Beet yellows virus replicase and replicative compartments: parallels with other RNA viruses

Vladimir A. Gushchin, Andrey G. Solovyev, Tatiana N. Erokhina, Sergey Y. Morozov and Alexey A. Agranovsky*

1 Faculty of Biology, Moscow State University, Moscow, Russia
2 A. N. Belozersky Institute of Physico-Chemical Biology, Moscow State University, Moscow, Russia
3 M. M. Shemyakin and Y. A. Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia

In eukaryotic virus systems, infection leads to induction of membranous compartments in which replication occurs. Virus-encoded subunits of the replication complex mediate its interaction with membranes. As replication platforms, RNA viruses use the cytoplasmic surfaces of different membrane compartments, e.g., endoplasmic reticulum (ER), Golgi, endosomes, mitochondria, chloroplasts, and peroxisomes. Clastorovirus infections are accompanied by formation of multivesicular complexes from cell membranes of ER or mitochondrial origin. So far the mechanisms for vesicles formation have been obscure. In the replication-associated 1a polyprotein of Beet yellows virus (BYV) and other clastoroviruses, the region between the methyltransferase and helicase domains (1a central region (CR), 1a CR) is marginally conserved. Computer-assisted analysis predicts several putative membrane-binding domains in the BYV 1a CR. Transient expression of a hydrophobic segment (referred to here as CR-2) of the BYV 1a in Nicotiana benthamiana led to reorganization of the ER and formation of ~1-μm mobile globules. We propose that the CR-2 may be involved in the formation of multivesicular complexes in BYV-infected cells. This provides analogy with membrane-associated proteins mediating the build-up of “virus factories” in cells infected with diverse positive-strand RNA viruses (alphaviruses, picorna-like viruses, flaviviruses, and nidoviruses) and negative-strand RNA viruses (bunyaviruses).

Keywords: RNA virus replication, membrane vesicles, virus replication factory, endoplasmic reticulum modification, intracellular traffic

Eukaryotic viruses from disparate groups, both DNA and RNA containing ones, induce in cells drastic rearrangement of the membranes leading to formation of “virus factories”. It is suggested that these compartments protect virus nucleic acids from nucleases and specific cell defense mechanisms, along with creating sufficiently high concentration of interacting templates, replication proteins, and substrates. Recent excellent reviews cover the topic in full (den Boon and Ahlquist, 2010; Netherton and Wileman, 2011; Verchot, 2011). In this work, we attempt to assemble the ultrastructural data for several RNA virus groups with our findings of the membrane-modifying activity of a hydrophobic segment of the 1a polyprotein of beet yellows closterovirus (BYV).

OPEN ULTRASTRUCTURES: BUNYAVIRUSES

Bunyamwera virus (BunV) is an enveloped virus with a negative-sense RNA genome (12–13 kb) divided among three segments. In infected mammalian cells, BunV infection leads to formation of tubular structures (up to 50 per cell) encompassing the Golgi membranes, actin, myosin I, and viral non-structural protein NSm (Fontana et al., 2008). The tubes are in close contact with mitochondria and rough endoplasmic reticulum (ER), possibly serving as sources of host factors (e.g., translation elongation factor eEF-2 and ribosomal proteins) aiding the virus replication. Transcription and replication of BunV occur inside the “globular domain,” a U-like structure at one end of the tubes. The replicative complexes consisting of BunV nucleoproteins and RNA replicase, concentrate on the inner surface of the globular domain. BunV transcription yields mRNAs that are transferred to rough ER for translation, and replication produces the progeny nucleoproteins transported to the Golgi stacks modified by inserted BunV surface glycoproteins, for particle maturation (Fontana et al., 2008).

The model by Fontana et al. (2008) implies dynamic changes of, and communication between, the cell membranous compartments induced by bunyavirus infection, driven mostly by actin filaments and that the viral NSm. Apparently, the primary transcription of the gene encoding NSm must occur prior to changes in Golgi. The BunV replication-associated globular domains are open structures, unlike the vesicles and spherules induced by positive-sense RNA viruses (see below). This might reflect a nuclease-protected state of the BunV genomic and antigenic RNA templates, the absence of dsRNA (which might trigger RNA interference in cells) in negative-sense RNA viruses replication, and employment of strategies against host defense mechanisms (Leonard et al., 2006; Habyan et al., 2008).

