BOHR–SOMMERFELD LAGRANGIANS OF MODULI SPACES OF HIGGS BUNDLES

INDRANIL BISWAS, NIELS LETH GAMMELGAARD, AND MARINA LOGARES

Abstract. Let X be a compact connected Riemann surface of genus at least two. Let $M_H(r,d)$ denote the moduli space of semistable Higgs bundles on X of rank r and degree d. We prove that the compact complex Bohr–Sommerfeld Lagrangians of $M_H(r,d)$ are precisely the irreducible components of the nilpotent cone in $M_H(r,d)$. This generalizes to Higgs G–bundles and also to the parabolic Higgs bundles.

1. Introduction

Let $M_H(r,d)$ be the moduli space of semistable Higgs bundles of rank r and degree d on a compact connected Riemann surface X of genus g at least two. It is an irreducible normal complex projective variety of complex dimension $2(r^2(g-1)+1)$. This moduli space is equipped with an algebraic symplectic form. In fact, there is a canonical algebraic one-form ω on $M_H(r,d)$ such that $d\omega$ is the symplectic form. Let

$$ \mathcal{L} := \mathcal{O}_{M_H(r,d)} = M_H(r,d) \times \mathbb{C} $$

be the trivial holomorphic line bundle on $M_H(r,d)$. Consider the holomorphic connection

$$ D := d + \omega $$
on \mathcal{L}, where d denotes the de Rham differential on functions on $M_H(r,d)$. We note that the curvature of D is $d\omega$.

A compact Lagrangian on $M_H(r,d)$ is a reduced irreducible compact complex analytic subset

$$ \mathbb{L} \subset M_H(r,d) $$
of dimension $(\dim M_H(r,d))/2 = r^2(g-1)+1$ such that the restriction of (\mathcal{L}, D) to \mathbb{L} is a flat line bundle. A compact Bohr–Sommerfeld Lagrangian on $M_H(r,d)$ is a reduced irreducible compact complex analytic subset $\mathbb{L} \subset M_H(r,d)$ of dimension $r^2(g-1)+1$ such that \mathcal{L} admits a nonzero flat section over \mathbb{L}. Clearly, a Bohr–Sommerfeld Lagrangian is a Lagrangian.

2000 Mathematics Subject Classification. 14H60, 14H70, 53D12.

Key words and phrases. Bohr-Sommerfeld Lagrangian, Higgs bundle, \mathbb{C}^*-action, nilpotent cone.

This work was supported by a Marie Curie International Research Staff Exchange Scheme Fellowship within the 7th European Union Framework Programme (FP7/2007-2013) under grant agreement no. 612534, project MODULI - Indo European Collaboration. The second author was partly supported by the center of excellence grant ’Center for Quantum Geometry of Moduli Spaces’ from the Danish National Research Foundation (DNRF95). The first author is supported by the J. C. Bose Fellowship.
A flat section of \mathcal{L} over \mathbb{L} is given by a holomorphic function on \mathbb{L} because the form ω is holomorphic. On the other hand, \mathbb{L} does not admit any nonconstant holomorphic function because it is compact and irreducible. A constant function is a flat section of \mathcal{L} if and only if the pullback of the connection D to $\mathcal{L}|_{\mathbb{L}}$ is the de Rham differential. Consequently, a reduced irreducible compact complex analytic subset

$$\iota : \mathbb{L} \rightarrow M_H(r,d)$$

is a Bohr–Sommerfeld Lagrangian if and only if $\iota^*\omega = 0$.

The Hitchin map

$$\mathcal{H} : M_H(r,d) \rightarrow \bigoplus_{i=1}^{r} H^0(X, K_X^{\otimes i})$$

sends any (E, θ) to $\sum_{i=1}^{r} \text{trace}(\theta^i)$. The fiber of \mathcal{H} over 0 is the nilpotent cone.

We prove the following:

Theorem 1.1. *The compact Bohr–Sommerfeld Lagrangians in $M_H(r,d)$ are precisely the irreducible components of the nilpotent cone.*

Theorem 1.1 generalizes to other contexts; see Section 3.1.

2. One-form on the moduli space

Let X be a compact connected Riemann surface of genus g, with $g \geq 2$. The holomorphic cotangent bundle of X will be denoted by K_X. Fix an integer d and also fix a positive integer r. Let $M_H(r,d)$ denote the moduli space of semistable Higgs bundles on X of rank r and degree d. This $M_H(r,d)$ is an irreducible normal complex projective variety of complex dimension $2(r^2(g-1) + 1)$.

