Rhinoviruses (RVs) are ssRNA-nonenveloped viruses that are the causative agent of the common cold and other respiratory tract infections. Despite the vast prevalence, effective treatment or prevention strategies are lacking. Here, we analyzed metabolic alterations in infected cells and found a pronounced reprogramming of host cell metabolism toward an anabolic state, which involved enhancement of glucose uptake and glycogenolysis. We further demonstrate that these alterations can be reverted by treatment with 2-deoxyglucose, a glycolysis inhibitor, which results in a disruption of RV replication in vitro and in vivo. Thus, we show how the specific metabolic fingerprint of viral infection can be used to generate targets for antiviral therapy.

Significance

Rhinoviruses (RVs) are ssRNA-nonenveloped viruses that belong to the family of Picornaviridae. They are responsible for more than 50% of upper airway infections and cause several billion dollars of health care costs per year (11–13). Apart from causing the common cold, they trigger lower respiratory tract infections in immunosuppressed patients (14, 15), chronic obstructive pulmonary disease, and asthma exacerbations (16, 17). To date, there is no available treatment for RV infections.

Despite the relevance of the virus in human pathogenesis, knowledge on the interaction of RV and the host cell metabolism is limited. In this study, we sought to elucidate the metabolic implications of RV infection. We observed that viral infection led to extensive alterations of cellular metabolism and enhanced expression of enzymes responsible for glucose utilization and uptake. Indeed, the shift toward a glucose-dependent anabolic state is of vital importance for the viral infection, as evidenced by the abolition of viral replication upon glucose deprivation and glycolysis inhibition. Last, we delineated a mode of metabolism-targeting antiviral therapy in vitro and in vivo by using the glycolysis inhibitor 2-deoxyglucose (2-DG).

Results

RV Infection Enhances Glucose Uptake. To investigate the impact of RV on host cell metabolism, we first assessed the kinetics of nutrient uptake in infected cells compared with controls. For this purpose, we exposed primary human fibroblasts and HeLa cells to fluorescently labeled glucose at different time points during RV-B14 infection. We found that RV infection led to an enhancement of glucose uptake for energy generation and biosynthesis (6–8). Regarding the molecular mechanisms leading to these alterations, Thai et al. (9, 10) recently identified the transcription factor MYC to be of critical relevance for glucose as well as glutamine pathway alterations upon adenoviral infection.

Rhinoviruses (RVs) are ssRNA-nonenveloped viruses that belong to the family of Picornaviridae. They are responsible for more than 50% of upper airway infections and cause several billion dollars of health care costs per year (11–13). Apart from
of glucose incorporation by the infected cells (Fig. 1A and B). RV
is known to activate the PI3K pathway (18–21), an essential platform
in the modulation of metabolic homeostasis that is responsible
for rapid adaptation of glucose uptake (22, 23). To test whether the
activation of this pathway played a role in our observations, we
analyzed the impact of the established PI3K inhibitors PP242 and
LY294002 on RV-induced glucose uptake (24). Coincubation with
any of the inhibitors during RV infection reverted the effect on
glucose uptake, pointing toward an involvement of this pathway in
our observations (Fig. 1C). In coherence with these findings, the
expression of primarily PI3K-regulated enzyme GLUT1 was sig-
ificantly enhanced after 1.5 h and 4 h of RV infection and went
back to control levels at 7.5 h (Fig. 1D and E). In line with a con-
cept of PI3K orchestrating RV-induced effects, the expression
of GLUT3 was not affected by RV infection, thus pointing toward a
specific effect on PI3K-regulated targets (SI Appendix, Fig. S1A). In
addition to glucose uptake, the uptake of fluorescently labeled fatty
acids was also up-regulated during RV-B14 infection in HeLa cells
(SI Appendix, Fig. S1B).

Taken together, these findings indicate an up-regulation of
nutrient uptake by RV in fibroblasts and HeLa cells, which was
dependent on PI3K. These alterations were accompanied by an
enhanced expression of the PI3K-modulated enzyme GLUT1,
potentially mediating the observed effects.

RV Induces An Anabolic State in Host Cell Metabolism. To further
deeper our understanding of RV-induced metabolic alterations,
we performed an MS-based analysis of biochemical compounds
in HeLa cells during RV-B14 infection.

