Normal-state nodal electronic structure in underdoped high-T_c copper oxides

Suchitra E. Sebastian1, N. Harrison2, F. F. Balakirev2, M. M. Altarawneh2,3, P. A. Goddard4, Ruixing Liang5,6, D. A. Bonn5,6, W. N. Hardy5,6 & G. G. Lonzarich1

An outstanding problem in the field of high-transition-temperature (high-T_c) superconductivity is the identification of the normal state out of which superconductivity emerges in the mysterious underdoped regime1. The normal state uncomplicated by thermal fluctuations can be studied using applied magnetic fields that are sufficiently strong to suppress long-range superconductivity at low temperatures23. Proposals in which the normal ground state is characterized by small Fermi surface pockets that exist in the absence of symmetry breaking4,4,5 have been superseded by models based on the existence of a superlattice that breaks the translational symmetry of the underlying lattice$^{10–14}$. Recently, a charge superlattice model that positions a small electron-like Fermi pocket in the vicinity of the nodes (where the superconducting gap is minimum)9,16,17 has been proposed as a replacement for the prevalent superlattice models$^{10–14}$ that position the Fermi pocket in the vicinity of the pseudogap at the antinodes (where the superconducting gap is maximum)5,6. Although some ingredients of symmetry breaking have been recently revealed by crystallographic studies, their relevance to the electronic structure remains unresolved$^{19–21}$. Here we report angle-resolved quantum oscillation measurements in the underdoped copper oxide $\text{YBa}_2\text{Cu}_3\text{O}_6+x$. These measurements reveal a normal ground state comprising electron-like Fermi surface pockets located in the vicinity of the nodes, and also point to an underlying superlattice structure of low frequency and long wavelength with features in common with the charge ordered identified recently by complementary spectroscopic techniques$^{14,19–22}$.

The normal ground-state electronic structure revealed by our measurements is summarized in Fig. 1. Quantum oscillations measured in the contactless electrical resistivity of the underdoped copper oxide $\text{YBa}_2\text{Cu}_3\text{O}_6$ are shown in Fig. 2a. The prominent oscillatory beat structure reveals a sizeable frequency spread16. Measurements are made as a function of magnetic field up to 85 T over a wide range of field orientations as defined by the polar angle θ and the azimuthal angle ϕ. This data may be used to identify characteristics of the momentum-space electronic structure in the way that, for example, χ-ray data may be used to identify the real-space lattice structure of a crystal. In particular, it can be employed to identify the correct Fermi surface model13.

In the case of underdoped $\text{YBa}_2\text{Cu}_3\text{O}_6+x$, which has a primitive orthorhombic lattice, Fig. 2b illustrates the quasi-two-dimensional electronic structure characterized by a cylindrical Fermi surface with fundamental neck and belly warping that would be expected in the absence of a superlattice (Fig. 3a–d). A distinguishing characteristic of this neck and belly Fermi surface is that it gives rise to a resonance in the amplitude of quantum oscillations at a polar angle known as the Yamaji angle25. The resonance in amplitude is expected to grow with the size of the frequency spread, and its location is expected at approximately 60° in $\text{YBa}_2\text{Cu}_3\text{O}_6+x$ given the measured mean diameter of the cylinder (corresponding to the dominant quantum oscillation frequency) and the c-axis lattice constant (Fig. 2b, c). Strikingly, however, despite the sizeable frequency spread of the quantum oscillation spectrum (Fig. 2a), higher angle data in Fig. 2a reveal the Yamaji resonance anticipated for a fundamental neck and belly Fermi surface geometry to be absent, pointing to an alternative Fermi surface geometry. Supporting analyses are shown in the Methods and in Extended Data Figs 1, 2, 3 and 4.

To arrive at the correct Fermi surface model we are guided by the following key experimental findings: (1) as shown in Fig. 4a, the replacement of the expected Yamaji resonance indeed by an anti-resonance; (2) as shown in Fig. 4b, the fourfold anisotropy in ϕ dependence of the quantum oscillation amplitude for different values of θ, with a maximization of quantum oscillation amplitude along the a and b crystallographic directions and minimization along the diagonal directions, for example, $\phi = 45^\circ$; and (3) as shown in Fig. 4b, the enhancement in fourfold anisotropy as a function of azimuthal angle with increasing values of polar angle θ.

While the observed experimental features are in sharp variance with those expected for a dominant fundamental neck and belly Fermi surface geometry, we find that a dominant staggered twofold Fermi surface with warping maxima along the diagonal directions in momentum space (Fig. 1a–c, Fig. 3f–h) predicts the experimental features that we have observed. The simulation of the quantum oscillation waveform (Fig. 3h and 4 and Methods) shows that such a staggered twofold Fermi surface geometry yields first an anti-resonance in the quantum oscillation amplitude at a special value of θ along the diagonal directions in ϕ, second, a fourfold anisotropy in the quantum oscillation amplitude as a function of ϕ that is minimized along the diagonal directions, and finally an enhancement in the fourfold anisotropy as a function of ϕ with increased values of θ. Layered materials with examples of both fundamental neck and belly and staggered twofold Fermi surface geometries are discussed in the Methods.

Simulations of a staggered twofold Fermi surface geometry with modulation amplitude $\Delta F_{\text{twofold}} \approx 15$ T agree well with the measured quantum oscillation data as a function of all three parameters B, θ and ϕ (Fig. 4, Extended Data Table 2). In addition to the amplitude damping factor for a staggered twofold geometry (R_{twofold}), conventional damping factors are included that are used to describe layered materials, which arise from thermal smearing, impurity scattering or quenched inhomogeneities, Zeeman splitting and magnetic breakdown. The quantum oscillatory frequency spread is captured by Fermi surface splitting from a finite bilayer or spin orbit coupling. More details of the simulation are given in the Methods, Extended Data Figs 2c, 4, 5, 6 and 7 and Extended Data Tables 1 and 2.

