Multicoloured Ramsey numbers
of the path of length four

Henry Liu∗ Bojan Mohar† Yongtang Shi‡
14 August 2021

Abstract
Let \(P_t \) denote the path on \(t \) vertices. The \(r \)-coloured Ramsey number of \(P_t \), denoted by \(R_r(P_t) \), is the minimum integer \(n \) such that whenever the complete graph on \(n \) vertices is given an \(r \)-edge-colouring, there exists a monochromatic copy of \(P_t \). In this note, we determine \(R_r(P_5) \), which is approximately \(3r \).

AMS Subject Classification (2020): 05B05; 05C15; 05C55; 05D10

Keywords: Ramsey number; Turán function; covering design; packing design; balanced incomplete block design

1 Introduction
All graphs in this paper are finite, undirected, and have no multiple edges or loops. For any undefined terms in graph theory, we refer to the book by Bollobás [3].

Let \(K_t, P_t \) and \(C_t \) denote the complete graph (or clique), path and cycle on \(t \) vertices. For graphs \(G \) and \(H \), we denote the graph which is the disjoint union of a copy of \(G \) and a copy of \(H \) by \(G \cup H \), and the graph with a disjoint copies of \(G \) by \(aG \). The graph union of \(G \) and \(H \) is \(G \cup H = (V(G) \cup V(H), E(G) \cup E(H)) \).

An \(r \)-edge-colouring of a graph \(G \), or \(r \)-colouring for simplicity, is a function \(f: E(G) \to \{1, \ldots, r\} \). The members of the set \(\{1, \ldots, r\} \) can be thought of as a set of \(r \) colours. The sets \(f^{-1}(i) \) for \(1 \leq i \leq r \) are the colour classes of the \(r \)-colouring \(f \).

Given graphs \(H_1, \ldots, H_r \), the \(r \)-coloured Ramsey number \(R(H_1, \ldots, H_r) \) is the minimum integer \(n \) such that, whenever we have an \(r \)-edge-colouring of \(K_n \), there exists a monochromatic copy of \(H_i \), for some \(i \). When \(H_1 = \cdots = H_r = H \), we write \(R_r(H) \) for \(R(H, \ldots, H) \). Ramsey’s classical result [13] states that all Ramsey numbers \(R(H_1, \ldots, H_r) \) exist. When all the \(H_i \) are cliques, determining the Ramsey numbers exactly is a notoriously challenging problem, and only a few values of \(R(K_s, K_t) \), as well as \(R(K_3, K_3, K_3) \), are known. Another

∗School of Mathematics, Sun Yat-sen University, Guangzhou 510275, China. Email: liaozhx5@mail.sysu.edu.cn (corresponding author)
†Department of Mathematics, Simon Fraser University, Burnaby, BC, V5A 1S6, Canada. On leave from IMFM, Department of Mathematics, University of Ljubljana, 1000 Ljubljana, Slovenia. Email: mohar@sfu.ca
‡Center for Combinatorics and LPMC, Nankai University, Tianjin 300071, China. Email: shi@nankai.edu.cn
well studied case is when all the H_i are cycles, and in this case, the values of $R(C_s, C_t)$ are completely determined, while there are many interesting results and open questions for $R(C_q, C_s, C_t)$. For more information about Ramsey numbers, we refer the reader to the survey paper of Radziszowski [12].

For the case when the H_i are paths, Gerencsér and Gyárfás [6] proved that $R(P_s, P_t) = t + \lfloor \frac{s}{2} \rfloor - 1$ for $t \geq s \geq 2$. For three colours, Faudree and Schelp [4] conjectured that $R(P_t, P_s, P_1) = 2t - 2 + (t \mod 2)$ for all t. This conjecture has been verified for all sufficiently large t by Gyárfás et al. [7]. There are many known exact values for $R(P_q, P_s, P_1)$ when q and s are small. For more colours, since it is well known that the edge-chromatic number of K_n is $n - 1 + (n \mod 2)$, we have $R_r(P_3) = r + 1 + (r \mod 2)$. For P_4, we have

$$R_r(P_4) = \begin{cases}
2r + 1 & \text{if } r \equiv 0, 2 \pmod{3}, r \neq 3, \\
2r + 2 & \text{if } r \equiv 1 \pmod{3}, \\
6 & \text{if } r = 3.
\end{cases}$$

The cases $r \equiv 1, 2 \pmod{3}$ were proved by Irving [9], and he also remarked that $R_3(P_4) = 6$. The case $r \equiv 0 \pmod{3}$ with r not a power of 3 was proved by Lindström [11]. The case where r is a power of 3 was proved by Bierbrauer [2].

