MHD bioconvective flow of a thermally radiative nanoliquid in a stratified medium considering gyrotactic microorganisms

S Eswaramoorthi¹, K Jagan² and S Sivasankaran³,*

¹Department of Mathematics, Dr. N.G.P. Arts and Science College, Coimbatore, Tamilnadu, India
²Department of Mathematics, School of Engineering, Presidency University, Yelahanka, Bangalore, India
³Department of Mathematics, King Abdulaziz University, Jeddah, Saudi Arabia

E-mail: *sd.siva@yahoo.com

Abstract.

The impact of gyrotactic microorganisms of a stratified flow of a thermally radiative NL with heat absorption is highlighted. In addition, magneto NL with an inclined magnetic field is included. Suitable transformations are adopted to convert the governing PDEs into nonlinear ODEs. Homotopy analysis method (HAM) is employed to solve these ODEs analytically. The impact of sundry parameters on VP, TP, NPVFP, MMDP, SFC, LNN and LDMM are graphically explained. We compare our results to available results in literature survey.

Keywords: Nanoliquid, Heat generation/absorption, Gyrotacticro microorganisms, Radiation, Stratification.

1. Introduction

Most of the engineering and industrial processes, the HT phenomenon is essential. The ordinary fluids, like, ethylene, oil, water, glycol, toluene are poor HT properties, since they have poor thermal conductivity. Many scientists tried in several ways to raise the thermal conductivity. One of the simplest method is to suspend nano-sized particles, such as gold, titanium, aluminum, copper, iron or their oxides in the ordinary liquids to enhance its thermal properties. These liquids are used in microchips, fuel cells, microelectronics, solid state lightening, bio-medicine, etc. The NL flow over a stretching tube was analyzed by Ahmed et al.[1]. Kasmani et al.[2] found the analytical and numerical solutions of viscous NL flow past a moving wedge. Chemically reactive NL flow over a wedge with suction and heat absorption was analyzed by Kasmani et al.[3]. They found that the HT coefficient enhances with raising the values of chemical reaction parameter. Some useful studies in this directions are ([4]-[6]). Bioconvection is the microscopic convection of liquid which is created by density gradient when swimming of motile microorganisms. It is used in bio-fuel, promising renewable power source, bio-diesel and hydrogen gas. The stability of bioconvection in a porous medium was examined by Kuznetsov and Avramenko[7]. Nguyen-Quang et al.[8] analyzed the stability of gravitactic micro-organisms in a porous medium. The impact of bioconvective NL with gyrotactic microorganisms was
explored by Mutuku and Makinde[9]. Akbar and Khan[10] studied the MHD NL flow with gyrotactic microorganisms.

Stratification acts a vital role in engineering and industrial mechanisms and it arises in temperature gradient, variations of concentration or combination of different liquids with different densities. For example, flows occur in rivers, ground water reservoirs, lakes, seas, etc. Free convective flow of a thermally stratified non-isothermal plate was analyzed by Yang et al.[11]. Cheng[12] investigated the double stratification and HMT analysis of power-law fluid over a porous medium. They proved that the thermal stratification parameter enhances the HT gradient. Numerical solution of chemically reactive Williamson fluid with thermal and solutal stratification was derived by Rehman et al.[13]. They proved that the MT rate suppresses with enhancing the solutal stratification. Khan et al.[14] studied the flow of a Williamson NL over a non-linear SS. They considered the fluid viscosity is depends on temperature and thermal diffusion. They have seen that the LNN is an enhancing function of TSP. The problem of MHD second grade NL flow with stratification was studied by Khan et al.[15].

The above literature analysis shows that the impact of radiative NL flow in a stratified medium with the presence of S/I and TS is not analyzed. Hence our main aim is to fill this gap. Characteristics of heat A/G and magneto-hydro-dynamics along with JH and VD are examined. Gyrotactic microorganisms is also retained. The formulating equations are analytically solved by HAM, see ([16]-[19]).

