Exploring Green Creativity: The Effects Of Green Transformational Leadership, Green Innovation Climate, And Green Autonomy

Qamaruddin Maitlo 1* 2, Yan Jingdong 1*, Rui Miguel Dantas3, Anabela Batista Correia3, José Moleiro Martins3,4

1 School of Management, Wuhan University of Technology, Wuhan, P.R.China, 430070
2 Department of business administration Sukkur IBA University, Sukkur, Sindh, Pakistan, 65200.
3 ISCAL (Instituto Superior de Contabilidade e Administração de Lisboa), Instituto Politécnico de Lisboa, Avenida Miguel Bombarda, 20, 1069-035 Lisboa.
4 Instituto Universitário de Lisboa (ISCTE-IUL), Business Research Unit (BRU-IUL), Lisboa, Portugal.

Abstract
None of the studies published in the extant literature has discussed the role of green innovation climate and green autonomy in relation to green creativity, and this study aims to offer these two novel constructs. By introducing the componential theory of creativity, this study explores green transformational leadership, green innovation clime, and green autonomy as antecedents of green creativity. The authors employed structural equation modeling (SEM) to analyze survey-based data collected from automotive firms in China. The findings reveal that green transformational leadership directly and indirectly via green innovation climate partially mediates the green creativity of employees in China. Moreover, green autonomy moderates the relationship between green innovation climate and green creativity. This pivotal contribution suggests that automotive business enterprises should develop green transformational leadership to nurture a green innovation climate and offer green autonomy for the green creativity of employees. The above antecedents of green creativity may enable business firms to gain a competitive advantage by innovating green products and practices.
Keywords: Green Creativity; Green Transformational Leadership; Green Innovation Climate; Green Autonomy

1. Introduction

The natural resource-based view postulates that business firms would be dependent upon nature in the future, and only those business firms would survive, which would have environmental sustainability as their core business strategy and rooted in capabilities (Hart, 1995). Recent studies have reported that the global community, through the Paris accord, has agreed to work on policies and strategies in phasing out business firms that burn fossil fuels and pollute the environment (Qureshi et al., 2016). Thus, such organizations have to be either transformed or replaced with green firms, and the automotive industry is not an exception. Due to higher carbon and nitrogen oxide emissions, the automotive industry has taken initiatives to become green (UCSUSA, 2019). For instance, Tesla, Chevrolet, BMW, Nissan, Ford, Volkswagen, and many other firms are in the race to innovate green and clean vehicles (Enelx, 2019). In order to innovate green and clean, companies have to incorporate green and clean philosophy in their core strategies (Awan, Sroufe, & Kraslawski, 2019). Greening the internal mechanisms also provides a competitive advantage of green and energy-efficient products and services heterogeneity (Awan et al., 2019; Y. S. Chen & Chang, 2013; Mittal & Dhar, 2016). Besides, green and clean production enhances resource efficiency and decreases environmental pollution (Hart, 1995). Green creativity (GCT) is vital for sustainable green and clean production (Awan et al., 2019; Li et al., 2020). Green creativity refers to "the development of new ideas about green products, green services, green processes, or green practices that are judged to be original, novel, and useful" (Y. S. Chen & Chang, 2013). GCT is crucial for the development of unique green ideas that may lead to green innovation and production (Mittal & Dhar, 2016). In the automotive industry, green creative behavior is the foremost step in the green innovation process, as it is crucial for environment-friendly innovation (Jia, Liu, Chin, & Hu, 2018). Although various factors influence green creative behavior, such as green passion (Jia et al., 2018), green organizational identity (Mittal & Dhar, 2016), green intrinsic and extrinsic motivation (Li et al., 2020), the role of green leadership is yet under-researched, particularly in the automotive industry.

A few recent studies explicated that green creative performance is highly dependent on leaders who have a green vision (Y. S. Chen & Chang, 2013; Li et al., 2020). For instance, Juliet Davenport, CEO of Good Energy, has the vision to help Britain become 100% renewable by supplying 100% electricity devices and equipment (Townsend, 2018). Western leaders, such as Elon Musk (CEO of Tesla), Sarah, a voice of green energy (Founder Director of Ashden), and many others have shared their vision and inspiration for climate change (Townsend, 2018). However, leadership in Asia is seen behind in the race of climate protection and cleaner production. Scholars maintain that green transformational leadership with idiosyncratic characteristics develops inspiration and motivation to innovate green products and services (Amabile & Pratt, 2016; Li et al., 2020).
Although a few studies have investigated the relationship between green transformational leadership and green creative outcomes and innovation (Y. S. Chen & Chang, 2013; Li et al., 2020), it remains silent in the Chinese automotive industry.

The theory of creativity posits that individuals' creativity can be influenced by the social or work climate (Amabile & Pratt, 2016; Martins & Terblanche, 2003). It is posited that organizational climate can stimulate or undermine the creative behavior of employees even when subordinates are intrinsically motivated and possess domain-relevant skills (Amabile & Pratt, 2016; Li et al., 2020). The present study aims to conceptualize the green innovation climate, which provides flexibility and freedom to think in green creative ways to unleash green innovation. Building on the creativity theory, it is argued that the green innovation climate helps to direct and channel activities towards green innovation (Amabile & Pratt, 2016; Scott & Bruce, 1994). For instance, Elon Musk, the CEO of Tesla, removes the hierarchy barrier in the organization to listen to any green idea that can help to innovate green vehicles and solve environmental problems (Tesla, 2019). Green innovation climate guarantees that employees' green performance is recognized and rewarded for green creative ideas. Moreover, a green innovation climate ensures that subordinates are equipped with the resources and necessities required for green creativity (Jaiswal & Dhar, 2015; Sarros, Cooper, & Santora, 2008). Nevertheless, it is observed that prior studies have only focused on the green psychological climate, green self-efficacy, and green dynamic capabilities (Y. S. Chen, Chang, & Lin, 2014; Joshi & Dhar, 2020; Norton, Zacher, Parker, & Ashkanasy, 2017)(Faraz, Ahmed, Ying, & Mehmood, 2021) in the green creativity literature. The study in hand intents to advance the literature on green creativity by exploring the mediation role of green innovation climate between green transformational and green creativity.

