In vitro interactions of nystatin and micafungin combined with chlorhexidine against Candida albicans isolates

Maede Salehi1,2, Ali Malekzadeh Shafaroudi3, Maryam Daryani3, Alireza Khalilian4, Fatemeh Ahangarkani5, Tahere Molania1,2

1 Department of Oral Medicine, Faculty of Dentistry, Mazandaran University of Medical Sciences, Sari, Iran
2 Department of Dental Research Center, Mazandaran University of Medical Sciences, Sari, Iran
3 Student Research Committee, School of Dentistry, Mazandaran University of Medical Sciences, Sari, Iran
4 Department of Community Medicine, School of Medicine, Thalassemia Research Center, Mazandaran University of Medical Sciences, Sari, Iran
5 Antimicrobial Resistance Research Center, Communicable Diseases Institute, Mazandaran University of Medical Sciences, Sari, Iran

Article Info

Article type: Original article

Article History:
Received: 01 August 2021
Revised: 15 November 2021
Accepted: 21 February 2022

* Corresponding author:
Fatemeh Ahangarkani
Antimicrobial Resistance Research Center, Communicable Diseases Institute, Mazandaran University of Medical Sciences, Sari, Iran. Email: Fkani63@gmail.com

Tahere Molania
Department of Oral Medicine, Dental Research Center, Mazandaran University of Medical Science, Sari, Iran. Email: t_molania117@yahoo.com

How to cite this paper
Salehi M, Malekzadeh Shafaroudi A, Daryani M, Khalillian A, Ahangarkani F, Molania T. In vitro interactions of nystatin and micafungin combined with chlorhexidine against Candida albicans isolates. Curr Med Mycol. 2022; 8(1): 7-11. DOI: 10.18502/cmm.8.1.9208

ABSTRACT

Background and Purpose: Oral candidiasis has become a growing problem in hospitals worldwide, and the development of antifungal drug resistance in Candida species constitutes a serious concern. This study aimed to evaluate the in vitro efficacy of nystatin, and micafungin with chlorhexidine against fluconazole-resistant and fluconazole-sensitive Candida albicans (C. albicans) isolates.

Materials and Methods: In this experimental-laboratory study, a total of 20 fluconazole-resistant (n=10) and fluconazole-susceptible (n=10) C. albicans strains were obtained from the reference culture collection of the Invasive Fungi Research Center in Mazandaran University of Medical Sciences, Sari, Iran. In vitro combination of nystatin and micafungin with chlorhexidine was performed using a microdilution checkerboard method based on the Clinical and Laboratory Standards Institute guideline.

Results: Micafungin had the highest antifungal activity against C. albicans susceptible and resistant strains, with a Geometric mean of (GM) =0.008µg/ml and GM=0.008µg/ml, followed by nystatin with GM=0.06µg/ml and GM=0.042µg/ml and chlorhexidine with GM=0.25µg/ml and GM=0.165µg/ml against C. albicans resistant and sensitive strains, respectively. The interaction of micafungin and nystatin with chlorhexidine showed a synergistic interaction against most C. albicans strains. In addition, no antagonistic interaction was observed between micafungin, nystatin, and chlorhexidine against C. albicans strains.

Conclusion: The synergistic interaction of micafungin with chlorhexidine against azole-resistant C. albicans suggests an alternative approach to overcome antifungal drug resistance. However, further studies are needed for in vivo evaluation.

Keywords: Candida albicans, Chlorhexidine, Combination, Fluconazole, Micafungin, Nystatin

Introduction

Over the past 20 years, oral candidiasis has been a growing problem in hospitals worldwide due to an increase in predisposing factors, including long-term treatment with broad-spectrum antibiotics, more than 72 h in the ICU, treatment with immunosuppressive drugs, intravenous catheters, and injectable nutrition [1–3].

Although Candida albicans (C. albicans) is still the most common cause of oral candidiasis, the prevalence of non-albicans-induced oral candidiasis has increased. The main antifungal drugs used to treat oral candidiasis include azole agents, especially fluconazole, echinocandins (micafungin), and polyenes (nystatin). Unfortunately, resistance to these drugs has recently increased significantly [4,5]. Resistance to fluconazole has been observed among Candida species in various regions worldwide. The emergence of rare antifungal-resistant Candida species, such as C. auris, C. kefiri, and C. lusitaniae, has been reported in many centers [6–12].

