LAGRANGIAN KLEIN BOTTLES IN \mathbb{R}^{2n}

STEFAN NEMIROVSKI

The n-dimensional Klein bottle K^n, $n \geq 2$, is obtained by gluing the ends of the cylinder $S^{n-1} \times [0, 1]$ via an orientation reversing isometry of the standard $(n-1)$-sphere $S^{n-1} \subset \mathbb{R}^n$.

Theorem. The n-dimensional Klein bottle K^n admits a Lagrangian embedding into the standard symplectic $2n$-space $(\mathbb{R}^{2n}, \omega_0)$ if and only if n is odd.

The existence of Lagrangian embeddings of odd-dimensional Klein bottles into $(\mathbb{R}^{2n}, \omega_0)$ was proved by Lalonde [10]. As observed in [14], an explicit embedding is suggested by Picard–Lefschetz theory. Indeed, the antipodal map

$$\mathbb{R}^{2k+1} \ni S^k \ni (x_1, x_2, \ldots, x_{2k+1}) \mapsto (-x_1, -x_2, \ldots, -x_{2k+1}) \in S^{2k} \subset \mathbb{R}^{2k+1}$$

reverses the orientation on $S^{2k} \subset \mathbb{R}^{2k+1}$ and therefore the formula

$$S^{2k} \times [0, 1] \ni (x_1, \ldots, x_{2k+1}, t) \mapsto (e^{\pi it} x_1, \ldots, e^{\pi it} x_{2k+1}) \in \mathbb{C}^{2k+1}$$

defines an embedding of the odd-dimensional Klein bottle K^{2k+1} into $\mathbb{C}^{2k+1} = \mathbb{R}^{4k+2}$. It is easy to check that this embedding is Lagrangian with respect to the standard symplectic form $\omega_0 = \frac{i}{2} \sum dz_\ell \wedge d\bar{z}_\ell$.

Thus, the main task is to prove that an even-dimensional Klein bottle does not admit a Lagrangian embedding into $(\mathbb{R}^{2n}, \omega_0)$. For the usual Klein bottle K^2, this problem was proposed by Givental’ [6] and resolved by Shevchishin [10]. The argument in the general case follows the lines of the author’s alternative proof of Shevchishin’s result [15] (cf. also [4]). Namely, self-linking invariants introduced by Rokhlin and Viro are used to show that a suitable Luttinger-type surgery along a Lagrangian $K^{2k} \subset \mathbb{R}^{4k}$ would produce an impossible symplectic manifold.

1. **Rokhlin and Viro indices for totally real Klein bottles.** Let us fix n and denote the n-dimensional Klein bottle simply by K. Let $m \subset K$ be a fibre of the natural fibre bundle $K \to S^1$. Then m is an embedded $(n-1)$-dimensional sphere in K. Note that m is co-orientable and choose a non-vanishing normal vector field $\nu_{m,K}$ on m.

Consider now a totally real embedding $K \hookrightarrow \mathbb{C}^n$, i.e., an embedding such that $T_p K$ is transversal to $iT_p K$ at every point $p \in K$. (For a Lagrangian embedding, the subspaces $T_p K$ and $iT_p K$ would be orthogonal with respect to the standard metric on \mathbb{C}^n.) Let m^\sharp be the pushoff of m in the direction of the vector field $i\nu_{m,K}$. The mod 2 homology class $[m^\sharp] \in H_{n-1}(\mathbb{C}^n \setminus K; \mathbb{Z}/2)$ is independent of the choice of $\nu_{m,K}$. The linking number

$$V = \text{lk}(K, m^\sharp) \in \mathbb{Z}/2$$

is called the **Viro index** of $m \subset K$ (cf. [15], §1.2).

