Metabolite profile of Bambara groundnut (Vigna subterranea) and dawadawa (an African fermented condiment) investigation using gas chromatography high resolution time-of-flight mass spectrometry (GC-HRTOF-MS)

Janet Adeyinka Adebiyi a,*, Patrick Berka Njobeh b, Oluwafemi Ayodeji Adebo a, Eugenie Kayitesi b,**

a Department of Biotechnology and Food Technology, Faculty of Science, University of Johannesburg, PO Box 17011, Doornfontein Campus, Gauteng, South Africa
b Department of Consumer and Food Sciences, Faculty of Natural and Agricultural Sciences, University of Pretoria, Private Bag X20, Hatfield 0028, Pretoria, South Africa

ARTICLE INFO

Keywords:
Fermented condiment
GC-HRTOF-MS
Legume
Metabolites
Profiling

ABSTRACT

Metabolite profile provides an overview and avenue for the detection of a vast number of metabolites in food sample at a particular time. Gas chromatography high resolution time-of-flight mass spectrometry (GC-HRTOF-MS) is one of such techniques that can be utilized for profiling known and unknown compounds in a food sample. In this study, the metabolite profiles of Bambara groundnut and dawadawa (unhulled and dehulled) were investigated using GC-HRTOF-MS. The presence of varying groups of metabolites, including aldehydes, sterols, ketones, alcohols, nitrogen-containing compounds, furans, pyridines, acids, vitamins, fatty acids, sulphur-related compounds, esters, terpenes and terpenoids were reported. Bambara groundnut fermented into derived dawadawa products induced either an increase or decrease as well as the formation of some metabolites. The major compounds (with their peak area percentages) identified in Bambara groundnut were furfuryl ether (9.31%), bis (2-(dimethylamino)ethyl) ether (7.95%), 2-monopalmitin (7.88%), hexadecanoic acid, methyl ester (6.98%), 9,12-octadecadienoic acid (Z,Z) and 2-hydroxy-1-(hydroxymethyl)ethyl ester (5.82%). For dehulled dawadawa, the significant compounds were palmitic acid, ethyl ester (17.7%), lauric acid, ethyl ester (10.2%), carbonic acid, 2-(2-dimethylaminoethyl) 2-methoxyethyl ester (7.3%), 9,12-octadecadienoic acid (Z,Z)-, 2-hydroxy-1-(hydroxymethyl)ethyl ester (5.13%) and maltol (4%), while for undeveloped dawadawa, it was indoline, 2-(hydroxydiphenylmethyl) (26.1%), benzoic acid, 4-amino-4-hydroximino-2,2,6,6-tetramethyl-1-piperidinyl ester (8.2%), 2-undecen-4-ol (4.7%), 2-methylbutyl propanoate (4.7%) and €-tocopherol (4.3%). These observed metabolites reported herein provides an overview of the metabolites in these investigated foods, some of which could be related to nutrition, bioactivity as well as sensory properties. It is important to emphasize that based on some of the metabolites detected, it could be suggested that Bambara groundnut and derived dawadawa might serve as functional foods that are beneficial to health.

1. Introduction

Fermentation is a biochemical process that results in modifications (increase/decrease) as well as formation (synthesis) of metabolites. These metabolites contribute to the nutritional qualities, taste, shelf life, safety, aroma, health promoting properties and overall composition of fermented foods. Traditionally, these fermented foods are produced from legumes or cereals and undergo various forms of fermentation, such as alkali fermentation, lactic acid fermentation, acetic acid fermentation and alcoholic fermentation (Oliveira et al., 2014). The fermentation process whereby the pH of a legume increases to alkaline levels and possibly pH values of 9 and above is known as alkaline fermentation (Omafuvbe et al., 2002) and such is due to breakdown of proteins to ammonia, peptides and amino acids (Wang and Fung, 1996; Kiers et al., 2000).

In African and Asian countries, several alkaline fermented food condiments, such as dawadawa, thua-nao, iru, natto and soumbala, are mostly produced from legumes and from Bambara groundnut (Fadahunsi and
2. Materials and methods

Consumers of these products.

Monitoring of these metabolic, biochemical, physicochemical and structural changes occurring during the fermentation process may be somewhat difficult, necessitating the utilization of techniques and robust equipment, which can provide a better overview of these metabolites. Gas chromatography–mass spectrometry is a non-biased, comprehensive and sensitive technological system used for the detection of diverse volatile and semi-volatile metabolites (Adebo et al., 2021). It has advantages of better resolution, high sensitivity, good reproducibility and, with the necessary databases, makes identification of compounds relatively easier (Hu et al., 2018). Particularly for gas chromatography coupled with high-resolution time of flight mass spectrometry, it is a powerful and highly effective analytical tool with excellent capabilities including a better chromatographic separating capability over a wide mass range with an accurate mass measurement (Brits et al., 2018; Kewuyemi et al., 2020). The exact mass information and mass resolution provided by high-resolution time-of-flight mass spectrometry (HR-TOFMS) can enhance target identification of compound and also assist in the identification of unknown compounds (Ubukata et al., 2015).

While few authors have studied the composition of dawadawa (Akanni et al., 2018a; Onyenekwe et al., 2012; Adebiyi et al., 2019), there is still no study providing a comparison of the metabolite profile of two types of dawadawa (dehulled and unhulled) from Bambara groundnut (BGN) obtained through natural fermentation. Thus, this study was aimed to profile metabolites in BGN and dawadawa (dehulled and unhulled) using GC-HRTOF-MS, envisaging that the metabolites would be beneficial to consumers of these products.

2. Materials and methods

2.1. Raw materials and sample preparation

Bambara groundnuts (mixed varieties) (i.e. brown, cream and red) used in this study were procured from a local farmer in Limpopo Province, South Africa. These were subsequently sorted to remove extraneous material or debris and cleaned with water.

2.2. Fermentation of Bambara groundnut into dawadawa

The production of dawadawa, raw legume seeds are soaked, manually dehulled and boiled to soften the seeds. The boiled softened raw seeds are wrapped with leaves (such as banana leaves), kept in sacks or bags and incubated in a plastic bowl/calabash/earthen pot for three to five days (the fermentation period is usually based on human discretion) (Onawola et al., 2012). The most important and major processing step for this product is fermentation and has been proven to enhance the organoleptic and beneficial health properties of fermented legumes (Oboh et al., 2009; Ademiluyi and Oboh, 2011; Chinna et al., 2020).