Treatment of oral candidiasis caused by rare Candida species has been controversial due to a lack of knowledge on drug susceptibility profile, intrinsic antifungal resistance, or multiple antifungal-resistant strains [13]. Due to the limitations of antifungal agents and the antifungal resistance phenomenon, combination therapy can be an effective strategy against the therapeutic challenges of oral candidiasis.
due to resistant species. In this regard, antifungal medications can be combined with chlorhexidine to disinfect the body before surgery and sterilize surgical instruments [14]. The antimicrobial activity of chlorhexidine is due to the ability of these agents to destroy the cell wall. Chlorhexidine is also used to clean wounds, delay the formation of dental plaque, and treat oral candidiasis. Body wounds, tooth discoloration, and allergic reactions are listed as chlorhexidine side effects [15].

Recent research on the combined effects of disinfectants on similar cases has led to desirable results based on the potentiating effect of these drugs. However, the combined effects of chlorhexidine with antifungal drugs against resistant C. albicans have not yet been studied. Therefore, designing a study to evaluate these combined effects seemed to be necessary. This study aimed to evaluate the in vitro effectiveness of antiseptic drugs in combination with antifungal agents against fluconazole-resistant and fluconazole-sensitive C. albicans isolated from oral candidiasis.

Materials and Methods

Characterization of isolates

In this study, a panel of 20 C. albicans isolates, including fluconazole-resistant (n=10) and fluconazole-sensitive (n=10) isolates, were obtained from the reference culture collection of the Invasive Fungi Research Center (IFRC) at the Mazandaran University of Medical Sciences, Sari, Iran. All tested isolates have been previously identified by sequencing of internal transcribed spacer ribosomal DNA (ITS-rDNA) regions and MALDI-TOF mass spectrometer assay (MALDI Biotyper OC version 3.1, Bruker Daltonics, Bremen, Germany) [10,11]. Isolates were sub-cultured on Sabouraud Dextrose Agar (SDA, Difco) at 30 °C to ensure purity and viability. The study protocol was approved by the Ethics Committee of Mazandaran University of Medical Sciences, Sari, Iran (IR.MAZUMS.REC.1397.2980).

In vitro antifungal susceptibility testing

Nystatin (Bristol-Myers-Squib, Woerden, Netherlands), Micafungin (Astellas Pharma, Ibaraki, Japan), and Chlorhexidine (PubChem) minimum inhibitory concentrations (MICs) were determined according to the broth microdilution guideline (M60) of Clinical and Laboratory Standards Institute (CLSI). In this study, Candida albicans (ATCC 64124) was used as a reference strain.

In vitro combination testing by the checkerboard method

The interactions of nystatin and micafungin with chlorhexidine against fluconazole-resistant and fluconazole-sensitive C. albicans isolates were investigated using a microdilution checkerboard method based on the CLSI reference technique with 96-well microtiter plates [16]. The prepared drug dilutions were four times the final concentration in terms of volume. The concentration ranges of drugs depended on the MIC results of each isolate. Briefly, 50 µl of each concentration of chlorhexidine was dispensed into the columns of 1 to 10, and 50 µl of nystatin or micafungin was added to the rows of A to G of 96-well microplates. The H row and column 11 contained chlorhexidine and nystatin or micafungin alone, respectively. In addition, column 12 was used as the drug-free growth control. For each drug combination plate, 100 µl of inoculum was added to all the wells. The inoculum was prepared using fresh colonies, and their density was adjusted to 1×10⁶ CFU/ml at 530 nm wavelength to a percentage transmission within a range of 75-77%. Plates were incubated at 35°C and examined visually after 24 h to determine the MIC values for the drugs separately and in combination with others.

The MIC endpoints were determined using a reading mirror and were defined as the lowest concentration of drug that significantly reduced growth (less than 50%) compared with the growth of a drug-free control. For the determination of drug interactions, the fractional inhibitory concentration index (FICI) was calculated as FICI = MICA + MICB = (CA/MICA) + (CB/MICB), where MICA and MICB are the MICs of drugs A and B alone, and CA and CB are the concentrations of the drugs in combination, in all wells corresponding to an MIC. The interaction was considered synergistic at FICI ≤0.5, indifferent at >0.5 to ≤4.0, and antagonistic at >4 [16].

