NBIHT: An Efficient Algorithm for 1-bit Compressed Sensing with Optimal Error Decay Rate

Michael P. Friedlander, Halyun Jeong, Yaniv Plan, and Özgür Yılmaz

Abstract

The Binary Iterative Hard Thresholding (BIHT) algorithm is a popular reconstruction method for one-bit compressed sensing due to its simplicity and fast empirical convergence. There have been several works about BIHT but a theoretical understanding of the corresponding approximation error and convergence rate still remains open.

This paper shows that the normalized version of BIHT (NBHIT) achieves an approximation error rate optimal up to logarithmic factors. More precisely, using \(m \) one-bit measurements of an \(s \)-sparse vector \(x \), we prove that the approximation error of NBHIT is of order \(O \left(\frac{1}{m} \right) \) up to logarithmic factors, which matches the information-theoretic lower bound \(\Omega \left(\frac{1}{m} \right) \) proved by Jacques, Laska, Boufounos, and Baraniuk in 2013. To our knowledge, this is the first theoretical analysis of a BIHT-type algorithm that explains the optimal rate of error decay empirically observed in the literature. This also makes NBHIT the first provable computationally-efficient one-bit compressed sensing algorithm that breaks the inverse square root error decay rate \(O \left(\frac{1}{m^{1/2}} \right) \).

Index Terms

One-bit compressed sensing, iterative reconstructions, binary iterative hard thresholding, optimal reconstruction error decay, quantization, sparse signals.

I. INTRODUCTION

Compressed sensing is an efficient signal acquisition and recovery paradigm that has received a considerable amount of attention from both researchers and practitioners. This novel paradigm has led to satisfactory solutions to many interesting problems in modern signal processing and machine learning that were considered to be intractable by traditional approaches. In the most basic setup of compressed sensing, one aims to recover an unknown \(s \)-sparse signal \(x \in \mathbb{R}^N \), i.e., a vector with at most \(s \) nonzero entries, from its linear measurements \(Ax \) where \(A \) is a known \(m \times N \) matrix with \(m \ll N \).

For measurement matrices with certain conditions, e.g., the restricted isometry property (RIP), which is satisfied for a large class of matrices including Gaussian random matrices (random matrices whose entries are i.i.d. standard Gaussian random variables), the typical results in compressed sensing guarantee that signal recovery is possible if the number of measurements \(m \gtrsim s \log(2N/s) \) \[1\], \[2\].

On the other hand, because modern technology relies on digital computers, it is necessary to quantize measurements to store and process them. The discrete nature of quantization presents exciting challenges...
in efficient signal recovery. One of the central challenges in this area is quantized compressed sensing, the problem of recovering a sparse vector from its quantized measurements \(Q(Ax) \) where \(Q(\cdot) \) is a quantizer that maps vectors in \(\mathbb{R}^m \) to elements of a finite set. There are mainly two approaches to quantization in the setting of compressed sensing.

The first approach is to use noise-shaping quantizers which aim to design vector quantizers such that the quantization error in the measurement space lies in directions away from the set of all possible unquantized measurements; thus, the quantization error can be mostly filtered out. Examples of noise-shaping quantizers in compressed sensing, which can be one-bit or multi-bit per measurement include \(\Sigma \Delta \) quantization [3], [4], \(\beta \)-condensation [5], [6], and adaptive quantization [7]. These quantizers can reach approximation error rates decaying exponentially in \(m \) directly [8] or after additional encoding [9]. This nearly optimal compression rate, however, comes at the expense of introducing memory components or sophisticated subroutine [7] in the feedback quantization (encoding) process — often not desired or sometimes not practical.

The second approach to quantization is memoryless scalar quantization (MSQ), which quantizes each measurement separately. In other words, the quantizer \(Q \) acts on \(Ax \) elementwise, so it can be implemented without the need for analog memory. Because of its non-adaptive nature in the encoding process, MSQ is more suitable to parallel or distributed computing environment. One important case of quantized compressed sensing is when the quantizer only has two levels, i.e., it is one-bit. One-bit quantizers are easily implementable in hardware due to its simplicity, storage benefits, and robustness to scaling errors.

One-bit compressed sensing was first introduced by Boufounos and Baraniuk [10]. The goal is to recover an \(s \)-sparse signal \(x \) from its signed linear measurements, that is, from \(b = \text{sign}(Ax) \) for a Gaussian random matrix \(A \). Here \(\text{sign}(\cdot) \) is applied elementwise on \(Ax \) where the scalar function \(\text{sign}(w) \) is equal to 1 if \(w > 0 \) and \(-1 \) otherwise. This is a quantized compressed sensing problem where the \(\text{sign}(\cdot) \) function is the one-bit memoryless scalar quantizer. Because one-bit measurements \(\text{sign}(Ax) \) are scale invariant, one cannot recover the magnitude of \(x \). Consequently, in the one-bit compressed sensing problem, we may assume without loss of generality that \(x \) is a unit vector and restrict the signal set of interest to sparse vectors on the unit sphere.

Another motivation for one-bit compressed sensing is the sparse binary response model in which we want to recover a sparse signal \(x \) from binary observations \(\text{sign}(Ax + \varepsilon) \) where \(\varepsilon \) is a noise vector [11]–[14]. Note that in these applications we do not have access to \(Ax \) but only \(\frac{1}{2} \left(\text{sign}(Ax + \varepsilon) + 1 \right) \), its binary labels, which excludes the vector quantization idea (here, the notation 1 indicates a vector of all-ones). Interestingly, the noiseless setting (\(\varepsilon = 0 \)) which is identical to the one-bit compressed sensing model, has been thought difficult to analyze since a certain amount of noise is required to make the traditional maximum likelihood analysis feasible [12], [13]. Our theory provides a near-optimal theoretical guarantee in the number of observations in this case.

Jacques et al. [15] proposed binary iterative hard thresholding (BIHT) as a reconstruction method for one-bit compressed sensing, which is our main subject of study. BIHT and its variants are state-of-the-art reconstruction algorithms for one-bit compressed sensing because of their low computational cost and superior empirical recovery accuracy in low-noise or noiseless settings [15]–[17]. Formally, BIHT is a subgradient method with hard thresholding to the set of \(s \)-sparse vectors to solve the following nonconvex optimization problem [15], [17]:

\[
\min_{z \in \mathbb{R}^N} \|Az\|_1 - \langle b, Az \rangle \quad \text{subject to} \quad \|z\|_0 \leq s, \quad \|z\|_2 = 1. \tag{1}
\]

Other BIHT-type algorithms appeared in [15] including normalized BIHT (NBIHT) with an additional nonconvex projection step onto the unit sphere or the hinge loss function BIHT by replacing the objective in (1) with the hinge-loss function.

There are various sources in the formulation (1) that make the convergence analysis of the BIHT challenging: First, the two constraints in (1) are nonconvex, so BIHT-type algorithms perform a nonconvex
projection after the gradient step. Moreover, the objective function is not strictly convex and is not differentiable. As a consequence, the subgradients in BIHT-type algorithms have discontinuities, so traditional approaches based on the RIP are not directly applicable.

However, thanks to the randomness of measurement matrix A, we can use a multiscale analysis to show that NBIHT converges to within a small radius of x; At large scales, i.e., for z far from x, a RIP-type property holds. As z approaches x, the RIP constants become larger until the near isometry breaks down when z gets within the radius of the approximation error. This allows us to show that the iterates of NBIHT contract until they land within the radius of approximation error. We call this multiscale RIPC-type guarantee the restricted approximate invertibility condition (RAIC), and believe it may be useful in other problems involving binary measurements. This forms the foundation of our analysis for NBHIT.

Our main result shows that the NBIHT iterates x_k obey

$$\|x_k - x\|_2 \leq C \frac{(s \log(N/s))^{7/2}(\log m)^{12}}{m^{1-\frac{1}{2} (\frac{A}{\delta})^{[k/25]-1}}}$$

for some absolute constants $C > 0$ with probability at least $1 - O\left(\frac{1}{m^3}\right)$.

To the best of our knowledge, there is no previous theoretical analysis for NBIHT despite much numerical evidence. There are some results on the convergence of BIHT (unnormalized): Several works \cite{11, 16, 18} showed that the first iteration of BIHT achieves an approximation error of order of $\frac{1}{\sqrt{m \log(N/s)}}$. No theoretical analysis for the BIHT convergence has appeared after its first iteration, as far as we are aware, except for \cite{17}. Theorem V.1 in \cite{17} states that the iterates of BIHT remain bounded after the first iteration maintaining the same order of accuracy for the rest of iterations. Their analysis, however, does not imply that the approximation error may decrease after the first iteration. In contrast, we establish that the approximation error of NBHIT decays as $\frac{s \log(N/s)^{7/2}(\log m)^{12}}{m^{1-\frac{1}{2} (\frac{A}{\delta})^{[k/25]-1}}}$ after sufficient iterates. On the other hand, Theorem 1 in \cite{15} says that any one-bit compressed sensing recovery algorithms should exhibit error rate of at least order of $\frac{1}{m}$. Since the lower bound of any reconstruction algorithm error is $\Omega(1/m)$ by that theorem, we give the first optimal dependence on m by an BIHT-type algorithm, or, to our knowledge, any polynomial-time one-bit compressed sensing algorithms. Further, the error bound only depends poly-logarithmically on the ambient dimension, N, as is expected in the compressed sensing setup. We believe that the dependence on s and logarithmic factors can be improved and we conjecture that the linear dependence on s of the lower bound is achievable by NBIHT.

A. Related Works

There is a vast literature about quantized compressed sensing, e.g., see \cite{6, 16, 19}. As for one-bit compressed sensing, Plan and Vershynin \cite{20, 21} have proposed recovery algorithms based on convex programs. These are computationally efficient and also cover more general classes of signals, but their recovery accuracy is only guaranteed of order $\sqrt{\frac{s \log(N/s)}{m}}$. Knudson et al. \cite{22} studied one-bit compressed sensing when the observations are one-bit measurements with dither, i.e., $b = \text{sign}(Ax + \epsilon)$ where ϵ is a dither noise. This allows recovery of the magnitude of x under certain conditions, but their measurement model is different from ours and the recovery guarantee is still at most of order $\sqrt{\frac{s \log(N/s)}{m}}$.

In the overcomplete setting ($m \geq N$) without assuming sparsity of the signal, consistent reconstruction methods produce a signal w whose memoryless scalar quantized measurements $Q(Aw)$ agree with those of x. Such methods can be implemented, for example, using linear programming with constraints enforcing $Q(Aw) = Q(Ax)$ and offers recovery error decay of order $\frac{N}{m}$. Further considerations of computational efficiency have led to iterative signal recovery methods such as the Rangan-Goyal algorithm \cite{23} or the frame permutation quantization \cite{24} in which only one quantized measurement is enforced at each iteration. But their approximation error is still of order $\frac{N}{m}$ \cite{23, 24}, which would not provide a meaningful
recovery when \(N \geq m \) (the typical compressed sensing setting); Because these algorithms are not specially designed to take into account sparsity, they assume the overcomplete setting and their error dependency on the signal dimension is \(O(N) \) whereas ours is only \(O(\log^{7/2} N) \).

B. Notation

Throughout this paper, we use the standard notation for Big-O and Big-Omega: If \(f(n) = O(g(n)) \), there exists a positive constant \(C > 0 \) such that \(|f(n)| \leq C|g(n)| \) when \(n \) is sufficiently large. On the other hand, if \(f(n) = \Omega(g(n)) \) means that there exists a positive constant \(C > 0 \) such that \(|f(n)| \geq C|g(n)| \) for sufficiently large \(n \).

We denote the unit sphere and the Euclidean unit ball in \(\mathbb{R}^N \) by \(S^{N-1} \) and \(B_2^N \) respectively. The Euclidean ball centered at \(z \) with radius \(r \) is denoted by \(B(z,r) \). The set of all \(s \)-sparse vectors in \(\mathbb{R}^N \) is denoted by \(\Sigma_1^N \) or \(K \). We write \(T_s \) for the hard thresholding operator onto \(K \) that keeps the \(s \)-largest magnitude elements of a vector and zeros out the rest of its entries. As usual, \(\mathcal{N}(0,I_N) \) denotes the standard Gaussian distribution and \(\mathcal{N}(0,I_N) \) the \(N \)-dimensional standard Gaussian distribution. We assume that the measurement vectors \(a_j \) or the rows of \(A \) are the standard Gaussian random vectors in \(\mathbb{R}^N \). As for norms, \(\| \cdot \| \) or \(\ell_2 \) denote the \(\ell_2 \) norm for a vector and \(\| \cdot \|_1 \) is the \(\ell_1 \) norm. All other norms will be defined in later sections.

Given two sets \(A,B \subset \mathbb{R}^N \), \(A+B \) is the Minkowski sum of \(A \) and \(B \), i.e., \(A+B = \{ v+w | v \in A, w \in B \} \). The normalized geodesic distance between two vectors \(x \) and \(y \) is \(d_g(x,y) := \frac{\arccos \langle x,y \rangle}{\pi} \).

II. GLOBAL CONVERGENCE OF NORMALIZED BIHT

A. The normalized BIHT algorithm

We briefly describe the normalized binary iterative hard-thresholding (NBIHT) algorithm. The description of the NBIHT algorithm [15] is given in Algorithm 1.

Algorithm 1 Normalized BIHT

Inputs: \(m \times N \) matrix \(A \), measurements \(b = \text{sign}(Ax) \), sparsity level \(s \), step size \(\tau \)

Initialize: Pick a \(x_0 \) with \(\|x_0\| = 1 \) and sparsity level \(s \).

Iterate: Repeat until a stopping criteria on \(k \) is met

Compute \(z_{k+1} \)

\[z_{k+1} := x_k + \frac{\tau}{m} A^T (\text{sign}(Ax) - \text{sign}(Ax_k)) \]

Project to \(s \)-sparse vector sets

\[\tilde{x}_{k+1} := T_s(z_{k+1}) \]

Normalize

\[x_{k+1} := \tilde{x}_{k+1} / \|\tilde{x}_{k+1}\| \]

Outputs: The \(s \)-sparse approximate solution to \(\text{sign}(Ax) = b \).

An important property of NBIHT is that \(z_1 \) is an unbiased estimator of \(x \) for \(\tau = \sqrt{\pi/2} \) (this is true for any initialization \(x_0 \) that does not depend on \(A \)). This follows from Proposition 21 which states that for any fixed unit vector \(y \in \mathbb{R}^N \), \(\sqrt{\frac{4}{m}} E \left| \frac{1}{m} A^T \text{sign}(Ay) \right| = y \). This shows that it is indeed unbiased, i.e., \(E z_1 = x \). Further iterations are no longer unbiased estimators of \(x \). Typically, analyses in this scenario proceed by
B. Main global convergence theorem

We are now ready to state our main theorem for the convergence of the NBIHT algorithm.

Theorem 1. Let \(x\) be an \(s\)-sparse unit vector in \(\mathbb{R}^N\). Assume that each entry of the measurement matrix \(A \in \mathbb{R}^{m \times N}\) is drawn i.i.d. from \(\mathcal{N}(0,1)\). Then, there exist positive universal constants \(c,C\) such that the NBIHT iterates \(x_k\) satisfy

\[
\|x_k - x\|_2 \leq C \left(\frac{s \log(N/s)^{7/2} \log m}{m^{1-\frac{1}{2}(\frac{5}{2})^{(\frac{3}{2})^{\left\lfloor k/25\right\rfloor^{-1}})}} \right)
\]

for all \(m > \max\{c \cdot s^{10} \log^{10} (N/s), 24^{48}\}\) with probability at least \(1 - O\left(\frac{1}{m^3}\right)\).

Proof. See Theorem 29 and its proof.

By letting the iteration number \(k \to \infty\), Theorem 1 implies the following Corollary about the approximation error of NBIHT.

Corollary 2. Under the same assumptions in Theorem 1, the NBIHT iterates \(x_k\) converge to \(x\) up to approximation error \(C \left(\frac{s \log(N/s)^{7/2} \log m}{m^{1-\frac{1}{2}(\frac{5}{2})^{(\frac{3}{2})^{\left\lfloor k/25\right\rfloor^{-1}})}} \right)\) with probability at least \(1 - O\left(\frac{1}{m^3}\right)\) provided \(m > \max\{c \cdot s^{10} \log^{10} (N/s), 24^{48}\}\).

Remark 1. Jacques et.al. [15] lower bounded the best achievable reconstruction error from one-bit (sign) measurements. Specifically, Theorem 1 in [15] shows that the approximation error decay rate cannot be faster than \(\Omega(\frac{s}{m})\) no matter what algorithm we use as long as \(m = \Omega(s^{3/2})\). Thus, Corollary 2 reveals that the NBIHT algorithm achieves the best possible approximation error decay rate in \(m\).

Remark 2. The number of measurements to have the optimal error decay rate in our theory is substantially large. We have focused on proving the optimal error decay rate not optimizing the constant.

III. MULTISCALE ANALYSIS BASED ON RESTRICTED APPROXIMATE INVERTIBILITY CONDITION

This section illustrates the idea behind the proof of our main convergence result. First, we introduce the dual norm which is used in the rest of the paper.

