Injective Stability for K_1 of Classical Modules

Rabeya Basu & Ravi A. Rao
Tata Institute of Fundamental Research, Homi Bhabha Road, Mumbai-400005, India

2000 Mathematics Subject Classification: 13C10, 13H05, 15A63, 19B10, 19B14

Key words: regular ring, affine algebra, projective modules, K_1, $K_1\text{Sp}$

Abstract: In [13], the second author and W. van der Kallen showed that the injective stabilization bound for K_1 of general linear group is $d + 1$ over a regular affine algebra over a perfect C_1-field, where d is the Krull dimension of the base ring and it is finite and at least 2. In this article we prove that the injective stabilization bound for K_1 of the symplectic group is $d + 1$ over a geometrically regular ring containing a field, where d is the stable dimension of the base ring and it is finite and at least 2. Then using the Local-Global Principle for the transvection subgroup of the automorphism group of projective and symplectic modules we show that the injective stabilization bound is $d + 1$ for K_1 of projective and symplectic modules of global rank at least 1 and local rank at least 3 respectively in each of the two cases above.

1 Introduction

In this article we discuss the injective stabilization for the K_1 group of projective and symplectic modules.

In the early 1960's Bass-Milnor-Serre began the study of the stabilization for the linear group $\text{GL}_n(R)/\text{E}_n(R)$ for $n \geq 3$, where R is a commutative ring with identity. In [3], they showed that $K_1(R) = \text{GL}_{d+3}(R)/\text{E}_{d+3}(R)$, where d is the dimension of the maximum spectrum. (They also showed that $K_1(R) = \text{GL}_3(R)/\text{E}_3(R)$, when Krull dimension of R is 1.) In [19], L.N. Vaserstein proved their conjectured bound of $(d + 2)$ for an associative ring with identity, where d is the stable dimension of the ring. After that, in [20], he studied the orthogonal and the unitary K_1-functors, and obtained stabilization theorems for them. He showed that the natural map

$$
\varphi_{n,n+1} : \frac{S(n,R)}{E(n,R)} \to \frac{S(n+1,R)}{E(n+1,R)} \quad \text{in the linear case}
$$

$$
\varphi_{n,n+2} : \frac{S(n,R)}{E(n,R)} \to \frac{S(n+2,R)}{E(n+2,R)} \quad \text{otherwise}
$$

(where $S(n, R)$ is the group of automorphisms of the projective, symplectic and orthogonal modules of rank n with determinant 1, and $E(n, R)$ is the elementary subgroup in the respective cases) is surjective for $n \geq d + 1$ in the linear case, for $n \geq d$ in

*The first author was partially supported by the T.I.F.R. Endowment Fund.
†Correspondence author: Ravi A. Rao; email: ravi@math.tifr.res.in
the symplectic case, and for $n \geq 2d + 2$ in the orthogonal case, and is injective for $n \geq 2d + 4$ in the symplectic and the orthogonal cases. Soon after, in [22], he studied stabilization for groups of automorphisms of modules over rings and modules with quadratic forms over rings with involution, and obtained similar stabilization results.

In [13], the second author and W. van der Kallen showed that if A is a non-singular affine algebra of dimension $d > 1$ over a perfect C_1-field (Definition 4.1), then the natural map

$$\frac{\text{SL}_n(A)}{E_n(A)} \rightarrow \frac{\text{SL}_{n+1}(A)}{E_{n+1}(A)}$$

is injective for $n \geq d + 1$. We generalize this result for the automorphism group of finitely generated projective module of global rank at least 1 and local rank at least 3. (By definition the global rank or simply rank of a finitely generated projective module (resp. symplectic or orthogonal R-module) is the largest integer r such that $\oplus R$ (resp. $\downarrow \mathbb{H}(R)$) is a direct summand (resp. orthogonal summand) of the module. $\mathbb{H}(R)$ denotes the hyperbolic plane). More precisely, we prove the following: (We assume that $(H1)$ and $(H2)$ holds, as stated in [24]).

Theorem 1. Let A be an affine algebra of dimension $d > 1$ over a perfect C_1-field k. Assume $(d+1)!A = A$. Let P be a finitely generated projective A-module of local rank $n > 1$. If $\gamma \in \text{SL}(P)$ is such that $\gamma \perp \{1\} \in \text{Trans}(P \oplus A)$ and $n \geq d + 1$, then γ is isotopic to the identity, i.e. there exists an automorphism $\alpha(X) \in \text{SL}(P[X])$ such that $\alpha(0) = \text{Id}$ and $\alpha(1) = \gamma$. Moreover, if A is non-singular, then $\gamma \in \text{Trans}(P)$. In particular, the map $\rho : \frac{\text{SL}(P)}{\text{Trans}(P)} \rightarrow \frac{\text{SL}(P \oplus A)}{\text{Trans}(P \oplus A)}$ is bijective for $n \geq d + 1$.

Theorem 2. Let R be a commutative ring with identity of stable dimension $d > 1$ and A be an associative R-algebra such that A is finite as a left R-module. Let $(P, \langle . \rangle)$ be a symplectic left A-module of even local rank $n \geq \max(3, d + 1)$. If $\gamma \in \text{Sp}(P)$ is such that $\gamma \perp I_2 \in \text{Trans}_{\text{sp}}(P \perp A^2)$, then γ is isotopic to the identity, i.e. there exists an automorphism $\alpha(X) \in \text{Sp}(P[X])$ such that $\alpha(0) = \text{Id}$ and $\alpha(1) = \gamma$. Moreover, if A is a geometrically regular ring containing a field k, then $\gamma \in \text{Trans}_{\text{sp}}(P)$. In particular, the map $\rho_{\text{sp}} : \frac{\text{Sp}(P)}{\text{Trans}_{\text{sp}}(P)} \rightarrow \frac{\text{Sp}(P \perp A^2)}{\text{Trans}_{\text{sp}}(P \perp A^2)}$ is bijective for $n \geq \max(3, d + 1)$.

