SPARSE: a sparse hypergraph neural network for learning multiple types of latent combinations to accurately predict drug–drug interactions

Duc Anh Nguyen1,*, Canh Hao Nguyen1, Peter Petschner1,2 and Hiroshi Mamitsuka1,3

1Bioinformatics Center, Institute for Chemical Research, Kyoto University, Uji, Japan, 2Department of Pharmacodynamics, Semmelweis University, Budapest, Hungary and 3Department of Computer Science, Aalto University, Espoo, Finland

*To whom correspondence should be addressed.

Abstract

Motivation: Predicting side effects of drug–drug interactions (DDIs) is an important task in pharmacology. The state-of-the-art methods for DDI prediction use hypergraph neural networks to learn latent representations of drugs and side effects to express high-order relationships among two interacting drugs and a side effect. The idea of these methods is that each side effect is caused by a unique combination of latent features of the corresponding interacting drugs. However, in reality, a side effect might have multiple, different mechanisms that cannot be represented by a single combination of latent features of drugs. Moreover, DDI data are sparse, suggesting that using a sparsity regularization would help to learn better latent representations to improve prediction performances.

Results: We propose SPARSE, which encodes the DDI hypergraph and drug features to latent spaces to learn multiple types of combinations of latent features of drugs and side effects, controlling the model sparsity by a sparse prior. Our extensive experiments using both synthetic and three real-world DDI datasets showed the clear predictive performance advantage of SPARSE over cutting-edge competing methods. Also, latent feature analysis over unknown top predictions by SPARSE demonstrated the interpretability advantage contributed by the model sparsity.

Availability and implementation: Code and data can be accessed at https://github.com/anhnda/SPARSE.

Contact: ducanh@kuicr.kyoto-u.ac.jp

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

A drug-drug interaction (DDI) is a reaction between two drugs, where-by the effects of one drug are modified by the concomitant use of the second drug. A DDI might cause side effects, which are unwanted effects and are responsible for significant patient morbidity and mortality (Magro et al., 2012). Hence, predicting side effects of a DDI, i.e. DDI prediction, is a very important task to guarantee drug safety.

Using machine learning has emerged as a prominent approach for DDI prediction, making the prediction fast and highly accurate (Xu et al., 2019; Zitnik et al., 2018). The traditional machine learning methods such as support-vector machines (Kastrin et al., 2018), logistic regression (Mei and Zhang, 2021) or feedforward neural networks (Wang et al., 2019) use predefined drug features to predict side effects as labels. However, DDI data have more information. Particularly, DDIs can be represented by a graph, called a DDI graph, where nodes are drugs and edges are interacting drugs. The DDI graph can be learned with graph neural networks (Zitnik et al., 2018). Nonetheless, DDI graphs are only limited to pairwise relationships of drug pairs while there still exist many side effects, which can be represented by other relationships, such as co-occurrence. Then, a state-of-the-art generalization of a DDI graph can be a DDI hypergraph, which can capture higher-order relationships, where drugs and side effects are both nodes, and each hyperedge is a triple of a side effect with two interacting drugs.

On the DDI hypergraph, hypergraph neural networks can be applied to learn the representations of drugs and side effects altogether. In DDIs, two drugs with totally different properties can still interact with each other, hence the traditional hypergraph neural networks using similarity assumption on node representations are not suitable (Feng et al., 2019). Instead, CenSmoothie, a current cutting-edge hypergraph neural network for DDIs (Nguyen et al., 2021), assumes that each side effect is caused by a unique combination of latent features of the corresponding interacting drugs. However, in real life, each side effect might have many different mechanisms (Suleyman et al., 2010) that cannot be reflected in a single combination of drug latent features. Hence, it is necessary to learn different types of combinations of drug latent features for each side effect. This is the first problem (P1), which we address in this article.

To solve P1, we borrow one idea of stochastic block models (SBMs) on hypergraphs such that each node (e.g. drug or side effect) has one or several latent features (Anandkumar et al., 2013; Pal and Zhu, 2021) and there exist interactions (associations) of latent features. This method can learn different types of combinations of drug latent features for each side effect, at once. In addition, to improve the quality of learned latent features, input node features also can be used (Zhang et al., 2019). However, transformations from input node features and node relationships in the hypergraphs to latent features might be complex and, especially, non-linear. This is the

© The Author(s) 2022. Published by Oxford University Press.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.
second problem (P2), which has not been addressed in existing SBMs and we address in this article.

Moreover, DDI data are sparse (e.g. in the largest DDI dataset, 97.6% of all triples of drug–drug-side effects are not a DDI), suggesting that the model for learning DDIs also should be sparse. However, recent work on DDIs has not used this sparsity of the data (Nguyen et al., 2021; Zitnik et al., 2018), which might potentially impair model performance. This is the third problem (P3), which we address in this article.

We propose SPARSE, a new model for DDI prediction, to solve the above three problems. For P1, we assume that there exist drug and side effect latent features with latent interactions so that each side effect latent feature interacts with several pairs of drug latent features. For P2, we encode drug features and the DDI hypergraph altogether in the latent representations using a suitable hypergraph neural network. For P3, we guide the model to preserve the sparsity of the data using a suitable sparsity control. Figure 1 schematically illustrates these ideas of our model. That is, the model consists of two parts: (i) an encoder and (ii) a decoder. The encoder encodes the input of the DDI hypergraph (e.g. three hyperedges in Fig. 1) with drug features into latent spaces of drug and side effect latent representations, and interactions of latent features. The decoder reconstructs from the latent spaces the DDI hypergraph with new DDI predictions (e.g. the dotted hyperedge in Fig. 1). Finally, a sparsity prior (horseshoe priors in our model) is used to control the sparsity of the latent interactions.

