Title: Selection on heterozygosity drives adaptation in intra- and interspecific hybrids

Running title: Adaptation in hybrids

Authors: Caiti S. Smukowski Heil1, Christopher G. DeSevo2,2a, Dave A. Pai2,2b, Cheryl M. Tucker2,2c, Margaret L. Hoang3,4,2d, Maitreya J. Dunham1*

Affiliations

1Department of Genome Sciences, University of Washington, Seattle, Washington, United States of America

2Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey, United States of America

3Howard Hughes Medical Institute and Department of Embryology, Carnegie Institution, Baltimore, Maryland, United States of America

4Department of Biology, Johns Hopkins University, Baltimore, Maryland, United States of America

2aCurrent address: Exelixis, Dallas, Texas, United States of America

2bCurrent address: BioNano Genomics, San Diego, California, United States of America

2cCurrent address: Wall High School, Wall Township, New Jersey, United States of America

2dCurrent address: Nanostring, Seattle, Washington, United States of America

* Corresponding author

Email: maitreya@uw.edu (MD)
ABSTRACT

Hybridization is often considered maladaptive, but sometimes hybrids can invade new ecological niches and adapt to novel or stressful environments better than their parents. However, the genomic changes that occur following hybridization and facilitate genome resolution and/or adaptation are not well understood. Here, we address these questions using experimental evolution of de novo interspecific hybrid yeast *Saccharomyces cerevisiae x Saccharomyces uvarum* and their parentals. We evolved these strains in nutrient limited conditions for hundreds of generations and sequenced the resulting cultures to identify genomic changes. Analysis of 16 hybrid clones and 16 parental clones identified numerous point mutations, copy number changes, and loss of heterozygosity events, including a number of nuclear-mitochondrial mutations and species biased amplification of nutrient transporters. We focused on a particularly interesting example, in which we saw repeated loss of heterozygosity at the high affinity phosphate transporter gene *PHO84* in both intra- and interspecific hybrids. Using allele replacement methods, we tested the fitness of different alleles in hybrid and *S. cerevisiae* strain backgrounds and found that the loss of heterozygosity is indeed the result of selection on one allele over the other in both *S. cerevisiae* and the hybrids. This illuminates an example where hybrid genome resolution is driven by positive selection on existing heterozygosity, and generally demonstrates that outcrossing need not be frequent to have long lasting impacts on adaptation.
INTRODUCTION

Hybridization is now recognized as a common phenomenon across the tree of life. Historically however, the detection of hybrids has been difficult, and its incidence may be underreported for both plants and animals, and almost certainly for certain eukaryotes like insects and fungi (Albertin and Marullo 2012; Bullini 1994). Its importance as an evolutionary force has thus been maligned, as hybrids appeared both rare, and typically at a reduced fitness. In addition to potential post-reproductive barriers, the hybrid is theorized to be ill-adapted to its environment and will also suffer minority cytotype disadvantage because other hybrids are uncommon and backcrosses to parental species may be unfit (Mallet 2007). However, hybrids can have a variety of advantages over their parents, including heterozygote advantage, extreme phenotypic traits, and reproductive isolation (usually resulting from polyploidy), and can thus facilitate adaptation to novel or stressful conditions, invade unoccupied ecological niches, and even increase biodiversity.

Some hybridization events lead to new hybrid species (Mavarez, et al. 2006; Meyer, et al. 2006; Nolte, et al. 2005; Rieseberg 1997; Schumer, et al. 2014; Soltis and Soltis 2009), while most result in introgression from hybrid backcrosses to the more abundant parental species (Dasmahapatra, et al. 2012; Dowling, et al. 1989; Grant, et al. 2005; Taylor and Hebert 1993; Wayne 1993). This introduces genetic variation into a population at orders of magnitude greater than what mutation alone can achieve, in a sense operating as a multi-locus macro-mutation (Abbott, et al. 2013; Barton 2001; Grant and Grant 1994; Mallet 2007). Therefore, hybridization via introgression, polyploidy, or homopoloid hybrid speciation, may offer a rapid strategy for adaptation to changing environmental conditions. For example, in Darwin’s finches, adaptive introgression supplied the morphological variation which allowed the species to survive following an El Niño event (Grant and Grant 2010, 2002), while in ancient humans, introgression allowed adaptation to high altitudes (Huerta-Sanchez and Casey 2015), among other traits (Racimo, et al. 2015). The most iconic example comes from the hybrid sunflower species Helianthus anomalus, Helianthus deserticola, and Helianthus paradoxis, from the parents Helianthus annuus and Helianthus petiolaris. These three hybrid species are locally adapted to extreme desert, salt marsh, and dune habitats respectively, and show traits such as increased...
drought or salt tolerance relative to their parents (Heiser 1954; Rieseberg 1991; Rosenthal, et al. 2002; Schwarzbach, et al. 2001).

Agriculture and industry use both intra- and interspecific hybrids as a tool to increase yield or robustness, introduce resistance to pests, and create novel phenotype or flavor profiles. For example, plant breeders have crossed domesticated species to wild species to introduce resistance to a variety of pathogens in wheat, potato, and canola (Mason and Batley 2015), and almost all maize grown in the United States is grown from intraspecific hybrid seeds, which has increased yield and provided improved resistance to biotic and abiotic factors (Crow 1998). Vintners and brewers have created interspecific hybrids to select for traits such as lower acetic acid concentration (Bellon, et al. 2015), and many incidental fungal hybrids have been discovered in brewing and industry, including *Pichia sorbitophila* (Louis, et al. 2012b), and various hybrids across the *Saccharomyces* clade (Bellon, et al. 2015; Gonzalez, et al. 2006; Gonzalez, et al. 2008; Hittinger 2013; Muller and McCusker 2009), most notably the lager-brewing yeast, *Saccharomyces pastorianus* (Baker, et al. 2015; Dunn and Sherlock 2008; Gibson and Liti 2015; Peris, et al. 2016; Tamai, et al. 1998; Walther, et al. 2014). It is presumed that the severe selection pressures exerted during industrial processes have selected for interspecific hybrid genomes that may be more able to cope with the extreme environments.

At the genomic level, hybridization induces chromosome loss/aneuploidy, chromosomal rearrangements, gene loss, changes in gene expression, changes in epigenetic modifications, transposable element mobilization, and large scale loss of heterozygosity, in which the allele of one species is lost and the allele of the other species is retained via gene conversion or break induced replication (Abbott, et al. 2013; Ainouche and Jenczewski 2010; Albertin and Marullo 2012; Borneman, et al. 2014; Doyle, et al. 2008; Landry, et al. 2007; Masly, et al. 2006; Michalak 2009; Soltis, et al. 2014; Soltis 2013). These extensive changes can result in a chimeric, stabilized hybrid, although the period of time for genome stabilization to occur can range dramatically (Soltis, et al. 2014). There is some speculation that genetic distance between parental hybridizing species influences genome stabilization and bias in genome resolution, but this remains an open question. It is also unknown whether there are structural and functional biases
in the ways in which genes/alleles are lost or modified. Both drift and selection influence the resolution of the hybrid genome, but their contributions are difficult to untangle.

To further explore these types of questions, an experimental approach is helpful. Researchers have long been exploring the genetics of hybrid traits in the lab, particularly in agricultural crops, although this is often slowed by infertility and reduced viability in many interspecific hybrids (Hajjar and Hodgkin 2007; Ouyang, et al. 2010; Perez-Prat and van Lookeren Campagne 2002). The genus of the budding yeast Saccharomyces cerevisiae lends itself particularly well to experimental study. Many hybrids of this genus have been discovered in brewing, industrial, and natural environments; indeed, the genus itself is speculated to be a product of an ancient hybridization event (Barbosa, et al. 2016; Hittinger 2013; Leducq, et al. 2016; Marcet-Houben and Gabaldon 2015). Viable interspecific hybrids can be created de novo in the lab (Greig, et al. 2002; Marinoni, et al. 1999), and their ability to grow mitotically means that the catastrophic postzygotic barriers to speciation that generally doom other obligate sexually reproducing hybrids can be avoided. This experimental system allows us to observe evolution in real time in the laboratory environment, and the genetic and genomic tools available in this model genus facilitate characterization of the connection between genotype and phenotype, including fitness.

Previous work in our lab group has utilized experimental evolution to investigate adaptive events in homozygous haploid and diploid S. cerevisiae (Gresham, et al. 2008; Payen, et al. 2014; Sunshine, et al. 2015). To investigate genome evolution post hybridization, we utilize an interspecific hybrid, S. cerevisiae x Saccharomyces uvarum, and its parentals: a homozygous diploid S. uvarum and an intraspecific hybrid S. cerevisiae GRF167 x S. cerevisiae S288C. This allows us to understand the impact of varying levels of heterozygosity on adaptation and genome evolution, ranging from none (S. uvarum and previous S. cerevisiae experiments), to intraspecific heterozygosity (S. cerevisiae GRF167 x S. cerevisiae S288C), to the most extreme case of interspecific hybrids. S. uvarum is one of the most distantly related species of S. cerevisiae in the Saccharomyces clade, separated by 20 my and 20% sequence divergence at coding sites (Cliften, et al. 2006; Kellis, et al. 2003). Despite this extensive divergence, S. cerevisiae and S. uvarum are largely syntenic and create hybrids, though less than 1% of zygotes are viable.
(Greig 2009). The two species differ in their stress tolerances, for example, *S. cerevisiae* being more thermotolerant, *S. uvarum* being cryotolerant (Almeida, et al. 2014). Previous evolution experiments using lab derived hybrids has revealed novel and/or transgressive phenotypes for ammonium limitation, ethanol tolerance, and growth on xylose (Belloch, et al. 2008; Dunn, et al. 2013; Piotrowski, et al. 2012; Wenger, et al. 2010). Notably, Dunn et al. (2013) reveal several loss of heterozygosity events and a repeatable reciprocal translocation that produces a gene fusion at the high-affinity ammonium permease MEP2 after selection in ammonium limitation, offering insight into potential mutational events in the adaptation and/or stabilization of *S. cerevisiae* x *S. uvarum* hybrids.

Here, we evolved these hybrids and diploids in replicate in three nutrient limited conditions for hundreds of generations. Using whole genome sequencing, we found whole chromosome aneuploidy, genome rearrangements, copy number variants, *de novo* point mutations, and loss of heterozygosity. We sought to determine how initial heterozygosity impacts adaptation to novel conditions, and explore whether neutral or selective forces are influencing the resolution of the hybrid genome over time. In particular, we investigated a re-occurring loss of heterozygosity event observed in both intra- and interspecific hybrids, and found support for the hypothesis that loss of heterozygosity at this locus is due to selection.
RESULTS

Experimental evolution of hybrid and parental species

An interspecific hybrid was created by crossing *S. cerevisiae* and *S. uvarum* (strains in Supplemental Table 1), and evolved in continuous culture in the chemostat (Monod 1949; Novick and Szilard 1950a, b). In parallel, homozygous diploid *S. uvarum* and heterozygous diploid *S. cerevisiae* (GRF167xS288C) were also evolved. Each strain was grown in two or more replicate independent cultures under three different nutrient limitations—glucose, phosphate, and sulfate—for 85-557 generations (median 158) at 30°C, except for *S. uvarum*, which was unable to achieve steady state in all conditions at 30°C and so was evolved at 25°C. The population sizes were largely similar across strains, species, and conditions. Each evolved clone was subsequently competed individually against the appropriate GFP-tagged ancestor to gauge relative fitness. As expected, evolved hybrid and parental clones generally exhibit higher fitness than their unevolved ancestor, with typical relative fitness gains between 20-30% (Tables 1, 2).

