REVIEW

Antibiotic chemotherapy against heterogeneous pathogen populations in complex host tissues [version 1; peer review: 2 approved]

Dirk Bumann, Joseph Fanous, Jiagui Li, Frédéric Goormaghtigh
Research Area Infection Biology, Biozentrum, University of Basel, Basel, CH-4056, Switzerland

Abstract
Antibiotic chemotherapy effectively cures many infections caused by susceptible bacterial pathogens. However, in some cases, even extended treatment duration does not completely eradicate the pathogenic bacteria from host tissues. A common model for underlying mechanisms assumes the stochastic formation of bacterial persisters similar to observations in laboratory cultures. However, alternative explanations related to the complexity of infected host tissues could also be relevant. We discuss several of these aspects and emphasize the need for integrated analysis as a basis for new control strategies.

Keywords
Antibiotics, Persistence, Heterogeneity

Open Peer Review

Reviewer Status ✔ ✔

Invited Reviewers
1
2

version 1 ✔ ✔ ✔
published 21 Oct 2019

F1000 Faculty Reviews are written by members of the prestigious F1000 Faculty. They are commissioned and are peer reviewed before publication to ensure that the final, published version is comprehensive and accessible. The reviewers who approved the final version are listed with their names and affiliations.

1 Ursula Theuretzbacher, Center for Anti-Infective Agents (CEFAIA), Vienna, Austria
2 Veronique Dartois, Rutgers University, Newark, USA

Any comments on the article can be found at the end of the article.
Antibiotics have been saving the lives of millions of people. For most bacterial pathogens, short-term treatments of a few days effectively cure infections and prevent relapses\(^1\). However, in some cases such as tuberculosis and other chronic infections such as deep-seated abscesses with *Staphylococcus aureus*, severe typhoid fever, or polymicrobial infections of patients with cystic fibrosis, extended treatments over months and even years can fail to completely eradicate the pathogens from tissues, posing a risk for relapse (Figure 1A). Many treatment failures are due to inheritable antibiotic resistance. However, surprisingly, treatment failures also occur when the pathogen retains full susceptibility to the antibiotics of choice in laboratory tests. There is an urgent medical need to improve the efficacy and shorten the treatments for these patients on the basis of a detailed mechanistic understanding of the problem. Several different factors influence antibiotic activities against pathogenic bacteria in host tissues. Most research groups active in the field focus on one particular factor: the stochastic variation of pathogen cells. However, other factors could be at least as important. In this review, we discuss some of these aspects and stress the need for an integrated analysis (Figure 1B).

Stochastic variation of bacterial properties in laboratory cultures

Bacterial cultures show heterogeneous properties even under completely homogeneous laboratory conditions indicating important endogenous stochastic variation within bacterial cells\(^2\). Exposure of bacterial cultures to lethal concentrations of bactericidal antibiotics rapidly kills most bacterial cells, but a small fraction of cells can survive for extended periods. It is possible that similar processes occur also in infected host tissues where they could contribute to incomplete eradication under antimicrobial chemotherapy. Because this phenomenon is readily observable in vitro, it has attracted the attention of a large number of research groups.

In many cases, the surviving small subset of bacteria represents non-growing remnant cells of a previous stationary culture that have an extended lag phase\(^3\). Such persisters are thus one particular instance of the widely characterized extensive heterogeneity of stationary-phase cultures\(^4\). A variety of other stress conditions also lead to increased antibiotic tolerance, including low ATP levels\(^5\), over-expression of toxins or unrelated proteins\(^6\), translation arrest\(^7\), oxidative stress\(^8\), and pre-exposure of cells to sub-MIC levels of bactericidal antibiotics\(^9\). Importantly, even growing bacteria show widely heterogeneous kill rates indicating that dormancy is not absolutely required for survival during antibiotic exposure\(^10\), implying alternative mechanisms leading to heterogeneous killing rates in clonal populations. These include asymmetric cell division\(^11\) with uneven partitioning of efflux pumps among daughter cells\(^12\), heterogeneous expression of produg-activating enzymes\(^13\), transient gene amplifications\(^14\), and heterogeneous induction of specific stress responses\(^15\).

