Biosynthesis of ZnO nanoparticles using *Hagenia abyssinica* leaf extracts; their photocatalytic and antibacterial activities

Dagme Zewde and Belete Geremew

Department of Chemistry, College of Natural and Computational Science, Debre Markos University, Debre Markos, Ethiopia

ABSTRACT

This study investigates the green synthesis of ZnO NPs using an aqueous solution of *hagenia abyssinica* leaf extract, which acts as a reduction of zinc acetate dihydrate as a reducing agent and stabilizing agent. The synthesized ZnO NPs were characterized by various techniques such as XRD, SEM, FTIR, and UV–Vis spectroscopy. The XRD pattern confirmed that the hexagonal crystalline phase structure and average crystal size of the synthesized nanoparticle was 27.833 nm. Several functional groups were detected using the Fourier transform infrared (FTIR) method. Within 120 minutes of sunlight irradiation, 83.17% photocatalytic degradation of MO was recorded, with an initial concentration of 15 ppm and a catalyst dosage of 40 mg. The present study shows a novel, eco-friendly method to synthesize zinc oxide nanoparticles that have potential applications in water treatment and dye degradation. The disc diffusion method was used to determine antibacterial activity against gram-positive (*S. aureus* and *S. epidermidis*) and gram-negative (*E. coli* and *K. pneumoniae*) bacterial strains. The biosynthesized ZnO nanoparticles were highly effective against *S. epidermidis* with inhibition zones of 21 ± 1.0 mm at 30 mg/mL and less effective against *E. coli* with inhibition zones of 16 ± 1.0 mm at 10 mg/mL.

ARTICLE HISTORY

Received 5 April 2022
Accepted 18 May 2022

KEYWORDS

Antibacterial; *hagenia abyssinica*; biosynthesis; photocatalysis; ZnO

1. Introduction

Waste-water contaminants from fabric, printing, and manufacturing, as well as other industrial dye contaminants, harm the ecosystem, posing environmental and human health problems [1]. Organic dyes are widespread contaminants in wastewater and are particularly hazardous to the environment. Organic dyes are the main source of contamination in the textile and food industries. Pollutants are also extremely hazardous, as they cause cancer in both humans and natural sources [2].

Nowadays, biomedical nanomaterials have received more concerns because of their notable biological properties and biomedical applications. Metal oxide nanoparticles have a wide range of applications in the biomedical area, including antibacterial, anticancer, drug transport, cell imaging, and biosensing [3]. ZnO nanoparticles have strong antibacterial activities, due to their strong surface volume ratio, allowing germs to disperse and penetrate more easily [4]. Metal oxide nanoparticles may cause harm by releasing reactive oxygen species (ROS) and causing oxidative stress [5]. Zinc oxide nanoparticles are widely used in a variety of industries due to their unique properties, which include anti-corrosion, anti-bacterial, photo-catalytic, antioxidant, low electron conductivity, and high heat resistance [6].

Photocatalysis has been successfully used to remove pollutants from water and wastewater in large quantities [7,8]. Zinc oxide nanoparticles have been synthesized by physical and chemical methods, however, these approaches are toxic and environmentally dangerous compounds [9]. To overcome this problem, several technologies have been developed to remove dye from wastewater such as adsorption [10–12], photocatalysis [13–15], and advanced oxidation process [16]. Among all these treatments, photocatalysis has received attention due to its high efficiency, environmentally friendly, and easy operation [17].

Among the plants that have been a green synthesis of ZnO NPs studied by various plant extracts such as *passiflora foetida* fruit [18], *Averrhoa carambola* fruits [19], *cannabis sativa* leave [20], *peltophorum pterocarpum* leaf [21] and *Carissa edulis* fruits [22]. In comparison to chemical methods, the green synthesis method has several advantages, such as less time consumption, low-cost precursors, and high-purity product; the handling procedure is very simple and does not require any expensive equipment.

Hagenia abyssinica is a flowering plant that is native to the high-elevation Afarmontane regions of central and eastern Africa, ranging from Sudan to Ethiopia. It is called African redwood and East African rosewood in...
English, and kosso in Amharic [23]. Hagenia abyssinica is a monotypic genus in the Rosaceae family. It was once common in Ethiopia’s semi-humid highland forests between 2450 and 3250 m above sea level. It is mainly found in a mountainous area of Ethiopia’s central, south-western, and south-eastern regions [24]. In Ethiopia, the society used the *Hagenia abyssinica* leaves to treat diarrhea, typhoid, cough, livestock diseases, healing injured, tapeworm and wound [25].

