Ultrasound measured testicular volume in Nigerian adults: Relationship of the three formulae with height, body weight, body-surface area, and body-mass index

Madubogwu Chimezie Innocent, Lasbrey A Asomugha¹, Madubogwu Ngozi Ukamaka², Michael E Aronu³

Department of Surgery, Anambra State University Teaching Hospital, ¹Department of Anatomy, Nnamdi Azikiwe University, Awka, ²Department of Pharmacology, College of Health Sciences, Nnamdi Azikiwe University, ³Department of Radiology, Nnamdi Azikiwe University Teaching Hospital, Nnewi, Anambra, Southeast Nigeria

ABSTRACT

Background: Measurement of testicular volume is one of the ways of assessing testicular function. Ultrasonography is an important and accurate radiological method for measurement of testicular volume. Objective: This study was aimed at evaluating the relationship of ultrasound measured testicular volume using the three formulae with the subjects' height, body weight, body surface area (BSA), and body mass index (BMI) in adults. Methodology: One hundred twenty-five adult male subjects comprising staff and students of a University Teaching Hospital were recruited into the study. Height and body weight were measured while the BMI and BSA were calculated. Ultrasound measurement of the height, length, and width of both testes were done and used to calculate the volumes using the three formulae. Results: The subjects' age ranged from 19 to 29 years with a mean of 23.48 ± 2.26 yrs. The mean ultrasound measured volumes for the right and left testes were 15.38 ± 3.29 ml and 15.29 ± 3.89 ml using the prolate ellipsoid formula; 22.86 ± 5.43 ml and 23.54 ± 6.88 ml by the prolate spheroid formula; 21.20 ± 5.28 ml and 20.87 ± 5.35 ml by the Lambert formula, respectively. The calculated mean for height, body weight, BMI, and BSA were 174.64 ± 6.36 cm, 68.68 ± 8.25 kg, 22.48 ± 2.17 kg/m², and 1.82 ± 0.13 m², respectively. The right testes showed a negative correlation, while the left and combined testicular volumes showed a positive correlation with the subjects' height, body weight, BMI, and BSA for all the three formulae. Conclusion: The right testicular volume showed negative correlation, while the left and combined testicular volumes showed a positive correlation with the height, body weight, BSA, and BMI in Nigerian adults.

Key words: Anthropometric measurements, Nigerian adults, testicular volume, ultrasound

INTRODUCTION

The testes are paired oval-shaped male gonads housed in the scrotum. The average testis measures about 4 cm × 3 cm × 2.5 cm.[¹] The physiologic functions of the testes are the production of spermatozoa and the male...
sex hormone, testosterone. The seminiferous tubules constitute about 70%–90% of the testicular mass, and as such, spermatogenesis can be assessed by measuring the testicular volume. Testicular function, in other words, can be assessed by accurate measurement of the testicular volume. In infertile men, semen profiles have been found to correlate with the testicular volume. Measurement of the testicular volume is very useful in monitoring pubertal status and in assessing the clinical significance of varicocele in puberty and adolescence.

Several measurement methods or tools have been used for the clinical assessment of testicular volume. These are divided into radiological and nonradiological methods. The nonradiological techniques include the use of graphic method, dimensional measurement, orchidometers, rulers, and calipers. These methods, however, have been found to largely overestimate the testicular volume. Ultrasonography (US) and magnetic resonance imaging (MRI) are the common radiological methods used in the measurement of testicular volume. Ultrasound is considered to be the standard radiological method for measuring the volume of the testes as shown by some studies. Some studies have shown that ultrasound as a method of measuring testicular volume is more accurate than the clinical (orchidometer) methods as determined by comparing with the actual volume measurement using water displacement method which is still the gold standard.

Ultrasound measured testicular volumes are determined by measuring the anteroposterior diameter on comparable transverse images of the right and left sides or by calculating testicular volumes using the three formulae: (a) for a prolate ellipsoid: volume = length × width × height × 0.52 (LWH0.52); (b) the formula for a prolate spheroid: length × width^2 × 0.52 (LW^20.52); and (c) the empiric formula of Lambert: length × width × height × 0.71 (LWH0.71).

