Modular A_5 Symmetry for Flavour Model Building

P. P. Novichkova, J. T. Penedob, S. T. Petcova,c, A. V. Titovd

a SISSA/INFN, Via Bonomea 265, 34136 Trieste, Italy
b CFTP, Departamento de Física, Instituto Superior Técnico, Universidade de Lisboa, Avenida Rovisco Pais 1, 1049-001 Lisboa, Portugal
c Kavli IPMU (WPI), University of Tokyo, 5-1-5 Kashiwanoha, 277-8583 Kashiwa, Japan
d Institute for Particle Physics Phenomenology, Department of Physics, Durham University, South Road, Durham DH1 3LE, United Kingdom

Abstract

In the framework of the modular symmetry approach to lepton flavour, we consider a class of theories where matter superfields transform in representations of the finite modular group $\Gamma_5 \cong A_5$. We explicitly construct a basis for the 11 modular forms of weight 2 and level 5. We show how these forms arrange themselves into two triplets and a quintet of A_5. We also present multiplets of modular forms of higher weight. Finally, we provide an example of application of our results, constructing two models of neutrino masses and mixing based on the supersymmetric Weinberg operator.

1E-mail: pavel.novichkov@sissa.it
2E-mail: joao.t.n.penedo@tecnico.ulisboa.pt
3Also at Institute of Nuclear Research and Nuclear Energy, Bulgarian Academy of Sciences, 1784 Sofia, Bulgaria.
4E-mail: arsenii.titov@durham.ac.uk
1 Introduction

Understanding the origins of flavour remains one of the major problems in particle physics. The power of symmetries in governing laws of particle interactions does not need to be advocated. In this regard, it is rather natural to expect that symmetry(ies) also hold the key to the solution of the flavour problem.

The fact that two out of three neutrino mixing angles are large [1–3] suggests the presence of a new flavour symmetry (at least in the lepton sector) described by a non-Abelian discrete (finite) group (see, e.g., [4–7]). While unifying the three known flavours at high energies, this symmetry may be broken at lower energies to residual symmetries of the charged lepton and neutrino mass terms, which correspond to Abelian subgroups of the original flavour symmetry group. In the bottom-up approach, starting from residual symmetries, one can successfully explain the observed pattern of neutrino mixing and, in addition, predict the value of the Dirac CP violation phase [8–10].

However, predicting neutrino masses calls for the construction of specific models, in which the flavour symmetry is typically spontaneously broken by vacuum expectation values (VEVs) of flavons — scalar gauge singlets charged non-trivially under the flavour symmetry group. Usually, a numerous set of these fields is needed. Moreover, one may have to construct rather complicated flavon potentials in order to achieve vacuum alignments leading to viable phenomenology.

A very interesting generalisation of the discrete symmetry approach to lepton flavour has been recently proposed in Ref. [14]. In this proposal, modular invariance plays the role of flavour symmetry, and couplings of a theory are modular forms of a certain level N. In addition, both the couplings and matter supermultiplets are assumed to transform in representations of a finite modular group \(\Gamma_N \). In the simplest class of such models, the VEV of a complex field \(\tau \) (the modulus) is the only source of flavour symmetry breaking, such that no flavons are needed. Another appealing feature of the proposed framework is that charged lepton and neutrino masses, neutrino mixing and CPV phases are simultaneously determined by the modular symmetry typically in terms of limited number of constant parameters. This leads to experimentally testable correlations between, e.g., the neutrino mass and mixing observables.

The cornerstone of the new approach is the modular forms of weight 2 and level N, and their arrangements into multiplets of \(\Gamma_N \). Modular forms of higher weights can be constructed from these building blocks. Remarkably, for \(N \leq 5 \), the finite modular groups are isomorphic to well-known permutation groups. In Ref. [14], the group \(\Gamma_3 \simeq A_4 \) has been considered, and the three generating modular forms of weight 2 have been explicitly constructed and shown to furnish a 3-dimensional irreducible representation (irrep) of \(A_4 \). Further, the group \(\Gamma_2 \simeq S_3 \) has been considered in [15], and the two forms shaping a doublet of \(S_3 \) have been identified. The five generating modular forms in the case of \(N = 4 \) have been found to organise themselves into a doublet and a triplet of \(\Gamma_4 \simeq S_4 \) in Ref. [16], where the first realistic model of lepton masses and mixing without flavons has also been constructed. Very recently, by studying Yukawa couplings in magnetised D-brane models, the authors of Ref. [17] have found multiplets of weight 2 modular forms corresponding to a triplet and a sextet of \(\Delta(96) \), and a triplet of \(\Delta(384) \). They have also reported an \(S_3 \) doublet and an \(S_3 \) triplet. Note that \(\Delta(96) \) is isomorphic to a subgroup of \(\Gamma_8 \), while \(\Delta(384) \) is isomorphic to a subgroup

\footnote{Predictions for the Dirac CPV phase can be obtained also if the neutrino Majorana mass matrix respects a specific residual symmetry while the mixing originating from the charged lepton sector has a form restricted by additional (GUT, generalised CP) symmetry or phenomenological considerations, see, e.g., [11–13].}
Lepton flavour models based on $\Gamma_3 \simeq A_4$ have been studied in more detail in Refs. [19][20], where several viable examples have been presented. In Ref. [21], we have constructed in a systematic way models based on $\Gamma_4 \simeq S_4$, in which light neutrino masses are generated via the type I seesaw mechanism and where no flavons are introduced. We have shown that models with a relatively small number of free parameters can successfully describe data on the charged lepton masses, neutrino mass-squared differences and mixing angles. Furthermore, we have obtained predictions for the neutrino masses and the Dirac and Majorana CPV phases in the neutrino mixing matrix. In these models, the value of atmospheric mixing angle θ_{23} is correlated with i) the Dirac phase δ, ii) the sum of neutrino masses, and iii) the effective Majorana mass in neutrinoless double beta decay.

In the present article, for the first time in this context, we consider the finite modular group $\Gamma_5 \simeq A_5$. Our main focus is on constructing the 11 generating modular forms of weight 2 and demonstrating how they can be arranged into multiplets of A_5, namely two triplets and a quintet. The group A_5 has been investigated in the context of the conventional discrete symmetry approach in Refs. [22–27] as well as in combination with so-called generalised CP symmetry in Refs. [28–32]. The characteristic phenomenological feature of the models based on the A_5 flavour symmetry is the golden ratio prediction for the solar mixing angle, $\theta_{12} = \arctan(1/\phi) \approx 32^\circ$, with $\phi = (1 + \sqrt{5})/2$ being the golden ratio, which is inside the experimentally allowed 3σ range [2][3]. An interesting theoretical feature of A_5 is that it is anomaly-free [5].

The article is organised as follows. In Section 2 we first summarise the modular symmetry approach to lepton masses and mixing proposed in Ref. [14], and then explicitly construct the two A_5 triplets and the A_5 quintet of modular forms of weight 2. Next, in Section 3 we give an example of application of the obtained results constructing a phenomenologically viable model of neutrino masses and mixing based on the Weinberg operator. Finally, in Section 4 we draw our conclusions.

2 The Framework

2.1 Modular symmetry and modular-invariant theories

The modular group Γ is the group of linear fractional transformations γ acting on the complex variable τ belonging to the upper-half complex plane as follows:

$$\gamma \tau = \frac{a\tau + b}{c\tau + d}, \quad \text{where } a, b, c, d \in \mathbb{Z} \quad \text{and} \quad ad - bc = 1, \quad \text{Im}\tau > 0. \quad (2.1)$$

The modular group is isomorphic to the projective special linear group $PSL(2,\mathbb{Z})$, and it is generated by two elements S and T satisfying

$$S^2 = (ST)^3 = I, \quad (2.2)$$

I being the identity element of a group. Representing S and T as

$$S = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}, \quad T = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}, \quad (2.3)$$

one finds

$$\tau \xrightarrow{S} -\frac{1}{\tau}, \quad \tau \xrightarrow{T} \tau + 1. \quad (2.4)$$
The group $SL(2, \mathbb{Z}) = \Gamma(1) \equiv \Gamma$ contains a series of infinite normal subgroups $\Gamma(N), N = 1, 2, 3, \ldots$:

$$\Gamma(N) = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in SL(2, \mathbb{Z}), \quad \begin{pmatrix} a & b \\ c & d \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \pmod{N} \right\}, \quad (2.5)$$

called the principal congruence subgroups. For $N = 1$ and 2, we introduce the groups $\Gamma(N) \equiv \Gamma(N)/\{I, -I\}$ (note that $\Gamma(1) \equiv \Gamma$), and for $N > 2$, $\Gamma(N) \equiv \Gamma(N)$. For each N, the associated linear fractional transformations of the form in eq. (2.1) are in a one-to-one correspondence with the elements of $\Gamma(N)$. The quotient groups $\Gamma_N \equiv \Gamma/\Gamma(N)$ are called finite modular groups. For $N \leq 5$, these groups are isomorphic to permutation groups widely used to build flavour models (see, e.g., [18]). Namely, $\Gamma_2 \simeq S_3$, $\Gamma_3 \simeq A_4$, $\Gamma_4 \simeq S_4$ and $\Gamma_5 \simeq A_5$.

Modular forms of weight k and level N are holomorphic functions $f(\tau)$ transforming under the action of $\Gamma(N)$ in the following way:

$$f(\gamma \tau) = (c\tau + d)^k f(\tau), \quad \gamma \in \Gamma(N). \quad (2.6)$$

Here k is even and non-negative, and N is natural. Modular forms of weight k and level N span a linear space of finite dimension. There exists a basis in this space such that a multiplet of modular forms $f_i(\tau)$ transforms according to a unitary representation ρ of the finite group Γ_N:

$$f_i(\gamma \tau) = (c\tau + d)^k \rho(\gamma)_{ij} f_j(\tau), \quad \gamma \in \Gamma. \quad (2.7)$$

In the case of $N = 2$, the modular forms of weight 2 span a two-dimensional linear space. In a certain basis two generating modular forms are transformed in the 2-dimensional irreducible representation (irrep) of S_3 [15]. For level $N = 3$, weight 2 modular forms arrange themselves in a triplet of A_4 [14]. In the case of $N = 4$, the corresponding linear space has dimension 5, and weight 2 modular forms group in a doublet and a triplet of S_4 [16]. For $N = 5$, there are 11 modular forms of weight 2. They are organised in two triplets and a quintet of A_5. In the next subsection, we will explicitly derive them, but before that, let us briefly recall how to construct supersymmetric modular-invariant theories.

In the case of $N = 1$ rigid supersymmetry, the matter action S reads

$$S = \int d^4x d^2\theta d^2\bar{\theta} \; K(\tau, \bar{\tau}, \chi, \bar{\chi}) + \int d^4x d^2\theta \; W(\tau, \chi) + \int d^4x d^2\bar{\theta} \; \bar{W}(\bar{\tau}, \bar{\chi}), \quad (2.8)$$

where K is the Kähler potential, W is the superpotential and χ denotes a set of chiral supermultiplets contained in the theory apart from the modulus τ. The θ and $\bar{\theta}$ denote Grassmann variables. The modular group acts on τ and supermultiplets χ_I of a sector I of a theory in a certain way [33,34]. Assuming, in addition, that the supermultiplets χ_I transform according to a representation ρ_I of Γ_N, we have

$$\begin{cases}
\tau \rightarrow \frac{a\tau + b}{c\tau + d}, \\
\chi_I \rightarrow (c\tau + d)^{-k_I} \rho_I(\gamma) \chi_I.
\end{cases} \quad (2.9)$$

Note that χ_I are not modular forms, and the weight $(-k_I)$ can be odd and/or negative. Requiring invariance of S under eq. (2.9) leads to

$$\begin{cases}
W(\tau, \chi) \rightarrow W(\tau, \chi), \\
K(\tau, \bar{\tau}, \chi, \bar{\chi}) \rightarrow K(\tau, \bar{\tau}, \chi, \bar{\chi}) + f_K(\tau, \chi) + \bar{f}_K(\tau, \bar{\chi}),
\end{cases} \quad (2.10)$$

3
where the second line represents a Kähler transformation. The superpotential can be expanded in powers of \(\chi \):

\[
W(\tau, \chi) = \sum_n \sum_{\{I_1, \ldots, I_n\}} (Y_{I_1} \ldots Y_{I_n}(\tau) \chi I_1 \ldots \chi I_n) \mathbf{1},
\]

where \(\mathbf{1} \) stands for an invariant singlet of \(\Gamma_N \). To ensure invariance of \(W \) under the transformations specified in eq. (2.9), the functions \(Y_{I_1} \ldots Y_{I_n}(\tau) \) must transform as follows:

\[
Y_{I_1} \ldots Y_{I_n}(\tau) \rightarrow (c\tau + d)^{k_Y} \rho_Y(\gamma) Y_{I_1} \ldots Y_{I_n}(\tau),
\]

where \(\rho_Y \) is a representation of \(\Gamma_N \), and \(k_Y \) and \(\rho_Y \) are such that

\[
k_Y = k_{I_1} + \cdots + k_{I_n},
\]

\[
\rho_Y \otimes \rho_{I_1} \otimes \ldots \otimes \rho_{I_n} \supset \mathbf{1}.
\]

Thereby, the functions \(Y_{I_1} \ldots Y_{I_n}(\tau) \) form a multiplet of weight \(k_Y \) and level \(N \) modular forms transforming in the representation \(\rho_Y \) of \(\Gamma_N \) (cf. eq. (2.7)).