CLOSED ULTRASTRUCTURES: NIDOVIRUSES

Nidoviruses are enveloped viruses with positive-sense RNA genomes of 13–30 kb (coronaviruses). The replication-associated proteins are encoded in overlapping
5'-open reading frames (ORFs) 1a and 1b, and translation of the genetic RNA yields polyproteins 1a and 1b autacatlytically processed into non-structural proteins forming the replication complex (reviewed in Gorbalenya, 2008). Using ER membranes as the main source, nidoviruses induce in cells double-membrane vesicles (DMVs, 150–300 nm in diameter), convoluted membranes (CMVs), and vesicle packets (VPs) of merged DMVs. These structures accumulate dsRNA and replication-associated proteins. The coronavirus msp3, msp4, and msp6 encompass transmembrane domains and are plausibly the key factors for membrane remodeling. Recent EM tomography analysis of the severe acute respiratory syndrome (SARS) virus-infected cells allowed refinement of the topology of SARS ultrastructures (Knoops et al., 2008). DMVs and VPs apparently form a network with connections to each other and to the ER; however, no openings to the cytosol were detected (Knoops et al., 2008). The apparently “closed” state of the DMV network poses a yet unresolved question as to how the coronavirus factory exchange ribonucleotide triphosphates (nNTP) substrates and newly synthesized RNA with the cytosol (Knoops et al., 2008).

Picornaviruses, small non-enveloped viruses with (+)RNA genome (∼8 kb, induce heterogeneous (50–500 nm) DMVs of the ER, Golgi and lysosomal origin (Bienz et al., 1990; Schlegel et al., 1996). Some commonality of the picornavirus and corona-

virus ultrastructures (particularly, the absence of apparent bridges to cytosol) has been noted (den Boon and Ahlquist, 2010; Netherton and Wileman, 2013). However, the question of whether picornaviruses indeed produce a “closed” network of DMVs awaits further study.

ULTRASTRUCTURES WITH NECKS: ALPHA-LIKE VIRUSES, NODAVIRUSES, FLAVIVIRUSES

The alpha-like superfamily unites positive-sense RNA viruses of animals (alphaviruses, rubiviruses, hepeviruses), and plants (e.g., bromoviruses, tobamoviruses, tymoviruses), whose genomes encode the conserved domains of methyltransferase (MTR), NTase/helicase (HEL), and RNA polymerase (POL; Goldbach, 1987). The replication system of Brome mosaic virus (BMV) has been studied in considerable detail. BMV has a tripartite genome (∼8 kb), with RNA-1 and RNA-2 coding, respectively, for proteins 1a (MTR–HEL) and 2a (POL). Early in infection, 1a binds to perinuclear ER via an amphipathic helix located in non-conserved region between the MTR and HEL (Liu et al., 2009). It should be noted parenthetically that in the capping enzyme of Semliki Forest alphavirus, the equivalent membrane-binding function is governed by an unrelated amphipathic helix within the MTR (Ahola et al., 1999). The BMV 1a protein causes membrane invaginations and engages 2α Pol and viral RNA templates (rendering them non-sensitive to nucleases) to the membrane (den Boon and Ahlquist, 2010). Each mature vesicle retains a thin neck (∼8 nm) to cytosol. The vesicle encompasses hundreds of 1a molecules forming inner layer, 10–20 2a Pol molecules, and a few molecules of genetic and antigeneic RNAs (Schwartz et al., 2002). Other alpha-like viruses (with the exception of distroviruses, see Section 5 of this paper) apparently induce morphologically similar ultrastructures, the line-up of 50–100 nm single-membrane vesicles, often with detectable necks to cytosol, originating from endosomes and lysosomes (alphaviruses), ER (tobamoviruses), tonoplasts (amloamoviruses), and chloroplasts (tymoviruses; reviewed in Netherton and Wile-

man, 2011; Verchot, 2011).

