Birman-Wenzl-Murakami Algebra, Topological parameter and Berry phase

Chengcheng Zhou, Kang Xue, Lidan Gou, Chunfang Sun, Gangcheng Wang, and Taotao Hu

1 School of Physics, Northeast Normal University, Changchun 130024, People’s Republic of China
2 School of Science, Changchun University of Science and Technology, Changchun, 130022, People’s Republic of China

In this paper, a 3×3-matrix representation of Birman-Wenzl-Murakami (BWM) algebra has been presented. Based on which, unitary matrices $A(\theta, \varphi_1, \varphi_2)$ and $B(\theta, \varphi_1, \varphi_2)$ are generated via Yang-Baxterization approach. A Hamiltonian is constructed from the unitary $B(\theta, \varphi)$ matrix. Then we study Berry phase of the Yang-Baxter system, and obtain the relationship between topological parameter and Berry phase.

PACS numbers: 02.40.-k, 03.65.Vf
I. INTRODUCTION

To the best of our knowledge, the Yang-Baxter equation (YBE) was initiated in solving the one-dimensional δ-interacting models [1] and the statistical models [2]. Braid algebra and Temperley-Lieb algebra (TLA) [3] have been widely used in the construction of YBE solutions [4–9] and have been introduced to the field of quantum information, quantum computation and topological computation [10–15]. The Birman-Wenzl-Murakami (BWM) algebra [16] which contain two subalgebra (Braid algebra and TLA) was first defined and independently studied by Birman, Wenzl and Murakami. Very recently [17], S.Abramsky demonstrate the connections from knot theory to logic and computation via quantum mechanics. But, the physical meaning of the topological parameter d (describing the single loop in topology) is still unclear.

The geometrical phase [18], such as Berry phase, is an important concept in quantum mechanics [19–24]. In recent years, numerous works have been attributed to Berry phase [25], because of its possible applications to quantum computation (the so-called geometric quantum computation) [26–29]. Quantum logic gates based on geometric phases have been certified in both nuclear magnetic resonance [26] and ion trap based on quantum information architectures [30]. The Ref. [26] pointed out geometric phases have potential fault tolerance when applied to quantum information processing. In 2007, Leek, P.J. et al. [31] illustrated the controlled accumulation of a geometric phase, Berry phase, in a superconducting qubit.

The Ref. [32] applied TLA as a bridge to recast 4-dimensional YBE into its 2-dimensional counterpart. The 2-dimensional YBE have an important application value in topological quantum computation [33, 34]. To date, few studies have reported 3-dimensional YBE which may have potential application values in topological quantum computation. The motivation of this paper is twofold: one is that we structure 3-dimensional YBE, the other is to study the physical meaning of topological parameter d from Berry phase. This paper is organized as follows: In Sec. 2, we introduce a specialized type BWM algebra, and present a 3×3-matrix representation of BWM algebra. In Sec. 3, we obtain unitary matrices $A(\theta, \varphi_1, \varphi_2), B(\theta, \varphi_1, \varphi_2)$ via Yang-Baxterization approach. Based on the solution, a Hamiltonian of the Yang-Baxter system is constructed, finally we study the Berry phase of this system. We end with a summary.
II. BWM ALGEBRA

As we know the Braid relations are

\[
\begin{align*}
 b_ib_{i\pm 1} &= b_{i\pm 1}b_i, \\
 b_ib_j &= b_jb_i, \quad |i - j| \geq 2,
\end{align*}
\]

(1)

where \(b_i = I \otimes \cdots \otimes I \otimes b \otimes I \otimes \cdots\). When we just consider three tensor product space, the Braid relations becomes

\[
b_{12}b_{23}b_{12} = b_{23}b_{12}b_{23},
\]

