Carcass and body organ characteristics of broilers supplemented with dietary sodium and sodium salts under a phase feeding system

Mirza Muhammad Haroon Mushtaq*, Rana Parvin and Jihyuk Kim

Abstract
The effect of sodium and sodium salts on carcass and body organ characteristics of broilers under a four phase feeding program were investigated. A basal diet (0.08% dNa with NaCl) was formulated and one of two sources of dNa (NaHCO3 and Na2SO4) were supplemented to obtain four different percentages of dNa (0.17, 0.26, 0.35, and 0.44%) for each treatment. There was a linear decrease in dressing percentage (DP) with source × level interaction (p ≤ 0.001), while there was a linear increase in breast yield and thigh yield with increasing dNa supplementation (p ≤ 0.001). Chicks fed 0.35% NaHCO3 and 0.44% dNa Na2SO4 supplemental salts had lower abdominal fat (p ≤ 0.04). Chicks that received increasing levels of dNa (from 0.17 to 0.44%) showed increasing gizzard weight (p ≤ 0.002) and decreasing spleen weight (p ≤ 0.02). When both salts were supplemented at 0.26% dNa, the chicks showed their lowest bursa weight (p ≤ 0.001). Consequently, chicks at higher dNa showed an increase in breast and thigh meat yield, and increasing capacity of their digestive organ. The higher levels of dNa should be tested with other cations and anions to fully understand acid base homeostasis.

Keywords: Sodium, Salt, Carcass and body organ characteristics, Phase feeding program, Broiler

Introduction
Sodium (Na+), the principal cation of extracellular fluid, is involved in numerous functions including the regulation of extracellular fluid volume, acid base balance, cell membrane potential, nerve function, and the absorption of glucose and amino acids ([1]; Leeson and Summers, [2]). Dietary Na (dNa) and chloride (Cl) are inexpensive in terms of meeting dietary requirements, as Pakistan has huge reserves of sodium chloride (NaCl) [3].

Mongin [1] described the effect and interrelationship of Na+, K+, and Cl− in an equation for dietary electrolyte balance (DEB = Na + K-Cl, mEq/kg diet). Rondon et al. [4] and Borges et al. [5] reported different DEB values with different concentrations of Na+, K+, or Cl−. Recently, Mushtaq et al. [6,7] tested 3 levels of dNa and dCl adjusted with dK and reported that different ions acted differently to yield a similar DEB of 250 mEq/kg. The addition of various salts changes osmotic balance by contributing electrolytes [5,8-10]. Most researchers consider Na-bicarbonate (NaHCO3) as the best supplemental salt for Na+ and HCO3− [11-16]. Sodium sulphate (Na2SO4) induced severe blood acidosis when it was compared with other sulphate sources in growth trials; hence it was suggested that the acidic properties of sulphates are directly linked to supplemental salts [16,17].

A significant effect of temperature on abdominal fat was found for treatments (5% KCl or 5% NaHCO3 in water) under normal but not under cyclic environmental conditions [18]. Sharma and Gangwar [8] reported a decrease in the concentration of Na+ and K+ in the breast and thigh muscles of broilers from 4 to 8 wks old under high temperature (32°C). The author, moreover, observed that breast muscles had significantly lower Na+ and higher K+ concentrations than thigh muscles. Pourreza and Edriss [19] reared straight-run broilers at 20°C or 30°C and noticed that the high temperature decreased slaughter, carcass, and abdominal fat weight and increased dressing percentage. Johnson and Karunajeewa [11], Karunajeewa et al. [20], and...
Borges et al. [21] observed no effect on carcass and abdominal fat yield under different DEB treatments under normal environmental condition.

The development of housing systems and genetics has necessitated a look into the changing nutrient requirements of current broilers. The present study evaluated the effect of dietary sodium supplementation with the applicability of DEB using different sodium salts on carcass and body organ characteristics of a modern broiler strain fed under a four phase feeding program.

Materials and methods
All experimental birds and procedures were maintained in compliance with laws proposed by the Advanced Studies and Research Board, University of Veterinary and Animal Sciences, Lahore, Pakistan.

