Multi-Volumetric Refocusing of Light Fields
Sakila S. Jayaweera, Chamira U. S. Edussooriya, Member, IEEE, Chamith Wijenayake, Member, IEEE, Panajotis Agathoklis, Senior Member, IEEE, and Len T. Bruton, Life Fellow, IEEE

Abstract—Geometric information of scenes available with four-dimensional (4-D) light fields (LFs) paves the way for post-capture refocusing. Light field refocusing methods proposed so far have been limited to a single planar or a volumetric region of a scene. In this letter, we demonstrate simultaneous refocusing of multiple volumetric regions in LFs. To this end, we employ a 4-D sparse finite-extent impulse response (FIR) filter consisting of multiple hyperfan-shaped passbands. We design the 4-D sparse FIR filter as an optimal filter in the least-squares sense. Experimental results confirm that the proposed filter provides 63% average reduction in computational complexity with negligible degradation in the fidelity of multi-volumetric refocused LFs compared to a 4-D non-sparse FIR filter.

Index Terms—Light fields, low complexity, multi-dimensional FIR filters, sparse filters, volumetric refocusing.

I. INTRODUCTION

FOUR-DIMENSIONAL (4-D) light field (LF) captures both textural and geometrical information of a scene whereas a two-dimensional (2-D) image captures only the textural information [1], [2]. We can exploit the geometrical information available with LFs to accomplish novel tasks which are not possible with 2-D images, e.g., depth estimation [3]–[6] and occlusion suppression [7]–[14].

Post-capture refocusing is another novel task that can be achieved with LFs. Ng et al. [15] first demonstrated this feature employing a hand-held LF camera. They achieved refocusing by shifting and averaging the sub-aperture images (SAIs) of a LF. Furthermore, Ng [16] developed a computationally efficient algorithm using multi-dimensional fast Fourier transform algorithms. In [17], Fiss et al. employed depth-adaptive splatting to achieve refocusing of LFs. All of these approaches achieved refocusing for a narrow-depth range. In [18], Dansereau et al. demonstrate post-capture refocusing over a wide-depth range, which they denote as volumetric refocusing. They employed a 4-D linear filter having a hyperfan-shaped passband to achieve volumetric refocusing. Dansereau et al. [19] and Premaratne et al. [20] employed similar 4-D linear hyperfan filters for LF denoising. In [21], Premaratne et al. proposed a 4-D sparse FIR filter having a hyperfan-shaped passband, designed using the windowing technique and hard thresholding, for volumetric refocusing. This sparse filter provides significant reduction in computational complexity with negligible degradation in the fidelity of refocused LFs compared to that proposed in [18]. Recently, Wang et al. [22] employed depth-based anisotropic filter and superresolution approach for LF refocusing. Furthermore, Yang et al. [23] and Pei et al. [24] proposed spatial-domain optimization techniques for all-in-focus refocusing methods, mainly for attenuating occlusions. The computational complexity of these methods are considerably high compared to 4-D-FIR-filter based methods. All of these prior works are predominantly limited to LF refocusing over a single planar or a single volumetric region.

In this letter, we demonstrate simultaneous refocusing of multiple volumetric regions in LFs albeit at lower computational complexity. To this end, we employ a 4-D sparse FIR filter having multiple hyperfan-shaped passbands. Fig. 1 shows refocusing of a single volumetric region obtained with the 4-D sparse FIR filter proposed in [21] and simultaneous refocusing of two volumetric regions using the proposed 4-D sparse FIR filter. It is evident that multi-volumetric refocusing can emphasize multiple objects or regions occupying different depth-ranges in an LF simultaneously. This feature may open new avenues, in particular, in LF photography [15] and cinematography [25]. In addition, our method can achieve refocusing of a single volumetric or a planar region as well because these are special cases of multi-volumetric refocusing. We design the 4-D sparse FIR filter by employing a two-step sparse filter design method proposed in [26], which considers the design of filters having...
quadrantally-symmetric impulse responses. Our 4-D sparse FIR filter has a centro-symmetric impulse response, and we adapt the two-step method in [26] appropriately to design our filter. Our 4-D sparse FIR filter is optimal in the least-squares sense. Experimental results obtained with the LFs in the EPFL data set [27], Stanford dataset [28] and the 4-D benchmark dataset [29] confirm that the proposed 4-D sparse FIR filter provides 63% average reduction in computational complexity with negligible degradation in the fidelity of two-volumetric-region refocused LFs compared to an equivalent 4-D non-sparse FIR filter. Furthermore, our sparse filter provides 13% reduction in computational complexity compared to that proposed in [21] with similar fidelity for refocusing of a single volumetric region.

