Slope Aspects and Elevation Influenced Herbaceous Diversity and Soil Characteristics in Tropical Forests of Indian Desert

ABSTRACT

Aim: Understanding the interactive effects of aspects and elevation on soil properties and vegetation diversity in hill forest of desert environment is essential for devising strategies to restore such degraded hills.

Place and duration: Observations were recorded during September to October 2017 and 2018 in a hilly forest area in the Tharp Desert of Rajasthan, India.

Methodology: Three-hundred-twenty plots of 1 m² (clustered at sixty-four positions based on eight slope aspects and eight elevations) were studied for herbaceous diversity, and soil properties by sorting vegetation to species level, and soil sampling in each plot. Community population (P), height, soil water content (SWC), pH, and organic carbon (SOC) were measured and species-richness (R), Shannon-Weiner diversity (H’), dominance (D), and evenness (J’) were calculated.

Results: Out of 174 species from 34 families and 122 genera, 163 species showed IVI < 5. The dominant family was Phocaea. Soil pH, SWC, SOC, P, and height were greater in 2017, whereas R, H’ and J’ were greater in 2018. Soil pH, height and D were lowest in the northeast and highest (1.04-1.54-fold) in the west to the southeast. SOC, SWC, R and J’ were 1.16-2.35-fold greater in the northeast than the south aspect. P, height and H’ showed a reverse trend with a 1.15-1.53-fold variation. SOC, height, R, and H’ increased by 1.30-2.35-fold with increase in elevation from <230 m to >600 m, whereas D and pH showed a decreasing trend. The highest values of SWC, P and J’ were in 800-900 m, 700-800 m and 600-700 m respectively. Though varied with aspects, <230 m area was dominated by xeric species, middle by Aristida adscensionis and higher ones by Apluda mutica/Heteropogon contortus.

Conclusion: Altitude had a stronger impact on all variables except SWC, which was influenced strongly by aspects making southern slopes drier than the northern slopes and influenced species structure and composition. Such areas require effective conservation, but aspect and elevation should be given due importance in devising restoration strategies for efficient management of biodiversity and mitigating climate change.

Keywords: Arid zone; herbaceous vegetation; isolated hills; soil organic carbon; soil water; species dominance.

1. INTRODUCTION

Topography shows significant impacts on the abundance, distribution, and diversity of vegetation in mountainous regions by influencing micro-climate, vegetation establishment, water movement, nutrient distributions, and soil erosion [1, 2]. Elevation along with aspect and slope determines the microclimate and thus large-scale spatial distribution and patterns of vegetation dynamics [3, 4].
Each mountain face shows contrasting characteristics with respect to insolation, light intensity, soil moisture, soil pH, humidity, etc.[5]. The north-facing slope retains moisture and are more cold and humid than the south-facing slope in northern hemisphere thereby offer a better habitat for regeneration and growth of diverse vegetation [6,7]. Elevation is another factor influencing temperature, evapotranspiration, humidity, wind speed, rainfall [8, 9] and species richness [10], whereas north and south aspects have been observed as main ecological drivers in altitudinal species richness [7].

Global patterns of species ranges and richness are the product of many interacting factors such as environmental conditions, competition, geographical setting, and evolutionary development [11,12]. For instance, vegetation in arid regions adapt by changing structural characteristics like fleshy leaf, assimilating shoots, lots of epidermal hairs, thick cuticle, etc., to improve their water use efficiency in the existing environment [13]. Favourable climatic conditions particularly high precipitation promotes species richness and belowground biomass, which shows a consistent positive effect on soil water, organic carbon storage and pH [14]. SOC acts as medium of sorption to hold water and improve soil aggregation and nutrient cycling [15]. Increased nutrient availability also influences seed germination, seedling establishment and species dominance along an altitudinal gradient [16, 17, 18]. SOC also helps improve water availability leading to higher species richness in contrast to the effects of increased nutrient availability [19]. Soil pH influences trace element mobility and nitrogen cycling [20]. Therefore spatial variation in slope aspect, elevation and soil characteristics appear determinant of vegetation pattern, species distribution and ecosystem processes. It would be more imperative to study the environment-vegetation relationships in arid environment particularly in Thar Desert [21].

The Thar Desert covers about 200,000 km² areas bordering irrigated Indus plain to the west, the Punjab plain in north and northeast, the Aravalli range in southeast, and the Rann of Kutch in the south [22]. Archean gneiss, Proterozoic sedimentary rocks and more-recent alluvium are geographical features [23]. The surface consists of aeolian sand accumulated over the past 1.8 million years. The soils consist of desert soils, red desertic, sierozems, the red and yellow soils in the foothills, the saline soils of the depressions, and the lithosols (shallow weathered soils) and soft loose soils (regosols) in the hills [22]. Because of varying topographical features like saline depressions, sand dunes, sandy plains and rock outcrops, gravelly pediments and isolated hills this region harbours a variety of flora and fauna [24, 25, 26]. Most of the isolated hills are surrounded by sandy ravines developed by wind and water erosion in the region [27]. These hills support a wide variety of flora ranging from desertic in foothills to deciduous flora of Aravalli on hillslopes and top [24]. However, increasing pressure of livestock grazing coupled with climatic harshness leads to depletion of flora and requires effective management strategies to restore such degraded hills. There is lack of knowledge and understanding of how the slope aspect and elevation interacts to influence soil characteristics and vegetation composition in such mountainous area of Thar Desert. Thus, determining relationship between topography, vegetation and soils is essential factor for devising a restoration plan [28].

Therefore, objectives of this study were: (i) to study vegetation composition and diversity in different physiographic positions of Siwana-complex area; (ii) to estimate soil pH, water storage and organic carbon in different elevation and aspects; and (iii) to find out the relationship between diversity indices and soil factors for help in devising restoration strategies.
2. MATERIAL AND METHODS

2.1 Study site
The study was conducted in Haldeshwar Mahadevji hill forest of Siwana complex area of Barmer district (Thar Desert) in western Rajasthan. This forest block is situated between 25° 32'N to 25° 36' N Latitude and 72° 17'E to 72° 24' E Longitude covering over 5000 ha area. Elevation varies from 230 to 950 meter above mean sea level (amsl) and comes under high altitude hot desert region surrounded by seasonal rivers system and sandy plain to sandy ravenous area (Fig. 1).

Annual rainfall of Siwana tehsil during 2009-2018 was 243.4 mm. In this, year 2013 received highest rain of 752 mm, whereas the lowest was 172 mm in 2018 (Fig. 1). In the year 2017, a total 622 mm rain was received in 25 days. Annual mean minimum and maximum temperature of Siwana were 23.7 °C and 34.15 °C respectively. Average relative humidity was 30.5-36.4% and wind speed was 10.8-15.8 k/hr. Windblown soils deposited on the hill tops are also visible in patches. Soil of the area is slightly alkaline in reaction and low in soil organic carbon (0.40-0.76%) and nitrogen (0.12-0.16%).

2.2 Experimental design and observation recording
Total area was divided into eight slope aspects and 8 elevation categories. The slope aspects were North (N), Northeast (NE), East (E), Southeast (SE), South (S), Southwest (SW), West (W) and Northwest (NW). Eight elevation positions were <230m, 230-300m, 300-400m, 400-500m, 500-600m, 600-700m, 700-800m and 800-900 m amsl. The slope aspect was measured clockwise.
starting from North (0°). The compass direction facing the slope was the slope aspect and flat terrain with no slope was considered no aspect. Elevations were measured in meters (m) amsl. The geographical coordinates (latitude and longitude) and the elevation were recorded with the help of Geographic Information System (GPS). Per cent slope was calculated by dividing the difference between the elevations of two points (rise) by the distance between them (run) multiplied by 100. Sixty-four sites were identified based on the slope aspect and elevation (8 × 8). At each site, five sapling plots (cluster sampling) of 1 m × 1 m size were laid out as the replicates. In which one plot was in the centre and the other four were at each corner of the central plot with a distance of 45 m from centre of the central plot to centre of the other plots. Vegetation study was conducted after the monsoon period, i.e. during September to October months of 2017 and again in 2018. This is the time when the chances of availability of herbaceous species are highest in the region. Herbaceous vegetation was studied in 320 plots (8 aspects × 8 elevations × 5 sampling plots) following standard method [29]. The above-ground vegetation from 1-m² area quadrates were chipped just above the surface and sorted to species. All the herbaceous vegetation were identified as per taxonomic classification using local and regional flora of Jodhpur and Rajasthan [24, 26]. These species were counted manually and categorized into several number of species and their population. The phytosociological analysis included diversity variables like species richness (R), Shannon-Wiener diversity index (H'), species evenness (J'), and Simpson's diversity index (D) were calculated following standard procedures [30, 31, 32, 33]. Height and diameter were recorded for 5 representative plants of each species using a measuring tape and vernier caliper. The importance value index was calculated as the sum of relative frequency, relative density, and relative dominance [34]. The height of the herbaceous vegetation in a sampling plot was calculated using equation $H = \sum n_i h_i / N$. Here H is the height of the herbaceous vegetation, n_i is the population of units species, h_i is the average height of units species and N is the population of all species in the sampling plot [35].

