Dietary supplements and pediatric non-alcoholic fatty liver disease: Present and the future

Mehran Rahimlou, Hoda Ahmadnia, Azita Hekmatdoost

Mehran Rahimlou, Department of Clinical Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran 1948141556, Iran

Hoda Ahmadnia, Department of Clinical Nutrition, School of Nutritional Sciences and Dietetics, Shiraz University of Medical Science, Shiraz 7417985336, Iran

Azita Hekmatdoost, Department of Clinical Nutrition and Dietetics, Faculty of Nutrition and Food Technology, National Nutrition and Food Technology, Research Institute Shahid Beheshti University of Medical Science, Tehran 1981619573, Iran

Author contributions: All the authors contributed to this work.

Conflict-of-interest statement: The authors declare that they have no conflicts of interest.

Open-Access: This article is open-access article which was selected by an in-house editor and fully peer-reviewed by external reviewers. It is distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited and the use is non-commercial. See: http://creativecommons.org/licenses/by-nc/4.0/

Correspondence to: Dr. Azita Hekmatdoost, Department of Clinical Nutrition and Dietetics, Faculty of Nutrition and Food Technology, National Nutrition and Food Technology, Research Institute Shahid Beheshti University of Medical Science, #7, West Arghavan St., Farahzadi Blvd., Tehran 1981619573, Iran. a.hekmat2000@yahoo.com Telephone: +98-21-22360658 Fax: +98-21-22360657

Received: May 20, 2015 Peer review started: May 20, 2015 First decision: July 29, 2015 Revised: August 17, 2015 Accepted: October 16, 2015 Article in press: October 19, 2015

Published online: November 8, 2015

Abstract

Non-alcoholic fatty liver disease (NAFLD) is the most common chronic liver disease in children. High prevalence of pediatric obesity and sedentary lifestyle has augmented the incidence of NAFLD in children. Obesity is associated with an increased risk of NAFLD through various mechanisms such as intensification of insulin resistance and increased levels of inflammatory markers. There is no approved medical intervention for treatment of pediatric NAFLD; the only proven strategy in management of pediatric NAFLD is lifestyle modification. Recently, the effects of nutritional supplements have been examined in the management of pediatric NAFLD. The purpose of this review is to summarize the studies evaluating the effects of nutritional supplements on pediatric NAFLD and explain the future direction in this field.

Key words: Pediatric non-alcoholic fatty liver disease; Diet; Nutrition; Dietary supplement; Fatty liver

© The Author(s) 2015. Published by Baishideng Publishing Group Inc. All rights reserved.

Core tip: The purpose of this review is to report the existing evidences and future directions on dietary supplements that can be used for management of pediatric nonalcoholic fatty liver disease. Also we tried to explain the properties of these supplements and needs for future studies.

Rahimlou M, Ahmadnia H, Hekmatdoost A. Dietary supplements and pediatric non-alcoholic fatty liver disease: Present and the future. World J Hepatol 2015; 7(25): 2597-2602 Available from: URL: http://www.wjgnet.com/1948-5182/full/v7/i25/2597.htm
INTRODUCTION
Non-alcoholic fatty liver disease (NAFLD) is the most common chronic liver disease in children. This disorder includes a wide spectrum from a simple steatosis with the mortality rate lower than one percent to a critical illness such as cirrhosis and hepatic fibrosis that may ultimately lead to hepatocellular carcinoma and death[1,2]. If NAFLD is not treated at early stages, it can progress to nonalcoholic steatohepatitis (NASH), which is characterized by lobular inflammation and hepatocellular injury which may definitely progress to cirrhosis and liver fibrosis[3]. Coincident with the rise in prevalence of childhood obesity over the past few decades, NAFLD has become the leading cause of liver disease in children. Insulin resistance and oxidative stress are involved in the pathogenesis of NAFLD[4].

PREVALENCE
Several conditions such as obesity, sedentary lifestyle and the use of high-calorie foods have caused a sharp increase in the NAFLD prevalence[5]. The prevalence of NAFLD is different from 5% to 20% in general population and above 40% in obese and type 2 diabetes patients[6,7]. Also, its prevalence is different between the men and women and increase in the older people. According to the recent studies, NAFLD prevalence in normal children is 3%, rising up to 50%-70% among obese children[8]. The prevalence in developed countries also increased remarkably from 16.9% to 23.8% for boys and from 16.2% to 22.6% for girls, while in developing countries increased from 8.1% to 12.9% for boys and from 8.4% to 13.4% for girls. In most of the communities, parallel with the rising in prevalence of the obesity, and chronic diseases such as diabetes and dyslipidemia, the prevalence rate of the NAFLD is also increasing[9].

