On a nonstandard two-parametric quantum algebra and its connections with $U_{p,q}(gl(2))$ and $U_{p,q}(gl(1|1))$

R. Chakrabarti1, R. Jagannathan2

1Department of Theoretical Physics, University of Madras, Guindy Campus, Madras-600025, India

2The Institute of Mathematical Sciences, C I T Campus, Tharamani, Madras-600113, India

Abstract. A quantum algebra $U_{p,q}(\zeta, H, X_{\pm})$ associated with a nonstandard R-matrix with two deformation parameters(p, q) is studied and, in particular, its universal R-matrix is derived using Reshetikhin’s method. Explicit construction of the (p, q)-dependent nonstandard R-matrix is obtained through a coloured generalized boson realization of the universal R-matrix of the standard $U_{p,q}(gl(2))$ corresponding to a nongeneric case. General finite dimensional coloured representation of the universal R-matrix of $U_{p,q}(gl(2))$ is also derived. This representation, in nongeneric cases, becomes a source for various (p, q)-dependent nonstandard R-matrices. Superization of $U_{p,q}(\zeta, H, X_{\pm})$ leads to the super-Hopf algebra $U_{p,q}(gl(1|1))$. A contraction procedure then yields a (p, q)-deformed super-Heisenberg algebra $U_{p,q}(sh(1))$ and its universal R-matrix.

1. Introduction

The single parameter quantization of the universal enveloping algebra of a simple Lie algebra is well-known [1]. The Yang-Baxter equation (YBE), however, also admits nonstandard solutions [2-4] characterizing quasitriangular
Hopf algebras, which are not deformations of classical algebras. The nonstandard quantum algebra $U_q(\zeta, H, X_{\pm})$ associated with the Alexander-Conway solution of the YBE has been studied [2,3] and the relevant universal R-matrix has been obtained [4]. Using transmutation theory [5] it has been argued [4] that the superized $U_q(\zeta, H, X_{\pm})$ coincides with a super-Hopf algebra $U_q(gl(1|1))$. Moreover, using a general q-boson [6] realization of the Hopf algebra $U_q(gl(2))$, it has been observed [7] that the nonstandard R-matrix of $U_q(\zeta, H, X_{\pm})$ may be obtained from the universal R-matrix of $U_q(gl(2))$ in a nongeneric limit.

In another development, the constructions and representations of quantum algebras with multiple deformation parameters have been studied extensively [8-15]. For quasitriangular Hopf algebras, Reshetikhin [9] has developed a general formalism to introduce multiple deformation parameters. Following [9] the universal R-matrix of the quantum algebra $U_{p,q}(gl(2))$ with two independent parameters (p, q) has been obtained [15]. An identical procedure may be adopted to construct the universal R-matrix of the super-Hopf algebra $U_{p,q}(gl(1|1))$; this verifies the known result obtained by direct computation [13]. Here, we study a (p, q)-generalization, $U_{p,q}(\zeta, H, X_{\pm})$, of the Alexander-Conway algebra $U_q(\zeta, H, X_{\pm})$.

Following the prescription in [9] the universal R-matrix for the quasitriangular Hopf algebra $U_{p,q}(\zeta, H, X_{\pm})$ is obtained in section 2. The nonstandard Hopf algebra $U_{p,q}(\zeta, H, X_{\pm})$ has been previously considered in [16]. These authors, however, have not discussed the universal R-matrix for $U_{p,q}(\zeta, H, X_{\pm})$. Parallel to its single deformation parameter analogue, $U_{p,q}(\zeta, H, X_{\pm})$ exhibits close kinships with $U_{p,q}(gl(2))$ and $U_{p,q}(gl(1|1))$. In particular, the nonstandard R-matrix of $U_{p,q}(\zeta, H, X_{\pm})$ is obtained in section 3 using a coloured generalized boson representation of the universal R-matrix of $U_{p,q}(gl(2))$ in a nongeneric limit. A general recipe for realizing the finite dimensional nonstandard two-parametric coloured R-matrices associated with nongeneric representations of $U_{p,q}(gl(2))$ is also presented. In section 4, a map connect-
ing the two-parametric quantum algebras $U_{p,q}(\zeta, H, X_{\pm})$ and $U_{p,q}(gl(1|1))$ via the superization procedure is described. A contraction procedure is used in section 5 to extract a (p,q)-deformed quasitriangular super-Heisenberg algebra $U_{p,q}(sh(1))$. We conclude in section 6.