2.2 Generators of modular forms of level \(N = 5 \)

The space of modular forms of level \(N = 5 \) and lowest nontrivial weight 2 is 11. Expansions for a standard basis \(\{b_1(\tau), \ldots, b_{11}(\tau)\} \) of this space of functions are given in Appendix A.1. Modular forms of higher weight can be constructed from homogeneous polynomials in these eleven modular forms. The action of the discrete quotient group \(\Gamma_5 \) divides the space of lowest weight modular functions into two triplets transforming in irreps \(5 \) and \(3' \) and a quintet transforming in \(5 \) of \(\Gamma_5 \simeq A_5 \) (see also Section 4.4 of Ref. [35]).

As in the cases of \(\Gamma_3 \simeq A_4 \) \[14\], \(\Gamma_2 \simeq S_3 \) \[15\] and \(\Gamma_4 \simeq S_4 \) \[16\], the lowest weight modular functions correspond to linear combinations of logarithmic derivatives of some “seed” functions \(\alpha_{i,j}(\tau) \). These functions form a set which is in a certain sense closed under the action of \(A_5 \). As can be inferred from the results in Ref. [36], a convenient choice for \(\alpha_{i,j}(\tau) \) is given by the Jacobi theta functions \(\theta_3(z(\tau), t(\tau)) \), and they explicitly read \(^2\)

\[
\begin{align*}
\alpha_{1,-1}(\tau) &\equiv \theta_3 \left(\frac{\tau + 1}{2}, 5\tau \right), & \alpha_{2,-1}(\tau) &\equiv e^{2\pi i \tau/5} \theta_3 \left(\frac{3\tau + 1}{2}, 5\tau \right), \\
\alpha_{1,0}(\tau) &\equiv \theta_3 \left(\frac{\tau + 9}{10}, \frac{\tau}{5} \right), & \alpha_{2,0}(\tau) &\equiv \theta_3 \left(\frac{\tau + 7}{10}, \frac{\tau}{5} \right), \\
\alpha_{1,1}(\tau) &\equiv \theta_3 \left(\frac{\tau + 1}{10}, \frac{\tau + 1}{5} \right), & \alpha_{2,1}(\tau) &\equiv \theta_3 \left(\frac{\tau + 8}{10}, \frac{\tau + 1}{5} \right), \\
\alpha_{1,2}(\tau) &\equiv \theta_3 \left(\frac{\tau + 1}{10}, \frac{\tau + 2}{5} \right), & \alpha_{2,2}(\tau) &\equiv \theta_3 \left(\frac{\tau + 9}{10}, \frac{\tau + 2}{5} \right), \\
\alpha_{1,3}(\tau) &\equiv \theta_3 \left(\frac{\tau + 2}{10}, \frac{\tau + 3}{5} \right), & \alpha_{2,3}(\tau) &\equiv \theta_3 \left(\frac{\tau}{10}, \frac{\tau + 3}{5} \right), \\
\alpha_{1,4}(\tau) &\equiv \theta_3 \left(\frac{\tau + 3}{10}, \frac{\tau + 4}{5} \right), & \alpha_{2,4}(\tau) &\equiv \theta_3 \left(\frac{\tau + 1}{10}, \frac{\tau + 4}{5} \right).
\end{align*}
\]

\(^2\)For properties of these special functions, see, e.g., Refs. [37,38]. In the notations of Ref. [37], \(\theta_3 \equiv \theta \left[\begin{array}{c} 0 \\ 0 \end{array} \right] \).
Under the action of the generators \(S\) and \(T\) of \(\Gamma_5\) (see Appendix B.1), each of these functions is mapped to another, up to (possibly \(\tau\)-dependent) multiplicative factors. A diagram of said map is given in Fig. 1, and one can check that the actions of \(S\) and \(T\) applied to each element correspond to the identity. Taking logarithmic derivatives, one obtains:

\[
\frac{d}{d\tau} \log \alpha_{i,j}(-1/\tau) = \frac{i\pi}{20} \left(1 - \frac{1}{\tau^2}\right) + \frac{1}{2\tau} + \frac{d}{d\tau} \log \alpha_{i,j}'(\tau),
\]

(2.16)

\[
\frac{d}{d\tau} \log \alpha_{i,j}(\tau + 1) = \frac{d}{d\tau} \log \alpha_{i,j}'(\tau),
\]

(2.17)

where \(\alpha_{i,j}'\) and \(\alpha_{i,j}\) are the images of \(\alpha_{i,j}\) under the \(S\) and \(T\) maps of Fig. 1 respectively.

It then follows that the functions

\[
Y(c_{1-1}, \ldots, c_{1.4}; c_{2-1}, \ldots, c_{2.4}|\tau) \equiv \sum_{i,j} c_{i,j} \frac{d}{d\tau} \log \alpha_{i,j}(\tau), \quad \text{with } \sum_{i,j} c_{i,j} = 0,
\]

(2.18)

span the sought-after 11-dimensional space of lowest weight modular forms of level \(N = 5\). Under \(S\) and \(T\), one has the following transformations:

\[
\begin{align*}
S : \quad & Y(c_{1-1}, \ldots, c_{1.4}; c_{2-1}, \ldots, c_{2.4}|\tau) \rightarrow Y(c_{1-1}, \ldots, c_{1.4}; c_{2-1}, \ldots, c_{2.4}|\tau - 1/\tau) \\
& = Y(c_{1.0}, c_{1-1}, c_{1.4}, c_{2.2}, c_{2.3}, c_{1.1}; c_{2.0}, c_{2-1}, c_{2.4}, c_{1.2}, c_{1.3}, c_{2.1}|\tau),
\end{align*}
\]

(2.19)

\[
\begin{align*}
T : \quad & Y(c_{1-1}, \ldots, c_{1.4}; c_{2-1}, \ldots, c_{2.4}|\tau) \rightarrow Y(c_{1-1}, \ldots, c_{1.4}; c_{2-1}, \ldots, c_{2.4}|\tau + 1) \\
& = Y(c_{1-1}, c_{1.4}, c_{1.0}, c_{1.1}, c_{1.2}, c_{1.3}; c_{2-1}, c_{2.4}, c_{2.0}, c_{2.1}, c_{2.2}, c_{2.3}|\tau).
\end{align*}
\]

(2.20)

Then, as anticipated, the space in question is divided into the following multiplets of \(A_5\):

\[
Y_5(\tau) = \begin{pmatrix} Y_1(\tau) \\ Y_2(\tau) \\ Y_3(\tau) \\ Y_4(\tau) \\ Y_5(\tau) \end{pmatrix} \equiv \begin{pmatrix} -\frac{1}{\sqrt{6}} Y(-5,1,1,1,1; -5,1,1,1,1|\tau) \\ Y(0,1,\zeta^4,\zeta,\zeta^2,\zeta^3,\zeta^4,\zeta^5|\tau) \\ Y(0,1,\zeta^4,\zeta,\zeta^2,\zeta^3,\zeta^4,\zeta^5|\tau) \\ Y(0,1,\zeta^2,\zeta^4,\zeta^3,\zeta^4,\zeta^5|\tau) \\ Y(0,1,\zeta,\zeta^2,\zeta^3,\zeta^4,\zeta^5|\tau) \end{pmatrix},
\]

(2.21)

\[
Y_3(\tau) = \begin{pmatrix} Y_6(\tau) \\ Y_7(\tau) \\ Y_8(\tau) \end{pmatrix} \equiv \begin{pmatrix} \frac{1}{\sqrt{2}} Y(-\sqrt{5},1,-1,-1,-1,-1,\sqrt{5},1,1,1,1|\tau) \\ Y(0,1,\zeta^4,\zeta^3,\zeta^2,\zeta,0,-1,-\zeta^3,-\zeta^2,-\zeta,\zeta^4|\tau) \\ Y(0,1,\zeta^2,\zeta^4,\zeta^3,\zeta^2,\zeta,0,1,\zeta,\zeta^2,\zeta^3,\zeta^4|\tau) \end{pmatrix},
\]

(2.22)

\[
Y_{3'}(\tau) = \begin{pmatrix} Y_{9}(\tau) \\ Y_{10}(\tau) \\ Y_{11}(\tau) \end{pmatrix} \equiv \begin{pmatrix} \frac{1}{\sqrt{2}} Y(\sqrt{5},-1,-1,-1,-1,-1,-\sqrt{5},1,1,1,1|\tau) \\ Y(0,1,\zeta^4,\zeta,\zeta^3,\zeta^2,\zeta,0,-1,-\zeta^3,\zeta^2,-\zeta,\zeta^4|\tau) \\ Y(0,1,\zeta^4,\zeta,\zeta^3,\zeta^2,\zeta,0,-1,-\zeta^3,\zeta^2,-\zeta,\zeta^4|\tau) \end{pmatrix},
\]

(2.23)
where $\zeta = e^{2\pi i/5}$. The q-expansions for these modular forms are given in Appendix A.2. In Appendix B.1 we specify our basis choice for the representation matrices $\rho(\gamma)$ of A_5, and we list the Clebsch-Gordan coefficients for this basis in Appendix B.2.

Multiplets transforming in the other representations of A_5 can be obtained from tensor products of the lowest weight multiplets Y_5, Y_3 and Y_3. The missing 1 and 4 representations arise at weight 4. Even though one can form 66 products $Y_i Y_j$, the dimension of the space of weight $k = 4$ (and level 5) forms is $5k + 1 = 21$. Therefore, there are 45 constraints between the $Y_i Y_j$, which we list in Appendix C, and which reduce the 66 potentially independent combinations to 21 truly independent ones. These last combinations arrange themselves into the following multiplets of A_5:

$$Y^{(4)}_1 = Y^2_1 + 2Y_3 Y_4 + 2Y_2 Y_5 \sim 1,$$

$$Y^{(4)}_3 = \left(\begin{array}{c} -2Y_1 Y_6 + \sqrt{3} Y_5 Y_7 + \sqrt{3} Y_2 Y_8 \\ \sqrt{3} Y_2 Y_6 + Y_1 Y_7 - \sqrt{6} Y_3 Y_8 \\ \sqrt{3} Y_5 Y_6 - \sqrt{6} Y_4 Y_7 + Y_1 Y_8 \end{array} \right) \sim 3,$$

$$Y^{(4)}_3' = \left(\begin{array}{c} \sqrt{3} Y_1 Y_6 + Y_3 Y_7 + Y_2 Y_8 \\ Y_3 Y_6 - \sqrt{2} Y_2 Y_7 - \sqrt{2} Y_4 Y_8 \\ Y_4 Y_6 - \sqrt{2} Y_3 Y_7 - \sqrt{2} Y_5 Y_8 \end{array} \right) \sim 3',$$

$$Y^{(4)}_4 = \left(\begin{array}{c} 2Y_1^2 + \sqrt{6} Y_1 Y_2 - Y_3 Y_5 \\ 2Y_2^2 + \sqrt{6} Y_1 Y_3 - Y_4 Y_5 \\ 2Y_3^2 - Y_3 Y_5 + \sqrt{6} Y_1 Y_4 \\ 2Y_4^2 - Y_4 Y_5 + \sqrt{6} Y_1 Y_3 \end{array} \right) \sim 4,$$

$$Y^{(4)}_{5,1} = \left(\begin{array}{c} \sqrt{2} Y_1^2 + \sqrt{2} Y_3 Y_4 - 2\sqrt{2} Y_2 Y_5 \\ \sqrt{3} Y_1^2 - 2\sqrt{2} Y_1 Y_2 \\ \sqrt{2} Y_1 Y_3 + 2\sqrt{3} Y_3 Y_4 \\ 2\sqrt{3} Y_2 Y_3 + \sqrt{2} Y_1 Y_4 \\ \sqrt{3} Y_3^2 - 2\sqrt{2} Y_1 Y_5 \end{array} \right) \sim 5,$$

$$Y^{(4)}_{5,2} = \left(\begin{array}{c} \sqrt{3} Y_5 Y_7 - \sqrt{3} Y_2 Y_8 \\ -Y_2 Y_6 - \sqrt{3} Y_1 Y_7 - \sqrt{2} Y_3 Y_8 \\ -2Y_3 Y_6 - \sqrt{2} Y_2 Y_7 \\ 2Y_4 Y_6 + \sqrt{2} Y_5 Y_8 \\ Y_5 Y_6 + \sqrt{2} Y_4 Y_7 + \sqrt{3} Y_1 Y_8 \end{array} \right) \sim 5.$$

