Taxonomic revision of *Pimelodella* Eigenmann & Eigenmann, 1888 (Siluriformes: Heptapteridae): an integrative proposal to delimit species using a multidisciplinary strategy
Veronica Slobodian

Taxonomic revision of *Pimelodella* Eigenmann & Eigenmann, 1888 (Siluriformes: Heptapteridae): an integrative proposal to delimit species using a multidisciplinary strategy

Revisão taxonômica de *Pimelodella* Eigenmann & Eigenmann, 1888 (Siluriformes: Heptapteridae): uma proposta integrativa para a delimitação de espécies com estratégias multidisciplinares

v.1

Original version

Thesis Presented to the Post-Graduate Program of the Museu de Zoologia da Universidade de São Paulo to obtain the degree of Doctor of Science in Systematics, Animal Taxonomy and Biodiversity

Advisor: Mário César Cardoso de Pinna, PhD.

São Paulo
2017
“I do not authorize the reproduction and dissemination of this work in part or entirely by any electronic or conventional means.”

Serviço de Biblioteca e Documentação
Museu de Zoologia da Universidade de São Paulo

Cataloging in Publication

Slobodian, Veronica

Taxonomic revision of Pimelodella Eigenmann & Eigenmann, 1888 (Siluriformes: Heptapteridae) : an integrative proposal to delimit species using a multidisciplinary strategy / Veronica Slobodian ; orientador Mário César Cardoso de Pinna. São Paulo, 2017.

2 v. (811 f.)

Tese de Doutorado – Programa de Pós-Graduação em Sistemática, Taxonomia e Biodiversidade, Museu de Zoologia, Universidade de São Paulo, 2017.
Abstract

Primary taxonomic research in neotropical ichthyology still suffers from limited integration between morphological and molecular tools, despite major recent advancements in both fields. Such tools, if used in an integrative manner, could help in solving long-standing taxonomic problems. The genus *Pimelodella* Eigenmann & Eigenmann, 1888 is a perfect case for an integrative and multidisciplinary approach in taxonomy. *Pimelodella* is a genus of the Heptapteridae broadly distributed throughout trans- and cis-Andean South America, and one of the main components of Neotropical Ichthyofauna. Nowadays is the most species-rich genus of the family, with 79 valid species. However, the validity and delimitation of those species is extremely problematic, due their broad geographic distribution, conserved morphology, and ancient and imprecise descriptions. *Pimelodella* is undoubtedly one of the most severe taxonomic bottlenecks in neotropical ichthyology. This project presents a taxonomic revision of *Pimelodella* using an integrative morphological-molecular approach. The traditional taxonomic revision covers the genus in its entirety, with all the components of this kind of study. All types were examined, and the number of valid species herein recognized was reduced to 55 species, for which full descriptions are presented. The molecular taxonomy was done for a circumscribed subset of the genus, with representation enough to understand the molecular divergences and compare them with the traditional taxonomy results, allowing an evaluation of the results of the revision.

Keywords: Integrative taxonomy. Neotropical Ichthyofauna. Comparative Anatomy. Species Trees.
Resumo

A pesquisa taxonômica primária ainda apresenta pouca integração entre as ferramentas morfológicas e moleculares para o estudo de peixes neotropicais, apesar de grandes avanços recentes em ambos os campos. Tais ferramentas, se usadas de maneira integrativa, poderiam solucionar grupos reconhecidos por representarem problemas taxonômicos renitentes. O gênero *Pimelodella* Eigenmann & Eigenmann, 1888 se enquadra como um ótimo caso para a aplicação de uma estratégia integrativa e multidisciplinar. *Pimelodella* é um gênero da família Heptapteridae, distribuído amplamente por drenagens sul-americanas trans- e cis-andinas e compreende um dos principais componentes da ictiofauna neotropical. Atualmente é reconhecido como o maior gênero da família, com 79 espécies válidas descritas. Entretanto, a validade e delimitação dessas espécies é problemática, devido à elevada diversidade do gênero, aliada à ampla distribuição, morfologia conservada e descrições antigas e imprecisas. Trata-se de um dos grandes gargalos taxonômicos na sistemática e taxonomia de peixes neotropicais. Este projeto apresenta uma revisão taxonômica de *Pimelodella* utilizando uma abordagem integrativa morfológica-molecular. A revisão taxonômica clássica cobre a integridade da diversidade do gênero, com todos os componentes deste tipo de estudo. Todos os tipos foram examinados, e o número de espécies válidas é aqui reduzido para 55 espécies, para as quais descrições completas são apresentadas. A parte molecular foi realizada em um subgroupo delimitado, com diversidade suficiente para que as estimativas de divergência molecular pudessem ser comparadas aos resultados da revisão morfológica, fornecendo um modelo de avaliação para o restante da revisão.

Palavras-chave: Taxonomia integrativa. Ictiofauna Neotropical. Anatomia Comparada. Árvores de espécies.
Tables list

Table 1. Nominal species available for *Pimelodella* genus.

Table 2. Species analyzed in PCAs.

Table 3. Species currently placed in *Pimelodella* and their status as proposed by this work.

Table 4. Morphometric data of *Pimelodella australis* based on type and comparative materials.

Table 5. Morphometric data of *Pimelodella avanhandavae* based on type and comparative materials.

Table 6. Morphometric data of *Pimelodella boliviana* based on type and comparative materials.

Table 7. Morphometric data of *Pimelodella insignis*, junior-synonym of *P. boschmai*, based on type material.

Table 8. Morphometric data of *Pimelodella brasiliensis* and its junior-synonyms, *P. eigenmanni* and *P. rendahli*, based on type materials.

Table 9. Morphometric data of *Pimelodella brasiliensis* and its junior-synonyms, *P. eigenmanni* and *P. rendahli*, based on type materials, discriminated by original species name.

Table 10. Morphometric data of *Pimelodella buckleyi* based on type and comparative materials.

Table 11. Morphometric data of *Pimelodella chagresi* based on type and comparative materials.

Table 12. Morphometric data of *Pimelodella conquetaensis* based on type material.

Table 13. Morphometric data of *Pimelodella cristata* and its junior-synonyms, *P. cristata*, *P. breviceps*, *P. dorseyi*, *P. hartwelli*, *P. ophthalmica*, *P. parnahybae*, *P. steindachneri*, *P. wesseli*, *P. witmeri*, based on type and comparative materials.

Table 14. Morphometric data of *Pimelodella cristata* and its junior-synonyms, *P. cristata*, *P. breviceps*, *P. dorseyi*, *P. hartwelli*, *P. ophthalmica*, *P. parnahybae*, *P. steindachneri*, *P. wesseli*, *P. witmeri*, based on type and comparative materials, discriminated by original species name.

Table 15. Meristic data of *P. cristata* and its junior-synonyms, *P. cristata*, *P. breviceps*, *P. cyanostygma*, *P. dorseyi*, *P. hartwelli*, *P. ophthalmica*, *P. parnahybae*, *P. steindachneri*, *P. wesseli*, *P. witmeri*, discriminated by the original species name and region.
Table 16. Morphometric data of *Pimelodella cruxenti* based on type (as presented in original description) and comparative materials.

Table 17. Morphometric data of *Pimelodella elongata* based on type and comparative material.

Table 18. Morphometric data of *Pimelodella enochi* and *P. papariae*, its junior-synonym, based on type material and discriminated by original species name.

Table 19. Morphometric data of *Pimelodella eutaenia* based on type and comparative material.

Table 20. Morphometric data of *Pimelodella figueroai* based on type material.

Table 21. Morphometric data of *Pimelodella geryi* and *P. procera*, its junior-synonym, based on type and comparative materials.

Table 22. Morphometric data of *Pimelodella geryi* and *P. procera*, its junior-synonym, based on type and comparative materials, discriminated by original species name.

Table 23. Morphometric data of *Pimelodella gracilis* and *P. taenioptera*, its junior-synonym, based on type and comparative materials.

Table 24. Morphometric data of *Pimelodella gracilis* and *P. taenioptera*, its junior-synonym, based on type and comparative materials, discriminated by original species name.

Table 25. Morphometric data of *Pimelodella griffini* based on type material.

Table 26. Morphometric data of *Pimelodella grisea* based on type material.

Table 27. Morphometric data of *Pimelodella harttii* based on type material.

Table 28. Morphometric data of *Pimelodella hasemani* based on type and comparative materials.

Table 29. Morphometric data of *Pimelodella howesi* based on type and comparative materials.

Table 30. Morphometric data of *Pimelodella humeralis* based on type material.

Table 31. Morphometric data of *Pimelodella ignobilis* and *P. pappenheimi*, its junior-synonym, based on type and comparative materials.

Table 32. Morphometric data of *Pimelodella ignobilis* and *P. pappenheimi*, its junior-synonym, based on type and comparative materials, discriminated by original species name.

Table 33. Morphometric data of *Pimelodella itapicuruensis* based on type material.

Table 34. Morphometric data of *Pimelodella kronei* and *P. transitoria*, its junior-synonym, based on type and comparative materials.

Table 35. Morphometric data of *Pimelodella kronei* and *P. transitoria*, its junior-synonym, based on type and comparative materials, discriminated by original species name.
Table 36. Morphometric data of *Pimelodella lateristriga* and *P. bahiana*, its junior-synonym, based on type and comparative materials.

Table 37. Morphometric data of *Pimelodella lateristriga* and *P. bahiana*, its junior-synonym, based on type and comparative materials, discriminated by original species name.

Table 38. Morphometric data of *Pimelodella laticeps* based on type material.

Table 39. Morphometric data of *Pimelodella laurenti* based on type and comparative materials.

Table 40. Morphometric data of *Pimelodella leptosoma* based on type and comparative materials.

Table 41. Morphometric data of *Pimelodella linami* based on type material.

Table 42. Morphometric data of *Pimelodella longipinnis* based on type material.

Table 43. Morphometric data of *Pimelodella macturki* based on type material.

Table 44. Morphometric data of *Pimelodella meeki* and *P. rudolphi*, its junior-synonym, based on type and comparative materials.

Table 45. Morphometric data of *Pimelodella meeki* and *P. rudolphi*, its junior-synonym, based on type and comparative materials, discriminated by original species name.

Table 46. Morphometric data of *Pimelodella megalops* based on type and comparative materials.

Table 47. Morphometric data of *Pimelodella megalura* based on type material.

Table 48. Morphometric data of *Pimelodella metae* based on type material.

Table 49. Morphometric data of *Pimelodella modesta* based on type and comparative materials.

Table 50. Morphometric data of *Pimelodella montana* based on type and comparative materials.

Table 51. Morphometric data of *Pimelodella mucosa* based on type and comparative materials.

Table 52. Morphometric data of *Pimelodella notomelas* based on type and comparative materials.

Table 53. Morphometric data of *Pimelodella odynea* based on type material.

Table 54. Morphometric data of *Pimelodella pectinifera* based on type material.

Table 55. Morphometric data of *Pimelodella peruana* based on type and comparative materials.

Table 56. Morphometric data of *Pimelodella reyesi* based on type and comparative materials.
Table 57. Morphometric data of *Pimelodella robinsoni* and *P. wolfi*, its junior-synonym, based on type material.

Table 58. Morphometric data of *Pimelodella robinsoni* and *P. wolfi*, its junior-synonym, based on type material, discriminated by original species name.

Table 59. Morphometric data of *Pimelodella roccae* based on type and comparative materials.

Table 60. Morphometric data of *Pimelodella serrata* and *P. chaparae*, its junior-synonym, based on type and comparative materials.

Table 61. Morphometric data of *Pimelodella serrata* and *P. chaparae*, its junior-synonym, based on type and comparative materials, discriminated by original species name.

Table 62. Morphometric data of *Pimelodella spelaea* based on type material.

Table 63. Morphometric data of *Pimelodella straminea* based on type material.

Table 64. Morphometric data of *Pimelodella taeniophora* based on type and comparative materials.

Table 65. Morphometric data of *Pimelodella tapatapae* based on type material.

Table 66. Morphometric data of *Pimelodella vittata* based on type and comparative materials.

Table 67. Morphometric data of *Pimelodella yuncensis* and *P. peruensis*, its junior-synonym, based on type and comparative materials.

Table 68. Morphometric data of *Pimelodella yuncensis* and *P. peruensis*, its junior-synonym, based on type and comparative materials, discriminated by original species name.

Table 69. Identification Key for the valid *Pimelodella* species diagnosable in this work.

Table 70. Complete material list analyzed for molecular taxonomy.

Table 71. Successfully sequenced specimens per gene.

Table 72. Fragment length, number of parsimony informative sites, GC content and mean bootstrap values per gene.
Figures list

Figure 1: Schematic for particular measurements taken point-to-point in a generalized *Pimelodella* specimen.

Figure 2: Schematic for head laterosensory canals, dorsal view, in a generalized *Pimelodella* specimen. Scale bar 2mm.

Figure 3: Schematic for head laterosensory canals, lateral view, in a generalized *Pimelodella* specimen. Scale bar 2mm.

Figure 4: Schematic for head laterosensory canals, ventral view, in a generalized *Pimelodella* specimen. Scale bar 2mm.

Figure 5: *Pimelodella australis*, holotype, FMNH 57962, 61.0 mm SL. Left lateral (A), and dorsal (B) views. Photo taken by M. W. Littmann.

Figure 6: Ventral view of left pectoral-fin spine of *Pimelodella australis*, holotype, 61.0mm SL, total length of spine 12.6 mm.

Figure 7: Schematic left lateral view of *Pimelodella australis*.

Figure 8: *Pimelodella avanhandavae*, holotype, FMNH 57981, 69.0 mm SL. Left lateral (A), and dorsal (B) views. Photo taken by M. W. Littmann.

Figure 9: Ventral view of left pectoral-fin spine of *Pimelodella avanhandavae* FMNH 57982, paratype, 78.8 mm SL, total length of spine 13.4 mm.

Figure 10: Schematic left lateral view of *Pimelodella avanhandavae*.

Figure 11: *Pimelodella boliviana*, holotype, FMNH 57976, 68.9 mm SL. Left lateral (A), and dorsal (B) views. Photo taken by M. W. Littmann.

Figure 12: Ventral view of left pectoral-fin spine of *Pimelodella boliviana* A) FMNH 57977, paratype, 66.9 mm SL, total length of spine 11.5 mm; B) MZUSP 26015, 71.3 mm SL, total length of spine 11.7 mm.

Figure 13: Schematic left lateral view of *Pimelodella boliviana*.

Figure 14: *Pimelodella boschmai*, holotype, RMNH 23248, 73.0 mm SL. Left lateral (A), and dorsal (B) views. Photo taken by Ronald de Ruiter.

Figure 15: Ventral view of left pectoral-fin spine of A) *Pimelodella boschmai*, RMNH 23248, holotype, 73.0 mm SL; B) *Pimelodella insignis*, MZUSP 22317, syntype 66.4 mm SL, total length of spine 12.8 mm.

Figure 16: Schematic left lateral view of *Pimelodella boschmai*.

Figure 17: *Pimelodella brasiliensis*, holotype, NMW 45612, 140.6 mm SL. Left lateral (A), and dorsal (B) views. Photos taken by Mark Sabaj. *Pimelodella eigenmanni*, junior-
synonym of *P. brasiliensis*, paralectotype, MCZ 7438, 130.7 mm SL, left lateral (C), and dorsal (D) views. *Pimelodella rendahli*, junior-synonym of *P. brasiliensis*, holotype, ZMB 32031, 80.7 mm SL, left lateral (E), and dorsal (F) views, photo taken by ZMB staff.

Figure 18: Ventral view of left pectoral-fin spine of *Pimelodella brasiliensis*, NMW 45612, holotype, 140.6 mm SL, total length of spine 26.6 mm.

Figure 19: Schematic left lateral view of *Pimelodella brasiliensis*

Figure 20: *Pimelodella buckleyi*, lectotype, BMNH 1880.12.8.98, 109.6 mm SL. Left lateral (A), and dorsal (B) views. Photo taken by Mark Allen.

Figure 21: Ventral view of left pectoral-fin spine of *Pimelodella buckleyi*, BMNH 1880.12.8.98, lectotype, 109.6 mm SL, total length of spine 15.3 mm.

Figure 22: Schematic left lateral view of *Pimelodella buckleyi*

Figure 23. *Pimelodella chagresi*, lectotype, MCZ 4947, 111.8 mm SL. Left lateral (A), and dorsal (B) views.

Figure 24. Ventral view of left pectoral-fin spine of *Pimelodella chagresi*, CAS 57903, 83.5 mm SL, total length of spine 15.1 mm.

Figure 25. Schematic left lateral view of *Pimelodella chagresi*

Figure 26. *Pimelodella conquetaensis*, holotype, ZMB 32032, 93.2 mm SL. Left lateral (A), and dorsal (B) views. Photo taken by Mark Allen.

Figure 27. Ventral view of left pectoral-fin spine of *Pimelodella conquetaensis*, ZMB 32032, holotype, 93.2 mm SL, total length of spine 16.5 mm.

Figure 28. Schematic left lateral view of *Pimelodella conquetaensis*

Figure 29. *Pimelodella cristata*, lectotype, ZMB 3053, 202.5 mm SL. Left lateral (A), and dorsal (B) views.

Figure 30. Ventral view of left pectoral-fin spine of *Pimelodella cristata*, ZMB 3052, paralectotype, 177.5 mm SL, total length of spine 27.8 mm.

Figure 31. Schematic left lateral view of *Pimelodella cristata*.

Figure 32. Framed graphic of PC1 against PC2 of a Principal Component Analysis using all morphometric data scaled to SL or HL (except caudal-fin lobes, due to usual incompleteness of those in the material), based on type and comparative materials of *P. cristata*, *P. cruxenti*, *P. breviceps*, *P. dorseyi*, *P. gracilis*, *P. hartwelli*, *P. humeralis*, *P. ophthalmica*, *P. parnahybae*, *P. steindacheri*, *P. taenioptera*, *P. wesseli*, *P. witmeri*. Cumulative proportion of importance of components: 39.4%; proportion of Variance: PC1—20.3%; PC2—19.1%; standard deviation: PC1—2.01; PC2—2.0.
Figure 33. Framed graphic of PC1 against PC2 of a Principal Component Analysis using all morphometric data scaled to SL or HL (except caudal-fin lobes, due to usual incompleteness of those in the material), based on type and comparative materials, separated by drainages as follows: Amazon—Amazon rivers’ specimens of *P. cristata*, *P. breviceps*, *P. hartwelli*, *P. ophthalmica* and Amazon rivers’ specimens of *P. steindachneri*; Guiana Shield—Guiana Shield rivers’ specimens of *P. cristata* and *P. wesselii*; Northeastern Brazil—*P. dorseyi*, *P. parnahybae*, Parnaíba drainage type-specimen of *P. steindachneri* and *P. witmeri*; Paraná—*P. gracilis* and *P. taenioptera*; *P. humeralis*. Cumulative proportion of importance of components: 37.8%; proportion of Variance: PC1—21.5%; PC2—16.3%; standard deviation: PC1—2.07; PC2—1.8.

Figure 34. *Pimelodella breviceps*, holotype, NMW 45615, 326.2 mm SL. Left lateral (A), and dorsal (B) views.

Figure 35. *Pimelodella cyanostigma*, lectotype, ANSP 8382, 59.8 mm SL. Left lateral (A), and dorsal (B) views. Photo taken by Mark Sabaj.

Figure 36. *Pimelodella dorseyi*, holotype, ANSP 69375, 95.8 mm SL. Left lateral (A), and dorsal (B) views. Photo taken by Murilo Pastana.

Figure 37. *Pimelodella hartwelli*, holotype, ANSP 68644, 103.2 mm SL. Left lateral (A), and dorsal (B) views.

Figure 38. *Pimelodella ophthalmica*, holotype, ANSP 21102, 109.9 mm SL. Left lateral (A), and dorsal (B) views.

Figure 39. *Pimelodella parnahybae*, holotype, ANSP 69337, 84.0 mm SL. Left lateral (A), and dorsal (B) views. Photo taken by Kyle Luckenbill.

Figure 40. *Pimelodella steindachneri*, lectotype, MCZ 7487, 150.4 mm SL. Left lateral (A), and dorsal (B) views. Photo taken by MCZ staff.

Figure 41. *Pimelodella wesselii*, holotype, NMW 79188, 157.9 mm SL. Left lateral (A), and dorsal (B) views. Photo taken by Mark Sabaj and Kyle Luckenbill.

Figure 42. *Pimelodella witmeri*, holotype, ANSP 69383, 137.5 mm SL. Left lateral (A), and dorsal (B) views. Photo taken by Kyle Luckenbill.

Figure 43. *Pimelodella cruxenti*, lectotype, MHNLS 95.8 mm SL. Left lateral (A), and dorsal (B) views. Photo taken by Oscar Lasso-Alcalá.

Figure 44. Ventral view of left pectoral-fin spine of *Pimelodella cruxenti*, ANSP 160647, 75.2 mm SL.

Figure 45. Schematic left lateral view of *Pimelodella cruxenti*.
Figure 46. Left lateral view (A) and dorsal view of head (B) of *Pimelodella cruxenti*, ANSP 160673, 127.7 mm SL. Photo taken by Mark Sabaj.

Figure 47. *Pimelodella elongata*, lectotype, BMNH 1860.6.16.182, 136.8 mm SL. Left lateral (A), and dorsal (B) views. Photo taken by Mark Allen.

Figure 48. Ventral view of left pectoral-fin spine of *Pimelodella elongata*, BMNH 1860.6.16.186, paralectotype, 96.1 mm SL, total length of spine 12.1 mm.

