GM-CSF-based treatments in COVID-19: reconciling opposing therapeutic approaches

Frederick M. Lang, Kevin M.-C. Lee, John R. Teijaro, Burkhard Becher and John A. Hamilton

Abstract | Therapeutics against coronavirus disease 2019 (COVID-19) are urgently needed. Granulocyte–macrophage colony-stimulating factor (GM-CSF), a myelopoietic growth factor and pro-inflammatory cytokine, plays a critical role in alveolar macrophage homeostasis, lung inflammation and immunological disease. Both administration and inhibition of GM-CSF are currently being therapeutically tested in COVID-19 clinical trials. This Perspective discusses the pleiotropic biology of GM-CSF and the scientific merits behind these contrasting approaches.

Coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has turned into a global pandemic. No agent has proved effective against coronavirus infections, and the development of novel therapeutics is critical to solve this public health crisis. Granulocyte–macrophage colony-stimulating factor (GM-CSF), an important myelopoietic growth factor and pro-inflammatory cytokine, has attracted great interest as a therapeutic target in COVID-19. Increased percentages of GM-CSF-expressing leukocytes have been found in the blood of patients with COVID-19 [REF1], and inhibition of GM-CSF has shown benefit in animal studies of many hyperinflammatory conditions[2-3] that are thought to be pathologically similar to late stages of COVID-19. As of 28 May 2020, six companies had initiated randomized controlled clinical trials and open-label studies and/or expanded access/compassionate use programmes assessing the use of monoclonal antibodies (mAbs) to GM-CSF or GM-CSF receptor (GM-CSFR) to treat various stages of COVID-19 [REFS4,5]. Conversely, GM-CSF plays an important role in alveolar macrophage homeostasis and lung pathogen clearance[6], and investigator-initiated trials are studying the administration of recombinant human GM-CSF (sargramostim) in patients with respiratory failure due to COVID-19.

This Perspective provides a brief overview of the pleiotropic biology of GM-CSF and examines the preclinical and clinical studies supporting the use of both sargramostim and GM-CSF-targeting mAbs in COVID-19.

GM-CSF overview

Role in homeostasis. Macrophage colony-stimulating factor (M-CSF), granulocyte colony-stimulating factor (G-CSF) and GM-CSF are implicated in myelopoiesis, the production of monocytes, macrophages, dendritic cells and granulocytes (neutrophils, eosinophils and basophils) from progenitor cells. M-CSF and G-CSF appear to be involved in steady-state myelopoiesis, given that null mutants of the encoding genes in mice cause severe phenotypes (for example, skeletal and sensory defects and neutropenia)[10-12]. By contrast, GM-CSF is barely detectable in the blood of healthy individuals and is thought to serve less of a role in homeostatic myelopoiesis, as evidenced by the fact that GM-CSF-deficient mice have a virtually normal lifespan and have less dramatic alterations in the basal myeloid system[13,14].

Importantly, however, GM-CSF is known to be a critical homeostatic factor in lung alveoli, where it is produced at low levels for the development and long-term maintenance of alveolar macrophages[15,16]. Severe deficiency of GM-CSF (for example, due to autoantibodies to GM-CSF or mutations that ablate GM-CSFR function) causes pulmonary alveolar proteinosis (PAP), a life-threatening interstitial lung disease in which dysfunctional alveolar macrophages cannot clear surfactant[16,17]. Patients with PAP have increased susceptibility to opportunistic infections due to defective antimicrobial function of alveolar macrophages and basal circulating neutrophils, caused by impaired GM-CSF signalling[16,17]. In mice, GM-CSF has been reported to be required for the steady-state maintenance of non-lymphoid tissue-resident CD103+ dendritic cells across multiple tissues, and this population of cells was shown to be critically important for the initiation of CD8+ T cell responses in the lung[18,19]. GM-CSF thus serves a crucial role in normal lung health and can be important for host defence.

