PROSTATE SPECIFIC ANTIGEN CONCENTRATIONS

IN RESPONSE TO TESTOSTERONE TREATMENT

OF SEVERELY HYPOGONADAL MEN

Saachi Sachdev¹, Andrew J. Cucchiara² and Peter J Snyder¹

¹ Division of Endocrinology, Diabetes and Metabolism
² Institute for Translational Medicine and
 Applied Therapeutics Center for Human Phenomic Science
Perelman School of Medicine, University of Pennsylvania

Corresponding Author: Peter J. Snyder

12-135 Smilow Center for Clinical Research, 3400 Civic Center Boulevard, Philadelphia PA 19104

pjs@pennmedicine.upenn.edu

ORCID number: 0000-0002-9838-3139

Grant support: UL1TR001878 to the Center for Human Phenomic Sciences at the University of Pennsylvania

Disclosures: Dr. Snyder reports research grant support from AbbVie during the course of this study. Drs. Sachdev and Cucchiara have nothing to disclose.

© Endocrine Society 2020. js.2020-00254 See
https://academic.oup.com/endocrinesociety/pages/Author_Guidelines for Accepted Manuscript disclaimer and additional information.
This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs licence (http://creativecommons.org/licenses/by-nc-nd/4.0/), which permits non-commercial reproduction and distribution of the work, in any medium, provided the original work is not altered or transformed in any way, and that the work is properly cited. For commercial re-use, please contact journals.permissions@oup.com
Abstract

Context: Clinical guidelines recommend measurement of the serum prostate specific antigen (PSA) concentration during testosterone treatment of hypogonadal men to determine if the increase is sufficiently high to warrant urologic referral. Prior studies of the effect of testosterone treatment on PSA concentrations have been conducted in men who were mildly to moderately hypogonadal.

Objective: To determine the PSA response to testosterone treatment of men who are severely hypogonadal.

Design: Retrospective cohort study.

Setting: Single academic medical center.

Participants: Eighty-five men who were severely hypogonadal due to hypothalamic-pituitary or testicular disease.

Main Outcome Measure: Changes in serum PSA concentrations during testosterone treatment for up to 18 months.

Results: Testosterone treatment increased the median serum testosterone concentration from 36 ng/dL (IQR 20-91 ng/dL) at baseline to 395 ng/dL (IQR 266-542 ng/dL) at 6-18 months. This treatment resulted in a median increment in PSA above baseline of 0.70 ng/mL (IQR 0.10-1.85 ng/mL) at 6-18 months. Apropos current Endocrine Society clinical guidelines, 31% of the men experienced a PSA increase above baseline >1.4 ng/mL, and 13% reached an absolute PSA concentration >4.0 ng/mL. Four men were diagnosed with prostate cancer.
Conclusions: The PSA response to testosterone replacement in men who are severely hypogonadal due to pituitary or testicular disease is greater than that previously reported in men with mild to moderate hypogonadism. These results suggest that the magnitude of the PSA response to testosterone replacement is related to the degree of hypogonadism.

Key Words: PSA, testosterone, hypogonadism
Introduction

Testosterone stimulates the growth and function of the prostate gland, including production of the enzyme, prostate specific antigen (PSA). Testosterone treatment of hypogonadal men has long been known to increase their serum PSA concentrations.

Prostate cancer also causes an increase in the serum PSA concentration (1), so it is common practice to monitor the PSA concentration in a man treated with testosterone to determine if an increase is within the range expected or sufficiently high to warrant urological referral to evaluate for prostate cancer. Endocrine Society clinical guidelines recommend measuring serum PSA in hypogonadal men over the age of 50 three and twelve months after initiation of testosterone therapy and referring men for urologic evaluation if the serum PSA increases >1.4 ng/mL above baseline or to an absolute value >4.0 ng/mL (2). Neither of these criteria, however, are based on testosterone treatment of hypogonadal men.

Two recent studies did evaluate the effect of testosterone treatment on PSA concentrations in hypogonadal men and found relatively small increases. In the RHYME study, a registry of hypogonadal men, testosterone treatment of 750 men for one year increased the mean serum PSA concentration by 0.33 ng/mL (3). In The Testosterone Trials of men with age-related hypogonadism, testosterone treatment of 395 men for one year increased the median serum PSA by 0.20 ng/mL (4). In both of these studies, the degree of hypogonadism was mild to moderate; the mean baseline testosterone concentration in the RHYME study was 239 ng/dL, and in The Testosterone Trials the mean baseline testosterone concentration was 232 ng/dL.