However, in a companion article [2] we prove that the injective stabilization bound for K_1 of the orthogonal group is not less than $2d + 4$, in general, for an affine algebra over a perfect C_1-field.

2 Preliminaries

Definition 2.1 Let R be an associative ring with identity. The following condition was introduced by H. Bass in [4]:

(R_m) for every $(a_1, \ldots, a_{m+1}) \in \text{Um}_{m+1}(R)$, there are $\{x_i\}_{1 \leq i \leq m} \in R$ such that $(a_1 + a_{n+1}x_1)R + \cdots + (a_m + a_{n+1}x_m)R = R$.

The condition (R_m) implies (R_n) with $x_i = 0$ for $i \geq m + 1$.
By stable range for an associative ring R we mean the least n such that (R_n) holds.

Although, it appears that we should have referred to the above condition as R having "right" stable range n, it has been shown by L.N. Vaserstein ([21], Theorem 2) that "right stable range $n" and "left stable range $n" are actually equivalent conditions. The integer $n - 1$ is called the stable dimension of R and is denoted by $sdim(R)$.

Lemma 2.2 (cf. [4]) If R is a commutative noetherian ring with identity of Krull dimension d, then $sdim(R) \leq d$.

Definition 2.3 Let R be an associative ring with identity. To define other classical modules, we need an involutive antihomomorphism (involution, in short) $*: R \rightarrow R$ (i.e., $(x - y)^* = x^* - y^*$, $(xy)^* = y^*x^*$ and $(x^*)^* = x$ for any $x, y \in R$. We assume that $1^* = 1$. For any left R-module M the involution induces a left module structure to the right R-module $M^* = Hom(M, R)$ given by $(xf)v = (fv)x^*$, where $v \in M$, $x \in R$ and $f \in M^*$. In this case if M is a left R-module then $O_M(m)$ has a right R-module structure. But any right R module can be viewed as a left R-module via the convention $ma = a^*m$ for $m \in M$ and $a \in R$.

Blanket Assumption: Let A be an R-algebra, where R is a commutative ring with identity, such that A is finite as a left R-module. Let A possess an involution $*: r \mapsto \tilde{r}$ for $r \in A$. For a matrix $M = (m_{ij})$ over A we define $M^T = (m^T_{ij})$. Let $\psi_1 = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$, $\psi_n = \psi_{n-1} \perp \psi_1$, for $n > 1$. For a column vector $v \in A^n$ we write $\tilde{v} = \tilde{v}^T$. ψ_n in the symplectic case.

We define a form \langle , \rangle as follows:

$$\langle v, w \rangle = \begin{cases} v^T \cdot w & \text{in the linear case} \\ \tilde{v} \cdot w & \text{in the symplectic case.} \end{cases}$$

(Viewing M as a right A-module we can assume the linearity).

Since R is commutative, we can assume that the involution "*" defined on A is trivial over R. We shall always assume that 2 is invertible in the ring R while dealing with the symplectic case. For definitions of the automorphism group, the symplectic module, and its transvection and its elementary transvection subgroup, see ([1], §2).

Notation 2.4 In the sequel P will denote either a finitely generated projective left A-module of local rank n, a symplectic left module of even rank $n = 2r$ with a fixed form \langle , \rangle. And Q will denote $P \oplus A$ in the linear case and $P \perp A^2$ in the symplectic case. To denote $(P \oplus A)[X]$ in the linear case and $(P \perp A^2)[X]$ in the symplectic case we will use the notation $Q[X]$. We assume that the local rank of projective module is at least 3 when dealing with the linear case and at least 6 when considering the symplectic case. For a finitely generated projective A-module M we use the notation $G(M)$ to denote the automorphism group of the projective module $= Aut(M)$ and the group of isometries of the symplectic module $= Sp(M, \langle , \rangle)$. Let $SL(M)$ denote the automorphism group of the projective module with determinant 1 in the case when A is commutative. We use $S(M)$ to denote $SL(M)$ in the linear case and $Sp(M, \langle , \rangle)$ in the symplectic case. Let $T(M)$ denote the transvection subgroup.
of the automorphism group of the projective module $\text{Trans}(M)$, and the transvection subgroup of the automorphism group of the symplectic module $\text{Trans}_{Sp}(M)$. We write $\text{ET}(M)$ to denote the elementary transvection subgroup of the automorphism group of the projectives module $\text{ETrans}(M)$, and the transvection subgroup of the automorphism group of syoplectic module $\text{ETrans}_{Sp}(M)$. (For details see [1]).

We shall assume

(H1) for every maximal ideal \mathfrak{m} of A, $Q_{\mathfrak{m}}$ is isomorphic to $A_{\mathfrak{m}}^{2n+2}$ with the standard bilinear form $\mathbb{H}(A_{\mathfrak{m}}^{n+1})$.

(H2) for every non-nilpotent $s \in A$, if the projective module Q_s is free A_s-module, then the symplectic module Q_s is isomorphic to A_s^{2n+2} with the standard bilinear form $\mathbb{H}(A_s^{n+1})$.

Notation 2.5 When $P = A^n$ (n is even is the non-linear cases), we also use the notation $G(n, A)$, $S(n, A)$ and $E(n, A)$ for $G(P)$, $S(P)$ and $T(P)$ respectively. We denote the usual standard elementary generators of $E(n, A)$ by $ge_{ij}(x)$, $x \in A$. e_i will denote the column vector $(0, \ldots, 1, \ldots, 0)^t$ (1 at the i-th position).

