Photocatalytic Removal of Microcystin-LR by Advanced WO$_3$-Based Nanoparticles under Simulated Solar Light

Chao Zhao,1,2 Dawei Li,1 Yonggang Liu,3 Chuanping Feng,2 Zhenya Zhang,1 Norio Sugiura,1 and Yingnan Yang1

1Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba 305-8572, Japan
2School of Water Resources and Environment, China University of Geosciences, Beijing 100083, China
3Institute of Environmental Sciences, Zhengzhou University, Zhengzhou 450001, China

Correspondence should be addressed to Yingnan Yang; yangjiayangjp@yahoo.co.jp

Received 1 July 2014; Revised 1 September 2014; Accepted 1 September 2014

Copyright © 2015 Chao Zhao et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

A series of advanced WO$_3$-based photocatalysts including CuO/WO$_3$, Pd/WO$_3$, and Pt/WO$_3$ were synthesized for the photocatalytic removal of microcystin-LR (MC-LR) under simulated solar light. In the present study, Pt/WO$_3$ exhibited the best performance for the photocatalytic degradation of MC-LR. The MC-LR degradation can be described by pseudo-first-order kinetic model. Chloride ion (Cl$^-$) with proper concentration could enhance the MC-LR degradation. The presence of metal cations (Cu$^{2+}$ and Fe$^{3+}$) improved the photocatalytic degradation of MC-LR. This study suggests that Pt/WO$_3$ photocatalytic oxidation under solar light is a promising option for the purification of water containing MC-LR.

1. Introduction

Eutrophication in superficial freshwater bodies induced frequent cyanobacteria blooms worldwide. The occurrence of toxic cyanobacterial blooms in eutrophic lakes, reservoirs, and other recreational water has been identified as an increasingly serious problem in many countries [1]. The toxins released into freshwater by cyanobacteria are well documented [2].

Microcystins (MCs) are the most commonly occurring toxins released by cyanobacteria. MCs are cyclic heptapeptides containing the unique C$_{20}$ amino acid, 3-amino-9-methoxy-2,6,8-trimethyl-10-phenyldeca-4,6-dienoic acid (ADDA). MCs are strongly hepatotoxic because they inhibit serine/threonine protein phosphatases 1 and 2A [3]. Acute exposure may result in hepatic injury, promote primary liver cancer, and even cause the death of animals and humans. One of the most common occurring MCs is the highly toxic microcystin-LR (MC-LR), which has leucine (L) and arginine (R) in the variable positions. The World Health Organization (WHO) has determined a provisional guideline value of 1.0 μgL^{-1} for MC-LR in drinking water. Various water treatment processes have been evaluated to determine their performance in decomposing these toxins. However, MCs are chemically stable across a range of pH values and temperatures, due to their cyclic structure. Consequently, traditional water treatment processes are not reliable for the removal of MCs [4–6].

Photocatalytic oxidation as an advanced oxidation technology has been considered an environment-friendly water treatment method [7–11]. When the photocatalyst exposure to a light with appropriate wavelength happens, electron (e$^-$) and hole (h$^+$) pairs are generated on the catalyst surface. The photogenerated electrons and holes react with oxygen and water molecules or hydroxyl groups adsorbed on photocatalyst surface to form highly reactive species, such as superoxide radicals ($\bullet O_2^-$) and hydroxyl radicals ($\bullet OH$) [12]. These radicals can oxidize a number of organic pollutants including dyes, pesticides, and herbicides [7–11, 13]. Previous research proved that photocatalytic oxidation with TiO$_2$ photocatalyst...
could effectively destroy MCs, even at extremely high toxin concentrations [14, 15]. However, TiO$_2$ has a large band gap energy (E_g) of 3.2 eV that restricts the wide use of this photocatalyst, because it can only absorb UV light which accounts for 5% of the solar light [16]. Many efforts have been made to enhance the photocatalytic performance of TiO$_2$ under solar light. For example, Ag-modified TiO$_2$ thin film was developed for bacteria disinfection under solar light [17, 18]. TiO$_2$-film/CuO microgrid heterojunction and P-doped TiO$_2$ nanoparticles were synthesized for the decomposition of organic dye [19, 20]. By contrast, tungsten trioxide (WO$_3$) can utilize solar light more effectively than TiO$_2$, because it has an E_g between 2.4 and 2.8 eV [10]. In addition, WO$_3$ is inexpensive to prepare and stable in acidic and oxidative conditions, which makes it a promising material for photocatalytic applications. Previous research showed that photocatalytic degradation of organic pollutants such as organic dyes using WO$_3$ under solar light was intensified by the presence of suitable dopants, such as Pt, Pd, and CuO [21–23]. However, there is little research on the photocatalytic degradation of MCs using WO$_3$-based photocatalysts under solar light.

