Influence of Drying Methods on Bioactive Properties, Fatty Acids and Phenolic Compounds of Different Parts of Ripe and Unripe Avocado Fruits

Elfadıl E Babiker¹*, Isam A. Mohamed Ahmed¹, Nurhan Uslu², Mehmet Musa Özcan²*, Fahad Al Juhaımi¹, Kashif Ghafoor¹, and Ibrahim A. Almusallam¹

¹ Department of Food Science & Nutrition, College of Food and Agricultural Sciences, King Saud University, Riyadh-SAUDI ARABIA
² Department of Food Engineering, Faculty of Agriculture, Selcuk University, 42031 Konya, TURKEY

Abstract: All drying processes increased oil content, antioxidant activity, total phenolic contents, and most of the phenolic compounds in the pulp, peel and seeds of both ripe fruits with varied degrees (p < 0.05). In addition, the processes reduced the oil contents, linoleic acids, 3,4-dihydroxybenzoic acid, (+)-catechin, and naringenin of the pulp, antioxidant activity of the peels and seeds, and 3,4-dihydroxybenzoic acid, (+)-catechin of the seeds and it enhanced all other parameters in the pulp, peel, and seeds of unripe fruits (p < 0.05). Comparing the phenolic profiles of avocado pulp, peels, and seeds of ripe and unripe fruits indicated that the peel and seeds are richer than the pulp and that is superior in unripe fruits than ripe ones. In addition, drying processes particularly microwave and air drying greatly enhanced the bioactive properties of ripe and unripe avocado fruits and could thus be used to elongate the shelf-life of avocado fruit products without major impact on the overall quality.

Key words: avocado, drying, tissue, oil, antioxidants, fatty acids, phenolics, GC, HPLC

1 Introduction
Avocado fruit (Persea americana Mill.) is one of the most valuable tropical fruit that is utilized by many peoples around the globe¹⁻⁵. In many countries, avocado fruit is consumed as a vegetable in the form of salads, with onions and cheese or as a soup with salt and pepper, or and as a canned product⁶. Industrially, the pulp of avocado fruits is used for the development of various products such as oil, dried avocados, purée or guacamole, and packaged slices³. Due to the wide utilization of avocado pulp in numerous applications, substantial quantities of avocado processing by products such as peels, seeds, and leaves are produced annually³. In addition, seven hydroxycinnamonic acid derivatives (sinapic acid-c-hexoside, p-coumaric acid glucoside and one of its isomers, ferulic acid glucoside and its isomer, p-coumaric acid rutinoside and coumaric acid and octyl gallate) were also identified in avocado fruits⁴⁻⁶. The total phenolic, flavonoid, antioxidant activity of Hass avocado cultivars were affected by the ripening stage and research on the investigation of the impact of postharvest processing on the ripe and unripe avocado fruits and by-products are scarce⁷⁻⁸. Drying is an appropriate and well-known postharvest technology used to prolong the shelf life of fruits or vegetables, while preserving their quality and stability by reducing water activity and moisture content and thereby avoiding spoilage and contamination during storage. The aim of this study was to characterize oil, bioactive properties and phytochemicals of the pulp, seed and peel of unripe and ripe avocado fruit of the Pinkerton cultivar dried by air, microwave or oven.

2 Material and Methods
2.1 Material
Avocado (Pinkerton cultivar) fruits were used at two different maturity stages (unripe and ripe) obtained from Antalya, Turkey. They were transferred to Laboratory (Department of Food Engineering, Faculty of Agriculture, Selcuk University, Konya, Turkey) in cool bags. After washing by clean water, the pulp, peel and seeds of both ripe and unripe avocado fruits were separated from each other. The pulp, peel and seeds of both ripe and unripe fruits were separately subjected to different treatments as; control (untreated...
samples), air-drying treatment, microwave-drying treatment (540 W, 15 min), and conventional oven drying treatment (60°C, 19 h).

2.2 Methods

2.2.1 Drying of Avocado fruit parts

Avocado fruits were manually cleaned, pulp, peel and seeds were separated from the fruits and then about 100 g of each part was dried either by air drying at room temperature (24°C) for two week or microwave (Arçelik ARMG 580, Turkey) oven capable to generate at 720 W power at 2450 MHz or in an oven (Nuve FN055 Ankara, Turkey, 55 L volume) at 60°C (19 h). After drying, the fruit samples were cooled at room temperature, and then kept frozen at -25°C under nitrogen in sealed bottles for further analyses.

2.2.2 Moisture content

The moisture contents of the samples were measured at 100°C ± 5°C in an oven (Nuve FN055 Ankara, Turkey) according to AOAC method.

2.2.3 Oil content

The oil content of avocado samples was determined according to AOAC method. Total oil content of the samples was extracted with petroleum benzene in Soxhlet Apparatus for 5 h and the solvent was removed with a rotary vacuum evaporator at 50°C.

2.2.4 Fatty acid composition

The sample oils were esterified according to ISO-5509 method. Commercial mixtures of fatty acid methyl esters were used as reference data for the relative retention times. Fatty acid methyl esters of oil samples were analyzed on a gas chromatograph (Shimadzu GC-2010) equipped with flame-ionization detector (FID) and capillary column (Tecnocroma TR-CN100, 60 m x 0.25 mm, film thickness: 0.20 µm). The temperature of injection block and detector was 260°C. Mobile phase was nitrogen with 1.51 mL/min flow rate. Total flow rate was 80 mL/min and split rate was also 1/40.

2.2.5 Preparation of the sample extracts

The extracts of avocado fruit parts were done according to Lopez-Cobo et al. Ground sample (1 g) of each part was added to 20 mL of hexane and mixture of 10 mL methanol: water (80:20, v/v). The mixture was kept in ultrasonic water-bath for 15 min, followed by centrifugation at 6000 rpm for 15 min. The supernatant was removed. The steps were repeated twice and the lower phases were collected. The extract was concentrated at 37°C under vacuum. The volume was made up to 10 mL with a mixture of methanol: water (50:50) and then filtered with 0.45 µm filter.

