Theft and Reception of Host Cell’s Sialic Acid: Dynamics of *Trypanosoma Cruzi* Trans-sialidases and Mucin-Like Molecules on Chagas’ Disease Immunomodulation

Leonardo Marques da Fonseca, Kelli Monteiro da Costa, Victoria de Sousa Chaves, Célio Geraldo Freire-de-Lima, Alexandre Morrot, Lucia Mendonça-Previato, Jose Osvaldo Previato, and Leonardo Freire-de-Lima

The last decades have produced a plethora of evidence on the role of glycans, from cell adhesion to signaling pathways. Much of that information pertains to their role on the immune system and their importance on the surface of many human pathogens. A clear example of this is the flagellated protozoan *Trypanosoma cruzi*, which displays on its surface a great variety of glycoconjugates, including O-glycosylated mucin-like glycoproteins, as well as multiple glycan-binding proteins belonging to the trans-sialidase (TS) family. Among the latter, different and concurrently expressed molecules may present or not TS activity, and are accordingly known as active (aTS) and inactive (iTS) members. Over the last thirty years, it has been well described that *T. cruzi* is unable to synthesize sialic acid (SIA) on its own, making use of aTS to steal the host’s SIA. Although iTS did not show enzymatic activity, it retains a substrate specificity similar to aTS (α-2,3 SIA-containing glycotopes), displaying lectinic properties. It is accepted that aTS members act as virulence factors in mammals coursing the acute phase of the *T. cruzi* infection. However, recent findings have demonstrated that iTS may also play a pathogenic role during *T. cruzi* infection, since it modulates events related to adhesion and invasion of the parasite into the host cells. Since both aTS and iTS proteins share structural substrate specificity, it might be plausible to speculate that iTS proteins are able to assuage and/or attenuate biological phenomena depending on the catalytic activity displayed by aTS members. Since SIA-containing glycotopes modulate the host immune system, it should not come as any surprise that changes in the sialylation of parasite’s mucin-like molecules, as well as host cell glycoconjugates might disrupt critical physiological events, such as the building of effective immune responses. This review...
A SNAPSHOT OF THE NATURE OF
TRYPANOSOMA CRUZI SURFACE COAT

Trypanosoma cruzi presents a complex life cycle spanning two hosts, the hematophagous triatomine, and susceptible mammals (1). Throughout evolution, *T. cruzi* developed the capacity to adapt to hostile environments in both kinds of hosts. An important feature that was certainly decisive for the parasite adaptation to different hosts, as well as different niches within each host, was its ability to remodel its own surface coat (2, 3). It is well established that the cell surface of *T. cruzi* is composed by a wide variety of glycosylphosphatidylinositol (GPI)-anchored glycoconjugates expressed on a developmental stage-specific manner(4–7).

Regarding the cell coat of the *T. cruzi* forms found in mammals, several studies revealed that it is mainly composed by both glycoisotolipospholipids (GIPs) and heavily O-glycosylated mucin-like molecules (8, 9).

In addition, proteins belonging to *trans*-sialidase (TS) family (10–14); trypomastigote small surface antigen (TSSA) (15–17) and members of a multigenic family identified during the sequencing of the *T. cruzi* CL Brener genome, named mucin-associated surface proteins (MASPs) are found to a lesser extent (18–22).

SIALIC ACID-CONTAINING GLYCANS
MODULATE THE ESTABLISHMENT OF
T. CRUZI INFECTION IN MAMMAL’S CELLS

Over the last twenty years, it has been known that simple, as well as complex carbohydrates (glycans) may play major structural, physical and metabolic roles in biological systems (23). Such functions include self/non-self-discrimination, ensuring correct protein folding, cell-to-cell signaling, cell adhesion and even differentiation, among others (24–27). The immune system, akin to the legions protecting the Roman Empire, is poised to defend the body against pathogens and transformed cells alike. One of the most important carbohydrates when it comes to the immune system is sialic acid (SIA) (28–30). More specifically the *N*-acetyl neuraminic acid (Neu5Ac). Immune responses deflagrated against *T. cruzi* are of particular interest, since the parasite is incapable of synthesizing SIA (31, 32). That would put *T. cruzi* squarely in the crosshairs of their mammal hosts’ immune systems, since they somewhat rely on SIA to identify pathogens (3, 33, 34). The use of TS provides an elegant mechanism through which *T. cruzi* poaches SIA molecules from the hosts’ cells and covers its own surface molecules, effectively creating a molecular ghillie suit to hide from mammalian phagocytes, posing a difficulty for the generation of an effective immune response (35–37). In addition to the enzymatically active members (aTS), which are able to modify the glycoconetype of both parasite and host cells (3, 13, 38, 39), TS also presents an inactive form (iTS), due to the naturally occurring Tyr342→His substitution, which completely abolishes TS enzymatic activity (40). Despite the lack of catalytic function, it still plays an important role in *T. cruzi*-host cell interaction due to its lectinic activity (41–45) (Figure 1). Both extracellular (axenic) amastigote and trypomastigate forms of *T. cruzi* are infective to mammal cells (46–48). Regarding the trypomastigate forms, both iTS and aTS are GPI-anchored surface proteins (49). Recent findings revealed that sialylated mucins are present in lipid-raft-domains far away from TS molecules are found. By using unnatural sugar approach as chemical reporters, the authors demonstrated that the sialylation event is orchestrated by micro-vesicle-associated aTS instead of a membrane-anchored or fully soluble enzyme (34).

The importance of SIA-containing glycans on *T. cruzi*-host cell interplay was suggested over twenty-five years ago, when the authors demonstrated that the parasite’s ability to penetrate into SIA-deficient cells was reduced when compared with wild-type cell lines (50). After this finding, many groups began investigating the events triggered by TS in vitro and in murine models (3, 37, 51–53).

