Viable medical waste chain network design by considering risk and robustness

Reza Lotfi1,2 & Bahareh Kargar3 & Alireza Gharehbaghi4 & Gerhard-Wilhelm Weber5,6

Received: 2 August 2021 / Accepted: 22 September 2021 / Published online: 2 October 2021
© The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021

Abstract
Medical waste management (MWM) is an important and necessary problem in the COVID-19 situation for treatment staff. When the number of infectious patients grows up, the amount of MWMs increases day by day. We present medical waste chain network design (MWCND) that contains health center (HC), waste segregation (WS), waste purchase contractor (WPC), and landfill. We propose to locate WS to decrease waste and recover them and send them to the WPC. Recovering medical waste like metal and plastic can help the environment and return to the production cycle. Therefore, we proposed a novel viable MWCND by a novel two-stage robust stochastic programming that considers resiliency (flexibility and network complexity) and sustainable (energy and environment) requirements. Therefore, we try to consider risks by conditional value at risk (CVaR) and improve robustness and agility to demand fluctuation and network. We utilize and solve it by GAMS CPLEX solver. The results show that by increasing the conservative coefficient, the confidence level of CVaR and waste recovery coefficient increases cost function and population risk. Moreover, increasing demand and scale of the problem makes to increase the cost function.

Keywords Viable · Medical waste chain · Network design · Resiliency · Sustainable · Robust optimization

Introduction
Medical waste management (MWM) is a critical problem in the COVID-19 situation. In the COVID-19 condition, amount of infectious patients grows up and amount of MWMs increases. As a result, we must pay more attention to MWMs and improve waste disposal. In many workers that do waste disposal, this subject threatens them very much. MWMs include infectious waste, hazardous waste, radioactive waste, and general waste (municipal solid waste). The WHO classifies medical waste into sharps, infectious, pathological, radioactive, pharmaceuticals, and other (including toilet waste produced at hospitals). About 85% of MWMs are general waste and 15% of MWMs are infectious waste, hazardous waste, and radioactive waste (Tsai 2021). Therefore, the importance of MWMs makes many researchers contribute to this subject and present mathematical approach and decision support system. Some researchers consider a location-routing problem for medical waste management (Suksee and Sindhuchao 2021; Tirkolaee et al. 2021). Others investigate reverse logistics by the mathematical model (Sepúlveda et al. 2017; Suksee and Sindhuchao 2021). Also, some scientists analyze the MWM systems by multi-criteria-decision approach (Aung et al. 2019; Narayananmoothy et al. 2020). The objective of these tools is to improve waste management performance and decrease risks for workers that we can see in Figure 1.

One of the new discussions in the present age is the viability of network design in post-pandemic adaptation. The viability of networks that are proposed by Ivanov and Dolgui

...multi-period, multi-type waste products. The model designed by Budak and Ustundag (2017) is integrated to solve the model for reverse logistics. The genetic algorithm (GA) is applied to solve the model. Tirkolaee et al. (2021) surveyed sustainable fuzzy robust bi-level optimization model to model hazardous waste and the population exposure risk. They minimized the total costs, transportation, and treatment MW risks, and maximized the amount of uncollected waste. They employed the revised multi-choice goal programming (RMGP) method. Homayouni and Pishvae (2020) surveyed hazardous hospital waste collection and disposal network design problem with a bi-objective robust optimization (RO) model. The objectives include total costs and total operational and transportation risk. An augmented ε-constraint (AUGEPS) method is embedded to solve the problem. The real case study is investigated in Tehran, Iran.

Yu et al. (2020b) considered a reverse logistics network design for MWM in epidemic outbreaks in Wuhan (China). The objectives included risk at health centers, risk related to the transportation of medical waste and total cost. They solved the model by fuzzy programming (FP) approach for multi-objective. They determined temporary transit centers and temporary treatment centers in their model. In addition, Yu et al. (2020a) studied a stochastic network design problem for hazardous WM. They minimized cost and transportation cost of hazardous waste and the population exposure risk. They applied stochastic programming with sample average approximation (SAA) for scenario reduction. They solved the model by goal programming (GP). Saeidi-Mobarakeh et al. (2020a) presented bi-level programming (BP) for a hazardous WM problem. They used an environmental approach for upper level and routing and cost for lower level. They solve mix-integer nonlinear programming (MINLP) by GA.

In addition, Saeidi-Mobarakeh et al. (2020b) developed a robust bi-level optimization model to model hazardous WCND. They suggested a robust optimization approach to cope with the uncertainty. Also, the decisions of the model include location, determining capacity, and routing. Eventually, a commercial solver is utilized to solve the model. Tirkolae et al. (2021) surveyed a sustainable fuzzy

Survey on recent MWCND

The amount of waste has increased because of the COVID-19 situation. Therefore, researchers research to manage, improve, and decrease losses from medical centers. We survey on the recent investigation on MWCND which is as follows.

Mantzaras and Voudrias (2017) considered an optimization model for medical waste in Greece. They tried to minimize total cost including location and transfer between locations. The genetic algorithm (GA) is applied to solve the model. Budak and Ustundag (2017) designed a reverse logistic for multi-period, multi-type waste products. The model’s objective was to minimize total cost and the model’s decision included location, flow, and inventory. The case was in Turkey. They found that by increasing waste amounts, the numbers of facilities and strategies are changed. Wang et al. (2019) designed a two-stage reverse logistics network for urban healthcare waste with multi-objective and multi-period. In stage 1, they predicted the amount of medical waste, and in the second stage, they minimized total cost and environmental impact.