II. REVIEW OF THE SPECTRUM OF A LIGHT FIELD

The spectrum of a LF is briefly reviewed in this section. To this end, we first consider standard two-plane parameterization, with the globally defined image-plane coordinates, of a Lambertian point source as shown in Fig. 2. Note that \((n_x, n_y) \in \mathbb{Z}^2\) and \((n_u, n_v) \in \mathbb{Z}^2\) denote the 2-D discrete-domain camera-plane and image-plane coordinates, respectively, and \(D\) is the constant distance between the camera and image planes. The 4-D LF \(l_p(n)\), where \(n = (n_x, n_y, n_u, n_v) \in \mathbb{Z}^4\), corresponding to the Lambertian point source located at \((x_0, y_0, z_0) \in \mathbb{R}^2 \times \mathbb{R}^+\) and having an intensity \(I_0\) can be modeled as [30], [31]

\[
l_p(n) = \begin{cases}
 l_0 & \text{when } P_{xu} \equiv mn_x \Delta_x + n_u \Delta_u - (m + 1)x_0 = 0 \\
 0 & \text{elsewhere,}
\end{cases}
\]

where \(m = \frac{D}{\omega} - 1\) and \(\Delta_i, i = x, y, u, v\) is the sampling interval along the dimension \(i\). Note that the LF consists of a plane having a constant value \(l_0\) given by the intersection two hyperplanes \(P_{xu}\) and \(P_{yu}\). In this case, the region of support (ROS) \(R_p\) of the spectrum \(l_p(\omega)\), where \(\omega = (\omega_x, \omega_y, \omega_u, \omega_v) \in \mathbb{R}^4\), inside the principal Nyquist hypercube \(N = \{\omega \in \mathbb{R}^4 \mid -\pi \leq \omega_i < \pi, i = x, y, u, v\}\) is given by \(R_p = \mathcal{H}_{xu} \cap \mathcal{H}_{yu}\) [30], [31], where

\[
\mathcal{H}_{xu} = \left\{ \omega \in \mathbb{R}^4 \mid \omega_x - \left(\frac{m \Delta_x}{\Delta_u} \right) \omega_u = 0 \right\}
\]

\[
\mathcal{H}_{yu} = \left\{ \omega \in \mathbb{R}^4 \mid \omega_y - \left(\frac{m \Delta_y}{\Delta_u} \right) \omega_u = 0 \right\}
\]

The ROS \(R_p\) is a plane through the origin of \(\omega\) inside \(N\), of which the orientation depends only on the depth \(z_0\) of the Lambertian point source. Note that we do not consider the finite sizes of the camera and image planes in presenting the spectral ROS for simplicity. However, even with these constraints, the spectral ROS predominantly occupies the region defined by the ROS \(R_p\) [32], [33].

In order to obtain the ROS \(R_o\) of the spectrum of a LF corresponding to a Lambertian object, we can consider the Lambertian object as collection of Lambertian point sources located in a volumetric region with a depth range \(z_0 \in [d_{min}, d_{max}]\). In this case, \(R_o\) is given by \(R_o = \bigcup_{i=1}^{M_i} R_p^i = \bigcup_{i=1}^{M_i} (\mathcal{H}_{xu}^i \cap \mathcal{H}_{yu}^i)\) [11], [30], and corresponds to a hyperfan inside \(N\) [18] (shown in Fig. 3(a) in the \(\omega_u\omega_v\) subspace). In the case of multiple objects located in \(M\) volumetric regions, the spectral ROS \(R_o^M\) can be obtained as

\[
R_o^M = \bigcup_{i=1}^{M} R_o^i = \bigcup_{i=1}^{M} \left(\bigcup_{j=1}^{M} (\mathcal{H}_{xu}^i \cap \mathcal{H}_{yu}^j) \right).
\]

The spectral ROS \(R_o^M\) thus contains \(M\) hyperfans inside \(N\). Therefore, we can refocus \(M\) volumetric regions in a LF simultaneously by employing a 4-D filter having \(M\) hyperfan-shaped passbands inside \(N\).

