Teste circuito ao ar livre: construção e validação de um instrumento de predição da capacidade cardiorrespiratória de idosos

Outdoor circuit test: construction and validation of an instrument for the prediction of cardiorespiratory capacity for older adults

Resumo

Objetivo: Este estudo propôs construir, validar e verificar a confiabilidade de um protocolo de avaliação da capacidade cardiorrespiratória de idosos frequentadores do projeto Rio ao Ar Livre (RAL), denominado “Teste Circuito ao Ar Livre (TCAL) Método: foram realizados testes de validade e confiabilidade para verificar a acurácia do TCAL com 50 idosos (70,6±6,3 anos) de ambos os sexos e frequentadores do RAL. A validade foi testada através de coleta de dados de VO₂max em teste cardíopulmonar de exercício máximo e de variáveis do TCAL: a) Tempo de Execução do Circuito; b) Frequência Cardíaca; c) Percepção Subjetiva de Esforço; d) Frequência Cardíaca Média (FCméd). A confiabilidade foi testada através da reprodutibilidade das medidas das variáveis do TCAL, expressas pelo Coeficiente de Correlação Intraclasse (ICC). A capacidade preditiva do VO₂max deu-se por regressão linear múltipla e a estabilidade final do modelo por análise de resíduos e cálculo das distâncias de Cook, sendo adotado o valor de P≤0,05 para significância estatística. Resultados: O modelo preditivo baseado na idade, sexo, circunferência da cintura, IMC e tempo de execução do circuito explicou 41% da variação do VO₂max com erro-padrão de estimativa de 18,5%, e apresentou reprodutibilidade de 0,62 a 0,93. Conclusão: O TCAL mostrou-se estável, confiável e específico para predição da aptidão cardiorrespiratória de idosos frequentadores do RAL, mostrando adequada reprodutibilidade e positiva associação com a aptidão física dos idosos.

Abstract

Objective: the present study aimed to construct, validate and verify the reliability of a protocol for assessing the cardiorespiratory capacity of older adults attending the Rio ao Ar Livre (Open Air Rio, or RAL) project entitled the “Outdoor Circuit Test” (OCT).

Correspondência
Gabriela Rezende de Oliveira Venturini
gabriela-venturini@hotmail.com
Recebido: 03/03/2019
Aprovado: 15/06/2020
INTRODUÇÃO

O processo de envelhecimento humano envolve alterações fisiológicas que impactam na diminuição das capacidades físicas, que podem promover a redução da funcionalidade global do idoso. Nesse sentido, para garantir um envelhecimento populacional ativo e saudável políticas públicas voltadas para a prática de exercícios físicos têm sido implementadas no Brasil. Com tal propósito, na cidade do Rio de Janeiro (RJ) foi criado o projeto “Rio ao Ar Livre” (RAL), cujo objetivo é garantir o acesso e estimular a prática regular de exercícios físicos da população idosa através da construção em espaços públicos de academias de ginástica dotadas de equipamentos que utilizam o peso e a força do próprio usuário para movimentá-los. O projeto possui um protocolo de sessão de treino em forma de circuito misto (composto por exercícios aeróbios e de força muscular) que é orientado por profissionais de Educação Física e aplicado em todos os seus polos. Todavia, não possui um instrumento de avaliação da aptidão física adequado às características específicas do circuito e dos seus aparelhos.

Com tal propósito, na cidade do Rio de Janeiro (RJ) foi criado o projeto “Rio ao Ar Livre” (RAL), cujo objetivo é garantir o acesso e estimular a prática regular de exercícios físicos da população idosa através da construção em espaços públicos de academias de ginástica dotadas de equipamentos que utilizam o peso e a força do próprio usuário para movimentá-los. O projeto possui um protocolo de sessão de treino em forma de circuito misto (composto por exercícios aeróbios e de força muscular) que é orientado por profissionais de Educação Física e aplicado em todos os seus polos. Todavia, não possui um instrumento de avaliação da aptidão física adequado às características específicas do circuito e dos seus aparelhos.

