Nuclear Structure Towards $N = 40$ 60Ca: In-beam γ-ray Spectroscopy of 58,60Ti

A. Gade,1, 2 R. V. F. Janssens,3 D. Weisshaar,1 B. A. Brown,1, 2 E. Lunderberg,1, 2 M. Albers,3 V. M. Bader,1, 2 T. Baugher,1, 2 D. Bazin,1 J. S. Berryman,1 C. M. Campbell,4 M. P. Carpenter,3 C. J. Chiara,5, 3 H. L. Crawford,4 M. Cromaz,4 U. Garg,5 C. R. Hoffman,5 F. G. Kondev,7 C. Langer,1, 8 T. Lauritsen,5 I. Y. Lee,4 S. M. Lenzi,9 J. T. Matta,6 F. Nowacki,10 F. Recchia,9 K. Sieja,10 S. R. Strober,1, 2 J. A. Tostevin,11 S. J. Williams,1 K. Wimmer,12, 1 and S. Zhu3

1National Superconducting Cyclotron Laboratory, Michigan State University, East Lansing, Michigan 48824, USA
2Department of Physics and Astronomy, Michigan State University, East Lansing, Michigan 48824, USA
3Physics Division, Argonne National Laboratory, Argonne, Illinois 60439, USA
4Nuclear Science Division, Lawrence Berkeley National Laboratory, California 94720, USA
5Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, USA
6Department of Physics, University of Notre Dame, Notre Dame, Indiana 46556, USA
7Nuclear Engineering Division, Argonne National Laboratory, Argonne, Illinois 60439, USA
8Joint Institute for Nuclear Astrophysics, Michigan State University, East Lansing, MI 48824, USA
9Dipartimento di Fisica e Astronomia dell’Università e INFN, Sezione di Padova, I-35131 Padova, Italy
10IPHC, IN2P3-CNRS et Université de Strasbourg, F-67037 Strasbourg, France
11Department of Physics, Faculty of Engineering and Physical Sciences, University of Surrey, Guildford GU2 7XH, United Kingdom
12Department of Physics, Central Michigan University, Mt. Pleasant, Michigan 48859, USA

(Dated: February 25, 2014)

Excited states in the neutron-rich $N = 38, 36$ nuclei 60Ti and 58Ti were populated in nucleon-removal reactions from 60V projectiles at 90 MeV/nucleon. The γ-ray transitions from such states in these Ti isotopes were detected with the advanced γ-ray tracking array GRETINA and were corrected event-by-event for large Doppler shifts ($v/c \sim 0.4$) using the γ-ray interaction points deduced from online signal decomposition. The new data indicate that a steep decrease in quadrupole collectivity occurs when moving from neutron-rich $N = 36, 38$ Fe and Cr toward the Ti and Ca isotones. In fact, 58,60Ti provide some of the most neutron-rich benchmarks accessible today for calculations attempting to determine the structure of the potentially doubly-magic nucleus 60Ca.

One of the main goals of nuclear physics is the development of a predictive model for the properties of all nuclei, including the shortest-lived species in as yet unexplored regions of the nuclear chart. This is important, for example, in the quest to understand the origin of the elements in the Universe since many nucleosynthesis processes involve nuclei far removed from the valley of β stability. One of the cornerstones in the description of nuclear properties is nuclear shell structure – whereby discrete nucleon single-particle orbitals are clustered in energy, resulting in stabilizing energy gaps occurring for certain “magic” proton or neutron numbers. Doubly-magic nuclei, with both proton and neutron magic numbers, are particularly important for the development of nuclear models as they serve as essentially inert cores, reducing the many-body problem to that of the set of “valence nucleons” outside this core. However, modifications of shell structure have already been observed in short-lived nuclei with extreme neutron-to-proton ratios, with new shell gaps developing and some of the canonical magic numbers disappearing. Considerable experimental and theoretical efforts are aimed at describing the physics driving such changes which are revealed most clearly on the neutron-rich side of the nuclear chart.

