Buckling analysis of square Functionally Graded Material (FGM) plate using Discrete Kirchhoff Mindlin Triangular (DKMT) element

M P S Harahap*, I J Maknun and I Katili
Civil Engineering Department, Universitas Indonesia, Depok 16424, Indonesia

E-mail*: muthiahharahap@gmail.com

Abstract. This paper presents the convergence behavior of Discrete Kirchhoff Mindlin Triangular (DKMT) element in buckling analysis under uniaxial compression of square plate problems. The DKMT element has a good result for a thin plate and a thick plate. For the Functionally Graded Material (FGM) problem, the DKMT element is reformulated. FGM is a graded composite material that has high-temperature and structural flexibility resistance. The numerical results of mechanical buckling of square FGM plate under uniaxial compression using the DKMT element are reported. The critical buckling of the square FGM plate is compared to the reference existing solutions. The effects of parametric variation, such as the type of meshing, boundary conditions, power-law index, and ratio L/h are presented. The results show that the DKMT element gives good results on the buckling analysis of square FGM plate problems.

1. Introduction
Functionally Graded Material (FGM) was first found in 1984 by scientists from Sendai Japan. This material has been widely applied in engineering such as nuclear, civil, combustion chambers, racing vehicle frame, rocket nozzle, wings, engine casing, helicopter components or aerospace structure, etc. [1]–[8]. The materials that are usually used in FGM are ceramic and metal. Ceramic is resistant to high-temperature and corrosion, while metal is resistant to structural flexibility and fracture toughness [9]–[11]. FGM can increase the bond strength, reduces the crack force, and eliminates stress differences of its forming materials (delamination). This paper uses the power-law rule to adjust the gradient of FGM [1]–[5].

The Discrete Kirchhoff Mindlin Triangular (DKMT) element was introduced by Katili in 1993. At the same time, the quadrilateral element which is called DKMQ (Discrete Kirchhoff Mindlin Quadrilateral) is also introduced by Kaliti. Both of them give the excellent results in isotropic and orthotropic material [12]–[21]. The DKMT element can be used for thin and thick plate structures. The shear-locking phenomenon is eliminated by using the Assumed Natural Strain method [22]–[25]. In this paper, we reformulate the DKMT element for buckling analysis on the square FGM plate problem. Wong et al. [26] have developed the DKMQ element for buckling analysis of square isotropic plate bending. The buckling analysis on isotropic and FGM plate structures has also been conducted in [8], [27]–[33].
In this paper, the convergence behavior of the DKMT element on buckling analysis under uniaxial compression of square plate problems is presented. The effects of parametric variation, such as the types of mesh, boundary conditions, the power-law index, and the aspect ratio L/h are applied. The results of these problems are compared then with the reference existing solutions.

2. Theoretical formulation

2.1. Functionally Graded Material (FGM)

Functionally graded material consists of two materials in this paper (Figure 1), i.e. ceramic (top) and metal (bottom). The volume fraction changes continuously through the structure’s thickness [2].

![Figure 1. Geometry of FGM](image1)

The volume fractions with the power-law rule (P-FGM) give the equation:

$$ P(z) = (P_C - P_M)V_C(z) + P_M $$

$$ V_C = \left(\frac{z}{h} + \frac{1}{2}\right)^n $$

with P_C and P_M are the material properties of ceramic and metal, respectively. h is the plate’s thickness, z is the thickness coordinate of the plate, n is the power-law index, and V is a variation of the volume fractions (Figure 2). The modulus of elasticity using the power-law rule is given by:

$$ E_m = E_s \int_{-h/2}^{h/2} E(z)dz = \left(\frac{E_C - E_M}{n+1} + E_M\right)h $$

$$ E_p = \int_{-h/2}^{h/2} E(z)z^2dz = \left(\frac{n^2 + n + 2}{4(n+1)(n+2)(n+3)}(E_C - E_M) + \frac{E_M}{12}\right)h^3 $$

$$ E_{mb} = \int_{-h/2}^{h/2} E(z)zdz = \left(\frac{n}{2(n+1)(n+2)}(E_C - E_M)\right)h^2 $$

