Predictive value of pulse oximetry for mortality in infants and children presenting to primary care with clinical pneumonia in rural Malawi: A data linkage study

Tim Colbourn1,*, Carina King1,2, James Beard1, Tambosi Phiri3, Malizani Mdala3, Beativel Zadutsa3, Charles Mkwenda3, Anthony Costello1,, Norman Lufesi4, Charles Mwansambo4, Bejoy Nambiar5, Shubhada Hooli6, Neil French7, Naor Bar Zeev7,8,9, Shamim Ahmad Qazi10, Yasir Bin Nisar11, Eric D. McCollum9,12

1Institute for Global Health, University College London, London, United Kingdom, 2Department of Global Public Health, Karolinska Institutet, Stockholm, Sweden, 3Parent and Child Health Initiative, Lilongwe, Malawi, 4Ministry of Health, Lilongwe, Malawi, 5UNICEF, Lilongwe, Malawi, 6Department of Pediatrics, Section of Emergency Medicine, Baylor College of Medicine, Houston, Texas, United States of America, 7Institute of Infection & Global Health, University of Liverpool, Liverpool, United Kingdom, 8Malawi-Liverpool-Wellcome Trust Clinical Research Programme, Blantyre, Malawi, 9Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States of America, 10Department of Maternal, Newborn, Child and Adolescent Health, World Health Organization, Geneva, Switzerland, 11Department of Maternal, Newborn, Child and Adolescent Health and Ageing, World Health Organization, Geneva, Switzerland, 12Global Program in Pediatric Respiratory Sciences, Eudowood Division of Pediatric Respiratory Sciences, Department of Pediatrics, Johns Hopkins School of Medicine, Baltimore, Maryland, United States of America\textdagger

\textdaggerCurrent address: Retired, Geneva, Switzerland.
* t.colbourn@ucl.ac.uk

Abstract

Background

The mortality impact of pulse oximetry use during infant and childhood pneumonia management at the primary healthcare level in low-income countries is unknown. We sought to determine mortality outcomes of infants and children diagnosed and referred using clinical guidelines with or without pulse oximetry in Malawi.

Methods and findings

We conducted a data linkage study of prospective health facility and community case and mortality data. We matched prospectively collected community health worker (CHW) and health centre (HC) outpatient data to prospectively collected hospital and community-based mortality surveillance outcome data, including episodes followed up to and deaths within 30 days of pneumonia diagnosis amongst children 0–59 months old. All data were collected in Lilongwe and Mchinji districts, Malawi, from January 2012 to June 2014. We determined differences in mortality rates using $<90\%$ and $<93\%$ oxygen saturation (SpO$_2$) thresholds and World Health Organization (WHO) and Malawi clinical guidelines for referral. We used unadjusted and adjusted (for age, sex, respiratory rate, and, in analyses of HC data only, Weight for Age score [WAZ]) regression to account for interaction between SpO$_2$ threshold (pulse...
the matching process. Our data linkage study uses data from three publications (references [6], [13], and [14] of the paper); 6. McCollum ED, King C, Deula R, Zadutsa B, Mankhambo L, Nambiar B, et al. Outpatient pulse oximetry implementation with rural facility and community health workers during three years of child pneumonia care in two central Malawi districts. Bulletin of the World Health Organisation. 2016;94:99-102. 13. McCollum ED, Nambiar B, Deula R, Zadutsa B, Bondo A, King C, et al. Impact of the 13-valent Pneumococcal Conjugate Vaccine on Clinical and Hypoxemic Childhood Pneumonia over Three Years in Central Malawi: An observational study. PLoS One. 2017;DOI:10.1371/journal.pone.0168209 January 4, 2017. 14. Bar-Zeev N, King C, Phiri T, Beard J, Mvula H, Crampin AC, et al. Impact of monovalent rotavirus vaccine on diarrhoea-associated post-neonatal infant mortality in rural communities in Malawi: a population-based birth cohort study. The Lancet Global health.

Funding: A grant from the Bill & Melinda Gates Foundation (BMGF) https://www.gatesfoundation.org/ (OPP110619) to the World Health Organization (YBN and SAQ) funded the data and had final responsibility to submit for publication. This publication has been funded in part by the Wellcome Trust (WT091909/B/10/Z0) to NF. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. The corresponding author TC and role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. The corresponding author TC and JB, and EDM had full access to all the data and had final responsibility to submit for publication.

Competing interests: The authors have declared that no competing interests exist.

Abbreviations: CHW, community health worker; DOR, diagnostic odds ratio; GLM, generalised linear model; HC, health centre; iCCM, integrated community case management; IMCI, integrated management of childhood illness (IMCI) WHO protocol. Malawi IMCI referral protocol, which differs from WHO protocol at the HC level and includes chest indrawing, identified all but one of these deaths. SpO2 < 90% predicted death independently of WHO danger signs compared with SpO2 ≥ 90%: HC Risk Ratio (RR), 9.37 (95% CI: 2.17–40.4, p = 0.003); CHW RR, 6.85 (1.15–40.9, p = 0.035). SpO2 < 93% was also predictive versus SpO2 ≥ 93% at HC level: RR, 6.68 (1.52–29.4, p = 0.012). Hospital referrals and outpatient episodes with referral decision indications were associated with mortality. A substantial proportion of those referred were not found admitted in the inpatients within 7 days of referral advice. All 12 deaths in 73 hospitalised children occurred within 24 hours of arrival in the hospital, which highlights delay in appropriate care seeking. The main limitation of our study was our ability to only match 6% of CHW episodes and 11% of HC episodes to mortality outcome data.

Conclusions
Pulse oximetry identified fatal pneumonia episodes at HCs in Malawi that would otherwise have been missed by WHO referral guidelines alone. Our findings suggest that pulse oximetry could be beneficial in supplementing clinical signs to identify children with pneumonia at high risk of mortality in the outpatient setting in health centres for referral to a hospital for appropriate management.

Author summary

Why was this study done?

- Pneumonia is a leading cause of death of children under 5 years old, and early identification and treatment of severe cases is required to prevent deaths.

- Pulse oximetry is more sensitive at detecting hypoxaemia than clinical signs alone and therefore can potentially prevent more deaths from pneumonia.

- There is a lack of evidence of the effect on child deaths of pulse oximetry use by health-care workers in informal community settings and at formal primary care clinics, and this study sought to fill this evidence gap.
What did the researchers do and find?

- We linked Malawian community health worker and health centre outpatient data to hospital and community mortality data to determine the mortality outcomes for children with pneumonia identified by pulse oximetry or clinical signs or both as outpatients.

- We show that pulse oximetry identified fatal episodes of childhood pneumonia that did not have identified clinical signs.

- Pulse oximetry readings of less than 90% oxygen saturation (SpO$_2$) identified 6% of deaths at community health worker level (1/16) and 23% of deaths at health centre level (3/13) not identified by clinical signs.

- Increasing the threshold to less than 93% SpO$_2$, pulse oximetry identified 1 additional death (1/13, 7.7% of deaths) not identified by clinical signs at the health centre level only.

- All of the health centre deaths identified by pulse oximetry except one were also identified by chest indrawing in this high-mortality setting.

What do these findings mean?

- Our findings suggest that pulse oximetry could be beneficial in supplementing clinical signs to identify children with pneumonia at high risk of mortality in the outpatient setting in health centres for referral to a hospital for appropriate management.

- In high-mortality settings in low- and middle-income countries, in the absence of pulse oximetry, presence of chest indrawing could potentially be explored as a referral sign to a hospital but needs further research in routine settings.

Introduction

Pneumonia remains a leading cause of death in children under 5, especially in low-income and middle-income countries (LMICs), with around 800,000 pneumonia-related deaths a year globally [1]. Incidence of clinical pneumonia is estimated to be as high as 500 episodes per 1,000 child-years in some regions, with an average of 122 episodes per 1,000 child-years in Africa in 2017 [2]. Although hospitalisation rates are increasing and hospital case fatality rates are decreasing, case fatality rates are still typically around 3%–5% in LMICs [3]. Many deaths still occur at home after care seeking [4].

Early identification and action is required to prevent more pneumonia-related deaths that currently occur in hospital, often because of late presentation [5], and at home, often because their illness severity is unreconnised by primary care healthcare providers or there are barriers to accessing secondary care.

As an objective measurement of physiological illness severity, noninvasive peripheral oxygen saturation (SpO$_2$) measurement by pulse oximeters at outpatient primary care and first level health facilities has a potential role to aid early recognition and referral of severe
pneumonia episodes for oxygen and injectable antibiotic treatment [6, 7]. The current 2014 World Health Organization (WHO) Integrated Management of Childhood Illness (IMCI) chart booklet includes pulse oximetry as optional rather than mandatory and stipulates a threshold of <90% to indicate hypoxaemia requiring immediate referral to hospital [8]. However, SpO2 < 93% has also been shown to predict fatality in high-mortality settings [9, 10].

Evidence linking outpatient primary care SpO2 measurement to hospital referral and fatality is lacking [11, 12]. We aim to address this gap by linking data from previously described community and hospital based morbidity and mortality surveillance studies [9, 13–16] with a concurrent study in the same district involving outpatient pulse oximeter use at the community health worker (CHW) and health centre (HC) levels [6]. We assess the potential added value of outpatient pulse oximetry to hospital referrals and mortality outcomes using the current <90% SpO2 threshold and a <93% threshold, in conjunction with pre-2018 Malawi guidelines in use at the time of data collection (hereafter ‘Malawi guidelines’) [17]. Additionally, we explored the theory that the inability to obtain a pulse oximetry measurement may be associated with mortality [18]. Malawi guidelines for HC cases, unlike the WHO IMCI 2014 chart booklet, included mandatory hospital referral for 2- to 59-month-old children with chest indrawing (i.e., bilateral inward pulling of the lower anterior subcostal tissue during inspiration). For CHW cases, both WHO integrated community case management (iCCM) [19] and Malawi guidelines [17] indicate referral of infants and children with chest indrawing or danger signs (Table 1). This study was agreed on after an exploratory meeting by WHO on IMCI danger signs for pneumonia [12].