Ultrasonography has been shown to be the most readily available and accurate method of measuring testicular volume as determined by comparison with the actual volume. However, several studies have shown that ultrasound measured testicular volume varies widely depending on the formula used.

A wide range of anthropometric parameters has been proposed in human subjects. They have been widely used as an index for measurement of nutritional status and have been used as a predictor of well-being and risk of some disease conditions. A number of studies have been done on various radiological and nonradiological methods of measurement of the testicular volume and its correlation with body weight, height, and body mass index (BMI) both in Nigeria and other countries. None to the best of the knowledge of the author has been done on correlation of ultrasound measured testicular volume with height, body weight, body surface area (BSA), and BMI in the region of study in Nigeria. The aim of this study was to evaluate the relationship of ultrasound measured testicular volume using the three formulae with height, body weight, BSA, and BMI in Nigerian adults.

METHODOLOGY

We conducted a cross-sectional study of male subjects selected from the staff and students of a University Teaching Hospital. It was a 1-year prospective study from June 1, 2012, to May 31, 2013. Approval was sought and obtained from the Ethical Committee of the Nnamdi Azikiwe University Teaching Hospital before the commencement of the study.

Adult male subjects without any inguinal or scrotal lesion/surgery, malignancy, recent weight loss were included in the study. Those who refused consent were excluded from the study. The procedure was duly explained to the subjects, after which their informed written consent was obtained. The body weight was evaluated clinically (history and physical examination).

The subjects’ weight was measured by asking subjects to remove their outer clothing and shoes. The participants were asked to stand in the center of the weighing balance, weight distributed evenly to both feet. The weights were moved along the beam until it balances (the arrows are aligned). The body weight was recorded to the nearest 0.1 kg.

The height was measured using a stadiometer; the height rule was held vertically to the hard flat surface with the base touching the floor level. Participants were asked to take off their shoes, heavy outer clothing, and head coverings. The participants stood with their back to the height rule. The subjects were placed with the posterior part of their head, back, buttocks, calves, and heels touching the upright and feet together. The top of the ear canal was level with the inferior border of the cheek bone. The participants were requested to look straight. The head piece of the height meter was lowered to make firm contact with the hair (if present). The subjects’ height was recorded to the nearest centimeter. The subjects’ height and body weight were used to calculate the BSA and BMI.

The scrotal ultrasound scan was done using a curvilinear 7.5 MHz probe (EDAN, DUS3, China). The ultrasound probe was placed in contact with the stretched scrotal skin over the testes to get the longitudinal plane and moved until the mediastinum testis was seen in the same...
The length of each of the testes was measured with the electronic caliper in the topmost and most inferior points of the testes. The image was frozen and the height of the testes was measured with the calipers on the widest anterior–posterior point of the testes. The width of the testes was then measured by moving the probe until it was perpendicular to the longitudinal plane. The calipers were placed at the widest transverse diameter.

Ultrasound measurement of the length, width, and height of both testes were used to calculate the volumes using the three formulae: (a) for a prolate ellipsoid: volume = length × width × height × 0.52 (LWH0.52); (b) the formula for a prolate spheroid: length × width² × 0.52 (LW0.52); and (c) the empirical formula of Lambert: length × width × height × 0.71 (LWH0.71). All the values were recorded in the proforma used for the study and results were analyzed using Statistical Package for Social Sciences version 17.0. P < 0.05 was considered statistically significant.

RESULTS

A total of 125 subjects were recruited into the study. The age of the subjects ranged from 19 to 29 years with a mean of 23.48 ± 2.26 yrs.

Testicular volumes were estimated using the three different formulae [Table 1]. The mean ultrasound testicular volumes for the right and left testes were: 15.38 ± 3.29 ml and 15.29 ± 3.89 ml using the prolate ellipsoid formula (formula 1); 22.86 ± 5.43 ml and 23.54 ± 6.88 ml for prolate spheroid formula (formula 2); 21.20 ± 5.28 ml and 20.87 ± 5.35 ml for the Lambert formula (formula 3), respectively. The ranges as well as the mean testicular volumes for the right, left, and combined testes are shown in Table 1.

