Plant Biostimulants, Seaweeds Extract as a Model (Article Review)

Hayyaw1 W.A. Al-Juthery, Hayder Abbas Drebee, Bassim M.K. Al-Khafaji and Roaa F. Hadi

1 College of Agriculture, University of Al-Qadisiyah, Iraq
E-mail: hayyawaljuthery@qu.edu.iq

Abstract
Plant biostimulants are classified as substances which have increased the positive effects on growth and productivity when applied to plants. Biostimulants are obtained naturally from various economically and environmentally viable sources. The plant biostimulants currently accepted include extracts of seaweed, humic substances (humin acids and fulvic acids), chitin and chitosan derivatives, amino acids, protein hydrolysates and microbes. Seaweed extracts and humic acids are widely studied for their role in plant growth-promotion, Seaweeds have been traditionally used in coastal Europe since time immemorial as fertilizers and soil conditioners. Seaweeds belong to Rhodophyta, Chlorophyta and Ochrophyta. Over the past two decades, seaweeds have been processed and marketed as seaweed extracts in various formulations for use in agriculture and horticulture. Seaweed extracts are rich in micro and macronutrients, polysaccharides, proteins, polyunsaturated fatty acids, polyphenols, phytohormones, and osmolytes. These compounds elicit multiple beneficial effects in plants, including enhanced seed germination and establishment, overall plant growth and productivity, resistance against biotic and abiotic stresses and increased post-harvest shelf life. Numerous studies of the beneficial effects of seaweed extracts on crop plants and crop production, yield and productivity have been published.

Keywords: Biostimulants, Seaweeds, Extract, Distribution, Growth, Uses, Nanoparticle.

1. Introduction
Both the biotic and abiotic factors influence the quality and quantity of the crops. Quality can be defined as a set of agronomic properties (e.g., fruit size, yield, bacterial and fungal resistance) and organoleptic properties (e.g. colour, shape, firmness) as well as nutrient and vitamin content [1]. Soil composition, extreme salinity, acidity, high and low temperatures, drought, pollution, humidity, rain, wind, or ultraviolet radiation are among the abiotic factors. Stress caused by unfavorable stimuli can significantly reduce harvest yields, as plants respond by using their energy reserves to combat stress rather than focus on yield. Biotic factors include various bacteria, fungi, or viruses which cause numerous diseases in plants. Fungal and bacterial infections may not only reduce yields, but may also cause the entire harvest to lose out. Diverse types of plant protection products are used to prevent this. In accordance with European Union guidelines [2], Chemical and mineral plant protection agents are meant to be replaced slowly by natural preparations. The cause for this is the detrimental impact on the natural world of chemical and mineral plant defense products, as well as on the safety benefits of food crops. Additionally, chemical fertilizers are blamed for certain bodies of water being eutrophised. This leads to the formation of dead zones, without living organisms. The Baltic Sea alone is characterized by the oxygen-free areas that make up around 60,000 km2 of region affected by fertilizer-related water contamination. On average, this area constitutes 3.5 per cent of the Baltic Sea catchment area [3]. The fertilizer effects have an unfavorable effect on algae, plants, animals, and people. Because man is a higher-order consumer, humans are particularly heavily exposed to the harmful effects of fertilizer compounds accumulated at lower food chain levels. Harmful fertilizer compounds may disrupt the enzymes or interfere with protein production or absorption of vitamins in the human body [3]. Modified formulations called biostimulants enhance the usage and resistance of nutrients to abiotic stress, and boost crop quality [4]. Biostimulants include microorganisms and/or organic and non-organic substances [5]. Farmers operating organic farms are now eager to utilize natural stimulants to increase the efficiency of crops [6]. Increasing consumer awareness about healthy food favors improving the importance of organic farming [7]. The stimulator eets can be multifaceted. The ects of their behaviors differ due to the form of biostimulant used and the diversity of the plants. It should be noted, however, that most have beneficial effects on crops [8].
In recent years, algae have suffered a boom, with consequent discoveries and advances in this field. Not only are algae of high ecological value but they are also of great economic importance. Possible applications of algae are very broad, including antibiotic action, biofuel processing, bioremediation, as fertilizer, as fish feed [9]. Seaweed extracts (SE) are currently widely used as plant biostimulants, which are ‘any substance or micro-organism applied to plants with the aim of enhancing nutrition and science, abiotic stress tolerance and/or crop quality, regardless of their nutrient content’ [10]. Seaweed extracts make up more than 33 percent of the global market for biostimulants and are predicted to reach a value of EUR 894 million in 2022 [11]. In addition, seaweeds or macroalgae are estimated to compromise nearly 10,000 species [12], which are mainly...
Seaweed Extracts as a Plant Growth and Production Biostimulant