Figure 49. Schematic left lateral view of *Pimelodella elongata*

Figure 50. *Pimelodella enochi*, holotype, ANSP 69378, 44.9 mm SL. Left lateral (A), and dorsal (B) views. Photo taken by Murilo Pastana.

Figure 51. Ventral view of left pectoral-fin spine of *Pimelodella enochi*, ANSP 69378, 44.9 mm SL, total length of spine 6.8 mm.

Figure 52. Schematic left lateral view of *Pimelodella enochi*.

Figure 53. *Pimelodella papariae*, junior synonym of *P. enochi*, holotype, ANSP 69387, 109.6 mm SL. Left lateral (A), and dorsal (B) views. Photo taken by Murilo Pastana.

Figure 54. Ventral view of left pectoral-fin spine of *Pimelodella papariae*, ANSP 69387, 109.6 mm SL, total length of spine (approximate) 18.5 mm (tip of spine was broken, and figure correspond to the complete aspect).

Figure 55. *Pimelodella eutaenia*, lectotype, BMNH 1913.10.1.37, 126.3 mm SL. Left lateral (A), and dorsal (B) views. Photo taken by Mark Allen.

Figure 56. Ventral view of left pectoral-fin spine of *Pimelodella eutaenia*, BMNH 1913.10.1.37, 126.3 mm SL, total length of spine 20.2 mm (A); BMNH 1913.10.1.38, 65.5 mm SL, total length of spine 12 mm (B).

Figure 57. Schematic left lateral view of *Pimelodella eutaenia*

Figure 58. *Pimelodella floridablancaensis*, junior-synonym of *P. eutaenia*, paratype, CAR 695, 85.8 mm SL. Figure obtained from Ardila Rodriguez (2017).

Figure 59. Ventral view of left pectoral-fin spine of *Pimelodella floridablancaensis*, CAR 07, obtained from Ardila Rodriguez (2017). Sizes of specimen or structure were not indicated, but paratype list cited c&s specimens between 74.9–93.2 mm SL.

Figure 60. *Pimelodella figueroai*, ICN-MHN 2900, 71.8 mm SL. Left lateral view. Photo taken by Mauricio Leiva.

Figure 61. *Pimelodella geryi*, holotype, ZMA 102235, 58 mm SL. Left lateral (A), and dorsal (B) views. Photo taken by Ronald De Ruiter.

Figure 62. Ventral view of left pectoral-fin spine of *Pimelodella geryi*, holotype, ZMA 102235, 58 mm SL, total length of spine 10.0 mm (approximately).
Figure 63. Schematic left lateral view of *Pimelodella geryi*.

Figure 64. *Pimelodella procera*, junior-synonym of *P. geryi*, paratype, 61.5 mm SL. Left lateral view. Photo taken by Mário de Pinna.

Figure 65. *Pimelodella gracilis*, holotype, MHNH 9284-A, 170.1 mm SL. Left lateral (A), and dorsal (B) views. Photo taken by Mélyne Hautecoeur.

Figure 66. Ventral view of left pectoral-fin spine of *Pimelodella gracilis*, holotype, MHNH 9284-A, 170.1 mm SL, total length of spine 28.5 mm.

Figure 67. Schematic left lateral view of *Pimelodella gracilis*.

Figure 68. *Pimelodella taenioptera*, junior-synonym of *P. gracilis*, lectotype, MNRJ 691A, 157.8 mm SL. Left lateral (A), and dorsal (B) views.

Figure 69. Material identified as *Pimelodella taenioptera* from Souza-Shibatta et al. (2013), showing color pattern and dorsal-fin filament. MZUEL 6456, 124.6 mm SL, photo extracted from Souza-Shibatta et al. (2013).

Figure 70. Framed graphic of PC1 against PC2 of a Principal Component Analysis using all morphometric data scaled to SL or HL (except caudal-fin lobes, due to usual incompleteness of those in the material), based on type and comparative materials of *Pimelodella* species with 46 or more total vertebrae (except *P. cruxenti*), discriminated by the names considered as valid in this work, being *P. cristata*, *P. gracilis* and *P. humeralis*. Cumulative proportion of importance of components: 37.8%; proportion of Variance: PC1—21.4%; PC2—16.5%; standard deviation: PC1—2.07; PC2—1.8.

Figure 71. *Pimelodella griffini*, holotype, FMNH 57974, 67.2 mm SL. Left lateral (A), and dorsal (B) views. Photo taken by M. W. Littmann.

Figure 72. Ventral view of left pectoral-fin spine of *Pimelodella griffini*, holotype, FMNH 57974, 67.2 mm SL, total length of spine 11.3 mm.

Figure 73. Schematic left lateral view of *Pimelodella griffini*.

Figure 74. *Pimelodella grisea*, lectotype, BMNH 1902.5.27.36, 119.7 mm SL. Left lateral (A), and dorsal (B) views. Photo taken by Mark Allen.

Figure 75. Ventral view of left pectoral-fin spine of *Pimelodella grisea*, lectotype, BMNH 1902.5.27.36, 119.7 mm SL, total length of spine 22.4 mm.

Figure 76. Schematic left lateral view of *Pimelodella grisea*.

Figure 77. *Pimelodella harttii*, holotype, NMW 45784, 150.2 mm SL. Left lateral (A), and dorsal (B) views.

Figure 78. Ventral view of left pectoral-fin spine of *Pimelodella harttii*, holotype, NMW 45784, 150.2 mm SL, total length of spine 25.6 mm.
Figure 79. Schematic left lateral view of *Pimelodella harttii*.

Figure 80. *Pimelodella hasemani*, holotype, FMNH 57980, 60.6 mm SL. Left lateral (A), and dorsal (B) views. Photo taken by M. W. Littmann.

Figure 81. Ventral view of left pectoral-fin spine of *Pimelodella hasemani*, FMNH 57980, 60.6 mm SL, total length of spine 10.6 mm.

Figure 82. Schematic left lateral view of *Pimelodella hasemani*.

Figure 83. *Pimelodella hasemani*, UFRO-I 9741, 56.5 mm SL. Left lateral (A), and dorsal (B) views.

Figure 84. *Pimelodella howesi*, ANSP 69036, 79.3 mm SL. Left lateral (A), and dorsal (B) views.

Figure 85. Ventral view of left pectoral-fin spine of *Pimelodella howesi*, ANSP 69036, 79.3 mm SL, total length of spine 14.1 mm.

Figure 86. Schematic left lateral view of *Pimelodella howesi*.

Figure 87. *Pimelodella humeralis*, holotype, MPEG 34994, 77.4 mm SL. Left lateral (A) and dorsal (B) views.

Figure 88. Ventral view of left pectoral-fin spine of *Pimelodella humeralis*, holotype, MPEG 34994, 77.4 mm SL, total length of spine 12.0 mm.

Figure 89. Schematic left lateral view of *Pimelodella humeralis*.

Figure 90. *Pimelodella ignobilis*, lectotype, NMW 44479, 91.1 mm SL. Left lateral (A) and dorsal (B) views.

Figure 91. Ventral view of left pectoral-fin spine of *Pimelodella ignobilis*, paralectotype, NMW 44479, 98.9 mm SL, total length of spine 19.0 mm.

Figure 92. Schematic left lateral view of *Pimelodella ignobilis*.

Figure 93. *Pimelodella pappenheimeri*, junior-synonym of *P. ignobilis*, lectotype, ZMB 31951, 103.1 mm SL. Left lateral (A) and dorsal (B) views.

Figure 94. *Pimelodella itapicuruensis*, FMNH 57986, 60.2 mm SL. Left lateral (A) and dorsal (B) views.

Figure 95. Ventral view of left pectoral-fin spine of *Pimelodella itapicuruensis*, FMNH 57986, 60.2 mm SL, total length of spine 11.2 mm.

Figure 96. Schematic left lateral view of *Pimelodella itapicuruensis*.

Figure 97. *Pimelodella kronei*, holotype, MNRJ 836, 120.1 mm SL. Left lateral (A) and dorsal (B) views.

Figure 98. Ventral view of left pectoral-fin spine of *Pimelodella kronei*, LESC1 170, 93.4 mm SL, total length of spine 12.5 mm.
Figure 99. Schematic left lateral view of *Pimelodella kronei*.

Figure 100. Map of stream routs and flux of Areias system, obtained from Genthner *et al.* (2006: fig. 6). Arrows: Areias (1) and Bombas (2) ressurgences.

Figure 101. Right lateral view of head of *P. kronei*. Infraorbital series and nasal removed. (A) MZUSP 38725, Bombas resurgence, Iporanga; (B) MZUSP 27168, Areias system, Iporanga.

Figure 102. Right lateral view of head of *P. transitoria*. Infraorbital series and nasal removed. MZUSP 63365, Ribeirão Furnas, Areias system, Iporanga.

Figure 103. Right lateral view of *P. lateristriga*. Infraorbital series and nasal removed. USNM 301676, Rio Mucuri, Northeastern Mata Atlântica region.

Figure 104. (A) Dorsal view; (B) Ventral view; and (C) Left lateral view of head of a *Pimelodella*, showing the overall arrangement of cephalic laterosensorial system. Grey legends are for a simple pore for both *P. kronei* and *P. transitoria*. Purple legends are for different conditions (loss or duplication) of a pore in individuals of both species. Red legends are for loss or duplication of a pore exclusively for *P. kronei* specimens. Scale bar: 2mm.

Figure 105. Ventral view of left pectoral-fin spine of *Pimelodella kronei*, LESC uncat. 113.2 mm SL, length of spine 12.5 mm, Areias system (A); LESC 167 144.4 mm SL, length of spine 20.4 mm, Areias system (B); LESC 169 110.7 mm SL, length of spine 13.4 mm, Bombas resurgence (C); and *P. transitoria*, LESC uncat. 101.8 mm SL, length of spine 16.7 mm, Rio Betari, alojamento ouro grosso (D); LESC 95 85.5 mm SL, length of spine 14.0 mm, Rio Betari (E); LESC 168 98.1 mm SL, length of spine 15.9 mm, Gruta da Casa de Pedra (F).

Figure 106. Left lateral view of *Pimelodella transitoria*, LESC 168, 98.1 mm SL.

Figure 107. Neotype of *Pimelodella transitoria*, a junior-synonym of *P. kronei*, MZUSP 403, 107.4 mm SL. Photo taken by Murilo Pastana.

Figure 108. *Pimelodella lateristriga*, holotype, ZMB 3038, 95.9 mm SL. Left lateral (A) and dorsal (B) views. Photo taken by Johanna Kapp.

Figure 109. Ventral view of left pectoral-fin spine of: (A) *Pimelodella lateristriga*, holotype, ZMB 3038, 95.9 mm SL, total length of spine 18.0 mm (approximated); (B) *Pimelodella lateristriga*, MZUSP 114867, 84 mm SL, total length of spine 14.5 mm; (C) *Pimelodella lateristriga*, MZUSP 93863, 99.5 mm SL, total length of spine 15.7 mm; (D) *Pimelodella bahiana*, lectotype, MNHN B612, 93.4 mm SL, total length of spine 16.1 mm.

Figure 110. Schematic left lateral view of *Pimelodella lateristriga*.
Figure 111. *Pimelodella lateristriga*, MZUSP 121461, 112.7 mm SL. Left lateral (A) and dorsal (B) views. Photo taken by Murilo Pastana.

Figure 112. *Pimelodella bahiana*, lectotype, MNHN B612, 93.4 mm SL. Left lateral (A) and dorsal (B) views. Photo taken by MNHN staff.

Figure 113. *Pimelodella laticeps*, holotype, FMNH 57969, 49.0 mm SL. Left lateral (A) and dorsal (B) views. Photo taken by M. W. Littmann.

Figure 114. Ventral view of left pectoral-fin spine of *Pimelodella laticeps*, holotype, FMNH 57969, 49.0 mm SL, total length of spine 9.6 mm.

Figure 115. Schematic left lateral view of *Pimelodella laticeps*.

Figure 116. *Pimelodella laurenti*, holotype, ANSP 69380, 66.5 mm SL. Left lateral (A) and dorsal (B) views. Photo taken by Murilo Pastana.

Figure 117. Ventral view of left pectoral-fin spine of *Pimelodella laurenti*, holotype, ANSP 69380, 66.5 mm SL, total length of spine 12.7 mm.

Figure 118. Schematic left lateral view of *Pimelodella laurenti*.

Figure 119. Left lateral view of *Pimelodella laurenti*, MZUSP 39441, 62.8 mm SL.

Figure 120. *Pimelodella leptosoma*, holotype, ANSP 39340, 59.6 mm SL. Left lateral (A) and dorsal (B) views. Photo taken by Mark Sabaj.

Figure 121. Ventral view of left pectoral-fin spine of *Pimelodella leptosoma*, holotype, ANSP 39340, 59.6 mm SL, total length of spine 8.5 mm.

Figure 122. Schematic left lateral view of *Pimelodella leptosoma*.

Figure 123. *Pimelodella leptosoma*, ANSP 179754. Left lateral (A) and dorsal (B) views. Photo taken by Mark Sabaj.

Figure 124. *Pimelodella linami*, USNM 121132, holotype, 74.7 mm SL. Left lateral (A) and dorsal (B) views. Photo taken by Sandra Raredon.

Figure 125. Ventral view of left pectoral-fin spine of *Pimelodella linami*, USNM 121132, holotype, 74.7 mm SL, total length of spine 10.7 mm.

Figure 126. Schematic left lateral view of *Pimelodella linami*.

Figure 127. *Pimelodella longipinnis*, AMNH 8642, holotype, 84.6 mm SL. Left lateral (A) and dorsal (B) views. Photo taken by Melanie Stiassny.

Figure 128. Ventral view of left pectoral-fin spine of *Pimelodella longipinnis*, AMNH 8642, holotype, 84.6 mm SL, total length of spine 11.7 mm.

Figure 129. Schematic left lateral view of *Pimelodella longipinnis*.

Figure 130. Radiograph of *Pimelodella longipinnis*, AMNH 8642, holotype, 84.6 mm SL. Left lateral view.
Figure 131. *Pimelodella macturki*, holotype, FMNH 53234, 53.5 mm SL. Left lateral (A) and dorsal (B) views. Photo taken by M. W. Littmann.

Figure 132. Ventral view of left pectoral-fin spine of *Pimelodella macturki*, paratype, BMNH 1911.10.31.54, 52.9 mm SL, total length of spine 9.8 mm.

Figure 133. Schematic left lateral view of *Pimelodella macturki*.

Figure 134. *Pimelodella martinezi*, holotype, 68 mm SL, image from Fernández-Yépez (1970), unnum. page, pl. 35. Left lateral (A) and dorsal view of head (B).

Figure 135. Schematic left lateral view of *Pimelodella martinezi*.

Figure 136. *Pimelodella meeki*, holotype, FMNH 3400, 100.2 mm SL. Left lateral (A) and dorsal (B) views. Photo taken by M. W. Littmann.

Figure 137. Ventral view of left pectoral-fin spine of *Pimelodella meeki*, FMNH 57993, 97.1 mm SL, total length of spine 12 mm.

Figure 138. Schematic left lateral view of *Pimelodella meeki*.

Figure 139. *Pimelodella meeki*, MZUSP 51651, 112.2 mm SL. Left lateral (A) and dorsal (B) views. Photo taken by Murilo Pastana.

Figure 140. *Pimelodella rudolphi*, lectotype, MNRJ 857A, 73.9 mm SL. Left lateral (A) and dorsal (B) views.

Figure 141. *Pimelodella megalops*, FMNH 53231, holotype, 74.7 mm SL. Left lateral (A) and dorsal (B) views. Photo taken by M. W. Littmann.

Figure 142. Ventral view of left pectoral-fin spine of *Pimelodella megalops*, BMNH 1911.10.31.51, paratype, 67.5 mm SL, total length of spine 13.1 mm.

Figure 143. Schematic left lateral view of *Pimelodella megalops*.

Figure 144. *Pimelodella megalura*, MNRJ 865A, lectotype, 128.6 mm SL. Left lateral (A) and dorsal (B) views.

Figure 145. Ventral view of left pectoral-fin spine of *Pimelodella megalura*, MNRJ 865A, lectotype, 128.6 mm SL, total length of spine 15.2 mm.

Figure 146. Schematic left lateral view of *Pimelodella megalura*.

Figure 147. *Pimelodella metae*, FMNH 58441, holotype, 58.0 mm SL. Left lateral (A) and dorsal (B) views. Photo taken by M. W. Littmann.

Figure 148. Ventral view of left pectoral-fin spine of *Pimelodella metae*, FMNH 58441, holotype, 58.0 mm SL, total length of spine 9.1 mm.

Figure 149. Schematic left lateral view of *Pimelodella metae*.

Figure 150. *Pimelodella modesta*, BMNH 1860.6.16.190, lectotype, 100.4 mm SL. Left lateral (A) and dorsal (B) views. Photo taken by Mark Allen.
Figure 151. Ventral view of left pectoral-fin spine of *Pimelodella modesta*, BMNH 1860.6.16.190, lectotype, 100.4 mm SL, total length of spine 14.8 mm.

Figure 152. Schematic left lateral view of *Pimelodella modesta*.

Figure 153. *Pimelodella montana*, CAS 63719, lectotype, 87.4 mm SL. Left lateral (A) and dorsal (B) views. Photo taken by CAS staff.

Figure 154. Ventral view of left pectoral-fin spine of *Pimelodella montana*, CAS 63719, paralectotype, 85 mm SL, total length of spine 11 mm.

Figure 155. Schematic left lateral view of *Pimelodella montana*.

Figure 156. *Pimelodella mucosa*, CAS 63720, holotype, 97.4 mm SL. Left lateral (A) and dorsal (B) views. Photo taken by CAS staff.

Figure 157. Ventral view of left pectoral-fin spine of *Pimelodella mucosa*, CAS 63720, holotype, 97.4 mm SL, total length of spine 22.8 mm.

Figure 158. Schematic left lateral view of *Pimelodella mucosa*.

Figure 159. *Pimelodella notomelas*, FMNH 57967, holotype, 38.9 mm SL. Left lateral (A) and dorsal (B) views. Photo taken by M. W. Littmann.

Figure 160. Ventral view of left pectoral-fin spine of *Pimelodella notomelas*, FMNH 57967, holotype, 38.9 mm SL, total length of spine 7.4 mm.

Figure 161. Schematic left lateral view of *Pimelodella notomelas*.

Figure 162. *Pimelodella odynea*, USNM 121133, holotype, 88.3 mm SL. Left lateral (A) and dorsal (B) views. Photo taken by Sandra Raredon.

Figure 163. Ventral view of left pectoral-fin spine of *Pimelodella odynea*, USNM 121133, holotype, 88.3 mm SL, total length of spine 12.9 mm.

Figure 164. Schematic left lateral view of *Pimelodella odynea*.

Figure 165. *Pimelodella pectinifera*, holotype, MCZ 7508, 150.9 mm SL. Left lateral (A) and dorsal (B) views. Photo taken by MCZ staff.

Figure 166. Ventral view of left pectoral-fin spine of *Pimelodella pectinifera*, holotype, MCZ 7508, 150.9 mm SL, total length of spine 31.4 mm.

Figure 167. Schematic left lateral view of *Pimelodella pectinifera*.

Figure 168. *Pimelodella peruana*, holotype, CAS 63721, 40.3 mm SL. Left lateral (A) and dorsal (B) views. Photo taken by CAS staff.

Figure 169. Ventral view of left pectoral-fin spine of *Pimelodella peruana*: (A) holotype, CAS 63721, 40.3 mm SL, total length of spine 6.3 mm; (B) FMNH 102541, 69.9 mm SL, total length of spine 11.2 mm.

Figure 170. Schematic left lateral view of *Pimelodella peruana*.
Figure 171. *Pimelodella reyesi*, ICN-MHN 1331, 98.1 mm SL. Left lateral (A) and dorsal (B) views. Photo taken by Henry Zamora.

Figure 172. Ventral view of left pectoral-fin spine of *Pimelodella reyesi*, ICN-MHN 1331, 98.1 mm SL, total length of spine 18.6 mm.

Figure 173. Schematic left lateral view of *Pimelodella reyesi*.

Figure 174. *Pimelodella robinsoni*, holotype, ANSP 69386, 73 mm SL. Left lateral (A) and dorsal (B) views. Photo taken by Murilo Pastana.

Figure 175. Ventral view of left pectoral-fin spine of *Pimelodella wolfi*, junior-synonym of *P. robinsoni*, holotype, ANSP 69388, 88.9 mm SL, total length of spine 11.3 mm SL.

Figure 176. Schematic left lateral view of *Pimelodella robinsoni*.

Figure 177. *Pimelodella wolfi*, junior-synonym of *P. robinsoni*, holotype, ANSP 69388, 88.9 mm SL. Left lateral (A) and dorsal (B) views. Photo taken by Murilo Pastana.

Figure 178. *Pimelodella roccae*, holotype, MCZ 30975, 139.8 mm SL. Left lateral (A) and dorsal (B) views. Photo taken by MCZ staff.

Figure 179. Left lateral detail of dorsal fin of *Pimelodella roccae*, UFRO-I 9739, 77.1 mm SL, to show dorsal-fin spine morphology.

Figure 180. Schematic left lateral view of *Pimelodella roccae*.

Figure 181. *Pimelodella serrata*, holotype, FMNH 57979, 55.7 mm SL. Left lateral (A) and dorsal (B) views. Photo taken by M. W. Littmann.

Figure 182. Left lateral detail of dorsal fin of *Pimelodella serrata*, UFRO-I 9739, 77.1 mm SL, to show dorsal-fin spine morphology.