Role in inflammation. During inflammation, GM-CSF can be secreted by several different cell types, including epithelial cells and leukocytes, and is a critically important cytokine that can drive both innate and adaptive immune responses [FIG. 1]. GM-CSF is mainly expressed on myeloid cells, generally restricting the direct-acting function of GM-CSF to cells of this lineage. GM-CSF broadly serves two important roles during the immune response: it polarizes mature myeloid cells into a pro-inflammatory phenotype (paracrine/autocrine function), and it governs ‘emergency myelopoiesis’, expanding and mobilizing progenitor myeloid cells to sites of inflammation (endocrine function)[20]. GM-CSF-activated myeloid cells can secrete reactive oxygen species and express elevated levels of pro-inflammatory cytokines (such as IL-1, IL-6 and tumour necrosis factor (TNF)) and a variety of chemokines (such as CCL2, IL-8 and CCL17, which can attract monocytes, neutrophils and lymphocytes, respectively)[21]. GM-CSF can also enhance the ability of dendritic cells to prime T cells during antigen-specific immune responses[2-4,22]. A distinct subset of CD4+ T helper cells (T+ cells) that produce primarily GM-CSF has been identified[20-21]. These T cells can heighten the immune response by activating pro-inflammatory myeloid cells and recruiting them to sites of inflammation[20-22]. Thus, it has
been proposed that GM-CSF serves as a primary communication conduit between inflammatory lymphoid and myeloid cells.

Role in disease. The aberrant expression of GM-CSF is known to drive excessive inflammation, pain, chemotaxis and tissue damage and to enhance the production of other pathogenic cytokines. Given the proposed role of GM-CSF at the interface of lymphoid and myeloid cells, it has been postulated that a 'GM-CSF network' promotes disease by driving inflammatory responses to become persistent or hyperactive. This network is defined as a positive-feedback loop involving the interdependent secretion of GM-CSF and pro-inflammatory cytokines/chemokines across monocytes/macrophages, T cells and neighbouring cell populations. The cytokines most prominently implicated in this network are IL-1, IL-6 and TNF, which have been targeted successfully in various inflammatory diseases and have now been suggested as potential targets in COVID-19 (refs 24,25).

GM-CSF has been shown to be upregulated either systemically and/or in the diseased tissues of patients with autoimmune conditions (such as rheumatoid arthritis) as well as in conditions that show similarities to late-stage COVID-19, including severe acute respiratory syndrome (SARS), acute respiratory distress syndrome (ARDS), cytokine release syndrome (CRS), haemophagocytic lymphohistiocytosis (HLH), hyperinflammation associated with graft-versus-host disease (GvHD) and other inflammatory diseases of the lung, heart and nervous system (refs 23,24,28,29). GM-CSF-producing T cells have been identified as being involved in the pathogenesis of various immunological disorders (for example, rheumatoid arthritis, multiple sclerosis and sepsis), reminiscent of the pathogenic T_H17 pathway known to drive disease pathology in multiple autoimmune contexts (for example, psoriasis). GM-CSF inhibition via neutralizing antibodies has shown beneficial effects in a diverse range of preclinical models, including those of many of the aforementioned diseases. In humans, treatment with GM-CSF-targeting mAbs has demonstrated efficacy across multiple phase II clinical trials for rheumatoid arthritis, with some potential advantages (for example, fewer off-target effects and decreased infection susceptibility) over standard-of-care therapeutics, such as disease-modifying antirheumatic drugs, TNF-targeting agents and Janus kinase inhibitors (Table 1).

GM-CSF-based therapies in COVID-19

COVID-19 clinical course and immunopathogenesis. Although most infections are mild, ~20% of patients with COVID-19 experience severe viral pneumonia that can progress to ARDS and death. On the basis of emerging data, as well as evidence from previous coronavirus
A subset of patients also experience acute myocardial injury and/or neuropsychiatric symptoms, which are associated with poor outcomes and may be caused by systemic inflammation\(^{48,49}\). Therapies aimed at increasing viral clearance, strengthening lung tissue and/or reducing the excessive host immune response may be able to reduce the morbidity and mortality associated with COVID-19.

Rationale for administering GM-CSF in COVID-19. Recombinant human GM-CSF (sargramostim) is FDA-approved for multiple indications, and its administration may provide several benefits to patients with COVID-19. As mentioned already, GM-CSF is required to maintain pulmonary function and lung sentinel cell–mediated immunity\(^{48,50}\). Overexpression of GM-CSF in mice prevented hyperoxia-induced lung injury by strengthening the resistance of alveolar wall cells to apoptosis and protecting against secondary bacterial infection\(^{51,52}\). Early elevated expression of GM-CSF in bronchoalveolar lavage fluid (BALF) of patients with acute lung injury and ARDS correlated with increased survival, potentially owing to the enhanced survival of alveolar macrophages\(^{53}\). On the basis of these data, a randomized controlled clinical trial was conducted to study the use of intravenously administered recombinant human GM-CSF in patients with acute lung injury or ARDS\(^{44}\). This trial failed to demonstrate reduction of ventilator-free days or mortality over the 28-day observation period. However, the study was underpowered owing to a slow recruitment pace (\(N = 130\) of planned 200 participants)\(^{44}\), and it has been hypothesized that local delivery of high

