Analysis of Multiserver Retrial Queueing System: A Martingale Approach and an Algorithm of Solution

Vyacheslav M. Abramov

Abstract. The paper studies a multiserver retrial queueing system with \(m \) servers. Arrival process is a point process with strictly stationary and ergodic increments. A customer arriving to the system occupies one of the free servers. If upon arrival all servers are busy, then the customer goes to the secondary queue, orbit, and after some random time retries more and more to occupy a server. A service time of each customer is exponentially distributed random variable with parameter \(\mu_1 \). A time between retrials is exponentially distributed with parameter \(\mu_2 \) for each customer. Using a martingale approach the paper provides an analysis of this system. The paper establishes the stability condition and studies a behavior of the limiting queue-length distributions as \(\mu_2 \) increases to infinity. As \(\mu_2 \to \infty \), the paper also proves the convergence of appropriate queue-length distributions to those of the associated ‘usual’ multiserver queueing system without retrials. An algorithm for numerical solution of the equations, associated with the limiting queue-length distribution of retrial systems, is provided.

Keywords: Multiserver retrial queues, Queue-length distribution, Stochastic calculus, Martingales and semimartingales

AMS 2000 Subject classifications. 60K25, 60H30.

1. Introduction, description of the model, review of the literature and motivation

We study a multiserver retrial queueing system having the following structure.

- The arrival process \(A(t) \) is a point process, the increments of which form a strictly stationary and ergodic sequence of random variables.
- There are \(m \) servers, and an arriving customer occupies one of free servers.
- If upon arrival all servers are busy, then the customer goes to the secondary queue, orbit, and after some random time retries more and more to occupy a server.
- A service time of each customer is exponentially distributed random variable with parameter \(\mu_1 \).
• A time between retrials is exponentially distributed with parameter μ_2 for each customer in the orbit.

Using a martingale approach the paper provides an analysis of this system. The paper establishes the stability condition and studies a behavior of the limiting queue-length distributions as μ_2 increases to infinity. As $\mu_2 \to \infty$, the paper also proves the convergence of appropriate queue-length distributions to those of the associated ‘usual’ multiserver queueing system $A/M/m/\infty$ (without retrials), where the first parameter A in the first position of the notation denotes the arrival point process $A(t)$. In the following, by ‘usual’ multiserver queueing system we mean the abovementioned $A/M/m/\infty$ queueing system. Our asymptotic results can be applied to various problems associated with multiserver retrial queues. For example, they can be used in performance analysis of real communication systems.

Analysis of multiserver retrial queueing systems is very hard. For the $M/M/m$ retrial queueing systems, analytic results for the stationary probabilities are not simple even in the case of $m = 2$. The results associated with numerical analysis have been obtained in a large number of papers (see, e.g. Anisimov, and Artalejo [4], Artalejo, and Pozo [6], Falin [16], Neuts, and Rao [42], Stepanov [48], Wilkinson [51] and others). The methods of these papers are based on truncation of the state space for the stationary probabilities and constructing auxiliary models helping to approximate the initial system (see the review of Artalejo, and Falin [5] as well as the book of Falin, and Templeton [17] for details).

In the present paper we study a non-Markovian retrial queueing system, the input process of which is a point process with strictly stationary and ergodic increments. By point process with strictly stationary and ergodic increments we mean the following. Let $\{\xi_i\}_{i \geq 1}$ be a strictly stationary and ergodic sequence of positive random variables, and let $x_n = \sum_{i=1}^{n} \xi_i$ ($x_0 = 0$) be the corresponding sequence of points. Then, the process $X(t) = \sum_{i=1}^{\infty} I\{x_i \leq t\}$, where $I\{\Xi\}$ denotes the indicator of set Ξ, is called a point process with strictly stationary and ergodic increments. If $\{\xi_i\}_{i \geq 1}$ is a sequence of independent identically distributed random variables, then $X(t)$ is called a point process with independent identically distributed increments or renewal process.

Let $E\xi_1 = \lambda^{-1}$. Then the assumption that $A(t)$ is a point process with strictly stationary and ergodic increments means that

$$P\left\{ \lim_{t \to \infty} \frac{A(t)}{t} = \lambda \right\} = 1.$$

Along with asymptotic behavior of the limiting queue-length distribution as parameter μ_2 increases to infinity, the paper proves continuity of the limiting queue-length distributions in the sense of convergence of functional of the queue-length distribution to that of the ‘usual’ $A/M/m/\infty$ queue.

The significance of our results is motivated as follows. In the queueing literature the multiserver $M/GI/m/0$ and $GI/M/m/0$ loss queueing systems
are the systems of special attention. Both these queueing systems are known as a good model for telephone systems and has been an object of investigations during many decades. The earliest investigations of these systems were due to Palm [43] and later due to Pollatzek [44], Cohen [12], Sevastyanov [46], Takács [49], Iglehart, and Whitt [23]-[25] and others. Recently, the increasing attention has been to non-stationary multiserver loss systems (e.g. Davis, Massey, and Whitt [15], Massey, and Whitt [40]) and multiserver systems with multiple customers classes (e.g. Cohen [13], Gail, Hantler, and Taylor [18], [19], Righter [46] and others). Both these directions for multiserver queueing system are closely related to multiserver queueing systems with retrials and abandonments, which recently have been intensively studied in the literature in a framework of analysis of call centers (see Garnett, Mandelbaum, and Reiman [21], Gans, Koole, and Mandelbaum [20], Grier et al. [22], Koole, and Mandelbaum [30], Mandelbaum et al. [36]-[38] and others). In a framework of mentioned models of queues, the place of the model considered in this paper is clear. Our assumption that input process is the process with strictly stationary and ergodic increments is more general than those considered earlier. Even multiserver retrial queueing models with recurrent input are very difficult to analysis. The explicit results for the stationary distributions of these systems are unknown. The known results related to Markovian multiserver retrial queueing models are not sufficient, since the real models arising in practice not always can be good approximated by Markovian models. Note, that Choi, Chang, and Kim [11] applied a not standard MAP$_1$, MAP$_2$/M/m retrial model to cellular networks.

For such general non-Markovian models as the model considered in the paper only the stability results are an object of investigation in the literature (see e.g. Altman, and Borovkov [3] and references therein). The most relevant model is a model including both retrials and abandonments, as it has been considered in the aforementioned papers, associated with call centers. We would like to point out that such more extended model can also be studied by development of the method of this work. We hope that this will be done in the future.

The analysis of the present paper is based on martingale approach. Nowadays the martingale approach, associated with analysis of different queueing systems and network, is familiar. Among the well-known general textbooks on martingale theory such as Jacod, and Shiryaev [26], Karatzas, and Shreve [27], Liptser, and Shiryaev [34], [35], Revuz, and Yor [45], there are special textbooks on martingale theory associated with point processes and queues and networks such as Bremaud [10], Baccelli, and Bremaud [7], Whitt [50] and others. Also there is a large number of papers studying different queueing systems and networks with the aid of stochastic calculus. Traditionally, the martingale methods are used to provide weak convergence results and diffusion approximations, and the majority of papers establish such type of results (e.g. Abramov [1], Kogan, and Liptser [28], Kogan,
Liptser, and Shenfield [29], Krichagina [31], Krichagina, Liptser, and Puhal-
skii [32], Krylov, and Liptser [33], Mandelbaum, and Pats [39], Williams [52]
and others).

In some recent papers the martingale theory is used for analysis of point
processes and queue-length characteristics of queues and networks also under
the light traffic conditions (e.g. Abramov [1], [2], Kogan, and Liptser [28],
Miyazawa [41] and references therein).

In the present paper, we study a behavior of the queue-length process
under the light traffic condition for the multiserver retrial queueing system,
by using the known methods of the theory of martingales. The advantage of
the martingale approach is that, it provides a deepen analysis of the system
helping to study a more wide its extension, than the traditional methods.

The paper is structured as follows. There are 11 sections. The main re-
sults of this paper are given in Section 8. Theorem 8.1 establishes a property
of the limiting joint probabilities of the queue-length processes in the main
queue and orbit as parameter μ_2 increases to infinity. This property is then
used in Theorem 8.2 stating on the continuity property of the queue-length
processes, a convergence of the joint queue-length distribution of the multi-
server retrial queueing system to that of the one-dimensional queue-length
distribution of the ‘usual’ $A/M/m/\infty$ queueing system. Section 2 discusses
the basic equations, which are then used throughout the paper. Section 3
deduces the Doob-Meyer semimartingale decomposition of the basic equa-
tions. Section 4 studies normalized queue-length processes and establishes
the condition for stability (in the sense defined precisely in Theorem 4.1).
Section 5 derives equation for the queue-length distribution given by Theo-
rem 5.1. Section 6 is devoted to the proof of Theorem 5.1. There are two
corollaries of Theorem 5.1 given in Section 7. Sections 9 and 10 discuss al-
gorithm for numerical solution of the main system of equations. Specifically,
Section 10 provides numerical results under conditions of high retrial rate,
which enable us to discuss the results on convergence obtained in Section 8.
Concluding remarks are given in Section 11.

2. Discussion of the basic equations

All point processes considered in this paper are assumed to be right-
continuous having the left-side limits.

Consider the queue-length process of our retrial system. The number of
servers, occupied in time t, are denoted $Q_1(t)$, and respectively, $Q_2(t)$ is the
number of customers in orbit in time t. The both queue-length processes
$Q_1(t)$ and $Q_2(t)$ are assumed to be continuous in 0, $Q_1(0) = Q_2(0) = 0$,
as well as right-continuous having the left-side limits. The following two
equations describe a dynamic of the queue-length processes $Q_1(t)$ and $Q_2(t).
The first equation is

$$ (2.1) \quad Q_1(t) + Q_2(t) = A(t) - \int_0^t \sum_{i=1}^m \mathbf{1}(Q_1(s^-) \geq i) d\pi_i^{(1)}(s), $$
where \(\pi^{(1)}_i, i = 1, 2, ..., m \), are independent Poisson processes with rate \(\mu_1 \).

The second equation is

\[
Q_2(t) = \int_0^t \mathbf{1}\{Q_1(s-) = m\} dA(s)
- \int_0^t \mathbf{1}\{Q_1(s-) \neq m\} \sum_{i=1}^{\infty} \mathbf{1}\{Q_2(s-) \geq i\} d\pi^{(2)}_i(s),
\]

where \(\pi^{(2)}_i, i = 1, 2, ..., \) are independent Poisson processes with rate \(\mu_2 \).

Equations (2.1) and (2.2) can be explained as follows. The term \(\sum_{i=1}^{m} \mathbf{1}\{Q_1(s-) \geq i\} \) of the integrand of (2.1) means the number of occupied servers immediately before time \(s \) in the main queue. We use the term ‘immediately before’ keeping in mind that the point \(s \) can be a point of possible jump. Then the right-hand side of equation (2.1) for \(Q_1(t) + Q_2(t) \) includes the number of arrivals until time \(t \) minus the number of departures given by the term

\[
\int_0^t \sum_{i=1}^{m} \mathbf{1}\{Q_1(s-) \geq i\} d\pi^{(1)}_i(s).
\]

The term \(\sum_{i=1}^{\infty} \mathbf{1}\{Q_2(s-) \geq i\} \) of the second integrand of (2.2) means the number of customers in orbit immediately before time \(s \). Obviously, if there is no customer in orbit, then the second integrand of (2.2) becomes equal to 0. Next, the term \(\mathbf{1}\{Q_1(s-) \neq m\} \) of the second integrand of (2.2) means that if immediately before time \(s \) there is at least one free server in the main system, then one of the customers of the orbit queue can occupy the server in time \(s \), otherwise the integrand becomes equal to 0. The first integral of the right-hand side of (2.2) means the number of arrivals to the orbit system during the time interval \([0, t]\). Then the right-hand side of equation (2.2) for \(Q_2(t) \) includes the number of arrivals until time \(t \) to the orbit minus the number of departures from the orbit to the main queue, where the mentioned number of arrivals to the orbit is given by the first integral, and the mentioned number of departures from the orbit is given by the second one.