Definition 3. Let \(G\) be a symmetric subset in \(\mathbb{R}^N\). The dual norm of \(G\) is given by

\[
\|x\|_{G^*} := \sup_{u \in G} \langle x, u \rangle, \quad x \in \mathbb{R}^N.
\]

We also denote \((G - G) \cap dB_N^2\) by \(G_d\). Moreover, when \(G\) is a cone, we see that \(\|x\|_{G^*_t} = t\|x\|_{G^*}\) for any \(t > 0\).

Recall that in the standard compressed sensing, one wishes to reconstruct an \(s\)-sparse vector \(x\) from its linear measurements \(Ax\). There are numerous algorithms available for this problem including *iterative hard thresholding (IHT)*, which is commonly used due to its simplicity and computational efficiency. We present IHT in Algorithm 2 as it has motivated BIHT-type algorithms and our NBIHT convergence proof hinges, in part, on the analysis of IHT.
The proofs for the linear convergence of IHT typically start with showing \[\|z_{k+1} - x\|_2 \leq c \|x_k - x\|_2 \] for some \(0 < c < 1\). Since we want to convey the idea, let us assume \(c = \frac{1}{5}\), i.e., we have \(\|z_{k+1} - x\|_2 \leq \frac{1}{5}\|x_k - x\|_2\). Then, a standard argument implies a contraction inequality \(\|x_{k+1} - x\|_2 \leq \frac{1}{5}\|x_k - x\|_2\) which leads to the linear convergence of IHT. To prove the inequality \(\|z_{k+1} - x\|_2 \leq \frac{1}{5}\|x_k - x\|_2\), define \(\hat{A} := \frac{1}{\sqrt{m}}A\), which satisfies the RIP with high probability for sufficiently large \(m\) \cite{11}. Since \(z_{k+1} - x = \frac{1}{m}A^T (Ax - Ax_k) - (x - x_k) = \tilde{A}^T (\tilde{A}x - \tilde{A}x_k) - (x - x_k)\), it is evident that controlling the term \(\tilde{A}^T (\tilde{A}x - \tilde{A}x_k) - (x - x_k)\) plays a critical role in the convergence analysis. This term is controlled with the RIP which implies that \(\tilde{A}^T \tilde{A}\) acts as approximately the identity when restricted to sparse vectors. The RIP is equivalent to the following equation \cite{11} which will naturally connect to the RAIC:

\[
\sup_{y \in K} \left\| \frac{1}{m} A^T (Ax - Ay) - (x - y) \right\|_{K^2} = \sup_{y \in K} \left\| \tilde{A}^T (\tilde{A}x - \tilde{A}y) - (x - y) \right\|_{K^2} \leq \frac{1}{8} \|x - y\|_2.
\]

This is the key inequality in the proof for the linear convergence proof of IHT.

Unfortunately, due to the discontinuity of \(\text{sign}(A\cdot)\), the measurement operator in one-bit compressed sensing does not have such handy properties; Arbitrarily close two vectors can be mapped to points which are “far” under the operator \(\text{sign}(A\cdot)\). However, it turns out that the randomness of \(\text{sign}(A\cdot)\) still allows us to derive a “restricted approximate invertibility condition (RAIC)” which makes it possible to replace the RIP to facilitate the analysis and we think it is interesting on its own. Informally speaking, the RAIC is similar to RIP but holds only on an annulus at \(x\) \((r_{i+1} \leq \|x - y\|_2 \leq r_i)\) with a small additive error. To be more precise, the RAIC with the associated parameters \(r_i\) and \(r_{i+1}\) holds if

\[
\sup_{y \in K^{\cap [N-1]}_{r_{i+1}} \leq \|x - y\|_2 \leq r_i} \left\| \frac{r}{m} A^T (\text{sign}(Ax) - \text{sign}(Ay)) - (x - y) \right\|_{K^2_i} \leq \frac{1}{8} \|x - y\|_2 + \frac{3}{50} r_{i+1}.
\]

Here \(\{r_j\}_{j=1}^L\) is a finite decreasing sequence of real numbers with \(r_1 \approx \frac{\sqrt{s \log(N/s)} + \sqrt{\log m}}{m^{1/2}}\) and \(r_L \leq \frac{\sqrt{s \log(N/s)}^{7/2} \log m^{12}}{m^{1/2}}\), whose exact specification will be given later. It is well-known that the first iteration of the NBIHT, say \(x_1\), satisfies \(\|x_1 - x\| \leq r_1\) with high probability.

Then, the rest of analysis is based on a contraction-type inequality for the approximation error (up to a small additive term) that is obtained by applying the RAIC with the current error scale; For example, if the \(k\)-th NBIHT iterate, \(x_k\) satisfies \(r_{i+1} \leq \|x - x_k\|_2 \leq r_i\) for some \(1 \leq i \leq L\), then we apply the RAIC with parameters \(r_i\) and \(r_{i+1}\). Repeated applications of the RAIC combined with an elementary argument imply that \(x_k\) converges to \(x\) until it reaches the approximation error scale \(r_L\). Lastly, once \(x_k\) reaches the error scale \(r_L\), we show that the rest of the NIBHT iterates stay close to \(x\) with the same error scale as \(r_L\).
IV. OUTLINE OF THE PROOF OF MAIN TECHNICAL RESULTS

A. Sketch of the proof of our main convergence result based on the RAIC

1) Let K be the set of s-sparse vectors. First, from the gradient step iteration for the NBIHT, $z_{k+1} = x_k + \frac{\tau}{m} A^T (\text{sign}(Ax) - \text{sign}(Ax_k))$. Using a standard argument for the projections to $K \cap S^{N-1}$, we will see that

$$ \|x_{k+1} - x\|_2 \leq 4 \left\| \frac{\tau}{m} A^T (\text{sign}(Ax) - \text{sign}(Ax_k)) - (x - x_k) \right\|_{K_i^{m}}. \quad (2) $$

2) Let L be the largest positive integer satisfying $m \frac{4}{L} > 24$. Such L always exists from the assumption $m > 24^{48} = 24^{40} \left(\frac{K}{L}\right)$. Suppose i is a positive integer less than L. We define a sequence of sets, $K_{i}^{(i)} := \{ y \mid y \text{ is an } s\text{-sparse unit vector}, r_{i+1} \leq \|y - x\| \leq r_i \}$ where $\{r_i\}$ is a decreasing sequence of real numbers satisfying

$$ r_i \leq m^{-\left(1 - \frac{1}{2} \left(\frac{K}{L}\right)^{i-1}\right)} \left(\log m\right)^{10} \left(s \log (N/s)\right)^{3}. $$

By the choice of L and the sequence $\{r_i\}$, it turns out that $r_L \leq m^{-\frac{(s \log (N/s))}{N}} \log m$. The exact specifications of r_i will be given in Section V.

3) The RAIC says that for all $y \in K_{i}^{(i)}$,

$$ \left\| \frac{\tau}{m} A^T (\text{sign}(Ax) - \text{sign}(Ay)) - (x - y) \right\|_{K_i^{m}} \leq \frac{3}{m \frac{4}{L}(\frac{K}{L})^i} \|x - y\|_2 + \frac{3}{50} r_{i+1} \quad (3) $$

with high probability. This bound and (2) imply that

$$ \|x_{k+1} - x\|_2 \leq \frac{12}{m \frac{4}{L} (\frac{K}{L})^i} \|x_k - x_k\|_2 + \frac{6}{25} r_{i+1} $$

for all x_k with $r_{i+1} \leq \|x - x_k\| \leq r_i$. Since $m \frac{4}{L} > 24$ and $i < L$, $m \frac{4}{L} (\frac{K}{L})^i > 24$. Thus,

$$ \|x_{k+1} - x\|_2 \leq \frac{1}{2} \|x_k - x\|_2 + \frac{6}{25} r_{i+1}. $$

Note that $\frac{1}{2} \|x_k - x\|_2 + \frac{6}{25} r_{i+1} \leq \frac{1}{2} r_i + \frac{1}{2} r_i \leq r_i$, so $\|x_{k+1} - x\|_2 \leq r_i$. Then, a simple induction argument yields the following: For any $t \geq 1$, either there exists p with $1 \leq p \leq t$ such that $\|x_{k+p} - x\| \leq r_{i+1}$ or

$$ \|x_{k+t} - x\|_2 \leq \left(\frac{1}{2}\right)^t \|x - x_k\|_2 + \frac{12}{25} r_{i+1} $$

with high probability. From the relation between r_i, r_{i+1} and the previous inequality, one can easily show that $\|x_{k+p} - x\| \leq r_{i+1}$ for some p with $1 \leq p \leq 25$. In other words, 25 iterations are enough for the BIHT iterates to reach the next level $K_{i+1}^{(i+1)}$. Repeating this argument yields that x_k approaches x until it reaches the level set $K_{i}^{(i)}$, guaranteeing the approximation error $\approx r_L$ up to some logarithmic factors. This is the main idea of Theorem [I].
B. Sketch of the proof of the RAIC

It remains to present the idea of the proof the RAIC, which turns out to be the main challenge in our approach. Here are the key ingredients of the proof.

- **Local Binary Embedding (LBE)**: The LBE is a refined version of the Binary ε-Stable Embedding (BSE) by Jacques et al. [15]. The BSE states that the distance of any two s-sparse unit vectors is close to the normalized Hamming distance of their one-bit measurements up to additive error ε. It is also proved that the BSE holds for an $m \times N$ Gaussian random measurement matrix with ε of order of $\sqrt{s/M}$ with high probability, but we were not able to apply BSE to achieve our decay rate essentially because $\sqrt{\frac{m}{M}} \gg 1$.

On the other hand, although the LBE resembles the BSE, the key difference is that its additive error in the embedding becomes smaller as two vectors are sufficiently close to each other. In other words, we have more accurate control of the additive error if one vector belongs to a small neighborhood of the other.

- The standard ε-net argument is used for a uniform approximation of Lipschitz continuous parts in our analysis, whereas the LBE is applied to the discontinuous part involving the $\text{sign}(\cdot)$ operation.

- We also use a concentration argument based on the bounded Bernstein’s inequality in several places.

1) The first step of our proof is the orthogonal decomposition of a Gaussian random vector into three components along the directions of $x - x_k$, $x + x_k$ and their orthogonal complement to facilitate the analysis. More precisely, given a unit vector y, consider the following decomposition of each measurement vectors a_i

$$a_i = \left\langle a_i, \frac{x - y}{\|x - y\|} \right\rangle \frac{x - y}{\|x - y\|} + \left\langle a_i, \frac{x + y}{\|x + y\|} \right\rangle \frac{x + y}{\|x + y\|} + b_i(x, y),$$

where $b_i(x, y)$ is the component of a_i orthogonal to $x - y$ and $x + y$. This decomposition allows us to decouple the right hand side of (3) into three parts, each of which has a similar structure. As will be made more precise in later sections, the analysis of each part essentially boils down to controlling the following form of a sum:

$$\frac{\tau}{m} \sum_{i=1}^{m} \left[\right| \left(\text{sign}(\langle a_i, x \rangle) - \text{sign}(\langle a_i, y \rangle) \right) g(a_i, y) \left| - \mathbb{E}_a \left(\left| \left(\text{sign}(\langle a, x \rangle) - \text{sign}(\langle a, y \rangle) \right) g(a, y) \right| \right) \right| \right] \tag{4}$$

for all s-sparse unit vectors y. Here g is a jointly 1-Lipschitz continuous function bounded by $C(\sqrt{s \log(2N/s)} + \sqrt{\log m})$ for some fixed constant $C \geq 1$. For the sake of illustration, we further assume $\mathbb{E}_a \left(\left| \left(\text{sign}(\langle a, x \rangle) - \text{sign}(\langle a, y \rangle) \right) g(a, y) \right| \right) = 0$ for all unit vector y.

2) We are now ready to present the idea on how to control the sum (4) by giving strings of inequalities with technical details followed by justifications. First, let $K^{(i)}$ be an ε-net of $K^{(i)}$ with $\varepsilon := \delta_i$ which will be defined in Section [V]. So, for any $y \in K^{(i)}$, there exists $\hat{y} \in K^{(i)}$ with $\|y - \hat{y}\|_2 \leq \delta_i$. Then,

$$\frac{\tau}{m} \sum_{i=1}^{m} \left[\right| \left(\text{sign}(\langle a_i, x \rangle) - \text{sign}(\langle a_i, y \rangle) \right) g(a_i, y) \left| \right| \right] \leq \left(i \right) \frac{\tau}{m} \sum_{i=1}^{m} \left[\right| \left(\text{sign}(\langle a_i, x \rangle) - \text{sign}(\langle a_i, y \rangle) \right) g(a_i, y) \left| \right| \right] + \left(ii \right) \frac{\tau}{m} \sum_{i=1}^{m} \left[\right| \text{sign}(\langle a_i, y \rangle) - \text{sign}(\langle a_i, \hat{y} \rangle) \right| \left| g(a_i, y) \right| \right] + \frac{\tau}{m} \sum_{i=1}^{m} \left(\text{sign}(\langle a_i, x \rangle) - \text{sign}(\langle a_i, \hat{y} \rangle) \right) g(a_i, y)$$
Proposition 4. If T_s is the hard thresholding operator and $x_k = T_s(z_k)/\|T_s(z_k)\|$, then
\[
\|x_k - x\|_2 \leq \|T_s(z_k) - x_k\|_2 + \|T_s(z_k) - x\|_2 \leq 2\|T_s(z_k) - x\|_2. \tag{5}
\]

Proof. The first inequality is by the triangle inequality. The second inequality follows from the facts that $\|x\| = \|x_k\| = 1$ and x_k is the closest point on the unit sphere to $T_s(z_k)$. \qed

Here are justifications for the above chain of inequalities: (i), (ii), (iv), and (viii) follow from the triangle inequality. (iii) is due to the local binary embedding, the ϵ-net $\mathcal{N}_{(i)}$, and the fact that g is bounded by $C(\sqrt{s\log(2N/s)} + \log m)$. For (v), we used a standard ϵ-net argument since g is 1-Lipschitz. Next, (vi) follows from the Bernstein’s inequality for mean-zero bounded random variables. This step is important since we exploit the cancellation of terms in the sum based on a concentration inequality. Simple arguments without considering the cancellation effect in the sum would yield $C(\sqrt{s\log(2N/s)} + \log m)\log m \cdot r_{i+1} > r_{i+1}$, which is not good enough to show the RAIC used in (3). Lastly, (vii) and (ix) are from the relation between δ_i and r_{i+1}.

V. TOWARD THE PROOF OF NBIHT CONVERGENCE

Several previous works in one-bit compressed sensing are based on the binary stable embedding property (BSE) type of inequalities [13, 18, 21]. Although this property is interesting on its own, it is not as strong as the RIP in the standard compressed sensing when we have full linear measurements for sparse signals, so we were not able to use the BSE to achieve our goal. Instead, our proof for the main theorem relies on various different tools and this section provides them before the proof appears.

We begin with the following proposition relating the approximation error of NBHit iterates x_k to $T_s(z_k)$ in Algorithm [7]

\begin{align*}
(iii) & \quad 2C\tau \cdot \left(\sqrt{s\log(2N/s)} + \sqrt{\log m}\right) \log m \cdot \delta_i + \left|\frac{\tau}{m} \sum_{i=1}^{m} \left(\text{sign}(\langle a_i, x \rangle) - \text{sign}(\langle a_i, y \rangle)\right) g(a_i, y)\right| \\
(iv) & \quad 2C\tau \cdot \left(\sqrt{s\log(2N/s)} + \sqrt{\log m}\right) \log m \cdot \delta_i + \frac{\tau}{m} \sum_{i=1}^{m} \left|\text{sign}(\langle a_i, x \rangle) - \text{sign}(\langle a_i, y \rangle)\right| |g(a_i, y) - g(a_i, \hat{y})| \\
(v) & \quad 4C\tau \cdot \left(\sqrt{s\log(2N/s)} + \sqrt{\log m}\right) \log m \cdot \delta_i + \frac{\tau}{m} \sum_{i=1}^{m} \left|\text{sign}(\langle a_i, x \rangle) - \text{sign}(\langle a_i, y \rangle)\right| g(a_i, \hat{y}) \\
(vi) & \quad 4C\tau \cdot \left(\sqrt{s\log(2N/s)} + \sqrt{\log m}\right) \log m \cdot \delta_i + \frac{2}{m} \sum_{i=1}^{m} \|x - \hat{y}\|_2 + \frac{1}{600} r_{i+1} \\
(vii) & \quad \frac{2}{m} \sum_{i=1}^{m} \|x - \hat{y}\|_2 + \frac{4\tau}{600} r_{i+1} \\
(viii) & \quad \frac{2}{m} \sum_{i=1}^{m} \|x - y\|_2 + 2\|y - \hat{y}\| + \frac{4\tau}{600} r_{i+1} \\
(ix) & \quad \frac{2}{m} \sum_{i=1}^{m} \|x - y\|_2 + \frac{3}{200} r_{i+1}.
\end{align*}
A. The first iteration of normalized BIHT

The first iteration of the BIHT is investigated by several papers [11], [18]. In particular, Proposition 1 and 2 in [18] state that \(\| T_s(z_1) - x \| = O \left(\frac{\sqrt{s \log(N/s)} + \sqrt{\log m}}{m^{1/2}} \right) \) with high probability. The following statement makes this precise.