Data for chains of proton-magic isotopes and regions of rapid shell evolution offer (complementary) challenging tests of nuclear models, allowing changes in nuclear structure to be tracked as a function of isospin and providing demanding benchmarks for calculations incorporating new physics effects. The chain of Ca isotopes (with magic proton number $Z = 20$) and the region of neutron-rich nuclei near $N = 40$, which are subject to rapid shell and shape changes, coincide at 60Ca. In addition to the first spin-orbit-driven neutron sub-shell closure at $N = 28$ 48Ca, the neutron-rich Ca isotopes exhibit two additional sub-shell gaps at $N = 32$ and $N = 34$, attributed in part to the action of the monopole parts of the proton-neutron tensor force in the regime of large neutron excess.

Nothing is known experimentally about the properties of the most neutron-rich $N = 40$ isotones 62Ti and 60Ca. While the existence of 62Ti has been established, 60Ca has not yet been observed. In fact, the position of the neutron drip line in Ca appears to depend sensitively on both the location of the neutron $1g_{9/2}$ orbital, which starts to be filled at $N = 40$ in 60Ca, and on a variety of correlations and many-body effects. Calculations with realistic two- and three-body forces predict the neutron drip line to be located around 60Ca, while many mean-field and density-functional theories have the Ca isotopes (at least those with even A) bound out to $A = 68 - 76$. The relativistic continuum Hartree-Bogoliubov approach of Meng et al. has the neutron $1g_{9/2}$ and $3s_{1/2}$ orbitals unbound, but correlation
effects, predominantly pairing, bind even-\(A\) Ca out to \(A = 72\), while the SkM* Skyrme functional has the neutron \(1g_{9/2}\) orbital bound and predicts the Ca drip line to be at \(A = 70\) \[13\]. Clearly, information on the structure of neutron-rich nuclei with \(A \approx 60\) is important to help benchmark modern calculations which differ in their prediction of the location of the Ca drip line by more than 10 mass units. The calculations of Ref. \[20\] suggest that the regime of weak binding applying to \(^{60}\)Ca leads to intriguing consequences such as the presence of a halo structure and of two Efimov states in \(^{62}\)Ca.

The first spectroscopy of \(^{60}\)Ti and the identification of new \(\gamma\)-ray transitions in \(^{58}\)Ti are reported here. At present, \(^{60}\)Ti is probably the nucleus closest to \(^{62}\)Ti and \(^{60}\)Ca that can be studied until next-generation rare-isotope facilities come online. The measurements were enabled by the luminosity inherent to fast fragmentation-beam measurements \[3\] and the efficiency and spectral quality provided by the advanced \(\gamma\)-ray tracking array GRETINA \[21\].

Excited states in the neutron-rich Ti isotopes were populated in the \(^{9}\)Be(\(^{61}\)V, \(^{58,60}\)Ti+\(\gamma\)) \(X\) nucleus removal reactions at 90.0 MeV/u at the Coupled Cyclotron Facility at NSCL. The \(^{61}\)V ions were produced from a 140-MeV/u primary \(^{82}\)Se beam impinging on a 423-mg/cm\(^2\) \(^{9}\)Be production target, and were separated using a 240-mg/cm\(^2\) Al degrader in the A1900 fragment separator \[22\]. The momentum acceptance of the separator was restricted to 3%, yielding typical on-target rates of 15 \(^{61}\)V/s. About 10\% of the secondary beam was \(^{61}\)V, with \(^{62}\)Cr (32\%) and \(^{64}\)Mn (45\%) being the most intense other components.

The secondary \(^{9}\)Be reaction target (376 ng/cm\(^2\) thick) was located at the target position of the S800 spectrograph \[23\]. Reaction products were identified on an event-by-event basis at the instrument’s focal plane with the standard detection system \[23\]. The particle-identification spectrum for \(^{58,60}\)Ti produced from incoming \(^{61}\)V ions is presented in Fig. 1. The spectrograph was centered on the \(^{60}\)Ti one-proton knockout residues while the \(^{58}\)Ti momentum distribution was cut by the S800 acceptance. The inclusive cross section for one-proton knockout from \(^{61}\)V to \(^{60}\)Ti was measured to be \(\sigma_{\text{inc}} = 7.9(7)\) mb.

