Risk Score Elaboration for Stroke in Cardiac Surgery

Ellen Hettwer Magedanz1, PhD; João Carlos Vieira da Costa Guaragna1, PhD; Luciano Cabral Albuquerque1, PhD; Mario Bernardes Wagner1, PhD; Fernanda Lourega Chieza1; Natalia Lamas Bueno1; Luiz Carlos Bodanese1, PhD

Abstract

Introduction: Stroke is a complication that causes considerable morbidity and mortality during the heart surgery postoperative period (incidence: 1.3 to 5%; mortality: 13 to 41%). Models for assessing the risk of stroke after heart surgery have been proposed, but most of them do not evaluate postoperative morbidity. The aim of this study was to develop a risk score for postoperative stroke in patients who undergo heart surgery with cardiopulmonary bypass.

Methods: A cohort study was conducted with data from 4,862 patients who underwent surgery from 1996 to 2016. Logistic regression was used to assess relationships between risk factors and stroke. Data from 3,258 patients were used to construct the model. The model's performance was then validated using data from the remainder of the patients (n=1,604). The model's accuracy was tested using the area under the ROC curve.

Results: The prevalence of stroke during the postoperative period was 3% (n=149); 59% of the patients who exhibited this outcome were male, 51% were aged ≥66 years, and 31.5% of the patients died. The variables that remained as independent predictors of the outcome after multivariate analysis were advanced age, urgent/emergency surgery, peripheral arterial occlusive disease, history of cerebrovascular disease, and cardiopulmonary bypass time ≥110 minutes. The area under the ROC curve was 0.71 (95% confidence interval 0.66 – 0.75).

Conclusion: We were able to develop a risk score for stroke after heart surgery. This score classifies patients as low, medium, high, or very high risk of a surgery-related stroke.

Keywords: Stroke. Risk Factors. Cardiac Surgical Procedures. Postoperative Period. Arterial Occlusive Diseases.

INTRODUCTION

The profile of heart surgery patients is going through a process of progressive change; the age of this population is increasing, their clinical conditions are becoming more severe, and they present with a wide range of associated comorbidities, making them an increasingly complex group of patients[1]. In conjunction with this situation, cardiology, both clinical and interventionist, is advancing. However, despite technological developments and improvements in heart surgery techniques, complications such as cerebral vascular accident (stroke) remain a challenge, causing high rates of morbidity and mortality. Stroke is a heart surgery complication responsible for considerable mortality and morbidity, with estimated incidence rates in the literature from 1.3 to 4.3% and mortality rates in the range of 13 to 41%[2-3]. It extends the duration of intensive care and increases the length of in-hospital stay and the need for home care, raises hospital costs, and has a major impact on the quality of life of survivors[1].

Abbreviations, acronyms & symbols

AF = Atrial fibrillation
CABG = Coronary artery bypass grafting
CI = Confidence interval
COPD = Chronic obstructive pulmonary disease
CPB = Cardiopulmonary bypass
CVD = Cerebrovascular disease
DM = Diabetes mellitus
HL = Hosmer-Lemeshow chi-square goodness-of-fit test
IL = Interleukin
NNE = Northern New England
OR = Odds ratio
PACK2 = Priority, arteriopathy, cardiac, kidney
PAOD = Peripheral arterial occlusive disease
ROC = Receiver operating characteristic
SD = Standard deviation
In both the domestic Brazilian literature and the international literature, advanced age is a predictor of risk that is robustly associated with stroke in heart surgery and the risk of stroke among octogenarian patients can be as high as 9%. It is believed that the increase in age is proportional to the increase in comorbidities that predispose to atherosclerosis, which, in turn, increases the risk of a perioperative neurological event[6].

Other conditions have also been identified as important risk factors for stroke, such as history of cerebrovascular disease (CVD), carotid disease, peripheral vascular disease, systemic arterial hypertension, diabetes mellitus (DM), atrial fibrillation (AF), urgent/emergency surgery, and increased duration of cardiopulmonary bypass (CPB)[1,4,6].

Measurement and monitoring of immediate results after heart surgery are essential to measure the efficacy of procedures and to determine whether results are in line with established quality programs[7]. Although more than 100 studies have been conducted for risk stratification and/or perioperative prognosis, such as the European System for Cardiac Operative Risk Evaluation (or EuroSCORE)[8], for example, few models also cover postoperative morbidity.

The objective of this study was to develop a model for a risk score for postoperative stroke among adult patients who undergo heart surgery with CPB at a University Hospital in the South of Brazil.

