Sarcomas in patients over 90: Natural history and treatment-A nationwide study over 6 years
Clémence Basse, Antoine Italiano, Nicolas Penel, Olivier Mir, Claire Chemin, Maud Toulmonde, Florence Duffaud, Axel Le Cesne, Christine Chevreau, Carlos Maynou, et al.

To cite this version:
Clémence Basse, Antoine Italiano, Nicolas Penel, Olivier Mir, Claire Chemin, et al.. Sarcomas in patients over 90: Natural history and treatment-A nationwide study over 6 years. International Journal of Cancer, 2019, 145 (8), pp.2135-2143. 10.1002/ijc.32307. hal-02504786

HAL Id: hal-02504786
https://hal.science/hal-02504786
Submitted on 19 Sep 2023
Sarcomas in patients over 90: Natural history and treatment—A nationwide study over 6 years

Clémence Basse1, Antoine Italiano2, Nicolas Penel3, Olivier Mir4, Claire Chemin1, Maud Toulmonde2, Florence Duffaud5, Axel Le Cesne6, Christine Chevreau7, Carlos Maynou3, Philippe Anract8, François Gouin9, Maria Rios10, Nelly Firmin11, Jean-Emmanuel Kurtz12, Pierre Kerbrat13, Sophie Piperno-Neumann14, François Bertucci15, Philippe Rosset16, Nicolas Isambert17, Emmanuelle Bompas18, Pascale Dubray-Longeras19, Fabrice Fiorenza20, Christine Le Maignan21, Loïc Chaigneau22, Antoine Thyss23, Olivier Bouché24, Jean-Christophe Eymard25, Corinne Delcambre Lair25, Julien Adam2, Marie Karanian1, Céleste Lebbé25, Aurélien Dupré1, Pierre Meeus4, Mehdi Brahimi2, Armelle Dufresne1, Françoise Ducimetière4, Isabelle Ray-Coquard1 and Jean-Yves Blay1

1Centre Léon Bérard, University Claude Bernard Lyon I, Lyon, France
2Department of Medical Oncology, Institut Bergonié, Bordeaux, France
3Department of Medical Oncology, Centre Oscar Lambret, CHRU, Lille, France
4Department of Orthopedic and Traumatology Surgery, University Hospital, Lille, France
5Department of Medical Oncology, Timone University Hospital, Marseille, France
6Department of Oncology and Surgery, Gustave Roussy Cancer Campus, Paris, France
7Medical Oncology, University Institute of Cancerology, Toulouse, France
8Orthopaedic Department, Cochin University Hospital, Paris, France
9Department of Orthopedic Surgery, Nantes University Hospital, Nantes, France
10Department of Oncology, Institut de Cancérologie de Lorraine, Vandoeuvre-Lès-Nancy, France
11Department of Medicine, Val d’Aurelle Institute, Montpellier, France
12Medical Oncology & Orthopedic Department, Strasbourg University Hospital, Rennes, France
13Centre Eugène Marquis, Medical Oncology, Rennes, France
14Department of Medical Oncology, Institut Curie, Paris, France
15Département of Medical Oncology, Institut Paoli-Calmettes, Marseille, France
16Department of Orthopedic and Traumatology Surgery, Tours University Hospital, Tours, France
17Centre Georges-Francois Leclerc, Dijon, France
18Medical Oncology Department, René Gauducheau, Saint-Herblain, France
19Centre Jean Perrin, Clermont-Ferrand, France
20Department of Orthopedics Surgery and Traumatology, Limoges University Hospital, Limoges, France
21Department of Dermatology and INSERM Unité 976, Saint Louis University Hospital, Paris, France
22Department of Medical Oncology, Jean Minjoz University Hospital, Besançon, France
23Department of Medical Oncology, Centre Antoine Lacassagne, Nice, France
24Institut Jean Godinot & Reims University Hospital, Reims, France
25Department of Medicine, François-Baclesse Institute, Caen, France