Kargar et al. (2020a) presented a reverse supply chain for medical waste. They used mix-integer programming (MIP) to model problem. The objectives included total costs, technology selection, and the total medical waste stored that are minimized. A robust possibilistic programming (RPP) approach is applied to cope with uncertainty. A fuzzy goal programming (FGP) method is embedded to solve the objectives. The real case study is investigated in Babol, Iran. Other works of Kargar et al. (2020b) studied a reverse logistics network design for MWM in the COVID-19 situation. They minimized the total costs, transportation, and treatment MW risks, and maximized the amount of uncollected waste. They employed the revised multi-choice goal programming (RMGP) method. Homayouni and Pishvae (2020) surveyed hazardous hospital waste collection and disposal network design problem with a bi-objective robust optimization (RO) model. The objectives include total costs and total operational and transportation risk. An augmented ε-constraint (AUGEPS) method is embedded to solve the problem. The real case study is investigated in Tehran, Iran.

Yu et al. (2020b) considered a reverse logistics network design for MWM in epidemic outbreaks in Wuhan (China). The objectives included risk at health centers, risk related to the transportation of medical waste and total cost. They solved the model by fuzzy programming (FP) approach for multi-objective. They determined temporary transit centers and temporary treatment centers in their model. In addition, Yu et al. (2020a) studied a stochastic network design problem for hazardous WM. They minimized cost and transportation cost of hazardous waste and the population exposure risk. They applied stochastic programming with sample average approximation (SAA) for scenario reduction. They solved the model by goal programming (GP). Saeidi-Mobarakeh et al. (2020a) presented bi-level programming (BP) for a hazardous WM problem. They used an environmental approach for upper level and routing and cost for lower level. They solve mix-integer nonlinear programming (MINLP) by GA.

In addition, Saeidi-Mobarakeh et al. (2020b) developed a robust bi-level optimization model to model hazardous WCND. They suggested a robust optimization approach to cope with the uncertainty. Also, the decisions of the model include location, determining capacity, and routing. Eventually, a commercial solver is utilized to solve the model. Tirkolae et al. (2021) surveyed a sustainable fuzzy
multi-trip location-routing problem for MWM during the COVID-19 outbreak. They embedded fuzzy chance-constrained programming (FCCP) technique to tackle the uncertainty. Therefore, they implemented weighted GP (WGP) method to analyze and solve the problem. A case study is determined in Sari, Iran to show the performance of the proposed model. Tirkolaee and Aydın (2021) suggested a sustainable MWM for collection and transportation for pandemics. They minimized total cost and the total risk exposure imposed by the collection. Eventually, a commercial solver is utilized to solve the model with meta-goal programming (MGP) for multi-objective. Shadkam (2021) designed a reverse logistics network for COVID-19 and vaccine waste management. They utilized cuckoo optimization algorithm (COA). They tried to minimize total cost. Nikzamir et al. (2021) suggested a location-routing network design for MWM that tried to minimize the total cost and risks of population contact with infectious waste. They offered a mix-integer linear programming (MILP) and solved it by a hybrid meta-heuristic algorithm based on imperialist competitive algorithm (ICA) and GA. Li et al. (2021) surveyed a vehicle routing problem (VRP) for MWM by considering transportation risk. They suggested MILP for time window VRP and developed a particle swarm optimization (PSO) algorithm to solve large-scale problems.

The classification of the literature is addressed in Table 1. It can be seen that researchers do not survey the VMWCND problem. This study investigates the VMWCND problem and used mathematical problems to locate the best place for MWCND.

The main innovation of this research is as follows:

- First time designing VMWCND
- Considering agility, resilience, sustainability, robustness, and risk-averse in MWCND

Problem description

In this research, we try to design VMWCND. The previous section shows a lack of research in resilience, sustainability, and agility MWCND. In the present study, we have health center (HC), waste segregation (WS), waste purchase contractor (WPC), and landfill that wastes move through this network. Eventually, we present VMWCND through resilience strategy (flexible and scenario-based capacity and node complexity), sustainability constraints (energy and environmental pollution), and agility (balance flow and demand satisfaction). We need to locate WS to improve and recover waste and consider sustainability and environmental requirements in this situation (Fig. 2).

Assumptions:

- All wastes should be transferred to HC (agility).
- All forward MWCND constraints include flow and capacity constraint is active.

![Figure 2 Viable medical waste chain network design (VMWCND)](image-url)
Reference	Kind	Decisions	Objectives	Methodology	Uncertainty	Case study
Mantzaras and Voudrias		Location, capacity	√	MILP + GA	-	Greece
(2017)		Location, flow, inventory	-	MILP	-	Turkey
Budak and Ustundag (2017)		Location, flow, inventory	√	MILP - FGP	RPP	Babol, Iran
Wang et al. (2019)	Green	Location, flow, inventory	√	MILP	-	Shanghai, China
Kargar et al. (2020a)		Location, flow, inventory	√	MILP + RMGP	-	Iran
Kargar et al. 2020b		Location, flow	√	MILP + AUGEPS	RO	Tehran, Iran
Homayouni and Pishvae (2020)		Location, flow	√	MILP + FP	-	Wuhan, China
Yu et al. (2020b)		Location, flow	√	MILP + GP	Stochastic	Numerical example (NE)
Yu et al. (2020a)		Location, flow	√	MILP	-	
Saeidi-Mobarakeh et al. (2020b)		Routing, environmental	√	MINLP (BP) + GA	-	Isfahan, Iran
Saeidi-Mobarakeh et al. (2020b)		Location, capacity, routing	√	MILP (BP)	RO	Isfahan, Iran
Tirkolae et al. (2021)	Sustainable	Location, routing	√	MILP + WGP	FCCP	Sar, Iran
Tirkolae and Aydin (2021)	Sustainable	Location, routing	√	MILP + MGP	-	NE
Shadkam (2021)		Location, flow	√	MILP + COA	-	NE
Nikzamir et al. (2021)	Green	Location, routing	√	MILP + ICA, GA	-	NE
Li et al. (2021)		Routing	√	MILP + PSO	-	NE
This research	Viable (resilience + sustainable + agile)	Location, flow	√	MILP	RO	Tehran stochastic

