Synthesis of Binuclear Complexes of Cu (II), Ni (II) and Cr (III) Metal Ions Derived from Di-Imine Compound as Biterminal Binding Site Ligand

Safa Ismaiel Mahjoub Muslah¹*, Ammar J. Alabdali¹ and Nasser D. Shaalan²

¹Department of Chemistry, College of Sciences, Al-Nahrain University, Baghdad, Iraq
²Department of Chemistry, College of Science for women, University of Baghdad, Baghdad, Iraq

Abstract

The research is concerning synthesis of two di-imine ligands derived from thiazole heterocyclic compounds. 1, 3, 4-thiadiazole-2, 5-dihydrazinoc is considered as ligand (L₁) and starting essential compound that used as precursor to synthesize the new ligand (2, 2′-(((1,3,4-thiadiazole-2,5-diyl)bis (hydrazin-2yl1ylidene))bis (methaneylylide)) dipheno1 (L₂). Six new complexes were derived from the ligands using some transition metal ions like Cu(II), Ni(III), and Cr(III). The synthesized compounds characterized by infrared, ultra-violet-visible and gas chromatography-mass spectroscopy, conductivity, and thermal analysis. The coordination modes were suggested to be N₂ from two terminals to form binuclear complexes.

The mentioned characterization methods showed that the prepared complexes may have chelation pattern (bidentate or tridentate) depending on the suggested geometry (square planer or octahedral) and the type of ligand.

1. Introduction

Imines are compounds of carbon-nitrogen double bond R₁R₂C=N–R₃, where R = hydrogen, aliphatic, aromatic group. Hugo Schiff was the first one to synthesize this compound in 1864 from simple condensation between aldehydes or ketones with primary amines [1]. Schiff's bases have several applications, including: electrochemistry, bio-inorganic chemistry, separation processes, photo degradation, pharmacy, anti-microbial and dyes [2,3]. Schiff's bases have the ability to form stable complexes, due to the nitrogen atom that gives the electron pair the ability to synthesize so many complexes with metal ions [4-8]. Schiff base ligands containing more than one donor sites are extensively used for the preparation of metal complexes with interesting properties due to the chelating effect [9]. 1,3,4-Thiadiazole was one of the most popular isomer in the industrial and the pharmaceuticals fields compared to other species. It’s considered a strong aromatic and high stability circular system and with lack of toxicity or harmful risks for humans [10]. The thiazole and substitutes have different biological activities, such as: Anti-fungal, [11] Anti-pyretic [12], Anti-convulsive [13], Anti-viral [14] and Anti-inflammatory [15]. The aim of this work is to study the behavior of the ligands toward metal ions according to the available donor atoms and to suggest the ability of extracting metal ions from factory's by product to determine the amount photometrical.

2. Experimental

General methods and instruments

All the prepared ligands and complexes characterized by infrared spectra were recorded by using FTIR 8300 Shimadzu Spectrophotometer frequency range of 4000-200 cm⁻¹, ultraviolet-visible (UV-Vis) spectra were recorded by using a Shimadzu U.V-Vis. 160 A-Ultra-violet Spectrophotometer in the range of 200-1100 nm, conductivity measurements were carried out by using a WTW conductivity meter, The Atomic Absorption Spectrophotometer (A.A.S) type: Double-beam, model: AA400 and thermal analysis and GC-Mass spectroscopy. The melting points were recorded by "Digital melting-point apparatus by placing it in the capillary tube.

Synthesis methods of (L₁, L₂), (A₁•A₂) and (B₁•B₂) compounds

Ligands and complexes were synthesized according to general methods mentioned in literatures. Scheme 1 showed the synthesis reaction of L₁ and L₂.
Synthesis of 1, 3, 4-thiadiazole-2, 5-dihydrazine (L₃)
A solution of 1, 3, 4-thiadiazole-2, 5-dithiol (0.01 mole) dissolved in 200 ml of absolute ethanol was mixed with anhydrous hydrazine (0.02 mole) with stirring and when addition completed (drop wisely) the mixture will reflux with constant stirring for 5 hours. After reaction completed (monitored by litmus paper) the solvent is then removed by rotary evaporator where the output separated, which is a desired precipitate. The crystallization occurred by washing the products with ether then dried [16].

The physical data of the prepared compounds are shown in Table 1.