A utilização de algum instrumento de avaliação da aptidão física em programas de exercícios físicos é importante para nortear planejamentos e ajustes visando melhores resultados do desempenho dos sujeitos envolvidos. Assim, a implementação de um instrumento de avaliação cardiorrespiratória no RAL seria uma forma simples e adequada de acompanhar os impactos deste programa.

O consumo máximo de oxigênio (VO2max) é considerado o melhor indicador da capacidade cardiorrespiratória. Sua medida direta é obtida através de testes máximos realizados em laboratórios e requer equipamentos específicos e caros, o que inviabiliza sua utilização em políticas públicas. Entretanto, o VO2max pode ser estimado indiretamente através de testes de campo realizados com esforço submáximo, sendo mais acessíveis e aplicáveis a grandes populações.

Diante desse contexto, o objetivo deste estudo foi construir, validar e verificar a confiabilidade de um protocolo de avaliação da capacidade cardiorrespiratória de idosos frequentadores do RAL, denominado Teste Circuito ao Ar Livre (TCAL).

MÉTODOS

O presente estudo configura-se como transversal, já que faz um corte instantâneo em uma população por meio de uma amostragem, no qual foi determinada a acurácia do Teste Circuito ao Ar Livre (TCAL) através da verificação da sua validade e confiabilidade. Determinou-se a validade através da comparação dos dados do teste cardiolítico de exercício máximo (TCPE) e do TCAL, enquanto a confiabilidade foi definida através da reprodutibilidade das medidas do TCAL.
A amostra constituiu-se por todos os 50 idosos (70,6±6,3 anos) que frequentavam o polo do RAL da Universidade do Estado do Rio de Janeiro (UERJ), de ambos os sexos e diferentes níveis de prática de exercícios físicos. Como critérios de exclusão foram adotados: a) presença de problemas osteomioarticulares que pudessem prejudicar a realização de exercícios; b) falta de liberação médica para a prática de atividades físicas.

A pesquisa foi desenvolvida em conformidade com a resolução 466 de 17 de dezembro de 2012 e aprovada pelo Comitê de Ética do Hospital Universitário Pedro Ernesto da Universidade do Estado do Rio de Janeiro (parecer nº 1.359.995).

A coleta de dados foi realizada por um único avaliador e aconteceu no Laboratório de Atividade Física e Promoção da Saúde (LABSAU), do Instituto de Educação Física e Desporto da UERJ, no período de março a julho de 2016. Com o total da amostra, a coleta foi realizada em duas visitas, separadas por intervalos de 48-72 horas. Na primeira visita foi assinado o Termo de Consentimento Livre e Esclarecido; aplicada uma anamnese (na qual foram coletadas informações acerca das doenças diagnosticadas e o uso de medicamentos); coletadas as medidas das variáveis estatura, massa corporal e circunferência da cintura; e realizado o TCPE; na segunda visita foi realizado o TCAL. A carga máxima da rampa foi estimada a partir de um modelo sem exercício para a predição do VO2max. A razão de incremento das cargas foi delineada de forma a possibilitar uma duração dos testes entre 8 e 12 minutos. Durante a aplicação dos testes, a temperatura situou-se entre 18ºC e 22ºC e a umidade relativa do ar entre 50% e 70%, medidos através de um termo higrômetro digital HM-01 (São Paulo, SP, Brasil). O teste era considerado máximo na presença de três entre os seguintes critérios: a) exaustão voluntária máxima; b) obtenção de platô para o consumo de oxigênio com a evolução das cargas ao final do teste; c) R>1.1; d) obtenção de Frequência Cardíaca (FC) maior que 95% da prevista para a idade ou estabilização da FC de pico com a evolução das cargas ao final do teste; e) valor da escala de percepção subjetiva de esforço (PSE) maior que 917. As variáveis de trocas gasosas foram aferidas por analisador de gases, Ultima (Medical Graphics, USA) e a FC através de eletrocardiograma (Welch Allyn, USA). Por segurança o teste foi realizado na presença de um cardiologista.