METHODS

We conducted a historical cohort observational study based on variables obtained from the postoperative ward’s database of cardiac surgery at the Hospital São Lucas – Pontíficia Universidade Católica do Rio Grande do Sul (or PUCRS), according to the principles established in the Declaration of Helsinki and approved by the Research Ethics Committee under No. 12403413.0.0000.5336. We included 4,862 patients who underwent heart surgery with CPB between January 1996 and December 2016. Patients who underwent congenital heart surgery were excluded.

The variables initially tested in the statistical analyses were: age, sex (male and female), urgent/emergency surgery (included as a single variable and defined as a need for intervention within 48 hours); peripheral arterial occlusive disease (PAOD); surgery type (coronary artery bypass grafting (CABG) or valve replacement); AF; history of CVD, defined as a patient history of stroke, transient ischemic attack, or surgical repair (carotid endarterectomy), ≥ 50% luminal stenosis of the carotid artery seen on angiography, echography, or magnetic resonance angiography, or any combination of these; DM; chronic obstructive pulmonary disease (COPD), diagnosed clinically by chest X-ray and/or spirometry and/or on the basis of drug treatment (corticoid or bronchodilator); obesity (body mass index ≥ 30 kg/m²); hypertension; surgical reintervention; and CPB time (classified as ≥110 minutes). Initial analysis of the variables followed a hierarchical model based on biological plausibility and the results of studies published previously[1,4,6,7] indicating the relevance and strength of associations between these potential risk factors and the occurrence of the outcome being studied (intrahospital stroke).

The main outcome was patients with Type I stroke during the immediate postoperative period and up to 30 days. Type I neurological deficit (stroke) was classified at our service as any new neurological deficit > 24 hours, confirmed by a clinical examination conducted by a neurologist and a cerebral imaging exam (computed tomography or magnetic resonance imaging), or stupor or coma at the time of discharge, based on the classification of the American College of Cardiology (or ACC)/American Heart Association (or AHA) guidelines[9].

Statistical Analysis

Continuous data were described by mean ± standard deviation. Categorical variables were presented as counts and percentages. Univariate comparisons were made with t-tests, chi-square tests, or Fisher’s exact tests, as appropriate. Data were randomly split into a development dataset (2/3) and a validation dataset (1/3). Potential explanatory variables were selected based on the literature and clinical grounds or on a hypothesis about their relationship with prolonged mechanical ventilation. A multiple logistic regression with backward selection was fitted to the development dataset to identify independent risk factors for prolonged mechanical ventilation. Candidate variables with a P-value < 0.10 were entered into this development model.

After observing a successful validation exercise, the development and validation datasets were combined. In this process, variables were not included or removed, resulting in more precise values for previously estimated coefficients. A weighted risk score was created from this final model by rounding the adjusted odds ratios (OR) to their nearest integer. These values were then summed. In all cases, a P-value < 0.05 was deemed statistically significant. Statistical analyses were performed using IBM Corp. Released 2013, IBM SPSS Statistics for Windows, Version 22.0, Armonk, NY: IBM Corp. and R for Windows, version 3.4.2 (R Development Core Team, www.r-project.org).

RESULTS

Characteristics

Three percent (n=149) of the entire sample of patients (n=4,862) suffered a stroke during the postoperative period. Of these patients who exhibited the outcome, 59.1% were male, 51% were aged ≥ 66 years, and 31.5% died. The mean age of the study population was 58.9±12 years. The variables urgent/emergency surgery, PAOD, AF, history of CVD, DM, hypertension, COPD, surgical reintervention, CPB time, and death all exhibited statistical significance in univariate analysis. Around three-quarters of the sample were patients who had undergone CABG without valve replacement. Table 1 shows the results of the univariate analyses for patient characteristics and risk of stroke.

Development of Preliminary Risk Model

A multiple logistic regression was performed with data from 3,258 non-consecutive patients (selected at random), equating
Risk Score Elaboration for Stroke in Cardiac Surgery

The predictors selected (according to the selection criteria described in Methods) to construct the score were age, urgent/emergency surgery, PAOD, history of CVD, and CPB time ≥ 110 minutes.

Validation of the Risk Model

The external validation was conducted with data from 1,604 patients (1/3 of the entire sample) selected at random. The risk model’s accuracy as measured by the area under the ROC curve was 0.74 (95% confidence interval [CI] 0.67 – 0.82) showing that it has good discriminatory power.