This paper describes a novel, simple and cost-effective technique for the biosynthesis of ZnO nanoparticles. Because the synthesis method is based on the green *Hagenia abyssinica* extract, it avoids the use of hazardous chemicals, making the end product more biocompatible and safe. The biosynthesized ZnO NPs are more effective in photocatalytic and antibacterial activities against methyl orange dye compared to chemical synthesized methods. To the best of our knowledge, this will be the first study to demonstrate the biosynthesis, photocatalytic and antibacterial activities of ZnO NPs produced from *Hagenia abyssinica* leaf extract.

2. Material and method

2.1. Materials

Hagenia abyssinica leaves were collected from Debre Markos University, Ethiopia. Zinc acetate dihydrate, sodium hydroxide, methyl orange, ethanol, and deionized water. All of the chemicals used were analytical grade and were used without further purification.

2.2. Preparation of extract

The leaves of the *hagenia abyssinica* were washed several times with distilled water used to remove dust particles, and the remaining moisture was sun-dried. The dried leaves were ground into powder and sieved using 355 μm sieves. 20 g powdered leaves were mixed with 100 ml double distilled water and heated to 75°C for 60 minutes and stirred in the solution using a magnetic stirrer at 700 rpm. After cooling at room temperature, the extract was filtered with Whatman No. 1 filter paper and the supernatant was taken for further experimentation, as described in Figure 1.

2.3. Green synthesis of ZnO nanoparticles

The leaves of *Hagenia abyssinica* were collected and washed using distilled water, then dried in the shade to remove any remaining moisture. 90 ml of *Hagenia abyssinica* plant leaf extract, 60 ml of 5.9265 g of zinc acetate dihydrate, and 60 ml of 1.08 g sodium hydroxide were mixed with a (3:2:2) ratio. The mixture was still forming yellow-colored precipitate after 2 h of stirring at 800 rpm. The precipitates were washed in ethanol and distilled water to eliminate contaminants before being dried in an oven at 100°C for 8 h. The green synthesized ZnO NPs powder was calcined in a furnace at 400°C for 2 h [26].

2.4. Characterization

The crystalline structure of ZnO NPs was determined by XRD and evaluated by (XRD-7000, Shimadzu Corporation, Japan). An x-ray diffractometer with Cu Kα radiation (1.5406 Å) was used to accomplish the diffraction within a 2θ range of 20° to 80°. Operating voltage 40kv and current is 30 mA with a divergence slit of 1-degree continuous scanning mode. The optical properties of the UV–Vis spectrometer were done using (Shimadzu-UV 1800 spectrometer) from the range of 200–800 nm. The FTIR was used to determine different functional groups in the KBr phase using a (JASCO FTIR-6800) instrument between 4000 and 400 cm⁻¹. The surface morphology was analyzed by scanning electron microscopy (SEM) using the instrument (JCM-6000 PLUS Benchtop SEM, JEDL, Japan).

![Diagram of the preparation of the hagenia abyssinica extracts.](image)
2.5. Photocatalytic activity

In this investigation, we analyzed the photodegradation of organic dyes, one of the dyes is MO, and this dye is a toxic azo dye mostly present in textile, leather, and paper industries. The photocatalytic tests were done by sunlight irradiation. The degradation of the MO was followed in a 50 ml solution of six different dye concentrations (5, 10, 15, 20, 25 and 30 mg/L) and the ZnO catalyst dose (10, 20, 30, 40, 50 and 60 mg) were used. The decolorization efficiency of MO dye was evaluated using a UV–Vis spectrophotometer at λ_{max} = 464 nm. In this experiment, 50 ml of MO dye solution of 15 ppm was taken in a quartz tube with different doses of ZnO (10, 20, 30, 40, 50 and 60 mg) nanoparticles was added as a catalyst to the investigation of photocatalytic activity and was stirred for 30 min in the dark before irradiation. Then, the solution mixture was exposed to sunlight for 2 h. 10 ml of the samples were withdrawn at 30 minutes at a regular time interval. Before measuring the absorbance, the suspension was centrifuged at 800 rpm for 5 minutes and filtered to remove the catalyst particles. The absorbance at λ_{max} = 464 nm was recorded using the UV–Vis spectrophotometer. The % of degradation of dyes was determined using equation (1) [27].

$$\% \text{ degradation} = \left(\frac{C_0 - C_t}{C_0} \right) \times 100\%$$ \hspace{1cm} (1)

Where C_0- the initial concentration of MO at time $t = 0$
C_t- the concentration of MO at different time t

2.6. Antibacterial activity

In a solution of biosynthesized ZnO nanoparticles, the discs were immersed in distilled water. The disc diffusion method was used to evaluate the antibacterial activity of biosynthesized ZnO nanoparticles against two gram-positive ($S.\ \text{aureus}$ and $S.\ \text{epidermidis}$) and two gram-negative ($E.\ \text{coli}$ and $K.\ \text{pneumoniae}$) bacteria. As a control, the TTC standard was used. After that, the biosynthesized ZnO nanoparticles (10, 20 and 30 mg/ml) and TTC standard were placed on a disc and incubated at 37°C for a day. To estimate the antibacterial activity, the diameter (mm) of the inhibitory zone around the wells was measured [28].

