ON 2-STAR-PERMUTABILITY IN REGULAR MULTI-POINTED CATEGORIES

MARINO GRAN AND DIANA RODELO

Abstract. 2-star-permutable categories were introduced in a joint work with Z. Janelidze and A. Ursini as a common generalisation of regular Mal’tsev categories and of normal subtractive categories. In the present article we first characterise these categories in terms of what we call star-regular pushouts. We then show that the 3×3 Lemma characterising normal subtractive categories and the Cuboid Lemma characterising regular Mal’tsev categories are special instances of a more general homological lemma for star-exact sequences. We prove that 2-star-permutability is equivalent to the validity of this lemma for a star-regular category.

Mathematics Subject Classification 2010: 18C05, 08C05, 18B10, 18E10

Introduction

The theory of Mal’tsev categories in the sense of A. Carboni, J. Lambek and M.C. Pedicchio [6] provides a beautiful example of the way how categorical algebra leads to a structural understanding of algebraic varieties (in the sense of universal algebra). Among regular categories, Mal’tsev categories are characterised by the property of 2-permutability of equivalence relations: given two equivalence relations R and S on the same object A, the two relational composites RS and SR are equal:

$$RS = SR.$$

In the case of a variety of universal algebras this property is actually equivalent to the existence of a ternary term $p(x, y, z)$ satisfying the identities $p(x, y, y) = x$ and $p(x, x, y) = y$ [20]. In the pointed context, that is when the category has a zero object, there is also a suitable notion of 2-permutability, called “2-permutability at 0” [21]. In a variety this property can be expressed by requiring that, whenever for a given element x in an algebra A there is an element y with $xRyS0$ (here 0 is the unique constant in A), then there is also an element z in A with $xSzR0$. The validity of this property is equivalent to the existence of a binary term $s(x, y)$ such that the identities $s(x, 0) = x$ and $s(x, x) = 0$ hold true [21]. Among regular categories, the ones where the property of 2-permutability at 0 holds true are precisely the subtractive categories introduced in [14].

The aim of this paper is to look at regular Mal’tsev and at subtractive categories as special instances of the general notion of 2-star-permutable categories introduced in collaboration with Z. Janelidze and A. Ursini in [9]. This generalisation is achieved by working in the context of a regular multi-pointed category, i.e. a regular category equipped with an ideal N of distinguished morphisms [7]. When

Key words and phrases. Regular multi-pointed category; star relation; Mal’tsev category; subtractive category; varieties of algebras; homological diagram lemma.
\(\mathcal{N}\) is the class of all morphisms, a situation which we refer to as the total context, regular multi-pointed categories are just regular categories, and 2-star-permutable categories are precisely the regular Mal’tsev categories. When \(\mathcal{N}\) is the class of all zero morphisms in a pointed category, we call this the pointed context, regular multi-pointed categories are regular pointed categories, and 2-star-permutable categories are the regular subtractive categories.

This paper follows the same line of research as in [9] which was mainly focused on the property of 3-star-permutability, a generalised notion which captures Goursat categories in the total context and, again, subtractive categories in the pointed context.

In this work we study two remarkable aspects of the property of 2-star-permutability. First we provide a characterisation of 2-star-permutable categories in terms of a special kind of pushouts (Proposition 2.4), that we call star-regular pushouts (Definition 2.2). Then we examine a homological diagram lemma of star-exact sequences, which can be seen as a generalisation of the 3 \(\times\) 3 Lemma, whose validity is equivalent to 2-star-permutability. We call this lemma the Star-Upper Cuboid Lemma (Theorem 3.3). The validity of this lemma turns out to give at once a characterisation of regular Mal’tsev categories (extending a result in [11]) and, in the pointed context, a characterisation of those normal categories which are subtractive (this was first discovered in [17]).

Acknowledgement. The authors are grateful to Zurab Janelidze for some useful conversations on the subject of the paper.

1. Star-regular categories

1.1. Regular categories and relations. A finitely complete category \(\mathbb{C}\) is said to be a regular category [1] when any kernel pair has a coequaliser and, moreover, regular epimorphisms are stable under pullbacks. In a regular category any morphism \(f: X \rightarrow Y\) has a factorisation \(f = m \cdot p\), where \(p\) is a regular epimorphism and \(m\) is a monomorphism. The corresponding (regular epimorphism, monomorphism) factorisation system is then stable under pullbacks.

A relation \(\varrho\) from \(X\) to \(Y\) is a subobject \(\langle \varrho_1, \varrho_2 \rangle: R \rightarrow X \times Y\). The opposite relation, denoted \(\varrho^o\), is given by the subobject \(\langle \varrho_2, \varrho_1 \rangle: R \rightarrow Y \times X\). We identify a morphism \(f: X \rightarrow Y\) with the relation \(\langle 1_X, f \rangle: X \rightarrow X \times Y\) and write \(f^o\) for the opposite relation. Given another relation \(\sigma\) from \(Y\) to \(Z\), the composite relation of \(\varrho\) and \(\sigma\) is a relation \(\varrho \circ \sigma\) from \(X\) to \(Z\). With this notation, we can write the above relation as \(\varrho = \varrho_2 \varrho_1\). The following properties are well known (see [5], for instance); we collect them in a lemma for future references.