Notice, that the equations similar to (2.1) and (2.2), associated with time-dependent Markovian model with abandonments and retrials, has already been considered in the literature (e.g. Mandelbaum et al. [36]-[38]). However, the main emphasis of these papers was done to the analysis of fluid limits and diffusion approximations.

3. Semimartingale decomposition of the queue-length process

In this section we provide another representation for the queue-length processes by using the Doob-Meyer semimartingale decomposition (see e.g. Liptser, and Shiryaev [34], Jacod, and Shiryaev [26]). The compensators of the semimartingales associated with point processes will be provided by
'hat'. For example, the point process $A(t)$ is a semimartingale, and $\hat{A}(t)$ is its compensator. The Doob-Meyer semimartingale decomposition for some semimartingale X will be written as $X = \hat{X} + M_X$, where M_X is the notation for the local square-integrable martingale. For example, the semimartingale decomposition of $A(t)$ is written as $A(t) = \hat{A}(t) + M_A(t)$. Along with the notation M_X sometimes it is also used $M_i(t)$ or $M_{i,j}(t)$. In such cases the sense of the local square integrable martingales $M_i(t)$ or $M_{i,j}(t)$ is specially explained.

It is assumed in the paper that all point processes are adapted with respect to the filtration \mathcal{F}_t given on stochastic basis $\{\Omega, \mathcal{F}, \mathbf{F} = (\mathcal{F}_t)_{t \geq 0}, \mathbb{P}\}$.

Let us start from equation (2.1). As semimartingales, the processes $A(t)$ and $C(t) = \int_0^t \sum_{i=1}^m I\{Q_1(s-) \geq i\}d\pi_i^{(1)}(s)$ are represented as

(3.1) $A(t) = \hat{A}(t) + M_A(t),$

(3.2) $C(t) = \hat{C}(t) + M_C(t),$

The compensator $\hat{C}(t)$ has the representation

(3.3) $\hat{C}(t) = \mu_1 \int_0^t Q_1(s)ds$

(for details see Dellacherie [14], Liptser, and Shiryayev [34], [35], Theorem 1.6.1).

By virtue of (3.1), (3.2), and (3.3), for equation (2.1), we have

(3.4) $Q_1(t) + Q_2(t) = \hat{A}(t) + M_A(t) - \mu_1 \int_0^t Q_1(s)ds - M_C(t).$

Denoting $M_1(t) = M_A(t) - M_C(t)$ we obtain

(3.5) $Q_1(t) + Q_2(t) = \hat{A}(t) - \mu_1 \int_0^t Q_1(s)ds + M_1(t).$

Let us now consider equation (2.2). For the associated arrival process $D_1(t) = \int_0^t I\{Q_1(s-) = m\}dA(s)$ we have the following:

(3.6) $D_1(t) = \hat{D}_1(t) + M_{D_1}(t),$

where

(3.7) $\hat{D}_1(t) = \int_0^t I\{Q_1(s-) = m\}d\hat{A}(s)$

and

(3.8) $M_{D_1}(t) = \int_0^t I\{Q_1(s-) = m\}dM_A(s).$
For the associated departure process \(D_2(t) = \int_0^t \mathbb{I}\{Q_1(s) \neq m\} \sum_{i=1}^{\infty} \mathbb{I}\{Q_2(s) \geq i\} d\pi_i^{(2)}(s) \) we have the following:

\[
D_2(t) = \hat{D}_2(t) + M_{D_2}(t),
\]

where

\[
\hat{D}_2(t) = \mu_2 \int_0^t \mathbb{I}\{Q_1(s) \neq m\} Q_2(s) ds
\]

(see Dellacherie [14], Liptser, and Shiryayev [34], [35], Theorem 1.6.1).

Then (2.2) can be rewritten as follows:

\[
Q_2(t) = \int_0^t \mathbb{I}\{Q_1(s) - m\} d\hat{A}(s)
\]

\[- \mu_2 \int_0^t \mathbb{I}\{Q_1(s) \neq m\} Q_2(s) ds + M_2(t),
\]

where

\[
M_2(t) = M_{D_1}(t) - M_{D_2}(t).
\]

4. Normalized queue-length processes and condition for the stability

In this section we study the normalized queue-length processes

\[
q_k(t) = \frac{Q_k(t)}{t}, \quad k = 1, 2; \quad t > 0,
\]

and its asymptotic properties as \(t \to \infty \). In the following the small letters will stand for normalized processes. The notation for normalized processes corresponds to the notation of original processes given by capital letters. For example, \(\hat{a}(t) = t^{-1} \hat{A}(t); \quad M_{D_2}(t) = t^{-1} M_{D_2}(t) \) and so on.

Following this comment, the equations associated with the queue-length processes (3.5) and (3.11) can be written

\[
q_1(t) + q_2(t) = \hat{a}(t) - \frac{\mu_1}{t} \int_0^t s q_1(s) ds + m_1(t),
\]

and

\[
q_2(t) = \frac{1}{t} \int_0^t \mathbb{I}\{Q_1(s) = m\} ds + \mu_2 \int_0^t \mathbb{I}\{Q_1(s) \neq m\} s q_2(s) ds + m_2(t),
\]

Let us now study these two equations (4.2) and (4.3) as \(t \to \infty \). More accurately, let us find \(\mathbb{P} \lim \) of \(q_1(t) \) and \(q_2(t) \) as \(t \to \infty \), where \(\mathbb{P} \lim \) denotes the limit in probability.

Show that

\[
\mathbb{P} \lim_{t \to \infty} m_1(t) = 0.
\]
Indeed, because of \(m_1(t) = m_A(t) - m_C(t) \), we have

\[
\mathbb{P} \lim_{t \to \infty} m_1(t) \leq \mathbb{P} \lim_{t \to \infty} |m_A(t)| + \mathbb{P} \lim_{t \to \infty} |m_C(t)|.
\]

(4.5) Applying the Lenglart-Rebolledo inequality we obtain:

\[
\mathbb{P}\{ |m_A(t)| > \delta \} \leq \mathbb{P}\left\{ \sup_{0 < s \leq t} \left| \frac{sm_A(s)}{t} \right| > \delta \right\}
= \mathbb{P}\left\{ \sup_{0 < s \leq t} |M_A(s)| > \delta t \right\}
\leq \frac{\epsilon}{\delta^2} + \mathbb{P}\{ A(t) > \epsilon t^2 \}
= \frac{\epsilon}{\delta^2} + \mathbb{P}\left\{ \frac{A(t)}{t} > \epsilon t \right\}
\]

(4.6) The both terms of the right-hand side vanish, as \(\epsilon \) is taken sufficiently small and \(t \) increases to infinity such that \(\epsilon t \to \infty \). That is \(\mathbb{P} \lim_{t \to \infty} |m_A(t)| = 0 \).

Taking into account that

\[
\int_0^t \sum_{i=1}^m \mathbb{I}\{Q_i(s) \geq i\} d\pi_i^{(1)}(s) \leq \sum_{i=1}^m \pi_i^{(1)}(t),
\]

by virtue of the Lenglart-Rebolledo inequality we have:

\[
\mathbb{P}\{ |m_C(t)| > \delta \} \leq \mathbb{P}\left\{ \sup_{0 < s \leq t} \left| \frac{sm_C(s)}{t} \right| > \delta \right\}
= \mathbb{P}\left\{ \sup_{0 < s \leq t} |M_C(s)| > \delta t \right\}
\leq \frac{\epsilon}{\delta^2} + \mathbb{P}\left\{ \sum_{i=1}^m \pi_i^{(1)}(t) > \epsilon t^2 \right\}
= \frac{\epsilon}{\delta^2} + \mathbb{P}\left\{ \frac{1}{t} \sum_{i=1}^m \pi_i^{(1)}(t) > \epsilon t \right\}
\]

(4.8) As earlier (see reference [4.6]), now we obtain \(\mathbb{P} \lim_{t \to \infty} |m_C(t)| = 0 \). Thus, it is shown that \(\mathbb{P} \lim_{t \to \infty} m_1(t) = 0 \).

Analogously to the above, \(m_2(t) = m_{D_1}(t) - m_{D_2}(t) \). Therefore, similarly to (3.5)

\[
\mathbb{P} \lim_{t \to \infty} m_2(t) \leq \mathbb{P} \lim_{t \to \infty} |m_{D_1}(t)| + \mathbb{P} \lim_{t \to \infty} |m_{D_2}(t)|.
\]

(4.9) Notice (see [3.5]), that \(|m_{D_1}(t)| \leq |m_A(t)| \) for all \(t > 0 \). Therefore,

\[
\mathbb{P} \lim_{t \to \infty} |m_{D_1}(t)| \leq \mathbb{P} \lim_{t \to \infty} |m_A(t)| = 0.
\]

(4.10) However, both \(\mathbb{P} \lim_{t \to \infty} |m_{D_2}(t)| = 0 \) and \(\mathbb{P} \lim_{t \to \infty} |m_2(t)| = 0 \) can only be true under the additional condition \(\mathbb{P} \lim_{t \to \infty} a(t) < \mu_1 m \). Recall that according to (4.11) \(\mathbb{P} \lim_{t \to \infty} a(t) = \lambda \). Therefore, the above condition is \(\lambda < \mu_1 m \).
In order to prove \(\Pr \lim_{t \to \infty} |m_2(t)| = 0 \) and \(\Pr \lim_{t \to \infty} |m_{D_2}(t)| = 0 \) under the abovementioned additional condition \(\lambda < \mu_1 m \) let us now study equation (4.2).

Notice first that from the fact that \(\Pr \lim_{t \to \infty} |m_A(t)| = 0 \) we have

\[
\Pr \lim_{t \to \infty} \hat{a}(t) = \Pr \lim_{t \to \infty} a(t) = \lambda,
\]

since

\[
\Pr \lim_{t \to \infty} \hat{a}(t) = \Pr \lim_{t \to \infty} a(t) - \Pr \lim_{t \to \infty} m_A(t).
\]

Next, if \(\lim_{t \to \infty} t^{-1} \int_0^t \Pr\{Q_1(s) = m\} \, ds = 1 \), then by the Lebesgue dominated convergence

\[
\mathbb{E} \lim_{t \to \infty} \frac{1}{t} \int_0^t \mathbb{I}\{Q_1(s) = m\} \, ds \hat{a}(s) = \lambda,
\]

and

\[
\lim_{t \to \infty} \mathbb{E}q_2(t) = \lim_{t \to \infty} \mathbb{E}\hat{a}(t) = \lambda.
\]

(4.14) means that if \(\lim_{t \to \infty} t^{-1} \int_0^t \Pr\{Q_1(s) = m\} \, ds = 1 \), then \(\mathbb{E}q_2(t) \) increases to infinity, as \(t \to \infty \).

Let us now assume, that \(\lim_{t \to \infty} t^{-1} \int_0^t \Pr\{Q_1(s) = m\} \, ds = p < 1 \). Then, it is not difficult to prove that only \(\Pr \lim_{t \to \infty} q_2(t) = 0 \) must satisfy (4.2).

Indeed, assume that \(\Pr \lim_{t \to \infty} q_2(t) > 0 \). Then, taking into account that \(\lim_{t \to \infty} t^{-1} \int_0^t \Pr\{Q_1(s) \neq m\} \, ds = 1 - p > 0 \), for large \(t \) we obtain

\[
\int_0^t \mathbb{I}\{Q_1(s) \neq m\} sq_2(s) \, ds = O(t^2).
\]

This means that

\[
\Pr \lim_{t \to \infty} \frac{\mu_2}{t} \int_0^t \mathbb{I}\{Q_1(s) \neq m\} sq_2(s) \, ds = \infty,
\]

and therefore \(\lim_{t \to \infty} \mathbb{E}q_2(t) = -\infty \). This contradicts to the fact that \(\mathbb{E}q_2(t) \geq 0 \) for all \(t > 0 \), and therefore, only \(\Pr \lim_{t \to \infty} q_2(t) = 0 \) is a possible limit in probability, satisfying (4.3) for some unique value \(p = p^* = \lim_{t \to \infty} t^{-1} \int_0^t \Pr\{Q_1(s) = m\} \, ds \).

