Direct observation of the decay of first excited Hoyle state in 12C

T. K. Rana, S. Bhattacharya, C. Bhattacharya, S. Kundu, K. Banerjee, T. K. Ghosh, G. Mukherjee, R. Pandey, M. Gohil, A. Dey, J. K. Meena, G. Prajapati, P. Roy, H. Pai, M. Biswas
Variable Energy Cyclotron Centre, 1/AF Bidhan Nagar, Kolkata - 700 064, INDIA
(Dated: May 5, 2014)

An excited state of 12C having excitation energy $E_x \sim 7.65 \pm 0.02$ MeV and width (FWHM) $\sim 607 \pm 55$ keV, which decays to three α-particles via Hoyle state ($E_x \sim 7.65$ MeV), has been directly identified for the first time in the exclusive inelastic scattering of 60 MeV 4He on 12C, measured in coincidence with the recoiling 12C* Hoyle state (decaying mostly as 12C* $\rightarrow ^8$Be + α $\rightarrow \alpha + \alpha + \alpha$) by event-by-event kinematic reconstruction of the completely detected (4α) events. This state is likely to be a candidate for 2^+_1 first excited Hoyle state, the existence of which has recently been indirectly evidenced from the recent inclusive inelastic scattering studies.

PACS numbers: 25.55.Ci, 27.20.+n

The famous Hoyle state 0_2, the 0^+_2 resonant excited state of 12C at an excitation energy of 7.654 MeV, plays an important role to understand a variety of problems of nuclear astrophysics like elemental abundance in the universe as well as the stellar nucleosynthesis process as a whole. From nuclear structure point of view too, there are many unanswered questions regarding the configuration of this state; theoretically, it is considered as the lowest state corresponding to a different configuration (member of either a β band of the three α molecule-like structure 4_2, or a Bose-Einstein condensate-like structure (BEC) 6_2, or 12C target (self supported, 12C nuclei were produced through inelastic scattering from 12Be + 3He) at 4.9 MeV and 11B(3He, $daaa$) at 8.5 MeV has been done, did not bring out any signature of the possible existence of the 2^+_1 state. Since the spin and isospin zero α-particle is a very good projectile for the excitation of the nuclear IS states, we studied the decay of 12C* into 3-body final states (3α) using inelastic scattering from 12C target to study the excited states of 12C which are predominantly excitable through isoscalar transitions in general, and to look for a cleaner signature of the elusive 2^+_1 state in particular. In this letter we report, for the first time, a complete kinematic measurement of all outgoing particles in each event may be helpful in reconstructing the the events originating from the decay of the excited states of the Hoyle state using missing energy (due to the emission of γ-ray) criterion. However, a recent experiment performed in this line 15C, where complete kinematical measurement of all outgoing particles emitted from the reactions 10B(3He, $paaaa$) at 4.9 MeV and 11B(3He, $daaa$) at 8.5 MeV has been done, did not bring out any signature of the possible existence of the 2^+_1 state.

According to the above models, the $3-\alpha$ cluster configuration of the Hoyle state 0_2 at 7.654 MeV should also have higher excited states; the lowest excited state has been predicted to be a 2^+ state at excitation energy $E_x \sim 10$ MeV 3_2. 3_2 \rightarrow This 2^+_1 state is strongly coupled to the 0^+_2 Hoyle state and is likely to decay mostly via Hoyle state. However, in spite of vigorous experimental efforts in the recent years, there is still now conclusive evidence so far. In inelastic proton scattering 12C(p, p') experiments, small angle angular distribution measurement near the diffraction minimum of the broad 0^+ background has indicated the presence of a possible 2^+ state at 9.6(1) MeV of width $\sim 600(100)$ keV 3. Recent inelastic α-scattering angular distribution studies also indicated the presence of a 2^+ state at 9.84 \pm 0.06 MeV of width 1.01 \pm 0.15 MeV 1. On the other hand, the study of 12C*, produced in the β-decay of 12N and 12B, decaying into 3α continuum has however, not found clear evidence about the existence and nature of the 2^+ state at excitations $\sim 10-12$ MeV 9. 11 12. On the other hand, the γ induced 12C dissociation 12C(γ, 3α) studies have also indicated the presence of a 2^+ state below 10 MeV 11. 12

