New behaviors of α-particle preformation factors near doubly magic 100Sn

Jungang Deng
Lanzhou University

Xiaodong Sun
China institute of Atomic Energy

Hongfei Zhang
Xi'an Jiaotong University
https://orcid.org/0000-0003-0326-5701

Research Article

Keywords: preformation factors, doubly magic nuclei, proton-neutron interaction, Alpha-decay half-lives

Posted Date: December 3rd, 2021

DOI: https://doi.org/10.21203/rs.3.rs-1121549/v1

License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License
New behaviors of α-particle preformation factors near doubly magic ^{100}Sn

Jun-Gang Deng,¹,² Hong-Fei Zhang,¹,* and Xiao-Dong Sun³

¹School of Physics, Xi’an Jiaotong University, 710049 Xi’an, People’s Republic of China
²School of Nuclear Science and Technology, Lanzhou University, 730000 Lanzhou, People’s Republic of China
³China Nuclear Data Center, China Institute of Atomic Energy, P.O. Box 275(41), 102413 Beijing, People’s Republic of China

The α-particle preformation factors of nuclei above doubly magic nuclei ^{100}Sn and ^{208}Pb are investigated. The results show that the α-particle preformation factors of nuclei near self-conjugate doubly magic ^{100}Sn are larger significantly than those of analogous nuclei just above ^{208}Pb, and they will be enhanced as the nuclei move towards the $N = Z$ line. The correlation energy of the proton-neutron E_{p-n} and two protons-two neutrons E_{2p-2n} of nuclei near ^{100}Sn also exhibit similar situations indicating that the interactions between protons and neutrons occupying similar single-particle orbitals could enhance the α-particle preformation factors and result in the superallowed α decay. It also provides evidence of the significant role of proton-neutron interaction on α-particle preformation. Besides, the linear relationship between α-particle preformation factors and the product of valence protons and valence neutrons for nuclei around ^{208}Pb is broken in the ^{100}Sn region because the α-particle preformation factor is enhanced when the nucleus near ^{100}Sn moves towards the $N = Z$ line. Furthermore, the calculated α decay half-lives can well reproduce the experimental data including the recent observed self-conjugate nuclei ^{104}Te and ^{108}Xe [Phys. Rev. Lett. 121, 182501 (2018)].

α decay is a fundamental nuclear decay mode. The researches on α decay have long been focused on the vicinities of doubly magic nuclei ^{208}Pb ($Z = 82, N = 126$) and ^{208}Fl ($Z = 114, N = 184$) because α decay can be a probe to study the unstable nucleus structure, and can be the only way to identify the new synthesized super-heavy nuclei [1–27]. Over the past two decades, the α emitters around the self-conjugate doubly magic nucleus ^{100}Sn ($Z = N = 50$) at the opposite end of the mass table have also received a lot of attention and become a hot topic in nuclear physics [18, 28–35]. In particular, there is the fastest α emitter ^{104}Te near doubly magic nucleus ^{100}Sn [34]. Since the α emitters near self-conjugate doubly magic nucleus ^{100}Sn are close to the $N = Z$ line, the nuclear force is extremely sensitive to isospin. Therefore, it is a great chance to study and obtain the unique neutron-deficient nuclear structure information and examine various α decay theoretical models. Moreover, the cluster radioactivity was also predicted as one of the decay modes of the nucleus in the ^{100}Sn region [36–39]. Further interest in the decay rates of nuclei around doubly magic nucleus ^{100}Sn comes from the research of astrophysical processes, for which this region has been considered as the end of the rapid proton capture process due to the Sn-Sb-Te cycle [33, 40, 41].

In addition, in the neutron-deficient Te, Xe, and Ba isotopes near ^{100}Sn, one would expect that the interactions between protons and neutrons occupying similar single-particle orbitals could enhance the α-particle preformation factors and the reduced α-widths significantly when compared to the analogous nuclei just above doubly magic nuclei ^{208}Pb, and result in the so-called “superallowed” α decay [42]. And this effect would be expected to be the greatest for the $N = Z$ self-conjugate nuclei [42]. Recently, the first time α radioactivity to a heavy self-conjugate nucleus was observed on the $^{108}\text{Xe} \rightarrow ^{104}\text{Te} \rightarrow ^{100}\text{Sn}$ α decay chain [34], including the measurements of the α-particle kinetic energy and α decay half-lives of the α emitters ^{108}Xe ($E_\alpha = 4.4(2)$ MeV, $T_{1/2} = 58^{+10}_{-23}$ μs) and ^{104}Te ($E_\alpha = 4.9(2)$ MeV, $T_{1/2} < 18$ ns]. The authors of this reference suggested that the α-reduced width for ^{108}Xe or ^{104}Te is more than a factor of 5 larger than that for ^{212}Po [34].