O TCPE foi realizado em cicloergômetro (Inbrasport, Porto Alegre, RS, Brasil) por meio de protocolo em rampa individualizado. Embora esse ergômetro seja apontado como inadquisitado por alguns autores, por induzir maior fadiga periférica, essa opção deu-se por também existirem estudos que defendem seu uso com idosos, já que esteques não consideram as alterações na marcha, os níveis reduzidos de capacidade cardiorrespiratória, equilíbrio e força, além de um maior risco de quedas, que acompanham o processo de envelhecimento e influenciam seus resultados.

A carga máxima da rampa foi estimada a partir de um modelo sem exercício para a predição do VO2max. A razão de incremento das cargas foi delineada de forma a possibilitar uma duração dos testes entre 8 e 12 minutos. Durante a aplicação dos testes, a temperatura situou-se entre 18ºC e 22ºC e a umidade relativa do ar entre 50% e 70%, medidos através de um termo higrômetro digital HM-01 (São Paulo, SP, Brasil). O teste era considerado máximo na presença de três entre os seguintes critérios: a) exaustão voluntária máxima; b) obtenção de platô para o consumo de oxigênio com a evolução das cargas ao final do teste; c) R>1.1; d) obtenção de Frequência Cardíaca (FC) maior que 95% da prevista para a idade ou estabilização da FC de pico com a evolução das cargas ao final do teste; e) valor da escala de percepção subjetiva de esforço (PSE) maior que 917. As variáveis de trocas gasosas foram aferidas por analisador de gases, Ultima (Medical Graphics, USA) e a FC através de eletrocardiograma (Welch Allyn, USA). Por segurança o teste foi realizado na presença de um cardiologista.

O TCAL consiste na realização, em um menor tempo possível, de um circuito misto. Esse circuito é um método combinado de exercícios aeróbios e resistidos executados nos aparelhos do RAL, em todos os seus polos.

A Figura 1 mostra a divisão do circuito em sete estações: quatro de exercícios aeróbios (AE) - 1ª, 3ª, 5ª e 7ª, e três de exercícios resistidos (RE) - 2ª, 4ª e 6ª. As estações de AE possuíam tempo fixo de cinco minutos cada uma. Os RE foram realizados alternando membros superiores e inferiores. Nas 2ª
e 4ª estações eram realizados seis RE com 1 série de 15 repetições. Já a 6ª estação foi composta de três exercícios com 2 séries de 15 repetições para equilibrar o número de repetições. Os RE da 2ª e 4ª estação foram: supino vertical, cadeira extensora, puxada/pulley, agachamento livre (sentar e levantar do banco), desenvolvimento, e cadeira flexora. Já os da 6ª estação foram: leg press sentado, remada sentada, panturrilha no leg press.

As variáveis do circuito coletadas para possível inclusão no modelo preditivo foram: a) Tempo de Execução do Circuito (TEC) em segundos; b) Frequência Cardíaca dos últimos 30 segundos do circuito (FC_{30seg}) em batimentos por minuto; c) PSE; d) Frequência Cardíaca Média (FC_{média}); e) Frequência Cardíaca Máxima (FC_{máx}). Tais variáveis foram escolhidas por serem de fácil mensuração, uma vez que o modelo preditivo desenvolvido objetivou atender a uma política pública.

A PSE foi identificada por meio da Escala de Borg-Adaptada 0-10 ao final de cada estação aeróbica (1ª, 3ª, 5ª e 7ª) do circuito. A FC e o TEC foram aferidos por meio do monitor Polar V800 (Polar, Kempele, Finlândia).

