Review

Endangered Zoonotic Fungal Species from Chicken (*Gallus gallus domesticus*)

Sayaka Yamaguchi

Department of Dermatology, Graduate School of Medicine, University of the Ryukyus

ABSTRACT

Lophophyton gallinae (*Microsporum gallinae*) is a zoophilic fungus that causes ringworm in chickens and related species, and occasionally in humans. There are 45 human cases worldwide including a Japanese case from Okinawa in 2009. After the finding of the human *L. gallinae* case, 793 chickens in Japan, including 293 from the mainland and 500 from the Nansei Island areas, were investigated to determine the prevalence of dermatophytes and their related fungal species. The survey was carried out from December 2008 to March 2013. Various dermatophytes and related fungal species were isolated from the studied chickens, with a prevalence of 24.6%. In total, 224 dermatophytes and related species were isolated in the survey. The most commonly isolated species included, in descending order of frequency, *Arthroderma multifidum*, *Aphanoascus terreus*, and *Chrysosporium* spp. *Ar. multifidum* and *Ap. terreus* have no record of pathogenicity, and the present isolates of *Chrysosporium* spp. were not matched to pathogenic *Chrysosporium* spp. based on the ITS rDNA sequences. Interestingly, an *L. gallinae* isolate was detected in a male 10-month-old shamo (fighting cock) from the main island. Furthermore, one strain of *Arthroderma simii* was also isolated as the second record in Japan following that from an imported chimpanzee. Although *L. gallinae* and *Ar. simii* are likely to be endemic in our country, the transmission of dermatophytosis from chickens to humans is unlikely to occur because of the reduced chances for citizens to come in contact with chickens due to various factors.

Keywords: *Arthroderma simii*, *Gallus gallus domesticus*, *Lophophyton gallinae*, *Microsporum gallinae*, zoonotic fungus

Introduction

Lophophyton gallinae (previously known as *Microsporum gallinae*) from chickens is a minor zoonotic fungal pathogen following the well-known major ones, such as *Microsporum canis*, which is transmissible mainly from cats, *Trichophyton verrucosum* from cows, and *Trichophyton mentagrophytes* complex from rodents. Interestingly, *L. gallinae* infection in humans are rare. The reports in humans are only 45 cases at the present including from Japan: a case of tinea corporis in subtropical Okinawa in 2009. Based on the circumstances described below, *L. gallinae* infection in Japan will be most likely be eradicated in the near future. This report describes the current status of zoonotic fungal infections caused by *L. gallinae* and its ecology in Japan.

Humans and chickens

As common knowledge, our ancestors initially tamed chickens for cockfighting. In Japan, cockfighting had been popular since the Heian era. Until the mid-1970s, chickens were kept as companion animals in many households and reared at educational facilities as part of the emotional education program. However, owing to the change in housing conditions and associated difficulty in securing rearing space, noise issues, and other reasons, the number of captive chickens rapidly declined. The number of chickens reared at educational facilities, including kindergartens and elementary schools, is also declining due to concern over avian zoonoses such as influenza and severe acute respiratory syndrome. Cockfighting using the shamo breed (Fig. 1) has also been banned in many areas because of its gambling nature and was completely discontinued after the Great East Japan Earthquake in the area where it had been a part of cultural history.

Address for correspondence: Sayaka Yamaguchi, MD, PhD
Department of Dermatology, Graduate School of Medicine, University of the Ryukyus, 207 Uehara, Nishihara, Okinawa 903-0125, Japan
Received: 5, December 2018, Accepted: 17, January 2019
E-mail: sayaka-y@med.u-ryukyu.ac.jp
Epidemiology of Lophophyton gallinae

L. gallinae is listed as one of the causative agents for zoonotic dermatophytoses and is distributed worldwide, including temperate and subtropical regions, such as India, Iran, Pakistan, Nigeria, America, Australia, Brazil, and Japan, as well as cold regions, including Sweden, Germany, and Czechoslovakia.

The first case of *L. gallinae* infection in Japan

The patient was a 96-year-old, otherwise healthy Japanese man, who had been working as a breeder of fighting cocks for more than 70 years. He was bitten on his right forearm by one of the fighting cocks. A few weeks later, two erythematous macules appeared on his right forearm. The macules gradually increased in size and were accompanied by a slight itchy sensation, so he visited our hospital. Clinical examination at the first visit revealed scaled and annular erythematous macules approximately 2.0 cm in diameter in two places on the right forearm. Direct microscopic examination of KOH-prepared lesional scale specimens revealed many hyphal components. He was diagnosed with tinea corporis, treated with a terbinafine cream, and was cured in 1 month.

Incubation of skin scrapings from his skin lesion on Sabouraud dextrose agar yielded white, fluffy, wrinkled colonies appearing on his right forearm. The macules gradually increased in size and were accompanied by a slight itchy sensation, so he visited our hospital. Clinical examination at the first visit revealed scaled and annular erythematous macules approximately 2.0 cm in diameter in two places on the right forearm. Direct microscopic examination of KOH-prepared lesional scale specimens revealed many hyphal components. He was diagnosed with tinea corporis, treated with a terbinafine cream, and was cured in 1 month.

