Comprehensive investigation of a dye-decolorizing peroxidase and a manganese peroxidase from *Irpex lacteus* F17, a lignin-degrading basidiomycete

Zihong Duan1,2†, Rui Shen1,2†, Binjie Liu1,2, Mengwei Yao1,2 and Rong Jia1,2*

Abstract

Irpex lacteus F17 is well-known for its ability to degrade recalcitrant aromatic pollutants, which mainly results from the action of the manganese peroxidase (MnP) that it is able to produce. Recently, the genome sequencing and annotation of this strain provided comprehensive picture of the ligninolytic peroxidase gene family. In addition to revealing the presence of 13 MnPs, genes for five dye-decolorizing peroxidases (DyPs) were also discovered in the *I. lacteus* F17 genome, which are unrelated to the fungal class II peroxidases. In the present study, amino acid sequences of five DyPs and 13 MnPs, representing two different families of heme peroxidases, were analyzed. Of these, two enzymes, a DyP (*Il*-DyP4) and a MnP (*Il*-MnP6) were expressed respectively in *Escherichia coli*, and were characterized by comparing their molecular models, substrate specificities, and catalytic features. The results showed that *Il*-DyP4 possessed a higher catalytic efficiency for some representative substrates, and a stronger decolorizing ability to a wide range of synthetic dyes in acidic conditions. Based on electrochemical measurements, *Il*-DyP4 was found to have a high redox potential of 27 mV at pH 3.5, which was superior to that of *Il*-MnP6 (~ 75 mV), thereby contributing to its ability to oxidize high redox potential substrates, such as veratryl alcohol and polymeric dye Poly R-478. The results highlighted the potential of *Il*-DyP4 for use in industrial and environmental applications.

Keywords: *Irpex lacteus* F17, White-rot fungus, Dye-decolorizing peroxidase, Manganese peroxidase, Redox potential, Biotechnological applications

Introduction

Lignocellulose is a structural component of the plant cell wall, mainly comprising cellulose, hemicellulose, and lignin. It is the largest renewable resource in nature and the most promising feedstock for the production of many valuable substances, such as biofuels, chemicals, and materials, from plant sources (Balat 2011). Both cellulose and hemicellulose are carbohydrates, whereas lignin is a highly irregular and insoluble polymer comprising phenylpropanoid units, chemically bonded by mostly ether linkage and carbon–carbon bonds, which are both physically stable and chemically inert (Park et al. 2018). In woody plants, lignin accounts for 20–35% in woody biomass and forms lignin–carbohydrate complexes with cellulose and hemicellulose, resulting in xylem that is extremely hard; however, these complexes are difficult to separate and degrade, thus hindering the conversion and utilization of lignocelluloses (Cheng et al. 2012).

Wood-decaying fungi, one of several groups of lignocellulose decomposers in nature, have an important role in the terrestrial carbon cycle (Kellner et al. 2014). They are common inhabitants of forest litter and fallen trees and have typically been classified as white-rot fungi and brown-rot fungi, according to their ability to biodegrade lignin. Brown-rot fungi are capable of degrading carbohydrates, leaving polyaromatic lignin intact because of
their lack of ligninolytic enzymes, whereas white-rot fungi have a ligninolytic system, which can degrade lignin as well as cellulose and hemicelluloses (Morgenstern et al. 2008; Ruiz-Dueñas et al. 2013). Therefore, white-rot fungi have received considerable research because of their extracellular lignolytic enzymes, with a focus on secreted fungal class II peroxidases (PODs), such as lignin peroxidase (LiP; EC 1.11.1.14), manganese peroxidase (MnP; EC 1.11.1.13), and versatile peroxidase (VP; EC 1.11.1.16), as well as other classes of enzyme, such as copper-dependent laccases (Fernández-Fueyo et al. 2014). Thus, two types of fungi can be distinguished by the presence or absence of PODs, which can affect the mode of wood decay adopted by white-rot or brown-rot fungi. However, recently published work, based on the genomic data from 33 species of fungi, suggests that a more nuanced categorization of wood decay modes between white-rot and brown-rot fungi is necessary, because numerous other classes of enzyme were found to be involved in lignin degradation in addition to PODs (Riley et al. 2014). For example, genes encoding PODs are absent in the genomes of *Botryobasidium botryosum* and *Jaapia argillacea* genomes, although both species show modes of lignin degradation that are similar to those of some white-rot fungi. Moreover, the secondary metabolites reducing polyketide synthases (R-PKSs) are abundant in white-rot fungi but reduced in brown-rot fungi. In addition, the dye-decolorizing peroxidases (DyPs), a second new heme peroxidase superfamily, were identified in fungi that have been shown to degrade model lignin compounds, and were also widespread in white-rot fungi, such as *Auricularia delicata* and *Trametes versicolor*, whereas brown-rot fungi lack DyPs (Floudas et al. 2012, 2015).

DyPs are a newly discovered family of heme peroxidases that are unrelated to well-known peroxidases, such as fungal class II PODs, in terms of their amino acid sequence, tertiary structure, and catalytic residues (Colpa et al. 2014). They have a unique protein structure, as well as a distinct amino acid sequence, with a substrate preference for anthraquinone dyes and high peroxidase activity toward a variety of organic compounds (Sugano 2009). The ability of DyPs to oxidize lignin-related compound and nonphenolic lignin model dimers and their low catalytic efficiency on Mn²⁺ and veratryl alcohol have also been reported (Kinne et al. 2011; Colpa et al. 2014; Fernández-Fueyo et al. 2015; Linde et al. 2015; Loncar et al. 2016). All DyPs contain an iron protoporphyrin IX (heme cofactor) as a prosthetic group and the GXDG motif in their primary sequence as a part of the heme-binding region (Colpa et al. 2014). They also share a conserved spatial structure and a unique ferredoxin-like fold containing α-helices and antiparallel β-sheets (Linde et al. 2015). Nevertheless, the physiological function of these enzymes is unclear, although they exhibit the biotechnological potential (Colpa et al. 2014; van Bloois et al. 2010).

Irpex lacteus F17 is an indigenous white-rot basidiomycete isolated by our laboratory that efficiently decolorizes and degrades different synthetic dyes, some of which are recalcitrant for their structural diversity (Zhao et al. 2015; Yang et al. 2016). Initially, this strain was named *Schizophyllum* sp. F17 based on the morphological characteristics of its fruiting body (Cheng et al. 2007) and recognized as *I. lacteus* F17 after identifying the internal transcribed spacer in its nucleotide sequence (GenBank: JQ403610.3.2) and analyzing its phylogenetic tree (Chen et al. 2015). Recently, genome sequencing of *I. lacteus* F17 revealed that the genome encodes 14 Class II PODs and five DyPs. The 14 PODs enzymes include one LiP and 13 putative MnPs. Phylogenetic analysis based on 18S rRNA sequences showed that *I. lacteus* F17 was closely related to *Ceriporiopsis subvermispora* and *Phanerochaete chrysosporium* (Yao et al. 2017). Interestingly, the genome of *C. subvermispora* also encodes 13 MnPs, whereas it has no genes encoding DyPs, similar to *P. chrysosporium* (Fernández-Fueyo et al. 2012; Floudas et al. 2012).

