VOJNOSANITETSKI PREGLED
VOJNOMEDICINSKA AKADEMIJA
Crnotravska 17, 11 000 Beograd, Srbija
Tel/faks: +381 11 2669689
vsp@vma.mod.gov.rs

ACCEPTED MANUSCRIPT
Accepted manuscripts are the articles in press that have been peer reviewed and accepted for publication by the Editorial Board of the Vojnosanitetski Pregled. They have not yet been copy edited and/or formatted in the publication house style, and the text could still be changed before final publication.

Although accepted manuscripts do not yet have all bibliographic details available, they can already be cited using the year of online publication and the DOI, as follows: article title, the author(s), publication (year), the DOI.

Please cite this article EARLY INITIATION OF RENAL REPLACEMENT THERAPY IMPROVES SURVIVAL IN PATIENTS WITH ACUTE KIDNEY INJURY

Authors Violeta Knežević¹², Tijana Azaševac¹², Marija Šibalić Simin¹, Vesna Sladojević³, Ivana Urošević²⁴, Dejan Ćelić¹², Vojnosanitetski pregled (2020); Online First February, 2020.

UDC:

DOI: https://doi.org/10.2298/VSP191117019K

When the final article is assigned to volumes/issues of the Journal, the Article in Press version will be removed and the final version appear in the associated published volumes/issues of the Journal. The date the article was made available online first will be carried over.
EARLY INITIATION OF RENAL REPLACEMENT THERAPY IMPROVES SURVIVAL IN PATIENTS WITH ACUTE KIDNEY INJURY

Violeta Knežević1,2, Tijana Azaševac1,2, Marija Šibalić Simin1, Vesna Sladojević3, Ivana Urošević2,4, Dejan Ćelić1,2

Clinical Center of Vojvodina, 1Clinic for Nephrology and Clinical Immunology, 3Emergency Center, Novi Sad, Serbia; 4Clinic for hematology, University of Novi Sad, Serbia, 2Faculty of Medicine, Novi Sad, Serbia

Correspondence to:

Violeta Knezevic, PhD Professor, Head of dialysis department, Clinic for nephrology and immunology, Clinical center of Vojvodina, University of Novi Sad, Serbia, 21000 Novi Sad, 1-7 Hajduk Veljkova street, +381214843453, Mobile phone: +381648059045, Fax: +38121529244, E-mail: vknezevic021@gmail.com
Abstract

Introduction/Objective: Defining renal replacement therapy (RRT) initiation in critically ill patients with acute kidney injury (AKI) has become an imperative for nephrologists and intensivists. The primary objective of this study was 28-day patient survival and the secondary objective was renal function recovery.

Methods: We performed a single-center retrospective study of 385 surgical and non-surgical patients with AKI and episode of AKI in chronic kidney disease who were admitted to the Emergency Center between 2014 and 2017 and received RRT. Patients with Kidney Disease Improving Global Outcomes stage 2 AKI and/or volume overload were assigned to the „early“ group with RRT start within 24h of the diagnosis; patients with poor response to conservative treatment or evidence of clinical complications associated with AKI were assigned to the „late“ RRT group.

Results: Based on the retrospective analysis we found that 241 (62.6%) patients received „early“ RRT within 24h. Patients in the „early“ RRT group had significantly higher survival compared to the „late“ RRT group (63.9% vs. 36.1%; p=0.001). The „early“ RRT group had more patients with renal function recovery (56.8%), but without statistical significance (p=0.514). The patients who started RRT within 24 hours with the SOFA score of 1-3 were twice likely to recover renal function in relation to the patients with the SOFA score of 4 or higher (OR=2.01; 95%CI (1.37-2.95); p<0.001), while septic patients a 62% lower chance of renal function recovery in relation to non-septic patients (OR=0.38; 95%CI (0.18-0.82); p=0.013). In the „late“ RRT group it was found that non-diabetic patients had 3.8 times greater chance for renal function recovery compared to diabetic patients (OR=3.53; 95% CI [1.27-9.83]; p=0.016).

Conclusions: Patients with early initiation of RRT had significantly improved 28-day survival.

Key words: acute kidney injury, renal replacement therapy, timing, mortality, renal function recovery
Apstrakt

Uvod/Cilj: Definisanje početka metoda zamene funkcije bubrega u kritično obolelih sa akutnim oštećenjem bubrega postaje imperativ nefrolozima i intezivistima. Primarni cilj ispitivanja je definisan preživljavanjem bolesnika 28-og dana od prijema, a sekundarni cilj oporavkom funkcije bubrega.