The staggered twofold Fermi surface geometry we observe would not be expected to dominate within the primitive orthorhombic unit cell of underdoped $\text{YBa}_2\text{Cu}_3\text{O}_6+x$. Yet just such a geometry would arise from the unique symmetry of the corner T point in the Brillouin zone of a body-centred orthorhombic unit cell defined in Figs 1 and 3–e–h (see Methods). At this special corner T point, the twofold in-plane rotational symmetry alternates by 90° between adjacent symmetry planes. The diagonal orientation of the maximal warping directions of the Fermi surface (shown

1Cavendish Laboratory, Cambridge University, J J Thomson Avenue, Cambridge CB3 0HE, UK. 2National High Magnetic Field Laboratory, Los Alamos National Laboratory (LANL), Los Alamos, New Mexico 87504, USA. 3Department of Physics, Mu'tah University, Mu’tah, Karak 61710, Jordan. 4Department of Physics, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, UK. 5Department of Physics and Astronomy, University of British Columbia, Vancouver V6T 1Z4, Canada. 6Canadian Institute for Advanced Research, Quantum Materials Program, Toronto M5G 1Z8, Canada.

©2014 Macmillan Publishers Limited. All rights reserved
in Figs 1a–c and identified from the azimuthal anisotropy in Fig. 4b), reveals the new body-centred orthorhombic Brillouin zone to be oriented concentrically with the original primitive orthorhombic Brillouin zone, and to be defined by orthogonal ordering wavevectors Q_1 and Q_2. The staggered twofold Fermi surface pockets at the corner T point are therefore located in the nodal region of the original Brillouin zone. A nodal Fermi surface pocket contained within the reconstructed Brillouin zone is not only consistent with the present measurements, but also with the

Figure 1 | Fermi surface of YBa$_2$Cu$_3$O$_{6.56}$ inferred from quantum oscillation measurements. a, Fermi surface pockets in the nodal planes within the reconstructed body-centred orthorhombic Brillouin zone (in red outlines) and the original primitive orthorhombic Brillouin zone (in blue outlines). b, Stacked view of reconstructed Brillouin zones defined by ordering wavevectors Q_1 and Q_2. The staggered twofold Fermi surface pockets at the corner T point are therefore located in the nodal region of the original Brillouin zone. A nodal Fermi surface pocket contained within the reconstructed Brillouin zone is not only consistent with the present measurements, but also with the

Figure 2 | Quantum oscillations defining the Fermi surface of YBa$_2$Cu$_3$O$_{6.56}$. a, Oscillations of the scaled contactless electrical resistivity as a function of $1/(B \cos \theta)$ for different magnetic field (B) orientations defined by ψ and θ as indicated. The upper inset defines the angles θ and ϕ relative to the crystallographic axes. b, Schematic showing the degeneracy in the cyclotron orbit cross-sectional area that yields an amplitude enhancement at the Yamaji angle (green) for a neck and belly Fermi surface geometry (corrugation is accentuated throughout for clarity). c, Expected Yamaji resonance in the vicinity of 60° were YBa$_2$Cu$_3$O$_{6.56}$ to be described by a neck and belly Fermi surface geometry (see Methods and Extended Data Fig. 2b, c). Data in a and simulations in c have been scaled by $\exp(-100 T / B \cos \theta)$ for visual clarity.
low observed value of linear specific heat coefficient in high magnetic fields and strong chemical potential oscillations inferred from previous quantum oscillation studies. We now consider the possible origin of the superlattice responsible for the above nodal staggered twofold Fermi surface pockets, which emerge from a reconstruction of a large Fermi surface determined from band structure, characteristic of the original primitive orthorhombic lattice in the normal state. Numerous proposals for superlattices in the copper oxides have been put forward, for example in refs 1, 7–16 and 24–29. Of particular relevance to our observations is the charge order recently detected in short-range or long-range forms in YBa$_2$Cu$_3$O$_{6+x}$ by techniques such as X-ray diffraction, ultrasound, nuclear magnetic resonance and optical reflectometry. These observations point to a superlattice characterized by the same ordering wavevectors Q and Q_z identified by our measurements and defined in Fig. 1, with the superlattice scaling parameters $\sigma_1 = \sigma_2 = 0.3$, and anisotropic amplitudes in some cases. We note that for Fermi surface reconstruction, the superlattice need not be strictly long-range or static, but it must not be fluctuating over a range much smaller than the cyclotron radius, nor with a frequency much larger than the cyclotron frequency.

Numerical calculations indeed show that this type of charge order can give rise to nodal Fermi surface pockets similar to those observed in our measurements, potentially accompanied by antinodal gaps in the electronic excitation spectrum (schematic shown in Extended Data Figs 6 and 7). Furthermore, the resulting nodal electron-like Fermi surface pockets yield the observed negative sign of Hall coefficient in the accessed high magnetic field limit (see Methods and refs 8–10) in contrast to the positive value expected for the large unreconstructed Fermi superlattice scaling parameters d, see the Methods. The amplitude for the fundamental warping (d) exhibits a maximum versus θ—known as the Yamaji resonance—in contrast to an anti-resonance for the staggered twofold warping (h). R_n has been simulated using parameters in Extended Data Table 1 and a representative value of $B = 62$ T. For the definition of R_n and further analyses including the spin factor R_s, see the Methods.

We now consider the possible origin of the superlattice responsible for the above nodal staggered twofold Fermi surface pockets, which emerge from a reconstruction of a large Fermi surface determined from band structure, characteristic of the original primitive orthorhombic lattice in the normal state. Numerous proposals for superlattices in the copper oxides have been put forward, for example in refs 1, 7–16 and 24–29. Of particular relevance to our observations is the charge order recently detected in short-range or long-range forms in YBa$_2$Cu$_3$O$_{6+x}$ by techniques such as X-ray diffraction, ultrasound, nuclear magnetic resonance and optical reflectometry. These observations point to a superlattice characterized by the same ordering wavevectors Q and Q_z identified by our measurements and defined in Fig. 1, with the superlattice scaling parameters $\sigma_1 = \sigma_2 = 0.3$, and anisotropic amplitudes in some cases. We note that for Fermi surface reconstruction, the superlattice need not be strictly long-range or static, but it must not be fluctuating over a range much smaller than the cyclotron radius, nor with a frequency much larger than the cyclotron frequency.

