Frequency-modulation input-shaping strategy for double-pendulum overhead cranes undergoing simultaneous hoist and travel maneuvers

SAMEER ARABASI\(^1\) and ZIYAD MASOUD\(^2\)
\(^1\)Department of Physics, German Jordanian University, Amman 11180, Jordan (e-mail: sarabasi@vt.edu)
\(^2\)Department of Mechanical Engineering, German Jordanian University, Amman 11180, Jordan (e-mail: zmasoud@vt.edu)
Corresponding author: Sameer Arabasi (e-mail: sarabasi@vt.edu).

ABSTRACT Large payloads hoisted by overhead cranes exhibit the same behavior as that of a double pendulum. Changes in the hoisting cable length during payload transfer maneuvers gives rise to time-dependent system frequencies rendering input-shaped commands ineffective. In this paper, a frequency-modulation input-shaping strategy that enables simultaneous hoist and travel maneuvers using single-mode input-shaping is presented. This strategy utilizes model-based feedback and partial feedback linearization techniques. Simulations are carried out using arbitrary travel and hoist commands combined with the common single-mode zero-vibration (ZV) and zero-vibration-derivative (ZVD) input-shapers. Sensitivity analysis reveals robust performance in the presence of high system uncertainties.

INDEX TERMS Frequency-modulation, Input-shaping, double-pendulum, overhead crane, model-based feedback, partial feedback linearization.

I. INTRODUCTION
Research on control of payload oscillations has been mostly based on simple-pendulum models of cranes \([1], [2]\). Controllers for the different types of cranes are developed based on this model \([3]–[6]\). However, for certain payloads and rigging configurations, cranes can exhibit significant double-pendulum dynamics. This double-pendulum behavior can be clearly observed is cases where the mass of the hook is significant compared to the mass of the payload \([7]–[11]\). It is also the case when the dimensional size of the payload is significant compared to the length of the hoisting cable \([12], [13]\).

When a crane payload behaves like a single-pendulum, a skilled crane operator can reduce or eliminate most of the payload oscillations \([14], [15]\). However, when a crane payload behaves like a double-pendulum, manual methods of eliminating oscillations become very difficult, even for the most experienced operators. This complex behavior triggered a shift in the research on crane control towards cranes with double-pendulum behavior \([11]–[14], [16]–[18]\).

A straight forward approach to tackle the double-pendulum behavior is to complement a simple-pendulum controller with a second feedback controller to suppress second mode oscillations \([19]–[21]\). However, this approach requires extra hardware components, some of which are expensive and challenging to implement. Other approaches are based on feedback control \([21]\), proportional-integral-derivative (PID) control \([18]\), and adaptive tracking control \([22]\). Open-loop control methods remain the most attractive and cost effective control approach. To develop an effective open-loop controller, the control approach should be able to handle both modes of oscillations of the double-pendulum simultaneously.

Command shaping is one of the most suitable open-loop control approaches for such application. Command shaping approach is based on using carefully designed command profiles to the crane actuators that would mitigate their own inertia excited oscillations. Command shaping techniques can be classified into to categories; pre-shaped profiles \([23]\) and operator-in-the-loop command shaping. Pre-shaped profiles vary from a simple two-step command introduced by O. Smith \([24], [25]\) to the continuous waveform commands recently introduced by K. Alhazza and Z. Masoud \([26]–[28]\). Operator-in-the-loop command shaping is widely known as input-shaping, which is one of the most widely used command shaping techniques. Input-shaping reduces the residual
vibrations by convolving a sequence of carefully timed impulses with a general reference command signal.

Single-mode and multimode input-shaping systems have been extensively researched \cite{29, 30}. Single-mode input-shapers are easier to implement, however, for the double-pendulum crane application, the more complex multimode input-shaping is used \cite{7, 11, 14, 16, 17, 28, 31}. To enable the use of simple single-mode input-shapers for double-pendulum cranes, model-based feedback techniques have been developed such as the frequency-modulation input-shaping technique introduced by Z. Masoud, K Al-hazza, E. Abu-Nada, and M. Majeed \cite{12, 13}. The approach is based on the concept introduced by T. Singh and G. Heppler \cite{32}, which showed that a simple single-mode input-shapers can be used to eliminate vibrations in multimode systems provided that all ratios of the component mode frequencies to the design frequency of the input-shaper are odd and coprime. Model-based feedback is used to modulate the system frequencies to satisfy this characteristic.