TRANS-SIALIDASES AS KEY REGULATORS OF THE IMMUNE EVASION

Studies have shown that *T. cruzi* can recapitulate transient thymic aplasia in infected mice. It occurs in an early moment of the infection and aTS was proven responsible for the induction of apoptosis, since recombinant aTS alone can induce the alterations. In other studies, neutralizing anti-TS antibodies and the use of inhibitors prevented these effects (54). Also, an earlier study showed that recombinant iTS was incapable of eliciting these abnormalities (55). A study from Risso and colleagues demonstrated that the level of thymic damage was dependent on the parasite strain. More lethal strains (TcVI: RA, Q501, Cvd, and TcII: Br) present markedly higher levels of TS than their non-lethal counterparts (K-98, Ac and Hc - TcI) (56, 57). A different study showed that aTS does not appear to provoke thymocyte apoptosis directly. Instead, such effect seems to be centered on the thymic nurse cell complex, a region of the thymus cortex that contains mainly double-positive thymocytes, the most affected by TS (58). It is interesting to point out the studies that showed the pro-apoptotic effect

Keywords: *Trypanosoma cruzi*, trans-sialidase, mucin-like molecule, sialic acid, glycan-binding protein, infectious disease, T-cell response
Fonseca et al. Dynamics of Trypanosoma cruzi Molecules

FIGURE 1 | Schematic model showing the presence of trans-sialidases and mucin-like molecules on the parasite cell surface. The biological properties of both GPI-anchored proteins (trans-sialidases [TS] and mucin-like molecules) have been extensively studied over the last years, and their immunobiological functions have been gradually disclosed. Trypanosoma cruzi expresses on its surface both inactive (iTS) and active (aTS) TS proteins, that present similar substrate specificity (α-2,3 SIA). While iTS displays lectinic-like activity (A), aTS shows the ability to modulate the sialoglycophototype of both parasite and host cell glycans (B). Since both TS proteins compete by α-2,3 sialo-containing glycans (C), it may attenuate and or abrogate the process of SIA transfer mediated by aTS (D). Consequently, it might be able to compromise biological phenomena depend on the catalytic activity displayed by enzymatically active members. In addition, both TS may be found associated to microvisicles, displaying the same properties mediated by both fully soluble enzyme (E, F). The sialylation of glycoproteins found in the parasite cell surface besides to promote protection against soluble factors of the host immune system, may also provide ligand for SIA-binding proteins expressed by host cells, such as Siglecs (G). Since this phenomenon compromises the effective function of immune cells, it may represent an interesting mechanism to guarantee the perpetuation of the parasite in their infected host.

was due to the alteration of the sialylation profile of target cells. By using lactitol, a competitive inhibitor that compromises the transfer of the sialyl residue to endogenous acceptors, but not the hydrolase activity of the enzyme, disallowed ex vivo and in vivo apoptosis caused by aTS (54). Years later, Lepletier and colleagues proposed that the apoptosis provoked by TS activity might also be capable of provoking an imbalance in the hypothalamus-pituitary-adrenal axis of T. cruzi-infected mice, leading to increased release of glucocorticoids, notorious immunosuppressants (59).

Early studies in the 90’s already provided evidence of how aTS modulates the host immune system. Chuenkova and Pereira demonstrated that sensitizing mice with TS from conditioned supernatants, as well as recombinant αTS lead to higher parasitemia levels, and increased mortality rates. They also proposed that since animals with severe combined immunodeficiency, which lack functional T and B lymphocytes, were not affected. The logical conclusion was that TS was somehow affecting essential effector components of the adaptive immune system (60).

T lymphocytes must be activated to build up an effective response against invading organisms (61). This process involves loss of SIA residues in α-2,3 bonds from O-linked oligosaccharides, exposing free β-1,3 galactose (Gal) residues (62, 63). Such residues can be detected by the use of Peanut agglutinin lectin (PNA), which binds to terminal nonreducing Galβ1,3-GalNAc containing-sequences (64). That said T. cruzi’s flagship enzyme unique ability to transfer SIA residues springs to mind as the perfect candidate to interfere with this process. Our group demonstrated this by showing that in a TS-free infection, i.e., Plasmodium berghei-infected mice, activated CD8+ T cells exhibited a great number of terminal β-Gal residues, while in the presence of aTS, such residues were re-sialylated (37) (Figure 1). While further investigation is necessary, it is safe to say that such an effect would be a great help to the parasite, as dampening the cellular response, would help ensure the protozoa’s survival within the host. Further evidence of that statement is found in the work of Pereira-Chioccola et al. (65). The authors describe how anti-alpha-Gal antibodies, purified from chronic Chagas disease patients, strongly bind to α-Gal terminals in mucins, causing severe structural perturbations that lead to parasite lysis, while sialylation by TS activity diminishes the damage. The authors proposed that the negative charge provided by SIA
helps stabilizing the T. cruzi surface coat by electrostatic repulsion (65).

Although it has been known for more than twenty years that both iTS and aTS have almost identical structures and compete for the same substrate (40, 42, 44), little is known about the biological effects triggered by iTS during T. cruzi infection.

In an interesting report, Pascale et al. (45) demonstrated that the expression of iTS gene in iTS-null parasites was able to improve T. cruzi invasion into Vero cells and increased their in vivo virulence as shown by histopathologic findings in skeletal muscle and heart tissue of T. cruzi-infected mice (45). Although the molecular mechanisms have not been elucidated, the authors claim that iTS might play a different or complementary pathogenic role to aTS (45).

Recently, our group demonstrated that mice treated with an elevated (non-physiological) concentration of recombinant iTS showed a compromise of T cells homing to the cardiac tissue during T. cruzi-infection (44). Since iTS is capable of recognizing SIA-containing glycans, which are carried by many glycoproteins involved in leukocyte extravasation through activated venular walls (66–68) it would be plausible to speculate that iTS, through its lectinic property, may bind to sialylated peripheral homing receptors, impairing the homing of inflammatory cells to the target tissues. The poor development of genetic tools to directly dissect the biological roles displayed by either iTS or aTS, leads researchers towards alternative approaches for this technical deadlock. The use of both recombinant T. cruzi-iTS and aTS, separately or together, may provide a good way for studying the effects triggered by both TS proteins (44).

Over the last fifteen years, studies demonstrated that when administered separately, both iTS and aTS elicit similar biological effects (42, 69, 70). However, until recently, there was no published data showing their combined effects. Immunological studies carried out by our group revealed that in T. cruzi-infected mice, the intravenous administration of high concentrations of recombinant aTS was able to modulate the expression of inflammatory signals by splenic T cells (44).

Nevertheless, when both recombinant iTS and aTS were injected in equivalent amounts, such phenomena were significantly compromised (44). Additional studies are necessary to confirm our previous findings, however, it is plausible to speculate that when present in a soluble form and/or associated to microvesicles (34), iTS may compete with aTS by the same SIA-containing glycotopes and attenuate/abrogate biological events depending of the addition and/or removal of SIA residues.

Another question that needs addressing is the degree to which iTS is able to attenuate or abrogate biological events induced by aTS. In 2010, Freire-de-Lima and colleagues demonstrated that CD8+ T cells from T. cruzi-infected mice treated with a high concentration of recombinant iTS, became positive for PNA. These results reinforce the idea that iTS competes with aTS for SIA-containing glycotopes, then compromising an expected re-sialylation phenomenon that naturally happens during T. cruzi infection (37).