Our extensive experiments first validated the advantage of SPARSE in terms of prediction performance by using both synthetic and real-world datasets. Throughout all experiments on prediction performance, SPARSE achieved better prediction performances than competing methods, such as CentSmoothie and SBM. For example, in the experiment of using the largest real DDI dataset, called TWOSIDES, SPARSE achieved area under the ROC curve (AUC) of 0.9524 and area under the precision-recall curve (AUPR) of 0.882, while CentSmoothie achieved AUC of 0.9348 and AUPR of 0.8749 and SBM achieved AUC of 0.9337 and AUPR of 0.8583. Similarly when using JADERDDI, another DDI dataset, SPARSE achieved AUC of 0.9698 and AUPR of 0.7348, while CentSmoothie was AUC of 0.9684 and AUPR of 0.6044 and SBM was AUC of 0.9428 and AUPR of 0.5963.

We then examined the top prediction obtained by SPARSE, which is trained by using the whole TWOSIDES. That is, we checked the number of overlaps between the top 400 predictions by one method and DDIs in drugs.com (Drugs.com, 2021; Theuwall et al., 2017), which is a commonly used online web checker for DDI. We found 99 DDIs in drugs.com out of the top 400 predictions, while by using the same procedure, CentSmoothie found only 71 DDIs out of the top 400 predictions, implying that SPARSE can find new DDIs more than competing methods.

Finally, we validated the prediction results by characterizing the top predictions obtained by SPARSE. In more detail, we checked the biological properties, such as target proteins, of the top 10 triples of drug–drug-side effect, predicted by SPARSE, by using latent features connected to these top 10 predictions. We then found that top predictions can be associated with some biological mechanisms and particularly with responsible proteins/pathways. These results indicate that our model, SPARSE, can provide high predictive performances as well as latent biological knowledge beneficial to understand the background behind predicted DDIs.

2 Related work

Machine-learning models for DDI prediction can be divided into non-graph-based and graph-based ones. For non-graph-based models, the inputs are the predefined feature vectors of pairs of drugs, the outputs are the corresponding side effects, and the models are multi-label classifiers, e.g. support-vector machines (Kastrin et al., 2018) or a multilayer feedforward neural network (Wang et al., 2019). Instead of only using predefined drug feature vectors, graph-based methods for DDI use graph neural networks to learn new latent representations of drugs from molecular graphs or DDI graphs. In molecular graphs, each drug is considered as a graph that nodes are atoms and edges are connections of atoms (Harada et al., 2020; Xu et al., 2019). In DDI graphs, DDIs are considered as pairwise relationships and formulated in the form of a graph where nodes are drugs and edges are drug interactions with side effects as labels (Zitnik et al., 2018). The latter one has shown to be more effective for DDI prediction since it can use both pharmacological information and biological information rather than only molecular graphs (Zitnik et al., 2018).

However, one drawback of using graph neural networks on DDI graphs is that it does not use multiple relationships (labels) at the same time. Side effects themselves have relationships with each other, e.g. co-occurrences. Existing work often fixes them as one-hot vectors to indicate the presence of the side effects. This representation considers side effects independently, potentially making the models under-utilize the side effect relationships.

Hypergraph neural networks on DDI overcome the above drawback by learning representations of drug and side effect nodes altogether in latent spaces (Nguyen et al., 2021). DDI is considered as high-order relationships of drug–drug-side effects in the form of a...
hyperlads where nodes are both drugs and side effects, and each hyperedge is a triple of two interacting drugs and a side effect caused by the drugs. There are two types of hypergraph neural networks models on the DDI: similarity based and non-similarity based. The similarity-based models, e.g. traditional spectral-based hypergraph neural networks, assume that interacting drugs should have similar representations (Fan et al., 2021; Feng et al., 2019). However, in DDI, two interacting drugs are not necessarily similar. For non-similarity models, the current state-of-the-art method is CentSmoothie (Nguyen et al., 2021) that assumes that the representation of a side effect can be represented by a combination of latent features of two drugs causing the side effect. However, CentSmoothie cannot deal with multiple combinations of latent features at the same time.

In order to deal with multiple combinations of latent features, one possible approach is to use the idea of SBMs, which can be applied to hypergraphs, with each node belonging to several latent features (groups) and associations of latent features (groups) (Anandkumar et al., 2013). However this has not been applied to DDI hypergraphs, and more importantly, SBM is based on linear assumption, while DDI can be generated through more complex relations to be represented by non-linearity.

Many studies have shown the benefits of sparsity regularization, which is a commonly used method to achieve sparsity of models, especially on noisy and sparse data (Carvalho et al., 2009; Tibshirani, 1996). In a Bayesian viewpoint, sparsity regularization can be understood as a result of using sparse prior distributions. A state-of-the-art method for sparsity regularization is to use horseshoe priors (Hoeting et al., 1999). However, the spike-and-slab prior is a different variance. Each variance has two parts: one is a global parameter for sparsity, and the other is a local parameter to decide the magnitude of each variance. In more detail:

\[B_{i,j,k} \sim N(0, \sigma^2_1^2 A_{i,j,k}^2), \]
\[A_{i,j,k} \sim C^+ (0, 1), \]

where \(\sigma \) is a global parameter for sparsity, and \(C^+ (0, 1) \) is a half-Cauchy distribution defined by \(\rho (A_{i,j,k}) = \frac{1}{\pi A_{i,j,k}} \) for \(A_{i,j,k} \geq 0 \).

