Single Surgical Approach for Gastric Gastrointestinal Stromal Tumor and Cholecystolithiasis by Laparoscopic Procedure

Abdul Mughni 1, Vito Mahendra Ekasaputra 2,3*, Siti Amarwati 4

1 Department of Digestive Surgery, Faculty of Medicine, Diponegoro University, Semarang, Indonesia
2 Department of Digestive Surgery, Dr. Kariadi Central Hospital – Faculty of Medicine, Diponegoro University, Semarang, Indonesia
3 Department of Surgery, Faculty of Medicine, Islamic Sultan Agung University, Semarang, Indonesia
4 Department of Anatomical Pathology, Dr. Kariadi Central Hospital – Faculty of Medicine, Diponegoro University, Semarang, Indonesia

ARTICLE INFO
Received : 26 January 2021
Reviewed : 22 March 2021
Accepted : 12 October 2021

Keywords:
gastrointestinal stromal tumor,
laparoscopic partial gastrectomy

*Corresponding author:
Vito Mahendra Ekasaputra
Department of Digestive Surgery,
Dr. Kariadi Central Hospital, Medical Faculty, Diponegoro University,
Semarang, Indonesia
doktervito@gmail.com

Abstract

Introduction: Gastrointestinal stromal tumor (GIST) is a rare neoplasm representing 80% of gastrointestinal neoplasms. Laparoscopic resection is only recommended for GIST less than 2 cm and 5 cm for laparoscopic wedge resection. Thus, a large GIST is recommended to complete resection through laparotomy. A large GIST of the gastric fundus can be found in patients, which coincides with an upper right abdominal quadrant pain caused by cholecystolithiasis. A suggested laparotomy for tumor resection and cholecystectomy may result in poor recovery in the post-operative period. Therefore, one approach surgery with minimally invasive laparoscopic partial gastrectomy using Endoflex stapler and cholecystectomy was performed to achieve the optimal outcome.

Case Presentation: A 43-year-old male had a major complaint of hematemesis and melena for one month and colicky pain in the right upper quadrant of the abdomen with increased intensity in the last two months. Contrast-enhanced abdominal MSCT revealed a solid 4.6 x 4 x 5.6 cm exophytic mass on the gastric fundus, added with 0.5 cm gall bladder stone. Laparoscopic partial gastrectomy and cholecystectomy were performed in a single minimal invasive surgical procedure. The post-operative period was uneventful. The patient experienced minimum pain, early mobilization, and better diet tolerance. He was discharged on day four after the surgery. Besides, the histopathologic result revealed a malignant mesenchymal tumor according to GIST with a tumor-free margin of resection.

Conclusions: Single approach surgery with minimal laparoscopic partial gastrectomy and cholecystectomy has provided optimal outcomes for patients with large GIST and cholecystolithiasis.

Introduction

A gastrointestinal stromal tumor (GIST) is a rare neoplasm. Although it represents only 0.1-3% of all gastrointestinal malignancies, 80% of gastrointestinal neoplasms are GISTs. Approximately 5,000 – 6,000 new cases are diagnosed per year in the United States for an annual incidence of 14.5 per million and a prevalence of 129 per million [1]. GIST originates from interstitial cells of Cajal, the pacemakers of the gastrointestinal tract, and the most common location is in the stomach [2].

Gastric GIST has a malignant potential since it can spread by hematogenous pathways to the solid viscera organs, including the liver, small bowel, and lungs [2,3]. The preferable curative treatment for GISTS is a surgical procedure. All patients with resectable gastric GISTS are recommended to perform a surgical procedure with radical resection without lymphadenectomy because it grows by expansion rather than diffuse infiltration. Besides, it rarely spreads to locoregional lymph nodes unless there is a pathological enlargement or has invaded surrounding organs, which would necessitate
Laparoscopic Procedure for Gastric Gastrointestinal Stromal Tumor

CASE PRESENTATION

A 43-year-old male came to our center with major sporadic hematemesis and melena symptoms for one month and colicky pain on his right upper quadrant of abdomen with increased intensity in the last two months. An esophagogastrroduodenoscopy was performed and revealed a tumor on the gastric fundus with a smooth surface of mucosa without inflammation, erosion, and ulceration. However, ulceration was found at gastric cardia mucosa surface without any polyp or profuse bleeding (Figure 1).

An abdominal contrast-enhanced MSCT was performed for diagnosis and staging. A solid exophytic mass, lobulated on gastric fundus sized AP 4.6 x CC 4.5 x LL 5.6 cm, was found along with regional left gastro-pancreatic multiple lymph node metastases without any liver or lung involvement. Based on the workup done to the case, we staged a T3N1M0 tumor according to the American Joint Committee on Cancer (AJCC) for gastric cancer. Besides, there was a single hyperdense lesion on the gall bladder suspect of cholecystolithiasis (Figure 2).