Risk Model Based on the Entire Sample (N=4,862)

A multiple logistic regression was conducted with the variables listed, resulting in a recalibrated risk score (Tables 2 and 3). Factors associated with increased risk of postoperative stroke were age ≥ 66 years (three points), history of CVD (two points), age in the range of 51 to 65 years, urgent/emergency surgery, PAOD, and CPB time ≥ 110 minutes (each scoring one point). The area under the ROC curve for the score was 0.71 (95% CI 0.66 – 0.75) (Figure 1).

Table 4 lists the risk of stroke according to the score and the risk classification (summing scores). In the entire sample, 50.3% of the heart surgery patients had a high risk or very high risk assessment, with probability of suffering a stroke during the postoperative period estimated by the score at 4.1% and 11.8%, respectively. The bar graph (Figure 2) shows the predicted stroke rate according to the risk score classes.

In order to test the model’s calibration, the observed rate of stroke was compared with the predicted rate for all patients in each of the score’s four risk classification intervals (Figure 3), resulting in a coefficient for the predicted/observed correlation of 0.98 with $x^2 = 4.505 (P=0.609)$ (HL).

Table 1. Univariate analysis of study groups (n=4,862).

Variables	Stroke (%)	No stroke (%)	P-value
Surgery type			
CABG	109 (73.2)	3398 (72.1)	
Valve replacement	26 (17.4)	1054 (22.4)	0.067
CABG + valve replacement	14 (9.4)	261 (5.5)	
Age			
18-50 years	10 (6.7)	957 (20.3)	
51-65 years	63 (42.3)	2180 (46.3)	< 0.001
≥ 66 years	76 (51.0)	1576 (33.4)	
Age (mean ± SD)	64.2 ± 10.4	59.1 ± 12.6	
Male	88 (59.1)	3007 (63.8)	0.261
Emergency/urgent surgery	20 (13.4)	285 (6.0)	0.001
PAOD	27 (18.1)	264 (7.7)	< 0.001
Atrial fibrillation	19 (12.8)	339 (7.2)	0.016
History of CVD	32 (21.5)	285 (6.0)	< 0.001
Diabetes	51 (34.2)	1154 (24.5)	0.009
Hypertension	109 (73.2)	3059 (64.9)	0.044
COPD	33 (22.1)	708 (15.0)	0.021
Obesity	19 (12.8)	516 (10.9)	0.505
Reintervention	21 (14.1)	275 (5.8)	0.001
CPB time ≥ 110 min.	48 (32.2)	897 (19.2)	< 0.001
Death	47 (31.5)	397 (8.4)	< 0.001

CABG=coronary artery bypass grafting; COPD=chronic obstructive pulmonary disease; CPB=cardiopulmonary bypass; CVD=cerebrovascular disease; PAOD=peripheral arterial occlusive disease; SD=standard deviation.
DISCUSSION

Stroke is a severe and much feared postoperative complication, particularly after heart surgery, and it can have considerable impact on patients’ functional capacity, with economic and social repercussions. This study constructed a risk score for stroke during the postoperative period after heart surgery, starting with a selection of variables described in previous studies\(^1\),\(^2\),\(^4\),\(^6\),\(^10\), of which the following were identified as predictors of risk: age $>$ 51 years, urgent/emergency surgery, PAOD, history of CVD, and CPB time \geq 110 minutes.

The prevalence of postoperative stroke observed in this study was 3%, which is similar to rates reported in the literature, varying from 1.4% in single surgery to 14% among patients who undergo CABG together with valve replacement\(^1\),\(^11\). A Spanish multicenter study\(^1\),\(^2\) of 26,347 patients treated with CABG reported 5% rate of occurrence of perioperative stroke, similar to the findings in our sample, and higher than the rate described by Mérie et al.\(^1\), who studied 33,062 patients over nine years and observed a 1.6% incidence of stroke\(^1\). A study with 108,711 patients who had CABG with CPB observed a 1.8% rate of stroke in the first 30 days of the postoperative period\(^1\),\(^2\). In the present study, mortality among patients who suffered a stroke after heart surgery was 31.5%, which is a higher rate than reported in other studies\(^1\),\(^4\). Countless factors have been associated with occurrence of stroke after heart surgery\(^4\),\(^6\),\(^12\), but there is no consensus in the literature on which are the most important, or to what extent these factors are independent predictors of risk of postoperative CVD.

