Diversion colitis and pouchitis: A mini-review

Kentaro Tominaga, Kenya Kamimura, Kazuya Takahashi, Junji Yokoyama, Satoshi Yamagiwa, Shuji Terai

Abstract

Diversion colitis is characterized by inflammation of the mucosa in the defunctioned segment of the colon after colostomy or ileostomy. Similar to diversion colitis, diversion pouchitis is an inflammatory disorder occurring in the ileal pouch, resulting from the exclusion of the fecal stream and a subsequent lack of nutrients from luminal bacteria. Although the vast majority of patients with surgically-diverted gastrointestinal tracts remain asymptomatic, it has been reported that diversion colitis and pouchitis might occur in almost all patients with diversion. Surgical closure of the stoma, with reestablishment of gut continuity, is the only curative intervention available for patients with diversion disease. Pharmacologic treatments using short-chain fatty acids, mesalamine, or corticosteroids are reportedly effective for those who are not candidates for surgical reestablishment; however, there are no established assessment criteria for determining the severity of diversion colitis, and no management strategies to date. Therefore, in this mini-review, we summarize and review various recently-reported treatments for diversion disease. We are hopeful that the information summarized here will assist physicians who treat patients with diversion colitis and pouchitis, leading to better case management.

Key words: Diversion colitis; Diversion pouchitis; Ileitis; Inflammatory bowel disease

© The Author(s) 2018. Published by Baishideng Publishing Group Inc. All rights reserved.
however diversion colitis occurs in almost all diverted patients. Pharmacologic treatment using short-chain fatty acids, mesalamine, or corticosteroids are reportedly effective for those who are not candidates for surgical reestablishment; however, there are no established assessment criteria for determining the severity of diversion colitis, and no management strategies to date. In this mini-review, we summarize and review various recently-reported diversion disease treatments. We hope this review will be useful for future treatment.

Tominaga K, Kamimura K, Takahashi K, Yokoyama J, Yamagiwa S, Terai S. Diverision colitis and pouchitis: A mini-review. World J Gastroenterol 2018; 24(16): 1734-1747 Available from: URL: http://www.wjgnet.com/1007-9327/full/v24/i16/1734.htm DOI: http://dx.doi.org/10.3748/wjg.v24.i16.1734

INTRODUCTION

Diverision colitis was first described by Morson et al[1] in 1974 as a non-specific inflammation in the diverted colon. Glotzer et al[2] labeled this inflammation “diversion colitis” in 1981. Since then, the disease has been reported in both retrospective[3-20] and prospective studies[21-27] which have described the characteristic clinical, endoscopic, and pathological findings. Surprisingly, the prospective study reported that almost all cases exhibit colitis, evidenced by endoscopic analyses, 3 to 36 mo after the colostomy[21]. Symptomatic cases make up only around 30% of all cases diagnosed via endoscopic studies, and the precise pathogenesis of this condition remains unclarified.

Although a wide range of symptoms are reportedly associated with the disease, including abdominal discomfort, tenesmus, anorectal pain, mucous discharge, and rectal bleeding[3,4], there are no established diagnostic criteria for assessing disease severity. Diverision pouchitis is similar to diversion colitis, featuring inflammation of the ileal pouch that results from fecal stream exclusion and the subsequent lack of nutrients from luminal bacteria. Therefore, the difference between the pouchitis and diversion pouchitis is whether the lesion is exposed to the fecal stream or not. Patients generally present with varying symptoms such as tenesmus, bloody or mucous-like discharge, and abdominal pain[28]. The incidence of diversion pouchitis is unknown; however, it appears more commonly in patients with underlying inflammatory bowel disease (IBD). Nonsurgical approaches for the treatment of diversion pouchitis include the use of short chain fatty acids (SCFA), topical 5-aminosalicylic acids, and topical glucocorticoids. Unfortunately, efficacy study outcomes are conflicting, and the only curative approach is surgical re-anastomosis with the reestablishment of gut continuity[29-30].

In their 1989 examination of non-surgical treatment options procedure, Harig et al[3] reported the efficacy of short-chain fatty acids. The usefulness of the 5-ASA enema in patients with diversion colitis was reported for the first time by Triantafillidis et al[21] in 1991; Glotzer et al[2] reported the efficacy of steroid enemas in patients with diversion colitis in 1984, and similar results were subsequently reported by Lim et al[22] and Jowett et al[23].

LITERATURE ANALYSIS

A literature search was conducted using PubMed and Ovid, with the terms “diversion colitis” or “diversion proctitis” and “diversion pouchitis” used to extract studies published over the preceding 45 years. All appropriate English-language publications from relevant journals were selected. We summarized the available information on demographics, clinical symptoms, endoscopic and histological findings, treatment, and the clinical course.