Both the horseshoe prior and Laplace prior (Lasso regularization) are shrinkage priors such that by using priors, values of features tend to be shrunk (Piironen and Vehtari, 2017). Let \(B_{i,j,k} \) be the optimal values without priors, then the optimal values having priors has the form \(B_{i,j,k} = (1 - \kappa_{i,j,k}) B_{i,j,k} \), where \(0 \leq \kappa_{i,j,k} \leq 1 \) is a shrinkage factor depending on the priors. With Laplace prior (Lasso regularization), the density of \(\kappa_{i,j,k} \) tends to be a constant near 1 and disappears near 0, meaning that it always shrinks all features, containing important ones. In contrast, the density of \(B_{i,j,k} \) with the horseshoe prior has two peaks at 0 and 1, meaning that the horseshoe prior allows two kinds of shrinkage: no shrinkage to maintain important features and complete shrinkage to remove unimportant features.

3.1.2 N-mode tensor product

The n-mode tensor product can be understood as a generalization of the matrix dot product in high-dimension that the product is processed at the rth dimension. Considering in the 3D space with a tensor: \(B \in \mathbb{R}^{K_1 \times K_2 \times K_3} \) and a matrix \(H \in \mathbb{R}^{T \times K_3} \), the n-mode product of \(B \) and \(H \) is denoted by \(B \times_n H \) and is defined for each of \(n = 1, 2 \) and 3, as follows:

\[(B \times_1 H)_{i,j,k} = \sum_{l=1}^{K_3} B_{i,j,l} H_{l,k} = 1 \ldots T, j = 1 \ldots K_2, k = 1 \ldots K_3, \]
\[(B \times_2 H)_{i,j,k} = \sum_{l=1}^{K_2} B_{i,j,l} H_{l,k} = 1 \ldots T, i = 1 \ldots K_1, k = 1 \ldots K_3, \]
\[(B \times_3 H)_{i,j,k} = \sum_{l=1}^{K_1} B_{i,j,l} H_{l,k} = 1 \ldots T, i = 1 \ldots K_1, j = 1 \ldots K_2. \]

3.2 Problem formulation: DDI prediction

We formulate the DDI prediction problem as follows. Input: Given a DDI hypergraph: \(G = (V, E) \), \(V = V_D \cup V_S \), \(E \subseteq V_D \times V_D \times V_S \), where \(V_D \) is a set of drug nodes, \(V_S \) is a set of side effect nodes (given \(u, v, E \), \(t \in V_I \), two triples \((u, v, t) \) and \((v, u, t) \) are the same). The drug node features are \(F_D \in \mathbb{R}_{+}^{d_x \times K_D} \) and the side effect node features are one-hot vectors: \(F_S \in \mathbb{R}_{+}^{d_y \times K_S} \). Output: For \(e = (u, v, t) \in V_D \times V_D \times V_S \), calculate a prediction score for interaction \(m(e) \).

3.3 Proposed model

We propose SPARSE: a sparse model for learning multiple types of latent combinations of side effects and drugs to predict DDIs. Our model follows an auto-encoder framework with two parts: an encoder and a decoder. The encoder encodes the DDI hypergraph with drug node features to latent spaces with latent representations of drugs and side effects (H), and interactions of latent features (B). The decoder aims to reconstruct the DDI hypergraph with new predicted hyperedges from H and B. In the following parts, we first present our latent interaction assumption with sparsity for the interactions of drugs and side effects, and then we describe the encoder and decoder.

3.3.1 Latent interaction assumption

To model DDIs, we suppose that there exist latent spaces with drug latent features and side effect latent features where DDIs occur. The latent interaction assumption is that two interacting drugs cause a side effect if there exist a pair of drug latent features of the two drugs that interact with a latent feature of the side effect.

In detail, the formulation for the latent interaction assumption can be described as follows. Let \(L_D = \{1, \ldots K_D \} \) and \(L_S = \{1, \ldots K_S \} \) be the sets of indices of latent features of drugs and side effect with \(K_D \) and \(K_S \) be the numbers of latent features. Let \(B \in \mathbb{R}_{+}^{K_D \times K_S} \) be a 3D tensor representing interactions of latent features of drugs and side effects. The set of interacting latent features is:

\[A = \{(i, j, k) \in L_D \times L_S \times L_D | B_{i,j,k} > 0 \}. \]

Considering a triple of two drugs and one side effect \(e = (u, v, t) \in V_D \times V_D \times V_S \), let \(h^u(v) \in \mathbb{R}_{+}^{d_x} \) and \(h^v(t) \in \mathbb{R}_{+}^{d_y} \) be the vectors representing the presence of latent features of the two drugs and the side effect, respectively. Let \(g_e = \{ i \in L_D | h^u(v) > 0 \}, g_e = \{ j \in L_S | h^v(t) > 0 \} \), and \(g_e = \{ k \in L_D | B_{i,j,k} > 0 \} \).
Table 1. Statistics of three real datasets

Dataset	No. of Drugs	No. of Side effects	No. of Drug-drug pairs (DDIs)	Avg. no. of side effects/No. of drug-drug pairs	Sparsity (%)
TWOSIDES	557	964	49,677	3,606,046	72.58
CADDI	587	969	21,918	373,976	17.06
JADERDDI	545	922	36,929	22,082	6.01

\[
\begin{align*}
& (i \in L_0, h^d(v_i) > 0) \text{ and } g_i = (i \in L_3, h^t(t_i) > 0) \text{ be the sets of latent}
\end{align*}

Under the latent interaction assumption, \(u \) interacts with \(v \) to cause \(t \):

\[
g_u \times g_v \times g_t \cap A \neq \emptyset,
\]

or with tensor product formulation:

\[
B \times h^u(u) \times h^d(v) \times h^t(t) > 0.
\]

In practice, we can change the value 0 on the right side of Equation (7) to a positive threshold. Equation (6) will be used to generate synthetic data in the experimental section. Equation (7) will be used in the decoder of the model.