From the data obtained, peak picking, retention time alignment, peak matching and detection were done on the ChromaTOF-HRT® software (Gerstel Inc. Germany) and subsequent sample analyses done using the method of Adebiyi et al. (2019). The samples were then analyzed on the GC-HRTOF-MS system equipped with an Agilent 7890A (Agilent Technologies, Inc., Wilmington, DE, USA) gas chromatograph running in a high-resolution. This was coupled to a Gerstel MPS multipurpose autosampler (Gerstel Inc. Germany) and analytical column was a Rxi-®5ms (30 m × 0.25 mm ID × 0.25 μm) (Restek, Bellefonte, USA). One micro-litre (μL) of each sample was injected (in a splitless mode) with helium as the carrier gas at a constant flow rate (1 mL/min). The transfer line and inlet temperatures were 225 °C and 250 °C respectively. The oven temperature was initially set at 70 °C, held for 0.5 min, ramped at 1 °C/min to 150 °C and held for 2 min. The oven temperature was later ramped at 10 °C/min to 330 °C and held for 3 min Triplicate extraction for each sample were respectively injected once into the GC-HR-TOF-MS equipment as well as solvent blanks to observe impurities and possible contamination.
Table 1. Metabolites identified in Bambara groundnut and dawadawa (dehulled and unhulled) samples.

t_R (min)	Compound name and metabolite class	Observed m/z	m/z fragments	MF	Percentage peak areas		
				BGN	DD	UHD	
04:47	6-Methylbicyclo[2.2.1]hept-2-ene-5-carboxylic acid	122.4808	65.9583, 105.1135	C_6H_8O_2	ND	ND	4.69
06:27	1-Hydroxyoctahexanecarboxylic acid	131.6358	68.0502, 98.9424	C_8H_12O_3	ND	ND	3.46
05:03	2-undecen-4-ol	192.9805	71.0490, 131.0703	C_11H_22O	ND	1.98	4.70
06:02	Maltol	126.0312	55.0180, 71.0128	C_6H_10O_3	4.85	4.00	ND
06:03	Phenylethyl alcohol	122.0728	91.0544, 122.0728	C_8H_10O	ND	1.36	ND
17:00	1-Hexadecanol	196.2187	55.0544, 83.0856	C_{16}H_{34}O	0.10	ND	ND
08:11	a-Ethylidenebenzeneacetalddehyde	146.0728	115.0544, 138.0913	C_9H_14O	ND	0.06	ND
14:13	1-Naphthalenamine, N-ethyl	171.1045	129.0702, 156.0810	C_{10}H_{12}N	ND	0.12	ND
12:12	N-acetylphenethylamine	163.0994	30.0342, 104.0623	C_{12}H_{14}NO	ND	0.62	ND
13:20	p-Aminobiphenyl	169.0888	141.0700, 167.0733	C_{12}H_{14}N	ND	0.12	ND
07:53	Benzene, 1,3-bis(1,1-dimethylethyl)-	190.1711	124.0756, 175.1482	C_{12}H_{14}	ND	0.04	ND
10:13	Benzeneethanamine, a-(phenylmethyl)-	208.2062	92.0622, 103.0544	C_{15}H_{18}O	ND	0.49	ND
24:55	Benzeneethanamine, 2-fluoro-3,4-dihydroxy-N-isopropyl-	226.2167	59.0367, 72.0445	C_{11}H_{16}FNO_3	0.66	0.21	ND
03:55	Benzoic acid, 4-amino-, 4-hydroximino-2,2,6,6-tetramethyl-1-piperidinyl ester	120.4566	80.4620, 83.5630	C_{16}H_{23}N_3O_3	ND	ND	8.23
06:56	Benzofenac methyl ester	174.1069	61.0106, 91.0211	C_{16}H_{18}O	0.05	ND	ND
07:08	Benzoic acid, 4-amino-, 4-acetoxy-2,2,6,6-tetramethyl-1-piperidinyl ester	153.0501	107.1252, 120.4566	C_{18}H_{26}N_2O_4	0.17	ND	1.23
08:27	Cyclobutanecarboxylic acid, 2-dimethylaminooctyl ester	151.1098	58.0653, 71.0730	C_{19}H_{36}N_2O_2	ND	0.38	ND
09:18	Propanoic acid, 2-methyl-, 2,2-dimethyl-1-(1-methylethyl)-1,3-propanediyl ester	329.0325	43.0543, 71.0492	C_{12}H_{24}O_3	0.33	ND	ND
09:37	Propanoic acid, 2-methyl-, 3-hydroxy-2,2,4-trimethylpentyl ester	174.1206	71.0492, 89.0598	C_{12}H_{24}O_3	0.33	ND	ND
08:19	Fumaric acid, ethyl 2,3,5-trichlorophenyl ester	167.1065	99.0442, 127.0390	C_{12}H_{14}Cl_2O_4	0.07	ND	0.57
10:19	Fumaric acid, monoamidate, N,N-dimethyl-, 3-chlorophenyl ester	185.0676	98.0602, 126.0552	C_{13}H_{20}Cl_2O_4	ND	0.16	ND
11:04	Phthalic acid, 3,4-dichlorophenyl methyl ester	194.0571	77.0386, 163.0392	C_{13}H_{18}O_3	0.22	ND	ND
11:04	Phthalic acid, methyl 4-(2-phenylprop-2-yl)phenyl ester	283.0486	103.0139, 163.0077	C_{13}H_{20}O_3	0.10	ND	0.33
11:08	4-Butylbenzoic acid, 2-dimethylaminooctyl ester	161.1200	58.0653, 71.0731	C_{12}H_{14}NO_2	ND	0.19	ND
12:02	3,4-Dimethyl-2-(3-methyl-butyl)-benzoic acid, methyl ester	208.5497	54.5083, 191.4042	C_{13}H_{20}O_3	ND	3.42	ND
12:33	Ethyl 2-cyano-3-methylbutanoate	153.9684	68.0387, 82.5285	C_{12}H_{16}N_2O_2	0.08	ND	0.61
12:42	6-Methoxyhexyl 2-methylbutylate	180.2445	121.4904, 165.0691	C_{12}H_{24}O_3	ND	0.42	ND
13:23	Phthalic acid, monoamidate, N-ethyl-N-(3-methylphenyl), ethyl ester	194.0570	149.0235, 177.0545	C_{13}H_{20}O_3	0.04	ND	ND
13:25	Butyric acid, thio-, 5-hexyl ester	194.1546	73.0543, 71.0492	C_{12}H_{18}OS	ND	0.23	ND
14:42	Fumaric acid, butyl 2-phenylethyl ester	267.9997	104.0623, 203.0943	C_{13}H_{20}O_3	ND	0.33	ND
16:43	Ethyl 13-methyl-tetradecanoate	270.2554	88.0520, 101.0599	C_{13}H_{26}O_2	ND	0.17	ND
16:56	Phthalic acid, heptyl tridec-2-yn-1-yl ester	460.9532	57.0701, 149.0236	C_{13}H_{22}O_4	0.42	ND	ND
17:45	Benzenepropanoic acid, 3,5-bis(1,1-dimethylethyl)-4-hydroxy-, methyl ester	292.0385	147.0808, 277.1799	C_{13}H_{24}O_3	0.02	ND	ND
17:55	DL-Alanine, N-methyl-N-(byt-3-yn-1-yloxycarbonyl), tridecyl ester	224.1825	86.0966, 154.0738	C_{13}H_{24}NO_4	ND	1.67	ND