Trypanosoma Cruzi Mucins

Trypanosoma cruzi mucins are the parasite’s most abundant surface glycoproteins. First described by Alves and Colli in epimastigotes, these highly glycosylated GPI-anchored mucin-like proteins were named A, B, and C glycoproteins (71). These proteins display a great deal of heterogeneity, with the genes responsible for encoding them being divided into two major families (3, 9, 72–74). The T. cruzi small mucin gene (TcSMUG) family encodes proteins that are expressed in the insect stages of the parasite’s life, being essential to the infectivity on the insect host (75), while the TcMUC family, comprising from five to seven hundred genes, encodes the proteins expressed in the mammalian host. These proteins contain well-conserved N- and C-terminal regions, corresponding to ER and GPI anchor signals, respectively (72, 74, 76). This family can be further divided into three groups: (i) TcMUC I possesses a central domain with tandem repeats, with consensus sequences for O-glycosylation sites and it is more expressed in amastigotes (72, 73, 77); TcMUC II, found in trypomastigotes, displays a smaller number of repeats but is rich in serine and threonine residues (9, 72–74). Finally, TcMUCIII refers solely to the expression of a small surface protein, TSSA, or trypomastigote small surface antigen, being expressed only on cell-derived trypomastigotes (15). These mucin-like molecules contain a great number of O-linked oligosaccharides that are the main acceptors of SIA in the parasite’s surface (Figure 1) (78–81). Unlike the classical vertebrate mucins, these oligosaccharides are linked to the protein core through α-GlcNAc residues, instead of α-GalNAc (82).

Regardless, they contain a great number of free terminal β-Gal residues, which serve as ideal SIA acceptors (7, 78–81) (Figure 1). The O-linked oligosaccharides composition and size vary depending both the parasite strain (9, 78–80, 83–85) and its sialylation might promote immunosuppressive properties (please, see below).

The GPI-mucins expressed by T. cruzi, also known as sialoglycoproteins, are mucin-like molecules that are highly glycosylated and present a conserved GPI-anchor linked to the parasite cell surface (9, 80–87). All mucin GPI-anchors are constituted by a similar glycan core (Manα1-2Manα1-2Manα1-6Manα1-4GlcN) (9, 80, 85, 87). Except for the cell-derived trypomastigotes, where a branch of Gal residues can modify the GPI anchor (9, 84). The GPI-mucin lipid anchor differs according to the parasite’s stage (80, 81, 85). In non-infective insect-derived epimastigotes, they are composed of saturated fatty acids; in metacyclic trypomastigotes, they are mainly inositol-phosphoceramides, and in the cell-derived trypomastigotes, they are composed wholly of alkylacyl-phosphatidylinositol (PI) structures, frequently insaturated (C18:1 or C18:2) (84, 85).

There is abundant data showing that following the early stages of T. cruzi infection, the patterns of resistance or susceptibility may be determined before adaptive immunity elements have a chance to respond, with components of the innate immune response playing crucial roles for parasite control (88). T. cruzi makes use of an expanded array of molecular strategies to invade an extensive range of host cells, as well as to avoid the host’s
immune defense. In the infection site, *T. cruzi* triggers the production of chemokines and pro-inflammatory cytokines, such as interleukin-12 (IL-12) and tumor necrosis factor-α (TNF-α), and the highly reactive oxygen and nitrogen species produced by cells of the Mφ lineage (84, 85, 89–91). Over the last fifteen years, it has been described that GPI anchors expressed in the surface of *T. cruzi* are determinant in this process (85, 92, 93). In 2006, Bafica and colleagues demonstrated that the activation of innate immune response by *T. cruzi*-derived DNA and GPI anchors from trypomastigote mucins (GPI-mucins anchors) forms, was able to promote the production of proinflammatory signals (84, 94). The authors revealed that the parasite’s DNA stimulates cytokine production by Mφ in a Toll-Like Receptor-9 (TLR9) dependent mechanism, and synergizes with parasite-derived tGPI-mucins, a TLR2 agonist, in the induction of IL-12 and TNF-α (94). More recently, it has been demonstrated that both living *T. cruzi* trypomastigote forms, as well as tGPI-mucins are able to induce high levels of IL-12 by human monocytes. Additionally, it has been proven that such effect depends on CD40-CD40L interaction and IFN-γ (95). In that work the authors claim that the polarized T1-type cytokine profile observed in *T. cruzi*-infected individuals might be a long-term effect of IL-12 production induced by lifelong exposure to *T. cruzi* tGPI-mucins (95).

It is well accepted that a great array of GPI-mucin genes is responsible for the variability of parasite cell surface (2). In 2004, an interesting work carried out by Buscaglia and collaborators demonstrated that the vast majority of the tGPI-mucin molecules found on the surface of the cell-derived trypomastigotes belong to the TcMUC II group. In this study, for the first time, the authors presented high evidence that multiple products of TcMUC II are concurrently expressed, suggesting that such molecules might represent a sophisticated strategy for the parasite to dampen the host immune response (9).

In 2002, Argibay and co-authors transfected higher eukaryotic cells (Vero cells) with TCMuc-e2 gene, which encodes for a mucin that is expressed in the blood-circulating stage of the parasite. The authors demonstrated that when transfected cells were exposed to human lymphocytes, an event of T cell anergy was observed. In this study, it was also demonstrated that the effect could be reversed by the addition of exogenous IL-2 (35). A different study discussed the effect of the interaction between the *T. cruzi* AgC10, a mucin-like molecule expressed by metacyclic trypomastigotes, as well as on amastigotes (96) and L-selectin in T cell surface. In an event independent of IFN-γ and nitric oxide, it was capable of inhibiting T cell proliferation and IL-2 secretion, as well as impairing IL-2 mRNA expression in response to mitogens. In fact, most genes whose expression is controlled by NFAT (Nuclear Factor of Activated T-cells) were affected and the overexpression of NFAT refuted the effects mediated by the parasite’s glycoprotein (97).

The carbohydrate chains of mucin molecules are usually long extended structures (98). Over the last ten years has been demonstrated that the O-linked oligosaccharides composition of *T. cruzi* mucin-like molecules might exert direct effect on the host immune system. Since epimastigote forms are easier to be cultured in vitro, most of the studies investigating the biological roles triggered by *T. cruzi* O-linked glycans have been performed with non-infective forms for mammal cells. In 2013, Nunes and colleagues showed that a purified preparation of sialylated *T. cruzi* glycoproteins is capable of inhibiting clonal expansion as well as cytokine production by CD4+ lymphocytes. This happens through cell cycle arrest in the G1 phase and cannot be reversed by administration of exogenous IL-2, effectively rendering the cells anergic when stimulated through the T cell receptor (TCR) (99). The authors suggested that the starting point of this effect would be the interaction between the sialylated parasite mucins and Siglecs expressed on the T cell surface (Figure 1). An earlier study might substantiate this claim. Erdmann and co-workers showed that the highly virulent *T. cruzi* Tulahuen strain was able to modulate the functionality of dendritic cells, through the interaction of its sialylated mucins with Siglec-E. The authors also confirmed that the desialylation of the parasite’s surface molecules prevents such event (100).

