1. Introduction

The phenomenon of phase-coexistence is the typical signature of a first-order transition. The free energy of a system at the coexistence point is the sum of two contributions: the bulk free energy F_{bulk}, scaling like the volume V, and the free energy F_{Σ} of the interface Σ separating the two bulk phases. F_{Σ} scales like an area. The interface tension σ is defined as $\sigma = \lim_{\Sigma \to \infty} \frac{F(\Sigma)}{|\Sigma|}$ (the reduced tension is defined as $\sigma^R = \frac{\sigma}{T}$). In the context of $SU(N)$ pure gauge theories (N is the number of colors) phase-coexistence occurs in two different situations: one at $T \geq T_c$ between ordered phases pointing in different directions in color space, the other at T_c, between confined ('disordered') and deconfined ('ordered') phases. The corresponding interface tensions are indicated σ_{oo} and σ_{od} respectively.

This paper presents a new algorithm to measure the order-order interface tension. Nevertheless, we can also give an estimate of the order-disorder tension via the so-called perfect wetting hypothesis [1], which states that between two ordered phases a layer of disordered phase can be generated at no free energy cost. Therefore the free energy of one order-order interface is related to that of two order-disorder interfaces, namely $F_{oo} = 2F_{od}$. In general, anyway, $\sigma_{oo} = w\sigma_{od}$, $w \leq 2$, because otherwise order-order interfaces would be unstable. Therefore the choice $w = 2$ gives a lower bound for σ_{od}.

2. The method

The algorithm we propose is an improvement of the so-called snake algorithm [3]. The ‘snake’ idea is to add ‘by hand’ a 2d interface in the system by progressively flipping the coupling of a set of plaquettes dual to a surface A, according to the

Our system is a 4d $SU(N)$ pure gauge theory at finite temperature with spatial periodic boundary conditions (b.c.). a indicates the lattice spacing. The volume is $V = L^3 \cdot L_t$; the Wilson action is used. We will indicate the elements of the center of $SU(N)$ by ζ_i, $i = 1, \ldots, N$. Heat-bath and over-relaxation are applied to $SU(2)$ subgroups of the $SU(N)$ matrices, according to the strategy used in [2].
Figure 2. (Minus log of the) Ratios in Eq. (1) as a function of r, after removal of the Lüscher correction. A broad plateau develops from $r \sim \xi$ ($\xi = 1/\sqrt{\sigma} \simeq 3.5$ is the correlation length) to $r \rightarrow L$.

Figure 3. Finite size effects on the interface tension ($L_t = 2$, $\beta = 5.15$). After removal of the Lüscher correction, σ is systematically underestimated, unless lattices larger than $L \gtrsim 7/\sqrt{\sigma}$ are used (vertical line). The curve is meant to guide the eye.

identity

$$Z(A) = \frac{Z(A)}{Z(0)} = \frac{Z(A-1)}{Z(A-2)} \cdots \frac{Z(1)}{Z(0)}$$ (1)

where $Z(k)$, $k \in [0, \ldots A]$ indicates the partition function of a system in which only k plaquettes are flipped. The free energy of the interface is $F(A) = \sigma R_{oo} A = -\log \frac{Z(A)}{Z(0)}$. A direct measurement of $\frac{Z(A)}{Z(0)}$ is not possible due to a serious overlap problem, which is alleviated by the factorization Eq. (1). The price to pay is a very large number of independent simulations.

The observable is measured in the following way:

$$\frac{Z(k)}{Z(k-1)} = \frac{\langle e^{\beta \frac{1}{2} \text{Tr}(\zeta \Pi_k)} \rangle_k}{\langle e^{\beta \frac{1}{2} \text{Tr}(\Pi_k)} \rangle_k}$$ (4)

where Π_k indicates the k–th flipped plaquette, and the average $\langle \cdot \rangle_k$ refers to the ensemble in which the first $(k-1)$ plaquettes are flipped, the k–th plaquette has coupling zero, and all the others are unchanged. Further variance reduction methods are described in [3].

The leading finite-size corrections in Eq. (3) come from Gaussian fluctuations of the interface [4]. Our $r \cdot L$ interface (Fig. 1) is periodic in one direction (L), and pinned in the other (r). The corresponding correction, given in terms of the Dedekind η-function, reduces for $r \ll L$ to the Luscher-like $\sigma_{\text{eff}}(r) \equiv -a^{-2} \log Z(k)/Z(k-1) \approx \sigma + \frac{\pi}{12\sigma}$. In Fig. 2 we show our measurements, after removal of this known correction, as a function of r. A broad plateau develops, from small values $r \sim \xi$, where $\xi = 1/\sqrt{\sigma}$ is the correlation length, to large ones $r \rightarrow L$, showing that additional corrections are very small. At very large
3. Results

In Fig. 4 we present preliminary results for the order-disorder interface tension in SU(3), together with a compilation of the published data. While our $L_t = 4$ simulation needs more statistics, our $L_t = 2$ and 3 determinations of σ are accurate, and much larger than previous measurements obtained with the histogram method [6][7][8][9]. We assign this discrepancy to the smaller lattice sizes considered previously, which lead to a systematic underestimate of σ as in Fig. 3. A discussion of the continuum limit is awaiting completion of the $64^3 \cdot 4$ simulations.

In Tab. 1 we present preliminary results for the case $SU(4)$. In $SU(N)$ with $N > 3$ we have more order-order tensions ($\sigma_k, k = 1, \ldots, \lfloor N/2 \rfloor$). In the weak coupling regime one can show the Casimir relation $\frac{\sigma_k}{\sigma_1} = \frac{k(N-k)}{N-1}$ [10]. This perturbative prediction seems accurate down to temperature $T = 1.2 T_c$. Measurements closer to T_c are in progress.

Table 1

T/T_c	$L = 16$	$L = 24$
2.3	1.350(20)	1.342(13)
1.5	-	1.300(18)
1.2	1.277(33)	1.310(30)

Ratio σ_2/σ_1 of $SU(4)$ interface tensions ($L_t = 5$). The Casimir perturbative value is $4/3$. For the data at $T = 1.2 T_c$ we find again that the F.S. effects are smaller than the statistical error only if $L \gtrsim 7/\sqrt{\sigma}$.

REFERENCES

1. Z. Frei and A. Patkos, Phys. Lett. B 229, 102 (1989).
2. N. Cabibbo and E. Marinari, Phys. Lett. B 119, 387 (1982).
3. P. de Forcrand, M. D’Elia and M. Pepe, Phys. Rev. Lett. 86, 1438 (2001) [arXiv:hep-lat/0007034].
4. M. Luscher, Nucl. Phys. B 180, 317 (1981).
5. K. Dietz and T. Filk, Phys. Rev. D 27, 2944 (1983).
6. Y. Iwasaki, K. Kanaya, L. Karkkainen, K. Rummukainen and T. Yoshie, Phys. Rev. D 49, 3540 (1994) [arXiv:hep-lat/9309003].
7. B. Grossmann, M. L. Laursen, T. Trappenburg and U. J. Wiese, Nucl. Phys. Proc. Suppl. 30, 869 (1993) [arXiv:hep-lat/9210041].
8. B. Beinlich, F. Karsch and A. Peikert, Phys. Lett. B 390, 268 (1997) [arXiv:hep-lat/9608141].
9. A. Papa, Phys. Lett. B 420, 91 (1998) [arXiv:hep-lat/9710091].
10. P. Giovannangeli and C. P. Korthals Altes, Nucl. Phys. B 608, 203 (2001) [arXiv:hep-ph/0102022].