CLINICAL CHARACTERS

Epidemiology

A total of 69 articles, including 25 case reports, were matched to our definition of diversion colitis and pouchitis assessment; this information is summarized in Tables 1 and 2. Based on our review, the prevalence estimates of these conditions appear extremely high, reaching almost the entire population of interest if the phenomenon is followed prospectively, beginning at 3 to 36 mo after colostomy[21]. In a recent study, Szczepkowski et al[3] described more than 90% incidence of diversion colitis on endoscopy in a series of 145 patients. The study further reported that there were no significant associations between diversion colitis and age, sex, type of stoma, or mode of surgery performed. The frequency of disease occurrence ranged from 70%-74% in patients without pre-existing IBD[22] and 91% in patients with pre-existing IBD[6,21]. In patients with histories of Crohn’s disease chronic severe inflammation, often with transmural disease, has been described after defunctioning colostomies[34]. It has also been hypothesized that diversion colitis may be a risk factor for ulcerative colitis in predisposed individuals, and that ulcerative colitis can be triggered by anatomically discontinuous inflammation in the large bowel[35]. Among the 46 reported cases of diversion colitis and
Case (No)	Reference	Reporting yr	Country	Age (yr)	Gender (male/female)	Primary Illness (reason for diversion)	Type of diversion (surgical procedure)	Period of up to diagnosis from operation	Symptoms	Endoscopy findings	Pathological findings	Diagnosis
1	Glotzer et al[2]	1981	United States	49	M	Free perforation sigmoid diverticulum	Loop sigmoid colostomy	2.5 mo	No symptoms	Erythema, friability, petechiae, atrophy	Crypt abscess, surface epithelial cell degeneration, acute inflammation, chronic inflammation, regeneration	Diversion colitis
56	F	1984	United States	28	M	Perforated sigmoid colon for gunshot	Loop sigmoid colostomy	6 wk	No symptoms	Multiple aphthae	Not obtained	Diversion colitis
78	M	1984	United States	21	M	Gunshot	Loop sigmoid colostomy	2 mo	No symptoms	Multiple, small, polypoid lesions in the rectum and sigmoid colon up to the cutaneous part of the mucous fistula.	Not obtained	Diversion colitis
3	Scott et al[4]	1984	United States	22	F	Crohn’s Disease	Ileostomy and subtotal colectomy	2 yr	No symptoms	Not obtained	Moderate loss of goblet cells with focal edema and lymphocytosis of the lamina propria.	Diversion colitis
No.	Sex	Diagnosis	Procedure	Duration	Symptom(s)	Findings	Complication					
-----	-----	-------------------------	----------------------------	----------	------------------	---	--					
34	F	Crohn's ileitis	Ileocaecostomy and Loop Ileostomy	2 yr	No symptoms	Exudate, Focal chronic inflammation, edema, erosions, and an increased number of lymphoid follicles.						
31	M	Crohn's ileitis	Ileocaecostomy and Loop Ileostomy	1 yr	No symptoms	Aphthous lesions, Chronic inflammation						
32	M	Crohn's ileitis	Ileocaecostomy and Loop Ileostomy	1 yr	No symptoms	Friable, exudate, Not obtained						
5	F	Perforated sigmoid diverticulum	Loop sigmoid colostomy	22 yr	Rectal bleeding	Diffuse multiple superficial ulcerations and intense inflammatory infiltrate composed mainly of plasma cells, lymphocytes, and some eosinophils.						
6	M	Perineal laceration as result of a motor vehicle accident	End sigmoid colostomy	1 yr	Rectal bleeding	Moderate to severe nonspecific inflammation.						
7	M	Neurogenic focal incontinence	Mucus fistula	13 mo	Bloody discharge	Endoscopic index of 10						
						Inflammatory infiltrate of both acute and chronic cells in the lamina propria and the crypt abscess. Lining epithelial cells show decreased mucin secretion.						
63	F	Irradiation of rectum	Mucus fistula	2 wk	Bloody discharge	Endoscopic index of 10						
54	M	Perianal fistulas	Rectosigmoid pouch	35 mo	Bloody discharge	Endoscopic index of 9						
56	M	Diverticulitis	Mucus fistula	N/A	N/A	Endoscopic index of 8						
8	F	Diverticula with perforation	Hartman's type of operation laparotomy	16 mo	Bloody rectal discharge	Severe inflammatory infiltration, formation of lymph follicles, surface erosions, edema, and crypt abnormalities.						
9	F	Small bowel perforation with a ruptured chronic pelvic abscess secondary to diverticular disease	End transverse colostomy	10 wk	Bloody rectal discharge	Acute and chronic inflammation with cryptitis.						
10	F	Chronic constipation	Loop transverse colostomy	25 yr	Sepsis (no symptoms such as rectal bleeding)	Large ulcers with overlying pseudomembrane	Inflammation primarily with plasma cells and lymphocytes was noted, as well as a moderate numbers of polymorphonuclear cells, large lymphoid aggregates were seen in the lamina propria.					
Case	Authors	Year	Age	Gender	Location	Procedure	Time	Symptoms	Pathology	Diagnosis		
------	---------	------	-----	--------	----------	------------	------	----------	-----------	-----------		
11	Lai et al.	1997	49 M	United States	Colostomy	10 yr	Rectal pain and bleeding	Partial stricture 70 cm proximally to the rectum. The colonic mucosa appeared granular and friable with evidence of linear ulceration.	Extravasation of erythrocytes, lymphocytic and neutrophilic cells infiltrates, and edema were present within the lamina propria. No evidence of malignancy and glandular dysplasia was found. Pathologic report was consistent with chronic colitis.	Diversion colitis		
12	Lim et al.	1999	60 F	United States	End sigmoid colostomy	6 mo	Blood and mucus per rectum	Edematous mucosa with blood-stained mucopurulent exudate	Active chronic colitis with focal cryptitis and crypt abscesses.	Diversion colitis → UC		
16	M	6 M	Imperforate anus	Ileostomy and colostomy	6 mo	Blood and mucus per rectum	Granular, erythematous mucosa with contact bleeding	Active inflammation with polymorphs infiltrating crypts and a diffuse increase in lymphocytes and plasma cells in the lamina propria.	Diversion colitis → UC			
13	Jowett et al.	2000	75 F	United Kingdom	End colostomy	8 mo	Blood and mucus per rectum	Granular, congested, and oedematous mucosa with contact bleeding	Mixed inflammatory cell infiltrate with distortion of the crypt architecture and cryptitis.	Diversion colitis (→ UC)		
14	Lim et al.	2000	66 M	United Kingdom	Hartmann's procedure with colostomy.	18 mo	No symptoms	Mildly inflamed	Active colitis	Diversion colitis (→ UC)		
15	Kiely et al.	2001	6 M	United Kingdom	Total colectomy and ileostomy	9 mo	Rectal bleeding	Endoscopic index of 8	Lymphoid hyperplasia, lymphoplasmacytosis, crypt abscesses and moderate mucosal architectural disruption.	Diversion proctocolitis		
3	M	5 M	Perforated typhoid disease	Subtotal colectomy and ileostomy	5 mo	Rectal bleeding and abdominal pains	Endoscopic index of 8	Lymphoplasmacytic infiltration of lamina propria, and architectural disruption.	Diversion proctocolitis			
8	F	4 M	Aplastic anemia, a large solitary rectal ulcer	Loop sigmoid colostomy	4 mo	Rectal discharge	Endoscopic index of 9	Lymphoplasmacytic and neutrophilic infiltrate in the lamina propria, mucin depletion, and Paneth cell metaplasia.	Diversion proctocolitis			
3	M	6 M	Hirschsprung's disease	Ileostomy	N/A	Rectal bleeding	Florid colitis	Lymphoid hyperplasia, lymphoplasmacytosis and mucin depletion, and Paneth cell metaplasia.	Diversion proctocolitis			
10	M	10 M	Rectovesical fistula	Loop sigmoid colostomy	N/A	Rectal discharge	Florid colitis	Lymphoid hyperplasia, lymphoplasmacytosis.	Diversion proctocolitis			
16	Komuro et al.	2003	46 M	Japan	Loop transverse colostomy	N/A (On surveillance colonoscopy)	No symptoms	Mild colitis with a decreased vascular pattern, oedema and mucosal tear	Diversion colitis			
pouchitis, there was a slight male predominance (28 males, 18 females), and the age of the patients ranged from 3 to 85 years old\cite{2,5,13,29,31-33,35-52}. The period from diagnosis to surgical treatment was a median of 8 mo, ranging from 2 wk to 25 years (Table 1). The types of diversions included: 9 cases of loop sigmoid colostomy; 3 cases of end sigmoid colostomy; 9 cases of loop transverse colostomy; 4 cases of loop ileostomy; 7 cases of ileostomy and colostomy; 3 cases of proctocolectomy; 2 cases of Hartmann’s type with colostomy; and only one case of other operations (Table 1).