Numerical calculations indeed show that this type of charge order can give rise to nodal Fermi surface pockets similar to those observed in our measurements, potentially accompanied by antinodal gaps in the electronic excitation spectrum (schematic shown in Extended Data Figs 6 and 7). Furthermore, the resulting nodal electron-like Fermi surface pockets yield the observed negative sign of Hall coefficient in the accessed high magnetic field limit (see Methods and refs 8–10) in contrast to the positive value expected for the large unreconstructed Fermi

![Figure 3](image3.png) Figure 3 | Fermi surface and geometry-dependent quantum oscillation damping for different crystal structures. a-d, Primitive orthorhombic structure. e–h, Body-centred orthorhombic structure. Shown are the real-space unit cells (a, e), cuts through the Brillouin zone showing local symmetries about the vertical lines (b, f), location of the warped Fermi surface within the Brillouin zone in which symmetry points I, Z, M and T are indicated (c, g), and the angular dependences of the corresponding quantum oscillation amplitude damping factor R_n (d, h). The amplitude for the fundamental warping (d) exhibits a maximum versus θ—known as the Yamaji resonance—in contrast to an anti-resonance for the staggered twofold warping (h). R_n has been simulated using parameters in Extended Data Table 1 and a representative value of $B = 62$ T. For the definition of R_n and further analyses including the spin factor R_s, see the Methods.

![Figure 4](image4.png) Figure 4 | Quantum oscillation data compared with a staggered twofold Fermi surface model. a, Real component of the cross-correlation between the quantum oscillation data over a fixed range of Bcosθ for a range of measured θ angles with a simple sinusoid $\cos(2\pi B \cos\theta/\phi)$. F and ϕ are matched to the periodicity and phase of the oscillations at $\theta = 38^\circ$, where a single frequency dominates the measured quantum oscillations. The dotted lines show the expected constant magnitude of the maximum and minimum amplitude for an ideal two-dimensional Fermi surface. A suppression in amplitude (anti-resonance) instead of a Yamaji resonance is observed as a function of θ (see Methods and Extended Data Fig. 2). b, Fourfold anisotropy in the ϕ-dependent amplitude of quantum oscillations for $\theta = 45^\circ$ and 60°. c, Measured quantum oscillations shown in Fig. 2 (black lines). The magenta lines in a and b show a simulation of R_n^{twofold} and the coloured lines in c show a simulation of Ψ^{twofold} respectively for a staggered twofold Fermi surface model (for a value of $\Delta E^{\text{twofold}} = 15$ T). For definitions of the staggered twofold damping factor R_n^{twofold}, the spin damping factor R_s, the quantum oscillation function Ψ^{twofold} and parameter values used for the simulation, see the Methods.
Quantum oscillations in the electrical resistivity were measured using a contactless technique on a high-quality de-twinned single crystal of YBa$_2$Cu$_3$O$_{6.96}$ over a wide range of polar and azimuthal angles, θ and ϕ, in magnetic fields up to 85T and at 1.5 K (Fig. 2a and Extended Data Fig. 1). Measurements up to 100T at $\theta = 0$ are presented in Extended Data Fig. 3.

The model used for the quantum oscillation simulations is discussed in the Methods. Of particular importance here is the Fermi surface geometrical damping or warping factor, taken to be of the form $R_{\text{peak}}^{\text{total}} = R_{\text{peak}}(\pi/2 - \theta) = \frac{B \cos \theta}{2\sin 2\theta} J_1(\kappa_0 c_\theta/2\tan \theta)$, which is expected for a staggered twofold Fermi surface geometry in a body-centred weakly-orthorhombic unit cell (Fig. 1a, b). Here $\kappa_0 = 0.13\,\text{Å}^{-1}$ (corresponding to the dominant frequency $F_0 = 530\,\text{T}$) is the average radius of the Fermi surface pockets in the basal plane, $\Delta\Gamma_{\text{total}}$ is a measure of the magnitude of the staggered twofold warping and J_0 and J_2 are the zeroth and second-order Bessel functions, respectively. The results of the simulation are shown and explained in Fig. 4a and in Extended Data Table 1.

For a Fermi surface with fundamental neck and belly warping geometry in a primitive weakly orthorhombic unit cell (see Fig. 2b), a different geometrical damping factor $R_{\text{neck}}^{\text{total}} - R_{\text{belly}}^{\text{total}}$ is defined by $\frac{\pi\Delta\Gamma_{\text{neck}}}{B \cos \theta} J_0(\kappa_0 c_\theta/2\tan \theta)$. The results of the simulation using $R_{\text{neck}}^{\text{total}} - R_{\text{belly}}^{\text{total}}$ with model parameters listed in Extended Data Table 3 are shown in Fig. 2c and Extended Data Fig. 2b and c. The striking difference in the angular dependence of the quantum oscillation waveform corresponding to $R_{\text{neck}}^{\text{total}} - R_{\text{belly}}^{\text{total}}$ and $R_{\text{neck}}^{\text{total}}$ (illustrated in Fig. 3d and h, respectively) is shown in Extended Data Fig. 2.

