Marine fungi showing multifunctional activity against human pathogenic microbes and cancer

Fuad Ameen1*, Saleh AlNAdhari2, Ali A. Al-Homaidan1

1 Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia, 2 Deanship of Scientific Research, King Saud University, Riyadh, Saudi Arabia

* fuadameen@ksu.edu.sa

Abstract

Multifunctional drugs have shown great promise in biomedicine. Organisms with antimicrobial and anticancer activity in combination with antioxidant activity need further research. The Red Sea and the Arabian Gulf coasts were randomly sampled to find fungi with multifunctional activity. One hundred strains (98 fungi and 2 lichenized forms) were isolated from 15 locations. One-third of the isolates inhibited clinical bacterial (Staphylococcus aureus, Bacillus subtilis, Vibrio cholerae, Salmonella typhi, S. paratyphi) and fungal pathogens (Talaromyces marneffei, Malassezia globose, Cryptococcus neoformans, Candida albicans, Aspergillus fumigatus) and four cancer cell lines (Hep G2 liver, A-549 lung, A-431 skin, MCF 7 breast cancer). Bacterial and cancer inhibition was often accompanied by a high antioxidant activity, as indicated by the principal component analysis (PCA). PCA also indicated that fungal and bacterial pathogens appeared to be inhibited mostly by different marine fungal isolates. Strains with multifunctional activity were found more from the Red Sea than from the Arabian Gulf coasts. The highest potential for multifunctional drugs were observed for Acremonium sp., Acrocalymma sp., Acrocalymma africana, Acrocalymma medicaginis (activity reported for the first time), Aspergillus sp. Cladosporium oxysporum, Emericellopsis alkaline, Microdochium sp., and Phomopsis glabrae. Lung, skin, and breast cancers were inhibited 85%–97% by Acremonium sp, while most of the isolates showed low inhibition (ca 20%). The highest antifungal activity was observed for Acremonium sp., Diaporthe hubeiensis, Lasiodiplodia theobromae, and Nannizia gypsea. One Acremonium sp. is of particular interest to offer a multifunctional drug; it displayed both antifungal and antibacterial activity combined with high antioxidant activity (DPPH scavenging 97%). A. medicaginis displayed combined antibacterial, anticancer, and antioxidant activity being of high interest. Several genera and some species included strains with both high and low biological activities pointing out the need to study several isolates to find the most efficient strains for biomedical applications.
1. Introduction

Microbial metabolites are continuously studied to solve the problem of drug resistant microbes and cancer. High expectations have been set for novel multifunctional drugs due to their high efficacy [1, 2]. Multifunctional metabolites are offered by plants, bacteria, and fungi [3, 4] of which metabolic activity is generally high in extreme environmental conditions [5]. High metabolic activities of fungi have been observed, for instance, in desert soils [6]. Marine habitat is another extreme environment studied as a source of biologically active fungi, as reviewed several times [7–11] recently.

The potential of marine fungi in biomedicine is diverse. Several marine fungal species have been shown to inhibit cancer cell growth [12–14]. The enormous potential of marine fungi to produce antibiotic compounds was reviewed recently [15, 16]. A total of 133 anti-inflammatory compounds produced by marine fungi have been reported [17]. Antifungal compounds produced by marine fungi have also been reported, although much less than antibacterial compounds [9]. Even viruses are inhibited by marine fungal metabolites [18].

Most reports show one or two biological activities at a time. However, recent advances in biomedicine support a new efficient treatment strategy; to combine antioxidants with other biomedicines [19, 20]. Therefore, the organisms offering antioxidant activity in combination with antimicrobial activity and/or cytotoxicity are of great interest. Research on organisms offering these multifunctional drugs is in its infancy and more research on potential organisms producing metabolites that could be used as novel multifunctional drugs is needed.

We aimed to find marine fungi that have high activity against pathogenic bacteria, fungi, and cancer cells in combination with high antioxidant activity. These isolates would offer multifunctional drugs for further biomedical studies. The coast of the two northernmost tropical seas, namely the Red Sea and the Arabian Gulf were sampled. Both seas provide harsh conditions. The Red Sea is one of the most saline and warmest waterbodies, and the Arabian Gulf is the hottest sea in the world [21]. Marine fungi were isolated from 15 different locations on the coasts of the seas around the Arabian Peninsula and studied for their antioxidant activity as well as their activities against both bacterial and fungal pathogens and cancer cells.

2. Materials and methods

2.1 Sample collection sites and sampling

Fifteen sites on the coasts of the Arabian Gulf (4 sites) and the Red sea (11 sites) were sampled at low tide. The sites were in Sametah (S), Jazan (S), Ras Al-Turfa (S), Farasan island (S), Qunfidah (S), AlLith (S), Jeddah (W), Rabigh (W), Yanbue (W), Umlajj (N), Alwajh (N), Hofuf (E), Dammam (E), Jubail (E), and Khafji (E) (Fig 1). One water sample (50 mL) was collected from each site, around 450 m away from the shoreline at the depth of 20 cm into a sterilized amber coloured container and transported to the laboratory of Botany and Microbiology, College of Science, King Saud University, Saudi Arabia in November 2021.

The water temperature ranges on the Red Sea coasts between 23˚C and 30˚C, salinity between 36 PSU and 38 PSU and the pH is 8.1 [22]. The respective values in the Arabian Gulf are 27˚C- 33˚C, 39.5–42 PSU and 8.2.

2.2 Isolation of fungi and pure culture preparation

The seawater samples were serially diluted (10⁴ or 10⁵), and 1 mL was spread on potato dextrose agar (PDA) plates, including antibiotic chloramphenicol 200 µg/L. Plates were incubated at 25˚C for 7 days in a laboratory incubator (Remi Lab World). Individual colonies (isolates) were selected based on their morphological characteristics. The selected isolates were sub-
Fig 1. Location map of the study area (The map is modified from Google maps).

https://doi.org/10.1371/journal.pone.0276926.g001
cultured on PDA plates and preserved for further studies. Fungal mycelia were transferred into sterile Eppendorf tubes containing 1 mL, 30% (v/v) sterile glycerol and incubated at 28˚C for 5 days and then stored at -20˚C.

2.3 Molecular identification of fungi

The DNA extraction was carried out as described by Ameen et al. [23]. Fungal mycelia were collected into a 2 mL centrifugation tube containing 500 μL of extraction buffer (25 mM EDTA, 0.5% SDS 200 mM, 250 mM NaCl, Tris-HCl, pH 7.5) and centrifuged at 13,000 g for 1 min. The supernatant was transferred into a fresh centrifugation tube followed by the addition of an equal volume of an ice-cold phenol: chloroform mixture (1:1) and centrifuged at 13,000 g for 2 min. The supernatant was collected into another fresh tube with 300 μL of chloroform, then centrifuged at 13,000 g for 2 min (repeated again) and then the supernatant was transferred into a fresh tube with 300 μL ice-cold isopropanol, gently mixed and kept in water bath at 80˚C for 30 min. The mixture was then centrifuged at 13,000 g for 5 min, the resultant pellet was collected and washed with 70% ice-cold ethanol, and resuspended in 1 mL sterile water. The yield and quality of the DNA were assessed by agarose gel electrophoresis.