We hypothesised that pulse oximetry use for outpatients could identify children at risk of dying who would not be identified by clinical signs alone.

Methods

Our objectives were to determine whether pulse oximetry at outpatient CHW and HC primary care levels identifies infant and child pneumonia patients for referral to hospital independently of clinical signs included in the Malawi and WHO guidelines for CHW and HC patients (Table 1) and the fatality outcomes at 30 days postdiagnosis. To determine fatality, we linked CHW and HC outpatient pneumonia data sets of 0- to 59-month-olds in Lilongwe and Mchinji districts, Malawi (Fig 1) from 1st Jan 2012 to 30th June 2014 [6, 13] to hospital [13] data for the same time period. We also linked the outpatient data to community-surveillance mortality data available for the Mchinji district only [14]. We developed and then followed our prespecified analysis plan (S1 Appendix) as far as we were able given the limitations of the final matched data set. We added the sensitivity and specificity analyses at the request of the statistical reviewer. This study is reported as per the Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) guideline (S1 Checklist).

Setting

In the Malawi healthcare system, children are intended to access care at either village clinics or HCs. At the village clinic level, if the child is found to be referral eligible, then the child is expected to be referred by the CHW to either the HC or hospital. At the HC level, children meeting referral criteria are referred to hospital.

Sample characteristics

Children were aged 0–59 months with a clinical pneumonia diagnosis according to routine data prospectively collected by 38 CHWs and providers from 18 HCs in rural Lilongwe and Mchinji districts, Malawi (Table 1) [6].
Table 1. Matching of outpatient child pneumonia episodes to mortality outcome data.

Outcome:	CHW Episodes with Outcome Data (N = 417), n (%)	CHW Episodes without Outcome Data (N = 6,941), n (%)	p-Value	HC Episodes with Outcome Data (N = 695), n (%)	HC Episodes without Outcome Data (N = 5,761), n (%)	p-Value	
Death¹	16 (3.8%)	no data	13 (1.9%)	no data			
Survival	401 (96.2%)	no data	682 (98.1%)	no data			
SpO₂	7 (1.9%)	79 (1.2%)	0.240	65 (10.1%)	543 (10.2%)	0.971	
<90%	14 (3.8%)	520 (7.9%)	0.004	578 (89.9%)	4,804 (89.8%)	0.925	
≥93%	355 (86.2%)	6,055 (92.1%)	0.004	515 (80.1%)	4,291 (80.2%)	0.925	
Failed measurement	48 (11.5%)	366 (5.3%)	<0.001	52 (7.5%)	414 (7.2%)	0.776	
Measured	369 (88.5%)	6,575 (94.7%)	0.004	643 (92.5%)	5,347 (92.8%)	0.925	
Chest indrawing	16 (3.8%)	105 (1.5%)	<0.001	241 (34.7%)	1,457 (25.3%)	<0.001	
Danger signs² (WHO guidelines clinically eligible for referral = same as Malawi guidelines at CHW level)	41 (9.8%)	962 (13.9%)	0.020	110 (15.8%)	612 (10.6%)	<0.001	
Abnormally sleepy	2 (0.5%)	11 (0.2%)	0.129	6 (0.9%)	74 (1.3%)	0.343	
Baby apnoea	no data	no data	0.004	no data	no data		
Had convulsions	1 (0.2%)	266 (3.8%)	<0.001	5 (0.7%)	58 (1.0%)	0.467	
Not breastfeeding or drinking	3 (0.7%)	73 (1.1%)	0.514	20 (2.9%)	143 (2.5%)	0.530	
Vomiting everything	17 (4.1%)	554 (8.0%)	0.004	no data	no data		
Stridor when calm	no data	no data	0.004	17 (2.5%)	165 (2.9%)	0.529	
HIV exposure/infection	no data	no data	0.004	20 (3.0%)	93 (1.7%)	0.018	
Swelling of both feet	6 (1.4%)	77 (1.1%)	0.536	no data	no data		
Malnutrition (clinical)	no data	no data	0.004	7 (1.0%)	40 (0.7%)	0.359	
SAM (MUAC < 11.5 cm, ≥6 months old)	6 (2.1%)	31 (0.5%)	0.001	10 (2.1%)	49 (1.1%)	0.063	
Malawi guidelines clinically eligible for referral³	41 (9.8%)	962 (13.9%)	0.020	275 (39.6%)	1,690 (29.3%)	<0.001	
Sex	Male (% not missing)	218 (53.2%)	3,325 (48.4%)	0.062	363 (56.2%)	2,751 (51.6%)	0.027
Female (% not missing)	192 (46.8%)	3,541 (51.6%)	0.283	283 (43.8%)	2,581 (48.4%)	0.027	
Missing data (% total)	7 (1.7%)	74 (1.1%)	0.004	49 (7.1%)	429 (7.5%)	0.004	
Age [months] mean (SD, min–max)	10 (7.2–58)	24 (15.0–59)	<0.001	8 (7.1–48)	16 (12.0–59)	<0.001	
Missing data (n, %)	16 (3.8%)	682 (9.8%)	0 (0%)	0 (0%)	0 (0%)	0 (0%)	
Respiratory Rate⁴:	Normal (% not missing)	3 (0.8%)	84 (1.4%)	0.380	27 (4.1%)	164 (3.0%)	0.125
Fast (% not missing)	359 (93.0%)	5,716 (93.6%)	0.571	571 (85.7%)	4,665 (84.9%)	0.125	
Very fast (% not missing)	24 (6.2%)	309 (5.1%)	0.68 (10.2%)	669 (12.2%)	0.125		
Missing data (% total)	31 (7.4%)	832 (12.0%)	0.29 (4.2%)	262 (4.6%)	0.125		

(Continued)
Pulse oximetry measurements

Healthcare providers underwent a 1-day training in pulse oximetry, medical record keeping, and the definition of pneumonia at the start of the study period; they had continued support through monthly mentorship visits. SpO$_2$ measurements were taken using the Lifebox device (Acare Technology, Xinzhuang, Taiwan, China), with a universal adult clip probe applied to the child’s big toe if less than 2 years of age or below 10 kg. Otherwise, for older or heavier children, providers were instructed to use either the big toe or an appropriately sized finger. A paediatric probe was not available during this time period. CHW and HC workers were trained and retrained in the use of pulse oximetry by a paediatric pulmonologist (EDM) as described by McCollum and colleagues [6]. Providers were trained to record measurements that demonstrated consistent plethysmography waveforms along with a stable, nondrifting SpO$_2$ and age-appropriate pulse rate. Given this work was conducted within a routine clinical context, providers were not required to repeat measurements meeting these quality criteria. This study showed moderate agreement in sequentially obtained SpO$_2$ readings between EDM and each cadre of health workers [6].

Matching

Matching of the CHW and HC data sets with the hospital and population mortality surveillance outcome data was done using the following parameters: child name, caregiver or parent
name, age at known date or date of birth, address, and PCV13 vaccination dates, using a probabilistic algorithm (S2 Appendix, pp. 1–3). We compared outpatient pneumonia episodes successfully matched to 30-day fatality data to those remaining unmatched to assess the representativeness of the matched sample.

Analysis

We constructed sets of 6 mutually exclusive and complete groupings of episodes according to whether they met SpO$_2$ thresholds for referral or failed attempted SpO$_2$ measurement (defined as no stable reading after 5 minutes of measurement [6]), clinical referral criteria, both, or neither (Table 2).

We described the distribution of deaths in the matched data set and crude differences in fatality for each of the 6 groupings in the SpO$_2$ and clinical guidelines exposure sets (Table 2). We determined the independent associations of SpO$_2$ and danger sign exposures on fatality, using generalised linear models (GLMs) of the binomially distributed binary outcome, with a log link (Eq 1); these are analogous to logistic regression but produce Risk Ratios (RRs), which are easier to interpret than the odds ratios produced by logistic regression [20]. We ran GLMs for the matched CHW and HC data separately, i.e., for each of the 6 exposure sets. The base-case unadjusted model using <90% SpO$_2$ and Malawi guidelines clinical referral criteria thresholds (Model M90, see Table 3), is

\[Y_1 \sim \text{binomial}(\mu_i) \]

\[\log(\mu_i) = \beta_0 + \beta_1X_{1,1} + \beta_2X_{2,1} + \beta_3X_{1,1}X_{2,1} + \epsilon, \]

(1)
Table 2. Mortality outcomes by SpO₂ and danger sign exposure group sets.