III. PROPOSED 4-D SPARSE FIR FILTER

The proposed 4-D sparse FIR filter \(H(z)\), \((z_x, z_y, z_u, z_v) \in \mathbb{C}^4\), is designed as a cascade of two 2-D filters \(H_{xu}(z_x, z_u)\), \((z_x, z_u) \in \mathbb{C}^2\) and \(H_{yu}(z_y, z_v), (z_y, z_v) \in \mathbb{C}^2\). This structure is motivated by the partial separability of the spectral ROS of a Lambertian point source and leads to an extremely low computational complexity of \(O(N_x N_u + N_y N_v)\) to process a sample, compared to that of a nonseparable 4-D filter, which is \(O(N_x N_y N_u N_v)\) [21], where \((N_x, N_u) \in \mathbb{Z}^2\) and \((N_y, N_v) \in \mathbb{Z}^2\). We select the passbands of \(H_{xu}(z_x, z_u)\) and \(H_{yu}(z_y, z_v)\) to enclose \(M\) hyperfan regions \(B_{xu} = \bigcup_{i=1}^{M} \mathcal{H}_{xu}^i \) and \(B_{yu} = \bigcup_{i=1}^{M} \mathcal{H}_{yu}^i\), respectively. Note that the passband of the 4-D FIR filter \(H(z)\) given by \(B_{xu} \cap B_{yu}\) completely encompasses the spectral ROS given by (2). Fig. 3(b) shows the passband of \(H_{xu}(z_x, z_u)\) for \(M = 2\). Our 4-D FIR filter \(H(z)\) sharpens (i.e., focuses) the depth ranges in an LF corresponding to these \(M\) hyperfans and blurs other depth ranges corresponding to the stopband.
Fig. 3(b) shows the parameters that specify the ith hyperfan of the passband of $H_{xu}(z_x, z_u)$. Here, α_1, θ_1, and B_1 determine the orientation, angular-length and the width of the ith hyperfan, respectively, and T_1 determines the width of the guard band employed to achieve an improved accuracy near the origin of ω [34]. The passband and the specifications of the ith hyperfan is the same for $H_{yu}(y_y, z_u)$ in the $\omega_u \omega_v$ subspace. Therefore, the design of $H_{xu}(z_x, z_u)$ and $H_{yu}(y_y, z_u)$ reduces to a single 2-D FIR filter design. We now present the design of $H_{xu}(z_x, z_u)$ in detail.

A. Weighted Least-Square Design of $H_{xu}(z_x, z_u)$

We adapt the 2-D sparse FIR filter design method proposed in [26] to design $H_{xu}(z_x, z_u)$. To this end, we express the frequency response of $H_{xu}(z_x, z_u)$ as $H_{xu}(e^{j\omega_x}, e^{j\omega_u}) = \sum_{n_x = 0}^{N_x} \sum_{n_u = 0}^{N_u} h_{xu}(n_x, n_u)e^{-j(n_x \omega_x + n_u \omega_u)}$, where $h_{xu}(n_x, n_u)$ is the impulse response of size $(N_x + 1) \times (N_u + 1)$ (order $N_x \times N_u$). We design $H_{xu}(z_x, z_u)$ as a zero-phase filter [35, ch.3]. In this case, the impulse response of the filter is centro-symmetric, i.e., $h_{xu}(n_x, n_u) = h_{xu}(-n_x, -n_u)$. Therefore, we can simplify $H_{xu}(e^{j\omega_x}, e^{j\omega_u})$ considering the centro-symmetric property as $H_{xu}(e^{j\omega_x}, e^{j\omega_u}) = h_{xu}(0, 0) + \sum_{n_x = 1}^{N_x} 2h_{xu}(n_x, 0) \cos(n_x \omega_x) + \sum_{n_u = 1}^{N_u} 2h_{xu}(0, n_u) \cos(n_u \omega_u)$.

We employ the CVX [36], [37] optimization toolbox to obtain the proposed 4-D sparse FIR filter and a 4-D nonsparse FIR filter. We present the experimental results obtained for LFs in the EPFL dataset for $M = 2$ in this section and those obtained for the LFs in the Stanford dataset and 4-D benchmark dataset for $M = 2$ and in the EPFL dataset for $M = 3$ in supplementary results.\(^1\) Furthermore, we compare the performance of the proposed filter compared to a 4-D nonsparse FIR filter in multi-volumetric refocusing. Next, we compare the performance and computational complexity of the proposed filter with those of [18] and [21].

