Where Did My Optimum Go?: An Empirical Analysis of Gradient Descent Optimization in Policy Gradient Methods

Peter Henderson
Stanford University

Joshua Romoff
MILA, McGill University, Facebook

Joelle Pineau
MILA, McGill University, Facebook

Abstract
Recent analyses of certain gradient descent optimization methods have shown that performance can degrade in some settings – such as with stochasticity or implicit momentum. In deep reinforcement learning (Deep RL), such optimization methods are often used for training neural networks via the temporal difference error or policy gradient. As an agent improves over time, the optimization target changes and thus the loss landscape (and local optima) change. Due to the failure modes of those methods, the ideal choice of optimizer for Deep RL remains unclear. As such, we provide an empirical analysis of the effects that a wide range of gradient descent optimizers and their hyperparameters have on policy gradient methods, a subset of Deep RL algorithms, for benchmark continuous control tasks. We find that adaptive optimizers have a narrow window of effective learning rates, diverging in other cases, and that the effectiveness of momentum varies depending on the properties of the environment. Our analysis suggests that there is significant interplay between the dynamics of the environment and Deep RL algorithm properties which aren’t necessarily accounted for by traditional adaptive gradient methods. We provide suggestions for optimal settings of current methods and further lines of research based on our findings.

Keywords: Reinforcement Learning, Optimization

1. Introduction
Deep reinforcement learning (Deep RL) algorithms often rely on the same stochastic gradient descent methods as other deep learning techniques to optimize value function approximators and policies (Mnih et al., 2015; Schulman et al., 2017). For example, the optimizer used for Proximal Policy Optimization by Schulman et al. (2017) is Adam (Kingma and Ba, 2014), while the optimizer for Advantage Actor Critic in Schulman et al. (2017) is RMSProp (Hinton et al., 2012). However, it is unclear why different optimizers may have different behaviours in Deep RL algorithms and whether the theoretical properties of optimizers in the supervised learning setting generalize to Deep RL algorithms.

To initially illustrate some of the possible problems with the adaptive gradient descent optimization in Deep RL, we examine recent literature. First, recent work has discovered that in online stochastic settings (as is often the case in Deep RL), there are cases where Adam does not converge to an optimal solution (Reddi et al., 2018). Wilson et al. (2017) demonstrate similar findings for adaptive methods such as Adam and RMSProp. It is clear from prior work (Henderson et al., 2017; Islam et al., 2017) that reinforcement learning
methods can be highly stochastic and variant in nature. As such the problem formulation may result exactly in the cases described by Reddi et al. (2018) and Wilson et al. (2017).

Furthermore, we note recent work in optimization which suggests that momentum needs to be adjusted to compensate for implicit momentum generated by the system (Mitliagkas et al., 2016). That is, in asynchronous optimization itself adds an additional implicit momentum. Once again, a parallel issue can easily be mapped to asynchronous Deep RL methods (Mnih et al., 2016) or distributed learning (Heess et al., 2017; Barth-Maron et al., 2018). However, more importantly, it is easy to imagine how this might affect synchronous methods as well. In TD methods especially, there is a staleness to the gradients since the value function is bootstrapping off of its own predictions and updates may be biased toward previous policies and points in a trajectory.

To this extent, we focus on two Deep RL algorithms from the family of policy gradient methods (Sutton et al., 2000) – synchronous Advantage Actor Critic (A2C) (Schulman et al., 2017; Mnih et al., 2016) and Proximal Policy Optimization (PPO) (Schulman et al., 2017) – to examine empirically what effects certain optimizers and learning rates may have on learning on policy gradient methods and what effect momentum may have in learning (suggesting possible sources of implicit momentum).

2. Background

2.1 Deep RL Algorithms

We focus on two Deep RL algorithms from the class of policy gradient methods: PPO and A2C. Each has a unique set of properties, but are generally very similar. In both cases, a value function approximator is learned via a temporal difference (TD) update loss (Sutton, 1988):

\[L(\theta_V) = \mathbb{E} \left[(Y_t - V^\pi(s_t; \theta_V))^2 \right], \]

where \(Y_t = \sum_{n=0}^{N-1} \gamma^n r_{t+n} + \gamma^N V^\pi(s_{t+n+1}) \).

In the case of A2C, generally several workers use a policy to synchronously collect a small number of samples in the environment before updating a stochastic parameterized policy (\(\pi_\theta(a|s) \)). The policy reuses the TD error (the advantage) through a policy gradient update. PPO is similar, except that generally it uses longer Monte Carlo rollouts as in REINFORCE (Williams, 1992), relying on the value function for its variance reduction baseline properties rather than an estimate of the value in the gradient update. Furthermore, PPO imposes an adaptive trust region on the policy update to prevent the updated policy from straying too far from the prior one. In our case, we use a clipping objective which is proposed by Schulman et al. (2017) such that the policy is update via the loss

\[L^{\text{CLIP}}(\theta) = \mathbb{E} \left[\min(r_t(\theta)\hat{A}_t, \text{clip}(r_t(\theta), 1-\epsilon, 1+\epsilon)\hat{A}_t) \right], \]

where the likelihood ratio is \(r_t(\theta) = \frac{\pi_\theta(a_t|s_t)}{\pi_{\theta_{old}}(a_t|s_t)} \), \(\hat{A}_t \) is the generalized advantage function (Schulman et al., 2015), and \(\epsilon < 1 \) is some small factor to constrain the update.

2.2 Gradient Optimization Methods

We consider several gradient descent-based optimization methods in our analysis: stochastic gradient descent (SGD), SGD with Nesterov momentum (SGDNM) (Nesterov, 1983), Averaged Stochastic Gradient Descent (ASGD) (Polyak and Juditsky, 1992), Adagrad (Duchi et al., 2011), Adadelta (Zeiler, 2012), RMSProp (Hinton et al., 2012), Adam (Kingma
In brief, all of these algorithms represent some variation of SGD with differing updates to the learning rate and modifications of the gradient. Ruder (2016) provides a more detailed overview of these methods, but we briefly describe the variations on SGD here. Momentum can be thought of as accelerating an update in the relevant direction with Nesterov momentum correcting the acceleration upon reaching the next step. ASGD keeps a running average of the parameters θ and then uses the averaged value for the final result. Overall, the family of adaptive algorithms (Adagrad, Adadelta, RMSProp, Adam, Adamax, AMSGrad, and Adamax) can be thought of as performing a diagonal rescaling of the gradient updates. Adagrad uses a per parameter learning rate instead of a single learning rate, adapting each such that sparse parameters see an increased learning rate by accumulating past gradients. Adadelta is a similar algorithm which attempts to compensate for the monotonically decreasing learning rate resulting from Adagrad’s gradient accumulation via a window of gradient accumulation. RMSProp was similarly developed to account for the same issue in Adagrad. Adam also uses per parameter adaptive learning rates, but additionally keeps an exponentially decaying average of prior gradient updates. It uses this in a similar fashion to momentum. As Heusel et al. (2017) state, Adam can be described as a “Heavy Ball with Friction” such that it “typically overshoots small local minima that correspond to mode collapse and can find flat minima which generalize well”\(^1\). Adamax is another variant of Adam which uses the L_∞ norm instead of the L_2 norm when scaling gradients. AMSGrad is an update to Adam which claims to improve convergence properties in certain stochastic settings by using the maximum of the past gradients rather than the average. YellowFin attempts to solve the notion of implicit momentum by using an active controller to tune the hyperparameters of momentum SGD.

3. Analysis

We investigate the effects of gradient descent optimization on the family of policy gradient Deep RL algorithms, focusing on the benchmark suite of continuous control tasks (environments) provided by OpenAI Gym (Brockman et al., 2016). These tasks yield different dynamics as described by Henderson et al. (2017), while also being small enough to run a large suite of experiments efficiently. We use implementations from Kostrikov (2018) for A2C and PPO, modifying the codebase to replace the optimizer. We use the default set of hyperparameters provided by each optimizer except for varying the learning rate as discussed in Section 3.1 and momentum in Section 3.2. We run 10 random seeds for all experiments and further describe our codebase, setup, and hyperparameters in Appendix A.

3.1 Learning Rates and Performance

First, we investigate the effect of the learning rate on optimizer performance. The results can be seen in Figure 1 (with further information and results in Appendix C). We observe that SGD NM results in performance that is more stable across a variety of learning rates

1. We note that this property is particularly relevant to RL. In online learning and with a shifting loss landscape particularly during exploration-heavy phases, a flat minimum seems unlikely in RL settings.
Figure 1: A2C (top row) and PPO (bottom row) performance at different learning rates on Ant and HalfCheetah tasks (left and right, respectively). Equivalent to α plots by Sutton and Barto (1998).

whereas adaptive methods such as Adam and RMSProp diverge entirely at higher learning rates with a small window of well-performing values in certain domains. However, it is worth noting that, for A2C, adaptive methods do find better optima with a well-tuned learning rate than we were able to find for SGDNM.

We further describe several interesting observations from our experimentation on learning rate. As is further seen in Appendix C and in particular Appendix C.1, there are few settings where AMSGrad significantly improves performance despite the suggestion that it should in theory help in stochastic settings such as RL as suggested in (Reddi et al., 2018). SGD and ASGD generally perform equally across all learning rates. YellowFin is much more stable across learning rates than most algorithms, but this is likely due to the control-based tuning of SGD hyperparameters. It unfortunately does not yield better performance than other well-tuned algorithms. We find that the algorithm distributions across performance can be grouped into 2 categories generally (with the exception of YellowFin and SGDNM). The first set of optimizers, as seen in Figure 1 (RMSProp, AMSGrad, Adam, AdaMax) have a small window of peak performance at lower learning rates and diverge as the learning rates approach .01. The second group (Adadelta, ASGD, Adagrad, SGD) has the opposite distribution, showing poor performance at low learning rates while gaining performance in higher learning rates – with ASGD and SGD consistently outperforming Adadelta and Adagrad. This is likely due to the similarity in base principles used in implementing these two groups as described in (Ruder, 2016). While SGDNM can predominantly be categorized with the latter group, in reality its performance falls somewhere in between the two.
Figure 2: Normalized performance of PPO and A2C across momentum factors in different environments. Normalization is per environment using a random agent policy (see Appendix B) such that the Normalized Return corresponds to \(\frac{\text{Average Return} - \text{Random Agent}}{\text{Best Average Return} - \text{Random Agent}} \).

3.2 Momentum

Next we investigate the effect of momentum on the performance of PPO and A2C. To remove any effects from adaptive aspects of other algorithms we limit the analysis to SGDNM. The goal of these experiments is to probe whether the default momentum hyperparameter of .9 – that has become the “industry standard” (Mitliagkas et al., 2016) – in fact performs as well as expected. If a lower momentum value is more optimal or yields similar performance as higher momentum values, this may suggest that a sort of implicit momentum is being introduced as described by Mitliagkas et al. (2016), or that the changing loss landscape is negating some of the impact of momentum. We choose the average optimal learning rate of .003 for SGDNM as discovered in Section 3.1 and run a grid of momentum values from .11 to .99 (with a smaller sub-grid between .88 and .99 where values tend to diverge).

The final results for the various momentum values can be seen on the normalized average performance across 10 training runs with different random seeds provided in Figure 2 (with additional graphs, tables, and information in Appendix D). Overall, as momentum approached 1 from .9, in nearly all cases the policy diverged – as updates change the initial momentum very little, they end up relying on the starting conditions for the update.

We further find that certain environments are less susceptible to momentum in both A2C and PPO. The varying effectiveness of momentum in different environments may be due to the different dynamics in the systems, as also discussed in (Henderson et al., 2017). Furthermore, it could be due to high sensitivity of the loss landscape with respect to small changes in the policy. That is, the loss landscape in certain environments might change significantly from episode to episode even with a minor change in the policy (e.g., environments where the agent might fall over and end the episode early). In such cases, momentum would not bear the same positive impact since the optimum might shift in a different direction.