In order to compute V, we choose an immersed n-ball $M = \iota(B^n) \subset \mathbb{C}^n$ such that

a) $\partial M = \iota(\partial B^n) = m$, and M is normal to K along m;

b) the self-intersections of M and the intersections of its interior with K are transverse double points;

c) the tangent (half-)space of M at a point $p \in m = \partial M$ is spanned by $T_p m$ and $i\nu_{m,K}$;

The author was supported by grants from DFG, RFBR, Russian Science Support Foundation, and the programme “Leading Scientific Schools of Russia.”
d) the $\mathbb{R}C$-singular points of M are generic (see the definitions in §3 below). (Immersions satisfying (a) and (b) are called membranes spanned by m.) Note that by (c) the pushoff of m inside M is precisely m^\sharp, and hence

$$V = \#(M \cap K) \mod 2,$$

(2)

where $\#(M \cap K)$ denotes the number of interior intersection points of M and K.

Suppose now that n is even and consider the Rokhlin index of M defined by the formula

$$R = n(M, \nu_{m,K}) + \#(M \cap K),$$

(3)

where $n(M, \nu_{m,K}) \in \mathbb{Z}$ is the obstruction to extending $\nu_{m,K}$ to a non-vanishing normal vector field on M, i.e., the algebraic number of zeroes of a generic normal extension. (For odd n, this number is defined only mod 2.)

Lemma 1. $R = 0 \mod 2$.

This will be proved in §2 using nothing much. Note, however, that this is the only place where the assumption that n is even will be used in a crucial way (see Remark 5).

Lemma 2. $n(M, \nu_{m,K}) = 1 \mod 2$.

This will be proved in §4 using a topological count of $\mathbb{R}C$-singularities recalled briefly in §3 following Domrin [2].

Lemma 3. $V = 1 \mod 2$.

This follows immediately from formulas (2) and (3) and the preceding two lemmas and will play a key role in the proof of the main theorem in §5 and §6.

2. **Proof of Lemma 1.** Cut K along m and glue two copies of M into the resulting ‘holes’ to obtain an n-sphere S. Choose an orientation on S and note that it induces the same orientation on each of the two copies of M. (If we had $S^{n-1} \times S^1$ instead of the Klein bottle, the orientations would be opposite.) Let ν be a generic normal extension of $\nu_{m,K}$ to M. Transform S into a generically immersed sphere by pushing the two copies of M apart in the direction of ν and then smoothing the result.

Now we can compute the normal Euler number of S and the algebraic number of its double points. Namely,

$$n(S) = n(K) + 2n(M, \nu_{m,K}) = 2n(M, \nu_{m,K}),$$

where we have used the fact that for a totally real embedding of K the normal Euler number is equal to the Euler characteristic of K which is zero. Similarly,

$$\#_{alg}(S) = n(M, \nu_{m,K}) + 2 \#_{alg}(M \cap K) + 4 \#_{alg}(M),$$

where the signs in $\#_{alg}(M \cap K)$ and $\#_{alg}(M)$ are given by the induced orientations on M and K as subsets of S.

On the other hand, by the usual formula for the homological self-intersection index of an oriented immersed submanifold, we have

$$[S] \cdot [S] = n(S) + 2 \#_{alg}(S) = 4\left(n(M, \nu_{m,K}) + \#_{alg}(M \cap K) + 2 \#_{alg}(M)\right).$$

The homology class $[S]$ is obviously trivial in \mathbb{C}^n, hence

$$n(M, \nu_{m,K}) + \#_{alg}(M \cap K) + 2 \#_{alg}(M) = 0,$$

and the result follows from (3) because $\#_{alg}(M \cap K) = \#(M \cap K) \mod 2$. □
Remark 4. The above argument and the result for \(n = 2 \) go back to Rokhlin (see [8] and the proof of Lemma 1.12 in [13]). Note that we are actually proving a congruence modulo 8 using a trivial case of van der Blij’s lemma to conclude that \([S] \cdot [S] = 0 \mod 8\).

