Insect diversity in some rural areas district Bagh Jammu and Kashmir (Pakistan)

Abu ul Hassan Faiz  
*Woman University of Azad Kashmir (Bagh)*, sabulhussan@gmail.com

Mehboob Ul Hassan  
*Department of Education, University of Punjab*

Mikhail F Bagaturov  
*Zoological Institute RAS, St. Petersburg, Russia*

Ghazal Tariq  
*Woman University of Azad Jammu & Kashmir, Bagh*

Lariab Zahra Faiz  
*Woman University of Azad Jammu & Kashmir, Bagh*

Follow this and additional works at: https://corescholar.libraries.wright.edu/jbm

Part of the Biodiversity Commons, Forest Sciences Commons, and the Zoology Commons

**Recommended Citation**

Faiz, A. H., Hassan, M. U., Bagaturov, M., Tariq, G., & Faiz, L. Z. (2019). Insect diversity in some rural areas district Bagh Jammu and Kashmir (Pakistan), *Journal of Bioresource Management, 6* (3).  
DOI: https://doi.org/10.35691/JBM.9102.0110

This Article is brought to you for free and open access by CORE Scholar. It has been accepted for inclusion in Journal of Bioresource Management by an authorized editor of CORE Scholar. For more information, please contact library-corescholar@wright.edu.
INSECT DIVERSITY IN SOME RURAL AREAS DISTRICT BAGH JAMMU AND KASHMIR (PAKISTAN)

ABU UL HASSAN FAIZ¹, MEHBOOB UL HASSAN², MIKHAIL F BAGATUROV³* GHAZAL TARIQ¹ AND LARIAB ZAHRA FAIZ¹

¹Department of Zoology, Woman University of Azad Jammu & Kashmir, Bagh, AJK, Pakistan
²Department of Education, University of Punjab
³Zoological Institute RAS, St. Petersburg, Russia

*Corresponding author: bbigmojo@mail.ru

ABSTRACT

The present study was designed to find species composition and diversity of insects in (Cultivated area, wild area, suburban) existing at different trophic level of food chain in Bagh. The study was conducted from November, 2017 to September, 2018. Fifty-two species of insects belonging to 33 families were recorded. The diversity of insects in all studied area were same but significant difference in density of insects was found.

Key words: cultivated area, wild area, suburban area, moth, beetles

INTRODUCTION

The Insecta class is an integral part of its inhabiting ecosystem (Kim et al., 1993). The species belonging to this class are notorious for their activities in destroying crops and other useful items of benefit to man. Hence, their benefits are deprived of spotlight. They play an important role in cycling the nutrients present in nature. Where they harm crops, their presence is also essential for pollination and decomposition.

Insect herbivory changes the quality, quantity, and timing of plant detrital inputs and can potentially have large effects on ecosystem cycling (Belovsky et al., 2000). It was found that grasshopper herbivory increased plant abundance because of greater availability (Belovsky et al., 2000). Hence, insect herbivores are important drivers of ecosystem processes by transforming living plant biomass into Frass and green fall (Hunter et al., 2001) and drive a significant fraction of above-ground to belowground Nitrogen and Phosphorus fluxes across entire ecosystems (Metcalf et al., 2014).

The provisioning services of insects as pollinator for over three quarters of wild flowering plant species in temperate regions is crucial to the ecosystem. Nearly two-thirds of all plant species rely on insects for pollination. The most important pollinators are bees, beetles, butterflies and flies (Schoonhoven et al., 2004). Insects therefore, contribute to plant diversity and affect animal biodiversity through pollination indirectly.

There is little information available about crop pest, about nature and extent of damage and how to control vertebrate pests to save crops in the terms of economic returns for the study area. The present study was designed to prepare a checklist of insects and to find out population density of insects in District Bagh.

