Molecular foundations of prion strain diversity

Carta, Manfredi ; Aguzzi, Adriano

Abstract: Despite being caused by a single protein, prion diseases are strikingly heterogenous. Individual prion variants, known as strains, possess distinct biochemical properties, form aggregates with characteristic morphologies and preferentially seed certain brain regions, causing markedly different disease phenotypes. Strain diversity is determined by protein structure, post-translational modifications and the presence of extracellular matrix components, with single amino acid substitutions or altered protein glycosylation exerting dramatic effects. Here, we review recent advances in the study of prion strains and discuss how a deeper knowledge of the molecular origins of strain heterogeneity is providing a foundation for the development of anti-prion therapeutics.

DOI: https://doi.org/10.1016/j.conb.2021.07.010

The following work is licensed under a Creative Commons: Attribution 4.0 International (CC BY 4.0) License.

Originally published at:
Carta, Manfredi; Aguzzi, Adriano (2022). Molecular foundations of prion strain diversity. Current Opinion in Neurobiology, 72:22-31.
DOI: https://doi.org/10.1016/j.conb.2021.07.010
Molecular foundations of prion strain diversity
Manfredi Carta and Adriano Aguzzi

Abstract
Despite being caused by a single protein, prion diseases are strikingly heterogeneous. Individual prion variants, known as strains, possess distinct biochemical properties, form aggregates with characteristic morphologies and preferentially seed certain brain regions, causing markedly different disease phenotypes. Strain diversity is determined by protein structure, post-translational modifications and the presence of extracellular matrix components, with single amino acid substitutions or altered protein glycosylation exerting dramatic effects. Here, we review recent advances in the study of prion strains and discuss how a deeper knowledge of the molecular origins of strain heterogeneity is providing a foundation for the development of anti-prion therapeutics.

Addresses
Institute of Neuropathology, University Hospital of Zurich, University of Zurich, Schmelzbergstrasse 12, 8091 Zurich, Switzerland

Corresponding author: Aguzzi, Adriano (adriano.aguzzi@usz.ch)

Current Opinion in Neurobiology 2022, 72:22–31
This review comes from a themed issue on Neurobiology of Disease
Edited by Bart de Strooper and Huda Zoghbi
For a complete overview see the Issue and the Editorial
Available online 27 July 2021
https://doi.org/10.1016/j.conb.2021.07.010
0959-4388/© 2021 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

Introduction
Prion diseases are a group of fatal neurodegenerative disorders caused by prions. These unique infectious agents are not known to contain any nucleic acids and appear to be composed primarily of a misfolded form of the prion protein PrP, which is encoded by the prion protein gene PRNP [1,2]. Histologically, prion diseases show vacuolation, astrogliosis, neuroinflammation and deposition of PrPSc, a misfolded, beta-sheet–rich counterpart of the cellular prion protein PrPC, a glycosylphosphatidylinositol-anchored (GPI-anchored) protein that is abundantly expressed in the brain. Prions propagate through the templated misfolding of PrPSc to infectious prion aggregates [3].

Most cases of human prion disease are sporadic (sporadic Creutzfeldt–Jakob disease, sCJD), with no known cause. Inherited PRNP mutations cause the genetic prion diseases familial Creutzfeldt–Jakob disease, Gerstmann–Sträussler–Scheinker syndrome (GSS) and fatal familial insomnia. Prion diseases acquired via infection include variant CJD and kuru, where prions are acquired via dietary routes, and iatrogenic CJD, caused by accidental inoculation through medical procedures [4].

Although they are caused by a misfolded form of one single protein, prion diseases of animals and humans are strikingly heterogeneous and are associated with a wide range of clinicopathological variants with different symptoms, incubation periods, rates of disease progression, histology, PrPSc deposit morphologies and anatomical distributions of disease lesions [5–7].

Given that prions are not known to contain nucleic acids, these properties must be encoded in the higher-order aggregate structure. Indeed, prions exist in distinct conformational variants, known as strains, whose properties can be serially transmitted and reproduced in animal models of disease and also in human infection [6,8,9]. Furthermore, human sporadic prion disease strains can also be reproduced by the in vitro prion amplification technique protein misfolding cyclic amplification (PMCA), where prions are propagated in the presence of brain homogenate [10].

Individual prion strains produce PrPSc with distinct biochemical properties, such as the degree of electrophoretic mobility [11], susceptibility to protease digestion, immunoreactivity to antibodies targeting conformational PrP epitopes [12], glycosylation patterns [13] and stability on treatment with chaotropic salts [14] or heat [15].

Prion strains cause pathology with specific anatomical distributions. A study of sCJD with diffusion-weighted magnetic resonance imaging showed that the disease primary site and ordering of lesion propagation were specific to sCJD histotypes, which are caused by distinct strains. For instance, in the most common histotype, MM1, lesions spread from the neocortex to subcortical regions, with the opposite pattern seen in the histotype VV2 (see Figure 1) [16]. The observation that many
self-templating prion strains with defined properties exist leads to the question of how their structure was formed in the original prion seed and how the strain-coding information is transmitted during prion replication. Here, we review how recent histological, genetic and biochemical studies are unravelling the molecular origins of prion strain diversity and discuss how these advances are guiding the development of innovative anti-prion therapeutics.

