Summary: Every “x”-adjustment in the so-called xVA financial risk management framework relies on the computation of exposures. Considering thousands of Monte Carlo paths and tens of simulation steps, a financial portfolio needs to be evaluated numerous times during the lifetime of the underlying assets. This is the bottleneck of every simulation of xVA.

In this article, we explore numerical techniques for improving the simulation of exposures. We aim to decimate the number of portfolio evaluations, particularly for large portfolios involving multiple, correlated risk factors. The usage of the Stochastic Collocation (SC) method \[L. A. Grzelak et al., Quant. Finance 19, No. 2, 339–356 (2019; Zbl 1428.62048) \] together with \[S. A. Smolyak, Dokl. Akad. Nauk SSSR 148, 1042–1045 (1963; Zbl 0202.39901) \]; translation from Dokl. Akad. Nauk SSSR 148, 1042–1045 (1963); \[K. L. Judd et al., J. Econ. Dyn. Control 44, 92–123 (2014; Zbl 1402.91368) \] sparse grid extension, allows for a significant reduction in the number of portfolio evaluations, even when dealing with many risk factors. The proposed model can be easily applied to any portfolio and size. We report that for a realistic portfolio comprising linear and non-linear derivatives, the expected reduction in the portfolio evaluations may exceed 6000 times, depending on the dimensionality and the required accuracy. We give illustrative examples and examine the method with realistic multi-currency portfolios consisting of interest rate swaps and swaptions.

MSC:

91Gxx Actuarial science and mathematical finance
41Axx Approximations and expansions
65Dxx Numerical approximation and computational geometry (primarily algorithms)

Keywords:

stochastic collocation; SC; xVA; valuation adjustment; expected exposures; Smolyak’s sparse grids; Chebyshev polynomials; Clenshaw-Curtis

Full Text: DOI arXiv

References:

[1] Abbas-Turki, L.; Crépey, S.; Diallo, B., XVA principles, nested Monte Carlo strategies, and GPU optimizations, IJTAF, 21, 6 (2018) · Zbl 1416.91398
[2] K. Andersson, C. Oosterlee, A deep learning approach for computations of exposure profiles for high-dimensional Bermudan options, Available at arXiv:2003.01977 (2019) · Zbl 07424214
[3] Barthelmann, V.; Novak, E.; Ritter, K., High dimensional polynomial interpolation on sparse grids, Adv. Comput. Math., 12, 273-288 (2000) · Zbl 0944.41001
[4] Brigo, D.; Mercurio, F., Interest Rate Models: Theory and Practice: With Smile, Inflation and Credit (2007), Springer Finance
[5] Clenshaw, C.; Curtis, A., A method for numerical integration on an automatic computer, Numer. Math., 2, 197 (1960) · Zbl 0093.14006
[6] S. Crépey, R. Hoskinson, B. Saadeddine, Balance sheet XVA by deep learning and GPU, Available https://math.maths.uniev-ery.fr/crepey/papers (2019) · Zbl 1479.91387
[7] Dufresne, D., Sums of Lognormals, Technical report (2008), Centre for Actuarial Sciences, University of Melbourne
[8] Gaš, M.; Glau, K.; Micu, M.; Maximilian, M., Chebyshev interpolation for parametric option pricing, Financ. Stoch., 22, 3, 701-731 (2018) · Zbl 1402.91782
[9] Glau, K.; Kressner, F.; Statti, F., Low-rank tensor approximation for Chebyshev interpolation in parametric option pricing, SIAM J. Financ. Math., 11, 3, 897-927 (2020) · Zbl 1452.91382
[10] Glau, K.; Pachon, R.; Pötz, C., Speed-up credit exposure calculations for pricing and risk management, Quant. Financ., 21, 481-499 (2020) · Zbl 1466.91337
[11] Green, A., XVA: Credit, Funding and Capital Valuation Adjustments (2015), Wiley \& Sons Ltd
[12] Gregory, J., Counterparty Credit Risk: The New Challenge for Global Financial Markets (2010), John Wiley \& Sons
[13] Grzelak, L.; Oosterlee, C., On cross-currency models with stochastic volatility and correlated interest rates, Appl. Math. Financ., 19, 1, 1-35 (2012) · Zbl 1372.91075
[14] Grzelak, L.; Oosterlee, C., From arbitrage to arbitrage-free implied volatilities, J. Comput. Financ., 20, 3, 31-49 (2016)
[15] Grzelak, L.; Witteveen, J.; Suárez-Taboada, M.; Oosterlee, C., The stochastic collocation Monte Carlo sampler: highly efficient sampling from “expensive” distributions, Quant. Financ., 19, 2, 339-356 (2019) · Zbl 1428.62048
[16] Hull, J.; White, A., Numerical procedures for implementing term structure models II: two-factor models, J. Deriv., 2, 37-47 (1994)
[17] Judd, K., Numerical Methods in Economics (1998), MIT Press: MIT Press Cambridge, MA · Zbl 0924.65001
[18] http://www.sciencedirect.com/science/article/pii/S0165188914000621. · Zbl 1402.91368
[19] Laris, I., Chebyshev methods for ultra-efficient risk calculations, Available at SSRN 3165563 (2018).
[20] https://www.mdpi.com/2227-9091/10/3/47.
[21] Loukrezis, D.; Römer, U.; Casper, T.; Schöps, H. D., High dimensional uncertainty quantification for an electrothermal field problem using stochastic collocation on sparse grids and tensor train decompositions, Int. J. Numer. Model., 31, 2, 1-8 (2017)
[22] Belz Committee on Banking Supervision, Annex 4 to “International convergence of capital measurement and capital standards - a revised framework” (2005).
[23] Oosterlee, C.; Grzelak, L., Mathematical Modeling and Computation in Finance (2019), World Scientific
[24] Smolyak, S., Quadrature and interpolation formulas for tensor products of certain classes of functions, Dokl. Akad. Nauk SSSR, 4, 240-243 (1963) · Zbl 0202.39901
[25] Suárez-Taboada, M.; Witteveen, J.; Grzelak, L.; Oosterlee, C., Uncertainty quantification and Heston model, (Quintela, P.; Barral, P.; Gómez, D.; Salgado, P.; Vázquez-Méndez, M., Progress in Industrial Mathematics at ECMI 2016 (2017), Springer International Publishing: Springer International Publishing Cham), 153-159
[26] Tempone, R.; Wolters, S., Smolyak’s algorithm: a powerful black box for the acceleration of scientific computations, (Garcke, J.; Pflüger, D.; Webster, C.; Zhang, G., Sparse Grids and Applications—Miami 2016 (2018)), 201-228 · Zbl 07007957
[27] Trefethen, L., Is Gauss quadrature better than Clenshaw-Curtis?, SIAM Rev., 50, 67-87 (2008) · Zbl 1141.65018
[28] Xu, D.; Hesthaven, J., High order collocation methods for differential equations with random inputs, SIAM J. Sci. Comput., 27, 1118-1139 (2005) · Zbl 1091.65006
[29] Zeron, M.; Ruiz, I., Tensoring Dynamic Sensitivities and Dynamic Initial Margin (2021), Risk Magazine

This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.