Additionally, we see differences in momentum importance between A2C and PPO. In A2C, the impact of momentum is seen more extensively with values closer to .9 yielding large improvements, while in PPO in some environments values remain with 20% of the optimal momentum returns across all momentum values. The differing behaviours of momentum between PPO and A2C could be attributable to several factors. One effect could be the dissonance caused by constraining the policy while letting the value function update (e.g., the total momentum for the value function is higher than it should be for a constrained policy). Another possible effect could be the nature of long Monte Carlo rollouts by a single
worker used by PPO versus small numbers of steps with many workers used in A2C. To probe these effects, we set up another experiment in an attempt to determine if the length of the steps taken in the environment or the number of parallel workers may cause an implicit momentum that should be accounted for. We decreased the number of parallel workers and increased the step size in increments such that the overall number of optimization batch size remained the same and ran a grid of momentum values (see Appendix E for full setup and results). As seen particularly in Appendix E.3, there is a slight trend such that lower momentum values see improved performance at higher worker-to-step ratios – which suggests a source of implicit momentum. However, this trend is noisy and does not generalize to all environments. Overall, while using the default momentum with SGDNM yields close to the optimal results in all cases, the difference in performance improvement at higher momentum values across algorithms and environments provides valuable insights into factors affecting performance in adaptive methods.

4. Conclusion

We show that adaptive gradient descent optimization methods in Deep RL are highly sensitive to the choice of learning rate. In fact, for PPO, the range of well-performing learning rates for adaptive methods is quite small relative to that of simple SGDNM. Furthermore, we show that momentum effect can be dependent on the environment and to some extent as well on the number of steps taken and workers used. This indicates that there may be sources of implicit momentum or other factors that affect adaptive or momentum-based optimization in certain environments. There are also other notions that we did not explore that may have effects in the optimization performance which may be explored in future work (examples discussed in Appendix F). Generally, given current methods, we suggest tuning optimization methods as per the analysis provided here. For example, a small well-tuned learning rate with Adam or RMSProp provides the best performance overall, while relying on SGDNM with momentum equal to .9 for PPO yields generally acceptable performance across a wider range of learning rates.

More importantly though, our findings demonstrate that the use of default values with adaptive optimizers may not be enough for the unique properties of Deep RL. Both the adaptive methods and non-adaptive methods still require hyperparameter tuning to perform well – with different optimal settings in each environment. However, tuning may be difficult in more complex environments or online settings, causing issues of fairness, reproducibility, and efficiency (Henderson et al., 2017). Furthermore, recent work proposed that algorithms be evaluated on a small neighbourhood of hyperparameters to determine robustness as this may be a crucial factor for real-world usage (Cohen et al., 2018). While tuning may be acceptable in simple settings in the interim, further research is likely needed into developing or using adaptive gradient descent optimization methods which account for changing loss landscapes in different environments and the unique dynamics of Deep RL algorithms. Such research may allow for evaluation as suggested by Cohen et al. (2018), yield more reproducible results by avoiding brittle hyperparameters, improve scalability and robustness, and move toward lifelong learning, online, and complex settings where tuning may not be possible or practical. We hope that the analysis and insights we provide here can be used as a foundation for building such Deep RL-specific optimization methods.
References

Gabriel Barth-Maron, Matthew W Hoffman, David Budden, Will Dabney, Dan Horgan, Alistair Muldal, Nicolas Heess, and Timothy Lillicrap. Distributed distributional deterministic policy gradients. *arXiv preprint arXiv:1804.08617*, 2018.

Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John Schulman, Jie Tang, and Wojciech Zaremba. Openai gym. *arXiv preprint arXiv:1606.01540*, 2016.

Daniel Cohen, Scott M Jordan, and W Bruce Croft. Distributed evaluations: Ending neural point metrics. *arXiv preprint arXiv:1806.03790*, 2018.

John Duchi, Elad Hazan, and Yoram Singer. Adaptive subgradient methods for online learning and stochastic optimization. *Journal of Machine Learning Research*, 12(Jul):2121–2159, 2011.

Nicolas Heess, Srinivasan Sriram, Jay Lemmon, Josh Merel, Greg Wayne, Yuval Tassa, Tom Erez, Ziyu Wang, Ali Eslami, Martin Riedmiller, et al. Emergence of locomotion behaviours in rich environments. *arXiv preprint arXiv:1707.02286*, 2017.

Peter Henderson, Riashat Islam, Philip Bachman, Joelle Pineau, Doina Precup, and David Meger. Deep reinforcement learning that matters. *arXiv preprint arXiv:1709.06560*, 2017.

Martin Heusel, Hubert Ramsauer, Thomas Unterthiner, Bernhard Nessler, and Sepp Hochreiter. Gans trained by a two time-scale update rule converge to a local nash equilibrium. In *Advances in Neural Information Processing Systems*, pages 6629–6640, 2017.

Geoffrey Hinton, Nitish Srivastava, and Kevin Swersky. Neural networks for machine learning lecture 6a overview of mini-batch gradient descent, 2012.

Riashat Islam, Peter Henderson, Maziar Gomrokchi, and Doina Precup. Reproducibility of benchmarked deep reinforcement learning tasks for continuous control. *arXiv preprint arXiv:1708.04133*, 2017.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. *arXiv preprint arXiv:1412.6980*, 2014.

Ilya Kostrikov. Pytorch implementations of reinforcement learning algorithms. https://github.com/ikostrikov/pytorch-a2c-ppo-acktr, 2018.

Ioannis Mitliagkas, Ce Zhang, Stefan Hadjis, and Christopher Ré. Asynchrony begets momentum, with an application to deep learning. In *Communication, Control, and Computing (Allerton), 2016 54th Annual Allerton Conference on*, pages 997–1004. IEEE, 2016.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness, Marc G Bellemare, Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg Ostrovski, et al. Human-level control through deep reinforcement learning. *Nature*, 518(7540):529, 2015.

Volodymyr Mnih, Adria Puigdomenech Badia, Mehdi Mirza, Alex Graves, Timothy Lillicrap, Tim Harley, David Silver, and Koray Kavukcuoglu. Asynchronous methods for
deep reinforcement learning. In International Conference on Machine Learning, pages 1928–1937, 2016.

Yurii Nesterov. A method for unconstrained convex minimization problem with the rate of convergence $o \left(1/k^2\right)$. In Doklady AN USSR, volume 269, pages 543–547, 1983.

Boris T Polyak and Anatoli B Juditsky. Acceleration of stochastic approximation by averaging. SIAM Journal on Control and Optimization, 30(4):838–855, 1992.

Sashank J Reddi, Satyen Kale, and Sanjiv Kumar. On the convergence of adam and beyond. In International Conference on Learning Representations, 2018.

Sebastian Ruder. An overview of gradient descent optimization algorithms. arXiv preprint arXiv:1609.04747, 2016.

John Schulman, Philipp Moritz, Sergey Levine, Michael Jordan, and Pieter Abbeel. High-dimensional continuous control using generalized advantage estimation. arXiv preprint arXiv:1506.02438, 2015.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

Richard S Sutton. Learning to predict by the methods of temporal differences. Machine learning, 3(1):9–44, 1988.

Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction, volume 1. MIT press Cambridge, 1998.

Richard S Sutton, David A McAllester, Satinder P Singh, and Yishay Mansour. Policy gradient methods for reinforcement learning with function approximation. In Advances in neural information processing systems, pages 1057–1063, 2000.

Ronald J Williams. Simple statistical gradient-following algorithms for connectionist reinforcement learning. In Reinforcement Learning, pages 5–32. Springer, 1992.

Ashia C Wilson, Rebecca Roelofs, Mitchell Stern, Nati Srebro, and Benjamin Recht. The marginal value of adaptive gradient methods in machine learning. In Advances in Neural Information Processing Systems, pages 4151–4161, 2017.

Matthew D Zeiler. Adadelta: an adaptive learning rate method. arXiv preprint arXiv:1212.5701, 2012.

Jian Zhang, Ioannis Mitliagkas, and Christopher Ré. Yellowfin and the art of momentum tuning. arXiv preprint arXiv:1706.03471, 2017.
Appendix A. Experimental Setup

For all experiments we use a modified version of Kostrikov (2018) PyTorch implementations of A2C and PPO. We found this to produce the most reliable results close to those reported by the original works. Our modifications simply make it easier to run experiments from a set of configurations files. We provide our modified version of the code along with tools used to generate the graphs here in: https://github.com/facebookresearch/WhereDidMyOptimumGo. We note that the variance and standard deviations in all results below indicate that across 10 different trials with a fixed set of random seeds where we set the seeds to:

{ "agent_seed" : 125125, "environment_seed" : 153298},
{ "agent_seed" : 513, "environment_seed" : 623},
{ "agent_seed" : 90135, "environment_seed" : 6412},
{ "agent_seed" : 81212, "environment_seed" : 91753},
{ "agent_seed" : 3523401, "environment_seed" : 52379},
{ "agent_seed" : 15709, "environment_seed" : 17},
{ "agent_seed" : 1, "environment_seed" : 99124},
{ "agent_seed" : 0, "environment_seed" : 772311},
{ "agent_seed" : 8412, "environment_seed" : 19153163},
{ "agent_seed" : 1153780, "environment_seed" : 9231}

Where “agent seed” is the seed provided to all random number generators related to the agent (including network initialization) and “environment seed” relates to the seed provided to the environment. In this case, the mean itself provides insight into optimizer performance as all sources of randomness are fixed. The variance instead gives an indication as to an optimizer’s ability to find a similar optimum in different conditions.

For both A2C and PPO, we use the normalized observations and reward as in (Kostrikov, 2018). We run all on CPU to avoid non-determinism in the GPU. For A2C we use hyper-parameters:

"add_timestep" : false, "recurrent_policy" : false,
"num_frames" : 2e6, "num_steps" : 5,
"num_processes" : 16, "gamma" : 0.99,
"tau" : 0.95, "use_gae" : false,
"value_loss_coef" : 1.0, "entropy_coef" : 0.0,
"max_grad_norm" : 0.5, "num_stack" : 1

For PPO:

"add_timestep" : false, "recurrent_policy" : false,
"num_frames" : 2e6, "num_steps" : 2048,
"num_processes" : 1, "gamma" : 0.99,
"tau" : 0.95, "use_gae" : true, "num_stack" : 1
"clip_param" : 0.2, "ppo_epoch" : 10,
"num_mini_batch" : 32, "value_loss_coef" : 1.0,
"entropy_coef" : 0.0, "max_grad_norm" : 0.5,

When running ablation analysis on optimizers, we use the PyTorch default set of hyper-parameters except for some cases which we align with the optimizers used in (Kostrikov, 2018). They are as follows:
Adagrad(params, lr=0.01, lr_decay=0, weight_decay=0, initial_accumulator_value=0)
Adam(params, lr=0.001, betas=(0.9, 0.999), eps=1e-5, weight_decay=0, amsgrad=False)
amsgrad=True when using AMSGrad
Adamax(params, lr=0.002, betas=(0.9, 0.999), eps=1e-08, weight_decay=0)
ASGD(params, lr=0.01, lambd=0.0001, alpha=0.75, t0=1000000.0, weight_decay=0)
RMSprop(params, lr=0.01, alpha=0.99, eps=1e-5, weight_decay=0, momentum=0, centered=False)
SGD(params, lr=<object object>, momentum=0, dampening=0, weight_decay=0, nesterov=False)
momentum=.9 and nesterov=True for SGDNM

The YellowFin optimizer from: https://github.com/JianGoForIt/YellowFin_Pytorch at commit hash 362ed7ada76f3d789aa2c431bc33b33fecd71ea. All default settings were used except for:

"force_non_inc_step": true, "stat_protect_fac": true

We found that otherwise the optimizer would consistently diverge.