A laparoscopic procedure was then undertaken to remove the tumor, and a frozen section was done during surgery to decide on the surgical procedure by confirming the origin of tumor malignancy as the gold standard for diagnosis. From the endoscopic clinical of the tumor and abdominal CT scan, it is suspected whether the GIST is from adenocarcinoma or mesenchymal tissue such as GISTS. Then, we decided to perform a partial gastrectomy by cholecystectomy simultaneously. The patient was positioned under the general antithesis, and we used a midline infraumbilical Veress needle to create a CO₂ pneumoperitoneum condition and insert a 12-mm camera port. Two 5-mm trocars, one 12-mm trocar, and one 5-mm port in the midline below the xiphoid were used as access ports for the Nathanson liver retractor and working port when cholecystectomy was performed (Figure 3).

When laparoscopic and laparoscopy-assisted approaches for partial gastrectomy are undertaken, modified split leg positioning should be considered for heightened visualization and organ manipulation. In addition, a 30° angled camera and a reticulating laparoscopic stapler may assist in a safe resection and extraction of the tumor with a 2-cm safe resection margin. The goal of surgery for GIST is to perform a margin-negative resection. However, unlike visceral adenocarcinomas or sarcomas at other sites, wide margins are unnecessary. Wide margins beyond an R0 resection have not been definitively linked with increased survival or recurrence, particularly in the era of effective medical therapy. There are also no data indicating that patients with R1 (microscopically involved) resection require re-excision [1].

The tumor was found in the gastric fundus (Figure 4), and we made a dissection with Endo Harmonic focus scalpel through the lesser sac and lesser curvature of the stomach. The tumor was lifted away from the fundus with a grasper, and a stapled partial gastrectomy was performed utilizing an Echelon FlexTM (Ethicon), and then the stapled side was sutured on the stomach with 2.0 polyglycolic acid to prevent leakage from the resected side (Figure 5). The tumor was placed into an Endobag, and a frozen section biopsy was previously made to the Pathological Anatomy Laboratory for histopathological analysis. A frozen section was made to distinguish whether the tumor origin was from mesenchymal cells or suspicious adenocarcinoma. In the early growth of adenocarcinoma gastric cancer, the gross appearance of advanced gastric carcinoma can...
Figure 1. Esophagogastric-duodenoscopy reveal Tumour on gastric fundus suspect GISTS (arrow)

Figure 2. Abdominal CT scan reveal solid mass on gastric fundus (yellow arrow) and Cholecystolithiasis (blue arrow)

Figure 3. Instruments access points
Figure 4. Tumor on gastric fundus

Figure 5. Laparoscopic partial gastrectomy using Echelon Flex™ stapler

Figure 6. (A) Histopathologic (400 x HPF) revealed oval and spindle nucleus (black arrow), pleomorphic and hyperchromatic nuclei features (green arrow), mitotic cells (red arrow), and eosinophilic cytoplasm (blue arrow); (B) Immunohistochemistry staining of CD 117 positive on tumor cells (black arrow) support the diagnose of GISTS.
be exophytic like GIST, ulcerated, infiltrative, or combined. Based on Borrmann’s classification, the gross appearance of advanced gastric carcinoma type I for polyoid growth was like GISTs; we could determine the preferred surgical procedure based on the frozen section [8]. Then, we performed laparoscopic cholecystectomy in one stage, placed a gall bladder into an Endobag together with the tumor, and removed it endoscopically. Frozen section biopsy analysis revealed a malignant tumor from mesenchymal tissue with suspected gastrointestinal stromal tumor; thus, no further procedure was needed, and we finished the surgery.

Moreover, the histopathological analysis showed a CD117-positive malignant mesenchymal tumor confirming a gastrointestinal stromal tumor, and there were more than six mitoses per 50 high-power fields (Figure 6A and 6B). The tumor was 5 cm in size; according to the National Institutes of Health’s (NIH) GIST risk table, the histopathology showed a moderate grade of GIST [5].

The surgical procedure lasted 120 minutes, and there were no immediate postoperative complications. The post-operative period was uneventful, and there was no immediate postoperative complications. The patient could tolerate a porridge diet. Within the third day of post-operation, the patient could tolerate a porridge diet. The patient was then discharged on the fourth day after the surgery.

DISCUSSION

GIST is a rare neoplasm that arises from the pacemaker cells of the intestinal tract called interstitial cells of Cajal. It is primarily located in the submucosa within muscularis propria or subserosa, solitary, and can degenerate into a malignant neoplasm [4,6]. Kindblom et al. [6] found that GIST expressed the CD117 antigen (C-kit) as a functioning antigen for the mutation responsible for activating this tumor growth [5].