Synthesis of 1, 3, 4-thiadiazole-2, 5-bis-N-α-hydroxy phenyl imine (L₂)
0.01 mole of L₁ reacted with 0.02 mole of salicyldehyde in 20 ml absolute ethanol in the presence of some drops of glacial acetic acid. The reaction mixtures were refluxed with stirring for 4 hours, a precipitate will be formed indeed. The product filtered and washed with ether then dried. The physical data of the prepared compounds are shown in Table 1.

color=red

Table 1. The physical properties of the prepared compounds.

Symbol	Formula	M.p.°C	Color	Yield %
L₁	C₆H₁₂N₆S	226-228	Pale-yellow	85.71
A₁	[Cu₂L₁(Cl)(H₂O)₂]Cl₂·2H₂O	253-255	Pale-brown	46.53
A₂	[Ni₂L₁(Cl)(H₂O)₂]Cl₂	290 d	Dark-brown	76.19
A₃	[Cr₂L₁(Cl)(H₂O)₂]Cl₂	237-240	Olive	57.84
L₂	C₁₀H₁₂N₆O₅S	223-225	Yellow	83.69
B₁	[Cu₂L₂(Cl)(H₂O)₂]Cl₂	285-287	Brown-orange (Rusty)	85.50
B₂	[Ni₂L₂(Cl)(H₂O)₂]Cl₂	268-270	Brown	72.96
B₃	[Cr₂L₂(Cl)(H₂O)₂]Cl₂·2H₂O	235-237	Yellowish-green	63.22

3. Results and Discussion

A- Infra-red spectra of (L₁, L₂, A₁-A₃) and (B₁-B₃) complexes
The absorption bands of infra-red (IR) spectra of the ligands and complexes are shown in Table 2, were L₁ and L₂ showed strong bands at 1620 cm⁻¹ and 1624 cm⁻¹ respectively, which could be attributed to azomethine group (imine) [18,19].

IR spectra of the prepared complexes were measured to determine the coordination mode of each ligand with metal ions. This can be achieved through the shifting in frequencies of the involved groups in coordination clearly at the spectrum; imine group of L₁ and L₂ was shifted to low frequency by (19-23) cm⁻¹ and (21-23) cm⁻¹ respectively for Cu (II), Ni (II) and Cr (III) complexes. Figure 1 shows the infrared spectra of L₂ and its complexes.
The absorption spectrum of the ligands consisted variable peaks in the range 200 nm to 350 nm due to the presence of different atoms possess n \rightarrow π* and π \rightarrow π* transitions. The electronic spectra of the Cu (II) complexes appeared electronic transitions in the visible region as broad peak belong to d-d transition [20]. The electronic spectra of the Cr (III) complexes showed different bands at visible region which may be attributed to (4A₂g \rightarrow 4T₂g), (4A₂g \rightarrow 4T₁g) and (4A₂g \rightarrow 4T₃g (P)). The Ni (II) complexes showed two broad bands appeared in the range and (15,000-27,000) cm⁻¹, which suggested geometry to these complexes as square planer. Table 3 shows the absorption band and assignments of these complexes. Figure 2 included U.V-Vis. spectra of L₂ and its complexes.

Table 2. The characteristic absorption bands of the ligands and complexes.

Compound	(O–H)	(N–H)	(C–H) aromatic	(C=O)	(C–H) aromaticity	ortho-Subs.
L₁	–	3410	3248 3143	–	1620	– –
L₂	3520	3406	3043 1624	1573	1485	752
A₁	3401(br)	3158	3052 1601	–	–	– –
A₂	3352(br)	Obscure	3028 1605	–	–	– –
A₃	3401(br)	3402	–	1605	–	– –
B₁	3568 3631	3442	3010 1603	1542	1471	759
B₂	Obscure	Obscure	3032 1601	1531	1460	752
B₃	3571	3442	–	1604	–	763

B- Electronic transitions spectra of metal complexes

The absorption spectrum of the ligands consisted variable peaks in the range 200 nm to 350 nm due to the presence of different atoms possess n \rightarrow π* and π \rightarrow π* transitions. The electronic spectra of the Cu (II) complexes appeared electronic transitions in the visible region as broad peak belong to d-d transition [20].
Figure 2. U.V-Vis. spectra of L₂ and its complexes.