3. Results and discussion

3.1. XRD analysis

The XRD patterns show that the green synthesized ZnO nanoparticles were free of impurities as shown in Figure 2. The XRD pattern had the characteristics of diffraction peaks seen at 2θ values of 31.78°, 34.46°, 36.28°, 47.56°, 56.62°, 62.90°, 66.46°, 67.98°, 69.14°, 72.54° and 77.60° along with their Miller index plane of (100), (002), (101), (102), (110), (103), (200), (112), (201), (004) and (202), respectively. The results confirm that the hexagonal crystal structure of zinc oxide and the peaks exhibited in the XRD pattern spectrum were similar to other reports studied [29]. There was no additional peak in the XRD pattern, indicating that the synthesized NPs were of high purity [30,31].

The measured diffraction reflections from the XRD pattern are completely in accordance with the standard of (JCPDS: 36–1451) ZnO NPs [26]. The crystal particle size can be calculated from the FWHM of the highest intensity and sharp peak, which corresponds to (101) using the Debye Scherrer formula [31]. By using equation (2) the calculated value of the ZnO particle size from the

![Figure 2. XRD of ZnO nanoparticles.](image-url)
XRD pattern was found to be 27.833 nm. As shown in Table 1, there are different structural parameters from XRD.

\[
D = \frac{0.89\lambda}{\beta \cos \theta}
\]

(2)

Where 0.89- Scherrer’s constant
\(\lambda\) - X-ray wavelength (1.5406A)
\(\beta\) - FWHM (full width at half maximum)
\(\theta\) - Bragg’s angle of diffraction

3.2. FTIR analysis

Peaks at 3437.49, 2345.01, 2077.92, 1623.76, 1384.63, 1104.04, 617.10, 485.97, and 428.11 cm\(^{-1}\) were observed in the FT-IR study of biosynthesized ZnO nanoparticles (Figure 3). The broad peak around 3437.49 cm\(^{-1}\) corresponds to hydroxyl O-H stretching of alcohols and phenols. The peak around 2345.01 cm\(^{-1}\) represented the triple bond of C and N stretching of nitrile groups and the peak at 2077.92 cm\(^{-1}\) assigned to the C and C triple bond of stretching. The bands at 1623.76 cm\(^{-1}\) indicate the presence of primary amines and the peaks at 1384.63 cm\(^{-1}\) was assigned to C-O bond stretching [32]. The peaks observed at 428.11, 485.97 and 617.10 cm\(^{-1}\) could correspond to stretching of Zn-O vibrations [33].

3.3. Photocatalytic Activity

Figure 4 shows the effect of varying ZnO catalyst dosages, with varied photo-catalyst concentrations ranging from 10 to 60 mg while keeping the initial methyl orange dye concentration constant (10 ppm). To understand the effect of catalyst dosage, the other conditions were kept constant. When the catalyst dosage increased from 10 mg to 40 mg the photodegradation of methyl orange increased from 36.82% to 83.17% within 120 minutes, but if we further increased the photo-catalyst dosage from 40 mg to 60 mg, the degradation of methyl orange decreased from 83.17% to 80.99% at 2 h. Other researchers also reported the effect of catalyst dosage on the degradation of MO using Eucalyptus Globulus and Calotropis Procera leaves with catalyst doses of 30 mg and 1.5 g/dm\(^3\) and its degradation efficiency of 97.3% and 81% under UV-light, respectively [34,35].

Under sun-light irradiation, the effect of ZnO catalyst dosage on MO degrading activity was studied. Figure 4 shows that the amount of catalyst was changed from 10 to 60 mg, with the highest photodegradation activity of methyl orange observed at 40 mg of catalyst dose. When the catalyst dose is increased from 20 mg to 40 mg the degradation increases rapidly up to 83.17% within 2 h, and the
degradation efficiency of methyl orange decreases when increased the dose above 40 mg. Increasing the amount of ZnO catalysts above the optimum value may result in the aggregation of ZnO catalysts. The first reason is that the active sites in the catalyst are rendered inaccessible to light absorption [36]. The other reason is that when the solution becomes turbid, the activity of ZnO activation during the sunlight irradiation decreases [37].

Figure 5 shows the photo-degradation activity of MO at different catalyst doses of ZnO (10–60 mg), while the initial dye concentration of MO remains constant (15 mg/L). When the catalyst dose of ZnO was increased from 10 to 40 mg, the decolonization performance of MO enhanced from 36.15% to 82.83%, but the degradation slightly decreased from 82.83% to 79.64% within a period of 120 minutes.