Birds' husbandry
A total of 1280 day-old straight-run Hubbard broiler chicks (Hubbard × Hubbard) were given one of eight dietary treatments replicated four times; under this system each replicate contained 40 birds (without considering the sex). Each replicate pen was equipped with a separate overhead, transparent, and volume-graduated 20 L water bottle linked to a nipple drinker line. Water bottles were cleaned and filled with fresh water on a daily basis. One flat bottom round feeder was provided for each experimental pen. Birds were housed in environment control systems where variation in temperature and relative humidity were recorded and maintained according to the production manual [22]. Continuous light was provided 24 h for the first 3 days and then a 23 L:1D light pattern was adopted for the rest of the experimental period. Fresh sawdust (7.5 cm deep) was used as litter material over a concrete floor. For the first 3 days, the house temperature was maintained at 32°C and thereafter reduced by 0.5°C per day until 24°C was attained at d 19.

Birds were vaccinated against Newcastle Disease (ND) plus Infectious Bronchitis virus at 8 d and again at 14 d; Hydropericardium Syndrome virus at 18 d, and ND-Lasota strain at d 22.

Dietary plan and experimental design
A basal diet with dNa, K and Cl at 0.08, 0.71, and 0.20%, respectively, with a DEB value of 160 mEq/kg (Table 1) were supplemented to experimental diets such that four levels of dNa (0.17, 0.26, 0.35, and 0.44%) were supplemented to this basal diet with either commercially available feed-grade sodium bicarbonate (NaHCO₃) or sodium sulphate (Na₂SO₄). The levels of dNa corresponded to DEB values of 200, 240, 280, and 320 mEq/kg, respectively. The experimental period was divided into four phases: pre-starter (1 to 10 d), starter (11 to 20 d), grower (21 to 33 d), and finisher (34 to 42 d) which met or exceeded the nutrient specifications recommended by the Hubbard management guide ([22]; Table 2) except for amino acid composition.

All ingredients were assayed for their proximate composition [23] prior to diet formulation and actual values were used in the formulation. The Na⁺ and K⁺ contents of each diet were analyzed by flame photometer [23] and Cl⁻ content was analyzed by titration with AgNO₃[24]. Prior to starting the experiment, the Na⁺, K⁺, and Cl⁻ contents of the final diet were verified. The ME of each ingredient was calculated by the appropriate regression equation suggested by the NRC [25]. The amino acid composition of each ingredient was calculated using AminoDat™ 3.0 Platinum (Degussa AG, Germany) based on the DM and CP contents of each ingredient [6].
Growth response
Feed intake (FI; g/bird), BW gain (BWG; g/bird) and feed-to-gain ratio (FG; g:g) were recorded at the end of the experiment. The feed was withheld for 6 h before weighing the birds to ensure the emptying of the digestive tract of the bird. Mortality was recorded on a daily basis and dead bird was weighed prior to removal to correct FG.

Carcass and organ characteristics
At the end of 42 d, two birds were randomly selected from each replicate and subjected to carcass and body organ evaluation. The feed was withheld for 6 h before slaughter to ensure emptying of the digestive tract of the bird. Mortality was recorded on a daily basis and dead bird was weighed prior to removal to correct FG.

Table 2 Nutrient composition of basal diets for different phases of birds fed four levels of sodium with two sources of sodium salts1)

Nutrients	Pre-starter (1 – 10 d)	Starter (11 – 20 d)	Grower (21 – 33 d)	Finisher (34 – 42 d)
ME (kcal/kg)	2900	3000	3000	3147
Crude Protein (%)	21.00	20.00	19.00	18.00
Calcium (%)	1.00	0.90	0.90	0.85
Available Phos. (%)	0.45	0.42	0.40	0.35
Sodium (%)	0.08	0.08	0.08	0.08
Potassium (%)	0.71	0.71	0.71	0.71
Chlорide (%)	0.20	0.20	0.20	0.20
DEB(2) (mEq/kg)	160	160	160	160
Dig Lys (%)	1.10	1.05	0.97	0.93
Dig Met/Dig Lys	0.45	0.45	0.44	0.44
Dig Met + Dig Cys/Dig Lys (%)	0.72	0.71	0.72	0.72
Dig Thr/Dig Lys	0.66	0.67	0.67	0.66
Dig Try/Dig Lys	0.18	0.18	0.18	0.17

1)NaHCO3 and Na2SO4.
2)Dietary Electrolyte Balance (mEq/kg) = (% Na × 10,000 / 23) + (% K × 10,000 / 39.1) – (% Cl × 10,000 / 35.5).