POSSIBLE THERAPEUTIC TARGETS

The mucin-like proteins present in the surface of *T. cruzi* bear a distinct characteristic when compared to mucins or any other O-glycosylated protein on the surface of human proteins: the presence of galactofuranose (Galβ) residues (79). The flavoenzyme UDP-galactofuranose mutase (UMG) is not found in humans, but is essential to the composition of bacterial and fungal cell walls, as well as an important virulence factor for protozoa (6, 101, 102). A study in the late 80’s even managed to show that anti-galactofuranose antibodies lead to a 70% inhibition of cell invasion (103). It should not come as a surprise that some groups treat UMG as an ideal therapeutic target, since the enzyme is not present in humans, and are working towards the development of UMG inhibitors (104–106). One study shows promise in halting the growth of some *Mycobacterium* species (107). It is important to note that this strategy suffers from a fundamental problem in the fact that so far Galβ residues have not been found in the mucins expressed in the mammalian host stages. The presence of Galβ residues in metacyclics has been demonstrated (81).

trans-Sialidases also comes off as a potential drug target for the treatment or prevention of Chagas disease, and as such, many groups have been pursuing different strategies focused on TS as a target for either therapeutic or prophylactic methods. Good examples of this are recombinant proteins and DNA vaccines (108–111). Despite early reports showing that immunization with TS inhibits Th1 immune response (70), it was recently demonstrated that such a response can be elicited by the clever use of adjuvants (112). The same group has also shown that using the same model, αTS elicits stronger humoral and cellular responses than other *T. cruzi* antigens (113). Over the last decade, works from many research groups have demonstrated that vaccines candidates based on TS proteins are capable of protecting *T. cruzi*-infected mice (111, 114–118). Groundbreaking studies carried out by Rodrigues and Tarleton groups (119–122) have demonstrated that immunodominant CDB8+ T cell immune responses directed to epitopes expressed...
by members of the TS family contribute to control T. cruzi infection, suggesting that non-antibody mediated cellular immune responses to the antigens expressed in the mammalian forms of T. cruzi might be used for the purpose of vaccination. In 2015, Pereira and collaborators started the development of both prophylactic and therapeutic vaccine protocols. The vaccines take advantage of the immunostimulation provided by a replication-defective human Type 5 recombinant adenoviruses (rAd) vector carrying sequences of amastigote surface protein-2 (rAdASP2), and TS (rAdTS). This strategy, rather offers a rational approach for re-programming the host immunity, achieving a more protective profile, leading to interruption of damage and even tissue recovery, particularly when it comes to chronic Chagas heart disease (123).

Another important focus field concerning T. cruzi TS is the search for effective inhibitors. A di-sialylated N-lactoside compound was shown to promote a 70% inhibition of TS activity through a competition mechanism (124). Sulfasalazine, a first line sulfa drug for rheumatoid arthritis, is also a moderate TS inhibitor. Although it does not lead to a great inhibition of the enzyme activity and it is not particularly toxic to the parasite strains tested by Lara-Ramirez’s group, it is a good starting point for the development of new drugs, especially because sulfasalazine has been in use since the early 50s (125).

Several other researches have reported results on promising drugs, from competitive to non-competitive inhibitors, acting through reversible or irreversible mechanisms, some of those reaching up to 50% inhibition in the millimolar range (126–130).

An earlier work from our group has shown that 2-difluoromethyl-4-nitrophenyl-3,5-dideoxy-D-glycero-α-D-galacto-2-nonulopyranosid acid (NeuNacFNP) is able to irreversibly inhibit TS in a time and dose-dependent manner. More importantly, it is able to produce a 90% inhibition of the infection of LLC-MK2 cells by T. cruzi Y strain trypomastigotes (131). Although it provides a unique form of inhibition and a chance for less major adverse effects, especially since TS bears no semblance with any human enzyme (132).

CONCLUSION

In this review, we focused on the role of T. cruzi glycoconjugates and associated proteins in mediating the relationship between parasite and the human immune system. Throughout the years, several discoveries illustrated how TS, Tc-mucins and SIA are fundamental for the parasite to not only survive, but also thrive in an inhospitable environment like the human body. Mounds of evidence sustain the idea that TS is an important virulence factor, especially during the acute phase of the disease and is pivotal in aiding the parasite in bypassing the immune system. Authors also agree on the fact that mucins are major players in the balance between immune response and parasite survival, especially since it is the primary SIA acceptor in the protozoan membrane.

It is our belief that a better understanding of how T. cruzi is able to sabotage the human immune response will provide us with more effective tools to prevent and combat infections. Moreover, the parasite’s unique system of handling SIA is almost certainly pivotal, since it involves a one-of-a-kind enzyme and an equally unique group of mucin-like proteins.

AUTHOR CONTRIBUTIONS

LF, KdC, VC, CF-d-L, AM, LM-P, JP, and LF-d-L participated in the writing of the paper.

FUNDING

The work was supported by Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq); Fundação de Amparo à Pesquisa do Estado do Rio de Janeiro (FAPERJ), and Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES).

REFERENCES

1. De Souza W. Basic cell biology of Trypanosoma cruzi. Curr Pharm Des. (2002) 8:269–85. doi: 10.2174/1381612023396276

2. Buscaglia CA, Campo VA, Frasch AC, Di Noia JM. Trypanosoma cruzi surface mucins: host-dependent coat diversity. Nat Rev Microbiol. (2006) 4:229–36. doi: 10.1038/nrmicro1351

3.ucci J, Santos AR, Buscaglia CA, Leguizamon MS, Campetella O. The Trypanosoma cruzi surface, a nanoscale patchwork quilt. Trends Parasitol. (2017) 33:102–12. doi: 10.1016/j.pt.2016.10.004

4. McConville MJ, Ferguson MA. The structure, biosynthesis and function of glycosylated phosphatidylinositols in the parasitic protozoa and higher eukaryotes. Biochim J. (1993) 294 (Pt. 2):305–24. doi: 10.1042/bj940305

5. Previoti JO, Wait R, Jones C, DosReis GA, Todeschini AR, Heise N, et al. Glycoconostrophospholipid from Trypanosoma cruzi. structure, biosynthesis and immunobiology. Adv Parasitol. (2004) 61:1–41. doi: 10.1016/S0065-308X(03)56001-8