In the present study, three types of WO$_3$-based photocatalysts including CuO/WO$_3$, Pd/WO$_3$, and Pt/WO$_3$ were synthesized for photocatalytic degradation of MC-LR under simulated solar light. The characteristics of developed WO$_3$-based photocatalysts were analyzed by BET surface area, X-ray diffraction (XRD), and scanning electron microscopy (SEM). A series of batch experiments were carried out to evaluate the photocatalytic performance of the developed photocatalysts for MC-LR degradation under simulated solar light. On the other hand, chlorides and metal cations are common in water, and they are important in many treatment technologies such as breakpoint chlorination and electrochemical oxidation methods [24]. Therefore, in this study, the effects of chloride ions (Cl$^-$) and metal cations (Cu$^{2+}$ and Fe$^{3+}$) on the photocatalytic degradation of MC-LR under solar light were also investigated.

2. Experimental

2.1. Reagents. WO$_3$ powder, microcystin-LR (MC-LR) standard (≥95% purity; FW 995.2 g mol$^{-1}$), terephthalic acid 99%, and Cu(NO$_3$)$_2$·3H$_2$O (99.9% purity) were purchased from Wako (Wako Pure Chemical Industries, Ltd., Japan). Hexachloroplatatinic acid (H$_2$PtCl$_6$·6H$_2$O) and Pd powder with a surface area of 40–60 m2 g$^{-1}$ were supplied by Sigma-Aldrich (Sigma-Aldrich Co. LLC., USA).

2.2. Photocatalyst Preparation. The WO$_3$ loaded with 0.1 wt% CuO (marked as CuO/WO$_3$) was synthetized by an impregnation method [21]: Cu(NO$_3$)$_2$ aqueous solution was mixed with WO$_3$ powder, and the mixture was dried on hot plate and then calcined at 300°C for 30 min in air.

The Pd doped WO$_3$ photocatalyst (Pd/WO$_3$) was prepared by the mechanical mixing of Pd (wt% versus WO$_3$) and WO$_3$ in a ceramic mortar [25].

The Pt modified WO$_3$ sample (Pt/WO$_3$) was developed using a photodeposition method [21] from H$_2$PtCl$_6$·6H$_2$O on the fine particulate WO$_3$ under visible light irradiation in pure water and subsequently in an aqueous methanol (10 vol.%) solution.

2.3. Photocatalyst Characterization. The crystalline phases of the prepared photocatalysts were determined using a powder X-ray diffraction (XRD) (Rigaku RINT2200, Japan). The morphology of the prepared photocatalysts was analyzed by a scanning electron microscopy (SEM) (JEOL, JSM-5600, Japan). The specific surface area of the prepared photocatalyst was measured using a BET surface area analyzer (Coulter SA3100, USA).

2.4. Photocatalytic Removal of MC-LR. The photocatalytic degradation of MC-LR by prepared WO$_3$-based photocatalyst was performed in a 6 mL glass vessel placed on a magnetic stirrer. A simulated solar lamp (XC-100B, SERIC Ltd., Japan) equipped axially at the center region above the glass vessel was employed as the irradiation source. In the present experiments, pure WO$_3$ and the developed three types of WO$_3$-based photocatalysts (CuO/WO$_3$, Pd/WO$_3$, and Pt/WO$_3$) were previously dispersed in water using an ultrasonic bath sonicator for 30 min. Then the photocatalysts dispersed solutions were transferred to the glass vessels containing MC-LR to obtain a final volume of 5 mL. The initial MC-LR concentration in each glass vessel was 1 mg L$^{-1}$. Before irradiation, the suspension was magnetically stirred for 60 min in the dark to achieve adsorption equilibrium. After that, the lamp was switched on to initiate the photocatalytic reaction. Temperature of the whole laboratory was controlled at 25 ± 1°C by an air conditioner. In addition, a mini-air-circulator was also employed near to the reactor to make sure constant local temperature during the photocatalytic reaction exists. During irradiation, 0.25 mL of sample was withdrawn at a time interval of 30 min, centrifuged at 10000 rpm for 10 min, and filtered through a 0.22 μm filter membrane before the HPLC analysis.