It is well known that ^{104}Te, near the proton drip line, and ^{212}Po, near the β–stability line, are the only two existing α emitters decaying to the doubly magic nuclei. In this work, we focus on the α-particle preformation factors of nuclei near self-conjugate doubly magic nucleus ^{100}Sn and compare them to those of analogous nuclei just above the doubly magic nucleus ^{208}Pb based on the available experimental data of α decay [34, 43–53] within the generalized liquid drop model (GLDM) [54–60]. These α emitters are in different isospins and mass numbers as well as around different protons and neutrons closed shells. We want to reveal some new behaviors of α-particle preformation factors of extremely neutron-deficient nuclei near self-conjugate doubly magic nucleus ^{100}Sn for understanding the roles of proton-neutron correlation and the single-particle orbitals occupied by protons and neutrons in the preformation of α-cluster as well as the physical mechanism of superallowed α decay.

The GLDM can deal with proton radioactivity [61], cluster radioactivity [62], fusion [63], fission [64], and the α decay process [22, 54–60, 65] because of introducing the quasimolecular shape mechanism [54], which can describe the complex deformation process from the parent nucleus continuous transition to the appearance of a deep and narrow neck finally resulting in two tangential fragments, and adding the proximity energy, including an

* zhanghongfei@lzu.edu.cn
accurate radius and mass asymmetry. In previous works [54–60], the GLDM has been discussed in detail. The α decay half-life can be obtained by

$$T_{1/2} = \frac{\ln 2}{\lambda},$$

(1)

with the α decay constant λ being expressed as

$$\lambda = P_\alpha \nu P,$$

(2)

where the assault frequency ν is obtained by using the classical method with the kinetic energy of the α-particle. The barrier penetrating probability P is determined by tunneling the GLDM potential barriers [54–60] with the Wentzel-Kramers-Brillouin (WKB) approximation.

The experimental α-particle preformation factor P_α^{Exp} can be extracted from the ratios between the theoretical decay half-life $T_{1/2}^{Cal}$ calculated by assuming the α-particle preformation factor as a constant $P_\alpha = 1$ to experimental data [59, 66–69] and expressed as

$$P_\alpha^{Exp} = \frac{T_{1/2}^{Cal}}{T_{1/2}^{Exp}}.$$ (3)

To examine the experimental α decay half-life data, the analytic formula for estimating the α-particle preformation factor is also adopted, which is put forward in our previous work [60, 65]. It is expressed as

$$\log_{10} P_\alpha^{Exp} = a + bA^{1/6} \sqrt{Z + c} \frac{Z}{\sqrt{Q_\alpha}} - d\chi' - e\rho' + f \sqrt{l(l + 1)},$$

(4)

where $\chi' = Z_1 Z_2 \sqrt{A_1 A_2 / (A_1 + A_2) Q_\alpha}$ and $\rho' = \sqrt{A_1 A_2 / (A_1 + A_2)} Z_1 Z_2 (A_1^{1/3} + A_2^{1/3})$. A, Z, and Q_α represent mass number, proton number, and α decay energy of the parent nucleus. A_1, Z_1, A_2, and Z_2 denote the mass and proton numbers of the α-particle and daughter nucleus. l is the angular momentum carried by the α-particle. The parameters values are listed in Ref. [60].

The calculated α decay half-lives for nuclei above doubly magic nuclei 100Sn and 208Pb are presented in Tables I and II, respectively. In these two tables, the first four columns represent the α transition, the experimental kinetic energy of the α-particle, the experimental α decay energy, and the minimum angular momentum carried by the α-particle. The fifth column is the experimental α decay half-life. The sixth column denotes the calculated α decay half-life $T_{1/2}^{Cal}$ within the GLDM with $P_\alpha = 1$. The seventh column gives the calculated α decay half-life $T_{1/2}^{Cal}$ within the GLDM with the estimated α-particle preformation factor from Eq. (4). The eighth column shows the extracted experimental α-particle preformation factor by using Eq. (3) with $T_{1/2}^{Cal}$ and $T_{1/2}^{Exp}$. The last two columns express the calculated correlation energy of the proton-neutron E_{p-n} and two protons-two neutrons E_{2p-2n} determined by Eqs. (6) and (7). From these two tables, it can be seen immediately that the calculated α decay half-lives $T_{1/2}^{Cal}$ can well reproduce the experimental data including the newly observed self-conjugate nuclei 104Te and 108Xe [34]. Note that the calculations provide supports for recent experimental observation data in Ref. [34]. To measure the agreements between the calculated α decay half-lives $T_{1/2}^{Cal}$ and experimental data $T_{1/2}^{Exp}$, the standard deviations are calculated by