2.2. The formulation of the DKMT element

In this paper, we reformulated the DKMT element from its original version in 1993. There are two additional degrees of freedom (d.o.f) that are u and v. So, the DKMT element has five d.o.f on each node. The formulations of the DKMT element on the composite plates can be seen in [22], [23]. Figure 3 shows the illustration of the DKMT element with the kinematic variables.
Figure 3. The kinematic variables of the DKMT element

The interpolations of displacements in the DKMT element are given by:

\[
\begin{align*}
\mathbf{u} &= \sum_{i=1}^{3} N_i \mathbf{u}_i; \\
\mathbf{v} &= \sum_{i=1}^{3} N_i \mathbf{v}_i; \\
\mathbf{w} &= \sum_{i=1}^{3} N_i \mathbf{w}_i; \\
\end{align*}
\]

(6)

\[
\begin{align*}
\beta_x &= \sum_{i=1}^{3} N_i \beta_{xi} + \sum_{k=1}^{6} P_k C_k \Delta \beta_{xk}; \\
\beta_y &= \sum_{i=1}^{3} N_i \beta_{yi} + \sum_{k=1}^{6} P_k S_k \Delta \beta_{yk}; \\
\end{align*}
\]

(7)

The linear shape functions and the quadratic shape functions are given by:

\[
\begin{align*}
N_i &= \lambda = 1 - \xi - \eta; \\
N_2 &= \xi; \\
N_3 &= \eta; \\
N_4 &= 4\lambda \xi; \\
P_1 &= 4\lambda \xi; \\
P_5 &= 4\lambda \eta; \\
\end{align*}
\]

(8)

(9)

The stiffness matrix is formulated by the Hu-Washizu principle as follows:

\[
\begin{align*}
\Pi_{st} &= \Pi_{st}^m + \Pi_{st}^b + \Pi_{st}^{mb} + \Pi_{st}^t \\
\Pi_{st}^m &= \frac{1}{2} \langle \mathbf{u}_n \rangle \mathbf{k}_m \langle \mathbf{u}_n \rangle \\
\Pi_{st}^b &= \frac{1}{2} \langle \mathbf{u}_n \rangle \mathbf{k}_b \langle \mathbf{u}_n \rangle \\
\Pi_{st}^{mb} &= \frac{1}{2} \langle \mathbf{u}_n \rangle \mathbf{k}_{mb} \mathbf{y} \langle \mathbf{u}_n \rangle \\
\Pi_{st}^t &= \frac{1}{2} \langle \mathbf{u}_n \rangle \mathbf{k}_t \langle \mathbf{u}_n \rangle \\
\end{align*}
\]

(10)

(11)

(12)

(13)

(14)

where the equation (11) until the equation (14) are respectively the membrane energy, the bending energy, the membrane-bending energy and the shear energy.

For buckling analysis, we need the geometric stiffness matrix below [2], [26]:

\[
\begin{align*}
\Pi_\sigma &= \frac{1}{2} h \langle \nabla \mathbf{u} \rangle \mathbf{[s]} \{ \nabla \mathbf{u} \} dA + \frac{1}{2} h \langle \nabla \mathbf{v} \rangle \mathbf{[s]} \{ \nabla \mathbf{v} \} dA + \frac{1}{2} h \langle \nabla \mathbf{w} \rangle \mathbf{[s]} \{ \nabla \mathbf{w} \} dA \\
&+ \frac{1}{2} h^3 \int_{\Delta} \langle \nabla \beta_x \rangle \mathbf{[s]} \{ \nabla \beta_x \} dA + \frac{1}{2} h^3 \int_{\Delta} \langle \nabla \beta_y \rangle \mathbf{[s]} \{ \nabla \beta_y \} dA \\
\Pi_\sigma &= \frac{1}{2} \langle \mathbf{u}_n \rangle \mathbf{k}_c \langle \mathbf{u}_n \rangle
\end{align*}
\]

(15)