Many studies have demonstrated that advanced age is an independent risk factor for occurrence of stroke\(^4\),\(^6\),\(^15\),\(^16\). It is believed that the increasing age of patients currently treated with heart surgery, which is a consequence of increasing longevity, is associated with more comorbidities and greater susceptibility to cerebralvascular complications\(^3\). Carrascal et al.\(^4\) conducted a study with the objective of identifying the influence of age on the incidence of stroke after CABG and found a 4.1% rate of the outcome among octogenarian patients, compared to 3.5% in other patients. Whitlock conducted a study\(^1\),\(^4\) that found age \geq 65 years to be an independent predictor of risk of stroke, with an OR of 1.9 (95% CI 1.8 – 2.0)\(^1\). Age is also a predictive factor of risk of stroke in the majority of risk scores in other studies\(^3\),\(^6\),\(^8\),\(^12\).

In this study, advanced age was the risk factor with the greatest impact on occurrence of postoperative stroke, adding one point to scores for patients aged 51 to 65 years and three points for patients aged \geq 66 years. This finding agrees with published data and it is supposed that elderly patients may have increased loss of vascular tone, causing intimal fragility and making atherosclerosis more likely and, as a consequence, increasing the risk of a neurological event\(^4\).
Table 4. Risk of stroke according to the score (n=4,862).

Score*	Sample (n=4,862)	Stroke	Risk category	
0	756	3	0.4	Low
1	1,659	29	1.7	Medium
2 to 4	2,219	90	4.1	High
5 or more	228	27	11.8	Very high

*The resulting logistic model provides direct estimates of the probability of occurrence of the outcome; data were processed and analyzed with the aid of the IBM Corp. Released 2013, IBM SPSS Statistics for Windows, Version 22.0, Armonk, NY: IBM Corp.
Magedanz EH, et al. - Risk Score Elaboration for Stroke in Cardiac Surgery

Tarakji et al. conducted a study with 45,432 patients, demonstrating that use of CPB increased the likelihood of the outcome fivefold. The authors agreed that the relationship between CPB and CVD is caused by inflammatory factors.

Many studies have included variables such as DM, AF, hypertension, surgical re-intervention, and COPD in their scores. However, while these variables did exhibit statistical significance in the univariate analysis in this study, they were not identified as independent predictors of risk after multivariate analysis and were, therefore, excluded from the final risk model.

According to the ROC curve analysis, the discriminatory power of the model developed in the present study was 0.71 (95% CI 0.66 – 0.75). The score’s calibration, representing the degree of agreement between predicted risk of stroke and observed strokes (HL), was $r = 0.98$. If the area under the curve is ≥ 0.7, it can be stated that a model has acceptable discriminatory power and can be used to classify patients.

Limitations

Among the limitations of this study, the analysis is based on a sample of patients from a single institution, which could have an influence on accuracy. The limited number of patients may have affected identification of variables relevant to the analysis, which can be dealt with in future studies. We suggest validating the score in an external population, with data from other institutions, so that it can have broad clinical application.

Notwithstanding, our objective was to develop a score that reflects the situation in our setting and compare it with published data. There is significant scientific interest in the best possible preoperative assessment of heart surgery patients, in order to define risk of stroke during the postoperative period. The results can be used to guide preventative measures to avoid damaging neurological events that compromise patient survival and quality of life.

CONCLUSION

We used the clinical and surgical variables identified in our study (age, surgical priority, PAOD, history of CVD, and CPB time ≥ 110 minutes) to develop a score that can establish the risk of stroke after heart surgery. The resulting score classifies patients as low, medium, high, or very high surgical risk of the cerebrovascular event stroke.

No financial support.
No conflict of interest.
4. Charlesworth DC, Likosky DS, Marrin CA, Maloney CT, Quinton HB, Morton JR, et al. Development and validation of a prediction model for strokes after coronary artery bypass grafting. Ann Thorac Surg. 2003;76(2):436-43. doi:10.1016/s0003-4975(03)03528-9.

5. Nilsson J, Algotssoon L, Höglund P, Lührs C, Brandt J. Comparison of 19 pre-operative risk stratification models in open-heart surgery. Eur Heart J. 2006;27(7):867-74. doi:10.1093/eurheartj/ehj270.

6. Nashed SF, Roques F, Michel P, Gauduchea E, Lemeshow S, Salamon R. European system for cardiac operative risk evaluation (EuroSCORE). Eur J Cardiothorac Surg. 1999;16(1):9-13.

7. Roger VL, Go AS, Lloyd-Jones DM, Benjamin EJ, Berry JD, Borden WB, et al. Heart disease and stroke statistics—2012 update: a report from the American heart association. Circulation. 2012;125(1):e2-e220. Erratum in: Circulation. 2012;125(22):e1002. doi:10.1161/CIR.0b013e31823ac046.