Figure 183. Ventral view of left pectoral-fin spine of *Pimelodella serrata*, holotype, FMNH 57979, 55.7 mm SL, total length of spine 7.7 mm.

Figure 184. Schematic left lateral view of *Pimelodella serrata*.

Figure 185. *Pimelodella serrata*, UFRO 9745, 83.4 mm SL. Left lateral (A) and dorsal (B) views. Photo extracted from Bockmann & Slobodian (2013).

Figure 186. *Pimelodella chaparae*, junior-synonym of *P. serrata*, holotype, ANSP 69021, 48.1 mm SL. Left lateral (A) and dorsal (B) views. Photo taken by Kyle Luckenbill.

Figure 187. *Pimelodella spelaea*, holotype, MZUSP 81726, 78.9 mm SL. Left lateral (A) and dorsal (B) views. Photo taken by Eduardo Baena.

Figure 188. Ventral view of left pectoral-fin spine of *Pimelodella spelaea*, holotype, MZUSP 81726, 78.9 mm SL, total length of spine 11.0 mm.

Figure 189. Schematic left lateral view of *Pimelodella spelaea*.
Figure 190. *Pimelodella straminea*, lectotype, ANSP 21581, 41.2 mm SL. Left lateral (A) and dorsal (B) views. Photo taken by Kyle Luckenbill.

Figure 191. Ventral view of left pectoral-fin spine of *Pimelodella straminea*, lectotype, ANSP 21581, 41.2 mm SL, total length of spine 7.6 mm.

Figure 192. Schematic left lateral view of *Pimelodella straminea*.

Figure 193. *Pimelodella taeniophora*, lectotype, BMNH 1895.5.17.27, 76.6 mm SL. Left lateral (A) and dorsal (B) views. Photo taken by Mark Allen.

Figure 194. Ventral view of left pectoral-fin spine of *Pimelodella taeniophora*, lectotype, BMNH 1895.5.17.27, 76.6 mm SL, total length of spine 13.6 mm.

Figure 195. Schematic left lateral view of *Pimelodella taeniophora*.

Figure 196. *Pimelodella taeniophora*, MZUEL 6460, 93.2 mm SL, female, extracted from Souza-Shibatta *et al.* (2013).

Figure 197. *Pimelodella tapatapae*, holotype, CAS 57469, 121.6 mm SL. Left lateral (A) and dorsal (B) views.

Figure 198. Ventral view of left pectoral-fin spine of *Pimelodella tapatapae*, holotype, CAS 57469, 121.6 mm SL, total length of spine 18.1 mm.

Figure 199. Schematic left lateral view of *Pimelodella tapatapae*.

Figure 200. *Pimelodella vittata*, lectotype, ZMB 9175, 61.8 mm SL. Left lateral (A) and dorsal (B) views. Photo taken by ZMB staff.

Figure 201. Ventral view of left pectoral-fin spine of *Pimelodella vittata*, paralectotype, ZMB 9175, 53.2 mm SL, total length of spine 9.0 mm.

Figure 202. Schematic left lateral view of *Pimelodella vittata*.

Figure 203. *Pimelodella vittata*, paralectotype, NMW 44442, 57.5 mm SL. Left lateral (A) and dorsal (B) views. Photo taken by Mark Sabaj.

Figure 204. *Pimelodella yuncensis*, lectotype, ZMS 7870, 37.8 mm SL. Left lateral (A) and dorsal (B) views. Photo taken by Natasha Khardina.

Figure 205. Ventral view of left pectoral-fin spine of *Pimelodella yuncensis*, lectotype, ZMS 7870, 37.8 mm SL, total length of spine 5.3 mm.

Figure 206. Schematic left lateral view of *Pimelodella yuncensis*.

Figure 207. Left lateral view of *Pimelodella yuncensis*, CAS 75890, 61.0 mm SL.

Figure 208. Holotype of *Rhamdia gilli*, USNM 53472, 138 mm SL.

Figure 209. *Pimelodella peruensis*, junior-synonym of *P. yuncensis*, holotype, ANSP 21932, 48.2 mm SL. Left lateral (A) and dorsal (B) views.
Figure 210. *Rhamdia altipinnis*, holotype, NMW 45601, 61.2 mm SL. Left lateral (A) and dorsal (B) views.

Figure 211. *Imparfinis macrocephalus*, paratype, MCZ 35879, 23.7 mm SL. Left lateral (A) and dorsal (B) views.

Figure 212. CT scan of *Imparfinis macrocephalus*, paratype, MCZ 35879, 23.7 mm SL. Left lateral (A) and dorsal (B) views. Scans obtained by Andrew Williston.

Figure 213. *Pimelodus parvus* Güntert, 1942, holotype, NMBA 5302, 19.4 mm SL. Left lateral (A) and dorsal (B) views. Photo taken by Natasha Khardina.

Figure 214. Simplified version of the species tree reconstructed through ASTRAL-III, based on COI, CytB, 36268e1 and 4174e20 genes, for a total of 90 specimens (80 *Pimelodella*).

Figure 215. Clade A relative to Figure 214. Branch values correspond to bootstrap (%).

Figure 216. Clade B relative to Figure 214. Branch values correspond to bootstrap (%).

Figure 217. Clade C relative to Figure 214. Branch values correspond to bootstrap (%).

Figure 218. Clade D relative to Figure 214. Branch values correspond to bootstrap (%).

Figure 219. Clade E relative to Figure 214. Branch values correspond to bootstrap (%).

Figure 220. Simplified version of the species tree reconstructed through ASTRAL-III, based on COI, CytB, 36268e1 and 4174e20 genes. Nodes with bootstrap value inferior to 50% were collapsed. Dotted boxes present the delimitation for taxa illustrated in Figures 221–226.

Figure 221. Clade A relative to Figure 220. Branch values correspond to bootstrap (%).

Figure 222. Clades B1, B2 and other taxa according to delimitation box in Figure 220. Branch values correspond to bootstrap (%).

Figure 223. Clade B3, according to delimitation box in Figure 220. Branch values correspond to bootstrap (%).

Figure 224. Clade C’, according to delimitation box in Figure 220. Branch values correspond to bootstrap (%).
Figure 225. Clade D’ and other taxa according to delimitation box in Figure 220. Branch values correspond to bootstrap (%).

Figure 226. Clade E’, according to delimitation box in Figure 220. Branch values correspond to bootstrap (%).

Figure 227. Best tree obtained by a Maximum Likelihood analysis on concatenate matrix of COI, CytB, 36268e1 and 4174e20 genes. Node values correspond to bootstrap (%). Nodes with “—” were not recovered in bootstrap tree. Dotted boxes present the delimitation for taxa illustrated in Figures 228–233.

Figure 228. Clade A, according to delimitation box in Figure 227. Branch values correspond to bootstrap (%).

Figure 229. Clade B2”, according to delimitation box in Figure 227. Branch values correspond to bootstrap (%).

Figure 230. Clade B3”, according to delimitation box in Figure 227. Branch values correspond to bootstrap (%), clades not recovered in bootstrap tree are indicate by –.

Figure 231. Specimens of orange delimitation box of Figure 227, corresponding to clade C” and other taxa. Branch values correspond to bootstrap (%), clades not recovered in bootstrap tree are indicate by –.

Figure 232. Specimens of green delimitation box of Figure 227, corresponding to clade D” and other taxa. Branch values correspond to bootstrap (%).

Figure 233. Clade E”, according to delimitation box in Figure 227. Branch values correspond to bootstrap (%), clades not recovered in bootstrap tree are indicate by –.

Figure 234. Distribution map of the following *Pimelodella*: *P. australis*.— red star: holotype and paratypes; *P. boschmai*.— purple star: holotype, purple circle: other material; *P. brasiliensis*.— yellow star: holotype, yellow circle: other material, yellow triangle: lectotype of *P. eigenmanni*, junior-synonym of *P. brasiliensis*; *P. harttii*.— dark blue star: holotype, dark blue circle: other material; *P. ignobilis*.— green star: holotype; green circle: other material; *P. kronei*.— light blue star: holotype, light blue circle: other material; light blue triangle: neotype of *P. transitoria*, junior-synonym of *P. kronei*; *P. lateristriga*.— pink star: holotype, pink circle: other material, pink triangle: lectotype of *P. bahiana*, junior-synonym of *P. lateristriga*.

Figure 235. Distribution map of the following *Pimelodella*: *P. avanhandavae*.— red star: holotype, red circle: other material; *P. gracilis*.— purple star: lectotype, purple circle: other material, purple triangle: lectotype of *P. taenioptera*, junior-synonym of *P. gracilis*; *P. griffini*.— yellow star (same place as blue star): holotype, yellow circle: other material; *P.
laticeps.— dark blue star: holotype; dark blue circle: other material; *P. longipinnis.*— light green star: holotype; *P. meeki.*— dark green star: holotype, dark green circle: other material, dark green triangle: lectotype of *P. rudolphi*, junior-synonym of *P. meeki*; *P. pectinifera.*— light blue star: holotype; *P. straminea.*— pink star: holotype, pink circle: other material; *P. taeniophora.*— orange star: lectotype, orange circle: other material.

Figure 236. Distribution map of the following *Pimelodella*: *P. enochi.*— red star: holotype, red circle: other material, red triangle: holotype of *P. papariae*, junior-synonym of *P. enochi*; *P. itapicuruensis.*— purple star: holotype, purple circle: other material; *P. laurenti.*— yellow star: holotype, yellow circle: other material; *P. mucosa.*— dark blue star: holotype; dark blue circle: other material; *P. notomelas.*— light green star: holotype, light green circle: other material; *P. robinsoni.*— dark green star: holotype, dark green circle: other material, dark green triangle: holotype of *P. wolfi*, junior-synonym of *P. robinsoni*; *P. spelaea.*— light blue star: holotype, light blue circle: other material; *P. vittata.*— pink star: holotype, pink circle: other material.

Figure 237. Distribution map of the following *Pimelodella*: *P. boliviana.*— red star: holotype, red circle: other material; *P. hasemani.*— purple star: holotype, purple circle: other material; *P. howesi.*— yellow star: holotype, yellow circle: other material; *P. megalura.*— dark blue star: holotype; dark blue circle: other material; *P. montana.*— light green star: holotype, light green circle: other material; *P. modesta.*— dark green star: holotype, dark green circle: other material; *P. peruana.*— pink star: holotype, pink circle: other material; *P. roccae.*— orange star: holotype, orange circle: other material.

Figure 238. Distribution map of the following *Pimelodella*: *P. buckleyi.*— red star: lectotype, red circle: other material, red triangle: paralectotype of *P. cyanostigma*, junior-synonym of *P. buckleyi*, red diamond: holotype of *P. copei*, junior-synonym of *P. buckleyi*; *P. conquetaensis.*— purple star: holotype; *P. cruxenti.*— yellow star: lectotype, yellow circle: other material; *P. elongata.*— dark blue star: lectotype; dark blue circle: other material; *P. eutaenia.*— light green star: lectotype, light green circle: other material; *P. figueroai.*— dark green star: paratype; *P. grisea.*— pink star: holotype, pink circle: other material.

Figure 239. Distribution map of the following *Pimelodella*: *P. chagresi.*— red star: lectotype, red circle: other material; *P. linami.*— purple star: holotype; *P. metae.*— yellow star: holotype, yellow circle: other material; *P. odynea.*— dark blue star: holotype; dark blue circle: other material; *P. reyesi.*— light green circle: other material; *P. serrata.*— dark green star: holotype, dark green circle: other material, dark green triangle: holotype of *P. chaparae*, junior-synonym of *P. serrata*; *P. yuncensis.*— pink star: lectotype, pink circle: other material.
Figure 240. Distribution map of the following *Pimelodella: P. cristata.*— red star: lectotype, red circle: other material, red triangle: holotype of *P. breviceps*, junior-synonym of *P. cristata*, red diamond: lectotype of *P. cyanostygma*, junior-synonym of *P. cristata*, red arrow: holotype of *P. dorseyi*, junior-synonym of *P. cristata*, red half diamond: holotype of *P. hartwelli*, junior-synonym of *P. cristata*, red pentagon: holotype of *P. parnahybae*, junior-synonym of *P. cristata*, red square: lectotype of *P. steindachneri*, junior-synonym of *P. cristata*, red ellipse: holotype of *P. wesseli*, junior-synonym of *P. cristata*, red airplane: holotype of *P. witmeri*, junior-synonym of *P. cristata*; *P. geryi.*— purple star: holotype, purple circle: other material, purple triangle: holotype of *P. procera*, junior-synonym of *P. geryi; P. humeralis.*— yellow star: holotype, yellow circle: other material; *P. leptosoma.*— dark blue star: holotype; dark blue circle: other material; *P. macturki.*— light green star: holotype, light green circle: other material; *P. megalops.*— dark green star: holotype, dark green circle: other material.
Attachments list

Attachment 1. Original description of *Pimelodella humeralis*, in the article “A new species of *Pimelodella* (Siluriformes: Heptapteridae) from the Guiana Shield, Brazil” of Slobodian *et al.* (2017).

Attachment 2. R script to calculate ML trees and other results, to be used by ASTRAL in order to calculate the Species Tree.
Summary

Volume 1

Introduction .. 1
The *Pimelodella* genus Eigenmann & Eigenmann, 1888... 1
General objectives and thesis approach .. 3

Chapter 1: Taxonomic revision of *Pimelodella* Eigenmann & Eigenmann, 18884

Introduction ... 5
Taxonomic history of the genus *Pimelodella* .. 5

Objectives ... 10

Material and Methods ... 11
Methods to gather common taxonomic data... 11
Anatomic illustration, nomenclature and institutional codes.. 12
Maps and assessment of geographic distribution ... 12
Principal Component Analysis (PCA) ... 12
Material examined .. 14

Results .. 15
Pimelodella Eigenmann & Eigenmann, 1888 ... 15
Pimelodella australis Eigenmann, 1917 ... 23
Pimelodella avanhandavae Eigenmann, 1917 ... 29
Pimelodella boliviana Eigenmann, 1917 ... 33
Pimelodella boschmai Van der Stigtchel, 1964.. 36
Pimelodella brasiliensis (Steindachner, 1877).. 41
Pimelodella buckleyi (Boulenger, 1887) ... 49
Pimelodella chagresi (Steindachner, 1876a) .. 55
Pimelodella conquetaensis Ahl, 1925 ... 61
Pimelodella cristata (Müller & Troschel, 1849) ... 64
Pimelodella cruxenti Fernandez-Yépez, 1950 ... 79
Pimelodella elongata (Günther, 1860) ... 83
Pimelodella enochi Fowler, 1941a .. 87
Pimelodella eutaenia Regan, 1913 ... 92
Pimelodella figueroai Dahl, 1961 .. 97
Pimelodella geryi Hoedeman, 1961 .. 100
Pimelodella gracilis (Valenciennes, 1835) ... 104
Pimelodella griffini Eigenmann, 1917 ... 113
Pimelodella grisea (Regan, 1903) ... 117
Pimelodella harttii (Steindachner, 1877) .. 120
Pimelodella hasemani Eigenmann, 1917 .. 124
Pimelodella howesi Fowler, 1940b ... 129
Pimelodella humeralis Slobodian, Akama & Dutra, 2017 ... 134
Pimelodella ignobilis (Steindachner, 1907) ... 135
Pimelodella itapicuruensis Eigenmann, 1917 ... 140
Pimelodella kronei (Miranda Ribeiro, 1907a) .. 144
Chapter 2: Molecular taxonomy of *Pimelodella* Eigenmann & Eigenmann, 1888.269

Introduction .. 270

Integrative taxonomic methods for species delimitation .. 270

Material and Methods ... 272

Taxon sampling .. 272

Molecular data collection ... 272

Processing, alignment of sequenced data and obtaining models 275

Phylogenetic inferences .. 275

Results ... 276

Species tree analysis .. 276

Concatenate matrix analysis .. 279

Material examined .. 282
Final conclusions: Integrative taxonomy delimitation 286
Final conclusions .. 287
Bibliographic References ... 291

Volume 2

Tables, figures and attachments ... 318
Introduction

The *Pimelodella* genus Eigenmann & Eigenmann, 1888

Pimelodella Eigenmann & Eigenmann 1888 is an important component of the freshwater fish fauna of the Neotropics. With 79 species currently considered as valid, *Pimelodella* is the most species-rich genus of Heptapteridae, a family comprising 211 species in 24 genera (Eschmeyer, Fricke & van der Laan, 2017). *Pimelodella* is distributed throughout cis- and trans-andean Neotropical drainages, from Panamá to Argentina (Eschmeyer, Fricke & van der Laan, 2017). Due to unsettled taxonomic and systematic problems, the genus represents one of the most difficult bottlenecks for understanding the diversity of Neotropical freshwater fishes.

Pimelodella was described in 1888 by Eigenmann & Eigenmann, to include *Pimelodus cristatus* Müller & Troschel, 1849 as type-species, *P. pectinifer* as a new species, plus several additional species previously included in *Pimelodus* (*P. brasiliensis* Steindachner, 1877, *P. buckleyi* Boulenger, 1887, *P. chagresi* Steindachner, 1876, *P. cristatus*, *P. elongatus* Günther, 1860, *P. gracilis* Vallenciennes, 1835, *P. hartii* Steindachner, 1877, *P. lateristrigus* Lichtenstein, 1823, *P. modestus* Günther, 1860, *P. vittata* Lütken, 1874 and *P. wesselii* Steindachner, 1877) The genus was diagnosed by: “head entirely covered in skin; occipital process narrow, of the same width throughout, meeting the dorsal plate; fontanel prolonged backward to the occipital process with a bridge across it behind the eye” (Eigenmann & Eigenmann, 1888: 131).

Carl Eigenmann (1917) revised *Pimelodella* and *Typhlobagrus*, the latter a monotypic genus proposed by Miranda Ribeiro (1907) for his new troglobitic species *T. kronei*. Eigenmann (1917) recognized 35 taxa in *Pimelodella* (34 species plus one subspecies) including 12 taxa (11 species plus one subspecies) then described as new. Eigenmann (1917) also provided a diagnosis of the genus based on several non-unique features: “nares remote; teeth villiform, in bands; gill-membranes free from the isthmus; dorsal short, with a feeble, pungent spine; anal short, with 11–15 rays; pectoral with a strong pungent spine variously armed with thorn-like teeth on its posterior (inner) edge; a long, adnate, adipose fin; caudal fin deeply forked, one or the other lobe frequently wider, or longer; well-developed maxillary barbels reaching to end of pectoral, or beyond the caudal; two pairs of mental barbels, sometimes in a; nearly straight line; a frontal and a parietal fontanel, the latter reaching to the base of the occipital process, which is narrow and reaches, or nearly reaches, the plate in front
of the dorsal; humeral process spine-like; roof of mouth without teeth; head covered with thin skin” (Eigenmann, 1917: p. 229).

Since Eigenmann’s (1917), *Typhlobagrus* has been synonymized with *Pimelodella*, and several other species have been newly described, removed from or transferred to *Pimelodella* (Ferraris, 2007), reaching a present total of 92 available names (Eschmeyer, Fricke & van der Laan, 2017) (Table 1). Several authors made substantial contributions to the taxonomy of the genus, e.g. Regan (1903, 1913), Miranda-Ribeiro (1907, 1911, 1914, 1918), Fowler (1914, 1915, 1940a, b, c, 1941a, b), Ahl (1925) and Dahl (1961, 1964). Revisionary work on other heptapterid genera resulted in the transfer, by default, of some species to *Pimelodella* without detailed studies on the systematics of the genus (Silfvergrip, 1996; Bockmann & Miquelarena, 2008), thus increasing its taxonomic complexity.

The diagnosis proposed by Eigenmann (1917) is insufficient to properly delimit *Pimelodella*, so that the genus has been redefined in subsequent contributions (Bockmann & Miquelarena, 2008; Slobodian, 2013; Slobodian & Bockmann, 2013). However, *Pimelodella* remains without a phylogenetic diagnosis, and its diversity remains poorly understood.

Despite a plethora of publications on *Pimelodella*, only few works after Eigenmann (1917) had an actual comparative scope: Mees’ (1974, 1986) focused on *Pimelodella* species in Surinam and French Guiana; Guazzelli’s (1997) investigated the taxonomy of eight *Pimelodella* species from Brazilian southern and southeastern coastal drainages; and Souza-Shibatta et al. (2013) measured the cytogenetic, morphologic and morphometric differences among *Pimelodella* in the Brazilian Pantanal (Mato Grosso do Sul and Mato Grosso States).

Today, *Pimelodella* is a genus rife with taxonomic problems of various sorts, large documented diversity, broadly distributed species, and outdated or inadequate descriptions. Taxonomic problems also stem from a highly conservative morphology and a lack of comprehensive studies on the numerous specimens vouchered in natural history collections. Many species of *Pimelodella* lack rigorous taxonomic study and, to some degree, those considered valid merely correspond to a list of unchallenged available names (Slobodian et al., 2017). Identification of *Pimelodella* species is expectedly troublesome, a fact blatantly demonstrated in collection material: the majority of material representing *Pimelodella* is undetermined, or wrongly identified at species level. In addition, phylogenetic work on the genus invariably stumble upon resilient taxonomic problems mentioned above, and therefore have limited applicability.
General objectives and thesis approach

The main purpose of this work is to mitigate the lack of knowledge on the taxonomy of *Pimelodella*. To that end, I present a thorough taxonomic revision encompassing all available names in *Pimelodella*, having as primary source of information external anatomy, morphometric, meristic and osteological data. Concomitantly, a molecular study was conducted for a sample of *Pimelodella* species, in order to discuss the molecular diversity and the explanatory power of molecular taxonomy in delimiting species of the genus, as seen through the results of the classical taxonomic results. With both morphological and molecular data, an integrative approach was conducted to characterize *Pimelodella* species on a biologically-broad basis, including also distributional and ecological data whenever available.