(continued on next page)
t_R (min)	Compound name and metabolite class	Observed m/z	m/z fragments	MF	Percentage peak areas			
17:57	Phthalic acid, 8-chlorooctyl nonyl ester	236.2140	148.8379, 205.4445	C₂₅H₃₉ClO₄	0.56	0.94	0.30	
17:57	Phthalic acid, 2-chloropropyl heptyl ester	224.0991	149.0235, 205.0860	C₁₈H₂₅ClO₄	0.53	ND	0.28	
18:58	Phthalic acid, 8-chlorooctyl decyl ester	224.1005	103.0392, 149.0235	C₂₆H₄₁ClO₄	0.57	0.33	0.60	
20:10	Fumaric acid, 2,6-dimethoxyphenyl dodec-2-en-1-yl ester	213.1026	68.0386, 153.9559	C₂₄H₃₄O₆	ND	1.10	2.60	
22:28	L-Proline, N-valeryl-, decyl ester	219.0079	55.1733, 84.0285	C₂₀H₃₇NO₃	ND	ND	ND	
20:10	2-Methylbutyl propanoate	142.8595	56.5643, 70.0906	C₈H₁₆O₂	ND	ND	4.68	
24:00	Octanoic acid, 2-dimethylaminoethyl ester	218.0598	58.0652, 72.0808	C₂₆H₄₁NO₂	0.47	0.11	0.62	
24:29	2-Methylbutyl propanoate	142.8595	56.5643, 70.0906	C₈H₁₆O₂	ND	ND	4.68	
25:30	Succinic acid, 2-chloro-6-fluorophenyl phenethyl ester	400.9841	105.0699, 279.2308	C₁₈H₁₆ClFO₄	ND	0.32	ND	
25:37	Carbonic acid, 2-dimethylaminoethyl isobutyl ester	186.1471	58.0652, 71.0729	C₉H₁₉NO₃	0.21	0.27	ND	
29:25	Urs-12-en-24-oic acid, 3-oxo-, methyl ester, (+)-	427.3893	189.1643, 218.2032	C₃₁H₄₈O₃	0.14	ND	ND	
30:39	Olean-12-en-28-oic acid, 3-oxo-, methyl ester	452.3664	203.1796, 262.1931	C₃₁H₄₈O₃	0.74	ND	ND	
Fatty acid ethyl esters								
17:08	Pentadecanoic acid, ethyl ester	270.2552	88.0520, 101.0599	C₁₇H₃₄O₂	ND	0.25	ND	
18:00	9-hexadecenoic acid, ethyl ester	270.2552	88.0520, 101.0599	C₁₈H₃₄O₂	ND	0.26	ND	
18:14	Lauric acid, ethyl ester	282.2556	69.0699, 88.0521	C₁₄H₂₈O₂	ND	10.15	ND	
23:29	Stearic acid, ethyl ester	312.3026	58.0135, 71.7611	C₁₉H₃₆O₂	0.37	0.16	ND	
Fatty acid methyl esters								
15:59	Myristic acid, methyl ester	256.2399	88.0520, 101.0599	C₁₆H₃₂O₂	ND	0.75	ND	
17:30	Hexadecanoic acid, methyl ester	270.2556	74.0363, 87.0442	C₁₈H₃₄O₂	ND	6.98	ND	
19:15	9,12-Octadecadienoic acid, methyl ester	294.2561	81.0699, 95.0858	C₁₉H₃₆O₂	2.55	ND	ND	
19:19	trans-13-Octadecenoic acid, methyl ester	296.2714	55.0543, 74.0363	C₁₉H₃₆O₂	0.73	ND	ND	
23:00	Cerotic acid, methyl ester	356.3559	74.0363, 87.0442	C₂₁H₄₀O₂	ND	1.41	ND	
Fatty acid								
18:05	Palmitic acid	256.2404	60.0207, 73.0284	C₁₆H₃₂O₂	4.03	ND	ND	
Fatty acid derivatives								
20:29	Myristic acid amide	227.2204	59.0367, 72.0445	C₁₇H₃₂NO	ND	1.04	ND	
22:55	2-monopalmitin	331.2852	104.0738, 128.5062	C₁₉H₃₈O₄	7.88	3.65	ND	
Furans								
03:35	Furanoeudesma-1,4-diene	108.0683	47.0327, 64.0181	C₁₂H₁₆O	ND	1.50	ND	
07:46	3-Butene-1,2-diol, 1-(2-furanyl)-	128.0357	49.0073, 97.0286	C₉H₈O₃	2.39	1.90	0.32	
19:45	Furfuryl ether	176.0922	81.0335, 143.0342	C₂₀H₃₂O₄	9.31	ND	ND	
Ketones								
04:09	Hex-4-yn-3-one	95.8902	67.0060, 68.0471	C₆H₁₀O	ND	ND	1.02	
06:02	3-Acetoxy-2-methyl- pyran-4-one	129.0913	71.0128, 126.0312	C₇H₁₄O₄	3.57	3.67	ND	
tR (min)	Compound name and metabolite class	m/z	m/z fragments	MF	Percentage peak areas			
---------	-----------------------------------	-----	---------------	----	-----------------------			
07:41	2-Coumaranone	134.0346	78.0464, 106.0414	C8H6O2	ND	0.12	ND	
08:44	Ethanone, 1-(2-hydroxy-5-methylphenyl)-	150.0677	107.0493, 135.0442	C8H8O2	0.44	0.30	ND	
09:47	7-Chloro-1,3,4,10-tetrahydro-10-hydroxy-1-[(2-[1-pyrrrolidinyl]ethyl)imino]-3-[3-[(trifluoromethyl)phenyl]-9(2H)-acridinone	268.9973	84.0809, 132.0548	C12H11ClF3N2O2	0.91	0.15	3.75	
11:04	2-(6-Chloro-3-nitro-phenylquinolin-2-ylmethyl)-1-(2,3-dihydro-benzo[1,4]dioxin-6-yl)-ethanone	194.0574	132.5996, 163.0307	C9H10O2	ND	0.12	0.36	
17:32	7,9-Di-tert-butyl-1-oxaspiro(4,5)deca-6,9-diene-2,8-dione	276.1718	175.1191, 205.0861	C12H16O3	0.11	0.11	ND	
23:20	2-methoxy-2,6-dimethoxy-4-phenyl-quinoline	380.0489	208.0519, 341.0657	C17H24O3	ND	0.08	ND	
04:48	Indolone, 2-(hydroxydiphenylmethyl)-	314.5135	103.0505, 118.4013	C12H18N2O	ND	ND	26.11	
07:34	Indole, 3-(2-(diethylamino)ethyl)-	130.6049	85.5892, 129.5840	C10H16N2	ND	ND	0.16	
03:45	N-[3,3'-dimethoxy-4-[(2-piperidin-1-ylacetamido)-biphenyl-4-yl]-2-piperidin-1-yl-acetamide	128.0471	93.0701, 96.0364	C8H18N2O4	0.55	5.14	ND	
05:50	Succinic anhydride	102.0283	36.5607, 55.5498	C4H4O3	ND	ND	6.71	
06:22	Decamethylcyclpentasiloxane	358.0680	73.0469, 266.9992	C10H24O5Si5	ND	ND	0.32	
06:27	N,N-Dimethylglyoxime	103.0631	42.0338, 58.0653	C4H8N2O2	ND	ND	0.62	
06:39	1H-imidazole-4-methanol	98.0364	69.0335, 72.0364	C4H6N2O	ND	ND	2.31	
06:52	Thiourea, N-(3-methyl-2-pyridinyl)-N’-[(tetrahydro-2-furanyl)methyl]-	332.0663	44.0733, 150.0677	C12H18N2O4S	ND	ND	0.12	
07:32	Catecholborane	120.0570	100.0759, 148.0994	C8H6O2	ND	ND	0.71	
07:42	2-Benzoxazolamine, N-(1,1-dimethylethyl)-	153.9813	105.0764, 133.6238	C9H14N2O	ND	ND	0.32	
08:43	Dodecamethylcyclohexasiloxane	434.0840	73.0468, 314.0179	C14H24O6Si6	ND	ND	1.69	
08:44	Phenyl-1,2-diamine, N,4,5-trimethyl-	149.8967	106.1084, 134.6487	C8H12N2O2	ND	ND	0.36	
09:53	Benzaldehyde, 3-methoxy-4-[2-(methylphenyl)imino]-	195.1248	105.0701, 132.0810	C12H18N2O	ND	ND	1.00	
11:15	4,4’-Dichlorobenzyl ether	158.0202	91.0312, 93.0280	C8H18Cl2O	ND	ND	0.03	
11:40	Tetradecamethylcycloheptasiloxane	508.0104	73.0467, 281.0513	C20H34O7Si7	ND	ND	1.72	
11:50	Tetradationium Bromide	165.0703	58.0653	C12H18BrN2	0.13	ND	ND	
12:58	2,3,5,6-Tetrafluoroanisole	180.0782	137.0569, 165.0548	C8H8F4O2	ND	ND	0.23	
12:14	3-Methyl-4-phenyl-1H-pyrole	157.0886	127.5468, 155.9884	C10H11N	ND	ND	1.12	
13:24	2-propynenitrile, 3-fluoro-	69.0591	53.4495, 81.5012	C3FN	0.64	1.03		
14:20	Hexadecamethylcyclooctasiloxane	580.1260	73.0468, 355.0702	C20H36O8Si8	ND	1.71	1.53	
17:09	2,7-Dimethylcarbazole	195.1039	140.0702, 167.0726	C12H16N2	ND	ND	1.43	
17:50	1-Methyl-2,5-dipropylidenehydroquinoline	195.4010	86.6185, 166.1360	C8H14N2O	ND	ND	0.15	
19:41	2-(1-Pyrrolidinyl)ethenyl 4-propoxyacetic acid	238.7279	83.5285, 96.8998	C10H18N2O4	ND	ND	0.43	
19:42	Monoethanolamine stearic acid amide	282.2785	85.0523, 98.0602	C12H18N2O2	0.31	ND	ND	
20:47	3-Cyclohexylpropanoic acid, N,N-dimethyl-	170.1547	45.0574, 87.0680	C8H16NO	0.72	0.12	ND	
22:07	Pyrrole	1,2-diphenylbenzene-1,4-dione, hexahydro-3-(phenyloxymethyl)-	244.1207	125.0709, 153.0660	C12H14N2O3	ND	0.22	ND
22:25	Bis(2-Dimethylamino)ethyl ether	156.1014	58.0652, 71.0729	C8H14N2O	7.95	0.25	ND	
24:55	Acetaldehyde, diethylhydrazone	114.0678	71.0492, 99.0443	C4H8N2O	ND	ND	0.09	
26:59	5-[2-[(N,N-Dimethylamino)ethyl]N,N-dimethylcarbamsol thiocarbamoyl dihydroximate	218.0808	58.0652, 71.0729	C8H14N2O2S	0.20	ND	ND	