Remark 5. For odd \(n \), the residue \(R \mod 2 \) is well-defined but the lemma is false. (Our proof does not work because the intersection index is not symmetric.) For instance, for the embedding given by (1), the totally real \(n \)-ball \(\{(z_1, \ldots, z_n) \in \mathbb{C}^n \mid z_j \in \mathbb{R}, |z| \leq 1\} \) is a membrane satisfying conditions (a)-(d) and such that \(R = 1 \mod 2 \).

3. \(\mathbb{R}C \)-singularities and characteristic classes. Here’s a digression needed for the proof of Lemma 2. The material is mostly taken from [2] (cf. also [9] and [17]).

Let \(j : N \to \mathbb{C}^n \) be an immersion of a real oriented \(n \)-dimensional manifold. (Note that the real dimension of \(N \) is equal to the complex dimension of \(\mathbb{C}^n \).) A point \(p \in N \) is called \(\mathbb{R}C \)-singular if the dimension of the maximal complex subspace in \(j_\ast T_p N \subset \mathbb{C}^n \) is positive (i.e., larger than expected). This dimension is called the order of an \(\mathbb{R}C \)-singular point. Denote by \(C_\mu(N) \) the set of \(\mathbb{R}C \)-singular points of order \(\mu \) and by \(C(N) \) the set of all \(\mathbb{R}C \)-singular points.

Let \(j_C^\ast : TN \otimes \mathbb{C} \to j_\ast T\mathbb{C}^n \) be the complex vector bundle map given by \(j_C^\ast(v \otimes \lambda) := j_\lambda(v) \). Its kernel at a point \(p \in N \) is isomorphic to the maximal complex subspace of \(j_\ast T_p N \). Thus, \(C_\mu(N) \) coincides with the singularity set \(\Sigma_\mu = \{ p \in N \mid \text{rk}_C j_C^\ast = n - \mu \} \). If the immersion \(j \) is generic, then by \[2\], Lemma 1.3, the bundle map \(j_C^\ast \) is generic in the sense of [13]. Hence, each \(C_\mu(N) \) is an oriented \((n - 2\mu^2) \)-dimensional submanifold, \(C(N) = \overline{C_1(N)} \), and there exists a canonical desingularisation \(\widetilde{\Sigma}_1 \to \Sigma_1 = C(N) \) such that the complex line bundle \(\ker j_C^\ast|_{\Sigma_1} \) extends to \(\widetilde{\Sigma}_1 \). (Explicitly, \(\widetilde{\Sigma}_1 \) is the closure of the image of \(\ker j_C^\ast|_{\Sigma_1} \) in the projectivisation of \(TN \otimes \mathbb{C} \) and the extension of \(\ker j_C^\ast|_{\Sigma_1} \) is given by the tautological line bundle.) The extended bundle lies in the kernel of the pull-back of \(j_C^\ast \) to \(\widetilde{\Sigma}_1 \) and therefore corresponds to a complex line subbundle \(Z \) of the pull-back of \(TN \).

Assume now that the manifold \(N \) is compact without boundary and its dimension \(n \) is even. Define \([C(N)]\) as the fundamental class of the oriented manifold \(\widetilde{\Sigma}_1 \). Then from Theorem 3 and Remark 1.4 in [2] one obtains the formula

\[
\langle c_1(Z)^{(n/2 - 1)}, [C(N)] \rangle = \langle c_{n/2}(-TN \otimes \mathbb{C}), [N] \rangle,
\]

where \(-TN \otimes \mathbb{C}\) denotes the \(K \)-theoretic inverse of \(TN \otimes \mathbb{C} \). In the statements of the results in [2] it is assumed that \(C(N) = C_1(N) \) but the proofs carry over to the general case with formal changes. (\(\widetilde{\Sigma}_1 \) has to be used instead of the set \(\Sigma \) introduced on p. 910 of [2].)

Remark 6. The \(\mathbb{R}C \)-singular points of a generic immersed surface in \(\mathbb{C}^2 \) are isolated (and more often referred to as ‘complex points’ or ‘complex tangencies’). Formula (1) reduces in this case to the elementary formula \(I_+ - I_- = 0 \), where the Laplace indices \(I_\pm \) of an oriented immersed surface are defined by counting its complex points with suitable signs (see [2], §3).