According to the American Association for the Study of Liver Disease guideline, liver biopsy is a gold standard for diagnoses of NAFLD[10]; however, because of the invasive nature of this method, it is usually recommended to use the other methods such as magnetic resonance spectroscopy and Fibroscan for screening and staging of this disease[11].

PATHOPHYSIOLOGY
Pathogenesis of NAFLD is closely associated with obesity and insulin resistance[12,13]. Obesity especially abdominal obesity can lead to insulin resistance. Insulin plays various roles in metabolism such as oxidative distress and carbohydrate metabolism. In obesity and some chronic diseases such as type 2 diabetes and dyslipidemia, insulin cannot function properly, so lipolysis pathway will be activated leading to an increased influx of free fatty acids to the liver[14]. Also, several studies have confirmed that endogenous lipid synthesis is increased in patients with NAFLD[15]. Hepatic fat derivatives such as malondialdehyde (MDA) can contribute in the progression of NAFLD[16,17]. In addition, the expression of certain proinflammatory cytokines such as tumor necrosis factor (TNF)-α increases in obese people, which can cause insulin resistance through deterioration of insulin receptors[15].

Free fatty acids that released from the adipose tissue can inhibit the Cytochrome P450 (an enzymatic system that involved in various pathways specially free fatty acids beta-oxidation), which results in the production of active oxygen radicals and depletion of body antioxidant reserves (such as glutathione and vitamin E)[18].

Moreover, genetic predisposition plays an important role in NAFLD pathogenesis. The genes involved in the mitochondrial and fatty acids metabolism, affect the disease progression[19].

MANAGEMENT OF NAFLD
One of the main strategies in the management of pediatric NAFLD is modification of lifestyle and dietary pattern. Several studies have found that gradual weight loss and regular physical activity can help in the treatment of NAFLD through improving the insulin sensitivity, reduction in the body inflammation and resolution of hepatic steatosis[20-22]. It should be considered that weight loss in obese children (5% to 10% of basal weight) must be quite gradual and the diet must be balanced[23].

The result of pharmacological interventions in treatment of pediatric NAFLD is contradictory. The main family of medications that evaluated for treatment of pediatric NAFLD are insulin sensitizers specially metformin[24]. These medications play a positive role in the treatment of NAFLD by improving insulin sensitivity; however, these beneficial effects have not been shown in long term treatment[25]. Recently, the beneficial effects of some supplements specially vitamin E[26], probiotics[26] and omega-3 fatty acids[27] in NAFLD management have been shown.

The purpose of this review is to report the effectiveness of some dietary supplements in the management of the pediatric NAFLD and future directions in this field.

LITERATURE STUDY
A MEDLINE, PubMed and Cochrane Review database search used a combination of keywords, including NAFLD, pediatric, treatments, lifestyle changes, NASH, supplements, nutrition, vitamins, minerals, vitamin E, vitamin D, polyunsaturated fatty acids, probiotic, symbiotic, polyphenols, curcumin, resveratrol, quercetin, anthocyanin, herbal medicine, green tea polyphenols, cinnamon, ginger and their related MeSH terms. The articles were selected based on their relevance to the review.
POLYUNSATURATED FATTY ACIDS
Several studies have evaluated the beneficial effects of Omega-3 long-chain polyunsaturated fatty acids on the treatment of NAFLD[27]. Janczyk et al.[28] have shown that supplementation with long chain omega-3 for 6 mo resulted in a significant decrease in aspartate aminotransferase and gamma-glutamyl transpeptidase levels compared with the control group; however, it did not significantly reduce the levels of alanine aminotransferase (ALT) and liver steatosis. Nobili et al.[29] have reported that Docosahexaenoic acid (DHA) supplementation for 24 mo resulted in a significant reduction in triglyceride and ALT levels and improved liver steatosis compared with the control group. As noted, one of the major risk factors that involved in NAFLD pathogenesis is insulin resistance[13]. Nobili et al.[30] have shown that DHA increased insulin sensitivity and decreased triglyceride levels in children with NAFLD. Di Minno et al.[27] have also proposed that omega-3 supplementation has a therapeutic effect on pediatric NAFLD. Also in another study, St-Jules et al.[31] have shown that lack of fish and long-chain omega-3 fatty acid intake in children was associated with greater portal and lobular inflammation in children with NAFLD. It seems that omega-3 fatty acids supplementation has beneficial effects on pediatric NAFLD through its anti-inflammatory and insulin sensitizer effects; however, no study has examined its long term effects.