CHW Data

N = 417, n (col %)	Malawi guidelines (= WHO guidelines), <90% SpO₂ threshold (this was used by the healthcare workers)	Died within 30 days, n (row %)	N = 417, n (col %)	Malawi guidelines (= WHO guidelines), <93% SpO₂ threshold	Died within 30 days, n (row %)
329 (78.9%)	NOT Malawi clinically eligible and SpO₂ > 90%	12 (3.6%)	324 (77.7%)	NOT Malawi clinically eligible and SpO₂ ≥ 93%	12 (3.7%)
33 (7.9%)	Malawi clinically eligible only and SpO₂ >90%	2 (6.1%)	31 (7.4%)	Malawi clinically eligible only and SpO₂ ≥ 93%	1 (3.2%)
4 (1.0%)¹	SpO₂ <90% only and not Malawi clinically eligible²	1 (25.0%)³	9 (2.2%)⁴	SpO₂ < 93% only and not Malawi clinically eligible⁵	1 (11.1%)⁴
3 (0.7%)	SpO₂ <90% and Malawi clinically eligible	0 (0.0%)	5 (1.2%)	SpO₂ <3% and Malawi clinically eligible	1 (20.0%)
5 (1.2%)	failed SpO₂ measurement but Malawi clinically eligible	0 (0.0%)	5 (1.2%)	failed SpO₂ measurement but Malawi clinically eligible	0 (0.0%)
43 (10.3%)⁶	failed SpO₂ measurement and not Malawi clinically eligible⁷	1 (2.3%)⁸	43 (10.3%)⁹	failed SpO₂ measurement and not Malawi clinically eligible⁸	1 (2.3%)⁹

HC Data

N = 695, n (col %)	Malawi guidelines, <90% SpO₂ threshold (this was used by the healthcare workers)	Died within 30 days, n (row %)	N = 695, n (col %)	Malawi guidelines, <93% SpO₂ threshold	Died within 30 days, n (row %)
387 (55.7%)	NOT Malawi clinically eligible and SpO₂ > 90%	2 (0.5%)	363 (52.2%)	NOT Malawi clinically eligible and SpO₂ ≥ 93%	2 (0.6%)
191 (27.5%)	Malawi clinically eligible only and SpO₂ >90%	4 (2.1%)	152 (21.9%)	Malawi clinically eligible only and SpO₂ ≥ 93%	3 (2.0%)
15 (2.2%)⁹	SpO₂ <90% only and not Malawi clinically eligible¹⁰	0 (0.0%)	39 (5.6%)¹¹	SpO₂ < 93% only and not Malawi clinically eligible¹²	0 (0.0%)
50 (7.2%)	SpO₂ < 90% and Malawi clinically eligible	6 (12.0%)	89 (12.8%)	SpO₂ <3% and Malawi clinically eligible	7 (7.9%)
34 (4.9%)	failed SpO₂ measurement but Malawi clinically eligible	0 (0.0%)	34 (4.9%)	failed SpO₂ measurement but Malawi clinically eligible	0 (0.0%)
18 (2.6%)⁸	failed SpO₂ measurement and not Malawi clinically eligible¹³	1 (5.6%)⁹	18 (2.6%)¹⁴	failed SpO₂ measurement and not Malawi clinically eligible¹⁵	1 (5.6%)⁹

WHO Data

N = 695, n (col %)	WHO guidelines, <90% SpO₂ threshold	Died within 30 days, n (row %)	N = 695, n (col %)	WHO guidelines, <93% SpO₂ threshold	Died within 30 days, n (row %)
512 (73.7%)	NOT WHO clinically eligible and SpO₂ ≥ 90%	4 (0.8%)	461 (66.3%)	NOT WHO clinically eligible and SpO₂ ≥ 93%	3 (0.7%)
66 (9.5%)	WHO clinically eligible only and SpO₂ ≥ 90%	2 (3.0%)	54 (7.8%)	WHO clinically eligible only and SpO₂ ≥ 93%	2 (3.7%)
41 (5.9%)¹⁶	SpO₂ < 90% only and not WHO clinically eligible¹⁷	3 (7.3%)¹⁸	92 (13.2%)¹⁹	SpO₂ < 93% only and not WHO clinically eligible¹⁰	4 (4.3%)¹⁰
24 (3.5%)	SpO₂ < 90% and WHO clinically eligible	3 (12.5%)	36 (5.2%)	SpO₂ < 93% and WHO clinically eligible	3 (8.3%)
20 (2.9%)	failed SpO₂ measurement but WHO clinically eligible	0 (0.0%)	20 (2.9%)	failed SpO₂ measurement but WHO clinically eligible	0 (0.0%)
32 (4.6%)⁸	failed SpO₂ measurement and not WHO clinically eligible¹⁰	1 (3.1%)¹⁰	32 (4.6%)¹⁰	failed SpO₂ measurement and not WHO clinically eligible¹⁰	1 (3.1%)¹⁰

¹Hypoxaemic cases and deaths identified with pulse oximetry that would not have been identified using clinical guidelines alone.

²Cases and deaths identified by failure of attempted pulse oximetry that would not have been identified using clinical guidelines alone.

Abbreviations: CHW, community health worker; HC, health centre; SpO₂, oxygen saturation; WHO, World Health Organization.

https://doi.org/10.1371/journal.pmed.1003300.1002

where \(\mu_i \) is the probability of death for individual \(i \), \(Y_1 \) is the outcome, death, for individual \(i \), and the exponent of \(\beta_1 \) is the modelled parameter of interest: the relative risk of death when \(\text{SpO}_2 \) is measured at <90% (\(X_{1,1} = 1 \)) compared to when it is measured at ≥90% (\(X_{1,1} = 0 \)). Children whose \(\text{SpO}_2 \) reading failed are separately categorised (\(X_{1,1} = 2 \), not shown for
Table 3. Independent associations of SpO₂ and danger sign exposures on mortality, unadjusted GLM regression results.

CHW Data

Model	Coefficient	RR	95% CI	p-value
M90. Malawi (= WHO) guidelines, <90% SpO₂ threshold (this was used by the healthcare workers) (N = 409)				
SpO₂ ≥ 90%	1 (ref)			
<90%	6.85	(1.15–40.9)	0.035	
failed	0.64	(0.08–4.78)	0.662	
Malawi danger signs: absent	1 (ref)			
present	1.66	(0.39–7.11)	0.494	
SpO₂ < 90% × danger signs	(empty)³			
failed SpO₂ × danger signs	(empty)³			
constant (baseline risk)	0.036	(0.021–0.064)	<0.001	
M93. Malawi (= WHO) guidelines, <93% SpO₂ threshold (N = 412)				
SpO₂ ≥ 93%	1 (ref)			
<93%	3.00	(0.44–20.7)	0.264	
failed	0.63	(0.84–4.71)	0.651	
Malawi danger signs: absent	1 (ref)			
present	0.87	(0.12–6.48)	0.893	
SpO₂ <90% × danger signs	2.07	(0.81–52.9)	0.661	
failed SpO₂ × danger signs	(empty)³			
constant (baseline risk)	0.037	(0.021–0.065)	<0.001	

HC Data

Model	Coefficient	RR	95% CI	p-value
M90. Malawi guidelines, <90% SpO₂ threshold (this was used by the healthcare workers) (N = 646)				
SpO₂ ≥ 90%	1 (ref)			
<90%	5.73	(1.68–19.5)	0.005	
failed	10.8	(1.02–113.1)	0.048	
Malawi danger signs: absent	1 (ref)			
present	4.05	(0.75–21.9)	0.104	
SpO₂ <90% × danger signs	(empty)³			
failed SpO₂ × danger signs	(empty)³			
constant (baseline risk)	0.005	(0.001–0.021)	<0.001	
M93. Malawi guidelines, <93% SpO₂ threshold (N = 622)				
SpO₂ ≥ 93%	1 (ref)			
<93%	3.99	(1.06–15.0)	0.041	
failed	10.1	(0.96–106.1)	0.054	
Malawi danger signs: absent	1 (ref)			
present	3.58	(0.60–21.2)	0.160	
SpO₂ <90% × danger signs	(empty)³			
failed SpO₂ × danger signs	(empty)³			
constant (baseline risk)	0.006	(0.001–0.022)	<0.001	
W90. WHO guidelines, <90% SpO₂ threshold (N = 675)				
SpO₂ ≥ 90%	1 (ref)			
<90%	9.37	(2.17–40.4)	0.003	
failed	4.00	(0.46–34.8)	0.209	
WHO danger signs: absent	1 (ref)			
present	3.88	(0.72–20.8)	0.113	
SpO₂ <90% × danger signs	(empty)³			
failed SpO₂ × danger signs	(empty)³			
constant (baseline risk)	0.008	(0.003–0.021)	<0.001	

(Continued)
simplicity), controlling for presence of Malawi guidelines clinical signs \((X_{2.1})\). We constructed separate models for SpO\(_2 < 93\%\) \((X_{1.2})\) (Model M93) and, for HC data for which WHO guidelines are different from Malawi guidelines, for WHO \((X_{2.2})\) guidelines (Models W90 and W93; see Table 3).

We adjusted for confounding by age, sex, respiratory rate, and, in analyses of HC data only, Weight for Age Z-score (WAZ). Missing data prevented us from including maternal age, education, marital status, and wealth quintile as potential confounders. Too few deaths in each exposure group prevented assessment of effect modification by age group, sex, or CHW or HC level. Although we adjusted for clustering of illness episodes by child and CHW and HC catchment area, these models were unstable and not presented. Our unadjusted models were robust to clustering, with similar headline results following 100 iterations for models that did not converge.

The extent of missing data on outcomes due to the majority of outpatient episodes remaining unmatched to 30-day postdiagnosis survival (mortality) outcomes (Table 1) meant that multiple imputation of the missing outcome data was not feasible. The small numbers of deaths and episodes with low SpO\(_2\) also precluded our planned regression discontinuity analyses of the effect of changing the SpO\(_2\) threshold on mortality and referral outcomes.

Separately to the fatality outcome, we determined the association between our SpO\(_2)/clinical sign exposures and hospital referral as the outcome \((Y_2)\) using the same logistic regression Eq (1) except substituting the fatality outcome \((Y_1)\) with \(Y_2\). Because not all severely ill children referred to hospital actually arrive, as a sensitivity analysis, we repeated this analysis with referral decision from the outpatient exposure data set regardless of actual hospital arrival as the outcome \((Y_3)\).