The concentration of MC-LR was measured using a high performance liquid chromatography (HPLC) (Jasco-1500, Jasco, Japan) equipped with a high-resolution diode array detector (Jasco UV-1570) set at 238 nm. Samples were separated on a C18 column (4.6 × 250 mm, 5 μm) using a mixture of acetonitrile and 0.05 M phosphate buffer (pH 6.8; 32 : 68 v/v) as the mobile phase at a flow rate of 1 mL min$^{-1}$. All the experiments were replicated three times under the same conditions and the average value was used for analyses.

2.5. Detection of Hydroxyl Radicals (•OH). The detection of hydroxyl radicals generated by the prepared WO$_3$-based photocatalysts was carried out according to Ishibashi et al. [26]. Terephthalic acid was used as a probe molecule to detect the photogenerated •OH radicals in the photocatalytic reaction system. A sample of 4 mg developed WO$_3$-based photocatalyst powder was dispersed in a 20 mL solution made of terephthalic acid at 5 × 10$^{-4}$ M dissolved in a 2 × 10$^{-3}$ M NaOH aqueous solution. The simulated solar light was used as an irradiation source. During the irradiation, samples were withdrawn and centrifuged at a 20 min time interval. Then,
3. Results and Discussion

3.1. Characterization of WO₃-Based Photocatalysts. The crystalline phases of the developed WO₃-based photocatalysts were measured by a powder X-ray diffraction (XRD) (Rigaku RINT2200, Japan). Characteristic peaks are observed for all diffraction patterns, which are indexed to the standard card (JCPDS 43-1035). As shown in Figure 1, all samples have monoclinic WO₃ structure and the metal doping does not influence the crystal structures of WO₃. No extra peaks except for monoclinic WO₃ are observed (Figure 1). This phenomenon can be explained by the small amount of CuO, Pd, and Pt species content and high dispersion in the samples.

The morphology and microstructure of the developed photocatalysts were analyzed by scanning electron microscopy (SEM) (Figure 2). The SEM images of pure and modified WO₃ photocatalysts showed that they are composed of particles with size ranging from 100 to 200 nm. The specific surface area of the pure WO₃ was about 5 m² g⁻¹ which is in agreement with other reports [22]. The specific surface area of modified WO₃ photocatalysts (CuO/WO₃, Pd/WO₃, and Pt/WO₃) was slightly increased to 6.0, 6.5, and 7.0 m² g⁻¹, respectively, due to the metals loading and a grind of WO₃ powders in the preparation process.

3.2. Photocatalytic Removal of MC-LR Using Various WO₃-Based Photocatalysts. As shown in Figure 3, the concentration of MC-LR was virtually unchanged after 180 min solar light irradiation when there was no photocatalyst in the solution. This result indicated that MC-LR was stable under solar light irradiation. After 180 min photocatalysis, approximately 24.8% of MC-LR was removed from the aqueous solution in which only pure WO₃ was added. The modified WO₃-based photocatalysts (CuO/WO₃ and Pd/WO₃) achieved 31.4% and 42.9% MC-LR removal, respectively. The Pt/WO₃ composite achieved a 100% degradation of MC-LR after 180 min solar light irradiation. The modified WO₃-based photocatalysts are supported by many previous researches. Arai et al. reported that the photocatalytic activity of Pd/WO₃ was 2 times higher than that of CuO/WO₃ in the degradation of acetaldehyde, and the performance of Pt/WO₃ was better than that of CuO/WO₃ for decomposing formaldehyde [22, 23]. In this present study, Pt/WO₃ exhibits the best photocatalytic performance for the degradation of MC-LR under solar light irradiation.

3.3. The Mechanism of MC-LR Degradation by WO₃-Based Photocatalysts. The relative more positive conduction band level of WO₃ (+0.5 V versus NHE) compared to potential for the single-electron reduction of oxygen (O₂/2OH⁻ = −0.56 V versus NHE; O₂/H₂O = −0.13 V versus NHE) was the main reason for the relative slow reaction rate of WO₃-induced photocatalytic reactions. In the presence of CuO, Pd, and Pt, the reduction of O₂ molecules can be promoted effectively by a multielectron process (O₂/H₂O = +0.68 V versus NHE; O₂/H₂O = +1.23 V versus NHE) [22, 27]. In a photocatalytic reaction, the following chain reactions have been postulated:

\[
\text{Catalyst} + h\nu \rightarrow e^- + h^+ \quad (1)
\]
\[
O_2 + 2e^- + 2H^+ \rightarrow H_2O_2 \quad (2)
\]
\[
H_2O_2 \rightarrow 2 \cdot OH \quad (3)
\]
\[
H_2O + h^+ \rightarrow \cdot OH + H^+ \quad (4)
\]

