DSANet: Dynamic Segment Aggregation Network for Video-Level Representation Learning

Wenhao Wu1\textdagger, Yuxiang Zhao1,2\textdagger, Yanwu Xu3, Xiao Tan1, Dongliang He1, Zhikang Zou1, Jin Ye1, Yingying Li1, Mingde Yao1, Zichao Dong1, Yifeng Shi1

1 Baidu Inc. \quad 2 Shenzhen Institute of Advanced Technology, CAS \quad 3 University of Pittsburgh

ACMMM 2021
Task

Video Recognition: classify the short clip or untrimmed video into pre-defined class.
Task

Video Recognition: classify the short clip or untrimmed video into pre-defined class.

- More than simply recognizing objects
- Complex person-person interaction & people-object interactions
- Videos bring motions
Motivation

How to get the video-level prediction?

Classical Pipeline:
1. (Training) Intra-clip modeling (e.g., C3D/TSM/SlowFast, etc)
2. (Inference) Average the predictions of multiple clips
Motivation

How to get the video-level prediction?

Prominent problems:
- No interaction among clips
- Training and Inference are not consistent

Classical Pipeline

Can we learn video-level representations directly?
Motivation

How to get the video-level prediction?

Can we learn video-level representations directly?

Intra-clip modeling (3D: T*H*W) → Inter-clip modeling (4D: U*T*H*W)

- TSN[1]: temporal modeling unexplored but simple
- 4D Convolution[2]: effective but expensive
- We focus on efficient and effective video-level representation learning

[1] Limin Wang, Yuanjun Xiong, Zhe Wang, Yu Qiao, Dahua Lin, Xiaou Tang, and Luc Van Gool. 2016. Temporal segment networks: Towards good practices for deep action recognition. In Proc. ECCV.
[2] Shiwen Zhang, Sheng Guo, Weilin Huang, Matthew R Scott, and Limin Wang. 2020. V4D: 4D Convolutional Neural Networks for Video-level Representation Learning. In Proc. ICLR.
We propose a light-weight Dynamic Snippets Aggregation module to improve performance!
DSANet

Solving Problems
• Adaptively aggregate snippets to enhance temporal interaction
• Convolution on channel wise to reduce computation burden
Ablation Studies

(a) Study on the effectiveness of DSA module. T denotes the number of frames sampled from each video snippet, U denotes the number of snippets. Backbone: I3D R18.

Model	$T_{\text{train}} \times U_{\text{train}}$	$T_{\text{infer}} \times U_{\text{infer}} \times \#\text{crop}$	Top-1	Top-5	Params
I3D R18	4×1	$4 \times 10 \times 3$	72.2	91.2	32.3M
I3D R18	16×1	$16 \times 10 \times 3$	73.4	91.1	32.3M
TSN+I3D R18	4×4	$4 \times 10 \times 3$	73.0	91.3	32.3M
V4D+I3D R18	4×4	$4 \times 10 \times 3$	75.6	92.7	33.1M
DSA+I3D R18	4×4	$4 \times 8 \times 3$	77.3	93.9	32.3M

(i) Training FLOPs. Comparison with V4D, the extra computation cost brought by the DSA module is close to zero.

Model	Input size	FLOPs
TSN+I3D R50	$4 \times 4 \times 224^2 \times 3$	83.8G
V4D+I3D R50	$4 \times 4 \times 224^2 \times 3$	143.0G
DSA+I3D R50	$4 \times 4 \times 224^2 \times 3$	83.8G
Ablation Studies

(b) Study on different position to insert DSA module. Setting: I3D R50, $\alpha=2$, $\beta=1$, stage: res$_5$.

Position	Top-1	Top-5
I	81.4	95.4
II	81.5	95.2
III	80.8	95.2
IV	81.4	95.1

(c) Parameter choices of α. Setting: I3D R50, Position II, $\beta=1$, inserted stage: res$_5$.

Setting	Top-1	Top-5
$\alpha=1$	81.0	95.1
$\alpha=2$	81.5	95.2
$\alpha=4$	81.2	95.0
$\alpha=8$	81.3	95.0

(d) The DSA blocks in different stage of I3D R50. Setting: Position II, $\alpha=2$, $\beta=1$.

Stage	Top-1	Top-5
res$[2]$	81.4	94.7
res$[3]$	81.3	95.1
res$[4]$	81.3	95.3
res$[5]$	**81.5**	95.2

(e) Parameter choices of β. Setting: I3D R50, Position II, $\alpha=2$, inserted stage: res$_5$.

Setting	Top-1	Top-5
$\beta=1$	81.5	95.2
$\beta=1/2$	**81.7**	95.4
$\beta=1/4$	81.6	95.0
$\beta=1/8$	81.5	95.0

(f) The number of DSA block inserted into I3D R50. Setting: Position II, $\alpha=2$, $\beta=1/8$.

Stages	Blocks	Top-1	Top-5
res$[5]$	1	81.5	95.0
res$[4,5]$	4	81.5	95.3
res$[3,4]$	5	**81.8**	95.4
res$[2,3]$	3	81.4	95.1
Ablation Studies

Complementary with clip-based methods

(g) Different short-term temporal structure for DSA module.