Measurement of some anthropometric parameters is shown in Table 2. The calculated mean for height, weight, BMI, and BSA were 174.64 ± 6.36 cm, 68.68 ± 8.25 kg, 22.48 ± 2.17 kg/m², and 1.82 ± 0.13 m², respectively. The ranges and mean measurements of the subjects’ height, weight, BMI, and BSA are shown in Table 2.

Correlation of testicular volumes with body weight is shown in Table 3. The right testicular volume showed a negative correlation with the body weight, while the left testis as well as the combined testicular volumes showed positive correlation using the three formulae. However, only the left testicular volume calculated using the second formula (prolate spheroid) was statistically significant (r = +0.287, P = 0.001). [Table 3].

Correlation of testicular volumes with height of subjects is shown in Table 4. The left testicular volume showed a positive correlation with the height in all the three formulae, and all were significant. The right testis and combined volumes showed no significant correlation [Table 4].

Correlation of testicular volumes with BMI is shown in Table 5. The left testicular volume using the second

Table 1: Testicular volumes using different formulae

Side of testis	Formula I (ml)	Formula II (ml)	Formula III (ml)
Right testis	Range 12.01-35.77	Mean 15.38±3.29	11.56-37.92
Left testis	Range 13.57-42.60	Mean 15.29±3.89	13.65-35.20

Table 2: Subjects’ anthropometric measurements

Height (cm)	Weight (kg)	Body mass index	Body surface area
Range 163-191	55-88	17.96-28.09	1.62-2.14
Mean 174.64±6.36	68.68±8.25	22.48±2.17	1.82±0.13

Table 3: Correlation of testicular volumes with body weight

Side of testis and formula used	Correlation coefficient	P value
Left testicular volume formula 1	+0.160	0.074
Left testicular volume formula 2	+0.287	0.001*
Left testicular volume formula 3	+0.160	0.075
Right testicular volume formula 1	−0.112	0.212
Right testicular volume formula 2	−0.054	0.553
Right testicular volume formula 3	−0.112	0.213
Combined testicular volume formula 1	+0.063	0.488
Combined testicular volume formula 2	+0.160	0.074
Combined testicular volume formula 3	+0.027	0.765

*Pearson correlation coefficient significant at the ≤0.05 level (two-tailed)

Table 4: Correlation of testicular volumes with height

Side of testis and formula used	Correlation coefficient	P value
Left testicular volume formula 1	+0.279	0.002*
Left testicular volume formula 2	+0.202	0.024*
Left testicular volume formula 3	+0.278	0.002*
Right testicular volume formula 1	−0.142	0.115
Right testicular volume formula 2	−0.019	0.838
Right testicular volume formula 3	−0.159	0.077
Combined testicular volume formula 1	+0.111	0.218
Combined testicular volume formula 2	+0.119	0.185
Combined testicular volume formula 3	+0.071	0.434

*Pearson correlation coefficient significant at the ≤0.05 level (two-tailed)

Innocent, et al.: Ultrasound measured testicular volumes and anthropometry

formula showed a positive correlation with BMI and was significant. The other volumes showed no significant correlation [Table 5].

Correlation of testicular volumes with BSA is shown in Table 6. The left testicular volume showed a positive correlation with the BSA in all the three formulae, and all were significant. The other volumes showed no significant correlation [Table 6].

