Performance and reaction of faba bean genotypes to chocolate spot disease

M. M. F. Abdalla1, M. M. Shafik1, Heba A. M. A. Saleh2, M. A. Khater3* and N. A. Ghazy4

Abstract
Background: This study aimed to development new faba bean hybrids resistant to chocolate spot disease and using them in breeding programs. Six faba bean genotypes were crossed in a diallel system excluding reciprocals during three growing seasons of 2017/18, 2018/19 and 2019/20 growing seasons.

Results: Results scored high variability among genotypes (parents and their crosses) in most studied characters. All characters were affected by inbreeding and most crosses recorded high significant in all characters especially the positive significance of resistance to chocolate spot disease (gain) was 5 for all studied resistance characters.

Conclusions: All studied plant growth and yield characters were affected negatively by chocolate spot disease. Moreover, it can be concluded that the commercial cost of producing hybrid seed can be reduced by growing \(F_1 \) or directly.

Keywords: Vicia faba, Botrytis fabae, Heterotic effects, Combining ability, Inbreeding effects, Correlation coefficients

Background
Faba bean (Vicia faba L.) is one of the most important food legumes in Egypt. It is a partially cross-pollinated crop and displays a considerable amount of heterosis with low inbreeding depression. The seed yields of faba bean are not stable, but it differs during seasons and locations, and these differences attributed to various biotic and abiotic stresses.

Chocolate spot disease is one of the biotic stresses, and it considers the most important fungal disease that caused by Botrytis fabae (Harrison 1988; Rhaiem et al. 2002; Abo-Hogazy et al. 2012). Moreover, it widely spread in the northern region of the Nile Delta of Egypt, where low temperature and high relative humidity and it reduced the yield by 22–25% (Khalil et al. 1993).

Several attempts were carried out to find out a way to minimize the effect of plant diseases on the yields. These include breeding for disease resistance (Khalil et al. 1993; Zaki 2010), fungicide control (Khaled et al. 1995), biological treatment (Mazen 2004), plant extracts, and agricultural practices (El-Sayed 2005). Induced resistance using biotic or abiotic agents to control Botrytis fabae was reported by Ismail et al. (2007). More recently, biotechnology has been used as a tool to increase field crop productivities in contrast to sustainable agriculture (Tecson 2002). This study aimed to explore new hybrids resistant to foliar diseases, especially chocolate spots (Botrytis fabae), and used them in breeding programs.

Methods
The field experiments of the present study were carried out at Gemmiza Research Station, Agriculture Research Center (ARC), Egypt, during three successive seasons 2017/18, 2018/19, and 2019/20.

Six widely diverse faba bean (Vicia faba L.) genotypes were used as parents in this study. A brief description of these genotypes is presented in Table 1. Moreover, these genotypes were obtained from Agricultural Research Center, Giza, Egypt.

The six parents were hybridized to secure \(F_1 \) hybrid seeds in the 2017/18 season. In the 2018/19 season, the six parents re-hybridized again, and their 15 \(F_1 \) hybrids
were grown in a randomized complete block design with three replications under insect-free cage.

In the 2019/20 season, under insect-free cage, parents, F_1 hybrids, and F_2 hybrids were artificially inoculated with Botrytis fabae fungus that purified and identified according to Morgan (1971).

Disease parameters

The first symptoms of the chocolate spot were started after inoculation with two weeks, and then chocolate spot severity was assessed two times at 10-day and 20-day on randomly selected parents, F_1 and F_2 plants using a 1–9 rating scale (Bernier et al. 1984). Disease severity scores were converted to percentage severity index (PSI) for analysis using the following formula (Kora et al. 2017).

\[
\text{Disease severity} \% = \frac{n \times v}{9N} \times 100
\]

where $n =$ Number of plants in each category; $v =$ Numerical values of symptoms category; $N =$ Total number of plants; $9 =$ maximum numerical value of symptom category.

Statistical analysis

A randomized complete blocks design (RCBD) with three replications was used, and recorded data were analyzed using Griffing (1956) analysis, method 2, model 1.

Significant differences among genotypes were tested by regular analysis of variance of the RCBD according to Gomez and Gomez (1976).

Heterosis for each trait computed as parents vs. hybrids sum of squares. Heterosis was also determined according to Paschal and Wilcox (1975) for individual crosses as the percentage deviation of F_1 means performance from the mid and better parent means (heterobeltiosis). Data were analyzed according to Griffing’s (1956). Moreover, ASSISTAT program. Silva and Azevedo (2016a, b) was used to calculate differences between means that tested using LSD, the significance of mean square, correlation coefficient, and inbreeding effects.

