Strong insertion of a contra-continuous function between two comparable real-valued functions

M. Mirmiran and B. Naderi

Abstract. Necessary and sufficient conditions in terms of lower cut sets are given for the strong insertion of a contra-continuous function between two comparable real-valued functions on such topological spaces that kernel of sets are open.

M.S.C. 2010: Primary 54C08, 54C10, 54C50; Secondary 26A15, 54C30.
Key words: Insertion, strong binary relation; C-open set; semi-preopen set, α-open set; contra-continuous function; lower cut set.

1 Introduction

The concept of a C-open set in a topological space was introduced by E. Hatir, T. Noiri and S. Yksel in [12]. The authors define a set S to be a C-open set if $S = U \cap A$, where U is open and A is semi-preclosed. A set S is a C-closed set if its complement (denoted by S^c) is a C-open set or equivalently if $S = U \cup A$, where U is closed and A is semi-preopen. The authors show that a subset of a topological space is open if and only if it is an α-open set and a C-open set or equivalently a subset of a topological space is closed if and only if it is an α-closed set and a C-closed set. This enables them to provide the following decomposition of continuity: a function is continuous if and only if it is α-continuous and C-continuous or equivalently a function is contra-continuous if and only if it is contra-α-continuous and contra-C-continuous.

Recall that a subset A of a topological space (X, τ) is called α-open if A is the difference of an open and a nowhere dense subset of X. A set A is called α-closed if its complement is α-open or equivalently if A is the union of a closed and a nowhere dense set. Sets which are dense in some regular closed subspace are called semi-preopen or β-open. A set is semi-preclosed or β-closed if its complement is semi-preopen or β-open.

In [7] it was shown that a set A is β-open if and only if $A \subseteq Cl(Int(Cl(A)))$. A generalized class of closed sets was considered by Maki in [20]. He investigated the sets that can be represented as union of closed sets and called them V-sets. Complements of V-sets, i.e., sets that are intersection of open sets are called Λ-sets [20].
Recall that a real-valued function f defined on a topological space X is called A-continuous [25] if the preimage of every open subset of \mathbb{R} belongs to A, where A is a collection of subsets of X. Most of the definitions of function used throughout this paper are consequences of the definition of A-continuity. However, for unknown concepts the reader may refer to [4, 11]. In the recent literature many topologists had focused their research in the direction of investigating different types of generalized continuity.

J. Dontchev in [5] introduced a new class of mappings called contra-continuity. S. Jafari and T. Noiri in [13, 14] exhibited and studied among others a new weaker form of this class of mappings called contra-α-continuous. A good number of researchers have also initiated different types of contra-continuous like mappings in the papers [1, 3, 8, 9, 10, 23].

Hence, a real-valued function f defined on a topological space X is called contra-continuous (resp. contra-C-continuous, contra-α-continuous) if the preimage of every open subset of \mathbb{R} is closed (resp. C-closed, α-closed) in X [5].

Results of Katětov [15, 16] concerning binary relations and the concept of an indefinite lower cut set for a real-valued function, which is due to Brooks [2], are used in order to give a necessary and sufficient conditions for the insertion of a contra-continuous function between two comparable real-valued functions on such topological spaces that Λ-sets or kernel of sets are open [20].

If g and f are real-valued functions defined on a space X, we write $g \preceq f$ in case $g(x) \leq f(x)$ for all x in X.

The following definitions are modifications of conditions considered in [17].

A property P defined relative to a real-valued function on a topological space is a cc-property provided that any constant function has property P and provided that the sum of a function with property P and any contra-continuous function also has property P. If P_1 and P_2 are cc-properties, the following terminology is used: (i) A space X has the weak cc-insertion property for (P_1, P_2) if and only if for any functions g and f on X such that $g \preceq f$, g has property P_1 and f has property P_2, then there exists a contra-continuous function h such that $g \preceq h \preceq f$. (ii) A space X has the strong cc-insertion property for (P_1, P_2) if and only if for any functions g and f on X such that $g \preceq f$, g has property P_1 and f has property P_2, then there exists a contra-continuous function h such that $g \preceq h \preceq f$ and if $g(x) < f(x)$ for any x in X, then $g(x) < h(x) < f(x)$.

In this paper, for a topological space whose Λ-sets or kernel of sets are open, is given a sufficient condition for the weak cc-insertion property. Also for a space with the weak cc-insertion property, we give necessary and sufficient conditions for the space to have the strong cc-insertion property. Several insertion theorems are obtained as corollaries of these results. In addition, the insertion of a contra-continuous function between two comparable contra-precontinuous real-valued functions has also recently considered by the author in [21].

2 The main result

Before giving a sufficient condition for insertability of a contra-continuous function, the necessary definitions and terminology are stated.
The abbreviations cc, coc and cCc are used for contra-continuous, contra-α-continuous and contra-C-continuous, respectively.

Definition 2.1. Let A be a subset of a topological space (X, τ). We define the subsets A^α and A^V as follows:

$A^\alpha = \cap\{O : O \supseteq A, O \in (X, \tau)\}$ and $A^V = \cup\{F : F \subseteq A, F^c \in (X, \tau)\}$.