Throughout the results we refer to SGDNM which stands for SGD with Nesterov Momentum. A* indicates the Ada family of algorithms. RMS indicates RMSProp and AMS indicates AMSGrad. We also refer to asymptotic performance (which is averaged over the last 50 episodes) and average performance (where the average is over all episodes in the training process). The analysis of average performance of all episodes in training is a similar analysis that of Sutton and Barto (1998) and gives better insight into the effect on both learning speed and final asymptotic performance.

In our momentum experiments, while Mitliagkas et al. (2016) use negative momentum values, PyTorch (version 0.4) does not accept negative momentum values. We decided not to modify the default SGD optimizer provided by PyTorch as this could yield unknown added effects. As such we do not investigate negative momentum values.

Appendix B. Performance of Random Agent

For some of the results, we rely on the performance of a random agent to normalize the visualizations. These performances were averaged over 100 episodes by uniformly sampling from the action space and can be found in Table 1,

Env	Ant	Hopper	Walker2d	HalfCheetah	Reacher
Return	-72.58	16.97	1.54	-272	-43.1

Table 1: Average return of a random uniform sampling policy on MuJoCo tasks across 100 episodes.
Appendix C. Learning Rate Experiments

Figures 3-12 show the per algorithm performance across learning rates. We note that in some cases where adaptive methods diverge the variance makes the graphs difficult to read. This gives further indication of just how brittle adaptive methods can be at high learning rates. We also note that while YellowFin is generally stable throughout most settings, as seen in Figure 12 we were unable to get convergence at any learning rate on the Reacher environment with A2C.

Figure 3: PPO performance across learning rates on the Ant environment.
Figure 4: PPO performance across learning rates on the Hopper environment.
Figure 5: PPO performance across learning rates on the HalfCheetah environment.
Figure 6: PPO performance across learning rates on the Reacher environment.
Figure 7: PPO performance across learning rates on the Walker2d environment.
Figure 8: A2C performance across learning rates on the Ant environment.
Figure 9: A2C performance across learning rates on the Walker2d environment.
Figure 10: A2C performance across learning rates on the Hopper environment.
Figure 11: A2C performance across learning rates on the HalfCheetah environment.
Figure 12: A2C performance across learning rates on the Reacher environment.

C.1 Learning Rate Alpha Plots

Figures 13 and 14 show the asymptotic performance across different learning rates (over the last 50 episodes). Figures 16 and 15 show the average performance.
Figure 13: A2C asymptotic performance (averaged over last 50 episodes over 10 random seeds) at different learning rates.
Figure 14: PPO asymptotic performance (averaged over last 50 episodes over 10 random seeds) at different learning rates.
Figure 15: PPO average performance (averaged over last all episodes over 10 random seeds) at different learning rates.
Figure 16: A2C average performance (averaged over last all episodes over 10 random seeds) at different learning rates.
C.2 Results for Learning Rate Experiments (Average Performance)

lr	SGDNM	SGD	RMS	AMS	A*m	A*max	A*grad	A*delta	ASGD	YF
0.0001	778	169	2852	2772	2782	2140	84	43	174	1262
0.0002	1173	251	3069	2407	3041	2619	173	111	242	1560
0.0003	1307	294	2530	3169	2789	2950	239	150	297	1437
0.0004	1823	345	2356	2675	2276	2869	286	177	340	1516
0.0005	1938	396	1812	2622	2017	2962	316	203	392	1536
0.0006	2037	466	1659	2891	1443	2819	350	224	447	1528
0.0007	1906	503	1263	2095	1168	3099	397	247	498	1356
0.0008	2151	582	1107	1834	1203	2743	431	259	564	1161
0.0009	2086	615	916	1633	888	2937	496	275	620	1289
0.001	2020	764	716	1258	781	2579	548	287	612	1347
0.002	2407	1118	498	549	527	1249	1199	445	1227	1052
0.003	2315	1430	417	448	485	696	1528	615	1468	1184
0.004	2425	1570	396	414	384	551	1870	859	1783	1154
0.005	2162	1855	349	388	368	496	2061	876	1580	1244
0.006	2056	2018	339	393	372	449	2139	1198	1786	1205
0.007	2006	1895	338	403	294	414	2277	1318	1913	965
0.008	1639	2117	245	312	306	404	2433	1506	2141	1012
0.009	1927	2053	232	348	285	361	2310	1638	1807	882
0.01	1707	2058	193	329	235	371	2430	1741	2266	875

Table 2: The average returns across all episodes over 10 random seeds for PPO on the Walker2d environment.

lr	SGDNM	SGD	RMS	AMS	A*m	A*max	A*grad	A*delta	ASGD	YF
0.0001	-24	-67	-11	-15	-12	-18	-104	-114	-67	-14
0.0002	-19	-49	-9	-12	-9	-13	-97	-108	-49	-13
0.0003	-17	-40	-9	-9	-9	-11	-91	-103	-40	-15
0.0004	-16	-35	-9	-9	-9	-11	-85	-99	-35	-14
0.0005	-16	-32	-9	-9	-9	-11	-80	-96	-32	-13
0.0006	-14	-29	-9	-9	-9	-11	-75	-92	-29	-14
0.0007	-14	-28	-9	-9	-9	-10	-71	-89	-27	-14
0.0008	-13	-26	-10	-9	-9	-9	-67	-86	-26	-13
0.0009	-12	-25	-9	-9	-9	-9	-64	-83	-25	-15
0.001	-12	-20	-10	-9	-10	-9	-61	-81	-24	-14
0.002	-12	-19	-21	-12	-14	-9	-40	-61	-20	-15
0.003	-10	-17	-41	-13	-11	-12	-30	-50	-16	-15
0.004	-10	-16	-66	-20	-40	-12	-24	-42	-15	-15
0.005	-11	-15	-96	-37	-59	-13	-20	-37	-16	-15
0.006	-10	-15	-96	-37	-59	-13	-20	-37	-16	-15
0.007	-10	-13	-317	-78	-112	-19	-16	-30	-14	-15
0.008	-11	-13	-232	-111	-136	-19	-15	-28	-13	-15
0.009	-11	-13	-434	-131	-168	-26	-14	-25	-14	-15
0.01	-11	-13	-559	-159	-206	-33	-14	-24	-14	-16

Table 3: The average returns across all episodes over 10 random seeds for PPO on the Reacher environment.
Table 4: The average returns across all episodes over 10 random seeds for PPO on the Hopper environment.

lr	SGDNM	SGD	RMS	AMS	A*m	A*max	A*grad	A*delta	ASGD	YF
0.0001	1086	328	2139	1908	1993	1912	189	96	329	1834
0.0002	1459	2246	2080	2303	2229	315	214	491	1974	
0.0003	1845	602	2287	2240	2225	2111	357	314	640	1668
0.0004	1952	745	2052	2064	1968	2265	442	322	744	1887
0.0005	1645	845	2027	2188	1765	2323	511	416	832	1779
0.0006	1944	930	1942	2200	1797	2180	611	417	932	1664
0.0007	1663	966	1863	2103	1494	2287	680	500	939	1915
0.0008	1522	1020	1876	2123	1343	2263	701	534	1006	1787
0.0009	1998	1085	1488	2185	1204	2212	728	560	1089	1882
0.01	2078	1148	1681	1856	1318	2134	739	549	1120	1901
0.02	2123	1411	972	1226	1004	1791	1129	791	1420	1725
0.03	1852	1793	847	1070	875	1516	1437	859	1612	1818
0.04	1943	1712	762	1034	907	993	1453	1105	1837	1907
0.05	1849	1763	744	925	812	1157	1632	1139	1731	1842
0.06	1947	1943	744	878	762	871	1728	1267	1893	1624
0.07	2056	1776	750	730	728	1035	1860	1449	1592	1481
0.08	1817	1777	614	769	733	797	2005	1362	1859	1716
0.09	1672	1808	666	801	709	915	1969	1531	1852	1755
0.1	1947	1843	687	745	729	850	1937	1590	1781	1606

Table 5: The average returns across all episodes over 10 random seeds for PPO on the HalfCheetah environment.

lr	SGDNM	SGD	RMS	AMS	A*m	A*max	A*grad	A*delta	ASGD	YF
0.0001	329	-610	2030	1425	1772	841	-689	-743	-612	1078
0.0002	826	-456	2489	1947	2276	1387	-641	-711	-463	1366
0.0003	987	-305	2065	2032	1922	1671	-610	-683	-307	1670
0.0004	1380	-190	2618	2360	2219	1813	-575	-657	-181	1609
0.0005	1417	-76	2086	2284	2208	1971	-540	-637	-82	1542
0.0006	1261	3	1845	2058	2005	2188	-509	-616	6	1389
0.0007	1418	92	1514	1989	1617	2075	-468	-594	64	1343
0.0008	1381	183	1481	1957	1473	2227	-428	-575	162	1154
0.0009	1670	249	1051	1958	1166	1968	-386	-554	237	1409
0.01	1735	320	1180	1953	721	2170	-351	-535	362	1320
0.02	1584	833	-164	291	99	1660	-5	-330	698	1307
0.03	2150	879	-729	-427	-347	1069	317	-136	980	1526
0.04	1893	1034	-1381	-940	-918	536	507	18	974	1074
0.05	2236	1279	-2384	-1306	-1579	724	153	1099	1273	
0.06	1647	1338	-3762	-1577	-2432	-315	939	251	1239	1111
0.07	2068	1535	-4979	-2035	-3656	-449	870	406	1714	1095
0.08	1982	1436	-7160	-2574	-5136	-895	1030	479	1419	891
0.09	1891	1521	-9416	-3099	-6948	-1106	1077	541	1592	468
0.1	2071	1633	-12446	-3625	-8910	-1247	1419	602	1580	-1357

Peter Henderson, Joshua Romoff, Joelle Pineau
Table 6: The average returns across all episodes over 10 random seeds for PPO on the Ant environment.

lr	SGDNM	SGD	RMS	AMS	A*m	A*max	A*grad	A*delta	ASGD	YF
0.0001	-514	-1333	727	640	882	209	-1286	-1365	-1323	78
0.0002	-25	-1261	558	859	399	746	-1223	-1330	-1258	79
0.0003	291	-1178	336	508	243	990	-1159	-1295	-1162	73
0.0004	485	-1077	179	385	168	929	-1092	-1273	-1064	61
0.0005	702	-966	99	286	108	788	-1036	-1248	-959	67
0.0006	742	-855	47	152	95	698	-984	-1211	-842	65
0.0007	710	-753	29	86	34	450	-932	-1181	-749	59
0.0008	934	-668	10	47	19	405	-876	-1150	-657	59
0.0009	779	-598	-31	7	-14	337	-827	-1131	-583	62
0.001	965	-528	-143	-11	-41	312	-773	-1105	-525	42
0.002	900	-29	-1144	-1061	-903	17	-469	-847	-16	20
0.003	847	295	-2214	-1821	-1799	-241	-316	-687	298	-21
0.004	650	486	-3365	-2415	-3320	-852	-206	-574	527	-28
0.005	406	720	-5452	-3834	-4389	-1345	-91	-480	673	-92
0.006	495	641	-5807	-5143	-6757	-1816	34	-403	741	-167
0.007	264	842	-10322	-5452	-9529	-1933	138	-312	856	-213
0.008	153	899	-15851	-7874	-12138	-2589	234	-228	951	-299
0.009	61	820	-20024	-8682	-14339	-2728	311	-128	1001	-573
0.01	24	832	-172953	-11573	-19190	-3134	384	-52	1135	-664

Table 7: The average returns across all episodes over 10 random seeds for A2C on the Walker2d environment.