2. Mathematical Formulation

Let us take the MHD mixed convective flow of a radiative NL past a SS. The horizontal liquid layer was induced by inclined magnetic field and this field is omitted because of less value of magnetic RN. The HMT and MMT rates are investigated with the effects of JH, VD and stratification. The microorganisms are imposed into the NL to stabilize the nanoparticles due to bioconvection. The velocity and gravitactic microorganisms direction are not affected by nanoparticles. The motion of the microorganisms can be divided into random and directional components. Under the above assumptions, the flow problem is given by, see Alsaedi et al.[20]

\[
\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} = 0, \tag{1}
\]

\[
u \frac{\partial u}{\partial x} + v \frac{\partial u}{\partial y} = \frac{\mu}{\rho_f} \frac{\partial^2 u}{\partial x^2} - \frac{\sigma}{\rho_f} B_0^2 \sin^2 \alpha \frac{\partial u}{\partial y} + v \frac{\partial^2 u}{\partial y^2} + \frac{1}{\rho_f} \left[(1 - C_\infty) \rho_f \beta g (T - T_\infty) - (\rho_p - \rho_f) g (C - C_\infty) - (N - N_\infty) g \gamma (\rho_m - \rho_f) \right], \tag{2}
\]

\[
u \frac{\partial T}{\partial x} + v \frac{\partial T}{\partial y} = k \frac{\partial^2 T}{\partial y^2} + \frac{\mu}{\rho c_p} \frac{\partial^2 T}{\partial y^2} + \frac{1}{\rho c_p} \frac{16 \sigma^* T_\infty}{3 k^* T_{yy}} + \tau \left[\frac{D_B}{T_\infty} \frac{\partial C}{\partial y} \frac{\partial T}{\partial y} + \frac{D_T}{T_\infty} \left(\frac{\partial T}{\partial y} \right)^2 \right] \tag{3}
\]

\[
u \frac{\partial C}{\partial x} + v \frac{\partial C}{\partial y} = D_B \frac{\partial^2 C}{\partial y^2} + \frac{D_T}{T_\infty} \frac{\partial^2 T}{\partial y^2}, \tag{4}
\]

\[
u \frac{\partial N}{\partial x} + v \frac{\partial N}{\partial y} + \frac{b W_c}{(C_w - C_0)} \left[\frac{\partial}{\partial y} \left(N \frac{\partial C}{\partial y} \right) \right] = D_m \frac{\partial^2 N}{\partial y^2} \tag{5}
\]

where \(v \) and \(u \) are the velocity components in \(y \) and \(x \) directions, \(\mu \) is the viscosity of the suspensions of NL and microorganisms, \(\rho_f \) is the density of NL, \(\sigma \) is the electrical conductivity, \(B_0 \) is the magnetic field intensity, \(\alpha \) is the inclination angle of magnetic field, \(C_\infty \) is the ambient concentration of the nanoparticles, \(\beta \) is the volume expansion coefficient, \(g \) is the gravity, \(T_\infty \)
is the ambient temperature of the nanoparticles, \(C \) is the concentration of the nanoparticles, \(N \) is the concentration of microorganisms, \(N_{\infty} \) is the ambient concentration of microorganisms, \(\rho_m \) is the density of the microorganisms particles, \(\sigma^* \) - Stefan Boltzmann constant, \(k^* \) - mean absorption coefficient, \(\tau \) is the ratio of heat capacity of nanoparticles divided by heat capacity of NL, \(D_B \) is the Brownian motion diffusion coefficient, \(D_f \) is the thermophoretic diffusion coefficient, \(c_p \) is the specific heat, \(Q \) is the heat A/G coefficient, \(b \) is the chemotaxis constant, \(W_c \) is the maximum cell swimming speed, \(D_m \) is the microorganisms diffusion coefficient.