(16)
The membrane stresses matrix is a mechanical load matrix, as follows:

\[
\left[\sigma_n \right] = \begin{bmatrix}
\sigma_x^0 & \tau_{xy}^0 \\
\tau_{xy}^0 & \sigma_y^0
\end{bmatrix}
\quad \sigma^0 = \frac{N^0}{h}
\]

(17)

The eigenvalue equation for critical buckling load \(N_{cr} \) is given by:

\[
(\left[k \right] - N_{cr} \left[k_G \right])\{u_n\} = 0
\]

(18)

3. Numerical test

The convergence behavior of the DKMT element for buckling analysis under uniaxial compression on the square plate (Figure 4) is presented to predict the critical buckling load. We present the non-dimensional critical buckling load results by normalizing them that use the equations below:

\[
N_{cr} = N_{cr}L^2 \left(\pi^2 D \right)^{\frac{1}{2}}
\]

(19)

\[
D = Eh^3 \left(12 \left(1 - \nu^2 \right) \right)^{-1}
\]

(20)

Figure 4. The illustration of uniaxial compression on the square plate

The material properties used in this problem are Al/ZrO_2 with which \(E_m = 200000 \) and \(E_c = 70000 \). Both materials have a constant Poisson’s ratio, \(\nu = 0.3 \). We analyze the square plate with \(L=1000 \) and the aspect ratio \((L/h=10) \) and \((L/h=100) \). The index power-law that we used are \(n=0; 0.5; 1; 2; 5; 10; \) and infinite \(\infty \). The types of meshes are Mesh A, Mesh B, and Mesh C (Figure 5) with the mesh index \(N\times N \times 2 \) \((N=4, 8, 16, 32, 64, \) and 128). The boundary conditions are hard simply supported (SSSS) and clamped supported (CCCC).

Figure 5. Square plates with \(N=4 \) with (a) CCCC Mesh A, (b) SSSS Mesh B, and (c) SSSS Mesh C
The reference solutions used in this paper are given in [26]–[30]. Table 1 shows the results of the DKMT element on the square isotropic plate ($n=0$) under uniaxial compression. The convergence behaviors of the SSSS square plates are presented in Figure 6 and Figure 7. The results show that the DKMT element has a good correlation compared to the reference existing solutions with the different types of meshes, the mesh index, and the aspect ratio L/h. We also observe about the best convergence speed. For the aspect ratio $L/h=10$ (thick plate), the best convergence speed is by using Mesh B while for ratio $L/h=100$ (thin plate) is by using Mesh A. The difference between the results of the DKMT element and the FSDT-Meshfree using $L/h=10$ is about 0.05%. When compared with the analytical solution [28] using $L/h=100$, the difference is about 0.08%.

Table 1. Non-dimensional critical buckling load of the SSSS square isotropic plate under uniaxial compression

Method	Mesh Index, N	$L/h = 10$	$L/h = 100$				
	Mesh A	Mesh B	Mesh C	Mesh A	Mesh B	Mesh C	
Present	4	3.74743	3.72888	3.76629	4.00130	3.98911	4.03463
	8	3.73509	3.72967	3.73894	3.99787	3.99483	4.00644
	16	3.73068	3.72925	3.73155	3.99730	3.99659	3.99944
	32	3.72944	3.72907	3.72965	3.99732	3.99701	3.99770
	64	3.72912	3.72903	3.72917	3.99716	3.99706	3.99723
	128	3.72904	3.72901	3.72905	3.99709	3.99706	3.99711
DKMQ[26]		3.750			4.013		
Analytical Solution		3.741[27]			4.000[28]		
Meshfree[29]		3.727			-		
pb-2 Ritz[30]		3.787			-		

Figure 6. Non-dimensional critical buckling load on the simply supported isotropic square plate $L/h=10$

Figure 7. Non-dimensional critical buckling load on the simply supported isotropic square plate $L/h=100$
Table 2. Non-dimensional critical buckling load of the square FGM plates under uniaxial compression ($L/h=100$)