Pathogenesis

The basic mechanisms underlying diversion colitis are still unclear. Glotzer hypothesized that it might be the result of bacterial overgrowth, the presence of harmful bacteria,
Table 2 Clinical course of case reports

Case (No)	Ref.	Age (yr)	Gender (male/female)	Ineffective treatment	Effective treatment	Prognosis	
1	Glotzer et al[31]	49	M N/A	Closure 4 mo post-diversion	Asymptomatic. Proctoscopy and biopsy normal. 2.5 and 30 mo post closure.		
56	F N/A	Closure 3 mo post-diversion	Recurrent Ca. Mucosa not inflamed grossly or microscopically 18 mo post closure.				
78	M N/A	Closure 6 mo post-diversion	Asymptomatic. 1 yr post closure.				
70	F N/A	Closure 5 mo post-diversion	Asymptomatic. Normal sigmoidoscopy 2 mo post closure.				
43	F N/A	Closure 2 yr post-diversion	Asymptomatic. Normal sigmoidoscopy 3 yr post closure.				
41	F N/A	None	Asymptomatic 2 yr after ileostomy.				
65	M N/A	None	Abdominal cramps purulent rectal discharge. Continued inflammation 8 yr after colostomy.				
83	M N/A	None	Asymptomatic. Continued mild inflammation 4.5 yr after colostomy.				
26	M N/A	Steroid enemas	Improved. Continued 8 yr after colostomy.				
70	M N/A	Steroid enemas	Tenesmus, discharge and fever 4 yr after colostomy. Resolved with steroid enemas.				
2	Lusk et al[40]	28	M -	Colostomy closure	Normal at 16 mo follow-up.	One month later, the patient was examined by flexible sigmoidoscopy, which demonstrated normal mucosa throughout with no sign of pseudopolyps.	
68	M -	Colostomy closure	Continued inflammation at 8 yr.				
3	Scott et al[46]	21	M -	Colostomy closure			
4	Korelitz et al[42]	22	F Steroid enemas	Ileocolic reanastomosis (ileostomy closure)	3 mo (interval from reanastomosis to normal sigmoidoscopy), 7 yr (duration normal).		
34	F -	Ileostomy closure	1 mo (interval from reanastomosis to normal sigmoidoscopy), 2 yr (duration normal).				
31	M -	Ileostomy closure	3 mo (interval from reanastomosis to normal sigmoidoscopy), 18 mo (duration normal).				
32	M -	Ileostomy closure	2 mo (interval from reanastomosis to normal sigmoidoscopy), 14 mo (duration normal).				
5	Fernand et al[39]	67	F -	Left hemicolectomy and left salpingo- oophorectomy	She recovered well and discharged 9 d later.		
6	Frank et al[13]	38	M Oral and topical steroids	Abdominoperineal resection of the diverted loop and permanent colostomy	No evidence of inflammatory bowel disease has developed. Barium study of the small bowel was normal 1 yr after surgery.		
7	Harig et al[32]	63	M N/A	Short-chain-fatty acid irrigation	N/A		
63	F N/A	Short-chain-fatty acid irrigation	N/A				
54	M N/A	Short-chain-fatty acid irrigation	N/A				
56	M N/A	Short-chain-fatty acid irrigation	N/A				
8	Triantafillidis et al[34]	64	F -	5 aminosalicylic acid enemas comparison with Betamethasone enemas	There were no differences in the degree of clinical improvement, or in the endoscopic and histologic scores seen at the end of the trials, between betamethasone and 5-ASA. Clinically asymptomatic at a 6-mo follow-up.		
9	Tripodi et al[33]	85	F -	5-aminosalicylic acid enemas	Without complications and has been doing well postoperatively.		
10	Lu et al[35]	45	F Intravenous metronidazole	Colectomy of the diverted segment	6 wk of treatment with 5-ASA, the patient had decreased rectal pain and bleeding. PSL was tapered off over four months and she remained well.		
11	Lai et al[36]	49	M -	Oral prednisolone, oral mesalazine, and mesalazine enemas			
12	Lim et al[37]	60	F -	Oral prednisolone, oral mesalazine, and mesalazine enemas	He subsequently made a good recovery and steroid therapy was discontinued.		
0	M -	Closure of the loop ileostomy—oral prednisolone, oral olsalazine and oral metronidazole—sigmoid loop colostomy	The defunctioned rectosigmoid was partially removed, leaving the lower rectum and anal canal; the loop colostomy was refashioned into an end colostomy—colectomy and removal of residual rectal stump and anal canal was performed and an end ileostomy fashioned				
13	Jowett et al[38]	75	F -	Topical steroid enemas.	UC		
14	Lim et al[39]	66	M -	Steroid enemas	6 mo later he developed ulcerative colitis.		
nutritional deficiencies, toxins, or disturbance in the symbiotic relationship between luminal bacteria and the mucosal layer. Reportedly, concentrations of carbohydrate-fermenting anaerobic bacteria and pathogenic bacteria are reduced in de-functioned colons and these reports indicate that the overgrowth of anaerobic bacteria or a pathogenic bacterium is unlikely to be an important etiological factor. On the other hand, there is an increase of nitrate-reducing bacteria in patients with diversion colitis and nitrate-reducing bacteria produce nitric oxide (NO) which plays a protective role in low concentrations, but at higher levels it becomes toxic to the colonic tissue. Thus, it has been suggested that increases in nitrate-reducing bacteria may result in toxic levels of NO, leading to the diversion colitis.

