Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website.

Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.
RNAi-mediated siRNA sequences to combat the COVID-19 pandemic with the inhibition of SARS-CoV2

Khandakar A.S.M. Saadat*

Department of Medical Biology, Faculty of Medicine, Gaziantep University, Gaziantep 27310, Turkey
Department of Medical Biology and Genetics, Institute of Health Sciences, Gaziantep University, Gaziantep 27310, Turkey

ARTICLE INFO

Keywords:
SARS-CoV2
RNAi
siRNA
Antiviral
Therapeutics
Drug design

ABSTRACT

The outbreak of the COVID-19 pandemic has cost five million lives to date, and was caused by a positive-sense RNA virus named SARS-CoV2. The lack of drugs specific to SARS-CoV2, leads us to search for an effective and specific therapeutic approach. Small interfering RNA (siRNA) is able to activate the RNA interference (RNAi) pathway to silence the specific targeted gene and inhibit the viral replication, and it has not yet attracted enough attention as a SARS-CoV2 antiviral agent. It could be a potential weapon to combat this pandemic until the completion of full scale, effective mass vaccination. For this study, specific siRNAs were designed using a web-based bioinformatics tool (siDirect2.0) against 14 target sequences. These might have a high probability of silencing the essential proteins of SARS-CoV2, such as: 3CLpro/Mpro/nsp5, nsp7, Rd-Rp/nsp12, ZD, NTPase/HEL or nsp13, PLpro/nsp3, envelope protein (E), spike glycoprotein (S), nucleocapsid phosphoprotein (N), membrane glycoprotein (M), ORF8, ORF3a, nsp2, and its respective 5′ and 3′-UTR. Among these potential drug targets, the majority of them contain highly conserved sequences; the rest are chosen on the basis of their role in viral replication and survival. The traditional vaccine development technology using SARS-CoV2 protein takes 6–8 months; meanwhile the virus undergoes several mutations in the candidate protein chosen for vaccine development. By the time the protein-based vaccine reaches the market, the virus would have undergone several mutations, such that the antibodies against the viral sequence may not be effective in restricting the newly mutated viruses. However, siRNA technology can make sequences based on real time viral mutation status. This has the potential for suppressing SARS-CoV2 viral replication, through RNAi technology.

1. Introduction

In December 2019, the World Health Organization (WHO) announced a new type of virus called Severe Acute Respiratory Syndrome Coronavirus 2 or briefly, SARS-CoV2. SARS-CoV2 gives rise to violent damage to the world as a pandemic (called COVID-19 disease) affecting more than 222 countries and territories (Worldometer) with 253,982,410 confirmed cases, including 5,114,571 fatalities (WHO) until November 2021. The world is in great need of effective measures to prevent or treat this pandemic. Many different types of therapeutic agents of other targets (antiviral, anti-malarial, anti-cancer, etc.) have been tested to determine their potential effectiveness against SARS-CoV2, but their efficacy has not yet been confirmed (Ghosh et al., 2020). Likewise, drugs used against SARS-CoV and MERS-CoV were initially found to be ineffective against SARS-CoV2 (Naqvi et al., 2020). The tendency of potential adaptive mutations of the SARS-CoV2 genome possibly made it extremely pathogenic, causing problems in the development of drugs and vaccines (Xu et al., 2020). The challenges for the treatment require a novel dimension, especially when we are in need of an effective antiviral agent.

RNAi is a specific post-transcriptional gene-silencing mechanism that can be activated via siRNA (Saadat, 2013) and has the potential to block pathogenic viral replication and further infection in animal cells (Ge et al., 2003). siRNA-silencing technology was used to restrict HCV, HIV (Wilson et al., 2003), SARS and MERS viral replication (Li et al., 2005; Wu et al., 2005; Yi et al., 2005).

Abbreviations: SARS, severe acute respiratory syndrome; MERS, Middle East Respiratory Syndrome; SARS-CoV2, severe acute respiratory syndrome coronavirus 2; COVID-19, Coronavirus Disease of 2019; RNAi, RNA interference; siRNA, small interfering RNA; ORF, open reading frame; PLpro, papain like proteases; Mpro, main proteases; 3CLpro, 3-chymotrypsin like proteases; Rd-Rp, RNA dependent-RNA polymerases; nsp, non-structural protein; UTR, untranslated region.