Compounds	λ nm	cm⁻¹	Assignments	Suggested structure
A₁	647	15,455	¹B₁g → ¹B₉	Square planer
	629	15,898	²B₂g → ²A₁g	
	280	35,714	n→π*	
	266	37,593	π→π*	
A₂	816	12,254	¹A₁g → ¹A₂g	
	318	31,446	¹A₁g → B₁g	
	284	35,211	n→π*	
	224	44,642	π→π*	
A₃	629	15,898	³A₂g → T₂g	
	485	20,618	³A₂g → T₁g	
	319	31,347	C.T	
	265	37,735	π→π*	
B₁	434	23,041	²B₁g → ²B₉	
	295	33,898	²B₁g → ²A₁g	
	288	34,722	n→π*	
	252	39,682	π→π*	
B₂	628	15,923	¹A₁g → A₂g	
	433	23,094	¹A₁g → B₁g	
	415	24,096	C.T	
	352	28,409	n→π*	
	291	34,364	π→π*	
B₃	620	16,129	⁴A₂g → T₂g	
	498	20,080	⁴A₂g → T₁g	
	393	25,445	n→π*, C.T	
	265	37,735	π→π*	

Table 3. The electronic transitions and assignments of (A₁-A₃) and (B₁-B₃) complexes.
GC-Mass spectroscopy

Mass spectrometry is the study of system generating the formation of gaseous ions, with or without fragmentation; which are then characterized by their mass to charge ratios (m/z) and relative abundances.

In measuring of L_1, the ligand appeared fragment that represent this structure (CH=NH−O) was lose 43 M.wt from the compound, considering the (HN−N=CH−CH) as intermediate state during this loss [21].

When the electronic bombardment of complexes the hydrogen sulfide molecule has been lost from the heterocyclic compound and the reason for this is due to that is very stable molecule and considered as driving force (H$_2$S). the disruption of the benzene ring which converted to five membered ring (69 M.wt) which considered one of the important peaks. Finally the most important peak is of the charged molecular weight at 352 M.wt after losing two terminal hydrogen atoms. Table 4 included the most important peaks and the suggested fragments of L_2 compound depending on GC-Mass spectrum that shown in Figure 3.

Table 4. The fragmentation and suggested molecular weights of L_1.
Lost fragment
H$_2$
O$_2$
2(C$_6$H$_4^+$)
2(CH=NH−NH)
2(C$_6$H$_4$N)$^+$
2(CH)
N$_2$
(N)
(CH$_2$)

Figure 3. GC-Mass spectrum of the synthesized L_2 ligand.

Molar Conductance

The complexes are dissolved naturally with DMF, which must be non-reactive toward the measured compound and have reasonably high electrical stability and low viscosity to be electrical compound [22]. The molar conductance of the complexes was measured and all complexes are
electrolytic except complex B₂ was non-electrolytic. Table 5 included the conductivity measurements of the complexes in 10⁻³ M.

Table 5. The conductivity measurements of complexes in DMF.

Complexes	Conductivity (MS/cm)	Electrolytic property
Ligand		
A₁	141.1 M.s/cm	Electrolytic
A₂	133.8 M.s/cm	Electrolytic
A₃	165.4 M.s/cm	Electrolytic
B₁	137.8 M.s/cm	Electrolytic
B₂	22.5 M.s/cm	Non-electrolytic
B₃	137.0 M.s/cm	Electrolytic

** Atomic Absorption Spectrometry**

The atomic absorption technique is based on the absorption of light by free metal ions to determine the concentration of chemical elements (a specific element) in a sample of the complexes created. It can measure more than 70 elements by absorbing the optical beam (light) of free atoms in the gaseous state [23]. The calculated and found values showed in Table 6 and both values are in good agreements.

Table 6. The atomic absorption values of the synthesized complexes (A₁-A₃) and (B₁-B₃).

Complexes	Chemical formula	M.wt. (g/mol)	Calculated Values	Experimental Values
A₁	[Cu₂L₁(Cl)₂(H₂O)₃]Cl₂·2H₂O	469	27.1 %	26.89%
A₂	[Ni₂L₂(Cl)₃(H₂O)₄]Cl₂	441	26.5 %	25.5 %
A₃	[Cr₂L₂(Cl)₃(H₂O)₄]Cl₂	535	19.4 %	17.3 %
B₁	[Cu₂L₂₂(Cl)₃(H₂O)₄]Cl₂	659	19.2 %	18.98 %
B₂	[Ni₂L₂₂(Cl)₃]·3H₂O	667	17.5 %	16.4 %
B₃	[Cr₂L₂₂(Cl)₃(H₂O)₄]Cl₂₂	708	14.6 %	13.3 %

Thermal Analysis

This technique is concerned with thermal analysis of inorganic and organic compounds, whether solid, semi-solid or liquid. All thermal analysis techniques simply measure the change of a specific property of a substance as a function of temperature and access to required information related to chemical compounds, including dynamic and thermal equilibrium.