Results

1. There was a highly significant variation between genotypes (parents, F_1’s, F_2’s) for most studied characters, indicating genetic variability of parents for most traits (Table 2).
2. Mean performance of parents along with F_1’s and F_2’s is illustrated in Table 3. There was wide variability between parents in all studied characters.
3. The genotype Nubaria 1 scored the highest parent in several branches (1.87) and ranked the first in B. fabae resistance where it recorded the highest values in disease parameters (11, 25, 20, and 4.13) in INF$_1$, INF$_2$, DS$_1$, and DS$_2$, respectively. Meanwhile, both Cairo 33 and Camilina were the most susceptible genotypes for B. fabae.
4. There were highly significant differences among all obtained crosses, where it differed in their behaviors in different studied traits in both generations (Table 3). Whereas, the cross $P_1 \times P_1$ was one of the best crosses in PH character in both generations and yield characters (both SY and 100-SW) in F_2 generation.
5. However, it was noticed that some crosses behaved similar to the resistant parent, some others behaved similar to the susceptible parent, but most of the crosses behaved intermediate, so that, there was high resistance to chocolate spot disease in the crosses where P_1 (Nubaria 1) was used as a parent, i.e., $(P_3 \times P_1)$, $(P_2 \times P_1)$, $(P_4 \times P_1)$, $(P_5 \times P_1)$ and $(P_6 \times P_1)$, and $(P_3 \times P_2)$.
6. Highly significant heterotic effects over mid-parent were detected for all studied traits in all 15 crosses, except $(P_5 \times P_2)$ in PH, $(P_2 \times P_1)$, $(P_3 \times P_1)$, $(P_4 \times P_1)$, $(P_5 \times P_1)$ and $(P_4 \times P_2)$ in 100-SW and $(P_6 \times P_2)$ in both 100-SW and SY were insignificant. Moreover, for chocolate spot disease, the crosses $(P_2 \times P_1)$ and $(P_6 \times P_1)$ in INF$_1$ and crosses $(P_6 \times P_1)$ and $(P_4 \times P_2)$ in INF$_2$ were insignificant, and all remaining crosses were highly significant (Table 4).

Table 1: A brief description of the six parental genotypes in the present study

Name	Type	Pedigree	Characteristics
Nubaria 1 (P_1)	Major	Selected individually from Spanish variety	Resistant to foliar diseases, large seeds
Giza 843 (P_1)	Equina	Selected individually from Rebaya 40 (FCRI)	Resistant to foliar diseases
Sakha 4 (P_1)	Equina	81/35/2001 (Sakha 4) derived from Sakha 1 × Giza 3**	Resistant to foliar diseases, especially chocolate spot (Botrytis fabae)
Camilina (P_4)	Minor	Introduced from Ethiopia	Small seeds, susceptible to foliar diseases
Mor 1 (P_4)	Equina	Derived from Giza 3 × 123A/45/76 (FCRI; ARC, Egypt)	Susceptible to foliar diseases
Cairo 33 (P_3)	Equina	Selected individually from breeding program (FACU)	Susceptible to foliar diseases

FCRI Field Crops Research Institute, *FACU* Faculty of Agriculture, Cairo University (see Abdalla 2015 for details) (*see Muratuva 1931*)
7. Highly significant heterotic effects over better parent in all studied traits in all 15 crosses, except ($P_6 \times P_3$) in PH, ($P_6 \times P_1$, $P_5 \times P_1$, $P_5 \times P_2$, and $P_6 \times P_3$) in 100-SW and both ($P_4 \times P_5$ and, $P_6 \times P_4$) in both 100-SW and SP were insignificant. Moreover, for chocolate spot disease, the crosses ($P_3 \times P_3$ and $P_6 \times P_3$), ($P_4 \times P_1$ and $P_5 \times P_3$) and ($P_5 \times P_3$) in INF1, INF2 and DS2, respectively, were insignificant, and all remaining crosses were highly significant.

8. Studied parents scored significant GCA effects, where positive significance was desirable in some traits (plant height and yield index traits), while negative significance is desirable in resistance of chocolate spot disease parameters (Table 5).

9. There were three parents (Nubaria 1, Giza 843, and Sakha 4) who possessed highly significant negative GCA for resistance to chocolate spot disease parameters. Whereas, the three parents showed desirable GCA effects for DS1 (%) in both generations, Nubaria1 possessed desirable GCA effects for both DS1 (%) in both generations, INF1 and INF2 in F1 and F2, respectively, and Giza 843 had the desirable GCA for DS1 (%) in F2 only, therefore, these parents could be considered a good combiner for resistance to foliar chocolate spot disease (Table 5).