Metode: Unutar Urgentnog centra sprovedeno je retrospektivno ispitivanje koje je uključilo 385 hiruških i nehiruških bolesnika sa akutnim oštećenjem bubrega i akutizacijom hronične bubrežne insuficijencije u periodu od 2014-2017. godine, kojima su primenjene metode zamene funkcije bubrega. Pacijenti sa KDIGO stadijom 2 i/ili hipervolemijom unutar 24h od potvrdenog akutnog oštećenja bubrega imali su „rani” početak dijalize, dok su „kasni” početak imali pacijenti sa slabijim odgovorom na konzervativnu terapiju ili kod kliničkih i komplikacija povezanih sa akutnim oštećenjem bubrega.

Rezultati: Retrospektivnom analizom je utvrđeno da je kod 241 bolesnika (62,6%), dijaliza rano započeta, unutar 24h. Pacijenti koji su „rano” započeli dijalizu imali su značajno bolje preživljavanje u poređenju sa pacijentima koji su imali „kasni” početak (63.9% vs. 36.1%; p=0.001). Nešto veći broj pacijenata je funkciju bubrega oporavio „ranim” početkom dijalize (56,8%), ali razlike nisu bile značajne (p=0.514). Pacijenti u „ranom” početku dijalize sa SOFA skorom 1-3 imali su 2 puta veću šansu da oporevi funkciju bubrega u odnosu na pacijente sa SOFA skorom ≥4 (OR=2,01; 95%CI (1,37-2,95); p<0,001), dok su septični pacijenti imali za 62% manju šansu oporavka funkcije bubrega u odnosu na pacijente bez sepse (OR=0,38; 95%CI (0,18-0,82); p=0,013). U grupi „kasnog” početka dijalize utvrđeno je da pacijenti koji nemaju dijabetes imaju 3,8 puta veću šansu za oporavak funkcije bubrega u odnosu na obolele od dijabetesa (OR=3,53; 95% CI [1,27-9,83]; p=0,016).

Zaključak: Značajno bolje preživljavanje 28-dana imali su bolesnici kojima je „rano“ započeto lečenje metodama zamene funkcije bubrega.

Ključne reči: akutno oštećenje bubrega, zamena funkcije bubrega, vreme, mortalitet, oporavak funkcije bubrega
Introduction:

In the past decade, acute kidney injury (AKI) has become a well-recognized global occurrence that affects developed and developing countries alike, with initiatives like Saving Young Lives and the International Society for Nephrology’s 0by25 Initiative aiming at reducing the economic, social and healthcare burden imposed by AKI (1). AKI frequently occurs in critically ill patients and severe AKI is associated with hospital mortality in 60% of the cases (2). Those that survive the initially high mortality rate associated with dialysis-requiring AKI, mostly become independent of renal replacement therapy (RRT) within a year, but some of them do go on to develop chronic kidney disease and even progress to end-stage renal disease (3). The fundamental principle in the treatment of AKI is to correct the underlying cause, but besides hemodynamic resuscitation and removal of nephrotoxins, we lack any established pharmacotherapy. Although drugs are tested for prevention and/or treatment of AKI, RRT appears to be our only efficacious option at the time. Thus, management of AKI is largely limited to preventing further deterioration and loss of function with the use of temporizing actions in severe cases until RRT is established (4). Interaction of RRT and the outcome of RRT, along with mechanical ventilation, vasoactive therapy and nutritional support, is one of the defined life-sustaining technologies in the current treatment of the critically ill. A recent trend suggests an increasing use of RRT in critically ill patients with AKI (5). Despite the research and growing clinical experience in dialysis, the optimal time to start RRT in a critical disease complicated with AKI is unclear (2). Heterogeneity in operational definitions of "time", „threshold“ or „criteria” in individual observational data (often with variable designs and methodological qualities) have probably interfered with clear conclusions that could guide clinical practice on this issue (6). It is unclear whether a preventive/early strategy of the initiation of RRT in order to avoid complications associated with AKI leads to better patient outcomes and the use of health services, or a more conservative strategy in which RRT is started as a
response to the development of complications provides better results. Neither the standard clinical parameters, nor the new biomarkers that have been introduced to clarify the definitive ideal time more precisely, nor the clinical picture have optimized patient outcomes (2). The primary objective of this study was 28-day patient survival and the secondary objective was renal function recovery.