2.3 Laboratory analysis of soil
Soil samples were collected in 0-30 cm (or available depth) soil layer during vegetation study in 2017 and again in 2018. Soil samples were packed thoroughly in polythene bags to avoid moisture losses and brought to the laboratory for further analysis. Air-dried soil samples were ground and passed through a 2 mm sieve and used for soil pH and soil organic carbon (SOC) estimation. Soil pH was determined in 1:2 soils: water suspension using pH (Deluxe pH meter-101) [36]. Per-cent soil organic carbon (SOC) was determined by the wet digestion method of Walkley and Black [37]. Per-cent soil water content (SWC) was determined gravimetrically after oven drying the samples at 105 °C for a constant weight.

2.4 Statistical analysis
All data were subjected to statistical analysis using SPSS statistical package version 17.0 for Windows. Since the data on SWC, SOC, pH, vegetation height, and different diversity variables were recorded repeatedly for two years, i.e. 2017 and 2018, these data were analyzed using Repeated Measure ANOVA (RAMNOVA). Year was Tests of Within-Subjects Effects, whereas slope aspects and elevations were Tests of Between-Subjects Effects. Duncan Multiple Range Tests (DMRT) were applied to group different variables into homogeneous subsets based on slope aspect and elevation at $P<0.05$ levels. Pearson correlation was also employed to obtain a correlation between different soil and vegetation variables and elevations.
Regression analyses were also done to find out relationships among different diversity variables and soil parameters.

3. RESULTS AND DISCUSSION

3.1 Phytosociology

A total of 174 herbaceous species from 122 genera and 34 families were identified indicating a significant number of species in the area. The most dominant family was Poaceae (49 species) followed by Asteraceae (17 species) and Fabaceae (15 species) as reported in the existing literature on Thar Desert [24]. About 85% of study sites were dominated by grass species. The most dominant species were *Apluda mutica*, *Aristida adscensionis* and *Oropetium thomaeum* showing >10 IVI and *Heteropogon contortus*, *Dichanthium annulatum*, *Lepidagathis trinervis*, *Tephrocea purpurea*, *Actinopteris radiata*, *Borreria pusila*, *Brachiaria panicuca* and *Cenchrus ciliaris* with IVI of 5-10. Rest species were <5 IVI values requiring appropriate conservation measures (Annexure 1). Frequently observed species were in order: *A. adscensionis* > *B. panicuca* > *M. jacquemontii* > *A. mutica* > *D. annulatum* > *C. ciliaris* > *H. contortus*, etc. The most dominant species was *O. thomaeum* in NE, E (600-700 m also), SE and NW, *D. verticillata* > *P. paniculata* > *C. benghalensis* in N and W, *Panicum turgidum* in S, and *C. arenarius* in SW in <230 m elevation. This indicates the availability of more xeric species in S and SW aspects in foothills (<230 m elevation). In middle altitude, *A. adscensionis* is dominated in 230-600 m range in NW, N, E, and SE, 230-300 m in SW and 230-700 m in S and W aspects. *L. trinervis* dominated in NE aspect in 230-400 m, *Urginea indica/Zornia gibosa* in N and *D. scindicum* in SE in 600-700 m elevation and *B. pusilla* in W aspect in 700-800 m elevation (Annexure 2). The rest of the elevation and aspects were dominated by *A. mutica/H. contortus*. Such differences in the dominance of different species in different locations/positions was because of variation edaphic and environmental condition like soil pH, SWC, SOC, and soil nutrient influenced by slope aspects and elevation, which showed a high degree of impact on the species composition particularly in N and W aspects in the northern hemisphere [38, 39].

3.2 Temporal effects

Repeated Measure ANOVA showed significant (P < 0.01) variations in all soil and vegetation parameters between years of data recording, i.e. 2017 and 2018. Soil water content (SWC), pH, SOC, population density, vegetation height, and D were highest in 2017 as compared to 2018, whereas R, H', and J' were highest in 2018. Though less in concentration, SOC was relatively greater in the present study as compared to the reported values of 0.12-0.43% in forests and 0.04-0.49% in agricultural lands [40, 41]. Greater rainfall in 2017 enhanced SWC by 17% as compared to that in 2018 and promoted vegetation population, height, and D as observed earlier [35, 42]. It was also supported by a positive correlation (r=0.144, P < 0.01) between SWC and vegetation height. However, lesser SWC and SOC in 2018 was the impact of species-richness, H', and J', particularly of grass species. For instance, topsoils in plots containing grasses (or species-rich) have been observed drier as compared to legumes in the long-term Jena experiment [43]. Significant (P < 0.01) interactions of year × aspect for all, year × elevation for population density, R and H', and years × aspect × elevation for SWC, population density, R, H', D and J' showed the combined effects of these factors on soil and vegetation diversity variables.
3.3 Effects of slope aspects
We observed significant vegetation differences between slope aspects in species composition, vegetative structure, and biodiversity pattern. All variables like slope gradient, SWC, pH, SOC, population density, vegetation height, and diversity variables (R, H', D and J') varied significantly (*P*<0.01) due to slope aspects (Table 3). Northeast aspect exhibited highest values of SWC and SOC (2.35-fold and 1.90-fold than in South aspect) as well as J', and lowest values of soil pH indicating their favorable effects on species evenness. An increase in SOC enhanced the water holding capacity of the soil showing a conducive environment promoting species richness in north-facing slopes [44]. Soil pH ranged between 7.17 in NE and 7.46 in the west and was related inversely to SWC and SOC. However, the highest population, height, and D in southern slopes (SE and S) and their lowest values in NE were similar to the observations of Louhaichi et al., [45]. Because of maximum population and dominance of grass species in order: *A. adscensionis* > *A. mutica* > *Panicum turgidum* > *O. thomaeum* > *C. martini* > *D. scindicum* > *Dichanthium annulatum* in southern slopes, efficiently utilized soil water and SOC (via decomposition and nutrient release) resulting in the lowest values of SWC and SOC in these aspects. Earlier reports also indicated the dominance of the family Poaceae, Fabaceae, and Asteraceae in the Indian desert [24, 46]. The greatest slope gradient and soil pH with low SWC and SOC in the south aspect was due to greater exposure to solar radiation and salt concentration. However, greater vegetation height in this aspect appeared related with vegetation characteristics, i.e. high altitude grasses. It was also shown by negative and positive correlations (*P*<0.01) of slope gradient with soil pH and vegetation height. The highest values of H', R and J' in northern slopes (N and NE) was because of high SWC, SOC, low population density and less evapo-transpiration [47,48, 49]. The study of Pandita et al., [38] also showed that NE and NW faces are rich in terms of the herbaceous than pure north slopes. Thin and scattered vegetation along with weaker soil development with higher erosion rates in south facing sunny slope supported drought and radiation-resistant vegetation like grasses [50] and hence low in diversity and SOC [51].