Model	Top-1	Top-5
TSM R50	77.4	93.4
DSA+TSM R50	80.4	95.0
I3D R50	78.0	93.9
DSA+I3D R50	81.8	95.4

Complementary with different backbones

(h) Study on the effectiveness of DSA module with different backbones (I3D R18, I3D R50). SENet+I3D uses SE module to replace the DSA module in DSANet.

Arch.	I3D	SENet+I3D	DSA+I3D
ResNet18	72.2	73.8	77.3
ResNet50	78.0	78.5	81.8
Comparison with SOTAs

Kinetics-400

Method	Backbone	$T_{\text{infer}} \times U_{\text{infer}} \times \text{#crop}$	GFLOPs	Top-1	Top-5
TSM [17]	ResNet-50	8x10x3	33x30=990	74.1%	91.2%
TEINet [19]	ResNet-50	8x10x3	33x30=990	74.9%	91.8%
TEA [16]	ResNet-50	8x10x3	35x30=1050	75.0%	91.8%
TANet [20]	ResNet-50	8x10x3	43x30=1290	76.1%	92.3%
MVFNet [34]	ResNet-50	8x10x3	33x30=990	76.0%	92.4%
NL+3D [31]	3D ResNet-50	32x10x3	70.5x30=2115	74.9%	91.6%
NL+3D [31]	3D ResNet-50	128x10x3	282x30=8460	76.5%	92.6%
X3D-L [7]		16x10x3	24.8x30=744	77.5%	92.9%
Slowfast [8]	3D R50+3D R50	(4+32)x10x3	36.1x30=1083	75.6%	92.1%
Slowfast [8]	3D R50+3D R50	(8+32)x3x10	65.7x30=1971	77.0%	92.6%
Slowfast [8]	3D R101+3D R101	(8+32)x3x10	106x30=3180	77.9%	93.2%
Slowonly [8]	3D ResNet-50	8x10x3	41.9x30=1257	74.9%	91.5%
V4D+I3D [39]	3D ResNet-50	8x10x3	286.1x2.5x3=2146*	77.4%	93.1%

Method	Backbone	$T_{\text{infer}} \times U_{\text{infer}} \times \text{#crop}$	GFLOPs	Top-1	Top-5
DSA+I3D (Ours)	3D ResNet-50	4x8x3	83.8x2x3=503	77.7%	93.1%
DSA+I3D (Ours)	3D ResNet-50	8x8x3	167.7x2x3=1006	78.2%	93.2%
DSA+I3D (Ours)	3D ResNet-50	(4+8)x8x3	251.5x2x3=1509	79.0%	93.7%

Accuracy-computation trade-off
Comparison with SOTAs

Mini-Kinetics-200

Method	Backbone	$T_{train} \times U_{train}$	$T_{infer} \times U_{infer} \times$ #crop	Top-1 (%)	Top-5 (%)
S3D [37]	S3D Inception	64 × 1	N/A	78.9%	-
B3D [38]	3D ResNet50	32 × 1	32 × 10 × 3	75.5%	92.2%
B3D [38]	3D ResNet101	32 × 1	32 × 10 × 3	77.4%	93.2%
B3D+NL [38]	3D ResNet50	32 × 1	32 × 10 × 3	77.5%	94.0%
B3D+CGNL [38]	3D ResNet50	32 × 1	32 × 10 × 3	78.8%	94.4%
B3D+NL [38]	3D ResNet101	32 × 1	32 × 10 × 3	79.2%	93.2%
B3D+CGNL [38]	3D ResNet101	32 × 1	32 × 10 × 3	79.9%	93.4%
V4D+I3D [39]	3D ResNet18	4 × 4	4 × 10 × 3	75.6%	92.7%
V4D+I3D [39]	3D ResNet50	4 × 4	4 × 10 × 3	80.7%	95.3%
DSA+I3D (Ours)	3D ResNet18	4 × 4	4 × 8 × 3	77.3%	93.9%
DSA+I3D (Ours)	3D ResNet50	4 × 4	4 × 8 × 3	**81.8%**	**95.4%**

ActivityNet v1.3

Model	Backbone	mAP
TSN [30]	BN-Inception	79.7%
TSN [30]	Inception V3	83.3%
TSN-Top3 [30]	Inception V3	84.5%
V4D+I3D [39]	3D ResNet50	88.9%
DSA+I3D (Ours)	3D ResNet50	**90.5%**

Something-Something V1

Method	Backbone	Top-1 (%)
MultiScale TRN [40]	BN-Inception	34.4%
ECO [41]	BN-Inception+3D ResNet 18	46.4%
S3D-G [37]	S3D Inception	45.8%
Nonlocal+GCN [32]	3D ResNet50	46.1%
TSM [17]	ResNet50	47.2%
I3D (our impl.)	3D ResNet50	48.7%
V4D+I3D [39]	3D ResNet50	50.4%
DSA+I3D (Ours)	3D ResNet50	**51.8%**
Visualization

Ground Truth: air drumming

DSANet Prediction: air drumming
Average Prediction: using computer

Ground Truth: clean and jerk

DSANet Prediction: clean and jerk
Average Prediction: deadlifting

Dynamic aggregation
Average aggregation
Thank you for your attention!

- Codes
 https://github.com/whwu95/DSANet

- Contact
 Wenhao Wu
 Baidu Inc.
 wuwenhao17@mails.ucas.edu.cn