Table 1 Survey of MWCND
• Sustainability constraints include allowed emission and energy consumption is added (sustainability).
• Flexible capacity for facilities and node complexity in WS is considered a resilience strategy (resiliency).
• Using scenario-based robust optimization against risks (robustness, risk, resiliency) (Ivanov 2020; Lotfi et al. 2021b).

Problem	Binary variable	Positive variable	Free variable	Constraint	Cost function	Time solution (second)	Population risk
P1-main	118.4.3.1.3.3	4396	4393	12	8818	1,520,407	9.422
							54,026.33

Notations:

Indices:

- i: Index of health center (HC) $i \in I = \{1, 2, \ldots, I\}$
- j: Index of waste segregation (WS) $j \in J = \{1, 2, \ldots, J\}$
- c: Index of waste purchase contractor (WPC) $c \in C = \{1, 2, \ldots, C\}$
- k: Index of landfill $k \in K = \{1, 2, \ldots, K\}$
- t: Index of time period $t \in T = \{1, 2, \ldots, T\}$
- s: Index of scenario $s \in S = \{1, 2, \ldots, S\}$

Parameters:

- $ww_{i s}$: Waste generated in HC i for time period t under scenario s
- vij_{js}: Variable cost from HC i to WS j for time period t under scenario s
- $vjcjcts$: Variable cost from WS j to WPC c for time period t under scenario s
- vjk_{jks}: Variable cost from WS j to the landfill k for time period t under scenario s
- fj_j: Cost of activation WS j
- $Emij_{js}$: CO2 emission for transferring from HC i to WS j for time period t under scenario s
- $Emjcjcts$: CO2 emission for transferring from WS j to WPC c for time period t under scenario s
- $Emjk_{jks}$: CO2 emission for transferring from WS j to landfill k for time period t under scenario s
- $Enij_{js}$: Energy consumption for transferring from HC i to WS j for time period t under scenario s
- $Enjcjcts$: Energy consumption for transferring from WS j to WPC c for time period t under scenario s
- $Enjk_{jks}$: Energy consumption for transferring from WS j to landfill k for time period t under scenario s
- $Capj_s$: Capacity of WS j for time period t under scenario s
- ps: Possibly of scenario s
- λ: Coefficient of conservative,
- $EMSC_s$: Maximum allowed emission for time period t under scenario s
- $ENSC_s$: Maximum allowed energy consumption for time period t under scenario s
- ρ_j: Coefficient of availability of WS j
- $Mbig$: Big positive number,
- ϵps: Very little positive number,
- α: The confidence level for conditional value at risk,
- π: Waste recovery coefficient,
- TT: Threshold of node complexity for resiliency,
- φ: The ratio of HC to WS.

Table 2: Number of indices, constraints, and variables for case study

Problem	Binary variable	Positive variable	Free variable	Constraint	Cost function	Time solution (second)	Population risk
P1-main	118.4.3.1.3.3	4396	4393	12	8818	1,520,407	9.422
							54,026.33

Table 3: Parameters of case study

Parameters	Value	Unit	Parameters	Value	Unit		
$ww_{i s}$	$U(1000, 1100)$ ($0.8 + 0.4$ ($S^{-1}V,	s	^{-1}$))	Ton	λ	50	%
vij_{js}	$U(0.5, 1)$	$$/Ton$	$EMSC_s$	$U(20,000, 40,000)$ ($ij[i]+ [ij[c]+ij[k])	Ton		
$vjcjcts$	$U(0.5, 1)$	$$/Ton$	$ENSC_s$	$U(40,000, 50,000)$ ($ij[i]+ [ij[c]+ij[k])	MJ		
vjk_{jks}	$U(0.5, 1)$	$$/Ton$	ρ_j	90	%		
fj_j	$U(500,000, 600,000)$	S	α	5	%		
$Emij_{js}$	$U(2, 4)/1000$	Ton	π	90	%		
$Emjcjcts$	$U(2, 4)/1000$	Ton	TT	3000 ($ij[i]+ [ij[c]+ij[k])	Ton		
$Emjk_{jks}$	$U(2, 4)/1000$	Ton	φ	1	%		
$Enij_{js}$	$U(4, 5)/1000$	MJ	θ	200 ($ij[i]+ [ij[c]+ij[k])	Person		
$Enjcjcts$	$U(4, 5)/1000$	MJ	$popij_{js}$	$[U(100, 150)]$	Person		
$Enjk_{jks}$	$U(4, 5)/1000$	MJ	$popjcjcts$	$[U(100, 150)]$	Person		
$Capj_{s}$	$U(222,222, 233,333)$ ($0.8 + 0.4$ ($S^{-1}V,	s	^{-1}$))	Ton	$popjk_{jks}$	$[U(100, 150)]$	Person
ps	$100/	s	$	%	\mid: Sign function		
Table 4 Assigning location for the VMWCND facility