Materials and Methods:
We performed a single-center retrospective study of 385 surgical and non-surgical adult patients with acute kidney injury and episode of acute kidney injury in chronic kidney disease (CKD) who were admitted to the Intensive Care Unit (ICU) and intensive internal medicine unit at Emergency Center between 2014 and 2017 and received RRT. Patients with Kidney Disease Improving Global Outcomes (KDIGO) stage 2 AKI (serum creatinine 2-2.9 times baseline and urine output <0.5 mL/kg/h for 12 h) and/or volume overload were assigned to the early group with RRT start within 24h of the diagnosis; patients with poor response to conservative treatment or evidence of clinical complications associated with AKI were assigned to the late RRT group. Although the condition of certain patients called for the start of RRT in the first 12 hours, they were denied this request at that time due to the organization of the team for starting RRT at weekends or at night, the unavailability of the apparatus and/or difficulty in placing the dialysis catheter. Other reasons for postponement were surgical interventions or radiological tests that were to be performed before the start of the RRT. Some patients started treatment with intermittent dialysis at the time of hemodynamic stability or the unavailability of the apparatus since “more severe” patients and/or the ones who were occasionally dialyzed with it had the need for it. Patients with an immediate RRT indication, at least one of the following conditions from the beginning were excluded: laboratory analysis at the admission urea>50 mmol/l, K>6.5 mmol/l, pH<7.15 in the context of either pure metabolic acidosis or mixed acidosis despite medical treatment; acute pulmonary edema due to fluid overload causing severe hypoxemia, as well as patients treated with
conservative therapy. We analyzed: demographic data, comorbidities, laboratory and clinical data in confirmed acute kidney injury (urea, creatinine, C-reactive protein, procalcitonin, oliguria/anuria) and before continuous renal replacement therapy (CRRT) initiation (urea, creatinine, 24h diuresis (ml)); use of vasopressor therapy and mechanical ventilation; hospital length of stay (days); CRRT modalities: continuous venovenous hemodiafiltration (CVVHDF), continuous venovenous hemofiltration, continuous venovenous hemodialysis (CVVHD), CVVHD combined with CVVHDF; and achieved ultrafiltration (ml). The choice of RRT modalities (intermittent or continuous) was at the discretion of clinicians, and based on international guidelines (7). The RRT regimen was daily or every second day, depending on clinical, laboratory parameters and response to the therapy. CRRT was done on the Multifilter and the Prismaflex; standard high-flux filters and membranes/adsorbers were used in septic patient: EMiC2 hemofilter (Fresenius Medical Care, Bad Homburg, Germany, 1.8 m2 surface area), oXiris (Gambro, AN-69 based membrane, surface treated by polyethylenimine (PEI) and grafted with heparin) and CytoSorb (total surface of >40,000 square meters). The CRRT prescription included: treatment modality, blood flow, dilution mode, replacement and dialysis fluid flow, and the patient's weight and heparin anticoagulation, according to clinical practice guideline (7). Organ dysfunction was quantified using the Sequential Organ Failure Assessment (SOFA) score.

Statistical methods: Descriptive and inferential statistics methods were used for the data analysis. Numerical characteristics are presented by the arithmetic mean, the median with interquartile range (IQR 25 - 75 percentiles) and the standard deviation, while the attributive characteristics are expressed by frequency and percentage. The χ2 test was used to compare the differences between different groups, and the Cox regression model was used to test the predictor of recovery and failure of the renal function, as well as to calculate survival with respect to the selected indicators. 3 Cox regression models were made. In the first model, renal function recovery over a period of one month was used for the outcome variable, and the following: gender, age, CRRT_24h,
UF, urea at admission, urea at start of CRRT, creatinine at admission, creatinine at start of CRRT, CRP, PCT, surgical patients, sepsis, cardiovascular, cerebrovascular, pulmonary, digestive and other diseases and diabetes mellitus were used as independent indicators. For the formation of the other two models, the sample was selected with regard to the onset of CRRT. The outcome variable in both models is non-recovery of renal function selected with regard to the onset of CRRT (CRRT>24h and CRRT<24h) over a period of one month, and the independent indicators are the same as in the first model, with the exception of CRRT_24h. There was a statistical significance if p<0.05, and a high statistical significance if p<0.001. The IBM SPSS Statistical Package for Social Sciences 21 software package was used for statistical data processing. The Chi-Square Test was used to compare the differences between the groups, and Cox regression analysis was used to estimate survival and recovery of renal function.

