Original article

Comparative study of physio-chemical analysis of fresh and branded honeys from Pakistan

Muhammad Sajid *, Muhammad Yamin, Farkhanda Asad, Sajid Yaqub, Shahzad Ahmad, Maryam Ali Muhammad Samee Mubarik, Bilal Ahmad, Waqas Ahmad, Samina Qamer *

Department of Zoology, Government College University, Faisalabad, Pakistan

Article info

Article history:
Received 6 May 2019
Revised 15 June 2019
Accepted 18 June 2019
Available online 19 June 2019

Keywords:
Honey analysis
Branded honey
Mineral content
Pakistan

Abstract

Honey is a nutritious substance produced by bees. Its quality and nutritional value is of great importance for consumers. Keeping this in view physicochemical and minerals determination as quality parameters of fresh floral Pakistani honeys produced by *A. mellifera* and branded honeys was conducted. The results of fresh honey indicated average means of Color as 48.78 mmPfund, pH 4.9, Total acidity 37.14 meq/kg, Moisture content 18.62%, Electrical conductivity 0.23 mS/cm, Ash content 0.49%, HMF content 30.85 mg/kg, Proline 365.84 mg/kg, Diastase activity 34.39(DN) and Invertase activity was 68.61(IN) comparable to honey standards. Natural honey were rich in k+ (408.46 ppm) and Na+ (405 ppm). Although Ca+ was very low. Whereas, Co, Mn and Ba concentrations exceed the 1 ppm. However, Pb, Cr, and Mo were unnoticeable. Similarly, Color, pH, MC, EC, T. Acidity, HMF, Proline, Ash content, Diastase and Invertase activity of branded honey samples average means found were 42.5 mmPfund, 5.05, 20.5%, 0.18 mS/cm, 15.34 meq/kg, 36.5 mg/kg, 181.6 mg/kg, 1.11%, 7.90(DN) and 36.97(IN) respectively. The findings showed that fresh honey samples were good and of consumable quality as per honey standards than branded honey. Higher HMF content and lower enzymatic activity in branded honey sample than the Codex standards revealed its either long or improper storage.

© 2019 Production and hosting by Elsevier B.V. on behalf of King Saud University. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Honey is defined as “the sweet substance produced by honeybees from the nectar of flowers, which the bees collect, transform and store in honey combs”. It is the most important natural substance and categorized by its massive nutritive cost (330 kcal/100 g) and rapid absorption of carbohydrates during consumption (Conti et al., 2007; Khalil and Swaileh, 2017). Although, the main components of honey are almost identical in all honeys, yet the chemical composition and physical properties of natural honey depends on the floral sources, the processing, storage and climatic conditions (Lazarević et al., 2012; Boussaid et al., 2018; Sakaċ et al., 2019).

In Pakistan, four species (*Apis florea*, *Apis dorsata*, *Apis cerana* and *Apis mellifera*) of honey bees are present (Morse and Calderone, 2000; Qamer et al., 2009). *A. mellifera* is one of them, that improved quantities and Qualities of crops through pollination in the selected study areas and have a key role in honey agro-food chain (Munawar et al., 2009). Honey has become one of the most commercial agricultural products for trade in Pakistan since few years (Waghchoure and Martin, 2009; Adnan et al., 2014; Anjum et al., 2015).

Physicochemical parameters like moisture, acidity, pH, hydroxymethylfurfural (HMF) content, color, sugar composition and specific conductivity of the natural honey are precisely defined, and each characteristic is known to represent quality indicators (Tosi et al., 2008; Ajlouni and Sujirapinyokul, 2010; Khan et al., 2016; Adgaba et al. 2017; Ansari et al., 2018; Boussaid et al., 2018). Honey is also well known natural cheaper source of essential inorganic elements for consumers which are required for body metabolism (Alwaili et al, 2013; Sakač et al., 2019).

The present study was aimed to identifying natural and branded honey varieties quality found collected from different
areas, local shops and markets of various districts, Punjab Pakistan in terms of their physicochemical properties and mineral contents according to International Honey Standards.