Here, we shall determine the Ramsey numbers $R_r(P_5)$ exactly, as follows.

Theorem 1. Let $r \geq 1$. Then

$$R_r(P_5) = \begin{cases}
3r + 1 & \text{if } r \equiv 0 \pmod{4}, r \neq 4, \\
3r + 2 & \text{if } r \equiv 1 \pmod{4}, \\
3r & \text{if } r \equiv 2, 3 \pmod{4}, \\
11 & \text{if } r = 4.
\end{cases}$$

We shall proceed as follows. In Section 2, we gather various results from Ramsey theory, Turán theory, and design theory. In Section 3, we prove Theorem 1.

2 Tools

We first observe that for $r \geq 2$ and $t \geq 4$, we have

$$R_{r-1}(P_t) < R_r(P_t). \quad (1)$$

Indeed, both terms in (1) exist. Let $R = R_{r-1}(P_t)$. Then, there exists an $(r - 1)$-colouring of K_{R-1} which does not contain a monochromatic copy of P_t. By adding new vertex u to form K_R and colouring all edges incident to u with a new colour, we get an r-colouring of K_R with no monochromatic copy of P_t (since $t \geq 4$). Hence, $R_r(P_t) > R = R_{r-1}(P_t)$.

Next, we recall that for a graph H and $n \in \mathbb{N}$, the Turán function for H, denoted by $ex(n, H)$, is the maximum possible number of edges in a H-free graph (i.e., not containing a copy of H as a subgraph) on n vertices. Any H-free graph on n vertices and attaining $ex(n, H)$ edges is said to be extremal. For any path P_t, the Turán function $ex(n, P_t)$, as well as the corresponding extremal graphs, were completely determined by Faudree and Schelp [4]. In order to attain $ex(n, P_t)$, we can take the graph on n vertices containing as many disjoint K_{t-1} cliques as possible, i.e., $\lceil \frac{n}{t-1} \rceil$ cliques, and a smaller clique on the remaining vertices. For odd t, this graph is the unique extremal graph, and for even $t \geq 4$ and certain values of n, there are other extremal graphs. Their result for P_5 is the following.
Theorem 2. [4] Let \(n = 4a + b \), where \(a \geq 0 \) and \(0 \leq b \leq 3 \). We have
\[
ex(n, P_5) = 6a + \frac{b(b-1)}{2}.
\]
Moreover, the unique extremal graph is \(aK_4 \cup K_b \).

Now, we recall some notions and results from design theory. Let \(v \geq k \geq t \) and \(\lambda \) be positive integers. Let \(V \) be a set of \(v \) points, and \(B \) be a family of \(k \)-element subsets of \(V \), called blocks. The pair \((V, B)\) is a Steiner system \(S(t, k, v) \) if any \(t \) points of \(V \) are contained in exactly one block of \(B \). If “exactly one” is replaced by “at least one” and “at most one”, then \((V, B)\) is a \((t, k, v)\)-covering design and a \((t, k, v)\)-packing design, respectively. A \((t, k, v)\)-covering design (resp. \((t, k, v)\)-packing design) \((V, B)\) is optimal if \(|B|\) attains the minimum (resp. maximum) possible value. The pair \((V, B)\) is a balanced incomplete block design, or BIBD, if any two points of \(V \) are contained in exactly \(\lambda \) blocks. Thus, a Steiner system \(S(2, k, v) \) is precisely a BIBD with \(\lambda = 1 \), and we denote such a design by \(B(k, v) \).