Seaweeds are an important component of coastal aquatic eco-systems. These include the macroscopic, multicellular marine algae commonly inhabiting the coastal regions of the world’s oceans where there are appropriate substrates. It has been estimated that about 9,000 species of macro algae are broadly classified into three main groups based on their pigmentation (e.g., Phaeophyta, Rhodophyta, and Chlorophyta; or the brown, red, and green algae). Brown seaweeds are the second most common group of around 2,000 species on the rocky coasts of temperate zones exceeding their highest biomass peaks. They are the type most commonly used in agriculture [15], and among them the most researched is the Ascophyllum nodosum (L.) Le Jolis [16]. Alongside A. Nodosum, other brown algae, such as Fucus spp., Sargassum spp., Laminaria spp. and Turbinaria spp. Are used as agricultural biofertilizers [17]. For decades, the advantages of seaweeds as sources of organic matter and nutrients for fertilizers have contributed to their use as soil conditioners ([15], [18] and [19]). About 15 million metric tons of seaweed products are produced annually [20], a substantial portion of which is used for nutrient supplements and to improve plant growth and yield as biostimulants or biofertilizers. Numerous studies have shown a wide variety of beneficial effects of marine extract applications on plants, such as early seed germination and planting, enhanced crop production and yield, increased biotic and abiotic stress tolerance, and increased post-harvest shelf-life of perishable products ([21] and [22]); Seaweed products foster root production and growth ([23] and [24]). The stimulatory effect of root growth was more pronounced when extracts were applied in maize at an early stage of growth, and the response was similar to that of auxin, an important root growth hormone [25]. By increasing root size and vigor, SWC applications reduce transplant shock in marigold, cabbage [26] and tomato seedlings [27]. Treatment with SWC increased both root: shoot ratios and accumulation of biomass in tomato seedlings by stimulating root growth [28]. On ashing this stimulating activity was lost, suggesting that the active principles in the extract of seaweed were organic in nature [29]. The root-growth-promoting behavior was observed when the extracts from seaweed were either applied to the roots or as foliar spray [29]. The concentration of kelp extract is a crucial factor in its efficacy as seen by [29] for tomato plants in which high concentrations (1:100) of seaweed extract: water impaired root growth but stimulating effects were observed at a lower concentration (1:600). In general, biostimulants are capable of influencing root growth both by strengthening lateral root structure [30] and by increasing the overall root system length [31]. The endogenous auxins as well as other compounds in the extracts could influence an improved root system [27]. Seaweed extracts improve root uptake of nutrients [28]. This results in improved water and nutrient efficiency root systems, leading to increased growth and vigor in general plants [32] and [33]. Sprinkling of Kappaphyccus extract at a rate of 15 percent with the required dose of fertilizers reported higher yield attributes such as number of panicles m-2 (507.60), filled grain panicle-1 (143.83), panicle length (28.97 cm) and 1000 grain weight (21.23 g) and thus improved grain yield (6.55 t ha-1) and straw yield (8.25 t ha-1) A 15% spray of Gracilaria sap and a recommended dose of fertilizers in rice followed. In addition, this application of only Kappaphycus sap and Gracilaria sap with the same concentration increased the absorption by grain with N and P [34]. The yield attributing rice characters such as the number of panicles hill-1 and the number of productive grains panicle-1 also increased with higher seaweed extract concentrations and the maximum value was obtained for 15 percent K sap, which was statistically equivalent to 10 concentration [35]. It has been reported that marine weed application not only improved crop growth but also helped increase the number of functional nodules as compared to control. This can be due to the presence in brown algal extracts of several cytokinins including trans-zeatin riboside and its dihydroderivatives . It has also been documented that the bioactive compounds in the Ascophyllum nodosum extract and its organic sub-fractions have impaired legume signalling processes-rhizobia, resulting in more stable nodules and an overall increase in plant growth [36]. Applications of 15 percent seaeweed extract from Kappaphycus and Gracilaria extracts are responsible for increased yield and improved green gram nutrition receiving foliar application of the aforementioned two saps. Seaweed extract application increased early growth and yield attribute properties in legume plants and The yield was 12-25 percent higher than the yield of control [37]. The application of 10 percent of Kappaphycus Alvarezi and Gracilaria edulis extracts increased the yield of black gram grain by 47.52 percent and 42.52 percent relative to control [38], respectively. Due to foliar sea weed spray) [39], the average bean yield increased by 25 per cent). [40], it was confirmed that supplementation of the prescribed dose of fertilizer with either Kappaphycus alvarezi (K sap) or Gracilaria edulis (G sap) extract at a concentration of 10 percent could be followed to boost the growth and yield of potato. They also recorded that applying both 10% G sap + RDF and 10% K sap + RDF yielded higher tuber yields of 32.88 t ha-1 and 31.30 t ha-1, respectively than power. In addition, seaweed extract sprays had significantly increased marketable yield of tuber and minimized non-marketable yields and potato damage over control. [41] corroborated similar results and maintained that seaweed extracts had a positive impact on potato plant growth and thus dramatically improved overall potato yield, both qualitatively and quantitatively [42] also concluded that seaweed extract could boost potato yields. The stages of the crop...
during which the seaweed is treated, however, play an significant role. Sprinkling of seaweed extract at an interval between 30 and 60 days after planting reported increased tuber yield,

Enhanced phosphorus, gross soluble solids, and potato tuber protein value [43]. [35] reported an increase of 18.0 per cent in rice grain yield with either 15 per cent Kappaphycus (K) or Gracilaria (G) sap as compared to control. They recommended that the application of either 10 percent K or G sap spray concentration along with 100 percent recommended fertilizer dose is a feasible option for obtaining high yield and grain quality rice in north-eastern India region. [44] and [45] also record similar rice tests. Also recorded were the beneficial effects of the seaweed extract on wheat growth and yield) Triticum aestivum L.). Wheat grain yield increased dramatically by 19.74 percent and 13.16 percent with application of 7.5 percent and concentrations of K at 5.0 percent. Alvarezi y G. Eduis sap on power, respectively. [46] Similar results with application of K have also been reported for wheat. Extract of the alvarezi [47]. SW seaweed ibanad multi foliar application on growth and potato yield at 23.33 compared to control18.86 meg ha-1 fresh tubers yield respectively [48]. The effect of soaking the tubers + spraying the plants with algae extract AE at 200 mg L-1 showed a marked increase in the area of the leaf, Plant production and tuber content of dry matter and starch, which was compared to other treatments, while dry matter was 19.4% and starch content 13.3%, whereas control plants reported lower values of 14.9% and 9.3% respectively [49]. A novel study, a greenhouse experiment with a novel seaweed extract (SES) originating from Sargassum horneri was conducted in Shandong Province of China to investigate the effects of different doses of SES (0, 30, 60 , and 90 kg hm−2) on yields, quality, maturing time, and net returns of tomato. The results indicated that SES application significantly increased tomato yield by 4.6−6.9 percent compared to control, which is attributed to improved tomato leaf photosynthesis capacity. Tomato yields first increased and then decreased with rising dosage of SES, and SES applied at the 60 kg hm−2 dose obtained the highest yield of tomatoes. Compared to the monitor, SES increased tomato hardness by 10.2 and 19.8 percent at

3. Seaweeds: Distribution, Production and Uses

Plants are the main producers who race for this precious life on earth. They form the basic direct food for the herbivores and for the carnivores indirectly, being part of the web / chain food. They are known as Cryptogams and Phaenorogams. Once more, cryptogams are divided into Thallophyta, Bryophyta, and Pteridophyta. They are classified within Thallophyta Algae and Fungi. Most algae are aquatic, and grow in various waters. Any algae occur in soil and waters. They are the primitive group of plants that first evolved in the universe, and they are both microscopic and macroscopic, commonly called microalgae and macroalgae. Macrophytic algae found in marine environments (Seas / Oceans) are commonly referred to as seaweed . Marine algae are the major primary producers within the marine ecosystem. Macroalgae are larger, with a simple thallus structure which has no real roots and leaves. But they've got pseudo-roots called hold rhizoids / fasts. They do photosynthesis through their thallus ([51] and [50]).

Needless to say, in the light of recent new knowledge provided by molecular techniques, the taxonomic classification of algae is still the subject of constant changes and controversy [53], [54] indicates that there are about 36,000 recognized algae species which constitute only about 17 per cent of current species. According to Dring (55), over 90 percent of marine plant species are algae and about 50 percent of the plant group's global photosynthesis is derived from algae [54]. Thus each second molecule of oxygen that humans inhale is produced by an alga, and each second molecule of carbon dioxide that they exhale is reused by an alga [56]. Uses of these marine aquatic plants otherwise known as weeds (Marine algae) had not been well understood in earlier days. Thus the name of these marine plants / weeds was given as “Seaweeds.” Now, the aquatic plant benefits (sea algae) have been well studied in various ways, and are being used in human life today. The name "Seaweeds" is now common with scientists and people and hence the name "Seaweeds" is difficult to modify. But some scientists use the term ‘Marine Plants’ here and there in scientific literature, and yet the term ‘Seaweeds’ is widely accepted. More important than the name, it is the use and many applications of these seaweeds. Seaweeds grow naturally in seawater, and their growth is greater where there is adequate nutrition and sunlight. Earth has 71 per cent of marine water and harbors an enormous number of marine plants. Marine plants include phytoplankton, cyanobacteria, seaweeds and sea grasses, and the coastal community is known among these seaweeds for a better livelihood option ([57]). Seaweeds grow in shallow or near-shore waterways of sea, estuaries and even in brackish waters wherever dead corals, rocks, stones, pebbles and any other suitable substrates are accessible for attachment. They are also one of the marine resources which are renewable and economically valuable ([58] and [59]). [60] and [61] examined the advantages of seaweed for human well-being in which the use of seaweed as human food , animal feed, crop manure, antibiotics and phycocolloids (agar, alginate and carrageenan) were included.

