25-Hydroxy-vitamin D level may predict presence of coronary collaterals in patients with chronic coronary total occlusion

Yasemin Dogan, Bahadir Sarli, Ahmet Oguz Baktir, Serkan Kurtul, Mahmut Akpek, Omer Sahin, Huseyin Odabas, Engin Dondurmacı, Mehmet Uğurlu, Eyup Özkan

Department of Cardiology, Kayseri Education and Research Hospital, Kayseri, Turkey

Abstract

Introduction: Sufficient coronary collateral circulation (CCC) protects myocardial tissue against ischemia in patients with coronary chronic total occlusion (CTO). Vitamin D is a steroid hormone which has been related to increased prevalence of hypertension, left ventricular hypertrophy, heart failure, peripheral artery disease, coronary artery disease, myocardial infarction and cardiovascular mortality.

Aim: To investigate whether there is an association between serum 25-hydroxy-vitamin D levels and development of CCC in patients with coronary CTO.

Material and methods: A total of 188 patients with CTO at coronary angiography were included in this study. Vitamin D and parathyroid hormone (PTH) levels were measured on the day of coronary angiography. Development of collateral circulation was graded according to the Rentrop classification after coronary angiography. Then, patients were divided into two groups on the basis of CCC grades: group 1 included 68 (36%) patients with poorly developed CCC, and group 2 included 120 (64%) patients with well-developed CCC.

Results: Patients with poorly developed CCC had significantly lower serum 25-hydroxy-vitamin D levels compared to those with well-developed CCC (20 ±3 vs. 30 ±6 ng/ml, p < 0.0001). Multivariate logistic regression analysis indicated serum 25-hydroxyvitamin D (25(OH)D) (OR = 1.794, 95% confidence interval (CI): 1.453–2.216; p < 0.001) as an independent predictor of poor collateral flow in patients with CTO.

Conclusions: Low vitamin D level is an independent predictor of poor CCC in patients with CTO.

Key words: chronic total occlusion, vitamin D, coronary collateral circulation.

Introduction

Coronary collaterals are anastomotic channels between portions of the same coronary artery or between different coronary arteries, and have long been considered as an alternative source of blood supply to the jeopardized ischemic myocardium. Presence of coronary collateral circulation (CCC) is of great importance particularly in patients with a chronic total occlusion (CTO, Figure 1). Previous studies assessing prevalence have differed with regard to the reference population. A previous study showed that the overall prevalence of CTO in patients with coronary artery disease (CAD) referred for elective coronary angiography is 18.4% [1, 2]. Collateral vessels develop from congenital intracoronary anastomosis following chronic ischemia or hypoxia and growth factors and inflammatory cells play a significant role in development of CCC [3, 4]. It has been shown that well-grown CCC has beneficial effects on infarct size, aneurysm formation and ventricular function.

Vitamin D is a kind of steroid hormone produced via sun exposure in the skin. Once consumed or made in the skin, vitamin D undergoes two hydroxylation steps to generate the final hormonal form. It is hydroxylated first in the liver to produce 25-hydroxyvitamin D₃ (25(OH)D₃) and then second in the kidney to create the hormonal form, 1α,25-dihydroxyvitamin D₃ (1,25(OH)₂D₃). Vitamin D deficiency is associated with several chronic disease states including one affecting the cardiovascular system. Many studies have demonstrated that low serum 25-hy-
The serum level of vitamin D is associated with increased prevalence of hypertension, left ventricular hypertrophy, heart failure, peripheral artery disease, coronary artery disease, myocardial infarction and cardiovascular mortality [5–10]. However, there are limited data regarding the role of vitamin D level in development of CCC in patients with CTO.

Aim

In this study, we aimed to evaluate whether there is an association between serum vitamin D level and CCC in patients with CTO.

Material and methods

Study population

A total of 173 patients with a CTO in at least one coronary artery, who were referred to our hospital for coronary angiography between March 2013 and January 2014, were included in this observational study.

Patients with a history of acute coronary syndromes within the last 3 months, chronic inflammatory disease, coronary bypass surgery, severe cardiac valvular diseases, chronic kidney disease (creatinine > 1.4 mg/dl), chronic pulmonary disease, known malignity and those with active infection were excluded.

Risk factors for CAD including hypertension, diabetes mellitus, hyperlipidemia and smoking were recorded in all patients. Left ventricular ejection fraction (LVEF) was calculated from conventional apical 2- and 4-chamber images using biplane Simpson’s technique. Following coronary angiography, patients were divided into 2 groups based on the degree of CCC development as follows: group 1, patients with poorly developed CCC (Rentrop 0, 1); and group 2, those with well-developed CCC (Rentrop 2, 3).

