Response of *Escherichia Coli* to the Alcoholic Extract of Green Alga *Chlorococcum Humicola*

1Raad Abdul Hadinayyef and 2Thaer Mohammed Ibrahim
1Ministry of Educational, Department of Biology, Open Educational College, Baghdad, Iraq
2Department of Biology, Ibn Al-Haytham College of Pure Sciences, University of Baghdad, Baghdad, Iraq

Abstract: The response of *Escherichia coli* bacteria which was isolated from contaminated water to *Chlorococcum humicola* alcoholic algae extract was studied on growth and different parameters. The extract concentration of *C. humicola* wear 0.07, 0.15, 0.31, 0.2, 1.25 mg/L showed a high efficiency in significant reducing numbers of *E.coli*, the Growth Account (GA) showed a highest value at concentration 0.07 mg/L which was 303, 200,168 CFU/mL and less value at 1.25 mg/L which was 99,61,49 CFU/mL in 24, 48 and 72 h, respectively. While Removal Account (RA) appeared highest value at 1.25 mg/L 333,419,431 CFU/mL and less value at con. 0.07 mg/L which was 150,27.312 CFU/mL. Also the Mortality Percent (MP) appeared highest value at 1.25 mg/L 68,87,89 CFU/mL and less value at 0.07 mg/L witch was 31,58,65 CFU/mL as well as the removing percentage of *E. coli* by green algae *C. humicola* wich was 60, 80, 82% in 24, 48, 72 h, respectively. The result of study improved that the species *E.coli* is high sensitive to *Ch. humicola* alga extracts toxicity of algal extracts were time and concentration dependent. The aim of the study refers to can be used as biodegradation agent in order to disposal of pollution by *E.coli* witch represent the bacterial water pollutant with possibility to used the alcoholic extract of green alga to reducing the time and cost the water treatment.

Key words: Alcoholic algae extract, toxicity, polluted water, species, pollution, reducing

INTRODUCTION

Water sources, especially, surface water is exposed to the dangers of pollution which leads, directly or indirectly, to the ecosystem. Water pollution means any change in the physical, chemical and biological characteristics of water as well as the pathogens resulting from the effects of microorganisms such as bacteria, fungi and viruses (Cervenka *et al.*, 2006).

The rivers are the most water bodies susceptible to pollution because of the discharges resulting from the various human activities that make them unusable only after the adoption of additional treatment and liquidation units of high and cost technology.

The presence of *E. coli* and other faecal indicator organisms such as *Streptococci* in surface waters can indicate a human health hazard because faecal contamination increases the risk of enteric pathogenic microorganisms being endemic transport of FIOs from land to bathing water (SEPA., 2002) and to river water abstracted for irrigation of ready to eat vegetables (Beuchat, 1996). Are there for of public concern, the regulation of such contamination is covered in European Union by directives such as the bathing waters directive and more recently the water framework directive.

The *E. coli* was associated with watery or bloody diarrhea hemorrhagic colitis and hemolytic uremic syndrome (Stephan and Untermann, 1999). The organisms typically colonizes the infant gastrointestinal tract within hours of life there after *E. coli* and the host derive mutual benefit. The organisms is distributed in the environment as well as in the bowel of human and animals. It is also present in water supplies as an indicator of resent fecal contamination and potential presence of enteric pathogens (Colle *et al.*, 1996).

Algae are mainly aquatic simple plants found in marine and fresh water as well as terrestrial habitats such as wet rocks or moist soils (NCERT., 2008). Microalgae can be a rich source of mane chemically diverse.

Compounds that having used as a bioactive compounds as antimicrobial agents (Stengel and Connan, 2015). Making the research use it in human pathology also in aquaculture as biodegradation which is one of the most effective methods to remediating environmental systems in both situremid and engineered schemes, to reduce costs and environmentally-friendly than traditional detoxifying methods in contaminated environments (Mahmoudi, 2013).