(2)

where \(b_{12} = b \otimes I, b_{23} = I \otimes b\), \(b\)-matrix is a \(N^2 \times N^2\) matrix acted on the tensor product space \(\nu \otimes \nu\), where \(N\) is the dimension of \(\nu\). It is also well known that the braid relation can be reduced to a \(N\)-dimensional braid relation \((b_{12} \to A, b_{23} \to B)\)

\[ABA = BAB.\]

(3)

Like this reduced method, we easily obtain \(N\)-dimensional reduced BWM-algebra relations from classical BWM-algebra relations. The BWM algebra \[16, 35–37\] is generated by the unit \(I\), the braid operators \(S_i\) and the TLA operators \(E_i\) and depends on two independent parameters \(\omega\) and \(\sigma\). Let us take the BWM relations as follows.

\[
\begin{align*}
 S_i - S_i^{-1} &= \omega(I - E_i), \\
 S_iS_{i+1}S_i &= S_{i+1}S_iS_{i+1}, \quad S_iS_j = S_jS_i, \quad |i - j| \geq 2, \\
 E_iE_{i\pm 1}E_i &= E_{i\pm 1}E_i, \quad E_iE_j = E_jE_i, \quad |i - j| \geq 2, \\
 E_iS_i &= S_iE_i = \sigma E_i, \\
 S_{i\pm 1}E_iS_{i\pm 1} &= E_iS_{i\pm 1}S_i = E_iE_{i\pm 1}, \\
 S_{i\pm 1}E_iS_{i\pm 1}^{-1} &= S_{i\pm 1}^{-1}E_iS_{i\pm 1}^{-1}, \\
 E_{i\pm 1}E_iS_{i\pm 1}^{-1} &= E_{i\pm 1}S_{i\pm 1}^{-1}, \quad S_{i\pm 1}E_iE_{i\pm 1} = S_{i\pm 1}^{-1}E_iE_{i\pm 1}, \\
 E_iS_{i\pm 1}^{-1}E_i &= \sigma^{-1}E_i, \\
 E_i^2 &= \left(1 - \frac{\sigma - \sigma^{-1}}{\omega}\right)E_i,
\end{align*}
\]

(4)

where \(0 \neq d = \left(1 - \frac{\sigma - \sigma^{-1}}{\omega}\right) \in \mathbb{C}\) is a topological parameter in knot theory which does not depend on the sites of the lattices.
By reducing to the N-dimensional space ($S_{12} \rightarrow A, S_{23} \rightarrow B, E_{12} \rightarrow E_A, E_{23} \rightarrow E_B$), we have:

\[
\begin{align*}
A - A^{-1} &= \omega(I - E_A), \quad B - B^{-1} = \omega(I - E_B), \\
ABA &= BAB, \\
E_A E_B E_A &= E_A, \quad E_B E_A E_B = E_B, \\
E_A A &= AE_A = \sigma E_A, \quad E_B B = BE_B = \sigma E_B, \\
ABE_A &= E_B AB = E_B E_A, \quad BAE_B = E_A BA = E_A E_B, \\
AE_B A &= B^{-1} E_A B^{-1}, \quad BE_A B = A^{-1} E_B A^{-1}, \\
E_A E_B A &= E_A B^{-1}, \quad E_B E_A B = E_B A^{-1}, \\
AE_B E_A &= B^{-1} E_A, \quad BE_A E_B = A^{-1} E_B, \\
E_A B E_A &= \sigma^{-1} E_A, \quad E_B A E_B = \sigma^{-1} E_B, \\
E_A^2 &= (1 - \frac{\sigma - \sigma^{-1}}{\omega}) E_A, \quad E_B^2 = (1 - \frac{\sigma - \sigma^{-1}}{\omega}) E_B,
\end{align*}
\]

where A, B satisfy the N-dimensional Braid relation (3), E_A, E_B satisfy the N-dimensional TLA relations

\[
\begin{align*}
E_A E_B E_A &= E_A, \quad E_B E_A E_B = E_B, \\
E_A^2 &= d E_A, \quad E_B^2 = d E_B,
\end{align*}
\]

It is interesting that Eq. (4) and Eq. (5) have the same topological parameter d.

