METHOD ARTICLE

Hobotnica: exploring molecular signature quality [version 1; peer review: 2 approved with reservations]

Alexey Stupnikov1,2, Alexey Sizykh1, Alexander Favorov3,4, Bahman Afsari3, Sarah Wheelan3, Luigi Marchionni5, Yulia Medvedeva1,2,6

1 Moscow Institute of Physics and Technology, Moscow, Russian Federation
2 National Medical Research Center for Endocrinology, Moscow, Russian Federation
3 Johns Hopkins University, Baltimore, USA
4 Vavilov Institute for General Genetics RAS, Moscow, Russian Federation
5 Weill Cornell Medicine, New York, USA
6 Center of Biotechnology RAS, Moscow, Russian Federation

Abstract
A Molecular Features Set (MFS), is a result of a vast diversity of bioinformatics pipelines. The lack of a "gold standard" for most experimental data modalities makes it difficult to provide valid estimation for a particular MFS’s quality. Yet, this goal can partially be achieved by analyzing inner-sample Distance Matrices (DM) and their power to distinguish between phenotypes.

The quality of a DM can be assessed by summarizing its power to quantify the differences of inner-phenotype and outer-phenotype distances. This estimation of the DM quality can be construed as a measure of the MFS’s quality.

Here we propose Hobotnica, an approach to estimate MFSs quality by their ability to stratify data, and assign them significance scores, that allow for collating various signatures and comparing their quality for contrasting groups.

Keywords
Molecular signature, Distance Matrix, Differential Gene Expression, Gene Signature, Rank statistics
Corresponding authors: Alexey Stupnikov (aleksej.stupnikov@phystech.edu), Yulia Medvedeva (ju.medvedeva@gmail.com)

Author roles: Stupnikov A: Conceptualization, Formal Analysis, Investigation, Methodology, Project Administration, Supervision, Writing – Original Draft Preparation; Writing – Review & Editing; Sizykh A: Formal Analysis, Investigation, Software, Visualization; Favorov A: Conceptualization; Afsari B: Conceptualization, Writing – Original Draft Preparation; Wheelan S: Conceptualization, Funding Acquisition, Writing – Original Draft Preparation; Marchionni L: Conceptualization, Funding Acquisition, Methodology; Medvedeva Y: Funding Acquisition, Project Administration, Writing – Original Draft Preparation, Writing – Review & Editing

Competing interests: No competing interests were disclosed.

Grant information: This work was supported by Ministry of Science and Higher Education of the Russian Federation (agreement no. 075-15-2020-899) and by the NIH grants R01DE027809 and P30CA006973.

Copyright: © 2021 Stupnikov A et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

How to cite this article: Stupnikov A, Sizykh A, Favorov A et al. Hobotnica: exploring molecular signature quality [version 1; peer review: 2 approved with reservations] F1000Research 2021, 10:1260 https://doi.org/10.12688/f1000research.74846.1

First published: 08 Dec 2021, 10:1260 https://doi.org/10.12688/f1000research.74846.1
Introduction
A signature based on a predefined Molecular Features Set (MFS), which is designed to distinguish biological conditions or phenotypes from each other, is a crucial concept in bioinformatics and precision medicine. In this context, signatures typically originate from MFS from contrasting experimental data from two or more sample groups, which differ phenotypically. These MFS incorporate information on the differences between the groups. The nature of the MFS depends on the modality of the original data. For instance, the MFS provided by the Differential Gene Expression approach is a list of Differentially Expressed genes (DEG); Differential Methylation analysis provides Differentially Methylated Cytosines or regions (DMC and DMR) as MFS.

A significant number of mutational, expression and methylation-based signatures have recently been published and they are actively used in research and translational medicine. Examples of expression-based signatures involve gene sets for clinical prognosis (e.g., PAM50, MammaPrint), for pathways and gene enrichment analysis (e.g., MsigDB collections), and for drug re-purposing (e.g., LINCS project).

Direct quality assessment for MFS is currently hardly possible, since there are no ‘gold standard’ datasets where active Molecular Features are explicitly known. In this manuscript, we propose a novel approach - Hobotnica, that allows for measurement of MFS quality by addressing the key property of the signature, namely, its quality for data stratification.