Photocatalytic degradation of MC-LR was initiated by the attack of hydroxyl radical (•OH) on the conjugated diene structure of ADDA [28], indicating the primary reactive species in MC-LR degradation is •OH radical. The photogenerated •OH radicals can be detected by photoluminescence spectra analysis. Figure 4 shows the photoluminescence spectral changes of Pt/WO₃ during 60 min solar light irradiation. At the wavelength of 425 nm, the photoluminescence intensity gradually increased from 2.5 to 43.8 a.u with increasing the irradiation time to 60 min, indicating that •OH radicals were generated on the photocatalyst-water interface via photocatalytic reactions [26, 27].

Figure 5 presents the photoluminescence intensity of pure WO₃ and modified WO₃-based photocatalysts at 425 nm as a function of irradiation time. The photoluminescence intensity induced by simulated solar light in terephthalic acid solution was linearly related to the irradiation time. The number of •OH radicals generated on the surface of these photocatalysts was proportional to the irradiation time and followed zero-order kinetic model [26, 28]. Furthermore, the slopes of the regression lines represent the generation rate of •OH radicals (Figure 5). Without a dopant, WO₃ could
only generate a small number of \(\cdot \)OH radicals under solar light irradiation. The generation rate of \(\cdot \)OH radicals on the surface of pure WO\(_3\) is merely 0.04 a.u min\(^{-1}\). When doped with CuO, Pd, and Pt, the generation rate of \(\cdot \)OH radicals on WO\(_3\) surface was obviously enhanced. During 60 min solar light irradiation, Pt/WO\(_3\) achieved the highest generation rate (0.72 a.u min\(^{-1}\)) of \(\cdot \)OH radicals, which was much higher than those by CuO/WO\(_3\) (0.17 a.u min\(^{-1}\)) and Pd/WO\(_3\) (0.42 a.u min\(^{-1}\)). Since the photocatalytic degradation of MC-LR was initiated by the attack of \(\cdot \)OH radical, Pt/WO\(_3\) seems to be the most promising photocatalyst for MC-LR removal due to its higher generation rate of \(\cdot \)OH radicals. Therefore, in the following part, Pt/WO\(_3\) was selected as the photocatalyst for MC-LR removal under simulated solar light irradiation.

3.4. Kinetic Analysis in a Range of Light Intensities. The kinetics of photocatalytic oxidation for MC-LR were analyzed using Langmuir-Hinshelwood (L-H) model expressed as follows:

\[
\frac{dC}{dt} = \frac{kKC}{(1 + KC)}.
\]
Since K_C is much less than 1, if neglecting the term of K_C, the L-H model can be simplified to a pseudo-first-order kinetic equation:

$$\ln \left(\frac{C_0}{C} \right) = k K t = k_{app} t,$$

where r is the reaction rate (mg L$^{-1}$ min$^{-1}$), C_0 is the initial concentration of MC-LR after dark adsorption (mg L$^{-1}$), C is the concentration of MC-LR at time t (mg L$^{-1}$), t is the irradiation time (min), k is the reaction rate constant (min$^{-1}$), K is the adsorption coefficient of MC-LR on a photocatalyst particle (L mg$^{-1}$), and k_{app} is the apparent rate constant for the photocatalytic degradation of MC-LR.

