Sarcomatoid renal cell carcinoma with clear cells and eosinophilia: a case report and short review of the literature

ALEXANDRU NEŞIU¹,², CARMEN NEAMŢU³,⁴, CRISTIAN MIRCEA NICOLESCU⁵, BOGDAN DAN TOTOLICI³,⁴, HORIA DAN MUREŞANU¹,², MIHAI CĂTĂLIN ROŞU³,⁴, ANDREI ARDELEAN³,⁴, VLAD CONSTANTIN SILIVESTRU³,⁴, LOREDANA ALINA STĂNIŞ³,⁴, TEODORA DANIELA MĂRTI⁶,⁷

¹Department of Urology, Emergency County Hospital, Arad, Romania
²Department of Urology, Faculty of Medicine, Vasile Goldiş Western University of Arad, Romania
³Department of General Surgery, Emergency County Hospital, Arad, Romania
⁴Department of General Surgery, Faculty of Medicine, Vasile Goldiş Western University of Arad, Romania
⁵Intensive Care Unit, Emergency County Hospital, Arad, Romania
⁶Clinical Laboratory, Emergency County Hospital, Arad, Romania
⁷Department of Microbiology, Faculty of Medicine, Vasile Goldiş Western University of Arad, Romania

Abstract
Sarcomatoid renal cell carcinoma (SRCC) is an aggressive form of de-differentiated renal cell carcinoma. We report a case of a 79-year-old male who presented himself to the Department of Emergency complaining of macroscopic hematuria for the last two days and a back pain located in the lumbar region persisting for around a month; there were no major changes in the initial laboratory tests. Abdominal ultrasonography identified a renal mass located in the lower pole of the left kidney. The computed tomography (CT) scan with iodine-based contrast revealed the left kidney had a complete deletion of corticomedullary differentiation and a large renal mass located in the lower pole with inhomogeneous iodophilia, which measured around about 15 cm in transversal diameter and 13.6 cm in craniocaudal diameter. Nephrectomy of the left kidney was performed. Histopathological and immunochemistry tests diagnosed a SRCC with clear cells and eosinophilia. We present these findings along with a short review of the literature.

Keywords: renal cell carcinoma, cancer, immunohistochemistry.

Introduction
Kidney cancer is currently the 13th most common cancer worldwide. The incidence of kidney cancer varies across countries. Kidney cancer is most common diagnosed in people over 75 years old with the highest rates of diagnosis between 85 to 89 years old for both males and females [1, 2]. Renal cell carcinoma (RCC), also known as hypernephroma, is currently the most common type of renal tumor found in adults aged between 50 to 70 years old [3]. One of the most aggressive forms is RCC that presents sarcomatoid features (SRCC). SRCC mostly affects patients aged between 54 and 63 years old and the male to female ratio ranges from 1.3:1 to 2:1. The mechanism behind this gender difference currently remains unclear [4]. Histopathologically, SRCC occurs with a loss of characteristic epithelial components and adds new features, such as cellular atypia, increased cellularity, and spindle cells (also called fibroblasts) [5]. These described features were found in 5–8% of the reported cases of clear cell RCC (ccRCC), 2–3% of cases in papillary RCC and 8–9% of cases in chromophobe RCC [6–9]. SRCC carries a poor prognosis, most studies report a mean overall survival from five to 12 months and up to 75% of the patients with SRCC associate metastatic disease [10].

Aim
The goal of this case report was to illustrate a rare type of renal neoplasia, as well as to underline the importance of early diagnosis in RCCs due to the risks of being highly aggressive. Swift surgical treatment followed by histopathological (HP) examinations of the extracted tumor provides a quick diagnosis, which should lead to a personalized treatment, therefore extending the patients lifespan.