Lemma 1.1. Let \(f: X \rightarrow Y\) be any morphism in a regular category \(\mathbb{C}\). Then:

(a) \(f f^o f = f\) and \(f^o f f^o = f^o\);

(b) \(f f^o = 1_Y\) if and only if \(f\) is a regular epimorphism.

A kernel pair of a morphism \(f: X \rightarrow Y\), denoted by

\[(\pi_1, \pi_2): \text{Eq}(f) \rightarrow X,\]

is called an effective equivalence relation; we write it either as \(\text{Eq}(f) = f^o f\), or as \(\text{Eq}(f) = \pi_2 \pi_1^o\), as mentioned above. When \(f\) is a regular epimorphism, then \(f\) is
the coequaliser of π_1 and π_2 and the diagram

$$\xymatrix{ \text{Eq}(f) \ar[r]^-{\pi_1} \ar@{<->}[r]_-{\pi_2} & X \ar[r]^f & Y}$$

is called an exact fork. In a regular category any effective equivalence relation is the kernel pair of a regular epimorphism.

1.2. Star relations. We now recall some notions introduced in [10], which are useful to develop a unified treatment of pointed and non-pointed categorical algebra.

Let \mathcal{C} denote a category with finite limits, and \mathcal{N} a distinguished class of morphisms that forms an ideal, i.e. for any composable pair of morphisms g, f, if either g or f belongs to \mathcal{N}, then the composite $g \cdot f$ belongs to \mathcal{N}. An \mathcal{N}-kernel of a morphism $f : X \to Y$ is defined as a morphism $n_f : \mathcal{N}_f \to X$ such that $f \cdot n_f \in \mathcal{N}$ and n_f is universal with this property (note that such n_f is automatically a monomorphism).

A pair of parallel morphisms, denoted by $\sigma = (\sigma_1, \sigma_2) : S \rightrightarrows X$ with $\sigma_1 \in \mathcal{N}$, is called a star; it is called a monic star, or a star relation, when the pair (σ_1, σ_2) is jointly monomorphic.

Given a relation $\rho = (\rho_1, \rho_2) : R \rightrightarrows X$ on an object X, we denote by $\rho^* : R^* \rightrightarrows X$ the biggest subrelation of ρ which is a (monic) star. When \mathcal{C} has \mathcal{N}-kernels, it can be constructed by setting $\rho^* = (\rho_1 \cdot n_{\rho_1}, \rho_2 \cdot n_{\rho_2})$, where n_{ρ_1} is the \mathcal{N}-kernel of ρ_1. In particular, if we denote the discrete equivalence relation on an object X by $\Delta_X = (1_X, 1_X) : X \rightrightarrows X$, then $\Delta_X^* = (n_{1_X}, n_{1_X})$, where n_{1_X} is the \mathcal{N}-kernel of 1_X.

The star-kernel of a morphism $f : X \to Y$ is a universal star $\sigma = (\sigma_1, \sigma_2) : S \rightrightarrows X$ with the property $f \cdot \sigma_1 = f \cdot \sigma_2$; it is easy to see that the star-kernel of f coincides with $\text{Eq}(f)^* \rightrightarrows X$ whenever \mathcal{N}-kernels exist.

A category \mathcal{C} equipped with an ideal \mathcal{N} of morphisms is called a multi-pointed category [10]. If, moreover, every morphism admits an \mathcal{N}-kernel, then \mathcal{C} will be called a multi-pointed category with kernels.

Definition 1.2. [10] A regular multi-pointed category \mathcal{C} with kernels is called a star-regular category when every regular epimorphism in \mathcal{C} is a coequaliser of a star.

In the total context stars are pairs of parallel morphisms, \mathcal{N}-kernels are isomorphisms, star-kernels are kernel pairs and a star-regular category is precisely a regular category. In the pointed context, the first morphism σ_1 in a star $\sigma = (\sigma_1, \sigma_2) : S \rightrightarrows X$ is the unique null morphism $S \to X$ and hence a star σ can be identified with a morphism (its second component σ_2). Then, \mathcal{N}-kernels and star-kernels become the usual kernels, and a star-regular category is the same as a normal category [18], i.e. a pointed regular category in which any regular epimorphism is a normal epimorphism.