Sparsity property

We first define formulations for sparsity measures of the DDI data and the latent interactions using the percentages of non-interactions. Let \(s_d \) be the sparsity of the hypergraph \(G \):

\[
s_d = 1 - \frac{2|E|}{|V_D||V_D| - 1)/|V_D|.
\]

The sparsity of the latent interactions \(s_l \) is defined as the percentage of the number of non-interacting triples of the latent features per the total number of all triples of the latent features.

\[
s_l = 1 - \frac{2|A|}{|L_0|^3 - |L_3|}.
\]

DDI data are sparse as per statistics in Table 1. It is shown that 97.6% and 99.87% of all triples are non-interacting in TWOSIDES and JADERDDI, respectively.

The motivation for us to use sparse models is that sparse models, according to statistical learning theory, are usually more reliable models if they could fit the training data well (Hastie, 2015). As our sparse models have sparse interactions among latent features, we will prove that they tend to generate sparse data and are suitable for DDI data. We show a relationship between sparsity of the models and sparsity of data generated by the models, which are the ones that best fit the models, as follows.

Property 1: Assume that the DDI data are generated from the true generation model according to formula (7). Assuming that each drug and side effect has exactly \(n_u \) and \(n_t \) non-zero latent features, respectively. Then, there exists a relationship between the sparsity of the model and the expected sparsity of the generated data as follows:

\[
E(s_d) = 1 - (1 - s_l) \frac{n_u n_t}{K_3 K_5}.
\]

Proof:

For a pair of drug \(u \), \(v \) to cause side effect \(t \), then \(B \times h^u(u) \times h^d(v) \times h^t(t) > 0 \). This means that there is at least one non-zero entry of \(B \) corresponding to latent features of \(u \), \(v \) and \(t \). Since there are exactly \(n_u n_t \) possible entries of \(B \) corresponding latent features of \(u \), \(v \), and \(t \), then the probability of a uniform sampling of entries of \(B \) corresponding to these latent features is \(p_1 = \frac{n_u n_t}{K_3 K_5} \). This is the probability of having an interaction among the features (that generates a side effect data point).

Since entries of \(B \) are assumed to be randomly sampled according to a uniform distribution, the number of interactions when \(B \) have \(|B| = (1 - s_l)K_3 K_5 \) non-zero entries follows a binomial distribution: \(\text{Binomial}(|B|, p_1) \).

With the assumption that the hypergraph is generated from this generative process, the expected number of non-zero data points (the number of hyperedges) becomes \(|B| = (1 - s_l)K_3 K_5 \). The expected sparsity of the hypergraph becomes \(E(s_d) = 1 - \frac{n_u n_t}{K_3 K_5} \).

This result leads to \(E(s_d) > s_p p_1 \). It shows a relationship between the sparsity of the model (\(s_d \)), and the expected sparsity of the data generated by the model (\(E(s_d) \)). It shows that the model can be sparse but cannot be as sparse as we want. It can be a hint on setting sparsity of the model in learning processes.

3.3.2 Encoder

For the encoder, we use a hypergraph neural network with message passing (Yadati, 2020) to encode the input hypergraph and node features into latent spaces with node latent representations \(\mathbf{H} \) and latent interactions \(\mathbf{B} \) (for simplicity, \(\mathbf{B} \) can be considered as a free parameter to learn).

\[
\mathbf{H} = (H^d, H^t) = g_{\text{enc}}(G, F) \in \mathbb{R}^{n_u \times K_0} \times \mathbb{R}^{n_t \times K_0},
\]

\[
\mathbf{B} = f_{\text{enc}}(G, F) \in \mathbb{R}^{K_0 \times K_0 \times K_0},
\]

where \(g_{\text{enc}} \) and \(f_{\text{enc}} \) are hypergraph neural networks based on message passing (Yadati, 2020) with parameters to learn \(\{w_{\text{enc}}, w_{\text{dec}}\} \). \(H^d = \{h^d(u) \in \mathbb{R}^{K_0} \mid u \in V_D\} \) (node representations of drugs) and \(H^t = \{h^t(t) \in \mathbb{R}^{K_0} \mid t \in V_T\} \) (node representations of side effects). The formulation of each message passing layer has the following form:

\[
h^{l+1}(a) = \sigma \left(T \left(\left[M^{l+1}(a, h^{l+1}(a), \{h^d(b), h^{l+1}(b)\}_{b \in E}) \right]_{b \in E}, N_0 \right) \right),
\]

where \(h^{l+1}(a) \) is the representation of node \(a \in V_D \cup V_T \) at layer \(l \), \(\sigma \) is an activation function, \(T \) is an aggregation function (e.g., an average function), \(N_0 = \{e \mid e \in E \} \) and \(M^{l+1} \) is a message passing function at layer \(l \) to pass information from neighbor nodes in hyperedge \(e \) to \(a \).

\[
M^{l+1}(a, h^{l+1}(a), \{h^d(b), h^{l+1}(b)\}_{b \in E}) =
\]

\[
\sum_{b \in E} M^{l+1}(a, c(b), \{h^d(b), h^{l+1}(b)\}_{b \in E}),
\]

where \(M^{l+1} \) is a two-layer feedforward neural network, \(c(b) = 1 \) if \(b \in V_D \) and \(c(b) = -1 \) if \(b \in V_T \) are the node types.