Proposition 5. Let \(A \) be a \(m \times N \) Gaussian random matrix. Then, there exists constant \(\bar{c} \geq 1 \) such that \[
\| T_s(z_1) - x \| \leq 1 + 2 \cdot \sqrt{s \log(N/s)} + \sqrt{\log m} \]
with probability at least \(1 - \bar{c} \left(\frac{sN}{5s} \cdot \frac{1}{m^2} \right) \).

Propositions 4 and 5 together imply that \[
\| x_{\text{init}} - x \| \leq \frac{\sqrt{s \log(N/s)} + \sqrt{\log m}}{m^{1/2}} \]
with probability at least \(1 - \bar{c} \left(\frac{sN}{5s} \cdot \frac{1}{m^2} \right) \). Also note that \(x_{\text{init}} \) is a unit \(s \)-sparse vector since it is an iterate of NBIHT.

B. Metric projection

In this section, we introduce the notion of the restricted approximate invertibility condition (RAIC) and its connection to the approximation error \(\| x_{\text{init}} - x \| \). We start with the definition of Gaussian width of a set.

Definition 6. The Gaussian width of a set \(G \subseteq \mathbb{R}^N \) is defined by
\[
w(G) := \mathbb{E} \sup_{u \in G} \langle h, u \rangle
\]
where \(h \sim \mathcal{N}(0, I_N) \). Note that \(w(G) = \mathbb{E} \| h \|_{G^c} \).

The following Corollary 8.3. in [11] allows us to control \(\| x_{\text{init}} - x \|_2 \).

Corollary 7. Let \(P_G \) be the orthogonal projection on a star-shaped set \(G \). Then, for \(z \in G \), we have
\[
\| P_G(w) - z \|_2 \leq \max \left(\frac{2}{t}, \frac{2}{t} \| w - z \|_{G^c} \right)
\]
for any \(t > 0 \).

Since \(T_s \) is the hard thresholding operator to the \(s \)-sparse vectors, by Corollary 7, we have
\[
\| T_s(z_{k+1}) - x \|_2 \leq \max \left(\frac{2}{t}, \frac{2}{t} \| z_{k+1} - x \|_{K^c_i} \right)
\]
\[
\leq \max \left(\frac{2}{t}, \frac{2}{t} \cdot t \| z_{k+1} - x \|_{K^c_i} \right)
\]
\[
\leq 2 \| z_{k+1} - x \|_{K^c_i},
\]
where the second inequality follows from the fact that \(K \) is a symmetric cone and the third one is by taking \(t = 2 \| z_{k+1} - x \|_{K^c_i} \).

Hence, combining the above inequality, Proposition 4 and \(z_{k+1} = x_k + \frac{2}{m^2} \cdot A^T (\text{sign}(Ax) - \text{sign}(Ax_k)) \) yields
\[
\| x_{k+1} - x \|_2 \leq 4 \left\| \frac{2}{m^2} \cdot A^T (\text{sign}(Ax) - \text{sign}(Ax_k)) - (x - x_k) \right\|_{K^c_i}.
\]
Remark 3. Note that if we had linear measurements of x, not the one-bit measurements, the restricted isometry property (RIP) would be sufficient to establish a contraction, that is, $\|x_{k+1} - x\|_2 \leq \rho \|x_k - x\|_2$ for some $0 < \rho < 1$. Indeed, the δ_{2s}-RIP for matrix $\frac{1}{\sqrt{m}}A$ in can be recasted as
\[
\max_{S \subset [N], \text{card}(S) \leq 2s} \left\| \frac{1}{m} A^T |S| A - I \right\|_{2 \rightarrow 2} = \delta_{2s}
\]
which implies that
\[
\left\| \frac{1}{m} A^T (Ax - Ay) - (x - y) \right\|_{K_1^s} \leq \delta_{2s} \|x - y\|_2
\]
for all s-sparse vectors x and y (See [11] for more details).

Hence, if we had $\left\| \frac{1}{m} A^T (Ax - Ax_k) - (x - x_k) \right\|_{K_1^s}$ instead of $\left\| \frac{1}{m} A^T (\text{sign}(Ax) - \text{sign}(Ax_k)) - (x - x_k) \right\|_{K_1^s}$ in the right hand side of (7), the RIP would give a contraction for sufficiently small δ_{2s}, which leads to a linear convergence.

Unfortunately, because of a severe discontinuity of the operator $\text{sign}(\cdot)$, we don’t have the RIP. However we will show that the following property still holds, which provides “local approximate version of RIP”.

Definition 8 (Restricted Approximate Invertibility Condition).
We say that the matrix M satisfies the $(v, \delta_{2s}, \eta_{2s}, r_{lb}, r_{ub})$-restricted approximate invertibility condition (RAIC) at x (the ground truth s-sparse unit vector) if the following inequality holds for all s-sparse unit vectors y with $r_{lb} \leq \|y - x\|_2 \leq r_{ub}$,
\[
\left\| v \cdot M^T (\text{sign}(Mx) - \text{sign}(My)) - (x - y) \right\|_{K_1^s} \leq \delta_{2s} \|x - y\|_2 + \eta_{2s}.
\]

Note that the RAIC is similar to the RIP except it holds for a certain region at x with an additive error η_{2s}. As will be more clear in Proposition [22] we have the RAIC for the matrix A with high probability within certain regions around x. At this point, one would notice that the RAIC can be applied to (7) under appropriate conditions.

C. Orthogonal decomposition of measurement vectors

We will use the following orthogonal decomposition of Gaussian measurement vectors a_i, which is inspired by the decomposition technique in Plan et. al [11], as the first step in the proof of Theorem [1] in the next section.

Lemma 9. Suppose that a_i’s are the standard Gaussian random vectors. Let x, y be unit vectors in \mathbb{R}^N. Since $x - y$ and $x + y$ are orthogonal to each other, then we have
\[
a_i = \left\langle a_i, \frac{x - y}{\|x - y\|} \right\rangle \frac{x - y}{\|x - y\|} + \left\langle a_i, \frac{x + y}{\|x + y\|} \right\rangle \frac{x + y}{\|x + y\|} + b_i(x, y)
\]
where $b_i(x, y)$ is the component of a_i orthogonal to $x - y$ and $x + y$.

Proof. Since x,y are unit vectors, one can easily check that $\left\langle a_i, \frac{x - y}{\|x - y\|} \right\rangle \frac{x - y}{\|x - y\|}$ and $\left\langle a_i, \frac{x + y}{\|x + y\|} \right\rangle \frac{x + y}{\|x + y\|}$ are orthogonal by a direct calculation.
D. Uniform bounds

1) Uniform bounds for \(\left\langle a_i, \frac{x+y}{\|x+y\|} \right\rangle \), \(\left\langle a_i, \frac{x-y}{\|x-y\|} \right\rangle \), \(\|b_i(x,y)\|_{K^1} \): Since we will use the Bernstein’s inequality for the bounded random variables later, we need to show \(\left\langle a_i, \frac{x+y}{\|x+y\|} \right\rangle \), \(\left\langle a_i, \frac{x-y}{\|x-y\|} \right\rangle \), \(\|b_i(x,y)\|_{K^1} \) bounded with high probability.

First, the following upper bound of \(\|a\|_{K^1} \) for the standard Gaussian random vector \(a \) will be used repeatedly in this subsection.

Proposition 10. Suppose \(a \sim \mathcal{N}(0,I_N) \). Then there exist absolute constants \(C_b \geq 1 \) and \(0 < c_b \leq 1 \) such that with probability at least \(1 - \frac{2}{m^2} \), we have

\[
\|a\|_{K^1} \leq C_b \sqrt{s \log(N/s)} + \sqrt{\frac{5 \log m}{c_b}}.
\]

Proof. From the definition of the dual norm \(\|a\|_{K^1} \),

\[
\mathbb{E} \|a\|_{K^1}^2 = \mathbb{E} \sup_{a \sim \mathcal{N}(0,I_K) \atop \|v-w\| \leq 1} \langle a, v-w \rangle = w(K_1) \leq C_b \sqrt{s \log(N/s)}
\]

where the inequality is by a well-known bound of Gaussian width of the set of 2s-sparse unit vectors for some constant \(C_b \geq 1 \).

Since \(a \rightarrow \|a\|_{K^1} \) is a Lipschitz continuous function with Lipschitz constant at most 1, by the Gaussian concentration inequality \([27], [28]\),

\[
\|a\|_{K^1} \leq C_b \sqrt{s \log(N/s)} + u
\]

with probability at least \(1 - 2 \exp(-c_b u^2) \) for some constant \(0 < c_b \leq 1 \). Finally, set \(u = \sqrt{\frac{5 \log m}{c_b}} \) to obtain the proposition. \(\square \)

Let \(E_i \) be the event that the bound in Proposition 10 holds for \(a_i \). Note that \(\mathbb{P}(E_i) \geq 1 - \frac{2}{m^2} \) and also define \(E_u \) such that

\[
E_u = \cap_{i=1}^m E_i.
\]

Then, by the union bound, \(\mathbb{P}(E_u) \geq 1 - \frac{2}{m^2} \).

Lemma 11. With probability at least \(1 - \frac{2}{m^2} \), we have

\[
\max_{1 \leq i \leq m} \sup_{y \in K \cap S^{N-1}} \left\{ \left\langle a_i, \frac{x+y}{\|x+y\|} \right\rangle, \left\langle a_i, \frac{x-y}{\|x-y\|} \right\rangle, \|b_i(x,y)\|_{K^1} \right\}
\leq 3 \left(C_b \sqrt{s \log(N/s)} + \sqrt{\frac{5 \log m}{c_b}} \right).
\]

Proof. For any \(y \in K \cap S^{N-1} \), we observe that \(\frac{x+y}{\|x+y\|} \in (K-K) \cap S^{N-1} \) because \(K \) is symmetric.

\[
\sup_{y \in K \cap S^{N-1}} \left\langle a_i, \frac{x+y}{\|x+y\|} \right\rangle
\leq \sup_{w,y \in K \cap S^{N-1}} \left\langle a_i, \frac{w+y}{\|w+y\|} \right\rangle
\leq \sup_{u-v \in (K-K), \|u-v\| \leq 1} |\langle a_i, u-v \rangle|
= \sup_{u-v \in (K-K), \|u-v\| \leq 1} \langle a_i, u-v \rangle
\]
\[= \|a_i\|_{K_i^1} \leq C_b \sqrt{s \log(N/s)} + \sqrt{\frac{5 \log m}{c_b}} \]

under the event \(E_n \). Here the second equality holds since \(K \) is symmetric and the last inequality is from Proposition 10.

Again by the symmetry of \(K \), this also implies that
\[
\sup_{y \in K^1 \cap \mathbb{R}^{N-1}} \left| \left\langle a_i, \frac{x-y}{\|x-y\|} \right\rangle \right| \leq C_b \sqrt{s \log(N/s)} + \sqrt{\frac{5 \log m}{c_b}}.
\]

As for the bound for \(\|b_i(x,y)\|_{K_i^1} \), we first start from the decomposition of \(a_i \) in Lemma 9
\[
b_i(x,y) = \left\langle a_i, \frac{x-y}{\|x-y\|} \right\rangle \frac{x-y}{\|x-y\|} + \left\langle a_i, \frac{x+y}{\|x+y\|} \right\rangle \frac{x+y}{\|x+y\|} - a_i.
\]

After taking the dual norm \(\cdot \|_{K_i^1} \) on both sides, we have
\[
\|b_i(x,y)\|_{K_i^1} \leq \left| \left\langle a_i, \frac{x-y}{\|x-y\|} \right\rangle \frac{x-y}{\|x-y\|} \right| + \left| \left\langle a_i, \frac{x+y}{\|x+y\|} \right\rangle \frac{x+y}{\|x+y\|} \right| + \|a_i\|_{K_i^1}
\]
\[
\leq \left\langle a_i, \frac{x-y}{\|x-y\|} \right\rangle \cdot \|x-y\|_{K_i^1} + \left\langle a_i, \frac{x+y}{\|x+y\|} \right\rangle \cdot \|x+y\|_{K_i^1} + \|a_i\|_{K_i^1}
\]
\[
= \left\langle a_i, \frac{x-y}{\|x-y\|} \right\rangle + \left\langle a_i, \frac{x+y}{\|x+y\|} \right\rangle + \|a_i\|_{K_i^1}
\]
\[
\leq 3 \left(C_b \sqrt{s \log(N/s)} + \sqrt{\frac{5 \log m}{c_b}} \right),
\]

where the first and second inequalities are by the triangle inequality, the equality is from the definition of the dual norm \(\cdot \|_{K_i^1} \), and we applied the bounds for \(\left\langle a_i, \frac{x-y}{\|x-y\|} \right\rangle \), \(\left\langle a_i, \frac{x+y}{\|x+y\|} \right\rangle \), and \(\|a_i\|_{K_i^1} \) in the last inequality. Thus we have the bound in the lemma under the event \(E_n \) which holds with probability exceeding \(1 - \frac{2}{m^2} \).

2) Other uniform bounds:

Proposition 12. Let \(y, \hat{y} \in \mathbb{S}^{N-1} \) with \(r \leq \|x-y\| \) and \(r \leq \|x-\hat{y}\| \) for some \(r > 0 \). Also, assume that \(\|y-\hat{y}\| \leq \delta \). Then, we have
\[
\left\| \frac{x-y}{\|x-y\|} - \frac{x-\hat{y}}{\|x-\hat{y}\|} \right\| \leq \frac{2 \delta}{r}.
\]

Proof. Repeated applications of triangle inequality yield the following chain of inequalities.
\[
\left\| \frac{x-y}{\|x-y\|} - \frac{x-\hat{y}}{\|x-\hat{y}\|} \right\| \leq \left\| \frac{x-y}{\|x-y\|} \right\| - \left\| \frac{x-\hat{y}}{\|x-\hat{y}\|} \right\| + \left\| \frac{x-\hat{y}}{\|x-\hat{y}\|} \right\| - \left\| \frac{x-y}{\|x-y\|} \right\|
\]
\[
\leq \frac{1}{\|x-y\|} - \frac{1}{\|x-\hat{y}\|} \|x-y\| + \frac{1}{\|x-\hat{y}\|} \|x-y-(x-\hat{y})\|
\]
\[
\leq \frac{1}{\|x-\hat{y}\|} \|x-y\| + \frac{1}{\|x-\hat{y}\|} \|y-\hat{y}\|
\]
\[
\leq \frac{1}{\|x-\hat{y}\|} \|y-\hat{y}\| \leq \frac{2 \delta}{r}.
\]
Lemma 13. Let z, \hat{z} be s-sparse vectors with $\|z - \hat{z}\|_2 \leq \delta$. Then, we have
\[
|\langle a_i, z \rangle - \langle a_i, \hat{z} \rangle| \leq \delta \left(C_b \sqrt{s \log(N/s)} + \sqrt{\frac{5 \log m}{c_b}} \right)
\]
for all $1 \leq i \leq m$ with probability at least $1 - \frac{2}{m^2}$.

Proof. Let $h = z - \hat{z}$. By Proposition 10, for all $i \in [m]$, we have
\[
\sup_{h \in K^s_\delta \cap S^{N-1}} |\langle a_i, h \rangle| = \|a_i\|_{K^s_\delta} = \delta \|a_i\|_{K^s_1} \leq \delta \left(C_b \sqrt{s \log(N/s)} + \sqrt{\frac{5 \log m}{c_b}} \right)
\]
with probability at least $1 - \frac{2}{m^2}$. Then the lemma follows from the union bound. \qed

Lemma 14. Let z, \hat{z} be unit s-sparse vectors with $\|z - \hat{z}\|_2 \leq \delta$. Then, for $u > 0$, we have
\[
\|\langle a_i, z \rangle z - \langle a_i, \hat{z} \rangle \hat{z}\|_{K^s_1} \leq 2\delta \left(C_b \sqrt{s \log(N/s)} + \sqrt{\frac{5 \log m}{c_b}} \right)
\]
for all $1 \leq i \leq m$ with probability at least $1 - \frac{2}{m^2}$.

Proof. Note that
\[
\|\langle a_i, z \rangle z - \langle a_i, \hat{z} \rangle \hat{z}\|_{K^s_1} \leq \|\langle a_i, z \rangle z - \langle a_i, \hat{z} \rangle z\|_{K^s_1} + \|\langle a_i, \hat{z} \rangle z - \langle a_i, \hat{z} \rangle \hat{z}\|_{K^s_1}
\]
\[
\leq |\langle a_i, z \rangle - \langle a_i, \hat{z} \rangle| \cdot \|z\|_{K^s_1} + |\langle a_i, \hat{z} \rangle| \cdot \|z - \hat{z}\|_{K^s_1}
\]
\[
\leq |\langle a_i, z \rangle - \langle a_i, \hat{z} \rangle| \cdot \|z\|_2 + |\langle a_i, \hat{z} \rangle| \cdot \|z - \hat{z}\|_2
\]
\[
\leq \delta \left(C_b \sqrt{s \log(N/s)} + \sqrt{\frac{5 \log m}{c_b}} \right) + \left(C_b \sqrt{s \log(N/s)} + \sqrt{\frac{5 \log m}{c_b}} \right) \cdot \delta
\]
\[
\leq 2\delta \left(C_b \sqrt{s \log(N/s)} + \sqrt{\frac{5 \log m}{c_b}} \right).
\]
The explanations to above inequalities are as follows: We used the triangle inequality in the first and second inequalities. The third inequalities is from the definition of the dual norm $\| \cdot \|_{K^s_1}$. We applied Lemma 13 to the fourth inequality. \qed

Lastly, define a quantity $C(N, s, m)$ to be
\[
C(N, s, m) := 3 \left(C_b \sqrt{s \log(N/s)} + \sqrt{\frac{5 \log m}{c_b}} \right).
\]
Note also that $C(N, s, m) \leq 9C_b \sqrt{s \log(N/s)} \cdot \sqrt{\frac{5 \log m}{c_b}}$.