3 Phenomenology

To illustrate the use of the constructed modular multiplets for model building, we consider a minimal example where the neutrino masses originate from the Weinberg operator. We assume that the charged lepton mass matrix is diagonal, so it does not contribute to the mixing. We will show later an explicit example with residual symmetry where this possibility is realised. In this set-up, the only superpotential term relevant for the mixing is the Weinberg operator:

$$W \supset \frac{g}{\Lambda} \left(L H_u L H_d Y \right)_1,$$

(3.1)
where Y is a modular multiplet of weight k_Y.

We assume that the lepton SU(2)$_L$ doublets transform as an A_5 triplet ($\rho_L \sim 3$ or $3'$) of weight $-k_L$, while the Higgs multiplet H_u is an A_5 singlet ($\rho_u \sim 1$) of zero weight ($k_u = 0$). After the breaking of the modular symmetry, we obtain:

$$\frac{g}{\Lambda} (L H_u L H_u Y)_1 \rightarrow c_{ij} (L_i H_u) (L_j H_u),$$

which leads to the Lagrangian term

$$\mathcal{L} \supset -\frac{1}{2} (M_\nu)_{ij} \overline{\nu_R^c} \nu_{jL} + \text{h.c.},$$

written in terms of four-spinors, where $M_\nu \equiv 2 \nu^2 u g^2 \Lambda$, with $\langle H_u \rangle = (0, v_u)^T$, and $\nu^c_i \equiv (\nu_i^c)^c \equiv C \nu_i^T$, with C being the charge conjugation matrix.

Given the above conditions, one needs to have $k_Y = 2k_L$ to compensate the overall weight of the Weinberg operator term. Since k_Y is a non-negative integer, we can systematically explore the possible neutrino mass matrices going from $k_Y = 0$ to more and more positive integer k_Y. In the case of $k_Y = 0$ there are no modular forms in the Weinberg operator and the only possible A_5 singlet is $(LL)_1 = L_1 L_1 + L_2 L_3 + L_3 L_2$ (cf. Appendix B.2), which leads to the following neutrino mass matrix:

$$M_\nu = 2 \nu^2 u g^2 \Lambda \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}.$$ \hspace{1cm} (3.4)

The case $k_Y = 0$ is then excluded, since it leads to degenerate neutrino masses, which are ruled out by the neutrino oscillation data [1]. In the following subsections we consider the cases $k_Y = 2$ and $k_Y = 4$ (corresponding to $k_L = 1$ and $k_L = 2$, respectively).

3.1 The case of $k_Y = 2$

In this case, the available modular form multiplets are Y_3, Y_3', and Y_5. Note that L^2 decomposes as $3^{(t)} \otimes 3^{(t)} = 1 \oplus 3^{(t)} \oplus 5$, but the $3^{(t)}$ component vanishes due to antisymmetry (see Appendix B.2). Therefore the only way to form a singlet is by combining the quintets, $(L^2 Y_5)_1$. If $\rho_L \sim 3$, one obtains:

$$M_{\nu}^{y_3} = \frac{\nu^2 u g}{\Lambda} \begin{pmatrix} 2Y_1 & -\sqrt{3}Y_5 & -\sqrt{3}Y_2 \\ -\sqrt{3}Y_5 & \sqrt{6}Y_4 & -Y_1 \\ -\sqrt{3}Y_2 & -Y_1 & \sqrt{6}Y_3 \end{pmatrix},$$

while if instead $\rho_L \sim 3'$, it follows that

$$M_{\nu}^{y_3'} = \frac{\nu^2 u g}{\Lambda} \begin{pmatrix} 2Y_1 & -\sqrt{3}Y_4 & -\sqrt{3}Y_3 \\ -\sqrt{3}Y_4 & \sqrt{6}Y_2 & -Y_1 \\ -\sqrt{3}Y_3 & -Y_1 & \sqrt{6}Y_5 \end{pmatrix}.$$

The difference between eq. (3.5) and eq. (3.6) resides in the cyclic exchange of Y_5, Y_4, Y_2 and Y_3 (in this order).

In both cases, $\langle \tau \rangle$ determines neutrino masses up to the overall mass scale. Furthermore, given our assumption of a diagonal charged lepton mass matrix, after employing the permutation ordering the charged lepton masses, $\langle \tau \rangle$ additionally determines the mixing parameters.
Through numerical search, we find that the agreement with data is optimised by choosing \(\rho_L = 3' \) and \(\langle \tau \rangle = 0.48 + 0.873i \), giving rise to the following values of observables, for a spectrum with normal ordering:

\[
\begin{align*}
r &= 0.03056, \quad \Delta m^2_{21} = 7.427 \cdot 10^{-5} \text{ eV}^2, \quad \Delta m^2_{31} = 2.467 \cdot 10^{-3} \text{ eV}^2, \\
m_1 &= 0.02036 \text{ eV}, \quad m_2 = 0.02211 \text{ eV}, \quad m_3 = 0.05368 \text{ eV}, \quad \sum_i m_i = 0.09616 \text{ eV}, \\
\sin^2 \theta_{12} &= 0.3252, \quad \sin^2 \theta_{13} = 0.1655, \quad \sin^2 \theta_{23} = 0.4213, \\
\delta/\pi &= 1.498, \quad \alpha_{21/\pi} = 1.904, \quad \alpha_{31/\pi} = 1.948,
\end{align*}
\]

Given an overall factor \(v_n^2 g/\Lambda \simeq 0.006339 \text{ eV} \), and assuming the charged lepton sector induces a permutation of the first and third rows of the PMNS mixing matrix. While one obtains a good agreement with data for the mass-squared differences (and hence for the ratio \(r = \Delta m^2_{21}/\Delta m^2_{31} \)), as well as for the values of \(\sin^2 \theta_{12} \) and of \(\delta \), the value of \(\sin^2 \theta_{23} \) is slightly outside its \(3\sigma \) range and, more importantly, \(\sin^2 \theta_{13} \) is many standard deviations away from its experimentally allowed range \[2,3]. Nevertheless, it is encouraging to find that the predictions for the mixing angles are in qualitative agreement with the observed pattern, namely, \(\sin^2 \theta_{13} < \sin^2 \theta_{12} < \sin^2 \theta_{23} \). Note that the indicated value of \(\langle \tau \rangle \) is close to the “right cusp” \(\tau_R = 1/2 + i \sqrt{3}/2 \), which preserves a residual \(Z_3^{TS} \) symmetry (see, e.g., [21]).

3.2 The case of \(k_Y = 4 \)

In this case, the available modular form multiplets are those given in eq. [2.24]. Again, since \(L^2 \) decomposes as \(1 \oplus 5 \), one can form singlets by using \(Y_1^{(4)}, Y_{5,1}^{(4)} \) or \(Y_{5,2}^{(4)} \). All three contributions should enter \(W \) with independent complex coefficients. If \(\rho_L \sim 3' \), one obtains:

\[
M' = \frac{2v_n^2 g_1}{\Lambda} \left[(Y_1^2 + 2Y_3Y_4 + 2Y_2Y_5) \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}
+ \frac{g_2}{g_1} \begin{pmatrix} Y_1^2 + 2Y_3Y_4 - 2Y_2Y_5 & - \frac{3}{2\sqrt{2}} Y_2^3 + \sqrt{3} Y_1 Y_5 & - \frac{3}{2\sqrt{2}} Y_4^2 + \sqrt{3} Y_1 Y_2 \\ \ast & 3Y_2 Y_3 + \sqrt{\frac{3}{2}} Y_1 Y_4 & Y_2 Y_5 - \frac{1}{2} (Y_1^2 + Y_3 Y_4) \\ \ast & \ast & 3Y_4 Y_5 + \sqrt{\frac{3}{2}} Y_1 Y_3 \end{pmatrix}
+ \frac{g_3}{g_1} \begin{pmatrix} Y_5 Y_7 - Y_2 Y_8 & - \frac{1}{\sqrt{2}} Y_5 Y_6 - \frac{1}{\sqrt{2}} Y_2 Y_7 - \sqrt{3} Y_1 Y_8 & \frac{1}{2} Y_2 Y_6 + \frac{\sqrt{3}}{2} Y_1 Y_7 + \frac{1}{\sqrt{2}} Y_3 Y_8 \\ \ast & \sqrt{\frac{3}{2}} Y_4 Y_6 + Y_5 Y_7 & \frac{1}{2} (Y_2 Y_8 - Y_3 Y_7) \\ \ast & \ast & - \sqrt{\frac{3}{2}} Y_5 Y_6 - Y_2 Y_7 \end{pmatrix} \right],
\]

where through asterisks we (here and henceforth) omit some entries of symmetric matrices. If instead \(\rho_L \sim 3' \), it follows that

\[
M'' = \frac{2v_n^2 g_1}{\Lambda} \left[(Y_1^2 + 2Y_3Y_4 + 2Y_2Y_5) \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}
+ \frac{g_2}{g_1} \begin{pmatrix} Y_1^2 + 2Y_3Y_4 - 2Y_2Y_5 & - \frac{3}{2\sqrt{2}} Y_2^3 + \sqrt{3} Y_1 Y_5 & - \frac{3}{2\sqrt{2}} Y_4^2 + \sqrt{3} Y_1 Y_2 \\ \ast & \frac{3}{2\sqrt{2}} Y_2^3 - \sqrt{6} Y_1 Y_4 & Y_2 Y_5 - \frac{1}{2} (Y_1^2 + Y_3 Y_4) \\ \ast & \ast & \frac{3}{2\sqrt{2}} Y_3^2 - \sqrt{6} Y_1 Y_5 \end{pmatrix}
\right],
\]
forms Y is to assume that it originates from a different modulus shown in Fig. 2.

The indicated value of the effective Majorana mass with Y since this value of the neutrino mass matrix. This can be achieved by fixing τ 0 of the orders charged lepton masses, 5 real parameters — namely, 2 v 2/Λ, Re(g 2/g 1), Re(g 3/g 1) and Im(g 3/g 1) — determine the neutrino masses and mixing. Through numerical search, we find for g 2/g 1 = −0.2205 − 0.1576 i, g 3/g 1 = 0.0246 − 0.0421 i, (3.11) which is consistent with the experimental data at 1.7σ level, for a spectrum with normal ordering:

\[r = 0.03, \quad \Delta m^2_{21} = 7.399 \cdot 10^{-5} \text{eV}^2, \quad \Delta m^2_{31} = 2.489 \cdot 10^{-3} \text{eV}^2, \]
\[m_1 = 0.0416 \text{eV}, \quad m_2 = 0.04248 \text{eV}, \quad m_3 = 0.06496 \text{eV}, \]
\[\sum_i m_i = 0.149 \text{eV}, \quad |\langle m \rangle| = 0.04174 \text{eV}, \]

\[\sin^2 \theta_{12} = 0.2824, \quad \sin^2 \theta_{13} = 0.02136, \quad \sin^2 \theta_{23} = 0.5504, \]
\[\delta/\pi = 1.315, \quad \alpha_{21}/\pi = 1.978, \quad \alpha_{31}/\pi = 0.931. \]

The indicated value of the effective Majorana mass |⟨m⟩| which controls the rate of neutrinoless double beta decay may be probed in future experiments aiming to test values down to the |⟨m⟩| ≈ 10^{-2} \text{eV} frontier.