Table 1 | History and current status of GM-CSF-based therapies undergoing assessment in patients with COVID-19

Company	Drug	Completed studies*	Other indications*	Status in COVID-19*
GlaxoSmithKline	Otilimab (anti-GM-CSF)	Phase I or II RA (\(\times 4\))	Phase III RA (ongoing, \(\times 4\))	RCT (2 arms, \(N = 800\), NCT04376684)
		Phase Ib MS		
		Phase Ila hand OA		
Roivant	Gimsilumab (anti-GM-CSF)	Phase I HVs + RA	No announcements	RCT (2 arms, \(N = 270\), NCT04351243)
Humanigen	Lenzilumab (anti-GM-CSF)	Phase I HVs	Phase I/CML	RCT (2 arms, \(N = 238\), NCT04351152)
		Phase I asthema	Phase II CAR T cell-related CRS/NT (ongoing)	Expanded access
			Phase II CML (planned)	
			Phase II/III GyHD-related CRS (planned)	
			Phase III eosinophilic asthma (planned)	
I-Mab	TJM2 (anti-GM-CSF)	Phase I HVs	Phase Ib RA (ongoing)	RCT (3 arms, \(N = 144\), NCT04341116)
			Phase II CAR T cell-related CRS/NT (planned)	
Kiniksa	Mavrilimumab (anti-GM-CSFR)	Phase I HVs	Phase II GCA (ongoing)	RCT (2 arms, \(N = 60\), NCT04399980)
		Phase I RA	Phase II CAR T cell-related CRS/NT (planned)	RCT (2 arms, \(N = 50\), NCT04397497)
		Phase II RA (\(\times 3\))		Open-label study
		Phase II RA OLE		
Izana	Namilumab (anti-GM-CSF)	Phase I HVs	Phase III RA (planned)	Expanded access
		Phase Ib RA		
		Phase II RA		
		Phase II PsO		
		Phase II axial SpA		
Partner Therapeutics	Sargramostim (rhuGM-CSF)	FDA-approved	Phase I PD (ongoing)	RCT (2 arms, \(N = 30\), NCT04400929)
		for use in multiple indications	Phase II post-transplant recovery (ongoing)	RCT (open-label study, 2 arms, \(N = 80\), NCT04326920)
			Phase II/III melanoma (ongoing)	
			Phase II biliary cancer (ongoing)	

As of 28 May 2020, six companies had begun a clinical study treating patients with coronavirus disease 2019 (COVID-19) with monoclonal antibodies to granulocyte–macrophage colony-stimulating factor (GM-CSF) or GM-CSF receptor (GM-CSFR). One company is also supporting investigator-initiated trials of recombinant human GM-CSF (rhuGM-CSF) in patients with COVID-19. CAR chimeric antigen receptor; CML, chronic myelomonocytic leukaemia; CRS, cytokine release syndrome; GCA, giant cell arteritis; GyHD, graft-versus-host disease; HVs, healthy volunteers; MS, multiple sclerosis; NT, neurotoxicity; OA, osteoarthritis; OLE, open-label extension; PD, Parkinson disease; PsO, psoriasis; RA, rheumatoid arthritis; RCT, randomized controlled trial (double-blind unless otherwise stated); SpA, spondyloarthritis; \(\times 3\) or \(\times 4\), three or four of the indicated trials are ongoing or have been completed. *Information obtained from ClinicalTrials.gov or company public announcements.
levels of GM-CSF directly to the lungs may be required for a therapeutic effect\(^ {25,56}\).

Across many preclinical models of viral and bacterial pneumonia, GM-CSF expression in the lung has been shown to serve a beneficial role by enhancing repair of injured lung tissue and by activating innate and adaptive immune responses to clear pathogens\(^ {19,50,56-63}\). In this context, GM-CSF is thought to act mainly on alveolar macrophages and tissue-resident CD103\(^ +\) dendritic cells, and there is even evidence that GM-CSF directly modulates alveolar epithelial cells\(^ {19,50,56}\). Pretreatment with intranasally administered GM-CSF protected mice from lethal influenza-induced lung injury\(^ {56,60}\), and lung-specific overexpression of GM-CSF after influenza viral infection in an inducible transgenic mouse model significantly increased survival\(^ {51}\). Inhaled GM-CSF also protected against secondary bacterial infection in a postinfluenza GM-CSF pathway has been proposed as a potential ARDS therapeutic approach\(^ {12,26,61}\) contrary to recommendations in many of the aforementioned reports.