The high-resolution \(\gamma\)-ray detection system GRETINA \[21\], an array of 36-fold segmented high-purity Ge detectors, was used to measure the prompt \(\gamma\) rays emitted by the reaction residues. The seven GRETINA modules – with four crystals each – were arranged in two rings. Four modules were located at 58° and three at 90° with respect to the beam axis. Online signal decomposition provided \(\gamma\)-ray interaction points for event-by-event Doppler reconstruction of the photons emitted in-flight at \(v/c = 0.4\). The information on the momentum vector of projectile-like reaction residues, as reconstructed from ray-tracing through the spectrograph, was incorporated in the Doppler reconstruction. Figure 2 presents these Doppler-reconstructed spectra for \(^{58}\)Ti and \(^{60}\)Ti with addback included \[24\]. The high peak-to-background ratio enables spectroscopy to be performed at the low levels of statistics that are inherent to investigations of the most exotic nuclei.

![Figure 1](image1.png)

FIG. 1: (Color online) Identification spectrum for the reaction residues produced in \(^{9}\)Be(\(^{61}\)V, \(^{4}\)Ti) \(X\) at a 90-MeV/u mid-target energy. All reaction residues are unambiguously identified by their energy loss, measured in the S800 ionization chamber, and their time of flight.

![Figure 2](image2.png)

FIG. 2: Doppler-reconstructed \(\gamma\)-ray spectra in coincidence with \(^{58,60}\)Ti reaction residues. The indication of a transition doublet in \(^{60}\)Ti is shown as an inset in the lower panel.
shell-model effective interactions for this region of the nuclear chart, LNPS [16] and GXPF1A [21], describe the proposed level scheme well although the neutron model spaces differ significantly with GXPF1A restricted to the neutron fp shell and LNPS including the neutron d$_{5/2}$ and g$_{9/2}$ orbitals in addition. The agreement is good with both interactions, suggesting that incorporating the 1g$_{9/2}$ and 2d$_{5/2}$ neutron orbitals may not be critical, in agreement with conclusions presented in [24]. Note, that the present spin assignments are consistent with the fact that the 991- and 619-keV transitions were not observed by [24], since 4$^+$ and 6$^+$ states are not expected to be populated strongly in inelastic proton scattering.

In 60Ti, a peak structure at 860 keV is observed on top of very little background. One-proton knockout is a direct reaction with sensitivity to the single-particle degrees of freedom and it offers insight into the overlap in structure between the projectile ground state and the final states populated in the knockout residue [28]. The partial cross section to an excited final state is determined from the efficiency-corrected peak area relative to the number of knockout residues. A GEANT4 simulation of the GRETINA setup [28], that reproduced the intensity of standard calibration sources, was used to model the in-beam full-energy peak efficiency of the detector array, including the Lorentz boost. The simulated in-beam efficiency was employed to extract intensities from the peak areas in 60Ti. Assuming that the peak structure in 60Ti corresponds to a single transition then implies that 111(12)% of the knockout proceeds to the state populated by this 860-keV transition and that there is essentially no population of any other final state in 60Ti. For a nucleus bound by more than 5 MeV, this scenario appears to be rather unlikely.

In fact, the asymmetric peak shape at 860 keV supports the presence of a doublet (Fig. 2 inset). Analysis as a doublet suggests the presence of two γ rays at 850(5) keV and 866(5) keV, presumably corresponding to the $2^+_1 \rightarrow 0^+_2$ and $4^+_1 \rightarrow 2^+_1$ transitions in 60Ti, associated with 40(10)% population of the 4^+_1 state, 30(11)% of the 2^+_1 level and 29(12)% of the ground state and unobserved levels not feeding the proposed 2^+_1 or 4^+_1 states. GRETINA’s $\gamma\gamma$ coincidence capability supports further examination of the proposed doublet. Figure 3(a) provides the total projection of the coincidence matrix for 60Ti (upper panel) and the spectrum gated on the 860-keV peak (lower panel). Clearly, a peak in the same region (self-coincidence) and a corresponding Compton edge between 600-700 keV are visible. Similarly, in Fig. 3(b), the projection of the 58Ti $\gamma\gamma$ coincidence matrix is given (upper panel) as is the spectrum with a coincidence condition on the 991-keV transition (lower panel). No self-coincidence events are visible; instead the 1047-keV γ ray appears, confirming the 991-1047-keV cascade. Thus, the self-coincidence of the 860-keV peak structure is evidence for a coincident doublet of γ-ray transitions in 60Ti.