In [6, 19, 22], A^α is called the *kernel* of A.

The family of all α--open, α--closed, C--open and C--closed will be denoted by $\alpha O(X, \tau)$, $\alpha C(X, \tau)$, $CO(X, \tau)$ and $CC(X, \tau)$, respectively.

We define the subsets $\alpha(A^\alpha), \alpha(A^V), C(A^\alpha)$ and $C(A^V)$ as follows:

$\alpha(A^\alpha) = \cap\{O : O \supseteq A, O \in \alpha O(X, \tau)\}$,

$\alpha(A^V) = \cup\{F : F \subseteq A, F \in \alpha C(X, \tau)\}$,

$C(A^\alpha) = \cap\{O : O \supseteq A, O \in CO(X, \tau)\}$ and

$C(A^V) = \cup\{F : F \subseteq A, F \in CC(X, \tau)\}$.

$\alpha(A^\alpha)$ (resp. $C(A^\alpha)$) is called the α -- kernel (resp. C -- kernel) of A.

The following first two definitions are modifications of conditions considered in [15, 16].

Definition 2.2. If ρ is a binary relation in a set S then $\bar{\rho}$ is defined as follows: $x \bar{\rho} y$ if and only if $x \rho y$ implies $x \rho v$ and $u \rho x$ implies $u \rho y$ for any u and v in S.

Definition 2.3. A binary relation ρ in the power set $P(X)$ of a topological space X is called a *strong binary relation* in $P(X)$ in case ρ satisfies each of the following conditions:

1) If $A_i \rho B_j$ for any $i \in \{1, \ldots, m\}$ and for any $j \in \{1, \ldots, n\}$, then there exists a set C in $P(X)$ such that $A_i \rho C$ and $C \rho B_j$ for any $i \in \{1, \ldots, m\}$ and any $j \in \{1, \ldots, n\}$.

2) If $A \subseteq B$, then $A \bar{\rho} B$.

3) If $A \rho B$, then $A^\alpha \subseteq B$ and $A \subseteq B^V$.

The concept of a lower indefinite cut set for a real-valued function was defined by Brooks [2] as follows:

Definition 2.4. If f is a real-valued function defined on a space X and if $\{x \in X : f(x) < \ell\} \subseteq A(f, \ell) \subseteq \{x \in X : f(x) \leq \ell\}$ for a real number ℓ, then $A(f, \ell)$ is called a *lower indefinite cut set* in the domain of f at the level ℓ.

We now give the following main result:

Theorem 2.1. Let g and f be real-valued functions on the topological space X, in which kernel of sets are open, with $g \leq f$. If there exists a strong binary relation ρ on the power set of X and if there exist lower indefinite cut sets $A(f, t)$ and $A(g, t)$ in the domain of f and g at the level t for each rational number t such that if $t_1 < t_2$ then $A(f, t_1) \rho A(g, t_2)$, then there exists a contra-continuous function h defined on X such that $g \leq h \leq f$.

Proof. Let g and f be real-valued functions defined on the X such that $g \leq f$. By
hypothesis there exists a strong binary relation \(\rho \) on the power set of \(X \) and there exist lower indefinite cut sets \(A(f,t) \) and \(A(g,t) \) in the domain of \(f \) and \(g \) at the level \(t \) for each rational number \(t \) such that if \(t_1 < t_2 \) then \(A(f,t_1) \rho A(g,t_2) \).

Define functions \(F \) and \(G \) mapping the rational numbers \(\mathbb{Q} \) into the power set of \(X \) by \(F(t) = A(f,t) \) and \(G(t) = A(g,t) \). If \(t_1 \) and \(t_2 \) are any elements of \(\mathbb{Q} \) with \(t_1 < t_2 \), then \(F(t_1) \rho F(t_2) \), \(G(t_1) \rho G(t_2) \), and \(F(t_1) \rho G(t_2) \). By Lemmas 1 and 2 of [16] it follows that there exists a function \(H \) mapping \(\mathbb{Q} \) into the power set of \(X \) such that if \(t_1 \) and \(t_2 \) are any rational numbers with \(t_1 < t_2 \), then \(F(t_1) \rho H(t_2), H(t_1) \rho H(t_2) \) and \(H(t_1) \rho G(t_2) \).

For any \(x \in X \), let \(h(x) = \inf \{ t \in \mathbb{Q} : x \in H(t) \} \).

We first verify that \(g \leq h \leq f \): If \(x \) is in \(H(t) \) then \(x \) is in \(G(t') \) for any \(t' > t \); since \(x \) is in \(G(t') = A(g,t') \) it follows that \(g(x) \leq t' \), it follows that \(g(x) \leq t \). Hence \(g \leq h \). If \(x \) is not in \(H(t) \), then \(x \) is not in \(F(t') \) for any \(t' < t \); since \(x \) is not in \(F(t') = A(f,t') \) it follows that \(f(x) > t' \), it follows that \(f(x) > t \). Hence \(h \leq f \).