This technique calculates the lost weights of vehicles in several steps, after gradually increasing temperatures from −150 °C up to 2400 °C [24]. As there is an initial loss of water molecules and gases, then partial loss of the compounds occurs by breaking them down by high temperature. Thus, we obtain metal oxides [25] as a final step of the thermal decomposition process for these processed complexes. The Table 7 described assignments of the complexes for thermal gravimetric analysis. Figure 4 shows thermal graphic analysis of the synthesized complexes (A₁-A₃) and (B₂-B₃).
Table 7. The lost parts at temperature ranges of (A₁-A₃) and (B₂, B₃) complexes.

Complexes	TGA range °C	Mass lose %	Theoretical	Assignments
A₁	0 – 135	4.6%	3.8%	Loss of one (H₂O) lattice molecule.
	135 - 360	50.09%	52.0%	Loss of 2Cl₂, 2(H₂O) and 2(NH₃NH₂).
	360 – 530	14.77%	17.9%	Loss of C2N2S.
	> 620	31.7%	33.9%	Removal 2(CuO) residue.
A₂	0 – 320	36.8%	40.3%	Loss 2 H₂O and 2 Cl₂.
	> 620	57.5%	59.6%	Loss of L₁ and Ni₂ metal.
	> 620	5.6%	–	Not found residue (99.53)
A₃	0 – 230	9.97	13.2%	Loss of Cl₂.
	230 – 500	52.52	51.9%	Loss of 2Cl₂, 4H₂O coordinate water molecule and 2NH₃NH₂.
	> 620	28.2%	25.9%	Loss of Cr metal and C₂N₂S.
	> 620	9.3%	14.2%	Loss of ½ CrO₃.
B₂	0 – 325	8.3%	8.0%	Loss of (3H₂O) lattice molecule.
	325 – 480	47.8%	49.1%	Loss of 2Cl₂, 2(C₆H₅OH) molecule.
	480 – 590	31.2%	33.9%	Loss of C₄H₈N₆S molecule.
	> 620	12.5%	11.1%	Removal NiO metal oxide.
B₃	0 – 190	20.4%	15.1%	Loss of 2H₂O Lattice water and Cl₂.
	190 – 350	18.2%	20.1%	Removal Cl₂ and 4H₂O coordinate.
	350 – 610	54.53%	57.3%	Loss L₂ and Cr metal.
	> 610	12.2%	14.1%	Remove CrO₃.
4. Conclusion
In complexes of L₁ the coordination pattern is N₂-bidentate chelation forming stable 5-membered ring for the three metal ions, in complexes of L₂ the presence of hydroxyl group assisted to form tridentate coordination pattern of N₂O of facial geometry using 6-membered ring in chromium complex and not the other. Therefore, according to the previous results the suggested structures and chemical formula for all complexes are shown below:
Acknowledgment

The keen interest shown by the head of Chemistry Department in College of Science for Women/University of Baghdad, in this study is gratefully acknowledged. Besides, the researchers sincerely acknowledge the cooperation of Ibn Al-Betar Research Center/Ministry of Industry and Minerals, where the organic product of the study (L2) was tested instrumentally.