Flock house nodavirus (FHV) has compact bipartite (+)RNA genome (∼4.5 kb). RNA-1 encodes protein A, a multifunctional RNA replicase (Venter and Schneemann, 2008). The replicase molecules, via the N-terminal mitochondrial targeting signal and transmembrane domain, attach to the outer mitochondrial membrane and cause its invaginations, thus producing numerous 50-nm vesicles (spheres) with 10-nm necks into cytosol (Kopek et al., 2007). The interior of the vesicles is lined by ∼100 copies of replicase (Kopek et al., 2007). Hence, FHV and BMV, albeit distantly related evolutionarily, employ similar mechanisms of membranes modification and replication factory build-up.

Dengue flavivirus (DenV) is an enveloped virus with a monopartite (+)RNA genome (∼11 kb) encoding a single polypeptide precursor (Bartenschlager and Müller, 2008). Non-structural protein NS2A, NS4A, and NS4B bear transmembrane domains and are responsible for transformation of ER membranes into a network of interconnected VPs (∼90-nm single-membrane vesicles surrounded by common membrane), CVs, and virion budding sites (Welsh et al., 2009). The VPs retain dsRNA and viral replication proteins. Noteworthy, the DenV-induced net-

work has ∼8-nm neck-like openings to the cytosol (Welsh et al., 2009). Hence, the flavivirus factory combines features of the coronavirus network and the bromovirus and nodavirus necked ultrastructures.

INTRACELLULAR TRANSPORT OF REPLICA TION COMPLEXES

After entry of one or a few virus particles or viral nucleic acid molecules into the cell, these must move to the compartments where genome expression and replication proceed. The intracel-

lular transport of viral particles and replication complexes is rather an active process than mere diffusion, as cytosol is a highly viscous matter where translocation of molecules or complexes exceeding a ∼500-kDa limit is impeded (Luby-Phelps, 2000; Geiser and Way, 2006). Microinjection of fluorescently labeled tobacco mosaic virus (TMV) RNA into tobacco trichome cells rapidly leads to formation of granules associated with the ER, that are translo-

cated along the actin network (Christensen et al., 2009). Using TMV particles where RNA and coat protein were labeled with dif-

ferent fluorescent dyes, it was found that that both signals initially co-localized on the same granules, indicating that the virus may become attached to the ER/actin prior to uncoating (Christensen et al., 2009).

There is emerging evidence that the replication complexes and/or the associated membranous ultrastructures of (+)RNA viruses are transported along the cytoskeleton. Thus, the replication factories of turnip mosaic potyvirus (TuMV) are represented by heterogeneous vesicles of 0.6 to 4.3 μm in diameter accumu-

lating in the perinuclear zone. Interestingly, some vesicles are highly motile with an average velocity of 0.45 μm/s. Their movement is unidirectional and occurs in “stop and go” mode (Cotton et al., 2009; Grangeon et al., 2010, 2012). Likewise, the distribution of tobamoviruses replication-associated complexes in...
cells is dynamic and cytoskeleton-dependent (Más and Beachy, 1999; Secchi et al., 1999). The tobravirus 126-kDa (MTR-HEL) protein and the 126-kDa-induced vesicles bind to and traffic along the actin microfilaments (Liu et al., 2009). In the hepatitis C flavivirus system, interaction of two replication proteins, NS3 (RNA helicase) and NS5A (phosphoprotein), provides for binding and movement of the replication complex along microtubules and actin filaments (Liu et al., 2009). Mouse norovirus appears to utilize microtubules during the early stages of replication to establish localization of the replicative complexes proximal to the microtubule organizing center (Hyde et al., 2012). There is a significant overlap in the function and regulation of microtubule and actin networks in animal and plant systems (Goode et al., 2000; Barton and Overall, 2010; Sam-pathkumar et al., 2011). Many proteins, including molecular motors, have been demonstrated to associate with both networks to coordinate intracellular trafficking and movement of organelles (Petrášek and Schwarzerová, 2009; Viklund et al., 2009; Mucha et al., 2011; Meiri et al., 2012). A number of disparate viruses, including Semliki forest virus, vaccinia virus, and respiratory syncytial virus, have been shown to utilize, in a coordinated manner, both the microtubule and actin networks to facilitate replication (Newcombe et al., 2004; Kallevaard et al., 2005; Spaul et al., 2011).

