Genetic Variants of RAMP2 and CLR are Associated with Stroke

Teruhide Koyama¹, Nagato Kuriyama¹, Etsuko Ozaki¹, Daisuke Matsui¹, Isao Watanabe¹, Wakiko Takeshita¹, Komei Iwai¹, Yoshiyuki Watanabe¹, Masahiro Nakatochi², Chisato Shimano³, Keitaro Tanaka³, Isao Oze⁴, Hidemi Ito⁶, Hirokazu Uemura⁵, Sakurako Katsuura-Kamano⁵, Rie Ibusuki⁶, Ippei Shimoshikiryo⁶, Naoyuki Takashima⁷, Aya Kadota⁷, Sayo Kawai⁹, Tae Sasaki⁹, Rieko Okada⁹, Asahi Hishida⁹, Mariko Naito⁹, Kiyonori Kuriki¹⁰, Kaori Endoh¹⁰, Norihiro Furusyo¹¹, Hiroaki Ikezaki¹¹, Sadao Suzuki¹², Akihiro Hosono¹², Haruo Mikami¹³, Yohko Nakamura¹³, Michiaki Kubo¹⁴ and Kenji Wakai⁹

¹Department of Epidemiology for Community Health and Medicine, Kyoto Prefectural University of Medicine, Kyoto, Japan
²Center for Advanced Medicine and Clinical Research, Nagoya University Hospital, Nagoya, Japan
³Department of Preventive Medicine, Faculty of Medicine, Saga University, Saga, Japan
⁴Division of Molecular and Clinical Epidemiology, Aichi Cancer Center Research Institute, Nagoya, Japan
⁵Department of Preventive Medicine, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
⁶Department of International Islands and Community Medicine, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
⁷Department of Public Health, Shiga University of Medical Science, Shiga, Japan
⁸Center for Epidemiologic Research in Asia, Shiga University of Medical Science, Shiga, Japan
⁹Department of Preventive Medicine, Nagoya University Graduate School of Medicine, Nagoya, Japan
¹⁰Laboratory of Public Health, School of Food and Nutritional Sciences, University of Shizuoka, Shizuoka, Japan
¹¹Department of Environmental Medicine and Infectious Disease, Kyushu University, Fukuoka, Japan
¹²Department of Public Health, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
¹³Cancer Prevention Center, Chiba Cancer Center Research Institute, Chiba, Japan
¹⁴Laboratory for Genotyping Development, Center for Integrative Medical Sciences, RIKEN, Yokohama, Japan

Aim: Stroke is associated closely with vascular homeostasis, and several complex processes and interacting pathways, which involve various genetic and environmental factors, contribute to the risk of stroke. Although adrenomedullin (ADM) has a number of physiological and vasoprotective functions, there are few studies of the ADM receptor system in humans. The ADM receptor comprises a calcitonin-receptor-like receptor (CLR) and receptor activity-modifying proteins (RAMPs). We analyzed single nucleotide polymorphisms (SNPs) in the RAMP2 and CLR genes to determine their association with stroke in the light of gene-environment interactions.

Methods: Using cross-sectional data from the Japan Multi-Institutional Collaborative Cohort Study in the baseline surveys, 14,087 participants from 12 research areas were genotyped. We conducted a hypothesis-based association between stroke prevalence and SNPs in the RAMP2 and CLR genes based on data abstracted from two SNPs in RAMP2 and 369 SNPs in CLR. We selected five SNPs from among the CLR variants (rs77035639, rs3815524, rs75380157, rs574603859, and rs147565266) and one RAMP2 SNP (rs753152), which were associated with stroke, for analysis.

Results: Five of the SNPs (rs77035639, rs3815524, rs75380157, rs147565266, and rs753152) showed no significant association with obesity, ischemic heart disease, hypertension, dyslipidemia, and diabetes. In the logistic regression analysis, rs574603859 had a lower odds ratio (0.238; 95% confidence interval, 0.076–0.745, adjusted for age, sex, and research area) and the other SNPs had higher odds ratios for association with stroke.

Conclusions: This was the first study to investigate the relationships between ADM receptor genes (RAMP2 and CLR) and stroke in the light of gene-environment interactions in human.

Key words: Adrenomedullin, Receptor activity-modifying protein 2, Calcitonin-receptor-like receptor, Stroke

Copyright©2017 Japan Atherosclerosis Society
This article is distributed under the terms of the latest version of CC BY-NC-SA defined by the Creative Commons Attribution License.
Introduction

The vascular system plays a crucial role in organ homeostasis, being essential for organ and tissue construction, the supply of oxygen and nutrients, and mobilization of inflammatory cells to regions of injury. Current and novel therapeutic approaches aimed at improving vascular function provide real benefits with respect to reducing cerebrovascular disease. In addition, the vascular system can be considered the largest system in the body, given its length and area, and via its active secretion of bioactive molecules, plays a central role in vascular homeostasis. Revealing the mechanisms underlying the functional integrity of the vascular system could lead to novel approaches to therapy and preventive medicine.

Strokes are associated closely with vascular homeostasis, and disruption of vascular function can also cause a stroke. A stroke is the clinical culmination of several complex processes and interacting pathways that involve various genetic and environmental factors. Genetic contributions to strokes may result from common variants with small effect sizes, rare variants with large effect sizes, or their combination. However, environmental risk factors are associated with the pathogenesis of stroke, and considerable evidence suggests that gene-environment interactions are important.

Adrenomedullin (ADM) is a vasoactive peptide first identified in human pheochromocytoma. Although ADM is secreted by various organs and tissues, it is produced mainly by vascular endothelial cells and serves a number of physiological functions. The ADM receptor system in humans.