Also, for any rational numbers \(t_1 \) and \(t_2 \) with \(t_1 < t_2 \), we have \(h^{-1}(t_1,t_2) = H(t_2)^V \setminus H(t_1)^h \). Hence \(h^{-1}(t_1,t_2) \) is closed in \(X \), i.e., \(h \) is a contra-continuous function on \(X \).

The above proof used the technique of theorem 1 in [15].

If a space has the strong \(cc \)-insertion property for \((P_1,P_2) \), then it has the weak \(cc \)-insertion property for \((P_1,P_2) \). The following result uses lower cut sets and gives a necessary and sufficient condition for a space satisfies that weak \(cc \)-insertion property to satisfy the strong \(cc \)-insertion property.

Theorem 2.2. Let \(P_1 \) and \(P_2 \) be \(cc \)-property and \(X \) be a space that satisfies the weak \(cc \)-insertion property for \((P_1,P_2) \). Also assume that \(g \) and \(f \) are functions on \(X \) such that \(g \leq f \), \(g \) has property \(P_1 \) and \(f \) has property \(P_2 \). The space \(X \) has the strong \(cc \)-insertion property for \((P_1,P_2) \) if and only if there exist lower cut sets \(A(f-g,2^{-n}) \) and there exists a sequence \(\{F_n\} \) of subsets of \(X \) such that (i) for each \(n \), \(F_n \) and \(A(f-g,2^{-n}) \) are completely separated by contra-continuous functions, and (ii) \(x \in X : (f-g)(x) > 0 \} \cup \bigcup_{n=1}^{\infty} F_n \).

Proof. Suppose that there is a sequence \(\{A(f-g,2^{-n})\} \) of lower cut sets for \(f-g \) and suppose that there is a sequence \(\{F_n\} \) of subsets of \(X \) such that

\[
\{x \in X : (f-g)(x) > 0\} = \bigcup_{n=1}^{\infty} F_n
\]

and such that for each \(n \), there exists a contra-continuous function \(k_n \) on \(X \) into \([0,2^{-n}] \) with \(k_n = 2^{-n} \) on \(F_n \) and \(k_n = 0 \) on \(A(f-g,2^{-n}) \). The function \(k \) from \(X \) into \([0,1/4] \) which is defined by

\[
k(x) = 1/4 \sum_{n=1}^{\infty} k_n(x)
\]

is a contra-continuous function by the Cauchy condition and the properties of contra-continuous functions, (1) \(k^{-1}(0) = \{x \in X : (f-g)(x) = 0\} \) and (2) if \((f-g)(x) > 0 \) then \(k(x) < (f-g)(x) \). In order to verify (1), observe that if \((f-g)(x) = 0 \), then \(x \in A(f-g,2^{-n}) \) for each \(n \) and hence \(k_n(x) = 0 \) for each \(n \). Thus \(k(x) = 0 \).
Conversely, if \((f - g)(x) > 0\), then there exists an \(n\) such that \(x \in F_n\) and hence \(k_n(x) = 2^{-n}\). Thus \(k(x) \neq 0\) and this verifies (1). Next, in order to establish (2), note that

\[\{x \in X : (f - g)(x) = 0\} = \bigcap_{n=1}^{\infty} A(f - g, 2^{-n}) \]

and that \((A(f - g, 2^{-n}))\) is a decreasing sequence. Thus if \((f - g)(x) > 0\) then either \(x \notin A(f - g, 1/2)\) or there exists a smallest \(n\) such that \(x \notin A(f - g, 2^{-n})\) and \(x \in A(f - g, 2^{-j})\) for \(j = 1, \ldots, n - 1\).

In the former case,

\[k(x) = 1/4 \sum_{n=1}^{\infty} k_n(x) \leq 1/4 \sum_{n=1}^{\infty} 2^{-n} < 1/2 \leq (f - g)(x), \]

and in the latter,

\[k(x) = 1/4 \sum_{j=n}^{\infty} k_j(x) \leq 1/4 \sum_{j=n}^{\infty} 2^{-j} < 2^{-n} \leq (f - g)(x). \]

Thus \(0 \leq k \leq f - g\) and if \((f - g)(x) > 0\) then \((f - g)(x) > k(x) > 0\). Let \(g_1 = g + (1/4)k\) and \(f_1 = f - (1/4)k\). Then \(g \leq g_1 \leq f_1 \leq f\) and if \(g(x) < f(x)\) then \(g(x) < g_1(x) < f_1(x) < f(x)\).

Since \(P_1\) and \(P_2\) are \(cc\)-properties, then \(g_1\) has property \(P_1\) and \(f_1\) has property \(P_2\). Since by hypothesis \(X\) has the weak \(cc\)-insertion property for \((P_1, P_2)\), then there exists a contra-continuous function \(h\) such that \(g_1 \leq h \leq f_1\). Thus \(g \leq h \leq f\) and if \(g(x) < f(x)\) then \(g(x) < h(x) < f(x)\). Therefore \(X\) has the strong \(cc\)-insertion property for \((P_1, P_2)\). (The technique of this proof is by Lane \[17\].)