Knockout calculations can be used for further guidance. The ground-state spin of 61V is not known experimentally. Shell-model calculations with the LNPS effective interaction predict a 3/2$^-$ ground state, in agreement with β-decay results [30]. The GXPF1A effective interaction [21], which does not include the potentially important neutron d$_{5/2}$ and g$_{9/2}$ orbitals, predicts a 7/2$^-$ ground state with excited 5/2$^-$ and 3/2$^-$ levels within 400 keV. Using the one-nucleon knockout formalism detailed in [31], the GXPF1A and LNPS spectroscopic factors with respect to the ground state of 61V, and assuming a reduction factor of $R_n \approx 0.5$ at a nucleon separation energy difference of the projectile of $S_n - S_p \approx -10$ MeV [31], the partial cross sections to bound final states in 60Ti are calculated and confronted with experiment in Fig. 4. For the LNPS effective interaction, the calculated inclusive cross section agrees with the measurement, while the GXPF1A calculation predicts a slightly higher cross section. From the GXPF1A calculation, four excited levels, 4^+_1, 2^+_2, 4^+_3, and 6^+_5, should be populated strongly. There is no evidence in the spectrum for additional strong γ rays that would correspond to the respective transitions. Note that assuming a 5/2$^-$ or 3/2$^-$ ground state within the GXPF1A calculations always results in the strong population of three or more excited states, corresponding to the presence of several strong γ-ray transitions in addition to the $2^+_1 \rightarrow 0^+_2$ and $4^+_1 \rightarrow 2^+_1$ decays (e.g. the $6^+_1 \rightarrow 4^+_1$, $2^+_2 \rightarrow 2^+_1$, or the $4^+_2 \rightarrow 4^+_1$ transitions). With LNPS, the single-particle strength distribution resembles the data with the majority of the cross section carried by the 2^+_1 and 4^+_1 states. Discrepant is the 29(12)% population deduced for the ground state by subtraction. However, the experimental strength to the ground state will also include unobserved feeding from higher excited levels that bypass the 2^+_1 and 4^+_1 states and will act as a funnel for a fraction of the strength predicted to be fragmented over higher-lying states. Unlike for the 60Ti excitation energies, which do not signal a clear difference between the predictions for the different model spaces, the spectroscopic strengths clearly indicate that the neutron d$_{5/2}$ and g$_{9/2}$ orbitals are important for the description of the overlap of the 61V ground state with the final-state wave functions in 60Ti.
FIG. 3: (Color online) Projections of the 60,58Ti $\gamma\gamma$ coincidence matrices, nearest-neighbor addback included (upper panels) and gated coincidence spectra (lower panels): (a) 60Ti – the gate on the 860-keV peak returns a self-coincidence and Compton edge; (b) 58Ti – the gate on the 991-keV transition shows no self-coincidence and returns the peak at 1047 keV, consistent with a 1047-991-keV cascade.

FIG. 4: (Color online) Calculated and measured partial cross sections to final states in 60Ti using GXPF1A and LNPS spectroscopic factors and the procedure outlined in the text. The experimental cross sections to the 2_1^+ and 4_1^+ states were deduced from the γ-ray intensities and the 0_1^+ population results from subtraction. The so determined strength contributes 29(12)%; 30(11)%; and 40(10)% population of the 0_1^+, 2_1^+ and 4_1^+ states, which will include unobserved feeding from higher-lying states that could not be observed due to the lack of statistics (In Fig. 2 about 8 counts should be seen in the 60Ti spectrum per 1 mb at 1.5 MeV).