The boundary conditions can be expressed as,

\[
\begin{align*}
 u &= U_w = ax, \ v = V_w, \ T = T_w = T_0 + b_1 x, \\
 C &= C_w = C_0 + c_1 x, \ N = N_w = C_0 + d_1 x \ \text{at} \ y = 0, \\
 u &\to 0 \quad \frac{\partial u}{\partial y} \to 0, \ T \to T_\infty = T_0 + b_2 x, \\
 C &\to C_\infty = C_0 + c_2 x, \ N \to N_\infty = N_0 + d_2 x, \ \text{as} \ y \to \infty,
\end{align*}
\]

(6)

where \(U_w \) is the stretching velocity \(a > 0 \) is the stretching ratio and \(b_1, b_2, c_1, c_2, d_1, d_2 \) are positive constants.

Now, the following dimensionless variables are introduced:

\[
\begin{align*}
 \eta &= \sqrt{\frac{a}{\nu}} y, \ u = ax f'(\eta), \ v = \pm\sqrt{a} v f(\eta), \ \theta(\eta) = \frac{T - T_\infty}{T_w - T_\infty} , \\
 \phi(\eta) &= \frac{C - C_\infty}{C_w - C_\infty}, \ \zeta(\eta) = \frac{N - N_\infty}{N_w - N_\infty},
\end{align*}
\]

(7)

Substituting Equation (7) in Equations (2)-(5) we have

\[
\begin{align*}
 f''' + f f'' - f'^2 - Ha \sin^2 \alpha f' + Gr \left(\theta - N r \phi - R b \zeta \right) &= 0, \\
 f(0) &= f_w, \ f'(0) = 1, \ \theta(0) = 1 - S_1, \ \phi(0) = 1 - S_2, \ \zeta(0) = 1 - S_3, \\
 f'(\infty) &= 0, \ \theta(\infty) = 0, \ \phi(\infty) = 0, \ \zeta(\infty) = 0
\end{align*}
\]

(8)

the corresponding boundary conditions are

\[
\begin{align*}
 H_a &= \sqrt{\frac{\beta \gamma (1 - C_w) (T_w - T_0)}{\rho_m k_0}} \text{ is the HN}, \ \lambda = \frac{\beta \gamma (1 - C_w) (T_w - T_0)}{\rho_m k_0} \text{ is the the MCP}, \ N_r = \frac{(\rho_w - \rho_f) (C_w - C_0)}{\beta \rho_f (T_w - T_0)} \text{ is the RP}, \\
 R_B &= \frac{\gamma (N_w - N_0) (\rho_m - \rho_f)}{\beta \rho_f (1 - C_w) (T_w - T_0)} \text{ is the BRN}, \ \rho_r = \frac{\mu c_p}{k} \text{ is the PN}, \ R = \frac{4 a^3 T_\infty}{k \nu} \text{ is the RP}, \\
 N_t &= \frac{\tau D_B (T_w - T_0)}{\alpha T_\infty} \text{ is the TMP}, \ N_b = \frac{\tau D_B (C_w - C_0)}{\alpha} \text{ is the BMP}, \ E_c = \frac{U_w^2}{\rho f (T_w - T_0)} \text{ is the EN}, \\
 H_g &= \frac{Q}{a c_p} \text{ is heat generation (}> 0) \text{ and absorption (< 0) parameter}, \ L_e = \frac{\nu}{\mathbf{D}_m} \text{ is the LN}, \\
 L_b &= \frac{\nu}{\mathbf{D}_m} \text{ is the BLN}, \ P_c = \frac{\mathbf{D}_w}{\mathbf{D}_m} \text{ is the BPN}, \ \Omega = \frac{N_w - N_\infty}{N_w - N_{\infty}} \text{ is the MCDP}, \ f_w = \frac{- V}{\sqrt{\nu}} \text{ is the S/I}
\end{align*}
\]