Conversely, assume that \(X\) satisfies the strong \(cc\)-insertion for \((P_1, P_2)\). Let \(g\) and \(f\) be functions on \(X\) satisfying \(P_1\) and \(P_2\) respectively such that \(g \leq f\). Thus there exists a contra-continuous function \(h\) such that \(g \leq h \leq f\) and such that if \(g(x) < f(x)\) for any \(x\) in \(X\), then \(g(x) < h(x) < f(x)\). We follow an idea contained in Powderly \[24\]. Now consider the functions 0 and \(f - h, 0\) satisfy property \(P_1\) and \(f - h\) satisfies property \(P_2\). Thus there exists a contra-continuous function \(h_1\) such that \(0 \leq h_1 \leq f - h\) and if \(0 < (f - h)(x)\) for any \(x\) in \(X\), then \(0 < h_1(x) < (f - h)(x)\).

We next show that

\[\{x \in X : (f - g)(x) > 0\} = \{x \in X : h_1(x) > 0\}. \]

If \(x\) is such that \((f - g)(x) > 0\), then \(g(x) < f(x)\). Therefore \(g(x) < h(x) < f(x)\). Thus \(f(x) - h(x) > 0\) or \((f - h)(x) > 0\). Hence \(h_1(x) > 0\). On the other hand, if \(h_1(x) > 0\), then since \((f - h) \geq h_1\) and \(f - g \geq f - h\), therefore \((f - g)(x) > 0\). For each \(n\), let \(A(f - g, 2^{-n}) = \{x \in X : (f - g)(x) \leq 2^{-n}\}\),

\(F_n = \{x \in X : h_1(x) \geq 2^{-n+1}\}\) and

\(k_n = \sup\{\inf\{h_1, 2^{-n+1}\}, 2^{-n}\} - 2^{-n}\).

Since \(\{x \in X : (f - g)(x) > 0\} = \{x \in X : h_1(x) > 0\}\), it follows that

\[\{x \in X : (f - g)(x) > 0\} = \bigcup_{n=1}^{\infty} F_n. \]
We next show that k_n is a contra-continuous function which completely separates F_n and $\mathcal{A}(f - g, 2^{-n})$. From its definition and by the properties of contra-continuous functions, it is clear that k_n is a contra-continuous function. Let $x \in F_n$. Then, from the definition of k_n, $k_n(x) = 2^{-n}$. If $x \in \mathcal{A}(f - g, 2^{-n})$, then since $h_1 \leq f - h \leq f - g, h_1(x) \leq 2^{-n}$. Thus $k_n(x) = 0$, according to the definition of k_n. Hence k_n completely separates F_n and $\mathcal{A}(f - g, 2^{-n})$. ■

Theorem 2.3. Let P_1 and P_2 be cc-properties and assume that the space X satisfied the weak cc-insertion property for (P_1, P_2). The space X satisfies the strong cc-insertion property for (P_1, P_2) if and only if X satisfies the strong cc-insertion property for (P_1, cc) and for (cc, P_2).

Proof. Assume that X satisfies the strong cc-insertion property for (P_1, cc) and for (cc, P_2). If g and f are functions on X such that $g \leq f$, g satisfies property P_1, and f satisfies property P_2, then since X satisfies the weak cc-insertion property for (P_1, P_2) there is a contra-continuous function h such that $g \leq h \leq f$. Also, by hypothesis there exist contra-continuous functions h_1 and h_2 such that $g \leq h_1 \leq k$ and if $g(x) < k(x)$ then $g(x) < h_1(x) < k(x)$ and such that $k \leq h_2 \leq f$ and if $k(x) < f(x)$ then $k(x) < h_2(x) < f(x)$. If a function h is defined by $h(x) = (h_2(x) + h_1(x))/2$, then h is a contra-continuous function, $g \leq h \leq f$, and if $g(x) < f(x)$ then $g(x) < h(x) < f(x)$. Hence X satisfies the strong cc-insertion property for (P_1, P_2).

The converse is obvious since any contra-continuous function must satisfy both properties P_1 and P_2. (The technique of this proof is by Lane [18].) □

3 Applications

Before stating the consequences of Theorems 2.1, 2.2 and 2.3 we suppose that X is a topological space whose kernel of sets are open.

Corollary 3.1. If for each pair of disjoint α-open (resp. C-open) sets G_1, G_2 of X, there exist closed sets F_1 and F_2 of X such that $G_1 \subseteq F_1, G_2 \subseteq F_2$ and $F_1 \cap F_2 = \emptyset$ then X has the weak cc-insertion property for (cc, cc) (resp. (cC, cCc)).