Acknowledgement S.E.S. acknowledges support from the Royal Society, King’s College Cambridge, the Winton Programme for the Physics of Sustainability, and the Natural Environment Research Council under the European Union’s Seventh Framework Programme (grant number FP/2007-2013/ERC Grant Agreement number 337425-SUPERCONDUCTINGMOTT. N.H. and F.F. acknowledge support for high-magnetic-field experiments from the US Department of Energy, Office of Science, BES-MSE ‘Science of 100 Tesla’ programme. G.L. acknowledges support from Engineering and Physical Sciences Research Council (EPSRC) grant EP/K012894/1. P.A.G. is supported by the EPSRC and thanks the University of Oxford for the provision of a Visiting Lectureship. R.L., D.A.B. and W.N.H. acknowledge support from the EPSRC and thanks the University of Oxford for the provision of a Visiting Lectureship. R.L., D.A.B. and W.N.H. acknowledge support from the EPSRC and thanks the University of Oxford for the provision of a Visiting Lectureship. R.L., D.A.B. and W.N.H. acknowledge support from the EPSRC and thanks the University of Oxford for the provision of a Visiting Lectureship. R.L., D.A.B. and W.N.H. acknowledge support from the EPSRC and thanks the University of Oxford for the provision of a Visiting Lectureship.
METHODS

Experimental details. High quality detwinned single crystals of YBa$_2$Cu$_3$O$_{6.68}$ of dimensions 0.5 × 0.8 × 0.1 mm3 used in this study were grown and prepared at the University of British Columbia. Quantum oscillations were measured at the National High Magnetic Field Laboratory (Los Alamos and Tallahassee) using the contactless resistivity technique (described elsewhere). The sample and the proximity detector oscillator coil to which it is coupled were rotated in situ through different polar (θ) and azimuthal (ϕ) angles before each magnetic field pulse extending to 65 T or 85 T. Quantum oscillation measurements for $\theta = 0$ were extended to 100 T, in the regime where long-range superconductivity is destroyed at low temperatures. Additional azimuthal angle dependences were measured using a two-axis goniometer in the 45 T direct current hybrid magnet. In all cases the sample temperature was maintained close to $T = 1.5$ K throughout the experiment by direct immersion in superfluid He. A worm drive rotator powered by a stepper motor at room temperature was used for sample rotation, with a sample to detector distance provided by a pancake projection coil wound in the plane of the sample. For the pulsed-field data, the thermal damping factor is given by

$$R_D = \exp \left(-\frac{\Lambda_1}{B \cos \theta} \right)$$

(where Λ_1 is a damping factor). The spin damping factor is given by

$$R_S = \cos \left(\frac{\pi}{2} \frac{m_2^f}{m_2^g} \right)$$

where $m_2^g = m_2^f / \cos \theta$ for a given orbit ‘j’ is determined by the projection $B \cos \theta$ of B perpendicular to the planes (that is, the projection parallel to the c axis in YBa$_2$Cu$_3$O$_{6.68}$). The anisotropic effective g-factor has the form $g_{jg} = g_{jf} \frac{\cos^2 \theta + 1}{\gamma_j}$, which can be renormalized with respect to the electron g-factor by spin orbit coupling34, many-body effects34 and the presence of small bandgaps36,37. Here, m_2^g and m_2^f refer to the respective values of m_2^g and m_2^f when B is parallel to the crystaline c axis, while $\gamma_j = g_{jg} \frac{J}{RT}$ is the anisotropy in the spin susceptibility. Because of the multiple quantum oscillation frequencies, it is not possible to identify the g-factors uniquely. The values of g_{jg} and γ_j here represent parameters used for the simulation.

The quantum oscillatory frequency spread is modelled by a splitting of the Fermi surface, which can arise not only by tunnelling between bilayers38,39, but also, for example, via spin–orbit effects under certain conditions35. This leads to two starting frequencies that are denoted (for reasons that will become clear below) as F_0 and $F_0 + 2\Delta F_{\text{split}}$ (ref. 16). Magnetic breakdown tunnelling (in the nodal region where the splitting is smallest) can then give rise to a series of combination frequencies. Here we consider cyclotron orbits corresponding to a nodal bilayer–split Fermi surface from charge ordering shown in Extended Data Figs 6 and 7 (modelled in refs 8, 9, 16, 60 and 61). The combination frequencies from the Fermi surface orbits depicted in Extended Data Fig. 7 are listed in Extended Data Table 2. For a small magnetic breakdown gap, a high tunnelling probability P causes the orbit of frequency F_0 to dominate the quantum oscillation amplitude (as seen in Extended Data Fig. 3a). The beat structure in the quantum oscillation signal is caused primarily by the superposition of the dominant F_0 oscillations and weaker amplitude oscillations of frequency $F_0 - \Delta F_{\text{split}}$ and $F_0 + 2\Delta F_{\text{split}}$. Oscillations of frequency $F_0 - 2\Delta F_{\text{split}}$ and $F_0 + 2\Delta F_{\text{split}}$ are expected to be even more strongly attenuated. The magnetic breakdown amplitude reduction factor has the form

$$R_{MB} \propto \left(\frac{\nu}{\nu_0} \right)^l \left(\frac{1 - \nu}{1 - \nu_0} \right)$$

where l, ν, ν_0, ν_0' count the number of magnetic breakdown tunnelling and Bragg reflection events on route around the orbit, having transmitted amplitudes ν and ν_0 respectively. The magnetic breakdown probability is given by $P = \exp(-B_0 / B \cos \theta)$, where B_0 is the characteristic magnetic breakdown field40. Angle-dependent damping term from Fermi surface warping geometry. The Fermi surface warping geometry in layered materials leads to a quantum oscillation damping factor with an azimuthal (ϕ) and polar (θ) angular variation that is very sensitive to the energy band dispersion perpendicular to the planes (known as the ‘warping’ of the Fermi surface). The amplitude damping factor R_{ϕ}, which arises as a consequence of weak Fermi surface warping is obtained (by 1 expansion of the Fermi surface wavevectors in terms of cylindrical harmonics, and retaining only the lowest-order harmonic in k_ϕ (2) of an evaluation of the Fermi surface cross-sectional area $A(k_\theta, k_\phi, \phi)$ in a plane normal to the field orientation defined by (θ, ϕ) and crossing k_ϕ and (3) via a k_ϕ integration of exp[$i\theta(0, \phi)(\theta, \phi)]$.

