Supplemental Material

Suppressor analysis uncovers that MAPs and microtubule dynamics balance with the Cut7/Kinesin-5 motor for mitotic spindle assembly in *Schizosaccharomyces pombe*

Masashi Yukawa, Yusuke Yamada and Takashi Toda

Supplemental Table S1: Fission yeast strains used in this study

Supplemental Figure S1: The positions of intragenic mutations and mutated tubulin genes that suppress *cut7-22*

Supplemental Figure S2: Proper localization of spindle midzone markers in *mal3* or *alp16* deleted cells

Supplemental Figure S3: Fluorescence intensities of GFP-Pkl1 in individual strains

Supplemental Figure S4: Fluorescence intensities of spindle microtubules and the γ-tubulin complex in *cut7-22* cells

Supplemental Figure S5: Fluorescence intensities of GFP-Klp2 and spindle microtubules in Pkl1-overproduced cells

Supplemental Figure S6: Fluorescence intensities of Msd1-GFP and Wdr8-GFP in *cut7-22* ts cells

Supplemental Figure S7: A microtubule-depolymerizing drug, MBC, renders *cut7Δ* cells viable

Supplemental Figure S8: TBZ ameliorates spindle structures in Pkl1-overproduced cells
Supplemental Table S1: Fission yeast strains used in this study