Vitamin E
Several previous studies have evaluated the beneficial effects of vitamin E, as a potent antioxidant, in the management of pediatric NAFLD. Nobili et al.[32] prescribed vitamin E in children with NAFLD and observed a similar decrease in the levels of ALT and HOMA-IR in the intervention and control groups after 12 mo. A large, well designed, clinical trial[25] has shown that vitamin E is not superior to placebo in attaining the sustained reduction in ALT level in patients with pediatric NAFLD after 96 wk; however vitamin E could significantly reduce the ALT levels at weeks 24, and 48. Moreover, it could significantly improve the histopathological features of the disease at week 96. Finally, Sarkhy et al.[33] in a systematic review and meta-analysis have shown that vitamin E supplementation decreases level of ALT. It seems that vitamin E can improve the characteristics of pediatric NAFLD and specially NASH patients in short time, but not in the long term supplementation.

Prebiotics and probiotics
Prebiotics are among the major supplements which have attracted the attention of many investigators regarding their application for the treatment of NAFLD and NASH[34]. Prebiotics can modify some NAFLD risk factors such as insulin resistance, liver fat and oxidative stress[24,35-37]. Prebiotics are chemicals that induce the growth or activity of microorganisms. In some animal studies, researchers have shown that mice fed with prebiotic products exhibited a lower plasma of inflammatory markers such as TNF-α and interleukin-1α in comparison to controls[38]. Some of the probiotics such as lactulose and galacto-oligosaccharides can promote the growth of certain intestinal bacteria such as Lactobacillus and down-regulate levels of inflammatory factors. In a clinical trial, researchers showed that supplementation with oligofructose decreased levels of liver enzymes specially ALT[39]. Alisi et al.[40] performed a clinical trial and prescribed VSL#3 [a mixture of eight probiotic strains including: Streptococcus thermophilus, Bifidobacteria (B. breve, B. infantis, B. longum), Lactobacillus acidophilus, L. plantarum, L. paracasei, and L. delbrueckii subsp. Bulgaricus] in children with NAFLD for four months and evaluated changes in fatty liver severity after 4 mo as detected by ultrasonography. The results of this study showed that probiotic supplementation reduced the severity of NAFLD but it did not cause significant differences in levels of triglyceride, ALT and HOMA-IR in comparison to the placebo group. The authors discussed that this beneficial effect is due to the increased levels of glucagon-like peptide 1. Vajro et al.[41] proposed that supplementation with Lactobacillus rhamnosus strain GG decreases the level of ALT in children with persistently elevated aminotransferases and echogenic livers. Further clinical trials are needed to find the best combination of probiotics for achieving the best results from supplementation.

Vitamin D
Vitamin D is a crucial nutrient for children’s health and development[42]. Several studies have reported the vitamin D deficiency in obese children[43]; on the other hand, NAFLD is more prevalent in obese children than normal weight children[44]. These data urged the investigators to evaluate the association of plasma vitamin D levels with NAFLD pathogenesis. Misra et al.[45] evaluated the vitamin D level in children with biopsy-proven NAFLD. They reported a high prevalence of vitamin D deficiency in children with NAFLD; however, they did not find any association between vitamin D deficiencies and the severity of NAFLD. Black et al.[46] analyzed the association of vitamin D and NAFLD severity in adolescents with NAFLD; they have reported a high vitamin D deficiency in these patients. In addition, they showed an inverse association between serum vitamin D levels and severity of NAFLD. In a similar study, Nobili et al.[47] have demonstrated a reverse association between vitamin D level in serum and severity of NAFLD and fibrosis in 73 children with elevated serum aminotransferase levels and hyperechogenic liver on ultrasonography. Little is known about the effect of vitamin D supplementation on NAFLD in children; however, a clinical trial in adults resulted in a reduction in MDA and hs-CRP levels without any significant change in ALT levels[48]. Conducting clinical trials in children are needed.

