Association between Maoto Use and Hospitalization for Seasonal Influenza in a Nonelderly Cohort in Japan

Hayato Yamana¹, Sachiko Ono², Nobuaki Michihata¹, Taisuke Jo¹ and Hideo Yasunaga³

Abstract:
Objective Maoto is a traditional Japanese Kampo formula used to treat influenza. However, clinical evidence for maoto has been limited to small-scale studies of its effect in alleviating symptoms. The present study evaluated whether or not the addition of maoto to a neuraminidase inhibitor was associated with a reduction in hospitalization following influenza.
Methods Using the JMDC Claims Database, we identified outpatients <60 years old who were diagnosed with influenza by an antigen test from September 2013 to August 2018. One-to-five propensity score matching was conducted between patients who received maoto in addition to a neuraminidase inhibitor and those who received a neuraminidase inhibitor alone. Hospitalization within seven days of the influenza diagnosis was compared in the matched groups using the Mantel-Haenszel test.
Results We identified 1.79 million cases of influenza from the database in the 5-year study period. Maoto was prescribed for 3.9% of the 1.67 million cases receiving a neuraminidase inhibitor. In the 64,613 propensity score-matched groups of patients, the 7-day hospitalization rate was 0.116% (n=75) for patients with maoto and 0.122% (n=394) for patients without maoto. The difference between these treatment groups was nonsignificant (common odds ratio, 0.95; 95% confidence interval, 0.74 to 1.22; p=0.695).
Conclusion The addition of maoto to a neuraminidase inhibitor was not associated with a decrease in hospitalization among nonelderly patients with influenza. Further research is necessary to clarify the indication and efficacy of maoto.

Key words: complementary therapies, database, hospitalization, human influenza, Kampo medicine

(Intern Med 60: 3401-3408, 2021) (DOI: 10.2169/internalmedicine.6416-20)

Introduction

Influenza is a common viral infectious disease, with 1 billion cases per year worldwide (1, 2). Each year, 3-5 million severe influenza cases and 290,000-650,000 influenza-associated deaths are estimated to occur (2, 3). Risk factors for severe influenza include age and chronic medical conditions, such as chronic lung disease, cardiovascular disease, neuromuscular disease, and diabetes (4-7). Studies have shown that neuraminidase inhibitors (NAIs) decrease the symptom duration and may reduce adverse outcomes (8, 9).

Maoto (Ma-Huang-Tang in Chinese) is a traditional Japanese Kampo formula used to treat the common cold and influenza. Maoto is made from ephedra herb, apricot kernel, cinnamon bark, and glycyrrhiza root. It is available for prescription as a granule or powder extract in the Japanese health insurance system. In vitro and in vivo studies have indicated the effects of maoto’s components in inhibiting the proliferation of influenza virus and provoking host reactions (10-15). Several small-scale clinical studies have evaluated maoto’s effect in alleviating the symptoms of influenza (16-20). A review of these studies concluded that adding maoto to an NAI was associated with a reduction in the duration of a fever (21).

However, previous studies on maoto’s efficacy for treating...
influenza have been from a small number of institutions. Thus, the recent use of maoto for treating influenza in general practice has not been described. In addition, existing clinical studies have had insufficient sample sizes to observe the occurrence of severe influenza cases. To our knowledge, no study on maoto has examined influenza-related mortality. In the few studies evaluating morbidity or hospitalization following influenza, no patients experienced complications or hospitalization (16, 17, 19, 20). Therefore, the effect of maoto on reducing adverse outcomes of influenza is unclear.

We conducted the present study to describe the use of maoto for the treatment of seasonal influenza. We further evaluated whether or not the addition of maoto to an NAI was associated with a reduction in hospitalization following influenza.