The DNA was amplified using ITS1 (5’-TCCGTAGGTGAACCTGCGG-3’) and ITS4 (5’-TCCTCCGCTTATTGATATGC-3’) primers [24] using 5 min initial denaturation (95˚C), 1 min denaturation for 35 cycles (94˚C), 30 s annealing (55˚C), 2 min extension (72˚C), and 10 min final extension (72˚C). The sequencing was completed using BigDye terminator sequence kit (Applied Biosystems) and the sequence identification was carried out using NCBI (The National Center for Biotechnology Information, https://www.ncbi.nlm.nih.gov/) databases (BLAST software). The alignments were completed with T-Coffee algorithm (https://www.ebi.ac.uk/, EMBL-EBI, Cambridgeshire, UK). The phylogenetic analysis was carried out using the neighbor-joining method in the MEGA 5.2 program. The sequences were deposited to GenBank. The purified marine fungi are preserved at the university storage.

2.4 Metabolite extraction

Fungal metabolites (crude extracts) were collected as described by Ameen et al. [23]. Fungi were first inoculated into conical flasks (2 L) with PDB and incubated for 30 days at 28˚C in a static condition. Culture broth was filtrated using Whatman No.1 filter paper and the filtrate was extracted with an equal volume of ethyl acetate. Then, the solution was evaporated using a rotary evaporator (Lab Tech) and dissolved in methanol/DMSO (100 μg/μL). The extract was membrane filtered (0.22 μm) for further studies. All analyses were carried out as three replicates.

2.5 Antimicrobial activity

The antibacterial test was carried out using a modified Bauer- Kirby method [25]. Five clinical human bacterial pathogens, Staphylococcus aureus (ATCC 6538), Bacillus subtilis (ATCC 6633), Vibrio cholerae (ATCC 14033), Salmonella typhi (ATCC 6539), and S. paratyphi (ATCC 9150), the microbial cultures were obtained from reference culture collection, Department of Botany & Microbiology, King Saud University, were grown on Mueller-Hinton (HiMedia) agar plates. The paper discs impregnated with the crude extracts of marine fungi (100 μg/μL) were placed on agar and the inhibition zones were measured (Equation number-1) after incubation in static conditions at 37˚C overnight. Antibiotics ampicillin and tetracycline, and fungicides gentamycin and fluconazole (5 μg/mL) were used as positive controls.

The antifungal test was carried out as described by Satika et al. [26]. Five fungal pathogens, namely Aspergillus fumigatus (ATCC 46645), Cryptococcus neoformans (ATCC 32045),
Candida albicans (ATCC 10231), Malassezia globosa (ATCC 4612), and Talaromyces marneffei (ATCC 18224), provided by the university above, were used. As above, the plates with the paper discs were incubated in static conditions at 28°C for 5 days.

2.6 Antioxidant activity analysis
The total reducing power of the crude extracts was studied as described by Oyaizu [27]. The crude extracts and controls were mixed with 0.5 mL potassium hexacyanoferrate (1%) and 0.5 mL phosphate buffer (0.2 M, pH 6.6) and incubated in a water bath (50°C) for 20 min. Then, 10% of TCA (0.5 mL) was added to end the reaction. 1 mL of the upper portion was collected in a separate tube and 0.1 mL ferric chloride solution (0.1%) and 1 mL distilled water were added. After a 10 min incubation at room temperature, the absorbance was measured at 700 nm. The crude extract without marine fungi were used as the negative control and citric acid as the positive control.

Free radical scavenging activity was studied using DPPH assay (2,2-diphenyl-1-picrylhydrazyl) as described by Gang et al. [28]. Crude extracts and controls were incubated at 37°C in darkness for 30 min and the absorbance was measured at the wavelength of 517 nm. The crude extract without marine fungi were used as the negative control and citric acid as the positive control.

The scavenging percentage was calculated using the following formula.

\[
\text{Inhibition percentage (\%) = } \left(\frac{\text{OD}_{\text{Control}} - \text{OD}_{\text{Sample}}}{\text{OD}_{\text{Control}}} \right) \times 100
\]

where optical density (OD) is the absorbance of the sample.

2.7 Cytotoxicity analysis
The cytotoxicity of the crude extracts was studied using the 3-(4, 5-dimethylthiazole-2-yl)-2, 5-diphenyl tetrazolium bromide (MTT) assay as described by [29]. Cell lines MCF-7 (breast cancer), Hep G2 (liver cancer), A-431 (skin cancer), and A549 (lung cancer) stored at the cell collection center in Riyadh (ECACC Cell lines, Merck) were used. Cells were maintained in a DMEM medium (Dulbecco’s Modified Eagle’s medium) with 10% FBS where 250 mg/L streptomycin, 100 mg/L penicillin, and 2 mM glutamine were added before the incubation at 37°C in a CO₂ incubator (5%). The cell concentration of 5 × 10⁴ cells/well was used (tissue culture grade 96 wells plate flat bottom) in 100 μL DMEM medium and incubated at 37°C for 24 h in a CO₂ incubator (5%). After the incubation, the crude extracts and control (without marine fungus) (50 μg/mL) and cisplatin (5 μg/mL) as a positive control were added to the wells and incubated for 48 h. MTT (10 μL, 0.5 mg/mL) was added to each well and incubated for 2 h at 37°C for the removal of PBS (phosphate-buffered saline). The DMSO (dimethyl sulfoxide, 100 μL) was added to each well and the absorbance was measured at 595 nm using an ELISA (enzyme-linked immunosorbent assay) reader. The inhibition percentage was calculated as above.

2.8 Data analysis
Principal component analysis using a correlation matrix was carried out for the whole dataset using FactoMineR [30] package in RStudio Desktop version 2022.02.0+443 [31]. The means of the three replicates were used making 100 observations and 16 variables altogether.
3. Results

3.1 Fungal species

One hundred isolates, including 31 marine fungal species, were identified (GenBank accession number in Table 1) and their phylogenetic tree is presented (Fig 2). The most common taxon was Cladosporium sp., isolated from almost all sites, from 13 out of 15 sampled sites. The most common Cladosporium species were C. corybiicola, C. cladosporioids and C. tenuissium isolated from five different sites. While many species were found in many sites, certain species such as Phomopsis glabrae and C. perangustum were found only in one site on the Red Sea coast. D. hubeiensis and Heydenia alpina were found only on the northern Red Sea coast.

Two isolates of the lichen Usnea, which is a symbiosis of algae and fungi, was found from the rocky shores of the sea. The species Usnea was obtained by the extraction protocol carried out and the identification of the sequence was obtained from NCBI. The species cultured for the activities measurements was an unidentified mycobiont, which belongs to Ascomycota. The mycobiont is called Usnea herein.

3.2 PCA

The two first axes of PCA explained 72% of the variation. PC1 explained 50%, and PC2 explained 22% of the variation, the eigenvalues being 8.1 and 3.5, respectively.

The loadings of the PC1-axis were relatively high (> 0.5) for all variables except for reducing power, as indicated by the loadings plot (Fig 3a). The PC1 loadings were highest for DPPH (0.85) and for all four cancer types (0.80–0.78). The inhibition of bacterial pathogens had loadings varying from 0.78 to 0.69. The inhibition of fungal pathogens had slightly lower loadings varying from 0.59 to 0.72. We interpreted that PC1 describes the general biological activity of the marine fungi, the biological activity of the isolate being higher the higher its score on PC1 (Fig 3b).