$$\sigma = \sqrt{\frac{1}{n} \sum (\log_{10} T_{1/2}^{Cal} - \log_{10} T_{1/2}^{Exp})^2}.$$ (5)

For nuclei in Tables I and II, the results of standard deviations $\sigma_1 = 0.47$ and $\sigma_2 = 0.16$ are satisfactory manifesting that $T_{1/2}^{Cal}$ can well reproduce $T_{1/2}^{Exp}$ within factors of $10^{0.47} = 2.95$ and $10^{0.16} = 1.45$, respectively. It demonstrated that the GLDM can be applied to extract the experimental α-particle preformation factors for studying the structure information of nuclei in these two regions.

Furthermore, in Tables I and II, we can see that the extracted experimental α-particle preformation factors P_α^{Exp} of nuclei near 100Sn are larger than P_α^{Exp} of nuclei near 208Pb, and in particular, larger than P_α^{Exp} of analogous nuclei just above 208Pb. The analogous nuclei refer to the two nuclei with the same valence proton and valence neutron located above doubly magic cores 100Sn and 208Pb, respectively. The valence protons N_p and valence neutrons N_n are defined as $N_p = Z - Z_0$ and $N_n = N - N_0$ with $Z_0 = 50$ and $N_0 = 126$, being the magic numbers of protons and neutrons in the corresponding nuclear region. For example, 104Te is analogous to 212Po because they both have two valence protons and two valence neutrons outside of the doubly magic nuclei 100Sn and 208Pb, respectively.

The extracted experimental α-particle preformation factors P_α^{Exp} for nuclei above 100Sn and for analogous nuclei just above 208Pb are shown as functions of valence protons and valence neutrons in Fig. 1 (a), (b), and (c), respectively. In this figure, one can see that the P_α^{Exp} of nuclei above 100Sn are significantly larger than those of analogous nuclei just above 208Pb.

Furthermore, Fig. 1 (a) shows the variations of P_α^{Exp} for Te ($Z = 52$) and Po ($Z = 84$) isotopes, whose valence protons are $N_p = Z - Z_0 = 2$, against valence neutrons N_n. It is clearly seen that for Te isotopes the P_α^{Exp} exhibits an increasing trend when the nucleus moves towards the $N = Z$ line, but the P_α^{Exp} of Po isotopes do not show similar patterns due to the large asymmetry between neutrons and protons. Fig. 1 (b) displays the variations of P_α^{Exp} for Xe ($Z = 54$) and Ru ($Z = 86$) isotopes, whose valence protons are $N_p = Z - Z_0 = 4$, against valence neutrons N_n. We can find that for Xe isotopes the P_α^{Exp} also increases as the nucleus moves towards the $N = Z$ line. However, the P_α^{Exp} of Ru isotopes still do not show a similar trend of change. Fig. 1 (c) plots the P_α^{Exp} as functions of valence protons N_p for $N = 58$ and $N = 134$ isotopes, whose valence neutrons are $N_n = N - N_0 = 8$.

It is calculated by using the nuclear mass data in the evaluated atomic mass table AME2016. But this phenomenon has not occurred in the analogous taken from the evaluated nuclear properties table NUBASE2016. It is indicated that the doubly magic nucleus.

The P_{α}^{Exp} of $N = 58$ isotones also show an increasing tendency as the nuclei move towards the $N = Z$ line, but this phenomenon has not occurred in the analogous $N = 134$ isotopes just above ^{208}Pb. It is indicated that the P_{α}^{Exp} is enhanced when a nucleus moves towards the $N = Z$ line, and result in the superallowed α decay near doubly magic nucleus ^{100}Sn. In recent work, Clark et al. adopted a very different model and studied the α-particle preformation factors of nuclei in these two regions [31]. A similar conclusion was obtained though the α-particle
preformation factors of nuclei near doubly magic nuclei 100Sn and 208Pb are in orders of 10^{-2} and 10^{-3}, respectively.