Command-shaping control of cranes becomes more complex when simultaneous travel and hoist maneuvers are involved. Several methods have been proposed to produce shaped commands for crane maneuvers involving simultaneous travel and hoist including average operating frequency input-shaping \cite{33}, graphical profile generation \cite{34}, partial feedback linearization (PFL) \cite{35, 36}, wave-form profiles \cite{27}, iterative learning control \cite{37}, discrete-time command profiles \cite{38}, and output-based command shaping (OCS) technique \cite{39}. Others used the concept of equivalent frequency and the equivalent damping ratio to take into account the variable hoist length for optimal path planning \cite{40}. Most recently, an adaptive Kalman filter has been used to account for unmodeled disturbances such as friction in a model-based feedback crane control system \cite{41}.

S. Arabasi and Z. Masoud \cite{42} presented a frequency-modulation input-shaping control scheme that allows for simultaneous hoist and travel maneuvers of single-mode overhead cranes. The approach is based on the use of model-based feedback to match the simple-pendulum frequency to a single-mode input-shaper.

In this work, a frequency-modulation (FM) input-shaping strategy is presented for a double-pendulum crane undergoing simultaneous hoist and travel maneuvers. The FM technique uses model-based feedback with partial feedback linearization. The frequency-modulation stage is used to derive a design frequency such that both ratios of the double-pendulum frequencies to this design frequency are odd and coprime. Satisfying this condition enables the use of single-mode input-shaping to eliminate vibrations in both modes of the double-pendulum. The FM technique is used in conjunction with a primary single-mode input-shaper tuned to the derived design frequency. Different types of single-mode input-shapers can be utilized as primary input-shapers for the FM input-shaping strategy. In this work, The FM input-shaping strategy is simulated using primary zero-vibration (ZV) and zero-vibration-derivative (ZVD) input-shapers. It is important to emphasize that the main goal of the proposed FM input-shaping strategy is to facilitate the use of a single-mode input-shaping techniques for time-varying double-pendulum crane. The FM input-shaping strategy is nearly as fast and as robust as the primary input-shaping technique itself.

II. MATHEMATICAL MODEL

The overhead crane is modeled here as a double-pendulum with a variable length hoisting cable, as shown in Fig. 1. The payload of the crane is modeled as a rigid body of mass m attached to the end of a massless inextensible rigid cable of variable length ℓ. The distance from the end of the cable to the center of gravity of the payload is r. The nonlinear equations of motion of the model are derived using the Lagrangian approach. The position of the center of gravity of the payload changes according to

$$x = u - \ell \sin \phi_1 - r \sin \phi_2,$$ \hspace{1cm} (1)

$$y = -\ell \cos \phi_1 - r \cos \phi_2,$$ \hspace{1cm} (2)

where u is the motion of the crane jib. The kinetic and potential energies of the system are

$$T = \frac{1}{2} m \left(\dot{u} - \ell \sin \phi_1 - r \cos \phi_2 \right)^2 + \frac{1}{2} m \left(-\ell \cos \phi_1 + \ell \sin \phi_1 \dot{\phi}_1 + r \sin \phi_2 \dot{\phi}_2 \right)^2 + \frac{1}{2} J \dot{\phi}_2^2,$$ \hspace{1cm} (3)

$$V = m g (-\ell \cos \phi_1 - r \cos \phi_2),$$ \hspace{1cm} (4)

where $J = m k^2$ is the mass moment of inertia of the payload, and k is its radius of gyration. The nonlinear equations of motion of the payload are:

$$m \ddot{\phi}_1 = \ell \ell \sin \phi_1 \cos \phi_1 - m g \ell \cos \phi_1,$$ \hspace{1cm} (5)