1.3. Calculus of star relations. The calculus of star relations [9] can be seen as an extension of the usual calculus of relations (in a regular category) to the regular multi-pointed context. First of all note that for any relation $\rho : R \rightrightarrows X$ we have

$$\rho^* = \rho \Delta_X^*.$$

Inspired by this formula, for any relation ρ from X to an object Y, we define

$$\rho^* = \rho \Delta_X^* \quad \text{and} \quad ^* \rho = \Delta_Y^*/\rho.$$
Note that associativity of composition yields
\[*(g^*) = (*g)^* \]
and so we can write \(*g \) for the above.

For any relation \(\sigma \) (from some object \(Y \) to \(Z \)), the associativity of composition also gives
\[(\sigma^*)_g = \sigma(*g), \]
and
\[(\sigma g)^* = \sigma g^*. \]

It is easy to verify that for any morphism \(f : X \to Y \) we have
\[f^* = *f^* \quad \text{and} \quad f^o = *f^o. \]

2. 2-STAR-PERMUTABILITY AND STAR-REGULAR PUSHOUTS

Recall that a finitely complete category \(C \) is called a Mal’tsev category when any reflexive relation in \(C \) is an equivalence relation [6, 5]. We recall the following well-known characterisation of the regular categories which are Mal’tsev categories:

Proposition 2.1. A regular category \(C \) is a Mal’tsev category if and only if the composition of effective equivalence relations in \(C \) is commutative:
\[\text{Eq}(f)\text{Eq}(g) = \text{Eq}(g)\text{Eq}(f) \]
for any pair of regular epimorphisms \(f \) and \(g \) in \(C \) with the same domain.

There are many known characterisations of regular Mal’tsev categories (see Section 2.5 in [2], for instance, and references therein). The one that will play a central role in the present work is expressed in terms of commutative diagrams of the form
\[
\begin{array}{ccc}
C & \xrightarrow{c} & A \\
g \downarrow & & \downarrow f \\
D & \xrightarrow{d} & B,
\end{array}
\]
where \(f \) and \(g \) are split epimorphisms \(f \cdot s = 1_B, g \cdot t = 1_D, f \cdot c = d \cdot g, s \cdot d = c \cdot t \), and \(c \) and \(d \) are regular epimorphisms. A diagram of type (1) is always a pushout; it is called a regular pushout [4] (alternatively, a double extension [15, 13]) when, moreover, the canonical morphism \(\langle g, c \rangle : C \to D \times_B A \) to the pullback \(D \times_B A \) of \(d \) and \(f \) is a regular epimorphism. Among regular categories, Mal’tsev categories can be characterized as those ones where any square (1) is a regular pushout: this easily follows from the results in [4], and a simple proof of this fact is given in [12].

Observe that a commutative diagram of type (1) is a regular pushout if and only if \(cg^o = f^o d \) or, equivalently, \(gc^o = d^o f \). This suggests to introduce the following notion:

Definition 2.2. A commutative diagram (1) is a star-regular pushout if it satisfies the identity \(cg^o = f^o d^* \) (or, equivalently, \(gc^o = d^o f^* \)).
Diagrammatically, the property of being a star-regular pushout can be expressed as follows. Consider the commutative diagram

\[
\begin{array}{ccccccc}
N_g & \downarrow & N_a & \rightarrow & N_x & \downarrow & A \\
\downarrow & & \downarrow & & \downarrow & & \downarrow \\
C & \downarrow & M & \rightarrow & D \times_B A & \downarrow & B \\
\downarrow & & \downarrow & & \downarrow & & \downarrow \\
D & \downarrow & \leftarrow & & \leftarrow & & \leftarrow \\
\end{array}
\]

where \((D \times_B A, x, y)\) is the pullback of \((f, d)\), \(m \cdot p\) is the (regular epimorphism, monomorphism) factorisation of the induced morphism \((g, c) : C \rightarrow D \times_B A\). Then the identity \(cg^o = ba^o\) allows one to identify \(cg^o\) with the relation \((a \cdot n_a, b \cdot n_a)\), while \(f^o d = yx^o\) says that \(f^o d^\ast\) can be identified with the relation \((x \cdot n_x, y \cdot n_x)\).

Accordingly, diagram (1) is a star-regular pushout precisely when the dotted arrow from \(N_a\) to \(N_x\) is an isomorphism. Notice that in the total context the \(N\)-kernels are isomorphisms, so that \(m\) is an isomorphism if and only if (1) is a regular pushout, as expected.

The “star-version” of the notion of Mal’tsev category can be defined as follows:

Definition 2.3. A regular multi-pointed category with kernels \(\mathbb{C}\) is said to be a 2-star-permutable category if

\[Eq(f)Eq(g)^* = Eq(g)Eq(f)^*\]

for any pair of regular epimorphisms \(f\) and \(g\) in \(\mathbb{C}\) with the same domain.

One can check that the equality \(Eq(f)Eq(g)^* = Eq(g)Eq(f)^*\) in the definition above can be actually replaced by \(Eq(f)Eq(g)^* \leq Eq(g)Eq(f)^*\).