Research has focused mainly on MnPs from *I. lacteus*, probably because of their abundance in the genome of this species (Yao et al. 2017). MnPs from *I. lacteus* are important in the degradation of polycyclic aromatic hydrocarbons and are able to efficiently decolorize different groups of dye (Novotný et al. 2001; Kasinath et al. 2003; Baborová et al. 2006). Recent research indicated that two MnPs from *I. lacteus* CD2 were able to degrade veratryl alcohol, a nonphenolic lignin compound (Qin et al. 2017). The ability of MnP purified from *I. lacteus* F17 to degrade synthetic dyes has also been shown (Chen et al. 2015). However, little is known about the catalytic properties of DyP from *I. lacteus*. To the best of our knowledge, only a wild DyP from *I. lacteus* grown in liquid medium, has been isolated and characterized (Salvachúa et al. 2013). Thus, we selected a DyP gene (No. 8293, GenBank: MG 209114) from the *I. lacteus* F17 genome and expressed it in *Escherichia coli*, and compared it with a MnP gene (No. 6398, GenBank: MG 209112) from the same genome. Any similarities and differences between the two enzymes in terms of their sequence homologies, molecular structures, biochemical and spectroscopic properties, as well as their ability to decolorize different types of dye, were investigated. The results of this study will further reveal the catalytic characteristics of DyPs from *I. lacteus* F17 to provide a better understanding of the lignin degradation potential of this strain.
Materials and methods

Regents and expression vectors

Dithiothreitol (DTT), glutathione (GSSG), phenylmethanesulfonyl fluoride (PMSF), and isopropyl β-d-thiogalactopyranoside (IPTG) were from Sigma-Aldrich (St. Louis, MO, USA). Reactive Blue 19 (RBlue 19), reactive black 5 (RBlack 5), veratryl alcohol (VA), 2,6-dimethoxyphenol (DMP), ethylene diamine tetraacetic acid (EDTA), and 2,2-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) were purchased from Aladdin industrial corporation (Shanghai, China).

The E. coli expression vector pET28a(+) and the E. coli expression host Rosetta (DE3) were purchased from Invitrogen (Carlsbad, CA, USA) and TransGen Biotech (Beijing, China), respectively.

All restriction enzymes and DNA polymerases were purchased from TaKaRa (Ostu, Japan). Unless otherwise specified, all other reagents used were from Macklin (Shanghai, China) and were of analytical grade.

Strain and genome

The strain of I. lacteus F17 was cultured on potato dextrose agar (PDA) medium (200 g L−1 of potato extract, 20 g L−1 of glucose, and 20 g L−1 of agar) for 5 days at 28 °C and then preserved at 4 °C.

I. lacteus F17 was deposited at the China Center for Type Culture Collection (CCTCC) under the accession number CCTCC AF 2014020. The whole-genome shotgun project has been submitted to GenBank under the accession number MQVO00000000 (http://www.ncbi.nlm.nih.gov).

DyP and MnP screening of the I. lacteus F17 genome

The DyP and MnP coding genes in I. lacteus F17 were screened as follows. First, the annotated genome was automatically searched in the NCBI database; second, multiple alignments were performed using Clustal X to obtain the templates of crystal structure with the highest identity in the protein database. The templates were then applied to PyMOL to simulate the three-dimensional structure of the proteins and to superimpose the heme, important amino acids, and ions.

Gene clone and expression vector construction

Mycelia of I. lacteus F17 were cultured in compound potato dextrose agar (CPDA) liquid medium at 28 °C at 120 rpm and harvested on the fourth day. Total RNA was extracted as reported by Koo et al. (1998). The total RNA was then reverse transcribed to cDNA.

II-DyP4 primers DyPf and DyPr (Additional file 1: Table S1) were designed. The above cDNA of I. lacteus F17 was used as a template and polymerase chain reactions (PCR) were performed with Taq DNA polymerase. The PCR products were detected by gel electrophoresis in 0.8% agarose gels, stained using SuperRed/GelRed, and subsequently sequenced. Two primers were designed at the 5’ and 3’ ends of the II-DyP4 gene with the following sequences: Ncol-DyPf and Xhol-DyPr, which contained the restriction sites Ncol and Xhol (underlined). The resulting PCR product was gel-purified, digested with Ncol and Xhol, and cloned into the corresponding site of the pET28a(+) vector to construct the recombinant plasmid pET28a-II-DyP4. The plasmid was transformed into chemically competent E. coli Rosetta (DE3) cells and then confirmed by DNA sequencing. The gene clone and expression strain of II-MnP6 were constructed using the same method (see Additional file 1: Table S1 for primers).

II-DyP4 and II-MnP6 expression in E. coli

A positive transformant harboring pET28a-DyP4 was isolated as a single colony for gene expression. The transformant was cultured overnight at 37 °C in 5 mL LB medium containing 50 μg mL−1 kanamycin and 34 μg mL−1 chloramphenicol. The culture was then inoculated into fresh LB medium 400 mL containing kanamycin and chloramphenicol and grown at 37 °C and 200 rpm to an OD600 of approximately 0.6. IPTG was then added to a final concentration of 0.5 mM for induction for 4 h, bacterial pellets were obtained by centrifugation at 4 °C at 12,000×g for 10 min, and were resuspended in lysis buffer (0.02 mM PMSF, 50 mM Tris–HCl, and pH 7.5) in a quarter of the
original culture volume. Bacteria were then lysed by sonication for 45 min. The lysed cells were centrifuged at 4 °C at 12,000 × g for 30 min to obtain precipitation.

The II-MnP6 protein was expressed according to the method of Chen et al. (2015).

In vitro activation of II-DyP4 and II-MnP6

II-DyP4 was expressed in the form of inclusion bodies and was solubilized in 10 mL 50 mM Tris–HCl (pH 8.0) containing 8 M urea, 1 mM EDTA, for 3 h at 4 °C to complete solubilization of the II-DyP4 polypeptide. The refolding reaction system included 2 mM EDTA, 20 μM hemin, and 1 M urea, and had a pH of 6.0.

To investigate the optimal activation conditions for II-DyP4 protein refolding, 0.2 mL protein (1.2 mg mL⁻¹) was taken and optimized in 5-mL eppendorf tubes. Variable parameters include pH (1.0–8.0), EDTA (0–8 mM), hemin (0–60 μM), and urea (0.1–2.5 M). Refolding was performed at 4 °C for 24 h.

Larger-scale refolding assays were performed using the optimized conditions found in the small-scale experiments. The supernatant, including active II-DyP4, was dialyzed against 10 mM sodium acetate (pH 6) for subsequent purification. The insoluble material was eliminated by centrifugation at 12,000 × g for 30 min.

The refolding results were evaluated by measuring the II-DyP4 residual enzyme activity using ABTS as reducing substrate according to the enzyme activity assay. Similarly, recombinant II-MnP6 was expressed in the form of inclusion bodies. In vitro refolding was performed according to the method of Wang et al. (2016).

II-DyP4 and II-MnP6 activity assays

II-DyP4 activity was estimated spectrophotometrically by the oxidation of 1.25 mM ABTS to its cation radical (ε418 = 36,000 M⁻¹ cm⁻¹) in 100 mM sodium tartrate buffer at pH 3.5 at 25 °C.

II-MnP6 activity was determined using two substrates. The first was determined based on the oxidation of Mn²⁺ to Mn³⁺ at 25 °C and 240 nm (ε340 = 6500 M⁻¹ cm⁻¹) at pH 4.5 in 0.11 M sodium lactate buffer (Salvachúa et al. 2013). The second was followed by the oxidation of 1.25 mM DMP to its cation radical (ε469 = 27,500 M⁻¹ cm⁻¹) in 100 mM sodium tartrate buffer containing 1 mM MnSO₄, at pH 4 at 55 °C.

In all cases, peroxidase activity assays were carried out in the presence of 0.1 mM H₂O₂ and were carried out in triplicate. Control treatments without H₂O₂ and/or without enzyme were also performed. One unit (U) of peroxidase oxidized 1 μmol of substrate/min, and units were calculated based upon U mg⁻¹ of protein per mL⁻¹ of enzyme solution.

Purification of DyP and MnP and mass characterization

Refolded solutions containing recombinant II-DyP4 and II-MnP6 were purified using Ni–NTA affinity chromatography. Sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) was performed using a 12% Tris–HCl separation gel, and samples were then stained with Coomassie Brilliant Blue R-250.

Furthermore, purified proteins were identified by mass spectrometry. First, purified recombinant II-DyP4 and II-MnP6 proteins were excised from the gel and digested with trypsin. Subsequently, the resulting peptide mixtures were analyzed by liquid chromatography–mass spectrometry (LC–MS) using a Proteome X-LTQ mass spectrometer (Thermo Fisher Scientific, Waltham, MA, USA). All obtained peptides were compared with the predicted amino acid sequence of II-DyP4 and II-MnP6.

Effect of pH and temperature on DyP and MnP activity and stability

The optimum pH for substrate oxidation activity of II-DyP4 and II-MnP6 was estimated at 25 °C in 0.11 M citrate–phosphate buffer (pH 2.2–8.0) or Tris–HCl buffer (pH 8.6–9.0). To evaluate the pH stability, the enzymes were incubated at 4 °C for 12 h at different pH (2.2–9.0).