Remark 2.6 Let Q be as in 2.4. Note that if $\alpha \in \text{End}(Q)$ then α can be considered as a matrix of the form $\begin{pmatrix} \text{End}(P) & \text{Hom}(P, A) \\ \text{Hom}(A, P) & \text{End}(A) \end{pmatrix}$ in the linear case. In the non-linear cases one has a similar matrix for α of the form $\begin{pmatrix} \text{End}(P) & \text{Hom}(P, A \oplus A) \\ \text{Hom}(A \oplus A, P) & \text{End}(A \oplus A) \end{pmatrix}$.

Definition 2.7 An associative ring R is said to be semilocal if $R/\text{rad}(R)$ is artinian semisimple.

Lemma 2.8 (H. Bass) (cf. [4]) Let A be an associative R-algebra such that A is finite as a left R-module and R be a commutative local ring with identity. Then A is semilocal.

Proof. Since R is local, $R/\text{rad}(R)$ is a division ring by definition. That implies $A/\text{rad}(A)$ is a finite module over the division ring $R/\text{rad}(R)$ and hence is a finitely generated vector space. Thus $A/\text{rad}(A)$ artinian as $R/\text{rad}(R)$ module and hence $A/\text{rad}(A)$ artinian as $A/\text{rad}(A)$ module, so it is an artinian ring. It is known that a right artin ring is semisimple if its radical is trivial. Now $\text{rad}(A/\text{rad}(A)) = 0$, hence it follows that $A/\text{rad}(A)$ is semisimple. Hence $A/\text{rad}(A)$ artinian semisimple. Therefore, A is semilocal by definition.

We recall the well-known Serre’s unimodular theorem:

Theorem 2.9 (J-P. Serre) (cf. [4]) Let R be a commutative noetherian ring of dimension d, and let P be a finitely generated projective R-module of local rank $\geq d + 1$. Then P contains a unimodular element.

While dealing with the symplectic case we implicitly use the following well-known fact; which we include for completeness.

Lemma 2.10 Let R be a commutative ring with identity and $(P, \langle \cdot, \cdot \rangle)$ be a symplectic R-module. If P contains a unimodular element, then $(P, \langle \cdot, \cdot \rangle)$ contains a hyperbolic plane as a direct summand.
Proof. Let $p \in \text{Um}(P)$ and let $\varphi : P \cong P^*$ be the induced isomorphism. Then there exists $\alpha : P \to R$ such that $\alpha(p) = 1$. Since $\langle p, p \rangle = 0$, it follows that $p \neq \varphi^{-1}(\alpha)$. Hence there exists $f \in P$ such that $f \neq p$ and $\varphi(f) = \alpha$. Now if $x \in Rp \cap Rf$, then $x = tp = sf$, for some $t, s \in R$. Since $\langle x, x \rangle = 0$, it follows that $st = 0$. Hence $sx = 0$. This is a contradiction, as $Rp \cong R$. Hence $Rp \cap Rf = 0$. Also $\langle p, f \rangle = 1$; hence P contains $\mathbb{H}(R)$. We claim that P contains $\mathbb{H}(R)$ as a direct summand. Let

$$Q = \{ q \in P | \langle q, f \rangle = 0, \langle q, p \rangle = 0 \}.$$

Again, let $y \in Q \cap (Rp \oplus Rf)$. Then $y = ap + bf$ for some $a, b \in R$. Since $\langle y, p \rangle = \langle y, f \rangle = 0$, it will follow that $y = 0$. Hence $Q \oplus (Rp \oplus Rf) \subseteq P$. Now let $z \in P$ be such that $z \neq p$ and $z \neq f$. Let $z' = z - \langle z, p \rangle f + \langle z, f \rangle p$. Then one checks that $z' \in Q$. Hence $P \cong Q \oplus \mathbb{H}(R)$. (Note: Q inherits a symplectic structure from P given by the restriction $\langle \cdot, \cdot \rangle|_Q : Q \times Q \to R$). Hence the result follows.\hfill \square

The following theorem is a well known result:

Theorem 2.11 Let R be an associative ring of stable dimension $d \geq 1$. Then, for $n \geq d + 2$ in the linear case and for $n \geq 2d + 4$ in the symplectic and the orthogonal cases, $E(n, R)$ acts transitively on $\text{Um}_n(R)$. In other words, any unimodular row of length n over R is complete to an elementary matrix if $n \geq d + 2$ in the linear case and $n \geq 2d + 4$ in the symplectic case.

Proof. See ([10], Theorem 7.3', pg. 93) for the linear case and ([20], Theorem 2.7) for the symplectic case. (The key to proving it is Lemma [2.2].)\hfill \square

Definition 2.12 For $\alpha \in M(r, R)$ and $\beta \in M(s, R)$ we have $\alpha \perp \beta$ denotes its embedding $M(r + s, R)$ given by (r and s are even in the non linear cases)

$$\alpha \perp \beta = \left(\begin{array}{cc} \alpha & 0 \\ 0 & \beta \end{array} \right).$$

There is an infinite counterpart: Identifying each matrix $\alpha \in \text{GL}_n(R)$ with the large matrix $(\alpha \perp \{1\})$ gives an embedding of $\text{GL}_n(R)$ into $\text{GL}_{n+1}(R)$. Let $\text{GL}(R) = \bigcup_{n=1}^{\infty} \text{GL}_n(R)$, $\text{SL}(R) = \bigcup_{n=1}^{\infty} \text{SL}_n(R)$, and $\text{E}(R) = \bigcup_{n=1}^{\infty} \text{E}_n(R)$ be the corresponding infinite linear groups.