Using this notation, we summarize Lemma 11, 13 and 14 in one lemma below.

Lemma 15. With probability at least $1 - \frac{2}{m^2}$, for all i with $1 \leq i \leq m$, we have
\[
\sup_{y \in K^s_\delta \cap S^{N-1}} \left\{ |\langle a_i, x + y \rangle|, |\langle a_i, x - y \rangle|, \|b_i(x, y)\|_{K^s_1} \right\} \leq C(N, s, m)
\]
and
\[
\max \left\{ |\langle a_i, z \rangle - \langle a_i, \hat{z} \rangle|, \|\langle a_i, z \rangle z - \langle a_i, \hat{z} \rangle \hat{z}\|_{K^s_1} \right\} \leq 2\delta \cdot C(N, s, m)
\]
for any s-sparse unit vectors z, \hat{z} with $\|z - \hat{z}\|_2 \leq \delta$. \hfill \qed
E. Local binary embedding for small regions at x

One of key ingredients of our proof of the RAIC is the local binary embedding (local sensitivity hashing) property by Oymak and Recht [26]. Bilyk and Lacey [29] also reported a similar property.

Theorem 16 (Local δ-binary embedding [26, 29]). Let $A \in \mathbb{R}^{m \times N}$ be a standard Gaussian random matrix. Then, there exists universal constants $C_l, C_L \geq 1$, and $\tilde{c} > 0$ such that given a set $G \in \mathcal{S}^{N-1}$ and a constant $\delta \in (0, 1)$, we have

1. For all $x, y \in G$ with $\|x - y\|_2 \leq \delta / \sqrt{\log \delta^{-1}}$, $\|1_{[m]}\| \|\text{sign}(Ax) - \text{sign}(Ay)\|_1 - d_s(x, y)\| \leq C_l \delta$.
2. Conversely for all $x, y \in G$ with $\|x - y\|_2 \leq \delta, \|x - y\|_2 \leq \delta$, with probability $1 - \exp(-\tilde{c} \delta m)$ whenever $m \geq C_l \delta^{-3} \log \delta^{-1} w^2(G)$. Here $w(G)$ is the Gaussian width of G.

Define a constant C_10 as $C_10 := \max \{C_l, C_L, \tilde{c}C^2_k\} + \pi$. We are looking for two sequences $\{r_i\}_{i=1}$ and $\{\delta_i\}_{i=1}$ satisfying the following properties.

1. $r_1 = m^{-1/2} C(N, s, m)$.
2. $\delta_i = C(N, s, m) \left(\frac{r_i \log m}{m} \right)^{1/3} \log m$.
3. $r_{i+1}^2 = 600C_{10} \log m \cdot \delta_i C(N, s, m)$ or $r_{i+1} = 10 \sqrt{600} C_{10} 1/6 m^{-1/6} (\log m)^{7/6} C(N, s, m)$.

Proposition 17. It is easy to see that $\delta_i \geq \frac{1}{m}$ and $r_i \geq \frac{1}{m}$ for all i, so $\log m \geq \log \delta_i^{-1}$ and $\log m \geq \log r_i^{-1}$.

Also note that $\frac{r_{i+1}^2}{m} = C_{10} \frac{r_i \delta_i \log m \cdot C(N, s, m)}{r_{i+1}}$ and $r_{i+1} = \frac{C_i 0 r_i \delta_i \log m \cdot C(N, s, m)}{r_{i+1}}$.

The following two sequences $\{r_i\}$ and $\{\delta_i\}$ are constructed by induction based on above three requirements for the sequences above.

Definition 18. For $i \geq 0$,

$$r_{i+1} = (600C_{10})^3 \left(1 - \left(\frac{r_i}{m}\right)^{1/3} \right)^i m \left(1 - \left(\frac{r_i}{m}\right)^{1/3} \right) \log m \right)^7 \left(1 - \left(\frac{r_i}{m}\right)^{1/3} \right)^i C(N, s, m) \right)^6 \left(1 - \left(\frac{r_i}{m}\right)^{1/3} \right)^i,$$

$$\delta_{i+1} = (600C_{10})^3 \left(1 - \left(\frac{r_i}{m}\right)^{1/3} \right)^i m \left(1 - \left(\frac{r_i}{m}\right)^{1/3} \right) \log m \right)^7 \left(1 - \left(\frac{r_i}{m}\right)^{1/3} \right)^i C(N, s, m) \right)^6 \left(1 - \left(\frac{r_i}{m}\right)^{1/3} \right)^i.$$

Proposition 19. From the definitions of $r_i, r_{i+1},$ and $C(N, s, m)$, it is straightforward to check that there exists $c > 0$ such that $r_{i+1} \leq r_i \frac{r_{i+1}}{r_i} \leq C_10 \delta_i \log m \cdot C(N, s, m)$, and $\delta_i \leq \frac{r_{i+1}}{m}$ as long as $m > c s^{10} \log^{10}(N/s)$.

Let $K^{(i)} := B(x, r_i) \cap \Sigma^N_{2a}$. Then, for $y \in K^{(i)}$, $y \in B(0, r_i) \cap \Sigma^N_{2a}$, so $y \in B(0, r_i) \cap \Sigma^N_{2a} + x$, i.e., $K^{(i)} \subset B(0, r_i) \cap \Sigma^N_{2a} + x$. Hence, we have

$$w(K^{(i)}) = w(B(x, r_i) \cap \Sigma^N_{2a}) \leq w(B(0, r_i) \cap \Sigma^N_{2a} + x) \quad \text{for any sets } S, T \text{ with } S \subseteq T, w(S) \leq w(T) \quad \text{and} \quad w(B(0, r_i) \cap \Sigma^N_{2a}) \leq w(S + x) = w(S) \quad \text{for any set } S.$$

Next, we apply the local binary embedding to the set $K^{(i)}$ as follows.

Corollary 20 (Corollary of local δ-binary embedding). Under the same notations in Theorem 16 we have

1. For all $y \in K^{(i)}$ with $\|x - y\|_2 \leq \delta_i$, $\|y - Ax\|_2 \leq \frac{1}{2m} \|\text{sign}(Ax) - \text{sign}(Ay)\|_1 \leq C_10 \delta_i \log m$.
2. For all $y \in K^{(i)}$ with $\|x - y\|_2 \leq r_i$, $\|	ext{sign}(Ax) - \text{sign}(Ay)\|_1 \leq C_10 r_i \log m$.

with probability $1 - \frac{c}{m^2}$ for some universal constant $c_2 > 0$.
Proof. First, choose \(\delta \) such that \(\delta_i = \delta / \sqrt{\log \delta_i} \). Since \(y \in K^{(i)} \) with \(\|x - y\|_2 \leq \delta_i \) and \(\log m \geq \log \delta_i \geq \log \delta^{-1} \) in Proposition 17, the first part of Theorem 16 implies that

\[
\left| \frac{1}{2m} \| \text{sign}(Ax) - \text{sign}(Ay) \|_1 - d_g(x, y) \right| \leq C_L \delta_i \log m.
\]

Next, note that \(d_g(x, y) \leq \pi \|x - y\|_2 \) since \(x, y \) are unit vectors, so \(d_g(x, y) \leq \pi \delta \), from the relation between the arc and chord lengths in the unit sphere. Thus, from the fact that \(C_{10} \geq C_L + \pi \), we have

\[
1 - \exp(-c \delta m) \\
\geq 1 - \exp(-c \delta m) \\
\geq 1 - \exp \left(-c (600C_{10})^2 (1 - (\frac{C}{\delta})^{i-1}) \right) \\
\geq 1 - \exp \left(-c \log(m)^2 \right) \geq 1 - \frac{c_2}{m^2} \quad \text{for some absolute constant } c_2 > 0,
\]

if the condition \(m \geq C_1 \delta^{-3} \log \delta^{-1} w^2(K^{(i)}) \) is met. By the construction of \(\delta_i \) and \(C(N, s, m) \), we have

\[
m \geq \left(\frac{\delta}{\log m} \right)^{-3} r_1^2 \log m \cdot C^3(N, s, m) \geq C_1 \delta^{-3} \log \delta^{-1} w^2(K^{(i)}),
\]

so this condition is satisfied. This proves the first part of the corollary and the second part follows from the same arguments.

\(\square \)

F. \(\varepsilon \)-net for \(K^{(i)} \).

Consider an \(\varepsilon \)-net \(N_{K^{(i)}} \) for \(K^{(i)} \) with \(\varepsilon = \delta \). Then, by the Sudakov minorization inequality [Theorem 7.4.1 in Vershynin 28], there exist constants \(C', C'' > 0 \) such that for all \(i \geq 1 \),

\[
\log |N_{K^{(i)}}| \leq \frac{C' w^2(K^{(i)})}{\delta_i^2} \\
\leq \frac{C' r_1^2 w^2(K)}{\delta_i^2} \\
\leq C' (600C_{10})^2 (1 - (\frac{C}{\delta})^{i-1}) m_{\frac{1}{2}}(\frac{C}{\delta})^{i-1} \log m (1 - (\frac{C}{\delta})^{i-1}) C(N, s, m)^2 \cdot \frac{10}{\delta} (\frac{C}{\delta})^{i-1} w^2(K) \\
\leq C'' (600C_{10})^2 (1 - (\frac{C}{\delta})^{i-1}) m_{\frac{1}{2}}(\frac{C}{\delta})^{i-1} \log m (1 - (\frac{C}{\delta})^{i-1}) C(N, s, m)^4 \cdot \frac{10}{\delta} (\frac{C}{\delta})^{i-1}.
\]

G. Correlation between \(\langle a, x \rangle \) and \(\langle a, y \rangle \)

Proposition 21. Let \(x, y \) be unit vectors and \(a \) be a Gaussian random vector in \(\mathbb{R}^N \). Then,

\[
\sqrt{\frac{\pi}{2}} \mathbb{E}[(\text{sign}(\langle a, x \rangle) \langle a, y \rangle)] = \langle x, y \rangle
\]

and

\[
\sqrt{\frac{\pi}{2}} \mathbb{E} \left[\frac{1}{m} A^T \text{sign}(Ay) \right] = y.
\]

Proof. See the proof of Lemma 4.1 in [21].

\(\square \)
VI. MAIN TECHNICAL PROPOSITIONS

This section proves our main theorem and technical propositions. Our goal is to establish the RAIC for a certain small region around \(x \) which is crucial in our analysis. With all the facts gathered in the previous section, we are prepared to state our main technical proposition for RAIC precisely.

Proposition 22. Let \(x \) be a \(s \)-sparse unit vector in \(\mathbb{R}^N \). Then, the following bound holds uniformly for any \(s \)-sparse unit vector \(y \) with \(r_{i+1} \leq \|x - y\| \leq r_i \):

\[
\left\| \frac{\tau}{m} \cdot A^T (\text{sign}(Ax) - \text{sign}(Ay)) - (x - y) \right\|_{K_i^\circ} \leq \frac{3}{m^{1/5} 10} \|x - y\|_2 + \frac{3}{50} r_{i+1}
\]

with probability exceeding

\[
1 - 3\tilde{c} \left(\frac{s}{N} \right)^{s/2} \cdot \frac{1}{m^3} - \frac{c_9}{m^s}
\]

for some universal constants \(\tilde{c}, c_9 > 0 \).

In other words, the measurement matrix \(A \) satisfies \(\left(\sqrt{\frac{\tau}{2m}}, \frac{1}{m^{1/5} 10}, \frac{3}{50} r_{i+1}, r_{i+1}, r_i \right) \)-RAIC with high probability.

A. Orthogonal decomposition of measurement vectors

The first step of the proof of **Proposition 22** is the decomposition of \(\frac{\tau}{m} A^T (\text{sign}(Ax) - \text{sign}(Ay)) - (x - y) \). Essentially, it decomposes into three parts: the component along the direction \(x - y \), \(x + y \), and their orthogonal part. This decomposition is based on Lemma 9.

Proof of Proposition 22. Using the expansion of \(a_i \) in Lemma 9 and the triangle inequality, we have

\[
\left\| \frac{\tau}{m} \cdot A^T (\text{sign}(Ax) - \text{sign}(Ay)) - (x - y) \right\|_{K_i^\circ}
\]

\[
= \left\| \frac{\tau}{m} \sum_{i=1}^m (\text{sign}(\langle a_i, x \rangle) - \text{sign}(\langle a_i, y \rangle)) a_i - (x - y) \right\|_{K_i^\circ}
\]

\[
\leq \left\| \frac{\tau}{m} \sum_{i=1}^m (\text{sign}(\langle a_i, x \rangle) - \text{sign}(\langle a_i, y \rangle)) \left(\langle a_i, \frac{x - y}{\|x - y\|} \rangle \frac{x - y}{\|x - y\|} + \langle a_i, \frac{x + y}{\|x + y\|} \rangle \frac{x + y}{\|x + y\|} \right) - (x - y) \right\|_{K_i^\circ}
\]

\[
+ \left\| \frac{\tau}{m} \sum_{i=1}^m (\text{sign}(\langle a_i, x \rangle) - \text{sign}(\langle a_i, y \rangle)) b_i(x, y) \right\|_{K_i^\circ}
\]

\[
\leq \left\| \frac{\tau}{m} \sum_{i=1}^m (\text{sign}(\langle a_i, x \rangle) - \text{sign}(\langle a_i, y \rangle)) \langle a_i, \frac{x - y}{\|x - y\|} \rangle \frac{x - y}{\|x - y\|} - (x - y) \right\|_{K_i^\circ}
\]

\[
+ \left\| \frac{\tau}{m} \sum_{i=1}^m (\text{sign}(\langle a_i, x \rangle) - \text{sign}(\langle a_i, y \rangle)) \langle a_i, \frac{x + y}{\|x + y\|} \rangle \frac{x + y}{\|x + y\|} \right\|_{K_i^\circ}
\]

\[
+ \left\| \frac{\tau}{m} \sum_{i=1}^m (\text{sign}(\langle a_i, x \rangle) - \text{sign}(\langle a_i, y \rangle)) b_i(x, y) \right\|_{K_i^\circ}
\]

\[
\leq \left\| \frac{1}{m} \sum_{i=1}^m \tau (\text{sign}(\langle a_i, x \rangle) - \text{sign}(\langle a_i, y \rangle)) \langle a_i, \frac{x - y}{\|x - y\|} \rangle - \|x - y\| \right\|_{K_i^\circ}
\]

\[
+ \left\| \frac{1}{m} \sum_{i=1}^m \tau (\text{sign}(\langle a_i, x \rangle) - \text{sign}(\langle a_i, y \rangle)) \langle a_i, \frac{x + y}{\|x + y\|} \rangle \right\|_{K_i^\circ}
\]
The above inequality brings to control the three terms \((I), (II),\) and \((III),\) which is the main technical challenge of our work. The subsequent three lemmas provide upper bounds for these terms, which will be proven in the next section.

Lemma 23. There exist universal constants \(c, \tilde{c} > 0\) such that for all \(s\)-sparse unit vector \(y\) with \(r_i \leq \|x - y\|_2 \leq r_{i+1},\) we have

\[
(I) \leq \frac{1}{m^{10(\frac{s}{N})}} \|x - y\|_2 + \frac{r_{i+1}}{50}
\]

for all \(m > cs^{10} \log^{10} (N/s)\) with probability at least \(1 - \tilde{c} \left(\frac{s}{N} \right)^{5s} \cdot \frac{1}{m^s} - \frac{c_8}{m^s}.

Lemma 24. There exist universal constants \(c, \tilde{c} > 0\) such that for all \(s\)-sparse unit vector \(y\) with \(r_i \leq \|x - y\|_2 \leq r_{i+1},\)

\[
(II) \leq \frac{2}{m^{10(\frac{s}{N})}} \|x - y\|_2 + \frac{r_{i+1}}{50}
\]

for all \(m > cs^{10} \log^{10} (N/s)\) with probability at least \(1 - \tilde{c} \left(\frac{s}{N} \right)^{5s} \cdot \frac{1}{m^s} - \frac{c_8}{m^s}.

Lemma 25. There exist universal constants \(c, \tilde{c} > 0\) such that for all \(s\)-sparse unit vector \(y\) with \(r_i \leq \|x - y\|_2 \leq r_{i+1},\)

\[
(III) \leq \frac{r_{i+1}}{50}
\]

for all \(m > cs^{10} \log^{10} (N/s)\) with probability at least \(1 - \tilde{c} \left(\frac{s}{N} \right)^{5s} \cdot \frac{1}{m^s} - \frac{c_8}{m^s}.