The loadings plot also indicated that the biological activity variables were separated by PC2, some having positive and some negative PC2 values (Fig 3a). PC2 was interpreted to separate the marine fungi according to their activity against either pathogenic fungi or bacteria. The latter marine isolates also had high cytotoxicity and DPPH scavenging activity, as indicated by their high negative loadings on PC2-axis. However, negative PC2 loadings were relatively low for all variables mentioned (bacteria, cancer, DPPH: 0.22–0.36). PC2 positive loadings of fungi varied between 0.63 to 0.76.

The highest positive PC1 scores (biological activity) were for the marine fungal genera Acremonium, Acrocalymma, Microdochium, Emericellopsis, Phomopsis, Aspergillus, Diaporthe, Buellia, and Cladosporium (Fig 3b). These genera had the 25 highest PC1 scores. The species identified were A. africana, A. medicaginis, E. alkalina, P. glabrae, D. hubeiensis, and C. oxyosporum. All of these strains except one Microdochium sp. and the two Aspergillus sp. were isolated from the Red Sea (Fig 3c). The highest negative PC1 scores indicating no or low biological activities were for the genera Ceratocystis, Cladosporium, Sordariomycetes, Emericellopsis, Heydenia, Fusarium, Nannizzia, and Microdochium. These isolates were collected more often from the Arabian Gulf than from the Red Sea (Fig 3c). The sampling sites within the seas were mixed and showed no grouping.

The highest positive scores on PC2 (inhibitors of fungi) were for Nannizia gypsea, Lasiodiplodia theobromae, Diaporthe hubeiensis, and Acremonium sp. (Fig 3b). The two first with the highest scores were isolated from the Arabian Gulf (Fig 3c). Other isolates having relatively high antifungal activity were Emericellopsis sp., E. phycophila, Cladosporium perangustum, C. tenuissium, and C. cladosporioids.
Species	Name of isolates	GenBank Accession Number	Site	Area
Acremonium sp.	JEF1	OM510389	Jeddah	West
Acremonium sp.	JEF2	OM510390	Jeddah	West
Acremonium sp.	SF3	OM510382	Sametah	South
Acrocalymma sp.	JF4	OM514681	Jazan	South
Acrocalymma africana	SF5	OM490687	Sametah	South
Acrocalymma medicaginis	RAF6	OM514682	Ras Al-Turfa	South
Aspergillus sp.	HF7	OM655253	Hofuf	East
Aspergillus sp.	DF8	OM655254	Dammam	East
Aspergillus sp.	JEF9	OM655255	Jeddah	West
Buellia sp.	HF10	OM514685	Hofuf	East
Buellia lauricassiae	HF11	OM514686	Hofuf	East
Buellia lauricassiae	HF12	OM489216	Hofuf	East
Ceratocystis sp.	DF13	OM510400	Dammam	East
Ceratocystis sp.	DF14	OM510403	Dammam	East
Ceratocystis sp.	JUF15	OM510405	Jazan	South
Ceratocystis sp.	SF17	OM510411	Sametah	South
Ceratocystis sp.	DF18	OM510413	Dammam	East
Ceratocystis sp.	DF19	OM510414	Dammam	East
Ceratocystis sp.	FF20	OM510417	Farasan island	South
Ceratocystis cerefabiensis	QF21	OM510402	Qunfidah	South
Ceratocystis corybicola	SF22	OM505092	Sametah	South
Ceratocystis corybicola	JF23	OM502070	Sametah	South
Ceratocystis corybicola	DF24	OM510399	Dammam	East
Ceratocystis corybicola	DF25	OM510401	Dammam	East
Ceratocystis corybicola	DF26	OM510404	Dammam	East
Ceratocystis corybicola	DF27	OM510407	Dammam	East
Ceratocystis corybicola	DF28	OM510409	Dammam	East
Ceratocystis corybicola	RF29	OM510410	Rabigh	West
Ceratocystis corybicola	YF30	OM510415	Yanbue	West
Ceratocystis corybicola	DF31	OM510416	Dammam	East
Ceratocystis corybicola	DF32	OM510418	Dammam	East
Ceratocystis polycephrona	AF33	OM510406	ALith	South
Ceratocystis polycephrona	JF34	OM510412	Jeddah	West
Cladosporium sp.	RF35	OM510301	Rabigh	West
Cladosporium sp.	SF36	OM510303	Sametah	South
Cladosporium sp.	JF37	OM510306	Jazan	South
Cladosporium sp.	RAF38	OM510308	Ras Al-Turfa	South
Cladosporium sp.	FF39	OM510310	Farasan island	South
Cladosporium sp.	JEF40	OM510311	Jazan	South
Cladosporium sp.	JEF41	OM510319	Jeddah	West
Cladosporium sp.	JEF42	OM510320	Jeddah	West
Cladosporium sp.	JEF43	OM510322	Jeddah	West
Cladosporium sp.	JEF44	OM510328	Jeddah	West
Cladosporium sp.	SF45	OM510325	Sametah	South
Cladosporium sp.	SF46	OM510329	Sametah	South
Cladosporium sp.	HF47	OM510331	Hofuf	East

(Continued)
Species	Name of isolates	GenBank Accession Number	Site	Area
Cladosporium cladosporioids	JF48	OM510302	Jazan	South
Cladosporium cladosporioids	RAF49	OM510309	Ras Al-Turfa	South
Cladosporium cladosporioids	FF50	OM510312	Farasan island	South
Cladosporium cladosporioids	QF51	OM510327	Qunf udah	South
Cladosporium cladosporioids	JEF52	OM510332	Jeddah	West
Cladosporium cladosporioids	JEF53	OM510304	Jeddah	West
Cladosporium cladosporioids	JEF54	OM502407	Jeddah	West
Cladosporium oxysporium	JEF55	OM510310	Jeddah	West
Cladosporium oxysporium	UF56	OM510314	Umlajj	North
Cladosporium oxysporium	JF57	OM510316	Jazan	South
Cladosporium oxysporium	JF58	OM510326	Jazan	South
Cladosporium oxysporium	JF59	OM510323	Jazan	South
Cladosporium oxysporium	JUF60	OM510333	Umlajj	North
Cladosporium perangustum	JEF61	OM510307	Jeddah	West
Cladosporium perangustum	JEF62	OM510315	Jeddah	West
Cladosporium perangustum	JEF63	OM510324	Jeddah	West
Cladosporium tenuissium	KF64	OM510305	Khafji	East
Cladosporium tenuissium	JEF65	OM510317	Jeddah	West
Cladosporium tenuissium	UF66	OM510321	Umlajj	North
Cladosporium tenuissium	JEF67	OM510330	Jeddah	West
Cladosporium tenuissium	FF68	OM510334	Farasan island	South
Diaporthe hubeiensis	UF69	OM459577	Umlajj	North
Emericellopsis sp.	QF70	OM510377	Qunf udah	South
Emericellopsis sp.	AF71	OM510378	AlLith	South
Emericellopsis sp.	JF72	OM510379	Jeddah	West
Emericellopsis sp.	FF73	OM510392	Farasan island	South
Emericellopsis sp.	FF74	OM510385	Farasan island	South
Emericellopsis sp.	FF75	OM510391	Farasan island	South
Emericellopsis alkalina	FF76	OM502406	Farasan island	South
Emericellopsis alkalina	FF77	OM510380	Farasan island	South
Emericellopsis alkalina	JF78	OM510381	Jazan	South
Emericellopsis alkalina	RAF79	OM510383	Ras Al-Turfa	South
Emericellopsis alkalina	FF80	OM510387	Farasan island	South
Emericellopsis phycophila	AF81	OM510384	Alwajh	North
Emericellopsis phycophila	HF82	OM510386	Hofuf	East
Emericellopsis phycophila	DF83	OM510388	Dammam	East
Fusarium magnifereae	JEF84	OM487085	Jeddah	West
Heydenia alpina	AF85	OM491187	Alwajh	North
Lasiodiplodia theobrome	DF86	OM510320	Dammam	East
Microdochium sp.	SF87	OM514683	Sametah	South
Microdochium sp.	HF88	OM514684	Hofuf	East
Microdochium sp.	HF89	OM489215	Hofuf	East
Metarhizium anisoplae	SF90	OM491186	Sametah	South
Nannizzia sp.	DF91	OM522070	Dammam	East
Nannizzia sp.	JUF92	OM522071	Jubail	East
Nannizzia gypsea	HF93	OM502405	Hofuf	East
Phomopsis glabrae	YF94	OM456372	Yanbue	West