Thus, we proved that if \(\lim_{t \to \infty} t^{-1} \int_0^t \Pr\{Q_1(s) = m\} \, ds = p < 1 \), then \(\Pr \lim_{t \to \infty} q_2(t) = 0 \). In fact, taking into account that \(Q_2(t) \) is a cádlágu process having with probability 1 a finite number of jumps in any finite interval, from the above contradiction we have

\[
\lim_{t \to \infty} \frac{1}{t} \int_0^t \mathbb{E}Q_2(s) \, ds < \infty,
\]

and therefore

\[
\Pr \lim_{t \to \infty} \frac{1}{t} \int_0^t \mathbb{I}\{Q_2(s) < \infty\} \, ds = \lim_{t \to \infty} \frac{1}{t} \int_0^t \Pr\{Q_2(s) < \infty\} \, ds = 1.
\]
Now, using the Lenglart-Rebolledo inequality for large t we obtain

$$
P\{|m_{D_2}(t)| > \delta\} \leq P\{\sup_{0 < s \leq t} \left| \frac{sm_{D_2}(s)}{t} \right| > \delta\}
= P\{\sup_{0 < s \leq t} |M_{D_2}(s)| > \delta t\}
\leq \frac{\epsilon}{\delta^2} + P\left\{ \int_0^t I\{Q_1(s) \neq m\} sq(s)ds > \epsilon t^2 \right\}
\leq \frac{\epsilon}{\delta^2} + P\left\{ \int_0^t sq(s)ds > \epsilon t^2 \right\}
= \frac{\epsilon}{\delta^2} + P\left\{ \frac{1}{t} \int_0^t sq(s)ds > \epsilon \right\}.

(4.19)

Therefore, under the assumption that $\lim_{t \to \infty} t^{-1} \int_0^t P\{Q_1(s) = m\}ds = p < 1$, we obtain

$$
P \lim_{t \to \infty} |m_{D_2}(t)| = 0.
(4.20)

Hence, together with (4.10), under the assumption that $\lim_{t \to \infty} t^{-1} \int_0^t P\{Q_1(s) = m\}ds = p < 1$ we have

$$
P \lim_{t \to \infty} |m_2(t)| = 0.
(4.21)

Let us return to relation (4.18) under the condition $\lambda < \mu_1 m$. We have

$$
\lim_{t \to \infty} t^{-1} \sum_{l=0}^\infty \int_0^t P\{Q_2(s) = l\}ds = 1,
(4.22)

and, since $Q_1(s)$ can take values 0, 1, ..., m only, we have

$$
\lim_{t \to \infty} t^{-1} \sum_{l=0}^m \int_0^t P\{Q_1(s) = l\}ds = 1.
(4.23)

Therefore, under the condition $\lambda < \mu_1 m$,

$$
\sum_{l=0}^m \sum_{k=0}^\infty \lim_{t \to \infty} t^{-1} \int_0^t P\{Q_1(s) = l, Q_2(s) = k\}ds
= \lim_{t \to \infty} t^{-1} \int_0^t \sum_{l=0}^m \sum_{k=0}^\infty P\{Q_1(s) = l, Q_2(s) = k\}ds
= 1.
(4.24)

Thus, we have the following theorem.

Theorem 4.1. Under the condition $\lambda < \mu_1 m$ there exist

$$
\lim_{t \to \infty} t^{-1} \int_0^t P\{Q_1(s) = l, Q_2(s) = k\}ds,
$$

$l = 0, 1, \ldots, m; \ k = 0, 1, \ldots,$
5. Analysis of the limiting queue-length distributions

In the rest of the paper it is assumed that condition $\lambda < \mu_1 m$ is fulfilled, and therefore the system is stable in the sense of Theorem 4.1. Notice, that the statement of Theorem 4.1 does not mean existence of the limiting stationary probabilities as $t \rightarrow \infty$. For example, if increments of the point process $A(t)$ are lattice, then the stationary probabilities do not exist.

In this case one can speak only about appropriate fractions of time in two-dimensional states (i,j) associated with the queue-length processes $Q_1(t)$ and $Q_2(t)$. In general, we speak about

$$\lim_{t \rightarrow \infty} \frac{1}{t} \int_0^t \mathbb{P}\{Q_1(s) = i, Q_2(s) = j\} \, ds$$

rather than $\lim_{t \rightarrow \infty} \mathbb{P}\{Q_1(t) = i, Q_2(t) = j\}$. However, if the increments of the point process $A(t)$ are independent, identically distributed and non-lattice, then there exist the limiting stationary probabilities $\lim_{t \rightarrow \infty} \mathbb{P}\{Q_1(t) = i, Q_2(t) = j\}$ coinciding with (5.1). Indeed, in this case the process $Q(t) = Q_1(t) + Q_2(t)$ has a structure of regeneration process, and then the proof of this fact follows by a slight extension of arguments given in the proofs of Theorem 5 on p. 173 and Theorem 22 on p. 157 of Borovkov [9].

Let us introduce the processes

$$I_{i,j}(t) = \mathbf{1}\{Q_1(t) = i \cap Q_2(t) = j\}, \quad i = 0, 1, \ldots, m; \quad j = 0, 1, \ldots,$$

assuming that $I_{-1,j}(t) \equiv 0$ and $I_{i,-1}(t) \equiv 0$.

The jump of a point process is denoted by adding Δ. For example, $\Delta A(t)$ is a jump of $A(t)$, $\Delta \pi_k^{(1)}(t)$ is a jump of the kth Poisson process with rate μ_k etc.

Let us denote:

$$\Pi_i^{(1)}(t) = \sum_{k=1}^i \pi_k^{(1)}(t),$$

and

$$\Pi_j^{(2)}(t) = \sum_{k=1}^j \pi_k^{(2)}(t).$$
Taking into account that the jumps of all the processes $A(t)$, $\pi_k(t)$ and $\pi_l(t)$ are disjoint ($k = 1, 2, ..., m; l = 1, 2, ...$), we have the following equations:

\begin{align}
 \mathbf{I}\{Q_1(t^-) + \Delta Q_1(t) = i \cap Q_2(t) = Q_2(t^-) = j\} \\
 & = I_{i-1,j}(t^-) \Delta A(t) + I_{i+1,j}(t^-) \Delta \Pi_{i+1}^{(1)}(t) \\
 & + I_{i,j}(t^-)[1 - \Delta A(t)][1 - \Delta \Pi_i^{(1)}(t)][1 - \Delta \Pi_j^{(2)}(t)], \\
 i &= 0, 1, ..., m - 1; \\
\end{align}

(5.5)

\begin{align}
 \mathbf{I}\{Q_1(t^-) + \Delta Q_1(t) = i \cap Q_2(t^-) \neq Q_2(t) = j\} \\
 & = I_{i-1,j+1}(t^-) \Delta \Pi_{j+1}^{(2)}(t), \\
 i &= 0, 1, ..., m - 1; \\
\end{align}

(5.6)

\begin{align}
 \mathbf{I}\{Q_1(t^-) + \Delta Q_1(t) = m \cap Q_2(t) = Q_2(t^-) = j\} \\
 & = I_{m-1,j}(t^-) \Delta A(t) \\
 & + I_{m,j}(t^-)[1 - \Delta A(t)][1 - \Delta \Pi_m^{(1)}(t)]; \\
\end{align}

(5.7)

\begin{align}
 \mathbf{I}\{Q_1(t^-) + \Delta Q_1(t) = m \cap Q_2(t^-) \neq Q_2(t) = j\} \\
 & = I_{m,j-1}(t^-) \Delta A(t). \\
\end{align}

(5.8)

Then,

\begin{align}
 \Delta I_{i,j}(t) = & \mathbf{I}\{Q_1(t^-) + \Delta Q_1(t) = i \cap Q_2(t) = Q_2(t^-) = j\} \\
 & + \mathbf{I}\{Q_1(t^-) + \Delta Q_1(t) = i \cap Q_2(t^-) \neq Q_2(t) = j\} \\
 & - I_{i,j}(t^-), \\
 i &= 0, 1, ..., m; \quad j \geq 0. \\
\end{align}

(5.9)

Since

\begin{align}
 \sum_{s \leq t} \Delta I_{i,j}(s) = I_{i,j}(t) - I_{i,j}(0), \\
\end{align}

(5.10)

we have the following.
For \(i = 0, 1, \ldots, m - 1 \),

\[
I_{i,j}(t) = I_{i,j}(0) + \int_0^t \left[I_{i-1,j}(s-) - I_{i,j}(s-) \right] dA(s)
- \int_0^t I_{i,j}(s-) d\Pi^{(1)}_i(s) - \int_0^t I_{i,j}(s-) d\Pi^{(2)}_j(s)
+ \int_0^t I_{i+1,j}(s-) d\Pi^{(1)}_{i+1}(s)
+ \int_0^t I_{i-1,j+1}(s-) d\Pi^{(2)}_{j+1}(s).
\]

(5.11)

In turn, for \(i = m \) we have

\[
I_{m,j}(t) = I_{m,j}(0) + \int_0^t \left[I_{m-1,j}(s-) - I_{m,j}(s-) \right] dA(s)
- \int_0^t I_{m,j}(s-) d\Pi^{(1)}_m(s) + \int_0^t I_{m-1,j}(s-) dA(s)
+ \int_0^t I_{m-1,j+1}(s-) d\Pi^{(2)}_{j+1}(s).
\]

(5.12)

Using the Doob-Meyer semimartingale decomposition, from (5.11) and (5.12) we obtain the following equations. For \(i = 0, 1, \ldots, m - 1 \)

\[
I_{i,j}(t) = I_{i,j}(0) + \int_0^t \left[I_{i-1,j}(s-) - I_{i,j}(s-) \right] d\tilde{A}(s)
- \mu_1 i \int_0^t I_{i,j}(s) ds - \mu_2 j \int_0^t I_{i,j}(s) ds
+ \mu_1 (i + 1) \int_0^t I_{i+1,j}(s) ds
+ \mu_2 (j + 1) \int_0^t I_{i-1,j+1}(s) ds + M_{i,j}(t),
\]

where the local square integrable martingale \(M_{i,j}(t) \) has the representation

\[
M_{i,j}(t) = \int_0^t \left[I_{i-1,j}(s-) - I_{i,j}(s-) \right] d\left[A(s) - \tilde{A}(s) \right]
- \int_0^t I_{i,j}(s-) d\Pi^{(1)}_i(s) - \mu_1 i s
- \int_0^t I_{i,j}(s-) d\Pi^{(1)}_j(s) - \mu_2 j s
+ \int_0^t I_{i+1,j}(s-) d\Pi^{(1)}_{i+1}(s) - (i + 1) \mu_1 s
+ \int_0^t I_{i-1,j+1}(s-) d\Pi^{(2)}_{j+1}(s) - (j + 1) \mu_2 s.
\]

(5.13)
In turn, for \(i = m \) we have

\[
I_{m,j}(t) = I_{m,j}(0) + \int_0^t \left[I_{m-1,j}(s-) - I_{m,j}(s- \right) d\hat{A}(s) \\
- \mu_1 m \int_0^t I_{m,j}(s) ds + \int_0^t I_{m-1,j}(s) d\hat{A}(s) \\
+ \mu_2 (j + 1) \int_0^t I_{m-1,j+1}(s) ds + M_{m,j}(t),
\]

where the local square integrable martingale \(M_{m,j}(t) \) has the representation

\[
M_{m,j}(t) = \int_0^t \left[I_{m-1,j}(s-) - I_{m,j}(s-) \right] d[A(s) - \hat{A}(s)] \\
- \int_0^t I_{m,j}(s-) d[\Pi_m^{(1)}(s) - \mu_1 ms] \\
+ \int_0^t I_{m,j-1}(s-) d[A(s) - \hat{A}(s)] \\
+ \int_0^t I_{m-1,j+1}(s-) d[\Pi_j^{(2)}(s) - \mu_2 (j + 1)s].
\]

Now, we are ready to formulate and prove the theorem.