Determinants of strain properties

Prion protein primary structure

The properties of de novo prion seeds are influenced by the primary amino acid sequence of PrP. For instance, a geographically variable polymorphism in codon 129 of PRNP, which codes for methionine (M) or valine (V), influences biochemical features of prions when they emerge in the primary host, and these properties can be transmitted with infection [17–19]. This polymorphism also influences the risk of spontaneously developing prion disease [20], age at onset of genetic disease [21,22], clinical and histological features of disease [7] and the incubation period after exposure to prions [23]. In line with the last observation, the overall PrP sequence determines species barriers; while bank voles can be readily infected with strains originating in various species and bank vole PrP is susceptible to conversion by several human prion strains [24,25], dogs are resistant to prion infection, probably thanks to the presence of a single negatively charged amino acid (aspartic or glutamic acid) in position 163 of canine PrP, a residue not found in other species [26]. Mutations that alter the amino acid sequence of PrP can cause hereditary prion disease. Around 50–60 variants have been described, including missense mutations, truncations [27] and insertions into the octapeptide repeat region of PrP [28,29], a repetitive domain close to the PrP N-terminus likely to be a mediator of prion toxicity [30]. Full penetrance has been established for four missense mutations, which also demonstrably cause the formation of infectious prions, as shown by transmissibility experiments where rodents and non-human primates were inoculated with material obtained from diseased brains of mutation carriers; furthermore, in mice, homologous Prnp mutations cause spontaneous disease [31–34]. Individuals with sporadic prion disease are not known to carry any of these pathogenic mutations in the germline.

PRNP polymorphisms can also be protective. A study of persons who were exposed to kuru via cannibalistic funerary practices, but did not develop the disease, lead to the discovery of G127V, a resistance factor whose

Figure 1

Prion strains cause different disease phenotypes. PrPsc aggregate morphology and anatomical spreading patterns (based on the study by Pascuzzo et al. [16**]) are shown in the CJD histotypes MM1 and VV2. MM1 is the main CJD subtype found in individuals homozygous for methionine at PRNP codon 129, whereas VV2 is the main type in valine homozygous individuals. Dark colour indicates the ‘epicentre’ of pathology, with lighter coloured regions affected later in the disease course. (a) Small punctate synaptic PrPsc deposits in MM1, cerebellar cortex. (b) Plaque-like PrPsc deposits in VV2, cerebellar cortex. (c) In MM1, diffusion-weighted imaging showed that pathology most often began in the precuneus and parietal lobe, followed by spread to the frontal and cingulate lobes, with the cerebellum and thalamus affected at late stages. (d) In VV2, the cerebellum is usually affected early in the disease, followed by spread to the basal ganglia and thalamus, insular cortex, frontal lobe and parietal lobe, with the occipital cortex affected at a late stage.
emergence was favoured by the selective pressure of the kuru epidemic [35]. Overall, these observations highlight how substituting a single amino acid in PrP can drastically influence the formation and propagation of prion disease, with effects ranging from protective to inexorably fatal. Several genome-wide association studies have attempted to find variants in other genes that influence the risk of developing prion disease, but the rarity of prion disease poses a significant challenge to these efforts. Apart from variants in PRNP, the search for associations has been mostly elusive, but weak associations with variants in STX6 and GAL3ST1 were reported recently. Risk single nucleotide polymorphisms (SNPs) in STX6 are also shared with progressive supranuclear palsy, possibly indicative of common causal mechanisms [36**].

Aggregate biophysics
The pathogenicity of prions is associated with certain biophysical properties which lead to the formation of aggregates with characteristic morphologies. Mouse-adapted prions that form smaller, diffuse, subfibrillar aggregates and are unstable under denaturing conditions are particularly pathogenic and more likely to enter the central nervous system through peripheral nerves, whereas plaque-forming prions are likely to be less pathogenic [37]. Indeed, although both subfibrillar and fibrillar strains can be taken up by neurons by macrophagocytosis and transported through axons to the cell body, only subfibrillar strains were efficiently transported to the brain. Sonicating fibrillar strains significantly increased solubility and disease attack rate on peripheral inoculation, showing that smaller PrP species are more pathogenic and that promoting fibril stability and assembly could slow prion propagation [38]. This makes sense mechanistically because the prion is defined as the minimal infectious unit, and it logically consists of one single molecular aggregate—whatever its size. Hence, taking a fibril and fragmenting it into a large number of smaller aggregates is necessarily bound to increase the number of infectious particles even if the total amount of prion protein remains unchanged. In humans, small, non-fibrillar prions are also likely to be particularly infectious. Purified protease-resistant GSS aggregates containing PrP amino acids ~90–150 were highly infectious and capable of causing disease on their own, suggesting that this part of the protein is a minimal component required for prion formation [39**].

A potentially protective prion strain has also been described. Anti-prions are self-replicating but innocuous PrP aggregates which can compete with toxic prions for their substrate PrP\(^\mathrm{C}\), resulting in its depletion, inhibiting the spread of toxic prions. When given as a prophylactic treatment in hamsters, anti-prions significantly delayed the onset of clinical symptoms after inoculation with a highly pathogenic prion strain. These findings indicate that prion replication and toxicity are uncoupled and provide a remarkable example of the phenotypic diversity of prion strains [40**].

Cofactors of prion replication
Prions typically form diffuse, synaptic or punctate deposits, whereas the formation of amyloid plaques composed of PrP is relatively rare and typically associated with a longer disease duration; however, certain strains preferentially form plaques when inoculated into wild-type mice [41*]. Therefore, genetic modifications that alter the pattern of prion deposition could be of particular interest. Whether prion strains form diffuse deposits or plaques has been proposed to be influenced by cofactors, particularly by glycosyl residues of PrP, phospholipids and polyanionic compounds such as RNA or extracellular matrix (ECM) components [42]. In particular, glycans stabilise PrP and can inhibit fibril nucleation [43,44].

A recent study explored the effect of the ECM component heparan sulphate (HS) by inoculating prions into mice which produce shortened HS chains. Prolonged survival and redistribution of PrP plaques from brain parenchyma to blood vessels were seen after infection with fibrillar, plaque-forming prions. Plaques consisted of extracellularly assembled, protease-cleaved, GPI-anchorless PrP\(^\mathrm{C}\) and were also enriched in HS. Similarly, in sCJD and GSS, plaque-forming prions had the highest amounts of bound HS, whereas lower levels were seen in cases with diffuse deposits. Given that HS deficiency prolonged survival, HS was found to be a disease-modifying cofactor of prion replication that accelerates prion disease progression [45*].

