First occurrence of *Cardilia michelottii* Deshayes, 1844 (Bivalvia, Cardiliidae) in the Iberian Pliocene

Primera cita de *Cardilia michelottii* Deshayes, 1844 (Bivalvia, Cardiliidae) en el Plioceno de la península Ibérica

Ricardo Pimentel¹, Pedro M. Callapez² & Paulo Legoinha³

¹. Agrupamento de Escolas de Guia, Rua Fundadores do Colégio, 3105-075 Guia, Portugal. ricardojch@gmail.com
². CITEUC, Departamento de Ciências da Terra, Universidade de Coimbra, Rua Sílvio Lima, 3030-790 Coimbra, Portugal.
³. GEOBIOTEC, Departamento de Ciências da Terra, FCT-Universidade NOVA de Lisboa, Campus FCT, 2829-516 Caparica, Portugal.

Recibido: 27 de octubre de 2018. Aceptado: 7 de marzo de 2019. Publicado electrónicamente: 30 de noviembre de 2019.

KeyworDs: Cardiliidae, *Cardilia michelottii*, Pliocene, Vale de Freixo, Portugal.

PALABRAS CLAVE: Cardiliidae, *Cardilia michelottii*, Pliocene, Vale de Freixo, Portugal.

ABSTRACT

The family Cardiliidae groups a small number of bivalve species from the superfamily Mactroidea, which have been scarcely found and have a known stratigraphic range from the middle Eocene to the present day. From these stand out *Cardilia michelottii* Deshayes, 1844, as an extinct valid species only previously known from the Italian Peninsula, where it has been recorded from the Pliocene of Emilia-Romagna, the Pliocene of Tuscany and Piedmont, and the Pleistocene of Lazio. The first finding of this species outside the Italian ranges is here reported from a single, but well-preserved left valve collected from the lower Piacenzian molluscan assemblage of Vale de Freixo fossil site (Pombal, West Portugal), in the Pliocene Mondego Basin. This allows to extend the known biogeographic range of this thermophilic species to the Iberian Peninsula, and also to reduce the geographical gap between the Neogene to present-day West African and Mediterranean occurrences of this morphologically very distinctive genus of warm shallow-water bivalve assemblages.

RESUMEN

La familia Cardiliidae agrupa un pequeño número de especies de bivalvos de la superfamilia Mactroidea, que apenas se han encontrado de forma muy rara y tienen un rango estratigráfico conocido desde el Eoceno medio hasta nuestros días. De éstos se destaca *Cardilia michelottii* Deshayes, 1844, como una especie extinta válida que antes solo se conocía en la Península Italiana, donde se registró desde el Pliocene de Emilia-Romána, el Pliocene de Toscana y Piamonte y el Pleistoceno de Lazio. Se reporta el primer hallazgo de esta especie fuera de los rangos de Italia, a partir de una valva izquierda bien conservada que ha sido recolectada en la asociación de moluscos fósiles del Piacenziano inferior del yacimiento de Vale de Freixo (Pombal, Oeste de Portugal), en el Plioceno de la Cuenca del Mondego. Esto hallazgo permite extender el rango biogeográfico conocido de esta especie termofílica hasta la Península Ibérica, así como reducir el espacio sin citas entre las ocurrencias oeste-africanas y mediterráneas de este género morfológicamente muy distintivo y que integra asociaciones de bivalvos de aguas cálidas y poco profundas.

1. INTRODUCTION

The numerous previous studies that, over more than a century, have contributed to the knowledge of the bivalve faunas from the marine Pliocene of Portugal (i.e. Dollfus & Cotter, 1909; Cox, 1936; Morais, 1941; Zbyszewski, 1943, 1959; Teixeira & Zbyszewski, 1951; Manupella et al., 1978; Silva, 1991, 1993a, 1993b, 1995, 2001, 2003; Carvalho et al., 2005a, 2005b; Silva et al., 2010; Monegatti & Raffi, 2007; Perna et al.,
The family Cardiliidae was proposed by Fischer (1887:1120) and has been historically included in the superfamly Mactroidea (e.g. Dall, 1895; Lamy, 1917; Keen in Moore, 1969; Bieler et al., 2010; Carter et al., 2011; Signorelli & Raven, 2018). According to Signorelli & Raven (2018: 142-143), its inclusion in this superfamly needs to be better confirmed. It includes a single genus - Cardilia (Deshayes in Lamarck, 1835:448-449) - where the type-species is Isocardia semisulcata (Lamarck, 1819 (Deshayes in Lamarck, 1835:448).