6. de Lederkremer RM, Agusti R. Glycobiology of Trypanosoma cruzi. Adv Carbohydr Chem Biochem. (2009) 62:311–66. doi: 10.1016/S0065-2318(09)00007-9

7. Mendonca-Previo I, Penha L, Garcez TC, Jones C, Previtoi JO. Addition of alpha-O-GlcNAc to threonine residues define the post-translational modification of mucin-like molecules in Trypanosoma cruzi. Glycoconj J. (2013) 30:659–66. doi: 10.1007/s10719-013-9469-7

8. Almeida IC, Ferguson MA, Schenkman S, Travassos LR. Lytic anti-alpha-galactosyl antibodies from patients with chronic Chagas’ disease recognize novel O-linked oligosaccharides on mucin-like glycosyl-phosphatidylinositol-anchored glycoproteins of Trypanosoma cruzi. Biochem J. (1994) 304 (Pt. 3):793–802. doi: 10.1042/bj3040793

9. Buscaglia CA, Campo VA, Di Noia JM, Torrecillas AC, De Marchi CR, Ferguson MA, et al. The surface coat of the mammal-dwelling infective trypomastigote stage of Trypanosoma cruzi is formed by highly diverse immunogenic mucins. J Biol Chem. (2004) 279:15860–9. doi: 10.1074/jbc.M31051200

10. Colli W. Trans-sialidase: a unique enzyme activity discovered in the protozoan Trypanosoma cruzi. FASEB J. (1993) 7:1257–64. doi: 10.1096/fasebj.7.13.8405811

11. Cross GA, Tickle GB. The surface trans-sialidase family of Trypanosoma cruzi. Annu Rev Microbiol. (1993) 47:385–411. doi: 10.1146/annurev.mi.47.100193.002125
12. Frasch AC. Functional diversity in the trans-sialidase and mucin families in Trypanosoma cruzi. Parasitol Today (2000) 16:282–6. doi: 10.1016/S0169-4758(00)01698-7
13. De-Rubin SS, Schenkmann S. T. cruzi trans-sialidase as a multifunctional enzyme in Chagas’ disease. Cell Microbiol. (2012) 14:1522–30. doi: 10.1111/j.1462-5822.2012.01831.x
14. Frei-Cristina I, Fonseca LM, Oeltmann T, Mendonca-Previto L, Previto JO. The trans-sialidase, the major Trypanosoma cruzi virulence factor: three decades of studies. Glycobiology (2015) 25:1142–9. doi: 10.1093/glycob/cwv057
15. Di Noia JM, Buscaglia CA, De Marchi CR, Almeida IC, Frasch AC. A multifunctional enzyme in Chagas' disease: a unique virulence factor: three decades of studies. Glycobiology (2015) 25:1142–9. doi: 10.1093/glycob/cwv057
16. Canepa GE, Degese MS, Budu A, Garcia CR, Buscaglia CA. Involvement of TSSA (trans-sialidase small surface antigen) in Trypanosoma cruzi invasion of mammalian cells. Biochem J. (2012) 444:211–8. doi: 10.1042/BJ20120074
17. Camara MLM, Canepa GE, Lantos AC, Balous V, Yu H, Chen X, et al. The Trypanosomtate Small Surface Antigen (TSSA) regulates Trypanosoma cruzi infectivity and differentiation. PLoS Negl Trop Dis. (2017) 11:e0005856. doi: 10.1371/journal.pntd.0005856
18. El-Sayed NM, Myler PJ, Blandin G, Aggarwal G, et al. Trypanosoma cruzi. The occurrence of N-acetyl- and N-glycoloylneuraminic acid in Trypanosoma cruzi-secreted glycoconjugates. J Exp Med. (2002) 195:401–13. doi: 10.1084/jem.20011433
19. Bartholomeu DC, Cerqueira GC, Leao AC, da Rocha WD, Pais FS, Macedo C, et al. The Trypanosoma cruzi trans-sialidase, the major Trypanosoma cruzi virulence factor: three decades of studies. Immunol. (2000) 14:252–32. doi: 10.1093/glycob/12.1.25
20. Gao W, Wortis HH, Pereira MA. The Trypanosoma cruzi trans-sialidase is a T cell-independent B cell mitogen and an inducer of non-specific Ig secretion. Int Immunol. (2002) 14:299–308. doi: 10.1053/immu.14.3.299
21. Freire-de-Lima L, Oliveira IA, Neves JL, Penha LL, Almeida IC, Frasch AC, Campetella O. The Trypanosoma cruzi trans-sialidase family secreted by Trypanosoma cruzi infects T cell-derived monocytic cell lines. J Infect. (2013) 67:421–7. doi: 10.1016/j.jinf.2012.09.003
22. Cremona ML, Sanchez DO, Flach AC, Campetella O. A single tyrosine distinguishes a trans-sialidase isolated from Trypanosoma cruzi. Cell Microbiol. (2002) 47:581–90. doi: 10.1046/j.1462-5822.2002.01331.x
23. Varki A, Biological roles of sialic acids: all of the theories are correct. [J Biol Chem. (1993) 268:19755–62. doi: 10.1016/0021-9258(93)90525-7
24. Kelm S, Schauer R, Crocker PR. The Sialoadhesins—a family of sialic acid-dependent cellular recognition molecules within the immunoglobulin superfamily. Glycoconj J. (1996) 13:913–26. doi: 10.1007/BF010 53186
25. Varki A, Gentzsch P. Multifarious roles of sialic acids in immunity. Ann N Y Acad Sci. (2012) 1253:16–36. doi: 10.1111/j.1749-6632.2012.06517.x
26. Fraschilla I, Pillai S. Viewing siglec through the lens of tumor immunology. Immunol. Rev. (2017) 276:178–81. doi: 10.1111/imr.12526
27. Schauer R, Reuter G, Mobayud A, Andrade AF, Pereira MA. The occurrence of N-acetyl- and N-glycolylneuraminic acid in Trypanosoma cruzi. Hoppe Seylers Z Physiol Chem. (1983) 364:1053–7. doi: 10.1515/bchm2.1983.364.2.1053
Fonseca et al. Dynamics of Trypanosoma cruzi Molecules