10. SCA effects varied in different cross combinations for the studied characters (Table 6). Concerning on PP, SP, and SY characters, crosses ($P_3 \times P_1$, $P_4 \times P_2$, and $P_5 \times P_3$) possessed significant positive SCA effects in both F_1 generations, in contrast, cross ($P_4 \times P_1$) showed significant positive SCA effects in PP and SY in both F_1 generations.

11. Concerning to resistance of chocolate spot disease (INF1, INF2, DS1 and DS2), results in Table 6 illustrated that there were five crosses out of 15 ($P_3 \times P_1$, $P_6 \times P_2$, $P_5 \times P_4$, $P_6 \times P_4$ and $P_6 \times P_3$) recorded negative significant SCA effects in both F_1 generation in both DS1 and DS2; moreover, the cross ($P_3 \times P_2$) showed negative significant SCA effects in both F_1 in INF1 and both DS1, and DS2, While crosses ($P_3 \times P_1$, $P_6 \times P_2$, $P_5 \times P_4$, $P_6 \times P_4$, and $P_6 \times P_3$) showed negative significant SCA desirable effects in F_1 only in both INF1 and INF2, and cross ($P_4 \times P_1$).

12. All characters were affected by inbreeding, and most crosses recorded high significance in all characters. Moreover, the positive significance of resistance to chocolate spot disease (gain) was 5 for all studied resistance characters (Table 7).

13. The results of correlation coefficients showed that there was a clear correlation (positive or negative) between all studied traits. Moreover, the correlation coefficients between many characters did not
Table 3 Mean performance of faba bean generations (parents, F₁ and F₂) for various studied traits

Parents and hybrids	PH (cm)	BP F₁ F₂	PP F₁ F₂	SP F₁ F₂	SY (g) F₁ F₂	100-SW (g) F₁ F₂
Nubaria 1 (P₁)	72.67	1.87	5.00	10.23	6.38	62.91
Giza 843 (P₂)	86.33	1.53	6.00	13.53	8.55	63.74
Sakha 4 (P₃)	70.33	1.60	7.23	18.73	7.06	52.98
Camilina (P₄)	80.00	1.83	5.17	12.97	4.16	32.58
Misr 1 (P₅)	91.67	1.60	5.37	10.87	5.87	53.14
Cairo 33 (P₆)	76.00	1.07	3.57	7.67	6.45	50.28
P₂ × P₁	66.33	76.00	1.72	2.50	8.07	12.33
P₃ × P₁	95.33	102.00	1.40	2.60	8.60	10.40
P₄ × P₁	62.67	63.67	1.53	2.47	8.20	13.27
P₅ × P₁	95.67	94.00	2.47	2.10	12.40	11.30
P₆ × P₁	70.33	93.67	1.37	2.47	7.60	15.37
P₂ × P₂	95.00	74.00	1.77	2.20	9.80	7.40
P₃ × P₂	66.67	91.33	1.72	1.50	12.57	12.00
P₄ × P₂	87.33	105.33	1.57	2.10	7.60	18.60
P₅ × P₂	77.33	83.33	2.30	1.93	15.37	12.40
P₆ × P₂	65.33	86.67	1.47	1.49	5.57	8.50
P₂ × P₃	83.33	85.67	2.40	2.87	12.53	10.37
P₃ × P₃	55.67	87.33	1.83	1.53	6.80	8.30
P₄ × P₄	91.00	90.33	2.03	2.13	12.60	7.53
P₅ × P₅	64.33	68.00	1.97	2.40	6.47	8.27
P₆ × P₆	80.67	89.00	1.90	1.67	8.47	5.87
Mean	77.13	86.02	1.83	2.13	9.51	10.79

Parents and hybrids	INF₁ F₁	INF₁ F₂	INF₂ F₁	INF₂ F₂	DS₁ (%) F₁ F₂	DS₂ (%) F₁ F₂		
Nubaria 1 (P₁)	11.00	25.00	20.00	41.3				
Giza 843 (P₂)	26.67	31.67	35.00	6.30				
Sakha 4 (P₃)	20.00	33.33	70.00	12.27				
Camilina (P₄)	41.67	48.33	83.33	59.83				
Misr 1 (P₅)	25.00	30.00	25.00	41.53				
Cairo 33 (P₆)	43.33	46.67	40.00	62.60				
P₂ × P₁	18.33	20.00	30.67	24.33				
P₃ × P₁	10.00	21.67	15.67	27.67				
P₄ × P₁	35.00	23.33	45.00	32.67				
P₅ × P₁	30.00	35.00	41.00	37.00				
P₆ × P₁	26.67	36.67	35.67	45.00				
P₂ × P₂	16.33	11.67	24.67	21.00				
P₃ × P₂	28.33	33.33	40.67	46.67				
P₄ × P₂	35.00	25.00	40.33	34.00				
P₅ × P₂	20.00	33.33	30.00	40.67				
P₆ × P₂	43.33	30.00	51.67	36.00				
P₂ × P₃	30.00	33.33	35.00	45.00				
P₃ × P₃	28.33	30.00	34.67	45.33				
P₄ × P₄	26.67	31.67	34.33	41.00				
P₅ × P₅	26.67	40.00	35.33	51.33				
P₆ × P₆	43.33	30.00	51.67	44.33				
Mean	27.87	29.00	36.42	38.13	22.56	22.99	23.10	23.36
reach the level of significance, and other characters reached not only significant but also highly significant (Table 8).