In this paper, the A-matrix, B-matrix, E_a-matrix, E_b-matrix, $A(x)$-matrix and $B(x)$-matrix are 3×3 matrices acting on the 3-dimensional space. To the TLA relations (6), we assume E_A and E_B possess the same eigenvalues d and 0. We assume E_A is a diagonal matrix as following

\[
E_A = \begin{pmatrix}
0 & 0 & 0 \\
0 & d & 0 \\
0 & 0 & 0
\end{pmatrix}.
\]

After tedious calculation, we obtain

\[
E_B = \begin{pmatrix}
\frac{d^2 - d - 1}{d} & \frac{\sqrt{d^2 - d - 1}}{d} e^{i\varphi_1} & -\frac{\sqrt{d^2 - d - 1}}{\sqrt{d}} e^{i(\varphi_1 + \varphi_2)} \\
\frac{\sqrt{d^2 - d - 1}}{d} e^{-i\varphi_1} & \frac{1}{d} & -\frac{e^{i\varphi_2}}{\sqrt{d}} \\
-\frac{\sqrt{d^2 - d - 1}}{\sqrt{d}} e^{-i(\varphi_1 + \varphi_2)} & -\frac{e^{-i\varphi_2}}{\sqrt{d}} & 1
\end{pmatrix}.
\]
It is worth to mention that $E_B = U E_A U^{-1}$, and U is a unitary transformation matrix as follows

$$U = \begin{pmatrix}
\frac{1}{(d-1)d} & -\frac{\sqrt{d^2 - d - 1}}{d} e^{i\varphi_1} & -\frac{\sqrt{d^2 - d - 1}}{d} e^{i(\varphi_1 + \varphi_2)} \\
\frac{\sqrt{d^2 - d - 1}}{d} & \frac{1}{d} & \frac{e^{i\varphi_2}}{\sqrt{d}} \\
\frac{\sqrt{d^2 - d - 1}}{d} e^{-i(\varphi_1 + \varphi_2)} & \frac{e^{-i\varphi_2}}{\sqrt{d}} & \frac{d - 2}{d - 1}
\end{pmatrix}, \quad (9)$$

where d, φ_1 and φ_2 are reals. The parameter d is the so-called topological parameter. For simplicity, we just consider the case of $d > 0$ in this paper.

The Ref. [35] has explored S_i have 3 different eigenvalues $(q, -q^{-1}, q^{-2})$ in the BWM-algebra (i.e. Eq.(11)). The same as E_A and E_B, we assume A and B have the same eigenvalues $(q, -q^{-1}, q^{-2})$. The simplest A is

$$A = \begin{pmatrix}
qu & 0 & 0 \\
0 & q^{-2} & 0 \\
0 & 0 & -q^{-1}
\end{pmatrix}, \quad (10)$$

using the unitary transformation matrix U, we have

$$B = U A U^{-1} = \begin{pmatrix}
\frac{1}{q^2(d-1)d} & \frac{\sqrt{d^2 - d - 1}}{dq} e^{i\varphi_1} & \frac{\sqrt{d^2 - d - 1}}{q^2(d-1)\sqrt{d}} e^{i(\varphi_1 + \varphi_2)} \\
\frac{\sqrt{d^2 - d - 1}}{dq} e^{-i\varphi_1} & \frac{q^2}{d} & \frac{q}{\sqrt{d}} e^{i\varphi_2} \\
-\frac{\sqrt{d^2 - d - 1}}{q^2(d-1)\sqrt{d}} e^{-i(\varphi_1 + \varphi_2)} & \frac{q}{\sqrt{d}} e^{-i\varphi_2} & \frac{d - 2}{d - 1}
\end{pmatrix}, \quad (11)$$

where $d = q^{-1} + 1 + q$ and the parameter q is real. The matrices A and B satisfy the braid relation (i.e. Eq.(3)). Towards braid relation, in some models $\varphi_i, (i = 1, 2)$, may have a physical significance of magnetic flux. In the paper [13], it has been shown the parameters φ_i’s are related to Berry phase.