Definition 2.13 The quotient group

$$K_1(R) = \frac{\text{GL}(R)}{[\text{GL}(R), \text{GL}(R)]} = \frac{\text{GL}(R)}{\text{E}(R)}$$

is called the **Whitehead group** of the ring R. For $\alpha \in \text{GL}_n(R)$ let $[\alpha]$ denote its equivalence class in $K_1(R)$. Similarly, one can define the Symplectic Whitehead group $K_1\text{Sp}(R)$.

The following theorem is the key result we use to generalize the results known for free modules to classical modules. Here we state the result. For details see [1].

Theorem 2.14 (Local-Global Principle) (cf. [2]) Let A be an associative R-algebra such that A is finite as a left R-module and R be a commutative ring with identity.
Let P and Q be as in \textbf{2.4}. Assume that (H1) holds. Suppose $\sigma(X) \in G(Q[X])$ with $\sigma(0) = \text{Id}$. If
\[
\sigma_p(X) \in \begin{cases}
E(n + 1, A_p[X]) & \text{in the linear case,} \\
E(2n + 2, A_p[X]) & \text{in the symplectic case,}
\end{cases}
\]
for all $p \in \text{Spec}(R)$, then $\sigma(X) \in ET(Q[X])$.

Corollary 2.15 Let A be an associative R-algebra such that A is finite as a left R-module and R be a commutative ring with identity. Let Q be as in \textbf{2.4}. Assume that (H1) holds. Then $T(Q) = ET(Q)$.

3 Stabilization Bounds for K_1 of Classical Modules

In this section we prove Theorem 1 and Theorem 2 stated in Section 1. We will show that the injective stability estimates for $K_1(R)$ and $K_1\text{Sp}(R)$, stated by L.N. Vaserstein in \textbf{22}, can be improved in the linear and the symplectic cases if R is a regular affine algebra over a perfect C_1-field. Recall

Definition 3.1 Let A be an affine algebra of dimension d over a field k satisfying: For any prime $p \leq d$ one of the following conditions is satisfied: (i) $p \neq \text{char } k$, (ii) $p = \text{char } p$ and k is perfect. In this case we say that A is an affine algebra over a perfect C_1-field.

Suslin showed that stably free projective modules of top rank d over an affine algebra over a field k, in which $d!$ was invertible, are free if k is algebraically closed in \textbf{14}; and over perfect C_1-fields in \textbf{17}. His methods were used to prove their cancellative properties in \textbf{5}; who established the following:

Theorem 3.2 (S.M. Bhatwadekar) (\textbf{5}, Theorem 4.1) Let A be an affine algebra of Krull dimension $d > 1$ over a perfect C_1-field k. Assume $d!|A = A$. Let P be a projective A-module of local rank d. Then for $(p,a) \in \text{Um}(P \oplus A)$ there exists $\tau \in \text{Aut}(P \oplus A)$ such that $(p,a)\tau = (0,1)$. In particular, P is cancellative.

Lemma 3.3 (cf. \textbf{13}) Let A be as in Theorem \textbf{2.2} and let P be a projective A-module of local rank $d + 1$, where d is the stable dimension of A and $d > 1$. Let $v(X) \in \text{Um}((P \oplus A)[X])$ with $v(X) \equiv (0,1)$ modulo $(X^2 - X)$. Then there exists $\sigma(X) \in \text{SL}((P \oplus A)[X])$ with $\sigma(X) \equiv 1 \text{d modulo } (X^2 - X)$ such that $v(X)\sigma(X) = (0,1)$.

Proof. Our argument is similar to that in \textbf{13}, Proposition 3.3. Let $Y = X^2 - X$ and $B = A[Y,Z]/(Z^2 - YZ)$. Then B is an affine algebra of dimension $d + 1$ over the field k. Let $v(X) = e_{d+2}' + Yv'(X)$ with $v'(X) \in (P \oplus A)[X]$. Let $u(Z) = e_{d+2}' + Zv'(X)$ be its lift in B. Then $u(Z) \in \text{Um}((P \oplus B) \oplus B)$ as locally it is unimodular. So $u(Y) = v(X)$ and $u(0) = (0,1)$. By Proposition \textbf{2.2} there exists $\beta(Z) \in \text{SL}((P \oplus B)[Z] \oplus B[Z])$ with $u(Z) = \beta(Z)e_{d+2}'$. Take $\sigma = \beta(0)^{-1}\beta(Y)$. \qed

Lemma 3.4 (\textbf{3}, Chapter IV, Theorem 3.1) Let A be an associative R-algebra such that A is finite as a left R-module where R is a commutative ring with identity. Let A have stable dimension d, and let P be a projective left A-module of rank n, where
\[n \geq d + 1. \] Suppose that \((p, a) \in \text{Um}(P \oplus A)\). Then there exists a homomorphism \(f : A \to P\) such that \(p + f(a) \in \text{Um}(P)\) and there exists \(\tau \in \text{Trans}(P \oplus A)\) such that \(\tau : (p, a) \to (0, 1)\).

Lemma 3.5 (L.N. Vaserstein, [22]) Let \(A\) be a commutative \(R\)-algebra such that \(A\) is finite as a \(R\)-module and \(R\) is a commutative ring with identity. Let \((P, \langle , \rangle)\) be a symplectic left \(A\)-module of even local rank \(n\), where \(n \geq d\).

Let \((p, b, a) \in \text{Um}(P \oplus A^2)\).