Problem: P1	Binary variable	Place
WPC	x_{ij}	Robat Karim Shurab Parand Nasim Shahr

\[
\text{subject to:}
\]

\[
\Gamma_s = FC + VC_s
\]

\[
FC = \sum_f f_j x_j
\]

\[
VC_s = \sum_s (\sum_i x_{ij} w_{ij} + \sum_i x_{jk} w_{jk} + \sum_i x_{jc} w_{jc})
\]

Agility constraints (flow constraints):

\[
\sum_i w_{ij} = w_{setw}, \forall i, t, s
\]

\[
\sum_i w_{iw} \leq \sum_i w_{jk} + \sum_i w_{jc}, \forall i, k, c, t, s
\]

\[
\sum_i w_{jk} = \sum_i w_{jc} + \sum_i w_{ij}, \forall j, t, s
\]

\[
\sum_i w_{jk} \geq (1 - \pi) \sum_i w_{ij}, \forall j, t, s
\]

Resiliency constraints (flexible and scenario-based capacity and node complexity)

\[
\sum_i w_{jk} + \sum_c w_{jc} \leq \rho_j \text{Cap}_j x_j, \forall j, t, s
\]

\[
\sum_i x_j |t| \geq \varphi
\]

\[
\sum_i w_{ij} + \sum_k w_{jk} + \sum_c w_{jc} \leq TT, \forall j, t, s
\]

Table 5 Comparing P1-VMWCND with risk and worst case and without risk and worst case

Model	P1-VMWCND	P1-VMWCND without risk and worst case	Gap
P1-main	1,520,407	1,495,346.97	1.65%
Sustainability constraints (allowed emission and energy consumption):

\[
\sum_{i} \sum_{j} E_{ij} w_{ij} s_{ts} + \sum_{j} \sum_{k} E_{jk} w_{jk} s_{ts} + \sum_{j} \sum_{c} E_{jc} w_{jc} s_{ts} \leq EMSC_{ts}, \quad \forall t, s
\] \hspace{1cm} (12)

\[
\sum_{i} \sum_{j} E_{ij} w_{ij} s_{ts} + \sum_{j} \sum_{k} E_{jk} w_{jk} s_{ts} + \sum_{j} \sum_{c} E_{jc} w_{jc} s_{ts} \leq ENSC_{ts}, \quad \forall t, s
\] \hspace{1cm} (13)

Figure 3 Potential location for the facilities

Figure 4 Final location for VMWCND facility
\[Pops = \sum \left(\sum \sum \text{pop}_{ijst} \left[w_{ijst} \right] + \sum \sum \text{pop}_{jkst} \left[w_{jkst} \right] + \sum \sum \text{pop}_{jcst} \left[w_{jcst} \right] \right), \quad \forall s \]

\[\sum \sum \text{pop}_s \leq \theta, \quad \forall s \]

Decision variables:

\[x_j \in \{0, 1\}, \quad \forall j \]

\[w_{ijst}, w_{jkst}, w_{jcst} \geq 0, \quad \forall i, j, c, \quad k, t, s \]

Objective (1) considered minimizing the weighted expected value, minimax, and conditional value at risk of the cost function and for all scenarios. This form of the cost function is proposed for robustness and risk-averse against disruption with worst condition. Constraint (4) indicates the variable costs of HC, WS, WPC, and landfill. Constraint (5) shows the waste transshipment from HC to WS. Constraints (6)-(7) are the flow constraints in forwarding VMWCND. Constraint (8) determines the ratio of waste that goes to the landfill. Constraint (9) is the flexible capacity constraints for WS that is less than the capacity of the WS system. Constraint (10) is the resilience constraints and the number of WS is greater than the coefficient of HC. Constraint (11) is the resilience constraints and shows node complexity in WS that summation of input and output of every WS is less than the threshold. Constraint (12) guarantees that the network’s total environmental emissions are less than the allowed emission. Constraint (13) guarantees that the network’s total energy consumption is less than the allowed energy consumption. Constraint (14) is the risks related to the transportation of medical waste. Constraint (15) shows the summation risks related to medical waste transport that contact with population.

Table 6 Effects of variation of conservative coefficient

Problem	Conservative coefficient (λ)	Cost function	Time solution	Cost variation	Population risk
P1	0.00	1,495,346.97	6.289	-1.65%	54,026.33
P1	0.25	1,507,877.11	5.52	-0.82%	54,026.33
P1	0.75	1,532,937.39	5.526	0.82%	54,026.33
P1	1.00	1,545,467.53	6.4	1.65%	54,026.33
P1-main model	0.5	1,520,407.25	9.422	0.00%	54,026.33

Figure 5 Cost function for different lambda
is less than the threshold. Constraints (16)-(17) are the decision variables, and Constraint (16) is the facility location for WC and binary variables and Constraint (17) is the flow variables that are positive between facilities.

Linearization of max, sign, and CVaR (preliminary)

The objective function (1) is nonlinear and makes the model mixed-integer nonlinear programming (MINLP). We transform them to mixed-integer programming (MIP) by mathematical method to improve time solution and solve smoothly (Gondal and Sahir 2013; Sherali and Adams 2013).

Linearizing max and sign function:

Suppose \(\beta = \max(\Omega_s) \), then we can change \(\beta \geq \Omega_s, \forall s \).

