Complete Genome Sequences of Four Atrazine-Degrading Bacterial Strains, *Pseudomonas* sp. Strain ADPe, *Arthrobacter* sp. Strain TES, *Variovorax* sp. Strain 38R, and *Chelatobacter* sp. Strain SR38

Loren Billet, a Marion Devers-Lamrani, a Rémy-Félix Serre, b Emmanuel Julia, b Céline Vandecasteele, b Nadine Rouard, a Fabrice Martin-Laurent, a Aymé Spora

aAgroSup Dijon, INRAE, Université Bourgogne Franche-Comté, Agroécologie, Dijon, France
bINRAE, US 1426, Get-PlaGe, GenoToul, Castanet-Tolosan, France

Loren Billet and Marion Devers-Lamrani contributed equally to this work. Their names are listed in alphabetical order.

ABSTRACT We report here the complete genome sequences of four atrazine-degrading bacteria. Their genomes will serve as references for determining the genetic changes that have occurred during an evolution experiment.

We recently set up an evolution experiment on a four-species bacterial consortium to determine whether liquid medium supplemented with the herbicide atrazine and/or different N and C sources could support the coexistence of multiple species (1). Here, we provide the full genome sequences of the four ancestral atrazine-degrading strains, namely, *Pseudomonas* sp. strain ADPe (2, 3), *Variovorax* sp. strain 38R (4), *Arthrobacter* sp. strain TES (5), and *Chelatobacter* sp. strain SR38 (6).

The strains were all derived from ancestors isolated from atrazine-contaminated soils and were stored at −80°C in glycerol (30%). Multiple colonies were picked and grown to late exponential phase on mineral salt medium containing atrazine as the sole nitrogen source. Genomic DNA was extracted using the Qiagen genomic DNA extraction kit. Oxford Nanopore Technologies (ONT) libraries were generated from 2 μg fragmented DNA with a ligation sequencing kit (SQK-LSK109) and sequenced on the GridION platform using an R9.5 flow cell. Illumina paired-end (PE) reads were prepared using the TruSeq Nano DNA LT library preparation kit (Illumina). Briefly, DNA was fragmented by sonication and adaptors were ligated. Eight cycles of PCR were applied to amplify the libraries. Library quality was assessed using Fragment Analyzer (Advanced Analytical Technologies, Inc.), and libraries were quantified by quantitative PCR using the Kapa library quantification kit (Roche). Sequencing was performed on a HiSeq instrument (Illumina) using a PE read length of 2 × 150 bp with the Illumina HiSeq 3000 reagent kits.

Fast5 files from ONT sequencing were obtained with ONT MinKNOW software (v1.10.24-1) and were base called with ONT Albacore sequencing pipeline software (v2.1.10). Adaptors were trimmed using Porechop v0.2.1 (7), and reads with a quality score of <7 and size of <3,000 bp were discarded using NanoFilt v2.2.0 (8). Nanopore reads were then assembled using Canu v1.7 (9) with the “minReadLength=3000” and “genomeSize” options. A first polishing step and circularization were performed on the assembly using Pilon v1.22 (10) and Circulator v1.5.1 (11), respectively. Illumina PE reads were processed with Trim Galore v0.4.0 (https://github.com/FelixKrueger/TrimGalore) to trim adaptor sequences and were mapped on the assembly using BWA-MEM v0.7.12 (12) and SAMtools v1.3.1 (13). The mapping was finally used to improve the polishing with two rounds with Pilon v1.22 with the following option:
mindepth, 25. For each strain, taxonomic classification was inferred using MiGA (14) and the maximum average amino acid identity (AAI) found between its chromosome and all of the reference genomes in the NCBI RefSeq database. Default parameters were used for all software unless otherwise noted. Detailed statistics regarding the assembly of the four genomes are given in Table 1.