lr	SGDNM	SGD	RMS	AMS	A*m	A*max	A*grad	A*delta	ASGD	YF
0.0001	144	2	504	353	452	266	9	-1	2	423
0.0002	183	11	593	522	524	337	44	0	11	463
0.0003	194	29	713	627	686	473	95	2	29	452
0.0004	218	53	1083	614	832	589	121	5	53	502
0.0005	221	80	822	737	909	592	140	8	79	441
0.0006	245	100	1212	693	698	490	149	11	101	439
0.0007	270	115	911	618	794	706	152	16	116	413
0.0008	285	126	1080	743	773	586	159	23	126	531
0.0009	303	139	951	831	766	606	169	30	136	419
0.001	333	144	1088	763	779	743	175	39	147	419
0.002	445	182	671	565	419	653	249	108	183	394
0.003	472	198	373	292	288	742	276	139	200	372
0.004	553	239	316	257	239	698	452	154	216	353
0.005	612	232	235	242	184	523	441	176	228	339
0.006	539	249	153	152	115	469	516	172	237	351
0.007	588	272	127	132	50	372	450	193	269	328
0.008	568	278	76	79	68	376	445	193	284	286
0.009	604	312	28	30	18	353	491	205	290	350
0.01	589	344	42	26	-6	294	580	217	307	301
lr	SGDNM	SGD	RMS	AMS	A*m	A*max	A*grad	A*delta	ASGD	YF
-------	-------	-----	-----	-----	-----	-------	--------	---------	------	-----
0.0001	137	22	609	725	713	574	36	16	22	529
0.0002	298	35	848	747	737	602	53	18	35	682
0.0003	367	46	870	762	760	614	60	21	46	796
0.0004	417	56	921	829	760	640	100	25	55	659
0.0005	450	65	1172	642	834	782	152	29	65	749
0.0006	479	74	1096	699	801	740	241	33	75	659
0.0007	520	87	1175	811	757	622	279	37	86	782
0.0008	539	104	1264	934	737	652	335	40	100	755
0.0009	505	121	1199	878	812	720	368	43	119	689
0.001	536	140	1222	817	700	798	392	46	140	685
0.002	585	288	998	568	628	800	529	70	289	765
0.003	767	363	987	588	512	813	593	150	367	680
0.004	708	419	765	522	413	645	581	228	475	523
0.005	732	450	649	449	353	647	720	291	450	570
0.006	717	468	637	387	356	585	574	344	472	644
0.007	636	488	563	355	348	564	552	386	493	723
0.008	660	495	542	335	308	532	685	418	497	731
0.009	547	518	475	303	292	542	774	404	502	794
0.01	554	528	415	300	272	488	790	472	631	660

Table 8: The average returns across all episodes over 10 random seeds for A2C on the Hopper environment.

lr	SGDNM	SGD	RMS	AMS	A*m	A*max	A*grad	A*delta	ASGD	YF
0.0001	-647	-773	-9	-212	-51	-542	-758	-788	-775	1007
0.0002	-540	-754	497	221	429	-245	-730	-782	-753	902
0.0003	-442	-735	813	554	872	4	-712	-780	-734	991
0.0004	-358	-718	1117	836	1038	190	-705	-774	-719	1128
0.0005	-277	-703	1178	933	1119	365	-701	-769	-703	1008
0.0006	-199	-690	1524	1054	1337	548	-709	-764	-689	1017
0.0007	-111	-678	1201	1283	1603	605	-720	-761	-678	1091
0.0008	-42	-666	1818	1355	1545	699	-737	-758	-667	689
0.0009	22	-657	1760	1605	1602	836	-747	-754	-656	817
0.001	85	-646	1643	1631	1535	972	-755	-752	-645	636
0.002	508	-542	957	1089	478	1453	-650	-732	-542	680
0.003	769	-442	51	142	215	1318	-464	-734	-445	592
0.004	891	-360	-710	-422	-755	1286	-334	-741	-353	339
0.005	872	-278	-1508	-770	-1379	1054	-224	-747	-279	523
0.006	737	-200	-2754	-1194	-2158	669	-104	-739	-200	356
0.007	886	-116	-4147	-1683	-3702	215	-24	-723	-116	284
0.008	1015	-44	-7891	-2284	-4062	-15	91	-695	-45	443
0.009	1101	25	-8413	-2856	-8724	-314	220	-671	20	326
0.01	920	90	-21693	-3233	-14145	-429	251	-649	77	95

Table 9: The average returns across all episodes over 10 random seeds for A2C on the HalfCheetah environment.
Table 10: The average returns across all episodes over 10 random seeds for A2C on the Reacher environment.

lr	SGDNM	SGD	RMS	AMS	A^m	A^max	A^grad	A^delta	ASGD	YF
0.0001	-76	-118	-53	-59	-54	-81	-113	-125	-118	-1193
0.0002	-64	-109	-40	-47	-41	-63	-107	-123	-109	-941
0.0003	-57	-102	-35	-40	-36	-53	-104	-121	-102	-1126
0.0004	-52	-96	-32	-37	-32	-47	-101	-120	-96	-2160
0.0005	-48	-92	-30	-35	-30	-43	-99	-118	-92	-2025
0.0006	-46	-87	-28	-33	-28	-40	-98	-117	-87	-2470
0.0007	-44	-84	-26	-31	-27	-38	-97	-116	-84	-1950
0.0008	-42	-81	-25	-30	-26	-36	-96	-115	-81	-2128
0.0009	-40	-79	-25	-28	-25	-35	-95	-114	-79	-3114
0.001	-39	-76	-24	-28	-25	-34	-94	-113	-76	-3124
0.002	-32	-64	-42	-24	-45	-27	-80	-107	-64	-1423
0.003	-29	-57	-97	-50	-146	-24	-67	-105	-57	-1825
0.004	-27	-52	-464	-157	-284	-25	-59	-102	-52	-4326
0.005	-25	-48	-950	-217	-387	-29	-53	-100	-48	-4095
0.006	-24	-46	-417	-549	-811	-155	-49	-97	-46	-3852
0.007	-23	-43	-1193	-513	-1828	-65	-46	-94	-43	-1745
0.008	-22	-42	-2953	-891	-2060	-291	-44	-91	-42	-2677
0.009	-20	-40	-3200	-2399	-8343	-222	-41	-88	-40	-5942
0.01	-21	-39	-2206	-3027	-7547	-472	-39	-86	-39	-6191

Table 11: The average returns across all episodes over 10 random seeds for A2C on the Ant environment.

lr	SGDNM	SGD	RMS	AMS	A^m	A^max	A^grad	A^delta	ASGD	YF
0.0001	-1147	-1378	-440	-492	-458	-863	-1366	-1418	-1376	610
0.0002	-994	-1332	-14	-251	-70	-600	-1322	-1396	-1395	615
0.0003	-842	-1312	457	-71	315	-452	-1269	-1395	-1307	615
0.0004	-715	-1287	694	83	598	-356	-1236	-1397	-1284	622
0.0005	-616	-1259	887	260	709	-231	-1193	-1380	-1254	612
0.0006	-533	-1229	946	388	806	-108	-1164	-1372	-1229	609
0.0007	-467	-1218	966	499	822	30	-1144	-1375	-1205	607
0.0008	-405	-1188	911	582	810	155	-1109	-1359	-1190	617
0.0009	-353	-1166	911	633	758	290	-1086	-1342	-1160	620
0.001	-312	-1143	842	690	686	381	-1066	-1341	-1153	609
0.002	10	-986	248	469	206	888	-863	-1281	-983	602
0.003	216	-853	-9613	213	-7060	885	-685	-1233	-841	585
0.004	345	-722	-1976	-1057	-17378	718	-544	-1193	-717	580
0.005	435	-620	-29898	-11825	-38297	524	-453	-1167	-614	566
0.006	494	-538	-34973	-9769	-50970	429	-373	-1115	-536	561
0.007	539	-465	-55208	-16308	-72371	92	-326	-1090	-466	547
0.008	572	-407	-198085	-22234	-113285	550	-290	-1070	-404	532
0.009	584	-354	-120519	-36751	-91976	-7818	-258	-1037	-359	527
0.01	597	-310	-205884	-52366	-123956	-9693	-242	-1007	-312	514

29
C.3 Results for Learning Rate Experiments (Asymptotic Performance)

lr	SGDNM	SGD	RMS	AMS	A*m	A*max	A*grad	A*delta	ASGD	YF
0.0001	206	8	755	518	703	394	16	0	9	672
0.0002	209	30	865	831	910	470	95	3	37	552
0.0003	254	86	1015	760	1049	622	157	11	83	775
0.0004	270	158	1735	1173	1508	821	162	16	150	613
0.0005	319	219	1618	1034	1523	849	178	21	201	581
0.0006	342	197	1548	1113	1360	804	180	39	206	615
0.0007	411	191	1425	1218	1249	995	167	55	218	601
0.0008	448	199	1695	1233	1057	861	174	75	206	906
0.0009	420	210	1465	1277	1042	809	190	96	204	572
0.001	595	226	1408	1465	1543	1134	225	121	233	629
0.002	608	206	568	655	607	910	320	197	207	552
0.003	633	253	508	252	314	1094	348	204	232	582
0.004	692	309	324	255	298	1151	561	206	260	416
0.005	909	338	194	257	65	608	521	253	275	469
0.006	540	309	157	203	75	740	601	217	351	482
0.007	787	365	115	205	26	433	521	238	351	474
0.008	597	429	-10	135	36	422	502	251	475	374
0.009	825	549	1	32	50	267	798	301	240	14031
0.01	917	614	15	32	50	267	798	301	491	240

Table 12: The asymptotic returns averaged across last 50 episodes over 10 random seeds for A2C on the Walker2d environment.

lr	SGDNM	SGD	RMS	AMS	A*m	A*max	A*grad	A*delta	ASGD	YF
0.0001	-57	-108	-28	-40	-29	-56	-109	-122	-108	-1962
0.0002	-45	-94	-24	-30	-24	-37	-101	-118	-94	-817
0.0003	-40	-83	-23	-27	-23	-28	-99	-116	-83	-3610
0.0004	-36	-75	-21	-25	-20	-26	-96	-113	-75	-2800
0.0005	-34	-69	-20	-25	-19	-25	-95	-112	-69	-2566
0.0006	-32	-65	-18	-24	-19	-23	-94	-110	-65	-3479
0.0007	-30	-62	-18	-23	-17	-24	-95	-108	-62	-2804
0.0008	-29	-60	-18	-21	-19	-25	-94	-106	-60	-1244
0.0009	-28	-58	-19	-21	-17	-22	-91	-105	-58	-1461
0.001	-27	-56	-17	-21	-16	-22	-87	-104	-57	-5347
0.002	-24	-46	-86	-28	-64	-19	-65	-101	-46	-2808
0.003	-22	-40	-105	-101	-399	-18	-52	-99	-40	-3885
0.004	-21	-36	-554	-219	-321	-38	-46	-92	-36	-9103
0.005	-20	-34	-1299	-165	-436	-75	-41	-85	-34	-11072
0.006	-21	-32	-279	-2616	-989	-58	-37	-81	-32	-3465
0.007	-18	-30	-2645	-1062	-1773	-221	-35	-74	-30	-1385
0.008	-14	-28	-7486	-548	-2375	-425	-32	-69	-29	-6912
0.009	-14	-28	-3615	-2389	-7495	-408	-30	-64	-28	-9465
0.01	-17	-28	-2681	-7829	-9271	-676	-29	-62	-28	-14031