It is well-known that a necessary condition for the existence of a \(B(k, v) \) is \(v \equiv 1 \) or \(k \equiv 1 \) (mod \(k(k-1) \)). For a \((2, k, v)\)-packing design \((V, B)\), the leave graph \(L \) is the graph with vertex set \(V(L) = V \), and edge set \(E(L) = \{xy : x, y \in V \text{ and } \{x, y\} \not\subset B \text{ for every } B \in B\} \).

For any of the above designs, a parallel class is a set of blocks of \(B \) that form a partition of \(V \). If \(B \) can be partitioned into parallel classes, then the design is resolvable. Clearly for a design to be resolvable, we must necessarily have \(v \equiv 0 \) (mod \(k \)).

Here, we are interested in designs with \(k = 4 \), \(t = 2 \) and \(\lambda = 1 \). We refer the interested reader to a survey by Reid and Rosa [14] for more information about these designs. For BIBDs, we have the following result from Hanani et al. [8].

Theorem 3. [8] For every \(v \equiv 4 \) (mod \(12 \)), there exists a resolvable BIBD \(B(4, v) \). The number of parallel classes is \(\frac{v-1}{3} \).

For \((2, 4, v)\)-covering designs, by combining results of Lamken et al. [10], and Abel et al. [11], we have the following result.

Theorem 4. [10] For \(v \equiv 0, 8 \) (mod \(12 \)) with \(v \neq 12 \), there exists an optimal \((2, 4, v)\)-covering design which is resolvable, except possibly for \(v \in \{108, 116, 132, 156, 204, 212\} \). The number of parallel classes is
\[
\begin{cases}
\frac{v}{3} & \text{if } v \equiv 0 \text{ (mod } 12)\text{,} \\
\frac{v+1}{3} & \text{if } v \equiv 8 \text{ (mod } 12)\text{.}
\end{cases}
\]

For \((2, 4, v)\)-packing designs, the following result was proved by Ge et al. [5]. Several cases of the result were proved by various authors. See [5] for the references therein.

Theorem 5. [5]

(a) For \(v \equiv 0 \) (mod \(12 \)) with \(v \neq 12 \), there exists an optimal \((2, 4, v)\)-packing design which is resolvable. The number of parallel classes is \(\frac{v^2}{3} \), and the leave graph is \(L = \frac{v}{3}K_3 \).

(b) For \(v \equiv 8 \) (mod \(12 \)) with \(v \neq 8, 20 \), there exists an optimal \((2, 4, v)\)-packing design which is resolvable, except possibly for \(v \in \{68, 92, 104, 140, 164, 188, 200, 236, 260, 284, 356, 368, 404, 428, 476, 500, 668, 692\} \). The number of parallel classes is \(\frac{v^2}{3} \), and the leave graph is \(L = \frac{v}{2}K_2 \).
3 Ramsey numbers of the path of length four

In this section, we prove Theorem 1. First, we prove the required upper bound for $R_r(P_5)$, when $r \neq 4$.

Lemma 6. For $r \geq 1$, we have

$$R_r(P_5) \leq \begin{cases}
3r + 1 & \text{if } r \equiv 0 \pmod{4}, \\
3r + 2 & \text{if } r \equiv 1 \pmod{4}, \\
3r & \text{if } r \equiv 2, 3 \pmod{4}.
\end{cases}$$

Proof. Let $n = 4a + b$, where $a \geq 0$ and $0 \leq b \leq 3$. By Theorem 2, we have $\text{ex}(n, P_5) = 6a + \frac{1}{2}b(b - 1) = \frac{3}{2}n + \frac{1}{2}b^2 - 2b$, and the unique extremal graph is $aK_4 \cup K_b$. Now suppose that we have an r-colouring of K_n. Then the most frequent colour, say red, has at least $\lceil \frac{n}{r} \right \rangle$ edges. If $r \equiv 0 \pmod{4}$ and $n = 3r + 1$, or $r \equiv 1 \pmod{4}$ and $n = 3r + 2$, then $b = 1$, so that $\text{ex}(n, P_5) = \frac{3}{2}n - \frac{3}{2}$. We have

$$\left\lfloor \frac{n}{r} \right\rfloor \geq \frac{3}{2}n > \text{ex}(n, P_5) + 1.$$

If $r \equiv 2 \pmod{4}$ and $n = 3r$, then $b = 2$, so that $\text{ex}(n, P_5) = \frac{3}{2}n - 2$. We have

$$\left\lfloor \frac{n}{r} \right\rfloor = \left\lfloor \frac{3(n - 1)}{2} \right\rfloor = \frac{3(n - 1) + 1}{2} = \text{ex}(n, P_5) + 1.$$

In all three cases, we have a red P_5.