The United States Food and Drug Administration has approved testosterone preparations only for men who have classical hypogonadism due to known pituitary or testicular disease (5). These men often have much lower serum testosterone concentrations and therefore might have lower baseline PSA concentrations and greater PSA increases in response to testosterone treatment. One study did show that very low endogenous serum testosterone
concentrations was associated with very low PSA concentrations (6). No prior studies, however, have reported the serum PSA responses to testosterone treatment of men who had severe hypogonadism. The goal of this study was to determine the magnitude and range of the increases in the PSA concentration in response to testosterone treatment of men with classical hypogonadism of a severe degree.

Subjects and Methods:

We collected data by retrospective chart review of men seen in Penn Medicine’s outpatient endocrinology practice for treatment of severe hypogonadism from 2004 through 2019. The University of Pennsylvania Institutional Review Board approved the study.

Study Subjects

Penn Medicine’s Data Analytics Center identified patients seen by Penn Medicine endocrinology faculty from December, 2004 to September, 2019 by using ICD codes for hypopituitarism and primary hypogonadism. We reviewed paper charts of identified patients from December, 2004 to August, 2008 and electronic medical records thereafter. We included men as subjects in this study who were ≥50 years old, had severe hypogonadism (baseline early morning serum testosterone concentration <175 ng/dL), were treated with a testosterone preparation for at least three months, and had testosterone and PSA measurements before and at least once during up to 18 months of testosterone treatment. We excluded men who had been treated with testosterone within three months prior to the baseline values or who had a history of prostate cancer.

Collection of Study Data

Serum testosterone and PSA were measured in the two major US commercial laboratories. PSA was measured by radioimmunoassay, and normal for men >50 years was <4.0 ng/mL during the entire study period. Testosterone was measured by radioimmunoassay until 2010 and by liquid chromatography/mass spectroscopy/mass spectroscopy afterwards. Normal
ranges for the two laboratories was similar before and after the change in methods and between the two laboratories: 280-800 ng/dL and 241-827 ng/dL. All values recorded as baseline values were obtained immediately before initiation of testosterone treatment. Serum testosterone and PSA values were recorded from baseline and from months 1-3 and months 6-18 of testosterone treatment. Testosterone measurements in men being treated with testosterone esters were made midway between injections. The serum PSA was doubled for the nine subjects taking a 5-alpha reductase inhibitor to account for the known effect of this category of medication on the serum PSA concentration (7). All nine men continued to take the 5-alpha reductase inhibitor at each time point. Digital rectal examinations were performed prior to testosterone treatment. We recorded if a man was referred to a urologist, if he had a prostate biopsy, and if the biopsy demonstrated prostate cancer during the period of observation.

Statistical Analyses

Serum testosterone and PSA values were skewed, so these results are presented as percentiles. Association of PSA with testosterone was estimated using Spearman’s correlation coefficient. Stata 16.1 statistical software (Stata Corp, College Station, TX) was used for all analyses. A two tailed P-value <0.05 was considered statistically significant.

Results

Characteristics of Men at Baseline

Eighty-five severely hypogonadal men met the criteria for inclusion in the analyses. Their characteristics at baseline are presented in Table 1. Their mean age was 64.3 years. Sixty-five (76.4%) were Caucasian and ten (11.8%) African American. Mean BMI was 30.9 kg/m². The majority of men (88.2%) had been treated with transdermal testosterone formulations, mostly gels; the rest with injectable esters. Seventy-nine (92.9%) had secondary hypogonadism as a result of pathologic (organic) causes, including pituitary adenoma,
pituitary apoplexy, hypophysitis, craniopharyngioma and meningioma; the remainder had primary hypogonadism due to bilateral orchidectomy or mumps orchitis. Seventy-two men had never previously been treated with testosterone; of the 13 who had been previously treated, six discontinued it more than six months before the baseline visit, and seven discontinued it three to six months before. By the entry criterion, the men were severely hypogonadal: the median serum testosterone concentration was 36 ng/dL (IQR 20-91 ng/dL).

Increases in Serum Testosterone Concentrations

Testosterone treatment increased median serum total testosterone concentrations from severely hypogonadal [36 ng/dL (IQR 20-91 ng/dL)] at baseline to within the normal range [339 ng/dL (IQR 175-511 ng/dL) at months 1-3 and 395 ng/dL (IQR 266-542 ng/dL) at months 6-18] (Figure 1).