Case presentation
A 79-year-old smoker male patient (around a pack a day for the last 40–45 years), with a medical history of type 2 diabetes, benign prostatic hyperplasia, hypertension, coronary heart disease and hyperuricemia presented himself to the Department of Emergency complaining of macroscopic hematuria for the last two days and a back pain...
pain located in the lumbar region persisting for around a month. The patient further described a reduction in appetite and a 4–5 kg loss in weight over a period of two months. An emergency abdominal ultrasonography (US) and blood tests were promptly ordered. The abdominal US identified a left renal mass located in the lower renal pole of approximately 12×9.6 cm. The complete blood count (CBC) pointed out a mild microcytic anemia with a hemoglobin (Hb) value of 10.3 g% (normal values range between 13.5 to 17.5 g%) a mean corpuscular volume (MCV) of 73.7 fl (80 and 96 fl) and a hematocrit of 32.2% (38.3 to 48.6%), the other parameters were within normal range. Coagulation tests showed a decreased prothrombin time 66.9% (= 100% Quick) and an elevated international normalized ratio (INR) of 1.34 (0.8–1.2). Biochemical tests were normal except for a low serum creatinine value of 0.66 mg/dL (0.84 to 1.21 mg/dL), a high conjugated bilirubin value of 0.41 mg/dL (0-0.3 mg/dL) and an increased glycemia value of 182 mg/dL (70 and 99 mg/dL). An emergency computed tomography (CT) scan of his abdomen and pelvis followed.

The CT scan with iodine-based contrast revealed the left kidney had a complete deletion of corticomedullary differentiation and a large renal mass located in the lower pole with inhomogeneous iodophilia, which measured around 15 cm in transversal diameter and 13.6 cm in cranio-caudal diameter. The described mass invaded the renal lodge and widely infiltrated the large left psoas muscle. Cystic formations of 7 mm in diameter were observed in the VIIIth hepatic segment. There was no pathological adenopathy observed in the left lateral aortic, inter-aortic cave or ilio-obturator space. Abdominal or pelvic ascites, secondary lesions in the lumbar spine, pelvic bones or lungs were all absent.

A swift decision was made to carry out a left radical nephrectomy and the operation proceeded. A giant renal mass with a size of about 22/14/15 cm was found in the lower pole of the left kidney.

The solid 22/14/15 cm tumor removed from the lower pole of the left kidney presented a red-yellowish color and multiple hemorrhagic areas. When this tumor was sectioned, it presented cystic degenerations, different grades of hemorrhagic zones, as well as internal necrosis.

This renal mass was further examined by the Department of Histopathology.

HP examination consisted of two parts: Hematoxylin–Eosin (HE) staining and immunohistochemical (IHC) analysis of the tissue. HE staining revealed renal tumor with the appearance of a renal carcinosarcoma, with predominance of areas with high malignancy fibrosarcoma, associated with small outbreaks of ccRCC, International Society of Urological Pathology (ISUP) grade 3, with extensive areas of ischemic and suppurative intratumorally necrosis, with interstitial hyalination and foci of stromal calcifications (Figure 1, A–D), as well as eosinophilia.

The tissue from the sectioned tumor was fixed in 10% neutral buffered formalin and embedded in paraffin. IHC analysis was done using the following immunomarkers: cluster of differentiation 68 (CD68), pan-cytokeratin (pan-CK), epithelial membrane antigen (EMA), vimentin, CK8/18, CK34/B12, S100 protein, CK7, CK20 and human melanoma black 45 (HMB45). All the immunomarkers showed intense immunoreactivity on the internal controls.

IHC staining for CD68, pan-CK, and EMA showed slight immunoreactivity (Figure 2, A–C). Immunoreactivity for vimentin was intense positive (Figure 2D).

Slight immunoreactivity was also seen for CK8/18 (Figure 3A) and no immunoreactivity was seen for CK34/E12 (Figure 3B), S100 (Figure 3C), CK7 (Figure 3D), CK20 (Figure 3E), and HMB45 (Figure 3F).