2. Quasitriangular Hopf algebra $U_{p,q}(\zeta, H, X_{\pm})$

We study the Hopf algebra associated with the two-parametric nonstandard solution [16] of the YBE

\[
R = \begin{pmatrix}
Q^{-1} & 0 & 0 & 0 \\
0 & \lambda^{-1} & 0 & 0 \\
0 & \sigma & \lambda & 0 \\
0 & 0 & 0 & -Q
\end{pmatrix}, \quad \sigma = Q^{-1} - Q. \tag{2.1}
\]

The defining relation of the quantum inverse scattering method [17]

\[
R(T \otimes \mathbb{I})(\mathbb{I} \otimes T) = (\mathbb{I} \otimes T)(T \otimes \mathbb{I})R, \tag{2.2}
\]

with the R-matrix as given by (2.1), describes a transfer matrix

\[
T = \begin{pmatrix}
a & b \\
c & d
\end{pmatrix}, \tag{2.3}
\]

whose elements obey the braiding relations

\[
ab = p^{-1}ba, \quad ac = q^{-1}ca, \quad db = -p^{-1}bd, \quad dc = -q^{-1}cd, \\
p^{-1}bc = q^{-1}cb, \quad ad - da = (p^{-1} - q)bc, \quad b^2 = 0, \quad c^2 = 0, \tag{2.4}
\]

where

\[
p = \lambda Q, \quad q = \lambda^{-1}Q. \tag{2.5}
\]

A conjugate R-matrix
\[
\tilde{R} = (R^{(+)})^{-1} = \begin{pmatrix}
Q & 0 & 0 & 0 \\
0 & \lambda^{-1} & -\sigma & 0 \\
0 & 0 & \lambda & 0 \\
0 & 0 & 0 & -Q^{-1}
\end{pmatrix}
\] \hspace{1cm} (2.6)

also fits (2.2) with the elements of \(T\) obeying (2.4). The matrices \(R^{(\pm)}\) are defined by

\[R^{(+)} = P R P, \quad R^{(-)} = R^{-1}, \] \hspace{1cm} (2.7)

where \(P\) is the permutation matrix, given by

\[P = \begin{pmatrix}
1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1
\end{pmatrix}. \] \hspace{1cm} (2.8)

If \(a\) and \(d\) are invertable, the elements \(\{a, b, c, d, a^{-1}, d^{-1}\}\) generate a Hopf algebra \(A_{p,q}(R)\) (or \(Fun_{p,q}(R)\)) whose coalgebraic structure readily follows. The coproduct(\(\Delta\)), counit(\(\epsilon\)) and antipode(\(S\)) maps are, respectively, given by

\[\Delta(T) = T \otimes T, \quad \Delta(a^{-1}) = a^{-1} \otimes a^{-1} - a^{-1}ba^{-1} \otimes a^{-1}ca^{-1}, \quad \Delta(d^{-1}) = d^{-1} \otimes d^{-1} - d^{-1}cd^{-1} \otimes d^{-1}bd^{-1}, \] \hspace{1cm} (2.9)

\[\epsilon(T) = 1, \] \hspace{1cm} (2.10)

\[S(T) = T^{-1}, \quad S(a^{-1}) = a - bd^{-1}c, \quad S(d^{-1}) = d - ca^{-1}b, \] \hspace{1cm} (2.11)

where
\[T^{-1} = \begin{pmatrix}
 a^{-1} + a^{-1}bd^{-1}ca^{-1} & -a^{-1}bd^{-1} \\
 -d^{-1}ca^{-1} & d^{-1} + d^{-1}ca^{-1}bd^{-1}
\end{pmatrix} \quad (2.12) \]

and \(\otimes \) denotes the tensor product coupled with usual matrix multiplication.

In the Hopf algebra \(A_{p,q}(R) \) an invertible ‘group-like’ element \(D \) exists:

\[D = ad^{-1} - bd^{-1}cd^{-1}, \quad D^{-1} = da^{-1} - ba^{-1}ca^{-1}. \quad (2.13) \]

Using (2.4), the commutation relations for \(D \) follow:

\[[D, a] = 0, \quad [D, d] = 0, \quad \{D, b\} = 0, \quad \{D, c\} = 0. \quad (2.14) \]

The induced coalgebra maps for \(D \) are obtained from the relations (2.9-2.12):

\[\Delta(D) = D \otimes D, \quad \epsilon(D) = 1, \quad S(D) = D^{-1}. \quad (2.15) \]

Using the FRT-approach \[17\], the commutation relations for the generators \((\zeta, H, X_{\pm})\) of the Hopf algebra \(U_{p,q}(\zeta, H, X_{\pm}) \), dual to the algebra \(A_{p,q}(R) \), are obtained from the relations

\[R^{(+)} (L^{(\varepsilon_1)} \otimes \mathbb{1}) (\mathbb{1} \otimes L^{(\varepsilon_2)}) = (\mathbb{1} \otimes L^{(\varepsilon_2)})(L^{(\varepsilon_1)} \otimes \mathbb{1}) R^{(+)}, \quad (2.16) \]

where \((\varepsilon_1, \varepsilon_2) = (+, +), (-, -), (+, -)\) and

\[L^{(+)} = \begin{pmatrix}
 p^{-H}q^{-\zeta} & \sigma p^{-H-\frac{H}{2}} X_- \\
 0 & gp^{-H}q^{\zeta}
\end{pmatrix}, \quad L^{(-)} = \begin{pmatrix}
 q^H p^{\zeta} & 0 \\
 -\sigma gq^H - \frac{H}{2} X_+ & gq^H p^{-\zeta}
\end{pmatrix}, \quad (2.17) \]

with \(g = (-1)^{\zeta-H} \). The corresponding commutation relations read

\[X_{\pm}^2 = 0, \quad [H, X_{\pm}] = \pm X_{\pm}, \quad \{X_+, X_-\} = [2\zeta], \quad [\zeta, X] = 0 \quad \forall X = H, X_{\pm}. \quad (2.18) \]
where

\[[X] = \frac{Q^X - Q^{-X}}{Q - Q^{-1}}. \] \hspace{1cm} (2.19)