3.3.3 Decoder

The reconstruction of the hypergraph is from the latent interaction assumption. The likelihood to reconstruct each triple \(e = (u, v, t) \) in \(V_D \times V_D \times V_T \) follows a Gaussian distribution:

\[
p(e|B, H) = \frac{1}{\sigma \sqrt{2\pi}} \exp \left(-\frac{1}{2} \left(\frac{e - m_{w_{\text{dec}}, w_{\text{enc}}}(e)}{\sigma} \right)^2 \right),
\]

where \(e = 1 \) if \(e \in \mathcal{E} \), \(i(e) = 0 \) if \(e \in \mathcal{E} = V_D \times V_D \times V_T / E \), and \(m_{w_{\text{dec}}, w_{\text{enc}}}(e) \) is the mean value for the latent interaction of \(e \).
Equation (17) is also the score for the interactions of triples \((u, v, t)\) used for prediction. The likelihood for the decoder is:

\[
p(G|B, H) = \prod_{e=(u,v,t)\in V_0 \times V_3 \times V_2} p(e|B, H).
\]

3.3.4 Objective function

The objective function is defined as:

\[
\arg\max_{B,H} \log p(G|B,H) + \log p(B|A, \tau) + \log p(A),
\]

where \(\log p(B|A, \tau)\) is the log-likelihood of Equation (18) with \(H\) in Equation (11) and \(B\) in Equation (12), and \(\log p(A)\) is the logarithm of the horseshoe prior:

\[
\log p(B|A, \tau) = \sum_{i,j,k} \frac{-1}{2} \left(\frac{B_{i,j,k}}{\tau_{i,j,k}} \right)^2 + \sum_{i} \log \lambda_{i}^{-1} + \text{const},
\]

\[
\log p(A) = \sum \log \left(\frac{1}{1 + A_{i,k,j}} \right).
\]

We then use stochastic gradient descent libraries in the PyTorch framework for optimizing Equation (19).

We also consider two other variants of SPARSE: SPARSEo for not using any sparsity prior and SPARSEe for using Laplace prior (Lasso regularization), to examine the effect of using the horseshoe prior.

4 Experimental results

We validated SPARSE in two scenarios: synthetic data and real data. On the synthetic data, assuming that the data are generated from the latent interactions, we examined if SPARSE can recover the latent interactions under changing hyperparameters of data: the number of latent features, sparsity and amount of noise. On real data, we checked the prediction performance of SPARSE in comparison with state-of-the-art DDI prediction methods by using three real-world DDI datasets. Additionally, we evaluated if the unknown predictions by SPARSE can be related to biological phenomena like functions and mechanisms.

For all experiments, we used 20-fold cross-validation by dividing hyperedges into 20-folds, keeping the same number of hyperedges (side effects) in each fold. We reported the mean and standard deviation of the two commonly used measures AUC and AUPR. Also, all reported results were the highest performances through grid searches of hyperparameters. There were three hyperparameters for grid searches for SPARSE: (i) latent feature sizes. The tested values were 30, 40, 50 and 60. We set the same size for all layers. (ii) Global sparsity \(r\). The tested values were 0.01, 0.02, 0.03, 0.05 and 0.1 and (iii) the numbers of neural layers. The tested values were 1, 2 and 3. The hyperparameter values obtained were 50 for the latent feature size, \(r = 0.02\) for TWOSIDES and \(r = 0.01\) for CADDDI and JADERDDI, and the number of neural layers was 2. All experiments were run in a computer with Intel Core i7-9700 CPU, 8 GB GeForce RTX 2080 GPU and 32 GB RAM.

4.1 Synthetic data

4.1.1 Data generation

The generation process for synthetic data consists of two steps: (i) generating latent interactions and (ii) generating triples of interacting drug–drug-side effects from the latent interactions, as follows.

1. Generating latent interactions. Given sets of indices of drug latent features: \(L_0 = \{1, 2, \ldots, K_0\}\) and side effect latent features: \(L_3 = \{1, 2, \ldots, K_3\}\).
 a. Initialize a set of latent interactions \(A = \emptyset\).
 b. For each \(k \in L_3\):
 1. Sample the number of drug latent feature pairs: \(n_k = \text{RandomInteger}(M)\), where \(M\) is the maximum number of pairs.
 2. Sample \(n_k\) pairs \((i,j) \in L_0 \times L_0\). For each pair \((i,j)\):
 \(A = A \cup \{(i,j,k)\}\).
 2. Generating drug interactions:
 a. Generate drug and side effect latent features. Assume that there are \(V_0\) drugs and \(V_3\) side effects.
 1. For each drug \(u \in V_0\):
 i. Sample the number of drug latent features: \(n_u = \text{RandomInteger}(N_1)\), where \(N_1\) is the maximum number of drug latent features.
 ii. Sample \(g_u \in \mathbb{R}^{N_1} \times \mathbb{R}^{N_3}\). For drug feature vectors \(F_u\):
 \(m_u \in \mathbb{R}^{N_1}, m_u = 0, m_u[i] = 1\) if \(i/c\) \(\in g_u\),
 \(g_u = \text{Gaussian}(m_u, \delta)\).
 b. Generate true triples \(E^*\). Initialize \(E^* \rightarrow \emptyset\). For \((u, v, t) \in V_0 \times V_0 \times V_3\) if \(g_u \times g_v \times g_t \cap A = \emptyset\) then \(E^* = E^* \cup (u, v, t)\).
 c. Adding noise:
 1. For each \(e \in E^*\), replace it by a random sample \(e' \in E^*\) with probability \(r\). The final set of triples of drug–drug-side effects is \(E\) and drug feature vectors \(F\).

