Note on parity factors of regular graphs

Hongliang Lu†
Department of Mathematics
Xi’an Jiaotong University, Xi’an 710049, PR China

Abstract

In this paper, we obtain a sufficient condition for the existence of parity factors in a regular graph in terms of edge-connectivity. Moreover, we also show that our condition is sharp.

1 Preliminaries

Let $G = (V, E)$ be a graph with vertex set $V(G)$ and edge set $E(G)$. The number of vertices of a graph G is called the order of G and is denoted by n. On the other hand, the number of edges of G is called the size of G and is denoted by e. For a vertex v of graph G, the number of edges of G incident with v is called the degree of v in G and is denoted by $d_G(v)$. For two subsets $S, T \subseteq V(G)$, let $e_G(S, T)$ denote the number of edges of G joining S to T.

Let therefore $g, f : V \to \mathbb{Z}^+$ such that $g(v) \leq f(v)$ and $g(v) \equiv f(v) \pmod 2$ for every $v \in V$. Then a spanning subgraph F of G is called a (g, f)-parity-factor, if $g(v) \leq d_F(v) \leq f(v)$ and $d_F(v) \equiv f(v) \pmod 2$ for all $v \in V$. Let a, b be two integers such that $1 \leq a \leq b$ and $a \equiv b \pmod 2$. If $g(v) \equiv a$ and $f(v) \equiv b$ for all $v \in V(G)$, then a (g, f)-parity-factor is called (a, b)-parity factor. When $a = 1$, (a, b)-parity factor is called $(1, n)$-odd factor.

For a general graph G and an integer k, a spanning subgraph F such that

$$d_F(x) = k \quad \text{for all } x \in V(G)$$

is called a k-factor. In fact, a k-factor is also a (k, k)-parity factor.

Now let us recall one of the most classic results due to Petersen.

Theorem 1.1 (Petersen [8]) Let r and k be integers such that $1 \leq k \leq r$. Every $2r$-regular graph has a $2k$-factor.

By the edge-connectivity, Gallai [4] proved the following result.

*This work was supported by the National Natural Science Foundation of China (No. 11101329)
†Corresponding email: luhongliang215@sina.com (H. Lu)
Theorem 1.2 (Gallai \cite{4}) Let \(r \) and \(k \) be integers such that \(1 \leq k < r \), and \(G \) an \(m \)-edge-connected \(r \)-regular graph, where \(m \geq 1 \). If one of the following conditions holds, then \(G \) has a \(k \)-factor:

(i) \(r \) is even, \(k \) is odd, \(|G| \) is even, and \(\frac{r}{m} \leq k \leq r(1 - \frac{1}{m}) \);
(ii) \(r \) is odd, \(k \) is even and \(2 \leq k \leq r(1 - \frac{1}{m}) \);
(iii) \(r \) and \(k \) are both odd and \(\frac{r}{m} \leq k \).

Bollobás, Saito and Wormald \cite{2} improved above result.

Theorem 1.3 (Bollobás, Saito and Wormald) Let \(r \) and \(k \) be integers such that \(1 \leq k < r \), and \(G \) be an \(m \)-edge-connected \(r \)-regular graph, where \(m \geq 1 \) is a positive integer. Let \(m^* \in \{m, m + 1\} \) such that \(m^* \equiv 1 \pmod{2} \). If one of the following conditions holds, then \(G \) has a \(k \)-factor:

(i) \(r \) is odd, \(k \) is even and \(2 \leq k \leq r(1 - \frac{1}{m^*}) \);
(ii) \(r \) and \(k \) are both odd and \(\frac{r}{m^*} \leq k \).

In this paper, we extend Gallai as well as Bollobás, Saito and Wormald result to \((a, b)\)-parity factor. The main tool in our proofs is the famous theorem of Lovász (see \cite{7}).

Theorem 1.4 (Lovász \cite{7}) \(G \) has a \((g, f)\)-parity factor if and only if for all disjoint subsets \(S \) and \(T \) of \(V(G) \),

\[
\delta(S, T) = f(S) + \sum_{x \in T} d_G(x) - g(T) - e_G(S, T) - \tau \geq 0,
\]

where \(\tau \) denotes the number of components \(C \), called \(f \)-odd components of \(G - (S \cup T) \) such that \(e_G(V(C), T) + f(V(C)) \equiv 1 \pmod{2} \). Moreover, \(\delta(S, T) \equiv f(V(G)) \pmod{2} \).