Phenols

tR (min)	Compound name	m/z	m/z fragments	MF	Percentage peak areas		
09:14	2-methyl-6-tert-butylphenol	164.1196	121.0649, 149.0963	C12H14O	ND	ND	ND

(continued on next page)
tR (min)	Compound name and metabolite class	Observed m/z	m/z fragments	MF	Percentage peak areas		
					BGN	DD	UHD
12:02	2,4-Di-tert-butylphenol	206.1665	57.0700, 191.1431	C14H22O	2.00	ND	ND
12:04	Phenol, 2,4,6-tris(1-methylethyl)-	220.1824	177.1274, 205.1588	C12H18O	0.13	0.13	0.56
12:05	Butylated Hydroxytoluene	220.1824	43.0179, 205.1589	C12H18O	0.19	0.12	0.65
12:57	2-tert-Butyl-4-methoxyphenol	180.0781	137.0596, 165.0548	C11H12O2	0.35	ND	ND
16:48	Resorcinol/3-Hydroxyphenol	110.0602	82.0289, 201.1147	C6H6O2	ND	0.15	ND
16:52	Taxicatigenin	153.9559	68.0387, 124.5019	C12H16O3	ND	ND	0.58
22:14	Phenol, 2,2'-methylenebis(6-(1,1-dimethylethyl)-4-methyl-	340.2401	161.0964, 177.1277	C23H32O2	3.52	0.76	5.21