(Continued)
The highest negative PC2 scores (inhibitors of bacteria) were for the genera *Phompsis* > *Buellia* > *Aspergillus* > *Microdochium* > *Ceratocystis*. The species identified were *P. glabrae*, *B. lauricassiae*, *M. anisopliae*, and *C. polychorma*. *P. glabrae* and one *Aspergillus* sp. were isolated from the Red Sea, while the rest of the most efficient mentioned were isolated from the Arabian Gulf. The isolates of the genera *Emericellopsis* and *Microdochium* were either on the negative or positive sites of the PC2-axis.

Table 1. (Continued)

Species	Name of isolates	GenBank Accession Number	Site	Area
Sordariomyces sp.	RF95	OM456779	Rabigh	West
Sordariomyces glycinus	SF96	OM490685	Sametah	South

https://doi.org/10.1371/journal.pone.0276926.t001

Fig 2. Phylogenetic tree of marine fungi and reference sequence accession numbers constructed by using neighbour joining method in the MEGA 5.2 program.

https://doi.org/10.1371/journal.pone.0276926.g002
Fig 3. a. Loading's of variables in PCA where marine fungal metabolites were measured for their inhibitory effect against bacteria, fungi, and cancer and their DPPH scavenging activity and reducing power. b. PCA sample score plot of marine fungal species. c. PCA sample score plot of marine fungal species marked according to their sampling location on the coast of the Red Sea (R) or the Arabian Gulf (A).

https://doi.org/10.1371/journal.pone.0276926.g003
3.3 Biological activities

One-third of the extracts (33 out of 100) showed relatively high antibacterial activity (mean inhibition zone \geq 20 mm), measured as the inhibition zone, when compared to antibiotics used as positive controls (mean ampicillin 16–17 mm, mean tetracycline 13–17 mm). For most of these isolates, the antibacterial activity varied among the five pathogenic bacteria; the isolates did not inhibit all pathogens to the same extent (S1 Table). The combination of high antioxidant activity and antibacterial activity was displayed by 21 isolates (Fig 4). Eleven marine fungal isolates inhibited (mean inhibition zone \geq 20 mm) at least two fungal pathogens at the same level as the fungicides used (mean gentamycin 20–24 mm, mean fluconazole 20–23) (S2 Table). Antifungal activity of the four most efficient marine fungal isolates, assessed as their zone of inhibition, was two to fourfold compared to the mean of all isolates (Fig 5). Most of the isolates showed only low antifungal activity and some, in practice, no inhibition (S2 Table).

The genera Acrocalymma, Acremonium, Aspergillus, Buellia, Cladosporium, Emericellopsis, Microdochium, and Phomopsis had the highest cytotoxicity. Lung cancer cell line A549 was inhibited most (97%) by Acremonium sp. SF3 (Table 2). Skin cancer A431 and breast cancer cell line MF7 were inhibited most by Acremonium sp. JEF2, 98% and 85%, respectively. Aspergillus sp. HF7, Microdochium sp. SF87 and P. glabrae YF94 inhibited most HepG2 liver cancer cell line, 89% each. Most of the isolates showed low inhibition: the mean inhibition of all 100 marine isolates against the four cancer cell lines varied between 18% and 23% (SD 20–28). The positive control cisplatin displayed 85% inhibition.

High antioxidant activity, evaluated as DPPH scavenging activity, in combination with high antimicrobial or anticancer activity was observed for 23 marine fungal isolates (Table 3). These isolates were Acremonium sp., Acrocalymma sp., A. africana, A. medicaginis, Cladosporium oxysporium, Emericellopsis sp. E. alkalina, Microdochium sp., M. anisopliae, and P. glabrae, the DPPH scavenging % varying between 62 ± 5% for E. alkalina RAF79 and 97 ± 5% for Acremonium sp. SF3. The mean of all 100 marine fungi DPPH% was relatively low, 29% with SD of 33%. Antioxidant activity evaluated as reducing power was low for almost all marine fungi. Only six Ceratocystis sp. isolates (JUF15, KF16, SF17, DF18, DF19, FF20) showed some reducing power (21–31%).

4. Discussion

Biomedicine is looking for multifunctional drugs because antioxidants seem to improve the efficiency of the treatments of bacterial infections and cancer [32–36]. In our survey, one hundred marine fungal strains included more than 30 potential strains for biomedical applications showing antibacterial, antifungal, antioxidant, and cytotoxic activities to different extents. We chose 23 strains offering the most promising multifunctional drugs to be developed: the strains displayed a varying combination of activities (Table 3). We also raise four fungal inhibitor strains as significant although they showed no antioxidant activity. The reason is that potential antifungal drugs have been found much less than antibacterial drugs. The most potent fungal inhibitors were Acremonium sp., Diaporthe hubeiensis, Lasiodiplodia theobromae, and Nannizia gypsea. The isolate Acremonium sp. JEF1 was among the best multifunctional candidate for further studies due to its combined antifungal, antibacterial and antioxidant activity. However, this isolate had relatively low cytotoxic activity while two other Acremonium isolates had high cytotoxicity. All three Acremonium isolates deserve further studies.

The most remarkable result of the PCA was that the antibacterial activity was accompanied by the capability to inhibit cancer cells and high antioxidant activity assessed as DPPH scavenging activity. The result might be generalizable, and it should be studied further. From the practical point of view, these multifunctional isolates were, however, in the minority. The
Fig 4. Inhibition (zone of inhibition, mean and error bar for SD) of five pathogenic bacteria (in colors) by the metabolites of the marine fungi isolated from the coasts of the Red Sea and the Arabian Gulf. Mean refers to the mean of all isolates tested. Letters after the species names refer to the isolate code in Table 1.

https://doi.org/10.1371/journal.pone.0276926.g004
multifunctional potential was observed for *Acremonium* sp., three *Acrocalymma* sp. including *A. africana*, and *A. medicaginis*, three *Aspergillus* sp., *Cladosporium oxysporium*, two *E. alkalina*, two *Microdochium* sp. and *P. glabrae*. No fungal agents have been approved as anticancer drugs so far, maybe because the mechanisms in action are not understood [37]. However, many species have been shown for their potential as anticancer agents (S3 Table) [14, 38, 39], and for instance, several fungal endophytes have been shown to have anticancer activities [40–42].