The dimension form of the SFC, LNN, LSN and LDMM are defined as

\[
\begin{align*}
 C_f &= \frac{T_w}{\mathbf{U}_w^2/2}, \ Nu = \frac{x q_w}{k (T_w - T_0)}, \ Sh = \frac{x r_w}{D_B (C_w - C_0)}; \ N_n = \frac{x s_w}{D_m (N_w - N_0)}
\end{align*}
\]
Figure1. The h curves of $f''(0)$, $\theta'(0)$, $\phi'(0)$ and $\zeta'(0)$

where

$$\tau_w = \mu \left(\frac{\partial u}{\partial y} \right)_{y=0} \text{ is the wall shear stress, } q_w = -k \left(\frac{\partial T}{\partial y} \right)_{y=0} \text{ is the surface heat flux,}$$

$$r_w = -D_B \left(\frac{\partial C}{\partial y} \right)_{y=0} \text{ is the nanoparticle mass flux from the surface and}$$

$$s_w = -D_m \left(\frac{\partial N}{\partial y} \right)_{y=0} \text{ is the motile microorganisms flux.}$$

Then the reduced SFC, LNN, LSN and LDMM are given by

$$\frac{1}{2} C_f Re \frac{i}{2} = f''(0); \quad Nu/Re \frac{i}{3} = -\left(1 + \frac{4}{3} R \right) \theta'(0); \quad Sh/Re \frac{i}{2} = -\phi'(0); \quad Nn/Re \frac{i}{3} = -\zeta'(0).$$

3. HAM Solution

The resultant equations (8) - (11) with boundary conditions (12) are analytically solved using HAM. Let $f_0(\eta) = 1 - e^{-\eta}$, $\theta_0(\eta) = (1 - S_1)e^{-\eta}$, $\phi_0(\eta) = (1 - S_2)e^{-\eta}$ and $\zeta_0(\eta) = (1 - S_3)e^{-\eta}$ are the initial approximations. The linear operator are $L_f = \frac{d^2f}{d\eta^2} - \frac{df}{d\eta}$, $L_\theta = \frac{d^2\theta}{d\eta^2} - \theta$, $L_\phi = \frac{d^2\phi}{d\eta^2} - \phi$ and $L_\zeta = \frac{d^2\zeta}{d\eta^2} - \zeta$ with $L_f \left[e_1 + e_2 e^\eta + e_3 e^{-\eta} \right] = 0$, $L_\theta \left[e_4 e^\eta + e_5 e^{-\eta} \right] = 0$, $L_\phi \left[e_6 e^\eta + e_7 e^{-\eta} \right] = 0$ and $L_\zeta \left[e_8 e^\eta + e_9 e^{-\eta} \right] = 0$ where $e_j (j = 1 - 9)$ are constants. After applying the mth order HAM equations, we get the followings

$$f_m(\eta) = f^*_m(\eta) + e_1 + e_2 e^\eta + e_3 e^{-\eta} \quad \theta_m(\eta) = \theta^*_m(\eta) + e_4 e^\eta + e_5 e^{-\eta} \quad \phi_m(\eta) = \phi^*_m(\eta) + e_6 e^\eta + e_7 e^{-\eta} \quad \zeta_m(\eta) = \zeta^*_m(\eta) + e_8 e^\eta + e_9 e^{-\eta}$$

here the particular solutions are $f^*_m(\eta), \theta^*_m(\eta)$ and $\zeta^*_m(\eta)$.

The HAM solution contains the auxiliary parameters h_f, h_θ, h_ϕ and h_ζ and these parameters adjust the convergence of the HAM solutions. The h_f, h_θ, h_ϕ and h_ζ curves are shown in Figure 1. The value of the auxiliary parameters in the whole region of η is $h_f = h_\theta = h_\phi = h_\zeta = -1.0$ for better solution. Table 1 represents the different order of $-f''(0)$, $-\phi'(0)$, $-\theta'(0)$ and $-\zeta'(0)$. It is clear that 15th order is sufficient for both velocity, temperature, nanoparticle volume fraction and motile microorganisms density profiles. Table 2 provides the comparison of $-f''(0)$ with different combination of $Ha, \alpha, \lambda, Nr, Rb, S_1, S_2$ and S_2 between our results and published results and seen that the our results are in good agreement.
Table 2. Comparative outcomes of $\frac{1}{2}C_fRe^{\frac{1}{2}}$ for different values of $Ha, \alpha, \lambda, Nr, Rb, S_1, S_2$ and S_2 with Alsaedi et al. [20].