There is a natural algebraic 1-form on $M_H(r,d)$; we will recall its construction. Take any Higgs bundle (E, θ). Define

$$C^0 := \text{End}(E) = E \otimes E^\vee \quad \text{and} \quad C^1 := \text{End}(E) \otimes K_X.$$

Let $\text{ad}(\theta) : C^0 \rightarrow C^1$ be the homomorphism defined by

$$s \mapsto [s, \theta] = s \circ \theta - \theta \circ s,$$

where the composition is the usual composition of endomorphisms. Now consider the two-term complex

$$C^\bullet : C^0 \xrightarrow{\text{ad}(\theta)} C^1.$$ \hfill (2.1)

The infinitesimal deformations of the Higgs bundle (E, θ) are parametrized by the first hypercohomology $\mathbb{H}^1(C^\bullet)$ [Hi2], [BR], [Bo], [Ma].

The natural homomorphism of complexes

$$\begin{array}{ccc}
C^0 & \rightarrow & C^1 \\
\downarrow & & \downarrow \\
\text{End}(E) & \rightarrow & 0
\end{array}$$
induces a homomorphism
\[q : H^1(C^\bullet) \longrightarrow H^1(X, C^0) = H^1(X, \text{End}(E)). \]

(2.2)

We note that \(H^1(X, \text{End}(E)) \) parametrizes the infinitesimal deformations of the holomorphic vector bundle \(E \). Let

\[SD : H^1(X, \text{End}(E)) \otimes H^0(X, \text{End}(E) \otimes K_X) \longrightarrow H^1(X, K_X) = \mathbb{C} \]

be the pairing given by Serre duality. Define

\[\omega(E, \theta) : H^1(C^\bullet) \longrightarrow \mathbb{C}, \ \alpha \longmapsto SD(q(\alpha) \otimes \theta), \]

(2.3)

where \(q \) is the homomorphism in (2.2). The one-form \(\omega \) on \(M_H(r, d) \) defined by \((E, \theta) \longmapsto \omega(E, \theta)\) is algebraic, and \(d\omega \) is the algebraic symplectic form on \(M_H(r, d) \) [Hi1], [Hi2], [BR], [Bot], [Ma].

Let \(N^s(r, d) \) denote the moduli space of stable vector bundles on \(X \) of rank \(r \) and degree \(d \). The total space \(T^*N^s(r, d) \) of the (algebraic) cotangent bundle is a Zariski open subset of \(M_H(r, d) \). The restriction of \(\omega \) to \(T^*N^s(r, d) \) coincides with the Liouville one-form on \(T^*N^s(r, d) \).

For any \(\lambda \in \mathbb{C}^* \), let

\[T_\lambda : M_H(r, d) \longrightarrow M_H(r, d), \ (E, \theta) \longmapsto (E, \lambda \cdot \theta) \]

(2.4)

be the automorphism. Clearly these together define an action of the multiplicative group \(\mathbb{C}^* = \mathbb{C} \setminus \{0\} \) on \(M_H(r, d) \). Let

\[\xi \in H^0(M_H(r, d), TM_H(r, d)) \]

be the vector field associated to this action of \(\mathbb{C}^* \).

Lemma 2.1. The one-form \(i_\xi d\omega \) obtained by contracting using the vector field \(\xi \) satisfies the equation

\[i_\xi d\omega = \omega. \]

Proof. From the definitions of \(\omega \) and \(\xi \) it follows that

\[\omega(\xi) = 0. \]

(2.5)

Indeed, the action of \(\mathbb{C}^* \) does not change the underlying vector bundle, so \(q(\xi) = 0 \), where \(q \) is the homomorphism in (2.2). It also follows from the definitions of \(\omega \) and \(T_\lambda \) that \(T_\lambda^* \omega = \lambda \cdot \omega \). Therefore, we have

\[L_\xi \omega = \omega. \]

(2.6)

Consider the identity \(L_\xi \omega = i_\xi d\omega + d(\omega(\xi)) \). In view of (2.5) and (2.6), the lemma follows from it. \(\square \)
3. Bohr–Sommerfeld Lagrangians on the moduli space

Consider the symplectic form $d\omega$ on $M_H(r, d)$, where ω is constructed in (2.3). A \textit{compact complex Lagrangian} on $M_H(r, d)$ is a reduced irreducible compact complex analytic subset

$$\iota : \mathbb{L} \hookrightarrow M_H(r, d)$$

of dimension $r^2(g - 1) + 1$ such that $\iota^*d\omega = 0$. A \textit{compact Bohr–Sommerfeld Lagrangian} on $M_H(r, d)$ is a reduced irreducible compact complex analytic subset $\iota : \mathbb{L} \hookrightarrow M_H(r, d)$ of dimension $r^2(g - 1) + 1$ such that

$$\iota^*\omega = 0.$$

Since $\iota^*d\omega = d\iota^*\omega$, a Bohr–Sommerfeld Lagrangian is indeed a Lagrangian.

