RESEARCH ARTICLE

Phylogenetic transmission clusters among newly diagnosed antiretroviral drug-naïve patients with human immunodeficiency virus-1 in Korea: A study from 1999 to 2012

Yoon-Seok Chung¹, Ju-Yeon Choi¹, Myoung-Su Yoo², Jae Hyun Seong², Byeong-Sun Choi², Chun Kang¹*

¹ Division of Viral Diseases, Center for Laboratory Control and Infectious Diseases, Korea Centers for Disease Control and Prevention, Cheongju, Republic of Korea, ² Division of Viral Diseases Research, Center for Research of Infectious Diseases, National Institute of Health, Korea Centers for Disease Control and Prevention, Cheongju, Republic of Korea

* kangchun@korea.kr

Abstract

Population-level phylogenetic patterns reflect both transmission dynamics and genetic changes, which accumulate because of selection or drift. In this study, we determined whether a longitudinally sampled dataset derived from human immunodeficiency virus (HIV)-1-infected individuals over a 14-year period (1999–2012) could shed light on the transmission processes involved in the initiation of the HIV-1 epidemic in Korea. In total, 927 sequences were acquired from 1999 to 2012; each sequence was acquired from an individual patient who had not received treatment. Sequences were used for drug resistance and phylogenetic analyses. Phylogenetic and other analyses were conducted using MEGA version 6.06 based on the GTR G+I parameter model and SAS. Of the 927 samples, 863 (93.1%) were classified as subtype B and 64 were classified as other subtypes. Phylogenetic analysis demonstrated that 104 of 927 patient samples (11.2%) were grouped into 37 clusters. Being part of a transmission cluster was significantly associated with subtype-B viruses, infection via sexual contact, and the infection of young males. Of all clusters, three (~8.1%) that comprised 10 individual samples (22.2% of 45 individuals) included at least one member with total transmitted drug resistance (TDR). In summary, HIV transmission cluster analyses can integrate laboratory data with behavioral data to enable the identification of key transmission patterns to develop tailored interventions aimed at interrupting transmission chains.

Introduction

The extremely high diversity of human immunodeficiency virus (HIV) has been attributed to its high replication capacity and the high frequency of errors introduced by reverse transcriptase during replication. HIV-1 is the most common virus types worldwide and has been
classified into four groups as follows: M (major), N (non-M, non-O), O (outer), and P (pending the identification of further human cases); group P was identified recently in two Cameroonian patients. HIV-1 group M can be further classified into nine subtypes including A–D, F–H, and K [1]. This extensive diversity has led to frequent recombination between strains, resulting in several circulating recombinant forms (CRFs) and a very high number of unique recombinant forms (URFs) [2–5]. To date, 72 CRFs have been isolated, and this number is expected to increase in the future [6].

The unequal distribution of different HIV-1 genotypes worldwide results from the global transmission and spread of certain variants or the limited spread of local endemic strains [1]. Subtype B is predominant in the Americas, Western Europe, and Australia [7–9], whereas subtype B is also the most abundant genetic form in Korea [10–12]. Further, CRFs and URFs are widely distributed in countries where different subtypes co-circulate [13–16].

Phylogenetic trees based on viral genes can deliver crucial insights into the ecology and evolution of HIV transmission [17, 18]. Population-level phylogenetic patterns reflect both transmission dynamics and genetic changes [19–21], which accumulate because of selection or drift. Currently, the best method to identify and establish transmission events related to HIV between individuals or within a community is high-resolution phylogenetics based on HIV sequence data [22–26].

In this study, we aimed to determine whether a longitudinally-sampled dataset derived from HIV-1-infected individuals over a 14-year period (1999–2012) could shed light on the transmission processes involved in the initiation of the HIV epidemic in Korea. The identification of transmission clusters and their characterization may provide valuable insights into factors that contributed to the origin of HIV transmission in Korea. We characterized the composition of phylogenetically reconstructed “clusters”, or groups of people in which multiple transmissions likely occurred, and assessed the factors associated with membership to these clusters among patients diagnosed from 1999 to 2012. Here we report our results from applying the phylodynamic profiles of HIV-1 subtype B and other subtypes circulating among the antiretroviral drug-naïve population of Korea.

Materials and methods

Study population and RNA extraction

Blood and plasma samples of individuals newly diagnosed with HIV-1 infection, for whom highly active antiretroviral therapy (ART) had not been initiated, were collected on an annual basis for genotypic assays of antiretroviral drug-resistant variants in Korea. Variations in HIV-1 pol (a polymerase gene) were monitored continuously using a subset of approximately 10% of the samples isolated from newly-diagnosed drug-naïve patients every year since 1999 (Table 1). A simple random sampling method was used to select patient groups based on their epidemiological history. The study was approved by Korea Centers for Diseases Control and prevention Research Ethics Committee (No. 2012-05CON-11-P).