2.2.6 Total phenolic content

Total phenolics contents of avocado fruit parts were determined using the Folin-Ciocalteu (FC) reagent as applied by Yoo et al. Folin-Ciocalteu (1 mL) and Na₂CO₃ (10 mL) were added to extract and mixed with vortex. The deionised water was added until the final volume was 25 mL, and kept at dark for 1 h. The absorbance was measured at 750 nm in a spectrophotometer. The results are shown as mg gallic acid equivalent (GAE)/100 g of fresh weight.

2.2.7 Antioxidant activity

The free radical scavenging activity of the extracts was determined using DPPH (1,1-diphenyl-2-picrylhydrazyl) according to Lee et al. The extract was mixed with 2 mL methanolic solution of DPPH. The mixture was shaken vigorously and allowed to stand at room temperature for 30 min and the absorbance was recorded at 517 nm by using a spectrophotometer. Antioxidant activity (%) was calculated using following relation:

\[
\text{Inhibition} (%) = \frac{\Delta A_{\text{Control}517} - \Delta A_{\text{Extract}517}}{\Delta A_{\text{Control}517}} \times 100
\]

2.2.8 Determination of phenolic compounds

A Shimadzu-HPLC equipped with a PDA detector and an Inertsil ODS-3 column was applied for the quantification and quantification of phenolic compounds were performed. The mobile phase was composed of 0.05% acetic acid (A) and acetonitrile (B) and 20 µL of the extract was injected and run at 1 mL/min at 30°C for a total running time of 60 min. The peaks were measured at 280 and 330 nm using a PDA detector. The total running time per sample was 60 min.

2.3 Statistical analysis

The analyses of variance were performed using JMP version 9.0. Tukey’s tests was applied to determine the significant variations among results of control, maturation and drying types (p<0.05). All analyses were carried out three times and the results are mean ± standard deviation (MSTAT C) of independent tissue values.

3 Results and Discussion

3.1 Effect of drying methods on moisture, oil, total phenolics and antioxidant activity

The effect of drying methods on moisture, oil, total phenolics and antioxidant activity of unripe and ripe avocado (Pinkerton) fruit parts are shown in Table 1. Unripe and ripe avocado fruit parts (pulp, peel and seed) were dried by different methods (air-, microwave- and oven drying). The moisture contents of fresh pulp (68.47% and 73.01%), peel (74.31% and 74.26%) and seeds (57.81% and 59.11%) of unripe and ripe fruits, respectively, were significantly (p<0.05) reduced by all drying methods with the highest reduction being observed in oven-dried samples. Previous studies indicated that increasing the drying temperature significantly reduced the moisture contents of avocado seeds and pulp[14,15]. In peel and pulp of ripe fruits, all drying treatment significantly (p<0.05) increased the oil contents compared to fresh samples. Mostert et al.[16] reported that both ripening and drying treatment enhanced the oil contents of avocado pulp. In addition, dos Santos et al.
Table 1 Some chemical composition of different parts of "Pinkerton" avocado fruit.

	Moisture (%)	Oil (%)	Antioxidant activity (%)	Total phenol (mg AE/100g)	Antioxidant activity (%)	Total phenol (mg AE/100g)										
	Fresh	Air-drying	Microwave drying	Oven drying	Fresh	Air-drying	Microwave drying	Oven drying	Fresh	Air-drying	Microwave drying	Oven drying	Fresh	Air-drying	Microwave drying	Oven drying
Pulp	Fresh	73.02 ± 0.01a	7.89 ± 0.07b	20.75 ± 0.07d	129.39 ± 0.01d	7.89 ± 0.07b	20.75 ± 0.07d	129.39 ± 0.01d	7.89 ± 0.07b	20.75 ± 0.07d	129.39 ± 0.01d	7.89 ± 0.07b	20.75 ± 0.07d	129.39 ± 0.01d		
Peel	Fresh	68.17 ± 0.03a	7.38 ± 0.09b	19.56 ± 0.09d	120.95 ± 0.09d	7.38 ± 0.09b	19.56 ± 0.09d	120.95 ± 0.09d	7.38 ± 0.09b	19.56 ± 0.09d	120.95 ± 0.09d	7.38 ± 0.09b	19.56 ± 0.09d	120.95 ± 0.09d		
Seed	Fresh	68.17 ± 0.03a	7.38 ± 0.09b	19.56 ± 0.09d	120.95 ± 0.09d	7.38 ± 0.09b	19.56 ± 0.09d	120.95 ± 0.09d	7.38 ± 0.09b	19.56 ± 0.09d	120.95 ± 0.09d	7.38 ± 0.09b	19.56 ± 0.09d	120.95 ± 0.09d		

* Standard deviation; **Values in each row with different letters are significantly different (p < 0.05)
Table 2 Fatty acid compositions of different parts of “Pinkerton” avocado fruit.