Proof. Let g and f be real-valued functions defined on X such that f and g are cc (resp. cCc), and $g \leq f$. If a binary relation ρ is defined by $A \rho B$ in case $\alpha(A^X) \subseteq \alpha(B^X)$ (resp. $C(A^X) \subseteq C(B^X)$), then by hypothesis ρ is a strong binary relation in the power set of X. If t_1 and t_2 are any elements of \mathbb{Q} with $t_1 < t_2$, then

$$\mathcal{A}(f, t_1) \subseteq \{x \in X : f(x) \leq t_1\} \subseteq \{x \in X : g(x) < t_2\} \subseteq \mathcal{A}(g, t_2);$$

since $\{x \in X : f(x) \leq t_1\}$ is an α-open (resp. C-open) set and since $\{x \in X : g(x) < t_2\}$ is an α-closed (resp. C-closed) set, it follows that $\alpha(\mathcal{A}(f, t_1)^X) \subseteq \alpha(\mathcal{A}(g, t_2)^Y)$ (resp. $\mathcal{C}(A(f, t_1)^X) \subseteq \mathcal{C}(A(g, t_2)^Y)$). Hence $t_1 < t_2$ implies that $\mathcal{A}(f, t_1) \rho \mathcal{A}(g, t_2)$. The proof follows from Theorem 2.1. ■

Corollary 3.2. If for each pair of disjoint α-open (resp. C-open) sets G_1, G_2, there exist closed sets F_1 and F_2 such that $G_1 \subseteq F_1, G_2 \subseteq F_2$ and $F_1 \cap F_2 = \emptyset$ then every contra-α-continuous (resp. contra-C-continuous) function is contra-continuous.

Proof. Let f be a real-valued contra-α-continuous (resp. contra-C-continuous)
function defined on X. Set $g = f$, then by Corollary 3.1, there exists a contra-
continuous function h such that $g = h = f$.

Corollary 3.3. If for each pair of disjoint α--open (resp. C--open) sets G_1, G_2 of X
, there exist closed sets F_1 and F_2 of X such that $G_1 \subseteq F_1$, $G_2 \subseteq F_2$
and $F_1 \cap F_2 = \emptyset$ then X has the strong cc--insertion property for (cCc, cCc) (resp. (cCc, cCc)).

Proof. Let g and f be real-valued functions defined on the X, such that f and g
are cCc (resp. cCc), and $g \leq f$. Set $h = (f + g)/2$, thus $g \leq h \leq f$
and if $g(x) < f(x)$ for any x in X, then $g(x) < h(x) < f(x)$. Also, by Corollary 3.2, since g
and f are contra-continuous functions hence h is a contra-continuous function.

Corollary 3.4. If for each pair of disjoint subsets G_1, G_2 of X, such that G_1
is α--open and G_2 is C--open, there exist closed subsets F_1 and F_2 of X such that
$G_1 \subseteq F_1$, $G_2 \subseteq F_2$ and $F_1 \cap F_2 = \emptyset$ then X have the weak cc--insertion property for
(cCc, cCc) and (cCc, cCc).

Proof. Let g and f be real-valued functions defined on X, such that g is cCc (resp. cCc
and f is cCc (resp. cCc), with $g \leq f$.If a binary relation ρ is defined by $A \rho B$
in case $C(A^\lambda) \subseteq \alpha(B^\lambda)$ (resp. $\alpha(A^\lambda) \subseteq C(B^\lambda)$), then by hypothesis ρ
is a strong binary relation in the power set of X. If t_1 and t_2 are any elements of Q
with $t_1 < t_2$, then
\[
A(f, t_1) \subseteq \{x \in X : f(x) \leq t_1\} \subseteq \{x \in X : g(x) < t_2\} \subseteq A(g, t_2);
\]
since $\{x \in X : f(x) \leq t_1\}$ is a C--open (resp. α--open) set and since $\{x \in X : g(x) < t_2\}$
is an α--closed (resp. C--closed) set, it follows that $C(A(f, t_1)^\lambda) \subseteq \alpha(A(g, t_2)^\lambda)$
(resp. $\alpha(A(f, t_1)^\lambda) \subseteq C(A(g, t_2)^\lambda)$). Hence $t_1 < t_2$ implies that $A(f, t_1) \rho A(g, t_2)$.
The proof follows from Theorem 2.1.

Before stating consequences of Theorem 2.2, we state and prove the necessary
lemmas.

Lemma 3.1. The following conditions on the space X are equivalent:

(i) For each pair of disjoint subsets G_1, G_2 of X, such that G_1 is α--open and G_2
is C--open, there exist closed subsets F_1, F_2 of X such that $G_1 \subseteq F_1, G_2 \subseteq F_2$
and $F_1 \cap F_2 = \emptyset$.

(ii) If G is a C--open (resp. α--open) subset of X which is contained in an
α--closed (resp. C--closed) subset F of X, then there exists a closed subset H of X
such that $G \subseteq H \subseteq H^\lambda \subseteq F$.

Proof. (i) \Rightarrow (ii) Suppose that $G \subseteq F$, where G and F are C--open (resp. α--open)
and α--closed (resp. C--closed) subsets of X, respectively. Hence, F^c is an
α--open (resp. C--open) and $G \cap F^c = \emptyset$.