Then we can verify that $\{I, A, E_A, B, E_B\}$ satisfy the reduced BWM-algebra (i.e. Eq.(5)), with $d = q^{-1} + 1 + q$. Here we have set $\omega = q - q^{-1}$ and $\sigma = q^{-2}$. It is interesting that A, B, E_A, E_B are Hermitian matrices, and have the same similar transformation $B = U A U^{-1}, E_B = U E_A U^{-1}$, where U is unitary (i.e. $U^\dagger = U^{-1}$).

III. YANG-BAXTERIZATION, HAMILTONIAN, BERRY PHASE

In this section, A Hamiltonian is constructed from the unitary $B(\theta, \varphi)$ matrix. Then we study the Berry phase of the Yang-Baxter system, and obtain the relationship between the topological parameter and the Berry phase. We
In this paper, we focus on 3-dimensional space. The reduced relativistic YBE reads

$$\hat{R}_{12}(u)\hat{R}_{23}\left(\frac{u + v}{1 + \beta^2 uv}\right)\hat{R}_{12}(v) = \hat{R}_{23}(v)\hat{R}_{12}\left(\frac{u + v}{1 + \beta^2 uv}\right)\hat{R}_{23}(u).$$

(12)

In this paper, we focus on 3-dimensional space. The reduced relativistic YBE reads

$$A(u)B\left(\frac{u + v}{1 + \beta^2 uv}\right)A(v) = B(v)A\left(\frac{u + v}{1 + \beta^2 uv}\right)B(u).$$

(13)

Let the unitary Yang-Baxter matrix take the form

$$\begin{align*}
A(u) &= \rho(u)(I + F(u)E_A) \\
B(u) &= \rho(u)(I + F(u)E_B).
\end{align*}$$

(14)

Following Xue et al. [38], we obtain

$$\begin{align*}
F(u) &= \frac{e^{-2i\theta} - 1}{d}, \\
e^{-2i\theta} &= \frac{\beta^2 u^2 + 2i\beta u\sqrt{d^2/(4 - d^2)} + 1}{\beta^2 u^2 - 2i\beta u\sqrt{d^2/(4 - d^2)} + 1},
\end{align*}$$

(15)

where the new parameter \(\theta \) is real. Let \(\rho(u) = e^{i\theta} \). The Yang-Baxter matrix can be rewritten in the following form

$$\begin{align*}
A(\theta, \varphi_1, \varphi_2) &= e^{i\theta}I - f(\theta)E_A, \\
B(\theta, \varphi_1, \varphi_2) &= e^{i\theta}I - f(\theta)E_B,
\end{align*}$$

(16)

where \(f(\theta) = 2i\sin\theta/d \).

The Yang-Baxter matrix depends on three parameters: the first is \(\theta \) (\(\theta \) is time-independent); the others are \(\varphi_i, (i = 1, 2) \) contained in the matrix \(E \). In physics the parameter \(\varphi_1 \) and \(\varphi_2 \) are flux which depends on time \(t \). Usually take \(\varphi_i = \omega_it, (i = 1, 2) \) and \(\omega_i \) are the frequency. Operators \(A(\theta, \varphi_1, \varphi_2) \) and \(B(\theta, \varphi_1, \varphi_2) \), satisfying \(B(\theta, \varphi_1, \varphi_2) = U A(\theta, \varphi_1, \varphi_2)U^{-1} \), are unitary operators \(A(\theta, \varphi_1, \varphi_2)^\dagger = A(\theta, \varphi_1, \varphi_2)^{-1}, B(\theta, \varphi_1, \varphi_2)^\dagger = B(\theta, \varphi_1, \varphi_2)^{-1} \).