Key words: sarcomas, registry, survival, relapse, progression, oncogeriatry, elderly patients, NETSARC

Abbreviations: LMS: leiomyosarcomas; MDT: multidisciplinary team; MFS: myxofibrosarcomas; PFS: progression-free survival; STS: soft tissue sarcomas; UPS: undifferentiated pleomorphic sarcomas

Conflict of interests: Dr JEK reports travel support and honoraria from Pharmamar, travel support and advisory board for Astra-Zeneca, travel support and advisory board for Tesaro, and advisory board for Clovis; Dr OM has acted as consultant for Amgen, Astra-Zeneca, Bayer, Bristol-Myers Squibb, Blueprint medicines, Eli-Lilly, Merck, Novartis, Pfzer, Roche, Janssen, Servier, and Vifor Pharma. All other co-authors report no competing interests or conflict of interests.

Grant sponsor: Agence Nationale de la Recherche (LabEx DevweCAN); Grant number: ANR-10-LABX-0061; Grant sponsor: Association DAM’s; Grant sponsor: Ensemble contre le GIST; Grant sponsor: European Union project; Grant number: EURACAN 739521; Grant sponsor: Fondation ARC pour la Recherche sur le Cancer; Grant sponsor: FP7 Health (EuroSARC); Grant number: FP7-278742; Grant sponsor: Infosarcome; Grant sponsor: Institut National Du Cancer (NetSARC, RREPS, InterSARC); Grant numbers: LYRICAN INCa_INSERM_DGOS_12563, LYric DGOS-INCa-4664; Grant sponsor: Ligue de l’Ain contre le Cancer
DOI: 10.1002/ijc.32307

This is an open access article under the terms of the Creative Commons Attribution-NonCommercial License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited and is not used for commercial purposes.

History: Received 19 Oct 2018; Accepted 11 Mar 2019; Online 28 Mar 2019.

Correspondence to: Jean-Yves Blay, Department of Medical Oncology, Centre Léon Bérard, 28 Rue Laennec, 69008 Lyon, France, Tel.: +04-78-78-27-57, E-mail: jean-yves.blay@lyon.unicancer.fr

Int. J. Cancer: 145, 2135–2143 (2019) © 2019 The Authors. International Journal of Cancer published by John Wiley & Sons Ltd on behalf of UICC
Soft tissue sarcomas (STS) are rare tumors accounting for less than 1% of human cancers. While the highest incidence of sarcomas is observed in elderly, this population is often excluded or poorly represented in clinical trials. Therefore, little is known about characteristics, treatment, and outcomes of STS in these patients. In this study, the authors analyzed numerous clinical characteristics of patients with sarcoma diagnosed at age 91 or older. They conclude that standard STS management and clinical practice guidelines should be followed for these patients if oncogeriatric status allows.

What’s new?
While the highest incidence of soft-tissue sarcoma (STS) is observed in the elderly, this population is often excluded or poorly represented in clinical trials. Therefore, little is known about the characteristics, treatment, and outcomes of STS in these patients. In this study, the authors analyzed numerous clinical characteristics of patients with sarcoma diagnosed at age 91 or older. They conclude that standard STS management and clinical practice guidelines should be followed for these patients if possible.

Introduction
Soft tissue sarcomas (STS) are rare tumors accounting for less than 1% of human cancers, with a yearly incidence close to 5.9/100,000. Death due to tumor is frequent in this group of diseases. While the highest incidence of sarcomas is observed in patients aged between 75 and 84 years with a rate of 16%, elderly patients are often excluded or very poorly represented in clinical trials. Therefore, little is known about characteristics, treatment and outcomes concerning patients aged over 65, in particular for those over 90 years with STS.