4. Effect on plant defense system against biotic factors

Several reports have shown that SWE induce protection against fungal, bacterial, and viral pathogens in plants. Defense response occurs after perception of signal molecules, called elicitors, derived from pathogens or from the host plant [62]. SWE polysaccharides can act as elicitors of plant defense responses and enhance resistance against pathogens. Early study of Featonby-Smith and van Staden [63] showed that SWE reduced root damage from nematode Meloidogyne incognita
predation in tomatoes whether applied to the foliage or as a soil drench. SWE did not reduce the abundance of nematodes in the soil but lowered their number inside the roots. According to [64] SWE in the soil reduced the number of galls and juveniles of M. incognita and decreased the infestation of tomato plants by root-knot nematodes. Application of Spathoglossum variable, Melanothamnus afaqhusainii, and Halimeda tuna extracts can suppress rotting fungi Rhizoctonia solani and Fusarium solani on tomato roots as well as nematode’s galls on roots and nematode’s penetration in roots [65]. SWE of different brown algae species reduced necrotic lesions induced by A. solani. Ulva lactuca extracts induced the expression of systemic wound response genes. Caulerpa sertularioides, Padina gymnospora, and Sargassum liebmannii extracts were involved in the other, unidentified mechanisms[62] . Ascophyllum nodosum enhanced foliar resistance to Phytophthora capsici in pepper [66]. SWE, applied as a soil drench to pepper plants, reduced Verticillium wilt of pepper through improving plant fitness and increasing resistance to pathogens [67]. Spathoglossum variable, Stoekeyia indica, and Melanothamnus afaqhusainii extracts showed significant suppressive effect on root rotting fungi Fusarium solani and root knot nematode Meloidogyne incognita in eggplant [68]. Due to their effects as plant protectants, algal extracts represent an alternative tool for disease and pest control in Solanaceae crops [69].

5. Seaweeds and New Technologies
5.1 Seaweed nanoparticles, Green Synthesis and Application
The underwater surfaces of marine environments are populated by a wide variety of living species, from bacteria to invertebrates [70]. Bio fouling is harmful growth and aggregation of bacteria, plants and animals on a natural surface or other artificial structures long exposed to water. It is still one of the big unanswered issues impacting the shipping industry at present. Nanoparticles were added to cover the ships and other artificial structures within the ocean to solve this consisting problem. However, to reduce the side effect and gradual poisoning of chemically derived nanoparticles, the present generation has focused on the biosynthesized nanoparticles for coating and is trying to solve this consisting problem of living organism accumulation. Nanoparticles are used for different fields of use for their special characteristics. In general, the noble metals Gold, Silver and Platinum Nanoparticles are widely applied to various fields such as toothpaste preparation, various biomedical applications, and pharmaceutical applications. Gold (red colloidal) had likewise been reported to have revitalization therapeutic applications in India and China; gold nanoparticles had drug distribution and diagnostic uses. Nanoparticles have multiple uses in different fields [71].

5.2 Biosynthesis of Nanoparticles in Gold
Biosynthesis of Gold Nanoparticles is done through Fucus spiralis, a single step reduction of aqueous chloroaurate ions. The biosynthesized gold nanoparticles vary in form and range from 5-40 nm in size [72]. This research also shows that the shape and sizes of biosynthesized gold nanoparticles depend on pH values, reduction period and also the coagulation rate of crystal growth [72]. The single cell protein (Spirullina platensis) uses nanoparticles to biosynthesize silver (7-16 nm), gold (6-10 nm) and bimetallic (17-25 nm) which show the biosynthesis and nanopart size. depend on temperature and reduction duration [73]. The presence of Cds in phytoplankton Phaeodactylum tricornutum is biosynthesized by the CdS Nanocrystallites. Sargassum wightii’s aqueous solution applied to the extracellular biosynthesis of mono-disperse and shape-specific gold nanoparticles [73]. The Fucoidans, Cladosiphon okamuranus o-fucoidan and Kjellamaniella crassifolia t-fucoidan use to biosynthesize the gold nanoparticles. Both synthesize nanoparticles in spherical and 8-10 nm sizes but well mono-disperse linear polymer and t-fucoid synthesize less dispersed branched polymer [74]. Gold Nanoparticles are synthesized by the extracellular polysaccharides of dried Sargassum wightii [73]. Similar study shows that Sargassum wightii also depends on temperature, pH and reduction duration for the biosynthesis, stability of biosynthesized nanoparticles, shape and sizes of gold nanoparticles. The processing of gold Nanoparticles varies with improvements in nitrate reductase, pH, and temperature [75]. The various forms such as square, rectangle and triangle and 60 nm gold nanoparticles synthesize Turbinaria conoides from brown seaweed and inhibit the growth of Streptococcus sp., Bacillus subtilis, and Klebsiella pneumoniae [76]. Dictyota bartayresiana’s aqueous extract synthesizes 548-564 nm gold nanoparticles confirming the presence of amine, poly phenol, and carboxylic group. It has greater inhibitory action than generic antifungal medications against Fusarium dimerum and Humicola insulans. The Nanoparticles 53-67 nm of metallic gold synthesize with the Padina gymnospora aqueous extract [77].

5.3 Silver Nanoparticular Biosynthesis
Hypnea musciformis biosynthesized water extract Silver nanoparticles is both antibacterial and antifungal [78]. Kumar reported that biosynthesized silver nanoparticles in Sargassum tenerrimum had pathogenic inhibitory activity involving human MTCC [79]. Gelidiella acerosa biosynthesized Silver Nanoparticles allegedly displayed antifungal activity rather than clotrimazole [80]. Ulva lactuca’s biosynthesized Silver Nanoparticles allegedly had antimicrobial activity [81]. Silver Nanoparticles’ interesting biosynthesis is done by 63.7 per cent to 56.0 per cent of the metals silver ions including Codium capitatum water extract. No use of a chemical solution in this synthesis, so it is absolutely environmentally friendly [82]. Turbinaria conoides aqueous extract biosynthesizes the 96 nm spherical Silver Nanoparticles and these biosynthesized Silver
Nanoparticles are highly toxic to the growth of some human pathogenic bacteria such as Bacillus subtilis (MTCC3053) and Klebsiella planticola (MTCC2277) [83]. Padina tetrastromatica synthesizes the 14 nm spherical Silver Nanoparticles, which also have antimicrobial activity [84]. Sargassum polycystum biosynthesizes 5-7 nm Silver Nanoparticles, the methanol extract that activates inhibitory potential against some human pathogens. Padina tetrastromatica’s biosynthesized circular, polydispersed silver nanoparticles and fatty acid extract had anticancer action against the MCF line of breast cancer cells ([85] and [86]). Shiny has recently clarified the spherical 25-40 nm Padina gymnospora antibacterial Silver Nanoparticles and even hospital surgical wound dressing [87].