Strains	Genotypes	Figures used	Derivations
513	h⁻ leu1 ura4	1A, 1C-D, 4A, 5A-B, S1C, S7	Our lab stock
MY638	h⁻ cut7-22 ade6-210	1A, 1C-D, 4A	This study
YY60	h⁻ cut7-22 skf1-7 (pk11-E726D) ade6-210	1A	This study
YY03	h⁻ cut7-22 skf2-5 (wdr8-W399R) ade6-210	1A	This study
MY1515	h⁻ cut7-22 skf3-2 (msd1-L217FfsX4) ade6-210	1A	This study
MY1472	h⁻ cut7-22 skf4-1 kanR (nda3-G56D-kanR) ade6-210	1A	This study
YY66	h⁻ cut7-22 skf5-1 (atb2-G410A) ade6-210	1A	This study
YY61	h⁻ cut7-22 skf6-1 (mal3-K47KfsX4) ade6-210	1A	This study
YY147	h⁻ cut7-22 pkl1::natR leu1 ura4	1C	This study
MY942	h⁻ cut7-22 wdr8::natR ade6-210	1C	This study
MY598	h⁻ cut7-22 mds1::hphR leu1 ura4 ade6-210	1C	This study
YY183	h⁻ cut7-22 ath2::ura4 leu1 ura4 his2	1C	This study
YY214	h⁻ cut7-22 mat3::ura4 ura4	1C	This study
YY251	h⁻ cut7-22 alp16::ura4 leu1 ura4	1D	This study
YY163	h⁻ cut7-22 klp2::hphR leu1 ura4	1D	This study
YY177	h⁻ cut7-22 alp7::hphR leu1 ura4	1D	This study
MY1528	h⁻ cut7-22 alp14::kanR leu1 ura4	1D	This study
YY231	h⁻ cut7-22 dis1::hphR leu1 ura4	1D	This study
MY331	h⁻ kanR-GFP-alp4 aur1R-Pnda3-mCherry-atb2 leu1 ura4	1E-F, S4C-D	This study
MY652	h⁻ cut7-22 kanR-GFP-alp4 aur1R-Pnda3-mCherry-atb2 leu1 ura4	1E-F, 3A-C, S4A-D	This study
YY241	h⁻ cut7-22 mal3::kanR-GFP-alp4 aur1R-Pnda3-mCherry-atb2 leu1 ura4	1E-F, 3C	This study
YY271	h⁻ cut7-22 alp16::ura4 kanR-GFP-alp4 aur1R-Pnda3-mCherry-atb2 leu1 ura4	1E-F, 3C	This study
YY236	h⁻ cut7-22 pkl1::natR kanR-GFP-alp4 aur1R-Pnda3-mCherry-atb2 leu1 ura4 his2	1F, 3C	This study
MY1334	h⁻ cut7-22 wdr8::natR KanR-GFP-alp4 aur1R-Pnda3-mCherry-atb2 leu1 ura4	1F	This study
MY728	h⁻ cut7-22 mds1::natR KanR-GFP-alp4 aur1R-Pnda3-mCherry-atb2 leu1 ura4 ade6-210	1F	This study
MY1777	h⁻ cut7-22 nda3-G56D-kanR KanR-GFP-alp4 aur1R-Pnda3-mCherry-atb2 leu1 ura4	1F	This study
YY238	h⁻ cut7-22 klp2::hphR KanR-GFP-alp4 aur1R-Pnda3-mCherry-atb2 leu1 ura4 his2	1F, 3C	This study
MO51	h⁻ cut7-22 alp7::hphR KanR-GFP-alp4 aur1R-Pnda3-mCherry-atb2 leu1 ura4	1F	This study
MY1789	h⁻ cut7-22 alp14::hphR KanR-GFP-alp4 aur1R-Pnda3-mCherry-atb2 leu1 ura4 his2	1F	This study
MY1780	h⁻ cut7-22 dis1::hphR KanR-GFP-alp4 aur1R-Pnda3-mCherry-atb2 leu1 ura4	1F	This study
Reference	Description	Source	
-----------	-------------	--------	
MY1030	h^- kanR-Palp4-GFP-klp2 aur1R-Pnda3-mCherry-atb2 leu1 ura4	2A-B, 4B-C, This study	
MY1439	h^- mal3::ura4+ kanR-Palp4-GFP-klp2 aur1R-Pnda3-mCherry-atb2 leu1 ura4	2A-B, This study	
MY1458	h^- cut7-22 mal3::ura4+ kanR-Palp4-GFP-klp2 aur1R-Pnda3-mCherry-atb2 leu1 ura4	2B, 4B-C, This study	
MY1490	h^- cut7-22 mal3::ura4+ kanR-Palp4-GFP-klp2 aur1R-Pnda3-mCherry-atb2 leu1 ura4	2B, This study	
MY1492	h^- cut7-22 mal3::ura4+ kanR-Palp4-GFP-klp2 aur1R-Pnda3-mCherry-atb2 leu1 ura4	2B, This study	
MY1695	h^- leu1 ura4 [pREP41-GFP]	2C, 4E, This study	
MY1697	h^- leu1 ura4 [pREP41-GFP-klp2]	2C, 4E, This study	
MY1699	h^- cut7-22 leu1 ura4 his2 [pREP41-GFP]	2C, 4E, This study	
MY1701	h^- cut7-22 leu1 ura4 his2 [pREP41-GFP-klp2]	2C, 4E, This study	
MY1703	h^- cut7-22 mal3::ura4+ leu1 ura4 his2 [pREP41-GFP]	2C, This study	
MY1705	h^- cut7-22 mal3::ura4+ leu1 ura4 his2 [pREP41-GFP-klp2]	2C, This study	
MY1707	h^- cut7-22 alp16::ura4+ leu1 ura4 [pREP41-GFP]	2C, This study	
MY1709	h^- cut7-22 alp16::ura4+ leu1 ura4 [pREP41-GFP-klp2]	2C, This study	
MY844	h^- cut11-GFP-ura4+ kanR-GFP-klp4 aur1R-Pnda3-mCherry-atb2 leu1 ura4	3A-C, S4A-B, This study	
MY1008	h^- cut7-21 leu1 ura4	4A, Our lab stock	
MA2-3D	h^- cut7-23 leu1	4A, Our lab stock	
I1136	h^- cut7-24 leu1	4A, Our lab stock	
NK193	h^- cut7-446 leu1 his2	4A, Our lab stock	