14. There was a significant positive correlation between yield characters and all plant growth traits. On the other hand, there was a negative correlation between all studied plant growth and yield characters with chocolate spot disease-resistant criteria.
Table 5 Estimates of the general combining ability effects (gij) of parental lines

Parents	PH (cm)	BP	PP	SP	SY	100-SW	INF1	INF2	DS1 (%)	DS2 (%)
	F1	F1	F1	F1	F1	F1	F1	F1	F1	F1
Nubaria 1 (P1)	−1.13	−0.01	−0.43**	−0.73	−0.73	0.16	−6.65*	−4.47	−8.07**	−8.86**
Giza 843 (P2)	2.58**	−0.02	0.89**	0.84	1.72**	5.19	−2.99	−3.01	−6.15	−9.73**
Sakha 4 (P3)	−1.17	−0.04	−0.07	−2.37	0.76	2.52	−3.40	−3.18	7.43**	−3.02**
Camilina (P4)	−4.33**	0.01	−0.32**	−1.54	−1.51	−8.32	6.01*	6.24**	12.30**	10.86**
Misr 1 (P5)	9.58**	0.16**	0.75**	2.21	1.48	4.99	2.47	1.07	−3.32	4.16**
Cairo 33 (P6)	−5.54**	−0.10	−0.81**	1.58	−1.71**	−4.54	4.56	3.36	−2.28	6.59**
S.E. gi	0.34	0.017	0.02	0.46	0.23	1.48	0.78	0.75	−8.07	0.36
S.E. (gi−gj)	0.47	0.024	0.02	0.66	0.33	2.09	1.10	1.06	−6.15	0.50

* and ** indicate significant and highly significant at 0.05 and 0.01 level of probability, respectively

Table 6 Estimates of the specific combining ability effects (Sij) of diallel crosses for studied traits of F1 generation

Cross	PH (cm)	BP	PP	SP	SY	100-SW	INF1	INF2	DS1 (%)	DS2 (%)
	F1	F1	F1	F1	F1	F1	F1	F1	F1	F1
P2 × P1	−12.94**	0.03	−0.72**	−2.46	−1.43	−0.33	0.08	1.90	−8.57**	0.83
P1 × P1	19.82**	−0.32**	0.77**	5.51**	2.53**	−4.45	−7.83**	−12.93**	−20.49**	−6.07**
P2 × P2	−9.60**	−0.23**	0.62**	−2.31	1.62**	1.93	7.75**	6.98**	−1.78	6.14**
P3 × P1	9.40**	0.56**	3.75**	7.12**	4.37**	1.88	6.29**	8.15**	2.26	−2.72**
P3 × P2	0.81	−0.28**	0.51**	3.40**	−1.26	−13.09**	0.88	0.52	14.55**	8.88**
P3 × P3	15.77**	0.06	0.65**	2.42	8.84**	25.53**	−5.17	−5.19**	−26.74**	−7.14**
P4 × P1	−9.39**	−0.02	3.67**	8.54**	2.67**	−5.06	−2.58	1.19	9.70**	−0.49
P4 × P2	−2.64**	−0.33**	−2.37**	−2.70	−1.43	−0.20	7.63**	6.02**	20.35**	20.42**
P4 × P3	2.48**	0.66**	6.96**	13.94**	2.64**	−15.17**	−9.57**	−6.30**	−11.70**	−14.35**
P5 × P1	−6.98**	−0.27**	−2.37**	−1.50	−1.64**	−1.96	12.83**	13.26**	−3.95	14.44**
P5 × P2	−2.80**	0.52**	3.52**	5.03**	3.71**	−0.13	0.34	0.86	6.76**	14.28**
P5 × P3	−15.44**	0.21**	−0.65**	−4.63**	−3.01**	−3.55	−0.71	−1.77	−7.61**	−1.36
P6 × P1	7.94**	0.11	3.84**	7.11**	5.06**	8.30	−9.71**	−9.23**	−25.86**	−25.97**
P6 × P2	−3.60**	0.30**	−0.73**	−2.71	−0.56	9.45	−11.79**	−10.52**	−17.57**	−19.57**
P6 × P3	−1.19	0.09	0.20**	3.05	3.96**	14.95**	8.42**	10.98**	−8.53**	−21.67**
S.E. Sij	0.84	0.04	0.04	1.16	0.58	3.70	1.95	1.88	−8.57**	0.89
S.E. (Sij−Sij)	0.95	0.05	0.04	1.31	0.66	4.17	2.20	2.12	−20.49**	1.01

