Aptitude of endophytic microbes for production of novel biocontrol agents and industrial enzymes towards agro-industrial sustainability

Ayodeji O. Falade1*, Kayode E. Adewole1 and Temitope C. Ekundayo2

Abstract

Background: Endophytes have continued to receive increased attention worldwide, probably, due to the enormous biotechnological potentials spanning through various industrial sectors. This paper outlines the biotechnological potentials of endophytes in biocontrol and industrial enzyme production, and the possible contribution towards achieving agro-industrial sustainability using published articles on endophytes in both Web of Science and Scopus (1990–2020).

Main body of the abstract: This review discusses the potential of endophytes to produce novel secondary metabolites with effective biocontrol activity against insect pests and plant pathogens. More so, the aptitude of endophytes for production of a wide range of enzymes with potential applications in agriculture, energy and health is discussed in this review. Furthermore, this review highlights the emerging potentials of endophytes in the production of exopolysaccharide and fatty acids. This paper also advocates the need for bioprospecting endophytes for novel biocontrol agents against termites, which are known for causing significant damage to forest and stored products.

Short conclusion: Exploration of endophytes for biocontrol and production of biomolecules of industrial significance could contribute significantly towards agricultural and industrial sustainability.

Keywords: Agricultural sustainability, Biocontrol agents, Biotechnology, Endophytes, Enzyme production, Polysaccharides

1 Background

One of the fundamentals of Sustainable Development Goals (SDGs) as set by the United Nations (UN) is to achieve food security and engender agricultural sustainability by 2030. A major challenge confronting food security globally is the activity of insect pests and plant diseases, with resultant negative implications on annual agricultural produce, hence threatening food security. Achieving zero hunger with increasing world's population necessitates an increase in annual agricultural productivity globally. It is, therefore, important to take proactive steps towards improving crop yield. Unarguably, effective control of crop pests and phytopathogens is vital to improving crop yield. Even though, there are efficient chemical methods for pest control, the approaches are accompanied by possible health risks [1]. Thus, biological control of pest and pathogens is a promising alternative as the method is environmentally-friendly with limited health hazards.

Interestingly, endophytes hold great dexterity for biological control of phyto-diseases as the microbes protect their host plants from pathogens’ attack through...
antagonism [2, 3]. The microbes have also displayed abilities for production of secondary metabolites with antimicrobial activity [4], which could be explored for biocontrol of different pathogens. Moreover, endophytes produce some enzymes as a defence response mechanism of the host against pathogens while other enzymes from endophytes promote plant growth [5, 6]. Thus, bioprospecting endophytes for production of novel biocontrol agents will contribute significantly towards improving agricultural productivity.

Furthermore, some studies have implicated endophytes in the production of enzymes of industrial significance including amylase, cellulase, lipase and laccase [7]. Specifically, Bezerra et al. [8] reported the potential of various endophytic fungi in a Brazilian medicinal plant, *Bauhinia forficata* for the production of some extracellular and hydrolytic enzymes such as cellulases and xylanases, with potential applications in biorefinery. The ability of endophytes to produce lignocellulolytic enzymes (Laccase, cellulases, xylanases etc.) is significant to achieving affordable and clean energy, which is the seventh of the SDGs. While ligninolytic enzymes play the role of delignification during pretreatment of feedstock for biofuel production, cellulases are responsible for cellulose hydrolysis, which enables the release of fermentable sugars during biofuel production. The complementary roles of these enzymes would indeed promote sustainable energy through optimum utilization of renewable biomass as feedstock for biofuel production. Besides, discovery of endophytes with exceptional ability for improved enzyme production would favour industrial sustainability since poor enzyme yield is a major problem militating against industrial application of enzymes. Undoubtedly, exploration of endophytes for biocontrol and production of industrial enzymes could contribute positively towards agricultural and industrial sustainability (Fig. 1). This review, therefore, brings to the fore scientific evidences that attest to the prospect of endophytes in biocontrol and production of industrial biomolecules with the possible implication on SDGs.

2 Main text

2.1 Endophyte articles identification strategy

The study identified endophyte-related research articles hosted in WoS and Scopus within the timespan 1990–2020 (07/07/2020). The articles were identified using the term ‘endophyt*' for inclusion of different indexes including ‘endophyte’, ‘endophytes’, and ‘endophytic’ restricted to the title-field. The retrieved article sets were finally limited to primary research articles, downloaded in CSV
format and de-duplicated in ScienToPy package [9]. The topics of interest related to the objectives of the review were mined from the processed article datasets based on the average growth rate or relevant author-keywords using Eq. 1 [9]:

\[
\text{Topic (average growth rate)} = \left(\sum_{i=2017}^{2020} \text{AS}_i - \text{AS}_{i-1} \right) / (2020 - 2017) + 1
\]

(1)

\(2017_b = \) start year; \(2020_e = \) end year; \(\text{AS}_b = \) number of endophyte-related articles connected to sustainable biocontrol, enzyme and biomolecule production in 2017; \(\text{AS}_c = \) number of endophyte-related articles related to sustainable biocontrol, enzyme and biomolecule production in 2020.

The topics considered include biocontrol potential (biological control, pest control, parasitoidal, biopesticide, microbial control) and enzymes (glucoamylase, laccase, xylanase, 1-aminocyclopropane-1-carboxylate deaminase, alpha-amylase, alpha-glucosidase, ascorbate peroxidase, beta-glucosidase, chitinase, inulinase, L-asparaginase, asparaginase, glucononidase, hemicellulose, keratinase, lipase, cellobiohydrolase, glutaminase, amylase, endoglucanase, protease, oxalate oxidase, polyphenol oxidase, glucanase), fatty acid and polysaccharide (fatty acid, polysaccharide, exopolysaccharide). The discussion was limited to recent studies under various subtopics.

2.2 Bioprospecting endophytes for agricultural sustainability and food security

There is plethora of chemical pesticides, bactericides and fungicides in the market, however, some of them have shown negative effects on soil and plant health [1]. Even though, chemical control of insect pests and plant diseases is efficient, it is characterized with environmental hazards [1]. There is therefore, the need to explore novel sources of pesticides and plant disease control agents with little or no negative impact on consumers.

A major progress in this direction is the exploitation of endophytic microbes to produce secondary metabolites with insecticidal and biological control activities. A survey of published articles on endophytes as identified by Eq. 1 in the study databases showed that 760 articles (Additional file 1: Table S1) have reported the biocontrol activity of endophytes, out of which 36 percent was published within the last two years. There are 40 additional articles that reported the biological control properties of endophytic microbes: pest control (19 articles), parasitoid (11 articles), biopesticide (6 articles) and microbial control (4 articles) (Additional file 1: Table S1). The aforementioned keywords form an integral part of the biocontrol potential of endophytes. There are overwhelming evidences of the enormous potential of endophytes in biocontrol of pests and plant pathogens.

In this section, we accentuate some of the most recent reports on the biological control activity of endophytes (Table 1) and the implication on agricultural productivity. Ramakuwela et al. [10] established the biocontrol activity of *Beauveria bassiana* against two pecan pests: *Melanocallis caryaefoliaceae* and *Monellia caryella*. In their study, Ramakuwela et al. [10] showed that populations of the pecan aphids significantly reduced on pecan leaves colonized with *B. bassiana*. This, therefore, confirms the aptitude of *B. bassiana* for application in pecan pest management as its usage will reduce the pest-damaging effects on foliage and shucks of pecan, thereby increasing the rate of photosynthesis with consequent effect on crop yield. Also, a number of chloramphenicol derivatives isolated from *Acremonium vitellinum*, a marine-alga endophyte showed considerable insecticidal activity against the cotton bollworm, *Helicoverpa armigera* [11]. Recent studies have also reported the potential use of extracts from endophytic microbes and their bioactive compounds as antifeedants for biological control of pests such as *Plutella xylostella* larvae and *Myzus persicae* [12, 13].