Mutations in nuclear encoded mitochondrial genes may be more prevalent in interspecific hybrids

To identify mutations in the evolved hybrids, we generated whole genome sequencing for sixteen clones from the endpoints of the evolution experiments (Table 1). We thus captured data from a range of nutrient limitations (6-phosphate; 3-glucose; 7-sulfate) and generations (100-285, median 154 generations). Each clone had an average of 2.4 point mutations, a number of which have been previously identified in prior *S. cerevisiae* evolution experiments. For example, a nonsynonymous mutation in the *S. cerevisiae* allele of the glucose sensing gene SNF3 has been identified in glucose limited experiments in *S. cerevisiae* (Kvitek and Sherlock 2013; Selmecki, et al. 2015). To our knowledge, 20/27 coding point mutations are unique to these experiments (Payen, et al. 2015).

In evolved parentals, we again sequenced one clone from the endpoint of each population. In total, we sequenced 16 clones, 6 from each of the three nutrients (two *S. uvarum* diploids, and four *S. cerevisiae* diploids), except in glucose limitation in which only two *S. cerevisiae* populations were sampled. The generations ranged from 234-557 (median 477) in *S. uvarum* with an average of 2.83 mutations per clone, and from 127-190 (median 166.5) in *S. cerevisiae*.
Saccharomyces cerevisiae with an average of 0.9 point mutations per clone (Table 2). This discrepancy in point mutations between *S. cerevisiae* and *S. uvarum* may be explained by differences in generation time, or perhaps other mutational events are more prevalent in *S. cerevisiae*.

With the limited number of samples we have from hybrid and parental clones, it is difficult to draw any conclusions regarding unique point mutations in hybrids. However, one class of mutations that may be of particular interest in hybrids are genomic mutations which may interact with the mitochondria, as previous work has shown that nuclear-mitochondria interactions can underlie hybrid incompatibility (Chou and Leu 2010; Lee, et al. 2008; Meiklejohn, et al. 2013). Other studies have found that only the *S. cerevisiae* mitochondria are retained in *S. cerevisiae* x *S. uvarum* hybrids (Antunovics, et al. 2005), and we recapitulate these findings, potentially setting the stage for conflicting interactions between the *S. uvarum* nuclear genome and the foreign mitochondria. We observe several mitochondria related mutations in hybrids in both *S. cerevisiae* and *S. uvarum* alleles. For example, one point mutation, a non-synonymous mutation in the *S. cerevisiae* allele of the mitochondrial ribosomal protein gene *MHR1*, was seen in two separate clones independently evolved in phosphate limitation. This gene may be of particular interest as it was discovered in a previous screen as being haploproficient (increased fitness of 19%) in hybrids in which the *S. cerevisiae* allele is missing and the *S. uvarum* allele is retained (Lancaster S, Dunham MJ, unpublished data), suggesting that this mutation may alter or disable the *S. cerevisiae* protein in some way. Another example involves the gene *IRC3*, a helicase responsible for maintenance of the mitochondrial genome, which has a nonsynonymous mutation in the *S. uvarum* allele in clone Gh3 and is deleted in clone Gh2, potentially suggesting that the *uvarum* allele is deleterious in the hybrid background. While our sample size is small, 4/27 point mutations in hybrids are related to mitochondria function compared to 0/26 in parentals, and may represent interesting targets for further exploration.

Copy number variants frequently involve the amplification of nutrient transporters

Yeast in both natural and artificial environments are known to frequently experience changes in copy number, ranging from single genes to whole chromosomes (Dunham, et al.
This holds true in our evolution experiments: we observe copy number changes across all genetic backgrounds (Figure 1, Supplemental Figures 1-3). Clones were compared to array Comparative Genomic Hybridization of populations to confirm that clones are representative of populations (see Materials and Methods). The evolved hybrid clones displayed an average of 1.5 copy number variants (CNVs) per clone (Figure 1, Table 1, Supplemental Figure 3), as defined by the number of segmental or whole chromosome amplifications/deletions (though it is likely that some of these CNVs were created in the same mutational event). The evolved S. cerevisiae clones had an average of 1.5 CNV per clone and the evolved S. uvarum had an average of 1 CNV per clone (Table 2, Supplemental Figures 1-2). It therefore does not appear that our interspecific hybrids are more prone to genomic instability, as has previously been suggested in other systems (Chester, et al. 2015; Lloyd, et al. 2014; Mason and Batley 2015; Xiong, et al. 2011). The most common event across nutrient limitations in the interspecific hybrids was an amplification of the S. cerevisiae copy of chromosome IV, which occurred in four independent hybrid clones (3 in phosphate limitation, 1 in glucose limitation; Supplemental Figure 3). Several other characteristic rearrangements occurred in the evolved S. cerevisiae clones, including the amplification of the left arm of chromosome 14 accompanied by segmental monosomy of the right arm of chromosome 14, an event seen previously in other evolved populations (Dunham, et al. 2002; Gresham, et al. 2008; Sunshine, et al. 2015). All copy number events in S. cerevisiae had breakpoints at repetitive elements known as Ty elements, except those located on chrII, which are known to be mediated by another mechanism (Brewer, et al. 2015). In contrast, copy number variants in the hybrid were rarely facilitated by repetitive elements, perhaps in part because S. uvarum has no full length Ty elements.

Frequently in nutrient limited evolution experiments, copy number variants involve amplification of the nutrient specific transporter, and indeed, we also observed amplification of these transporters in many of the clones. In sulfate limitation, the S. cerevisiae allele of the high affinity sulfate transporter SUL1 is amplified in 7/7 hybrid clones and 4/4 S. cerevisiae clones (Figure 1, Tables 1-2, Supplemental Figures 1, 3). Interestingly, SUL2 is the preferred sulfate
transporter in *S. uvarum* (Sanchez, et al. 2016) and was not observed to be amplified in the evolved hybrids (**Supplemental Figure 2, Table 2**). In glucose limitation, previous *S. cerevisiae* evolution experiments found consistent amplification of the high affinity glucose transporter genes *HXT6/7* (Brown, et al. 1998; Dunham, et al. 2002; Gresham, et al. 2008; Kao and Sherlock 2008; Kvitek and Sherlock 2011). In our experiments, the *S. uvarum* alleles of the *HXT6/7* transporters are amplified in 3/3 hybrid clones and both *S. uvarum* clones, but are not amplified in evolved *S. cerevisiae* clones, suggesting that the *S. uvarum* *HXT6/7* alleles confer a greater fitness advantage compared to *S. cerevisiae* (**Figure 1, Tables 1-2, Supplemental Figures 1-3**). Finally, in phosphate limitation, the *S. cerevisiae* copy of the high affinity phosphate transporter *PHO84* is amplified, while the *S. uvarum* allele is lost in 3/6 hybrid clones in an event known as loss of heterozygosity (**Figures 1-2, Table 1, Supplemental Figure 3**). Intriguingly, the evolved *S. cerevisiae* also display loss of heterozygosity and accompanied amplification favoring the allele derived from strain GRF167 over the S288C allele in 4/4 clones (**Figure 2, Table 2**). All hybrid clones carry the “preferred” GRF167 *S. cerevisiae* allele, as this was the allele used to create the *de novo* hybrid.

Loss of heterozygosity is a common event in heterozygous evolving populations

Selection on heterozygosity, as a loss of heterozygosity event could represent, is an underappreciated source of adaptation in microbial experimental evolution, as typical experiments evolve a haploid or homozygous diploid strain asexually and as a result, have little variation to select upon. Loss of heterozygosity is observed in natural and industrial hybrids (Albertin and Marullo 2012; Louis, et al. 2012a; Prysztzcz, et al. 2014a; Wolfe 2015), but here we document its occurrence in both intra- and interspecific hybrids in the laboratory as a result of short term evolution (also see (Burke, et al. 2014; Dunn, et al. 2013)). Loss of heterozygosity is observed across all nutrient conditions, with twelve independent loss of heterozygosity events detected in *S. cerevisiae*, and nine independent events documented in the hybrids (**Figures 1-2, Tables 1-2, Supplemental Figures 1, 3**). It thus appears that this type of mutational event is both common, and can occur over short evolutionary timescales.
The loss of heterozygosity event can result in copy-neutral (where one allele is lost and the other allele is amplified) or non-neutral chromosomal segments (where one allele is lost, rendering the strain hemizygous at that locus), and can favor the retention of either allele. In *S. cerevisiae*, there is a bias in resolution where loss of heterozygosity events favor retaining the GRF167 allele over the S288C allele (Table 2, Supplemental Figure 4). One unique case in clone Sc4 has a small ~5 kb loss of heterozygosity event on chrXV favoring GRF167, which switches to favoring S288C for the rest of the chromosome. The retention of *S. cerevisiae* is slightly more common in the hybrids (5/9 events, Table 1, Supplemental Figure 3), though not as drastic as the observed genome resolution in the hybrid *S. pastorianus*, where loss of heterozygosity favors *S. cerevisiae* over *S. eubayanus* (Nakao, et al. 2009). The size of the event ranges from approximately 25 kb to the whole chromosome level in the hybrids, and from 5kb to 540kb in *S. cerevisiae*. Where loss of heterozygosity is accompanied by an amplification event, the loss of heterozygosity event always occurs first; unlike many CNV events, almost all loss of heterozygosity events do not appear to be mediated by existing repetitive sequence such as a transposable element in the hybrid or *S. cerevisiae*, and are most likely a product of break induced replication or mitotic gene conversion (Hoang, et al. 2010). The exceptions are in hybrid clones Ph4, Ph5, and Sh1, where there is a non-copy neutral loss of *S. cerevisiae* mediated by a Ty element or Long Terminal Repeat (LTR), and *S. cerevisiae* clones Sc1 and Sc4, where there is a 6.5 kb deletion of the S288C allele flanked by two Ty elements.

Loss of heterozygosity events in hybrids could signify several ongoing processes in hybrid genome evolution: loss of heterozygosity regions may represent (1) loci with incompatibilities; (2) selection on existing variation; or (3) genetic drift eroding genomic segments. While our sample size is modest, failing to see repeated loss of heterozygosity events across nutrient conditions disfavors the hypothesis that loss of heterozygosity is resolving some sort of hybrid incompatibility. Furthermore, loss of heterozygosity events observed in evolved *S. cerevisiae* suggest that this mutation type is not unique to interspecific hybrids. Instead, repeated events within a particular condition, such as the repeated loss of heterozygosity at PHO84 in phosphate limitation or the 6.5kb segment on chrXIII in sulfate limitation, suggest that these events are beneficial, and are indeed selection on one allele over the other.
Loss of heterozygosity is driven by selection on one allele

To test the hypothesis that loss of heterozygosity events provide a selective advantage, we used allele replacement, in which the allele of one species/strain is replaced with the allele of the other species/strain in an otherwise isogenic background. We tested this hypothesis using the most commonly seen loss of heterozygosity event, loss of heterozygosity at \textit{PHO84}. While the region extends from 25-234 kb in length in the hybrids and 40-85 kb in \textit{S. cerevisiae}, \textit{PHO84} was a prime candidate driving this event. \textit{PHO84} is one of only 10 genes encompassed in the region extending from the telomere to the breakpoint of the shortest loss of heterozygosity event, and is included in every other loss of heterozygosity event on chromosome XIII (Figure 1). It is responsible for sensing low phosphate, and previous work identified a point mutation in \textit{PHO84} (an Alanine to Valine substitution at the 5' end of the gene), which increased fitness by 23\% in phosphate limited conditions (Sunshine, et al. 2015). Finally, prior work with other nutrient transporters has shown amplification of nutrient transporters to be a key event in adapting to nutrient limited conditions.