4.1.2 Experiments

The synthetic data has five hyperparameters: the number of drugs, the number of side effects, the number of latent interactions, data sparsity and the amount of noise (noise rate). We evaluated our methods by changing one hyperparameter, fixing the other four. The hyperparameters changed are (i) number of latent features, (ii) sparsity of latent features, (iii) noise rate and (iv) number of side effects.

1. Changing the number of latent features.
 Setting: \(V_0 = 400, V_3 = 300\), noise rate \(r = 0.01\). We changed \(K_0 = K_3 = \{5, 10, 20, 30, 40, 50\}\). For each \((K_0, K_3)\), we selected \(N_1, N_2\) and \(M\) such that the sparsity of the generated data is kept at 0.98.
 Compared methods: We compared four methods: SPARSEo (no sparsity control), CentSmoothie (Nguyen et al., 2021), a similarity-based hypergraph neural network, HPNN (Feng et al., 2019) and SBM on hypergraph (Anandkumar et al., 2013).
 Results: Figure 2a shows the results, where SPARSEo achieved the highest performances among the compared methods in all cases. We had the following two findings:
 1. For the small number of latent features, the performance of CentSmoothie was close to SPARSEo (both AUC and AUPR were around 0.99 under \(K_0 = K_3 = 5\)). However, by increasing the number of latent features, the performance gap between SPARSEo and CentSmoothie also increased (gaps in AUC and AUPR were around 0.01 and 0.03, respectively, when \(K_0 = K_3 = 50\)). This result implies that CentSmoothie was unable to distinguish latent interactions clearly for a large number of latent interactions, while SPARSEo worked better for capturing multiple latent interactions.
2. The performances of SBM were lower than both CentSmoothie and SPARESEO, since SBM did not use the node features, which decreased the performance. HPNN, a similarity-based hypergraph neural network, had the lowest performance since the two drugs of a DDI do not necessarily have similarity in the data generated from latent interactions. Overall, these results indicated that SPARESEO can recover the latent interactions better than the other methods.

2) Changing data sparsity.
Setting: $V_0 = 400$, $V_3 = 300$, $K_D = K_S = 50$, $N_1 = N_2 = 4$, and $r = 0.01$. We changed M in {50, 40, 30, 20, 10, 5}, resulting in data sparsity in {0.6, 0.75, 0.88, 0.92, 0.95, 0.98}, respectively.

Compared methods: Since in the previous experiment, SPARESEO outperformed the compared methods already, we compared SPARSE and two variants SPARSE$_E$ and SPARSE$_O$ (please see the end of Section 3.3.4) to check the effect of sparse priors.

Results: Figure 2b shows the results, where SPARSE achieved the highest performance, followed by SPARSE$_E$ and SPARSE$_O$. In particular, the performance advantage by SPARSE using sparsity control was clearer with higher sparsity. These results indicate that the horseshoe prior is suitable for learning sparse data.

3) Changing the amount of noise.
Setting: $V_0 = 400$, $V_3 = 300$, $K_D = K_S = 50$, $N_1 = N_2 = 4$, $M = 1$ (keeping the data sparsity of 0.98). We changed noise r in $[0, 0.01, 0.05, 0.10, 0.20]$.

Compared methods: We again compared SPARSE with two variants SPARSE$_E$ and SPARSE$_O$ to examine the effectiveness of the sparse priors to deal with noise.

Results: Figure 2c shows the results, where again SPARSE achieved the highest performances among the three methods for all different amounts of noise. When there are no noises, the performances of the three methods were very close to each other. However, as the amount of noise is increased, the advantage of SPARSE over the other two methods became clearer. For example, when the amount of noise is 20%, the gap between SPARSE and SPARSE$_O$ reached around 0.07, and the gap between SPARSE and SPARSE$_E$ was around 0.1.

These results suggest that the horseshoe prior could deal with noise better than the Laplace prior and the case with no sparsity prior.

4.2 Real data
4.2.1 Data description
We used three real-world datasets for DDI, namely TWOSIDES (Tatonetti et al., 2012), CADDII and JADERDDI. To our knowledge, TWOSIDES is the largest benchmark dataset for DDI. The other two datasets, i.e. CADDII and JADERDDI, were generated from Canada Vigilance Adverse Reaction Reports and Japanese Adverse Drug Event Reports, respectively, in the same manner as the way that TWOSIDES was generated from the adverse events reported to US Food and Drug Administration (Nguyen et al., 2021). For all datasets, we only chose small molecular drugs, which can be found in DrugBank. Also, we focused drugs appearing in more than five interactions (hyperedges) in each dataset. For each drug, we used a feature (binary) vector, with the size of 2329, consisting of 881 substructures and 1448 interacting proteins. Table 1 shows a summary statistics of the three real benchmark datasets, TWOSIDES, CADDII and JADERDDI.

4.2.2 Predictive performance experiments
Compared methods: For our method, we used SPARSE and two variants SPARSE$_O$ and SPARSE$_E$. We further used five methods as competing methods against SPARSE. These competing methods were CentSmoothie (Nguyen et al., 2021), the traditional similarity-based hypergraph neural network (HPNN) (Feng et al., 2019), two DDI graph-based graph neural networks: Decagon (Zitnik et al., 2018) and SpecConv (Kipf and Welling, 2016) and, a molecular graph-based graph neural network, MGRNN (Xu et al., 2019). Decagon and CentSmoothie provide available codes, and we ran them with the recommended settings. For MLNN, MGRNN, SpecConv, HPNN and SBM, we implemented them and did a grid search for finding the best hyperparameter values.