A similar study investigated the significance of PrP glycosylation using 1. subfibrillar prions, 2. plaque-forming prions and 3. prions consisting of GPI-anchored PrP, which were inoculated into mice with different PrP glycosylation profiles. Expression of underglycosylated PrP resulted in prions that are usually subfibrillar forming plaques, which consisted of PrP cleaved by the protease ADAM10 and HS. The opposite effect was seen in mice producing triglycosylated PrP; here, challenge with plaque-forming prions leads to accelerated disease with deposition of diffuse, subfibrillar aggregates. GPI-anchored prions recruited unglycosylated, GPI-anchored PrP and aggregated to large plaques. However, no difference was seen after infection with the third strain consisting of unmodified, GPI-anchored PrP, which formed diffuse, HS-deficient deposits irrespective of altered glycosylation. These findings highlight how glycans, protease cleavage and GPI anchors shape prion disease phenotypes, with a strong influence on aggregate morphology, disease progression and interaction with polyanionic HS being evident. In particular, PrP plaques appeared to be
preferentially formed by underglycosylated PrP, whereas addition of glycosyl residues favoured the deposition of subfibrillar aggregates [41*].

In another study investigating the influence of cofactors on pathogenicity, a protein-only PrPSc preparation produced from recombinant PrP by the prion-amplification technique PMCA failed to induce disease after inoculation into bank voles, which are highly susceptible to infection by various prion strains. However, if the same protein-only PrPSc was seeded into a PMCA reaction containing brain homogenate, potently infectious PrPSc was produced, indicating that native PrP (not recombinant PrP produced in bacteria) and additional cofactors present within brain homogenate were required for in vitro production of highly pathogenic prions [46].

Using PMCA, it was also found that prion strains replicated preferentially in the presence of PrP glycoforms and cofactor molecules that were found in the host species where the prions originated. Given that PrP expression, PrP glycosylation [47], membrane lipids and ECM components vary throughout the brain, strain-specific patterns of neurotropism probably depend on the presence of PrP glycoforms and cofactor molecules in different parts of the brain, that is, prions preferentially propagate in brain regions that provide the substrates required by an individual prion strain for efficient conversion [48*].

Antemortem diagnosis of sCJD is now commonly made with real-time quaking-induced conversion (RT-QuIC) assays, which can detect prions in patients’ cerebrospinal fluid with very high sensitivity [49,50]. In RT-QuIC assays, the presence of PrPSc in the analyte provokes misfolding of PrPSc through cycles of elongation and fragmentation, generating aggregates that can be stained with the fluorescent dye thioflavin T. It is important to understand that the original intuition of breaking aggregates and letting them regrow cyclically, which was implemented in PMCA, predates RT-QuIC by more than a decade. It was Claudio Soto who demonstrated, in a landmark experiment, that this was possible [24]. While RT-QuIC improved technically on the Soto methodology by substituting sonication with quaking, it was an evolutionary refinement rather than a revolutionary invention. As mentioned, PMCA products are demonstrably infectious. To investigate whether RT-QuIC products are pathogenic prions or an innocuous form of aggregated PrP, RT-QuIC products were inoculated into the brains of mice overexpressing human PrP, where they failed to induce clinically apparent disease. However, histological workup of the inoculated brains revealed the presence of abnormal cortical PrP deposits and vacuolation, but no evidence of gliosis was found. RT-QuIC seeding activity was also detected in the inoculated brains. These results indicate that RT-QuIC products can provoke PrP aggregation and limited cellular pathology in vivo but that they represent a species of PrP that is distinct from pathogenic prions [51*]. Nevertheless, the finding that a limited degree of pathology was present is of note and provides further evidence that PrP aggregates encompass a spectrum of many different species, whose degree of pathogenicity ranges from innocuous to highly infectious.

Taken together, these studies of PrP post-translational modification provide compelling evidence for a critical role of PrP glycosylation and of cofactors found in brain homogenate (possibly lipids and ECM components such as HS) in prion propagation, particularly in the formation of infectious aggregates. Furthermore, the spatial distribution of PrP post-translational modifications and of cofactor molecules in the brain might explain why individual strains preferentially seed pathology in certain brain regions.

Structural and biophysical studies

Recent studies have provided unprecedented insight into the molecular structure of prion fibrils. Using cryo-electron microscopy, a denaturant- and protease-resistant prion fibril formed from an unglycosylated fragment of human PrP was shown to contain two intertwined protofilaments with screw symmetry linked by a hydrophobic interface. Based on this structure, certain familial prion disease variants were predicted to form closely related polymorphs and a protective amino acid substitution was predicted to form steric clashes, explaining why it might disrupt prion fibril formation [52**]. A similar structural study in preprint of scrapie prions carrying post-translational modifications demonstrated how glycosyl residues markedly alter fibril structure. Moreover, GPI anchors might cause fibril–membrane interactions that are likely to be highly relevant to prion propagation and pathology [53]. The findings in these structural studies could help explain how prion strain properties are shaped by the PrP amino acid sequence and post-translational modifications, providing a molecular basis for strain diversity.

Novel biophysical and microfluidic diffusional sizing methods have enabled the study of prion propagation kinetics both in vitro and in vivo. In a recent study, such methods were used to formulate a mathematical framework of prion aggregation kinetics. In vivo prion aggregation kinetics of prions were consistent with in vitro findings and demonstrated that fragmentation was the dominant mode of prion fibril replication in vivo [54*].