References

[1] Schiff, Hugo, “A new series of organic bases”; Justus Liebig's Annalen der Chemie, 131, 118-119, 1864.
[2] Przybylski, P.; Huczyński, A. W.; Pyta, K. K.; Brzezinski, B.; Bartl, F., “Biological properties of Schiff bases and azo derivatives of phenols”; Current Organic Chemistry, 13, 124-148, 2009.
[3] Yang, Li. Y.; Zhang, Z. S.; Cao, H.; Wang, B. J.; Zhang, F. D. Y.; Wu, B. A., “Artemisinin derivatives bearing Mannich base group: synthesis and antimalarial activity”; Bioorganic & medicinal chemistry, 11, 4363-4368, 2003.
[4] Gupta, K. C.; Sutar, A. K.; Lin, C. C., “Polymer-supported Schiff base complexes in oxidation reactions”; Coordination Chemistry Reviews, 253, 1926-1946, 2009.
[5] Trakarnpruk, W.; Kanjina, W., “Preparation, characterization, and oxidation catalysis of polymer-supported ruthenium and cobalt complexes”; Industrial & engineering chemistry research, 47, 964-968, 2008.
[6] Darenbourg, D. J.; Frantz, E. B., “Manganese (III) schiff base complexes: Chemistry relevant to the copolymerization of epoxides and carbon dioxide”; Inorganic chemistry, 46, 5967-5978, 2007.
[7] Cozzi, P. G., “Metal–Salen Schiff base complexes in catalysis: practical aspects”; Chemical Society Reviews, 33, 410-421, 2004.
[8] Gupta, K.C.; Sutar, A. K., “Catalytic activities of Schiff base transition metal complexes”; Coordination Chemistry Reviews, 252, 1420-1450, 2008.
[9] Kavitha Andiappan; Anandhaveiu Sanmugam; Easwaramoorthy Deivanayagam; Karupparasamy, Hyun-Seok Kim; Dhanasekaran Vikraman, “In Vitro cytotoxicity activity of novel Schiff base ligand-lanthanide complexes”. Scientific Reports, 8:3054. DOI: 10.1038, 41598-018-21366-1, 2018.
[10] Qasir, A. J.; Ameen, H. A., “Synthesis and preliminary antimicrobial study of 2-amino-5-mercapto-1,3,4-thiadiazole derivatives”; Iraqi Journal of Pharmaceutical Sciences, 21, 98-104, 2012.
[11] Palaska, E.; Şahin, G.; Kelicen, P.; Durlu, N. T.; Altinok, G., “Synthesis and anti-inflammatory activity of 1-acylthiosemicarbazides, 1, 3, 4-oxadiazoles, 1, 3, 4-thiadiazoles and 1, 2, 4-triazole-3-thiones”; Il Farmaco, 57, 101-107, 2002.
[12] Musa, F.H.; Mohmoud, M. J.; Mustafa, I.F.; Ibn Al-Haitham J.; Pure and Appl. Sci, 15, 3-21, 1998.
[13] Al-Helfee, W. A.; Alias, M. F.; Al-Juburi, R. M., “Synthesis, characterization and antimicrobial Studies of complexes of some metal ions with 5 (2-hydroxy benzylidine)-2-thio ether-1, 3, 4-thiadiazole”; Baghdad Science Journal, 7, 585-592, 2010.
[14] Yang, G. H.; Cao, L. H.; Cui, P. Y., “The Synthesis of 2-(Chromon-2/3-yl)-3-(5-thione-4-hydro-1, 3, 4-thiadiazol-2-yl)-4-oxothiazolidine”; Journal of the Chinese Chemical Society, 52, 1033-1036, 2005.
[15] Daoud, K. M.; Al-Obaydi, A. W.; Mohammed, M. J.; Tikrit J of Pure Science 13, 47-51, 2008.

[16] Gaber, M.; Mabrouk, H. E.; Shar, S. Al Shihry, “Complexing behaviour of naphthylidene sulfamethazine schiff base ligand towards some metal ions”, Egyp. J. Chem, 44: 191-200, 2001.

[17] Naser, D. S.; Nabeel, H. B., “Synthesis, characterization and thermodynamic study for new complexes of some transition metals and zinc with Schiff’s Bases derived from substituted (1,3,4-thiadiazoole)”; Ph.D. Thesis, Collage of Science, University of Mosul, Department of Chemistry, 2013.

[18] R. T. Morrison; R. N. Boyd, “Organic Chemistry”, 6th ed., Prentice Hall, 1992.

[19] K. Nakamoto, “Infrared and Raman spectra of inorganic and coordination compounds”, 5th ed., John Wiley and Sons- Inc., New York, 87-89, 1970.

[20] N. N Greenwood; A. Earnshaw, “Chemistry of the Elements”. Oxford, New York. 3rd ed., 1986.

[21] Mistry, B D., “A handbook of Spectroscopic Data-Chemistry (U.V, IR, PRM 13CNMR and Mass Spectroscopy)”; Jaipur, India 2009.

[22] Al-Fadhel, Mowafak S. A., “Synthesis and Characterization of Complexes Containing Mixed Ligands of Dithiocarbamate and Phosphines, and New Bimetallic Complexes Salts.” M.Sc. Thesis, Collage of Sciences, University of Mosul, 2010.

[23] Bax, D.; Agterdenbos, J.; Worrell, E.; Kolmer, J. B., “The mechanism of transition metal interference in hydride generation atomic absorption spectrometry”; Spectrochimica Acta Part B: Atomic Spectroscopy, 43, 1349-1354, 1988.

[24] Mohamed, G. G.; Omar, M. M.; Hindy, A. M., “Metal complexes of Schiff bases: preparation, characterization, and biological activity”. Turkish Journal of Chemistry, 30, 361-382, 2006.

[25] Rehali, H.; Barkat, D., “Extractible Synthesis and Characterization of Cu (II) Complex with Capric Acid”. J. Nanomed. Nanotechnol, 6, 1-5, 2015.