Operadic quantization of \mathbf{VII}_a, $\mathbf{III}_a=1$, $\mathbf{VI}_a \neq 1$
over harmonic oscillator

Eugen Paal and Jüri Virkepu

Abstract

Operadic Lax representations for the harmonic oscillator are used to construct the quantum counterparts of some real three dimensional Lie algebras. The Jacobi operators of these quantum algebras are studied.

1 Introduction and outline of the paper

In Hamiltonian formalism, a mechanical system is described by the canonical variables q^i, p_i and their time evolution is prescribed by the Hamiltonian equations

$$\frac{dq^i}{dt} = \frac{\partial H}{\partial p_i}, \quad \frac{dp_i}{dt} = -\frac{\partial H}{\partial q^i} \quad (1.1)$$

By a Lax representation [3] of a mechanical system one means such a pair (L, M) of matrices (linear operators) L, M that the above Hamiltonian system may be represented as the Lax equation

$$\frac{dL}{dt} = ML - LM \quad (1.2)$$

Thus, from the algebraic point of view, mechanical systems may be represented by linear operators, i.e by linear maps $V \to V$ of a vector space V. As a generalization of this one can pose the following question [4]: how to describe the time evolution of the linear operations (multiplications) $V^\otimes n \to V$?

The algebraic operations (multiplications) can be seen as an example of the operadic variables [1]. If an operadic system depends on time one can speak about operadic dynamics [4]. The latter may be introduced by simple and natural analogy with the Hamiltonian dynamics. In particular, the time evolution of the operadic variables may be given by the operadic Lax equation. In [5, 6, 7], the low-dimensional binary operadic Lax representations for the harmonic oscillator were constructed. In [8] it was shown how the operadic Lax representations are related to the conservation of energy.

Operadic Lax representations for the harmonic oscillator are used to construct the quantum counterparts of some real three dimensional Lie algebras. The Jacobi operators of these quantum algebras are studied.

2 Endomorphism operad and Gerstenhaber brackets

Let K be a unital associative commutative ring, V be a unital K-module, and $\mathcal{E}_V^n := \mathcal{E}_{\text{End}^n_V} := \text{Hom}(V^\otimes n, V)$ ($n \in \mathbb{N}$). For an operation $f \in \mathcal{E}_V^n$, we refer to n as the degree of f and often write
(when it does not cause confusion) \(f \) instead of \(\text{deg} \ f \). For example, \((-1)^f := (-1)^n\), \(\mathcal{E}^f_V := \mathcal{E}^n_V \) and \(\circ_f := \circ_n \). Also, it is convenient to use the reduced degree \(|f| := n - 1 \). Throughout this paper, we assume that \(\otimes := \otimes_K \).

Definition 2.1 (endomorphism operad [1]). For \(f \otimes g \in \mathcal{E}^f_V \otimes \mathcal{E}^g_V \) define the partial compositions

\[
\circ_i g := (-1)^{|i|} f \circ (\id_V \otimes g) \otimes \id_V^{(|f|-i)} \in \mathcal{E}^{f+|g|}_V, \quad 0 \leq i \leq |f|
\]

The sequence \(\mathcal{E}^f_V := \{ \mathcal{E}^n_V \}_{n \in \mathbb{N}} \), equipped with the partial compositions \(\circ_i \), is called the endomorphism operad of \(V \).

Definition 2.2 (total composition [1]). The total composition \(\circ : \mathcal{E}^f_V \otimes \mathcal{E}^g_V \rightarrow \mathcal{E}^{f+|g|}_V \) is defined by

\[
\circ f \cdot g := \sum_{i=0}^{|f|} f \circ_i g \in \mathcal{E}^{f+|g|}_V, \quad |\circ| = 0
\]

The pair \(\text{Com} \mathcal{E}_V := \{ \mathcal{E}_V, \circ \} \) is called the composition algebra of \(\mathcal{E}_V \).