As shown in Figure 6, the optimum amount of initial concentration is described. The initial dye concentration affects the degradation activity, with dye concentrations varying from 5 to 30 ppm at a constant ZnO catalyst dose of 40 mg. The degradation of MO rose to 15 ppm when the dye concentration increased but by increasing the initial concentration to more than 15 ppm the degradation efficiency decreased, this is because the photon cannot reach the catalyst surface.

Figure 4. The effect of catalyst dose on the photocatalytic degradation of MO dye (pH = neutral, MO = 15 mg/L).

Figure 5. The effect of ZnO catalyst dosage on the degradation of MO dye under sunlight at the initial concentration of 15 ppm.
As the initial dye concentration increases, the number of active sites lowers the formation of radicals and which leads to decrease degradation \[38\]. Other investigations also studied the effect of initial concentration on degradation of MO using *Eucalyptus Globulus* and *Calotropis Procerca* leaves with its initial dose of 10 and 20 ppm, its degradation efficiency of 97.3% and 81% under UV-light, respectively \[34,35\]. In Table 2, there are comparisons of earlier work done on MO dye degradation, with a recent report using zinc oxide nanoparticles. There are also several pieces of researches in the literature that report on the degradation efficiency of organic dyes using chemically synthesized methods \[39–43\].

Figure 6. The effect of the initial concentration of MO dye on the photocatalytic degradation.

Table 2. The comparison of previous work done on MO dye degradation, with a recent report using zinc oxide nanoparticles.

S.No	Plant extract	Catalyst dose	Dye pollutant	Dye conc.	Irradiation source	D%	Time (min)	Ref
1.	*Chlamydomonas Reinhardtii*	50 mg	MO	10 ppm	Sun-light	90	120	[44]
2.	*Eucalyptus Globulus*	30 mg	MO	10 ppm	UV-light	97.3	60	[34]
3.	*Pullulan*	150 mg	MO	10 ppm	UV-light	97	300	[45]
4.	*Calotropis Procerca*	1.5 g/dm³	MO	20 ppm	UV-light	81	100	[35]
5.	*Nephelium Lappaceum*	100 mg	MO	10 ppm	UV-light	84	120	[42]
6.	*Abelmoschus Esculentus*	175 mg	MB	32 ppm	UV-light	100	60	[46]
7.	*Artocarpus Gomezianus*	50 mg	MB	5 ppm	Sunlight	60	100	[47]
8.	*Hagenia Abyssinica*	40 mg	MO	15 ppm	Sun-light	83.17	120	Present work

Figure 7. The bandgap using tauc’s plot.
3.3.1. UV-Vis diffuse absorption spectrophotometer

As shown in Figure 8, the UV–Vis region was used to determine the optical absorption properties of green synthesized ZnO nanoparticles; Figure 8 shows the optical absorption spectra of ZnO NPs in the region of 200–800 nm at room temperature. The UV–Vis absorption spectra of MO degradation using Sunlight with 40 mg of ZnO NPs catalyst. The highest intensity of the organic pollutant (dye) of MO is 464 nm; however, as the time of degradation rises, this peak decreases. Equation 3, was used to compute the bandgap of the NPs.

\[(\alpha h\nu)^2 = A(\nu - E_g)^n\]

In this equation, \(n\)-direct/indirect transition semiconductor, \(\alpha\)-absorption coefficient, \(h\)-Plank’s constant, \(\nu\)-Light frequency, \(E_g\)-bandgap energy and \(A\) is Constant.

As described in Figure 7, it can be determined the bandgap energy by extra-plotting of Tauc’s plot \(h\nu\) in the x-axis vs \((\alpha h\nu)^2\) in the y-axis [30]. From Tauc’s plot, the bandgap energy of the synthesized Zinc Oxide NPs was 3.21 eV.

3.3.2. Mechanism of photocatalytic degradation

Scheme 1 shows the proposed MO degradation mechanism. Many researchers have described the photo-degradation mechanism of ZnO nanoparticles. Organic dye was decolorized using ZnO nanoparticles in the following way [48]: First, the organic pollutants diffuse to the surface of ZnO NPs from the liquid phase, and second organic pollutants adsorbed on the surface of ZnO NPs, followed by oxidation and reduction in the adsorbed phase.

Finally, the products were removed from the interface region. The photocatalytic activity of reactive species (\(\text{OH}^-\) and \(\text{O}_2^-\)) can be formed by the interaction between catalysis and sunlight irradiation, and these reactive species interact with organic dyes resulting degradation of organic pollutants [49]. The photocatalytic efficiency of nanoparticle catalysts is higher than that of the normal photocatalysts; this could be due to a higher surface-to-volume ratio [50].