Materials and Methods

Data source

We conducted a retrospective cohort study using the JMDC Claims Database (JMDC, Tokyo, Japan), a database of health insurance claims and health examinations in Japan. The database contains anonymous data provided by employer health insurance groups. Subscriber information includes the sex, year and month of birth, data provision period, and year and month of death. All monthly medical claims data on health insurance-covered outpatient, inpatient, and pharmacy services are recorded in the database, including diagnoses, consultations, drugs, and procedures. Diagnoses are recorded based on International Classification of Diseases, 10th Revision (ICD-10) codes and the Japanese standardized diagnosis codes. The date of treatment start for each diagnosis and whether the diagnosis was suspected or confirmed are also recorded. Drugs are classified according to the Anatomical Therapeutic Chemical Classification System and the Japanese codes for reimbursement. The date and institution of prescription are recorded in addition to the types and amounts of drugs prescribed. Procedures and their provision date are also recorded according to the Japanese codes for reimbursement.

Patients

Using the data recorded in the JMDC Claims Database from September 2013 to August 2018, we first identified the outpatient diagnosis records of confirmed influenza (ICD-10 code J10 or J11). For each subscriber, the earliest day within each one-year period (from September to August) that treatment for influenza started was considered the index date. Multiple cases in the same patient in different years were counted separately, whereas only the first episode for each patient within a 1-year period was included in the analysis. In this study, we included patients <60 years old. In Japan, upon retirement, individuals stop using company health insurance and are instead covered by citizens’ insurance. In addition, all people in Japan are covered by the Late Elders’ Health Insurance after they reach 75 years old (22). These people are not represented in the JMDC Claims Database. For inclusion in the analysis, we also required patients to have undergone an antigen test for influenza on the index date. Patients who did not receive an antigen test and those who received tests in multiple institutions were excluded.

Variables and outcomes

Using outpatient records for the same day a patient received antigen testing and at the same institution, we identified prescription of maoto, NAIs (oseltamivir, zanamivir, lanamivir, or peramivir) or baloxavir marboxil (a cap-dependent endonuclease inhibitor), and acetaminophen (oral or suppository). The type of influenza (A or B) was identified using the Japanese standardized diagnosis codes and categorized as unspecified when the diagnostic codes did not indicate specific influenza type or when both type A and type B were recorded. Using all confirmed diagnosis records from one to three months prior to the influenza diagnosis, the following comorbidities were identified: chronic heart failure, myocardial infarction, chronic pulmonary diseases, liver diseases, diabetes mellitus, and renal diseases. The diagnoses and their codes were based on Quan et al.’s algorithm for calculating the Charlson comorbidity index (23). We also identified whether or not a patient had been hospitalized for any reason during the month preceding the influenza diagnosis. Finally, the total outpatient charge during the previous month was calculated as a measure of baseline service utilization.

The primary study outcome was all-cause hospitalization within seven days after the influenza diagnosis. Among patients who were hospitalized, we used the diagnosis records to identify pneumonia, encephalopathy and encephalitis, otitis media, and any diseases of the respiratory system. Furthermore, we used procedure records during hospitalization to capture intensive-care unit admission, instances of intratracheal intubation, and electroencephalograms. Death from any cause in the month of the influenza diagnosis was also identified.

Statistical analyses

For each year, the number of influenza cases occurring each week was counted. Because the number of subscribers for whom data were provided varied by year, epidemic curves were drawn after adjusting for total person-months observed in the database each year.

The characteristics of influenza cases were described using proportions for categorical variables and means with standard deviations for continuous variables. The proportions of patients who had complications and who died were calculated among patients hospitalized within seven days after the influenza diagnosis.

We conducted a comparative analysis using propensity score matching in patients who received one type of NAI. Patients who did not receive NAIs and those who received
multiple antiviral agents were excluded from this analysis. Propensity scores were estimated using logistic regression, with use of maoto in addition to an NAI set as the dependent variable. Sex, age, year, type of influenza, type of NAI, acetaminophen use, comorbidities (congestive heart failure, chronic pulmonary disease, liver disease, diabetes, and renal disease), hospitalization during the previous month, and total outpatient charge during the previous month (none, ≤12,000 yen, or >12,000 yen) were included as independent variables. Using the estimated propensity scores, we performed nearest-neighbour one-to-five matching with replacement between patients who received maoto in addition to an NAI and patients who received an NAI alone. The cut-off for a difference in propensity score was set at 0.2 times the standard deviation of the estimated propensity scores. Covariates for which the absolute value of the standardized difference exceeded 10% were considered imbalanced between the two groups (24).