Suppose \(\beta_s = [\Omega_s] \), then we can change \(\beta_s \leq 1 + \frac{\Omega_s}{\text{Mbig}} + \text{eps}, \beta_s \geq \frac{\Omega_s}{\text{Mbig}}, \forall s \).

We used conditional value at risk (CVaR), which is a coherent risk measure. Uryasev and Rockfeller designed the CVaR criterion applied to a novel embed risk measure (Soleimani and Govindan 2014). CVaR (also known as the expected shortfall) is considered a measure for assessing the risk. CVaR is embedded in portfolio optimization to better risk management (Goli et al. 2019; Kara et al. 2019). This measure is the average of losses which are beyond the VaR point in confidence level. CVaR has a higher consistency, coherence, and conservation than other risk-related criteria. This measure is the average of losses which are beyond the VaR point in confidence level \(\alpha \). CVaR has a higher consistency, coherence, and conservation than other risk-related criteria.

We used conditional value at risk (CVaR), which is a coherent risk measure. Uryasev and Rockfeller designed the CVaR criterion applied to a novel embed risk measure (Soleimani and Govindan 2014). CVaR (also known as the expected shortfall) is considered a measure for assessing the risk. CVaR is embedded in portfolio optimization to better risk management (Goli et al. 2019; Kara et al. 2019). This measure is the average of losses which are beyond the VaR point in confidence level. CVaR has a higher consistency, coherence, and conservation than other risk-related criteria.

Linearizing CVaR:

\[
\min CVaR_{1-\alpha}(\Gamma \Gamma_s) = \text{VaR} + \frac{1}{1-\alpha} \sum p_r \nu_s \tag{18}
\]

\[
\nu_s \geq \Gamma \Gamma_s - \text{VaR}, \quad \forall s \tag{19}
\]

\[
\nu_s \geq 0 \tag{20}
\]

Table 7 Effects of the confidence level of CVaR

Problem	Confidence level	Cost function	Time solution	Cost variation
P1	1%	1,519,419,405	5.92	-0.06%
P1	2%	1,519,658,805	5.666	-0.05%
P1	3%	1,519,903,141	5.751	-0.03%
P1-main model	5%	1,520,407,25	5.45	0.00%
P1	6%	1,520,667,342	5.544	0.02%
P1	7%	1,520,933,032	5.728	0.03%
Linearization of VMWCND

We used linearization for model (1) by operational research method. Solving the model by MIP is more straightforward than MINLP in the solver and this method decreases time solution and the complexity of the model. We linearized objective (1) for max and CVaR, and linearized Eq. (14) for sign function; as a result, we change to Eqs. (21)-(33):

\[
\text{Minimize } Z = (1-\lambda) \sum_s p_s \Gamma_s \\
+ 0.5 \left(\lambda \Delta + CVaR_{(1-\alpha)}(\Gamma_s) \right) \tag{21}
\]

subject to:

\[
\Delta \geq \Gamma_s, \quad \forall s \tag{22}
\]
\[
CVaR_{(1-\alpha)}(\Gamma_s) = VaR + \frac{1}{1-\alpha} \sum_s p_s v_s, \quad \forall s \tag{23}
\]
\[
v_s \geq \Gamma_s - VaR, \quad \forall s \tag{24}
\]
\[
v_s \geq 0, \quad \forall s \tag{25}
\]

\[
Pops = \sum_s \left(\sum_i \sum_t \sum_j \sum_{ijkl} \sum_{ijkl} \sum_{ijkl} \sum_{ijkl} \sum_{ijkl} \right), \quad \forall s \tag{26}
\]

\[
yij_{ijst} \leq 1 + \frac{wij_{ijst}}{M_{big}} - eps, \quad \forall i, j, t, s \tag{27}
\]
\[
yij_{ijst} \geq \frac{wij_{ijst}}{M_{big}}, \quad \forall i, j, t, s \tag{28}
\]
the essential factors for constraints and positive and free variables is scenario sets. Relation between scenario and constraints and positive and free variables is completely linear.

Binary variables

\[y_{jk} \leq 1 + \frac{w_{jk}}{M_{\text{big}}} - \varepsilon, \quad \forall j, k, t, s \] (29)

\[y_{jk} \geq 1 + \frac{w_{jk}}{M_{\text{big}}}, \quad \forall j, k, t, s \] (30)

Positive variables

\[y_{jc} \leq 1 + \frac{w_{jc}}{M_{\text{big}}} - \varepsilon, \quad \forall j, c, t, s \] (31)

\[y_{jc} \geq 1 + \frac{w_{jc}}{M_{\text{big}}}, \quad \forall j, c, t, s \] (32)

Free variables

\[y_{ij}, y_{jk}, y_{jc} \in \{0, 1\}, \quad \forall i, j, c, k, t, s \] (33)

Constraints (2)-(13) and (15)-(17).

The complexity of linearization of VMWCND includes numbers of binary, positive, free variables, and constraints which is indicated in Eqs. (34)-(37). As can be seen, one of

We suggested scenario reduction and new algorithms to remove constraints and binary variables. This subject can help solve minimum time.
Results and discussion

We surveyed hospitals in Tehran, Iran, and estimated parameters from data of MWCND by managers of health centers. The performance of the mathematical model is presented. The number of indices is defined in Table 2 and the values of the parameters are determined in Table 3. The probability of occurrence is the same and optimistic, pessimistic, and possible scenarios have happened.