Viral RNA extraction, pol amplification, and sequencing

The experimental conditions for reverse transcription-polymerase chain reaction (RT-PCR) and PCR for sequencing the PR and RT parts of the pol region were based on the laboratory protocol specified by Stanford’s Center for AIDS Research. In accordance with the manufacturer’s instructions, viral RNA was extracted from 140 μL of the plasma sample using a QIAamp Viral RNA Mini kit (QIagen, Valencia, CA, USA) and was suspended in 50 μL of elution buffer. RT-PCR was used to generate a template with the primer set MAW-26 (2028–2051, 10 pmol/mL, forward) and RT-21 (3539–3509, 10 pmol/mL, reverse), using a
SuperScript III One-Step RT-PCR kit and Platinum Taq DNA polymerase (Invitrogen, Carlsbad, CA, USA). After RT-PCR, nested PCR was performed. The PCR product of pol (~1.3 kb), containing the entire PR and RT gene sequences, was subjected to direct sequencing using an ABI Prism Big-Dye Terminator Cycle Sequencing 3.1 Ready Reaction Kit (Applied Biosystems, Foster City, CA, USA) with an automated sequencer (ABI Prism 3730 DNA sequencer; Applied Biosystems), after purification with a Millipore PCR Cleanup kit (Millipore Corp., Madison, WI, USA) and following gel electrophoresis.

Genotypic drug resistance assays

PR and RT drug resistance mutations in antiretroviral drug-naïve patients were investigated to analyze genotypic resistance to protease inhibitors (PIs) and nucleoside reverse transcriptase inhibitors (NRTIs), as well as non-NRTI (NNRTI)-related resistant variants. Resistant mutations were identified based on the consensus statement from the Stanford sequence database (DB) for HIV PR (codons 1–99) and RT (codons 1–300). The defined drug resistance positions were as follows: 22 protease inhibitor-resistance positions at codons 10, 20, 24, 30, 32, 33, 36, 46, 47, 48, 50, 53, 54, 63, 71, 73, 77, 82, 84, 88, 90, and 93; 18 NRTI-resistance positions at 41, 44, 46, 62, 65, 67, 70, 74, 75, 77, 115, 116, 118, 151, 184, 210, 215, and 219; 15 NNRTI-resistance positions at 98, 100, 101, 103, 106, 108, 179, 181, 188, 190, 225, 227, 230, 236, and 238. In addition, the Stanford HIVdb (Drug Resistance Algorithm, Beta Test [version 2004.04]) was used to calculate the level of resistance against each antiretroviral drug (release notes for HIVseq).

Table 1. Demographic characteristics of the Korean antiretroviral drug-naïve HIV-1-infected population from 1999 to 2012 (n = 927).

Year	1999–2005 (n = 300)	2006 (n = 39)	2007 (n = 70)	2008 (n = 118)	2009 (n = 70)	2010 (n = 64)	2011 (n = 125)	2012 (n = 141)	2006–2012 (n = 628)
Characteristics									
No. of annual cases	2,593	749	740	797	768	773	888	868	5,583
Gender, total n (%)	300(11.6)	39(5.2)	70(9.5)	118(14.9)	70(9.1)	64(8.3)	125(14.1)	141(16.2)	628(11.4)
Male	279	35	67	109	67	58	116	133	586
Female	21	4	3	9	3	6	9	8	42
Age (year)									
Mean	38.3	45.5	40.5	39.8	40.1	41.1	42.4	39.3	41.1
Range	15–71	22–77	17–65	17–68	19–70	2–72	18–75	1–80	1–80
Subtype									
B	288	37	67	108	67	61	111	125	576
non-B	12	2	3	11	3	3	14	16	52
Transmission risk category									
Heterosexual contact	159	12	42	51	26	26	44	51	252
Homosexual contact	118	18	22	46	24	24	30	36	200
Vertical transmission	-	-	-	-	1	-	1	2	
Unidentified	23	9	6	22	20	13	51	53	174
Plasma HIV RNA level									
Mean log copies/mL	5.42	5	4.87	4.9	4.96	4.85	5.02	4.87	4.92
No. tested	175	39	70	119	70	64	125	141	628
Range	2.45–7.26	3.15–6.32	3.04–6.48	3.09–7.00	3.23–7.00	3.26–6.40	3.18–7.00	3.21–6.58	3.04–7.00

*Number of annual cases indicates the total number of cases reported to the Korea Centers for Disease Control and Prevention (KCDC).

*Values in parentheses represent the number of tested cases divided by the number of reported cases. Variations in HIV-1 pol were monitored continuously using a subset of greater than 10% of samples isolated from newly diagnosed drug-naïve patients every year since 1999 in South Korea.

Ju-yeon Choi et al. J Acquir Immune Defic Syndr. 2008;49: 237–242.

https://doi.org/10.1371/journal.pone.0217817.t001
HIVdb, and HIValg: http://hivdb.stanford.edu/). The intensity of drug resistance was classified as S (susceptible, potential low-level resistance), I (low-level, intermediate-level resistance), or R (high-level resistance) on the guidelines specified by the Stanford DB.