Taxonomic classification of Pseudomonas sp. ADPe confirmed that it may belong to the species Pseudomonas citronellolis (P = 0.03) (15). The chromosome contains five 16S rRNAs. The sequence of its circular plasmid is similar to that of pADPe (99% overall similarity) except that a 22.3-kb sequence containing atzA and atzB and surrounded by insertion sequences (ISs) is deleted.

Variovorax sp. 38R most likely belongs to the genus Variovorax (P = 0.0049) and probably belongs to the species Variovorax paradoxus (P = 0.083). It contains atzA and atzB in two distinct regions, both delimited by ISs and exhibiting 99% similarity to Pseudomonas sp. strain ADP1.

Arthrobacter sp. TES most likely belongs to the same species as Arthrobacter sp. strain ZXY-2 (P = 0.0054). Atrazine-degrading genes trzN, atzB, and atzC are all located on the 205.8-kbp contig; trzN is found within a 9,081-bp region and atzB and atzC within a 36,366-bp region, both of which present 99% similarity to the atrazine-degrading plasmid pTC1 of Paenarthrobacter aurescens strain TC1 (GenBank accession number CP000475.1).

For Chelatobacter sp. SR38, AAI analysis performed on its chromosome reveals that it belongs to the genus Aminobacter and probably to the species Aminobacter aminoivorans (P = 0.035). A BLASTN analysis indicated that atzA is located on the 74-kb uncircularized contig while atzB, atzC, and trzD are on the 197-kb one. Interestingly, atzB is present in two copies on this contig.

These genomes will be used as references to analyze full genome resequencing of these strains to search for genetic changes that might have occurred in the time course of their evolution in a four-species atrazine-degrading bacterial consortium facing different environmental challenges.

Data availability. Raw data and assembled genomes have been deposited in the NCBI GenBank under the BioProject accession number PRJNA664737. GenBank accession numbers for the assembled genomes are given in Table 1.

ACKNOWLEDGMENTS

This work was performed in collaboration with the GeT core facility (Toulouse, France) (http://get.genotoul.fr) and was supported by France Génomique National infrastructure, funded as part of the Investissement d’Avenir program managed by the

TABLE 1 Assembly statistics and accession numbers for the strains in this study

Strain	No. of reads	Nanopore read coverage (x)	N_{50} (nucleotides)	No. of contigs	Contig size (bp)	GenBank accession no.	GC content (%)	
Pseudomonas sp. ADPe	165,586	366	21,830	2	Chromosome	7,177,635	CP062122	66.9
					pADPe	62,583	CP062123	64.7
Variovorax sp. 38R	308,810	571	15,149	1	Chromosome	6,870,625	CP062121	67.5
Arthrobacter sp. TES	153,561	633	25,143	4	Chromosome	4,181,416	CP062235	63.5
					pTES1	351,150	CP062236	62
					pTES2	205,802	CP062237	62.6
					pTES3	48,156	CP062238	60.9
Chelatobacter sp. SR38	116,302	290	23,740	9	Chromosome	5,667,809	CP062112	63.4
					pSR1	560,213	CP062113	63.2
					pSR2	120,900	CP062114	61.2
					pSR3	170,880	CP062115	58.8
					pSR4	74,540	CP062116	58.0
					pSR5	163,970	CP062117	60.4
					pSR6	52,741	CP062118	58.3
					pSR7	359,029	CP062119	60.2
					pSR8	197,271	CP062120	62.8
REFERENCES

1. Billet L, Devers M, Rouard N, Martin-Laurent F, Spor A. 2019. Labour sharing promotes coexistence in atrazine degrading bacterial communities. Sci Rep 9:8. https://doi.org/10.1038/s41598-019-54978-2.

2. Mandelbaum RT, Allan D, Wackett LP. 1995. Isolation and characterization of a Pseudomonas sp. that mineralizes the s-triazine herbicide atrazine. Appl Environ Microbiol 61:1451–1457. https://doi.org/10.1128/AEM.61.4.1451-1457.1995.