We calculated the sensitivity, specificity, and diagnostic odds ratio (DOR, with 95% CI) [21] of clinical and SpO\(_2\) eligibility on the mortality outcome and compared it to the sensitivity, specificity, and DOR of clinical eligibility only for SpO\(_2\) eligibility thresholds of <90% and <93% SpO\(_2\) (WHO and Malawi eligibilities) at CHW and HC levels. We included SpO\(_2\) failed

Table 3. (Continued)

| W93. WHO guidelines, <93% SpO\(_2\) threshold \((N = 675)\) | SpO\(_2\) ≥ 93% | 1 (ref) | | |<93% | 6.68 | (1.52–29.4) | 0.012 | failed | 4.80 | (0.51–44.9) | 0.169 | WHO danger signs: absent | 1 (ref) | present | 5.69 | (0.97–33.3) | 0.054 | SpO\(_2\) < 93% × danger signs | 0.34 | (0.03–3.30) | 0.350 | failed SpO\(_2\)× danger signs | (empty)\(^d\) | constant \(=\) interaction term. Please note that we know these models are correctly specified because they predict the observed mortality rates for each category shown in Table 2. \(\times\) = interaction term. Please note that we know these models are correctly specified because they predict the observed mortality rates for each category shown in Table 2. (empty) = no deaths in this group, so coefficient was not possible to estimate.

\(^a\)See Table 2, CHW data, left orange panel, \(n = 3\) and 0 deaths in group ‘SpO\(_2\) < 90% but Malawi clinically eligible’ and \(n = 5\) and 0 deaths in group ‘failed SpO\(_2\) measurement but Malawi clinically eligible’.

\(^b\)See Table 2, CHW data, right yellow panel, \(n = 5\) and 0 deaths in group ‘failed SpO\(_2\) measurement but Malawi clinically eligible’.

\(^c\)See Table 2, HC data, top left orange panel and top right yellow panel, \(n = 34\) and 0 deaths in group ‘failed SpO\(_2\) measurement but Malawi clinically eligible’ and \(n = 15\) (SpO\(_2\) < 90%) or \(n = 39\) (SpO\(_2\) < 93%) and 0 deaths in group ‘SpO\(_2\) < 90% (<93%) only and not Malawi clinically eligible’.

\(^d\)See Table 2, HC data, bottom left green panel and bottom right blue panel, \(n = 20\) and 0 deaths in group ‘failed SpO\(_2\) measurement but WHO clinically eligible’.

Abbreviations: CHW, community health worker; GLM, generalised linear model; HC, health centre; ref, reference (baseline) category; RR, risk ratio; SpO\(_2\), oxygen saturation; WHO, World Health Organization.
measurements as well as SpO₂ below threshold as SpO₂ eligible in these analyses, given failed SpO₂ measurements are associated with mortality.

Ethics statement

Because data were deidentified and analysed anonymously, no authorisation or waiver of authorisation by patients for the release of individually identifiable protected health information was required. This study is a data linkage study, and the data it links together are from studies approved by the ethics boards of University College London (protocol 2006/002), the Malawi National Health Sciences Research Committee (protocols 941 and 837), and the London School of Hygiene & Tropical Medicine (protocol 6047), as detailed in the published research articles from the original studies [6, 9, 13–16].

Results

We successfully matched 417/7,357 (5.7%) CHW diagnosed pneumonia episodes and 695/6,456 (10.8%) HC pneumonia episodes to outcome data (Fig 2). Sixteen (3.8%) of the 417 CHW patients and 13 (1.9%) of the 695 HC patients died within 7 days of diagnosis. There were no deaths between 8 and 29 days after the initial assessment. A further 9 CHW and 17 HC children were recorded as dying between 30 and 1,537 days after outpatient diagnosis and are included in the survival at 30 days groups. There were up to 7 pneumonia episodes in the same child in both CHW and HC data sets combined (mean: 1.2, SD: 0.6), with 1,112 episodes amongst 931 children, though only 36 children had multiple care-seeking episodes, and 32 of these had multiple episodes within 30 days of each other (S2 Appendix Table A). These episodes are all retained in the analysis given the relevance of each opportunity for case management. SpO₂ < 90% hypoxemia was more common in HC pneumonia episodes (608/6,459 = 9.4%) than CHW episodes (88/7,358 = 1.2%, Table 1).

There were some differences in exposures (SpO₂ measurements, chest indrawing, danger signs) and potential confounders (age, sex, respiratory rate, WAZ) between matched and unmatched episodes (Table 1). CHW patients with matched outcome data were less likely to have SpO₂ recorded and less likely to have saturations below 93% when recorded (though there was no significant difference in the proportions with saturations below 90%; Table 1). CHW patients with outcome data were less likely to have been recorded as vomiting everything and having convulsions, and consequently as having danger signs eligible for referral.

Fig 2. Pneumonia episodes matched to outcome data. CHW, community health worker; SpO₂, oxygen saturation.

https://doi.org/10.1371/journal.pmed.1003300.g002
according to WHO and Malawi guidelines (which are the same at CHW level), than CHW patients not matched to outcome data (Table 1), though they were more likely to have been recorded as having severe acute malnutrition. CHW patients with matched outcome data were also more likely to be male (53%) and younger (mean age 10 months old) than those not matched to outcome data (48% male, mean age 24 months old).

HC patients with matched outcome data were not found to have any significant differences in SpO2 categories compared with those without matched outcome data (Table 1). HC patients with outcome data were more likely to have been recorded as HIV exposed/infected and of being apnoeic, and consequently (though there were no other significant differences across the danger signs) as having danger signs eligible for referral according to WHO guidelines (16%), than HC patients not matched to outcome data (11%; Table 1). HC patients with matched outcome data were more likely to have chest indrawing recorded (35%) than those unmatched to outcome data (25%) and consequently more likely to have Malawi guideline danger signs eligible for referral (40%) than those unmatched to outcome data (29%; Table 1). HC patients with matched outcome data were also more likely to be male (56%), were younger (mean age 8 months old) than those not matched to outcome data (52% male, mean age 16 months old), and were less likely to have low WAZs, on average (Table 1).

Table 2 CHW data show the distribution of the 16 deaths at CHW level and risk of death for each of the 2 SpO2 and danger sign exposure group sets. Those who were not clinically or SpO2 eligible for referral had lower mortality rates than those SpO2-eligible only (3.6%–3.7% versus 11%–25%).

Table 2 HC data show the distribution of the 13 deaths at HC level and risk of death for each of the 4 SpO2 and danger sign exposure group sets. In all 4 scenarios, those who are not clinically or SpO2 eligible for referral had lower mortality rates than those both clinically and SpO2 eligible (0.5%–0.8% versus 7.9%–12.5%). SpO2-eligible only episodes had higher mortality than clinically eligible only episodes when applying WHO IMCI chart booklet criteria, especially using the <90% SpO2 threshold (7.3% versus 3.0%).

For HC episodes, SpO2 < 90% and <93%, respectively, identified 3 (23%) and 4 (31%) of the 13 deaths that would not have been identified using WHO IMCI guidelines alone (Table 2). Malawi guidelines, which include chest indrawing, identified all of these deaths, and 10 (77%) of the 13 HC deaths in total compared with 5 (38%) of the 13 HC deaths identified by WHO IMCI guidelines (Table 2).

For CHW episodes, SpO2 < 90% and <93% both identified 1 (6%) of the 16 deaths that would not have been identified using iCCM/Malawi guidelines alone (Table 2). Twelve (75%) of the 16 deaths amongst CHW episodes were not identified by iCCM guidelines, which only identified 2 (12.5%) of the 16 deaths (Table 2). These 12 deaths also had SpO2 ≥ 93%. Failed SpO2 measurement independently identified 1 (6%) of the 16 CHW deaths and 1 (8%) of the 13 HC deaths (Table 2).

The unadjusted GLM analyses of the associations of SpO2 and danger sign exposures with death predict the observed mortality rates for each exposure group. In CHW episodes (Table 3), there is an increased risk of death for those with SpO2 < 90% than those with SpO2 ≥ 90%, independent of the presence of danger signs (RR: 6.85, 95% CI: 1.15–40.9, p = 0.035). The SpO2 < 93% threshold was not associated with an increased risk of death compared to those with SpO2 ≥ 93% (RR: 3.00, 95% CI: 0.44–20.7, p = 0.264).

In HC episodes, only 2–4 of 13 deaths occurred in the ‘reference’ SpO2 ≥ 90%/93% no-danger-signs groups (Table 2), and both the SpO2 < 90% (RR: 9.37 [95% CI: 2.17–40.4]) and <93% (RR: 6.68 [95% CI: 1.52–29.4]) thresholds are significantly associated with mortality in both the Malawi and WHO IMCI guideline models (Table 3).
Adjusting the models for age in months, sex, respiratory rate, and, for HC data, WAZ produced broadly similar results to the unadjusted models in Table 3 (S2 Appendix Table B and associated text).

Table 4 shows the outpatient referral decision indication by healthcare providers and linked hospital inpatient records for each of the SpO\textsubscript{2} and danger sign exposure sets. For CHWs, only 9.3\% (39) of the 417 episodes had outpatient referral decisions, and these were more common in patients who were clinically or SpO\textsubscript{2} eligible (33.3\%–100\%) than those who were not (3.6\%–7.0\%). Only 0.7\% (3) of the CHW episodes were found to be hospital inpatients within 7 days of outpatient diagnosis (Table 4), precluding regression analysis of this outcome in CHW episodes. In the HC data (Table 4), 30.4\% (211) of the 695 patients had an outpatient referral decision. Notably, for Malawi guidelines, including <90\% SpO\textsubscript{2} threshold (i.e., what was used by the healthcare workers in practice), healthcare workers referred 90.6\% who were eligible by both criteria, 62.3\% who were clinically eligible only, and only 20.0\% of those eligible because of SpO\textsubscript{2} < 90\% only. Seventy (10.1\%) of the 695 HC episodes were hospital inpatients within 7 days; 60 of these followed an outpatient referral decision (28\% of the 211 referral decisions were admitted as inpatients within 7 days).