3.4 Effects of elevation
All soil and vegetation variables differed significantly (*P*< 0.05) due to elevation. Soil pH and species dominance were highest (*P*< 0.01) in <230m elevation and decreased by 0.66 units and 32% respectively in elevation range 800-900m (Table 3). This elevation range showed the lowest slope gradient, SOC, vegetation height, species richness, and H' dominated by *A. adscensionis* as observed in other xeric environments including Thar Desert [52, 53]. Vegetation of more xeric characteristics was also recorded on low elevations S-facing slopes as compared to N-facing slopes on high elevations [52]. It was also shown by a negative correlation between soil pH and SOC, which increased to the highest values of 0.71% (2.29-fold) in 800-900 m elevation [54]. The highest SOC and SWC at high elevation areas was because of reduced temperature and improvement in climatic condition, vegetation status, and soils conditions as compared to those in foothill areas [55, 56]. However, lowest values of soil pH at high altitude was because of washing out of salts and their accumulation in foothill area resulting in high pH in <230 m elevation [57, 58]. The highest H' and J' in middle-top elevation (600-700 m), R and vegetation population in 700-800-m and vegetation height in 800-900-m were because of species characteristics particularly high altitude tall grasses (*A. mutica*, *C. martini*, *H. contortus*, etc.) supported by the highest concentration of SOC and SWC [59, 60]. An earlier study [61] also
indicated an increase in the mean coverage of grasses with elevation. Regression analyses also showed a linear increased in diversity ($R^2 = 0.083$, $F_{1/318} = 28.655$, $P< 0.01$) and species richness ($R^2 = 0.356$, $F_{1/318} = 175.97$, $P< 0.01$) with increase in elevation (Fig. 2). However, vegetation height showed an increasing trend with elevation by a power relationship ($R^2 = 0.275$, $F_{1/318} = 120.848$, $P< 0.01$). SOC increased linearly with vegetation height ($R^2 = 0.114$, $F_{1/318} = 40.715$, $P<0.01$) and species dominance a similar to the observation recorded earlier [42]. Many studies showed similar trend between elevation and H' and R, which were observed low in lower altitude and increased with an increase in elevation [63, 63].

Soil properties and vegetation diversity were partly under the influence of elevation. Soil pH decreased linearly with an increase in altitudinal species richness ($R^2 = 0.238$, $F_{1/318} = 99.242$, $P<0.01$), though the correlation was stronger with species richness in the north than in the other aspects [64]. Likewise, north-facing slopes appeared connected with higher vegetation coverage, height, and H' than the south-facing slopes at high altitude [50, 65]. Because of more moisture and less livestock grazing at higher elevations, vegetation cover and diversity was significantly higher than in lower altitude area [28, 66]. Thus altitude appeared dominant factor affecting R and H'. The slope aspect indirectly affected R and H' by creating a dry or moist environment (variation in SWC) and altering the rate of litter production and decomposition.

4. Conclusion and recommendations

Both slope aspects and elevation influenced soil characteristics and herbaceous diversity, but the impact of altitude was stronger than the aspect except for soil water. Results of this study indicated the dominance of grass species in herbaceous vegetation, where SWC and SOC had beneficial effects on vegetation growth and development particularly in the NE aspect. Low available SWC in the south-facing slopes affected height growth particularly in lower altitude areas that support xeric vegetation. Increased elevation had a significant positive impact on soil fertility and SWC, which promoted species rich vegetation at high altitudes as compared to xeric species in foothills. However, out of 174 species, 163 species showed an importance value index <5. Conclusively, high elevations in north-facing slopes are more favorable for regeneration and conservation. Selecting low elevation south-facing slopes areas require additional inputs of soil resources like water and nutrients. Our recommendations will be to conserve this area to avoid species extinction and adopt soil and water conservation and protection measures from overgrazing and overexploitation of vegetation and using suitable species in restoring degraded hills particularly in southern aspects of the foothill areas.

REFERENCES
1. Coblentz DD, Riitters KH. Topographic controls on the regional-scale biodiversity of the south-western USA. J. Biogeogr. 2004;31:1125-1138.
2. Yang YC, Da LJ, You WH. Vegetation structure in relation to micro-landform in Tiantong National Forest Park, Zhejiang, China. Acta Ecol. Sin. 2005;25:2830-2840.
3. Fang JY, Shen ZH, Cui HT. Ecological characteristics of mountains and research issues of mountain ecology. Chinese Biodiversity, 2004;12:10-19.
4. Southwood TRE, Lineacre FRS. Ecological methods,(3rd ed.) p.594.2015.
5. Gupta RD, Arora S. Characteristics of the soils of Ladakh region of Jammu and Kashmir. J Soil Water Conserv. 2017;16(3):260-266.
6. Gong X, Brueck H, Giese KM, Zhang L, Sattelmacher B, Lin S. Slope aspect has effects on productivity and species composition of hilly grassland in the Xilin river basin, Inner Mongolia, China. J Arid Environ, 2008;72:483-493.
7. Maren IE, Karki S, Prajapati C, Yadav RK, Shrestha BB. Facing north or south: Does slope aspect impact forest stand characteristics and soil properties in a semiarid trans-Himalayan valley?, J. Arid Environ. 2015;121:112-123.
8. Chang-Ming Z, Wei-Lie C, Zi-Qiang T, et al. Altitudinal pattern of plant species diversity in Shennongjia Mountains, Central China. J. Integrative Plant Biology, 2005; 47(12):1431-1449.
9. Funnell D, Parish R. Mountain environment and communities. London, U.K: Routledge; 2001.
10. Hakwins BA, Field R, Cornell HV, et al. Energy, water, and broad-scale geographic patterns of species richness. Ecology, 2003; 84:3105-3117.
11. Criddle RS, Church JN, Smith BN, et al. Fundamental causes of the global patterns of species range and richness. Russian J. Plant Physiology. 2003;50:192-199.
12. Singh G, Mishra D, Singh K, Shukla S, Choudhary GR. Geographical settings and tree diversity influenced soil carbon storage in different forest types in Rajasthan, India. Catena. 2022;209:105856.
13. Haina Z, Peixi S, Shanjia, L, Zijuan Z., Tingting X, Qingfang Z. Indicative effect of the anatomical structure of plant photosynthetic organ on WUE in desert region. ActaEcologicaSinica, 2013; 33:4909-4918.
14. Chen SP, Wang WT, Xu WT, Wang Y.. Plant diversity enhances productivity and soil carbon storage. Proceedings of the National Academy of Sciences, 2018; 115:4027-4032.
15. Palaniappan, SP, Chandrasekaran A, Kang DS, Singh K, Rajput RP, Kauraw DL, Velayutham M, Lal R, “Sustainable management of natural resources for security and environmental quality: case studies from India – A Review. In: E. Lichtfouse (ed.), Climate Change, Intercropping, Pest Control and Beneficial Microorganisms”, Sustainable Agriculture Reviews, pp. 339-372. 2009.
16. Hashemi SA. Evaluating Plant species diversity and physiographical factors in natural broad leaf forest. American J. Environmental Sci: 2010; 6:20-25.
17. Kharkwal G, Mehrotra P, Rawat YS, Pangtey YPS. Comparative study of herb layer diversity in pine forest stands at different altitudes of central Himalaya, ApplEcol Environ Res. 2004;2(2):15-24.
18. Wenk EH, Dawson TE. Interspecific differences in seed germination, establishment, and early growth in relation to preferred soil type in an alpine community. Arctic, Antarctic and Alpine Res. 2007;30(1):165-176.
19. Palputina S, Wagner V, Wehrden H, Hajek M, Horsak M, Brinkert, A. et al. 2016. The relationship between plant species richness and soil pH vanishes with increasing aridity across Eurasian dry grasslands. Glob. Ecol. Biogeogr. 2016;26(4):425-434.
20. Khadka D, Lamichhane S, Thapa B. Assessment of relationship between soil pH and macronutrients, Western Nepal. J. Chemical, Biological and Physical Sci. 2016;6(2):303-311.
21. Zhang S, Chen D, Sun D, Wang X, Smith JL, Du G. Impacts of altitude and position on the rates of soil nitrogen mineralization and nitrification in alpine meadows on the eastern Qinghai–Tibetan Plateau, China. Biol. and Fertil.of Soils. 2012;48(4):393-400.
22. Singh G, Singh B, Tomar UK and Sharma, S. A Manual for dryland afforestation and management. Scientific Publisher, Jodhpur.ISBN: 9788172339784.2017.
23. Bakliwal PC, Wadhawan SK. Geological evolution of Thar Desert in India-issues and prospects. Proc. Indian Nat Sci Acad. 2003; 69A(2):151-165.
24. Bhandari MM. Flora of the Indian Desert. Scientific publishers. Jodhpur. 1990.
25. Sharma KK, Pandey AK. Phytosociological study of vegetation of some selected arid region of the Thar desert of Rajasthan, India. Curr. World Environ. 2010;5(1):51-58.
26. Shetty BV, Singh V. Flora of Rajasthan. Botanical Survey of India. Vol I-III. 1993.
27. Mahendran V, Jagadeeswar Rao P, Bera AK. Vulnerability of different geomorphic units to Deserts I parts of western Rajasthan-A study based on remote sensing and GIS. J Remote Sensing and GIS. 2017;6(3):204. DOI: 10.4172/2469-4134.1000204.
28. Qanbari V, Jamali AA. The relationship between elevation, soil properties and vegetation cover in the Shorb-O1-Ain watershed of Yazd. J. of Biodivers.and Environ. Sci. 2015;6(5):49-56.
29. Misra R. Ecology Work Book. Oxford and IBH Publishing Company, Calcutta. 1968.
30. Magurran AE. Ecological diversity and its measurement. Princeton University Press, New Jersey. p.179. 1988.
31. Pielou EC. The Measurement of diversity in different types of biological collections. J. Theoretical Biology, 1966;13:131-144.
32. Shannon CE, Weaver W. The mathematical theory of communication. Univ. Illinois Press, Urbana. p 117. 1963.
33. Simpson EH. Measurement of diversity. Nature. 1949;163:683-688.
34. Philips EA. Methods of vegetation study. Henry Holt and Co. Inc; NewYork. p.318.1959.
35. Singh G, Mishra D, Singh K, Parmar R. Effects of rainwater harvesting on plant growth, soil water dynamics and herbaceous biomass during rehabilitation of degraded hills in Rajasthan, India. For. Ecol. Manag; 2013;310:612–622.
36. Jackson ML. Soil chemical analysis. Prentice Hall of India (Pvt.) Ltd., New Delhi. 1973.
37. Walkley A, Black IA. “An examination of the Degtjareff method for determining soil organic matter, and a proposed modification of the chromic acid titration method,” Soil Sci. 1934;37(1):29–38.
38. Bhardwaj DR, Tahiry H, Sharma P, Pala NA, Kumar D, Kumar, A. Bharti. Influence of aspect and elevational gradient on vegetation pattern, tree characteristics and ecosystem carbon density in Northwestern Himalayas. Land. 2021;10:1109.
39. Pandita, S, Kumar, V, Dutt HC. Environmental variables vis-à-vis distribution of herbaceous tracheophytes on northern sub-slopes in Western Himalayan ecotone.Ecol. Process. 2019;8:45.
40. Moharana P, Jena R, Kumar N, Singh S. Assessment of soil organic and inorganic carbon stock at different soil depths after conversion of desert into arable land in the hot arid regions of India. Carbon Manag. 2021;12(2):153-165.
41. Singh G. Studies on carbon sequestration in different forest types of Rajasthan. Project completion report, submitted to Indian Council of Forestry Research and Education, Dehradun, Uttarakhand. 2014.
42. Singh G, Choadhary GR, Ram B, Limba NK. Effects of rainwater harvesting on herbage diversity and productivity in degraded Aravalli hills in western India. J. Forestry Res. 2011;22(3):329–340.