![Figure 1](image1.png)

FIG. 1. (Color online) The variations of extracted experimental α-particle preformation factors P^{α}_{\exp} from Eq. (3) against N_0 for nuclei above 100Sn (left) and for nuclei above 208Pb (right), respectively.

![Figure 2](image2.png)

FIG. 2. (Color online) The correlation energy of the proton-neutron E_{p-n} and two protons-two neutrons E_{2p-2n} of nuclei above 100Sn (denoted as solid symbols) and those of analogous nuclei just above 208Pb (denoted as open symbols).

For investigating the effects of proton-neutron interaction and two protons-two neutrons interaction on the α-particle preformation, we calculate the correlation energy of the proton-neutron E_{p-n} and two protons-two neutrons E_{2p-2n} using

$$E_{p-n} = B(A,Z) + B(A-2,Z-1)$$

$$- B(A-1,Z-1) - B(A-1,Z),$$

(6)

E_{2p-2n} is the binding energy of a nucleus with the mass number A and proton number Z. The results of E_{p-n} energy and E_{2p-2n} energy are plotted in Fig. 2. In this figure, the E_{p-n} energy and E_{2p-2n} energy of nuclei above doubly magic nuclei 100Sn are larger than those of analogous nuclei just above 208Pb. This, in turn, leads to that the P^{α}_{\exp} of nuclei near 100Sn are enhanced significantly. The results of E_{p-n} energy and E_{2p-2n} energy are plotted in Fig. 2. In this figure, the E_{p-n} energy and E_{2p-2n} energy of nuclei above 100Sn are strengthened when compared to analogous nuclei just above 208Pb. For $Z = 52$ isotopes, the E_{p-n} energy and E_{2p-2n} energy increase rapidly in $N_n = 2$. Similarly, for $Z = 54$ isotopes, the E_{p-n} energy and E_{2p-2n} energy rise fast in $N_n = 4$. However, the E_{p-n} energy and E_{2p-2n} energy of analogous nuclei just above 208Pb are changed slowly. Therefore, it demonstrated that the α-particle is more to form in self-conjugate nuclei and result in the superallowed α decay. In addition, the E_{2p-2n} energy increases an increased tendency, the same as P^{α}_{\exp} when the nucleus moves towards the $N = Z$ line implying that the two protons-two neutrons interaction play a more significant role than one proton-one neutron interaction in α-particle preformation.

The extracted experimental α-particle preformation factors P^{α}_{\exp} for nuclei above 100Sn and 208Pb are shown as functions of $\frac{N_0N_0}{Z_0+Z_0}$ in Fig. 3 (a) and (b), respectively.

![Figure 3](image3.png)

FIG. 3. (Color online) The variations of extracted experimental α-particle preformation factors P^{α}_{\exp} from Eq. (3) against N_0N_0 for nuclei above 100Sn (left) and for nuclei above 208Pb (right), respectively.

$$E_{p-n} = B(A,Z) + B(A-4,Z-2)$$

$$- B(A-2,Z-2) - B(A-2,Z),$$

(7)

Eqs. (6) and (7) were proposed in Ref. [71] and used to determine the experimental pairing energy of the nucleons [72]. $B(A,Z)$ is the binding energy of a nucleus with the mass number A and proton number Z. The results of E_{p-n} energy and E_{2p-2n} energy are listed in the last two columns of Tables I and II. In these two tables, it can be found that the E_{p-n} energy and E_{2p-2n} energy of nuclei above doubly magic nuclei 100Sn are larger than those of analogous nuclei just above 208Pb. This, in turn, leads to that the P^{α}_{\exp} of nuclei near 100Sn are enhanced significantly. The results of E_{p-n} energy and E_{2p-2n} energy are plotted in Fig. 2. In this figure, the E_{p-n} energy and E_{2p-2n} energy of nuclei above 100Sn are strengthened when compared to analogous nuclei just above 208Pb. For $Z = 52$ isotopes, the E_{p-n} energy and E_{2p-2n} energy increase rapidly in $N_n = 2$. Similarly, for $Z = 54$ isotopes, the E_{p-n} energy and E_{2p-2n} energy rise fast in $N_n = 4$. However, the E_{p-n} energy and E_{2p-2n} energy of analogous nuclei just above 208Pb are changed slowly. Therefore, it demonstrated that the α-particle is more to form in self-conjugate nuclei and result in the superallowed α decay. In addition, the E_{2p-2n} energy increases an increased tendency, the same as P^{α}_{\exp} when the nucleus moves towards the $N = Z$ line implying that the two protons-two neutrons interaction play a more significant role than one proton-one neutron interaction in α-particle preformation.