Results—Cross-validation predictive performance: Table 2 shows AUC and AUPR results of all competing methods. From this table, SPARSE and two variants (SPARSE$_E$ and SPARSE$_O$) achieved the highest performances, followed by CentSmoothie, SBM and
Current understanding of the potential DDI mechanisms, we could not explain the corresponding low-level (molecular level) background, although our algorithm could find associated drug features, the target protein of the corresponding drug using DrugBank (sixth column) and the corresponding reference to each DDI (seventh column). The top predictions are likely to be similar to each other, since the similar triples are likely to have similar scores. In fact the top predictions in Table 4 have large overlaps, but from the table, we could find the following four points:

1. The fourth and fifth predictions show the cases, where SPARSE could specify target proteins precisely, confirming the high credibility of these predictions and more importantly, approving the high ability of SPARSE for detecting unknown DDIs.

2. The first, second, third and sixth predictions show the cases, where SPARSE could identify possible interacting protein groups (fourth column), not necessarily directly associated with the drugs, indicating that SPARSE allows suggesting novel interactions as well as potential target proteins.

3. The validity of the seventh, eighth, ninth and tenth predictions might be understood by high-level views, like the connection between vision and dizziness/sedation. This result implies that SPARSE can predict probable interactions, which however cannot be straightforwardly inferred from low-level data.

4. Entirely, we could find relevant references for all top 10 predictions (Baldo, 2018; Fagiolini et al., 2004; Rho et al., 1997; Venkatakrishnan et al., 2014), giving plausibility of these prediction and at the same time an additional layer of evidence for the usefulness of SPARSE in practical settings. To facilitate medical research and confirmation of our findings by subsequent clinical or preclinical studies, we provide the potential mechanisms as a Supplementary Material for our top predictions. Also, we discuss below the main biological mechanism for a predicted top 10 interaction:

Naratriptan, Sertraline and abnormal ECG: Sertraline belongs to the selective serotonin reuptake inhibitor class antidepressants.
Table 4. Top 10 new (unknown) predictions with potentially associated latent features of proteins and extracted proteins

No.	Drug A	Drug B	Side effect	Observable features associated with latent features	Extracted proteins of drugs from DrugBank	References
1	Ciprofloxacin	Mefenamic acid	Abdominal distension	Cytochrome enzymes	—	Venkataraman et al. (2014)
2	Naratriptan	Oxycodone	Abnormal ECG	Serotonin transporters and receptors	—	Baldo (2018) and Ritter (2019)
3	Naratriptan	Tramadol	Abnormal ECG	Serotonin transporters and receptors	—	Baldo (2018)
4	Naratriptan	Sertraline	Abnormal ECG	Serotonin transporters and receptors	5-Hydroxytryptamine receptor 1B (and 1D) and sodium-dependent serotonin transporter	Ritter et al. (2019)
5	Naratriptan	Paroxetine	Abnormal ECG	Serotonin transporters and receptors	5-Hydroxytryptamine receptor 1B (and 1D) and sodium-dependent serotonin transporter	Ritter et al. (2019)
6	Trihexyphenidyl	Thiothixene	Abnormal ECG	Dopamine receptors	—	Ritter et al. (2019)
7	Carisoprodol	Orphenadrine	Abnormal vision	Not clear	—	Downs et al. (2019)
8	Buspirone	Orphenadrine	Abnormal vision	Not clear	—	Ritter et al. (2019)
9	Oxycodone	Orphenadrine	Abnormal vision	Not clear	—	Ritter et al. (2019)
10	Carisoprodol	Zaleplon	Abnormal vision	Not clear	—	Fagioli et al. (2004)

Members of this class inhibit the reuptake of the neurotransmitter serotonin into cells (Ritter et al., 2019). Through this inhibition, sertraline increases serotonin levels outside of the cells and allows serotonin to remain longer at its site of action. Naratriptan is known to cause heart-related side effects through serotonin receptor agonism at serotonin type 1 receptors (Dodick et al., 2004; Ritter et al., 2019). Therefore, the predicted side effect can be a direct consequence of sertraline increasing the level of endogenous serotonin and naratriptan acting at serotonin receptors in the heart, with the resulting changes visible in electrocardiogram recordings.

5 Conclusion and discussion

We have proposed SPARSE to learn the latent representations of drugs, side effects and interactions, through hypergraph neural networks. SPARSE addresses three important issues of state-of-the-art DDI prediction, which have not been addressed by any other methods. Extensive empirical validation using both synthetic and real data showed that SPARSE outperformed all current, cutting-edge methods for DDI prediction, verifying the effectiveness of multiple types of latent interaction assumptions and the sparsity control setting of SPARSE.

Possible future work is to generalize SPARSE for higher-order drug interactions with multiple drugs. Another interesting direction might be to apply SPARSE to other sparse, high-dimensional data in bioinformatics.

Funding

This work was supported in part by Otsuka Toshimi Scholarship Foundation (to D.A.N.); MEXT KAKENHI [grant number 22K12150] (to C.H.N.); the Japan Society for the Promotion of Science (Postdoctoral Fellowships for Research in Japan, standard program) [P20809] (to P.P.); and MEXT KAKENHI [grant numbers: 19H04169, 20F20809, 21H05027 and 22H03645] and the AIPSE program of the Academy of Finland (to H.M.).

Conflict of Interest: none declared.

References

Anandkumar, A. et al. (2014) A tensor approach to learning mixed membership community models. J Mach Learn Res., 1, 2239–2312.