Methods
Approach
The Hobotnica approach is as follows: For a given data set \(W \) and a given MFS \(S \) we derive the inter-sample distance matrix \(DM(S,W) \). Then we assess the quality of \(DM \) (and, thus, of \(S \)) with a summarizing function \(\alpha(DM(S),Y) \) where \((Y) \) represents the labels of samples. In shorten notation,

\[
H : S \\
\begin{align*}
& f(S|D) \rightarrow DM \\
& g(DM|Y) \rightarrow \alpha
\end{align*}
\]

We desire the function \(\alpha \) to gauge if the inner-class samples are closer to each other than to outer-class samples. If no difference exists from one class to another, \(\alpha \) must be close to zero and as the difference grows, \(\alpha \) grows. In the ideal case of a perfect separation, \(\alpha \) reaches its maximum at 1:

- \(\alpha \in [0,1] \)
- \(\alpha \rightarrow 1 \iff \) High groups stratification quality
- \(\alpha \rightarrow 0 \iff \) Low groups stratification quality

Under the null hypothesis of Hobotnica (\(H_0 \)), no significant difference exists between \(\alpha(S) \) and the \(\alpha \) of an equal-sized general random set. On the contrary, the alternative (\(H_1 \)) hypothesizes that \(S \) generates higher \(\alpha \) than most random \(S' \) of the same size. To estimate a null distribution for Hobotnica’s \(\alpha \), we applied a permutation test. As our default options, we use Kendall distance as the distance measure and Mann-Whitney-Wilcoxon test as the summarizing function.

When instead of a single MFS a set of hypotheses \(\{H_1 : MFS_1, H_2 : MFS_2, …, H_n : MFS_n\} \) is in place, for each Molecular Feature Set \(MFS_i \) corresponding Distance Matrix \(DM_i \) can be generated, and then, in turn, particular value of the measure \(\alpha_i \):

\[
\begin{align*}
& H_1 : MFS_1 \\
& H_2 : MFS_2 \rightarrow f(MFS_1|D) \rightarrow DM_1 \\
& … \\
& H_n : MFS_n \rightarrow f(MFS_n|D) \rightarrow DM_n \\
& g(DM_1|A) \rightarrow \alpha_1 \\
& g(DM_2|A) \rightarrow \alpha_2 \\
& … \\
& g(DM_n|A) \rightarrow \alpha_n
\end{align*}
\]
Thus, for every MFS MFS_i from set of hypotheses $\{H_1 : MFS_1, H_2 : MFS_2, \ldots, H_n : MFS_n\}$ H-score α_i may be computed, resulting in a set $(\alpha_1, \alpha_2, \ldots, \alpha_n)$. Comparing α values allows for corresponding Feature Sets qualities ranking and selecting the most informative Signatures for the Data D.

Validation

To validate our approach, we conducted three case studies.

In the first case study we extracted RNA-seq expression dataset for prostate cancer from the Cancer Genome Atlas (TCGA) on counts level. As MFSs, we recruited the C2 collection of molecular signatures from MSigDB, that contains a number of prostate-related gene sets. This way, every candidate MFS (gene set from the collection) produced its specific H-score.

For the second case study, we recruited the PAM50 molecular signature, which was designed for classifying various breast cancer subtypes, as MFS. Then, we applied it to several datasets containing these breast cancer subtypes.

In the third case study, we explored H-scores delivered by various DGE approaches. We performed DGE analysis for two groups of mice samples with different response to MYC factor treatment (MYCfl/fl vs MYCΔIE, ERT2 genotypes) with DESeq2 and edgeR.

The top 100 genes for each method were then retrieved. In addition, we extracted a list of genes genes with the highest variance in expression, as well as a number of random gene sets.

In each case, the counts were normalised to counts per million (cpm). For every geneset an H-score and its p-value with BH correction were computed.

Results

Prostate-related C2 gene sets clearly demonstrated highest H-score values and sufficient statistical significance (Table 1, Figure 1A), as well as data stratification (Figure 1B), which is expected for prostate cancer as opposed to control contrast. Gene sets not attributed to prostate cancer-related processes did not achieve statistically significant p-values (Table 1).

H-scores for the PAM50 signature were evidently higher for all datasets in the second case study than those for random gene sets for the same datasets (Figure 2, Figure 1C). This implies that the PAM50 signature exhibits a high stratification quality for various breast cancer subtypes samples. PAM50-delivered H-scores also demonstrated highly statistically significant p-values (Table 2).