The \(e^-\) reacts with oxygen at the conduction band to generate \(^{\cdot}\text{O}_2^-\) and these species degrade the organic dye methyl orange. The dye methyl orange can react with \(h^+\) (an oxidant) to degrade this dye [51]. At the valence band \(h^+\) reacts with methyl orange, and some of it reacts with \(\text{H}_2\text{O}\) and \(\text{OH}^-\) and forms \(\cdot\text{OH}\). All these radicals decolorized the dye methyl orange to \(\text{CO}_2\) and \(\text{H}_2\text{O}\) [52]. The equation describes the photo-degradation reactions, which give \(\text{CO}_2\) and \(\text{H}_2\text{O}\) as the products of the decolorization as studied by various scholars [53].

\[
\begin{align*}
\text{ZnO} + h\nu &\rightarrow \text{ZnO} (e^-_{\text{CB}} + h^+_{\text{VB}}) \\
h^+_{\text{VB}} + \text{H}_2\text{O} &\rightarrow \cdot\text{OH} + \text{H}^+ \\
e^-_{\text{CB}} + \text{O}_2 &\rightarrow \text{O}_2 \\
\cdot\text{OH} + h^+_{\text{VB}} &\rightarrow \cdot\text{OH}
\end{align*}
\]

\(\cdot\text{OH} + \text{Organic pollutants (MO)} + \text{O}_2 \rightarrow \text{Organic ions} + \text{CO}_2 + \text{H}_2\text{O}\)

3.4. Scanning electron microscopy (SEM) analysis

ZnO synthesized NPs with hagenia abyssinica leaf extract were recorded for SEM images using drop coated. The morphology characteristic of the synthesized ZnO NPs was studied using SEM analysis. Figure 9 is a SEM image of ZnO nanoparticles. The reports indicate that the SEM image of green synthesized ZnO has a rod shape. The SEM image observed that there was more agglomeration with a large area; it may be because of the high extract concentration.

3.5. Antibacterial activity

The antibacterial activity of biosynthesized ZnO nanoparticles against gram-positive (\(S.\) \text{aureus} and \(S.\) \text{epidermidis}) and gram-negative bacteria (\(E.\) \text{coli} and \(K.\) \text{pneumoniae}) was evaluated using the disc diffusion method at three different concentrations (10, 20, and 30 mg/mL). As indicated in (Figure 10 and Table 3), biosynthesized ZnO nanoparticles illustrated effective antibacterial activity in both gram-positive (\(S.\) \text{aureus} and \(S.\) \text{epidermidis}) and gram-negative (\(E.\) \text{coli} and \(K.\) \text{pneumoniae}) bacterial strains. The highest zone of inhibition (21 ± 1.0) was obtained against \(S.\) \text{epidermidis} at 30 mg/mL, while the lowest antibacterial activity was obtained against \(E.\) \text{coli} at 10 mg/mL of biosynthesized ZnO nanoparticles.
3.6. Kinetic studies of photocatalytic degradation of MO

As shown in Figure 11, the plot of ln \(\frac{C_0}{C_t} \) on the y-axis with time on the x-axis is a straight line followed by pseudo-first-order kinetics described by a modified Langmuir-Hinshelwood model using equation (4) [54].

\[
\ln \left(\frac{C_0}{C_t} \right) = kt \tag{4}
\]

Where Co- the initial concentration of MO before irradiation
Ct- the concentration of MO at any time t after irradiation
k- rate constant \(\text{min}^{-1} \)
t- irradiation time (min)

Scheme 1. Proposed MO degradation mechanism.

Figure 9. SEM image of Zinc Oxide nanoparticles with different resolution.
According to the graph in Figure 11, the rate constants for degradation of methyl orange dye at 15 ppm with ZnO catalyst doses of (10, 20, 30, 40, 50 and 60 mg) were 4.1x10^{-3}, 6.4 x 10^{-3}, 1.16 x 10^{-2}, 1.54 x 10^{-2}, 1.144 x 10^{-2} and 1.4 x 10^{-2} min^{-1} respectively. The correlation coefficient of the doses of (10, 20, 30, 40, 50 and 60 mg) of MO dye was recorded $R^2 = 0.9631, 0.9421, 0.9511, 0.963, 0.967$ and 0.9649, respectively.

The total catalyst dose of the correlation coefficient (R^2) is greater than 0.91 and it fits with the standard of the pseudo first-order kinetic model.