1. There exists \(\tau \in \text{Trans}_{\text{Sp}}(P \perp A^2)\) such that \(\tau : (p, b, a) \to (0, 0, 1)\).

2. If \(I\) is a two sided ideal of \(A\) and \((p, b, a) \equiv (0, 0, 1)\) modulo \(I(P \perp A^2)\), then there exists \(\tau \in \text{Trans}_{\text{Sp}}(P \perp A^2, I)\) such that \(\tau : (p, b, a) \to (0, 0, 1)\).

Proof. We prove the result for completeness. We follow the line of proof of R.G. Swan, (see [15, Corollary 9.8]) (Also see [5, Theorem 3.2]).

By Lemma 3.4 there exists \(g \in P\) and \(t \in A\) such that \(O(p + aq, b + at) = A\); i.e. \((p + aq, b + at) \in \text{Um}(P \perp A)\). Hence there exists \(\gamma \in P^*\) and \(g \in A\) such that \(\gamma(p + aq) + g(b + at) = 1\). Let \(\eta = g\Phi(q)\), where \(\Phi : P \cong P^*\) is the induced isomorphism. Then \(\eta(p + aq) = -g(p, q)\). Hence \(\delta(p + aq) + g(b + at + (p, q)) = 1\), where \(\delta = \eta + \gamma\). Now consider the following automorphisms (elementary transvections) of \((P \perp A^2)\):

\[
\theta_{(t, a)} : (p, b, a) \mapsto (p + aq, b + at + (p, q), a),
\]

\[
\tau_{(g, \alpha)} : (p, b, a) \mapsto (p - \beta(b), b, a + gb + \delta(p)),
\]

where \(\beta : A \to \text{P}^*\) with \(\beta^* = \delta \Phi^{-1}\). Let \(\tau'_{(g, \beta)} = (1 - a)\tau_{(g, b)}\), \(\tau = \tau_{(-b, -p_1)}\tau_{(g, \beta)}\theta_{(t, a)}\) for \(b_1 = b + ta + (p, q)\), and \(p_1 = p + aq - \beta(b + ta + (p, q))\). Then \(\tau(p, b, a)^t = (0, 0, 1)^t\); as required.

Next assume \((p, b, a) \equiv (0, 0, 1)\) modulo \(I(P \perp A^2)\). As above we get

\[
\delta(p + aq) + g(b + ta + (p, q)) = 1.
\]

Since \(a \equiv 1\) modulo \(I\), then \(\beta = (\delta \Phi^{-1})^* x = x = \Phi^{-1}(x)\). Then it follows that \(\beta^* \Phi = x\delta\). Let \(x\delta = \xi\) and \(\Delta_1 = \theta_{(0, -a)}\theta_{(f, \xi)}\theta_{(t, a)}\). Then \(\Delta_1 \in \text{Trans}_{\text{Sp}}((P \perp A^2), I)\). Now \(\Delta_1(p, b, a)^t = (p', b', 1)^t\) for some \(p' \in P\) and \(b' \in A\) such that \(p' \equiv 0\) modulo \(I\) and \(b' \equiv 0\) modulo \(I\). So it follows that \(\theta_{(p', b')} \equiv \text{Id}\) modulo \(I\). Let \(\Delta = \theta_{(p', b')}\Delta_1\). Then \(\Delta \in \text{Trans}_{\text{Sp}}((P \perp A^2), I)\) and \(\Delta(p, b, a)^t = (0, 0, 1)^t\); as required.

Lemma 3.6 Let \(A\) be an associative ring with identity and \(P\) and \(Q\) be as in 2.4. Let \(\Delta\) be a matrix in \(G(Q)\). If for \(m \geq 2\), then \(\Delta e_m = e_m\), then \(\Delta \in T(Q)G(P)\).

Proof. If \(\Delta e_m = e_m\), then in the linear case \(\Delta\) is of the form

\[
\begin{pmatrix}
\beta & 0 \\
\gamma & 1
\end{pmatrix}
\begin{pmatrix}
1 & 0 \\
\gamma \beta^{-1} & 1
\end{pmatrix}
\begin{pmatrix}
\beta & 0 \\
0 & 1
\end{pmatrix},
\]

for some \(\beta \in \text{Aut}(P)\), \(\gamma \in P^*\), and in the symplectic case \(\Delta\) is of the form

\[
\begin{pmatrix}
\beta' & p' & 0 \\
0 & 1 & 0 \\
\gamma' & a' & 1
\end{pmatrix}
\begin{pmatrix}
1 & p' & 0 \\
0 & 1 & 0 \\
\gamma' \beta^{-1} & a' & 1
\end{pmatrix}
\begin{pmatrix}
\beta' & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{pmatrix},
\]

7
for some \(\beta' \in \text{Sp}(P) \), \(a' \in A \), \(p' \in P \) and \(\beta_1 : A \to P \) such that \(\beta_1(1) = p' \), and \(\gamma' : P \to A \) chosen in a way that \(\gamma' = \beta_1^{-1} \Phi \beta' \).

Clearly, \(\begin{pmatrix} 1 & 0 \\ \gamma \beta^{-1} & 1 \end{pmatrix} \) and \(\begin{pmatrix} 1 & p' \\ 0 & 1 \end{pmatrix} \) are in \(\text{ET}(Q) \subset \text{T}(Q) \), where \(f : A \to A \) given by \(1 \mapsto a' \). Hence the result follows.

\[\square \]

Definition 3.7 Let \(k \) be a field. A ring \(A \) is said to be essentially of finite type over \(k \) if \(A = S^{-1}C \), with \(S \) is a multiplicative closed subset of \(C \), and \(C = k[X_1, \ldots, X_n]/I \) is a quotient ring of a polynomial ring over \(k \).