43. Fischer C, Leimer S, Christiane Roscher C, Ravenek J, de Kroon H, et al. Plant species richness and functional groups have different effects on soil water content in a decade-long grassland experiment. J Ecol. 2019;107(1):127–141.

44. Zeng XH, Zhang WJ, Yi-Gang S, Shen HT. Slope aspect and slope position have effects on plant diversity and spatial distribution in the hilly region of Mount Taihang. North China. J. Food, Agriculture Environ. 2014;12:391-397.

45. Louhaichi M, Toshpulot R, Moyo HP, Belgacem AO. Effect of slope aspect on vegetation characteristics in mountain rangelands of Tajikistan: considerations for future ecological management and restoration. African J. Range & Forage Sci. 2021;1–9.

46. Choudhary K, Nama KS. Phyto-diversity of Mukundara hills national park of Kota district, Rajasthan, India. Advances in Appl. Sci. Res. 2014;5(1):18-23.

47. Jin XM, Zhang YK, Schaepman ME, Clevens JGPW, Su Z. Impact of elevation and aspect on the spatial distribution of vegetation in the qilian mountain area with remote sensing data. Conference Paper-The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences. 2008;37.10.5167/uzh-77426. https://www.isprs.org/proceedings/xxxvii/congress/7_pdf/8_1cwg-vii-iv/05.pdf

48. Panthi MP, Chaudhary RP. Vetaas OR. Plant species richness and composition in a trans-Himalayan inner valley of Manang district, central Nepal. Himalayan J. Sci. 2007;4(6):57-64.

49. Ucles O, Villagracia L, Canton Y, Lazaro R, Domingo F. Non-rainfall water inputs are controlled by aspect in a semiarid ecosystem. J. of Arid Environ.2015;113:43–50.

50. Xue R, Yang Q, Miao F, Wang X, Shen Y. Slope aspect influences plant biomass, soil properties and microbial composition in alpine meadow on the Qinghai-Tibetan Plateau.J. of Soil Sci. and Plant Nutrition.2018;18(1):1-12.

51. Singh S. Understanding the role of slope aspect in shaping the vegetation attributes and soil properties in montane ecosystems. Trop.Ecol. 2018;59(3):417–430.

52. Mata-Gonzalez R, Pieper RD, Cardenas MM. Vegetation patterns as affected by aspect and elevation in small desert mountains. The southwestern naturalist. 2002;47(3):440-448.

53. Singh K. Effect of Land use types on floral diversity and carbon sequestration in Jodhpur district of Rajasthan. Ph.D. Thesis submitted to Forest Research Institute (Deemed) University, Dehradun: 182 Pp.2016.

54. Tamene GM, Adiss, HK, Alemu MY. Effect of slope aspect and land use types on selected soil physicochemical properties in North Western Ethiopian Highlands. Appl. and Environ. Soil Sci. Article ID 8463259:8 p.2020.

55. Zhao H, Wang QR, Fan W, Song GH. The relationship between secondary forest and environmental factors in the southern Taihang Mountains. Sci. Rep. 2017;7:16431.

56. Zhu M, Feng Q, Zhang M, Liu W, Qin Y, Deo RC, Zhang C. Effects of topography on soil organic carbon stocks in grasslands of a semiarid alpine region, north-western China. J. of soils and sediments. 2018;19:1640-1650.

57. Begum F, Bajracharyab RM, Situace BK, Sharmab S. Seasonal dynamics, slope aspect and land use effects on soil mesofauna density in the mid-hills of Nepal. Int. J. Biodiversity Sci., Ecosystem Services and Manag. 2013;9(4):290–297.
58. Pei J, Yang W, Cai Y, Yi Y, Li X. Relationship between Vegetation and Environment in an Arid-Hot Valley in Southwestern China. Sustainability. 2018;10:4774.
59. Cirimwami L, Doumenge C, Kahindo JM, Amani C. The effect of elevation on species richness in tropical forests depends on the considered lifeform: results from an East African mountain forest. Trop. Ecol. 2019;60:473-484.
60. Lozano-Garcia B, Parras-Alcantara L, Brevik EC. Impact of topographic aspect and vegetation (native and reforested areas) on soil organic carbon and nitrogen budgets in Mediterranean natural areas. Sci. Total Environ. 2016;544:963-970.
61. Lee MA, Burger G, Green ER, Kooij PW. Relationships between resource availability and elevation vary between metrics creating gradients of nutritional complexity. Oecologia. 2021;195:213-223.
62. Habib T, Malik ZH, Hussain MA, Khan MQ. Plant species diversity along the altitudinal gradient at Garhi Dopatta Hills, Muzaffarabad. J. Medicinal Plants Research, 2011; 5(20):5194-5196.
63. McCain CM, Grytnes JA. Elevational gradients in species richness. In: Encyclopedia of Life Sciences (ELS). John Wiley & Sons, Ltd: Chichester. 2010. DOI: 10.1002/9780470015902.a0022548.
64. Nepali BR, Skartveit J, Baniya CB. Impacts of slope aspects on altitudinal species richness and species composition of Narapani-Masina landscape, Arghakhanchi, West Nepal. J. Asia-Pac. Biodivers. 2021;14:415-424.
65. Yang J, ElKassaby YA, Guan W. The effect of slope aspect on vegetation attributes in a mountainous dry valley, Southwest China. Sci. Rep. 2020;10:16465.
66. Graff P, Aguiar MR, Chaneton EJ. Shifts in positive and negative plant interactions along a grazing intensity gradient. Ecology. 2007;88:188-199.
Fig. 2. Relationships among different topographical features, diversity indices and soil parameters. (a) Species richness, (b) Species diversity and (c) plant height with elevation, (d) slope (%) vs. plant height, (e) soil organic carbon vs. height and (f) species richness vs. soil pH.