A normalidade das variáveis foi ratificada pelo teste de Kolmogorov-Smirnov e seus dados descritos pela média e desvio-padrão, valor mínimo e máximo. A reprodutibilidade do TEC, FC e PSE foi avaliada pelo Coeficiente de Correlação Intraclasse (ICC), o qual considera valores de R acima de 0,90 altos; de 0,80 a 0,89 moderados; e abaixo de 0,80 questionáveis para dados fisiológicos. Para testar diferenças entre idosos que faziam ou não uso de betabloqueador foi usado o teste t de Student para amostras independentes.

Para avaliar a capacidade preditiva do circuito em relação ao VO_{2max} utilizou-se o método stepwise forward de regressão linear múltipla. As variáveis foram incluídas no modelo de acordo com sua significância de contribuição para a estimativa e redundância. O cálculo da equação de regressão foi realizado após testagem para vieses de outliers e casos extremos. A estabilidade final do modelo foi testada por análise de resíduos e cálculo das distâncias de Cook. Foi adotado o valor de p ≤ 0,05 para significância estatística.

RESULTADOS

A caracterização da amostra é apresentada na Tabela 1. Os homens representaram 34% da amostra, enquanto as mulheres 66%. A FC_{máx}, FC_{média} e FC_{30seg} alcançada durante o circuito foi de 86±12%, 75±11% e 76±12% da FC_{máx} do teste de esforço, respectivamente. Considerando a FC_{máx} durante o circuito, a variação foi de 65 a 138%; pela FC_{média} a variação foi de 55 a 120% e pela FC_{30seg} a variação foi de 56 a 129% da FC_{máx} alcançada no teste de esforço.

Figura 1. Circuito misto realizado no Rio ao Ar Livre da cidade Rio de Janeiro, RJ, 2014.
No TCPE não foi observada diferença significativa no VO2máx dos idosos que usavam betabloqueadores daqueles que não usavam (16,2±1,9 vs. 16,1±4,0 ml/kg/min, respectivamente; p=0,92), enquanto a FCmáx dos que usavam o mesmo foi menor (118±15 vs. 140±18 bpm, respectivamente; p=0,003). Igualmente, no TCAL a FC foi menor no grupo betabloqueado (FCmáx: 101±13 vs. 119±14 bpm; p=0,001; FCmédia: 90±10 vs. 103±12 bpm; p=0,006; FC30s: 89±9 vs. 105±14 bpm; p=0,003).

Na Tabela 2 observa-se a reprodutibilidade das medidas do TEC, FC e PSE durante o TCAL. A reprodutibilidade foi satisfatória somente para as variáveis TEC, FCmáx e FC30s, considerando que não foram encontradas diferenças significativas entre seus valores médios de teste e reteste (p-valor) e que seus valores de ICC foram iguais ou acima de 0,90.

O modelo gerou a seguinte equação de predição (R=0,64, R²=0,41, erro padrão=2,86 ml.kg⁻¹.min⁻¹, F (5,43) =5,90, p<0,001): VO2máx (ml.kg⁻¹.min⁻¹) =38,77 -4,11 (sexo; M=0, F=1) - 0,12 (idade, anos) + 0,19 (IMC, kg.m⁻²) – 0,13 (TEC, min) – 0,13 (circunferência da cintura, cm), conforme resultados apresentados na Tabela 3. Em suma, nosso modelo foi capaz de explicar 41% da variância no VO2máx (associação moderada – r=0,64), com erro aproximado de 3 ml.kg⁻¹.min⁻¹. Após testagem para outliers, apenas um caso foi excluído (sexo feminino, 72 anos, 54,4 kg) para conferir estabilidade e precisão máximas do modelo (n final =49).

Os coeficientes Beta demonstraram que a contribuição relativa de cada variável oscilou entre 7% e 56% (Tabela 3). Apesar da pequena contribuição do TEC, a manutenção dessa variável no modelo justifica-se pelo fato de ter sido capaz de aumentar o R² e diminuir o erro padrão (Tabela 3).
A adequação do modelo preditivo foi realizada por teste de resíduos e cálculo das distâncias de Cook; o modelo produziu resíduos pequenos e distâncias de Cook com baixa amplitude.