MATERIAL AND METHODS

The specimens were trapped using light. The specimens were euthanized using ethyl acetate vapors and brought back to the laboratory. The insects were observed under a Leica EZ 4 HD stereo zoom microscope. The identification was carried out with the help of keys of Holloway (1987, 1998) and Kristensen (1999).
**RESULTS**

Table 1: A Check List of diversity of insect Pest Species

| Sr No. | Family            | Common name                 | Scientific name       | Cultivated area | Wild area | Sub-urban area |
|--------|-------------------|------------------------------|-----------------------|-----------------|-----------|----------------|
| 1      | Tettigoniidae     | Katydid Nymph               | C. simplex            | ✓               | ✓         | ✓              |
| 2      | Elateridea        | Headlight Elater            | P. noctilucus         | ✓               | ✓         | x              |
| 3      | Cerambycidae      | Long horned beetle          | B. rufomaculata       | ✓               | ✓         | ✓              |
| 4      | Lygaeidae         | Milk weed                   | O. fasciatus          | ✓               | x         | ✓              |
| 5      | Tipulidae         | Crane fly                   | T. paludosa           | ✓               | ✓         | ✓              |
| 6      | Blattodea         | Cockroach                   | B. Americana          | ✓               | ✓         | ✓              |
| 7      | Phalanooguidea    | Cellar\skull spider        | P. phalangioides      | ✓               | ✓         | ✓              |
| 8      | Pentatomidae      | Brown Mamorated Stink bug   | H. halys              | ✓               | ✓         | ✓              |
| 9      | Blattodea         | Dry wood termite            | A. termite            | ✓               | ✓         | ✓              |
| 10     | Vespidae          | Paper wasp                  | P. bellicosus         | ✓               | ✓         | ✓              |
| 11     | Acriddidae        | Suheastern grasapper        | A. vulgaris           | ✓               | ✓         | ✓              |
| 12     | Apidae            | Carpenter bee               | X. violacea           | ✓               | ✓         | ✓              |
| 13     | Tipulidae         | Mosquito hawak              | T. vernalis           | ✓               | ✓         | ✓              |
| 14     | Syrphidae         | Syrphid fly                 | E. tenax              | ✓               | ✓         | ✓              |
| 15     | Tipuladia         | Marsh crane fly             | T. oleracea           | ✓               | ✓         | ✓              |
| 16     | Pentatomidae      | Green stink bug             | N. viridula           | ✓               | ✓         | x              |
| 17     | Ichneumonidae     | Ichneumonid wasp            | Ichneumon sp          | ✓               | ✓         | ✓              |
| 18     | Carabidae         | Ground beetle               | M. tetraspiloto       | ✓               | ✓         | ✓              |
| 19     | Coccinellidae     | 7-spot ladybird             | C. septempunctata     | ✓               | ✓         | ✓              |
| 20     | Scarabaeidae      | Scrab beetle                | C. macleayi           | ✓               | ✓         | ✓              |
| 21     | Sarcophilagidae   | Flesh fly                   | Sarcophagus sp.       | ✓               | ✓         | ✓              |
| 22     | Cerambycidae      | Longhorn beetle             | X. sme                | ✓               | ✓         | ✓              |
| 23     | Stratiomyidae     | Black Soldier fly           | H. illucens           | ✓               | ✓         | ✓              |
| 24     | Protodiplatyaide  | Earwig                      | A. Martynovi          | ✓               | ✓         | ✓              |
| 25     | Blaberidae        | German cockroach            | B. germinica          | ✓               | ✓         | ✓              |
| 26     | Tephritidae       | Melon fly                   | B. cucurbitae         | ✓               | ✓         | ✓              |
| 27     | Dermaptera        | Pincher bug                 | E. dermaptera         | ✓               | ✓         | ✓              |
| 28     | Phasmisida        | Stick insect                | Phasmatodea           | ✓               | ✓         | x              |
| 29     | Tettigoniidae     | Bush cricket                | L. punctatissima      | ✓               | ✓         | ✓              |
Table 4.2 Density of insects in different habitat types of District Bagh