A: $y = 0.0119x + 7.1039$
$R^2 = 0.3587$

B: $y = 0.0006x + 1.4148$
$R^2 = 0.0807$

C: $y = 2.781x^{0.4029}$
$R^2 = 0.2149$

D: $y = 24.07e^{0.0087x}$
$R^2 = 0.2303$

E: $y = 40.509x^{0.2618}$
$R^2 = 0.1131$

F: $y = -0.0294x + 7.7183$
$R^2 = 0.1375$
Table 1. Effect of years of data recording on soil and vegetation variables in a hill forest area of Indian Desert. Values are mean±1SE of 320 replicates.

Variable	Year 2017	Year 2018							
	SWC (%)	pH	SOC (%)	Population (nos m⁻²)	Height (cm)	R	H'	D	J'
Slope (%)	36.83±0.03	-	-	202.02±6.86	41.44±0.89	12.79±0.25	0.32±0.01	0.66±0.01	
SWC (%)	2.01±0.06	1.75±0.06	54.31±2	173.15±5.64	29.93±0.78	19.38±0.89	0.28±0.01	0.69±0.01	
pH	7.38±0.02	7.28±0.02	37.95±2	209.32±2	3.44±0.02	7.34±0.19	1.75±0.01	1.52±0.01	
SOC (%)	0.54±0.02	0.51±0.02	7.49±2	25.50±2	1.53±0.05	5.17±0.05	1.48±0.01	1.53±0.01	
Population	0.239**	-	-	0.323**	-	-	-	-	
Height	0.345**	-	-	0.345**	-	-	-	-	
R	0.393**	-	-	0.393**	-	-	-	-	
H'	0.915**	-	-	0.915**	-	-	-	-	
D	0.915**	-	-	0.915**	-	-	-	-	
J'	0.915**	-	-	0.915**	-	-	-	-	

Tests of Within-Subjects Effects

Year	Y × A	Y × E	Y × A × E
2017	-	-	-
2018	-	-	-

Tests of Between-Subject Effects

Year	A × E
2017	15.33**
2018	101.45**

SWC: Soil Water Content; SOC: Soil Organic Carbon; PD: Population Density; H: Vegetation Height, R: Species Richness, H': Shannon-Wiener Diversity Index, D: Simpson Dominance, J': Evenness Index, Degree of freedom: year 1, year × aspect (A) 7, year × elevation (E) 7, year × aspect × elevation 49, aspect 7, elevation 7, aspect × elevation 49. Similar alphabets as superscript in a row indicate not-significant (P > 0.05) difference.

Table 2. Correlation coefficient (r) showing relationships between different physiographic, soil parameters, diversity and growth variables of Haldeshwar forest area in Barmer, Rajasthan (n=320).

Variable	Aspect	Elevation	Population	Height	SWC (%)	pH	SOC (%)
Slope (%)	ns	0.252**	ns	0.345**	ns	ns	ns
SWC (%)	-	0.369**	0.144**	0.098**	0.144**	ns	0.351**
pH	-	-0.553**	-0.162**	-0.316**	-0.157**	ns	-
SOC (%)	-0.188	0.338**	0.209**	0.122**	ns	ns	0.519**
Population	0.342**	0.242**	0.332**	-0.137**	0.194**	-0.372**	ns
Height	0.336**	0.242**	-	-0.275**	0.310**	-0.408**	0.144**
Richness	0.520**	0.332**	ns	0.699**	-0.508**	0.257**	0.098**
Diversity	0.239**	-0.137**	-0.275**	0.699**	-0.942**	0.829**	ns
Dominance	-0.139	0.194**	0.310**	-0.508**	-0.942**	-0.505**	ns
Evenness	ns	-0.423**	-0.412**	0.246**	0.843**	-0.915**	ns

Table includes values for SWC (%), pH, SOC (%), Population, Height, Richness, Diversity, Dominance, and Evenness for the years 2017 and 2018, with correlation coefficients indicating the strength and direction of the relationship. NS: non-significant, *P<0.05 and **P<0.01
Table 3. Effect of slope aspects on soil physicochemical properties and vegetation diversity in a hilly forest area of Indian Desert. Values are mean±1SE of 16 replications.

Variable†	N (0°)	NE (45°)	E (90°)	SE (135°)	S (180°)	SW (225°)	W (270°)	NW (315°)	Mean
Slope (%)	36.55±3.42b	43.30±3.23cd	29.21±3.70b	39.13±3.69bc	46.72±3.70a	34.94±3.28b	30.00±2.84a	34.79±3.00b	36.83±1.22
SWC (%)	2.27±0.09a	2.82±0.13c	1.91±0.11c	1.20±0.06a	1.20±0.08a	1.59±0.13b	2.04±0.10c	2.01±0.09d	1.88±0.04
pH	7.20±0.04a	7.17±0.04c	7.44±0.04c	7.38±0.04bc	7.39±0.05bc	7.24±0.05c	7.46±0.04c	7.34±0.03b	7.33±0.01
SOC (%)	0.57±0.03d	0.76±0.05e	0.53±0.03ed	0.43±0.02ab	0.40±0.02a	0.47±0.03bc	0.48±0.02cd	0.56±0.02d	0.53±0.01
P (nos m⁻²)	202.66±14.04cd	140.36±10.53a	194.06±13.26cd	215.26±16.44cd	208.78±12.16d	200.74±9.17cd	171.44±12.4abc	167.44±9.94ab	187.59±4.47
Height (cm)	36.35±2.00abc	33.21±1.63c	38.34±1.98bc	34.23±1.40ab	40.45±1.89a	34.01±1.39abc	34.17±1.82ab	34.74±1.99ab	35.69±0.63
R	14.69±0.69d	12.54±0.52bc	13.00±0.41abc	12.13±0.48b	14.09±0.51ad	14.09±0.44bcd	13.49±0.65bc	12.15±0.55a	13.27±0.19
H′	1.71±0.07ab	1.82±0.04bc	1.64±0.05a	1.62±0.06a	1.69±0.06b	1.87±0.05a	1.72±0.06ab	1.62±0.06a	1.71±0.02
D	0.32±0.02b	0.24±0.01a	0.32±0.02b	0.33±0.02b	0.31±0.02b	0.25±0.01a	0.30±0.02b	0.32±0.02b	0.30±0.01
J′	0.65±0.02a	0.74±0.01c	0.64±0.02a	0.65±0.02a	0.72±0.01bc	0.68±0.02ab	0.66±0.02a	0.68±0.01	

†As in table 1.

Table 4. Effect of elevation on soil physicochemical properties and vegetation diversity in a hilly forest area of Indian Desert. Values are mean±1SE of 16 replications.