We thus selected a region of approximately 2.5 kb encompassing the \textit{PHO84} ORF, its promoter, and 3’UTR (Cherry, et al. 2012; Nagalakshmi, et al. 2008; Yassour, et al. 2009). We created allele replacement strains using the two alleles of \textit{S. cerevisiae} in a \textit{S. cerevisiae} diploid background; the two alleles are 99.1\% identical in this region and each strain is identical to the ancestral strain used in our evolution experiments except at the \textit{PHO84} locus. \textit{S. cerevisiae} ancestor carries one copy of GRF167 (“preferred”) and one copy of S288C (“un-preferred”), so named due to which allele was retained and amplified in the evolved clones. To measure any resultant changes in fitness, we competed each strain individually against a fluorescent ancestral strain and measured which strain overtook the culture. Two copies of the un-preferred allele decreased fitness by -5.31 (+/-1.86), while two copies of the preferred allele increased fitness by 9.93 (+/-0.27). This displays an overall difference in fitness of 15.24 between the un-preferred and preferred alleles. By comparing the fitness of these allele replacement strains to the evolved clones (Table 2), the allele replacement does not fully recapitulate the fitness gain observed in the evolved clone. One explanation is that the additional mutations present in the
evolved strains also contribute to their total fitness. Another explanation could be the increased copy number of the PHO84 region that we see in these evolved clones. To further explore this fitness difference, we cloned the GRF167 allele onto a low copy number plasmid and transformed the allele replacement strain carrying two preferred S. cerevisiae alleles to simulate increased copy number of PHO84, and saw a further fitness increase of 1.76. This supports the conclusion that relative fitness gains in the evolved clone are largely due to the loss of the S288C allele, and selection and amplification of the GRF167 allele, with little additional benefit from further amplification. It could also be the case that co-amplification of other genes in the segment is required to attain the full benefit, as previously observed by the contribution of BSD2 to the SUL1 amplicon (Sunshine, et al. 2015; Payen, et al. 2015).

Unfortunately, we were unable to obtain a successful strain carrying the preferred S. cerevisiae allele in an S. uvarum background, so we were unable to test the fitness effect of carrying two preferred S. cerevisiae alleles in the hybrid background (which typically carries one preferred S. cerevisiae allele and one S. uvarum allele). However, we were able to generate a S. uvarum strain carrying the unpreferred allele and use this to create a hybrid. Carrying one preferred allele and one un-preferred S. cerevisiae allele has an increased fitness of 4.35 compared to two S. uvarum alleles in a hybrid background. Furthermore, using the GRF167 PHO84 plasmid, we found that the hybrid has an increased fitness of 16.47 (+/- 1.13) when an extra preferred allele is added. Together, these results support the conclusion that the S. cerevisiae GRF167 allele is preferred over the S288C one, and that S. cerevisiae alleles are preferred over the S. uvarum allele in the hybrid, and hence, that the loss of heterozygosity events seen in both intra- and interspecific hybrids are the product of selection.
DISCUSSION

In summary, we sought to understand forces underlying genome stabilization and evolution in interspecific and intraspecific hybrids as they adapt to novel environments. We evolved and sequenced clones from 16 hybrid populations and 16 parental populations to reveal a variety of mutational events conferring adaptation to three nutrient limited conditions. Of particular note, we find loss of heterozygosity in both evolved intraspecific and interspecific hybrid clones in all nutrient environments, potentially signifying areas where selection has acted on preexisting variation present in the ancestral clone. We used an allele replacement strategy to test this hypothesis for a commonly repeated loss of heterozygosity event and show that selection is indeed driving the homogenization of the genome at this locus. Though other studies in natural, industrial, and lab-evolved isolates have observed loss of heterozygosity, we present the first empirical test of the causal evolutionary forces influencing these events. This work is particularly informative for understanding past hybridization events and subsequent genome resolution in hybrids in natural and artificial systems.

The predictability of evolution

We now have many examples of predictable evolution in natural systems (Conte, et al. 2012; Elmer and Meyer 2011; Jones, et al. 2012; Losos, et al. 1998; Martin and Orgogozo 2013; Rundle, et al. 2000; Wessinger and Rausher 2014), and in laboratory experimental evolution, in which there often appears to be a limited number of high fitness pathways that strains follow when adapting to a particular condition (Burke, et al. 2010; Ferea, et al. 1999; Gresham, et al. 2008; Kawecki, et al. 2012; Kvitek and Sherlock 2013; Lang and Desai 2014; Salverda, et al. 2011; Woods, et al. 2006). For example, it is well established that amplifications of nutrient transporters are drivers of adaptation in evolution in nutrient limited conditions. Previous work in our group has particularly focused on the amplification of the high affinity sulfate transporter gene SUL1 in sulfate limited conditions, which occurs in almost every sulfate limited evolution experiment and confers a fitness advantage of as much as 40% compared to its unevolved ancestor. The amplification of phosphate transporters has been markedly less common, and thus drivers of adaptation in this condition have been less clear. Gresham et al.
(2008) identified a whole chromosome amplification of chrXIII in one population. In a follow up study, Sunshine et al. (2015), found whole or partial amplification of chrXIII in 3/8 populations. A genome wide screen for segmental amplifications found a slight increase in fitness for a small telomeric segment of chromosome XIII, and a point mutation in PHO84 was observed to increase fitness by 23%. However, screens by Payen et al. (2015) showed that although PHO84 is recurrently mutated in various experiments, it showed no benefit when amplified or deleted in phosphate limited conditions. Finally, additional evolution experiments recapitulated the point mutation seen in Sunshine et al. in 24/32 populations, and saw amplification of PHO84 in 8/32 populations (Miller A, Dunham MJ, unpublished data). It is important to note that all of these experiments used a strain background derived from S288C or CEN.PK, both of which carry the same PHO84 allele.

In our work, we observed amplification of the S. cerevisiae GRF167 allele of PHO84 in 4/4 S. cerevisiae clones from 4 populations and 3/6 hybrid clones from 6 populations. This amplification was always preceded by the loss of the S288C allele in S. cerevisiae clones or occurred in conjunction with the loss of the S. uvarum allele in hybrids. Furthermore, there is a 15% fitness difference between carrying two copies of the S288C allele of PHO84 compared to carrying two copies of the GRF167 allele of PHO84. It thus appears that amplification of PHO84 has been less predictable as the S288C allele does not confer a fitness advantage unless mutated. We note that the preferred GRF167 allele of PHO84 does not carry this particular polymorphism. Together, these results imply that strain background can constrain adaptive pathways.

The infusion of variation created by hybridization provides new templates for selection to act upon, which can be more important than either point mutations or copy number variants alone. Our work shows that outcrossing need not be common to have long-lasting effects on adaptation. This implication is particularly relevant in yeast where outcrossing may occur quite rarely followed by thousands of asexual generations (Greig and Leu 2009; Liti 2015; Ruderfer, et al. 2006).

Applications to other hybrids and cancer
The observation that loss of heterozygosity occurs in hybrid genomes is increasingly documented (Borneman, et al. 2014; Louis, et al. 2012b; Marce-Houben and Gabaldon 2015; Pryszcz, et al. 2014b; Soltis, et al. 2014), although the reason(s) for this type of mutation has been unresolved. As most examples stem from allopolyploid events that occurred millions of years ago, understanding why loss of heterozygosity is important in hybrid genome evolution is difficult. Cancer cells are also known to experience loss of heterozygosity, sometimes involved in the inactivation of tumor suppressor genes, leaving only one copy of the gene that may be mutated or silenced (Lapunzina and Monk 2011; Thiagalingam, et al. 2001; Tuna, et al. 2009). Data support the conclusion that loss of heterozygosity events are selected for during tumor development, as many loss of heterozygosity events involve specific chromosomal segments (Thiagalingam, et al. 2001), although the underlying molecular and genetic reasons for selection is an open debate (Ryland, et al. 2015).

Here, we experimentally demonstrate that loss of heterozygosity can occur in homoploid hybrids, as well as intraspecific hybrids. We provide an example in which homogenization of the genome is non-random, but instead driven by selection on one allele. We furthermore discover examples where one species allele is preferred over the other without loss of heterozygosity, such as the repeated amplification of the S. uvarum high affinity glucose transporters HXT6/7. Amplification of one species allele with or without loss of heterozygosity may be due to hybrid incompatibility within a particular protein complex, or other epistatic interactions (Piatkowska, et al. 2013). Together, our results show that the heterozygosity supplied by hybridization is an important contributor to adaptive routes explored by populations as they adapt to novel conditions.

While we cannot generalize our results from the PHO84 locus across the many other loss of heterozygosity events discovered in our hybrids and S. cerevisiae, in the future we can use similar methodology to explore whether positive selection always drives loss of heterozygosity or whether other explanations such as incompatibility resolution contribute as well. Future experiments might also utilize a high throughput method to explore segmental loss of heterozygosity in hybrids at a genome wide scale, similar to ongoing experiments at the gene level (Lancaster S, Dunham MJ, unpublished data). While our sample size is modest, this is a
novel and necessary step in understanding forces underlying hybrid genome stabilization and highlighting an underappreciated mechanism of hybrid adaptation.

Conclusions
The mutation events we observe in our experimentally evolved hybrids are in many ways quite representative of mutations observed in ancient hybrid genomes, suggesting that hybrid genome stabilization and adaptation can occur quite rapidly (within several hundred generations). Furthermore, our results illustrate that the infusion of variation introduced by hybridization at both the intra- and inter-species level can increase fitness by providing choices of alleles for selection to act upon, even when sexual reproduction is rare. This may be particularly important for leveraging existing variation for agricultural and industrial processes, and as climate change potentially increases natural hybridization (Hoffmann and Sgro 2011; Kelly, et al. 2010; Muhlfeld, et al. 2014).
MATERIALS AND METHODS

Strains
A list of strains used in this study is included in Supplemental Table 1. All interspecific hybrids were created by crossing a ura3 LYS2 haploid parent to a URA3 lys2 haploid parent of the other mating type, plating on media lacking both uracil and lysine, and selecting for prototrophs.

Evolution Experiments
Continuous cultures were established using media and conditions previously described (Gresham, et al. 2008; Sanchez, et al. 2016). Detailed protocols and media recipes are available at http://dunham.gs.washington.edu/protocols.shtml. Samples were taken daily and measured for optical density at 600 nm and cell count; microscopy was performed to check for contamination; and archival glycerol stocks were made daily. An experiment was ended when contamination, growth in tubing, or clumping appeared (number of generations at the endpoint for each population shown in Tables 1, 2). Samples from each endpoint population were colony-purified to yield two clones for further study.

