Review
Structures and Biological Activities of Secondary Metabolites from *Trichoderma harzianum*

Rui Guo \(^1\), Gang Li \(^1\), Zhao Zhang \(^2\) and Xiaoping Peng \(^1\,*\)

\(^1\) Department of Natural Medicinal Chemistry and Pharmacognosy, School of Pharmacy, Qingdao University, Qingdao 266071, China
\(^2\) Department of Hand and Foot Surgery, Affiliated Hospital of Qingdao University, Qingdao 266003, China
* Correspondence: pengxiaoping@qdu.edu.cn

Abstract: The biocontrol fungus *Trichoderma harzianum*, from both marine and terrestrial environments, has attracted considerable attention. *T. harzianum* has a tremendous potential to produce a variety of bioactive secondary metabolites (SMs), which are an important source of new herbicides and antibiotics. This review prioritizes the SMs of *T. harzianum* from 1988 to June 2022, and their relevant biological activities. Marine-derived SMs, especially terpenoids, polyketides, and macrolides compounds, occupy a significant proportion of natural products from *T. harzianum*, deserving more of our attention.

Keywords: natural products; *Trichoderma harzianum*; marine sources; bioactivity; secondary metabolites

1. Introduction

The unique marine environment with high pressure, high salinity, and low temperature, breeds unique marine microorganisms [1,2]. Secondary metabolites obtained from marine-derived fungi have attracted considerable attention in recent years for potential use in the discovery of unique structures and diverse biological properties [3,4].

The biocontrol fungi *Trichoderma* spp. (sordariomycetes) are widely spread in the environment [5], such as in the ocean. With the deepening of marine science and technology exploration, more and more *Trichoderma* sp. strains have been discovered from marine sources. From marine and terrestrial environments, there are no fewer than 250 *Trichoderma* species discovered so far [6]. *Trichoderma* species are famous for producing plentiful secondary metabolites [7]. Among them, *Trichoderma harzianum* probably contributed the most secondary metabolites (SMs) originating from *Trichoderma* species [8,9]. The SMs from *T. harzianum* showed antifungal activity [10]. Additionally, cytotoxicity [11] and antimicrobial activity [12], and so on, have also been found in its SMs.

The SMs of *T. harzianum* have not been summarized in detail or systematically. Up to now, nearly 200 compounds of *T. harzianum* have been reported. The secondary metabolites of *T. harzianum* include terpenoids, polyketides, peptides, alkaloids, and lactones. Herein, this review reports the isolated compounds of *T. harzianum* and their bioactivities. Furthermore, details of the source organisms were analyzed for marine and terrestrial sources. A total number of 180 compounds are presented in this review with 58 cited references. These references cover the time period from 1988 to June 2022.

2. Structural and Biological Activity Studies

2.1. Terpenoids

Seven new potent phytotoxic harziane diterpenes harzianelactones A and B (1 and 2), harzianones A–D (3–6) and harziane (9) were isolated from the soft coral-derived fungus *T. harzianum* XS-20090075 [13]. Compounds 1 and 2 belonged to a unique class of terpenes with a 6-5-7-5-fused carbocyclic core and a lactone ring. Harzianones A–D (3–6) consisted of a fused tetracyclic 6-5-7-4-fused tetra-cyclic skeleton. Chemical epigentic
manipulation was applied to activate silent genes of T. harzianum XS-20090075 by appending a histone deacetylase (HDAC) inhibitor. With this experimental technique, two new diterpenoids harzianone E (7) and harzianolic acid A (41), and one new sesquiterpenoid 3,7,11-trihydroxy-cycloneron (16) were isolated from the same strain T. harzianum XS-20090075. At the same time, 11 known sesquiterpenoids, methyl 3,7-dihydroxy-15-cycloneronate (17), catenioblinc (18), ascorbic acid (19), cycloneroniol (20), (10E)-12-acetoxy-10-cycloneron-3,7-diol (21), cyclonerodiol (22), cyclonerodiol oxide (27), epicyclonerodiol oxide (28), ent-trichoacorenol (29), trichoacorenol (30), and ophioceric acid (40) were isolated from T. harzianum XS-20090075 [14]. It was the first time for obtaining cleistanthane diterpenoid from T. harzianum XS-20090075. Trichodermanins C–H (10–15) were new diterpenes with a rare fused 6-5-6-6 ring system, and have been isolated from a fungus T. harzianum OUPS-111D-4 [15,16]. This strain was separated from a piece of sponge Halichondria okadai. Compounds 10–15 were evaluated for their cytotoxicity by using murine P388 leukemia, human HL-60 leukemia, and murine L1210 leukemia cell lines. Compound 10 with a fused 6-5-6-6 ring system exhibited potent cytotoxic activity [15], and compounds 12 and 13 exhibited modest activity [16]. Six new terpenes, including one harziane diterpene, 3R-hydroxy-9R,10R-dihydroharzianone (8), three cyclonerane sesquiterpenes, methyl 3,7-dihydroxy-15-cycloneronate (17), 11-methoxy-9-cycloneron-3,7-diol (23), 10-cycloneron-3,5,7-triol (25), and one acorane sesquiterpene, 8-acoren-3,11-diol (36), and one cyclonerane 11R-methoxy-5,9,13-proharzitrien-3-ol (42), together with four known sesquiterpenes, cyclonerodio (22), 9-cycloneron-3,7,11-triol (24), trichoacorenol (30) and trichoacorenol B (37) were isolated from T. harzianum X-5 [17]. The strain X-5 was an endophytic fungus isolated from the marine brown alga Laminaria japonica. The above six new compounds (8, 17, 23, 25, 36, and 42) were evaluated to inhibit four marine phytoplankton species and four marine-derived pathogenic bacteria [17]. Compounds 23 and 42 exhibited potent inhibition activity [17]. Harzianoic acid A (38) is a sesquiterpene, and harzianoic acid B (39) is a norsesquiterpene with a cyclobutane nucleus. They were isolated from a sponge-isolated fungus, T. harzianum LZDX-32-08 [18], and were found to have new natural scaffolds to exert anti-HCV activity for their capability to inhibit multi-targets, including those for virus replication and entry [18]. (10E)-12-Acetoxy-10-cycloneron-3,7-diol (21) and 12-acetoxycycloneran-3,7-diol (26) were two new cyclonerane sesquiterpenoids, which were isolated from the marine sediment-derived fungus T. harzianum P1-4 [9]. A new acorane-type sesquiterpene, 15-hydroxyacorenone (31), was isolated from T. harzianum [19], together with acorenene (32), acorenene-B (33), 4-epiacorenene (34), and 4-epiacorenene-B (35). Stigmastera-7,22-dien-3β,5α,6α-triol (43) was isolated from T. harzianum XS-20090075, cultivated by the Czapek’s culture [20]. Compound 43 exhibited antifouling activity with an EC50 value of 39.2 µg/mL and Topo I inhibitory activity with an MIC value of 50.0 µM [20]. Two fungal strains of T. harzianum T-4 and T. harzianum T-5 were obtained from Palampur, Himachal Pradesh (India). Stigmasterol (44) and β-sitosterol (45) were isolated from T. harzianum T-4 [21]. Ergosterol (46) was isolated from T. harzianum T-5 [21]. Trichosor- darin A (47), a unique norditerpene aglycone, was isolated from T. harzianum R5 [22]. Compound 47 was toxic to the marine zooplankton Artemia salina with an LC50 value of 233 µM [22] (Figure 1).
Figure 1. Chemical structures of terpenoids (1–47) from T. harzianum. * Means marine source compounds.
2.2. Polyketides