RV infection was associated with a marked increase in the
levels of the glycogen metabolism intermediates maltotriose,
maltotriose, maltose, and UDP-glucose, indicating the activation
of glycogenolysis (Fig. 2 and Dataset S1).

With respect to lipid metabolism, we found that the infected
cells exhibited a significant decrease in the levels of various me-
dium- and long-chain acylcarnitines, which suggests that infection
decreases fatty acid oxidation. This change may reflect infection-
induced metabolic reprogramming toward fatty acid synthesis and
away from oxidation. Indeed, the concentrations of acetyl-CoA,
oleoyl-CoA, and multiple long-chain and polyunsaturated fatty
acids were significantly elevated, or at least showed such a trend,
relative to uninfected control samples; several phospholipids,
 sphingolipids, ceramides, and the fatty acid synthase enzyme co-
factor phosphopantetheine were also significantly increased,
further suggesting a shift toward lipogenesis and/or fatty acid uptake
(SI Appendix, Fig. S2 and Dataset S1).

Regarding the nucleotide metabolism, which is crucial for viral
replication, we found that multiple nucleotide triphosphates and
diphosphates, including guanosine 5′-triphosphate, guanosine 5′-
diphosphate, uridine 5′-triphosphate, uridine 5′-diphosphate, CTP,
and cytidine 5′-diphosphate, were significantly increased 7 h post
infection relative to uninfected cells. Elevated nucleotide levels
were accompanied by increased concentrations of ribulose 5-
phosphate and xylulose 5-phosphate, which suggests the activa-
tion of the pentose phosphate pathway to synthesize nucleotide
precursors (SI Appendix, Fig. S2 and Dataset S1).

Taken together, metabolomic analysis revealed an infection-
induced reprogramming of the host cell metabolism toward an-
abolic processes by affecting carbohydrate, fatty acid, and
nucleotide metabolism.

RV Depends on Glucose for Reproduction. Having identified the
overall metabolic shift and enhancement of nutrient uptake

![Fig. 1.](image_url) RV infection enhances nutrient uptake and the expression of glucose transporters. (A) Representative measurement of the uptake of fluorescently labeled glucose (2-NBDG) in RV-B14–infected and uninfected primary human fibroblasts at 1.5 h post infection. (B) Mean ± SEM of the four experiments in fibroblasts and HeLa cells [*P < 0.05, paired t test of raw mean fluorescence intensity (MFI) data]. (C) Impact of the PI3K inhibitors LY294002 (10 μM) and PP242 (1 μM) on glucose uptake of RV-B14–infected fibroblasts (*P < 0.05, paired t test). (D) Representative measurement of GLUT1 expression in RV-B14–infected fibroblasts at 1.5 h post infection. (E) Mean ± SEM of the four experiments in fibroblasts (*P < 0.05, paired t test).
RV induces an anabolic reprogramming of host cell metabolism. Metabolomic analysis of HeLa cells infected with RV-B14 (MOI of 3.5) at 7 h post infection showed down-regulations with 0.05 fold change. These findings indicate that RV infection not only induces a highly anabolic state and enhances nutrient uptake, but is also highly dependent on glucose for efficient replication.

The Glycolysis Inhibitor 2-DG Potently Impairs RV Replication. To further analyze the role of glucose metabolism during infection, we assessed the impact of the glycolysis inhibitor 2-DG on viral replication. In line with our previous findings, 2-DG strongly inhibited RV reproduction in HeLa cells and in primary human fibroblasts (Fig. 3B). Measurement of viral replication on the protein level (VP1-3 synthesis in HeLa cells) showed similar results as on the RNA level (Fig. 3C). The concentrations of 2-DG employed had no measurable impact on cell viability (SI Appendix, Fig. S4).

2-DG affects glycolysis at a very early stage through competitive inhibition of phosphoglucomutase (PGI), thereby not only affecting ATP generation but also impairing carbon flux through the TCA cycle to provide macromolecules for anabolic processes. We were interested to also assess the impact of downstream glycolysis inhibition. Therefore, we used oxamate, which impairs the formation of lactate from pyruvate and therefore abolishes anaerobic glycolysis without affecting the processing of pyruvate through the TCA cycle. In contrast to 2-DG, oxamate treatment had no impact on RV replication (Fig. 3D), suggesting a less consequential role of anaerobic glycolysis in RV reproduction.