A quantitative meta-analysis revealed that the climate for innovation and autonomy are the best predictors for employees' creativity (Hunter, Bedell, & Mumford, 2007). Employees need autonomy to imagine green creative ideas for green and clean products and practices. For instance, Tesla provides high-task-autonomy to think green creative ideas and share directly with leadership via email or any mode of communication (Fournier, 2019; Tesla, 2019). Thus, autonomy to generate green novel ideas and share with leadership without any barrier motivates employees to think differently. The theory of self-determination supports the argument that autonomy elevates motivation connected with creativity in any context (E L Deci, 2015). Employees feel pride and engage in creative pro-environmental tasks when given freedom for green initiatives (E L Deci, 2015; Li et al., 2020; Liu, Chen, & Yao, 2011)(Ying, Faraz, Ahmed, & Raza, 2020). Preceding studies have investigated autonomy in a conventional setting (E L Deci, 2015; Hunter et al., 2007; J. Zhou, 1998). However, autonomy in the green and sustainable production context is absent in existing literature. Therefore, this study identifies green autonomy as a moderating construct that ensures freedom and choice to think and share any untried green ideas for sustainable production in the automotive industry.
This study intends to offer two novel constructs: green innovation climate and green autonomy. Then, only a few studies have explored the impact of green transformational leadership on green creative behavior in Indian and Taiwanese industries using the resource-based view model and ability-motivation-opportunity theory. This study explores this relationship through the theoretical lens of the componential theory of creativity in the Chinese automotive industry, which is yet to be investigated. Another novel contribution of this study to green creativity is to examine the effect of green innovation climate between green transformational leadership and creativity in the cleaner production setting. Lastly, the authors also aim to evaluate the role of green autonomy (moderator) impacting the relationship between green innovation climate and green creative behavior in the environmental context, as shown in Figure 1.

2. Theoretical foundation and hypotheses development

2.1. Green transformational leadership and green creativity

Green transformational leadership refers to a leadership style that involves motivating and inspiring employees to achieve environmental objectives and exceed the expected green creative performance level (Y. S. Chen & Chang, 2013). A few recent studies have established that green transformational leadership (GTL) plays a significant role in stimulating green creative outcomes (Y. S. Chen & Chang, 2013; Jia et al., 2018; Mittal & Dhar, 2016). GTL has four dimensions: Charisma, individualized consideration, inspirational motivation, and intellectual stimulation (Bass, 1985). Charisma enables leaders to show the green vision to their team members and set high standards for green innovation (Y. S. Chen & Chang, 2013). Leadership through inspirational motivation imbues a sense of team spirit and motivation to achieve green innovation (Li, Bhutto, Nasiri, Shaikh, & Samo, 2018). Individualized consideration helps leaders to guide employees by understanding and recognizing their needs and motivations to foster green creativity (S. Zhou, Zhang, Lyu, & Zhang, 2018). Lastly, through intellectual stimulation, leaders raise the cognitive ability of personnel to think from different paradigms and perspectives for the creative solutions of old problems (Avolio, Bass, & Jung, 1999).

Employees under GTL engage in green creativity, which leads to green innovation. In order to achieve green creativity, leadership should actively listen to employees, share knowledge, and provide a framework of growth and opportunities through long-term vision (Jia et al., 2018; Mittal & Dhar, 2016). Recent studies have established the connection between green transformational leadership and green creativity (Y. S. Chen & Chang, 2013; Jia et al., 2018; Mittal & Dhar, 2016). For instance, Mittal & Dhar, (2016) found that GTL raised the green creative behavior of employees for conserving the environment in tourist hotels. Another two studies revealed a positive relationship between GTL and GCT of employees in the technology industry in order to conserve the environment from contamination (Y. S. Chen & Chang, 2013; Li et al., 2020). Having this in mind, the authors propose the following hypothesis.
H1: Green transformational leadership is positively related to green creativity in the Chinese automotive industry.

2.2. Mediation of Green Innovation Climate

Organizational climate represents the firm's characteristics, such as attitudes, behaviors, and feelings that exist independently irrespective of the perceptions and understandings of the members of the organization (Ekvall, 1996). In other words, an innovative climate exists when organizations have a certain degree of trust, say, and openness among the members, risk-taking mentality, and commitment to perform creative tasks (Ekvall, 1996). For instance, employees receive signals concerning innovative behavior in an innovative climate. By understanding and using these signals, employees often respond to expectations and regulate their innovative behavior to raise their self-satisfaction and pride (Scott & Bruce, 1994).

The proponents of the innovative climate included two work-climate dimensions: (1) support for innovation and (2) resource supply (Jaiswal & Dhar, 2015; Scott & Bruce, 1994). Support for innovation refers to support for team members or employees to perform independently, searching for creative and innovative ideas, and respect for diversity and creative work in an organization (Ren & Zhang, 2015). For instance, in an experimental study (Amabile & Pratt, 2016) subjects who received the rewards as a bonus had higher creativity than those of the other groups, which implies that rewarding and recognizing creative performance nurture a climate for innovation. Therefore, support and encouragement among team members can yield green creative performance. Provision of resource supply includes equipment, facilities, and the time considered critical to creativity and innovation (Amabile & Pratt, 2016). For instance, Amabile (2016) posited that access to needed and appropriate resources such as materials, information, finance, and facilities have a moderate impact on employee's creativity, which is another manifestation of the green innovative climate (Amabile & Pratt, 2016).

Extending the work of (Scott & Bruce, 1994), the authors advance a new concept of green innovation climate (GIC), which refers to "a set of employees perceptions about the work environment that encourages risk-taking behavior for green products and practices, allocates adequate resources and provides challenging work climate for green creativity and innovation at an organizational level". Investigating the relationships between green transformational leadership and green creativity is not new to the scholars (Y. S. Chen & Chang, 2013; Li et al., 2020). For instance, studies contended that GTL helps to enhance employees' green creativity in different industries and under different conditions through its idiosyncratic characteristics (Y. S. Chen & Chang, 2013; Li et al., 2020; Mittal & Dhar, 2016). Moreover, researchers also maintained that leaders develop a conducive climate, whereby they encourage employees by providing adequate support and resources for creativity (Jaiswal & Dhar, 2015; Scott & Bruce, 1994). For instance, Amabile and Pratt (2016) argue that leaders should motivate personnel to develop novel ideas,
recognize their creative work, provide support and means to reach the goals for innovation across the firms. Therefore, the authors maintain that a green innovation climate, wherein employees find support, encouragement, and adequate resources for green products, services, and processes from leadership, would stimulate green creativity. A study held on the hotel industry in India found that innovation climate mediates the relationship between TFL and CRT (Jaiswal & Dhar, 2015). Similarly, a study wherein 32 Taiwanese companies participated maintained that innovation climate positively and partially mediates the relationship between the TFL and CRT (Jung, Chow, & Wu, 2003). Based on the above discussion, it is postulated that GTL nurtures an innovation climate, which increases green creativity. Thus, the authors formulate the hypothesis,