Novel approaches to prion genetics

Somatic mutations

The rarity of sporadic prion disease renders it very challenging to use population genetics to uncover novel risk loci. Alternative approaches are therefore needed.
In recent years, several remarkable studies have shown how the human brain is a genomic mosaic, with individual cells harbouring clonal or private mutations that were acquired as a consequence of mutagenic processes, some of them potentially altering the function of affected genes [55, 56]. This genomic diversity raises the possibility that somatic mutations in key disease-related genes could contribute to neurodegeneration, including to the pathogenesis of prion disease, and several recent studies have begun to investigate this possibility.

With ageing and in Alzheimer’s disease, a number of putatively pathogenic mutations were detected in pathways implicated in hyperphosphorylation of tau, suggesting that they might have contributed to Alzheimer’s disease pathology [57*]. A similar study of semantic dementia revealed individuals with putatively pathogenic mosaic mutations in TARDBP (with a mutant allele fraction of 1–3%), one of the main genes implicated in the pathogenesis of this neurodegenerative disease [58]. A study of the synucleinopathies Parkinson’s disease and multiple system atrophy found that nigral dopaminergic neurons harboured somatic SNCA (α-synuclein) copy number gains compared with controls, suggesting that supernumerary SNCA copies, possibly leading to overexpression of α-synuclein, might be a significant pathogenic risk factor [59]. Indeed, germline locus triplication of SNCA is a long-known cause of hereditary Parkinson’s disease [60].

Somatic mutations were already proposed to lie at the origin of sporadic prion disease around 30 years ago [61], but there are no reports on large-scale searches for PRNP mutations in prion disease samples. Although biosafety hazards and the limited availability of patient samples render it difficult to sequence DNA from the prion-contaminated brain, targeted sequencing of PRNP or whole genome sequencing of the somatic genome could potentially uncover known pathogenic variants or novel genetic risk factors.

Screens

Genetic screens might also identify crucial genes hitherto undetected by population genetics. An arrayed whole-transcriptome RNA interference screen in pre-print identified a number of genes regulating PrPC biosynthesis, with the RNA-binding post-transcriptional repressor Pumilio-1 emerging as a potent regulator causing degradation of PRNP mRNA [62]. Similar screens for genes regulating prion propagation or production of potential prion co-factors could help unravel prion pathogenesis and disease heterogeneity. The ‘hits’ uncovered by such unbiased screens could represent genetic risk loci for sporadic prion disease, potentially containing disease-modifying variants in affected...
Aggregates of prion proteins are toxic; their clearance is therefore a promising strategy to prevent neurodegeneration. A molecule inhibiting the Hsp70 family reduced PrPC levels and also PrPSc formation [63]. Although this finding could hold promise for the development of small-molecule therapeutics, it might be necessary to find a more specific Hsp70 family member that is of relevance to prion pathophysiology, as the pervasive functions of the Hsp70 family in cell biology might make them too broad a target [64].

Antisense oligonucleotides

Gene knockout of mouse Prnp produces a demyelinating polineuropathy phenotype, as PrP is required for myelin maintenance in peripheral nerves [73,74], but in the central nervous system, lack of PrP expression is currently not known to produce significant effects. Consequently, depleting PrP in the brain might be a promising therapeutic strategy to treat prion disease or a prophylactic strategy to prevent PRNP mutations from causing outbreak of genetic prion disease (as in the anti-prion approach described previously). A promising strategy to reduce PrP expression is knockdown using antisense oligonucleotides (ASOs), single-stranded DNA fragments that specifically bind their target mRNA, leading to its degradation by RNase H1. Chronic suppression of PrP expression with ASO treatment extended survival of prion-infected mice in both prophylactic and therapeutic settings, even if given shortly before the onset of evident neuropathology [75**].

In a follow-up study, ASO treatment conferred robust dose-dependent benefits in mice infected with 5 different prion strains, with 21% RNA knockdown already extending survival. ASOs even extended survival if given after the onset of clinically evident disease, in which case they attenuated symptoms and lowered concentrations of biomarkers of neuronal injury [76]. Given that ASOs act by depleting the substrate of prion conversion, their action is independent of strain properties, meaning that they could be effective in all forms of prion disease. This is in contrast to stabilising agents such as luminescent conjugated polymers, which would probably only be effective against certain strains. Furthermore, ASOs could potentially be designed to specifically knock down mutant variants of PRNP and be used as a prophylactic treatment of PRNP mutation carriers, which might delay or even prevent the outbreak of disease. Combination therapies with ASOs and stabilising agents or antibodies might be...
particularly promising. Stabilising agents would confer the additional benefit of inhibiting prion fragmentation, whereas antibodies might enhance prion clearance or prevent the toxic cascade initiated by prions on binding of PrPC. Overall, combination therapies might give microglia time to clear prions, significantly prolonging survival.

Conclusion

The observation that prion strains composed of a single protein are capable of causing a diverse range of pathological phenotypes has baffled scientists for many decades. Recent advances have brought unprecedented insight into the genetic and biochemical phenomena that shape prion strain diversity. Even though prions are believed to principally consist of protein, the role of non-protein cofactors such as glycans, polyanionic macromolecules and GPI anchors in prion propagation is becoming increasingly apparent. Furthermore, structural studies are elucidating the influence of mutations and post-translational modifications on the molecular architecture of prions. Although prion propagation is increasingly understood—with aggregate fragmentation being shown to play a critical role—how prions begin their existence in the first place is still shrouded in mystery. Here, emerging fields such as the study of genomic heterogeneity and high-content genetic screens might provide further insight into the origin and propagation of prions. A deeper understanding of prion diversity is also likely to inform design of specific antiprion therapeutics, with approaches that stabilise aggregates, target critical prion epitopes or deplete prion protein holding particular promise.

Conflict of interest statement

Nothing declared.

Acknowledgements

The authors thank Dr Karl Frontzek for assistance with histological imaging. M.C. is supported by the Swiss National Science Foundation. A.A. is supported by the European Research Council, the Swiss National Science Foundation, the Gelu Foundation, the Nomis Foundation, the Swiss Personalized Health Network, the USZ Foundation and the estate of Dr. Hans Salvisberg.