Sarcomas represent a heterogeneous group with over 80 different pathological subtypes. Sarcoma with “simple genomics” include those with specific translocations, well-differentiated liposarcomas with 12q amplicon and GIST with tyrosine kinase mutation accounting for 12–20% of cases each; those with “complex genomic” profiles (e.g., undifferentiated pleomorphic sarcomas [UPS], leiomyosarcomas [LMS] and myxofibrosarcomas [MFS]) account for 50% of all STS.

The objective of this work was to analyze the presentation and outcome of sarcoma patients over 90 years, a group of patients unreported in the literature, with the aim of providing data which could guide the management of the general elderly patient population with sarcomas.

Patients and Methods
NETSARC network
NETSARC is the French reference network for the management of soft tissue and visceral sarcomas, collecting clinical, centrally reviewed pathology, therapeutics and outcome of all sarcoma patients in 26 centers. The registry was approved in October 2009 by the INCa (Institut National du Cancer) and the competent authorities (CNIL) in 2010. These databases have been approved by the French Ethics Committee and Agency in charge of noninterventional trials: Comité consultatif sur le traitement de l’information en matière de recherche dans le domaine de la Santé (CCTIRS: number of approval 09.594) and Commission Nationale Informatique et Liberté (CNIL: number of approval 909,510). In the present work, we used information of patients registered from January 1, 2010, to December 2016. Mean follow-up of this series is 17 months. Patient’s data (gender, histology, grade, depth, size, localization, treatment, relapse and survival) were collected from the NETSARC database (https://netsarc.org).

Statistical analysis
Collected data were analyzed using IBM SPSS Statistics version 20 (IBM, Paris, France). Chi-square and Fisher exact tests were
Table 1. Patient characteristics

Age at diagnosis (years)	Diagnosis at ≤90 n (%)	Diagnosis at >90 n (%)	p
Age at diagnosis (years)	Median 62	92	
	Range 0–90	91–101	
Sex	NS		
Female	6,283 (49.4%)	62 (54.9%)	
Male	6,439 (50.6%)	51 (45.1%)	
Localization at diagnosis			<0.001¹
Trunk	6,706 (52.7%)	25 (22.1%)	
Limb	4,218 (33.2%)	67 (59.3%)	
Superior limb	1,092 (8.6%)	22 (19.5%)	
Inferior limb	3,126 (2.6%)	45 (3.8%)	
Head & neck	710 (5.5%)	18 (15.9%)	
Unknown	1,088 (8.6%)	3 (2.7%)	
Histology			<0.001¹
Complex genomics	8,431 (66.3%)	104 (92.0%)	
UPS	1,569 (12.3%)	40 (35.4%)	
LMS	2,762 (21.7%)	16 (14.2%)	
Myxofibrosarcoma	804 (6.3%)	14 (12.4%)	
Angiosarcoma	666 (5.2%)	12 (10.6%)	
DDLPS	1,506 (11.8%)	11 (9.7%)	
Undifferentiated sarcoma	768 (6.0%)	10 (8.8%)	
Rhabdomyosarcoma	98 (0.7%)	1 (0.9%)	
Fibrosarcoma	44 (0.3%)	0 (0%)	
Liposarcoma pleomorphic	174 (1.4%)	0 (0%)	
Osteosarcoma	40 (0%)	0 (0%)	
GIST	1,490 (11.7%)	6 (5.3%)	
Translocation sarcoma	2,801 (22.0%)	3 (2.7%)	
Ewing	769 (6.0%)	1 (0.9%)	
Myxoid LPS	484 (3.8%)	1 (0.9%)	
Synovial sarcoma	635 (5.0%)	1 (0.9%)	
ESS	273 (2.1%)	0 (0%)	
Epitheliod hemangioendothelioma	100 (0.9%)	0 (0%)	
EMC	89 (0.7%)	0 (0%)	
SFT	451 (3.5%)	0 (0%)	
Grade			NS¹
1	1,086 (8.5%)	6 (5.3%)	
2	3,133 (24.6%)	24 (2.2%)	
3	3,800 (29.9%)	39 (34.5%)	
Unknown	4,703 (36.9%)	44 (38.9%)	
Depth	<0.001¹		
Superficial	1,873 (14.7%)	45 (39.8%)	
Deep	8,636 (67.9%)	50 (44.2%)	
Superficial + deep	806 (6.3%)	13 (11.5%)	
Unknown	1,407 (11.1%)	5 (4.4%)	
Size	NS¹		
<50 mm	1,620 (12.7%)	18 (15.9%)	