Apart from its impact on glucose metabolism, 2-DG is known to interfere with N-linked glycosylation, thus causing endoplasmic reticulum stress and an unfolded protein response (UPR). These processes have been described to be involved in cellular antiviral responses (25). To assess whether this mechanism plays a role in our observations, we coincubated the infected cells treated with 2-DG along with mannose, which is an established antagonist of 2-DG-induced UPR (26). The antiviral activity of 2-DG was not affected by mannose treatment (SI Appendix, Fig. S5), which excludes the interference of protein glycosylation as an antiviral mechanism of 2-DG.

Additionally, we had seen that fatty acid uptake was up-regulated by RV infection (SI Appendix, Fig. S1B). The metabolomics data suggested that infection resulted in enhanced lipogenesis rather than fatty acid oxidation in infected cells (SI Appendix, Fig. S2 and Dataset S1). We used etomoxir, a specific inhibitor of fatty acid oxidation (27, 28), to study the role of this process in infected cells. In line with our previous observations, etomoxir had no impact on RV replication in HeLa cells (Fig. 3E).

Thus, we established a unique inhibitory property of 2-DG on RV infection by the inhibition of upstream glycolysis, whereas inhibition of neither fatty acid oxidation nor anaerobic glycolysis showed any impact on RV reproduction.

2-DG Reverts RV-Induced Reprogramming of Host Cell Metabolism. To acquire a better understanding of the mechanistic basis of 2-DG’s antiviral effect, we performed metabolomic studies of cells infected with RV in the presence of this compound. Consistent with the concept of early glycolysis inhibition through PGI by 2-DG, the levels of early glycolysis intermediates such as glucose and glucose-6-phosphate were strongly enhanced by 2-DG treatment, whereas the levels of late-stage glycolytic products such as pyruvate and lactate were significantly decreased with 2-DG treatment (Fig. 4 and Dataset S1). Strikingly, 2-DG reversed many of the RV-induced modifications of cellular metabolism. RV-induced glycoegenolysis was abolished by 2-DG treatment (Fig. 4). Regarding lipid metabolism, 2-DG treatment of the infected cells led to a significant increase in the levels of several lipids.
fatty acylcarnitines (butyrylcarnitine, hexanoylcarnitine, myristoylcarnitine, palmitoylcarnitine, and stearoylcarnitine) that were decreased during infection. This was accompanied by decreased levels of various phospholipids, sphingolipids, and ceramides, which, taken together, suggests a shift away from anabolic and lipogenic processes during 2-DG treatment (SI Appendix, Fig. S6).

The levels of various nucleotide triphosphates that were increased during infection, including guanosine 5’-triphosphate, guanosine 5’-diphosphate, uridine 5’-triphosphate, uridine 5’-diphosphate, CTP, and cytidine 5’-diphosphate, exhibited a significant decrease during 2-DG treatment (SI Appendix, Fig. S6). In conclusion, 2-DG appears to counteract the RV-induced switch toward anabolic metabolism.

2-DG Impairs RV Infection in Vivo. Having established an inhibitory activity of 2-DG in vitro and dissected its mode of action, we were further interested in a therapeutic application of the substance. Therefore, we further studied the possible impact of 2-DG on RV respiratory tract infection in an established murine model (29). In line with our in vitro findings, the substance reduced RV load in infected lung tissue (Fig. 5A). Furthermore, virus-induced lung inflammation was reduced by 2-DG, as evidenced by low leukocyte counts in bronchoalveolar lavage (BAL) fluid and decreased bronchiolitis (Fig. 5A and B). The mice showed no visible side effects upon treatment with 2-DG, which is in line with previous observations describing the safe use of the substance in various animal models and humans even at much higher doses than used in the present study (30–34). Therefore, 2-DG induced “metabolic starvation” of RVs, which might be considered as a strategy to combat this widespread pathogen.

Discussion
Recent research has established that viruses induce distinct metabolic changes in host cells. The aim of this study was to assess the impact of RV on host cell metabolism, a subject not studied so far to our knowledge.