Water characteristics
Water alters carcass responses because of its concentrations of electrolytes (Na+, K+ and Cl−); therefore, supplied water was analyzed for these electrolytes. Water characteristics were also recorded twice (morning and noon) daily to check pH by pH meter (LT-Lutron pH-207 Taiwan) and dissolved oxygen by DO meter (DO; YSI 55 Incorporated, Yellow Springs, Ohio, 4387, USA). Moreover, temperature, electrical conductivity (EC), total dissolved solids (TDS), and salinity were recorded by the Combo meter (H M Digital, Inc. CA 90230; Table 5). These observations were randomly recorded from different replicates.

Statistical analyses
The experiment was executed under a completely randomized design with factorial arrangement using four

Table 3 Effect of dietary sodium and sodium salts on growth performance of broilers on day

Item	BW gain (g/bird)	Feed intake (g/bird)	Feed:gain (g:g)
Dietary Na (%)			
0.17	1,893	3,564	1.95
0.26	1,959	3,634	1.80
0.35	1,883	3,605	1.89
0.44	1,864	3,622	1.95
SEM	30.5	45.9	0.076
Salts			
NaHCO3	1,884	3,604	1.88
Na2SO4	1,916	3,608	1.91
SEM	21.6	32.4	0.053
Na x Salts			
0.17 × NaHCO3	1,941	3,586	1.82
0.26 × NaHCO3	1,941	3,631	1.83
0.35 × NaHCO3	1,829	3,649	1.91
0.44 × NaHCO3	1,824	3,551	1.98
0.17 × Na2SO4	1,844	3,542	2.08
0.26 × Na2SO4	1,977	3,637	1.76
0.35 × Na2SO4	1,936	3,560	1.88
0.44 × Na2SO4	1,905	3,694	1.91
SEM	43.1	64.9	0.107

ANOVA Probability

Item	NS	NS	NS
Na			
Na2			
NaCl			
Salt			
Salt x Na	0.036	NS	NS

NS - Non-significant. NaL and NaQ are linear and quadratic terms for Na, respectively.
levels of dNa from two salt sources. The experimental pen was an experimental unit. The data obtained at the end of the experiment were subjected to ANOVA using GLM of Minitab 15.1 (Minitab Inc., State College PA). A statistical significance of 0.05 was used unless stated otherwise.

Results and discussion

Water was evaluated on a daily basis for quality parameters including temperature, pH, EC, TDS, DO, and salinity (Table 5). At the start of the experiment, water was also analyzed for its sodium absorption ratio (25.6) and residual sodium carbonate (9.02). As the concentration of various minerals (cations plus anions) and values of other quality parameters in drinking water could alter the electrolyte concentration of digesta ([12,28]; b) their concentration in water was evaluated. The water electrolyte concentration was too low to impact carcass and organ yields. Water pH values (7.17–7.49) were within the range (6.0–8.5) considered optimal for broiler performance [28-30]. Previous reports [31,32] showed retarded growth up to a pH level of 6.3. The water TDS level ranged from 1000–3000 ppm was considered satisfactory for broilers by Chiba [33], however the analyzed values i.e. 1060–1284 did not appear to disturb the present experiment.

All growth responses were unaffected by dietary treatments, except for sodium level and salt interaction on BW gain (BWG; p ≤ 0.036; Table 3). The supplementation of Na2SO4 at 0.26% showed higher BWG at day 42. However this change in BWG was not sufficient to positively influence feed:gain (FG).

Carcass and intestinal responses were affected by supplementation of dNa from NaHCO3 and Na2SO4 (Table 4). A highly linear drop in DP (p ≤ 0.001) was observed with

Item	Dressing weight1)	Breast weight2)	Thigh weight2)	Intestinal weight3)	Abdominal fat4)
Dietary Na (%)					
0.17	56.12	31.85	45.26	58.2	3.01
0.26	54.18	32.98	46.28	54.3	3.12
0.35	52.94	33.79	47.34	54.9	2.44
0.44	52.07	34.31	48.30	56.1	2.61
SEM	0.423	0.347	0.627	1.15	0.24
Salts					
NaHCO3	53.95	33.16	46.28	56.3	2.74
Na2SO4	53.70	33.30	47.31	55.4	2.84
SEM	0.299	0.246	0.443	0.81	0.17
Na × Salts					
0.17 × NaHCO3	55.68	32.11	45.29	58.8	2.96
0.26 × NaHCO3	54.85	32.56	45.05	56.2	2.93
0.35 × NaHCO3	53.38	33.57	46.79	58.7	1.93
0.44 × NaHCO3	51.90	34.40	48.01	51.6	3.12
0.17 × Na2SO4	56.56	31.60	45.24	57.7	3.06
0.26 × Na2SO4	53.50	33.40	47.51	52.4	3.31
0.35 × Na2SO4	52.51	34.01	47.90	51.1	2.94
0.44 × Na2SO4	52.24	34.22	48.58	60.7	2.11
SEM	0.599	0.492	0.886	1.62	0.35

ANOVA

Probability	Probability	Probability	Probability	Probability	
Na	≤0.001	≤0.001	0.008	NS	NS
NaL	≤0.001	≤0.001	≤0.001	NS	NS
NaQ	NS	NS	NS	0.03	NS
Salt	NS	NS	NS	NS	NS
Salt × Na	NS	NS	NS	≤0.001	0.04

NS - Non-significant.