The optimum temperature for II-DyP4 activity was measured from 0 to 60 °C in appropriate increments in 0.1 M sodium tartrate buffer (pH 3.5). The optimum temperature for II-MnP6 activity was measured from 0 to 85 °C in appropriate increments in 0.11 M sodium lactate buffer (pH 4.5). To evaluate the thermal stability of II-DyP4 and II-MnP6, the enzymes were incubated at temperatures ranging from 4 to 65 °C in appropriate increments for 12 h.

The residual enzyme activities of II-DyP4 and II-MnP6 were determining using ABTS and Mn³⁺, respectively, as substrates.

Substrate specificities

Eight different substrates [H₂O₂, ABTS (ε418 = 36,000 cm⁻¹ M⁻¹), Mn²⁺ (ε340 = 6500 cm⁻¹ M⁻¹), DMP (ε469 = 27,500 cm⁻¹ M⁻¹), guaiacol (ε456 = 12,100 cm⁻¹ M⁻¹), VA (ε310 = 9300 cm⁻¹ M⁻¹), RBBlue19 (ε595 = 10,000 cm⁻¹ M⁻¹), RBlack 5 (ε596 = 30,000 cm⁻¹ M⁻¹)] were used to study the substrate specificities of II-DyP4 and II-MnP6 in 0.1 M sodium tartrate. The reactions were initiated by the addition of 0.1 mM H₂O₂. In the MnP reaction system, 1 mM Mn⁻³⁺ was added. The oxidation activity for these substrates was measured based on the molar absorbance of the corresponding reaction product at the specific wavelength.
Steady-state kinetic constants of II-DyP4 or II-MnP6 were determined spectrophotometrically using a UV-visible spectrophotometer (Shanghai, China). First, the effect of pH and temperature on the activity for oxidation of eight different substrates by both enzymes were investigated, respectively, and then the optimal values were used to determine their kinetic constants (K_m, V_{max} and k_{cat}/K_m) by the hyperbolic, non-linear least squares method.

H$_2$O$_2$ stability and the effects of compounds on enzyme activity

The H$_2$O$_2$ stability of both enzymes was determined by incubating 25 nM of enzyme for 30 min at 25 °C in the presence of increasing H$_2$O$_2$ enzyme concentrations (0–10 mM). The residual activities were then monitored using the method for assaying enzyme activity.

Additionally, under the specified enzyme activity measurement conditions, II-DyP4 used ABTS as a substrate, whereas II-MnP6 used DMP as a substrate. Residual enzyme activity was determined in the presence and absence of three different concentrations (0.1, 1, and 10 mM) of different cations (Co$^{2+}$, Ba$^{2+}$, Cd$^{2+}$, Mn$^{2+}$, Na$^+$, Ca$^{2+}$, Mg$^{2+}$, Zn$^{2+}$, Ni$^{2+}$, Cu$^{2+}$, Fe$^{2+}$, and Al$^{3+}$), thiourea, EDTA, DTT, and β-mercaptoethanol. Enzymes were incubated with these compounds for 5 min before the activity measurement.

Spectroscopic characterization of II-DyP4 and II-MnP6

Far-UV CD spectra measurements were implemented with a MOS-500 CD spectrometer (Bio-Logic, Grenoble, France), with a 1-mm light path cell. The protein concentration was 0.1 mg mL$^{-1}$ in 0.1 M phosphate buffer at pH 6.5. The CD spectra were recorded using a 2-mm bandwidth in the far-UV region (190–250 nm) at room temperature.

UV–Vis spectra were obtained in the 200–700 nm region at room temperature using a DU 730 UV spectrophotometer (Beckman Coulter, Brea, CA, USA); the II-DyP4 concentration was 0.58 mg mL$^{-1}$ in 0.1 M phosphate buffer at pH 6.0 and that of II-MnP6 was 1.26 mg mL$^{-1}$ in 0.1 M sodium acetate buffer at pH 5.9.

II-DyP4 and II-MnP6 electrochemical experiments

Cyclic voltammetry (CV) was used to determine the redox potential of II-DyP4 and II-MnP6. Pyrolytic graphite electrode (PGE), platinum wire, and Ag/AgCl were used as the working electrode, the counter electrode, and reference electrode, respectively (Mendes et al. 2015). The first step the PGE surface was polished with Al$_2$O$_3$ on sandpaper (2000 mesh); secondly, the electrode was thoroughly ultrasonicated with water and ethanol for 5 min each; thirdly, 5 μg protein was dropped onto the PGE, and maintained at 4 °C for 20 h to allow the protein to fully adsorb to the electrode surface. Finally, the electrode was cleaned with distilled water, measured for a scan rate at 50 mV s$^{-1}$, and the potential was then cycled between −1.0 and +0.6 V.

Dye decolorization

The decolorization ability of II-DyP4 or II-MnP6 towards five different classes of dye (anthraquinone dyes, azo dyes, phenazine dyes, triphenylmethane dyes, and aniline dyes) was measured using a spectrophotometer. Reaction mixtures contained 100 mM sodium tartrate buffer (pH 3.5, 4.0 or 4.5), 25 mM of purified enzyme and dyes (at a concentration of 25–200 μM); the concentration ratio of H$_2$O$_2$/dye was 4:1. Besides, 1 mM Mn$^{2+}$ was supplemented in the II-MnP6 reaction system. Reactions were subsequently performed for 30 min at 35 °C, and were then examined for the level of decolorization by the two enzymes.

Decolorization assays of polymeric dye Poly R-478 were performed to reveal the ability of II-DyP4 or II-MnP6 to degrade lignin. The reaction mixture contained sodium tartrate buffer (100 mM), Poly R-478 dye (0.01%), and II-DyP4 (100 nM) or II-MnP6 (100 nM) in a total volume of 1 mL (MnP reaction system added 1 mM Mn$^{2+}$). The reaction was initiated by the addition of H$_2$O$_2$ (0.2 mM) and the mixture was incubated at different pH conditions at 35 °C for 30 min. Dye decolorization was measured using a spectrophotometer at 520 nm, which is the maximum visible absorbance of Poly R-478. Control samples, without enzyme or H$_2$O$_2$, were done in parallel under identical conditions.

The decolorization percentage was calculated according to Eq. 1.

$$ \text{Decolorization(\%)} = \frac{A_0 - A_t}{A_0} \times 100\%$$

where A_0 is the initial absorbance at λ_{max} (nm) and A_t refers to the absorbance at λ_{max} (nm) at reaction time t. The data were the mean values of triplicate experiments.

Results

DyP and MnP cDNAs analyses

Amino acid sequence alignments of five DyPs (II-DyP1–5: accession numbers MH120197, MH120198, MH120199, MG209114, and MH120196, respectively) from I. lacteus F17 displayed typical characteristic GXXDG conserved motifs (Additional file 1: Fig. S1). Some crucial role of the conserved amino acid residues were shown in colors, such as the proximal histidine residue as well as the distant aspartic acid and arginine residues. There was a 57–83% shared sequence
identity among the five DyPs (Additional file 1: Table S2). Moreover, alignment analysis of conserved amino acid sites in 13 MnPs (Il-MnP1–13: KC811382, MH120201, MH120202, MH120203, MG209112, MH120204, MH120205, MH120206, MH120207, MH120208, MH120209, and MH120210, respectively) from I. lacteus F17 was also performed (Additional file 1: Fig. S2). Likewise, some crucial role of the conserved amino acid residues was shown in colors, including Mn^{2+}-binding and Ca^{2+}-binding amino acid ligands etc. There was a 49–99% shared sequence identity among the 13 MnPs (Additional file 1: Table S3). To understand the essential characteristics and biochemical properties of these two different types of enzyme, we tested DyPs and MnPs expression levels in I. lacteus F17 by culturing this organism in CPDA liquid shake cultures (28 °C). Genes encoding Il-DyP4 and Il-MnP6 were found to be the predominant expressed genes. Therefore, Il-DyP4 (MG209114) and Il-MnP6 (MG209112) were selected for further research.