HIV genotyping and phylogenetic analysis

HIV-1 subtype and CRF designations were determined by uploading the sequences into REGA HIV-1 automated Subtyping Tool version 2.0 (http://www.bioafrica.net/regagenotype/html/subtypinghiv.html) and were confirmed by in-house phylogenetic analysis of \textit{pol} nucleotide sequences, as described previously [3, 4, 17]. For phylogenetic analysis, reference sequences representing the overall genetic variability of HIV-1 group M, including all subtype, sub-subtype, and CRF references, were obtained from the National Institutes of Health/ National Institute of Allergy and Infectious Diseases (NIH/NIAID)-funded HIV database. Phylogenetic analysis was performed using MEGA 6.06 initially, and an alignment of 1437 nucleotides was created. Genetic subtype and potential transmission clusters from the time-stamped sequence dataset were first deduced by neighbor-joining tree reconstruction using MEGA version 6.06 based on the GTR G+I parameter model [27]. The robustness of the transmission clusters was further tested by the more rigorous maximum likelihood inference implemented by MEGA version 6.06 [27] using a gamma distribution with discrete gamma categories. The reliability of the branching orders was assessed by bootstrap analysis of 1000 replicates. The most appropriate nucleotide substitution model was determined using FindModel, a web implementation of Modeltest available at the HIV DB (http://www.lanl.gov.com). Using the Bayesian Markov Chain Monte Carlo framework, 100 million steps were performed, sampling every 10,000, and removing 10% as burn-in. Convergence was assessed using Tracer (v1.4), and effective sample size values greater than 200 were accepted. A maximum clade credibility tree was summarized with TreeAnnotator (available in the BEAST package) and was visualized with Figtree (v1.4) [28, 29].

Identification of transmission clusters and analysis of associations with transmission clustering

Phylogenies were inferred using a general-time reversible model of nucleotide substitution, an estimated proportion of invariant sites, and gamma distributed rates among sites. The best sub-tree pruning, and re-grafting and nearest neighbor interchange heuristic options were selected to search the tree space, and bootstrap values with 1000 replicates were used to assess confidence in topology. The existence of transmission clusters was determined based on the statistical robustness of the maximum likelihood topologies assessed by high bootstrap values (90%) with 1000 re-samplings and short branch lengths (genetic distances, 0.015) of the HIV-1 \textit{pol} sequence. The phylogenetic tree was displayed with FigTree v.1.42 (tree.bio.ed.ac.uk/software/figtree/).

We considered membership in a phylogenetic transmission cluster as the dependent variable for our analysis. We used a Pearson’s chi-squared test, a Fisher’s exact test, and Student \(t \)-tests to compare clustered and non-clustered patient samples. We then entered variables with a \(P \) value of 0.2 based on preliminary analysis or variables that we considered conceptually important based on previous reports, into univariable and multivariable regression models to examine associations with transmission clustering [16]. We conducted multivariable analysis using the full data set. The analysis was then repeated using samples with available transmission risk data. Among men with a known risk of transmission, we further stratified the regression analysis to identify differences in associations based on clustering comparing men who had sex with men (MSM) versus men who had not had sex with men (non-MSM). We based
the multivariable model building on an iterative approach and assessed model fit using the Hosmer-Lemeshow goodness-of-fit test. We analyzed data using SAS version 9.2 (SAS Institute, Cary, NC, USA).

Results

Patient demographics and molecular characteristics of HIV-1

In total, 927 sequences were acquired from 1999–2012, with each sequence acquired from an individual patient who had not received treatment. Seventy-four percent of the population was greater than 30 years of age (median age, 34.5 years). Men comprised 89.4% (829/917) of the study population, whereas women accounted for 6.6% (61/917) of the total HIV-1-infected population. This ratio was similar to that reported by the Division of HIV and TB Control, KCDC for the entire HIV/acquired immunodeficiency syndrome (AIDS) population in Korea in March 2013 (90.9% men and 9.1% women). The majority of men (324; 39.1%) attributed their infection to heterosexual contact; 285 (34.4%) were classified as MSM, and two (0.2%) infections were perinatal. The women attributed their infections to heterosexual contact. Table 1 shows the demographic characteristics of the 927 patients. The samples were characterized according to sex, age, transmission route, CD4 count, and HIV RNA levels in the plasma.

HIV-1 genotyping and URF identification

Of the 927 samples, 863 (93.1%) were classified as subtype B and 64 were classified as other subtypes (non-B; 6.9%; Table 1). The non-B group consisted of subtypes CRF01_AE (28 isolates, 2.3%), CRF02_AG (12 isolates, 0.6%), G (five isolates, 0.5%), C (five isolates, 0.5%), CRF06_cpx (five isolates, 0.5%), A (three isolates, 0.3%), CRF07_B/C (one isolate, 0.1%), CRF56_cpx (one isolate, 0.4%), and several URFs (five isolates). Bootscan analysis (REGA 3.0) revealed that these URFs possessed breakpoints that differed from any known reference sequences (Table 2). Recombinants CRF06/B or B/G URFs (five samples) possessed a distinct mix of subtype B and other subtypes. Further full genome sequencing needs to be performed to confirm the presence of novel circulating recombinants in these samples.