51. Schenkman S, Eichinger D, Pereira ME, Nussenzweig V. Structural and functional properties of Trypanosoma trans-sialidase. *Ann Rev Microbiol.* (1994) 48:499–523. doi: 10.1146/annurev.mi.48.100194.002435
52. Woronowicz A, De Vusser K, Laroy W, Contreras R, Meakin SO, Ross GM, et al. Trypanosoma trans-sialidase targets TκA tyrosine kinase receptor and induces receptor internalization and activation. *Glycobiology* (2004) 14:987–98. doi: 10.1093/glycob/cwh123
53. Chuenkova M, Peresparerrin M. *Trypanosoma cruzi*-derived neurotrophic factor: role in neural repair and neuroprotection. *J Neuroprotect.* (2010) 1:55–60. doi: 10.4303/jnp/1100507
54. McEvoy LM, Sun H, Frelinger JG, Butcher EC. Anti-CD43 inhibition of virulence in a murine model of Chagas’ disease. *Kedl RM. T cell responses: naive to memory and everything in* vivo. *J Infect Dis.* (1999) 180:1398–402. doi: 10.1086/315001
55. Leplettier A, de Frias Carvalho V, Morrot A, Savino W. Thymic atrophy in acute experimental Chagas disease is associated with an imbalance of stress hormones. *Ann NY Acad Sci.* (2012) 1262:45–50. doi: 10.1111/j.1749-6632.2012.06601.x
56. Leguizamon MS, Mocetti E, Garcia Rivello H, Argibay P, Campetella O. Trans-sialidase from *Trypanosoma cruzi* induces apoptosis in cells from the immune system in vivo. *J Infect Dis.* (1995) 181:1693–703. doi: 10.1086/jejm.181.5.1693
57. Pennock ND, White JT, Cross EW, Cheney EE, Tamburini BA, Kedl RM. T cell responses: naive to memory and everything in between. *Adv Physiol Educ.* (2013) 37:273–83. doi: 10.1152/advan.00006 6.2013
58. Campo VA, Buscaglia CA, Di Noia JM, Frasch AC. Immunocaracterization of the mucin-type proteins from the intracellular stage of *Trypanosoma cruzi*. *Microbes Infect.* (2006) 8:401–9. doi: 10.1016/j.micinf.2005.07.008
59. Almeida IC, Ferguson MA, Schenkman S. GPI-anchored glycoconjugates from *Trypanosoma cruzi* trypomastigotes are recognized by anti-alpha-galactosyl antibodies isolated from patients with chronic Chagas’ disease. *Br J Med Biol Res.* (1994) 27:431–7.
60. Previato LO, Xavier MT, Previato J, Mendoca-Previto L, Sanchez DO, et al. Costimulation of host T lymphocytes by a trypanosomal trans-sialidase: involvement of CD43 signaling. *J Immunol.* (2002) 168:5192–8. doi: 10.4049/jimmunol.168.10.5192
61. Leplettier A, de Frias Carvalho V, Morrot A, Savino W. Thymic atrophy in acute experimental Chagas disease is associated with an imbalance of stress hormones. *Ann NY Acad Sci.* (2012) 1262:45–50. doi: 10.1111/j.1749-6632.2012.06601.x
62. Woronowicz A, De Vusser K, Laroy W, Contreras R, Meakin SO, Ross GM, et al. Trypanosoma trans-sialidase targets TκA tyrosine kinase receptor and induces receptor internalization and activation. *Glycobiology* (2004) 14:987–98. doi: 10.1093/glycob/cwh123
63. Chuenkova M, Pereira ME. *Trypanosoma cruzi* trans-sialidase: enhancement of virulence in a murine model of Chagas’ disease. *J Exp Med.* (1995) 181:1693–703. doi: 10.1084/jem.181.5.1693
64. Pennock ND, White JT, Cross EW, Cheney EE, Tamburini BA, Kedl RM. T cell responses: naive to memory and everything in between. *Adv Physiol Educ.* (2013) 37:273–83. doi: 10.1152/advan.00006 6.2013
65. Campo VA, Buscaglia CA, Di Noia JM, Frasch AC. Immunocaracterization of the mucin-type proteins from the intracellular stage of *Trypanosoma cruzi*. *Microbes Infect.* (2006) 8:401–9. doi: 10.1016/j.micinf.2005.07.008
66. Leplettier A, White JT, Cross EW, Cheney EE, Tamburini BA, Kedl RM. T cell responses: naive to memory and everything in between. *Adv Physiol Educ.* (2013) 37:273–83. doi: 10.1152/advan.00006 6.2013
67. Campo VA, Buscaglia CA, Di Noia JM, Frasch AC. Immunocaracterization of the mucin-type proteins from the intracellular stage of *Trypanosoma cruzi*. *Microbes Infect.* (2006) 8:401–9. doi: 10.1016/j.micinf.2005.07.008
68. Sperandio M, Gleissner CA, Ley K. Glycosylation in immune cell trafficking. *Immunol Rev.* (2009) 230:97–113. doi: 10.1111/j.1600-065X.2009.00759.x
69. Todeschini AR, Nunes MP, Pires RS, Lopes MF, Previato JO, Mendonca-Previto L, et al. Cositimulation of host T lymphocytes by a trypanosomal trans-sialidase: involvement of CD43 signaling. *J Immunol.* (2002) 168:5192–8. doi: 10.4049/jimmunol.168.10.5192
70. McEvoy LM, Sun H, Frelinger JG, Butcher EC. Anti-CD43 inhibition of virulence in a murine model of Chagas’ disease. *Kedl RM. T cell responses: naive to memory and everything in* vivo. *J Infect Dis.* (1999) 180:1398–402. doi: 10.1086/315001
71. Leplettier A, de Frias Carvalho V, Morrot A, Savino W. Thymic atrophy in acute experimental Chagas disease is associated with an imbalance of stress hormones. *Ann NY Acad Sci.* (2012) 1262:45–50. doi: 10.1111/j.1749-6632.2012.06601.x
72. Woronowicz A, De Vusser K, Laroy W, Contreras R, Meakin SO, Ross GM, et al. Trypanosoma trans-sialidase targets TκA tyrosine kinase receptor and induces receptor internalization and activation. *Glycobiology* (2004) 14:987–98. doi: 10.1093/glycob/cwh123
73. Chuenkova M, Peresparerrin M. *Trypanosoma cruzi*-derived neurotrophic factor: role in neural repair and neuroprotection. *J Neuroprotect.* (2010) 1:55–60. doi: 10.4303/jnp/1100507
74. McEvoy LM, Sun H, Frelinger JG, Butcher EC. Anti-CD43 inhibition of virulence in a murine model of Chagas’ disease. *Kedl RM. T cell responses: naive to memory and everything in* vivo. *J Infect Dis.* (1999) 180:1398–402. doi: 10.1086/315001
85. Almeida IC, Gazzinelli RT. Proinflammatory activity of glycosylphosphatidylinositol anchors derived from Trypanosoma cruzi: structural and functional analyses. *J Leukoc Biol.* (2001) 70:467–77. doi: 10.1189/jlb.70.4.467

86. Nakayasu ES, Yashunsky DV, Nohara LL, Torrecilhas AC, Nikolaev AV, Almeida IC. GPiomics: global analysis of glycosylphosphatidylinositol-anchored molecules of Trypanosoma cruzi. *Mol Syst Biol.* (2009) 5:261. doi: 10.1038/msb.2009.13