Biochemical analysis

Blood samples were drawn to evaluate serum 25(OH)D levels. Serum 25(OH) D levels were measured with a HPLC device using the chromatographic method (Shimadzu LC 20AD/T, Kyoto, Japan). Serum creatinine, calcium, high-density lipoprotein (HDL), low-density lipoprotein (LDL), triglyceride, total cholesterol, glucose, high-sensitivity C reactive protein (hs-CRP), and parathroid hormone (PTH) levels were also measured in the blood samples drawn.

Coronary angiography

Coronary angiography was performed via femoral catheterization by the Judkins method. Patients with at least a CTO in one coronary artery were included in this study. Collateral circulation was graded according to the Rentrop classification as follows: 0, no marked collateral circulation; 1) collateral circulation at lateral branches but not reaching the epicardial coronary artery; 2) partial filling of the epicardial segment through collateral channels; 3) presence of complete filling in the epicardial coronary artery [11].

Statistical analysis

All analyses were carried out using SPSS 15.0 for Windows (SPSS Inc., Chicago, Illinois, USA). Continuous variables were given as mean ± standard deviation; categorical variables were defined as percentages. The variables were investigated using the Kolmogorov-Smirnov test to determine whether they are normally distributed. Independent samples t test was used to compare continuous variables between the two groups. Non-parametric values were compared with the Mann-Whitney U test. The χ² test was used to compare categorical data. Pearson and Spearman’s correlation coefficient was used to examine the association between serum 25(OH)D levels and Rentrop score. The effects of different variables on CCC were calculated using univariate analysis. The variables for which the unadjusted p was < 0.10 in logistic regression analysis were identified as potential risk markers and included in the full model. We reduced the model using backward elimination multivariate logistic regression analyses, and we eliminated potential risk markers using likelihood ratio tests. A two-tailed p value < 0.05 was considered as significant.

Results

A total of 188 patients (mean age 65 ±11 years, 120 men) were included in this study. Group 1 included 68 patients with poorly developed CCC (Rentrop 0, 1) and group 2 included 120 patients with well-developed CCC (Rentrop 2, 3). Comparison of baseline characteristics of patients with poorly developed CCC and well-developed CCC are shown in Table I. Mean age, sex, body...
mass index, smoking history, ejection fraction, presence of diabetes mellitus and hypertension were similar in the two groups. The levels of fasting glucose, low-density lipoprotein cholesterol, high-density lipoprotein cholesterol, triglyceride, creatinine, calcium and white blood cell count were also similar between the two groups (Table II). However, patients with poorly developed CCC had significantly lower serum 25 (OH)D levels compared to those with well-developed CCC (20 ±3 vs. 30 ±6 ng/ml, p < 0.0001, Figure 2).

Correlation analysis showed a significant correlation between vitamin D levels and the Rentrop score.

Table I. Demographic characteristics of the study population

Parameter	Poorly developed CCC (n = 68)	Well-developed CCC (n = 120)	Value of p
Age [years]	65 ±12	65 ±11	0.890
Gender, male	41 (60%)	79 (66%)	0.192
Diabetes, n	26 (38%)	42 (35%)	0.757
Hypertension, n	41 (60%)	76 (63%)	0.686
Smoking, n	30 (44%)	61 (51%)	0.178
BMI [kg/m²]	28 ±5	27 ±5	0.136
Ejection fraction (%)	41 ±8	43 ±9	0.473
Ocluded artery, n (%)			
LAD	11	41	0.011
LCX	25	31	0.073
RCA	36	55	0.340
Rentrop score, n:			
0	9		
1		59	
2	68		
3	52		

Notes: BMI – Body mass index, CCC – coronary collateral circulation, LAD – left anterior descending artery, LCX – left circumflex artery.

