Spur Gear Failure Detection using Support Vector Machine

Richard Siregar¹, Ikhwansyah Isranuri¹, Suherman¹

¹Faculty of Engineering, Universitas Sumatera Utara, Medan, Indonesia

E-mail: suherman@usu.ac.id

Abstract. Torsional vibration generated by the spur gear as result the imperfection may generate geometrical error that can lead to spur failure. In order to prevent error propagation, preventive maintenance by detecting and analyzing vibration should be performed. Existing work has been dealt with torsional vibration detection either using tools and/or employing intelligent system. This paper proposed evaluation prototype with support vector machine to differentiate normal and broken spur gears. The assessment results show that gear states were easily determined by using some features. The accuracy achieves 100% in several trials with average accuracy 99.35%.

1. Introduction

Mechanical energy is converted into work and avoided to generate vibration as vibration is wasted energy and an imperfection sign [1]. Vibration indicates element mismatch that may cause deforming mechanical properties.

Gear is used to transmit power and torque in compact and simple design but is able to receive high capacity load with small slip factor. Gear is made of solid material that has unchangeable shape. Spur gear is the easiest machining gear used for parallel transmission. This gear is suitable for high torsional force as it does not exert axial force [2]. Figure 1 shows Spur gear design with some specifications such as pitch circle, pinion, pitch circle diameter, pitch diametral, circular pitch, module, addendum, dedendum, working depth, clearance circle, pitch point, operating pitch circle, addendum circled, dedendum circle, width of space, pressure angle, total depth, face width, tooth space, backlash, face of tooth, flank of tooth, and top land.

Figure 1. Spur gear specifications
Torsional vibration is wasted energy in angular direction that is typically a shaft along of rotation axis. Torsional vibration is measured as the variation of rotational speed such as revolutions-per-minute (RPM). Its vibration level is affected by some parameters, such as material properties, temperature, load, and others [3]. Torsional vibration may induce high cycle vibration fatigue that generally occurred sporadically or a transient phenomenon that is caused by for instance, sudden load changes. The resonances may result high stress of the surrounding object [4]. Torsional vibration can be used for locating failure as part of predictive maintenance [5].

Spur gear torsion vibrations may result spacing and pitch error as part of geometrical failure. These errors can be detected as an emerged of additional frequency in vibration spectrum [6]. The appearance of this frequency can be analyzed by using sideband frequency analysis [7], by diagnostic tools [8], signal analysis such as Fourier transform [9, 10], statistical analysis [11] and by employing intelligent system [12, 13].

This paper analyses spur gear failure by using support vector machine. One of the order strategies that gets a ton of consideration as cutting edge in design characterization is the Support Vector Machine (SVM) [16]. Support vector machine (SVM) is able to classify states based on features extracted from prerecorded/supervised events. SVM is a cutting edge characterization technique for a parallel order [17]. SVM classifier has been used by many researchers to diagnose spur gear, such as [14] that combined SVM and neural network, and [15] used histogram features. This paper proposed spur gear failure detection by combining laser vibration detection and support vector machine.

2. Experiment design

The bearing evaluated in this paper is NTN UCP 204 D1, with specifications plotted in Table 1. Bearings were tested under conditions of new and damage. The bearings were examined for rotation speed of 400 to 1200 rpm, outer race damage, inner race damage, rolling element damage, and cage damage. This paper examines spur gear failure by analyzing torsional vibration, varying speed and adjusting axial deviation. A prototype is built as the experimental tool as show in Figure 2.

Table is 500x500x500 mm, with two 20 mm diameter and length of 300 mm and 500 mm poles placed on top. Four pillow blocks NTN UCP 204 is fitted with mild steel holders; two spur gears of 33 and 2.5 is attached and varied at the poles. A 60 mm type-A V-pulleys and a V-belt A39 coupled a 3-phase, 1380 rpm, 0.75 kW LM-Motor to the evaluated mechanic. One HP 3 phase inverter acted as power source. Four condition spur gears were assessed (Figure 3).
Spur gear vibrations were assessed by using a laser sensor connected to a computer by labjack interface to convert analog data into digital readable form. Experiment set up is shown in Figure 4.