DISCUSSION

The age range of the subjects in this study extended from 19 to 29 years with a mean of 23.48 ± 2.26 yrs. This is comparable to the age in a similar study by Bahk et al. on 1139 normal young men in military service with a range of 19–27 years and mean of 23.52 ± 2.74 yrs. It also compares to the mean age of 23.02 ± 2.53 yrs in the study by Lim et al. of 1002 adult Korean men to investigate the relationship and correlation of testicular volume with height, body weight, and BMI. This however differs from the age of the subjects in the study by Kiridi et al. to determine in healthy Nigerian adults, the normal testicular volume where the age range was 18–64 years with a mean of 31.6 ± 9.9 years. It has been shown that the testis attains its maximal size by 18 years and remains at the same size until 80 years when it starts regressing in size.\[38-40\]

In the current study, the testicular volumes showed significant variations using the three formulae. However, using the Lambert’s formula which has been established the most accurate,\[17,27,28,33\] the right testicular volume ranged from 11.56 to 37.92 ml with a mean of 21.20 ± 5.28 ml; the left testicular volume ranged from 13.65 to 35.20 ml with a mean of 20.87 ± 5.35 ml; combined (right and left) testicular volume ranged from 25.21 to 64.80 ml with a mean of 42.06 ± 9.41 ml. The above values are significantly higher than the values obtained by Kiridi et al.\[38\] in their study where the mean of the testicular volume was 16.3 ± 5.4 ml on the right and 15.0 ± 5.9 ml on the left side. This finding may be because the age range in the current study was relatively younger as indicated above. This may also be because the subjects in this study were drawn from the staff and students of a tertiary health institution whose nutritional state is expected to be above average. Bahk et al.\[36\] reported a mean testicular volume of 18.13 ± 3.85 ml on the right and 18.37 ± 3.62 ml on the left side, while Lim et al.\[37\] reported mean testicular volume as 18.26 ± 3.21 ml on the right and 18.09 ± 3.79 ml on the left side. The values in the above two studies done on Korean men were also lower than the values obtained in the current study. This also negates the assertion by Kiridi et al.\[38\] that the lower mean testicular volume in their study on Nigerian men was probably due to higher environmental temperature and malnutrition in Nigeria. The mean right testicular volume showed no significant difference from the left. This correlates with the finding by Bahk et al.\[36\] and Lim et al.\[37\].

The right testicular volume showed negative correlation with the body weight while the left testis as well as the combined testicular volumes showed positive correlation using the three formulae. Only the left testicular volume calculated using the second formula (prolate spheroid) significantly correlated. The left testicular volume showed a positive correlation with the height in all the three formulae and all were significant. The right testis and combined volumes showed no significant correlation. The left testicular volume using the second formula showed a significant positive correlation with BMI. The other volumes showed no significant correlation. The left testicular volume showed a significant positive correlation with the BSA using all the three formulae. The right and combined volumes showed no significant correlation. In the study by Kiridi et al., they found a weak positive correlation between subjects’ body weight, height, and BMI with the right and the mean testicular volumes. Similarly, in the studies by Bahk et al. and Lim et al., they found significant weak correlations...
between the testicular volumes and the subjects’ body weight, height, and BMI.

In general, in this study, it was found that the right testicular volume negatively correlates with the weight, height, BMI, and BSA, but none was statistically significant. The left testicular volume was found to show statistically significant positive correlation with the body weight, height, BMI, and BSA. However, no immediate biological explanation could be inferred to the differential association of the right and left testes with the measured anthropometric parameters. Further studies in this subject area are needed to establish the above findings.

CONCLUSION

In this study, the right testicular volume showed negative correlation while the left and combined testicular volumes showed a positive correlation with the body weight, height, BSA, BMI in Nigerian adults. Further studies are needed to support or negate these findings.

Financial support and sponsorship

Nil.

Conflicts of interest

There are no conflicts of interest.