The comultiplication maps for the generators are

\[
\Delta(X_{\pm}) = X_{\pm} \otimes g^{\mp 1}Q^\zeta \lambda^{\pm} + Q^{-\zeta} \lambda^{\mp} \otimes X_{\pm}, \\
\Delta(H) = H \otimes 1 \otimes H, \\
\Delta(\zeta) = \zeta \otimes 1 \otimes \zeta, \] \hspace{1cm} (2.20)

which follow from the relations

\[
\Delta(L_{\pm}) = L_{\pm} \otimes L_{\pm}. \] \hspace{1cm} (2.21)

The counit and the antipode maps are given by

\[
\epsilon(X) = 0, \quad \forall X = \zeta, H, X_{\pm}, \] \hspace{1cm} (2.22)

\[
S(\zeta) = -\zeta, \quad S(H) = -H, \quad S(X_{\pm}) = g^{\pm 1}X_{\pm}. \] \hspace{1cm} (2.23)

In spite of the appearance of anticommutator in (2.18), the Hopf algebra \(U_{p,q}(\zeta, H, X_{\pm}) \) is bosonic as it follows the direct product rule

\[
(A \otimes B)(C \otimes D) = AC \otimes BD, \quad \forall A, B, C, D \in U_{p,q}(\zeta, H, X_{\pm}). \] \hspace{1cm} (2.24)

For the finite dimensional faithful representation [3] of the algebra (2.18)

\[
X_+ = \begin{pmatrix} 0 & [z] \\ 0 & 0 \end{pmatrix}, \quad X_- = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}, \quad H = \frac{1}{2} \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}, \\
\zeta = \frac{z}{2} \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}. \] \hspace{1cm} (2.25)
with \(z \in \mathbb{C} \), the duality relations between the Hopf algebras \(A_{p,q}(R) \) and \(U_{p,q}(\zeta, H, X_{\pm}) \) assume the form

\[
\langle L^{(\pm)}, T \rangle = R^{(\pm)},
\] (2.26)
for the choice \(z = 1 \).

We now discuss the quasitriangular character of \(U_{p,q}(\zeta, H, X_{\pm}) \) containing a group-like element \(g \), that is, now and henceforth, assumed to satisfy \(g^2 = 1 \). For a quasitriangular Hopf algebra \(U \), the universal \(\mathcal{R} \)-matrix \((\in U \otimes U)\) satisfies the relations

\[
\tau \circ \Delta(X) = \mathcal{R}\Delta(X)\mathcal{R}^{-1}, \quad \tau \circ (X \otimes Y) = Y \otimes X, \quad \forall X, Y \in U,
\]
(\(\Delta \otimes \text{id}\))\(\mathcal{R} = \mathcal{R}_{13}\mathcal{R}_{23}\), \(\text{id} \otimes \Delta)\(\mathcal{R} = \mathcal{R}_{13}\mathcal{R}_{12}\),
\[
(\epsilon \otimes \text{id}) = (\text{id} \otimes \epsilon)\mathcal{R} = \mathbb{I},
\]
(\(S \otimes \text{id}\))\(\mathcal{R} = \mathcal{R}^{-1}, \quad (\text{id} \otimes S)\mathcal{R}^{-1} = \mathcal{R},
\] (2.27)
where the subscripts in \(\mathcal{R}_{ij} \) indicate the embedding of \(\mathcal{R} \) in \(U^{\otimes 3} \). The explicit expression for the universal \(\mathcal{R} \)-matrix of \(U_Q(\zeta, H, X_{\pm}) \) is [4]

\[
\mathcal{R}_{\lambda=1} = (-1)^{(\zeta-H)\otimes(\zeta-H)}Q^{2(\zeta \otimes H + H \otimes \zeta)} \left(\mathbb{I} \otimes \mathbb{I} + \sigma Q^\zeta X_{\pm} \otimes \sigma g Q^{-\zeta} X_{\mp} \right).
\] (2.28)

Employing the Reshetikhin procedure [9] we obtain the universal \(\mathcal{R} \)-matrix for \(U_{p,q}(\zeta, H, X_{\pm}) \). To this end, we note that the coproduct relations (2.20) for the generators of \(U_{p,q}(\zeta, H, X_{\pm}) \) and the corresponding relations for the generators of \(U_Q(\zeta, H, X_{\pm}) \), obtained in the limit \(\lambda = 1 \), are related by a similarity transformation

\[
\Delta(X) = F(\Delta_{\lambda=1}(X)) F^{-1}, \quad \forall X = \zeta, H, X_{\pm},
\] (2.29)
where
\[F = \lambda^{(H \otimes \zeta - \zeta \otimes H)}. \]

(2.30)

Then, the procedure in [9] yields the universal \(R \)-matrix for \(U_{p,q}(\zeta, H, X_\pm) \)

\[R = F^{-1}R_{\lambda=1}F^{-1} \]