If $r \equiv 3 \pmod{4}$ and $n = 3r$, then $b = 1$. We have

$$\left\lfloor \frac{n}{r} \right\rfloor = \frac{3(n - 1)}{2} = \text{ex}(n, P_5).$$

Suppose that there is no monochromatic copy of P_5. Then, every colour class has exactly $\left\lfloor \frac{n}{r} \right\rfloor = \text{ex}(n, P_5)$ edges, and moreover, must induce the unique extremal graph $aK_4 \cup K_1$. Let u be the vertex of K_n which corresponds to K_1 in the red $aK_4 \cup K_1$. Then for every other colour, the number of edges incident to u is three or zero, so that there are at most $3(r - 1)$ edges at u. This contradicts that u has degree $3r - 1$ in K_n. \qed

Next, we prove the matching lower bound for $R_r(P_5)$, when $r \neq 4$.

Lemma 7. For $r \geq 1$ with $r \neq 4$, we have

$$R_r(P_5) \geq \begin{cases}
3r + 1 & \text{if } r \equiv 0 \pmod{4}, \\
3r + 2 & \text{if } r \equiv 1 \pmod{4}, \\
3r & \text{if } r \equiv 2, 3 \pmod{4}.
\end{cases}$$

Proof. We first note that the case $r \equiv 2 \pmod{4}$ follows from the case $r \equiv 1 \pmod{4}$, since by \cite{1}, we have $R_r(P_5) \geq R_{r-1}(P_5) + 1 \geq 3(r - 1) + 2 + 1 = 3r$ for $r \equiv 2 \pmod{4}$.

Now, define

$$g(r) = \begin{cases}
3r \equiv 0 \pmod{12} & \text{if } r \equiv 0 \pmod{4}, r \neq 4, \\
3r + 1 \equiv 4 \pmod{12} & \text{if } r \equiv 1 \pmod{4}, \\
3r - 1 \equiv 8 \pmod{12} & \text{if } r \equiv 3 \pmod{4}.
\end{cases}$$

4
For \(r \equiv 1 (\text{mod} \ 4) \), by Theorem 3 there exists a resolvable BIBD \(B(4, g(r)) \). For \(r \equiv 0, 3 \) (mod 4), by Theorem 4 there exists an optimal \((2, 4, g(r)) \)-covering design which is resolvable, except for \(g(r) \in \{108, 116, 132, 156, 204, 212\} \). In each case, we obtain an \(r \)-colouring of \(K_{g(r)} \), where an edge \(xy \) is given colour \(i \) if \(x \) and \(y \) are contained in a block in the \(i \)th parallel class. The number of parallel classes is

\[
\begin{cases}
\frac{3r}{3} = r & \text{if } r \equiv 0 \text{ (mod 4)}, r \neq 4, \\
\frac{(3r + 1) - 1}{3} = r & \text{if } r \equiv 1 \text{ (mod 4)}, \\
\frac{(3r - 1) + 1}{3} = r & \text{if } r \equiv 3 \text{ (mod 4)}.
\end{cases}
\]

We have an \(r \)-colouring of \(K_{g(r)} \) which does not contain a monochromatic component with more than four vertices, and thus does not contain a monochromatic copy of \(P_5 \).