The work is divided in two chapters: The first reviews the taxonomy of *Pimelodella* with traditional morphological data, following a classical approach with descriptions and diagnoses of valid species, synonymies and a discussion on taxonomically-significant morphological characters.

The second chapter includes an essay on the molecular diversity of *Pimelodella* and the explanatory power of molecular characters to unravel the taxonomy of the genus using species trees methodology. This strategy is based on gathering information from several gene trees and then analyzing the divergence pattern of loci, time of divergence and probable events of coalescence (*cf.* Edwards *et al.*, 2007; Liu & Pearl, 2007; Carstens & Knowles, 2007; Liu *et al.*, 2008; Kubatko *et al.*, 2009). The results were compared with the obtained through a traditional concatenate analysis.

A final discussion offers an integrative approach to the taxonomy of *Pimelodella* using multidisciplinary strategies and data from both morphological and molecular results.
Chapter 1
Taxonomic revision of *Pimelodella*
Eigenmann & Eigenmann, 1888
Introduction

Taxonomic history of the genus *Pimelodella*

Pimelodella was described in 1888 by Eigenmann & Eigenmann to include 11 species previously allocated in *Pimelodus* or *Pseudorhamdia* (*P. brasiliensis*, *P. buckleyi*, *P. chagresi*, *P. cristatus*, *P. elongatus*, *P. gracilis*, *P. harttii*, *P. lateristriga*, *P. modestus*, *P. vittata*, *P. wesseli*) plus a newly-described *P. pectinifer*. At the time of description, Eigenmann & Eigenmann (1888) also synonymized part of described *Pseudorhamdia* to *Pimelodella* (*Pseudorhamdia* original type is *P. maculatus*, not included among the *Pimelodella*, so *Pseudorhamdia* genus do not have priority over *Pimelodella*). The genus was proposed to accommodate *Pimelodus* species with a narrow supraoccipital process, reaching the anterior nuchal plate, and a completely opened posterior fontanel (Eigenmann & Eigenmann, 1888: 131). Eigenmann & Eigenmann (1888) implicitly arranged genera due to some sort of perceived similarity (Bockmann, 1998), and *Pimelodella* was listed immediately after the genus *Rhamdia* Bleeker (1858) (and *Rhamdella*, a subgenus), and in an appendix Eigenmann & Eigenmann (1888: 172) placed *Heptapterus* Bleeker (1858) and *Nannoglanis* Boulenger (1887) after *Rhamdella*.

In 1890, Eigenmann & Eigenmann redescribed species of *Pimelodella* in detail, also offering an identification key. In 1891, Eigenmann & Eigenmann produced a catalog, in which then 12 known species were listed. Between 1891 and 1910, the species *Pimelodus eigenmanni* Boulenger 1891, *Pimelodella yuncensis* Steindachner, 1902, *Pimelodus* (*Pimelodella*) *griseus* Regan, 1903, *Pimelodus* (*Pimelodella*) *taeniophorus* Regan, 1903 and *Pimelodella mucosa* Eigenmann & Ward, 1907 were described.

Another catalog was produced by Eigenmann (1910), where the new species cited above were indicated under or transferred to *Pimelodella*, along with *P. meeki* as a *nomen novum* for the unavailable *P. eigenmannii* Meek (1905), and the citation of the names *P. macturkii* (*sic*) and *P. megalops* as manuscripts in preparation, which were later formally described by Eigenmann (1912). Between 1912 and 1917, *Pimelodella eutaenia* Regan, 1913, *Pimelodella taenioptera* Miranda Ribeiro, 1913, *Pimelodella copei* Fowler, 1915 and *Pimelodella peruensis* Fowler, 1915 were described.

The last taxonomic revision of *Pimelodella* was then made by Eigenmann (1917) in which 12 new taxa were described (11 new species and 1 new subspecies), and *P. wesselli* was synonymized to *P. cristata*. In that work, a new diagnosis was proposed for the genus.
Eigenmann’s revision (1917) delimited the geographic distribution of *Pimelodella* to rivers from Panamá to Argentina, a range which remains correct today. Most of the species were described (or redescribed) and illustrated, and all known species had their pectoral-fin spines illustrated. A key is presented for the 35 taxa of *Pimelodella* and 1 *Typhlobagrus* (interpreted as an offshoot of *Pimelodella* at that time, later into *Pimelodella*). This is the most comprehensive work on *Pimelodella* taxonomy to date, and after that *Pimelodella* was treated just in part, either subsets of species or isolated descriptions.

Fowler (1940a, b, 1941a) described several *Pimelodella* species in many works on the fauna of specific regions or rivers. However, his works include little discussion on the differences among the species, but solely descriptions and, at most, comparisons with a few species from nearby localities. After Eigenmann, Fowler was the author who described most species of *Pimelodella*: *P. copei* and *P. peruense* (Fowler, 1915); *P. hartwelli* (Fowler, 1940a); *P. chaparae, P. cochabambae* (transferred to *Imparfinis* by Mees & Cala, 1989) and *P. howesi* (Fowler, 1940b); *P. dorsay, P. enochi, P. laurenti, P. paharybae* and *P. witmeri* (Fowler, 1941a); and also *Rhamdella leptosoma* (Fowler, 1914), *R. papariae, R. robinsoni* and *R. wolfi* (Fowler, 1941a), now in *Pimelodella*.

Eigenmann & Allen (1942) presented the distribution of the *Pimelodella* species, their diagnosis and referred material; plus descriptions of *P. montana* Allen, 1942 in Eigenmann & Allen, 1942, and *P. peruana* Eigenmann & Myers in Eigenmann & Allen, 1942. Catalogs such as Gosline (1945) and Fowler (1951) included all species of *Pimelodella* described to the respective dates (Fowler, 1951 includes only Brazilian species). Also, *Caecorhamdella brasiliensis* Borodin (1927a) and *Typhlobagrus kronei* Miranda Ribeiro, 1907 were maintained under those genera (Gosline, 1945: 34; 43; Fowler, 1951: 518–519; 578–579).

Schultz (1944) was the first to synonymize *Brachyrhamdia* in *Pimelodella*, but without discussion. In the same work, *P. linami* and *P. chagresi odynea* were described from the Maracaibo, but without much resort to comparative material. Innes & Myers (1950) also suggested *Brachyrhamdia* as a junior-synonym of *Pimelodella*. Two other genera synonymized with *Pimelodella* were *Typhlobagrus* Miranda Ribeiro, 1907a (Pavan, 1946: 359) and *Caecorhamdella* Borodin, 1927a (Trajano & Britski, 1992: 83).

Dahl (1961) published the first comparison of *Pimelodella* species bearing filaments on dorsal fin, *P. griffini, P. linami* and *P. figueiroi*. Dahl (1961) proposes that the filamentous prolongation of the dorsal fin as absent in an adult females and immature specimens of *P. figueiroi*, suggesting the filament as a secondary sexual character of the adult male. He further suggested that the same might apply to other *Pimelodella* species. *Pimelodella boschmai* was
described by van der Stigchel (1964), but the only comparison made with other filamentous *Pimelodella* was with *P. griffini*.

Another important author in understanding the diversity of *Pimelodella*, Mees (1974, 1983, 1986), who offered general comparisons for *Pimelodella* identification. He objectioned to Fowler’s descriptions (1940b, 1941a), in which different species were described on the basis of differences on eye size. Mees’ own findings showed that character as related to sexual dimorphism in *P. cristata*. Mees (1974) also suggested that *Pimelodus altipinnis* was in fact a *Pimelodella*, following an earlier suggestion of Van der Stigchel, 1946; that *P. altipinnis* (Steindachner, 1874), *P. geryi* Hoedeman (1961) and *P. wesseli* (Steindachner, 1876) were junior-synonyms of *P. cristata*, and that *P. insignis* was a junior-synonym of *P. boschmai*. Mees (1974) also proposed *P. gracilis* (Valenciennes, 1835) as senior-synonym of *P. cristata* or, alternatively, that *P. gracilis* was confined to the Uruguay-Paraná-La Plata basins. Similar forms from Guianas, Orinoco and Suriman were, in that case, *P. cristata*, and similar forms from Amazon would be *P. steindachneri*. Discussions on the value of coloration patterns in species identification were made, with the observation that single species of *Pimelodella* from different rivers may differ to a limited degree (Mees, 1974).

In a work about the naked catfishes from French Guiana, Mees (1983) narrowed the type-locality of *P. lateristriga*, to the vicinity of the city of Rio de Janeiro, based on data about the travels of the collector, von Olfers. He also highlighted differences in vertebral counts and color pattern for material identified as *P. cristata*, Despite the recognized need for further study, he did not think those characteristics were sufficient to discriminate species (Mees, 1983).

The first time *Pimelodella* was studied under a cladistic perspective was in Howes (1983), in which it grouped the genus with *Rhamdia* and *Heptapterus* inside the Pimelodidae. However, the family Heptapteridae as currently composed, was first diagnosed (as a unnamed group) in Lundberg & McDade (1986). Therein, *Pimelodella* was also attributed to a monophyletic subgroup including also *Brachyrhamdia*, *Cetopshorhamdia*, *Goeldiella*, *Pimelodella*, *Pimelodus heteropleura*, *Rhamdella*, *Rhamdia*, *Typhlobagrus* and an unidentified *Nannorhamdia*, based on the synapomorphy “fifth transverse process smaller than fourth, but similarly expanded and notched” (Lundberg & McDade, 1986: 6).

Axelrod & Burgess in Axelrod (1987) expressed doubt whether *Brachyrhamdia* was be distinguishable from *Pimelodella*. Later, Burgess (1989) transferred *B. imitator*, *B. marthae* and *B. meesi* into *Pimelodella*, without further explanation about the move.
Silfvergrip (1996) provisionally transferred *Pimelodus bahianus* to *Pimelodella*, and made some comparisons of anatomic features of *Pimelodella* and *Rhamdia*, especially in characters of dorsal, pectoral and adipose fins, and on sexual dimorphism. Silfvergrip also suggested *Pimelodus breviceps* might be a *Pimelodella*

Guazzelli (1997), in her unpublished dissertation, made a taxonomic review of *Pimelodella* species from South and Southeastern coastal drainages of Brazil. In that work, seven described species were proposed as valid (*P. australis, P. brasiliensis, P. ignobilis, P. kronei, P. lateristriga, P. pappenheimi, and P. transitoria*), a new species was proposed for the rio Paraiba do Sul, and *P. harttii* and *P. pectinifera* were included as junior synonyms of *P. lateristriga*.

Bockmann (1998), in his unpublished thesis, made the most comprehensive study yet on generic relationships in Heptapteridae. *Brachyrhamdia, Caecorhamdella* and *Typhlobagrus* were included as junior-synonyms of *Pimelodella*. Bockmann (1998) included only 8 *Pimelodella* species in his analysis, 5 of which belonging to *Brachyrhamdia*.

Guazzelli (2003), in her unpublished thesis, proposed a phylogenetic hypothesis for species of *Pimelodella*, including 18 described and 17 undetermined or new species. Guazzelli (2003) maintained *Brachyrhamdia* as a junior-synonym of *Pimelodella*. The clade including *Pimelodella+Brachyrhamdia* in her analysis is corroborated by 7 synapomorphies, all of which homoplastic (Guazzelli, 2003).

Relationships among *Pimelodella* species in Guazzelli (2003) are massively unresolved, the only exception being a group formed by *P. cristata, P. witmeri* and 7 new species (clade 58, diagnosed by 4 homoplastic synapomorphies). Guazzelli (2003) also highlights the need of extensive revisionary work on *Pimelodella*, before its biodiversity is realistically known.

Bockmann & Guazzelli (2003) presented a checklist of Heptapteridae species, in which they transferred to *Pimelodella* the species *Nannorhamdia macrocephala, Pimelodus breviceps, Rhamdia eigenmanniorum, Pimelodus ophthalmicus, Pimelodus taeniophorus and Pimelodus wesseli*, erected *Pimelodella chagresi odynea* to full species and synonymized *P. insignis* to *P. boschmai*. However, no explicit reasons were presented for implementing those taxonomic changes. That work treated *Brachyrhamdia* as a valid genus, and *Typhlobagrus* and *Caecorhamdella* as junior-synonyms of *Pimelodella* (Bockmann & Guazzelli, 2003).

Leiva (2005), in his unpublished dissertation, made a taxonomic review of *Pimelodella* species from trans-Andean Colombian rivers. In that work, he indicated *P. chagresi, P eutaenia, P. grisea, P. modestus, P. odynea* and *P. reyesi* as valid species, describing three additional new species (Leiva, 2005).
Ferraris (2007) proposed *P. bahianus* and *P. rendahl* as species inquirenda in *Pimelodella*. That work also treated *Brachyrhamdia* as a valid genus, and *Typhlobagrus* and *Caecorhamdella* as junior-synonyms of *Pimelodella* (Ferraris, 2007).

Bockmann & Miquelarena (2008) suggested *Nannorhamdia macrocephala*, *Rhamdella leptosoma*, *R. papariae*, *R. robinsoni* and *R. wolfi* as probably members of *Pimelodella*, transferred *Rhamdella ignobilis* and *R. longipinnis* to *Pimelodella*, and suggested *Pimelodus exsudans*, *P. jenynsii* and *Rhamdella straminea* as members of *Pimelodella* or *Rhamdia*. That work suggested *Brachyrhamdia* as a valid genus, recovered as sister-group of *Pimelodella*, but did not proposed apomorphies for the latter clade.

Nannorhamdia macrocephala was suggested as a *Pimelodella* due to the presence of long maxillary barbels, inner caudal-fin rays that do not articulate directly on the hypural plates and with interradial membranes only along their basal halves, all synapomorphies of *Pimelodella* according to Bockmann (1998), and despite the supraoccipital process short, not reaching the prenuchal plate (Bockmann & Miquelarena, 2008).

Rhamdella leptosoma was suggested (Bockmann & Miquelarena, 2008) as a possible *Pimelodella* due to overall appearance and geographical distribution (since the *Rhamdella*, as defined in that work, was limited to southern South America), and despite the short supraoccipital process. *Rhamdella papariae*, *R. robinsoni* and *R. wolfi* were suggested as belonging to *Pimelodella* on the basis of information in original descriptions and associated illustrations (*e.g.* slender body, large eyes, well-developed supraoccipital process, long maxillary barbel, reaching anal-fin base, robust pectoral spine, dark stripe along lateral surface of the body, etc.) (Bockmann & Miquelarena, 2008). Type material of *Rhamdella ignobilis* and *R. longipinnis* was examined and supported their transfer to *Pimelodella* on the basis of long maxillary barbels and a sharp long supraoccipital process that contacts the predorsal plate (Bockmann & Miquelarena, 2008).

Bockmann & Miquelarena (2008) also suggested *Pimelodus exsudans* Jenyns, 1842 and *Pimelodus jenynsii* Günther, 1864 as *Pimelodella* or *Rhamdia* based on the descriptions of both species, and arguing that the characters suggested by Eigenmann & Eigenmann (1888, 1890) to place both in *Rhamdella* are not accurate enough to justify this transfer. Also, Bockmann & Guazzelli (2008) argued *Rhamdella* genus does not occur in Rio de Janeiro vicinities, the collection locality of *Pimelodus exsudans* and *P. jenynsii*. *Rhamdella straminea* was also suggested as a *Pimelodella* or *Rhamdia* due to the presence of long maxillary barbels reaching the middle of ventral fins, despite the long cranial fontanel (Bockmann & Miquelarena, 2008).
Slobodian (2013), in an unpublished dissertation, produced a phylogenetic analysis of *Brachyrhamdia*, including all its species plus 12 of *Pimelodella*. That work recovered *Brachyrhamdia* as an apical lineage inside a widely unresolved *Pimelodella*, with 14 apomorphic characters, 6 of which exclusive and unreversed (clade 19). The clade encompassing *Pimelodella*+*Brachyrhamdia* (clade 7) is diagnosed by numerous synapomorphies and can be considered as well-corroborated (Slobodian, 2013).

Despite recovering *Brachyrhamdia* as an apical lineage inside *Pimelodella*, Slobodian (2013) suggested *Brachyrhamdia* should remain valid, because it is an easily recognizable and diagnosable clade, while *Pimelodella* is probably a paraphyletic group, whose species’ relationships can only be resolved in the scope of a more inclusive work.

Pimelodella remains without any published phylogenetic diagnosis and its monophyly is uncertain, but an assemblage composed of its species can be distinguished from other heptapterids, including *Brachyrhamdia*, by a unique character combination (Slobodian *et al.* 2017). *Pimelodella* nowadays includes 79 valid species, from a total of 92 available names, and is the most species-rich genus of Heptapteridae, a family composed of 211 species in 24 genera (Eschmeyer, Fricke & van der Laan, 2017). *Pimelodella* is distributed throughout cis- and trans-Andean Neotropical drainages from Panamá to Argentina (Eschmeyer, Fricke & van der Laan, 2017). The majority of species in the genus have never been subject to rigorous taxonomic study and those considered as valid often merely correspond to a selected list of available names (Slobodian *et al.*, 2017).

Objectives

The aim of this work is to present a thorough taxonomic revision of *Pimelodella*, encompassing all available names and using data from external anatomy, morphometrics, meristics, pigmentation and osteology data. It is subdivided into the following stages:
Chapter 2
Molecular taxonomy of *Pimelodella*
Eigenmann & Eigenmann, 1888
Introduction

Integrative taxonomic methods for species delimitation

Taxonomy is the science that pioneers the exploration of life on the planet, providing information subsidiary to ecology, conservation, and virtually all other studies related to living beings. However, taxonomy is not only a tool of technical support for the rest of biology, but a scientific field with its own struggles and objectives.

Although taxonomic studies have existed long before the advent of phylogenetic systematics, this paradigm provided a conceptual and philosophical framework that greatly benefited taxonomy: it brought testability to taxonomic delimitations, with the use of tools for the organization of organisms subjects according to their evolutionary relationships, and helped minimize authority influence in taxonomic decisions (Godfray & Knapp, 2004).

Besides phylogenetic systematics, advancement of several other methods and techniques in the past few decades allowed progress on species recognition and delimitation (Sites & Marshall, 2003; Camargo & Sites, 2013). Such advancements were particularly visible computational time and laboratory techniques (mainly molecular and cytogenetic data). However, such advances have normally been circumscribed to their particular area of expertise, with only partial incorporation into mainstream taxonomic research.

Integrative taxonomy brings an embracing approach, proposing that species delimitation should consider several sources of data (Padial et al., 2010), and that congruence and incongruence among results can be understood in light of each method’s characteristics. Sources of data comprehend morphology, molecular, cytogenetic, ecology, reproduction, behavior, geographical distribution, among others (Knowles & Carstens, 2007), and can increase the explanatory power of species hypotheses.

However, it is not uncommon that different sources diverge in their results about species boundaries. Such cases must be analyzed case by case (Schlick-Steiner et al., 2010). When different data disagree, reasons for such discordance should be analyzed (Schlick-Steiner et al., 2010; Carstens et al., 2013) according to possible evolutionary explanations.

Advances in methodologies and techniques for molecular data now allow faster extraction, sequencing and interpretation of results, resulting in substantial increase in their use in taxonomy and systematics (Camargo & Sites, 2013). The pursuit for a single genetic marker for exclusive species delimitation culminated in the initial success of the Barcode of Life project. Hebert et al. (2003a) proposed a portion of Cytochrome C Oxidase I (COI) as a global maker for biological identification, with initial success rates between 96–100% (Hebert
et al., 2003a; Barrett & Hebert, 2005). However, several well-established population genetics theories raised doubts about the limitations of such genetic data in delimiting species (Moritz & Cicero, 2004).

The limiting factors for DNA Barcode are several: species delimitation based on exclusivity criteria are usually incongruent with the delimitation through other sources of data (Sites & Marshall, 2004); DNA Barcode is usually not very effective for species recently diverged, without well-established geographical delimitation, and when dealing with a great amount of specimens per species. Posterior studies reported success rates have dropped to less than 70% of accuracy in species delimitation (Meyer & Paulay, 2005; Meier et al., 2008; Elias et al., 2007; Knowles & Carstens, 2007; Whitworth et al., 2007; Wiemens & Fiedler, 2007; Hollingsworth et al., 2009).

In the light of single loci limitations, the best approach to study molecular data in taxonomy includes the use of multiple loci, in order to avoid the “local optimum” given by a single gene tree (Edwards, 2009). Several studies argue that the increase in the number of loci analyzed results in increased accuracy in species delimitation (e.g. Dupuis et al., 2012), above all if the species have recently diverged (Knowles & Carstens, 2007).

When using molecular data for taxonomy, different loci often results in different gene trees, and the incongruences among those must be dealt in order to reconstruct a single species tree topology. Myriad processes can lead to incongruences between different gene trees, or even between a particular gene tree and the final species tree: horizontal transfer (including hybridization); gene duplication and extinction; and deep coalescence (Maddison, 1997). Among these, deep coalescence explanation argues ancestral polymorphisms can persist through speciation events, being most likely in large populations with short divergence periods, so that a particular gene tree may not be congruent with the species divergence sequence (Maddison, 1997; Knowles & Carstens, 2007).