In the vicinity of the point described by eq. (3.11), keeping ⟨τ⟩ = i, we find strong correlations between sin²θ_{12} and sin²θ_{13}, and between sin²θ_{23} and δ. These correlations are shown in Fig. 2.

One possible way to force the charged lepton mass matrix to be diagonal in this set-up is to assume that it originates from a different modulus τ l which develops a VEV ⟨τ l⟩ = i
Figure 2: Correlations between $\sin^2 \theta_{12}$ and $\sin^2 \theta_{13}$ (left) and between $\sin^2 \theta_{23}$ and δ (right) in the model with $k_Y = 4$ and $\langle \tau \rangle = i$, in the vicinity of the viable point of eq. (3.11). The green, yellow and red regions correspond to 2σ, 3σ and 5σ confidence levels, respectively.

breaking the modular symmetry to the residual Z symmetry generated by T, $\tau \rightarrow \tau + 1$. The corresponding residual symmetry of the charged lepton mass matrix is Z_5 generated by the T generator of Γ_5, which is diagonal for $\rho_L \sim 3^{(0)}$. One can show that in the case $\rho_{E^c} = \rho_L$ the charged lepton Yukawa interaction terms $(E^c L_1) H_d$ with the multiplets of weight 4 modular forms lead to the following mass matrix (written in the left-right convention)\(^\text{3}\):

$$M_e = v_d \alpha_1 \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix} + \frac{\alpha_2}{\alpha_1} \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & -1 \\ 0 & 1 & 0 \end{pmatrix} + \frac{\alpha_3}{\alpha_1} \begin{pmatrix} 2 & 0 & 0 \\ 0 & 0 & -1 \\ 0 & -1 & 0 \end{pmatrix}, \quad (3.13)$$

where the three matrix terms correspond to contributions from $Y_{1}^{(4)}$, $Y_{3}^{(4)}$ and $Y_{5,1}^{(4)}$, respectively, and $\langle H_d \rangle = (v_d, 0)^T$. The relevant product is diagonal:

$$M_e M_e^\dagger = v_d^2 \alpha_1^2 \begin{pmatrix} 1 + 2 \frac{\alpha_3}{\alpha_1} & 2 \left| \frac{\alpha_2}{\alpha_1} - \frac{\alpha_3}{\alpha_1} \right| & 2 \left| \frac{\alpha_2}{\alpha_1} - \frac{\alpha_3}{\alpha_1} \right| \\ 2 \left| \frac{\alpha_2}{\alpha_1} - \frac{\alpha_3}{\alpha_1} \right| & 1 + \frac{\alpha_2}{\alpha_1} - \frac{\alpha_3}{\alpha_1} & 2 \left| \frac{\alpha_2}{\alpha_1} - \frac{\alpha_3}{\alpha_1} \right| \\ 2 \left| \frac{\alpha_2}{\alpha_1} - \frac{\alpha_3}{\alpha_1} \right| & 2 \left| \frac{\alpha_2}{\alpha_1} - \frac{\alpha_3}{\alpha_1} \right| & 1 + \frac{\alpha_2}{\alpha_1} - \frac{\alpha_3}{\alpha_1} \end{pmatrix}, \quad (3.14)$$

where α_2/α_1 and α_3/α_1 are complex parameters, and $v_d \alpha_1$ is the overall mass scale factor. To reproduce the charged lepton masses with these parameters one can choose, e.g., $v_d \alpha_1 \simeq 660$ MeV, $\alpha_2/\alpha_1 = 1.34$ and $\alpha_3/\alpha_1 = -0.500385$.

It is also possible to obtain the same matrix without an additional modulus τ^l. Instead, let us assume that the charged lepton mass matrix originates from the term $(E^c L_1) H_d$ and Yukawa couplings to two flavons, an A_3 triplet $\varphi_{3}^{(0)}$ and an A_5 quintet φ_{5}, each of which develops a VEV breaking A_5 to Z_5^T:

$$\langle \varphi_{3}^{(0)} \rangle \propto (1, 0, 0, 0, 0) \quad \text{and} \quad \langle \varphi_{5} \rangle \propto (1, 0, 0, 0, 0). \quad (3.15)$$

\(^3\)Actually, this is the most general form of the mass matrix for any weight higher than 2, since modular form singlets, triplets and quintets are always present at such weights, and their values at $\tau = i\infty$ are such that only their first components can be non-zero, cf. eq. (3.16). At weight 2, however, the first term in eq. (3.13) is missing as there is no modular form singlet of weight 2, and it is impossible to recover the charged lepton mass hierarchy in this case.
In this case the three terms \((E^cL)_1H_d, (E^cL\varphi_3)_1H_d\) and \((E^cL\varphi_5)_1H_d\) lead to the same mass matrix as in eq. (3.13). This is related to the fact that modular form multiplets of weight 4 take the following values at the symmetric point \(\langle \tau \rangle = i\infty:\)

\[
Y_3^{(4)} = \frac{4\pi^2}{\sqrt{15}}(1,0,0), \quad Y_3'^{(4)} = -\frac{2\pi^2}{\sqrt{5}}(1,0,0), \quad Y_{5,1}^{(4)} = -\frac{2\sqrt{2}\pi^2}{3}(1,0,0,0,0).
\]

Hence, they can be thought of as flavon multiplets developing the corresponding VEVs.

4 Summary and Conclusions

In the framework of modular invariance approach to lepton flavour proposed in Ref. [14], we have considered a class of theories in which couplings and matter superfields transform in irreps of the finite modular group \(\Gamma_5 \simeq A_5\). The building blocks needed to construct such theories are modular forms of weight 2 and level 5. We have explicitly constructed the 11 generating modular forms of weight 2, using the Jacobi theta function and its properties, which lead to closure of the set of 12 seed functions (see eq. (2.15)) under the action of \(\Gamma_5\), as shown in Fig. 1. Further, we have demonstrated how these 11 modular forms arrange themselves into multiplets of \(A_5\). Namely, we have found two triplets transforming in the irreps \(3\) and \(3'\) of \(A_5\), and a quintet transforming in the irrep \(5\) of \(A_5\). They are given in eqs. (2.21) – (2.23), and their explicit \(q\)-expansions are listed in Appendix A.2. From these triplets and quintet we have constructed multiplets of modular forms of weight 4 (see eq. (2.24) and Appendix C).

While thorough analysis of modular-invariant theories with the \(\Gamma_5\) symmetry is left for future work, we have presented two examples of application of the obtained results to neutrino masses and mixing. In both of them, we have assumed that neutrino masses are generated via the Weinberg operator, and considered the charged lepton mass matrix to be diagonal. The first model involving the quintet of weight 2 modular forms leads to the neutrino mass matrix containing three real parameters — complex VEV of the modulus \(\langle \tau \rangle\) and a real overall scale. We have found that the value of \(\langle \tau \rangle\) lying very close to the “right cusp” \(\tau_R = 1/2 + i\sqrt{3}/2\) (\(\tau_R\) preserves a residual \(\mathbb{Z}_3^T\) symmetry) leads to a good agreement with neutrino oscillation data except for \(\sin^2\theta_{13}\), which falls many standard deviations away from its experimentally allowed region. The second model contains an \(A_5\) singlet and two \(A_5\) quintets of modular forms of weight 4. The neutrino mass matrix in this case depends on five real parameters (three real constants and two phases) apart from \(\langle \tau \rangle\). Assuming that \(\langle \tau \rangle = i\) — a self-dual point which preserves a residual \(\mathbb{Z}_2^S\) symmetry — we have obtained a viable benchmark point compatible with the data at 1.7\(\sigma\) confidence level. In this case the neutrino mass matrix depends on three real parameters and two phases. Varying these free parameters we found strong correlations between the values of \(\sin^2\theta_{12}\) and \(\sin^2\theta_{13}\), and the values of \(\sin^2\theta_{23}\) and the Dirac CPV phase \(\delta\) (Fig. 2).

In conclusion, the results obtained in the present study can be used to build in a systematic way modular-invariant flavour models with the \(\Gamma_5 \simeq A_5\) symmetry. In this regard, this article is expected to serve as a useful handbook for future studies.
Acknowledgements

A.V.T. would like to thank F. Feruglio for useful discussions on problems related to this work. A.V.T. expresses his gratitude to SISSA and the University of Padua, where part of this work was carried out, for their hospitality and support. This project has received funding from the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreements No 674896 (ITN Elusives) and No 690575 (RISE InvisiblesPlus). This work was supported in part by the INFN program on Theoretical Astroparticle Physics (P.P.N. and S.T.P.) and by the World Premier International Research Center Initiative (WPI Initiative, MEXT), Japan (S.T.P.). The work of J.T.P. was partially supported by Fundação para a Ciência e a Tecnologia (FCT, Portugal) through the project CFTP-FCT Unit 777 (UID/FIS/00777/2013) and PTDC/FIS-PAR/29436/2017 which are partially funded through POCTI (FEDER), COMPETE, QREN and EU.

A \(q \)-Expansions

A.1 Miller-like basis for the space of lowest weight forms

One can obtain \(A.1 \) Miller-like basis for the space of lowest weight forms \(q \)-expansions for a basis of the space of lowest weight modular forms for \(\Gamma \). From the SageMath algebra system \([39]\). To obtain the expansions up to (and including) \(\mathcal{O}(q^{10}) \) terms, we take as input the code:

\[
\begin{align*}
\text{N} &= 5 \\
\text{k} &= 2 \\
\text{space} &= \text{ModularForms}(\text{GammaH}(N^2, [N + 1]), k) \\
&[\text{form.q_expansion()} \text{for form in space.basis()}]
\end{align*}
\]

We then take \(q \to q^{1/5} \) in the produced output, and obtain the desired basis:

\[
\begin{align*}
b_1 &= 1 + 60q^3 - 120q^4 + 240q^5 - 300q^6 + 300q^7 - 180q^9 + 240q^{10} + \ldots, \\
b_2 &= q^{1/5} + 12q^{11/5} + 7q^{16/5} + 8q^{21/5} + 6q^{26/5} + 32q^{31/5} + 7q^{36/5} + 42q^{41/5} + 12q^{46/5} + \ldots, \\
b_3 &= q^{2/5} + 12q^{12/5} - 2q^{17/5} + 12q^{22/5} + 8q^{27/5} + 21q^{32/5} - 6q^{37/5} + 48q^{42/5} - 8q^{47/5} + \ldots, \\
b_4 &= q^{3/5} + 11q^{13/5} - 9q^{18/5} + 21q^{23/5} - q^{28/5} + 12q^{33/5} + 41q^{38/5} - 29q^{43/5} + \ldots, \\
b_5 &= q^{4/5} + 9q^{14/5} - 12q^{19/5} + 29q^{24/5} - 18q^{29/5} + 17q^{34/5} + 8q^{39/5} + 12q^{44/5} - 16q^{49/5} + \ldots, \\
b_6 &= q + 6q^3 - 9q^4 + 21q^5 - 28q^6 + 30q^7 - 11q^9 + 26q^{10} + \ldots, \\
b_7 &= q^{6/5} + 2q^{16/5} + 2q^{21/5} + 3q^{26/5} + 7q^{36/5} + 5q^{46/5} + \ldots, \\
b_8 &= q^{7/5} - q^{12/5} + 3q^{17/5} + 2q^{22/5} + 7q^{27/5} - 6q^{32/5} + 9q^{47/5} + \ldots, \\
b_9 &= q^{8/5} - 2q^{13/5} + 5q^{18/5} - 4q^{23/5} + 4q^{28/5} + 4q^{38/5} - 8q^{43/5} + 16q^{48/5} + \ldots, \\
b_{10} &= q^{9/5} - 3q^{14/5} + 8q^{19/5} - 11q^{24/5} + 12q^{29/5} - 5q^{44/5} + 13q^{49/5} + \ldots, \\
b_{11} &= q^2 - 4q^3 + 12q^4 - 22q^5 + 30q^6 - 24q^7 + 5q^8 + 18q^9 - 21q^{10} + \ldots, \\
\end{align*}
\]

with \(q = e^{2n\pi i/5} \) and where fractional powers \(q^{n/5} \) should be read as \(q = e^{2n\pi i/5} \).
A.2 Expansions for the lowest weight A_5 multiplets