In addition to the use of chemical sterilizers. The algae are microorganisms that are highly efficient in inhibiting the growth and effectiveness of various microorganisms (Katircioğlu *et al.*, 2004).

Corresponding Author: Raad Abdul Hadinayyef, Ministry of Educational, Department of Biology, Open Educational College, Baghdad, Iraq
It also contributes to the process of self-purification in the water bodies through the photosynthesis process where they release the dissolved oxygen gas which causes the gas balance between oxygen and carbon dioxide between the atmosphere and water that have a biological, medical and economic importance and are necessary to sustain life (Likens, 2010).

As well as algae have recently received a lot of attention as a new biomass source for the production of a new energy (Zhao et al., 2008). Some of the main characteristics which set algae apart from other biomass sources are that algae can have a high oil or starch content do not require agricultural land. Fresh water is not essential and nutrients that can be supplied by waste water and CO₂ by combustion gas (Marina et al., 2013). The first distinction that needs to be made is between macro algae or versus microalgae (Xu et al., 2004). Therefore, the aim of the study was to eliminate Escherichia coli using the alcoholic algae extract.

MATERIAL AND METHODS

Isolation and diagnosis of bacterial: The bacteria Escherichia coli were isolated from the drainage water of the Rustmiya Sewage Treatment Plant in Baghdad using Prescott method (Kumar et al., 2010). Grown on the nutrient agar medium then 1 mL were taken from pure isolation into glass vials containing broth nutrient medium and incubated at 37°C.

Preparation of dried algae: Chlorococcum humicola was isolated from small stream near the University of Baghdad-Jadriya from different places where several samples were collected, depends on method by Stein (1973). Then the alga was laboratory diagnosed using a microscope based on the diagnosis method (APHA et al., 2005).

The alga was cultured under constant laboratory conditions and temperature of 25±2°C, 3000 lux and 16:8 light: dark as photo system in Chu 13 media (Yamaguchi et al., 1987) (incubated in the incubation room for 18 days, harvested by centrifuge with of 3000 rpm speed for 15 min, the sedimentation dried in oven at 50°C for 48 h, all samples keeps in 25°C antal used (Jawad, 1982; Eppley et al., 1977).

Extraction of active substances from algae: About 15 g of the dried algae was dissolved in 250 mL of chloroform and then placed in shaking incubator at 25°C with 170 rpm for 15 min and then dried at 40°C (Taskin et al., 2007).

Preparation of concentrations of algae extract: About 1 mL of bacterial suspension was taken for each isolation of bacterial isolates and placed in a sterile glass flask containing different concentrations of the extract: 0.07, 0.15, 0.31, 0.62 and 1.25 mg/L prepared from the primary concentration by the dilutions and then the volume was completed to 100 mL of sterile sewage water with (SEPA., 2002) repeated of each bacterial isolation. In addition to the control treatment which was free of the algae extract and incubated at 37°C for 72 h (Kumar et al., 2010).

The number of bacterial cells was calculated in 1 mL of bacterial suspension using the method of hemocytometer (Chamber counting) where the calculation was daily for 3 days to draw growth curve and account the Growth Account (GA), Removal Account (RA), Mortality Percent (MP) and Removing Percentage (RP) according to (Dahiru and Obidoa, 2007).

RESULTS AND DISCUSSION

The result showed exposure of E. coli bacteria to different concentrations of Ch. humicola alcoholic extract clearly effect on the growth curve decreed depends on these cells within 72 h. From exposure a decrease was observed within increased emphasis and register a growth curve rapprochement and non-significant differences of the cells number at concentrations 0.13, 0.62, 1.25 mg/L in 48 h Fig. 1 and 2. While Growth Account (GA) showed a clear decline as significant for all concentrations compared with control witch was not exposed to algae extract witch registered 168,200,303 and 133,177,303 CFU/mL in concentration of 0.07 mg/L and 100,100,248 CFU/mL by concentration of 0.15 mg/L and 100,100,248 CFU/mL by concentration of 0.31 mg/L while registered the two concentration 1.25,0.62 mg/L value reached 61,72,180 and 49,61,99 after 24, 48 and 72 h. Respectively while the control which was register 480 CFU/mL after same period Table 1.