It is thus clear that even though there are definite indications about the existence of the elusive 2^+_1 state, the first excited state of the Hoyle state, clear identification of the state is still missing. Assuming the $3-\alpha$ cluster configuration of 12C, the isoscalar (IS) transition rates to various excited states have been calculated by Khoa et al. 14, who have shown that the excited states of the Hoyle band (0_2, 1_2, 2_2, ...), should predominantly decay by E2 transitions to the ground state 0_2, the Hoyle state, which will then decay predominantly via two step process: 12C* $\rightarrow ^8$Be + α $\rightarrow \alpha + \alpha + \alpha$, with a small percentage (\lesssim 5% of direct 12C* $\rightarrow 3\alpha$ decay. So, complete kinematical measurement of all the events originating from the decay of the excited states of the Hoyle state using missing energy (due to the emission of γ-ray) criterion. However, a recent experiment performed in this line 15C, where complete kinematical measurement of all outgoing particles emitted from the reactions 10B(3He, $paaaa$) at 4.9 MeV and 11B(3He, $daaa$) at 8.5 MeV has been done, did not bring out any signature of the possible existence of the 2^+_1 state. Since the spin and isospin zero α-particle is a very good projectile for the excitation of the nuclear IS states, we studied the decay of 12C* into 3-body final states (3α) using inelastic α scattering from 12C target to study the excited states of 12C which are predominantly excitable through isoscalar transitions in general, and to look for a cleaner signature of the elusive 2^+_1 state in particular. In this letter we report, for the first time, a complete kinematic measurement of the inelastic α-particles emitted in the 12C(α, α') reaction in coincidence with the decay of Hoyle state. The present study clearly demonstrates the presence of an excited state of 12C at excitation energy of 9.65 \pm 0.02 MeV energy and width (FWHM) 607 \pm 55 keV. Since the state is decaying via the 0_2 Hoyle state, and no direct (3α) decay of this new state has been observed, it may be taken to be the excited state of the Hoyle state band.

The experiment was performed at the Variable Energy Cyclotron Centre, Kolkata, using 60 MeV 4He ion beam from the K130 cyclotron on 12C target (self supported, thickness ~ 90 μg/cm2). The Hoyle state (and other excited states) in 12C nuclei were produced through inelastic scattering of 4He from 12C. The α-particles emitted in the decay of Hoyle state as well as the inelastically
scattered \(^4\)He have been detected in coincidence using two 3-element telescopes. The telescopes consisted of a 50\(\mu\)m \(\Delta E\) single-sided silicon strip detector (16 strips, each of dimension 50mm \(\times\)3mm), 500\(\mu\)m \(\Delta E/\ E\) double-sided silicon strip detector (16 strips (each 50mm \(\times\)3mm) per side in mutually orthogonal directions) and backed by four CsI(Tl) crystals (thickness 6 cm). The two telescopes were placed at kinematically correlated angles for coincident detection of inelastically scattered \(^4\)He in the backward angle telescope (covering the angular range of \(104^\circ - 128^\circ\)) and the three \(\alpha\)-particles, originating from the decay of the Hoyle state of the recoiling \(^{12}\)C\(^*\), at the forward angle telescope (covering the angular range of \(14.3^\circ - 37.7^\circ\)). All strips and the CsI(Tl) detectors were read out individually using standard readout electronics. A VME-based online data acquisition system was used for the collection of data on event-by-event basis.

The aim of the experiment was to identify the (unbound) excited states of \(^{12}\)C by exclusive complete kinematical measurement of all outgoing particles; only completely detected events (events where all four \(\alpha\) particles, three from the decay of \(^{12}\)C\(^*\), as well as the inelastically scattered one were detected separately) have been used for the present analysis to remove any ambiguity about the origin of the detected particles. The system \(^4\)He + \(^{12}\)C was chosen for this purpose for its specific advantage regarding the detection of complete events, as it has only a few open reaction channels compared to other heavy ion induced reactions. One horizontal collimator (6 mm width) was placed in front of the backward telescope such that data taking was restricted to only a few \((\sim 2)\) strips around the median plane. So, the corresponding coincident recoiling \(^{12}\)C\(^*\) nucleus in the forward telescope was also restricted around the median plane; this helped to enhance the percentage of completely detected events (three decaying \(\alpha\)-particles confined within the span of the forward telescope and detected) among the whole set of coincident events. Typical beam current used for the experiment was \(\sim 5\text{-}10\) nA. In total, nearly 4000 completely detected events were collected in the present experiment which have been analysed further to extract the structure of the Hoyle state.