2. Materials and methods

2.1. Honey collection

A total of Sixty-five honey samples (fresh honey n = 50, branded honey n = 15) were collected from shopkeepers and beekeepers from the different areas/districts such as Chakwal, Sialkot, Lahore, Sahiwal, Narowal, Sheikhupura, Nankana Shab and Muree of Punjab Pakistan during the year 2017–2018. Fresh honey samples were stored in sealed plastic jars followed by labeling and dating and kept at the room temperature ±29 °C till completion of analysis. All these honey samples were classified on the basis of their dominant botanical and geographical origin.

2.2. Honey water content

Honey water content was detected using a refractometer REF-116, pH by pH-meter (Bibby Scientific Ltd., UK) with a solution of 75 ml of carbon dioxide-free water in which 10 g of honey was dissolved (AOAC method 1990), EC by Vorwohl (1964) directly with 13% honey solution. Results were expressed in milli Siemens per centimeter (mS/cm). Muffle furnace was used to determine the ash content by burning the samples at 500 °C for 6 h. Acidity was estimated by AOAC Official (1990) and results were expressed as meq/kg. The HMF content in honey were determined by using the actual method of Wrinkler et al. (1955). Honey Color parameters was measured in Minolta Chromameter® CR 410 type instrument as well Lovibond. The L’ parameter (lightness index scale) ranges from 0 (black) to 100 (white). The diastase activity was determined by phadebas tablets as recommendation by International Honey Commission (2009). Siegenthaler (1977) method was used to analyzed Invertase activity. Mineral contents were analyzed using a Varian Spectra Atomic Absorption Spectrophotometer (Model 220, Varian, USA) and emission photometry.

2.3. Statistical analysis

SPSS-2001 software was used to analyze the data. The statistical difference in honey samples were tested with ANOVA at p < 0.05

3. Results and discussion

3.1. Physicochemical properties

The physicochemical parameters of the 65 honey samples were analyzed as shown in Tables 1–3. The moisture content of fresh and branded honey samples ranged from 18 to 19.2% and 19.50–21.25% respectively. Despite of different floral sources, water % of all the fresh honey samples were within the international limit (≤21%) than branded honey. The highest moisture content value was found in Bari (19.2) and Qureshi honey (21.25%). Kumar et al. (2018), Al-Ghamdi et al. (2019) and Can et al. (2015) were reported 18.37–22%, 18.50 ± 1.53, and 16.54–20.84% respectively, which seems close to the current findings. Honey moisture content depends on several factors such as degree of maturity reached, yielding season, and ecological factors (Acquarone et al., 2007).

pH is another important parameter during extraction and the conservation of honey. It increases the quality, constancy and shelf life of honey (Terrab et al., 2002). All the examined fresh honeys were acidic except Barii samples. The average pH values of fresh and branded honey ranged from 4.35 to 7.05 and 4.6 to 5.35. Azonwade et al. (2018) and Lokossou et al. (2017) reported pH of 5.08 and 5.00–5.48 respectively, showing almost the same range as found in the present research. However, Laredj and Waffa (2017) and Mohammed et al. (2017) recorded acidic pH values (4.17 and 4.20) in Algerian and Saudi honeys lower than present pH. In the same way EC ranges obtained by Bousaid et al. (2018) (0.39–0.89 mS/cm), Lokossou et al. (2017) (0.37–1.43 mS/cm) and Guler et al. (2017) (0.250–0.90 mS/cm) in Tunisian honey. Beni- nese and Turkish honeys were more or less same as found in fresh (0.11–0.61 mS/cm) and branded (0.17–0.23 mS/cm) honey samples. The resulted variation in EC depends on the different floral origins of honeys.

According to Perez-Arquillué et al. (1994), acidity in honey varies due to floral origins and harvesting seasons. Though acidity of fresh honeys (33–46.5 meq/kg) were within the international limits yet higher as compared to branded (14.16–16.33 meq/kg) samples, El-Haskoury et al. (2018) and Alqarni et al. (2016) reported honey acidity 16.50–59.50 meq/kg and 55.5–145.5 meq/kg which is closely related to the current recorded values of acidity.