The fermentation of a sponge-associated fungus *T. harzianum* HMS-15-3 led to the isolation of four pairs of new C13 lipid enantiomers harzianumols A–H [48–55] [23]. Four polyketides, trichoharzin B (56), methyl-trichoharzin (57), trichoharzin (58), and eujavanicol A (59), were isolated from *T. harzianum* XS-20090075 [20], which was fermented in rice medium by one strain many compounds (OSMAC) strategy. New naphthalene compound 57, and known naphthalene compound 58 exhibited antifouling activity with the EC50 values of 29.8 and 35.6 µg/mL [20]. Six new tandyukisins, tandyukisins A–F (60–65), were isolated from *T. harzianum* OUPS-111D-4 [11,24,25], which were initially derived from the sponge *Halichondria okadai*. Among the tandyukisins A–F (60–65), compounds 60, 64 and 65 exhibited cytotoxicity against murine P388 leukemia, human HL-60 leukemia, and murine L1210 leukemia cell lines inferior to the control 5-fluorouracil [24]. Compounds 61–63 showed slightly selective growth inhibition against the central nervous system cancer SNB-75 cell line in the HCC panel [25]. Compounds 64 and 65 exhibited significant cytotoxicity against the cancer cell lines P388, HL-60, and L1210 [24]. The structure-activity relationship may be relevant to the terminals of the side chains. *T. harzianum* T-4 was obtained from Palampur, Himachal Pradesh in India, and a polyketide palmitic acid (66) was isolated from the T-4 [21]. Harzianum A (67), was a new trichothecene isolated from the soil-borne fungus *T. harzianum* in 1994 [26]. Harziphilone (68) was a new polyketide isolated from *T. harzianum* WC 47695 [27], which was isolated from sandy soil with plant debris collected in Fort Lauderdale. The REV/RRE binding assay and HIV assay revealed that compound 68 showed inhibitory activity against REV-protein binding to RRE RNA with IC50 values of 2.0 µM. In contrast, this compound did not show protection against HIV infection at concentration levels up to 200 µg/mL. The cytotoxicity assay on the murine tumor cell line M-109 showed that 68 exhibited cytotoxicity at 38 µM [27]. Seven polyketides, keto triol 3 (69), keto diol 7 (70), keto diol 6 (71), keto diol 8 (72), triacetate 9 (73), triol 10 (74) and acetal diol 2 (75) were isolated from *T. harzianum* [28]. One new trichoharzin (58), and two known compounds, tribenzoate (76) and triacetate (77), were isolated from *T. harzianum* Rifai in 1993 [29]. A new polyketide, T22azaphilone (78), was isolated from *T. harzianum* T22 [30]. A new compound, trichoharzialon (79), isolated from *T. harzianum* F031, exhibited antifungal activity against *Colletotrichum gloeosporioides* with a MIC of 128 µg/mL [31]. Three novel polyketides trichodenones A–C (80–82) were isolated from *T. harzianum* OUPS-N115 [32]. This strain was separated from the sponge *Halichondria okadai*. Trichodenones A–C (80–82) showed cytotoxicities against P388 cell line with the ED50 values of 0.21, 1.21, and 1.45 µg/mL, respectively. Homodimericin A (83) was isolated from *T. harzianum* WC13 [33,34]. In their model, compound 83 was the biologically inert aftermath of a fungal counter to a bacterial attack. The discovery of cryptenol (84) from *T. harzianum* WC13 [34] indicated that the interactions among microbes in a termite nest were not bipartite but a multipartite system.

The structure and activity relationships of anthraquinones (AQs) in *T. harzianum* have been studied. AQs represent an important class of SMs occurring in *T. harzianum* strains, which exhibited a variety of biological functions [12]. The alkylating functionalities in the AQs maximize the anticancer activity by binding tightly with DNA to disrupt the DNA function [35]. Moreover, anthraquinone derivatives were proposed to have an anticancer function by inhibiting protein kinase CK2 [36]. Pachybasin (85) and chrysophanol (86) were isolated from *T. harzianum* ETS 323 [37]. 1,7-Dihydroxy-3-hydroxymethyl-9,10-anthaquinone (87), 1,5-dihydroxy-3-hydroxymethyl-9,10-anthaquinone (88), emodin (89), and ω-hydroxypachybasin (90) were isolated from *T. harzianum* strain Th-R16 [38]. These compounds exhibited effective antifungal activity against *Botrytis cinerea* (Ascomycota) and *Rhizoctonia solani* (Basidiomycete). At a 500 µg/mL concentration, compound 88 showed comparatively higher activity against *R. solani* and *B. cinerea* than 89 [38]. Phomarin (91), (+)-2’S-isorhodoptilometrin (92), 1,6-dihydroxy-3-(hydroxymethyl)anthracene-9,10-dione (93), harzianumnone A (94) and harzianumnone B (95) were isolated from the soft coral-derived fungus *T. harzianum* XS-20090075 [12]. Compounds 94 and 95 were identified as a
pair of epimers, the first example of hydroanthraquinones from *T. harzianum* XS-20090075. Compound 92 with Topo I inhibition activity, was further assessed for cytotoxic activity against human tumor cell lines. It exhibited cytotoxic activity against HepG2 cell line with an IC\(_{50}\) value of 2.10 \(\mu\)M, and showed cytotoxicity against Hela cell with an IC\(_{50}\) value of 8.59 \(\mu\)M [12] (Figures 2 and 3).

Figure 2. Chemical structures of polyketides (48–68 and 76) from *T. harzianum*. * Means marine source compounds.
Figure 3. Chemical structures of polyketides (69–75 and 77–95) from T. harzianum. * Means marine source compounds.

2.3. Peptides

Peptaibols are linear antibiotic peptides consisting of 5 to 20 amino acids [39]. It could be biosynthesized by T. harzianum. Peptaibols were characterized by the structures of alpha-aminoisobutyric acid (Aib), and C-terminal hydroxylated amino acid. Two new series peptaibols, trichokindins (TKs) and trichorozins (TZs), were isolated from T. harzianum collected at Nara in Japan. TKs and TZs comprised 18 and 11 amino acid residues, respectively, while TKs were rich in isovaline (Iva). TK-VII (106) is the most hydrophobic of TKs with 18-residue peptides. Compound 106 induced Ca\(^{2+}\)-dependent catecholamine secretion from bovine adrenal medullary chromaffin cells [40]. TKs (96–106), with a single peak on HPLC and typical IR absorptions at 3300, 1600, and 1530 cm\(^{-1}\), were confirmed as peptaibols by polarization transfer spectra [40]. With incubating 10 \(\mu\)M of TK-VII (106), 27% of the total catecholamines in bovine adrenal chromaffin cells were secreted in the presence of the Ca\(^{2+}\). In contrast, only 5% of the total catecholamines were secreted without Ca\(^{2+}\) [40]. Hydrophobicity is vital to the interaction between membranes and peptaibols [41]. HB I (107) was isolated from T. harzianum M-903603 [42]. Trichorzins HA (108–113) and MA (114–116) were isolated from T. harzianum M-903602 and T. harzianum M-922835, respectively. Compounds 108–116 are a series of 18-residue peptides [43]. Bioassays on the antifungal activity of trichorzins and harzianins on the phytopathogenic fungus Sclerotium cepivorum revealed that trichorzins were more potent (75% inhibition at 100 \(\mu\)g/mL) than harzianins (40%
inhibition at 100 μg/mL [44]. Research on the structured-activity relationships (SARs) revealed that the peptide chain length and superhydrophobicity played an essential part in the peptide/membrane interaction and the subsequent permeability by perturbing the ionic balance of the cell [44]. As new membrane-modifying peptides isolated from *T. harzianum*, trichorzians I–IV (117–120), belonged to peptaibols with 11 residues. It was reported that compounds 117–120 exhibited voltage-dependent ion channel-like activity in lipid bilayers [45]. Eleven peptides were isolated from *T. harzianum* M-903603, and named harzianins HC (121–131) [46]. The detailed study of such proline-rich 14-residue peptaibols revealed that harzianins HC increased the permeability of liposomes and improved voltage-dependent conductance [46]. An exogenous amino acid supply simplified the microheterogeneous peptide mixtures when Aib, Glu, or Arg was added to the fermentation media of *T. harzianum* M-902608. Harzianin PC$_U$4 (132), trichorizin PA$_U$4 (133), trichorizin PA II (134), trichorizin PA IV–VIII (135–139) and trichorizin PA IX (140) were isolated from this *T. harzianum* M-902608 [47]. When cultured in the Aib-enriched media, compounds 132 and 133 were isolated, while trichorzins PA was obtained from the standard culture media [47]. Trichorzianines A (TA) and B (TB) are peptaibols isolated from *T. harzianum*. TA IIc (141) induced the growth inhibition and lysis of the amoeba *Dictyostelium* [48]. With the aid of positive ion FAB mass spectrometry, COSY and NOESY experiments, seven peptides of trichorzianines B isolated from *T. harzianum* were identified, and these peptides included trichorzianine TB IIa (142), trichorzianine TB IIc (143), trichorzianine TB IVb (144), trichorzianine TB Vb (145), trichorzianine TB VIa (146), trichorzianine TB Vlb (147) and trichorzianine TB VII (148) [49]. From a mangrove-derived fungus, *T. harzianum* D13, a novel heterocyclic dipeptide trichodermamide G (149), two known biogenetically related compounds, trichodermamide A (150) and aspergillazin A (151) were isolated. A unique sulfur bridge was observed in the structures of compounds 149 and 151 [50] (Table 1 and Figure 4).