	Fresh	Air-drying	Microwave drying	Oven drying	Fresh	Air-drying	Microwave drying	Oven drying	Fresh	Air-drying	Microwave drying	Oven drying	Fresh	Air-drying	Microwave drying	Oven drying
Pulp																
Myristic	17.59 ± 0.05c	20.46 ± 0.20b**	17.07 ± 0.10d	20.60 ± 0.11a	15.59 ± 0.10c	14.84 ± 0.20d	15.81 ± 0.35a	15.15 ± 0.16c	18.04 ± 0.37d	18.71 ± 0.24c	18.93 ± 0.21b	36.16 ± 0.34a	1.20 ± 0.02a	0.49 ± 0.03d	1.70 ± 0.00a	
Palmitic	0.00b ± 0.03a	0.70 ± 0.00c	0.87 ± 0.00a	0.64 ± 0.00c	1.13 ± 0.00a	0.93 ± 0.00b	0.85 ± 0.01d	3.74 ± 0.02b	13.14 ± 0.03a	3.28 ± 0.00d	3.69 ± 0.00c	27.28 ± 0.05c	34.25 ± 0.23b	23.34 ± 0.10d		
Oleic	47.53 ± 0.11d	61.72 ± 0.16c	61.80 ± 0.20b	62.92 ± 0.22a	57.68 ± 0.09b	54.86 ± 0.19d	56.10 ± 0.22c	60.76 ± 0.07a	45.66 ± 0.16a	27.28 ± 0.05c	34.25 ± 0.23b	23.34 ± 0.10d				
Linoleic	13.26 ± 0.03a	9.72 ± 0.02c	13.23 ± 0.01b	8.70 ± 0.02d	17.20 ± 0.01c	20.15 ± 0.06a	19.32 ± 0.06b	16.60 ± 0.03d	22.06 ± 0.01d	27.27 ± 0.05b	31.64 ± 0.12a	22.95 ± 0.02c				
Linolenic	0.07 ± 0.00c	0.09 ± 0.00b	0.10 ± 0.00a	0.12 ± 0.02a	0.12 ± 0.00a	0.12 ± 0.01a	0.62 ± 0.00d	0.67 ± 0.01c	0.73 ± 0.01b	1.12 ± 0.01a						
Behenic	0.45 ± 0.00d	0.53 ± 0.00c	0.95 ± 0.00a	0.90 ± 0.00b	1.94 ± 0.01a	1.86 ± 0.00b	1.52 ± 0.01c	1.37 ± 0.00d	5.23 ± 0.07a	3.97 ± 0.02b	2.98 ± 0.02d					
Erucic	0.09 ± 0.00b	0.09 ± 0.00b	0.10 ± 0.00a	0.11 ± 0.00b	0.10 ± 0.00b	0.11 ± 0.00b	0.09 ± 0.00b	0.08 ± 0.00b	0.10 ± 0.00b	0.09 ± 0.00b						
Anchidonic	0.12 ± 0.01a	0.09 ± 0.01b	0.09 ± 0.00b	0.32 ± 0.01b	0.50 ± 0.01a	0.24 ± 0.01c	0.08 ± 0.01d	0.69 ± 0.00bc	0.70 ± 0.03b	0.60 ± 0.05c	1.02 ± 0.02a					
Seed																
Myristic	22.08 ± 0.50a	17.50 ± 0.48c	16.60 ± 0.05d	18.03 ± 0.15b	20.82 ± 0.20a	17.36 ± 0.11b	16.09 ± 0.04c	15.77 ± 0.00d	23.62 ± 0.54a	18.47 ± 0.47d	20.22 ± 0.36b	19.44 ± 0.03c				
Palmitic	0.64 ± 0.02d	0.65 ± 0.01c	0.67 ± 0.00b	0.88 ± 0.00a	0.92 ± 0.01b	1.03 ± 0.00a	0.89 ± 0.00c	0.80 ± 0.00b	3.70 ± 0.16b	9.63 ± 0.00a	2.50 ± 0.02d	3.08 ± 0.02c				
Oleic	58.20 ± 0.38d	62.35 ± 0.31b	60.99 ± 0.05c	62.92 ± 0.13a	56.40 ± 0.17b	56.73 ± 0.05b	57.73 ± 0.02a	55.30 ± 0.06c	51.30 ± 0.18a	26.66 ± 0.09d	35.05 ± 0.25c	36.41 ± 0.03b				
Linoleic	13.33 ± 0.06c	12.51 ± 0.06b	14.23 ± 0.01a	11.21 ± 0.01d	13.54 ± 0.02d	17.31 ± 0.03c	18.27 ± 0.01b	19.80 ± 0.00a	15.04 ± 0.15d	27.80 ± 0.03c	31.16 ± 0.12b	32.14 ± 0.06a				
Linolenic	0.55 ± 0.01d	0.73 ± 0.01c	1.16 ± 0.00a	0.76 ± 0.00b	1.11 ± 0.00d	1.31 ± 0.00c	1.47 ± 0.00b	1.63 ± 0.00a	0.76 ± 0.03d	4.60 ± 0.05a	4.21 ± 0.01b	3.07 ± 0.00c				
Behenic	0.09 ± 0.00b	0.09 ± 0.00b	0.11 ± 0.00a	0.11 ± 0.00a	0.09 ± 0.00b	0.11 ± 0.00a	0.09 ± 0.00b	0.09 ± 0.00b	0.09 ± 0.00b	0.09 ± 0.00b						
Erucic	0.09 ± 0.00b	0.09 ± 0.00b	0.11 ± 0.00a	0.11 ± 0.00a	0.09 ± 0.00b	0.11 ± 0.00a	0.09 ± 0.00b	0.09 ± 0.00b	0.09 ± 0.00b	0.09 ± 0.00b						
Anchidonic	0.12 ± 0.01a	0.09 ± 0.01b	0.09 ± 0.00b	0.32 ± 0.01b	0.50 ± 0.01a	0.24 ± 0.01c	0.08 ± 0.01d	0.69 ± 0.00bc	0.70 ± 0.03b	0.60 ± 0.05c	1.02 ± 0.02a					