To simplify the following discussion, we will restrict attention to the case \(\varphi_1 = -\varphi_2 = \varphi \). Following Ge et al. [13], we can obtain Yang Baxter Hamiltonian through the Schrödinger evolution of the states

$$\hat{H} = i\hbar\frac{\partial B(\theta, \varphi)}{\partial t}B^\dagger(\theta, \varphi),$$

(17)

where \(\varphi \) be time dependent as \(\varphi = \omega t \) and \(\theta \) be time independent.

For convenience, we introduce the Gell-Mann matrices \(I_\lambda \) [39], a basis for \(su(3) \) algebra. Such matrices satisfy

$$[I_\lambda, I_\mu] = if_{\lambda\mu\nu}I_\nu, (\lambda, \mu, \nu = 1, 2, ..., 8),$$

where \(f_{\lambda\mu\nu} \) are the structure constants of \(su(3) \). We denote \(I_\pm = I_1 \pm iI_2 \),
\(V_\pm = I_4 \mp i I_5, U_\pm = I_6 \pm i I_7 \) and \(Y = \frac{2}{\sqrt{3}} I_8 \). Let

\[
\begin{align*}
S_+ &= \zeta (-i(d^2 - d - 1)^{1/2}(e^{-i\theta} + 2i \sin \theta d^{-2}) I_+ + id^{1/2}(e^{-i\theta} + 2i \sin \theta d^{-2}) U_-), \\
S_- &= \zeta (i(d^2 - d - 1)^{1/2}(e^{i\theta} - 2i \sin \theta d^{-2}) I_- - id^{1/2}(e^{i\theta} - 2i \sin \theta d^{-2}) U_+), \\
S_3 &= \frac{1}{2} [(1 + d - d^2)(1 - d^2)^{-1} (I_3 + \frac{Y}{2} + I_3) - (I_3 + \frac{Y}{2} - I_3) - d(1 - d^2)^{-1} (\frac{I_3}{3} - Y)) + d^{1/2}(d^2 - d - 1)^{1/2} (1 - d^2)^{-1} (V_- + V_+)],
\end{align*}
\]

where \(\zeta = \frac{d^2}{\sqrt{(d^2-1)(d^2-4)(d^2-1)\sin^2 \theta}} \). These operators satisfy the \(su(2) \) algebra relations \([S_+, S_-] = 2S_3, [S_3, S_\pm] = \pm S_\pm, (S_\pm)^2 = 0, S_\pm = S_1 \pm i S_2 \).

In terms of the operators \([18]\), the Hamiltonian Eq. \((17)\) can be recast as following

\[
\hat{H} = -4 \omega \hbar \sin \theta (d^2 - 1)^{1/2} d^{-2} (\sin \alpha \cos \beta S_1 + \sin \alpha \sin \beta S_2 + \cos \alpha S_3).
\]

Its eigenvalues are \(E_0 = 0, E_{\pm} = \mp \omega \hbar \cos \alpha \), where \(\cos \alpha = \frac{2 \sin \theta \sqrt{d^2-1}}{d^2} \), \(\beta = \varphi \), here \(d \geq 1 \). By the way, its Casimir operator is \(\kappa = \frac{1}{2} (S_+ S_- + S_- S_+) + S_3^2 \). It is easy to find the eigenvalues of \(\kappa \) are \(\frac{1}{2} (\frac{1}{2} + 1) = \frac{3}{2} \) and \(0(0 + 1) = 0 \), which correspond to spin-1/2 and spin-0. According to the definition of Berry phase, when \(\varphi(t) \) evolves adiabatically from 0 to \(2\pi \), the corresponding Berry phase is

\[
\gamma_\alpha = i \int_0^T \langle \Psi_\alpha, \frac{\partial}{\partial t} | \Psi_\alpha \rangle dt.
\]