Table 1. The sequences of peptides (96–148) from *T. harzianum.*

Compounds	Sequences of Peptides
96	Ac Aib Ser Ala Aib Aib Gln Iva Leu Aib Ala Aib Pro Leu Aib Aib Gln Ile OH
97	Ac Aib Ser Ala Aib Aib Gln Aib Leu Aib Ala Aib Pro Leu Aib Aib Gln Ile OH
98	Ac Aib Ser Ala Aib Aib Gln Aib Leu Aib Iva Leu Aib Aib Pro Leu Aib Aib Gln Ile OH
99	Ac Aib Ser Ala Aib Iva Gln Aib Leu Aib Ala Aib Pro Leu Aib Aib Gln Ile OH
100	Ac Aib Ser Ala Aib Aib Gln Aib Leu Aib Iva Leu Aib Ala Aib Pro Leu Aib Aib Gln Ile OH
101	Ac Aib Ser Ala Aib Iva Gln Aib Leu Aib La Aib Pro Leu Aib Aib Pro Leu Aib Gln Ile OH
102	Ac Aib Ser Ala Aib Iva Gln Iva Leu Aib Ala Aib Pro Leu Aib Aib Pro Leu Aib Gln Ile OH
103	Ac Aib Ser Ala Aib Aib Gln Iva Leu Aib Ala Aib Pro Leu Aib Aib Pro Leu Aib Gln Ile OH
104	Ac Aib Ser Ala Aib Iva Gln Leu Aib Ala Aib Pro Leu Aib Pro Leu Aib Gln Ile OH
105	Ac Aib Ser Ala Aib Iva Gln Leu Aib Ala Aib Pro Leu Aib Pro Leu Aib Gln Ile OH
106	Ac Aib Ser Ala Aib Iva Gln Iva Leu Aib Ala Aib Pro Leu Aib Pro Leu Aib Gln Ile OH
107	Ac Aib Asn Leu Ile Aib Pro Leu Aib Pro Leu OH
108	Ac Aib Gly Ala Aib Aib Gln Aib Val Aib Gly Leu Aib Pro Leu Aib Pro Leu Aib Gln Ile OH
109	Ac Aib Gly Ala Aib Gln Aib Val Aib Gly Leu Aib Pro Leu Aib Gln Ile OH
110	Ac Aib Gly Ala Aib Iva Gln Iva Gly Leu Aib Pro Leu Aib Pro Leu Aib Gln Ile OH
111	Ac Aib Gly Ala Aib Iva Gln Iva Gly Leu Aib Pro Leu Aib Iva Gln Ile OH
112	Ac Aib Gly Ala Aib Iva Gln Iva Val Aib Gly Leu Aib Pro Leu Aib Pro Leu Iva Gln Ile OH
113	Ac Aib Gly Ala Aib Iva Gln Iva Val Aib Gly Leu Aib Pro Leu Aib Iva Gln Ile OH
114	Ac Aib Ser Ala Aib Aib Gln Aib Leu Aib Gly Leu Aib Pro Leu Aib Pro Leu Aib Gln Val OH
115	Ac Aib Ser Ala Aib Iva Gln Iva Leu Aib Leu Aib Pro Leu Aib Pro Leu Aib Gln Val OH
116	Ac Aib Ser Ala Aib Iva Gln Iva Leu Aib Gly Leu Aib Pro Leu Aib Gln Ile OH
117	Ac Aib Asn Ile Leu Aib Pro Ile Leu Aib Pro Val OH
118	Ac Aib Asn Leu Aib Aib Pro Ile Leu Aib Pro Val OH
119	Ac Aib Asn Ile Leu Aib Pro Ile Leu Aib Pro Val OH
120	Ac Aib Asn Leu Aib Aib Pro Ile Leu Aib Pro Val OH
121	Ac Aib Asn Leu Aib Aib Pro Ile Leu Aib Pro Val OH

Mar. Drugs 2022, 20, 701
Table 1. Cont.

Compounds	Sequences of Peptides
122 Harzianin HC III	Ac Aib Asn Leu Aib Pro Ser Val Aib Pro Iva Leu Aib Pro Leu OH
123 Harzianin HC VI	Ac Aib Asn Leu Aib Pro Ala Val Aib Pro Aib Leu Pro Leu OH
124 Harzianin HC VIII	Ac Aib Asn Leu Aib Pro Ala Val Aib Pro Iva Leu Aib Pro Leu OH
125 Harzianin HC IX	Ac Aib Asn Leu Aib Pro Ala Ile Aib Pro Iva Leu Aib Pro Leu OH
126 Harzianin HC X	Ac Aib Glu Leu Aib Pro Ala Val Aib Pro Iva Leu Aib Pro Leu OH
127 Harzianin HC XI	Ac Aib Asn Leu Aib Pro Ser Ile Aib Pro Aib Leu Pro Leu OH
128 Harzianin HC XII	Ac Aib Asn Leu Aib Pro Ser Ile Aib Pro Iva Leu Aib Pro Leu OH
129 Harzianin HC XIII	Ac Aib Glu Leu Aib Pro Ser Ile Aib Pro Iva Leu Aib Pro Leu OH
130 Harzianin HC XIV	Ac Aib Asn Leu Aib Pro Ala Ile Aib Pro Aib Leu Pro Leu OH
131 Harzianin HC XV	Ac Aib Glu Leu Aib Pro Ala Ile Aib Pro Iva Leu Aib Pro Leu OH
132 Harzianin HC XV	Ac Aib Asn Leu Aib Pro Ser Ile Aib Pro Aib Leu Pro Val OH
133 Trichorzin PA V	Ac Aib Ser Ala Aib Aib Glu Val Aib Gly Leu Aib Pro Leu Aib Glu Trp OH
134 Trichorzin PA IV	Ac Aib Ser Ala Aib Iva Glu Val Aib Gly Leu Aib Pro Leu Aib Glu Trp OH
135 Trichorzin PA II	Ac Aib Ser Ala Aib Iva Glu Val Aib Gly Leu Aib Pro Leu Aib Glu Trp OH
136 Trichorzin PA VI	Ac Aib Ser Ala Aib Iva Glu Val Aib Gly Leu Aib Pro Leu Aib Glu Trp OH
137 Trichorzin PA VII	Ac Aib Ser Ala Aib Iva Glu Val Aib Gly Leu Aib Pro Leu Aib Glu Phe OH
138 Trichorzin PA VIII	Ac Aib Ser Ala Aib Iva Glu Val Aib Gly Leu Aib Pro Leu Aib Glu Phe OH
139 Trichorzin PA IX	Ac Aib Ser Ala Aib Iva Glu Val Aib Gly Leu Aib Pro Leu Aib Glu Phe OH
140 Trichorzin TA IIC	Ac Aib Ala Ala Aib Aib Glu Aib Ser Leu Pro Val Aib Ile Glu Glu Trp OH
141 Trichorzin TA IIC	Ac Aib Ala Ala Aib Aib Glu Aib Ser Leu Pro Val Aib Ile Glu Glu Trp OH
142 Trichorzin TA IIC	Ac Aib Ala Ala Aib Aib Glu Aib Ser Leu Pro Val Aib Ile Glu Glu Trp OH
143 Trichorzin TA IIC	Ac Aib Ala Ala Aib Aib Glu Aib Ser Leu Pro Val Aib Ile Glu Glu Trp OH
144 Trichorzin TA IIC	Ac Aib Ala Ala Aib Aib Glu Aib Ser Leu Pro Val Aib Ile Glu Glu Trp OH
145 Trichorzin TA IIC	Ac Aib Ala Ala Aib Aib Glu Aib Ser Leu Pro Val Aib Ile Glu Glu Trp OH
146 Trichorzin TA IIC	Ac Aib Ala Ala Aib Aib Glu Aib Ser Leu Pro Val Aib Ile Glu Glu Phe OH
147 Trichorzin TA IIC	Ac Aib Ala Ala Aib Aib Glu Aib Ser Leu Pro Val Aib Ile Glu Glu Phe OH
148 Trichorzin TA IIC	Ac Aib Ala Ala Aib Aib Glu Aib Ser Leu Pro Val Aib Ile Glu Glu Phe OH

Figure 4. Chemical structures of peptides (149–151) from *T. harzianum*. * Means marine source compounds.