Ha	S_2	S_1	Rb	Nr	λ	α	$\frac{1}{2}C_fRe^{\frac{1}{2}}$ Present Study	$\frac{1}{2}C_fRe^{\frac{1}{2}}$ Alsaedi et al. [20]
0.1	0.1	0.2	0.1	0.1	0.1	0.1	−1.0069	−1.0069
0.3	0.1	0.2	0.1	0.1	0.1	0.1	−1.0766	−1.0766
0.5	0.1	0.2	0.1	0.1	0.1	0.1	−1.1424	−1.1424
0.1	0.1	0.2	0.1	0.1	0.1	0.1	−1.0069	−1.0069
0.1	0.1	0.2	0.1	0.1	0.1	0.1	−1.0766	−1.0766
0.1	0.1	0.2	0.1	0.1	0.1	0.1	−1.1100	−1.1100
0.1	0.1	0.2	0.1	0.1	0.1	0.1	−1.0472	−1.0472
0.3	0.1	0.2	0.1	0.1	0.1	0.1	−1.0182	−1.0182
0.1	0.1	0.2	0.1	0.1	0.1	0.1	−0.9898	−0.9898
0.1	0.1	0.2	0.1	0.1	0.1	0.1	−1.0766	−1.0766
0.1	0.1	0.2	0.1	0.1	0.1	0.1	−1.0873	−1.0873
0.5	0.1	0.2	0.1	0.1	0.1	0.1	−1.0981	−1.0981
0.1	0.1	0.2	0.1	0.1	0.1	0.1	−1.0766	−1.0766
0.1	0.1	0.2	0.1	0.1	0.1	0.1	−1.0853	−1.0853
0.1	0.1	0.2	0.1	0.1	0.1	0.1	−1.0941	−1.0941
0.1	0.1	0.2	0.1	0.1	0.1	0.1	−1.0830	−1.0830
0.1	0.1	0.2	0.1	0.1	0.1	0.1	−1.0958	−1.0958
0.1	0.1	0.2	0.1	0.1	0.1	0.1	−1.1084	−1.1084
0.1	0.1	0.2	0.1	0.1	0.1	0.1	−1.0762	−1.0762
0.1	0.1	0.2	0.1	0.1	0.1	0.1	−1.0749	−1.0749
0.1	0.1	0.2	0.1	0.1	0.1	0.1	−1.0737	−1.0737
0.1	0.1	0.2	0.1	0.1	0.1	0.1	−1.0722	−1.0722
Table 3. SKC, LNN, LSN and LDNMM for different values of fw, α, M, λ, R, Hg, S_1, S_2 and S_2.