Methods

Study Participants

In the present study, we evaluated participant data collected during the Japan Multi-Institutional Collaborative Cohort (J-MICC) Study from the baseline surveys using the cross-sectional data. That cohort study evaluated the general Japanese population in 12 research areas, using genetic and clinical data to detect and confirm gene-environment interactions related to lifestyle-associate diseases. The study participants were 35–69 years old, and were enrolled after responding to study announcements in their specific research areas, attending health check-up examinations that were commissioned by their local governments, visiting local health check-up centers, or visiting a cancer hospital. A total of 14,539 participants were selected. We analyzed the data while minimizing the number of deleted participants. Each parameter was separated in the analysis because of missing data.

The J-MICC study participants included citizens, health check examiners, and first-visit patients to a cancer hospital. All participants in this study gave written informed consent. The study protocol was approved by the Ethics Committees at Aichi Cancer Center, the Nagoya University Graduate School of Medicine, and other institutions participating in the J-MICC study. The present study was conducted according to the principles expressed in the World Medical Association Declaration of Helsinki.

Lifestyle and Blood Biochemistry Data

In the present study, we evaluated the lifestyle and medical information obtained through self-administered questionnaires (alcohol consumption status, smoking habits, and physical exercise). The body mass index (BMI) was calculated as weight (kg) divided by the square of height (m²). Obesity was defined as a BMI ≥ 25.0 kg/m². Alcohol consumption of each type of beverage was determined by the average number of drinks per day, and then converted into the Japanese sake unit, ‘gō’ (180 ml), which is equivalent to 23 g of ethanol (0, 0.1–22.9, 23.0–45.9, or ≥46.0 g ethanol/day). Regular physical activity was defined as three times a week and lasting over 30 minutes. Anamnysis and medication history were also assessed using a questionnaire. Information on stroke (n=248) and ischemic heart disease (n=403) was available from the self-administered questionnaires. Hypertension was defined as a systolic/diastolic blood pressure ≥ 140/90 mm Hg and/or current use of medication for hypertension. Dyslipidemia was defined as non-high density lipoprotein-C...
(HDL-C) ≥ 170 mg dl⁻¹ and/or HDL-C < 40 mg dl⁻¹ and/or current use of medication for dyslipidemia. Diabetes was defined as a glycated hemoglobin (HbA1c) level ≥ 6.5% and/or current use of medication for diabetes. The participants who have the absence of laboratory data and/or insufficient data were excluded in each analytic criterion.

In addition, blood chemistry data (serum levels of triglycerides, total cholesterol, HDL-C, non-HDL-C, creatinine, and HbA1c) and anthropometric data were obtained from health check-ups performed in the research areas. The estimated glomerular filtration rate (eGFR) was calculated using the following equation: eGFR (mL/min/1.73 m²) = 194 × creatinine⁻¹.094 × age⁻⁰.287 (for men) and eGFR (mL/min/1.73 m²) = 194 × creatinine⁻¹.094 × age⁻⁰.287 × 0.739 (for women). Each blood sample was centrifuged and the plasma was separated and stored at −80°C until analysis. Laboratories in each research area analyzed the serum samples.

Genotyping and Quality Control Filtering

In the study, buffy coat fractions and DNA were prepared from blood samples and stored at −80°C at the central J-MICC study office. DNA was extracted from all buffy coat fractions using a BioRobot M48 Workstation (Qiagen Group, Tokyo, Japan) at the central study office. For the samples from two areas (Fukuoka and Kyushu-KOPS), DNA was extracted locally from samples of whole blood, using an automatic nucleic acid isolation system (NA-3000, Kurabo, Co., Ltd., Osaka, Japan). The 14,539 study participants from the 12 areas of the J-MICC study were genotyped at RIKEN Center for Integrative Medicine using a Human-OmniExpressExome-8 v1.2 BeadChip array (Illumina Inc., San Diego, CA, USA). Twenty-six samples with inconsistent sex information between the questionnaire and the estimate from the genotyping results were excluded. Principal component analysis (PCA) and genotyping and quality control filtering resulted in 14,091 participants and 14,087 participants, respectively.

Results

Among these 14,087 participants, the mean age of the included 6337 men was 55.4 years, compared to 54.3 years for the 7750 women.

We identified two and 369 SNPs among the genetic variants of RAMP2 and CLR, respectively (Supplementary Table 1, Chromosomal locations were described based on hg19/GRCh37 coordinates). Supplementary Fig. 1 shows the linkage disequilibrium analyses of 13 CLR SNPs associated with stroke identified using the chi-square test. The position of the
studied SNPs in CLR is shown. Pair-wise SNP R-squared D’ linkage values (multiplied by 100) are also shown. We then selected five SNPs from among the CLR variants (rs77035639, rs3815524, rs75380157, rs574603859, and rs147565266) to avoid similar haplotypes. Similarly, RAMP2 SNP (rs753152), which is associated with stroke, was selected for analysis. The distributions of genotypes and alleles of the evaluated SNPs are summarized in Supplementary Table 2. Supplementary Fig. 2 shows exons (shown as boxes) 1–4 for RAMP2, and exons 1–15 for CLR. For analysis, we compared the associations between genotypes and stroke, after combining the heterozygous and minor homozygous alleles because of the small number of minor homozygotes alleles.

Table 1 shows the distribution of stroke for each SNP. The major homozygotes had significantly higher incidences of stroke compared with the heterozygotes and minor homozygotes, except for rs574603859. SNP rs574603859 showed an inverse ratio between major homozygotes and the other genotypes. Table 2 summarizes the baseline characteristics of the participants divided into two groups, classified by major homozygous alleles versus heterozygous and minor homozygous alleles. None of the SNPs showed a constant tendency for these characteristics. Table 3 shows the distribution of obesity, ischemic heart disease, hypertension, dyslipidemia, and diabetes for each SNP. SNP rs574603859 was associated with a higher incidence of obesity in the heterozygotes and minor homozygotes alleles.

Table 1. Genotype and allele distributions in stroke.