Array Comparative Genomic Hybridization (aCGH)
Populations from the endpoint of each evolution were analyzed for copy number changes using aCGH following the protocol used in Sanchez et al. (2016). Microarray data will be made available upon publication in the GEO database and the Princeton University Microarray Database.

Sequencing
DNA was extracted from overnight cultures using the Hoffman-Winston protocol (Hoffman and Winston 1987), and cleaned using the Clean & Concentrator kit (Zymo Research). Nextera libraries were prepared following the Nextera library kit protocol and sequenced using paired end 150 base pairs on the illumina NextSeq 500 machine (sequencing coverage in Supplemental Table 2). The reference genomes used were: S. cerevisiae v3 (Engel, et al. 2014), S. uvarum
(Scannell, et al. 2011), and a hybrid reference genome created by concatenating the two genomes. Sequence was aligned to the appropriate reference genome using bwa v0.6.2 (Li and Durbin 2009) and mutations were called using GATK (McKenna, et al. 2010) and samtools 0.1.19 (Li, et al. 2009). Mutations in evolved clones were filtered in comparison to the ancestor to obtain de novo mutations. All mutations were first visually inspected using Integrative Genomics Viewer (Robinson, et al. 2011). Subsequently, point mutations in the hybrids were confirmed with Sanger sequencing (Supplemental Table 3). Copy number variants were visualized using DNACopy for S. cerevisiae and S. uvarum (Seshan and Olshen 2016). Loss of heterozygosity events were called based on sequencing coverage in the hybrids, and by identifying homozygous variant calls in S. cerevisiae. All breakpoints were called by visual inspection of sequencing reads and are thus approximate.

Fitness assays

The pairwise competition experiments were performed in 20 mL chemostats (Miller and Dunham 2013). Each competitor strain was cultured individually until steady state was reached, and then was mixed 50:50 with a GFP-tagged ancestor. Each competition was conducted in two biological replicates for approximately 15 generations after mixing. Samples were collected and analyzed twice daily. The proportion of GFP+ cells in the population was detected using a BD Accuri C6 flow cytometer (BD Biosciences). The data were plotted with ln[(dark cells/GFP+ cells)] vs. generations. The relative fitness coefficient was determined from the slope of the linear region.

Strain construction

Allele replacements for the PHO84 locus were done following the protocol of the Caudy lab with further modifications described here. The native locus was replaced with Kluyveromyces lactis URA3. The pho84Δ::URA3 strain was grown overnight in 5 mL of C-URA media, then inoculated in a flask of 100 mL YPD and grown to an OD of 0.6-0.8. Cells were washed then aliquoted. 275 µl of transformation mix (35 µl 1M Lithium Acetate, 240 µl of 50% 3500 PEG), 10 µl of Salmon sperm, and approximately 3 µg of PCR product were added to the cell pellet. It
was incubated at 37°C (S. uvarum) or 42°C (S. cerevisiae) for 45 minutes, then plated to YPD. It was replica plated to 5FOA the following day and colonies were tested for the gain of the appropriate species allele. The GRF167 allele was cloned into the pIL37 plasmid using Gibson assembly (Gibson, et al. 2009). Correct assembly was verified by Sanger sequencing. All primers used can be found in Supplemental Table 3.
ACKNOWLEDGEMENTS

We thank Noah Hanson and Erica Alcantara for technical assistance, and Monica Sanchez for helpful comments on this manuscript. Thanks to Yixian Zheng and Doug Koshland for contributing to the initial experimental design, creating yeast strains, and purchasing the oligonucleotides used for the microarrays. This work was supported by the National Science Foundation (grant number 1516330) and the National Institutes of Health (grant number R01 GM094306). MD is a Senior Fellow in the Genetic Networks program at the Canadian Institute for Advanced Research and a Rita Allen Foundation Scholar. CSH was supported in part by National Institutes of Health (grant number T32 HG00035). This work was also supported by the National Institutes of Health (grant number P50 GM071508) to the Lewis-Sigler Institute and from the Howard Hughes Medical Institute to Doug Koshland and Yixian Zheng.
FIGURE LEGENDS

Figure 1: Evolved hybrids exhibit changes in copy number and loss of heterozygosity
Copy number variants are displayed for evolved hybrid clones from three nutrient limited conditions: Gh2, glucose; Ph4, phosphate; and Sh4, sulfate. Hybrid copy number, determined by normalized sequencing read depth per ORF, is plotted across the genome according to S. cerevisiae ORF coordinates to account for three reciprocal translocations between S. cerevisiae and S. uvarum. Chromosomes are plotted in alternating light and dark purple, red indicates a S. cerevisiae copy number variant and blue indicates a S. uvarum copy number variant. Gh2 has a whole chromosome amplification of S. cerevisiae chrIV, a small segmental deletion of S. uvarum chrIV (non-copy neutral loss of heterozygosity), and an amplification of S. uvarum HXT6/7. Ph4 has a small segmental deletion of S. cerevisiae chrIII (non-copy neutral loss of heterozygosity) and an amplification of S. cerevisiae chrXIII with corresponding deletion of S. uvarum chrXIII (copy neutral loss of heterozygosity). Sh4 has an amplification of S. cerevisiae SUL1 and a whole chromosome amplification of S. uvarum chrVIII, (note, there is a reciprocal translocation between chrVIII and chrXV). Note that Sh4 is plotted on a different scale. For specific coordinates of copy number variants, see Table 1.

Figure 2: Repeated loss of heterozygosity at the PHO84 locus in intra- and interspecific hybrids
A. The 25kb region extending from the left telomere of chromosome XIII to the high affinity phosphate transporter gene PHO84. B. Copy number is plotted across the whole chromosome XIII in the hybrid ancestor and three evolved hybrid clones in phosphate limitation (clone indicated in upper right corner). Red shows the S. cerevisiae allele, blue shows the S. uvarum allele, and purple shows where both species exhibit the same copy number. Note: 8kb of telomere sequence is removed due to repetitive sequence. C. Alternate allele frequency is plotted for a portion of chromosome XIII in the ancestor and four evolved S. cerevisiae clones in phosphate limitation (clone indicated in upper right corner). All evolved S. cerevisiae clones exhibit a loss of heterozygosity at the telomeric portion of chromosome XIII (loss of S288C, amplification of GRF167), as illustrated by an allele frequency of zero compared to the ancestor.
S. cerevisiae copy number for the four evolved clones is shown below; the ancestor is diploid across the chromosome (also see Table 2, Supp. Fig. 1).
Clone	Location	Gene(s)	Mutation	Species	Generations	Relative fitness
Gh1	chrXIII: 852028	intergenic	cer	125	26.80 +/- 0.98	
	chrII: 911866..917272	HXT6/7	CNV (amplification)	uva		
Gh2	chrIV: 111919	SNF3	nonsynonymous: D114Y	cer	100	28.17 +/- 2.18
	chrIII: 51593	GLK1	synonymous: T252T	cer		
	chrIV: 884801..912119	13 genes including IRC3	LOH, CNV	uva lost		
	chrII: 912143..917470	HXT6/7	CNV (amplification)	uva		
	chrIV	836 genes	CNV (amplification)	cer		
Gh3	chrII: 889421	IRC3	nonsynonymous: M333I	uva	124	18.65 +/- 0.47
	chrII: 912416..917778	HXT6/7	CNV (amplification)	uva		
Ph1	chrV: 269392	intergenic	cer	103	29.18 +/- 1.37	
	chrXIV: 746688	intergenic	cer			
	chrIV: 1055864	MHR1	nonsynonymous: T218R	cer		
	chrIX	241 genes	LOH, CNV	uva lost, cer amp		
Ph2	chrV: 432778	GLC7	intron	cer	124	25.34 +/- 0.24
	chrVII: 9524	PDR11	nonsynonymous	uva		
Chromosome	Gene	Mutation Description	Location	Abundance		
------------	------	----------------------	----------	-----------		
chrXVI: 232879	MRPL40	nonsynonymous: V149E	L383*	uva		
chrXIII: 194496	YML037C	nonsynonymous: P306S				
chrIV: 244399	YDL114W	nonsynonymous: G119C				
chr IV	836 genes	CNV (amplification)	cer			
Ph3	chrIV: 1055864	MHR1	nonsynonymous: T218R	cer	167	
	chrIX: 30830..33084	YIL166C	CNV (amplification)	cer		
	chrXIII: 0..24562	10 genes including PHO84	LOH, CNV	uva lost, cer amp		
	chrIV	836 genes	CNV (amplification)	cer		
Ph4	chrVII: 555885	RPL26B	intron	cer	131	
	chrX: 246208	PHS1	nonsynonymous: K206N	cer		
	chrXIII: 324121	EIS1	nonsynonymous: E349*	uva		
	chrIII:0..82687	49 genes	LOH, CNV	cer lost		
	chrXIII:0..221753	112 genes, including PHO84	LOH, CNV	uva lost, cer amp		
Ph5	chrXIII: 231731	PPZ1	nonsynonymous: A63S	uva	122	