Table II. Comparison of laboratory features of patients with poorly developed and well-developed coronary collateral circulation

Parameter	Poorly developed CCC (n = 68)	Well-developed CCC (n = 120)	Value of p
Fasting glucose [mg/dl]	128 ±36	118 ±30	0.145
Creatinine [mg/dl]	1.1 ±0.9	1 ±0.9	0.693
LDL cholesterol [mg/dl]	123 ±49	128 ±46	0.484
HDL cholesterol [mg/dl]	40 ±8	41 ±8	0.859
Triglyceride [mg/dl]	201 ±98	196 ±121	0.826
25(OH)D₃ [ng/ml]	20 ±3	30 ±6	< 0.001
Ca	8.9 ±0.5	9.2 ±0.5	0.393
Leucocyte count [× 10⁶/µl]	8.8 ±0.3	9.0 ±0.3	0.684
Hemoglobin [g/dl]	14.1 ±3	14.6 ±3	0.328
Platelet count [10³/mm³]	244 ±75	252 ±76	0.519
Hs-CRP [mg/l]	4.3 ±0.3	3.4 ±0.4	0.035

Notes: Ca – Calcium, HDL – high density lipoprotein cholesterol, LDL – low density lipoprotein cholesterol, Hs-CRP – high sensitivity C-reactive protein.
Yasemin Dogan et al. 25-Hydroxy-vitamin D level may predict presence of coronary collaterals in patients with chronic coronary total occlusion

\[r = 0.714 \text{ and } p < 0.001, \text{ Figure 3}. \] Serum 25(OH)D (OR = 1.794, 95% confidence interval: 1.453–2.161; \(p < 0.001 \)) and hs-CRP levels (OR = 0.910, 95% CI: 0.830–0.996; \(p = 0.041 \)) were independent predictors of poor collateral flow in multivariate logistic regression analysis (Table III).

Discussion

The present study shows that patients with CTO and poorly developed CCC have lower serum 25(OH)D levels compared to patients with well-developed CCC. This study also shows that lower serum 25(OH)D levels may independently predict poorly developed CCC in patients with coronary CTO.

Development of CCC occurs through either angiogenesis of novel capillaries arising from available blood vessels or proliferation and maturation (arteriogenesis) of congenital intracoronary anastomoses following chronic ischemia or hypoxia. The main factor affecting development of collateral coronary vessels is the pressure gradient between segments localized at proximal and distal ends of the occlusion [12]. Growth factors released from endothelial cells and inflammatory cells recruited to ischemic tissue such as platelets and monocytes play a sig-

Figure 2. Comparison of 25(OH)D levels in patients with poorly developed coronary collaterals and well developed coronary collaterals

Figure 3. Relation between Rentrop Score and serum 25(OH)D levels in patients with a chronic coronary total occlusion

Table III. Predictors of well developed coronary collaterals in univariate and multivariate logistic regression analyses

Variables	Unadjusted OR	95% CI	Value of \(p \)	Adjusted OR	95% CI	Value of \(p \)
Male gender	1.335	0.689–2.587	0.392			
Age	1.002	0.975–1.029	0.889			
Diabetes	2.197	1.161–4.158	0.016	1.590	0.553–4.575	0.389
Hypertension	0.903	0.469–1.738	0.760			
Smoking	0.619	0.334–1.150	0.129			
SBP	1.000	0.987–1.013	0.975			
BMI	0.953	0.894–1.016	0.139			
LAD involvement	0.362	0.162–0.810	0.013	0.553	0.150–2.034	0.373
LCx involvement	1.830	0.942–3.555	0.074	2.086	0.608–7.154	0.242
Vit. D level	1.817	1.491–2.215	< 0.001	1.794	1.453–2.216	< 0.001
Creatinine	0.936	0.674–1.300	0.693			
Hs-CRP	0.914	0.867–0.963	0.001	0.910	0.830–0.996	0.041
Leucocyte count	1.022	0.922–1.132	0.682			

BMI – Body mass index, **LAD** – left anterior descending artery, **LCx** – left circumflex artery, **SBP** – systolic blood pressure, **Hs-CRP** – high sensitivity C-reactive protein.
significant role both atherosclerosis and angiogenesis. Although the precise mechanism underlying the association between vitamin D deficiency and coronary collateral development is not fully understood, several potential mechanisms have been proposed.

Vitamin D is involved in the pathogenesis of vascular diseases. In angiogenesis, vitamin D plays a key role in the development and maturation of the collateral circulation, which is crucial for restoring coronary blood flow in patients with chronic ischemia.

Collateral development is a complex process involving the growth and stabilization of new blood vessels. Several factors, including genetic predispositions, lifestyle, and environmental factors, influence the development of collateral vessels.

One potential mechanism to explain the association between vitamin D levels and collateral development could be mediated through the modulation of the interplay between apoptosis and autophagy. This effect is achieved through inhibition of nitric oxide production and upregulation of superoxide anion generation.

In a recent study by Amer et al., it was observed that serum 25(OH)D levels are related to coronary collateral development. A lower vitamin D level is associated with a higher risk of poor collateral development, which may result in impaired collateral development.