| S.no. | Scientific Name          | Sub Urban area | Cultivated area | Wild area  |
|-------|--------------------------|----------------|-----------------|------------|
| 1     | *C. simplex*             | 9.75±4.78      | 10±2.85         | 12.5±3.40  |
| 2     | *P. noctilucus*          | -              | 6.25±2.09       | 7.5±2.84   |
| 3     | *B. rufomaculata*        | 3.33±0.88      | 7.5±3.52        | 8.75±0.94  |
| 4     | *O. fasciatus*           | 13.33±0.88     | 6.66±1.85       | 6±1.73     |
| 5     | *T. paludosa*            | 7.5±2.10       | 8.66±3.17       | 8.75±2.95  |
| 6     | *B. Americana*           | 9.75±3.14      | 6.66±3.17       | 7.5±2.02   |
| 7     | *P. phalangioides*       | 5±2.04         | 10±5.29         | 12.5±4.78  |
| No. | Species                  | Mean ± SD |
|-----|--------------------------|-----------|
| 8   | H. halys                 | 6.66±1.85 | 12.5±5.31 | 10±6.02 |
| 9   | A. termite               | 5±3.02    | 6.25±1.31 | 10±2.41 |
| 10  | P. bellicosus            | 10±3.74   | 15±5.67  | 12.5±1.55 |
| 11  | A. vulgaris              | 6.66±3.48 | 6.66±5.69 | 8.75±1.49 |
| 12  | X. violacea              | 6.66±4.17 | 5±1.77   | 10±4.61 |
| 13  | T. vernalis              | 11.25±2.98| 6.66±3.28| 10±4.72 |
| 14  | E. tenax                 | 6.25±1.88 | 10±3.05  | 8.75±1.76 |
| 15  | T. oleracea              | 8.75±3.14 | 6.25±1.37| 10±3.39 |
| 16  | N. viridula              | -         | 6.66±2.33| 7.5±2.5  |
| 17  | Ichneumon sp.            | 7.5±2.98  | 6.25±1.79| 8±1.41  |
| 18  | M. tetraspilotus         | 7±1.79    | 10±5.19  | 10±2.64 |
| 19  | C. septicuncta           | 8.33±2.33 | 11.25±3.32| 12.25±3.01 |
| 20  | C. macleayi              | 6.66±3.66 | 10±3.05  | 12.5±3.30 |
| 21  | Sarcophagus sp.          | 10±1.29   | 10±2.51  | 7.5±2.87 |
| 22  | X. smei                  | 6.33±2.40 | 6.66±1.85| 10±1    |
| 23  | H. illucens              | 9±1.36    | 8.33±2.40| 10±3.39 |
| 24  | A. Martynovi             | 8.66±2.02 | 6±2.19   | 9.5±1.32 |
| 25  | B. germanica             | 6.25±2.05 | 6.66±3.48| 8.33±1.76 |
| 26  | B. cucurbitae            | 6.66±3.48 | 10±1.73  | 10±4.35 |
| 27  | E. dermaptera            | 6.66±4.17 | 6.66±5.17| 10.33±3.84 |
| 28  | Phasmatodea              | -         | 6.66±2.60| 7.5±2.5  |
| 29  | L. punctatissima         | 7±3.05    | 10±3.65  | 15±2.309 |
| 30  | A. albistriga            | 7.5±3.59  | 10±3.46  | 7.5±2.62 |
| 31  | C. carnea                | 6.66±2.72 | 10±2.30  | 7.25±1.65 |
| 32  | E. kuehniella            | 7.75±2.17 | 6.66±4.70| 8±3.46  |
| 33  | C. dilutes               | 6.75±1.93 | 5±2.04   | 8.33±3.84 |
| 34  | S. sacer                 | 9±2.67    | 6.66±2.18| 8.75±2.83 |
| 35  | E. dermaptera            | 7±3.21    | 5±3.02   | 10±2.64 |
| 36  | E. caja                  | 10±1.52   | 7.5±2.53 | 9.75±1.65 |
| 37  | Chlaenius sp.            | 6.75±1.10 | 4.5±1.04 | 8.33±2.90 |
| 38  | A. luminosa              | 6.25±2.05 | 6.66±2.72| 7.66±3.28 |
| 39  | R. inquisition           | 6.66±3.28 | 7.33±4.84| 6±1.95  |
| 40  | M. religiosa             | -         | 6.66±3.17| 6.25±1.37 |
| 41  | A. ruficornis            | 8±2.64    | 10±1.95  | 11.25±1.10 |
| 42  | C. parallelus            | 6.66±3.84 | 5.75±1.79| 9.66±2.33 |
| 43  | I. lympyridae            | 6.66±2.90 | 6.33±2.60| 11.66±2.84 |
| 44  | P. fuscatus              | 8±1.82    | 7.5±2.95 | 12.5±2.5 |
| 45  | H. maxima                | -         | 6.66±2.33| 10±2.48 |
| 46  | D. titanus               | 5±3.02    | 7.66±1.66| 11±2.65 |
| 47  | O. glaucum               | 8±3.02    | 6.66±2.18| 10±2.08 |
| 48  | C. bruneus               | 6.25±1.70 | 11.25±2.39| - |
| 49  | B. polyneutus            | 5±2.16    | 13.33±2.40| 12.5±2.75 |
| 50  | B. dasarada              | 7.33±2.60 | 10.5±2.17| 12.25±2.46 |
| 51  | M. rhipidius             | 6.25±2.13 | 6.5±1.84 | 10±1.15 |
| 52  | B. terretris             | 10±2.64   | 9.75±2.86| 12±2.54 |
Figure 1. Scree plot of study area
Faiz et al. (2019). Insect Diversity in Some Rural Areas District Bagh.