\textbf{Lemma 3.1.} Let $\iota : \mathbb{L} \hookrightarrow M_H(r, d)$ be a Bohr–Sommerfeld Lagrangian. For any smooth point $z \in \mathbb{L}$, the tangent vector

$$\xi(z) \in T_zM_H(r, d)$$

lies in the subspace $T_z\mathbb{L} \subset T_zM_H(r, d)$.

\textit{Proof.} Since \mathbb{L} is a Bohr–Sommerfeld Lagrangian, we have

$$\omega(v) = 0, \quad \forall \ v \in T_z\mathbb{L}.$$

Hence from Lemma 2.1 it follows that

$$d\omega(\xi(z), v) = 0, \quad \forall \ v \in T_z\mathbb{L}.$$

Since \mathbb{L} is Lagrangian for the symplectic form $d\omega$, this implies that $\xi(z) \in T_z\mathbb{L}$. \hfill \Box

Let

$$\mathcal{H} : M_H(r, d) \longrightarrow \mathcal{V} := \bigoplus_{i=1}^r H^0(X, K_X^{\otimes i}), \quad (E, \theta) \longmapsto \sum_{i=1}^r \text{trace}(\theta^i) \quad (3.1)$$

be the Hitchin map. Every irreducible component of every fiber of \mathcal{H} is a compact Lagrangian Hi2. The fiber

$$\mathcal{N} := \mathcal{H}^{-1}(0) \subset M_H(r, d)$$

is known as the nilpotent cone.

\textbf{Proposition 3.2.} Any compact Bohr–Sommerfeld Lagrangian in $M_H(r, d)$ is contained in the nilpotent cone \mathcal{N}.

\textit{Proof.} For any $\lambda \in \mathbb{C}^*$, consider the linear automorphism of \mathcal{V} in (3.1) defined by

$$(c_1, \cdots, c_i, \cdots , c_r) \longmapsto (\lambda \cdot c_1, \cdots, \lambda^i \cdot c_i, \cdots, \lambda^r \cdot c_r).$$

These together define an action of \mathbb{C}^* on \mathcal{V}. The morphism \mathcal{H} in (3.1) is clearly \mathbb{C}^*–equivariant (for the action on $M_H(r, d)$ in (2.4)).

Let

$$\iota : \mathbb{L} \hookrightarrow M_H(r, d)$$
be a compact Bohr–Sommerfeld Lagrangian. So L does not admit any nonconstant holomorphic map to V. In particular, $H \circ \iota$ is a constant map. So

$$\iota(L) \subset H^{-1}(t_0)$$ (3.2)

for some point $t_0 \in V$.

From Lemma 3.1 it follows that $\iota(L)$ is preserved by the action of \mathbb{C}^* on $M_H(r,d)$ in (2.4). Since H is \mathbb{C}^*–equivariant, we conclude that t_0 in (3.2) is fixed by the action of \mathbb{C}^* on V. This implies that $t_0 = 0$.

Theorem 3.3. The compact Bohr–Sommerfeld Lagrangians in $M_H(r,d)$ are precisely the irreducible components of the nilpotent cone N.

Proof. In view of Proposition 3.2, it suffices to show each irreducible component N is indeed a Bohr–Sommerfeld Lagrangian. Let

$$\iota : L \hookrightarrow N$$

be an irreducible component. We note that L is compact because H is a proper morphism [H1], [H2], [N1]. Associated to L there is an integer $n \geq 2$ and pairs of integers $(r_1 d_1), \cdots, (r_n d_n)$ such that

(1) for any $(E, \theta) \in L$, there is filtration of subbundles

$$0 = E_0 \subset E_1 \subset E_2 \subset \cdots \subset E_{n-1} \subset E_n = E$$ (3.3)

such that $\text{rank}(E_i/E_{i-1}) = r_i$ and degree$(E_i/E_{i-1}) = d_i$ for all $1 \leq i \leq n$, and

(2) $\theta(E_i) \subset E_{i-1} \otimes K_X$ for all $1 \leq i \leq n$.

(See the proof of Theorem 5.3 in [BR, p. 228].)

Take a smooth point $z = (E, \theta) \in L$. We will describe the tangent space $T_z L$. Consider the filtration in (3.3). Let

$$\text{End}^p(E) \subset \text{End}(E)$$

be the subbundle defined by the condition that $\text{End}^p(E)(E_i) \subset E_i$ for all $1 \leq i \leq n$. Let

$$\text{End}^n(E) \subset \text{End}^p(E)$$

be the subbundle defined by the condition that $\text{End}^n(E)(E_i) \subset E_{i-1}$ for all $1 \leq i \leq n$. Let D^* be the two-term complex

$$D^* : D^0 := \text{End}^p(E) \xrightarrow{\text{ad}(\theta)} D^1 := \text{End}^n(E) \otimes K_X,$$