Now let \(r \equiv 0 \) (mod 4) and \(g(r) = 3r \in \{108, 132, 156, 204\} \). By Theorem 5(a), there exists an optimal \((2, 4, 3) \)-packing design which is resolvable. The number of parallel classes is \(\frac{3r - 3}{3} = r - 1 \), and the leave graph is \(L = rK_3 \). Similarly, for \(r \equiv 3 \) (mod 4) and \(g(r) = 3r - 1 \in \{116, 212\} \), by Theorem 5(b), there exists an optimal \((2, 4, g(r)) \)-packing design which is resolvable. Note that 116 and 212 are not in the list of 18 exceptional values in Theorem 5(b). The number of parallel classes is \(\frac{(3r - 1) - 2}{3} = r - 1 \), and the leave graph is \(L = \frac{3r - 2}{2}K_2 \). In both cases, we obtain an \(r \)-colouring of \(K_{g(r)} \), where an edge \(xy \) is given colour \(i \) if \(x \) and \(y \) are contained in a block in the \(i \)th parallel class, for \(1 \leq i \leq r - 1 \); and colour \(r \) if \(xy \in E(L) \). Then, all monochromatic components in this \(r \)-colouring are \(K_4 \), \(K_3 \) or \(K_2 \), so there is no monochromatic copy of \(P_5 \).

This means that for every \(r \neq 4 \), we have \(R_r(P_5) \geq g(r) + 1 \). \(\square \)

To complete the proof of Theorem 4 it remains to compute \(R_4(P_5) \).

Lemma 8. \(R_4(P_5) = 11 \).

Proof. We first obtain the lower bound \(R_4(P_5) \geq 11 \). Let \(x_1, x_2, y_1, \ldots, y_4, z_1, \ldots, z_4 \) be 10 vertices, and \(G_1, \ldots, G_4 \) to be the graphs consisting of disjoint cliques on the following sets.

\[
\begin{align*}
G_1: & \ \{x_1, x_2\}, \ \{y_1, \ldots, y_4\}, \ \{z_1, \ldots, z_4\}, \\
G_2: & \ \{x_1, y_1, y_2, z_3\}, \ \{x_2, z_1, z_2, y_3\}, \ \{y_4, z_4\}, \\
G_3: & \ \{x_1, z_1, z_2, y_4\}, \ \{x_2, y_1, y_2, z_4\}, \ \{z_3, z_3\}, \\
G_4: & \ \{x_1, y_3, z_4\}, \ \{x_2, y_4, z_3\}, \ \{y_1, y_2, z_1, z_2\}.
\end{align*}
\]

It is easy to verify that \(G_1 \cup G_2 \cup G_3 \cup G_4 = K_{10} \). We obtain a 4-colouring of \(K_{10} \) where an edge \(xy \) is given colour \(i \) if \(i \) satisfies \(xy \in E(G_i) \). This 4-colouring does not contain a monochromatic copy of \(P_5 \), and hence \(R_4(P_5) \geq 11 \).

Now we prove the matching upper bound \(R_4(P_5) \leq 11 \). Let \(K_4^- \) denote the graph obtained by deleting an edge from \(K_4 \).

Claim 9. If \(G \) is a \(P_5 \)-free graph with 11 vertices and 14 edges, then \(G = K_4 \cup K_4 \cup P_3 \) or \(G = K_4 \cup K_4^- \cup K_3 \).

Proof. Let \(F \) be a component of \(G \) with \(s \) vertices. Since \(G \) is \(P_5 \)-free, if \(F \) contains a cycle, then the longest cycle of \(F \) has length 3 or 4. If the former, then \(F \) is a \(C_3 \) with possibly some
pendent edges attached to one vertex, and \(e(F) = s \). If the latter, then \(F = C_4, K^-_4 \) or \(K_4 \), and \(e(F) = s, s+1 \) or \(s+2 \) respectively. Otherwise, \(F \) is a \(P_5 \)-free tree, and \(e(F) = s-1 \). Since \(|V(G)| = 11 \), at most two components of \(G \) can be \(K^-_4 \) or \(K_4 \). Also, since \(e(G) = |V(G)| + 3 \), this means that exactly two components are either both \(K_4 \), or one is \(K^-_4 \) and the other is \(K_4 \). We can then easily see that \(G = K_4 \cup K^-_4 \cup P_3 \) or \(G = K_4 \cup K^-_4 \cup K_3 \). \(\square \)