**J Biores Manag. 6 (3): 38-43**

**DISCUSSION**

A total of 52 species belonging to 33 families (Tettigoniidae, Elateridae, Cerambycidae, Lygaeidae, Tipulidae, Blattodea, Phalanooguidea, Pentatomidae, Vespidae, Acrididae, Apidae, Syrphidae, Ichneumonidae, Carabidae, Coccinelidae, Scarabaeidae, Sarcophagidae, Stratiomyidae, Protodiplatyidae, Tephritidae, Phasmida, Erebidae, Crysopidae, Pralidae, Maridida, Dermaptera, Lampyridae, Mantidae, Sparassidae, Lucanidae, Libellulidae, Papilionidae and Lycidae) were collected from forested areas from Bagh.

The Nymph of Katydid (*C. simplex*) was found to be abundant. This species was worldwide in distribution (BBC et al., 2013) and was collected from pine trees, confirming the findings of Svatopaulk et al. (1989).

The Headlight Elater (*P. noctilucus*) was less in number. It was collected from tunnels in the outer layer of termite mounds. During summertime, these glow at night attracting prey in the form of other insects (Levy, 2001). It has previously been reported in Belize, Saint Vincent, Grenadines, Hawaii and Panama (Meerman, n.d.). The Longhorned beetle (*B. rufomaculata*) was less in number. It was collected from forests, gardens and fruity trees. This species has a global distribution (Kariyanna et al., 2017).

The density of Milkweed bug (*O. fasciatus*) was highest in the sub urban area (13.33±0.88). This species was collected from garden; they usually prey on wood, fruits and other vegetation. This species was widely distributed through North America, central America, Mexico and the southern areas in Canada (Attisano et al., 2013).

Brown Marmorated Stink bug (*H. halys*) was less in number. This species was collected from fruit tree orchard, soyabean fields. It was native to China, Japan, Korea and Taiwan (Hoebike and Carter, 2003).
The scarab beetle (C. macleayi) was found to be abundant in wild and cultivated areas. This species was collected from dung cakes; it is attracted to light at night, reported by (Michelson et al., 1911). Some consume live plants and are considered agricultural pests. Some eat fruit, fungi, carrion, or insects. There's even a variety that subsists on the slime left by snails. But the most well-known diet item consumed by the scarabs are dung beetles.

The bush cricket (L. punctatissima) was abundant. This species was collected from the cool, dry temperate regions (Vicky, 1965). The distribution of this species was missing in Pakistan but it is abundant in Australia. They usually live in gum trees but are sometimes found in gardens on rose bushes or fruit trees.