Another interesting result of the PCA was that marine fungal strains were grouped according to their ability to inhibit bacteria or fungi. Based on this result, it seems that the marine fungal isolates were specialized to inhibit either bacteria or fungi. Only the genera *Acremonium*, *Emericellopsis* and *Microdochium* included both fungal or bacterial inhibitors, and thus, were not specialized. Most published studies deal with either antifungal or antibacterial activities, which is not surprising because the mechanisms of action differ for bacteria and fungi [43]. We found only some studies where both fungi and bacteria were studied. The plant endophytic fungus *Diaporthe schini* metabolites inhibited several bacteria and the fungus *Candida krusei* [44]. The plant root endophytic fungus *Trichoderma hamatum* inhibited both bacterial and fungal plant pathogens [45]. The plant species *Rumex abyssicus*, *Tagetes lucida*, and *Lallemantia royleana* have been shown to inhibit both bacteria and fungi [46–48]. *Aloe vera* plant extract inhibited several bacterial species and a few fungal species [49]. When marine fungi metabolites were reviewed by [9], most compounds inhibited bacteria. Out of 170
Phomopsis glabrae

Microdochium sp. SF87 83

Microdochium sp. HF88 89

Emericellopsis alkalina

Emericellopsis alkalina

Cladosporium oxysporium

Buellia lauricassiae

Aspergillus sp. JEF2 93

Acrocalymma medicaginis ±

Acrocalymma africana ±

Table 2. Activity (% of inhibition) against four cancer types (mean ± SD, n = 3) of the top 19 marine fungal isolates in comparison to the mean of all 100 marine fungal isolates.

Fungi	Isolate	Lung	A549	Skin	A-431	Breast	MCF-7	Liver	Hep G2
Mean ± SD (n = 100)	23 ± 27	22 ± 28	18 ± 20	21 ± 22					
Acrocalymma africana	SF5	58 ± 9	65 ± 5	40 ± 7	70 ± 7				
Acrocalymma medicaginis	RAF6	48 ± 2	76 ± 3	52 ± 5	66 ± 5				
Acrocalymma sp.	SF3	97 ± 3	90 ± 8	80 ± 3	67 ± 3				
Acrocalymma sp.	JEF2	93 ± 9	98 ± 5	85 ± 9	69 ± 5				
Aspergillus sp.	DF8	44 ± 2	48 ± 5	56 ± 2	68 ± 4				
Aspergillus sp.	HF7	37 ± 3	55 ± 3	62 ± 3	89 ± 7				
Buellia sp.	HF10	85 ± 9	88 ± 9	54 ± 6	68 ± 5				
Buellia lauricassiae	JEF11	86 ± 3	66 ± 2	23 ± 4	45 ± 2				
Cladosporium oxysporium	JEF55	84 ± 5	55 ± 8	50 ± 7	28 ± 8				
Cladosporium oxysporium	UF56	58 ± 5	42 ± 4	35 ± 8	29 ± 4				
Cladosporium oxysporium	JEF57	54 ± 3	39 ± 7	28 ± 4	32 ± 7				
Emericellopsis sp.	JF72	81 ± 8	80 ± 5	63 ± 7	59 ± 5				
Emericellopsis sp.	AF71	78 ± 4	86 ± 3	52 ± 5	60 ± 4				
Emericellopsis alkalina	JF78	93 ± 7	90 ± 5	55 ± 3	62 ± 7				
Emericellopsis alkalina	FF76	86 ± 5	80 ± 5	45 ± 6	52 ± 8				
Emericellopsis alkalina	FF77	82 ± 3	87 ± 9	50 ± 9	58 ± 4				
Microdochium sp.	HF88	88 ± 6	68 ± 2	35 ± 2	56 ± 7				
Microdochium sp.	SF87	83 ± 4	45 ± 3	52 ± 3	89 ± 3				
Phomopsis glabrae	YF94	86 ± 7	62 ± 9	73 ± 9	89 ± 9				

https://doi.org/10.1371/journal.pone.0276926.t002

compounds, 26 were fungal inhibitors, of which only six metabolites inhibited both bacteria and fungi. From that perspective, our findings about fungal inhibitors were of importance. Particularly, we can raise* Acremonium *and* Acrocalymma *isolates that inhibited both bacteria and fungi. However, only one of the isolates had also high antioxidant activity.

The comparison to previous studies reveals that most of the genera we report have already been reported for their biological activities, but seldom for multifunctional activity including antioxidant activity. *Acremonium* and *Emericella* strains isolated from soils, waters, and plants have been shown to produce more than 400 different metabolites with a wide range of biological activities [50–53]. An endophytic *Acremonium* showed antifungal activity against *Pythium* sp. causing root rot [54]. The marine *Acremonium* strain has been reported for antibacterial and also for multifunctional activities including cytotoxicity [55, 56]. *Phomopsis* and *Diaporthe* have been shown to produce more than 300 bioactive metabolites, including cytotoxic and antibacterial compounds [57, 58]. *P. glabrae* was among the most active species in our tests. Previously, bioactive polyketides were identified from *Phomopsis* sp. isolated from both marine and terrestrial habitats [13, 59, 60]. *Microdochium* sp. showed antimicrobial activity, as also reported previously [61].

The results of some genera, such as *Ceratocystis* and *Fusarium*, previously reported as potential antimicrobials [62, 63], were not supported by our survey. Some *Cladosporium* isolates collected from all our sampling locations had strong bioactivities. However, most of the commonly found *Cladosporium* isolates showed only weak bioactivities. This is surprising since many *Cladosporium* strains have previously been shown to produce bioactive metabolites [15, 16]. *Cladosporium* sp. has produced almost 300 metabolic compounds with antimicrobial, anticancer, and antioxidant properties [64–66]. Our survey does not raise *Cladosporium* among the most interesting genera in the biomedical field.
The species of Emericellopsis are found in different environments and commonly in marine environments. The genus Emericellopsis is known for its bioactive properties [50]. In our study, the genus was shown to have antibacterial, antifungal, and anticancer activities. The genus has been of particular interest because it has been reported to produce antimicrobial peptides inhibiting drug-resistant organisms [67].

Emericellopsis sp. have been shown to produce several metabolites with antifungal, antibacterial and cytotoxic activities [50, 68]. Emericellopsis commonly produce peptides [67] that have been shown for their multifunctional activities [68]. For instance, the peptide emericellipsin A inhibited human pathogenic fungi and bacteria as well as cancer cells [69]. Emericellipsin A affects cell membranes, which has been suggested to be the mechanism behind the multifunctional activities [70].