Padina gymnospora synthesizes the 25-40 nm silver spherical nanoparticles with inhibitory activity against Bacillus cereus and Escherichia coli which has a medicinal application for wound dressing in hospitals [87]. Some seaweed Caulerpa pelteta (green), Hypnea Valencica (red) and Sargassum marioycystum (brown) biosynthesize various forms such as spherical, triangular, rectangular, radial and 96-110 nm spheres Zinc Nanoparticles at pH 8 and 80 °C temperature. The biosynthesized nanoparticles of zinc contain reactive oxygen species that exhibit antibacterial activity against Streptococcus mutans, Vibrio cholerae, M. Luteus, Neisseria gonorrhea and Klebsiella pneumoniae [88]. The biosynthesized Silver Nano content from Sargassum longifoliums aqueous extract, brown seaweed, has antifungal efficacy against Candida albicans, Aspergillus fumigatus and Fusarium sp. S. Longifolium may be due to its bio-component, owing to its size and spherical shape [89]. The surface area of the nano-sized materials has been increased to protect the fungal growth area [90]. The positively charged silvernano-materials bind through electrostatic attraction and can impede fungal growth within the fungal growth region with the current negatively charged particles [91]. Positively charged silver ions may be attached by electrostatic attraction to negatively charged microbial cell membranes [91]. Silver nanoparticles have high permeability due to their smaller size and create proton leakage that helps to transfer the ROS through the membrane ([92] and [93]). Silver nanoparticles inhibit conidial fungal germination, and have reasonable potential to inhibit fungus-producing spore [94]. The insulin deficiency is causing clinical diabetes syndrome. Colpomenia sinuosa’s biosynthesizes of silver nanoparticles have antidiabetic potential that inhibits the development of α-glucosidase and α-amylase enzymes responsible for the production of diabetes [95]. Halymenia poryphyroides synthesizes of 34-80 nm of colloidal silver nanoparticles have a strong efficacy against Salmonella typhi, Klebsiella pneumoniae. Staphylococcus aureus, Proteus vulgaris and Salmonella typhi [96]. Cubic shape 18-90 nm and biosynthesized 20-90 nm Silver nanoparticles have aqueous extracts of Turbinaria ornata, and antimicrobial and antifungal activity of Padina tetrastromatica. There are carbonyl groups, aromatic alcohols, amines and hydroxyl groups in the Nanoparticles [97].

6. Application of nanoparticles made of gold and silver in various fields

The low-resistance gold nanoparticles are used for flexible electronics, and the gold nano-particulate is used for flexible electronic inks; nano rod is useful for electronic devices and is also used for rapid biomedical testing. The gold-silica nano-shells kill cancer cells; the gold nanoparticles boost the use of thiol in decorative coatings, the thermosetting gold nanoparticles exhibit novel esthetic effects, the use of gold nanoparticles for pollution control and even some chemical synthesis [72]. Nanoparticles uses for drug delivery, antibacterial and viral agent, genetic disorder detection, bio-sensing, labeling of biological applications, and sequencing of DNA and gene therapy because of special chemical reactivity and unique physical properties. Polysaccharides extracted from brown seaweed are used as anti-peptic-ulcer, anti-coagulant, anti-inflammatory, anti-aging, anti-cancer, whitening agent, and anti-viral agent [98]. Silver nanoparticles show enormous applications in drug delivery [99], wound healing [100], sensor applications ([101] and [102]) cosmetics [103], textile industry and also used antimicrobial agents in paint [104]. Due to their antimicrobial actions in food pathogens such as Staphylococcus aureus and Escherichia colli, Klebsiella mobilis, Bacillus subtilis, Klebsiella pneumoniae, Pseudomonas aeruginosa, Silver Nanoparticles were actively involved in the medical sciences ([105] and [106]). Meningitis causative microbe Cryptococcus neoformans [98], Staphylococcus aureus resistant to methicillin, Staphylococcus epidermidis resistant to methicillin, Streptococcus pyogenes and Salmonella typhi and strong antifungal activity against Candida albicans, Aspergillus niger, Penicillium citrinum and Aureobasidium pullulans were isolated from kitchen drainage synthesis wastage suspension [101]. The Nanoparticles of gold, silver and platinum noble metal used for the preparation of toothpaste, also used for the preparation of pharmaceutical and medicinal goods. Biosynthesized from Rhizophora apiculata, the eco-friendly spherical shaped (15 nm) Silver Nanoparticles had a high antibacterial activity compared to gentamicin and chloramphenic [107]. Research has shown gold nanoparticles to be useful for the treatment of breast cancer [108]. Corallina officinalis gold nanoparticles from the red seaweed have a cytotoxic impact on breast cancer MCF-7 [109].

7. The use of anti-foulants

The gold biosynthesized nanoparticles have antibiofilm activity against the common marine biofilm forming bacteria such as A. Salmonella sp. hydrophila And ... And S. Liquefaciens [110]. Seaweed crude extracts such as Sarconema furcellatum, Sargassum wightii, and seaweed Siringodium isoetifolium, Cymodocea serrulata have anti-microfouling activity against microfoulers such as antibacterial activity of 7±0.16 to 13±0.26 mm; 50-300 μg / ml anti-microbial, LC50 133.88 μg / ml; P<0.001 Artemia cytotoxicity and anti-crustacean activity; micro-fouler mortality increase with increased concentration of
extract of crude seaweed [111]. Because of the existence of some essential functional groups such as aliphatic (fatty acid), amide I and II (NH2), amino, phosphoryl, hydroxyl and carbonyl, the mangrove extract Rhizophora apiculata, Rhizophora mucronata and Avicennia marina show stronger antifouling activity against certain fouling bacteria such as Bacillus sp., Cytophaga sp., flavobacterium sp. And those of Pseudomonas sp. Halimeda macroloba, Ulva reticulate and Sargassum wightii, close to sea grass extract Halodule pinifolia, Cymodocea serrulata also exhibits the lowest anti-foulant activity than mangrove extract [112]. South China Sea grass Enhalus acoroides chemical constituents and anti-feedant, antibacterial , and anti-larval behaviors. Including four flavonoids, eleven pure compounds were obtained, and five steroids. Among these compounds were three flavonoids anti-feeding Spodoptera litura second-star larvae, two flavonoids had antibacterial activity against many marine bacteria, and one flavonoid had significant anti-larval activity towards Bugula neritina larvae [113]. The crude ethyl acetate extract of Ulva fasciata induced biosynthesized crystalline, circular, poly-dispersed size range 28-41 nm Silver Nanoparticles had inhibitory activity14.00±0.58 mm against Xanthomonas campestris pv. malvacearum [114].

Conclusion
It is important to note that many crop systems react differently to plant biostimulants, and that positive effects are recorded mainly under regulated laboratory or greenhouse conditions and in specific crop species. The crops that have been studied most widely within commercial agricultural production systems and have been shown to respond positively to biostimulant materials are row crops and cereals. Specific drug compositions (often containing several forms of biostimulants or macro or micronutrient additions), specific farming methods, and various environmental factors further complicate their usage. Seaweed extracts derived from marine algae, which contain a wide variety of macronutrients and microelement nutrients and organic components such as growth hormones, amino acids , vitamins, betains, cytokinins and sterols, have played an significant role in the production of an environmentally sustainable seed planting program. In general, extracts of seaweed can induce changes in the physiological / biochemical process associated with plant nutrient uptake and growth in agriculture.

