Molecular insights into ligand recognition and G protein coupling of the neuropeutodulatory orphan receptor GPR139

Dear Editor,

The G protein-coupled receptor GPR139 is involved in neuro-modulation, and one of its agonists is in clinical trials for the treatment of cognitive impairment and negative symptoms of schizophrenia. While GPR139 is a understudied 'orphan' receptor, it can be activated by the amino acids L-Trp, L-Phe or α-Melanocyte-stimulating hormone (α-MSH) which is an endogenous agonist of melanocortin receptors. Of note, the expression of GPR139 correlates with that of the μ-opioid and dopamine D2 receptors in a broad range of the central nervous system (CNS), which acts as a regulator of μ-opioid and dopamine signaling.

Hitherto, the structural basis of how ligands interact with and activate GPR139 to transduce diverse signals has remained unknown. Furthermore, the more physiologically relevant intermediate states of GPCR-G protein complex structures in the nucleotide-bound forms are also elusive. Here, we report the cryo-electron microscopy (cryo-EM) structures of GPR139 in complex with a key reference ligand JNJ-63533054 which is an analog of agent TAK-041 in clinical trial, and miniGαq or Gαi in nucleotide-free form, as well as the GPR139–JNJ-63533054–miniGαq Complex in GDP- and GTP-bound states, respectively (Fig. 1a–f).

To improve the expression and homogeneity of GPR139, a Xylanase fusion protein was fused at the N-terminus; the C-terminal residues 322–353 were truncated, and a S62→S69V mutation was also introduced (superscript denotes generic residue numbers). The S62→S69V mutation has no effect on the potency of surrogate agonist JNJ-63533054 (Supplementary information, Table S1). The stable GPR139-Gαq complex consisting of purified GPR139, miniGαq protein and Nb35 in the presence of agonist JNJ-63533054 was obtained in vitro. Importantly, three cryo-EM structures of JNJ-63533054-bound GPR139–miniGαq complex in the nucleotide-free (hereafter referred to as GPR139–miniGαq), GDP-bound and GTP-bound states were determined at global resolutions of 3.2 Å, 3.3 Å and 3.8 Å, respectively (Fig. 1c–e; Supplementary information, Figs. S1–S3 and Table S5). To further investigate the structural basis of G protein selectivity of GPR139 (Fig. 1a, b), we also determined the structure of JNJ-63533054-bound GPR139-Gαi at 3.2 Å resolution, by co-expression of the receptor with the heterotrimeric Gαi protein and stabilizing scFv163 (Fig. 1f; Supplementary information, Fig. 5 and Table S5). The overall structures of the receptors in the two complexes are quite similar, with a root mean square deviation (RMSD) value for Ca atoms of 1.47 Å. The main differences are found in extracellular loops 2 and 3 (ECL2 and ECL3), and the intracellular regions of TM5 and TM6 that bind the G proteins (Supplementary information, Figs. S5, S6).

The agonist JNJ-63533054 binds in the prototypical ligand pocket in the bundle of seven transmembrane helices in both the GPR139–miniGαq and GPR139–Gαi structures. In the GPR139–miniGαq structure, the chlorophenyl moiety of JNJ-63533054 is situated in a hydrophobic pocket lined by the residues I169ECL2, W170ECL2, M247ECL2, I248ECL2, H251ECL2, and V263ECL2, and its chlorine points toward the gap between TM6 and TM7 (Supplementary information, Fig. 57a). The carbonyl oxygen, O1, in JNJ-63533054 forms a hydrogen bond with the ND2 residue N271ECL2. The carbonyl oxygen O2 from JNJ-63533054 establishes a hydrogen bond with the NH2 of residue R244ECL2. The JNJ-63533054’s phenyl ring is buried in a deep hydrophobic pocket formed by B252ECL2, B256ECL2, Y271ECL2, Y276ECL2, and Y281ECL2. Our mutagenesis analyses provide further evidence for the roles of F109ECL2, H187ECL2 and N271ECL2 in GPR139 activation (Fig. 1i; Supplementary information, Fig. 57d, e and Table S2).