* and ** indicate significant and highly significant at 0.05 and 0.01 level of probability, respectively

Discussion

1. The highly significant differences obtained among faba bean genotypes in all studied characters were substantial evidence for the presence of an adequate amount of genetic variability valid for further biometrical assessments. Abo-Mostafa et al. (2014), Abdalla et al. (2015, 2017), Jalal et al. (2016), Abou-Zaid et al. (2017), Hamza and Khalifa (2017) and El-Abssi et al. (2019).

2. The findings were led to suggesting that these genotypes carry genes for resistance to chocolate spot disease, and these genes may have come from their parents (Nubaria 1 and Giza 843) that are resistant to B. fabae according to their pedigree (Table 1). Similar results have been reported for growth-related traits and yield and its components in faba bean (El-Absawy et al. 2012; Abdellatif et al. 2012; Abo-Mostafa et al. 2014; Beyene et al. 2016), as well as for disease resistance traits (Zakaria et al. 2015; Eldemery et al. 2016; El-Rodeny et al. 2017, 2020; Belal et al. 2018).

3. The results of heterosis in this study were similar to those reported by Abdalla et al. (2001), Attia et al. (2001), Attia and Salem (2006), El-Hady et al. (2006), Abou-Zaid et al. (2017; Abou Ziedet al. 2019) and El-Rodeny et al. (2017, 2020).
4. Moreover, from all previous results, attention should be drawn to positive heterotic effects over mid and better parent because positive effects are more favorable in these morphological traits (PH, BP, PP, SP, SY, and 100-SW). On the contrary, negative effects were found which are more favorable in resistance of chocolate spot disease parameters. Pronounced and favorable heterosis were obtained by several authors for faba bean traits which varied according to the crossed combinations and traits (Abd El-Mohsen 2004; Ahmed and Kambal 2005; Darwish et al. 2005; Kunkaew et al. 2006; El-Hady et al. 2007; Gasim and Link 2007; Tantawy et al. 2007; Link et al. 2008; Soliman et al. 2008; Algamdi 2009; Abd El-Aty et al. 2018).

5. Therefore, the superior faba bean parents in their GCA effects (significant and positive) indicated that these parents are the best combiners for these traits and favorable for inclusion in the production of synthetic cultivars. These results are in accordance with those obtained by Attia and Salem (2006), Farag (2007), Abdalla et al. (2011a; b, c), Ashrei et al. (2014), El-Banna et al. (2014), Abdalla et al. (2015, 2017) and Abd El-Aty et al. (2018).

6. In a cross showing high SCA, it might include only one good combiner; such combinations would show desirable transgressive segregations, providing that the additive gene system present in the crosses are acting in the same direction to reduce un-desirable plant characters (Algamdi 2009; El-Banna et al. 2014; Abdalla et al. 2015, 2017).