Boundary Condition	Type of Mesh	Index Power-Law, n	0	0.5	1	2	5	10	∞
SSSS	Mesh A		3.99709	2.91720	2.48963	2.18989	1.98452	1.83649	1.39898
	Mesh B		3.99706	2.91718	2.48961	2.18987	1.98451	1.83647	1.39897
	Mesh C		3.99711	2.91721	2.48964	2.18989	1.98453	1.83649	1.39899
CCCC	Mesh A		10.04765	7.33384	6.25897	5.50498	4.98781	4.61548	3.51668
	Mesh B		10.04758	7.33379	6.25893	5.50494	4.98778	4.61545	3.51665
	Mesh C		10.04743	7.33366	6.25881	5.50482	4.98768	4.61537	3.51660

Table 2 and Figure 8 show that the critical buckling load decreases when the power-law index increases. When we increase the numbers of the element, the critical buckling load will independent and almost constant. We also evaluate that the result used boundary condition clamped supported (CCCC) is greater than simply supported (SSSS). The DKMT element gives a good result in buckling analysis by using square plates.

Figure 8. Non-dimensional critical buckling load on clamped supported FGM square plate $L/h=10$

4. Conclusion
DKMT element gives a good result and converges well with various parameters in buckling analysis on the square FGM plates. Increasing the ratio L/h and the power-law index will decrease the non-dimensional critical buckling load. Non-dimensional critical buckling load using the boundary condition ‘clamped supported’ (CCCC) is greater than hard simply supported (SSSS). And the DKMT element also shows that it can be used on the thick and thin square FGM plates in buckling analysis.

Acknowledgements
The financial support from Universitas Indonesia through Publikasi Terindeks Internasional (PUTI) Q1 Tahun Anggaran 2020 Nomor: NKB-1388/UN2.RST/HKP.05.00/2020.

References
[1] Nguyen-Xuan H, Tran L V, Nguyen-Thoi T and Vu-Do H C 2011 Analysis of functionally graded plates using an edge-based smoothed finite element method Compos. Struct. 93 11 pp 3019–3039
[2] Nguyen-Xuan H, Tran L V, Thai C H and Nguyen-Thoi T 2012 Analysis of functionally graded plates by an efficient finite element method with node-based strain smoothing Thin-Walled Struct. 54 pp 1–18

[3] Udupa G, Rao S S and Gangadharan K V 2014 Functionally graded composite materials: an overview Procedia Mater. Sci. 5 pp 1291–1299

[4] Reddy J N 2000 Analysis of functionally graded plates Int. J. Numer. Methods Eng. 47 pp 663–684

[5] Tomar S S and Talha M 2019 Influence of material uncertainties on vibration and bending behaviour of skewed sandwich FGM plates Compos. Part B Eng. 163 pp 779–793

[6] Koizumi M 1997 FGM activities in Japan Compos. Part B Eng. 28B 1–2 pp 1–4

[7] Nam V H, Phuong N T, Minh K V and Hieu P T 2018 Nonlinear thermo-mechanical buckling and post-buckling of multilayer FGM cylindrical shell reinforced by spiral stiffeners surrounded by elastic foundation subjected to torsional loads Eur. J. Mech. A/Solids 72 pp 393–406

[8] Yu T, Yin S, Bui T Q, Liu C and Wattanasakulpong N 2017 Buckling isogeometric analysis of functionally graded plates under combined thermal and mechanical loads Compos. Struct. 162 pp 54–69

[9] Obata Y and Noda N 1996 Optimum material design for functionally gradient material plate Arch. Appl. Mech. 66 8 pp 581–589

[10] Gupta A and Talha M 2015 Recent development in modeling and analysis of functionally graded materials and structures Prog. Aerosp. Sci. 79 pp 1–14

[11] Sarathchandra D T, Subbu S K and Venkaiah N 2018 Functionally graded materials and processing techniques: An art of review Mater. Today Proc. 5 10 pp 21328–21334

[12] Katili I 1993 A new discrete Kirchhoff-Mindlin element based on Mindlin-Reissner plate theory and assumed shear strain fields—part I: an extended DKT element for thick-plate bending analysis Int. J. Numer. Methods Eng. 36 11 pp 1859–1883