Postoperatively, the patient refused the indication to perform chemoradiotherapy and was discharged from the hospital 10 days after the admission without any obvious symptoms. The patient did not appear to the postoperative consultation with a specialist and according to the family, the patient succumbed to the illness eight months after the surgery.
Sarcomatoid renal cell carcinoma with clear cells and eosinophilia: a case report and short review of the literature

Figure 2 – IHC staining for CD68, pan-CK, EMA, and vimentin (×200): slight positive IHC staining for CD68 (A), pan-CK (B), and EMA (C); intense positive IHC staining for vimentin (D). CD68: Cluster of differentiation 68; CK: Cytokeratin; EMA: Epithelial membrane antigen; IHC: Immunohistochemical.

Figure 3 – IHC staining for CK8/18, CK5/6, S100, CK7, CK20, and HMB45 (×200): slight positive IHC staining for CK8/18 (A); negative IHC staining for CK34βE12 (B), S100 (C), CK7 (D), CK20 (E), and HMB45 (F). CK: Cytokeratin; HMB45: Human melanoma black 45; IHC: Immunohistochemical.

Discussions

The most common type of renal cancer is clear cell carcinoma, followed by papillary and chromophobe carcinoma [11]. Tobacco smoking appears to be one of the main risk factors for this type of cancer, its effects on the tumor pathobiology currently being unknown [12].

Sarcomatoid variant of ccRCC represents a spindle cell phenotype that can occur in any subtype of cancer (clear cell, chromophobe or unclassified) [13]. Several studies on SRCC point towards a reserved prognosis [13–15]. Recent reports consider less than 20 patients and follow different courses of treatment leading to different outcomes with the reported median survival rate after diagnosis being between nine and 19 months [8, 16]. Response rates to both cytokines and chemotherapy are low. To optimize survival rate of these patients, individual treatments that consider the factors that impact the biological behavior of SRCC and are essential to disrupt the course of the disease [16]. Chemotherapy and cytokines induce adverse effects in major ity of patients; therefore, strict selection criteria should be used to determine if patients will benefit from the treatments [17].

This cancer originates from the renal cortex, in the epithelium of the proximal tubes, presenting an expansive growth model invading the surrounding tissue. Macroscopically, it presents as a yellowish, solid lesion with variable degrees of internal cystic degeneration, necrosis, and hemorrhagic areas. These findings are associated with a high-rate malignancy [18].

Histopathologically, lesions such as necrosis, hemorrhagic areas, and cystic degenerations present malignant clear cells due to their lipid and glycogen-rich cytoplasm content [19].
CD68 is a surface marker that plays a role in phagocytic activities of tissue macrophage [20–22]. This marker binds to tissue and organ-specific lectins or selectins, allowing homing of macrophage subsets to particular sites. In RCC, it may be used as a prognostic immunomarker that points towards an unfavorable prognosis. Anti-CD68 antibodies were useful in the characterization of several neoplasms, such as renal cell adenocarcinoma [23].

SRCC, considering its epithelial derivation, presents immunoreactivity for epithelial markers, such as EMA and vimentin. EMA appears to be positive in around 50–55% of the cases and vimentin in 56–100% [24, 25]. SRCC tend to show stronger immunoreactivity in a higher proportion for vimentin and a reduced positivity for EMA when compared to conventional RCCs [24]. SRCC is negative for CK7 [26]. In a recent study conducted by Yu et al., where they determined 19 IHC markers in 42 cases, all the cases showed immunopositivity for vimentin and 80% of the cases were positive to at least one epithelial marker, such as pan-Ck, EMA, CK7 and CK18 [27]. CK33/4/12 is a high molecular weight keratin, which is relatively specific for prostate basal cells [28]. It is usually negative for ccRCC [29], ccRCC usually shows typically associations with patient outcome. Am J Surg Pathol, 2004, 28(4):435–441. https://doi.org/10.1016/j.ajsp.2003.12.001 PMID: 15087662

Conclusions

SRCC remains to this day a challenge both to diagnose and especially to treat. Considering the rarity of this cancer, many details such as careful history taking or different IHC markers may provide additional clues that lead to a better understanding of this disease. More case studies and pathological studies are needed to further understand the physiological mechanisms and the risk factors for SRCC. Proper imaging and HP tests play a crucial role in ruling out metastases of this disease. Currently, no standard guideline for the treatment exists. Radical nephrectomy with its potential utility of S100 protein in RCCs was not extensively investigated [31].