In addition, vitamin D deficiency is associated with an increase in the incidence and severity of immune-inflammatory disorders. High-sensitivity CRP, an indicator of inflammatory activity, was observed to be associated with lower vitamin D levels and better collateral development.

Furthermore, it is well known that an elevated level of CRP is associated with increased cardiovascular risk. Moreover, vitamin D deficiency is associated with increased CRP levels, which may result in impaired collateral development and worse outcomes in patients with cardiovascular disease.

A recent systematic review and meta-analysis conducted long-term cross-sectional prospective studies. It was found that vitamin D deficiency predicts coronary collateral development by increasing activity of endothelial cells and smooth muscle cells. Moreover, low vitamin D levels were associated with impaired development of endothelial and smooth muscle cells.

Collateral formation was assessed by coronary angiography in patients with acute myocardial infarction. Nitric oxide production, an indicator of endothelial function, plays a major role in the collateral function of the coronary circulation.

In our study, we established the association of serum 25(OH)D levels and vitamin D levels with coronary collateral development. Vitamin D levels were found to be inversely related to coronary collateral development. It was observed that the highest rate of mortality occurred in patients with serum 25(OH)D levels in the lowest quartile. However, in that study, only 48% of subjects and in the control group 52% of subjects had a totally occluded coronary artery. Moreover, in a European study that enrolled patients who underwent coronary angiography, it was found that 25(OH)D levels were associated with impaired development of macrovascular smooth muscle cell proliferation and expression of endothelial adhesion molecules. In addition, it was noted that visible coronary collateral vessels may even be associated with poor outcomes in patients with ACS.

Recently, Molinari et al. reported that vitamin D deficiency is associated with poor collateral development and increased mortality. They described beneficial effects of vitamin D on vascular remodeling, which may result in impaired collateral development.

Moreover, it is also known that vitamin D has anti-inflammatory properties, which may contribute to improved collateral development. It was also observed that vitamin D can prevent vascular calcification by inhibiting the expression of endothelial adhesion molecules and suppressing inflammation that triggers the migration of macrophages to foam cells. This effect is achieved through inhibition of nitric oxide production and upregulation of superoxide anion generation.

Another potential mechanism to explain the association between vitamin D levels and coronary collateral development could be mediated through the modulation of the interplay between apoptosis and autophagy. This effect is achieved through inhibition of nitric oxide production and upregulation of superoxide anion generation.
Conclusions

The present study shows that patients with a CTO and poor CCC have lower serum 25(OH)D levels compared to those with well-developed CCC. Our study also shows that, in patients with a CTO, low serum 25(OH)D level is an independent predictor of poor CCC. According to our results, we speculate that blunted collaterals might be a cause of poor cardiovascular outcomes in patients with CAD and vitamin D deficiency.

Conflict of interest

The authors declare no conflict of interest.