Given the aforementioned literature, careful monitoring will be needed with sargramostim use in the COVID-19 setting, particularly as late stages of COVID-19 are thought to be driven by host overactive immunity rather than high viral load\(^ {56}\). GM-CSF administration can induce flu-like symptoms, leukocytosis and capillary leak syndrome\(^ {56}\), therefore posing the potential risk of exacerbating the SARS-CoV-2-induced hyperinflammatory response. BALF analyses of patients with COVID-19 have shown that alveolar macrophages are depleted in patients with severe COVID-19 (REFS\(^ {46,48}\)), indicating perhaps that GM-CSF administration may be more beneficial in patients with earlier-stage COVID-19. Indeed, the COVID-19 trials assessing GM-CSF administration exclude patients with ferritin levels greater than 2,000\(\mu\)g\(\text{ml}^{-1}\) (consistent with ongoing HLH) and thus may treat patients before they progress to an overt hyperinflammatory phenotype.

Rationale for neutralizing GM-CSF in COVID-19. Anti-inflammatory therapies have attracted great interest in COVID-19, and an immunomodulatory agent that is able to prevent or reduce the disease-driving hyperactive immune response could be a beneficial therapy for late-stage COVID-19 (REF\(^ {27}\)). In COVID-19 and other coronavirus-mediated diseases, pathogenic myeloid cell overactivation is thought to be an important mediator of tissue damage, hypercoagulation and the cytokine storm\(^ {42,44}\). BALF analyses from patients with mild or severe COVID-19 showed that patients with severe COVID-19 experienced significant lung infiltration by circulating inflammatory monocyte-derived macrophages\(^ {46}\). Due to its role as a myeloid cell growth factor and pro-inflammatory cytokine, GM-CSF may be a key driver of the immunopathological sequelae of COVID-19.

Although virtually undetectable in the circulation of healthy individuals\(^ {41}\), GM-CSF was recently noted as being upregulated in the serum of a subset of patients with COVID-19 (REF\(^ {25}\)). It was reported that the percentages of GM-CSF-expressing CD4\(^ +\) T cells, CD8\(^ +\) T cells, natural killer cells and B cells were significantly higher in the blood of patients with COVID-19 who were admitted to an intensive care unit (ICU) than in healthy controls\(^ {1}\). This pan-cellular observation was not seen with IL-6 and TNF expression in the respective populations. Furthermore, a GM-CSF\(^ +\)IFN\(\gamma\)CD4\(^ +\) T cell signature, which is associated with GvHD\(^ {1}\) and autoimmune arthritis\(^ {28}\), encephalomyelitis\(^ {74}\) and diabetes\(^ {29}\), was found in the peripheral blood of the patients in the ICU. These T cell responses were accompanied by a significant increase in the numbers of CD14\(^ +\)CD16\(^ +\) inflammatory monocytes, and a high percentage of monocytes secreted GM-CSF and IL-6 (REF\(^ {25}\)). The reported immunological changes appeared to be more pronounced in patients admitted to an ICU than in those who did not require ICU care and thus appear to correlate with clinical severity. Similarly, a study in patients with sepsis demonstrated that an increased percentage of circulating GM-CSF-producing T\(_{H}\) cells is predictive of poor outcome and is correlated with IL-1 and IL-6 expression; these cells exhibited a memory phenotype and were reported to be mediators of dysfunctional neutrophil activity\(^ {44}\). However, given the role of GM-CSF in pathogen clearance and lung repair, it is important to consider that GM-CSF levels may be elevated as a compensatory mechanism or as a background consequence of increased COVID-19 severity. Further studies are therefore needed to determine whether increased production of GM-CSF in patients with COVID-19 represents a physiological response to infection or a pathogenic driver of disease.

