The impact of sex-linked dwarf gene on hormonal reproductive profiles and biochemical traits in Iraqi dwarf roosters

S S Khafaji*, S M Gatea, Th K Aljanabi and S M S Altaie
Animal physiology, Department of Animal production, College of Agriculture, University of Kerbala, Iraq.

E-mail: *sura.saif@uokerbala.edu.iq

Abstract. The current experiment was aimed to explore the influencing of the sex-linked dwarf gene on some fertility hormones and biochemical profile in normal local and dwarf roosters. Thirty normal local and dwarf roosters at age 28 weeks were housed at opened system for 6 weeks. At end of 6th week, blood samples collected from all roosters and centrifuged to obtained sera for measuring the concentrations of Intersitial cell stimulating hormone 'ICSH', Follicle stimulating hormone 'FSH' and testosterone hormone, total protein, albumen, globulin, glutamic oxaloacetic transaminase 'GOT', Alkaline phosphatase 'ALP', and glutamic pyruvic transaminase 'GPT'. The statistical analysis documented significant (P<0.05) decline in FSH and testosterone hormone in dwarf group roosters compared with normal local roosters. As well as, the level of total protein and globulin registered significant decline (P<0.05) in dwarf group roosters in comparison with normal local group roosters. On the other hand, the level of hepatic enzymes, GOT, GPT and ALK, recorded a significant (P<0.05) elevation in dwarf group roosters when compared with normal local group roosters. Concluded, that the sex-linked dwarf gene could be affected on hormonal fecundity profile and some biochemical traits in dwarf roosters.

1. Introduction
During the past years, egg production and avian meat from layers and broilers in trade flocks has augmented gradually as a result of genetic selection in breeding flocks of avian breeding companies and exploiting that for improving trade crossbred offspring [1]. It must be preserved that, the recent breeding techniques for trade poultry focused on specific manufacture lines, resulting from intense collection of huge populations and little breeds with a genetically uniformity of the features under selection [2].

Poultry manufacture has been recognized as one method of gaining adequacy for providing proteins of animal source in the diet the Iraq, local chickens raised on backyard and village systems [3]. Small body and hardness of local chicken could help to adapt with the tropical environment and resistance to diseases [4,5]. Some article investigated the impact of main genes like frizzle, dwarfism, naked neck and slow feathering on performance, immunity, fertility and hatchability in chicken [6,7].

The biochemical profiles concentrate on blood chemical compositions and utilized in nutrition and genetic studies for avian like Japanese quail [8], chickens [9], bronze turkey [10], guinea fowl [11] and pigeon [12]. The blood traits help to identify of meat quality, specific genetic avian pathologies that
necessary for researches development in comparative poultry pathology and immunology [13,14]. Several studies on broiler chicks [15], Cobb broilers [16-19], laying hens [20-23] and local chicken [24] revealed that biochemical traits of chickens are interrelated with several aspects such as nutrition, gender, rearing temperature, stress situations and stocking density [24].

Because little information about dw gene effective on male fecundity and general health, this research was designed to investigate that influencing on hormonal reproductive profiles, total proteins and hepatic enzymes in local and dwarf roosters,

2. Materials and methods
Thirty dwarf and normal local roosters (aged 26 weeks) housed at animal field in Agriculture college-Kerbala University. They housed in opened system, they fed with diet has energy 2880 Kcal and protein level 17.6. Water provided as free.

After 6 weeks, blood was collected in tubes without anticoagulant and centrifuged at 5000 rpm for ten min for obtaining serum. The sera was kept in dry vials at -20 °C until using for determining concentrations of Follicle stimulating hormone, FSH, Interstitial cell stimulating hormone, ICSH, and testosterone hormone by ELISA test. The ELISA procedure for hormonal analyse in serum according to the manufacturer's guidelines (Wuhan Fine Technology). As well as, serum total protein and albumin concentrations were assayed by using [25] methodology, then concentration of globulin (g/100ml) was determining by: Globulin concentration = total protein concentration - Albumin concentration.