[13] Katili I 1993 A new Discrete Kirchhoff-Mindlin element based on Mindlin-Reissner plate theory and assumed shear strain fields - part II: an extended DKQ element for thick-plate bending analysis Int. J. Numer. Methods Eng. 36 pp 1885–1908

[14] Katili I 2004 Metode Elemen Hingga untuk Pelat Lentur (Jakarta: Penerbit Universitas Indonesia (UI-Press))

[15] Maknun I J, Katili I, Ibrahimbegović A and Katili A M 2020 A new triangular shell element for composites accounting for shear deformation Compos. Struct. 243 112214

[16] Mahjudin M, Lardeur P, Druzes F and Katili I 2016 Stochastic finite element analysis of plates with the certain generalized stresses method Struct. Saf. 61 pp 12–21

[17] Katili I, Batoz J L, Maknun I J and Lardeur P 2018 A comparative formulation of DKMQ, DSQ and MITC4 quadrilateral plate elements with new numerical results based on s-norm tests Comput. Struct. 204 pp 48–64

[18] Katili I, Maknun I J, Hamdouni A and Millet O 2015 Application of DKMQ element for composite plate bending structures Compos. Struct. 132 pp 166–174

[19] Maknun I J, Katili I, Millet O and Hamdouni A 2016 Application of DKMQ24 shell element for twist of thin-walled beams: comparison with Vlasov theory Int. J. Comput. Methods Eng. Sci. Mech. 17 6 pp 391–400

[20] Katili I, Maknun I J, Tjahjono E and Alisjahbana I 2017 Error estimation for the DKMQ24 shell element using various recovery methods Int. J. Technol. 6 pp 1060–1069

[21] Katili I, Maknun I J, Batoz J L and Ibrahimbegovic A 2018 Shear deformable shell element DKMQ24 for composite structures Compos. Struct. 202 pp 182–200

[22] Katili I, Maknun I J, Batoz J L and Katili A M 2018 Asymptotic equivalence of DKMT and MITC3 elements for thick composite plates Compos. Struct. 206 pp 363–379

[23] Maknun I J, Katili I and Purnomo H 2015 Development of the DKMT element for error estimation in composite plate structures Int. J. Technol. 6 5 pp 780–789
[24] Katili I, Maknun I J, Batoz J L and Katili A M 2019 A comparative formulation of T3γs, DST, DKMT and MITC3+ triangular plate elements with new numerical results based on s-norm tests Eur. J. Mech. A/Solids 78 103826

[25] Katili A M, Maknun I J and Katili I 2019 Theoretical equivalence and numerical performance of T3s and MITC3 plate finite elements Struct. Eng. Mech. 69 5 pp 527–536

[26] Wong F T, Erwin, Richard A and Katili I 2017 Development of the DKMQ element for buckling analysis of shear-deformable plate bending,” Procedia Eng. 171 pp 805–812

[27] Liu G R 2003 Mesh Free Method : Moving beyond the Finite Element Method (New York: CRC Press LLC)

[28] Chajes A 1974 Principles of Structural Stability Theory (NJ: Prentice-Hall) p 174

[29] Liew K M, Wang J, Ng T Y and Tan M J 2004 Free vibration and buckling analyses of shear-deformable plates based on FSDT meshfree method J. Sound Vib. 276 3–5 pp 997–1017

[30] Kitipornchai S, Xiang Y, Wang C M and Liew K M 1993 Buckling of thick skew plates Int. J. Numer. Methods Eng. 36 8

[31] Neves A M A, Ferreira A J M, Carrera E, Cinefra M, Roque C M C, Jorge R M N and Soares C M M 2013 Static, free vibration and buckling analysis of isotropic and sandwich functionally graded plates using a quasi-3D higher-order shear deformation theory and a meshless technique Compos. Part B Eng. 44 1 pp 657–674

[32] Mohammadi M, Mohseni E and Moeinifar M 2019 Bending, buckling and free vibration analysis of incompressible functionally graded plates using higher order shear and normal deformable plate theory Appl. Math. Model. 69 pp 47–62

[33] Matsunaga H 2009 Thermal buckling of functionally graded plates according to a 2D higher-order deformation theory Compos. Struct. 90 1 pp 76–86