Table 5 CHW data show both low SpO\textsubscript{2} and danger signs are associated with outpatient referral decisions for CHWs. Table 5 HC data show the same for HC episodes and that failed SpO\textsubscript{2} readings were also associated with referral decisions in WHO guideline models. Referrals were also associated with low SpO\textsubscript{2} under SpO\textsubscript{2} < 90\% and <93\% thresholds and danger signs according to both Malawi and WHO IMCI protocols in HC episodes (Table 5). The interaction terms between the SpO\textsubscript{2} and danger sign parameters were below 1 and statistically significant for the following HC referral models (Table 5): M90 and M93, outpatient referral decision indication outcome, SpO\textsubscript{2} < 90\% × danger signs; hospitalisation outcome, failed SpO\textsubscript{2} × danger signs; and W90, outpatient referral decision indication outcome, SpO\textsubscript{2} < 90\% × danger signs. These results indicate that the association between the SpO\textsubscript{2} parameter and the outcome was attenuated by the presence of danger signs. Hospital referrals and outpatient episodes with referral decision indications were associated with mortality (see S2 Appendix, p. 11 for further details).

Table 6 shows the sensitivity, specificity, and DOR of pulse oximetry with clinical signs versus clinical signs only in identifying deaths. We focus on sensitivity because the objective is to identify as many of the deaths as possible. At the CHW level, using both SpO\textsubscript{2} thresholds, the sensitivity was 25\% compared with a sensitivity of 12.5\% for Malawi clinical iCCM criteria only. At the HC level, both <90\% and <93\% SpO\textsubscript{2} eligibility thresholds give a sensitivity of 85\% compared with a sensitivity of 77\% for Malawi clinical IMCI criteria only. At the HC level, in scenarios using WHO clinical criteria, 9 of the 13 deaths are identified by the <90\% SpO\textsubscript{2} eligibility threshold, and 10 of the 13 deaths are identified by the <93\% SpO\textsubscript{2} eligibility thresholds. These sensitivities of 69\% and 77\% compare with a sensitivity of 38\% for WHO clinical IMCI criteria only. Given the small numbers of deaths, the differences in sensitivity between the scenarios are not statistically significant. The DORs show that at the CHW level, neither pulse oximetry with clinical signs (Table 6: <90\% SpO\textsubscript{2} threshold, DOR 1.26 [95\% CI: 0.40–4.00] and <93\% SpO\textsubscript{2} threshold, DOR 1.17 [95\% CI: 0.37–3.71]) nor iCCM clinical signs alone (DOR: 1.33 [95\% CI: 0.29–6.05]) accurately identified those who died. At the HC level, pulse oximetry was able to accurately identify those who die with both Malawi (<90\% SpO\textsubscript{2} threshold, DOR: 7.13 [95\% CI: 1.57–32.4]; <93\% SpO\textsubscript{2} threshold, DOR: 6.19 [95\% CI: 1.36–28.1]) and WHO (<90\% SpO\textsubscript{2} threshold, DOR: 6.57 [95\% CI: 2.00–21.6]; <93\% SpO\textsubscript{2} threshold, DOR: 6.82 [95\% CI: 1.86–25.0]) IMCI clinical signs. Although the point estimates for these DORs are higher than those for when Malawi and WHO IMCI clinical signs alone are used without pulse oximetry (Malawi: DOR 5.25 [95\% CI: 1.43–19.2], WHO: DOR 3.43 [95\% CI: 1.86–25.0]).
Predictive value of pulse oximetry for mortality in children with pneumonia treated as outpatients Malawi

	Malawi guidelines (= WHO guidelines), <90% SpO₂ threshold (this was used by the healthcare workers)	Outpatient referral decision, n (%)	Hospital inpatients within 7 days, n (%)		Malawi guidelines (= WHO guidelines), <93% SpO₂ threshold	Outpatient referral decision, n (%)	Hospital inpatients within 7 days, n (%)
CHW Data				HC Data			
N = 417, n (%)				N = 695, n (%)			
NOT Malawi clinically eligible and SpO₂ > 90%	12 (3.6%)	1 (0.3%)	324 (27.7%)	NOT Malawi clinically eligible and SpO₂ ≥ 93%	12 (3.7%)	1 (0.3%)	
Malawi clinically eligible only and SpO₂ > 90%	15 (45.5%)	1 (3.0%)	31 (7.4%)	Malawi clinically eligible only and SpO₂ ≥ 93%	13 (41.9%)	1 (3.2%)	
SpO₂ < 90% only and not Malawi clinically eligible	3 (75.0%)	0 (0.0%)	9 (2.2%)	SpO₂ <93% only and not Malawi clinically eligible	3 (33.3%)	0 (0.0%)	
SpO₂ < 90% and Malawi clinically eligible	3 (100%)	1 (33.3%)	5 (1.2%)	SpO₂ < 93% and Malawi clinically eligible	5 (100%)	1 (20.0%)	
failed SpO₂ measurement but Malawi clinically eligible	3 (60.0%)	0 (0.0%)	5 (1.2%)	failed SpO₂ measurement but Malawi clinically eligible	3 (60.0%)	0 (0.0%)	
failed SpO₂ measurement and not Malawi clinically eligible	3 (7.0%)	0 (0.0%)	43 (10.3%)	failed SpO₂ measurement and not Malawi clinically eligible	3 (7.0%)	0 (0.0%)	
N = 695, n (%)				N = 695, n (%)			
NOT Malawi clinically eligible and SpO₂ > 90%	12 (3.1%)	7 (1.8%)	363 (52.2%)	NOT Malawi clinically eligible and SpO₂ ≥ 93%	9 (2.5%)	5 (1.4%)	
Malawi clinically eligible only and SpO₂ > 90%	119 (62.3%)	39 (20.4%)	152 (21.9%)	Malawi clinically eligible only and SpO₂ ≥ 93%	86 (56.6%)	27 (17.8%)	
SpO₂ < 90% only and not Malawi clinically eligible	3 (20.0%)	0 (0.0%)	39 (5.6%)	SpO₂ < 93% only and not Malawi clinically eligible	6 (15.4%)	2 (5.1%)	
SpO₂ < 90% and Malawi clinically eligible	45 (90.0%)	16 (32.0%)	89 (12.8%)	SpO₂ < 93% and Malawi clinically eligible	78 (87.6%)	28 (31.5%)	
failed SpO₂ measurement but Malawi clinically eligible	31 (91.2%)	6 (17.6%)	34 (4.9%)	failed SpO₂ measurement but Malawi clinically eligible	31 (91.2%)	6 (17.6%)	
failed SpO₂ measurement and not Malawi clinically eligible	1 (5.6%)	2 (11.1%)	18 (2.6%)	failed SpO₂ measurement and not Malawi clinically eligible	1 (5.6%)	2 (11.1%)	
WHO guidelines, <90% SpO₂ threshold	101 (19.7%)	33 (6.4%)	461 (66.3%)	WHO guidelines, <93% SpO₂ threshold	74 (16.1%)	23 (5.0%)	
WHO clinically eligible only and SpO₂ > 90%	30 (45.5%)	13 (19.7%)	54 (7.8%)	WHO clinically eligible only and SpO₂ ≥ 93%	21 (38.9%)	9 (16.7%)	
SpO₂ < 90% only and not WHO clinically eligible	27 (65.9%)	9 (22.0%)	92 (13.2%)	SpO₂ <93% only and not WHO clinically eligible	54 (58.7%)	19 (20.7%)	
SpO₂ < 90% and WHO clinically eligible	21 (87.5%)	7 (29.2%)	36 (5.2%)	SpO₂ < 93% and WHO clinically eligible	30 (83.3%)	11 (30.6%)	
failed SpO₂ measurement but WHO clinically eligible	18 (90.0%)	4 (20.0%)	20 (2.9%)	failed SpO₂ measurement but WHO clinically eligible	18 (90.0%)	4 (20.0%)	

(Continued)
CI: 1.10–10.7], the confidence intervals are wide and overlapping, indicating these differences are not statistically significant.

Discussion

We show the important role of confirmed hypoxaemia in identifying otherwise unrecognised fatal childhood pneumonia episodes accessing primary healthcare centres by applying the 2014 WHO IMCI clinical signs, which do not include chest indrawing as a referral sign, in children aged 2–59 months old. Pulse oximeter use will identify hypoxaemia in up to 30% of episodes that are not identified by clinical signs alone [22]. The 2014 WHO IMCI recommends use of pulse oximetry when available and referral to the hospital if SpO\textsubscript{2} is less than 90%; however, pulse oximetry is not frequently available at the outpatient level. With low-cost portable pulse oximeters becoming much more available compared to 2014, especially in the context of the ongoing COVID pandemic [23], it is likely that they will be available more widely and used more often at the outpatient level than before. Even so, it will further facilitate pulse oximetry use if WHO were to recommend them without any conditions to evaluate pneumonia episodes.

Pre-2018 Malawi guidelines for community and outpatient case management [17] were consistent with the previous WHO guidelines [19, 24], i.e., chest indrawing is considered a referral criteria. This criteria was removed as a referral sign in the revised 2014 WHO IMCI chart booklet [8] following controlled low-mortality trials that indicated chest indrawing episodes could be managed at home without increased risk [25, 26], and Malawi made this change too in 2018. Since then, 3 other randomised trials—one each in India, Kenya, and Malawi—have demonstrated that chest indrawing pneumonia can be treated with oral amoxicillin on an outpatient basis [27–29]. However, for CHWs, chest indrawing remains a referral sign. The pre-2018 Malawi IMCI protocol identified 2-fold more (10/13 = 77%) of the HC patients who died within 7 days of outpatient diagnosis than the 2014 WHO IMCI protocol (5/13 = 38%). These data and recent data from hospitalised children in Kenya showed that in routine care settings, presence of chest indrawing may require referral in some high-mortality settings [30]. Because not much is known about other factors that influenced adverse outcomes in these children with chest indrawing, such as care seeking and appropriate and timely treatment, further research is required to examine the beneficial effects of hospitalisation of children with chest indrawing in routine settings.