87. Soares RP, Torrecilhas AC, Assis RR, Rocha MN, Moura e Castro FA, Freitas GF, et al. Intraspecies variation in Trypanosoma cruzi GPI-mucins: biological activities and differential expression of alpha-galactosyl residues. *Am J Trop Med Hyg.* (2012) 87:87–96. doi: 10.4269/ajtmh.2012.12-0015

88. Tarleton RL. Immune system recognition of Trypanosoma cruzi. *Curr Opin Immunol.* (2007) 19:430–4. doi: 10.1016/S1369-5274(00)00111-9

89. Nakayasu ES, Yashunsky DV, Nohara LL, Torrecilhas AC, Nikolaev AV, Ropert C, Gazzinelli RT. Signaling of immune system cells by glycosylphosphatidylinositol anchors derived from Trypanosoma cruzi trypomastigotes initiate the synthesis of proinflammatory cytokines by macrophages. *J Immunol.* (1997) 158:5890–901.

90. Camargo MM, Andrade AC, Almeida IC, Travassos LR, Gazzinelli RT. Glycoconjugates isolated from Trypanosoma cruzi but not from Leishmania species membranes trigger nitric oxide synthesis as well as microbialicidal activity in IFN-gamma-primed macrophages. *J Immunol.* (1997) 159:6131–9.

91. Campos MA, Almeida IC, Takeuchi O, Akira S, Valente EP, Procopio DO, et al. Activation of Toll-like receptor-2 by glycosylphosphatidylinositol anchors from a protozoan parasite. *J Immunol.* (2001) 167:416–23. doi: 10.4049/jimmunol.167.4.146

92. Ropert C, Gazzinelli RT. Signaling of immune system cells by glycosylphosphatidylinositol (GPI) anchor and related structures derived from parasitic protozoa. *Curr Opin Microbiol.* (2000) 3:395–403. doi: 10.1016/S1369-5274(00)00111-9

93. Ropert C, Ferreira LR, Campos MA, Procopio DO, Travassos LR, Ferguson MA, et al. Macrophage signaling by glycosylphosphatidylinositol-anchored mucin-like glycoproteins derived from Trypanosoma cruzi trypomastigotes. *Microbes Infect.* (2002) 4:1015–25. doi: 10.1016/S1286-4579(02)01609-X

94. Bafica A, Santiago HC, Goldszmid R, Ropert C, Gazzinelli RT, Sher A. Cutting edge: TLR9 and TRLR2 signaling together account for MyD88-dependent control of parasitemia in Trypanosoma cruzi infection. *J Immunol.* (2006) 177:3515–9. doi: 10.4049/jimmunol.177.6.3515

95. Abel IC, Ferreira LR, Cunha Navarro I, Baron MA, Kalil J, Gazzinelli RT, et al. Induction of IL-12 production in human peripheral monocytes by Trypanosoma cruzi Is mediated by glycosylphosphatidylinositol-anchored mucin-like glycoproteins and potentiated by IFN-gamma and CD40-CD40L interactions. *Mediators Inflamm.* (2014) 2014:345659. doi: 10.1155/2014/345659

96. de Diego J, Punzon C, Duarte M, Fresno M. Alteration of macrophage activity in IFN-gamma-primed macrophages. *Microbes Infect.* (2002) 4:1015–25. doi: 10.1016/S1286-4579(02)01609-X

97. Dykhuizen EC, May JE, Tongenyai A, Kiessling LL. Limitations of UDP-galactopyranose mutase thwart mycobacterial growth. *J Am Chem Soc.* (2008) 130:6706–7. doi: 10.1021/ja8018687

98. Vasconcelos JR, Boscardin SB, Hiyane MI, Kinosita SS, Fujimura AE, Rodrigues MM. A DNA-priming protein-boosting regimen significantly improves type I immune response but not protective immunity to Trypanosoma cruzi infection in a highly susceptible mouse strain. *Immunol Cell Biol.* (2003) 81:121–9. doi: 10.1046/j.0818-9641.2002.01136.x

99. Arce-FONSECA M, Ramos-Ligionio A, Lopez-Montee E, Salgado-Jimenez B, Talamas-Rohana P, Rosales-Encina JL. A DNA vaccine encoding for TcSSP4 induces protection against acute and chronic infection in experimental Chagas disease. *Int J Biol Sci.* (2011) 7:1230–8. doi: 10.7150/jibs.71230

100. Salgado-Jimenez B, Arce-FONSECA M, Baylon-Pacheco L, Talamas-Rohana P, Rosales-Encina JL. Differential immune response in mice immunized with the A, R or C domain from TcSP protein of Trypanosoma cruzi or with the coding DNAs. *Parasite Immunol.* (2013) 35:32–41. doi: 10.1111/pim.12017

101. Bontempi IA, Vicco MH, Cabrera G, Villar SR, Gonzalez FB, Roggero EA, et al. Efficacy of a trans-sialidase-ISCO MATRIX subunit vaccine candidate to protect against experimental Chagas disease. *Vaccine* (2015) 33:1274–83. doi: 10.1016/j.vaccine.2015.01.044

102. Prochetto E, Roldan C, Bontempi IA, Bertona D, Peverengro L, Vicco MH, et al. Trans-sialidase-based vaccine candidate protects against Trypanosoma cruzi infection, not only inducing an effector immune response but also affecting cells with regulatory/suppressor phenotype. *Onco TARGET* (2017) 8:58003–20. doi: 10.18632/oncotarget.18217

103. Bontempi I, Fletias P, Poato A, Vicco M, Rodeles L, Prochetto E, et al. Trans-sialidase overcomes many antigens to be used as a vaccine candidate against Trypanosoma cruzi. *Immunotherapy* (2017) 9:555–65. doi: 10.2217/imt-2017-0009

104. Costa F, Pereira-Chioccola VL, Ribeirao M, Schenkman S, Rodrigues MM. Trans-sialidase delivered as a naked DNA vaccine elicits an immunological response similar to a Trypanosoma cruzi infection. *Brazil J Med Biol Res.* (1999) 32:235–9. doi: 10.1590/S0100-879X1999000200013

105. Hoyt DF, Eickhoff CS, Giddings OK, Vasconcelos JR, Rodrigues MM. Trans-sialidase recombinant protein mixed with CpG motif-containing oligodeoxynucleotide induces protective mucosal and systemic Trypanosoma cruzi immunity involving CD8+ CTL and B cell-mediated cross-priming. *J Immunol.* (2007) 179:6889–900. doi: 10.4049/jimmunol.179.10.6889