Variable†	<230	230-300	300-400	400-500	500-600	600-700	700-800	800-900	Mean
Slope (%)	2.54±0.32a	39.95±2.98cd	47.28±2.44a	44.84±2.23a	52.73±2.49d	28.59±3.06b	41.81±2.35a	36.91±3.59e	36.83±1.22
SWC (%)	1.55±0.13a	1.62±0.12b	1.51±0.08a	1.44±0.07a	1.76±0.10c	2.17±0.11b	2.12±0.09a	2.86±0.14e	1.88±0.04
pH	7.73±0.05a	7.46±0.03d	7.50±0.03d	7.34±0.04a	7.26±0.03bc	7.19±0.04b	7.07±0.03a	7.07±0.03a	1.33±0.01
SOC (%)	0.31±0.03a	0.53±0.04bc	0.44±0.02b	0.49±0.02b	0.56±0.02d	0.56±0.03cd	0.60±0.03c	0.71±0.04a	0.53±0.01
P (nos m⁻²)	156.34±10.17a	147.11±11.11a	147.64±9.43a	168.06±9.98b	177.79±10.87a	179.54±8.76a	263.2±17.56b	261.03±13.24ab	187.59±4.47
Height (cm)	19.16±1.07a	32.95±1.52b	38.21±1.63c	38.84±1.57c	39.32±1.55c	32.84±1.84b	39.14±1.52b	45.05±1.98d	35.69±0.63
R	9.19±0.42a	10.95±0.31b	11.73±0.44a	11.56±0.42b	13.39±0.40a	16.13±0.52d	17.69±0.55c	15.54±0.53d	13.27±0.19
H′	1.52±0.07b	1.60±0.05ab	1.61±0.05a	1.55±0.05bc	1.77±0.04b	1.98±0.06d	1.97±0.05a	1.70±0.06ab	1.71±0.02
D	0.34±0.03b	0.32±0.02a	0.32±0.02a	0.33±0.02b	0.27±0.01c	0.24±0.02a	0.23±0.01bc	0.32±0.02ab	0.30±0.01
J′	0.70±0.02a	0.68±0.02bc	0.67±0.02abc	0.65±0.02ab	0.69±0.01bc	0.71±0.02c	0.69±0.01bc	0.62±0.02a	0.68±0.01

†As in table 1.
Annexure 1. Herbaceous species, their habits and importance value index (IVI) across years, aspects and elevations in Siwana hills forest area of Barmer, Rajasthan, India.