Pyridines

tR	Compound name and metabolite class	Observed m/z	m/z fragments	MF	Percentage peak areas		
11:18	o-phenylpyridine	154.9679	126.5207, 155.9841	C11H9N	ND	ND	0.29
11:19	m-Phenylpyridine	155.0730	127.0544, 156.0764	C11H9N	ND	0.46	0.23
15:05	4-pyridinamine, N-(4-methoxyphenyl)methylene-	212.1306	91.0544, 197.1073	C13H12N2O	ND	0.14	ND
20:56	2,6-diphenylpyridine,	231.1044	58.0653, 202.0777	C15H16N2	ND	0.16	ND

Sterols

tR	Compound name and metabolite class	Observed m/z	m/z fragments	MF	Percentage peak areas		
28:08	Ergosta-5,24-dien-3-ol, (3α)-	384.3342	281.2269, 314.2608	C28H46O	0.04	ND	ND
28:11	Campesterol	400.3701	145.1014, 213.1642	C28H46O	0.49	0.12	ND
28:24	Stigmasterol	412.3710	83.0856, 159.1172	C29H48O	1.39	0.41	ND
28:53	Stigmastera-5,24(28)-dien-3-ol, (3α,24Z)-	412.3703	314.2609, 281.2269	C29H48O	0.51	0.15	ND
29:02	Cycloeucalenol	412.3684	95.0857, 107.0858	C30H50O	0.17	ND	ND
29:06	Olean-12-en-3-ol	426.3862	203.1797, 218.2032	C30H50O	0.29	ND	ND

Sulphur related compounds

tR	Compound name and metabolite class	Observed m/z	m/z fragments	MF	Percentage peak areas		
04:13	Dimethyl trisulfide	125.9627	78.9671, 127.9585	C8H18S3	ND	1.88	ND
07:16	2,5-dihydrothiophene	86.0364	45.0336, 57.0336	C6H6S	ND	1.52	ND
08:18	Hemineurine	143.0401	85.0108, 112.0217	C8H15NS	ND	0.10	ND
20:45	O-Ethyl S-2-diethylaminoethyl ethylphosphonothiolate	257.7809	85.6057, 98.9677	C12H15NOS	ND	1.21	ND
21:12	1H-Indole-3-carboxitrile, 2-(4-chlorobenzensulfonylmethyl)-1-methyl-	225.1118	169.1224, 201.1485	C12H11ClNOS2	ND	0.08	ND

Terpenes and Terpenoids

tR	Compound name and metabolite class	Observed m/z	m/z fragments	MF	Percentage peak areas		
04:56	Eucalyptol	154.1354	81.0700, 93.0701	C10H16O	0.26	ND	ND
07:02	Naphthalene	128.0622	76.0307, 99.0442	C10H8	0.34	0.27	ND
28:47	Clionasterol	414.3864	145.1015, 213.1643	C20H30O	0.61	0.15	ND

Vitamins

tR	Compound name and metabolite class	Observed m/z	m/z fragments	MF	Percentage peak areas		
26:08	α-Tocopherol	402.3499	137.0599, 177.0914	C29H48O2	3.43	1.05	4.30
26:51	γ-Tocopherol	416.3654	151.0755, 191.1069	C29H50O2	1.77	0.41	3.28
23:58	dl-7-azatryptophan	204.0760	86.0336, 131.0524	C10H11N3O2	ND	0.28	1.22

Table 1 (continued)

- **tR**: Retention time; m/z: mass-to-charge ratio; MF: Molecular formula; ND: Not detected; BGN: Bambara groundnut; DD: Dehulled dawadawa; UHD: Unhulled dawadawa.
metabolites of BGN, unhulled (UHD) and dehulled (DD) *dawadawa* using GC-HRTOF-MS. In total, 134 metabolites were identified, and their identities presented in Table 1. Figure 1 represents the GC-HRTOF-MS chromatogram of BGN, DD and UHD samples. The group of compounds detected were terpenes and terpenoids (2%), amines (2%), sulphur related compounds (4%), ketones (7%), pyridines (3%), vitamins (2%), esters including fatty acid methyl and ethyl esters (37%), alcohols including sterols (7%), phenols (6%) and other miscellaneous compounds (20%). Eight compounds were identified in both *dawadawa* products, 29 in BGN, 42 in only DD, 17 in only UHD and 12 in all the samples analyzed (Figure 2A). Generally, more metabolites were detected in DD samples as compared to UHD, which might be attributed to increased microbial activity enhancing metabolic activities and better breakdown and/or formation of compounds. This was also the observation in an earlier study (Adebiyi et al., 2019; Adebiyi, 2020) and can be related to higher antioxidant activities and antimutational factors (ANFs) in UHD as compared to DD samples, which might influence microbial activities. Some of the compounds identified in Table 1, were not detected in the raw BGN, but observed in DD and UHD samples. It can thus be speculated that these compounds were presumably produced during fermentation. The major metabolites that were only found in the fermented condiments include 9,12-octadecadienoic acid (Z,Z)-, 2-hydroxy-1-(hydroxymethyl)ethyl ester (5.13%), carbonic acid, 2-dimethylaminooethyl 2-methoxyethyl ester (7.3%), lauric acid, ethyl ester (10.2%), malitol (4%) and palmitic acid, ethyl ester (17.7%) for dehulled *dawadawa* and 2-methylbutyl propanoate (4.7%), 2-undecen-4-ol (4.7%), benzoic acid, 4-amino-4-hydroximino-2,2,6,6-tetramethyl-1-piperidinyl ester (8.2%), e-tocopherol (4.3%) and indoline, 2-(hydroxydiphenylmethyl)- (26.1%) for unhulled *dawadawa* samples (Table 1).

