Iron-catalysed enantioselective carbometalation of azabicycloalkenes†

Laksmikanta Adak,‡abc Masayoshi Jin,‡ab Shota Saito,ab Tatsuya Kawabata,ab Takuma Itoh,ab Shingo Ito,abc Akhilesh K. Sharma,abc Nicholas J. Gower,abc Paul Cogswell,ab Jan Geldsetzer,abc Hikaru Takaya,abc Katsuhiro Isozaki,#*ab and Masaharu Nakamura,#*ab

The first enantioselective carbometalation reaction of azabicycloalkenes has been achieved by iron catalysis to in situ form optically active organozinc intermediates, which are amenable to further synthetic elaborations. The observed chiral induction, along with the DFT and XAS analyses, reveals the direct coordination of the chiral phosphine ligand to the iron centre during the carbon–carbon and carbon–metal bond forming step. This new class of iron-catalysed asymmetric reaction will contribute to the synthesis and production of bioactive molecules.

Carbometalation reactions, the 1,2-addition of organometallic species to alkenes or alkynes, are a powerful synthetic tool for carbon–carbon (C–C) bond formation. In particular, the transition-metal-catalysed asymmetric carbometalation of oxahy- and azabicyclic alkenes is an effective strategy for the enantioselective synthesis of chiral building blocks for various natural products. Lautens and co-workers have extensively studied the asymmetric transformations of bicyclic alkenes catalysed by rhodium and palladium, where the enantioselective carbometalation brings about desymmetrisation of the meso-substrates. Subsequent ring-opening reactions of the carbometalation intermediates give optically active products bearing multiple stereocentres. Copper and iridium catalysts can also affect the asymmetric transformations of oxahy- and azabicyclic alkenes (Scheme 1a).

The enantioselective carbometalation of azabicyclic alkenes without ring-opening is also of significant synthetic interest, as it can provide direct access to the azabicyclo[2.2.1]heptane skeleton of alkaloid derivatives, such as epibatidine and epiboxidine (Scheme 1b). Nevertheless, the catalytic asymmetric addition of organometallic species (i.e., carbon nucleophiles) to azabicyclic alkenes without the ring-opening remains virtually unexplored.

Asymmetric iron catalyses have emerged rapidly in organic synthesis, while their use in enantioselective carbometalation remains limited to the highly strained cyclopropene substrates. This can be attributed to the unstable coordination of chiral ligands with the iron centre, of which the oxidation states often fluctuate during the catalytic cycle. Indeed, Bedford and coworkers discovered that phosphine ligands do not coordinate to the iron centre in the iron-catalysed Negishi coupling. On the other hand, we have observed evident asymmetric induction in iron-bisphosphine-catalysed enantioselective cross-coupling reactions, and an

This journal is © The Royal Society of Chemistry 2021

Scheme 1 Transition-metal-catalysed asymmetric carbometalation reactions (E = electrophile).
acceleration effect of a chelate phosphine in the diastereoselective carbometalation of oxa- and azabicyclic alkenes with arylzinc reagents.

The study began with chiral phosphine ligand screening based on our success in iron-catalysed enantioselective cross-coupling reactions. We eventually found (details are shown in the ESI) that (S,S)-chiraphos, and aryl zinc reagent by the combination of X-ray absorption spectroscopy (XAS) and DFT-calculations show that the diaryl iron(II) species is the most likely intermediate responsible for this enantioselective carbometalation reaction. The direct coordination between the chiral phosphine ligand and iron centre inferred by the fact of chiral induction is also supported by the XAS analysis and the DFT calculations.

Table 1 displays the scope of the reaction under the optimised conditions: the reaction of 1a with para- and meta-substituted arylzinc reagents gave the corresponding products 3a–3f in 85–99% yield with good enantioselectivities (77–85% ee). When an o-tolylzinc reagent was employed, the enantioselectivity increased dramatically to give 3g in 93% yield with 99% ee. Other sterically hindered arylzinc reagents such as o-methoxynaphthyl-, 1-naphthyl-, and 9-phenanthrylzinc reagents also provided the corresponding products (3h–3j) with high enantioselectivities (93–97% ee). The heteroaromatic 4-chloro-3-pyridyloxylzinc reagent can also participate in the carbometalation to give 3k in 84% yield with relatively low enantioselectivity (45% ee). The steric factor of aryl nucleophiles had a substantial impact on the enantioselectivity, suggesting that the spatial interaction of the aryl group and the alkene substrate leads to mutual orientation of the two reactants in the stereochemistry-determining carbometalation step.