2.4. Alkaloids

Fleephilone (152), a new HIV REV/RRE binding inhibitor, was produced by *T. harzianum* WC 47695 [27] isolated from sandy soil with plant debris collected in Fort Lauderdale, FL, USA. Compound 152 showed inhibitory activity against REV-protein binding to RRE RNA with an IC50 value of 7.6 μM, and exhibited no protection against HIV infection at concentrations up to 200 μg/mL. Harzianic acid (153) was isolated from *T. harzianum* SY-307, which exhibited antimicrobial activity against *Pasteurella piscicida* sp. 6395 [51]. Isoharzianic acid (154), a new stereoisomer of compound 153, was isolated from the *T. harzianum* strain M10, together with Harzianic acid (HA) [52]. HA was able to promote plant growth and strongly bind iron [52]. An OSMAC approach using multiple culture conditions or co-cultures has been applied to access the chemical diversity of *T. harzianum* XS-20090075 [20]. A new halogenate quinoline natural product, ethyl 2-bromo-4-chloroquinoline-3-carboxylate (155), was isolated from *T. harzianum* XS-20090075 [20]. Harzianopyridone (156) was isolated from the *T. harzianum* T-5. This strain was obtained from Palampur, Himachal Pradesh, India [21].
Compound 156 inhibited more than 90% growth of Rhizoctonia solani, Sclerotium rolfsii, and Fusarium oxysporum (EC50 35.9–50.2 μg/mL), but was less active than Bavistin [21]. A new oxazole metabolite, MR93A (159) was isolated from T. harzianum KCTC 0114BP [53], while eight metabolites MR566A (157), MR566B (158), MR93B (160), MR304A (161), 1-(1,4,5-trihydroxy-3-isocyanocyclopenten-2-enyl)-ethanol (162), 2-hydroxy-4-isocyano-α-methyl-6-oxabicyclo[3.1.0]-hex-3-ene-2-methanol (163), 4-hydroxy-8-isocyano-1-oxaspiro[4.4]cycnon-8-en-2-one (164), methyl-3-(1,5-dihydroxy-3-isocyanocyclopent-3-enyl)prop-2-enoate (165) and 3-(3′-isocyanocyclopent-2′-enylidene)propionic acid (166) were isolated from T. harzianum [54]. MR566A (157) strongly inhibited mushroom tyrosinase with an IC50 value of 1.72 μM compared with kojic acid with an IC50 value of 3.08 μM [55]. Compound 166 exhibited inhibitory activity against mushroom tyrosinase with an IC50 value of 0.0014 μM, which was more active than the kojic acid [55] (Figure 5).

![Chemical structures of alkaloids (152–166) from T. harzianum.](image)

Figure 5. Chemical structures of alkaloids (152–166) from T. harzianum.

2.5. Lactones

Two lactones, nafuredins C (169) and A (170), were isolated from the mangrove-derived fungus T. harzianum D13, and the new compound 169 exhibited antifungal activity against Magnaporthe oryzae, with an MIC value of 8.63 μM [50]. From T. harzianum XS-20090075, four known compounds, xylogibloactones A and B (167, and 168), nafuredin A (170), and dichlorodiaportin (171) [20,56,57] were isolated. Compound 170 exhibited antifouling activity with the EC50 value of 21.4 μg/mL [20]. 6-Pentyl-2H-pyran-2-one (172) and 2(5H)-furanone (173) were isolated from T. harzianum T-4 [21], while δ-decanolactone (174) was isolated from T. harzianum T-5 [21]. Compound 172, a volatile organic compound from T. harzianum [58], had the ability to inhibit primary root growth and induce lateral root formation. Penisoucomarin H (175) was isolated from the mangrove-derived fungus T. harzianum D13 [30]. Two new lactones, harzialactones A (176) and B (177), together with a known compound R-mevalonolactone (178), were isolated from T. harzianum OUPS-N115 [32]. T. harzianum OUPS-N115 was separated from the sponge Halichondria okadai, and the cytotoxicity of compounds 176–178 against the P388 cell line was tested. The results showed no significant cytotoxicity [32]. Two lactones harzianolide (179) and T39butenolide (180) were isolated from T. harzianum T39 [30] (Figure 6).
sources from the SMs distribution were exhibited, including the specific source ratio (Figure 7). The structure type proportion and the bioactivity distribution of the SMs isolated from T. harzianum were also shown (Figures 8–10).

Figure 6. Chemical structures of lactones (167–180) from T. harzianum. * Means marine source compounds.

All compounds from T. harzianum with their biological activities and habitats were summarized in Table 2. As an analysis, the percentage of marine sources and terrestrial sources from the SMs distribution were exhibited, including the specific source ratio (Figure 7). The structure type proportion and the bioactivity distribution of the SMs isolated from T. harzianum were also shown (Figures 8–10).

Table 2. The bioactivities and habitats of SMs (1–180) from T. harzianum.