Esters were the principal compounds reported in this study. Other similar studies on fermented condiments contradict this observation, with pyrazines being the major constituent in *sonru*/*afiri*/*iru* (Azokpota et al., 2008), acids the dominant group in castor oil bean fermented condiment (Ojinnaka and Ojimeahkwe, 2013), aldehydes in locust bean *daddawa*, soybean and melon seed *ogiri* (Onyenekwe et al., 2012), while aldehydes, acids and ketones were reported to dominate *dawadawa* from BGN using *Bacillus* species (Akanni et al., 2018a). Nevertheless, esters are major metabolite groups common to several fermented condiments in Africa and are mostly formed during fermentation by esterification of alcohols with fatty acids (Fan and Qian, 2005). Chemical reactions between alcoholic metabolites as well as microbial acidic metabolites could also lead to the formation of esters during fermentation. Their contributions to food aroma/odour are important, combined with the fact that esters at ambient temperatures are highly volatile and their perception thresholds are much lower compared to their alcohol precursors (Nogueira et al., 2005). Compounds belonging to the esters group constitutes 29% (Figure 2B) of the total metabolites recorded and were more prominent in the DD as compared to UHD. Phthalic acid 8-chlorooctyl decyl ester, phthalic acid dicyclohexyl ester and phthalic acid 8-chlorooctyl nonyl ester were the major esters detected in BGN, DD and UHD (Table 1).

The identified compounds in this study could be as a result of the breakdown and constituents in BGN such as proteins, lipids and other bioavailable compounds through the activities of the microbial enzymes. As reflected in the GC-HRTOF-MS data presented in Table 1, fermentation of BGN into derived *dawadawa* led to the formation, increase, as well as decrease of some compounds. Formation of these constituents could be attributed to the presence of microorganisms involved in the fermentation process and other processing factors as well as operations involved during *dawadawa* preparation (Azokpota et al., 2010). Compounds belonging to an acid group were only present in UHD samples, which can be attributed to the relatively longer fermentation period for the UHD samples. Acids are sometimes considered as undesirable compounds that confer unpleasant characteristics such as rancid, sweaty and pungent flavors (Frauendorfer and Schieberle, 2008), although they have been reported to confer some acidic, fruity and sour notes in fermented foods (Park et al., 2013).

Compounds belonging to the sulphur related group were mostly present in the DD with none detected in the BGN, in agreement with the study of Akanni et al. (2018b), in which sulphur-related compounds were equally not detected in the raw BGN. Dimethyl trisulfide (sulphur related compound) is known to confer meaty, sulfurous, eggy, alliaceous, cooked, savory, and onion note (Liu et al., 2012), and can also be identified as a possible product of amino acid metabolism (Tamman et al., 2006). Speculated possible amino acid degradation and significantly (p ≤ 0.05) different values in the amino acid of BGN and derived *dawadawa* (Adebiyi et al., 2019) could also explain the detected amine-related and nitrogenous compounds (Table 1).

Both ketones and aldehydes are formed by fatty acids beta-oxidation as well as oxidation catalyzed by lipoxygenase and hyper-oxidase enzymes, yielding important flavor compounds (Nzigamasabo, 2012). Aldehydes are not only flavor components, but also known as vital reactants associated with heterocyclic compounds formation (Ziegleder, 2009). Ketones are generally derived from amino acid and lipid degradation with the presence of these compounds having an impact on food flavor (Adebo et al., 2018). Nine ketones were detected, i.e. six from DD and three from UHD. The ketones in UHD decreased, as compared to the
raw BGN, whereas there was a slight increase of the ketone group in DD (relative to the percentage peak areas). Dehulling of the seedcoats exposed fats related components to more oxygen coupled with removal of available antioxidants in the hull. This thus suggests that fat oxidation would likely be higher in the dehulled samples as compared to the unhulled samples (Akkad et al., 2019). Therefore, an increased level of ketones in the dehulled samples might be due to partial oxidation of the alcohols as well as synthesis through several metabolic pathways, particularly reduction of methyl-ketone (Curioni et al., 2002; Akkad et al., 2019). This may be associated with the disappearance and/or reduction of some ketones in BGN and dawadawa.

Alcohols constituted 3% of metabolites in Figure 2B and are generated by reduction reaction of corresponding aldehydes and oxidation of acids (Pham et al., 2008). According to Estrella et al. (2004), aldehydes and ketones are relatively unstable intermediate compounds and can easily be reduced to alcohols. In total, four alcohols were detected in this study, i.e., 2-undecen-4-ol at high levels in two fermented samples, maltol in BGN and DD, phenylethyl alcohol in DD, with 1-hexadecanol in BGN. The phenylethyl alcohol compound has a rose-like odor and is known as one of the major Korean fermented soy sauce odor-active compounds (Lee et al., 2006), suggesting that these alcohol-related compounds might contribute to the flavor of these dawadawa samples. A decrease in the number of alcohols in the fermented samples might be due to the heat treatment (i.e. cooking) applied during processing (Cho et al., 2017; Wang et al., 2019).

The pyridines group was not detected in the BGN except in the dawadawa samples, indicative of a formation of these compounds. Pyridines are usually formed during cooking of food (Gupta et al., 2019) or meat, probably due to the reaction of amino acids with alkanals (Hui, 2012). They are classified as the flavor component of beer and as important organoleptic compounds of foods from cocoa, peanuts, cheeses, beans and barley (Maga, 1981). Due to the physical properties of BGN (hard to cook phenomenon), the seeds are usually cooked briefly then dehulled (depending on the product) prior to fermentation, which might explain the occurrence of pyridines in this study.

Three vitamin-related compounds (Table 1) were detected in dawadawa samples except for dl-7-azatryptophan, which was completely absent in BGN. Other notable vitamins observed were ç-Tocopherol and

Figure 2. (A) Venn diagram showing the relationship between the metabolites in BGN (Bambara groundnut), DD (Dehulled dawadawa) and UHD (Unhulled dawadawa) samples, (B) Pie chart showing percentage distribution of the compounds.
é-Tocopherol, which are forms of vitamin E. Not only is vitamin E of nutritional and dietary importance, but it also functions as an antioxidant by preventing the propagation of lipid peroxidation (Frei, 2004). It was observed that in dL-7-azatryptophan, the peak area of UHD (1.22%) was higher than that of DD (0.28%), while UHD has the highest percentage peak area in all the vitamins reported. Furans are heterocyclic compounds, known to possess sweet, roasted, burnt, caramel and sugar notes as previously reported in dawadawa (Akanni et al., 2018c; Azokpota et al., 2008).