(Continues)
performed to analyze the data sets of the different age groups. Survival was plotted according to the Kaplan–Meier method, compared to the log-rank test. Cox model was used for multivariate analysis of prognostic factors.

Results

Population

A total of 12,835 incident patients with sarcomas, with 113 (0.9%) patients aged >90 were registered in the national NETSARC sarcoma database between January 1, 2010, and December 31, 2016. Patients’ characteristics are described in Table 1. Sarcomas with complex genomics were overrepresented in patients over 90 when compared to patients under 90 (92.0% vs. 66.3%, \(p < 0.001 \)). Undifferentiated pleomorphic sarcoma (UPS), LMS and MFS were the most represented histological subtypes in patients over 90 (Table 1). Limb and head and neck sites, and superficial locations were overrepresented in patients over 90 (\(p \leq 0.001 \)). Males patients were overrepresented in patients aged >90 while representing close to 25% of French citizen aged >90.

(https://www.insee.fr/fr/statistiques/1892086?sommaire=1912926), male patients represented 45% of the patients in this age group. Patients >90 were also less frequently metastatic at initial diagnosis (\(p = 0.009 \)), even when considering only patients who had a CT scan (data not shown). Prior history of cancers and radiotherapy were no more frequent in patients aged over 90 vs. younger patients (Table 1). Genetic predisposition was observed in none of the 113 patients over 90 vs. 123 reported in the remaining population.

Patient management

The adherence to ESMO clinical practice guidelines (2,3) was then analyzed (Table 2). While biopsy rate was similar, patients aged over 90 had less frequently appropriate pretreatment imaging than patients under 90 (56.6% vs. 75.1%, \(p \leq 0.001 \)). This was true also when comparing patients aged >90 to the group of 60–80 or 80–90 (Table 3).

Surgery was less frequently performed in patients over 90 years (60.2% vs. 78.3%, \(p \leq 0.001 \); they also had less frequently neoadjuvant treatment. This did not result in significant differences in terms of resection margins at first or at second surgery (Table 2). Resection rates (Table 2) and final result of the surgical removal (Table 3) were also not significantly different when comparing only patients for whom the R criterion was documented.

Patients over 90 as compared to other age groups

Table 3 presents an analytic description of histologies, clinical presentations and management within different age subgroups. As expected, histological subtypes were extremely different across age groups, in particular across the extremes. It is interesting to note that differences were also observed in the three elder groups, on histologies, depth, grade and metastasis. As compared to the 80–90 years group, histotypes, depth, metastasis at diagnosis and gender of patient with sarcoma aged >90 were different (Table 3). Regarding patient management, compliance to CPGs was the lowest in patients aged >90, together with the final quality of surgery (lowest R0 rate, highest R2 rate), with fewer patients operated in reference centers. Overall a significant trend

Table 1. Patient characteristics (Continued)

Patient characteristics	Age at diagnosis	Diagnosis at ≤90 n (%)	Diagnosis at >90 n (%)	\(p \)
	\(n = 12,722 \) (99.4%)	\(n = 113 \) (0.6%)		
≥50 mm	3,924 (30.8%)	29 (25.7%)		
Unknown	7,178 (56.4%)	66 (58.4%)		NS²
Previous history of radiotherapy				
No	12,388 (97.7%)	110 (97.3%)		
Yes	294 (2.3%)	3 (2.7%)		
Previous history of cancer				NS²
No	8,563 (67.3%)	68 (60.2%)		
Yes	1,741 (13.7%)	20 (17.7%)		
Unknown	2,418 (19.0%)	25 (22.1%)		
Known genetic predisposition				NS²
No	10,181 (80.0%)	88 (77.9%)		
Yes	123 (1.0%)	0 (0%)		
Unknown	2,418 (19.0%)	25 (2.1%)		
Metastatic at diagnosis				0.009¹
Yes	1,865 (14.7%)	6 (5.3%)		
No	9,664 (76.0%)	89 (78.8%)		
Unknown	1,193 (9.4%)	18 (15.9%)		

