On the Skitovich–Darmois Theorem for the Group of p-Adic Numbers

Gennadiy Feldman

Received: 7 December 2012 / Revised: 26 July 2013 / Published online: 10 October 2013
© Springer Science+Business Media New York 2013

Abstract Let Ω_p be the group of p-adic numbers, and let ξ_1 and ξ_2 be independent random variables with values in Ω_p and distributions μ_1 and μ_2. Let α_j, β_j be topological automorphisms of Ω_p. Assuming that the linear forms $L_1 = \alpha_1 \xi_1 + \alpha_2 \xi_2$ and $L_2 = \beta_1 \xi_1 + \beta_2 \xi_2$ are independent, we describe possible distributions μ_1 and μ_2 depending on the automorphisms α_j, β_j. This theorem is an analogue for the group Ω_p of the well-known Skitovich–Darmois theorem, where a Gaussian distribution on the real line is characterized by the independence of two linear forms.

Keywords Group of p-adic numbers · Characterization theorem

Mathematics Subject Classification (2010) 60B15 · 62E10 · 43A35

1 Introduction

The classical characterization theorems of mathematical statistics were extended to different algebraic structures such as locally compact Abelian groups, Lie groups, quantum groups, and symmetric spaces (see e.g., [1–3,6–13], and also [4], where one can find necessary references). In particular, much attention has been devoted to the study of the Skitovich–Darmois theorem, where a Gaussian distribution is characterized by the independence of two linear forms, for some classes of locally compact Abelian groups, and the Heyde theorem, where a Gaussian distribution is characterized by the symmetry of the conditional distribution of one linear form given another. In these cases, coefficients of linear forms are topological automorphisms of a group.
The article is devoted to the Skitovich–Darmois theorem for the group of p-adic numbers Ω_p. To the best of our knowledge, the characterization problems for the group Ω_p have not been studied earlier.

We recall that according to the classical Skitovich–Darmois theorem, if ξ_j, $j = 1, 2, \ldots, n$, $n \geq 2$, are independent random variables, α_j, β_j are nonzero constants, and the linear forms $L_1 = \alpha_1 \xi_1 + \cdots + \alpha_n \xi_n$ and $L_2 = \beta_1 \xi_1 + \cdots + \beta_n \xi_n$ are independent, then all random variables ξ_j are Gaussian. This theorem was generalized by Ghurye and Olkin to the case when ξ_j are independent vectors in the space \mathbb{R}^m and the coefficients α_j, β_j are nonsingular matrices. They proved that the independence of L_1 and L_2 implies that all random vectors ξ_j are Gaussian ([15, Ch. 3]).

Let X be a second countable locally compact Abelian group, $\operatorname{Aut}(X)$ be the group of topological automorphisms of X, ξ_j, $j = 1, 2, \ldots, n$, $n \geq 2$, be independent random variables with values in X and distributions μ_j. Consider the linear forms $L_1 = \alpha_1 \xi_1 + \cdots + \alpha_n \xi_n$ and $L_2 = \beta_1 \xi_1 + \cdots + \beta_n \xi_n$, where α_j, $\beta_j \in \operatorname{Aut}(X)$. In the earlier papers, the main attention was paid to the following problem: For which groups X the independence of L_1 and L_2 implies that all μ_j are either Gaussian distributions, or belong to a class of distributions, which we can consider as a natural analogue of the class of Gaussian distributions. This problem was studied for different classes of locally compact Abelian groups ([4, Ch. V]). It turned out that in contrast to the classical situation, the cases of $n = 2$ and an arbitrary n are essentially different. For $n = 2$, this problem was solved for the class of finite Abelian groups in [1], for the class of compact totally disconnected Abelian groups in [8], and for the class of discrete Abelian groups in [9]. We also note that group analogues of the Skitovich–Darmois theorem for $n = 2$ are closely connected with the positive definite functions of product type introduced by Schmidt (see [5, 17]).

In the article, we continue these investigations. On the one hand, we prove that the Skitovich–Darmois theorem, generally speaking, fails for the group of p-adic numbers Ω_p. On the other hand, we give the complete descriptions of all automorphisms α_j, $\beta_j \in \operatorname{Aut}(\Omega_p)$ such that the independence of the linear forms $L_1 = \alpha_1 \xi_1 + \alpha_2 \xi_2$ and $L_2 = \beta_1 \xi_1 + \beta_2 \xi_2$ implies that μ_1 and μ_2 are idempotent distributions, i.e., shifts of the Haar distributions of compact subgroups of Ω_p. We note that since Ω_p is a totally disconnected group, the Gaussian distributions on Ω_p are degenerated ([16, Ch. 4]).