An abnormal SpO\textsubscript{2} measured by pulse oximetry most commonly indicates ventilation–perfusion mismatch from a pulmonary illness and is considered a more objective measurement than observing chest indrawing, which can be subjective and hard to see [31]. Therefore, although chest indrawing identified all of the deaths from HC episodes and all but one of the deaths from CHW episodes identified by pulse oximetry, pulse oximetry may lead to more reliable decision-making. However, pulse oximetry can also be done poorly, has cost implications, and still needs to be conducted in conjunction with a thorough clinical assessment.

Table 4. (Continued)

	32 (4.6%)b	failed SpO\textsubscript{2} measurement and not WHO clinically eligibleb	14 (43.8%)b	4 (12.5%)b	32 (4.6%)b	failed SpO\textsubscript{2} measurement and not WHO clinically eligibleb	14 (43.8%)b	4 (12.5%)b
aHypoxaemic episodes identified with pulse oximetry that would not have been identified using clinical guidelines alone.								
bEpisodes identified by failure of attempted pulse oximetry that would not have been identified using clinical guidelines alone.								

Abbreviations: CHW, community health worker; HC, health centre; SpO\textsubscript{2}, oxygen saturation; WHO, World Health Organization.
Table 5. Independent associations of SpO\textsubscript{2} and danger sign exposures on referrals, unadjusted GLM regression results.

CHW Data	Outcome = outpatient referral decision indication	Outcome = hospitalisation (within 7 days)			
Model	Coefficient	RR (95% CI)	p-value	RR (95% CI)	p-value
M90. Malawi (= WHO) guidelines, <90% SpO\textsubscript{2} threshold (this was used by the healthcare workers) (N = 409)†					
SpO\textsubscript{2} ≥ 90%	1 (ref)				
<90% SpO\textsubscript{2}	79.3 (7.67–819.0)	0.002			
failed	1.98 (0.54–7.3)	0.305			
Malawi danger signs:					
absent	1 (ref)				
present	22.0 (8.99–53.9)	<0.001			
SpO\textsubscript{2} < 90% × danger signs	(empty)				
failed SpO\textsubscript{2} × danger signs	0.91 (0.09–9.24)	0.935			
constant (baseline risk)	0.038 (0.021–0.067)	<0.001			
M93. Malawi (= WHO) guidelines, <93% SpO\textsubscript{2} threshold (N = 412)					
SpO\textsubscript{2} ≥ 93%	1 (ref)				
<93% SpO\textsubscript{2}	9.00 (3.06–26.5)	<0.001			
failed	1.88 (0.55–6.41)	0.311			
Malawi danger signs:					
absent	1 (ref)				
present	11.3 (5.66–22.6)	<0.001			
SpO\textsubscript{2} < 93% × danger signs	(empty)				
failed SpO\textsubscript{2} × danger signs	0.76 (0.17–3.32)	0.715			
constant (baseline risk)	0.037 (0.021–0.064)	<0.001			

HC Data	Outcome = outpatient referral decision indication	Outcome = hospitalisation (within 7 days)				
Model	Coefficient	RR (95% CI)	p-value	RR (95% CI)	p-value	
M90. Malawi guidelines, <90% SpO\textsubscript{2} threshold (this was used by the health workers) (left: N = 695; right: N = 680)						
SpO\textsubscript{2} ≥ 90%	1 (ref)			1 (ref)		
<90% SpO\textsubscript{2}	6.45 (2.03–20.5)	0.002	1.56 (0.96–2.56)	0.073		
failed	1.79 (0.25–13.0)	0.565	6.14 (1.37–27.5)	0.018		
Malawi danger signs:						
absent	1 (ref)			1 (ref)		
present	20.09 (11.4–35.5)	<0.001	11.3 (5.15–24.8)	<0.001		
SpO\textsubscript{2} < 90% × danger signs	(empty)					
failed SpO\textsubscript{2} × danger signs	0.22 (0.07–0.72)	0.012	0.14 (0.03–0.76)	0.023		
constant (baseline risk)	0.031 (0.018–0.054)	0.000	0.018 (0.009–0.038)	<0.001		
M93. Malawi guidelines, <93% SpO\textsubscript{2} threshold (N = 695)						
SpO\textsubscript{2} ≥ 93%	1 (ref)			1 (ref)		
<93% SpO\textsubscript{2}	6.21 (2.33–16.5)	<0.001	3.72 (0.75–18.6)	0.109		
failed	2.24 (0.30–16.7)	0.432	8.07 (1.68–38.8)	0.009		
Malawi danger signs:						
absent	1 (ref)			1 (ref)		
present	22.8 (11.8–44.2)	<0.001	12.9 (5.06–32.9)	<0.001		
SpO\textsubscript{2} < 93% × danger signs	0.25 (0.09–0.67)	0.006	0.48 (0.09–2.53)	0.383		
failed SpO\textsubscript{2} × danger signs	0.72 (0.10–5.41)	0.749	0.12 (0.02–0.72)	0.020		
constant (baseline risk)	0.025 (0.013–0.047)	<0.001	0.014 (0.006–0.033)	<0.001		

(Continued)
Additionally, a 'normal' SpO₂ reading should be considered an adjunct to, not in lieu of, recognition of clinical danger signs such as inability to drink when making decisions about hospital referral. Whilst pulse oximetry in conjunction with clinical signs can identify more fatal pneumonia episodes than clinical signs alone, this increased sensitivity of diagnosis comes at the price of reduced specificity (Table 6) and therefore has potential to overwhelm weak hospital systems via identifying additional patients for referral to hospital. Detailed understanding of local hospital system capacities will be fundamental when deciding the appropriate SpO₂ threshold for referring patients. Ultimately, further research is needed to examine these trade-offs, though our research indicates that both pulse oximetry and chest indrawing are important in a high–child–mortality setting.

Notably, 12 (75%) of the 16 deaths in CHW episodes that occurred within 7 days of diagnosis were neither hypoxaemic nor clinically eligible for referral highlighting the importance of follow-up and continuing case management, as well as more specific diagnostic approaches (S2 Appendix, pp. 11–12 has further detail on these episodes). CHWs may also have missed danger signs, meaning support for training, supportive supervision, and mentoring for iCCM may be important in this context [32]. The use of adult probes for pulse oximetry in our study may have contributed to missed hypoxaemic episodes. The increasing availability of paediatric probes may provide greater sensitivity to detect children who may die of pneumonia.
The CHW and HC workers in our study were instructed to follow the Malawi guidelines and <90% SpO₂ threshold for identifying outpatient episodes for referral. Nevertheless, we found that SpO₂ readings of <90% and <93% and, at the HC level, both WHO and Malawi clinical danger signs were associated with a healthcare provider decision to refer the child and hospitalisation within 7 days of outpatient diagnosis. Though most of the hospitalisations followed an outpatient referral decision, these represent only 2 (5%) of 39 episodes with an outpatient referral decision at the CHW level and 60 (28%) out of 211 with an outpatient referral decision at HC level. This is likely to be due to a combination of difficulties with transport,

Table 6. Sensitivity and specificity of pulse oximetry with clinical signs versus clinical signs only in identifying patients who die.

CHW Data

Died	Alive	PPV	NPV (95% CI)	Sensitivity	Specificity	Died	Alive	PPV	NPV (95% CI)	Sensitivity	Specificity				
iCCM severe (including hypoxaemia <90% & failed SpO2)	4	84	5%	96%	1.26 (0.40–4.00)	25%	79%	iCCM severe (including hypoxaemia <93%)	4	89	4%	96%	1.17 (0.37–3.71)	25%	78%
iCCM nonsevere	12	317						iCCM nonsevere	12	312					

HC Data

Died	Alive	PPV	NPV (95% CI)	Sensitivity	Specificity	Died	Alive	PPV	NPV (95% CI)	Sensitivity	Specificity				
Malawi IMCI severe (including hypoxaemia <90%)	11	297	4%	99%	7.13 (1.57–32.4)	85%	56%	Malawi IMCI severe (including hypoxaemia <93%)	11	321	3%	99%	6.19 (1.36–28.1)	85%	53%
IMCI nonsevere	2	385						IMCI nonsevere	2	361					

Abbreviations:
- CHW, community health worker
- DOR, diagnostic odds ratio
- HC, health centre
- iCCM, integrated community case management
- IMCI, integrated management of childhood illness
- NPV, Negative Predictive Value
- PPV, Positive Predictive Value
- WHO, World Health Organization

Alive denotes 30-day survival. DORs over 1 discriminate properly, i.e., those who have the feature are more likely to have the outcome.

https://doi.org/10.1371/journal.pmed.1003300.t006
finances or family circumstances precluding travel to hospital, or hospitals not admitting referred patients [33, 34]. It could also be due to incomplete hospital inpatient records and issues with matching outpatient episodes to inpatient records, preventing us from knowing of some successful hospitalisations (e.g., referrals to hospitals outside of our study area). When referral is not feasible, prompt treatment at the CHW and HC level with oral antibiotics is required as minimum care, pending injectable antibiotics and oxygen therapy as required.