In the total context the property of 2-star-permutability characterises the regular categories which are Mal’tsev. In the pointed context this same property characterises the regular categories which are subtractive [16] (this follows from the characterisation of subactivity given in Theorem 6.9 in [17]).

The next result gives a useful characterisation of 2-star-permutable categories. Given a commutative diagram of type (1), we write \(gEq(c)\) and \(gEq(c)^*\) for the direct images of the relations \(Eq(c)\) and \(Eq(c)^*\) along the split epimorphism \(g\). The vertical split epimorphisms are such that both the equalities \(gEq(c) = Eq(d)\) and \(gEq(c)^* = Eq(d)^*\) hold true in \(\mathbb{C}\).

Proposition 2.4. For a regular multi-pointed category with kernels \(\mathbb{C}\) the following statements are equivalent:

(a) \(\mathbb{C}\) is a 2-star-permutable category;

(b) any commutative diagram of the form (1) is a star-regular pushout.
Proof. (a) ⇒ (b) Given a pushout (1) we have

\[f \circ d^* = cc_0 f \circ d^* \quad (\text{Lemma } 1.1(2)) \]
\[= cg_0 d^* \quad (f \cdot c = d \cdot g) \]
\[= cg_0 gc_0 c^* g^* \quad (\text{Eq}(d)^* = g(\text{Eq}(c)^*)) \]
\[= cc_0 cg_0 g^* g^* \quad (\text{Eq}(g)\text{Eq}(c)^* = \text{Eq}(c)\text{Eq}(g)^* \text{ by Definition } 2.3) \]
\[\leq cc_0 cg_0 g g^* \quad (g^* \leq g) \]
\[= cg_0. \quad (\text{Lemma } 1.1(1)) \]

Since \(cg_0^* \) is the largest star contained in \(cg_0^* \), it follows that \(f \circ d^* \leq cg_0^* \). The inclusion \(cg_0^* \leq f \circ d^* \) always holds, so that \(cg_0^* = f \circ d^* \).

(b) ⇒ (a) Let us consider regular epimorphisms \(f : X \to Y \) and \(g : X \to Z \). We want to prove that \(\text{Eq}(f)\text{Eq}(g)^* = \text{Eq}(g)\text{Eq}(f)^* \). For this we build the following diagram

\[
\begin{array}{c}
\text{Eq}(f) \\
\downarrow \pi_1 \\
X \\
\downarrow f \\
Y \\
\end{array}
\begin{array}{c}
\downarrow \pi_2 \\
\downarrow \rho_1 \\
\downarrow \rho_2 \\
\downarrow g \\
Z \\
\end{array}
\]

that represents the regular image of \(\text{Eq}(f) \) along \(g \). The relation \(g(\text{Eq}(f)) = (\rho_1, \rho_2) \) is reflexive and, consequently, \(\rho_1 \) is a split epimorphism. By assumption, we then know that the equality

\[(A) \quad \rho_1^* g^* = c\pi_1^* \]

holds true. This implies that

\[
\begin{align*}
\text{Eq}(f)\text{Eq}(g)^* &= \pi_2 \pi_1^* g^* \\
&= \pi_2 c^2 \rho_1^* g^* \quad (g \cdot \pi_1 = \rho_1 \cdot c) \\
&= \pi_2 c^2 c\pi_1^* \quad (A) \\
& \leq \pi_2 c^2 c\pi_2^* \pi_2^* \quad (\Delta_{\text{Eq}(f)} \leq \pi_2^* \pi_2) \\
&= \text{Eq}(g)\pi_2^* \pi_2^* \quad (\pi_2(\text{Eq}(c)) = \text{Eq}(g)) \\
&= \text{Eq}(g)\text{Eq}(f)^*,
\end{align*}
\]

where the equality \(\pi_2(\text{Eq}(c)) = \text{Eq}(g) \) follows from the fact that the split epimorphisms \(\pi_2 \) and \(\rho_2 \) induce a split epimorphism from \(\text{Eq}(c) \) to \(\text{Eq}(g) \).

In the total context, Proposition 2.4 gives the characterisation of regular Mal’tsev categories through regular pushouts (see [4] and Proposition 3.4 of [12]), as expected. In the pointed context, condition (b) of Proposition 2.4 translates into the pointed version of the right saturation property [9] for any commutative diagram of type (1): the induced morphism \(\bar{c} : \text{Ker}(g) \to \text{Ker}(f) \), from the kernel of \(g \) to the kernel of \(f \) is also a regular epimorphism. This can be seen by looking at diagram (2), where the \(N \)-kernels now represent actual kernels, so that \(\text{Ker}(a) = \text{Ker}(x) = \text{Ker}(f) \). \(\square \)
2.1. **The star of a pullback relation.** Consider the pullback relation \(\pi = (\pi_1, \pi_2) \) of a pair \((g, \delta)\) of morphisms as in the diagram

\[
\begin{array}{ccc}
W \times_D C & \xrightarrow{\pi_2} & C \\
\downarrow \pi_1 & & \downarrow g \\
W & \xrightarrow{\delta} & D.
\end{array}
\]