Another parameter used for the determination of the botanical origin is Ash content (White, 1978). As compared to branded honey (0.66–2.05%), the fresh honey samples are within the limit (0.4–0.55%) for ash content proposed by the Codex Alimentarii Standards (<0.6 g/kg). Parviz et al. (2014) and Anhwainge et al. (2015) recorded ash content of 0.03–0.52%, 0.6–0.8 and 1.26–1.66 almost in the same range determined in current study.

The determination of color is a use full method for classification of multiflora honeys. The lightness values (L’) found for the sixty-five honey samples ranged from 27.95 mmPfund (White) to 78 mmPfund (Light amber) and 34.86 mmPfund (Extra light amber) to 50.50 mmPfund (Light Amber) respectively. Honey color parameter is usually first honey assessment depending upon its ingredients by consumers. Orange, Barseem and Shesham have same values (47) that contain Extra light amber color while Qurshi honey has Light Amber color. Aazza et al. (2018), Boussaid et al. (2018) and Khalafi et al. (2016) found the color range between 71.27 mmPfund, 36.64–51.37 mmPfund and 19–45.6 mmPfund, closely resemble the current research.

HMF is an important parameter used for honey purity and its freshness (Codex Alimentarii, 2001). According to international honey commission, the concentration of HMF should not exceed 40 mg/kg. The measured HMF content in current study ranged from 24.45 to 40.68 mg/kg and 316.86 to 516.26 mg/kg for fresh and branded honeys. Boussaid et al. (2018) and Parviz et al. (2014) reported similar HMF content of 27.43 ± 1.50 mg/kg and 37.31 ± 17.13 mg/kg. In addition, Al-Ghamdi et al. (2019) and Kivrak et al. (2017) determined much lower (3.78 mg/kg and 3.87–4.64 mg/kg) in Saudi and Indian honeys. Storage and floral influences are the major causes of higher HMF (Terrab et al., 2002; Meda et al., 2005).

The estimated Proline content of honey samples range was 287.6–511.1 mg/kg and 103.66–329.66 mg/kg. The proline contents of fresh honey samples were within the codex limit (≥180 mg/kg) and directive 2001/EC (≥180 mg/kg) as compared to branded honey samples. Moloudian et al. (2018), Aazza et al. (2018) and Nayik and Nanda (2015) analyzed the proline content of fresh honeys and branded honeys. Boussaid et al. (2018) and Can et al. (2015) reported similar proline content of 240.4 to 848.07 mg/kg, 256.46–924.98 mg/kg and 40 mg/kg. The measured HMF content in current study ranged from 287.6–511.1 mg/kg and 103.66–329.66 mg/kg. The proline content of honey samples was not significantly different in branded honeys. Moloudian et al. (2018) and Nayik and Nanda (2015) analyzed the proline content of 240.4 to 848.07 mg/kg, 256.46–924.98 mg/kg and 40 mg/kg. The measured HMF content in current study ranged from 287.6–511.1 mg/kg and 103.66–329.66 mg/kg. The proline content of honey samples was not significantly different in branded honeys.
Comparative Analysis of Macro and Micro Elements Based on Botanical (floral) Origin.