2 Definitions and Notation

We will use some results of the duality theory for the locally compact Abelian groups (see [14]). Before we formulate the main theorem, we recall some definitions and agree on notation. For an arbitrary locally compact Abelian group X let $Y = X^*$ be its character group, and (x, y) be the value of a character $y \in Y$ at an element $x \in X$. If K is a closed subgroup of X, we denote by $A(Y, K) = \{ y \in Y : (x, y) = 1 \text{ for all } x \in K \}$ its annihilator. If $\delta : X \mapsto X$ is a continuous homomorphism, then the adjoint homomorphism $\overline{\delta} : Y \mapsto Y$ is defined by the formula $(x, \overline{\delta} y) = (\delta x, y)$ for all $x \in X$, $y \in Y$. We note that $\delta \in \operatorname{Aut}(X)$ if and only if $\overline{\delta} \in \operatorname{Aut}(Y)$. Denote by I the identity automorphism of a group.
Let $M^1(X)$ be the convolution semigroup of probability distributions on X. For a distribution $\mu \in M^1(X)$ denote by

$$
\hat{\mu}(y) = \int_X (x, y) d\mu(x)
$$

its characteristic function (Fourier transform), and by $\sigma(\mu)$ the support of μ. For $\mu \in M^1(X)$, we define the distribution $\check{\mu} \in M^1(X)$ by the formula $\check{\mu}(E) = \mu(-E)$ for any Borel set $E \subset X$. Observe that $\hat{\mu}(y) = \check{\mu}(y)$. Let K be a compact subgroup of X. Denote by m_K the Haar distribution on K. We note that the characteristic function of m_K is of the form

$$
\hat{m}_K(y) = \begin{cases}
1, & y \in A(Y, K), \\
0, & y \notin A(Y, K).
\end{cases}
$$

Denote by $I(X)$ the set of all idempotent distributions on X, i.e., the set of shifts of the Haar distributions m_K of the compact subgroups K of X. Let $x \in X$. Denote by E_x the degenerate distribution concentrated at the point x.

3 The Main Theorem

Let p be a prime number. We need some properties of the group of p-adic numbers Ω_p (see [14, §10]). As a set Ω_p coincides with the set of sequences of integers of the form $x = (\ldots, x_{-n}, x_{-n+1}, \ldots, x_{-1}, x_0, x_1, \ldots, x_n, x_{n+1}, \ldots)$, where $x_n \in \{0, 1, \ldots, p-1\}$, such that $x_n = 0$ for $n < n_0$, where the number n_0 depends on x. We correspond to each element $x \in \Omega_p$ the series $\sum_{k=-\infty}^{\infty} x_k p^k$. Addition and multiplication of the series are defined in a natural way, and they define the operations of addition and multiplication in Ω_p. With respect to these operations, Ω_p is a field. Denote by Λ_k a subgroup of Ω_p consisting of $x \in \Omega_p$ such that $x_n = 0$ for $n < k$. The subgroup Λ_0 is called the group of p-adic integers and is denoted by Δ_p. We note that $\Lambda_k = p^k \Delta_p$. The family of the subgroups $\{\Lambda_k\}_{k=-\infty}^{\infty}$ forms an open basis at zero of the group Ω_p and defines a topology on Ω_p. With respect to this topology the group Ω_p is locally compact, noncompact, and totally disconnected. We note that the group Ω_p is represented as a union $\Omega_p = \bigcup_{j=-\infty}^{\infty} p^j \Delta_p$. The character group Ω_p^* of the group Ω_p is topologically isomorphic to Ω_p, and the value of a character $y \in \Omega_p^*$ at an element $x \in \Omega_p$ is defined by the formula

$$
(x, y) = \exp\left[2\pi i \left(\sum_{n=-\infty}^{\infty} x_n \left(\sum_{s=n}^{\infty} y_{-s} p^{-s+n-1}\right)\right)\right],
$$

where for given x and y the sums in (2) actually are finite. Each automorphism $\alpha \in \text{Aut}(\Omega_p)$ is of the form $\alpha g = x_{\alpha} g$, $g \in \Omega_p$, where $x_{\alpha} \in \Omega_p$, $x_{\alpha} \neq 0$. For $\alpha \in \text{Aut}(\Omega_p)$, we identify the automorphism $\alpha \in \text{Aut}(\Omega_p)$ with the corresponding element $x_{\alpha} \in \Omega_p$, i.e., when we write αg, we suppose that $\alpha \in \Omega_p$. We note that $\bar{\alpha} = \alpha$. Denote
by Δ^0 the subset of Ω_p consisting of all invertible in Δ_p elements, $\Delta^0_p = \{ x \in \Omega_p : x_n = 0$ for $n < 0, x_0 \neq 0 \}$. We note that each element $g \in \Omega_p$ is represented in the form $g = p^k c$, where k is an integer, and $c \in \Delta^0_p$. Hence, multiplication on c is a topological automorphism of the group Δ_p.