Also register the Removal Account (RA) a value with significant and increased his concentration and the value converged with non-significant after 24, 48 and 72 h. Between 1.25,0.62 mg/L and the signification between the high concentration compared with the less two concentration which used at the study witch all the values significant compared with control Table 2.

As well as Mortality Percent (MP) register values reached 31,58,65% at concentration 0.07 mg/L, 37,63,71% at 0.15 mg/L and 47,74,79% at 0.31 mg/L 6285,87% at concentration 0.62 mg/L after 24, 48 and 72 h, respectively Table 3. While the removing percentage registered 60, 80 and 82% after 24, 48 and 72 h. Which refers to increased the removal rate.

Also the study agrees with Taskin et al. (2010) which indicated the ability of Cladophora extract to reduce the number of E. coli bacteria, the reason is due to the secretion of many substances such as ferpenoids, fatty acids, acids, amino which have inhibitory effect on
Table 1: The growth account for E. coli under deferent concentration of green alga C. humicola

GA	24 h	48 h	72 h
Control	480±11.36	480±10.41	479.3±9.91
0.07	180±12.14	72.0±5.57	61.0±10.51
0.15	150±11.28	276±17.80	312.0±13.06
0.31	248±21.28	100±1.76	100±5.77
0.62	303±40.44	177±16.80	133.0±11.00
1.25	99±7.2	61.0±2.1	61.0±10.51

GA = Growth Account, Small letter * = No significant in the same column; Capital letter = No significant in same row at 0.05 level

Table 3: The Mortality Percent (MP) for E. coli under deferent concentration of green alga C. humicola

MP	24 h	48 h	72 h
Control	0.0±0.00	0.0±0.00	0.0±0.00
0.07	31.3±0.43	58.3±0.33	65.0±2.52
0.15	37.5±5.01	63.1±1.13	71.9±6.28
0.31	47.9±0.53	79.1±0.74	79.1±0.17
0.62	62.5±2.02	85.0±1.73	87.3±0.84
1.25	68.8±4.79	87.3±0.29	89.7±1.76

GA = Growth Account, Small letter * = No significant in the same column; Capital letter = No significant in same row at 0.05 level

REFERENCES

APHA, AWWA and WPCF., 2005. Standard Method for the Examination of Water and Wastewater. 21th Edn., American Public Health Association, Washington, DC., USA.

Abd-Elnaby, H., 2010. Bacteria-algae interactions in Abu-Qir Marine ecosystem and some applied aspects of algal extracts. J. Applied Sci. Res., 6: 345-357.

Beuchat, L.R., 1996. Pathogenic microorganisms associated with fresh produce. J. Food Protect., 59: 204-216.

Cervenka, L., I. Peskova, E. Foltynova, M. Pejchalova, I. Brozko and J. Vytrasova, 2006. Inhibitory effects of some spice and herb extracts against Arcobacter butzleri, A. cryaerophilus and A. skirrowii. Curr. Microbial., 53: 435-439.

Colle, J.G., A.G. Fraser, B.P. Marion and A. Simmons, 1996. Mackie and McCartney Practical Medical Microbiology. 14th Edn., American Public Health Association, Washington DC., USA.

Dahiru, D. and O. Obidoa, 2007. Pretreatment of albino rats with aqueous extract of Ziziphus mauritiana protects against alcohol-induced liver damage. Trop. J. Pharm. Res., 6: 705-710.