The prevalence ratio of dermatophytes and their related fungal species in chickens and fighting cocks (Shamo) in Japan

1. Materials and methods

After the onset of *L. gallinae* infection in Okinawa, 793 chickens reared privately and at rearing facilities in Japan, including 293 from the mainland and 500 from the Nansei Island areas, were investigated. Prefectures are not mentioned to comply with the privacy policy. The survey was carried out from December 2008 to March 2013. Approval was obtained from the ethics committee for animal welfare of the University of the Ryukyus (No. 2011-5271 and 2012-5437). Combs from the 793 birds (645 chickens and 148 fighting cocks (Shamo breed)) were examined to determine the prevalence of dermatophytes and their related fungal species. Five-hundred of the chickens were reared by shamo lovers or at rearing facilities in Okinawa (464) and Kagoshima (36), and 293 were from the main island of Japan, mostly from the Kanto region, or the Tokyo metropolitan area.

2. Results

L. gallinae was detected from a male 10-month-old shamo from the main island (Figs. 2a-c). The other 10 chickens reared at the same facility were negative for *L. gallinae*. The sequence of the ITS region was 99% homologous to the known *L. gallinae* sequence (DDBJ accession No. AB667976). The strain isolated from the shamo had one-
nucleotide difference compared with the strain isolated from a man in Okinawa (DDBJ accession No. AB560660), which suggests that these strains were not related with each other. The owner reported no special prior history of contact with the shamo strain^{16}.

Another noteworthy result was the isolation of Trichophyton simii, although only one strain (Figs. 3a and b). Chained chlamydospores were produced on potato dextrose agar, while pear-like microconidia similar to those of Arthroderma benhamiae isolates were detected on Sabouraud dextrose agar plate (Fig. 3c). The isolate was the second strain of T. simii recorded in Japan following the isolate from an imported chimpanzee in the 1960s^{18}. Although human cases of T. simii infection are also rare, caution is still needed as cases of tinea capitis caused by this species have been reported from Iran and Saudi Arabia.

We isolated various dermatophytes and related fungal species from the studied chickens, with a prevalence of 24.6%^{17}. In total, 224 dermatophytes and related species were isolated in this survey. The most commonly isolated species

Table 1. Number of positive samples

Area	Total	Chicken	Shamo (Fighting Cock)		
		Female	Male	Female	male
Mainland	89/293	28/115	(24.3 %)	28/113	(24.8 %)
Nansei Islands	106/500	46/321	(14.3 %)	40/96	(41.7 %)
Total	195/793	74/436	(17.0 %)	68/209	(32.5 %)

Fig. 2. The shamo cock from which L. gallinae was isolated.
(a) Desquamation of the comb can be observed.
(b) Potato dextrose agar plate, 28°C, 28 days. Note the production of characteristic pink pigment.
(c) Slide culture, potato dextrose agar, 25°C, 21 days. Formation of claviform macroconidia and oval, pear-like microconidia characteristic of L. gallinae was observed.

Fig. 3. Cultural characteristics of Arthroderma simii isolate.
(a) Sabouraud dextrose agar, 25°C, 14 days.
(b) Takashio agar, 25°C, 14 days.
(c) Slide culture, potato dextrose agar, 25°C, 14 days.
included, in descending order of frequency, *Arthroderma multifidum*, *Aphanoascus terreus*, and *Chrysosporium* spp. (Table 2).

Ar. multifidum was frequently isolated from privately owned chickens, the reason for which is unknown, but no evidence of infection in humans and animals was found. *Ap. terreus* is a keratinophilic fungus and has been isolated from soil and birds; however, this fungal species has no record of pathogenicity. Identification of *Chrysosporium* spp. isolates at the species level requires further investigation. The fungal species are known causative agents of mycotic disease in poultry and are often isolated from feathers and animal-related environments. Human cases of onychomycosis and systemic infection in a patient with acute lymphocytic leukemia caused by *Chrysosporium* sp. have been reported. However, the present isolates were not matched to pathogenic *Chrysosporium* spp. based on the ITS rDNA sequences.

Table 2. Number of positive samples and details of isolates classified based on areas

	Mainland	Nansei Islands	Total
Number of positive samples (%)	89/293 (30.4 %)	106/500 (21.2 %)	195/793 (24.6 %)
Number of isolates and details	93	131	224
Arthroderma multifidum	17	84	101
Aphanoascus terreus	53	30	83
Chrysosporium sp.	17	11	28
Uncinocarpus queenslandicum	5	0	5
Uncinocarpus reesi	0	2	2
Aphanoascus pinarensis	0	1	1
Amauroascus kuehnii	0	1	1
Trichophyton simii	0	1	1
Gymnoascus petalosporus	0	1	1
Lophophyton gallinae	1	0	1

Conclusion

The first Japanese case of *L. gallinae* infection was detected in Okinawa, and the same species was isolated from a shamo cock in the main island of Japan in this study. Moreover, *T. simii* was also detected from a male shamo cock in Okinawa. Although these two fungal species are likely to be endemic in Japan, the transmission of dermatophytosis from chickens to humans is unlikely to occur in Japan, where the chance of human contact with chickens has decreased due to various social factors. However, it is still important to note that causative species of dermatophytosis that are transmissible from chickens exist in Japan.