According to the ExPASy (Gasteiger et al. 2003) server prediction online, Il-DyP4 contained 502 amino acids, with a molecular weight of 54.5 kDa and a theoretical pI of 5.06. The signal peptide of Il-DyP4 was confirmed to contain 52 amino acids (Salvachúa et al. 2013). In addition, Il-DyP4 showed 58% identity with BadDyP (GenBank: BAA77283.1) from Bjerkandera adusta, 42% identity with Pleurotus ostreatus DyP (GenBank: CAK55151.1), 40% identity with T. versicolor DyP (GenBank: EIW57847.1), and <33% identity with DyPs from bacteria, such as E. coli (PDB 5GT2_A), Shewanella oneidensis (PDB 2HAG_A), and Bacteroides thetaiotaomicron (PDB 2GVK_A). According to the ExPASy server, Il-MnP6 contained 359 amino acids, with a molecular weight of 38.2 kDa and a theoretical pI of 4.94. Using SignalP 4.1, the signal peptide of Il-MnP6 was confirmed to contain 52 amino acids (Salvachúa et al. 2013). In addition, Il-DyP4 showed 73% identity with MnP3 (GenBank: CAD92855.1) from Phlebia radiata, 72% identity with MnP (GenBank: CAG33918.4) from T. versicolor, and 55% identity with MnP (GenBank: AAB30859.1) from P. chrysosporium. Moreover, Il-MnP6 contained eight cysteines, and formed four disulfide bonds, and its amino acid sequence revealed an 89% identity with previously reported Il-MnP1 (GenBank:AGO86670.2) from I. lacteus F17, indicating that it is a short-type MnP (Chen et al. 2015). As such, the other 11 MnPs in I. lacteus F17 genome also belonged to the short MnP subfamily, based on the analyses of their amino acid sequences.

To analyze the structural properties of the two enzymes, molecular models of the deduced mature proteins were built (Additional file 1: Fig. S3). For Il-DyP4, the crystal structure of B. adusta DyP (PDB 3afv) (sequence identity 62.19%) was used as a template. For Il-MnP6, the crystal structure of Pleurotus eryngii VP (PDB 2boq) was used as a template (sequence identity 70.61%). In addition, the presence of the amino acids residues mentioned above was confirmed in the two structural models (Additional file 1: Fig. S3).

Expression and in vitro activation of Il-DyP4 and Il-MnP6
The cDNA sequences encoding Il-DyP4 and Il-MnP6 were amplified by PCR and inserted into the expression vector pET28a(+). The resulting recombinant constructs were then transformed into E. coli Rosetta (DE3) cells for heterologous expression.

The optimum enzyme activity achieved for Il-DyP4 was 10.8 U mg⁻¹, using the following optimal refolding conditions: 1 mM EDTA, 5 μM hemin, 0.75 M urea in 50 mM phosphate (pH 6) (Fig. 1a–d). The optimum enzyme activity of Il-MnP6 was 2 U mg⁻¹, using the following optimal refolding conditions: 1.5 M urea, 150 mM CaCl₂, 25 μM hemin, 10% glycerol, 0.5 mM GSSG, 0.05 mM MnSO₄, 20 mM KCl in 50 mM Tris–HCl (pH 8.5).

Purification of Il-DyP4 and Il-MnP6 and mass characterization
Two recombinant proteins with six His-tags at the C terminus were purified using Ni–NTA affinity chromatography, and exhibited a single band on SDS-PAGE (Additional file 1: Fig. S4). Purified Il-DyP4 had a molecular weight of 54.0 kDa, close to the 54.5 kDa predicted. The final recovery, which was obtained from the total activity, was approximately 85% (Table 1). The specific activity of purified Il-DyP4 was 140 U mg⁻¹. Purified Il-MnP6 had a molecular weight of 44.6 kDa, close to the 38.2 kDa predicted (Additional file 1: Fig. S4). The final recovery of Il-MnP6 was almost 60% (Table 1). The specific activity of purified Il-MnP6 was 23.8 U mg⁻¹.

The purified Il-DyP4 was analyzed by mass spectrometry. These peptides accurately matched the deduced amino acid sequence of Il-DyP4 (see Additional file 1: Table S4). The first fragment (MG5GNDSLPFENIQG-DILVGMKK) was the N-terminus amino acid sequence, which has 100% identity with the native I. lacteus DyP (Salvachúa et al. 2013)

Similarly, the purified Il-MnP6 was also analyzed by mass spectrometry. These peptides accurately matched the deduced amino acid sequence of Il-MnP6 (see Additional file 1: Table S5). Thus, these data confirmed the successful expression of Il-DyP4 and Il-MnP6 in E. coli Rosetta (DE3).
Effects of pH and temperature on the activity and stability of Il-DyP4 and Il-MnP6

The optimal pH of Il-DyP4 for ABTS oxidation was 3.5 (Fig. 2a). During incubation of Il-DyP4 in different pH buffers for 12 h, the enzyme retained more than 80% of its enzymatic activity at pH 4–7 and was most stable at pH 5.5 (Fig. 2b). Unlike Il-DyP4, the optimum pH of Il-MnP6 showed double peaks (4.5 and 7.0), and used Mn$^{2+}$ as a substrate. Il-MnP6 also retained >75% of its enzymatic activity at a wider range of pH (3.5–7.5), indicating

Table 1 Isolation and purification of Il-DyP4 and Il-MnP6 from inclusion bodies

Sample	Protein concentration (mg mL$^{-1}$)	Protein (mg)	Specific activity (U mg$^{-1}$)	Total activity (U)	Yield (%)
DyP Inclusion body	8.78	87.8	10.8	305	100
Dialyzed	0.24	28.2			
Ni–NTA	0.0093	1.87	140	261	86
MnP Inclusion body	4.45	22.2	2	16.2	100
Dialyzed	0.23	8.1	23.8	9.8	60
Ni–NTA	0.0082	0.41			
that the pH stability of II-MnP6 was superior to that of II-DyP4. II-DyP4 exhibited the highest enzymatic activity at 35 °C and retained 90% of its enzymatic activity after incubation at temperatures below 35 °C for 12 h (Fig. 2c, d). II-MnP6 showed maximal enzymatic activity at 30 °C and retained >90% of its enzymatic activity below 45 °C for 12 h.

Substrate specificities of II-DyP4 and II-MnP6

Significant differences were recorded in the substrate specificities of II-DyP4 and II-MnP6 on eight representative substrates (Table 2). For heme-containing peroxidases, H$_2$O$_2$ was used as an electron-accepting substrate to oxidize a variety of compounds. The results showed that the catalytic efficiency of II-DyP4 in the reduction of H$_2$O$_2$ was an order of magnitude higher than that of II-MnP6. For ABTS oxidation, the catalytic efficiency (k_{cat}/K_m) of II-DyP4 was up to 1.3 × 108 s$^{-1}$ M$^{-1}$, two orders of magnitude higher than that of II-MnP6. For Mn$^{2+}$ oxidation, which is often used as a substrate for MnP, the catalytic efficiency (k_{cat}/K_m) of II-DyP4 was 3.0 × 105 s$^{-1}$ M$^{-1}$, which was an order of magnitude lower than that of II-MnP6. Phenolic substrates, such as DMP and guaiacol, which were commonly used as universal substrates for heme peroxidase, displayed similar catalytic efficiency for II-DyP4 and II-MnP6. VA, a nonphenolic compound, was also assayed, revealing the...
catalytic efficiency of II-DyP4 to be 5.2 \times 10^3 \text{ s}^{-1} \text{ M}^{-1}, although no activity was detected for II-MnP6 in 0.1 M sodium tartrate, pH 3.5. For two dyes tested, the catalytic efficiency of II-DyP4 oxidizing anthraquinone dye RBlue 19 was 4.0 \times 10^7 \text{ s}^{-1} \text{ M}^{-1}, which was three orders of magnitude higher than that of II-MnP6. The catalytic efficiency of II-DyP4 oxidizing azo dyes RBlack 5 was 1.7 \times 10^6 \text{ s}^{-1} \text{ M}^{-1}, which was two orders of magnitude higher that of II-MnP6.