The Cardiliidae share several common characteristics with the remaining Mactroidea families (i.e. Mactridae, Anatelliidae and Mesodesmatidae (Signorelli & Carter, 2016), namely an internal resilium and a left valve cardinal tooth with an inverted “V” shape. As main characters that define the family, the insertion of the posterior adductor in myophorus, the existence of three distinct sculpture areas in the shell surface, the outline of the valves and the heavily inflated, prosogyre umbones are considered (Signorelli & Raven, 2018: 131).

The bivalves of the family Cardiliidae are known to have a stratigraphic range that begins at the Middle Eocene and persists to the present day. Their biogeographic distribution during this interval is wide. It includes several European basins, many Neogene and recent areas of Southeast Atlantic, and part of the Indo-Pacific realm, including Japan. In a recent work, Signorelli & Raven (2018) have validated 11 extinct species (i.e. Cardilia michelinii (Deshayes in Michelini, 1825); C. michelottii Deshayes, 1844; C. laveissiula Sowerby in Dixon, 1850; C. deshayesi Hornes, 1859; C. krawangensis Oostingh, 1934; C. ludwigi Oostingh, 1934; C. bruneiana Beets, 1944; C. palembangensis Beets, 1944; C. sundai-ca Regteren, Altena & Beets, 1945; C. toyamaensis Tsuda, 1959; and C. edwardsi nov. sp.), and four extant ones (i.e. Cardilia semisulcata (Lamarck, 1819); C. inermis Deshayes, 1844; C. martini Deshayes, 1844; and C. atlantica Nickles, 1955).

Next paragraphs report the first mention of the genus Cardilia in the Iberian Pliocene, through the description and figuration of a specimen of C. michelottii recently found in the Vale de Freixo fossil site, one of the few outcrops with highly diverse fully marine Piacenzian faunas available in Portugal.

2. Geographical and Stratigraphical Setting

The studied fossil site is located in the Beira Litoral ranges of West-Central Portugal (Figure 1A), between the towns of Pombal and Leiria. This area of the Western Meso-Cenozoic Border of the country is characterized by the widespread of a thick post-Mesozoic sedimentary cover, as part of the onshore infill of the west continental margin of Iberia (Ribeiro et al., 1979). It is also one of the main areas with exposures of marine Piacenzian found in the Mondego Basin (Paes et al., 2010), a Cenozoic basinal unit with a tectono-sedimentary history related to the subsidence of NE-SW depressions controlled by the reactivation of Variscan reverse structures (Ribeiro et al., 1990).

During the Piacenzian, the area was strongly affected by several eustatic oscillations of the nearby Atlantic Ocean, which resulted in a marine transgression that reached more than 20 km away from the present-day coastline (e.g. Cunha, 1992; Cunha et al., 2008). The correlative stratigraphic record is mostly sandy silicilastic. It locally begins by conglomeratic facies rich on marine shells, which are the basis of several interesting fossil sites, including those discovered during the 1950’s near the locality of Carnide (e.g. Carnide de Cima, Igreja de Carnide, Vale da Bouchada, Vale da Cabra, and Vale Farpado), in the municipality of Pombal (Teixeira & Zbyszewsky, 1951).

The Vale de Freixo fossil site was discovered during the 1980’s decade in a clay pit exposed nearly 500 m SW the Carnide church, in the locality of Carnide (Pombal) (Figure 1B). It locally records the “P - Marine Pliocene of Vale de Carnide” unit described in the chart “23-A Pombal” of the 1/50,000 Geological Map of Portugal (Manuppella et al., 1978). The local fossiliferous beds have been assigned to an interval correlative to the Piacenzian lower half, but where the uppermost Zancian can still be represented (Cachão, 1990; Silva, 2001). The lithostratigraphic setting comprises the Carnide Formation (Cachão, 1989; Paes et al., 2010) where three sub-horizontal fossiliferous strata (“Beds 2 to 4”) have been differentiated by authors, with an overall maximal thickness of 1.2 m. Facies are of coarse to fine silicilastics and their sequential articulation suggests sedimentation in an inner platform context, where the main hydrodynamic oscillations...
First occurrence of *Cardilia michelottii* Deshayes, 1844 (Bivalvia, Cardiliidae) in Iberian Pliocene