Noting that Hamiltonian returns to its original form after the time \(T = 2\pi / \omega \), we easily obtain the corresponding Berry phases of this Yang-baxter system

\[
\begin{align*}
\gamma_0 &= 0, \\
\gamma_\pm &= \pm \pi (1 - \cos \alpha) = \pm \frac{\Omega}{2},
\end{align*}
\]

where \(\Omega = 2 \pi (1 - \cos \alpha) \) is the solid angle enclosed by the loop on the Bloch sphere. The system also equals to spin-1/2 system and spin-0 system. Substituting \(\cos \alpha = \frac{2 \sin \theta \sqrt{d^2-1}}{d^2} \) into Eq. \((21)\), we obtain \(\gamma_\pm = \pm \pi (1 - \frac{2 \sin \theta \sqrt{d^2-1}}{d^2}) \).

Substituting \(\theta \) with \(\frac{\pi}{2} - \theta \), we rewrite Berry phase as follows

\[
\gamma_\pm = \pm \pi (1 - \frac{2 \cos \theta \sqrt{d^2-1}}{d^2}).
\]

It is worth mentioning that in some papers \([13]\), the Berry phase \(\gamma_\pm = \pm \pi (1 - \cos \theta) \) of Yang-Baxter system only depends on the spectral parameter \(\theta \). It is interesting that in our paper, the Berry phases \([22]\) not only depends on the spectral parameter \(\theta \), but also depends on the topological parameter \(d \). The Berry phase (Eq. \((22)\)) reduce to \(\gamma_\pm = \pm \pi (1 - \cos \theta) \) if \(d = \sqrt{2} \). The FIG. \([1]\) which corresponds to the Berry phase \(\gamma_+ \). The FIG. \([1(a)]\) illustrate the
Berry phases $\gamma_\pm = \pi (1 - \frac{2 \cos \theta \sqrt{d^2 - 1}}{d})$ versus the topological parameter d and the spectral parameter θ. The right figure, the sectional drawings have also provided with the same values of parameters. $d = 1$ (solid line), $d = \sqrt{2}$ (dot-dashed line), $d = 2$ (dotted line), $d = 3$ (dashed line), $d = 5$ (star line).

Berry phases Eq.(22) versus the spectral parameter θ and the topological parameter d. The FIG. 1(b) illustrate the Berry phase γ_+ versus the spectral parameter θ, when d choice specific values. It is demonstrated that the Berry phase γ_+ is maximum (minimum) at parameter $\theta = (2n + 1)\pi \ (\theta = 2n\pi)$, for a given definit value of d. Where n is integer. The maximum (minimum) of γ_+ is $\pi (1 + \frac{2\sqrt{d^2 - 1}}{d}) \ (\pi (1 - \frac{2\sqrt{d^2 - 1}}{d}))$. As d increase, the maximum of γ_+ decreases, the minimum of γ_+ increases. The Berry phase γ_+ tend to a constant value π, with d approaches infinity.

IV. SUMMARY

In this paper we presented BWM-algebra (A, B, E_A, E_B) and solution of YBE ($A(\theta, \varphi_1, \varphi_2)$, $B(\theta, \varphi_1, \varphi_2)$) in 3-dimensional representation which satisfy $B = UAU^{-1}$, $E_B = UE_AU^{-1}$ and $B(\theta, \varphi_1, \varphi_2) = U A(\theta, \varphi_1, \varphi_2)U^{-1}$. The evolution of the Yang-Baxter system is explored by constructing a Hamiltonian from the unitary $B(\theta, \varphi)$ matrix. We study the Berry phase of the Yang-Baxter system, and obtain the relationship between topological parameter and Berry phase $\gamma_\pm = \pm \pi (1 - \frac{2 \cos \theta \sqrt{d^2 - 1}}{d})$. Then we compare the Berry phase of Yang-Baxter system in Ref.[13] with us, and find the topological parameter d plays a deformation role in the Berry phase. We have been discussing in this paper is still an open problem that will require a deal of further investigations.
This work was supported in part by NSF of China (Grant No.10875026)

[1] Yang, C.N.: Some Exact Results for the Many-Body Problem in one Dimension with Repulsive Delta-Function Interaction. Phys. Rev. Lett. 19, 1312 (1967); Yang, C.N.: S matrix for the one-dimensional N body problem with repulsive or attractive delta function interaction. Phys. Rev. 168, 1920 (1968).