The extracted experimental α-particle preformation factors P^{α}_{\exp} for nuclei above 100Sn and 208Pb are shown as functions of $\frac{N_0N_0}{Z_0+Z_0}$ in Fig. 3 (a) and (b), respectively. In Fig. 3 (b), one can see that the closer the $\frac{N_0N_0}{Z_0+Z_0}$ is to the zero, representing the proton and/or neutron num-
bers approaches the closed shells, the smaller P_{Exp}^α is. When the $\frac{N_p N_n}{Z_p + N_0}$ is far from zero, the P_{Exp}^α will increase. This indicates that the closer the proton and/or neutron number is to the magic number, the more difficult it is for an α-particle to form inside its parent nucleus. And we can find that the P_{Exp}^α is linearly dependent on the $\frac{N_p N_n}{Z_p + N_0}$ for nuclei above 208Pb. It is consistent with the conclusions deduced by adopting the different models, in which the α-particle preformation factors are extracted from the ratios between theoretical α-decay half-lives calculated by adopting the different models to experimental data [15, 73, 74], or calculated using the differences of binding energy between the α decaying parent nucleus and its neighboring nuclei within the cluster-formation model [75]. It is shown that the nuclear shell effects and the nucleons configuration play key roles in α-cluster preformation for α-particle emitters around doubly magic 208Pb. However, in Fig. 3 (a) this phenomenon is broken in the 100Sn region. The P_{Exp}^α of nuclei above 100Sn are linearly dependent on $\frac{N_p N_n}{Z_p + N_0}$ and show a new behavior. When the nucleus is close to the shell closures, the P_{Exp}^α of the nucleus near 100Sn does not decrease like that of the nucleus near 208Pb, but it increases. In addition, we can find that the maximum values of P_{Exp}^α in Fig. 3 (a) correspond to 104Te, 108Xe, and 114Ba. In particular along the $N = Z$ line, the P_{Exp}^α is significantly enhanced, which results in the P_{Exp}^α of nuclei above 100Sn are not linearly dependent on $\frac{N_p N_n}{Z_p + N_0}$.

In summary, we systematically studied the α-particle preformation factors P_{Exp}^α of nuclei above doubly magic nuclei 100Sn and 208Pb, which are extracted from the ratios between the theoretical α-decay half-lives within the GLDM to experimental data. The results show that the P_{Exp}^α of nuclei near self-conjugate doubly magic 100Sn are larger significantly than those of analogous nuclei just above 208Pb, and they will be enhanced when the nucleus moves towards the $N = Z$ line. The correlation energy of proton-neutron E_{p-n} and two protons-two neutrons E_{2p-2n} of nuclei near 100Sn are also larger than those of analogous nuclei just above 208Pb. It is indicated that the interactions between protons and neutrons occupying similar single-particle orbitals could enhance the P_{Exp}^α and result in the superallowed α decay near doubly magic nucleus 100Sn. Furthermore, as the nucleus moves towards the $N = Z$ line, the E_{2p-2n} energy shows an increased tendency which is the same as that of P_{Exp}^α, while E_{p-n} energy doesn’t appear this pattern, indicating E_{2p-2n} energy plays a more important role than E_{p-n} energy in α-particle preformation of superallowed α decay.

The linear relationship between the P_{Exp}^α and the product of valence protons and valence neutrons $\frac{N_p N_n}{Z_p + N_0}$ for nuclei above 208Pb is broken in the 100Sn region because the P_{Exp}^α is enhanced when the nucleus near 100Sn moves towards the $N = Z$ line. Besides, the calculated α decay half-lives can well reproduce experimental data including the newly observed self-conjugate nuclei 108Xe and 104Te. This work also provides evidence of the significant role of proton-neutron interaction on the α-particle preformation, which will shed some new light on α decay and α-particle preformation factors researches of nuclear physics in the future.

This work is supported by National Natural Science Foundation of China (Grants No. 12175170, No. 11675066, No. 11665019).

