ABSTRACT Brucellosis, which is among the most widespread global zoonotic diseases, is endemic in the nation of Georgia and causes substantial human morbidity and economic loss. Here, we report whole-genome sequences of three *Brucella melitensis* and seven *Brucella abortus* isolates from cattle, sheep, and humans that represent genetic groups discovered in Georgia.

Brucellosis is one of the most globally common zoonotic diseases, with more than 500,000 human cases reported worldwide annually (1). Brucellosis epidemiology changes under various sanitary, socioeconomic, and political conditions. The genus *Brucella* comprises facultative intracellular bacterial pathogens that can infect a wide range of mammals, including humans, livestock, rodents, and marine mammals (2, 3). Five *Brucella* species are known to be pathogenic for humans: *B. melitensis*, *B. abortus*, *B. suis*, *B. canis*, and *B. maris* (4). Among these, *B. abortus* and *B. melitensis* are classified as category B biological threat agents (5) (https://emergency.cdc.gov/agent/agentlist.asp).

Molecular typing assays are routinely used to genetically characterize *Brucella* isolates and determine clonal associations, and thus provide a means to trace-back to sources of infection, and can also be used to discriminate naturally occurring outbreaks from a bioterrorism event. The genetic typing tool multiple-locus variable-number tandem-repeat analysis (MLVA) can provide high-resolution genetic subtyping information for accurate epidemiological investigations (6). In this study, we used a 15-marker MLVA system (7) to subtype *Brucella* strains isolated in Georgia between 2010 and 2013. Based on this analysis, 10 isolates, including three *B. melitensis* and seven *B. abortus* strains, were selected to represent major genetic clusters for whole-genome pyrosequencing (Table 1). Purified *Brucella* genomic DNA samples were sheared to around 1-kb-long fragments using the Covaris S2 system (Covaris, Woburn, MA). The shotgun library of DNA fragments for each sample was prepared and sequenced using Roche GS FLX sequencing system and reagents (Roche 454 Life Sciences, Branford, CT). Sequence read data were successfully assembled into *de novo* assembly contigs using Roche GS Assembler software (Newbler), with most sequence reads assembled and high sequence alignment depths achieved (Table 1). The size of each draft genome, as estimated based on the length and copy number of every contig, is close to the expected length of 3.3 Mb. The sequences share high nucleotide identity (>99%) with respective known *Brucella* genome sequences, including GenBank reference genomes (RefSeq) *B. abortus* S19 (accession numbers NC_010740 and NC_010742) and *B. melitensis* M28 (accession numbers NC_017244 and NC_017245). The draft genomes were annotated by utilizing the NCBI Prokaryotic Genome Annotation Pipeline (PGAP, revision 33 [http://www.ncbi.nlm.nih.gov/genomes/static/Pipeline.html]) (Table 1).
Brucellosis remains a major agricultural and public health problem in the nation of Georgia (8, 9). Acquisition of genome sequences for representative genetic variants of the two most important pathogenic Brucella species will enable genome-wide phylogenetic and polymorphism analyses to enhance brucellosis surveillance in Georgia. To our knowledge, these are the first published whole-genome sequences of Brucella isolates from Georgia or the broader South Caucasus region. Work under way includes comparative analyses of these and other Brucella genomes to identify unique single nucleotide polymorphisms (SNPs) and genome structural variations for understanding of Brucella pathogenicity and the application of this genomic information to brucellosis epidemiology and disease control.

Accession number(s). The whole-genome sequences for B. abortus and B. melitensis were deposited in GenBank under BioProject numbers PRJNA338234 and PRJNA339926, respectively, with accession numbers listed in Table 1.

ACKNOWLEDGMENTS

The views expressed herein are those of the authors and do not reflect the official policy or positions of the Walter Reed Army Institute of Research, Department of the Army, Department of Defense, or the U.S. Government.

We declare no conflicts of interest.

This work was supported by the Defense Threat Reduction Agency (CBCALL12-DIAGB1-2-0194) and the Armed Forces Health Surveillance Branch Global Emerging Infections Surveillance and Response System.

J.H. and M.P.N. are employees of the U.S. Government. This work was done as part of their official duties. Title 17 USC §105 provides that "Copyright protection under this title is not available for any work of the United States Government." Title 17 USC §101 defines U.S. Government work as a work prepared by employee of the U.S. Government as part of that person’s official duties.