The analysis of the data has been carried out in steps. In the first step, the energies and momenta of the three \(\alpha\)-particles detected in the forward telescope (completely detected event) have been used to reconstruct the excitation energy of the recoiling \(^{12}\)C\(^*\), which has been displayed in Fig. 1. It is seen that the excitation energy has only one prominent peak at \(E_x(\text{^{12}C}) \sim 7.65\) MeV, which corresponds to the Hoyle state.

In the next step, the positions, energies of the three identified \(\alpha\)-particles have been used to reconstruct the recoiling energy, position of \(^{12}\)C\(^*\) nucleus \((E_r, \theta_r)\) and these values have then been cross-checked with the energy, position of \(^{12}\)C\(^*\) extracted from the backward angle inelastic \(\alpha\)-particle data using binary kinematics \((E_k, \theta_k)\). The comparison is shown in Fig. 2, which clearly demonstrates the consistency and precision of the reconstruction technique.

In order to study the decay of the Hoyle state further, the data have been transformed from the laboratory frame to the rest frame of \(^{12}\)C\(^*\), which is characterised by the following conditions,

\[
v_1^2 + v_2^2 + v_3^2 = 0
\]

\[
E_1 + E_2 + E_3 = E_{\text{breakup}},
\]

where, \(v_i\) and \(E_i\), \((i = 1 - 3)\) are the velocities and kinetic energies of the three \(\alpha\)-particles in the rest frame of \(^{12}\)C\(^*\) and \(E_{\text{breakup}}\) is the the difference of the Hoyle state energy and the \(3\alpha\)-decay threshold energy \((\approx 380\) keV). The transformed data have been found to satisfy both the conditions (see Fig. 4).
The nature of decay of the selected events have been investigated further to check if it follows the known decay characteristics of the Hoyle state (predominantly sequential in nature: $^{12}\text{C}^* \to ^8\text{Be} + \alpha \to \alpha + \alpha + \alpha$). The study has been carried out using Dalitz plot technique [16], utilising the relative energy spectra of the decay particles. The relative energy spectra and the corresponding Dalitz plots for the Hoyle state have been shown in Fig. 4. Here, the relative energy indices 1, 2 and 3 refer to the particles emitted with highest, second highest and lowest energies, respectively. All relative energy spectra (Figs. 4a-c) are found to be peaking sharply around ~ 90 keV, corresponding to the relative energy of the $^{8}\text{Be}(g.s.) \to 2\alpha$ breakup. The Dalitz plot (Fig. 4d) has been generated using the Dalitz parameters $\sqrt{3(E_{rel}(12)-E_{rel}(23))/2}$ and $(2E_{rel}(31)-E_{rel}(12)-E_{rel}(23))/2$, where $E_{rel}(ij)$ is the relative energy between i^{th} and j^{th} particle. The triangular locus in Fig. 4d indicates that the decay is mostly sequential in nature (sequential: $^{12}\text{C}^* \to ^8\text{Be}(g.s.) + \alpha \to \alpha + \alpha + \alpha$), in agreement with the earlier findings [17].

From the above, it is evident that the 3α reconstructed 7.65 MeV state in Fig. 4 is the Hoyle state. In the next step, the $^{12}\text{C}^*$ excitation energy spectrum has been generated from the inelastic α-scattering data of the backward telescope in coincidence with a gate on the observed Hoyle state in Fig. 1 which has been shown in Fig. 5.

It is clearly seen in Fig. 5 that the $^{12}\text{C}^*$ excitation energy spectrum obtained from the inelastic α-scattering contains two peaks. The first peak, at 7.73 ± 0.09 MeV is the 0^+_2 Hoyle state. In addition, there is a small peak also seen at excitation energy $\sim 9.65 \pm 0.02$ MeV (see inset of Fig. 5). The width of the Hoyle state, which is actually negligible (see Fig. 1), appears to be quite broad in the inelastic scattering spectrum (Fig. 5). This is due to the fact that the inelastic scattering spectrum has been generated by summing over a large solid angle to extract statistically significant information about the excited state; the observed broadening is therefore of kinematic origin associated with the total angular coverage. The excited state observed at 9.65 ± 0.02 MeV is having a large intrinsic width, which is estimated to be $\sim 607 \pm 55$ keV, obtained after correcting for the kinematic broadening. Since this state has been seen in coincidence with the Hoyle state, it is likely to be an excited state of ^{12}C, which is decaying via Hoyle state. However, since there are quite a few states at around the same energy, it warrants a thorough introspection of the whole scenario.