Increases in Serum PSA Concentrations

Testosterone treatment increased median serum PSA concentrations from 0.30 ng/mL (IQR 0.10- 0.85 ng/mL) at baseline to 0.95 ng/mL (IQR 0.40-2.32 ng/mL) at months 1-3 and to 1.20 ng/mL (IQR 0.50-2.60 ng/mL) at months 6-18 (Figure 1). The median increment in PSA above baseline was 0.35 ng/mL (IQR 0.10-1.25 ng/mL) at months 1-3 and 0.70 ng/mL (IQR 0.10-1.85 ng/mL) at months 6-18 (Table 2). At months 6-18, 10% of men had an increase of ≥4.30 ng/mL (90th percentile) and 5% of men had an increase of ≥7.27 ng/mL (95th percentile). The increase in PSA exceeded 1.4 ng/mL in 12 men (19%) at months 1-3 and in 21 men (31%) at months 6-18 (Table 3). Excluding the four men whose absolute PSA concentration was >4.0 ng/mL at baseline, an absolute PSA value >4.0 ng/mL was reached by three men (5%) at months 1-3 and nine men (13%) at months 6-18.
When the nine men who were taking 5-alpha reductase inhibitors were excluded from the analyses, the median increase of PSA above baseline at months 6-18, 0.65 ng/mL, was virtually the same as when all men were included, but the 90th and 95th percentile values were somewhat lower, 3.19 ng/mL and 4.30 ng/mL. Also when these nine men were excluded, the percent of men whose PSA increases from baseline at months 6-18 were >1.4 ng/mL and whose absolute PSA values increased to >4.0 ng/mL changed very little; 27% and 12%, respectively.

The increment in PSA from baseline to months 6-18 was weakly associated with the increment in the serum testosterone concentration during the same period: Spearman correlation coefficient = 0.216; \(p = 0.077 \).

Prostate Biopsies and Prostate Cancer

Fourteen men were referred for urologic evaluation, all because of an increase in PSA. Of these, seven had prostate biopsies. All seven men had increases in PSA >1.4 ng/mL, and six reached absolute PSA values >4.0 ng/mL. An additional eight men met one or both criteria for referral but were not referred; we were not able to determine the reasons they were not. We were also not able to determine the reasons biopsies were not performed in the other seven men who were referred for urologic evaluation.

Three men had prostate biopsies based on their PSA values at months 1-3 (Table 3); one was diagnosed as prostate cancer, Gleason score 3+4. An additional four men had biopsies based on their PSA values at months 6-18; three were diagnosed as prostate cancer, Gleason scores 3+3, 3+3 and 3+4. Of the four men who were diagnosed with prostate cancer, the increases in PSA above baseline and corresponding absolute PSA values at the time of diagnosis were 2.1 ng/mL and 3.0 ng/mL; 4.3 ng/mL and 4.9 ng/mL; 4.2 ng/mL and 5.9 ng/mL; and 7.1 ng/mL and 8.2 ng/mL, respectively. Of the four prostate cancers, three were confined to the prostate and one had perineural invasion.
Discussion

Testosterone replacement of 85 men who were severely hypogonadal due to pituitary or testicular disease caused relatively large increases in their serum PSA concentrations. After 6-18 months of testosterone replacement, the median increment of PSA above baseline was 0.70 ng/mL; 31% of men had increases in PSA >1.4 ng/mL; and 13% of men reached absolute PSA concentrations >4.0 ng/mL.

Prior studies of testosterone treatment reported smaller increases in serum PSA concentrations, but the degree of hypogonadism in these studies was mild to moderate. In a meta-analysis of 15 studies, testosterone treatment was not associated with a significant increase in serum PSA except in men treated with injectable testosterone esters (8). In another meta-analysis of 26 studies, testosterone treatment also did not increase the serum PSA concentration (9). The mean baseline serum testosterone concentrations in many of the studies included in both meta-analyses were not subnormal. In the RHYME registry of 750 men whose mean baseline testosterone concentration was 239 ng/dL, testosterone treatment increased the mean serum PSA concentration from 0.68 ng/mL at baseline to 1.01 ng/mL at 12 months (3). In The Testosterone Trials, which excluded men with known pituitary or testicular disease, testosterone treatment for one year of 395 men ≥65 years, whose mean pretreatment serum testosterone concentration was 232 ng/dL, increased the median serum PSA by 0.20 ng/mL; only 3.6% of the men had increments >1.0 ng/mL, and only 4.4% had absolute concentrations >4.0 ng/mL (4). No prior studies have examined the effect of testosterone replacement on PSA concentrations in men who are severely hypogonadal.