Results:

Based on the retrospective analysis we found that 241 (62.6%) patients (male 65.4%) mean age 60.6 received early RRT within 24h, and 144 (37.4%) patients (male 70.8%) mean age 63.5 received late RRT after 24h. All studied comorbidities were more prevalent in early RRT, and cardiovascular diseases were the most prevalent comorbidity in both groups of patients. Patients in the early RRT group had a higher rate of sepsis and less frequent use of mechanical ventilation and vasopressor therapy compared to the late RRT group (54.7% vs 41.7%; 58.3% vs 70.8%; 56.7% vs 75.7%). The presence of adsorptive membrane/adsorbers according to the type and the number of procedures in both groups was similar. Over 50% in both groups had a SOFA score ≥4. Median diuresis (ml) before RRT was smaller in early group compared to the late group (150 vs 400); median urea (mmol) and creatinine (µmol) were similar in both groups (25.1 vs 25; 449 vs 458). The most common treatment modality in both groups was CVVHDF and the achieved UF (ml) was higher in early RRT comparing to late RRT (2279 vs. 2017). Mean length of hospital stay (days) was similar in both groups (8 vs 7) (table 1). The patients in whom
CRRT started within 24 hours had significantly better survival (p<0.001) and better recovery of renal function, but without statistical significance (p=0.551) comparing to the patients in whom RRT started after 24h (Charts 1 and 2). SOFA score and sepsis were differentiated as predictors of renal function recovery. The patients with SOFA score 1-3 had 1.7 times bigger chance for renal recovery in relation to the patients with SOFA score ≥4 (OR=1.79; 95%CI (1.31-2.46); p<0.001), while septic patients had a 53% lower chance to recover their renal function in relation to the patients with no sepsis (OR=0.47; 95%CI (0.24-0.90); p=0.024). (Table 2). The patients who started RRT within 24 hours with the SOFA score of 1-3 were twice likely to recover renal function in relation to the patients with the SOFA score of 4 or higher (OR=2.01; 95%CI (1.37-2.95); p<0.001), while septic patients a 62% lower chance of renal function recovery in relation to non-septic patients (OR=0.38; 95%CI (0.18-0.82); p=0.013). In the late RRT group it was found that non-diabetic patients had 3.8 times greater chance for renal function recovery compared to diabetic patients (OR=3.81; 95%CI (1.35-10.76); p=0.012). (Table 3)

Discussion:
Numerous organizations have published their studies and guides in order to better inform the clinical practice (8). Each organization has recognized the limitations of the present evidence and the associated clinical uncertainty, therefore each of them recommended that additional high-quality studies should be carried out (9).

Previous studies have shown different results regarding heterogeneity of the population, the definition of the criteria for starting RRT, primary and secondary outcomes. In most studies, for the purpose of analyzing all causes of mortality, clinical indications and AKI classification have been used more frequently than biochemical parameters in order to define early and late RRT (10). Our mixed population of predominantly non-surgical ICU patients started early RRT, according to KDIGO practice guides that include statements about the time to start RRT in critically ill patients, in KDIGO 2 stage and/or
hypervolemia within 24 hours. On the other hand, late RRT started in patients with developed complications related to AKI or the ones who had not responded to the conservative treatment. At the early onset of CRRT there was a higher percentage of oliguric/anuric, septic patients with comorbidities and a lower need for mechanical ventilation and vasoactive support, which were contributory indicators for a faster response in a clinical decision about supportive therapy. In comparison with the patients with late RRT, diuresis median was lower and the median of the achieved ultrafiltration during RRT was higher, which, along with a better recovery of the renal function, indirectly indicates hypervolemia as an important additional criterion for starting RRT. Authors of two previously conducted meta-analyses, which included a total of 38 studies predominantly retrospective and of different quality, came to similar conclusions as ours, reporting a significant improvement in the 28-day mortality with early RRT (11,12). Other three studies have been conducted. Two of them (the multicenter randomized controlled trial (RCT) and the retrospective study) included septic patients and used different criteria AKI classification for starting RRT in relation to our study design, but at the same RRT initiation time, showed a significant reduction in mortality in early RRT, while the third multicenter RCT conducted three years later found that there was no difference in mortality between the early and the late onset of RRT in 224 postoperative cardiosurgical patients (13,14,15).