The **star of the pullback relation** \(\pi \) is defined as \(\pi^* = \pi \Delta_W^* \). It can be described as the universal relation \(\nu = (\nu_1, \nu_2) \) from \(W \) to \(C \) such that \(\nu_1 \in N \) and \(\delta \cdot \nu_1 = g \cdot \nu_2 \) as in the diagram

\[
\begin{array}{ccc}
(W \times_D C)^* & \xrightarrow{\nu_2} & C \\
\downarrow n_{\pi_1} & & \downarrow g \\
W \times_D C & \xrightarrow{\pi_2} & C \\
\downarrow \pi_1 & & \downarrow g \\
W & \xrightarrow{\delta} & D,
\end{array}
\]

where \(n_{\pi_1} \) is the \(N \)-kernel of \(\pi_1 \), \(\nu_1 = \pi_1 \cdot n_{\pi_1} \) and \(\nu_2 = \pi_2 \cdot n_{\pi_1} \).

By using the composition of relations one has the equalities \(\pi = \pi_2 \pi_1^* = g^* \delta \), so that

\(\pi^* = \pi_2 \pi_1^{\circ^*} = g^* \delta^* \).

In the total context, the star of a pullback relation is precisely that pullback relation. In the pointed context, the star of the pullback (relation) of \((g, \delta)\) is given by \(\pi^* = (0, \ker(g)) \).

A morphism \(f : X \to Y \) in a multi-pointed category with kernels is said to be **saturating** \([9] \) when the induced dotted morphism from the \(N \)-kernel of \(1_X \) to the \(N \)-kernel of \(1_Y \) making the diagram

\[
\begin{array}{ccc}
N_{1_X} & \xrightarrow{n_{1_Y}} & N_{1_Y} \\
\downarrow n_{1_X} & & \downarrow n_{1_Y} \\
X & \xrightarrow{f} & Y
\end{array}
\]

commute is a regular epimorphism. All morphisms are saturating in the pointed context. This is also the case for any **quasi-pointed category** \([3] \), namely a finitely complete category with an initial object \(0 \) and a terminal object \(1 \) such that the arrow \(0 \to 1 \) is a monomorphism. As in the pointed case, it suffices to choose for \(N \) the class of morphisms which factor through the initial object \(0 \). In this case we shall speak of the **quasi-pointed context**. In the total context, any regular epimorphism is saturating. The proof of the following result is straightforward:

Lemma 2.5. \([9] \) Let \(C \) be a regular multi-pointed category with kernels. For a morphism \(f : X \to Y \) the following conditions are equivalent:

(a) \(f \) is saturating;
(b) \(\Delta_Y^* = f^* f^\circ \).

The next result gives a characterisation of 2-star-permutable categories which will be useful in the following section.

Proposition 2.6. For a regular multi-pointed category \(C \) with kernels and saturating regular epimorphisms the following statements are equivalent:
(a) C is a 2-star-permutable category;
(b) for any commutative diagram

\[
\begin{array}{cccc}
W & \times & D & C \\
\downarrow{\nu_1} & & \downarrow{c} & \downarrow{\chi_1} \\
Y & \times & B & A \\
\downarrow{\beta} & & \downarrow{\gamma} & \downarrow{\delta} \\
D & \times & W & \downarrow{d} \\
\end{array}
\]

where the front square is of the form \((11)\), $\beta \cdot w = d \cdot \delta$, w is a regular epimorphism, \(((W \times_D C)^*, \nu_1, \nu_2)\) and \(((Y \times_B A)^*, \chi_1, \chi_2)\) are stars of the corresponding pullback relations, then the comparison morphism $\lambda: (W \times_D C)^* \to (Y \times_B A)^*$ is also a regular epimorphism.

Proof. (a) \Rightarrow (b) To prove that the arrow λ in the cube above is a regular epimorphism, we must show that

\[
\begin{array}{cccc}
(W \times_D C)^* & \overset{\lambda}{\longrightarrow} & (Y \times_B A)^* \\
\downarrow{(\nu_1, \nu_2)} & & \downarrow{(\chi_1, \chi_2)} \\
W \times C & \overset{w \times c}{\longrightarrow} & Y \times A \\
\end{array}
\]

is the (regular epimorphism, monomorphism) factorisation of the morphism \((w \cdot \nu_1, c \cdot \nu_2): (W \times_D C)^* \to Y \times A\). That is, we must have $cg \circ \delta^* \circ w^* = f^* \beta^*$, since $\nu_2 \nu_1^* = \nu^* = g^* \delta^*$ and $\chi_2 \chi_1^* = \chi^* = f^* \beta^*$ (see Section 2.1).