4. Proof of Lemma 2 (cf. [15], Proof of Lemma 1.13). Let us construct a normal extension of \(\nu_{m,K} \) to \(M \) in the following way. Consider the vector field \(i\nu_{m,K} \). It is tangent to \(M \) and transverse to \(\partial M \) by the choice of \(M \). Let \(\tau \) be an extension of this vector field to a tangent vector field on \(M \) with a single transverse zero. (Recall that \(M \) is a ball.) Then \(-i\tau \) gives a normal extension of \(\nu_{m,K} \) that vanishes at the zero of \(\tau \) and at the points where \(\tau \) lies in a non-trivial complex subspace contained in \(T_p M \). For a sufficiently generic \(\tau \), the latter points lie in \(C_1(M) \). In other words, we have to count the zeroes of a (generic) section of the quotient bundle \(E = \widetilde{T}M/Z \), where \(\widetilde{T}M \) is the pull-back of \(TM \) to \(\widetilde{\Sigma}_1 \). As we only need the answer mod 2, it is given by the evaluation of the top Stiefel–Whitney class \(w_{n-2}(E) \) on the fundamental class \([C(M)] := [\widetilde{\Sigma}_1]\).
Since TM is trivial, we have
\[1 = (1 + w_2(Z))(1 + w_1(E) + \cdots + w_{n-2}(E)) \] (5)
by the Whitney formula. It follows immediately that
\[w_{n-2}(E) = w_2(Z)^{(n/2-1)} \]
and hence
\[\langle w_{n-2}(E), [C(M)] \rangle = \langle w_2(Z)^{(n/2-1)}, [C(M)] \rangle = \langle c_1(Z)^{(n/2-1)}, [C(M)] \rangle \mod 2. \]

In order to show that the latter quantity vanishes (already as an integer), we apply formula (4) to an immersed sphere S similar to the one used in the proof of Lemma 1 above. Namely, we glue two copies of M to K cut along m but this time only smoothen the result near m. Condition (c) in (4) ensures that this smoothing can be done so that no additional $\mathbb{R}C$-singularities are created and hence the set $C(S)$ consists of two copies of $C(M)$ with the same orientation and the same line bundle Z. Thus,
\[2\langle c_1(Z)^{(n/2-1)}, [C(M)] \rangle = \langle c_1(Z)^{(n/2-1)}, [C(S)] \rangle \equiv \langle c_{n/2}(-TS \otimes \mathbb{C}), [S] \rangle = 0. \]

It follows that $\langle w_{n-2}(E), [C(M)] \rangle = 0 \mod 2$ and hence the normal projection of $-i\tau$ has an odd number of zeroes, which proves that $n(M, \nu_{m,K}) = 1 \mod 2$. \hfill \square

\textbf{Remark 7.} For odd n, the vanishing of $w_{n-2}(E)$ follows already from (5) without any appeal to (4). Thus Lemma 2 is true in that case as well.

5. **Dehn surgery.** Let $U \supset K$ be a tubular neighbourhood of a totally real embedded Klein bottle $K \subset \mathbb{C}^n$. We consider two distinguished classes in the homology group $H_{n-1}(\partial U; \mathbb{Z}/2)$. Firstly, the fibre class $[\delta]$ generating the kernel of the inclusion homomorphism $H_{n-1}(\partial U; \mathbb{Z}/2) \to H_{n-1}(U; \mathbb{Z}/2)$ and, secondly, the class $[m^2]$ of the \mathbb{C}-normal pushoff of m introduced in (4).

\textbf{Lemma 8 (cf. [15], Theorem 2.2).} Consider a surgery $X = \overline{U} \cup_f (\mathbb{C}^n \setminus U)$ defined by a diffeomorphism $f : \partial U \to \partial U$ such that
\[f_*[\delta] = [\delta] + [m^2]. \] (6)

If n is even, then K is homologically non-trivial in X. In particular, $H_n(X; \mathbb{Z}/2) \neq 0$.