Plant viruses often utilize cytoskeleton for the cell-to-cell movement (Harries et al., 2009, 2010). The movement proteins interact with replication complexes as well as with actin and microfilaments and microtubules (Grangeon et al., 2012; Solovyev et al., 2012; Tilsner et al., 2012). Both cytoskeletal systems may act as conduits for individual viral RNAs, transported ribonucleoproteins, as well as large replication complexes to reach plasmodesmata and thus to assist intercellular trafficking (Bamunusinghe et al., 2010). Many proteins, including molecular motors, have been demonstrated to associate with both networks to coordinate intracellular trafficking and movement of organelles (Petrashek and Schwarzerova, 2009; Viklund et al., 2009; Mucha et al., 2011; Meiri et al., 2012). A number of disparate viruses, including Semliki forest virus, vaccinia virus, and respiratory syncytial virus, have been shown to utilize, in a coordinated manner, both the microtubule and actin networks to facilitate replication (Newcombe et al., 2004; Kallevaard et al., 2005; Spaul et al., 2011).

MULTIVESICULAR COMPLEXES OF CLOSTEROVIRUSES

Members of the Closteroviridae family are related to alphas-like viruses with respect to conservation of key replication-associated protein domains (MTR-HEL-POL), but strikingly resemble nidoviruses in the genome size, layout, and expression pattern (Agranovsky, 1996; Karasev, 2000; Dolja et al., 2006). The beet yellows closterovirus (BYV) 15.5-kb genome encodes the replication-associated proteins in 5′-proximal ORFs 1a and 1b (Figure 1A). Translation of these ORFs is expected to yield N-terminal 1a and 1b polyproteins encompassing, respectively, the arrays of papain-like cysteine protease (PCP)–MTR–central region (CR)–HEL and PCP–MTR–CR–HEL–POL (L-PCP, leader PCP domain; CR, non-conserved CR; Figure 1A). The autocatalytic cleavage of BYV polyproteins by the PCP at Gly588/Gly589 releases the 66-kDa leader protein (Zinovkin et al., 2003) which activates amplification of the BYV RNA (Peremyshlyy et al., 1998; Peng and Dojla, 2000). The 1a and 1b polyproteins are further processed by a yet unknown proteolytic activity(ies) into at least three fragments, of which the 63-kDa MTR-containing and 100-kDa HEL-containing proteins were identified in infected plants (Erokhina et al., 2000). The ~70-kDa protein(s) corresponding to the 1a CR (Figure 1A) has not been yet detected.

In plant cells, closteroviruses induce the formation of ~100-nm DMVs and multivesicular complexes (single-membrane vesicles surrounded by a common membrane; Figure 1B; Cronshaw et al., 1986; Esau et al., 1967; Esau and Hoeft, 1971; Lesemann, 1986). The multivesicular complexes often neighbor with stacks of aligned filamentous BYV particles (Cronshaw et al., 1986; Esau et al., 1967). These ultrastructures broadly resemble the DMVs and VPs produced by nidoviruses and flaviviruses (see Sections 2 and 3 in this paper), and are referred to here as DMVs and VPs for simplicity. The BYV replication-associated proteins (L-PCP, MTR, and HEL) co-localize with the DMV and VP membranes, supporting the role of these ultrastructures as replication platforms (Erokhina et al., 2001; Zinovkin et al., 2003). The membranes in closterovirus DMVs and VPs are likely to be derived from ER (Cronshaw et al., 1986). Whether these ultrastructures have “closed” or “necked” state, remains unknown.
Inspection of the BYV 1a CR sequence (approximately aa 1100 to 1800; Figure 1A) using hydropathicity plot drawing software (protscale; Kyte and Doolittle, 1982) revealed several hydrophobic stretches longer than 20 aa forming putative alpha helixes, which resembled membrane-binding domains. Two segments of the 1a CR predicted to form separate hydrophobic domains, CR-1 (aa 1114–1301), and CR-2 (aa 1301–1498; Figure 1A), were cloned as green fluorescent protein (GFP) fusions in a binary vector. Upon transient expression in N. benthamiana leaves the fusions showed distinct distribution of the fluorescence. The GFP:CR-1 produced aggregates of heterogeneous shape and size (0.2–1 μm, average 0.5 μm) accumulated at the cell periphery (Figure 2A), whereas the GFP:CR-2-induced uniform globules ∼1 μm in diameter mostly concentrated around the nucleus (Figures 2B,C). Some CR-2-induced globules were apparently motile (Figure 2B). Further, we found that the CR-2 globules co-localized with actin filaments (Figure 2D), suggesting that the globules might be translocated along the actin network. In cells expressing the GFP:CR-2, the ER network transformed into diffuse membrane reservoirs partially co-localized with the perinuclear groups of GFP:CR-2 globules (cf. Figures 2E–H). These data corroborate the recent findings by Bryce Falk and colleagues for lettuce infectious yellows virus (genus Crinivirus of the Closteroviridae), i.e., the rearrangement of perinuclear ER in N. tabacum protoplasts inoculated with LIV RNA1 transcripts, specifically the R1-322 transcript encoding only the 1a and 1ab replicative proteins (Wang et al., 2010).