Polyphenols
Polyphenols are plant-derived compounds which have been used for treatment of NAFLD due to their anti-
inflammatory and antioxidant properties. One of the main members of polyphenols family is resveratrol; supplementation with resveratrol has been shown to be useful in reduction of the severity of the disease. It has been shown that resveratrol reduces the level of liver enzymes and inflammatory cytokines and attenuates hepatic steatosis. Other members of the polyphenols family such as curcumin, quercetin, anthocyanin and green tea polyphenols have been also indicated to have promising outcomes in the treatment of adults NAFLD. The beneficial roles of polyphenols in adults NAFLD propose its effectiveness in pediatric NAFLD. Thus, clinical trials in children are needed to confirm it.

INSULIN SENSITIZERS AND LIPID LOWERING AGENTS

Herbal medicine has been used in traditional medicine of many countries for treatment of different disorders. Since these medications can improve the insulin sensitivity and lipid profile, they are proposed for treatment of NAFLD. Several studies have shown satisfactory results from these insulin sensitizers and lipid reducing agents such as cinnamon, curcumin and ginger in the management of NAFLD; however, studies have not conducted to examine the effects of these supplements on pediatric NAFLD. More extensive investigations are needed to fully determine the therapeutic potential of these components for treating NAFLD.

CONCLUSION

Due to the sharp rise in obesity prevalence in children and a dramatically increase in pediatric NAFLD prevalence, therapeutic strategies are urgently needed. Dietary supplements play a pivotal role in pediatric management through insulin sensitizer, anti-oxidant and anti-inflammatory properties. In recent years, the beneficial effects of some of these supplements have been shown; however, several of them have not yet been evaluated. Further clinical trials are needed to support the use of supplements, either as preventative or therapeutic agents in pediatric NAFLD.

More studies related to the pediatric NAFLD performed to assess changes in children lifestyle. Recently, the beneficial effects of nutritional supplements have been shown in both pediatric and adult NAFLD; however, several of these supplements’ effects are assessed only in adults. Thus, evaluating the effects of these potentially beneficial supplements in pediatric NAFLD is highly recommended.

REFERENCES

1 Matteoni CA, Younossi ZM, Gramlich T, Boparai N, Liu YC, McCullough AJ. Nonalcoholic fatty liver disease: a spectrum of clinical and pathological severity. Gastroenterology 1999; 116: 1413-1419 [PMID: 10548825 DOI: 10.1016/S0016-5085(99)07050-6-8]

2 McCullough AJ. The clinical features, diagnosis and natural history of nonalcoholic fatty liver disease. Clin Liver Dis 2004; 8: 521-533, viii [PMID: 15331061 DOI: 10.1016/j.clid.2004.04.004]

3 Sanyal AJ, Brunt EM, Kleiner DE, Kowdley KV, Chalasani N, Lavine JE, Ratziu V, McCullough A. Endpoints and clinical trial design for nonalcoholic steatohepatitis. Hepatology 2011; 54: 344-353 [PMID: 21520200 DOI: 10.1002/hep.23436]

4 Janczyk W, Socha P. Non-alcoholic fatty liver disease in children. Clin Res Hepatol Gastroenterol 2012; 36: 297-300 [PMID: 22521558 DOI: 10.1016/j.clinre.2012.03.026]

5 Valenti L, Riso P, Mazzocchi A, Porrini M, Fargion S, Agostoni C. Dietary anthocyanins as nutritional therapy for nonalcoholic fatty liver disease. Oxid Med Cell Longev 2013; 2013: 145421 [PMID: 24282628 DOI: 10.1155/2013/145421]

6 Clark JM. The epidemiology of nonalcoholic fatty liver disease in adults. J Clin Gastroenterol 2006; 40 Suppl 1: S5-10 [PMID: 16540768 DOI: 10.1097/01.mcg.0000168638.84840.ff]

7 Lazo M, Clark JM. The epidemiology of nonalcoholic fatty liver disease: a global perspective. Semin Liver Dis 2008; 28: 339-350 [PMID: 18956290 DOI: 10.1055/s-0028-1091978]