Definition 2.3 (Gerstenhaber brackets [1]). The Gerstenhaber brackets \([\cdot, \cdot]\) are defined in \(\text{Com} \mathcal{E}_V \) as a graded commutator by

\[
[f, g] := f \circ g - (-1)^{|f| |g|} g \circ f = -(-1)^{|f| |g|} [g, f], \quad ||[\cdot, \cdot]|| = 0
\]

The commutator algebra of \(\text{Com} \mathcal{E}_V \) is denoted as \(\text{Com}^- \mathcal{E}_V := \{ \mathcal{E}_V, [\cdot, \cdot] \} \). One can prove (e.g. [1]) that \(\text{Com}^- \mathcal{E}_V \) is a graded Lie algebra. The Jacobi identity reads

\[
(-1)^{|f| |h|} [f, [g, h]] + (-1)^{|g| |f|} [g, [h, f]] + (-1)^{|h| |g|} [h, [f, g]] = 0
\]

3 Operadic dynamics and Lax equation

Assume that \(K := \mathbb{R} \) or \(K := \mathbb{C} \) and operations are differentiable. Dynamics in operadic systems (operadic dynamics) may be introduced by

Definition 3.1 (operadic Lax pair [4]). Allow a classical dynamical system to be described by the Hamiltonian system (1.1). An operadic Lax pair is a pair \((\mu, M)\) of homogeneous operations \(\mu, M \in \mathcal{E}_V \), such that the Hamiltonian system (1.1) may be represented as the operadic Lax equation

\[
\frac{d\mu}{dt} = [M, \mu] := M \circ \mu - (-1)^{|M||\mu|} \mu \circ M
\]

The pair \((L, M)\) is also called an operadic Lax representations of for Hamiltonian system (1.1). Evidently, the degree constraints \(|M| = |L| = 0 \) give rise to ordinary Lax equation (1.2) [3]. In this paper we assume that \(|M| = 0 \).

The Hamiltonian of the harmonic oscillator (HO) is

\[
H(q, p) = \frac{1}{2} (p^2 + \omega^2 q^2)
\]

Thus, the Hamiltonian system of HO reads

\[
\frac{dq}{dt} = \frac{\partial H}{\partial p} = p, \quad \frac{dp}{dt} = -\frac{\partial H}{\partial q} = -\omega^2 q
\]
If \(\mu \) is a linear algebraic operation we can use the above Hamilton equations to obtain
\[
\frac{d \mu}{dt} = \frac{\partial \mu}{\partial q} \frac{dq}{dt} + \frac{\partial \mu}{\partial p} \frac{dp}{dt} = p \frac{\partial \mu}{\partial q} - \omega^2 q \frac{\partial \mu}{\partial p} = [M, \mu]
\]
Therefore, we get the following linear partial differential equation for \(\mu(q, p) \):
\[
p \frac{\partial \mu}{\partial q} - \omega^2 q \frac{\partial \mu}{\partial p} = [M, \mu] \tag{3.2}
\]
By integrating (3.2) one can get collections of operations called [4] the operadic (Lax representations for/of) harmonic oscillator.

4 3D binary anti-commutative operadic Lax representations for harmonic oscillator

Lemma 4.1. Matrices
\[
L := \begin{pmatrix} p & \omega q & 0 \\ \omega q & -p & 0 \\ 0 & 0 & 1 \end{pmatrix}, \quad M := \frac{\omega}{2} \begin{pmatrix} 0 & -1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}
\]
give a 3-dimensional Lax representation for the harmonic oscillator.