Results

Table 1 summarizes the MIC ranges, MIC₅₀, MIC₉₀, and geometric means (GM) MIC nystatin and chlorhexidine with micafungin. In terms of GM MIC, micafungin had the highest antifungal activity against all C. albicans isolates (GM MIC=0.008 µg/ml), Followed by nystatin with a GM MIC=0.06 µg/ml against fluconazole-resistant C. albicans and a GM MIC=0.042 µg/ml against fluconazole-sensitive C. albicans isolates, as well as chlorhexidine with a GM MIC=0.25 µg/ml against fluconazole-resistant C. albicans and a GM MIC=0.165 µg/ml against fluconazole-sensitive C. albicans isolates. The highest range of MIC was observed in chlorhexidine against fluconazole-resistant C. albicans isolates (0.5-0.031 µg/ml) and fluconazole-sensitive C. albicans isolates (0.25-0.063 µg/ml).

Table 2 summarizes the results of the combination of nystatin and micafungin with chlorhexidine. Using the interpretation of FICI, in the combination of nystatin and chlorhexidine from all C. albicans isolates, synergistic interactions were shown on 7 (35%) isolates with FICI≤0.5. Moreover, the combination of micafungin and chlorhexidine interactions showed synergistic interactions, as 14 (70%) out of all C. albicans isolates had FICI≤0.5. However, other isolates have shown indifferent
interaction with 0.5≤FICI≤4, and none of the isolates showed antagonistic interactions.

Discussion

The combination of chlorhexidine with micafungin showed a synergistic interaction against most *C. albicans* isolates in the present study. In 2017, Scheibler et al. reviewed dental and medical literature concerning the use of nystatin and chlorhexidine in oral medicine and reported that nystatin and chlorhexidine are gold-standard antimicrobial mouthrinses for *Candida* spp. They suggested that further studies should investigate interactions of other drug combinations to improve the therapeutic management of oral candidiasis [17]. Many *in vitro* studies of antifungal drugs have shown that the drug combination can broaden the spectrum of antifungal treatment, increase the fungicidal effect, reduce the toxicity of drugs, and reduce the antifungal resistance phenomenon. For instance, Monteiro et al. reported that silver nanoparticles combined with nystatin and chlorhexidine digluconate demonstrated synergistic antibiofilm activity.

On the other hand, Alvendal et al. [18] reported that in eradicating *C. albicans*, chlorhexidine digluconate eliminated the biofilm more effectively than fluconazole [19]. According to Garcia-Cuesta et al., nystatin and amphotericin B are the most

commonly used topical drug for treating oral candidiasis. Oral administration of fluconazole is also known to be very effective in treating this infection [20]. However, recent studies in the United States, Europe, and Asia have shown increased resistance of *Candida* species to fluconazole and echinocandins [5,11]. Due to the limitations of antifungal agents and the development of antifungal resistance, combination therapy can be an effective strategy for the therapeutic challenges of candidiasis caused by resistant species [21]. Studies of antifungal drugs with different mechanisms of action against *Candida* species have also been performed.

On the other hand, many studies have shown that different concentrations of each drug combination can have consequences ranging from antagonism to synergy. Host factors strongly influence the antifungal agent [22]. Many mechanisms of synergy have been proposed between existing antifungal drugs. For example, terbinafine and azoles disrupt the function of fungal cells through inhibition of biosynthesis. Another mechanism of synergism involves the simultaneous inhibition of different cellular targets, such as synthesizing echinocandins and amphotericin B [23]. A combination of antifungal drugs can be used for treatment; however, it should be noted that the wrong combination can reduce the effect of fungicides and sometimes increase toxicity. Similar to synergy, the

Table 1. *In vitro* susceptibilities of *C. albicans* isolates to chlorhexidine, nystatin, and micafungin