fw	α	Ha	λ	R	Hg	S_1	S_2	$\frac{1}{2}C_fRe^{\frac{1}{2}}$	$Nu/Re^{\frac{1}{2}}$	$Sh/Re^{\frac{1}{2}}$	$Nu/Re^{\frac{1}{2}}$
0.3	0.1	0.1	−0.5	0.1	0.1	0.1		−0.857929	0.916787	0.469022	1.15425
0.3	0.0	0.1	−0.5	0.1	0.1	0.1		−0.939586	0.99116	0.485898	1.28107
0	−1.07887	1.11515	0.516871	1.49758							
0.3			−0.5	0.1	0.1	0.1		−1.23878	1.25453	0.557172	1.74772
0.5			−0.5	0.1	0.1	0.1		−1.35666	1.35066	0.590067	1.93312
0.3	0.3	0.1	−0.5	0.1	0.1	0.1		−1.16932	1.28507	0.561696	1.76199
	−1.18293	1.27906	0.560781	1.75915							
	−1.20459	1.26952	0.559352	1.75468							
	−1.23878	1.25453	0.557172	1.74772							
0.3	0.1	0.1	−0.5	0.1	0.1	0.1		−1.3285	1.30125	0.56421	1.76969
	−1.27198	1.24005	0.555147	1.74109							
	−1.39633	1.18652	0.548433	1.71738							
	−1.50988	1.13866	0.543617	1.69748							
	−1.63463	1.09905	0.548691	1.68846							
	−2.53752	1.11962	0.84959	1.90850							
0.3	0.3	0.1	−0.5	0.1	0.1	0.1		−1.26692	1.24687	0.552341	1.73869
	−1.83464	1.26902	0.566084	1.76452							
	−1.12925	1.28255	0.574233	1.77983							
	−1.04961	1.30157	0.585701	1.80043							
	−0.997406	1.31415	0.595354	1.81313							
0.3	0.1	0.1	−0.5	0.1	0.1	0.1		−1.24107	1.19227	0.486629	1.6704
	−1.23878	1.25453	0.557172	1.74772							
	−1.23667	1.31217	0.61532	1.81313							
	−1.23469	1.36596	0.664253	1.86476							
	−1.23110	1.46421	0.74243	1.95008							
0.3	0.3	0.1	−0.5	0.1	0.1	0.1		−1.24076	1.35080	0.485711	1.66891
	−1.23878	1.25453	0.557172	1.74772							
	−1.23464	1.08693	0.679424	1.88206							
	−1.22633	0.856104	0.842083	2.05935							
	−1.20269	0.481097	1.07385	2.29765							
0.3	0.1	0.1	−0.5	0.1	0.1	0.1		−1.233336	1.34108	0.51294	1.70384
	−1.24958	1.07993	0.64718	1.83748							
	−1.26031	0.90333	0.739246	1.92991							
	−1.27630	0.63467	0.881248	2.07364							
	−1.28688	0.45303	0.978533	2.17290							
0.3	0.1	0.1	−0.5	0.1	0.1	0.1		−1.23914	1.25152	0.62464	1.81195
	−1.23878	1.25453	0.55717	1.74772							
	−1.23844	1.25754	0.48970	1.68397							
	−1.23810	1.26054	0.42222	1.62071							
	−1.23744	1.26656	0.28723	1.49568							
0.3	0.1	0.1	−0.5	0.1	0.1	0.1		−1.23981	1.25421	0.55693	1.85413
	−1.23878	1.25453	0.55717	1.74772							
	−1.23776	1.25485	0.55741	1.64134							
	−1.23673	1.25517	0.55765	1.53497							
	−1.23467	1.25582	0.55814	1.32229							
Figure 2. The VP for various values of Ha (a), f_w (b) and λ (c).

Abbreviations

Abbreviation	Description
HAM	homotopy analysis method
LNN	local Nusselt number
MMDP	motile microorganisms density profile
SFC	skin friction coefficient
VP	velocity profile
HN	Hartman number
BRP	buoyancy ratio parameter
PN	Prandtl number
RP	radiation parameter
BMP	Brownian motion parameter
LN	Lewis number
BPN	bioconvection Peclet number
S/IP	suction/injection parameter
TSP	thermal stratification parameter
MDSP	motile density stratification parameter
SS	stretching surface
FT	fluid temperature
PDE	Partial differential equation
MT	mass transfer
VD	viscous dissipation
MMT	Motile microorganism transfer
LSH	Local Sherwood number
HAM	homotopy analysis method
LDMM	local density of motile microorganism
MHD	magnetohydrodynamics
NPVF	nanoparticle volume fraction
TP	temperature profile
MCP	mixed convection parameter
BRN	bioconvection Rayleigh number
MDSP	motile density stratification parameter
TMP	thermophoresis motion parameter
EN	Eckert number
BLN	bioconvection Lewis number
MCDP	microorganisms concentration
MSP	mass stratification parameter
NL	nanoliquid
FV	fluid velocity
HT	heat transfer
ODE	ordinary differential equation
HMT	heat and mass transfer
A/G	Absorption/generation
JH	Joule heating
RN	Reynold’s number
Figure 3. The TP for various values of f_w (a), R (b), H_g (c), S_1 (d), N_t (e) and N_b (f).