SNo.	Name of species	Habit	Family name	IVI
1	Abelmoschus moschatus (L.) Medic.	Herb	Malvaceae	0.41
2	Acalypha ciliata Forsk.	Herb	Euphorbiaceae	0.86
3	Acanthospermum hispidum DC.	Herb	Asteraceae	1.76
4	Achyrocthis aspera L.	Herb	Amaranthaceae	2.20
5	Acrocline racemosa (B.Heyne ex Roem. & Schult.) Ohwi.	Grass	Poaceae	1.13
6	Actiniopteris radiata (J. König ex Sw.) Link.	Small fern	Pteridaceae	5.32
7	Adiantum lunulatum Burm. f.	Small fern	Pteridaceae	3.11
8	Alternanthera paronychioides St. Hils., Voy.	Decumbent herb	Amaranthaceae	0.17
9	Alysicarpus monilifer (L.) DC.	Herb	Fabaceae	0.51
10	Alysicarpus rugosus (Wild. DC.)	Prostrate herb	Fabaceae	0.34
11	Amaranthus viridis L.	Herb	Amaranthaceae	0.32
12	Andrographis echioides (L.) Nees.	Herb	Acanthaceae	1.26
13	Anisochilus carnosus (L. f.) Wall.	Herb	Lamiaceae	0.57
14	Anisomeles indica (L.) Kuntze	Herb	Lamiaceae	0.42
15	Apluda mutica L.	Grass	Poaceae	22.86
16	Aristida adsensionis Linn.	Grass	Poaceae	22.06
17	Aristida fasciculata Trin. & Rupr.	Grass	Poaceae	0.55
18	Aristida mutabilis Trin. & Rupr.	Grass	Poaceae	0.60
19	Artemisia scoparia Waldst. & Kit.	Grass	Poaceae	0.16
20	Arthraxon lanceolatus (Roxb.) Hochst.	Grass	Poaceae	1.77
21	Arthraxon lancifolius (Trin.) Hochst.	Grass	Poaceae	1.25
22	Bidens pilosa L.	Herb	Asteraceae	1.60
23	Blainvillea acmella (L.) Philipson	Herb	Asteraceae	2.91
24	Blepharis maderaspatensis (L.) Forsk.	Procardent herb	Acanthaceae	1.03
25	Blumea mollis (D. Don) Merr.	Herb	Asteraceae	0.32
26	Blumea virens DC.	Herb	Asteraceae	0.39
27	Boerhavia diffusa L.	Prostrate herb	Nyctaginaceae	1.67
28	Boerhavia erecta L.	Herb	Nyctaginaceae	2.81
29	Borneria pusilla (Wall.) DC.	Herb	Rubiaceae	5.46
30	Brachybiaria ramosa (L.) Stapf.	Grass	Poaceae	5.58
31	Cardiospermum halicacabum L.	Climbing vine	Sapindaceae	1.19
32	Catharanthus pusillus (Murr.) G. Don.	Herb	Apocynaceae	0.18
33	Celosia argentea L.	Glabrous herb	Amaranthaceae	1.11
34	Chenopodium ambrosioides (L.) Phil.	Grass	Poaceae	0.24
35	Chenopodium ciliatissimum L.	Grass	Poaceae	0.33
36	Chenopodium pennisetiformis Hochst. & Steud.	Grass	Poaceae	1.00
37	Cenchrus ciliaris DC.	Herb	Poaceae	0.75
38	Cereus bulbosus Roxb. var. lusit. (Grah.) Hook.	Twiner herb	Apocynaceae	0.48
39	Chamaecrista absus (L.) H.S. Irwin &	Herb	Caesalpiniaceae	0.80
40	Chamaecrista pumila (Lamk.) K. Larsen.	Herb	Caesalpiniaceae	1.74
41	Chloris barbata Sw.	Grass	Poaceae	0.53
42	Chloris dolichostachya Lagasca.	Grass	Poaceae	0.91
43	Citrullus colocynthis (L.) Schrad.	Trailing vine	Cucurbitaceae	0.33
44	Cleome gracilis Edgew.	Herb	Capparaceae	0.54
45	Cleome viscosa L.	Herb	Capparaceae	1.43
46	Citrullus annua J. Graham -	Herb	Fabaceae	0.57
47	Cucumis grandis (L.) Voigt	Climber	Cucurbitaceae	0.16
48	Commelina benghalensis L.	Herb	Commelinaceae	0.77
No.	Scientific Name	Type	Family	Height
-----	--------------------------------------	---------------------	----------------	---------
49	Commelina erecta L.	Decumbent herb	Commelinaeae	2.93
50	Commelina forskoalli Vahl.	Prostrate herb	Commelinaeae	0.20
51	Commencarpus heimleri (Heimerl.) Cufod.	Decumbent understub	Nyctaginaceae	1.06
52	Corallorcarpus epigaeus (Rottl.) C.B.Clark	Climbing Herb	Molluginaceae	0.16
53	Corbichonia decumbens (Forssk.) Exell	Procumbent herb	Molluginaceae	0.90
54	Corchorus aestuans L.	Herb	Tiliaceae	0.85
55	Corchorus depressus (L.) Stocks	Prostrate herb	Tiliaceae	0.34
56	Corchorus trilens L.	Herb	Tiliaceae	0.68
57	Crinum pratense	Herb	Amaryllidaceae	1.89
58	Crotalaria mysorensis Roth	Tall herb	Fabaceae	0.65
59	Cucumis maderaspatanus L.	Climbing Herb	Cucurbitaceae	1.99
60	Cyanotis fasciculata (B.Heyne ex Roth) Schult. & Schult.f.	Glabrous Herb	Commelinaeae	0.88
61	Cymbopogon jwarancusa (Jones) Schult.	Tall herb	Poaceae	1.58
62	Cymodo decyton (L.) Pers.	Tall herb	Poaceae	0.71
63	Cyperus rotundus L.	Perennial herb	Cyperaceae	1.14
64	Cyperus difformis L.	Perennial herb	Cyperaceae	0.17
65	Cyperus rotundus L.	Perennial herb	Cyperaceae	1.16
66	Dactyloctenium aegyptium (L.) Willd.	Grass	Poaceae	1.58
67	Dactyloctenium scindingum Boiss.	Grass	Poaceae	2.36
68	Desmodium triflorum (L.) DC.	Prostrate herb	Papilionaceae	0.98
69	Dichanthium annulatum (Forsk.) Stapf.	Grass	Poaceae	7.02
70	Dichanthium foveolatum (Delile) Roberty	Grass	Poaceae	1.30
71	Dicliptera verticillata (Forssk.) C. Christensen	Herb	Acanthaceae	1.07
72	Dicoma tomentosa Cass.	Herb	Asteraceae	0.56
73	Digitaria ciliaris (Linn.) R.Br.	Grass	Poaceae	0.95
74	Digitaria minor Host.	Grass	Poaceae	1.98
75	Eragrostis tenella (Linn.) P Beauv.	Grass	Poaceae	0.93
76	Eragrostis tremula (Lam.) Hochst. ex Steud.	Grass	Poaceae	0.55
77	Euphorbia granulata Forssk.	Prostrate herb	Euphorbiaceae	0.32
78	Euphorbia hirta L.	Herb	Euphorbiaceae	0.88
79	Euphorbia indica Lam.	Herb	Euphorbiaceae	0.50
80	Evolvulus alsinoides var. alsinoides (L.) L.	Herb	Convolvulaceae	3.04
81	Evolvulus alsinoides var. alsinoides (L.) L.	Herb	Convolvulaceae	3.04
82	Galactia tenuiflora (Wild.) Wight & Arn.	Climbing herb	Fabaceae	0.53
83	Glauca lotoides L.	Prostrate herb	Molluginaceae	0.16
84	Glossocordia bosvallea (L.f) DC	Herb	Acanthaceae	1.08
85	Heliotropium marifolium Retz.	Herb	Boraginaceae	1.08
86	Heteropogon contortus (L.) P Beauv. Ex Roem. & Schult	Grass	Poaceae	7.58
87	Hibiscus micranthus L.f.	Subshrub	Malvaceae	1.40
88	Hibiscus palmatus Forsk.	Herb	Malvaceae	0.16
No.	Species Name	Description	Family	Scientific Name
-----	-----------------------------	------------------------------	--------------	---
100	Indigofera cordifolia Heyne ex Roth.	Herb	Fabaceae	Indigofera cordifolia Heyne ex Roth.
101	Indigofera hochstetteri Baker	Spreading herb	Fabaceae	Indigofera hochstetteri Baker
102	Indigofera linifolia (L.f.)Retz.	Prostrate herb	Fabaceae	Indigofera linifolia (L.f.)Retz.
103	Indigofera linnaei Ali	Prostrate herb	Fabaceae	Indigofera linnaei Ali
104	Ipomoea dichrom Hochst. ex Choisy.	Climbing Herb.	Convolvulaceae	Ipomoea dichrom Hochst. ex Choisy.
105	Ipomoea eriocarpa R. Br.	Twining herb	Convolvulaceae	Ipomoea eriocarpa R. Br.
106	Ipomoea indica (Burm. f.) Merr.	Vine herb	Convolvulaceae	Ipomoea indica (Burm. f.) Merr.
107	Ipomoea nil (L.) Roth	Annual herb vine	Convolvulaceae	Ipomoea nil (L.) Roth
108	Ipomoea pes-tigris L.	Twining herb	Convolvulaceae	Ipomoea pes-tigris L.
109	Ipomoea sindica Stapf.	Twining herb	Convolvulaceae	Ipomoea sindica Stapf.
110	Justicia simplex D. Don	Herb	Acanthaceae	Justicia simplex D. Don
111	Justicia heterocarpa T.Anderson	Herb	Acanthaceae	Justicia heterocarpa T.Anderson
112	Kickxia ramosissima (Wall.) Janchen	Prostrate herb	Scrophulariaceae	Kickxia ramosissima (Wall.) Janchen
113	Launaea procumbens	Decumbent herb	Asteraceae	Launaea procumbens
114	Lavandula bipinnata (Roth) Kuntze	Slender herb	Lamiaceae	Lavandula bipinnata (Roth) Kuntze
115	Lepidagathis cristata willd.	Decumbent herb	Acanthaceae	Lepidagathis cristata willd.
116	Lepidagathis trinervis Wall. ex. Ness	Suffruticose herb	Acanthaceae	Lepidagathis trinervis Wall. ex. Ness
117	Leptothrium senegalense (Kunth) Clayton	Grass	Poaceae	Leptothrium senegalense (Kunth) Clayton
118	Leucas aspera (Willd.) Link	Herb	Lamiaceae	Leucas aspera (Willd.) Link
119	Leucas urticaefolia (Vahl) R. Br.	Herb	Lamiaceae	Leucas urticaefolia (Vahl) R. Br.
120	Lindenbergia indica (L.) Vatke	Herb	Orobanchaceae	Lindenbergia indica (L.) Vatke
121	Linum myosorense Heyne ex Benth.	Herb	Linaceae	Linum myosorense Heyne ex Benth.
122	Macrotyloma uniflorum Lam.	Twinning herb	Fabaceae	Macrotyloma uniflorum Lam.
123	Melanocenchris jacquemontii Jaub. & Spach	Grass	Poaceae	Melanocenchris jacquemontii Jaub. & Spach
124	Mollugo nudicaulis Lam.	Herb	Molluginaceae	Mollugo nudicaulis Lam.
125	Monardica dioica Roxb. ex Willd.	Climbing herb	Cucurbitaceae	Monardica dioica Roxb. ex Willd.
126	Nepeta bombiensi Dalzell	Herb	Lamiaceae	Nepeta bombiensi Dalzell
127	Notosusus brachyta Wall. ex. Ness	Saffruticose herb	Acanthaceae	Notosusus brachyta Wall. ex. Ness
128	Ocimum canum Sims	Herb	Lamiaceae	Ocimum canum Sims
129	Oligochaeta ramosa (Roxb.) Wagenitz.	Herb	Asteraceae	Oligochaeta ramosa (Roxb.) Wagenitz.
130	Oropetium roxburghianum (Steud.) S.M.Phillips	Grass	Poaceae	Oropetium roxburghianum (Steud.) S.M.Phillips
131	Oropetium thomaeum (L. f.) Trin.	Herb	Poaceae	Oropetium thomaeum (L. f.) Trin.
132	Panicum turgidum Forsk.	Grass	Poaceae	Panicum turgidum Forsk.
133	Pedalium murex Linn	Herb	Pedaliaceae	Pedalium murex Linn
134	Pennisetum orientale L.C. Rich.	Grass	Poaceae	Pennisetum orientale L.C. Rich.
135	Pentanema indicum (L.) Ling	Herb	Asteraceae	Pentanema indicum (L.) Ling
136	Peristyphne Paniculata (Forsk.) Brummitt	Herb	Labiatae	Peristyphne Paniculata (Forsk.) Brummitt
137	Pteritis indica (L.) Kuntze	Grass	Poaceae	Pteritis indica (L.) Kuntze
138	Phyllanthus amarus Schum. & Thonn.	Herb	Euphorbiaceae	Phyllanthus amarus Schum. & Thonn.
139	Physallisminima L.	Herb	Solanaceae	Physallisminima L.
140	Polygala chalcerotia DC.	Herb	Polygalaceae	Polygala chalcerotia DC.
141	Polygala irregularis Boiss.	Herb	Polygalaceae	Polygala irregularis Boiss.
142	Portulaca oleracea L.	Herb	Portulaceae	Portulaca oleracea L.
143	Portulaca pilosa L.	Herb	Portulaceae	Portulaca pilosa L.
144	Portulaca taberosa Roxb.	Herb	Portulaceae	Portulaca taberosa Roxb.
145	Pulicaria wichiana D. C. Clarke.	Herb	Asteraceae	Pulicaria wichiana D. C. Clarke.
146	Papaya lapacea (L.) Juss	Subshrub	Amaranthaceae	Papaya lapacea (L.) Juss
147	Rhinocrisia minima (Camb.) Barker	Prostrate	Fabaceae	Rhinocrisia minima (Camb.) Barker
148	Sclerocarpus africanaus Jacq.	Herb	Asteraceae	Sclerocarpus africanaus Jacq.
149	Sehima nervosum (Rottler) Stapf.	Grass	Poaceae	Sehima nervosum (Rottler) Stapf.
150	Senecio hewrensis Hook. F.	Herb	Asteraceae	Senecio hewrensis Hook. F.
151	Sesamum indicum L.	Herb	Pedaliaceae	Sesamum indicum L.
152	Setaria geniculata P.Beaup.	Grass	Poaceae	Setaria geniculata P.Beaup.
Item	Common Name	Family	Scientific Name	
------	------------------------------	----------------	----------------------------------	
153	Sida cordata (Brun. F.) Bross	Herb	Malvaceae	
154	Sida cordifolia L.	Herb	Malvaceae	
155	Sorghum halepense (L.) Pers.	Grass	Poaceae	
156	Sporobolus coronandianus (Retz.) Kunth	Grass	Poaceae	
157	Sporobolus diander (Retz.) P.Beauv.	Grass	Poaceae	
158	Striga angustifolia (D. Don) C.J. Saldanha	Herb	Orobancheae	
159	Striga gesnerioides (Wild.) Vatke.	Herb	Orobancheae	
160	Tephrosia purpurea (Linn.) Pers.	SuffrUCose herb	Fabaceae	
161	Tephrosia strigosa (Dalzell) Santapau & Maheshw	Herb	Fabaceae	
162	Tephrosia uniflora Pers. ssp. petrosa (Blatt. & Hall.) J.B. Gillett & Ali	Herb	Papilionaceae	
163	Tetrapogon tenellus (Koen. ex Roxb.) Chiov.	Grass	Poaceae	
164	Tragia roxburghii Panigrahi	Grass	Poaceae	
165	Tribulus terrestris L. Prostrate herb	Zygophyllaceae		
166	Trichodesma sedgewickianum Banerjee	Herb	Boraginaceae	
167	Tridax procumbens L. Procumbent herb	Astraceae		
168	Triumfetta rhomboidea Jacq.	Woody Herb	Tiliaceae	
169	Urginea indica (Roxb.) Kunth Perennial herb	Asparagaceae		
170	Vernonia cinerea (L.) Less. Herb	Asteraeae		
171	Vigna mungo (L.) Hepper Climbing herb	Fabaceae		
172	Vigna trilobata (L.)Verd. Twiner herb	Papilionaceae		
173	Waltheria indica L. Subshrub	Sterculiaceae		
174	Zornea gibbosa Span Herb	Fabaceae		
Annexure 2. Topographical position and most and least dominant species in Siwana hills forest areas of Barmer, Rajasthan, India.