Effects of H2O2 and chemicals on II-DyP4 and II-MnP6 activity

In general, fungal heme-containing peroxidases depend on H2O2 to start the catalytic cycle of the reaction, although the enzymes are prone to inactivation in the presence of excess H2O2. The H2O2 stability of II-DyP4 and II-MnP6 showed that the enzyme activity of II-DyP4 was reduced by 60% as the H2O2 concentration increased from 0.1 to 4 mM, whereas the enzyme activity of II-MnP6 was reduced by 10%. However, when the H2O2 concentration was increased from 4 to 10 mM, the enzyme activity of II-DyP4 was reduced by only 10%, whereas 80% of the enzymatic activity of II-MnP6 was lost rapidly. Therefore, II-DyP4 was less resistant to low H2O2 concentrations, and more resistant to high H2O2 concentrations, and vice versa for II-MnP6.

The effects of three concentrations of several metal ions and other compounds on II-DyP4 and II-MnP6 were also assayed (Table 3). For Mn^{2+}, Na^{+}, Mg^{2+}, Zn^{2+}, Ni^{2+}, Cu^{2+}, and Al^{3+}, no loss of enzyme activity was observed for II-DyP4 and II-MnP6 within the tested concentrations. When the concentrations of Co^{2+} and Ca^{2+} were increased to 10 mM, II-DyP4 was significantly inhibited, whereas no significant effect was observed on II-MnP6. Both Fe^{3+} and Fe^{2+} significantly inhibited the activity.

Table 2 Kinetic parameters—K_m (\mu M), k_cat (\text{ s}^{-1}), and k_cat/K_m (\text{s}^{-1}\text{M}^{-1}) of II-DyP4 and II-MnP6 for substrates oxidation obtained based on the optimal pH and temperature (°C)

Substrate	II-DyP4	II-MnP6
H_2O_2	pH 3.5	4.5
ABTS	pH 3.5	4.5
Mn^{2+}	pH 4.5	4.5
DMP	pH 4	4.5
Guaiacol	pH 4	4.5
VA	pH 3.5	4.5
RBlue 19	pH 4.5	4.5
RBlack 5	pH 4	4.5

Means and 95% confidence limits

a Activities were measured with 1.25 mM ABTS and 1 mM Mn^{2+} by II-DyP4 and II-MnP6, respectively

b Not detected

c Experimental condition: [VA] = 1 mM, [MnP] = 25 mM, [H_2O_2] = 0.1 mM, [MnSO_4] = 1.0 mM, [Tartrate buffer] = 100 mM, pH = 3.5, temperature = 45 °C, reaction time = 60 min
of both enzymes, except at low concentrations of Fe$^{3+}$ (0.1 mM).

DTT, thiourea, and β-mercaptoethanol had little effect on Il-DyP4 activity at lower concentrations (0.1 mM), whereas Il-MnP6 activity was completely or partially inhibited when using 0.1 mM and 1 mM of these compounds. There was no change in Il-DyP4 activity at the three EDTA concentrations tested, whereas Il-MnP6 activity declined rapidly.

Spectroscopic characterization of Il-DyP4 and Il-MnP6

Circular dichroism (CD) spectra measurement in the far-UV region is often used to observe the secondary structures of proteins. The far-UV CD spectra of Il-DyP4 and Il-MnP6 exhibited two negative ellipticity bands at 208 and 222 nm, respectively (Additional file 1: Fig. S5), indicating α-helical structure characteristics, but with significant differences in content. The α-helix and β-sheet contents of Il-DyP4 and Il-MnP6 were calculated using the K2D program. The results showed that the α-helical content of Il-DyP4 (≥ 9%) was lower than that of Il-MnP6 (≥ 17%), whereas the β-sheet content of Il-DyP4 (≥ 43%) was higher than that of Il-MnP6 (≥ 31%).

The UV–Vis spectrum of Il-DyP4 (Fig. 3a) was similar to that of Il-MnP6 (Fig. 3b). Il-DyP4 exhibited a Soret peak at 408 nm, a Q band at 527 nm, and a charge transfer (CT) band at 634 nm, while Il-MnP6 showed a Soret peak at 410 nm, a Q band at 533 nm, with a narrow CT band at 632 nm. The Reinheitszahl (RZ) values (calculated from the A408/A280 and A410/A280 absorption ratios) for Il-DyP4 and Il-MnP6 were 1.5 and 3.17, respectively.

Redox properties of Il-DyP4 and Il-MnP6

The midpoint redox potential of the Fe$^{3+}$/Fe$^{2+}$ couple ($E^\text{m'}_{\text{Fe}^{3+}/\text{Fe}^{2+}}$) at different pH values (3.5, 6.5, and 8) were estimated by CV for Il-DyP4 and Il-MnP6 (Table 4). Il-DyP4 obtained the highest midpoint redox potential ($E^\text{m'}_{\text{Fe}^{3+}/\text{Fe}^{2+}}$ = 27 ± 10 mV) at pH 3.5, decreasing to a lower potential ($E^\text{m'}_{\text{Fe}^{3+}/\text{Fe}^{2+}}$ = −232 ± 10 mV) at pH 8.0. Similarly, Il-MnP6 obtained the highest midpoint redox potential ($E^\text{m'}_{\text{Fe}^{3+}/\text{Fe}^{2+}}$ = −75 ± 10 mV) at pH 3.5, decreasing to a lower potential ($E^\text{m'}_{\text{Fe}^{3+}/\text{Fe}^{2+}}$ = −168 ± 10 mV) at pH 8.0. When the pH increased from 3.5 to 8.0, the midpoint redox potential of Il-DyP4 was decreased by 259 mV, whereas that of Il-MnP6 decreased by 93 mV.

Dye decolorization

Dyes are colorful organic compounds that are widely used in the food, textile, drug, and paper industries,
often resulting in water pollution. The first DyP discovered was named because of its ability to decolorize various dyes (Kim and Shoda 1999). Accordingly, we selected 16 different dyes to examine the decolorization capability of \(\text{Il-DyP4} \) and \(\text{Il-MnP6} \) under pH 3.5, 4.0, and 4.5. The results revealed that the ability of \(\text{Il-DyP4} \) to oxidize most of the anthraquinone dyes, azo dyes, phenazine dyes, triphenylmethane dyes, and aniline dyes was stronger than that of \(\text{Il-MnP6} \) (Table 5), and also greater than that of \(\text{TfuDyP} \) from \(\text{Thermobifida fusca} \) (van Bloois et al. 2010). In addition, the results revealed that \(\text{Il-DyP4} \) was able to decolorize anthraquinone dyes more quickly than was \(\text{Il-MnP6} \). Interestingly, direct yellow 8 did not show any significant decolorization in our experiments. Further decolorization experiments using this dye are in progress.

In addition, we selected Poly R-478 to determine the ability of \(\text{Il-DyP4} \) and \(\text{Il-MnP6} \) to degrade lignin. The maximum efficiency of \(\text{Il-DyP4} \) to decolorize Poly R-478 at an enzyme concentration of 100 nM was 15.76%, which was higher than the 0.66% of \(\text{Il-MnP6} \) under pH 4.0 at 35 °C (Additional file 1: Fig. S6), indicating the \(\text{Il-DyP4} \) had a better ligninolytic activity compared with \(\text{Il-MnP6} \).

When the concentration of \(\text{Il-DyP4} \) increased from 100 to 1000 nM, and the \(\text{H}_2\text{O}_2 \) concentration increased from 0.2 to 0.4 mM, the efficiency of \(\text{Il-DyP4} \) to oxidize 0.01% Poly R-478 at pH 4 increased to 24%. When the concentration of \(\text{Il-DyP4} \) was 1000 nM, and \(\text{H}_2\text{O}_2 \) concentration increased from 0.4 to 1.2 mM, the efficiency of \(\text{Il-DyP4} \) to oxidize 0.01% Poly R-478 at pH 4 increased to 45%. The maximum decolorization percentage was 50% for \(\text{Il-DyP4} \) for 1 h of reaction, and no increase in decolorization efficiency was observed 3 h after the initiation of the reaction.