Mantel-Haenszel test with stratification by the matched groups was used to compare rates of hospitalization within seven days after the influenza diagnosis between patients with and without maoto. As a sensitivity analysis, we compared the 14-day admission rate in the same manner. We conducted subgroup analyses by performing propensity score matching in each subgroup for sex, age group, type of influenza, type of NAI, and acetaminophen use. P<0.05 was considered statistically significant. Statistical analyses were performed using the Stata SE software program, Version 16.0 (StataCorp, College Station, USA).

Ethical considerations

The study was approved by the Institutional Review Board of the Graduate School of Medicine, The University of Tokyo. The requirement for informed consent was waived because of the anonymous nature of the data.

Results

We identified 1,993,639 influenza cases using diagnosis records during the 5-year study period. Of these cases, 195,156 without antigen tests and 4,119 with antigen tests in multiple institutions were excluded. The number of included cases, incidence, age distribution, and type of influenza in each year are presented in Table 1. The highest incidence of influenza was observed in 2017-18. The epidemic curves for each year after adjusting for the observation period are presented in Figure.

Table 2 describes the number of hospitalized patients by their use of antiviral agents and maoto. Overall, maoto was prescribed for 72,136 patients (4.0%). Of the 1,794,364 patients, 2,782 (0.16%) were hospitalized within 7 days after the influenza diagnosis, and an additional 1,341 were hospitalized 8-14 days after the influenza diagnosis. There were 15 deaths in the month of the influenza diagnosis (0.001%). The 2,782 patients hospitalized within 7 days after the influenza diagnosis included 615 (22%) with pneumonia, 39 (1.4%) with encephalopathy, and 51 (1.8%) with otitis media. There were 29 patients (1.0%) who required intensive-care unit admission, and 36 patients (1.3%) were intubated. An electroencephalogram was performed in 67 patients (2.4%).

There were 3,135, 736, and 118,752 patients who received baloxavir marboxil, multiple types of antiviral agents, and no NAIs, respectively. The characteristics of the remaining 1,671,741 patients who received one type of NAI and the results of univariate analyses for hospitalization within 7 days after the influenza diagnosis are presented in Table 3. The mean age was 23.9 years old, with a standard deviation

Table 1. Influenza Cases Identified in the JMDC Claims Database.

Year	2013-14	2014-15	2015-16	2016-17	2017-18
Observed population (in millions)	2.75	3.65	4.19	4.79	4.88
Influenza cases (n)	217,977	242,996	356,559	412,167	564,665
Influenza incidence (/1,000 person-years)	91.0	86.6	102.6	104.6	135.5

Patient characteristics, n (%)
Sex
Male
Female
Age group, years
0-9
10-19
20-39
40-59
Type of influenza
A
B
Unspecified
of 17.0 years. Maoto was prescribed for 64,613 patients (3.9%) in this group.

Through propensity score matching, 323,065 patients without maoto were selected as matched counterparts for patients with maoto, all of whom were included in the analysis. There were no patients with missing data. Comparisons of patient characteristics between those who received maoto and those who did not before and after propensity score matching are presented in Table 4. Patient characteristics were well-balanced after matching.

Within the 64,613 matched groups of 1 patient with maoto and 5 patients without maoto, the 7-day admission rate was 0.116% (n=75) for patients with maoto and 0.122% (n=394) for patients without maoto. The risk difference was -0.006% [95% confidence interval (CI), -0.224% to 0.212%]. Mantel-Haenszel test showed no significant difference in admission rates (odds ratio, 0.95; 95% CI, 0.74 to 1.22; p=0.695). The 14-day admission rate was 0.184% (n=119) for patients with maoto and 0.166% (n=535) for patients without maoto. The risk difference was 0.019% (95% CI, -0.258% to 0.296%). The Mantel-Haenszel test again indicated no significant difference in admission rates (odds ratio, 1.11; 95% CI, 0.91 to 1.36; p=0.293).