The kinetic curves for the degradation of MC-LR by Pt/WO$_3$ under various intensities of solar light irradiation are shown in Figure 6. The correlation coefficient (R^2) values of linear regression in all the cases are greater than 0.99, which confirms the photocatalytic degradation of MC-LR by Pt/WO$_3$ under simulated solar light well follows the pseudo-first-order kinetic equation. The corresponding k_{app} values of MC-LR degradation were 0.148, 0.196, and 0.241 min$^{-1}$ under 0.2, 0.4, and 0.8 mW cm$^{-2}$ solar light irradiation, respectively. At higher intensity of solar irradiation, more electron-hole pairs were expected to generate on photocatalyst surface, resulting in the enhancement of MC-LR degradation. According to Ohko et al. [29], if photocatalytic reaction proceeded under purely light-limited conditions, the degradation rate would depend on adsorbed photon numbers (light intensity) linearly. In this present study, a nonlinear relationship of photodegradation rate with light intensity was observed (figure was not shown) that seemingly implies the photocatalytic reaction proceeded under a light-rich condition. In that case, the surface adsorptive property of photocatalyst has a major influence on the photodegradation rate. Although MC-LR concentration showed a very slight decrease during 60 min dark adsorption (removal rate was less than 5%), a systematic study on the effects of initial
MC-LR concentration should be carried out in the future research. That is helpful to understand clearly that the photodegradation proceeds under light-rich or light-limited condition. Since the average intensity of natural solar light is generally 0.8 mW cm$^{-2}$, Pt/WO$_3$ appears to be a promising photocatalyst for the degradation of MC-LR in practical water.

3.5. Effect of Chloride Ion (Cl$^-$) on the Photocatalytic Degradation of MC-LR. Sodium chloride (NaCl) was introduced into the reaction solution at different concentrations to investigate the effect of Cl$^-$ on the photocatalytic degradation of MC-LR. As shown in Figure 7, without Cl$^-$ addition, about 88.6% MC-LR was removed after 120 min solar light irradiation. With Cl$^-$ addition at the concentration of 0.02 mM, the percentage removal of MC-LR increased to 94.8%, whereas the percentage removal of MC-LR decreased to 79.8% and 74.2%, when the Cl$^-$ concentrations were 0.1 mM and 0.2 mM, respectively. The results indicate that Cl$^-$ at proper concentration could enhance the photocatalytic degradation of MC-LR, whereas excessive Cl$^-$ could inhibit the degradation. This phenomenon can be ascribed to the formation of Cl radicals (•Cl) in the photocatalytic reaction system. With Cl$^-$ addition at an appropriate concentration, the photogenerated holes on the catalyst surface were scavenged by the Cl$^-$ ions to form •Cl radicals [30, 31]. The •Cl radical is also a kind of high reactive species that can oxidize many organic substances. Guo et al. reported that Cl$^-$ ions adsorbed on TiO$_2$ surface promoted the photocatalytic oxidation of propylene [32]. However, excessive Cl$^-$ ions can also scavenge •OH radicals to form Cl$_2$ molecules very quickly, and the reactivity of Cl$_2$ was lower than that of •OH [33]. Consequently, when adding Cl$^-$ at an excessive concentration, the Cl$^-$ ions began to scavenge •OH radicals preferentially that decreased the photocatalytic degradation of MC-LR.

3.6. Effect of Metal Cations (Cu$^{2+}$ and Fe$^{3+}$) on the Photocatalytic Degradation of MC-LR. The fast recombination of photogenerated electrons and holes on the catalyst surface is an important factor that limits the photocatalytic degradation of organic substances. Consequently, to enhance the photocatalytic activity of catalysts, improving the separation of photogenerated electron-hole pairs is very essential. Metal cations can be used as the scavengers of photogenerated electrons and seem to be an effect additive for suppressing the recombination of photogenerated electrons and holes. The enhanced photocatalytic activity of WO$_3$ by addition of Cu$^{2+}$ and Fe$^{3+}$ in the reaction solution has been reported for the degradation of various organic substances such as phenol and sucrose [34, 35].

In order to investigate the effects of metal cations on photocatalytic degradation of MC-LR, Cu(NO$_3$)$_2$ and Fe(NO$_3$)$_3$ were introduced into the reaction solutions at a concentration of 0.2 mM. As shown in Figure 8, without metal cations addition, about 87.6% MC-LR was removed after 120 min solar light irradiation. In the presence of 0.2 mM Cu$^{2+}$ and Fe$^{3+}$, the percentage removal of MC-LR increased to 100% and 94.7%, respectively. The addition of Cu$^{2+}$ and Fe$^{3+}$ obviously enhanced the photocatalytic degradation of MC-LR under solar light irradiation.