SNPs	Chromosome: position	Genotype	Genotype	p value
		Major Homo	Hetero + Minor Homo	
control (n)		12139	881	
(%)		93.2%	6.8%	0.003
Stroke (n)		219	29	
(%)		88.3%	11.7%	
rs77035639 (A/G)	chr2: 188220301			
control (n)		12579	441	
(%)		96.6%	3.4%	0.020
Stroke (n)		232	16	
(%)		93.5%	6.5%	
rs3815524 (G/C)	chr2: 188224322			
control (n)		11519	1501	
(%)		88.5%	11.5%	0.041
Stroke (n)		209	39	
(%)		84.3%	15.7%	
rs75380157 (A/T)	chr2: 188271085			
control (n)		12005	1015	
(%)		92.2%	7.8%	0.002
Stroke (n)		215	33	
(%)		86.7%	13.3%	
rs574603859 (A/T)	chr2: 188301544			
control (n)		12375	645	
(%)		95.0%	5.0%	0.003
Stroke (n)		245	3	
(%)		98.8%	1.2%	
rs147565266 (T/A)	chr2: 188311515			
control (n)		12967	53	
(%)		99.6%	0.4%	0.022
Stroke (n)		244	4	
(%)		98.4%	1.6%	

Homo, homozygote; Hetero, heterozygote.
Table 2. Characteristics of study participants for each single nucleotide polymorphism (SNP).

Genotype	rs753152	rs77035639				
	Major Homo	Hetero + Minor Homo	p value			
	n	mean ± SD (%)				
Sex (male)	5890	44.8%	447	47.1%	0.188	
Age (year)	13137	54.8 ± 9.4	950	55.0 ± 9.5	0.462	
BMI (kg/m²)	10578	23.2 ± 3.4	752	23.1 ± 3.5	0.809	
Systolic blood pressure (mmHg)	10514	128 ± 20.2	747	128 ± 19.1	0.528	
Diastolic blood pressure (mmHg)	10513	78.2 ± 12.3	747	77.9 ± 11.7	0.441	
Triglyceride (mg/dl)	10861	128 ± 96.5	792	130 ± 94.0	0.585	
Total cholesterol (mg/dl)	9947	211 ± 34.7	749	211 ± 36.0	0.821	
nonHDL-C (mg/dl)	9946	148 ± 35.1	749	149 ± 36.1	0.781	
HDL-C (mg/dl)	10863	62.7 ± 16.3	792	62.3 ± 15.8	0.458	
Hemoglobin A1C (%)	8057	5.55 ± 0.73	581	5.61 ± 0.74	0.055	
eGFR (mL/min/1.73 m²)	10509	78.8 ± 15.1	774	78.3 ± 14.9	0.374	
Alcohol drinking						
0 g/d	5912	45.8%	433	46.6%		
0.1 – 22.9 g/d	4224	32.7%	305	32.8%		
23 – 45.9 g/d	1412	10.9%	101	10.9%	0.870	
46.0 + g/d	1359	10.5%	90	9.7%		
Smoking	2471	18.8%	171	18.0%	0.574	
Regular physical activity	3830	29.2%	289	30.5%	0.417	

Genotype	rs77035639					
	Major Homo	Hetero + Minor Homo	p value			
	n	mean ± SD (%)				
Sex (male)	6114	44.9%	223	46.2%	0.609	
Age (year)	13604	54.8 ± 9.4	483	54.5 ± 9.3	0.587	
BMI (kg/m²)	10937	23.2 ± 3.4	393	23.3 ± 3.2	0.562	
Systolic blood pressure (mmHg)	10874	128 ± 20.1	387	128 ± 20.4	0.605	
Diastolic blood pressure (mmHg)	10873	78.2 ± 12.2	387	77.6 ± 12.3	0.318	
Triglyceride (mg/dl)	11246	128 ± 96.3	407	129 ± 96.0	0.868	
Total cholesterol (mg/dl)	10326	211 ± 34.7	370	211 ± 36.1	0.966	
nonHDL-C (mg/dl)	10325	148 ± 35.1	370	149 ± 36.5	0.879	
HDL-C (mg/dl)	11248	62.7 ± 16.3	407	62.5 ± 15.6	0.795	
Hemoglobin A1C (%)	8347	5.55 ± 0.73	291	5.63 ± 0.91	0.171	
eGFR (mL/min/1.73 m²)	10899	78.7 ± 15.1	384	78.2 ± 13.8	0.527	
Alcohol drinking						
0 g/d	6136	45.9%	209	44.5%		
0.1 – 22.9 g/d	4376	32.7%	153	32.6%		
23 – 45.9 g/d	1458	10.9%	55	11.7%	0.856	
46.0 + g/d	1396	10.4%	53	11.3%		
Smoking	2548	18.7%	94	19.5%	0.682	
Regular physical activity	3985	29.3%	134	27.7%	0.475	
Genotype	rs3815524		rs3815524		p value	
----------------------------------	-----------	----------------	-----------	----------------	--------	
	Major Homo	Hetero + Minor Homo				
Sex (male)	5613	45.0%	724	44.6%	0.750	
Age (year)	12464	54.8 ± 9.4	1623	54.7 ± 9.4	0.816	
BMI (kg/m²)	10010	23.2 ± 3.4	1320	23.2 ± 3.3	0.950	
Systolic blood pressure (mmHg)	9949	128 ± 20.1	1312	128 ± 20.1	0.868	
Diastolic blood pressure (mmHg)	9948	78.3 ± 12.2	1312	77.9 ± 12.1	0.374	
Triglyceride (mg/dl)	10288	128 ± 96.3	1365	130 ± 96.3	0.447	
Total cholesterol (mg/dl)	9426	211 ± 34.8	1270	212 ± 34.2	0.703	
nonHDL-C (mg/dl)	9425	148 ± 35.2	1270	149 ± 35.0	0.382	
HDL-C (mg/dl)	10289	62.7 ± 16.3	1366	62.3 ± 15.8	0.372	
Hemoglobin A1C (%)	7659	5.56 ± 0.74	979	5.55 ± 0.66	0.684	
eGFR (mL/min/1.73 m²)	9966	78.8 ± 15.2	1317	78.3 ± 14.1	0.237	