In fact, since 2012 the majority of the published studies have not supported the benefit of early RRT in critically ill patients. Conducting a meta-analysis of 36 predominantly retrospective studies, it was established that early initiation of RRT in critical patients did not improve survival for 28 or 30 days, nor did it reduce the length of stay in the ICU or the overall length of hospitalization. In the abovementioned studies, biochemical markers according to the Risk, Injury, Failure, Loss of kidney function, and End-stage kidney disease-RIFLE classification, Acute Kidney Injury Network-AKIN stages and time-based cutoffs were used (e.g. within the defined admission time or the development of the biochemical „start time”) for defining the early start of RRT. However, the
“early RRT” according to one author was the “late RRT” according to another author, which made it difficult to interpret the results. The late onset included classical indications of RRT that did not respond to conservative treatment (16). A meta-analysis which included both the Artificial Kidney Initiation in Kidney Injury trial-AKIKI and Effect of Early vs Delayed Initiation of Renal Replacement Therapy on Mortality in Critically Ill Patients With Acute Kidney Injury trial (ELAIN) was subsequently published, including a total of 10 RCT with 1,672 participants combined. As the authors concluded, there appeared to be no added benefit of an early start to RRT on day 30, 60 and 90 mortality “with respect to all-cause mortality, dialysis dependence, and recovery of renal functions or hospital stay”. It was also found that there was no difference in reported complications: catheter-related infections, bleeding, hypotension, electrolyte disorders, thrombocytopenia, arrhythmias. It should be noted that the ELAIN single-center study analyzed 231 predominantly surgical patients with AKI and the episode of acute kidney injury in chronic renal disease in which the early criterion was KDIGO 2 within 8h. It was established that there was no difference between the early and the late onset of RRT comparing to the 28-day mortality (30.4 vs. 40.3%, p=0.11). Exclusion of patients with urgent indications of RRT, as well as the fact that only 3.4% of the patients did not start RRT in the early group, are probably some of the reasons for the difference in reducing the 90-day mortality by comparing early and late RRTs (39.3% vs. 54.7%, p=0.03).

A 4 RCT meta-analysis showed similar results, except that a higher risk of catheter-related infections was reported at the early onset of RRT (17,18). A meta-analysis with six RCT that provided similar conclusions was conducted the same year, after which 4 additional RCT and 41 observational studies were included (a total of 51 studies) whose results showed that the early RRT was associated with a reduced risk of all causes of mortality, although the results were taken with caution given the variety of design studies.

In our study of the early onset of RRT, we established a better 28-day renal function recovery, although the differences between the groups were not
statistically significant. The ELAIN study indicated significant benefit since the early onset of RRT in renal function recovery (53.6% vs. 38.7%, p=0.02), and the last meta-analysis also showed significant renal function recovery in 14 studies with 2570 patients (10). When we established a better renal function recovery, we tried to determine which predictors could affect this outcome. By applying multivariate Cox regression analysis in the total sample as well as in patients who started RRT early, SOFA score and sepsis stood out as significant predictors or renal function recovery. Namely, the patients with 1-3 SOFA score who started RRT early, were two times more likely to recover from renal function in comparison to the patients with SOFA score 4 and above, while septic patients had a 62% lower chance to recover their renal function compared to non-septic patients. Contrary to our results, in a large retrospective study of the critically ill with AKI, older age, heart conditions and admission to ICU were significantly linked to a lower rate of renal function recovery 60 – 120 days after discharging from ICU. However, in another retrospective study, Pistolesi et al, concluded that older age, oliguria, sepsis and a higher SOFA score in 264 cardio-surgical patients with severe AKI within the first week of CRRT start were independent prognostic indicators for non-recovery of renal function. However, in the late RRT group it was found that the patients without diabetes had a 3.8 times higher chance of recovering renal function comparing to the patients with diabetes. Patschan et al. suggested that diabetes mellitus potentially increases AKI risk and long-term mortality/morbidity of AKI (21). Thakar VC et al. showed that AKI episodes are associated with a cumulative risk of developing progressive CKD in diabetic patients, independent of other risk factors of progression (22). Unlike our results, the results of Johnson F. et al. showed that AKI was diagnosed in 403 patients, 20.5% of whom were diabetic patients. Short-term renal function recovery was greater in diabetic patients (87% vs. 63%, p=0.001) and the development of advanced CKD was lower (14%) in comparison with the non-diabetic patients (23). In our study, a better renal function recovery at the late onset of RRT in non-diabetic patients requires additional testing of long-term renal recovery and the number of
episodes of AKI in these patients comparing to the patients at the risk of diabetes and the diabetics.

Also, it should be noted that in studies similar to ours, the predictors of primary and secondary outcomes were less examined, because the main focus was on finding criteria for early/late start of RRT and predicting the outcomes.

Since each center has a limited number of patients for whom it can provide supportive therapy at the same time (in relation to resources, time, staff), the onset of RRT within 12 hours can lead to shortening the duration of initiated RRT or to a delay in starting RRT for other patients. This comes to light if there is at the same time more than one urgent indication of patients of different age, comorbidity... regardless of the defined criteria for the early onset of RRT. The current watchful waiting strategy (in the absence of urgent indications) allows for a greater impact of the doctor’s clinical decision based on long-term experience and teamwork. However, if the „real“ timing of the onset of RRT is not recognized, the ability to carry out RRT in already developed complications associated with AKI and renal function recovery is reduced.