Conflict of interests

The authors report that they have no conflict of interests.

Ethics Statement

The Ethics Committee of Vasile Goldis Western University of Arad, Romania, approved this paper (No. 91 from 19.07.2019) and written consent was obtained from the patient after carefully explaining the implications of this manuscript.

Authors’ contribution

Alexandru Neșuțu and Carmen Neamțu equally contributed to this article.

References

[1] ***. Kidney cancer statistics. Cancer Research UK, Oxford, October 9, 2017. http://www.cancerresearchuk.org/health-professional/cancer-statistics/statistics-by-cancer-type/kidney cancer

[2] Oja U, Ojha V. Renal cell carcinoma presenting as nonspecific gastrointestinal symptoms: a case report. Int Med Case Rep J, 2018, 11:345–348. https://doi.org/10.2147/IMCRJ.S178816 PMID: 30568516 PMCID: PMC6267967

[3] Flanagan RC, Campbell SC, Clark JI, Picken MM. Metastatic renal cell carcinoma. Curr Treat Options Oncol, 2003, 4(5):385–390. https://doi.org/10.1007/s11864-003-0039-2 PMID: 12941198

[4] Blum KA, Gupta S, Tickoo SK, Chan TA, Russo P, Motzer RJ, Karam JA, Hakimi AA. Sarcomatoid renal cell carcinoma: biology, natural history and management. Nat Rev Urol, 2020, 17(12):659–678. https://doi.org/10.1038/s41563-020-00382-9 PMID: 30356169 PMCID: PMC7551522

[5] Ravikanth M, Soujanya P, Manjunath K, Saraswathi TR, Ramachandran CR. Heterogeneity of fibroblasts. J Oral Maxillofac Pathol, 2011, 15(2):247–250. https://doi.org/10.4103/0973-0 29X.84516 PMID: 22529592 PMCID: PMC3329699

[6] Jones TD, Eble JN, Wang M, Macmillan GT, Jain S, Cheng L. Clonal divergence and genetic heterogeneity in clear cell renal cell carcinomas with sarcomatoid transformation. Cancer, 2005, 104(6):1195–1203. https://doi.org/10.1002/cncr.20541 PMID: 15378501

[7] Amin MB, Paner GP, Alvarado-Cabrero I, Young AN, Stricker HJ, Lyles RH, Moch H. Chromophobe renal cell carcinoma: histomorphologic characteristics and evaluation of conventional pathologic prognostic parameters in 145 cases. Am J Surg Pathol, 2008, 32(12):1822–1834. https://doi.org/10.1097/PAS.0b013e318151e68 PMID: 19131215

[8] Cheville JC, Lohse CM, Zincke H, Weaver AL, Leibovich BC, Frank I, Blute ML. Sarcomatoid renal cell carcinoma: an examination of underlying histologic subtype and an analysis of associations with patient outcome. Am J Surg Pathol, 2004, 28(4):435–441. https://doi.org/10.1016/j.ajsp.2003.12.001 PMID: 15087662

[9] de Peralta-Venturina M, Moch H, Amin M, Tamboli P, Haile-mariam S, Mihatsch M, Javidian I, Stricker H, Ro JY, Amin MB. Sarcomatoid differentiation in renal cell carcinoma: a study of 101 cases. Am J Surg Pathol, 2001, 25(3):275–284. https://doi.org/10.1097/00000478-200109000-00001 PMID: 11224597

[10] Pichler R, Compérat E, Klatte T, Pichler M, Loidl W, Luusuardi L, Schmidinger M. Renal cell carcinoma with sarcomatoid features: finally new therapeutic hope? Cancers (Basel), 2019, 11(3):422. https://doi.org/10.3390/cancers11030422 PMID: 30934624 PMCID: PMC6468799