Eppley, R.W., W.G. Harrison, S.W. Chisholm and E. Stewart, 1977. Particulate organic matter in surface waters off Southern California and its relationship to phytoplankton. J. Mar. Res., 35: 671-696.
Jawad, A.L.M., 1982. Interactions between cyanobacteria and other microorganisms. Ph.D Thesis, University of Liverpool, Liverpool, England.

Katricioğlu, H., B.S. Akin and T. Atici, 2004. Microalgal toxin (s): Characteristics and importance. Afr. J. Biotechnol., 3: 667-674.

Kumar, R.S., N. Thajuddin and C. Venkateswari, 2010. Antibacterial activity of cyanolichen and symbiotic cyanobacteria against some selected microorganisms. Afr. J. Microbiol. Res., 4: 1408-1411.

Likens, G.E., 2010. Plankton of Inland Water. 1st Edn., Academic Press, Cambridge, Massachusetts, USA., ISBN-13:978-0123819949, Pages: 365.

Mahmoudi, N., 2013. Assessing in situ degradation of petroleum hydrocarbons by indigenous microbial communities. Ph.D. Thesis, McMaster University, Hamilton, Canada.

Marina, B., A.I. Noor and E.R. Aweng, 2013. Biodegradation of oily wastewater by pure culture of Bacillus cereus. J. Agric. Biol. Sci., 8: 108-115.

NCERT., 2008. Biology: Textbook for Class XI. 1st Edn., National Council of Education Research and Training, New Delhi, India, Pages: 365.

Ordog, V., W.A. Stirk, R. Lenobel, M. Bancirova, M. Strand and J. Van Standen, 2004. Screening microalgae for some potentially useful agricultural and pharmaceutical secondary metabolites. J. Applied Phycol., 16: 309-314.

Rao, M., S. Malhotra, T. Fatma and A. Rattan, 2007. Antimycobacterial activity from cyanobacterial extracts and phytochemical screening of methanol extract of Hapalosiphon. Pharm. Biol., 45: 88-93.

SEPA., 2002. A study of bathing waters compliance with EC Directive 76/160/EEC: The relationship between exceedance of standards and antecedent rain fall. Scottish Environment Protection Agency, Stirling, Scotland.

Stein, J.R., 1973. Handbook of Phycological Methods, Culture Methods and Growth Measurements. Cambridge University Press, UK., Pages: 448.

Stengel, D.B. and S. Connan, 2015. Marine Algae: A Source of Biomass for Biotechnological Applications. In: Natural Products from Marine Algae: Methods and Protocols, Stengel, D.B. and S. Connan (Eds.). Humana Press, New York, USA., ISBN:978-1-4939-2683-1, pp: 1-37.

Stephan, R. and F. Untermann, 1999. Virulence factors and phenotypical traits of verotoxin-producing Escherichia coli strains isolated from asymptomatic human carriers. J. Clin. Microbiol., 37: 1570-1572.

Taskin, E., M. Ozturk, E. Taskin and O. Kurt, 2007. Antibacterial activities of some marine algae from the Aegean Sea (Turkey). Afr. J. Biotechnol., 6: 2746-2751.

Taskin, E., Z. Caki, M. Ozturk and E. Taskin, 2010. Assessment of in vitro antitumoral and antimicrobial activities of marine algae harvested from the eastern Mediterranean sea. Afr. J. Biotechnol., 9: 4272-4277.

Xu, N., X. Fan, X. Yan and C.K. Tseng, 2004. Screening marine algae from China for their antitumor activities. J. Applied Phycol., 16: 451-456.

Yamaguchi, K., H. Nakano, M. Murakami, S. Kanoso and O. Nakayama et al., 1987. Lipid composition of a green alga Botryococcus braunii. Agric. Biol. Chem., 57: 493-498.

Zhao, J., B. Zhang and Y. Zhang, 2008. Chlorophytes of biological soil crusts in Gurbantunggut Desert, Xinjiang Autonomous Region, China. Front. Biol. China, 3: 40-44.