Serum level of glutamic oxaloacetic transaminase, GOT, glutamic pyruvic transaminase, GPT, and Alkaline phoshatase, ALP, were assayed according to [26].

2.1. Statistical analysis
The current data of all parameters were tested by complete random design (C.R.D). Significant changes between groups tested by L.S.D test at probability level 0.05 [27].

3. Results and discussion
The results of dw gen effects on some reproductive hormones were demonstrated in table 1. There were a significant lowering (P<0.05) in FSH and testosterone hormone concentrations in dwarf roosters comparing with local roosters. While ICSH percentage was not recorded significant differences (P>0.05) when compared between two roosters groups. That variations in hormonal profiles might be due to influence of dwarf gene on specific hormones that altered the level of fecundity hormones, several investigators proposed decreasing IGF-I level and low GH receptors 'GHR' had caused valuable effects on male fecundity [28,29], causing inhibition and/ or blocking the major processes that occurred in dwarf gonad's roosters like steroidogenesis, apoptosis and proliferation due to reduction of GH and IGF-1 action because it regarded as a potent factors for differentiating and growing processes in testes because that receptors located also in sertoli and leydig cells could be affected on primary spermatocytes which is important in normal steroidogenesis process [30]. As well as, IGF-I inhibition could depress gonadotropin releasing hormone 'GnRH' expression and releasing subsequently influencing on gonadotropin hormones production from adenohypophysis [31,32] which had influenced on spermatogenesis and testosterone secretion from sertoli and leydig cells, respectively [33,34] that may be explained the decline of serum gonadotropins hormones concentration in dwarf roosters in current results.

Besides, the indirect role of thyroids hormones might be caused changing on the fecundity hormones, because thyroids hormones in dwarf rooster was low normally that reflected on reproductive features, as reported by [35] who investigated that thyroid hormones could induce ICSH activity by feedback mechanism in castrated finch. Additionally, the decline the level of thyroids hormones could increase FSH and ICSH level, subsequently, that could be affected on spermatogenesis and testosterone level.
Table 1. Effect of genotype on fecundity hormones in dwarf and normal local roosters

Parameters	FSH (miu/ml)	ICSH (miu/ml)	Testosterone hormone (ng/ml)	
Species	Normal local roosters	2.98 ± 0.03 A	2.63 ± 0.07 A	2.005 ± 0.04 A
	Dwarf roosters	2.19 ± 0.04 B	2.15 ± 0.03 A	1.54 ± 0.03 B

*Data denote to mean ± SE

*The dissimilar letters in the same column are significant differences at P<0.05

Table 2 illustrates the values results of serum total proteins (mg/ml) concentration in normal and local dwarf roosters. A significant elevation in total protein and globulin concentration were observed in normal local roosters as compared with dwarf roosters group. On other hand, non-significant changes were noted in means of albumin concentration (P>0.05) when compared between two roosters groups. The results obtained from the current research for serum total protein and globulin agreement with those finding by [36] who suggested that the utilization of metabolites from diet varied in birds depending on sex, breed, genetic factors and environment conditions, that reflected on the level of serum total protein and globulin concentrations, this affected on general immunity of bird, that might be explained the tolerance of bird to harsh conditions. As well as, the changes in current results might be attributed to high liver efficiency for protein synthesis in normal local due to variation in genotype of bird [15; 37]. The current finding same as the results of [38] who noted high concentration of serum total protein in normal local chicken when compared with another breed.