Denote by $\mathbb{Z}(p^\infty)$ the set of rational numbers of the form $\{ k/p^n : k = 0, 1, \ldots, p^n - 1, n = 0, 1, \ldots \}$. If we define the operation in $\mathbb{Z}(p^\infty)$ as addition modulo 1, then $\mathbb{Z}(p^\infty)$ is transformed into an Abelian group which we consider in the discrete topology. Obviously, this group is topologically isomorphic to the multiplicative group of all p^nth roots of unity, where n goes through the set of nonnegative integers, considering in the discrete topology. For a fixed n denote by $\mathbb{Z}(p^n)$ a subgroup of $\mathbb{Z}(p^\infty)$ consisting of all elements of the form $\{ k/p^n : k = 0, 1, \ldots, p^n - 1 \}$. Note that the group $\mathbb{Z}(p^n)$ is topologically isomorphic to the multiplicative group of all p^nth roots of unity, considering in the discrete topology. Observe that the groups $\mathbb{Z}(p^\infty)$ and Δ_p are the character groups of one another.

Now we will prove the main result of the paper. We will do this for the linear forms $L_1 = \xi_1 + \xi_2$ and $L_2 = \xi_1 + \alpha \xi_2$, where $\alpha \in \operatorname{Aut}(\Omega_p)$, and then will show how the general case is reduced to this one.

Theorem 1 Let $X = \Omega_p$, $\alpha \in \operatorname{Aut}(X)$, $\alpha = p^k c$, $c \in \Delta^0_p$. Then the following statements hold.

1. Assume that either $k = 0$ or $|k| = 1$. Let ξ_1 and ξ_2 be independent random variables with values in X and distributions μ_1 and μ_2. Assume that the linear forms $L_1 = \xi_1 + \xi_2$ and $L_2 = \xi_1 + \alpha \xi_2$ are independent. Then
 1(i) If $k = 0$, then $\mu_1, \mu_2 \in I(X)$; moreover if $c = (0, 0, \ldots, 0, 1, c_1, \ldots)$, then μ_1 and μ_2 are degenerate distributions;
 1(ii) If $|k| = 1$, then either $\mu_1 \in I(X)$ or $\mu_2 \in I(X)$.
2. If $|k| \geq 2$, then there exist independent random variables ξ_1 and ξ_2 with values in X and distributions μ_1 and μ_2 such that the linear forms $L_1 = \xi_1 + \xi_2$ and $L_2 = \xi_1 + \alpha \xi_2$ are independent whereas $\mu_1, \mu_2 \notin I(X)$.

To prove Theorem 1, we need some lemmas. Let ξ be a random variable with values in a second countable locally compact Abelian group X and distribution μ. Taking into account that the characteristic function of the distribution μ is the expectation $E[(\xi, y)]$, exactly as in the classical case, we may prove the following statement.

Lemma 1 Let X be a second countable locally compact Abelian group. Let ξ_1 and ξ_2 be independent random variables with values in X and distributions μ_1 and μ_2. Then the independence of the linear forms $L_1 = \xi_1 + \xi_2$ and $L_2 = \xi_1 + \alpha \xi_2$, where $\alpha \in \operatorname{Aut}(X)$, is equivalent to the fact that the characteristic functions $\widehat{\mu}_1(y)$ and $\widehat{\mu}_2(y)$ satisfy the equation

$$
\widehat{\mu}_1(u+v)\widehat{\mu}_2(u+\alpha v) = \widehat{\mu}_1(u)\widehat{\mu}_2(u)\widehat{\mu}_1(v)\widehat{\mu}_2(\alpha v), \quad u, v \in Y.
$$

Lemma 2 Let $X = \Omega_p$ and $\alpha \in \operatorname{Aut}(X)$, $\alpha = p^k c$, $c \in \Delta^0_p$. Let ξ_1 and ξ_2 be independent random variables with values in X and distributions μ_1 and μ_2 such that $\mu_j(y) \geq 0$, $j = 1, 2$. Assume that the linear forms $L_1 = \xi_1 + \xi_2$ and $L_2 = \xi_1 + \alpha \xi_2$
are independent. Then there exists a subgroup $B = p^j \Delta_p$ in Y such that $\hat{\mu}_j(y) = 1$ for $y \in B, \ j = 1, 2$.

Proof We use the fact that the family of the subgroups $\{ p^j \Delta_p \}_{j=-\infty}^\infty$ forms an open basis at zero of the group Y. Since $\hat{\mu}_1(0) = \hat{\mu}_2(0) = 1$, we can choose m in such a way that $\hat{\mu}_j(y) > 0$ for $y \in L = p^m \Delta_p, \ j = 1, 2$. Put $M = L$ if $k \geq 0$, and $M = p^{-k}L$ if $k < 0$. Then M is a subgroup of L and $\alpha(M) \subset L$. Put $\psi_j(y) = -\log \hat{\mu}_j(y), \ y \in L, \ j = 1, 2$.