In \textbf{[23]}, Theorem 3.3, T. Vorst, following ideas of H. Lindel in \textbf{[21]}, proved the following in the linear case:

Let \(A \) be a regular local ring essentially of finite type over a perfect field \(k \). Then

\[S_r(A[X]) = E_r(A[X]) \]

for \(r \geq 3 \).

This method of proof also proves the result for the symplectic groups. We revisit this proof below. We treat the linear and the symplectic cases uniformly.

Theorem 3.8 Let \(A \) be a regular local ring essentially of finite type over a perfect field \(k \). Then

\[S(r, A[X]) = E(r, A[X]), \]

for \(r \geq 3 \) in the linear case, and \(r \geq 6 \) in the symplectic case.

We sketch a proof of this theorem below. To prove the theorem we need to use the ideas (of A. Suslin and H. Lindel) to establish the statements below in the linear case.

Lemma 3.9 Let \(A \) be a commutative ring with identity and \(S \subset A \) be a multiplicative closed set. If \(G(r, A[X]) = G(r, A)E(r, A[X]) \), then

\[G(r, S^{-1}A[X]) = G(r, S^{-1}A)E(r, S^{-1}A[X]). \]

Proof. Let \(\alpha(X) \in G(r, S^{-1}A[X]) \). Replacing \(\alpha(X) \) by \(\alpha(X)\alpha(0)^{-1} \), we may assume that \(\alpha(0) = \text{Id} \). Let \(f(X) = \det(\alpha(X)^{-1}) \). Then \(f(0) = 1 \). Therefore, there exists \(s_1 \in S \) such that \(\alpha(s_1X) \) and \(f(s_1X) \) are both defined over \(A[X] \). Let \(\alpha_1(X) \in G(r, A[X]) \) and \(f_1(X) \in A[X] \) with \(\alpha_1(0) = I_r \) and \(f_1(0) = 1 \), localizing into \(\alpha(s_1X) \) and \(f(s_1X) \) respectively. Also \(\det(\alpha(s_1X)).f(s_1X) = 1 \). Thus, there exists \(s_2 \in S \) such that \(\det(\alpha_1(s_2X)).f_1(s_2X) = 1 \). Hence it follows that \(\alpha_1(s_2X) \in G(r, A[X]) \).

Therefore, \(\alpha_1(s_2X) = \gamma \prod_{k=1}^{m} g_{e_{i_k,j_k}}(f_k(X)) \) with \(\gamma \in G(r, A) \) and \(f_k(X) \in A[X] \) for all \(1 \leq k \leq m \). So,

\[\alpha(X) = \gamma_S \prod_{k=1}^{m} g_{e_{i_k,j_k}}(f_k(X)/s_1s_2)) \]

We shall assume that \(r \geq 3 \), in the linear case, and that \(r \) is even and \(r \geq 6 \) in the symplectic case.
Proposition 3.10 (A. Suslin) Let A be a commutative ring with identity and $h \in A$ be a non-nilpotent. Let $\delta \in G(r, A_h)$ and $\sigma(X) = \delta g e_{k_1}(X, f) h^{-1}$, where $k \neq 1$ and $f \in A_h[X]$. Then there exists a natural number m and a matrix $\tau \in E(r, A[X], XA[X])$ such that $\tau h = \sigma(h^m X)$.

Proof. For the linear case see (15, Lemma 3.3). For the symplectic case it has been asserted in (9, § 3) that a similar proof works as in the orthogonal case; and for the orthogonal case see (15, Lemma 4.6).

Theorem 3.11 (H. Lindel) (11, Proposition 2 and 3) Let A be a regular local ring essentially of finite type over k with dim $A \geq 1$, where k is perfect. Then there exists a subring B of A with a non-zero divisor $h \in B$ such that

1. B is the localization of a polynomial ring over k,
2. $Ah + B = A$ and $Ah \cap B = Bh$.

The following was proved by T. Vorst in the linear case in (23, Lemma 2.4):

Lemma 3.12 Let A be a commutative ring with identity, $B \subset A$, and $h \in B$ be a non-nilpotent.

1. If $Ah + B = A$, then for every $\alpha \in E(r, A_h)$ there exist $\beta \in E(r, B_h)$ and $\gamma \in E(r, A)$ such that $\alpha = \gamma_i \beta$.
2. If moreover $Ah \cap B = Bh$ and h is a non-zero-divisor in A, then for every $\alpha \in G(r, A)$ with $\alpha_h \in E(r, A_h)$ there exist $\beta \in G(r, B)$ and $\gamma \in E(r, A)$ such that $\alpha = \gamma \beta$.

Proof. (1): Assume that $\alpha = \prod_{k=1}^{m} g e_{i_k, j_k}(c_k)$ with $c_k \in A_h$. From hypothesis it follows that $Ah^n + B = A$ for all n. Hence for all $1 \leq k \leq m$ we can find $a_k \in A$, $b_k \in B$ and a natural number m_k such that

$$c_k = \frac{b_k}{h^{m_k}} + a_k h^s.$$

Let $\sigma_p = \prod_{k=1}^{p} g e_{i_k, j_k}(c_k)$, $(1 \leq p \leq m)$. By Proposition 3.10 there exists a natural number s and $\tau_p(X) \in E(r, A[X], XA[X])$ such that

$$\tau_p(X) = \sigma_p g e_{i_p, j_p}(h^n X) \sigma_p^{-1}.$$

So we have

$$\alpha = \prod_{k=1}^{m} g e_{i_k, j_k} \left(\frac{b_k}{h^{m_k}} \right) g e_{i_k, j_k}(a_k h^s) = \prod_{k=1}^{m} \sigma_k g e_{i_k, j_k}(a_k h^s) \sigma_k^{-1} \prod_{k=1}^{m} g e_{i_k, j_k} \left(\frac{b_k}{h^{m_k}} \right).$$

Now let $\gamma = \prod_{k=1}^{m} \tau_k(a_k) \in E(r, A)$ and $\beta = \prod_{k=1}^{m} g e_{i_k, j_k} \left(\frac{b_k}{h^{m_k}} \right)$. Then we are done.