Baldo, B.A. (2018) Opioid analgesics drugs and serotonin toxicity (syndrome): mechanisms, animal models, and links to clinical effects. Arch. Toxicol., 92, 2457–2473.

Carvalho, C.M. et al. (2009) Handling sparsity via the horseshoe. In: Artificial Intelligence and Statistics, PMLR, Florida USA, pp. 73–80.

Dodick,D.W. et al. (2004) Cardiovascular tolerability and safety of triptans: a review of clinical data. Headache, 44, 520–530.

Downs, A.M. et al. (2019) Trihexyphenidyl rescues the deficit in dopamine neurotransmission in a mouse model of DYT1 dystonia. Neurobiol. Dis., 125, 113–122.

Drugs.com (2021) Drug Interactions Checker, https://www.drugs.com/dru... interactions.html (25 December 2021, date last accessed).

Fagioli, M. et al. (2004) Specific GABAA circuits for visual cortical plasticity. Science, 303, 1681–1683.

Fan, H. et al. (2021) Heterogeneous hypergraph variational autoencoder for link prediction. IEEE Trans. Pattern Anal. Mach. Intell., 1. https://doi.org/10.1109/TPAMI.2021.3059513.

Feng, Y. et al. (2019) Hypergraph neural networks. AAAI, 33, 3558–3565.

Harada, S. et al. (2020) Dual graph convolutional neural network for predicting chemical networks. BMC Bioinformatics, 21, 1–13.

Hastie, T. (2015) Statistical Learning with Sparsity: The Lasso and Generalizations. Chapman and Hall/CRC Monographs on Statistics and Applied Probability, Vol. 143. CRC Press, Boca Raton, FL.

Hoeting, J.A. et al. (1999) Bayesian model averaging: a tutorial (with comments by M. Clyde, David Draper and E. I. George, and a rejoinder by the authors). Statist. Sci., 14, 382–417.

Kastrin, A. et al. (2018) Predicting potential drug-drug interactions on topological and semantic similarity features using statistical learning. PLoS One, 13, e0196865.

Kipf, T.N. and Welling, M. (2016) Semi-supervised classification with graph convolutional networks. In: 5th International Conference on Learning Representations, Conference Track Proceeding, OpenReview, Toulon, France, pp. 1–14. https://openreview.net/forum?id=SJUasyYgld.

Magro, L. et al. (2012) Epidemiology and characteristics of adverse drug reactions caused by drug–drug interactions. Expert Opin. Drug Saf., 11, 83–94.

Mei, S. and Zhang, K. (2021) A machine learning framework for predicting drug–drug interactions. Sci. Rep., 11, 17619.

Nguyen, D.A. et al. (2021) CentSmoothie: central-smoothing hypergraph neural networks for predicting drug-drug interactions. arXiv, preprint arXiv:2112.07837.

Comell University, New York, USA, https://doi.org/10.48550/arXiv.2112.07837.

Pal, S. and Zhe, Y. (2021) Community detection in the sparse hypergraph stochastic block model. Random Struct. Alg., 59, 407–463.

Pironen, J. and Vehanen, A. (2017) Sparsity information and regularization in the horseshoe and other shrinkage priors. Electron. J. Stat., 11, 5018–5051.

Rho, J.M. et al. (1997) Barbiturate-like actions of the propanediol dicarbamates felbamate and meprobamate. J. Pharmacol. Exp. Ther., 280, 1383–1391.
Ritter, J. et al. (2019) Rang and Dale’s Pharmacology. Elsevier, Amsterdam, Netherlands.

Saito, T. and Rehmsmeier, M. (2015) The precision-recall plot is more informative than the ROC plot when evaluating binary classifiers on imbalanced datasets. *PLoS One*, 10, e0118432.

Suleyman, H. et al. (2010) Different mechanisms in formation and prevention of indomethacin-induced gastric ulcers. *Inflammation*, 33, 224–234.

Tatonetti, N. P. et al. (2012) Data-driven prediction of drug effects and interactions. *Sci. Transl. Med.*, 4, 125ra31.

Thelwall, M. et al. (2017) Is medical research informing professional practice more highly cited? Evidence from AHFS DI Essentials in drugs. com. *Scientometrics*, 112, 509–527.

Tibshirani, R. (1996) Regression shrinkage and selection via the lasso. *J. R. Stat. Soc. Series B Methodol.*, 58, 267–288.

Venkataraman, H. et al. (2014) Cytochrome P450-mediated bioactivation of mefenamic acid to quinoneimine intermediates and inactivation by human glutathione S-transferases. *Chem. Res. Toxicol.*, 27, 2071–2081.

Wang, C.-S. et al. (2019) Detecting potential adverse drug reactions using a deep neural network model. *J. Med. Internet Res.*, 21, e11016.

Xu, N. et al. (2019) MR-GNN: multi-resolution and dual graph neural network for predicting structured entity interactions. In: Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence, International Joint Conferences on Artificial Intelligence Organization, Macao, China. pp. 2628–2634.

Yadati, N. (2020) Neural message passing for multi-relational ordered and recursive hypergraphs. In: *Advances in Neural Information Processing Systems*. Vol. 33, Morgan Kaufmann Publishers Inc., Massachusetts, United States, pp. 3275–3289.

Zhang, Y. et al. (2019) Node features adjusted stochastic block model. *J. Comput. Graph. Stat.*, 28, 562–373.

Zitnik, M. et al. (2018) Modeling polypharmacy side effects with graph convolutional networks. *Bioinformatics*, 34, i457–i466.