3. Changey F, Devers-Lamrani M, Rouard N, Martin-Laurent F. 2011. In vitro evolution of an atrazine-degrading population under cyanuric acid selection pressure: evidence for the selective loss of a 47 kb region on the plasmid ADP1 containing the atzA, B and C genes. Gene 490:18–25. https://doi.org/10.1016/j.gene.2011.09.005.

4. Devers M, Rouard N, Martin-Laurent F. 2007. Genetic rearrangement of the atzAB atrazine-degrading gene cassette from pADP1::Tn5 to the chromosome of Variovorax sp MD1 and MD2. Gene 392:1–6. https://doi.org/10.1016/j.gene.2006.09.015.

5. El Sebaï T, Devers-Lamrani M, Changey F, Rouard N, Martin-Laurent F. 2011. Evidence of atrazine mineralization in a soil from the Nile Delta: isolation of Arthrobacter sp. TES6, an atrazine-degrading strain. Int Biodeterior Biodegradation 65:1249–1255. https://doi.org/10.1016/j.ibiod.2011.05.011.

6. Rousseaux S, Soulas G, Hartmann A. 2002. Plasmid localisation of atrazine-degrading genes in newly described Chelatobacter and Arthrobacter strains. FEMS Microbiol Ecol 41:69–75. https://doi.org/10.1111/j.1574-6941.2002.tb00967.x.

7. Wick RR, Judd LM, Gorrie CL, Holt KE. 2017. Completing bacterial genome assemblies with multiplex MinION sequencing. Microb Genom 3:e000132. https://doi.org/10.1099/mgen.0.000132.

8. De Coster W, D’Hert S, Schultz DT, Cruts M, Van Broeckhoven C. 2018. NanoPack: visualizing and processing long-read sequencing data. Bioinformatics 34:2666–2669. https://doi.org/10.1093/bioinformatics/bty149.

9. Koren S, Walenz BP, Berlin K, Miller JR, Bergman NH, Phillippy AM. 2017. Canu: scalable and accurate long-read assembly via adaptive k-mer weighting and repeat separation. Genome Res 27:722–736. https://doi.org/10.1101/gr.215087.116.

10. Walker BJ, Abeel T, Shea T, Priest M, Abouelliel A, Sakthikumar S, Cuomo CA, Zeng Q, Wortman J, Young SK, Earl AM. 2014. Pilon: an integrated tool for comprehensive microbial variant detection and genome assembly improvement. PLoS One 9:e112963. https://doi.org/10.1371/journal.pone.0112963.

11. Hunt M, De Silva N, Otto TD, Parkhill J, Keane JA, Harris R. 2015. Circulator: automated circularization of genome assemblies using long sequencing reads. Genome Biol 16:294. https://doi.org/10.1186/s13059-015-0849-0.

12. Li H. 2013. Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM. arXiv 1303.3997v2. https://arxiv.org/abs/1303.3997v2.

13. Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G, Abecasis G, Durbin R, Durbin R, 1000 Genome Project Data Processing Subgroup. 2009. The Sequence Alignment/Map format and SAMtools. Bioinformatics 25:2078–2079. https://doi.org/10.1093/bioinformatics/btp352.

14. Rodriguez-R LM, Gunturu S, Harvey WT, Rossello-Mora R, Tiedje JM, Cole JR, Konstantinidis KT. 2018. The Microbial Genomes Atlas (MiGA) webserver: taxonomic and gene diversity analysis of archaea and bacteria at the whole genome level. Nucleic Acids Res 46:W282–W288. https://doi.org/10.1093/nar/gky467.

15. Devers-Lamrani M, Spor A, Mounier A, Martin-Laurent F. 2016. Draft genome sequence of Pseudomonas sp. strain ADP, a bacterial model for studying the degradation of the herbicide atrazine. Genome Announc 4:e01733-15. https://doi.org/10.1128/genomeA.01733-15.