Definition 4.2 (quasi-canonical coordinates). For the HO, define its quasi-canonical coordinates \(Q \) and \(P \) by
\[
P^2 - Q^2 = 2p, \quad QP = \omega q \tag{4.1}
\]

Remark 4.3. Note that these constraints easily imply
\[
P^2 + Q^2 = 2\sqrt{2H}
\]

Theorem 4.4 ([7]). Let \(C_\nu \in \mathbb{R} (\nu = 1, \ldots, 9) \) be arbitrary real–valued parameters, such that
\[
C_2^2 + C_3^2 + C_5^2 + C_6^2 + C_7^2 + C_8^2 \neq 0 \tag{4.2}
\]
Let \(M \) be defined as in Lemma 4.1 and \(\mu : V \otimes V \to V \) be a binary operation in a 3 dimensional real vector space \(V \) with the coordinates
\[
\begin{align*}
\mu_{11} &= \mu_{22} = \mu_{33} = \mu_{11}^2 = \mu_{22}^2 = \mu_{33}^2 = \mu_{11}^3 = \mu_{22}^3 = \mu_{33}^3 = 0 \\
\mu_{23} &= -\mu_{32}^1 = C_2 p - C_3 \omega q - C_4 \\
\mu_{13} &= -\mu_{31}^2 = C_2 p - C_3 \omega q + C_4 \\
\mu_{31} &= -\mu_{13}^3 = C_2 \omega q + C_5 p - C_1 \\
\mu_{32} &= -\mu_{23}^4 = C_2 \omega q + C_5 p + C_1 \\
\mu_{12} &= -\mu_{21}^5 = C_5 P + C_6 Q \\
\mu_{12}^2 &= -\mu_{21}^6 = C_5 Q - C_6 P \\
\mu_{13}^3 &= -\mu_{31}^4 = C_7 p + C_8 Q \\
\mu_{23}^3 &= -\mu_{32}^4 = C_7 Q - C_8 P \\
\mu_{12}^3 &= -\mu_{21}^5 = C_9
\end{align*}
\]
Then \((\mu, M) \) is an operadic Lax pair for HO.
5 Initial conditions

Specify the coefficients C_ν in Theorem 4.4 by the initial conditions

$$\mu|_{t=0} = \mu, \quad p|_{t=0} = p_0, \quad q|_{t=0} = 0$$

Denoting $E := H|_{t=0}$, the latter together with (4.1) yield the initial conditions for Q and P:

$$\begin{cases}
(P^2 + Q^2)|_{t=0} = 2\sqrt{2E} \\
(P^2 - Q^2)|_{t=0} = 2p_0 \\
PQ|_{t=0} = 0
\end{cases} \iff \begin{cases}
p_0 > 0 \\
p_0 < 0 \\
P|_{t=0} = 0 \\
Q|_{t=0} = 0
\end{cases}$$

In what follows assume that $p_0 > 0$ and $P|_{t=0} = \sqrt{2p_0}$. The other cases can be treated similarly. Note that in this case $p_0 = \sqrt{2E}$. From (4.3) we get the following linear system:

$$\begin{cases}
C_1 = \frac{1}{2} \left(\mu_{23}^2 - \mu_{31}^1 \right), \\
C_2 = \frac{1}{2p_0} \left(\mu_{13}^2 + \mu_{23}^1 \right), \\
C_3 = \frac{1}{2p_0} \left(\mu_{23}^2 + \mu_{31}^1 \right) \\
C_4 = \frac{1}{2} \left(\mu_{13}^2 - \mu_{23}^1 \right), \\
C_5 = \frac{1}{2\sqrt{2p_0}} \mu_{12}^1, \\
C_6 = -\frac{1}{2\sqrt{2p_0}} \mu_{12}^1, \\
C_7 = \frac{1}{\sqrt{2p_0}} \mu_{13}^1, \\
C_8 = -\frac{1}{\sqrt{2p_0}} \mu_{23}^1, \\
C_9 = \mu_{12}^1
\end{cases} \quad (5.1)$$