3. Evaluation results

Figure 5 shows the samples of time domain vibrations for both normal and broken gear. Signal is distinguishable, where broken part causes signal amplification in some parts. In order to analysis the states of the gear using SVM, features are extracted from data by using mean (µ), root mean square (RMS), skewness (γ), kurtosis (K), beta kurtosis (BK), velocity (v), angle speed (ω), and rpm (n).
Figure 5. Normal and broken gear vibrations

\[\mu_j = \frac{1}{n} \sum_{i=1}^{n} x_{ij} \] (1)

\[\text{RMS} = \sqrt{\frac{1}{n} \sum_{i=1}^{n} x^2(t)} \] (2)

\[y = \frac{E(x - \mu)^3}{\sigma^3} \] (3)

\[K = \frac{M_{ij}}{\sigma^4} \] (4)

\[BK = \frac{m_x}{(\sigma^2)^2} \] (5)

\[X = \int \dot{X}(t) = A \sin \omega t \] (6)

\[\ddot{X} = \frac{d\dot{X}}{dt} \] (7)

\[\omega = 2\pi n/60 \] (8)

The SVM easily predicts the states of gears with accuracy 100% dominate the trials (Figure 6). The first 6 trials convincingly decide that the gear is broken. The selected features are not sufficient to differentiate the types of failure which requires multiclass SVM. The average accuracy is about 99.35%.

Figure 6. Broken gear prediction
4. Conclusions
This paper has discussed the use of laser sensor and SVM to determine the states of the gear within the evaluated mechanic. Vibrometer along with labjack is successfully recording the torsional vibrations. The SVM is able to determine gear failure with 99.35% accuracy. The highest accuracy is 100% for the first six trials and the lowest accuracy is 99.30%. The lower accuracy occurred at the last trials as it may be affected by the precision decrement of the employed sensor due to minor replacement.

References
[1] Isranuri I 2020 Bearing Damage Detection using Support Vector Machine Materials Science and Engineering Conference Series 851 (1) 012063
[2] Marimuthu P and Muthuveerappan G 2016 Investigation of load carrying capacity of asymmetric high contact ratio spur gear based on load sharing using direct gear design approach. Mechanism and Machine Theory, 96 pp 52-74
[3] Siemens P L M 2014 Software dentifying best practices for measuring and analyzing torsional vibration
[4] Dorfman L S and Trubelja M 1999 August Torsional monitoring of turbine-generators for incipient failure detection Proceedings of the 6th EPRI Steam Turbine/Generator Workshop pp 1-6
[5] Jung D, Zhang Z, and Winslett M 2017 Vibration analysis for iot enabled predictive maintenance In IEEE 33rd International Conference on Data Engineering (ICDE) pp 1271-1282
[6] Ma Z, Luo Y and Wang Y 2018 On the pitch error in the initial stage of gear roll-forming with axial-infused Journal of Materials Processing Technology 252 pp 659-672
[7] Li K, Feng Z, and Liang X 2017 Planetary gearbox fault diagnosis via torsional vibration signal analysis in resonance region
[8] Xue S and Howard I 2018 Torsional vibration signal analysis as a diagnostic tool for planetary gear fault detection Mechanical Systems and Signal Processing, 100 pp 706-728
[9] Ameid T, Menacer A, Talhaoui H, and Harzelli I 2017 Broken rotor bar fault diagnosis using fast Fourier transform applied to field-oriented control induction machine: simulation and experimental study The International Journal of Advanced Manufacturing Technology, 92 pp 917-928
[10] Singru P, Krishnakumar V, Natarajan D, and Raizada A 2018 Bearing failure prediction using Wigner-Ville distribution, modified Poincare mapping and fast Fourier transform Journal of Vibroengineering 20 (1) pp 127-137
[11] Kia S H, Henao H and Capolino G A 2016 Fault Index Statistical Study for Gear Fault Detection Stator Current Space Vector Analysis IEEE Transcations on Industry Application 52 (6) pp 4781-4788
[12] Cao P, Zhang S and Tang J 2018 Preprocessing-free gear fault diagnosis using small datasets with deep convolutional neural network-based transfer learning Ieee Access 6 pp 26241-2625
[13] Tyagi S and Panigrahi S K 2017 A hybrid genetic algorithm and back-propagation classifier for gearbox fault diagnosis Applied Artificial Intelligence 31(7-8) pp 593-612
[14] Saravanan N, Siddabattuni V K and Ramachandran, K I 2010 Fault diagnosis of spur bevel gear box using artificial neural network (ANN), and proximal support vector machine (PSVM) Applied soft computing 10 (1) pp 344-360
[15] Natarajan S 2017 Vibration signal analysis using histogram features and support vector machine for gear box fault diagnosis International Journal of Systems Control and Communications 8 (1) pp 57-71
[16] Sujono H A, Rivai M and Amin M 2018 Asthma identification using gas sensors and support vector machine *Telecommun. Comput. Electron. Control*, **16** 1468-1480

[17] Nurtanio I, Astuti E R, Ketut Eddy Purnama, I Hariadi M, and Purnomo M H 2013 Classifying cyst and tumor lesion using support vector machine based on dental panoramic images texture features. *IAENG International Journal of Computer Science*, **40** (1) 29-37