By Lemma 1, the characteristic functions $\hat{\mu}_j(y)$ satisfy Eq. (3). Taking into account that $\alpha = \alpha$, we get from (3) that the functions $\psi_j(y)$ satisfy the equation

$$\psi_1(u + v) + \psi_2(u + \alpha v) = \psi_1(u) + \psi_2(u) + \psi_1(v) + \psi_2(\alpha v), \ u \in L, \ v \in M.$$ (4)

Integrating Eq. (4) over the group L with respect to the Haar distribution $dm_L(u)$ and using the fact that the Haar distribution m_L is L-invariant, we obtain

$$\psi_1(v) + \psi_2(\alpha v) = 0, \ v \in M.$$

It follows from this that $\psi_1(v) = \psi_2(\alpha v) = 0$ for $v \in M$, and hence $\hat{\mu}_1(y) = \hat{\mu}_2(\alpha y) = 1, \ y \in M$. Put $B = M \cap \alpha(M)$. Then B is the required subgroup. Lemma 2 is proved. □

Lemma 3 ([4, §2]) Let X be a second countable locally compact Abelian group, and $\mu \in M^1(X)$. Let $E = \{ y \in Y : \hat{\mu}(y) = 1 \}$. Then E is a closed subgroup of Y, the characteristic function $\hat{\mu}(y)$ is E-invariant, i.e., $\hat{\mu}(y + h) = \hat{\mu}(y)$ for all $y \in Y, \ h \in E$, and $\sigma(\mu) \subset A(X, E)$.

An Abelian group G is called p-prime if the order of every element of G is a power of p. Denote by \mathcal{P} the set of prime numbers. The following result follows from the proof of Theorem 1 in [8] (see also [4, §13]).

Lemma 4 Let X be a group of the form

$$\mathcal{P}_{p \in \mathcal{P}} (\Delta_p^{n_p} \times G_p),$$

where n_p is a nonnegative integer, and G_p is a finite p-prime group, may be $G_p = \{ 0 \}$. Let ξ_1 and ξ_2 be independent random variables with values in X and distributions μ_1 and μ_2. If the linear forms $L_1 = \xi_1 + \xi_2$ and $L_2 = \xi_1 + \alpha \xi_2$, where $\alpha \in \text{Aut}(X)$, are independent, then $\mu_j = m_K \ast E_{x_j}$, where K is a compact subgroup of X, and $x_j \in X, \ j = 1, 2$.

Lemma 5 ([4, §13]) Let X be a second countable locally compact Abelian group, ξ_1 and ξ_2 be independent identically distributed random variables with values in X and distribution m_K, where K is a compact subgroup of X. Let $\alpha \in \text{Aut}(X)$. Then the following statements are equivalent:
(i) the linear forms $L_1 = \xi_1 + \xi_2$ and $L_2 = \xi_1 + \alpha \xi_2$ are independent;
(ii) $(I - \alpha)(K) \supset K$.

Proof of Theorem 1 Let ξ_1 and ξ_2 be independent random variables with values in X and distributions μ_1 and μ_2. Assume that the linear forms $L_1 = \xi_1 + \xi_2$ and $L_2 = \xi_1 + \alpha \xi_2$ are independent. By Lemma 1, the characteristic functions of the distributions μ_j satisfy Eq. (3). It is obvious that the characteristic functions of the distributions $\tilde{\mu}_j$ also satisfy Eq. (3). This implies that the characteristic functions of the distributions $\nu_j = \mu_j \ast \tilde{\mu}_j$ satisfy Eq. (3) as well. We have $\tilde{\nu}_j(y) = |\tilde{\mu}_j(y)|^2 \geq 0$, $j = 1, 2$. Hence, when we prove Statements 1(i) and 1(ii), we may assume without loss of generality that $\mu_j(y) \geq 0$, $j = 1, 2$, because μ_j and ν_j are either degenerate distributions or idempotent distributions simultaneously. Moreover, if it is necessary, we may consider new independent random variables $\xi'_1 = \xi_1$ and $\xi'_2 = \alpha \xi_2$, and hence, we may assume that $k \geq 0$. Note also that the only nonzero proper closed subgroups of Ω_p are the subgroups $\Delta_k = p^k \Delta_p$, $k = 0, \pm 1, \ldots$ [14, (10.16)].