Acknowledgment

I express my thanks to Drs. Ayako Sano, Midori Hiruma, Michiko Murata, Takashi Kaneshima, Yoshiteru Murata, Hideo Takahashi, Sana Takahashi, Hiroji Chibana, Hiromi Touyama, Nguyen Thi Thanh Hai, Yasutomo Nakazato, You Uehara, Morihiko Hirakawa, Yoshimi Imura, Yoshiie Terashima, Yasuhiro Kawamoto, Keji Takahashi, Kazutoshi Sugiyama, Masatomo Hiruma, Masaru Murakami, Atsushi Hosokawa, Rui Kano, and Atsuhiko Hasegawa (the affiliations are abbreviated).

Conflicts of interest

None.

References

1) de Hoog GS, Dukik K, Monod M, Packeu A, Stubbe D, Hendrickx M, Kupsch C, Stielow JB, Freeke J, Goker M, Rezaei-Matehkolaei A, Mirhendi H, Gräser Y: Toward a novel multilocus phylogenetic taxonomy for the dermatophytes. *Mycopathologia* **182**: 5-31, 2017.
2) Hubka V, Peano A, Cnikova A, Guillot J: Common and emerging dermatophytoises in animals: well-known and new threats. In Emerging and epizootic fungal infections in animals (Seyedmousavi S, de Hoog GS, Guillot J, Verweij PE eds), pp. 33-79, Springer International Publishing, 2018.
3) Miyasato H, Yamaguchi S, Taira K, Hosokawa A, Kayo S, Sano A, Uezato H, Takahashi K: Tinea corporis caused by *Microsporum gallinae*: first clinical case in Japan. *J Dermatol* **38**: 473-478, 2011.
4) Shortridge KF: SARS exposed, pandemic influenza lurks. *Lancet* **361**: 1649, 2003.
5) Sabouraud RJA: Maladies de cuir chevelu, III.; Les maladies cryptogamiques., Les teignes. Paris, Masson et Cie., 1910.
6) Georg LK, Torres G: A human case of *Trichophyton gallinae* infection; disease contracted from chickens. AMA Arch Derm 74: 191-197, 1956.
7) Gip L: Isolation of *Trichophyton gallinae* from two patients with tinea cruris. Acta Derm Venereol (Stockholm) 44: 251-254, 1964.
8) Dvorak J, Otcenasek M: The isolation of *Trichophyton gallinae* (M’egnin) SILVA ET BENHAM 1952 from man. J Invest Dermatol 42: 35-43, 1964.
9) Albornoz MB: Tinea capitis por *Trichophyton gallinae*. Dermatología Venezolana 1-2: 52-59, 1967.
10) Faruqui AH, Khan KA, Haroon TS: Scalp infection by *Trichophyton gallinae* (a case report from Pakistan). Mykosen 27: 589-591, 1984.
11) del Palacio A, Pereiro-Migues M, Gimeno C, Cuétara MS, Rubio R, Costa R, Romero G: Widespread dermatophytosis due to *Microsporum (Trichophyton) gallinae* in a patient with AIDS—a case report from Spain. Clin Exp Dermatol 17: 449-453, 1992.
12) Khosravi AR, Aghamirian MR, Mahmudi M: Dermatophytoses in Iran. Mycoses 37: 43-48, 1994.
13) Nweze EI: Etiology of dermatophytoses amongst children in northeastern Nigeria. Med Mycol 39: 181-184, 2001.
14) Poblete-Gutiérrez P, Abuzahra F, Becker F, Krause H, Merk HF, Frank J: Onychomycosis in a diabetic patient due to *Trichophyton gallinae*. Mycoses 49: 254-257, 2006.
15) Pérez-Tanoira R, Marin I, Berbegal L, Prieto-Pérez L, Tisiano G, Cuadros J, Górgolas M, Ramos JM: Mycological profile of tinea capitis in schoolchildren in rural southern Ethiopia. Medical Mycology 55: 262-268, 2017.
16) Murata M, Takahashi H, Takahashii S, Takahashi Y, Chibana H, Murata Y, Sugiymata K, Kaneshima T, Yamaguchi S, Miyasato H, Murakami M, Kano R, Hasegawa A, Uezato H, Hosokawa A, Sano A: Isolation of *Microsporum gallinae* from a fighting cock (*Gallus gallus domesticus*) in Japan. Med Mycol 51: 144-149, 2013.
17) Yamaguchi S, Sano A, Hiruma M, et al: Isolation of dermatophytes and related species from domestic fowl (*Gallus gallus domesticus*). Mycopathologia 178: 135-143, 2014.
18) Okoshi S, Takashio M, Hasegawa A: Ringworm caused by *Trichophyton simii* in a captive chimpanzee. Jpn J Med Mycol 7: 204-208, 1966.