The elements of the quintet $\mathbf{5}$ of A_5, given in eq. (2.21), admit the q-expansions:

$$-rac{i}{\pi} \sqrt{\frac{3}{2}} Y_1(\tau) = 1 + 6q + 18q^2 + 24q^3 + 42q^4 + 6q^5 + \ldots = b_1 + 6b_6 + 18b_{11},$$

$$\frac{i}{2\pi} Y_2(\tau) = q^{1/5} + 12q^{6/5} + 12q^{11/5} + 31q^{16/5} + 32q^{21/5} + \ldots = b_2 + 12b_7,$$

$$\frac{i}{2\pi} Y_3(\tau) = 3q^{2/5} + 8q^{7/5} + 28q^{12/5} + 18q^{17/5} + 36q^{22/5} + \ldots = 3b_3 + 8b_8,$$

$$\frac{i}{2\pi} Y_4(\tau) = 4q^{3/5} + 15q^{8/5} + 14q^{13/5} + 39q^{18/5} + 24q^{23/5} + \ldots = 4b_4 + 15b_9,$$

$$\frac{i}{2\pi} Y_5(\tau) = 7q^{4/5} + 13q^{9/5} + 24q^{14/5} + 20q^{19/5} + 60q^{24/5} + \ldots = 7b_5 + 13b_{10}.$$

where, as before and in what follows, $q = e^{2\pi i \tau}$.

The elements of the triplet $\mathbf{3}$, given in eq. (2.22), admit instead the expansions:

$$\frac{i}{\pi} \sqrt{\frac{5}{2}} Y_6(\tau) = -1 + 30q + 20q^2 + 40q^3 + 90q^4 + 130q^5 + \ldots = -b_1 + 30b_6 + 20b_{11},$$

$$-\frac{i}{2\sqrt{5}\pi} Y_7(\tau) = q^{1/5} + 2q^{6/5} + 12q^{11/5} + 11q^{16/5} + 12q^{21/5} + \ldots = b_2 + 2b_7,$$

$$-\frac{i}{2\sqrt{5}\pi} Y_8(\tau) = 3q^{2/5} + 7q^{7/5} + 6q^{14/5} + 20q^{19/5} + 10q^{24/5} + \ldots = 3b_5 + 7b_{10}.$$

Finally, the elements of the triplet $\mathbf{3}'$, given in eq. (2.23), read:

$$\frac{i}{\pi} \sqrt{\frac{5}{2}} Y_9(\tau) = 1 + 20q + 30q^2 + 60q^3 + 60q^4 + 120q^5 + \ldots = b_1 + 20b_6 + 30b_{11},$$

$$-\frac{i}{2\sqrt{5}\pi} Y_{10}(\tau) = q^{2/5} + 6q^{7/5} + 6q^{12/5} + 16q^{17/5} + 12q^{22/5} + \ldots = b_3 + 6b_8,$$

$$-\frac{i}{2\sqrt{5}\pi} Y_{11}(\tau) = 2q^{3/5} + 5q^{8/5} + 12q^{13/5} + 7q^{18/5} + 22q^{23/5} + \ldots = 2b_4 + 5b_9.$$

B A_5 Group Theory

B.1 Basis

A_5 is the group of even permutations of five objects. It contains $5! / 2 = 60$ elements and admits five irreducible representations, namely $\mathbf{1}$, $\mathbf{3}$, $\mathbf{3}'$, $\mathbf{4}$ and $\mathbf{5}$ (see, e.g., [3]). It can be generated by two elements S and T satisfying

$$S^2 = (ST)^3 = T^5 = I.$$

We will employ the group theoretical results of Ref. [24], using in particular the following explicit basis for the irreducible representations of A_5:

$\mathbf{1}$: $\rho(S) = 1, \rho(T) = 1$,

$\mathbf{2}$: $\rho(S) = 2, \rho(T) = 1$,

$\mathbf{3}$: $\rho(S) = 3, \rho(T) = 1$,

$\mathbf{4}$: $\rho(S) = 1, \rho(T) = 2$,

$\mathbf{5}$: $\rho(S) = 1, \rho(T) = 3$.

(B.2)
3: \[\rho(S) = \frac{1}{\sqrt{5}} \begin{pmatrix} 1 & -\sqrt{2} & -\sqrt{2} \\ -\sqrt{2} & -\varphi & 1/\varphi \\ -\sqrt{2} & 1/\varphi & -\varphi \end{pmatrix}, \quad \rho(T) = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \zeta & 0 \\ 0 & 0 & \zeta^4 \end{pmatrix}, \]

(B.3)

3': \[\rho(S) = \frac{1}{\sqrt{5}} \begin{pmatrix} -1 & \sqrt{2} & \sqrt{2} \\ \sqrt{2} & -1/\varphi & \varphi \\ \sqrt{2} & \varphi & -1/\varphi \end{pmatrix}, \quad \rho(T) = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \zeta^2 & 0 \\ 0 & 0 & \zeta^3 \end{pmatrix}, \]

(B.4)

4: \[\rho(S) = \frac{1}{\sqrt{5}} \begin{pmatrix} 1 & 1/\varphi & \varphi & -1 \\ 1/\varphi & -1 & 1 & \varphi \\ \varphi & 1 & -1 & 1/\varphi \\ -1 & \varphi & 1/\varphi & 1 \end{pmatrix}, \quad \rho(T) = \begin{pmatrix} \zeta & 0 & 0 & 0 \\ 0 & \zeta^2 & 0 & 0 \\ 0 & 0 & \zeta^3 & 0 \\ 0 & 0 & 0 & \zeta^4 \end{pmatrix}, \]

(B.5)

5: \[\rho(S) = \frac{1}{5} \begin{pmatrix} -1 & \sqrt{6} & \sqrt{6} & \sqrt{6} \\ \sqrt{6} & 1/\varphi^2 & -2\varphi & 2/\varphi \varphi^2 \\ \sqrt{6} & -2\varphi & \varphi^2 & 1/\varphi^2 \\ \sqrt{6} & 2/\varphi & \varphi^2 & -2\varphi \end{pmatrix}, \quad \rho(T) = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & \zeta & 0 & 0 \\ 0 & 0 & \zeta^2 & 0 \\ 0 & 0 & 0 & \zeta^3 \end{pmatrix}, \]

(B.6)

where \(\zeta = e^{2\pi i/5} \) and \(\varphi = (1 + \sqrt{5})/2 \).

B.2 Clebsch-Gordan coefficients

For completeness, we reproduce here the nontrivial Clebsch-Gordan coefficients of Ref. [24], given in the above basis. Entries of each multiplet entering the tensor product are denoted by \(\alpha_i \) and \(\beta_i \).

\[
\begin{align*}
3 \otimes 3 &= 1 \oplus 3 \oplus 5 \\
1 &\sim \alpha_1\beta_1 + \alpha_2\beta_3 + \alpha_3\beta_2 \\
3 &\sim \begin{pmatrix}
\alpha_2 \beta_3 - \alpha_3 \beta_2 \\
\alpha_1 \beta_2 - \alpha_2 \beta_1 \\
\alpha_3 \beta_1 - \alpha_1 \beta_3
\end{pmatrix} \\
5 &\sim \begin{pmatrix}
2\alpha_1\beta_1 - \alpha_2\beta_3 - \alpha_3\beta_2 \\
-\sqrt{3} \alpha_1\beta_2 - \sqrt{3} \alpha_2\beta_1 \\
\sqrt{6} \alpha_2\beta_2 \\
\sqrt{6} \alpha_3\beta_3 \\
-\sqrt{3} \alpha_1\beta_3 - \sqrt{3} \alpha_3\beta_1
\end{pmatrix}
\end{align*}
\]

(B.7)
\[3 \otimes 3' = 4 \oplus 5\]

\[
\begin{pmatrix}
4 \\ 5
\end{pmatrix} \sim \begin{pmatrix}
\sqrt{2} \alpha_2 \beta_1 + \alpha_3 \beta_2 \\
-\sqrt{2} \alpha_1 \beta_2 - \alpha_3 \beta_3 \\
-\sqrt{2} \alpha_1 \beta_3 - \alpha_2 \beta_2 \\
\sqrt{2} \alpha_3 \beta_1 + \alpha_2 \beta_3
\end{pmatrix}
\]

\[
\begin{pmatrix}
3' \\ 3 \otimes 4 = 3' \oplus 4 \oplus 5
\end{pmatrix} \sim \begin{pmatrix}
-\sqrt{2} \alpha_2 \beta_1 + \sqrt{2} \alpha_3 \beta_1 \\
\sqrt{2} \alpha_1 \beta_2 - \alpha_2 \beta_1 + \alpha_3 \beta_3 \\
\sqrt{2} \alpha_1 \beta_3 + \alpha_2 \beta_2 - \alpha_3 \beta_4 \\
\alpha_1 \beta_1 - \sqrt{2} \alpha_3 \beta_2 \\
-\alpha_1 \beta_2 - \sqrt{2} \alpha_2 \beta_1 \\
\alpha_1 \beta_3 + \sqrt{2} \alpha_3 \beta_4 \\
-\alpha_1 \beta_4 - \sqrt{2} \alpha_2 \beta_3
\end{pmatrix}
\]

\[
\begin{pmatrix}
5 \sim \begin{pmatrix}
\sqrt{6} \alpha_2 \beta_1 - \sqrt{6} \alpha_3 \beta_1 \\
2 \sqrt{2} \alpha_1 \beta_1 + 2 \alpha_3 \beta_2 \\
\sqrt{2} \alpha_1 \beta_2 + \alpha_2 \beta_1 + 3 \alpha_3 \beta_3 \\
\sqrt{2} \alpha_1 \beta_3 + 3 \alpha_2 \beta_2 - \alpha_3 \beta_4 \\
-2 \sqrt{2} \alpha_1 \beta_4 + 2 \alpha_2 \beta_3
\end{pmatrix}
\end{pmatrix}
\]

\[
\begin{pmatrix}
3 \sim \begin{pmatrix}
-2 \alpha_1 \beta_1 + \sqrt{3} \alpha_2 \beta_2 + \sqrt{3} \alpha_3 \beta_3 \\
\sqrt{3} \alpha_1 \beta_2 + \alpha_2 \beta_1 - \sqrt{6} \alpha_3 \beta_3 \\
\sqrt{3} \alpha_1 \beta_3 - \sqrt{6} \alpha_2 \beta_4 + \alpha_3 \beta_1
\end{pmatrix}
\end{pmatrix}
\]

\[
\begin{pmatrix}
3' \sim \begin{pmatrix}
\sqrt{3} \alpha_1 \beta_1 + \alpha_2 \beta_2 + \alpha_3 \beta_2 \\
\alpha_1 \beta_3 - \sqrt{2} \alpha_2 \beta_2 - \sqrt{2} \alpha_3 \beta_4 \\
\alpha_1 \beta_4 - \sqrt{2} \alpha_2 \beta_3 - \sqrt{2} \alpha_3 \beta_5
\end{pmatrix}
\end{pmatrix}
\]