Table 13: The asymptotic returns averaged across last 50 episodes over 10 random seeds for A2C on the Reacher environment.
lr	SGDNM	SGD	RMS	AMS	A* m	A*max	A*grad	A*delta	ASGD	YF
0.0001	316	33	700	844	784	761	48	17	32	790
0.0002	497	60	829	871	908	766	63	23	62	986
0.0003	533	77	1116	794	724	769	91	32	77	1239
0.0004	590	89	1414	875	926	759	188	43	90	742
0.0005	595	105	1486	668	1200	983	247	48	105	1211
0.0006	557	138	1480	658	1071	822	537	55	139	1083
0.0007	631	173	1394	898	1037	760	434	64	166	785
0.0008	665	229	1489	1201	1256	848	444	70	215	1013
0.0009	638	282	1608	1082	1073	881	487	73	323	968
0.001	677	339	1618	1009	971	983	475	73	323	968
0.002	841	484	1422	899	674	1136	588	147	478	1325
0.003	967	539	1216	517	580	1244	624	406	541	1264
0.004	841	602	844	631	549	1033	589	479	649	812
0.005	1228	574	786	522	588	667	779	554	612	1027
0.006	1033	559	809	586	416	644	589	601	561	981
0.007	870	587	745	464	414	772	560	614	658	712
0.008	896	671	642	366	502	774	746	739	617	958
0.009	687	704	681	369	327	579	955	589	637	1052
0.01	810	730	496	338	303	724	753	661	861	784

Table 14: The asymptotic returns averaged across last 50 episodes over 10 random seeds for A2C on the Hopper environment.

lr	SGDNM	SGD	RMS	AMS	A* m	A*max	A*grad	A*delta	ASGD	YF
0.0001	-550	-753	733	288	735	-211	-739	-773	-747	1149
0.0002	-328	-724	1280	902	1244	303	-707	-776	-714	852
0.0003	-163	-682	1685	1437	1673	743	-689	-751	-664	1003
0.0004	-16	-649	1825	1715	1875	957	-704	-744	-653	1337
0.0005	141	-611	1934	1757	1665	1190	-710	-757	-634	580
0.0006	292	-614	2425	1919	1976	1470	-723	-752	-611	1227
0.0007	413	-587	1692	2267	2710	1367	-762	-736	-587	946
0.0008	557	-572	2846	2391	2404	1449	-791	-720	-584	868
0.0009	672	-554	2524	2558	2187	1662	-787	-717	-553	40
0.001	745	-542	2039	1988	2114	1732	-783	-714	-548	161
0.002	1190	-325	461	1204	130	2098	-452	-714	-330	920
0.003	1456	-174	615	349	582	1798	-217	-742	-177	655
0.004	1319	-20	1685	-718	-1184	1666	-48	-774	-20	223
0.005	1442	133	-2544	-976	-3267	736	126	-736	144	347
0.006	1038	276	-6034	-1828	-4411	184	272	-668	278	199
0.007	1281	417	-9289	-2948	-10275	298	420	-585	396	365
0.008	1011	556	-16336	-3173	-7959	-334	574	-481	565	308
0.009	745	684	-19835	-4108	-21408	961	727	-442	651	323
0.01	1775	792	-53399	-5579	-39233	1402	785	-384	744	-278

Table 15: The asymptotic returns averaged across last 50 episodes over 10 random seeds for A2C on the HalfCheetah environment.
for PPO on the Walker2d environment.

lr	SGDNM	SGD	RMS	AMS	A*m	A*max	A*grad	A*delta	ASGD	YF
0.0001	-845	-1392	-52	-99	-64	-399	-1329	-1358	-1438	706
0.0002	-676	-1171	1074	95	1004	-203	-1125	-1206	-1165	874
0.0003	-460	-1209	1821	502	1576	-72	-1061	-1334	-1154	847
0.0004	-244	-1219	1979	790	2088	105	-1168	-1306	-951	875
0.0005	-149	-1080	1989	1219	1967	453	-1080	-1151	-1003	885
0.0006	-84	-1020	2222	1510	2158	795	-933	-1228	-986	783
0.0007	-35	-1030	2035	1483	1727	1075	-862	-1306	-1033	800
0.0008	19	-935	1968	1566	1579	1192	-819	-1222	-850	820
0.0009	63	-875	1644	1502	1579	1378	-890	-1248	-837	899
0.001	104	-919	1399	1519	984	1560	-887	-1091	-1001	809
0.002	527	-699	70	541	-43	1723	-689	-1258	-609	779
0.003	726	-361	-33184	-1132	-20378	1220	-335	-950	-382	773
0.004	797	-256	-74476	-33021	-29906	690	-290	-894	-250	753
0.005	832	-132	-84827	-39256	-71094	404	-210	-810	-144	740
0.006	827	-76	-74078	-13535	-100350	160	-159	-944	-74	795
0.007	857	-22	-87454	-15977	-92454	-1729	-131	-668	-26	675
0.008	892	15	-277787	-13865	-238074	-5196	-104	-738	17	703
0.009	842	55	-288298	-49565	-201878	-47343	-59	-715	52	726
0.01	764	108	-274927	-78027	-199549	-56241	-42	-772	94	751

Table 16: The asymptotic returns averaged across last 50 episodes over 10 random seeds for A2C on the Ant environment.

lr	SGDNM	SGD	RMS	AMS	A*m	A*max	A*grad	A*delta	ASGD	YF
0.0001	1387	267	4149	4159	3754	3412	135	119	271	1248
0.0002	1927	362	4024	3162	3732	3736	254	216	364	1451
0.0003	2252	417	2756	4058	3543	4090	309	237	442	1332
0.0004	2993	566	2367	3253	2367	3986	367	285	510	1515
0.0005	3402	697	1554	3193	1926	3518	386	313	686	1459
0.0006	3157	921	1646	3453	1396	3766	432	357	759	1295
0.0007	3245	929	1301	2219	955	3852	533	358	931	1253
0.0008	3292	1151	931	1844	746	3062	655	367	1284	945
0.0009	3265	1132	788	1394	789	3704	819	408	1081	986
0.001	3099	1509	746	954	612	3081	843	427	1073	1326
0.002	3104	1788	539	554	516	1242	1886	895	1983	1070
0.003	3027	2269	420	418	503	591	2287	1151	2448	1320
0.004	3264	2724	446	432	352	454	2720	1657	2687	1186
0.005	2518	2865	355	387	375	410	2870	1672	2444	1159
0.006	2465	3272	328	430	329	416	2978	2267	2818	1195
0.007	2382	3009	327	475	298	405	3392	2406	3145	889
0.008	1776	3478	268	332	305	448	3582	2483	3049	1012
0.009	2050	3150	274	375	279	350	3259	2674	2917	761
0.01	1673	2823	180	337	248	374	3548	2855	3550	698

Table 17: The asymptotic returns averaged across last 50 episodes over 10 random seeds for PPO on the Walker2d environment.
Where did my optimum go?

lr	SGDNM	SGD	RMS	AMS	A*m	A*max	A*grad	A*delta	ASGD	YF
0.0001	-16	-38	-6	-8	-6	-100	-107	-38	-11	
0.0002	-14	-27	-5	-7	-5	-91	-99	-27	-12	
0.0003	-13	-22	-6	-5	-5	-82	-92	-22	-13	
0.0004	-12	-20	-6	-6	-6	-74	-86	-20	-12	
0.0005	-13	-18	-6	-6	-7	-68	-80	-18	-12	
0.0006	-11	-17	-6	-6	-6	-61	-74	-17	-11	
0.0007	-12	-17	-6	-5	-6	-56	-69	-17	-11	
0.0008	-10	-17	-6	-5	-7	-6	-6	-52	-64	-11
0.0009	-9	-15	-7	-6	-6	-6	-6	-49	-60	-12
0.001	-9	-15	-8	-6	-7	-6	-6	-45	-56	-14
0.002	-10	-14	-8	-6	-6	-6	-6	-26	-31	-13
0.003	-7	-13	-45	-12	-30	-8	-18	-22	-12	
0.004	-7	-13	-80	-20	-48	-9	-14	-17	-11	
0.005	-8	-12	-121	-39	-72	-11	-10	-15	-13	
0.006	-7	-12	-175	-62	-113	-14	-10	-13	-12	
0.007	-8	-10	-249	-112	-134	-20	-8	-12	-12	
0.008	-7	-10	-254	-134	-160	-20	-8	-11	-10	
0.009	-7	-10	-407	-160	-215	-35	-8	-10	-11	
0.01	-7	-10	-461	-196	-230	-45	-8	-10	-12	

Table 18: The asymptotic returns averaged across last 50 episodes over 10 random seeds for PPO on the Reacher environment.

lr	SGDNM	SGD	RMS	AMS	A*m	A*max	A*grad	A*delta	ASGD	YF
0.0001	1458	521	2365	2425	2076	2281	280	218	541	2184
0.0002	1998	801	2319	2519	2830	2643	401	381	848	2101
0.0003	2408	1072	2759	2633	2513	2379	473	524	1045	1832
0.0004	2657	1165	2194	2221	2147	2652	648	490	1251	2025
0.0005	2179	1210	2323	2267	2152	2738	690	663	1170	2066
0.0006	2313	1349	1866	2749	1950	2620	818	645	1539	1844
0.0007	2112	1349	1978	2558	1370	2779	948	746	1305	1885
0.0008	1857	1426	1845	2655	1194	2553	899	768	1531	2023
0.0009	2232	1570	1401	2257	1134	2487	885	814	1654	2086
0.001	2360	1673	1534	2169	1445	2538	963	812	1502	1986
0.002	2545	1922	1229	1308	1087	1807	1657	1147	1892	1783
0.003	2312	2284	828	1110	975	1466	1911	1180	2158	1760
0.004	2299	2100	930	1500	1019	1051	1929	1543	2502	2087
0.005	2399	2550	743	916	922	973	2065	1749	2085	1858
0.006	2326	2417	780	992	839	1099	2212	2060	2464	1821
0.007	2260	2387	760	1007	838	1076	2118	2056	2174	1592
0.008	1952	2205	713	946	851	727	2489	2022	2581	1817
0.009	2062	2266	719	958	766	900	2248	2177	2285	1722
0.01	2000	2562	779	957	701	844	2555	2200	2374	1466

Table 19: The asymptotic returns averaged across last 50 episodes over 10 random seeds for PPO on the Hopper environment.
lr	SGDNM	SGD	RMS	AMS	A* m	A*max	A*grad	A*delta	ASGD	YF
0.0001	1015	-451	3301	2407	2887	1615	-645	-690	-445	1686
0.0002	1569	-148	3674	2861	3327	2384	-610	-646	-179	1567
0.0003	1757	168	2848	2695	2599	2736	-543	-595	90	1935
0.0004	2165	204	3411	3212	2656	2652	-502	-558	289	1909
0.0005	2396	416	2559	3221	2982	2842	-443	-528	424	1766
0.0006	2039	489	2422	2523	2327	3104	-393	-467	487	1780
0.0007	2179	665	1752	2548	1878	2892	-350	-437	596	1455
0.0008	2162	752	1585	2218	1198	2962	-263	-413	725	905
0.0009	2381	977	384	2471	1074	2474	-193	-368	940	1626
0.001	2640	956	1045	2267	608	2933	-169	-331	1205	1506
0.002	2254	1576	241	22	105	1938	366	84	1300	1328
0.003	3004	1555	-915	-517	-664	893	731	402	1632	1948
0.004	2634	1639	-1777	-1018	-1259	298	999	598	1498	851
0.005	2857	2116	-3003	-1517	-2151	-581	1251	823	1768	1633
0.006	2323	1967	-4417	-2059	-3141	-551	1537	963	1882	922
0.007	2733	2303	-6030	-2598	-4876	-719	1455	1183	2585	1188
0.008	2624	2158	-9124	-3054	-6106	-1367	1622	1179	1984	576
0.009	2514	2442	-11003	-3780	-9071	-1613	1734	1185	2473	323
0.01	2615	2516	-14279	-4326	-10546	-2265	1328	2347	-585	

Table 20: The asymptotic returns averaged across last 50 episodes over 10 random seeds for PPO on the HalfCheetah environment. SGDNM stands for Nesterov Momentum. A* is the Ada family of algorithms. RMS indicates RMSProp and AMS indicates AMSGrad.