\textbf{Proof.} As n is even, we know that $lk(K, m^2) = 1 \mod 2$ by Lemma 3 and the definition of the Viro index. Since $lk(K, \delta) = 1 \mod 2$ by definition, it follows that the sum $[\delta] + [m^2]$ bounds a mod 2 chain in $\mathbb{C}^n - U$. By property (6), this chain and the n-ball bounded by δ in \overline{U} are glued into a mod 2 cycle in X whose intersection index with K is 1 mod 2. \hfill \square

\textbf{Lemma 9.} If X is orientable, then $H_2(X; \mathbb{R}) = 0$.

\textbf{Proof.} Note first that $H_2(X; \mathbb{R}) = H^{2n-2}_c(X; \mathbb{R})$ by Poincaré(-Lefschetz) duality. Since $X \setminus K = \mathbb{C}^n \setminus K$, an inspection of the cohomology long exact sequences
\[\cdots \to H^{2n-3}_c(K; \mathbb{R}) \to H^{2n-2}_c(\mathbb{C}^n \setminus K; \mathbb{R}) \to H^{2n-2}_c(\mathbb{C}^n; \mathbb{R}) \cong 0 \]
\[\cdots \to H^{2n-2}_c(X \setminus K; \mathbb{R}) \to H^{2n-2}_c(X; \mathbb{R}) \to H^{2n-2}_c(K; \mathbb{R}) \cong 0 \]
shows that $\dim_{\mathbb{R}} H^{2n-2}_c(X; \mathbb{R}) = \dim_{\mathbb{R}} H^{2n-3}_c(K; \mathbb{R})$. Thus, $\dim_{\mathbb{R}} H^{2n-2}_c(X; \mathbb{R})$ is zero for all $n \geq 3$ and does not exceed one for $n = 2$. In the latter case, however, it follows from Euler characteristic additivity that the dimension of $H^2_c(X; \mathbb{R})$ is even and hence also equals zero. \hfill \square
6. Symplectic rigidity. Proof of the main result. If the surgery in Lemma 8 were symplectic (i.e., there were a symplectic form on \(X\) restricting to \(\omega_0\) on \(U\) and \(\mathbb{C}^n \setminus \mathcal{U}\)), then the conclusions of Lemmas 8 and 9 for an even \(n\) would contradict the following result:

Theorem 10 (Eliashberg–Floer–McDuff [12], [3]). Let \((X, \omega)\) be a symplectic manifold symplectomorphic to \((\mathbb{R}^{2n}, \omega_0)\), \(n \geq 2\), outside of a compact subset. Assume that \([\omega]\) vanishes on all spherical elements in \(H_2(X; \mathbb{R})\). Then \(X\) is diffeomorphic to \(\mathbb{R}^{2n}\).

Remark 11. If \(n = 2\), then \(X\) is actually symplectomorphic to \((\mathbb{R}^4, \omega_0)\) by Gromov’s classical result [7]. Note, however, that we only need to know that \(X\) must have the \(\mathbb{Z}/2\)-homology of the ball, which is proved in all dimensions by a basic application of pseudoholomorphic curves (see [12], §3.8).

Thus, to prove the main theorem it remains to show that for a Lagrangian embedding of the Klein bottle \(K\) there exists a symplectic surgery having property \(\mathcal{G}\). This can be done in all dimensions by the following elementary construction.