Several programs and methods intend to deal with deep coalescence problems, using Maximum Likelihood and Bayesian premises, like STEM (Kubatko et al., 2009), BEST (Liu & Pearl, 2007; Liu, 2008), BUCKy (Ané et al., 2007), and ASTRAL (Mirarab et al., 2014). The efficiency of those methods is estimated mainly by simulations and computational models, which estimate relative performances in finding the “true” species tree for a specific database (e.g. Degnan & Rosenberg, 2006; Knowles & Carstens, 2007; Heled & Drummond, 2010). Works on real groups are getting more common, and demonstrated to recover probable and well-supported species trees (e.g. Belfiore et al., 2008; Brumfield et al., 2008; Andrade et al., 2015; Streicher, et al., 2015).
In this chapter, the molecular taxonomy of *Pimelodella* species is studied by species tree and concatenated matrix methods. Results are interpreted against results from morphological delimitation and geographic distribution.

Material and Methods

Taxon sampling
Several species of *Pimelodella*, from most of its geographic range, were included, along with outgroup Heptapteridae taxa. The initial dataset comprises a total of 93 specimens belonging to *Pimelodella*, seven Heptapteridae genera, and one Pimelodidae (*Pimelodus*). Among Heptapteridae, representatives of *Brachyglanis, Imparfinis, Phenacorhamdia, Rhamdia* and *Rhamdioglanis* were included (10 specimens), besides several *Pimelodella*, that comprehends 83 specimens total. Samples of *Pimelodella* were initially identified to species level following results of Chapter 1, and found to represent 26 *Pimelodella* species, 18 already described and and 8 possibly new. The complete list of material examined is presented in Table 70.

The trees were rooted in *Pimelodus* sp.

Molecular data collection
Two mitochondrial (Cytochrome Oxidase C, subunit I and Cytochrome B) and two nuclear (exon-primed intron-crossing (EPIC) markers 39298e1 and 4274e20) were used as sources of data. Cytochrome Oxidase C, subunit I (COI) is one of the most used mitochondrial genes for phylogenetic analysis, as well as for species identification with DNA Barcoding (Hebert et al., 2003a). Despite its limitations (e.g. Moritz & Cicero, 2004), COI is a broadly used gene, with a differentiation rate sufficient to detect species differentiation (Hebert et al., 2003a).

Cytochrome B (CytB) is another mitochondrial gene that has been well studied (e.g. Irwin et al., 1991). Although more conservative than COI, CytB appears to evolve at approximately three times the rate found in 12S and 16S at lower genetic distances, and closer to twice the rate of these genes at higher genetic distances in some fishes (Sullivan et al., 2000).

The two nuclear genes are exon-primed intron-crossing (EPIC) markers, 39298e1 and 4274e20 (from Li et al., 2010). Introns have been successfully used in species-level studies (e.g. Li et al., 2010), and to sequence introns, the primers are designed on adjacent exon regions, and amplify across the intron (therefore, exon-primed intron-crossing). Because
Final conclusions
Integrative taxonomy delimitation
Final conclusions

Revisionary taxonomy is frequently dismissed as merely descriptive, which belies its strong intellectual content and hypothesis-driven nature (Wheeler, 2004). And even descriptive taxonomy is not just a tool to be used by the rest of biological studies, but the pioneering exploration of life on Earth, having several derivative functions as it lays the foundation for phylogenetic, ecology and conservational studies (Wilson, 2004), among several others. Without a previous well-done taxonomical study, the unfolding conclusions of other disciplines are weak, unstable and unreliable, at least, and might have cascade-like processes affecting hypotheses and ideas (Bortolus, 2008).

Taxonomic assessment of complex and hyperdiverse groups is not a trivial task for several reasons. The issues of species delimitation and even species conceptualization are long treated in the literature (e.g. Baum & Shaw, 1995; Mayden, 1997; de Pinna, 1999; Wheeler & Meier, 2000; de Queiroz, 2007; Camargo & Sites, 2013; Carstens et al., 2013), and are topics still far from being exterminated. Furthermore, working hypothesis on species limits become mired in light of the morphological variation distributed across many specimens and localities (Sabaj & Arce, 2017).

In order to work with practical taxonomy, one has to forego on an unified species concept which embraces both species conceptualization and delimitation at the same time (de Queiroz, 2007), since the practical mishaps are somewhat dependent on the specificities of the biological group in question. The species conceptualization used here in this thesis refer to species necessarily as separately evolving metapopulation lineages, view shared by all contemporary species concepts (de Queiroz, 2007). However, despite fulfilling the necessary properties for species conceptualization, the hypothesis of species as separately evolving metapopulation lineages is not sufficient to species delimitation.

The sufficient assumptions for species delimitation rely on operational criteria, and an unification of those throughout all biological studies is on the verge of impossible. Given species are natural kinds, they can be recognized by homeostatic property clusters (e.g. Boyd, 1999), and not by an immutable set of necessary and sufficient conditions. This view is adequate to the Realism accommodation thesis, which claims that the accommodation of inferential practices to relevant causal structures establishes the reliability and inducibility of the system in question (Boyd, 1999; 2002).

The before mentioned operational criteria is adequate to the taxonomic study here conducted, since in the light of more characters and evidence, the boundaries of a given
species can slightly change, but be recognizable nevertheless. The species here recognized have fuzzy boundaries (Kosco, 1993), and the epistemic access condition is based on what is predicated by the type under given conceptual resources. Therefore, in light of the morphological characters (measurements, counts, coloration pattern, etc.) presented by the type, other specimens are accommodated to the conceptual matrix outlined. Likewise, in the light of molecular data, the morphological characters used to delimit a particular species are revisited and questioned about their sufficiency.

The here presented species delimitations are the result of accommodation of morphological variation into a particular species conceptual description, in a manner the species can be recognized, despite the variation found. Most of the time, the morphological and molecular delimitations were congruent. When congruence was not achieved, initial identification was revisited in light of the new evidence.

So far, most of species recovered by molecular taxonomy were also recognized by the used morphological criteria. Some notable exceptions will be discussed furthermore.

Pimelodella avanhandavae, *P. gracilis* and *P. taeniophora* were not recognized as monophyletic entities (and, therefore, separately evolving metapopulation lineages) in molecular analyses. This topic deserves further investigation, since *Pimelodella avanhandavae* can be distinguished from the other two by 42–44 (rarely 41 or 45) total vertebrae, maxillary barbel reaching between origin and adpressed last fifth of anal fin, and pectoral fin spine morphology (Fig. 9). *Pimelodella gracilis* have 46 or more total vertebrae, maxillary barbel reaching between half anal-fin base and surpassing caudal-fin origin, and different pectoral fin spine morphology (Fig. 66). *Pimelodella taeniophora* have 40–42 total vertebrae, maxillary barbels as long as the ones of *P. gracilis*, but different pectoral-fin spine morphology (Fig. 194). It is noteworthy these three species have somewhat similar coloration patterns and, in the absence of x-rays, the identification of juvenile specimens (like were part of the specimens used in the molecular analyses) can be troublesome. Furthermore, pectoral-fin spine morphology can vary slightly ontogenetically (*e.g.* figures 56; 169), what makes the identification of juveniles of *Pimelodella* even more difficult. In the light of molecular results, x-rays of all *P. avanhandavae*, *P. gracilis* and *P. taeniophora* specimens must be taken, in order to re-investigate their identification.

Based on morphological characters, I proposed the synonym of *P. transitoria* to *P. kronei*, both described from Ribeira de Iguape basin. Other authors in the past have already suggested also that *P. transitoria* would be indistinguishable from *P. lateristriga* (Haseman, 1911; Eigenmann, 1917), and the molecular results here corroborate that conclusion.
However, the specimens of *P. lateristriga* included in the molecular analyses belong only to Ribeira de Iguape basin, meanwhile this species have a more broad distribution along several coastal basins in Southeastern and Northeastern Brazil. I believe the inclusion of *P. lateristriga* molecular material from other localities is necessary to properly tackle this problem, and I decide to maintain *P. kronei* as valid until then.

Pimelodella mucosa was recovered in molecular analyses as more closely related to other Heptapteridae genera than to other *Pimelodella*. Despite being recognizable as a *Pimelodella*, *P. mucosa* is notably different from other *Pimelodella* species. The inclusion of more *P. mucosa* molecular material is necessary, in order to investigate if this peculiar outcome is an artifact related to missing data, or if *P. mucosa* is indeed a extremely modified species, even belonging to a new genus. But in any way, this is an interesting outcome.

Considering all morphological diversity, I could observe some characters are more useful to species delimitation, and those were particularly treated under each species diagnosis. Despite small geographic variation in more broadly-distributed species, most *Pimelodella* have somewhat constant coloration patterns, what may serve as a first approach in order to identify those species with notable marks (like paired dorsal stripes, and dark marks on dorsal fin and body). The length of barbels is also useful to species delimitation, especially to those species that have notably short or notably long barbels. The length of adipose fin is also useful to species delimitation. Most of other measurements are somewhat constant among all *Pimelodella* species, but slightly differences and tendencies can give a grasp onto species identification, especially in the context of geographically restricted species. On the other hand, the absence of significant differences on morphometric, meristic and coloration data lead me to synonymize several species to a broadly-distributed *P. cristata*.

The number of total vertebrae and pectoral-fin spine morphology were also very useful characters used to species delimitation. However, acquisition of x-rays might be a hindrance to species identification using number of vertebrae as a character; and several *Pimelodella* species present severed pectoral spines (commonly entangled in fishing nets), what also makes the identification of collection material sometimes troublesome.

Regarding the geographic distribution, most of *Pimelodella* species are restricted to one or few hydrographic ecoregions, as can be observed on the maps presented in Figures 234–240, and detailed in each species’ section. Species with broader distributions usually do not have blatant diagnostic features (such as coloration marks, or particularly different pectoral-fin spine morphology), what makes their delimitation and identification even more
troublesome. Particularly for the case of broadly-distributed species, the inclusion of molecular data can bring light to recognition of separately evolving metapopulation lineages.

In sum, this thesis intended to discuss an integrative approach to species delimitation in *Pimelodella*, and so far the delimitations are mostly congruent across methods. The inferences drawn from species delimitation are, however, conservative, in order not to falsely delimit entities that do not represent actual evolutionary lineages (*vide* Carstens *et al.*, 2013). Also, species delimitation might change in the light of new evidence (both increase in sampling as well as different data sources), but this thesis can be considered a first approach in helping to solve the intricacies of species delimitation of a morphologically and species diverse group as *Pimelodella*. Based on the results and problems here presented, specific issues can be approached in the future, with a more intensive sampling of geographical restricted species, and inclusion of molecular data for a more inclusive dataset.
Bibliographic References

Abell, R., Thieme, M. L., Revenga, C., Bryer, M., Kottelat, M., Bogutskaya, N., Coad, B., Mandrak, N., Balderas, S.C., Bussing, W. & M.L. Stiassny. 2008. Freshwater ecoregions of the world: a new map of biogeographic units for freshwater biodiversity conservation. *BioScience, 58* (5): 403–414.

Ahl, E. 1925. Neue südamerikanische Fische aus dem Zool. Museum Berlin. *Sitzungsberichte der Gesellschaft Naturforschender Freunde zu Berlin*: 106–109.

Albert J. S., Bart Jr. H. L. & R. E. Reis. 2011. Species richness and cladal diversity. *In*: Albert, J. S. & Reis, R. E. (Eds.). *Historical biogeography of Neotropical freshwater fishes*. Berkeley, University of California Press, pp. 89–104.

Albert, J. S. & T. P. Carvalho. 2011. Neogene assembly of modern faunas *In*: Albert, J. S. & Reis, R. E. (Eds.). *Historical biogeography of Neotropical freshwater fishes*. Berkeley, University of California Press, pp. 119–136.

Albert, J. S., P. Petri & R. E. Reis. 2011. Major biogeographic and phylogenetic patterns. *In*: Albert, J. S. & Reis, R. E. (Eds.). *Historical biogeography of Neotropical freshwater fishes*. Berkeley, University of California Press, pp. 21–57.

Aleixo, A., Montag, L.F.A., Wosiacki, W.B., Silva, F.R., Freitas, T.M.S., Peixoto, L.A.W., Araújo, A.B., Avila-Pires, T.C., Hoogmoed, M.S., Rocha, W.A., Poletto, F., Lima, M.F.C., Silva, M.C., Rossi, R.V., Miranda, C.L., Fonseca, R.T.D., Silva, M.R.P., Souza, M.G.C., Coelho, R.F.R. & Carmo, A. 2011 Diagnóstico da Biodiversidade das Unidades de Conservação Estaduais do Mosaico Calha Norte, estado do Pará – Reserva Biológica Maicuru. *In*: Secretaria de Estado de Meio Ambiente, Plano de manejo da Reserva Biológica Maicuru: Anexos, Secretaria de Estado de Meio Ambiente, Belém, pp. 5–71.

de Almeida-Toledo, L. F., Foresti, F., Trajano, E. & S. De Almeida Toledo Filho. 1992. Cytogenetic analysis of the Brazilian blind catfish *Pimelodella kronei* and its presumed ancestor, *P. transitoria*. *Caryologia* 45: 255–262.

Alves, C.B.M. & Pompeu, P.S. 2005. Historical changes in the Rio das Velhas fish fauna-Brazil. *American Fisheries Society Symposium* 45: 587–602.

Amaral M. F., Aranha, J. M. R. & M. S. Menezes. 1998. Reproduction of the Freshwater Catfish *Pimelodella pappenheimi* in Southern Brazil. *Studies on Neotropical Fauna and Environment* 33 (2): 106–110.
Andrade, S.C.S., Novo, M., Kawauchi, G.Y., Worsaae, K., Pleijel, F., Giribet, G. & Rouse G.W. 2015. Articulating archiannelids: phylogenomics and annelid relationships, with emphasis on meiofaunal taxa. Molecular biology and Evolution 32(11): 2860–2875.

Ané, C., Larget, B., Baum, D. A., Smith, S. D., & Rokas, A. 2007. Bayesian estimation of concordance among gene trees. Molecular Biology and Evolution 24(2): 412–426.

Angulo, A., C. A. Garita-Alvarado, W. A. Bussing & M. I. López. 2013. Annotated checklist of the freshwater fishes of continental and insular Costa Rica: additions and nomenclatural revisions. Check List 9 (5): 987–1019.

Aranha, J. M. R.; Takeuti, D. F. & T. M. Yoshimura. 1998. Habitat use and food partitioning of the fishes in a coastal stream of Atlantic Forest, Brazil. Revista de Biología Tropical 46 (4): 951–959.

Ardila Rodríguez, C. A. 2017. Pimelodella floridablancaensis sp. nov. una nueva especie de pez (Siluriformes: Heptapteridae) del Municipio de Floridablanca, Cuenca del Río Magdalena, Departamento de Santander - Colombia. Peces del Departamento de Santander - Colombia 9: 1–20.

Arratia, G. & A. Cione. 1996. The record of fossil fishes of southern South America. Münchner Geowissenschftliche Abhandlungen, Reihe A - Geologie und Paläontologie 30: 9–72.

Arrington, D. A. & K. O. Winemiller. 2006. Habitat affinity, the seasonal flood pulse, and community assembly in the littoral zone of a Neotropical floodplain river. Journal of the North American Benthological Society 25 (1): 126–141.

Axelrod, H. R. 1987. Two new species of catfishes (Siluriformes, Callichthyidae and Pimelodidae) from the Rio Unini, Amazonas, Brazil. Tropical Fish Hobbyist 35 (12): 22–25.

Barrett, R. D., & Hebert, P. D. 2005. Identifying spiders through DNA barcodes. Canadian Journal of Zoology 83(3): 481–491.

Baum, D.A. & Shaw, K.L. 1995. Genealogical perspectives on the species problem. Experimental and molecular approaches to plant biosystematics 53(289-303): 123–124.

Behre, E. H. 1928. A list of the fresh water fishes of western Panama between 81°45' and 83°15'W. Annals of the Carnegie Museum 18 (2–4): 305–328, Pl. 1

Belfiore, N. M., Liu, L., & Moritz, C. 2008. Multilocus phylogenetics of a rapid radiation in the genus Thomomys (Rodentia: Geomyidae). Systematic Biology 57(2): 294–310.

Bergsten, J. 2005. A review of long-branch attraction. Cladistics 21(2): 163–193.
Bertaco, V. A., Ferrer, J.; Carvalho, F. R. & L. R. Malabarba. 2016. Inventory of the freshwater fishes from a densely collected area in South America – a case study of the current knowledge of Neotropical fish diversity. *Zootaxa* **4138** (3): 401–440.

Bertoni, A. W. 1914. Fauna Paraguaya. *Catálogos sistemáticos de los vertebrados del Paraguay. Peces, batracios, reptiles, aves y mamíferos conocidos hasta 1913*. Asunción. 83p.

Bertoni, A. W. 1939. *Catálogos sistemáticos de los Vertebrados del Paraguay*. *Revista de la Sociedad Científica del Paraguay* **4**(4): 1–60.

Bichuette, M.E. & Trajano, E. 2005. A new cave species of Rhamdia (Siluriformes: Heptapteridae) from Serra do Ramalho, northeastern Brazil, with notes on ecology and behavior. *Neotropical Ichthyology* **3**(4): 587–595.

Bizerril, C. R. S. F. & P. B. S. Primo. 2001. Peixes de Águas Interiores do Estado do Rio de Janeiro. *Rio de Janeiro: Femar*: 95–96/162–164.

Bockmann, F. A., 1994. Description of *Mastiglanis-asopos*, a new pimelodid catfish from northern Brazil, with comments on phylogenetic-relationships inside the subfamily Rhamdiinae (Siluriformes, Pimelodidae). *Proceedings of the Biological Society of Washington* **107**(4): 760–777.

Bockmann, F. A. 1998. *Análise filogenética da família Heptapteridae (Teleostei, Ostariophysi, Siluriformes) e redefinição de seus gêneros*. Universidade de São Paulo, São Paulo. Unpublished PhD thesis. 599p.

Bockmann, F. A. & G. M. Guazzelli. 2003. Family Heptapteridae (Heptapterids). In: Roberto Esser dos Reis; Sven O. Kullander; Carl J. Ferraris Jr.. (Org.). *Check List of the Freshwater Fishes of South and Central America*. Porto Alegre: EDIPUCRS. v. 1, p. 406–431.

Bockmann, F. A. & A. M. Miquelarena. 2008. Anatomy and phylogenetic relationships of a new catfish species from northeastern Argentina with comments on the phylogenetic relationships of the genus *Rhamdella* Eigenmann & Eigenmann 1888 (Siluriformes, Heptapteridae). *Zootaxa*, **1780**: 1-54.

Bockmann, F. A. & V. Slobodian. 2013. Heptapteridae. In: Queiroz, L. J; Torrente-Vilara. G.; Ohara, W. M.; Silva, T. H. P; Zuanon, J & C. R. C. Doria. (Eds.) *Peixes do Rio Madeira*. São Paulo: Dialeto, v. 3, pp. 12–71.

Bockmann, F.A. & R. M. C. Castro. 2010. The blind catfish from the caves of Chapada Diamantina, Bahia, Brazil (Siluriformes: Heptapteridae): description, anatomy,
phylogenetic relationships, natural history, and biogeography. *Neotropical Ichthyology*, 8(4): 673–706.

Bockmann, F. A. & V. Slobodian. *In press*. Family Heptapteridae- Three-barbeled catfishes. *In*: van der Sleen, P. & J. S. Alberts (Eds.). *Field Guide to the Fishes of the Amazon, Orinoco, and Guianas*. Princeton University Press. Princeton. Pp 233–252.

Boeseman, M. 1953. Scientific results of the Surinam Expedition 1948–1949. Part II. Zoology No. 2. The Fishes (I). *Zoologische Mededelingen (Leiden)* 32 (1): 1–24.

Bogota-Gregory J. D. & J. A. Maldonado-Ocampo. 2006. Peces de la zona hidrogeografica de la Amazonia. Colombia. *Biota Colombiana* 7(I): 55–94

Böhlke, E. B. 1984. Catalog of type specimens in the ichthyological collection of the Academy of Natural Sciences of Philadelphia. *Special Publication, Academy of Natural Sciences of Philadelphia* 14: i–viii + 1–216.

Böhlke, J. E. 1953. A catalogue of the type specimens of Recent fishes in the Natural History Museum of Stanford University. *Stanford Ichthyological Bulletin* 5(1): 1–168.

de Borba, R. S., da Silva, E. L., Pacheco, A. C. S., Parise-Maltempi, P. P. & A. L. Alves. 2012. Trends in the karyotypic evolution of the Neotropical catfish family Heptapteridae Bockmann 1998 (Teleostei: Siluriformes). *Reviews in Fish Biology and Fisheries* 22: 509–518.

Borodin, N. A. 1927a. A new blind catfish from Brazil. *American Museum Novitates* 263: 1–5.

Borodin, N. A. 1927b. Some new catfishes from Brazil. *American Museum Novitates* 266: 1–7.

Bortolus, A. 2008. Error cascades in the biological sciences: the unwanted consequences of using bad taxonomy in ecology. *AMBIO: A Journal of the Human Environment* 37(2): 114–118.

Boulenger, G. A. 1887. An account of the fishes collected by Mr. C. Buckley in eastern Ecuador. *Proceedings of the Zoological Society of London*, 1887 (2): 274–283, Pls. 20–24.

Boulenger, G. A. 1891. An account of the siluroid fishes obtained by Dr. H. von Ihering and Herr Sebastian Wolff in the Province Rio Grande do Sul, Brazil. *Proceedings of the Zoological Society of London* 1891(2): 231–235.