There are some limitations associated with our study. We performed a single-center retrospective study. All our patients received RRT, there was no control group (due to the limited data availability), nor the possibility that delaying RRT could provide time for renal function recovery. Unlike other studies, we did not obtain the full data on early RRT-related complications, nor the data on long-term outcomes (17,18,24).

Conclusion:

The patients who had early started RRT had significantly better 28-day survival. Further prospective research of the primary and secondary outcome predictors is necessary.

Acknowledgements: We would like to thank dr Dragana Milijasevic for assistance with statistical analysis.

Authors’ Contributions: V.K. was responsible in design of the manuscript; she analysed the data, drafted the article, provided intellectual content to the work and gave final approval for the manuscript to be published. M.S.S.
contributed to the design of the manuscript, interpreted the data, revised the article, provided intellectual content to the work and gave final approval for the manuscript to be published. T.A. provided contributions to conception of the manuscript; she interpreted the data, revised the article, provided intellectual content to the work and gave final approval for the manuscript to be published. V.S. was responsible for conception of the manuscript and she interpreted the data, revised the article, provided intellectual content to the work and gave final approval for the manuscript to be published. D.C. interpreted the data, revised the article, provided intellectual content to the work and gave final approval for the manuscript to be published. I.U. contributed to conception of the manuscript; she interpreted the data, revised the article, provided intellectual content to the work and gave final approval for the manuscript to be published.

Funding: The authors received no financial support for the research, authorship and/or publication of this article.

Conflict of interest statement: None declared. The results presented in this paper have not been published previously in whole or part, except in abstract format.

Addition:

Demographic and clinical data	Table	
Variable		
	RRT<24h	RRT>24h
	(n=241)	(n=144)
N (%)	N (%)	
Sex		
Male	157 (65,4)	102 (70,8)
Female	83 (34,6)	42 (29,2)
Mean age-years (SD)	60,06 (13,6)	63,5 (13,4)
CRRT modality N (%)		
---------------------	----------	----------
CVVHDF	92 (38.3)	57 (39.6)
CVVHD	84 (35.0)	54 (37.5)
CVVH	15 (6.3)	7 (4.9)
CVVHD+CVVHDF	49 (20.4)	26 (18.1)

Comorbidities N (%)		
Cardiovascular	154 (64.2)	69 (47.9)
Pulmonary diseases	24 (10.0)	13 (9.0)
Gastrointestinal	30 (12.5)	17 (11.8)
Diabetes mellitus	56 (23.3)	22 (15.3)
Cerebrovascular	23 (9.6)	9 (6.3)
Chronic kidney	29 (12.1)	6 (4.2)
Other	64 (26.7)	41 (28.5)
Without comorbidities	29 (12.1)	13 (9.0)

Recovery of renal function		
Nonsurvivors	87 (57.6)	83 (57.6)
Septic patients	131 (54.6)	60 (41.7)
Surgical patients	63 (26.3)	43 (29.9)
Oliguric/anuric patients	105 (43.3)	47 (32.6)

Diuresis (ml)		
	150 (0 - 750)	400 (0 - 1015)

Physiological support		
Invasive mechanical ventilation	140 (58.3)	102 (70.8)
Vasopressors	136 (56.7)	109 (75.7)
-------------	------------	------------
Number procedures with adsorptive membrane/adsorber		
1-2	64 (26.3)	34 (23.9)
≥3	31 (12.8)	16 (11.3)
0	148 (60.9)	92 (64.8)
Type adsorptive membrane/adsorber		
EMiC2	81 (33.3)	42 (29.6)
oXiris	3 (1.2)	2 (1.4)
CytoSorb	1 (0.4)	-
EMiC2 + oXiris	7 (2.9)	6 (4.2)
oXiris + CytoSorb	1 (0.4)	-
SOFA score		
0	2 (0.8)	1 (0.7)
1	32 (13.2)	7 (4.9)
2	25 (10.3)	23 (16.2)
3	35 (14.4)	12 (8.5)
≥4	149 (61.3)	99 (69.7)
UF (ml)-median (IQR)	2279 (1360 - 2983)	2017 (1310 - 2734)
Urea at admission (mmol)-median (IQR)	25.1 (18.8 - 36.7)	25 (18.3 - 35.2)
Urea at start of RRT (mmol)-median (IQR)	29.2 (22.2 - 40.8)	29.05 (20.4 - 40.0)
Creatinine at admission (µmol)-median (IQR)	421 (228 - 585)	330 (222 - 500)
Creatinine at start of RRT (µmol)-median (IQR)	449 (284 - 603)	458 (278 - 631)
CRP (mg/l)-median (IQR)	120 (37.3 – 253.8)	121.5 (55.9 – 244.4)
PCT (ng/l)-median (IQR) | 4.7 (0.9 - 22) | 5.2 (1.2 – 19.5)
Median length of hospital stay (IQR)-days | 8 (4.0 - 13) | 7 (5.0 - 12)