References

Papers of particular interest, published within the period of review, have been highlighted as:

* of special interest
** of outstanding interest

1. Bolton David C, McKinley Michael P, Prusiner Stanley B: Identification of a protein that purifies with the scrapie prion. Proc Natl Acad Sci U S A 1982, 218. ISSN: 0036-8075:1309–1311.

2. Basler K, Oesch B, Scott M, Westaway D, Wälchli M, Grotch D, McKinley MP, Prusiner SB, Weismann C: Scapie and cellular PrP isoforms are encoded by the same chromosomal gene. Cell 1986, 46. ISSN: 0092-8674:417–426.

3. Scheckel C, Aguzzi A: Prions, prionoids and protein misfolding disorders. Nat Rev Genet 2018, 19. ISSN: 1471-0056: 405–418, https://doi.org/10.1038/s41576-018-0011-4.

4. Aguzzi A, Calella AM: Prions: protein aggregation and infectious diseases. Physiol Rev 2009, 89. ISSN: 0031-9333: 1105–1152, https://doi.org/10.1152/physrev.00006.2009 (Print) 0031-9333.

5. Collis SC, Kimberlin RH: Long-term persistence of scrapie infection in mouse spleens in the absence of clinical disease. FEBS (Fed Eur Microbiol Soc) Microbiol Lett 1985, 29:111–114.

6. Sigurdson Christina J, Nilsson KPeter R, Hornemann Simone, Collis SC, Kimberlin RH: Prion strain discrimination using luminescent conjugated polymers. Nat Methods 2007, 4:1023–1030.

7. Parchi Piero, De Boni Laura, Saverroni Daniela, Cohen Mark L, Ferrer Isidro, Gambetti Pierluigi, Gelpi Ellen, Giaccone Giorgio, Jean-Jacques Hauw, Höftberger Romana, et al.: Consensus classification of human prion disease histotypes allows reliable identification of molecular subtypes: an inter-rater study among surveillance centres in Europe and USA. Acta Neuropathol 2012, 124:517–529.

8. Hill Andrew F, Desbruslais Melanie, Joiner Susan, Katie CL Sidle, Gowland Ian, Collinge John, J Doey Lawrence, Lantos Peter: The same prion strain causes vCJD and BSE. Nature 1997, 389: 448–450.

9. Moda Fabio, Suardi Silvia, Giuseppe Di Fede, Indaco Antonio, Limido Lucia, Vimercati Chiara, Ruggerone Margherita, Campagnani Ilaria, Jan Langeveld, Terruzzi Alessandro, et al.: MM2-Thalamic Creutzfeldt–Jakob disease: neuropathological, biochemical and transmission studies identify a distinctive prion strain. Brain Pathol 2012, 22:662–669.

10. Bélondrade Maxime, Simon Nicot, Mayran Charly, Bruyere-Ostella Lilian, Almela Florian, Michele A Di Bari, Levavasseur Etienne, Watts Joel C, Fournier-Writh Chantal, Lehmann Sylvain, et al.: Sensitive protein misfolding cyclic amplification of sporadic Creutzfeldt-Jakob disease prions is strongly seed and substrate dependent. Sci Rep 2021, 11: 1–12.

11. Parchi Piero, Giese Armin, Capellari Sabina, Brown Paul, Schulz-Schaeffer Walter, Otto Wind, Zerr Inga, Herbert Budka, Kopp Nicolas, Pedro Piccardo, et al.: Classification of sporadic Creutzfeldt-Jakob disease based on molecular and phenotypic analysis of 300 subjects. Ann Neurol 1999, 46:224–233.

12. Polymenidou Magdalini, Stoeck Katharina, Glatzel Markus, Martin Vey, Bellon Anne, Aguzzi Adriano: Coexistence of multiple PrPSc types in individuals with Creutzfeldt-Jakob disease. Lancet Neurol 2005, 4:805–814.

13. Hill Andrew F, Joiner Susan, Beck Jonathan A, Campbell Tracy A, Dickinson Andrew, Poulter Mark, Wadsworth Jonathan DF, Collinge John: Distinct glycoform ratios of protease resistant prion protein associated with PRNP point mutations. Brain 2006, 129:676–685.

14. Pirisini Laura, Di Bari Michele, Marcon Stefano, Vaccari Gabriele, D’Agostino Claudia, Fazzi Paola, Esposito Elena, Galeno Roberta, Langeveld Jan, Agrimi Umberto, et al.: A new method for the characterization of strain-specific conformational stability of protease-sensitive and protease-resistant PrP Sc. PLoS One 2010, 5, e12723.

15. Marin-Moreno Alba, Aguilar-Calvo Patricia, Moudjou Mohammed, Espinosa Juan Carlos, Béringue Vincent, Torres Juan María: Thermostability as a highly dependent prion strain feature. Sci Rep 2019, 9:1–10.

16. Pascuzzo Riccardo, Oxtoby Neil P, Young Alexandra L, Blevins Janis, Castelli Gianmarco, Garbarino Sara, Cohen Mark L, Schonberger Lawrence B, Gambetti Pierluigi, Appleby Brian S, et al.: Prion propagation estimated from brain diffusion MRI is subtype dependent in sporadic Creutzfeldt-Jakob disease. Acta Neuropathol 2020, 140:169–181.

17. Soldevila Marta, Calafell Francesc, Andrés Aida M, Yagüe Jordi, Helgason Agnar, Stefansson Kari, Bertranpetit Jaume: Prion
susceptibility and protective alleles exhibit marked geographic differences. *Hum Mutat* 2003, 22:104–105.

18. Tahiri-Alaoui Abdessamad, Gill Andrew C, Disterer Petra, James William: Methionine 129 variant of human prion protein oligomerizes more rapidly than the valine 129 variant: implications for disease susceptibility to Creutzfeldt-Jakob disease. *J Biol Chem* 2004, 279:31390–31397.