For the case of a primitive weakly orthorhombic unit cell41 (with lattice dimension c'; see Fig. 3a) in the limit of weak warping, we thus arrive at the quantum oscillation damping factor for leading order neck and belly geometry, in the simplified form

$$R_{\text{neck--belly}} = R_D \left[\frac{2\pi \Delta F_{\phi}}{B \cos \theta} \sin 2\theta / k_\phi (c' / 2 \tan \theta) \right]$$

In contrast, for the case of a body-centred weakly orthorhombic unit cell (with lattice dimension $c' = 2c$; see Figs 1d and 3e) in the limit of weak warping, the quantum oscillation damping factor for leading order staggered twofold geometry has the simplified form

$$R_{\text{staggered}} = R_D \left[\frac{2\pi \Delta F_{\phi}}{B \cos \theta} \sin 2\theta / k_\phi (c' / 2 \tan \theta) \right]$$
The former has well known examples occurring in materials families including organic conductors20–21 while the latter occurs at the Brillouin zone corner in materials families including body-centred tetragonal pnictides2, ruthenates23 and TI-based (overdoped) high-T\textsubscript{c} superconductors.42,43

Here the effective Fermi wavevector \(k_F \) (the average radius of the Fermi pocket in the basal plane) and warping parameters \(\Delta F \) are related to the cylindrical harmonic expansion parameter \(k_m \) defined in ref. 23 by \(k_m = k_0 \) and \(\Delta F_n = k_{10} / k_m \), as is appropriate to the leading order, \(r = 1 \), cylindrical harmonic in \(k_z \). In this work, we refer to the amplitude of fundamental neck and belly geometry \(\Delta F_{n=1} \) as \(\Delta F_{n=1,belly} \) and the amplitude of staggered twofold geometry \(\Delta F_{n=1,necks} \) and \(\Delta F_{n=1,belly} \) are the zeroth and second-order Bessel functions, respectively. The relevant Fermi surface geometry depends on the local symmetry in the Brillouin zone. Examples of an isotropic azimuthal anisotropy for a fundamental neck and belly Fermi surface geometry and a fourfold azimuthal anisotropy for a staggered twofold Fermi surface geometry are shown in Fig. 3.

While a fundamental neck and belly geometry would be expected to dominate at all locations in a primitive orthorhombic Brillouin zone, a staggered twofold Fermi surface geometry would arise from the unique symmetry of the special corner T point in the Brillouin zone of a body-centred orthorhombic unit cell (shown in Figs 3f and 3g and 1a–c). At this corner T point, the twofold in-plane rotational symmetry is seen to be rotated by 90° between adjacent symmetry planes. The special corner point is characterized by a leading order expansion of the Fermi wavevector.

We see from the simulated geometrical quantum oscillation amplitude damping factor as a function of polar and azimuthal angle that a fundamental neck and belly geometry and a staggered twofold Fermi surface geometry would exhibit strikingly different angular dependences (shown in Fig. 3a–d and e–h, respectively, simulated using equations (3) and (4)). A staggered twofold Fermi surface geometry would yield an amplitude suppression (anti-resonance) in quantum oscillation amplitude at a special polar angle, in contrast to the enhancement in quantum oscillation amplitude expected at a special Yamaji polar angle21,22 for a fundamental neck and belly Fermi surface geometry. Furthermore, while a fundamental neck and belly Fermi surface would yield an isotropic azimuthal dependence of quantum oscillation amplitude to leading order, a staggered twofold Fermi surface geometry would yield a fourfold azimuthal dependence of quantum oscillation amplitude to leading order.

Staggered twofold Fermi surface geometry simulation. Extended Data Table 1 shows the value of parameters used for the quantum oscillation waveform simulated for the Fermi surface using equations (2) and (4), which is compared with the experimental data in Fig. 4 and Extended Data Figs 2c and 4. For simplicity, the value of magnetic breakdown field \(B_{D,\text{br}} \) warping \(\Delta F_{\text{nodal}} \), damping \(J \) and effective mass \(m^* \) are taken to be the same for all orbits (enabling us to drop the subscript). Furthermore, only two sets of anisotropic g-factors are considered: orbits \(F_1, F_2 \) and \(F_3, F_4 \), which undergo both magnetic breakdown tunnelling and finite Bragg reflection (that is, \(1 - P \) are approximated to have the same g-factor \(g_{||} \) with anisotropy \(\zeta_f \). This anisotropy is smaller than for orbits \(F_5 \) which show only magnetic breakdown tunnelling without finite Bragg reflection, and which are approximated to have a common g-factor \(g_\perp \) with anisotropy \(\zeta_f \). Since it is not possible to identify unique g-factor values given the multiplicity of frequencies, the values of \(g_{||} \) and \(\zeta_f \) here represent parameters used for the simulation.

The amplitudes of the \(F_2 \) and \(F_4 \) orbits are approximated to be equal, while experimentally, the amplitude of the \(F_5 \) orbit is slightly larger in contactless resistivity44 and magnetic torque44 measurements, probably due to additional effects such as small differences in the scattering time or effective mass. We note that the amplitude of the \(F_2 \) orbit is significantly larger in c-axis transport experiments40.

We note that in equations (2), (4) and (5) the most general circular Fermi surface cross-section has been assumed, which is not specific to any Fermi surface reconstruction model. In order to extract the in-plane Fermi surface topology from the experimental data, a complete determination of the various models proposed for the normal ground state of the underdoped copper oxides6,13–15,36,63,64,66,67,69,70,71,72,73,74,75,77,78,79,81,83,84,85,86,87,88,89,90,91,92,93,94 examples of Fermi surface models that have been proposed include refs6–13,15–17,36,63,64,66,67,69,70,71,72,73,74,75,77,78,79,81,83,84,85,86,87,88,89,90,91,92,93,94.

An accurate Fermi surface model would need to explain the observation of quantum oscillations in underdoped \(YBa_2Cu_3O_6+x \) on a background of a negative g-coefficient \(R_0 \) (ref. 10), given that a positive Hall coefficient would be expected for the hole carrier doping in underdoped \(YBa_2Cu_3O_6+x \). Various previously proposed interpretations, the negative Hall effect is yielded by electron pockets at the antinodal locations of the Brillouin zone61,61–63,65.

Our present work that locates the small Fermi pockets in the vicinity of the nodal regions of the Brillouin zone, however, renders these interpretations unlikely.