Table 2. Effect of genotype on some Biochemical parameters in dwarf and normal local roosters

Parameters	Total protein (g/100ml)	Albumen (g/100ml)	Globulin (g/100ml)	
Species	Normal local roosters	6.86 ± 0.03 A	3.20 ± 0.16 A	3.66 ± 0.13 A
	Dwarf roosters	5.37 ± 0.05 B	3.12 ± 0.15 A	2.37 ± 0.07 B

*Data denote to mean ± SE

*The dissimilar letters in the same column are significant differences at P<0.05

Table 3 showed the impact of genotype on liver enzymes of normal local and dwarf roosters. the statistical analysis referred to significant increasing (P<0.05) in mean values of ALP, GPT and GOT concentrations in dwarf roosters group comparing to value of normal local group. The ALP, GOT and GPT regarded as a biomarker indicator for liver functions, many articles suggested that there were a relationship between genetic and environmental factors that could play a major role in pathogenesis and phenotypic creation [39,40]. Furthermore, the hepatic functions could be affected genetically according to breeds like dwarf, layer leghorns and local chickens as reported by [41] who believed that the elevated levels of GOT, ALP and GPT might be for high hepatic capacity for fat deposition in dwarf chicken compared with local and layer line because the gene expression of hepatic enzyme varied according to inherited breed [42,43].

Table 3. Impact of genotype on hepatic enzymes percentage in normal and dwarf roosters

Parameters	GOT (IU/mol)	GPT (IU/mol)	ALP (IU/mol)	
Species	Normal local roosters	63.53 ± 0.83 B	6.0002 ± 0.18 B	226.33 ± 1.53 B
	Dwarf roosters	77.37 ± 0.70 A	7.332 ± 0.25 A	248.08 ± 0.66 A

*Data denote mean ± SE

*The dissimilar letters in the same column are significant differences at P<0.05
4. Conclusions
The results accomplished from current experiment proved that the sex-linked dwarf gene influenced on general health of bird by affected on fecundity hormones and some biochemical characters like hepatic enzymes, total protein and globulin that influenced on immunity of bird subsequent pathological resistance. In future, some experiments necessary to determine dw gene actions on female reproductive gene expression.