Theorem 5.1. For the queue-length processes \(Q_1(t) \) and \(Q_2(t) \) we have the following equations.

(i) In the case \(i = 0 \)

\[
\lim_{t \to \infty} \frac{1}{t} \mathbb{E} \int_0^t 1 \{Q_1(s-) = 0, Q_2(s-) = j\} dA(s) \\
= \mu_1 \lim_{t \to \infty} \frac{1}{t} \int_0^t \mathbb{P}\{Q_1(s) = 1, Q_2(s) = j\} ds \\
- \mu_2 j \lim_{t \to \infty} \frac{1}{t} \int_0^t \mathbb{P}\{Q_1(s) = 0, Q_2(s) = j\} ds.
\]
(ii) In the case $i = 1, 2, ..., m - 1$ ($m \geq 2$)

\[
\lim_{t \to \infty} \frac{1}{t} \mathbb{E} \int_0^t \left[I\{Q_1(s-) = i, Q_2(s-) = j\}
- I\{Q_1(s-) = i - 1, Q_2(s-) = j\} \right] dA(s) \\
= \mu_1(i + 1) \lim_{t \to \infty} \frac{1}{t} \int_0^t \mathbb{P}\{Q_1(s) = i + 1, Q_2(s) = j\} ds
\]

\begin{equation}
(5.18)
- \mu_1 i \lim_{t \to \infty} \frac{1}{t} \int_0^t \mathbb{P}\{Q_1(s) = i, Q_2(s) = j\} ds
- \mu_2 j \lim_{t \to \infty} \frac{1}{t} \int_0^t \mathbb{P}\{Q_1(s) = i, Q_2(s) = j\} ds
+ \mu_2(j + 1) \lim_{t \to \infty} \frac{1}{t} \int_0^t \mathbb{P}\{Q_1(s) = i - 1, Q_2(s) = j + 1\} ds.
\end{equation}

(iii) In the case $i = m$

\[
\lim_{t \to \infty} \frac{1}{t} \mathbb{E} \int_0^t \left[I\{Q_1(s-) = m, Q_2(s-) = j\}
- I\{Q_1(s-) = m - 1, Q_2(s-) = j\}
- I\{Q_1(s-) = m, Q_2(s-) = j - 1\} \right] dA(s) \\
= \mu_2(j + 1) \lim_{t \to \infty} \frac{1}{t} \int_0^t \mathbb{P}\{Q_1(s) = m - 1, Q_2(s) = j + 1\} ds
- \mu_1 m \lim_{t \to \infty} \frac{1}{t} \int_0^t \mathbb{P}\{Q_1(s) = m, Q_2(s) = j\}.
\]

\begin{equation}
(5.19)
Here in (5.17)-(5.19) it is put $I\{Q_1(t) = i, Q_2(t) = j\} = 0$ if at least one of the values i, j is equal to -1.

6. Proof of Theorem 5.1

Let us first study the case $i = 0$. From (5.13) we have

\[
P \lim_{t \to \infty} \frac{1}{t} \mathbb{E} \left(I_{0,j}(t) - I_{0,j}(0) \right) = -P \lim_{t \to \infty} \frac{1}{t} \int_0^t I_{0,j}(s-) d\tilde{A}(s)
+ P \lim_{t \to \infty} \frac{1}{t} \mu_1 \int_0^t I_{1,j}(s) ds
- P \lim_{t \to \infty} \frac{1}{t} \mu_2 j \int_0^t I_{0,j}(s) ds
+ P \lim_{t \to \infty} \frac{M_{0,j}(t)}{t}.
\]

\begin{equation}
(6.1)
The left-hand side of (6.1) is equal to zero. Therefore, rewriting (6.1) in the form $0 = -K_1 + K_2 - K_3 + K_4$, let us compute the terms of the right-hand
side. Using the Lebesgue theorem on dominated convergence we have

\[(6.2)\quad K_1 = \mathbb{P} \lim_{t \to \infty} \frac{1}{t} \int_0^t I_{0,j}(s-0) d\hat{A}(s)\]

\[= \lim_{t \to \infty} \frac{1}{t} \mathbb{E} \int_0^t I_{0,j}(s-0) d\hat{A}(s).\]

Taking into account that \(A(t)/t\) and \(\hat{A}(t)/t\) have the same limit in probability (see (4.11)), relation (6.2) can be finally rewritten as follows:

\[(6.3)\quad K_1 = \lim_{t \to \infty} \frac{1}{t} \mathbb{E} \int_0^t I\{Q_1(s) = 0, Q_2(s) = j\} d\hat{A}(s)\]

\[= \lim_{t \to \infty} \frac{1}{t} \mathbb{E} \int_0^t I\{Q_1(s) = 0, Q_2(s) = j\} [A(s) - M_A(s)]\]

\[= \lim_{t \to \infty} \frac{1}{t} \mathbb{E} \int_0^t I\{Q_1(s) = 0, Q_2(s) = j\} dA(s).\]

Next,

\[(6.4)\quad K_2 = \mathbb{P} \lim_{t \to \infty} \frac{1}{t} \mu_1 \int_0^t I_{1,j}(s) ds\]

\[= \mu_1 \lim_{t \to \infty} \frac{1}{t} \int_0^t \mathbb{P}\{Q_1(s) = 1, Q_2(s) = j\} ds.\]

Similarly,

\[(6.5)\quad K_3 = \mathbb{P} - \lim_{t \to \infty} \frac{1}{t} \mu_2 j \int_0^t I_{0,j}(s) ds\]

\[= \mu_2 j \lim_{t \to \infty} \frac{1}{t} \int_0^t \mathbb{P}\{Q_1(s) = 0, Q_2(s) = j\} ds.\]

Notice, that if \(j = 0\) then \(K_2 = 0\). Next,

\[(6.6)\quad K_4 = \mathbb{P} \lim_{t \to \infty} \left| \frac{M_{1,j}(t)}{t} \right|\]

\[\leq \mathbb{P} \lim_{t \to \infty} \left(|m_A(t)| + \left| \frac{\pi^{(1)}_1(t) - \mu_1 t}{t} \right| \right.\]

\[+ \left. |\Pi^{(2)}_{2,j}(t) - \mu_2 j t| + \left| \Pi^{(2)}_{2,j+1}(t) - \mu_2 (j+1) t \right| \right)\]

\[= 0.\]
Thus, for $i = 0$ we have the following

\[
\lim_{t \to \infty} \frac{1}{t} \mathbb{E} \int_0^t \mathbf{1}\{Q_1(s) = 0, Q_2(s) = j\}dA(s)
\]

\[
= \mu_1 \lim_{t \to \infty} \frac{1}{t} \int_0^t \mathbb{P}\{Q_1(s) = 1, Q_2(s) = j\}ds
\]

\[- \mu_2 j \lim_{t \to \infty} \frac{1}{t} \int_0^t \mathbb{P}\{Q_1(s) = 0, Q_2(s) = j\}ds.
\]

(6.7) follows.

Let us consider now the case $1 \leq i \leq m - 1 \ (m \geq 2)$. We have the following equation:

\[
\mathbb{P} \lim_{t \to \infty} \frac{1}{t} \left(I_{i,j}(t) - I_{i,j}(0) \right) = \mathbb{P} \lim_{t \to \infty} \frac{1}{t} \int_0^t I_{i-1,j}(s) d\widehat{A}(s)
\]

\[
- \mathbb{P} \lim_{t \to \infty} \frac{1}{t} \int_0^t I_{i,j}(s) d\widehat{A}(s)
\]

\[
+ \mathbb{P} \lim_{t \to \infty} \frac{1}{t} \mu_1 (i + 1) \int_0^t I_{i+1,j}(s) ds
\]

\[
- \mathbb{P} \lim_{t \to \infty} \frac{1}{t} \mu_2 j \int_0^t I_{i,j}(s) ds
\]

\[- \mu_1 i \int_0^t I_{i,j}(s) ds
\]

\[
+ \mathbb{P} \lim_{t \to \infty} \frac{1}{t} \mu_2 (j + 1) \int_0^t I_{i-1,j+1}(s) ds
\]

\[
+ \mathbb{P} \lim_{t \to \infty} \frac{M_{i,j}(t)}{t},
\]

(6.8)

The term of the left-hand side of (6.8) is equal to zero. Therefore rewriting (6.8) as $0 = K_1 - K_2 + K_3 - K_4 - K_5 + K_6 + K_7$ we have the following. Similarly to (6.8)

\[
K_1 = \lim_{t \to \infty} \frac{1}{t} \mathbb{E} \int_0^t \mathbf{1}\{Q_1(s) = i - 1, Q_2(s) = j\}dA(s),
\]

and

\[
K_2 = \lim_{t \to \infty} \frac{1}{t} \mathbb{E} \int_0^t \mathbf{1}\{Q_1(s) = i, Q_2(s) = j\}dA(s).
\]

Similarly to (6.4) and (6.5)

\[
K_3 = \mu_1 (i + 1) \lim_{t \to \infty} \frac{1}{t} \int_0^t \mathbb{P}\{Q_1(s) = i + 1, Q_2(s) = j\}ds,
\]

(6.10)

\[
K_4 = \mu_2 j \lim_{t \to \infty} \frac{1}{t} \int_0^t \mathbb{P}\{Q_1(s) = i, Q_2(s) = j\}ds,
\]

(6.12)
(6.13) \[K_5 = \mu_1 i \lim_{t \to \infty} \frac{1}{t} \int_0^t \mathbb{P}\{Q_1(s) = i, Q_2(s) = j\} ds, \]

(6.14) \[K_6 = \mu_2(j + 1) \lim_{t \to \infty} \frac{1}{t} \int_0^t \mathbb{P}\{Q_1(s) = i - 1, Q_2(s) = j + 1\} ds, \]

and similarly to (6.6)

(6.15) \[K_7 = 0. \]

Thus, for \(1 \leq i \leq m - 1\) \((m \geq 2)\) we have

(6.16) \[-\mu_1 i \lim_{t \to \infty} \frac{1}{t} \int_0^t \mathbb{P}\{Q_1(s) = i, Q_2(s) = j\} ds \]

\[-\mu_2 j \lim_{t \to \infty} \frac{1}{t} \int_0^t \mathbb{P}\{Q_1(s) = i, Q_2(s) = j\} ds \]

\[+ \mu_2(j + 1) \lim_{t \to \infty} \frac{1}{t} \int_0^t \mathbb{P}\{Q_1(s) = i - 1, Q_2(s) = j + 1\} ds. \]

(5.18) follows.