We applied a computer with this configuration: CPU 3.2 GHz, processor core i3-3210, 6.00 GB RAM, 64-bit operating system. Finally, we solve the mathematical models by GAMS CPLEX solver.

We show the potential location for assigning HC, WS, WPC, and landfill in Tehran, Iran (cf. Figure 3). After solving the model, it suggests that we activate WS and determine the location and the flow of VMWCND components (Table 4). The objective function is $1,520,407$ in Table 2 and the final location-allocation is drawn in Figure 4. Finally, we calculate population risk (left-hand side of Constraint (15)) that are 54,026.33 persons. Eventually, we compare VMWCND with risk and worst case and without risk and worst case in Table 5. We can see that by embedding risk and worst case, the cost function is almost 1.65% greater than without risk and worst case.

Variation on the conservative coefficient

The conservative coefficient (λ) is the amount of conservative decision-makers. We change it by varying between 0 and 1 that the conservation of decision-maker has been changed.

If the conservative coefficient increases to 1, the cost function grows as shown in Table 6, Figure 5, and Figure 6. If the conservative coefficient increases by 50%, the cost function will increase by 1.65%, but time solution and population risk do not change significantly.

Variation on confidence level of CVaR

The confidence level of CVaR (α) is the amount of risk-averse decision-makers. If the confidence level grows up, we can see that the cost function will increase (cf. Table 7 and Figure 7). By increasing 2% for confidence level, the cost function increases by 0.03%.

Problem	Changing demand	Cost function	Time solution	Cost variation	Population risk
P1	−50%	1,277,474.078	5.941	−15.98%	53,843.001
P1	−40%	1,326,060.712	5.888	−12.78%	53,906.334
P1	−20%	1,423,233.979	6.528	−6.39%	53,965.334
P1-main model	0%	1,520,407	5.45	0.00%	54,026.334
P1	+20%	1,617,580.513	6.295	6.39%	54,026.334
P1	+40%	1,714,753.780	5.963	12.78%	54,026.334

Figure 10 Effects of variation demand on cost function
Variation on waste recovery coefficient

The waste recovery coefficient (\(\pi\)) is the ratio of waste that goes to landfills. If the waste recovery coefficient grows, we can see that the cost function and population risk will decrease (cf. Figure 8, Figure 9, and Table 8). Increasing waste recovery coefficient, transportation to WPC increases and then the cost function increases. But this issue helps systems to use and recover waste.

Variation on demand

We test the effects of changing demand. By increasing the demand, the cost function increases, too (cf. Table 9). As can be seen, when the demand increases by 40%, the cost function grows by 12% and when demand decreases by 50%, it grows down by 16% (cf. Figure 10 and Figure 11).

Variation on scale of the main model

The several large-scale problems are defined in Table 10. When the scale of problems is increased, the time solution and cost function increase as shown in Figure 12 and Figure 13. As can be seen, the proposed model shows the NP hard and the behavior of this model is exponential for large scale. Therefore, we need to solve the model by heuristic, meta-heuristic, and new exact solution in minimum time on large scale.

Managerial insights and practical implications

We surveyed viable waste medical chain network design (VWMCDN). We try to pay more attention to five concepts in medical waste network design. We design VWMCDND that considers agility, resilience, sustainability, risks, and robustness to cope with disruption and requirements of the government. As managers of the VWMCDND, we should move forward to applying the novel concept to decrease cost and population risk, and increase the resiliency of facility, robustness, risk-averse, and agility of WMCND. In this research, we have health center (HC), waste segregation (WS), waste purchase contractor (WPC), and landfill. We propose to locate WS to decrease waste and recover them and send to the WPC. Recovering medical waste like metal and plastic can help the

| Problem | \(|\beta|\cdot|\gamma|\cdot|\delta|\cdot|\iota|\cdot|\kappa|\) | Binary var. | Positive var. | Free var. | Constraint | Cost function | Time solution | Population risk |
|---------|----------------|-------------|--------------|-----------|------------|--------------|---------------|----------------|
| P1 | 118.4.3.1.3.3 | 4396 | 4393 | 12 | 8818 | 1,520,407 | 9.422 | 54,026.33 |
| P2 | 10.8.4.2.7.7 | 6280 | 6273 | 20 | 12,380 | 609,257 | 6.796 | 9201.68 |
| P3 | 118.4.3.1.3.5 | 7324 | 7321 | 16 | 14,694 | 1,591,272 | 13.49 | 54,408.4 |
| P4 | 120.5.4.1.5.3 | 9380 | 9376 | 12 | 18,721 | 1,906,117 | 21.548 | 91,725.33 |
| P5 | 120.5.4.2.7.3 | 13,235 | 13,231 | 12 | 36,388 | 2,160,152 | 72.426 | 128,016.7 |
| P6 | 120.8.4.2.7.3 | 21,176 | 21,169 | 12 | 44,578 | 2,152,882 | 249.904 | 127,924 |
environment and return to production cycle. In this situation of COVID-19 and because of economic problem, we should use all power to utilize waste and move to circular economy and sustainable development. This issue is compatible with sustainable development goal (SDG12—Ensure sustainable consumption and production patterns) and the circular economy pillars. The maximum benefit from the proposed paper is people and service providers of the medical waste chain.

Conclusions and outlook

Medical waste management (MWM) is an important and necessary problem in the COVID-19 situation for treatment staff. The number of infectious patients grows up and the amount of MWMs increases day by day. We should think about this issue and find a solution for this issue. We suggest to recover MWM by waste segregation. Therefore, we proposed a novel viable medical waste chain network design (VMWCND) that considers resiliency (flexibility and network complexity) and sustainable (energy and environment) requirement. Finally, we try to tackle decrease risks and increase robustness and agility to demand fluctuation and network. We utilize a novel two-stage robust stochastic programming and solve with a GAMS CPLEX solver.