The results of the subgroup analyses are summarized in Tables 5 and 6. Maoto use was associated with a higher rate of hospitalization in men than in women and a lower rate of hospitalization in women than in men. In addition, patients with maoto had higher hospitalization rates than those without maoto in the subgroup that received acetaminophen and the subgroup that received laninamivir.

Discussion

Using a large-scale health insurance claims database in Japan, we investigated the use of maoto for treating seasonal influenza and evaluated whether or not the addition of maoto to an NAI was associated with a reduction in hospitalizations. Maoto was used in 4% of the included influenza

Table 2. Use of Antiviral Agents and Maoto and Hospitalization Status.

Antiviral agent use	Maoto use	n	Hospitalization within 7 days	n	(%)	Hospitalization within 14 days	n	(%)
+ +	64,809	75	(0.12)	119	(0.18)			
+ -	1,610,803	2,124	(0.13)	3,268	(0.20)			
- +	7,327	27	(0.37)	34	(0.46)			
- -	111,425	556	(0.50)	702	(0.63)			
Total	1,794,364	2,782	(0.16)	4,123	(0.23)			

Figure. Weekly cases of influenza identified from the JMDC Claims Database. The number of cases in each year is adjusted to the average population of 4.05 million subscribers contributing 3.36 million person-years of observation.
Table 3. Patient Characteristics and Results of Univariate Analyses (n=1,671,741).

Characteristic	Total, n	Hospitalization within 7 days, n (%)	p
Sex			
Male	918,637	1,174 (0.13)	0.198
Female	753,104	1,017 (0.14)	
Age group, years			
0-9	457,652	847 (0.19)	<0.001
10-19	420,774	395 (0.09)	
20-39	376,298	404 (0.11)	
40-59	417,017	545 (0.13)	
Year			
2013-14	201,543	282 (0.14)	<0.001
2014-15	226,797	249 (0.11)	
2015-16	331,791	537 (0.16)	
2016-17	386,227	445 (0.12)	
2017-18	525,383	678 (0.13)	
Type of influenza			
A	677,469	822 (0.12)	<0.001
B	431,848	544 (0.13)	
Unspecified	562,424	825 (0.15)	
Neuraminidase inhibitor			
Oseltamivir	560,259	941 (0.17)	<0.001
Zanamivir	261,396	302 (0.12)	
Lamivudine	809,968	818 (0.10)	
Peramivir	40,118	110 (0.32)	
Acetaminophen use			
Yes	1,177,143	1,471 (0.12)	0.001
No	494,598	720 (0.15)	
Maoto use			
Yes	64,613	75 (0.12)	0.283
No	1,607,128	2,116 (0.13)	
Congestive heart failure			
Yes	7,588	51 (0.67)	<0.001
No	1,664,153	2,140 (0.13)	
Chronic pulmonary disease			
Yes	232,032	589 (0.25)	<0.001
No	1,439,709	1,602 (0.11)	
Liver disease			
Yes	30,423	82 (0.27)	<0.001
No	1,641,318	2,109 (0.16)	
Diabetes			
Yes	6,492	37 (0.57)	<0.001
No	1,665,249	2,154 (0.13)	
Renal disease			
Yes	2,732	22 (0.81)	<0.001
No	1,669,009	2,169 (0.13)	
Hospitalization in previous month			
Yes	5,135	63 (1.23)	<0.001
No	1,666,606	2,128 (0.13)	
Outpatient charge in previous month, yen			
None	1,016,353	889 (0.09)	<0.001
≤12,000	355,029	469 (0.13)	
>12,000	300,359	833 (0.28)	
ever, the use of Kampo formulations with a Western diagnosis is increasing, and clinical studies based on Western diagnoses have been conducted (28). A possible reason for the nonsignificant effect in this study is that patients may have been prescribed maoto against their symptoms, further research using traditional diagnoses is necessary to evaluate whether or not maoto is effective in patients with the correct indication.