Moreover, endophytic microbes have shown effective antagonistic activity against phytopathogens. Chen et al. [19] reported the biocontrol activity of *Lactobacillus plantarum* CM-3, an endophytic lactic acid bacterium against *Botrytis cinerea*, which causes “grey mold”, a sternly destructive strawberry disease. A *Streptomyces* species showed a promising biocontrol potential against “anthracnose”, also a strawberry disease but caused by *Glomerella cingulata* as the endophytic bacteria was reported to suppress the development of “strawberry anthracnose” lesions [20]. Meanwhile, Latz et al. [21] identified *Penicillium olsonii* ML37 and *Acremonium alternatum* ML38 as promising biocontrol agents against wheat *Septoria tritici* blotch (STB). It is noteworthy that the identified endophytic fungi were effective for the control of the disease in the two wheat cultivars investigated: cv. Sevin and cv. Mariboss. *Bacillus velezenisis* 8–4, an endophytic bacterium isolated from potato was reported to have exhibited robust inhibitory effect on *Streptomyces galilaeus*, a causative agent of potato scab, a severe soil-borne disease of potato [22]. Likewise, the endophytic bacterium was effective against four other potato pathogens of fungal origin including *Phoma foveata, Rhizoctonia solani, Fusarium avenaceum* and *Colletotrichum cocodes* [22]. It is remarkable
that the *Bacillus* strain exhibited higher control efficiency against potato scab over other types of treatments with resultant improvement on potato yield. Similarly, Huang et al. [23] documented the control efficacy of two hundred and eighty-eight endophytic fungal strains against cucumber *Rhizoctonia* root rot with about 33 percent showing above 80 percent control efficiency against the disease while approximately 74 percent of the endophytic fungi exhibited over 50 percent control efficiency against *Rhizoctonia solani*. Also, an endophytic bacterium isolated from boxwood leaves and identified as a member of *Burkholderia cepacia* complex displayed an impressive biocontrol activity against *Calonectria pseudonaviculata*, implicated in boxwood blight disease [24]. The endophytic bacterial strain significantly reduced spore formation by the pathogen, thus, alleviated the occurrence of blight by about 90 percent [24]. Koochakan et al. [32] showed that an unidentified endophytic bacterium reduced the occurrence and severity of Fusarium wilt disease of tomato. Besides, coating of tomato seed with the endophytic bacteria improved growth performance of tomato plant and production quality [32]. Furthermore, *Bacillus subtilis* SCB-1, an endophytic bacterium from sugarcane, displayed a remarkable biocontrol activity as it exhibited powerful antagonistic activity against a wide range of sugarcane pathogens belonging to the

Table 1
Biocontrol potential of endophytes against insect pest and phytopathogens

Endophytes	Pathogen/pest	Plant/disease	References
Bacillus subtilis and *B. pumilus*	Plasmopara viticola	Grapevine (Grapevine downy mildew)	Zhang et al. [14]
Pseudomonas stutzeri E25 and *Stenotrophomonas maltophilia* C71	Botrytis cinerea	Tomato	Rojas-Solis et al. [15]
Hypoxylon anchothrum	Fusarium oxysporum	Cherry Tomatoes	Macias-Rubalcava et al. [16]
Acremonium vitellinum	Helicoverpa armigera	Cotton (Cotton bollworm)	Chen et al. [11]
Bacillus amylofiquefaciens	Fusarium chlamydosporum	*Jaconara acuticola* (stem rot)	Zhu and Pan [17]
Bacillus halotolerans	Fusarium oxysporum f. sp. albedinis	Date palm (Bayoud disease)	Ben Slama et al. [18]
Bacillus subtilis SCB-1	Saccharicola; Cochliobolus; Alternaria; and Fusarium	Sugarcane/mung bean seed	Hazarika et al. [1]
Lactobacillus plantarum CM-3	Botrytis cinerea	Strawberry fruit (Grey mold)	Chen et al. [19]
Streptomyces thermocarboxydus-related species	Glomerella cingulata	Strawberry (Anthracnose)	Marian et al. [20]
Beauveria bassiana	Melanocallis caryaeae and *Monel*-lacyarella	Pecan	Ramakwvela et al. [10]
Penicillium olsonii ML37 and *Acrern- nium alternatum* ML38	*Zymoseptoiatnicti*	Wheat (Septoria triticata blotch-STB)	Latz et al. [21]
Bacillus velezensis 8–4	*Streptomyces galilaeus, Phomatoaveat; Rhizoctonia solani; Fusarium avenaceum* and *Colletotrichum coccosides*	Potato (Potato scab)	Cui et al. [22]
Endophytic fungi (Fusarium, *Chaeto- mium, Colletotrichum and Acroca- lymma)*	*Rhizoctonia solani*	Cucumber (Rhizoctonia root rot)	Huang et al. [23]
Burkholderia cepacia complex	*Calonectria pseudonaviculata*	Boxwood (Boxwood blight disease)	Kong and Hong [24]
Wickerhamomyces anomalus	*Curvularia lunata*	Rice (Dirty panicle disease)	Khunnamwong et al. [25]
Kodamae ohmeri	*Fusarium moniliforme*	Corn (Stalk rot disease)	Khunnamwong et al. [25]
Trichoderma asperellum T1	*Carynesporadaescola and Curvularia ancia*	Rice (Bakanae disease)	Khunnamwong et al. [25]
Streptomyces albidosflavus OsiL-2	*Magnapore oryzae*	Lettuces (Leaf spot)	Wonglom et al. [26]
Beauveria bassiana	*Botrytis cinerea*	Rice (Rice blast disease)	Gao et al. [27]
Bacillus safensis B21	*Magnapore oryzae*	Tomato and Chilli pepper	Barra-Bucarei et al. [28]
Aspergillus awamori	*Verticillium dahiae and Phytophthora drechleri*	Rice (Rice blast disease)	Rong et al. [29]
Cyperus iria and *Diasporthemiriciae*	*Plutellaxylostella*	Almond trees	Rezvani et al. [30]
Trichoderma sp. EF1 671	*Myzupersicae*	-	Kaushik et al. [13]
Pseudomonas poae CO	*Fusarium graminearum*	Wheat (Fusarium head blast disease)	Ibrahim et al. [31]
following genera: *Saccharicola*, *Cochliobolus*, *Alternaria* and *Fusarium* [1]. In addition, treatment of mung bean seeds with *Bacillus subtilis* SCB-1 extract resisted infection by *Fusarium*. The authors associated the significant biocontrol activity of *Bacillus subtilis* SCB-1 against phytopathogens with lipopeptide surfactin, an antifungal compound detected in the bacterial extract [1].