* Department of Medical Biology, Faculty of Medicine, Gaziantep University, Gaziantep 27310, Turkey.

E-mail addresses: shameemsaadat@gantep.edu.tr, saadatbd@gmail.com.

https://doi.org/10.1016/j.genrep.2022.101512
Received 14 November 2021; Accepted 11 January 2022
Available online 15 January 2022

2452-0144/© 2022 Elsevier Inc. All rights reserved.
 Genetic variance analyses of the complete genome in 48,635 SARS-CoV2 samples, comparing it with the reference genome (Wuhan genome) NC_045512.2, revealed a fair average of 7.23 mutations per sample (Mercatelli and Giorgi, 2020). Genetic variances of SARS-CoV2 even within the same country are an obstacle to finding a universally applicable therapeutic agent (Biswas and Mudi, 2020; Toyoshima et al., 2020). This reason leads us to think about specific siRNA-based universal therapeutics by focusing on conserved and various potential targets in SARS-CoV2 genome reference sequences. This effort may pave the way for precision/personalized medicine to treat individuals

Table 1
List of siRNAs with the specifications of nsp2 gene.

Target gene	Target position	Target sequence 21 nt target + 2 nt overhang	RNA oligo sequences 21 nt guide (5′ → 3′)	Seed duplex stability (Tm)	Guide Passenger
nsp2 (NC_045512.2:806-2719)	285-307	TCTCTAAAATCTCAATATACAA	UUGAUAAGUCAUUUUGUGGAA	8.7 °C	−4.3 °C
	541-563	CCCCAAAAATGCTGTGTTAAAAAT	UUAAACACGACUACUGUGG	7.2 °C	4.2 °C
	812-834	TGGAATATCCCTTTAAAAGGAA	UCUUUUGGAGUUAUCAA	10.3 °C	4.6 °C
	1397-1419	GGGAAATGTGATAATTCTTA	GAAAUUGUUAACUAAACUCUC	1.8 °C	5.3 °C
	1567-1589	TTGGAATTAGTGAAAACCTTG	GAAAUUGUUAACUAAACUCUC	5.3 °C	−4.3 °C

Table 2
List of siRNAs with the specifications of nsp3 gene.

Target gene	Target position	Target sequence 21 nt target + 2 nt overhang	RNA oligo sequences 21 nt guide (5′ → 3′)	Seed duplex stability (Tm)	Guide Passenger
PLpro/nsp3 (NC_045512.2:2720-8554)	1732-1754	TTGAAAGTTTCGTAGTTTACACC	UUGAUAAGUCAUUUUGUGGAA	6.9 °C	10.3 °C
	88-110	AGAATGTTGATAAGGACTTTAAATGA	GAAACUCUGUUUUGUAAACCC	6.6 °C	8.7 °C
	609-631	GACTATTGACTGTAAGTATTTTTA	AAAACUUAUUCAUAAACUGU	4.6 °C	8.9 °C
	652-674	GAAATGTTACATATTTAAAAATGG	AUIUUAACAUAAUACAUAAUGUGG	−9.1 °C	6.7 °C
	727-749	GCCTATGTTTTACCTTTAAAAATGG	AUIUUAACAUAAUACAUAAUGUGG	7.2 °C	5.3 °C
	945-967	TGCTATGAAATTTTAAATACG	UGUAUAACUAUUUAUAAACG	2.1 °C	8.9 °C
	1172-1194	AGGAATTTAGGCTTTTTAAACTA	UUUAACACUAAUUGUAAACCC	−8.0 °C	4.9 °C
	1579-1601	GTGCTTTAAAAGTTGAGAAAAAGTG	ACUUAACUCUAAUUUUGAC	4.9 °C	−3.8 °C
	1590-1612	GTGAAAATGCTGCTTACATTTC	AUIUUAACACUAAUACAUAAUGUGG	7.2 °C	4.9 °C
	1747-1765	TTCAAATCATACGTTAACAT	UUUAACACUAAUACAUAAUGUGG	6.9 °C	6.3 °C
	1813-1835	TACTTTTACACAGTAAACAC	UGUAUAACUGUGAAGUAAACG	8.2 °C	7.2 °C
	1997-2019	CAGGTATAATGTGTATCTACT	UUUAACACUAAUUGUAAACCC	6.9 °C	8.5 °C
	2136-2158	AGGTATATAAAGAATGTATATTACA	UUUAACACUAAUUGUAAACG	1.1 °C	8.9 °C
	2138-2160	GTGATAAAGTGTATATTACT	UUUAACACUAAUUGUAAACG	1.1 °C	−4.3 °C
	2387-2409	AAGTAAACATTTTTATGTATTTTA	AUCUUAACACUAAUUGUAAACG	6.9 °C	8.2 °C
	2490-2512	AGCATTTAATCACTAAAGATG	UUUAACUGUGAAGUAAACG	4.9 °C	−10.3 °C
	2522-2544	CACAAGTTAATGTTTACCTCT	AUCUUAACACUAAUUGUAAACG	4.9 °C	4.9 °C
	2531-2553	ATGGTTACTTTCTTTAAAGT	UUUAACACUAAUUGUAAACG	−7.5 °C	8.2 °C
	2868-2890	TTCTTATGAACATTTAAGAG	UUUAACACUAAUUGUAAACG	7.1 °C	8.9 °C
	2913-2935	TGTTAACAGTCTAAATATAC	UUUAACACUAAUUGUAAACG	5.3 °C	7.2 °C
	3047-3069	GTCAACTAAACATATAACCTCT	AAGUUAACACUAAUUGUAAACG	6.3 °C	6.3 °C
	3056-3078	AACATATACTTTAAGAGAC	AAGUUAACACUAAUUGUAAACG	7.1 °C	1.1 °C
	3172-3194	ACCATAAAACCGATTACCTTATA	AUAAGUUAACUGUGAAGUAAACG	6.6 °C	−0.3 °C