Several study limitations must be acknowledged. First, this study used health insurance claims data. Detailed information on severity and underlying diseases was not available. Second, this was a retrospective observational study. Although we conducted propensity score matching to adjust for multiple measured confounding factors, unmeasured confounders, such as the vaccination status, may have affected the findings. Finally, the study did not include older adult patients. The results may not be generalizable to patients of older age because hospitalization is more frequent in this group than in younger patients, and older adult patients more frequently have conditions preventing the use of maoto, such as cardiovascular diseases and prostate hypertrophy, than younger patients.

In conclusion, the addition of maoto to an NAI was not associated with a decrease in hospitalization among nonelderly patients with seasonal influenza. Further research is necessary to clarify the indication and efficacy of maoto.

Author’s disclosure of potential Conflicts of Interest (COI).

Hayato Yamana: Others, Tsumura. Nobuaki Michihata: Others, Author’s disclosure of potential Conflicts of Interest (COI).

Table 4. Patient Characteristics before and after Propensity Score Matching.

Characteristic	Patients with maoto, n=64,613 (%)	Patients without maoto (all), n=1,607,128 (%)	Standardized difference^a	Patients without maoto (matched), n=323,065 (%)	Standardized difference^b
Male	37,983 (58.8)	880,654 (54.8)	8.06	189,777 (58.7)	0.09
Age group, years					
0-9	4,578 (7.1)	453,074 (28.2)	-57.63	22,918 (7.1)	-0.03
10-19	12,440 (19.3)	408,334 (25.4)	-14.82	62,227 (19.3)	-0.02
20-39	22,662 (35.1)	353,636 (22.0)	29.25	113,322 (35.1)	-0.01
40-59	24,933 (38.6)	392,084 (24.4)	30.92	124,598 (38.6)	0.04
Year					
2013-14	6,934 (10.7)	194,609 (12.1)	-4.33	34,636 (10.7)	0.03
2014-15	8,223 (12.7)	218,574 (13.6)	-2.58	41,176 (12.7)	-0.06
2015-16	12,496 (19.3)	319,295 (19.9)	-1.33	62,556 (19.4)	-0.06
2016-17	16,107 (24.9)	370,120 (23.0)	4.45	80,364 (24.9)	0.12
2017-18	20,853 (32.3)	504,530 (31.4)	1.89	104,333 (32.3)	-0.05
Type of influenza					
A	29,173 (45.2)	648,296 (40.3)	9.74	145,859 (45.1)	0.00
B	15,536 (24.0)	416,312 (25.9)	-4.30	77,676 (24.0)	0.00
Unspecified	19,904 (30.8)	542,520 (33.8)	-6.32	99,530 (30.8)	-0.01
Neuraminidase inhibitor					
Oseltamivir	12,339 (19.1)	547,920 (34.1)	-34.44	61,739 (19.1)	-0.03
Zanamivir	7,201 (11.1)	254,195 (15.8)	-13.71	35,958 (11.1)	0.05
Laninamivir	41,371 (64.0)	768,597 (47.8)	33.08	206,814 (64.0)	0.03
Peramivir	3,702 (5.7)	36,416 (2.3)	17.75	18,554 (5.7)	-0.06
Acetaminophen use	48,068 (74.4)	1,129,075 (70.3)	9.26	240,290 (74.4)	0.04
Congestive heart failure	371 (0.6)	7,217 (0.4)	1.75	1,513 (0.5)	1.47
Chronic pulmonary disease	5,750 (8.9)	226,282 (14.1)	-16.30	28,775 (8.9)	-0.03
Liver disease	1,740 (2.7)	28,683 (1.8)	6.14	8,340 (2.6)	0.70
Diabetes	352 (0.5)	6,140 (0.4)	2.40	1,499 (0.5)	1.16
Renal disease	134 (0.2)	2,598 (0.2)	1.07	426 (0.1)	1.84
Hospitalization in previous month	180 (0.3)	4,955 (0.3)	-0.55	691 (0.2)	1.31
Outpatient charge in previous month, yen					
None	41,723 (64.6)	974,630 (60.6)	8.13	208,710 (64.6)	-0.06
≤12,000	11,895 (18.4)	343,134 (21.4)	-7.37	59,509 (18.4)	-0.03
>12,000	10,995 (17.0)	289,364 (18.0)	-2.60	54,846 (17.0)	0.11