Alcohol drinking					
0 g/d	5615	45.8%	730	46.1%	
0.1 – 22.9 g/d	4007	32.7%	522	32.9%	
23 – 45.9 g/d	1336	10.9%	177	11.2%	0.848
46.0 + g/d	1293	10.6%	156	9.8%	
Smoking	2345	18.8%	297	18.3%	0.635
Regular physical activity	3655	29.4%	464	28.6%	0.542

Genotype	rs75380157		rs75380157		p value
	Major Homo	Hetero + Minor Homo			
Sex (male)	5843	45.5%	494	44.5%	0.777
Age (year)	12978	54.8 ± 9.4	1109	54.6 ± 9.4	0.629
BMI (kg/m²)	10439	23.2 ± 3.4	891	23.0 ± 3.2	0.280
Systolic blood pressure (mmHg)	10377	128 ± 20.1	884	128 ± 20.3	0.845
Diastolic blood pressure (mmHg)	10376	78.3 ± 12.2	884	77.9 ± 12.3	0.367
Triglyceride (mg/dl)	10734	128 ± 96.1	919	129 ± 98.9	0.663
Total cholesterol (mg/dl)	9829	211 ± 34.8	867	211 ± 34.4	0.888
nonHDL-C (mg/dl)	9829	148 ± 35.2	867	149 ± 34.7	0.930
HDL-C (mg/dl)	10735	62.7 ± 16.3	920	62.5 ± 15.6	0.723
Hemoglobin A1C (%)	7954	5.56 ± 0.74	684	5.56 ± 0.71	0.794
eGFR (mL/min/1.73 m²)	10393	78.8 ± 15.2	890	78.1 ± 14.0	0.190

Alcohol drinking					
0 g/d	5841	45.8%	504	46.5%	
0.1 – 22.9 g/d	4169	32.7%	360	33.2%	
23 – 45.9 g/d	1393	10.9%	120	11.1%	0.637
46.0 + g/d	1348	10.6%	101	9.3%	
Smoking	2424	18.7%	218	19.7%	0.424
Regular physical activity	3801	29.3%	318	28.7%	0.679
(Cont Table 2)

Genotype	rs574603859	rs147565266				
	Major Homo	Hetero + Minor Homo	p value			
	n	mean ± SD (%)	n	mean ± SD (%)		
Sex (male)		6044	45.1%	293	43.0%	0.287
Age (year)	13405	54.8 ± 9.4	682	54.8 ± 9.2	0.889	
BMI (kg/m²)	10778	23.1 ± 3.4	552	23.6 ± 3.5	0.001	
Systolic blood pressure (mmHg)	10711	128 ± 20.1	550	130 ± 20.6	0.020	
Diastolic blood pressure (mmHg)	10710	78.2 ± 12.2	550	79.0 ± 12.1	0.137	
Triglyceride (mg/dl)	11082	128 ± 95.0	571	133 ± 118	0.192	
Total cholesterol (mg/dl)	10183	211 ± 34.8	513	212 ± 34.4	0.871	
nonHDL-C (mg/dl)	10182	148 ± 35.2	513	150 ± 34.8	0.393	
HDL-C (mg/dl)	11084	62.7 ± 16.3	571	61.9 ± 15.9	0.213	
Hemoglobin A1C (%)	8235	5.55 ± 0.72	403	5.59 ± 0.94	0.277	
eGFR (mL/min/1.73 m²)	10732	78.7 ± 15.1	551	79.4 ± 14.7	0.302	
Alcohol drinking						
0 g/d	6033	45.8%	312	46.7%		
0.1 – 22.9 g/d	4325	32.8%	204	30.5%		
23 – 45.9 g/d	1432	10.9%	81	12.1%	0.558	
46.0 + g/d	1378	10.5%	71	10.6%		
Smoking	2523	18.8%	119	17.5%	0.392	
Regular physical activity	3905	29.2%	214	31.4%	0.210	

Homo, homozygote; Hetero, heterozygote.
Table 3. Genotype and allele distributions in obesity, ischemic heart disease, hypertension, dyslipidemia, and diabetes.

SNPs	Genotype	Obesity	Ischemic heart disease	Hypertension	Dyslipidemia	Diabetes									
		≥ 25	< 25	p value	(−) (+)	p value									
rs753152	Major Homo	7823	2755	0.729	12006	374	0.777	6624	3889	0.432	6396	3676	0.846	7496	561
	Hetero	561	191	0.643	883	29	0.678	482	265	0.832	476	278	0.414	526	55
	Minor Homo	74.6%	25.4%	0.301	96.8%	3.2%	0.878	62.5%	37.5%	0.498	61.5%	38.5%	0.907	90.7%	9.3%
rs77055659	Major Homo	8097	2840	0.632	11399	351	0.349	6275	3673	1.000	6067	3473	0.432	7105	554
	Hetero	287	106	0.301	442	15	0.388	242	145	1.000	230	144	0.498	264	27
	Minor Homo	73.0%	27.0%	0.301	96.7%	3.3%	0.388	62.5%	37.5%	0.498	61.5%	38.5%	0.907	90.7%	9.3%
rs3815524	Major Homo	7423	2587	0.301	97.0%	3.0%	0.878	63.1%	36.9%	0.498	63.6%	36.4%	0.907	92.8%	7.2%
	Hetero	961	359	0.301	1490	52	0.388	831	481	0.498	805	481	0.917	62	
	Minor Homo	72.8%	27.2%	0.301	96.6%	3.4%	0.388	63.3%	36.7%	0.498	62.6%	37.4%	0.907	93.7%	6.3%
rs75380157	Major Homo	7718	2721	0.632	11878	366	0.349	6541	3835	0.611	6316	3634	1.000	7381	573
	Hetero	666	225	0.632	1011	37	0.349	565	319	0.611	556	320	0.907	641	43
	Minor Homo	73.9%	26.1%	0.632	97.0%	3.0%	0.611	63.0%	37.0%	0.611	63.5%	36.5%	0.907	92.8%	7.2%
rs574603859	Major Homo	8001	2777	0.012	12255	385	0.803	6778	3932	0.085	6550	3759	0.575	7648	587
	Hetero	383	109	0.012	634	18	0.803	328	222	0.085	322	195	0.575	374	29
	Minor Homo	69.4%	30.6%	0.012	97.2%	2.8%	0.803	59.6%	40.4%	0.575	62.3%	37.7%	0.929	92.9%	7.1%
rs147565266	Major Homo	8345	2932	1.000	12833	402	1.000	7079	4129	1.000	6841	3933	1.000	7981	611
	Hetero	39	14	1.000	56	1	1.000	27	25	1.000	31	21	1.000	41	5
	Minor Homo	73.6%	26.4%	1.000	98.2%	1.8%	1.000	51.9%	48.1%	1.000	59.6%	40.4%	1.000	89.1%	10.9%