\[
\begin{pmatrix}
4 \sim \begin{pmatrix}
2 \sqrt{2} \alpha_1 \beta_2 - \sqrt{6} \alpha_2 \beta_1 + \alpha_3 \beta_3 \\
-\sqrt{2} \alpha_1 \beta_3 + 2 \alpha_2 \beta_2 - 3 \alpha_3 \beta_4 \\
\sqrt{2} \alpha_1 \beta_4 + 3 \alpha_2 \beta_3 - 2 \alpha_3 \beta_5 \\
-2 \sqrt{2} \alpha_1 \beta_5 - \alpha_2 \beta_4 + \sqrt{6} \alpha_3 \beta_1 \\
\sqrt{3} \alpha_2 \beta_5 - \sqrt{3} \alpha_3 \beta_2 \\
-\alpha_1 \beta_2 - \sqrt{3} \alpha_2 \beta_1 + \sqrt{2} \alpha_3 \beta_3 \\
-2 \alpha_1 \beta_3 - \sqrt{2} \alpha_2 \beta_2 \\
2 \alpha_1 \beta_4 + \sqrt{2} \alpha_3 \beta_5 \\
\alpha_1 \beta_5 + \sqrt{2} \alpha_2 \beta_4 + \sqrt{3} \alpha_3 \beta_1
\end{pmatrix}
\end{pmatrix}
\]

\[(B.8)]
\[3' \otimes 3' = 3 \oplus 3' \oplus 5 \]

\[\begin{align*}
1 & \sim \alpha_1 \beta_1 + \alpha_2 \beta_3 + \alpha_3 \beta_2 \\
3' & \sim \left(\begin{array}{c}
\alpha_2 \beta_3 - \alpha_3 \beta_2 \\
\alpha_1 \beta_2 - \alpha_2 \beta_1 \\
\alpha_3 \beta_1 - \alpha_1 \beta_3
\end{array} \right)
\end{align*} \]

\[\begin{align*}
5 & \sim \left(\begin{array}{c}
2 \alpha_1 \beta_1 - \alpha_2 \beta_3 - \alpha_3 \beta_2 \\
\sqrt{6} \alpha_3 \beta_3
\end{array} \right)
\end{align*} \]

\[3' \otimes 4 = 3 \oplus 4 \oplus 5 \]

\[\begin{align*}
3 & \sim \left(\begin{array}{c}
\alpha_1 \beta_4 + \alpha_2 \beta_3 - \alpha_3 \beta_2 \\
\alpha_1 \beta_3 - \sqrt{2} \alpha_3 \beta_3
\end{array} \right)
\end{align*} \]

\[\begin{align*}
4 & \sim \left(\begin{array}{c}
\alpha_1 \beta_1 + \sqrt{2} \alpha_3 \beta_3 \\
\alpha_1 \beta_2 - \sqrt{2} \alpha_3 \beta_1 \\
\alpha_1 \beta_3 + \sqrt{2} \alpha_2 \beta_1 \\
\alpha_1 \beta_4 - \sqrt{2} \alpha_2 \beta_2
\end{array} \right)
\end{align*} \]

\[\begin{align*}
5 & \sim \left(\begin{array}{c}
\sqrt{6} \alpha_2 \beta_3 - \sqrt{6} \alpha_3 \beta_2 \\
\sqrt{2} \alpha_1 \beta_1 - 3 \alpha_2 \beta_4 - \alpha_3 \beta_3 \\
2 \sqrt{2} \alpha_1 \beta_2 + 2 \alpha_3 \beta_4 \\
-2 \sqrt{2} \alpha_1 \beta_3 - 2 \alpha_2 \beta_1 \\
- \sqrt{2} \alpha_1 \beta_4 + \alpha_2 \beta_2 + 3 \alpha_3 \beta_1
\end{array} \right)
\end{align*} \] (B.9)

\[3' \otimes 5 = 3 \oplus 3' \oplus 4 \oplus 5 \]

\[\begin{align*}
3' & \sim \left(\begin{array}{c}
\alpha_1 \beta_1 + \sqrt{3} \alpha_2 \beta_4 + \sqrt{3} \alpha_3 \beta_3 \\
\alpha_1 \beta_3 + \alpha_2 \beta_1 - \sqrt{6} \alpha_3 \beta_5 \\
\sqrt{3} \alpha_1 \beta_4 - \sqrt{6} \alpha_2 \beta_2 + \alpha_3 \beta_1
\end{array} \right)
\end{align*} \]

\[\begin{align*}
4 & \sim \left(\begin{array}{c}
\sqrt{3} \alpha_2 \beta_4 - \sqrt{3} \alpha_3 \beta_3 \\
2 \sqrt{2} \alpha_1 \beta_3 - \sqrt{6} \alpha_2 \beta_1 + \alpha_3 \beta_5 \\
-2 \sqrt{2} \alpha_1 \beta_4 - \sqrt{6} \alpha_3 \beta_1 \\
- \sqrt{2} \alpha_1 \beta_5 + 2 \alpha_2 \beta_3 - 3 \alpha_3 \beta_2
\end{array} \right)
\end{align*} \]

\[\begin{align*}
5 & \sim \left(\begin{array}{c}
- \alpha_1 \beta_3 - \sqrt{3} \alpha_2 \beta_1 - \sqrt{6} \alpha_3 \beta_5 \\
\alpha_1 \beta_4 + \sqrt{2} \alpha_2 \beta_2 + \sqrt{3} \alpha_3 \beta_1 \\
-2 \alpha_1 \beta_5 - \sqrt{2} \alpha_2 \beta_3
\end{array} \right)
\end{align*} \]
\[
\begin{align*}
1 & \sim a_1 \beta_4 + a_2 \beta_3 + a_3 \beta_2 + a_4 \beta_1 \\
3 & \sim \\
& (\begin{array}{l}
- a_1 \beta_4 + a_2 \beta_3 - a_3 \beta_2 + a_4 \beta_1 \\
\sqrt{2} a_2 \beta_4 - \sqrt{2} a_4 \beta_2 \\
\sqrt{2} a_1 \beta_3 - \sqrt{2} a_3 \beta_1
\end{array}) \\
3' & \sim \\
& (\begin{array}{l}
 a_1 \beta_4 + a_2 \beta_3 - a_3 \beta_2 - a_4 \beta_1 \\
\sqrt{2} a_3 \beta_4 - \sqrt{2} a_4 \beta_3 \\
\sqrt{2} a_1 \beta_2 - \sqrt{2} a_2 \beta_1
\end{array}) \\
4 & \sim \\
& (\begin{array}{l}
 a_2 \beta_4 + a_3 \beta_3 + a_4 \beta_2 \\
 a_1 \beta_1 + a_3 \beta_4 + a_4 \beta_3 \\
a_1 \beta_2 + a_2 \beta_1 + a_4 \beta_1 \\
a_1 \beta_3 + a_2 \beta_2 + a_3 \beta_1
\end{array}) \\
5 & \sim \\
& (\begin{array}{l}
\sqrt{3} a_1 \beta_4 - \sqrt{3} a_2 \beta_3 - \sqrt{3} a_3 \beta_2 + \sqrt{3} a_4 \beta_1 \\
- \sqrt{2} a_2 \beta_4 + 2 \sqrt{2} a_3 \beta_3 - \sqrt{2} a_4 \beta_2 \\
- 2 \sqrt{2} a_1 \beta_1 + \sqrt{2} a_3 \beta_4 + \sqrt{2} a_4 \beta_3 \\
\sqrt{2} a_1 \beta_2 + \sqrt{2} a_2 \beta_1 - 2 \sqrt{2} a_4 \beta_1 \\
- \sqrt{2} a_1 \beta_3 + 2 \sqrt{2} a_2 \beta_2 - \sqrt{2} a_3 \beta_1
\end{array}) \\
(B.10)
\end{align*}
\]
\[
\begin{align*}
5 \otimes 5 &= 1 \oplus 3 \oplus 3' \oplus 4_1 \\
&\oplus 4_2 \oplus 5_1 \oplus 5_2
\end{align*}
\]

\[
\begin{align*}
1 &\sim \alpha_1 \beta_1 + \alpha_2 \beta_5 + \alpha_3 \beta_4 + \alpha_4 \beta_3 + \alpha_5 \beta_2 \\
3 &\sim \begin{pmatrix}
\alpha_3 \beta_5 + 2 \alpha_3 \beta_4 - 2 \alpha_4 \beta_3 - \alpha_5 \beta_2 \\
-\sqrt{3} \alpha_1 \beta_2 + \sqrt{3} \alpha_2 \beta_1 + \sqrt{2} \alpha_3 \beta_5 - \sqrt{2} \alpha_5 \beta_3 \\
\sqrt{3} \alpha_1 \beta_5 + \sqrt{2} \alpha_2 \beta_4 - \sqrt{2} \alpha_4 \beta_2 - \sqrt{3} \alpha_5 \beta_1
\end{pmatrix} \\
3' &\sim \begin{pmatrix}
\sqrt{3} \alpha_3 \beta_5 - \sqrt{3} \alpha_3 \beta_1 + \sqrt{2} \alpha_4 \beta_5 - \sqrt{2} \alpha_5 \beta_4 \\
-\sqrt{3} \alpha_1 \beta_4 + \sqrt{2} \alpha_2 \beta_3 - \sqrt{2} \alpha_3 \beta_2 + \sqrt{3} \alpha_4 \beta_1
\end{pmatrix} \\
4_1 &\sim \begin{pmatrix}
3 \sqrt{2} \alpha_1 \beta_2 + 3 \sqrt{2} \alpha_2 \beta_1 - \sqrt{3} \alpha_3 \beta_5 + 4 \sqrt{3} \alpha_4 \beta_4 - \sqrt{3} \alpha_5 \beta_3 \\
3 \sqrt{2} \alpha_1 \beta_3 + 4 \sqrt{3} \alpha_2 \beta_2 + 3 \sqrt{2} \alpha_3 \beta_1 - \sqrt{3} \alpha_4 \beta_5 - \sqrt{3} \alpha_5 \beta_4 \\
3 \sqrt{2} \alpha_1 \beta_4 - \sqrt{3} \alpha_2 \beta_3 - \sqrt{3} \alpha_3 \beta_2 + 3 \sqrt{2} \alpha_4 \beta_1 + 4 \sqrt{3} \alpha_5 \beta_5 \\
3 \sqrt{2} \alpha_1 \beta_5 - \sqrt{3} \alpha_2 \beta_4 + 4 \sqrt{3} \alpha_3 \beta_3 - \sqrt{3} \alpha_4 \beta_2 + 3 \sqrt{2} \alpha_5 \beta_1
\end{pmatrix} \\
4_2 &\sim \begin{pmatrix}
\sqrt{2} \alpha_1 \beta_2 - \sqrt{2} \alpha_2 \beta_1 + \sqrt{3} \alpha_3 \beta_3 - \sqrt{3} \alpha_5 \beta_3 \\
-\sqrt{2} \alpha_1 \beta_3 + \sqrt{2} \alpha_2 \beta_1 + \sqrt{3} \alpha_4 \beta_5 - \sqrt{3} \alpha_5 \beta_4 \\
-\sqrt{2} \alpha_1 \beta_4 - \sqrt{3} \alpha_2 \beta_3 + \sqrt{3} \alpha_3 \beta_2 + \sqrt{2} \alpha_4 \beta_1 \\
\sqrt{2} \alpha_1 \beta_5 - \sqrt{3} \alpha_2 \beta_4 + \sqrt{3} \alpha_3 \beta_3 - \sqrt{2} \alpha_5 \beta_1
\end{pmatrix} \\
5_1 &\sim \begin{pmatrix}
2 \alpha_1 \beta_1 + \alpha_2 \beta_5 - 2 \alpha_3 \beta_4 - 2 \alpha_4 \beta_3 + \alpha_5 \beta_2 \\
\alpha_1 \beta_2 + \alpha_2 \beta_1 + \sqrt{6} \alpha_3 \beta_5 + \sqrt{6} \alpha_5 \beta_3 \\
-2 \alpha_1 \beta_3 + \sqrt{6} \alpha_2 \beta_2 - 2 \alpha_3 \beta_1 \\
-2 \alpha_1 \beta_4 - 2 \alpha_4 \beta_1 + \sqrt{6} \alpha_5 \beta_5 \\
\alpha_1 \beta_5 + \sqrt{6} \alpha_2 \beta_4 + \sqrt{6} \alpha_4 \beta_2 + \alpha_5 \beta_1
\end{pmatrix} \\
5_2 &\sim \begin{pmatrix}
2 \alpha_1 \beta_1 - 2 \alpha_2 \beta_5 + \alpha_3 \beta_4 + \alpha_4 \beta_3 - 2 \alpha_5 \beta_2 \\
\alpha_1 \beta_2 - 2 \alpha_2 \beta_1 + \sqrt{6} \alpha_4 \beta_4 \\
-2 \alpha_1 \beta_3 + \sqrt{6} \alpha_2 \beta_2 + \alpha_5 \beta_4 \\
\alpha_1 \beta_4 + \sqrt{6} \alpha_2 \beta_3 + \sqrt{6} \alpha_3 \beta_2 + \alpha_4 \beta_1 \\
-2 \alpha_1 \beta_5 + \sqrt{6} \alpha_3 \beta_3 - 2 \alpha_5 \beta_1
\end{pmatrix}
\end{align*}
\]