Compounds	Bioactivities	Habitats	Refs
Harzianelactone A (1) *	Phytotoxicity	Soft coral	[13]
Harzianelactone B (2) *	Phytotoxicity	Soft coral	[13]
Harzianone A (3) *	Phytotoxicity	Soft coral	[13]
Harzianone B (4) *	Phytotoxicity	Soft coral	[13]
Harzianone C (5) *	Phytotoxicity	Soft coral	[13]
Harzianone D (6) *	Phytotoxicity	Soft coral	[13]
Harzianone E (7) *	Antibacterial	Soft coral	[14]
3R-Hydroxy-9R,10R-dihydroharzianone (8) *	Phytotoxicity	Brown alga	[17]
Harziane (9) *	Phytotoxicity	Soft coral	[13]
Trichodermanin C (10) *	Cytotoxicity	Sponge	[15,16]
Trichodermanin D (11) *	—	Sponge	[15,16]
Trichodermanin E (12) *	Cytotoxicity	Sponge	[15,16]
Trichodermanin F (13) *	Cytotoxicity	Sponge	[15,16]
Trichodermanin G (14) *	—	Sponge	[15,16]
Trichodermanin H (15) *	—	Sponge	[15,16]
3,7,11-Trihydroxy-cycloneran (16) *	—	Soft coral	[14]
Methyl 3,7-dihydroxy-15-cycloneranate (17) *	Phytotoxicity	Brown alga	[17]
Catemiobinc (18) *	—	Soft coral	[14]
Ascotrichic acid (19) *	—	Soft coral	[14]
Cyclonerotriol (20) *	—	Soft coral	[14]
(10E)-12-Acetoxy-10-cycloneran-3,7-diol (21) *	—	Sediment	[9]
Cyclonerodiol (22) *	Phytotoxicity	Soft coral	[14]
11-Methoxy-9-cycloneran-3,7-diol (23) *	Phytotoxicity	Brown alga	[17]
9-Cycloneran-3,7,11-triol (24) *	Phytotoxicity	Brown alga	[17]
10-Cycloneran-3,5,7-triol (25) *	Phytotoxicity	Brown alga	[17]
12-Acetoxycycloneran-3,7-diol (26) *	—	Sediment	[9]
Cyclonerodiol oxide (27) *	—	Soft coral	[14]
Epicyclonerodiol oxide (28) *	—	Soft coral	[14]
ent-Trichoacorenol (29) *	—	Soft coral	[14]
Trichoacorenol (30) *	Phytotoxicity	Brown alga	[17]
15-Hydroxyacorenone (31)	—	Mushroom	[19]
Acorenone (32)	—	Mushroom	[19]
Compounds	Bioactivities	Habitats	Refs
-----------	--------------	----------	------
Acenone-B (33)	—	Mushroom	[19]
4-Epiacorenone (34)	—	Mushroom	[19]
4-Epiacorenone-B (35)	—	Mushroom	[19]
8-Acoren-3,11-diol (36) *	phytotoxicity	Brown alga	[17]
Trichoacorenol B (37) *	phytotoxicity	Brown alga	[17]
Harzianoic acid A (38) *	Antivirus	Sponge	[18]
Harzianoic acid B (39) *	Antivirus	Sponge	[18]
Ophioceric acid (40) *	—	Soft coral	[14]
Harzianolic acid A (41) *	—	Soft coral	[14]
11R-Methoxy-5,9,13-trihydropyroharzitren-3-ol (42) *	phytotoxicity	Brown alga	[17]
Stigmasta-7,22-dien-3β,5α,6α-triol (43) *	Antifouling and DNA top I inhibitory activity	Soft coral	[20]
Stigmasteryl (44)	—	Soil	[21]
β-Sitosterol (45)	—	Soil	[21]
Ergosterol (46)	—	Soil	[21]
Trichosordarin A (47) *	Toxic to zooplankton	Sediment	[22]
Harzianumol A (48) *	—	Sponge	[23]
Harzianumol B (49) *	—	Sponge	[23]
Harzianumol C (50) *	—	Sponge	[23]
Harzianumol D (51) *	—	Sponge	[23]
Harzianumol E (52) *	—	Sponge	[23]
Harzianumol F (53) *	—	Sponge	[23]
Harzianumol G (54) *	—	Sponge	[23]
Harzianumol H (55) *	—	Sponge	[23]
Trichoharzin B (56) *	—	Soft coral	[20]
Methyl-trichoharzin (57) *	Antifouling	Soft coral	[20]
Trichoharzin (58) *	Antifouling	Soft coral	[20]
Eujavanicol A (59) *	—	Sponge	[29]
Tandyukisin A (60) *	Cytotoxicity	Sponge	[11]
Tandyukisin B (61) *	Cytotoxicity	Sponge	[25]
Tandyukisin C (62) *	Cytotoxicity	Sponge	[25]
Tandyukisin D (63) *	Cytotoxicity	Sponge	[25]
Tandyukisin E (64) *	Cytotoxicity	Sponge	[24]
Tandyukisin F (65) *	Cytotoxicity	Sponge	[24]
Palmitic acid (66)	—	Soil	[21]
Harzianum A (67)	Antifungal	Soil	[26]
Harziphilone (68)	Cytotoxicity	Soil	[27]
Keto triol 3 (69)	Antifungal	Wheat roots	[28]
Keto diol 7 (70)	Antifungal	Wheat roots	[28]
Keto diol 6 (71)	Antifungal	Wheat roots	[28]
Keto diol 8 (72)	Antifungal	Wheat roots	[28]
Triacetate 9 (73)	Antifungal	Wheat roots	[28]
Triol 10 (74)	Antifungal	Wheat roots	[28]
Acetal diol 2 (75)	Antifungal	Wheat roots	[28]
Tribenzoate (76) *	—	Sponge	[29]
Triacetate (77) *	—	Sponge	[29]
T22azaphilone (78)	—	Commercial products	[30]
Trichoharzianol (79)	Antifungal	Soil	[31]
Trichodenone A (80) *	Cytotoxicity	Sponge	[32]
Trichodenone B (81) *	Cytotoxicity	Sponge	[32]
Trichodenone C (82) *	Cytotoxicity	Sponge	[32]
Homodimerin A (83)	—	Florida termite nest	[33,34]
Cryptenol (84)	—	Florida termite nest	[34]
Pachybasin (85)	—	Laboratory environment	[37]
Chrysophanol (86)	—	Laboratory environment	[37]
1,7-Dihydroxy-3-hydroxymethyl-9,10-anthraquinone (87)	Antifungal	Plant roots	[38]
1,5-Dihydroxy-3-hydroxymethyl-9,10-anthraquinone (88)	Antifungal	Plant roots	[38]
Emodin (89)	Antifungal	Plant roots	[38]
ω-Hydroxy pachybasin (90)	Antifungal	Plant roots	[38]
Phomarin (91) *	Cytotoxicity	Soft coral	[12]
(+)-2′-Isodihydroptilometrin (92) *	Cytotoxicity	Soft coral	[12]
1,6-Dihydroxy-3-(hydroxymethyl)anthracene-9,10-dione (93) *	—	Soft coral	[12]
Harzianumnone A (94) *	—	Soft coral	[12]
Harzianumnone B (95) *	—	Soft coral	[12]
Trichokinidin_1a (96)	—	Soil	[40]
Trichokinidin_1b (97)	—	Soil	[40]
Compounds	Bioactivities	Habitats	Refs
-----------------------------------	---------------------------------	------------------	--------
Trichokindin_IIa (98)		Soil	[40]
Trichokindin_IIb (99)		Soil	[40]
Trichokindin_IIla (100)		Soil	[40]
Trichokindin_IIlb (101)		Soil	[40]
Trichokindin_IV (102)		Soil	[40]
Trichokindin_Va (103)		Soil	[40]
Trichokindin_Vb (104)		Soil	[40]
Trichokindin_VI (105)		Soil	[40]
Trichokindin_VII (106)	Induced catecholamine secretion	Soil	[40]
Harzianin_HB_I (107)	Membrane-modifying activity	Soil	[42]
Trichorzin_HA_I (108)	Antifungal	Soil	[43,44]
Trichorzin_HA_II (109)	Antifungal	Soil	[43,44]
Trichorzin_HA_III (110)	Antifungal	Soil	[43,44]
Trichorzin_HA_V (111)	Antifungal	Soil	[43,44]
Trichorzin_HA_VI (112)	Antifungal	Soil	[43,44]
Trichorzin_HA_VII (113)	Antifungal	Soil	[43,44]
Trichorzin_MA_I (114)	Antifungal	Soil	[43,44]
Trichorzin_MA_II (115)	Antifungal	Soil	[43,44]
Trichorzon_MA_III (116)	Antifungal	Soil	[43,44]
Trichorzon_I (117)	ion channel activity	Soil	[45]
Trichorzon_II (118)	ion channel activity	Soil	[45]
Trichorzon_III (119)	ion channel activity	Soil	[45]
Trichorzon_IV (120)	ion channel activity	Soil	[45]
Harzianin_HC_I (121)	Antibacterial	—	[46]
Harzianin_HC_II (122)	Antibacterial	—	[46]
Harzianin_HC_VI (123)	Antibacterial	—	[46]
Harzianin_HC_VIII (124)	Antibacterial	—	[46]
Harzianin_HC_IX (125)	Antibacterial	—	[46]
Harzianin_HC_X (126)	Antibacterial	—	[46]
Harzianin_HC_XI (127)	Antibacterial	—	[46]
Harzianin_HC_XII (128)	Antibacterial	—	[46]
Harzianin_HC_XIII (129)	Antibacterial	—	[46]
Harzianin_HC_XIV (130)	Antibacterial	—	[46]
Harzianin_HC_XV (131)	Antibacterial	—	[46]
Harzianin_PC4 (132)	—	—	[47]
Trichorzin_PA4 (133)	—	—	[47]
Trichorzin_PA_II (134)	—	—	[47]
Trichorzin_PA_IV (135)	—	—	[47]
Trichorzin_PA_V (136)	—	—	[47]
Trichorzin_PA_VI (137)	—	—	[47]
Trichorzin_PA_VII (138)	—	—	[47]
Trichorzin_PA_VIII (139)	—	—	[47]
Trichorzin_PA_IX (140)	—	—	[47]
Trichorzianine_TA_IIlc (141)	Anti-parasite	—	[48]
Trichorzianine_TB_Bla (142)	—	—	[49]
Trichorzianine_TB_IIlc (143)	—	—	[49]
Trichorzianine_TB_IVb (144)	—	—	[49]
Trichorzianine_TB_Vb (145)	—	—	[49]
Trichorzianine_TB_Vla (146)	—	—	[49]
Trichorzianine_TB_Vlb (147)	—	—	[49]
Trichorzianine_TB_VII (148)	—	—	[49]
Trichodermaidamide G (149) *	—	Mangrove	[50]
Trichodermaidamide A (150) *	—	Mangrove	[50]
Aspergillazin A (151) *	—	Mangrove	[50]
Fleephilone (152)	Antivirus	Soil	[27]
Harzianic acid (153) *	Antibacterial	Water sample	[51]
Isoharzianic acid (154)	Plant growth promotion	Hardwood bark	[52]
Ethyl 2-bromo-4-chloroquinoline-3-carboxylate (155)	—	Soft coral	[20]
Harzianopyridone (156)	Antifungal	Soil	[21]
MR566A (157)	Melanin synthesis inhibition	Soil	[54,55]
MR568B (158)	Melanin synthesis inhibition	Soil	[54]
MR93A (159)	leaf	—	[53]
MR93B (160)	Soil	—	[54]
MR304A (161)	Soil	—	[54]
Table 2. Cont.