1)% of live weight (without visceral organs).

2)% of dressed weight (with organs weights).

3)measured in grams.

NaL and NaQ are linear and quadratic terms for Na, respectively.
increasing supplementation of dNa. Mushtaq et al. [7] observed no difference in DP with increasing dNa from 0.20 to 0.30%. Their difference in results might be due to the lower levels of dNa studied. Salt sources or interaction effects in the present study were not beneficial per se.

Breast (p ≤ 0.001) and thigh (p ≤ 0.001) meat yield increased with increasing supplementation of dNa (Table 4). This contradiction in results might be due the measurement of breast and thigh meat as a percent of dressing weight with organs. These findings were not in line with the results of Mushtaq et al. [7] who observed reduced breast and leg meat by increasing dNa from 0.20 to 0.30%. This difference could be due to heat stress conditions in their experiment as more nutrients, consumed to maintain acid base balance, may not be converted to meat.

The abdominal fat pad was affected with source × level interaction (Table 6). The abdominal fat pad was lowest at 0.35% dNa in diets supplemented with NaHCO3. A similar response of abdominal fat to a high level of dNa (0.30%) was observed by Mushtaq et al. [7]. In the present study, increasing dNa under normal physiological conditions did not disturb basal metabolism and energy was mainly utilized for meat production and not wasted as abdominal fat.

The interaction (level × source) effect was found to change intestinal weight (p ≤ 0.001); the lowest weight (51.6 vs. 51.1 gm) was recorded at 0.44% (NaHCO3) and 0.35% dNa (Na2SO4). Intestinal weight reflects the gut’s capacity to absorb nutrients, which reflects better health; therefore, higher levels of dNa showed a lower carcass yield.

Organ weights of the proventriculus, heart, liver, pancreas, gall bladder, lungs, and intestinal and shank lengths were measured and found to be non-significant (data not shown). In contrast, weights (% of dressed weight) of gizzard, kidney, spleen and bursa significantly changed (Table 4). Gizzard weight was increased linearly with increasing levels of dNa from 0.17 to 0.44% (P ≤ 0.002; main effect). The increased weight of the gizzard reflects the increasing digestive or metabolic capacity of birds. Kidney weight was almost double the lowest level of dNa in the case of NaHCO3 when compared with the lowest level of Na2SO4 (p ≤ 0.03; interaction effect). This suggests the bicarbonate buffer system mainly determines blood acid–base balance for optimal production performance and functions under regulatory control of the kidneys [14].

Table 5 Drinking water properties during the experimental period

Phase	Item	Salinity	TDS1)	EC2)	Temperature	pH	DO3)
Phase 1	Max	1.30	1284	1.39	29.7	7.49	5.40
	Min	1.20	1198	1.27	26.2	7.31	3.90
	Average	1.25	1251	1.32	27.3	7.40	4.65
Phase 2	Max	1.20	1111	1.24	25.2	7.40	5.60
	Min	1.20	1060	1.06	25.8	7.17	3.70
	Average	1.20	1088	1.12	26.0	7.27	4.39
Phase 3	Max	1.30	1187	1.24	25.2	7.40	5.60
	Min	1.20	1108	1.08	24.3	7.21	3.70
	Average	1.22	1144	1.15	24.9	7.33	4.65
Phase 4	Max	1.20	1194	1.24	24.8	7.33	5.07
	Min	1.20	1110	1.10	24.0	7.23	3.70
	Average	1.20	1141	1.11	24.2	7.29	4.39

1) TDS - Total Dissolved Solids.
2) EC - Electric Conductivity.
3) DO - Dissolved Oxygen.
Salinity, TDS, EC, temperature, and DO were measured as parts per thousand (ppt), parts per million (PPM), millisemen/centimeter (mS/cm), centigrade (°C) and milligram/litre (mg/L), respectively.