6 VII$_a$, III$_{a=1}$, VI$_{a\neq1}$

We study only the algebras VII$_a$, III$_{a=1}$, VI$_{a\neq1}$ from the Bianchi classification of the real three dimensional Lie algebras [2]. The structure equations of the 3-dimensional real Lie algebras can be presented as follows:

$$[e_1, e_2] = -\alpha e_2 + n^3 e_3, \quad [e_2, e_3] = n^1 e_1, \quad [e_3, e_1] = n^2 e_2 + \alpha e_3$$

The values of the parameters α, n^1, n^2, n^3 and the corresponding structure constants for II, VII$_a$, III$_{a=1}$, VI$_{a\neq1}$ are presented in Table 6.1. Note that II is the real three dimensional Heisenberg algebra.

Bianchi type	α	n^1	n^2	n^3	μ_{12}^1	μ_{12}^2	μ_{12}^3	μ_{23}^1	μ_{23}^2	μ_{23}^3	μ_{31}^1	μ_{31}^2	μ_{31}^3
VII$_a$	a	0	1	1	0	$-a$	1	0	0	0	0	1	a
III$_{a=1}$	1	0	1	-1	0	-1	-1	0	0	0	0	1	1
VI$_{a\neq1}$	a	0	1	-1	0	$-a$	-1	0	0	0	0	1	a

Table 6.1: VII$_a$, III$_{a=1}$, VI$_{a\neq1}$. Here $a > 0$.

7 VII$_{a}^t$, III$_{a=1}^t$, VI$_{a\neq1}^t$

By using the structure constants of the 3-dimensional Lie algebras in the Bianchi classification, Theorem 4.4 and relations (5.1) one can propose that evolution of VII$_a$, III$_{a=1}$, VI$_{a\neq1}$ can be prescribed [8] as given in Table 7.1.
Dynamical Bianchi type & μ^1_{12} & μ^2_{12} & μ^3_{12} & μ^1_{23} & μ^2_{23} & μ^3_{23} & μ^1_{31} & μ^2_{31} & μ^3_{31} \\
 VII$_a^t$ & $\frac{aQ}{\sqrt{2p_0}}$ & $-\frac{aP}{\sqrt{2p_0}}$ & 1 & $\frac{p-p_0}{-2p_0}$ & $\frac{\omega q}{-2p_0}$ & $\frac{-aQ}{\sqrt{2p_0}}$ & $\frac{\omega q}{\sqrt{2p_0}}$ & $\frac{p+p_0}{2p_0}$ & $\frac{aP}{\sqrt{2p_0}}$ \\
 III$_{a=1}^h$ & $\frac{Q}{\sqrt{2p_0}}$ & $-\frac{P}{\sqrt{2p_0}}$ & -1 & $\frac{p-p_0}{-2p_0}$ & $\frac{\omega q}{-2p_0}$ & $\frac{-Q}{\sqrt{2p_0}}$ & $\frac{\omega q}{\sqrt{2p_0}}$ & $\frac{p+p_0}{2p_0}$ & $\frac{P}{\sqrt{2p_0}}$ \\
 VI$_{a\neq 1}^h$ & $\frac{aQ}{\sqrt{2p_0}}$ & $-\frac{aP}{\sqrt{2p_0}}$ & -1 & $\frac{p-p_0}{-2p_0}$ & $\frac{\omega q}{-2p_0}$ & $\frac{aQ}{\sqrt{2p_0}}$ & $\frac{\omega q}{\sqrt{2p_0}}$ & $\frac{p+p_0}{2p_0}$ & $\frac{aP}{\sqrt{2p_0}}$

Table 7.1: VII$_a^t$, III$_{a=1}^h$, VI$_{a\neq 1}^h$. Here $p_0 = \sqrt{2E}$.