Compounds	Bioactivities	Habitats	Refs
1-(1,4,5-Trihydroxy-3-isocyanocyclopent-2-enyl)-ethanol (162)	—	Soil	[54]
2-Hydroxy-4-isocyano-α-methyl-6-oxabicyclo[3.1.0]hex-3-ene-2-Methanol (163)	—	Soil	[54]
4-Hydroxy-8-isocyano-1-oxaspiro[4.4]cyclonon-8-en-2-one (164)	—	Soil	[54]
Methyl-3-(1,5-dihydroxy-3-isocyanocyclopent-3-enyl)prop-2-enoate (165)	—	Soil	[54]
3-(3'-Isocyanocyclopent-2'-enylidene)propionic acid (166)	Melanin synthesis inhibition	Soil	[54,55]
Xylogiblactone A (167) *	—	Soft coral	[20]
Xylogiblactone B (168) *	—	Soft coral	[20]
Nafuredin C (169) *	Antifungal	Mangrove	[50]
Nafuredin A (170) *	—	Mangrove	[50]
Dichlorodiaportin (171) *	Antifouling	Soft coral	[20]
6-Pentyl-2H-pyran-2-one (172)	Antifungal	Soil	[21,58]
2(5H)-Furanone (173)	—	Soil	[21]
δ-Decanolactone (174)	—	Soil	[21]
Penisosoumarin H (175) *	—	Mangrove	[50]
Harzialactone A (176) *	—	Sponge	[32]
Harzialactone B (177) *	—	Sponge	[32]
R-Mevalonolactone (178) *	—	Sponge	[32]
Harzialonolide (179)	—	Commercial products	[30]
T39butenolide (180)	Antifungal	Commercial products	[30]

* Means marine source fungal strains.

Figure 7. The SMs of T. harzianum from marine and terrestrial sources, and its distribution.

Figure 8. Proportion of SMs obtained from T. harzianum.
This review covers papers on metabolites isolated from *T. harzianum*. From the SMs’ distribution point of view, marine sources account for 45%, while terrestrial sources were 38%. From marine sources, 31 compounds were from sponges-derived *T. harzianum* strains, 30 compounds were isolated from soft corals-derived *T. harzianum* strains, 10 compounds were from brown alga-derived *T. harzianum* strains, 6 compounds were from mangrove samples-derived *T. harzianum* strains, and 3 compounds were from marine sediment samples. *T. harzianum* strains and their secondary metabolites were mainly derived from sponges (39%) and soft corals (38%). From the terrestrial sources, 46 compounds were purified from soil samples-derived *T. harzianum* strains, 13 compounds were from endogenous and 5 compounds were purified from mushroom-derived fungal strains. Compounds derived from terrestrial soil samples account for 67%. For the structure type proportion of the SMs isolated from *T. harzianum*, the peptides, polyketides, and terpenoids account for 31%, 27%, and 26%, respectively, followed by alkaloids (8%) and lactones (8%). Marine-derived terpenoids and polyketides have 39 and 28 natural products among the 47 and 48 total compounds, respectively. Notably, 91 of the 180 SMs exhibited bioactivities. Antifungal...
activity was exhibited by 27 natural products, and 17 compounds possessed phytotoxicity activity, while antibacterial and cytotoxicity activity SMs number were all 14. In the research on phytotoxicity and cytotoxic active products, almost all the active natural products were from marine-derived *T. harzianum* strains. Moreover, 120 of the 180 compounds were new. In summary, organic compounds are abundant in the SMs of *T. harzianum*, they may be used as a fungicide, antibacterial, antineoplastic, and weedicide, both in clinical and agricultural applications. The marine sources molecules (marked * in this paper) with their unique molecular and diverse activities, could be the basis for the development of new drug-forming lead compounds.

Author Contributions: Conceptualization, X.P. and R.G.; writing—original draft preparation, R.G.; review and editing, X.P., R.G., G.L. and Z.Z. All authors have read and agreed to the published version of the manuscript.

Funding: This work was supported by the National Natural Science Foundation of China [grant numbers 41706077 and 81903494], and the China Postdoctoral Science Foundation [grant number 2019M652309].

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Carroll, A.R.; Copp, B.R.; Davis, R.A.; Keyzers, R.A.; Prinsep, M.R. Marine natural products. *Nat. Prod. Rep.* **2021**, *38*, 362–413. [CrossRef] [PubMed]

2. Sutak, R.; Camadro, J.M.; Lesuisse, E. Iron uptake mechanisms in marine phytoplankton. *Front. Microbiol.* **2020**, *11*, 566691. [CrossRef]

3. Pang, X.; Lin, X.; Yang, J.; Zhou, X.; Yang, B.; Wang, J.; Liu, Y. Spiro-phthalides and isocoumarins isolated from the marinesponge-derived fungus *Spatocalonia* sp. *SCSIO4109*. *J. Nat. Prod.* **2018**, *81*, 1860–1868. [CrossRef] [PubMed]

4. Carroll, A.R.; Copp, B.R.; Davis, R.A.; Keyzers, R.A.; Prinsep, M.R. Marine natural products. *Nat. Prod. Rep.* **2022**, *39*, 1122–1171. [CrossRef] [PubMed]

5. Barra, L.; Dickschat, J.S. Harzianone biosynthesis by the biocontrol fungus *Trichoderma harzianum*. *ChemBioChem* **2017**, *18*, 2358–2365. [CrossRef] [PubMed]

6. Bissett, J.; Gams, W.; Jaklitsch, W.; Samuels, G.J. Accepted *Trichoderma* names in the year 2015. *IMA Fungus* **2015**, *6*, 263–295. [CrossRef] [PubMed]

7. Khan, R.A.A.; Najeeb, S.; Hussain, S.; Xie, B.; Li, Y. Bioactive secondary metabolites from *Trichoderma harzianum* P1–4. *Nat. Prod. Res.* **2019**, *33*, 3127–3133. [CrossRef]

8. Han, M.; Qin, D.; Ye, T.; Yan, X.; Wang, J.; Duan, X.; Dong, J. An endophytic fungus from *Trichoderma harzianum* SWUKD3.1610 that produces nigranoic acid and its analogues. *Nat. Prod. Res.* **2019**, *33*, 2079–2087. [CrossRef]

9. Fang, S.T.; Wang, Y.J.; Ma, X.Y.; Yin, X.L.; Ji, N.Y. Two new sesquiterpenoids from the marine-sediment-derived fungus *Trichoderma harzianum* P1–4. *Nat. Prod. Res.* **2019**, *33*, 3127–3133. [CrossRef]