A. medicaginis showed bioactivities in our tests. The species was the only one where we found no previous reports about its bioactivities. However, the species appeared to be of particular interest because of its combined antibacterial, anticancer, and antioxidant activity. The fungi A. medicaginis isolated from the southern Red Sea coast deserve further studies for
biomedical applications. Several other isolates such as Acremonium, and D. hubeiensis collected from the Red Sea as well as L. theobrome and N. gypsea from the Arabian Gulf coast deserve further studies.

Both seas are hot and saline with no remarkable difference. The greatest difference between the Red Sea and the Arabian Gulf is the depth. While the former reaches 2000 m, the latter reaches only 100 m [22]. The sea level annual cycle and the water outflow differ markedly [71]. Despite some differences, no evident difference between the seas regarding bioactive fungal metabolites was observed. Some of the species such as C. corybicola and C. tenuissium were isolated from both seas. The isolates differed in their activity regardless of the sea. Some isolates of the same species such as E. alkalina differed in their activity although they were isolated from the same sea. One southern Red Sea isolate of E. alkalina displayed low activities while four of the isolates displayed high activities. Thus, the sea seemed not to be the explaining factor in general. Many different factors affect the microbial metabolism and more isolates need to be studied. It is known that the environmental conditions modify the pathways of microbial metabolism in complex ways, and therefore, microbes in harsh conditions are of great interest in searching novel drugs and other bioactive molecules [72].

5. Conclusion
Marine fungi that were randomly collected from the sea coasts around the Arabian Peninsula showed multifunctional activities potentially valuable for biomedicine. Great differences in the bioactivities of the isolates were observed. Out of one hundred isolates collected, about one-third inhibited pathogenic bacteria, fungi, or cancer cells. All isolates of certain genera, such as Acremonium, Acrocalymma, and Aspergillus, showed some bioactivities. However, in the case of some genera, such as Cladosporium and Ceratocystis, only a few of the isolates showed remarkable bioactivities. Strains of the same species differed in their activity pointing out the need to test several isolates of the species. It appeared that certain genera were efficient fungal inhibitors while some were bacterial and cancer cell inhibitors. The isolates that had high antibacterial and anticancer activities and were accompanied by high antioxidant activity are particularly interesting in biomedical applications due to their multi-functionality. Further studies on the actual bioactive compounds present in the crude extracts are needed. Our study revealed thirty fungal strains that have the potential to produce multifunctional metabolites and offers them for further studies.

Supporting information
S1 Table. Inhibition (zone mm, mean ± SD, n = 3) of four pathogenic bacteria by antibiotics (ampicillin and tetracycline, 5 μg/mL) and marine fungal extracts. Mean ≥ 20 mm against some bacterial pathogens in bold.

S2 Table. Inhibition (zone mm, mean ± SD, n = 3) of five pathogenic fungi by fungicides (Gentamycin and Fluconazole, 5 μg/mL) and marine fungal extracts. Mean ≥ 20 mm against some fungal pathogens in bold.

S3 Table. Variable loadings of PCA for different cancer types, bacterial and fungal pathogens and antioxidant activity assays.
Author Contributions

Conceptualization: Fuad Ameen, Ali A. Al-Homaidan.

Data curation: Fuad Ameen, Saleh AlNAdhari.

Funding acquisition: Fuad Ameen, Ali A. Al-Homaidan.

Validation: Fuad Ameen, Saleh AlNAdhari.

Writing – review & editing: Fuad Ameen.

References

1. Liu L, Ma Q, Cao J, Gao Y, Han S, Liang Y, et al. Recent progress of graphene oxide-based multifunctional nanomaterials for cancer treatment. Cancer Nanotechnol. 2021; 12: 1–31.
2. Duan S, Wu R, Xiong Y-H, Ren H-M, Lei C, Zhao Y-Q, et al. Multifunctional antimicrobial materials: From rational design to biomedical applications. Prog Mater Sci. 2022; 125: 100887.
3. Sun Y, Wang C, Chen HYH, Ruan H. Response of plants to water stress: a meta-analysis. Front Plant Sci. 2020; 11: 978. https://doi.org/10.3389/fpls.2020.00978 PMID: 32676096
4. Rashad FM, Fathy HM, El-Zayat AS, Elghonaimi AM. Isolation and characterization of multifunctional Streptomyces species with antimicrobial, nematicidal and phytohormone activities from marine environments in Egypt. Microbiol Res. 2015; 175: 34–47.
5. Schimmel J, Balser TC, Wallenstein M. Microbial stress-response physiology and its implications for ecosystem function. Ecology. 2007; 88: 1386–1394. https://doi.org/10.1890/06-0219 PMID: 17601131
6. Ameen F, AlNAdhari S, Yassin MA, Al-Sabri A, Almansob A, Alqahtani N, et al. Desert soil fungi isolated from Saudi Arabia: cultivable fungal community and biochemical production. Saudi J Biol Sci. 2021. https://doi.org/10.1016/j.sjbs.2021.12.011 PMID: 35531195
7. Youssef FS, Ashour ML, Singab ANB, Wink M. A comprehensive review of bioactive peptides from marine fungi and their biological significance. Mar Drugs. 2019; 17: 559. https://doi.org/10.3390/md17100559 PMID: 31569458
8. Wang C, Tang S, Cao S. Antimicrobial compounds from marine fungi. Phytochem Rev. 2021; 20: 85–117.
9. Xu L, Meng W, Cao C, Wang J, Shan W, Wang Q. Antibacterial and antifungal compounds from marine fungi. Mar Drugs. 2015; 13: 3479–3513. https://doi.org/10.3390/md13063479 PMID: 26042616
10. Ameen F, AlNadhari S, Al-Homaidan AA. Marine microorganisms as an untapped source of bioactive compounds. Saudi J Biol Sci. 2021; 28: 224. https://doi.org/10.1016/j.sjbs.2020.09.052 PMID: 33424301
11. Shin HJ. Natural products from marine fungi. Marine drugs. Multidisciplinary Digital Publishing Institute; 2020. p. 230.
12. Noman E, Al-Shaabani MM, Bakhrebah MA, Almoheer R, Al-Sahari M, Al-Gheethi A, et al. Potential of anti-cancer activity of secondary metabolic products from marine fungi. J Fungi. 2021; 7: 436. https://doi.org/10.3390/jf7060436 PMID: 34070936
13. Liu Z, Frank M, Yu X, Yu H, Tran-Cong NM, Gao Y, et al. Secondary metabolites from marine-derived fungi from China. Prog Chem Org Nat Prod 111. 2020; 81–153. https://doi.org/10.1007/978-3-030-37865-3_2 PMID: 32114663
14. Deshmukh SK, Prakash V, Ranjan N. Marine fungi: A source of potential anticancer compounds. Front Microbiol. 2018; 8: 2536. https://doi.org/10.3389/fmicb.2017.02536 PMID: 29354097
15. Salvatore MM, Andolfi A, Nicoletti R. The genus Cladosporium: A rich source of diverse and bioactive natural compounds. Molecules. 2021; 26: 3959.
16. Silber J, Ohlendorf B, Labes A, Wenzel-Storjohann A, Nätther C, Imhoff JF. Malettinin E, an antibacterial and antifungal tropolone produced by a marine Cladosporium strain. Front Mar Sci; 2014; 1: 35.
17. Xu J, YI M, Ding L, He S. A review of anti-inflammatory compounds from marine fungi, 2000–2018. Mar Drugs. 2019; 17: 636.
18. Moghadamtousi SZ, Nikzad S, Kadir HA, Abubakar S, Zandi K. Potential antiviral agents from marine fungi: an overview. Mar Drugs. 2015; 13: 4520–4538. https://doi.org/10.3390/md13074520 PMID: 28204947
19. Xu Z, Han S, Gu Z, Wu J. Advances and impact of antioxidant hydrogel in chronic wound healing. Adv Healthc Mater. 2020; 9: 1901502. https://doi.org/10.1002/adhm.201901502 PMID: 31977162
20. Casado-Díaz A, Moreno-Rojas JM, Verdú-Soriano J, Lázaro-Martínez JL, Rodríguez-Mañas L, Tunez I, et al. Evaluation of Antioxidant and Wound-Healing Properties of EHO-85, a Novel Multifunctional Amorphous Hydrogel Containing Olea europaea Leaf Extract. Pharmaceuticals. 2022; 14: 349.