Every patient in the maoto group was matched with five patients without maoto.

^aBetween patients with maoto and all patients without maoto.

^bBetween patients with maoto and matched patients without maoto.
Table 5. Result of Subgroup Analysis for Hospitalization within 7 Days.

Subgroup	Patients with maoto Matched, n	Hospitalized n (%)	Patients without maoto Matched, n	Hospitalized n (%)	Odds ratio	95% CI	p
Sex							
Male	37,983	42 (0.11)	189,915	122 (0.06)	1.73	(1.21, 2.46)	0.002
Female	26,630	33 (0.12)	133,150	268 (0.20)	0.61	(0.43, 0.88)	0.008
Age group, years							
0-9	4,578	7 (0.15)	22,890	30 (0.13)	1.17	(0.51, 2.66)	0.713
10-19	12,440	11 (0.09)	62,199	144 (0.23)	0.38	(0.21, 0.71)	0.001
20-39	22,662	23 (0.10)	113,310	160 (0.14)	0.72	(0.46, 1.11)	0.137
40-59	24,933	34 (0.14)	124,665	83 (0.07)	2.07	(1.38, 3.11)	<0.001
Type of influenza							
A	29,173	22 (0.08)	145,865	102 (0.07)	1.08	(0.68, 1.71)	0.747
B	15,536	14 (0.09)	77,680	37 (0.05)	1.89	(1.02, 3.50)	0.039
Unspecified	19,940	39 (0.20)	99,520	114 (0.11)	1.72	(1.19, 2.47)	0.003
Neuraminidase inhibitor							
Oseltamivir	12,339	20 (0.16)	61,695	75 (0.12)	1.34	(0.81, 2.22)	0.249
Zanamivir	7,201	3 (0.04)	36,005	31 (0.09)	0.48	(0.15, 1.58)	0.220
Laninamivir	41,371	45 (0.11)	206,855	61 (0.03)	3.69	(2.51, 5.42)	<0.001
Peramivir	3,702	7 (0.19)	18,510	22 (0.12)	1.59	(0.68, 3.72)	0.280
Acetaminophen use							
Yes	48,068	63 (0.13)	240,340	111 (0.05)	2.84	(2.08, 3.87)	<0.001
No	16,545	12 (0.07)	82,725	82 (0.10)	0.73	(0.40, 1.34)	0.310

CI: confidence interval

Table 6. Result of Subgroup Analysis for Hospitalization within 14 Days.