Although endogenous stochastic variation in bacteria often is assumed to play a major role in impairing antibiotic efficacy, empirical evidence is surprisingly scarce in infected tissues\(^16\). Some clinical isolates of *Pseudomonas aeruginosa* and *Escherichia coli* from antibiotic-treated patients showed increased persister frequencies\(^17\), but this could also reflect fitness advantages of persisters under hostile host conditions or phage attacks. One argument against a general clinical relevance of persisters is the effectiveness of short-term antibiotic chemotherapy against many pathogens, which readily form refractory persisters in laboratory cultures\(^1\). Persisters thus might arise in patients but the host immune system seems to be capable of eradicating them quickly\(^1\). Moreover, bacteriostatic antibiotics, which cause population-wide growth arrest in bacteria and make them tolerant against other antibiotics, are as effective as bactericidal antibiotics for the treatment of most infectious diseases\(^2\). However, the distinction between

\[\text{Figure 1. Treatment failures and potential causes. (A) Incomplete eradication of bacterial pathogens during extended antimicrobial chemotherapy causes a risk for relapses after termination of therapy. (B) Possible mechanisms that enable a bacterial subset (red) to survive during treatment while the rest of the bacterial population (blue) is successfully eradicated.}\]
bacteriostatic and bactericidal antibiotics is not absolute, as many “bacteriostatic” drugs can kill bacteria at higher exposure levels or during extended exposure times or both. In addition, translation arrest by bacteriostatic antibiotics might impair survival in host tissues due to an inability to produce essential virulence factors or stress defenses. Finally, non-growing persisters can also occur in biofilms where they could escape clearance by host phagocytes.

Although the general relevance of bacterial persisters in infectious diseases remains unclear, they might be crucial for infections with frequent relapses even after extended treatment durations. However, other much less studied mechanisms could also contribute to infection relapse.

Pathogen physiology in host tissues
Clinical microbiology relies largely on standard in vitro assays in rich media to assess antibiotic susceptibility of pathogens. The results often are predictive of therapeutic efficacy, but pathogen physiology is significantly different under assay conditions compared with infected tissues. Genetic screens in diverse pathogens typically have revealed many hundreds of virulence genes that are specifically required in host tissues but not in rich broth cultures, indicating large-scale relevant functional differences. Several parameters that differ between tissues and broth cultures also have a major impact on antibiotic activities. This includes oxygen tension, carbon dioxide tension, metabolite concentrations, pH, and antimicrobial effector molecules of the host immune system such as cationic antimicrobial peptides (CAMPs) and nitric oxide. Limited nutrient supply and stress conditions can result in slow pathogen proliferation, which strongly affects the activity of most antibiotics. Finally, pathogens can also adapt to the antibiotic exposure and this adaptation might be more successful when antibiotics gradually penetrate into the infection site, compared with abrupt exposure in standard in vitro assays. All of these effects might lead to poor antibiotic efficacy, requiring extended treatment times.

Pathogen heterogeneity in host tissues
As an additional complexity, pathogens show significantly increased single-cell heterogeneity in tissues and body fluids of human patients and infected animals, compared with homogeneous laboratory cultures. This includes wide variation in bacterial growth rates, aggregation state, drug-efflux pumps, metabolism, and stress responses. All of these parameters influence the activity of antimicrobials, and it is possible that pathogen subsets with favorable properties tolerate antimicrobial exposure much better than their conspecifics, making eradication more difficult. Host-induced pathogen heterogeneity can reflect inhomogeneous host microenvironments triggering differences in bacterial physiology but also host-induced pathogen activities that change local microenvironments.

An astonishing early finding was the differential recovery of Mycobacterium tuberculosis from open and closed (that is, no connection to airways) cavities in the lung of patients with tuberculosis. Whereas drug-resistant M. tuberculosis recovered from open cavities formed visible colonies on plates within a few weeks, M. tuberculosis from closed cavities of the same patients appeared only after a lag of many months. Strikingly, these colonies showed full drug susceptibility, suggesting limited selection for resistance development despite extended antimicrobial treatment. Sputum of patients with tuberculosis also contains mycobacteria with a wide range of cultivation phenotypes. A recent example that directly reveals heterogeneous bacteria physiology in tissues comes from Salmonella mouse infection models. Salmonella shows local and transient adaptations to divergent nutrient supply and disparate antimicrobial host attacks with reactive oxygen and nitrogen species. The resulting heterogeneity in Salmonella growth rates has a major impact on Salmonella eradication.

Drug concentration at the site of infection
Antimicrobials must reach bacterial cells to execute their bactericidal/bacteriostatic activities. Bacterial subsets hiding in tissue microenvironments with poor drug penetration might delay complete eradication during antimicrobial chemotherapy. Indeed, host anatomy and biochemistry might provide physical or chemical barriers (or both) for drug penetration. This includes the blood–brain barrier, bones, and serum proteins that bind antimicrobials, thereby decreasing their free concentration. Host inflammation increases tissue heterogeneity by altering endothelial permeability and the formation of lesions and abscesses. On the other hand, certain drugs such as fluoroquinolones, azithromycin, and bedaquiline accumulate in host phagocytes and nitric oxide, which might lead to elevated drug concentrations around the bacteria. Antimicrobial availability at the site of infection depends on the intestinal absorption of orally administered drugs, the distribution to the infected tissue, metabolism, and excretion. All of these processes depend on the physicochemical properties of the drug as well as the physiology of the patient, which might vary during bacterial infection. Drug penetration into accessible tissues can be measured by using microdialysis, but analysis of body fluids such as serum, cerebrospinal fluid, tracheal secretions, or urine is more common. It is unclear how representative these values are for drug availability around the bacterial cells during infection. Indeed, novel methods such as matrix-assisted laser desorption/ionization (MALDI) mass spectrometry imaging demonstrate remarkable differences in local drug concentrations in lesions compared with surrounding lung tissue in tuberculosis patients and animals infected with M. tuberculosis. The emerging data suggest that inhomogeneous drug exposure could be a crucial factor for difficulties in eradicating M. tuberculosis. Unfortunately, experimental data are lacking for most other infectious diseases.