(2): By hypothesis it follows that $Ah^n \cap B = Bh^n$ for all n. Hence $B_h \cap A = B$. Using (1) we can write $\alpha_h = \gamma_h \beta$ with $\gamma \in E(r, A)$ and $\beta \in E(r, B_h)$. Now $\gamma^{-1} \alpha = G(r, B)$ and $\beta \in G(r, B_h)$. Moreover $(\gamma^{-1} \alpha)_h = \beta$. But this implies that
\(\gamma^{-1}\alpha \in G(r, B)\). Hence \(\alpha = \gamma(\gamma^{-1}\alpha) \in E(r, A)G(r, B)\).

\[\square\]

Proof of the Theorem 3.8 We prove the theorem by induction on \(\dim A\). If \(\dim A = 0\) then \(A\) is a field and the result follows. So we assume that \(\dim A \geq 1\).

Let \(\alpha(X) \in S(r, A[X])\). As the hypothesis of Lemma 3.11 is satisfied, we can find a ring \(B\) and can choose \(h \in B\) as in Lemma 3.11. Since \(\dim A_h < \dim A\), by induction hypothesis we have that \(\alpha_h(X) \in E(r, A_h[X])\). Since \(A\) is a regular local ring, we have that \(h\) is a non-zero-divisor in \(A[X]\). Now by applying Lemma 3.12 to \(\alpha(X)\), we get

\[\alpha(X) = \gamma(X)\beta(X)\]

with \(\beta(X) \in G(r, A[X])\) and \(\gamma(X) \in E(r, A[X])\). Hence we have

\[\alpha(X) = \gamma(X)\gamma(0)^{-1}\beta(0)^{-1}\beta(X),\]

where the first two factors are contained in \(E(r, A[X])\). Since the theorem is true for a polynomial ring over a field (proved in [15], Corollary 6.7) by A. Suslin for the linear case (and similarly other cases are also true due to monic inversion) and \(B\) is a localization of a polynomial ring the theorem is also true for \(B\) by Lemma 3.9. Hence

\[\beta(0)^{-1}\beta(X) \in E(r, B[X]) \subset E(r, A[X])\].

\[\square\]

Theorem 3.13 Let \(A\) be a geometrically regular local ring containing a field \(k\). Then \(S(r, A[X]) = E(r, A[X])\), for \(r \geq 3\), in the linear case, and \(r \geq 6\), in the symplectic case.

Proof. If \(\dim(A) = 0\), then \(A\) is a field, and the result follows. Therefore, we assume that \(\dim(A) \geq 1\). In [12], D. Popescu showed that if \(A\) is a geometrically regular local ring, or when the characteristic of the residue field is a regular parameter in \(R\), then it is a filtered inductive limit of regular local rings essentially of finite type over the integers. Hence by Theorem 3.8 it follows that

\[S(r, A[X]) = E(r, A[X])\]

for all \(r \geq 3\) in the linear case and \(r \geq 6\) in the symplectic case.

\[\square\]

Remark 3.14 Theorem 3.13 is not true for the orthogonal group. It is not true that \(S(r, A) = E(r, A)\), for \(r \geq 4\), for the orthogonal group, in general, even in the case when \(A\) is a field. This is known classically due to results of Dieudonne, since the spinor norm is surjective. In the case when \(A\) is a local ring similar results have been obtained by W. Klingenberg (see [8], [7]), and the references therein for the field case.

Remark 3.15 The proof of Theorem 3.13 can be used to show that if \(A\) is a geometrically regular local ring containing a field \(k\) then a stably elementary orthogonal matrix \(\sigma(X) \in SO_{2n}(A[X])\), \(n \geq 3\), with \(\sigma(0) = I_{2n}\), is an elementary orthogonal matrix.

Remark 3.16 Using “deep splitting technique” as in [6], Definition 3.6, Corollary 3.9) one can show that Lemma 3.12 is valid for \(r = 4\). Consequently, Theorem 3.8 and Theorem 3.13 are also valid for \(r = 4\). The above remark is also true when \(n = 2\).

We now establish the main theorems stated in the Introduction.

To have a uniform notation in Theorem 1 we use the notation \(\tilde{S}(P)\) to denote \(SL(P)\) and \(Sp(P)\) and \(\tilde{T}(P)\) to denote \(Trans(P)\) and \(Trans_{0}(P)\).
Proof of Theorem 1 and 2. The homotopy technique used here is as in (13, Proposition 3.4). In view of L.N. Vaserstein’s result in [20], to prove the result it is enough to prove the injectivity for $n = d + 1$. Let $n_1 = n + 1$ and $n + 2$ in the linear and the symplectic cases respectively. Let \bar{Q} denote $P \oplus A$ in the linear case and $P \perp A^2$ in the symplectic case. Consider $\gamma \in \tilde{S}(P)$ such that $\tilde{\gamma} = \gamma \perp \text{Id} \in \tilde{T}(Q)$. Let $\eta(X)$ be the isotopy between $\tilde{\gamma}$ and identity. As before, viewing $\eta(X)$ as a matrix (as in 2.6), it follows that $v(X) \equiv e_{n_1}$ modulo $(X^2 - X)$. Using Lemma 3.3 for Theorem 1 and Lemma 3.5 for Theorem 2 over $A[X]$ it follows that there exists $\sigma(X) \in \tilde{S}(\bar{Q}[X])$ such that $\sigma(X)^t v(X) = e_{n_1}$ and $\sigma(X) \equiv \text{Id}$ modulo $(X^2 - X)$. Therefore, $\sigma(X)^t \eta(X) e_{n_1} = e_{n_1}$. Hence by Lemma 3.6, $\sigma(X)^t \eta(X) = \xi(X) \tilde{\eta}(X)$, where $\xi(X) \in \tilde{E}(\bar{Q}[X])$ and $\tilde{\eta}(X) \in \tilde{S}(P[X])$. Since $\sigma(X) \equiv \text{Id}$ modulo $(X^2 - X)$, $\tilde{\eta}(X)$ is an isotopy between γ and the identity.

