Unsupervised Semantic Segmentation by Contrasting Object Mask Proposals

Wouter Van Gansbeke, Simon Vandenhende, Stamatios Georgoulis and Luc Van Gool
Towards Unsupervised Semantic Segmentation

Problem: How to learn dense semantic representations without supervision?

→ Most works rely on annotations:
 - Weakly supervised: scribbles, bounding boxes, tags
 - Semi supervised: fraction is labeled

→ **Our focus:** learn pixel-level representations for semantic segmentation without using ground-truth

Obukhov et al., “Gated CRF loss for weakly supervised semantic image segmentation” [Figure]
Prior work – Three paradigms

I. Representation Learning

Idea: (1) Solve a pretext task to learn meaningful representations without annotations + (2) offline clustering

Image-level:
- Ex: instance discrimination
- Image based
- Background can dominate

Patch-level:
- Ex: Colorization
- Proxy task is not decoupled (covariant)

Limitations:
- Small-scale datasets with narrow visual domain
- Cluster learning latches onto low-level features
- Special mechanisms required (Sobel filtering)

II. End-To-End Learning

Idea: - Maximize mutual information between an image and its augmentations at pixel level

Limitations: - Small-scale datasets with narrow visual domain
- Cluster learning latches onto low-level features
- Special mechanisms required (Sobel filtering)

III. Boundary supervision

Idea: - Obtain semantic segments from boundaries

Limitations: - Annotated boundaries
- K-Means?

[1] Ji et al., Invariant information clustering for unsupervised image classification and segmentation. ICCV, 2019.
[2] Larsson et al., Colorization as a proxy task for visual understanding. CVPR, 2017.
[3] Wu et al., Unsupervised feature learning via non-parametric instance discrimination. CVPR, 2018.
Approach (Overview)

Divide-and-conquer strategy:

Step 1: Look for regions that likely belong together
→ Shared pixel ownership assumption
→ Use a mid-level visual prior

Step 2: Generate semantic pixel embeddings
→ Leverage object mask proposals
→ Maximize or minimize the agreement

Advantages:
- Reduced dependence on the network initialization
- Proxy task is decoupled from feature learning
- Kmeans can be applied to obtain semantics
→ hypothesis: this a more reliable pixel grouping strategy
Perceptual Priors for Grouping Pixels

Criteria:
• No reliance on external supervision
• Strong generalization to new scenes → bottom-up approach

(1) Low-level Vision:
• Handcrafted kernels: intensity, distance, color, texture,...
• Edges or superpixels

(2) Mid-level Vision: → More semantically meaningful
• Saliency:
 - ensemble of handcrafted priors
 - background connectivity, hard edges, Guassian, etc.
• Self-supervised depth / optical flow
MaskContrast: Contrasting Salient Object Masks

Pixel-Level Objective function:

\[
\mathcal{L} = -\log \frac{\exp(\Psi_\eta(X)^T \cdot \Psi_\eta(X^+)/\tau)}{\sum_{k=0}^{K} \exp(\Psi_\eta(X)^T \cdot \Psi_\eta(X^-_k)/\tau)}
\]

\[
\mathcal{L}_i = -\log \frac{\exp (z_i \cdot z_{M_{X+}}/\tau)}{\sum_{k=0}^{K} \exp (z_i \cdot z_{M_{X^-_k}}/\tau)}
\]

\[
z_{M_n} = \frac{1}{|M_n|} \sum_{i \in M_n} z_i
\]

Mined masks = \{M_0, M_1, \ldots, M_N\}

Positive pairs = (z_i, z_{M_{X+}}) for i ∈ M_X

Negative pairs = (z_i, z_{M_{X^-_k}})

- **Pull force:** Maximize the agreement between pixels belonging to the same (augmented) mask.
- **Push force:** Avoid mode collapse in the embedding space by driving pixels from different masks apart.
I. Experiments: Setup and Ablations

Training setup:
- Unsupervised Saliency\(^1\) / supervised saliency\(^2\)
- DeeplabV3 (dilated ResNet50)
- Similar to MoCo’s setup (augmentation + memory bank + momentum)

Ablations (PASCAL VOC):

Mask Proposals	LC (MIoU)	Augmented Views	Memory	Momentum Encoder	LC (MIoU)
Hierarchical Seg.	30.5	X	X	X	52.4
Unsupervised Sal. Model	58.4	✓	X	X	54.0
Supervised Sal. Model	62.2	✓	✓	✓	55.0

(a) Comparison of three mask proposal mechanisms.