Figure 4. The NPVFP for various values of f_w (a) and S_2 (b).
4. Results and Discussion

In this section, we presented the graphical and numerical results for VP, TP, NPVF, MMDP, SFC, LNN, LDMM for different values of physical parameters. Table 3 presents the SFC, LNN and LDMM for different values of $fw, \alpha, Ha, \lambda, R, Hg, S_1, S_2$ & S_3. It is found that the surface shear stress diminishes with strengthening the values of fw, α, Ha & S_1 and growing with upgrading the values of λ, R, Hg, S_2 & S_3. The heat transfer gradient declines with rising the values of α, Ha, Hg & S_1 and it growing with escalating the values of fw, λ, R, S_2 & S_3. The local Sherwood number diminishes with raising the values of fw, α, S_2 & S_3 and the opposite trend was obtained for increasing values of α, Ha & S_2. The local density of motile microorganism becomes smaller with developing the values of α, S_2 & S_3 and it growing for increasing the values of fw, Ha, λ, R, Hg & S_1.

Figures 2(a-c) portray the VP for different values of fw, Ha and λ. It is seen from these figures that fluid velocity suppresses with enhancing Ha and fw values. Physically, the magnetic field generates a drag force that opposes the motion of the fluid. This causes to decrease the fluid temperature. The reverse trend is obtained for λ values. The impact of fw, R, Hg, S_1, Nt and Nb for temperature profile was shown in Figures 3(a-e). We found that the FT increases with enhancing the values of R, Hg, Nt and Nb and it reduces with raising the values of fw and S_1. In general, thermal radiation leads to enrich the energy transport to the fluid and causes to increase the FT. The fluid thermal conductivity increases in the presence of nanoparticles. Physically, thermophoresis parameter increase the fluid thermal conductivity and this causes to increase the FT. Figures 4(a-b) illustrated the effect of fw and S_2 on nanoparticle volume fraction profile and found that the nanoparticle volume fraction decreases with increasing fw and S_2 values. The variations of fw and S_3 on MMDP is displayed in Figures 5(a-b). It is seen that the motile density suppresses with rising the values of fw and S_3.

5. Conclusions

In this paper, we analyze the impact of gyrotactic microorganisms of a stratified flow of MHD nanofluid with heat absorption is highlighted. In this analyzes, we found that the fluid velocity suppresses for escalating the values of Hartmann number and suction/injection parameter. The fluid temperature improves when enhancing the values of heat generation/absorption parameter and diminishes for rising the values of thermal stratification parameter. The nanoparticle volume fraction is strengthen when the large values of mass stratification parameter is given. The motile microorganisms density suppresses with enhancing the motile density stratification parameter. The surface shear stress diminishes with strengthening the values S/I P, HT gradient declines with rising the values of α, LSN diminishes with raising the values of R and the LDMM becomes smaller with developing the values of α.
References

[1] Ahmed S E, Hussein A K, Mohammed H A and Sivasankaran S 2014 Boundary layer flow and heat transfer due to permeable stretching tube in the presence of heat source/sink utilizing nanofluids Applied Mathematics and Computation 238(1) pp 149-162

[2] Kasmani R Md, Sivasankaran S, Bhuvaneswari M and Hussein AK 2017 Analytical and numerical study on convection of nanofluid past a moving wedge with Soret and Dufour effects International Journal of Numerical Methods for Heat & Fluid Flow 27(10) pp 2333-2354

[3] Kasmani R Md, Sivasankaran S, Bhuvaneswari M and Siri Z 2016 Effect of chemical reaction on convective heat transfer of boundary layer flow in nanofluid over a wedge with heat generation/absorption and suction Journal of Applied Fluid Mechanics 9(1) pp 379-388

[4] Sivasankaran S, Narrein K 2016 Numerical investigation of two-phase laminar pulsating nanofluid flow in helical microchannel filled with a porous medium International Communications in Heat and Mass Transfer 75 pp 86-91.