References
[1] Padhi M K 2016 Importance of indigenous breeds of chicken for rural economy and their improvements for higher production performance Scientifica 9
[2] Khawaja T, Khan S H, Mukhtar N, Parveen A and Fareed G 2013 Production performance, egg quality and biochemical parameters of three way crossbred chickens with reciprocal F1crossbred chickens in sub-tropical environment Italian J. Anim. Sci. 12 e21 pp 127-33
[3] Lul S A 1990 Small holder rural poultry production in Somalia Democratic Republic CTA Seminar Proceeding on Small Holder Poultry Production, Thessaloniki, Greece. 2 pp 207-41
[4] Haunshi S, Sharma D, Nayal L M S, Singh D P and Singh R V 2002 Effect of naked neck (Na) and frizzle gene (F) on im-munocompetence in chickens Br. Poult. Sci. 43 pp 28-32
[5] Ezekwe AG and Machebe NS 2004 Ejaculation characteris-tics of two strains of local cocks (naked-neck and Frizzle) in Nigeria. Proc. 29th Ann. Conf. Nig. Soc. Anim. Prod. 19 pp 92-5
[6] Bacon L D, Fadly A M and Crittenden L B 1986 Absence of influence on immune competence by the sex linked gene (k) determining slow feathering in White Leghorn chickens. Avian Dis. 30 pp 751-60
[7] Altaie S M S, Khafaji S S, Mahdi S and ALjanabi Th K 2019 Evaluation the influence of dwarf gene on some fecundity features in dwarf hens Biochemical and cellular archives 19 2
[8] Arora K L 2010 Differences in hemoglobin and packed cell volume in blood collected from different sites in Japanese quail (Coturnix japonica) Int. J. Poult. Sci. 9 9 pp 828-30.
[9] Adeyemi O A, Fasina O E and Balogun M O 2000 Utilization of full fat jatropha seeds in broiler diet: Effect on haematological parameters and blood chemistry Proc. 25th Conf. Nigerian Soc. Anim. Prod. held at Michael Okpara University of Agriculture, Umudike, Nigeria pp, 108-9.
[10] Schmidt E M S, Paullillo A C, Martins, G R V, Lapera I M, Testi A J P, Junior L N, Denadai J and Fagliari J J 2009 Hematology of the bronze turkey (Meleagris gallopavo): Variations with age and gender Int. J. Poult. Sci. 8 8 pp 752-4
[11] Onyeanusi B I 2007 Calcium and phosphorus levels in Nigerian guinea fowls. Int. J. Poult. Sci. 6 8 pp 610-11
[12] Pavlak M, Vlahovic K, Jaric J, Dorc A and Zupanic Z 2005 Age, sexual and seasonal differences of haematological values and antibody status to Chlamydia sp. in feral and racing pigeons (Columba livia forma domestica) from an urban environment (Zagreb, Croatia) European J. Wildlife Res. 51 4 pp 271-6
[13] Hrubec T C, Whichard J M, Larsen C T and Pierson F W 2002 Plasma versus serum: Specific differences in biochemical analytic values J. Avian Med. Surgery. 16 2 pp 101-5
[14] Bonadiman S F, Stratievsky G C, Machado J A, Albernaz A P, Rabelo G R and Damatta R A 2009 Leukocyte ultrastructure, hematological and serum biochemical profiles of ostriches (Struthio camelus) Poult. Sci. 88 11 pp 2298-306
[15] Khafaji S S 2018 Study the Effect of Ceylon Cinnamon (Cinnamomum Zeylanicum) Powder on Some Physiological Parameters in Broiler ChicksJ. Global Pharma Tech. 10 07 pp 236-42
[16] Anitha B, Moorthy M and Vishwanathan M 2007 Muscle cholesterol and serum biochemical changes in broilers fed with crude rice bran oil Int. J. Poult. Sci. 6 12 pp 855-7
[17] Elagib H A A, Mohamed H E and Elzubeir E A 2008 The effects of methionine and energy levels on haematological and biochemical indices in broiler under hot climate Res. J. Poult. Sci. 2 15-20
[18] Barreiro F R, Sagula A L, Junqueira O M, Pereira G T and Baraldi-Arttoni S M 2009 Densitometric and biochemical values of broiler tibias at different ages Poult. Sci. 88 12 pp 2644-8
[19] Daneshyar M, Kermanshahi H and Golian A 2009 Changes of biochemical parameters and enzyme activities in broiler chickens with cold-induced ascites Poult. Sci. 88 1 pp 106-10
[20] Mohammed A 2010 Effect of acetyl salicylic acid (ASA) in drinking water on productive performance and blood characteristic of layer hens during heat stress Int. J. Poult. Sci. 9 4 pp 382-5
[21] AL-Jaff F K 2011 Effect of coriander seeds as diet ingredient on blood parameters of broiler chicks raised under high ambient temperature Int. J. Poult. Sci. 10 2 pp 82-6
[22] El-Gendy E A, El-Komy E M, El-Far A A, El-Gamry K A and El-Mallah G M 2011 Developmental stability in chickens local to warm climatic region 2. Variation in blood metabolites due to genetic selection and crossing Int. J. Poult. Sci. 10 5 pp 358-64