References

1. Fefer P, Knudtson ML, Cheema AN, et al. Current perspectives on coronary chronic total occlusions: the Canadian Multicenter Chronic Total Occlusions Registry. J Am Coll Cardiol 2012; 59: 991-7.
2. Christofferson RD, Lehmann KG, Martin GV, et al. Effect of chronic total coronary occlusion on treatment strategy. Am J Cardiol 2005; 95: 1098-91.
3. Van Royen N, Plek JJ, Schaper W, et al. Arteriogenesis: mechanisms and modulation of collateral artery development. J Nucl Cardiol 2001; 8: 687-93.
4. Kersten JR, Pagel PS, Chilián WM, et al. Multifactorial basis for coronary collateralization: a complex adaptive response to ischemia. Cardiovasc Res 1999; 43: 44-57.
5. Melamed ML, Muntner P, Michos ED, et al. Serum 25-hydroxyvitamin D levels and the prevalence of peripheral arterial disease: results from NHANES 2001 to 2004. Arterioscler Thromb Vasc Biol 2008; 28: 1179-85.
6. Dobnig H, Pilz S, Scharnagl H, et al. Independent association of low serum 25-hydroxyvitamin D and 1,25-dihydroxyvitamin D levels with all-cause and cardiovascular mortality. Arch Intern Med 2008; 168: 1340-9.
7. Pilz S, Marz W, Wellnitz B, et al. Association of vitamin D deficiency with heart failure and sudden cardiac death in a large cross-sectional study of patients referred for coronary angiography. J Clin Endocrinol Metab 2008; 93: 3927-35.
8. Demir M, Demir C, Kecoğlu Ş, et al. The relationship between vitamin D deficiency and coronary artery ectasia. Postep Kardiol Inter 2014; 10: 238-41.
9. Burgaz A, Orsini N, Larsson SC, et al. Blood 25-hydroxyvitamin D concentration and hypertension: a meta-analysis. J Hypertens 2011; 29: 636-45.
10. Giovannucci E, Liu Y, Hollis BW, et al. 25-hydroxyvitamin D and risk of myocardial infarction. Arch Intern Med 2008; 168: 1174-80.
11. Rentrop K, Thornton IC, Feit F, Van Buskirk M, Determinants and protective potential of coronary arterial collaterals as assessed by an angioplasty model. Am J Cardiol 1988; 61: 677-84.
12. Chilián WM, Mass HI, Williams SE, et al. Microvascular occlusions promote coronary collateral growth. Am J Physiol 1990; 258: H1103-1.
13. Newman PE. The coronary collateral circulation: determinants and functional significance in ischemic heart disease. Am Heart J 1981; 102: 431-45.
14. Glasser SP, Selwyn AP, Ganz P. Atherosclerosis: risk factor and the vascular endothelium. Am Heart J 1996; 131: 379-84.
15. Schaper W, Sharma HS, Quinkler W, et al. Molecular biologic concepts of coronary anastomoses. J Am Coll Cardiol 1990; 15: 513-8.
16. Judd S, Tangpricha V. Vitamin D deficiency and risk for cardiovascular disease. Circulation 2008; 117: 503-11.
17. Brewer LC, Michos ED, Reis JP. Vitamin D in atherosclerosis, vascular disease, and endothelial function. Curr Drug Targets 2011; 12: 54-60.
18. García-Canton C, Bosch E, Ramirez A, et al. Vascular calcification and 25-hydroxyvitamin D levels in non-dialysis patients with chronic kidney disease stages 4 and 5. Nephrol Dial Transplant 2011; 26: 2250-6.
19. Li X, Speer MY, Yang H, et al. Vitamin D receptor activators induce an anticalcific paracrine program in macrophages: requirement of osteopontin. Arterioscler Thromb Vasc Biol 2010; 30: 321-6.
20. Kendrick J, Targher G, Smitsa G, et al. 25-Hydroxyvitamin D deficiency is independently associated with cardiovascular disease in the Third National Health and Nutrition Examination Survey. Atherosclerosis 2009; 205: 255-60.
21. Sahin I, Okuyan E, Gungor B, et al. Lower vitamin D level is associated with poor coronary collateral circulation. Scand Cardiovasc J 2014; 48: 278-83.
22. Molinari C, Uberti F, Grossini E, et al. 1alpha,25 dihydroxycholecalciferol induces nitric oxide production in cultured endothelial cells. Cell Physiol Biochem 2011; 27: 661-8.
23. Uberti F, Lattuada D, Morsanuto V, et al. Vitamin D protects human endothelial cells from oxidative stress through the autophagic and survival pathways. J Clin Endocrinol Metab 2014; 99: 1367-74.
24. Amer M, Qayyum R. Relation between serum 25-hydroxyvitamin D and C-reactive protein in asymptomatic adults (from the continuous National Health and Nutrition Examination Survey 2001 to 2006). Am J Cardiol 2012; 109: 226-30.
25. Laukhn MH, Bowles DK, Dunker DJ. The coronary circulation in exercise training. Am J Physiol Heart Circ Physiol 2012; 302: 10-23.
26. Senti S, Fleisch M, Billinger M, et al. Long-term physical exercise and quantitatively assessed human coronary collateral circulation. J Am Coll Cardiol 1998; 32: 49-56.
27. Brock K, Cant R, Clemson L, et al. Effects of diet and exercise on plasma vitamin D (25(OH)D) levels in Vietnamese immigrant elderly in Sydney, Australia. J Steroid Biochem Mol Biol 2007; 103: 786-92.
28. Holloszy JQ, Coyle EF. Adaptations of skeletal muscle to endurance exercise and their metabolic consequences. J Appl Physiol 1984; 56: 831-8.
29. Nicolli G, Giubilato S, Di Vito L, et al. Severity of coronary atherosclerosis in patients with a first acute coronary event: a diabetes paradox. Eur Heart J 2013; 34: 729-41.
30. Meier P, Lansky AJ, Fahy M, et al. The impact of the coronary collateral circulation on outcomes in patients with acute coronary syndromes: results from the ACUITY trial. Heart 2014; 100: 647-51.