With due caution in interpreting the results presented in Figure 2, it is tempting to speculate that the phenotypes induced by the BYV CR-2 segment might reflect the formation of BYV replication-associated ultrastructures. It is possible that the build-up of closterovirus replication platforms depends on the ER membranes and is accompanied by essential changes in perinuclear ER, and that the BYV 1a protein contains a membrane anchor (CR-2) in the region between MTR and HEL, as is the case with BMV 1a protein (Liu et al., 2009). Further study is necessary to elucidate the fine structure of the BYV CR-2-induced globules.
and their relationship to DMVs and VPVs produced in naturally infected cells, as well as to verify the significance of the actin network in transport of the closterovirus factory components within the cell.

ACKNOWLEDGMENTS

This study has been supported by grant 10-04-00885 from the Russian Foundation for Basic Research. The authors are thankful to Joseph Anbeek for the critical reading of the manuscript.

REFERENCES

Agranovsky, A. A. (1996). Principles and mechanisms of viral entry into the cell. Adv. Virus Res. 47, 119–158.

Agranovsky, A. A., Koszin, E. V., Boyko, V. P., Mans, E., Frouci, R., Laimma, N. A., et al. (1994). Yf virus induce complete genome structure and identification of a leader polyprotein-like domain. Virology 198, 312–334.

Ahola, T., Lampi, A., Auton, P., and Kaina, L. (1999). Somatoviroid virus mRNA capping enzyme requires association with anionic membrane phospholipids for activity. EMBO J. 18, 3164–3172.

Bamman, M., Haimer, C. L., Nelson, R. S., Sandefur, A. A., Yu, C. M., Silva, M. A., et al. (2009). Analysis of potato virus X replicate and TGBp1 subcellular locations. Virology 393, 272–285.

Barthelschlag, R., and Miller, S. C., et al. (2009). The 5′-terminal cleavage of closterovirus RNA replication complex vesicles are targeted to the phloem and to movement in the sieve tube. J. Virol. 83, 571–580.

Bartenschlager, R., and Miller, S. C. (2010). Cryofixation rapidly precludes cytoskeletal array reorganization of poliovirus RNA replication complex vesicles. Virology 403, 237, 79–88.

Bienz, K., Egger, D., Troxler, M., and Cotton, S., Grangeon, R., Thivierge, J., and Laimma, N. A., et al. (2009). The 5′-terminal cleavage of closterovirus RNA replication complex vesicles are targeted to the phloem and to movement in the sieve tube. J. Gen. Virol. 90, 3122–3131.

Bochar, G., and Müller, S. (2008). Molecular aspects of Dengue virus replication. Future Microbiol. 3, 153–165.

Boron, D. A., and Overall, R. L. (2010). Cytoskeleton rapidly precludes cytoskeletal array of leaf epidermal cells revealing microtubule co-alignments between neighboring cells and adjacent actin and microtubules in the cortex. J. Microsc. 237, 79–88.

Buurman, K., Egender, D., Treseler, M. A., and Passmore, L. (1990). Structural organisation of poliovirus RNA replication factories. J. Cell Sci. 71, 683–693.

Brinkman, I. N., tighten, R. K., Harmen, P., Parson, K., Laimma, N. A., et al. (2009). The 5′-terminal cleavage of closterovirus RNA replication complex vesicles are targeted to the phloem and to movement in the sieve tube. J. Virol. 83, 791–800.