Now, consider the last case \(i = m\). We have

\[\mathbb{P} \lim_{t \to \infty} \frac{1}{t} \left(I_{m,j}(t) - I_{m,j}(0) \right) \]

\[= \mathbb{P} \lim_{t \to \infty} \frac{1}{t} \int_0^t I_{m-1,j}(s-) d\hat{A}(s) \]

\[- \mathbb{P} \lim_{t \to \infty} \frac{1}{t} \int_0^t I_{m,j}(s-) d\hat{A}(s) \]

\[+ \mathbb{P} \lim_{t \to \infty} \frac{1}{t} \int_0^t I_{m,j-1}(s-) d\hat{A}(s) \]

\[- \mu_1 m \mathbb{P} \lim_{t \to \infty} \frac{1}{t} \int_0^t [I_{m,j}(s) - I_{m,j-1}(s)] ds \]

\[+ \mu_2(j + 1) \mathbb{P} \lim_{t \to \infty} \frac{1}{t} \int_0^t I_{m-1,j+1}(s) ds \]

\[+ \mathbb{P} \lim_{t \to \infty} \frac{M_{m,j}(t)}{t}. \]

The term of the left-hand side of (6.17) is equal to zero. Therefore rewriting (6.17) as \(0 = K_1 - K_2 + K_3 - K_4 + K_5 + K_6\) analogously to the above cases
we have the following:

\[(6.18)\quad K_1 = \lim_{t \to \infty} \frac{1}{t} \mathbb{E} \int_0^t I\{Q_1(s-) = m - 1, Q_2(s-) = j\} dA(s),\]

\[(6.19)\quad K_2 = \lim_{t \to \infty} \frac{1}{t} \mathbb{E} \int_0^t I\{Q_1(s-) = m, Q_2(s-) = j\} dA(s),\]

\[(6.20)\quad K_3 = \lim_{t \to \infty} \frac{1}{t} \mathbb{E} \int_0^t I\{Q_1(s-) = m, Q_2(s-) = j - 1\} dA(s),\]

\[(6.21)\quad K_4 = \mu_1 m \lim_{t \to \infty} \frac{1}{t} \int_0^t \mathbb{P}\{Q_1(s) = m, Q_2(s) = j\} ds,\]

\[(6.22)\quad K_5 = \mu_2 (j + 1) \lim_{t \to \infty} \frac{1}{t} \int_0^t \mathbb{P}\{Q_1(s) = m - 1, Q_2(s) = j + 1\} ds,\]

\[(6.23)\quad K_6 = 0.\]

Thus, for \(i = m\), we have the following:

\[\lim_{t \to \infty} \frac{1}{t} \mathbb{E} \int_0^t \left[I\{Q_1(s-) = m, Q_2(s-) = j\} - I\{Q_1(s-) = m - 1, Q_2(s-) = j\} - I\{Q_1(s-) = m, Q_2(s-) = j - 1\} \right] dA(s)\]

\[= \mu_2 (j + 1) \lim_{t \to \infty} \frac{1}{t} \int_0^t \mathbb{P}\{Q_1(s) = m - 1, Q_2(s) = j + 1\} ds - \mu_1 m \lim_{t \to \infty} \frac{1}{t} \int_0^t \mathbb{P}\{Q_1(s) = m, Q_2(s) = j\}.\]

\[\text{(6.19)}\] follows. Theorem 5.1 is proved.

7. Special cases

Two corollaries of Theorem 5.1 are provided below. The first corollary is related to the special case when the process \(A(t)\) is Poisson. This case is well-known and can be found in Chapter 2 of the book of Falin and Templeton [17]. The second corollary is related to the case of the ‘usual’ \(A/M/m/\infty\) queue.

Corollary 7.1. If \(A(t)\) is a Poisson processes with rate \(\lambda\), then we have the following system of equations.

\[(i)\text{ In the case } i = 0\]

\[(7.1)\quad \lambda P_{0,j} = \mu_1 P_{1,j} - \mu_2 j P_{0,j}.\]
(ii) In the case \(i = 1, 2, \ldots, m - 1 \) \((m \geq 2)\)

\[
\lambda(P_{i,j} - P_{i-1,j}) = \mu_1(i + 1)P_{i+1,j} - \mu_1iP_{i,j} - \mu_2jP_{i,j} + \mu_2(j + 1)P_{i-1,j+1}.
\]

(iii) In the case \(i = m \)

\[
\lambda(P_{m,j} - P_{m-1,j} - P_{m,j-1}) = \mu_2(j + 1)P_{m-1,j+1} - \mu_1mP_{m,j}.
\]

Here in (7.1) - (7.3) we use the notation \(P_{i,j} = \lim_{t \to \infty} \mathbb{P}\{Q_1(t) = i, Q_2(t) = j\} \).

Proof. The proof of Corollary 7.1 follows easily from the statement of Theorem 5.1. Indeed, taking into account (6.3) and the fact, that when the process \(A(t) \) is Poisson with rate \(\lambda \), then we have \(\hat{A}(t) = \lambda t \). Finally, the result follows by taking into account the existence of the limiting stationary in time probabilities, that is

\[
P_{i,j} = \lim_{t \to \infty} \mathbb{P}\{Q_1(t) = i, Q_2(t) = j\}
= \lim_{t \to \infty} \frac{1}{t} \int_0^t \mathbb{P}\{Q_1(s) = i, Q_2(s) = j\} ds,
\]

\(i = 0, 1, \ldots, m; \ j = 0, 1, \ldots \)

\(\square \)

Corollary 7.2. Let \(\tilde{Q}(t) \) denote the queue-length process for the multiserver queueing system \(A/M/1/\infty \). Then we have the following system of equations.

(i) In the case \(i = 0 \)

\[
\lim_{t \to \infty} \frac{1}{t} \mathbb{E} \int_0^t \mathbb{I}\{\tilde{Q}(s-) = 0\} dA(s)
= \mu_1 \lim_{t \to \infty} \frac{1}{t} \int_0^t \mathbb{P}\{\tilde{Q}(s) = 1\} ds.
\]

(ii) In the case \(i = 1, 2, \ldots, m - 1 \) \((m \geq 2)\)

\[
\lim_{t \to \infty} \frac{1}{t} \mathbb{E} \int_0^t [\mathbb{I}\{\tilde{Q}(s-) = i\} - \mathbb{I}\{\tilde{Q}(s-) = i - 1\}] dA(s)
= \mu_1(i + 1) \lim_{t \to \infty} \frac{1}{t} \int_0^t \mathbb{P}\{\tilde{Q}(s) = i + 1\} ds
- \mu_1i \lim_{t \to \infty} \frac{1}{t} \int_0^t \mathbb{P}\{\tilde{Q}(s) = i\} ds.
\]
(iii) In the case \(i \geq m \)

\[
\lim_{t \to \infty} \frac{1}{t} \mathbb{E} \int_0^t \left[I\{ \tilde{Q}(s-) = i \} - I\{ \tilde{Q}(s-) = i - 1 \} \right] dA(s)
\]

\[
= \mu_1 m \lim_{t \to \infty} \frac{1}{t} \int_0^t \left[\mathbb{P}\{ \tilde{Q}(s) = i + 1 \} - \mathbb{P}\{ \tilde{Q}(s) = i \} \right] ds.
\]

Proof. In order to prove Corollary 7.2 notice that the queue-length process \(\tilde{Q}(t) \) satisfies the following equation

\[
\tilde{Q}(t) = A(t) - \int_0^t \sum_{i=1}^{\infty} I\{ \tilde{Q}(s-) \geq i \} d\pi_i(t),
\]

where, as earlier, \(\{ \pi_i(t) \} \) is a sequence of independent Poisson processes with rate \(\mu_1 \). Then the proof of Corollary 7.2 is analogous to that of Theorem 5.1, and based on the following equations:

\[
\Delta I_i(t) = I_{i-1}(t-) \Delta A(t) + I_{i+1}(t-) \Delta \Pi_i^{(1)}(t)
\]

\[
+ \Delta I_i(t-) [1 - \Delta A(t)] [1 - \Delta \Pi_i^{(1)}(t)] - I_i(t-),
\]

where \(I_i(t) = I\{ \tilde{Q}(t) = i \} \).

\[\square \]

8. **Asymptotic analysis of the system as \(\mu_2 \) increases to infinity**

In this section we study a behavior of the system as \(\mu_2 \) increases to infinity. Specifically we solve the following problem.

- How behave

\[
\lim_{t \to \infty} \frac{1}{t} \int_0^t \mathbb{P}\{ Q_1(s) = i, Q_2(s) = j \} ds
\]

when \(i < m, j \geq 1 \)?

The answer to the above question is given by the following theorem.

Theorem 8.1. As \(\mu_2 \to \infty \), then for all \(i = 0, 1, \ldots, m - 1 \)

\[
\sum_{j=1}^{\infty} j \left(\lim_{t \to \infty} \frac{1}{t} \int_0^t \mathbb{P}\{ Q_1(s) = i, Q_2(s) = j \} ds \right) = O(\mu_2^{-m}).
\]

Proof. Notice first, that by virtue of \(4.17 \)

\[
\sum_{i=0}^{m} \sum_{j=1}^{\infty} j \left(\lim_{t \to \infty} \frac{1}{t} \int_0^t \mathbb{P}\{ Q_1(s) = i, Q_2(s) = j \} ds \right) < \infty.
\]
Let us now start from (5.17). Dividing this equation to large parameter \(\mu_2 \) \((j \geq 1)\), we obtain

\[
\begin{align*}
\lim_{t \to \infty} \frac{1}{t} \int_0^t \mathbb{P}\{Q_1(s) = 0, Q_2(s) = j\} ds
&= \frac{\mu_1}{\mu_2} \lim_{t \to \infty} \frac{1}{t} \int_0^t \mathbb{P}\{Q_1(s) = 1, Q_2(s) = j\} ds \\
&\quad - \frac{1}{\mu_2} \lim_{t \to \infty} \frac{1}{t} \mathbb{E} \int_0^t I\{Q_1(s-) = 0, Q_2(s-) = j\} dA(s).
\end{align*}
\]

Therefore, from (8.3) we obtain

\[
\begin{align*}
\lim_{t \to \infty} \frac{1}{t} \int_0^t \mathbb{P}\{Q_1(s) = 0, Q_2(s) = j\} ds \\
&\leq \frac{C_0}{\mu_2} \lim_{t \to \infty} \frac{1}{t} \int_0^t \mathbb{P}\{Q_1(s) = 1, Q_2(s) = j\} ds,
\end{align*}
\]

with an absolute constant \(C_0 \) satisfying \(C_0 \leq \mu_1 \). Therefore,

\[
\begin{align*}
\sum_{j=1}^{\infty} \left(\lim_{t \to \infty} \frac{1}{t} \int_0^t \mathbb{P}\{Q_1(s) = 0, Q_2(s) = j\} ds \right)
&\leq \frac{C_0}{\mu_2} \sum_{j=1}^{\infty} \left(\lim_{t \to \infty} \frac{1}{t} \int_0^t \mathbb{P}\{Q_1(s) = 1, Q_2(s) = j\} ds \right).
\end{align*}
\]

Notice now that because of (1.1), as \(\mu_2 \to \infty \), the expressions

\[
\begin{align*}
\lim_{t \to \infty} \frac{1}{t} \int_0^t \mathbb{P}\{Q_1(s) = i, Q_2(s) = j\} ds,
\end{align*}
\]

and

\[
\begin{align*}
\lim_{t \to \infty} \frac{1}{t} \mathbb{E} \int_0^t I\{Q_1(s-) = i, Q_2(s-) = j\} dA(s)
\end{align*}
\]

are of the same order. Then considering equation (5.18) divided as earlier to large parameter \(\mu_2 \) \((j \geq 1)\), with the aid of induction by the same manner we obtain

\[
\begin{align*}
\sum_{j=1}^{\infty} \left(\lim_{t \to \infty} \frac{1}{t} \int_0^t \mathbb{P}\{Q_1(s) = i, Q_2(s) = j\} ds \right)
&\leq \frac{C_i}{\mu_2} \sum_{j=1}^{\infty} \left(\lim_{t \to \infty} \frac{1}{t} \int_0^t \mathbb{P}\{Q_1(s) = i + 1, Q_2(s) = j\} ds \right),
\end{align*}
\]

where \(C_i \) is an absolute constant, i.e. \(i = 1, 2, \ldots, m - 1 \) \((m \geq 2)\). The statement follows. \(\square \)

Theorem 8.1 helps us to establish the continuity theorem. Denoting

\[
J_1 = \lim_{t \to \infty} \frac{1}{t} \int_0^t \mathbb{P}\{Q_1(s) = i, Q_2(s) = j\} ds,
\]

\[
J_2 = \lim_{t \to \infty} \frac{1}{t} \mathbb{E} \int_0^t I\{Q_1(s-) = i, Q_2(s-) = j\} dA(s).
\]
and

$$J_2 = \lim_{t \to \infty} \frac{1}{t} \int_0^t \mathbb{P}\{\bar{Q}(s) = i + j\} ds,$$

we have the following.