$$m \ddot{\phi}_2 = \ell \ell \sin \phi_2 \cos \phi_2 - m g \ell \cos \phi_2.$$ \hspace{1cm} (6)
motion of the system are
\[
\begin{align*}
\ddot{\phi}_1 + \frac{r}{\ell} \cos(\phi_1 - \phi_2) \dot{\phi}_1 + 2 \frac{\dot{\phi}_1}{\ell}
&+ \frac{r}{\ell} \sin(\phi_1 - \phi_2) \ddot{\phi}_2 + \frac{g}{\ell} \sin \phi_1 = \frac{1}{\ell} \cos \phi_1 \ddot{u}, \\
\frac{r}{\ell} \cos(\phi_1 - \phi_2) \dot{\phi}_1 + \frac{k^2 + r^2}{\ell^2} \ddot{\phi}_2
&+ 2 \frac{r}{\ell} \cos(\phi_1 - \phi_2) \dot{\phi}_1 - \frac{r}{\ell} \sin(\phi_1 - \phi_2) \dot{\phi}_1^2 \\
&+ \frac{r}{\ell} \sin(\phi_1 - \phi_2) + \frac{gr}{\ell^2} \sin \phi_2 = \frac{r}{\ell} \cos \phi_2 \ddot{u}.
\end{align*}
\]
Using the small angle approximation in (5) yields the following simplified equations of motion
\[
\begin{align*}
\ddot{\phi}_1 + \frac{r}{\ell} \ddot{\phi}_2 + 2 \frac{\dot{\phi}_1}{\ell} \dot{\phi}_1 + \frac{g}{\ell} \phi_1 &= \frac{1}{\ell} \ddot{u}, \\
\frac{r}{\ell} \dot{\phi}_1 + \frac{k^2 + r^2}{\ell^2} \ddot{\phi}_2 + 2 \frac{\dot{\phi}_1}{\ell} \dot{\phi}_1 \\
&+ \frac{r}{\ell^2} \phi_1 + \frac{r}{\ell^2} (g - \ell) \dot{\phi}_2 = \frac{r}{\ell^2} \ddot{u}.
\end{align*}
\]

III. FREQUENCY-MODULATION

The goal of our FM input-shaping strategy is to derive a frequency (ω_c) using model-based feedback such that the frequencies of the feedback system satisfy the following:
\[
\begin{align*}
\omega_1 &= m_1 \omega_c, \\
\omega_2 &= m_2 \omega_c,
\end{align*}
\]
where m_1 and m_2 are both odd and coprime. Having the conditions in (7) satisfied, conventional single-mode input-shaping using ω_c as a design frequency, can be used to eliminate vibrations in both modes of the double-pendulum simultaneously [32].

Choosing $m_1 = 1$ and $m_2 = n$, (7) becomes
\[
\begin{align*}
\omega_1 &= \omega_c, \\
\omega_2 &= n \omega_c,
\end{align*}
\]
where $n = 3, 5, \ldots$ is an odd integer. Single-mode input-shapers are designed for a fixed design frequency. Therefore, a control law is required to eliminate the dependency of the model frequencies on the length of the cable and impose the condition in (8). To this end, we will suggest the following model-based feedback control system:
\[
\ddot{u} = -(a - \ell) \dot{\phi}_1 - b \dot{\phi}_1,
\]
where a and b are control parameters. To further simplify (6), and since $\ell \ll g$, it can be dropped out without compromising the integrity of the simplified model. Applying the control law in (9) to the simplified equations of motion of the system yields
\[
\begin{align*}
a \ell \dot{\phi}_1 + \ell r \ddot{\phi}_2 + (2 + b) \ell \dot{\phi}_1 + \ell g \phi_1 &= 0, \\
ar \ell \dot{\phi}_1 + (r^2 + k^2) \ddot{\phi}_2 + (2 + b) r \ell \dot{\phi}_2 + g r \phi_2 &= 0.
\end{align*}
\]
Setting the b parameter to $b = -2$, will eliminate the nonlinear damping term $\ell \dot{\phi}_1$. Substituting this value of the parameter b in (10), the characteristic equation of the system becomes
\[
\lambda^2 - \frac{k^2 + r^2 + ar}{ak^2} g \lambda + \frac{rg^2}{ak^2} = 0.
\]
Imposing the condition (8), the characteristic equation must satisfy the form
\[
\lambda^2 - (n^2 + 1) \omega_c^2 \lambda + n^2 \omega_c^4 = 0.
\]
Equating corresponding coefficients in (11) and (12) closed form solutions for the controller parameter a and the frequency ω_c can be derived as
\[
\begin{align*}
\omega_c^2 &= \frac{rg \left(n^2 + 1 \pm \sqrt{(n^2 - 1)^2 - 4r^2 n^2 / k^2}\right)}{2n^2 (k^2 + r^2)}, \\
a &= \frac{rg^2}{n^2 \omega_c^4 k^2}.
\end{align*}
\]
It can be observed that the design frequency ω_c is independent of the cable length, which results in a constant value for any given crane maneuver. This is a necessary condition for using conventional single-mode input-shaping techniques.