The fossiliferous sequence comprises the following strata, from its base upwards (Figure 2 A-B):

(a) Clast to matrix-supported oligomitic conglomerate, bioclastic rich, with medium to high sphericity, rounded quartz and quartzite clasts. It comprises abundant concentrations of reoriented shells (including large valves of *Glycymeris* with their commissure planes facing downwards) enveloped in a grey sandstone and lutitic matrix (“Bed 2”). This unit rests unconformable on Miocene clayey sediments (“Bed 1”);

(b) Fine to medium-grained greyish sandstone, very friable, with abundant malacofauna (“Bed 3”);

(c) Fine-grained, brown to yellowish sandstone, very friable, also rich on fossil content, including many articulated bivalves (“Bed 4”);

(d) High plasticity brownish claystone, apparently without macrofossils (“Bed 5”). This impermeable stratum has a variable thickness of 10 to 15 cm and inhibits water circulation from overlying sandy levels, contributing to the excellent local preservation of skeletal remains.

3. Systematic palaeontology

Figure 1. Geographical context of Vale de Freixo (Pombal, Portugal). A – General geographical location. B – Vale de Freixo fossil site location.

Figure 2. Fossiliferous sequence of Vale de Freixo (Pombal, Portugal). A – Unconformity between the underlying Miocene clayey sediments (1) and the Pliocene basal oligomitic conglomerate (2). B – Fossiliferous conglomerate and sandy beds (2, 3, 4) and overlying impermeable clay bed (5).
The studied specimen is a left valve (RP-VF4-B005) directly collected from “Bed 4”, during the sampling procedures. It is presently housed in the Departamento de Ciências da Terra, Universidade de Coimbra, Portugal, as part of the study collection of the first author, and is available for further researches. The dimensional parameters considered for its description are: (a) the maximum distance between the umbo and the paleal border - umbopaleal diameter; (b) the maximum distance between the anterior and posterior margins - anteroposterior diameter; and (c) the diameter between the highest point of the external face of the valve and the commissural plane - valve height.

Class Bivalvia Linnaeus, 1758
Subclass Heterodonta Neumayr, 1884
Superorder Imparidentia Bieler, Mikkelsen & Giribet, 2014
Superfamily Mactroidea Lamarck, 1809
Family Cardiliidae Fischer, 1887
Genus Cardilia Deshayes, 1835
[Type species: Isocardia semisulcata Lamarck, 1819]

Cardilia michelottii Deshayes, 1844 (Figure 3, 1-4)

1844 Cardilia michelottii – Deshayes: 8.
1847 Cardilia michelottii – Simonda: 22.
1848 Cardilia michelottii – Bronn: 220.
1852 Cardilia michelottii – D’Orbigny: 183.
1855 Cardilia michelottii – Pictet: 501.
1861 Cardilia michelottii – Fischer: 343.
1862 Cardilia michelottii – Dodderlein: 96.
1868 Isocardia sp. n. – Manzon: 19-20.
1870 Cardilia michelottii – Manzon: 24-25; pl. II, fig. 3.
1874 Cardilia michelottii – De Stefani: 10,78.
1887 Cardilia michelottii – Ponzi & Mèlie: 678.
1888 Cardilia michelottii – Clerici: 113,127; pl. IV, fig. 38.
1891 Cardilia michelottii – Fucini: 85.
1892 Cardilia michelottii – Pantanelli: 239.
1889 Cardilia michelottii – Sacco: 346.
1901 Cardilia michelottii – Sacco: 32; pl. VI, figs. 26-30.
1909 Cardilia michelottii – Cerulli-Irell: 145 [161]; pl. XVI [XXVI], fig. 6.
1941 Cardilia michelottii – Socin: 8.
1975 Cardilia michelottii – Pavia: 116; pl. XIII, fig. 6.
1983 Cardilia michelottii – Almon & Mortara: 301.
2007 Cardilia michelottii – Merlino: 154.
1983 Cardilia michelottii – Cavallo & Repetto: 206; fig. 615.
2015 Cardilia michelottii – Chirle: 83; pl.19, figs. 7-10.
2018 Cardilia michelottii – Signorelli & Raven: 2,9,13.
2018 Cardilia michelottii – Pimentel: 167; pl. XX, figs. 1-3.
2018 Cardilia michelottii – Pimentel et al.: 226.