In the third case study, various DGE approaches resulted in gene sets that delivered significantly different H-scores (Figure 3). For this dataset, edgeR provided a signature with the best quality score, while DESeq2 still demonstrated a higher separation quality than that of random signatures. Genes with the highest variance showed lower scores compared to random gene sets. This result stresses the importance of the Hobotnica procedure to evaluate the quality of a particular DGE analysis.

Table 1. Ten C2-chemical and genetic perturbations (GCP) Gene Signatures with the highest H-scores.

Signature	H-score	p-value
TOMLINS_PROSTATE_CANCER	0.795	0.025
WALLACE_PROSTATE_CANCER	0.747	0.025
OUYANG_PROSTATE_CANCER_PROGRESSION	0.745	0.025
LIU_PROSTATE_CANCER	0.735	0.025
PIEPOLI_LGI1_TARGETS	0.724	0.059
SMID_BREAST_CANCER_RELAPSE_IN_LIVER	0.712	0.164
TIMOFEEVA_GROWTH_STRESS_VIA_STAT1	0.708	0.240
GENTILE_UV_LOW_DOSE	0.705	0.308
JOHANSSON_BRAIN_CANCER_EARLY_VS_LATE	0.701	0.377
HOWLIN_CITED1_TARGETS	0.700	0.377
Figure 1. A: Distribution of H-scores for random genesets (blue) on TCGA prostate cancer vs normal dataset (see Table 1) and Tomlins prostate geneset H-score (red). B: MDS for TCGA prostate demonstrates samples separation with Tomlins geneset. C: Distribution of H-scores for random genesets (blue) on GSE48216 breast cancer dataset (see Table 2) and PAM50 geneset H-score (red). D: MDS for GSE48216 breast cancer dataset samples separation with PAM50 geneset.

Figure 2. Distribution of random gene sets-delivered (blue) and PAM50 gene set-delivered (green) H-scores for breast cancer datasets (see Table 2).
Table 2. PAM50 results.

GEO Accession	Sample size	Groups in dataset	H-score	p-value
GSE58135	168	6	0.772	7e-4
GSE62944	1067	5	0.8892	0.0003
GSE48216	46	3	0.8567	0.0003
GSE80333	10	3	0.9765	0.0003

Figure 3. H-scores for the top 100 Gene Signatures delivered from DESeq2, edgeR, genes with highes variance and random gene sets applied to GSE155460 data.

Discussion
Hobotnica was designed to quantitatively evaluate MFS quality through their ability for data stratification, based on their inter-sample distance matrices, and to assess the statistical significance of the results. We demonstrated that Hobotnica can efficiently estimate the quality of a molecular signature in the context of expression data.

The suggested method can be used to evaluate various sorts of MFSs: those retrieved from DGE or DM analyses, Mutation/single nucleotide variation calling or pathways analysis, as well as data modalities of other types, that are suitable as differential problems.

A possible application of Hobotnica is evaluating a particular model’s performance (e.g., DGE model) for a particular dataset. This will allow researchers to choose a method that delivers a signature with the best data stratification from a number of proposed approaches.

Assessing H-score values for various lengths of the same set or signature can be explored with the proposed method, which will help to optimize MFS structure. Such procedures can be especially crucial in clinical applications.

Data availability
Underlying data
NCBI Gene Expression Omnibus: Alternatively processed and compiled RNA-Sequncing and clinical data for thousands of samples from The Cancer Genome Atlas, https://identifiers.org/ncbiprotein:GSE62944

NCBI Gene Expression Omnibus: Modeling precision treatment of breast cancer, https://identifiers.org/ncbiprotein:GSE48216

NCBI Gene Expression Omnibus: Spatial proximity to fibroblasts impacts molecular features and therapeutic sensitivity of breast cancer cells influencing clinical outcomes, https://identifiers.org/ncbiprotein:GSE80333
NCBI Gene Expression Omnibus: Next Generation Sequencing Analysis of Mycfl/fl and MycIE, ERT2 intestinal transcriptomes, https://identifiers.org/ncbiprotein:GSE155460

Extended data
Analysis code

Analysis code available from: https://github.com/lab-medvedeva/Hobotnica-main

Archived analysis code as at time of publication: https://doi.org/10.5281/zenodo.5656814

License: GNU General Public License v2.0

Competing interests
No competing interests were disclosed.

