Problems with identification of vortex rings when using anemometry measurements.

Konrad Gruszka, Artur Durajski, Paweł Niegodajew*, Mateusz Bęben, Witold Elsner, Renata Gnatowska, Michal Šofer

1 Faculty of Production Engineering and Materials Technology, Częstochowa University of Technology Armii Krajowej 19, 42-200 Częstochowa, Poland,
2 Faculty of Mechanical Engineering and Computer Science, Częstochowa University of Technology Armii Krajowej 21, 42-200 Częstochowa, Poland,
3 Department of Applied Mechanics, Faculty of Mechanical Engineering, VŠB-Technical University of Ostrava, 17. listopadu 15/2127, 708 33 Ostrava-Poruba, Czech Republic.

* E-mail: niegodajew@imc.pcz.czest.pl

Abstract. Measurement of key vortex rings properties with the use of anemometry techniques is not so straightforward due to the angular dispersion of these structures and in consequence change of their trajectories as they move downstream. Owing to the fact that in available literature no much attention is paid to this issue, there is still a need to address this problem. In the present work we show some preliminary data which allowed to quantify the dispersion of vortex rings when these propagate over a distance up eight orifice diameters. The presented results indicate that the vortex structures generated at a certain frequency are characterized by increasing unrepeatability and angular dispersion as a function of distance from the generator. This leads to difficulties in their identification because their position in respect to the fixed position of the hot-wire probe changes.

1. Introduction
When the fluid is transiently released from the nozzle one may expect a formation of a toroidal structure at the nozzle exit which is commonly known as a vortex ring (VR). Such structures are encountered in a number of natural processes as for instance animal locomotion [1] or discharge of blood into the heart left ventricle [2]. VRs have also found an application in industry – pulsed jets [3,4], swimming devices [5–7] or cooling of electronics [8,9] may serve as examples.

Available literature offers also information on more fundamental aspects as VRs formation [10–12], evolution [13–19] or VRs collisions with different obstacles [20–24]. These, however, are mostly theoretical and numerical contributions as an experimental study of the VR behaviour is not so straightforward and only a few experimental techniques are capable for such a purpose. The most popular one is smoke visualisation [25,26], however, the results that can be obtained from this technique have the qualitative character only. A much more advanced method that provides a detailed insight into the flow is the particle image velocimetry (PIV) [27–31] which involves the
processing of consecutively capture images in the reconstruction of the velocity field in a given cross section. This approach suffers, however due to the fundamental drawback: as the capturing of high-resolution images requires a huge memory space the sampling frequency is substantially limited. In turn, the application of the method is limited to the low Reynolds member flows only. Another experimental technique, that allows to overcome the already mentioned limitation is hot-wire anemometry (HWA) technique as it offers a high temporal resolution. On the other hand HWA allows for point measurements only.

Among available works related to the HWA measurements of the VRs [32–35] one may observe that no much attention is paid to angular dispersion of such structures. For instance in the paper of Dziedzic and Leutheusser [35] authors first used the smoke visualisation technique to identify the location of the vortex core and then placed the HWA probe in that location in order to estimate the propagation velocity U_p and the vortex radius R. Authors, on one hand, pointed out that VRs may pass over the hot-wire probe at different angles, on the other hand no further information about statistical dispersion was delivered. This problem was firstly raised in the work of Glezer and Coles [36] in which the Laser Doppler anemometry (LDA) technique was employed in the study of VRs produced with the piston generator. Since then not much attention has been devoted to that issue in the literature. No need to mention that the problem is still actual and more analysis on that issue and some possible solutions should be well welcomed by the fluid dynamics community.

In such a regard, it is interesting to perform a statistical analysis of the velocity signals collected from a multitude of VRs generated one after another in order to examine whether there is a repeatability of eddy structures from the point of view of their radial position for different distances from the outlet of the generator. Hence, herein the preliminary results are delivered regarding the evolution of VRs dispersion.