We, along with others\(^ {22}\), suggest that in patients with COVID-19, dysregulated GM-CSF expression could induce overactivation of myeloid cells that secrete pro-inflammatory mediators and destructively infiltrate tissue, such as...
the lungs and potentially even the heart and the nervous system. This suggestion is consistent with the disease-driving mechanism of action of GM-CSF proposed in many preclinical models with pathologies similar to that of late stages of COVID-19, including models of chimeric antigen receptor (CAR) T cell–related CRS and neurotoxicity9,90, GvHD-associated CRS91, septic shock92,93, neuroinflammatory disease94, inflammatory lung conditions95–97 and acute cardiovascular conditions (myocarditis98, myocardial disease21, inflammatory lung septic shock77,78, neuroinflammatory disease80–83). A phase II trial of monoclonal antibodies (mAbs) targeting GM-CSF or GM-CSFR in mice reduced the lung accumulation of myeloid cells in a dose-dependent manner79. Of note, a recent report described an outbreak of ‘Kawasaki-like’ disease in SARS-CoV-2–infected children99, and GM-CSF neutralization via mAb in a mouse model of Kawasaki disease led to significant reductions in disease incidence and severity100. With respect to the lung, systemic monoclonal anti-GM-CSF administration after intranasal lipopolysaccharide challenge in mice reduced the lung accumulation of myeloid cells in a dose-dependent manner79. A similar benefit was achieved with the use of GM-CSF neutralization to treat inflamed lungs in multiple other mouse studies101–103. A phase II trial of monoclonal anti-GM-CSF administration in patients with asthma demonstrated no benefit in the overall population but statistically significant improvement versus placebo on the primary outcome measure in prespecified subgroups103.

In mouse models of SARS-CoV infection, GM-CSF was proposed as a mediator of the lethal SARS-CoV–induced infiltration of inflammatory monocytes/macrophages into the lungs104. GM-CSF was upregulated before all other cytokines (IL-6, TNF and IFNβ) and chemokines (CCL2, CCL7 and CCL12) that were measured, indicating that GM-CSF might be involved in the initiation of this immunopathological process. In these studies, genetically modified mice (Ifnar−/−, mice, which cannot respond to type I interferon) did not experience the early upregulation of GM-CSF and were protected from the cellular infiltration and death105. Experimental depletion of inflammatory monocytes and macrophages resulted in significantly reduced morbidity and mortality (100% survival out to ~2 weeks versus ~20–40% in controls) and increased numbers of virus-specific T cells in the lungs, demonstrating the therapeutic potential of downregulating inflammatory myeloid cells in coronavirus infections89.

Together, these data suggest that the use of mAbs to GM-CSF or GM-CSFR might be a promising therapeutic strategy for curbing the hyperactive host immune response observed in COVID-19. A number of large clinical trials in patients with COVID-19 are currently assessing similar immunomodulatory strategies. These include IL-6 targeting via sarilumab or tocilizumab, the latter of which is FDA-approved for CAR T cell–related CRS89, and IL-1 blockade with anakinra or canakinumab72,90. Recently, a data monitoring committee analysis of an ongoing phase II/III randomized controlled trial of sarilumab showed a large reduction in COVID-19 clinical trials using ongoing phase II/III randomized controlled trial of sarilumab showed a large reduction in C-reactive protein levels and an increase versus placebo on ventilator-free survival in ‘critical’ patients with COVID-19 (requiring high-flow oxygenation, mechanical ventilation or ICU care at study entry) (N=44 receiving placebo, N=88 receiving high-dose sarilumab therapy, no P values reported)106. The data monitoring committee recommended stopping the assessment of low-dose treatment, as well as discontinuing the enrolment of patients with “severe” disease (requiring supplemental oxygen without mechanical or high-flow oxygenation) and patients exhibiting multiorgan system dysfunction, demonstrating the importance of timing and dose strength for the use of immunomodulatory biologics in COVID-19 (REF17). The careful assessment of the designs and results of these types of cytokine-targeting mAb clinical trial will be important for setting expectations and implementing amendments during the ongoing GM-CSF-targeted mAb clinical trials in patients with COVID-19.