Statement 1(i) We can assume that $\alpha \neq 1$. In the opposite case, obviously, μ_1 and μ_2 are degenerate distributions. Since by the condition $k = 0$, we have $\alpha = c$, $c \in \Delta_p^0$, and hence, the restriction of the automorphism $\alpha \in \text{Aut}(X)$ to any subgroup $p^m \Delta_p$ is a topological automorphism of $p^m \Delta_p$. By Lemma 2, there exists a subgroup $B = p^l \Delta_p$ such that $\tilde{\mu}_j(y) = 1$, $j = 1, 2$, for $y \in B$. It follows from Lemma 3 that $\sigma(\mu_j) \subset A(X, B)$. Put $G = A(X, B)$. It is easy to see that $G = p^{\alpha l + 1} \Delta_p$. We have $G \cong \Delta_p$, and the restriction of α to the subgroup G is a topological automorphism of G. Thus, we get that the independent random variables ξ_1 and ξ_1 take values in a group $G \cong \Delta_p$, they have distributions μ_1 and μ_1, and the linear forms $L_1 = \xi_1 + \xi_2$ and $L_2 = \xi_1 + \alpha \xi_2$, where $\alpha \in \text{Aut}(G)$, are independent. Applying Lemma 4, and taking into account that $\mu_j(y) \geq 0$, $j = 1, 2$, we obtain that $\mu_1 = \mu_2 = m_K$, where K is a compact subgroup of G. Thus, we proved the first part of Statement 1(i). On the other hand, we have independent identically distributed random variables ξ_1 and ξ_2 with values in X and distribution m_K such that the linear forms $L_1 = \xi_1 + \xi_2$ and $L_2 = \xi_1 + \alpha \xi_2$ are independent. Hence, by Lemma 5 $(I - \alpha)(K) \supset K$. Suppose that $c = (0, 0, \ldots, 0, 1, c_1, \ldots)$, and $K \neq \{0\}$. It is obvious that in this case, $(I - \alpha)(K)$ is a proper subgroup of K. The obtained contradiction shows that $K = \{0\}$, i.e., μ_1 and μ_2 are degenerate distributions. We also proved the second part of Statement 1(i).

In particular, it follows from this reasoning that in the case, when $X = \Omega_2$, μ_1 and μ_2 are degenerate distributions, because if $c \in \Delta_2^0$, then $c_0 = 1$.

Statement 1(ii) Put $f(y) = \mu_1(y)$, $g(y) = \mu_2(y)$. Taking into account that $\alpha = \tilde{\alpha}$, we rewrite Eq. (3) in the form

$$f(u + v)g(u + \alpha v) = f(u)g(u)f(v)g(\alpha v), \quad u, v \in Y.$$ \hspace{1cm} (5)

Put

$$E = \{y \in Y : f(y) = g(y) = 1\}. \hspace{1cm} (6)$$

Obviously, we can assume that μ_j are nondegenerate distributions, and hence $E \neq \Omega_p$. By Lemma 2 $E \neq \{0\}$, and by Lemma 3, E is a closed subgroup of Ω_p. Thus, E,
as a nonzero proper closed subgroup of Ω_p, is of the form $E = \Delta_0$. Since $k \geq 1$, we have $\alpha(E) \subseteq E$ and hence, α induces a continuous endomorphism $\hat{\alpha}$ on the factor group $L = Y/E$. Taking into account that by Lemma 3

$$f(y + h) = f(y), \quad g(y + h) = g(y),$$

for all $y \in Y$, $h \in E$, we can consider the functions $\hat{f}(y)$ and $\hat{g}(y)$ induced on L by the functions $f(y)$ and $g(y)$. It follows from (6) that

$$\{y \in L : \hat{f}(y) = \hat{g}(y) = 1\} = \{0\}. \tag{7}$$

Passing from Eq. (5) on the group Y to the induced equation on the factor group $L = Y/E$, we obtain

$$\hat{f}(u + v)\hat{g}(u + \hat{\alpha}v) = \hat{f}(u)\hat{g}(u)\hat{f}(v)\hat{g}(\hat{\alpha}v), \quad u, v \in L. \tag{8}$$

It is easy to see that $L \cong \mathbb{Z}(p^\infty)$ and $\hat{\beta} = (I - \hat{\alpha}) \in \text{Aut}(L)$. Putting in (8) first $u = -\hat{\alpha}y$, $v = y$, and then $u = y$, $v = -y$, and taking into account that $\hat{f}(-y) = \hat{f}(y)$ and $\hat{g}(-y) = \hat{g}(y)$, we get

$$\hat{f}((I - \hat{\alpha})y) = \hat{f}(\hat{\alpha}y)\hat{g}^2(\hat{\alpha}y)\hat{f}(y), \quad y \in L, \tag{9}$$

$$\hat{g}((I - \hat{\alpha})y) = \hat{f}^2(y)\hat{g}(y)\hat{g}(\hat{\alpha}y), \quad y \in L. \tag{10}$$

Obviously, Eq. (9) implies that

$$\hat{f}(\hat{\beta}y) \leq \hat{f}(y), \quad y \in L. \tag{11}$$

We note now that any element of the group L belongs to some subgroup H, $H \cong \mathbb{Z}(p^n)$, moreover, $\hat{\beta}(H) = H$. Since H is a finite subgroup, $\hat{\beta}^n y = y$ for any $y \in H$, where n depends generally on y. Then (11) implies that

$$\hat{f}(y) = \hat{f}(\hat{\beta}^n y) \leq \cdots \leq \hat{f}(\hat{\beta}y) \leq \hat{f}(y), \quad y \in L.$$

Thus, on each orbit $\{y, \hat{\beta}y, \ldots, \hat{\beta}^{n-1}y\}$, the function $\hat{f}(y)$ takes a constant value. The similar statement for the function $\hat{g}(y)$ follows from the equation induced by Eq. (10).