The nodal staggered twofold Fermi pocket in the new reconstructed body-centred orthorhombic Brillouin zone that we propose to arise from staggered charge order (schematic in Extended Data Figs 6 and 7; refs 8, 9, 16, 60 and 61), has opposite polarity to the original large Fermi surface in the starting primitive orthorhombic Brillouin zone in underdoped \(YBa_2Cu_3O_6+x \). In the high magnetic field limit, the Hall conductivity from a Fermi surface pocket—that than being determined by the Fermi surface curvature, as would be the case in low magnetic field—would be proportional to the number of states contained within that pocket, with a sign that is negative for filled states and positive for empty states40,101. A negative Hall coefficient would therefore arise from the nodal staggered twofold Fermi surface from charge order9,10,60,61, providing an explanation for the previous puzzling observation40.

Low quantum oscillation frequency. Very slow quantum oscillations are further seen over a large magnetic field range in contactless electrical resistivity measurements (Extended Data Fig. 3b). The separation between observed oscillation maxima (lower inset to Extended Data Fig. 3b) corresponds to a frequency of \(90 +/− 10 \text{GHz} \).

A property of systems exhibiting magnetic breakdown is the occurrence of Stark quantum interference effects in electrical transport102,103. Quasiparticles that encounter the magnetic breakdown junction (indicated in magenta in the upper inset of Extended Data Fig. 3) can take two possible paths (that is, the inner orbit or the outer orbit), depending on whether or not magnetic breakdown tunnelling occurs. When the quasiparticles recombine at a second magnetic breakdown junction they acquire a relative phase difference in Onsager phase \(\Delta \phi = \pi A / \Delta F / B \), which is proportional to the difference in k-space area between the two paths. Because this area is not a closed orbit, it does not yield quantum oscillations in thermodynamic quantities such as the magnetization or heat capacity—however, interference between the two paths can give rise to local oscillations in electrical transport properties such as the electrical resistivity, or thermal conductivity. The simulation of the charge order model made using parameters in Extended Data Tables 1 and 2 yields \(\Delta F = 90 \text{ GHz} \) for the frequency corresponding to the small difference in area between the two magnetic breakdown junctions suggesting the association of the observed low
quantum oscillation frequency with the Stark quantum interference effect. Alternatively, this low frequency could correspond to the small hole pocket in addition to the nodal electron pocket discussed in the main text provides one possible explanation for the observed oscillatory component of the Hall resistivity.

The existence of a small hole pocket in addition to the nodal electron pocket natively, this low frequency could correspond to the small hole pocket predicted in systems with Rashba and Dresselhaus spin-orbit coupling. Phys. Rev. B 78, 115312 (2008).

Angular dependence of quantum oscillations in YBa2Cu3O6.59
Entirely, the velocity anisotropy ratio is of a similar order of magnitude as the conductivity anisotropy ratio inferred for optical conductivity measurements in the pseudogap regime.

The correlation length of the associated superlattice structure is required to be similar to or greater than the extent of motion of the cyclotron orbit in the interlayer direction, for our analysis arriving at the Fermi surface geometry in this work. The large anisotropy in velocity between in-plane and interlayer directions means that the cyclotron orbits in real space traverse an interlayer distance of only about 1% of the in-plane cyclotron orbit radius, placing us in the required limit.

The correlation length of the associated superlattice structure is required to be similar to or greater than the extent of motion of the cyclotron orbit in the interlayer direction, for our analysis arriving at the Fermi surface geometry in this work. The large anisotropy in velocity between in-plane and interlayer directions means that the cyclotron orbits in real space traverse an interlayer distance of only about 1% of the in-plane cyclotron orbit radius, placing us in the required limit.