Christensen, N. L., Türen, B., Ball, K., Hartman, P., Parson, K., Laimma, N. A., et al. (2009). The 5′-terminal cleavage of closterovirus RNA replication complex vesicles are targeted to the phloem and to movement in the sieve tube. J. Virol. 83, 791–800.

Cotton, S., and Grangeon, R., Laimma, N. A., et al. (2009). Turnip mosaic virus RNA replication complex vesicles are mobile, align with microfilaments, and are each derived from a single viral protein. Virology 385, 10468–10471.

Czechowska, J., Hochstrasser, L., and Erna, K. (1996). Ultrastructural features of Beta leukemia infected with Beta yellow virus. Virus Res. 41, 428–443.

Delp, V. K., Koskin, E. V., and Vallotton, J. P. (2006). Comparative and functional genomics of closterovirus RNA virus factories. J. Virol. 80, 58–51.

Donk, J., López-Montes, N., Elliott, R. M., and Fernandez, J. J., and Elliott, R. M. (2006). Functional cooperation between the microtubule and actin cytoskeletons. Curr. Opin. Cell Biol. 18, 65–71.

Eshkol, T., N., Vimikul, M. V., Zinovik, R. A., Lesemann, D. E., Jellmann, W., Koskin, E. V., et al. (2001). Ultrastructural localisation and epitope mapping of host yel- lows closterovirus multifilaments and helicase-like proteins. J. Gen. Virol. 82, 1983–1994.

Essén, T. N., Vimikul, M. V., Zinovik, R. A., Jellmann, W., and Agranovsky, A. A. (2008). Donor of host yellows closterovirus multifilaments-like and helicase-like proteins in vivo using molecular antibodies. J. Gen. Virol. 90, 397–402.

Eshkol, K., Dvornik, J., and Hoffer, L. L. (1997). Relation of host yel- lows virus localization and movement in the sieve tube. J. Cell Biol. 62, 71–87.

Eshkol, K., and Hoffer, L. L. (1976). Cytology of host yel- lows virus in infection in Tetranychus. J. Parasitology 62, 255–272.

Frenkel, R., Caron, A. S., and Caron, A. S. (1999). Cytoskeleton and immuno- cytochemistry of the inclusion induced by grapevine associated closterovirus GGLRaV-1 and GGLRaV-3. Revue de Pathologie Végétale 85, 83–94.

Gevers, F., Torda, R., Rivasca, S., and Rivasca, S. (1992). Cysteine-pro- tease of leaf-diploid-associated virus III (CLCuDDV-III). Revue de Pathologie Végétale 85, 83–94.

Ghosh, S., Jeng, K. S., and Blancaflor, E. B., Nelson, R. S. (2008). Differing requirements for actin and myosin by plant viruses for sustained intercellular movement. Proc. Natl. Acad. Sci. U.S.A. 105, 17974–17979.

Harnes, P. A., Schode, J. E., and Nelson, R. S. (2010). Intraflagellar transport of virus and their components during the assembly of the inclusion bodies induced by grapevine leafroll-associated virus III. Mol. Plant Microbe Interact. 11, 1351–1359.

Haseloff, J., Severson, B. R., Prasher, D. C., and Hodge, A. (1997). Removal of a cryptic intron and subsititute local- ization of genes fluorescent protein are required to mark transgenic An- thoplocys plants brightly. Proc. Natl. Acad. Sci. U.S.A. 94, 2123–2127.

Hijikawa, H., Kikuchi, T., and Hase, J. (2012). Processing of the mini-organelle. J. Virol. 86, 15396–15406.

Jelkmann, W., Koonin, E. V., et al. (2006). Comparative and functional genomics of closteroviruses. Annu. Rev. Microbiol. 60, 241–316.

Kallewaard, N. L., Bowen, A. L., and Prasher, D. C., et al. (2009). Processing of the 5′-terminal cleavage of closterovirus RNA replication complex vesicles with microtubules and actin filaments is dependent on the interaction of NPS and NPSA. J. Virol. 82, 8858–8868.

Lee, L. Y., Fung, M. J., Kang, Y. L., and Gardin, S. B. (2008). Vectors for multi-color bimolecular florescence microscopy complementation is investigat- ing protein-protein interactions in living plant cells. Plant Methods 4, 24.