*mean ± standard deviation; **Values in each row with different letters are significantly different (p < 0.05); ***nonidentified
except linolenic, with the enhancement of the majority of fatty acids was found in air-dried peels. Palmitic and arachidonic acid amounts of avocado fruit parts (peel, pulp and seed) varied depending on drying type and maturity ($p < 0.05$). In addition, a partial decrease in some fatty acids was observed with drying. While oleic acid amounts of raw and ripe fruit pulps did not change much depending on the drying type, fluctuations were observed in the oleic acid amounts of shell and seed oils ($p < 0.05$). Interestingly, microwave- and air-drying treatments significantly enhanced the level of linoleic acid in the seeds of both ripe and unripe fruits. In addition, all drying treatments increased the amounts of linoleic acid in the pulp of both ripe and unripe fruits, and in the peel and seeds of ripe fruits. The increase in linoleic acid following drying treatment is likely due to thermal degradation of cell matrix and decomposition of conjugated lipids and phospholipids and thereby releasing more free form of linoleic acid. Previously, various studies indicated that oleic, palmitic, linoleic are the major fatty acids in the pulp and seed oils of various avocado cultivars$^{1,8,21-24}$. Krumreich et al.19 studied the effect of drying on the fatty acids of oil extracted for the pulp of mature avocado fruits and observed that oven drying treatment at $60^\circ C$ influenced positively the fatty acid composition of the oil. However, Santana et al.8 reported that the fatty acid composition of avocado pulp oil was not affected by drying process; however, it was affected marginally with the ripening stage and peeling process. The variation in the fatty acid composition of avocado oils between these studies could be attributed to the differences in the, genetic makeup, the fruits parts (pulp, peel, and seeds), maturity stage, postharvest practices, environmental conditions, drying conditions, and oil extraction methods.

3.3 Effect of drying methods on phenolic compounds

The profiles of phenolic compounds of the pulp, peel, and seeds of ripe and unripe avocado fruits as affected by different drying methods are shown in Tables 3, 4 and 5. The major phenolic compounds in the pulp of both ripe and unripe avocado fruits were (+)-catechin, 1,2-dihydroxybenzene, and 3,4-dihydroxybenzoic acid (Table 3). With few exceptions, the quantities of all phenolic compounds were higher in the pulp of unripe fruits compared to that in ripe ones. While the (+)-catechin contents of fresh, air-dried, microwave and oven-dried unripe avocado fruit peels were 203.04 mg/100 g, 208.87 mg/100 g, 36.71 mg/100 g and 99.82 mg/100 g, respectively. The (+)-catechin contents of fresh, air-dried, microwave and oven-dried ripe avocado fruit peels were 111.70 mg/100 g, 79.60 mg/100 g, 212.93 mg/100 g and 118.01 mg/100 g, respectively. There was an increase in the amount of (+)-catechin of ripe avocado peel dried in microwave and oven. Probably, this may be due to the decrease in the amount of (+)-catechin in the pulp during maturation as a result of the biochemical reaction. In previous studies, the quantities of phenolic compounds of avocado pulp was differed between avocado cultivars from different countries and growing seasons8,13,28,29 and the composition was different than that reported herein for Pinkerton cultivar. Santana et al.8 reported that fruit ripening and unpeeling process enhanced the phenolic compounds of avocado oils. Regardless of drying process, the peel of both ripe and unripe avocado fruits contained considerable quantities of phenolic compounds (Table 4). (+)-Catechin and 1,2-dihydroxybenzene were found to be the dominant phenolic compounds in both unripe and ripe fruit peel extract. (+)-Catechin content of unripe fruit peel extract was significantly high when the peel was dried by air (208.87 mg/100 g) while that of ripe peel extract was significantly high when the peel was dried by microwave (212.93 mg/100 g). A high level of quercetin was observed in unripe and ripe peel (1174.08 mg/100 g and 773.18 mg/100 g, respectively) dried by microwave. Among the drying methods used, microwave drying greatly improved the quantities of phenolic compounds in the peels of both ripe and unripe avocados. Similarly, Figueroa et al.20 reported that increasing drying temperature from 45 to $85^\circ C$ significantly increased the phenolic compounds in avocado peels. The phenolic compounds of unripe and ripe fruit seed extracts dried by different drying methods are shown in Table 5. In the seeds obtained from unripe fruits, air-drying treatment greatly enhanced the quantities of most phenolic compounds of the seeds compared to other drying treatments, except gallic and caffeic acids which were improved more by conventional oven drying and syringic acid by microwave drying. Interestingly, a higher level of quercetin (2369.94 mg/100 g) content of unripe seeds was observed in air-dried seeds compared to than in fresh seeds (137.66 mg/100 g) suggesting that such drying treatment enhanced its content by more than 17 folds. In the seeds of ripe avocados, air drying treatment improved the contents of 3,4-dihydroxybenzoic, trans-ferulic, and trans-cinnamic acids, kaempferol and isorhamnetin and microwave drying improved that of apigenin 7 glucoside and resveratrol, whereas conventional drying increased the levels of all other phenolic compounds. Comparing the phenolic profiles of avocado pulp, peels, and seeds of ripe and unripe fruits indicated that the peel and seeds are richer than the pulp and that is superior in unripe fruits than ripe ones. The present results highlight the suitability of using the avocado by product, namely, peel and seed, of unripe fruits as sources of phenolic compounds after suitable drying processes. Saavedra et al.55 reported that avocado peels and seeds contain large variety and high amounts of phenolic compounds and drying process improved the quantities of phenolic compounds. Variations in phenolic compounds between fruit parts might be associated with maturity stage but also may be due to environmental con-
Table 3 Phenolic compounds of pulp of avocado (mg/100 g).