Strain	Antifungal agent	MIC (µg/L)	MIC_{mean}	MIC_{range}
Fluconazole-resistant *C. albicans*	Chlorhexidine	1 4 1 3 1	0.031-0.5	0.063 0.25 0.25
	Nystatin	2 7 7 1	0.031-0.25	0.063 0.063 0.06
	Micafungin	3 7 1	0.004-0.007	0.008 0.008 0.008
Fluconazole-susceptible *C. albicans*	Chlorhexidine	2 2 2 6	0.063-0.25	0.25 0.25 0.165
	Nystatin	1 4	0.016-0.063	0.031 0.063 0.042
	Micafungin	1 2 7	0.002-0.008	0.008 0.008 0.008

MIC: minimum inhibitory concentrations; CHG: chlorhexidine; NST: nystatin; MFG: micafungin; GM: geometric mean

Table 2. Minimum inhibitory concentrations of nystatin and micafungin with chlorhexidine alone and in combination against *C. albicans* isolates

Strains	CHG MIC_{NST} (µg/mL)	CHG+NST FICI/INT	CHG MIC_{MFG} (µg/mL)	CHG+MFG FICI/INT
IFRC 27	0.125/0.016	0.031 /0.001	0.31 / SYN	0.125
IFRC 600	0.25/0.031	0.065 /0.008	0.52 / IND	0.25
IFRC 37	0.063/0.25	0.016/0.063	0.50 / SYN	0.063
IFRC 604	0.063/0.031	0.016/0.008	0.51 / IND	0.063
IFRC 614	0.25/0.063	0.031/0.016	0.37 / SYN	0.25
IFRC 25	0.125/0.031	0.031/0.008	0.50 / SYN	0.125
IFRC 120	0.25/0.063	0.031/0.016	0.50 / SYN	0.25
IFRC 13	0.063/0.031	0.016/0.008	0.51 / IND	0.063
IFRC 18	0.25/0.063	0.031/0.008	0.55 / IND	0.125
IFRC 15	0.25/0.063	0.063/0.016	0.51 / IND	0.25
IFRC 24	0.25/0.063	0.063/0.031	0.74 / IND	0.25
IFRC 14	0.25/0.063	0.063/0.031	0.53 / IND	0.25
IFRC 10	0.063/0.063	0.016/0.008	0.37 / SYN	0.063
IFRC 1856	0.031/0.031	0.008/0.004	0.38 / SYN	0.031
IFRC 1262	0.25/0.063	0.016/0.031	0.55 / IND	0.25
IFRC 1261	0.25/0.063	0.125/0.125	2.48 / IND	0.25
IFRC 38	0.5/0.063	0.125/0.63	1.5 / IND	0.5
IFRC 603	0.063/0.031	0.016/0.008	0.51 / IND	0.063
IFRC 616	0.25/0.063	0.125/0.031	0.99 / IND	0.25
IFRC 1260	0.063/0.031	0.016/0.008	0.51 / IND	0.063

MIC: minimum inhibitory concentrations; CHG: chlorhexidine; NST: nystatin; MFG: micafungin; FICI: fractional inhibitory concentration index; SYN: synergism; IND: indifference
mechanism of antagonism is different. Antagonism may be due to the direct action of two drugs that reduce the availability of each target in the fungal cell [24]. Most clinical studies conducted on combined antifungal therapy against yeasts have been performed for the treatment of Cryptococcal infections. Several studies have reported the use of combined antifungal therapy for the treatment of endocarditis caused by Candida species, fungal central nervous system infection, azole-resistant C. glabrata infections, Candida pyelonephritis, and Candida endophthalmitis [25]. A randomized clinical trial compared the antifungal effects of fluconazole alone and in combination with amphotericin B and showed that combination therapy with fluconazole and amphotericin B could clear blood infection faster. Echinocandins in combination with azoles are also a known treatment option for invasive candidiasis. The combination of posaconazole with caspofungin and micafungin has been investigated in an animal model [26]. In another study, Chen et al. showed in vitro and in vivo synergism effects of posaconazole in combination with caspofungin against echinocandin resistant isolates [27].