Represent \(K\) as the quotient of \(\mathbb{R}^n \setminus \{0\}\) by the \(\mathbb{Z}\)-action generated by the transformation

\[x \mapsto 2\sigma(x),\]

where \(\sigma \in O_-(\mathbb{R}^n)\) is a reflection (in particular, \(\sigma = \sigma^T = \sigma^{-1}\)). The cotangent bundle \(T^*K\) is the quotient of \(T^*(\mathbb{R}^n \setminus \{0\}) \cong (\mathbb{R}_x^* \setminus \{0\}) \times \mathbb{R}_y^n\) by the \(\mathbb{Z}\)-action generated by

\[(x, y) \mapsto (2\sigma(x), \frac{1}{2}\sigma(y)).\]

Note that the Riemannian metric \(g = \frac{1}{|x|^2} \sum dx_i^2\) on \(\mathbb{R}^n \setminus \{0\}\) is invariant with respect to \((\mathbb{R}^n \setminus \{0\})\) and equip \(K\) with the induced metric. Note further that the unit sphere bundle \(ST^*(\mathbb{R}^n \setminus \{0\}) \subset T^*(\mathbb{R}^n \setminus \{0\})\) with respect to \(g\) is the hypersurface \(\{\|y\|^2 = 1/\|x\|^2\}\).

On \(T^*(\mathbb{R}^n \setminus \{0\})\) with the zero section removed, consider the map

\[(x, y) \mapsto (-y, x).\]

Obviously, this map preserves the unit sphere bundle \(ST^*(\mathbb{R}^n \setminus \{0\})\) and the canonical symplectic form on \(T^*(\mathbb{R}^n \setminus \{0\})\). Furthermore, it maps the orbits of the action \((\mathbb{R}^n \setminus \{0\})\) into orbits. Hence, it defines a symplectomorphism of \(T^*K\) with the zero section removed that maps \(ST^*K\) into itself.

Let us check that the action of the map \((\mathbb{R}^n \setminus \{0\})\) on \(H_{n-1}(ST^*K; \mathbb{Z}/2)\) satisfies condition \((\mathcal{G})\). The fibre class \([\delta]\) is represented by the ‘vertical’ \((n - 1)\)-sphere \(\{x = \text{const}, \|y\| = 1\}\) and its image is obviously the class of the ‘horizontal’ \((n - 1)\)-sphere \(\{\|x\| = 1, y = \text{const}\}\). Choose \(m = \{\|x\| = 1\} \subset K\) and \(\nu_{m,K}(x) = x\). For any almost complex structure on \(T^*K\) compatible with the canonical symplectic form, the isotopy class of the \(\mathbb{C}\)-normal pushoff \(m^2 = m + J\nu_{m,K}\) is the same as for the standard complex structure, i.e., it is given by the ‘diagonal’ \((n - 1)\)-sphere \(\{y = x, \|x\| = 1\} \subset ST^*K\). It follows immediately that the image of \([\delta]\) with respect to \((\mathbb{R}^n \setminus \{0\})\) is \([\delta] + [m^2]\), as required.

Finally, if \(K\) is an embedded Lagrangian Klein bottle in a symplectic manifold, we can identify its closed tubular neighbourhood \(U\) with the unit disc bundle \(DT^*K\) by a conformally symplectic diffeomorphism and define the gluing map \(f : \partial U \to \partial U\) as the restriction of the symplectomorphism constructed above to \(ST^*K\).

Remark 12. Replacing the action \((\mathbb{R}^n \setminus \{0\})\) by \(x \mapsto 2x\), one obtains a completely analogous surgery construction for the product \(S^{n-1} \times S^1\). Further symplectic surgeries along a Lagrangian Klein bottle or \(S^{n-1} \times S^1\) can be defined by taking the gluing map from the group generated by the map \(f\) induced by \(\mathcal{G}\) and the map \(\tau\) induced by the co-differential of the topologically non-trivial \(g\)-isometry \(x \mapsto \frac{x}{\|x\|^2}\).
Remark 13 (Comparison with Luttinger surgery). (i) In the case of the product $S^{n-1} \times S^1$, the surgeries found by Luttinger [11] for $n = 2$ and by Borrelli [1] for $n = 4$ and $n = 8$ correspond to the gluing maps $(f \circ \tau)^k$, where $k \in \mathbb{Z}$ and the maps f and τ are defined as in Remark 12. (ii) The surgery used in [15] in the case of the usual Klein bottle K^2 corresponds to the gluing map $(f \circ \tau)^{-1}$. In the notation of [15], one has