Conclusions
Antibiotic chemotherapy of most bacterial infections is highly effective if the causative pathogen is susceptible to the antibiotic of choice. However, some infections require extended
treatments to prevent relapses. Antibiotic-tolerant bacterial subsets (“persisters”) as observed in laboratory cultures might contribute to this problem. Alternatively, the host tissue environment could be decisive by providing inhomogeneous stress conditions and limiting drug distribution. To clarify these issues, we need more integrated in vivo research exploiting recent single-cell approaches and complementary techniques such as mass spectrometry imaging and three-dimensional high-resolution whole-organ microscopy.

A better understanding of the real problems impairing the chemotherapy of such infections is critically important to devise novel strategies for more effective and rapid treatments.

References

1. Dawson-Hahn EE, Mickan S, Onakpoya I, et al.: Short-course versus long-course oral antibiotic treatment for infections treated in outpatient settings: a review of systematic reviews. Fam Pract. 2017; 34(5): 511–9.
2. Harrety AM, Gallacher JC: Shortened Courses of Antibiotics for Bacterial Infections: A Systematic Review of Randomized Controlled Trials. Pharmacotherapy. 2018; 38(6): 674–87.
3. Davis KM, Isberg RR: Defining heterogeneity within bacterial populations via single-cell-like cell formation. Biosens. 2016; 38(8): 782–90.
4. Aldridge BB, Fernandez-Suarez M, Heller D, et al.: Asymmetry and aging of mycobacterial cells lead to variable growth and antibiotic susceptibility. Science. 2012; 335(6064): 100–4.
5. Sarti I, Dhar N, Bousbaine D, et al.: Single-cell dynamics of the chromosome replication and cell division cycles in mycobacteria. Nat Commun. 2013; 4: 2470.
6. Balaban NC, Heseltine S, Lewis K, et al.: Definitions and guidelines for research on antibiotic persistence. Nat Rev Microbiol. 2019; 17(7): 441–8.
7. Ryall B, Eytalian D, Fereno T: Culture history and population heterogeneity as determinants of bacterial adaptation: the adaptomics of a single environmental transition. Microbiol Mol Biol Rev. 2012; 76(3): 597–625.
8. Zalis EA, Nuxoll AS, Manuse S, et al.: Stochastic Variation in Expression of the Tricarboxylic Acid Cycle Produces Persistor Cells. Mbio. 2019; 10(5): pii: e01930-19.
9. Vazquez-Lastor N, Lee H, Nefakh A: Increased persistence in Escherichia coli caused by controlled expression of toxins or other unrelated proteins. J Bacteriol. 2006; 188(10): 3434–7.
10. Kwan BW, Valenta JA, Benedik MJ, et al.: Arrested protein synthesis increases persister-like cell formation. Antimicrob Agents Chemother. 2013; 57(3): 1468–73.
11. Amato SM, Orman MA, Brynildsen MP: Metabolic control of persistor formation in Escherichia coli. Mol Cell. 2013; 50(4): 475–87.
12. Wu Y, Vulic M, Keren I, et al.: Role of oxidative stress in persister tolerance. Antimicrob Agents Chemother. 2012; 56(9): 4922–6.
13. Dör T, Lewis K, Vulic M: SOS response induces persistence to fluoroquinolones in Escherichia coli. PloS Genet. 2009; 5(12): e1000760.
14. Wakamoto Y, Dhar N, Chait R, et al.: Dynamic persistence of antibiotic-stressed mycobacteria. Science. 2013; 339(6115): 91–5.
15. Orman MA, Brynildsen MP: Dormancy is not necessary or sufficient for bacterial persistence. Antimicrob Agents Chemother. 2013; 57(7): 3230–9.
16. Bhaskar A, De Piano C, Gelman E, et al.: Elucidating the role of pspGpGp in mycobacterial persistence against antibiotics. iJUSBiL. 2018; 70(9): 836–44.
17. Goormaghtigh F, Van Meindert L: Single-cell imaging and characterization of Escherichia coli persistor cells to ofloxacin in exponential cultures. Sci Adv. 2019; 5(6): eaav9462.
18. Shan Y, Brown Gandhi A, Rowe SE, et al.: ATP-Dependent Persistor Formation in Escherichia coli. Mbio. 2017; 8(1): pii: e02267–16.