Endophytes with biocontrol activities have transcended fungi and bacteria as Khunnamwong et al. [25] reported the antagonistic potential of yeasts against some phytopathogens. Specifically, different strains of *Wickerhamomyces anomalus* exhibited impressive antagonistic property against *Curvularia lunata*, *Fusarium moniliforme* and *Rhizoctonia solani*, which are causative agents of rice dirty panicle disease, corn stalk rot disease and rice sheath blight disease, respectively. However, *Kodamaea ohmeri* repressed the development of only *F. moniliforme*, which is implicated in the pathogenesis of rice bakanae disease. The antagonistic behavior of the yeast was attributed to the production of secondary metabolites such as “3-methyl-1-butyl acetate and 3-methyl-1-butanol”; “β-1,3-glucanase and chitinase”; with the capacity to degrade fungal cell wall; and “siderophores”. Solubilization of PO₄³⁻ and ZnO was also identified as a possible antagonistic mechanism employed by the yeast strains against the different plant pathogens [25]. This is corroborated by Wonglom et al. [26], who implicated volatile organic compounds (VOCs) secreted by *Trichoderma asperellum* in the biocontrol of *Corynespora cassiicola* and *Curvularia aerea*, which are responsible for the pathogenesis of lettuce leaf spot disease. Moreover, VOCs elicited increased chitinase and β-1,3-glucanase activity, which probably arose from increased degradation of the fungal pathogen’s cell wall by the enzymes. Besides, VOCs from *Trichoderma asperellum* stimulated lettuce growth and improved chlorophyll content, which is significant to photosynthesis. Similarly, Rojas-Solis et al. [15] attributed the impressive antagonistic and antifungal activity exhibited by two novel endophytic bacterial strains: *Pseudomonas stutzeri* E25 and *Stenotrophomonas maltophilia* CR71 against *B. cinerea* to production of VOCs, specifically, dimethyl disulphide (DMDS). DMDS elicited its biocontrol activity through mycelial inhibition mechanism. It is noteworthy that the endophytic bacterial strains also promoted the growth of tomato plants and as well improved the chlorophyll content [15]. Four different strains of endophytic *Hypoxylon anthochromum* emitted VOCs (majorly sesquiterpenes and monoterpenes) with inhibitory activity against *F. oxysporum* growth on cherry tomatoes [16]. It is evident from these studies that VOCs from endophytes are promising biocontrol agents against phytopathogens with plant growth stimulatory potentials. Therefore, researchers should continue to explore the biodiversity of endophytic microbes for novel VOCs and other secondary metabolites with excellent antagonistic property against pathogens affecting crop yield.

Additionally, Gao et al. [27] reported the antagonistic activity of *Streptomyces albidoflavus* OsILf-2 (an endophytic bacterium isolated from rice) against *Magnaporthe oryzae*, which is implicated in rice blast pathogenesis. The endophyte displayed its biocontrol activity by impeding the pathogen’s mycelial growth. Likewise, metabolites in the endophyte culture supernatant were reported to have obstructed mycelial development and sporulation as well as “apressorial formation” in the pathogen [27]. *Streptomyces albidoflavus* OsILf-2 also exhibited significant antifungal activity, which may be linked to its ability to produce “antimicrobial compounds”, “cell wall lytic enzymes”; “siderophore” and “phytohormones”. Besides, treatment of rice with the endophytic bacterial stimulated diverse defence responses including enzyme activation, buildup of hydrogen peroxide and increased expression of salicylic acid. It is evident that this endophytic bacterial strain is an auspicious candidate for managing rice blast disease.

A recent development in the application of endophytes as biocontrol agents is the introduction of nanotechnology for production of ecofriendly biocontrol agents as a substitute for conventional chemical fungicides. Ibrahim et al. [31] biosynthesized silver nanoparticles using an endophytic bacterium (*Pseudomonas poae* CO) from garlic. The biosynthesized nanoparticles showed antagonistic activity against *Fusarium graminearum*, which causes wheat Fusarium head blight by inhibiting the “mycelium growth, spore germination and mycotoxin production” by the pathogen [31]. The study indicated that biosynthesized nanoparticles from endophytic microbes may play a significant role in the management of phyto diseases. However, there is need for researchers to leverage the biocontrol potential of endophytes for development of nanoparticles with biological control activity against a wide range of plant pathogens.

The ability of endophytes to produce a wide range of secondary metabolites, (majorly VOCs) characterized by remarkable pesticidal, bactericidal, fungicidal, antinematicidal, herbicidal and algicidal properties, suggests the potential of endophytes to contribute significantly to achieving sustainable agriculture because integrated pest management (IPM) is one of the key sustainable farming practices. More so, biological control of pests is an integral part of IPM. Exploitation of endophytes for production of biocontrol agents will further minimize the use of chemical pesticides in line with the IPM [33]. Economically, effective pest management through the use of biocontrol agents from endophytes would definitely
improve agricultural productivity, thereby ensuring farmers’ profitability. Overall, biological control using endophytes-derived compounds would further protect the environment and enhance public health, which are hallmarks of sustainable agriculture.

2.3 Aptitude of endophytes for enzyme production

Given the high utility of enzymes in different industrial sectors, there is increased market demand for purified enzymes. Hence, the need for exploration of novel sources of various classes of industrial enzymes, with robust production yield and improved enzyme titre. Endophytic microbes have shown excellent aptitude for production of a wide range of enzymes with industrial and biotechnological significance. A survey of published articles on endophytes over the last three decades as available in WoS and Scopus databases revealed that the following enzymes have been produced by endophytes: cellulase, chitinase, α-glucosidase, protease, L-asparaginase, amylase, laccase, lipase, xylanase, β-glucosidase, glutaminase, endoglucanase, keratinase etc. A summary of enzyme production by some endophytic microbes is presented in Table 2.

One of the most desirable industrial enzymes globally is cellulases, which comprise of exoglucanases, endoglucanases and β-glucosidase. The increased interest in cellulases is, perhaps, attributed to the robust industrial application potentials in biorefinery as well as paper and pulp industry. Cellulases are involved in cellulose hydrolysis by cleaving the β-1,4 linkages in the complex structure thereby releasing the sugars for fermentation during biofuel production. Another enzyme of significance in biorefinery is xylanase because it has the ability to break the varied β-1,4-glycoside linkage in xylan to release xylose, hence, its involvement in hemicellulose degradation. Undoubtedly, cellulases, xylanases and other accessory enzymes from microbes can be used as “emerging green tool” [66] for biofuel production from lignocellulose biomass.

To achieve goal 7 of the UN SDGs: ensuring access to affordable and clean energy, there is an arguable need for sustainable production of cellulases and xylanases. Hence, bioprospecting of endophytes as bioresources for enhanced and sustainable cellulase and xylanase production is imperative. The good news is that there are recent research efforts toward exploring diverse endophytic microbes for production of lignocellulolytic enzymes (Table 2). One of such research endeavours is the work of Robl et al. [39], where optimum xylanase production (458 U/mL) by an endophytic fungus: *Aspergillus niger* DR02 was reported in a “constant fed-batch” fermentation. Interestingly, proteomics of the endophytic fungus revealed the activity of other enzymes including cellobiohydrolase, beta-glucosidase and beta-xylosidase, which also play important role in biofuel production. Cellobiohydrolase involves in the degradation of cellulose by breaking the 1,4-β-D-glycosidic bonds, leading to the cleavage of cellulose unit from the cellulose chain ends while beta-glucosidase works in synergy with endo-β-1,4-glucanases and cellobiohydrolases to convert cellobiose to glucose [67] for biofuel production. Also, beta-xylosidase is an integral part of the enzyme battery (cellulases and hemicellulases) involved in the degradation of lignocellulose biomass [68]. Similarly, *A. terreus*, an endophyte from *Corchorus olitorius* exhibited excellent xylanase production with improved production of the enzyme achieved using the host plant and pea peel as substrate [41]. It is worthy of note that hydrolysis of wheat bran by crude xylanase from *A. terreus* generated significant fermentable sugars and improved saccharification, suggesting that xylanase could play a significant role in the utilization of wheat bran as feedstock for biofuel production. Besides, it has potential for application in various other industrial processes including clarification of juice, bread production, biobleaching and deinking of waste paper [66].