Phenotypes: Ph3, Ph4, Ph5
| Chromosome | Description | Genes | Mutation | | | | |
|------------|-------------|-------|----------|---|---|---|
| chrXIII: 0..234112 | 120 genes, including PHO84 | LOH, CNV | uva lost, cer amp | | | |
| chrIX:370117..439888 | 45 genes | LOH, CNV | cer lost | | | |
| chrVII: 972813 | PFK1 | nonsynonymous: G308S | cer | 111 | 25.52 +/- 3.32 |
| chrIV | 836 genes | CNV (amplification) | cer | | |
| chrII:511362..644974; 696397..813184 | 74 genes; 63 genes including SUL1 | LOH,CNV | cer lost; cer amp | 126 | 33.86 +/- 4.60 |
| chrIV: 680386..866667; 866667..983774 | 104 genes; 63 genes | LOH, CNV | uva amp; uva lost | | | |
| chrXVI: 847000..948066 | 49 genes | LOH, CNV | cer lost | | | |
| chrVII: 936384 | MRPL9 | nonsynonymous: D167G | cer | 268 | 19.64 +/- 4.30 |
| chrXVI: 572308 | ICL2 | nonsynonymous: M247I | uva | | | |
| chrVIII: 116661 | ERG11 | nonsynonymous: S286C | uva | | | |
| chrII: 787389..813184 | 11 genes including SUL1 | CNV (amplification) | cer | | | |
| chrVI: 162998 | GCN20 | nonsynonymous | cer | 132 | 21.84 +/- |
Chromosome	Position	Gene	Type/Change	Reference	Log2 Fold Change
chrXIV: 495890	FKH2 synonymous: S418S	uva	1.53		
chrII: 786584..813184	11 genes including SUL1	CNV (amplification)	cer		
Sh4	chrXIV: 666675	ARE2 nonsynonymous: I446T	cer	285	27.19 +/- 4.33
	chrXV: 800832	APC5 5'-upstream	cer		
	chrIV: 25917	TRM3 synonymous: S201S	cer		
	chrV: 342563	intergenic	uva		
	chrX: 769768	SPO77 nonsynonymous: D418G	uva		
	chrX: 990873	LEU3 5'-upstream	uva		
	chrXII: 192491	intergenic	uva		
	chrXIV:	EGT2 synonymous: T168T	uva		
	chrII: 770311..813184	22 genes, including SUL1	CNV (amplification)	cer	
	chrVIII	321 genes	CNV (amplification)	uva	
Sh5	chrIV: 310881	RXT3 nonsynonymous: P87T	uva	263	46.52 +/- 4.94
	chrVIII: 16911	intergenic	uva		
	chrII: 786040..813184	11 genes including SUL1	CNV (amplification)	cer	
Sh6	chrV: 269392	intergenic	cer	273	47.52 +/- 3.69
	chrXIV: 746688	intergenic	cer		
	chrIV: 413046	intergenic	uva		
Point mutations, copy number variants (CNV), and loss of heterozygosity events (LOH) are recorded for each evolved hybrid clone. Clones are identified by nutrient (G: glucose-limitation, P: phosphate-limitation, and S: sulfate-limitation), an “h” denotes hybrid, and the number indicates its derivation from independent populations. Genes in bold have been found to have point mutations in prior experiments. Note that mutations in the *S. uvarum* genome use *S. uvarum* chromosomes and coordinates. All breakpoints were called by visual inspection of sequencing reads and are thus approximate.					
Clone	Location	Gene(s)	Mutation	Species	Generations
---	---	---	---	---	---
Gc1	chrXIV:0..561000; 632250..784333	298 genes; 79 genes	CNV (amplification of chr 14L favoring GRF167; deletion of chr14R)	cer	163
	chrV:160000..5768 74	220 genes	LOH (favors GRF167)	cer	167
Gc2	chrV:431750..5768 74	71 genes	CNV (amplification, favoring GRF167)	cer	167
	chrV:710000..1091291	196 genes	LOH, CNV (monosomy, favoring S288C)	cer	167
Gu1	chrXV	597 genes	CNV (whole chromosome amplification)	uva	468
	chrII:911925..917281	HXT6/7	CNV (amplification)	uva	468
	chrXV:385930	NEL1	nonsynonymous: N129I	uva	468
	chrII:911909	intergenic, part of the HXT6/7 amplification	uva	468	18.03 +/- 2.12
Gu2	chrXV	597 genes	CNV (whole chromosome amplification)	uva	486
	chrII:911925..917281	HXT6/7	CNV (amplification)	uva	486
	chrIV:100293	RGT2	nonsynonymous: G107V	uva	486
Chr	Start Position	End Position	LOH	CNV	LOH, CNV
------	----------------	--------------	-----	-----	----------
V	42093				
	FRD1	nonsynonymous: G128A			
II	917191				
	HXT7	synonymous: H53H			
XI	155787				
		intergenic			
Pc1	chrXIII:0..39000 (LOH); 0..196628 (CNV: 3 copies); 196628..373000 (CNV: 2 copies)	LOH: 15 genes including PHO84; CNV: 201 genes	LOH, CNV (amplification, favoring GRF167)	cer	152
Pc2	chrXIII:0..41100 (LOH); 0..196628 (CNV: 3 copies); 196628..373000 (CNV: 2 copies)	LOH: 16 genes including PHO84; CNV: 201 genes	LOH, CNV (amplification, favoring GRF167)	cer	149
Pc3	chrXIII:0..39000 (LOH); 0..196628 (CNV: 3 copies); 196628..373000 (CNV: 2 copies)	LOH: 15 genes including PHO84; CNV: 201 genes	LOH, CNV (amplification, favoring GRF167)	cer	127
Pc4	chrXIII:0..85500 (LOH); 0..196628 (CNV: 3 copies); 196628..373000 (CNV: 2 copies)	LOH: 40 genes including PHO84; CNV: 201	LOH, CNV (amplification, favoring GRF167)	cer	132
	chrVIII:520349				
	intergenic				
Chr	Position	Genes	LOH/CNV	UVA	Standard Deviation
-----	----------	-------	---------	-----	--------------------
chrXII: 264000..1078177	437 genes	LOH (favoring S288C)			
chrXV: 1023197	PIP2	nonsynonymous: E6Q			
Pu1			uva	240	-1.68 +/- 1.10
chrIX: 14480	YPS6	5’-upstream	uva	234	21.30 +/- 0.73
chrIX: 225314	SEC6	nonsynonymous: I184L			
chrXIII: 129567	TCB3	nonsynonymous: E625G			
Sc1	chrXIV: 0-102000 (CNV: 3 copies); 632000-784333 (CNV: 1 copy); LOH: 100000..784333	48 genes; 79 genes; 367 genes	LOH, CNV (amplification of chr 14L; deletion of chr14R; LOH favoring S288C)	cer	182
chrVIII: 207967	SMF2	nonsynonymous: W105S			
chrXIII: 190000..196500	RRN11, CAT2, VPS71	LOH, CNV (deletion, favoring GRF167)			
chrII: 787180..797350	VBA1, SUL1, PCA1	CNV (amplification)			
Sc2	chrXII	578 genes	CNV (whole chromosome amplification, favoring GRF167)	cer	176
chrXII: 692000..107	193 genes	LOH (favoring GRF167)			
Sc3	chrVI:94104	FRS2	nonsynonymous: V303I	cer	201
------	-------------	------	----------------------	-----	-----
	chrVIII:308903	TRA1	nonsynonymous: V2048A		
	chrXIV:232266	POP1	nonsynonymous: S477*		
	chrXV:291219	TLG2	nonsynonymous: D286Y		
	chrXV:30986	HPF1	synonymous: T207T		
	chrII:781800..792230	5 genes	including BSD2 and SUL1	CNV (amplification)	

Sc4	chrII:275000..813184	289 genes	LOH (favoring GRF167)	cer	190	31.25 +/- 6.13
	chrII:788608..795833	SUL1, PCA1	CNV (amplification)			
	chrXI:517650..666816	68 genes	CNV (amplification)			
	chrXIII:190000..196500	RRN11, CAT2, VPS71	LOH, CNV (deletion, favoring GRF167)			
	chrXIV:632000..784333	79 genes	LOH, CNV (deletion)			
	chrXV:336700..342000;342000..1091291	2 genes; 384 genes	LOH (favoring GRF167; favoring S288C)			
Chr	Gene	Mutation Type	Description	Species	Code	Copy Number
--------	--------	---------------	----------------------------------	---------	------	-------------
chrIX:23367	CSS1	nonsynonymous:	D914N		uva	557
Su1	chrX:177350..345680	96 genes including SUL2	CNV (amplification)			21.8 +/- 2.37 (Sanchez, et al. 2016)
	chrXVI:466649	DIG1	nonsynonymous: E49Q			
	chrV:188548		intergenic			
Su2	chrX:177350..345680	96 genes including SUL2	CNV (amplification)			
	chrIV:803704	KTR3	5’-upstream			
	chrII:121779	PIN4	nonsynonymous: N263S			
	chrVII:165902	MPT5	nonsynonymous: Q618K			
	chrII:836169	RSC3	synonymous: R4R			
	chrIV:107948	UFD2	synonymous: G691G			
	chrIII:287618		intergenic			

Point mutations, copy number variants (CNV), and loss of heterozygosity events (LOH) are recorded for each evolved parental clone. Clones are identified by nutrient (G: glucose-limitation, P: phosphate-limitation, and S: sulfate-limitation), by species (“c” denotes S. cerevisiae, “u” denotes S. uvarum), and the number indicates its derivation from independent populations. Note that mutations in the S. uvarum genome use S. uvarum chromosomes and coordinates. All breakpoints were called by visual inspection of sequencing reads and are thus approximate.
SUPPLEMENTARY FIGURES

Fig S1: Whole genome copy number variation in *S. cerevisiae* evolved clones
Sequencing coverage for each evolved clone was normalized using the ancestor, and copy number variants were inferred by changes from a copy number of two using DNAcopy for each nutrient condition A. glucose-limitation, B. phosphate-limitation, and C. sulfate-limitation. Chromosomes are plotted in alternating grey and red. The average copy number is plotted as a black line.

Fig S2: Whole genome copy number variation in *S. uvarum* evolved clones
Sequencing coverage for each evolved clone was normalized using the ancestor, and copy number variants were inferred by changes from a copy number of two using DNAcopy for each nutrient condition A. glucose-limitation, B. phosphate-limitation, and C. sulfate-limitation. Chromosomes are plotted in alternating grey and blue. The average copy number is plotted as a black line. Note that plots use *S. uvarum* chromosomes and coordinates.

Fig S3: Whole genome copy number variation in hybrid evolved clones
Copy number as determined by normalized sequencing read depth per ORF is plotted across the genome according to *S. cerevisiae* ORF coordinates to account for three reciprocal translocations between *S. cerevisiae* and *S. uvarum*. Chromosomes are plotted in alternating light and dark purple. Red indicates a *S. cerevisiae* copy number variant and blue indicates a *S. uvarum* copy number variant. For specific coordinates of copy number variants, see Table 1. A. Evolved hybrid clones in glucose-limitation all show amplification of *S. uvarum* HXT6/7. B. Evolved hybrid clones in phosphate-limitation show a variety of copy number variants, including whole chromosome amplification of *S. cerevisiae* chrIV (3/6 clones) and loss of heterozygosity of part of chromosome XIII (3/6 clones). C. Evolved hybrid clones in sulfate-limitation all exhibit amplification of a small region containing *SUL1*.

Fig S4: Loss of heterozygosity in evolved *S. cerevisiae* clones
Allele frequency as determined from sequencing read depth data is plotted across chromosomes for each observed loss of heterozygosity event in evolved S. cerevisiae clones in A. glucose-limited conditions, B. phosphate-limited conditions, and C. sulfate-limited conditions. The ancestral sequence is plotted at the top of each figure in grey, followed by each sequenced clone from that condition.