Theorem 8.2. Let \(\mu_2 \to \infty \). Then in the cases (1) \(j = 0 \) and (2) \(i = m \) the difference between \(J_1 \) and \(J_2 \) is \(o(1) \).

Proof. It is clear that the difference between \(J_1 \) and \(J_2 \) should be studied only in the two cases mentioned in the theorem, since in other cases, as \(\mu_2 \to \infty \), \(J_1 \) tends to 0 while \(J_2 \) remains positive in general.

In the case \(j = 0 \) we have the following. When \(i = 0 \), \(5.17 \) coincides with \(7.6 \). When \(i = 1, 2, \ldots, m - 1, m \geq 2 \), from \(5.18 \) we have

$$\lim_{t \to \infty} \frac{1}{t} \mathbb{E} \int_0^t \left[\mathbb{I}\{Q_1(s-)=i, Q_2(s-)=0\} - \mathbb{I}\{Q_1(s-)=i-1, Q_2(s-)=0\} \right] dA(s)$$

$$= \mu_1(i+1) \lim_{t \to \infty} \frac{1}{t} \int_0^t \mathbb{P}\{Q_1(s)=i+1, Q_2(s)=0\} ds$$

$$- \mu_1 i \lim_{t \to \infty} \frac{1}{t} \int_0^t \mathbb{P}\{Q_1(s)=i, Q_2(s)=0\} ds$$

$$+ \mu_2 \lim_{t \to \infty} \frac{1}{t} \int_0^t \mathbb{P}\{Q_1(s)=i-1, Q_2(s)=1\} ds.$$

According to Theorem 8.1, the last term of the right hand-side vanishes as \(\mu_2 \to \infty \). Therefore the limiting relation, not containing this last term, coincides with corresponding relation of \(7.6 \).

In turn, in the case \(i = m \) and \(j \geq 1 \) from \(5.19 \) we have

$$\lim_{t \to \infty} \frac{1}{t} \mathbb{E} \int_0^t \left[\mathbb{I}\{Q_1(s-)=m, Q_2(s-)=j\} - \mathbb{I}\{Q_1(s-)=m, Q_2(s-)=j-1\} \right] dA(s)$$

$$= \mu_2(j+1) \lim_{t \to \infty} \frac{1}{t} \int_0^t \mathbb{P}\{Q_1(s)=m-1, Q_2(s)=j+1\} ds$$

$$- \mu_1 m \lim_{t \to \infty} \frac{1}{t} \int_0^t \mathbb{P}\{Q_1(s)=m, Q_2(s)=j\} ds + O\left(\frac{1}{\mu_2}\right).$$

Denoting \(Q(t) = m + Q_2(t) \), then \(8.12 \) can be rewritten

$$\lim_{t \to \infty} \frac{1}{t} \mathbb{E} \int_0^t \left[\mathbb{I}\{Q(s-)=m+j\} - \mathbb{I}\{Q(s-)=m+j-1\} \right] dA(s)$$

$$= \mu_2(j+1) \lim_{t \to \infty} \frac{1}{t} \int_0^t \mathbb{P}\{Q_1(s)=m-1, Q_2(s)=j+1\} ds$$

$$- \mu_1 m \lim_{t \to \infty} \frac{1}{t} \int_0^t \mathbb{P}\{Q(s)=m+j\} ds + O\left(\frac{1}{\mu_2}\right).$$
Now, comparison with (7.5)-(7.7) and the normalization condition enables us to conclude that

\[
\lim_{\mu_2 \to \infty} \mu_2 (j + 1) \lim_{t \to \infty} \frac{1}{t} \int_0^t \mathbb{P}\{Q_1(s) = m - 1, Q_2(s) = j + 1\} ds
\]

(8.14)

\[
= \lim_{\mu_2 \to \infty} \lim_{t \to \infty} \frac{1}{t} \int_0^t \mathbb{P}\{Q(s) = m + j + 1\} ds,
\]

and \(J_2 - J_1 = o(1)\) as \(\mu_2 \to \infty\). The theorem is proved. \(\square\)

Note, that the analogue of Theorem 8.2 for the Markovian multiserver retrial queueing system is proved in Falin, and Templeton [17].

9. An algorithm for numerical calculation of the model

The aim of this section is to provide the method for calculating

\[
\lim_{t \to \infty} \frac{1}{t} \int_0^t \mathbb{P}\{Q_1(s) = i, Q_2(s) = j\} ds.
\]

(9.1)

It is worth first noting, that approximation of (9.1) with the aid of simulation by straightforward manner is not an elementary problem. Taking \(T\) large and approximating (9.1) by

\[
\frac{1}{T} \int_0^T \mathbb{P}\{Q_1(t) = i, Q_2(t) = j\} dt
\]

(9.2)

is not realistic. For satisfactory approximation of the integral by sum it is necessary to take a small step \(\Delta\). Then number of terms should be very large, and the computational procedure becomes complicated.

A more simple way is to use the Lebesgue theorem on dominated convergence:

\[
\lim_{t \to \infty} \frac{1}{t} \int_0^t \mathbb{P}\{Q_1(s) = i, Q_2(s) = j\} ds
\]

(9.3)

\[
= \mathbb{P} \lim_{t \to \infty} \frac{1}{t} \int_0^t \mathbb{I}\{Q_1(s) = i, Q_2(s) = j\} ds.
\]

In this case, taking \(T\) large enough we estimate

\[
\frac{1}{T} \int_0^T \mathbb{I}\{Q_1(t) = i, Q_2(t) = j\} dt
\]

(9.4)

rather than (9.2). The trajectories of \(\mathbb{I}\{Q_1(t) = i, Q_2(t) = j\}\) are step-wise, and therefore the computation procedure of (9.4) with the aid of simulation is much simpler than that of (9.2).

On the other hand, paying attention that relations (5.17)-(5.19) contain the terms

\[
\lim_{t \to \infty} \frac{1}{t} \mathbb{E} \int_0^t \mathbb{I}\{Q_1(s-) = i, Q_2(s-) = j\} dA(s),
\]

(9.5)
then approximation of (9.5) by

\[(9.6) \quad \frac{1}{T} \mathbb{E} \int_0^T I\{Q_1(t-) = i, Q_2(t-) = j\} dA(t)\]

is in turn simpler than approximation of (9.4).

Indeed, (9.5) and (9.6) are the Stieltjes-type integrals. That is for a given realization of \(A(t, \omega)\) they can be represented as finite sum in the points of jump of \(A(t, \omega)\). Then, the symbol \(\mathbb{E}\) in (9.6) requires averaging of the results after a large number of realizations. By the Lebesgue theorem on dominated convergence we have

\[(9.7) \quad \lim_{t \to \infty} \frac{1}{t} \mathbb{E} \int_0^t I\{Q_1(s-) = i, Q_2(s-) = j\} dA(s) = \mathbb{P} \lim_{t \to \infty} \frac{1}{t} \int_0^t I\{Q_1(s-) = i, Q_2(s-) = j\} dA(s).\]

Therefore, for enough large \(T\) it can be taken

\[(9.8) \quad a_{i,j}(T) = \frac{1}{T} \int_0^T I\{Q_1(t-) = i, Q_2(t-) = j\} dA(t)\]

rather than (9.6). This means that it is sufficient only one long-run simulating.

The main difference between the computation procedures for (9.4) and (9.8) is the following. Whereas (9.8) requires to compute only the number of jumps in interval \((0, T)\), (9.4) takes also into account the lengths of the time intervals that the process spends in states \((i, j)\). This has no essential significance for the algorithmic complexity of the simulation program. However, the time intervals that the process spends in phase states may vary in wide bounds, that is the average time that the process spends in different states \((i, j)\) and \((k, l)\) may have a large difference. As a result, (9.4) is sensitive to these variations in the sense, that a small error for time average in specific state can result an essential error of (9.4). Particularly, (9.4) is sensitive to the behavior of the process in the boundary states \((0, i)\), associated with the case where the main queue is empty.

Hence, from the computational point of view a necessary accuracy for (9.8) can be achieved easier than that for (9.4). Thus, between two suggested approaches for approximation of (9.1), the approach based on simulating (9.8) with subsequential numerical solution of the system of equations is preferable than a more straightforward approach based merely on simulation of (9.4).

For this reason the computational procedure below is based on (9.8) rather than on (9.4).

As values \(a_{i,j}(T)\) are calculated, (5.17)-(5.19) can be approximated as follows.
(i) In the case \(i = 0 \)

\[
\mu_1 \lim_{t \to \infty} \frac{1}{t} \int_0^t \mathbb{P}\{Q_1(s) = 1, Q_2(s) = j\} ds
\]

\begin{equation}
(9.9)
\end{equation}

\[-\mu_2 j \lim_{t \to \infty} \frac{1}{t} \int_0^t \mathbb{P}\{Q_1(s) = 0, Q_2(s) = j\} ds
\approx a_{0,j}(T).
\]

(ii) In the case \(i = 1, 2, \ldots, m - 1 \)

\[
\mu_1 (i + 1) \lim_{t \to \infty} \frac{1}{t} \int_0^t \mathbb{P}\{Q_1(s) = i + 1, Q_2(s) = j\} ds
\]

\[-\mu_1 i \lim_{t \to \infty} \frac{1}{t} \int_0^t \mathbb{P}\{Q_1(s) = i, Q_2(s) = j\} ds
\]

\[-\mu_2 j \lim_{t \to \infty} \frac{1}{t} \int_0^t \mathbb{P}\{Q_1(s) = i, Q_2(s) = j\} ds
\]

\[+ \mu_2 (j + 1) \lim_{t \to \infty} \frac{1}{t} \int_0^t \mathbb{P}\{Q_1(s) = i - 1, Q_2(s) = j + 1\} ds
\approx a_{i,j}(T) - a_{i-1,j}(T).
\]

(iii) In the case \(i = m \)

\[
\mu_2 (j + 1) \lim_{t \to \infty} \frac{1}{t} \int_0^t \mathbb{P}\{Q_1(s) = m - 1, Q_2(s) = j + 1\} ds
\]

\[+ \mu_1 m \lim_{t \to \infty} \frac{1}{t} \int_0^t \mathbb{P}\{Q_1(s) = m, Q_2(s) = j\} ds
\approx a_{m,j}(T) - a_{m-1,j}(T) - a_{m,j-1}(T),
\]

where \(a_{m-1}(T) \equiv 0 \), and \(a_{-1,j}(T) \equiv 0 \).

Equations (9.9)-(9.11) are similar to those for the Markovian system. The only difference that in the case of Markovian system the values \(\lim_{t \to \infty} t^{-1} \int_0^t \mathbb{P}\{Q_1(s) = i, Q_2(s) = j\} ds \) are replaced by limiting stationary probabilities \(P_{i,j} \) (see reference [7.4]). Then, the traditional way to estimate (9.1) is based on one of the known truncation methods. For example, two different methods are described in Chapter 2 of the book of Falin, and Templeton [17]. Other method can be found in Artalejo, and Pozo [6]. However, the analysis of the above non-Markovian system by truncation method is much more difficult than in the case of Markovian system. Reduction to truncated model implies that the initial model should be replaced by state-dependent model. In the case of Markovian system, the system of equations for the new state-dependent model is based on the Chapman-Kolmogorov equations. This new system of equations is an elementary generalization of the initial system of equations. In the case of non-Markovian model, reduction to truncated model leads to cumbersome analysis, and it is not clear whether
the system of equation for truncated model is similar to its variant of the Markovian case.