Reference	Author et al.	Age	Gender	Treatment	Management	Notes
Kiely et al.	2018	6	M	PSL and AZA	SCFA	Oral PSL was continued at the reduced rate of 5mg on alternate days until he underwent an uneventful rectal excision and J-pouch anal anastomosis 1 mo later. Two months after this, his ileostomy was closed. His ileostomy was closed 3 mo later, and he was remained symptom free. Her ulceration was virtually healed and showed a reduction in endoscopic index from 9 to 3. Treatment was maintained until her colostomy was reversed a month later. After stoma closure, SCFAs were discontinued with no further recurrence of symptoms.
Komuro et al.	2018	46	M	N/A	SCFA	For redo pull-through rectal excision.
Tsononi et al.	2018	40	M	Mesalazine suppository and steroid enemas	Metronidazole suppository	Improved quickly and remains well and asymptomatic 12 wk after treatment.
Boyce et al.	2018	29	M	-	Completion proctectomy	Completion proctectomy was uneventful and from which the patient made an unremarkable recovery.
Haugen et al.	2018	36	F	Antegrade irrigations of her distal bowel with tap water	SCFA enemas was not option due to insurance and spina bifida	Weekly to twice weekly irrigations completely stopped the malodorous and troublesome discharge.
Talisetti et al.	2018	19	F	SCFA enema, steroids, metronidazole	Colectomy (entire colon was ultimately resected. Since only 15 cm of jejunum appeared healthy, her mid and distal small bowel was also resected up to 15 cm from the ligament of Treitz)	N/A
Kominami et al.	2018	84	M	5-aminosalicylic acid enemas maintenance therapy.	Short-chain fatty acid enema	Undergoing 5-aminosalicylic acid enemas maintenance therapy.
Watanabe et al.	2018	76	F	Leukocytapheresis, following low dose of metronidazole and ciprofloxacin	Enemas containing 5-aminosalicylic acid and steroids and antibiotic therapy	After 18 mo, her condition remains stable without the need for medication.
Gundling et al.	2018	75	F	Autologous fecal transplantation	Enemas containing 5-aminosalicylic acid and steroids and antibiotic therapy	All symptoms improved dramatically within 5 d after the first treatment. Colonoscopy 28 d after the first treatment showed no major signs of inflammation in the colonic stump.
Matsumoto et al.	2018	65	M	A combined mesalazine plus corticosteroid enema.	Corticosteroid and mesalazine enemas, prednisolone injections.	Finally proctectomy and ileal pouch-anal anastomosis were successfully performed.
Custon et al.	2018	44	M	Dextrose (hypertonic glucose) spray endoscopically	-	The patient did not experience further episodes of recurrent bleeding during the 6-mo follow-up. No prescribed medicines were given after the endoscopic therapy.

Tominaga K et al. Diversion colitis and pouchitis.
Recently, ischemia has been proposed as a cause of diversion colitis\(^8\). The explanation surely lies in changes to the luminal flora consequent to fecal stream interruption. Normal luminal bacteria produce SCFA, such as butyric acid. Butyrate is the principal oxidative substrate for colonocytes\(^5\) and patients with diversion colitis may improve following topical treatment with SCFA, especially with butyrate enemas\(^5,36\). This hypothesis is based on evidence that suggests SCFA relax vascular smooth muscle and that butyrate deficiencies may induce increased tone in the pelvic arteries, therefore leading to relative ischemia of the colorectal mucosa and intestinal wall\(^5\). It is obvious that additional, basic research is necessary in order to discern disease mechanisms. We have summarized the pathogenesis of this disease entity in Figure 1.

Symptoms

Most patients are asymptomatic\(^22\), however about one third of patients may exhibit symptoms of diversion colitis\(^2,3,6,9\). Patients generally present with varying symptoms such as abdominal discomfort, tenesmus, anorectal pain, mucous discharge, and rectal bleeding. The most common symptoms include bloody, serous, or mucous discharge in 40% of the population, and abdominal pain and tenesmus in 15% of the population\(^9\). There have been several reports of severe rectal bleeding\(^24,29,56\). There is a report of massive rectal distension causing bilateral ureteric obstruction\(^37\) and a case report of diversion colitis causing severe sepsis requiring a colectomy\(^38\). These symptoms can start within 1 mo to 3 years after surgery\(^22,24\). Our review also showed that clinical symptoms of rectal bleeding were seen in 25 cases, abdominal pain in 3 cases, anal pain in 3 cases, and sepsis in 1 case\(^38\). On the other hand, 21 of 46 cases had no symptoms (Table 1), as previously reported\(^24\). Additionally, in the presence of Crohn’s disease and ulcerative colitis, the number of symptomatic patients rises to 33% and 87% respectively\(^33\). Our review showed cases with primary illness of diverticula with perforation \((n = 11)\), fecal incontinence \((n = 6)\), chronic constipation or ileus \((n = 5)\), ulcerative colitis \((n = 5)\), Crohn’s disease \((n = 4)\), carcinoma \((n = 3)\), and various other diseases (Table 1).