References
[1] Di Vittori, L.J., Mazzoni, M. Battino, B. Mezzetti 2018 Pre-Harvest Factors Influencing the Quality of Berries. Sci. Hortic. 233, 310–322. [CrossRef]
[2] European Union. II Non-Legislative Acts. DECISIONS 2017 Commission Implementing Decision (EU) 2017/1442 of 31 July Establishing Best Available Techniques (BAT) Conclusions, under Directive 2010/75/EU of the European Parliament and of the Council, for Large Combustion Pl. O. J. Eur. Union. L, 60, 1–88.
[3] Molter, A.P.K. Laursen, K 2015 Reversible Effects of Fertilizer Use on Population Trends of Waterbirds in Europe. Biol. Conserv. 184, 389–395. [CrossRef]
[4] Roupahael, Y. and G. Colla 2018. Synergistic Biostimulatory Action: Designing the Next Generation of Plant Biostimulants for Sustainable Agriculture. Front. Plant Sci. 9, 1–24. [CrossRef]
[5] Roupahael, Y.J. Spichal.K. Panzarova,R. Casa, G. Colla 2018. High-Throughput Plant Phenotyping for Developing Novel Biostimulants: From Lab to Field or from Field to Lab? Front. Plant Sci. 9, 1–19. [CrossRef] [PubMed]
[6] Bradshaw, T.L., L.P. Berkett, M.C. Kyriacou, H.M. Darby, R.E.Moran, M.E.Garcia 2018. Assessment of Kelp Extract Biostimulants on Tree Growth, Yield, and Fruit Quality in a Certified Organic Apple Orchard. In II International Organic Fruit Symposium 1001; International Society for Horticultural Science: Brabant, Belgium, pp. 191–198. [CrossRef]
[7] Kyriacou,. M.C.Y. Rouphael 2018 Towards a New Definition of Quality for Fresh Fruits and Vegetables. Sci. Hortic. 234, 463–469. [CrossRef]
[8] Tarantino, A.F. Lops, G.Disciglio, G.E. Lopriore 2018 Effects of Plant Biostimulants on Fruit Set, Growth, Yield and Fruit Quality Attributes of ‘Orange Rubis®’ Apricot (Prunus armeniaca L.) Cultivar in Two Consecutive Years. Sci. Hortic. 239, 26–34. [CrossRef]
[9] Gomez-Zavaglia,. A. P.L. Miguel, J.L.Cecilia,C.M. Juan and S.G.Jesus 2019. The Potential of Seaweeds as a Source of Functional Ingredients of Prebiotic and Antioxidant Value , Antioxidants, 8, 406; doi:10.3390/antiox8090406. [CrossRef]
[10] Du Jardin,. P 2015. Plant biostimulants: Definition, concept, main categories and regulation. Sci. Hortic. 196, 3–14. [CrossRef]
[11] Eef,. B.D.Marlies, K.van Swam, A.Veen, L.Burger 2018 Identification of the Seaweed Biostimulant Market (Phase1 – European Union. II Non-Legislative Acts. DECISIONS 2017 Commission Implementing Decision (EU) 2017/1442 of 31 July Establishing Best Available Techniques (BAT) Conclusions, under Directive 2010/75/EU of the European Parliament and of the Council, for Large Combustion Pl. O. J. Eur. Union. L, 60, 1–88. [CrossRef]
[12] Rouphael, A. and G. Colla 2018. High-Throughput Plant Phenotyping for Developing Novel Biostimulants: From Lab to Field or from Field to Lab? Front. Plant Sci. 9, 1–19. [CrossRef] [PubMed]
[13] Bradshaw, T.L., L.P. Berkett, M.C. Kyriacou, H.M. Darby, R.E.Moran, M.E.Garcia 2018. Assessment of Kelp Extract Biostimulants on Tree Growth, Yield, and Fruit Quality in a Certified Organic Apple Orchard. In II International Organic Fruit Symposium 1001; International Society for Horticultural Science: Brabant, Belgium, pp. 191–198. [CrossRef]
[14] Rouphael,. Y and G. Colla 2018. Synergistic Biostimulatory Action: Designing the Next Generation of Plant Biostimulants for Sustainable Agriculture. Front. Plant Sci. 9, 1–24. [CrossRef]
[15] European Union. II Non-Legislative Acts. DECISIONS 2017 Commission Implementing Decision (EU) 2017/1442 of 31 July Establishing Best Available Techniques (BAT) Conclusions, under Directive 2010/75/EU of the European Parliament and of the Council, for Large Combustion Pl. O. J. Eur. Union. L, 60, 1–88.
[16] Møller,. A.P.K. Laursen, K 2015 Reversible Effects of Fertilizer Use on Population Trends of Waterbirds in Europe. Biol. Conserv. 184, 389–395. [CrossRef]
[17] European Union. II Non-Legislative Acts. DECISIONS 2017 Commission Implementing Decision (EU) 2017/1442 of 31 July Establishing Best Available Techniques (BAT) Conclusions, under Directive 2010/75/EU of the European Parliament and of the Council, for Large Combustion Pl. O. J. Eur. Union. L, 60, 1–88. [CrossRef]
IOP Conf. Series: Earth and Environmental Science 553 (2020) 012015 doi:10.1088/1755-1315/553/1/012015

[18] Metting., B.W.R, Rayburn,P.A. Reynaud 1988. Algae and agriculture. In: Lenbi CA, Waaland JR (eds) Algae and human affairs. Cambridge University Press, Cambridge, UK, pp 335–370

[19] Temple., W.D.A.A. Bomke 1988. Effects of kelp (Macrocystis integrifolia) on soil chemical properties and crop responses. Plant Soil 105:213–222

[20] FAO 2006. Yearbook of fishery statistics, Food and Agricultural Organisation of the United Nations, Rome , 98:1–2

[21] Blunden., G 1991. Agricultural uses of seaweeds and seaweed extracts. In: Guiry MD, Blunden G (eds) Seaweed resources in Europe: uses and potential. Wiley, Chicester, pp 65–81

[22] Norrie., J, J.P,Keathley 2006 Benefits of Ascophyllum nodosum marine-plant extract applications to 'Thompson seedless' grape production. (Proceedings of the Xth International Symposium on Plant Bioregulators in Fruit Production, 2005). Acta Hortic. 727:243–247

[23] Metting., B, W.J,Zimmermann, I.J, Crouch, J.van Staden 1999. Agronomic uses of seaweed and microalgae. In: Akatsuka I (ed) Introduction to applied phycology. SPB Academic Publishing, The Hague, pp 269–627

[24] Jeannin., I.J.C, Lescure,J.F, Morot-Gaudry 1991. The effects of aqueous seaweed sprays on the growth of maize. Bot Mar. 34:35-47

[25] Jeannin., I.J.C, Lescure,J.F. Morot-Gaudry 1991. The effects of aqueous seaweed sprays on the growth of maize. Bot Mar. 34:469–473

[26] Aaldworthm, S.J, van Staden 1987. The effect of seaweed concentrate on seedling transplants. S Afr J Bot 53:187–189

[27] Crouch, I.J, van Staden 1987. Effect of seaweed concentrate on the establishment and yield of greenhouse tomato plants. J Appl Phycol. 4:291–296

[28] Crouch, I.J, R.P, Beckett, J. van Staden 1990. Effect of seaweed concentrate and applied hormones on in vitro cultured tomato roots. J Plant Physiol. 120:215–222.