The possible mechanism for the enhanced photocatalytic activity of Pt/WO$_3$ by Cu$^{2+}$ and Fe$^{3+}$ addition can be described as follows. (1) The consumption of photogenerated electrons by the reduction of Cu$^{2+}$ and Fe$^{3+}$ ions suppressed
In addition, the Cu\(^{2+}\) and Fe\(^{3+}\) can react with \(\text{H}_2\text{O}_2\) generated in a photo-Fenton reaction to produce additional \(\bullet\)\(\text{OH}\) radicals in the reaction system (9) and (10). Consider

\[
\text{Cu}^{2+} + e^- \rightarrow \text{Cu}^{+}
\]

\[
\text{Fe}^{3+} + e^- \rightarrow \text{Fe}^{2+}
\]

\[
\text{Cu}^+ + \text{H}_2\text{O}_2 + \text{H}^+ \rightarrow \text{Cu}^{2+} + \bullet\text{OH} + \text{HO}^-
\]

\[
\text{Fe}^{2+} + \text{H}_2\text{O}_2 + \text{H}^+ \rightarrow \text{Fe}^{3+} + \bullet\text{OH} + \text{HO}^-
\]

Then, the increased number of \(\bullet\)\(\text{OH}\) radicals in the reaction solution promoted the photocatalytic degradation of MC-LR [37, 38]. According to Irie et al. [39] and Liu et al. [40], \(\text{Cu}^{2+}\) and \(\text{Fe}^{3+}\) ions efficiently cause multielectron reduction of adsorbed \(\text{O}_2\) molecules to achieve high quantum efficiency value. Therefore, the \(\text{H}_2\text{O}_2\), produced during the multielectron reduction of \(\text{O}_2\) molecules also promoted the photodegradation of MC-LR in aqueous solution.

3.7. Photocatalytic Degradation Pathway of MC-LR. The degradation pathway of MC-LR through photocatalytic reaction has been in detail reported by Su et al. [41]. As shown in Figure 9, MC-LR is a relatively large molecule with a cyclostructure, which consists of a usual 20-carbon amino acid (ADDA) that expresses biological toxicity and an amino acid N-methyldehydroalanine (MDHA). The MC-LR molecule is more readily attacked by \(\bullet\)\(\text{OH}\) radicals at four sites of the toxin: three on the ADDA chain ((A) aromatic ring, (B) methoxy group, and (C) conjugated double bonds) and one on the cyclic structure ((D) MDHA amino acid) [28]. Among these, the conjugated double bond (site (C)) at the ADDA moiety of MC-LR molecule has been reported to be susceptible to photocatalytic attack [42, 43]. The destruction of MC-LR molecule by the attack of \(\bullet\)\(\text{OH}\) radicals on these sensitive sites leads to production of many kinds of intermediate products, which can be degraded to final products by further reaction with \(\bullet\)\(\text{OH}\) radicals.

In this present study, although the complete removal of MC-LR was obtained after 180 min solar irradiation when using Pt/\(\text{WO}_3\) as photocatalyst, less than 50% of the total MC-LR was mineralized. This can be attributed to the production of many kinds of intermediates which are stable against photocatalytic destruction and do not undergo complete oxidation. Since MC-LR was not completely mineralized, it is important to confirm that the intermediate products are nontoxic. Lawton et al. [14] assessed the toxicity of intermediates produced in photocatalytic degradation of MC-LR using brine shrimp bioassay method, and they could not detect any measureable toxicity.

4. Conclusions

A series of advanced \(\text{WO}_3\)-based photocatalysts including CuO/\(\text{WO}_3\), Pd/\(\text{WO}_3\), and Pt/\(\text{WO}_3\) were developed for the photocatalytic removal of microcystin-LR (MC-LR) under simulated solar light irradiation. In this present study, when doped with CuO, Pd, and Pt, the generation rate of \(\bullet\)\(\text{OH}\) radicals on \(\text{WO}_3\) surface was obviously enhanced. Pt/\(\text{WO}_3\) achieved the highest generation rate of \(\bullet\)\(\text{OH}\) radicals and exhibited the best photocatalytic performance for the degradation of MC-LR under solar light irradiation. The photocatalytic degradation of MC-LR by Pt/\(\text{WO}_3\) under solar light well followed the pseudo-first-order kinetic equation. CT addition at an appropriate concentration could enhance the photocatalytic degradation of MC-LR by Pt/\(\text{WO}_3\) under solar light irradiation. The addition of Cu\(^{2+}\) and Fe\(^{3+}\) obviously enhanced the photocatalytic degradation of MC-LR under solar light irradiation. The developed Pt/\(\text{WO}_3\) is a promising photocatalyst for enhancing the photocatalytic removal of recalcitrant organic compounds like MC-LR in water under solar light irradiation.

Conflict of Interests

The authors declare that there is no conflict of interests regarding the publication of this paper.