Identification of the transmission clusters

Based on viral sequences, phylogenetic analysis demonstrated that 104 of 927 patients (11.2%) were grouped into 37 clusters. All clusters were composed of 2–8 members; for seven small clusters, both or all three patients that formed the clusters were diagnosed during the same year. Twenty-two clusters included individuals who first consulted a hospital 2–4 years after the report of infection; the remaining eight were clusters that included patients for whom presentation covered 5 years or more prior to consulting a hospital. The mean number of patients per cluster was 2.81 (range, 2–8). Interestingly, all clusters belonged to subtype B, and four large clusters (comprising six or eight patients) and 33 smaller clusters were identified. Large cluster no. 31 comprised young men (mean age, 22.3 years), who exhibited a slightly lower viral load than patients in the other clusters and accounted for a long time span (2004–2012). Phylogenetic trees based on the viral sequences of the clustered and non-clustered patients are shown in Fig 1. An overview of the characteristics of the clustered and non-clustered patients is given in Table 3. Being part of a transmission cluster was significantly associated with harboring a subtype-B virus, infection through sexual contact, male sex, and being a young male. The characteristics of the patients in part of the transmission clusters are summarized in Table 4.
Transmission clusters related to transmitted drug resistance

We further investigated whether transmission of drug-resistant strains occurred among these 37 clusters. Of all the clusters, three (~8.1%) that included 10 individuals (22.2% of 45
individuals) included at least one member with transmitted drug resistance (TDR). Of these, in two clusters, all members had TDR. The largest cluster with TDR (cluster no. 23) had an E138G mutation related to NNRTI (RPV), and cluster no. 11 had K101E and E138A mutations related to NNRTI (EFV, ETR, NVP, and RPV; Table 3). The homogenous TDR cluster no. 11 had a higher bootstrap score (mean, 1.00 versus 0.97) and mean genetic distance (0.015 substitutions/site) compared to those in clusters that had no members with TDR. TDR cluster no. 23 had a lower bootstrap score (mean, 0.95 versus 0.97) and a higher mean genetic distance (0.026 substitutions/site) compared to those in clusters that had no members with TDR.

Factors associated with membership in the phylogenetic cluster

Based on the initial exploratory analysis, the clustered patients were younger (median age, 36.5 versus 39.0 years) and were more likely to be male (98.0%) for all comparisons (Table 1). Clustered patients frequently had CD4 counts greater than 350 cells/mm3. Based on multivariable analysis, factors of less than 30 years of age, male gender, and CD4 counts greater than 350 cells/mm3 were found to be associated with cluster membership (Table 2). Clinical records revealed the HIV transmission risk factor data for 674 of 927 (72.7%) individuals; however, no differences in risk factor data availability were detected between clustered and non-clustered patients. Among the men with available risk factor data, MSM transmission risk was slightly more common among clustered patients (Table 5). Our additional multivariable analysis,

Table 3. Factors associated with cluster membership: full sample analysis (n = 927).
Total

Total
Age
Mean
< 30
> 30
Sex
Male
Female
Risk factor data
Yes
No
CD4 count, cell/mm3
< 200
200–349
350–499
≥ 500
HIV transmission risk
Male
MSM
Heterosexual
Perinatal
Female
MSM
Heterosexual
Perinatal
HIV RNA, log (copies/mL)
Mean

https://doi.org/10.1371/journal.pone.0217817.t003
which included a subgroup for which HIV transmission risk data was available, revealed an association between clustering and age less than 30 years, male gender, MSM status, and higher CD4 counts (Table 5).

Characteristics of the MSM population

Information on the transmission route was available for 674 of 927 patients. Of these, 300 (44.1%) reported transmission through homosexual contact with men (MSM), and 367 (54.5%) reported transmission through heterosexual contact. Phylogenetic analysis demonstrated that 42 of 300 MSM (14%) grouped into clusters. The clustered patients were more
likely to have CD4 counts greater than 350 cells/mm3. Based on multivariable analysis, age less than 30 years, male gender, and CD4 counts greater than 350 cells/mm3 were associated with cluster membership (Table 5). Samples from all MSM clusters were grouped as subtype B. Interestingly, the other clusters were grouped into the monophyletic subtype B group, which includes the Korean clade B, based on Env sequences [30, 31].

Discussion

In this study, we compared HIV pol sequences from 927 newly-diagnosed patients receiving care at the Division of AIDS, KNIH between 1999 and 2012. We found that 11.2% of these patients grouped into 37 molecularly-defined HIV transmission clusters. We analyzed the structures of the transmission clusters in Korea through the integration of molecular, clinical, and demographic data. Analysis of the HIV-1 pol sequences generated from antiretroviral resistance surveillance programs has proven useful and informative to assess and define transmission clusters within a population of interest [4, 15, 32]. Based on these criteria, substantial clustering (11.2%, 104/927) was observed in the current study, indicating that the majority of HIV-1 subtype B infections in Korea were linked to a cluster that might be associated with local and/or foreign HIV-1 networks.