Apart from *Aspergillus*, endophytes belonging to other fungal genera such as *Fusarium*, *Trichoderma*, *Botryosphaeria*, *Saccharicola* and *Diaporthe* have shown vigorous potential for cellulolytic enzymes production. Out of fourteen endophytic fungi screened by Marques et al. [45] for their ability to produce cellulolytic enzymes, *Botryosphaeria* sp. AM01 and *Saccharicola* sp. EJC 04 displayed auspicious potential for production of cellulases and xylanases, with prospect in sugarcane bagasse saccharification. Furthermore, two different endophytic fungal strains of *Fusarium* genus (*Fusarium sambucinum* and *Fusarium* sp.) have been reported to show impressive capability for production of lignin peroxidase, manganese-dependent peroxidase and laccase [53], which are significant in delignification of feedstock for biofuel production [69]. In the same study, *Trichoderma camerunense* expressed appreciable cellulase and xylanase activity [53]. The production of lignocellulolyltic enzymes by endophytes is a desirable trait for sustainable biorefinery as the enzyme system is a promising alternative to chemical pretreatment of feedstock for biofuel production. However, Goukanapalle et al. [61] reported the expression of the following cellulases: filter paperase, carboxymethyl cellulase and β-glucosidase by *Pestalotiopsis microspora* TKBRR. It is remarkable that cellulase production is not limited to endophytic fungi alone as some endophytic bacteria isolated from *Capsicum chinense* plant have shown the potential for production of endoglucanase and filter paper cellulase [60]. Likewise, some
Endophytic microbe	Host	Enzyme produced	Biotechnological potential	References
Phomopsis liquidambari	NA	Laccase	Plant growth promotion	Wang et al. [34]
Fusarium sp. AE17	Coastal sand dune plants	Laccase	Dye decolourisation	Muttezhilan et al. [35]
Pseudomonas fluorescens JJ8-3	Panax ginseng	1-aminocyclopentane-1-carboxylate deaminase	Promotion of plant growth/stress tolerance	Tian et al. [5]
Cercosporakikuchii	NA	Lipase	Detergent additives; Flavour development in dairy products; removal of triglycerides during pulp and paper production; waste/effluent treatment	Costa-Silva et al. [36], Choudhury, [37]
Phomopsis sp.				
Aspergillus niger DR02	Pistacia chinensis Bunge	Xylanase; Cellobiohydrolase; β-glucosidase, and β-xylosidase	Lignocellulose degradation	Chun-Zhu and Dong-Hong [38]
Hormonema sp.; Pringsheimia milialis; Ulododium sp.; Neofusococcus luteum; and N. austri	Eucalyptus trees	Laccase	Lignocellulose degradation	Fillat et al. [40]
Aspergillus terreus KP900973	Corchorus olitorius	Xylanase	Wheat bran hydrolysis; Juice clarification; alternative emulsifier and additives in bread production	Ahmed et al. [41]
Aspergillus sp. ALAA-2000	Marine soft sponge	L-Glutaminases	Tumor inhibition	El-Gendy et al. [42]
Trichoderma harzianum TH5-1–2	Pistacia vera	Chitinase	Biocontrol/plant growth promotion	Dolatabad et al. [6]
Micrococcus aloovorax AE-6 and Micrococcus yunnanensis	Aloe vera (Aloe barbadensis)	Alkaline protease	Detergent ingredient	Prakash et al. [43]
Bipolaris spp.; Phlebia sp.; Marasmius cladophyllum; Phyllotricha capitella; and Schizophyllum commune	Piperhispidum Sw	Amylase	Starch hydrolysis	Orlandelli et al. [44]
Botryosphaeria sp. AM01 and Saccharcola sp. EJC 04	NA	Cellulases and Xylanases	Sugarcane bagasse saccharification	Marques et al. [45]
Curvularia australiensis and Alternaria citrinocolares	Aeglemarmelos	Amylase; protease; lipase; cellulase; laccase and xylanase	–	Mani et al. [46]
Bacillus halotolerans CT2	Tunisian potatoes	Alkaline protease	Detergent ingredient Preparation of protein hydrolysate	Dora et al. [47]
Phomopsis sp.		Laccase	Degradation/detoxification of anthraquinone dyes	Navada et al. [48]
Humicolafuscoarea LBKURCC68 and Fusarium oxysporum LBKURCC69	Dahlia variabilis	Inulinase	Biofuel production from inulin-containing biomass	Mohan et al. [49], Silvera et al. [50]
Diaporthe sp. KM362392	Grapevine (Vitis labrusca L)	Endoglucanase	Cellulose hydrolysis	Felber et al. [51]
Streptomyces species	NA	Hemicellulases	Lignocellulosic biomass degradation	Robl et al. [52]
Fusarium sambucinum; Fusarium sp. and Trichoderma camerunense	NA	Lignin peroxidase; manganese peroxidase; laccase; cellulase and xylanase	Lignocellulolytic potential	Martinho et al. [53]
Penicillium bilaiae	Date palm trees	Acidic protease	Production of protein hydrolysate and digestive aids	Ben Mefteh et al. [54]
Table 2 (continued)

Endophytic microbe	Host	Enzyme produced	Biotechnological potential	References
Fusarium solani; F. oxysporum; Penicillium sp; Aspergillus sp; and Alternaria sp.	Curcuma longa; Murraya koenigii; Catharanthus roseus; and Withania somnifera	Glutaminase-free L-asparaginase	Chemotherapeutic agent to treat lymphoproliferative and lymphoma diseases such as acute lymphoblastic leukemia	Cachumba et al. [56], Bhosale and As-Suhbani [56]
Penicillium chrysogenum Aspergillus sp.	Rauvolfia densiflora (Apocynaceae) NA	L-asparaginase Pulullanase Endoglucanase and Filter paper cellulase (FPCase)	Anticancer agent Starch hydrolysis Cellulolytic potential	Alrumman et al. [57], Bhavana et al. [58] Naik et al. [59] Sharma et al. [60]
Unidentified endophytic bacteria	Capsicum chinease plant NA	Filterpaperase (FPase); Carboxymethyl cellulase (CMCase); and Beta-glucosidase (BGL)		Goukanapalle et al. [61]
Pestalotiopsis microspora TKBRR	NA			
Bacillus subtilis P4	Pseudobrickellia brasiliensis	Protease	Cancer therapy	Cardoso et al. [62]
Lysinibacillus fusiformis B27	Rhizophaea mucronata	Glutamate-free L-asparaginase	Anticancer agent	Prihanto et al. [63]
Talaromyces pinophilus	Curcuma amada	L-asparaginase		Krishnapura and Beler [64]
Phomopsis sp.	NA	Laccase	Dye decolourization/degradation; textile effluent decolourization	Navada and Kulal [65]

NA: Not available
Streptomyces species isolated from plants in Brazil exhibited remarkable potential as hemicellulase producers while the extracts from the endophytic strains showed prospect for lignocellulose biomass deconstruction and biofuel production [52].

Another enzyme of industrial significance reported to have been produced by endophytes is laccase. Apart from being a lignin-degrading biocatalyst, laccase is characterized by several other application potentials including juice clarification, dye decolourization, degradation of emerging environmental pollutants and so on. The diverse applications of laccase in different industrial sectors have necessitated exploration of new sources with enhanced production capacity to meet the increasing demand. It is noteworthy that a few of the laccase-producing endophytic fungi discussed in this paper belong to *Phomopsis* genus. Wang et al. [34] detected a new laccase gene in *Phomopsis liquidambari*, which was subsequently cloned and expressed. The expressed *P. liquidambari* laccase exhibited remarkable industrial properties as it was acidotolerant and thermostable, with about 50% of the enzyme activity being retained after 20 h. Besides, the enzyme displayed prospective application in the agricultural sector as it promoted plant growth in the study and as well reduced soil phenolic contents. Likewise, *Phomopsis* sp. exhibited improved laccase production with about twofold due to its exposure to “electron beam radiation” [48]. The enzyme was metallotolerant and displayed good thermostability, with potential application in remediation of synthetic dyes. Moreover, γ-irradiation of the aforementioned endophytic fungus boosted laccase production [65] and improved the enzyme catalytic efficiency, which was evident in the effective degradation of a recalcitrant dye, aniline blue and textile effluent [65]. More so, members of *Fusarium* genus have exhibited robust laccase-producing potential. This was demonstrated by Muthezhilan et al. [35] who identified *Fusarium* sp. AEF17 as the most promising laccase-producer in a screening that involved twenty-nine endophytic fungi from different coastal sand dune plants. Interestingly, purified laccase from *Fusarium* sp. AEF17 exhibited outstanding remediation potential as it showed significant decolourisation activity on a wide range of synthetic dyes [35]. Furthermore, endophytic fungal strains belonging to *Hormonema, Pringsheimia, Ulocladium* and *Neofusico- rum* genera have also shown promising potential for laccase production [40].