Grant information
This work was supported by Ministry of Science and Higher Education of the Russian Federation (agreement no. 075-15-2020-899) and by the NIH grants R01DE027809 and P30CA006973.

Acknowledgements
We thank Frank Emmert-Streib, Leslie Cope and Elana Fertig for fruitful discussions.

References

1. Parker JS, Mullins M, Cheang MCU, et al.: Supervised risk predictor of breast cancer based on intrinsic subtypes. J. Clin. Oncol. 2009; 27(8): 1160–1167. PubMed Abstract | Publisher Full Text | Free Full Text
2. Cardoso F, van't Veer LJ, Bogaerts J, et al.: 70-gene signature as an aid to treatment decisions in early-stage breast cancer. N. Engl. J. Med. 2016; 375(8): 717–729. Publisher Full Text
3. Subramanian A, Tamayo P, Mootha VK, et al.: Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc. Natl. Acad. Sci. 2005; 102(43): 15545–15550. PubMed Abstract | Publisher Full Text | Free Full Text
4. Liu C, Jing S, Yang F, et al.: Compound signature detection on lincs11000 big data. Mol. Biolyst. 2015; 11(3): 714–722. PubMed Abstract | Publisher Full Text | Free Full Text
5. Rahman M, Jackson JK, Evan Johnson W, et al.: Alternative preprocessing of rna-sequencing data in the cancer genome atlas leads to improved analysis results. Bioinformatics. 2015; 31(22): 3666–3672. PubMed Abstract | Publisher Full Text | Free Full Text
6. Liberzon A, Subramanian A, Pinchback R, et al.: Molecular signatures database (MSigDB) 3.0. Bioinformatics. 05 2011; 27(12): 1739–1740. ISSN 1367-4803. PubMed Abstract | Publisher Full Text | Free Full Text
7. Parker JS, Mullins M, Cheang MCU, et al.: Supervised risk predictor of breast cancer based on intrinsic subtypes. J. Clin. Oncol. 2009; 27(8): 1160–1167. PubMed Abstract | Publisher Full Text
8. VarleyKE, GertzJ, RobertsBS, et al.: Recurrent read-through fusion transcripts in breast cancer. Breast Cancer Res. Treat. 2014; 146(2): 287–297. PubMed Abstract | Publisher Full Text | Free Full Text
9. Marusyk A, Tabassum DP, Janiszewska M, et al.: Spatial proximity to fibroblasts impacts molecular features and therapeutic sensitivity of breast cancer cells influencing clinical outcomes. Cancer Res. 2016; 76(22): 6495–6506. PubMed Abstract | Publisher Full Text | Free Full Text
10. Daemen A, Griffith OL, Heiser LM, et al.: Modeling precision treatment of breast cancer. Genome Biol. 2013; 14(10): R110-R114. Publisher Full Text
11. Costello JC, Heiser LM, Gorgi E, et al.: A community effort to assess and improve drug sensitivity prediction algorithms. Nat. Biotechnol. 2014; 32(12): 1202–1212. PubMed Abstract | Publisher Full Text | Free Full Text
12. Luo Y, Yang S, Wu X, et al.: Intestinal MYC modulates obesity-related metabolic dysfunction. Nat. Metab. July 2021; 3(7): 923–939. PubMed Abstract | Publisher Full Text
13. Love MI, Huber W, Anders S: Moderated estimation of fold change and dispersion for rna-seq data with deseq2. Genome Biol. 2014; 15(12): 1–21. Publisher Full Text
14. Robinson MD, McCarthy DJ, Smyth GK: edgeR: a bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics. 2010; 26(1): 139–140. PubMed Abstract | Publisher Full Text | Free Full Text
15. Benjamini Y, Hochberg Y: Controlling the false discovery rate: a practical and powerful approach to multiple testing. Journal of the Royal Statistical Society: Series B (Methodological). 1995; 57(1): 289–300.
The authors present an approach called Hobotonica for quantitatively evaluating (by assigning H score) MFS quality for given sample labels. This approach could be useful for analyzing samples, for e.g., quality comparison, filtering out poor quality samples, and comparing different phenotypical conditions and experiments. It is important that the authors should discuss a reasonable H-score interpretation in terms of various implications of data quality/outcome related to experimental conditions, sample size, data preprocessing, and the complexity of biological systems reflecting the non-trivial correlation structure.