By (i) there exists two disjoint closed subsets F_1, F_2 such that $G \subseteq F_1$ and $F^c \subseteq F_2$.
But
\[
F^c \subseteq F_2 \Rightarrow F_2^c \subseteq F,
\]
and
\[
F_1 \cap F_2 = \emptyset \Rightarrow F_1 \subseteq F_2^c
\]

hence
\[
G \subseteq F_1 \subseteq F_2^c \subseteq F
\]
and since F_2^c is an open subset containing F_1, we conclude that $F_1^\Lambda \subseteq F_2^c$, i.e.,

$$G \subseteq F_1 \subseteq F_1^\Lambda \subseteq F.$$

By setting $H = F_1$, condition (ii) holds.

(ii) \Rightarrow (i) Suppose that G_1, G_2 are two disjoint subsets of X, such that G_1 is α–open and G_2 is C–open.

This implies that $G_2 \subseteq G_1^c$ and G_1^c is an α–closed subset of X. Hence by (ii) there exists a closed set H such that $G_2 \subseteq H \subseteq H^\Lambda \subseteq G_1^c$.

But

$$H \subseteq H^\Lambda \Rightarrow H \cap (H^\Lambda)^c = \emptyset$$

and

$$H^\Lambda \subseteq G_1^c \Rightarrow G_1 \subseteq (H^\Lambda)^c.$$

Furthermore, $(H^\Lambda)^c$ is a closed subset of X. Hence $G_2 \subseteq H, G_1 \subseteq (H^\Lambda)^c$ and $H \cap (H^\Lambda)^c = \emptyset$. This means that condition (i) holds.

Lemma 3.2. Suppose that X is a topological space. If each pair of disjoint subsets G_1, G_2 of X, where G_1 is α–open and G_2 is C–open, can be separated by closed subsets of X then there exists a contra-continuous function $h : X \to [0,1]$ such that $h(G_2) = \{0\}$ and $h(G_1) = \{1\}$.

Proof. Suppose G_1 and G_2 are two disjoint subsets of X, where G_1 is α–open and G_2 is C–open. Since $G_1 \cap G_2 = \emptyset$, hence $G_2 \subseteq G_1^c$. In particular, since G_1^c is an α–closed subset of X containing the C–open subset G_2 of X, by Lemma 3.1, there exists a closed subset $H_{1/2}$ such that

$$G_2 \subseteq H_{1/2} \subseteq H_{1/2}^\Lambda \subseteq G_1^c.$$

Note that $H_{1/2}$ is also an α–closed subset of X and contains G_2, and G_1^c is an α–closed subset of X and contains the C–open subset $H_{1/2}^\Lambda$ of X. Hence, by Lemma 3.1, there exists closed subsets $H_{1/4}$ and $H_{3/4}$ such that

$$G_2 \subseteq H_{1/4} \subseteq H_{1/4}^\Lambda \subseteq H_{1/2} \subseteq H_{1/2}^\Lambda \subseteq H_{3/4} \subseteq H_{3/4}^\Lambda \subseteq G_1^c.$$

By continuing this method for every $t \in D$, where $D \subseteq [0,1]$ is the set of rational numbers that their denominators are exponents of 2, we obtain closed subsets H_t with the property that if $t_1, t_2 \in D$ and $t_1 < t_2$, then $H_{t_1} \subseteq H_{t_2}$. We define the function h on X by $h(x) = \inf\{t : x \in H_t\}$ for $x \notin G_1$ and $h(x) = 1$ for $x \in G_1$.

Note that for every $x \in X, 0 \leq h(x) \leq 1$, i.e., h maps X into $[0,1]$. Also, we note that for any $t \in D, G_2 \subseteq H_t$; hence $h(G_2) = \{0\}$. Furthermore, by definition, $h(G_1) = \{1\}$. It remains only to prove that h is a contra-continuous function on X. For every $\alpha \in \mathbb{R}$, we have if $\alpha \leq 0$ then $\{x \in X : h(x) < \alpha\} = \emptyset$ and if $0 < \alpha$ then $\{x \in X : h(x) < \alpha\} = \bigcup\{H_t : t < \alpha\}$, hence, they are closed subsets of X. Similarly, if $\alpha < 0$ then $\{x \in X : h(x) > \alpha\} = \bigcup\{(H_t)^c : t > \alpha\}$ hence, every of them is a closed subset. Consequently h is a contra-continuous function.

Lemma 3.3. Suppose that X is a topological space. If each pair of disjoint subsets G_1, G_2 of X, where G_1 is α–open and G_2 is C–open, can separate by closed subsets
of X, and G_1 (resp. G_2) is a closed subsets of X, then there exists a contra-continuous function $h : X \to [0,1]$ such that, $h^{-1}(0) = G_1$ (resp. $h^{-1}(0) = G_2$) and $h(G_2) = \{1\}$ (resp. $h(G_1) = \{1\}$).