8 VII$_a^h$, III$_{a=1}^h$, VI$_{a\neq 1}^h$, and quantum Jacobi operators

By using the algebras VII$_a^t$, III$_{a=1}^h$, VI$_{a\neq 1}^h$ from Table 7.1, one can propose [9] their quantum counterparts VII$_a^h$, III$_{a=1}^h$, VI$_{a\neq 1}^h$ as follows. Let A_{HO} denote the state space of the quantum harmonic oscillator and $\{e_1, e_2, \ldots\}$ be its basis. By using Table 8.1 we define the structure equations in A_{HO} by

\[[e_i, e_j]_h := \hat{\mu}_{ij}^s e_s\]

where the structure operators $\hat{\mu}_{ij}^s$ for $i, j, s \leq 3$ are defined by Table 8.1 and $\hat{\mu}_{ij}^s := 0$ for $i, j, s > 3$. For $x, y \in A_{HO}$, their quantum multiplication is defined by

Table 8.1: VII$_a^h$, III$_{a=1}^h$, VI$_{a\neq 1}^h$.

\[[x, y]_h := \hat{\mu}_{jk}^i x^j y^k e_i = \hat{\mu}_{jk}^1 x^j y^k e_1 + \hat{\mu}_{jk}^2 x^j y^k e_2 + \hat{\mu}_{jk}^3 x^j y^k e_3\]

where we missed the trivial terms, because $\hat{\mu}_{jk}^i = 0$ for $i > 3$. Then the quantum Jacobi operator is defined by

\[\hat{J}_h(x; y; z) := [x, [y, z]]_h + [y, [z, x]]_h + [z, [x, y]]_h\]

\[= \hat{J}_h^1(x; y; z)e_1 + \hat{J}_h^2(x; y; z)e_2 + \hat{J}_h^3(x; y; z)e_3\]

where we again missed the trivial terms, because $\hat{J}_h^i = 0$ for $i > 3$. In [9] the quantum Jacobi operators were calculated for all real three dimensional Lie algebras. Here we concentrate only
on $\Pi^h_{a=1}$, $\Pi^h_{a\neq 1}$, and Π^h_a. Denote

$$(x, y, z) := \begin{vmatrix} x^1 & x^2 & x^3 \\ y^1 & y^2 & y^3 \\ z^1 & z^2 & z^3 \end{vmatrix}, \quad \tilde{\xi}^1 := \omega q\dot{Q} + (\hat{p} - p_0)\dot{P}, \quad \tilde{\xi}^2 := \omega q\dot{P} - (\hat{p} + p_0)\dot{Q}$$

Recall

Theorem 8.1 ([9]). The Jacobi operator components of $\Pi^h_{a\neq 1}$ and Π^h_a read

$$\tilde{J}^1_h(x; y; z) = -\frac{a(x, y, z)}{\sqrt{2p_0^2}}\tilde{\xi}^1, \quad \tilde{J}^2_h(x; y; z) = -\frac{a(x, y, z)}{\sqrt{2p_0^2}}\tilde{\xi}^2, \quad \tilde{J}^3_h(x; y; z) = \frac{a^2(x, y, z)}{p_0}[\hat{P}, \hat{Q}]$$

For $III^h_{a=1}$ one has the same formulae with $a = 1$.

9 Quasi-canonical quantum conditions

Theorem 9.1 (Poisson brackets of quasi-canonical coordinates). The quasi-canonical coordinates Q and P satisfy the relations

$$\{P, P\} = 0 = \{Q, Q\}, \quad \{P, Q\} = \varepsilon := \frac{\omega}{2\sqrt{2H}} \tag{9.1}$$

Proof. While the first two relations in (9.1) are evident, we have only to check the third one. Using several times the Leibniz rule for the Poisson brackets, calculate:

$$2\omega = 2\omega\{p, q\} = \{P^2 - Q^2, PQ\} = \{P^2, PQ\} - \{Q^2, PQ\} = \{PP, Q\} - \{QQ, P\}Q = 2(P^2 + Q^2)\{P, Q\} = 4\sqrt{2H}\{P, Q\}$$