Boulenger, G. A. 1896. On a Collection of Fishes from the Rio Paraguay. *Transactions of the Zoological Society of London* 14: 25–39, pl. III–VIII.
Boyd R. 1999. Homeostasis, species, and higher taxa. In: Wilson, R. (ed.) *Species: New Interdisciplinary Studies*. Cambridge, MA. MIT Press. pp. 141–185.

Boyd, R. 2002. Scientific realism. *Stanford Encyclopedia of Philosophy*. Accessed at 14 December, 2017 (https://stanford.library.sydney.edu.au/archives/spr2009/entries/scientific-realism/).

Britski, H. A. 1969. Lista dos tipos de peixes das coleções do Departamento de Zoologia da Secretaria da Agricultura de São Paulo. *Papéis Avulsos do Departamento de Zoologia, Secretaria da Agricultura, São Paulo 22* (19): 197–215.

Britski, H.A.. 2001. Sobre a obra Velhas-Flodens Fiske [Peixes do Rio das Velhas]. In Alves, C.B.M. & Pompeu, P.S., (eds). *Peixes do Rio das Velhas: passado e presente*. SEGRAC, Belo Horizonte. pp.15–22.

Britski, H.A., de Silimon, K.Z.D.S. & Lopes, B.S. 1999. *Peixes do Pantanal: manual de identificação*. Brasilia: Embrapa-SPI. 184p.

Britski, H. A., Silimon, K. Z. de S. & B. S. Lopes. 1999. *Peixes do Pantanal. Manual de identificação*. Brasilia: Embrapa-SPI; Corumbá: Embrapa-CPAP, 184p.

Brumfield, R. T., Liu, L., Lum, D. E., & Edwards, S. V. 2008. Comparison of species tree methods for reconstructing the phylogeny of bearded manakins (Aves: Pipridae, Manacus) from multilocus sequence data. *Systematic Biology 57*(5): 719–731.

Burgess, W. E. 1989. *An atlas of freshwater and marine catfishes. A preliminary survey of the Siluriformes*. Tropical Fish Hobbyist Publications, Neptune. 783p.

Bussing, W. A. 1998. Peces de las aguas continentales de Costa Rica. [Freshwater Fishes of Costa Rica]. *Revista de Biología Tropical 46* (Suppl. 2): 1–468.

Cabrera, V.H.G. & C. H. Vaca. 2006. *Peces de pando, Bolivia: especies de importancia comercial en mercados de la ciudad de Cobija: especímenes capturados en ríos Tahuamanu-Manuripi-Orthon*. Volume 1. Environmental & Conservation Programs y Dpto. de Ictiología The Field Museum. (http://fm2.fieldmuseum.org/animalguides/guideimages.asp?ID=18) Accessed at.03 November 2017.

Cala, P. 1977. Los peces de la orinoquia colombiana: lista preliminar anotada. *Lozania (Acta Zoologica Colombiana)* 24: 1–21.

Cala, P. 1981. Catalogo de los ejemplares tipo en la coleccion de peces del Instituto de Ciencias Naturales, Museo de Historia de la Universidad Nacional de Colombia. *Lozania (Acta Zoologica Colombiana)* 34: 1–5.
Calegari, B. B., Delapieve, M. L. S. & L. Souza. 2016. Tutorial para preparação de mapas de distribuição geográfica. Boletim da Sociedade Brasileira de Ictiologia 118: 15–30.

Camargo, A., & Jack Jr. Sites. (2013). Species delimitation: a decade after the renaissance. INTECH Open Access Publisher.

Carstens, B. C., Pelletier, T. A., Reid, N. M., & Satler, J. D. 2013. How to fail at species delimitation. Molecular ecology, 22(17): 4369–4383.

Castello, H.P. 1969. Pimelodella griffini (Pisces, Pimelodidae) nueva cita para la fauna argentina. Consideraciones acerca de la alimentación, del sistema reproductor y de una papila urogenital en tres especies del género Pimelodella. Physis, 28(77): 407–415.

Carstens, B. C. & L. L. Knowles. 2007. Estimating species phylogeny from gene-tree probabilities despite incomplete lineage sorting: an example from melanoplus grasshoppers. Systematic Biology 56: 400–411.

Castelnau, F. L. 1855. Poissons. In: Animaux nouveaux or rares recueillis pendant l'expédition dans les parties centrales de l'Amérique du Sud, de Rio de Janeiro a Lima, et de Lima au Para; exécutée par ordre du gouvernement Français pendant les années 1843 a 1847 ... Part 7, Zoologie. Paris (P. Bertrand). v. 2, i–xii + 1–112, Pls. 1–50.

Chirichigno, N. 1963. Estudio de la Fauna Ictiologica de los Esteros y parte baja de los Rios del Departamento de Tumbes (Peru). Serie de Divulgacion Cientifica, Servicio de Pesqueria, Peru 22:1–87.

Chernoff, B., Machado Allison, A., Willink, P., Sarmiento, J., Barrera, S., Menezes, N. & H. Ortega. 2000. Fishes of three Bolivian rivers: Diversity, distribution and conservation. Interciencia 25 (6): 273–283.

Chernoff, B., Machado-Allison, A., Riseng, K. & J. R. Montambault. 2005. A Biological Assessment of the Aquatic Ecosystems of the Caura River Basin, Bolívar State, Venezuela. RAP Bulletin of Biological Assessment 28. Conservation International, Washington, DC. 284 p.

Claverie, T. & P. Wainwright. 2014. A Morphospace for Reef Fishes: Elongation Is the Dominant Axis of Body Shape Evolution. PloS one. 9. e112732. 10.1371/journal.pone.0112732.

Conde-Saldaña C.C., Barreto, C. A. V., Villa-Navarro, F. A. & J. A. Dergam. 2017. Zebrafish 1: 1–8. ahead of print. https://doi.org/10.1089/zeb.2017.1469

Cope, E. D. 1870. Contribution to the ichthyology of the Marañon. Proceedings of the American Philosophical Society 11: 559–570.
Cope, E. D. 1878. Synopsis of the fishes of the Peruvian Amazon, obtained by Professor Orton during his expeditions of 1873 and 1877. *Proceedings of the American Philosophical Society* 17 (101): 673–701.

Cope, E. D. 1894. On the fishes obtained by the Naturalist Expedition in Rio Grande do Sul. *Proceedings of the American Philosophical Society* 33: 84–108, Pls. 4–9.

Costa, W. J. E. M. 1987. Feeding habits of a fish community in a tropical coastal stream, rio Mato Grosso, Brazil. *Studies on Neotropical Fauna Environment* 22 (3): 145–153.

Cox-Fernandes, C., Lundberg, J. G. & J. P. Sullivan. 2009. *Oedemognathus exodon* and *Sternarchogiton nattereri* (Apteronotidae, Gymnotiformes): the case for sexual dimorphism and conspecificity. *Proceedings of the Academy of Natural Sciences of Philadelphia*, 158(1), 193–207.

Cunico, A. M., da Graça, W. J., Agostinho, A. A., Domingues, W. M. & J. D. Latini. 2009. Fish, Maringá urban streams, Pirapó river drainage, upper Paraná river basin, Paraná State, Brazil. *Check List*, 5 (2): 273–280.

Cuvier, G. & A. Valenciennes. 1840. *Histoire naturelle des poissons*. Tome quinzième. Suite du livre dix-septième. Siluroïdes. v. 15: i–xxxi + 1–540, Pls. 421–455.

Dahl, G. 1961. Nematognathous fishes collected during the Macarena Expedition 1959. Dedicated to the memory of the Colombian ichthyologist, Doctor Ricardo Lozano. Decd May 23rd, 1959. Part II: Pimelodidae, Callophysidae. *Novedades Colombianas* 1(6): 483–514.

Dahl, G. & F. Medem. 1964. Informe sobre la fauna acuatica del Rio Sinu. I Parte. Los Peces y la Pesca del Rio Sinu. Corporacion Autonoma Regional de los Valles del Magdalena y del Sinu -CVM-. *Departamento de Investigaciones Ictiologicas y Faunisticas*: 1–109.

Davies, T. & T. Fearn. 2004. Back to basics: the principles of principal component analysis. *Spectroscopy Europe*, 16(6), 20–23.

Dazzani, B., Garcia, C., Peixoto, M., Trajano, E. & L.F. de Almeida-Toledo. 2012. Cytogenetic and molecular analyses in troglobitic and epigean species of Pimelodella (Siluriformes: Heptapteridae) from Brazil. *Neotropical Ichthyology* 10: 623–6.

Degnan, J. H., & Rosenberg, N. A. 2006. Discordance of species trees with their most likely gene trees. *PLoS Genet* 2(5): e68.
Dupuis, J. R., Roe, A. D., & Sperling, F. A. 2012. Multi-locus species delimitation in closely related animals and fungi: one marker is not enough. *Molecular ecology* **21**(18): 4422–4436.

Edgar, R.C. 2004. MUSCLE: multiple sequence alignment with high accuracy and high throughput. *Nucleic acids research* **32**(5): 1792–1797

Edwards, S. V. 2009. Is a new and general theory of molecular systematics emerging? *Evolution* **63**(1): 1–19.

Eigenmann, C. H. 1905. The Fishes of Panamá. *Science, New Series*, **22** (549): 18–20.

Eigenmann, C. H. 1910. Catalogue of the fresh-water fishes of tropical and south temperate America. *Reports of the Princeton University expeditions to Patagonia 1896-1899. Zoology*. **3** (4): 375–511.

Eigenmann, C. H. 1912. Some results from an ichthyological reconnaissance of Colombia, South America. Part I. *Indiana University Studies* **16**: 1–27.

Eigenmann, C.H., 1917. *Pimelodella and Typhlobagrus*. *Memoirs of the Carnegie Museum*, **7**, 229–258, pls. 29–35.

Eigenmann, C. H. 1920. The fishes of Lake Valencia, Caracas, and of the Rio Tuy at El Concejo, Venezuela. *Indiana University Studies* **7** (44): 1–13, Pls. 1–3.

Eigenmann, C. H. 1921a. The Origin and Distribution of the Genera of the Fishes of South America West of the Maracaibo, Orinoco, Amazon, and Titicaca Basins *Proceedings of the American Philosophical Society* **60** (1): 1–6.

Eigenmann, C. H. 1921b The Nature and Origin of the Fishes of the Pacific Slope of Ecuador, Peru and Chili. *Proceedings of the American Philosophical Society, 60* (4): 503–523.

Eigenmann, C. H. 1922a. The fishes of western South America, Part I. The fresh-water fishes of northwestern South America, including Colombia, Panama, and the Pacific slopes of Ecuador and Peru, together with an appendix upon the fishes of the Rio Meta in Colombia. *Memoirs of the Carnegie Museum* **9** (1): 1–346, Pls. 1–38.

Eigenmann, C. H. 1922b. The Fishes of the Pacific Slope of South America and the Bearing of Their Distribution on the History of the Development of the Topography of Peru, Ecuador and Western Colombia. *The American Naturalist* **57** (650): 193–210.

Eigenmann, C. H. 1922c. Yellow Fever and Fishes. *Proceedings of the American Philosophical Society* **61**(3) 204–211.

Eigenmann, C. H. 1924. Yellow Fever and Fishes in Colombia. *Proceedings of the American Philosophical Society* **63** (3): 236–238.
Eigenmann, C. H., & Allen, W. R. 1942. *Fishes of Western South America: 1. The Intercordilleran and Amazonian Lowlands of Peru. 2. The High Pampas of Peru, Bolivia and Northern Chile; With a Revision of the Peruvian Gymnotidae and of the Genus Orestias.* University of Kentucky. 524p.

Eigenmann, C.H. & B.A Bean. 1907. An account of Amazon River fishes collected by JB Steere; with a note on Pimelodus clarias. *Proceedings of the United States National Museum* **31**: 659–668.

Eigenmann, C. H. & R. S. Eigenmann. 1888. Preliminary notes on South American Nematognathi. I. *Proceedings of the California Academy of Sciences (Series 2)* **1** (2): 119–172.

Eigenmann, C. H. & R. S. Eigenmann. 1890. A revision of the South American Nematognathi or cat-fishes. *Occasional Papers California Academy of Sciences* **1**: 1–508.

Eigenmann, C. H. & R. S. Eigenmann. 1891. A catalogue of the fresh-water fishes of South America. *Proceedings of the United States National Museum* **14** (842): 1–81.

Eigenmann, C. H., W. L. McAtee and D. P. Ward. 1907. On further collections of fishes from Paraguay. *Annals of the Carnegie Museum* **4** (2): 110–157, Pls. 31–45.

Eigenmann, C. H. & A. A. Norris. 1900. Sobre alguns peixes de S. Paulo, Brazil. *Contribuições do laboratório ictiológico da Universidade de Indiana* **33**(4): 349–362

Elias, M., Hill, R. I., Willmott, K. R., Dasmahapatra, K. K., Brower, A. V., Mallet, J., & Jiggins, C. D. 2007. Limited performance of DNA barcoding in a diverse community of tropical butterflies. *Proceedings of the Royal Society of London B: Biological Sciences* **274**(1627): 2881–2889.

Eschmeyer, W. N. and R. Fricke, and R. van der Laan (eds). 2017. CATALOG OF FISHES: GENERA, SPECIES, REFERENCES. (http://researcharchive.calacademy.org/research/ichthyology/catalog/fisheatmain.asp).

Electronic version accessed 01 August 2017.

Edwards, S. V., Liu, L., & Pearl, D. K. 2007. High-resolution species trees without concatenation. *Proceedings of the National Academy of Sciences, 104*(14), 5936–5941

Felice, V. 2006. Ricardo Krone e o bagre cego de Iporanga: o início de tudo. *In: Trajano, E. (org.) Sistema Areias. 100 anos de estudos.* São Paulo: Redespeleo Brasil. 21–23 pp
Fernandes, C. A., Damásio, J. F., Guterres, Z. R. & M. C. F. Abelha. 2013. Cytogenetic studies in two species of genus *Pimelodella* (Teleostei, Siluriformes, Heptapteridae) from Iguatemi River Basin, Brazil. *Cytologia* **78**: 91–95.

Fernández-Yépez, A. 1950. Algunos peces del Río Autana. Novedades Científicas, *Contribuciones Occasionales del Museo de Historia Natural La Salle, Serie Zoológica* **2**: 1–18, Pls. 1–3.

Fernández-Yépez, A. 1970. Análisis ictiológico del Complejo Hidrográfico (07) "Río Unare." *Dirección de Obras Hidráulicas, Ministerio de Obras Publicas, Republica de Venezuela*: 1–20, 41 pls.

Ferraris, C. J., Jr. 1991. *Catfish in the aquarium*. Tetra Press, Morris Plains, 199p.

Ferraris, C. J., Jr. 2007. Checklist of catfishes, recent and fossil (Osteichthyes: Siluriformes), and catalogue of siluriform primary types. *Zootaxa*, **1418**: 1-628.

Ferraris, C. J., Jr. & R. P. Vari. 1992. Catalog of type specimens of Recent fishes in the National Museum of Natural History, Smithsonian Instituion, 4: Gonorynchiformes, Gymnotiformes, and Siluriformes (Teleostei: Ostariophysi). *Smithsonian Contributions to Zoology* **535**: 1–52.

FEOW. 2015. Freshwater regions of the world. (<http://www.feow.org/globalmap>). Electronic version accessed 01 August 2017.

Fowler, H. W. 1914. Fishes from the Rupununi River, British Guiana. *Proceedings of the Academy of Natural Sciences of Philadelphia* **66**: 229–284.

Fowler, H. W. 1915. Notes on nematognathous fishes. *Proceedings of the Academy of Natural Sciences of Philadelphia* **67**: 203–243.

Fowler, H. W. 1939. A Collection of Fishes Obtained by Mr. William C. Morrow in the Ucayali River Basin, Peru. *Proceedings of the Academy of Natural Sciences of Philadelphia* **91**: 219–289.

Fowler, H. W. 1940a. A collection of fishes obtained by Mr. William C. Morrow in the Ucayali River Basin, Peru. *Proceedings of the Academy of Natural Sciences of Philadelphia* **91** (for 1939): 219–289.

Fowler, H. W. 1940b. Zoological results of the second Bolivian expedition for the Academy of Natural Sciences of Philadelphia, 1936-1937. Part I.--The fishes. *Proceedings of the Academy of Natural Sciences of Philadelphia* **92**: 43–103.

Fowler, H. W. 1941a. A collection of fresh-water fishes obtained in eastern Brazil by Dr. Rodolpho von Ihering. *Proceedings of the Academy of Natural Sciences of Philadelphia* **93**: 123–199.
Fowler, H. W. 1943. A collection of fresh-water fishes from Colombia, obtained chiefly by Brother Nicéforo Maria. *Proceedings of the Academy of Natural Sciences of Philadelphia* **95**: 223–266.

Fowler, H. W. 1945a. Colombian zoological survey. Pt. I.--The freshwater fishes obtained in 1945. *Proceedings of the Academy of Natural Sciences of Philadelphia* **97**: 93–135.

Fowler, H. W. 1945 b. *Los Peces del Peru. Catálogo sistemático de los peces que habitan en aquas peruanas*. Lima, Peru. Museo de Historia Natural "Javier Prado" Universidad Nacional Mayor de San Marcos. 298p.

Fowler, H. W. 1948. Os peixes de água doce do Brasil. Volume 1. 1a entrega. *Arquivos de Zoologia do Estado de São Paulo* **6**: 1–204.

Fowler, H. W. 1951. Os peixes de água doce do Brasil. Volume 1. 3a entrega. *Arquivos de Zoologia do Estado de São Paulo* **6**: 405–628.

Fricke, R. 1995. Types in the fish collection of the Staatliches Museum für Naturkunde in Stuttgart. Part 3. Types of fishes described in 1850-1994. *Stuttgarter Beiträge zur Naturkunde. Serie A (Biologie)* **524**: 1–30.

Fricke, R. 2005. Types in the fish collection of the Staatliches Museum für Naturkunde in Stuttgart, described in 1845-2004. *Stuttgarter Beiträge zur Naturkunde. Serie A (Biologie)* **684**: 1–95.

Galvis, G., J. I. Mojica & M. Camargo. 1997. *Peces del Catatumbo*. Asociación Cravo Norte, Colombia. 118p.

Garcia C & L. F. Almeida-Toledo. 2010. Comparative chromosomal analyses in species of the genus *Pimelodella* (Siluriformes, Heptapteridae): occurrence of structural and numerical polymorphisms. *Caryologia* **63**:3 2–40.

Genthner, C., Ferrari, J. A. & L. F. S. Da Rocha. 2006. Geologia. In: Trajano, E. (org.) *Sistema Areias. 100 anos de estudos*. São Paulo: Redespeleo Brasil. 35–42 pp.

Gery, J. 1969. The fresh-water fishes of South America. *Biogeography and ecology in South America* **2**: 828–848

Giesbrecht, R. M. 2017. Estações Ferroviárias do Brazil— EFCB: Linha do Centro. http://www.estacoesferroviarias.com.br Accessed at 08 November 2017.

Graça, W. J. & C. S. Pavanelli. 2007. *Peixes da planície de inundação do alto rio Paraná e áre as adjacentes*. EDUEM, Maringá, 2007. 241 p.

Godfray H. C. J. & S. Knapp. 2004. Introduction. *Philosophical Transactions of the Royal Society of London, series B* **359**: 559–569
Godinho, A.L. & H. P. Godinho. 2003. Águas, peixes e pescadores do São Francisco das Minas Gerais. Belo Horizonte: PUC Minas, 468p.

Gosline, W. A. 1945. Catálogo dos nematognatos de água-doce da América do sul e central. Boletim do Museu Nacional Rio de Janeiro Zoologia 33: 1–138.

Gouveia, J. G., de Moraes, V. P. O., Sampaio, T. R., da Rosa, R. & A.L. Dias. 2013. Considerations on karyotype evolution in the genera Imparfinis Eigenmann and Norris 1900 and Pimelodella Eigenmann and Eigenmann 1888 (Siluriformes: Heptapteridae). Reviews in Fish Biology and Fisheries 23: 215–227.

Guazzelli, G. M. 1997. Revisão das espécies de Pimelodella Eigenmann & Eigenmann 1888 (Teleostei: Siluriformes: Pimelodidae) dos sistemas costeiros do Sul e Sudeste do Brasil. Pontifícia Universidade Católica do Rio Grande do Sul. Unpublished Msc. dissertation. 150p.

Guazzelli, G. M. 2003. Relações filogenéticas do gênero Pimelodella Eigenmann & Eigenmann 1888 (Siluriformes, Pimelodidae). Universidade de São Paulo, São Paulo. Unpublished PhD. thesis. 232p.

Guil, A. L. F. 2011. Ecologia populacional do bagre cego de Iporanga, Pimelodella kronei (Siluriformes: Heptateridae), do Vale do Alto Ribeira, Iporanga - SP: uma comparação com Trajano, 1987. Universidade de São Paulo, São Paulo. Unpublished Master’s dissertation. 117p.

Güntert, H. 1942. Beschreibung einiger zum Teil noch unbekannter südamerikanischer Siluriden aus dem Naturhistorischen Museum in Basel. Zoologischer Anzeiger 138 (1/2): 27–40.

Günther, A. 1860. Third list of cold-blooded vertebrata collected by Mr. Fraser in Ecuador. Proceedings of the Zoological Society of London 1860 (2): 233–240, Pisces Pl. 10.

Günther, A. 1864. Catalogue of the Fishes in the British Museum, vol. 5.—Catalogue of the Physostomi, Containing the Families Siluridae, Characinidae, Haplochitonidae, Sternoptychidae, Scopelidae, Stomiatidae in the Collection of the British Museum, Trustees, London, xxii + 455 p.