Italics refer to molecular subtypes of sarcomas.

¹Chi² test.
of decrease of compliance to guidelines, management in reference centers and final quality of surgery over age groups was observed, from the children and adolescent/young adults to the older age group (Table 3).

Relapse and survival
Local progression-free survival (PFS), metastatic PFS and PFS were not significantly different in the two populations (Figs 1a–1c). Relapse-free survival of patients aged over 90 vs. those aged 90 or under was also similar when the analysis was conducted only with operated patients (Fig. 1d). No difference was observed either for local relapse-free survival or for metastatic relapse-free survival for operated patients (data not shown). As expected, overall survival was worse in patients >90 (Fig. 1e). Importantly, the overall survival of patients who were not operated was significantly worse in patients aged over 90 vs. younger patients (9.9 vs. 27.1 months, p < 0.001) with no patient alive at 3 years in the older group vs. 40% in the younger one (Fig. 1f). Using Cox model, with grade, size, depth, site, gender, presentation to a multidisciplinary team (MDT) prior to treatment and surgery in expert centers12 and age >90 as tested variables, age >90 was not identified as an independent prognostic factor for either relapse-free survival or PFS (data not shown).

Discussion
This analysis of a 6-year nationwide registry of incident sarcoma patients includes over 12,000 patients with 113 (0.9%) patients aged >90. It identifies for the first time-specific pathological and clinical characteristics of sarcomas diagnosed in patients over 90: these are almost exclusively sarcomas with complex genomics, more frequently superficial tumors, from limb sites or head and neck sites. Despite an obvious difference in life duration, sarcoma patients aged over 90 do not have a higher frequency of previous radiotherapy, previous cancers, and none genetic predisposing condition. Patients aged over 90 are also less frequently metastatic at initial presentation than the younger sarcoma patient population and relative to the sex ratio at this age in the French population, more frequently males. These clinicopathological and clinical specificities of sarcomas occurring at an older age are unexpected and had not been previously recognized to our knowledge. It is interesting to observe that these characteristics are not equally shared by the groups aged 60–80 or 80–90, but quite characteristic of this age group. Sarcomas occurring in higher age may result in more from accumulation of external oncogenic events over the lifetime; limb and head and neck sites may suggest exposure to the sun as risk factors to be tested. It is particularly notable that less than 3% of sarcoma in this population was translocation-related sarcomas.

Less adequate management is offered to patients with STS over 90, in particular regarding pretreatment imaging and surgery. Of note, oncogeriatric assessment13 is not part of the NETSARC data set, and it is likely that coexisting conditions have largely contributed to these differences with younger patients. However, when patients over 90 are treated with surgery according to clinical practice guidelines (within NETSARC, the ESMO guidelines are used as reference),2,3 relapse-free survival and PFS remain similar to that of the younger population in univariate and also multivariate analysis where classical prognostic factors are introduced.2,3,5 This points to the need not to undertreat patients, including those aged over 90, and to adopt the classical CPGs for sarcoma management in patients at all age when oncogeriatric status allows. As expected, the overall survival of sarcoma patients aged over 90 is shorter than that of younger patients. Median overall survival is 25 months in this population of patients over 90 (whose median age is 92), an outcome which...
Table 3. Sarcoma patient characteristics and management across age groups