8. Oertel G, Maekawa K. Cerebral dysfunction after coronary artery bypass surgery. J Anesth. 2014;28(2):242-8. doi:10.1007/s00540-013-1699-0.

9. Touma D, Quader M, Rich JB, Kron IL, Crosby K, Kern JA, et al. Institutional variation in mortality after stroke after cardiac surgery: an opportunity for improvement. Ann Thorac Surg. 2015;100(4):1276-82; discussion 1282-3. doi:10.1016/j.athoracsur.2015.04.038.

10. Hornero F, Martín E, Rodríguez R, Castellà M, Porras C, Romero B, et al. A multicentre Spanish study for multivariate prediction of perioperative in-hospital cerebrovascular accident after coronary bypass surgery: the PACK2 score. Interact Cardiovasc Thorac Surg. 2013;17(2):353-8; discussion 358. doi:10.1093/icvts/ivt102.

11. Mérie C, Kober L, Olsen PS, Andersen S, Jensen JS, Torp-Pedersen C. Risk of stroke after coronary artery bypass grafting: effect of age and comorbidities. Stroke. 2012;43(1):38-43. doi:10.1161/STROKEAHA.111.620880.

12. Whitlock R, Healey JS, Connolly SJ, Wang J, Danter MR, Tu JV, et al. Predictors of early and late stroke following cardiac surgery. CMAJ. 2014;186(9):905-11. doi:10.1503/cmaj.131214.

13. Pequero JG, Issa O, Podesta C, Elmahdy HM, Santana O, Lamas GA. Usefulness of the CHADS2/VASC score to predict postoperative stroke in patients having cardiac surgery independent of atrial fibrillation. Am J Cardiol. 2015;115(6):758-62. doi:10.1016/j.amjcard.2014.12.057.

14. Hornero F, Martín E, Paredes F, Gil O, Cánovas S, García R, et al. Stroke after coronary artery bypass grafting: preoperative predictive accuracies of CHADS2 and CHA2DS2-VASC stroke risk stratification schemes. J Thorac Cardiovasc Surg. 2012;144(6):1428-35. doi:10.1016/j.jtcvs.2012.07.053.

15. Baranowska K, Juszczzyk G, Dmitruk I, Knapp M, Tycirska A, Jakubow P, et al. Risk factors of neurological complications in cardiac surgery. Kardiol Pol. 2012;70(8):811-8.

16. Niebles R, Saldarriaga C, Oliveros ML, Jiménez LM, Suárez P, Sepúlveda A, et al. [Predicciones preoperatorias de evento cerebrovascular postoperatorio en cirugía de revascularización miocárdica]. Revista Colombiana de Cardiología. 2015;22(2):102-7. doi:10.1016/j.rccard.2015.02.005. Spanish.

17. Gage BF, van Walraven C, Pearce L, Hart RG, Koudstaal PJ, Boode BS, et al. Selecting patients with atrial fibrillation for anticoagulation: stroke risk stratification in patients taking aspirin. Circulation. 2004;110(16):2287-92. doi:10.1161/01.01.11.000014517.55640.93.

18. Oi K, Arai H. Stroke associated with coronary artery bypass grafting. Gen Thorac Cardiovasc Surg. 2015;63(9):487-95. doi:10.1007/s11748-015-0572-5.

19. Diegeler A, Bögermann J, Kappert U, Breuer M, Bönig A, Ursulescu A, et al. Off-pump versus on-pump coronary-artery bypass grafting in elderly patients. N Engl J Med. 2013;368(13):1189-98. doi:10.1056/NEJMoa1211666.

20. Taraki KG, Sabik JF 3rd, Bhudia SK, Batizy LH, Blackstone EH. Temporal onset, risk factors, and outcomes associated with stroke after coronary
artery bypass grafting. JAMA. 2011;305(4):381-90. doi:10.1001/jama.2011.37.

23. Bartels K, McDonagh DL, Newman MF, Mathew JP. Neurocognitive outcomes after cardiac surgery. Curr Opin Anaesthesiol. 2013;26(1):91-7.

24. Cropsey C, Kennedy J, Han J, Pandharipande P. Cognitive dysfunction, delirium, and stroke in cardiac surgery patients. Semin Cardiothorac Vasc Anesth. 2015;19(4):309-17. doi:10.1177/1089253215570062.

25. Engelman RM, Engelman DT. Strategies and devices to minimize stroke in adult cardiac surgery. Semin Thorac Cardiovasc Surg. 2015;27(1):24-9. doi:10.1053/j.semtcvs.2015.03.001.