Real-time identification of epidemiological hot spots, pinpointing viral transmission chains and biologically linking the drivers of the epidemic, is necessary to introduce effective prevention strategies and interrupt HIV transmission chains [3, 24, 33]. Identifying clusters that account for the largest proportion of onward transmissions and characterizing the structural, behavioral, and biological correlates that predict transmissibility will aid in the development of targeted interventions [33, 34]. The events listed here represent the first identified transmission events of HIV among the general population in Korea.

Surprisingly, subtype B remained the dominant circulating subtype, contributing to approximately 92.5% of all cases of HIV-1 infection in Korea. This finding is in contrast to the results reported for the neighboring countries of China and Japan [2, 25, 35, 36]. In the present study, a number of recombinants involving subtype B and other types were observed. Interestingly, the subtype-B region of these URFs in the Korean MSM population was found to be of western B origin, distinguishing them from the URFs recently described among people who were infected with subtype B of Chinese or Japanese origin [26, 37–39]. The emergence of these variants indicates an ongoing active intersubtype recombination event between the predominant genotypes. Such events might complicate disease management.
In this study, we found that the presence of TDR, in addition to young age and male sex, was significantly associated with transmission cluster membership. In particular, in the multivariable model, the association between TDR and clustering remained significant, even after controlling for infection duration. These associations with clustering might simply be markers of very high-risk behaviors and rapid ongoing transmission, as there is no evidence to suggest that TDR mutations make the virus more transmissible [14, 22, 40]. Furthermore, we found several clusters in which nearly all individuals harbored TDR, indicating that drug-naive individuals contribute to the onward spread of TDR. Importantly, these clusters might reflect sexual networks that are reservoirs of drug resistance beyond ART-experienced individuals.

The incidence of HIV remains low in Korea compared to that in many other countries. In 2013, there was a cumulative total of 10,404 HIV/AIDS cases in Korea, of which approximately 80% were associated with sexual contact, based on available data (KCDC reports, 2013). The number of newly reported HIV cases has increased by more than 5-fold during the past decade, from 199 in 1999 to 1114 in 2013. Despite extensive HIV prevention and education programs targeting at-risk groups, many MSM individuals in Japan appear to engage in high-risk sexual behavior, predisposing them to HIV-1 infection and transmission. Based on our subgroup analysis examining the risk factors associated with HIV transmission clustering among men, the finding that being young and male was only significantly correlated with clustering for non-MSM individuals (versus MSM) might have resulted from the fact that both the clustered and non-clustered MSM groups included a significantly high number of individuals who were less than 30 years of age.

Interestingly, other studies conducted in Asia (China, Japan, and Malaysia) reported similar findings during the same period, indicating that the emergence of the transmission clusters was likely caused by increased exposure to high-risk behaviors among MSM individuals [23, 41–43]. HIV-1 epidemics among MSM groups in major cities in the United States and Europe were first detected in the early 1980s; in these epidemics, subtype B was the founder strain responsible for these events [44]. Subtype B is also commonly found in most developed countries of Western Europe, as well as in South American and Asian countries [6, 18, 39, 45, 46]. According to Kim et al., who studied samples collected between February 1998 and March 2005 in Korea, subtype B was virtually the only HIV-1 strain identified among MSM individuals in Korea [31].

From a public health perspective, sexual networks within the MSM population could serve as an important force of continual HIV-1 dissemination, thereby representing key entry points for the delivery of intervention strategies. A previous study revealed a significant association between high-risk sexual behavior and ignorance regarding HIV infection [4].

Conclusion

Analysis of the phylodynamic or evolutionary history of HIV relies significantly on the depth of population-based sampling; a study of this type should be continued and expanded upon to improve the resolution of HIV-1 genomic diversity and transmission dynamics within HIV transmission networks. The continuing transmission of HIV among MSM individuals indicates the need to maximize the use of available bio-epidemiological data. HIV transmission cluster analysis integrates laboratory data with behavioral data to enable the delineation of key transmission patterns to develop tailored interventions aimed at interrupting transmission chains.

Author Contributions

Conceptualization: Yoon-Seok Chung.
Data curation: Yoon-Seok Chung, Myoung-Su Yoo.

Formal analysis: Byeong-Sun Choi.

Funding acquisition: Byeong-Sun Choi.

Methodology: Ju-Yeon Choi, Myoung-Su Yoo, Jae Hyun Seong.

Software: Yoon-Seok Chung.

Supervision: Chun Kang.

Writing – original draft: Yoon-Seok Chung.

Writing – review & editing: Yoon-Seok Chung.