(B.11)

C Higher weight Forms and Constraints

Through tensor products of Y_5, Y_3 and Y_3', one can find, at weight 4, the multiplets:

\[
Y_1^{(4)} = Y_1^2 + 2Y_3Y_4 + 2Y_2Y_5 \sim 1, \\
Y_1^{(4)'} = Y_6^2 + 2Y_7Y_8 \sim 1, \\
Y_1^{(4)''} = Y_9^2 + 2Y_{10}Y_{11} \sim 1, \\
Y_3^{(4)} = \begin{pmatrix}
-2Y_1Y_6 + \sqrt{3}Y_5Y_7 + \sqrt{3}Y_2Y_8 \\
\sqrt{3}Y_2Y_6 + Y_1Y_7 - \sqrt{6}Y_3Y_8 \\
\sqrt{3}Y_5Y_6 - \sqrt{6}Y_2Y_7 + Y_1Y_8
\end{pmatrix} \sim 3, \\
Y_3^{(4)'} = \begin{pmatrix}
\sqrt{3}Y_1Y_9 + Y_4Y_{10} + Y_3Y_{11} \\
Y_2Y_9 - \sqrt{2}Y_3Y_{10} - \sqrt{2}Y_2Y_{11} \\
Y_5Y_9 - \sqrt{2}Y_3Y_{10} - \sqrt{2}Y_2Y_{11}
\end{pmatrix} \sim 3.
\]
\[
Y_{3'}^{(4)} = \begin{pmatrix}
\sqrt{3} Y_1 Y_6 + Y_3 Y_7 + Y_2 Y_8 \\
Y_3 Y_6 - \sqrt{2} Y_2 Y_7 - \sqrt{2} Y_4 Y_8 \\
Y_4 Y_6 - \sqrt{2} Y_3 Y_7 - \sqrt{2} Y_5 Y_8
\end{pmatrix} \sim 3',
\] (C.3)

\[
Y_{3'}^{(4)'} = \begin{pmatrix}
-2Y_1 Y_9 + \sqrt{3} Y_4 Y_{10} + \sqrt{3} Y_5 Y_{11} \\
\sqrt{3} Y_3 Y_9 + Y_7 Y_{10} - \sqrt{3} Y_3 Y_{11} \\
\sqrt{3} Y_4 Y_9 - \sqrt{6} Y_2 Y_{10} + Y_1 Y_{11}
\end{pmatrix} \sim 3',
\]

\[
Y_{4}^{(4)} = \begin{pmatrix}
2Y_2^2 + \sqrt{6} Y_1 Y_2 - Y_3 Y_5 \\
2Y_2^2 + \sqrt{6} Y_1 Y_3 - Y_4 Y_5 \\
2Y_2^2 - Y_3 Y_6 + \sqrt{6} Y_1 Y_4 \\
2Y_3^2 - Y_2 Y_4 + \sqrt{6} Y_1 Y_6
\end{pmatrix} \sim 4,
\] (C.4)

\[
Y_{4}^{(4)'} = \begin{pmatrix}
2\sqrt{2} Y_2 Y_6 - \sqrt{6} Y_1 Y_7 + Y_3 Y_8 \\
-\sqrt{2} Y_3 Y_6 + 2Y_2 Y_7 - 3Y_4 Y_8 \\
\sqrt{2} Y_4 Y_6 + 3Y_3 Y_7 - 2Y_5 Y_8 \\
-2\sqrt{2} Y_5 Y_6 - Y_4 Y_7 + \sqrt{6} Y_1 Y_8
\end{pmatrix} \sim 4,
\]

\[
Y_{4}^{(4)''} = \begin{pmatrix}
\sqrt{2} Y_7 Y_9 + Y_8 Y_{10} \\
-\sqrt{2} Y_6 Y_{10} - Y_3 Y_{11} \\
-Y_7 Y_{10} - \sqrt{2} Y_6 Y_{11} \\
\sqrt{2} Y_8 Y_9 + Y_7 Y_{11}
\end{pmatrix} \sim 4,
\]

\[
Y_{4}^{(4)'''} = \begin{pmatrix}
\sqrt{2} Y_2 Y_9 + 3Y_5 Y_{10} - 2Y_4 Y_{11} \\
2\sqrt{2} Y_3 Y_9 - \sqrt{6} Y_1 Y_{10} + Y_5 Y_{11} \\
-2\sqrt{2} Y_4 Y_9 - Y_2 Y_{10} + \sqrt{6} Y_1 Y_{11} \\
-\sqrt{2} Y_5 Y_9 + 2Y_3 Y_{10} - 3Y_2 Y_{11}
\end{pmatrix} \sim 4,
\]
Not all of the above multiplets are expected to be independent. Indeed, from the q-expansions of the $Y_i(\tau)$ given in Appendix A.2, we find 45 constraints between the 66 different $Y_i(\tau)Y_j(\tau)$ products, namely:

$$3 \left(Y_1^2 + 2Y_5Y_4 + 2Y_2Y_5 \right) = Y_6^2 + 2Y_7Y_8 = Y_9^2 + 2Y_{10}Y_{11}, \quad (C.6)$$
\[-2\sqrt{3}Y_1Y_6 + 3Y_5Y_7 + 3Y_2Y_8 = 2\sqrt{3}Y_1Y_9 + 2Y_4Y_{10} + 2Y_5Y_{11},\]
\[3Y_2Y_6 + \sqrt{3}Y_1Y_7 - 3\sqrt{2}Y_3Y_8 = 2Y_2Y_9 - 2\sqrt{2}Y_5Y_{10} - 2\sqrt{2}Y_4Y_{11},\]
\[3Y_5Y_6 - 3\sqrt{2}Y_4Y_7 + \sqrt{3}Y_1Y_8 = 2Y_5Y_9 - 2\sqrt{2}Y_3Y_{10} - 2\sqrt{2}Y_2Y_{11},\]
\[2\sqrt{3}Y_1Y_6 + 2Y_5Y_7 + 2Y_2Y_8 = -2\sqrt{3}Y_1Y_9 + 3Y_4Y_{10} + 3Y_3Y_{11},\]
\[2Y_3Y_6 - 2\sqrt{2}Y_2Y_7 - 2\sqrt{2}Y_4Y_8 = 3Y_3Y_9 + \sqrt{3}Y_1Y_{10} - 3\sqrt{2}Y_5Y_{11},\]
\[2Y_4Y_6 - 2\sqrt{2}Y_3Y_7 - 2\sqrt{2}Y_5Y_8 = 3Y_4Y_9 - 3\sqrt{2}Y_2Y_{10} + \sqrt{3}Y_1Y_{11},\]
\[\sqrt{6}Y_1Y_2 + 2Y^2_4 - Y_3Y_5 = ((\sqrt{5}/7) \left(2\sqrt{2}Y_2Y_6 - \sqrt{6}Y_1Y_7 + Y_3Y_8\right)\]
\[= \sqrt{2}Y_7Y_9 + Y_8Y_{10}\]
\[= -\sqrt{5} \left(\sqrt{2}Y_2Y_9 + 3Y_5Y_{10} - 2Y_4Y_{11}\right),\]
\[\sqrt{6}Y_1Y_3 + 2Y^2_4 - Y_4Y_5 = -((\sqrt{5}/7) \left(\sqrt{2}Y_3Y_6 - 2Y_2Y_7 + 3Y_4Y_8\right)\]
\[= -\sqrt{2}Y_6Y_{10} - Y_8Y_{11}\]
\[= -\sqrt{5} \left(2\sqrt{2}Y_5Y_9 - \sqrt{6}Y_1Y_{10} + Y_5Y_{11}\right),\]
\[\sqrt{6}Y_1Y_4 + 2Y^2_4 - Y_3Y_5 = ((\sqrt{5}/7) \left(\sqrt{2}Y_4Y_6 + 3Y_3Y_7 - 2Y_5Y_8\right)\]
\[= -\sqrt{2}Y_6Y_{11} - Y_7Y_{10}\]
\[= \sqrt{5} \left(2\sqrt{2}Y_4Y_9 + Y_2Y_{10} - \sqrt{6}Y_1Y_{11}\right),\]
\[\sqrt{6}Y_1Y_5 + 2Y^2_4 - Y_4Y_5 = -((\sqrt{5}/7) \left(2\sqrt{2}Y_5Y_6 - \sqrt{6}Y_1Y_8 + Y_4Y_7\right)\]
\[= \sqrt{2}Y_8Y_9 + Y_7Y_{11}\]
\[= \sqrt{5} \left(\sqrt{2}Y_5Y_9 - 2Y_3Y_{10} + 3Y_2Y_{11}\right),\]
\[\sqrt{2}Y_3Y_6 + Y_2Y_7 = -\sqrt{2}Y_3Y_9 - \sqrt{6}Y_1Y_{10} - 2Y_5Y_{11},\]
\[\sqrt{2}Y_3Y_6 - Y_5Y_8 = \sqrt{2}Y_3Y_9 + 2Y_2Y_{10} + \sqrt{6}Y_1Y_{11},\]
\[Y_5Y_6 + \sqrt{2}Y_4Y_7 + \sqrt{3}Y_1Y_8 = 4Y_3Y_9 + 2\sqrt{2}Y_3Y_{10},\]
\[\sqrt{4}Y_1^2 + 4Y_4Y_6 - 8Y_2Y_5 - 3\sqrt{5}Y_3Y_7 - 3\sqrt{5}Y_2Y_8 = 4Y_1^2 - 8Y_3Y_4 + 4Y_2Y_5,\]
\[2\sqrt{6}Y_1^2 - 8Y_1Y_2 - \sqrt{15}Y_2Y_6 - 3\sqrt{5}Y_1Y_7 - \sqrt{30}Y_3Y_8 = 4Y_1Y_2 + 4\sqrt{3}Y_3Y_5,\]
\[2\sqrt{2}Y_1Y_3 - \sqrt{30}Y_3Y_6 + 4\sqrt{3}Y_4Y_5 - \sqrt{15}Y_2Y_7 = 2\sqrt{3}Y_2^2 - 4\sqrt{2}Y_1Y_3,\]
\[4\sqrt{3}Y_2Y_3 + 2\sqrt{2}Y_1Y_4 + \sqrt{30}Y_4Y_6 + \sqrt{15}Y_5Y_8 = 2\sqrt{3}Y_2^2 - 4\sqrt{2}Y_1Y_4,\]
\[2\sqrt{6}Y_1^2 - 8Y_1Y_5 + \sqrt{15}Y_5Y_6 + \sqrt{30}Y_4Y_7 - 15Y_1Y_8 = 4\sqrt{6}Y_2Y_4 + 4Y_1Y_5,\]
there are two independent multiplets out of the 7 given in eq. (C.5), which we take to be concerns the quintets, it follows instead from the 25 constraints in eqs. (C.10) – (C.14) that Therefore, for \(r \)

\[
12 Y_1^2 + 12 Y_3 Y_1 - 24 Y_2 Y_5 + 21 \sqrt{5} Y_5 Y_7 - 21 \sqrt{5} Y_2 Y_8 = 20 Y_6^2 - 20 Y_7 Y_8, \\
6 \sqrt{2} Y_4^2 - 8 \sqrt{3} Y_1 Y_2 - 7 \sqrt{5} Y_2 Y_5 - 7 \sqrt{15} Y_5 Y_7 - 7 \sqrt{10} Y_3 Y_8 = -20 Y_6 Y_7, \\
2 \sqrt{6} Y_1 Y_3 - 7 \sqrt{10} Y_3 Y_6 + 12 Y_4 Y_5 - 7 \sqrt{5} Y_2 Y_7 = 10 Y_2^2, \\
12 Y_2 Y_3 + 2 \sqrt{6} Y_1 Y_4 + 7 \sqrt{10} Y_4 Y_6 + 7 \sqrt{5} Y_3 Y_8 = 10 Y_2^2, \\
6 \sqrt{2} Y_4^2 - 8 \sqrt{3} Y_1 Y_2 + 7 \sqrt{5} Y_5 Y_6 - 7 \sqrt{10} Y_4 Y_7 + 7 \sqrt{15} Y_1 Y_8 = -20 Y_6 Y_8,
\]