Homo, homozygote; Hetero, heterozygote.

gotes. SNP rs753152 was associated with a higher incidence of diabetes in the heterozygotes and minor homozygotes. The other four SNPs showed no significant association with these diseases.

To determine the relationship of the SNPs with stroke in consideration of environmental factors, a logistic regression analysis adjusted for age, sex, research area, alcohol intake, current smoking, regular physical activity, obesity, hypertension, diabetes, dyslipidemia, and ischemic heart disease was performed. For the logistic regression analysis, the major homozygous genotypes were used as the reference group and the heterozygous and minor homozygous genotypes were used as the exposed group in the dominant model. Table 4 shows model I adjusted for basic characteristics (age, sex, research area), model II adjusted for lifestyle, and model III adjusted for anamnesis. RAMP2 SNP rs753152 was associated with a significantly higher OR in model I (OR, 1.773; 95% CI, 1.194 – 2.634). The CLR SNPs were associated with a significantly higher OR in model I (OR, 1.448 – 3.735) in participants with stroke, excluding rs574603859. SNP rs574603859 had a lower OR in model I (OR, 0.238; 95% CI, 0.076 – 0.745) between major homozygotes and the others. The model II results were similar to those for model I. In model III, rs574603859 showed no significant OR. The lack of statistical significance when adjusting for anamnesis indicated that rs574603859 has no strong effect on the risk of stroke.
There is considerable evidence to suggest that the pathogenesis of stroke is affected by not only genetic factors, but also environment interactions. Previous studies showed that a history of hypertension, dyslipidemia, diabetes, physical inactivity, diet, waist-to-hip ratio, current smoking, cardiac causes, and alcohol consumption were associated with risk of stroke. There was a J-shaped association between high amounts of alcohol and increased risk of both ischemic and hemorrhagic stroke. Therefore, we defined age, sex, research area, alcohol consumption status, current smoking, regular physical activity, obesity, hypertension, diabetes, dyslipidemia, and ischemic heart disease as independent variables in the logistic regression analyses. To the best of our knowledge, this is the first study to investigate the relationships between RAMP2 and CLR and stroke in the light of gene-environment interactions in humans.

The pathogenesis of stroke is very complex and is associated closely with vascular dysfunction and disruption. Indeed, similar to chronic obstructive pulmonary disease, systemic inflammation and oxidative stress might play important roles in increasing the risk of stroke by promoting vascular dysfunction and platelet hyperactivity. A review study showed that ADM has strong anti-oxidation and anti-inflammation activities. Moreover, ADM acts via CLR/RAMP2 to prevent brain injury in both acute and chronic cerebral ischemia, and exerts crucial vasoprotective effects following vascular injury. The vascular ADM-CLR/RAMP2 system is critical in the regulation of vascular integrity, including the maintenance of vascular structure, and the regulation of angiogenesis and vasoprotection against vascular injury. Studying the ADM-CLR/RAMP2 system should reveal the mechanisms underlying the functional integrity of the vascular system, and could serve as the basis for novel approaches to therapy and preventive medicine.

RAMP expression is modulated by various agents in cell culture and in animal models of human disease. For example, marked changes induced in the cardiovascular and renal systems provided evidence of an important role for dynamic RAMP regulation in those systems. Studies suggest that regulation of RAMPs might modulate the pathophysiology of conditions linked to RAMP-interacting G protein-coupled receptors. For example, human SNP studies described the relationship between CLR and essential hypertension and primary angle closure glaucoma. Polymorphisms in the ADM gene have also been reported to have a possible association with essential hypertension, dysglycemia, and adrenomedullin levels. Genetic variants of the ADM-CLR/RAMP2 system might affect vascular homeostasis and cerebrovascular/cardiovascular disease. Several studies have revealed interactions of SNPs with stroke. In these studies, the functional genetic polymorphisms were located in the promoters, which could cause differences in the plasma levels of the encoded target protein; were located in coding exons, leading to amino acid changes; or were located in an intron. Although we demonstrated that an intron-located SNP is not functional, it could have other effects, such as influencing splicing or regulatory processes; for example, the binding of transcription factors to the gene. Furthermore, as a tag SNP, the polymorphism might be representative of many other variants, which could regulate the function of the receptor.

The limitations of our study include its cross-sectional design. However, case-control studies can be used to assess previously identified candidate regions and to determine target selections more precisely. In general, strokes can be divided into three subtypes: ischemic, lacunar, and hemorrhagic. In this study, we...
did not investigate the subtypes of stroke because we used a self-administered questionnaire to judge anamnesis. By contrast, a previous study reported that stroke and myocardial infarct seem sensitive enough to use self-administered questionnaire for judgment at baseline in Japanese cohort studies. In a future (follow-up) survey, we plan to assess the participants by looking up the actual medical records; therefore, we expect these additional data will lead to further detailed analysis of genetic variants of ADM receptor genes in accordance with the stroke subtypes and cardiovascular disease. In addition, we only assessed Japanese participants in the present study, and further studies in other ethnic groups are needed to validate our findings.