References

1. Cohen J. Molecular epidemiology. HIV family trees reveal viral spread. Science. 2015; 348: 1188–1189. https://doi.org/10.1126/science.348.6240.1188 PMID: 26068820

2. Kusagawa S, Yokota Y, Negishi M, Kondo M, Matano T, Kato S, et al. Novel HIV-1 recombinant identified in a foreign heterosexual resident in Japan: relatedness to recently reported CRF69_01B, detected primarily among Japanese men who have sex with men. Genome Announc. 2015; 3: e00196–15. https://doi.org/10.1128/genomeA.00196-15 PMID: 26021911

3. Fabeni L, Alteri C, Orchi N, Gori C, Bertoli A, Forbici F, et al. Recent transmission clustering of HIV-1 C and CRF17_BF strains characterized by NNRTI-related mutations among newly diagnosed men in central Italy. PLoS One. 2015; 10: e0135325. https://doi.org/10.1371/journal.pone.0135325 PMID: 26270824

4. Chan PA, Reitsma MB, DeLong A, Boucek B, Nunn A, Salemi M, et al. Phylogenetic and geospatial evaluation of HIV-1 subtype diversity at the largest HIV center in Rhode Island. Infect Genet Evol. 2014; 28: 358–366. https://doi.org/10.1016/j.meegid.2014.03.027 PMID: 24721515

5. Ciccozzi M, Maddeddu G, Lo Presti A, Cellà E, Giovanetti M, Budroni C, et al. HIV type 1 origin and transmission dynamics among different risk groups in Sardinia: molecular epidemiology within the close boundaries of an Italian island. AIDS Res Hum Retroviruses. 2013; 29: 404–410. https://doi.org/10.1089/AID.2012.0209 PMID: 22985362

6. Huang SW, Wang SF, Cowo AE, Chen M, Lin YT, Hung CP, et al. Molecular epidemiology of HIV-1 infection among men who have sex with men in Taiwan in 2012. PLoS One. 2015; 10: e0128266. https://doi.org/10.1371/journal.pone.0128266 PMID: 26039757

7. Gui T, Lu X, Li H, Li T, Liu Y, Bao Z, et al. HIV-1 is spreading out of former high-risk population through heterosexual transmission in Hebei, China. Curr HIV Res. 2016; 14: 148–153. PMID: 26415701

8. Chen M, Yang L, Ma Y, Su Y, Yang C, Luo H, et al. Emerging variability in HIV-1 genetics among recently infected individuals in Yunnan, China. PLoS One. 2013; 8: e60101.

9. Alpsdar A, Agacfidan A, Lubke N, Verheyen J, Eraksoy H, Çağatay A, et al. Molecular epidemiology of HIV in a cohort of men having sex with men from Istanbul. Med Microbiol Immunol. 2013; 202: 251–255. https://doi.org/10.1007/s00430-012-0285-7 PMID: 23296905

10. Kim JY, Kim EJ, Choi JY, Kwon OK, Kim GJ, Choi SY, et al. Genetic variation of the HIV-1 integrase region in newly diagnosed anti-retroviral drug-naive patients with HIV/AIDS in Korea. Clin Microbiol Infect. 2011; 17: 1155–1159. https://doi.org/10.1111/j.1469-0691.2010.03392.x PMID: 20946407

11. Choi JY, Kim EJ, Park YK, Lee JS, Kim SS. National survey for drug-resistant variants in newly diagnosed antiretroviral-drug-naive patients with HIV/AIDS in South Korea: 1999–2005. J Acquir Immune Defic Syndr. 2008; 49: 237–242. https://doi.org/10.1097/QAI.0b013e318188a919 PMID: 18485957

12. Rhee SY, Blanco JL, Jordan MR, Taylor J, Lemey P, Varghese V, et al. Geographic and temporal trends in the molecular epidemiology and genetic mechanisms of transmitted HIV-1 drug resistance: an individual-patient- and sequence-level meta-analysis. PLoS Med. 2015; 12: e1001810. https://doi.org/10.1371/journal.pmed.1001810 PMID: 25849352

13. Abubakar YF, Meng Z, Zhang X, Xu J. Multiple independent introductions of HIV-1 CRF01_AE identified in China: what are the implications for prevention? PLoS One. 2013; 8: e60487. https://doi.org/10.1371/journal.pone.0080487 PMID: 24282546

14. Antoniadou ZA, Kougiopoulou AS, Koutsou P, Vlasis D, Metallidis S, Nicolaides P, et al. Short communication: molecular epidemiology of HIV type 1 infection in northern Greece (2009–2010): evidence of a transmission cluster of HIV type 1 subtype A1 drug-resistant strains among men who have sex with men.
15. Bao Y, Tian D, Zheng YY, Xi HL, Liu D, Yu M, et al. Characteristics of HIV-1 natural drug resistance-associated mutations in former paid blood donors in Henan Province, China. PLoS One. 2014; 9: e89291. https://doi.org/10.1371/journal.pone.0089291 PMID: 24586665

16. de Pina-Araujo II, Guimarães ML, Bello G, Vicente AC, Morgado MG. Profile of the HIV epidemic in Cape Verde: molecular epidemiology and drug resistance mutations among HIV-1 and HIV-2 infected patients from distinct islands of the archipelago. PLoS One. 2014; 9: e96201. https://doi.org/10.1371/journal.pone.0096201 PMID: 24763617