Age	Age at diagnosis (% of the age groups within the series)					
	0–17	18–30	31–60	61–79	80–90	>90
	n=367	n=772	n=4,451	n=5,789	n=1,343	n=113
	(2.9%)	(6.0%)	(34.7%)	(45.1%)	(10.5%)	(0.6%)
Histology						
Complex genomics						
UPS	2 (0.5%)	23 (2.9%)	427 (9.6%)	774 (13.4%)	273 (20.3%)	40 (35.4%)
LMS	7 (1.9%)	44 (5.7%)	1,038 (23.3%)	1,359 (23.5%)	314 (23.4%)	16 (14.2%)
Myxofibrosarcoma	2 (0.5%)	8 (1.0%)	214 (4.8%)	445 (7.7%)	135 (10.1%)	14 (12.4%)
Angiosarcoma	8 (2.2%)	35 (4.5%)	194 (4.4%)	324 (5.6%)	105 (7.8%)	12 (10.6%)
DDLPS	0 (0%)	10 (1.3%)	412 (9.3%)	892 (15.4%)	192 (14.3%)	11 (9.7%)
Undifferentiated sarcoma	11 (2.9%)	40 (5.2%)	245 (13.2%)	369 (6.4%)	103 (7.7%)	10 (8.8%)
Pleomorphic RMS	0 (0.0%)	6 (0.8%)	23 (0.7%)	32 (0.5%)	6 (0.4%)	1 (0.9%)
GIST	2 (0.5%)	20 (2.6%)	496 (11.1%)	859 (14.8%)	113 (8.4%)	6 (5.3%)
Translocation sarcoma						
Ewing	85 (23.2%)	94 (12.2%)	93 (2.1%)	34 (0.5%)	5 (0.4%)	1 (0.9%)
Myxoid LPS	7 (1.9%)	61 (7.9%)	307 (6.8%)	99 (1.7%)	10 (0.7%)	1 (0.9%)
Synovial sarcoma	39 (10.6%)	144 (18.6%)	322 (7.2%)	114 (1.9%)	16 (1.2%)	1 (0.9%)
Other/not specified	203 (55.3%)	287 (37.2%)	1,080 (24.2%)	488 (8.4%)	71 (5.3%)	0 (0%)
Gender						
Female	153 (41.7%)	362 (46.9%)	2,355 (52.9%)	2,759 (47.7%)	654 (48.7%)	62 (54.9%)
Male	214 (58.3%)	410 (51.3%)	2,096 (47.1%)	3,030 (52.3%)	689 (51.3%)	51 (45.1%)
Grade						
1	9 (2.5%)	68 (8.8%)	513 (11.5%)	418 (7.2%)	78 (5.8%)	6 (5.3%)
2	28 (7.6%)	130 (16.8%)	1,081 (24.3%)	1,541 (26.6%)	353 (26.3%)	24 (21.2%)
3	136 (37.1%)	195 (25.3%)	1,219 (27.4%)	1,735 (30.0%)	515 (38.3%)	39 (34.5%)
UNK/NA	194 (52.8%)	379 (49.1%)	1,638 (36.8%)	2,095 (36.2%)	397 (29.6)	44 (38.9%)
Depth						
Deep	176 (47.9%)	488 (63.2%)	3,523 (79.2%)	4,361 (75.3%)	894 (66.5%)	63 (55.7%)
Superficial	15 (4.1%)	70 (9.1%)	543 (12.2%)	896 (15.5%)	349 (26.0%)	45 (39.8%)
Unknown	176 (48.0%)	214 (27.7%)	385 (8.6%)	532 (9.2%)	240 (17.8%)	5 (4.4%)
Size in mm (median)	69.1	72.7	70.2	75.5	69.7	8.0
Metastatic at diagnosis						
Yes	96 (26.1%)	155 (20.1%)	658 (14.7%)	831 (14.3%)	146 (10.8%)	6 (5.3%)
No	233 (63.5%)	557 (72.2%)	3,406 (76.5%)	4,430 (76.5%)	1,038 (77.3%)	89 (78.8%)
Unknown	38 (10.4%)	60 (7.8%)	387 (8.7%)	528 (9.1%)	159 (11.8%)	18 (15.9%)