A. Performance of the Proposed 4-D Sparse FIR Filter in Multi-Volumetric Refocusing

We process five LFs, “Parc du Luxembourg,” “Bush,” “Books,” “Sphynx,” and “University” in the EPFL dataset using the proposed 4-D sparse FIR filter and a 4-D nonsparse FIR filter. Here, we select only the middle 11×11 SAIs for each LF and discard SAIs affected by vignetting. For the “Parc du Luxembourg” LF, we design $H_{xu}(z_x, z_u)$ and $H_{yu}(y_y, z_u)$ with $\alpha_1 = 50^\circ$ and $\alpha_2 = 120^\circ$, $\theta_1 = 10^\circ$, $B_1 = 0.9^\circ$ rad/sample, T_1, $T_2 = 0.08\pi$ rad/sample, $\mu = 0.1$, $\epsilon_{th} = 0.004$, $\gamma = 1.4$, and $W(\omega_x, \omega_u) = 1$ for the passband and $W(\omega_x, \omega_u) = 2$ for the stopband. We present the specifications of $H_{xu}(z_x, z_u)$ or $H_{yu}(y_y, z_u)$ employed for the other four LFs in the supplementary results.\(^2\) We select the order of $H_{xu}(z_x, z_u)$ and $H_{yu}(y_y, z_u)$ as 10×40 for all the five cases. Note that the order of the resulting 4-D sparse FIR filter $H(4)$ is $10 \times 10 \times 40 \times 40$.

\(^1\) The supplementary results are available at https://bit.ly/3oi7jSD.
Table I

FIR Filter	BRISQUE score	SSIM index	Nonzero coefficients
4-D nonsparse [18]	36.99	1.0000	902
4-D sparse [21]	40.83	0.9985	238
Proposed 4-D sparse	37.44	0.9979	206

in multi-volumetric refocusing compared to a nonsparse counterpart.

B. Comparison of the Proposed 4-D Sparse FIR Filter With Single-Volumetric-Region Refocusing Filters

Refocusing of a single volumetric region is a special case of the proposed multi-volumetric refocusing. In this subsection, we compare the performance of the proposed filter with those proposed in [18] and [21]. To this end, we consider refocusing of LFs employed in [21]. We design the proposed 4-D sparse FIR filter with $\alpha_1 = 50\degree$, $\theta_1 = 10\degree$, $B_1 = 0.9\pi$ rad/sample, and $T_1 = 0.08\pi$ rad/sample, $\mu = 0.1$, $\epsilon_{th} = 0.005$, $\gamma = 1.4$, and $W(\omega_x, \omega_y) = 1$ for the passband and $W(\omega_x, \omega_y) = 2$ for the stopband. We also design the 4-D sparse FIR filters proposed in [21] with the same specifications for α_1, θ_1, B_1 and T_1 whereas the hard-thresholding parameter is selected as 0.03 (ϵ_{th} in [21, eq. (5)]). We design the equivalent 4-D nonsparse FIR filters [18] with the same parameters except the hard-thresholding parameter, which is zero. We process the “Books,” “Flower,” “Mirabelle Prune Tree,” “Sophie & Vincent 1” and “Gravel Garden” LFs with the proposed filter, the filter proposed in [21], and their equivalent nonsparse filters [18]. We present the average BRISQUE scores, average SSIM indices and the number of nonzero coefficients of the filters in Table I. The central SAIs of the refocused LFs are presented in the supplementary results2. According to Table I, it is evident that the proposed 4-D sparse FIR filter provides a better average BRISQUE-score and a similar average-SSIM index compared to the 4-D sparse FIR filter proposed in [21] while providing 13% reduction in computational complexity. The proposed 4-D sparse FIR filter achieves a lower computational complexity compared to that proposed in [21] because the former is an optimal filter whereas the latter is a sub-optimal filter. Furthermore, the proposed sparse filter provides 77% reduction in computational complexity with negligible degradation in the average BRISQUE score and SSIM index compared to an equivalent nonsparse filter [18].

V. Conclusion

We demonstrate simultaneous multi-volumetric refocusing of LFs by employing a 4-D sparse FIR filter consisting of multiple hyperbolic-shaped passbands. We employ a two-step optimization method to design the optimal 4-D sparse FIR filters in the least-squares sense. Experimental results confirm that the proposed filter provides 63% average reduction in computational complexity with negligible degradation in the fidelity of two-volumetric-region refocused LFs compared to an equivalent 4-D non-sparse FIR filter. Furthermore, in single-volumetric-region refocusing, the proposed filter provides 13% reduction in computational complexity compared to a previously proposed 4-D sparse FIR filters with a negligible degradation in the fidelity.
REFERENCES

[1] M. Levoy and P. Hanrahan, “Light field rendering,” in Proc. Annu. Conf. Comput. Graph., 1996, pp. 31–42.