The praying mantis (M. religiosa) was found to be less in number. This species was collected from different habitats; they are generally located in the warmer regions, particularly tropical and sub-tropical latitudes (Brackbury, 1991). The geographic distribution of this species was a wide spread with a nearly cosmopolitan distribution; it was present in all continents except Antarctica and South America (Berg et al., 2011).

The paper wasp (P. fuscatus) was abundantly present in the study site. This species was recorded from nests in woodlands and savannas. It was fairly common around human habitation, especially where exposed wood was present that may be used for nest material. This species was distributed from southern Canada to the United states to central America. The northern range is Chilcotin, British Columbia, and reaches as far south as Honduras (Jandt et al, 2014).

The huntsman spider (H. maxima) was abundantly found in the wild but nil in the sub urban area. This species has previously been observed in a cave in Laos (Szalay, 2014). The common field grasshopper (C. brunneus) was abundant in cultivated area but nil in the wild. This species was recorded from dry, grassy habitat, it is often common in dry parkland, roadside and waste ground and was reported by Bushell and Hochkirch (2014). This species is distributed across Europe, North Africa, and temperate Asia (Cherrill et al., 2002).

The black swallow tail butterfly (B. polyeuctes) was abundantly present. It was collected from forests and wood (Häuser et al., 2005). Both the caterpillar and the adult are poisonous. The caterpillars of the Pipevine Swallowtail feed on the poisonous host plant, Aristolochia, also known as the pipevine.

CONCLUSION

Fifty-two species belonging to 33 families (Tettigoniidae, Elateridae, Cerambicidae, Lygaeidae, Tipulidae, Blattodea, Phalanooguidea, Pentatomidae, Vespidae, Acrididae, Apidae, Syrphidae, Ichneumonidae, Carabidae, Coccinellidae, Scarabaeidae, Sarcophagidae, Stratiomyidae, Protodiplatyidae, Tephritidae, Phasmidae, Erebidae, Cryopodidae, Pralidae, Maridida, Dermaptera, Lampyridae, Mantidae, Sparassidae, Lucanidae, Libellulidae, Papilionidae and Lycidae) were collected from forested areas from Bagh.

REFERENCES

Attisano A, Tregenza T, Moore A, Moore P (2013). Oosorption and migratory strategy of the milkweed bug, Oncopeltus fasciatus. Anim Behav., 86: 651-657. 10.1016/j.anbehav.2013.07.013.
Belovsky GE, Slade JB (2000). Insect Herbivory Accelerates Nutrient Cycling and Increases Plant Production. Proceedings of the
DeBach P (1964). Biological Control of Insect Pests and Weeds. Cambridge University Press, Cambridge, UK, 844 pp.

De Groot RS, Wilson MA, and Boumans RMJ (2002). A Typology for the Classification, Description and Valuation of Ecosystem Functions, Goods and Services. Ecol Econ., 41: 393-408.

Dicke M (2017). Ecosystem Services of Insects. In: Van Huis, A. and Tomberlin, J.K., Eds., Insects as Food and Feed: From Production to Consumption, Wageningen Academic Publishers, Wageningen, The Netherlands, 61-76.

Evans TA, Dawes TZ, Ward PR, Lo N (2011). Ants and termites Increase Crop Yield in Dry Climate. Nature Communications, 2(262).

Farwig N, Brandl R, Siemann S, Wiener F, Muller J (2014). Decomposition Rate of Carrion Is Dependent on Composition Not Abundance of the Assemblages of Insect Scavengers. Oecologia, 175: 1291-1300.

Garibaldi LA, Steffan-Dewenter I, Winfree R, Aizen MA, Bommarco R, Cunningham SA, Kremen C, Carvalheiro LG, Greenleaf S, Hipólito J, Holzschuh A, Howlett B, Isaacs R, Javorek SK, Kennedy CM, Kremen C, Laine K, Landis DA, Linsenmair KE, Lonsdale PC, Mason-Gamer RJ, Menzel P, Moduley J, Mitchell JA, Moure JR, Nolte EJ, Oostermeijer JB, Olff H, Ottoni L, Otte D, Pautasso M, Prado NF, Proctor M, Pywell RF, Ryschawy JA, Schuurhan J, Shuker RJ, Siepel P, Stinner BR, Tscharntke T, Viana BF, Wanger TC, Westphal C, Williams N, Klein AM (2013). Wild
Pollinators Enhance Fruit Set of Crops Regardless of Honey Bee Abundance. Science, 339: 1608-1611.