Process	Maturity Unripe	Maturity Ripe	Process	Maturity Unripe	Maturity Ripe				
	Fresh	Air-drying	Microwave drying	Oven drying	Fresh	Air-drying	Microwave drying	Oven drying	
Gallic Acid	37.92 ± 0.13*	58.35 ± 0.58a	29.99 ± 0.68c	29.60 ± 0.67d	15.74 ± 0.49d	50.27 ± 0.23b	59.80 ± 1.05a	37.20 ± 0.65c	
3,4-Dihydroxybenzoic Acid	64.91 ± 0.33a*	35.83 ± 0.22c	60.41 ± 0.31b	23.70 ± 0.39d	60.08 ± 0.94b	49.02 ± 0.83d	51.06 ± 0.78c	63.93 ± 0.63a	
(+)-Catechin	19.51 ± 0.55a	98.62 ± 1.48d	99.08 ± 1.45b	98.78 ± 1.25c	109.37 ± 1.30c	108.00 ± 1.70d	188.62 ± 1.37a	165.42 ± 2.56b	
1,2-Dihydroxybenzene	81.81 ± 1.90c	90.18 ± 1.95b	118.60 ± 1.81a	69.59 ± 0.45d	152.04 ± 1.56a	101.16 ± 1.32b	85.47 ± 1.47d	94.68 ± 1.59c	
Syringic Acid	47.88 ± 0.64b	27.35 ± 0.56d	72.45 ± 1.34a	43.52 ± 0.11c	27.13 ± 0.19c	32.08 ± 0.76b	36.74 ± 0.34a	22.83 ± 0.03d	
Caffeic Acid	12.12 ± 0.92b	11.88 ± 0.03d	13.33 ± 0.51a	12.06 ± 0.14c	8.43 ± 0.23d	10.20 ± 0.53c	11.85 ± 0.31b	12.79 ± 0.93a	
Rutin trihydrate	22.49 ± 0.37d	23.26 ± 0.54c	24.42 ± 0.28b	25.50 ± 0.99a	19.44 ± 0.46c	15.36 ± 0.75d	21.53 ± 0.25b	36.95 ± 0.03a	
p-Coumaric Acid	1.20 ± 0.23d	1.56 ± 0.30c	3.04 ± 0.85a	1.77 ± 0.33b	2.29 ± 0.25a	1.48 ± 0.13c	1.51 ± 0.09b	0.95 ± 0.18d	
trans-Ferulic Acid	12.06 ± 0.13c	6.58 ± 0.38d	22.34 ± 0.81b	66.36 ± 0.19a	5.08 ± 0.57d	8.12 ± 0.86a	7.19 ± 0.86b	5.33 ± 0.64c	
Apigenin 7 glucoside	32.27 ± 1.30c	33.90 ± 0.35b	25.40 ± 0.62d	35.34 ± 0.49a	11.97 ± 0.65d	33.06 ± 0.77b	15.74 ± 0.76c	39.34 ± 0.53a	
Resveratrol	6.93 ± 0.65c	10.01 ± 0.07b	5.93 ± 0.82d	11.98 ± 0.63a	5.07 ± 0.62b	3.95 ± 0.01d	4.78 ± 0.90c	11.49 ± 0.71a	
Quercetin	18.21 ± 0.38c	58.18 ± 0.30b	18.22 ± 0.47c	75.10 ± 0.50a	26.67 ± 0.24b	7.37 ± 0.50c	4.86 ± 0.52d	64.95 ± 0.61a	
trans-Cinnamic Acid	4.10 ± 0.09e	3.75 ± 0.39d	5.42 ± 0.73a	5.34 ± 0.35b	2.76 ± 0.50d	4.96 ± 0.39c	6.17 ± 0.60a	6.00 ± 0.32b	
Naringenin	12.81 ± 0.33a	10.88 ± 0.84d	11.54 ± 0.61c	11.62 ± 0.83b	2.26 ± 0.53d	9.59 ± 0.80a	5.23 ± 0.00c	6.17 ± 0.60b	
Kaempferol	13.10 ± 0.74b	20.21 ± 0.45a	7.32 ± 0.00d	19.05 ± 0.67c	9.33 ± 0.31d	17.83 ± 0.16a	16.28 ± 0.32b	13.15 ± 0.53c	
Isorhamnetin	15.87 ± 0.42b	13.03 ± 0.37c	15.95 ± 0.52a	7.19 ± 0.61d	11.64 ± 0.67d	14.70 ± 0.23a	13.12 ± 0.05b	12.36 ± 0.94c	

*mean ± standard deviation; **Values in each row with different letters are significantly different (p < 0.05)
Table 4: Phenolic compounds of peel of avocado (mg/100 g).