(2.31)

which, by construction, satisfies the required relations (2.27). Explicitly, the universal \(R \)-matrix of \(U_{p,q}(\zeta, H, X_\pm) \) reads

\[R = (-1)^{(\zeta - H) \otimes (\zeta - H)} Q^{2(\zeta \otimes H + H \otimes \zeta)} \lambda^{2(\zeta \otimes H - H \otimes \zeta)} \times \left(\mathbb{1} \otimes \mathbb{1} + \sigma Q^\zeta \lambda^{\xi} X_+ \otimes gQ^{-\zeta} \lambda^{\xi} X_- \right). \]

(2.32)

For the representation (2.25) with the choice \(z = 1 \), \(R \) in (2.32) reduces to the matrix \(\tilde{R} \) in (2.6), thus expressing an aspect of the duality of \(A_{p,q}(R) \) and \(U_{p,q}(\zeta, H, X_\pm) \).

3. Coloured \(R \)-matrices associated with nongeneric representations of \(U_{p,q}(gl(2)) \)

After completing the above construction of the dual Hopf algebras corresponding to the nonstandard solution (2.1) of the YBE, we now relate the \(R \)-matrix (2.1) to the representations of \(U_{p,q}(gl(2)) \) for nongeneric values of \(Q \), namely, roots of unity. Here, we closely follow the treatment of \(U_q(gl(2)) \) by Ge et al. [7]. These authors have constructed a general parameter dependent finite dimensional \(q \)-boson realization of the universal \(R \)-matrix of \(U_q(gl(2)) \); thereby generating the nonstandard \(R \)-matrices at \(q \), a root of unity. When different parameters are chosen for different components of the representation module, the resulting finite dimensional \(R \)-matrices are said to be coloured and they obey a coloured YBE [7].

In the standard Hopf algebraic structure of \(U_{p,q}(gl(2)) \) (see, e.g., [15]) the commutation relations between the generators are
\[[J_0, J_\pm] = \pm J_\pm, \quad [J_+, J_-] = [2J_0], \quad [Z, X] = 0, \quad \forall \ X \in (J_0, J_\pm), \quad (3.1) \]

and the comultiplication rules are

\[
\Delta (X_\pm) = J_\pm \otimes Q^{J_0} \lambda^{\pm Z} + Q^{-J_0} \lambda^{\mp Z} \otimes J_\pm, \\
\Delta (J_0) = J_0 \otimes 1 + 1 \otimes J_0, \quad \Delta (Z) = Z \otimes 1 + 1 \otimes Z. \quad (3.2)
\]

The universal \(\mathcal{R} \)-matrix of \(U_{p,q}(gl(2)) \) reads \[15\]

\[
\mathcal{R} = Q^{2(J_0 \otimes J_0)} \lambda^{2(Z \otimes J_0 - J_0 \otimes Z)} \times \sum_{n=0}^{\infty} \frac{(1 - Q^{-2})^n}{[n]!} Q^{\frac{1}{2}n(n-1)} \left(Q^{J_0} \lambda^Z J_+ \otimes Q^{-J_0} \lambda^Z J_- \right)^n, \quad (3.3)
\]

where \([n]! = [n][n-1] \ldots [2][1]\).

The generators of the deformed boson algebra \[6\] satisfy

\[
[N, a_\pm] = \pm a_\pm, \quad a_+ a_- = [N], \quad a_- a_+ = [N + 1], \quad (3.4)
\]

and the map \[7\]

\[
J_+ = a_+ [\omega - N], \quad J_- = a_-, \quad J_0 = N - \frac{\omega}{2}, \quad \omega \in \mathbb{C}, \quad (3.5)
\]

provides an infinite dimensional representation of the algebra \((3.1)\) in the Fock space \(\mathcal{F}_z \{ |m z\rangle = a_+^m |0 z\rangle \mid a_- |0 z\rangle = 0, N |0 z\rangle = 0, m \in \mathbb{Z}^+, z \in \mathbb{C} \} \):

\[
J_+ |m z\rangle = [\omega - m] |m + 1 z\rangle, \quad J_- |m z\rangle = [m] |m - 1 z\rangle, \\
J_0 |m z\rangle = \left(m - \frac{\omega}{2} \right) |m z\rangle, \quad Z |m z\rangle = z |m z\rangle. \quad (3.6)
\]
The parameter \(\omega \) is called colour and provides the key to obtain the non-standard \(R \)-matrix (2.1) starting from the universal \(R \)-matrix of \(U_{p,q}(gl(2)) \), namely \(\tilde{R} \) in (3.3).