Levin, V. H., Kohli, A., Hart, T. J., and Elliott, R. M. (2006). Inter- action of Barnamyya Orthobu- voraviruses Ns protein with mediator protein MEBP3: a mechanism for inhibiting the interferon response. J. Virol. 80, 5667–5675.

Lesemann, D. E. (1980). “Cytopathology,” in The Plant Viruses, ed. R. G. Milne, New York: Plenum, vol. 4, 175–219.

Lee, L. Y., Blanckou, E. B., and Nelson, R. S. (2005). The Tobacco mosaic virus 12-kilodalton RNA replication complex, a con- stituent of the virus replication complex, alone of within the complex aligns with and traffics along microfilaments. Plant Physiol. 138, 3503–3505.
controls multiple roles of Brome mosaic virus protein 1a in RNA replication complex assembly and function. PLoS Pathog. 5:e1000351. doi: 10.1371/journal.ppat.1000351

Luby-Phelps, K. (2000). Cytoskeleton and physical properties of cytoplasm: volume, viscosity, diffusion, intracellular surface area. Int. Rev. Cytol. 192, 219–252.

Mian, P., and Baechle, K. N. (1999). Replication of tobacco mosaic virus on endoplasmic reticulum and role of the cytoskeleton and virus movement protein in intracellular distribution of viral RNA. J. Cell Biol. 147, 945–958.

Mori, D., Marshall, C. B., Groves, M. A., Kim, R., Balan, M., Suarez, F., et al. (2012). Mechanistic insight into the microtubule and actin cytoskeleton coupling through dynamin-dependent RhGDF inhibition. Mol. Cell 9, 642–653.

Munson, A. F., Schimenti, A., Wittinghofer, A., and Berkley, A. (2011). Rho proteins of plants – functional cilia and regulation of cytoskeletal dynamics. Acta. J. Cell Biol. 90, 954–965.

Netterton, C. L., and Wilmot, T. (2011). Virus factories, double-membrane vesicles and virophage gener- ated in animal cells. Curr. Opin. Cell Biol. 1, 388–397.

Nowosad, T. P., Sapienza, N., and Wodzicki, M. (2004). SBC mediates a switch from microtubule- to actin- based motility of vaccinia virus. Sci. Rev. 306, 124–129.

Penn, E. J., and Helmke, M. (2012). RNA transport during TMV cell-to-cell movement. Front. Plant Sci. 3:193. doi: 10.3389/fpls.2012.00193

Peng, C. W., and Dola, V. V. (2004). Leader proteinase of the best yellow closterovirus mutation analysis of the function in genome amplification. J. Virol. 74, 9796–9807.

Peerbolts, V. E., Haymaker, E., and Dolja, V. V. (1998). Genes required for replication of the 15.5-kilobase RNA genome of a plant cladosporiella virus. J. Virol. 72, 5570–5576.

Pestrelli, L., and Schwarzerová, K. (2009). Actin and microtubule cytoskeleton interactions. Curr. Opin. Plant Biol. 12, 728–734.

Sambandamurthy, A., Lindboeem, J. L., Deboli, S., Gutierrez, R., Rlekhardt, D. W., Kersal, T., et al. (2011). Live cell imaging reveals structural association between the actin and microtubule cytoskeleton in Arabidopsis thaliana Plant Cell 23, 2502–2513.

Schlegel, A., Schild, T. H., Ladi- sky, M. S., and Kirkguard, R. (1996). Cellular origin and ultrastructure of membranes induced during poliovirus infection. J. Virol. 70, 6576–6588.

Scheide, E., Harries, P. A., and Nielson, R. S. (2011). Intracellular transport of plant viruses: finding the door out of the cell. Mol. Plant 4, 813–831.

Schwartz, M., Chen, J., Jonza, M., Sulli- van, M., den Boon, J., and Albrecht, F. (2002). A positive-strand RNA virus replication complex parallels forms and function of retrovirus capsids. Mol. Cell 9, 505–514.

Shemyakina, E. A., Solovyev, A. G., Lonter, O. G., Pospelov, V. I., Schneemann, A., and Morozov, S. Y. (2012). Recent advances in research of plant virus movement protein TGBp1. Curr. Opin. Virol. 3, 388–397.