Apart from the popular industrial enzymes discussed in the earlier paragraphs, endophytes have also shown emerging potential for production of some relatively rare and unique enzymes such as inulinase, pullulanase and L-asparaginase. Two endophytic fungi of *Humicola* and *Fusarium* genera have shown dexterity for production of inulinase [50], an industrial food biocatalyst that hydrolyzes inulin into simple sugars, particularly fructose. Inulinase activity has promoted utilization of inulin as an alternative to starch in various food industries [49]. Moreover, inulinase has shown promising application potential in biorefinery as inulin-containing biomass has been utilized for production of biofuels [49]. Pullulanase, a debranching enzyme, was also secreted by an endophyte, *Aspergillus* sp. [59]. The ability of endophytes to produce pullulanase holds enormous potential in the starch industry because of the enzyme peculiarity in hydrolyzing the α-1,6-glycosidic linkages of pullulan. Another enzyme that has recently been produced by endophytes is L-asparaginase, which is used as a chemotherapeutic agent for the treatment of lymphoblastic leukemia [55]. Production of L-asparaginase has been reported in a wide range of endophytic fungi including *Fusarium, Penicillium, Aspergillus, Alternaria* and *Talaromyces* species [56, 58, 64]. The potential of endophytic bacterial strains for asparaginase production has also been reported [63]. However, endophytic bacteria seemed to be underexplored for the production of asparaginase, hence, researchers should channel more efforts towards exploring novel endophytic bacteria for asparaginase production as this would further alleviate the pains of patients with leukemia.

Furthermore, endophytes have shown prospect for production of agriculture-relevant enzymes including 1-aminocyclopropane-1-carboxylate deaminase (ACCD) and chitinase [5, 6]. Chitinase is usually produced by endophytes as a defence response mechanism of the host plants against pests and pathogens whereas ACCD promotes plant growth and stress tolerance by hydrolyzing 1-aminocyclopropane-1-carboxylate to alpha-ketobutyrate and ammonia, thereby reducing ethylene concentration in the host plant. Apart from the plant-health promoting significance of the enzymes produced by endophytic microbes, most of these enzymes have specific industrial applications, which are articulated in the previous paragraphs.

The use of endophytes-derived enzymes in industrial processes is capable of improving the economic performance of various industries [70]. For instance, lignocellulolytic enzymes from endophytes could stimulate the use of lignocellulose waste biomass as cheap feedstock for biofuel production. This is not only cost-effective for the industry but also environmentally-friendly and sustainable. More so, production of plant-health and -growth promoting enzymes by endophytes would enhance agricultural productivity and as such contribute to agroindustrial sustainability. Therefore, it is important for biotechnologists and researchers to continue to harness
the biodiversity of endophytes for enhanced enzyme production towards achieving industrial sustainability.

2.4 Prospect of endophytes in polysaccharide and fatty acid production

Apart from enzymes, a copious number of endophytic microbes have displayed the potential for production of other biomolecules including exopolysaccharides and lipids (Table 3). Interestingly, polysaccharides are characterized by enormous therapeutic potential as some have been reported to possess remarkable antioxidant properties [71–73] while others exhibited promising anticancer, antitumor and antiproliferative activities [11]. Table 3 gives a summary of endophytic polysaccharides: their compositions and bioactivity. *Bacillus amyloliquefaciens* isolated from *Ophiopogon japonicus* produced polysaccharides with anticancer property [74] but the composition of the biomolecule was not determined in the study, as such, it is difficult to ascertain the bioactive component of the polysaccharide. Likewise, Zheng et al. [75] reported the production of an uncharacterized exopolysaccharide by an endophytic *Bacillus* species from *Artemisia annua* L, which exhibited antioxidant property and prevented oxidative deoxyribonucleic acid damage. Another uncharacterized polysaccharide which was produced by a *Staphylococcus* species isolated from *O. japonicus* displayed antitumor activity [76]. Similarly, Chen et al. [77] reported exopolysaccharide production by an endophytic *Bacillus* strain from *Codonopsis pilosula*. The study also revealed the anticancer activity of polysaccharide with the following compositions: galactose, glucose, rhamnose, fucose, arabinose and mannose. Just recently, *Glutamicibacter halophytocola* showed the

Table 3 Polysaccharide and fatty acid production by endophytes
Endophytes

Bacillus amyloliquefaciens
Aspergillus ochraceus
Bionectria ochroleuca XF-38
Bacillus cereus SZ1
Pestalotiopsis sp. BC55
Chaetomium sp.
Diaporthe sp. JF766998
Mangrovihabitans endophyticus gen. Nov. sp. nov
Staphylococcus sp.
Bacillus sp.
Fusarium solani DO7
Fusarium sp. A14
Alternaria tenuissima F1
Glutamicibacter halophytocola KLBMP 5180
Pilidiella guizhouensis ZJSRU-M1

NA: Not available; NC: not characterized; ND: not determined
Moreover, a broader range of endophytic fungi have shown intrinsic ability for production of polysaccharides. A Chaetomium species isolated from Gynostemma pentaphylloids produced polysaccharide with the following composition: glucose, mannose, arabinose and galactose [81]. It is noteworthy that the Chaetomium exopolysaccharide showed antioxidant property and inhibited cell proliferation. In the same vein, two endophytic Diasporthe species from Piper hispidum were able to produce exopolysaccharide with characteristic ability to inhibit cell proliferation. Furthermore, Zeng et al. [84] reported the production of a galactoglucon by a member of Fusarium genus from Dendrobium officinale. The polysaccharide was biologically active as it enhanced immune response, hence it could be used for the development of functional food for the treatment of patients with hypo-immunity. However, a Fusarium species from Fritillaria unibracteata produced a polysaccharide with entirely different composition: “mannose, rhamnose, glucose, galactose, xylene, arabinose and pyranose” [71] but was characterized by efficient antioxidant and cell proliferation inhibitory activities [71]. Other endophytic fungi with polysaccharide production potential include Alternaria tenuissima and Pilidiella guizhouensis [72, 85]. Moreover, Mangrovahabitansendophyticus, in addition to exopolysaccharide, produced lipid with the following composition: diphasatidyl glycerol, phosphatidyl ethanolamine, and phosphatidyl inositol [83]. More so, linoleic, oleic and scidonic acids were produced by an endophytic fungus isolated from Torreya grandis, Bionectria ochroleuca [79]. Linoleic and oleic acids are polyunsaturated fatty acids with enormous health benefits [86]. Specifically, linoleic acid is one of the major fatty acids essential in human diets as it cannot be synthesized in the body. Endophytes may be a promising source of linoleic acid and other polyunsaturated fatty acids.