GIST is also most frequently located in the stomach, followed by the small bowel. Patients may present with nonspecific symptoms of nausea, vomiting, abdominal distension, early satiety, abdominal pain, and rarely palpable abdominal mass. A larger tumor may obstruct the gastrointestinal lumen by endophytic growth or GIT compression from the exophytic growth leading to dysphagia, obstructive jaundice, or constipation, depending on the mass’s location. Perforated neoplasms will present with signs of peritonitis or gastrointestinal bleeding. Indolent or massive intraoperative bleeding is secondary to pressure necrosis, and ulceration reveals a sign of hematemesis and melena [5].

The primary aims of laparoscopic as a surgical treatment for primary GISTS, which are less than 5 cm, resectable, and located in the stomach and small bowel, are to margin negative resection and preserve anatomical function [5]. The goal of surgery should be an R0 resection. The rupture of the tumor capsule during surgery is associated with an increased risk of recurrence [1]. In this case, the main goals of laparoscopic partial gastrectomy for primary fundus exophytic GISTS without involving D2 lymph nodes within other disease problems of regional anatomy such as cholecystolithiasis may be to perform a laparoscopic procedure with the same port access to minimize postoperative complications, preservation of remnant stomach, and enhance recovery after surgery with negative resection margin [1].

Moreover, the laparoscopic procedure for GIST gastric resection has many advantages over laparotomy. Chen et al. [7] retrospectively reviewed 58 cases of GIST. Sixteen cases (27%) underwent laparoscopic surgery (LSG), and 42 cases (73%) completed an open surgery (OSG). One LSG patient had a recurrence at a median follow-up of 33 months and two OSG patients at a median follow-up of 40 months. Post-operative recovery in the LSG group resumed a normal diet sooner, had a shorter length of stay, and required less pain management than the OSG group. Post-operative morbidity was 6.3 % and 19 % in the LSG and OSG groups, respectively. Laparoscopy seems a preferable resection method in GIST [5].

Gastric GIST is a relatively rare mesenchymal neoplasm with increasing diagnosis rates due to the widespread use of upper endoscopy and endoscopic ultrasound. According to previous serial cases series from De Vogelaere et al. [8], GIST with tumor size larger than 2 cm represents more than 80 % of cases, and partial gastrectomy method with a gross free surgical margin is accepted as a treatment method since GIST rarely involves the lymph nodes. However, the feasibility of laparoscopic resection for large GISTS greater than 10 cm in size according to the GIST classification system is limited based on the mitotic rate of more than 5 per 50 high-powered fields in gastric GIST, giving a high gastric metastasis and recurrence rate of about 55 %. Based on that, the GIST Consensus Conference in 2004 recommended the limitation of laparoscopic resection to the tumor with the size of less than 2 cm due to the increased risk of tumor rupture and spillage. Meanwhile, according to the consensus of Chinese experts, laparoscopic surgery is recommended for GISTS less than 5 cm [8–11].

The location of trocars during laparoscopic for partial gastrectomy procedure varies by tumor locations and operators and is not much different from the locations used in laparoscopic surgeries for early gastric cancer or Nissen fundoplication. The operator can stand either between the patient’s legs or at the patient’s right side according to the preferences. The trocar location for the linear stapler and the needle holder should be selected considering the direction of stapling or suturing. To make the stapler line perpendicular to the long axis of the stomach to avoid stenosis, the stapler may be
introduced from the left side. The trocar location is
adjusted to the left and proximal for a lesion at the
upper stomach and distally for a lesion in the lower
stomach. One or two assistants’ trocar and epigastric
trocar for liver retraction can be added as needed; in
this case, it can be used as a port for cholecystectomy
procedures.

Furthermore, different laparoscopic surgical techniques
are used depending on the size and location of the
lesions. The location is in the fundus or body for anterior
wall lesions, and the mass is elevated by grabbing nearby
normal mucosa or adjacent soft tissue. For the lesions
near the lesser or greater curvature, ligation of the
vascular pedicle using a laparoscopic energy-based device
can be applied, and the linear stapler can be applied
to cut out the mass with nearby normal tissue; it is
called the exogastric method. If the lesion is growing
endophytically, a relatively large amount of normal
mucosa is removed by a simple linear stapling method.