Interestingly, in the GPR139–Gαi structure, two binding poses of JNJ-63533054 are identified based on the EM map (Fig. 1f). ‘Pose-1’ is similar to that in the GPR139–miniGαq structure, while ‘Pose-2’ has a flipped amide bond linking the chlorophenyl ring and N1 of JNJ-63533054, and is associated with a changed direction of the chloride and carbonyl oxygen (Fig. 1h; Supplementary information, Fig. 57b). Concordantly, our MD simulations show similar flexibility of the JNJ-63533054 binding mode (Supplementary information, Fig. 58a, b). For pose-2, the ligand’s N2 forms a hydrogen bond to E108ECL2. In addition, W170ECL2 adopts two conformations, whereof ‘conf-1’ is similar to that in the GPR139–miniGαq structure and in ‘conf-2’ the sidechain swings away from the ligand-binding pocket (Supplementary information, Fig. 58d, e). Interestingly, the W170ECL2 A mutation results in a one order of magnitude potency decrease in both Gαi and Gαq BRET assays (Fig. 1j; Supplementary information, Fig. S7d, e and Table S2).

Received: 7 August 2021 Revised: 4 November 2021
Published online: 17 December 2021

© The Author(s) 2021

Cell Research (2022) 32:210–213; https://doi.org/10.1038/s41422-021-00591-w
Therefore, the different binding poses of JNJ-63533054 in the nucleotide-free \textit{mini}G_i and G_i, as well as nucleotide-bound \textit{mini}G_{14} complex structures are correlated to the coupling of different G protein forms. To fully understand these results, further investigation, especially solving more nucleotide-bound GPCR–G protein complex structures, is needed.

To decipher the structural basis of the activation of GPR139, we first investigated R244651 that points into the ligand-binding
pocket and forms charged interactions with JNJ-63533054 (Fig. 1g, h), which may be important for GPR139 activation. Of note, this arginine, R244, only appears at position 6x51 in GPR139 and its close homolog GPR142. Other class A GPCRs instead have other amino acids in this position whereof Y and F are most conserved (Supplementary information, Fig. S9a). When mutating R244 to different residues, we found that the K mutant has lower potency for JNJ-63533054, and that all other mutants almost abolish the expression and/or activity (Supplementary information, Fig. S9b). These results show that a positively charged residue at position 6x51 is critical for ligand recognition and activation of GPR139. Interestingly, JNJ-63533054 binds deeper in the GPR139–miniGs/q structure and is closer to the toggle-switch residues W287/292 (6x51) compared with that of other solved active GPCR structures (Supplementary information, Fig. S9c). Finally, GPR139 shares a hallmark of active-state class A GPCR structures, an ‘unwinding’ of TM7 in the cytosolic part, which is stabilized by a microswitch residue, Y7×53, in the conserved NPxxY7,x49–53 motif. In 94% of class A GPCRs, such a conformational change in TM7 comes from a helix kink enabled by the F7×50 residue (Supplementary information, Fig. S9d, e). Notably, GPR139 instead contains an F at this position. We found that mutation to the canonical P residue almost abolishes Ga and Gβγ coupling — demonstrating an important role of F7×50 in signal transduction (Supplementary information, Table S1). The sidechain of F7×50 protrudes into a predominantly hydrophobic core formed by residues from the cytoplasmic end of TM1, F287/292 6×51 and F292 6×50, and this interaction may facilitate TM7’s conformational change that favors receptor activation (Supplementary information, Fig. S9f).

Since GPR139 is a therapeutic target for several diseases, we performed molecular docking of TAK-041, which is in clinical trial by Takeda, and Cmp1a from H. Lundbeck A/S. The top-ranked docking poses resemble the binding mode of JNJ-63533054 in GPR139 (Fig. 1k, l; Supplementary information, Fig. S10a, b). They form similar interactions with the residues observed in the JNJ-63533054–binding pocket. Concordantly, our pharmacological analysis on the key residues greatly attenuates the potency and efficacy of TAK-041 and Cmp1a (Supplementary information, Fig. S10c–f and Table S2). Interestingly, mutations W166 6×51 and W241 6×50 have major effects on Cmp1a and JNJ-63533054, but only minor to no effect on TAK-041 (Supplementary information, Table S2), which is consistent with TAK-041 forming weak interactions with the two residues. Together, these results confirm that the three agonists JNJ-63533054, TAK-041 and Cmp1a developed by different pharmaceutical companies largely share binding sites, but also have distinct differences in activating GPR139.