17. Dalai SC, de Oliveira T, Harkins GW, Kassaye SG, Lint J, Manasa J, et al. Evolution and molecular epidemiology of subtype C HIV-1 in Zimbabwe. AIDS. 2009; 23: 2523–2532. https://doi.org/10.1097/QAD.0b013e3283320ef3 PMID: 19770693

18. Brenner BG, Lowe M, Moisi D, Hardy I, Gagnon S, Charest H, et al. Subtype diversity associated with the development of HIV-1 resistance to integrase inhibitors. J Med Virol. 2011; 83: 751–759. https://doi.org/10.1002/jmv.22047 PMID: 21360548

19. Bolivar H, Geffin R, Manzi G, Fischl MA, Holzmayer V, Mak WB, et al. The challenge of HIV-1 genetic diversity: discordant CD4+ T-Cell count and viral load in an untreated patient infected with a subtype F strain. J Acquir Immune Defic Syndr. 2009; 52: 659–661.

20. Hughes GJ, Fearnhill E, Dunn D, Lycey SJ, Rambaut A, Leigh Brown AJ, et al. Molecular phylogenetics of the heterosexual HIV epidemic in the United Kingdom. PLoSPathog. 2009; 5: e1000590.

21. Abecasis AB, Vandamme AM, Lemey P. Quantifying differences in the tempo of human immunodeficiency virus type 1 subtype evolution. J Virol. 2009; 83: 12917–12924. https://doi.org/10.1128/JVI.01022-09 PMID: 19793809

22. Dennis AM, Huse S, Hurt CB, Napravnik S, Sebastian J, Pillay D, et al. Phylogenetic insights into regional HIV transmission. AIDS. 2012; 26: 1813–1822. https://doi.org/10.1097/QAD.0b013e3283573244 PMID: 22739398

23. Ng KT, Ong LY, Lim SH, Takebe Y, Kamarulzaman A, Tee KK. Evolutionary history of HIV-1 subtype B and CRF01_AE transmission clusters among men who have sex with men (MSM) in Kuala Lumpur, Malaysia. PLoS One. 2013; 8: e67286. https://doi.org/10.1371/journal.pone.0067286 PMID: 23840653

24. Hattori J, Shiino T, Gatanaga H, Mori H, Minami R, Uchida K, et al. Characteristics of transmitted drug-resistant HIV-1 in recently infected treatment-naive patients in Japan. J Acquir Immune Defic Syndr. 2016; 71: 367–373. https://doi.org/10.1097/QAI.0000000000000861 PMID: 26428230

25. Kondo M, Lemey P, Sano T, Itoda I, Yoshimura Y, Sagara H, et al. Emergence in Japan of an HIV-1 variant associated with transmission among men who have sex with men (MSM) in China: first indication of the International Dissemination of the Chinese MSM lineage. J Virol. 2013; 87: 5351–5361. https://doi.org/10.1128/JVI.02370-12 PMID: 23365432

26. Shiino T, Hattori J, Yokomaku Y, Iwatani Y, Sugira W, Japanese Drug Resistance HIV-1 Surveillance Network. Phylodynamic analysis reveals CRF01_AE dissemination between Japan and neighboring Asian countries and the role of intravenous drug use in transmission. PLoS One. 2014; 9: e102633. https://doi.org/10.1371/journal.pone.0102633 PMID: 25025900

27. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. MEGAv6: Molecular Evolutionary Genetics Analysis version 6.0. Mol Biol Evol. 2013; 30: 2725–2729. https://doi.org/10.1093/molbev/msr197 PMID: 24132122

28. Bielejec F, Lemey P, Carvalho LM, Baele G, Rambaut A, Suchard MA. pBUSS: a parallel BEAST/BEA- GLE utility for sequence simulation under complex evolutionary scenarios. BMC Bioinformatics. 2014; 15: 133. https://doi.org/10.1186/1471-2105-15-133 PMID: 24885610

29. Lemey P, Rambaut A, Drummond AJ, Suchard MA. Bayesian phylogeography finds its roots. PLoS Comput Biol. 2009; 5: e1000520. https://doi.org/10.1371/journal.pcbi.1000520 PMID: 19779555

30. Kim GJ, Yun MR, Koo MJ, Shin BG, Lee JS, Kim SS. Estimating the origin and evolution characteristics for Korean HIV type 1 subtype B using Bayesian phylogenetic analysis. AIDS Res Hum Retroviruses. 2012; 28: 880–884. https://doi.org/10.1089/AID.2011.0267 PMID: 22040727

31. Kim GJ, Nam JG, Shin BG, Kee MK, Kim EJ, Lee JS, et al. National survey of prevalent HIV strains: limited genetic variation of Korean HIV-1 clade B within the population of Korean men who have sex with men. J Acquir Immune Defic Syndr. 2008; 48: 127–132. https://doi.org/10.1097/QAI.0b013e31816b6ae6 PMID: 18317230