Now assume A is regular and contains a field k. Hence for every prime ideal $p \in \text{Spec}(A)$,

$$\tilde{\eta}_p(X) \in \begin{cases} \tilde{S}(n, A_p[X]) = \tilde{E}(n, A_p[X]) & \text{in the linear case,} \\ \tilde{S}(2n, A_p[X]) = \tilde{E}(2n, A_p[X]) & \text{in the symplectic case.} \end{cases}$$

(by Theorem 3.13). Since $\tilde{\eta}(0) = \text{Id}$, by the L-G Principle (Theorem 2.14) for the tranvection groups we get $\tilde{\eta}(X) \in \tilde{ET}(P[X])$. Whence $\gamma = \tilde{\eta}(1) \in \tilde{ET}(P)$; as required.

Acknowledgement: The authors thank Professor R.G. Swan profusely for his many illuminating comments and corrections, and for his unstinting support and encouragement.

References

[1] A. Bak, R. Basu, Ravi A. Rao; Local-Global Principle for Transvection Groups, preprint, see http://arxiv.org/abs/0908.3094

[2] R. Basu, Ravi A. Rao, Selby Jose: Injective Stability for K_1 of the Orthogonal group, provisionally accepted in Journal of Algebra.

[3] H. Bass, J. Milnor, J.-P. Serre; Solution of the congruence subgroup problem for SL_n, $n \geq 3$ and Sp_{2n}, $n \geq 2$. Inst. Publ. Math. IHES 33 (1967), 59–137.

[4] H. Bass; Algebraic K-theory, Math. Lecture note series, W.A. Benjamin, Inc. (1968).

[5] S.M. Bhatwadekar; A cancellation theorem for projective modules over affine algebras over C_1-fields. Journal of Pure and Applied Algebra 183 (2003), no. 1-3, 17–26.

[6] S.M. Bhatwadekar, H. Lindel, R.A. Rao; The Bass-Murthy question: Serre dimension of Laurent polynomial extensions. Invent. Math. 81 (1985), No. 1, 189–203.

[7] Wilhelm Klingenberg: Orthogonale Gruppen ber lokalen Ringen. (German) American J. Math. 83 (1961), 281–320.

[8] Wilhelm Klingenberg; Orthogonal groups over local rings. Bull. Amer. Math. Soc. 67 (1961), 291–297.
[9] V.I. Kopeiko; The stabilization of symplectic groups over a polynomial ring. Math. USSR. Sbornik 34 (1978), 655–669.

[10] T. Y. Lam; Serre’s Conjecture. Lecture Notes in Mathematics, Vl. 635. Springer-Verlag, Berlin-New York, 1978.

[11] H. Lindel; On the Bass-Quillen conjecture concerning projective modules over polynomial rings. Invent. Math. 65 (1981–82), no. 2, 319–323.

[12] D. Popescu; Polynomial rings and their projective modules, Nagoya Math. J. 113 (1989), 121–128.

[13] Ravi A. Rao, Wilberd van der Kallen: Improved stability for K_1 and WMS_d of a non-singular affine algebra. K-theory (Strasbourg, 1992). Asterisque no. 226 (1994), 11, 411–420.

[14] A.A. Suslin; Stably Free Modules. (Russian) Math. USSR Sbornik 102 (144) (1977), no. 4, 537–550. Mat. Inst. Steklov. (LOMI) 114 (1982), 187–195, 222.

[15] A.A. Suslin; On the structure of special linear group over polynomial rings. Math. USSR. Izv. 11 (1977), 221–238.

[16] A.A. Suslin, V.I. Kopeiko; Quadratic modules and orthogonal groups over polynomial rings. Nauchn. Sem., LOMI 71 (1978), 216–250.

[17] A.A. Suslin; Cancellation for affine varieties. (Russian) Modules and algebraic groups. Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 114 (1982), 187–195, 222.

[18] R.G. Swan, Serre’s Problem. Conference on Commutative Algebra–1975, Queen’s Paper in Pure and Applied Mathematics, no. 42, (1975), 1–60.

[19] L.N. Vaserstein; On the stabilization of the general linear group over a ring. Mat. Sbornik (N.S.) 79 (121) 405–424 (Russian); English translated in Math. USSR-Sbornik. 8 (1969), 383–400.

[20] L.N. Vaserstein; Stabilization of Unitary and Orthogonal Groups over a Ring with Involution. Mat. Sbornik, Tom 81 (123) (1970) no. 3, 307–326.

[21] L.N. Vaserstein; Stable range of rings and dimensionality of topological spaces. Fuct. Anal. Appl. 5 (1971), no. 2, 102–110.

[22] L.N. Vaserstein; Stabilization For Classical Groups over Rings. (Russian) Mat. Sb. (N.S.) 93 (135) (1974), 268–295, 327.

[23] T. Vorst; The general linear group of polynomial rings over regular rings. Comm. Algebra 9 (1981) no. 5, 499–509.