The algorithm below provides numerical results remaining in a framework of the initial model. However, it is available only for the systems with ‘well-defined’ parameters, when the queue-length in orbit is not large. For example, in the case of heavy load and low retrial rate, a queue-length in orbit is large, and the present method becomes unsatisfactory.

The algorithm contains the following two steps:

- **Step 1 - initial simulation.**
 The first step enables us to obtain the values $a_{i,j}(T)$. These values are then used in equations (9.9)-(9.11). There is the finite number of equations. For the small $\epsilon = T^{-1}$, we define the number of equations W as $W = \max\{j : a_{i,j}(T) \geq \epsilon\}$. Then, according to (9.8) the value W is associated with the maximum index j for which the functional
 $\int_0^T I\{Q_1(t-) = i, Q_2(t-) = j\}dA(t)$
 takes a positive integer value. For $j > W$ the above functional is equal to 0.

- **Step 2 - solution of the equations.**
 As the values $a_{i,j}(T)$ are computed, we solve the equations and find the desired approximations (9.2) for (9.1).

Notice, that in the case where the value W is large, it is necessary to use one of truncation methods nevertheless. All numerical results obtained in the present paper are associated with the cases where W is not large, and we do not follow the truncation methods.

10. **Numerical work**

In this section a few numerical examples for simple non-Markovian retrial queueing systems is provided. Specifically, the examples are provided for two different retrial queueing systems having two servers. One of them is traditional, the $D/M/2$ retrial queueing system. Its interarrival time is equal to 1. The load of the system $\bar{\rho} = (2\mu_1)^{-1}$ varies, including low, medium and high load. The set of rates in the orbit varies similarly, including low, medium and high rates.

The other queueing system is not traditional. Interarrival times are assumed to be correlated random variables as follows. The first interarrival time, ξ_1, is uniformly distributed in interval $(0,2)$, and the $n + 1$st interarrival time is recurrently defined as $\xi_{n+1} = 2 - \xi_n, n \geq 1$. Thus, $\{\xi_n\}_{n \geq 1}$ is a strictly stationary and ergodic sequence of random variables having the uniform in $(0,2)$ distribution, and $E\xi_n = 1$. The parameters μ_1 and μ_2 of this system vary by the same manner as these parameters of the first system.
The aim to consider so not standard system is the following. *First*, the system with correlated and alternatively changed interarrival times often appears in a large number of applications, and especially in telecommunication networks. For example, such situation can occur when there are several sources, each of which sends messages by a constant deterministic interval. *Second*, our main results are related to the case of arrival point process with strictly stationary and ergodic increments, and it is interesting to compare the results obtained for this not traditional system with the corresponding results related to standard queue with usual, say deterministic, arrival.

In turn, the numerical results, obtained for the $D/M/2$ retrial queue with high retrial rate, are compared with corresponding numerical results for the 'usual' $D/M/2/\infty$ queue. The last are obtained from the known analytic representations (e.g. Borovkov [9]).

For our convenience for two-server retrial queueing systems we use the following notation

$$P_{i,j} = \lim_{t \to \infty} \frac{1}{t} \int_0^t \mathbb{P}\{Q_1(s) = i, Q_2(s) = j\} ds.$$ \hfill (10.1)

Note, that the limiting frequency $P_{i,j}$, given by \text{(10.1)}, can be thought as *steady-state* probability. In all our numerical experiments we take $T = 100,000$, and therefore $\epsilon = 0.000001$.

Our numerical analysis we start from the $D/M/2$ retrial queueing system. Table 1 is related to the case of relatively low load ($\mu_1 = 2.5$) and different retrial rates.

In the case of low retrial rate $\mu_2 = 0.1$ by simulation we obtain $W = 2$. Specifically, $a_{0.2}(100,000) > 0$, that is the value $P_{0.2}$ is positive ($P_{0.2} \approx 0.0017$). Moreover, the maximum value of column 1 is $P_{0.0} \approx 0.5988$, and the values $P_{0,j}$ are greater than the corresponding values $P_{i,j}$, for $i = 1, 2$. This enables us to conclude that a customer, who upon arrival goes to the orbit, continues to spend there a long time while the main queue is empty.

(i, j)	Column 1	Column 2	Column 3
(0,0)	0.5988	0.6333	0.6343
(0,1)	0.0151	0.0007	-
(0,2)	0.0017	-	-
(1,0)	0.3621	0.3642	0.3644
(1,1)	0.0176	0.0001	-
(2,0)	0.0013	0.0013	0.0013
(2,1)	0.0002	-	-

Table 1. The values of $P_{i,j}$ for the case of relatively low load $\mu_1 = 2.5$
Retrial rate

(i, j)	Column 1	Column 2	Column 3
(0,0)	0.0104	0.1258	0.2285
(0,1)	0.0155	0.0971	-
(0,2)	0.0308	0.0348	-
(0,3)	0.0454	0.0155	-
(0,4)	0.0512	0.0018	-
(1,0)	0.0104	0.1632	0.4675
(1,1)	0.0173	0.1471	-
(1,2)	0.0322	0.0838	-
(1,3)	0.0489	0.0097	-
(1,4)	0.0580	0.0041	-
(2,0)	0.0036	0.1883	0.2010
(2,1)	0.0071	0.0642	0.0781
(2,2)	0.0144	0.0276	0.0038
(2,3)	0.0211	0.0158	0.0008
(2,4)	0.0281	0.0024	0.0002

Table 2. The values of $P_{i,j}$ for the case of medium load $\mu_1=1.0$

In the case of medium retrial rate $\mu_2 = 1.0$ by simulation we have only $W = 1$, that is the orbit capacity does not increases 1 at the moment of arrival. From column 2 of Table 1 it is seen that the values $P_{0,1}$ and $P_{1,1}$ are sufficiently small, nevertheless $P_{0,1} > P_{1,1}$. This can be explained by effect of low load. The most of time the server is empty, and the situation, when a customer in orbit returns to the empty queue, is typical.

In the case of relatively high retrial rate $\mu_2 = 10.0$ the simulation gives $W = 0$. In column 3 of Table 1 there are only three positive values for $P_{i,j}$ which are approximately the same as steady state probabilities for the $D/M/2/\infty$ queueing system.

The next table, Table 2, is associated with the case of medium load ($\mu_1 = 1.0$). In this case the value of traffic parameter $\rho = 0.5$.

The data in column 1 of Table 2, associated with the case of relatively low retrial rate, show that the expected queue-length in orbit is relatively long. As the retrial rate increases, the expected queue-length in orbit decreases. Whereas for $\mu_2 = 0.1$ we have $W = 18$, then for $\mu_2 = 1.0$ we have $W = 8$ and for $\mu_2 = 10.0$ only $W = 6$.

In the next table, Table 3, the results for retrial queue with high retrial rate and for standard $D/M/2/\infty$ queue are compared. For the $D/M/2/\infty$ queue it is assumed that interarrival time is equal to 1. It is also assumed that $\mu_1 = 1$. Therefore the load $\rho = 0.5$. We consider the similar $D/M/2/\infty$ retrial queue with relatively high retrial rate $\mu_2 = 10.0$, and the comparison results for these two queueing systems are given in Table 3.
Retrial system	Standard system
$P_{i,j}$	P_k
$(0,0)$ 0.2285	0 0.2289
$(1,0)$ 0.4675	1 0.5423
$(2,0)$ 0.2010	2 0.1772
$(2,1)$ 0.0781	3 0.0412
$(2,2)$ 0.0038	4 0.0084
$(2,3)$ 0.0008	5 0.0017
$(2,4)$ 0.0002	6 0.0003

Table 3. The values of $P_{i,j}$ and \tilde{P}_{i+j} for the case of medium load and relatively high retrial rate.

Following the known results for the $GI/M/m/\infty$ queue given in Borovkov [9], Section 28, Theorem 10) and denoting

$$
(10.2) \quad \tilde{P}_i = \lim_{t \to \infty} \frac{1}{t} \int_0^t \mathbb{P}\{\tilde{Q}(s) = i\} ds,
$$

we have

$$
(10.3) \quad \tilde{P}_i = \frac{\lambda \tilde{p}_{i-1}}{i\mu_1}, \quad i = 1, 2, ..., m - 1,
$$

$$
(10.4) \quad \tilde{P}_i = \frac{\lambda \tilde{p}_{i-1}}{m\mu_1}, \quad i = m, m + 1, ...
$$

where λ is the reciprocal of the expected interarrival time, and

$$
(10.5) \quad \tilde{p}_i = \lim_{n \to \infty} \mathbb{P}\{\tilde{Q}(t_n) = i\},
$$

t_n is the moment of the nth jump of the point process $A(t)$ (i.e. the moment of nth arrival). The explicit representation for \tilde{p}_i in turn can be found in Borovkov [9], Section 28, Theorem 9 or in Bharucha-Reid [8].

In our case we have: $\tilde{P}_1 = \tilde{p}_0$ and $\tilde{P}_i = 0.5\tilde{p}_{i-1}$, $i = 2, 3, ...$, and by normalization condition $\tilde{P}_0=0.5(1-\tilde{p}_0)$.

In turn, $\tilde{p}_0 = U_0 - U_1$, $\tilde{p}_1 = U_1$, $p_i = r\varphi^{i-2}$, $i = 2, 3, ...$; φ is the root of equation $\log z = 2z - 2$, $\varphi \approx 0.2031$,

$$
U_0 = 1 - \frac{r}{1 - \varphi}, \quad U_1 = rC_1 \left[\frac{1}{C_2(1 - \psi_2)} \frac{2(1 - \psi_2) - 2}{2(1 - \varphi) - 2} \right],
$$

$\psi_1 = e^{-1} \approx 0.3679$, $\psi_2 = e^{-2} \approx 0.1353$, $C_1 = \psi_1(1 - \psi_1)^{-1} \approx 0.6110$, $C_2 = \psi_2(1 - \psi_2)^{-1} \approx 0.1565$,

$$
r \approx \left[\frac{1}{1 - \varphi} + \frac{2}{C_1(1 - \psi_1)} \frac{2(1 - \psi_1) - 1}{2(1 - \varphi) - 1} + \frac{1}{C_2(1 - \psi_2)} \frac{2(1 - \psi_2) - 2}{2(1 - \varphi) - 2} \right]^{-1} \approx 0.0823.
$$

Then, $U_0 \approx 0.8967$, $U_1 \approx 0.3544$.
The first 7 values of P_k, $(k = 0, 1, ..., 6)$, are in the last column of Table 3. In the second column of this table are corresponding values of $P_{i,j}$ taken from column 3 of Table II. The results of Table 3 are agreed with convergence Theorem 8.2.

We study now the cases of relatively high load, $\mu_1 = 0.6$. The the cases of high load lead to increasing queue-length in orbit, and therefore the numerical analysis becomes difficult. For example, if in addition the retrial rate is low, then the number of equations becomes large, and only special methods of analysis are necessary. For example, if $\mu_2 = 0.1$, then the initial simulation shows that $W > 50$, and the values $a_{0,0}(100,000)$, $a_{1,0}(100,000)$ and $a_{2,0}$ are negligible. At the same time, $a_{2,30} \approx 0.0055$, $a_{2,39} \approx 0.0331$. In the case of medium retrial rate as $\mu_2 = 1.0$ the number of equations is still large, $W = 30$. Here, the values $a_{0,0}(100,000) \approx 0.0014$, $a_{1,0}(100,000) \approx 0.0049$, $a_{2,0}(100,000) \approx 0.0167$. The maximum value $a_{i,j}^*(100,000)$ is achieved for $i = 2$ and $j = 4$. Namely, $a_{2,4} \approx 0.1265$. In the case of relatively high retrial rate as $\mu_2 = 10$, by initial simulation we obtain $W = 27$. However, the values $a_{i,j}(100,000)$ decreases in j, and the maximum value $a_{i,j}^*(100,000)$ is achieved for $i = 2$ and $j = 0$. Namely, $a_{2,0}(100,000) \approx 0.361$. We provide Table 4 of some values when $\mu_1 = 0.6$ and $\mu_2 = 10$. The left side of the table (columns 1 and 2) contains the values for retrial queue, while the right side of the table (columns 3 and 4) is associated with the standard multiserver queue. (The results for the standard multiserver queue in this table are obtained by the computations analogous to that of Table 3.)