Macroscopic findings

Macroscopically, diversion colitis may involve the whole de-functioned colon or isolated segments. These findings include erythema, diffuse granularity, and blurring of vascular pattern in about 90% of the population. It is also associated with mucosal friability (80%) edema (60%), aphthous ulceration, and bleeding, to varying degrees\(^2,3,8-12,39,40\). There is a case report of diversion colitis causing mucosal tears within the defunctioned colon\(^41\). Recently, Hundorfean et al\(^37\) reported a first description and in vivo diagnosis of diversion colitis after surgery, by virtual chromoendoscopy and fluorescein-guided confocal laser endomicroscopy. Our literature review showed that endoscopic findings were evidenced in 44 out of 46 cases, and severe inflammation with ulceration (endoscopic index \(\geq 8\)) in 17 cases.

Microscopic findings

The pathological finding of diversion colitis and pouchitis...
usually vary with degree of severity, therefore, no specific microscopic findings have been noted. The histological features of diversion colitis can mimic those of IBD, even when a pre-existing IBD has not been documented. The most notable feature often seen in diversion colitis is lymphoid follicular hyperplasia. Atrophy, crypt branching, mucin depletion, crypt distortion, regenerative hyperplasia, paneth cell metaplasia, thickening of muscularis mucosa, diffuse active mucosal inflammation with crypt abscesses, ulceration, and vacuolar and epithelial degeneration along with features of chronic inflammation (usually confined to the mucosa) are seen with varying degrees of severity. More recently, features of ischemia, such as superficial coagulative necrosis and fibrosis, have been described. Our review showed that 37 out of 46 cases exhibited pathological findings including 15 cases of crypt abscess or cryptitis, and 14 cases of lymphoid follicular hyperplasia (which was not previously identified as a feature of diversion colitis). These features are non-specific and, to date, no characteristic feature or features of diversion colitis have been identified.

Treatment

Because of the small number of patients and the unknown etiology, there is no established standard therapy for diversion colitis and pouchitis. Szczepkowski et al proposed a management strategy for patients with de-functioned distal stomas. He divided patients with diversion colitis into three groups based on a study of 145 patients. These groups consisted of Group 1 (no clinical, morphological or endoscopic evidence of diversion colitis), Group 2, (mild or moderate signs of diversion colitis), and Group 3 (severe diversion colitis). Group 1 can be treated conservatively. Group 2 can be treated using conservative management prior to restoration of colonic continuity and Group 3 should ideally undergo restoration of colonic continuity. If a surgical option is not feasible, pharmacologic treatment options should be tried to resolve the inflammation. A summary of the clinical courses of case reports is shown in Table 2.

Surgery

Treatment of diversion colitis should be primarily directed at restoring bowel continuity to restore the luminal flow. This will resolve the symptoms and assist the bowel to return to normal. Re-anastomosis has proven to be consistently effective in halting the symptoms of diversion colitis in a number of studies. Re-anastomosis of diverted segments in patients with preexisting inflammatory bowel disease is a more difficult decision because inflammation in the diverted segment could represent inflammatory bowel disease or diversion colitis, each of which dictate different courses of action. Resection is not typically required. Indications for resection include uncontrolled perianal sepsis, perianal fistulous disease, anal incontinence, and uncontrolled symptoms related to diversion colitis.

Diet and lifestyle

Nutritional imbalance in the excluded colon is likely responsible for the pathologic changes and symptoms of diversion colitis. However, current evidence does not support the effectiveness of lifestyle modifications or nutritional imbalance. Pharmacologic treatment is generally indicated for the temporary control of symptoms in preparation for surgery. It is used occasionally for patients who are not considered surgical candidates because of severe medical comorbidities, poor sphincter function, or reasons of technical difficulty.

Short-chain-fatty acid

Short-chain fatty acids, mainly butyrate, are the major fuel source for the epithelium. Their absence in the diverted tract may produce mucosal atrophy and inflammation. Bacteria produce SCFAs as byproducts of carbohydrate fermentation in the colonic lumen, and SCFAs provide the primary energy source for colonic mucosal cells. In human neutrophils, SCFAs reduce the production of reactive oxygen species, which are the agents of oxidative tissue damage. Treatment of diversion colitis with SCFA or butyrate has shown inconsistent results. Harig successfully improved symptoms and endoscopic inflammatory change by SCFA. Komorowski et al reported similar results in four patients with diversion colitis with SCFA irrigation. However, Guillmot et al failed to demonstrate either histological or endoscopic improvement. The differences in response may be partially accounted for by disease groupings. In recent years, several studies on the usefulness of SCFA, including of butyrate, are reported. Cristina et al proposed that butyrate enemas may prevent the atrophy of the diverted colon/rectum, thus improving the recovery of tissue integrity.

5-aminosalicylic acid

Usefulness of 5-aminosalicylic acid (5-ASA) enemas in diversion colitis was reported for the first time by Trianantafilidis et al in 1991. Tripodi et al has also reported similar results in 1992. Calitabiano et al reported that 5-ASA enema reduces oxidative DNA damage in colonic mucosa and reduces mucosal damage using rats in a diversion colitis model. It is considered that the mucosal disorder may be improved by protective action against oxidative DNA damage and the anti-inflammatory action of SASA.

Corticosteroids

Glotzer reported on several patients with diversion colitis treated by steroid enemas in 1984. Lim and Jowett also reported the efficacy of the steroid enemas in 2000. Corticosteroids are first-line agents for symptomatic diversion colitis, with varying effectiveness.
Tominaga K et al. Diversion colitis and pouchitis