Discussion

I. lacteus is a cosmopolitan white-rot species that has become a model ligninolytic basidiomycete. The fungus can produce LiP, MnP, and laccase simultaneously, which is similar to *P. radiata* and *T. versicolor* (Novotný et al. 2009).

Recently, we published the analysis of the genome sequence of *I. lacteus* F17 (Yao et al. 2017) and updated five cDNAs encoding DyPs and 13 cDNAs encoding MnPs to GeneBank. Herein, we used the available information to further analyze the amino acid sequence consensus and important residues in these DyPs and MnPs, which belong to two different heme peroxidase families. Furthermore, among these enzymes, \(\text{Il-DyP4} \) and the \(\text{Il-MnP6} \) were selected and characterized to further investigate the basis of the ligninolytic system of *I. lacteus* F17.

Both recombinant enzymes were expressed as inclusion bodies in *E. coli* Rosetta (DE3) and active enzymes were achieved via in vitro refolding. For optimizing of \(\text{Il-DyP4} \), the refolding solution needed the supplement of optimal concentrations of EDTA, hemin, and urea. Compared with \(\text{Il-DyP4} \), the in vitro refolding process of \(\text{Il-MnP6} \) was complicated and active \(\text{Il-MnP6} \) was obtained by the refolding solution containing various factors.

Table 4 Midpoint redox potentials of \(\text{Il-DyP4} \) and \(\text{Il-MnP6} \) (vs. Ag/AgCl)

pH	3.5	6.5	8.0	3.5	6.5	8.0	
\(\text{Il-DyP4} \)	27 ± 10	−87.5 ± 10	−232 ± 10	\(\text{Il-MnP6} \)	−75 ± 10	−100 ± 10	−168 ± 10

Fig. 3 a The UV–Vis absorbance spectra of \(\text{Il-DyP4} \). b The UV–Vis absorbance spectra of \(\text{Il-MnP6} \). The region between 450 and 700 nm has been expanded (×3 absorbance).
including urea, hemin, GSSG, CaCl$_2$, glycerin, MnSO$_4$, KCl, hemin, and Ca$^{2+}$ at pH 8.0. Among these, a key factor of Ca$^{2+}$ affected the reconstitution of this fungal MnP. These refolding differences could be ascribed to the different amino acid compositions and structures of the two proteins.

SDS-PAGE analyses indicated that purified Il-DyP4 was monomeric, and its molecular weight was consistent with that of reported DyPs (50–60 kDa) (Colpa et al. 2014). In addition, comparison of the N-terminal sequence of Il-DyP4 with that of native DyP from I. lacteus revealed their similarity. Likewise, Il-MnP6 purified by Ni–NTA affinity chromatography was also a monomer, and its molecular weight was almost identical to that of purified native MnP from I. lacteus (Zhao et al. 2015).

In this study, the biochemical properties of the two heme peroxidases were investigated. Under acidic conditions at pH 3.5, Il-DyP4 was more robust for ABTS oxidation, which fell within the optimal pH range (pH 3–4.5) of most of the DyPs reported from fungi (Linde et al. 2014; Fernández-Fueyo et al. 2015; Behrens et al. 2016), and was similar to the optimal pH of native DyP from I. lacteus (Salvachúa et al. 2013). Intriguingly, compared with the acidic pH of fungi DyPs, the optimal pH of bacteria DyPs was 5.0–7.0 (Yu et al. 2014; Ramzi et al. 2015; Rahmanpour et al. 2016). The most distinguishing feature of DyP peroxidases is their powerful catalytic properties (Colpa et al. 2014). In the current study, Il-DyP4 exhibited a broad substrate range and a strong ability to oxidize different structures of compounds.

Table 5 Decolorization (%) of different kinds of synthetic dyes by Il-DyP4 and Il-MnP6

Nr.	Dye	λ_{max} (nm)	Concentration (μM)	pH 3.5	pH 4	pH 4.5	pH 3.5	pH 4	pH 4.5
1	Reactive blue 4	598	200	79.28	81.92	82.01	1.87	7.24	0.96
2	Reactive blue 5	600	100	74.06	82.73	83.61	12.40	18.07	8.26
3	Reactive blue 19	595	100	78.39	74.97	70.01	2.78	5.71	5.90
4	Direct sky blue 5B	598	100	80.62	81.45	77.91	16.95	59.72	63.75
5	Reactive black 5	598	50	60.57	59.30	40.86	0.22	0	0.69
6	Acid red 18	506	100	43.07	43.73	38.04	6.09	7.14	3.53
7	Reactive violet 5	570	100	92.16	90.81	80.96	19.97	21.32	1.10
8	Methyl orange	464	50	33.12	30.21	29.60	11.21	9.32	1.95
9	Direct yellow 8	392	25	2.62	4.66	2.04	0	0	0
10	Orange G	478	50	18.38	21.28	25.39	33.80	34.72	22.90
11	Orange yellow II	484	50	28.65	27.94	36.59	7.58	4.68	2.18
12	Orange yellow IV	445	50	62.55	60.07	60.16	13.23	10.40	4.26
13	Congo red	498	10	0	38.69	52.77	0	0	0
14	Neutral red	550	100	22.50	24.15	31.09	0	2.40	5.68
15	Malachite green	618	50	84.80	82.43	72.53	24.74	28.03	24.69
16	Basic fuchsin	542	25	45.10	39.75	23.86	3.46	3.63	0.25

* Percentage of dye decolorization after 30 min is based on the observed decrease in absorbance at λ_{max}.
the sodium tartrate buffer was changed to the maleate buffer in order to re-examine the ability of VA oxidation in II-MnP6 from *I. lacteus* F17. Interestingly, the assay revealed the activity of II-MnP6 for VA oxidation in 50 mM maleate buffer (pH 3.5), and that the activity had improved with the increase in enzyme concentration (data not shown). Such results supports the findings from Qin et al. (2017), who showed that the Mn^{3+}-maleate complexes may mediate oxidation of VA through the action of radicals. Yoshida and Sugano reviewed the characteristics of DyP-type peroxidases and showed that the k_{cat}/K_m of bacteria DyPs for anthraquinone compounds was 10^2-10^5 s$^{-1}$ M$^{-1}$, whereas the k_{cat}/K_m of basidiomyco-

tota DyPs reached 10^6-10^7 s$^{-1}$ M$^{-1}$ (Yoshida and Sugano 2015). In the present study, the recombinant II-DyP4 from *I. lacteus* F17 exhibited higher catalytic efficiency (4.0 \times 107 s$^{-1}$ M$^{-1}$) for RBlue 19 than did basidiomycota DyPs from *I. lacteus*, *A. auricularia-judae*, and *P. ostreatus* (Salvachúa et al. 2013; Linde et al. 2014; Fernández-Fueyo et al. 2015). Compared with II-MnP6, II-DyP4 showed a lower affinity for azo dye RBlac 5k, although its catalytic efficiency was almost two orders of magnitude higher than that of II-MnP6, and was similar to that of native DyP from *I. lacteus* and superior to that of other DyPs (Salvachúa et al. 2013). Therefore, these results revealed the remarkable ability of II-DyP4 to catalyze these substrates. These data also demonstrated that anthraquinone dye RBlue 19 and ABTS were the preferential substrates for II-DyP4, which was consistent with the report by Linde et al. (2015). For II-MnP6, Mn$^{3+}$ was reconfirmed as its preferred substrate.