Outpatient referral decision, and hospitalisations within 7 days of outpatient diagnosis were associated with mortality. All 12 deaths amongst the 73 hospital referrals occurred on the same day of hospitalisation and were from HC episodes (only 3 of the 73 hospitalisations were from CHW episodes). Nine of the 12 hospital deaths were on the same day as outpatient diagnosis and one the following day, suggesting rapid deterioration, delayed care seeking and presentation at the HC, or a combination of all three [4, 35].

At the CHW level, 13 (81%) of the 16 deaths were in patients for whom outpatient HC referral was not recommended, generally reflecting correct guideline application; i.e., the CHW did not record any clinical signs indicating they should be referred. Of these 13 deaths, none were subsequently hospitalised, and all died within 1–5 days of diagnosis by a CHW. This suggests they died at home whilst receiving oral antibiotic treatment. At the HC level, 4 (31%) of the 13 deaths were in episodes not referred to the hospital, although only one met referral criteria. All of these 4 deaths were eventually hospitalised. These episodes all present missed opportunities for intervention at outpatient primary care.

Our findings on referral decision-making are similar to those we previously reported using the whole CHW and HC data sets [6], suggesting our matched sample is representative of the wider sample in this respect. Our finding that significantly more patients with both clinical and SpO\textsubscript{2} eligibility were referred than those who were either only clinically or SpO\textsubscript{2} eligible suggests healthcare workers at the outpatient level considered both pulse oximetry and clinical signs for referral decision-making rather than one or the other. More research to understand how referral decisions are determined when pulse oximeters are available is needed. Training is also required to re-emphasise the importance of following both clinical guidelines and SpO\textsubscript{2} when making decisions to refer patients. Devices with in-built decision support or that are complemented by mHealth tools could play a role in supporting appropriate case management and should be evaluated for both clinical outcomes and changes in care seeking and referral outcomes.

Our main limitation was our ability to only match 6% of CHW episodes and 11% of HC episodes to mortality outcome data. Given the geographical coverage and age differences of the data sets, we were able to match 29% of the CHW episodes and 24% of the HC episodes for which matching was potentially feasible (S2 Appendix, page 3). Although the samples of CHW and HC episodes matched to mortality outcome data had some differences in characteristics from those unmatched to mortality outcome data, the characteristics of our sample and our findings are generalisable to similar LMIC populations likely to be found in high-mortality settings. The matched patients were younger on average than the unmatched patients; the mortality surveillance data only included children born after October 2011, and therefore, older children were only present in the clinical data set. The lower proportions with danger signs and SpO\textsubscript{2} < 93% in the matched CHW data compared with the unmatched CHW data suggest that the matched CHW patients were less sick on average, and therefore, we may have missed some deaths. On the other hand, HC matched patients were sicker on average than the unmatched HC patients, with greater proportions having danger signs, although there were no significant differences in SpO\textsubscript{2} categories (Table 1).

Given the similarity of the unadjusted and adjusted results, the fact the regression models already lack precision due to the small numbers of deaths, and that we were only able to use
age, sex, and respiratory rate as confounders, any propensity score matching analysis to balance such potential measured confounders across exposure groups was deemed futile and abandoned. Additionally, given the low matching rates, multiple imputation of missing data was not included because it produced imputations, and consequent regression coefficient estimates, that were too unstable. Analyses of effect modification were also not possible because of the small number of deaths in each category.

It is estimated that the implementation of IMCI enhanced with pulse oximetry may result in 103,000–145,000 pneumonia deaths averted in the 15 highest-burden countries [36], though this modelling study was based on assumptions about associations with mortality [36]. To help place our results in context and aid policy and decision-making, a cost-effectiveness analysis and economic evaluation of outpatient pulse oximetry—based on our results and cost, benefit (disability adjusted life years averted), and population parameters—is forthcoming. Further research looking at an approach in which chest indrawing episodes without other danger signs are referred or not solely based on SpO$_2$ is also warranted, as is research to evaluate the optimum SpO$_2$ threshold for action. Similar analyses evaluating pulse oximetry in low-mortality LMICs are necessary.

Pulse oximetry use by health workers at HCs can identify hypoxaemic pneumonia patients who go on to die who would otherwise be missed by current referral guidelines, especially if they do not include chest indrawing and pulse oximeters are unavailable. With low-cost portable pulse oximeters becoming much more available now compared to 2014, the WHO/UNICEF IMCI protocol could recommend pulse oximeters for pneumonia case management, instead of making a conditional recommendation of its use when available. As pulse oximetry use increases in outpatient settings, critical next steps include addressing oxygen availability at clinics and during transportation to hospitals. Our analysis also indicates that timely and appropriate care seeking by families and prompt management by health workers is key to survival of children with pneumonia.

Supporting information

S1 STROBE Checklist. STROBE checklist for reporting of observational studies. STROBE, Strengthening the Reporting of Observational Studies in Epidemiology. (DOCX)

S1 Appendix. Prespecified analysis plan. (DOCX)

S2 Appendix. Additional supporting information and results referred to in the manuscript. (DOCX)

Author Contributions

Conceptualization: Tim Colbourn, Carina King, James Beard, Eric D. McCollum.

Data curation: Tim Colbourn, Carina King, James Beard.

Formal analysis: Tim Colbourn, Carina King, James Beard, Eric D. McCollum.

Funding acquisition: Tim Colbourn, Anthony Costello, Bejoy Nambiar, Shamim Ahmad Qazi, Yasir Bin Nisar, Eric D. McCollum.

Investigation: Tim Colbourn, Carina King, James Beard, Tambosi Phiri, Malizani Mdala, Beatiwel Zadutsa, Charles Makwenda, Anthony Costello, Norman Lufesi, Charles
Mwansambo, Bejoy Nambiar, Shubhada Hooli, Neil French, Naor Bar Zeev, Shamim Ahmad Qazi, Yasir Bin Nisar, Eric D. McCollum.

Methodology: Tim Colbourn, Carina King, James Beard, Shubhada Hooli, Neil French, Naor Bar Zeev, Shamim Ahmad Qazi, Yasir Bin Nisar, Eric D. McCollum.

Project administration: Tim Colbourn, Carina King, James Beard, Tambosi Phiri, Malizani Mdala, Beatiwel Zadutsa, Charles Makwenda, Shamim Ahmad Qazi, Yasir Bin Nisar, Eric D. McCollum.

Supervision: Tim Colbourn, Carina King, James Beard, Tambosi Phiri, Malizani Mdala, Beatiwel Zadutsa, Charles Makwenda, Eric D. McCollum.

Validation: Tim Colbourn, Carina King, James Beard, Tambosi Phiri, Malizani Mdala, Beatiwel Zadutsa, Charles Makwenda, Anthony Costello, Norman Lufesi, Charles Mwansambo, Bejoy Nambiar, Shubhada Hooli, Neil French, Naor Bar Zeev, Shamim Ahmad Qazi, Yasir Bin Nisar, Eric D. McCollum.

Visualization: Tim Colbourn.

Writing – original draft: Tim Colbourn, James Beard.

Writing – review & editing: Tim Colbourn, Carina King, James Beard, Tambosi Phiri, Malizani Mdala, Beatiwel Zadutsa, Charles Makwenda, Anthony Costello, Norman Lufesi, Charles Mwansambo, Bejoy Nambiar, Shubhada Hooli, Neil French, Naor Bar Zeev, Shamim Ahmad Qazi, Yasir Bin Nisar, Eric D. McCollum.

References

1. GBD 2017 Lower Respiratory Infections Collaborators. Quantifying risks and interventions that have affected the burden of lower respiratory infections among children younger than 5 years: an analysis for the Global Burden of Disease Study 2017. The Lancet Infectious diseases. 2020; 20(1): 60–79. Epub 2019 Oct 31. https://doi.org/10.1016/S1473-3099(19)30410-4 PMID: 31678026; PubMed Central PMCID: PMC7185492.

2. Reiner RC, Welgan CA, Casey DC, Troeger CE, Bauman MM, Nguyen QP, et al. Identifying residual hotspots and mapping lower respiratory infection morbidity and mortality in African children from 2000 to 2017. Nature Microbiology. 2019; 4(12): 2310–2318. https://doi.org/10.1038/s41564-019-0562-y PMID: 31570869.

3. McAllister DA, Liu L, Shi T, Chu Y, Reed C, Burrows J, et al. Global, regional, and national estimates of pneumonia morbidity and mortality in children younger than 5 years between 2000 and 2015: a systematic analysis. The Lancet Global health. 2019; 7(1): e47–e57. Epub 2018 Nov 26. https://doi.org/10.1016/S2214-109X(18)30408-X PMID: 30497986; PubMed Central PMCID: PMC6293057.

4. Kallander K, Hildenwall H, Waiswa P, Galiwango E, Petersson S, Pariyo G. Delayed care seeking for fatal pneumonia in children aged under five years in Uganda: a case-series study. Bull World Health Organ. 2008; 86(5): 332–8. https://doi.org/10.2471/blt.07.049353 PMID: 18545734; PubMed Central PMCID: PMC2647445.

5. Ngwalangwa F, Phiri CHA, Dube Q, Langton J, Hildenwall H, Baker T. Risk Factors for Mortality in Severely Ill Children Admitted to a Tertiary Referral Hospital in Malawi. The American journal of tropical medicine and hygiene. 2019; 101(3): 670–675. https://doi.org/10.4269/ajtmh.19-0127 PMID: 31287044.

6. McCollum ED, King C, Deula R, Zadutsa B, Mankhambo L, Nambiar B, et al. Outpatient pulse oximetry implementation with rural facility and community health workers during three years of child pneumonia care in two central Malawi districts. Bulletin of the World Health Organisation. 2016; 94: 893–902.

7. Mulholland K. Problems with the WHO guidelines for management of childhood pneumonia. Lancet Glob Health. 2018; 6(1): e8–e9. https://doi.org/10.1016/S2214-109X(17)30468-0 PMID: 29241619.

