Hands-on Demonstration of Open-Source Filterless-Aware Offline Planning and Analysis Tool for WDM Networks

P. Pavon-Marino¹,², M. Garrich¹, F. J. Moreno-Muro¹, M. Quagliotti³, E. Riccardi³, A. Rafel⁴, A. Lord⁴

¹Universidad Politécnica de Cartagena, Cuartel de Antiguones, Plaza del Hospital 1, 30202 Cartagena, Spain
²E-lighthouse Networks Solutions, Calle Ángel s/n, 30202 Cartagena, Spain
³TIM-Telecom Italia, Via G. Reiss Romoli 274, 10148 Torino, Italy
⁴British Telecom, Adastral Park, IP5 3RE Ipswich, United Kingdom

Work supported by the Spanish Government: ONOFRE-2 project Grant TEC2017-84423-C3-2-P (MINECO/AEI/FEDER, UE) and the Go2Edge project Grant RED2018-102585-T; and by the European Commission: METRO-HAUL project (G.A. 761727) and INSPIRING-SNI project (G.A. 750611).

http://metro-haul.eu

Control Number: 3342889 / Presentation Number: M3Z.7 / Presenting Author: Miquel Garrich

METRO-HAUL: METRO High bandwidth, 5G Application-aware optical network, with edge storage, compute and low Latency

H2020-ICT-2016-2 Metro-Haul Grant No. 761727
NFV over IP over WDM (NIW) library for techno-economic studies

- NIW library developed within Metro-Haul (open-source)
 - Based on abstract model of an **IP over WDM network with IT resources in the nodes**.
 - Simplifies development of Net2Plan algorithms, automatic reports etc. for these networks.
 - Simplifies import/export from defined Excel-based template.
- Publicly available: shipped with Net2Plan (www.net2plan.com)
Hands-on demonstration based on NIW (main characteristics)

Legend:
- WSS for R&S
- Splitter for B&S and Filterless
- WSS for R&S, B&S
- Coupler for Filterless
- WSS for colorless
- Mux for colored

Automatic detection of fiber lasing loops in (partially) filterless networks
In this demo you will be able to:

• Download and use the software in your laptop!!!
• Create hybrid filterless/ed networks from scratch
• Observe/analyze results using solely the graphical user interface (GUI)

Demo functionalities included in NIW:

i. (Filterless) node and network modeling
ii. Algorithms for the allocation of amplifiers and transponders, and RSA
iii. Analysis tools for spectrum inspection, line engineering and cost/energy consumption
Hands-on demonstration based on NIW (activities in stream 1)

6. Creating a WDM topology
 Set-up NIW library and what-if

6.1. Creating the WDM plant

6.2. Adding lightpaths
 Explore GUI features for RSA (e.g. link-disjoint 1+1 protection)

7. Creating an IP topology

7.1. Create IP demands and IP links

7.2. Dimension the IP layer

8. Creating the IP over WDM design
 Couple lightpath requests for IP links
6. Creating the WDM topology
 - Activate NIW, activate what-if analysis
 - Set length of all the WDM links to 240 km
 - Setting the OADM parameters

7. Line engineering
 - Create 16 bid. lightpath requests per node pair

7.1. Spectrum occupation
7.2. Lightpath optical signal performances
7.3. Adding amplifiers to the design
7.4. Producing an OSNR valid design
7.5. Power equalization

Bonus!!! The generic OADM type in NIW