Maturity	Process	Fresh	Unripe	Microwave drying	Oven drying	Ripe	Microwave drying	Oven drying	
	Gallic Acid	35.82 ± 0.72b	30.13 ± 0.61c	26.47 ± 0.44d	36.45 ± 0.88a	30.64 ± 0.03d	53.90 ± 0.07a	32.72 ± 0.98c	46.05 ± 0.09b
	3,4-Dihydroxybenzoic Acid	31.74 ± 0.43d**	45.88 ± 0.82b	63.31 ± 0.24a	40.35 ± 0.60c	73.78 ± 0.15a	66.59 ± 2.23b	51.59 ± 1.07c	50.89 ± 1.09d
	(+)-Catechin	203.04 ± 1.34b	208.87 ± 1.29a	36.71 ± 0.04d	99.82 ± 2.73c	111.70 ± 5.48c	79.60 ± 1.13d	212.93 ± 4.81a	118.01 ± 2.77b
	1,2-Dihydroxybenzene	101.71 ± 2.72c	267.88 ± 2.21b	309.97 ± 3.16a	92.09 ± 3.74d	77.25 ± 0.43d	248.91 ± 2.23b	51.59 ± 1.07c	107.88 ± 3.92c
	Syringic Acid	41.21 ± 0.56d	74.14 ± 0.00b	101.45 ± 5.73a	49.03 ± 0.55c	47.68 ± 0.47a	45.76 ± 0.31b	40.47 ± 0.71c	29.42 ± 0.10d
	Caffeic Acid	9.98 ± 0.49d	277.83 ± 2.57a	74.60 ± 0.12b	17.23 ± 0.13c	10.59 ± 0.94d	13.94 ± 0.45c	49.49 ± 0.87a	25.89 ± 0.26b
	Rutin trihydrate	5.68 ± 0.04c	4.60 ± 0.44d	167.18 ± 5.52a	71.59 ± 0.41b	22.67 ± 0.50c	124.02 ± 0.99a	42.81 ± 0.81b	22.10 ± 0.13d
	p-Coumaric Acid	2.38 ± 0.83d	22.89 ± 0.13a	12.79 ± 0.01b	8.66 ± 0.61c	3.37 ± 0.90d	11.26 ± 0.06a	7.60 ± 0.22c	8.83 ± 0.21b
	trans-Ferulic Acid	5.40 ± 0.36d	154.09 ± 2.64b	368.98 ± 3.47a	82.00 ± 0.50c	16.25 ± 0.08d	48.27 ± 1.00c	49.48 ± 0.13b	85.48 ± 0.77a
	Apigenin 7 glucoside	27.85 ± 0.68c	21.24 ± 0.20d	110.47 ± 2.05a	30.89 ± 0.23b	30.24 ± 0.53c	69.92 ± 0.17a	19.44 ± 0.65d	34.53 ± 0.25b
	Resveratrol	8.04 ± 0.33d	28.37 ± 0.76b	133.91 ± 2.59a	18.18 ± 0.82c	3.86 ± 0.80d	24.70 ± 0.33b	36.63 ± 0.00a	13.89 ± 0.57c
	Quercetin	36.25 ± 0.24d	133.05 ± 1.77b	1174.08 ± 4.98a	40.97 ± 0.57c	4.77 ± 0.90d	109.00 ± 1.70b	77.18 ± 2.63a	64.82 ± 0.22c
	trans-Cinnamic Acid	14.99 ± 0.37c	22.28 ± 0.15b	394.35 ± 1.70a	5.50 ± 0.82d	3.76 ± 0.66c	10.49 ± 0.48b	237.42 ± 4.91a	3.54 ± 0.36d
	Naringenin	18.86 ± 0.97b	18.90 ± 0.00b	65.89 ± 0.93a	5.85 ± 0.78c	9.06 ± 0.97d	14.78 ± 0.28b	104.53 ± 2.64a	9.32 ± 0.58c
	Kaempferol	46.01 ± 0.54b	46.00 ± 0.00b	238.66 ± 1.65a	19.83 ± 0.83c	10.01 ± 0.23d	28.11 ± 0.71b	92.74 ± 0.99a	17.72 ± 0.05c
	Isorhamnetin	31.09 ± 0.09c	36.88 ± 0.00b	83.53 ± 0.15a	10.09 ± 0.51d	7.54 ± 0.14d	24.33 ± 0.18b	260.53 ± 1.74a	11.21 ± 0.08c

*mean ± standard deviation; **Values in each row with different letters are significantly different ($p < 0.05$)
Table 5 Phenolic compounds of seed of avocado (mg/100 g).

Maturity	Unripe	Ripe						
Process	Fresh	Air-drying	Microwave drying	Oven drying	Fresh	Air-drying	Microwave drying	Oven drying
Gallic Acid	7.90 ± 0.95*d	13.40 ± 0.77c	20.19 ± 0.14b	53.64 ± 0.09a	32.72 ± 0.90c	38.41 ± 0.90b	23.37 ± 0.51d	116.78 ± 0.67a
3,4-Dihydroxybenzoic Acid	67.78 ± 0.20a**	60.53 ± 2.69b	39.58 ± 0.87d	51.79 ± 0.38c	33.92 ± 0.83d	70.08 ± 1.79a	48.27 ± 0.52c	61.28 ± 0.38b
(+)-Catechin	203.84 ± 4.61a	172.23 ± 3.24b	101.26 ± 2.97c	45.87 ± 0.61d	105.71 ± 1.27a	7.78 ± 0.71d	60.72 ± 0.46c	63.80 ± 0.57b
1,2-Dihydroxybenzene	112.12 ± 2.34b	252.30 ± 4.24a	94.77 ± 1.28c	36.65 ± 0.42d	123.80 ± 1.86c	95.77 ± 1.37d	127.03 ± 1.31b	154.03 ± 1.23a
Syringic Acid	59.80 ± 0.74b	31.71 ± 0.17d	49.42 ± 0.58c	94.28 ± 1.17a	83.63 ± 1.83b	19.94 ± 0.07c	16.45 ± 0.90d	9.15 ± 1.18a
Caffeic Acid	13.07 ± 0.48c	11.31 ± 0.48d	23.37 ± 0.96a	15.74 ± 0.77b	11.05 ± 0.61c	8.70 ± 0.08d	14.97 ± 0.45b	81.70 ± 0.72a
Rutin trihydrate	10.84 ± 0.63d	125.85 ± 4.40a	21.94 ± 0.86c	71.74 ± 0.44b	19.20 ± 0.68c	34.46 ± 0.36b	10.54 ± 0.27d	79.91 ± 1.91a
p-Coumaric Acid	1.00 ± 0.29d	16.73 ± 0.26a	12.07 ± 0.65b	4.94 ± 0.01c	1.51 ± 0.50d	8.54 ± 0.09b	2.91 ± 0.31c	16.68 ± 0.42a
trans-Fenilic Acid	8.49 ± 0.08c	53.13 ± 1.32a	4.14 ± 0.47d	25.37 ± 0.87b	5.94 ± 0.19c	25.63 ± 0.39a	1.36 ± 0.12d	25.08 ± 0.47b
Apigenin 7 glucoside	64.44 ± 0.51b	47.94 ± 0.88c	106.16 ± 0.04a	45.76 ± 0.02d	23.94 ± 0.91c	7.18 ± 0.76d	55.89 ± 0.79a	37.52 ± 0.08b
Resveratrol	45.76 ± 0.58a	27.42 ± 0.24b	15.04 ± 0.16c	8.44 ± 0.83d	13.28 ± 0.25b	10.03 ± 0.84d	20.76 ± 0.92a	10.69 ± 0.57c
Quercetin	137.66 ± 2.74b	2369.94 ± 8.49a	42.04 ± 0.47c	34.83 ± 0.33d	241.43 ± 2.57a	52.53 ± 0.13d	147.79 ± 1.05b	59.84 ± 0.39c
trans-Cinnamic Acid	43.40 ± 1.28b	178.61 ± 0.00a	9.96 ± 0.61c	4.89 ± 0.45d	77.06 ± 0.36b	91.97 ± 0.55a	44.95 ± 0.44c	6.27 ± 0.52d
Naringenin	42.63 ± 0.00b	90.66 ± 0.00a	12.48 ± 0.98c	8.14 ± 0.46d	95.54 ± 0.00a	- ***	42.12 ± 0.55b	10.10 ± 0.31c
Kaempferol	25.95 ± 0.00c	247.93 ± 0.00a	33.40 ± 0.06b	11.77 ± 0.91d	29.48 ± 0.00b	98.34 ± 0.00a	15.91 ± 0.00d	18.65 ± 0.78c
Isorhamnetin	71.52 ± 1.50b	123.27 ± 2.24a	31.65 ± 0.82c	10.41 ± 0.80d	33.64 ± 0.28c	69.14 ± 0.62a	56.21 ± 0.39b	11.15 ± 0.89d