Gallai N, Salles JM, Settele J, Vaissiere BE (2009). Economic Valuation of the Vulnerability of World Agriculture Confronted with Pollinator Decline. Ecol Econ, 68: 810-821.

Gullan PJ, Cranston (2010). The Insects: An Outline of Entomology. Blackwell Publishing, Hoboken, NJ, 584 p.

Häuser CL, Jong RD, Lamas G, Robbins RK, Smith C, Vane-Wright RI (2005). Papilionidae. Retrieved from: http://www.insects-online.de/frames/papilio.htm

Hoebke ER, Carter ME (2003). Halyomorpha halys (St+1) (Heteroptera: Pentatomidae): a polyphagous plant pest from Asia newly detected in North America. Proceedings of the Entomological Society of Washington, 105 (1): 225-237.

Hoehn P, Tscharntke, Tylianakis JM, Steffan-Dewenter I (2008). Functional Group Diversity of Bee Pollinators Increases Crop Yield. Proceedings of the Royal Society B: Biol Sci., 275: 2283-2291.

Hunter MD (2001). Insect Population Dynamics Meets Ecosystem Ecology: Effects of Herbivory on Soil Nutrient Dynamics. Agr Forest Entomol., 3: 77-84.

Jandt JM, Tibbetts EA, Toth AL (2014). Polistes paper wasps: a model genus for the study of social dominance hierarchies. Insect Soc., 61:11–27.

Kariyanna B, Muthuguonder M, Biradar R, Das U, Hugar A (2017). Important longhorn beetles (Coleoptera: Cerambycidae) of horticulture crops. J Entomol., 5(5): 1450-1455.

Kim KC (1993). Biodiversity, Conservation and Inventory: Why Insects Matter. Biodivers Conserv., 2 (3): 191-214.

Kromp B (1999). Carabid Beetles in Sustainable Agriculture: A Review on Pest Control Efficacy, Cultivation Impacts and Enhancement. Agric. Ecosyst. Environ., 74: 187-228.

Losey JE, Vaughan M (2006). The Economic Value of Ecological Services Provided by Insects. BioScience, 56: 311-323.

Levy HC (2001). In: Greatest Bioluminescence. University of Florida Book of Insect Records, University of Florida, Florida. Retrieved from: https://web.archive.org/web/20081221013245/http://ufbir.ifas.ufl.edu:80/chap29.htm

Macfadyen S, Kramer EA, Parry HR, Schellhorn NA (2015). Temporal Change in Vegetation Productivity in Grain Production Landscapes: Linking Landscape Complexity with Pest and Natural Enemy Communities. Ecol Entomol., 40: 56-69.

Mascaro J (2013). Origins of the Novel Ecosystems Concept. In: Hobbs. R., Hall, C.M., et al., Eds., Novel Ecosystems: Intervening in the New Ecological World Order, Wiley-Blackwell, Hoboken, NJ, pp. 45-57.

Meerman J (n.d.). Some interesting Invertebrates from Belize. Retrieved from: http://biological-diversity.info/invertebrates.htm.

Merritt RW, De Jong GD (2015). Arthropod Communities in Terrestrial Environments. In: Benbow ME, Tomberlin JK, Tarone AM. Eds., Carrion Ecology, Evolution, and Their Applications, CRC Press, Boca Raton, FL, 65-91.
Mattson WJ, Addy ND (1975). Phytophagous Insects as Regulators of Forest Primary Production. Science, 19: 515-522.