Acknowledgment

This work was supported in part by Grant-in-Aid for Exploratory Research 26670901 and Scientific Research (A) 22248075 from Japan Society for the Promotion of Science (JSPS).

References

[1] W. W. Carmichael, “Cyanobacteria secondary metabolites—the cyanotoxins,” Journal of Applied Bacteriology, vol. 72, no. 6, pp. 445–459, 1992.

[2] F. Al Momani, D. W. Smith, and M. Gamal El-Din, “Degradation of cyanobacteria toxin by advanced oxidation processes,” Journal of Hazardous Materials, vol. 150, no. 2, pp. 238–249, 2008.

[3] R. E. Honkanen, J. Zwiller, R. E. Moore et al., “Characterization of microcystin-LR, a potent inhibitor of type 1 and type 2A
Z.-G. Zhao and M. Miyauchi, "Nanoporous-walled tungsten oxide tubes improve the effectiveness of water treatment processes on the removal of hepatotoxins from Microcystis and Oscillatoria cyanobacteria: a laboratory study," Water Research, vol. 35, no. 5, pp. 1354–1357, 2001.

K. Himberg, A.-M. Keijola, L. Hiisivirta, H. Pyysalo, and K. Sivonen, "The effect of water treatment processes on the removal of trihalomethanes from drinking water," Water Research, vol. 23, no. 8, pp. 979–984, 1989.

S. Takenaka and Y. Tanaka, "Behavior of microcystins and its decomposition product in water treatment process," Chemosphere, vol. 31, no. 7, pp. 3635–3641, 1995.

C. Shiifu and C. Gengyu, "Photocatalytic degradation of organophosphorus pesticides using floating photocatalyst TiO$_2$ - SiO$_2$/beads by sunlight," Solar Energy, vol. 79, no. 1, pp. 1–9, 2005.

M. Sharón, B. Pal, and D. V. Kamat, "Photocatalytic killing of pathogenic bacterial cells using nanosize Fe$_2$O$_3$ and carbon nanotubes," Journal of Biomedical Nanotechnology, vol. 1, no. 4, pp. 365–368, 2005.

M. C. López, M. I. Fernández, S. Rodríguez, J. A. Santaballa, S. Steenkiste, and E. Vulliet, "Mechanisms of direct and TiO$_2$-photocatalysed UV degradation of phenoxyurea herbicides," ChemPhysChem, vol. 6, no. 10, pp. 2064–2074, 2005.

T. Arai, M. Yanagida, Y. Konishi, Y. Iwasaki, H. Sugihara, and K. Sayama, "Complete oxidation of acetaldehyde and toluene over a Pd/WO$_3$ photocatalyst under fluorescent- or visible-light irradiation," Chemical Communications, no. 43, pp. 5565–5567, 2008.

T. Arai, M. Yanagida, Y. Konishi, Y. Iwasaki, H. Sugihara, and K. Sayama, "Promotion effect of CuO co-catalyst on WO$_3$-catalyzed photodegradation of organic substances," Catalysis Communications, vol. 9, no. 6, pp. 1254–1258, 2008.

L. Li and Y. Liu, "Ammonia removal in electrochemical oxidation: mechanism and pseudo-kinetics," Journal of Hazardous Materials, vol. 161, no. 2-3, pp. 207–210, 2009.

Y. Liu, Y. Ohko, R. Zhang, Y. Yang, and Z. Zhang, "Degradation of malachite green on Pd/WO$_3$ photocatalysts under simulated solar light," Journal of Hazardous Materials, vol. 184, no. 1-3, pp. 386–391, 2010.

K.-I. Ishibashi, A. Fujishima, T. Watanabe, and K. Hashimoto, "Detection of active oxidative species in TiO$_2$ photocatalysis using the fluorescence technique," Electrochemistry Communications, vol. 2, no. 3, pp. 207–210, 2000.

Q. Xiao, Z. Si, J. Zhang, C. Xiao, and X. Tan, "Photoinduced hydroxyl radical and photocatalytic activity of samarium-doped TiO$_2$ nanocrystalline," Journal of Hazardous Materials, vol. 150, no. 1, pp. 62–67, 2008.

I. Liu, L. A. Lawton, and P. K. J. Robertson, "Mechanistic studies of the photocatalytic oxidation of microcystin-LR: an investigation of byproducts of the decomposition process," Environmental Science and Technology, vol. 37, no. 14, pp. 3214–3219, 2003.