2 Main Theorem

Theorem 2.1 Let \(a, b \) and \(r \) be integers such that \(1 \leq a \leq b < r \) and \(a \equiv b \pmod{2} \). Let \(G \) be a \(m \)-edge-connected \(r \)-regular graph with \(n \) vertices. If one of the following conditions holds, then \(G \) has a \((a, b)\)-parity factor.

(i) \(r \) is even, \(a, b \) are odd, \(|G| \) is even, \(\frac{r}{m} \leq b \) and \(a \leq r(1 - \frac{1}{m}) \);
(ii) \(r \) is odd, \(a, b \) are even and \(a \leq r(1 - \frac{1}{m}) \);
(iii) \(r, a, b \) are odd and \(\frac{r}{m^*} \leq b \).
Proof. By Theorem 1.3 (ii) and (iii) are followed. Now we prove (i). Let \(\theta_1 = \frac{a}{r} \) and \(\theta_2 = \frac{b}{r} \). Then \(0 < \theta_1 \leq \theta_2 < 1 \). Suppose that \(G \) contains no \((a, b) \)-parity factors. By Theorem 1.4, there exist two disjoint subsets \(S \) and \(T \) of \(V(G) \) such that \(S \cup T \neq \emptyset \), and
\[
-2 \geq \delta(S, T) = b|S| + \sum_{x \in T} d_G(x) - a|T| - e_G(S, T) - \tau,
\]
where \(\tau \) is the number of \(a \)-odd (i.e. \(b \)-odd) components \(C \) of \(G - (S \cup T) \). Let \(C_1, \ldots, C_\tau \) denote \(a \)-odd components of \(G - S - T \) and \(D = C_1 \cup \cdots \cup C_\tau \).

Note that
\[
-2 \geq \delta(S, T) = b|S| + \sum_{x \in T} d_G(x) - a|T| - e_G(S, T) - \tau
\]
\[
= b|S| + (r - a)|T| - e_G(S, T) - \tau
\]
\[
= \theta_2 r|S| + (1 - \theta_1)r|T| - e_G(S, T) - \tau
\]
\[
= \theta_2 \sum_{x \in S} d_G(x) + (1 - \theta_1) \sum_{x \in T} d_G(x) - e_G(S, T) - \tau
\]
\[
\geq \theta_2 e_G(S, T) + \sum_{i=1}^{\tau} e_G(S, C_i) + (1 - \theta_1)(e_G(S, T) + \sum_{i=1}^{\tau} e_G(T, C_i)) - e_G(S, T) - \tau
\]
\[
= \sum_{i=1}^{\tau} (\theta_2 e_G(S, C_i) + (1 - \theta_1)e_G(T, C_i) - 1) + (\theta_2 - \theta_1)e_G(S, T)
\]
\[
\geq \sum_{i=1}^{\tau} (\theta_2 e_G(S, C_i) + (1 - \theta_1)e_G(T, C_i) - 1).
\]
Since \(G \) is connected and \(0 < \theta_1 \leq \theta_2 < 1 \), so \(\theta_2 e_G(S, C_i) + (1 - \theta_1)e_G(T, C_i) > 0 \) for each \(C_i \). Hence we will obtain a contradiction by showing that for every \(C = C_i, 1 \leq i \leq \tau \), we have
\[
\theta_2 e_G(S, C) + (1 - \theta_1)e_G(T, C) \geq 1. \tag{2}
\]
These inequalities together with the previous inequality imply
\[
-2 \geq \delta_G(S, T) \geq \sum_{i=1}^{\tau} (\theta_2 e_G(S, C_i) + (1 - \theta_1)e_G(T, C_i) - 1)
\]
\[
> \sum_{i=1}^{\tau - 2} (\theta_2 e_G(S, C_i) + (1 - \theta_1)e_G(T, C_i) - 1) - 2 \geq -2,
\]
which is impossible. Since \(C \) is a \(a \)-odd component of \(G - (S \cup T) \), we have
\[
a|C| + e_G(T, C) \equiv 1 \pmod{2}. \tag{3}
\]
Moreover, since
\[
r|C| = \sum_{x \in V(C)} d_G(x) = e_G(S \cup T, C) + 2|E(C)|,
\]

3
we have
\[r|C| = e_G(S \cup T, C) \pmod{2}. \] (4)

It is obvious that the two inequalities \(e_G(S, C) \geq 1 \) and \(e_G(T, C) \geq 1 \) imply
\[\theta_2 e_G(S, C) + (1 - \theta_1) e_G(T, C) \geq \theta_2 + 1 - \theta_1 = 1. \]

Hence we may assume \(e_G(S, C) = 0 \) or \(e_G(T, C) = 0 \).