where $\text{ad}(\theta)$ is the homomorphism in (2.1). Note that the condition $\theta(E_i) \subset E_{i-1} \otimes K_X$, $1 \leq i \leq n$, ensures that $\text{ad}(\theta)(\text{End}^p(E)) \subset \text{End}^n(E) \otimes K_X$. The inclusion of complexes

$$\begin{array}{c}
D^0 \xrightarrow{\text{ad}(\theta)} D^1 \\
\Downarrow \quad \Downarrow \\
\text{End}(E) \xrightarrow{\text{ad}(\theta)} \text{End}(E) \otimes K_X
\end{array}$$
induces a homomorphism of hypercohomologies
\[\varphi : H^1(D^\bullet) \longrightarrow H^1(C^\bullet) \]
(see \ref{2.1}). We have
\[T_zL = H^1(D^\bullet), \]
and the differential \[dt : T_zL \rightarrow T_zM_H(r, d) \] coincides with the above homomorphism \(\varphi \).

We note that
- \([\text{End}^p(E), \text{End}^n(E)] \subset \text{End}^n(E)\), and
- the homomorphism
\[\text{trace} : \text{End}(E) \longrightarrow \mathcal{O}_X \]
vanishes identically on \(\text{End}^n(E) \).

Therefore, for the homomorphism \(\omega(E, \theta) \) in \ref{2.3}, we have
\[\omega(E, \theta) \circ \varphi = 0. \]
Hence \(i^*\omega = 0 \). In other words, \(L \) is a Bohr–Sommerfeld Lagrangian. \(\square \)

3.1. **Principal Higgs bundles and parabolic Higgs bundles.** Theorem \ref{3.3} generalizes to the moduli spaces of \(G \)-Higgs bundles of fixed topological type, where \(G \) is any reductive complex algebraic group. The proof goes through without any change. The only point to note is that if \(p \) is the Lie algebra of a parabolic subgroup \(P \) of \(G \), and \(B \) is any \(G \)-invariant nondegenerate symmetric bilinear form on the Lie algebra of \(G \), then the annihilator of \(p \), with respect to \(B \), is the Lie algebra of the unipotent radical of \(P \).

Theorem \ref{3.3} generalizes to the moduli spaces of parabolic vector bundles. In this case the assumption that \(g \geq 2 \) is not needed. It is enough to assume that there are stable parabolic Higgs bundles. Theorem \ref{3.3} also generalizes to parabolic analog of principal Higgs bundles; see \[\text{BBN}, \text{Boa}, \text{PR}, \text{He} \] for parabolic analog of principal Higgs bundles.

References

\[\text{BBN} \] V. Balaji, I. Biswas and D. S. Nagaraj, Principal bundles over projective manifolds with parabolic structure over a divisor, *Tohoku Math. Jour.* 53 (2001), 337–367.

\[\text{BR} \] I. Biswas and S. Ramanan, An infinitesimal study of the moduli of Hitchin pairs, *Jour. London Math. Soc.* 49 (1994), 219–231.

\[\text{Boa} \] P. P. Boalch, Riemann-Hilbert for tame complex parahoric connections, *Transform. Groups* 16 (2011), 27–50.

\[\text{Bot} \] F. Bottacin, Symplectic geometry on moduli spaces of stable pairs, *Ann. Sci. École Norm. Sup.* 28 (1995), 391–433.

\[\text{He} \] J. Heinloth, Uniformization of \(G \)-bundles, *Math. Ann.* 347 (2010), 499–528.

\[\text{Hi1} \] N. J. Hitchin, The self–duality equations on a Riemann surface, *Proc. London Math. Soc.* 55 (1987), 59–126.

\[\text{Hi2} \] N. J. Hitchin, Stable bundles and integrable systems, *Duke Math. Jour.* 54 (1987), 91–114.

\[\text{Ma} \] E. Markman, Spectral curves and integrable systems, *Compos. Math.* 93 (1994), 255–290.

\[\text{Ni} \] N. Nitsure, Moduli space of semistable pairs on a curve, *Proc. London Math. Soc.* 62 (1991), 275–300.
[PR] G. Pappas and M. Rapoport, Some questions about G-bundles on curves. *Algebraic and arithmetic structures of moduli spaces* (Sapporo 2007), 159–171, Adv. Stud. Pure Math., 58, Math. Soc. Japan, Tokyo, 2010.

School of Mathematics, Tata Institute of Fundamental Research, Homi Bhabha Road, Bombay 400005, India

E-mail address: indranil@math.tifr.res.in

Center for Quantum Geometry of Moduli Spaces, University of Aarhus, Ny Munkegade 118, DK-8000 Aarhus, Denmark

E-mail address: nlg@qgm.au.dk

Instituto de Ciencias Matemáticas (CSIC-UAM-UC3M-UCM), C/ Nicolas Cabrera 15, 28049 Madrid, Spain

E-mail address: marina.logares@icmat.es