REFERENCES

1. Tanagho EA. Anatomy of the genitourinary tract. In: Tanagho EA, McAninch JW, editors. Smith’s General Urology. 16th ed. USA: McGraw-Hill Companies Inc.; 2004. p. 1-17.
2. Inderbir S, editor. The male reproductive organ. In: Textbook of Human Histology. 2nd ed. New Delhi: Jaypee Brothers; 2002. p. 273-80.
3. Ryan S, McNicholas M, Eustace S, editors. The pelvis. In: Anatomy for Diagnostic Imaging. 2nd ed. Philadelphia: Elsevier Saunders; 2004. p. 232-5.
4. Guyton AC, Hall JE, editors. Reproductive and hormonal functions of the male. In: Medical Physiology. 10th ed. Philadelphia: WB Saunders; 2004. p. 916-7.
5. Setchell BP, Brooks DE. Anatomy, vasculature, innervations and fluids of the male reproductive tract. In: Knobil E, Neill JD, editors. The Physiology of Reproduction. New York: Raven Press; 1988. p. 753-836.
6. Takihara H, Cosentino MJ, Sakatoku J, Cockett AT. Significance of testicular size measurement in andrology: II. Correlation of testicular size with testicular function. J Urol 1987;137:416-9.
7. Lenz S, Gwercman A, Elsberg A, Koh RH, Jelnes JE, Carlsen E, et al. Ultrasonic testicular texture and size in 444 men from the general population: Correlation to semen quality. Eur Urol 1995;24:231-8.
8. Arashi T, Kitahara S, Horiuchi S, Sumi S, Yoshida K. Relationship of testicular volume to semen profiles and serum hormone concentrations in infertile Japanese males. Int J Fertil Womens Med 1998;43:40-7.
9. Prader A. Testicular size: Assessment and clinical importance. Triangle 1966;7:240-3.
10. Diamond DA, Paltiel HJ, DiCanzio J, Zurakowski D, Bauer SB, Atala A, et al. Comparative assessment of pediatric testicular volume: Orchidometer versus ultrasound. J Urol 2000;164 (3 Pt 2):1111-4.
11. Kass ED, Reitelman C. Adolescent varicocele. Urol Clin North Am 1995;22:151-9.
12. Costabile RA, Skoog S, Radowich M. Testicular volume assessment in the adolescent with a varicocele. J Urol 1992;147:1348-50.
13. Wu FC, Brown DC, Butler GE, Stirling HF, Kelnar CJ. Early morning plasma testosterone is an accurate predictor of imminent pubertal development in prepubertal boys. J Clin Endocrinol Metab 1993;78:26-31.
14. Sayfan J, Siplovich L, Koltun L, Benyamin N. Varicocele treatment in pubertal boys prevents testicular growth arrest. J Urol 1997;157:1456-7.
15. Rundle AT, Sylvester PE. Measurement of testicular volume. Its application to assessment of maturation, and its use in diagnosis of hyponagonism. Arch Dis Child 1962;37:514-7.
16. Al Salim A, Murchison PJ, Rana A, Elton RA, Hargreave TB. Evaluation of testicular volume by three orchidometers compared with ultrasonographic measurements. Br J Urol 1995;76:632-5.
17. Rivkees SA, Hall DA, Boepple PA, Crawford JD. Accuracy and reproducibility of clinical measures of testicular volume. J Pediatr 1987;110:914-7.
18. Hansen PF, With TK. Clinical measurements of the testes in boys and men. Acta Med Scand Suppl 1952:266:457-65.
19. Taskinen S, Taavitsainen M, Wikström S. Measurement of testicular volume: Comparison of 3 different methods. J Urol 1996;155:930-3.
20. Shiraiishi K, Takihara H, Kamiyori Y, Naito K. Usefulness and limitation of punched-out orchidometer in testicular volume measurement. Asian J Androl 2005;7:77-80.
21. Chipkevitch E, Nishimura RT, Tu DG, Galea-Rojas M. Clinical measurement of testicular volume in adolescents: Comparison of the reliability of 5 methods. J Urol 1998;158:2050-3.
22. Sakamoto H, Saito K, Oohata M, Inoue K, Ogawa Y, Yoshida H. Testicular volume measurement: Comparison of ultrasonography, orchidometry, and water displacement. Urology 2007;69:152-7.
23. Sakamoto H, Ogawa Y, Yoshida H. Relationship between testicular volume and testicular function: Comparison of the Prader orchidometric and ultrasonographic measurements in patients with infertility. Asian J Androl 2008;10:319-24.
24. Lin CC, Huang WJ, Chen KK. Measurement of testicular volume in smaller testes: How accurate is the conventional orchidometer? J Androl 2009;30:685-9.
25. Fuse H, Takahara M, Ishii H, Sumiya H, Shimazaki J. Measurement of testicular volume by ultrasonography. Int J Androl 1990;13:267-72.
26. Takihara H, Sakatoku J, Fujii M, Nasu T, Cosentino MJ, Cockett AT. Significance of testicular size measurement in andrology. I. A new orchidometer and its clinical application. Fertil Steril 1983;39:836-40.
27. Paltiel HJ, Diamond DA, DiCanzio J, Zurakowski D, Borer JG, Atala A. Testicular volume: Comparison of orchidometer and US measurements in dogs. Radiology 2002;222:114-9.
28. Behre HM, Pahle H, Nieschlag E. Objective measurement of testicular volume by ultrasonography: Evaluation of the technique and comparison with orchidometer estimates. Int J Androl 1988;12:395-403.
29. Schött JD, Li PS, Goldstein M. Correlation of ultrasonographic and orchidometer measurements of testis volume in adults. BJU Int 2000;90:1015-7.
30. Aritürk E, Ozates M. Measurement of testicular volume by ultrasonography. Turk J Pediatr 1993;35:177-80.
31. Asio C, Enriquez G, Fitó M, Torán N, Piqué C, Piqueras J, et al. Gray-scale and color Doppler sonography of scrotal disorders in children: An update. Radiographics 2005;25:1197-214.
32. Lambert B. The frequency of mumps and of mumps orchitis and the consequences for sexuality and fertility. Acta Genet Stat Med 1951;2 Suppl 1:1-166.
33. Hsieh ML, Huang ST, Huang HC, Chen Y, Hsu YC. The reliability
Innocent, et al.: Ultrasound measured testicular volumes and anthropometry