[23] Yanagita K, Shiraishi J, Kawakami S and Bungo T 2011 Time course changes in the blood parameters and the expression of diencephalic CRH and AVT mRNA due to acute isolation stress in chick J. Poult. Sci. 48 2 pp 125-9
[24] Khafaji S S O, ALjanabi ThK and Altaie SM 2019 Evaluation the Impact of Different Levels of Propolis on Some Reproductive features in Iraqi Local Roosters Advances in Animal and Veterinary Sciences, 7 2 pp 82-7
[25] Tietz N W 1982 Fundamentals of Clinical Chemistry. 2nd edition (Philadelphia: W.B. Saunders Company)
[26] Reitman S and Frankel S 1957 A colorimetric method for determination of serum glutamic oxaloacetic and pyruvic transaminase. Am. J. Clin. Pathol., 28 pp 56-63
[27] SAS 2001 SAS/STAT Users Guide for Personal Computer (New York, USA: Release 6.18. SAS Institute Inc.)
[28] Burnside J, Liou S S and Cogburn L A 1991 Molecular cloning of the chicken growth hormone receptor complementary deoxyribonucleic acid: mutation of the gene in sex-linked dwarf chickens Endocrinology 128 pp 3183–92
[29] Agarwal S K, Cogburn L A and Burnside J 1994 Dysfunctional growth hormone receptor in a strain of sex-linked dwarf chicken: evidence for a mutation in the intracellular domain J. Endocrin. 142 pp 427–34
[30] Chandrashekar V, Zaczek D and Bartke A 2004 The consequences of altered somatotrophic system on reproduction Biol. Reprod. 71 pp 17–27
[31] Zhen S, Zakaria M, Wolfe A and Radovich S 1997 Regulation of gonadotropin-releasing hormone (GnRH) gene expression by insulin-like growth factor I in a cultured GnRH-expressing neuronal cell line Mol Endocrinol. 11 8 pp 1145–55
[32] Longo K M, Sun Y and Gore A C 1998 Insulin-like growth factor-I effects on gonadotropin-releasing hormone biosynthesis in GT1-7 cells. Endocrinology. 139 3 pp 1125–32
[33] Anderson R A, Zwain I H, Arroyo A, Mellon P L and Yen S S 1999 The insulin-like growth factor system in the GT1-7 GnRH neuronalcellline Neuroendocrinology 70 5 pp 353–9
[34] Kim H H, DiVall S A, Deneau R M and Wolfe A 2005 Insulin regulation of GnRH gene expression through MAP kinase signaling pathways Mol Cell Endocrinol. 242 1–2 pp 42–9
[35] Choudhury A and Chaturvedi C M 1995 Thyroxine regulates pituitary LH function in castrated subtropical finch Estrilda amandava Poult. Avian Biol. Rev. 6 25.3
[36] Yuan T F, Li A, Sun X, Ouyang H, Campos C, Rocha N B, Arias-Carrión O, Machado S, Hou G and So K F 2016 Transgenerational inheritance of paternal neurobehavorial phenotypes, stress, addiction, ageing and metabolism Mol. Neurobiol. 53 pp 6367–76
[37] Khafaji S S O, Al-Nedawi A M, Altaie S M S, ALjanabi Th K and Mahdi S 2020 Study on the impact of dw gene on carcass and reticuloendothelial organs traits and detection a correlation and regression equations in dwarf roosters Biochem. Cell. Arch. 20 2 pp 4993-6
[38] Simaraks S, Chinrasri O and Aengwanich W 2004. Haematological, electrolyte and serum biochemical values of the Thai indigenous chickens (Gallus domesticus) in northeastern Thailand. Songklanakarin J. Sci. Tec. 26 pp 425-30

[39] Ladokun A O, Yakubu A, Otite J R, Omeje J N, Sokunbi O A and Onyeji E 2008 Haematological and biochemical indices of naked neck and normally feathered Nigerian indigenous chickens in a sub humid tropical environment Int. J. Poult. Sci., 7 pp 55-8

[40] Ansen-Wilson L J and Lipinski R J 2017 Gene-environment interactions in cortical interneuron development and dysfunction: A review of preclinical studies Neurotoxicology 58 pp 120–9

[41] McCarty R 2017 Cross-fostering: Elucidating the effects of gene × environment interactions on phenotypic development Neurosci. Biobehav. Rev. 73 pp 219–54

[42] Zhang Y, Liu Z, Liu R, Wang J, Zheng M, Li Q, Cui H, Zhao G and Wen J 2018 Alteration of Hepatic Gene Expression along with the Inherited Phenotype of Acquired Fatty Liver in Chicken Genes 9 199 pp 1-15

[43] Cui H 2009 Etiology and prevention of fatty liver hemorrhagic syndrome in egg laying hens Chin. J. Anim. Sci. 45 pp 57–9

Acknowledgements

Deepest gratefulness to dean of agriculture college/ Kerbala university, and to the chairman of animal production department for providing all necessaries materials for current experiment.