Table 7

Cross	PH (cm)	BP	PP	SP	SY	100-SW	INF1	INF2	DS1(%)	DS2(%)
P6 × P2	−10.33*	12.11*	30.70*	31.37*	37.71*	9.22*	30.76*	14.21*	48.89*	24.88*
P5 × P4	−5.71*	−21.83*	−27.82*	−25.54*	−0.21*	−49.98*	−45.29*	−46.15*	−39.97*	
P6 × P1	−3.08**									
P1 × P1	−6.99**	−85.71*	−20.93*	−2.85*	−71.02*	−65.08*	−116.70*	−76.58*	−37.50*	−26.02*
P6 × P5	−33.19**	−80.29*	−102.24*	−27.46*	−76.60*	−38.07*	−37.50*	−26.16*	−5.00*	−25.00*
P3 × P5	22.11**	−24.29*	24.49**	35.60**	40.63**	8.71**	28.54**	14.88**	29.99**	31.51**
P6 × P2	−36.99**	13.30*	4.54	−2.42*	−23.26*	−19.95*	−17.65*	−14.75*	−29.87*	−19.08*
P3 × P2	−20.61**	−33.76*	−144.74*	−81.58*	−76.04*	3.46**	28.57**	15.70**	45.83**	35.71**
P6 × P3	−7.76**	16.09**	19.32**	34.39**	7.02**	−41.64**	−66.65**	−35.57**	−59.26**	−71.73**
P4 × P3	−32.67**	−1.36	−52.60**	−17.13**	−56.82**	−26.70**	30.76**	30.33**	33.33**	36.71**
P5 × P3	−2.81**	−19.58**	17.24**	23.57**	−14.35**	−50.45**	−11.10**	−28.57**	−12.50**	−13.24**
P6 × P3	−56.87**	16.39**	−22.06**	−57.19**	−87.35**	−19.91**	−5.90**	−30.75**	−37.50**	−26.09**
P3 × P4	0.74**	−4.93*	40.24**	33.70**	12.62**	−31.11**	−18.75**	−19.43**	−62.17**	−28.41**
P6 × P4	−5.71**	−21.83*	−27.82*	−25.54*	−0.21*	−49.98*	−45.29**	−46.15**	−39.97**	
P6 × P3	−10.33**	12.11**	30.70**	31.37**	37.71**	9.22**	30.76**	14.21**	48.89**	24.88**

* and ** indicate significant and highly significant at 0.05 and 0.01 level of probability, respectively.

Table 8

PH (cm)	BP	PP	SP	SY	100-SW	INF1	INF2	DS1(%)	DS2(%)	
PH	1.00									
BP	0.15	1.00								
PP	0.36*	0.57**	1.00							
SP	0.43**	0.37*	0.89**	1.00						
SY	0.60**	0.49**	0.69**	0.78**	1.00					
100-SW	0.43**	0.42*	0.09	0.12	0.67**	1.00				
INF1	−0.05	−0.10	−0.11	−0.17	−0.19	−0.26	1.00			
INF2	−0.12	−0.09	−0.10	−0.14	−0.19	−0.23	0.93**	1.00		
DS1	−0.18	−0.20	−0.27	−0.26	−0.41*	−0.39*	0.51**	1.00		
DS2	−0.09	−0.18	−0.19	−0.24	−0.27	−0.36*	0.73**	0.65**	0.71**	1.00
Conclusions

- There were three parents (Nubaria 1, Giza 843, and Sakha 4) who possessed highly significant negative GCA for resistance to chocolate spot disease parameters. Whereas, the three parents showed desirable GCA effects for DS2 (%) in both generations, and Nubaria1 possessed desirable GCA effects for both DS2 (%) in both generations, INF1 and INF2 in F1 and F2, respectively, and Giza 843 had the desirable GCA for DS1 (%) in F2 only; therefore these parents could be considered a good combiner for resistance to foliar chocolate spot disease.

- From the heterosis results (Table 4) and inbreeding effects (Table 7), it may be concluded that both additive and non-additive (dominance and epistasis) gene action are involved in the inheritance of different characters.

Abbreviations

PH: Plant height; BP: Branches/plant; PP: Pods/plant; SP: Seeds/plant; SY: Seed yield (g)/plant; 100 SW: 100 Seed weight (g) (seed index); INF1: Infection (%) after 10 days; DS2: Disease severity (%) after 20 days; H: Heterosis; Hb: Heterobeltiosis; GCA: General combining ability; SCA: Specific combining ability.

Acknowledgements

Not applicable.

Other personal or clinical details

Not applicable.

Authors’ contributions

AMMF, MMS, and HAMAS performed the field experiments. MAK performed the statistical analysis of recorded data. NAG performed the artificial inoculation with Botrytis fabae fungus and purified it. All authors read and approved the final manuscript.

Funding

This study was funded by the authors (Abdalla M. M. F., M. M. Shafik, Heba A. M. A. Saleh and M. A. Khater).

Availability of data and materials

The participants declare that the experimental data and material are available.

Declarations

Ethics approval and consent to participate

Not applicable.

Consent for publication

The participants declare that the work has been consented for publication.

Competing interests

The participants declare that they have no competing interests.

Author details

1 Agronomy Department, Faculty of Agriculture, Cairo University, Giza, Egypt. 2 Field Crops Research Institute, ARC, Giza, Egypt. 3 Botany Department, National Research Centre, Giza, Egypt. *Plant Pathology Research Institute, ARC, Giza, Egypt.