Table 6 Effect of dietary sodium and sodium salts on body organ weights of broilers at the end of the experiment

Item	Gizzard	Kidney	Spleen	Bursa	
Dietary Na (%)	0.17	2.41	0.31	0.13	0.23
0.26	2.57	0.36	0.08	0.15	
0.35	2.98	0.37	0.07	0.21	
0.44	2.99	0.37	0.08	0.25	
SEM	0.15	0.02	0.02	0.02	
Salts	NaHCO3	2.85	0.42	0.09	0.21
Na2SO4	2.62	0.28	0.09	0.22	
SEM	0.10	0.02	0.01	0.01	
Na × Salts	0.17 × NaHCO3	2.72	0.42	0.11	0.16
0.26 × NaHCO3	2.65	0.47	0.10	0.18	
0.35 × NaHCO3	2.98	0.41	0.08	0.22	
0.44 × NaHCO3	3.05	0.39	0.07	0.26	
0.17 × Na2SO4	2.11	0.21	0.15	0.29	
0.26 × Na2SO4	2.48	0.24	0.61	0.13	
0.35 × Na2SO4	2.98	0.33	0.06	0.20	
0.44 × Na2SO4	2.93	0.35	0.08	0.24	
SEM	0.21	0.04	0.02	0.02	

ANOVA Probability

Na	0.01	NS	NS	0.001
NaL	0.002	NS	NS	0.02
NaQ	NS	NS	NS	0.01
Salt	NS	≤0.001	NS	NS
Salt × Na	NS	0.03	NS	0.001

NS - Non-significant.
1)% of dressed weight (with organ weights).
NaL and NaQ are linear and quadratic terms for Na, respectively.
Kidney weight is indicates broiler dietary nutrient insufficiencies [34] or the presence of anti-nutritional factors [35,36]. In the present study, the acid base imbalance might cause the higher kidney weight. A linear increase in dNa decreased spleen weight (p ≤ 0.02). The interaction (source × level) effect influenced the bursa weight (p ≤ 0.001). The low weight of the spleen was observed at 0.35% dNa. The low weight of the bursa was observed at 0.26% dNa for both salt sources. As the spleen and bursa are associated with immune function (as lymphoid organs) this may explain the poor DP at these levels.

Conclusions

Birds showed increased breast and thigh meat yield, and increasing capacity of the gizzard at higher levels of dietary sodium. In contrast, a reduced dressing percentage with increasing supplementation of dietary sodium was unclear. Lower levels of dietary sodium were sufficient for supporting immune organs (bursa and spleen). Therefore a verification of requirements by changing other electrolytes (K⁺ and Cl⁻), keeping a constant DEB level, and changing salt sources is suggested.

Competing interests

The authors declare that they have no competing interests.

Authors’ contributions

RP and JK participated in the design of the study and did the farm visits and clinical investigations. MMH-M performed the statistical analysis. All authors helped to draft the manuscript, and all authors read and approved the final manuscript.

Acknowledgements

This experiment was conducted and sponsored by the Research Model Broiler Unit at the Poultry Research and Training Center (University of Veterinary and Animal Sciences, Pakistan). All data collection of carcass and body characteristics was facilitated by students of BS (Hons) Poultry Science, Batch (2007–2011). The contributions of Zulfiquar Ali (Ex-Nutritional Consultant, Big Feeds (Pvt) Ltd, Lahore, Pakistan) in experimental diet formulation, preparation, and analyses are highly appreciated. This study was supported by Cooperative Research Program for Agriculture Science and Technology Development (Project No. P.J009422), Rural Development Administration, Republic of Korea. Higher Education Commission, Pakistan also supported study financially.