We found that glucose and fatty acid uptake were up-regulated during infection (Fig. 1 and SI Appendix, Fig. S1). Remarkably, the virus-induced enhancement of glucose uptake was measurable as fast as 1.5 h after infection, and was observable throughout 7.5 h in primary human fibroblasts. The velocity of these alterations pointed toward fast adaptation mechanisms such as the known activation of PI3K by RV (19–21). Indeed, an inhibition of this pathway abolished the RV-induced glucose uptake. PI3K is known to modulate glucose uptake through several mechanisms, such as enhancement of vesicle transport (22) and phosphorylation of GLUT1 (23). We found that GLUT1 was rapidly up-regulated upon RV infection and persisted at higher levels until reaching control levels at 7.5 h. This might reflect the beginning of the virus-induced host cell shutdown, resulting in lower levels of host protein synthesis. The still measurable enhancement of glucose uptake at 7.5 h might be mediated through the mentioned phosphorylation of GLUT1 (23), leading to enhanced affinity of the enzyme for glucose.

Consistent with these observations, limiting the glucose supply by depletion of glucose in the culture medium inhibited RV replication. Glutamine, which is utilized as a carbon source by several viruses (1, 4, 5), was also found to be important for RV replication, outlining the necessity of enhanced carbon supply for RV reproduction (Fig. 3A).

Metabolomic analysis revealed a specific fingerprint of RV infection. The virus up-regulated glycolysis, which is a yet-undescribed mechanism of carbon source generation by viruses.

Fig. 3. Glucose deprivation is detrimental for RV replication. (A) RV-B14 replication in HeLa cells under glucose-deprived or glutamine-deprived conditions. Cells were infected in normal glucose and glutamine-containing medium, glucose-deprived medium, or glutamine-deprived medium. Analysis of viral RNA was performed at 7 h post infection. The mean ± SEM of four independent experiments is shown. (B) Impact of the glycolysis inhibitor 2-DG on RV-B14 replication in HeLa cells and primary human fibroblasts. The mean ± SEM of six independent experiments is shown (*P < 0.05, Wilcoxon signed-rank test of normalized data). (C) Western blot analysis of capsid protein VP1-3 expression in RV-B14-infected HeLa cells with or without 2-DG treatment. One of two independent experiments performed in duplicates is shown. (D) Effect of anaerobic glycolysis inhibition by oxamate on RV reproduction. The mean ± SEM of five independent experiments is shown. (E) Impact of the carnitine palmitoyltransferase I inhibitor etomoxir on viral replication in HeLa cells. The mean ± SEM of three independent experiments is shown.
to our awareness. It also enhanced lipogenesis, a process that has been observed for several enveloped viruses such as cytomegalovirus (7, 35, 36), Kaposi sarcoma-associated herpesvirus (37), and hepatitis C virus (38). However, the engagement of this process as a nonenveloped virus was less expected. Although an enhancement of nucleotide availability obviously contributes to viral replication, the induction of lipogenesis serves viral reproduction in a more complex manner. As such, lipids are known to be of importance for the formation of the replication complex that contributes to the generation of membranous vesicles, the sites of virus replication (39). The relevance of these processes for viral replication has been demonstrated via interference with lipid metabolism through inhibition of phosphatidylinositol 4-kinase III-β (40) and fatty acid synthase (41), which both result in impaired RV replication.

In line with the observations with glucose-depleted medium, the PGI1 inhibitor 2-DG abolished RV replication in primary human fibroblasts and in HeLa cells. 2-DG did not elicit measurable effects on cell viability at the concentrations and the time points considered in our infection model. This excludes the possibility that the toxicity of 2-DG might lead to impairment of viral reproduction. Metabolomic analysis revealed that the major alterations induced by RV, i.e., lipogenesis, glycolysis, and nucleotide synthesis, were reversed by 2-DG treatment. Additionally, β-oxidation was enhanced as a consequence of the impact of 2-DG on glycolysis, probably to compensate for the bioenergetic requirements. This is likely to cause a skewing of lipid metabolism away from anabolic lipogenesis to fatty acid oxidation, potentially contributing to 2-DG’s effects. Therefore, the inhibitory activity of the substance might rely mainly on a shifting of carbon flux to catabolic processes and away from macromolecule production, which is essential for viral replication. In line with this concept, a mere inhibition of energy generation by etomoxir (i.e., β-oxidation) or oxamate (i.e., anaerobic glycolysis) was not sufficient to impair viral reproduction.