[1] D.F. Geesaman et al. Physics of a rare isotope accelerator. Annu. Rev. Nucl. Part. Sci. 56, 53–92 (2006).
[2] S. Hofmann and G. Münzenberg. The discovery of the heaviest elements. Rev. Mod. Phys. 72, 733–767 (2000).
[3] M. Pfitzner et al. Radioactive decays at limits of nuclear stability. Rev. Mod. Phys. 84, 567–619 (2012).
[4] A. N. Andreyev et al. Signatures of the $Z=82$ shell closure in α-decay process. Phys. Rev. Lett. 110, 242502 (2013).
[5] L. Ma et al. α-decay properties of the new isotope 216U. Phys. Rev. C 91, 051302(R) (2015).
[6] Chong Qi, Roberto Liotta, and Ramon Wyss. Recent developments in radioactive charged-particle emissions and related phenomena. Prog. Part. Nucl. Phys. 105, 214 – 251 (2019).
[7] B. Buck, A. C. Merchant, and S. M. Perez. New look at α decay of heavy nuclei. Phys. Rev. Lett. 65, 2975–2977 (1990).
[8] B. Buck, A. C. Merchant, and S. M. Perez. Alpha-cluster structure in 212Po. Phys. Rev. Lett. 72, 1326–1328 (1994).
[9] A. Astier et al. Novel manifestation of α-clustering structures: New “$\alpha+$208 Pb” states in 212Po revealed by their enhanced α decays. Phys. Rev. Lett. 104, 042701 (2010).
[10] J. W. Beeman et al. First measurement of the partial widths of 209Bi decay to the ground and to the first excited states. Phys. Rev. Lett. 108, 062501 (2012).
[11] Pierre de Marcillac et al. Experimental detection of α-particles from the radioactive decay of natural bismuth. Nature 422, 876 – 878 (2003).
[12] Z. Y. Zhang et al. New isotope 220Np: Probing the robustness of the $n = 126$ shell closure in neptunium. Phys. Rev. Lett. 122, 192503 (2019).
[13] L. Ma et al. Short-lived α-emitting isotope 222Np and the stability of the $N = 126$ magic shell. Phys. Rev. Lett. 125, 032502 (2020).
[14] M.D. Sun et al. New short-lived isotope 223Np and the absence of the $Z = 92$ subshell closure near $N = 126$. Phys. Lett. B 771, 303 – 308 (2017).
[15] W. M. Seif, M. Shalaby, and M. F. Alrakshy. Isospin asymmetry dependence of the α spectroscopic factor for heavy nuclei. Phys. Rev. C 84, 064608 (2011).
[16] Yuejiu Ren and Zhongzhou Ren. New geiger-nuttall law for α decay of heavy nuclei. Phys. Rev. C 85, 044608 (2012).
[17] Chang Xu et al. α-cluster formation and decay in the
quartetteing wave function approach. *Phys. Rev. C* **95**, 061306(R) (2017).

[18] Shuo Yang *et al.* α decay to a doubly magic core in the quartetting wave function approach. *Phys. Rev. C* **101**, 024316 (2020).

[19] Zhen Wang, Zhongzhou Ren, and Dong Bai. Theoretical studies on α-decay half-lives of $N = 125, 126,$ and 127 isotones. *Phys. Rev. C* **101**, 054310 (2020).

[20] Jun-Gang Deng, Hong-Fei Zhang, and G. Royer. Improved empirical formula for α-decay half-lives. *Phys. Rev. C* **101**, 034307 (2020).

[21] Jun-Gang Deng and Hong-Fei Zhang. Systematic study of α decay half-lives within the generalized liquid drop model with various versions of proximity energies. *Chin. Phys. C* **45**, 024104 (2021).

[22] Na-Na Ma, Xiao-Jun Bao, and Hong-Fei Zhang. Diffuseness effect and radial basis function network for optimizing α decay calculations. *Chin. Phys. C* **45**, 024105 (2021).

[23] Yi-Bin Qian and Zhong-Zhou Ren. New look at geiger-nuttall law and α clustering of heavy nuclei. *Chin. Phys. C* **45**, 021002 (2021).

[24] Wei Hua *et al.* Fine structure of α decay in 222Pa. *Chin. Phys. C* **45**, 044001 (2021).

[25] Yan He, Xuan Yu, and Hong-Fei Zhang. Improved empirical formula for α particle preformation factor. *Chin. Phys. C* **45**, 014110 (2021).

[26] Y. Z. Wang, J. M. Dong, B. B. Peng, and H. F. Zhang. Fine structure of α decay to rotational states of heavy nuclei. *Phys. Rev. C* **81**, 067301 (2010).

[27] Y. Z. Wang, S. J. Wang, Z. Y. Hou, and J. Z. Gu. Systematic study of α-decay energies and half-lives of super-heavy nuclei. *Phys. Rev. C* **92**, 064301 (2015).