A block diagram describing the implementation of the FM technique on an input-shaped manually operated crane.
is shown in Fig. [2]. The raw command of the travel joystick (Signal 1) is passed through the input shaper to produce the shaped command (Signal 2). The shaped signal is passed to the model-based FM loop. Since the input-shaper is tuned to the design frequency \(\omega_c \) of the FM loop, residual oscillations in the output of the FM loop are eliminated. The FM command signal (Signal 3) of the FM loop is then used to drive the actual physical crane. Since the FM command eliminates residual oscillations of the nonlinear model in the FM loop (Signal 5), it will not excite residual oscillations in the physical system as well. The feedback command of the frequency modulator (9) receives hoisting information directly from the hoist joystick (Signal 4).

A major advantage in the proposed FM technique is that the design frequency \(\omega_c \) of the modulated system, and the feedback gains \((a \text{ and } b)\) of the model-based feedback loop are independent of the payload states and the crane maneuver commands and are fixed throughout the different crane maneuvers. The FM parameters are also independent of the input-shaping technique used. The frequency-modulation is performed simultaneously with the input-shaping process leading to seamless and uninterrupted crane operation.

IV. ILLUSTRATIVE EXAMPLE

To illustrate the performance of the proposed control strategy, an example will be demonstrated. The crane parameters are listed in Table I. Numerical simulations are performed using the full nonlinear model of the double-pendulum crane in [5].

A 3-m long rod is used to simulate the payload of the crane. The rod is hoisted from one of its ends in a vertical orientation allowing it to swing freely.

The frequency ratio of the uncontrolled double-pendulum model at the maximum cable length of 20 m, rounded to the nearest odd integer, is used as the design frequency \(n \). The choice of using the maximum cable length for determining the design frequency ratio is not a necessary condition for the proposed FM technique. However, this decision is made only to obtain a slower design frequency for smoother crane operations. The natural frequencies of the double-pendulum model at the maximum cable length are 0.675 rad/s and 4.59 rad/s. The frequency ratio is 6.81 which is rounded up to \(n = 7 \) for the required design frequency ratio.

Using (13), we calculated the design frequency to be \(\omega_c = 0.655 \) rad/s. This frequency will be used as the base frequency for the input-shapers used in this example. We calculated the feedback gain \(a \) by using (14) to be 21.32. For the sake of this example, we will use two of the most common single-mode input-shapers, namely; the zero-vibration (ZV) and zero-vibration-derivative (ZVD) input-shapers.

The impulse amplitude and the impulse time of the ZV and ZVD input-shapers [29] are

\[
\text{ZV} = \begin{bmatrix} A_i \\ t_i \end{bmatrix} = \begin{bmatrix} K \\ K \end{bmatrix},
\]

\[
\text{ZVD} = \begin{bmatrix} A_i \\ t_i \end{bmatrix} = \begin{bmatrix} 1+2K+K^2 \\ 1+2K+K^2 \end{bmatrix},
\]

where \(A_i \) is the impulse amplitude, \(t_i \) is the impulse time, \(\tau_d \) is the damped period of oscillation, and

\[
K = e^{-\zeta \sqrt{1-\zeta^2}},
\]

where \(\zeta \) is the damping ratio. Since the damping term has been eliminated by the control law, leading to \(K = 1 \). Therefore, shapers’ impulse matrices become

\[
\text{ZV} = \begin{bmatrix} 0.5 \\ 0 \end{bmatrix},
\]

\[
\text{ZVD} = \begin{bmatrix} 0.25 & 0.25 \\ 0 & 4.8 \end{bmatrix}.
\]

TABLE I. Crane parameters

Crane parameter	Maximum value
Jib acceleration	1 m/s²
Jib velocity	2 m/s
Hoisting acceleration	1 m/s²
Hoisting velocity	2 m/s
Hoisting cable length	20 m
A transfer maneuver simulating harsh joystick operator travel and hoist commands is presented in this example. The maneuver involves arbitrary hoisting between the 20-m and 3-m levels below the jib of the crane. All while performing a 40-m travel maneuver with an arbitrary velocity joystick command (Fig. 3(a)). The resulting payload motion trajectory is shown in Fig. 3(b).

The travel velocity command (Signal 1 in Fig. 2), the ZV shaping command (Signal 2 in Fig. 2), and the frequency-modulated ZV command (Signal 3 in Fig. 2), are shown in Fig. 4(a). The hoisting command (Signal 4 in Fig. 2) is not altered.