21. Ibrahim A. Review of Oceanography and Topography of the Red Sea and Arabian Gulf. Blue Biotechnol J. 2014; 3: 161.

22. Nandkeolyar N, Raman M, Kiran GS, others. Comparative analysis of sea surface temperature pattern in the eastern and western gulf of Arabian Sea and the Red Sea in recent past using satellite data. Int J Oceanogr. 2013; 2013.

23. Ameen F, Stephenson S, AINAdhari S, Yassin MA. Isolation, identification and bioactivity analysis of an endophytic fungus isolated from Aloe vera collected from Asir desert, Saudi Arabia. Bioprocess and Biosystems Engineering 2021; https://doi.org/10.1007/s00449-020-02507-1

24. Martin KJ, Rygiewicz PT. Fungal-specific PCR primers developed for analysis of the ITS region of environmental DNA extracts. BMC Microbiol. 2005; 5: 1–11.

25. Cheesbrough M. District Laboratory Practice in Tropical Countries. IJMS. 2018; 1: 65–68.

26. Sarika K, Sampath G, Govindarajan RK, others. Comparative analysis of sea surface temperature pattern in the eastern and western gulf of Arabian Sea and the Red Sea in recent past using satellite data. Int J Oceanogr. 2013; 2013.

27. Oyaizu M. Studies on products of browning reaction antioxidative activities of products of browning reaction prepared from glucosamine. Japanese J Nutr Diet. 1986; 44: 307–315.

28. Gang Y, Eom T-Y, Marasinghe SD, Lee Y, Jo E, Oh C. Optimising the DPPH Assay for Cell-Free Marine Microorganism Supernatants. Mar Drugs. 2021; 19: 256. https://doi.org/10.3390/md19050256 PMID: 33947091

29. Kuriakose GC, Singh S, Rajvanshi PK, Surin WR, Jayabaskaran C. In vitro cytotoxicity and apoptosis induction in human cancer cells by culture extract of an endophytic Fusarium solani strain isolated from Datura metel L. Pharm Anal Acta. 2014; 5: 2.

30. Lé S, Josse J, Husson F. FactoMineR: an R package for multivariate analysis. J Stat Softw. 2008; 25: 1–18.

31. Team RC, others. R: A language and environment for statistical computing. 2013.

32. Tagousop CN, Tamokou J-D, Kengne IC, Ngnokam D, Voutquenne-Nazabadioko L. Antimicrobial activities of saponins from Melanthera elliptica and their synergistic effects with antibiotics against pathogenic phenotypes. Chem Cent J. 2018; 12: 1–9.

33. Singh K, Bhoti M, Kasu YA, Bhat G, Marar T. Antioxidants as precision weapons in war against cancer chemotherapy induced toxicity—Exploring the armory of obscurity. Saudi Pharm J. 2018; 26: 177–190. https://doi.org/10.1016/j.jsps.2017.12.013 PMID: 30166914

34. Griján-Lison C, Blaya-Cánovas JL, López-Tejada A, Ávalos-Moreno M, Navarro-Ocón A, Cara FE, et al. Antioxidants for the treatment of breast cancer: Are we there yet? Antioxidants. 2021; 10: 205. https://doi.org/10.3390/antiox10020205 PMID: 33572626

35. Vale N, Gouveia MJ, Gártner F. Current and novel therapies against helminthic infections: The potential of antioxidants combined with drugs. Biomolecules. 2020; 10: 350. https://doi.org/10.3390/biom10030350 PMID: 32106428

36. Soriano JL, Calpena AC, Rodríguez-Lagunas MJ, Doménech Ò, Bozal-de Febrer N, Garduño-Ramírez ML, et al. Endogenous antioxidant cocktail loaded hydrogel for topical wound healing of burns. Pharmaceutics. 2020; 12: 8. https://doi.org/10.3390/pharmaceutics12010008 PMID: 33753689

37. Yuan S, Gopal JV, Ren S, Chen L, Liu L, Gao Z. Anticancer fungal natural products: Mechanisms of action and biosynthesis. Eur J Med Chem. 2020; 202: 112502. https://doi.org/10.1016/j.ejmech.2020.112502 PMID: 32652407

38. Gomes NGM, Lefranc F, Kijjoa A, Kiss R. Can some marine-derived fungal metabolites become actual anticancer agents? Mar Drugs. 2015; 13: 3950–3959. https://doi.org/10.3390/md13063950 PMID: 26090646

39. Devi R, Kaur T, Guleria G, Rana KL, Kour D, Yadav N, et al. Fungal secondary metabolites and their biotechnological applications for human health. New and Future Developments in Microbial Biotechnology and Bioengineering. Elsevier; 2020. pp. 147–161.

40. Chandra S. Endophytic fungi: novel sources of anticancer lead molecules. Appl Microbiol Biotechnol. 2012; 95: 47–59. https://doi.org/10.1007/s00253-012-4128-7 PMID: 22622838