A multicenter study against azole- or echinocandin-resistant C. albicans, C. glabrata, and C. parapsilosis also concluded that synergistic effects could be obtained in combination with more antifungal drugs [28]. Rodriguez et al. also investigated the combined effect of micafungin and fluconazole on 105 clinical isolates (including 15 isolates of C. albicans, 20 isolates of C. dubliniensis, 15 isolates of C. glabrata, 20 isolates of C. krusei, and 15 isolates of C. tropicalis) and reported a synergistic effect on 33%, 26%, and 7% of C. albicans, C. tropicalis, and C. glabrata isolates, respectively [29]. Due to the emergence of resistant non- albicans species with different susceptibility patterns and given the fact that the treatment strategy is based solely on the identification of Candida with conventional mycological methods, further investigation is needed for the accurate identification of the species and the application of effective drugs or combination therapy to combat drug resistance. Further clinical trials are required before the generalization and daily use of antifungal drug combinations in treating invasive candidiasis.

Conclusion

The combination of chlorhexidine with micafungin exhibited synergistic activity against azole-resistant C. albicans. This can be used as an alternative approach to overcome antifungal drug resistance. However, further studies are required for in vivo evaluation.

Acknowledgments

This study has been extracted from a dissertation financially supported by Mazandaran University of Medical Sciences (Thesis code: 2980). The researchers would like to thank the authorities in the Student Research Committee of Mazandaran University of Medical Sciences, Sari, Iran, for supporting this project.

Authors’ contribution

M.S., T.M., M.D., and F.A. collected the data, and A.K. performed the statistical analyses, interpreted the data, drafted, and revised the manuscript for important intellectual content.

T.M. and A.M.S. reviewed the analyses and the final version of the manuscript. M.D. and AMS interpreted the data, revised the manuscript for important intellectual content, and approved the final version. All authors have read and approved the manuscript.

Conflicts of interest

All authors declare that they have no conflict of interest regarding the publication of this study.

Financial disclosure

Not applicable.