Applying Lemma 23, 24, and 25 to terms \((I), (II), (III)\) and setting the constant \(c_9 := 2c_6 + c_8\) complete the proof of Proposition 22.

Proposition 22 leads to our main global convergence theorems.

Theorem 26. If \(x_k,\) the \(k\)-th iterate of NBHT satisfies \(r_{i+1} \leq \|x_k - x\| \leq r_i\) for some \(i,\) then we have

\[
\|x_{k+1} - x\|_2 \leq \frac{12}{m^{10(\frac{s}{N})}} \|x_k - x\|_2 + \frac{6}{25} r_{i+1}
\]

with probability at least

\[
1 - 3\tilde{c} \left(\frac{s}{N} \right)^{5s} \cdot \frac{1}{m^s} - \frac{c_9}{m^s}.
\]
Proof of Theorem 26

Applying Proposition 22 to \(x_k \) and using the relation \(z_{k+1} = x_k + \frac{r}{m} A^T (\text{sign}(Ax) - \text{sign}(Ax_k)) \) yield
\[
\|z_{k+1} - x\|_{K_i} \leq \frac{3}{m^{\frac{1}{\alpha}} \cdot (\frac{5}{6})^i} \|x - y\|_2 + \frac{3}{50} r_{i+1}.
\]

Then, from (7),
\[
\|x_{k+1} - x\|_2 \leq 4 \left(\frac{3}{m^{\frac{1}{\alpha}} \cdot (\frac{5}{6})^i} \|x - y\|_2 + \frac{3}{50} r_{i+1} \right)
\leq \frac{12}{m^{\frac{1}{\alpha}} \cdot (\frac{5}{6})^i} \|x_k - x\|_2 + \frac{6}{25} r_{i+1}
\]

\[\Box\]

Corollary 27. Suppose \(m^{\frac{1}{\alpha}} (\frac{5}{6})^L \geq 24 \) for some integer \(L > 0 \). Let \(i \) be an integer with \(1 \leq i \leq L \) and \(x_k \) satisfy \(r_{i+1} \leq \|x_k - x\| \leq r_i \). Then, we have for any \(t \geq 1 \), either there exists \(p \) with \(1 \leq p \leq t \) such that \(\|x_{k+p} - x\| \leq r_{i+1} \) or

\[
\|x_{k+t} - x\|_2 \leq \frac{1}{2} \cdot \frac{12}{m^{\frac{1}{\alpha}} \cdot (\frac{5}{6})^i} \|x_k - x\|_2 + \frac{6}{25} r_{i+1}.
\]

Proof. Since \(m^{\frac{1}{\alpha}} (\frac{5}{6})^L \geq 24 \), \(\frac{12}{m^{\frac{1}{\alpha}} \cdot (\frac{5}{6})^i} \leq \frac{1}{2} \cdot \frac{1}{m^{\frac{1}{\alpha}} \cdot (\frac{5}{6})^i} \). Thus, from Theorem 26

\[
\|x_{k+1} - x\|_2 \leq \frac{1}{2} \cdot \frac{1}{m^{\frac{1}{\alpha}} \cdot (\frac{5}{6})^i} \|x_k - x\|_2 + \frac{6}{25} r_{i+1}.
\]

Note that \(\frac{1}{2} \|x_k - x\|_2 + \frac{6}{25} r_{i+1} \leq \frac{1}{2} r_i + \frac{1}{2} r_i \leq r_i \), so \(\|x_{k+1} - x\|_2 \leq r_i \).

After noticing \(\frac{1}{2} \cdot \frac{1}{m^{\frac{1}{\alpha}} \cdot (\frac{5}{6})^i} \leq \frac{1}{2} \), one can show that the following by induction: For any \(t \geq 1 \), either there exists \(p \) with \(1 \leq p \leq t \) such that \(\|x_{k+p} - x\| \leq r_{i+1} \) or

\[
\|x_{k+t} - x\|_2 \leq \frac{1}{2} \cdot \frac{1}{m^{\frac{1}{\alpha}} \cdot (\frac{5}{6})^i} \|x_k - x\|_2 + \frac{6}{25} r_{i+1}
\]

with high probability.

\[\Box\]

From the relation between \(r_i \) and \(r_{i+1} \), it turns out that \(\|x_{k+p} - x\| \leq r_{i+1} \) for some \(p \) with \(1 \leq p \leq 25 \) whenever \(x_k \in K^i \). In other words, 25 iterations are enough for the BIHT iterates to reach next level \(K^{i+1} \). This is basically the idea of Theorem 1, which we present in the following corollary.

Corollary 28. Suppose \(m^{\frac{1}{\alpha}} (\frac{5}{6})^L \geq 24 \) for some positive integer \(L \). Then, for any integer \(i \) with \(0 \leq i \leq L \), if \(\|x_k - x\| \leq r_i \), there exists \(t \leq 25 \) such that

\[
\|x_{k+j} - x\|_2 \leq r_i \quad \text{for all } 0 \leq j \leq t
\]

and

\[
\|x_{k+t} - x\|_2 \leq r_{i+1}.
\]

Proof. Suppose the claim in the Corollary is not true. Then, there exists \(t > 25 \) such that \(\|x_{k+p} - x\| > r_{i+1} \) for all \(p \) with \(1 \leq p \leq t \). Also, \(\|x_{k+p} - x\| \leq r_i \) as in the proof in Corollary 27. On the other hand, it is easy to check that

\[
t + t \left(1 - \left(\frac{5}{6} \right)^{L-i} \right) \cdot \frac{1}{40} \left(\frac{5}{6} \right)^i \log_2 m \geq \log_2 25 + \frac{1}{10} \left(\frac{5}{6} \right)^i \log_2 m \quad \text{for } t > 25.
\]
Then, from Definition \[18\] for \(r_i, r_{i+1} \), this implies that \(\frac{1}{2} \cdot \frac{1}{m} \cdot \frac{r_i}{\left(\frac{2}{N} \right)^{\frac{1}{2}}} \cdot \frac{1}{25} r_{i+1} \) by taking the logarithm to the base 2 on this equality. However, then we have \(\|x_{k+25} - x\| \leq \frac{1}{25} r_{i+1} + \frac{12}{25} r_{i+1} \leq r_{i+1} \) by Corollary \[27\] which contradicts to the assumption that \(\|x_{k+25} - x\| > r_{i+1} \).

We restate Theorem \[1\] for the convenience of readers.

Theorem 29. Suppose \(m > \max \{ c \cdot 10 \log_2 (N/s), 24^{48} \} \) for a universal constant \(c > 0 \). Then, there exists a universal constant \(C_{12} > 0 \) such that the NBIHT iterates obey

\[
\|x_k - x\|_2 \leq C_{12} \frac{(s \log(N/s))^{7/2} (\log m)^{12}}{m^{(1 - \frac{1}{2} (\frac{5}{6}))} \min(1, \tau / 25, \tau / L)}
\]

for \(k \geq 1 \) with probability exceeding \(1 - O \left(\frac{1}{m^a} \right) \).

Proof of Theorem 29. Our proof is based on Corollary \[28\] and a similar type of argument used to show the stability of the Truncated Wirtinger Flow \[80\].

Let \(L \) be the largest positive integer satisfying \(m^{\frac{1}{2} (\frac{5}{6})} > 24 \). Note that such \(L \) always exists from the assumption \(m > 24^{48} = 24^{40} (\frac{5}{6}) \). We shall call \(\{ y : \|y - x\| > r_L \} \) Regime \(A \) and \(\{ y : \|y - x\| \leq r_L \} \) Regime \(B \).

First, for \(x_k \) belongs to Regime \(A \), applying Corollary \[28\] repeatedly shows that there exists \(k \leq 25i \) such that \(\|x_k - x\| \leq r_i \) as long as \(i \leq L \).

Next, we will prove that if \(x_k \) is in Regime \(B \) (\(\|x_k - x\| \leq r_L \)), then \(\|x_{k+1} - x\| \leq 8C_{10} r_L \log m C(N, s, m) \). In other words, for the approximation error of \(x_{k+1} \) is still well-controlled for \(x_k \) belonging to Regime \(B \). To see this, we start from (7),

\[
\|x_{k+1} - x\|_2 \leq 4 \left\| \frac{\tau}{m} A^T (\text{sign}(Ax) - \text{sign}(Ax_k)) - (x - x_k) \right\|_{K_1}
\leq 4 \left\| \frac{\tau}{m} A^T (\text{sign}(Ax) - \text{sign}(Ax_k)) \right\|_{K_1} + 4 \|x - x_k\|_{K_1}
\leq 4 \left\| \frac{\tau}{m} \sum_{i=1}^{m} (\text{sign}(\langle a_i, x \rangle) - \text{sign}(\langle a_i, x_k \rangle)) a_i \right\|_{K_1} + 4 \|x - x_k\|_{K_1}
\leq 4 \max_{1 \leq j \leq m} \|a_j\|_{K_1} \cdot \frac{\tau}{m} \sum_{i=1}^{m} |\text{sign}(\langle a_i, x \rangle) - \text{sign}(\langle a_i, x_k \rangle)| + 4 \|x - x_k\|_{K_1}
\leq 4C_{10} r_L \log m \cdot C(N, s, m) + 4 \|x - x_k\|_2
\leq 4C_{10} r_L \log m \cdot C(N, s, m) + 4r_L
\leq 8C_{10} r_L \log m \cdot C(N, s, m)
\]

where the first five inequalities follow from the triangle inequality. The fifth inequality arises from Corollary \[20\], the definition of the event \(E_u \), and the definition of \(C(N, s, m) \).

If \(x_{k+1} \) lands on the region \(A \) (i.e., \(\|x_{k+1} - x\| > r_L \)), then we can again apply Corollary \[28\] So the rest of iterations are guaranteed to satisfy

\[
\|x_{k+j} - x\|_2 \leq 8C_{10} \log m \cdot C(N, s, m) r_L
\]

for all \(j \geq 1 \). Hence, above argument, Definition \[18\] and \[10\] yield

\[
\|x_k - x\|_2 \leq 8C_{10} \log m \cdot C(N, s, m) \max\{r_{k/25}, r_L\} \leq C_{11} \frac{(s \log(N/s))^{7/2} (\log m)^{12}}{m^{(1 - \frac{1}{2} (\frac{5}{6}))} \min(1, \tau / 25, \tau / L)}
\]
for some universal constant C_{11}.

Now, note that the above expression for the error bound can be rewritten as

$$C_{11} \left(\frac{s \log(N/s)}{m} \right)^{7/2} (\log m)^{12} \leq C_{11} \frac{(s \log(N/s))^{7/2} (\log m)^{12} m^{1/2} \left(\frac{5}{6} \right)^{\min\left\{ \lfloor k/25 \rfloor - 1 \right\}}}{m}$$

$$= C_{11} \frac{(s \log(N/s))^{7/2} (\log m)^{12} m^{1/2} \left(\frac{5}{6} \right)^{\min\left\{ \lfloor k/25 \rfloor - 1 \right\}}}{m} \leq C_{11} \frac{(s \log(N/s))^{7/2} (\log m)^{12} \max\{m^{1/2} \left(\frac{5}{6} \right)^{\min\left\{ \lfloor k/25 \rfloor - 1 \right\}} \cdot m^{1/2} \left(\frac{5}{6} \right)^{L-1} \}}{m}.$$ \hspace{1cm} (11)

From the definition of L, we have $m^{1/2} \left(\frac{5}{6} \right)^{L-1} \leq 24$ or $\frac{1}{m} \left(\frac{5}{6} \right)^{L+1} \log m \leq \log 24$. This implies that $\frac{1}{m} \left(\frac{5}{6} \right)^{L-1} \leq \frac{1}{\log m}$, i.e., there exists a universal constant $\hat{c} > 0$ such that $\frac{1}{m} \left(\frac{5}{6} \right)^{L-1} \leq \frac{\hat{c}}{\log m}$. Since $m^{1/2} \left(\frac{5}{6} \right)^{L-1} \leq \frac{\hat{c}}{\log m} = \exp \left(\frac{\hat{c}}{\log m} \log m \right) = \exp(\hat{c})$, which is another constant, so applying this fact to (11) implies that

$$\frac{C_{11} \left(\frac{s \log(N/s)}{m} \right)^{7/2} (\log m)^{12} m^{1/2} \left(\frac{5}{6} \right)^{\min\left\{ \lfloor k/25 \rfloor - 1 \right\}}}{m} \leq C_{12} \frac{(s \log(N/s))^{7/2} (\log m)^{12} m^{1/2} \left(\frac{5}{6} \right)^{\min\left\{ \lfloor k/25 \rfloor - 1 \right\}}}{m^{1/2} \left(\frac{5}{6} \right)^{\min\left\{ \lfloor k/25 \rfloor - 1 \right\}}}$$

for some universal constant $C_{12} := C_{11} \cdot \exp(\hat{c}) > 0$. Hence, we establish that

$$\|x_k - x\|_2 \leq C_{12} \frac{(s \log(N/s))^{7/2} (\log m)^{12} m^{1/2} \left(\frac{5}{6} \right)^{\min\left\{ \lfloor k/25 \rfloor - 1 \right\}}}{m^{1/2} \left(\frac{5}{6} \right)^{\min\left\{ \lfloor k/25 \rfloor - 1 \right\}}}.$$ \hspace{1cm}

As for the probability of success, we apply the union bound over all the levels K_1, K_2, \ldots, K_L where each holds with probability at least

$$1 - \left(3\hat{c} \left(\frac{s}{N} \right)^{5s} \cdot \frac{1}{m^{5} - \frac{c_9}{m^4}} \right),$$

from Theorem 26. Thus, the success probability should be at least

$$1 - L \left(3\hat{c} \left(\frac{s}{N} \right)^{5s} \cdot \frac{1}{m^{5} - \frac{c_9}{m^4}} \right) \geq 1 - O \left(\frac{1}{m^{5}} \right),$$

where the last inequality is by observing $L = O(\log \log m)$, which can obtained from $m^{1/2} \left(\frac{5}{6} \right)^{L} > 24$. This proves the theorem.

\[\Box \]

VII. PROOFS FOR SECTION VI

In this section, we prove Lemma 23, 24 and 25. The ideas for their proofs are similar and we start with the proof of Lemma 24 because we believe it is simpler than the other two.

A. Proof of Lemma 24

For $y \in K^{(i)}$, choose \hat{y} in $M_{K^{(i)}}$ with $\|y - \hat{y}\| \leq \delta_i$. Note that since $y \in K^{(i)}$, $\|x - y\| \leq r_i$.

a) **Step 1. Approximate the term (II) by ε-net \(\mathcal{M}_{\epsilon(i)} \):** Continuing from (II), we obtain

\[
\left| \frac{1}{m} \sum_{i=1}^{m} \tau(\text{sign}(\langle a_i, x \rangle) - \text{sign}(\langle a_i, y \rangle)) \left\langle a_i, \frac{x+y}{\|x+y\|} \right\rangle \right| \\
\leq \left| \frac{1}{m} \sum_{i=1}^{m} \tau(\text{sign}(\langle a_i, x \rangle) - \text{sign}(\langle a_i, \hat{y} \rangle)) \left\langle a_i, \frac{x+y}{\|x+y\|} \right\rangle \right| \\
+ \frac{1}{m} \sum_{i=1}^{m} \tau(\text{sign}(\langle a_i, x \rangle) - \text{sign}(\langle a_i, y \rangle)) \left\langle a_i, \frac{x+y}{\|x+y\|} \right\rangle \\
+ \frac{1}{m} \sum_{i=1}^{m} \tau(\text{sign}(\langle a_i, x \rangle) - \text{sign}(\langle a_i, y \rangle)) \left\langle a_i, \frac{x+y}{\|x+y\|} \right\rangle \\
\leq \left| \frac{1}{m} \sum_{i=1}^{m} \tau(\text{sign}(\langle a_i, x \rangle) - \text{sign}(\langle a_i, y \rangle)) \left\langle a_i, \frac{x+y}{\|x+y\|} \right\rangle \right| \\
+ \frac{1}{m} \sum_{i=1}^{m} \tau(\text{sign}(\langle a_i, x \rangle) - \text{sign}(\langle a_i, y \rangle)) \left\langle a_i, \frac{x+y}{\|x+y\|} \right\rangle \\
+ C(N, s, m) \cdot \frac{\tau}{m} \sum_{i=1}^{m} |\text{sign}(\langle a_i, y \rangle) - \text{sign}(\langle a_i, \hat{y} \rangle)| \\
\leq \left| \frac{1}{m} \sum_{i=1}^{m} \tau(\text{sign}(\langle a_i, x \rangle) - \text{sign}(\langle a_i, y \rangle)) \left\langle a_i, \frac{x+y}{\|x+y\|} \right\rangle \right| + 2C_{10} \tau \cdot m \cdot C(N, s, m) \delta_i,
\]

as long as we have Lemma 15 (uniform bound lemma) and Corollary 20 (local binary embedding). Here, in (i) and (ii) follow by the triangle inequality. To have (iii), we used the uniform bound for \(\left\langle a_i, \frac{x+y}{\|x+y\|} \right\rangle \) in Lemma 15. The inequality (iv) is due to Corollary 20.