$$f(\varphi, \psi, \theta) = (-\varphi, \psi + \theta + \pi, -\theta - \pi) \quad \text{and} \quad \tau(\varphi, \psi, \theta) = (-\varphi, \psi, -\theta - \pi)$$

so that $f \circ \tau = f_{0,-1}$. (iii) There is an alternative description of these surgeries in terms of regluing Lefschetz pencils via fibrewise symplectic Dehn twists (see the first draft of this paper, arxiv:0712.1760v1, and the references therein).

Remark 14 (Totally real embeddings). It is perhaps worth mentioning that totally real embeddings $K^n \hookrightarrow \mathbb{C}^n$ exist for all n. Indeed, Lalonde [10] constructed Lagrangian immersions $K^n \hookrightarrow \mathbb{C}^n$ that are regularly homotopic to embeddings. The existence of totally real embeddings follows in this situation from Gromov’s h-principle (see, e.g., [5], §19.3).

Acknowledgment. The author is grateful to the referee for useful comments.

References

[1] V. Borrelli, New examples of Lagrangian rigidity, Israel J. Math. 125 (2001), 221–235.
[2] A. V. Domrin, A description of characteristic classes of real submanifolds in complex manifolds in terms of \mathbb{RC}-singularities, Izv. Math. 59:5 (1995), 899–918.
[3] Y. Eliashberg, On symplectic manifolds with some contact properties, J. Differential Geom. 33 (1991), 233–238.
[4] Y. Eliashberg, L. Polterovich, New applications of Luttinger’s surgery, Comment. Math. Helv. 69 (1994), 512–522.
[5] Y. Eliashberg, N. Mishachev, Introduction to the h-principle, Graduate Studies in Mathematics 48, AMS, Providence, RI, 2002.
[6] A. B. Givental, Lagrangian imbeddings of surfaces and the open Whitney umbrella, Functional Anal. Appl. 20:3 (1986), 197–203.
[7] M. Gromov, Pseudoholomorphic curves in symplectic manifolds, Invent. Math. 82 (1985), 307–347.
[8] L. Guillou, A. Marin (eds.), À la recherche de la topologie perdue, Birkhäuser, Boston, 1986.
[9] H. F. Lai, Characteristic classes of real manifolds immersed in complex manifolds, Trans. Amer. Math. Soc. 172 (1972), 1–33.
[10] F. Lalonde, Suppression lagrangienne de points doubles et rigidité symplectique, J. Differential Geom. 36 (1992), 747–764.
[11] K. M. Luttinger, Lagrangian tori in R^4, J. Differential Geom. 42 (1995), 220–228.
[12] D. McDuff, Symplectic manifolds with contact type boundaries, Invent. Math. 103 (1991), 651–671.
[13] R. MacPherson, Generic vector bundle maps, Dynamical Systems, Proc. Sympos., Univ. Bahia, Salvador, 1971, Academic Press, New York, 1973, pp. 165–175.
[14] S. Nemirovski, Lefschetz pencils, Morse functions, and Lagrangian embeddings of the Klein bottle, Izv. Math. 66:1 (2002), 151–164.
[15] S. Nemirovski, Homology class of a Lagrangian Klein bottle, Preprint arxiv:math/0106122v4, to appear in Izv. Math.
[16] V. Shevchishin, Lagrangian embeddings of the Klein bottle and combinatorial properties of mapping class groups, Preprint arxiv:0707.2085v1.
[17] S. M. Webster, The Euler and Pontryagin numbers of an n-manifold in \mathbb{C}^n, Comment. Math. Helv. 60 (1985), 193–216.

Steklov Mathematical Institute;
Ruhr-Universität Bochum
E-mail address: stefan@mi.ras.ru