D^* \otimes D \cong k \), that is \(D \) is invertible, hence one-dimensional. \(\overline{M}_\lambda \) denote the image where \(\lambda \) runs in the set of partitions for which
Theorem 2. Let R be a vector symmetry of birank (m,n). Then the associated Koszul complex is exact every where except at the term (m,n) where it has a one-dimensional homology group which determines a group-like element called homological determinant.

4. The case q generic

Using the result of the previous section we show in this section that given a Hecke symmetry of birank (m,n) that depends algebraically on q, then, for a dense set of values q, the associated Koszul complex is exact every where except at the term (m,n), where is has a one-dimensional homology group and thus determines a group-like element in H, called the homological determinant. In this section k will be assumed to be the field \mathbb{C} of complex numbers.

Thus let $R = R_q$ be a Hecke symmetry depending on a parameter $q \in \mathbb{C}$. We first observe that the dimension of Λ^k_q does not depend on q, as far as q is not a root of unity. Indeed, Λ^k_q can be defined as the image of a projection, its dimension can be given as the trace of a matrix which depend algebraically on q, since \mathbb{C} substracted the set of root of unity is still connected, we conclude that this trace, being always integral must be a constant. The same happens with S^k_q. Thus, the terms of $K^ -$ has the dimension not depending on q.

On the other hand, observe that the rank of the operator d^k_q, for almost any q (that is except a finite number of values of q) is large then the rank of d^1_q and for the kernel of d^k_q we have the reversed inequality. Consequently, the dimension over k of the homology group $H(K_q^K)$ for almost any q is least then or equal to the dimension of $H(K_q^K)$. According to Theorems 1 and 2 we conclude that for an algebraically dense set of values of q, $H(K_q^K) = 0$, for all $(k,l) \neq (m,n)$ and $H(K_q^K) = k$.

Theorem 3. Let $R = R_q$ be a Hecke symmetry over \mathbb{C}, depending algebraically on q. Then there is an algebraically dense set of values of q for which the homology of the Koszul complex is one-dimensional and concentrated at the term (m,n), where (m,n) is the birank of R.

References

[1] P. Deligne. Catégories tensorielles. Preprint, 2002.
[2] R. Dipper and G. James. Representations of Hecke Algebras of General Linear Groups. Proc. London Math. Soc., 52(3):20–52, 1986.
[3] R. Dipper and G. James. Block and Idempotents of Hecke Algebras of General Linear Groups. Proc. London Math. Soc., 54(3):57–82, 1987.
[4] E.Cremmer and J.-L.Gervais. The Quantum Groups Structure Associated With Non-linearly Extended Virasoro Algebras. Comm. Math. Phys., 134:619–632, 1990.
[5] A. Edrei. Proof of a Conjecture of Schoenberg on the Generating Function of a Totally Positive Sequence. Canad. J. of Math., 5:86–94, 1953.
[6] D.I. Gurevich. Algebraic Aspects of the Quantum Yang-Baxter Equation. Leningrad Math. Journal, 2(4):801–828, 1991.
[7] Phung Ho Hai. Koszul Property and Poincaré Series of Matrix Bialgebra of Type A_n. J. of Algebra, 192(2):734–748, 1997.
[8] Phung Ho Hai. Poincaré Series of Quantum Spaces Associated to Hecke Operators. Acta Math. Vietnam, 24(2):236–246, 1999.
[9] Phung Ho Hai. On Matrix Quantum Groups of Type A_n. Int. J. of Math., 11(9):1115–1146, 2000.
[10] Phung Ho Hai. Splitting comodules over Hopf algebras and application to representation theory of quantum groups of type $A_{(0)}$. J. of Algebra, 245(1):20–41, 2001.
[11] Phung Ho Hai. The integral on quantum super groups of type $A_{\ell|l}$. Asian J. of Math., 5(4):751–770, 2001.
[12] M. Jimbo. A q-analogue of $U(\mathfrak{g}(N + 1))$, Hecke algebra, and the Yang-Baxter equation. Lett. Math. Phys., 11:247–252, 1986.
[13] R. Larson and J. Towber. Two Dual Classes of Bialgebras Related To The Concepts of “Quantum Groups” and “Quantum Lie Algebra”. Comm. in Algebra, 19(12):3295–3345, 1991.
[14] V.V. Lyubashenko. Hopf Algebras and Vector Symmetries. Russian Math. Survey, 41(5):153–154, 1986.
[15] V.V. Lyubashenko. Superanalysis and Solutions to the Triangles Equation. PhD thesis, Kiev, 1987.
[16] V.V. Lyubashenko and A. Sudbery. Quantum Super Groups of $GL(n|m)$ Type: Differential Forms, Koszul Complexes and Berezinians. *Duke Math. Journal*, 90:1–62, 1997.

[17] I.G. Macdonald. *Symmetric functions and the Hall polynomials*. Oxford University Press, New York, 1979 (Second edition 1995).

[18] S. Majid and M. Markl. Glueing Operation for R-Matrices, Quantum Groups and Link-Invariants of Hecke Type. *Math. Proc. Camb. Philos. Soc.*, 119(1):139–166, 1996.

[19] Yu.I. Manin. *Gauge Field Theory and Complex Geometry*. Springer-Verlag, 1988.

[20] M. Takeuchi and D. Tambara. A new one-parameter family of 2×2 quantum matrices. *Hokkaido Math. Journal*, XXII(3):409–419, 1992. See also Proc. Japan. Acad., 67, no. 8, 267–269. 1991.

Institute of Mathematics, P.O.Box 631, 10000 BOHO, HANOI