Studied material: A single left valve (RP-VF4-B005) well-preserved and showing all morphological details of this very uncommon species.

Dimensions: Umbopaleal diameter (a): 17 mm; anteroposterior diameter (b): 12 mm; valve height (c): 8 mm.

Description: As main external characters, the shell is tumid, fragile, with subcircular-oval outline. Umbopaleal diameter larger than the anteroposterior one, posterior dorsal margin concave and anterior oblique, and anterior and posterior margins curve, although the posterior is less rounded. Arched ventral margin, and umbo conserved in anterior subcentral position, and prosogyrous. External sculpture with concentric and irregular growth lines, more marked in the dorsoposterior zone, between the posterior margin and the radial ribs. Six radial ribs arranged in the central part of posterior half of the valve, along the umbopaleal axis, five of which well-marked and the remain more diffuse. Radial ribs crossed by growth lines...
and intercalated by well-marked but narrower interspaces. As main internal characters the shell hinge is mactroid in shape, with an oblique chondrophore ventrally projected, a typical inverted “V” shape tooth, and a triangular myophore umbonally sharpened.

Distribution: Cardilia michelottii was mentioned by DorDEleIn (1862) for the T or- tonian beds of Montegibbio (Sassuolo, Italy). Several other authors also refer this rare species for the Pliocene of Italy, namely in the regions of Tuscany and Piedmont (e.g. De- shayes, 1844; SisMONDA, 1847; BRonn, 1848; D’OrBIGNY, 1852; PIcTEt, 1855; FISCHER, 1861; MANZONI, 1868, 1870; SACCO, 1889, 1901; PAntANELLI, 1892; ChIRI, 2015; SIGnorelli & RAVEN, 2018). It was also signalled by PonzI & MeLI (1887), clerICI (1888) and CERullI-IrellI (1909) for the Pleistocene of Lazio. The first known figuration was published by MANZONI (1870).

4. DISCUSSION

The studied specimen is close to those Cardilia michelottii described and figured for the Italian Neogene (e.g. SACCO, 1901; CERullI-IrellI, 1909; ChIRI, 2015). Its external sculpture is very identical to those of the Italian specimens. However, there are a few slightly morphological differences to note, including the less circular outline of the valve, with the anterior and posterior margins less concave and the umbo-paleal diameter much larger than the anteroposterior one. There is also a lateral fracture in the valve surface that could suggest some degree of diagenetic distortion and thus explain the more oval outline. By this way, the above-mentioned differences should be consistent with the individual variation admissible for this species, but future studies on the shell microstructure of both Italian and Portuguese specimens will be very valuable to confirm their affinities.

No other species of Cardilia are presently known in the European Pliocene (Figure 4), suggesting that this genus was in decline after the Miocene in the Mediterranean and nearby Atlantic areas, in what appears to be a tendency that culminated with the extinction of C. miche- lottii in the Italian Pleistocene.

It is also interesting to note that the genus Cardilia is also represented in the present-day West African tropical fauna (NICKLES, 1955), where several thermophilic species integrated the “Senegalese fauna” that colonized many Mediterranean shallow coastal areas during intervals of climatic warming. Thus, the occurrence of C. michelottii in the Vale de Freixo fossil site can be an additional indicator that suggests the seasonal prevalence of slightly higher paleotemperatures in the lower Piacenzian local coastal surface waters (SilVA et al., 2010), when compared with those presently recorded for the same latitude.

5. CONCLUSIONS
The specimen of Cardilia michelotti here described for the Vale do Freixo fossil site is the first to be recorded for this species and genus in the European Pliocene marine molluscan assemblages located outside the Italian Peninsula. Besides its taxonomic relevance and the fact of belonging to a poorly-known family (Cardiliidae) with thermophilic affinities, it allows to enlarge the biogeographical range of this species to the Mondego Basin, in the Atlantic margin of West-Central Portugal. Also considering the Neogene to present day known-occurrences of this genus, our finding also reduces the geographical gap between the West African and Mediterranean occurrences of this morphologically very distinctive genus of warm shallow-water bivalve assemblages.