The front square of diagram (3) is a star-regular pushout by Proposition 2.4, which means that the equality

\[
(B) \quad cg^* = f^* d^*
\]

holds true. Now, we always have

\[
\begin{align*}
cg^* \delta^* w^* & \leq f^* \delta^* w^* \quad \text{(commutativity of the front face of (3))} \\
& = d^* \beta^* w^* \quad \text{(d \cdot \delta = \beta \cdot w)} \\
& = f^* \beta^* \Delta^*_Y \quad \text{(Lemma 2.5)} \\
& = f^* \beta^*.
\end{align*}
\]

The other inequality follows from

\[
\begin{align*}
\delta^* w^* & \geq cg^* \delta^* w^* \quad \text{(g \geq g^*)} \\
& = d^* \delta^* w^* \quad \text{(B)} \\
& = f^* \delta^* w^* \quad \text{(* \delta^* = \delta^*; Section 1.3)} \\
& = f^* \beta^*. \quad \text{(as in the inequality above)}
\end{align*}
\]
(b) ⇒ (a) A commutative diagram of type (1) induces a commutative cube

where \(\nu = (g \cdot n_g, n_g) \) is the star of the pullback (relation) of \((g, 1_D)\). By assumption, \(\lambda \) is a regular epimorphism which translates into the equality \(cg^o1_D = f^o d^* \), as observed in the first part of the proof. We get the equality \(cg_1^* = f_1^o d^* \), and this proves that diagram (1) is a star-regular pushout and, consequently, that \(C \) is a 2-star-permutable category by Proposition 2.4.

In the total context, Proposition 2.6 is the "star version" of Proposition 3.6 in [12] (see also Proposition 4.1 in [4]). In the pointed context condition (b) of Proposition 2.6 also reduces to the pointed version of the right saturation property (in the sense of [9]). Indeed, in this context that condition says that, in the following commutative diagram

the induced arrow \(\overline{c} : \text{Ker}(g) \to \text{Ker}(f) \) is a regular epimorphism.

We conclude this section with the pointed version of Propositions 2.4 and 2.6:

Corollary 2.7. (see Theorem 2.12 in [9]) For a pointed regular category \(C \) the following statements are equivalent:

(a) \(C \) is a subtractive category;

(b) any commutative diagram of the form (1) is right saturated, i.e. the comparison morphism \(\overline{c} : \text{Ker}(g) \to \text{Ker}(f) \) is a regular epimorphism.

3. The Star-Cuboid Lemma

In [12] it was shown that regular Mal’tsev categories can be characterised through the validity of a homological lemma called the Upper Cuboid Lemma, a strong form of the denormalised \(3 \times 3 \) Lemma [4, 19, 11]. We are now going to extend this result to the star-regular context. We shall then observe that, in the pointed
context, it gives back the classical Upper 3×3 Lemma characterising subtractive normal categories.

3.1. \mathcal{N}-trivial objects. An object X in a multi-pointed category is said to be \mathcal{N}-trivial when $1_X \in \mathcal{N}$. If a composite $f \cdot g$ belongs to \mathcal{N} and g is a strong epimorphism, then also f belongs to \mathcal{N}. This implies that \mathcal{N}-trivial objects are closed under strong quotients. One says that a multi-pointed category \mathcal{C} has enough trivial objects [8] when \mathcal{N} is a closed ideal [14], i.e. any morphism in \mathcal{N} factors through an \mathcal{N}-trivial object and, moreover, the class of \mathcal{N}-trivial objects is closed under subobjects and squares, where the latter property means that, for any \mathcal{N}-trivial object X, the object $X^2 = X \times X$ is \mathcal{N}-trivial. An equivalent way of expressing the existence of enough trivial objects is recalled in the following:

Proposition 3.1. [8] Let \mathcal{C} be a regular multi-pointed category with kernels. The following conditions are equivalent:

(a) if $(\sigma_1, \sigma_2) : S \rightarrowtail X$ is a relation on X such that $\sigma_1 \cdot n \in \mathcal{N}$ and $\sigma_2 \cdot n \in \mathcal{N}$, then $n \in \mathcal{N}$;

(b) \mathcal{C} has enough trivial objects.

In the following we shall also assume that \mathcal{N}-trivial objects are closed under binary products. Remark that in the total and in the (quasi-)pointed contexts there are enough trivial objects, and \mathcal{N}-trivial objects are closed under binary products.

Under the presence of enough trivial objects the assumption that \mathcal{N}-trivial objects are closed under binary products is equivalent to the following condition:

(a’) if $(\sigma_1, \sigma_2) : S \rightarrowtail X \times Y$ is a relation from X to Y such that $\sigma_1 \cdot n \in \mathcal{N}$ and $\sigma_2 \cdot n \in \mathcal{N}$, then $n \in \mathcal{N}$.