\[
12 Y_1^2 + 12 Y_3 Y_1 - 24 Y_2 Y_5 + \sqrt{5} Y_5 Y_7 - \sqrt{5} Y_2 Y_8 = -20 Y_6 Y_9, \\
18 \sqrt{2} Y_4^2 - 24 \sqrt{3} Y_1 Y_2 - \sqrt{5} Y_2 Y_5 - \sqrt{15} Y_5 Y_7 - \sqrt{10} Y_3 Y_8 = 20 \sqrt{2} Y_6 Y_{10} - 20 Y_7 Y_9, \\
6 \sqrt{6} Y_1 Y_3 - \sqrt{10} Y_3 Y_6 + 36 Y_4 Y_5 - \sqrt{5} Y_2 Y_7 = 20 Y_5 Y_{11} - 10 \sqrt{2} Y_6 Y_{10}, \\
36 Y_2 Y_3 + 6 \sqrt{6} Y_1 Y_4 + \sqrt{10} Y_4 Y_6 + \sqrt{5} Y_3 Y_8 = 20 Y_7 Y_{10} - 10 \sqrt{2} Y_6 Y_{11}, \\
18 \sqrt{2} Y_4^2 - 24 \sqrt{3} Y_1 Y_2 + \sqrt{5} Y_5 Y_6 + \sqrt{10} Y_4 Y_7 + \sqrt{15} Y_1 Y_8 = 20 \sqrt{2} Y_7 Y_{11} - 20 Y_8 Y_9,
\]

\[
6 Y_1^2 + 6 Y_3 Y_4 - 12 Y_2 Y_5 + 3 \sqrt{5} Y_5 Y_7 - 3 \sqrt{5} Y_2 Y_8 = 10 Y_6^2 - 10 Y_7 Y_{10}, \\
3 \sqrt{2} Y_4^2 - 4 \sqrt{3} Y_1 Y_2 - \sqrt{5} Y_2 Y_5 - \sqrt{15} Y_5 Y_7 - \sqrt{10} Y_3 Y_8 = 5 \sqrt{2} Y_6^2, \\
\sqrt{6} Y_1 Y_3 - \sqrt{10} Y_3 Y_6 + 6 Y_4 Y_5 - \sqrt{5} Y_2 Y_7 = -5 \sqrt{2} Y_9 Y_{10}, \\
6 Y_2 Y_3 + \sqrt{6} Y_1 Y_4 + \sqrt{10} Y_4 Y_6 + \sqrt{5} Y_3 Y_8 = -5 \sqrt{2} Y_9 Y_{11}, \\
3 \sqrt{2} Y_4^2 - 4 \sqrt{3} Y_1 Y_5 + \sqrt{5} Y_5 Y_6 + \sqrt{10} Y_4 Y_7 + \sqrt{15} Y_1 Y_8 = 5 \sqrt{2} Y_6^2
\]

The 20 constraints in eqs. (C.6) – (C.9) imply that the primed multiplets \(Y_r^{(4)\prime} \) in eqs. (C.1) – (C.4) are proportional among themselves and to the corresponding unprimed ones, \(Y_r^{(4)} \). Therefore, for \(r = 1, 3, 3', 4 \), only unprimed multiplets are kept in our discussion. In what concerns the quintets, it follows instead from the 25 constraints in eqs. (C.10) – (C.14) that there are two independent multiplets out of the 7 given in eq. (C.5), which we take to be \(Y_{5,1}^{(4)} \equiv Y_5^{(4)} \) and \(Y_{5,2}^{(4)} \equiv Y_5^{(4)''} \), cf. eq. (2.24).

References

1. K. Nakamura and S. T. Petcov, *Neutrino Masses, Mixing, and Oscillations*, in Particle Data Group Collaboration, M. Tanabashi et al., *Review of Particle Physics*, Phys. Rev. D98 (2018) 030001.

2. F. Capozzi, E. Lisi, A. Marrone and A. Palazzo, *Current unknowns in the three neutrino framework*, Prog. Part. Nucl. Phys. 102 (2018) 48 [1804.09678).

3. I. Esteban, M. C. Gonzalez-Garcia, A. Hernandez-Cabezudo, M. Maltoni and T. Schwetz, *Global analysis of three-flavour neutrino oscillations: synergies and tensions in the determination of \(\theta_{23}, \delta_{CP} \), and the mass ordering*, 1811.05487.

4. G. Altarelli and F. Feruglio, *Discrete Flavor Symmetries and Models of Neutrino Mixing*, Rev. Mod. Phys. 82 (2010) 2701 [1002.0211].
[5] H. Ishimori, T. Kobayashi, H. Ohki, Y. Shimizu, H. Okada and M. Tanimoto, *Non-Abelian Discrete Symmetries in Particle Physics*, *Prog. Theor. Phys. Suppl.* 183 (2010) 1 [1003.3552].

[6] S. F. King and C. Luhn, *Neutrino Mass and Mixing with Discrete Symmetry*, *Rept. Prog. Phys.* 76 (2013) 056201 [1301.1340].

[7] S. T. Petcov, *Discrete Flavour Symmetries, Neutrino Mixing and Leptonic CP Violation*, *Eur. Phys. J. C* 78 (2018) 709 [1711.10806].

[8] R. M. Fonseca and W. Grimus, *Classification of lepton mixing matrices from finite residual symmetries*, *JHEP* 09 (2014) 033 [1405.3678].

[9] I. Girardi, S. T. Petcov, A. J. Stuart and A. V. Titov, *Leptonic Dirac CP Violation Predictions from Residual Discrete Symmetries*, *Nucl. Phys. B* 902 (2016) 1 [1509.02502].

[10] S. T. Petcov and A. V. Titov, *Assessing the Viability of A_4, S_4 and A_5 Flavour Symmetries for Description of Neutrino Mixing*, *Phys. Rev. D* 97 (2018) 115045 [1804.00182].

[11] I. Girardi, A. Meroni, S. T. Petcov and M. Spinrath, *Generalised geometrical CP violation in a T' lepton flavour model*, *JHEP* 02 (2014) 050 [1312.1966].

[12] S. T. Petcov, *Predicting the values of the leptonic CP violation phases in theories with discrete flavour symmetries*, *Nucl. Phys. B* 892 (2015) 400 [1405.6006].

[13] I. Girardi, S. T. Petcov and A. V. Titov, *Predictions for the Leptonic Dirac CP Violation Phase: a Systematic Phenomenological Analysis*, *Eur. Phys. J. C* 75 (2015) 345 [1504.00658].

[14] F. Feruglio, *Are neutrino masses modular forms?*, [1706.08749] in book “From my vast repertoire: the legacy of Guido Altarelli”, S. Forte, A. Levy and G. Ridolfi, eds.

[15] T. Kobayashi, K. Tanaka and T. H. Tatsuishi, *Neutrino mixing from finite modular groups*, *Phys. Rev. D* 98 (2018) 016004 [1803.10391].

[16] J. T. Penedo and S. T. Petcov, *Lepton Masses and Mixing from Modular S_4 Symmetry*, [1806.11040].

[17] T. Kobayashi and S. Tamba, *Modular forms of finite modular subgroups from magnetized D-brane models*, [1811.11384].

[18] R. de Adelhart Toorop, F. Feruglio and C. Hagedorn, *Finite Modular Groups and Lepton Mixing*, *Nucl. Phys. B* 858 (2012) 437 [1112.1340].

[19] J. C. Criado and F. Feruglio, *Modular Invariance Faces Precision Neutrino Data*, *SciPost Phys.* 5 (2018) 042 [1807.01125].

[20] T. Kobayashi, N. Omoto, Y. Shimizu, K. Takagi, M. Tanimoto and T. H. Tatsuishi, *Modular A_4 invariance and neutrino mixing*, [1808.03012].
P. P. Novichkov, J. T. Penedo, S. T. Petcov and A. V. Titov, *Modular S₄ Models of Lepton Masses and Mixing*, [1811.04933](https://arxiv.org/abs/1811.04933).

L. L. Everett and A. J. Stuart, *Icosahedral (A₅) Family Symmetry and the Golden Ratio Prediction for Solar Neutrino Mixing*, *Phys. Rev.* **D79** (2009) 085005 [0812.1057](https://arxiv.org/abs/0812.1057).

F. Feruglio and A. Paris, *The Golden Ratio Prediction for the Solar Angle from a Natural Model with A₅ Flavour Symmetry*, *JHEP* **03** (2011) 101 [1101.0393](https://arxiv.org/abs/1101.0393).

G.-J. Ding, L. L. Everett and A. J. Stuart, *Golden Ratio Neutrino Mixing and A₅ Flavor Symmetry*, *Nucl. Phys.* **B857** (2012) 219 [1110.1688](https://arxiv.org/abs/1110.1688).

I. K. Cooper, S. F. King and A. J. Stuart, *A Golden A₅ Model of Leptons with a Minimal NLO Correction*, *Nucl. Phys.* **B875** (2013) 650 [1212.1066](https://arxiv.org/abs/1212.1066).

I. de Medeiros Varzielas and L. Lavoura, *Golden ratio lepton mixing and nonzero reactor angle with A₅*, *J. Phys.* **G41** (2014) 055005 [1312.0215](https://arxiv.org/abs/1312.0215).

J. Gehrlein, J. P. Oppermann, D. Schäfer and M. Spinrath, *An SU(5) × A₅ golden ratio flavour model*, *Nucl. Phys.* **B890** (2014) 539 [1410.2057](https://arxiv.org/abs/1410.2057).

C.-C. Li and G.-J. Ding, *Lepton Mixing in A₅ Family Symmetry and Generalized CP*, *JHEP* **05** (2015) 100 [1503.03711](https://arxiv.org/abs/1503.03711).

A. Di Iura, C. Hagedorn and D. Meloni, *Lepton mixing from the interplay of the alternating group A₅ and CP*, *JHEP* **08** (2015) 037 [1503.04140](https://arxiv.org/abs/1503.04140).

P. Ballett, S. Pascoli and J. Turner, *Mixing angle and phase correlations from A₅ with generalized CP and their prospects for discovery*, *Phys. Rev.* **D92** (2015) 093008 [1503.07543](https://arxiv.org/abs/1503.07543).

J. Turner, *Predictions for leptonic mixing angle correlations and nontrivial Dirac CP violation from A₅ with generalized CP symmetry*, *Phys. Rev.* **D92** (2015) 116007 [1507.06224](https://arxiv.org/abs/1507.06224).

A. Di Iura, M. L. López-Ibáñez and D. Meloni, *Neutrino masses and lepton mixing from A₅ × CP*, [1811.09662](https://arxiv.org/abs/1811.09662).

S. Ferrara, D. Lust, A. D. Shapere and S. Theisen, *Modular Invariance in Supersymmetric Field Theories*, *Phys. Lett.* **B225** (1989) 363.

S. Ferrara, D. Lust and S. Theisen, *Target Space Modular Invariance and Low-Energy Couplings in Orbifold Compactifications*, *Phys. Lett.* **B233** (1989) 147.

C. Franc and G. Mason, *Hypergeometric series, modular linear differential equations and vector-valued modular forms*, *Ramanujan J.* **41** (2016) 233 [1503.05519](https://arxiv.org/abs/1503.05519).

T. Mano, *Differential relations for modular forms of level five*, *J. Math. Kyoto Univ.* **42** (2002) 41.

H. M. Farkas and I. Kra, *Theta Constants, Riemann Surfaces and the Modular Group*, vol. 37. American Mathematical Society, 2001, Graduate Studies in Mathematics.
[38] S. Kharchev and A. Zabrodin, *Theta vocabulary I*, *J. Geom. Phys.* 94 (2015) 19 1502.04603.

[39] The Sage Developers, *SageMath, the Sage Mathematics Software System (Version 8.4)*, 2018.