*mean ± standard deviation; **Values in each row with different letters are significantly different (p < 0.05); ***nonidentified
4 Conclusion
This study represents one of the few studies on the combined impacts of avocado maturity stage and drying methods on the oil yield bioactive properties and fatty acid composition of the pulp, peel, and seeds. The results indicate that the avocado pulp, peel, and seeds are important sources of bioactive compounds and essential fatty acids at the ripe and unripe stages. With few exceptions, drying of the pulp, peel, and seeds significantly improved oil yield, bioactive properties and fatty acid composition of these parts of both ripe and unripe avocado fruits. The most suitable drying method for preserving the analyzed quality parameters was microwave-drying followed by air and oven. The present results highlight the suitability of using the avocado fruit pulp, peel and seed, of both ripe and unripe fruits as sources of bioactive compounds after suitable drying process.

Acknowledgements
The authors would like to extend their sincere appreciation to the Deanship of Scientific Research at King Saud University for its funding the Research group NO (RG-1441-325).

References
1) Bora, P.S.; Narain, N.; Rocha, R.V.M.; Paulo, M.Q. Characterization of the oils from the pulp and seeds of avocado (cultivar: Fuerte) fruits. *Grasas Aceites* **52**, 171-174 (2001).
2) Daiuto, E.R.; Vieites, R.L.; de Carvalho, L.R.; Simon, J.W.; Russo, V.C. Sensory analysis of cold-stored guacamole added with a-tocopherol and ascorbic acid. *Rev. Ceres* **58**, 140-148 (2011).
3) Jimenez, P.; Garcia, P.; Quiral, V.; Vasquez, K.; Parra-Ruiz, C.; Reyes-Farias, M.; Garcia-Diaz, D.F.; Robert, P.; Encina, C.; Soto-Covasich, J. Pulp, leaf, peel and seed of avocado fruit: A review of bioactive compounds and healthy benefits. *Food Rev. Int.* DOI: 10.1080/87559129.2020.1717520 (2020).
4) Hurtado-Fernandez, E.; Carrasco-Pancorbo, A.; Fernandez-Gutierrez, A. Profiling LC-DAD-ESI-TOF MS method for the determination of phenolic metabolites from avocado (*Persea americana*). *J. Agri. Food Chem.* **59**, 2255-2267 (2011).
5) Saavedra, J.; Cordova, A.; Navarro, R.; Diaz-Calderon, P.; Fuentealba, C.; Astudillo-Castro, C.; Toledo, L.; Enrione, J.; Galvez, L. Industrial avocado waste: Functional compounds preservation by convective drying process. *J. Food Eng.* **198**, 81-90 (2017).
6) Hurtado-Fernandez, E.; Pacchiarotta, T.; Gomez-Romero, M.; Schoenmaker, B.; Derks, R.; Deelder, A.M. Ultra high performance liquid chromatography-time of flight mass spectrometry for analysis of avocado fruit metabolites: Method evaluation and applicability to the analysis of ripening degrees. *J. Chromatogr. A* **1218**, 7723-7738 (2011).
7) Villa-Rodriguez, J.A.; Yahia, E.M.; Gonzalez-Leon, A.; Ifie, I.; Robles-Zepeda, R.E.; Domínguez-Avila, J.A.; Gonzalez-Aguilar, G.A. Ripening of ‘Hass’ avocado mesocarp alters its phytochemical profile and the in vitro cytotoxic activity of its methanolic extracts. *South African J. Bot.* **128**, 1-8 (2020).
8) Santana, I.; Castello-Branco, V.N.; Guimarães, B.M.; Silva, L.; de O.; Peixoto, V.O.; Di, S.; Cabral, L.M.C.; Freitas, S.P.; Torres, A.G. Hass avocado (*Persea americana* Mill.) oil enriched in phenolic compounds and tocopherols by expeller-pressing the unpeeled microwave dried fruit. *Food Chem.* **286**, 354-361 (2019).
9) AOAC, Official Methods of Analysis, 15th ed. Association of Official Analytical Chemists, Washington, DC (1990).
10) ISO, Animal and vegetable fats and oils preperation of methyl esters of fatty acids, International Organization for Standardization, ISO. Geneve, Method ISO 5509, 1-6 (1978).
11) Lopez-Cobo, A.; Gomez-Caravaca, A.M.; Pasini, F.; Caboni, M.F.; Segura-Carretero, A.; Fernandez-Gutierrez, A. HPLC-DAD-ESI-QTOF-MS and HPLC-FLD-MS as valuable tools for the determination of phenolic and other polar compounds in the edible part and by-products of avocado. *LWT - Food Sci. Technol.* **73**, 505-513 (2016).
12) Yoo, K.M.; Lee, K.W.; Park, J.B.; Lee, H.J.; Hwang, I.K. Variation in major antioxidants and total antioxidant activity of Yuzu (*Citrus junos* SiebexTanaka) during maturation and between cultivars. *J. Agric. Food Chem.* **52**, 5907-5913 (2004).
13) Lee, S.K.; Mbwambo, Z.H.; Chung, H.S.; Luyengi, L.; Games, E.J.C.; Mehta, R.G. Evaluation of the antioxidant potential of natural products. *Comb. Chem. High Throughput Screen.* **1**, 35-46 (1998).
14) Avhad, M.R.; Marchetti, J.M. Temperature and pre-treatment effects on the drying of Hass avocado seeds. *Biomass Bioenergy* **83**, 467-473 (2015).
15) Dantas, D.; Pasquali, M.A.; Cavalcanti-Mata, M.; Duarte, M.E.; Lisboa, H.M. Influence of spray drying conditions on the properties of avocado powder drink.
Mostert, M.E.; Botha, B.M.; Du Plessis, L.M.; Duodu, K.G. Effect of fruit ripeness and method of fruit drying on the extractability of avocado oil with hexane and supercritical carbon dioxide. *J. Sci. Food Agric.* **87**, 2880-2885 (2007).