Whenever the category has enough trivial objects, condition (a’) implies that star-kernels “commute” with stars of pullback relations:

Lemma 3.2. Let \mathcal{C} be a multi-pointed category with kernels, enough trivial objects, and assume that \mathcal{N}-trivial objects are closed under binary products. Given a commutative cube

in \mathcal{C}, consider the star-kernels of c, d and w, and the induced morphisms $\mathcal{F} : \text{Eq}(w)^* \rightarrow \text{Eq}(d)^*$ and $\mathcal{G} : \text{Eq}(c)^* \rightarrow \text{Eq}(d)^*$. Then the following constructions are equivalent (up to isomorphism):

- taking the horizontal star-kernel of λ and then the induced morphisms $\text{Eq}(\lambda)^* \rightarrow \text{Eq}(w)^*$ and $\text{Eq}(\lambda)^* \rightarrow \text{Eq}(c)^*$;
• taking the star of the pullback (relation) of \(\overline{\delta} \) and then the induced morphisms \((\Eq(w)^* \times_{\Eq(d)} \Eq(c)^*)^* \Rightarrow (W \times_D C)^*\).

Proof. This follows easily by the usual commutation of kernel pairs with pullbacks and condition (a'). □

In a star-regular category, a (short) star-exact sequence is a diagram

\[
\begin{array}{ccc}
Eq(f)^* & \xrightarrow{f_1} & X \\
\xrightarrow{f_2} & Y
\end{array}
\]

where \(\Eq(f)^*\) is a star-kernel of \(f\) and \(f\) is a coequaliser of \(f_1\) and \(f_2\) (which, by star-regularity, is the same as to say that \(f\) is a regular epimorphism). In the total context, a star-exact sequence is just an exact fork, while in the (quasi-)pointed context it is a short exact sequence in the usual sense.

The Star-Upper Cuboid Lemma

Let \(\mathbb{C}\) be a star-regular category. Consider a commutative diagram of morphisms and stars in \(\mathbb{C}\)

\[
\begin{array}{c}
P \\
\xrightarrow{\pi} (W \times_D C)^* \\
\xrightarrow{\lambda} (Y \times_B A)^*
\end{array}
\]

\[
\begin{array}{c}
\Eq(w)^* \\
\xrightarrow{\nu_1} W \\
\xrightarrow{\nu_2} C \\
\xrightarrow{\chi_1} Y \\
\xrightarrow{\chi_2} A
\end{array}
\]

\[
\begin{array}{c}
\Eq(c)^* \\
\xrightarrow{\delta} C \\
\xrightarrow{\overline{\delta}} \overline{D} \\
\xrightarrow{\overline{\delta}} \overline{A}
\end{array}
\]

\[
\begin{array}{c}
S \\
\xrightarrow{\sigma} D \\
\xrightarrow{\delta} \overline{B}
\end{array}
\]

where the three diamonds are stars of pullback (relations) of regular epimorphisms along arbitrary morphisms (so that \(P = (\Eq(w)^* \times_S \Eq(c)^*)^*\)) and the two middle rows are star-exact sequences. Then the upper row is a star-exact sequence whenever the lower row is.

Note that, in the diagram (5) above, \(d\) is necessarily a regular epimorphism, \(d \cdot \sigma_1 = d \cdot \sigma_2\) since \(\overline{\delta}\) is an epimorphism, and \(\lambda \cdot \pi_1 = \lambda \cdot \pi_2\), because the pair of morphisms \((\chi_1, \chi_2)\) is jointly monomorphic.

Theorem 3.3. Let \(\mathbb{C}\) be a star-regular category with saturating regular epimorphisms, enough trivial objects, and assume that \(\mathcal{N}\)-trivial objects are closed under binary products. The following conditions are equivalent:

(a) \(\mathbb{C}\) is a 2-star-permutable category;
(b) the Star-Upper Cuboid Lemma holds true in \(\mathbb{C}\).

Proof. (a) \(\Rightarrow\) (b) Suppose that the lower row is a star-exact sequence. The fact that \(\pi = \Eq(\lambda)^*\) follows from Lemma 3.2. As explained in Proposition 2.6 \(\lambda\) is a
regular epimorphism if and only if \(cg_0 \delta^* w^o \geq f_0 \beta^* \). In fact we have

\[
\begin{align*}
 cg_0 \delta^* w^o &= cc_0 \alpha_0 \delta^* w^o \quad \text{(Lemma 1.1(1))} \\
 &\geq cc_0 \alpha_0 \delta^* w^o \quad \text{(Eq}(g) \geq \text{Eq}(g)^*) \\
 &= cg_0 \delta^* w^o \quad \text{(Eq}(g) \geq \text{Eq}(g)^*) \\
 &= f^0 \beta^* w^o \quad \text{(Lemma 1.1(2))} \\
 &= f^0 \beta^*.
\end{align*}
\]

(b) \(\Rightarrow \) (a) Consider a commutative cube of the form (5). We construct a commutative diagram of type (5) by taking the star-kernels of \(c, w, d \), and \(\lambda \), so that \(\gamma, \delta, \tau_1 \), and \(\tau_2 \) are the induced arrows between the star-kernels. By Lemma 3.2 we know that \((\tau_1, \tau_2) \) is the star above the pullback (relation) of \((\bar{g}, \delta) \). By applying the Star-Upper Cuboid Lemma to this diagram we conclude that the upper row is a star-exact sequence and, consequently, \(\lambda \) is a regular epimorphism. By Proposition 2.6, \(C \) is a 2-star-permutable category.