Li, D., Bonn, N. M., & Gros, C. H. Near doping-independent pocket area from an antinodal Fermi surface instability in underdoped high temperature superconductors. Phys. Rev. Lett. 107, 186408 (2011).
90. Sau, J. D. & Sachdev, S. Mean field theory of competing orders in metals with antiferromagnetic exchange interactions. *Phys. Rev. B* **89**, 075129 (2014).
91. Laughlin, R. B. Hartree-Fock computation of the high-T_c cuprate phase diagram. *Phys. Rev. B* **89**, 035134 (2014).
92. Meier, H., Pepin, C., Ennenkel, M. & Efetov, K. B. Cascade of phase transitions in the vicinity of a quantum critical point. Preprint at http://arXiv.org/1312.2010 (2013).
93. Alexandrov, A. S. & Bratkovsky, A. M. de Haas-van alphen effect in canonical and grand canonical multiband fermi liquid. *Phys. Rev. Lett.* **76**, 1308–1311 (1996).
94. Carrington, A. & Yelland, E. A. Band-structure calculations of Fermi-surface pockets in ortho-II $YBa_2Cu_3O_6.6$. *Phys. Rev. B* **76**, 140508 (2007).
95. Efimov, I. S., Sawatsky, G. A. & Damascelli, A. Theory of Fermi-surface pockets and correlation effects in underdoped $YBa_2Cu_3O_6.6$. *Phys. Rev. B* **77**, 060504 (2008).
96. Melikyan, A. & Vafek, O. Quantum oscillations in the mixed state of d-wave superconductors. *Phys. Rev. B* **78**, 020502 (2008).
97. Varma, C. M. Magneto-oscillations in underdoped cuprates. *Phys. Rev. B* **79**, 085110 (2009).
98. Senthil, T. & Lee, P. A. Synthesis of the phenomenology of the underdoped cuprates. *Phys. Rev. B* **79**, 245116 (2009).
99. Pereg-Barnea, T., Weber, H., Refael, G. & Franz, M. Quantum oscillations from Fermi arcs. *Nature Phys.* **6**, 44–49 (2010).
100. Oh, H., Choi, H. J., Louie, S. G. & Cohen, M. L. Fermi surfaces and quantum oscillations in the underdoped high-T_c cuprate superconductors $YBa_2Cu_3O_6.5$ and $YBa_2Cu_3O_6$. *Phys. Rev. B* **84**, 014518 (2011).
101. Ong, N. P. Geometric interpretation of the weak-field Hall conductivity in two-dimensional metals with arbitrary Fermi surface. *Phys. Rev. B* **43**, 193–201 (1991).
102. Swanson, J. A. Saturation Hall constant of semiconductors. *Phys. Rev. B* **99**, 1799–1807 (1953).
103. Ziman, J. M. *Principles of the Theory of Solids* (Cambridge Univ. Press, 1979).
104. Stark, R. W. & Reifenberger, R. Quantitative theory for the quantum interference effect in the transverse magnetoresistance of pure magnesium. *J. Low Temp. Phys.* **26**, 763–817 (1977).
105. Harrison, N. et al. Magnetic breakdown and quantum interference in the quasi-two-dimensional superconductor κ-(BEDT-$\text{TTF})_2\text{Cu}(\text{NCS})_2$ in high magnetic fields. *J. Phys. Condens. Mater.* **8**, 5415–5435 (1996).
106. Basov, D. N. & Timusk, T. Electrodynamics of high-T_c superconductors. *Rev. Mod. Phys.* **77**, 721–779 (2005).
107. Aliass, A., Chowdhury, D. & Sachdev, S. Connecting high-field quantum oscillations to the pseudogap in the underdoped cuprates. Preprint at http://arxiv.org/abs/1406.0503 (2014).
Extended Data Figure 1 | Measured projection of the magnetic field along the crystalline c axis of the sample. Circles indicate the maximum $B\cos(\theta)$ measured at 65 T (cyan) and 85 T (red), obtained by means of a projection coil, while the dashed lines represent fits to a cosine function. The angular error is less than 0.2° for $\theta \leq 66^\circ$ and approximately 0.2° for $68^\circ \leq \theta \leq 71^\circ$. $\theta = 0^\circ$, 1.3°, 11.3°, 12°, 16.3°, 18°, 21.3°, 26.3°, 31.3°, 36.3°, 38°, 41.3°, 45.2°, 46.3°, 48°, 49°, 49.4°, 50.1°, 50.6°, 51.4°, 51.5°, 52°, 52.3°, 52.5°, 52.9°, 53.1°, 54.4°, 54.9°, 55.5°, 56°, 56.2°, −56.95°, 57.2°, −57.4°, −58.15°, 58.2°, −59.4°, 59.6°, 60.6°, 61.2°, −61.4°, 61.7°, 62.5°, 62.6°, −62.7°, −63.2°, 63.4°, 63.7°, −64.1°, 64.5°, 65.5°, 66°, 66.3°, 68.1°, 69.4° and 70.6°. Negative θ angles refer to a measured equivalent $(180^\circ − |\theta|)$ angle as shown.
Extended Data Figure 2 | Experimental quantum oscillations for different angles compared with simulations for a neck and belly model. a, Measured oscillations in the contactless resistivity. b, Simulated oscillations at the same angles and fields as a for two Fermi surface cylinders exhibiting a fundamental neck and belly warping, for parameters used in ref 36 (listed in Extended Data Table 3) to simulate the restricted experimental range within the dashed line. Data in a and simulations in b have been scaled by \(\exp \left(\frac{100 \, T}{B \cos \theta} \right) \) for visual clarity. c, Symbols represent the absolute value of the cross-correlation between the quantum oscillation data in a with a simple sinusoid \(\exp \left(\frac{i \, 2\pi F}{B \cos \theta} \right) \). F is matched to the periodicity of the oscillations at \(\theta = 38^\circ \), where a single frequency dominates the measured quantum oscillations. Coloured lines indicate a simulation proportional to \(R_c R_s \) for a staggered twofold model using parameters in Extended Data Table 1 (magenta), and a neck and belly model using parameters from ref. 36 in Extended Data Table 3 (red). While the anti-resonance in the vicinity of \(\theta = 60^\circ \) yielded by the staggered twofold model is in good agreement with the experimental data, the striking Yamaji resonance in the vicinity of \(\theta = 60^\circ \) yielded by the neck and belly model is in marked contrast to experiment.
Extended Data Figure 3 | Quantum oscillations up to 100 T. a, Schematic illustration of the small and large Fermi surface pocket sizes (and quantum oscillation Fourier frequencies) in underdoped YBa$_2$Cu$_3$O$_{6.56}$ and overdoped Tl$_2$Ba$_2$CuO$_{6+x}$, respectively. b, Contactless electrical resistivity of YBa$_2$Cu$_3$O$_{6.56}$ measured to 100 T, showing the resistive transition (at approximately 20 T) and quantum oscillations. The dominant quantum oscillations with a frequency of 530 T can be seen to be superimposed on slowly varying oscillations (red line), which we extract in the lower inset by subtracting the dominant oscillations and a linear background. The slowly varying oscillations are consistent with a low frequency of 90 ± 10 T. The upper inset shows the bilayer-split pockets expected for charge order in which the difference in area between two magnetic breakdown junctions corresponds to a frequency of approximately 90 T.
Extended Data Figure 4 | Contour representation of a staggered twofold Fermi surface model compared to the experimental data. a, Contour plot of the simulated quantum oscillation amplitude for a staggered twofold Fermi surface geometry represented by equations (2) and (4), using parameters in Extended Data Table 1 and shown in Fig. 4c. b, Contour plot of experimentally measured quantum oscillation amplitude; good agreement is seen with the model in a. The quantum oscillation amplitude is indicated by the colour scale (in arbitrary units) in the reciprocal field-angle plane; for clarity the ordinate is given as tanθ.
Extended Data Figure 5 | Cross-correlation measured over different field ranges, compared to simulations for a staggered twofold Fermi surface geometry. Real component of the cross-correlation between the quantum oscillation data over fixed ranges of $B \cos \theta$ for a range of measured θ angles, with a simple sinusoid $\cos(2\pi F/(B \cos \theta) + \phi)$. F and ϕ are matched to the periodicity and phase of the oscillations at $\theta = 38^\circ$, where a single frequency dominates the measured quantum oscillations. Black lines indicate the simulation (proportional to $R_s R_d$), where $\Delta F_{\text{twofold}} \approx 15$ T is the depth of the modulation, while square symbols indicate the experimental cross-correlation.
Extended Data Figure 6 | Schematic of a nodal Fermi surface from charge order that is staggered perpendicularly to the bilayers. a, Reconstruction of the Brillouin zone, with one instance of the pocket location indicated in the vicinity of the 'T' point in relation to the original Fermi surface (purple) and nodes in the superconducting wavefunction (from refs 8, 9, 60 and 61). Here the concentric arrangement of Fermi surfaces arises from bilayer splitting. We note that the in-plane shape of the Fermi pocket shown here is an illustration based on a non-interacting model calculation in refs 8, 9, 60 and 61. b, A three-dimensional view of a. While this schematic assumes achirality, a chiral model is not ruled out, as for instance proposed in ref. 87, where the form of order breaks mirror symmetry within each plane.
Extended Data Figure 7 | Schematic of the Brillouin zone cross-section, showing magnetic breakdown orbits in a charge ordering scheme. A cut through the \(k_z = 0 \) plane of the Brillouin zone shows the six possible orbits resulting from magnetic breakdown tunnelling in a bilayer charge ordering scheme\(^{56,61} \), an illustrative Fermi pocket shape similar to Extended Data Fig. 6 is shown. \(\mathbf{a} \), The two Fermi surface cross-sections of frequency \(F_1 = F_0 - 2\Delta F_{\text{split}} \) and \(F_0 = F_0 + 2\Delta F_{\text{split}} \) that can result from bilayer splitting with in-plane ordering wavevectors \(Q_{\parallel 1} = 2\pi \left(\pm \frac{\delta_1}{a}, 0 \right) \) and \(Q_{\parallel 2} = 2\pi \left(0, \pm \frac{\delta_2}{b} \right) \). The \(\Gamma \) and \(\mathbf{T} \) symmetry points of the body-centred orthorhombic Brillouin zone of the charge order superstructure are depicted in blue. The gap separating bonding and antibonding surfaces is expected to be smallest at the nodes\(^{62} \). Panels \(\mathbf{b}, \mathbf{c} \) and \(\mathbf{d} \) show the range of possible magnetic breakdown orbits, \(F_2 = F_0 - \Delta F_{\text{split}}, F_3 = F_0, F_4 = F_0 \) and \(F_5 = F_0 + \Delta F_{\text{split}} \) as listed in Table 2.
Extended Data Table 1 | Model parameters for a staggered twofold Fermi surface model