The electronic factors of alkene substrates seemed not to affect this carbometalation reaction: substrates having electron-withdrawing fluoro groups or electron-donating methoxy groups provided the corresponding products 3l and 3m in excellent yields (85% and 91%, respectively) and good enantioselectivities (78% and 75% ee, respectively). On the other hand, the reaction with an aliphatic azabicyclic alkene 3n became sluggish and did not proceed at 0 °C: the expected product 3n was obtained in 67% yield with 75% ee at an increased reaction temperature. As this reaction’s enantioselectivity is comparable to that of other substrates, the fused benzene ring has no significant effect on the enantioselectivity.

Table 2 Electrophilic trapping of a carbozincation intermediate

Entry	Electrophile	Yield of 5	ee (%)	de (%)
1	CD3OD/CD3CO2D = 80/20	96 (5a)	99	> 99
2	I2	84 (5b)	99	94

*Reactions were performed using 0.5–1.0 mmol of 1 and quenched with degassed MeOH/AcOH (80/20, 1.0 mL) unless otherwise noted. †Reaction performed at 20 °C. ‡Reaction performed at 0 °C. §Reaction performed at 30 °C. See the ESI for detailed reaction conditions.
(the experimental and computational details are described in the ESI).

Fig. 1 shows a plausible mechanism for the present carbometalation reaction. The catalytic cycle starts with diaryl iron(n)-(S,S)-chiraphos complex A, which is generated by the reduction of FeCl₃ with an excess organozinc reagent (>3.0 equivalents) in the presence of (S,S)-chiraphos. The XAS and DFT analyses reveal that the geometry of A is tetrahedral. An azabicyclic alkene coordinates to the intermediate likely in an exo-fashion to give intermediate B. Enantioselective olefin insertion proceeds to form carboferration intermediate C. Subsequent transmetalation with the organozinc reagent leads to optically active organoazirine intermediate D and regenerates iron(n) species A. Upon the sequential addition of electrophiles to the reaction mixture, intermediate D undergoes trapping to provide final product E. The sharp contrast between Bedford’s and our observations can be attributed to the difference of the redox behaviours of the iron centre in cross-coupling and carbometalation; the latter reaction maintains iron(n) oxidation states during the catalytic cycle and the bisphosphine ligand predominantly coordinated to the iron centre, rather than to the zinc centre.

In summary, we have developed the first enantioselective carbometalation reactions between various azabicycalkenes and arylzinc reagents, which proceed under mild conditions by using a readily available FeCl₃ and (S,S)-chiraphos catalytic system. Trapping experiments reveal the formation of a densely-functionalised optically active organoazirine intermediate. XAS and DFT studies provided evidence for the direct coordination of the chiral phosphine ligand to the iron(n) centre, even in the presence of an excess zinc species that can undergo competitive coordination of the phosphine ligands. The present findings demonstrate the potential of iron-catalysed stereoselective C–C bond formations for synthesising complex chiral molecules of biological relevance. Further mechanistic studies on the detailed multi-spin reaction pathway and the origin of the asymmetric induction are currently underway.

This work was funded in part by a grant from JSPS through the ‘Funding Program for Next Generation World-Leading Researchers (NEXT Program)’, initiated by the Council for Science and Technology Policy, Core Research for Evolutional Science and Technology (CREST 1102545), ALCA from the Japan Science and Technology Agency (JST), and the JSPS Core-to-Core Program ‘Elements Function for Transformative Catalysis and Materials’. JSPS KAKENHI Grant Number 20H02740 also supported this work. L. A., J. G., and A. K. S. are grateful for a research fellowship from JSPS and the MEXT project ‘Integrated Research Consortium on Chemical Sciences’. L. A. also thanks SERB, DST, Govt. of India (Project: SRG/2020/001350) and WBDST-BT for sanctioned Government Order [Mem No: 1854 (Sanc.)ST/P/S&T/15G-7/2019]. This work was supported by the International Collaborative Research Program of Institute for Chemical Research, Kyoto University (grant #2019-20 and #2020-16). FAB-ESI-MS and elemental analyses were supported by the JURC at ICR, Kyoto University. The synchrotron radiation experiments were performed at the BL14B2 (2015A0121, 2015B0121, 2016A0121, and 2016B0121) and BL02B1 (2016A0114) of SPring-8 with the approval of the Japan Synchrotron Radiation Research Institute (JASRI). The computations were performed at the Research Center for Computational Science, Okazaki, Japan.