When performing the quantization of the quasi-canonical variables, we shall use the Schrödinger picture, i.e, the operators $\hat{q}, \hat{p}, \hat{H}$ and \hat{Q}, \hat{P} do not depend on time. Denote by $[\cdot, \cdot]$ the ordinary commutator bracketing. Following the canonical quantization prescription, the quasi-canonical coordinates would satisfy the constraints

$$\hat{P}^2 + \hat{Q}^2 = 2\sqrt{2H}, \quad \hat{P}^2 - \hat{Q}^2 = 2\hat{p}, \quad \hat{P}\hat{Q} + \hat{Q}\hat{P} = 2\omega\hat{q} \tag{9.2}$$

and the quasi-canonical commutation relations (quasi-CCR) read as follows:

$$[\hat{P}, \hat{\dot{P}}] = 0 = [\hat{Q}, \hat{\dot{Q}}], \quad [\hat{P}, \hat{\dot{Q}}] = \frac{\hbar}{i}\tilde{\varepsilon} := \frac{\hbar}{i\sqrt{2/2H}} \omega$$

$$\tilde{\varepsilon} := \frac{\omega}{2\sqrt{2H}}$$

$$\tilde{\varepsilon} := \frac{\omega}{2\sqrt{2H}}$$
10 Recapitulation

Theorem 10.1. Let constraints (9.2) and (9.3) hold. Then we have:

\[\hat{J}_1(x; y; z) = \frac{a(x, y, z)}{\sqrt{2p_0^3}} \left[\hat{P} \left(\sqrt{2E} - \sqrt{2H} \right) - \frac{\hbar}{i} \hat{Q} \hat{\varepsilon} \right] \]

\[\hat{J}_2(x; y; z) = \frac{a(x, y, z)}{\sqrt{2p_0^3}} \left[\hat{Q} \left(\sqrt{2E} - \sqrt{2H} \right) + \frac{\hbar}{i} \hat{P} \hat{\varepsilon} \right] \]

\[\hat{J}_3(x; y; z) = \frac{\hbar a^2(x, y, z)}{p_0} \hat{\varepsilon} \]

Proof. Using relations (9.2) and (9.3) first calculate:

\[\hat{\xi}^1 = \omega \hat{q} \hat{Q} + (\hat{p} - p_0) \hat{P} \]

\[= \frac{1}{2} (\hat{P} \hat{Q} + \hat{Q} \hat{P}) \hat{Q} + \frac{1}{2} (\hat{P}^2 - \hat{Q}^2) \hat{P} - p_0 \hat{P} \]

\[= \frac{1}{2} (\hat{P} \hat{Q}^2 + \hat{Q} \hat{P}^2 + \hat{P}^3 - \hat{Q}^2 \hat{P}) - p_0 \hat{P} \]

\[= \frac{1}{2} \left[\hat{Q} (\hat{P} \hat{Q} - \hat{Q} \hat{P}) + \hat{P} (\hat{Q}^2 + \hat{P}^2) \right] - p_0 \hat{P} \]

\[= \frac{1}{2} \hat{Q} [\hat{P}, \hat{Q}] + \frac{1}{2} \hat{P} (\hat{P}^2 + \hat{Q}^2) - p_0 \hat{P} \]

\[= \frac{\hbar}{i} \frac{\hat{\varepsilon}}{2} + \hat{P} \sqrt{2H} - \sqrt{2E} \hat{P} \]

\[= \frac{\hbar}{i} \frac{\hat{\varepsilon}}{2} + \hat{P} \left(\sqrt{2H} - \sqrt{2E} \right) \]