Conclusions

In conclusion, the association of the RAMP2 and CLR genes with stroke in a Japanese cohort implicates these genes in the pathogenesis of stroke, although further investigation is required to confirm their associations. It will be interesting to determine whether the polymorphisms of RAMP2 and CLR are responsible for functional changes, and to reveal the underlying mechanism, given the potentially important role that ADM receptor genes play in stroke and/or vascular fragility.

Conflict of Interest

There are no conflicts of interest.

Sources of Funding

Funding was provided by Grant-in-Aid for Scientific Research on Priority Areas of Cancer (No. 17015018) and Grant-in-Aid for Scientific Research on Innovative Areas (No. 22150001) from the Japanese Ministry of Education, Culture, Sports, Science and Technology. Japan Society for the Promotion of Science KAKENHI Grant Number 16H06277 supported this work.

Acknowledgements

The authors would like to thank Mr. Kyota Ashikawa, Ms. Tomomi Aoi, and the other members of the Laboratory for Genotyping Development, Center for Genomic Medicine, RIKEN, for support with the genotyping; and Mses. Yoko Mitsuwa, Keiko Shibata, and Etsuko Kimura at the Department of Preventive Medicine, Nagoya University Graduate School of Medicine for their cooperation, technical assistance, and valuable comments.

Reference

1. Cleaver O and Melton DA: Endothelial signaling during development. Nat Med, 2003; 9: 661-668
2. Carmeliet P: Angiogenesis in health and disease. Nat Med, 2003; 9: 653-660
3. Miller AA, Budzyn K and Sobey CG: Vascular dysfunction in cerebrovascular disease: mechanisms and therapeutic intervention. Clin Sci (Lond), 2010; 119: 1-17
4. Higashi Y, Noma K, Yoshizumi M and Kihara Y: Endothelial function and oxidative stress in cardiovascular diseases. Circ J, 2009; 73: 411-418
5. Mochizuki N: Vascular integrity mediated by vascular endothelial cadherin and regulated by sphingosine-1-phosphate and angiopoietin-1. Circ J, 2009; 73: 2183-2191
6. Dejana E: Endothelial cell-cell junctions: happy together. Nat Rev Mol Cell Biol, 2004; 5: 261-270
7. Lanktree MB, Dichgans M and Hegele RA: Advances in genomic analysis of stroke: what have we learned and where are we headed? Stroke, 2010; 41: 825-832
8. Bevan S and Markus HS: Genetics of common polygenic ischaemic stroke: current understanding and future challenges. Stroke Res Treat, 2011; 2011: 179061
9. Markus HS: Stroke genetics. Hum Mol Genet, 2011; 20: R124-131
10. Kitamura K, Kawagawa K, Kawamoto M, Ichiki Y, Nakamura S, Matsu H and Eto T: Adrenomedullin: a novel hypotensive peptide isolated from human pheochromocytoma. Biochem Biophys Res Commun, 1993; 192: 553-560
11. Abe M, Sata M, Nishimatsu H, Nagata D, Suzuki E, Ter auchi Y, Kadowaki T, Minamino N, Kangawa K, Matsu H, Hirata Y and Nagai R: Adrenomedullin augments collateral development in response to acute ischemia. Biochem Biophys Res Commun, 2003; 306: 10-15
12. Brain SD and Grant AD: Vascular actions of calcitonin gene-related peptide and adrenomedullin. Physiol Rev, 2004; 84: 903-934
13. Kato J, Tsuruda T, Kita T, Kitamura K and Eto T: Adrenomedullin: a protective factor for blood vessels. Arterioscler Thromb Vasc Biol, 2005; 25: 2480-2487
14. Koyama T, Sakurai T, Kamiyoshi A, Ichikawa-Shindo Y, Kawate H and Shindo T: Adrenomedullin-RAMP2 System in Vascular Endothelial Cells. J Atheroscler Thromb, 2015; 22: 647-653
15. McLatchie LM, Fraser NJ, Main MJ, Wise A, Brown J, Thompson N, Solari R, Lee MG and Foord SM: RAMPs regulate the transport and ligand specificity of the calcitonin-receptor-like receptor. Nature, 1998; 393: 333-339
16. Parmesanwaran N and Spielman WS: RAMPs: The past, present and future. Trends Biochem Sci, 2006; 31: 631-638
17. Shindo T, Kurihara Y, Nishimatsu H, Moriyama N, Kakoki M, Wang Y, Imai Y, Ehbara H, Kuwaki T, Ku KH, Minamino N, Kangawa K, Ishikawa T, Fukuda M, Akimoto Y, Kawakami H, Imai T, Morita H, Yasaki Y, Nagai R, Hirata Y and Kurihara H: Vascular abnormalities and elevated blood pressure in mice lacking adrenomedullin gene. Circulation, 2001; 104: 1964-1971
18) Ichikawa-Shindo Y, Sakurai T, Kamiyoshi A, Kawate H, Iinuma N, Yoshizawa T, Koyama T, Fukuchi J, Iimuro S, Moriyama N, Kawakami H, Murata T, Kangawa K, Nagai R and Shindo T: The GPCR modulator protein RAMP2 is essential for angiogenesis and vascular integrity. J Clin Invest, 2008; 118: 29-39

19) Koyama T, Ochoa-Callejero L, Sakurai T, Kamiyoshi A, Ichikawa-Shindo Y, Iinuma N, Arai T, Yoshizawa T, Iesato Y, Lei Y, Uetake R, Okimura A, Yamauchi A, Tanaka M, Igarashi K, Toriyama Y, Kawate H, Adams RH, Kawakami H, Mochizuki N, Martinez A and Shindo T: Vascular endothelial adrenomedullin-RAMP2 system is essential for vascular integrity and organ homeostasis. Circulation, 2013; 127: 842-853

20) Fritz-Six KL, Dunworth WP, Li M and Caron KM: Adrenomedullin signaling is necessary for murine lymphatic vascular development. J Clin Invest, 2008; 118: 40-50