SUPPLEMENTARY TABLES
Supplemental Table 1: Strain list
Supplemental Table 2: Sequencing coverage
Supplemental Table 3: Primers used
REFERENCES

Abbott R, Albach D, Ansell S, Arntzen JW, Baird SJ, Bierne N, Boughman J, Brelsford A, Buerkle CA, Buggs R, Butlin RK, Dieckmann U, Eroukhmanoff F, Grill A, Cahan SH, Hermansen JS, Hewitt G, Hudson AG, Jiggins C, Jones J, Keller B, Marczewski T, Mallet J, Martinez-Rodriguez P, Most M, Mullen S, Nichols R, Nolte AW, Parisod C, Pfennig K, Rice AM, Ritchie MG, Seifert B, Smadja CM, Stelkens R, Szymbura JM, Vainola R, Wolf JB, Zinner D 2013. Hybridization and speciation. J Evol Biol 26: 229-246. doi: 10.1111/j.1420-9101.2012.02599.x

Ainouche ML, Jenczewski E 2010. Focus on polyploidy. New Phytologist 186: 1-4. doi: DOI 10.1111/j.1469-8137.2010.03215.x

Albertin W, Marullo P 2012. Polyploidy in fungi: evolution after whole-genome duplication. Proceedings of the Royal Society B-Biological Sciences 279: 2497-2509. doi: 10.1098/rspb.2012.0434

Almeida P, Goncalves C, Teixeira S, Libkind D, Bontrager M, Masneuf-Pomarede I, Albertin W, Durrens P, Sherman DJ, Marullo P, Hittinger CT, Goncalves P, Sampaio JP 2014. A Gondwanan imprint on global diversity and domestication of wine and cider yeast Saccharomyces uvarum. Nat Commun 5: 4044. doi: 10.1038/ncomms5044

Antunovics Z, Nguyen HV, Gaillardin C, Sipiczki M 2005. Gradual genome stabilisation by progressive reduction of the Saccharomyces uvarum genome in an interspecific hybrid with Saccharomyces cerevisiae. Fems Yeast Research 5: 1141-1150. doi: 10.1016/j.femsyr.2005.04.008

Baker E, Wang B, Bellora N, Peris D, Hulfachor AB, Koshalek JA, Adams M, Libkind D, Hittinger CT 2015. The Genome Sequence of Saccharomyces eubayanus and the Domestication of Lager-Brewing Yeasts. Mol Biol Evol 32: 2818-2831. doi: 10.1093/molbev/msv168

Barbosa R, Almeida P, Safar SVB, Santos RO, Morais PB, Nielly-Thibault L, Leducq JB, Landry CR, Goncalves P, Rosa CA, Sampaio JP 2016. Evidence of Natural Hybridization in Brazilian Wild Lineages of Saccharomyces cerevisiae. Genome Biol Evol 8: 317-329. doi: 10.1093/gbe/evv263

Barton NH 2001. The role of hybridization in evolution. Molecular Ecology 10: 551-568. doi: DOI 10.1046/j.1365-294x.2001.01216.x
Belloch C, Orlic S, Barrio E, Querol A 2008. Fermentative stress adaptation of hybrids within the *Saccharomyces sensu stricto* complex. International Journal of Food Microbiology 122: 188-195. doi: 10.1016/j.ijfoodmicro.2007.11.083

Bellon JR, Yang F, Day MP, Inglis DL, Chambers PJ 2015. Designing and creating *Saccharomyces* interspecific hybrids for improved, industry relevant, phenotypes. Appl Microbiol Biotechnol 99: 8597-8609. doi: 10.1007/s00253-015-6737-4

Borneman AR, Zeppel R, Chambers PJ, Curtin CD 2014. Insights into the *Dekkera bruxellensis* Genomic Landscape: Comparative Genomics Reveals Variations in Ploidy and Nutrient Utilisation Potential amongst Wine Isolates. PLoS Genet 10. doi: 10.1371/journal.pgen.1004161

Brewer BJ, Payen C, Di Rienzi SC, Higgins MM, Ong G, Dunham MJ, Raghuraman MK 2015. Origin-Dependent Inverted-Repeat Amplification: Tests of a Model for Inverted DNA Amplification. PLoS Genet 11: e1005699. doi: 10.1371/journal.pgen.1005699

Brown CJ, Todd KM, Rosenzweig RF 1998. Multiple duplications of yeast hexose transport genes in response to selection in a glucose-limited environment. Mol Biol Evol 15: 931-942.

Bullini L 1994. Origin and evolution of animal hybrid species. Trends Ecol Evol 9: 422-426. doi: 10.1016/0169-5347(94)90124-4

Burke MK, Dunham JP, Shahrestani P, Thornton KR, Rose MR, Long AD 2010. Genome-wide analysis of a long-term evolution experiment with *Drosophila*. Nature 467: 587-U111. doi: 10.1038/nature09352

Burke MK, Liti G, Long AD 2014. Standing Genetic Variation Drives Repeatable Experimental Evolution in Outcrossing Populations of *Saccharomyces cerevisiae*. Mol Biol Evol 31: 3228-3239. doi: 10.1093/molbev/msu256

Cherry JM, Hong EL, Amundsen C, Balakrishnan R, Binkley G, Chan ET, Christie KR, Costanzo MC, Dwight SS, Engel SR, Fisk DG, Hirschman JE, Hitz BC, Karra K, Krieger CJ, Miyasato SR, Nash RS, Park J, Skrzypek MS, Simison M, Weng S, Wong ED 2012. *Saccharomyces* Genome Database: the genomics resource of budding yeast. Nucleic Acids Research 40: D700-D705. doi: 10.1093/nar/gkr1029
Chester M, Riley RK, Soltis PS, Soltis DE 2015. Patterns of chromosomal variation in natural populations of the neoallotetraploid *Tragopogon mirus* (Asteraceae). Heredity (Edinb) 114: 309-317. doi: 10.1038/hdy.2014.101

Chou JY, Leu JY 2010. Speciation through cytonuclear incompatibility: insights from yeast and implications for higher eukaryotes. Bioessays 32: 401-411. doi: 10.1002/bies.200900162

Cliften PF, Fulton RS, Wilson RK, Johnston M 2006. After the duplication: gene loss and adaptation in *Saccharomyces* genomes. Genetics 172: 863-872. doi: 10.1534/genetics.105.048900

Conte GL, Arnegard ME, Peichel CL, Schluter D 2012. The probability of genetic parallelism and convergence in natural populations. Proceedings of the Royal Society B-Biological Sciences 279: 5039-5047. doi: 10.1098/rspb.2012.2146

Crow JF 1998. 90 years ago: The beginning of hybrid maize. Genetics 148: 923-928.

Dasmahapatra KK, Walters JR, Briscoe AD, Davey JW, Whibley A, Nadeau NJ, Zimin AV, Hughes DST, Ferguson LC, Martin SH, Salazar C, Lewis JJ, Adler S, Ahn SJ, Baker DA, Baxter SW, Chamberlain NL, Chauhan R, Counterman BA, Dalmay T, Gilbert LE, Gordon K, Heckel DG, Hines HM, Hoff KJ, Holland PWH, Jacquin-Joly E, Jiggins FM, Jones RT, Kapan DD, Kersey P, Lamas G, Lawson D, Mapleson D, Maroja LS, Martin A, Moxon S, Palmer WJ, Papa R, Papanicolaou A, Pauchet Y, Ray DA, Rosser N, Salzberg SL, Supple MA, Surridge A, Tenger-Trolander A, Vogel H, Wilkinson PA, Wilson D, Yorke JA, Yuan FR, Balmuth AL, Eland C, Gharbi K, Thomson M, Gibbs RA, Han Y, Jayaseelan JC, Kovar C, Mathew T, Muzny DM, Ongeri F, Pu LL, Qu JX, Thornton RL, Worley KC, Wu YQ, Linares M, Blaxter ML, Ffrench-Constant RH, Joron M, Kronforst MR, Mullen SP, Reed RD, Scherer SE, Richards S, Mallet J, McMillan WO, Jiggins CD, Consortium HG 2012. Butterfly genome reveals promiscuous exchange of mimicry adaptations among species. Nature 487: 94-98. doi: 10.1038/nature11041

Dowling TE, Smith GR, Brown WM 1989. Reproductive Isolation and Introgression between *Notropis cornutus* and *Notropis chrysocephalus* (Family Cyprinidae) - Comparison of Morphology, Allozymes, and Mitochondrial-DNA. Evolution 43: 620-634. doi: Doi 10.2307/2409064

Doyle JJ, Flagel LE, Paterson AH, Rapp RA, Soltis DE, Soltis PS, Wendel JF 2008. Evolutionary genetics of genome merger and doubling in plants. Annu Rev Genet 42: 443-461. doi: 10.1146/annurev.genet.42.110807.091524
Dunham MJ, Badrane H, Ferea T, Adams J, Brown PO, Rosenzweig F, Botstein D 2002. Characteristic genome rearrangements in experimental evolution of *Saccharomyces cerevisiae*. Proc Natl Acad Sci U S A 99: 16144-16149. doi: 10.1073/pnas.242624799

Dunn B, Paulish T, Stanbery A, Piotrowski J, Koniges G, Kroll E, Louis EJ, Liti G, Sherlock G, Rosenzweig F 2013. Recurrent rearrangement during adaptive evolution in an interspecific yeast hybrid suggests a model for rapid introgression. PLoS Genet 9: e1003366. doi: 10.1371/journal.pgen.1003366

Dunn B, Richter C, Kvitek DJ, Pugh T, Sherlock G 2012. Analysis of the *Saccharomyces cerevisiae* pan-genome reveals a pool of copy number variants distributed in diverse yeast strains from differing industrial environments. Genome Research 22: 908-924. doi: 10.1101/gr.130310.111

Dunn B, Sherlock G 2008. Reconstruction of the genome origins and evolution of the hybrid lager yeast *Saccharomyces pastorianus*. Genome Research 18: 1610-1623. doi: 10.1101/gr.076075.111

Elmer KR, Meyer A 2011. Adaptation in the age of ecological genomics: insights from parallelism and convergence. Trends Ecol Evol 26: 298-306. doi: 10.1016/j.tree.2011.02.008

Engel SR, Dietrich FS, Fisk DG, Binkley G, Balakrishnan R, Costanzo MC, Dwight SS, Hitz BC, Karra K, Nash RS, Weng S, Wong ED, Lloyd P, Skrzypek MS, Miyasato SR, Simison M, Cherry JM 2014. The Reference Genome Sequence of *Saccharomyces cerevisiae*: Then and Now. G3-Genomes Genomes Genetics 4: 389-398. doi: 10.1534/g3.113.008995

Ferea TL, Botstein D, Brown PO, Rosenzweig RF 1999. Systematic changes in gene expression patterns following adaptive evolution in yeast. Proc Natl Acad Sci U S A 96: 9721-9726. doi: DOI 10.1073/pnas.96.17.9721

Gibson B, Liti G 2015. *Saccharomyces pastorianus*: genomic insights inspiring innovation for industry. Yeast 32: 17-27. doi: 10.1002/yea.3033

Gibson DG, Young L, Chuang RY, Venter JC, Hutchison CA, Smith HO 2009. Enzymatic assembly of DNA molecules up to several hundred kilobases. Nat Methods 6: 343-U341. doi: 10.1038/Nmeth.1318

Gonzalez SS, Barrio E, Gafner J, Querol A 2006. Natural hybrids from *Saccharomyces cerevisiae, Saccharomyces bayanus* and *Saccharomyces kudriavzevii* in wine fermentations. Fems Yeast Research 6: 1221-1234. doi: 10.1111/j.1567-1364.2006.00126.x
Gonzalez SS, Barrio E, Querol A 2008. Molecular characterization of new natural hybrids of *Saccharomyces cerevisiae* and *S. kudriavzevii* in brewing. Appl Environ Microbiol 74: 2314-2320. doi: 10.1128/AEM.01867-07

Grant PR, Grant BR 2010. Natural selection, speciation and Darwin's finches. Proceedings of the California Academy of Sciences 61: 245-260.

Grant PR, Grant BR 1994. Phenotypic and genetic consequences of hybridization in Darwin's Finches. Evolution 48: 297-316.

Grant PR, Grant BR 2002. Unpredictable evolution in a 30-year study of Darwin's finches. Science 296: 707-711. doi: DOI 10.1126/science.1070315

Grant PR, Grant BR, Petren K 2005. Hybridization in the recent past. Am Nat 166: 56-67. doi: 10.1086/430331

Greig D 2009. Reproductive isolation in *Saccharomyces*. Heredity (Edinb) 102: 39-44. doi: 10.1038/hdy.2008.73

Greig D, Leu JY 2009. Natural history of budding yeast. Current Biology 19: R886-R890.