Conflicts of interest

The authors declare no conflict of interest.

Notes and references

1 (a) D. S. Müller and I. Marek, Chem. Soc. Rev., 2016, 45, 4552–4566; (b) D. Didier, P.-O. Delaye, M. Samaan, B. Island, G. Eppe, H. Eijssberg, A. Kleiner, P. Knochel and I. Marek, Chem. – Eur. J., 2014, 20, 1038–1048; (c) K. Murakami and H. Yorimitsu, Beilstein J. Org. Chem., 2013, 9, 278–302; (d) A. Pérez-Luna, C. Botuha, F. Berreira and F. Chemla, New J. Chem., 2008, 32, 594–606.

2 (a) K. Fagnou in Modern Rhodium-Catalyzed Organic Reactions, ed. P. A. Evans, Wiley-VCH, Weinheim, 2005, pp. 173–190; (b) M. Lautens, K. Fagnou and S. Hiebert, Acc. Chem. Res., 2003, 36, 48–58; (c) M. Lautens, K. Fagnou, M. Taylor and T. Rovis, J. Organomet. Chem., 2001, 624, 259–270; (d) S. V. Kumar, A. Yen, M. Lautens and P. J. Guiry, Chem. Soc. Rev., 2011, 40, 3013–3093.

3 (a) L. Zhang, C. M. Le and M. Lautens, Angew. Chem., Int. Ed., 2014, 53, 5951–5954; (b) G. C. Tsui and M. Lautens, Angew. Chem., Int. Ed., 2012, 51, 5400–5404; (c) J. Zhu, G. C. Tsui and M. Lautens, Angew. Chem. Int. Ed., 2012, 51, 12353–12356; (d) Y. Cho, V. Zunic, H. Sennboku, M. Olsen and M. Lautens, J. Am. Chem. Soc., 2006, 128, 6837–6846; (e) M. Lautens and K. Fagnou, Proc. Natl. Acad. Sci. U. S. A., 2004, 101, 5455–5460; (f) F. Menard and M. Lautens, Angew. Chem., Int. Ed., 2008, 47, 2085–2088; (g) J. Pantaleev, F. Menard and M. Lautens, Adv. Synth. Catal., 2008, 350, 2893–2902; (h) J. Bexrud and M. Lautens, Org. Lett., 2010, 12, 3160–3163.

4 (a) M. Lautens, S. Hiebert and J.-L. Renaud, J. Am. Chem. Soc., 2001, 123, 6834–6839; (b) M. Lautens and C. Dockendorff, Org. Lett., 2003, 5, 3695–3698; (c) S. Cabrera, R. Gómez Arrayas and J. C. Carretero, Angew. Chem., Int. Ed., 2004, 43, 3944–3947; (d) S. Cabrera, R. Gómez Arrayas, I. Alonso and J. C. Carretero, J. Am. Chem. Soc., 2005, 127, 17938–17947; (e) H. A. McManus, M. J. Fleming and M. Lautens, Angew. Chem., Int. Ed., 2007, 46, 433–436; (f) T. Ogura, K. Yoshida, A. Yanagisawa and T. Imamoto, Org. Lett., 2009, 11, 2245–2248; (g) X.-J. Huang, D.-L. Mo, C.-H. Ding and X.-L. Hou, Synlett, 2011, 943–946; (h) B. Pan, S. Li, H. Chen, Z. Lu, S. Liu, Q. Yang, L. Yu, J. Xu, Y. Zhou and J. Wang, Adv. Synth. Catal., 2013, 355, 2827–2832; (i) K.-L. Huang, C. Guo, L.-J. Cheng, L.-G. Xie, Q.-L. Zhou, X.-H. Xu and S.-F. Zhu, Adv. Synth. Catal., 2013, 355, 2833–2838.
We reported the iron-catalysed enantioselective Kumada–Tamao–Corriu and Suzuki–Miyaura coupling reactions of \(\gamma \)-chloroesters. see: (a) T. Iwamoto, C. Okuzono, L. Adak, M. Jin and M. Nakamura, Chem. Commun., 2019, 35, 1128–1131; (b) M. Jin, L. Adak and M. Nakamura, J. Am. Chem. Soc., 2015, 137, 7128–7134.