19. Rege EH, Audette RE, Rubin DJ: Deletion of a mycobacterial divisome factor collapses single-cell phenotypic heterogeneity. Nature. 2017; 546(7656): 153–7.
20. Bergmiller T, Anderson AM, Tomasz A, et al.: Biased partitioning of the multidrug efflux pump AcrAB-ToIC underlies long-lived phenotypic heterogeneity. Science. 2017; 356(6335): 311–5.
21. Nicoloff H, Hjort K, Levin BR, et al.: The high prevalence of antibiotic heteroresistance in pathogenic bacteria is mainly caused by gene amplification. Nat Microbiol. 2019; 4(3): 504–14.
22. Levin BR, Baqeroo F, Ankomah PP, et al.: Phagocytes, Antibiotics, and Self-Limiting Bacterial Infections. Trends Microbiol. 2017; 25(11): 878–92.
23. Mulcahy LR, Burns JR, Lory S, et al.: Emergence of Pseudomonas aeruginosa strains producing high levels of persister cells in patients with cystic fibrosis. J Bacteriol. 2010; 192(23): 6181–9.
24. Schumacher MA, Balani P, Min J, et al.: HiPiBA-promoter structures reveal the basis of heritable multidrug tolerance. Nature. 2015; 524(7563): 59–64.
25. Nemeth J, Oesch G, Kuster SP: Bacteriostatic versus bactericidal antibiotics for patients with serious bacterial infections: systematic review and meta-analysis. J Antimicrob Chemother. 2015; 70(2): 362–95.
26. Conlon BP, Rowe SE, Lewis K: Persistor cells in biofilm associated infections. Adv Exp Med Biol. 2015; 831: 1–9.
27. McCull CH, Shah N, Govindan A, et al.: Antibiotic Killing of Diversely Generated Populations of Nonreplicating Bacteria. Antimicrob Agents Chemother. 2019; 63(7): pii: e02360–18.
28. Sanabt YF, Via LE, Weiner D, et al.: Extreme Drug Tolerance of Mycobacterium tuberculosis in Caseum. Antimicrob Agents Chemother. 2018; 62(2): pii: e02266–17.
29. Meylan S, Andrews IW, Collins JJ: Targeting Antimicrobial Tolerance, Pathogen by Pathogen. Cell. 2018; 172(6): 1228–38.
30. Shi D, Mi G, Wang M, et al.: In vitro and ex vivo systems at the forefront of infection modeling and drug discovery. Biomaterials. 2019; 198: 228–49.
31. Gold B, Nathan C: Targeting Phenotypically Tolerant Mycobacterium tuberculosis. Microbiol Spectr. 2017; 5(1).
32. Malik M, Hussain S, Drlica K: Effect of anaerobic growth on quinolone lethality with Escherichia coli. Antimicrob Agents Chemother. 2007; 51(1): 28–34.
33. Enyo SC, Heifoff DM, Barnes L, et al.: Correcting a Fundamental Flaw in the Paradigm for Antimicrobial Susceptibility Testing. E bioMedicine. 2017; 20: 173–81.
34. Farha MA, French S, Stokes JM, et al.: Bicarbonate Alters Bacterial Susceptibility to Antibiotics by Targeting the Proton Motive Force. ACS Infect Dis. 2018; 4(3): 382–90.
35. Yang JH, Bening SC, Collins JJ: Antibiotic efficacy-context matters. Curr
Open Peer Review

Current Peer Review Status: ✅ ✅

Editorial Note on the Review Process
F1000 Faculty Reviews are written by members of the prestigious F1000 Faculty. They are commissioned and are peer reviewed before publication to ensure that the final, published version is comprehensive and accessible. The reviewers who approved the final version are listed with their names and affiliations.

The reviewers who approved this article are:

Version 1

1. Veronique Dartois
 Public Health Research Institute, New Jersey Medical School, Rutgers University, Newark, New Jersey, USA
 Competing Interests: No competing interests were disclosed.

2. Ursula Theuretzbacher
 Center for Anti-Infective Agents (CEFAIA), Vienna, Austria
 Competing Interests: No competing interests were disclosed.

The benefits of publishing with F1000Research:

- Your article is published within days, with no editorial bias
- You can publish traditional articles, null/negative results, case reports, data notes and more
- The peer review process is transparent and collaborative
- Your article is indexed in PubMed after passing peer review
- Dedicated customer support at every stage

For pre-submission enquiries, contact research@f1000.com