lr	SGDNM	SGD	RMS	AMS	A* m	A*max	A*grad	A*delta	ASGD	YF
0.0001	68	-1278	1882	2046	2238	1371	-1044	-1300	-1198	27
0.0002	678	-968	912	2020	694	2266	-1094	-1118	-1010	52
0.0003	1116	-750	568	1161	317	2662	-1073	-1067	-634	23
0.0004	1626	-669	217	681	229	2195	-962	-1153	-507	21
0.0005	1974	-292	132	353	170	1520	-817	-970	-332	54
0.0006	1970	-162	63	157	114	1413	-603	-994	-244	31
0.0007	1905	-167	50	86	56	828	-618	-840	-138	17
0.0008	2215	-41	19	64	65	590	-514	-777	-50	34
0.0009	1784	10	14	26	23	459	-355	-889	12	26
0.001	2322	62	-91	12	34	400	-417	-830	65	14
0.002	1814	775	-1258	-1245	-1207	-7	-289	-290	734	14
0.003	1564	1251	-3132	-1580	-2412	-423	-52	-289	1135	-35
0.004	1251	1459	-3209	-2243	-5075	-1440	100	-149	1469	-188
0.005	636	1971	-6566	-4004	-6578	-1846	431	-24	1859	-321
0.006	705	1635	-7386	-6256	-6071	-2774	617	92	1915	-802
0.007	273	2175	-12323	-6014	-9988	-2370	875	287	1852	-701
0.008	38	2126	-19267	-11176	-13108	-3342	940	531	2505	-1186
0.009	51	2051	-16438	-10500	-17834	-3188	1058	697	2422	-1667
0.01	-37	1936	-120820	-9117	-49749	-3730	1229	794	2485	-1821

Table 21: The asymptotic returns averaged across last 50 episodes over 10 random seeds for PPO on the Ant environment.
C.4 Variance Between Random Seeds (Average)

lr	SGDNM	SGD	RMS	AMS	A*m	A*max	A*grad	A*delta	ASGD	YF
0.0001	375	80	818	894	868	820	71	46	88	761
0.0002	555	95	935	1081	989	843	90	72	94	854
0.0003	573	100	1027	967	1199	970	101	78	96	745
0.0004	712	112	1075	1042	1133	856	107	82	101	886
0.0005	672	131	987	1196	1020	944	100	85	124	1048
0.0006	830	158	983	1104	928	921	94	85	180	884
0.0007	667	171	854	1255	739	113	122	90	189	786
0.0008	780	201	617	927	708	1055	122	88	287	630
0.0009	814	218	475	930	518	1175	145	92	206	706
0.001	864	349	332	783	428	1070	162	92	195	811
0.002	924	519	241	218	223	783	458	161	631	570
0.003	1070	623	221	170	210	277	579	275	612	691
0.004	1038	729	151	170	160	270	807	411	738	735
0.005	1057	720	195	168	171	195	777	314	786	633
0.006	1159	666	194	163	187	180	771	483	693	725
0.007	1069	823	162	187	161	178	759	531	724	538
0.008	906	952	137	138	140	156	862	625	797	591
0.009	1220	866	115	158	141	167	876	623	670	432
0.01	1084	1004	111	163	139	165	873	625	813	464

Table 22: The average standard deviation of returns between 10 different random seeds for PPO on the Walker environment.

lr	SGDNM	SGD	RMS	AMS	A*m	A*max	A*grad	A*delta	ASGD	YF
0.0001	3	8	3	4	4	4	12	14	8	4
0.0002	3	6	3	4	4	4	11	13	6	4
0.0003	4	5	3	3	3	3	11	12	5	4
0.0004	4	5	3	3	3	4	10	12	4	4
0.0005	3	4	3	3	3	4	9	11	4	4
0.0006	4	4	3	3	3	3	9	11	4	4
0.0007	4	4	3	3	3	3	8	11	4	4
0.0008	4	4	3	3	3	3	8	10	4	4
0.0009	4	3	3	3	3	3	8	10	3	4
0.001	4	3	3	3	3	3	7	10	3	4
0.002	4	3	14	4	4	3	5	7	3	4
0.003	4	3	17	4	7	4	4	6	4	4
0.004	3	4	25	6	12	4	4	5	4	4
0.005	4	4	36	12	18	4	4	5	3	4
0.006	3	3	47	18	26	4	4	5	4	4
0.007	4	4	309	25	35	6	4	5	4	4
0.008	4	4	79	34	43	5	4	5	4	4
0.009	3	4	351	41	51	8	4	5	4	4
0.01	4	4	475	56	67	13	4	5	4	4

Table 23: The average standard deviation of returns between 10 different random seeds for PPO on the Reacher environment.
Table 24: The average standard deviation of returns between 10 different random seeds for PPO on the Hopper environment.

lr	SGDNM	SGD	RMS	AMS	A*m	A*max	A*grad	A*delta	ASGD	YF
0.0002	514	214	709	709	692	645	175	116	220	751
0.0003	568	214	738	713	722	698	134	184	218	731
0.0004	609	241	764	791	859	683	152	159	229	777
0.0005	751	249	782	753	758	681	190	211	236	725
0.0006	699	280	758	691	856	776	221	188	299	742
0.0007	684	275	751	795	769	769	190	230	249	731
0.0008	838	282	783	739	716	707	235	235	288	747
0.0009	804	424	755	789	671	840	228	241	353	780
0.01	646	410	745	788	648	738	248	219	349	744
0.002	642	515	529	559	569	815	477	227	532	743
0.003	824	401	509	439	807	467	243	574	507	755
0.004	786	619	349	518	437	514	489	446	598	766
0.005	732	642	356	435	373	621	550	398	691	735
0.006	802	625	305	429	330	417	564	452	815	715
0.007	796	685	333	309	268	550	587	566	678	773
0.008	878	705	263	344	290	420	620	517	753	739
0.009	746	777	254	359	309	504	631	499	699	699
0.01	722	775	308	359	307	394	681	524	699	699

Table 25: The average standard deviation of returns between 10 different random seeds for PPO on the HalfCheetah environment.

lr	SGDNM	SGD	RMS	AMS	A*m	A*max	A*grad	A*delta	ASGD	YF
0.0001	329	67	876	677	722	351	62	67	67	632
0.0002	436	75	1266	971	1244	576	60	64	74	820
0.0003	401	103	1245	1100	998	777	56	61	98	921
0.0004	592	147	1299	1220	1119	1022	59	60	136	1031
0.0005	695	186	1044	1204	1103	919	65	59	184	998
0.0006	489	223	951	965	1241	1089	66	57	206	894
0.0007	549	239	802	1037	1016	994	82	58	237	822
0.0008	490	249	899	963	845	1206	84	58	260	864
0.0009	728	288	656	1027	629	972	91	59	287	879
0.001	713	279	845	975	561	1060	98	62	326	963
0.002	573	528	597	641	360	868	147	75	389	874
0.003	1027	447	398	518	296	644	209	149	392	909
0.004	968	368	313	292	282	468	281	137	378	921
0.005	1222	522	359	236	268	700	406	152	473	915
0.006	729	516	604	215	329	610	485	172	473	913
0.007	905	752	955	252	543	521	332	279	711	806
0.008	1112	633	1305	274	707	472	483	240	613	844
0.009	926	624	2048	376	1054	372	461	218	743	830
0.01	911	617	2486	399	1256	429	681	277	674	5480
Table 26: The average standard deviation of returns between 10 different random seeds for PPO on the Ant environment.

lr	SGDNM	SGD	RMS	AMS	A*m	A*max	A*grad	A*delta	ASGD	YF
0.0001	462	1083	465	427	504	356	1072	1115	1084	143
0.0002	315	1042	401	481	269	500	1033	1094	1037	140
0.0003	311	980	283	374	210	554	1005	1078	969	139
0.0004	347	907	177	293	177	548	974	1061	895	139
0.0005	400	823	162	217	157	461	945	1048	814	138
0.0006	427	737	145	178	159	398	917	1027	724	146
0.0007	384	654	132	157	150	304	892	1004	650	130
0.0008	510	581	136	133	132	281	861	991	571	131
0.0009	415	524	131	130	143	246	830	977	513	137
0.001	498	471	234	133	137	228	799	958	466	142
0.002	448	314	961	991	749	136	536	810	318	128
0.003	387	324	2260	1775	1755	267	357	690	317	129
0.004	432	357	3902	2733	3416	776	251	586	362	166
0.005	281	411	6579	4356	5327	1258	224	491	426	190
0.006	389	384	10549	5938	8093	1682	229	419	407	265
0.007	244	489	14688	7015	12211	2030	253	373	442	353
0.008	181	507	22949	9746	16269	2559	269	356	445	389
0.009	152	417	28009	11626	19736	2964	291	339	485	650
0.01	152	422	45106	15373	26733	3339	303	331	533	691

Table 27: The average standard deviation of returns between 10 different random seeds for A2C on the Walker2d environment.

lr	SGDNM	SGD	RMS	AMS	A*m	A*max	A*grad	A*delta	ASGD	YF
0.0001	87	9	306	161	287	511	20	5	9	223
0.0002	103	24	408	244	254	163	54	6	24	306
0.0003	116	41	487	295	355	241	78	9	41	312
0.0004	124	56	667	335	576	332	87	15	56	355
0.0005	132	65	420	395	547	338	90	19	65	259
0.0006	134	71	656	426	402	245	91	15	71	284
0.0007	147	75	536	296	450	399	90	30	76	287
0.0008	152	78	591	465	533	430	96	36	79	353
0.0009	169	87	556	590	462	376	102	43	83	288
0.001	215	87	622	475	510	507	115	49	90	327
0.002	235	104	408	391	295	339	182	76	107	325
0.003	324	116	205	188	186	389	144	88	122	241
0.004	340	161	201	159	197	411	250	92	129	207
0.005	375	138	185	174	192	321	237	110	131	231
0.006	317	147	151	149	144	254	233	106	135	213
0.007	344	158	143	152	117	191	184	124	150	197
0.008	357	152	126	123	124	211	212	122	160	206
0.009	369	186	88	89	115	225	245	134	153	251
0.01	358	220	107	95	69	185	315	146	180	208
Table 28: The average standard deviation of returns between 10 different random seeds for A2C on the Reacher environment.

lr	SGDNM	SGD	RMS	AMS	A*m	A*max	A*grad	A*delta	ASGD	YF
0.0001	10	15	6	6	6	11	14	16	15	1603
0.0002	8	14	4	5	5	7	13	16	14	1131
0.0003	7	13	4	4	4	6	12	15	13	1533
0.0004	6	12	4	5	5	5	12	15	12	3266
0.0005	5	11	4	5	5	12	15	11	11	3296
0.0006	5	11	4	4	4	5	12	14	11	3315
0.0007	5	10	4	4	4	12	14	10	10	2888
0.0008	4	10	4	4	5	12	14	10	10	5136
0.0009	4	10	4	5	4	12	14	10	10	5289
0.001	4	8	38	7	41	11	13	8	1675	
0.002	4	7	109	60	191	4	9	13	7	2197
0.004	3	6	714	264	398	8	7	13	6	7717
0.005	3	5	1819	328	460	17	6	13	5	5829
0.006	4	5	410	790	1247	373	5	13	5	6589
0.007	4	5	1579	711	2369	73	5	13	5	2163
0.008	5	4	4108	1251	2024	490	4	12	4	3281
0.009	6	4	4030	3725	18586	288	4	12	4	8131
0.01	6	4	2480	4247	8828	954	4	11	4	9244

Table 29: The average standard deviation of returns between 10 different random seeds for A2C on the Hopper environment.