8. World Health Organization. Integrated management of childhood illness: chart booklet [Internet]. 2014 [cited 2019 Jun 28]. Available from: http://apps.who.int/iris/bitstream/10665/104772/16/9789241506823_Chartbook_eng.pdf
9. Hooli S, Colbourn T, Lufesi N, Costello A, Nambari B, Makwenda C, et al. Predicting hospitalised paediatric pneumonia mortality risk: an external validation of RISC and mRISC, and local tool development (RISC-Malawi) from Malawi. PLoS ONE. 2016; 11(12): e0168126. https://doi.org/10.1371/journal.pone.0168126 PMID: 28030608

10. Lazzerini M, Sonego M, Pellegrin MC. Hypoxaemia as a Mortality Risk Factor in Acute Lower Respiratory Infections in Children in Low and Middle-Income Countries: Systematic Review and Meta-Analysis. PLoS ONE. 2015; 10(9): e0136166. https://doi.org/10.1371/journal.pone.0136166 PMID: 26372640; PubMed Central PMCID: PMC4570717.

11. Enoch AJ, English M, Shepperd S. Does pulse oximeter use impact health outcomes? A systematic review. Arch Dis Child. 2016; 101(8):694–700. Epub 2015 Dec 23. https://doi.org/10.1136/archdischild-2015-309638 PMID: 26699537; PubMed Central PMCID: PMC4975806.

12. World Health Organization. Exploratory meeting to review new evidence for Integrated Management of Childhood Illness danger signs, Geneva, Switzerland, 4–5 September 2018. Geneva: World Health Organization (WHO/MCA/19.02); 2019.

13. McCollum ED, Nambari B, Deula R, Zadutsa B, Bondo A, King C, et al. Impact of the 13-valent Pneumococcal Conjugate Vaccine on Clinical and Hypoxemic Childhood Pneumonia over Three Years in Central Malawi: An observational study. PLoS ONE. 2017; 12(1): e0168209. https://doi.org/10.1371/journal.pone.0168209 PMID: 28052071

14. Bar-Zeev N, King C, Phiri T, Beard J, Mvula H, Crampin AC, et al. Impact of monovalent rotavirus vaccine on diarrhoea-associated post-neonatal infant mortality in rural communities in Malawi: a population-based birth cohort study. The Lancet Global health. 2018; 6(9): e1036–e44. https://doi.org/10.1016/S2214-109X(18)30314-0 PMID: 30103981; PubMed Central PMCID: PMC6088152.

15. Bar-Zeev N, Kapanda L, King C, Beard J, Phiri T, Mvula H, et al. Methods and challenges in measuring the impact of national pneumococcal and rotavirus vaccine introduction on morbidity and mortality in Malawi. Vaccine. 2015; 33(23): 2637–45. https://doi.org/10.1016/j.vaccine.2015.04.053 PMID: 25917672; PubMed Central PMCID: PMC4441035.

16. King C, Beard J, Crampin AC, Costello A, Mwansamb C, Cunliffe NA, et al. Methodological challenges in measuring vaccine effectiveness using population cohorts in low resource settings. Vaccine. 2015; 33(38): 4748–55. https://doi.org/10.1016/j.vaccine.2015.07.062 PMID: 26235370; PubMed Central PMCID: PMC4570930.

17. Government of the Republic of Malawi Ministry of Health. Management of children with Pneumonia (National Guidelines). Lilongwe, Malawi: Government of the Republic of Malawi Ministry of Health; 2000.

18. Hooli S, King C, Zadutsa B, Nambari B, Makwenda C, Masache G, et al. The epidemiology of hypoxemic pneumonia among young infants in Malawi: A prospective observational study. American Journal of Tropical Medicine & Hygiene. 2020; 102(3): 676–683. https://doi.org/10.4269/ajtmh.19-0516 PMID: 31971153

19. World Health Organization. Caring for the sick child in the community: participant manual [Internet]. 2011 [cited 2019 Sep 24]. Available from: http://whqlibdoc.who.int/publications/2011/9789241548045_Manual_eng.pdf

20. Knol MJ, Le Cessie S, Algra A, Vandenbroucke JP, Groenwold RH. Overestimation of risk ratios by odds ratios in trials and cohort studies: alternatives to logistic regression. CMAJ. 2012; 184(8): 895–9. Epub 2011 Dec 12. https://doi.org/10.1503/cmaj.101715 PMID: 22158397; PubMed Central PMCID: PMC3348192

21. Glas AS, Lijmer JG, Prins MH, Bossuyt PMM. The diagnostic odds ratio: a single indicator of test performance. Journal of Clinical Epidemiology. 2003; 56(11): 1129–35. https://doi.org/10.1016/s0895-4356(03)00177-x PMID: 14615004

22. World Health Organization. Oxygen therapy for children: a manual for health workers [Internet]. 2016 [cited 2020 Jul 24]. Available from: http://www.who.int/maternal_child_adolescent/documents/child-oxygen-therapy/en/

23. Duke T, English M, Carai S, Qazi S. Paediatric care in the time of COVID-19 in countries with under-resourced healthcare systems. Arch Dis Child. 2020; 105(7): 616–7. https://doi.org/10.1136/archdischild-2020-319333 PMID: 32424004

24. World Health Organization. IMCI: the integrated approach [Internet]. 1997 [cited 2019 Sep 24]. Available from: http://whqlibdoc.who.int/hq/1997/WHO_CHD_97.12_Rev.2.pdf

25. World Health Organization. Recommendations for management of common childhood conditions. Evidence for technical update of pocket book recommendations [Internet]. 2012 [cited 2020 Jan 22]. Available from: https://apps.who.int/iris/bitstream/handle/10665/44774/9789241502825_eng.pdf
26. Lodha R, Kabra SK, Pandey RM. Antibiotics for community-acquired pneumonia in children. Cochrane Database Syst Rev. 2013;(6): CD004874. https://doi.org/10.1002/14651858.CD004874.pub4 PMID: 23733365

27. Patel AB, Bang A, Singh M, Dhande L, Chelliah LR, Malik A, et al. A randomized controlled trial of hospital versus home based therapy with oral amoxicillin for severe pneumonia in children aged 3–59 months: The IndiaCLEN Severe Pneumonia Oral Therapy (iSPOT) Study. BMC Pediatr. 2015; 15: 186. https://doi.org/10.1186/s12887-015-0510-9 PMID: 26577943; PubMed Central PMCID: PMC4650851

28. Agweyu A, Gathara D, Oliwa J, Muenga N, Edwards T, Allen E, et al. Oral amoxicillin versus benzyl penicillin for severe pneumonia among kenyan children: a pragmatic randomized controlled noninferiority trial. Clin Infect Dis. 2015; 60(6): 1216–24. https://doi.org/10.1093/cid/ciu116 PMID: 25550349; PubMed Central PMCID: PMC4370168.

29. Ginsburg AS, Mvulo T, Nkwopara E, McCollum ED, Phiri M, Schmicker R, et al. Amoxicillin for 3 or 5 Days for Chest-Indrawing Pneumonia in Malawian Children. N Engl J Med. 2020; 383(1): 13–23. https://doi.org/10.1056/NEJMoa1912400 PMID: 32609979; PubMed Central PMCID: PMC7233470.

30. Agweyu A, Lilford RJ, Engliss M. Appropriateness of clinical severity classification of new WHO childhood pneumonia guidance: a multi-hospital, retrospective, cohort study. The Lancet Global health. 2018; 6(1): e74–e83. https://doi.org/10.1016/S2214-109X(17)30448-5 PMID: 29241618; PubMed Central PMCID: PMC5732316.

31. Florin TA, Ambroggio L, Brokamp C, Rattan MS, Crotty EJ, Kachelmeyer A, et al. Reliability of Examination Findings in Suspected Community-Acquired Pneumonia. Pediatrics. 2017; 140(3): e20170310. https://doi.org/10.1542/peds.2017-0310 PMID: 28693981; PubMed Central PMCID: PMC5574720 conflicts of interest to disclose.

32. Zalisk K, Guenther T, Prosnitz D, Nsona H, Chimbalanga E, Sadruddin S. Achievements and challenges of implementation in a mature ICMM programme: Malawi case study. Journal of global health. 2019; 9(1):010807. https://doi.org/10.7189/jogh.09.010807 PMID: 31263552; PubMed Central PMCID: PMC6594665

33. Munthali AC, Mannan H, MacLachlan M, Swartz L, Makupe CM, Chilimampungu C. Non-use of Formal Health Services in Malawi: Perceptions from Non-users. Malawi Med J. 2014; 26(4): 126–32. PMID: 26167263; PubMed Central PMCID: PMC4325348.

34. Kozuki N, Guenther T, Vaz L, Moran A, Soofi SB, Kayemba CN, et al. A systematic review of community-to-facility neonatal referral completion rates in Africa and Asia. BMC Public Health. 2015; 15: 989. https://doi.org/10.1186/s12889-015-2330-0 PMID: 26419934; PubMed Central PMCID: PMC4589085.

35. Hildenwall H, Nantanda R, Tumwesigye JK, Petzold M, Pariyo G, Tomson G, et al. Care-seeking in the development of severe community acquired pneumonia in Ugandan children. Ann Trop Paediatr. 2009; 29(4): 281–9. https://doi.org/10.1179/027249309X12547917869005 PMID: 19941751.

36. Floyd J, Wu L, Hay Burgess D, Izadnegahdar R, Mukanga D, Ghani AC. Evaluating the impact of pulse oximetry on childhood pneumonia mortality in resource-poor settings. Nature. 2015; 528(7580): S53–9. https://doi.org/10.1038/nature16043 PMID: 26633766.