H2: Green innovation climate mediates the relationship between green transformational leadership

2.3. The Moderating Role of Green Autonomy

Green autonomy refers to "the freedom given to employees in performing their green and pro-environmental tasks" (Ekvall, 1996). Referring to self-determination theory, broecke (2018) defined autonomy as "the need for autonomy represents individuals' inherent desire to feel volitional and to experience a sense of choice and psychological freedom when carrying out an activity" (Broeck et al., 2010) (p. 982). Some scholars believe that autonomy can enable employees to think creatively and raise innovative ideas (E L Deci, 2015). They further argue that an autonomy-supported environment tends to raise the intrinsic motivation of employees; thereby, they curiously think about problems, generate ideas, and test for implementation (Krause, 2004). On the other hand, micromanagement or jobs with little discretion hinder employee's ability to be creative. A meta-analysis concluded that the concentration of decision-making authority and less dispersion of power tend to diminish innovation in an organization (Damanpour, 2012). Therefore, providing autonomy and freedom to employees can help them undertake different experiments and procedures for better green creative performance.

Componental theory of creativity maintains that organizational climate and autonomy can have a significant effect on employees' motivation to think creatively, and study quotes Einstein's statement, "It is a very grave mistake to think that the enjoyment of seeing and searching can be promoted by means of coercion and a sense of duty." Autonomy is a crucial determinant of creativity, and employees tend to accomplish creative tasks when they perceive more freedom (Amabile & Pratt, 2016). Furthermore, scholars revealed a positive relationship between innovation climate and environmental performance, such as green creativity (Jaiswal & Dhar, 2015; Jung et al., 2003). In this study, it is posited that green autonomy moderates the relationship between GIC and GCT. In their meta analysis revealed that autonomy and discretion provided by leadership tend to stimulate creativity in firms (Hughes, Lee, Tian, & Newman, 2018).
Building on the theoretical support and arguments, it is advanced that in an automative industry where GIC promotes green creativity, green autonomy, and freedom to think green ideas and solutions to environmental problems may foster green creative ideas to produce green and clean products and services. In light of the foregoing, the authors hypothesize,

H3: Employees are more likely to come up with green creative ideas in a green innovation climate when they have higher green autonomy.

Figure 1: Conceptual Frame Work

1. Methodology

The authors collected data from the automotive industry located in Liaoning province, China. The choice of the industry, province, and country has several reasons: First, the automotive industry in Liaoning province contributes 12.7% share of gross industrial product, and it is under immense pressure to innovate clean and green products and services to curtail environmental hazards (HKTDC, 2019). Second, this industry is going through sharp incremental and radical innovation as China plans to accelerate the electrification of the four-wheelers (Rathi, 2019). Lastly, air pollution in northern China is sharply rising, and 70% of this pollution is contributed by industries that failed to comply with environmental regulations and standards (Wong, 2017). Therefore, China has initiated a war on pollution, cracking down on firms violating environmental laws.

For data collection, the authors contacted twenty automotive firms located in Liaoning province. At the initial stage, the authors gave a presentation to top management and briefed them about the significance and the academic purpose of the study. Moreover, they were assured of sharing the findings and practical implications of the study. Later on, after receiving consent, employees from R&D and production departments were informed about the survey, which was self-administered. Two research assistants instructed employees about the purpose of the survey and helped to understand different survey sections. They also elaborated about green constructs employed in the study and what they mean. Employees were assured that the survey is highly confidential and anonymous, and they do not have to provide their name or other identities. They were requested to complete section (A) of the survey and return it to the authors. Survey (A) included questions
related to GTL, GIC, and GA. Supervisors were provided section (B) of the survey about GCT of their employees working in the same department to corroborate and match data. A total of 600 questionnaires with numbers coded were handed over to employees and supervisors and out of which only 307 (51.2%) were found valid for analysis. In total, 105 supervisors participated and responded about the green creativity of their 307 subordinates who responded about GTL, GIC, and GA. Unique employment numbers are used for employees’ in automotive industry in China.

In order to exactly match the responses, employees were asked to write the employment number of their supervisor and supervisors were requested to write the employment number of the employee being rated. Various studies suggest that when a model has four arrows leading to endogenous construct, that study should have a minimum of 40 samples. (Ali Memon, Ting, Ramayah, Chuah, & Cheah, 2017; Hair, Sarstedt, Hopkins, & Kuppelwieser, 2014); however, this study has more than 300 sample size, and it implies this study satisfies the sampling criteria.

The authors in this study, before final data collection, employed one pretest for confirming the item’s reliability and validity. Later, we also performed factor analysis to ensure items indicate required reliability and validity. Table 1 shows that each variable can be classified into only one factor and has an accumulated percentage of variance explained (Li et al., 2020). Additionally, for checking common method bias (CMB), the authors used Harman's one-factor test approach (Harman, 1976). The six items of GTL, eight items of GIC, five items of green creativity, and five items of green autonomy were entered in SPSS using the principal component factor analysis technique. The first factor in the model explained 31.1% of the variance (Harman, 1976). Thus, the authors confirmed that there is no CMB issue in the analysis. Socially desirable responding (SDR) refers to the problem when respondents compromise the validity of the survey (Nederhof, 1985). To deal with this issue, the surveyors promised secrecy regarding data so that respondents fill in the survey with honesty (Nederhof, 1985). Moreover, researchers did not include any question which could have disclosed the identity of employees. Thus, the research paper bears no issues of CMV and SDR.

1.1. Measures
The survey, which was employee-based and self-administered, was first developed in the English language; then, it was translated into the Chinese language using the back-translation technique. The authors also availed the services of two bilingual experts to ensure conversion and content quality (Brislin, 1970). The scales ranged from 1 to 5, where 1 represented strongly disagree and 5 strongly agree.