SNo.	Topographical position	Dominant species	Least dominant species			
	Aspect					
	Elevation	2017	2018	2017	2018	
1	E	<230	O. thomaeum	O. thomaeum	E. granulata	A. viridis
2	E	230-300	T. purpurea	A. adscensionis	P. erioptera	P. erioptera
3	E	300-400	T. purpurea	A. adscensionis	T. terrestris	C. pumila
4	E	400-500	A. adscensionis	A. adscensionis	T. strigosa	T. strigosa
5	E	500-600	A. adscensionis	A. mutica	B. erecta	A. echinoides
6	E	600-700	O. thomaeum	B. pusilla	P. lapoeae	T. strigosa
7	E	700-800	A. mutica	A. mutica	T. uniflora	A. aspera
8	E	800-900	A. mutica	A. mutica	B. madraspatensis	S. africanus
9	N	<230	D. verticillata	P. paniculata	A. aspera	C. halicacabum
10	N	230-300	A. adscensionis	A. adscensionis	V. trilobata	C. halicacabum
11	N	300-400	A. adscensionis	A. adscensionis	C. pumila	P. erioptera
12	N	400-500	E. bifaria	A. adscensionis	Corchorus aescuans	J. simplex
13	N	500-600	E. bifaria	A. adscensionis	S. heverensis	T. sedgwickianum
14	N	600-700	U. indica	Z. gibbosa	U. indica	T. uniflora
15	N	700-800	H. contortus	A. mutica	T. strigosa	M. uniflora
16	N	800-900	A. mutica	A. mutica	B. erecta	D. patulas
17	NE	<230	O. thomaeum	O. thomaeum	S. cordifolia	A. aspera
18	NE	230-300	L. trinervis	L. trinervis	A. aspera	P. erioptera
19	NE	300-400	L. trinervis	L. trinervis	I. eriocarpa	E. indica
20	NE	400-500	A. mutica	A. mutica	C. madrasptanas	T. strigosa
21	NE	500-600	A. mutica	A. mutica	A. aspera	C. halicacabum
22	NE	600-700	A. mutica	A. mutica	H. marifolium	Euphorbia indica
23	NE	700-800	A. mutica	A. mutica	L. bipinnata	P. amanus
24	NE	800-900	A. mutica	A. mutica	P. amanus	C. mysorensis
25	NW	<230	O. thomaeum	O. thomaeum	C. mysorensis	C. pumila
26	NW	230-300	T. verticillata	A. adscensionis	C. halicacabum	C. madrasptanas
27	NW	300-400	A. adscensionis	L. trinervis	D. penata	H. marifolium
28	NW	400-500	C. rilatis	D. penata	I. simplex	T. strigosa
29	NW	500-600	A. adscensionis	D. penata	B. diffusa	C. pumila
30	NW	600-700	H. contortus	B. pusilla	P. erioptera	A. rugosus
31	NW	700-800	H. contortus	D. foveolatum	L. aspera	D. trifolium
32	NW	800-900	H. contortus	A. mutica	C. aescuans	P. amanus
33	S	<230	P. turgidum	P. turgidum	A. hispidum	T. purpurea
34	S	230-300	A. adscensionis	A. adscensionis	E. tremula	H. contotus
35	S	300-400	A. adscensionis	A. adscensionis	C. pumila	P. erioptera
36	S	400-500	A. adscensionis	A. adscensionis	C. erecta	H. marifolium
37	S	500-600	A. adscensionis	D. amalathum	I. eriocarpa	B. pusilla
38	S	600-700	A. adscensionis	B. ramosa	B. pilosa	H. micranthus
39	S	700-800	C. martinii	A. mutica	C. viscosa	C. halicacabum
40	S	800-900	A. mutica	A. mutica	C. tridentis	Sida cordata
41	SE	<230	O. thomaeum	O. thomaeum	D. verticillata	I. linnaei
42	SE	230-300	A. adscensionis	A. adscensionis	C. boissieri	P. paniculata
43	SE	300-400	A. adscensionis	A. adscensionis	C. madraspatanas	T. sedgwickianum
44	SE	400-500	A. adscensionis	A. adscensionis	V. trilobata	T. purpurea
45	SE	500-600	A. adscensionis	A. adscensionis	P. erioptera	J. simplex
46	SE	600-700	D. scindicum	O. thomaeum	J. simplex	J. simplex
47	SE	700-800	A. mutica	A. mutica	V. cinerarea	V. cinerarea
48	SE	800-900	A. mutica	A. mutica	S. heverensis	P. erioptera
SW	230-300	C. arenarius	C. arenarius	C. tridens	B. diffusa	
SW	300-400	A. adscensionis	A. adscensionis	E. hirta	D. bicornis	
SW	400-500	A. mutica	A. mutica	R. minima	C. pumila	
SW	500-600	A. mutica	A. adscensionis	C. decumbens	R. minima	
SW	600-700	A. mutica	A. mutica	S. angustifolia	B. diffusa	
SW	700-800	A. mutica	A. mutica	B. diffusa	T. strigosa	
SW	800-900	A. mutica	A. mutica	I. dichroa	B. maderaspatensis	
W	<230	D. verticillata	C. benghalensis	R. minima	E. granulata	
W	230-300	A. adscensionis	O. thomaeum	D. aegyptium	M. jacquemontii	
W	300-400	L. trinervis	C. ciliaris	I. nill	E. persicus	
W	400-500	A. adscensionis	A. adscensionis	T. uniflora	T. terrestris	
W	500-600	A. adscensionis	A. radiata	T. rhomboidea	P. paniculata	
W	600-700	A. adscensionis	A. adscensionis	C. pumila	R. minima	
W	700-800	B. pusilla	B. pusilla	B. maderaspatensis	E. hirta	
W	800-900	A. mutica	A. mutica	P. erioptera	C. aestuans	

E: East, N: North, NE: North-East, NW: North-West, S: South, SE: South-East, SW: South-West, W: West