The FM-ZV process has a smoothing effect on the velocity command as can be seen in Fig. 4(a), which reduces jerks in the jib motion. In addition, frequency modulation does not add any delay to the joystick commands. The delay between the joystick command and the FM-ZV command is only due to the time added by the ZV input shaper. The oscillation angles of the hoisting cable ϕ_1 and the payload ϕ_2 in Fig. 3(b) and (c), are significantly reduced (approximately 85% reduction).

The transfer maneuver is repeated using the ZVD input-shaping matrix, $[19]$. Simulation results are shown in Fig. 5. Similar performance is achieved. By design, ZVD introduces a one-period time delay between the unshaped and shaped signal. This is to emphasize that frequency modulation does not add any time delay.

A small residual jib velocity is observed, Fig. 4(a) and Fig. 5(a). This residual velocity causes a small drift in the jib position. This residual velocity is attributed to the fact that the feedback in the FM loop does not always integrate to zero.

This residual velocity can be eliminated by applying brakes at the end of the transfer maneuver. However, the braking action may excite residual oscillations in the payload. To avoid exciting residual oscillations, the braking action applied is shaped according to the used input-shaping method, i.e., it is applied as a sequence of braking impulses. This split braking action is common in many applications. Fig. 6 and Fig. 7 show how braking eliminates the velocity drift without compromising the performance of the FM system.

V. SENSITIVITY ANALYSIS

In normal crane operations, payloads may vary in size and shape. Consequently, the location of the center of mass, r, and the radius of gyration, k, of the payload may vary significantly. Estimated values may include a large degree of uncertainty. Therefore, and since the FM gain, a, and the design frequency, ω, of the modulated system depend mainly on those parameters, it is essential that a sensitivity analysis is carried out to determine the extent of the impact of uncertainties in the payload parameters on the performance stability and robustness of the proposed FM input-shaping strategy.

In this section, residual oscillations in the payload and hoisting cable angles are studied for a wide range of uncertainties in r and k. Errors are introduced in the estimated values of r and k up to $\pm50\%$ of the design values that are used to determine the FM parameters. The cable length is varied from one to ten times the value of r.

The ZV input-shaping technique is known to be the least robust of the input-shaping techniques. Nevertheless, residual oscillations in both the hoisting cable and the payload angles using the proposed FM input-shaping strategy remain below 1° across the complete range of the introduced errors and for all cable lengths used, as shown in Fig. 8. Residual oscillations are most sensitive to uncertainties for short cable lengths. It is also observed that the residual oscillations...
are less sensitive to variations in the radius of gyration, \(k \), than they are to the location of the center of mass, \(r \), even beyond the shown \(\pm 50\% \) uncertainty range. This property of the FM input-shaping strategy is most convenient since determining an accurate estimate for the value of \(k \) requires more calculations than those required to determine the value of \(r \). As a matter of fact, the model is tolerant to uncertainties in \(r \) and \(k \) that the load can be treated as a rod regardless of its shape. Alternatively, the parameters \(r \) and \(k \) of the load can be determined through many ways including, visual inspection or a camera system among other methods.

Using a ZVD input-shaper, the FM input-shaping strategy produces even lower residual oscillations than those in the case of a ZV shaper. This result was expected since the ZVD is a more robust input-shaping technique than the ZV shaper. Residual oscillations in both the hoisting cable and the payload angles remain below \(0.75^\circ \) across the complete range of introduced errors and for all cable lengths used, as shown in Fig. 9.

Fig. 10 shows a reduction of more than 90\% in residual oscillation for the complete \(\pm 50\% \) error range, and more than 95\% reduction in an error range of \(\pm 35\% \), in both oscillation angles and for both payload parameters \(k \) and \(r \). As for the case of a ZVD input-shaper, a reduction of more than 95\% in residual oscillation for the complete \(\pm 50\% \) error range, as shown in Fig. 11.

VI. CONCLUSION
Eliminating residual oscillations in multimode systems using input-shaping techniques requires the use of complex multimode techniques. Multimode input-shaping techniques are designed to eliminate residual oscillation at predetermined set of discrete frequencies. The problem becomes more complicated when the frequencies of the multimode system are time-dependent as in the case of a double-pendulum crane with varying cable length presented in this work.