1.1.1. Green transformational leadership (GTL)
A six-item survey of GTL developed by Chen&Chang 2013 was used. The reliability and validity of the measures were also tested by various researchers (Y. S. Chen & Chang, 2013; Mittal & Dhar, 2016). The sample items are: "(1) our leader inspires us with the environmental plans; and (2) our
leader provides us a clear environmental vision to follow". All items reflect more than 0.655 correlation values with each other, thus, showing the reflective nature of the construct.

1.1.2. Green creativity (GCT)

The authors adopted a six-item scale developed by Chen and Chang, (2013) for measuring the green creative behavior of employees at work, and the sample items are: "(1) He/she suggests new ways to achieve environmental goals; (2) He/she proposes new green ideas to improve environmental performance." The scale's reliability is 0.950, satisfying the criteria of reliability (Hair et al., 2014). Moreover, the items of green creativity indicate reflective nature as they have a higher than 0.685 correlation with each other.

1.1.3. Green innovation climate

This study offers an original idea, 'green innovation climate', for which the authors refer to the innovation climate proposed by Scott and Bruce, (1994) and further validated in a recent study by Jaiswal and Dhar (Jaiswal & Dhar, 2015). The eight-measurement items of the construct were modified considering the environmental context (Scott & Bruce, 1994). The items are: "(1) Green creativity is encouraged here; (2) Around here, people are allowed to try to solve the old problems in different greenways; (3) This organization can be flexible and continually adapting to green change; (4) This organization is open and responsive to environmental change; (5) There is adequate time available to pursue green creative ideas here; (6) This organization gives free time to pursue green creative ideas during the workday; (7) The reward system here encourages green innovation; (8) This organization publicly recognizes those whose ideas are green and innovative." Lastly, all items of the construct indicate a reflective nature as they have higher correlation values (higher than 0.507).

1.1.4. Green autonomy (GA)

This study offers a novel notion by extending the scope of autonomy to green autonomy for which the authors refer to Broeck (Van den Broeck et al., 2010) and define green autonomy as "individuals’ inherent desire to feel volitional and to experience a sense of choice and psychological freedom when carrying out a pro-environmental activity." In addition, the authors refer to other studies (Edward L. Deci & Ryan, 2015; Van den Broeck et al., 2010) to measure green autonomy that includes five items which were altered considering the environmental context: "(1) I feel like I can be myself at my job doing in greenway; (2) The tasks I have to do at work are in line with the environment and what I really want to do; (3) I feel free to do tasks in the green way; (4) I feel free to do things at work in greenways; (5) In my job, I feel forced to do green tasks I do not want to do." All measures are reflective because they show higher than 0.605 correlation values with each other.

The authors leveraged the structural equation modeling (SEM) technique using Smart PLS version 3.3.3 software to test the hypotheses. PLS-SEM is widely employed to analyze the study of
An exploratory nature and when questionnaires are modified into a new context (Henseler, Ringle, & Sarstedt, 2014); besides, this technique is preferred when a study offers new constructs or modifies old constructs and for prediction purpose (Hair et al., 2014). Moreover, this software is extensively used in marketing, human resource management, psychology, and other disciplines as it can handle non-normal data, complex models where mediation and moderation are involved, and other problematic issues (Hair et al., 2014). The authors followed a two-step approach. Firstly, the authors establish reliability and validity. Subsequently, the authors predict structural relationships among latent independent and dependent constructs with mediation and moderation.

Constructs/Items	Factor Loading	VIF Values	Cronbach's Alpha	Composite Reliability	AVE	Number of factors	Accumulation percentage (%) of explained variance
Green Autonomy (GA)							
GA1	0.898**	3.063					
GA2	0.857**	2.920					
GA3	0.890**	2.200					
GA4	0.828**	3.204					
GA5	0.806**	2.983					
Green Creativity (GC)							
GC1	0.880**	4.216					
GC2	0.901**	4.595					
GC3	0.849**	3.194					
GC4	0.915**	5.212					
GC5	0.923**	5.048					
Green Transformational Leadership (GTL)							
GTL1	0.901**	3.467					
GTL2	0.878**	3.450					
GTL3	0.895**	3.788					
GTL4	0.881**	5.209					
GTL5	0.855**	4.470					
GTL6	0.865**	4.375					
Green Innovation Climate (GIC)							
	0.939	0.948	0.695	1			70.0
Table 1 Constructs' reliability, factor loading, AVE, and accumulated explained variance

Construct	Reliability	Factor Loading	AVE	Accumulated Explained Variance
GIC1	0.844**	3.373		
GIC2	0.862**	3.628		
GIC3	0.851**	2.977		
GIC4	0.821**	2.859		
GIC5	0.912**	5.738		
GIC6	0.814**	2.843		
GIC7	0.794**	4.182		
GIC8	0.764**	3.604		

N = 307

Table 2 indicates the mean, standard deviation, and correlation of variables and other demographic details. Although education, experience (in years), and age of employees (in years) are control variables in this study as they impact individuals' creativity (Amabile & Pratt, 2016), these variables are insignificantly correlated with GCT, GTL, GIC, and GA. Moreover, the supervisor's education, gender, age, and company tenure (in years) are insignificantly correlated with employees' creativity. The average age of employees is above 30 years, and the supervisors' age is approximately 50 years. Most of the employees and supervisors working in the automotive industry are male, and employees have a mean experience above 3 years. Moreover, GTL, GIC, and GA are positively and significantly correlated with GCT.
Table 2. Means, standard deviation, and correlations values