Furthermore, we investigated the binding modes of the endogenous amino acids L-Trp and L-Phe in GPR139. The docking results showed that L-Trp and L-Phe share binding site in the buried pocket of JNJ-63533054. Both the sidechain and the carbonyl group of L-Trp or L-Phe interact with R244 6x51, while their amine functionalities are positioned towards residues D84 6x61, E105 6x29 and E108 6x52 in TM2–3 of the receptor (Supplementary information, Fig. S10g, h). Finally, to pinpoint residues that may offer ligand selectivity for GPR139 over its close homolog GPR142, which is involved in the regulation of glucose metabolism and is a proposed target for the treatment of type 2 diabetes,15 we generated single-point mutations of residues that are located in the ligand-binding pocket and differ between GPR139 and GPR142 (Supplementary information, Fig. S10i). We found that only the 1112 K→R (I in GPR139, N in GPR142) mutation abrogates the activity of all three tested surrogate ligands in GPR139 — likely by hindering binding of the buried part (Supplementary information, Fig. S10j and Tables S3, S4). These results will help to explain observed ligand selectivity and provide clues for the rational design of more selective ligands targeting GPR139 or GPR142. In addition, we found that a wall of seven negatively charged receptor residues on TM2, TM3 and TM7 spanning all the way from the extracellular face to the bottom of the transmembrane helix cavity (Supplementary information, Fig. S11). Of these, D842 6x61, E105 6x29 and E108 6x52 are located in the ligand-binding pocket but have no interactions with JNJ-63533054. However, the D842 6x61A, D892 6x66A and D268 6x53A mutations affect either the efficacy or potency of JNJ-63533054 (Supplementary information, Table S4), indicating that the negatively charged wall may play a role in the entrance of the ligand to the binding pocket. However, these negatively charged residues are not conserved in GPR142, and their function needs to be further explored.

The structures of GDP– or GTP-bound intermediate states of the GPCR–G protein complex are very important for understanding the molecular mechanism of the dynamic process of GPCR–G protein interaction and signaling in more physiologically relevant conditions. Here, we determined the structures of nucleotide-bound GPR139–JNJ-63533054–miniGs/q using optimized procedures on adding GDP or GTP prior to the cryo-EM sample freezing. In order to inhibit GTP-mediated dissociation of the receptor–G protein complex, an I372A mutation was introduced to the α5 of miniGs/q.16 The GDP and GTP are well-defined in EM density maps and the overall structure is similar to that of GPR139–miniGs/q in the nucleotide-free state, except for the binding pose change of JNJ-63533054 and more compact ECL2 in the GTP-bound GPR139–miniGs/q structure discussed above. Regarding the Ga subunits in the GDP-, GTP-bound and nucleotide-free states, the nucleotide binding induces noticeable conformation shifts of the β6–α5 loop and the P-loop, which connects the β1 strand and the α1 helix, to accommodate GTP or GDP binding (Fig. 1m).

Compared to the crystal structure of GDP-bound Ga (PDB: 6EG8), the Gaαi in the GDP-bound GPR139–miniGs/q structure shows significant conformational changes, especially the α5 helix of Gaαi. The bent α5 in the GDP-bound Gaαi crystal structure becomes straight, shifts one helix turn up and screws into the receptor core in the GTP-bound GPR139–miniGs/q structure (Supplementary information, Fig. S12a). Concordantly, the last α5 helix turn is unwound to accommodate its upward movement. Furthermore, when comparing the crystal structure of GTP-bound Ga (PDB: 1AZT) with GTP-bound Gaαi in the GPR139–miniGs/q structure, almost identical conformational changes in the α5 helix are observed (Supplementary information, Fig. S12b). In addition, the αN helix of Ga in GTP-bound GPR139–miniGs/q structure is observed and forms weak interactions with Gβy, whereas αN is disordered in the GTP-bound Ga crystal structure due to the absence of receptor and Gβy.