4. Conclusion

In summary, the green synthesized ZnO nanoparticles using Hagenia abyssinica leaves are simple, cost-effective, and environmentally friendly. The particle size and surface morphology of the green synthesized nanoparticles of ZnO were characterized using XRD, FTIR, and SEM. The XRD pattern indicates the formation of Zinc Oxide nanoparticles and the crystal size of the ZnO nanoparticles was 27.833 nm. The presence of functional groups in biosynthesized ZnO nanoparticles was identified using FTIR. The photocatalytic degradation of the MO dye after 120 minutes of sunlight
irradiation was 83.17% for the catalyst dose of 40 mg biosynthesized ZnO NPs. It is also reported that the degradation of methyl orange dye meets the pseudo-first-order kinetics. Antibacterial tests revealed that biosynthesized ZnO nanoparticles inhibited the growth of both Gram-positive and Gram-negative bacteria.

List of Abbreviations

Abbreviation	Description
FTIR	Fourier transform infrared
FWHM	Full Width at Half Maximum
MO	Methyl Orange
MB	Methylene Blue
NPs	Nanoparticles
SEM	Scanning electron microscopy
TTC	2,3,5-triphenyltetrazolium chloride
UV-light	Ultra violet light
UV-Vis	Ultra violet visible
XRD	X-ray diffraction

Acknowledgments

The authors would like to acknowledge Debre Markos University for allowing us to do the experiment in the chemistry laboratory.

Author’s Contributions

Both the authors designed this study, developed the proposal, interpreted the results and statistical analysis, drafted and revised the paper before submitting the final manuscript, read and approved it.

Conflict interests

The authors confirm that there are no competing interests in this research work.

Data Availability Statement

The datasets used and/or analyzed during the current study are available from the corresponding author on reasonable request.

Disclosure statement

No potential conflict of interest was reported by the author(s).

Funding

This research was done without a funding source.

References

[1] Suresh D, Nethravathi PC, Udayabhanu, et al. Green synthesis of multifunctional zinc oxide (ZnO) nanoparticles using Cassia fistula plant extract and their photodegradative, antioxidant and antibacterial activities. Mater Sci Semicond Process. 2015;31:446–454.

[2] Podasca V-E, Damaceanu M-D. Photopolymerized films with ZnO and Doped ZnO particles used as efficient photocatalysts in malachite green dye decomposition. Appl Sci. 2020;10:1954.

[3] Mishra PK, Mishra H, Ekielski A, et al. Zinc oxide nanoparticles: a promising nanomaterial for biomedical applications. Drug Discov Today. 2017;22:1825–1834.
[4] Bai X, Li L, Liu H, et al. Solvothermal synthesis of ZnO nanoparticles and anti-infection application in vivo. ACS Appl Mater Interfaces. 2015;7:1308–1317.

[5] Saravanam G, Gopinath V, Chaurasia MK, et al. Green synthesis of anisotropic zinc oxide nanoparticles with antibacterial and cytotoxic properties. Microb Pathog. 2018;115:57–63.

[6] Hasinidawani JN, Azlina HN, Norita H, et al. Synthesis of ZnO Nanostructures Using Sol-Gel Method. Procedia Chem. 2016;19:211–216.

[7] Taghavi Fardood S, Moradnia F, Mostafaei M, et al. Biosynthesis of MgFe2O4 magnetic nanoparticles and its application in photo-degradation of malachite green dye and kinetic study. Nanochemistry Research. 2019;4:86–93.

[8] Eskandari Azar B, Ramazani A, Taghavi Fardood S, et al. Green synthesis and characterization of ZnAl2O4@ZnO nanocomposite and its environmental applications in rapid dye degradation. Optik. 2020;208:164129.

[9] Gavade NL, Kadam AN, Suwarkar MB, et al. Biogenic synthesis of multi-applicative silver nanoparticles by using Ziziphus Jujuba leaf extract. Spectrochim Acta A Mol Biomol Spectrosc. 2015;136:953–960.

[10] Zewde D, Geremew B. Removal of Congo red using Vernonia amygdalina leaf powder: optimization, isothersms, kinetics, and thermodynamics studies. Environ Pollutants Bioavailability. 2022;34:88–101.

[11] Kachbouri S, Mnarsi N, Elaloui E, et al. Tuning particle morphology of mesoporous silica nanoparticles for adsorption of dyes from aqueous solution. J Saudi Chem Soc. 2018;22:405–415.

[12] Geremew B, Zewde D. Hagenia abyssinica leaf powder as a novel low-cost adsorbent for removal of methyl violet from aqueous solution: optimization, isothersms, kinetics, and thermodynamic studies. Environ Technol Innovation. 2022;28:102577.

[13] Keong CC, Vivek YS, Salamatinia B, et al. Green synthesis of ZnO nanoparticles by an alginate mediated ion-exchange process and a case study for photocatalysis of methylene blue dye. In: Journal of Physics: Conference Series; Barcelona, Spain; IOP Publishing; 2017. pp. 012014.

[14] Xu D, Ma H. Degradation of rhodamine B in water by ultrasonic-assisted TiO2 photocatalysis. J Clean Prod. 2021;313:127758.