To prevent stenosis after resection by removing excessive
normal tissue, the stapler’s direction should be
perpendicular to the long axis of the stomach, and
multiple staplers may be needed. In addition, the
eversion technique can be applied within a gastrostomy
made either proximally or distally with a negative gross
margin of normal mucosa about half the length of the
tumor circumference. The mass is then everted outside
of the stomach, and the gastrostomy and normal mucosa
attached to the mass are stapled in a direction
derpendicular to the long axis of the stomach. In this
technique, continuous suction of the intragastric contents
and a nasogastric tube should be performed to minimize
contamination and decompression of the stomach. For
a lesion at the posterior wall of the stomach, it is often
necessary not only to open the gastrohepatic ligament
and rotate the stomach caudally but also to open the
gastrocolic ligament and rotate the stomach cephalad
even for a lesion close to the lesser curvature. The lesion
then can be resected with an “exogastric” technique
similar to that described for anterior lesions [2,10].

The current evidence shows that gastric GISTs
resection performed conventionally through open
surgery in the present and future can be achieved
frequently by minimally invasive surgery with equivalent
safety efficacy. The decision to perform an open or
laparoscopic surgery depends on the site, size, and local
invasion of the primary GISTs. Laparoscopic gastric GISTs
surgery has many advantages, and more importantly,
it can achieve similar oncological outcomes compared
to open surgery. Laparoscopic partial gastrectomy is
preferred for large GISTs between 4–5 cm, although
total gastrectomy may be necessary in some complex
cases. During the surgical dissection and resection, care
must be taken to avoid disruption of the tumor pseudo-
capsule and, more importantly, intraperitoneal
implantation. Although complete surgical R0 resection
of gastric GISTs may represent curative treatment,
specific high-risk features of the resected GISTs can still
give rise to disease recurrence [4,9,10].

CONCLUSIONS

Laparoscopic partial gastrectomy can be maintained
for 4–5 cm large of the tumor, with a simple partial
gastric resection technique with echelon flexTM (Ethicon)
stapler used for GISTS in the gastric fundus with optimal
preservation of the stomach. More importantly, it is to
achieve a safety margin for surgery with a cholecystectomy
procedure with a single laparoscopic approach to offer
optimal outcomes, minimized pain, and well-tolerated
food intake to enhance recovery after surgery.

DECLARATIONS

Ethics of Approval Consent to Participate
Written informed consent was obtained from the
participants of the study.

Competing of Interest
The authors declare no competing interest in this study.

Acknowledgment
The authors wish to thank the Director of Kariadi
Hospital Semarang and Head of Digestive Surgery
Department – Medical Faculty of Diponegoro University
Semarang.

REFERENCES

1. Moynihan B. Abdominal Operations. 4th Ed.
Philadelphia: WB Saunders Company; 1926.
2. Okumura S, Kanaya S, Hosogi H, et al. Our experience
with laparoscopic partial gastrectomy by the ‘lift-
and-cut method’ for gastric gastrointestinal stromal
tumor with maximal preservation of the remnant
stomach. Surg Endosc. 2017;31(8):3398–404.
3. Erko IP, Moloshok AA, Zotov VN. [Surgical treatment
of gastrointestinal stromal tumours]. Klin Khir.
2013;13(10):18–20.
4. Lim KT. Surgical treatment of gastrointestinal stromal
tumors of the stomach: Current status and future
perspective. Transl Gastroenterol Hepatol. 2017;2:104.
5. Parab TM, DeRogatis MJ, Boaz AM, et al. Gastrointestinal
tumor: A comprehensive review. J Gastroint Oncol.
2019;10(1):144–54.
6. LG Kindblom, HE Remotti, F Aldenborg, JM Meis-
Kindblom. Gastrointestinal pacemaker cell tumor
(GIPACT) : gastrointestinal stromal tumors show
phenotypic characteristics of the interstitial cells of
cajal. Am J Pathol. 1998;152(5):1259–69.
7. Chen YH, Liu KH, Yeh CN, et al. Laparoscopic resection of gastrointestinal stromal tumors: safe, efficient, and comparable oncologic outcomes: J Laparoendosc Adv Surg Tech A. 2012;22:758–63.
8. Vogelaere KD, Loo IV, Hoorens A. Laparoscopic resection of gastric gastrointestinal stromal tumor (GIST) is safe and effective, irrespective of tumor size. Surg Endosc. 2021;26(8):2339–45.
9. Rangarajan M, Palanivelu C, Rajan P, Maheshkumaar GS. Laparoscopic Surgery For Benign Gastric Tumors: A Simple Stapler Wedge Resection - Case Report. Internet J Surg. 2012;9(2):1–5.
10. Cao F, Li J, Li A, Fang Y, Li F. One-stage laparoscopic resection for a large gastric gastrointestinal stromal tumor and synchronous liver metastases following preoperative imatinib therapy: A case report. Oncol Lett. 2013;5(4):1233–6.
11. Hu B, El Hajj N, Sittler S, Lammert N, Barnes R, Meloni-Ehrig A. Gastric cancer: Classification, histology and application of molecular pathology. J Gastrointest Oncol. 2012;3(3):251–61.