References

1. Ahmed A, Azim A, Baronia AK, Marak KRSK, Gurtar M. Risk prediction for invasive candidiasis. Indian J Crit Care Med. 2014;18(10):682-688.
2. Colombo AL, Garnica M, Aranha Camargo LF, Da Cunha CA, Bandeira AC, Borghi D, et al. Candida glabrata: an emerging pathogen in Brazilian tertiary care hospitals. Med Mycol. 2013;51(1):38-44.
3. Delaloye J, Calandra T. Invasive candidiasis as a cause of sepsis in the critically ill patient. Virulence. 2014;5(1):161–9.
4. Arendrup MC, Perlin DS. Echinocandin resistance: an emerging clinical problem? Curr Opin Infect Dis. 2014;27(6):484-92.
5. Pfaffer MA, Moet GJ, Messer SA, Jones RN, Castanheira M. Geographic variations in species distribution and echinocandin and azole antifungal resistance rates among Candida bloodstream infection isolates: report from the SENTRY Antimicrobial Surveillance Program (2008 to 2009). J Clin Microbiol. 2011;49(3):306–9.
6. Emara M, Ahmad S, Khan Z, Joseph L, Al-Osahd I, Purohit P, et al. Candida auris candidemia in Kuwait. 2014. Emerg Infect Dis. 2015;21(6):1091-2.
7. Tavanti A, Davidson AD, Gow NAR, Maiden MCI, Odds FC. Candida orthopsilosis and Candida metapsilosis spp. nov. to replace Candida parapsilosis groups II and III. J Clin Microbiol. 2005;43(1):284–92.
8. Correa A, Sampao P, James S, Pais C. Candida brazarensis sp. nov., a novel anamorphic yeast species phenotypically similar to Candida glabrata. Int J Syst Evol Microbiol. 2006;56(1):313–7.
9. Ahangarkani F, Badali H, Rezai MS, Shokoh T, Abtaheh Z, Nesheli HM, et al. Candidemia due to Candida guillermondii in an immuno-compromised infant: a case report and review of literature. Curr Med Mycol. 2019; 5(1):32-36.
10. Aslani N, Janbabaee G, Abastabar M, Meis JF, Baharzian M, Khodavasy S, et al. Identification of uncommon oral yeasts from cancer patients by MALDI-TOF mass spectrometry. BMC Infect Dis. 2018;18(1): 24.
11. Ahangarkani F, Shokohi T, Rezai MS, Ilkik M, Mahmoodi Nesheli H, Karami H, et al. Epidemiological features of nosocomial candidaemia in neonates, infants and children: a multicentre study in Iran. Mycoses. 2020; 63(4):382–94.
12. Abastabar M, Haghani I, Ahangarkani F, Rezai MS, Taghizadeh Armaki M, Roodgar S, et al. Candida auris oomycosis in Iran and review of recent literature. Mycoses. 2019; 62(2):101–5.
13. Desnos-Ollivier M, Ragon M, Robert V, Raoux D, Gantier J-C, Dromer F. Debaryomyces Hansenii (Candida famata), a rare human fungal pathogen often misidentified as Picha
guilliermondii (Candida guilliermondii). J Clin Microbiol. 2008;46(10):3237–42.
14. Stuart MC, Koumitzi M, Hill SR. WHO model formulary 2008. World Health Organization; 2009.
15. Brookes ZLS, Bescos R, Bellfield LA, Ali K, Roberts A. Current uses of chlorhexidine for management of oral disease: a narrative review. J Dent. 2020;103:1-10.
16. Odds FC. Synergy, antagonism, and what the chequerboard puts between them. J Antimicrob Chemother. 2003; 52(1):1.
17. Scheibler E, García MCR, Medina da Silva R, Figueredo MA, Salum FG, Cherubini K. Use of nystatin and chlorhexidine in oral medicine: Properties, indications and pitfalls with focus on geriatric patients. Gerodontology. 2017;34(3):291–8.
18. Monteiro DR, Silva S, Negri M, Gorup LF, de Camargo ER, Oliveira R, et al. Antifungal activity of silver nanoparticles in combination with nystatin and chlorhexidine digluconate against Candida albicans and Candida glabrata biofilms. Mycoses. 2013;56(6):672–80.
19. Alvendal C, Mohanty S, Bohn-Starke N, Brauner A. Anti-biofilm activity of chlorhexidine digluconate against Candida albicans vaginal isolates. PLoS One. 2020;15(9):e0238428.
20. Garcia-Cuesta C, Sarrion-Pérez M-G, Bagán J V. Current treatment of oral candidiasis: A literature review. J Clin Exp Dent. 2014;6(5):576-82.
21. Monalis H, Sujith R, Leela KV, Balamurali V. Antibiotics in combination with antifungals to combat drug resistant Candida–a concept on drug repurposing. J Adv Microbiol. 2020;1:42-8.
22. Johnson MD, MacDougall C, Ostrosky-Zeichner L, Perfect JR, Rex JH. Combination antifungal therapy. Antimicrob Agents Chemother. 2004; 48(3):693–715.
23. Demir KK, Butler Laporte G, Del Corpo O, Eknekjian T, Sheppard DC, Lee TC, Cheng MP. Comparative effectiveness of amphotericin B, azoles and echinocandins in the treatment of candidemia and invasive candidiasis: A systematic review and network meta-analysis. Open Forum Infect Dis. 2019;6(Suppl 2):S716.
24. Baddley JW, Pappas PG. Combination antifungal therapy for the treatment of invasive yeast and mold infections. Curr Infect Dis Rep. 2007; 9(6):448-56.
25. Campielli M, Zeneddine N, Samaha G, Maslak S. Combination antifungal therapy: a review of current data. J Clin Med Res. 2017; 9(6):451-456.
26. Cui J, Ren B, Tong Y, Dai H, Zhang L. Synergistic combinations of antifungals and anti-virulence agents to fight against Candida albicans. Virulence. 2015; 6(4):362–71.
27. Chen Y-L, Lehman VN, Averette AF, Perfect JR, Heitman J. Posaconazole exhibits in vitro and in vivo synergistic antifungal activity with caspofungin or FK506 against Candida albicans. PLoS One. 2013; 8(3):e57672.
28. Chaturvedi V, Ramani R, Andes D, Diekema DJ, Pfaffer MA, Ghannoum MA, et al. Multilaboratory testing of two-drug combinations of antifungals against Candida albicans, Candida glabrata, and Candida parapsilosis. Antimicrob. Agents Chemother. 2011; 55(4):1543–8.
29. Alastruey-Izquierdo A, Melhem MSC, Bonfietti LX, Rodriguez-Tudela JL. Susceptibility test for fungi: clinical and laboratorial correlations in medical mycology. Rev Inst Med Trop Sao Paulo. 2015; 57(Suppl 19):57-64.