8 Bellantoni S, Scaglioni F, Martino M, Bedogni G. Epidemiology of non-alcoholic fatty liver disease. Dig Dis 2010; 28: 155-161 [PMID: 20469095 DOI: 10.1159/000282080]

9 Esfahparast T, Eghtesad S, Poustchi H, Hekmatdoost A. Recent advances in dietary supplementation, in treating non-alcoholic fatty liver disease. World J Hepatol 2015; 7: 204-212 [PMID: 25729475 DOI: 10.4245/wjh.v7.i2.204]

10 Chalasani N, Younossi Z, Lavine JE, Diehl AM, Brunt EM, Cusi K, Charlon M, Sanyal AJ. The diagnosis and management of non-alcoholic fatty liver disease: practice Guideline by the American Association for the Study of Liver Diseases, American College of Gastroenterology, and the American Gastroenterological Association. Hepatology 2012; 55: 2005-2023 [PMID: 22488764 DOI: 10.1002/hep.25762]

11 Fierbinteanu-Bratievici C, Dina I, Petrusor A, Tribus L, Negrea L, Carstoiu C. Non-invasive investigations for non-alcoholic fatty liver disease and liver fibrosis. World J Gastroenterol 2010; 16: 4784-4791 [PMID: 20939106 DOI: 10.3745/wjg.v16.i38.4784]
fatty liver disease progression. Biochim Biophys Acta 2011; 1812: 1557-1566 [PMID: 21840395 DOI: 10.1016/j.bbadis.2011.07.017]

20 Huang MA, Greenson JK, ChaO, Anderson L, Peterman D, Jacobson J, Emick D, Lok AS, Conjeevaram HS. One-year intensive nutritional counseling results in histological improvement in patients with non-alcoholic steatohepatitis: a pilot study. Am J Gastroenterol 2005; 100: 1072-1081 [PMID: 15842581 DOI: 10.1111/j.1572-0241.2005.41334.x]

21 Ghaemi A, Taleban FA, Hekmatdoost A, Rafiei A, Hosseini V, Amiri Z, Homayounfar R, Fakheri H. How Much Weight Loss is Effective on Nonalcoholic Fatty Liver Disease? Hepat Mon 2013; 13: e15227 [PMID: 24358045 DOI: 10.5812/hepatmon.15227]

22 Wang RT, Koretz RL, Vee HF. Is weight reduction an effective therapy for nonalcoholic fatty liver? A systematic review. Am J Med 2003; 115: 554-559 [PMID: 1499635 DOI: 10.1016/S0002-9343(03)00449-2]

23 Vajro P, Lenta S, Pignata C, Salerno M, D’Aniello R, De Minno MN, Zamani F, Hekmatdoost A, Sharafkhah M, Russolillo A, Lupoli R, Ambrosino P, Di Minno MN, Watters CA, Brunt EM, Wilkens LR, Novotny R, Black LJ, Jacobson J, Emick D, Lok AS, Conjeevaram HS. Does vitamin E supplementation improves inflammatory biomarkers in patients with non-alcoholic steatohepatitis: a pilot study. Eur J Gastroenterol Hepatol 2011; 23: 1089-1097 [PMID: 22313959 DOI: 10.1097/SGG.0b.10036839e839]

24 Ozturk ZA, Kadayifci A. Insulin sensitizers for the treatment of non-alcoholic fatty liver disease. World J Hepatol 2014; 6: 199-206 [PMID: 24799988 DOI: 10.4245/wjv.s6.14.199]

25 Lavine JE, Schwimmer JB, Van Natta ML, Mollesson JP, Murray KF, Rosenthal P, Abrams SH, Scheimann AO, Sanyal AJ, Jacobson J, Emick D, Lok AS, Conjeevaram HS. Maternal vitamin D status during pregnancy and its management: review of current knowledge and recommendations. Pediatrics 2008; 122: 398-417 [PMID: 18676559 DOI: 10.1542/peds.2007-1894]

26 Misra M, Pauca D, Petrovsky T, Collett-Solberg PF, Kappy M. Vitamin D deficiency in children and its management: review of current knowledge and recommendations. J Pediatr Gastroenterol Nutr 2011; 52: 398-417 [PMID: 21233083 DOI: 10.1097/MPG.0b.10036839e839]