MY858	h^- kanR-Palp4-GFP-klp1 aur1R-Pnda3-mCherry-atb2 leu1 ura4	4D, S3A-B, This study	
MY1482	h^- cut7-22 kanR-Palp4-GFP-klp1 aur1R-Pnda3-mCherry-atb2 leu1 ura4	4D, S3B, This study	
YY305	h^- leu1 ura4 [pREP41-GFP-klp1]	4E, This study	
YY308	h^- cut7-22 leu1 ura4 his2 [pREP41-GFP-klp1]	4E, This study	
MY990	h^- cut7::bleR pk11::natR leu1 ura4 his2	5A, This study	
MY1660	h^- cut7::bleR leu1 ura4? ura4? his2?	5B, S7, This study	
MY899	h^- cut7::bleR pk11::natR leu1 ura4	6A, This study	
CH61	h^- wdr8::kanR leu1 ura4	6A, Our lab stock	
MY1616	h^- skf4-1-kanR (nda3-G56D-kanR) cut7-GFP-HPHR leu1 ura4? ade6-210?	6A, This study	
MY1618	h^- skf4-2-kanR (nda3-Q334R-kanR) cut7-GFP-HPHR leu1 ura4? ade6-210?	6A, This study	
YY173	h^- atb2::ura4+ cut7-GFP-kanR leu1 ura4	6A, This study	
YY201	h^- mal3::ura4+ cut7-GFP-kanR leu1 ura4	6A, This study	
iHR2239	h^- alp16::kanR leu1 ura4	6A, Our lab stock	
MY986	h^- alp7::ura4+ leu1 ura4	6A, This study	
MY988	\(h^{-} \) alp14::kanR leu1 ura4	6A	This study
MY1006	\(h^{-} \) dis1::hphR leu1 ura4	6A	This study
YY68	\(h^{-} \) cut7-22, 68 ade6-210	S1A	This study
YY70	\(h^{-} \) cut7-22, 70 ade6-210	S1A	This study
YY71	\(h^{-} \) cut7-22, 71 ade6-210	S1A	This study
MT31	\(h^{-} \) mal3::kanR leu1 ura4	S1C	This study
MY1785	\(h^{-} \) skf4-1-kanR (nda3-G356D-kanR) leu1 ade6-210?	S1C	This study
MY1840	\(h^{-} \) skf5-1 (atb2-G410A) leu1 ade6-210	S1C	This study
MY1462	\(h^{-} \) klp9-GFP-kanR aur1R-Pnda3-mCherry-ath2 leu1 ura4	S2A, S2C	This study
MY1464	\(h^{-} \) mal3::ura4\(^{-}\) klp9-GFP-kanR aur1R-Pnda3-mCherry-ath2 leu1 ura4	S2A, S2C	This study
MY1792	\(h^{-} \) alp16::ura4\(^{-}\) klp9-GFP-kanR aur1R-Pnda3-mCherry-ath2 leu1 ura4	S2A, S2C	This study
MY1466	\(h^{-} \) asel1-GFP-kanR aur1R-Pnda3-mCherry-ath2 leu1 ura4 his2	S2B, S2D	This study
MY1469	\(h^{-} \) mal3::ura4\(^{-}\) asel1-GFP-kanR aur1R-Pnda3-mCherry-ath2 leu1 ura4 his2	S2B, S2D	This study
MY1796	\(h^{-} \) alp16::ura4\(^{-}\) asel1-GFP-kanR aur1R-Pnda3-mCherry-ath2 leu1 ura4	S2B, S2D	This study
MY1508	\(h^{-} \) alp16::ura4\(^{-}\) kanR-Palp4-GFP-pkl1 aur1R-Pnda3-mCherry-ath2 leu1 ura4	S3A-B	This study
MY1485	\(h^{-} \) cut7-22 mal3::ura4\(^{-}\) kanR-Palp4-GFP-pkl1 aur1R-Pnda3-mCherry-ath2 leu1 ura4	S3B	This study
MY1487	\(h^{-} \) cut7-22 alp16::ura4\(^{-}\) kanR-Palp4-GFP-pkl1 aur1R-Pnda3-mCherry-ath2 leu1 ura4	S3B	This study
MY1807	\(h^{-} \) msd1-GFP-kanR aur1R-Pnda3-mCherry-ath2 leu1 ura4	S3C, S6A	This study
MY1831	\(h^{-} \) alp16::ura4\(^{-}\) msd1-GFP-kanR aur1R-Pnda3-mCherry-ath2 leu1 ura4	S3C	This study
MY1809	\(h^{-} \) cut7-22 msd1-GFP-kanR aur1R-Pnda3-mCherry-ath2 leu1 ura4	S3C, S6A	This study
MY1834	\(h^{-} \) cut7-22 alp16::ura4\(^{-}\) msd1-GFP-kanR aur1R-Pnda3-mCherry-ath2 leu1 ura4	S3C	This study
MY195	\(h^{-} \) wdr8-GFP-kanR aur1R-Pnda3-mCherry-ath2 leu1 ura4	S3D, S6B	This study
MY1837	\(h^{-} \) alp16::ura4\(^{-}\) wdr8-GFP-kanR aur1::aur1R-Pnda3-mCherry-ath2 leu1 ura4	S3D	This study
MY1774	\(h^{-} \) cut7-22 wdr8-GFP-kanR aur1::aur1R-Pnda3-mCherry-ath2 leu1 ura4	S3D, S6B	This study
MY1828	\(h^{-} \) cut7-22 alp16::ura4\(^{-}\) wdr8-GFP-kanR aur1::aur1R-Pnda3-mCherry-ath2 leu1 ura4 [pREP41]	S3D	This study
MY1816	\(h^{-} \) kanR-Palp4-GFP-klp2 aur1R-Pnda3-mCherry-ath2 leu1 ura4 [pREP41]	S3D	This study
MY1819	\(h^{-} \) kanR-Palp4-GFP-klp2 aur1R-Pnda3-mCherry-ath2 leu1 ura4 [pREP41-pkl1]	S3D	This study
Strain	Genotype	Source	
--------	----------	--------	
YY309	h⁻ klp2::hphR cut12-GFP-ura4⁺ aur1R-Pnda3-mCherry-atb2 leu1 ura4 [pREP41-GFP]	S8 This study	
YY311	h⁻ klp2::hphR cut12-GFP-ura4⁺ aur1R-Pnda3-mCherry-atb2 leu1 ura4 [pREP41-GFP-pk11]	S8 This study	