[2] Baxter, R.J.: Exactly Solved Models in Statistical Mechanics. New York: Academic (1982); Baxter, R.J.: Partition function of the Eight-Vertex lattice model. Ann. Phys. 70, 193 (1972).

[3] Temperley, H.N.V., Lieb, E.H.: Relations between the 'Percolation' and 'Colouring' Problem and other Graph-Theoretical Problems Associated with Regular Planar Lattices: Some Exact Results for the 'Percolation' Problem. Proc. Roy. Soc. London, A 322, 251 (1971).

[4] Korepin, V.E., Bogoliubov, N.M., Izergin, A.G.: Quantum Inverse Scattering Method and Correlation Functions. Cambridge University Press (1993)

[5] Kauffman, L.H.: Knots and Physics. Singapore: World Scientific Publ Co Ltd. (1991)

[6] Yang, C.N., Ge, M.L., et al.: Braid Group, Knot Theory and Statistical Mechanics (I and II). Singapore: World Scientific Publ Co Ltd. (1989) and (1994).

[7] Baxter, R.J.: The inversion relation method for some two-dimensional exactly solved models in lattice statistics. J. Stat. Phys. 28, 1 (1982); Owczarek, A.L., Baxter, R.J.: A Class of Interaction-Round-a-Face Models and Its Equivalence with an Ice-Type Model. J. Stat. Phys. 49, 1093 (1987); Batchelor, M.T., Barber, M.N.: Spin-s quantum chains and Temperley-Lieb algebras. J. Phys. A 23, L15 (1990).

[8] Batchelor, M.T., Kuniba, A.: Temperley-Lieb lattice models arising from quantum groups. J. Phys. A 24, 2599 (1991).

[9] Li, Y.Q.: Yang Baxterization. J. Math. Phys. 34, 2 (1993).

[10] Kauffman, L.H., Lomonaco Jr, S.J.: Braiding Operators are Universal Quantum Gates. New J. Phys. 6, 413 (2004).

[11] Kitaev, A.Y.: Fault-tolerant quantum computation by anyons. Ann. Phys. 303, 2 (2003).

[12] Franko, J., Rowell, E.C., Wang, Z.: Extraspecial 2-Groups and Images of Braid Group Representations. J. Knot Theor Ramif. 15, 413 (2006).

[13] Chen, J.L., Xue, K., Ge, M.L.: Braiding transformation, entanglement swapping, and Berry phase in entanglement space. Phys. Rev. A. 76, 042324 (2007); Chen, J.L., Xue, K., Ge, M.L.: Berry phase and quantum criticality in Yang-Baxter systems. Annals of Physics 323, 2614 (2008).
[14] Sun, C.F., et al.: Thermal entanglement in the two-qubit systems constructed from the Yang-Baxter R-matrix. *International Journal of Quantum Information* **7**, 879 (2009).

[15] Wadati, M., Deguchi, T., Akutsu, Y.: Exactly solvable models and knot theory. *Phys. Rep.* **180**, 247 (1989).

[16] Birman J, Wenzl H.: Braids, link polynomials and a new algebra. *Trans. A.M.S.* **313**, 249 (1989); Murakami J.: The Kauffman Polynomial of Links and Representation Theory. *Osaka J. Math.* **24**, 745 (1987).

[17] Abramsky, S.: Temperley-Lieb Algebra: From Knot Theory to Logic and Computation via Quantum Mechanics. e-print quant-ph/0910.2737.