Now consider the first term in the right side of (iv):

\[
\left| \frac{1}{m} \sum_{i=1}^{m} \tau(\text{sign}(\langle a_i, x \rangle) - \text{sign}(\langle a_i, y \rangle)) \left\langle a_i, \frac{x+y}{\|x+y\|} \right\rangle \right| \\
\leq \left| \frac{1}{m} \sum_{i=1}^{m} \tau(\text{sign}(\langle a_i, x \rangle) - \text{sign}(\langle a_i, y \rangle)) \left\langle a_i, \frac{x+y}{\|x+y\|} \right\rangle \right| \\
+ \frac{1}{m} \sum_{i=1}^{m} \tau(\text{sign}(\langle a_i, x \rangle) - \text{sign}(\langle a_i, y \rangle)) \left\langle a_i, \frac{x+y}{\|x+y\|} \right\rangle \\
+ \frac{1}{m} \sum_{i=1}^{m} \tau(\text{sign}(\langle a_i, x \rangle) - \text{sign}(\langle a_i, y \rangle)) \left\langle a_i, \frac{x+y}{\|x+y\|} \right\rangle \\
\leq \frac{1}{m} \sum_{i=1}^{m} \tau(\text{sign}(\langle a_i, x \rangle) - \text{sign}(\langle a_i, y \rangle)) \left\langle a_i, \frac{x+y}{\|x+y\|} \right\rangle \\
+ \frac{2C(N, s, m) \delta_i}{\|x+y\|} \cdot \frac{1}{m} \sum_{i=1}^{m} \tau(\text{sign}(\langle a_i, x \rangle) - \text{sign}(\langle a_i, \hat{y} \rangle)) \\
\leq \frac{1}{m} \sum_{i=1}^{m} \tau(\text{sign}(\langle a_i, x \rangle) - \text{sign}(\langle a_i, y \rangle)) \left\langle a_i, \frac{x+y}{\|x+y\|} \right\rangle + 2C_{10} \tau \frac{r_i \log m \cdot C(N, s, m) \delta_i}{\|x+y\|^2}
\]
\[\begin{align*}
\leq & \frac{1}{m} \sum_{i=1}^{m} \tau(\text{sign}(\langle a_i, x \rangle) - \text{sign}(\langle a_i, \hat{y} \rangle)) \left\langle a_i, \frac{x + \hat{y}}{\|x + y\|} \right\rangle + 4C_{10} \tau \cdot r \log m \cdot C(N, s, m) \delta_i \\
= & \frac{1}{m} \sum_{i=1}^{m} \tau(\text{sign}(\langle a_i, x \rangle) - \text{sign}(\langle a_i, \hat{y} \rangle)) \left\langle a_i, \frac{x + \hat{y}}{\|x + y\|} \right\rangle \cdot \|x + y\| + 4C_{10} \tau \cdot r \log m \cdot C(N, s, m) \delta_i.
\end{align*} \]

In the chain of inequalities above, (v) and (vi) follow from the triangle inequality. We applied Lemma 15 to have (vii). To get (viii), first note that \(\| \hat{y} - x \| \leq r \) since \(\hat{y} \in K^{(l)} \) and apply Corollary 20 (ix) is easily follows from \(\| x + y \| \geq 1 \) since \(y \in K^{(l)} \) implying \(\| x - y \| \leq r_1 \ll 1 \).

Hence, we obtain

\[\frac{1}{m} \sum_{i=1}^{m} \tau(\text{sign}(\langle a_i, x \rangle) - \text{sign}(\langle a_i, y \rangle)) \left\langle a_i, \frac{x + \hat{y}}{\|x + y\|} \right\rangle \quad \leq \quad \frac{1}{m} \sum_{i=1}^{m} \tau(\text{sign}(\langle a_i, x \rangle) - \text{sign}(\langle a_i, \hat{y} \rangle)) \left\langle a_i, \frac{x + \hat{y}}{\|x + \hat{y}\|} \right\rangle \cdot \frac{\|x + \hat{y}\|}{\|x + y\|} + 2C_{10} \tau \cdot \log m \cdot C(N, s, m) \delta_i + 4C_{10} \tau \cdot r \log m \cdot C(N, s, m) \delta_i \]

\[\leq \frac{1}{m} \sum_{i=1}^{m} \tau(\text{sign}(\langle a_i, x \rangle) - \text{sign}(\langle a_i, \hat{y} \rangle)) \left\langle a_i, \frac{x + \hat{y}}{\|x + \hat{y}\|} \right\rangle \cdot \frac{\|x + \hat{y}\|}{\|x + y\|} + \frac{2 \tau r_{i+1}}{600} + \frac{4 \tau r_{i+1}}{600} \]

where we used Proposition 19 in the second inequality.

b) Step 2. Bounding the mean and variance of truncated terms: To keep notation light, let us define a random variable \(X_2(a_i, x, y) \) by

\[X_2(a_i, x, y) = (\text{sign}(\langle a_i, x \rangle) - \text{sign}(\langle a_i, y \rangle)) \left\langle a_i, \frac{x + \hat{y}}{\|x + y\|} \right\rangle. \quad \text{(12)} \]

First note that \(X_2(a_i, x, y) \) is mean-zero which can be verified by direct expansion of the right hand side of (12) and Proposition 21. This implies

\[0 = \mathbb{E}[X_2(a_i, x, \hat{y})] \]

\[= \mathbb{E}[X_2(a_i, x, \hat{y}) \mathbb{1}_{E}] + \mathbb{E}[X_2(a_i, x, \hat{y}) \mathbb{1}_{E^c}]. \]

Hence, we obtain

\[\mathbb{E}[X_2(a_i, x, y) \mathbb{1}_{E}] \]

\[\leq \mathbb{E} \left[\left| X_2(a_i, x, y) \mathbb{1}_{E^c} \right|^2 \right]^{1/2} \cdot \mathbb{P}(E^c)^{1/2} \]

\[\leq \mathbb{E} \left[X_2(a_i, x, y)^2 \right]^{1/2} \cdot \mathbb{P}(E^c)^{1/2} \]

\[= \mathbb{E} \left[\left(\text{sign}(\langle a_i, x \rangle) - \text{sign}(\langle a_i, \hat{y} \rangle) \right)^2 \left\langle a_i, \frac{x + \hat{y}}{\|x + \hat{y}\|} \right\rangle \right]^{1/2} \cdot \mathbb{P}(E^c)^{1/2} \]

\[\leq \mathbb{E} \left[\left(\text{sign}(\langle a_i, x \rangle) - \text{sign}(\langle a_i, \hat{y} \rangle) \right)^4 \right]^{1/4} \mathbb{E} \left[\left\langle a_i, \frac{x + \hat{y}}{\|x + \hat{y}\|} \right\rangle \right]^{4/4} \cdot \mathbb{P}(E^c)^{1/2} \]
\[\leq 2 \cdot 3^{1/4} \cdot \frac{\sqrt{2}}{m^2} \]
\[\leq 4 \cdot \frac{\sqrt{2}}{m^2}. \]

Here, the second and fourth inequalities are by the Cauchy-Schwartz inequality. The second last line is due to the facts that \(|\text{sign}(\langle a_i, x \rangle) - \text{sign}(\langle a_i, y \rangle)| \leq 2\), the fourth moment of the standard Gaussian random variable is 3, and \(\mathbb{P}(E_i) \geq 1 - \frac{2}{m^2}\).

By the construction of the event \(E_i\) and Lemma 15, \(X_2(a_i, x, y) \mathbb{1}_{E_i}\) is bounded by
\[|X_2(a, x, y) \mathbb{1}_{E_i}| \leq 2C(N, s, m) \]
and its second moment is bounded (so is its variance) by
\[\mathbb{E}_{a_i} [X_2(a, x, y)^2 \mathbb{1}_{E_i}] \]
\[= \mathbb{E}_{a_i} \left[(\text{sign}(\langle a_i, x \rangle) - \text{sign}(\langle a_i, y \rangle))^2 \left\langle a_i, \frac{x + y}{\|x + y\|} \right\rangle^2 \mathbb{1}_{E_i} \right] \]
\[\leq C(N, s, m)^2 \mathbb{E}_{a_i} \left[(\text{sign}(\langle a_i, x \rangle) - \text{sign}(\langle a_i, y \rangle))^2 \mathbb{1}_{E_i} \right] \]
\[\leq C(N, s, m)^2 \mathbb{E}_{a_i} \left[(\text{sign}(\langle a_i, x \rangle) - \text{sign}(\langle a_i, y \rangle))^2 \right] \]
\[\leq 4C(N, s, m)^2 \cdot d_g(x, y) \]
\[\leq 4\pi C(N, s, m)^2 \|x - y\|_2, \]
where \(d_g(x, y)\) is the normalized geodesic distance between \(x\) and \(y\). Here, we applied Lemma 15 to get the first inequality and used \(\mathbb{E}_{a_i} [(\text{sign}(\langle a_i, x \rangle) - \text{sign}(\langle a_i, y \rangle))^2] = 4 \mathbb{P}_{a_i} (\text{sign}(\langle a_i, x \rangle) \neq \text{sign}(\langle a_i, y \rangle)) = 4d_g(x, y)\), which is due to the rotation invariance of the standard Gaussian vector.

c) Step 3. Bounding the sum of truncated terms by the Bernstein’s inequality: Next, we apply the Bernstein’s inequality for mean-zero bounded random variables to have
\[\mathbb{P} \left(\left| \frac{1}{m} \sum_{i=1}^{m} \tau(X_2(a_i, x, y) \mathbb{1}_{E_i} - \mathbb{E}[X_2(a, x, y) \mathbb{1}_{E_i}]) \right| \geq t \right) \leq 2 \exp \left(-\frac{m t^2 / 2}{\sigma^2 + K m t / 3} \right) \]
where \(\sigma^2\) is the sum of the variances and \(K\) is the bound of the random variables \(\tau X_2(a_i, x, y) \mathbb{1}_{E_i}\). Because \(\sigma^2 \leq \tau^2 \cdot m \mathbb{E}_{a_i} [X_2(a, x, y)^2 \mathbb{1}_{E_i}]\) and \(K \leq 2\pi C(N, s, m)\) from Step 2, we obtain
\[\mathbb{P} \left(\left| \frac{1}{m} \sum_{i=1}^{m} \tau(X_2(a_i, x, y) \mathbb{1}_{E_i} - \mathbb{E}[X_2(a, x, y) \mathbb{1}_{E_i}]) \right| \geq t \right) \]
\[\leq 2 \exp \left(-\frac{m t^2 / 2}{\tau^2 \mathbb{E}_{a_i} [X_2(a, x, y)^2 \mathbb{1}_{E_i}] + 2\pi C(N, s, m) t / 3} \right) \]
\[\leq 2 \exp \left(-\frac{m t^2 / 2}{4\pi \tau^2 C(N, s, m)^2 \cdot \|x - y\|_2 + 2\pi C(N, s, m) t / 3} \right) \]
\[\leq 2 \exp \left(-\frac{m t^2 / 2}{4\pi \tau^2 C(N, s, m)^2 \cdot \|x - y\|_2 + 4\pi \tau^2 C(N, s, m)^2 t / 3} \right) \]
where we used the upper estimates of the first and second moments of \(X_2(a, x, y) \mathbb{1}_{E_i}\) in Step 2.

Choose \(t = \frac{1}{m \|x - y\|_2} \) in which \(\xi_i \in [0, 1/2]\) will be determined later. Then, we have
\[\frac{m t^2 / 2}{4\pi \tau^2 C(N, s, m)^2 \cdot \|x - y\|_2 + 4\pi \tau^2 C(N, s, m)^2 t / 3} \]
where the last inequality is from the fact that \(0 \leq \xi_i \leq 1/2 \).

Thus, with a probability at least \(1 - 2 \exp \left(- \frac{r_{i+1}m^{2\xi_i}}{80C(N,s,m)^2} \right) \), we have

\[
\left| \frac{1}{m} \sum_{j=1}^{m} \tau (X_2(a_i, x, \hat{y}) \mathbb{1}_{E_i} - \mathbb{E} [X_2(a, x, \hat{y}) \mathbb{1}_{E_i}]) \right| \leq \frac{1}{m^{1/2 - \xi_i}} \| x - \hat{y} \|_2. \tag{13}
\]

By the union bound over all \(\hat{y} \) in \(\mathcal{M}_{K^{(i)}} \), above bound holds uniformly for all \(\hat{y} \in \mathcal{M}_{K^{(i)}} \) with probability at least

\[
1 - 2 |\mathcal{M}_{K^{(i)}}| \exp \left(- \frac{r_{i+1}m^{2\xi_i}}{80C(N,s,m)^2} \right) \geq 1 - 2 \exp \left(C'' (600C_{10})^{2} \left(\frac{1}{(\frac{s}{4})^i} \right)^{m^{\frac{1}{2}}(\frac{s}{4})^i - 1} \left(\log m \right)^{2} \left(\frac{1}{(\frac{s}{4})^i} \right)^{i-1} C(N,s,m)^{4 - \frac{10}{3}(\frac{s}{4})^i} \right) \times \exp \left(- (600C_{10})^{3} (1 - (\frac{s}{4})^i)^{m^{\frac{1}{2}}(\frac{s}{4})^i} \left(\log m \right)^{7} \left(\frac{1}{(\frac{s}{4})^i} \right)^{i-1} C(N,s,m)^{6 - 5(\frac{s}{4})^i} \right) \right)
\]

where the bound for \(|\mathcal{M}_{K^{(i)}}| \) is from Subsection [V-F] and \(r_{i+1} \) is from Definition [18].

Note that \(\xi_i \) should satisfy \(2\xi_i - (1 - \frac{1}{(\frac{s}{4})^i}) \geq \frac{3}{(\frac{s}{4})^i} \) for this to hold with a high probability. Now choose \(\xi := \frac{1}{4} \left(1 - \frac{1}{(\frac{s}{4})^i} \right) \) which guarantees that

\[
C'' (600C_{10})^{2} \left(\frac{1}{(\frac{s}{4})^i} \right)^{m^{\frac{1}{2}}(\frac{s}{4})^i - 1} \left(\log m \right)^{2} \left(\frac{1}{(\frac{s}{4})^i} \right)^{i-1} C(N,s,m)^{4 - \frac{10}{3}(\frac{s}{4})^i} \times \exp \left(- (600C_{10})^{3} \left(\frac{1}{(\frac{s}{4})^i} \right)^{i-1} \left(\log m \right)^{7} \left(\frac{1}{(\frac{s}{4})^i} \right)^{i-1} C(N,s,m)^{6 - 5(\frac{s}{4})^i} \right)
\]

\[
\leq C^{(3)} m^{\frac{1}{4}(\frac{s}{4})^i - 1} \left(\log m \right)^{2} \left(\frac{1}{(\frac{s}{4})^i} \right)^{i-1} C(N,s,m)^{4 - 4(\frac{s}{4})^i} \times \exp \left(- (600C_{10})^{3} \left(\frac{1}{(\frac{s}{4})^i} \right)^{i-1} \left(\log m \right)^{7} \left(\frac{1}{(\frac{s}{4})^i} \right)^{i-1} C(N,s,m)^{6 - 5(\frac{s}{4})^i} \right)
\]

\[
\leq C^{(4)} m^{\frac{1}{4}(\frac{s}{4})^i - 1} C(N,s,m)^{4 - 4(\frac{s}{4})^i} \left(\log m \right)^{2} \left(\frac{1}{(\frac{s}{4})^i} \right)^{i-1} C(N,s,m)^{4 - 4(\frac{s}{4})^i} \times \exp \left(- (600C_{10})^{3} \left(\frac{1}{(\frac{s}{4})^i} \right)^{i-1} \left(\log m \right)^{7} \left(\frac{1}{(\frac{s}{4})^i} \right)^{i-1} C(N,s,m)^{6 - 5(\frac{s}{4})^i} \right)
\]

\[
= C^{(3)} m^{\frac{1}{4}(\frac{s}{4})^i - 1} C(N,s,m)^{4 - 4(\frac{s}{4})^i} \left(\log m \right)^{2} \left(\frac{1}{(\frac{s}{4})^i} \right)^{i-1} C(N,s,m)^{4 - 4(\frac{s}{4})^i} \times \exp \left(- (600C_{10})^{3} \left(\frac{1}{(\frac{s}{4})^i} \right)^{i-1} \left(\log m \right)^{7} \left(\frac{1}{(\frac{s}{4})^i} \right)^{i-1} C(N,s,m)^{6 - 5(\frac{s}{4})^i} \right)
\]

\[
\leq C^{(4)} m^{\frac{1}{4}(\frac{s}{4})^i - 1} C(N,s,m)^{4 - 4(\frac{s}{4})^i} \left(\log m \right)^{2} \left(\frac{1}{(\frac{s}{4})^i} \right)^{i-1} C(N,s,m)^{4 - 4(\frac{s}{4})^i} \times \exp \left(- (600C_{10})^{3} \left(\frac{1}{(\frac{s}{4})^i} \right)^{i-1} \left(\log m \right)^{7} \left(\frac{1}{(\frac{s}{4})^i} \right)^{i-1} C(N,s,m)^{6 - 5(\frac{s}{4})^i} \right)
\]
for some small fixed constants $C^{(3)}, C^{(4)} > 0$. Here the second inequality follows from $m^{\frac{1}{2}} \geq C(N,s,m)$ if $m > c_5^{10} \log^{10}(N/s)$ for a sufficiently large constant $c > 0$.