Proof. Suppose that G_1 (resp. G_2) is a closed subset of X. By Lemma 3.2, there exists a contra-continuous function $h : X \to [0,1]$ such that, $h(G_1) = \{0\}$ (resp. $h(G_2) = \{0\}$) and $h(X \setminus G_1) = \{1\}$ (resp. $h(X \setminus G_2) = \{1\}$). Hence, $h^{-1}(0) = G_1$ (resp. $h^{-1}(0) = G_2$) and since $G_2 \subseteq X \setminus G_1$ (resp. $G_1 \subseteq X \setminus G_2$), therefore $h(G_2) = \{1\}$ (resp. $h(G_1) = \{1\}$).

Lemma 3.4. Suppose that X is a topological space such that every two disjoint C–open and α–open subsets of X can be separated by closed subsets of X. The following conditions are equivalent:

(i) For every two disjoint subsets G_1 and G_2 of X, where G_1 is α–open and G_2 is C–open, there exists a contra-continuous function $h : X \to [0,1]$ such that, $h^{-1}(0) = G_1$ (resp. $h^{-1}(0) = G_2$) and $h^{-1}(1) = G_2$ (resp. $h^{-1}(1) = G_1$).

(ii) Every α–open (resp. C–open) subset of X is a closed subsets of X.

(iii) Every α–closed (resp. C–closed) subset of X is an open subsets of X.

Proof. (i) \Rightarrow (ii) Suppose that G is an α–open (resp. C–open) subset of X. Since \varnothing is a C–open (resp. α–open) subset of X, by (i) there exists a contra-continuous function $f : X \to [0,1]$ such that, $f^{-1}(0) = G$. Set $F_n = \{x \in X : f(x) < \frac{1}{n}\}$. Then for every $n \in \mathbb{N}$, F_n is a closed subset of X and $\bigcap_{n=1}^{\infty} F_n = \{x \in X : f(x) = 0\} = G$.

(ii) \Rightarrow (i) Suppose that G_1 and G_2 are two disjoint subsets of X, where G_1 is α–open and G_2 is C–open. By Lemma 3.3, there exists a contra-continuous function $f : X \to [0,1]$ such that, $f^{-1}(0) = G_1$ and $f(G_2) = \{1\}$. Set $G = \{x \in X : f(x) < \frac{1}{2}\}$, $F = \{x \in X : f(x) = \frac{1}{2}\}$, and $H = \{x \in X : f(x) > \frac{1}{2}\}$. Then $G \cup F$ and $H \cup F$ are two open subsets of X and $(G \cup F) \cap G_2 = \varnothing$. By Lemma 3.3, there exists a contra-continuous function $g : X \to [\frac{1}{2},1]$ such that, $g^{-1}(1) = G_2$ and $g(G \cup F) = \{\frac{1}{2}\}$. Define h by $h(x) = f(x)$ for $x \in G \cup F$, and $h(x) = g(x)$ for $x \in H \cup F$. Then h is well-defined and a contra-continuous function, since $(G \cup F) \cap (H \cup F) = F$ and for every $x \in F$ we have $f(x) = g(x) = \frac{1}{2}$. Furthermore, $(G \cup F) \cup (H \cup F) = X$, hence h defined on X and maps to $[0,1]$. Also, we have $h^{-1}(0) = G_1$ and $h^{-1}(1) = G_2$.

(iii) \Leftrightarrow (iii) By De Morgan law and noting that the complement of every open subset of X is a closed subset of X and complement of every closed subset of X is an open subset of X, the equivalence is hold.

Corollary 3.5. If for every two disjoint subsets G_1 and G_2 of X, where G_1 is α–open (resp. C–open) and G_2 is C–open (resp. α–open), there exists a contra-continuous function $h : X \to [0,1]$ such that, $h^{-1}(0) = G_1$ and $h^{-1}(1) = G_2$ then X has the strong cc–insertion property for (cc, cCc) (resp. (Cc, cCc)).

Proof. Since for every two disjoint subsets G_1 and G_2 of X, where G_1 is α–open (resp. C–open) and G_2 is C–open (resp. α–open), there exists a contra-continuous function $h : X \to [0,1]$ such that, $h^{-1}(0) = G_1$ and $h^{-1}(1) = G_2$, define $F_1 = \{x \in X : h(x) < \frac{1}{2}\}$ and $F_2 = \{x \in X : h(x) > \frac{1}{2}\}$. Then F_1 and F_2 are two disjoint closed subsets of X that contain G_1 and G_2, respectively. Hence by Corollary 3.4, X has the weak cc–insertion property for (cc, cCc) and (Cc, cCc). Now, assume that g and f are functions on X such that $g \leq f$, g is cac (resp. cCc) and f is cc. Since $f - g$ is cac (resp. cCc), therefore the lower cut set $A(f - g, 2^{-n}) = \{x \in X : (f - g)(x) \leq 2^{-n}\}$
is an \(\alpha \)-open (resp. \(C \)-open) subset of \(X \). Now setting \(H_n = \{ x \in X : (f-g)(x) > 2^{-n} \} \) for every \(n \in \mathbb{N} \), then by Lemma 3.4, \(H_n \) is an open subset of \(X \) and we have \(\{ x \in X : (f-g)(x) > 0 \} = \bigcup_{n=1}^{\infty} H_n \) and for every \(n \in \mathbb{N} \), \(H_n \) and \(A(f-g, 2^{-n}) \) are disjoint subsets of \(X \). By Lemma 3.2, \(H_n \) and \(A(f-g, 2^{-n}) \) can be completely separated by contra-continuous functions. Hence by Theorem 2.2, \(X \) has the strong \(cc \)-insertion property for \((coc, cc) \) (resp. \((cCc, cc) \)).