Most prominent and known states around this energy are, a narrow 9.64 MeV 3^-_1 state (width ~ 34 keV), a broad ~ 10.3 MeV 0^+_3 state (width $\sim 2.7 - 3.0$ MeV [10, 18]), a broad 10.84 MeV 1^- state (width ~ 315 keV [18]). The 9.64 MeV 3^- state is known to have
a α decay branch which decays to 8Be(g.s) (97.2%) and 8Be(2.7%)[19]. The inelastic α energy corresponding to the 8Be(g.s) decay branch of 9.64 MeV 3^- state cannot interfere with the present observation as the energy of the 3α reconstructed spectrum will be around 9.64 MeV, well outside the gate (see Fig. 1). On the other hand, 8Be(2^+) decays almost entirely (\approx100%) into 2α[20]; in such case, the 3α reconstructed spectrum will again be completely out of the gate used (Fig. 1). Even taking into consideration those rare events (\ll 1% of the total events) where 8Be(2^+) \rightarrow 8Be(g.s) through the emission of 3.03 MeV γ-ray, the three decay α-particles will not satisfy the kinematic conditions of the Hoyle state decay, and thus will automatically be rejected. Same argument is valid for all higher excited states, so far as the decay via 8Be + α channel is concerned.

That the exclusive measurement of the inelastic 4He spectrum in coincidence with the fully reconstructed Hoyle state has made all the difference is further evident from Fig. 5 which displays the spectrum of inelastically scattered 4He in coincidence with the detected 2α (in forward telescope) events (not only kinematically complete events as considered earlier), which follow the sequential decay (via 8Be + α) route. Here many prominent unbound states of 12C* are clearly identified. It is observed in Fig. 6 that, apart from the Hoyle state, there is a strong peak alongwith a broad bump near E_γ \sim 9-11 MeV region. Gaussian peak fitting analysis revealed the presence of two peaks in that region; a narrow peak at 9.68 \pm 0.04 MeV (width \sim50 \pm 21 keV) and a broad peak at 10.27 \pm 0.05 MeV (width \sim2.85 \pm 0.13 MeV). The first peak is likely to be the 9.63 MeV, 3$^-$ state, whereas the broad peak may be identified as the 10.3 MeV,0$^+_3$ state. The 1$^-$ state at 10.84 MeV, which was quite prominent in 12C(p, p$'$) experiment [9], is not found to be significant here; however the present observation is in agreement with the previous 12C(α, α') result [10], where the contribution of 10.84 MeV 1$^-$ state was shown to be small compared to that of the broad 0$^+$ bump. It is thus clear from the above that unambiguous identification of the excited 2$^+_3$ state of the Hoyle state band is extremely difficult, if not impossible, in presence of the large background of the strong 3$^-$,0$^+_3$, and other neighbouring states. However, the situation changes dramatically when one uses complete kinematical measurement; the background is fully eliminated and it is possible to extract informations about very weak transitions as was shown in Fig. 4.

The only way the states (9.64 MeV (3$^-$), 10.3 MeV (0$^+_3$) or 10.84 MeV (1$^-$)) may contribute to the observed inelastically scattered state at 9.6 MeV is as follows; first it should decay to 0$^+_3$ Hoyle state through γ-decay and then the Hoyle state subsequently decays into 3α particles. In that case, the width of the observed state should be close to those of the above states. However, the extracted width (\sim607 \pm 55 keV) of the observed 9.65 \pm 0.02 MeV state is nowhere close to the known widths of any of the 8Be(2.7%)[19]. The inelastic α energy corresponding to the 8Be(g.s) decay branch of 9.64 MeV 3$^-$ state cannot interfere with the present observation as the energy of the 3α reconstructed spectrum will be around 9.64 MeV, well outside the gate (see Fig. 1). On the other hand, 8Be(2^+) decays almost entirely (100%) into 2α[20]; in such case, the 3α reconstructed spectrum will again be completely out of the gate used (Fig. 1). Even taking into consideration those rare events (1% of the total events) where 8Be(2^+) \rightarrow 8Be(g.s) through the emission of 3.03 MeV γ-ray, the three decay α-particles will not satisfy the kinematic conditions of the Hoyle state decay, and thus will automatically be rejected. Same argument is valid for all higher excited states, so far as the decay via 8Be + α channel is concerned.