Next calculate

\[\hat{\xi}^2 = \omega \hat{q} \hat{P} - (\hat{q} + p_0) \hat{Q} \]

\[= \frac{1}{2} (\hat{P} \hat{Q} + \hat{Q} \hat{P}) \hat{Q} - \frac{1}{2} (\hat{P}^2 - \hat{Q}^2) \hat{Q} - p_0 \hat{Q} \]

\[= \frac{1}{2} (\hat{P} \hat{Q}^2 + \hat{Q} \hat{P}^2 - \hat{P}^2 \hat{Q} + \hat{Q}^3) - p_0 \hat{Q} \]

\[= \frac{1}{2} \left[\hat{Q} (\hat{P} \hat{Q} - \hat{Q} \hat{P}) + \hat{Q} (\hat{P}^2 + \hat{Q}^2) \right] - p_0 \hat{Q} \]

\[= -\frac{1}{2} \hat{P} [\hat{Q}, \hat{Q}] + \frac{1}{2} \hat{Q} (\hat{P}^2 + \hat{Q}^2) - p_0 \hat{Q} \]

\[= -\frac{\hbar}{i} \frac{\hat{\varepsilon}}{2} + \hat{Q} \sqrt{2H} - \sqrt{2E} \hat{Q} \]

\[= -\frac{\hbar}{i} \frac{\hat{\varepsilon}}{2} + \hat{Q} \left(\sqrt{2H} - \sqrt{2E} \right) \]
Corollary 10.2. Let constraints (9.2), (9.3) and $\hat{H} = E$ hold. Then we have

$$\hat{J}_1(x; y, z) = -\frac{\hbar}{i} \frac{a(x, y, z)}{\sqrt{(2p_0)^3}} \frac{\omega}{2\sqrt{2E}} \hat{Q}$$

$$\hat{J}_2(x; y, z) = \frac{\hbar}{i} \frac{a(x, y, z)}{\sqrt{(2p_0)^3}} \frac{\omega}{2\sqrt{2E}} \hat{P}$$

$$\hat{J}_3(x; y, z) = \frac{\hbar}{i} \frac{a^2(x, y, z)}{p_0} \frac{\omega}{2\sqrt{2E}}$$

\[\square\]

Acknowledgements

The research was in part supported by the Estonian Science Foundation, Grant ETF-6912. The authors are grateful to A. Fialowski for help concerning the Bianchi classification.

References

[1] M. Gerstenhaber. The cohomology structure of an associative ring. Ann. of Math. 78 (1963), 267–288.
[2] L. Landau and E. Lifshitz. Theoretical Physics. Vol. 2: Field Theory. Nauka, Moskva, 1973 (in Russian).
[3] P. D. Lax. Integrals of nonlinear equations of evolution and solitary waves. Comm. Pure Applied Math. 21 (1968), 467–490.
[4] E. Paal. Invitation to operadic dynamics. J. Gen. Lie Theory Appl. 1 (2007), 57–63.
[5] E. Paal and J. Virkepu. Note on operadic harmonic oscillator. Rep. Math. Phys. 61 (2008), 207–212.
[6] E. Paal and J. Virkepu. 2D binary operadic Lax representation for harmonic oscillator. Noncommutative Structures in Mathematics and Physics. K. Vlaam. Acad. Belgie Wet. Kunsten (KVAB), Brussels, (to be published). Preprint arXiv:0803.0592, 2009.
[7] E. Paal and J. Virkepu. Operadic representations of harmonic oscillator in some 3d Lie algebras. J. Gen. Lie Theory Appl. 3 (2009), 53–59.
[8] E. Paal and J. Virkepu. Dynamical deformations of 3d Lie algebras in Bianchi classification over harmonic oscillator. J. Math. Phys. 50 (2009), 053523.
[9] E. Paal and J. Virkepu. Quantum counterparts of 3d real Lie algebras over harmonic oscillator. Centr. Eur. J. Phys. DOI: 102478/s11534-009-0123-8, 2009.

Department of Mathematics, Tallinn University of Technology,
Ehitajate tee 5, 19086 Tallinn, Estonia
E-mails: eugen.paal@ttu.ee and jvirkepu@staff.ttu.ee