The effect of H$_2$O$_2$ and other compounds at different concentrations on the enzymatic activity of the two enzymes was also examined. Although, the catalytic efficiency of II-DyP4 for H$_2$O$_2$ was an order of magnitude higher than that of II-MnP6, it appeared to be more susceptible than II-MnP6 at lower H$_2$O$_2$ concentrations ($<$7.0 mM). This could be attributed to the different amino acid residues in the heme pocket influencing the enzymatic stability. Ogola et al. (2010) increased the H$_2$O$_2$ resistibility of a DyP-type peroxidase from *Ana-

baena* sp. by the site-directed mutagenesis of methionine residues. By contrast, reducing agents, such as DTT, thiourea, and β-mercaptoethanol (1 and 10 mM), significantly affected the enzymatic activity of II-MnP6, resulting in the reduction of disulfide bonds and inactivation of the enzyme; by contrast, II-DyP4 only contains a cysteine residue and lacks disulfide bonds, explaining the only small effect of this enzyme on these compounds. Interestingly, 1 and 10 mM of Fe$^{2+}$ and Fe$^{3+}$ caused a dramatic decrease in activities of both enzymes, compared with other metal ions. To the best of our knowledge, the reason for this inhibition is unclear. However, it has been known that the two types of heme peroxidase share the same catalytic cycle, using H$_2$O$_2$ as an electron acceptor to form two oxidized intermediates, compound I and II, which are then reduced back to the native enzymes. In both native proteins, heme iron (protoporphyrin IX) is a pentacoordinated high-spin state Fe$^{3+}$, bound to the imi-
dazole ring N of the conserved proximal histidine (His), which has been proposed to be a key amino acid residue. The distance between the heme iron and proximal His influences the redox potential of ligninolytic peroxidases (Martínez 2002). In our assay, the high concentration of exogenous Fe ions might have disturbed and altered the formation of covalent bonds between the heme iron and His, leading to enzyme inactivation. Exogenous iron might be able to interact with the imidazole groups at a high concentration, and affect the bonding state of the active center Fe$^{3+}$ of the heme porphyrin ring. Thus, more detailed studies are needed to further characterize the inhibition mechanism of Fe ions on the activity of these two enzymes. Guo et al. (2009) proposed a possible inhibition mechanism of lanthanum ions on the activity of horseradish peroxidase (HRP). They found that La$^{3+}$ can combine with amide groups of the polypeptide chain and destroy the native structure of HRP. Tayefi-Nasrabadi et al. (2006) also reported conformational changes and activity alterations induced by Ni$^{2+}$ ions in HRP.

Differences were observed in the CD spectra between II-DyP4 and II-MnP6, both in terms of the α-helix and β-sheets contents, in agreement with the predicted molecular models. The UV–Vis absorption spectrum of II-DyP4 had features similar to that of II-MnP6. A characteristic CT band at 634 nm was observed in the spectrum of II-DyP4, indicating a high-spin heme Fe$^{3+}$ state. Also, the R_z value was similar to that of native DyP from *I. lacteus* (Salvachúa et al. 2013), thus, it appears that the in vitro refolding conditions used in this study were optimized. A similar pattern was observed in II-MnP6: a characteristic CT band at 632 nm was obvious, and the R_z value (3.17) was almost identical to that native MnP from the white-rot fungus *P. chrysosporium* (Whitman and Tien 1996). Hence, despite the tedious refolding process, II-MnP6 was reconstituted successfully from inclusion bodies.

Further investigations of the midpoint redox potential of the two enzymes were carried out, and the values of E_{m}° gave an indication that II-DyP4 was superior to II-

MnP6, particularly at pH 3.5. Nevertheless, the two enzymes were differentially affected by changes in pH. The impact of pH on the redox potential of II-DyP4 was bigger than that of II-MnP6 (Table 4), indicating that II-

DyP4 was more sensitive to changes in pH. Moffeta and colleagues indicated that the redox potential of heme
peroxidases is influenced by several factors, including the electronic nature of the amino acids ligating the heme, and the electrostatic interactions with residues surrounding the heme, as well as the solvent accessibility of the heme (Moffeta et al. 2003).

To determine the potential application ability of the two enzymes, five different structures of 16 synthetic dyes were selected and a lower enzyme concentration of 25 nM was used to decolorize these dyes in the two same enzymatic reaction systems. The differences in decolorization percentage of 15 synthetic dyes were obvious between the two enzymes, except for Orange G. *Il-DyP4* was superior to *Il-MnP6* in all the structure types of dye tested and showed high oxidation capacities at pH values of 3.5–4.5, which were optimal pH values for most reported DyPs and MnPs (Hofrichter et al. 2010). This was suggested to be because of the increased redox potential of the oxidized heme at low pH (Petruccioli et al. 2009). Our voltammetric experiment data illustrated the strongest oxidation ability of *Il-DyP4* at pH 3.5, and showed that the redox potential declined dramatically with the increase in pH. Thus, this result explained why DyPs required acidic pH conditions to complete substrate oxidation. In addition, in the case of the *Il-DyP4* system, dye decolorization was carried out directly by the addition of enzyme and H₂O₂, whereas MnPs catalyzed the Mn²⁺-mediated oxidation reaction, and an optimal concentration of Mn²⁺ was required for the MnP decolorization system. Thus, the biotechnological application of MnPs would be limited because of the heavy metal contamination in treated industrial wastes, whereas DyPs are only robust under acidic conditions, which would not be appropriate in some industrial applications, such as the treatment of neutral and alkaline waste in pulping and bleaching. Therefore, there is still much research to be done to enhance the industrial applicability of these enzymes.

Poly R-478, a structurally complicated and recalcitrant anthraquinone derivative, is a suitable indicator of the ability of white-rot fungi to degrade lignin, and it was used as a model compound for the measurement of ligninolytic activity (Zhao et al. 2015). The results of *Il-DyP4* to decolorize Poly R-478 highlighted its ligninolytic activity and its ability to oxidize lignin and related recalcitrant compounds. The precise structure of *Il-DyP4* and its key roles in lignin degradation also need to be clarified in future studies.

Additional file

Additional file 1. Additional tables and figures.
Cheng XB, Jia R, Li PS, Tu SQ, Zhu Q, Tang WZ, Li XD (2007) Purification of a new manganese peroxidase of the white-rot fungus Schizophyllum sp. F17, and decolorization of azo dyes by the enzyme. Enzyme Microb Tech 41:258–264

Cheng SH, Wilks C, Yuan ZS, Leitch M, Xu C (2012) Hydrothermal degradation of alkali lignin to bio-phenolic compounds in sub/supercritical ethanol and water–ethanol co-solvent. Polym Degrad Stabil 97:839–848

Colpa DI, Fraaie MW, van Bloois E (2014) DyP-type peroxidases: a promising and versatile class of enzymes. J Ind Microbiol Biot 41:1–7

Fernández-Fueyo E, Ruiz-Dueñas F, Miki Y, Martinez MJ, Hammel KE, Martinez AT (2012) Lignin-degrading peroxidases from genome of selective ligninolytic fungus Ceriporiopsis subvermispora. J Biol Chem 287:16039–16046

Fernández-Fueyo E, Ruiz-Dueñas F, Martinez MJ, Romero A, Hammel KE, Medrano FJ, Martinez AT (2014) Ligninolytic peroxidase genes in the oyster mushroom genome: heterologous expression, molecular structure, catalytic and stability properties, and lignin-degrading ability. Biotechnol Biofuels 7:2

Fernández-Fueyo E, Lindo D, Almendral D, Lopez-Lucendo MF, Ruiz-Dueñas FJ, Martinez AT (2015) Description of the first fungal dyecoloring peroxidase oxidizing manganese (II). Appl Microbiol Biotechnol 99:8927–8942

Floudas D, Binder M, Riley R, Barry K, Blanchette RA, Henrikss B, Martinez AT, Ottifar R, Sapaftora JW, Yadav JS, Aerts A, Benoit I, Boyd A, Carlson A, Copeland A, Coutinho PM, de Vries RP, Ferreira P, Findley K, Foster B, Gaskell J, Gøtzelius FG, Goeckel P, Heitmann L, Hesse C, Hori C, Igasaki K, Jurgens JA, Kallen N, Kersten P, Kohler A, Kues U, Kumar T, Kuo A, LaButti K, Larrondo LF, Lindquist E, Ling A, Lombard V, Lucas S, Lundell T, Martin R, McLaughlin DJ, Morgenstern I, Morin E, Murat C, Nagy LG, Nolan M, Ohm RA, Patyshakulyeva A, Rokas A, Ruiz-Dueñas FJ, Sabat G, Salamov A, Samejima M, Schmutz J, Slot JC, John FS, Stendil J, Sun H, Sun S, Syed K, Tsang A, Wiebenga A, Young P, Barsab Russo A, Eastwood DC, Martin F, Cullen D, Grigoriev IV, Hibbett DS (2012) The Paleozoic enigma of organic mineral lignin decommission reconstructed from 31 fungal genomes. Science 336:1715–1719