10. Vinale, F.; Nigro, M.; Sivasithamparam, K.; Fievet, G.; Ghisalberti, E.L.; Ruocco, M.; Varlese, R.; Marra, R.; Lanzuise, S.; Eid, A.; et al. Harzianic acid: A novel siderophore from the *Trichoderma harzianum* strain of the fungus *Trichoderma harzianum* X-5. *FEMS Microbiol. Lett.* **2014**, *55*, 662–664. [CrossRef] [PubMed]

11. Yamada, T.; Mizutani, Y.; Umebayashi, Y.; Inno, N.; Kawashima, M.; Kikuchi, T.; Tanaka, R. Tandyukisin, a novel ketoaldehyde decalin derivative, produced by a marine sponge-derived *Trichoderma harzianum*. *Tetrahedron Lett.* **2014**, *55*, 123–129. [CrossRef] [PubMed]

12. Shi, T.; Hou, X.-M.; Li, Z.-Y.; Cao, F.; Zhang, Y.-H.; Yu, J.-Y.; Zhao, D.-L.; Shao, C.-L.; Wang, C.-Y.; Liu, Y. Harzianumones A and B: Two hydroxyxanthraquinones from the coral-derived fungus *Trichoderma harzianum*. *RSC Adv.* **2018**, *8*, 27596–27601. [CrossRef] [PubMed]

13. Zhao, D.L.; Yang, J.; Shi, T.; Wang, C.Y.; Shao, C.L.; Wang, C.Y. Potent phytotoxic harziane diterpenes from a soft coral-derived strain of the fungus *Trichoderma harzianum* X-20090075. *Sci. Rep.* **2019**, *9*, 13345. [CrossRef] [PubMed]

14. Shi, T.; Shao, C.L.; Liu, Y.; Zhao, D.L.; Cao, F.; Fu, X.M.; Yu, J.Y.; Wu, J.S.; Zhang, Z.K.; Wang, C.Y. Terpenoids from the coral-derived fungus *Trichoderma harzianum* X-20090075 isolated from the marine sponge-derived fungus *Trichoderma harzianum*. *Front. Microbiol.* **2020**, *11*, 572. [CrossRef]

15. Yamada, T.; Suzue, M.; Ariai, T.; Kikuchi, T.; Tanaka, R. Trichodermanins C-E, new diterpenes with a fused 6-5-6-6 ring system produced by a marine sponge-derived fungus. *Mar. Drugs* **2017**, *15*, 169. [CrossRef]

16. Yamada, T.; Fujii, A.; Kikuchi, T. New diterpenes with a fused 6-5-6-6 ring system isolated from the marine sponge-derived fungus *Trichoderma harzianum*. *Mar. Drugs* **2019**, *17*, 480. [CrossRef]

17. Song, Y.P.; Fang, S.T.; Miao, F.P.; Yin, X.L.; Ji, N.Y. Diterpenes and sesquiterpenes from the marine algicolous fungus *Trichoderma harzianum* X-5. *J. Nat. Prod.* **2018**, *81*, 2553–2559. [CrossRef]

18. Li, B.; Li, L.; Peng, Z.; Liu, D.; Si, L.; Wang, J.; Yuan, B.; Huang, J.; Proksch, P.; Lin, W. Harzianoic acids A and B, new natural scaffolds with inhibitory effects against hepatitis C virus. *Bioorg. Med. Chem.* **2019**, *27*, 560–567. [CrossRef]
19. Tezuka, Y.; Tasaki, M.; Huang, Q.; Hatanaka, Y.; Kikuchi, T. 15-Hydroxyacorenone: New acarone-type sesquiterpene from the culture broth of the mycoparasitic fungus Trichoderma harzianum. Liebigs Ann. Recl. 1997, 12, 2579–2580. [CrossRef]

20. Yu, J.Y.; Shi, T.; Zhou, Y.; Xu, Y.; Zhao, D.L.; Wang, C.Y. Naphthalene derivatives and halogenate quinoline from the coral-derived fungus Trichoderma harzianum (XS-20090075) through OSMAC approach. J. Asian. Nat. Prod. Res. 2021, 23, 250–257. [CrossRef]

21. Ahluwalia, V.; Kumar, J.; Rana, V.S.; Sati, O.P.; Walla, S. Comparative evaluation of two Trichoderma harzianum strains for major secondary metabolite production and antifungal activity. Nat. Prod. Res. 2015, 29, 914–920. [CrossRef] [PubMed]

22. Liang, X.R.; Ma, X.Y.; Ji, N.Y. Trichosordarin A, a norterpine glycoside from the marine-derived fungus Trichoderma harzianum R5. Nat. Prod. Res. 2020, 34, 2037–2042. [CrossRef] [PubMed]

23. Li, B.; Huang, Q.X.; Gao, D.; Liu, D.; Ji, Y.B.; Liu, H.G.; Lin, W.H. New C13 lipids from the marine-derived fungus Trichoderma harzianum. J. Asian. Nat. Prod. Res. 2015, 17, 468–474. [CrossRef] [PubMed]

24. Suzue, M.; Kikuchi, T.; Tanaka, T.; Yamada, T. Tandyukisins E and F, novel cytotoxic decalin derivatives isolated from a marine sponge-derived fungus. Tetrahedron Lett. 2016, 57, 5070–5073. [CrossRef]

25. Yamada, T.; Umebayashi, Y.; Kawashima, M.; Sugii, T.; Kikuchi, T.; Tanaka, R. Determination of the chemical structures of tandyukisins B-D, isolated from a marine sponge-derived fungus. Tetrahedron Lett. 2015, 13, 3231–3240. [CrossRef]

26. Corley, D.G.; Miller-Wideman, M.; Durley, R.C. Isolation and structure of harzianum A: A new trichotheccene from Trichoderma harzianum. J. Nat. Prod. 1994, 57, 422–425. [CrossRef]

27. Qian-Cutrone, J.; Huang, S.; Chang, L.P.; Pirnik, D.M.; Klohr, S.E.; Dalterio, R.A.; Hugill, R.; Lowe, S. Harzianin HC, proline-rich 14-residue membrane-modifying peptides, trichorozins I-IV, from the fungus Trichoderma harzianum. Nat. Prod. Res. 2020, 29, 392–397. [CrossRef]

28. Ghisalberti, E.L.; Rowland, C.Y. Antifungal metabolites from Trichoderma harzianum. J. Med. Chem. 2010, 34, 1078–1092. [CrossRef] [PubMed]

29. Kobayashi, M.; Uehara, H.; Matsunami, K.; Aoki, S.; Kitagawa, I. Trichoharzin, a new polyketide produced by the imperfect fungus Trichoderma harzianum separated from the marine sponge Micale cecilia. Tetrahedron Lett. 1993, 34, 7925–7928. [CrossRef]

30. Vinale, F.; Marra, R.; Scala, F.; Ghisalberti, E.L.; Lorito, M.; Sivasithamparam, K. Major secondary metabolites produced by two commercial Trichoderma strains active against different phytopathogens. Lett. Appl. Microbiol. 2006, 43, 143–148. [CrossRef]

31. Jeerapong, C.; Phupong, W.; Bangrak, P.; Intana, W.; Tuchinda, P. Trichoharzianol, a new antifungal from Trichoderma harzianum f501. J. Biol. Chem. 2015, 63, 3704–3708. [CrossRef] [PubMed]

32. Amagata, T.; Usami, Y.; Minoura, K.; Ito, T.; Numata, A. Cytotoxic substances produced by a fungal strain from a sponge: Physico-chemical properties and structures. J. Antibiot. 1995, 51, 33–40. [CrossRef]

33. Mevers, E.; Sauriol, F.; Liu, Y.; Moser, A.; Ramadhur, T.R.; Varlan, M.; Williamson, R.T.; Martin, G.E.; Clardy, J. Homodimericin A: A complex hexacyclic fungal metabolite. J. Am. Chem. Soc. 2016, 138, 12324–12327. [CrossRef] [PubMed]

34. Mevers, E.; Chouvenc, T.; Su, N.-Y.; Clardy, J. Chemical interaction among termite-associated microbes. Chem. Eng. J. 2017, 43, 1078–1085. [CrossRef] [PubMed]