Although, to date, 2-DG has been used as an antiviral agent against a variety of viruses in vitro (42), the effect of 2-DG on viral replication has been mostly attributed to its impact on energy homeostasis or interference with protein folding. In the present study, we showed that treatment with mannose did not influence the effect of 2-DG on RV infection, which points toward a negligible role of UPR as the major antiviral mechanism. Furthermore, we show that several strategies of simple energy deprivation are ineffective in impairing RV reproduction. Instead, our data indicate a more complex shift of carbon flux away from anabolic processes, which might be relevant for its antiviral effect toward other viruses (26, 43, 44).

After establishing the RV-impairing effects of 2-DG in vitro, we went on to study the impact of the substance in an established murine infection model (29). We found that 2-DG inhibited viral load and inflammation compared with placebo-treated mice, thus outlining the potential of metabolism-targeting therapy in vivo. Nonetheless, these studies are limited by the marginal resemblance of murine RV infection models to human infection in regard to viral replication level and disease manifestation and kinetics. Therefore, further investigation is warranted to better assess the potential of 2-DG for RV therapy.

Taken together, our findings further highlight the complex interplay between viruses and host cell metabolism and outline these processes as promising targets for specific antiviral therapy. To further confirm our findings, studies in airway epithelial cells and with additional viruses, including clinical isolates and RV-C types, are needed to assess whether metabolic reprogramming is a general characteristic in RV biology.

Materials and Methods
Experimental Model and Subject Details.
Animal experiments. Female C57BL/6 J mice aged 6–8 wk from in-house breeding (originally obtained from The Jackson Laboratory) were used for all experiments. All animal experimentation protocols were evaluated by the animal ethics committee of the Medical University of Vienna and approved by the Ministry of Economy and Science (BMWFW-66.009/0356_WF/V/3b/ 2015). Animal husbandry and experimentation was performed according to the Federation of Laboratory Animal Science Association guidelines. Primary cells. For fibroblast isolation, tissue samples including skin and s.c. fat (100–300 cm²) were obtained from patients undergoing routinely performed body-contouring surgeries and were used for the isolation of mast cells, fibroblasts, and keratinocytes. The skin was insonuous upon clinical inspection and on histology. s.c. tissue and reticular dermis were removed, and the remaining split-thickness skin was cut into 0.5 cm² pieces and placed
2-DG reduces inflammation and viral load in murine RV airway infection. C57BL/6 mice were infected with RV-A1B intranasally plus 50 μL PBS solution (control) or 50 μL of 5 mM 2-DG in PBS solution, respectively. At 24 h after infection, mice were euthanized, a BAL performed, and tissue obtained for qPCR and histological analysis. (A) The presence of RV-A1B RNA in lung tissue and the count of leukocyte populations in the BAL (total leukocytes, CD45+; neutrophils, CD45+Ly6G−; B cells, CD45+CD19−; dendritic cells, CD45+CD11c+; T helper cells, CD45+CD3+CD4+; NK cells, CD45+NK1.1+). In each experiment, 10 mice per infection group were used, and two mice were used in the uninfected control group. One of two independent experiments performed is shown. (B) Two representative H&E stains of lung tissues of mice treated with PBS solution (placebo) or 2-DG.

Methods Details.

Cell culture and in vitro infection. Infection was performed as described before (46). HeLa cells or fibroblasts were plated on polystyrene plates overnight (Corning). On the subsequent day, cells were infected with the indicated amount of 50% tissue culture infective dose (TCID₅₀) of RV-B14 per cell (multiplicity of infection (MOI) of 3.5–10). One hour post infection, cells were washed with prewarmed PBS solution and incubated for 6 h with medium with or without the indicated agent in the indicated concentration before further processing. For assessment of cell viability, cells were stained with the fixable viability dye or 7-AAD (BioScienCe) before flow cytometric measurement.