DISCUSSÃO

O presente estudo propôs a construção de um instrumento de avaliação da capacidade cardiorrespiratória de idosos, considerando características específicas do projeto RAL. Tal construção consistiu em testar a acurácia e confiabilidade do TCAL.

O VO$_{2max}$ pode ser predito com boa acurácia a partir de testes de campo, quando um número determinado de variáveis independentes é usado através de procedimentos de regressão linear múltipla. No entanto, estudos com idosos até então disponíveis utilizaram protocolos de step ou caminhada que apresentam pouca especificidade com relação aos exercícios propostos no RAL.

O modelo preditivo elaborado, baseado na idade, sexo, circunferência da cintura, IMC e TEC, explicou 41% da variância do VO$_{2max}$, com erro-padrão de estimativa de 18,5%, e apresentou adequada reprodutibilidade.

Entretanto, apesar de o modelo ser significante para predizer o VO$_{2max}$ dos idosos, o coeficiente de correlação múltipla (R=0,64) e a variância comum associada (R²=0,41) sugerem que, embora válido, o percentual de explicação do VO$_{2max}$ do modelo é baixo, comparado a estudos anteriores. Uma provável explicação para esse fato pode estar na utilização do cicloergômetro para determinar a medida direta.
do VO$_{2\text{mix}}$, já que este pode induzir maior fadiga periférica13. Entretanto, autores defendem seu uso, já que esteiras não consideram que as alterações na marcha dos idosos e seus níveis reduzidos de capacidade cardiorrespiratória, equilíbrio e força muscular influenciam seus resultados$^{13-15}$.

Outro fato importante que pode ter influenciado nos resultados é que o TCAL envolve a realização de exercícios combinados e não apenas aeróbios. Todavia, tendo em vista o ideal de desenvolver uma ferramenta de avaliação que se aproximasse da realidade do RAL, essa proposta apresenta-se como uma opção para os profissionais que atuam no referido projeto, ainda que apresente limitações6,7,9.

Destaca-se que existem protocolos de predição do VO$_{2\text{mix}}$ sem a realização de exercício, que utilizam informações sobre o nível de atividade física do idoso, que oferecem estimativas razoáveis sobre sua aptidão cardiorrespiratória, sendo bem aceitos na área24, todavia, eles não possuem aproximação com as especificidades do RAL10.

Um ponto positivo do modelo de predição do TCAL é que o erro-padrão de estimativa observado (2,86 mL.kg$^{-1}$.min$^{-1}$) foi menor em magnitude àqueles observados em outros testes de campo propostos$^{20-23}$, mas a média de VO$_{2\text{mix}}$ da amostra representou 18,5% da média mensurada, ao contrário de outros estudos que observaram valores de 9 a 15%21,23. Valores de imprecisão próximos a 20% foram observados também em idosos em teste de banco, em que a amostra foi de tamanho similar a deste estudo14.

As variáveis sexo, idade, IMC e TEC também foram utilizadas em estudos anteriormente realizados com idosos, que propuseram equações de predição do VO$_{2\text{mix}}$ com base em testes submáximos de banco19 e caminhada$^{20-22}$. As variáveis sexo, idade e IMC são também muito comuns em equações de predição do VO$_{2\text{mix}}$ sem a realização de exercício, embora os modelos que contém informação sobre o nível de atividade física dos indivíduos fornecem estimativas mais precisas24.

Dentre os estudos incluídos na revisão sistemática de Venturini et al.16, apenas o de Jetté et al.19 apresentou coeficientes explicativos de cada variável do modelo. No presente estudo, verificou-se que as variáveis com maior poder explicativo foram o sexo e a circunferência da cintura. As variáveis: idade, IMC e TEC foram acrescentadas ao modelo final com a finalidade de melhor ajustá-lo.