2. Experimental setup

Figure 1 illustrates the scheme of the experimental setup used in the present investigation along with a sketch of a moving VR. In the given setup the Gaussian-like signal is generated using a personal computer (1) through the Mathematica software and then is transmitted through the MOSFET amplifier Mac Audio Edition Two LtD 600W (2) to the loudspeaker Hertz Es 200.5 Subwoofer 600W (3) mounted on one side of the cylindrical tube (4). The motion of the membrane pushes the fluid towards the axial direction x and in turn generates the VR (5) at the orifice (6) outlet. The motion of the VR is then detected and its velocity is recorded using the hot-wire probe (7) mounted on the precise automatic traversing system (8) that ensures traversing of the probe in x and r directions (when concerning the cylindrical coordinate system). The wire of the probe was 0.4 mm in length and 3 μm in diameter and it was positioned vertically to the axis of the tube. Calibration of the sensor itself was performed with the use of DANTEC DYNAMICS StreamLine Pro Automatic Calibrator. The tube length L and its inner diameter $D_1 = 200$ mm and 33 mm, respectively, whereas the orifice diameter D_2 was equalled to 33 mm. Measurements of the velocity were performed at four different distances $x = 3D_2$, $x = 5D_2$, $x = 7D_2$ and $x = 8D_2$ (measured from the orifice outlet) and at fixed r position 0.85 D_2 (measured from the axis of the generator).

The experimental procedure was as follows. First, the hot-wire probe was positioned at a certain distance x and r. Next, one hundred VRs were generated with an interval between consecutive excitations equalled to 1 s. Such a number of VRs generated one after another was found to be statistically sufficient to acquire reproducible results and the interval between shots used was high enough to ensure VRs not to interfere with each other. Sampling frequency during the velocity measurements was set to 2 kHz and it was enough to accurately capture all the characteristic features of the signal such as local extrema (see Fig.3b described further within the paper). At this point it is worth mentioning, that the hot-wire sensor register the magnitude of the velocity. In this regard, when the VR approaches the sensor’s wire we first observe an increase in the velocity up to the local maximum at the vortex boundary, then the velocity starts decreasing until it reaches local minimum when the vortex core and the wire are in the same position. When the vortex core passes over the
wire the observed velocity starts increasing again until it reaches the second maximum at the core boundary. Such a distribution of the velocity results from the cumulative effect of the VR propagation velocity and the velocity component resulting from the rotating nature of the vortex (which reaches zero at the vortex core). So the local minimum in the velocity, that can be observed when the probe is located exactly in the vortex core, corresponds to the propagation velocity of this structure. One should also note that the amplitude of two velocity peaks may not be the same because the centre of the vortex does not pass exactly over the probe and additionally the VRs elongates as it propagates downstream [35]. During the measurements the Reynolds number \(Re = U D_2/\nu \) (here \(U \) is the averaged air velocity and \(\nu \) is the kinematic viscosity) was kept constant at the level of \(Re = 9600 \pm 3\% \) at the orifice position.

3. Experimental results

Presentation of the results is started from illustrating sample velocity signal from HWA probe (first 30 generated VRs) collected at four different axial distances from the orifice outlet, \(x/D_2 = 3, x/D_2 = 5, x/D_2 = 7, x/D_2 = 8 \) in Figs 2a, b, c, and, respectively. The peaks visible in each figure corresponds to the VRs velocity maxima. This qualitative comparison shows, that with the increase in \(x/D_2 \) the overall velocity \(U \) drops fairly quickly. This is due to combined effect of slight vortex expansion (as is shown further) at the cost of its velocity as it is traveling, but more importantly, because of vortex decay caused by the friction with the bulk air. Another noticeable effect is, that the spread of local maxima seems to grow with increasing probe distance. This spread is seen as increased difference between lowest and highest recorded maxima within one measurement series. Such an effect may be assigned to the angular dispersion of generated VRs what and hence more attention is put further on this phenomenon.

![Figure 1. Scheme of the experimental setup](image)

![Figure 2. Sample velocity signals of 30 VRs captured with HWA probe at different axial positions: \(x/D_2 = 3 \) (a), \(x/D_2 = 5 \) (b), \(x/D_2 = 7 \) (c), \(x/D_2 = 8 \) (d) and at fixed radial position \(r = 0.85D_2 \)](image)
Figure 3. Axial evolution of averaged maximum velocity from 100 consecutively generated VRs (a), and related evolution of VRs velocity traces; the radial position was fixed at \(r/D_2 = 0.85 \).