Legend: RRT-renal replacement therapy; CRRT-continuous renal replacement therapy; CVVHDF-continuous venovenous hemodiafiltration; CVVHD-continuous venovenous hemodialysis; CVVH-continuous venovenous hemofiltration; CVVHD+CVVHDF-CVVHD combined with CVVHDF; UF-ultrafiltration; CRP-C-reactive protein; PCT-procalcitonin;

Patient survival depending on the time of RRT initiation **Figure 1.**

Recovery of renal function depending on the time of RRT initiation **Figure 2.**

Predictors of renal function recovery **Table 2.**

Variable	B	p
Sex	-.177	.260
Predictor	RRT < 24h	RRT > 24h
--	-----------	-----------
Age	-.005	.350
Ultrafiltration	.000	.695
Urea at admission	.003	.692
Urea at start of RRT	-.005	.544
Creatinine at admission	.000	.631
Creatinine at start of RRT	.000	.833
CRP-C-reactive protein	.000	.859
Procalcitonin	.001	.415
Surgical patients	.072	.677
Septic patients		
Cardiovascular diseases	.188	.282
Pulmonary diseases	.221	.418
Gastrointestinal diseases	.338	.165
Diabetes mellitus	.294	.140
Cerebrovascular diseases	-.275	.314
Other	-.012	.941
Number procedures with adsorptive membrane/adsorber	.518	.264
Type adsorptive membrane/adsorber	-.038	.875
SOFA score	.586	.000

Legend: RRT- renal replacement therapy;

Predictors of renal function recovery depending on the time of RRT initiation

Table 3.
Variable	B	p	B	p
Sex	-.241	.222	-.258	.402
Age	-.005	.420	.000	.995
Ultrafiltration	.000	.926	.000	.432
Urea at admission	.008	.426	-.002	.885
Urea at start of RRT	-.005	.609	-.020	.129
Creatinine at admission	.001	.441	-.001	.129
Creatinine at start of RRT	.001	.431	-.001	.448
C-reactive protein	.000	.659	.000	.873
Procalcitonin	-.001	.658	.005	.119
Surgical patients	.150	.511	-.050	.866
Septic patients	.944	**.013**	-.356	.745
Cardiovascular diseases	.374	.096	.190	.554
Pulmonary diseases	.277	.382	.095	.866
Gastrointestinal diseases	.382	.199	.399	.415
Diabetes mellitus	.133	.559	1.337	**.012**
Cerebrovascular diseases	-.220	.492	-.172	.764
Other	-.037	.858	-.074	.808
Number procedures with adsorptive membrane/adsorber	.573	.296	-.992	.438
Type adsorptive membrane/adsorber	-.038	.903	-.307	.533
SOFA score	.370	.397	.348	.617
Legend: RFR-renal function recovery; RRT-renal replacement therapy;				
References:

1. Smoyer WE, Finkelstein FO, McCulloch MI, Carter M, Brusselmans A, Feehally J. "Saving Young Lives" with acute kidney injury: the challenge of acute dialysis in low-resource settings. Kidney Int 2016; 89(2): 254-6.

2. Payen D, Mateo J, Cavaillon JM, Fraisse F, Floriot C, Vicaut E. Impact of continuous venovenous hemofiltration on organ failure during the early phase of severe sepsis: a randomized controlled trial. Crit Care Med 2009;37(3):803–10.

3. Macedo E, Mehta RL. Renal Recovery after Acute Kidney Injury. Contrib Nephrol 2016; 187:24-35.

4. Hertzberg D, Rydén L, Pickering JW, Sartipy U, Holzmann MJ. Acute kidney injury—an overview of diagnostic methods and clinical management. Clin Kidney J 2017; 10(3):323-31.

5. Wald R, McArthur E, Adhikari NK, Bagshaw SM, Burns KE, Garg AX et al. Changing incidence and outcomes following dialysis-requiring acute kidney injury among critically ill adults: a population-based cohort study. Am J Kidney Dis. 2015;65:870–7.

6. Liu Y, Davari-Farid S, Arora P, Porhomayon J, Nader ND. Early versus late initiation of renal replacement therapy in critically ill patients with acute kidney injury after cardiac surgery: a systematic review and meta-analysis. J Cardiothorac Vasc Anesth. 2014;28:557–63.

7. Kidney Disease: Improving Global Outcomes (KDIGO) Acute Kidney Injury Work Group. KDIGO clinical practice guideline for acute kidney injury. Kidney Int Suppl 2012;2:1-138.