	N = 307	Mean	Std. Deviation	1	2	3	4	5	6	7	8	9	10	11	1
1	Education	2.39	0.540		1										
2	Experience	3.18	2.314	0.027	1										
3	Age	30.2	5.650	-.124	.135*	1									
4	Supervisor's age	50.0	4.427	0.098	-0.069	.175*	1								
5	Supervisor's Gender	1.70	0.457		0.094	0.053	0.01	1							
6	Supervisor's Education	2.39	0.660	0.098	.151*	.193*	0.00	-.005	1						
7	Company Tenure	14.3	4.958	0.000	0.059	0.044		-.119*	0.11	1					
8	Gender	1.60	0.491		.150*	0.079		.745*		0.00	1				
9	GTL	2.98	1.223	0.014	0.095		0.00	-0.045	0.00	0.05	0.03	1			
1	GA	3.41	1.087	0.098	0.032	-0.057	0.01	-0.059	0.02		-	-0.033	1		
0		5		0.098	0.032	-0.057	0.01	-0.059	0.02	0.05	0.05	0.05			
	GIC	GCT													
---	-----	-----	---	---	---	---	---	---	---	---	---	---	---	---	---
1	3.46	0.084	0.051	-0.059	0.02	-0.064	0.00	-	-	.254*	.238*	1			
1	5	6	0.06	0.05	*	*									
9															
1	3.42	0.016	0.020	-0.096	-	-0.013	-	0.00	0.06	.320*	.218*	.315*	1		
2	5	6	0.00	0.02	3	6	*	*	*						

** p < 0.01, * p < 0.05; GTL = Green transformational leadership; GA = Green autonomy; GIC = Green innovation climate; GCT = Green creativity

Gender: 1 = female (40.4%), 2 = male (59.6%)

Supervisor’s gender: 1 = female (29.6%), 2 = male (70.4%), Assistant Manager: (45%) Deputy Manager: (35%) Assistant Director: (20%)

Education: 1 = Diploma (0%), 2 = undergraduate (63.2%), 3 = Post graduate (34.2%), 4 = Ph.D. (2.6%)

Supervisor’s Education: 1 = Diploma (5.5%), 2 = Undergraduate (54.1%), Post graduate (36.2%), 4 = Ph.D. (4.2%)
1.2. Measurement analysis

Table 3 indicates that Cronbach's alpha and composite reliability values are above the required values (0.7), reflecting higher consistency and reliability (Hair et al., 2014). Factor loading values are higher than 0.764, and average variance extracted (AVE) values are also higher than 0.5 criteria; thus, establishing constructs' convergent validity (Hair et al., 2014). Moreover, Discriminant validity establishes that the constructs are empirically unique and different from each other (Henseler et al., 2014). The authors also verified discriminant validity using Heterotrait-Monotrait Ratio (HTMT) approach, in which case HTMT values should be lower than 0.85 thresholds (Henseler et al., 2014). In this study, the HTMT values of constructs are below 0.338, exhibiting higher discriminant validity. Thus, data in this analysis meet the criteria of reliability and validity for conducting the structural analysis.

1.3. Structural analysis

A structural model is used to analyze the relationships between endogenous and exogenous latent constructs. The authors firstly confirmed that there is no multicollinearity issue in the model by checking VIF values of items that are lower than 5, excluding four items that have below 5.7 (see Table 3). R² indicates predictive accuracy (Hair et al., 2014), and our study indicates lower to moderate predictive accuracy as an R² value range from 2.5 to 3 in the final model # 3. The R² value of model 3 indicates a 28.2% variance explained by the exogenous constructs. F² values of the models such as 0.02, 0.15, and 0.35 reflect small, moderate, and large size effects, respectively (Hair et al., 2014). F² values in our analysis for the final model represent small to medium effects.

1.3.1. The Goodness of Fit (GoF)

A good model fit reflects that the model is plausible and parsimonious. Although a myriad of studies provides model fit in the Research, PLS-SEM does not recommend it. PLS-SEM technique provides R² and F² values in place of model fit to evaluate the exploratory power of the model (Hair et al., 2014; Li et al., 2020). However, for satisfaction, the authors calculated the model fit using Tenenhaus et al., (2005) approach. They have recommended the following equation (GoF=√(AVE×R2)) to calculate the Goodness of Fit, which other researchers also have used. The cut-off values for the goodness of fit are GoFsmall=0.1; GoFmedium=0.25; GoFlarge=0.36 (Farooq, Salam, Fayolle, Jaafar, & Ayupp, 2018). This study yields a 0.474 value for the goodness of fit and indicates a very good model fit.

To check T values and significance of the path values, the authors ran bootstrapping with a 5000 resample (Hair et al., 2014). All relationships, including direct effects, indirect effects, and moderator, were significant at p-value 0.01, as shown in Table 3. This research indicates that GTL has a substantial impact on the green creative behavior of employees in all models, and predictive
accuracy R^2 value for green creativity increases when mediator (green innovation climate) and moderator (green autonomy) involve.

Table 3 Structural model analysis and hypotheses testing

Relationship	Path Value	P-Value	T Value	R^2 Value	F Value	Hypotheses	
Model # 1							
without mediation	GTL→GCT	0.358	0.000	8.678	0.128	0.147	
Model # 2							
(with mediation of GIC)	GTL→GCT (Total effect)	0.350	0.000	7.773	0.190	0.085	
	GTL→GCT (Direct effect)	0.273	0.000	5.312			
	GTL→GCT (Indirect effect)	0.076	0.001	3.475			
	GTL→GIC	0.282	0.000	4.881	0.079	0.086	
	GIC→GCT	0.271	0.000	5.540	0.083		
Model # 3							
with moderation of GA	GTL→GCT (H1) Total effect	0.339	0.000	7.654	0.282	0.084	Supported
	GTL→GCT (H4) (Indirect/Mediation effect)	0.078	0.001	3.341		Supported	
	GTL→GCT (Direct effect)	0.261	0.000	5.076			
	GIC→GCT (H3)	0.276	0.000	4.910	0.081	Supported	
	GTL→GIC (H2)	0.282	0.000	4.979	0.079	0.086	Supported
	Moderation/Interaction effect of GA-GIC on GCT (H5)	0.196	0.009	2.612	0.055	Supported	
	GIC→GCT	0.215	0.000	5.024	0.059		

GTL = Green transformational leadership; GCT = Green creativity; GIC = Green innovation climate; GA = Green autonomy
1.3.2. Mediation and moderation

The authors, firstly, confirmed the significance of the direct relationship between exogenous construct GTL and endogenous latent construct GCT of employees working in the automotive industry. Later, the mediator was inserted into the model, and the indirect effect of GIC was found to be significant at a p-value of 0.001. Lastly, the authors' measured variance accounted for (VAF) 21.7% showing partial mediation (Hair et al., 2014). In the 3rd model, the authors inserted moderator, green autonomy, and created an interaction effect with the green innovation climate using the product indicator approach (Hair et al., 2014). The moderation of green autonomy was also found significant at a p-value of 0.009. Therefore, this empirical study establishes that GIC mediates the relationship between GTL and GCT, and GA moderates the relationship between GIC and GCT.