Table 3 Summary of pharmacologic treatments

Treatment	Ref.	Procedure/standard dosage	Efficacy	Complications/main side effects
Surgical anastomosis	[2,3,10,21,25,39,42]	Mobilization of both ends of the bowel with either sutured or stapled anastomosis.	The most effective method of eliminating the signs and symptoms	Bleeding, infection, anastomotic leak, anastomotic stricture, anesthetic risks
Corticosteroids	[2,32,33]	Hydrocortisone (100 mg per 60 mL bottle) enema is administered once daily for up to 3 wk.	Response to treatment is generally seen in 3 to 5 d.	Local pain and burning, occasionally rectal bleeding.
5-aminosalicylic acid (5-ASA) enemas	[31,43,63,64]	4 g of mesalazine in 60 mL suspensions, administered rectally once-daily dose for 4 to 5 wk.	Varying effect	Occasionally produces acute intolerance manifested by cramping, acute abdominal pain, bloody diarrhea, fever, headache, and rash.
Short-chain-fatty acid (SCFA) enemas	[5,10,13,18,19,26,27,61,62]	SCFA enema rectally twice a day for 2 wk, and then tapered according to response over 2 to 4 wk.	Varying effect	None
Irrigation with Fibers	[65,66]	Solution containing 5% fibers (10 g/d) for 7 d.	The endoscopic score which is used to quantify the intensity of the inflammation at the mucosa of the diverted colon diminished after treatment.	Probably none
Leukocytapheresis	[44]	Leukocytapheresis, at flow rate of 40 mL/min for 60 min, once weekly for 5 wk, following low dose of metronidazole and ciprofloxacin, another set of weekly leukocytapheresis was added.	Significant improvement in her pouchitis disease activity index (PDAI) from 14 to 1.	The common side effects were nausea, vomiting, fever, chills, and nasal obstruction.
Autologous fecal transplantation	[45]	Feces were collected from the colostomy bag, diluted with 600 mL of sterile saline (0.9 %), stirred and filtered three times using an ordinary coffee filter, irrigation endoscopically. This procedure was repeated 3 times within 4 wk (on day 0, day 10 and day 28).	All symptoms improved dramatically within 5 d after the first treatment. Colonoscopy 28 d after the first treatment showed no major signs of inflammation in the colonic stump	None, patient’s tolerance required.
Dextrose spray (hypertonic glucose)	[29]	Endoscopically sprayed with 150 mL 50% dextrose via a catheter.	Follow-up pouchoscopy 2 wk after the dextrose spray showed normal pouch mucosa with no evidence of bleeding or mucosal friability.	It has a very low chance of causing transient hyperglycemia because there is no direct injection of the hypertonic solution into blood vessels.

SCFA: Short chain fatty acids; 5-ASA: 5-aminosalicylic acid.

Irrigation with fibers
Resolution of diversion colitis, based on endoscopic and histologic examination, has been reported following irrigation of the diverted segment of the colon with fibers. Joaquim et al. investigated the effect of irrigating the colorectal mucosa of patients with a colostomy using a solution of fibers. In 11 patients with loop colostomies, the diverted colorectal segment was irrigated with a solution containing 5% fibers (10 g/d) for 7 d. Irrigation with fibers improves inflammation within the defunctionalized colon, so this therapy may play a role in the preoperative management of colostomies, potentially decreasing the high incidence of diarrhea after reestablishment of the intestinal transit.

Leukocytapheresis
Watanabe et al. reported successful treatment of leukocytapheresis in a patient with chronic antibiotic-refractory diversion pouchitis following IPAA for UC with diverting ileostomy. The mucosa of the diverted pouch is less exposed to the fecal stream and pathogens. Therefore, altered immunity likely plays a major role in the maintenance of diversion pouchitis. Leukocytapheresis to address the altered immunity would seem a reasonable approach for antibiotic-refractory pouchitis following IPAA for UC with diverting ileostomy, and its effectiveness in the case suggests that altered immunity may be a key contributing factor compared with dysbiosis, bacterial pathogens, and ischemia.

Autologous fecal microbiota transplantation
Fecal microbiota transplantation (FMT), which consists of transferring stool from a healthy donor to the patient’s colon, is an effective treatment for some diseases of the
colostomy closure. However, those patients with significant symptoms or histories of colitis or diarrhea should undergo a complete proximal and distal colonic evaluation prior to stoma closure, and some treatments need not be delayed in these patients. Patients with permanent diversions should undergo periodic pharmacologic treatment. This review of various treatments for diversion colitis will hopefully be useful for determining future treatments.