(continued on next page)
infected with SARS-CoV2.

Genome SARS-CoV2 contains 14 Open Reading Frames (ORFs), and 27 proteins (A. Wu et al., 2020). ORF1a, as well as ORF1b, is translated as a single large poly-protein. The ORF1a contains two viral proteases; papain-like proteases or PLpro (non-structural protein 3 or nsp3), and main proteases or Mpro also designated as 3-chymotrypsin-like proteases or 3CLpro (non-structural protein 5 or nsp5). Recent clinical trials of multiple antiviral agents have targeted the proteases (Ghosh et al., 2020). The ORF1b contains viral RNA-dependent RNA polymerase (RdRp), which is non-structural protein 12 or nsp12. The site identified, downstream to the Rd-Rp is coding for the viral helicase (non-structural protein 13 or nsp13) (Ghosh et al., 2020). Both ORF1a and ORF1b include highly preserved sequences among the annotated genomes of SARS-CoV2 and earlier beta coronaviruses like SARS and MERS (F. Wu et al., 2020).

2. Materials and methods

2.1. Sequence retrieval & manual extraction

The reference genome of the SARS-CoV2 [NC_045512.2] was achieved from the database available at the National Center for Biotechnology Information (NCBI) (NCBI (accessed 18 February 2021)) and we manually extracted the sequences for 3CLpro/Mpro or non-structural protein 5/nsp5 [NC_045512.2:10055-10972], PLpro or non-structural protein 3/nsp3.