In the total context, Theorem 5.3 is precisely Theorem 4.3 in [12], which gives a characterisation of regular Mal’tsev categories through the Upper Cuboid Lemma, as expected. In the pointed context, the Star-Upper Cuboid Lemma gives the classical Upper 3 \(\times 3 \) Lemma: in the pointed version of diagram (5), the back part is irrelevant (like in diagram (4)). Then the front part is a 3 \(\times 3 \) diagram where all columns and the middle row are short exact sequences. The Star-Upper Cuboid Lemma claims that the upper row is a short exact sequence whenever the lower row is, i.e. the same as the Upper 3 \(\times 3 \) Lemma. The pointed version of Theorem 5.3 is Theorem 5.4 of [18] which characterises normal subtractive categories. Note that in the pointed context, the Upper 3 \(\times 3 \) Lemma is also equivalent to the Lower 3 \(\times 3 \) Lemma as shown in [18].

References

[1] M. Barr, Exact Categories, in: Lecture Notes in Math. 236 Springer (1971) 1-120.
[2] F. Borceux and D. Bourn, Mal’cev, protomodular, homological and semi-abelian categories, Math. and its Appl. 566, Kluwer, (2004).
[3] D. Bourn, 3 \(\times 3 \) lemma and protomodularity. J. Algebra 236 (2001) 778-795.
[4] D. Bourn, The denormalized 3 \(\times 3 \) lemma. J. Pure Appl. Algebra 177 (2003) 113-129.
[5] A. Carboni, G.M. Kelly, and M.C. Pedicchio, Some remarks on Mal’tsev and Goursat categories, Appl. Cat. Structures 1 (1993) 385-421.
[6] A. Carboni, J. Lambek, and M.C. Pedicchio, Diagram chasing in Mal’cev categories. J. Pure Appl. Alg. 69 (1991) 271-284.
[7] C. Ehresmann, Sur une notion générale de cohomologie, C. R. Acad. Sci. Paris 259 (1964) 2050-2053.
[8] M. Gran, Z. Janelidze and D. Rodelo, 3 \(\times 3 \)-Lemma for star-exact sequences, Homology, Homotopy Appl. 14 (2) (2012) 1-22.
[9] M. Gran, Z. Janelidze, D. Rodelo, and A. Ursini, Symmetry of regular diamonds, the Goursat property, and subtractivity, Theory Appl. Categ. 27 (2012) 80-96.
[10] M. Gran, Z. Janelidze and A. Ursini, A good theory of ideal in regular multi-pointed categories. J. Pure Appl. Algebra 216 (2012) 1905-1919.
[11] M. Gran and D. Rodelo, A new characterisation of Goursat categories, Appl. Categ. Structures 20 (2012) 229-238.
[12] M. Gran and D. Rodelo, The Cuboid Lemma and Mal’tsev categories, published online in Appl. Categ. Structures, DOI: 10.1007/s10485-013-9352-5.
[13] M. Gran and V. Rossi, Galois Theory and Double Central Extensions, Homology, Homotopy Appl. 6 (1) (2004) 283-298.
[14] M. Grandis, On the categorical foundations of homological and homotopical algebra, Cah. Top. Géom. Diff. Catég. 33 (1992) 135-175.
[15] G. Janelidze, What is a double central extension? Cah. Top. Géom. Diff. Catég. 32 (3) (1991) 191-201.
[16] Z. Janelidze, Subtractive categories, Appl. Categ. Struct. 13 (2005) 343-350.
[17] Z. Janelidze, Closedness properties of internal relations I: A unified approach to Mal’tsev, unital and subtractive categories, Theory Appl. Categ. 16 (2006) 236-261.
[18] Z. Janelidze, The pointed subobject functor, 3 × 3 lemmas and subtractivity of spans, Theory Appl. Categ. 23 (2010) 221-242.
[19] S. Lack, The 3-by-3 lemma for regular Goursat categories, Homology, Homotopy Appl., 6 (1) (2004) 1-3.
[20] J.D.H. Smith, Mal’cev Varieties, Lecture Notes in Math. 554, Springer (1976).
[21] A. Ursini, On subtractive varieties, I, Algebra Univ. 31 (1994) 204-222.