Furthermore, literature survey showed that endophytes have been poorly explored for production of versatile peroxidase (VP) and dye decolourizing peroxidase (DyP), which are integral part of the ligninolytic enzyme system, with promising potentials in biofuel production and bioremediation. Research effort in this direction is therefore imperative. Despite the effectiveness of endophytes in biological control of plant pathogens, care must be taken in the direct usage of endophytes so as not to introduce pathogenic microbes in the environment. Researchers can however, exploit the biocontrol potential of endophytes for development of nanoparticles with biocontrol activity against a wide range of phytopathogens. Future studies should focus more on isolating bioactive compounds from endophytes for development of effective biocontrol agents as part of integrated pest management. Therefore, there is a need for metagenomics study of endophytes so as to explore the diversity of endophytic microbes towards discovering novel secondary metabolites of industrial and agricultural significance. It is also important to decipher the biosynthetic pathway of biocontrol agents and enzyme production in endophytes as this can be exploited for large scale production through genetic engineering.

3 Conclusions

Endophytes, indeed, possess robust aptitude in biocontrol of phytopathogens and enzyme production, which are significant to agro-industrial sustainability. Nevertheless, there is still dearth of research on the application of endophytes in the biocontrol of termites, which are known for causing substantial damage to agriculture, specifically forest products, with consequent huge economic loss. More so, chemical methods of controlling termites are characterized by low efficiency and high cost. As well, they are not eco-friendly. Future studies should, therefore, explore endophytes for production of novel biocontrol agents against termites.

Acknowledgements
Not applicable.

Authors’ contributions
AO and KE conceptualized the idea for the article; TC designed the methodology; AO, KE and TC drafted and critically revised the work. All authors approved the final version of the manuscript.

Funding
Not applicable.

Availability of data and materials
Not applicable.

Declarations
Ethics approval and consent to participate
Not applicable.
1. Hazarika DJ, Goswami G, Gautam T, Panveen A, Das P, Barooah M, Boro RC (2019) Lipopeptide mediated biocontrol activity of endophytic Bacillus subtilis against fungal phytopathogens. BMC Microbiol 19:71. https://doi.org/10.1186/s12866-019-1440-8

2. Xiang L, Geng S, Yang L, Xiao Y, Zeng FS, Zhanh XJ, Shi WQ, Wang H, Yu D (2015) Biocontrol potential of endophytic fungi in medicinal plants from Wuhan botanical garden in China. Bio Control. https://doi.org/10.1016/j.biocontrol.2015.12.002

3. Liu X, Dru D, Ma Y (2016) Potential of endophytic fungi from medicinal plants for biocontrol and plant growth promotion. J Gen Plant Pathol. https://doi.org/10.1007/s10327-016-0648-9

4. Chen HY, Liu TK, Shi Q, Yang XL (2019) Sesquiterpenoids and diterpenes with antimicrobial activity from Lepospondias sp. XI26, an endophytic fungus in Panax notoginseng. Frontiers in ap. 137:UNSP 104243. https://doi.org/10.3389/fmolc.2019.104243

5. Tian L, Jiang Y, Chen C, Zhang G, Li T, Tong B, Xu P (2014) Screening and identification of an endophytic bacterium with 1-aminocyclopropane-1-carboxylate deaminase activity from Panax ginseng and its effect on host growth. Acta Microbiol Sin 54:760–769

6. Dolatabad HK, Javan-Nikkhah M, Sheir WT (2017) Evaluation of antifungal, phosphate solubilisation, and siderophore and chitinase release activities of endophytic fungi from Pitsicia var. Mycrol Proc 16:777–790

7. Toghruo RMK, Zalagygea Z, Vazquez de Aldana BR, Boyom FF (2017) Enzymatic activity of endophytic fungi from the medicinal plants Terminalia catappa, Terminalia mental and Cananga odorata. S Afr J Bot 109:146–153

8. Bezerra JDP, Nascimento CCF, Barbosa RN, Da Silva DCV, Svedese VM, Silva-Nogueira EB, Gomes BS, Paiva LM, Souza-Motta CM (2015) Endophytic fungi from medicinal plant Bauhinia forficate: diversity and biotechnological potential. Braz. J Microbiol 46:49–57

9. Ruiz-Rosero J, Ramirez-Gonzalez G, Viveros-Delgado J (2019) Software survey: Scientopy, a scientometric tool for topics trend analysis in scientific publications. Scientometrics 121:1165–1188

10. Ramakwelu T, Hatting J, Bock C, Vega FE, Wells L, Mbatia GN, Shpoiron-Ilan D (2020) Establishment of Beauveria bassiana as a fungal endophyte in pecan (Carya illinoinensis) seedlings and its virulence against pecan insect pests. Bio Control 140:104102. https://doi.org/10.1016/j.biocontrol.2019.104102

11. Chen D, Zhang P, Liu T, Wang XF, Li ZX, Li W, Wang FL (2018) Insecticidal activities of chlamydomenicol derivatives isolated from a marine alga-derived endophytic fungus, Acremonium vitellimum, against the cotton bollworm, Helicoverpa armigera (Hubner) (Lepidoptera: Noctuidae). Molecules 23:2995

12. Polatкерви P, Sray滞后 SMM, Harith HHM, Williams DE, Rajapaksha SJ, Nishantha KMD, de Silva ED, Andersen RJ (2020) Antifungal, contact toxicity and oviposition deterrent effects of pythiolactone and phosphate lactyl isolated from the endophytic fungus Diaporthe citri, against the cotton bollworm, Plutella xylostella larvae. Pest Manag Sci 76:1541–1548

13. Kaushik N, Daze CE, Chhipa H, Julio LF, Andres MF, Gonzalez-Coloma A (2020) Chemical composition of an aphid antifeedant extract from an endophytic fungus, Trichoderma sp. EF671. Microorganisms 8:420. https://doi.org/10.3390/microorganisms8030420

14. Zhang HR, Wang XQ, Li RF, Sun XC, Sun SW, LiQ Xu CP (2017) Preparation and bioactivity of exopoly saccharide from an endophytic fungus Chaetomium sp of the medicinal plant Gynostemma pentaphyllum. Pharmacogn Mag 13:477–482

15. Rojas-Solis D, Zetter-Salmon E, Contreras-Perez M, Rocha-Granados MD, Macias-Rodriguez L, Santoyo G (2018) Pseudomonas stutzeri E25 and Stenotrophomonas maltophilia CR7 endophytes produce antifungal volatile organic compounds and exhibit additive plant growth-promoting effects. Biocatal Agric Biotechnol 13:46–52

16. Macias-Rubalcava ML, Sanchez-Fernandez RE, Roque-Flores G, Lappe-Olivar S, Medina-Romero YM (2018) Volatile organic compounds from Hypoxylon anthochrous endophytic strains as postharvest mycotoxicomination alternative for cherry tomatoes. Food Microbiol 76:363–373

17. Zhu HM, Pan YZ (2019) A novel antimicrobial protein of the endophytic Bacillus amyloliquefaciens and its control effect against Fusarium chlamydoma. Biocontrol 64:737–748

18. Ben Slama H, Chen Filini H, Bouket AC, Qader M, Silini A, Nahiaioua B, Alenezi FN, Luptakova L, Triki MA, Vallat A, Oszako T, Rabe ME, Belbahri L, (2019) Screening for Fusarium antagonistic bacteria from contrasting niches designated the endophyte Bacillus halotolerans as plant warden against Fusarium. Front Microbiol 9:3236. https://doi.org/10.3389/fmicb.2018.03236

19. Chen C, Cao Z, Li J, Tao C, Feng Y, Han Y (2020) A novel endophytic strain of Lactobacillus plantarum C3-3 with antagonistic activity against Botrytis cinerea on strawberry fruit. Biol Control 148:104306. https://doi.org/10.1016/j.biocontrol.2020.104306

20. Manian M, Ohno H, Suzuki K, Kitamura H, Kuroda K, Shimizu M (2020) A novel strain of endophytic Streptomyces for the biocontrol of strawberry anthracnose caused by Glomerella cingulata. Microbiol Res 234:126428.