Haseman, J. D. 1911. Descriptions of some new species of fishes and miscellaneous notes on others obtained during the expedition of the Carnegie Museum to central South America. Annals of the Carnegie Museum 7(3–4): 315_328, Pls. 46–52.

Hebert, P. D., Cywinska, A., & Ball, S. L. 2003a. Biological identifications through DNA barcodes. Proceedings of the Royal Society of London B: Biological Sciences, 270(1512):313–321.
Heled, J., & Drummond, A. J. 2010. Bayesian inference of species trees from multilocus data. *Molecular biology and evolution* 27(3): 570–580.

Henn, A. W. 1928. List of types of fishes in the collection of the Carnegie Museum on September 1, 1928. *Annals of the Carnegie Museum* 19 (4): 51–99.

Hoedeman, J. J. 1961. Notes on the ichthyology of Surinam and other Guianas. 8. Additional records of siluriform fishes (2). *Bulletin of Aquatic Biology* 2 (23): 129–139.

Hollingsworth, P. M., Forrest, L. L., Spouge, J. L., Hajibabaei, M., Ratnasingham, S., van der Bank, M., & Wilkinson, M. J. 2009. A DNA barcode for land plants. *Proceedings of the National Academy of Sciences* 106(31): 12794–12797.

Howes, G. J. 1983. Problems in catfish anatomy and phylogeny exemplified by the Neotropical Hypophthalmidae (Teleostei: Siluroidei). *Bulletin of the British Museum (Natural History), Zoology series, 45* (1): 1-39.

Ibarra, M. & D. J. Stewart. 1987. Catalogue of type specimens of Recent fishes in Field Museum of Natural History. *Fieldiana Zoology (New Series)* 35: 1–112.

Innes, W.T. & G. S. Myers. 1950. The “Imitator catfish,” which mimics a *Corydoras*. *The Aquarium, 19* (9): 222-223.

Irwin, D.M., Kocher, T.D. & Wilson, A.C. 1991. Evolution of the cytochrome b gene of mammals. *Journal of molecular evolution* 32(2): 128–144.

James, F. C. & C. E. McCulloch. 1990. Multivariate analysis in ecology and systematics: panacea or Pandora's box? *Annual review of Ecology and Systematics* 21(1): 129–166.

Kearse, M., Moir, R., Wilson, A., Stones-Havas, S., Cheung, M., Sturrock, S., Buxton, S., Cooper, A., Markowitz, S., Duran, C. & Thierer, T. 2012. Geneious Basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. *Bioinformatics* 28(12): 1647–1649.

Kner, R. 1858. Ichthyologische Beiträge. II. Abtheilung. *Sitzungsberichte der Kaiserlichen Akademie der Wissenschaften. Mathematisch-Naturwissenschaftliche Classe* 26 (373): 373–448, Pls. 1–9.

Knowles, L. L., & Carstens, B. C. 2007. Delimiting species without monophyletic gene trees. *Systematic biology* 56(6): 887–895.

Koerber, S., Vera-Alcaraz, H.S. & Reis, R.E. 2017. Checklist of the Fishes of Paraguay (CLOFPY). *Ichthyological Contributions of PecesCriollos* 53: 1–99.

Kosco B. 1993. *Fuzzy thinking – the new science of fuzzy logic*. London: Harper Collins. 336p.
Kubatko, L.; Carstens, B. & L. Knowles. 2009. STEM: species tree estimation using maximum likelihood for gene trees under coalescence. *Bioinformatics* **25**(7): 971-973.

Kullander, S. O. 1986. *Cichlid fishes of the Amazon River drainage of Peru*. Swedish Museum of Natural History, Stockholm, 431 pp.

Langeani, F., Castro, R. M. C., Oyakawa, O. T.; Shibatta, O. A.; Pavanelli, C. S. & L. Casatti. 2007. Diversidade da ictiofauna do Alto Rio Paraná: composição atual e perspectivas futuras. *Biota Neotropica* **7** (3): 181–197.

Lasso, C. A., Ponte, V. & Lasso-Alcalá, O. M. 1997. Catálogo de la colección de tipos de peces de la Fundación La Salle de Ciencias naturales. Parte I: Museo de Historia Natural la Salle (MHNLS). *Memoria de la Sociedad de Ciencias Naturales La Salle* **57**(147): 37–52.

Lasso, C. A., Lew, D., Taphorn, D., DoNascimento, C., Lasso-Alcalá, O., Provenzano, F. & A. Machado-Allison. 2004. Biodiversidad ictiológica continental de Venezuela. Parte I. Lista de especies y distribución por cuencas. *Memoria de la Fundación La Salle de Ciencias Naturales*, **159** (160): 105–195.

Lasso, C., Giraldo, A., Lasso-Alcalá, O., León-Mata, O., DoNascimento, C., Milani, N., Rodríguez-Olarte, D., Senaris, J. & D. Taphorn. 2006. Peces de los ecosistemas acuáticos de la confluencia de los ríos Orinoco y Ventuari, Estado Amazonas, Venezuela: resultados del AquaRAP 2003. *Evaluación Rápida de la Biodiversidad de los Ecosistemas Acuáticos de la Confluencia de los Ríos Orinoco y Ventuari, Estado Amazonas, Venezuela*: 114–122.

Le Bail, P.-Y., P. Keith & P. Planquette. 2000. *Atlas des poissons d'eau douce de Guyane*. Tome 2 - fascicule II. Siluriformes. Publications scientifiques du MNHN, Paris. 307p.

Le Bail, P. Y., Covain, R., Jégu, M., Fisch-Muller, S., Vigouroux, R. & P. Keith. 2012. Updated checklist of the freshwater and estuarine fishes of French Guiana. *Cybium*, **36** (1): 293–319.

Leiva C., M. 2005. *Revisión Taxonómica del género Pimelodella, Eigenmann & Eigenmann, 1888 (Pisces, Siluriformes: Heptapteridae) de la región transandina de Colombia*. Universidade Tradicional de Colombia, Bogotá. Unpublished Msc. Dissertation. 70p.

Li, C., Riethoven, J.J.M. and Ma, L., 2010. Exon-primed intron-crossing (EPIC) markers for non-model teleost fishes. *BMC Evolutionary Biology* **10**(1): 90 (12p)

Lichtenstein, M. H. C. 1819. Ueber einige neue Arten von Fischen aus der Gattung *Silurus*. *Zoologisches Magazin (Wiedemann)* **1819** 1(3): 57–63.
Lichtenstein, M. H. C. 1823. *Verzeichniss der Doubletten des zoologischen Museums der Königl.* Universität zu Berlin, nebst Beschreibung vieler bisher unbekannter Arten von Säugethieren, Vögeln, Amphibian und Fishen. T. Trautwein, Berlin. I–x + 1–118, 1 pl.

Litz, T. O. & S. Koerber. 2014. Check list of the freshwater fishes of Uruguay (CLOFF-UY). *Ichthyological Contributions of PecesCriollos* 28: 1–40.

Liu, L. 2008. BEST: Bayesian estimation of species trees under the coalescent model. *Bioinformatics* 24(21): 2542–2543.

Liu, L. & D. K Pearl. 2007. Species trees from gene trees: reconstructing Bayesian posterior distributions of a species phylogeny using estimated gene tree distributions. *Systematic Biology* 56: 504–514.

Liu L.; Pearl, D. K.; Brumfield, R. T. & S. V. Edwards .2008. Estimating species trees using multiple-allele DNA sequence data. *Evolution* 62(8): 2080-91.

López, H. L., Menni, R. C. & R. A. Ringuetlet. 1981. Bibliografia de los peces de agua Dulce de Argentina y Uruguay 1967–1981. *Biolgica Aquatica* 1: 1–81.

López, H. L., Menni, R. C. & R. A. Ringuetlet. 1982. Bibliografia de los peces de agua Dulce de Argentina y Uruguay Suplemento 1982. *Biolgica Aquatica* 3: 1–23.

López, H. L., Miquelarena, A. M. & R. C. Menni. 2003. *Lista comentada de los peces continentales de la Argentina*. ProBiota: Serie Técnica y Didáctica 5. 85p.

Lucena, Z.D. & Lucena, C.D. 1990. Sobre a localidade-tipo das espécies de peixes descritas por Steindachner (1907). *Comunicações do Museu de Ciências e Tecnologia, Pontificia Universidade Católica do Rio Grande do Sul, Série Zoologia. Porto Alegre* 3(1): 99–102.

Lucena, C. A. S. de & J. F. P. da Silva. 1991. Descrição de uma nova espécie do gênero *Rhamdella* Eigenmann & Eigenmann, 1888 (Siluriformes: Pimelodidae) para o médio rio Uruguaí, sul do Brasil. *Comunicações do Museu de Ciências de PUCRS* 4(3): 28–47.

Lucinda, P. H., Freitas, I. S., Soares, A. B., Marques, E. E., Agostinho, C .S. & R. J. de Oliveira. 2007. Fish, Lajeado reservoir, rio Tocantins drainage, state of Tocantins, Brazil. *Check List,* 3 (2): 70–83.

Lundberg, J.G. & J. N. Baskin. 1969. The caudal skeleton of the catfishes, order Siluriformes. *American Museum Novitates,* 2398: 1–49.

Lundberg, J.G., Linares, O.J., Antonio, M.E. & P. Nass. 1988. *Phractocephalus hemiliopterus* (Pimelodidae, Siluriformes) from the upper Miocene Urumaco Formation, Venezuela: a
further case of evolutionary stasis and local extinction among South American fishes.

Journal of Vertebrate Paleontology 8 (2): 131–138.

Lundberg, J. G. & L. A. McDade 1986. On the South American catfish *Brachyramdia imitator* Myers (Siluriformes, Pimelodidae), with a phylogenetic evidence for a large intrafamilial lineage. *Notulae Naturae* (Philadelphia) 463: 1-24.

Lundberg, J. G., A. H. Bornbusch & Mago-Leccia, F. 1991a. *Gladioglanis conquistador* N. Sp. from Ecuador with diagnosis of the subfamilies Rhamdiinae Blekker and Pseudopmelodinae N. Subf. (Siluriformes, Pimelodidae). *Copeia, 1991* (1): 190-209.

Lundberg, J. G., F. Mago-Leccia & P. Nass. 1991b. *Exallodontus aguanai*, a new genus and species of Pimelodidae (Pisces: Siluriformes) from deep river channels of South America, and delimitation of the subfamily Pimelodinae. *Proceedings of the Biological Society of Washington* 104 (4): 840–869.

Lundberg, J.G. & M. W. Littmann. 2003. Family Pimelodidae (Long-whiskered catfishes). In: Roberto Esser dos Reis; Sven O. Kullander; Carl J. Ferraris Jr.. (Org.). *Check List of the Freshwater Fishes of South and Central America*. Porto Alegre: EDIPUCRS. v. 1. 432–446 pp.

Lütken, C. F. 1874. Siluridae novae Brasiliae centralis a clarissimo J. Reinhardt in provincia Minas-geraës circa oppidulum Lagoa Santa, praecipue in flumine Rio das Velhas et affluentibus collectae, secundum characteres essentiales breviter descriptae. *Oversigt over det Kongelige Danske Videnskabernes Selskabs Forhandlinger og dets Medlemmers Arbeider (Kjøbenhavn) 1874* (1): 29–36.

Lütken, C. F. 1875. Velhas-Flodens Fiske. Et Bidrag til Brasiliens Ichthyologi; efter Professor J. Reinhardts Indsamlinger og Optegnelser. Det. Kongelige Danske visenskaberens selskabs skrifter. *Naturvidenskabelig og matematisk afdeling. 5te Raekk [Ser. 5] 12*(2): 121–253 + 2 unnum. + I–XXI, Pls. 1–5.

Lütken, C.F., Alves, C.B.M. & Pompeu, P.S. 2001. Peixes do rio das Velhas: uma contribuição para a ictiologia do Brasil. In Alves, C.B.M. & Pompeu, P.S., (eds). *Peixes do Rio das Velhas: passado e presente*. SEGRAC, Belo Horizonte. pp.23–164.

Maddison, W. P. 1997. Gene trees in species trees. *Systematic biology* 46(3): 523–536.

Malabarba, L. R. 1989. Histórico sistemático e lista comentada das espécies de peixes de água doce do sistema da Laguna dos Patos, Rio Grande do Sul, Brasil. *Comunicações do Museu de Ciências de PUCRS* 2 (8): 107–179.

Maldonado-Ocampo, J. A., Ortega-Lara, A., Usma, J.S., Galvis, G., Villa-Navarro, F.A., Vásquez, L., Prada-Pedreros, S. & C. Ardila. 2006. *Peces de los Andes de Colombia*.
Instituto de Investigación de Recursos Biológicos Alexander von Humboldt, Bogotá, DC. 346p.

Maldonado-Ocampo, J. A., Vari, R .P. & J. Saulo Usma. 2008. Checklist of the freshwater fishes of Colombia. Biota Colombiana, 9 (2): 143–237.

Mayden, R.L., 1997. A hierarchy of species concepts: the denouement in the saga of the species problem. In M. F. Claridge, H. A. Dawah & M. R. Wilson (eds.). Species: The units of diversity. Chapman & Hall. pp. 381–423.

Mazzoni, R. & L. D. S. Costa. 2007. Feeding ecology of streamdwelling fishes from a coastal stream in the Southeast of Brazil. Brazilian Archives of Biology and Technology 50 (4): 627–635.

Meek, S. E. 1905. Two new species of fishes from Brazil. Proceedings of the Biological Society of Washington 18: 241–242.

Mees, G. F. 1974. The Auchenipteridae and Pimelodidae of Suriname (Pisces, Nematognathi). Zoologische Verhandelingen (Leiden) 132: 1–256, Pls. 1–15.

Mees, G. F. 1983. Naked catfishes from French Guiana (Pisces, Nematognathi). Zoologische Mededelingen (Leiden) 57(5): 43–58.

Mees, G. F. 1985. Further records of Auchenipteridae and Pimelodidae from Suriname (Pisces: Nematognathi). Zoologische Mededelingen (Leiden) 59 (21): 239–249.

Mees, G. F. 1986. Records of Auchenipteridae and Pimelodidae from French Guiana (Pisces, Nematognathi). Proceedings of the Koninklijke Nederlandse Akademie van Wetenschappen (Series C, Biological and Medical Sciences) 89 (3): 311–325.

Mees, G. F. & P. Cala. 1989. Two new species of Imparfinis from northern South America (Pisces, Nematognathi, Pimelodidae). Proceedings of the Koninklijke Nederlandse Akademie van Wetenschappen (Series C, Biological and Medical Sciences) 92 (3): 379–394.

Meier, R., Zhang, G., & Ali, F. 2008. The use of mean instead of smallest interspecific distances exaggerates the size of the “barcoding gap” and leads to misidentification. Systematic Biology 57(5): 809–813.

Meyer, C. P., & Paulay, G. 2005. DNA barcoding: error rates based on comprehensive sampling. PLoS biology 3(12): 2229.

Miles, C. W. 1943. Estudio economico y ecologico de los peces de agua dulce del valle de Cauca. Publicaciones de Secretaria Agricultura y Fomento del Departamento: 1–99.
Miles, C. 1945. Some newly recorded fishes from the Magdalena River system. **Caldasia** 3 (15): 453–464.

Miller, M.A., Pfeiffer, W. & Schwartz, T. 2010. Creating the CIPRES Science Gateway for inference of large phylogenetic trees. **Proceedings of the Gateway Computing Environments Workshop (GCE)**: 1–8.

Mirarab, S., Reaz, R., Bayzid, M.S., Zimmermann, T., Swenson, M.S. & T. Warnow. 2014. ASTRAL: genome-scale coalescent-based species tree estimation. **Bioinformatics** 30(17): i541–i548.

Miranda Ribeiro, A. de. 1907a. Uma novidade ichthyologica. Kosmos, Rio de Janeiro **Rev. Art. Sci. Litt.** 4 (1): 3 unnum. pp.

Miranda Ribeiro, A. de. 1907b. Peixes do Iporanga – S. Paulo. Resultados de excursões do Sr. Ricardo Krone, membro correspondente do Museu Nacional do Rio de Janeiro. **Boletim Sociedade Nacional Agricultura, Rio de Janeiro [Lavoura]** 11 (5): 185–190.

Miranda Ribeiro, A. de. 1911. Fauna brasieliense. Peixes. Tomo IV (A) [Eleutherobranchios Aspirophoros]. **Arquivos do Museu Nacional de Rio de Janeiro** 16: 1–504, Pls. 22–54.

Miranda Ribeiro, A. de. 1914. Pimelodidae, Trachycorystidae, Cetopsidae, Bunocephalidae, Auchenipteridae, e Hypophthalmidae. In: **Comissão de Linhas Telegraficas Estrategicas de Matto-Grosso ao Amazonas. Annexo 5**: 1–13, Pls. 1–2.

Miranda Ribeiro, A. de. 1918. Tres generos e dezesete especies novas de peixes Brasilieros. **Revista do Museu Paulista** 10: 631–646, 1 pl.

Miranda Ribeiro, A. de. 1918b. Lista dos peixes Brasileiros do Museu Paulista. Primeira parte. **Revista do Museu Paulista** 10: 705–736.

Miranda Ribeiro, P. de. 1953. Tipos das especies e subespécies do Prof. Alipio de Miranda Ribeiro depositados no Museu Nacional. **Arquivos do Museu Nacional de Rio de Janeiro** 42: 389–417.

Mirande, J.M. & Koerber, S. 2015. Checklist of the freshwater fishes of Argentina (CLOFFAR). **Ichthyological Contributions of Peces Criollos** 36: 1–68.

Mojica, J., Usma, J. & G. Galvis. 2004. Peces dulceacuícolas en el Chocó biogeográfico. In: Rangel, J.O. (ed.). **Diversidad Biótica IV, El Chocó Biogeográfico/Costa Pacífica.** Universidad Nacional de Colombia, Instituto de Ciencias Naturales, Conservación Internacional, Bogotá. 725–744p.
Granado-Lorencio. 2005. Peces de la cuenca del no Amazonas en Colombia: Región de Leticia. Biota Colombiana 6(2): 191–210.

Mol, J. H., Vari, R. P., Covain, R., Willink, P. W. & S. Fisch-Muller. 2012. Annotated checklist of the freshwater fishes of Suriname. Cybium, 36(1): 263–292.

Moraes, M.; Silva Filho, J. J. D.; Costa, R.; Miranda, J. C.; Rezende, C. F. & R. Mazzoni. 2013. Life history and ontogenetic diet shifts of Pimelodella lateristriga (Lichtenstein 1823) (Osteichthyes, Siluriformes) from a coastal stream of Southeastern Brazil. North-Western Journal of Zoology 9 (2): 300–309.

Moritz, C., & Cicero, C. 2004. DNA barcoding: promise and pitfalls. PLoS biology 2: 1529–1531.

Müller, J. & F. H. Troschel. 1849a. Fische. In: Reisen in Britisch-Guiana in den Jahren 1840-44. Im Auftrag Sr. Mäjestat des Königs von Preussen ausgeführt von Richard Schomburgk. [Versuch einer Fauna und Flora von Britisch-Guiana.] v. 3. Berlin. pp. 618–644.

Müller, J. & F. H. Troschel. 1849b. Horae Ichthyologicae. Beschreibung und Abbildung neuer Fische. Berlin. v 3: 1–27 + additional p. 24, Pls. 1–5.

Myers, G. S. 1927. Descriptions of new South American fresh-water fishes collected by Dr. Carl Ternetz. Bulletin of the Museum of Comparative Zoology 68 (3): 107–135.

Nelson, J. S. 2006. Fishes of the World. 4th edition. John Wiley & Sons, Hoboken, N. J. I–xix + 1–601.

Nielsen, J. G. 1974. Fish types in the Zoological Museum of Copenhagen. Zoological Museum, University of Copenhagen, Denmark: 1–115.

Nijssen, H., Tuijl, van L. & Isbrücker, I.J.H. 1982. A Catalogue of the type-specimens of Recent fishes in the Institute of Taxonomic Zoology (Zoölogisch Museum), University of Amsterdam, The Netherlands. Verslagen en Technische Gegevens 33(1): 1–173

Nijssen, H., van Tuijl, L. & Isbrücker, J.H. 1993. Revised catalogue of the type specimens of recent fishes in the Institute of Taxonomic Zoology (Zoölogisch Museum), University of Amsterdam, the Netherlands. Bulletin Zoologisch Museum 13(18): 211–260.

Nión, H., Rios, C. & P. Meneses. 2016. Peces del Uruguay: Lista sistemática y nombres comunes. Segunda edición corregida y ampliada. i-xi + 174p.

Norman, J.R. 1926. XLI.—A new blind catfish from Trinidad, with a list of the blind cave-fishes. Journal of Natural History 18(106): 324–331.

Nylander, J.A.A. 2004. Mr Model test v2. Program distributed by the author. Evolutionary Biology Centre, Uppsala University.
Ortega, H. & R. P. Vari. 1986. Annotated checklist of the freshwater fishes of Peru. *Smithsonian Contributions to Zoology* 437: iii + 1–25.

Padial, J. M., Miralles, A., De la Riva, I., & Vences, M. 2010. Review: The integrative future of taxonomy. *Frontiers in Zoology* 7: 1–14.

Paepke, H.-J. 1995. Über das Leben und Werk von Ernst Ahl. *Mitteilungen aus dem Zoologischen Museum in Berlin* 71 (1): 79–101.

