COMMENT

Appropriate scales and data to manage seabird–fishery interactions: Comment on Torres et al. (2013)

John Croxall1, Cleo Small2,*, Ben Sullivan2, Ross Wanless3, Esteban Frere4, Ben Lascelles1, Ivan Ramirez5, Mayumi Sato6, Oli Yates7

1Global Seabird Programme, BirdLife International, Wellbrook Court, Girton Road, Cambridge CB3 0NA, UK
2Royal Society for the Protection of Birds, The Lodge, Sandy, Bedfordshire SG19 2DL, UK
3Seabird Division, BirdLife South Africa, PO Box 7119, Roggebaai 8012, South Africa and Percy FitzPatrick Institute, DST-NRF Centre of Excellence, University of Cape Town, Private Bag, Rondebosch 7701, South Africa
4Global Seabird Programme, BirdLife International, Matheu 1246/8, (C1249AAB) Buenos Aires, Argentina
5Sociedade Portuguesa para o Estudo das Aves, Avenida João Crisóstomo, 18 – 4º Dto., 1000-179 Lisboa, Portugal
6BirdLife International Asia Division, TM Suidobashi Bldg., 4F, Misaki-cho 2-14-6, Chiyoda-ku, Tokyo, Japan
7BirdLife International Global Seabird Programme, Casilla 145, La Serena, Chile

ABSTRACT: Torres et al. (2013; Mar Ecol Prog Ser 473:275–289) use fine-scale data on tracked locations of one species of albatross and fishing vessels to make a variety of assertions on interactions between them, especially in relation to risk of bycatch. Some of these assertions are incorrect, and we seek to clarify the issues and perspectives involved. We argue that while a fine-scale approach can provide interesting insights into foraging behaviour, large-scale risk analysis is needed because management measures (e.g. for bycatch mitigation) need to operate across all vessels in a fishery and across all seabird species at risk from the fishing operation. In addition, an estimate of 10% time spent in close proximity to vessels cannot be used to infer low bycatch risk alone: such an inference would need comparison to bycatch rate data. The analysis also does not take into account a number of factors known to affect the nature and duration of the association of albatrosses with fishing vessels, which limits the conclusions that can be drawn. However, fine-scale studies can provide important insight into factors affecting individual bycatch events, and studies at fine and broad scales will be complementary.

KEY WORDS: Bycatch · Satellite tracking · Albatrosses

Introduction

Torres et al. (2013) use fine-scale tracking data of an albatross species and periodic locations of fishing vessels, in waters off southern New Zealand, to infer interactions between the birds and the vessels. They assume that such interactions would be a good proxy for bycatch risk. On this basis they conclude that assessment of risk of interaction between seabirds and fishing vessels is better undertaken by inferring interactions at the level of individual seabirds and vessels than by assessment at the scale of fisheries and seabird populations. This represents a misunderstanding of the properties and utilities of fine-scale and larger scale analysis in relation to pragmatic management of fisheries at appropriate scales.

In addition, Torres et al. (2013) assert that conservation strategies, such as the reduction of non-target bycatch in commercial fisheries, should 'minimize
burden on the fishing industry’ (p. 276). We view the reduction of bycatch of non-target species as a requirement of the fishing industry in view of its obligation to undertake sustainable and responsible fishing (FAO 1995).

Analysis of seabird–vessel interaction

The analysis by Torres et al. (2013) of interaction between Buller’s albatross and vessels, stratified by fishery type, sex and year, does not take into account many factors known to be of high importance in influencing the nature and duration of the association of albatrosses with fishing vessels. These include: (1) vessel practice with respect to discard and offal management (the nature and frequency of these having a strong influence on the duration of vessel attraction for seabirds; Abraham et al. 2009); (2) use by vessels of measures to deter or prevent albatrosses from accessing fishing gear; (3) time of day of active fishing operations (albatrosses are largely inactive at night; e.g. Jimenez et al. 2009); (4) weather (low wind speed reduces transit and foraging rates in albatrosses; Weimerskirch et al. 2000); (5) the number and species of other seabirds in the vicinity which may compete for space behind a vessel (especially important for small albatrosses like Buller’s, readily out-competed by the co-occurring congener white-capped albatross Thalassarche steadi; Pierre et al. 2012); and (6) the availability of alternative food sources for foraging seabirds in the area. Lack of consideration of these variables severely limits the conclusions drawn by Torres et al. (2013), although they concluded that (2) and (5) were possible explanations for the birds foraging independently of vessels. In addition, the attractiveness of fisheries to seabirds is strongly influenced by the type of fishery. Thus, the low mean inferred overlap rate (10%) calculated by Torres et al. (2013) will partly reflect that only 2% of the vessel events related to longliners (of intense interest to seabirds; Anderson et al. 2011), whereas 90% related to trawling operations, only parts of which (late stages of hauling and when factory processing is active) are of high interest to seabirds (Sullivan et al. 2006, Watkins et al. 2008).

Scales appropriate for interaction assessment for fisheries management

The authors conclude that their results ‘demonstrate the increased precision and value of quantifying seabird–fishery overlap using a fine-scale approach, rather than relying on conventional large-scale analysis’ (Torres et al. 2013, p. 276). However, while a fine-scale approach can provide interesting insights into foraging behaviour, large-scale analysis is needed for effective risk assessment. This is because, inter alia: (1) management measures (e.g. for bycatch mitigation) need to operate across all vessels in a fishery and often across multiple fisheries operating at different spatial and temporal scales; and (2) measures need to apply to all seabird species at risk from the fishing operation (rarely, if ever, a single species of
Conclusion

We show here that the premises and assertions in Torres et al. (2013) lack a sound basis, leading to misinterpretation of the data. In addition, the paper does not mention the possibility that studies at different scales may be complementary and not interchangeable, that most effective management of fisheries is perforce at relatively large scales, and that pragmatic fishery management at all scales has a greater need of direct observation of interactions than of inferences based on proximities from remote-recording data.