2. Discussion and implications

The increasing significance of environmental concerns and green innovation has gained the attention of research scholars to search out the mechanisms that foster green creativity and innovation. This study can be considered one of the pioneer studies examining the role of green innovation climate (GIC) as a mediator and green autonomy as a moderator.

Consistent with preceding studies (Li et al., 2020; Mittal & Dhar, 2016), this study confirms that green transformational leaders influence the green creative behavior of subordinates in the automotive industry of China. Thus, leaders with green vision and inspiration are more effective in innovating green products and services, as observed in European and western business firms (Rimmer, 2018; Tesla, 2019; Townsend, 2018). Another possible explanation might be that employees in the Chinese automotive industry are more leadership-oriented in a collective culture and follow them accordingly.

This empirical investigation examined the role of green innovation climate as a mediator between GTL and GCT, which is absent in the past studies. This study first indicates, in congruence with the prior Research (Jaiswal & Dhar, 2015), GIC directly affects the green creativity of employees, and second, it stimulates the green creative behavior of employees in the automotive industry as a mediator between GTL and GCT. This study conveys that GTL can effectively engage their followers in green creative behavior by providing them enough support, resources, and appreciation.

This study further reveals that green autonomy moderates the relationship between green innovation climate and green creativity, implying that employees with higher autonomy for green creativity tend to have higher green creative behavior under an elevated green innovation climate. On the other hand, from the analysis, the authors infer that if autonomy for green creativity is low
in the organization, even a high level of green innovation climate may not elevate the green creative behavior of employees, thus ending with low green creativity in companies. Our finding suggests that granting freedom and autonomy for sharing green creative ideas boosts employees' morale, and as a result, green creativity increases, which is revealed as a secret of green creativity in Tesla company (Fournier, 2019; Rimmer, 2018). Therefore, the authors propose that the automotive industry in China should follow the same approach and provide autonomy to raise green creative ideas for green and sustainable production.

Figure 2 Two-Way Interaction Graph

2.1. Theoretical contribution

This study adds to the literature on GTL, GIC, GA, and green creativity of employees working in the automotive industry using creativity theory. The study has offered novel constructs: green innovation climate and green autonomy, which is the study's main contribution. The second contribution of the study is that a green innovation climate mediates between green transformational leadership and green creativity in the automotive industry of China, which is absent in the extant literature (A. S. Y. Chen & Hou, 2016; Jaiswal & Dhar, 2015).

The third contribution of the study is that it offers a novel construct of green autonomy, which strengthens the relationship between GIC and GCT of personnel when freedom is higher for green creative behavior of employees under the circumstances when green innovation climate is also higher (see Figure 2). Thus, green innovation climate and green autonomy are important constructs that play an interactive role in raising the green creative behavior of employees in the automotive industry.
industry. Thus, this empirical investigation contributes to creativity literature in a green environment where leadership fosters employees' green creativity for green and sustainable innovation. Altogether, the study suggests that the automotive industry can curtail environmental hazards and save the environment by using the mechanism of green creativity, green innovation climate, and green transformational leadership. Therefore, the authors propose that organizations develop green leadership and green innovation climate to make green and clean production through green creativity possible.

2.2. Managerial implications

Our findings provide some practical implications for management, employees, and firms working in the automotive industry. Firstly, in order to foster GCT, firms should embed idiosyncratic characteristics of GTL to their leadership and management, which would elevate the green creative behavior of employees. Thus, following the data and literature, this study suggests that leaders in green organizations should provide green vision and inspiration to employees and then remove the communication barrier to nurture the flow of green creative ideas across the organization. Secondly, green transformational leaders who have a mindset of green innovation and creativity uplift their subordinates through the development of GIC and supply resources and other requirements needed for green creativity in organizations considering ecological and environmental strategies. Hence, the automotive industry can reduce and curtail environmental hazards by adopting GIC and GTL because leadership through innovation supportive climate can develop employees' green creative behavior leading to environment-friendly innovation. Among many other challenges, green transformational leadership has to ensure that employees are given a high degree of autonomy to generate and share green ideas for green innovation. In this regard, management should ensure employees' freedom to think, freedom to decide, and freedom to choose alternative approaches that could lead to green innovation. Thus, green creative ideas should be allowed to flow from bottom to top management, even the company's CEO. Tesla Company considers green autonomy and freedom to share green ideas as one of the culture's core values (Fournier, 2019). Thereafter, employees provided with a green innovation climate and green autonomy would endeavor to generate green ideas to develop eco-friendly products and services.

Lastly, automotive firms in China, especially in Liaoning provinces, should understand their responsibility towards the environment; they should also propagate environmental concerns and issues to their management and employees to achieve a high level of green innovation. This study, through its findings, provides a mechanism through which firms and employees can take benefits to attain a high level of green innovation.

2.3. Limitations and future research
The authors confronted some limitations while conducting this study. Firstly, a couple of automotive firms refused to provide data regarding their leadership attributes and innovation climate, even after using references and approaches. Secondly, this study can be extended to other industries such as the furniture industry, construction industry, and the food industry because these industries are progressively expanding and causing pollution in the northern region of China. Another limitation of the study is that it is a cross-sectional study. Therefore, researchers may involve longitudinal and multilevel approaches to understand green innovation climate, green transformational leadership, and green creativity in the fast-growing industries of China and other countries. Lastly, future studies may consider employing green innovation climate and green autonomy variables for further validation and analysis purposes in a different context for achieving eco-friendly innovation.

3. Conclusion
The central point of the study is that manufacturing industries, specifically the automotive industry, can take advantage of green creativity and innovation when they link their management philosophy to the green management philosophy and embody green strategies to the company's strategies. This empirical research presents two novel notions, such as green innovation climate and green autonomy, that influence the green creative behavior of employees. Moreover, green transformational leadership directly promotes green creativity and indirectly through partial mediation of green innovation climate. This study also revealed that green autonomy strengthens the impact of green innovation climate on the green creative performance of employees. By taking advantage of this study, the automotive firms should design training programs related to green strategies and corporate social responsibility to cultivate a green innovation climate and transformational leadership to boost employees' behavior for green and clean production.