21) Hamajima N: The Japan Multi-Institutional Collaborative Cohort Study (J-MICC Study) to detect gene-environment interactions for cancer. Asian Pacific journal of cancer prevention: Asian Pac J Cancer Prev, 2007; 8: 317-323

22) Matsuo S, Imai E, Horio M, Yasuda Y, Tomita K, Nitta K, Yamagata K, Tomino Y, Yokoyama H and Hishida A: Revised equations for estimated GFR from serum creatinine in Japan. Am J Kidney Dis, 2009; 53: 982-992

23) Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MA, Bender D, Maller J, Sklar P, de Bakker PI, Daly MJ and Sham PC: PLINK: a tool set for whole-genome association and population-based linkage analyses. Am J Hum Genet, 2007; 81: 559-575

24) Chang CC, Chow CC, Tellier LC, Vattikuti S, Purcell SM and Lee JJ: Second-generation PLINK: rising to the challenge of larger and richer datasets. GigaScience, 2015; 4: 7

25) Price AL, Patterson NJ, Plenge RM, Weinblatt ME, Shadick NA and Reich D: Principal components analysis corrects for stratification in genome-wide association studies. Nat Genet, 2006; 38: 904-909

26) Patterson N, Price AL and Reich D: Population structure and eigenanalysis. PLoS Genet, 2006; 2: e190

27) Auton A, Brooks LD, Durbin RM, Garrison EP, Kang HM, Korbel JO, Marchini JL, McCarthy S, McVean GA and Abecasis GR: A global reference for human genetic variation. Nature, 2015; 526: 68-74

28) Yamaguchi-Kabata Y, Nakazono K, Takahashi A, Saito S, Hosono N, Kubo M, Nakamura Y and Kamatani N: Japanese population structure, based on SNP genotypes from 7003 individuals compared to other ethnic groups: effects on population-based association studies. Am J Hum Genet, 2008; 83: 445-456

29) Delaneau O, Marchini J and Zagury JF: A linear complexity phasing method for thousands of genomes. Nat Methods, 2011; 9: 179-181

30) Das S, Forer L, Schonherr S, Sidore C, Locke AE, Kwong A, Vrieze SI, Chew EY, Levy S, McGuie M, Schlessinger D, Stambolian D, Loh PR, Iacono WG, Swaroop A, Scott LJ, Cucca F, Kronenberg F, Boehnke M, Abecasis GR and Fuchsberger C: Next-generation genotype imputation service and methods. Nat Genet, 2016; 48: 1284-1287

31) Barrett JC, Fry B, Maller J and Daly MJ: Haploview: analysis and visualization of LD and haplotype maps. Bioinformatics, 2005; 21: 263-265

32) O'Donnell MJ, Chin SL, Rangarajan S, Xavier D, Liu L, Zhang H, Rao-Melacini P, Zhang X, Pais P, Agapay S, Lopez-Jaramillo P, Damasceno A, Langhorne P, McQueen MJ, Rosengren A, Dehghan M, Hankey GJ, Dans AL, Elsayed A, Avezum A, Mondo C, Diener HC, Ryglewicz D, Czlonkowska A, Pogosova N, Weimar C, Iqbal R, Diaz R, Yusoff K, Yusufali A, Oguaz A, Wang X, Pennaherrera E, Lanas F, Ogah OS, Ogunniyi A, Iversen HK, Malaga G, Rumboldt Z, Oveisgharan S, Al Hussain F, Magazi D, Nilanont Y, Ferguson J, Pare G and Yusuf S: Global and regional effects of potentially modifiable risk factors associated with acute stroke in 32 countries (INTER-STROKE): a case-control study. Lancet, 2016; 388: 761-775

33) Isabel C, Calvet D and Mas JL: Stroke prevention. Press Med, 2016; 45: e457-e471

34) Ichihara T, Saito Y, Takeuchi T, Kokubo T, Yamauchi H, Inoue M and Tsugane S: Alcohol consumption and risk of stroke and coronary heart disease among Japanese women: the Japan Public Health Center-Based prospective study. Prev Med, 2013; 57: 505-510

35) Austin V, Crack PJ, Bozinovski S, Miller AA and Vlahos R: COPD and stroke: are systemic inflammation and oxidative stress the missing links? Clin Sci (Lond), 2016; 130: 1039-1050

36) Igarashi K, Sakurai T, Kamiyoshi A, Ichikawa-Shindo Y, Kawate H, Yamauchi A, Toriyama Y, Tanaka M, Liu T, Xian I, Imai A, Zhai L, Owa S, Koyama T, Uetake R, Ihara M and Shindo T: Pathophysiological roles of adrenomedullin-RAMP2 system in acute and chronic cerebral ischemia. Peptides, 2014; 62: 21-31

37) Xian I, Sakurai T, Kamiyoshi A, Ichikawa-Shindo Y, Tanaka M, Koyama T, Kawate H, Yang L, Liu T, Imai A, Zhai L, Hirabayashi K, Dai K, Tanimura K, Liu T, Cui N, Igarashi K, Yamauchi A and Shindo T: Vasoprotective activities of the adrenomedullin-RAMP2 system in endothelial cells. Endocrinology, 2017; 158: 1359-1372

38) Udawela M, Hay DL and Sexton PM: The receptor activity modifying protein family of G protein coupled receptor accessory proteins. Semin Cell Dev Biol, 2004; 15: 299-308

39) Sano M, Kuroi N, Nakayama T, Sato N, Izumi Y, Soma M and Kokubun S: Association study of calcitonin-receptor-like receptor gene in essential hypertension. Am J Hypertens, 2005; 18: 403-408

40) Awadalla MS, Burdon KP, Thapa SS, Hewitt AW and Craig JE: A cross-ethnicity investigation of genes previously implicated in primary angle closure glaucoma. Mol Vis, 2012; 18: 2247-2254