Assume that $\hat{f}(y_0) \neq 0$ at a point $y_0 \in L$, $y_0 \neq 0$. Then $\hat{f}(\hat{\beta}y_0) = \hat{f}(y_0) \neq 0$, and Eq. (9) implies that

$$\hat{f}(\hat{\alpha}y_0) = \hat{g}(\hat{\alpha}y_0) = 1. \tag{12}$$

It follows from (7) and (12) that $\hat{\alpha}y_0 = 0$. By the condition $\alpha = pc$, where $c \in \Delta_0^L$. This implies that $\hat{\alpha} = p\hat{c}$, where \hat{c} is an automorphism of the group L, induced by the automorphism c. Hence, y_0 is an element of order p. Reasoning similarly we get from Eq. (10) that if $\hat{g}(y_1) \neq 0$, $y_1 \in L$, $y_1 \neq 0$, then $\hat{f}(y_1) = \hat{g}(\hat{\alpha}y_1) = 1$.

Let w be an arbitrary element of L. Denote by $\langle w \rangle$ the subgroup of L generated by w. It follows from $\hat{f}(y_1) = 1$ that $\hat{f}(y) = 1$ for all $y \in \langle y_1 \rangle$. Since $L \cong \mathbb{Z}(p^\infty)$ and
\(\langle y_1 \rangle \) is a subgroup of \(L \), we have \(\langle y_1 \rangle \cong \mathbb{Z}(p^m) \) for some \(m \), and hence \(\hat{\alpha}(\langle y_1 \rangle) \subset \langle y_1 \rangle \). Moreover, \(\hat{f}(\hat{\alpha}y_1) = 1 \). Thus the equalities

\[
\hat{f}(\hat{\alpha}y_1) = \hat{g}(\hat{\alpha}y_1) = 1
\]

(13)

hold true. It follows from (7) and (13) that \(\hat{\alpha}y_1 = 0 \), and hence \(y_1 \) is also an element of order \(p \). Since \(L \cong \mathbb{Z}(p^\infty) \), the group \(L \) contains the only subgroup \(A \) topologically isomorphic to \(\mathbb{Z}(p) \). So, we proved that the functions \(\hat{f}(y) \) and \(\hat{g}(y) \) vanish for \(y \notin A \).

Consider the restriction of Eq. (8) to the subgroup \(A \). Taking into account that \(\hat{\alpha}y = 0 \) for all \(y \in A \), we obtain

\[
\hat{f}(u + v)\hat{g}(u) = \hat{f}(u)\hat{g}(u)\hat{f}(v), \quad u, v \in A.
\]

(14)

If \(\hat{g}(u_0) \neq 0 \) at a point \(u_0 \in A \), \(u_0 \neq 0 \), then we conclude from (14) that

\[
\hat{f}(u_0 + v) = \hat{f}(u_0)\hat{f}(v), \quad v \in A.
\]

Putting here \(v = (p - 1)u_0 \), we get \(\hat{f}(u_0) = 1 \). Since \(p \) is a prime number, we have \(A = \langle u_0 \rangle \), and hence, \(\hat{f}(y) = 1 \) for \(y \in A \). If \(\hat{g}(y) = 0 \) for any \(y \in A \), \(y \neq 0 \), then, obviously, \(\hat{f}(y) \) may be an arbitrary positive definite function on \(A \). Thus, we proved that either

\[
\hat{f}(y) = \begin{cases}
1, & y \in A, \\
0, & y \notin A,
\end{cases}
\]

(15)

or

\[
\hat{g}(y) = \begin{cases}
1, & y = 0, \\
0, & y \neq 0.
\end{cases}
\]

(16)

Return from the induced functions \(\hat{f}(y) \) and \(\hat{g}(y) \) on \(L \) to the functions \(f(y) \) and \(g(y) \) on \(Y \). Taking into account (1) and the fact that a distribution is uniquely defined by its characteristic function, we obtain from (15) and (16) that either \(\mu_1 \in I(X) \), or \(\mu_2 \in I(X) \). Statement 1(ii) is proved.

Statement 2 It is easy to see that without loss of generality, we can assume that \(k \geq 2 \). Consider on the group \(\Omega_\rho \) the distributions

\[
\mu_1 = am_{\Lambda_1} + (1 - a)m_{\Lambda_k + 2}, \quad \mu_2 = am_{\Lambda_k + 2} + (1 - a)m_{\Lambda_{k + 1}},
\]

where \(0 < a < 1 \). As has been noted earlier, \(A(Y, \Lambda_m) = \Lambda_{m + 1} \). Therefore (1) implies that the characteristic functions \(f(y) = \hat{\mu}_1(y) \) and \(g(y) = \hat{\mu}_2(y) \) are of the form

\[
f(y) = \begin{cases}
1, & y \in p^{k - 1}\Delta_p, \\
a, & y \in \Delta_p \setminus p^{k - 1}\Delta_p, \\
0, & y \notin \Delta_p,
\end{cases}
\]

\[
g(y) = \begin{cases}
1, & y \in p^k\Delta_p, \\
a, & y \in p^{k - 1}\Delta_p \setminus p^k\Delta_p, \\
0, & y \notin p^{k - 1}\Delta_p.
\end{cases}
\]
Let ξ_1 and ξ_2 be independent random variables with values in the group Ω_p and distributions μ_1 and μ_2. It is obvious that $\mu_1, \mu_2 \notin I(X)$. We will check that the characteristic functions $f(y)$ and $g(y)$ satisfy Eq. (5). Then, by Lemma 1, the linear forms $L_1 = \xi_1 + \xi_2$ and $L_2 = \xi_1 + \alpha \xi_2$ are independent, and Statement 2 will be proved.