[29] Verini., P,E, Borghesi, A. Ferrante, G. Magnani 2005 Application of biostimulants in floating system for improving rocket quality. J Agric Environ 5:86–88

[30] Mancuso., S.F, Azzarello,S, Mugnai,X. Briand 2006 Marine bioactive substances (IPA extract) improve ion fluxes and water stress tolerance in potted Vitis vinifera plants. Adv Hortic Sci 20:156–161

[31] Khan., W.U.P, Rayirath, S,Subramanian, M.N,Fitresh,P, Rayorath, D.M, Hodges, A.T,Critchley, J.S, Craigie, J, Norrie and B, Prithiviraj 2009 Seaweed Extracts as Biostimulants of Plant Growth and Development. J. Plant Growth Regul, 28, 386–399. [CrossRef]

[32] Begum., M, C.B, Bijan, D, S, Dhiman and J.O, Nyan 2018. Role of seaweed extract on growth, yield and quality of some agricultural crops: A review. Agricultural Reviews, 39(4): 321-326

[33] Pramanick., B.K, Brahmacchari, and A, Ghosh 2014 Efficacy of Kappaphycus and Gracilaria sap on growth and yield improvement of sesame in new alluvial soil. J. Crop and Weed, 10(1):77-81.

[34] Layek., J.A, Das,G.L, Ramkrushna, D, Sarkar, A, Ghosh,S.T, Zodep,R, Lal,G.S, Yadav, A.S, Panwar, S, Ngachan and R.S, Meena 2018 Seaweed extract as organic bio-stimulant improves productivity and quality of rice in eastern Himalayas. J. Appl. Phyco. 30: 547-563.

[35] Khan., W.R, Palanisamy,A.T, Critchley,D.L, Smith,Y, Papadopoulos and B, Prithiviraj 2013 Ascophyllum nodosum extract and its organic fractions stimulate Rhizobium root nodulation and growth of Medicago sativa (Alfalfa). Communications in Soil Science and Plant Analysis, 44:900–908.

[36] Sethi., S.K, and S.P, Adhikary 2008 Effect of seaweed liquid fertilizer on vegetative growth and yield of black gram, brinjal and tomato. Seaweed Res. Uitin. 30: 241-248.

[37] Jadhao., G.R, D.R, Chaudhary, V.A, Khade and S.T, Zodep 2015. Utilization of seaweeds in enhancing productivity and quality of black gram (Vigna mungo L.) Hepper for sustainable agriculture. Indian J. Natural Products and Resources, 6(1): 16-22.

[38] Temple, W.D and A.A, Bomke 1989. Effects of kelp foliar applications on bean crop growth. Plant and Sci, 117(1): 85-92.

[39] Prajapati,A.C.K, Patel, N,Singh, S.K, Jain, S.K, Chongtham, M.N, Maheshwari, C.R, Patel, R.N, Patel 2016. Evaluation of seaweed extract on growth and yield of potato. Environment & Ecology. 34 (2): 605-608.

[40] Sarhan Taha., Z 2011 Effect of humic acid and seaweed extracts on growth and yield of potato plant (Solanum tubersum L.) Desire cv Mesopotamia, J Agric 39: 19-27.

[41] Abetz, P and CL, Young 1983. The effect of seaweed extract sprays derived from Ascophyllum nodosum on lettuce and caulifower crops. Botanica Marina 26: 487-492.

[42] Haider., W.M.A, Chaudhary,A.P, Muhammad, U.A, Habat,M, Abdul,A.R, Syed and A, Irfan 2012 Impact of foliar application of seaweed extract on growth, yield and quality of potato (Solanum tuberosum L.). Soil Environ. 31(2):157-162

[43] Patel, V.P.S, Deshmukh,A, Patel,A, Ghosh 2015 Increasing productivity of paddy (Oryza sativa L.) through use of seaweed sap. Trends Bioosci. 8:201–205.

[44] Singh., S.K.R, Thakur, M.K, Singh, C.S,Singh, S.K,Pal 2015 Effect of fertilizer level and seaweed sap on productivity and profitability of rice (Oryza sativa). Indian J Agron 60:69-74.

[45] Shah., M.T.S.T, Zodep,D.R, Chaudhary, K, Esvaran,J, Chikara 2013 Seaweed sap as an alternative liquid fertilizer for yield and quality improvement of wheat. J. Plant Nutr. 36:192–200

[46] Zodepe., S.T.S, Mukherjee,M.P, Reddy,D.R, Chaudhary 2009. Effect of Kappaphycus alvarezi (Doty) Doty ex silla. extract on grain quality, yield and some yield components of wheat (Triticum aestivum L.) Int J Plant Prod 3:97-101

[47] Al-Juthery., H. W. A.,N,S Ali, D, Al-Taee and E.A.H.M, Ali 2018. The impact of foliar application of nano-ferilizer, seaweed and hypertonic on yield of potato. Plant Archive , 18 (2): 2207-2212 : http://www.scimagojr.com
[49] Issa., R., B.Mitadi., Z.Riad 2019. Effect of Seaweed Extract on the Growth and Productivity of Potato Plants, (SSRG - IJAES), 6 (2):83-89.

[50] Yao., Y., W.Xiaoqi., C.Baocheng., Z.Min and M.Jinziao 2020 Seaweed Extract Improved Yields, Leaf Photosynthesis, Ripening Time, and Net Returns of Tomato (Solanum lycopersicum Mill.) ACS Omega, 5, 4324–4249

[51] Dawson., E.Y 1966. Marine Botany: An Introduction. Holt, Rinehart and Winston, Inc. New York. Pp 371.

[52] Drobek., M., F.Magalena and C.Justyna 2019. Plant Biostimulants: Importance of the Quality and Yield of Horticultural Crops and the Improvement of Plant Tolerance to Abiotic Stress-A Review. Agronomy, 9, 335; doi:10.3390/agronomy9060335.

[53] Subba Rao., P.V., C. Periyasamy., K. Suresh Kumar., A. Srinivasa Rao and P. Anantharaman 2018 Seaweeds: Distribution, Production and Uses, Bioprospecting of Algae, https://www.researchgate.net/publication/329910126

[54] John., D.M 1994 Biodiversity and conservation: an algal perspective. The physiologist 38: 3 – 15.

[55] Driing., M.J 1982 The biology of marine plants. Edward Arnold publishers Limited, London. Pp 199.

[56] Melkonian., M 1995. Introduction: XI - XIII. In: Algae, environment and human affairs. W. Wiessner, E. Dring., M.J 1982 The biology of marine plants. Edward Arnold publishers Limited, London. Pp 199.

[57] Subba Rao., P.V.K. Ganesan and K. Suresh Kumar 2009 Seaweeds: A Survey of Research and Utilization. In: Algal Biology and Biotechnology (Eds.). Biopress Ltd., Bristol: Pp 258.

[58] Subba Rao., P.V 2012 Seaweed Biodiversity and Conservation. Proc. Symp. on Biodiversity Status and Conservation Strategies with reference to NE India. Published by Manipur Univ. ISBN: 978-81-923343-1-8. Pp 1-7.