REFERENCES

1. Morson BC, Dawson MP. Gastrointestinal Pathology, first ed., Blackwell Scientific Publications, London, 1972
2. Glotzer DJ, Glick ME, Goldman H. Proctitis and colitis following diversion of the fecal stream. Gastroenterology 1981; 80: 438-441 [PMID: 7450438]
3. Mudeyto-Visa KA, Gabriélliants GM. [Enterococcocal survival in forcemeat preserved in polymer films and in cutlets made from it]. Vopr Pitan 1975; 7: 68-72 [PMID: 1906]
4. Ma CK, Gottlieb C, Haas PA. Diversion colitis: a clinicopathologic study of 21 cases. Hum Pathol 1990; 21: 429-436 [PMID: 2318485]
5. Harig JM, Soergel KH, Komorowski RA, Wood CM. Treatment of diversion colitis with short-chain-fatty acid irrigation. N Engl J Med 1989; 320: 23-28 [PMID: 2909876 DOI: 10.1056/NEJM198905302010105]
6. Frisbie JH, Ahmed N, Hirano I, Klein MA, Soybel DI. Diversion colitis in patients with myelopathy: clinical, endemic, and histopathological findings. J Spinal Cord Med 2000; 23: 142-149 [PMID: 1094236]
7. Neut C, Guillenot F, Colombel JF. Nitrate-reducing bacteria in diversion colitis: a clue to inflammation? Dig Dis Sci 1997; 42: 2577-2580 [PMID: 9440640]
8. Villanacci V, Talbot IC, Rossi E, Bassotti G. Ischaemia: a pathogenetic clue in diversion colitis? Colorectal Dis 2007; 9: 601-605 [PMID: 17824976 DOI: 10.1111.j.1463-1318.2006.01182.x]
9. Roe AM, Warren BF, Brodribb AJ, Brown C. Diversion colitis and involution of the defunctioned anorectum. Gut 1993; 34: 382-385 [PMID: 8472988]
10. Komorowski RA. Histologic spectrum of diversion colitis. Am J Surg Pathol 1990; 14: 548-554 [PMID: 2337203]
11. Geraghty JM, Talbot IC. Diversion colitis: histological features in the colon and rectum after defunctioning colostomy. Gut 1991; 32: 1020-1023 [PMID: 1916483]
12. Winslet MC, Poxon V, Youngs DJ, Thompson H, Keighley MR. A pathophysiological study of diversion proctitis. Surg Gynecol Obstet 1993; 177: 57-61 [PMID: 8322151]
13. Murray FE, O’Brien MJ, Birkett DH, Kennedy SM, LaMont JT. Diversion colitis. Pathologic findings in a resected sigmoid colon and rectum. Gastroenterology 1987; 93: 1404-1408 [PMID: 3677855]
14. Yeong ML, Bethwaite PB, Prasad J, Isbister WH. Lymphoid follicular hyperplasia—a distinctive feature of diversion colitis. Histopathology 1991; 19: 55-61 [PMID: 1916687]
15. Asplund S, Granlich T, Fazio V, Petras R. Histologic changes in defunctioned rectums in patients with inflammatory bowel disease: a clinicopathologic study of 82 patients with long-term follow-up. Dis Colon Rectum 2002; 45: 1206-1213 [PMID: 12352238 DOI: 10.1097/01.DCR.0000027037.66166.F3]
16. Haque S, West AB. Diversion colitis—20 years a-growing. J Clin Gastroenterol 1992; 15: 281-283 [PMID: 1294631]
17. Vujanic GM, Dojcinov SD. Diversion colitis in children: an iatrogenic appendix vermis? Histopathology 2000; 36: 41-46 [PMID: 10632750]
18. Neut C, Guillenot F, Gower-Rousseau C, Biron N, Cortot A, Colombel JF. [Treatment of diversion colitis with short-chain fatty acids. Bacteriological study]. Gastroenterol Clin Biol 1995; 19: 871-875 [PMID: 8746044]
19. Pal K, Tinalal S, Al Buainain H, Singh VP. Diversion proctocolitis and response to treatment with short-chain fatty acids—a clinicopathological study in children. Indian J Gastroenterol 2015; 34: 292-299 [PMID: 26243588 DOI: 10.1007/s12664-015-0577-0]
20. Son DN, Choi DJ, Woo SU, Kim J, Keom BR, Kim CH, Baek SJ, Kim SH. Relationship between diversion colitis and quality of life in rectal cancer. World J Gastroenterol 2013; 19: 542-549 [PMID: 23382634 DOI: 10.3748/wjg.v19.i4.542]
21. Korfizli BZ, Cheskin LJ, Sohn N, Sommers SC. The fate of the rectal segment after diversion of the fecal stream in Crohn’s disease: its implications for surgical management. J Clin...
Tominaga K et al. Diversion colitis and pouchitis

Gastroenterol 1985; 7: 37-43 [PMID: 3980962]

Ferguson CM, Siegel RJ. A prospective evaluation of diversion colitis. Am Surg 1991; 57: 46-49 [PMID: 1796797]

Baek SJ, Kim SH, Lee CK, Roh KH, Keum B, Kim CH, Kim J. Relationship between the severity of diversion colitis and the composition of colonic bacteria: a prospective study. Gut Liver 2014; 8: 170-176 [PMID: 24672659 DOI: 10.5009/ gnl.2014.8.2.170]

Whelan RL, Abravanel D, Kim DS, Hashmi HF. Diversion colitis. A prospective study. Surg Endosc 1994; 8: 19-24 [PMID: 815389]

Orsay CP, Kim DO, Pearl RK, Abcarian H. Diversion colitis in patients scheduled for colostomy closure. Dis Colon Rectum 1993; 36: 366-367 [PMID: 8458263]

Guillemet F, Colombo JF, Neut C, Verplanck N, Lecomte M, Romond C, Paris JC, Cortot A. Treatment of diversion colitis by short-chain fatty acids. Prospective and double-blind study. Dis ColonRectum 1991; 34: 861-864 [PMID: 1914718]

Luceri C, Fenia AP, Fazi M, Di Martino C, Zolfinelli F, Dolara P, Tonelli F. Effect of butyrate enemas on gene expression profiles and endoscopic/histopathological scores of diverted colorectal mucosa: A randomized trial. Dig Liver Dis 2016; 48: 27-33 [PMID: 26607031 DOI: 10.1016/j.dld.2015.09.005]

Fazio VW, Ziv Y, Church JM, Oakley JR, Lavere IC, Milson JW, Schroeder TK. Ileal pouch-anal anastomosis complications and function in 1005 patients. Ann Surg 1995; 222: 120-127 [PMID: 7639579]

Nyabanga CT, Shen B. Endoscopic Treatment of Bleeding Diversion Pouchitis with High-Concentration Dextrose Spray. ACG Case Rep J 2017; 4: e51 [PMID: 28377939 DOI: 10.14309/ acr.2017.51]

Gorgun E, Remzi FH. Complications of ileoanal pouches. Clin Colon Rectal Surg 2004; 17: 43-55 [PMID: 20011284 DOI: 10.1055/s-2004-823070]

Triantafillidis JK, Nicolakis D, Mountaneas G, Pomonis E. Effects of sodium butyrate on reactive oxygen species generation and the composition of colonic bacteria: a prospective study. J Pediatr Gastroenterol Nutr 2005; 40: 1143-1144 [PMID: 15843004 DOI: 10.1097/ 00044586-200404000-00013]

Lim AG, LaneNeal FL, Feakins RM, Rampton DS. Diversion colitis: a trigger for ulcerative colitis in the in-stream colon? Gut 1994; 44: 279-282 [PMID: 8995351]

Jowett SL, Cobden I. Diversion colitis as a trigger for ulcerative colitis. Gut 2000; 46: 294 [PMID: 10712080]

Burman JH, Thompson H, Cooke WT, Williams JA. The effects of diversion of intestinal contents on the progress of Crohn’s disease of the large bowel. Gut 1971; 12: 11-15 [PMID: 5543369]

Lim AG, Hendry WS. Diversion colitis: a trigger for ulcerative colitis in the in-stream colon. Gut 2000; 46: 441 [PMID: 10733317]