References

Abd El-Aty MSG, Mahmoud AE, Tharwat MA, Abd El-Rahaman IAE (2018) Estimation of heterosis combining and ability in faba bean (Vicia faba L.) by line × tester technique. Ann Agric Sci Mothshor 56(4):975–986

Abd El-Mohsen MI (2004) Heterosis and combining ability in faba bean for some quantitative characters. Egypt J Plant Breed 8:161–171

Abdalla MMF (2015) Investigations on faba beans, Vicia faba L. 35. Cairo 33, a new variety with colourless hilum and tolerance to Orobanche. Egypt J Plant Breed 19(2):233–245

Abdalla MMF, Danish DS, El-Hadyand MM, El-Harty EH (2001) Investigations on faba bean (Vicia faba L.) 16-F, and F2, diallele hybrids with reciprocals among five parents. Egypt J Plant Breed 5:155–179

Abdalla MMF, Shafik MM, El-Emarn EAA, Abd El-Wahab MWH (2011a) Investigations on faba bean, Vicia faba L. 27. Performance and breeding parameters of six parents and their hybrids. Egypt J Plant Breed 15(4):89–103

Abdalla MMF, Shafik MM, El-Emarn EAA, Abd El-Wahab MWH (2011b) Performance of five parents, their diallel and reciprocal hybrids, heterosis and inbreeding effects. Egypt J Plant Breed 15(5):1–24

Abdalla MMF, Shafik MM, Attia SM, Hend AG (2011c) Investigations on faba bean, Vicia faba L. 26-Genetic analysis of earliness characters and yield components. Egypt J Plant Breed 13(3):71–83

Abdalla MMF, Shafik MM, Abd El-Mohsen MI, Abo-Hegazy SRE, Saleh HAMA (2015) Investigation on faba beans, Vicia faba L. 36. Heterosis, inbreeding effects, GCA and SCA of diallel crosses of spp. Pasjugga and Eu-faba: J Am Sci 11(6):1–7

Abdalla MMF, Shafik MM, Attia SM, Ghannam HA (2017) Combining ability, heterosis and inbreeding effects in faba bean (Vicia faba L.). J Exp Agric Int 15(5):1–13

Abdelatif KE, El-Absawy EA, Zakaria AM (2012) Drought stress tolerance of faba bean as studied by morphological traits and seed storage protein pattern. J Plant Stud 1:2

Abdalla MMF, Shafik MM, Attia SM, Ghannam HA (2017) Combining ability, heterosis and inbreeding effects in Faba Bean (Vicia faba L.). J Exp Agric Int 15(5):1–13

Abou-Zied AA, El-Gendy HA (2019) Estimation of gene effect for yield, yield components and foliar diseases of two faba bean hybrids at Nubaria Research Centre, Giza, Egypt. 4 Plant Pathology Research Institute, ARC, Giza, Egypt.}