Phenols are a major group of antioxidants and of great significance due to their biological and free radical scavenging activities (Roeleveld et al., 2018). Compounds belonging to the phenol group were also identified in this study. There was formation of taxicatigenin, which is also known as 3,5-dimethoxyphenol in UHD sample. 3,5-dimethoxyphenol belongs to methoxyphenols (a class of compounds comprising of a methoxy group) and connected to the benzene ring of a phenol moiety. The occurrence of this compound and its presence in only UHD could further explain its higher antioxidant activity in a previous study (Adebiyi, 2020), as taxicatigenin is a bioactive compound with potential antioxidant activity (Nithya et al., 2018). Bioactive compounds are also known to inhibit microbial growth that might have contributed to lesser microbial activity in UHD samples, resulting in reduced pH values (Adebiyi et al., 2020). Compounds belonging to the sterols group were common in raw BGN but none of these sterols were detected in UHD. There are claims that naturally occurring plant sterols may promote the health of animals and humans once consumed regularly either as food supplements or naturally in foods for a reasonable amount of time (Obge et al., 2015).

Fatty acid methyl esters were common in raw BGN, with the formation of methyl esters (myristic acid and cerotic acid methyl esters) in DD, while none of the fatty acid methyl esters were detected in UHD. This difference might have been due to the cooking process adopted (i.e., boiling), as heat treatment is known to affect fatty acid constituents of foods (Ouazib et al., 2015). Hexadecanoic acid methyl ester and octadecanoic acid methyl ester were detected only in raw BGN and are both known as the most abundant saturated fatty acids in nature, reported in plants, animals, lower organisms and functions in cells as specific pro-teolipids (i.e. connected to internal cysteine residues through thioester bonds) (Anonymous, 2013).

4. Conclusion

A total of 134 metabolites were detected in Bambara groundnuts and derived dawadawa samples using GC-HRTOF-MS. From the two fermented samples, dehulled samples had the highest number of metabolites as compared to their unhulled counterparts. Compounds identified included esters, ketones, phenols, flavor related compounds and constituents that could confer organoleptic properties, nutritional and functional benefits of BGN and derived dawadawa. The BGN seeds and dehulled dawadawa possess beneficial components that can potentially be incorporated into human diets for health benefits. Further investigations into the quantification of the metabolites in this study are still needed, particularly for those significant metabolites obtained in all three samples. These would not only provide a better understanding of legume fermentation, but also assist in providing an insight into these significant metabolites that could potentially be biomarkers of dawadawa.

Oluwafemi Ayodeji Adebo: Performed the experiments; Analyzed and interpreted the data.

Funding statement

This work was supported by the National Research Foundation (NRF) of South Africa (120751) and the NRF of South Africa National Equipment Programme (99047).

Data availability statement

Data included in article/supplementary material/referenced in article.

Declaration of interests statement

The authors declare no conflict of interest.

Additional information

No additional information is available for this paper.

References

Adebiyi, J.A., Njohb, P.B., Kayitesi, E., 2019. Assessment of nutritional and phytochemical quality of dawadawa (an African fermented condiment) produced from Bambara groundnut. Microchem. J. 149, 104034.

Adebiyi, J.A., Kayitesi, E., Njohb, P.B., 2020. Mycotoxin reduction in dawadawa (an African fermented condiment) produced from Bambara groundnut (Vigna subterranea). Food Contr. 112, 107141.

Adebiyi, J.A., 2020. Metabolic Profile, Health Promoting Properties and Safety of Dawadawa (A Fermented Condiment) from Bambara Groundnut (Vigna subterranea). A D’Tech Thesis submitted to the Faculty of Science. University of Johannesburg, South Africa.

Adebo, O.A., Njohb, P.B., Desoubo, S.C.Z., Pieterse, M., Kayitesi, E., Ndinhé, D.T., 2018. Profiling of volatile flavor compounds in nkú (a Cameroon food) by solid phase extraction and 2D gas chromatography time of flight mass spectrometry (SPME-GC×GC-TOFMS). Food Sci. Nutr. 6, 2028–2035.

Adebo, O.A., Kayitesi, E., Njohb, P.B., 2019. Differential metabolic signatures in naturally and lactic acid bacteria (LAB) fermented ngi (a Southern African food) with different tannin content, as revealed by gas chromatography mass spectrometry (GC-MS)-based metabolomics. Food Res. Int. 121, 326–335.

Adebo, O.A., Oyeyinka, S.A., Adebiyi, J.A., Feng, X., Wilkin, J.D., Kewuyemi, Y.O., Abrahams, A.M., Tugizimana, F., 2021. Application of gas chromatography mass spectrometry (GCMS)-based metabolomics for the study of fermented foods. Int. J. Food Sci. Technol. 56, 1514–1534.

Ademiluyi, A.O., Oboh, G., 2011. Antioxidant properties of condiment produced from fermented Bambara groundnut (Vigna subterranea L. Verde). J. Food Biochem. 35, 1145–1160.

Akanni, G.B., De Kok, H.L., Naude, Y., Buys, E.M., 2018a. Volatile compounds produced by Bacillus species alkaline fermentation of Bambara groundnut (Vigna subterranea (L. Verde.) into a dawadawa-type African food condiment using headspace solid-phase microextraction and GC × GC-TOFMS. Int. J. Food Prop. 21, 929–941.

Akanni, G.B., Naude, Y., De Kok, H.L., Buys, E.M., 2018b. Diversity and functionality of Bacillus species associated with alkaline fermentation of Bambara groundnut (Vigna subterranea (L. Verde.) into dawadawa-type African condiment. Eur. Food Res. Technol. 244, 1147–1158.

Akkad, R., Kharrar, F., Han, J., House, J.D., Curtis, J.M., 2019. Characterisation of the volatile flavour compounds in low and high tannin faba beans (Vicia faba var. minor) grown in Alberta, Canada. Food Res. Int. 120, 285–294.

Anonymous, 2013. Fatty acid: straight-chains saturated, structures occurrence and biosynthesis lipid. https://www.lipidhome.co.uk/lipids/fa-eic/fa-sat/index.htm. (Accessed 9 July 2019).

Azoekpa, P., Hounhouigan, J.D., Annan, N.T., Odjo, T., Nago, M.C., Jakobsen, M.S., 2008. Diversity of volatile compounds in afiti, iru and sosọ, three fermented food condiments from Benin. World J. Microbiol. Biotechnol. 24, 879–885.

Azoekpa, P., Hounhouigan, J.D., Annan, N.T., Odjo, T., Nago, M.C., Jakobsen, M.S., 2010. Volatile compounds, profile and sensory evaluation of Beninese condiments produced by inocula of Bacillus subtilis. J. Sci. Food Agric. 90, 438–444.

Brix, M., Gorst-Allman, P., Rohwer, E.R., De Vos, J., de Boer, J., Weiss, J.M., 2018. Comprehensive two-dimensional gas chromatography coupled to high resolution time-of-flight mass spectrometry for screening of organohalogenated compounds in cat hair. J. Chromatogr. A 1536, 151–162.