into the $g_{9/2}$-$d_{5/2}$ orbitals (Table I in [16]). However, the shell-model extrapolation of single-particle energies is often not accurate [32], perhaps due to the lack of inclusion of three-body forces. Another approach would be to use Hartree-Fock or Energy-Density-Functional (EDF) calculations to estimate the $N=40$ sub-shell gap. The 12 CSkP Skyrme functionals, used in [33], give a shell gap between the neutron $f_{5/2}$ and $g_{9/2}$ orbitals varying between 3 and 4 MeV at $Z=20$. If the shell gap were this large, the ground state of 60Ca would be dominated by $0p0h$ rather than $4p4h$ configurations. Clearly, the size of the $N=40$ shell gap is crucial for the properties of nuclei in this region. Collective nuclei, such as 64Cr, are in the “island of inversion” [10] because of strong quadrupole correlations for both protons and neutrons. With a large shell gap, there would be a dramatic change from a deformed to a spherical shape as one approaches $Z=20$, since the protons encounter a spin-orbit (LS) closed shell with no available low-lying proton quadrupole excitations.

Shell-model calculations with the LNPS interaction provide a good description of the data in this region. In the case of 60Ti, the excitation energies of both states are underestimated (2$^+_1$ energy by 150 keV and the 4$^+_1$ one by 240 keV). Since this nucleus is one of the furthest extrapolation points with no data available previously, it is interesting to study its sensitivity to modifications of the interaction and the resulting impact on the calculated structure of this region. Such modifications to the LNPS effective interaction – based on available, independent data in this region – are underway and offer the opportunity to assess the role of 60Ti. With an increase of the $d_{5/2}$ single-particle energy by 250 keV and repulsion of $g_{9/2}$, $d_{5/2}$ monopole matrix elements by 200 keV, the description of the excitation energies of 60Ti improves, with the 2$^+_1$ state calculated at 803 and the 4$^+_1$ level at 1609 keV. While these modifications increase the small $N=40$ gap at 60Ca by only 250 keV, they significantly alter the nuclear structure of the region with markedly changed $2p2h$ and $4p4h$ contributions to the wave functions. In the original LNPS effective interaction, the ground state and 2$^+_1$ state of 60Ti contain 27% of $2p2h$ and 41% of $4p4h$ and 15% of $2p2h$ and 45% $4p4h$ contributions, respectively. With the modifications that improve the agreement for the 60Ti excitation energies, these contributions change to 36% of $2p2h$ and 33% of $4p4h$ and 21% of $2p2h$, 39% of $4p4h$ for the ground and 2$^+_1$ states, respectively. Confirmation of the size of the $N=40$ shell gap and of the role of multi-particle multi-hole configurations beyond 60Ti will likely only come with the next generation of experiments measuring properties of nuclei even closer to 60Ca combined with advances in nuclear theory such as improved effective shell-model interactions built on those developed currently.

In summary, first structural information on 60Ti was obtained by taking advantage of the spectral quality and the γ-ray coincidence efficiency of GRETINA. The first 2$^+_1$ state of 60Ti, at an energy of 850(5) keV, is located at almost twice the excitation energy of the corresponding 2$^+_1$ level in the $N=38$ isotope 62Cr, herewith signaling a steep decrease in collectivity with Z and yet another sudden structural change near $N=40$. For 58Ti, can-
didates for the \(4^+_1\) and \(6^+_1\) levels are reported. The data on \(^{60}\)Ti are consistent with a shell-model prediction using the LNPS effective interaction which allows for the largest neutron model space yet, while they disagree with calculations restricted to the neutron \(fp\) shell. The \(^{60}\)Ti excitation energies were shown to be sensitive to the details of the effective interaction, with significant impact on the particle-hole contents of the state’s wave functions. This in turn drives the nuclear structure chain.

GRETINA was funded by the DOE, Office of Science. Operation of the array at NSCL was supported by NSF under Cooperative Agreement PHY-1102511 (NSCL) and DOE under Grant DE-AC02-05CH11231 (LBNL). We further acknowledge DOE Contract DE-AC02-06CH11357 (ANL) and Grant DE-FG02-05CH11231 (LBNL). We further acknowledge support of the Science and Technology Facilities Council (UK) grant ST/J000051. We are grateful for Augusto Macchiavelli’s support of the GRETINA campaign at NSCL.