Firstly, we consider (i). If \(e_G(S, C) = 0 \), then \(e_G(T, C) \geq m \). Since \(a \leq r(1 - \frac{1}{m}) \), then \(\theta_1 \leq 1 - \frac{1}{m} \) and so \(1 \leq (1 - \theta_1)m \). By substituting \(e_G(T, C) \geq m \) and \(e_G(S, C) = 0 \) into (2), we have
\[(1 - \theta_1)e_G(T, C) \geq (1 - \theta_1)m \geq 1. \]

If \(e_G(T, C) = 0 \), then \(e_G(S, C) \geq m \). Since \(\frac{a}{m} \leq b \), hence \(\theta_2 m \geq 1 \), and so we obtain
\[\theta_2 e_G(S, C) \geq \theta_2 m \geq 1. \]

Consequently, condition (i) guarantees (2) holds and thus (i) is true. Consequently the proof is complete. \(\square \)

Remark: The edge-connectivity conditions in Theorem 2.1 are sharp.

We give the description for (i). For (ii) and (iii), the constructions are similar but slightly more complicated. Let \(r \geq 2 \) be an even integer, \(a, b \geq 1 \) two odd integers and \(2 \leq m \leq r - 2 \) an even integer such that \(b < r/m \) or \(r(1 - \frac{1}{m}) < a \). Since \(G \) has a \((a, b)\)-parity factor if and only if \(G \) has a \((r - b, r - a)\)-parity factor, so we can assume \(b < r/m \). Let \(J(r, m) \) be the complete graph \(K_{r+1} \) from which a matching of size \(m/2 \) is deleted. Take \(r \) disjoint copies of \(J(r, m) \). Add \(m \) new vertices and connect each of these vertices to a vertex of degree \(r - 1 \) of \(J(r, m) \). This gives an \(m \)-edge-connected \(r \)-regular graph denoted by \(G \). Let \(S \) denote the set of \(m \) new vertices and \(T = \emptyset \). Let \(\tau \) denote the number of components \(C \), called \(a \)-odd components of \(G - (S \cup T) \) such that \(e_G(V(C), T) + a|C| \equiv 1 \pmod{2} \). Then we have \(\tau = r \), and
\[\delta(S, T) = b|S| + \sum_{x \in T} d_{G-S}(x) - a|T| - \tau(S, T) = bm - r < 0. \]

So by Theorem 1.4, \(G \) contains no \((a, b)\)-parity factors.

References

[1] J. Akiyama and M. Kano, Factors and factorizations of graphs-a survey, *J. Graph Theory*, 9 (1985), 1-42.

[2] B. Bollobás, A. Satio, and N. C. Wormald, Regular factors of regular graphs, *J. Graph Theory*, 9 (1985), 97-103.

[3] L. Collatz and U. Sinogowitz, Spektren endlicher Grafen, *Abh. Math. Sem. Univ. Hamburg*, 99 (2009), 287-297.
[4] T. Gallai, The factorisation of graphs, *Acta Math. Acad. Sci. Hung.*, 1 (1950), 133-153.
[5] C. Godsil and G. Royle, Algebraic Graph Theory, Springer Verlag New York, (2001).
[6] M. Kano, \([a,b]\)-factorization of a graph. *J. Graph Theory*, 9 (1985), 129-146.
[7] L. Lovász, The factorization of graphs, II, *Acta Math. Sci. Hungar.*, 23 (1972), 223-246.
[8] J. Petersen, Die Theorie der regulären Graphen, *Acta Math.*, 15 (1891), 193-220.
[9] W. T. Tutte, The factors of graphs, *Canad. J. Math.*, 4 (1952), 314-328.