[28] Chang Xu and Zhongzhou Ren. Half lives of α-emitters approaching the $N = Z$ line. *Phys. Rev. C* **74**, 037302 (2006).

[29] Monika Patial, R. J. Liotta, and R. Wyss. Microscopic description of superallowed α-decay transitions. *Phys. Rev. C* **93**, 054326 (2016).

[30] Y. Xiao *et al.* Search for α decay of 104Te with a novel recoil-decay scintillation detector. *Phys. Rev. C* **100**, 034315 (2019).

[31] R. M. Clark *et al.* Enhancement of α-particle formation near 108Sn. *Phys. Rev. Lett.* **101**, 034313 (2020).

[32] F. Mercier *et al.* Microscopic description of the self-conjugate 108Xe and 104Te α-decay chain. *Phys. Rev. C* **102**, 011301 (2020).

[33] S. N. Liddick *et al.* Discovery of 109Xe and 105Te: Superallowed α decay near doubly magic 100Sn. *Phys. Rev. Lett.* **97**, 082501 (2006).

[34] K. Auronen *et al.* Superallowed α decay to doubly magic 100Sn. *Phys. Rev. Lett.* **121**, 182501 (2018).

[35] P. Arthuis, C. Barbieri, M. Vorabbi, and P. Finelli. Ab initio computation of charge densities for Sn and Xe isotopes. *Phys. Rev. Lett.* **125**, 182501 (2020).

[36] Satish Kumar and Raj K. Gupta. Measurable decay modes of barium isotopes via exotic cluster emissions. *Phys. Rev. C* **49**, 1922–1926 (1994).

[37] Satish Kumar, Dharam Bir, and Raj K. Gupta. 100Sn – daughter α-nuclei cluster decays of some neutron-deficient Xe to Gd parents: Sn radioactivity. *Phys. Rev. C* **51**, 1762–1771 (1995).

[38] A. Florescu and A. Insolia. Microscopic calculation for α and heavier cluster emissions from proton rich Ba and Ce isotopes. *Phys. Rev. C* **52**, 726–732 (1995).

[39] H. F. Zhang *et al.* Preformation of clusters in heavy nuclei and cluster radioactivity. *Phys. Rev. C* **80**, 037307 (2009).

[40] H. Schatz *et al.* rp-process nucleosynthesis at extreme temperature and density conditions. *Phys. Rep.* **294**, 167 – 263 (1998).

[41] H. Schatz *et al.* End point of the rp process on accreting neutron stars. *Phys. Rev. Lett.* **86**, 3471–3474 (2001).

[42] Ronald D. Macfarlane and Antti Siivola. New region of alpha radioactivity. *Phys. Rev. Lett.* **14**, 114–115 (1965).

[43] National Nuclear Data Center, URL: https://www.nndc.bnl.gov/.

[44] L. Capponi *et al.* Direct observation of the 114Ba $\rightarrow ^{110}$ Xe $\rightarrow ^{106}$ Te $\rightarrow ^{102}$ Sn triple α-decay chain using position and time correlations. *Phys. Rev. C* **94**, 024314 (2016).

[45] R. D. Page *et al.* Alpha radioactivity above 100Sn including the decay of 105I. *Phys. Rev. C* **49**, 3312–3315 (1994).

[46] C. Mazzocchi *et al.* Alpha decay of 114Ba. *Phys. Lett. B* **532**, 29 – 36 (2002).

[47] D. Schardt *et al.* Alpha decay studies of tellurium, iodine, xenon and cesium isotopes. *Nucl. Phys. A* **326**, 65 – 82 (1979).

[48] F. Heine *et al.* Proton and alpha radioactivity of very neutron deficient Te, I, Xe and Cs isotopes, studied after electrostatic separation. *Z. Phys. A* **340**, 225–226 (1991).

[49] D. Schardt *et al.* Alpha decay of neutron-deficient isotopes with $52 \leq Z \leq 55$, including the new isotopes 106Te ($T_{\frac{1}{2}} = 60 \mu$s) and 110xe. *Nucl. Phys. A* **368**, 153 – 163 (1981).

[50] D. De Frenne and A. Negret. Nuclear data sheets for A = 106. *Nucl. Data Sheets* **109**, 943 – 1102 (2008).

[51] G. Audi, F.G. Kondev, Meng Wang, W.J. Huang, and S. Naimi. The nubase2016 evaluation of nuclear properties. *Chin. Phys. C* **41**, 030001 (2017).