For the nongeneric cases \(\{ Q^n = \pm 1, n \in \mathbb{Z} \} \) the identity \([\alpha n] = 0\) holds for \(\alpha \in \mathbb{Z}^+ \) suggesting the existence of an extremal vector \(\{|\alpha n \rangle | \langle \alpha n | = 0\} \). The corresponding invariant subspace that renders the representation (3.6) reducible is \(V_{\alpha z} \{ |\alpha n + m \rangle | m \in \mathbb{Z}^+ \} \). Then, on the quotient space \(V_{Jz} = \mathcal{F}_z/V_{\alpha z} \{ |JM \rangle (= |m \rangle) | m = 0, 1, \ldots, (\alpha n - 1) = 2J, M = m - J \} \) a finite dimensional representation for algebra (3.1) holds:

\[
\begin{align*}
J_+|JM\rangle &= [\omega - J - M]|JM + 1\rangle \theta(J - 1 - M), \\
J_-|JM\rangle &= [J + M]|JM - 1\rangle, \\
J_0|JM\rangle &= (J + M - \omega)|JM\rangle, \\
Z|JM\rangle &= z|JM\rangle,
\end{align*}
\]

where \(\theta(x) = 1 (0) \) for \(x \geq 0 (< 0) \). For \(\alpha = 1 \), the representation (3.7) is irreducible and for \(\alpha \geq 2 \), it is indecomposable [7]. Now, using the representation (3.7), \(\tilde{R} \) in (3.3) may be written in the matrix form

\[
\tilde{R} |J_1 M_1 z_1\rangle \otimes |J_2 M_2 z_2\rangle = \sum_{M_1' M_2'} (\tilde{R}^{J_1 z_1 \omega_1, J_2 z_2 \omega_2})^{M_1' M_2'}_{M_1 M_2} |J_1 M_1' z_1\rangle \otimes |J_2 M_2' z_2\rangle
\]

(3.8)

where different representations and colour parameters are chosen in the two sectors of the tensor product space. Explicitly we have

\[
(\tilde{R}^{J_1 z_1 \omega_1, J_2 z_2 \omega_2})^{M_1' M_2'}_{M_1 M_2} = Q^{2(J_1+M_1'-\frac{\omega_1}{2})} (J_2+M_2'-\frac{\omega_2}{2}) \lambda^2 (z_1(J_2+M_2'-\frac{\omega_2}{2})-z_2(J_1+M_1'-\frac{\omega_1}{2})) \sum_{n=0}^{\infty} \frac{(1-Q^{-2})^n}{[n]!} Q^{-\frac{1}{2} n(n-1)} Q^n (J_1-J_2+M_1'-M_2'-\frac{\omega}{2}(\omega_1-\omega_2)) \lambda^n(z_1+z_2)
\]

10
\[\Pi_{l=1}^{n} [\omega_1 - J_1 - M_1' + l] [J_2 + M_2' + l] \delta^{M_1'}_{M_1+n} \delta^{M_2'}_{M_2-n} \]

(3.9)

It should be noted that the presence of the second deformation parameter \(\lambda \) in (3.9) will produce many new \(R \)-matrices. For nongeneric values of \(Q \), the matrix representation (3.9) acts as a source for obtaining the finite dimensional two parametric \((p, q)\) nonstandard coloured \(R \)-matrices. Let us consider the simplest example \((J_1 = J_2 = \frac{1}{2}, z_1 = z_2 = z)\) with different colour parameters in the two sectors of the Hilbert space. For \(Q^2 = -1 \), we get

\[
\bar{R}_{\frac{1}{2}z, \frac{1}{2}z}^{\omega_1, \omega_2} = c \begin{pmatrix} t_1 & 0 & 0 & 0 \\
0 & s^{-1} & w & 0 \\
0 & 0 & st_1t_2^{-1} & 0 \\
0 & 0 & 0 & -t_2^{-1} \end{pmatrix},
\]

(3.10)

where \(c = Q^{-\omega_2(1-\frac{\lambda}{\omega_2})} \lambda^{\omega_1-\omega_2} \), \(t_1 = -Q^{-\omega_1} \), \(t_2 = -Q^{-\omega_2} \), \(s = \lambda^{2z} \) and \(w = \left(t_1 - t_1^{-1}\right)t_1^2t_2^{-2} \). This is an example of coloured \(R \)-matrix and may be viewed as a generalization of the result obtained in [7]. When \(\omega_1 = \omega_2 = \omega \) the \(R \)-matrix (3.10) reduces to

\[
\bar{R}_{\frac{1}{2}z, \frac{1}{2}z}^{\omega, \omega} \sim \begin{pmatrix} t & 0 & 0 & 0 \\
0 & s^{-1} & t - t^{-1} & 0 \\
0 & 0 & s & 0 \\
0 & 0 & 0 & -t^{-1} \end{pmatrix}.
\]

(3.11)

Apart from a scale factor, the matrix in (3.11) agrees with the nonstandard \(R \)-matrix \(\bar{R} \) in (2.6) after the replacement \(Q \rightarrow t \), \(\lambda \rightarrow s \). This completes our discussion of the connection between the nonstandard two-parameter \(R \)-matrix (2.1) with the universal \(R \)-matrix of \(U_{p,q}(gl(2)) \).