Subgroup	Patients with maoto Matched, n	Hospitalized n (%)	Patients without maoto Matched, n	Hospitalized n (%)	Odds ratio	95% CI	p
Sex							
Male	37,983	66 (0.17)	189,915	176 (0.09)	1.88	(1.42, 2.50)	<0.001
Female	26,630	53 (0.20)	133,150	354 (0.27)	0.75	(0.56, 1.00)	0.048
Age group, years							
0-9	4,578	9 (0.20)	22,890	37 (0.16)	1.22	(0.59, 2.52)	0.598
10-19	12,440	13 (0.10)	62,199	152 (0.24)	0.43	(0.24, 0.75)	0.003
20-39	22,662	36 (0.16)	113,310	241 (0.21)	0.75	(0.53, 1.06)	0.101
40-59	24,933	61 (0.24)	124,665	178 (0.14)	1.73	(1.29, 2.32)	<0.001
Type of influenza							
A	29,173	41 (0.14)	145,865	204 (0.14)	1.00	(0.72, 1.41)	0.977
B	15,536	21 (0.14)	77,680	59 (0.08)	1.79	(1.08, 2.97)	0.021
Unspecified	19,940	57 (0.29)	99,520	186 (0.19)	1.54	(1.14, 2.07)	0.004
Neuraminidase inhibitor							
Oseltamivir	12,339	30 (0.24)	61,695	275 (0.45)	0.54	(0.37, 0.79)	0.001
Zanamivir	7,201	8 (0.11)	36,005	60 (0.17)	0.67	(0.32, 1.39)	0.278
Laninamivir	41,371	71 (0.17)	206,855	98 (0.05)	3.65	(2.68, 4.96)	<0.001
Peramivir	3,702	10 (0.27)	18,510	37 (0.20)	1.35	(0.67, 2.72)	0.396
Acetaminophen use							
Yes	48,068	95 (0.20)	240,340	241 (0.10)	1.97	(1.56, 2.50)	<0.001
No	16,545	24 (0.15)	82,725	154 (0.19)	0.78	(0.50, 1.20)	0.253

CI: confidence interval
Tsunura. Taisuke Jo: Others, Tsunurma. Sachiko Ono: Others, ITO EN.

Financial Support
This work was supported by grants from the Ministry of Health, Labour and Welfare, Japan (20AA2001 and 20AA2005).