Shemyakina, E. A., Solovyev, A. G., Lonter, O. G., Pospelov, V. I., Schneemann, A., and Morozov, S. Y. (2011). The role of microtubule association in plastidial targeting of Potato mop-top virus movement protein TGBp1. Curr. Opin. Virol. 5, 1–11.

Shemyakina, E. A., Solovyev, A. G., Morozov, S. Y. (2012). Recent advances in research of plant virus movement mediated by triple gene block. Front. Plant Sci. 3:276. doi: 10.3389/fpls.2012.00276

Spud, P., Balbottin, G., Hellstein, K., Godbunen, A. V., Isakidis, E., and Ahola, T. (2011). Assembly of alphavirus replication complexes from RNA and protein components in a novel trans-replication system in mammalian cells. J. Virol. 85, 4730–4751.

Succi, J., Ding, X., Shi, L., Chen, O., Ben- dahlmann, M., Cho, M. J., Nelson, R. S., et al. (1999). Development of tobacco mosaic virus infection sites in Nicotiana benthamiana. Mol. Plant Microbe Interact. 12, 143–152.

Tilson, J., and Opperku, K. I. (2012). Missing links – the connection between replication and movement of plant RNA viruses. Curr. Opin. Virol. 2, 699–705.

Tilson, J., Lim, E., Wright, K. M., Bell, K., Roberts, A. G., Lacomme, C., et al. (2012). The TGB movement protein of Potato virus X reorganizes actin and endomembranes into the X-body, a viral replication factory. Plant Physiol. 158, 1590–1570.

Tett, A. A., and Schneemann, A. (2008). Recent insights into the biology and biomedical applications of Flock House virus. Cell. Mol. Life Sci. 65, 2675–2687.

Verschoor, J. (2011). Wrapping membranes around plant virus infection. Curr. Opin. Plant Biol. 14, 386–395.

Viklund, I. M., Aspenström, P., Meas- terr, J., and Schwarzerová, K. (2012). W AFL, a new protein of the cell movement mediating triple gene block complex. Front. Plant Sci. 3:38. doi: 10.3389/fpls.2013.00038

Viklund, I. M., Aspenström, P., and Meas- terr, J., and Schwarzerová, K. (2012). W AFL, a new protein of the cell movement mediating triple gene block complex. Front. Plant Sci. 3:38. doi: 10.3389/fpls.2013.00038

Viklund, I. M., Aspenström, P., and Meas- terr, J., and Schwarzerová, K. (2012). W AFL, a new protein of the cell movement mediating triple gene block complex. Front. Plant Sci. 3:38. doi: 10.3389/fpls.2013.00038

Viklund, I. M., Aspenström, P., and Meas- terr, J., and Schwarzerová, K. (2012). W AFL, a new protein of the cell movement mediating triple gene block complex. Front. Plant Sci. 3:38. doi: 10.3389/fpls.2013.00038

Wahl, S., Miller, S., Romero-Brey, L., Mez, A., Black, C. R., Wältier, P., et al. (2009). Composition and threedimensional architecture of the dengue virus replication and assembly sites. Cell Host Microbe 5, 365–375.

Wang, J., Stewart, L. R., Kiss, Z., and Falck, B. W. (2010). Lactate infectious yellow virus (IYYV) RNA 5- encoded P34 is an RNA-binding protein and exhibits perinuclear localization. Virology 403, 67–77.

Wang, J., Stewart, L. R., Kiss, Z., and Falck, B. W. (2010). Lactate infectious yellow virus (IYYV) RNA 5- encoded P34 is an RNA-binding protein and exhibits perinuclear localization. Virology 403, 67–77.

Conflict of Interest Statement: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential con- flict of interest.

Received: 24 December 2012; paper pend- ing published 28 January 2013; accepted: 14 February 2013; published online: 6 March 2013.

Clanton, G., Shively, A., and Shively, F. (2011). Beet yellow virus and related replicative components: parallels with other RNA viruses. Front. Microbiol. 2:36. doi: 10.3389/fmicb.2011.00036.

This article was submitted to Frontiers in Virology, a specialty of Frontiers in Microbiology.

Copyright © 2013 Gushchin, Solovyev, and Verchot. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits use, distribution, and reproduction in other forums, provided that the original authors and source are credited and that copyright notice is attached to any copies.

Guashchin et al. 2013.00038