Target gene	Target position	Target sequence 21 nt target + 2 nt overhang	RNA oligo sequences 21 nt guide (5’ → 3’)	21 nt passenger (5’ → 3’)	Seed duplex stability (Tm)
3224-3246	ACCTAAGTTGACAAATTATAT	AAUAAUGGUCCAAUAGGU	-1.8 °C	9.8 °C	
		CCAAGUUGGCAACUAUUAA			
3524-3546	AGTGAACATGCAAATCAATATAAA	UAUAGUGUUGCAAUUGUCAUU			
		GUAACAAAGGCAACUAUAAA			
3782-3804	CAGGAAAATATAGTTAAAATT	UUUUUAACAUUAUAIUGUG			
		GAAAUAAGUGUUAACGAAA			
3847-3869	GACATAATCTAGTCTATTATTAA	AAUAGUAGACIAUAUUGAU			
		CUAUAUAAUGGCUAUAUUCU			
88-110	GCCATTTCATCAAAGTGTTGA	ACAUAUUGGUAACUGUGUAU			
4041-4063	ACTACTAAATATAGCTTATTTTC	AAAUAAGGCAUAUAUAGUA			
		CUAUAUAAUGGCUAUAUUCU			
4051-4073	AGCTGATTATTCCTATTATTTT	AAUAAUGGUCCAAUAGGU	-1.8 °C	9.8 °C	
		CCAAGUUGGCAACUAUUAA			
4052-4074	TGCTATTTCATTTATTGTT	AAUUGUAAAGGAAGAACUGCA			
		GCCUAUUAAGUUAACUUA			
4053-4075	GCCATTTCATTTCTATTATGC	AAUAAUGUAGAGAAAGAAGC			
		CUAUAUAAUGGCUAUAUUCU			
4073-4093	TGCTAAAATGTTATCTTACTT	AAUAAGGCAUAUAUAGUA			
		CUAUAUAAUGGCUAUAUUCU			
4098-4120	AAGTACAAATTTGAAATTTTAGAAG	AAUAAUGGUCCAAUAGGU	-1.8 °C	9.8 °C	
		CUAUAUAAUGGCUAUAUUCU			
4220-4242	AACTGATAAATATTATAATTTG	AAUAAUGGUCCAAUAGGU	-1.8 °C	9.8 °C	
		CUAUAUAAUGGCUAUAUUCU			
4296-4318	AGGTTGTTTAAATGGTAAATTAG	AAAUAAGGCAUAUAUAGUA			
		CUAUAUAAUGGCUAUAUUCU			
4452-4474	TCTTATGAAATCATACAATATTA	AAUAAUGGUCCAAUAGGU	-1.8 °C	9.8 °C	
		CUAUAUAAUGGCUAUAUUCU			
4452-4474	TGTGTTGTTGCAATATCTTCTT	AAAUAAGGCAUAUAUAGUA			
		CUAUAUAAUGGCUAUAUUCU			
4600-4622	AGCTATTTTGCAGATCATATTAT	AAAUAAGGCAUAUAUAGUA			
		CUAUAUAAUGGCUAUAUUCU			
4610-4632	CAGTACATTATTTAAGTATCTT	AAAUAAGGCAUAUAUAGUA			
		CUAUAUAAUGGCUAUAUUCU			
4972-4994	CAGTTTAAAGGACCATAAATTC	AAAUAAGGCAUAUAUAGUA			
		CUAUAUAAUGGCUAUAUUCU			
5000-5022	CCTCATTGGTATTACACCTAGACA	AAAUAAGGCAUAUAUAGUA			
		CUAUAUAAUGGCUAUAUUCU			
5100-5122	TCTCATTGTTGATCTTACGACA	AAAUAAGGCAUAUAUAGUA			
		CUAUAUAAUGGCUAUAUUCU			
5153-5175	TGCTTATATATGTATGTATT	AAAUAAGGCAUAUAUAGUA			
		CUAUAUAAUGGCUAUAUUCU			
5154-5176	GCTCTAAATGTTATGATTGGTTTG	AAAUAAGGCAUAUAUAGUA			
		CUAUAUAAUGGCUAUAUUCU			
5168-5190	TAGTGTGTTGTATGGTTAACAAA	AAAUAAGGCAUAUAUAGUA			
		CUAUAUAAUGGCUAUAUUCU			
List of siRNAs with the specifications of nsp5, nsp7 and nsp12 genes.