Parameters	Phulai (Acacia modesta) n = 3	Baiker (Justicia adhatoda) n = 19	Serson (Brassica compestris) n = 8	Bari (Ziziphus jojoba) n = 2	Orange (Citrus xsinensis) n = 3	Barseem (Trifolium repens) n = 13	Sheesham (Dalbergia sisso) n = 2	P value	Codex
Color (mm Pfund)	52.67 ± 11.59	27.95 ± 10.16	40.5 ± 23.42	78 ± 24.04	47 ± 6.92	47.38 ± 10.13	48 ± 2.35	0.00	50
pH	4.73 ± 0.47	4.75 ± 0.70	4.30 ± 0.48	7.05 ± 0.21	4.43 ± 0.49	4.95 ± 0.35	4.5 ± 0.92	0.00	50
Acidity (meq/kg)	35.67 ± 1.15	35.65 ± 5.27	34.01 ± 3.39	46.5 ± 2.82	36.63 ± 2.93	38.53 ± 1.18	33 ± 4.8	0.04	<21
Moisture (%)	18 ± 1	19.07 ± 0.99	18.61 ± 1.27	19.2 ± 1.06	18.83 ± 1.25	18.65 ± 1.12	18 ± 0.43	0.65	<21
EC (ms/cm)	0.11 ± 0.04	0.18 ± 0.06	0.19 ± 0.06	0.61 ± 0.04	0.20 ± 0.02	0.2 ± 0.06	0.17 ± 0.03	0.07	<0.7
Ash (%)	0.52 ± 0.08	0.50 ± 0.22	0.40 ± 0.12	0.55 ± 0.07	0.43 ± 0.30	0.54 ± 0.26	0.5 ± 0.06	0.88	<0.6
HMF (mg/kg)	33.53 ± 1.46	25.24 ± 4.32	31.67 ± 4.32	24.45 ± 2.82	31.83 ± 3.75	40.68 ± 4.24	28.55 ± 3.6	0.00	<40
Proline (mg/kg)	308.57 ± 67.56	410.15 ± 35.19	414.17 ± 42.21	511.1 ± 33.79	299.4 ± 8.47	329.95 ± 63.14	287.60 ± 56.1	0.00	<180
Diastase (DN)	41.47 ± 5.70	29.57 ± 14.52	29.27 ± 7.75	26.97 ± 22.23	43.46 ± 10.46	35.55 ± 12.64	34.5 ± 14.02	0.40	<8
Invertase (IN)	74.33 ± 10.08	61.07 ± 5.04	70.57 ± 4.34	76.3 ± 6.92	81.9 ± 4.83	58.35 ± 8.30	60.3 ± 4.85	0.00	<50

Means in the same column with different letters are significantly different at p < 0.05.

Physicochemical parameters of fresh honey samples analyzed (mean ± SD).

Parameters	Phulai (Acacia modesta) n = 3	Baiker (Justicia adhatoda) n = 19	Serson (Brassica compestris) n = 8	Bari (Ziziphus jojoba) n = 2	Orange (Citrus xsinensis) n = 3	Barseem (Trifolium repens) n = 13	Sheesham (Dalbergia sisso) n = 2	P value	Codex
Potassium (ppm)	465.66 ± 108.56	398.68 ± 252.83	454.22 ± 269.26	166.5 ± 23.33	361.4 ± 254.04	370.81 ± 235.60	295.42 ± 115.2	0.80	
Sodium (ppm)	335 ± 361.13	445.22 ± 345.40	445.77 ± 38.28	399.5 ± 47.37	579.6 ± 317.96	422.81 ± 362.94	211.6 ± 165.7	0.11	
Calcium (ppm)	0.73 ± 0.23	0.57 ± 0.26	0.50 ± 0.30	0.69 ± 0.03	0.65 ± 0.23	0.62 ± 0.20	0.69 ± 0.12	0.77	
Cobalt (ppm)	2.47 ± 0.63	3.68 ± 1.90	4.43 ± 0.56	4.54 ± 0.80	4.37 ± 0.50	4.39 ± 0.57	2.60 ± 0.65	0.43	
Manganese (ppm)	3.11 ± 0.16	2.37 ± 0.91	2.75 ± 0.9	1.75 ± 0.18	2.22 ± 0.83	2.80 ± 0.14	1.05 ± 0.16	0.55	
Barium (ppm)	0.4 ± 0.16	1.57 ± 0.93	3.88 ± 0.12	1.1 ± 0.2	3.8 ± 2.16	2.36 ± 0.25	3.24 ± 0.9	0.55	
Lead (ppm)	0.10 ± 0.08	0.07 ± 0.02	0.04 ± 0.08	0.19 ± 0.06	0.09 ± 0.01	0.17 ± 0.09	0.07 ± 0.02	0.54	
Chromium (ppm)	0.03 ± 0.02	0.25 ± 0.41	0.1 ± 0.03	0.03 ± 0.01	0.26 ± 0.12	0.11 ± 0.01	0.10 ± 0.07	0.50	
Molybdenum (ppm)	0.05 ± 0.02	0.3 ± 0.61	0.09 ± 0.03	0.26 ± 0.24	0.03 ± 0.01	0.2 ± 0.06	0.07 ± 0.02	0.60	

Means in the same column with different letters are significantly different at p < 0.05.