19. Baskakov Ila, Disterer Petra, Breydo Leonid, Shaw Michael, Gill Andrew, James William, Tahiri-Alaoui Abdessamad: The presence of valine at residue 129 in human prion protein accelerates amyloid formation. *FEBS Lett* 2005, 579: 2589–2596.

20. Palmer Mark S, J Dryden Aidan, Hughes J Trevor, Collinge John: Homozygous prion protein genotype predisposes to sporadic Creutzfeldt–Jakob disease. *Nature* 1991, 352. ISSN: 1476-4878:340–342.

21. Mead S, Webb TEF, Campbell TA, Beck J, Linehan JM, Rutherford S, Joiner S, Wadsworth JDF, Heckmann J, Wroe S: Inherited prion disease with S-OPRI: phenotype modification by repeat length and codon 129. *Neurology* 2007, 69. ISSN: 0028-3878:730–738.

22. Webb TEF, Poulter M, Beck J, Uphill J, Adamson G, Campbell T, Linehan J, Powell C, Brandner S, Pal S: Phenotypic heterogeneity and genetic modification of P102L inherited prion disease in an international series. *Brain* 2008, 131. ISSN: 0006-8950:2623–2646.

23. Peter Rudge, Jaunmuktane Zane, Adlard Peter, Bjurstrom Nina, Gambetti Pierluigi, Surewicz Witold K: Inherited prion disease with 4-octapeptide repeat insertion: disease requires the interaction of multiple genetic risk factors. *J Biol Chem* 2004, 279:2589–2596.

24. Sánchez-Valle Raquel, Yagüe Jordi, Turón Antoni, Iatridge Paul, Parra Beatriz, Pintado Belén, Sánchez-Martín Manuel A, Connor Tracy, Hornemann Simone, Uphill James, James William: Variable protease-sensitive prionopathy transmission to bank voles. *Emerg Infect Dis* 2019, 25:73.

25. Saborio Gabriela P, Bruno Permanne, Soto Claudio: Sensitive detection of pathological prion protein by cyclic amplification of protein misfolding. *Nature* 2001, 411:810–813.

26. Nonno Romoto, Notari Silvio, Angelo Di Bari Michele, Cali Ignazio, Pirisnau Laura, D’Agostino Claudia, Cracco Laura, Kofsky Diane, Vanni Ilaria, Lavrich Jody, et al.: Variable protease-sensitive prionopathy transmission to bank voles. *FASEB J* 2020, 34:3969–3982.

27. Choi Jin-Kyu, Cali Ignazio, Sureswic Krystyna, Kong Qingzhong, Gambetti Pierluigi, Sureswic Witold K: Amyloid fibrils from the N-terminal prion protein fragment are infectious. *Proc Natl Acad Sci USA* 2016, 113:13851–13856.

28. Kaska Diego N, Pennington Catherine, Beck Jon, Poulter Mark, Uphill James, Bishop Matthew T, Linehan Jaqueline M, O’Malley Catherine, Wadsworth Jonathan DF, Joiner Susan: Inherited prion disease with 4-octapeptide repeat insertion: disease requires the interaction of multiple genetic risk factors. *Brain* 2011, 134. ISSN: 1460-2156:1829–1838.

29. Sánchez-Velez Raquel, Yagüe Jordi, Turón Antoni, I Arrosetegui Juan, Nos Carlos, Rey Maesus, Ferrer Isidro, Gelpi Ellen: Inherited prion disease with 4-octapeptide repeat insertion linked to valine at codon 129. *Brain* 2012, 135. ISSN: 1460-2156:6212.

30. Sonati Tiziana, Reimann Regina R, Falsig Jeppe, Kumar Baral Pravas, O’Connor Tracy, Homemann Simone, Yagareagalua Su Liu, Li Bei, Herrmann Ulis S, Wieland Barbara: The toxicity of anti-PrP antibodies is mediated by the flexible tail of the prion protein. *Nature* 2013, 501. ISSN: 1476-4867: 102–106.

31. Mastronardi JA, Capellari S, Telling GC, Han D, Bosque P, Prusiner SB, DeArmond SJ: Inherited prion disease caused by the V210I mutation: transmission to transgenic mice. *Neurology* 2001, 57. ISSN: 0028-3878:2198–2205.

32. Tatsiishi J, Kitamoto T, Hoque MZ, Furukawa H: Experimental transmission of Creutzfeldt-Jakob disease and related diseases to rodents. *Neurology* 1996, 46. ISSN: 0028-3878:532–537.

33. Brown Paul, Gibbs Jr CJ, Rodgers-Johnson Pamela, Asher David M, Sulima Michael P, Bacote Alfred, Goldfarb Lev G, Gajdusek D Carleton: Human spongiform encephalopathy: the National Institutes of Health series of 300 cases of experimentally transmitted disease. *Ann Neurol* Off J Am Neurol Assoc Child Neurol Soc 1994, 35. ISSN: 0364-5134:513–529.

34. Minikel EV, et al.: Quantifying prion disease penetration using large population control cohorts. *Sci Transl Med* 2016, 8. ISSN: 1946-6234, https://doi.org/10.1126/scitranslmed.aad5169. 322ra9.

35. Mead Simon, Whitfield Jerome, Poulter Mark, Shah Paresh, Uphill James, Campbell Tracy, Al-Dujaili Huda, Hummerich Holger, Beck Jon, Mein Charles A: A novel protective prion protein variant that colocalizes with kuru exposure. *N Engl J Med* 2009, 361. ISSN: 0028-4793:2056–2065.