[11] Sahoo TK, Das SK, Mishra C, Dhal I, Nayak R, Ali I, Panda D, Majumdar SK, Parida DK. Squamous cell carcinoma of kidney and its prognosis: a case report and review of the literature. Case Rep Urol, 2015, 2015:649327. https://doi.org/10.1155/2015/649327 PMID: 25699197 PMCID: PMC4325206

[12] Reigle J, Seccio D, Biessia J, Wetzel C, Shamasaw B, Chu J, Zang Y, Zhang X, Talbot NJ, Bischoff ME, Zhang Y, Thakar CV, Gaitonde K, Sidana A, Bui H, Cunningham JT, Zhang Q, Schmidt LS, Linehan WM, Medvedovic M, Plas DR, Figueroa JAL, Meller J, Czyzyk-Krzeska MF. Tobacco smoking induces metabolic reprogramming of renal cell carcinoma. J Clin Invest, 2021, 131(1):e140522. https://doi.org/10.1172/JCI140522 PMID: 32970633 PMCID: PMC7773408

[13] Molina AM, Tickoo SK, Ishii N, Trinos MJ, Schwartz LH, Patel S, Feldman DR, Reuter VE, Russo P, Motzer RJ. Sarcomatoid-variant renal cell carcinoma: treatment outcome and survival in advanced disease. Am J Clin Oncol, 2011, 34(5):454–459. https://doi.org/10.1097/COC.0b013e3181f7a4a4 PMID: 21127411 PMCID: PMC3661202

[14] Amato RJ, Khan M. A phase I clinical trial of low-dose interferon-alpha-2A, Thalidomide plus Gemcitabine and Capecitabine for patients with progressive metastatic renal cell carcinoma. Cancer Chemother Pharmacol, 2008, 61(6):1099–1103. https://doi.org/10.1007/s00280-007-0568-7 PMID: 17701037

[15] Nanus DM, Garino A, Milowsky MI, Larkin M, Dutcher JP. Active chemotherapy for sarcomatoid and rapidly progressing renal cell carcinoma. Cancer, 2004, 101(7):1545–1551. https://doi.org/10.1002/cncr.20669 PMID: 17068434
Sarcomatoid renal cell carcinoma with clear cells and eosinophilia: a case report and short review of the literature

[17] Wang YS, Shuang WB, Yin KQ, Tong XN, Xia MC, Yang HS. Analysis of the factors influencing the survival time of patients with sarcomatoid renal cell carcinoma. Mol Clin Oncol, 2019, 11(4):405–410. https://doi.org/10.3892/mco.2019.1900 PMID: 31475069 PMCID: PMC6713941

[18] Muglia VF, Prando A. Renal cell carcinoma: histological classification and correlation with imaging findings. Radiol Bras, 2015, 48(3):166–174. https://doi.org/10.1590/0100-3984.2013.1927 PMID: 26185343 PMCID: PMC4492569

[19] Decastro GJ, McKiernan JM. Epidemiology, clinical staging, and presentation of renal cell carcinoma. Urol Clin North Am. 2008, 35(4):581–592; vi. https://doi.org/10.1016/j.ucl.2008.07.005 PMID: 18992612

[20] Balica NC, Poenaru M, Preda MA, Boia ER, Burlacu ON, Horhat ID, Mogoanță CA, Vlăscu AN, Baderca F, Jifcu EM, Saru CA. Primary tonsillar tuberculosis – case report. Rom J Morphol Embryol, 2019, 60(1):267–271. PMID: 31263855

[21] Cîrstea AE, Buzulică RL, Pirici D, Ceaușu MC, Iman RV, Gheorghe OM, Neamțu SD, Stanca L, Ene R, Kumar-Singh S, Mogoanță L. Histopathological findings in the advanced natural evolution of the SARS-CoV-2 infection. Rom J Morphol Embryol, 2020, 61(1):209–218. https://doi.org/10.47162/RJME.61.1.23 PMID: 32747912 PMCID: PMC7728105