27 Black LJ, Jacoby S, Pe Ping-Delfos WC, Mori TA, Beilin LJ, Olynik JY, Ajoudine OT, Huang RC, Holt PG, Hart PH, Oddy WH, Adams LA. Low serum 25-hydroxyvitamin D concentrations associate with non-alcoholic fatty liver disease in adolescents independent of adiposity. J Gastroenterol Hepatol 2014; 29: 1215-1222 [PMID: 24611991 DOI: 10.1111/j.1440-1746.2014.09311.x]

28 Nobili V, Giorgi F, Buscemi M, Moro G, Volante S, Arienti V, Munteanu C. Effect of vitamin D on CRP in pediatric nonalcoholic fatty liver disease. J Pediatr Gastroenterol Nutr 2010; 50: 618-622 [PMID: 20271401 DOI: 10.1097/MPG.0b.100368018d3c0]

29 Nobili V, Giorgi F, Buscemi M, Moro G, Volante S, Arienti V, Munteanu C. Effect of vitamin D on CRP in pediatric nonalcoholic fatty liver disease. J Pediatr Gastroenterol Nutr 2010; 50: 618-622 [PMID: 20271401 DOI: 10.1097/MPG.0b.100368018d3c0]

30 Sapyhna A, Al-Hussaini AA, Nobili V. Does vitamin D improve the outcomes of pediatric nonalcoholic fatty liver disease? A systematic review and meta-analysis. Saudi J Gastroenterol 2014; 20: 143-153 [PMID: 24976277 DOI: 10.4103/1319-3767.132983]

31 Sarikaya O, Miners JO, Freeman R, Dargan PI, Johnson AM. Effect of vitamin D on metabolic syndrome: a systematic review. JAMA 2013; 309: 1556-1570 [PMID: 23930163 DOI: 10.1001/jama.2013.99477]

32 Muthuraman R, Ramamoorthy T, Jana S, Eslamparast T, Saeed M, Passamonti F, Chalasani N, Tonascia J, Ünalp A, Clark JM, Brunt EM, Kleiner DE, Janczyk W, Alisi A, Della Corte C, Risé P, Galli C, Agostoni C, Bedogni G, Manco M, Devito R, Ciampalini P, Piemonte F, Schwimmer JB, Van Natta ML, Molleston JP, Amani R, Hajiani E, Cheraghian B. Does vitamin E improve the outcomes of pediatric nonalcoholic fatty liver disease? A randomised, double-blind, placebo-controlled pilot study. Br J Nutr 2014; 112: 438-445 [PMID: 24848793 DOI: 10.1017/s0007114514000019]

33 Vajro P, Mandato C, Licenziati MR, Franzese A, Vitale D, Lenta S, Caropreso M, Vallone G, Meli R. Effects of Lactobacillus rhamnosus strain GG in pediatric obesity-related liver disease. J Pediatr Gastroenterol Nutr 2011; 52: 746-743 [PMID: 21233083 DOI: 10.1097/MPG.0b.10036839e839]

34 Daubioul CA, Horsmans Y, Lambert P, Danse E, Delzenne NM. Effects of oligofructose on glucose and lipid metabolism in patients with nonalcoholic steatohepatitis: results of a pilot study. Eur J Clin Nutr 2005; 59: 723-726 [PMID: 15770222 DOI: 10.1038/sj.ejcn.1602127]

35 Alisi A, Bedogni G, Baviera G, Giorgio V, Porro E, Paris C, Grammari P, Reali L, Anania F, Nobili V. Randomised clinical trial: the beneficial effects of VSL#3 in obese children with non-alcoholic steatohepatitis. Aliment Pharmacol Ther 2014; 39: 1276-1285 [PMID: 24738701 DOI: 10.1111/apt.12758]

36 Cani PD, Possemiers S, Van de Wiele T, Giusti Y, Everard A, Rottier O, Geurs L, Naslain D, Neyrinck A, Lambert DM, Mucicolidi G, Delzenne NM. Changes in gut microbiota control inflammation in obese mice through a mechanism involving GLP-2 driven improvement of gut permeability. Gut 2009; 58: 1091-1103 [PMID: 19240062 DOI: 10.1136/gut.2008.165886]