References
1. Ghebrehiwet S, MacPherson P, Ho A. Influenza. BMJ 355: i6258, 2016.
2. World Health Organization. Global Influenza Strategy 2019-2030. World Health Organization, Geneva, 2019.
3. Iuliano AD, Roguski KM, Chang HH, et al. Estimates of global seasonal influenza-associated respiratory mortality: a modelling study. Lancet 391: 1255-1300, 2018.
4. Merzt D, Kim TH, Johnstone J, et al. Populations at risk for severe or complicated influenza illness: systematic review and meta-analysis. BMJ 347: f5061, 2013.
5. Gill PJ, Ashdown HF, Wang K, et al. Identification of children at risk of influenza-related complications in primary and ambulatory care: a systematic review and meta-analysis. Lancet Respir Med 3: 139-149, 2015.
6. Ono S, Ono Y, Matsui H, Yasunaga H. Factors associated with hospitalization for seasonal influenza in a Japanese nonelderly cohort. BMC Public Health 16: 922, 2016.
7. Walker TA, Waite B, Thompson MG, et al. Risk of severe influenza among adults with chronic medical conditions. J Infect Dis 221: 183-190, 2020.
8. Jefferson T, Jones MA, Doshi P, et al. Neuraminidase inhibitors for preventing and treating influenza in healthy adults and children. Cochrane Database Syst Rev 4: CD008965, 2014.
9. Dobson J, Whitley RJ, Pocock S, Monto AS. Oseltamivir treatment for influenza in adults: a meta-analysis of randomised controlled trials. Lancet 385: 1729-1737, 2015.
10. Mantani N, Andoh T, Kawamata H, Terasawa K, Ochiai H. Inhibitory effect of Ephedrae herba, an oriental traditional medicine, on the growth of influenza A/PR/8 virus in MDCK cells. Antivir Res 44: 193-200, 1999.
11. Hayashi K, Imanishi N, Kashiwayama Y, et al. Inhibitory effect of cinnamaldehyde, derived from Cinnamomum cortex, on the growth of influenza A/PR/8 virus in vitro and in vivo. Antivir Res 74: 1-8, 2007.
12. Wolkerstorfer A, Kurz H, Bachhofner N, Szolar OHJ. Glycyrrhizin inhibits influenza A virus uptake into the cell. Antivir Res 83: 171-178, 2009.
13. Nagai T, Kataoka E, Aoki Y, Hokari R, Kiyohara H, Yamada H. Alleviative effects of a Kampo (a Japanese herbal) medicine “maoto (Ma-Huang-Tang)” on the early phase of influenza virus infection and its possible mode of action. Evid Based Complement Alternat Med 2014: 187036, 2014.
14. Masui S, Nabeshima S, Aisaka K, et al. Maoto, a traditional Japanese herbal medicine, inhibits uncoating of influenza virus. Evid Based Complement Alternat Med 2017: 1062065, 2017.
15. Nishi A, Ohbuchi K, Kushida H, et al. Deconstructing the traditional Japanese medicine “Kampo”: compounds, metabolites and pharmacological profile of maoto, a remedy for flu-like symptoms. NPJ Syst Biol Appl 3: 32, 2017.
16. Kubo T, Nishimura H. Antipyretic effect of Mao-to, a Japanese herbal medicine, for treatment of type A influenza infection in children. Phytomedicine 14: 96-101, 2007.
17. Takeshita T, Hayashi J, Kusai T, et al. Investigation of the effectiveness of Maoto for pediatric influenza. Child Health 11: 114-118, 2008 (in Japanese).
18. Nabeshima S, Kashiwagi K, Aisaka K, et al. A comparison of oseltamivir with maoto, a traditional herbal medicine, for the treatment of adult seasonal influenza A. J Trad Med 27: 148-156, 2010.
19. Nabeshima S, Kashiwagi K, Aisaka K, et al. A randomized, controlled trial comparing traditional herbal medicine and neuraminidase inhibitors in the treatment of seasonal influenza. J Infect Chemother 18: 534-543, 2012.
20. Toriumi Y, Kamei T, Murata K, Takahashi I, Suzuki N, Madoz O. Utility of Maoto in an influenza season where reduced effectiveness of oseltamivir was observed - a clinical, non-randomized study in children. Forsch Komplementmed 19: 179-186, 2012.
21. Yoshino T, Arita R, Horiba Y, Watanabe K. The use of maoto (Ma-Huang-Tang), a traditional Japanese Kampo medicine, to alleviate flu symptoms: a systematic review and meta-analysis. BMC Complement Altern Med 19: 68, 2019.
22. Ikagami N, Yoo BK, Hashimoto H, et al. Japanese universal health care coverage: evolution, achievements, and challenges. Lancet 378: 1106-1115, 2011.
23. Quan H, Sundararajan V, Halfon P, et al. Coding algorithms for defining comorbidities in ICD-9-CM and ICD-10 administrative data. Med Care 43: 1103-1129, 2005.
24. Austin PC. Using the standardized difference to compare the prevalence of a binary variable between two groups in observational research. Commun Stat Simul Comput 38: 1228-1234, 2009.
25. National Institute of Infectious Diseases, Japan. Statistics on Influenza in the 2015/16 Season (in Japanese) [Internet]. 2016 [cited 2020 Oct 1]. Available from: https://www.niid.go.jp/niid/ja/flu-m/590-idsc/6715-fludoko-2015.html
26. National Institute of Infectious Diseases, Japan. Statistics on Influenza in the 2018/19 Season (in Japanese) [Internet]. 2019 [cited 2020 Oct 1]. Available from: https://www.niid.go.jp/niid/ja/flu-m/590-idsc/8979-fludoko-2018.html
27. Moschik EC, Mercado C, Yoshino T, Matsuura K, Watanabe K. Useage and attitudes of physicians in Japan concerning traditional Japanese Kampo medicine (Kampo medicine): a descriptive evaluation of a representative questionnaire-based survey. Evid Based Complement Alternat Med 2012: 139818, 2012.
28. Watanabe K, Matsuura K, Gao P, et al. Traditional Japanese Kampo medicine: clinical research between modernity and traditional medicine - the state of research and methodological suggestions for the future. Evid Based Complement Alternat Med 2011: 513842, 2011.
29. Yukubo S, Ito M, Ueda Y, et al. Pattern classification in Kampo medicine. Evid Based Complement Alternat Med 2011: 513842, 2011.

The Internal Medicine is an Open Access journal distributed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License. To view the details of this license, please visit (https://creativecommons.org/licenses/by-nc-nd/4.0/).