Fig. 1 Cryo-EM structures of JNJ-63533054-bound GPR139–G protein complexes in different states, and analyses of the binding between surrogate ligands JNJ-63533054/TAK-041 and GPR139. a, b GPR139 agonist JNJ-63533054 induces Gaαi and Gβγ protein coupling in the BRET assay. c Cryo-EM density map of the GPR139–JNJ-63533054–miniGs/q–Nbs3 complex in nucleotide-free state with density map for JNJ-63533054. d Cryo-EM density map of GDP-bound GPR139–JNJ-63533054–miniGs/q–Nbs3 complex with density map for JNJ-63533054 (pose-3). e Cryo-EM density map of GDP-bound GPR139–JNJ-63533054–miniGs/q–Nbs3 complex with density map for JNJ-63533054. Based on the density map, JNJ-63533054 adopts two poses (pose-1 and pose-2). f Key residues (orange sticks) involved in JNJ-63533054 (blue sticks) binding in the GPR139–G complex. Note that W170 C62 adapts to the two conformations. j j BRET assay validation of key residues involved in ligand binding. k, l Chemical structure of the GPR139 agonist TAK-041 (Takada, k) and its docking pose in GPR139 (l). m The overall structure comparison of GTP-bound, GDP-bound and nucleotide-free miniGaαi–GPR139 complexes. GTP- and GDP-binding areas are zoomed in.
In this study, structures of four different forms of the GPR139 complex provide mechanistic insights into the activation and signaling of GPR139. The interaction between the special R244^{GI/Gq} and agonist JNJ-63533054 declares the unconventional theme of ligand selectivity and receptor activation in GPR139. When comparing the interactions between R244^{GI/Gq} with three surrogate agonists (Fig. 1), we observed that the dumbbell-shaped agonists have polar peptide-like handles which form hydrogen bond with R244^{GI/Gq}. The bottom end of the dumbbell has a hydrophobic moiety, which is in the proximity of W241^{GI/Gq} while its top end is more polar and extends towards the extracellular direction. We thus speculate that the above-mentioned characteristics of the dumbbell-shaped compounds are the key elements for ligand selectivity, which may guide future drug design for GPR139. Moreover, chronic pain and prescription opioid abuse are extremely prevalent worldwide and opioid misuse can be life-threatening. This study should facilitate the discovery of novel therapeutics to significantly increase the safety window of opioid-based pain reliever drugs.

Additionally, JNJ-63533054 exhibits different binding poses which are correlated to the coupling of different G protein subtypes or states, such as G_q/G_i, GTP- or GDP-bound G_q/G_i. Those observations provide evidence for G proteins' allosteric modulation roles in GPCRs. The successful capture of GDP- or GTP-bound GPR139–minG_q complexes disclose the existence of two intermediate states during the G protein activation, which are the snapshots at the stage of GDP-bound minG_q coupling to GPR139 and prior to the disassociation of GTP-bound minG_q from GPR139.

Yali Zhou^{1,2,3,4}, Henrik Daver⁵, Boris Trapkov⁵, Lijie Wu¹, Meng Wu¹, Kasper Harpsøe⁶, Patrick R. Gentry¹, Kaiwen Liu¹, Jiunlin Liu¹, Na Chen¹, Hans Bräuner-Osborne⁵, David E. Gloriam^{1,6}, Tian Hua^{1,2,5} and Zhi-Jie Liu^{1,2}✉

¹iHuman Institute, ShanghaiTech University, Shanghai, China. 2School of Life Science and Technology, ShanghaiTech University, Shanghai, China. 3University of Chinese Academy of Sciences, Beijing, China. 4CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai, China. 5Department of Drug Design and Pharmacology, University of Copenhagen, Universitätsparken 2, Copenhagen, Denmark. 6Photobiology laboratory, Institute of Biophysics SB RAS, Federal Research Center “Krasovsky Science Center SB RAS,” Akademgorodok 50/50, Krasnoyarsk, Russia. ✉email: hbo@sund.ku.dk; david.gloriam@sund.ku.dk; huatian@shanghaitech.edu.cn; liuzhj@shanghaitech.edu.cn

DATA AVAILABILITY
Coordinates and structure factors have been deposited in the Protein Data Bank for GPR139–JNJ-63533054–G_i (PDB: 7VUG, EMDB: EMD-32127), GPR139–JNJ-63533054–minG_q (PDB: 7VUH, EMDB: EMD-32128), GTP-bound GPR139–JNJ-63533054–minG_q (PDB: 7VUJ, EMDB: EMD-32129) and GDP-bound GPR139–JNJ-63533054–minG_q (PDB: 7VUL, EMDB: EMD-32130).