*Strains were developed for this study unless otherwise specified.

his2=his2-245; leu1=leu1-32; ura4=ura4-D18.
Figure S1. Yukawa et al.

A

Genes	Groups	Alleles	Mutation sites
phlf	I	skf1-1	I36NfsX3
		skf1-2	H46X
		skf1-3	K468NfsX8
		skf1-4	K477N
		skf1-5	S562R
		skf1-6	H695Q
		skf1-7	E726D
wdr8	I	skf2-1	C75F
		skf2-2	W127X
		skf2-3	S254R
		skf2-4	T356I
		skf2-5	W399R
msd1	I	skf3-1	L358
		skf3-2	L217F/5xX4
nda3	II	skf4-1	G56D
		skf4-2	Q334R
atb2	II	skf5-1	Q410A
		skf5-2	K477fsX4

B

C

D

E
Figure S1. The positions of intragenic mutations and mutated tubulin genes that suppress *cut7-22*

(A) Mutation sites in intragenic suppressors of the *cut7-22* ts mutant. Overall domain structure of Cut7 are shown on the top: the N-terminal motor domain (blue), the medial stalk domain (gray) including multiple coiled-coil regions (CC) and the C-terminal region (yellow) containing the characteristic BimC. The positions of 3 intragenic mutations are also shown. (B) A summary table of *skf* mutant alleles and corresponding genes. Group I (*skf1-skf3*) shown in green consists of genes encoding the MWP complex, while Group II (*skf4-skf6*) shown in orange is composed of those encoding *nda3*, *atb2* and *mal3*. Mutation sites in individual alleles are also provided on the far right corner. X and fs stand for termination codons and frame-shift mutations, respectively. (C) Spot test. Indicated strains were spotted onto rich YE5S agar plates in the absence or presence of TBZ (15 μg/ml or 20 μg/ml) and incubated at 30°C for 3 d. 10-fold serial dilutions were performed in each spot. cell conc., cell concentration. (D) Mutation sites in *nda3/skf4* and *atb2/skf5*. Alignments of amino acid sequences corresponding to the regions surrounding mutated amino acid residues (marked with green columns) are also shown on the bottom. (E) 3D-simulation of the α-/β-tubulin heterodimer. The positions of the mutated amino acid residues in *nda3/skf4* and *atb2/skf5* are indicated.
Figure S2. Proper localization of spindle midzone markers in mal3 or alp16 deleted cells

(A, B) Representative images of Klp9-GFP (A) or Ase1-GFP (B). Wild-type, mal3Δ or alp16Δ cells containing mCherry-Atb2 and Klp9-GFP (A) or mCherry-Atb2 and Ase1-GFP (B) were grown at 27°C, and images of mitotic cells were taken. (C, D) Quantification of Klp9-GFP (C) or Ase1-GFP signal intensities (D). Fluorescence intensities of Klp9-GFP (C) or Ase1-GFP (D) on the spindle microtubule were measured. All p-values were obtained from the two-tailed unpaired Student’s t test. Data are presented as the means ± SE (≥ 21 cells). n.s., not significant.
Figure S3. Fluorescence intensities of GFP-Pkl1 in individual strains

(A) Representative images showing mitotic localization of GFP-Pkl1 at the SPB are presented in indicated cells. All strains contain GFP-Pkl1 and mCherry-Atb2. Cells were incubated at 27°C. Scale bar, 10 μm. (B-D) Quantification of GFP-Pkl1 (B), Msd1-GFP (C) or Wdr8-GFP (D) intensities at the mitotic SPB. Each cell was incubated at 27°C (B) or 36°C for 2 h (B-D), and the total values of GFP fluorescence intensities at the SPB were measured. The values of wild-type cells were set as 100% (27°C and 36°C each) and compared to those from other strains under the same condition. All p-values were obtained from the two-tailed unpaired Student’s t test. Data are presented as the means ± SE (n≥12). *, P < 0.05, ***, P < 0.001, n.s., not significant.
Figure S4. Yukawa et al.
Figure S4. Fluorescence intensities of spindle microtubules and the γ-tubulin complex in cut7-22 cells