Acknowledgements

Authors thank the support of their FCT research centres, namely the CITEUC and the GEOBIOTEC. The first author also thanks Dr. J.H. Signorelli and Dr. J.G.M. Raven for kindly providing their paper about the family Cardiliidae. Our thanks also go to Dr. Fernando Barroso-Barcenilla, Dr. Alfredo Baratas, and the anonymous reviewers that greatly helped to improve the manuscript.

References

Amone, S. & Mortara, E. 1983. Malacoфаune pliocénique de Cossato e Candelo (Biellese, Italia, NW). Bollettino del Museo Regionale di Scienze Naturali, Torino, 1 (2): 279-328.

Beets, C. 1944 [1943]. Notizen über dieGattung Cardilia Deshayes. Verhandelingen geologisch-mijnbouwkundig genootschaap voor Nederland en koloniën, 13: 355-362.

Bieler, R., Carter, J.G. & Coan, E.V. 2010. Classification of Bivalve families. In: Bouchez, P. & Rocroi, J.P. 2010. Nomenclator of Bivalve Families. Malacologia, 52 (2): 113-133.

Bieler, R., Mikkeelsen, P.M., Collins, T.M., Glover, E.A., González XL., Graf, D.L., Harper, E.M., Healy, J., Kawaiuchi, G.Y., Sharma, P.P., Staubach, S., Strong, E.E., Taylor, J.D., Temkin, I., Zardus, J.D., Clark, S., Guzman, A., McIntyre, E., Sharp, P. & Gribet, G. 2014. Investigating the Bivalve Tree of Life – an exemplar-based approach combining molecular and novel morphological characters. Invertebrate Systematics, 28 (1): 32-115.

Brønn, H.G. 1848-1849. Index Palaeontologicus oder Übersicht der bis jetzt Bekannten Fossilien Organismen, bearbeitet unter Mitwirkung der Herren Prof. H. R. Göppert and Herrn. v. Meyer, bearbeitet von Dr. H. G. Brønn. A. Erste Hälfte, A-M. 775 pp. Schweizerbart'sche Verlagsbuchhandlung, Stuttgart.

Cachão, M. 1989. Contribuição para o estudo do Pliocénico marinho Português. 210 pp. Dissertação PAPCC. Faculdade de Ciências da Universidade de Lisboa.
— 1990. Posicionamento biostratigráfico da jazida pliocênica de Carnide (Pombal). Gaia, 2: 11-16.

Carter, J.G., Altaba, C.R., Anderson, L.C., Araujo, R., Biakov, A.S., Bogan, A.E., Campbell, D.C., Campbell, M., Jinhua, C., Cope, J.C.W., Delvene, G., Diestra, H.H., Zong-Jie, F., Gardner, R.N., Gavriloa, V.A., Goncharova, I.A., Harries, P.J., Hartman, J.H., Hauynmann, M., Hoeh, W.R., Hylleberg, J., Baitau, J., Johnston, P., Kirkendale, L., Kleemann, K., Kopka, J., Križ, J., Machado, D., Malchus, N., Marquez-Aluja, A., Masse, J.P., McRoberts, C.A., Middelfart, P.U., Mitchell, S., Nevesskaia, L.A., Ozer, S., Pojeta Jr., J., Polubotko, J.V., Pons, J.M., Popov, S., Sanchez, T., Sartori, A.F., Scott, R.W., Sey, I.I., Signorelli, J.H., Silantiev, V.V., Skelton, P.W., Steliber, T., Waterhouse, J.B., Wingard, G.L. & Yancey, T. 2011. A synoptical classification of the Bivalvia (Mollusca). Paleontological Contributions, 4: 1-47.

Carvalho, M. 1998. Estudo preliminar do Plio-Quaternário do Baixo Mondego. Sector Monte-Redondo Pombal. Comunicações do Instituto Geológico e Mineiro, 84 (1): 173-176.

Carvalho, M., Callapez, P.M. & Ferreira Soares, A. 2005a. First record of Similiceps simpis (Laskey, 1811) (Mollusca, Bivalvia, Pectinacea) in the Pliocene of Portugal. Portugalia, 5: 29-30.