[15] Liu Y, Zhang Q, Yuan H, et al. Comparative study of photocatalysis and gas sensing of ZnO/Ag nanocomposites synthesized by one- and two-step polymer-network gel processes. J Alloys Compd. 2021;868:158723.

[16] Afzal S, Samsudin EM, Julkapli NM, et al. Controlled acid catalyzed sol gel for the synthesis of highly active TiO2-chitosan nanocomposite and its corresponding photocatalytic activity. Environ Sci Pollut Res. 2016;23:23158–23168.

[17] Ahmed S, Annu CSA, Ikram S. A review on biogenic synthesis of ZnO nanoparticles using plant extracts and microbes: a prospect towards green chemistry. J Photochem Photobiol B Biol. 2017;166:272–284.

[18] Khan M, Ware P, Sharma N. Synthesis of ZnO nanoparticles using peels of Passiflora foetida and study of its activity as an efficient catalyst for the degradation of hazardous organic dye. SN Appl Sci. 2021;3:528.

[19] Chakraborty S, Farida JJ, Simon R, et al. Averrhoa carambola fruit extract assisted green synthesis of ZnO nanoparticles for the photodegradation of Congo red dye. Surf Interfaces. 2020;19:100488.

[20] Chauhan A, Verma R, Kumari S, et al. Photocatalytic dye degradation and antimicrobial activities of Pure and Ag-doped ZnO using Cannabis sativa leaf extract. Sci Rep. 2020;10:7881.

[21] Pai S, S H, Varadavenkatesan T, et al. Photocatalytic zinc oxide nanoparticles synthesis using Peltophorum pterocarpum leaf extract and their characterization. Optik. 2019;185:248–255.

[22] Fowsiya J, Madhumitha G, Al-Dhabi NA, et al. Photocatalytic degradation of Congo red using Carissa edulis extract capped zinc oxide nanoparticles. J Photochem Photobiol B Biol. 2016;162:395–401.

[23] Wolde T, Bizuayehu B, Hailemariam T, et al., Phytotoxicity study and antimicrobial activity of Hagenia abyssinica. Indian J Pharm Pharmacol. 2016;3:127–134.

[24] Negash L. Indigenous trees of Ethiopia. In: Biology, uses and propagation techniques.repro. Umeå Sweden: SLU; 1995; p. 11–38.

[25] Assefa B, Glatzel G, Buchmann C. Ethnomedicinal uses of Hagenia abyssinica (Bruce) JF Gmel. among rural communities of Ethiopia. J Ethnobiol Ethnomed. 2010;6:1–10.

[26] Devi RS, Gayathri R. Green synthesis of zinc oxide nanoparticles by using Hibiscus rosa-sinensis. Int J Curr Eng Technol. 2014;4:2444–2446.

[27] Jamdaghi P, Khatri P, Rana JS. Green synthesis of zinc oxide nanoparticles using flower extract of Nyctanthes arbor-tristis and their antifungal activity. J King Saud Univ Sci. 2018;30:168–175.

[28] Senthilkumar S, Sivakumar T. Green tea (Camellia sinensis) mediated synthesis of zinc oxide (ZnO) nanoparticles and studies on their antimicrobial activities. Int J Pharm Pharm Sci. 2014;6:461–465.

[29] Hamidian K, Sarani M, Sheikhie E, et al. Cytotoxicity evaluation of green synthesized ZnO and Ag-doped ZnO nanoparticles on brain glioblastoma cells. J Mol Struct. 2022;1251:131962.

[30] He L, Tong Z, Wang Z, et al. Effects of calcination temperature and heating rate on the photocatalytic properties of ZnO prepared by pyrolysis. J Colloid Interface Sci. 2018;509:448–456.

[31] Talam S, Karumuri SR, Gunnam N. Synthesis, characterization, and spectroscopic properties of ZnO nanoparticles. Int Sch Res Notices. 2012;2012:372505.

[32] Karnan T, Selvakumar SAS. Biosynthesis of ZnO nanoparticles using rambutan (Nephelium lappaceumL.) peel extract and their photocatalytic activity on methyl orange dye. J Mol Struct. 2016;1125:358–365.

[33] Bhuyan T, Mishra K, Khunja M, et al. Biosynthesis of zinc oxide nanoparticles from Azadirachta indica for antibacterial and photocatalytic applications. Mater Sci Semicond Process. 2015;32:55–61.

[34] Siripireddy B, Mandal BK. Facile green synthesis of zinc oxide nanoparticles by Eucalyptus globulus and their photocatalytic and antioxidant activity. Adv Powder Technol. 2017;28:785–797.

[35] Gawade G VV, NL SHM, Babar SB, et al. Green synthesis of ZnO nanoparticles by using Calotropis procera leaves for the photodegradation of methyl Orange. J Mater Sci. 2017;28:14033–14039.