Y. Ohko, K. Hashimoto, and A. Fujishima, "Kinetics of photocatalytic reactions under extremely low-intensity UV illumination on titanium dioxide thin films," The Journal of Physical Chemistry A, vol. 101, no. 43, pp. 8057–8062, 1997.

G. Munuera, A. Navio, I. Soria, and A. R. Gonzalez-elipe, "Photo-adsorption of oxygen on chlorinated TiO$_2$ surfaces: a possible way to photo-oxid-chlorinations," in Studies in Surface Science and Catalysis, T. Seiyama and K. Tanabe, Eds., vol. 7, pp. 1185–1197, 1981.

S. Kutsuna, Y. Ebihara, K. Nakamura, and T. Ibusuki, "Heterogeneous photoreaction reactions between volatile chlorinated hydrocarbons (trichloroethene and tetrachloroethene) and titanium dioxide," Atmospheric Environment A: General Topics, vol. 27, no. 4, pp. 599–604, 1993.

J. Guo, L. Mao, J. Zhang, and C. Feng, "Role of Cl ions in photooxidation of propylene on TiO$_2$ surface," Applied Surface Science, vol. 256, no. 7, pp. 2132–2137, 2010.

H.-C. Liang, X.-Z. Li, Y.-H. Yang, and K.-H. Sze, "Effects of dissolved oxygen, pH, and anions on the 2,3-dichlorophenol degradation by photocatalytic reaction with anodic TiO$_2$ nanotube films," Chemosphere, vol. 73, no. 5, pp. 805–812, 2008.
[34] T. Arai, M. Yanagida, Y. Konishi, H. Sugihara, and K. Sayama, "Utilization of Fe$^{3+}$/Fe$^{2+}$ redox for the photodegradation of organic substances over WO$_3$ photocatalyst and for H$_2$ production from the electrolysis of water," *Electrochemistry*, vol. 76, no. 2, pp. 128–131, 2008.

[35] D. Beydoun, H. Tse, R. Amal, G. Low, and S. McEvoy, "Effect of copper(II) on the photocatalytic degradation of sucrose," *Journal of Molecular Catalysis A: Chemical*, vol. 177, no. 2, pp. 265–272, 2002.

[36] M. D. Ward and A. J. Bard, "Photocurrent enhancement via trapping of photogenerated electrons of TiO$_2$ particles," *Journal of Physical Chemistry*, vol. 86, no. 18, pp. 3599–3605, 1982.

[37] K. Okamoto, Y. Yamamoto, H. Tanaka, M. Tanaka, and A. Itaya, "Heterogeneous photocatalytic decomposition of phenol over TiO$_2$ powder," *Bulletin of the Chemical Society of Japan*, vol. 58, no. 7, pp. 2015–2022, 1985.

[38] T. Y. Wei and C. C. Wan, "Kinetics of photocatalytic oxidation of phenol on TiO$_2$ surface," *Journal of Photochemistry and Photobiology, A: Chemistry*, vol. 69, no. 2, pp. 241–249, 1992.

[39] H. Irie, S. Miura, K. Kamiya, and K. Hashimoto, "Efficient visible light-sensitive photocatalysts: Grafting Cu(II) ions onto TiO$_2$ and WO$_3$ photocatalysts," *Chemical Physics Letters*, vol. 457, no. 1–3, pp. 202–205, 2008.

[40] M. Liu, X. Qiu, M. Miyachi, and K. Hashimoto, "Energy-level matching of Fe(III) ions grafted at surface and doped in bulk for efficient visible-light photocatalysts," *Journal of the American Chemical Society*, vol. 135, no. 27, pp. 10064–10072, 2013.

[41] Y. Su, Y. Deng, and Y. Du, "Alternative pathways for photocatalytic degradation of microcystin-LR revealed by TiO$_2$ nanotubes," *Journal of Molecular Catalysis A: Chemical*, vol. 373, pp. 18–24, 2013.

[42] M. Welker and C. Steinberg, "Rates of humic substance photosensitized degradation of microcystin-LR in natural waters," *Environmental Science and Technology*, vol. 34, no. 16, pp. 3415–3419, 2000.

[43] P. Chen, L. Zhu, S. Fang, C. Wang, and G. Shan, "Photocatalytic degradation efficiency and mechanism of microcystin-RR by mesoporous Bi$_2$WO$_6$ under near ultraviolet light," *Environmental Science & Technology*, vol. 46, no. 4, pp. 2345–2351, 2012.