We agree that studying the fine-scale behaviour of seabirds in relation to relatively fine-scale data on the location of fishing vessels provides interesting insights. However, management of seabird bycatch is best addressed by combining quantification of overlap at medium (and large, where appropriate) scales with data on rates of seabird–vessel interaction and bycatch.

LITERATURE CITED

Abraham ER, Thompson FN (2009) Warp strike in New Zealand trawl fisheries. 2004−05 to 2006−07. New Zealand Aquatic Environment and Biodiversity, Report no. 33. Ministry of Fisheries, Wellington

Abraham ER, Pierre JP, Middleton DAJ, Cleal J, Walker NA, Waugh SM (2009) Effectiveness of fish waste management strategies in reducing seabird attendance at a trawl vessel. Fish Res 95:210−219

Anderson ORJ, Small CJ, Croxall JP, Dunn EK, Sullivan BJ, Yates O, Black A (2011) Global seabird bycatch in longline fisheries. Endang Species Res 14:91−106

BirdLife International (2004) Tracking ocean wanderers: the global distribution of albatrosses and petrels. Results from the Global Procellariiform Tracking Workshop, Gordon’s Bay, South Africa, 1−5 September 2003. Bird Life International, Cambridge (available at www.birdlife.org/action/science/species/seabirds/tracking.html)

BirdLife International (2009) Draft guidelines for using seabird tracking data to inform the identification of marine IBAs. Results from ‘Using seabird tracking data to inform the identification of marine IBAs: a workshop to determine how to achieve this goal’, Chize, France, July 2009. BirdLife International, Cambridge (available at www.birdlife.org/datazone/userfiles/file/Marine/ChizeTrackingAnalysisReport.pdf)

BirdLife International (2010) Marine IBA toolkit: standardised techniques for identifying priority sites for the conservation of seabirds at sea. Version 1.2. BirdLife International, Cambridge (available at www.birdlife.org/datazone/userfiles/file/Marine/Marinetooltkitnew.pdf)

BirdLife International (2011) Habitat modelling using satellite tracking data: a workshop to advance this process. Results from a workshop, 21−23 September 2011, Coimbra, Portugal. BirdLife International, Cambridge

Catzry P, Lemos RT, Brickle P, Phillips RA, Matias R, Granadeiro JP (2013) Predicting the distribution of a threatened albatross: the importance of competition, fisheries and annual variability. Prog Oceanogr 110:1−10

Copello S, Quintana F (2009) Spatio-temporal overlap between the at-sea distribution of southern giant petrels and fisheries at the Patagonian Shelf. Polar Biol 32:1211−1220

Croxall JP (2008) Seabird mortality and trawl fisheries. Anim Conserv 11:255−256

FAO (Food and Agriculture Organization) (1995) Code of conduct for responsible fisheries. FAO, Rome

Granadeiro JP, Phillips RA, Brickle P, Catzry P (2011) Albatrosses following fishing vessels: How badly hooked are they on an easy meal? PLoS ONE 6:e17467

Jiménez S, Domingo A, Braziero A (2009) Seabird bycatch in the Southwest Atlantic: interaction with the Uruguay pelagic longline fishery. Polar Biol 32:187−196

Phillips RA, Silk JRD, Croxall JP, Afanasyev V (2006) Year round distribution of white-chinned petrels from South Georgia: relationships with oceanography and fisheries.
Pierre JP, Abraham ER, Richard Y, Cleal J, Middleton DAJ (2012) Controlling trawler waste discharge to reduce seabird mortality. Fish Res 131:133:30−38
Sullivan BJ, Reid TA, Bugoni L (2006) Seabird mortality on factory trawlers in the Falkland Islands and beyond. Biol Conserv 131:495−504
Thomson RB, Phillips RA, Tuck GN (2009) Modelling the impact of fishery bycatch on wandering and black-browed albatrosses of South Georgia: preliminary results. ICCAT Coll Sci Pap 64:2342−2382
Torres LG, Thompson DR, Bearhop S, Votier SC, Taylor GA, Sagar PM, Robertson BC (2011) White-capped albatrosses alter fine-scale foraging behavior patterns when associated with fishing vessels. Mar Ecol Prog Ser 428:289−301
Torres LG, Sagar PM, Thompson DR, Phillips RA (2013) Scaling down the analysis of seabird-fishery interactions. Mar Ecol Prog Ser 473:275−289

Editorial responsibility: Matthias Seaman, Oldendorf/Luhe, Germany

Tuck GN, Polacheck T, Croxall JP, Weimerskirch H (2001) Modelling the impact of fishery by-catches on albatross populations. J Appl Ecol 38:1182−1196
Votier SC, Bearhop S, Witt MJ, Inger R, Thompson DR, Newton J (2010) Individual responses of seabirds to commercial fisheries revealed using GPS tracking, stable isotopes and vessel monitoring systems. J Appl Ecol 47:487−497
Watkins BP, Petersen SL, Ryan PG (2008) Interactions between seabirds and deep-water hake trawl gear: an assessment of impacts in South African waters. Anim Conserv 11:247−254
Waugh SM, Filippi DP, Kirby DS, Abraham E, Walker N (2012) Ecological risk assessment for seabird interactions in Western and Central Pacific longline fisheries. Mar Policy 36:933−946
Weimerskirch H, Guionnet T, Martin J, Shaffer SA, Costa DP (2000) Fast and fuel-efficient? Optimal use of wind by flying albatrosses. Proc Biol Sci 267:1869−1874

Submitted: June 5, 2013; Accepted: October 15, 2013
Proofs received from author(s): October 17, 2013