41) Verweij N, Mahmud H, Mateo Leach I, de Boer RA, Brouwers FP, Yu H, Asselbergs FW, Struck J, Bakker SJ, Gansweerto RT, Munroe PB, Hillege HL, van Veldhuisen DJ, van Gilst WH, Sijije HH and van der Harst P: Genome-wide association study on plasma levels of midregional-proadrenomedullin and C-terminal-pro-endothelin-1. Hypertension, 2013; 61: 602-608

42) Ong KL, Tso AW, Leung RY, Cherny SS, Sham PC, Lam TH, Cheung BM and Lam KS: A genetic variant in the gene encoding adrenomedullin predicts the development of...
43) Glorioso N, Herrera VL, Didishvili T, Ortu MF, Zaninello R, Fesu G, Argiolas G, Trofia C and Ruiz-Opazo N: Sex-specific effects of NLRP6/AVR and ADM loci on susceptibility to essential hypertension in a Sardinian population. PLoS one, 2013; 8: e77562
44) Cheung BM, Ong KL, Tso AW, Leung RY, Chen NY, Sham PC, Lam TH and Lam KS: Plasma adrenomedullin level is related to a single nucleotide polymorphism in the adrenomedullin gene. Eur J Endocrinol, 2011; 165: 571-577
45) Chen S, Lu X, Zhao Q, Wang L, Li H and Huang J: Association of adrenomedullin gene polymorphisms and blood pressure in a Chinese population. Hypertens Res, 2013; 36: 74-78
46) Yi X, Wu L, Liao D, Wang C and Zhang B: Interactions Among CYP2C8, EPHX2, and CYP4A11 Variants and CYP Plasma Metabolite Levels in Ischemic Stroke. J Atheroscler Thromb, 2016; 23: 1286-1293
47) Zhong H, Cai Y, Cheng J, Cai D, Chen L, Su C, Li K, Chen P, Xu J and Cui L: Apolipoprotein E Epsilon 4 Enhances the Association between the rs2910164 Polymorphism of miR-146a and Risk of Atherosclerotic Cerebral Infarction. J Atheroscler Thromb, 2016; 23: 819-829
48) Zhang L, Yang J, Xue Q, Yang D, Lu Y, Guang X, Zhang W, Ba R, Zhu H and Ma X: An rs13293512 polymorphism in the promoter of let-7 is associated with a reduced risk of ischemic stroke. J Thromb Thrombolysis, 2016; 42: 610-615
49) Yi X, Lin J, Wang Y, Zhou Q, Wang C, Cheng W and Chi L: Association of Cytochrome P450 Genetic Variants with Clopidogrel Resistance and Outcomes in Acute Ischemic Stroke. J Atheroscler Thromb, 2016; 23: 1188-1200
50) Yamagishi K, Ikeda A, Iso H, Inoue M and Tsugane S: Self-reported stroke and myocardial infarction had adequate sensitivity in a population-based prospective study JPHC (Japan Public Health Center)-based Prospective Study. J Clin Epidemiol, 2009; 62: 667-673
| Gene | chromosome | Position |
|------|------------|----------|
| **RAMP2** | 17 | 40913366 |
| | | 40913505 |
| CLR | 2 | 188206953 |
| | | 188207245 |
| | | 188207585 |
| | | 188207611 |
| | | 188208012 |
| | | 188208120 |
| | | 188208130 |
| | | 188208290 |
| | | 188208736 |
| | | 188209158 |
| | | 188209159 |
| | | 188209179 |
| | | 188209709 |
| | | 188210214 |
| | | 188210256 |
| | | 188210257 |
| | | 188210415 |
| | | 188210586 |
| | | 188210673 |
| | | 188210960 |
| | | 188211005 |
| | | 188211112 |
| | | 188211296 |
| | | 188211443 |
| | | 188211568 |
| | | 188211568 |
| | | 188211610 |
| | | 188211789 |
| | | 188212371 |
| | | 188212423 |
| | | 188213235 |
| | | 188213336 |
| | | 188213538 |
| | | 188213819 |
| | | 188214239 |
| | | 188214694 |
| | | 188214823 |
| | | 188214924 |
| | | 188215045 |
| | | 188215156 |
| | | 188215209 |
| | | 188215241 |
| | | 188215292 |
| | | 188215299 |
| | | 188216078 |
Supplementary Fig. 1. The linkage disequilibrium analyses of 13 CLR (calcitonin-receptor-like receptor) SNPs associated with stroke. The haplotype structure and the position of the studied single nucleotide polymorphisms in the CLR gene exhibited a statistically significant association with stroke.
Supplementary Table 2. Allele and genotype frequencies of the RAMP2 and CLR genes in the participants

SNP	Allele frequency	Genotype frequency	n	P for Hardy-Weinberg equilibrium
rs753152 (T/G)				
TT	T=0.965	T/T=0.933	13137	
TG	T/G=0.065		921	0.003
GG	G=0.035	G/G=0.002	28	
rs77035639 (A/G)	A=0.983	A/A=0.965	13604	
AA	A/G=0.034		476	0.177
AG				
GG	G=0.017	G/G=0.001	7	
rs3815524 (G/C)	G=0.940	G/G=0.885	12464	
GG				
GC	G/C=0.110		1552	0.003
CC	C=0.060	C/C=0.005	71	
rs75380157 (A/T)	A=0.959	A/A=0.921	12978	
AA	A/T=0.076		1073	0.006
AT				
TT	T=0.041	T/T=0.003	36	
rs574603859 (A/T)	A=0.975	A/A=0.952	13405	
AA	A/T=0.047		664	0.001
AT				
TT	T=0.025	T/T=0.001	18	
rs147565266 (T/A)	T=0.998	T/T=0.996	14024	
TT				0.790
TA	T/A=0.004		63	
AA	A=0.002	A/A=0.000	0	

Supplementary Fig. 2. Organization of the RAMP2 (receptor activity-modifying protein 2) and CLR (calcitonin-receptor-like receptor) genes and locations of the SNPs used in the present study. Closed boxes indicate exons and lines represent introns.