Palumbi, S. R, Martin, A., Romano, S., McMillan, W.O., Stice, L. & Grabowski, G.. 1991 The simple fool's guide to PCR. Version 2.0, October, 2002. Department of Zoology, University of Hawaii, Honolulu. 46p.

Pavan, C. 1946. Observations and experiments on the cave fish *Pimelodella kronei* and its relatives. *American Naturalist*, 80 (792): 343-361.

Pavanelli, C. S., da Graça, W. J., Zawadzki, C. H., Britski, H. A., Vidotti, A. P., Avelino, G. S. & S. Veríssimo. 2007. Fishes from the Corumbá Reservoir, Paranaíba River drainage, upper Paraná River basin, State of Goiás, Brazil. *Check List*, 3 (1): 58–64.

Pearson, N. E. 1924. The fishes of the eastern slope of the Andes. I. The fishes of the Rio Beni basin, Bolivia, collected by the Mulford expedition. *Indiana University Studies* 11 (64): 1–83, Pls. 1–12.

Perdices, A., Bermingham, E., Montilla, A. & I. Doadrio. 2002. Evolutionary history of the genus *Rhamdia* (Teleostei: Pimelodidae) in central America. *Molecular Phylogenetics and Evolution*, 25 (1): 172–189.

Perugia, A. 1897. Di alcuni pesci raccolti in Bolivia dal Prof. Luigi Balzan. *Annali del Museo Civico di Storia Naturale di Genova (Serie 2)* 18: 16–27.

Pinna, M. C. C. 1993 Higher-level phylogeny of Siluriformes, with a new classification of the order (Teleostei, Ostariophysi). Unpublished PhD Thesis, The City University of New York, New York. 482p.

Pinna, M. C. C. 1998 Phylogenetic relationships of neotropical siluriformes (Teleostei:Ostariophysi): Historical overview and synthesis of hypotheses. In: Malabarba, L. R., Reis, R. E., Vari, R. P., Lucena, Z. M. S. & C. A. S. Lucena (eds). Phylogeny and Classification of Neotropical Fishes. EDIPUCRS, Porto Alegre, pp 279–330.

Pinna, M. C. C. 1999. Species concepts and phylogenetics. *Reviews in Fish biology and Fisheries* 9(4): 353–373.
Proudlove, G. S. 2006. Subterranean fishes of the World. An account of the subterranean (hypogean) fishes described up to 2003 with a bibliography 1541–2004. International Society for Subterrnaean Biology, Moulis. 300p.

Provenzano, F., Marcano, A. & Mondaca, P. 1998. Catálogo de ejemplares tipos en la colección de peces del Museo de Biología de la Universidad Central de Venezuela.(MBUCV-V). *Acta Biologica Venezelica* **18**(1): 1–24.

de Queiroz, K. 2007. Species concepts and species delimitation. *Systematic biology* **56**(6): 879–886.

Regan, C. T. 1903. Descriptions of new South-American fishes in the collection of the British Museum. *Annals and Magazine of Natural History (Series 7)* **12** (72) (art. 64): 621–630.

Regan, C. T. 1911. The classification of the Teleostean fishes of the order Ostariophysi. - 2. Siluroidea. *Annals and Magazine of Natural History (Series 8)* **8** (47): 553–577.

Regan, C. T. 1913. Fishes from Peru, collected by Dr. H. O. Forbes. *Annals and Magazine of Natural History (Series 8)* **12** (69): 278–280.

Reis, R. E., Albert, J. S., Di Dario, F., Mincarone, M. M., Petry, P. & L. A. Rocha. 2016. Fish biodiversity and conservation in South America. *Journal of Fish Biology*, **89**(1): 12–47.

Retzer, M. E., & L. M. Page. 1997. Systematic of the Stick Catfishes, *Farlowella* Eigenmann & Eigenmann (Pisces, Loricariidae). *Proceedings of the Academy of Natural Sciences of Philadelphia*, **147**: 33–88.

Rizzato, P.P. & Bichuette, M.E. 2014. *Ituglanis boticario*, a new troglomorphic catfish (Teleostei: Siluriformes: Trichomycteridae) from Mambai karst area, central Brazil. *Zoologia (Curitiba)* **31**(6): 577–598.

Roberts, W. M. 1828–1959. William Milnor Roberts Papers. Collection 783, Montana State University Library. (http://archiveswest.orbiscascade.org/ark:/80444/xv01281) Accessed at 08 November 2017.

Romero, A. & Paulson, K.M. 2001. It's a wonderful hypogean life: a guide to the troglomorphic fishes of the world. *Environmental Biology of Fishes* **62**(1–3): 13–41.

Rosa, R. S., Menezes, N. A., Britski, H. A., Costa, W. J. E. M. & F. Groth. 2003. Diversidade, padrões de distribuição e conservação dos peixes da Caatinga. In: Leal, I. R. (ed). *Ecologia e conservação da Caatinga*, Editora universitária UFPE, Pernamburco. 135–180 p.
Ruiz Diaz, F.; Soneira, P.; Almirón, A.; Casciotta, J.; Gonzalez, A. & S. Sánchez. 2008. First record of *Pimelodella taenioptera* Miranda Ribeiro, 1914 (Siluriformes, Heptapteridae) from the río Paraná above río Paraguay confluence, Argentina. *Ichthyological Contributions of PecesCriollos* 10: 1–4.

Sabaj, M. H. 2016. Standard symbolic codes for institutional resource collections in herpetology and ichthyology: an online reference (v6. 5). *American Society of Ichthyologists and Herpetologists*, USA.

Sabaj, M. H. & Arce, M. 2017. Taxonomic assessment of the Hard-Nosed Thornycats (Siluriformes: Doradidae: *Trachydoras* Eigenmann 1925) with description of *Trachydoras gepharti*, n. sp. *Proceedings of the Academy of Natural Sciences of Philadelphia*, 166 (1): 1–53.

Sands, D. D. 1985. *Brachyrhamdia*, criptic or mimetic catfishes from South America. Zoomimesis, Camouflage or Mimicry. 58(9)–58(11) pp. *In*: D. Sands, *Catfishes of the World. Volume three: Supplements (First Set)*. Dunure Enterprises, Dunure.

Sands, D. D. & B. K. Black. 1985. Two new species of *Brachyrhamdia*, Myers, 1927, from Brazil and Peru, together with a redefinition of the genus. *In*: D. Sands, *Catfishes of the World. Volume three: Supplements (First Set)*: 58(1)–58(8).

Santos, G. M., Jegu, M. & B. Merona. 1984. *Catálogo de peixes comerciais do baixo Rio Tocantins*. 1º edição. Eletronorte /CNPq/INPA. Manaus, AM. 80p.

Sarmiento, J.; Bigorne, R.; Carvajal-Vallejos, F. M.; Maldonado, M.; Lecik, E. & T. Oberdorff (eds.) 2014. *Peces de Bolivia/Bolivian fishes*. IRD-Biofresh (EU). 211p.

Saul, W. G. 1975. An ecological study of fishes at a site in Upper Amazonian Ecuador. *Proceedings of the Academy of Natural Sciences of Philadelphia*, 127 (12): 93–134.

Sayyari, E. & Mirarab, S. 2016. Fast coalescent-based computation of local branch support from quartet frequencies. *Molecular biology and evolution* 33(7): 1654–1668.

Schlegel, A. 2017. Principal Component Analysis. (https://www.r-bloggers.com/principal-component-analysis/). Electronic version accessed 13 September 2017.

Schomburgk, R.H. 1841. The Natural History of Fishes of Guiana.— Part I. *In*: Jardine, W. (Ed.), *The Naturalists' Library, Vol. 3*, W.H. Lizards, Edinburgh, 263 p., pls. 1–30.

Schubart, O. 1964. Duas novas espécies de peixe da família Pimelodidae do Rio Mogi Guaçu (Pisces, Nematognathi). *Boletim do Museu Nacional do Rio de Janeiro, Zoologia, Nova Série* 244: 1–22.
Schultz, L. P. 1944. The catfishes of Venezuela, with description of thirty-eight new forms. *Proceedings of the United States National Museum*, 94 (3172): 173–338.

Shibatta, O. A. & C. C. Cheida. 2003. Composição em tamanho dos peixes (Actinopterygii, Teleostei) de ribeirões da bacia do rio Tibagi, Paraná, Brasil. *Revista Brasileira de Zoologia*, 20 (3): 469–473.

Silfvergrip, A. M. C. 1996. A systematic revision of the Neotropical catfish genus *Rhamdia* (Teleostei, Pimelodidae). Swedish Museum of Natural History, Stockholm. 156p., 8 pl.

Silfvergrip, A. M. C. & H.-J. Paepke. 1997. Kritischer Katalog der Typen der Fischsammlung des Zoologischen Museums Berlin. Tiel 7: Pimelodidae (Siluriformes). *Mitteilungen aus dem Zoologischen Museum in Berlin* 73 (1): 165–173.

Sites, J. W., & Marshall, J. C. 2003. Delimiting species: a Renaissance issue in systematic biology. *Trends in Ecology & Evolution*, 18(9), 462–470.

Slobodian, V. 2013. *Taxonomia, Sistemática e Biogeografia de Brachyrhamdia Myers, 1927* (Siluriformes: Heptapteridae), com uma investigação sobre seu mimetismo com outros Siluriformes. Unpublished Msc. dissertation, Universidade de São Paulo, Ribeirão Preto, Brazil. 316p.

Slobodian, V, Akama, A. Dutra, G. M. 2017. A new species of *Pimelodella* (Siluriformes: Heptapteridae) from the Guiana Shield, Brazil. *Zootaxa* 4338 (1): 85–100.

Slobodian, V. & Bockmann, F.A. 2013. A new *Brachyrhamdia* (Siluriformes: Heptapteridae) from Rio Japurá basin, Brazil, with comments on its phylogenetic affinities, biogeography and mimicry in the genus. *Zootaxa*, 3717(1), 01–22.

Smith, L. I. 2002. A tutorial on principal components analysis. *Cornell University, USA*, 51(52), 65.

Soares-Porto, L.M. 1994. Dieta e ciclo diurno de atividade alimentar de *Pimelodella lateristriga* (Müller e Troschel, 1849) (Siluroidei, Pimelodidae) no rio Ubatiba, Marica, Rio de Janeiro. *Brazilian Journal of Biology* 54 (3): 451–458.

De Souza, L. S., Armbruster, J. W. & D. C. Werneke. 2012. The influence of the Rupununi portal on distribution of freshwater fish in the Rupununi district, Guyana. *Cybium*, 36(1): 31–43.

Souza-Shibatta, L.; Pezenti, L. F.; Ferreira, D. G.; Almeida, F. S.; Sofia, S. H. & O. A. Shibatta. 2013. Cryptic species of the genus *Pimelodella* (Siluriformes: Heptapteridae) from the Miranda River, Paraguay River basin, Pantanal of Mato Grosso do Sul, Central Brazil. *Neotropical Ichthyology*, 11(1), 101-109.
Spix, J. B. von & L. Agassiz. 1829. *Selecta genera et species piscium quos in itinere per Brasiliam annis MDCCCXVII-MDCCCXX jussu et auspiciis Maximiliani Josephi I.... colleget et pingendso curavit Dr J. B. de Spix.... Monachii.* Part 1: i–xvi + i–ii + 1–82, Pls. 1–48.

Stamatakis, A. 2014. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. *Bioinformatics* **30**(9): 1312–1313.

Starks, E. C. 1906. On a collection of fishes made by P. O. Simons in Ecuador and Peru. *Proceedings of the United States National Museum* **30** (1468): 761–800, Pls. 65–66.

Steindachner, F. 1864. Ichthyologische Notizen. *Sitzungsberichte der Mathematisch-Naturwissenschaftlichen Classe der Kaiserlichen Akademie der Wissenschaften* **49**: 200–214, Pls. 1–2.

Steindachner, F. 1876a. Ichthyologische Beiträge (IV). *Sitzungsberichte der Kaiserlichen Akademie der Wissenschaften. Mathematisch-Naturwissenschaftliche Classe 72* (1): 551–616, Pls. 1–13.

Steindachner, F. 1876b. Die Süßwasserfische des südöstlichen Brasilien (III). *Anzeiger der Kaiserlichen Akademie der Wissenschaften, Mathematisch-Naturwissenschaftlichen Classe 13* (4): 191.

Steindachner, F. 1876c. Ichthyologische Beiträge (V). *Sitzungsberichte der Kaiserlichen Akademie der Wissenschaften. Mathematisch-Naturwissenschaftliche Classe 74* (1): 49–240, Pls. 1–15

Steindachner, F. 1877. Die Süßwasserfische des südöstlichen Brasilien (III). *Sitzungsberichte der Kaiserlichen Akademie der Wissenschaften. Mathematisch-Naturwissenschaftliche Classe 74* (1): 559–694, Pls. 1-13.

Steindachner, F. 1879. Über einige neue und seltene Fisch-Arten aus den k. k. zoologischen Museum zu Wien, Stuttgart, und Warschau. *Denkschriften der Kaiserlichen Akademie der Wissenschaften in Wien, Mathematisch-Naturwissenschaftliche Classe 41*: 1–52, Pls. 1–9.

Steindachner, F. 1882. Beiträge zur Kenntniss der Flussfische Südamerikas. IV. *Denkschriften der Kaiserlichen Akademie der Wissenschaften in Wien, Mathematisch-Naturwissenschaftliche Classe 46* (1) (sometimes refered to 1883): 1–44, Pls. 1–7.

Steindachner, F. 1902. Herpetologische und ichthyologische Ergebnisse einer Reise nach Südamerika, mit einer Einleitung von Therese Prinzessin von Bayern. *Denkschriften*
der Kaiserlichen Akademie der Wissenschaften in Wien, Mathematisch-Naturwissenschaftliche Classe 72: 89–148, Pls. 1-6.

Steindachner, F. 1907. Über einige Fischarten aus dem Flusse Cubataô im Staate Santa Catharina bei Theresopolis (Brasilien). Sitzungsberichte der Kaiserlichen Akademie der Wissenschaften, Mathematisch-Naturwissenschaftlichen Klasse 116 (1): 475–492, Pls. 1–2.

Streicher J.W., Schulte J.A. & J. J. Wiens. 2015. How should genes and taxa be sampled for phylogenomic analyses with missing data? An empirical study in Iguanian lizards. Systematic Biology 65(1): 128–145.

Sullivan, J.P., Lavoue, S. & Hopkins, C.D. 2000. Molecular systematics of the African electric fishes (Mormyroidea: Teleostei) and a model for the evolution of their electric organs. Journal of experimental Biology 203(4):665–683.

Sullivan, J. P., Muriel-Cunha, J. & J. G. Lundberg. 2013. Phylogenetic relationships and molecular dating of the major groups of catfishes of the Neotropical superfamily Pimelodoidea (Teleostei, Siluriformes). Proceedings of the Academy of Natural Sciences of Philadelphia, 162 (1): 89–110.

Swarbrick, B. 2012. Multivariate Data Analysis for Dummies. Wiley & Sons, England. 43p.

Swofforrd, D. L. 1998. PAUP*; phylogenetic analysis using parsimony (and other methods). Version 4.0. Sinauer, Sunderland, Massachusetts.

Tamura, K., Peterson, D., Peterson, N., Stecher, G., Nei, M. & Kumar, S. 2011. MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Molecular biology and evolution 28(10): 2731–2739.

Teresa, F. B. & L. Casatti. 2010. Importância da vegetação ripária em região intensamente desmatada no sudeste do Brasil: um estudo com peixes de riacho. Pan-American Journal of Aquatic Sciences 5 (3): 444–453.

Thompson, A.W., Betancur-R, R., López-Fernández, H. & Ortí, G. 2014. A time-calibrated, multi-locus phylogeny of piranhas and pacus (Characiformes: Serrasalmidae) and a comparison of species tree methods. Molecular phylogenetics and evolution 81: 242–257.

Trajano, E. 1987. Biologia do bagre cavernícola Pimedodella kronei e de seu provável ancestral, Pimedodella transitoria (Siluriformes, Pimelodidae). São Paulo. São Paulo: Instituto de Biociências. Unpublished PhD. Thesis. 136p.
Trajano, E. 1989. Estudo do comportamento espontâneo e alimentar e da dieta do bagre cavernícola, *Pimelodella kronei*, e seu provável ancestral epígeo, *Pimelodella transitoria* (Siluriformes, Pimelodidae). *Revista Brasileira de Biologia* 49(3): 757–769.

Trajano, E. 1991. Population ecology of *Pimelodella kronei*, troglobitic catfish from Southeastern Brazil (Siluriformes, Pimelodidae). *Environmental Biology of Fishes* 30(4): 407–421.

Trajano, E. 1994. Comparative study of the brain and olfactory organ of the troglobitic catfish, *Pimelodella kronei* (Ribeiro 1907), and its putative ancestor, *P. transitoria* (Ribeiro 1912) (Siluriformes Pimelodidae). *Tropical Zoology* 7(1): 145–160.

Trajano, E. 2006a. *Sistema Areias. 100 anos de estudos*. São Paulo: Redespeleo Brasil. 148p.

Trajano, E. 2006b. Os estudos biológicos no Sistema Areias. *In*: Trajano, E. (org.) *Sistema Areias. 100 anos de estudos*. São Paulo: Redespeleo Brasil. 24–26 pp.

Trajano, E. & H. A. Britski. 1992. *Pimelodella kronei* (Ribeiro, 1907) e seu sinônimo *Caecorhamdella brasiensis* Borodin, 1927: Morfologia externa, taxonomia e evolução (Teleostomi, Siluriformes). *Boletim de Zoologia, São Paulo* 12: 53–89.

Trajano, E. & Bockmann, F.A. 1999. Evolution of ecology and behaviour in Brazilian heptapterine cave catfishes, based on cladistic analysis (Teleostei: Siluriformes). *Mémoires de Biospéologie* 26: 123–129.

Trajano, E., R. E. Reis & M. E. Bichuette. 2004. *Pimelodella spelaea*: a new cave catfish from central Brazil, with data on ecology and evolutionary considerations (Siluriformes: Heptapteridae). *Copeia* 2004 (2): 315–325.

Trajano, E., Guil, A. L. F. & A. M. Silva. 2006. Os estudos biológicos no Sistema Areias. *In*: Trajano, E. (org.) *Sistema Areias. 100 anos de estudos*. São Paulo: Redespeleo Brasil. 24–26 pp.

Valenciennes, A. 1835. Poissons [plates]. *In*: A. d'Orbigny. *Voyage dans l'Amérique méridionale*. Pls. 1–16.

Valenciennes, A. 1847. Poissons. Catalogue des principales espèces de poissons, rapportées de l'Amérique méridionale. *In*: A. d'Orbigny. *Voyage dans l'Amérique méridionale*. P. Bertrand, Paris and V. Levrault, Strasbourg. 11p.

Van der Stigchel, J. W. R. 1946. *The South American Nematognathi of the Museums at Leiden and Amsterdam*. Leiden. 204p
Van der Stigchel, J. W. R. 1964. A new species of pimelodid catfish from eastern Brazil, *Pimelodella boschmai* nov. spec. *Zoologische Mededelingen (Leiden)* 39: 327–330.

Vanscoy, T., Lundberg, J. G. & Luckenbill, K. 2015 Bony ornamentation of the catfish pectoral-fin spine: comparative and developmental anatomy, with an example of fin-spine diversity using the Tribe Brachyplatystomini (Siluriformes, Pimelodidae). *Proceedings of the Academy of Natural Sciences of Philadelphia*, 164 (1), 177–212.

Vari, R.P., Ferraris, C. J., Jr, Radosavljevic, A. & V. A. Funk. 2009. Checklist of the Freshwater Fishes of the Guiana Shield. *Bulletin of the Biological Society of Washington*, 17 (1):i–vii+1–95

Volcan, M. V., Lanés, L. E. K., Gonçalves, Â. C., da Fonseca, A. P. & M. P. Cirne. 2012. The fish fauna of the Corrientes stream basin, Patos lagoon system, state of Rio Grande do Sul, southern Brazil. *Check List*, 8 (1), 77–82.

Ward, R.D., T. S. Zemlak, B. H. Innes, P. R. Last & P. D. N. Hebert. DNA barcoding Australia’s fish species. *Philosophical Transactions of the Royal Society B Biological Sciences* 360(1462): 1847–1857.

Wheeler, Q.D. 2004. Taxonomic triage and the poverty of phylogeny. *Philosophical Transactions of the Royal Society of London B: Biological Sciences* 359(1444): 571–583.

Wheeler, Q.D. & Meier, R. eds. 2000. *Species concepts and phylogenetic theory: a debate*. Columbia University Press. 256p.

Whitworth, T. L., Dawson, R. D., Magalon, H., & Baudry, E. 2007. DNA barcoding cannot reliably identify species of the blowfly genus Protocalliphora (Diptera: Calliphoridae). *Proceedings of the Royal Society of London B: Biological Sciences* 274(1619): 1731–1739.

Wiemers M, Fiedler K. 2007. Does the DNA barcoding gap exist?—A case study in blue butterflies (Lepidoptera: Lycaenidae). *Frontiers in Zoology*, 4: 8.

Wilson, E.O. 2004. Taxonomy as a fundamental discipline. *Philosophical Transactions of the Royal Society of London B: Biological Sciences* 359(1444): 739–739.

Zarske, A. 2003. Wiederbeschreibung von *Rhamdia marthae* (Sands & Black, 1985) (Teleostei, Siluriformes, Pimelodidae). Zoologische Abhandlungen; Staatliches Museum für Tierkunde in Dresden 53: 47–55.