37 Misra M, Pauca D, Petrovsky T, Collett-Solberg PF, Kappy M. Vitamin D deficiency in children and its management: review of current knowledge and recommendations. JAMA 2014; 312: 398-417 [PMID: 24611991 DOI: 10.1097/MPG.0b.10036839e839]

38 Black LJ, Jacoby S, Pe Ping-Delfos WC, Mori TA, Beilin LJ, Olynik JY, Ajoudine OT, Huang RC, Holt PG, Hart PH, Oddy WH, Adams LA. Low serum 25-hydroxyvitamin D concentrations associate with non-alcoholic fatty liver disease in adolescents independent of adiposity. J Gastroenterol Hepatol 2014; 29: 1215-1222 [PMID: 24611991 DOI: 10.1111/j.1440-1746.2014.09311.x]

39 Eslamparast T, Saeed M, Passamonti F, Chalasani N, Tonascia J, Ünalp A, Clark JM, Brunt EM, Kleiner DE, Janczyk W, Alisi A, Della Corte C, Risé P, Galli C, Agostoni C, Bedogni G, Manco M, Devito R, Ciampalini P, Piemonte F, Schwimmer JB, Van Natta ML, Molleston JP, Amani R, Hajiani E, Cheraghian B. Does vitamin D improve the outcomes of pediatric nonalcoholic fatty liver disease? A systematic review and meta-analysis. World J Gastroenterol 2013; 19: 6911-6918 [PMID: 24187469 DOI: 10.3748/wjg.v19.i40.6911]
glucose and lipid metabolism in patients with non-alcoholic fatty liver disease: a randomized controlled trial. Dig Liver Dis 2015; 47: 226-232 [PMID: 25577300 DOI: 10.1016/j.dld.2014.11.015]

50 Andrade JM, Paraíso AF, de Oliveira MV, Martine AM, Neto JF, Guimarães AL, de Paula AM, Qureshi M, Santos SH. Resveratrol attenuates hepatic steatosis in high-fat fed mice by decreasing lipogenesis and inflammation. Nutrition 2014; 30: 915-919 [PMID: 24985011 DOI: 10.1016/j.nut.2013.11.016]

51 Pisonero-Vaquero S, Martínez-Ferreras Á, García-Mediavilla MV, Martínez-Flórez S, Fernández A, Benet M, Olcoz JL, Jover R, González-Gallego J, Sánchez-Campos S. Quercetin ameliorates dysregulation of lipid metabolism genes via the PI3K/AKT pathway in a diet-induced mouse model of nonalcoholic fatty liver disease. Mol Nutr Food Res 2015; 59: 879-893 [PMID: 25712622 DOI: 10.1002/mnfr.201400913]

52 Sakata R, Nakamura T, Torimura T, Ueno T, Sata M. Green tea with high-density catechins improves liver function and fat infiltration in non-alcoholic fatty liver disease (NAFLD) patients: a double-blind placebo-controlled study. Int J Mol Med 2013; 32: 989-994 [PMID: 24065295 DOI: 10.3892/ijmm.2013.1503]

53 Stickel F, Schuppam D. Herbal medicine in the treatment of liver diseases. Dig Liver Dis 2007; 39: 293-304 [PMID: 17331820 DOI: 10.1016/j.dld.2006.11.004]

54 Xiao J, Fai So K, Liong EC, Tipoe GL. Recent advances in the herbal treatment of non-alcoholic fatty liver disease. J Tradit Complement Med 2013; 3: 88-94 [PMID: 24716162 DOI: 10.4103/2225-4110.110411]

55 Askari F, Rashidkhani B, Hekmatdoost A. Cinnamon may have therapeutic benefits on lipid profile, liver enzymes, insulin resistance, and high-sensitivity C-reactive protein in nonalcoholic fatty liver disease patients. Nutr Res 2014; 34: 143-148 [PMID: 24461315 DOI: 10.1016/j.nutres.2013.11.005]

56 Sahbehkar A. Potential efficacy of ginger as a natural supplement for nonalcoholic fatty liver disease. World J Gastroenterol 2011; 17: 271-272 [PMID: 21246004 DOI: 10.3748/wjg.v17.i2.271]

57 Mitchel EB, Lavine JE. Review article: the management of paediatric nonalcoholic fatty liver disease. Aliment Pharmacol Ther 2014; 40: 1155-1170 [PMID: 25267322 DOI: 10.1111/apt.12972]
