Interplay between nuclear shell evolution and shape deformation revealed by magnetic moment of 75Cu†

Y. Ichikawa,1,∗,† H. Nishihata,∗,†,‡ Y. Tsumoda,∗,‡ A. Takamine,∗,† K. Imanura,∗,†,‡ T. Fujita,∗,†,‡ T. Sato,∗,†,‡ S. Momiyama,46 Y. Shimizu,∗,†,‡ D. S. Ahn,∗,† K. Asahi,∗,†,‡ H. Baba,∗,† D. L. Balabanakis,∗,†,‡ F. Boulay,∗,†,‡,§ J. M. Daugas,∗,†,‡ T. Egami,∗,†,‡ N. Fukuda,∗,† C. Funayama,∗,† T. Furukawa,∗,† G. Georgiev,∗,† A. Gladkova,∗,†,‡ N. Inabec,∗,†,‡ Y. Ishibashid,∗,†,‡ T. Kawaguchia,∗,†,‡ T. Kawamura,∗,‡ Y. Kobayashia,∗,†,‡ S. Kojima,∗,† A. Kusoglu,∗,†,‡,§ I. Mukula,∗,†,‡,§ M. Niikura,∗,†,‡,§ T. Nishizakaa,∗,†,‡,§,§,§ A. Odahara,∗,‡ Y. Ohtomo,∗,†,‡ T. Otsuka,∗,†,‡,§,§,§ D. Ralet,∗,†,‡,§ G. S. Simpson,∗,†,‡ T. Sumikamaa,∗,†,‡,§,§,§ Y. Togana,∗,†,‡,§ D. Tominaga,∗,†,‡ H. Ueno,∗,† H. Yamazakia,∗,† and X. F. Yang18

Exotic nuclei are characterized by a number of excess neutrons (or protons) relative to stable nuclei. Their shell structure, which represents single-particle motion in a nucleus, may vary owing to nuclear force and excess neutrons, in a phenomenon called shell evolution. This effect could be counterbalanced by collective modes causing deformations of the nuclear surface. We studied the interplay between shell evolution and shape deformation by focusing on the magnetic moment of an isomeric state of the neutron-rich nucleus 75Cu,1 where low-lying states of the Cu isotopes exhibit an intriguing behavior involving the shell evolution.2–4

The magnetic moment measurement was carried out at the BigRIPS at RIBF. Spin alignment as large as a scheme of two-step projectile fragmentation with a at the BigRIPS at RIBF. Spin alignment as large as an isomeric state of the neutron-rich nucleus deformation by focusing on the magnetic moment of studied the interplay between shell evolution and shape deformation by focusing on the magnetic moment of an isomeric state of the neutron-rich nucleus 75Cu,1 where low-lying states of the Cu isotopes exhibit an intriguing behavior involving the shell evolution.2–4

The magnetic moment measurement was carried out at the BigRIPS at RIBF. Spin alignment as large as 30% was achieved in the isomeric state of 75Cu by a scheme of two-step projectile fragmentation with a technique of momentum-dispersion matching,5 incorporating an angular-momentum selecting proton removal from 76Zn. The magnetic moment was determined using the time-differential perturbed angular distribution (TDPAD) method. Owing to the high spin alignment realized by the refined two-step scheme, the observed oscillation for the 66.2-keV γ rays in the TDPAD spectrum had a significance greater than 5σ. The magnetic moment of the 66.2-keV isomer with spin parity 3/2− was determined to be $\mu = 1.40(6) \mu_N$ for the first time.

† Condensed from the letter in Nat. Phys. 15, 321 (2019)
‡ RIKEN Nishina Center
§ Department of Physics, Osaka University
* Center for Nuclear Study, University of Tokyo
† Department of Physics, Meiji University
§ Department of Physics, Tokyo Institute of Technology
* Department of Physics, University of Tokyo
* ELI-NP, IFIN-HH
* GANIL, CEA/DSM-CNRS/IN2P3
* CEA, DAM, DIF
* Department of Advanced Sciences, Hosei University
† Department of Physics, University of Tsukuba
* Department of Informatics and Engineering, University of Electro-Communications
* Department of Physics, Science University of Tokyo
* Intsitut voor Kern-en Sraalingsfysica, K. U. Leuven
18 LPSC, Université Grenoble Alpes, CNRS/IN2P3
19 School of Physics, Peking University

Fig. 1. Systematics of magnetic moments for odd-A Cu isotopes. Filled and open circles represent experimental data for 3/2− and 5/2− states, respectively. Filled red circle represents the result obtained in this work. Solid green and blue lines represent MCM calculations for 3/2− and 5/2− states, respectively, with 20 ≤ (N, Z) ≤ 56 model space.6 $\mu(p_{3/2})$ and $\mu(p_{5/2})$ denote the proton Schmidt values for $p_{3/2}$ and $f_{5/2}$, respectively.

The magnetic moment, thus obtained, demonstrated a considerable deviation from the Schmidt value, $\mu = 3.05 \mu_N$, for the $p_{1/2}$ orbital. Figure 1 shows the systematics of magnetic moments of the 3/2− and 5/2− states, where deviation from the Schmidt values appears to be maximal at 75Cu. The analysis of the magnetic moment with the help of Monte Carlo shell model (MCSM) calculations6 reveals that the trend of the deviation corresponds to the effect of core excitation and the low-lying states in 75Cu are, to a large extent, of a single-particle nature on top of a correlated 74Ni core, elucidating the crucial role of the shell evolution even in the presence of collective mode.

References
1) C. Petrone et al., Phys. Rev. C 94, 024319 (2016).
2) T. Otsuka et al., Phys. Rev. Lett. 95, 232502 (2005).
3) S. Francho et al., Phys. Rev. Lett. 81, 3100 (1998).
4) K. T. Flanagan et al., Phys. Rev. Lett. 103, 142501 (2009).
5) Y. Ichikawa et al., Nat. Phys. 8, 918 (2012).
6) Y. Tsumoda et al., Phys. Rev. C 89, 031301(R) (2014).