I highlight some of the recommendations to be discussed in the paper:

1. The author should add simulation studies providing a realistic understanding and interpretation of the H score.

2. How is the current approach different from the clustering-based approach where the optimized number of clusters are compared to sample labels using rand-index (where a high rand score means the clustering solution and the sample labels are in agreement) or other measures.

3. The analysis should consider experimental conditions (data derived from multiple experiments representing the same phenotype), data preprocessing methods, sample size, and gene expression data covariance structure.

4. How does H-score vary with relation to the number of phenotype conditions and number of MFS. The authors should add analysis and interpretation of results:
 - when MFS is differentially expressed genes.
 - when MFS is randomly selected.
 - When MFS is a predefined set (e.g., GO pathway).
5. The author should add accurate descriptions of all the notations used.

6. Add a definition of H-score.

Is the rationale for developing the new method (or application) clearly explained?
Partly

Is the description of the method technically sound?
Partly

Are sufficient details provided to allow replication of the method development and its use by others?
Yes

If any results are presented, are all the source data underlying the results available to ensure full reproducibility?
Yes

Are the conclusions about the method and its performance adequately supported by the findings presented in the article?
Partly

Competing Interests: No competing interests were disclosed.

Reviewer Expertise: Data science, Machine learning, network analysis, computational biology, gene expression data analysis

I confirm that I have read this submission and believe that I have an appropriate level of expertise to confirm that it is of an acceptable scientific standard, however I have significant reservations, as outlined above.

Reviewer Report 20 December 2021
https://doi.org/10.5256/f1000research.78645.r102280

© 2021 Malinverni R. This is an open access peer review report distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Roberto Malinverni
Cancer and Leukemia Epigenetics and Biology Program, Josep Carreras Leukemia Research Institute (IJC), Badalona, Spain

In this short article the authors present an R package called Hobotnica, whose purpose is to
evaluate the goodness with which different methodologies can stratify the results presented as Molecular Feature Sets (MFS). With MFS the authors point to all those types of data as a result of different -omics techniques (such as expression, methylation, Mutation / single nucleotide variation calling or pathways analysis).

Major comments

1. The authors present three examples in which it is demonstrated how this approach is able to evaluate the effectiveness of MFS stratification, but the examples considered are all based on expression data. To verify the statements presented in the article, it would be useful to test the methodology on different data (for example methylation arrays). The approach chosen for this evaluation is based on the calculation and comparison of Distance Matrices (DM).

2. The example of figure 3 evaluates two different standard approaches for the analysis of RNAseq using Hobotnica and the H0 value as discriminant. It can be appreciated in this figure how the stratification quality of Deseq2 is decidedly more efficient than both random genes and top variant genes. Surprisingly, however, the H0 value calculated using the top 100 genes collected with edgeR is very similar to that calculated using random genes, this confused me. Authors should explain this similarity more in depth.

The data presented in this article do not seem to convince satisfactorily. The quality evaluation power obtained by applying Hobotnica does not seem to correspond to the premises made. While not in fact a slate on the methodology, my advice is to review the examples and try to improve in benchmarking, adding different types of data.

Is the rationale for developing the new method (or application) clearly explained?

Yes

Is the description of the method technically sound?

Partly

Are sufficient details provided to allow replication of the method development and its use by others?

Partly

If any results are presented, are all the source data underlying the results available to ensure full reproducibility?

Yes

Are the conclusions about the method and its performance adequately supported by the findings presented in the article?

Partly

Competing Interests: No competing interests were disclosed.

Reviewer Expertise: Epigenetics. R-developper
I confirm that I have read this submission and believe that I have an appropriate level of expertise to confirm that it is of an acceptable scientific standard, however I have significant reservations, as outlined above.

The benefits of publishing with F1000Research:

- Your article is published within days, with no editorial bias
- You can publish traditional articles, null/negative results, case reports, data notes and more
- The peer review process is transparent and collaborative
- Your article is indexed in PubMed after passing peer review
- Dedicated customer support at every stage

For pre-submission enquiries, contact research@f1000.com