[22] Vrînceanu D, Dumitru M, Stefan AA, Mogoanță CA, Saîn M. Giant pleomorphic sarcoma of the tongue base – a cured clinical case report and literature review. Rom J Morphol Embryol, 2020, 61(4):1323–1327. https://doi.org/10.47162/RJME.61.4.34 PMID: 34170181 PMCID: PMC8343483

[23] Gloghini A, Rizzo A, Zanette I, Canal B, Rupolo G, Bassi P, Carbone A. KP1/CD68 expression in malignant neoplasms including lymphomas, sarcomas, and carcinomas. Am J Clin Pathol, 1995, 103(4):425–431. https://doi.org/10.1093/ajcp/103.4.425 PMID: 7726138

[24] Kuroda N, Toi M, Hiro M, Enzan H. Review of sarcomatoid renal cell carcinoma with focus on clinical and pathological aspects. Histol Histopathol, 2003, 18(2):551–555. https://doi.org/10.14670/HH-18.551 PMID: 12647806

[25] Brunelli M, Gobbo S, Cosso-Rocca P, Cheng L, Hes O, Delahunt B, Pea B, Bonetti F, Mina MM, Ficarra V, Chilosi M, Eble JN, Menestrina F, Martignoni G. Chromosomal gains in the sarcomatoid transformation of chromophobe renal cell carcinoma. Mod Pathol, 2007, 20(3):303–309. https://doi.org/10.1038/modpathol.3800739 PMID: 17277768

[26] Tretiakovka MS, Sahoo S, Takahashi M, Turkylilmaz M, Vogelzang NJ, Lin F, Krausz T, Teh BT, Yang XJ. Expression of alpha-methylacyl-CoA racemase in papillary renal cell carcinoma. Am J Surg Pathol, 2004, 28(1):69–76. https://doi.org/10.1097/00000478-200401000-00007 PMID: 14707666

[27] Yu W, Wang Y, Jiang Y, Zhang W, Li Y. Distinct immunophenotypes and prognostic factors in renal cell carcinoma with sarcomatoid differentiation: a systematic study of 19 immunohistochemical markers in 42 cases. BMC Cancer, 2017, 17(1):293. https://doi.org/10.1186/s12885-017-3275-8 PMID: 28449664 PMCID: PMC5408832

[28] Dardik M, Epstein JI. Efficacy of restaining prostate needle biopsies with high-molecular weight cytotkeratin. Hum Pathol, 2000, 31(9):1155–1161. https://doi.org/10.1053/hupa.2000.17989 PMID: 11014585

[29] Nolan LP, Heatley MK. The value of immunocytochemistry in distinguishing between clear cell carcinoma of the kidney and ovary. Int J Gynecol Pathol, 2001, 20(2):155–159. https://doi.org/10.1097/00004347-200104000-00007 PMID: 11293161

[30] Skinnider BF, Folpe AL, Hennigar RA, Lin SD, Cohen C, Tamboli P, Young A, de Peralta-Venturina M, Amin MB. Distribution of cytokeratins and vimentin in adult renal neoplasms and normal renal tissue: potential utility of a cytokeratin antibody panel in the differential diagnosis of renal tumors. Am J Surg Pathol, 2005, 29(6):747–754. https://doi.org/10.1097/01.pas.0000163562.78475.63 PMID: 15897741

[31] Lin F, Yang W, Betten M, Teh BT, Yang XJ; French Kidney Cancer Study Group. Expression of S-100 protein in renal cell neoplasms. Hum Pathol, 2006, 37(4):462–470. https://doi.org/10.1016/j.humpath.2005.12.008 PMID: 16564922

Corresponding author
Cristian Mircea Nicolescu, MD, PhD, Head of Intensive Care Unit 1, Emergency County Hospital, Arad, 2–4 Andrenyi Karoly Street, 310037 Arad, Romania; Phone +40740–163 102, e-mail: cristian_ans@yahoo.com

Received: June 10, 2021
Accepted: February 22, 2022