Com relação a amostra, 66% dos sujeitos eram mulheres, 16% usavam betabloqueador e apresentaram valores médios de VO$_{2\text{mix}}$ de 16,2 mL.kg$^{-1}$.min$^{-1}$, variando de 10 a 30 mL.kg$^{-1}$.min$^{-1}$, o que significa baixa aptidão cardiorrespiratória. Em estudos anteriores foram observados valores médios de VO$_{2\text{mix}}$ entre 24-26 mL.kg$^{-1}$.min$^{-1}$ e 29,5-35,7 mL.kg$^{-1}$.min$^{-1}$, 21. Desse modo, não é possível afirmar que a presente equação se aplica a idosos com maiores níveis de condicionamento físico. O estudo de Oja et al.21, por exemplo, constatou que a equação de predição do VO$_{2\text{mix}}$ a partir do teste de caminhada de 2km não foi válida para indivíduos muito ativos.

Ressalta-se ainda que no modelo de regressão foram incluídos tanto os idosos que fazem uso de betabloqueador quanto aqueles que não o utilizam, uma vez que, no teste de esforço máximo, não foram observadas diferenças significativas no seu VO$_{2\text{mix}}$. Isto, a priori, não parece ser um problema, haja vista que na amostra de validação cruzada do estudo de Petrella et al.23 não foi observada diferença entre pacientes hipertensos e pós-artroscopia de quadril com os indivíduos saudáveis.

As análises da reprodutibilidade constataram que os escores das variáveis mensuradas no TCAL foram altamente correlacionados nas duas tentativas realizadas, apresentando coeficiente de correlação intraclassc entre 0,62 a 0,93. Foram incluídas no modelo as variáveis que apresentaram valores ICC acima de 0,90 por este ser considerado alto para dados fisiológicos18. As variáveis que apresentaram maior reproducitibilidade foram o TEC e a FC30 (ICC =0,93). Além de se mostrar válido, todo teste deve ser reprodutível, pois é importante que haja estabilidade na sua medida. Isso contribui para que o erro de mensuração seja minimizado. Testes com alta reproducitibilidade são importantes nos estudos que envolvem intervenção, pois fornecem confiança sobre seus reais efeitos25.
Dentre as variáveis do modelo preditivo destaca-se o TEC por ser uma variável de simples mensuração, que não requer equipamentos específicos, tornando o teste de baixo custo. O coeficiente de reprodutibilidade do TEC é similar aos observados em outros estudos com idosos, tais como no teste de caminhada de 6 minutos \((r = 0,88)^{23}\) e no teste de caminhada de 2km \((r = 0,90)^{21}\). Já a FC\(_{méd}\) e a PSE não apresentaram consistência nas medidas. Uma possível explicação para isso é que a relação de predição entre a PSE e a FC em idosos não tem sido muito bem definida. Inclusive, no estudo de Oja et al.\(^{21}\) a PSE também não foi considerada variável preditora do VO\(_{2\text{max}}\) no teste de caminhada de 2km.

Como limitações do presente estudo destacam-se: a falta de cálculo amostral, a falta de uma etapa de validação cruzada para verificação da validade externa do TCAL, a generalização do modelo quanto ao sexo, e, possivelmente, a utilização do cicloergômetro na execução do TCPE. No presente estudo optou-se por formar a amostra somente com os frequentadores do polo UERJ, por este ter na época da coleta status de uma Academia Escola, cujo objetivo era justamente desenvolver estudos para respaldar cientificamente o projeto, entretanto, o cálculo amostral seria importante para garantir a representatividade da população de idosos usuários do RAL. Igualmente, a validação cruzada poderia mostrar se o TCAL possui validade externa\(^8\), o que é importante tendo em vista que o projeto abrange diferentes regiões do Rio de Janeiro-RJ. Além disso, um modelo específico por sexo poderia aumentar o poder de explicação do VO\(_{2\text{max}}\) de idosos frequentadores da RAL\(^9\), considerando as diferenças biológicas existentes entre homens e mulheres. Por último, a utilização da esteira na realização do TCPE, embora essa também possua limitações no caso de idosos, poderia proporcionar maiores coeficientes de explicação da variância do VO\(_{2\text{max}}\)\(^8\).