lr	SGDNM	SGD	RMS	AMS	A*m	A*max	A*grad	A*delta	ASGD	YF
0.0001	78	14	293	265	283	267	19	11	14	367
0.0002	190	19	250	284	349	271	32	12	19	481
0.0003	232	28	361	297	291	282	37	14	27	562
0.0004	250	34	397	307	323	276	85	15	34	443
0.0005	261	39	525	324	446	336	149	16	39	457
0.0006	265	42	567	292	402	350	198	18	42	388
0.0007	283	49	539	338	379	290	226	21	48	477
0.0008	282	56	587	494	440	291	253	24	56	451
0.0009	280	69	595	508	491	303	263	27	65	491
0.001	286	79	581	445	443	259	269	30	81	390
0.002	298	191	479	272	419	479	268	45	195	461
0.003	310	226	576	375	292	493	286	116	234	413
0.004	373	248	404	330	241	353	262	178	270	321
0.005	368	265	351	297	296	375	287	213	260	391
0.006	369	269	333	248	203	404	288	238	277	409
0.007	320	273	337	220	219	343	267	251	265	465
0.008	379	269	300	199	207	324	312	260	271	445
0.009	318	285	281	185	175	325	290	249	278	424
0.01	382	279	256	186	185	305	263	264	298	394
Where did my optimum go?

lr	SGDNM	SGD	RMS	AMS	A*m	A*max	A*grad	A*delta	ASGD	YF
0.0001	59	68	72	71	73	61	65	69	67	1122
0.0002	53	66	58	96	82	64	61	68	67	957
0.0003	51	65	205	288	390	77	58	67	66	998
0.0004	56	64	474	421	455	94	57	66	64	1057
0.0005	58	64	537	421	531	108	56	66	63	960
0.0006	71	63	872	503	694	270	57	66	62	1121
0.0007	84	62	564	754	865	109	59	66	61	808
0.0008	89	61	992	754	779	179	61	65	61	902
0.0009	88	60	1010	963	955	306	63	64	60	1067
0.001	104	60	906	883	993	377	69	65	58	1161
0.002	180	55	905	838	661	880	83	61	55	1024
0.003	299	52	563	622	401	720	68	61	53	1004
0.004	395	57	485	374	414	891	78	63	55	980
0.005	448	61	809	388	888	904	74	64	61	1114
0.006	435	66	1449	534	1301	795	75	67	67	918
0.007	502	81	2172	707	2144	505	91	69	78	1006
0.008	781	86	4932	1118	2047	542	95	70	84	981
0.009	786	91	4040	1466	5419	405	102	71	96	907
0.01	819	95	22045	1885	8588	429	103	68	107	1012

Table 30: The average standard deviation of returns between 10 different random seeds for A2C on the HalfCheetah environment.

lr	SGDNM	SGD	RMS	AMS	A*m	A*max	A*grad	A*delta	ASGD	YF
0.0001	929	1123	469	523	482	818	1111	1150	1120	170
0.0002	806	1089	337	292	331	627	1073	1141	1093	176
0.0003	685	1064	392	239	363	487	1045	1133	1065	164
0.0004	587	1035	446	245	421	387	1016	1135	1036	164
0.0005	501	1014	486	282	429	335	996	1120	1011	165
0.0006	433	993	502	304	459	326	973	1116	993	166
0.0007	381	978	508	322	459	324	961	1116	975	158
0.0008	335	958	483	346	443	335	944	1109	959	166
0.0009	301	943	487	354	429	345	932	1101	938	171
0.001	277	929	454	381	391	361	918	1095	927	161
0.002	186	799	197	232	200	477	819	1058	799	163
0.003	146	690	11428	392	9154	468	715	1024	686	163
0.004	134	588	23612	17418	21257	400	611	996	584	159
0.005	131	508	33625	16325	46092	285	522	976	498	164
0.006	143	440	43881	14908	64667	231	446	952	434	159
0.007	143	377	65953	18838	93479	586	386	934	380	164
0.008	151	335	420013	29690	168984	1061	338	912	336	169
0.009	152	300	141179	49452	107119	11963	301	899	300	170
0.01	160	277	304400	90664	141829	11515	280	878	277	173

Table 31: The average standard deviation of returns between 10 different random seeds for A2C on the Ant environment.
Appendix D. Momentum Experiments

D.1 Learning Curves

Figure 17: A2C performance across momentum values using SGD with nesterov momentum.

Figure 18: PPO performance across momentum values using SGD with nesterov momentum.
D.2 Average and Asymptotic performance

Momentum	Ant	HalfCheetah	Hopper	Reacher	Walker2d
0.11	-356	-109	566	-39	252
0.22	-276	-48	573	-37	250
0.33	-220	42	644	-35	280
0.44	-141	193	557	-32	297
0.55	-38	388	645	-30	379
0.66	51	624	659	-29	453
0.77	248	1113	743	-26	472
0.88	642	1234	901	-23	538
0.89	668	1456	801	-23	596
0.90	725	1480	1000	-22	636
0.91	773	1535	935	-20	731
0.92	801	1278	827	-21	597
0.93	798	1111	1121	-19	433
0.94	815	917	810	-16	727
0.95	833	1629	497	-17	623
0.96	815	1727	458	-14	639
0.97	807	472	642	-22	389
0.98	569	-419	330	-401	279
0.99	-57391	-3910	292	-3590	151

Table 32: A2C asymptotic performance across various momentum values with SGD and Nesterov Momentum. Average returns over the final 50 episodes across 10 random seeds.

Momentum	Ant	HalfCheetah	Hopper	Reacher	Walker2d
0.11	290	55	293	3	133
0.22	216	80	302	3	135
0.33	172	87	326	3	162
0.44	97	94	278	3	117
0.55	39	102	314	3	154
0.66	46	170	399	2	179
0.77	95	420	247	2	220
0.88	56	45	419	3	225
0.89	57	507	312	2	287
0.90	76	580	387	3	643
0.91	92	690	579	4	489
0.92	121	1043	537	3	251
0.93	106	697	529	4	180
0.94	163	1408	497	5	306
0.95	183	992	330	5	553
0.96	237	1569	223	5	331
0.97	173	650	300	13	199
0.98	195	1602	347	845	153
0.99	65640	2695	231	6740	133

Table 33: A2C asymptotic performance across various momentum values with SGD and Nesterov Momentum. Standard Deviation returns over the final 50 episodes across 10 random seeds.
Momentum	Ant	HalfCheetah	Hopper	Reacher	Walker2d
0.11	1152	1737	2434	-12	2284
0.22	1758	1844	2276	-13	2691
0.33	1699	2102	2170	-12	2878
0.44	1546	2119	2120	-11	2609
0.55	1746	2026	2422	-12	3340
0.66	2297	2970	2114	-11	3525
0.77	2509	2436	2173	-10	3176
0.88	1923	2730	2218	-10	3236
0.89	1669	2439	2186	-9	3492
0.90	1564	3004	2312	-7	3027
0.91	1414	2907	2568	-9	3203
0.92	994	2550	2148	-8	3407
0.93	1322	2149	1977	-9	3154
0.94	602	3202	2607	-6	3024
0.95	359	2571	2333	-8	2789
0.96	81	2830	2327	-7	2057
0.97	-70	2593	1680	-8	1283
0.98	-2159	1286	1627	-8	668
0.99	-4648	-2468	835	-10	376

Table 34: PPO asymptotic performance across various momentum values with SGD and Nesterov Momentum. Average returns over the final 50 training episodes across 10 random seeds.

Momentum	Ant	HalfCheetah	Hopper	Reacher	Walker2d
0.11	498	701	712	4	1108
0.22	779	700	772	2	1059
0.33	737	898	684	4	1038
0.44	871	899	867	4	1216
0.55	931	937	811	4	885
0.66	933	1268	855	4	963
0.77	1059	1233	904	4	1096
0.88	712	1363	888	4	1073
0.89	877	952	1002	4	1379
0.90	646	1402	963	3	1301
0.91	805	1542	741	4	1297
0.92	574	1522	966	3	1220
0.93	792	933	895	4	1103
0.94	404	1648	707	2	1293
0.95	240	1190	885	4	1340
0.96	159	1188	771	3	1178
0.97	139	1369	1113	5	617
0.98	1757	1428	879	4	323
0.99	4672	1162	370	4	184

Table 35: PPO asymptotic performance across various momentum values with SGD and Nesterov Momentum. Standard Deviation returns over the final 50 training episodes across 10 random seeds.
Table 36: PPO average performance across various momentum values with SGD and Nesterov Momentum. Average returns over all training episodes over 10 random seeds.

Momentum	Ant	HalfCheetah	Hopper	Reacher	Walker2d
0.11	343	1058	1883	-15	1344
0.22	489	1088	1801	-17	1764
0.33	610	1293	1762	-16	1740
0.44	622	1323	1587	-15	1639
0.55	718	1348	1820	-15	2226
0.66	923	1769	1658	-13	2363
0.77	1021	1612	1680	-12	2050
0.88	899	1951	1868	-12	2346
0.89	817	1708	1879	-11	2607
0.90	847	2150	1852	-10	2315
0.91	773	2040	2135	-11	2327
0.92	681	2028	1795	-11	2454
0.93	713	1603	1807	-11	2514
0.94	466	2212	2164	-9	2155
0.95	348	1951	2119	-10	2318
0.96	127	2232	1936	-10	1968
0.97	-15	2077	1818	-11	1403
0.98	-893	970	1519	-11	771
0.99	-3444	-1096	812	-14	422

Table 37: PPO average performance across various momentum values with SGD and Nesterov Momentum. Standard Deviation returns over all training episodes over 10 random seeds.

Momentum	Ant	HalfCheetah	Hopper	Reacher	Walker2d
0.11	332	422	397	4	645
0.22	360	464	629	3	722
0.33	400	591	547	4	687
0.44	407	556	795	4	720
0.55	442	650	789	4	713
0.66	448	651	885	4	720
0.77	484	724	844	4	764
0.88	470	955	746	4	933
0.89	461	616	881	4	922
0.90	387	1027	824	4	1070
0.91	468	1077	725	4	971
0.92	383	1054	932	4	907
0.93	453	688	845	4	955
0.94	310	1108	753	3	1017
0.95	241	805	785	4	964
0.96	177	981	774	3	1061
0.97	142	1080	859	4	743
0.98	808	795	680	4	394
0.99	3105	933	356	8	191

Table 37: PPO average performance across various momentum values with SGD and Nesterov Momentum. Standard Deviation returns over all training episodes over 10 random seeds.
Table 38: A2C average performance across various momentum values with SGD and Nesterov Momentum. Average returns over all training episodes over 10 random seeds.

Momentum	Ant	HalfCheetah	Hopper	Reacher	Walker2d
0.11	-792	-408	389	-55	205
0.22	-734	-368	406	-53	208
0.33	-666	-321	480	-50	214
0.44	-577	-244	456	-47	224
0.55	-483	-139	566	-44	253
0.66	-366	13	514	-41	296
0.77	-199	284	561	-36	334
0.88	127	638	666	-30	441
0.89	173	734	704	-29	423
0.90	216	769	766	-29	472
0.91	271	834	710	-28	519
0.92	326	885	648	-26	524
0.93	381	885	820	-27	458
0.94	438	920	655	-24	565
0.95	499	1083	600	-23	469
0.96	565	1057	405	-20	402
0.97	590	411	513	-21	428
0.98	582	-28	241	-111	286
0.99	-14693	-1920	266	-1981	166

Table 39: A2C average performance across various momentum values with SGD and Nesterov Momentum. Standard Deviation returns over all training episodes over 10 random seeds.

Momentum	Ant	HalfCheetah	Hopper	Reacher	Walker2d
0.11	648	52	234	6	119
0.22	598	56	242	6	128
0.33	541	60	284	6	123
0.44	472	61	258	5	122
0.55	395	73	294	5	134
0.66	307	100	286	4	144
0.77	236	135	275	4	167
0.88	162	120	307	3	208
0.89	150	213	296	3	217
0.90	147	298	309	4	323
0.91	138	335	449	4	273
0.92	134	481	347	4	266
0.93	135	233	394	4	262
0.94	135	464	406	4	267
0.95	136	622	373	5	264
0.96	142	798	258	5	196
0.97	144	610	298	10	232
0.98	155	777	189	240	211
0.99	18727	1244	265	3936	215

Table 38: A2C average performance across various momentum values with SGD and Nesterov Momentum. Average returns over all training episodes over 10 random seeds.