[59] Chapman, V.J and D.J. Chapman 1980. Seaweed and their uses. Chapman and Hall Edition, New York: Pp 334.

[60] Tseg., C.K 1981 Commercial cultivation. In: Lobban C.S. and M. J. Wynne (Eds). The Biology of Seaweeds. Univ Calif Press, Berkeley. Pp 71-80.

[61] Subba Rao., P.V.K. Ganesan and K. Suresh Kumar 2018 Seaweeds: A Survey of Research and Utilization. In: Algal Biology and Biotechnology (Eds.).

[62] Subba Rao., P.V., P.V.C. Periyasamy., K. Rama Rao and A.Srinivasa Rao 2016 Seaweed for Human Welfare. Seaweed Res Util 38: 1-12.

[63] Hernández-Herrera., R.M.G. Virgen-Culleros., M.Ruiz-López., Z.Jaúñido-Hernández., J.P. Déjano-Frier., C.Sánchez-Hernández 2014 Extracts from green and brown seaweeds protect tomato (Solanum lycopersicum) against the necrotrophic fungus Alternaria solani. J Appl Physcol. 26(3):1607–1614. https://doi.org/10.1007/s10811-013-0193-2

[64] Featony-Smith., B.C. van Staden 1983. The effect of seaweed concentrate on the growth of tomato plants in nematode-infested soil. Sci Hortic. 20:137–146. https://doi.org/10.1016/0304-4238(83)90134-6

[65] Radwan., M., A.S.A.A. Farrag. M.M. Abu-Elamayem., N.S. Ahmed 2012 Biological control of the root-knot nematode, Meloidogyne incognita on tomato using bioproducts of microbial origin. Appl Soil Ecol. 56:58–62.

[66] Sultana., V.G.N. Baloch. J., A.Q. Ehteshamul-Haque., R.M. Tarig. M. Athar 2012 Seaweeds as an alternative to chemical pesticides for the management of root diseases of sunflower and tomato. J Appl Bot Food Qual. 84(2):162.

[67] Lizzii., Y.C. Coulomb. C. Polian., M. Coulomb., P.J. Coulomb., P.O. Coulomb 1998 Seaweed and mildew: what does the future hold? Phyton. 58:2-9.

[68] Rekanovic., E.I. Potocnik., S. Milijasivec-Marcic., M. Stepunovic., B. Todorovic., M. Mihajlovic 2010. Efficacy of seaweed concentrate from Ecklonia maxima (Osbeck) and conventional fungicides in the control of Verticillium wilt of pepper. Pesticidi i Fitomedicina. 25(4):319–324. https://doi.org/10.2298/PFF0104319R

[69] Baloch., G.N. S.Tariq., S. Ehteshamul-Haque., M. Athar. V. Sultana. J. Ara 2013. Management of root diseases of eggplant (Solanum melongena) with the application of asafoetida and seaweed. J Appl Bot Food Qual. 86(1):138–142. https://doi.org/10.5073/JABFQ.2013.086.019.

[70] Pohli., A. K.Andrzej., S.Agneszka. 2019 Seaweed extracts’ multifactorial action: influence on physiological and biochemical status of Solanaceae plants, Polish Botanical Society Acta Agrobot. 72(1):1758.

[71] Anima., N. M. Saravanan 2009, Biosynthesis of Silver Nanoparticles from Staphylococcus aureus and its antimicrobial activity against MRSA and MRSE. Nanomedicine: Nanotechnology, Biology, and Medicine, 5: 452–456.

[72] Roy., S. 2019 A Review: Green Synthesis of Nanoparticles from Seaweeds and Its some Applications. Austin J Nanomed Biotechnology (Eds.)

[73] Torres., E.M.L. Blázquez., Y.N. Mata., A. Ballester., F. González., J.A. Muñoz. 2005. Gold Nanoparticles formation by seaweed biomass: influence of ph. 2nd Nano Spain Workshop. 14-17.

[74] Govindaraju., K., S.K.Basha., V.G. Kumar., M. Singaravelu 2008 Silver, Gold and bio metallic Nanoparticles production using Single – Cell protein (Spurillina platensis) Geitter. J Mater Sci. 43: 5112-5122.

[75] Soisuwan., S.W., Warisnoicharoen., K. Lirdprapamongkol., J. Svasti. 2010 Eco-Friendly Synthesis of Fucoidan-Stabilized Gold Nanoparticles. American Journal of Sciences. 7: 1038-1042.

[76] Oza., G.S. Pandey., R.Shab., M.A. Shar 2012 Mechanistic approach for biological fabrication of crystalline gold nanoparticles using marine algae, Sargassum wightii. World Journal of Experimental Biology. 2: 505-512.

[77] Rajesh kumar., S.C. Malarkodi., M. Vanaja., G. Gnanajobitha.K. Paul kumar., C. Kannan., et al 2013 Antibacterial activity of algae mediated synthesis of gold Nanoparticles from Turbinaria conoides. Der Pharma Chemica. 5: 224–229.

[78] Singh., M.R. Kalaivani., S. Manikandan., N. Sangeetha.A.K. Kumaragurup 2013 Facile green synthesis of variable metallic gold nanoparticle using Padina gymnospora, a brown marine, macro alga. Appl Nano Science. 3: 145- 151.

[79] Saroniya Devi J., B. Valentin Bhimba 2013 Antibacterial activity of algae and other plant extracts: A review. PLOS ONE. 8(2):83-89. https://doi.org/10.1371/journal.pone.0055823

[80] Vivek., M.P.S. kumar., S. Steffi., S. Sudha 2011 Biogenic Silver Nanoparticles by Gelidium acerosa Extract and their Antifungal Effects. 2011.

[81] Raja., S.B.J. Surya., V. Sekar., R. Rajasekar 2012 Biomimetic of silver Nanoparticles by Ulva lactuca seaweed and evaluation of its antibacterial activity. Int J Pharm Sci. 4: 139-143.
[82] Kannan, R.R.R., W.A. Stirk, J.V. Staden 2013 Synthesis of silver Nanoparticles using the seaweed Codium capitatum P.C. Silva (Chlorophyceae).

[83] Rajesh kumar., S.C. Kannan,G. Annadurai 2012 Green synthesis of Silver Nanoparticles using marine brown algae Turbinaria conoides and its antibacterial activity. Int J Pharm Bio Sci. 3: 502-510.

[84] Rajesh Kumar., S.C. Kannan,G. Annadurai 2012 Synthesis and Characterization of Antimicrobial Silver Nanoparticles Using Marine Brown Seaweed Padina tetrastromatica. Drug Innovation Today. 4: 511-513.

[85] Thangaraju., N.R. Prasanna,V.A. Chinnasamy,P. Kannaiyan 2012. Synthesis of silver Nanoparticles and the antibacterial and antitumor activities of the crude extract of Sargassum polycystum C. Agardh. Nano Biomed Eng. 4: 89-94.

[86] Jegadeesan., P.P. Rajiv-R. Shiva raj,R. Venkatesha 2012 Photo catalytic degradation of dye using brown seaweed (Padina tetrastromatica) mediated silver nanoparticles. J Biosci Res. 3: 229-233.