Because GM-CSF can stimulate expression of IL-1, IL-6, TNF and other pro-inflammatory cytokines and chemokines, a GM-CSF-targeting strategy might have broader effects than other immunomodulatory approaches when one is seeking to therapeutically dampen overactive immune responses. This hypothesis is supported by data from clinical trials in which GM-CSF-targeted therapy was shown to be efficacious in patients with rheumatoid arthritis who were unresponsive to TNF-targeted therapy73,107. In a head-to-head study comparing GM-CSF blockade with monoclonal anti-TNF therapy in patients with rheumatoid arthritis, GM-CSF blockade induced a sustained reduction in the levels of markers of inflammation, such as C-reactive protein and IL-6, whereas monoclonal anti-TNF therapy did not in the particular population under study89. Even given the benefits of tocilizumab in CRS, it has been speculated that patients can become refractory owing to early and sustained upregulation of GM-CSF90,91,92,93 and clinical trials are ongoing or planned to assess the benefit of GM-CSF-targeting mAbs in CAR T cell–related CRS and in CRS associated with GvHD4–6.

In summary, these data suggest that GM-CSF can have a master regulatory effect on cytokine expression and myeloid cell–mediated hyperinflammation, including in the lung. Many of the preclinical and clinical data from the GM-CSF-targeting mAb therapeutic class come from inflammatory disorders not caused by a viral pathogen, making extrapolation to COVID-19 difficult. However, as mentioned earlier, late stages of COVID-19 appear to be driven not by active viral replication and cell lysis but instead by host immunopathology — particularly myeloid cell immunopathology — that is similar to many aspects of these disorders85,89. Thus, the putative pathogenic role of GM-CSF in immune overactivation across many studies provides a rationale for the initiation of the ongoing randomized controlled trials using GM-CSF-targeting mAbs for the treatment of patients with COVID-19 (TABLE 1).

Risks associated with GM-CSF inhibition in COVID-19. Given the homeostatic role of GM-CSF in the lung, blocking GM-CSF action in patients with COVID-19 comes with the potential risks of compromising alveolar macrophage function and hindering pathogen clearance. As with any anti-inflammatory approach under investigation in COVID-19, close monitoring for evidence of viral exacerbation will be needed. Importantly, mAbs to GM-CSF and GM-CSFR have demonstrated a strong safety profile to date across more than 1,000 patients treated in multiple phase II trials, including a long-term safety study where patients were receiving the therapy for a median of 2.5 years97. Although secondary infections could have been expected (as can be observed in patients receiving TNF- or IL-6–targeted therapy), no increase in tuberculosis and other serious infections has so far been noted97. While PAP is of theoretical concern, no patient has developed this disease in any monoclonal anti-GM-CSF or monoclonal anti-GM-CSFR trial to date. It has been hypothesized that primary PAP can develop only from dramatic and sustained GM-CSF
neutralization by polyclonal antibodies (for example, autoantibodies)\(^9\).

In the COVID-19 setting, therapeutic intervention will occur over a short time frame (likely 2 weeks or less), lessening the risk of lung toxicity. Furthermore, the timing of mAb administration may be very important. Although GM-CSF could be beneficial for maintaining alveolar macrophage function during the viral assault in the early disease phase, neutralizing GM-CSF may be able to reduce the primary pathology of the cytokine storm and myeloid cell-induced lung destruction in later disease stages.

mAbs to GM-CSF and GM-CSFR in development to treat COVID-19. A number of clinical trials of systemically administered mAbs to GM-CSF or GM-CSFR have been completed or are ongoing for inflammatory/autoimmune conditions; recently, six companies initiated clinical studies assessing these mAbs for the treatment of COVID-19 (Table 1). Encouraging data were obtained from an open-label cohort study of patients with COVID-19 treated with the GM-CSFR mAb maveliximab (\(N = 13\)), compared with a matched contemporaneous untreated control group (\(N = 26\))\(^5\). Benefits in the maveliximab-treated group were reported across multiple clinically relevant end points, including time to hospital discharge and mortality; maveliximab was observed to be well tolerated in all patients, with no infusion reactions\(^5\). However, these findings need to be confirmed in larger studies that are placebo controlled.

As of 28 May 2020, six randomized, double-blind, placebo-controlled trials were ongoing for GM-CSF-targeting mAbs in COVID-19 (Table 1). The lenzilumab trial (\(N = 238\), NCT04351152) excludes patients with ARDS, and the maveliximab trials (\(N = 60\), NCT04399980; \(N = 50\), NCT04397497) exclude patients receiving mechanical ventilation at the time of randomization. By contrast, the otilimab trial (\(N = 800\), NCT04376684), gimsulimab (\(N = 270\), NCT04351243), and TMJ2 (\(N = 144\), NCT04341116) trials allow inclusion of these patients. The differing target patient populations in these studies should indicate whether targeting GM-CSF may be effective at early and/or late stages of COVID-19. Of note, there is expected to be little difference between targeting the GM-CSF ligand versus the receptor because both strategies block the same interaction. Indeed, preclinical and clinical trial data in rheumatoid arthritis have shown similar benefits for these two approaches\(^6\).