Therefore, the results are as follows:

1. If the conservative coefficient increases up to 1, the cost function grows up. If the conservative coefficient increases to 1, the cost function grows as shown in Table 6, Figure 5 and 6. If the conservative coefficient increases by 50%, the cost function will increase by 1.65%, but time solution and population risk do not change significantly.
2. If the conservative coefficient increases up to 50%, the cost function will increase by 1.65%, but time solution and population risk do not change significantly.

3. If the confidence level of CVaR grows up, we can see that the cost function will increase (cf. Figure 7 and Table 7). Increasing for confidence level by 2%, the cost function increases by 0.03%.

4. If the waste recovery coefficient grows, we can see that the cost function and population risk will decrease (cf. Figure 8 and 9, and Table 8). By increasing the waste recovery coefficient, transportation to WPC increases and then the cost function increases. But it helps systems to use waste and recover them.

5. When demand increases by 40%, the cost function grows by 12% and when demand decreases by 50%, it grows down by 16% (cf. Figure 10 and 11).

6. When the scale of problems is increased, the cost function and time solution grow up as shown in Figure 12 and 13. As can be seen, the behavior of the proposed model is NP hard and exponential on large scale. Therefore, we need to solve the model by heuristic, meta-heuristic, and new exact solution in minimum time on large scale.

Finally, solving the main model on a large scale is the research constraint. We propose to apply exact algorithms like Bender decomposition, branch and price, branch and cut, column generation, and heuristic and meta-heuristic algorithms to solve models in minimum time (Fakhrazad and Lotfi 2018; Lotfi et al. 2017; Maadanpour Safari et al. 2021). We can add other resilience and sustainable tools to the model until increasing the resiliency and sustainability of the model like backup facility and redundancy. Also, we suggest to apply multi-objective for environmental, energy, and occupational objective (Das et al. 2021; Ghosh et al. 2021; Mondal and Roy 2021; Pourghader Chobar et al. 2021).

Furthermore, we suggest adding coherent risk criteria like entropic value at risk (EVaR) (Ahmadi-Javid 2012) for considering risks. Researchers intend to investigate method uncertainty like robust convex (Lotfi et al. 2021a). Using new and novel uncertainty methods like data-driven robust optimization and fuzzy programming (Midya et al. 2021) is advantageous for a conservative decision-maker in the recent decade. Eventually, we suggest equipping VMWCND with novel technology like blockchain and neural learning (Khalilpourazari et al. 2020) for the viability of MWCND.

Data availability Not applicable.

Declarations

Ethical approval Not applicable.

Consent to participate Not applicable.

Consent for publication Not applicable.

Competing interests The authors declare no competing interests.

References

Ahmadi-Javid A (2012) Entropic value-at-risk: a new coherent risk measure. J Optim Theory Appl 155(3):1105–1123

Aung TS, Luan S, Xu Q (2019) Application of multi-criteria-decision approach for the analysis of medical waste management systems in Myanmar. J Clean Prod 222:733–745

Budak A, Ustundag A (2017) Reverse logistics optimisation for waste collection and disposal in health institutions: the case of Turkey. Int J Log Res Appl 20(4):322–341

Das SK, Pervin M, Roy SK, Weber GW (2021) Multi-objective solid transportation-location problem with variable carbon emission in inventory management: a hybrid approach. Ann Oper Res 2021:1–27. https://doi.org/10.1007/s10479-020

Fakhrzad M-B, Lotfi R (2018) Green vendor managed inventory with backorder in two echelon supply chain with epsilon-constraint and NSGA-II approach. J Ind Eng Res Prod Syst 5(11):193–209

Ghosh S, Roy SK, Ebrahimnejad A, Verdegay JL (2021) Multi-objective fully intuitionistic fuzzy fixed-charge solid transportation problem. Complex Intell Syst 7(2):1009–1023

Goli A, Zare HK, Tavakkoli-Moghaddam R, Sadeghihe A (2019) Application of robust optimization for a product portfolio problem using an invasive weed optimization algorithm. Numer Algebra Control Optim 9(2):187–209

Gondal IA, Sahir MH (2013) Model for biomass-based renewable hydrogen supply chain. Int J Energy Res 37(10):1151–1159

Homayouni Z, Pishvae MS (2020) A bi-objective robust optimization model for hazardous hospital waste collection and disposal network design problem. J Mater Cycles Waste Manag 22(6):1965–1984

Ivanov D (2020). Viable supply chain model: integrating agility, resilience and sustainability perspectives—lessons from and thinking beyond the COVID-19 pandemic. Ann Oper Res 1–21.

Ivanov D, Dolgui A (2020) Viability of intertwined supply networks: extending the supply chain resilience angles towards survivability. A position paper motivated by COVID-19 outbreak. Int J Prod Res 58(10):2904–2915

Kara G, Özmen A, Weber G-W (2019) Stability advances in robust portfolio optimization under parallelized uncertainty. CEJOR 27(1):241–261

Kargar S, Paydar MM, Safaei AS (2020a) A reverse supply chain for medical waste: a case study in Babol healthcare sector. Waste Manag 113:197–209

Kargar S, Pourmehdi M, Paydar MM (2020b) Reverse logistics network design for medical waste management in the epidemic outbreak of the novel coronavirus (COVID-19). Sci Total Environ 746:141183

Khalilpourazari S, Soltanzadeh S, Weber G-W, Roy SK (2020) Designing an efficient blood supply chain network in crisis: neural learning, optimization and case study. Ann Oper Res 289(1):123–152

Author contribution Reza Lotfi: conceptualization, supervision, software, methodology, formal analysis, data curation, writing original draft, visualization.