41. Kharwar RN, Mishra A, Gond SK, Stierle A, Stierle D. Anticancer compounds derived from fungal endophytes: their importance and future challenges. Nat Prod Rep. 2011; 28: 1208–1228. https://doi.org/10.1039/c1np000058j PMID: 21455524
42. Uzma F, Mohan CD, Hashem A, Konappa NM, Rangappa S, Kamath P V, et al. Endophytic fungi—alternative sources of cytotoxic compounds: a review. Front Pharmacol. 2018; 9: 309. https://doi.org/10.3389/fphar.2018.00309 PMID: 29755344
43. Céspedes CL, Avila JG, Martínez A, Serrato B, Calderón-Mugica JC, Salgado-Garciglia R. Antifungal and antibacterial activities of Mexican tarragon (Tagetes lucida). J Agric Food Chem. 2006; 54: 3521–3527. https://doi.org/10.1021/jf050371w PMID: 19127719
44. Dos Reis CM, da Rosa BV, da Rosa GP, do Carmo G, Morandini LMB, Ugalde GA, et al. Antifungal and antibacterial activity of extracts produced from Diaporthe schini. J Biotechnol. 2019; 242: 126595.
45. Rajani P, Rajasekaran C, Vasanthakumari MM, Olsson SB, Ravikanth G, Shaanker RU. Inhibition of plant pathogenic fungi by endophytic Trichoderma spp. through mycoparasitism and volatile organic compounds. Microbiol Res. 2021; 242: 1–14.
46. Ghannoum MA, Rice LB. Antifungal agents: mode of action, mechanisms of resistance, and correlation of these mechanisms with bacterial resistance. Clin Microbiol Rev. 1999; 12: 501–517. https://doi.org/10.1128/CMR.12.4.501 PMID: 10515900
48. Sharifi-Rad J, Hoseini-Alfatemi SM, Sharifi-Rad M, Setzer WN. Chemical Composition, Antifungal and Antibacterial Activities of Essential Oil from L aliena Royleana (Benth. in W all.) Benth. J Food Saf. 2015; 35: 19–25.
49. Danish P, Ali Q, Hafeez MM, Malik A. Antifungal and antibacterial activity of Aloe vera plant extract. Biol Clin Sci Res J. 2020; 2020.
50. Gonçalves MFM, Hilaro S, de Peer Y, Esteves AC, Alves A. Genomic and Metabolic Analyses of the Marine Fungus Emericellopsis cladophorae: Insights into Saltwater Adaptability Mechanisms and Its Biosynthetic Potential. J Fungi. 2021; 8: 31.
51. Martins T, Schinke C, Queiroz SCN, de C Braga PA, Silva FSP, Melo IS, et al. Role of bioactive metabolites from Acremonium camptosporum associated with the marine sponge Aplysina fulva. Chemosphere. 2021; 274: 129753.
52. Tian J, Lai D, Zhou L. Secondary metabolites from Acremonium fungi: Diverse structures and bioactivities. Mini Rev Med Chem. 2017; 17: 603–632.
53. Jang J-H, Kanoh K, Adachi K, Shizuri Y. New dihydrobenzofuran derivative, awajanoran, from marine-derived Acremonium sp. J Antibiot (Tokyo). 2006; 59: 428–431.
54. Anisha C, Radhakrishnan EK. Gliotoxin-producing endophytic Acremonium sp. from Zingiber officinale found antagonistic to soft rot pathogen Pythium myriotylum. Appl Biochem Biotechnol. 2015; 175: 3458–3467.
55. Kim S, Lee CW, Park S-Y, Asolkar RN, Kim H, Kim GJ, et al. Acremomamide, a Cyclic Pentadepsipeptide with Wound-Healing Properties Isolated from a Marine-Derived Fungus of the Genus Acremonium. J Nat Prod. 2021; 84: 2249–2255.
56. Bragno H. Exploring the antibacterial and anticancer potential of five marine fungi. With the use of OSMAC-approach. UiT The Arctic University of Norway. 2017.
57. Xu T-C, Lu Y-H, Wang J-F, Song Z-Q, Hou Y-G, Liu S-S, et al. Bioactive secondary metabolites of the genus Diaporthe and anamorph Phomopsis from terrestrial and marine habitats and endophytes: 2010–2019. Microorganisms. 2021; 9: 217. https://doi.org/10.3390/microorganisms9020217 PMID: 33494367
58. Lin X, Huang Y, Fang M, Wang J, Zheng Z, Su W. Cytotoxic and antimicrobial metabolites from marine lignicolous fungi, Diaporthe sp. FEMS Microbiol Lett. 2005; 251: 53–58. https://doi.org/10.1016/j.femsle.2005.07.025 PMID: 16102912
59. Xu J-L, Liu H-X, Chen Y-C, Tan H-B, Guo H, Xu L-Q, et al. Highly substituted benzophenone aldehydes and eremophilane derivatives from the deep-sea derived fungus Phomopsis lithocarpus FS508. Mar Drugs. 2018; 16: 329.
60. Wong Chin JM, Puchhoa D, Bahorun T, Jeewoon R. Antimicrobial properties of marine fungi from sponges and brown algae of Mauritius. Mycology. 2021; 12: 231–244. https://doi.org/10.1080/21501203.2021.1895347 PMID: 34900379
61. Berde CV, Giriyan A, Berde VB. Bioactive Secondary Metabolites from Psychrophilic Fungi and Their Industrial Importance. Industrially Important Fungi for Sustainable Development. Springer; 2021. pp. 377–405.
62. Li M, Yu R, Bai X, Wang H, Zhang H. Fusarium: a treasure trove of bioactive secondary metabolites. Nat Prod Rep. 2020; 37: 1568–1588. https://doi.org/10.1039/d0np00038h PMID: 32785347
63. Li Q, Wu L, Hao J, Luo L, Cao Y, Li J. Biofumigation on post-harvest diseases of fruits using a new volatile-producing fungus of *Ceratocystis fimbriata*. PLoS One. 2015; 10: e0132009.

64. Mohamed GA, Ibrahim SRM. Untapped Potential of Marine-Associated *Cladosporium* Species: An Overview on Secondary Metabolites, Biotechnological Relevance, and Biological Activities. Mar Drugs. 2021; 19: 645.

65. Carroll AR, Copp BR, Davis RA, Keyzers RA, Prinsep MR. Marine natural products. Nat Prod Rep. 2022. https://doi.org/10.1039/d1np00076d PMID: 35201245

66. Hasan S, Ansari MI, Ahmad A, Mishra M. Major bioactive metabolites from marine fungi: A Review. Bioinformation. 2015; 11: 176. https://doi.org/10.6026/97320630011176 PMID: 26124556

67. Baranova AA, Rogozhin EA, Georgieva ML, Bilanenko EN, Kul’ko AB, Yaku shev AV, et al. Antimicrobial peptides produced by alkaliphilic fungus Emericel lopsis alkalina: biosynthesis and biological activity against pathogenic multidrug-resistant fungi. Appl Biochem Microbiol. 2019; 55: 145–151.

68. Kuvarina AE, Gavryushina IA, Sykonnikov MA, Efimenko TA, Markelova NN, Bilanenko EN, et al. Exploring Peptaibol's Profile, Antifungal, and Antitumor Activity of Emericellipsin A of *Emericellopsis* Species from Soda and Saline Soils. Molecules. 2022; 27: 1736.

69. Rogozhin EA, Sadykova VS, Baranova AA, Vasilchenko AS, Lushpa VA, Mineev KS, et al. A novel lipo-peptaibol emericellipsin A with antimicrobial and antitumor activity produced by the extremophilic fungus *Emericellopsis alkalina*. Molecules. 2018; 23: 2785.

70. Agrawal S, Dufossé L, Deshmukh SK. Antibacterial metabolites from an unexplored strain of marine fungi *Emericellopsis minima* and determination of the probable mode of action against *Staphylococcus aureus* and methicillin-resistant *S. aureus*. Biotechnol Appl Biochem. 2022.

71. Al-Subhi AM, Abdulla CP. Sea-Level Variability in the Arabian Gulf in Comparison with Global Oceans. Remote Sens. 2021; 13: 4524.

72. Chávez R, Fierro F, Garcia-Rico RO, Vaca I. Filamentous fungi from extreme environments as a promising source of novel bioactive secondary metabolites. Front Microbiol. 2015; 6: 903. https://doi.org/10.3389/fmicb.2015.00903 PMID: 26441853