Kiely EM, Ajayi NA, Wheeler RA, Malone M. Diversion proctocolectitis: response to treatment with short-chain fatty acids. J Pediatr Surg 2001; 36: 1514-1517 [PMID: 11584399 DOI: 10.1053/ jpsu.2001.27034]

Boyce SA, Hendry WS. Diversion colitis presenting with massive rectal distension and bilateral ureteric obstruction. Int J Colorectal Dis 2008; 23: 1143-1144 [PMID: 18443304 DOI: 10.1007/ s00384-008-0491-3]

Lu ES, Lin T, Harms BL, Gaumnitz EA, Singaram C. A severe case of diversion colitis with large ulcerations. Am J Gastroenterol 1991; 86: 1552-1553 [PMID: 1928058]

Kominami Y, Ohn H, Kobayashi S, Higashi R, Uchida D, Morimoto Y, Nakarai A, Numata N, Hiroko K, Ogawa T, Ueki T, Nakagawa M, Araki Y, Mizuno M, Chayama K. [Classification of the bleeding pattern in colonic diverticulitis is useful to predict the risk of bleeding or re-bleeding after endoscopic treatment]. Nihon Shokakibyo Gakkai Zasshi 2012; 109: 393-399 [PMID: 2239804]

Matsumoto S, Mashima H. Efficacy of Combined Malsalazine Plus Corticosteroid Enemas for Diversion Colitis after Subtotal Colectomy for Ulcerative Colitis. Case Rep Gastroenterol 2016; 10: 157-160 [PMID: 23101529 DOI: 10.1155/2016/703049]

Neut C, Colombo JF, Guillemet F, Cortot A, Gower P, Quandalle P, Riberet M, Romond C, Paris JC. Impaired bacterial flora in human excluded colostomy. Gut 1989; 30: 1094-1098 [PMID: 2767506]

McCafferty DM, Muddgest JS, Swain MG, Kabes P. Inducible nitric oxide synthase plays a critical role in resolving intestinal inflammation. Gastroenterology 1997; 112: 1022-1027 [PMID: 9041266]

Velázquez OC, Lederer HM, Rombeau JL. Butyrate and the colonocyte. Production, absorption, metabolism, and therapeutic implications. Adv Exp Med Biol 1997; 427: 123-134 [PMID: 9361838]

Bossardt RT, Abel ME. Proctitis following fecal diversion. Dis Colon Rectum 1984; 27: 605-607 [PMID: 6468202]

Hundorfean G, Chiriac MT, Siebler J, Neurath MF, Muder J. Confocal laser endomicroscopy for the diagnosis of diversion colitis. Endoscopy 2012; 44 Suppl 2 UCTN: E358-E359 [PMID: 23012020 DOI: 10.1055/s-0032-1300199]

Lechner GL, Frank W, Jantsch H, Pichler W, Hall DA, Waneck R, Wunderlich M. Lymphoid follicular hyperplasia in excluded colonic segments: a radiologic sign of diversion colitis. Radiology 1990; 176: 135-136 [PMID: 2353081 DOI: 10.1148/ radiology.176.1.2353081]

Edwards CM, George B, Warren B. Diversion colitis–new light through old windows. Histopathology 1999; 34: 1-5 [PMID: 9934577]

Eggerberger JC, Farid A. Diversion Colitis. Curr Treat Options Gastroenterol 2004; 1: 255-259 [PMID: 11469082]

Liu Q, Shimoyama T, Suzuki K, Umeda T, Nakaji S, Sugawara K. Effect of sodium butyrate on reactive oxygen species generation
by human neutrophils. Scand J Gastroenterol 2001; 36: 744-750 [PMID: 11444474]

62 Schaub C, Bark T, Jaramillo E, Katouli M, Sandstedt B, Svenberg T. Local short-chain fatty acids supplementation without beneficial effect on inflammation in excluded rectum. Scand J Gastroenterol 2000; 35: 184-189 [PMID: 10720118]

63 Caltabiano C, Máximo FR, Spadari AP, da Conceição Miranda DD, Serra MM, Ribeiro ML, Martinez CA. 5-aminosalicylic acid (5-ASA) can reduce levels of oxidative DNA damage in cells of colonic mucosa with and without fecal stream. Dig Dis Sci 2011; 56: 1037-1046 [PMID: 21042854 DOI: 10.1007/s10620-010-1378-2]

64 Grisham MB, Granger DN. Neutrophil-mediated mucosal injury. Role of reactive oxygen metabolites. Dig Dis Sci 1988; 33: 65-155 [PMID: 2831016]

65 Agarwal VP, Schimmel EM. Diversion colitis: a nutritional deficiency syndrome? Nutr Rev 1989; 47: 257-261 [PMID: 2689929]

66 de Oliveira Neto JP, de Aguiar-Nascimento JE. Intraluminal irrigation with fibers improves mucosal inflammation and atrophy in diversion colitis. Nutrition 2004; 20: 197-199 [PMID: 14962686 DOI: 10.1016/j.nut.2003.10.006]

67 van Nood E, Vrieze A, Nieuwdorp M, Fuentes S, Zoetendal EG, de Vos WM, Visser CE, Kuijper EJ, Bartelsman JF, Tijssen JG, Speelman P, Dijkgraaf MG, Keller JJ. Duodenal infusion of donor feces for recurrent Clostridium difficile. N Engl J Med 2013; 368: 407-415 [PMID: 23323867 DOI: 10.1056/NEJMoa1205037]

68 Chang KY, Wu CS, Chen PC. Prospective, randomized trial of hypertonic glucose water and sodium tetradecyl sulfate for gastric variceal bleeding in patients with advanced liver cirrhosis. Endoscopy 1996; 28: 481-486 [PMID: 8886633 DOI: 10.1055/s-2007-1005527]

69 Tian C, Mehta P, Shen B. Endoscopic Therapy of Bleeding from Radiation Enteritis with Hypertonic Glucose Spray. ACG Case Rep J 2014; 1: 181-183 [PMID: 26157869 DOI: 10.14309/crj.2014.45]

P- Reviewer: De Silva AP, Triantafillidis JK, Tandon RK
S- Editor: Wang XJ L- Editor: A E- Editor: Huang Y