Conclusion

We have provided the rationale and risks for both therapeutically administering and inhibiting GM-CSF in COVID-19. Given the pleiotropic roles of GM-CSF in lung health, host defence and inflammation, care should be taken with respect to dose, route and timing of administration for each therapeutic approach. GM-CSF administration in patients with COVID-19 may improve lung function by strengthening the alveolar wall and enhancing viral clearance, and this approach may thus provide particular benefit in early stages of COVID-19. By contrast, GM-CSF or GM-CSFR blockade could be a beneficial treatment for the cytokine storm and inflammatory myeloid cell tissue infiltration associated with moderate-to-severe COVID-19. The GM-CSF blockade strategy may have broad immunomodulatory effects given that it could affect the secretion of multiple pro-inflammatory cytokines and chemokines by myeloid cells. In our view, the GM-CSF-based therapies are worthwhile investigational approaches during the urgent global search for effective COVID-19 therapeutics.

Frederick M. Lang\(^1\), Kevin M.-C. Lee\(^2,5\), John R. Teijara\(^2\), Burkhard Becker\(^2\) and John A. Hamilton\(^2,5,10\)

\(^1\)Roivant Sciences Inc., New York, NY, USA.

\(^2\)Department of Medicine, Royal Melbourne Hospital, The University of Melbourne, Parkville, Melbourne, Victoria, Australia.

\(^3\)Department of Immunology and Microbiology, Scripps Research Institute, La Jolla, CA, USA.

\(^4\)Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland.

\(^5\)Australian Institute for Musculoskeletal Science, The University of Melbourne and Western Health, St Albans, Melbourne, Victoria, Australia.

705-e-mail: johnami@unimelb.edu.au

https://doi.org/10.1093/nsr/nwa041 (2020).

Published online 23 June 2020

1. Zhou, Y. et al. Pathogenic T cells and inflammatory monocytes incite inflammatory storm in severe COVID-19 patients. Natl. Sci. Rev. https://doi.org/10.1093/nsr/nwa041 (2020).

2. Hamilton, J. A. GM-CSF in inflammation. J. Exp. Med. 217, e20190945 (2020).

3. Hamilton, J. A., Cook, A. D. & Tak, P. P. Colony-stimulating factor 1 in the macrophage-deficient osteopetrotic (Op/Op) mouse. Proc. Natl. Acad. Sci. USA 87, 4828–4832 (1990).

4. Lieszcz, G. J. et al. Mice lacking granulocyte colony-stimulating factor develop chronic neutropenia, granulocyte and macrophage progenitor cell deficiency, and impaired neutrophil mobilization. Blood 84, 1737–1740 (1994).

5. Dai, X. et al. Targeted disruption of the mouse colony-stimulating factor 1 receptor gene results in osteopetrosis, mononuclear phagocyte deficiency, increased primitive progenitor cell frequencies, and reproductive defects. Blood 99, 111–120 (2002).

6. Stanley, E. et al. Granulocyte/macrophage colony-stimulating factor-deficient mice show no marked perturbation of hematopoiesis but develop a characteristic pulmonary pathology. Proc. Natl. Acad. Sci. USA 91, 5592–5596 (1994).

7. Becher, B., Tugues, S. & Greter, M. GM-CSF from growth factor to central mediator of tissue inflammation. Immunity 45, 963–975 (2016).

8. Guilliams, M. et al. Alveolar macrophages develop from fetal monocytes that differentiate into long-lived cells in the first week of life via GM-CSF. J. Exp. Med. 210, 1977–1992 (2013).

9. Trapnell, B. C. et al. Pulmonary alveolar proteinosis. Nat. Rev. Dis. Prim. 7, 16 (2019).

10. Uchida, K. et al. GM-CSF autoantibodies and neutrophil dysfunction in pulmonary alveolar proteinosis. N. Engl. J. Med. 356, 567–575 (2007).

11. Greter, M. et al. GM-CSF controls nonlymphoid tissue dendritic cell homeostasis but is dispensable for the differentiation of inflammatory dendritic cells. Immunity 36, 1031–1042 (2012).

12. Unkel, B. et al. Alveolar epithelial cells orchestrate DC function in murine viral pneumonia. J. Clin. Invest. 122, 3562–3564 (2013).