4. Superization of \(U_{p,q}(\zeta, H, X_{\pm}) \)

Using a superization procedure [4] we now discuss the connection between \(U_{p,q}(\zeta, H, X_{\pm}) \) and the super-Hopf algebra \(U_{p,q}(gl(1|1)) \). In [4] it is argued that if \(\mathcal{H} \) is a Hopf algebra containing a group-like element \(g \) such that \(g^2 \)
1, then, there exists a super-Hopf algebra \(\hat{H} \) with identical algebraic and counit structures while the coproduct, antipode and the universal \(R \)-matrix of \(H \), \(\{ \Delta(h) \ (= \sum_k x_k \otimes y_k), S(h), R \ (= \sum_k X_k \otimes Y_k) \mid (h, x_k, y_k, X_k, Y_k) \in H \} \), are modified to the corresponding quantities of \(\hat{H} \):

\[
\Delta(\hat{h}) = \sum_k x_k \otimes g^{\text{deg}(x_k)} y_k, \quad S(\hat{h}) = S(h)g^{\text{deg}(h)},
\]

\[
\hat{R} = R_g \sum_k X_k \otimes g^{\text{deg}(X_k)} Y_k,
\]

\[
R_g = \frac{1}{2}(1 \otimes 1 + 1 \otimes g + g \otimes 1 - g \otimes g).
\]

The map \(\{ h \mapsto \hat{h} \mid h \in H, \hat{h} \in \hat{H} \} \) preserves the algebraic structure and it is understood that, in the right hand side of (4.1) the elements of \(H \), after simplification, are mapped to their hatted superpartners in \(\hat{H} \). The \(\text{deg}(h) \), \(\forall h \in H \), is given by \(ghg^{-1} = \text{deg}(h)h \). We exhibit these properties in \((p, q)\)-deformed examples.

The \(R \)-matrix

\[
\hat{R} = \begin{pmatrix}
Q^{-1} & 0 & 0 & 0 \\
0 & \lambda^{-1} & 0 & 0 \\
0 & \sigma & \lambda & 0 \\
0 & 0 & 0 & Q
\end{pmatrix}
\]

satisfies the super-YBE and is known [11] to describe the ‘function’ Hopf algebra \(\text{Fun}_{p,q}(GL(1\mid 1)) \) (or \(GL_{p,q}(1\mid 1) \)). The universal \(R \)-matrix \(\hat{R} \) for the dually paired enveloping algebra \(U_{p,q}(gl(1\mid 1)) \) [12] has been obtained by direct computation [13]. We can derive this \(\hat{R} \) by applying Reshetikhin’s technique [9] for introducing multiple deformation parameters as follows. The commutation relations for the generators \((\hat{\zeta}, \hat{H}, \hat{X}_\pm) \) of \(U_{p,q}(gl(1\mid 1)) \) read

\[
\hat{X}_\pm^2 = 0, \quad [\hat{H}, \hat{X}_\pm] = \pm \hat{X}_\pm, \quad \{ \hat{X}_+, \hat{X}_- \} = [2\hat{\zeta}^2],
\]

\[
[\hat{\zeta}, X] = 0, \quad \forall X \in (\hat{H}, \hat{X}_\pm),
\]

(4.3)
and the coalgebraic structure is

\[
\Delta \left(\hat{X}_\pm \right) = \hat{X}_\pm \otimes Q^\pm \lambda^\pm \hat{\zeta} \pm Q^{-\hat{\zeta}} \lambda^{\mp} \hat{\zeta} \otimes \hat{X}_\pm,
\]

\[
\Delta \left(\hat{H} \right) = \hat{H} \otimes 1 + 1 \otimes \hat{H}, \quad \Delta \left(\hat{\zeta} \right) = \hat{\zeta} \otimes 1 + 1 \otimes \hat{\zeta},
\]

\[
\epsilon \left(X \right) = 0, \quad S \left(X \right) = -X, \quad \forall X \in \left(\hat{\zeta}, \hat{H}, \hat{X}_\pm \right).
\] (4.4)

The coproduct relations (4.4) reveal that a structure similar to (2.29) holds with the choice

\[
\hat{F} = \lambda^{\left(\hat{H} \otimes \hat{\zeta} - \hat{\zeta} \otimes \hat{H} \right)}.
\] (4.5)

Now, using the known universal \(R \)-matrix of \(U_Q(gl(1|1)) \) \cite{1}

\[
\hat{R}_{\lambda=1} = Q^{2(\hat{\zeta} \otimes \hat{H} + \hat{H} \otimes \hat{\zeta})} \left(1 \otimes 1 + \sigma Q^\hat{\zeta} \hat{X}_+ \otimes Q^{-\hat{\zeta}} \hat{X}_- \right)
\] (4.6)

and the prescription (2.31), we obtain the universal \(R \)-matrix for \(U_{p,q}(gl(1|1)) \) as

\[
\hat{R} = Q^{2(\hat{\zeta} \otimes \hat{H} + \hat{H} \otimes \hat{\zeta})} \lambda^{2(\hat{\zeta} \otimes \hat{H} - \hat{H} \otimes \hat{\zeta})} \left(1 \otimes 1 + \sigma Q^\hat{\zeta} \lambda^\hat{\zeta} \hat{X}_+ \otimes Q^{-\hat{\zeta}} \lambda^{\hat{\zeta}} \hat{X}_- \right)
\] (4.7)

which satisfies the super-YBE with the composition rule for the graded operators \((A, B, C, D) \in U_{p,q}(gl(1|1)) \)

\[
(A \otimes B)(C \otimes D) = (-1)^{\deg(B)\deg(C)}(AC \otimes BD).
\] (4.8)

Our expression for \(\hat{R} \) in (4.7) is seen to agree with the result obtained in \cite{13} by direct computation.