Hence, we have

$$1 - 2|\mathcal{N}_{K_i}^{(0)}| \exp \left(- \frac{r_{i+1} m^{2\xi_i}}{80C(N,s,m)^2} \right) \geq 1 - 2 \exp \left(- \frac{C^{(4)}}{2} (\log m)^{\frac{7}{2}} \right) \geq 1 - \frac{c_4}{m^4}$$

for some absolute constant $c_4 > 0$ and for all $m > c_5^{10} \log^{10}(N/s)$ where c is a sufficiently large constant.

d) Step 4. Establishing the bound for (II): Continuing from Step 1, recall that (II) is now bounded by

$$\left| \sum_{i=1}^{m} \tau(\text{sign}(a_{i,x}) - \text{sign}(a_{i,y})) \left[a_i, \frac{x + y}{\|x + y\|} \right] \right|$$

$$\leq \left| \sum_{i=1}^{m} \tau(\text{sign}(a_{i,x}) - \text{sign}(a_{i,y})) \left[a_i, \frac{x + \hat{y}}{\|x + \hat{y}\|} \right] \right| - \frac{8r_{i+1}}{600}$$

Also by the definition of the event E_u, whenever the event E_u occurs, we have

$$\frac{1}{m} \sum_{i=1}^{m} \tau_2(a_{i,x}, x, \hat{y}) = \frac{1}{m} \sum_{i=1}^{m} \tau_2(a_{i,x}, x, \hat{y}) 1_{E_u}.$$
for all $m > c_4^{10}\log^{10}(N/s)$. Here, the first inequality follows from the assumption that E_u occurs. We applied the triangle inequality to have (b), and (d). The inequality (c) results from \((13), \xi = \frac{1}{2} (1 - \frac{1}{20}(\frac{s}{6})^4), \) and the bound for \(\|E[\mathbf{X}^2(a,x,y)1_{E_u}]\|\) in Step 2. The inequality (e) follows from $m\|\mathbf{x}\|^2 > m\|\mathbf{X}\|^2 > 24$. We applied Proposition 19 to get (f).

Combining the results we have so far, \((II)\) is bounded by

\[
(II) \leq \frac{2}{m^{\frac{10}{3}}(3)} \|x - y\|_2 + \frac{r_{i+1}}{50}.
\]

As for the success probability for this bound to hold, we need Lemma 15, Corollary 20 the event E_u occurred, the concentration bound in Step 3, and the error bound for the first iteration of NBIHT (6). Hence, applying the union bound gives us

\[
1 - \frac{2}{m^4} - \frac{c_2}{m^3} - \frac{2}{m^4} - \frac{c_4}{m^5} - c_5 \left(\frac{s}{N}\right)^{5s} \cdot \frac{1}{m^3} \geq 1 - c_6 \left(\frac{s}{N}\right)^{5s} \cdot \frac{1}{m^3}.
\]

B. Proof of Lemma 23

This subsection is devoted to derive the bound for the term \((I)\). The idea is quite similar to the proof of Lemma 24 so we omitted some parts of the proof to avoid repetitions.

As before let $y \in K(i)$, so $r_{i+1} \leq \|x - y\| \leq r_i$. We proceed with the similar arguments used for the bound of \((II)\) in subsection VII-A.

a) Step 1. Approximate \((I)\) by ϵ-net $\mathcal{N}_{K(i)}$: We begin with approximating \((I)\) with the ϵ-net $\mathcal{N}_{K(i)}$.

The following inequality holds

\[
\left|\frac{1}{m} \sum_{i=1}^{m} \tau(\text{sign}(\langle a_i, x \rangle) - \text{sign}(\langle a_i, y \rangle)) \left\langle a_i, \frac{x - y}{\|x - y\|} \right\rangle - \|x - y\| \right|
\]

\[
\leq \left|\frac{1}{m} \sum_{i=1}^{m} \tau(\text{sign}(\langle a_i, x \rangle) - \text{sign}(\langle a_i, \hat{y} \rangle)) \left\langle a_i, \frac{x - \hat{y}}{\|x - \hat{y}\|} \right\rangle - \|x - \hat{y}\| \right|
\]

\[
+ \left|\frac{1}{m} \sum_{i=1}^{m} \tau(\text{sign}(\langle a_i, x \rangle) - \text{sign}(\langle a_i, \hat{y} \rangle)) \left\langle a_i, \frac{x - \hat{y}}{\|x - \hat{y}\|} \right\rangle - \frac{1}{m} \sum_{i=1}^{m} \tau(\text{sign}(\langle a_i, x \rangle) - \text{sign}(\langle a_i, y \rangle)) \left\langle a_i, \frac{x - y}{\|x - y\|} \right\rangle \right|
\]

\[
+ \|x - y\| - \|x - \hat{y}\|
\]

provided we have Lemma 15 and Corollary 20.

The third term in the right hand side is bounded by the triangle inequality:

\[
\|x - y\| - \|x - \hat{y}\| \leq \|x - y - x + \hat{y}\| = \|y - \hat{y}\| \leq \delta_i.
\]

b) Step 2. Bounding the mean and variance of truncated terms: Define a random variable $X_1(a_i, x, y)$ as

\[
X_1(a_i, x, y) = (\text{sign}(\langle a_i, x \rangle) - \text{sign}(\langle a_i, y \rangle)) \left\langle a_i, \frac{x - y}{\|x - y\|} \right\rangle.
\]

As in the previous subsection, we have

\[
\tau E[\text{sign}(\langle a_i, x \rangle) - \text{sign}(\langle a_i, y \rangle) \langle a_i, x - y \rangle] = 2 - 2 \langle x, y \rangle = \|x - y\|_2^2
\]

by directly expanding terms in the expectation and applying Proposition 21.

Hence, we obtain

\[
\|x - \hat{y}\|_2 = E[\tau X_1(a_i, x, \hat{y})]
\]

\[
= E[\tau X_2(a_i, x, \hat{y}) 1_{E_i}] + E\left[\tau X_2(a_i, x, \hat{y}) 1_{E_i}^c\right].
\]
So, the same arguments in the previous section give us the following bound.

\[
\left| \mathbb{E} \left[\tau X_1(a_i, x, \hat{y}) 1_{E_i} \right] - \|x - \hat{y}\|_2 \right|
\leq \mathbb{E} \left[\| \tau X_1(a_i, x, \hat{y}) 1_{E_i} \| \right]
\leq \frac{4c_5}{m^2}.
\]

By the construction of the event \(E_i \), \(X_1(a_i, x, \hat{y}) 1_{E_i} \) is bounded by

\[
|X_1(a_i, x, \hat{y}) 1_{E_i}| \leq 2C(N, s, m)
\]
and the bound for the second moment for \(X_1(a_i, x, \hat{y}) 1_{E_i} \) is given by

\[
\mathbb{E}_{a_i} \left[X_1(a_i, x, \hat{y})^2 1_{E_i} \right] \leq 4\pi C(N, s, m)^2 \|x - \hat{y}\|_2
\]
by the same argument used for \(X_2(a_i, x, \hat{y}) 1_{E_i} \) in the previous subsection.

c) Step 3. Bounding the sum of truncated terms by the Bernstein’s inequality: Step 2 shows that the magnitude and variance of \(X_1(a_i, x, \hat{y}) 1_{E_i} \) can be bounded exactly by those of \(X_2(a_i, x, \hat{y}) 1_{E_i} \) in Step 2 in Subsection \([\text{VII-A}]\). Hence, applying the bounded Bernstein inequality and using the \(\epsilon \)-net covering argument for \(K^{(i)} \) as in Subsection \([\text{VII-A}]\) yield the following statement:

For all \(\hat{y} \in K^{(i)} \), we obtain

\[
\left| \frac{1}{m} \sum_{i=1}^{m} \tau X_1(a_i, x, \hat{y}) 1_{E_i} - \mathbb{E} \left[\tau X_1(a_i, x, \hat{y}) 1_{E_i} \right] \right| \leq \frac{1}{m^{1/2 - \xi_0}} \| x - \hat{y} \|_2
\]
with probability \(1 - \frac{c_4}{m^4} \).

Then, we apply the triangle inequality to above to get

\[
\left| \frac{1}{m} \sum_{i=1}^{m} \tau X_1(a_i, x, \hat{y}) 1_{E_i} - \|x - \hat{y}\|_2 \right|
\leq \frac{1}{m^{1/2 - \xi_0}} \|x - \hat{y}\|_2 + \frac{4c_5}{m^2}
\leq \frac{1}{m^{1/2 - \xi_0}} \|x - \hat{y}\|_2 + \|y - \hat{y}\| + \frac{r_{i+1}}{600}
\leq \frac{1}{m^{1/2 - \xi_0}} \|x - \hat{y}\|_2 + \delta_i + \frac{r_{i+1}}{600}
\leq \frac{1}{m^{1/2 - \xi_0}} \|x - \hat{y}\|_2 + \frac{2r_{i+1}}{600}
\]

for all \(m > c_3^{10} \log^{10}(N/s) \) with a probability at least \(1 - \frac{c_4}{m^4} \).

d) Step 4. Establishing the bound for (I): As we derived the bound for \(\tau X_2(a_i, x, \hat{y}) \) in Section \([\text{VII-A}]\) whenever the event \(E_u \) occurs, we have

\[
\frac{1}{m} \sum_{i=1}^{m} \tau X_1(a_i, x, \hat{y}) = \frac{1}{m} \sum_{i=1}^{m} \tau X_1(a_i, x, \hat{y}) 1_{E_i}.
\]

This conditional equality and the bound for the truncated terms in \([\text{14}]\) in Step 3 and allow us to control \([\text{14}]\).

On the other hand, the term \([\text{15}]\) is bounded as below:

\[
\left| \frac{1}{m} \sum_{i=1}^{m} \tau (\text{sign}(\langle a_i, x \rangle) - \text{sign}(\langle a_i, \hat{y} \rangle)) \left(a_i, \frac{x - \hat{y}}{\|x - \hat{y}\|} \right) - \frac{1}{m} \sum_{i=1}^{m} \tau (\text{sign}(\langle a_i, x \rangle) - \text{sign}(\langle a_i, y \rangle)) \left(a_i, \frac{x - y}{\|x - y\|} \right) \right|
\]
Lemma 15. (e) arises from applying Corollary 20. In (f) and (g), we used Proposition 19.

We applied Lemma 15 and Corollary 20 to obtain (c). The inequality (d) results from Proposition 12 and with probability at least C. Proof of Lemma 25

(\text{a}) \quad \left| \frac{1}{m} \sum_{i=1}^{m} \tau(\text{sign}(\langle a_i, x \rangle) - \text{sign}(\langle a_i, y \rangle)) \left(\left\langle a_i, \frac{x - \hat{y}}{\|x - \hat{y}\|} \right\rangle - \left\langle a_i, \frac{x - y}{\|x - y\|} \right\rangle \right) \right|

(\text{b}) \quad \left| \frac{1}{m} \sum_{i=1}^{m} \tau(\text{sign}(\langle a_i, x \rangle) - \text{sign}(\langle a_i, y \rangle)) \left(\left\langle a_i, \frac{x - \hat{y}}{\|x - \hat{y}\|} - \frac{x - y}{\|x - y\|} \right\rangle \right) \right|

(\text{c}) \quad \left| \frac{1}{m} \sum_{i=1}^{m} \tau|\text{sign}(\langle a_i, x \rangle) - \text{sign}(\langle a_i, y \rangle)| \left(\left\langle a_i, \frac{x - \hat{y}}{\|x - \hat{y}\|} - \frac{x - y}{\|x - y\|} \right\rangle \right) \right| + 2\tau C_10 C(N, s, m) \log m \cdot \delta_i

(\text{d}) \quad \left| \frac{1}{m} \sum_{i=1}^{m} \tau|\text{sign}(\langle a_i, x \rangle) - \text{sign}(\langle a_i, y \rangle) \right| \cdot C(N, s, m) \cdot \frac{2\delta_i}{r_i + 1} + 2\tau C_10 C(N, s, m) \log m \cdot \delta_i

(\text{e}) \quad 4\tau r_i \frac{\delta_i}{r_i + 1} + 2\tau C_10 C(N, s, m) \log m \cdot \delta_i

(\text{f}) \quad \frac{4\tau r_i \delta_i}{600} + 2\tau C_10 C(N, s, m) \log m \cdot \delta_i

(\text{g}) \quad \frac{4\tau r_i \delta_i}{600} + \frac{2\tau r_i + 1}{600}

\leq \frac{8}{600} r_i + 1.

Here are the justifications for the above chain of inequalities: (a) and (b) are by the triangle inequality. We applied Lemma 15 and Corollary 20 to obtain (c). The inequality (d) results from Proposition 12 and Lemma 15. (e) arises from applying Corollary 20. In (f) and (g), we used Proposition 19.

Putting all the bounds we have so far together, we establish

$$\text{(I)} \leq \frac{1}{m \cdot \frac{8}{50}} \|x - y\|_2^2 + \frac{2\tau r_i + 1}{600} + \delta_i + \frac{8}{600} r_i + 1$$

with probability at least

$$1 - \frac{2}{m^4} - \frac{c_2}{m^2} - \frac{2}{m^2} - \frac{c_4}{m^4} - \tilde{c} \left(\frac{s}{N} \right)^{5s} \cdot \frac{1}{m^5} \geq 1 - \tilde{c} \left(\frac{s}{N} \right)^{5s} \cdot \frac{1}{m^5} - \frac{c_6}{m^3}.$$

C. Proof of Lemma 25

As before, let $y \in K^{(t)}$, so $r_i + 1 \leq \|x - y\| \leq r_i$ and $\hat{y} \in N^{(t)}_i$ with $\|y - \hat{y}\| \leq \delta_i$.

a) Step 1. Approximate (III) by ε-net $N^{(t)}_K$. First, we apply the triangle inequality and Lemma 9 to have

$$\left\| \frac{\tau}{m} \sum_{i=1}^{m} (\text{sign}(\langle a_i, x \rangle) - \text{sign}(\langle a_i, y \rangle)) b_i(x, y) \right\|_{K_i^t}$$

$$\leq \left\| \frac{\tau}{m} \sum_{i=1}^{m} (\text{sign}(\langle a_i, x \rangle) - \text{sign}(\langle a_i, y \rangle)) b_i(x, \hat{y}) \right\|_{K_i^t}$$

$$\leq \left\| \frac{\tau}{m} \sum_{i=1}^{m} (\text{sign}(\langle a_i, x \rangle) - \text{sign}(\langle a_i, y \rangle)) b_i(x, \hat{y}) \right\|_{K_i^t}$$
Similarly, the third term is bounded by
\[\| \frac{\tau}{m} \sum_{i=1}^{m} (\text{sign}(a_i, x) - \text{sign}(a_i, y)) b_i(x, y) \|_{K_1} \]
We will bound the second and third term using Lemma 14.

By applying Lemma 14, Corollary 20 and Proposition 19 to the second term, we have
\[\| \frac{\tau}{m} \sum_{i=1}^{m} (\text{sign}(a_i, x) - \text{sign}(a_i, y)) \left(\left\langle a_i, \frac{x-y}{\|x-y\|} \right\rangle \frac{x-y}{\|x-y\|} - \left\langle a_i, \frac{x-\hat{y}}{\|x-\hat{y}\|} \right\rangle \frac{x-\hat{y}}{\|x-\hat{y}\|} \right) \|_{K_1} \]
\[\leq \frac{\tau}{m} \sum_{i=1}^{m} \text{sign}(a_i, x) - \text{sign}(a_i, y) \left(\left\langle a_i, \frac{x-y}{\|x-y\|} \right\rangle \frac{x-y}{\|x-y\|} - \left\langle a_i, \frac{x-\hat{y}}{\|x-\hat{y}\|} \right\rangle \frac{x-\hat{y}}{\|x-\hat{y}\|} \right) \|_{K_1} \]
\[\leq \frac{r_i (\log m)}{c} \cdot \frac{4 \tau C(N, s, m) \delta}{r_{i+1}} \]
\[\leq \frac{4 \tau}{600} r_{i+1}. \]

Similarly, the third term is bounded by \(\frac{4 \tau}{600} r_{i+1} \).