(Continues)
Age at diagnosis (% of the age groups within the series)						
Age	0–17	18–30	31–60	61–79	80–90	>90
n = 367 (2.9%)	299 (81.5%)	555 (71.9%)	763 (62.1%)	3,690 (63.7%)	906 (87.5%)	72 (63.7%)
n = 772 (6.0%)	162 (21.0%)	1,365 (30.7%)	1,644 (28.4%)	346 (25.8%)	32 (28.3%)	
n = 4,451 (34.7%)	330 (0.0%)	55 (7.1%)	323 (7.3%)	455 (7.9%)	91 (6.8%)	9 (8.0%)
n = 5,789 (45.1%)	8 (2.2%)	29 (3.8%)	199 (4.5%)	326 (5.8%)	128 (9.5%)	14 (12.4%)
n = 1,343 (10.5%)	48 (13.1%)	104 (13.5%)	846 (19.0%)	1,172 (20.2%)	300 (22.3%)	35 (31.0%)
p value¹						
Biopsy before	Yes	No	Unknown			
Yes	311 (84.7%)	639 (82.8%)	3,406 (76.5%)	4,281 (74.0%)	915 (68.1%)	64 (66.6%)
No	8 (2.2%)	29 (3.8%)	199 (4.5%)	326 (5.8%)	128 (9.5%)	14 (12.4%)
Unknown	48 (13.1%)	104 (13.5%)	846 (19.0%)	1,172 (20.2%)	300 (22.3%)	35 (31.0%)
Imaging < surgery	Yes	No	Unknown			
Yes	982 (25.3%)	1,809 (23.5%)	7,007 (15.3%)	6,839 (11.7%)	1,775 (13.2%)	148 (12.9%)
No	25 (6.8%)	139 (18.0%)	981 (22.0%)	1,308 (22.6%)	277 (20.6%)	31 (27.4%)
Unknown	48 (13.1%)	104 (13.5%)	846 (19.0%)	1,172 (20.2%)	300 (22.3%)	35 (31.0%)
Total	260 (70.8%)	551 (71.4%)	3,160 (71.0%)	4,156 (71.8%)	1,030 (76.7%)	79 (69.9%)
Surgery in NETSARC	Yes	No/No surgery/UNK				
Yes	146 (39.8%)	291 (37.7%)	1,529 (34.4%)	1,849 (31.9%)	351 (26.1%)	16 (14.2%)
No/No surgery/UNK	221 (60.2%)	481 (62.3%)	2,922 (65.6%)	3,940 (68.1%)	992 (73.9%)	97 (85.8%)
Excision margins of last surgery	R0	R1	R2	Other/Unknown		
R0	122 (33.2%)	307 (39.8%)	1,799 (40.4%)	2,229 (38.5%)	392 (29.2%)	29 (25.7%)
R1	47 (12.5%)	105 (13.6%)	721 (16.2%)	997 (17.2%)	254 (18.9%)	18 (15.9%)
R2	9 (2.5%)	42 (5.4%)	197 (4.4%)	235 (4.1%)	58 (4.3%)	7 (6.2%)
Other/Unknown	189 (51.5%)	318 (41.2%)	1,734 (38.9%)	2,328 (40.2%)	639 (47.6%)	59 (52.2%)

Bold indicates significant p value (p < 0.05).