36. Jones Emma, Hummerich Holger, Viré Emmanuelle, **Uphill James, Dimitriadis Athanasios, Helen Speedy, Campbell Tracy, Norsworthy Penny, Quinn Thu H, Whitfield Jerome, et al.: Genome-wide association study identifies risk variants for sporadic Creutzfeldt-Jakob disease in STX6 and GAL3ST1. *medRxiv* 2020.

While several genetic studies failed to show an association between sporadic prion disease risk and genomic loci other than PRNP, this recent GWAS found weak but statistically robust associations implicating intracellular trafficking and sphingolipid metabolism.

37. Bett Cyrus, Joshi-Barr Shivanjali, Lucero Melanie, Trejo Margarita, Lënski Pavel, Kelly J Jeffrey W, Masliah Eliezer, Christina J Sigurdson: Biochemical properties of highly neuroinvasive prion strains. *PLoS Pathog* 2012, 8, e1002522.

38. Bett Cyrus, Lawrence Jessica, Kurt Timothy D, Orru Cristina, Aguilar-Calvo Patricia, Kincaid Anthony E, Witold K Sureswic, Caughey Byron, Wu Chingbiao, Sigurdson Christina J: Enhanced neuroinvasion by smaller, soluble prions. *Acta Neuropathol Commun* 2017, 5:1–11.

39. Vanni Ilaria, Pirisnau Laura, Acevedo-Morantes Claudia, Kamali-Jamil Razieh, Rathod Vineet, Angelo Di Bari Michele, D’Agostino Claudia, Marcon Stefano, Esposito Elena, Riccardi Geraldina, et al.: Isolation of infectious, non-fibrillar and oligomeric prions from a genetic prion disease. *Brain* 2020, 143:1512–1524.

The unusual small prion-resistant PrPSc core found in a certain type of GSS, which forms non-fibrillar particles, was found to be highly infectious, suggesting that it represents the minimal component of PrP that is required for prion infectivity.

40. Diaz-Espinoza Rodrigo, Morales Rodrigo, Concha-**Marambio Luis, Moreno-Gonzalez Ines, Moda Fabio, Soto Claudio**: Treatment with a non-toxic, self-replicating anti-prion delays or prevents prion disease in vivo. *Mol Psychiatr* 2018, 23:777–788.

The authors created an “anti-prion”, an unusual form of PrPSc which was self-replicating but innocuous. Anti-prions competed with pathogenic prions for PrP, leading to a striking reduction in infectivity. Anti-prions could represent a potential therapeutic strategy which decimates the substrate of pathogenic prions.

41. Sevillano Alejandro M, Aguilar-Calvo Patricia, Kurt Timothy D, Lawrence Jessica A, Soldau Katrin, Nam Thu H, Schumann Taylor, Pizzo Donald P, Nyström Sofie, Choudhury Biswa, et al:**. Merging biophysics and functional genomics: experimental prion disease. *J Clin Invest* 2020, 130. Mice expressing PrP with altered glycosylation profiles showed markedly different pathology compared to wildtype mice, highlighting how post-translational modifications and polyatomic co-factors shape prion disease phenotype and strain diversity.

42. Caughey Byron, Baron Gerald S: Prions and their partners in crime. *Nature* 2006, 443:803–810.

43. Wu Emilia L, Qi Yifei, Park Soohyang, Mallajosyula Sairam S, Mackrell Jr Alexander D, Klauda Jeffery B, Im Wonpit: Insight into early-stage unfolding of GP-anchored human prion protein. *Biophys J* 2015, 109:2090–2100.
survival upon prion infection. Prion plaques were composed of Mice which produce short heparan sulfate chains show prolonged 47. Real-time quaking induced conversion (RT-QuIC) is a highly sensitive in vitro structure of a denaturant- and protease-resistant prion 53. This study reports that prions replicate preferentially in the presence of PrP glycoforms that were found in the host species where 54. Whereas human PrP glycoforms that were found in the host species where 55. This study shows that while RT-QuIC products can 56. Real-time quaking induced conversion (RT-QuIC) is a highly sensitive in vitro prion conversion are predomi- nantly determined by strain conformation. PLoS Pathog 2020, 16, e1008495. This study reports that prions replicate preferentially in the presence of PrP glycoforms that were found in the host species where the prions originated, suggesting that prion neurotoxicity is influenced by differential glycosylation patterns and possibly also by the anatomical distribution of other co-factors. 49. The cryo-EM structure of a human prion fibril in cerebrospinal fluid by real-time quaking-induced conversion. Nat Med 2011, 17:175. 50. The landscape of somatic mutation in cerebral cortex of autistic and neurotypical individuals revealed by ultra-deep whole-genome sequencing. Nat Neurosci 2019, 10. ISSN: 2041-1723:1–12. Whole exome sequencing of brain tissue revealed that somatic mutations were enriched with age and in Alzheimer’s disease patients. Somatic mutations in genes were found in genes implicated in tau hyperphosphorylation, suggesting a pathophysiological link. 58. Prusiner Stanley B: Scrapie prions. Annu Rev Microbiol 1989, 43:345–374. 59. Heinzler Daniel, Avar Merve, Pease Daniel Patrick, Dhingra Ashutosh, Yin Jiang-An, Schaper Elke, Dogancay Berre, Emmenegger Marc, Anna Spinelli, Maggi Kevin, et al.: The landscape of PrPc biosynthesis revealed by an arrayed genome-wide interference screen. bioRxiv 2021. 60. Structural typing of systemic amyloidoses by luminescent-conjugated polymer spectros- copy. Am J Pathol 2010, 176:563–574. 61. Rönnegard Rina, Nillegoda Nadinath B, Mayer Matthias P, Fransson Sophia, Konradsen Peter, Ronnegard Rina, Moch Holger, Aguzzi Adrian: Structural typing of systemic amyloidoses by luminescent-conjugated polymer spectros- copy. Am J Pathol 2010, 176:563–574. 62. Margalith Ilan, Suter Carlo, Ballmer Boris, Schwarz Petra, Tiberi Cinzia, Sonati Tiziana, Falsig Jeppe, Nyström Sofie, Hammarström Per, Åslund Andreas, et al.: Polytiophenes inhibit prion propagation by stabilizing prion protein (PrP) aggregates. J Biol Chem 2012, 287:18872–18887. 63. Herrmann Uli S, Anne K Schütz, Hamid Shirani, Huang Danzhi, Saβan Dino, Nuvolone Mario, Li Bei, Ballmer Boris, Åslund Andreas K, Mason Jeffrey J. Structure-based drug design identifies polytiophenes as antiprion compounds. Sci Transl Med 2015, 7. ISSN: 1946-6234. 299ra123–299ra123. 64. The first study of prion propagation kinetics in vivo. 55. Lodato Michael A, Woodworth Mollie B, Lee Semin, D Evrory Giliad, Mehta Bhaven K, Amir Karger, Lee Soohyun, Chittenden Thomas W, Alissa M D’Gama, Cai Xuyu: Somatic mutation in single human neurons tracks developmental and transcriptional history. Science 2015, 350. ISSN: 0036-8075: 94–98. 56. Rodin Rachel E, Dou Yanmei, Kwon Minseok, Sherman Maxwell A, Alissa M D’Gama, Doan Ryan N, Rento Lariza M, Kelly M Girksis, Bohrson Craig L, Kim Sonia N, et al.: The mechanism and rates of prion replication in vivo. Nature Structural & Molecular Biology 28.4, pp. 365–372; 2021. The first study of prion propagation kinetics in vivo. 55. Lodato Michael A, Woodworth Mollie B, Lee Semin, D Evrory Giliad, Mehta Bhaven K, Amir Karger, Lee Soohyun, Chittenden Thomas W, Alissa M D’Gama, Cai Xuyu: Somatic mutation in single human neurons tracks developmental and transcriptional history. Science 2015, 3, 365–372; 2021. The first study of prion propagation kinetics in vivo. 55. Lodato Michael A, Woodworth Mollie B, Lee Semin, D Evrory Giliad, Mehta Bhaven K, Amir Karger, Lee Soohyun, Chittenden Thomas W, Alissa M D’Gama, Cai Xuyu: Somatic mutation in single human neurons tracks developmental and transcriptional history. Science 2015, 350. ISSN: 0036-8075: 94–98.
J: In vivo detection of tau fibrils and amyloid β aggregates with luminescent conjugated oligothiophenes and multiphoton microscopy. Acta Neuropathol Commun 2019, 7:1–10.