of ultrasonographic measurements for testicular volume assessment: Comparison of three common formulas with true testicular volume. Asian J Androl 2009;11:261-5.

34. Tylor RW, Jones IE, Williams SM, Goulding A. Evaluation of waist circumference, waist to hip ratio, and the conicity index as a screening tool for high trunk fat mass, as measured by dual-energy X-ray absorptiometry, in children aged 3-19 years. Am J Clin Nutr 2000;72:490-5.

35. Kissebah AH, Krakower GR. Regional adiposity and morbidity. Physiol Rev 1994;74:761-811.

36. Bahk JY, Jung JH, Jin LM, Min SK. Cut-off value of testes volume in young adults and correlation among testes volume, body mass index, hormonal level, and seminal profiles. Urology 2010;75:1318-23.

37. Lim JW, Bahk JY, Min SK. Testicular volume of Korean young adult men as measured by ultrasonography: Relationship with body mass index. Korean J Urol 2009;50:591-5.

38. Kiridi EK, Nwankwo NC, Akinola RA, Agi CA, Ahmed A. Ultrasound measurement of testicular volume in healthy Nigerian adults. J Asian Sci Res 2011;2:45-52.

39. Béres J, Papp G, Pazonyi I, Czeizel E. Testicular volume variations from 0 to 28 years of age. Int Urol Nephrol 1989;21:159-67.

40. Tajima M. Testicular measurement by test size orchidometer. Hinyokika Kiyo 1988;34:2013-20.

New features on the journal’s website

Optimized content for mobile and hand-held devices

HTML pages have been optimized of mobile and other hand-held devices (such as iPad, Kindle, iPod) for faster browsing speed.

Click on [Mobile Full text] from Table of Contents page.

This is simple HTML version for faster download on mobiles (if viewed on desktop, it will be automatically redirected to full HTML version)

E-Pub for hand-held devices

EPUB is an open e-book standard recommended by The International Digital Publishing Forum which is designed for reflowable content i.e. the text display can be optimized for a particular display device.

Click on [Epub] from Table of Contents page.

There are various e-Pub readers such as for Windows: Digital Editions, OS X: Calibre/Bookworm, iPhone/iPod Touch/iPad: Stanza, and Linux: Calibre/Bookworm.

E-Book for desktop

One can also see the entire issue as printed here in a ‘flip book’ version on desktops.

Links are available from Current Issue as well as Archives pages.

Click on View as eBook