Target gene	Target position	Target sequence	RNA oligo sequences	Seed duplex stability (Tm)
3CLpr/Mpro/nsp5 (NC_045512.2:10055-10972)	151–173	AACCTAATTATGAGATTATCTTACT	UAAACCUUCUAAUUAAGGGGUU	5.3 °C 10.9 °C
	153–175	CCGTATTTGAGCTGATTTACTCA	AGUAAAUUCGUUCAAAUGGGGU	10.0 °C −5.0 °C
	444–466	TGTGGTTTAACTAGATTATGACT	UCUAAUCAUGUAAAAGAAAACCA	8.0 °C 0.0 °C
	526–548	GACTTAGAAGGTAACTTTTAGG	UUAAGAAGCUUUCAAAUGGUUC	4.9 °C 11.7 °C
	538–560	AACTTTTGGACCTTTTGGTA	AAACAGGGUCAAUAAUG	10.3 °C −1.4 °C
	594–616	AACTTTTGGACCTTTTGGTA	AAACAGGGUCAAUAAUG	5.3 °C 8.5 °C
	795–817	TGGTTTCATTTAAGATTACTG	UCUAUCUAAAGUAAUGAAGGC	10.0 °C 8.9 °C
nsp7 (NC_045512.2:11843-12091)	62–84	GAGTAGAATCTCATCATTAATTG	AUUUAAGAGUAIUUCUAAUC	6.9 °C 16.0 °C
	65–87	TAGAATCATCATCTAAATTG	GUAAGAUCACUAAUUAAGGG	−1.4 °C 16.2 °C
RdRp/nsp12 (NC_045512.2:13442-16236)	133–155	TTGCTAATTCCTAAAAAATCT	UAGUUAUAGGUAUAAUGGAA	3.2 °C −4.3 °C
	134–156	TTGCAATATCTAAAAAAACTT	UGAUUAUAGGUAUAAUGGAA	4.9 °C 2.1 °C
	297–319	GACTCTTTTATGTTAGATAAG	UUAUCAUAAGAUAAGAAAGG	6.9 °C 7.1 °C
	407–429	AGGTAAATTCGACATACATTAAG	UUAUUAUGUCACAUAUACU	6.9 °C 6.9 °C
	417–439	GACACCTAAAAGGAATACTTGT	AUAUAUAUAAUGGUAUGG	4.6 °C 6.9 °C
	457–479	ATGATGATTATTTCAAAAAGU	UUUUAUUGAAAUAAUCAUC	−1.4 °C 8.7 °C
	704–726	TTCTTATATTCTATCTAGTG	AUUAACUAAGUAAUAAGAA	7.2 °C −8.0 °C
	792–814	TACATTAGTGGATTGTGTAAC	CIUAUCUAAAAUAUUAUGG	5.3 °C 4.6 °C
	1573–1595	ATGACCTTTTGCAGATACAAAAAAGC	UGGAUUGICACAAUCUAAGG	8.2 °C 10.3 °C
	1711–1733	TTCACTAAAAAATATTCTAAAACTA	CAUAACUAUAAUAUAUAGG	7.4 °C 7.4 °C
	1800–1822	AGTTAAAAAGTTTTATAGTAG	UAAACUAUCAUGUAAUAUGG	−2.3 °C −9.1 °C
	2606–2088	TGCACTATTGTTCGTATGTTT	AAGUUAUAAACAAUCUAAGG	7.2 °C 6.3 °C
	2103–2125	GCCAATGTattaGTGACTTTTATTC	CIUAACUAUAAUAUAUAUGG	10.3 °C 6.9 °C
	2126–2158	AACAATAGTTTGGGATAGATGATTG	AAACUAUAGGCAUAAUGG	6.3 °C −3.3 °C
	2236–2258	AGCAATATTGGTGAATACATTC	AAACUAUAGGCAUAAUGG	6.9 °C −1.8 °C
	2237–2259	GCCGATATTGCCATAGACCTT	AAACUAUAGGCAUAAUGG	5.3 °C −1.8 °C
	2340–2362	ACCATTTAATCAGTCTTCTTTATTA	AAACUAACUAAGGCAUAAUGG	7.1 °C 4.9 °C
	2362–2384	ATCCAAACACATGTGTATTTATACTC	AAACUAACUAAGGCAUAAUGG	−1.4 °C 5.6 °C

2.2. siRNA design principles

Ui-Tei, K., and colleagues prescribed the characteristics of the hugely functional siRNAs, named “Ui-Tei rule”. The siRNA chosen according to the Ui-Tei rule persuades the subsequent four ambiances concurrently: (a) A/U at region 1 from the 5′-UTR, (b) G/U at region 2, (c) G/U at region 3, (d) the absence of long GC stretches ≥10 (Ui-Tei et al., 2004).

2.3. siRNA design web-based tool

The web-based siRNA design siDirect2.0 Tool (siDirect version 2.0 (accessed 18 February 2021)) has been used. It is used to design functional and target-specific siRNAs, which was proposed by Naito, Y., and
colleagues (Naito et al., 2009). The siRNAs are satisfactory according to Table 4.

2.5. Off-target effect-reduced siRNA sequence selection

Selected and sequence-specific siRNAs were designed with the web-based siRNA design siDirect2.0 Tool (siDirect version 2.0 (accessed 18 February 2021)) according to the Ui-Tei rule.

2.6. Near-perfect matched off-target gene elimination

In order to exclude the near-perfect matched non-target genes, the siDirect 2.0 homology search option was used, as its accuracy level has been found to the best of all available homology search engines. Both (guide and other passenger) strands of candidate functional siRNAs that have at minimum two inconsistencies to any other non-targeted transcripts were chosen (Naito and Ui-Tei, 2012).