32. Brenner BG, Roger M, Stephens D, Moisi D, Hardy I, Weinberg J, et al. Transmission clustering drives the onward spread of the HIV epidemic among men who have sex with men in Quebec. J Infect Dis. 2011; 204: 1115–1119. https://doi.org/10.1093/infdis/jir468 PMID: 21881127
33. Lubelchek RJ, Hoehnen SC, Hutton AL, Kincaid SL, Barker DE, French AL. Transmission clustering among newly diagnosed HIV patients in Chicago, 2008 to 2011: using phylogenetics to expand knowledge of regional HIV transmission patterns. J Acquir Immune Defic Syndr. 2015; 68: 46–54. https://doi.org/10.1097/QAI.0000000000000404 PMID: 25321182

34. Wu J, Shen Y, Zhong P, Feng Y, Xing H, Jin L, et al. The predominant cluster of CRF01_AE circulating among newly diagnosed HIV-1-positive people in Anhui Province, China. AIDS Res Hum Retroviruses. 2015; 31: 926–931. https://doi.org/10.1089/AID.2015.0107 PMID: 26123125

35. Chen M, Ma Y, Su Y, Yang L, Zhang R, Yang C, et al. HIV-1 genetic characteristics and transmitted drug resistance among men who have sex with men in Kunming, China. PLoS One. 2014; 9: e87033. https://doi.org/10.1371/journal.pone.0087033 PMID: 24489829

36. Feng Y, He X, Hsi JH, Li F, Li X, Wang Q, et al. The rapidly expanding CRF01_AE epidemic in China is driven by multiple lineages of HIV-1 viruses introduced in the 1990s. AIDS. 2013; 27: 1793–1802. https://doi.org/10.1097/QAD.0b013e328360db2d PMID: 23807275

37. Zhang W, Han X, An M, Zhao B, Hu Q, Chu Z, et al. Identification and characterization of a novel HIV-1 circulating recombinant form (CRF59_01B) identified among men-who-have-sex-with-men in China. PLoS One. 2014; 9: e99693. https://doi.org/10.1371/journal.pone.0099693 PMID: 24978029

38. Takebe Y, Naito Y, Raghwani J, Fearhills E, Sano T, Kusagawa S, et al. Intercontinental dispersal of HIV-1 subtype B associated with transmission among men who have sex with men in Japan. J Virol. 2014; 88: 9864–9876. https://doi.org/10.1128/JVI.01354-14 PMID: 24942575

39. Chen Y, Chen S, Kang J, Fang H, Dao H, Guo W, et al. Evolving molecular epidemiological profile of human immunodeficiency virus 1 in the southwest border of China. PLoS One. 2014; 9: e107578. https://doi.org/10.1371/journal.pone.0107578 PMID: 25207977

40. Jiao Y, Li S, Li Z, Zhang Z, Zhao J, Li L, et al. HIV-1 transmitted drug-resistance-associated mutations and mutation co-variation in HIV-1 treatment-naive MSM from 2011 to 2013 in Beijing, China. BMC Infect Dis. 2014; 14: 689. https://doi.org/10.1186/s12879-014-0689-7 PMID: 25510523

41. Chen YJ, Lee CM, Chen M, Chuang SY, Liu HF, Wong WW, et al. Molecular epidemiology of HIV-1 infection in Taiwan from 2005 to 2008: further spread of CRF07_BC and emergence of CRF07_BC subtype B dual infection. J Acquir Immune Defic Syndr. 2012; 59: 438–446. https://doi.org/10.1097/QAI.0b013e3182454ea3 PMID: 22343173

42. Hattori J, Shiino T, Gatanaga H, Yoshida S, Watanabe D, Minami R, et al. Trends in transmitted drug-resistant HIV-1 and demographic characteristics of newly diagnosed patients: nationwide surveillance from 2003 to 2008 in Japan. Antiviral Res. 2010; 88: 72–79. https://doi.org/10.1016/j.antiviral.2010.07.006 PMID: 20692295

43. Li X, Xue Y, Zhou L, Lin Y, Yu X, Wang X, et al. Evidence that HIV-1 CRF01_AE is associated with low CD4+T cell count and CXCR4 co-receptor usage in recently infected young men who have sex with men (MSM) in Shanghai, China. PLoS One. 2014; 9: e89462. https://doi.org/10.1371/journal.pone.0089462 PMID: 24586795

44. Kouyos RD, von Wyl V, Verly S, Böni J, Taffé P, Shah C, et al. Molecular epidemiology reveals long-term changes in HIV type 1 subtype B transmission in Switzerland. J Infect Dis. 2010; 201: 1488–1497. https://doi.org/10.1086/651951 PMID: 20384495

45. Chijiwa K, Ishibashi T, Kashiwagi S, Moriai R. The distribution of HIV-1 subtypes in Fukuoka, Japan. Microbiol Immunol. 1999; 43: 271–278. PMID: 10338197

46. da Silveira AA, Cardoso LP, Francisco RB, de Araújo Stefani MM. HIV type 1 molecular epidemiology in pol and gp41 genes among naive patients from Mato Grosso do Sul State, central western Brazil. AIDS Res Hum Retroviruses. 2012; 28: 304–307. https://doi.org/10.1089/aid.2011.0128 PMID: 21790471