References

Ali Memon, M., Ting, H., Ramayah, T., Chuah, F., & Cheah, J.-H. (2017). A Review of The Methodological Misconceptions and Guidelines Related to The Application of Structural Equation Modeling: A Malaysian Scenario. Journal of Applied Structural Equation Modeling, 1(1), 1–8.

Amabile, T. M., & Pratt, M. G. (2016). The dynamic componential model of creativity and innovation in organizations: Making progress, making meaning. Research in Organizational Behavior, 36, 157–183. https://doi.org/10.1016/j.riob.2016.10.001

Avolio, B. J., Bass, B. M., & Jung, D. I. (1999). Re-examining the Components of Transformational and Transactional Leadership Using the Multifactor Leadership Questionnaire. Journal of Occupational and Organizational Psychology, 72, 441–462. https://doi.org/doi/pdf/10.1348/096317999166789

http://www.webology.org
Awan, U., Sroufe, R., & Kraslawski, A. (2019). Creativity Enables Sustainable Development: Supplier Engagement as a Boundary Condition for the Positive Effect on Green Innovation. Journal of Cleaner Production, 226, 172–185. https://doi.org/10.1016/j.jclepro.2019.03.308

Bass, B. M. (1985). Transformational Leadership Theory. Leadership. https://doi.org/10.1017/S002196309700187X

Brislin, R. W. (1970). Back-Translation for Cross-Cultural Research. Journal of Cross-Cultural Psychology, 3(1), 185–216. https://doi.org/10.1177/135910457000100301

Chen, A. S. Y., & Hou, Y. H. (2016). The effects of ethical leadership, voice behavior and climates for innovation on creativity: A moderated mediation examination. Leadership Quarterly, 27(1), 1–13. https://doi.org/10.1016/j.leaqua.2015.10.007

Chen, Y. S., & Chang, C. H. (2013). The Determinants of Green Product Development Performance: Green Dynamic Capabilities, Green Transformational Leadership, and Green Creativity. Journal of Business Ethics, 116(1), 107–119. https://doi.org/10.1007/s10551-012-1452-x

Chen, Y. S., Chang, C. H., & Lin, Y. H. (2014). Green transformational leadership and green performance: The mediation effects of green mindfulness and green self-efficacy. Sustainability (Switzerland), 6(10), 6604–6621. https://doi.org/10.3390/su6106604

Damanpour, F. (2012). Organizational innovation: a meta-analysis of effects of determinants and moderators. Academy of Management, 34(3), 555–590. https://doi.org/http://www.jstor.org/stable/256406

Deci, E. L. (2015). Intrinsic Motivation and Self-Determination. Reference Module in Neuroscience and Biobehavioral Psychology, (October), 437–448. https://doi.org/10.1016/B978-0-12-809324-5.05613-3

Deci, Edward L., & Ryan, R. M. (2015). Self-Determination Theory. International Encyclopedia of the Social & Behavioral Sciences, 21(2), 486–491. https://doi.org/10.1016/B978-0-08-097086-8.26036-4

Ekvall, G. (1996). Organizational climate for creativity and innovation. European Journal of Work and Organizational Psychology, 5(1), 105–123. https://doi.org/10.1080/13594329608414845

Enelx. (2019, April). Who Are The Top Electric Car Companies? Enel X, 1.
https://doi.org/https://evcharging.enelx.com/news/blog/492-top-electric-cars

Farooq, M. S., Salam, M., Fayolle, A., Jaafar, N., & Ayupp, K. (2018). Impact of service quality on customer satisfaction in Malaysia airlines: A PLS-SEM approach. Journal of Air Transport Management, 67(December 2017), 169–180. https://doi.org/10.1016/j.jairtraman.2017.12.008

Fournier, A. (2019). 7 Pillars Shaping Tesla's Corporate Culture. Braineet, 1. https://doi.org/braineet.com/blog/tesla-innovation-culture/

Hair, J. F., Sarstedt, M., Hopkins, L., & Kuppelwieser, V. G. (2014). Partial Least Squares Structural Equation Modeling (PLS-SEM): An Emerging Tool in Business Research. European Business Review, 26(2), 106–121. https://doi.org/10.1108/EBR-10-2013-0128

Harman, H. H. (1976). Modern factor analysis. The University of Chicago Press.

Hart, S. L. (1995). A Natural Resource Based View of the Firm. Academy of Management Review, 20(4), 986–1014. https://doi.org/10.5465/amr.1995.9512280033

Henseler, J., Ringle, C. M., & Sarstedt, M. (2014). A new Criterion for Assessing Discriminant Validity in Variance-based Structural Equation Modeling. Journal of the Academy of Marketing Science, 43(1), 115–135. https://doi.org/10.1007/s11747-014-0403-8

HKTDC. (2019). Liaoning: Market Profile. https://doi.org/http://china-trade-research.hktdc.com/business-news/article/Facts-and-Figures/Liaoning-Market-Profile/ff/en/1/X000000/1X06BWFX.htm

Hughes, D. J., Lee, A., Tian, A., & Newman, A. (2018). Leadership, creativity, and innovation: A critical review and practical recommendations. The Leadership Quarterly, 29(5), 1–21. https://doi.org/10.1016/j.leaqu.2018.03.001

Hunter, S. T., Bedell, K. E., & Mumford, M. D. (2007). Climate for creativity: A quantitative review. Creativity Research Journal, 19(1), 69–90. https://doi.org/10.1080/1040041070936883

Jaiswal, N. K., & Dhar, R. L. (2015). Transformational leadership, innovation climate, creative self-efficacy and employee creativity: A multilevel study. International Journal of Hospitality Management, 51, 30–41. https://doi.org/10.1016/j.ijhm.2015.07.002

Jia, J., Liu, H., Chin, T., & Hu, D. (2018). The Continuous Mediating Effects of GHRM on Employees' Green Passion via Transformational Leadership and Green Creativity.
Sustainability, 10(9), 3237. https://doi.org/10.3390/su10093237

Joshi, G., & Dhar, R. L. (2020). Green training in enhancing green creativity via green dynamic capabilities in the Indian handicraft sector: The moderating effect of resource commitment. Journal of Cleaner Production, 267, 121948. https://doi.org/10.1016/j.jclepro.2020.121948