106. Fontanella GH, De Vusser K, Laroy W, Daurelio L, Nocito AL, Reveley S, et al. Trans-sialidase overcomes many antigens to be used as a vaccine candidate against Trypanosoma cruzi. *Parasite Immunol.* (2013) 8:58003–20. doi: 10.18632/oncotarget.18217

107. Carrillo-Sanchez SC, Alejandre-Aguilar R, et al. Specific humoral and cellular immune responses to trans-sialidase recombinant protein mixed with CpG motif-containing oligodeoxynucleotide. *Mol Syst Biol.* (2013) 9:7566. doi: 10.1037/journal.pone.0075668

108. Erdmann H, Steeg C, Koch-Nolte F, Fleischer B, Jacobs T. Sialylated ligands on pathogenic Trypanosoma cruzi interact with Siglec-F (sialic acid-binding Ig-like lectin-E). *Cell Microbiol.* (2009) 11:1600–11. doi: 10.1111/j.1462-5822.2009.01350.x

109. Beverley SM, Owens KL, Showalter M, Griffith CL, Doering TL, Jones VC, et al. Eukaryotic UDP-galactopyranosyl mutase (GLF gene) in microbial and metazoal pathogen. *Eukaryot Cell* (2005) 4:1147–54. doi: 10.1128/EC.4.6.1147-1154.2005
immunity induced by Trypanosoma cruzi DNA immunization in a canine model. Vet Res. (2013) 44:15. doi: 10.1186/1297-9716-44-15

119. Martin DL, Weatherly DB, Laucella SA, Cabinian MA, Crim MT, Sullivan S, et al. CD8+ T-Cell responses to Trypanosoma cruzi are highly focused on strain-variant trans-sialidase epitopes. *PLoS Pathog.* (2006) 2:e77. doi: 10.1371/journal.ppat.0020277

120. Tzlepis F, de Alencar BC, Penido ML, Claser C, Machado AV, Bruna-Romero O, et al. Infection with *Trypanosoma cruzi* restricts the repertoire of parasite-specific CD8+ T cells leading to immunodominance. *J Immunol.* (2008) 180:1737–48. doi: 10.4049/jimmunol.180.3.1737

121. Rosenberg CS, Martin DL, Tarleton RL. CD8+ T cells specific for immunodominant trans-sialidase epitopes contribute to control of *Trypanosoma cruzi* infection but are not required for resistance. *J Immunol.* (2010) 185:560–8. doi: 10.4049/jimmunol.1000432

122. Dominguez MR, Sêrgeira EL, de Vasconcelos JR, de Alencar BC, Machado AV, Bruna-Romero O, et al. Subdominant/cryptic CD8 T cell epitopes contribute to resistance against experimental infection with a human protozoan parasite. *PLoS ONE* (2011) 6:e22011. doi: 10.1371/journal.pone.0022011

123. Pereira IR, Vilar-Pereira G, Marques V, da Silva AA, Caetano B, Moreira OC, et al. A human type 5 adenovirus-based *Trypanosoma cruzi* therapeutic vaccine re-programs immune response and reverses chronic cardiomyopathy. *PLoS Pathog.* (2015) 11:e1004594. doi: 10.1371/journal.ppat.1004594

124. Cano MF, Agusti R, Cagnoni AJ, Tesoriero MF, Kovensky J, Ubrig ML, et al. Hydrolase and sialyltransferase activities of *Trypanosoma cruzi* trans-sialidase and related lactosides and their evaluation as substrates and inhibitors of *Trypanosoma cruzi* trans-sialidase. *Beilstein J Org Chem.* (2014) 10:3073–86. doi: 10.3762/bioj.10.324

125. Lara-Ramirez EE, Lopez-Cedillo JC, Noguera-Torres B, Kashif M, Garcia-Perez C, Bocanegra-Garcia V, et al. An in vitro and in vivo evaluation of new potential trans-sialidase inhibitors of *Trypanosoma cruzi* predicted by a computational drug repositioning method. *Eur J Med Chem.* (2017) 132:249–61. doi: 10.1016/j.ejmech.2017.03.063

126. Harrison JA, Kartha KP, Turnbull WB, Scheuerli SL, Naismith JH, Schenkman S, et al. Hydrodase and sialyltransferase activities of Trypanosoma cruzi trans-sialidase towards NeuAc-alpha-2,3-gal-Gal-beta-O-PNP. *Bioorg Med Chem Lett.* (2001) 11:141–4. doi: 10.1016/S0960-894X(00)00611-9

127. Tiralongo E, Schrader S, Lange H, Lemke H, Tiralongo J, Schauer R. Two trans-sialidase forms with different sialic acid transfer and sialidase activities from *Trypanosoma congoense*. *J Biol Chem.* (2003) 278:23301–10. doi: 10.1074/jbc.M212909200

128. Paris G, Patier L, Amaya MF, Nguyen T, Alzari PM, Frasch AC. A sialidase mutant displaying trans-sialidase activity. *J Mol Biol.* (2005) 345:923–34. doi: 10.1016/j.jmb.2004.09.031

129. Neres J, Bonnet P, Edwards PN, Kotian PL, Buschiazzio A, Alzari PM, et al. Benzoic acid and pyridine derivatives as inhibitors of *Trypanosoma cruzi* trans-sialidase. *Bioorg Med Chem.* (2007) 15:2106–19. doi: 10.1016/j.bmc.2006.12.024

130. Carvalho I, Andrade P, Campo VL, Guedes PM, Sesti-Costa R, Silva JS, et al. ‘Click chemistry’ synthesis of a library of 1,2,3-triazole-substituted galactose derivatives and their evaluation against *Trypanosoma cruzi* and its cell surface trans-sialidase. *Bioorg Med Chem.* (2010) 18:2412–27. doi: 10.1016/j.bmc.2010.02.053

131. Carvalho ST, Sola-Penna M, Oliveira IA, Pita S, Goncalves AS, Neves BC, et al. A new class of mechanism-based inhibitors for *Trypanosoma cruzi* trans-sialidase and their influence on parasite virulence. *Glycobiology* (2010) 20:1034–45. doi: 10.1093/glycob/cwq065

132. Kashif M, Moreno-Herrera A, Lara-Ramírez EE, Ramirez- Moreno E, Bocanegra-Garcia V, Ashfaq M, et al. Recent developments in trans-sialidase inhibitors of *Trypanosoma cruzi*. *J Drug Target* (2017) 25:485–98. doi: 10.1080/1061186X.2017.1289539

Conflict of Interest Statement: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Copyright © 2019 Fonseca, da Costa, Chaves, Freire-de-Lima, Morrot, Mendonça-Previato, Previato and Freire-de-Lima. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.