[87] Shiny., P.J.A. Mukherjee,N. Chandrasekaran 2013 Marine Algae mediated synthesis of the Silver Nanoparticles and its antibacterial efficiency. International Journal of Pharmacy and Pharmaceutical Sciences. 5: 239-241.

[88] Nagarajan., S.K.S. Kuppusamy 2013 Extracellular Synthesis of Zinc Oxide Nanoparticles synthesis from Seaweeds of Gulf of Mannar, India. Journal of Nanobiotechnology. 11: 39.

[89] Rajesh kumar., S.C. Malarkodi, K.Paulkumar,M. Vanaja,G. Gnanajothi,G. Annadurai 2014 Algae Mediated Green Fabrication of Silver Nanoparticles and Examination of Its Antifungal Activity against Clinical Pathogens. International Journal of Metals. 2014, Article ID 69263, 8 pages http://dx.doi.org/10.1155/2014

[90] Pal S., Y.K. Tak,J.M. Song 2007 Does the antibacterial activity of silver Nanoparticles depend on the shape of the Nanoparticles? A study of the gram-negative bacterium Escherichia coli. Applied and Environmental Microbiology. 73: 1712-1720.

[91] Sonde., J. and B. Salopek-Sonde 2004 Silver Nanoparticles as antimicrobial agent: a case study on E. coli as a model for Gram negative bacteria. Journal of Colloid and Interface Science. 275: 177-182.

[92] Dibrov., P.J. Dzioba,K.K. Gosink, C.C.Hase 2002 Chemiosmotic mechanism of antimicrobial activity of Ag+ in Vibrio cholera. Antimicrobial Agents and Chemotherapy. 46: 2668–2670.

[93] Dehkordi, SH.F. Hosseinpour, A.E.Kahrizangi 2011. An in vitro evaluation of antibacterial effect of silver Nanoparticles on Staphylococcus aureus isolated from bovine subclinical mastitis. African Journal of Biotechnology. 10: 10795-10797.

[94] Kim., S.W.K.S. Kim,K. Lamsul,Y.J. Kim, S.B.Kim,M. Jung, et al 2009 An in vitro study of the antifungal effect of silver Nanoparticles on oak wilt pathogen Raffaelea sp. Journal of Microbiology and Biotechnology. 19: 760-764.

[95] Vishnu Kiran., M.S. Murugesan 2014 Biological synthesis of silver Nanoparticles from marine alga Colpomenia sinuosa and its in vitro anti-diabetic activity. AJBBL. 2014; 3.

[96] Kiran., M.V.S. Murugesen 2014 Bio-synthesis of silver nanoparticles from marine alga Halymenia porphyroides and its antibacterial efficacy. Int J Curr Microbiol App Sci. 3: 96-103.

[97] Kayalvizhi., K.N. Asmathunisha,V. Subramanian,K. Kathiresan 2014 Purification of silver and gold Nanoparticles from two species of brown seaweeds (Padina tetrastromatica and Turbinaria ornata). Journal of Medicinal Plants Studies. 2: 32-37.

[98] Wang., H.K. Xu,L. Liu,J.P. Tan,Y. Chen,Y. Li, et al 2010 The efficacy of self-assembled cationic antimicrobial peptide Nanoparticles against Cryptococcus neoformans for the treatment of meningitis. Biomaterials. 31: 2874–2881.

[99] Vaidyanathan., R.K Kalishwaralal,S. Gopalram,S Gopalram 2009 Nanosilver- The burgeoning therapeutic molecule. Biotechnology Advances. 27: 924-937.

[100] Maneering., T.S. Tokura,R. Rujiravanit 2008. Impregnation of silver Nanoparticles into bacterial cellulose for antimicrobial wound dressing. Carbohydrate Polymers. 72: 43-51.

[101] Smitha., S.L.K.M. Nissamudeen,D. Philip,K.G. Gopchandran 2008 Studies on surface Plasmon resonance and photoluminescence silver Nanoparticles. Spectrochim. Acta A. 71: 186-190.

[102] Kalimuthu., K.R.S. Babu,D. Venkataraman, M.Bila,S. Gurunathan(2008). Biosynthesis of silver nano-crystals by Bacillus licheniformis, Colloid Surf B. 65: 150–153.

[103] Kokura., S., D.Handa,T. Takagi, T.Ishikawa, Y.Naito,T. Yoshikawa 2010 Silver Nanoparticles as a safe preservative for use in cosmetics, Nano - medicine. 6: 570-574.

[104] Kumar., A.P.K. Veumula,P.M. Ajayan,G. John 2008 Silver Nanoparticles embedded antimicrobial paints based on vegetable oil, Nat. Mater. 7: 236-241.

[105] Kyung., H.C.J.E.Park,T. Osaka,S.G. Park 2005 The study of antimicrobial activity and preservative effects of nano silver ingredient. Electrochimica Acta. 51: 965–970.

[106] Won., K.S., H.J. Youk,W.H. Park 2006 Antimicrobial cellulose acetate nano fibers containing Silver Nanoparticles, Carbohydrate Polymers. 6: 430–434.

[107] Dhas, S.P., A.Mukherjee, N.Chandrasekaran 2013 Synergistic effect of Biogenic Silver Nano-colloid in combination with antibiotics: A potent therapeutic agent. International Journal of Pharmacy and Pharmaceutical Sciences. 5.

[108] Selim., M.E.A.A. Hendi 2012. Gold Nanoparticles induce apoptosis in MCF-7 human breast cancer cells. Asian Pac J Cancer Prev. 13: 1617-1620.

[109] El-Kassas., H.Y, M.M.El-Sheekh 2008 Cytotoxic Activity of Biosynthesized Gold Nanoparticles with an Extract of the Red Seaweed Corallina officinalis on the MCF-7 Human Breast Cancer Cell Line. Asian Pac. J. Cancer Prev.15: 4311-4317.

[110] Characterization of Silver and Gold Nanoparticles Using Aqueous Extract of Seaweed, Turbinaria conoides, and Their Anticancer Activities. Journal of Nanomaterials. 2014.

[111] Prakash., S.N.K. Ahila,V. Ramkumar,J. Ravindran,E. Kannapiran 2015 Antimicrofouling properties of chosen marine plants: An eco-friendly approach to restrain marine microfoulers. Biocatalysis and Agricultural Biotechnology.4(1):114-121.

[112] Prabhakaran., S.R.R. Rajaram,V. Balasubramanian,K. Mathivanan 2012 Antifouling potentials of extracts from seaweeds, sea grasses and mangroves against primary biofilm forming bacteria. Asian Pacific Journal of Tropical Biomedicine.2(1): S316-S322.
[113] Qi SH., S. Zhang, Y.P. Qian, Bin-Gui Wang 2008 Anti-feedant, antibacterial, and anti larval compound from the South China Sea grass Enhalus acoroides. Botanica Marina. 51(5):441-447.
[114] Rajesh., S.D. Patric Raja, J.M. Rathi, K. Sahayaraj 2012. Biosynthesis of silver Nanoparticles using Ulva fasciata (Delile) ethyl acetate extract and its activity against Xanthomonas campestris pv. malvacearum. J Biopest. 5: 119-128.