Chinna, C.E., Aaezem, S.O., Sulayman, H.T., Alassaen, K., Asouie, S.N., Gbadamosi, H.D., Busiha, N., Oboh, H.A., Anumoye, J.C., Adebo, O.A., 2020. Evaluation of fermented African yam bean flour composition and influence of substitution levels on properties of wheat bread. J. Food Sci. 85, 4281–4289.

Cho, K., Lim, H.J., Kim, M.S., Kim, D.S., Eum Hwang, C., Nam, H.S., Joo, O.S., Lee, B.W., Kim, J.K., Shin, E.C., 2017. Time course effects of fermentation on fatty acid and...
volatiles on compound profiles of Cheonggukjang using new soybean cultivars. J. Food Drug Anal. 25, 657–653.

Curioni, P.M.G., Bonnet, J.O., 2002. Key odorants in various cheese types as determined by gas chromatography-olfactometry. Int. Dairy J. 12, 959–984.

Estrella, F.G., Carboeli, M., Gaya, P., Nunze, M., 2004. Evolution of the volatile components of ewes raw milk. Zamanazo cheese: seasonal variation. Int. Dairy J. 14, 701–711.

Fadahunsi, I.F., Olotunbi, P.D., 2009. Microbiological and enzymatic studies during the development of an ‘Irul’ (a local Nigerian indigenous fermented condiment) like condiment from Bambana nut (Voandzeia subterranea (L.) Thouars). Mal. J. Micro. 6, 123–126.

Fan, W.L., Qian, M.C., 2005. Headspace solid phase microextraction and gas chromatography-olfactometry dilution analysis of young and aged Chinese ‘Yanghe Diao’ liqueurs. J. Agric. Food Chem. 53, 7951–7958.

Frei, B., 2004. Efficacy of dietary antioxidants to prevent oxidative damage and inhibit chronic disease. J. Nutr. 134, 3196–3198.

Gupta, N., O’Loughlin, E.J., Sims, G.K., 1999. Microbial degradation of pyridine and pyridine derivatives. In: Arora, P.K. (Ed.), Microbial Metabolism of Xenobiotic Compounds. Springer, Singapore, pp. 1–31.

Hu, B., Yang, C., Iqbal, N., Deng, J., Zhang, J., Yang, W., Liu, J., 2018. Development and validation of a GC-MS method for soybean organ-specific metabolomics. Plant Prod. Sci. 21, 215–224.

Hui, Y.H., 2012. Meat industries: characteristics and manufacturing processes (2. Int. Hui, Y.H. (Ed.), Handbook of Meat and Meat Processing, CRC press, New York, pp. 3–24.

Kewuyemi, Y.O., Njobeh, P.B., Kayitesi, E., Adebiyi, J.A., Oyedeji, A.B., Adeh, Hui, Y.H., 2012. Comparative soluble nutrient value of raw milk Zamorano cheese: seasonal variation. Int. Dairy J. 26, 10244–10251.

Kiers, J.L., VanLaeken, A.E.A., Rombouts, F.M., Nout, M.J.R., 2000. A study of the volatile compounds and amino metabolomics. Plant Prod. Sci. 95, 103042.

Lee, S.M., Seo, B.C., Kim, Y.S., 2006. Volatile compounds in fermented and acid-fermented product) obtained using two strains of Lactobacillus fermentum. J. Cereal. Sci. 95, 103042.

Lubachevsky, G., Rankin, S.A., 2005. A study of the volatile compounds of hydrolyzed soy sauces. J. Food Sci. 71, C146.

Nogueira, M.C.L., 2008. Changes in key aroma compounds of Criollo cocoa soye, M.A., Akindahunsi, A.A., 2009. Changes in polyphenols distribution of chickpea (Cicer arietinum L.) from Algeria. J. Food Leg. 28, 1–8.

Nigam, A., 2012. Volatile compounds in kimchi (L) Thours). Mal. J. Micro. 6, 123–126.

Pham, A.J., Schilling, M.W., Mikkel, W.B., Williams, J.B., Martin, J.M., Coggins, P.C., 2008. Relationships between sensory descriptors, consumer acceptability and volatile flavour compounds of American dry-cured ham. Meat Sci. 80, 728–737.

Onawola, O., Asagbra, A., Faderin, M., 2012. Comparative soluble nutrient value of Osogra obtained from dehulled and unhulled boiled melon seeds (Cucumis melo). Food Sci. Qual. Mang. 4, 10–15.

Parkouda, C., Nielsen, D.S., Azokpota, P., Ouoba, L.I.I., Amoa-Awua, W.K., Thorsen, L., 2009. The microbiology of alkaline fermentation of indigenous seeds used as food condiments in Africa and Asia. Crit. Rev. Microbiol. 35, 139–156.

Pham, A.J., Schilling, M.W., Mikkel, W.B., Williams, J.B., Martin, J.M., Coggins, P.C., 2008. Relationships between sensory descriptors, consumer acceptability and volatile flavour compounds of American dry-cured ham. Meat Sci. 80, 728–737.

Tamman, J.D., Williams, A.G., Noble, J., Lloyd, D., 2000. Amino acid fermentation in non-starter lactobacillus spp. isolated from cheddar cheese. Lett. Appl. Microbiol. 30, 370–372.

Ogbe, R.J., Ochalefu, D.O., Mafulul, S.G., Olaniru, O.B., 2015. A review on dietary antioxidants to prevent oxidative damage and inhibit chronic disease. J. Nutr. 134, 3196–3198.

Omafuvbe, B.O., Abiose, S.H., Shonukan, O.O., 2002. Fermentation of soybean (Glycine max) for soy-daddawa production by starter cultures of Bacillus. Food Micro 19, 561–566.

Onawola, O., Asagbra, A., Faderin, M., 2012. Comparative soluble nutrient value of Osogra obtained from dehulled and unhulled boiled melon seeds (Cucumis melo). Food Sci. Qual. Mang. 4, 10–15.

Oyeade, C.O., 2008. Microbial degradation of pyridine and pyridine derivatives. In: Arora, P.K. (Ed.), Microbial Metabolism of Xenobiotic Compounds. Springer, Singapore, pp. 1–31.

Oyedeji, A.B., Adeh, Hui, Y.H., 2012. Comparative soluble nutrient value of Osogra obtained from dehulled and unhulled boiled melon seeds (Cucumis melo). Food Sci. Qual. Mang. 4, 10–15.