21. Latz MAC, Jensen B, Collinge DB, Jorgensen HJ (2020) Identification of two endophytic fungi that control Septoria tritici blotch in the field, using a structured screening approach. Bio Control 141:104128

22. Cui LX, Yang CD, Wei LJ, Li TH, Chen XY (2020) Isolation and identification of an endophytic bacterium from the medicinal plant Carya illinoinensis as a fungal endophyte in medicinal plants. Pharmacogn Res 109:146–153

23. Huang LQ, Niu YC, Su L, Deng H, Luyu HY (2020) The potential of endophytic fungi isolated from cucurbit plants for biocontrol of soilborne fungal diseases of cucumber. Microbiol Res 231:126369. https://doi.org/10.1016/j.micres.2019.126369

24. Kong P, Hong CX (2020) A potent Burkholadina endophyte against cowwood blight caused by Calonectria psuedonaviculata. Microorganisms 8:310

25. Khunnamwong P, Lertwatansakul N, Jindamorakot S, Suwannarach N, Matsui K, Limtong S (2020) Evaluation of antagonistic activity and mechanisms of endophytic yeasts against pathogenic fungi causing economic crop diseases. Folia Microbiol 65:573–590

26. Wonglom P, Ito S, Sunpapao A (2020) Volatile organic compounds emitted from endophytic fungus Trichoderma asperellum T1 mediated anti-fungal activity, defense response and promote plant growth in lettuce (Lactuca sativa). Fungal Ecol 43:100867. https://doi.org/10.1016/j.fusene.2019.100867

27. Gao Y, Zeng XD, Ren B, Zeng JR, Xu T, Yang YZ, Hu XC, Zhu ZY, Shi LM, Zhou QY, Zhou Q, Liu XM, Zhu YH (2020) Antagonistic activity against rice blast disease and elicitation of host-defense response capability of an endophytic Streptomyces albidosflavus OsS1-2. Plant Pathol 69:259–271

28. Barra-Bucarei L, Iglesias AF, Gonzalez MG, Aguayo GS, Carrasco-Fernandez J, Castro JF, Campos JO (2020) Antifungal activity of Streptomyces albidoflavus endophytic Bacillus subtilis against fungal phytopathogens. BMC Microbiol 19:71. https://doi.org/10.1016/j.biocatalaagri.2019.104156

29. Hwang IQ, Niu YC, Su L, Deng H, Luyu H (2020) The potential of endophytic fungi isolated from cucurbit plants for biocontrol of soilborne fungal diseases of cucumber. Microbiol Res 231:126369. https://doi.org/10.1016/j.micres.2019.126369

30. Konig P, Hong CX (2020) A potent Burkholadina endophyte against cowwood blight caused by Calonectria pseudonaviculata. Microorganisms 8:310

31. Ibrahim E, Zhang MC, Zhang Y, Hossain A, Qiu W, Chen Y, Wang YL, Wu WQ, Sun GC, Li B (2020) Green-synthesis of silver nanoparticles using endophytic bacteria isolated from garlic and its antifungal activity against fungal phytopathogens. Microorganisms 8:420. https://doi.org/10.3390/microorganisms8030420
against wheat Fusarium head blight pathogen Fusarium graminearum.

32. Khoohanek P, Prasom P, Sirkhao P (2020) Application of seed coating with endophytic bacteria for Fusarium wilt disease reduction and growth promotion in tomato. Int J Agric Technol 16:35–62.

33. Alam MZ, Crump AR, Haque NM, Islam MS, Hossain E, Hasan SB, Hasan SB, Hossain MS (2016) Effects of integrated pest management on pest damage and yield components in a rice agro-ecosystem in the Barisal region of Bangladesh. Front Environ Sci. https://doi.org/10.3389/fenvs.2016.00022.

34. Wang HW, Zhu H, Liang XF, Du W, Dai CC (2014) Molecular cloning and expression of a novel laccase showing thermo- and acid-stability from the endophytic fungus Phomopsis liquidambari and its potential for growth promotion of plants. Biotechnol Lett 36:167–173.

35. Murtezhilal R, Vinoth S, Gopi K, Jaffar Hussain A (2014) Dye degrading potential of immobilized laccase from endophytic fungi of coastal sand dune plants. Int J ChemTech Res 6:4154–4160.

36. Costa-Silva TA, Souza CRF, Oliveira WP, Said S (2014) Characterization and spray drying of lipase produced by the endophytic fungus Ceroperakorikuchi. Braz J Chem Eng 31:849–858.

37. Choudhury P (2015) Industrial application of lipase: a review. Biopharm J 11:41–47.

38. Chun-Zhu S, Dong-Hong C (2015) Identification of a novel endophytic Bacillus pumilus lipase from the seed of Pistacia chinensisbush. Res J Biotechnol 10:19–25.

39. Robi D, Delabona PD, Costa PD, Lima DJD, Rabelo SC, Pimentel IC, Buchi F, Squina FM, Padilla G, Pradella JGD (2015) Xylanase production by endophytic Aspergillus niger using pentose-rich hydrothermal liquor from sugarcane bagasse. Biocatal Biotransformation 33:175–187.

40. Fillat U, Martin-Sampedro R, Martin JA, Ibarra D, Martinez MJ, Eugenio ME (2016) Screening of ecukalyptus wood endophytes for laccase activity. Process Biochem 51:S89–S98.

41. Ahmed SA, Saleh SAA, Mostafa FA, Abd El Aty AA, Ammar HAM (2016) Characterization and valuable applications of xylanase from endophytic fungus Aspergillus terreus RPH00973 isolated from Cochonaria olitorius. Biocatal Agric Biotechnol 7:134–144.

42. El-Gendy MAAA, Taha TM, Abo-Dahab NF, Hassan FSM (2016) Process optimization of p-glutaminase production, an tumour inhibitor from marine endophytic isolate Aspergillus sp. ALAA-2000. Int J PharmTech Res 9:256–267.

43. Prakash O, Nimorak Y, Chavadar MS, Bharti N, Pawar S, Sharma A, Shouche YS (2017) Optimization of nutrients and culture conditions for marine endophytic Aspergillus sp. ALAA-2000. Int J PharmTech Res 9:256–267.

44. Marques NR, Pereira JD, Gomes E, da Silva R, Araujo AR, Ferreira H, Rodrigues A, Dussan KJ, Bocchini DA (2018). Cellulases and xylanases production by endophytic fungi by solid state fermentation using lignocellulosic substrates and enzymatic saccharification of pretreated sugarcane bagasse. Ind Crops Prod 122:66–75.

45. Mani VW, Soundari AJPG, Preethi K (2018) Enzymatic and phytochemical analysis of endophytic fungi on Aegle marmelos from Western Ghats of Tamil Nadu, India. Int J Life Sci Pharm Res 8:11–8.

46. Dorra G, Ines K, Imen BS, Laurent C, Sana A, Olfa T, Pascal C, Thierry J, Ferid L (2018) Purification and characterization of a novel high molecular weight alkaline protease produced by an endophytic Micrococcus. Micrococcus alveoare and Micrococcus yunnanensis. Indian J Microbiol 57:218–225.

47. Orlandelli RC, Santos MS, Polonio JC, de Azevedo JL, Pamphile JA (2017) Use of agro-industrial wastes as substrates for a-amylase production by an endophytic Micrococcus sp. Algocellulase. Microb Biotechnol. https://doi.org/10.1111/1751-7915.12551.

48. Alrumman SA, Mostafa YS, Al-izran KA, Alfaifi MY, Taha TH, Elbeihari SE (2019) Production and anticancer activity of l-asparaginase from Bacillus licheniformis isolated from the Red Sea. Saudi Arabia. Sci Rep 9:37536.

49. Bhavana NS, Prakash HS, Nalini MS (2019) Antioxidative and L-asparaginase potentials of fungal endophytes from Rauwolfia densiflora (Apocynaceae), an ethnomedicinal species of the Western Ghats. Czech Mycol 71:187–203.