Received: 7 April 2014 Accepted: 7 April 2014
Published: 15 May 2014

References

1. Mongin P: Electrolytes in nutrition. A review of basic principles and practical applications in poultry and swine. Orlando, FL: Proceedings of 3rd Annual International Mineral Conference; 1980:1.
2. Leeson S, Summers JD: Scott’s Nutrition of the Chicken. 4th edition. Guelph, Ontario, Canada: National Academic Press; 1994.
3. Fowler TC: Natural resources of Pakistan. 2004, 84:1716–1722.
4. Rondon EOO, Murakami AE, Furlan AC, Garcia J: Exigenciasnutricopmaos de sodio e cloro e estimativa do melhor balance electrolitico da racao for frangos de corte na fasepe inicial (1–7 dias de idade). Rev Bras Zoot 2000, 29:1162–1166.
5. Borges SAAV, Fischer da Silva AV, Ariki J, Hooge DM, Cummings KR: Dietary electrolyte balance in broiler growing diets. Int J Poult Sci 2004, 3:623–628.
6. Mushtaq T, Sarwar M, Nawaz H, Mirza MA, Ahmad T: Effect and interactions of dietary sodium and chloride on broiler starter performance (hatching to twenty-eight days of age) under subtropical summer conditions. Poult Sci 2005, 84:1716–1722.
7. Mushtaq T, Mirza MA, Athar M, Hooge DM, Ahmad T, Ahmad G, Mushtaq MMH, Noreen U: Dietary sodium and chloride for twenty-nine to forty-two-day-old broiler chickens at constant electrolyte balance under subtropical summer conditions. J Appl Poult Res 2007, 16:161–170.
8. Sharma ML, Gangwar PC: Electrolyte changes in the blood plasma of broilers as influenced by cooling during summer.Intl J Biometeorol 1987, 31(3):211–216.
9. Smith MO, Teeter RG: Practical application of potassium chloride and fasting during naturally occurring summer heat stress. Poult Sci 1988, 67(Suppl. 1):36. Abstr.
10. Borges SA, Fischer da Silva AV, Majorka A, Hooge DM, Cummings KR: Physiological responses of broiler chickens to heat stress and dietary electrolyte balance (sodium plus potassium minus chloride, milliequivalents per kilogram). Poult Sci 2004, 83:1551–1558.
11. Johnson RJ, Karunajeewa H: The effects of dietary minerals and electrolytes on the growth and physiology of the young chick. J Nutr 1985, 115:1680–1689.
23. AOAC: Association of Official Analytical Chemists; 2005.
24. Lacroix RL, Keeney DR, Welsh LM: Nutrient Requirements of Poultry. 18th edition. Gaithersburg, MD: National Academic Press; 1994.
25. Lopez B, Austic RE: The effects of selected minerals on acid–base balance of growing chicks. Poult Sci 1993, 72:1054–1062.
26. Han Y, Baker DH: Characteristics of Broilers Fed Sugarcane Press Residue with Potassium chloride drinking water supplementation. 1. Performance and exterior carcass quality of broilers grown under thermoneutral or cyclic heat-stress conditions. Poult Sci 1991, 70:53–9.
27. Suresh BN, Reddy BSV, Manjunatha PBH, Jaishankar N: The effects of high vs. normal temperatures on the physical characteristics of the broilers carcass. J Agri Sci Technol 1992, 135:41–.
31. Good B: Water quality affects poultry production. Poult Dig 1985, 44(517):108–109.
32. Grizzle JT, Armbrust MB, Saxton A: Water quality I, The effect of water nitrate and pH on broiler growth performance. J Appl Poult Res 1996, 5:330–336.
33. Water and Electrolytes (& Iodine). Sec. 4. In Animal Nutrition Handbook, 2nd edition. Edited by Chiba LI. Auburn University Press, Alabama; 2009.
34. Carew L, Mcmurtry J, Alster F: Effects of lysine deficiencies on plasma levels of thyroid hormones, insulin-like growth factors I and II, liver and body weights, and feed intake in growing chickens. Poult Sci 2005, 84:1045–1050.
35. Bailey CA, Stipanovic RD, Ziehr MS, Haq AU, Sattar M, Kubena LF, Kim HL, Vieira RD: Cottonseed with a high (+) to (−)-gossypol enantiomer ratio favorable to broiler production. J Agric Food Chem 2000, 48:5692–5695.
36. Farran MT, Halaby WS, Barbour GW, Uwayjan MG, Sleiman FT, Ashkarian VM: Effects of feeding ervil (Vicia ervilia) seeds soaked in water or acetic acid on performance and internal organ size of broilers and production and egg quality of laying hens. Poult Sci 2005, 84:1723–1728.

doi:10.1186/2055-0391-56-4
Cite this article as: Mushtaq et al: Carcass and body organ characteristics of broilers supplemented with dietary sodium and sodium salts under a phase feeding system. Journal of Animal Science and Technology 2014 56:4

Submit your next manuscript to BioMed Central and take full advantage of:

- Convenient online submission
- Thorough peer review
- No space constraints or color figure charges
- Immediate publication on acceptance
- Inclusion in PubMed, CAS, Scopus and Google Scholar
- Research which is freely available for redistribution

Submit your manuscript at www.biomedcentral.com/submit