[52] W.J. Huang *et al.* The ame2016 atomic mass evaluation (i). evaluation of input data; and adjustment procedures. *Chin. Phys. C* **41**, 030002 (2017).

[53] Meng Wang *et al.* The ame2016 atomic mass evaluation (ii). tables, graphs and references. *Chin. Phys. C* **41**, 030003 (2017).

[54] G. Royer. Alpha emission and spontaneous fission through quasi-molecular shapes. *J. Phys. G* **26**, 1149–1170 (2000).

[55] Hongfei Zhang *et al.* α decay half-lives of new superheavy nuclei within a generalized liquid drop model. *Phys. Rev. C* **74**, 017304 (2006).

[56] H. F. Zhang and G. Royer. Theoretical and experimental α decay half-lives of the heaviest odd-z elements and general predictions. *Phys. Rev. C* **76**, 047304 (2007).

[57] G. Royer and H. F. Zhang. Recent α decay half-lives and analytic expression predictions including superheavy nuclei. *Phys. Rev. C* **77**, 037602 (2008).

[58] Y. Z. Wang, H. F. Zhang, J. M. Dong, and G. Royer. Branching ratios of α decay to excited states of even-even nuclei. *Phys. Rev. C* **79**, 014316 (2009).

[59] H. F. Zhang and G. Royer. α particle preformation in heavy nuclei and penetration probability. *Phys. Rev. C* **77**, 054318 (2008).

[60] Jun-Gang Deng and Hong-Fei Zhang. Analytic formula for estimating the α-particle preformation factor. *Phys. Rev. C* **102**, 044314 (2020).

[61] J. M. Dong, H. F. Zhang, and G. Royer. Proton radioac-
tivity within a generalized liquid drop model. *Phys. Rev. C* **79**, 054330 (2009).

[62] X J Bao et al. Half-lives of cluster radioactivity with a generalized liquid-drop model. *J. Phys. G* **39**, 095103 (2012).

[63] G. Royer and B. Remaud. Static and dynamic fusion barriers in heavy-ion reactions. *Nucl. Phys. A* **444**, 477 – 497 (1985).

[64] G. Royer and K. Zbiri. Asymmetric fission for 70,76Se and 90,94,98Mo via quasimolecular shapes and related formulas. *Nucl. Phys. A* **697**, 630 – 638 (2002).

[65] Jun-Gang Deng and Hong-Fei Zhang. Correlation between α-particle preformation factor and α decay energy. *Physics Letters B* **816**, 136247 (2021).

[66] H. F. Zhang, G. Royer, and J. Q. Li. Assault frequency and preformation probability of the α emission process. *Phys. Rev. C* **84**, 027303 (2011).

[67] G. L. Zhang, X. Y. Le, and H. Q. Zhang. Calculation of α preformation for nuclei near $N = 162$ and $N = 184$. *Phys. Rev. C* **80**, 064325 (2009).

[68] Jun-Gang Deng et al. α decay properties of 297Og within the two-potential approach. *Chin. Phys. C* **41**, 124109 (2017).

[69] Jun-Gang Deng et al. α decay properties of 296Og within the two-potential approach. *Chin. Phys. C* **42**, 044102 (2018).

[70] Ning Wang, Min Liu, Xizhen Wu, and Jie Meng. Surface diffuseness correction in global mass formula. *Phys. Lett. B* **734**, 215–219 (2014).

[71] Saad M Saleh Ahmed et al. Alpha-cluster preformation factors in alpha decay for even–even heavy nuclei using the cluster-formation model. *J. Phys. G* **40**, 065105 (2013).

[72] M. Hasegawa and K. Kaneko. Microscopic analysis of $T=1$ and $T=0$ proton-neutron correlations in $N=Z$ nuclei. *Nucl. Phys. A* **748**, 393 – 401(2005).

[73] Xiao-Dong Sun, Ping Guo, and Xiao-Hua Li. Systematic study of favored α-decay half-lives of closed shell odd-α and doubly-odd nuclei related to ground and isomeric states. *Phys. Rev. C* **94**, 024338 (2016).

[74] Jun-Gang Deng et al. Systematic study of unfavored α-decay half-lives of closed-shell nuclei related to ground and isomeric states. *Phys. Rev. C* **96**, 024318 (2017).

[75] Jun-Gang Deng et al. Systematic study of α decay of nuclei around the $Z = 82, N = 126$ shell closures within the cluster-formation model and proximity potential 1977 formalism. *Phys. Rev. C* **97**, 044322 (2018).