CONCLUSÃO

O presente estudo construiu um instrumento de avaliação válido e confiável para predição da capacidade cardiorrespiratória de idosos frequentadores do RAL.

Como um teste de campo, o TCAL tem a vantagem de ser simples, de fácil aplicação e específico para o projeto RAL. Podendo ser uma alternativa viável quando a medida direta do VO\(_{2\text{max}}\) não for possível de ser realizada. Assim, entende-se que o TCAL pode ser utilizado para obtenção de resultados capazes de comparar e classificar o condicionamento dos frequentadores do projeto RAL, o que seria essencial para melhorar a eficácia do treinamento realizado, já que não basta somente que sua prática seja orientada, mas, principalmente, que essa orientação seja pautada nas reais condições físicas de cada praticante.

Outra vantagem que deve ser destacada é que o TCAL serve especialmente para motivar os alunos e monitorar a sua condição física a partir do momento em que a diminuição do tempo de execução no circuito implica em melhor condição física, podendo impactar na mudança de comportamento dos idosos, no sentido de otimizar a realização dos exercícios para aumentar seu condicionamento físico. Nesse sentido, este estudo possui grande potencial para uma aplicação prática.

Uma sugestão para estudos futuros é a inclusão do nível de atividade física habitual como possível variável preditora do VO\(_{2\text{max}}\) dos idosos em novos modelos, pois sabe-se que a natureza e a intensidade das atividades físicas cotidianas influenciam a aptidão cardiorrespiratória dos indivíduos.

Por fim, ressalta-se que a implementação do projeto RAL já representa, por si só, um grande avanço em termos de saúde pública para a população idosa da cidade do Rio de Janeiro-RJ, e a possibilidade de realização de estudos que busquem contribuir de alguma forma para o seu aperfeiçoamento é importante para lhe dar embasamento científico, tornando a prática de exercícios físicos nesses espaços mais eficaz e segura para os idosos.
REFERÊNCIAS

1. Rezende LFM, Rabacow FM, Viscondi JYK, Luiz OC, Matsudo VKR, Lee IM. Effect of physical inactivity on major noncommunicable diseases and life expectancy in Brazil. J Phys Act Health. 2015;12(3):299-306.

2. Soares MFN, Maia LC, Costa SM, Caldeira AP. Dependência Funcional em idosos assistidos por equipes da Estratégia Saúde da Família. Rev Bras Geriatr Gerontol. 2019;22(5):1-14.

3. Machado CV, Lima LD, Baptista TWF. Políticas de saúde no Brasil em tempos contraditórios: caminhos e tropeços na construção de um sistema universal. Cad Saúde Pública. 2017;33:143-61.

4. Mathias NG, Melo Filho J, Szekularek AC, Gallo LH, Fermino RC, Gomes ARS. Motivos para a prática de atividades físicas em uma academia ao ar livre de Paranaguá-PR. Rev Bras Ciênc Esporte. 2019;41(2):222-8.

5. Silva LGC, Oliveira FS, Martins IS, Martins FES, Garcia TFM, Sousa ACPA. Avaliação da funcionalidade e mobilidade de idosos comunitários na atenção primária à saúde. Rev Bras Geriatr Gerontol. 2019;22(5):1-10.

6. Silva NL, Brasil C, Furtado H, Costa J, Farinatti PTV. Exercício físico e envelhecimento: benefícios à saúde e características de programas desenvolvidos pelo LABSAU/IEFD/UERJ. Rev HUPE. 2014;13(2):75-85.

7. Cordeiro R, Monteiro W, Cunha F, Pescatello LS, Farinatti P. Influence of acute concurrent exercise performed in public fitness facilities on ambulatory blood pressure among older adults in Rio de Janeiro city. J Strength Cond Res. 2018;32(10):2962-70.

8. Cunha FA, Midgley A, Montenegro R, Vasconcellos F, Farinatti P. Utility of a non-exercise VO 2max prediction model for designing ramp test protocols. Int J Sports Med. 2015;36(10):796-802.