[5] Eswaramoorthi S, Sivasankaran S, Bhuvaneswari M and Rajan S 2018 Effects of multiple slip on MHD combined convective flow of viscoelastic nanofluid over a stretchy sheet with heat absorption IOP Conference Series: Materials Science and Engineering 390 012096 pp 1-8

[6] Eswaramoorthi S, Sivasankaran S and Ali Saleh Alshomrani 2018 Effect of thermal radiation and heat absorption of MHD Casson nanofluid over a stretching surface in a porous medium with convective heat and mass conditions Journal of Physics: Conference Series 1139 012017 pp 1-8

[7] Kuznetsov A V and Avramenko A A 2002 A 2D analysis of stability of bioconvection in a fluid saturated porous medium-Estimation of the critical permeability value International Communications in Heat and Mass Transfer 29 pp 175-184

[8] Nguyen-Quang T, Bahloul A and Nguyen TH 2005 Stability of gravitactic micro-organisms in a fluid-saturated porous medium International Communications in Heat and Mass Transfer 32 pp 54-63

[9] Mutuku W N and Makinde O D 2014 Hydromagnetic bioconvection of nanofluid over a permeable vertical plate due to gyrotactic microorganisms Computers & Fluids 95 pp 88-97

[10] Akbar N S and Khan Z H 2016 Magnetic field analysis in a suspension of gyrotactic microorganisms and nanoparticles over a stretching surface Journal of Magnetism and Magnetic Materials 410 pp 72-80

[11] Yang K T Novotny J L and Cheng Y S 1972 Laminar free convection from a non-isothermal plate immersed in a temperature stratified medium International Journal of Heat and Mass Transfer 15 pp 1097-1099

[12] Cheng C Y 2009 Combined heat and mass transfer in natural convection flow from a vertical wavy surface in a power-law fluid saturated porous medium with thermal and mass stratification International Communications in Heat and Mass Transfer 36 pp 351-356

[13] Rehman K U, Khan A A, Malik M Y, Ali U and Naseer M 2017 Numerical analysis subject to double stratification and chemically reactive species on Williamson dual convection fluid flow yield by an inclined stretching cylindrical surface Chinese Journal of Physics 55(4) pp 1637-1652

[14] Khan M, Salahuddin T, Malik M Y and Mallawi F O 2018 Change in viscosity of Williamson nanofluid flow due to thermal and solutal stratification International Journal of Heat and Mass Transfer 126 pp 941-948

[15] Khan N S, Shah Z, Islam S, Khan I, Alkanhal T A and Tilii I 2019 Entropy generation in MHD mixed convection non-Newtonian second-grade nanoliquid thin film flow through a porous medium with chemical reaction and stratification Entropy 21(2) pp 1-44

[16] Eswaramoorthi S, Bhuvaneswari M, Sivasankaran S and Rajan S 2016 Soret and Dufour effects on viscoelastic boundary layer flow, heat and mass transfer in a stretching surface with convective boundary condition in the presence of radiation and chemical reaction Scientia Iranica Transactions B: Mechanical Engineering 23(6) pp 2575-2586

[17] Eswaramoorthi S and Bhuvaneswari M 2019 Passive and active control on 3D viscoelastic nanofluid flow including heat generation and convective heating Frontiers in Mechanical Engineering 5(36) pp 1-7

[18] Bhuvaneswari M, Eswaramoorthi S, Sivasankaran S and Ali Saleh Alshomrani 2019 Effect of viscous dissipation and convective heating on convection flow of a second grade fluid over a stretching surface: Analytical and numerical study Scientia Iranica Transactions B: Mechanical Engineering 26(3) pp 1350-1357

[19] Bhuvaneswari M, Eswaramoorthi S, Sivasankaran S and Hussein AK 2019 Cross-diffusion effects on MHD mixed convection over a stretching surface in a porous medium with chemical reaction and convective condition Engineering Transactions 67(1) pp 3-19

[20] Alsaedi A, Ijaz Khan M, Farooq M, Gull N and Hayat T 2017 Magnetohydrodynamic (MHD) stratified bioconvective flow of nanofluid due to gyrotactic microorganisms Advanced Powder Technology 28(1) pp 288-298