Consider 3 cases: 1. $u, v \in \Delta_p$; 2. $u \notin \Delta_p, v \in \Delta_p$; and 3. $v \notin \Delta_p$.

1. $u, v \in \Delta_p$. Note that since $k \geq 2$, we have $p^{-k-1} \Delta_p \subset \Delta_p$. Consider 3 subcases.

1a. $u \in p^{k-1} \Delta_p, v \in \Delta_p$. Since $u \in p^{k-1} \Delta_p$, we have $f(u) = 1$, and hence $f(u+v) = f(v)$. Since $\alpha v \in p^k \Delta_p$, we have $g(\alpha v) = 1$, and hence $g(u) = f(u) = g(u)$. Equation (5) takes the form $f(v)g(u) = f(v)g(u)$, and it is obviously true.

1b. $u \in \Delta_p \setminus p^{k-1} \Delta_p, v \in p^{k-1} \Delta_p$. Since $v \in p^{k-1} \Delta_p$, we have $f(v) = 1$, and hence $f(u) = f(v)$. Equation (5) takes the form $f(u)g(u) = f(u)g(u)$, and it is obviously true.

1c. $u \in \Delta_p \setminus p^{k-1} \Delta_p, v \in \Delta_p \setminus p^{k-1} \Delta_p$. Since $v \in \Delta_p$, we have $\alpha v \in p^k \Delta_p$. This implies that $g(\alpha v) = 1$, and hence $g(u) = g(u+\alpha v) = g(u)$. Since $u \notin p^{k-1} \Delta_p$, we have $g(u) = 0$. Thus, both sides of Eq. (5) vanish.

2. $u \notin \Delta_p, v \in \Delta_p$. This implies that $u + v \notin \Delta_p$, and hence $f(u) = 0$ and $f(u+v) = 0$. Thus, both sides of Eq. (5) vanish.

3. $v \notin \Delta_p$. This implies that $f(v) = 0$ and hence, the right-hand side of Eq. (5) vanishes. If the left-hand side of Eq. (5) does not vanish, then the following inclusions

$$\begin{cases} u + v \in \Delta_p, \\ u + \alpha v \in p^{k-1} \Delta_p \end{cases} \quad (17)$$

hold true. On the one hand, since $k \geq 2$, it follows from (17) that $(I - \alpha) v \in \Delta_p$. On the other hand, since $k \geq 2$, we have $(I - \alpha) \in \text{Aut}(\Delta_p)$. Hence $v \in \Delta_p$. The obtained contradiction shows that the left-hand side of Eq. (5) vanishes as well.

We showed that the characteristic functions $f(y)$ and $g(y)$ satisfy Eq. (5). Thus, we proved Statement 2 and hence, Theorem 1 is completely proved.

Remark 1 As follows from the proof of Statement 1(i) if $k = 0$, then $\mu_j = m_K * E_{x_j}$, where K is a compact subgroup of $\Omega_p, x_j \in \Omega_p, j = 1, 2$.

As a corollary from Theorem 1 and Remark 1, we derive the Kac-Bernstein theorem for the group Ω_p (see [4, §7]).

Corollary 1 Let ξ_1 and ξ_2 be independent random variables with values in Ω_p and distributions μ_1 and μ_2. Assume that the linear forms $L_1 = \xi_1 + \xi_2$ and $L_2 = \xi_1 + \beta \xi_2$ are independent. If $p = 2$, then μ_1 and μ_2 are degenerate distributions. If $p > 2$, then $\mu_j = m_K * E_{x_j}$, where K is a compact subgroup of $\Omega_p, x_j \in \Omega_p, j = 1, 2$.

Remark 2 Let ξ_1 and ξ_2 be independent random variables with values in the group Ω_p and distributions μ_1 and μ_2. Assume that the linear forms $L_1 = \alpha_1 \xi_1 + \alpha_2 \xi_2$ and $L_2 = \beta_1 \xi_1 + \beta_2 \xi_2$, where $\alpha_j, \beta_j \in \text{Aut}(\Omega_p)$ are independent. We can consider new independent random variables $\xi_1' = \alpha_1 \xi_1$ and $\xi_2' = \alpha_2 \xi_2$ and reduce the problem of
describing possible distributions μ_1 and μ_2 to the case, when $L_1 = \xi_1 + \xi_2$, $L_2 = \delta_1\xi_1 + \delta_2\xi_2$, where δ_1, $\delta_2 \in \text{Aut}(\Omega_p)$. Since L_1 and L_2 are independent if and only if L_1 and $L'_2 = \delta_1^{-1}L_2$ are independent, the problem of describing possible distributions μ_1 and μ_2 is reduced to the case when $L_1 = \xi_1 + \xi_2$ and $L_2 = \xi_1 + \alpha\xi_2$, where $\alpha \in \text{Aut}(\Omega_p)$, i.e., it is reduced to Theorem 1.