[2] G. Wu et al., “Light field image processing: An overview,” IEEE J. Sel. Top. Signal Process., vol. 11, no. 7, pp. 926–954, Oct. 2017.

[3] S. Wanner and B. Goldluecke, “Variational light field analysis for disparity estimation and super-resolution,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 36, no. 3, pp. 606–619, Mar. 2013.

[4] M. W. Tao, S. Hadap, J. Malik, and R. Ramamoorthi, “Depth from combining defocus and correspondence using light-field cameras,” in Proc. IEEE Int. Conf. Comput. Vis., 2013, pp. 673–680.

[5] T.-C. Wang, A. A. Efros, and R. Ramamoorthi, “Occulsion-aware depth estimation using light-field cameras,” in Proc. IEEE Int. Conf. Comput. Vis., 2015, pp. 3487–3495.

[6] J. Chen, J. Hou, Y. Ni, and L.-P. Chau, “Accurate light field depth estimation with superpixel regularization over partially occluded regions,” IEEE Trans. Image Process., vol. 27, no. 10, pp. 4889–4900, Oct. 2018.

[7] A. Isaksen, L. McMillan, and S. J. Gortler, “Dynamically reparametrized light fields,” in Proc. Annu. Conf. Comput. Graph., 2000, pp. 297–306.

[8] V. Vaish, B. Wilburn, N. Joshi, and M. Levoy, “Using plane + parallax for calibrating dense camera arrays,” in Proc. IEEE Conf. Comput. Vis. Pattern Recogn., vol. 1, 2004, pp. 1–2–1–9.

[9] V. Vaish et al., “Synthetic aperture focusing using a shear-warp factorization of the viewing transform,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., 2005, pp. 129–129.

[10] V. Vaish, M. Levoy, R. Szeliski, L. Zitnick, and S. B. Kang, “Reconstructing occluded surfaces using synthetic apertures: Stereo, focus and robust measures,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., vol. 2, 2006, pp. 2331–2338.

[11] D. Dansereau and L. T. Bruton, “A 4-D dual-fan filter bank for depth filtering in light fields,” IEEE Trans. Signal Process., vol. 55, no. 2, pp. 542–549, Feb. 2007.

[12] C. U. S. Edussooriya, D. G. Dansereau, L. T. Bruton, and P. Agathoklis, “Five-dimensional depth-velocity filtering for enhancing moving objects in light field videos,” IEEE Trans. Signal Process., vol. 63, no. 8, pp. 2151–2163, Apr. 2015.

[13] N. Liyanage et al., “Multi-depth filtering and occlusion suppression in 4-D light fields: Algorithms and architectures,” Signal Process., vol. 167, pp. 1–13, Feb. 2020.

[14] Y. Wang, T. Wu, J. Yang, L. Wang, W. An, and Y. Guo, “DeOccNet: Learning to see through foreground occlusions in light fields,” in Proc. IEEE Winter Conf. Appl. Comput. Vis., 2020, pp. 118–127.

[15] R. Ng, M. Levoy, M. Brédif, G. Duval, M. Horowitz, and P. Hanrahan, “Light field photography with a hand-held plenoptic camera,” Stanford Univ., Stanford, CA, USA, Tech. Rep. CTSR 2005-02, 2005.

[16] R. Ng, “Fourier slice photography,” in Proc. Annu. Conf. Comput. Graph., 2005, pp. 735–744.

[17] J. Fiss, B. Curless, and R. Szeliski, “Refocusing plenoptic images using depth-adaptive splatting,” in Proc. Int. Conf. Comput. Photography, 2014, pp. 1–9.

[18] D. G. Dansereau, O. Pizarro, and S. B. Williams, “Linear volumetric focus for light field cameras,” ACM Trans. Graph., vol. 34, no. 2, pp. 15:1–15:20, Feb. 2015.

[19] D. G. Dansereau, D. L. Bongiorno, O. Pizarro, and S. B. Williams, “Light field image denoising using a linear 4D frequency-hyperfan all-in-focus filter,” in Proc. SPIE Comput. Imag. XI, vol. 8657, 2013, pp. 86 570P–1–86 570P–14.

[20] S. U. Premaratne, N. Liyanage, C. U. S. Edussooriya, and C. Wijenayake, “Real-time light field denoising using a novel linear 4-D hyperfan filter,” IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 67, no. 8, pp. 2693–2706, Aug. 2020.