Floudas D, Held BW, Riley R, Nagy LG, Koehler G, Randell AS, Younus H, Chow J, Chinwuiqu J, Lipzen A, Trant A, Sun H, Hanada S, LaButti K, Xomch RA, Kues U, BlanchetteRA Grigoriev IV, Minto RE, Hibbett DS (2015) Evolution of novel wood decay mechanisms in Agaricales revealed by the genome sequences of Fistulina hepatica and Cylinobasidium tornendii. Fungal Genet Biol 76:78–92

Gasteiger E, Gattiker A, Hoogland C, Ivanyi I, Appel RD, Bairoch A (2003) ExPaSy—the proteomics server for in-depth protein knowledge and analysis. Nucleic Acids Res 31:3784–3788

Guo SF, Wang LH, Lu BH, Lu TH, Ding XL, Huang XH (2009) Inhibition mechanisms of MnP and ligninase from Phanerochaete chrysosporium using diatomaceous earth. Biotechnol Tech 12:549–552

Hofrichter M, Ullrich R, Pecyna MJ, Landt F, D’Annibale A (2009) Kinetic and redox properties of MnP II, a major manganese peroxidase isozyme from Panus tigrinus CBS 577.99. J Biol Inorg Chem 14:1153–1163

Qin X, Sun XH, Huang HQ, Bai YG, Wang Y, Luo HY, Yao B, Zhang XY, Su XY (2017) Oxidation of a non-phenolic lignin model compound by two lpxP enzymes, manganese peroxidases: evidence for implication of a white-rot and radicalic. Biotechnol Biofuels 10:103

Rahmanpour R, Rea D, Jamshidi S, Fulop V, Bugg TDH (2016) Structure of Thermobifida fusca DyP-type peroxidase and activity towards Kraft lignin and lignin model compounds. Arch Biochem Biophys 594:54–60

Ramí AB, Heyon JE, Han SO (2015) Improved catalytic activities of a dye-decolorizing peroxidase (DyP) by overexpression of ALA and heme biosynthesis genes in Escherichia coli. Proc Biochem 50:1272–1276

Riley R, Salamov AA, Brown DW, Nagy LG, Floudas D, Held BW, Levasseur A, Lombard V, Morin E, Ottifar R, Lindquist EA, Sun H, LaButti KM, Schmutz J, Jabbour D, Luo H, Baker SE, Pisabarro AG, Walton JD, Blanchette RA, Henrikss B, Martin F, Cullen D, Hibbett DS, Grigoriev IV (2014) Extensive sampling of basidiomycete genomes demonstrates inadequacy of the white-rot/brown-rot paradigm for wood decay fungi. Proc Natl Acad Sci USA 111:9923–9928

Ruiz-Dueñas FJ, Ludell T, Floudas D, Nagy LG, Barrasa JM, Hibbett DS, Martinez AT (2013) Lignin-degrading peroxidases in Polyporales: an evolutionary survey based on 10 sequenced genomes. Mycologia 105:1428–1444

Salvadés D, Prieto A, Martínez AT, Martínez MJ (2013) Characterization of a novel dye-decolorizing peroxidase (DyP)-type enzyme from lpxP, and its application in enzymatic hydrolysis of wheat straw. Appl Environ Microbiol 79:4316–4324

Sugano Y (2009) DyP-type peroxidases comprise a novel heme peroxidase family. Cell Mol Life Sci 66:1387–1403

Tayefi-Nasrabadi H, Keyhani E, Keyhani J (2006) Conformational changes and activity alterations induced by nickel ion in horseradish peroxidase. Biochemistry 45:10398–10406

van Bloois E, Torres Pazmiño DE, Winter RT, Fraaije MW (2010) A robust and scalable method for the production of alkali lignin to bio-phenolic compounds in sub/supercritical ethanol and water–ethanol co-solvent. Polym Degrad Stabil 97:839–848

Whitwam R, Tien M (1996) Heterologous expression and reconstitution of lignin peroxidase enzymes. Enzyme Microb Technol 17, and decolorization of azo dyes by the enzyme. Arch Biochem Biophys 374:466–74

Lorcan N, Colpa DI, Fraaie MW (2016) Exploring the biocatalytic potential of a DyP-type peroxidase by profiling the substrate acceptance of Thermobifida fusca DyP peroxidase. Tetrahedron 72:7276–7281

Martínez AT (2002) Molecular biology and structure-function of lignin-degrading heme peroxidases. Enzyme Microb Technol 30:425–444

Mendes S, Briosso V, Gabriel A, Catarino T, Turner DL, Todorovic S, Martins LO (2015) An integrated view of redox and catalytic properties of B-type PpDyP from Pseudomonas putida MET94 and its distal variants. Arch Biochem Biophys 547:99–107

Moffeta DA, Foleiy J, Hechta MH (2003) Midpoint reduction potentials and heme binding stoichiometries of de novo proteins from designed combinatorial libraries. Biochem. Biophys. Acta 105:231–239

Morgenstern I, Klopman S, Hibbett DS (2008) Molecular evolution and diversity of lignin degrading heme peroxidases in the agaricomycetes. J Mol Evol 66:243–257

Novotny Č, Rawal B, Bhatt M, Patel M, Šašek V, Moltitoris HP (2001) Capacity of lpxP enzymes and Pleurotus ostreatus for decolorization of chemically different dyes. J Biotechnol 89:113–122

Novotny Č, Cajohtam I, Svobodakova K, Šušla M, Šašek V (2009) lpxP genes, a white-rot fungus with biotechnological potential—review. Folia Microbiol 54:375–390

Ogata HJO, Hashimoto N, Miyabe S, Ashida H, Ishikawa T, Shibata H, Sawaya Y (2010) Enhancement of hydrogen peroxide stability of a novel Anabaena sp. DyP-type peroxidase by site-directed mutagenesis of methionine residues. Appl Microbiol Biotechnol 87:1727–1736

Park J, Riaz A, Insyani R, Kim J (2018) Understanding the relationship between the structure and depolymerization behavior of lignin. Fuel 217:202–210

Petruccioli M, Frasconi M, Quarantino D, Covino S, Favero G, Mazzei F, Federci F, D’Annibale A (2009) Kinetic and redox properties of MnP II, a major manganese peroxidase isozyme from Panus tigrinus CBS 577.99. J Biol Inorg Chem 14:1153–1163

Pradhan S, Joshi S, Ramu S, Singh S, Rastogi S, Tripathi H, Singh R, Desai S, Reddy B, Ramkumar N, Blackwell A, Li Y (2012) Inhibition of the ligninase-catalase activity of brown-rot fungi by a new type of MnP. FEMS Microbiol Lett 336:1715–1719

Pérez-Abarca C, Schütz A, Monsalvo M, Clifford J, Delcuve I (2011) Heterologous expression and purification of Mer84 and refolded enzymes. BMC Biotechnol 11:26
Yang XT, Zheng JZ, Lu YM, Jia R (2016) Degradation and detoxification of the triphenylmethane dye malachite green catalyzed by crude manganese peroxidase from Irpex lacteus F17. Environ Sci Pollut Res 23:9585–9597
Yao MW, Li WM, Duan ZH, Zhang YL, Jia R (2017) Genome sequence of the white-rot fungus Irpex lacteus F17, a type strain of lignin degrader fungus. Stand Genomic Sci 12:55
Yoshida T, Sugano Y (2015) A structural and functional perspective of DyP-type peroxidase family. Arch Biochem Biophys 574:49–55
Yu WN, Liu WN, Huang HQ, Zheng F, Wang XY, Wu YY, Li KJ, Xie XM, Jin Y (2014) Application of a novel alkali-tolerant thermostable DyP-type peroxidase from Saccharomonospora viridis DSM 43017 in biobleaching of eucalyptus kraft pulp. PLoS ONE 9:e110319
Zhao XS, Huang XJ, Yao JT, Zhou Y, Jia R (2015) Fungal growth and manganese peroxidase production in a deep tray solid-state bioreactor, and in vitro decolorization of Poly R-478 by MnP. J Microbiol Biotechnol 25:803–813