Remark 3 Consider the group Ω_p, where $p > 2$. Let ξ_1 and ξ_2 be independent identically distributed random variables with values in Ω_p and distribution m_{Δ_p}. Let $\alpha = (0, 0, \ldots, 0, x_0, x_1, \ldots) \in \text{Aut}(\Omega_p)$, where $x_0 \neq 1$. It is easy to verify that the characteristic functions $\widehat{\mu}_1(y) = \widehat{\mu}_2(y) = \widehat{m}_{\Delta_p}(y)$ satisfy Eq. (3). This implies by Lemma 1 that the linear forms $L_1 = \xi_1 + \xi_2$ and $L_2 = \xi_1 + \alpha\xi_2$ are independent. Thus, for the group Ω_p, where $p > 2$, Statement 1(i) cannot be strengthened to the statement that both μ_1 and μ_2 are degenerate distributions.

Remark 4 Statement 1(ii) cannot be strengthened to the statement that both μ_1 and μ_2 are idempotent distributions. Namely, if $k = 1$, then there exist independent random variables ξ_1 and ξ_2 with values in the group $X = \Omega_p$ and distributions μ_1 and μ_2 such that the linear forms $L_1 = \xi_1 + \xi_2$ and $L_2 = \xi_1 + \alpha\xi_2$ are independent, but one of the distributions $\mu_j \not\in I(X)$. We get the corresponding example if we put $\mu_1 = m_{\Lambda_1}$ and $\mu_2 = am_{\Lambda_1} + (1 - a)m_{\Lambda_0}$, where $0 < a < 1$. The proof is similar to the reasoning given in the proof of Statement 2.

References

1. Feldman, G.M.: More on the Skitovich-Darmois theorem for finite Abelian groups. Theory Probab. Appl. 45, 507–511 (2000)
2. Feldman, G.M.: A characterization of the Gaussian distribution on Abelian groups. Probab. Theory Relat. Fields 126, 91–102 (2003)
3. Feldman, G.M.: On a characterization theorem for locally compact Abelian groups. Probab. Theory Relat. Fields 133, 345–357 (2005)
4. Feldman, G.M.: Functional equations and characterization problems on locally compact Abelian groups. EMS Tracts in Mathematics, vol. 5. European Mathematical Society, Zurich (2008)
5. Feldman, G.M.: On a theorem of K. Schmidt. B. Lond. Math. Soc. 41, 103–108 (2009)
6. Feldman, G.M.: The Heyde theorem for locally compact Abelian groups. J. Funct. Anal. 258, 3977–3987 (2010)
7. Feldman, G.M.: Independent linear statistics on a-adic solenoids. Theory Probab. Appl. 54, 375–388 (2010)
8. Feldman, G.M., Graczyk, P.: On the Skitovich-Darmois theorem on compact Abelian groups. J. Theoret. Probab. 13, 859–869 (2000)
9. Feldman, G.M., Graczyk, P.: On the Skitovich-Darmois theorem for discrete Abelian groups. Theory Probab. Appl. 49, 527–531 (2005)
10. Feldman, G.M., Myronyuk, M.V.: Independent linear statistics on the two-dimensional torus. Theory Probab. Appl. 52, 78–92 (2008)
11. Feldman, G.M., Myronyuk, M.V.: Independent linear forms on connected Abelian groups. Mathematische Nachrichten 284, 255–265 (2011)
12. Franz, U., Neuenschwander, D., Schott, R.: Gauss laws in the sense of Bernstein and uniqueness of embedding into convolution semigroups on quantum groups and braided groups. Probab. Theory Relat. Fields 109, 101–127 (1997)
13. Graczyk, P., Loeb, J.-J.: A Bernstein property of measures on groups and symmetric spaces. Probab. Math. Stat. 20, 141–149 (2000)
14. Hewitt, E., Ross, K.A.: Abstract Harmonic Analysis, vol. 1. Springer, Berlin (1963)
15. Kagan, A.M., Linnik, Y.V., Rao, C.R.: Characterization Problems of Mathematical Statistics, Wiley Series in Probability and Mathematical Statistics. Wiley, New York (1973)
16. Parthasarathy, K.R.: Probability Measures on Metric Spaces. Academic Press, New York (1967)
17. Schmidt, K.: On a characterization of certain infinitely divisible positive definite functions and measures. J. Lond. Math. Soc. 4(2), 401–407 (1971/72)