REFERENCES

1. Seleem MN, Boyle SM, Sriranganathan N. 2010. Brucellosis: a re-emerging zoonosis. Vet Microbiol 140:392–398. https://doi.org/10.1016/j.vetmic.2009.06.021.
2. Wareth G, Melzer F, Eischner MC, Neubauer H, Roessler U. 2014. Detection of Brucella melitensis in bovine milk and milk products from apparently healthy animals in Egypt by real-time PCR. J Infect Dev Ctries 8:1339–1343. https://doi.org/10.3855/jidc.4847.
3. Garofolo G, Foster JT, Drees K, Zilli K, Platone I, Ancora M, Cammà C, De Massis F, Calistri P, Di Giannatale E. 2015. Genome sequences of 11 Brucella abortus isolates from persistently infected Italian regions. Genome Announc 3(6):01402-15. https://doi.org/10.1128/genomeA.01402-15.
4. Hadush A, Pal M. 2013. Brucellosis—an infectious re-emerging bacterial zoonosis of global importance. Int J Livest Res 2:28–34. https://doi.org/10.5455/ijlr.20130305064802.
5. Centers for Disease Control and Prevention. 2007. Bioterrorism overview. https://emergency.cdc.gov/bioterrorism/overview.asp.
6. Tiller RV, De BK, Boshra M, Huynh LY, Van Ert MN, Wagner DM, Klena J, Molsen TS, El-Shafee SS, Keim P, Hoffmaster AR, Wilkins PP, Pimentel G. 2009. Comparison of two multiple-locus variable-number tandem-repeat analysis methods for molecular strain typing of human Brucella melitensis isolates from the Middle East. J Clin Microbiol 47:2226–2231. https://doi.org/10.1128/JCM.02362-08.
7. Huynh LY, Van Ert MN, Hadfield T, Probert WS, Bellaire BH, Dobson BRJ, Weyant RS, Popovic T, Zanecki S, Wagner DM, Keim P. 2008. Multiple locus variable number tandem repeat (VNTR) analysis of Brucella spp. identifies species specific markers and insights into phylogenetic relationships, p 47–54. In Georgiev VS, Western KA, McGowan JJ (ed), National Institute of Allergy and Infectious Disease, NIH. Vol 1: frontiers in research. Humana Press, Totowa, NJ.
8. Sanodze L, Bautista CT, Garuchava N, Chubinidze S, Tsertsvadze E, Kosaka H, Toebes B, Massis F, Calistri P, Di Giannatale E. 2015. Genome sequences of 11 Brucella abortus and Brucella melitensis isolates from persistently infected Italian regions. Genome Announc 3(6):01402-15. https://doi.org/10.1128/genomeA.01402-15.

TABLE 1 Brucella genomes and annotations

Strain	Collection date (yr)	Source of isolation	GenBank accession no.	No. of de novo contigs	Fold coverage depth	Contig N50 (bp)	No. of CDSs
B. abortus 1247/10-Geo	2010	Bovine blood	MIUH000000000	28	36.4	364,279	3,035
B. abortus 1549/11-Geo	2011	Bovine milk	MIUJ000000000	30	26.8	254,267	3,032
B. abortus 1844/12-Geo	2012	Human blood	MIUJ000000000	26	38.0	390,977	3,032
B. abortus 1910/13-Geo	2013	Human blood	MIUJ000000000	30	34.0	364,276	3,030
B. abortus 1238-10-Geo	2010	Ovine blood	MIUJ000000000	29	47.3	251,385	3,039
B. abortus 1236-10-Geo	2010	Bovine milk	MIUJ000000000	26	52.9	364,304	3,031
B. abortus 375-10-Geo	2010	Human blood	MIUJ000000000	30	76.3	391,124	3,038
B. melitensis 1771/12-Geo	2012	Human blood	MIUJ000000000	32	53.7	222,946	3,012
B. melitensis 1252/10-Geo	2010	Bovine milk	MIUP000000000	29	54.4	250,822	3,010
B. melitensis 1268/11-Geo	2011	Bovine milk	MIUQ000000000	32	69.9	298,955	3,018

<CDs, protein-coding sequences.
Broladze M, Chitadze N, Sidamonidze K, Tsanava S, Akhvlediani T, Rivard RG, Mody R, Hepburn MJ, Elzer PH, Nikolich MP, Trapaidze N. 2015. Expansion of brucellosis detection in the country of Georgia by screening household members of cases and neighboring community members. BMC Publ Health 15:459. https://doi.org/10.1186/s12889-015-1761-y.

9. Mamisashvili E, Kacalak IT, Onashvili T, Kerdzevadze L, Goginashvili K, Tigilauri T, Donduashvili M, Nikolashvili M, Beradze I, Zakareishvili M, Kokhreidze M, Gelashvili M, Vepkhvadze N, Rácz SE, Elzer PH, Nikolich MP, Blackburn JK. 2013. Seroprevalence of brucellosis in livestock within three endemic regions of the country of Georgia. Prev Vet Med 110:554–557. https://doi.org/10.1016/j.prevetmed.2012.12.005.