This paper demonstrates in vivo longitudinal imaging of tau fibrils and amyloid β aggregates using luminescent conjugated oligothiophenes and multiphoton microscopy.

69. Asvin KK Lakkaraju, Sorce Silvia, Senatore Assunta, Nuvolone Mario, Guo Jingjing, Schwarz Petra, Moos Rita, Pelczar Pawel, Aguzzi Adriano: Glial activation in prion diseases is strictly nonautonomous and requires neuronal \(\text{PrP}^{\text{Sc}} \). bioRxiv 2021.

70. Frontzek Karl, Carta Manfredi, Losa Marco, Epskamp Mirka, Meisl Georg, Anane Alice, Brandel Jean-Philippe, Camenisch Ulrike, Castilla Joaquin, Haik Stephane, et al.: Autoantibodies against the prion protein in individuals with \(\text{PRNP} \) mutations. Neurology 2020, 95:e2028–e2037.

71. Senatore Assunta, Frontzek Karl, Emmenegger Marc, Chincisan Andra, Losa Marco, Reimann Regina, Horny Geraldine, Guo Jingjing, Fels Sylvie, Sorce Silvia, et al.: Protective anti-prion antibodies in human immunoglobulin repertoires. EMBO Mol Med 2020, 12, e12739.

72. Bardelli Marco, Frontzek Karl, Simonelli Luca, Hornemann Simone, Pedotti Mattia, Federica Mazzola, Carta Manfredi, Eckhardt Valeria, D’Antuono Rocco, Virgilio Tommaso, et al.: A bispecific immunotweezer prevents soluble PrP oligomers and abolishes prion toxicity. PLoS Pathog 2018, 14, e1007335.

73. Bremer Juliane, Baumann Frank, Tiberi Cinzia, Wasig Carsten, Fischer Heike, Schwarz Petra, Steele Andrew D, Toyka Klaus V, Nave Klaus-Armin, Weis Joachim, et al.: Axonal prion protein is required for peripheral myelin maintenance. Nat Neurosci 2010, 13:310–318.

74. Küffer Alexander, Lakkaraju Asvin KK, Mogha Amit, Petersen Sarah C, Airch Kristina, Doucetain Cedric, Marpakwar Rajlakshmi, Bakirci Pamela, Senatore Assunta, Monnard Arnaud, et al.: The prion protein is an agonistic ligand of the G protein-coupled receptor Adgr6. Nature 2016, 536:464–468.

75. Raymond Gregory J, Zhao Hien Tran, Race Brent, Raymond Lynne D, Williams Katie, E Swayne Eric, Graffam Samantha, Le Jason, Caron Tyler, Jacquelyn Stathopoulos, et al.: Antisense oligonucleotides extend survival of prion-infected mice. JCI Insights 2019, 4.

Targeting PrP mRNA with antisense oligonucleotides (ASOs) lowered PrP expression and extended survival of prion-infected mice.

76. Minikel Eric Vallabh, Zhao Hien T, Le Jason, O’Moore Jill, Pitstick Rose, Graffam Samantha, Carlson George A, Kavanaugh Michael P, Kriz Jasna, Kim Jae Beom, et al.: Prion protein lowering is a disease-modifying therapy across prion disease stages, strains and endpoints. Nucleic Acids Res 2020, 48:10615–10631.