35. Koyama, M.; Kelly, T.R.; Watanabe, K.A. Novel type of potential anticancer agents derived from chrysophanol and emodin. Some structure-activity relationship studies. J. Med. Chem. 1988, 31, 283–284. [CrossRef]

36. De Moliner, E.; Moro, S.; Sarno, S.; Zagotto, G.; Zanotti, G.; Pinna, L.A.; Battistutta, R. Inhibition of protein kinase CK2 by anthraquinone-related compounds. J. Biol. Chem. 2003, 278, 1831–1836. [CrossRef] [PubMed]

37. Liu, S.-Y.; Lo, C.-T.; Chen, C.; Liu, M.-Y.; Chen, J.H.; Peng, K.C. Efficient isolation of anthraquinone-derivatives from Trichoderma harzianum ETS 323. J. Biochem. Biophys. Methods. 2007, 70, 391–395. [CrossRef]

38. Liu, S.-Y.; Lo, C.-T.; Shibui, M.A.; Leu, Y.-L.; Jen, B.-Y.; Peng, K.-C. Study on the anthraquinones separated from the cultivation of Trichoderma harzianum strain Th-R16 and their biological activity. J. Agric. Food Chem. 2009, 57, 7288–7292. [CrossRef] [PubMed]

39. Hou, X.; Sun, R.; Feng, Y.; Zhang, R.; Zhu, T.; Che, Q.; Zhang, G.; Li, D. Peptaibols: Diversity, bioactivity, and biosynthesis. Eng. Microbiol. 2022, 2, 100026. [CrossRef]

40. Iida, A.; Sanekata, M.; Fujita, T.; Tanaka, H.; Enoki, A.; Fuse, G.; Kanai, M.; Rudewicz, P.J.; Tachikawa, E. Fungal metabolites. XVI. Structures of new peptaibols, trichokininds I-VII, from the fungus Trichoderma harzianum. Chem. Pharma. Bull. 1994, 42, 1070–1075. [CrossRef] [PubMed]

41. Tsantrizos, Y.S.; Pischos, S.; Sauriol, F.; Widden, P. Peptaibol metabolites of Tolypocladium geodes. Can. J. Chem. 1996, 74, 165–172. [CrossRef]

42. Augeven-Bour, I.; Rebuffat, S.; Auvin, C.; Goulard, C.; Prigent, Y.; Bodo, B. Harzianins HB I, an 11-residue peptaibol from Trichoderma harzianum: Isolation, sequence, synthesis, and membrane activity. J. Chem. Soc. Perkin Trans. 1997, 1, 1587–1594. [CrossRef]

43. Hlimi, S.; Rebuffat, S.; Goulard, C.; Duchamp, S.; Bodo, B. Trichorzin HA and MA, antibiotic peptides from Trichoderma harzianum II. Sequence determination. J. Antibiot. 1995, 48, 1254–1261. [CrossRef] [PubMed]

44. Goulard, C.; Hlimi, S.; Rebuffat, S.; Bodo, B. Trichorzin HA and MA, antibiotic peptides from Trichoderma harzianum I. Fermentation, isolation and biological properties. J. Antibiot. 1995, 48, 1248–1253. [CrossRef] [PubMed]

45. Iida, A.; Sanekata, M.; WADA, S.-I.; Fujita, T.; Tanaka, H.; Enoki, A.; Fuse, G.; Kanai, M.; Asami, K. Fungal metabolites. XVIII. New membrane-modifying peptides, trichorozins I-IV, from the fungus trichoderma harzianum. Chem. Pharm. Bull. 1995, 43, 392–397. [CrossRef] [PubMed]

46. Rebuffat, S.; Goulard, C.; Bodo, B. Antibiotic peptides from Trichoderma harzianum: Harzianins HC, proline-rich 14-residue peptaibols. J. Chem. Soc. Perkin Trans. 1995, 1, 1849–1855. [CrossRef]

47. Leclerc, G.; Rebuffat, S.; Goulard, C.; Bodo, B. Directed biosynthesis of peptaibol antibiotics in two Trichoderma strains I. Fermentation and isolation. J. Antibiot. 1995, 51, 170–177. [CrossRef] [PubMed]
48. Hajji, M.E.; Rebuffat, S.; Doan, T.L.; Klein, G.; Satre, M.; Bodo, B. Interaction of trichorzianines A and B with model membranes and with the amoeba *Dictyostelium*. *Biochim. Biophys. Acta* **1989**, *978*, 97–104. [CrossRef]

49. Rebuffat, S.; Hajji, M.E.; Hennig, P.; Davoust, D.; Bodo, B. Isolation, sequence, and conformation of seven trichorzianines B from *Trichoderma harzianum*. *Int. J. Pept. Protein Res.* **1989**, *34*, 200–210. [CrossRef]

50. Zhao, D.-L.; Zhang, X.-F.; Huang, R.-H.; Wang, D.; Wang, X.-Q.; Li, Y.-Q.; Zheng, C.-J.; Zhang, P.; Zhang, C.-S. Antifungal nafuredin and epithiodiketopiperazine derivatives from the mangrove-derived fungus *Trichoderma harzianum* D13. *Front. Microbiol.* **2020**, *11*, 1495. [CrossRef]

51. Sawa, R.; Mori, Y.; Inumura, H.; Naganawa, H.; Hamada, M.; Yoshida, S.; Furutani, H.; Kajimura, Y.; Fuwa, T.; Takeuchi, T. Harzianic acid, a new antimicrobial antibiotic from a fungus. *J. Antibiot.* **1994**, *47*, 731–732. [CrossRef] [PubMed]

52. Vinale, F.; Manganiello, G.; Nigro, M.; Mazzei, P.; Piccolo, A.; Pascale, A.; Ruocco, M.; Marra, R.; Lombardi, N.; Lanzuise, S.; et al. A novel fungal metabolite with beneficial properties for agricultural applications. *Molecules* **2014**, *19*, 9760–9772. [CrossRef]

53. Lee, C.; Chung, M.; Lee, H.; Kho, Y. Koshino, H. MR-93A, a new oxazole from *Trichoderma harzianum* KCTC 0114BP. *J. Nat. Prod.* **1995**, *58*, 1605–1607. [CrossRef]

54. Lee, C.H.; Koshino, H.; Chung, M.C.; Lee, H.J.; Hong, J.K.; Yoon, J.S.; Kho, Y.H. MR566A and MR566B, new melanin synthesis inhibitors produced by *Trichoderma harzianum* II. Physico-chemical properties and structural elucidation. *J. Antibiot.* **1997**, *50*, 474–478. [CrossRef]

55. Lee, C.H.; Chung, M.C.; Lee, H.J.; Bae, K.S.; Kho, Y.H. MR566A and MR566B, new melanin synthesis inhibitors produced by *Trichoderma harzianum* I. Taxonomy, fermentation, isolation and biological Activities. *J. Antibiot.* **1997**, *50*, 469–473. [CrossRef]

56. Takano, D.; Nagamitsu, T.; Uf, H.; Shiomi, K.; Yamaguchi, Y.; Masuma, R.; Kuwajima, I.; Ómura, S. Absolute configuration of nafuredin, a new specific NADH-fumarate reductase inhibitor. *Tetrahedron Lett.* **2001**, *42*, 3017–3020. [CrossRef]

57. Larsen, T.O.; Breinholt, J. Dichlorodiaportin, diaportinol, and diaportinic acid: Three novel isocoumarins from *Penicillium nalgiovense*. *J. Nat. Prod.* **1999**, *62*, 1182–1184. [CrossRef]

58. Garnica-Vergara, A.; Barrera-Ortiz, S.; Muñoz-Parra, E.; Raya-González, J.; Méndez-Bravo, A.; Macías-Rodríguez, L.; Ruiz-Herrera, L.F.; López-Bucio, J. The volatile 6-pentyl-2H-pyran-2-one from *Trichoderma atroviride* regulates *Arabidopsis thaliana* root morphogenesis via auxin signaling and *ETHYLENE INSENSITIVE 2* functioning. *New Phytol.* **2016**, *209*, 1496–1512. [CrossRef]