Greig D, Louis EJ, Borts RH, Travisano M 2002. Hybrid speciation in experimental populations of yeast. Science 298: 1773-1775. doi: 10.1126/science.1076374

Gresham D, Desai MM, Tucker CM, Jenq HT, Pai DA, Ward A, DeSevo CG, Botstein D, Dunham MJ 2008. The repertoire and dynamics of evolutionary adaptations to controlled nutrient-limited environments in yeast. PLoS Genet 4: e1000303. doi: 10.1371/journal.pgen.1000303

Hajjar R, Hodgkin T 2007. The use of wild relatives in crop improvement: A survey of developments over the last 20 years. Euphytica 156: 1-13. doi: 10.1007/s10681-007-9363-0

Heiser CB 1954. Variation and Subspeciation in the Common Sunflower, *Helianthus annuus*. American Midland Naturalist 51: 287-305. doi: Doi 10.2307/2422222

Hittinger CT 2013. *Saccharomyces* diversity and evolution: a budding model genus. Trends Genet 29: 309-317. doi: 10.1016/j.tig.2013.01.002

Hoang ML, Tan FJ, Lai DC, Celniker SE, Hoskins RA, Dunham MJ, Zheng Y, Koshland D 2010. Competitive repair by naturally dispersed repetitive DNA during non-allelic homologous recombination. PLoS Genet 6: e1001228. doi: 10.1371/journal.pgen.1001228
Hoffman CS, Winston F 1987. A 10-Minute DNA Preparation from Yeast Efficiently Releases Autonomous Plasmids for Transformation of Escherichia coli. Gene 57: 267-272. doi: 10.1016/0378-1119(87)90131-4

Hoffmann AA, Sgro CM 2011. Climate change and evolutionary adaptation. Nature 470: 479-485. doi: 10.1038/nature09670

Huerta-Sanchez E, Casey FP 2015. Archaic inheritance: supporting high-altitude life in Tibet. J Appl Physiol (1985) 119: 1129-1134. doi: 10.1152/japplphysiol.00322.2015

Jones FC, Grabherr MG, Chan YF, Russell P, Mauceli E, Johnson J, Swofford R, Pirun M, Zody MC, White S, Birney E, Searle S, Schmutz J, Grimwood J, Dickson MC, Myers RM, Miller CT, Summers BR, Knecht AK, Brady SD, Zhang HL, pollen AA, Howes T, Amemiya C, Lander ES, Di Palma F, Lindblad-Toh K, Kingsley DM, Platf BIGS, Team WGA 2012. The genomic basis of adaptive evolution in threespine sticklebacks. Nature 484: 55-61. doi: 10.1038/nature10944

Kao KC, Sherlock G 2008. Molecular characterization of clonal interference during adaptive evolution in asexual populations of Saccharomyces cerevisiae. Nat Genet 40: 1499-1504. doi: 10.1038/ng.280

Kawecki TJ, Lenski RE, Ebert D, Hollis B, Olivieri I, Whitlock MC 2012. Experimental evolution. Trends Ecol Evol 27: 547-560. doi: 10.1016/j.tree.2012.06.001

Kellis M, Patterson N, Endrizzi M, Birren B, Lander ES 2003. Sequencing and comparison of yeast species to identify genes and regulatory elements. Nature 423: 241-254. doi: 10.1038/nature01644

Kelly B, Whiteley A, Tallmon D 2010. The Arctic melting pot. Nature 468: 891-891. doi: 10.1038/468891a

Kvitek DJ, Sherlock G 2011. Reciprocal Sign Epistasis between Frequently Experimentally Evolved Adaptive Mutations Causes a Rugged Fitness Landscape. PLoS Genet 7. doi: ARTN e1002056 10.1371/journal.pgen.1002056

Kvitek DJ, Sherlock G 2013. Whole Genome, Whole Population Sequencing Reveals That Loss of Signaling Networks Is the Major Adaptive Strategy in a Constant Environment. PLoS Genet 9. doi: ARTN e1003972 10.1371/journal.pgen.1003972

Landry CR, Hartl DL, Ranz JM 2007. Genome clashes in hybrids: insights from gene expression. Heredity (Edinb) 99: 483-493. doi: 10.1038/sj.hdy.6801045
Lang GI, Desai MM 2014. The spectrum of adaptive mutations in experimental evolution. Genomics 104: 412-416. doi: 10.1016/j.ygeno.2014.09.011

Lapunzina P, Monk D 2011. The consequences of uniparental disomy and copy number neutral loss-of-heterozygosity during human development and cancer. Biol Cell 103: 303-317. doi: 10.1042/BC20110013

Leducq JB, Nielly-Thibault L, Charron G, Eberlein C, Verta JP, Samani P, Sylvester K, Hittinger CT, Bell G, Landry CR 2016. Speciation driven by hybridization and chromosomal plasticity in a wild yeast. Nature Microbiology 1. doi: 10.1038/nmicrobiol.2015.3

Lee HY, Chou JY, Cheong L, Chang NH, Yang SY, Leu JY 2008. Incompatibility of nuclear and mitochondrial genomes causes hybrid sterility between two yeast species. Cell 135: 1065-1073. doi: 10.1016/j.cell.2008.10.047

Li H, Durbin R 2009. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 25: 1754-1760. doi: 10.1093/bioinformatics/btp324

Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G, Abecasis G, Durbin R 2009. The Sequence Alignment/Map format and SAMtools. Bioinformatics 25: 2078-2079. doi: 10.1093/bioinformatics/btp352

Liti G 2015. The fascinating and secret wild life of the budding yeast S. cerevisiae. Elife 4. doi: ARTN e05835 10.7554/eLife.05835

Lloyd AH, Ranoux M, Vautrin S, Glover N, Fourment J, Charif D, Choulet F, Lassalle G, Marande W, Tran J, Granier F, Pingault L, Remay A, Marquis C, Belcrum H, Chalhoub B, Feuillet C, Berges H, Sourdille P, Jenczewski E 2014. Meiotic Gene Evolution: Can You Teach a New Dog New Tricks? Mol Biol Evol 31: 1724-1727. doi: 10.1093/molbev/msu119

Losos JB, Jackman TR, Larson A, de Queiroz K, Rodriguez-Schettino L 1998. Contingency and determinism in replicated adaptive radiations of island lizards. Science 279: 2115-2118. doi: DOI 10.1126/science.279.5359.2115

Louis VL, Despons L, Friedrich A, Martin T, Durrens P, Casaregola S, Neuveglise C, Fairhead C, Marck C, Cruz JA, Straub ML, Kugler V, Sacerdot C, Uzunov Z, Thierry A, Weiss S, Bleykasten C, De Montigny J, Jacques N, Jung P, Lemaire M, Mallet S, Morel G, Richard GF, Sarkar A, Savel G, Schacherer J, Seret ML, Talla E, Samson G, Jubin C, Poulain J, Vacherie B, Barbe V, Pelletier E,
Sherman DJ, Westhof E, Weissenbach J, Baret PV, Wincker P, Gaillardin C, Dujon B, Souciet JL 2012a. Pichia sorbitophila, an Interspecies Yeast Hybrid, Reveals Early Steps of Genome Resolution After Polyploidization. G3 (Bethesda) 2: 299-311. doi: 10.1534/g3.111.000745

Mallet J 2007. Hybrid speciation. Nature 446: 279-283. doi: 10.1038/nature05706

Marcet-Houben M, Gabaldon T 2015. Beyond the Whole-Genome Duplication: Phylogenetic Evidence for an Ancient Interspecies Hybridization in the Baker’s Yeast Lineage. PLoS Biol 13: e1002220. doi: 10.1371/journal.pbio.1002220

Marinoni G, Manuel M, Petersen RF, Hvidtfeldt J, Sulo P, Piskur J 1999. Horizontal transfer of genetic material among Saccharomyces yeasts. J Bacteriol 181: 6488-6496.

Martin A, Orgogozo V 2013. The Loci of Repeated Evolution: A Catalog of Genetic Hotspots of Phenotypic Variation. Evolution 67: 1235-1250. doi: 10.1111/evo.12081

Masly JP, Jones CD, Noor MAF, Locke J, Orr HA 2006. Gene transposition as a cause of hybrid sterility in Drosophila. Science 313: 1448-1450. doi: 10.1126/science.1128721

Mason AS, Batley J 2015. Creating new interspecific hybrid and polyploid crops. Trends Biotechnol 33: 436-441. doi: 10.1016/j.tibtech.2015.06.004

Mavarez J, Salazar CA, Bermingham E, Salcedo C, Jiggins CD, Linares M 2006. Speciation by hybridization in Heliconius butterflies. Nature 441: 868-871. doi: 10.1038/nature04738

McKenna A, Hanna M, Banks E, Sivachenko A, Cibulskis K, Kernytsky A, Garimella K, Altshuler D, Gabriel S, Daly M, DePristo MA 2010. The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Research 20: 1297-1303. doi: 10.1101/gr.107524.110

Meiklejohn CD, Holmbeck MA, Siddiq MA, Abt DN, Rand DM, Montooth KL 2013. An Incompatibility between a mitochondrial tRNA and its nuclear-encoded tRNA synthetase compromises development and fitness in Drosophila. PLoS Genet 9: e1003238. doi: 10.1371/journal.pgen.1003238

Meyer A, Salzburger W, Schartl M 2006. Hybrid origin of a swordtail species (Teleostei: Xiphophorus clemenciae) driven by sexual selection. Molecular Ecology 15: 721-730. doi: 10.1111/j.1365-294X.2006.02810.x
Michalak P 2009. Epigenetic, transposon and small RNA determinants of hybrid dysfunctions. Heredity (Edinb) 102: 45-50. doi: 10.1038/hdy.2008.48

Miller AW, Dunham MJ 2013. Design and use of multiplexed chemostat arrays. Journal of Visualized Experiments 72.

Monod J 1949. The growth of bacterial cultures. Annual Review of Microbiology 3: 371-394.

Muhlfeld CC, Kovach RP, Jones LA, Al-Chokhachy R, Boyer MC, Leary RF, Lowe WH, Luikart G, Allendorf FW 2014. Invasive hybridization in a threatened species is accelerated by climate change. Nature Climate Change 4: 620-624. doi: 10.1038/Nclimate2252

Muller LAH, McCusker JH 2009. A multispecies-based taxonomic microarray reveals interspecies hybridization and introgression in *Saccharomyces cerevisiae*. Fems Yeast Research 9: 143-152. doi: 10.1111/j.1567-1364.2008.00464.x

Nagalakshmi U, Wang Z, Waern K, Shou C, Raha D, Gerstein M, Snyder M 2008. The transcriptional landscape of the yeast genome defined by RNA sequencing. Science 320: 1344-1349. doi: 10.1126/science.1158441

Nakao Y, Kanamori T, Itoh T, Kodama Y, Rainieri S, Nakamura N, Shimonaga T, Hattori M, Ashikari T 2009. Genome sequence of the lager brewing yeast, an interspecies hybrid. DNA Res 16: 115-129. doi: 10.1093/dnares/dsp003

Nolte AW, Freyhof J, Stemshorn KC, Tautz D 2005. An invasive lineage of sculpins, *Cottus* sp (Pisces, Teleostei) in the Rhine with new habitat adaptations has originated from hybridization between old phylogeographic groups. Proceedings of the Royal Society B-Biological Sciences 272: 2379-2387. doi: 10.1098/rspb.2005.3231

Novick A, Szilard L 1950a. Description of the chemostat. Science 112: 715-716.