[18] Berry, M.V.: Quantal phase factors accompanying adiabatic changes. *Proc. R. Soc. Lond. Ser. A* **392**, 45 (1984).

[19] Aharonov, Y., Anandan, J.: Phase change during a cyclic quantum evolution. *Phys. Rev. Lett.* **58**, 1593 (1987).

[20] Sjöqvist, E., Pati, A.K., Ekert, A., Anandan, J.S., Ericsson, M., Oi, D.K.L., Vedral, V.: Geometric Phases for Mixed States in Interferometry. *Phys. Rev. Lett.* **85**, 2845 (2000).

[21] Samuel, J., Bhandari, R.: General Setting for Berry’s Phase. *Phys. Rev. Lett.* **60**, 2339 (1988).

[22] Tong, D.M., Sjöqvist, E., Kwek, L.C., Oh, C.H.: Kinematic Approach to the Mixed State Geometric Phase in Nonunitary Evolution. *Phys. Rev. Lett.* **93**, 080405 (2004).

[23] Wilczek, F., Zee, A.: Appearance of Gauge Structure in Simple Dynamical Systems. *Phys. Rev. Lett.* **52**, 2111 (1984).

[24] Korepin, V.E., Wu, A.C.T.: Adiabatic Transport Properties and BERRYS Phase in Heisenberg-Ising Ring. *International Journal of Modern Physics B* **5**, 497 (1991).

[25] Appelt, S., Wäckerle, G., Mehring, M.: Deviation from Berrys adiabatic geometric phase in a 131Xe nuclear gyroscope. *Phys. Rev. Lett.* **72**, 3921 (1994).

[26] Jones, J., Vedral, V., Ekert, A., Castagnoli, G.: Geometric quantum computation using nuclear magnetic resonance. *Nature* **403**, 869 (2000).

[27] Duan, L.M., Cirac, J.I., Zoller, P.: Geometric Manipulation of Trapped Ions for Quantum Computation. *Science* **292**, 1695 (2001).

[28] Wootters, W.K.: Entanglement of Formation of an Arbitrary State of Two Qubits. *Phys. Rev. Lett.* **80**, 2245 (1998).

[29] Ekert, A., Ericsson, M., Hayden, P., Inamori, H., Jones, J.A., Oi, D.K.L., Vedral, V.: Geometric quantum computation. *J. Mod. Opt.* **47**, 2501 (2000).

[30] Leibfried, D., et al.: Experimental demonstration of a robust, high-fidelity geometric two ion-qubit phase gate. *Nature* **422**, 412 (2003).

[31] Leek, P.J., et al.: Observation of Berry’s Phase in a Solid-State Qubit. *science* **318**, 1889 (2007).

[32] Hu, S.W., Xue, K., Ge, M.L.: Optical simulation of the Yang-Baxter equation. *Phys. Rev. A* **78**, 022319 (2008).

[33] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Sarma, S.D.: Non-Abelian anyons and topological quantum computation. *Rev. Mod. Phys.* **80**, 1083 (2008).
[34] Hikami, K.: Skein theory and topological quantum registers: Braiding matrices and topological entanglement entropy of non-Abelian quantum Hall states. *Ann. Phys.* **323**, 1729 (1987).

[35] Cheng, Y., Ge, M.L., Xue, K.: Yang-Baxterization of braid group representations. *Commun Math Phys.* **136**, 195 (1991).

[36] Ge, M.L., Xue, K.: Trigonometric Yang-Baxterization of colored R-matrix. *J. Phys. A: Math.* **26**, 281 (1993).

[37] Jones, V.F.R.: On a certain value of the Kauffman polynomial. *Commun Math Phys.* **125**, 459 (1987).

[38] Wang, G.C., et al.: Temperley-Lieb algebra, Yang-Baxterization and universal gate. *Quantum Information Processing.* **9**, 699 (2009).

[39] Pfeifer, W.: The Lie Algebras SU(N), An Introduction. Birkhauser Verlag (2003).