3. Results

In this study siRNA-based specific sequences were designed for therapeutic purposes of SARS-CoV2 with siDirect2.0 (siDirect version 2.0 (accessed 18 February 2021)) by following all the above-mentioned procedures. They are listed in Tables 1–6 with the title of specific genes and also their location in the genome is mentioned in brackets.

4. Discussion

Due to the advancement of modern technologies, it could be possible to produce a vaccine in a shorter time but the acquisition of knowledge related to its effect on the human body may take a much longer time; maybe years or decades.

The question still remains unanswered- how can we combat the waves of COVID-19 disease during the vaccine trial period, as an effective drug does not exist?

Thus, antiviral drugs specific to SARS-CoV2 can be designed and developed by targeting conserved enzymes such as: 3C-like protease or main protease (3CLpro/Mpro or non-structural protein 5/5p5), non-structural protein 7/np7, RNA dependent RNA polymerase shortly Rd-Rp or non-structural protein 12/np12, papain-like protease (PLpro or non-structural protein 3/nsp3), and non-structural protein 13/nsp13 (also known as ZD, NTPase/HEL) (Zumla et al., 2016; Naqvi et al., 2020). These drug targets were confirmed by executing sequence analysis of potential drug target proteins in SARS-CoV2 beside viruses called SARS-CoV and MERS. Also, it was observed that the envelope protein (E), spike glycoprotein (S), nucleocapsid phosphoprotein (N), and membrane glycoprotein (M) are considered as potential drug/vaccine targets (Naqvi et al., 2020). By comparing the pathways in inflammation, and cytokine responses during SARS-CoV, MERS-CoV, and SARS-CoV2 infections, it was revealed that DNA synthesis is triggered by ORF8, while necrotic cell death is triggered by ORF3a. And also nsp2 is related to its effect on the human body may take a much longer time; maybe years or decades.

RNA interference (RNAi) is a widely applied approach by which small interfering RNA (siRNA) also known as silencing RNA, silence a gene.
temperatures ≥10°C (Ui-Tei et al., 2004). To avoid the seed-dependent off-target effects, choosing siRNAs with a low melting temperature (Tm) of the seed-target duplex can minimize the seed-dependent off-target silencing. The melting temperature (Tm) of 21.5°C may serve as the benchmark (Naito and Ui-Tei, 2012) but the seed duplex selected here was nearly Tm < 10°C. The siRNAs that have near-perfect matches to any other non-targeted transcripts were excluded by comparing both their strands, having at minimum two mismatches to any other non-targeted transcripts (Naito and Ui-Tei, 2012). siDirect2.0 (siDirect version 2.0 (accessed 18 February 2021)) provides a functional, target-specific siRNA design web-based tool according to the procedures mentioned above (Naito et al., 2009). siDirect 2.0 would be a more suitable and sensitive homology search engine for short sequences, in comparison to other search engines (Naito and Ui-Tei, 2012).

5. Conclusion

In conclusion, it can be said that our designed RNAi sequences specific for SARS-CoV2 would be a potential weapon against COVID-19 disease all over the world. Nebulization or suspension in the systemic circulation by using a liposome-based delivery system might be an alternative treatment for COVID-19 disease all over the world. Further experimental validation and related trials are needed to confirm these findings.