1. T. Otsuka, Phys. Scr. T152, 014007 (2013).
2. O. Sorlin and M.-G. Porquet, Prog. Part. Nucl. Phys. 61, 602 (2008).
3. A. Gade and T. Glasmacher, Prog. Part. Nucl. Phys. 60, 161 (2008).
4. R. V. F. Janssens, Nature 459, 1069 (2009).
5. O. Sorlin et al., Eur. Phys. J. A 16, 55 (2003).
6. E. Caurier et al., Eur. Phys. J. A 15, 145 (2002).
7. P. Adrich et al., Phys. Rev. C 77, 054306 (2008).
8. A. Gade et al., Phys. Rev. C 81, 051304(R) (2010).
9. M. P. Carpenter, R. V. F. Janssens, and S. Zhu, Phys. Rev. C 87, 041305(R) (2013).
10. J. I. Prisciandaro et al., Phys. Lett. B 510, 17 (2001); A. Gade et al., Phys. Rev. C 74, 021302(R) (2006); D.-C. Dinca et al., Phys. Rev. C 71, 041302(R) (2005).
11. R. V. F. Janssens et al., Phys. Lett. B 546, 55 (2002), S. N. Liddick et al., Phys. Rev. Lett. 92, 072502 (2004) and D. Steffen et al., Nature 52, 207 (2013).
12. T. Otsuka et al., Phys. Rev. Lett. 87, 082502 (2001).
13. T. Otsuka et al., Phys. Rev. Lett. 95, 232502 (2005).
14. O. B. Tarasov et al., Phys. Rev. C 80, 034609 (2009) and Phys. Rev. Lett. 102, 142501 (2009).
15. J. Meng, H. Toki, J. Y. Zeng, S. Q. Zhang, and S.-G. Zhou, Phys. Rev. C 65, 041302(R) (2001).
16. S. M. Lenzi, F. Nowacki, A. Poves, and K. Sieja Phys. Rev. C 82, 054301 (2010).
17. G. Hagen, M. Hjorth-Jensen, G. R. Jansen, R. Machleidt, and T. Papenbrock, Phys. Rev. Lett. 109, 032502 (2012).
18. J. D. Holt, T. Otsuka, A. Schwenk, and T. Suzuki, J. Phys. G: Nucl. Part. Phys. 39, 085111 (2012).
19. J. Erler et al., Nature 486, 509 (2012).
20. G. Hagen, P. Hagen, H.-W. Hammer, and L. Platter, Phys. Rev. Lett. 111, 132501 (2013).
21. S. Paschalis et al., Nucl. Instrum. Methods Phys. Res. A 709, 44 (2013).
22. D. J. Morrissey et al., Nucl. Instrum. Methods Phys. Res. B 204, 90 (2003).
23. D. Bazin et al., Nucl. Instrum. Methods Phys. Res. B 204, 629 (2003).
24. D. Weiszshaar et al., to be published.
25. N. Aoi et al., Nucl. Phys. A805, 400c (2008).
26. H. Suzuki et al., Phys. Rev. C 88, 024326 (2013).
27. M. Honma et al., Phys. Rev. C 65, 061301(R) (2002); Eur. Phys. J. A 25, s1, 499 (2005).
28. J. A. Tostevin, J. Phys. G: Nucl. Part. Phys. 25, 735 (1999) and P. G. Hansen and J. A. Tostevin, Annu. Rev. Nucl. Part. Sci. 53, 221 (2003).
29. UC Gretina G4T, L. A. Riley, Ursinus College, unpublished.
30. L. Guadetroy et al., Eur. Phys. J. A 23, 41 (2005).
31. A. Gade et al., Phys. Rev. C 77, 044306 (2008).
32. B. A. Brown, Prog. in Part. and Nucl. Phys. 47, 517 (2001).
33. B. A. Brown, Phys. Rev. Lett. 111, 232502 (2013).