(b) Analysis of the used training mechanisms.

- Regions extracted with the hierarchical segmentation algorithm were often too small to be representative of an object or part.
- Mid-level visual prior is beneficial.

\(^1\) Nguyen et al., *Deepusps: Deep robust unsupervised saliency prediction via self-supervision*. NeurIPS, 2019.

\(^2\) Qin et al., *Basnet: Boundary-aware salient object*. CVPR, 2019.
II. Experiments: Linear Classifier and Clustering (PASCAL)

Method	LC	K-Means
Proxy task based:		
Co-Occurrence	13.5	4.0
CMP	16.5	4.3
Colorization	25.5	4.9
Clustering based:		
IIC	28.0	9.8
Contrastive learning based:		
Inst. Discr.	26.8	4.4
MoCo v2	45.0	4.3
InfoMin	45.2	3.7
SWAV	50.7	4.4
Boundary based:		
SegSort†	36.2	-
Hierarch. Group.†	48.8	-
ImageNet (IN) Classifier (Supervised)	53.1	4.7
MaskContrast (MoCo Init. + Unsup. Sal.)	58.4	35.0
MaskContrast (MoCo Init. + Sup. Sal.)	62.2	38.9
MaskContrast (IN Sup. Init. + Unsup. Sal.)	61.0	41.6
MaskContrast (IN Sup. Init. + Sup. Sal.)	**63.9**	**44.2**

MaskContrast:

→ **decouples** feature learning from clustering;

→ is not strongly dependent on the **network initialization**;

→ is more predictive of the semantic segmentation task as we defined a contrastive learning objective at the **pixel-level**;

→ contains **higher-level visual information** compared to the regions obtained from boundary detectors;

→ can be combined with **K-Means** to obtain semantically meaningful clusters.
III. Experiments: Semantic Segment Retrieval (PASCAL)

- Retrieve neighbors from train set for val set
- Evaluate for 7 classes and 21 classes on PASCAL

Method	MIoU (7 classes)	MIoU (21 classes)
SegSort	10.2	-
Hierarch. Group.	24.6	-
MoCo v2	48.0	39.0
MaskContrast (Unsup. Sal.)	53.4	43.3
MaskContrast (Sup. Sal.)	**62.3**	**49.6**

Pascal-S dataset

Query

Nearest neighbors
IV. Experiments: Transfer Learning and Semi-Sup. Learning

Transfer learning: PASCAL, COCO and DAVIS datasets (MoCo init.)

Model	PASCAL (MIOU)↑	COCO (MIOU)↑	DAVIS ’16 Jm ↑	Jm ↑
MoCo v2	45.0	35.2	77.1	77.2
MaskContrast (Unsup. Sal.)	55.4	45.0	78.0	77.8
MaskContrast (Sup. Sal.)	57.2	47.2	82.0	80.9

Semi-supervised finetuning on PASCAL (ImageNet init.)

Label Fraction	1%	2%	5%	12.5%	100%
ImageNet Classifier Init.	43.4	55.2	62.7	68.4	78.0
+ MaskContrast (Unsup. Sal.)	50.5	57.2	64.5	69.0	78.4
+ MaskContrast (Sup. Sal.)	**51.5**	**59.6**	**65.3**	**69.4**	**78.6**

Qualitative results with 1% labeled (~100 images)
Qualitative Results (Linear Classifier on PASCAL)
Conclusion

• MaskContrast consists of 2 steps:
 o (1) mine object mask proposals (saliency)
 o (2) learn semantic pixel embeddings through a contrastive loss
• The perceptual prior prevents the model from latching onto low-level image features
• Encouraging clustering results on PASCAL and transfer results to ImageNet/COCO/DAVIS

Future Work

• Extract multiple and more detailed masks for each image
• Use extra sensory data

Code is available on Github

github.com/wvangansbeke/Unsupervised-Semantic-Segmentation