By an analogous argument, we can prove that \(X \) has the strong \(cc \)-insertion property for \((cc, cCc) \) (resp. \((cc, coc) \)). Hence, by Theorem 2.3, \(X \) has the strong \(cc \)-insertion property for \((coc, cCc) \) (resp. \((cCc, cac) \)).

Acknowledgement
This research was partially supported by Centre of Excellence for Mathematics(University of Isfahan).

References

[1] A. Al-Omari and M.S. Md Noorani, Some properties of contra-b-continuous and almost contra-b-continuous functions, European J. Pure. Appl. Math., 2(2)(2009), 213-230.

[2] F. Brooks, Indefinite cut sets for real functions, Amer. Math. Monthly, 78(1971), 1007-1010.

[3] M. Caldas and S. Jafari, Some properties of contra-\(\beta \)-continuous functions, Mem. Fac. Sci. Kochi. Univ., 22(2001), 19-28.

[4] J. Dontchev, The characterization of some peculiar topological space via \(\alpha \)-and \(\beta \)-sets, Acta Math. Hungar., 69(1-2)(1995), 67-71.

[5] J. Dontchev, Contra-continuous functions and strongly S-closed space, Intrnat. J. Math. Math. Sci., 19(2)(1996), 303-310.

[6] J. Dontchev, and H. Maki, On sg-closed sets and semi-\(\lambda \)-closed sets, Questions Answers Gen. Topology, 15(2)(1997), 259-266.

[7] J. Dontchev, Between \(\alpha \)- and \(\beta \)-sets, Math. Balkanica (N.S), 12(3-4)(1998), 295-302.

[8] E. Ekici, On contra-continuity, Annales Univ. Sci. Bodapest, 47(2004), 127-137.

[9] E. Ekici, New forms of contra-continuity, Carpathian J. Math., 24(1)(2008), 37-45.

[10] A.I. El-Magbrabi, Some properties of contra-continuous mappings, Int. J. General Topol., 3(1-2)(2010), 55-64.

[11] M. Ganster and I. Reilly, A decomposition of continuity, Acta Math. Hungar., 56(3-4)(1990), 299-301.

[12] E. Hatir, T. Noiri and S. Yksel, A decomposition of continuity, Acta Math. Hungar., 70(1-2)(1996), 145-150.
Strong insertion of a contra-continuous function

[13] S. Jafari and T. Noiri, Contra-continuous function between topological spaces, Iranian Int. J. Sci., 2(2001), 153-167.

[14] S. Jafari and T. Noiri, On contra-precontinuous functions, Bull. Malaysian Math. Sc. Soc., 25(2002), 115-128.

[15] M. Katětov, On real-valued functions in topological spaces, Fund. Math., 38(1951), 85-91.

[16] M. Katětov, Correction to, ”On real-valued functions in topological spaces”, Fund. Math., 40(1953), 203-205.

[17] E. Lane, Insertion of a continuous function, Pacific J. Math., 66(1976), 181-190.

[18] E. Lane, PM-normality and the insertion of a continuous function, Pacific J. of Math., 82(1979), 155-162.

[19] S. N. Maheshwari and R. Prasad, On R_{Os}-spaces, Portugal. Math., 34(1975), 213-217.

[20] H. Maki, Generalized $A-$sets and the associated closure operator, The special issue in commemoration of Prof. Kazuada IKEDA’s Retirement, (1986), 139-146.

[21] M. Mirmiran, Insertion of a contra-continuous function between two comparable contra-precontinuous real-valued functions, Applied Sciences, 20(2018), 129-138.

[22] M. Mrsevic, On pairwise R and pairwise R_1 bitopological spaces, Bull. Math. Soc. Sci. Math. R. S. Roumanie, 30(1986), 141-145.

[23] A.A. Nasef, Some properties of contra-continuous functions, Chaos Solitons Fractals, 24(2005), 471-477.

[24] M. Powderly, On insertion of a continuous function, Proceedings of the A.M.S., 81(1981), 119-120.

[25] M. Przemski, A decomposition of continuity and $\alpha-$continuity, Acta Math. Hung., 61(1-2)(1993), 93-98.

Authors’ addresses:

Majid Mirmiran
Department of Mathematics,
University of Isfahan,
Isfahan 81746-73441, Iran.
E-mail: mirmir@sci.ui.ac.ir

Binesh Naderi
Department of General Courses,
School of Management and Medical Information Sciences,
Isfahan University of Medical Sciences, Isfahan, Iran.
E-mail: naderi@mng.mui.ac.ir