Single-mode input-shapers can be used to eliminate vi-
brations in multimode systems provided that there exists a design frequency such that all ratios of the component mode frequencies to that design frequency are odd and coprime. However, there are no guarantees that such a frequency exists. Using frequency-modulation, the system frequencies are modulated to the point where such a frequency is guaranteed to exist.

When it comes to dealing with time-dependent multimode systems, the proposed FM input-shaping strategy presented in this work shows two major advantages over traditional stand alone multimode input-shaping techniques. The first advantage is that only a single-mode input-shaping technique is required to eliminate oscillations in both modes of the double-pendulum crane. The second is that the FM system parameters are time-independent and do not have to be changed when the system frequencies change. This was demonstrated by simulations involving simultaneous travel and large and fast hoist maneuvers. Such advantages make the FM system simple to design and implement. Further, the fixed parameters advantage allows systems using input-shaping techniques to function seamlessly with operator in the loop.

The FM input-shaping strategy is independent of whichever primary input-shaping technique used. As a matter of fact, the response of the system is as robust as the primary input-shaping technique used. Thorough robustness analysis revealed very low sensitivity to uncertainties in the system parameters, namely payload size and shape.

REFERENCES

[1] N. Zmić, Z. Petković, Z., and S. Bošnjak, “Automation of Ship-To-Port Container Cranes: A Review of State-of-the-Art,” EME Transactions, vol. 33, pp. 111-121, 2005.
[2] E. Abdel-Rahman, A. Nayfeh, and Z. Masoud, “Dynamics and Control of Cranes: A Review,” Journal of Vibration and Control, vol. 9, pp. 863-908, 2003.
[3] Z. Masoud, A. Nayfeh, and A. Al-Mousa, “Delayed Position-Feedback Controller for the Reduction of Payload Pendulations of Rotary Crane,” Journal of Vibration and Control, vol. 9, pp. 257-277, 2003.
[4] Z. Masoud, A. Nayfeh, and D. Mook, “Cage Pendulation Reduction of Ship-Mounted Cranes,” Nonlinear Dynamics, vol. 35, no. 3, pp. 299-311, 2004.
[5] Z. Masoud, M. Daqaq, and N. Nayfeh, “Pendulation Reduction on Small Ship-Mounted Telescopic Cranes,” Journal of Vibration and Control, vol. 10, no. 8, pp. 1167-1179, 2004.
[6] Z. Masoud, A. Nayfeh, and N. Nayfeh, “Sway Reduction on Quay-Side Container Cranes Using Delayed Feedback Controller: Simulations and Experiments,” Journal of Vibration and Control, vol. 11, no. 8, pp. 1103-1122, 2005.
[7] M. Kenison and W. Singhose, “Input Shaper Design for Double-Pendulum Planar Gantry Cranes,” in Proceedings of the 1999 IEEE International Conference on Control Applications, Kohala Coast, HI, 1999, pp. 539-544.
[8] T. H. Hsu, “Control of a Chaotic Double Pendulum Model for a Ship Mounted Crane,” Ph.D. Dissertation, Virginia Polytechnic Institute and State University, Blacksburg, VA, 2000.
[9] D. Liu, W. Guo, and J. Yi, “GA-Based Composite Sliding Mode Fuzzy Control Double-Pendulum-Type Overhead Crane,” in Proceedings of the Second International Conference on Fuzzy Systems and Knowledge Discovery, Changsha, China, 2005, pp. 792-801.
[10] D. Kim and W. Singhose, “Reduction of double-pendulum bridge crane oscillations.” in Proceedings of the 8th International Conference on Motion and Vibration Control, Daejeon, Korea, 2006, pp. 300–305.
[11] A. Ahmad, R. Ismail, M. Ramli, and N. Hambali, “Investigations of NCTF with input shaping for sway control of a double-pendulum-type overhead crane,” in Proceedings of 2nd International Conference on Advanced Computer Control (ICACC), Shenyang, China, 2010, pp. 456-461.
[12] Z. Masoud, K. Alhazza, E. Abu-Nada, and M. Majeed, “A Hybrid command-shaper for double-pendulum overhead cranes,” Journal of Vibration and Control, vol. 20, no. 1, pp. 24-37, 2014.
[13] Z. N. Masoud and K. A. Alhazza, “Frequency-modulation input shaping control of double-pendulum overhead cranes,” Journal of Dynamic Systems, Measurement, and Control, vol. 136, no. 2, p. 021005, 2014.
[14] W. Singhose, D. Kim, and M. Kenison, “Input shaping control of double-pendulum bridge crane oscillations,” ASME Journal of Dynamic Systems, Measurement, and Control, vol. 130, no. 3, p. 034504, 2008.
[15] D. Kim and W. Singhose, “Performance Studies of Human Operators Driving Double-Pendulum Bridge Cranes,” Control Engineering Practice, vol. 18, pp. 567-576, 2010.
[16] M. A. Ahmoud, R. M. T. R. Ismail, M. S. Ramli, A. N. K. Nasir, N. A. Ghanji, and N. H. Noordin, “Comparison of input shaping techniques for sway suppression in a double-pendulum-type overhead crane,” in Computer Modeling and Simulation, EMS 09, Third UKSim European Symposium, 2009, pp. 321–326.
[17] J. Vaughan, D. Kim, and W. Singhose, “Control of tower cranes with double-pendulum payload dynamics,” IEEE Transactions on Control Systems Technology, vol. 18, no. 6, pp. 1345-1358, 2010.
[18] H. I. Jaafar, Z. Mohamed, N. A. Mohd Subha, A. R. Hussain, F. S. Ismail, L. Ramli, M. O. Tokhi, and M. A. Shamsudin, “Efficient control of a non-linear double-pendulum overhead crane with sensorless payload motion using an improved PSO-tuned PID controller,” Journal of Vibration and Control, vol. 25, no. 4, pp. 907-921, 2019.
[19] S. Tanaka and S. Kouno, “Automatic measurement and control of the attitude of crane lifting: Lifter-attitude measurement and control,” Control Engineering Practice, vol. 6, no. 9, pp. 1099-1107, 1998.
[20] S. Lahres, H. Aschemann, O. Sawodny, and E. P. Hofer, “Crane automation by decoupling control of a double pendulum using two translational actuators,” in American Control Conference, 2000, vol. 2, pp. 1052-1056.
FIGURE 8. Sensitivity of residual oscillations using ZV-shaped commands in (a) ϕ_1 and (b) ϕ_2 to uncertainties in k, and in (c) ϕ_1 and (d) ϕ_2 to uncertainties in r.