Bahareh Kargar: methodology, software, formal analysis, data curation, writing original draft, writing review and edit, visualization.

Ali Reza Gharehbaghi: methodology, validation.

Gerhard-Wilhelm Weber: validation, writing review and edit.

Springer
Li H, Hu Y, Lyu J, Quan H, Xu X, Li C (2021) Transportation risk control of waste disposal in the healthcare system with two-echelon waste collection network. Math Probl Eng 2021:1–10
Lotfi R, Mardani N, Weber GW (2021a) Robust bi-level programming for renewable energy location. Int J Energy Res 45:7521–7534
Lotfi R, Mehrjerdi YZ, Mardani N (2017) A multi-objective and multi-product advertising billboard location model with attraction factor mathematical modeling and solutions. Int J Appl Logist (IJAL) 7(1):64–86
Lotfi R, Mehrjerdi YZ, Pishvae MS, Sadeghieh A, Weber G-W (2021b) A robust optimization model for sustainable and resilient closed-loop supply chain network design considering conditional value at risk. Numer Algebra Control Optim 11(2):221
Maadanpour Safari F, Etebari F, Pourghader Chobar A (2021) Modelling and optimization of a tri-objective transportation-location-routing problem considering route reliability: using MOGWO, MOPSO, MOWCA and NSGA-II. J Optim Ind Eng 14(2):99–114
Mantzaras G, Voudrias EA (2017) An optimization model for collection, haul, transfer, treatment and disposal of infectious medical waste: application to a Greek region. Waste Manag 69:518–534
Midya S, Roy SK, Vincent FY (2021) Intuitionistic fuzzy multi-stage multi-objective fixed-charge solid transportation problem in a green supply chain. Int J Mach Learn Cybern 12(3):699–717
Mondal A, Roy SK (2021) Multi-objective sustainable open-and closed-loop supply chain under mixed uncertainty during COVID-19 pandemic situation. Comput Ind Eng 159:107453
Narayananmoothy S, Annapoorni V, Kang D, Baleanu D, Jeon J, Kureethara JV, Ramya L (2020) A novel assessment of biomedical waste disposal methods using integrating weighting approach and hesitant fuzzy MOOSRA. J Clean Prod 275:122587
Nikzamir M, Baradaran V, Panahi Y (2021) A supply chain network design for managing hospital solid waste. J Ind Manag Stud 19(60):85–120
Pourghader Chobar A, Adibi MA, Kazemi A (2021) A novel multi-objective model for hub location problem considering dynamic demand and environmental issues. J Ind Eng Manag Stud 8(1):1–31
Saeidi-Mobarakeh Z, Tavakkoli-Moghaddam R, Navabakhsh M, Amoozad-Khalili H (2020a) A bi-level and robust optimization-based framework for a hazardous waste management problem: a real-world application. J Clean Prod 252:119830
Saeidi-Mobarakeh Z, Tavakkoli-Moghaddam R, Navabakhsh M, Amoozad-Khalili H (2020b) A bi-level meta-heuristic approach for a hazardous waste management problem. Int J Eng 33(7):1304–1310
Sepulveda J, Banguera L, Fuertes G, Carrasco R, Vargas M (2017) Reverse and inverse logistic models for solid waste management. South Afr J Ind Eng 28(4):120–132
Shadkam, E. (2021). Cuckoo optimization algorithm in reverse logistics: a network design for COVID-19 waste management. Waste Manag Res, 0734242X2110039
Sherali HD, & Adams WP (2013). A reformulation-linearization technique for solving discrete and continuous nonconvex problems (Vol. 31): Springer Science & Business Media.
Soleimani H, Govindan K (2014) Reverse logistics network design and planning utilizing conditional value at risk. Eur J Oper Res 237(2):487–497
Suksee S, Sindhuchoa S (2021) GRASP with ALNS for solving the location routing problem of infectious waste collection in the Northeast of Thailand. Int J Ind Eng Comput 12(3):305–320
Tirkolaee EB, Abbasian P, Weber G-W (2021) Sustainable fuzzy multi-trip location-routing problem for medical waste management during the COVID-19 outbreak. Sci Total Environ 756:143607
Tirkolaee EB, & Aydin NS (2021). A sustainable medical waste collection and transportation model for pandemics. Waste Manag Res. Tsai W-T (2021) Analysis of medical waste management and impact analysis of COVID-19 on its generation in Taiwan. Waste Manag Res 39:27–33
Wang Z, Huang L, & He CX (2019). A multi-objective and multi-period optimization model for urban healthcare waste’s reverse logistics network design. J Comb Optim 1-28.
Yu H, Sun X, Solvang WD, Laporte G, Lee CKM (2020a) A stochastic network design problem for hazardous waste management. J Clean Prod 277:123566
Yu H, Sun X, Solvang WD, Zhao X (2020b) Reverse logistics network design for effective management of medical waste in epidemic outbreaks: insights from the coronavirus disease 2019 (COVID-19) outbreak in Wuhan (China). Int J Environ Res Public Health 17(5):1770

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.