[36] Gawade NL, Kadam AN, Gaikwad YB, et al. Decoration of biogenic AgNPs on template free ZnO nanorods for sunlight driven photocatalytic detoxification of dyes and inhibition of bacteria. J Mater Sci. 2016;2 7:11080–11091.
[37] Kadam AN, Dhabbe RS, Kokate MR, et al. Preparation of N doped TiO2 via microwave-assisted method and its photocatalytic activity for degradation of Malathion. Spectrochim Acta A Mol Biomol Spectrosc. 2014;133:669–676.

[38] Saikia L, Bhuyan D, Saikia M, et al. Photocatalytic performance of ZnO nanomaterials for self sensitized degradation of malachite green dye under solar light. Appl Catal A Gen. 2015;490:42–49.

[39] Pirsaeheb M, Shahmoradi B, Beikmohammadi M, et al. Photocatalytic degradation of Aniline from aqueous solutions under sunlight illumination using immobilized Cr: ZnO nanoparticles. Sci Rep. 2017;7:1–12.

[40] Salehi K, Bahmani A, Shahmoradi B, et al. Response surface methodology (RSM) optimization approach for degradation of Direct Blue 71 dye using CuO–ZnO nanocomposite. Int J Environ Sci Technol. 2017;14:2067–2076.

[41] Salehi K, Daraei H, Teymouri P, et al. Cu-doped ZnO nanoparticle for removal of reactive black 5: application of artificial neural networks and multiple linear regression for modeling and optimization. Desalin Water Treat. 2016;57:22074–22080.

[42] Maleki A, Safari M, Rezaee R, et al. Photocatalytic degradation of humic substances in the presence of ZnO nanoparticles immobilized on glass plates under ultraviolet irradiation. Sep Sci Technol. 2016;51:2484–2489.

[43] Maleki A, Safari M, Shahmoradi B, et al. Photocatalytic degradation of humic substances in aqueous solution using Cu-doped ZnO nanoparticles under natural sunlight irradiation. Environ Sci Pollut Res. 2015;22:16875–16880.

[44] Rao MD, Gautam P. Synthesis and characterization of ZnO nanoflowers using C2hlymydomonas reinhardtii: a green approach. Environ Prog Sustainable Energy. 2016;35:1020–1026.

[45] Mohamed Isa ED, Che Jusoh NW, Hazan R, et al. Photocatalytic degradation of methyl Orange using pullulan-mediated porous zinc oxide microflowers. Environ Sci Pollut Res Int. 2021;28:5774–5785.

[46] Prasad AR, Garvasis J, Oruvil SK, et al. Bio-inspired green synthesis of zinc oxide nanoparticles using Abelmoschus esculentus mucilage and selective degradation of cationic dye pollutants. J Phys Chem Solids. 2019;127:265–274.

[47] Suresh D, Nethravathi P, Rajanaika H, et al. Green synthesis of multifunctional zinc oxide (ZnO) nanoparticles using Cassia fistula plant extract and their photodegradative, antioxidant and antibacterial activities. Mater Sci Semicond Process. 2015;31:446–454. 10.1016/j.mssp.2014.12.023.

[48] Herrmann J-M. Heterogeneous photocatalysis: fundamentals and applications to the removal of various types of aqueous pollutants. CatalToday. 1999;53:115–129.

[49] Osuntokun J, Onwujiwe DC, Ebenso EE. Green synthesis of ZnO nanoparticles using aqueous Brassica oleracea L. var. italica and the photocatalytic activity. Green Chem Lett Rev. 2019;12:444–457.

[50] Rathnasamy R, Thangasamy P, Thangamuthu R, et al. Green synthesis of ZnO nanoparticles using Carica papaya leaf extracts for photocatalytic and photovoltaic applications. J Mater Sci. 2017;28:10374–10381.

[51] Dou M, Wang J, Gao B, et al. Photocatalytic difference of amoxicillin and cefotaxime under visible light by mesoporous g-C3N4: mechanism, degradation pathway and DFT calculation. Chem Eng J. 2020;383:123134.

[52] Chen X, Wu Z, Liu D, et al. Preparation of ZnO photocatalyst for the efficient and rapid photocatalytic degradation of Azo dyes. Nanoscale Res Lett. 2017;12:143.

[53] Yang C, Dong W, Cui G, et al. Highly efficient photocatalytic degradation of methylene blue by P2ABSA-modified TiO2 nanocomposite due to the photosensitization synergetic effect of TiO2 and P2ABSA. RSC Adv. 2017;7:23699–23708.

[54] Fu H, Pan C, Yao W, et al. Visible-Light-induced degradation of Rhodamine B by nanosized Bi2WO6. J Phys Chem A. 2005;109:22432–22439.