REFERENCES
1. Isberg, V. et al. J. Chem. Inf. Model. 54, 1553–1557 (2014).
2. Foster, S. R. et al. Cell 179, 895–908.e21 (2019).
3. Nehr, A. C. et al. Neurochem. Int. 102, 105–113 (2017).
4. Matsuo, A. et al. Biochem. Biophys. Res. Commun. 331, 363–369 (2005).
5. Hu, L. A. et al. J. Biomol. Screen. 14, 789–797 (2009).
6. Stoveken, H. M., Zueca, S., Masuho, I., Grill, B. & Martemyanov, K. A. J. Biol. Chem. 295, 10822–10830 (2020).
7. Wang, D. et al. Science 365, 1267–1273 (2019).
8. Wang, L. et al. Front. Neurosci. 13, 281 (2019).
9. Dao, M., Stoveken, H. M., Cao, Y. & Martemyanov, K. A. Neuropsycho pharmacology. https://doi.org/10.1038/s41386-021-00962-2 (2021).
10. Kamel, A., Bowlin, S., Hseua, N., Arkilo, D. & Laurens, A. Drug Metab. Dispos. 49, 121–132 (2020).

ACKNOWLEDGEMENTS
This work was supported by the CAS Strategic Priority Research Program XDB37030104 (Z.-J.L.), the National Science Fund for Distinguished Young Scholars 32022038 (T.H.), the National Natural Science Foundation of China grants 31930060 (Z.-J.L.) and 31870748 (T.H.), and the Shanghai Rising-Star Program 200A1406500 (T.H.), the Lundbeck Foundation R163-2013-16327 (D.E.G.), the Novo Nordisk Foundation NN18000001226 (D.E.G.) and Independent Research Fund Denmark | Natural Sciences 8021-001738 (D.E.G.), the Lundbeck Foundation R355-2020-949 (B.T.) and the Carlsberg Foundation CF20-0248 (H.B.-O.). D.E.G. is a member of the Integrative Structural Biology at the University of Copenhagen (ISBUc). The cryo-EM data were collected at the Bio-Electron Microscopy Facility, ShanghaiTech University, with the assistance of Q.-Q. Sun, D.-D. Liu, Z.-H. Zhang and Y.-H. Liu. We thank the Assay Core, the assistance of F.-F. Zhou and Q.-W. Tan and the Cell Expression, Cloning and Purification Core Facilities of iHuman Institute for their support.

AUTHOR CONTRIBUTIONS
Y.Z. designed the expression constructs, purified the GPR139–G protein complexes, performed cryo-EM sample preparation and data collection, and participated in the figure and manuscript preparation. I.W. performed the EM data processing and structure determination. M.W. performed MD simulation analysis on the correlation between ligand’s binding pose and conformations of W170 together with H.D. K.L. designed constructs and characterized proteins. M.L. performed sample preparation and characterization. J.J.L. and N.C. performed protein expression. H.D. conducted the docking studies and designed mutations together with D.E.G. and K.H. B.T. and P.R.G. conducted the pharmacological analyses. T.H., D.E.G. and H.B.-O. contributed to the drafting of the manuscript and design of the analyses and figures. Z.-J.L. and T.H. managed and supervised the overall project, analyzed the structures and wrote the manuscript.

COMPETING INTERESTS
After the completion of this study, H.D. moved to H. Lundbeck A/S and P.R.G. moved to Fujifilm Diosynth Biotechnologies. The other authors declare no competing interests.

ADDITIONAL INFORMATION
Supplementary information The online version contains supplementary material available at https://doi.org/10.1038/s41422-021-00591-w.

Correspondence and requests for materials should be addressed to Hans Bräuner-Osborne, David E. Gloriam, Tian Hua or Zhi-Jie Liu.

Reprints and permission information is available at http://www.nature.com/reprints

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2021