Metcalfe DB, Asner GP, Martin RE, Espejo JES, Farfan WHH, Amezquita FF, Carranza-Jimenez L, Cabrera DFG, Baca LD, F. Sinca, Quispe H, Taype LPA, Mora IE, Dávila LR, Solórzano AM, Vilca MP, Román LJM, Bustios PC, Revilla SN, Tupayachi R, Girardin CA, Doughty CE, Malhi Y (2014). Herbivory Makes Major Contributions to Ecosystem Carbon and Nutrient Cycling in Tropical Forests. Ecology Letters, 17:324-332.

Michelson AA (1911). On metallic colouring in birds and insects. Phil Mag., 21: 554–567.

Naeem S, Duffy JE, Zavaleta E (2012). The Functions of Biological Diversity in an Age of Extinction. Science, 336: 1401-1406.

Nichols E, Spector S, Louzada J, Larsen T, Amezquita S, Favila ME (2008). Ecological Functions and Ecosystem Services Provided by Scarabaeinae Dung Beetles. Biol Conserv., 141: 1461-1474.

Pearce F (2016). The New Wild-Why Invasive Species Will Be Nature’s Salvation. Icon Books Ltd., UK.

Queller D, Strassmann J (1998). Social and Genetic Structure of Paper Wasp Cofoundress Associations: Tests of Reproductive Skew Models. Am nat., 151: 545-63. 10.1086/286140.

Richards EN, Goff ML (1997). Arthropod Succession on Exposed Carrion in Three Contrasting Tropical Habitats on Hawaii Island, Hawaii. Med Entomol., 34: 328-339.

Robinson RA, Sutherland WJ (2002). Post-War Changes in Arable Farming and Biodiversity in Great Britain. J Appl Ecol., 39: 157-176.

Samways MJ (1993). Insects in Biodiversity Conservation: Some Perspectives and Directives. Biodiv Conserv., 2: 258-282.

Schwägerl, C. 2016. What’s Causing the Sharp Decline in Insects, and Why It Matters. Yale Environment 360, 6 July 2016.

Schoonhoven LM, Van Loon JJA, Dicke M (2005). Insect-Plant Biology. Oxford University Press, Oxford, UK, 400 p.

Scholtz CH, Mansell MW (2009). Insect Biodiversity in the Afrotropical Region. In: Footit, R. and Adler, P., Eds., Insect Biodiversity: Science and Society, Blackwell Publishing, Hoboken, NJ, 69-82.

Schlaepfer MA, Sax DF, Olden JD (2011). The Potential Conservation Value of Non-Native Species. Conserv Biol., 25: 428-437.

Symondson WOC, Sunderland KD, Greenston MH (2002). Can Generalist Predators Be Effective Biocontrol Agents? Annual Review of Entomology, 47: 561-594.

Szalay J (2014). Giant Huntsman Spider: World's Largest Spider By Leg Span. Retrieved from: https://www.livescience.com/41428-huntsman-spider.html.

Tscharntke T, Klein AM, Kruess A, Steffan-Dewenter I, Thies, C (2005) Landscape Perspectives on Agricultural Intensification and Biodiversity—Ecosystem Service Management. Ecology Letters, 8: 857-874.

Tyndalebiscoe M, Vogt WG (1991). Effects of Adding Exotic Dung Beetles to Native Fauna on Bush Fly Breeding in the Field. Entomophaga, 36: 395-401.

Van Lenteren JC (2012). Internet Book of Biological Control. International
Organization for Biological Control, Zürich, Switzerland.

Vickery VR (1965). Factors governing the Distribution and Dispersal of the Recently Introduced Grasshopper, Metrioptera roeselii (Hgb.) (Orthoptera:Ensifera). Annales de la Société Entomologique de Québec. 10: 165–172.

Woodcock BA, Harrower C, Redhead J, Edwards M, Vanbergen AJ, Heard SM, Roy DB, Pywell RF (2014). National Patterns of Functional Diversity and Redundancy in Predatory Ground Beetles and Bees Associated with Key UK Arable Crops. J Appl Ecol., 51: 142-151.

Clement P, Harris A, Davis J (1993). Finches and Sparrows: an identification guide. Christopher Helm.