That the exclusive measurement of the inelastic 4He spectrum in coincidence with the fully reconstructed Hoyle state has made all the difference is further evident from Fig. 5 which displays the spectrum of inelastically scattered 4He in coincidence with the detected 2α (in forward telescope) events (not only kinematically complete events as considered earlier), which follow the sequential decay (via 8Be + α) route. Here many prominent unbound states of 12C* are clearly identified. It is observed in Fig. 6 that, apart from the Hoyle state, there is a strong peak alongwith a broad bump near E_γ \sim 9-11 MeV region. Gaussian peak fitting analysis revealed the presence of two peaks in that region; a narrow peak at 9.68 \pm 0.04 MeV (width \sim50 \pm 21 keV) and a broad peak at 10.27 \pm 0.05 MeV (width \sim2.85 \pm 0.13 MeV). The first peak is likely to be the 9.63 MeV, 3$^-$ state, whereas the broad peak may be identified as the 10.3 MeV,0$^+_3$ state. The 1$^-$ state at 10.84 MeV, which was quite prominent in 12C(p, p$'$) experiment [9], is not found to be significant here; however the present observation is in agreement with the previous 12C(α, α') result [10], where the contribution of 10.84 MeV 1$^-$ state was shown to be small compared to that of the broad 0$^+$ bump. It is thus clear from the above that unambiguous identification of the excited 2$^+_3$ state of the Hoyle state band is extremely difficult, if not impossible, in presence of the large background of the strong 3$^-$,0$^+_3$, and other neighbouring states. However, the situation changes dramatically when one uses complete kinematical measurement; the background is fully eliminated and it is possible to extract informations about very weak transitions as was shown in Fig. 4.

The only way the states (9.64 MeV (3$^-$), 10.3 MeV (0$^+_3$) or 10.84 MeV (1$^-$)) may contribute to the observed inelastically scattered state at 9.6 MeV is as follows; first it should decay to 0$^+_3$ Hoyle state through γ-decay and then the Hoyle state subsequently decays into 3α particles. In that case, the width of the observed state should be close to those of the above states. However, the extracted width (\sim607 \pm 55 keV) of the observed 9.65 \pm 0.02 MeV state is nowhere close to the known widths of any of the

![FIG. 6: (color online) Excitation energy spectrum of 12C from inelastic α-scattering data gated with 8Be. The symbols represent the data and the lines are the corresponding fits to the data (see text).](image-url)
[1] F. Hoyle, Astrophys. J. Suppl. 1, 12 (1954).
[2] H. O.U. Fynbo et al., Nature 433, 136 (2005) and the reference therein.
[3] M. Kamimura, Nucl. Phys. A 351, 456 (1981).
[4] E. Uegaki, S. Okabe, Y. Abe and H. Tanaka, Prog. Theor. Phys. 57, 1262 (1977).
[5] M. Chernykh, H. Feldmeier, T. Neff, P. von Neumann-Cosel and A. Richter, Phys. Rev. Lett. 98, 032501 (2007).
[6] A. Tohsaki, H. Horiuchi, P. Schuck, and G. Ropke, Phys. Rev. Lett. 87, 192501 (2001).
[7] P. Navratil, J. P. vary and B. R. Barret, Phys. Rev. Lett. 84, 5728 (2000).
[8] M. Freer et al., Phys. Rev. C 80, 041303 (R) (2009).
[9] W. R. Zimmerman, N. E. Destefano, M. Freer, M. Gai, F. D. Smit, Phys. Rev. C 84, 027304 (2011).
[10] M. Itoh et al., Phys. Rev. C 84, 054308 (2011).
[11] S. Hyldegaard et al., Phys. Lett. B 678, 459 (2009).
[12] S. Hyldegaard et al., Phys. Rev. C 81, 024303 (2010).
[13] M. Gai et al., Acta Phys. Pol. B 42, 775 (2011).
[14] D. A. Khoa, D. C. Cuong and Y Kanada-Enyo, Phys. Lett. B 695, 469 (2011).
[15] O. S. Kirsebom et al., Phys. Lett. B 680, 44 (2009).
[16] R. H. Dalitz, Phil. Mag. 44, (1953) 1068.
[17] M. Freer et al., Phys. Rev. C 49, (1994) 1751 (R).
[18] F. Ajzenberg-Selove, Nucl. Phys. A 506, 1 (1990).
[19] M. Freer et al., Phys. Rev. C 76, 034320 (2007).
[20] http://www.nndc.bnl.gov