17) Dos Santos, M.A.Z.; Alicieo, T.V.R.; Pereira, C.M.P.; Ramis-Ramos, G.; Mendonça, C.R.B. Profile of bioactive compounds in avocado pulp oil: Influence of the drying processes and extraction methods. *J. Am. Oil Chem. Soc.* **91**, 19-27 (2014).

18) Moreno, A.O.; Dorantes, L.; Galíndez, J.; Guzmán, R.I. Effect of different extraction methods on fatty acids, volatile compounds, and physical and chemical properties of avocado (*Persea americana* Mill.) oil. *J. Agric. Food Chem.* **51**, 2216-2221 (2003).

19) Krumreich, F.D.; Borges, C.D.; Mendonça, C.R.B.; Jansen-Alves, C.; Zambiazi, R.C. Bioactive compounds and quality parameters of avocado oil obtained by different processes. *Food Chem.* **257**, 376-381 (2018).

20) Figueroa, J.G.; Borras-Linares, I.; Lozano-Sanchez, J.; Quirantes-Pine, R.; Segura-Carretero, A. Optimization of drying process and pressurized liquid extraction for recovery of bioactive compounds from avocado peel by-product. *Electrophoresis* **39**, 1908-1916 (2018).

21) Galvao, M.S.; Narain, N.; Nigam, N. Influence of different cultivars on oil quality and chemical characteristics of avocado fruit. *Food Sci. Technol. Campinas* **34**, 539-546 (2014).

22) Forero-Doria, O.; Garcia, M.F.; Vergara, C.E.; Guzman, L. Thermal analysis and antioxidant activity of oil extracted from pulp of ripe avocados. *J. Therm. Analysis Calor.* **130**, 959-966 (2017).

23) Rodríguez-López, C.E.; Hernández-Brenes, C.; Treviño, V.; de la Garza, R.I.D. Avocado fruit maturation and ripening: dynamics of aliphatic acetogenins and lipidomic profiles from mesocarp, idioblasts and seed. *BMC Plant Biol.* **17**, 159 (2017).

24) Santana, I.; dos Reis, L.M.F.; Torres, A.G.; Cabral, L.M.C.; Freitas, S.P. Avocado (*Persea americana* Mill.) oil produced by microwave drying and expeller pressing exhibits low acidity and high oxidative stability. *Eur. J. Lipid Sci. Technol.* **117**, 999-1007 (2015).

25) Yu, L.; Li, G.; Li, M.; Xu, F.; Beta, T.; Bao, J. Genotypic variation in phenolic acids, vitamin E and fatty acids in whole grain rice. *Food Chem.* **197**, 776-782 (2016).

26) Özdemir, F.; Topuz, A. Changes in dry matter, oil content and fatty acids composition of avocado during harvesting time and post-harvesting ripening period. *Food Chem.* **86**, 79-83 (2004).

27) Mutwali, N.I.A.; Mustafa, A.I.; Gorafi, Y.S.A.; Ahmed, I.A.M. Effect of environment and genotypes on the physicochemical quality of the grains of newly developed wheat inbred lines. *Food Sci. Nutr.* **4**, 508-520 (2016).

28) Villa-Rodriguez, J.A.; Molina-Corral, F.J.; Ayala-Zavala, J.F.; Olivas, G.I.; González-Aguilar, G.A. Effect of maturity stage on the content of fatty acids and antioxidant activity of ‘Hass’ avocado. *Food Res. Int.* **44**, 1231-1237 (2011).

29) Di Stefano, V.; Avellone, G.; Bongiorno, D.; Indelicato S.; Massenti, R.; Lo Bianco, R. Quantitative evaluation of the phenolic profile in fruits of six avocado (*Persea americana*) cultivars by ultra-high-performance liquid chromatography-heated electrospray-mass spectrometry. *Int. J. Food Proces.* **20**, 1302-1312 (2017).

30) Ghafoor, K.; Uslu, N.; Al-Juhaimi, F.; Babiker, E.E.; Ahmed, I.A.M.; Yildiz, M.U.; Alsawhmi, O.N.; Özcan, M.M. Tocopherol Contents of pulp oils extracted from ripe and unripe avocado fruits dried by different drying systems. *J. Oleo Sci.* (2021) (in press).