Comparing (2.18) and (2.22) with (4.3) and (4.4), while introducing the map \((\zeta, H, X_\pm) \to (\hat{\zeta}, \hat{H}, \hat{X}_\pm) \), it follows that the commutation relations and the counit maps for the super-Hopf algebra \(U_{p,q}(gl(1|1)) \) are identical to those of \(U_{p,q}(\zeta, H, X_\pm) \). The coproduct (4.4), antipode (4.4) and the universal
\(R \)-matrix (4.7) for \(U_{p,q}(gl(1|1)) \) follow from the analogous formulae, (2.20), (2.23) and (2.32), for \(U_{p,q}(\hat{\zeta}, \hat{H}, \hat{X}_\pm) \) according to the prescription (4.1). The quantity \((-1)^{(\hat{\zeta}-\hat{H})\otimes(\hat{\zeta}-\hat{H})}R_g \) is central in nature as may be observed by direct computation. It may, therefore, be dropped while mapping \(R \) to \(\hat{R} \).

5. A \((p,q)\)-deformed super-Heisenberg algebra

Finally, we use the contraction technique à la Celeghini et al. [18,19] to extract a two-parametric deformed super-Heisenberg algebra \(U_{p,q}(sh(1)) \) as a limiting case of \(U_{p,q}(gl(1|1)) \). To this end, let us scale the generators and the quantization parameters as

\[
\hat{H} = \frac{1}{2\varepsilon}h - N, \quad \hat{\zeta} = \frac{\xi}{2\varepsilon}, \quad \hat{X}_\pm = \frac{1}{\sqrt{\varepsilon}}c_\pm, \quad Q = e^{\varepsilon\Omega}, \quad \lambda = e^{\varepsilon\nu}. \tag{5.1}
\]

The commutation relations and the coproduct rules for \(U_{p,q}(sh(1)) \), with \(\{\xi, h, N, c_\pm\} \) as the generators, are obtained by studying the \(\varepsilon \to 0 \) limit of the corresponding structures of the algebra \(U_{p,q}(gl(1|1)) \) in (4.3) and (4.4) respectively. The result is

\[
c_\pm^2 = 0, \quad [N, c_\pm] = \pm c_\pm, \quad \{c_+, c_-\} = \Omega^{-1}\sinh \Omega \xi,
\]

\[
[h, X] = 0, \quad [\xi, X] = 0, \quad \forall X \in U_{p,q}(sh(1)), \tag{5.2}
\]

and

\[
\Delta(c_\pm) = c_\pm \otimes e^{\frac{\Omega}{2}(\Omega \mp \nu)\xi} + e^{-\frac{\Omega}{2}(\Omega \mp \nu)\xi} \otimes c_\pm,
\]

\[
\Delta(\xi) = \xi \otimes \mathbb{I} + \mathbb{I} \otimes \xi, \quad \Delta(h) = h \otimes \mathbb{I} + \mathbb{I} \otimes h,
\]

\[
\Delta(N) = N \otimes \mathbb{I} + \mathbb{I} \otimes N. \tag{5.3}
\]

In the contraction limit, the universal \(R \)-matrix (4.7) of \(U_{p,q}(gl(1|1)) \) yields, after the removal of a constant singular factor, the universal \(R \)-matrix of \(U_{p,q}(sh(1)) \):
\[R^{sh} = e^{\nu(N \otimes \xi - \xi \otimes N) - \Omega(N \otimes \xi + \xi \otimes N)} \left(\mathbb{1} \otimes \mathbb{1} - 2\Omega e^{\frac{1}{2}(\Omega + \nu)\xi} c_- \otimes e^{-\frac{1}{2}(\Omega - \nu)\xi} c_+ \right) . \tag{5.4} \]

A spectral parameter dependent \(R \)-matrix may be obtained from the universal \(R \)-matrix (5.4). To this end, following [18], we define the map

\[
T_x c_\pm = x^{\mp 1} c_\pm , \quad T_x h = h , \quad T_x \xi = \xi , \quad T_x N = N , \tag{5.5}
\]

and let

\[
R^{sh}(x) = (T_x \otimes \mathbb{1}) R^{sh} = e^{\nu(N \otimes \xi - \xi \otimes N) - \Omega(N \otimes \xi + \xi \otimes N)} \times \left(\mathbb{1} \otimes \mathbb{1} - 2\Omega x e^{\frac{1}{2}(\Omega + \nu)\xi} c_- \otimes e^{-\frac{1}{2}(\Omega - \nu)\xi} c_+ \right) . \tag{5.6}
\]

A direct calculation then proves that the matrix \(R^{sh}(x) \) satisfies the spectral parameter dependent YBE

\[
R^{sh}_{12}(x) R^{sh}_{13}(xy) R^{sh}_{23}(y) = R^{sh}_{23}(y) R^{sh}_{13}(xy) R^{sh}_{12}(x) . \tag{5.7}
\]