8. Vaara ST, Pettilä V, Kaukonen KM, Bendel S, Korhonen AM, Bellomo R et al. The attributable mortality of acute kidney injury: a sequentially matched analysis*. Crit Care Med. 2014;42:878–85.
9. National Institute for Health and Care Excellence (NICE). Acute kidney injury: prevention, detection and management 2013. Available at: https://www.nice.org.uk/guidance/cg169/.

10. Wang, C, Lv LS, Huang H, Guan J, Ye Z, Li S et al. Initiation time of renal replacement therapy on patients with acute kidney injury: A systematic review and meta-analysis of 8179 participants. Nephrology (Carlton) 2017; 22(1):7-18.

11. Seabra VF, Balk EM, Liangos O, Sosa MA, Cendoroglo M, Jaber BL. Timing of renal replacement therapy initiation in acute renal failure: a meta-analysis. Am J Kidney Dis. 2008;52(2):272–84.

12. Karvellas CJ, Farhat MR, Sajjad I, Mogensen SS, Leung AA, Wald R et al. Timing of initiation of renal replacement therapy in acute kidney injury: a meta-analysis [abstract]. Crit Care Med. 2010;38(12 Suppl):A105.

13. Vaara ST, Korhonen AM, Kaukonen KM, Nisula S, Inkinen O, Hoppu S et al. Early initiation of renal replacement therapy is associated with decreased risk for hospital mortality in the critically ill [abstract] Intensive Care Med. 2012;38(Suppl 1):S9.

14. Chon GR, Chang JW, Huh JW, Lim CM, Koh Y, Park SK et al. A comparison of the time from sepsis to inception of continuous renal replacement therapy versus RIFLE criteria in patients with septic acute kidney injury. Shock 2012;38(1):30–6.

15. Combes A, Bréchot N, Amour J, Cozic N, Lebreton G, Guidon C et al. Early high-volume hemofiltration versus standard care for post-cardiac surgery shock: the HEROICS Study. Am J Respir Crit Care Med. 2015;192(10):1179–90.

16. Wierstra TB, Kadri S, Alomar S, Burbano X, Barrisford, Kao LC. R. The impact of “early” versus “late” initiation of renal replacement therapy in critical care patients with acute kidney injury: a systematic review and evidence synthesis 2016; Critical Care 20:122.
17. Bhatt GC, Das RR. Early versus late initiation of renal replacement therapy in patients with acute kidney injury-a systematic review & meta-analysis of randomized controlled trials. BMC Nephrol 2017; 18(1):78.

18. Mavrakanas TA, Aurian-Blajeni DE, Charytan DM. Early versus late initiation of renal replacement therapy in patients with acute kidney injury: a meta-analysis of randomised clinical trials. Swiss Med Wkly 2017; 147:w14507.

19. Kao C-C, Yang J-Y, Chen L, Chao C-T, Peng Y-S, Chiang C-K, et al. Factors associated with poor outcomes of continuous renal replacement therapy 2017; PLoS ONE 12(5): e0177759.

20. Pistolesi V, Di Napoli A, Fiaccadori E, Zeppilli L, Polistena F, Sacco MISevere et al. Severe acute kidney injury following cardiac surgery: short-term outcomes in patients undergoing continuous renal replacement therapy (CRRT) 2016; J Nephrol. 29(2):229-39.

21. Patschan D, Müller GA. Acute Kidney Injury in Diabetes Mellitus. Int J Nephrol. 2016; 2016: 6232909.

22. Thakar CV, Christianson A, Himmelfarb J, Leonard AC. Acute Kidney Injury Episodes and Chronic Kidney Disease Risk in Diabetes Mellitus CJASN 2011; 6(11) 2567-72.

23. Johnson F, Phillips D, Talabani B, Wonnacott A, Meran S, Phillips AO. The impact of acute kidney injury in diabetes mellitus. Nephrology (Carlton) 2016; 21(6):506-11.

24. Libório AB, Leite TT, Neves FM, Teles F, Bezerra CT. AKI complications in critically ill patients: association with mortality rates and RRT. Clin J Am Soc Nephrol 2015;10:21–8.

Abbreviations:

RRT- renal replacement therapy
AKI - acute kidney injury
KDIGO - Kidney Disease Improving Global Outcomes
CRRT - continuous renal replacement therapy
CVVHDF - continuous venovenous hemodiafiltration
CVVHD - continuous venovenous hemodialysis
ICU - Intensive Care Unit
RCT - randomized controlled trial
CKD - chronic kidney disease

Received on November 17, 2019.
Revised on February 2, 2020.
Accepted on February 10, 2020.
Online First February, 2020.