Jung, D. I., Chow, C., & Wu, A. (2003). The role of transformational leadership in enhancing organizational innovation: Hypotheses and some preliminary findings. The Leadership Quarterly, 14(4–5), 525–544. https://doi.org/10.1016/S1048-9843(03)00050-X

Krause, D. E. (2004). Influence-based leadership as a determinant of the inclination to innovate and of innovation-related behaviors. An empirical investigation. Leadership Quarterly, 15(1), 79–102. https://doi.org/10.1016/j.leaqua.2003.12.006

Li, W., Bhutto, T. A., Nasiri, A. R., Shaikh, H. A., & Samo, F. A. (2018). Organizational Innovation: The Role of Leadership and Organizational Culture. International Journal of Public Leadership, 14(1), 33–47. https://doi.org/10.1108/IJPL-06-2017-0026

Li, W., Bhutto, T. A., Xuhui, W., Maitlo, Q., Zafar, A. U., & Bhutto, N. (2020). Unlocking Employees' Green Creativity: The Effects of Green Transformational Leadership, Green Intrinsic, and Extrinsic Motivation. Journal of Cleaner Production, 255, 1–10. https://doi.org/10.1016/J.JCLEPRO.2020.120229

Liu, D., Chen, X. P., & Yao, X. (2011). From Autonomy to Creativity: A Multilevel Investigation of the Mediating Role of Harmonious Passion. Journal of Applied Psychology, 96(2), 294–309. https://doi.org/10.1037/a0021294

Martins, E. C., & Terblanche, F. (2003). Building Organisational Culture that Stimulates Creativity and Innovation. European Journal of Innovation Management, 6(1), 64–74. https://doi.org/10.1108/14601060310456337

Mittal, S., & Dhar, R. L. (2016). Effect of Green Transformational Leadership on Green Creativity: A Study of Tourist Hotels. Tourism Management, 57, 118–127. https://doi.org/10.1016/j.tourman.2016.05.007

Nederhof, A. J. (1985). Methods of Coping With Social Desirability Bias: A Review. European Journal of Social Psychology, 15, 263–280. https://doi.org/10.1002/ejsp.2420150303

Norton, T. A., Zacher, H., Parker, S. L., & Ashkanasy, N. M. (2017). Bridging the gap between green behavioral intentions and employee green behavior: The role of green psychological
climate. Journal of Organizational Behavior, 38(7), 996–1015. https://doi.org/10.1002/job.2178

Qureshi, M. I., Awan, U., Arshad, Z., Rasli, A. M., Zaman, K., & Khan, F. (2016). Dynamic linkages among energy consumption, air pollution, greenhouse gas emissions and agricultural production in Pakistan: sustainable agriculture key to policy success. Natural Hazards, 84(1), 367–381. https://doi.org/10.1007/s11069-016-2423-9

Rathi, A. (2019). Five things to know about China's electric-car boom. https://doi.org/https://qz.com/1517557/five-things-to-know-about-chinas-electric-car-boom/

Ren, F., & Zhang, J. (2015). Job Stressors, Organizational Innovation Climate, and Employees' Innovative Behavior. Creativity Research Journal, 27(1), 16–23. https://doi.org/10.1080/10400419.2015.992659

Rimmer, M. (2018). Intellectual Property and Clean Energy. Intellectual Property and Clean Energy. Springer Singapore. https://doi.org/10.1007/978-981-13-2155-9

Sarros, J. C., Cooper, B. K., & Santora, J. C. (2008). Building a Climate for Innovation Through Transformational Leadership and Organizational Culture. Journal of Leadership & Organizational Studies, 15(2), 145–158. https://doi.org/10.1177/1548051808324100

Scott, S. G., & Bruce, R. A. (1994). Determinants of Innovative Behavior: A Path Model of Individual Innovation in the Workplace. Academy of Management Journal, 37(3), 580–607. https://doi.org/10.5465/256701

Tenenhaus, M., Vinzi, V. E., Chatelin, Y. M., & Lauro, C. (2005). PLS Path Modeling. Computational Statistics and Data Analysis, 48(1), 159–205. https://doi.org/10.1016/j.csda.2004.03.005

Tesla. (2019). Tesla's mission is to accelerate the world's transition to sustainable energy. https://doi.org/tesla.com/about

Townsend, S. (2018, July). 46 Sustainability Leaders (Who Are Also Women). Forbes, 1. https://doi.org/https://www.forbes.com/sites/solitairetownsend/2018/07/18/46-sustainability-leaders-who-are-also-women/#3730faaa1110

UCSUSA. (2019). Clean Vehicles. https://doi.org/https://www.ucsusa.org/clean-vehicles/vehicles-air-pollution-and-human-health

Van den Broeck, A., Vansteenkiste, M., De Witte, H., Soenens, B., & Lens, W. (2010). Capturing
autonomy, competence, and relatedness at work: Construction and initial validation of the Work-related Basic Need Satisfaction scale. Journal of Occupational and Organizational Psychology, 83, 981–1002. https://doi.org/10.1348/096317909X481382

Wong, E. (2017). Nearly 14,000 Companies in China Violate Pollution Rules. Newyork Times Report. https://doi.org/https://www.nytimes.com/2017/06/13/world/asia/china-companies-air-pollution-paris-agreement.html

Zhou, J. (1998). Feedback valence, feedback style, task autonomy, and achievement orientation: Interactive effects on creative performance. Journal of Applied Psychology, 83(2), 261–276. https://doi.org/10.1037/0021-9010.83.2.261

Zhou, S., Zhang, D., Lyu, C., & Zhang, H. (2018). Does Seeing "Mind Acts Upon Mind" Affect Green Psychological Climate and Green Product Development Performance? The Role of Matching Between Green Transformational Leadership and Individual Green Values. Sustainability, 10(9), 1–21. https://doi.org/10.3390/su10093206

Faraz, N. A., Ahmed, F., Ying, M., & Mehmood, S. A. (2021). The interplay of green servant leadership, self-efficacy, and intrinsic motivation in predicting employees' pro-environmental behavior. Corporate Social Responsibility and Environmental Management.

Ying, M., Faraz, N. A., Ahmed, F., & Raza, A. (2020). How Does Servant Leadership Foster Employees' Voluntary Green Behavior? A Sequential Mediation Model. International Journal of Environmental Research and Public Health, 17(5), 1792.