Carvalho, M., Callapez, P.M., Ferreira Soares, A., Gomes, H. & Oliveira, M. 2005b. Intraspecific variation in Cardilia striatissima (Cailliaud, in Mayer, 1868) (Mollusca, Bivalvia, Carditidae) in the Pliocene of Pombal (West Pliocene Central Portugal). Portugalia, 5: 29.

Carvalho, M., Ferreira Soares, A. & Callapez, P.M. 2005c. Evolução sedimentar plio-plistocénica na região do Baixo Mondego: sector Pombal-Monte Redondo-Soure (Beira Litoral, Portugal). In: Mirão, J. & Balbino, A. Coords. VII Congresso Nacional de Geologia, Livro de Resumos, 2: 625-628. Universidade de Évora.

Carvalho, O. & Repetto, G. 1992. Conchiglie fossili del Roero. Atlante iconografico. 253 pp. Associazione Naturalistica Piemontese (Memorie, Vol. II) & Amici del Museo e Eusebio, Alba.

Cerulli-Irelli, S. 1909. Fauna malacológica marina. Parte terza e appendice. Palaeoentographia Italica, 15: 125-214.

Chirili, C. 2015. Malaco fauna Pliocenica Toscana. Bivalvia: Heterococoncha Hertwigh, 1895. 233 pp. Author edition. Firenze.

Clerici, E. 1888. Sulla Corbicula fluminalis dei dintorni di Roma e sui fossili che l'accompagnano.
First occurrence of *Cardilia michelottii* Deshayes, 1844 (Bivalvia, Cardilidae) in Iberian Pliocene

Bullettino della Società Geologica Italiana, 7: 105-127.

Cox, L.R. 1936. Pliocene Mollusca from Portugal. Memórias e Notícias, Publicações do Museu e Laboratório Mineralogico e Geológico da Universidade de Coimbra, 9: 47-75.

Cunha, P.P. 1992. Estratigrafia e sedimentologia dos depósitos do Cretáceo Superior e Terciário de Portugal Central, a leste de Coimbra. 262 pp. Unpublished PhD Thesis, Universidade de Coimbra. Coimbra.

Cunha, P.P., Martins, A.A. & Pais, J. 2008. O estudo do Cenozóico em Portugal continental – “es-tado da arte” et perspectives futures. In: Callapez, P.M., Rocha, R.B., Marques, J.F., Cunha, L.S., Dinis, P.A. Eds. A Terra conflitos e ordem, Homenagem ao Professor Ferreira Soares: 101-110. Museu Mineralógico e Geológico da Universidade de Coimbra. Coimbra.

Dall, W.H. 1895. Synopsis of a review of the genera of Recent and Tertiary Mactridae and Meso- somatidae. Malacological Society of London, Proceedings, 1: 203-213.

De Stefani, C. 1874. Fossili pioceni dei dintorni di San Miniato (Toscana). 86 pp. Tip. Nistri. Pisa.

Deshayes, G.P. 1825. In: Hardouin Michelin, M. Ed. Collection de M. Hardouin Michelin. Coquilles Fossiles du Bassin Parisien. 1 est. + expl.

— 1844. Magasin de Zoologie, d’Anatomie Comparée et de Paléontologie: Série 2, 6 (8): 1-8.

Deshayes, G.P. & Milne Edwards, H. 1835. Histoire des Mollusques. In: de Lamarck, J.B.P.A. Histoire naturelle des animaux sans vertèbres, 6. 600 pp. J.B. Baillière. Paris.

Doderlein, P. 1862. Cenni geologici intorno la giacituradegli terreni miocenici superiori dell’Italia centrale. Atti X Congresso Scienza Italiani: 83-109. Siena.

Dolfinus, G.F. & Cotter, J.C.B. 1909. Mollusques tertiaires du Portugal. Le Pliocene à l’Est du Tage (Plaisancian). 1. Pelecypoda. Memórias da Comissão do Serviço Geológico de Portugal, 40: 1-103.

Fischer, P. 1861. Liste monographique des espèces du genre Cardilia. Journal de Conchylologie, 9: 335-344.

— 1880-1887. Manuel de Conchylologie et de Paleontologie Conchylologique ou Historie Naturelle des Mollusques Vivants et Fossiles. 1369 pp. Savy. Paris.