9. Cranney L, Phongsavan P, Kariuki M, Stride V, Scott A, Hua M, et al. Impact of an outdoor gym on park users' physical activity: a natural experiment. Health Place [Internet]. 2016 [acesso em 29 mar. 2020];37:26-34. Disponível em: https://www.sciencedirect.com/science/article/pii/S1355382921500149?via%3Dihub

10. Venturini GR, Farinatti PTV, Silva NSL. Cardiorespiratory tests of field in elderly: a systematic review. Motricidade. 2017;13(S1):192-200.

11. Kesmodel US. Cross-sectional studies: what are they good for? Acta Obstet Gynecol Scand. 2018;97(4):388-93.

12. Gordon C, Chunlea WC, Roche AF. Stature, recumbent length, and weight. Champaign: Human Kinetics; 1988.

13. Alves AM, Oliveira DN, Araújo RHO, Couto JO, Morais Júnior GS, Morais DB, et al. Fatores associados à baixa aptidão cardiorrespiratória em idoso. Motricidade [Internet]. 2019 [acesso em 29 mar. 2020];15(S3):47-53. Disponível em: https://revistas.rcaap.pt/motricidade/article/view/18728/14569

14. Pogliaghi S, Bellotti C, Paterson DH. “Tailored” submaximal step test for VO 2max prediction in healthy older adults. J Aging Phys Act. 2014;22(2):261-8.

15. Frazão M, França LSMR, Bezerra SCM, Silva PE. Relationship of ventilatory inefficiency and low cardiorespiratory fitness in the elderly: a retrospective observational study. Rev Bras Geriatr Gerontol. 2019;22(4):e190025 [8 p.].

16. Matthews CE, Heil DP, Freedson PS, Pastides H. Classification of cardiorespiratory fitness without exercise testing. Med Sci Sports Exerc. 1999;31(3):486-93.

17. Borg GA. Psychophysical bases of perceived exertion. Champaign: Human Kinetics Publisher; 2020.

18. Vincent WJ, Weir JP. Statistics in Kinesiology. 5ª ed. Champaign: Human Kinetics Publisher; 2020.

19. Jette M, Campbell J, Mongeon J, Routhier R. The Canadian Home Fitness Test as a predictor for aerobic capacity. Can Med Assoc J. 1976;114(8):680-2.

20. Kline GM, Porcari JP, Hintermeister R, Freedson PS, Ward A, McCarron RF, et al. Estimation of VO 2max from a one-mile track walk, gender, age, and body weight. Med Sci Sports Exerc [Internet]. 1987 [acesso em 25 jan. 2020];19(3):253-9. Disponível em: https://insights.ovid.com/pubmed?pmid=3600239

21. Oja P, Laukkanen R, Pasanen M, Tyrry T, Vuori I. A 2-km walking test for assessing the cardiorespiratory fitness of healthy adults. Int J Sports Med. 1991;12(4):356-62.

22. Rikli R, Jones J. The Reliability and validity of a 6-Minute Walk Test as a measure of physical endurance in older adults. J Aging Phys Activ. 1998;6:363-75.

23. Petrella RJ, Koval JJ, Cunningham DA, Paterson DH. A Self-paced step test to predict aerobic fitness in older adults in the primary care clinic. J Am Geriatr Soc. 2001;49(5):632-8.
24. Maranhão Neto GA, Farinatti PTV. Equações de predição da aptidão cardiorrespiratória sem testes de exercício e sua aplicabilidade em estudos epidemiológicos: revisão descritiva e análise dos estudos. Rev Bras Med Esporte. 2003;9(5):304-14.

25. Matias GHL, Guerra ACCG, Souza Filho BAB, Lima JTO, Carmo CN, Mattos IE. Repetibilidade e reprodutibilidade de um manual de exercícios físicos domiciliares. Fisioter Pesqui. 2018;25(2):209-16.