(A) Comparison of intensities of preanaphase spindle microtubules (< 3 μm) between wild-type and cut7-22 cells in the same field. These two strains were mixed in the same culture, grown at 27°C, shifted to 36°C and further incubated for 2 h. While wild-type cells contain mCherry-Atb2 (MTs), Cut11-GFP (SPB/NE) and GFP-Alp4 (SPB), cut7-22 cells contain mCherry-Atb2 (MTs) and GFP-Alp4 (SPB). Images of mitotic cells were captured in the same field. Note that SPB signals are brighter in a wild-type cell (lower) than those in a cut7-22 cell (upper), as the former cell contains Cut11-GFP in addition to GFP-Alp4, thereby wild-type and cut7-22 cells precisely being assigned. Scale bar, 10 μm. (B) Quantification. Fluorescence intensities of spindle microtubules obtained in (A) were measured in each strain and plotted in relation to the spindle length. A vertical dotted line represents the spindle length (3 μm) at metaphase. Note that only cells that displayed bipolar (not monopolar) spindles were taken into account. (C) Distribution of GFP-Alp4 intensities. Wild-type or cut7-22 cells containing mCherry-Atb2 and GFP-Alp4 were grown at 27°C. A half of the cultures was shifted to 36°C, while the other half was kept at 27°C. After 2 h incubation, fluorescence intensities of GFP-Alp4 were measured in each strain and plotted in relation to the spindle length (dark- and light-gray circles, wild-type cells at 27°C or 36°C respectively; dark- and light-green circles, cut7-22 cells at 27°C or 36°C respectively). A vertical dotted line represents the spindle length (3 μm) at metaphase. Note that only cells that displayed bipolar (not monopolar) spindles were taken into account. (D) Quantification. Fluorescence intensities of GFP-Alp4 were measured in wild-type or cut7-22 cells that were incubated at either 27°C or 36°C. The values of wild-type cells incubated at 27°C or 36°C were each set as 100%, and compared to those of cut7-22 cells under the same condition. Data are presented as the means ± SE (n>30).
Figure S5. Fluorescence intensities of GFP-Klp2 and spindle microtubules in Pkl1-overproduced cells (A, B) Wild type cells containing GFP-Klp2 and mCherry-Atb2 were transformed with vector plasmids (vec.) or plasmids carrying the thiamine-repressible nmt41-pkl1" gene (pkl1"OE) and grown in the liquid minimal medium in the absence (ON) or presence (OFF) of thiamine for 16 h at 30°C. Under this condition, ~50% of cells contained monopolar spindles. Signal intensities of GFP-Klp2 on the spindles (A) and mCherry-Atb2 (spindle microtubules, B) were quantified in cells containing bipolar spindles. The levels of spindle microtubule were plotted against the spindle length in individual mitotic cells (B). All p-values were obtained from the two-tailed unpaired Student’s t test. Data are presented as the means ± SD (≥20 cells). **, P < 0.01, n.s., not significant.
Figure S6. Fluorescence intensities of Msd1-GFP and Wdr8-GFP in cut7-22 ts cells
(A, B) Fluorescence intensities of Msd1-GFP (A) or Wdr8-GFP (B) at the mitotic SPB were measured in wild-type and cut7-22 cells that were incubated at 27°C for 12-16 h in the absence or presence of 20 μg/ml TBZ. All p-values were obtained from the two-tailed unpaired Student’s t test. Data are presented as the means ± SE (n≥16). ***, P < 0.001, ****, P < 0.0001. n.s., not significant.
Figure S7. Yukawa et al.

A microtubule-depolymerizing drug, MBC, renders cut7Δ cells viable

Spot test. One of wild-type or cut7Δ colonies obtained from tetrad dissection shown in Figure 5A were spotted onto YE5S plates in the absence or presence of various concentrations of MBC, and incubated at 27°C for 3 d.

cell conc., cell concentration.
Figure S8. TBZ ameliorates spindle structures in Pkl1-overproduced cells

klp2Δ cells containing GFP-Klp2 and mCherry-Atb2 were transformed with vector plasmids (vec.) or plasmids carrying the thiamine-repressible *nmt41-GFP-pkl1* gene (*pkl1*OE) and grown in the liquid minimal medium containing thiamine for 24 h at 30°C in the absence or presence of 20 μg/ml TBZ. The morphology of mitotic spindle microtubules was observed and classified into bipolar (green) or monopolar spindles (magenta). All *p*-values were obtained from the two-tailed χ² test. Data are presented as the means ± SE (≥42 cells). *, *P* < 0.05, ****, *P* < 0.0001.