3.2. Mineral composition

The mineral composition of the fresh fifty honey samples were also analyzed as shown in Table 2. In general, the most abundant macro elements found in the honey samples were Potassium and Sodium ranging from 166.5 to 642 and 211 to 579.6 ppm respectively. Boussaid et al. (2018) showed the sodium range from 17.75–28.68(DN) which are almost like that of current work. Diafat et al. (2017) analyzed diastase 129.49–43.67 (DN) was above the range of present study.
497.54 to 362.55 ppm and 251.34 to 521.22 ppm almost same as in nutritive elements and free for toxic metals. Present research. Mineral results showed that fresh honey is rich in nutritive elements and free for toxic metals.

4. Conclusion
The results of this study indicated that the physicochemical characteristics of fresh honey samples were within recommended limits of international standards then branded samples. Evidence showed that the freshness and purity of fresh honey was due to dominat flora. The trace amount of heavy metal like Pb, Cr and Mo in all fresh honey samples showed the clean environment, while the richness in other essential metals represented the high nutritional values of Pakistani honey.

Acknowledgements
This work is done under the Project No 4952-/R&D/NRPU/HEC-14 and the part of PhD thesis of first author. We are also thankful to the Beekeepers for providing fresh honey samples.

References
Aaza, S., Elamine, Y., El-Guardoud, S., Lyoussi, B., Antunes, M.D., Estevinho, L.M., Offilia, A.Jorge, Caíler, D., Costa, Maria C., Miguel, M.G., 2018. Physicochemical characterization and antioxidant activity of honey with Ericagrostis spp. pollen predominance. J. Food Biochem. 42 (1), 124–131.
Acquarone, C., Buera, P., Elizalde, B., 2007. Pattern of pH and electrical conductivity upon honey dilution as a complementary tool for discriminating geographic origin of honeys. Food Chem. 101 (2), 695–703.
Adga, Na., Al-Ghamdi, A.A., Getachew, A., Tadesse, Y., Belay, A., Ansari, M.J., Radloff, S.E., Sharma, D., 2017. Characterization of honeys by their botanical and geographical origin, based on their physico-chemical properties and chemometric analysis. J. Food Meas. Charact. 11 (3), 1103–1117.
Adnan, M., Uhllah, I., Tarig, A., Murad, W., Azzizullah, A., Khan, A.L., Ali, N., 2014. Ethnopharmacology in the war affected region of northwest Pakistan. J. Ethnobiol. Ethnomed. 10 (1), 16.
Ajouni, S., Sujirapinyokul, P., 2010. Hydroxymethyl furfuraldehyde and amylase contents in Australian honey. Food Chem. 119 (1), 1000–1005.
Al-Ghamdi, A., Mohamed, S.E.A., Ansari, M.J., Adga, N., 2017. Comparisons of physicochemical properties and effects of heating regimes on stored Apis mellifera and Apis florea honey. Saudi J. Biol. Sci. 26 (4), 845–848.
Alwali, N., Al Ghamdi, A., Ansari, M.J., Al-Attal, Y., Al-Mubarak, A., Salom, K., 2013. Differences in composition of honey samples and their impact on the antimicrobial activities against drug-resistant bacteria and pathogenic fungi. Arch. Med. Res. 44 (4), 307–316.
Alqarni, A.S., Owais, A.A., Mahmoud, A.A., 2016. Physiochemical characteristics, total phenols and pigments of national and international honeys in Saudi Arabia. Arab. J. Chem. 9 (1), 114–120.
Anhwange, B.A., Yiasse, S.G., Atto, G.H., Anzaki, A.J., 2015. Physicochemical characterization and antioxidant capacities of honey from various floral origins from Tunisia. Arab. J. Chem. 11 (2), 265–274.
Can, Z., Yildiz, O., Sahin, H., Turumtay, E.A., Silici, S., Kolyali, S., 2015. An investigation of Turkish honeys: their physico-chemical properties, antioxidant capacities and phenolic profiles. Food Chem. 180, 133–141.