Table 39: A2C average performance across various momentum values with SGD and Nesterov Momentum. Standard Deviation returns over all training episodes over 10 random seeds.
Appendix E. Step Experiments

To probe the effects of step size and number of workers – that is, the number of separate environment instance using the same policy to take steps in parallel – we setup several experiments which use a grid of momentum values to decrease number of steps while increasing workers such that the total batch size per update remains the same as the default used in other experiments. For PPO we use: 2048 steps, 1 worker (the default); 1024 steps, 2 workers; 256 steps, 8 workers; 64 steps, 32 workers. For A2C we run: 80 steps, 1 worker; 40 steps, 2 workers; 5 steps, 16 workers (the default); 2 steps; 40 workers.

E.1 A2C

Momentum	Ant	HalfCheetah	Hopper	Reacher	Walker2d
0.11	-632	-502	381	-48	176
0.22	-588	-471	395	-46	181
0.33	-531	-429	496	-44	185
0.44	-465	-395	464	-42	185
0.55	-378	-333	556	-39	227
0.66	-277	-259	589	-36	232
0.77	-119	-99	569	-32	318
0.88	187	-46	682	-26	483
0.99	-13585	-1922	92	-422	65

Table 40: A2C average performance across various momentum values with SGD and Nesterov Momentum. Average returns over all training episodes over 10 random seeds. 2 Steps, 40 workers.

Momentum	Ant	HalfCheetah	Hopper	Reacher	Walker2d
0.11	-1142	-451	331	-67	220
0.22	-1107	-401	348	-63	236
0.33	-1054	-328	420	-59	249
0.44	-966	-242	413	-54	264
0.55	-874	-147	483	-49	297
0.66	-712	56	555	-42	345
0.77	-486	332	749	-36	466
0.88	-94	916	954	-29	764
0.99	-20523	-2876	375	-5930	167

Table 41: A2C average performance across various momentum values with SGD and Nesterov Momentum. Average returns over all training episodes over 10 random seeds. 20 steps. 4 workers.
Table 42: A2C average performance across various momentum values with SGD and Nesterov Momentum. Average returns over all training episodes over 10 random seeds. 40 steps. 2 workers.

Momentum	Ant	HalfCheetah	Hopper	Reacher	Walker2d
0.11	-1228	-515	300	-67	206
0.22	-1190	-476	315	-62	222
0.33	-1147	-417	341	-58	239
0.44	-1073	-346	365	-52	255
0.55	-975	-245	421	-46	284
0.66	-819	-92	505	-39	322
0.77	-586	148	669	-31	414
0.88	-189	662	938	-21	659
0.99	-9980	-3867	554	-12501	194

Table 43: A2C average performance across various momentum values with SGD and Nesterov Momentum. Average returns over all training episodes over 10 random seeds. 80 steps. 1 worker.

Momentum	Ant	HalfCheetah	Hopper	Reacher	Walker2d
0.11	-1237	-581	275	-68	201
0.22	-1205	-545	291	-64	220
0.33	-1147	-503	309	-58	233
0.44	-1088	-446	334	-53	261
0.55	-977	-352	384	-47	281
0.66	-819	-224	459	-39	313
0.77	-593	11	597	-31	371
0.88	-218	496	832	-21	519
0.99	-9418	-5054	620	-10784	212

Table 44: A2C average performance across various momentum values with SGD and Nesterov Momentum. Standard Deviation returns over all training episodes over 10 random seeds. 2 steps. 40 workers.

Momentum	Ant	HalfCheetah	Hopper	Reacher	Walker2d
0.11	485	89	250	6	111
0.22	451	89	264	6	112
0.33	402	93	298	5	114
0.44	351	94	275	5	115
0.55	288	105	281	5	170
0.66	231	143	277	4	150
0.77	187	271	285	4	174
0.88	120	227	309	3	257
0.99	17529	1796	110	689	116
Where did my optimum go?

Momentum	Ant	HalfCheetah	Hopper	Reacher	Walker2d
0.11	948	66	171	8	90
0.22	914	70	181	8	91
0.33	881	82	223	7	92
0.44	817	84	202	6	93
0.55	740	132	216	6	96
0.66	609	141	217	5	115
0.77	425	151	280	4	231
0.88	289	407	326	3	350
0.99	27919	1984	273	11481	162

Table 45: A2C average performance across various momentum values with SGD and Nesterov Momentum. Standard Deviation returns over all training episodes over 10 random seeds. 20 steps. 4 workers.

Momentum	Ant	HalfCheetah	Hopper	Reacher	Walker2d
0.11	1007	71	146	8	81
0.22	979	75	150	8	85
0.33	947	86	161	7	85
0.44	891	100	164	6	83
0.55	813	122	173	6	91
0.66	682	165	164	5	96
0.77	498	226	228	4	138
0.88	316	420	306	4	253
0.99	12159	4360	381	18190	147

Table 46: A2C average performance across various momentum values with SGD and Nesterov Momentum. Standard Deviation returns over all training episodes over 10 random seeds. 40 steps. 2 workers.

Momentum	Ant	HalfCheetah	Hopper	Reacher	Walker2d
0.11	1018	72	110	8	82
0.22	987	72	114	8	84
0.33	946	78	117	7	84
0.44	888	82	126	6	86
0.55	800	98	135	6	83
0.66	678	134	150	5	87
0.77	491	181	204	4	95
0.88	305	282	291	4	129
0.99	12423	3515	409	15905	171

Table 47: A2C average performance across various momentum values with SGD and Nesterov Momentum. Standard Deviation returns over all training episodes over 10 random seeds. 80 steps. 1 worker.
E.2 PPO

Momentum	Ant	HalfCheetah	Hopper	Reacher	Walker2d
0.11	422	1011	1675	-17	1627
0.22	471	1195	1805	-16	1652
0.33	563	1187	1700	-17	1838
0.44	689	1428	1857	-16	1786
0.55	772	1505	1955	-15	1846
0.66	746	1453	1814	-15	2213
0.77	993	1842	1920	-12	2468
0.88	880	1659	1760	-12	2335
0.99	-3157	-930	910	-13	400

Table 48: PPO average performance across various momentum values with SGD and Nesterov Momentum. Average returns over all training episodes over 10 random seeds. 1024 steps. 2 workers.

Momentum	Ant	HalfCheetah	Hopper	Reacher	Walker2d
0.11	348	1195	1733	-18	1590
0.22	493	1089	1736	-18	1612
0.33	550	1326	1844	-17	1594
0.44	701	1374	1919	-17	1919
0.55	824	1526	1751	-16	2158
0.66	765	1840	1728	-15	1917
0.77	844	2210	1828	-14	2407
0.88	895	2113	1755	-13	2132
0.99	-2694	-1069	912	-14	416

Table 49: PPO average performance across various momentum values with SGD and Nesterov Momentum. Average returns over all training episodes over 10 random seeds. 256 steps. 8 workers.

Momentum	Ant	HalfCheetah	Hopper	Reacher	Walker2d
0.11	379	1249	1436	-19	1294
0.22	408	1280	1374	-19	1603
0.33	484	1353	1559	-18	1499
0.44	613	1244	1408	-17	1898
0.55	738	1225	1687	-16	1827
0.66	801	1313	1767	-16	1856
0.77	752	1824	1288	-15	2072
0.88	766	2128	1356	-14	2372
0.99	-3164	-739	882	-15	452

Table 50: PPO average performance across various momentum values with SGD and Nesterov Momentum. Average returns over all training episodes over 10 random seeds. 64 steps. 32 workers.
Momentum	Ant	HalfCheetah	Hopper	Reacher	Walker2d
0.11	348	471	619	3	625
0.22	354	621	655	3	718
0.33	364	462	710	3	755
0.44	373	721	696	4	732
0.55	423	670	776	3	677
0.66	378	643	857	3	799
0.77	508	910	767	4	843
0.88	409	985	780	4	920
0.99	3065	933	530	7	157

Table 51: PPO average performance across various momentum values with SGD and Nesterov Momentum. Standard Deviation returns over all training episodes over 10 random seeds. 1024 steps. 2 workers.

Momentum	Ant	HalfCheetah	Hopper	Reacher	Walker2d
0.11	290	576	630	3	726
0.22	348	398	711	3	675
0.33	381	566	651	3	756
0.44	413	535	709	2	787
0.55	434	669	835	3	728
0.66	399	833	774	4	1049
0.77	425	1004	798	4	820
0.88	487	903	666	4	970
0.99	2642	612	479	7	171

Table 52: PPO average performance across various momentum values with SGD and Nesterov Momentum. Standard Deviation returns over all training episodes over 10 random seeds. 256 steps. 8 workers.

Momentum	Ant	HalfCheetah	Hopper	Reacher	Walker2d
0.11	275	522	589	3	551
0.22	277	537	781	3	689
0.33	299	618	812	3	734
0.44	366	538	710	4	723
0.55	409	503	803	4	736
0.66	377	511	862	4	900
0.77	413	824	783	4	856
0.88	379	980	821	4	868
0.99	2833	497	455	8	209

Table 53: PPO average performance across various momentum values with SGD and Nesterov Momentum. Standard Deviation returns over all training episodes over 10 random seeds. 64 steps. 32 workers.
E.3 Normalized Plots

From using multiple workers we posit that there may be a similar implicit momentum as in asynchronous settings Mitliagkas et al. (2016). In a full Monte Carlo setting with one synchronous worker, the rollout is biased based on the policy. Any momentum will use prior policies across the range of timesteps. Reducing the number of steps across many workers will likely bias the sampling toward a smaller window of time (smaller number of states). Therefore there may be an implicit momentum based on the smaller window of timesteps such that the prior gradient is biased towards policies updated for smaller windows of states. This effect may go away in settings where there are shortened episodes (possibly due to failure). In such a case, the restarts may cause workers to see wider ranges of timesteps. Figure 19 and 20 show the normalized average return across different worker to n-step ratios. There does appear to be a (noisy) trend on some environments such that lower momentum values perform better at higher worker-to-step ratios. This may imply that there are some notions of implicit momentum happening from using parallel workers (even synchronously) and only in some environments. However, this is with the caveat that this trend is noisy.

Figure 19: Normalized performance of PPO across momentum factors in different environments. Normalization is per environment using a random agent policy (see Appendix B) such that the Normalized Return corresponds to

\[
\frac{\text{Average Return}}{\text{Best Average Return}} - \frac{\text{Random Agent}}{\text{Best Average Return}}
\]

1 worker, 2048 steps (top-left). 1 worker, 2048 steps (top-left). 2 workers, 1024 steps (top-right). 8 workers, 256 steps (bottom-left). 32 workers, 64 steps (bottom-right).
Figure 20: Normalized performance of A2C across momentum factors in different environments. Normalization is per environment using a random agent policy (see Appendix B) such that the Normalized Return corresponds to \(\frac{\text{Average Return}}{\text{Best Average Return}} - \frac{\text{Random Agent}}{\text{Best Average Return}} \). 1 worker, 80 steps (top-left). 2 workers 40 steps. (top-right). 4 workers, 20 steps (middle-left). 16 workers, 5 steps (middle-right). 40 workers, 2 steps (bottom).

Appendix F. Other Possible Unexamined Factors

There are several other possible affecting factors which we do not discuss in the main text. For example, policy gradient methods essentially scale the gradient by the value function. A larger per-step average reward will yield larger gradients and may further affect the performance of adaptive gradient methods. However, this is not necessarily true of the value function loss. Perhaps different optimizers should be used for the value function and policy loss in such cases. We also do not examine learning rate schedules here. We avoid this for two reasons. First, this adds another layer of hyperparameters to optimize (which we want to avoid for complex settings). Second, in online settings, it is unclear how a schedule would work given that an agent must continuously learn. However, this may be a possible factor to examine in future work.