Sample preparation. Samples were prepared by using the automated MicroLab STAR system (Hamilton). Several recovery standards were added before the first step in the extraction process for quality-control (QC) purposes. To remove protein, dissociate small molecules bound to protein or trapped in the precipitated protein matrix, and recover chemically diverse metabolites, proteins were precipitated with methanol under vigorous shaking for 2 min (GenoGrinder 2000; Glen Mills) followed by centrifugation. The resulting extract was divided into five fractions: two for analysis by two separate reverse-phase (RP)/ultra-performance (UP) LC-MS/MS methods with positive ion-mode electrospray ionization (ESI), one for analysis by RP/UPLC-MS/MS with negative ion-mode ESI, one for analysis by hydrophilic interaction liquid chromatography (HILIC)/UPLC-MS/MS with negative ion-mode ESI, and one reserved for backup. Samples were placed briefly on a TurboVap (Zymark) to remove the organic solvent. The sample extracts were stored overnight under nitrogen before preparation for analysis.

Quality assurance. Several types of controls were analyzed in concert with the experimental samples: a pooled matrix sample generated by taking a small volume of each experimental sample (or alternatively, use of a pool of well-characterized human plasma) served as a technical replicate throughout the data set; extracted water samples served as process blanks; and a mixture of QC standards that were carefully chosen not to interfere with the measurement of endogenous compounds were spiked into every analyzed sample, allowed instrument performance monitoring, and aided chromatographic alignment. Instrument variability was determined by calculating the median relative SD (RSD) for the standards that were added to each sample before injection into the mass spectrometers. Overall process variability was determined by calculating the median RSD for all endogenous metabolites (i.e., noninstrument standards) present in 100% of the pooled matrix samples.

UPLC-MS/MS. All methods used a ACQUITY UPLC system (Waters) and a Q-Exactive high-resolution/accurate mass spectrometer (Thermo Fisher Scientific) interfaced with a HESI-II heated ESI-source and Orbitrap mass analyzer operated at 35,000 mass resolution. The sample extract was dried and then reconstituted in solvents compatible with each of the four methods. Each reconstitution solvent contained a series of standards at fixed concentrations to ensure injection and chromatographic consistency. One aliquot was analyzed by using acidic positive-ion conditions, chromatographically optimized for aspartic acid, lactic acid, and glutamic acid.
for more hydrophilic compounds. In this method, the extract was gradient-eluted from a C18 column (UPLC BEH Amide 2.1 × 150 mm, 1.7 μm; Waters) using a gradient consisting of water and acetonitrile with 10 mM ammonium formate, pH 10.8. The MS analysis was alternated between MS and data-dependent MS² scans by using dynamic exclusion. The scan range varied slightly between methods but covered 70–1,000 m/z ratios. Raw data files are archived and extracted as described later.

Data extraction and compound identification. Raw data were extracted, peak-identified, and QC-processed by using Metabolon’s hardware and software. These systems are built on a Web-service platform utilizing Microsoft’s .NET technologies, which run on high-performance application servers and fiber-channel storage arrays in clusters to provide active failover and load-balancing. Compounds were identified by comparison with library entries of purified standards or recurrent unknown entities. Metabolon maintains a library based on authenticated standards that contains the retention time/ index (RI), m/z ratio, and chromatographic data (including MS/MS spectral data) on all molecules present in the library. Furthermore, biochemical identifications are based on three criteria: retention index within a narrow RI window of the proposed identification, accurate mass match to the library ±10 ppm, and the MS/MS forward and reverse scores between the experimental data and authentic standards. The MS/MS scores are based on a comparison of the ions present in the experimental spectrum to the ions present in the library spectrum.

Western blot analysis. Cells were infected as described earlier. At 7 h post infection, cells were lysed in 0.5% Triton-X buffer for 5 min on ice. The suspension was centrifuged for 5 min at 13,000 × g, and the supernatant was used for further analysis. Western blot analysis was performed as described previously (47). In-house produced rabbit anti-RV VP1-3 antibodies (48) and anti-GAPDH (Cell Signalling Technology) were used at a dilution of 1:1,000. Detection was performed with suitable peroxidase-conjugated secondary antibodies and the Pierce ECL Western blotting substrate (Thermo Fisher Scientific) on an LAS-4000 image analyzer (Fujifilm). Data analysis, quantification, and processing were performed with Fiji (ImageJ) image processing software.