Table 5

Target Gene	Target position	Target sequence 21 nt target + 2 nt overhang	RNA oligo sequences 21 nt guide (5’ → 3’)	Seed duplex stability (Tm)
Spike glycoprotein (S) (NC_045512.2:21563-25384)	167-189	TACCTTCTTTTCTTTCAATGGTTCTTAC	UACAUUGAAGGAAGAAUGUA	12.1°C, 10.3°C
222-244	TGGTACTAAGAGTTTGAATACC	UAAUAACCAAUGUAGGUCG	8.9°C, 11.3°C	
310-332	TGATTTTTTGGTACTAATTGAAG	UAAAAGCAGGACTAAACCA	9.8°C, −3.3°C	
365-387	AGCTCTAATTTCTTTATTTAA	UAAUAACAACUAUGAGCU	6.9°C, 11.3°C	
366-388	CGCTCTAATTTCTTTAATAAG	UUAAUAACCAAUAGUACGA	1.4°C, 6.3°C	
369-391	TACTAATGTGGTATATTTAG	ACUUAUAACAAACUAUGUA	−4.3°C, 6.9°C	
390-412	CTGTAATTTTCTTTTATTTAAG	UUACAAUAAGCAUUACAGG	7.2°C, 7.4°C	
413-435	ATCTAATTGGGTTGATTAC	AAUAUAACCCAAAAGUAACGA	6.9°C, −3.3°C	
414-436	TCTATTTTGTTGTTATTACTAC	CAAUAUAACCAAACAAUCGG	−0.3°C, −3.3°C	
486-508	TGGAAATTTTCTTTTATTTAAG	UUACAAUAAGCAUUACAGG	10.3°C, 1.8°C	
540-562	AGGAAAAAACGGAATTTTCAAAAA	UUGGAAACUAACGUGUUCUC	7.4°C, 10.3°C	
548-570	AGGTTAATTTTCAAAAATTTTAG	GAAACAAAAAGGAAGAAUCC	5.3°C, −0.3°C	
568-590	AGGAAAAATTTTATTTTAGAAAT	UUACCAUAACAAACUUCC	7.1°C, 7.4°C	
569-591	GGAAATTTTGTGGTATTAAG	CAUAUAACCAAACAAUCGG	6.9°C, 5.3°C	
583-605	AGGAATTTATGTGGTTATTTAAG	GAUAUAACCAAACAAUCGG	−0.3°C, −1.8°C	
726-748	TGCTTTACATAGAAGTTTTG	AAAUAACCUAAUACAGCA	4.6°C, 6.9°C	
824-846	TTCTATTTAAATATAATGAAAT	CUUACACAGGAAGAAGUUG	8.9°C, 7.5°C	
934-956	ATCTATCAACTCTACTTTTAC	GAUAUAACCAAGUAGGAAG	9.8°C, 8.9°C	
977-999	TGTTATAGTTTCTTATTTAC	UUACAAUAAGCAUUACAAC	−8.0°C, 6.9°C	
986-1008	TTCTATATTAACAAAATTTG	CAUCACACACAAUGUGG	10.3°C, −2.7°C	
1245-1267	TGGAAAGTATTGTTATATTAC	UUUAUAACCAAACUGCUUCA	3.5°C, 5.3°C	
1254-1276	MGCTATTATATTATTAATTAC	AAUUAUAACAUAAUCAGC	−8.0°C, 8.7°C	
1577-1599	GACCTAAAAAGCTCATATTTG	AAUAUAACAGAUUUAAACGC	6.3°C, −3.8°C	
1578-1600	ACCAAAAAGCTAATTTTTTC	CUAUAACAGAUCUUAUUAGG	4.6°C, −3.8°C	
1587-1609	GTCTAATTTTCTTTAATAAG	UUUAUAACCAAACAGUACG	0.0°C, 6.3°C	
2143-2165	CCAACAAATTCTTTATTG	CAAUAUAACCAAACAAUUG	2.8°C, 5.3°C	
2271-2293	CAGTTTTTGTTGCAAAATTTAAC	CAAUAUAACCAAACAAUUG	−1.4°C, 5.6°C	
2902-2924	TCCATTFTTGGCAATTTCAAG	UUUAUAACCAAACAAUUG	7.4°C, −3.3°C	
Table 6
List of siRNAs with the specifications of membrane glycoprotein (M), ORF3a, ORF8, 3'-UTR and 5'-UTR genes.