It remains to show that the first term is well-controlled.

\[\| \frac{\tau}{m} \sum_{i=1}^{m} (\text{sign}(a_i, x) - \text{sign}(a_i, y)) b_i(x, y) \|_{K_1} \]
\[\leq \| \frac{\tau}{m} \sum_{i=1}^{m} (\text{sign}(a_i, x) - \text{sign}(a_i, y)) b_i(x, x) \|_{K_1} \]
\[+ \| \frac{\tau}{m} \sum_{i=1}^{m} (\text{sign}(a_i, x) - \text{sign}(a_i, y)) b_i(x, \hat{y}) \|_{K_1} \]
\[\leq \frac{\tau}{m} \sum_{i=1}^{m} \| \text{sign}(a_i, x) - \text{sign}(a_i, y) \|_{K_1} \]
\[+ \frac{\tau}{m} \sum_{i=1}^{m} \| b_i(x, y) \|_{K_1} \]
\[\leq \frac{\tau}{m} \sum_{i=1}^{m} \| \text{sign}(a_i, x) - \text{sign}(a_i, y) \|_{K_1} \]
\[+ \frac{2 \tau \delta_i \log m \cdot \| b_i(x, y) \|_{K_1} \]
\[\leq \frac{\tau}{m} \sum_{i=1}^{m} \| \text{sign}(a_i, x) - \text{sign}(a_i, y) \|_{K_1} \]
\[+ \frac{2 \tau C(N, s, m) \log m \cdot \delta_i \}
\[\leq \frac{\tau}{m} \sum_{i=1}^{m} \| \text{sign}(a_i, x) - \text{sign}(a_i, y) \|_{K_1} \]
\[+ \frac{2 \tau r_{i+1}}{600} \]
(16)
whenever Lemma 15 and Corollary 20 hold. Here, the second last inequality is from Lemma 15 and the last is by Proposition 19. Thus, it boils down to control the first term in the right hand side of (16), which is presented in the next step.

b) **Step 2. Bounding the first term by decoupling:**

As for the first term \(\frac{1}{m} \sum_{i=1}^{m} (\langle a_i, x \rangle - \langle a_i, \hat{y} \rangle) b_i(x, \hat{y}) \|_{K_1} \), we apply a simple variant of Lemma 8.1 in [11]. This implies that \(\langle a_i, x \rangle , \langle a_i, \hat{y} \rangle \) and \(b_i(x, \hat{y}) \) are independent, which consequently shows that \(\langle a_i, x \rangle - \langle a_i, \hat{y} \rangle \) and \(b_i(x, \hat{y}) \) are independent. This allows us to apply the concentration inequality conditioned on \(\langle a_i, x \rangle - \langle a_i, \hat{y} \rangle \) as we describe below.

Define

\[
h(x, \hat{y}) := \frac{1}{m} \sum_{i=1}^{m} (\langle a_i, x \rangle - \langle a_i, \hat{y} \rangle) b_i(x, \hat{y}).
\]

This object has a very similar structure as the function \(h \) in Section 8.4.3 in [11] and we are going to follow the arguments appeared in Section 8.4.3 and 9.1 in that paper.

Conditioned on \(\langle a_i, x \rangle \) and \(\langle a_i, \hat{y} \rangle \), we have

\[
h \sim N(0, \lambda I_{(x, \hat{y})}) \quad \text{where} \quad \lambda^2 := \frac{1}{m^2} \sum_{i=1}^{m} (\langle a_i, x \rangle - \langle a_i, \hat{y} \rangle)^2.
\]

By following the argument in Section 8.4.3 of [11], conditional on \(\langle a_i, x \rangle \) and \(\langle a_i, \hat{y} \rangle \), we have

\[
\mathbb{E}\|h\|_{K_1} \leq \lambda \cdot w(K_1).
\]

Since

\[
\lambda = \frac{1}{m} \sqrt{\sum_{i=1}^{m} (\langle a_i, x \rangle - \langle a_i, \hat{y} \rangle)^2} = \frac{\sqrt{2}}{\sqrt{m}} \sqrt{\frac{1}{m} \sum_{i=1}^{m} (\langle a_i, x \rangle - \langle a_i, \hat{y} \rangle)\langle a_i, \hat{y} \rangle},
\]

we have \(\lambda \leq \frac{2}{\sqrt{m}} \sqrt{C_{10 r_1 \log m}} \) with probability at least \(1 - \frac{2}{m^2} \) by Corollary 20.

Again, by the same consideration in [11] based on the Gaussian concentration inequality (Section 8.3 and 9.1 in [11]) to control the term \(E_2 \) for any \(\varepsilon \geq 2m^{-1/2} \), we have

\[
\left\| \frac{\tau}{m} \sum_{i=1}^{m} (\langle a_i, x \rangle - \langle a_i, \hat{y} \rangle) b_i(x, \hat{y}) \right\|_{K_1} \leq 4 \tau \left(\frac{C_{10 r_1 \log m}}{m} \right)^{1/2} \left(w(K_1) + \varepsilon m^{1/2} \right)
\]

\[
\leq 4 \tau \left(\frac{C_{10 r_1 \log m}}{m} \right)^{1/2} \left(C(N, s, m)^{1/2} + \varepsilon m^{1/2} \right)
\]

\[
\leq 4 \tau \left(\frac{C_{10 r_1 \log m}}{m} \right)^{1/2} \left(C(N, s, m)^{1/2} \cdot \varepsilon m^{1/2} \right)
\]

with probability at least \(1 - \exp(-c' \varepsilon^2 m) \) for some universal constant \(c' > 0 \) (in the last inequality, we have used the simple fact that \(ab \geq a + b \) if \(a, b \geq 2 \)).

From Proposition 17,

\[
\left\| \frac{\tau}{m} \sum_{i=1}^{m} (\langle a_i, x \rangle - \langle a_i, \hat{y} \rangle) b_i(x, \hat{y}) \right\|_{K_1} \leq 4 \frac{r_{i+1}}{10 \sqrt{6}} \cdot \frac{m^{-1/2} \cdot \varepsilon m^{1/2}}{\delta_i^{1/2}}
\]

\[
\leq \frac{2r_{i+1}}{10} \cdot \frac{\varepsilon}{\delta_i^{1/2}}.
\]

Taking \(\varepsilon := \frac{\delta_i^{1/2}}{\sqrt{600}} \) (note that this choice of \(\varepsilon \gg 2m^{-1/2} \) from the construction of \(\delta_i \)) yields

\[
\left\| \frac{\tau}{m} \sum_{i=1}^{m} (\langle a_i, x \rangle - \langle a_i, \hat{y} \rangle) b_i(x, \hat{y}) \right\|_{K_1} \leq \frac{2r_{i+1}}{600}
\] (17)
with probability at least
\[
1 - \exp(-c' e^2 m) = 1 - \exp \left(-c' \frac{\delta m!}{60} \right)
\]
\[
= 1 - \exp \left(-c' (600C)^3 \left(1 - \left(\frac{5}{6}\right)^{i-1}\right) m^{\frac{1}{3} \left(\frac{5}{6}\right)^{i-1}} \left(\log m\right)^{\frac{14}{7} \left(1 - \left(\frac{5}{6}\right)^{i-1}\right)} + \frac{4}{7} C(N, s, m) \right) \frac{60}{60^{i-1}}
\]

Since we want the bound (17) holds for all \(\hat{y}\) in \(\mathcal{N}_{K(i)}\), by the union bound, we have (17) for all \(\hat{y}\) in \(\mathcal{N}_{K(i)}\) with probability greater than
\[
1 - 2|\mathcal{N}_{K(i)}| \exp \left(-c' (600C)^2 \left(1 - \left(\frac{5}{6}\right)^{i-1}\right) m^{\frac{1}{3} \left(\frac{5}{6}\right)^{i-1}} \left(\log m\right)^{\frac{14}{7} \left(1 - \left(\frac{5}{6}\right)^{i-1}\right)} + \frac{4}{7} C(N, s, m) \right) \frac{60}{60^{i-1}}
\]
\[
\geq 1 - 2 \exp \left(C'' (600C)^2 \left(1 - \left(\frac{5}{6}\right)^{i-1}\right) m^{\frac{1}{3} \left(\frac{5}{6}\right)^{i-1}} \left(\log m\right)^{\frac{14}{7} \left(1 - \left(\frac{5}{6}\right)^{i-1}\right)} C(N, s, m) \frac{60}{60^{i-1}} \right)
\]
\[
\times \exp \left(-c' (600C)^3 \left(1 - \left(\frac{5}{6}\right)^{i-1}\right) m^{\frac{1}{3} \left(\frac{5}{6}\right)^{i-1}} \left(\log m\right)^{\frac{14}{7} \left(1 - \left(\frac{5}{6}\right)^{i-1}\right)} + \frac{4}{7} C(N, s, m) \right) \frac{60}{60^{i-1}}
\]

By the same argument in the previous subsection based on comparing the exponents of \(\log m\) and \(C(N, s, m)\), this probability is at least
\[
1 - \exp \left(-C(5) m^{\frac{1}{3} \left(\frac{5}{6}\right)^{i-1}} \left(\log m\right)^{\frac{1}{7} \left(1 - \left(\frac{5}{6}\right)^{i-1}\right)} C(N, s, m) \right) \geq 1 - \frac{c_7}{m^5}.
\]

c) Step 3. Establishing the bound for (III): Combining the previous bounds in this subsection yields
\[
\left\| \frac{1}{m} \sum_{i=1}^{m} \left(\text{sign}(a_i, x) - \text{sign}(a_i, y) b_i(x, y) \right) \right\|_{K_i} \leq \frac{4\tau}{600} r_{i+1} + \frac{2\tau r_{i+1}}{600} + \frac{2\tau r_{i+1}}{600}
\]
\[
\leq \left(\frac{6}{600} + \frac{3}{600} + \frac{3}{600} \right) r_{i+1}
\]
\[
= \frac{r_{i+1}}{50}
\]

with probability exceeding
\[
1 - \frac{2}{m^5} - \frac{c_2}{m^2} - \frac{2}{m^2} - \frac{c_7}{m^4} - \frac{\epsilon}{m^3} \left(\frac{s \times s}{N} \right)^{\frac{5s}{m^2}} \geq 1 - \frac{c_8}{m^5}.
\]

VIII. DISCUSSION

We show that NBHIT enjoys the optimal approximation error decay in the number of measurements for the one-bit compressed sensing problem. While this demonstrates its efficiency, there are still several aspects worth further investigation:

1) It would be interesting to see how much the requirement for number of measurements in Theorem 1 can be relaxed. Although improving this requirement is not the main focus in this paper, the extensive numerical experiments in the literature indicate that BIHT-type algorithms perform much better than other algorithms even for a moderate number of measurements [15]–[17]. We leave it as a future work.

2) Note that in general it is not possible to recover a sparse signal from 1-bit measurements with non-Gaussian vectors even if we have infinitely many measurements [31]. However, under some extra...
assumptions on the signal set, we can reconstruct the signal with a reasonable accuracy. It could be worth to explore whether BIHT-type algorithms still exhibit superior performance for non-Gaussian measurements under these assumptions.

(3) Another possible direction would be to extend and analyze BIHT-type algorithms for sparse signals with respect to a dictionary. It is easy to see that our results naturally extend to sparse signals with respect to any orthogonal basis. We expect that BIHT-type algorithms might offer a good approximation error decay for a certain type of dictionaries as well, assuming that the hard thresholding operator for the dictionary is well defined and can be implemented in a computationally-efficient way.

ACKNOWLEDGEMENT

The authors thank Xiaowei Li for reading this manuscript and giving us several valuable comments.

REFERENCES

[1] S. Foucart and H. Rauhut, “An invitation to compressive sensing,” in A mathematical introduction to compressive sensing. Springer, 2013, pp. 1–39.
[2] Y. C. Eldar and G. Kutyniok, Compressed sensing: theory and applications. Cambridge university press, 2012.
[3] C. S. Güntürk, M. Lammers, A. M. Powell, R. Saab, and Ö. Yilmaz, “Sobolev duals for random frames and ΣΔ quantization of compressed sensing measurements,” Foundations of Computational mathematics, vol. 13, no. 1, pp. 1–36, 2013.
[4] R. Saab, R. Wang, and Ö. Yilmaz, “Quantization of compressive samples with stable and robust recovery,” Applied and Computational Harmonic Analysis, vol. 44, no. 1, pp. 123–143, 2018.
[5] E. Chou, C. S. Güntürk, F. Krahmer, R. Saab, and Ö. Yilmaz, “Noise-shaping quantization methods for frame-based and compressive sampling systems,” in Sampling theory, a renaissance. Springer, 2015, pp. 157–184.
[6] E. Chou and C. S. Güntürk, “Distributed noise-shaping quantization: I. beta duals of finite frames and near-optimal quantization of random measurements,” Constructive Approximation, vol. 44, no. 1, pp. 1–22, 2016.
[7] R. G. Baraniuk, S. Foucart, D. Needell, Y. Plan, and M. Wootters, “Exponential decay of reconstruction error from binary measurements of sparse signals,” IEEE Transactions on Information Theory, vol. 63, no. 6, pp. 3368–3385, 2017.
[8] P. Deift, F. Krahmer, and C. S. Güntürk, “An optimal family of exponentially accurate one-bit sigma-delta quantization schemes,” Communications on Pure and Applied Mathematics, vol. 64, no. 7, pp. 883–919, 2011.
[9] R. Saab, R. Wang, and Ö. Yilmaz, “From compressed sensing to compressed bit-streams: practical encoders, tractable decoders,” IEEE Transactions on Information Theory, vol. 64, no. 9, pp. 6098–6114, 2017.
[10] P. T. Boufounos and R. G. Baraniuk, “1-bit compressive sensing,” in 2008 42nd Annual Conference on Information Sciences and Systems. IEEE, 2008, pp. 16–21.
[11] Y. Plan, R. Vershynin, and E. Yudovina, “High-dimensional estimation with geometric constraints,” Information and Inference: A Journal of the IMA, vol. 6, no. 1, pp. 1–40, 2016.
[12] Y. Plan and R. Vershynin, “The generalized lasso with non-linear observations,” IEEE Transactions on Information Theory, vol. 62, no. 3, pp. 1528–1537, 2016.
[13] M. A. Davenport, Y. Plan, E. Van Den Berg, and M. Wootters, “1-bit matrix completion,” Information and Inference: A Journal of the IMA, vol. 3, no. 3, pp. 189–223, 2014.
[14] J. L. Horowitz, Semiparametric and nonparametric methods in econometrics. Springer, 2009, vol. 12.
[15] L. Jacques, J. N. Laska, P. T. Boufounos, and R. G. Baraniuk, “Robust 1-bit compressive sensing via binary stable embeddings of sparse vectors,” IEEE Transactions on Information Theory, vol. 59, no. 4, pp. 2082–2102, 2013.
[16] P. T. Boufounos, L. Jacques, F. Krahmer, and R. Saab, “Quantization and compressive sensing,” in Compressed sensing and its applications. Springer, 2015, pp. 193–237.
[17] D. Liu, S. Li, and Y. Shen, “One-bit compressive sensing with projected subgradient method under sparsity constraints,” IEEE Transactions on Information Theory, vol. 65, no. 10, pp. 6650–6663, 2019.
[18] L. Jacques, K. Degraux, and C. De Vleeschouwer, “Quantized iterative hard thresholding: Bridging 1-bit and high-resolution quantized compressed sensing.” arXiv preprint arXiv:1305.1786, 2013.
[19] A. M. Powell, R. Saab, and Ö. Yilmaz, “Quantization and finite frames,” in Finite frames. Springer, 2013, pp. 267–302.
[20] Y. Plan and R. Vershynin, “One-bit compressed sensing by linear programming,” Communications on Pure and Applied Mathematics, vol. 66, no. 8, pp. 1275–1297, 2013.
[21] ———, “Robust 1-bit compressed sensing and sparse logistic regression: A convex programming approach,” IEEE Transactions on Information Theory, vol. 59, no. 1, pp. 482–494, 2012.
[22] K. Knudson, R. Saab, and R. Ward, “One-bit compressive sensing with norm estimation,” IEEE Transactions on Information Theory, vol. 62, no. 5, pp. 2748–2758, 2016.
[23] S. Rangan and V. K. Goyal, “Recursive consistent estimation with bounded noise,” IEEE Transactions on Information Theory, vol. 47, no. 1, pp. 457–464, 2001.
[24] H. Q. Nguyen, V. K. Goyal, and L. R. Varshney, “Frame permutation quantization,” Applied and Computational Harmonic Analysis, vol. 31, no. 1, pp. 74–97, 2011.

[25] A. M. Powell, “Mean squared error bounds for the rangan–goyal soft thresholding algorithm,” Applied and Computational Harmonic Analysis, vol. 29, no. 3, pp. 251–271, 2010.

[26] S. Oymak and B. Recht, “Near-optimal bounds for binary embeddings of arbitrary sets,” arXiv preprint arXiv:1512.04433, 2015.

[27] M. Ledoux, The concentration of measure phenomenon. American Mathematical Soc., 2001, no. 89.

[28] R. Vershynin, High-dimensional probability: An introduction with applications in data science. Cambridge University Press, 2018, vol. 47.

[29] D. Bilyk and M. T. Lacey, “Random tessellations, restricted isometric embeddings, and one bit sensing,” arXiv preprint arXiv:1512.06697, 2015.

[30] Y. Chen and E. J. Candès, “Solving random quadratic systems of equations is nearly as easy as solving linear systems,” Communications on Pure and Applied Mathematics, vol. 70, no. 5, pp. 822–883, 2017.

[31] A. Ai, A. Lapanowski, Y. Plan, and R. Vershynin, “One-bit compressed sensing with non-gaussian measurements,” Linear Algebra and its Applications, vol. 441, pp. 222–239, 2014.