Fucini, A. 1891. Il Pliocene nei dintorni di Cerreto-Guidi Limiti ed i suoi molluschi fossili. Bullettino dello Società Geologica Italiana, 10: 48-87.

Hornes, M. 1859. Die Fossilen Mollusken des Tertiär–Beckens von Wienunter der Mitwirkung von Paul Partsch. Abhandlungen der kaiserlich–koniglichen Geologischen Reichsanstalt, 4:1-477.

Keen, A.M. 1969. Superfamily Mactracea Lamarck, 1809. In: Moore, R.C. Ed. Treatise on Invertebrate Paleontology, Part N. Mollusca 6: 595-610. Geological Society of America & University of Kansas Press. Boulder, Colorado & Lawrence, Kansas.

Lamarck, J.B.M. de. 1809. Philosophie zoologique, Vol. 1. 428 pp. Dentu. Paris.

Lamarck, J.B.P.A. de. 1819. Histoire Naturelle des Animaux sans Vertèbres, 6, part I. 343 pp. Author edition. Paris.

Lamy, E. 1917. Révision des Mactridae vivants du Muséum d’Histoire Naturelle de Paris. Journal de Conchylologie, 63: 197-270, 291-411.

Linnéaus, C. 1758. Systema Naturae per regna tria naturae. Editio decima, reformata. 824 pp. Laurentius Salvius, Holmiae.

Manjellia, G., Zbyszewski, G. & Ferreira, O. 1978. Carta Geológica de Portugal na escala de 1:50 000. Noticia explicativa da folha 23-A, Pombal. 62 pp. Serviços Geológicos de Portugal. Lisboa.

Manzoni, A. 1868. Saggio di Conchilologia Fossile Subappennina: Fauna delle Sabbie Gialle. 74 pp. Ignazio Galeati e Figlio. Milano.

— 1870. Annotazioni al Saggio di Concinoio già fossile subappennina, fauna delle sabbie gialle. Bullettino Malacologico Italiano, 3: 24-25.

Merlino, B. (Ed.) 2007. Catalogo dei tipi e degli esemplari figurati della collezione Bellardi e Sacco. Parte III. 271 pp. Museo Regionale di Scienze Naturali. Torino.

Monegatti, P. & Raffi, S. 2007. Mediterranean-Middle Eastern Atlantic Façade: molluscan biogeography & ecobiostratigraphy throughout the Late Neogene. Açoreana: Revista de Estudos Açoreanos, 5: 126-139.

Morais, J.C. 1941. Mais alguns fósseis da região do Pinhal de Leiria. Memórias e Notícias, Publicações do Museu Mineralógico e Geológico da Universidade de Coimbra, 10: 3-5.

Neumayr, M. 1884. Zur Morphologie des Bivalven Schlosses. Sitzungsberichte der Mathematisch-Naturwissenschaftlichen Klasse der Kaiserlichen Akademie der Wissenschaften, 88 (1): 395-419.

Nicolae, M. 1955. Scaphopodes et lamellibranches récoltés dans l’ouest Africain. Atlantide Report (Scientific results of the Danish expedition to the coasts of tropical West Africa (1945–1946), 3: 93-237.

Oöstinghi, C.H. 1934. Aanteekeningen over eenige bivalven uit het Neogeen van Java (mit Beschreibung einiger neuer Bivalven aus dem Neogen von Krawang, Java). De Ingenieur in Nederlands-Indie (IV), 4: 19-22.

Orbigny, A. d’. 1852. Prodrôme de Paléontologie Stratigraphique Universelle des Animaux et Mollusques et Rayonnés, 3. 389 pp. Victor Masson. Paris.

Pais, J., Cunha, P.P. & Legoinha, P. 2010. Lithostratigrafia do Cenozóico de Portugal. In: Neiva, J.M.C., Ribeiro, A., Victor, L.M., Noronha, F. & Ramalho, M. Eds. Vol. I, pp. 365-376. Ciências Geológi- cas – Ensino e Investigação e sua História. Associação Portuguesa de Geólogos & Sociedade Geológica de Portugal. Lisboa.

Pantanelli, D. 1892. Lamellibranchi Pliocenici. Enumerazione e sinonimia delle specie dell’ Italia superiore e centrale. Bullettino della Societa Malacologica Italiana, 17: 1-295.