FIGURE 9. Sensitivity of residual oscillations using ZVD-shaped commands in (a) ϕ_1 and (b) ϕ_2 to uncertainties in k, and in (c) ϕ_1 and (d) ϕ_2 to uncertainties in r.
FIGURE 10. Percentage sensitivity of residual oscillations using ZV-shaped commands in (a) ϕ_1 and (b) ϕ_2 to uncertainties in k, and in (c) ϕ_1 and (d) ϕ_2 to uncertainties in r.

References:

[21] R. Mar, A. Goyal, V. Nguyen, T. Yang, and W. Singhose, "Combined input shaping and feedback control for double-pendulum systems," Mechanical Systems and Signal Processing, vol. 85, pp. 267-277, 2017.

[22] M. Zhang, X. Ma, X. Rong, X. Tian, and Y. Li, "Adaptive tracking control for double-pendulum overhead cranes subject to tracking error limitation, parametric uncertainties and external disturbances," Mechanical Systems and Signal Processing, vol. 76, pp. 15-32, 2016.

[23] N. Singer and W. Seering, "Preshaped Command Inputs to Reduce System Vibrations," ASME Journal of Dynamic Systems, Measurement, and Control, vol. 112, pp. 76-82, 1990.

[24] O. J. M. Smith, "Posicast control of damped oscillatory systems," Proceedings of the IRE, vol. 45, no. 9, pp. 1249-1255, 1957.

[25] O. J. M. Smith, Feedback Control Systems. New York, NY: McGraw-Hill, 1958.

[26] K. Alhazza and Z. Masoud, "A Novel Wave-Form Command-Shaping Control with Application on Overhead Cranes," in Proceedings of the ASME 2010 Dynamic Systems and Control Conference, Cambridge, MA, 2010.

[27] K. A. Alhazza, "Experimental and numerical validation on a continuous modulated wave-form command shaping control considering the effect of hoisting," in ASME 2013 International Design Engineering Technical Conferences (IDETC) and Computers and Information in Engineering Conference (CIE), 2013.

[28] Z. N. Masoud and K. A. Alhazza, "A smooth multimode waveform command shaping control with selectable command length," Journal of Sound and Vibration, vol. 397, pp. 1-16, 2017.