Received: 26 March 2021 Accepted: 6 September 2021

Published online: 17 September 2021
Benmier CC, Hanounik SB, Hussein MM, Mohamed HA (1984) Field manual of common faba bean diseases in Nile Valley. Information Bulletin No. 3. ICARDA, P.O. Box 5466, Aleppo
Beyene AF, Derera J, Sibuya J, Fike A (2016) Gene action determining grain yield and chocolate spot (Botrytis fabae) resistance in faba bean. Euphytica 207:293–304
Darwish DS, Abdalla MMF, El-Hady MM, El-Emam S (2005) Investigations on faba beans, Vicia faba L. 19-Diallel and triallelmatings using five parents. Proceedings of 4th plant breeding conference. March 5 (Suez Canal University). Egypt J Plant Breed 9(1):197–208
El-Abassy EA, Zakarna AM, AbdellatifKF (2012) Determination of genetic diversity of some faba bean (Vicia faba L) varieties using morphological traits and molecular markers. Minufiya J Agric Res 37(4):843–853.
El-Abssi MG, Rabi HA, Awaad HA, Qabil N (2019) Performance and gene action for earliness, yield and chocolate spot disease of faba bean. Zagazig J Agric Res 46(6A):1825–1834
El-Banna MN, Mansour SH, Nasar MAA, Ibrahim RM (2014) Genetic analysis of yield, its components and earliness in some faba bean (Vicia faba L.) crosses. Middle East J Agric Res 3(4):955–961
Eldemery SMM, AbdellatifKF, El-Abassy EA, Emara HA (2016) Gene expression induced in faba bean (Vicia faba L.) by (Orobanche crenata) and its impact on the field level. Egypt J Genet Cytol 45(2):279–295
El-Hady MM, Sabah M, Atta AM, El-Galaly O, Salem MM (2006) Heterosis and combining ability analysis of some faba bean genotypes. J Agric Res Tanta Univ 32(1):134–148
El-Hady MM, Rizk AM, Omar MM, Ragheb SB (2012) Determination of genetic divergence among some faba bean (Vicia faba L.) genotypes and their crosses. Ann Agric Sci Tanta Univ 32(1):134–148
Farag ST (2007) Relative importance of genetic variance for improving broad bean (Vicia faba L.) Egypt. J Plant Breed 11(1):301–315
Gassim S, Link W (2007) Agronomic performance and the effect of self-fertilization on German winter faba bean. J Cent Eur Agric 8:121–127
Gomez AK, Gomez AA (1976) Statistical procedures for agriculture research, 2nd edn. Wiley, New York
Griffing JB (1956) Concept of general and specific combining ability in relation to diallel crossing systems. Aust J Biol Sci 9:463–493
Hamza FEA, Khallifa GE (2017) The correlation and path coefficients analyses for yield and some yield components of faba bean (Vicia faba L.) genotypes in Northern Sudan. Nile J Agric Sci 2(1):52–63
Harrison JG (1988) The biology of Botrytis spp. on Vicia beans and chocolate spot disease: a review. Plant Pathol 37:168–201
Ismail AI, Mohamed MA, Mazen MM, Morsy KM (2007) Influence of biotic and abiotic inducers on chocolate spot disease of faba bean yield as well as some crop and technological parameters. Egypt J Appl Sci 22:103–420
Jalal OA, Anwar RA, Ribwar AM (2016) Comparative on yield and its components performance and correlation in some broad bean (Vicia faba L.) genotypes at Bakrajo, Sulaimani. Ame-Eurasian J Agric Environ Sci 16(3):635–640
Khaled AA, Abel El-Moity SMH, Omar SAM (1995) Chemical control of some faba bean disease with fungicides. Egypt J Agric Res 73:45–56
Khalil SA, El-Hady MM, Dissouky RF, Amer MI, Omer SA (1993) Breeding for high yielding ability with improved level of resistance to chocolate spot (Botrytis fabae) diseases in faba bean (Vicia faba L.). J Agric Sci Mansoura Univ 18(5):1315–1328
Kora D, Hussein T, Ahmed S (2017) Management of chocolate spot (Botrytis fabae L) on faba bean in Bale Highland’s, Ethiopia. J Plant Sci 5(4):120–129
Kunkawel W, Julsrigival S, Senthong C, Karladee D (2006) Estimation of heterosis and combining ability in azuki bean under highland growing condition in Thailand. Chiang Mai Univ J Sci:163–168
Link W, Balko-C, Stoddard FL (2008) Winter hardness in faba bean: physiology and breeding. Field Crops Res 115:287–296
Mazen MM (2004) Resistance induction against diseases of faba bean crop. Ph.D. thesis, Faculty of Agriculture, Suez Canal University, Egypt
Morgan DT (1971) Numerical taxonomy studies of the genus Botrytis. Trans Br Mycol Soc 6:327–333
Murutuva V (1931) Common beans (Vicia faba). Bull Appl Bot Genet Plant Breed Suppl 50:285
Paschal EN, Wilcox JR (1975) Heterosis and combining ability in exotic soybean germplasm. Crop Sci 5(2):1272–1301
Rhaem A, Chern M, Kharrat M, Cherni M, Harrabi M (2002) New faba bean genotypes resistant to chocolate spot caused by Botrytis fabae. Phytopathol Mediter 41:99–108
Silva FAS, Azevedo CAV (2016a) Comparison of means of agricultural experimentation data through different tests using the software Assistat. Afr J Agric Res 11(37):3527–3531
Silva FAS, Azevedo CAV (2016b) The Assistat Software Version 7.7 and its use in the analysis of experimental data. Afr J Agric Res 11(39):3733–3740
Soliman AO, Shaalaby TA, Khalil EM (2008) Heterosis and combining ability in triploid watermelon hybrids. J Agric Res Kafir El-Sheikh Univ 34(3):759–771
Tantawy DM, Khalid AGA, Hosseny MH (2007) Genetic studies for some agronomic characters in faba bean (Vicia faba L). Assiut J Agric Sci. 38(4):117–137
Teckson KM (2002) Crop biotechnology in the Philippines. Agric Biotechnol Netw: ABNO 79:1–7
Zakaria AM, El-Oikiah SAF, Eldemery SMM, Emara HA, El-Abassy ESA, AbdellatifKF (2015) Morphological, physiological, histological and biochemical characteristics of faba bean (Vicia faba L.) infected by Broomrape (Orobanche crenata). Kafir El-Sheikh J Agric Res 41(4):1073–1093
Zaki KL (2010) Evaluation of some faba bean genotypes for resistance to chocolate spot. Egypt J Phytopathol 38:25–43

Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.