The results presented here are significant because clinical guidelines for testosterone treatment of hypogonadism recommend monitoring serum PSA concentrations and referring a patient to a urologist for evaluation for possible prostate cancer for specified increments above baseline and absolute PSA concentrations. Endocrine Society clinical guidelines
recommend referring men for urologic evaluation if the serum PSA increases >1.4 ng/mL above baseline or if the absolute PSA concentration is >4.0 ng/mL (2). Neither criterion, however, is based on testosterone treatment of hypogonadal men. The criterion of a >1.4 ng/mL increase is based on the 90% confidence limits of two tests performed three to six months apart in men with benign prostatic hyperplasia in the placebo arm of a finasteride trial (10). The criterion of an absolute PSA concentration >4.0 ng/mL is based on prostate cancer detection in eugonadal men (1,9,11-13). Of the severely hypogonadal men reported here, 31% had an increase in PSA >1.4 ng/mL, and 13% reached an absolute PSA value >4.0 ng/mL. Confirmation of the results presented here by other studies would suggest that future clinical guidelines for the expected PSA response to testosterone replacement reflect the degree of hypogonadism

Strength and Limitations

These findings demonstrate the degree to which serum PSA can be expected to increase in a relatively large number of men who meet the FDA indication for testosterone treatment of classical hypogonadism (5). Some limitations of this study are the result of its retrospective nature – a review of patients in clinical practice – although that could also make the results more generally applicable to clinical practice. Because the study was retrospective, there was no pre-specified protocol for referral for urologic evaluation, which would have influenced the number of biopsies and the diagnosis of prostate cancer. Other limitations are the lack of a control group, lack of data on lower urinary tract symptoms, and incomplete PSA results in about 20 percent of the men. Because most men in this study were using transdermal testosterone preparations, the results apply primarily to these preparations. This study examined the effect of testosterone treatment on PSA concentrations for up to 18 months, so we do not know the effect afterwards.
Conclusions

The results presented here demonstrate that the PSA responses to testosterone replacement in men who are severely hypogonadal due to hypothalamic-pituitary or testicular causes are greater than previously reported in men with mild to moderate hypogonadism primarily due to normal aging. These results suggest that the magnitude of the PSA response to testosterone replacement is related to the degree of hypogonadism. These results also suggest that testosterone treatment of severely hypogonadal men often increases PSA above the commonly accepted thresholds for urologic referral.
References

1. Catalona WJ, Hudson MA, Scardino PT, Richie JP, Ahmann FR, Flanigan RC, DeKernion JB, Ratliff TL, Kavoussi LR, Dalkin BL, Waters WB, MacFarlane MT, Southwick PC. Selection of optimal prostate specific antigen cutoffs for early detection of prostate cancer: receiver operating characteristic curves. *J Urol*. 1994;152(6 Pt 1):2037-2042.

2. Bhasin S, Brito JP, Cunningham GR, Hayes FJ, Hodis HN, Matsumoto AM, Snyder PJ, Swerdloff RS, Wu FC, Yialamas MA. Testosterone Therapy in Men With Hypogonadism: An Endocrine Society Clinical Practice Guideline. *The Journal of clinical endocrinology and metabolism*. 2018;103(5):1715-1744.

3. Debruyne FM, Behre HM, Roehrborn CG, Maggi M, Wu FC, Schroder FH, Jones TH, Porst H, Hackett G, Wheaton OA, Martin-Morales A, Meuleman E, Cunningham GR, Divan HA, Rosen RC, Investigators R. Testosterone treatment is not associated with increased risk of prostate cancer or worsening of lower urinary tract symptoms: prostate health outcomes in the Registry of Hypogonadism in Men. *BJU Int*. 2017;119(2):216-224.

4. Cunningham GR, Ellenberg SS, Bhasin S, Matsumoto AM, Parsons JK, Preston P, Cauley JA, Gill TM, Swerdloff RS, Wang C, Ensrud KE, Lewis CE, Pahor M, Crandall JP, Molitch ME, Cifelli D, Basaria S, Diem SJ, Stephens-Shields AJ, Hou X, Snyder PJ. Prostate-Specific Antigen Levels During Testosterone Treatment of Hypogonadal Older Men: Data from a Controlled Trial. *The Journal of clinical endocrinology and metabolism*. 2019;104(12):6238-6246.
5. Nguyen CP, Hirsch MS, Moeny D, Kaul S, Mohamoud M, Joffe HV. Testosterone and "Age-Related Hypogonadism"--FDA Concerns. *The New England journal of medicine*. 2015;373(8):689-691.

6. Rastrelli G, Corona G, Vignozzi L, Maseroli E, Silverii A, Monami M, Mannucci E, Forti G, Maggi M. Serum PSA as a predictor of testosterone deficiency. *J Sex Med*. 2013;10(10):2518-2528.

