Changes in Tweet Geolocation over Time: A Study with Carmen 2.0

Jingyu Zhang, Alexandra DeLicia, Mark Dredze
Johns Hopkins University
Introduction

Twitter Geolocation tools are useful for demographic studies in various topics

- Civil unrest
- Natural disasters
- Disease spread

Existing tools identify the location of tweets base on tweet metadata, tweet content, and social networks
Problem Statement

While widely used, geolocation tools tend to be English-centric and are often not evaluated for global coverage or performance across time and language.

We assess the following factors’ impact on geolocation tool Carmen:

- Language
- Country
- Time
Carmen: A Review

Introduced in Dredze et al. (2013), Carmen is a metadata-based geolocation tool that resolve locations from:

- Embedded coordinates in the **Geo object**
- Matching the **Place object** to internal location database
- Mapping **user profile location** string to internal location database
Carmen 2.0

- Compatible with Twitter API v2
- Performance optimization (25x faster geocode resolver)
- Expanded database with GeoNames
 - GeoNames Only
 - GeoNames + Carmen Original
Database Comparison

Carmen Original Database
- 7K location entries
- Inferred from tweets between May 2009 and Aug 2012 (primarily English tweets from US)
- Does not align with external knowledge base

Carmen 2.0
- 73K entries extracted from the GeoNames database
- Alternative names in many languages
- Hierarchical (CITY, ADMIN, COUNTRY) structure compatible with GeoNames
Evaluating Geotagging Performance

Geotagging tools should be able to accurately cover a wide range of locations:

- **Coverage**: for what portion of data can the geotagger propose a location
- **Accuracy**: how well the proposed locations compare to ground truth

We develop *multiple* metrics tailored to geotagging performance
Metrics for Geotagger

Coverage: percentage of data successfully mapped to a location

Accuracy:

- **Match Ratio** of level L: percentage of resolved tweets that is correct on level L. L is one of \{country, admin, city\}
- **Distance**: geodesic distance between resolved and ground truth location
- **Acc@K**: percentage of resolved tweets such that the distance error does not exceed K miles.
Experiments
Ground Truth Data

We introduce Twitter-Global, a new geolocation evaluation dataset collected from multiple Twitter API streams

- 15.3M geotagged tweets
- Collected from 2013 to 2021
- Covers a wide range of languages and countries
Performance across Language

We create two subsets of English and Non-English data from Twitter-Global.

Language	Database	Coverage	\(mr_{country}\)	\(mr_{admin}\)	\(mr_{city}\)	\(d\)	Acc@10	Acc@100	Acc@1000
English	GeoNames-Only	49.58%	99.42%	95.63%	47.49%	853.9	0.81	0.85	0.86
	GeoNames-combined	49.63%	99.43%	94.36%	47.69%	58.7	0.81	0.91	0.99
	Original	48.14%	99.35%	94.94%	48.90%	46.4	0.78	0.91	1.00
Non-English	GeoNames-Only	41.77%	99.36%	66.50%	20.13%	482.3	0.84	0.88	0.88
	GeoNames-combined	41.78%	99.35%	66.83%	20.27%	105.3	0.84	0.90	0.99
	Original	32.27%	98.95%	75.61%	14.22%	106.2	0.67	0.87	0.99

On Non-English data, GeoNames

- Substantially increased coverage
- Moderate increased accuracy-based metrics
Performance across Countries

We create two subsets of US and Non-US data from **Twitter-Global**

Origin	Database	Coverage	$mr_{country}$	mr_{admin}	mr_{city}	d	Acc@10	Acc@100	Acc@1000
US	GeoNames-only	50.56%	99.37%	99.87%	53.66%	994.2	0.79	0.84	0.84
	GeoNames-combined	50.60%	99.37%	99.87%	53.81%	23.6	0.79	0.91	1.00
	Original	51.03%	99.93%	99.96%	55.33%	23.7	0.79	0.91	1.00
non-US	GeoNames-only	42.63%	99.37%	99.37%	61.51%	18.73%	439.3	0.84	0.89
	GeoNames-combined	42.65%	99.37%	99.37%	60.81%	18.88%	121.2	0.84	0.90
	Original	32.89%	98.45%	98.45%	66.11%	11.10%	118.0	0.67	0.87

On Non-US data, GeoNames

- Substantially increased coverage
- Achieved comparable accuracy with original database
Performance over Time

We create subsets of Twitter-Global for each year between 2013-2021

Main findings

- Due to change in metadata availability, Coverage dropped significantly after 2014
- GeoNames provide slightly better coverage regardless of metadata availability
Summary

- Introduced **Carmen 2.0**, an updated version of geolocation tool Carmen backed by an open-source gazetteer, GeoNames
- **Twitter-Global** is a Twitter geolocation evaluation dataset for language, country, and time ablation studies
- Significant **difference in performance in the ablation**, with higher performance for English and US-based tweets
- Geolocation tools should be **robust to language, country of origin**, and available metadata
- More **work is needed for a fine-grained study** on individual languages and countries
Thank you!

Analysis Code: https://github.com/AADeLucia/carmen-wnut22-submission

Carmen: https://github.com/mdredze/carmen-python
Supplementary
Database Statistics

	Original		GeoNames	
	Count	Percent	Count	Percent
City	4401	62.51%	24568	33.24%
County	1995	28.33%	45154	61.08%
State	461	6.55%	3947	5.34%
Country	184	2.61%	252	0.34%
Total	7041	73921		

Table 1: The statistics of city, county, state, and country-level locations in the original Carmen location database and the new GeoNames database versions developed for Carmen 2.0. The GeoNames-augmented databases have more than 10 times the number of location entries than Original. Percentage refers to portion of the database dedicated to each granularity.