The numerical analysis shows that, as load becomes high, the difference between $P_{i,j}$ and \overline{P}_{i+j} increases.

Now we provide numerical results for the described above non-standard retrial. Recall that the first interarrival time ξ_1 is uniformly distributed in $(0,2)$. The other interarrival times are determined recurrently as $\xi_{n+1} = 2 - \xi_n$. For this system we provide numerical example only under medium setting $\mu_1 = 1$ and relatively high retrial rate $\mu_2 = 10$. By initial simulation
Table 5. The values of $P_{i,j}$ for the retrial systems with not standard and deterministic arrivals

(i, j)	Not standard arrivals	Deterministic arrivals
(0,0)	0.3130	0.2285
(0,1)	0.0880	-
(1,0)	0.3436	0.4675
(1,1)	0.0420	-
(2,0)	0.2027	0.2010
(2,1)	0.0100	0.0781
(2,2)	0.0005	0.0038
(2,3)	0.0001	0.0008
(2,4)	-	0.0002

we obtain $W = 4$. This value is less than in the case of deterministic interarrival times ($W = 6$). However, whereas in the case of deterministic interarrival the values $a_{0,1}(100,000)$ and $a_{1,1}(100,000)$ were negligible, in the case of this system $a_{0,1}(100,000) \approx 0.0683$ and $a_{1,1}(100,000) \approx 0.0382$.

In Table 5 we provide the values $P_{i,j}$ computed for the retrial system with not standard arrivals (left side of the table) and deterministic arrivals (right side of the table).

The obtained results enable us to conclude, that the behavior of system with a not standard arrival differs from that with deterministic interarrival time. Specifically, in the case of the system with a not standard arrival the convergence of the abovementioned functionals to its limits seems slower than in the case of the system with deterministic interarrival time.

11. Concluding remarks

In this paper, an analysis of non-Markovian multiserver retrial queueing system is provided with the aid of the theory of martingales. The system of equations for this system is obtained, as well as the asymptotic analysis as parameter μ_2 increases to infinity is provided. The representation for the system of equations enables us to study the system numerically, where some terms of the system of equation are established by simulation. Then the system of equation is reduced to other system of equations, similar to that of Markovian multiserver retrial model. The results, obtained in the paper, enable us to study not standard models of complex telecommunication systems arising in the real life.

Acknowledgements

The author thanks both referees for careful reading of the paper and a number of significant comments and suggestions, helping substantially to improve the presentation.
References

[1] V.M.Abramov, A large closed queueing network with autonomous service and bottleneck. Queueing Systems 35 (2000) 23-54.
[2] V.M.Abramov, A large closed queueing network containing two types of node and multiple customer classes: One bottleneck station. Queueing Systems 48 (1-2) (2004) 45-73.
[3] E.Altman, and A.A.Borovkov, On the stability of retrial queues. Queueing Systems 26 (3-4)(1997) 343-363.
[4] V.V.Anisimov, and J.R.Artalejo, Approximation of multiserver retrial queues by means of generalized truncated models. Top 10 (1) (2002) 51-66.
[5] J.R.Artalejo, and G.Falin, Standard and retrial queueing systems: A comparative analysis. Revista Matematica Complutense 15 (1) (2002) 101-129.
[6] J.R.Artalejo, and M.Pozo, Numerical calculation of the stationary distribution of the main multiserver retrial queue. Annals of Operations Research 116 (2002), 41-56.
[7] F.Baccelli, and P.Bremaud, Palm Probabilities and Queues (Springer Lecture Notes in Statistics, 1986).
[8] A.T.Bharucha-Reid, Elements of the Theory of Markov Processes and Their Applications (McGraw-Hill, New York, 1960).
[9] A.A.Borovkov, Stochastic Processes in Queueing Theory (Springer-Verlag, Berlin, 1976).
[10] P.Bremaud, Point Processes and Queues: Martingale Dynamics (Springer-Verlag, New York, 1981).
[11] B.D.Choi, Y.Chang, and B.Kim, MAP$_1$, MAP$_2$/M/c retrial queue with guard channels and its application to cellular networks. Top 7 (1999) 231-248.
[12] J.W.Cohen, The full availability group of trunks with an arbitrary distribution of interarrival times and negative exponential holding time distribution. Simon Stevin, 31 (1957) 169-181.
[13] J.W.Cohen, On the M/G/2 queueing model. Stochastic Processes and Their Applications 12 (1982) 231-248.
[14] C.Dellacherie, Capacites et Processus Stochastiques (Springer-Verlag, Berlin, 1972).
[15] J.L.Davis, W.A.Massey, and W.Whitt, Sensitivity to the service time distribution in the nonstationary Erlang loss model. Management Science 41 (6) (1995) 1107-1116.
[16] G.I.Falin, Calculation of probability characteristics of a multi-line system with repeat calls. Moscow University Computational Mathematics and Cybernetics 1 (1983) 43-49.
[17] G.I.Falin, and J.G.C.Templeton, Retrial Queues (Chapman and Hall, London, 1997).
[18] H.R.Gail, S.L.Hantler, and B.A.Taylor, Analysis of a non-preemptive priority multiserver queue. Advances in Applied Probability 20 (1988) 852-879.
[19] H.R.Gail, S.L.Hantler, and B.A.Taylor, On a preemptive Markovian queue with multiple servers and two priority classes. Mathematics of Operations Research 17 (2) (1992) 364-391.
[20] N.Gans, G.Koole, and A.Mandelbaum, Telephone call centers: Tutorial, review and research prospects. Manufacturing and Service Operations Management 5 (2) (2003) 79-141.
[21] O.Garnett, A.Mandelbaum, and M.Reiman, Designing a call center with impatient customers. Manufacturing and Service Operations Management 4 (3) (2002) 208-227.
[22] N.Grier, W.A.Massey, T.McKoy, and W.Whitt, The time-dependent Erlang loss model with retrials. Telecommunication Systems 7 (1997) 229-251.
[23] D.L.Iglehart, and W.Whitt, Multiple channel queues in heavy traffic I. *Advances in Applied Probability* 2 (1) (1970) 150-177
[24] D.L.Iglehart, and W.Whitt, Multiple channel queues in heavy traffic II: Sequences, networks, and batches. *Advances in Applied Probability* 2 (2) (1970) 355-369.
[25] D.L.Iglehart, and W.Whitt, Multiple channel queues in heavy traffic III: Random server selection. *Advances in Applied Probability* 2 (2) (1970) 370-375.
[26] J.Jacod, and A.N.Shiryayev, *Limit Theorems for Stochastic Processes* (Springer-Verlag, Berlin, 1987).
[27] I.Karatzas, and S.Shreve, *Brownian Motion and Stochastic Calculus*, 2nd edn (Springer-Verlag, Berlin, 1994).
[28] Y. Kogan, and R.Sh. Liptser, Limit non-stationary behavior of large closed queueing networks with bottlenecks. *Queueing Systems* 14 (1993) 33-55
[29] Y. Kogan, R.Sh. Liptser, and M. Shenfild, State-dependent Benes buffer model with fast loading and output rates. *The Annals of Applied Probability* 5 (1995) 97-120.
[30] G.Koole, and A.Mandelbaum, Queueing models of call centers: An introduction. *Annals of Operations Research* 113 (2002) 41-59.
[31] E.V.Krichagina, Asymptotic analysis of queueing networks (martingale approach). *Stochastics and Stochastic Reports* 40 (1992) 43-76.
[32] E.V. Krichagina, R.Sh.Liptser, and A.Puhalskii, Diffusion approximation for the system with a queue-dependent input and arbitrary service. *Theory of Probability and Its Applications* 33 (1988) 124-135.
[33] N.V.Krylov, and R.Liptser, On diffusion approximation with discontinuous coefficients. *Stochastic Processes and Their Applications* 102 (2002) 235-264.
[34] R.Sh.Liptser, and A.N.Shiryayev, *Statistics of Random Processes*, Vols. I, II (Springer-Verlag, Berlin, 1977, 1978).
[35] R.Sh.Liptser, and A.N.Shiryayev, *Theory of Martingales* (Kluwer, Dordrecht, 1989).
[36] A.Mandelbaum, W. A.Massey, M. I.Reiman, and B.Rider, Time varying multiserver queues with abandonment and retrials, In *Proc. 16th Intern. Teletraffic Congress*, P.Key and D.Smith eds, Elsevier, pp. 355-364, 1999.
[37] A. Mandelbaum, W.A. Massey, M.I. Reiman, and A.L. Stolyar, Waiting time asymptotics for time varying multiserver queues with abandonment and retrials. In: *Thirty-seventh Annual Allerton Conference*, 1999, pp. 1095-1104.
[38] A.Mandelbaum, W.A. Massey, M.Reiman, B.Rider, and A.Stolyar, Queue-lengths and waiting times for multiserver queues with abandonment and retrials. In: *Selected Proceedings of the Fifth INFORMS Telecommunications Conference*, 2000.
[39] A.Mandelbaum, and G.Pats, State-dependent stochastic networks: Part I. Approximations and applications with continuous diffusion limits. *The Annals of Applied Probability* 8 (1998) 569-646.
[40] W.A.Massey, and W.Whitt, An analysis of the modified-offered-load approximation for the non-stationary Erlang loss model. *The Annals of Applied Probability* 4 (1994) 1145-1160.
[41] M.Miyazawa, Rate conservation laws: A survey. *Queueing Systems* 15 (1994) 1-58.
[42] M.F.Neuts, and B.M.Rao, Numerical investigation of multiserver retrial model. *Queueing Systems* 7 (1990) 169-190.
[43] C.Palm, Intensit"atschwankungen im Fernsprechverkehr. *Ericsson Technics* 44 (1943) 1-189.
[44] F.Pollaczek, Generalisation de la theorie probabiliste des systemes telephoniques sans dispositif d’attente. *Comptes Rendus de l’Academie des Sciences* (Paris) 236 (1953) 1469-1470.
[45] D.Revuz, and M.Yor, Continuous Martingales and Brownian Motion, 3rd edn (Springer-Verlag, Berlin, 1999).
[46] R.Righter, Expulsion and scheduling control for multiclass queues with heterogeneous servers. Queueing Systems 34 (2000) 289-300.
[47] B.A.Sevastyanov, An ergodic theorem for Markov processes and its application to telephone systems with refusals. Theory of Probability and Its Applications 2 (1957) 104-112.
[48] S.N.Stepanov, Markov models with retrials: The calculation of stationary performance measures based on the concept of truncation. Mathematical and Computing Modelling 30 (1999) 207-228.
[49] L.Takács, On a probability problem concerning telephone traffic. Acta Mathematica Academia Scientiarum Hungaricae 8 (1957) 319-324.
[50] W.Whitt, Stochastic Process Limits: An Introduction to Stochastic Process Limits and Their Application to Queues (Springer-Verlag, Berlin, 2002).
[51] R.I.Wilkinson, Theories for toll traffic engineering in USA. Bell System Technical Journal 35 (1956) 421-514.
[52] R.J.Williams, On approximation of queueing networks in heavy traffic. In: Stochastic Networks. Theory and Application, eds. F.P.Kelly, S.Zachary, I.Ziedins (Oxford Univ. Press, Oxford, 1996), pp. 35-56.

School of Mathematical Sciences, Monash University, Clayton, Victoria 3800, Australia
E-mail address: Vyacheslav.Abramov@sci.monash.edu.au