¹Chi² test.
Figure 1. Progression, relapse and survival in sarcoma patients aged over or under 90. (a) Local progression-free survival of patients aged over 90 (green) and younger (blue). (b) Metastatic progression-free survival of patients aged over 90 (green) and younger (blue). (c) Progression-free survival of patients aged over 90 (green) and younger (blue). (d) Relapse-free survival of operated patients aged over 90 (green) and younger (blue). (e) Overall survival of patients aged over 90 (green) and younger (blue). (f) Overall survival of nonoperated patients aged over 90 (green) and younger (blue). [Color figure can be viewed at wileyonlinelibrary.com]
must be compared to the 50 months life expectancy for the general French population at the age of 90.14 To the best of our knowledge, this is the first series reporting on the different biology and natural history of patients with sarcomas occurring at a very high age. Sarcoma occurring after 90 has a specific biology and natural history, but not intrinsically a worse cancer-specific prognosis. If fit according to geriatric assessment, this patient population, should be treated according to the general CPGs for sarcomas. It is reasonable to infer a similar statement for younger geriatric sarcoma patients.

Acknowledgements
The authors would like to thank the teams and leaders of the French National Cancer Institute (INCa) for the continuous support to the project.

References
1. Ducimetiere F, Lurkin A, Ranchere-Vincke D, et al. Incidence of sarcoma histotypes and molecular subtypes in a prospective epidemiological study with central pathology review and molecular testing. \textit{PLoS One} 2011;6:e20294.
2. ESMO/European Sarcoma Network Working Group. Soft tissue and visceral sarcomas: ESMO clinical practice guidelines for diagnosis, treatment and follow-up. \textit{Ann Oncol} 2014;25(Suppl 3): iii102–12.
3. ESMO/European Sarcoma Network Working Group. Gastrointestinal stromal tumours: ESMO clinical practice guidelines for diagnosis, treatment and follow-up. \textit{Ann Oncol} 2014;25 (Suppl 3):iii21–6.
4. von Mehren M, Randall RL, Benjamin RS, et al. Soft tissue sarcoma, version 2.2016, NCCN clinical practice guidelines in oncology. \textit{J Natl Compr Canc Netw} 2016;14:758–86.
5. Blay JY, Soibinet P, Penel N, et al. Improved survival using specialized multidisciplinary board in sarcoma patients. \textit{Ann Oncol} 2017;28:2852–9.
6. Hutchins LF, Unger JM, Crowley JJ, et al. Under-representation of patients 65 years of age or older in cancer-treatment trials. \textit{N Engl J Med} 1999;341: 2061–7.
7. Garbay D, Maki RG, Blay JY, et al. Advanced soft-tissue sarcoma in elderly patients: patterns of care and survival. \textit{Ann Oncol} 2013;24:1924–30.
8. Fletcher CDM, Bridge JA, Hogendoorn PCW, et al. \textit{Pathology and genetics of tumours of soft tissue and bone}. Lyon: World Health Organization, IARC Press, 2013.
9. Chibon F, Lagarde P, Salas S, et al. Validated prediction of clinical outcome in sarcomas and multiple types of cancer on the basis of a gene expression signature related to genome complexity. \textit{Nat Med} 2010;16:781–7.
10. Gibault L, Perot G, Chibon F, et al. New insights in sarcoma oncogenesis: a comprehensive analysis of a large series of 160 soft tissue sarcomas with complex genomics. \textit{J Pathol} 2011;223:64–71.
11. Taylor BS, Barretina J, Maki RG, et al. Advances in sarcoma genomics and new therapeutic targets. \textit{Nat Rev Cancer} 2011;11:541–57.
12. Blay J, Stocekle E, Italiano A, et al. Improved overall and progression free survival after surgery in expert sites for sarcoma patients: a nationwide study of FSG-GETO/NETSARC. \textit{Ann Oncol} 2017; 28:v521–38.
13. Owusu C, Berger NA. Comprehensive geriatric assessment in the older cancer patient: coming of age in clinical cancer care. \textit{Clin Pract (London, England)} 2014;11:749–62.
14. Mesle F. \textit{Espérance de vie et mortalité aux âges élevés}, vol. 2. Paris: La Documentation Française: Retraite et Société, 2005. 89–113.