Novick A, Szilard L 1950b. Experiments with the Chemostat on spontaneous mutations of bacteria. Proc Natl Acad Sci U S A 36: 708-719.

Ouyang YD, Liu YG, Zhang QF 2010. Hybrid sterility in plant: stories from rice. Current Opinion in Plant Biology 13: 186-192. doi: 10.1016/j.pbi.2010.01.002

Payen C, Di Rienzi SC, Ong GT, Pogachar JL, Sanchez JC, Sunshine AB, Raghuraman MK, Brewer BJ, Dunham MJ 2014. The dynamics of diverse segmental amplifications in populations of
Saccharomyces cerevisiae adapting to strong selection. G3 (Bethesda) 4: 399-409. doi: 10.1534/g3.113.009365
Payen C, Sunshine AB, Ong GT, Pogachar JL, Zhao W, Dunham MJ, unpublished data, http://dx.doi.org/10.1101/014068 last accessed August 31, 2016.
Perez-Prat E, van Lookeren Campagne MM 2002. Hybrid seed production and the challenge of propagating male-sterile plants. Trends in Plant Science 7: 199-203. doi: Pii S1360-1385(02)02252-5 doi 10.1016/S1360-1385(02)02252-5
Peris D, Langdon QK, Moriarty RV, Sylvester K, Bontrager M, Charron G, Leducq JB, Landry CR, Libkind D, Hittinger CT 2016. Complex Ancestries of Lager-Brewing Hybrids Were Shaped by Standing Variation in the Wild Yeast Saccharomyces eubayanus. PLoS Genet 12: e1006155. doi: 10.1371/journal.pgen.1006155
Piatkowska EM, Naseeb S, Knight D, Delneri D 2013. Chimeric protein complexes in hybrid species generate novel phenotypes. PLoS Genet 9: e1003836. doi: 10.1371/journal.pgen.1003836
Piotrowski JS, Nagarajan S, Kroll E, Stanbery A, Chiotti KE, Kruckeberg AL, Dunn B, Sherlock G, Rosenzweig F 2012. Different selective pressures lead to different genomic outcomes as newly-formed hybrid yeasts evolve. Bmc Evolutionary Biology 12: 46. doi: 10.1186/1471-2148-12-46
Pryszcz LP, Nemeth T, Gacser A, Gabaldon T 2014. Genome Comparison of Candida orthopsilosis Clinical Strains Reveals the Existence of Hybrids between Two Distinct Subspecies. Genome Biol Evol 6: 1069-1078. doi: 10.1093/gbe/evu082
Racimo F, Sankararaman S, Nielsen R, Huerta-Sanchez E 2015. Evidence for archaic adaptive introgression in humans. Nature Reviews Genetics 16: 359-371. doi: 10.1038/nrg3936
Rieseberg LH 1991. Homoploid Reticulate Evolution in Helianthus (Asteraceae) - Evidence from Ribosomal Genes. Am J Bot 78: 1218-1237. doi: Doi 10.2307/2444926
Rieseberg LH 1997. Hybrid origins of plant species. Annual Review of Ecology and Systematics 28: 359-389. doi: DOI 10.1146/annurev.ecolsys.28.1.359
Robinson JT, Thorvaldsdottir H, Winckler W, Guttmann M, Lander ES, Getz G, Mesirov JP 2011. Integrative genomics viewer. Nat Biotechnol 29: 24-26. doi: 10.1038/nbt.1754
Rosenthal DM, Schwarzbach AE, Donovan LA, Raymond O, Rieseberg LH 2002. Phenotypic differentiation between three ancient hybrid taxa and their parental species. International Journal of Plant Sciences 163: 387-398. doi: Doi 10.1086/339237

Ruderfer DM, Pratt SC, Seidel HS, Kruglyak L 2006. Population genomic analysis of outcrossing and recombination in yeast. Nat Genet 38: 1077-1081. doi: 10.1038/ng1859

Rundle HD, Nagel L, Boughman JW, Schluter D 2000. Natural selection and parallel speciation in sympatric sticklebacks. Science 287: 306-308. doi: DOI 10.1126/science.287.5451.306

Ryland GL, Doyle MA, Goode D, Boyle SE, Choong DY, Rowley SM, Li J, Australian Ovarian Cancer Study G, Bowtell DD, Tothill RW, Campbell IG, Gorringe KL 2015. Loss of heterozygosity: what is it good for? BMC Med Genomics 8: 45. doi: 10.1186/s12920-015-0123-z

Salverda MLM, Dellus E, Gorter FA, Debets AJM, van der Oost J, Hoekstra RF, Tawfik DS, de Visser JAGM 2011. Initial Mutations Direct Alternative Pathways of Protein Evolution. PLoS Genet 7. doi: ARTN e1001321 10.1371/journal.pgen.1001321

Sanchez MR, Miller AW, Liachko I, Sunshine AB, Lynch B, Huang M, DeSevo CG, Pai DA, Tucker CM, Hoang ML, Dunham MJ, unpublished data, http://dx.doi.org/10.1101/063248 last accessed August 31, 2016.

Scannell DR, Zill OA, Rokas A, Payen C, Dunham MJ, Eisen MB, Rine J, Johnston M, Hittinger CT 2011. The Awesome Power of Yeast Evolutionary Genetics: New Genome Sequences and Strain Resources for the Saccharomyces sensu stricto Genus. G3 (Bethesda) 1: 11-25. doi: 10.1534/g3.111.000273

Schumer M, Rosenthal GG, Andolfatto P 2014. How Common Is Homoploid Hybrid Speciation? Evolution 68: 1553-1560. doi: 10.1111/evo.12399

Schwarzbach AE, Donovan LA, Rieseberg LH 2001. Transgressive character expression in a hybrid sunflower species. Am J Bot 88: 270-277. doi: Doi 10.2307/2657018

Selmecki AM, Maruvka YE, Richmond PA, Guillet M, Shores N, Sorenson AL, De S, Kishony R, Michor F, Dowell R, Pellman D 2015. Polyploidy can drive rapid adaptation in yeast. Nature 519: 349+. doi: 10.1038/nature14187

Seshan VE, Olshen A. 2016. DNAcopy: DNA copy number data analysis. Version R package version 1.46.0.
Soltis DE, Visger CJ, Soltis PS 2014. The Polyploidy Revolution Then...And Now: Stebbins Revisited. Am J Bot 101: 1057-1078. doi: 10.3732/ajb.1400178

Soltis PS 2013. Hybridization, speciation and novelty. J Evol Biol 26: 291-293. doi: 10.1111/jeb.12095

Soltis PS, Soltis DE 2009. The Role of Hybridization in Plant Speciation. Annual Review of Plant Biology 60: 561-588. doi: 10.1146/annurev.arplant.043008.092039

Sunshine AB, Payen C, Ong GT, Liachko I, Tan KM, Dunham MJ 2015. The fitness consequences of aneuploidy are driven by condition-dependent gene effects. PLoS Biology 26;13(5):e1002155. doi: 10.1371/journal.pbio.1002155. eCollection 2015.

Tamai Y, Momma T, Yoshimoto H, Kaneko Y 1998. Co-existence of two types of chromosome in the bottom fermenting yeast, Saccharomyces pastorianus. Yeast 14: 923-933. doi: 10.1002/(SICI)1097-0061(199807)14:10<923::AID-YEA298>3.0.CO;2-I

Taylor DJ, Hebert PDN 1993. Habitat-Dependent Hybrid Parentage and Differential Introggression between Neighboringly Sympatric Daphnia Species. Proc Natl Acad Sci U S A 90: 7079-7083. doi: DOI 10.1073/pnas.90.15.7079

Thiagalingam S, Laken S, Willson JK, Markowitz SD, Kinzler KW, Vogelstein B, Lengauer C 2001. Mechanisms underlying losses of heterozygosity in human colorectal cancers. Proc Natl Acad Sci U S A 98: 2698-2702. doi: 10.1073/pnas.051625398

Tuna M, Knuutila S, Mills GB 2009. Uniparental disomy in cancer. Trends Mol Med 15: 120-128. doi: 10.1016/j.molmed.2009.01.005

Walther A, Hesselbart A, Wendland J 2014. Genome sequence of Saccharomyces carlsbergensis, the world’s first pure culture lager yeast. G3 (Bethesda) 4: 783-793. doi: 10.1534/g3.113.010090

Wayne RK 1993. Molecular Evolution of the Dog Family. Trends in Genetics 9: 218-224. doi: 10.1016/0168-9525(93)90122-X

Wenger JW, Schwartz K, Sherlock G 2010. Bulk segregant analysis by high-throughput sequencing reveals a novel xylose utilization gene from Saccharomyces cerevisiae. PLoS Genet 6: e1000942. doi: 10.1371/journal.pgen.1000942

Wessinger CA, Rausher MD 2014. Predictability and Irreversibility of Genetic Changes Associated with Flower Color Evolution in Penstemon barbatus. Evolution 68: 1058-1070. doi: 10.1111/evo.12340
Wolfe KH 2015. Origin of the Yeast Whole-Genome Duplication. PLoS Biol 13: e1002221. doi: 10.1371/journal.pbio.1002221

Woods R, Schneider D, Winkworth CL, Riley MA, Lenski RE 2006. Tests of parallel molecular evolution in a long-term experiment with *Escherichia coli*. Proc Natl Acad Sci U S A 103: 9107-9112. doi: 10.1073/pnas.0602917103

Xiong Z, Gaeta RT, Pires JC 2011. Homoeologous shuffling and chromosome compensation maintain genome balance in resynthesized allopolyploid *Brassica napus*. Proc Natl Acad Sci U S A 108: 7908-7913. doi: 10.1073/pnas.1014138108

Yassour M, Kapian T, Fraser HB, Levin JZ, Pfiffner J, Adiconis X, Schroth G, Luo SJ, Khrebtukova I, Gnirke A, Nusbaum C, Thompson DA, Friedman N, Regev A 2009. Ab initio construction of a eukaryotic transcriptome by massively parallel mRNA sequencing. Proc Natl Acad Sci U S A 106: 3264-3269. doi: 10.1073/pnas.0812841106

Zhu YO, Sherlock G, Petrov DA 2016. Whole Genome Analysis of 132 Clinical *Saccharomyces cerevisiae* Strains Reveals Extensive Ploidy Variation. G3 (Bethesda). doi: 10.1534/g3.116.029397
Figure 2

A: Gene map of chrXIII showing the positions of various genes.

B: Copy number variation across different samples (Ph3, Ph4, Ph5).

C: Alternate allele frequency across different samples (Pc1, Pc2, Pc3, Pc4, Ancestor).

Legend:
- 4 copies
- 3 copies
- 2 copies

chrXIII position (bp)