[29] J. Vaughan, A. Yano, and W. Singhose, "Comparison of robust input shapers," Journal of Sound and Vibration, vol. 315, pp. 797-815, 2008.

[30] W. Singhose, "Command shaping for flexible systems: A review of the first 50 years," International journal of precision engineering and manufacturing, vol. 10, no. 4, pp. 153–168, 2009.

[31] W. Singhose, E. Crain, and W. Seering, "Convolved and Simultaneous Two-Mode Input-Shapers," IEEE Control Theory and Applications, vol. 144, pp. 515-520, 1997.

[32] T. Singh and G. R. Heppler, "Shaped Input Control of a System With Multiple Modes," ASME Journal of Dynamic Systems, Measurement, and Control, vol. 115, pp. 341-347, 1993.

[33] W. Singhose, L. Porter, M. Kenison, and E. Kriikku, "Effects of hoisting on the input shaping control of gantry cranes," Control engineering practice, vol. 8, no. 10, pp. 1159-1165, 2000.

[34] Z. N. Masoud and M. F. Daqaq, "A graphical approach to input-shaping control design for container cranes with hoist," IEEE Transactions on Control Systems Technology, vol. 14, no. 6, pp. 1070-1077, 2006.

[35] H. Park, D. Chwa, and K. Hong, "A feedback linearization control of container cranes: Varying rope length," International Journal of Control Automation and Systems, vol. 5, no. 4, p. 379, 2007.

[36] T. A. Le, S.-G. Lee, and S.-C. Moon, "Partial feedback linearization and sliding mode techniques for 2D crane control," Transactions of the Institute of Measurement and Control, vol. 36, no. 1, pp. 78-87, 2014.

[37] K. A. Alhazza, A. M. Hasan, K. A. Alghanim, and Z. N. Masoud, "An iterative learning control technique for point-to-point maneuvers applied on an overhead crane," Shock and Vibration, vol. 2014, 2014.

[38] K. A. Alghanim, K. A. Alhazza, and Z. N. Masoud, "Discrete-time command profile for simultaneous travel and hoist maneuvers of overhead cranes," Journal of Sound and Vibration, vol. 345, pp. 47-57, 2015.

[39] A. M. Abdallah, Z. Mohamed, M. S. Zainal Abidin, S. Buyamin, and A. A. Bature, "Output-based command shaping technique for an effective payload sway control of a 3D crane with hoisting," Transactions of the Institute of Measurement and Control, vol. 39, no. 10, pp. 1443-1453, 2016.

[40] Y. Zhou, X. Zhang, Z. Yu, D. Schott, and G. Lodewijks, "An improved zero vibration method and parameter sensitivity analysis for the swing control of bridge-type grab ship unloader," in Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, vol. 230, no. 14, pp. 2463-2472, 2016.

[41] J. Kim, B. Kiss, D. Kim, and D. Lee, "Tracking Control of Overhead Crane Using Output Feedback With Adaptive Unscented Kalman Filter and Condition-Based Selective Scaling," IEEE Access, vol. 9, pp. 108628-108639, 2021.

[42] S. Arabasi and Z. Masoud, "Simultaneous Travel and Hoist Maneuver In-
FIGURE 11. Percentage sensitivity of residual oscillations using ZVD-shaped commands in (a) ϕ_1 and (b) ϕ_2 to uncertainties in k, and in (c) ϕ_1 and (d) ϕ_2 to uncertainties in r.

put Shaping Control Using Frequency Modulation," Shock and Vibration, vol. 2017, 2017.

SAMEER ARABASI is an Associate Professor of Physics at the German Jordanian University. He received a B.S. degree in Electrical Engineering from the University of Jordan, Amman, Jordan in 1999, an M.S. degree in Applied Physics from the University of North Carolina at Charlotte, Charlotte, NC, USA in 2001, and a Ph.D. degree in Physics from Virginia Tech, Blacksburg, VA, USA in 2008. From 2010 to 2011, he was a post-doctoral fellow at McGill University in Montreal, QC, Canada. His research interests include optics, physics education, and multimode systems.

ZIYAD MASOUD is a Professor of Mechanical Engineering at the German Jordanian University. He received his Ph.D. degree in Engineering Mechanics from Virginia Tech, Blacksburg, Virginia, USA in 2000. His current research interests include nontraditional control systems for commercial cranes, and vibration control of multimode systems.