13. Zhang, J. et al. A novel subset of helper T cells promotes immune responses by secreting GM-CSF. Cell Death Differ. 20, 1731–1741 (2013).

14. Croxford, A. L., Spahs, S. & Becher, B. GM-CSF in neuroinflammation: licensing myocardial cells for tissue damage. Trends Immunol. 36, 651–662 (2015).

15. Komucski, J. et al. Fate-mapping of GM-CSF expression identifies a discrete subset of inflammation-driving T helper cells regulated by cytokines IL-23 and IL-1β. Sci. Immunol. 5, e1909945 (2020).

16. Cao, Y. et al. Functional inflammatory profiles distinguish myeloid-reactive T cells from patients with multiple sclerosis. Sci. Transl. Med. 7, 153–530 (2016).

17. Feldmann, M. et al. Trials of anti-tumour necrosis factor therapy for COVID-19 are urgently needed. Lancet 395, 1401–1402 (2020).

18. Mehta, P. et al. COVID-19: consider cytokine storm therapy in newly diagnosed severe pneumonia. Lancet 395, 1033–1034 (2020).

19. Reynolds, G. et al. Synolical CD4+ T cell-derived GM-CSF supports the differentiation of an inflammatory dendritic cell population in rheumatoid arthritis. Ann. Rheum. Dis. 76, 1099–1107 (2017).

20. Reghunathan, R. et al. Expression profile of immune response genes in patients with severe acute respiratory syndrome. BMC Genomics 6, 2 (2005).

21. Matute-Bello, G. et al. Neutrophil apoptosis in the acute respiratory distress syndrome. Am. J. Respir. Crit. Care Med. 156, 1969–1977 (1997).
35. Cid, M. C. et al. GM-CSF pathway signature identified in temporal artery biopsies of patients with giant cell arteritis (Abstract 2689). ACR Meeting Abstracts [https://acrabstracts.org/abstract/gm-csf-pathway-signature-identified-in-temporal-artery-biopsies-of-patients-with-giant-cell-arteritis/ (2019)]

36. Marinoni, B., Ceribelli, A., Massarotti, M. S. & Selmi, C. TLR4-dependent GM-CSF protects against lung injury in Gram-negative bacterial pneumonia. *Am. J. Physiol. Lung Cell Mol. Physiol.* 302, L447–L453 (2017)."
95. Ishii, K. et al. Toxilizumab-refractory cytokine release syndrome (CRS) triggered by chimeric antigen receptor (CAR)-transduced T cells may have distinct cytokine profiles compared to typical CRS. Blood 128, 3358 (2016).

96. Sentman, M. L. et al. Mechanisms of acute toxicity in NKG2D chimeric antigen receptor T cell-treated mice. J. Immunol. 197, 4674–4685 (2016).

97. Burmester, G. R. et al. Mavrilimumab, a fully human granulocyte-macrophage colony-stimulating factor receptor α monoclonal antibody: long-term safety and efficacy in patients with rheumatoid arthritis. Arthritis Rheumatol. 70, 679–689 (2018).

98. Piccoli, L. et al. Neutralization and clearance of GM-CSF by autoantibodies in pulmonary alveolar proteinosis. Nat. Commun. 6, 7275 (2015).

Acknowledgements
The authors sincerely thank S. Lowry for his guidance during the ideation for and writing of the manuscript. The authors also thank B. Dorner, A. Berri and T. Lin for their support during the preparation of the manuscript.

Author contributions
All authors contributed significantly to all aspects of the article.

Competing interests
F.M.L. is a full-time employee of Roivant. Roivant is developing gimsilumab, a mAb to GM-CSF under investigation in a phase II clinical trial for the treatment of patients with COVID-19 with lung injury or ARDS. J.R.T., B.B. and J.A.H have received consulting fees from Roivant. The employer of J.A.H. and K.M.-C.L, the University of Melbourne, has licensed patented technology relating to therapeutically targeting GM-CSF to MorphoSys AG, Germany. The employer of B.B., the University of Zurich, holds a patent on the use of neutralizing GM-CSF in acute GvHD following stem cell transplantation and has a license agreement with Humanigen Inc., which is manufacturing such a GM-CSF-neutralizing mAb.

Peer review information
Nature Reviews Immunology thanks M. Dougan and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

RELATED LINKS
ClinicalTrials.gov: https://clinicaltrials.gov/