7. Guess HA, Gormley GJ, Stoner E, Oesterling JE. The effect of finasteride on prostate specific antigen: review of available data. *J Urol*. 1996;155(1):3-9.

8. Kang DY, Li HJ. The effect of testosterone replacement therapy on prostate-specific antigen (PSA) levels in men being treated for hypogonadism: a systematic review and meta-analysis. *Medicine (Baltimore)*. 2015;94(3):e410.

9. Boyle P, Koechlin A, Bota M, d’Onofrio A, Zaridze DG, Perrin P, Fitzpatrick J, Burnett AL, Boniol M. Endogenous and exogenous testosterone and the risk of prostate cancer and increased prostate-specific antigen (PSA) level: a meta-analysis. *BJU Int*. 2016;118(5):731-741.

10. Gormley GJ, Stoner E, Bruskewitz RC, Imperato-McGinley J, Walsh PC, McConnell JD, Andriole GL, Geller J, Bracken BR, Tenover JS, et al. The effect of finasteride in men with benign prostatic hyperplasia. The Finasteride Study Group. *The New England journal of medicine*. 1992;327(17):1185-1191.

11. Fenton JJ, Weyrich MS, Durbin S, Liu Y, Bang H, Melnikow J. Prostate-Specific Antigen-Based Screening for Prostate Cancer: Evidence Report and Systematic Review for the US Preventive Services Task Force. *Jama*. 2018;319(18):1914-1931.
12. Gann PH, Hennekens CH, Stampfer MJ. A prospective evaluation of plasma prostate-specific antigen for detection of prostatic cancer. *Jama.* 1995;273(4):289-294.

13. Thompson IM, Ankerst DP, Chi C, Goodman PJ, Tangen CM, Lucia MS, Feng Z, Parnes HL, Coltman CA, Jr. Assessing prostate cancer risk: results from the Prostate Cancer Prevention Trial. *J Natl Cancer Inst.* 2006;98(8):529-534.
| Characteristic | N |
|---|----|
| Demographics | 85 |
| Age, yr mean (95% CI) | 64.3 (62.4-66.1) |
| Race, n (%) | |
| Caucasian | 65 (76.4%) |
| African-American | 10 (11.8%) |
| Other | 10 (11.8%) |
| BMI, kg/m² mean (95% CI) | 30.9 (29.6-32.2) |
| 5-alpha reductase inhibitor use, n (%) | 9 (10.6%) |
| Etiology of hypogonadism, n (%) | |
| Primary hypogonadism | 6 (7.1%) |
| Secondary hypogonadism | 79 (92.9%) |
| Testosterone treatment formulation, n (%) | |
| Transdermal | 75 (88.2%) |
| Injectable | 10 (11.8%) |
| Testosterone, ng/dL, median (IQR) | 36 (20-91) |
| mean (95% CI) | 55 (45-66) |
| PSA, ng/mL, median (IQR) | 0.30 (0.10-0.85) |
Table 2. Increases in PSA from Baseline Following Testosterone Treatment Of Severely Hypogonadal Men

Percentile	PSA Increase from Baseline (ng/mL)	
	Months 1-3 (n = 62)	Months 6-18 (n = 68)
50th	0.35	0.70
75th	1.25	1.85
90th	2.74	4.30
95th	4.22	7.27
Max	8.80	8.90
Table 3. Prostate Events in Severely Hypogonadal Men Treated with Testosterone

	Months 1-3	Months 6-18
N	62	68
PSA increase >1.4 ng/mL, n (%)	12 (19%)	21 (31%)¹
Absolute PSA >4.0 ng/mL, n (%)²	3 (5%)³	9 (13%)³⁴
Prostate biopsy	3	4
Prostate cancer	1	3

¹ Ten of these 21 men also had increases above baseline >1.4 ng/mL at months 1-3.

² Excluding the four men whose PSA at baseline was >4.0 ng/mL.

³ All men whose PSA increased to an absolute value >4.0 ng/mL also had a PSA increase above baseline >1.4 ng/mL.

⁴ Two of these nine men also reached absolute PSA values >4.0 ng/mL at months 1-3.
Figure 1. Serum concentrations of testosterone (upper 2 panels) and PSA (lower 2 panels) at months 0 (n = 85), 1-3 (n = 62) and 6-18 (n = 68) when men who had severe hypogonadism were replaced with testosterone. The left two panels show medians and interquartile ranges. The right two panels show individual patient values.
Figure 1

- Serum Testosterone (ng/dL) vs. Months of Testosterone Treatment
- Serum PSA (ng/mL) vs. Months of Testosterone Treatment