Suppose that we have a 4-colouring of \(K_{11} \) with vertex set \(V \), which does not contain a monochromatic copy of \(P_5 \). Let \(G_1, \ldots, G_4 \) be the four graphs on \(V \) induced by the colour classes, and assume that \(e(G_1) \geq \cdots \geq e(G_4) \). By Theorem 2 we have \(\text{ex}(11, P_5) = 15 \), with the unique extremal graph \(K^-_4 \cup K^-_4 \cup K_3 \). Hence, \(e(G_1) \leq 15 \). If \(e(G_1) = 15 \), then \(G_1 = K_4 \cup K^-_4 \cup K_3 \), and \(e(G_2) \geq \left\lceil \frac{\text{ex}(11, P_5) - 15}{3} \right\rceil = \left\lceil \frac{55-15}{3} \right\rceil = 14 \). By Claim 9, \(G_2 \) contains a copy of \(K_4 \), which is a contradiction since the complement of \(G_1 \) does not contain a copy of \(K_4 \). Otherwise, we have \(e(G_1) = e(G_2) = e(G_3) = 14 \) and \(e(G_4) = 13 \). Again by Claim 9, we have \(G_1 = K_4 \cup K^-_4 \cup P_3 \) or \(K_4 \cup K^-_4 \cup K_3 \), and \(G_2 \) and \(G_3 \) both contain a copy of \(K_4 \). We see that \(G_1 \cup G_2 \) must contain a copy of \(K_4 \cup K^-_4 \cup K_3 \), so that the complement of \(G_1 \cup G_2 \) does not contain a copy of \(K_4 \). This contradicts that \(G_3 \) contains a copy of \(K_4 \). This completes the proof of Lemma 8. \(\square \)

By Lemmas 6, 7 and 8, Theorem 1 is proved.

Acknowledgements

Henry Liu is partially supported by the Startup Fund of One Hundred Talent Program of SYSU, and National Natural Science Foundation of China (No. 11931002). Bojan Mohar is partially supported by the NSERC Discovery Grant R611450 (Canada), and by the Research Project J1-2452 of ARRS (Slovenia). Yongtang Shi is partially supported by National Natural Science Foundation of China (Nos. 11771221 and 11922112), and National Science Foundation of Tianjin (Nos. 20JJCQJJC00090 and 20JCDZJC00840).

References

[1] R.J.R. Abel, A. Assaf, F.E. Bennett, I. Bluskov, M. Greig, Pair covering designs with block size 5, Discrete Math. 307 (2007) 1776–1791.
[2] J. Bierbrauer, Ramsey numbers for the path with three edges, European J. Combin. 7 (1986) 205–206.
[3] B. Bollobás, Modern Graph Theory, Springer-Verlag, New York, 1998.
[4] R.J. Faudree, R.H. Schelp, Path Ramsey numbers in multicolorings, J. Combin. Theory Ser. B 19 (1975) 150–160.
[5] G. Ge, C.W.H. Lam, A.C.H. Ling, H. Shen, Resolvable maximum packing with quadruples, Des. Codes Cryptogr. 35 (2005) 287–302.
[6] L. Gerencsér, A. Gyárfás, On Ramsey-type problems, Ann. Univ. Sci. Budapest. Eötvös Sect. Math. 10 (1967) 167–170.
[7] A. Gyárfás, M. Ruszinkó, G.N. Sárközy, E. Szemerédi, Three-color Ramsey numbers for paths, Combinatorica 27 (2007) 35–69. Corrigendum in 28 (2008) 499–502.

[8] H. Hanani, D.K. Ray-Chaudhuri, R.M. Wilson, On resolvable designs, Discrete Math. 3 (1972) 343–357.

[9] R.W. Irving, Generalised Ramsey numbers for small graphs, Discrete Math. 9 (1974) 251–264.

[10] E.R. Lamken, W.H. Mills, R.S. Rees, Resolvable minimum coverings with quadruples, J. Combin. Des. 6 (1998) 431–451.

[11] B. Lindström, Undecided Ramsey-numbers for paths, Discrete Math. 43 (1983) 111–112.

[12] S.P. Radziszowski, Small Ramsey numbers, Electron. J. Combin., #DS01, version of 15 January, 2021.

[13] F.P. Ramsey, On a problem of formal logic, Proc. Lond. Math. Soc. 30 (1930) 264–286.

[14] C. Reid, A. Rosa, Steiner systems S(2, 4, v) - a survey, Electron. J. Combin. (2010) #DS18.