Supporting Information

Artificial cationic peptides that increase nuclease resistance of siRNA without disturbing RNAi activity

Yusuke Maeda\(^a\), Rintaro Iwata Hara\(^{a,b}\), Kazutaka Nishina\(^b\), Kie Yoshida-Tanaka\(^b\), Taiichi Sakamoto\(^c\), Takanori Yokota\(^b\) and Takeshi Wada\(^a\)

\(^a\)Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
\(^b\)Department of Neurology and Neurological Science, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8519, Japan
\(^c\)Faculty of Advanced Engineering, Chiba Institute of Technology, 2-17-1 Tsudanuma, Narashino, Chiba, 275-0016, Japan

Table of contents

Fluorescence anisotropy 2
$K_d = 0.21 \pm 0.09 \mu M$

Fig. S1 Fluorescence anisotropy of 100 nM of (FAM-rCGCGAAUUCGCG)$_2$

was titrated by increasing concentration of A1.

$K_d = 0.071 \pm 0.02 \mu M$

Fig. S2 Fluorescence anisotropy of 100 nM of (FAM-rCGCGAAUUCGCG)$_2$

was titrated by increasing concentration of A2.
Fig. S3 Fluorescence anisotropy of 100 nM of (FAM-rCGCGAAUUCGCG)$_2$ was titrated by increasing concentration of A3.

$$K_d = 0.097 \pm 0.04 \mu M$$

Fig. S4 Fluorescence anisotropy of 100 nM of (FAM-rCGCGAAUUCGCG)$_2$ was titrated by increasing concentration of A4.

$$K_d = 0.14 \pm 0.04 \mu M$$