6. Conclusion

To conclude, we have studied the dually paired Hopf algebras \(A_{p,q}(R) \) and \(U_{p,q}(\zeta, H, X_\pm) \) associated with the nonstandard \(R \)-matrix (2.1) involving two independent parameters \(p \) and \(q \). The universal \(R \)-matrix of \(U_{p,q}(\zeta, H, X_\pm) \) has been obtained. We have demonstrated an explicit construction of the nonstandard \(R \)-matrix through a coloured generalized boson representation of the universal \(R \)-matrix of \(U_{p,q}(gl(2)) \) corresponding to the nongeneric case \(pq = Q^2 = -1 \). In this example, by choosing different colour parameters for the two sectors of nongeneric representations of \(U_{p,q}(gl(2)) \) with a dimension 2, we have obtained a two-parametric coloured \(R \)-matrix (3.10), which
satisfies a coloured YBE. More importantly, the finite dimensional representation (3.9) of the \mathcal{R}-matrix gives a recipe for obtaining nonstandard two-parametric coloured R-matrices for nongeneric values of Q. Superization process describes a map between $U_{p,q}(\zeta, H, X_\pm)$ and $U_{p,q}(gl(1|1))$. A contraction procedure has been used to obtain a (p, q)-deformed quasitriangular super-Heisenberg algebra $U_{p,q}(sh(1))$.

References

1. V.G. Drinfeld: Proc. ICM-86 (Berkeley) 1987; M. Jimbo: Lett. Math. Phys. 10 (1985) 63

2. H.C. Lee, M. Couture, N.C. Schmeing: ‘Connected link polynomials’, Chalk-river preprint 1988; M.L. Ge, L.Y. Wang, K. Xue, Y.S. Wu: Int. J. Mod. Phys. A 4 (1989) 3351

3. N. Jing, M.L. Ge, Y.S. Wu: Lett. Math. Phys. 21 (1991) 193

4. S. Majid, M.J. Rodriguez-Plaza: ‘Universal \mathcal{R}-matrix for a nonstandard quantum group and superization’, Preprint DAMTP 91/47

5. S. Majid: ‘Transmutation theory and rank for quantum braided groups’ Preprint DAMTP 91/10

6. A.J. Macfarlane: J. Phys. A: Math. Gen. 22 (1989) 4551; L.C. Biedenharn: J. Phys. A: Math. Gen. 22 (1989) L873; C.P. Sun, H.C. Fu: J. Phys. A: Math. Gen. 22 (1989) L983; T. Hayashi: Commun. Math. Phys. 127 (1990) 129

7. M.L. Ge, C.P. Sun, K. Xue: Int. J. Mod. Phys. A 7 (1992) 6609

8. P.P. Kulish: Zap. Nauch. Semin. LOMI 180 (1990) 89; E.E. Demidov, Yu.I. Manin, E.E. Mukhin, D.V. Zhadanovich: Prog. Theor. Phys. Suppl. 102 (1990) 203; A. Sudbery: J. Phys. A: Math. Gen. 23 (1990) L697; M. Takeuchi: Proc. Japan Acad. 66 (1990) 112

9. N.Yu. Reshetikhin: Lett. Math. Phys. 20 (1990) 331

10. A. Schirrmacher, J. Wess, B. Zumino: Z. Phys. C: Particles and Fields 49 (1991) 317; A. Schirrmacher: J. Phys. A: Math. Gen. 24 (1991) L1249; C. Burdick, L. Hlavaty: J. Phys. A: Math. Gen. 24 (1991) L165
11. R. Chakrabarti, R. Jagannathan: J. Phys. A: Math. Gen. 24 (1991) 5683
12. L. Dobrowski, L.Y. Wang: Phys. Lett. B226 (1991) 51
13. C. Burdick, P. Hellinger: J. Phys. A: Math. Gen. 25 (1992) L1023
14. V.K. Dobrev: J. Geom. Phys. 11 (1993) 367; C. Fronsdal, A. Galindo: Lett. Math. Phys. 27 (1993) 59; R. Barbier, J. Meyer, M. Kibler: J. Phys. G: Nucl. Part. 20 (1994) L13
15. R. Chakrabarti, R. Jagannathan: J. Phys. A: Math. Gen. 27 (1994) 2023
16. M. Bednar, C. Burdick, M. Couture, L. Hlavaty: J. Phys. A: Math. Gen. 25 (1992) L341
17. N.Yu. Reshetikhin, L.A. Takhtajan, L.D. Faddeev: Leningrad Math. J. 1 (1990) 193
18. E. Celeghini, R. Giachetti, E. Sorace, M. Tarlini: J. Math. Phys. 31 (1991) 2548
19. E. Celeghini, R. Giachetti, E. Sorace, M. Tarlini: J. Math. Phys. 32 (1992) 1115

Note added: We are thankful to Prof. V.K. Dobrev for bringing our attention to the papers: (1) V.K. Dobrev, ”Introduction to Quantum Groups”, Göttingen University preprint, (April 1991), to appear in: Proc. 22nd Ann. Iranian Math. Conf. (March 1991, Mashhad) and (2) V.K. Dobrev, J. Math. Phys. 33 (1992) 3419, where the structure of $U_{p,q}(gl(2))$ dual to $GL_{p,q}(2)$ was established earlier by him (see Refs. in [14]) using an approach independent of Schirrmacher, Wess and Zumino [10]. It may also be noted that the work of Fronsdal and Galindo (see Refs. in [14]) on the $U_{p,q}(gl(2)) \longrightarrow GL_{p,q}(2)$ exponential relationship is based on a different approach.