parameter	description	value
F_0	quantum oscillation frequency	534 T
$\Delta F_{\text{twofold}}$	staggered twofold warping frequency	15 T
ΔF_{split}	bilayer splitting frequency	90 T
m^*	quasiparticle effective mass	1.6 m_e (fixed)
B_0	magnetic breakdown field	2.7 T
Λ	Dingle damping parameter	132 T
a_0	absolute amplitude	0.131 MHz
g_{\parallel}^{\square}	g-factor 1	2.12
$g_{\parallel}^{\triangle}$	g-factor 2	0.35
ξ^{\square}	g-factor anisotropy 1	1.43
ξ^{\triangle}	g-factor anisotropy 2	0.15

Tabulated values used in equations (2) and (4) to simulate the quantum oscillation waveform, yielding excellent agreement with experiment as a function of B, Λ and ϕ (Fig. 4 and Extended Data Figs 2c and 4). The effective mass is taken to be a fixed quantity, having been determined independently from temperature-dependent measurements. The parameters are the same for all the orbits, except for those denoted by subscripts \square and \triangle, which each correspond to a subset of orbits as defined in the text. Because of the multiple frequencies in the model, it is not possible to uniquely identify the g-factor; the values of g_{\parallel}^{\square} and ξ^{\square} here represent parameters used for the simulation.
Extended Data Table 2 | Magnetic breakdown amplitude damping

orbit F_j	N_j	R_{MB}
$F_1 = F_0 - 2\Delta F_{split}$	1	$(1 - P)^2$
$F_2 = F_0 - \Delta F_{split}$	4	$-P(1 - P)$
$F_3 = F_0$	2	P^2
$F_4 = F_0$	4	$-P(1 - P)$
$F_5 = F_0 + \Delta F_{split}$	4	$-P(1 - P)$
$F_6 = F_0 + 2\Delta F_{split}$	1	$(1 - P)^2$

The magnetic breakdown network corresponds to a split Fermi surface geometry from charge order, as shown in Extended Data Fig. 7. A high magnetic breakdown tunnelling probability P causes the amplitude of the F_1 and F_6 orbits to become very weak, as seen in Fig. 3a (ref. 16).
Extended Data Table 3 | Model parameters for a fundamental neck and belly Fermi surface model

parameter	description	value		
F_1	quantum oscillation frequency 1	478 T		
F_2	quantum oscillation frequency 2	526 T		
$\Delta F_{\text{neck-belly},1}$	Fermi surface corrugation frequency 1	37.7 T		
$\Delta F_{\text{neck-belly},2}$	Fermi surface corrugation frequency 2	3.5 T		
γ_1	quantum oscillation phase 1	3.5		
γ_2	quantum oscillation phase 2	1.1		
m_1^*	quasiparticle effective mass 1	$1.5 \ m_0$		
m_2^*	quasiparticle effective mass 1	$1.7 \ m_0$		
Λ_1	Dingle damping parameter 1	127.8 T		
Λ_2	Dingle damping parameter 2	159.8 T		
a_1	absolute amplitude 1	0.238 MHz		
a_2	absolute amplitude 2	0.339 MHz		
$g_{		1}^*$	g-factor 1	1.40
$g_{		2}^*$	g-factor 2	1.88

Tabulated values from ref. 36 used in equations (1) and (3) to simulate the waveform of the oscillations in Fig. 2c and Extended Data Fig. 2b and c for two cylinders with isotropic g-factors. The absolute amplitudes a_1 and a_2 listed here have been adjusted to match the amplitude in the present experiment.