[21] S. U. Premaratne, C. U. S. Edussooriya, C. Wijenayake, L. T. Bruton, and P. Agathoklis, “A 4-D sparse FIR hyperfan filter for volumetric refocusing of light fields by hard thresholding,” in Proc. IEEE Int. Conf. Digit. Signal Process., 2018, pp. 1–5.

[22] Y. Wang, J. Yang, Y. Guo, C. Xiao, and W. An, “Selective light field refocusing for camera arrays using bokeh rendering and superresolution,” IEEE Signal Process. Lett., vol. 26, no. 1, pp. 204–208, Jan. 2019.

[23] T. Yang, Y. Zhang, J. Yu, J. Li, W. Ma, X. Tong, R. Yu, and L. Ran, “All-in-focus synthetic aperture imaging,” in Proc. Eur. Conf. Comput. Vis., 2014, pp. 1–15.

[24] Z. Pei, X. Chen, and Y.-H. Yang, “All-in-focus synthetic aperture imaging using image matting,” IEEE Trans. Circuits Syst. Video Technol., vol. 28, no. 2, pp. 288–301, Feb. 2018.

[25] J. Trottmann et al., “The potential of light fields in media productions,” in Proc. SIGGRAPH Asia Tech. Briefs, 2019, pp. 71–74.

[26] W.-S. Lu and T. Hinamoto, “Two-dimensional digital filters with sparse coefficients,” Multidimensional Syst. Signal Process., vol. 22, nos. 1–3, pp. 173–189, Mar. 2011.

[27] M. Rerabek and T. Ebrahimi, “New light field image dataset,” in Proc. 8th Int. Conf. Qual. Multimedia Experience, 2016, pp. 1–2. [Online]. Available: http://mmspg.epfl.ch/EPFL-light-field-image-dataset

[28] V. Vaish and A. Adams, “The (new) Stanford light field archive,” 2008. [Online]. Available: http://lightfield.stanford.edu

[29] K. Honauer, O. Johannsen, D. Kondermann, and B. Goldluecke, “A dataset and evaluation methodology for depth estimation on 4D light fields,” in Proc. Asian Conf. Comput. Vis., 2016, pp. 19–34.

[30] J.-X. Chai, X. Tong, S.-C. Chan, and H.-Y. Shum, “Plenoptic sampling,” in Proc. Annu. Conf. Comput. Graph., 2000, pp. 307–318.

[31] D. Dansereau and L. Bruton, “A 4D frequency-planar IIR filter and its application to light field processing,” in Proc. IEEE Int. Symp. Circuits Syst., vol. 4, 2003, pp. IV–476–IV–479.

[32] M. N. Do, D. Marchand-Maillet, and M. Vetterli, “On the bandwidth of the plenoptic function,” IEEE Trans. Image Process., vol. 21, no. 2, pp. 708–717, Feb. 2012.

[33] C. Gilliam, P.-L. Dragotti, and M. Brookes, “On the spectrum of the plenoptic function,” IEEE Trans. Image Process., vol. 23, no. 2, pp. 502–516, Feb. 2014.

[34] S.-C. Pei and S.-B. Jaw, “Two-dimensional general fan-type FIR digital filter design,” Signal Process., vol. 37, no. 2, pp. 265–274, May 1994.

[35] D. E. Dudgeon and R. M. Mersereau, Multidimensional Digital Signal Processing. Englewood Cliffs, NJ, USA: Prentice-Hall, 1984.

[36] M. Grant and S. Boyd, “Graph implementations for nonsmooth convex programs,” in Recent Advances in Learning and Control, ser. Lecture Notes in Control and Information Sciences, V. Blondel, S. Boyd, and H. Kimura, Eds. London, U.K.: Springer-Verlag, 2008, pp. 95–110. [Online]. Available: https://web.stanford.edu/~boyd/papers/pdf/graph_dcp.pdf

[37] M. Grant and S. Boyd, “CVX: MATLAB software for disciplined convex programming, version 2.1.” Mar. 2014. [Online]. Available: http://cvxr.com/cvx

[38] Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, “Image quality assessment: From error visibility to structural similarity,” IEEE Trans. Image Process., vol. 13, no. 4, pp. 600–612, Apr. 2004.

[39] A. Mittal, A. K. Moothy, and A. C. Bovik, “No-reference image quality assessment in the spatial domain,” IEEE Trans. Image Process., vol. 21, no. 12, pp. 4695–4708, Dec. 2012.