50. Naik B, Goyal SK, Tripathi AD, Kumar V (2019) Screening of agro-industrial waste and physical factors for the optimum production of pullulanase in solid-state fermentation from endophytic Aspergillus sp. Biocatal Agric Biotechnol 22:101423. https://doi.org/10.1016/j.bcab.2019.101423.

51. Sharma A, Singh R, Sarmah BK, Nandi SP (2020) Isolation of cellulose-degrading endophytes from Capsicum chinense and determination of its cellulytic potential. Bioresource Res Appl Chem 10:6964–6973.

52. Goukanapalle PKR, Kandi DK, Rajji GS, Kumar BS, Bonthra RR (2020) Optimization of cellulase production by a novel endophytic fungus Pestalotiopsis microsporaXTRKIR isolated from Thalakana forest. Cellulose 27:6299–6316.

53. Cardoso VM, Campos FF, Santos AR, Ottoni MHF, Rosa CA, Almeida VG, Grael CFF (2020) Biotechnological applications of the medicinal plant Pseudocitribraculatis and its isolated endophytic bacteria. J Appl Microbiol. https://doi.org/10.1111/jam.14666.

54. Prihanto AA, Yanti I, Murtazam AJ, Matkido YD (2020) Optimization of glutaminase-free L-asparaginase production using mangoendophytic Lyxinbacillus fusiformis B27. F1000 Res 8:1938. https://doi.org/10.12688/f1000research.21178.2.

55. Krishnapura PR, Belur PD (2020) L-Asparaginase Production using solid-state fermentation by an endophytic Tolaramycespepsiophilus isolated from rhizomes of Curcuma aromatica. J Pure Appl Microbio 14:307–318.

56. Navada KK, Kulal A (2020) Enhanced production of laccase from gamma irradiated endophytic fungus: A study on biotransformation kinetics of aniline blue and textile effluent decolourisation. J Environ Chem Eng 8:103550. https://doi.org/10.1016/j.jece.2019.103550.

57. Bhardwaj N, Kumar B, Verma PA (2019) A detailed overview of xylanases: an emerging biomolecule for current and future prospective. Bioreour Bioprocess 6:40.

58. Treebupachatsakul T, Shioya K, Nakazawa H, Kawaguchi T, Morikawa Y, Shida Y et al (2015) Utilization of recombinant Trichoderma reesei expressing Aspergillus aculeatus β-glucosidase 1 (JN11) for a more economical production of ethanol from lignocellulosic biomass. J Biosci Bioeng 120:657–665.
68. Jordan DB, Wagschal K (2010) Properties and applications of microbial β-D-xylanases catalyzing cyclically efficient enzyme from Selenomonas ruminantium. Appl Microbiol Biotechnol 86:1647–1658. doi: 10.1007/s00253-010-3538-y
69. Falade AO, Nwodo UU, Iweriebor BC, Green E, Mabinya LV, Okoh AI (2017) Lignin peroxidase functionalities and prospective applications. MicrobiologyOpen 6:e00394
70. Parida V, Spodin D, Reim W (2019) Reviewing literature on digitalization, business model innovation, and sustainable industry: past achievements and future promises. Sustainability 11:391. doi: 10.3390/su11030391
71. Pan P, Hou K, Li DD, Su TJ, Wu W (2019) Exopolysaccharides from the fungal endophytic Fusarium sp. A14 isolated from Fritillaria unibracteata Hisoa et KC Hsia and their antioxidant and antiproliferation effects. J Biosci Bioeng 127:231–240
72. Zhang J, Yang B, Chen H (2020) Identification of an endophytic fungus Pilidiellaguizhouensis isolated from Eupatorium chinense L. and its extracellular polysaccharide. Biologia. doi: 10.2478/s11756-020-00465-3
73. Xiong YW, Ju XY, Li XW, Gong Y, Xu MJ, Zhang CM, Yuan B, Lv ZP, Qin S (2020) Fermentation conditions optimization, purification, and antioxidant activity of exopolysaccharides obtained from the plant growth-promoting endophytic actinobacterium Glutamicibacterhalophytocola KL8MP 5180. Int J Biol Macromol 153:1176–1185
74. Chen YT, Yuan Q, Shan LT, Lin MA, Cheng DQ, Li CY (2013) Antitumor activity of bacterial exopolysaccharides from the endophyte Bacillus amyloliquefaciens sp. isolated from Ophiopogon japonicus. Oncof Lett 5:1787–1792
75. Zheng LP, Zou T, Ma YJ, Wang JY, Zhang YQ (2016) Antioxidant and DNA damage protecting activity of exopolysaccharides from the endophytic bacterium Bacillus subtilis isolated from Ophiopogon japonicus. J Funct Foods 53:266–275
76. Wang YG, Li YL, Li SW, Li QY, Fan WG, Kiatoukosin L, Chen JX (2019) Extracellular polysaccharides of endophytic fungus Alternaria tenuissima F1 from Angelica sinensis: production conditions, purification and antioxidant properties. Int J Biol Macromol 133:172–183
77. Chen M, Li YY, Liu Z, Qu YJ, Zhang HJ, Li DW, Zhou J, Xie SB, Liu M (2018) Exopolysaccharides from a Cadonopsis pilosula endophyte activate macrophages and inhibit cancer cell proliferation and migration. Thorac Cancer 9:630–639
78. Guo SD, Mao WJ, Yan MX, Zhao CQ, Li N, Shan JM, Lin C, Liu X, Guo T, Guo TT, Wang SY (2014) Galactomannan with novel structure produced by the coral endophytic fungus Aspergillus ochraceus. Carbohydr Polym 105:325–333
79. Yang Y, Jin ZH, Jin QC, Dong MS (2015) Isolation and fatty acid analysis of lipid-producing endophytic fungi from wild Chinese Torreya Grandis. Microbiol 84:710–716
80. Mahapatra S, Banerjee D (2016) Production and structural elucidation of exopolysaccharide from endophytic Pestalotiopsssp BC55. Int J Biol Macromol 82:182–191
81. Zhang X, Zhou YY, Liu FuXC, Wang Q (2017) Screening and characterization of endophytic Bacillus for biocontrol of grapevine downy mildew. Crop Prot 96:173–179
82. Orlandelli RC, Corradi da Silva MDL, Vasconcelos AFD, Almeida IV, Vicentini VEP, Prieto A, Hernandez MDD, Azevedo JL, Pamphile JA (2017) β-(1→3, 1→6)-D-glucans produced by Diaporthe sp. endophytes: Purification, chemical characterization and antiproliferative activity against MCF-7 and HepG2-C3A cells. Int J Biol Macromol 94:431–437
83. Liu SW, Tuo L, Li XJ, Li FN, Li J, Jiang MG, Chen L, Hu L, Sun CH (2017) Mangrovihabitantendophytic genus Nov., sp. nov., a new member of the family Micromonomosporaceae isolated from Bruguierea sexangular. Int J Syst Evol Microbiol 67:1629–1636
84. Zeng YJ, Yang HR, Wang HF, Zong MH, Lou WY (2019) Immune enhancement activity of a novel polysaccharide produced by Dendrobium officinale endophytic fungus Fusarium solani D07. J Funct Foods 53:266–275
85. Wang YG, Li YL, Li SW, Li QY, Fan WG, Kiatoukosin L, Chen JX (2019) Extracellular polysaccharides of endophytic fungus Alternaria tenuissima F1 from Angelica sinensis: production conditions, purification and antioxidant properties. Int J Biol Macromol 133:172–183
86. Jandacek RJ (2017) Linoleic acid: a nutritional quandary. Healthcare (Basel) 5:20

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.