Target gene	Target position	Target sequence	RNA oligos sequences	Seed duplex stability (Tm)
Membrane glycoprotein (M)	136-158	TGTATATAATTAGTTAATTTT	AAUAAUCAUAUAUAUAUACAA	4.6 °C – 5.9 °C
	203-225	CTGCTTGTACAGAGGTTTAT	GUAUAUAAUAUAUAUAUU	–10.3 °C – 11.8 °C
	206-228	CTGTTTACAGAATATTTAGGATC	CUCUUAAUAUAUAUAACAGG	11.3 °C – 11.8 °C
ORF3a (NC_045512.2:25933-26220)	402-424	TCCAAAAACCCATTTTCTTGAATG	UAAUGAUUGGUUUGUUUGAAGGA	4.9 °C – 5.6 °C
	403-425	TCCAAAAACCCATTTTCTTGAATG	CAAAACACCAUAUAUAUGA	6.6 °C – 12.6 °C
ORF8 (NC_045512.2:27894-28259)	1-23	ATGAAATTTCTGGTTTTTAGGATC	GAAAUAAUAUAUAUAUAUGAGGA	5.5 °C – 0.4 °C
	243-265	TTCTTGTTACCTTTCTTATTTTTAATG	AUUGUAAAUAUAUAUAUGGAGGA	7.2 °C – 11.8 °C
	246-266	TCTCCTTTACTTCTTTCTAATTTTTAATG	CAUUGUAAAUAUAUAUAAGGA	6.9 °C – 14.7 °C
	307-329	TGCTTCTTACAGAAGCTTGTAGGATC	UAAAAGUCUICUAUAAGAAGGA	3.2 °C – 13.4 °C
3’-UTR (NC_045512.2:29675-29903)	126-148	GCCCTAATGTGTTAAATATTGTTTTTATG	AAUUGUAUGUAUAUAUAUAUUGAAA	–10.3 °C – 13.5 °C
	127-149	CCAATATTGTTAAATATTGTTTTTATG	AAUUGUAUGUAUAUAUAUAUUGAAA	–4.3 °C – 7.2 °C
	132-154	ATGTTGTTAATATTTTATTTTATG	ACUAAUAUAUAUAUAUAACAU	–11.3 °C – 5.6 °C
	192-214	ATGGACAAAAAAAAAAAAAAA	GUGGUAAUAUAUAUAUAUAUGAGG	–11.3 °C – 11.3 °C
	194-216	GCACAAAAAAAACCAUUUUUAAA	UUUUUUUUUUUUUUUUACAU	–11.3 °C – 11.3 °C
5’-UTR (NC_045512.2:1-265)	123-145	GCAGATATATATATTACATTAATT	UUGAUAUAUAUAUAUAUAACUGG	6.3 °C – 6.3 °C
	125-147	GCAGATATATATATTACATTAATT	UUGAUAUAUAUAUAUAUAACUGG	4.6 °C – 8.0 °C

Funding
This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Declaration of competing interest
The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

References
NCBI, 2021. National Center for Biotechnology Information. accessed 18 February. https://www.ncbi.nlm.nih.gov/nucleotide?term=1978174245.
siDirect version 2.0, 2021. siDirect version 2.0 highly effective, target-specific siRNA online design site. accessed 18 February. http://sidirect2.mai.jp.
Biswas, S.K., Mudi, S.R., 2020. Genetic variation in SARS-CoV-2 may explain variable severity of COVID-19. J. Med. Hypn. https://doi.org/10.1016/j.mehy.2020.109877.
Ermakova, I.K., Zaslavskaya, N.D., Agapov, I.L., 2020. siDirect 2.0 updated software for designing functional siRNA with reduced seed-dependent off-target effect. BMC Biotechnol. 10, 1-8. PMID: 30750711.
Ketting, R.F., 2011. The many faces of RNAi. J. Dev. Cell 20, 148-161. doi:10.1016/j.jdevcell.2011.01.015.
Wu, F., Zhao, S., Yu, B., Chen, Y.-M., Wang, W., Song, Z.-G., Hu, Y., Tao, Z.-W., Tian, J.-H., Pei, Y.-Y., 2020b. A new coronavirus associated with human respiratory disease in China. Nature 579, 265–269. https://doi.org/10.1038/s41586-020-2008-3.

Xu, J., Zhao, S., Teng, T., Abdalla, A.E., Zhu, W., Xie, L., Wang, Y., Guo, X., 2020. Systematic comparison of two animal-to-human transmitted human coronaviruses: SARS-CoV-2 and SARS-CoV. Viruses 12, 244. https://doi.org/10.3390/v12020244.

Yi, S., De Hua, Y., Xiong, J., Jie, J., Huang, B., Jin, Y.X., 2005. Inhibition of genes expression of SARS coronavirus by synthetic small interfering RNAs. Cell Res. 15, 193–200. https://doi.org/10.1038/sj.cr.7290286.

Zumla, A., Chau, J.F., Azhar, E.I., Hui, D.S., Yuen, K.-Y., 2016. Coronaviruses—drug discovery and therapeutic options. Nat. Rev. Drug Discov. 15, 327–347. https://doi.org/10.1038/nrd.2015.37.