1. Sanchez EL, Lagouff M (2015) Viral activation of cellular metabolism. Virology 479: 480–609. 618. 2. Delleradinski RJ, et al. (2007) Beyond aerobic glycolysis: Transformed cells can engage in glutamine metabolism that exceeds the requirement for protein and nucleotide synthesis. Proc Natl Acad Sci USA 104:19345–19350. 7. Wise DR, et al. (2008) Myc regulates a transcriptional program that stimulates mito-

2. Li M, et al. (2010) Long-term impact of respiratory viral infection after pediatric lung transplantation. Pediatr Transplant 14:431–436. 8. Papi A, et al. (2006) Infections and airway inflammation in chronic obstructive pul-

15. Liu M, et al. (2010) Cost burden of viral respiratory infections: Issues for formulary development. Am J Med 120:1392–1401. 16. Papi A, et al. (2006) Infections and airway inflammation in chronic obstructive pul-

18. Laur C, et al. (2008) Syk associates with clathrin and mediates phosphatidylinositol 3-

19. Newcomb DC, et al. (2008) Human rhinovirus 1B exposure induces phosphatidylino-

20. Bentley JK, et al. (2007) Rhinovirus activates interleukin-8 expression via a Src/ p110beta phosphatidylinositol 3-kinase/Akt pathway in human airway epithelial cells. J Virol 81:1186–1194. 21. Macintyre AN, et al. (2014) The glucose transporter Glut1 is selectively essential for

22. Blaas D, Fuchs R (2016) Mechanism of human rhinovirus infections. Mol Cell Pediatr 3: 21. 23. Lee EE, et al. (2015) A protein kinase C phosphorylation motif in GLUT1 affects glu-

24. Macintyre AN, et al. (2014) The glucose transporter Glut1 is selectively essential for

25. Smith JA (2014) A new paradigm: Innate immune sensing of viruses via the unfolded

26. Leung H, et al. (2012) Activation of the unfolded protein response by 2-deoxy-D- glucose inhibits Kaposi’s sarcoma-associated herpesvirus replication and gene ex-presison. Antimicrob Agents Chemother 56:5794–5803. 27. Guidaloni G, et al. (2016) The AMP analog AICAR modulates the Treg/T17 axis andードyl glucose in the Treg subset. J Immunol 192:999–1006. 28. O’Sullivan D, et al. (2016) Memory CD8+ T cells use cell-intrinsic lipolysis to support the metabolic programming necessary for development. Immunity 41:75–88. 29. Fossaceca R, et al. (2014) The human rhinovirus VP1-3 sequence is conserved among the various groups of human rhinoviruses. J Virol 81:1397–1406.
29. Bartlett NW, et al. (2008) Mouse models of rhinovirus-induced disease and exacerbation of allergic airway inflammation. Nat Med 14:199–204.

30. Chiaravalli M, et al. (2016) 2-deoxy-D-glucose ameliorates PKD progression. J Am Soc Nephrol 27:1958–1969.

31. Laszlo J, et al. (1961) The effect of 2-deoxy-D-glucose infusions on lipid and carbohydrate metabolism in man. J Clin Invest 40:171–176.

32. Singh D, et al. (2005) Optimizing cancer radiotherapy with 2-deoxy-D-glucose dose escalation studies in patients with glioblastoma multiforme. Strahlenther Onkol 181: 507–514.

33. Kovarik JJ, et al. (2017) Fasting metabolism modulates the interleukin-12/interleukin-10 cytokine axis. PLoS One 12:e0189000.

34. Vijayaraghavan R, et al. (2006) Acute toxicity and cardio-respiratory effects of 2-deoxy-D-glucose: A promising radio sensitizer. BioMed Environ Sci 19:96–103.

35. Munger J, Bajad SU, Coller HA, Shenk T, Rabinowitz JD (2006) Dynamics of the cellular metabolome during human cytomegalovirus infection. PLoS Pathog 2:e132.

36. Schrauf C, et al. (2009) The ssRNA genome of human rhinovirus induces a type I IFN response but fails to induce maturation in human monocyte-derived dendritic cells. J Immunol 183:4440–4448.

37. Neubauer C, Frasel L, Kuechler E, Blaas D (1987) Mechanism of entry of human rhinovirus 2 into HeLa cells. Virology 158:255–258.

38. Leitner J, Grabmeier-Pfistershammer K, Majdic O, Zlabinger G, Steinberger P (2011) Interaction of antithymocyte globulins with dendritic cell antigens. Am J Transplant 11:138–145.

39. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-ΔΔC(T)) method. Methods 25:402–408.