Figure 3 illustrates the averaged maxima of the VRs velocities as a function of normalized axial direction \(x/D_2 \). Each maximum of the velocity was calculated based on 100 consecutively generated VRs, i.e. using the signal from Fig. 2. One may observe a notable decrease of the averaged maximum velocity over the relatively short distance from \(x/D_2 = 3 \) to \(x/D_2 = 8 \). Note that bars at each point represent the standard deviations, which seem not to change significantly towards higher axial distances, however, their values rising from 5% for \(x/D_2 = 3 \) to 10.4% for \(x/D_2 = 8 \). In this regard with increasing axial direction, there is a growing difficulty in acquiring the representative signal samples caused by increased vortex dispersion. Figure 3b presents velocity traces of VRs for probe distances corresponding to the ones from Fig. 3a. Note that the profiles shown here and further within the paper were superimposed in order to ensure a direct comparison between them. When increasing \(x/D_2 \) not only decrease in signal amplitude can be observed but also a notable peak broadening, which means that the diameter of the vortex core increases. Also the local minimum of velocity traces decreases with increasing distance \(x/D_2 \) which means that the vortex propagation-velocity decreases as well.

Figure 4. Three consecutive velocity traces collected at two different axial distances: \(x/D_2 = 3 \) (a) and \(x/D_2 = 8 \) (a).
As a supplement to the already presented results Fig. 4 presents three consecutive velocity traces for two different axial distances studied in the present work, i.e. for $x/D_2 = 3$ and $x/D_2 = 8$ (Fig. 4a and Fig. 4b). As can be seen much smaller discrepancies between traces can be observed when the probe is located closer to the orifice. Worthy to note is also that for a larger distance $x/D_2 = 8$ the velocity traces are much more disturbed (smoothness of the signal is lost) what is caused by development of the turbulence within the structure azimuthal waviness and breaks of vortex structure into turbulent motion.

4. Conclusions
As the results showed, measurement of vortex rings in the air atmosphere is not so straightforward due to dispersion of VRs affecting vortex position in respect to the hot-wire probe. In turn, velocity traces heterogeneity, resulting from VRs angle dispersion, is enhanced when the vortex dismisses from the orifice what leads to increased measurements uncertainty. It was quantitatively shown, that variability of the maximum velocity, indicating the boundaries of the vortex structure, does not change notably when it departs from the orifice. However, its relative change is significant as the maximum vortex velocity decreases almost by half over the distance equaled to five orifice diameters.

Acknowledgments
The present research work was funded by the National Science Centre under the Grant: 2018/02/X/ST8/00924. NAWA project No. PPN/BIL/2018/1/00030 is gratefully acknowledged for funding of international internships, which allowed to speed up the research. Publication of the paper was funded under the Contract No. 944/P-DUN/2019 from the resources of Ministry of Science and Higher Education allocated for activities which disseminate the science.

References
[1] Dabiri J O, Colin S P and Costello J H 2006 Fast-swimming hydromedusae exploit velar kinematics to form an optimal vortex wake J. Exp. Biol. 209 2025–33
[2] Gharib M, Rambod E, Kheradvar A, Sahni D J and Dabiri J O 2006 Optimal vortex formation as an index of cardiac health PNAS 103 6305–6308
[3] Wawrzak K and Tyliszczak A B A 2015 LES Predictions of Self-Sustained Oscillations in Homogeneous Density Round Free Jet Flow Turbul. Combust. 95 437–59
[4] Boguslawski A, Wawrzak K and Tyliszczak A 2019 A new insight into understanding the Crow and Champagne preferred mode: a numerical study J. Fluid Mech. 869 385–416
[5] Krueger P S, Moslehi A A, Nichols J T, Bartol I K and Stewart W J 2008 Vortex Rings in Bio-inspired and Biological Jet Propulsion Paul S. Adv. Sci. Technol. 58 237–46
[6] Krieg M and Mohseni K 2010 Dynamic Modeling and Control of Biologically Inspired Vortex Ring Thrusters for Underwater IEEE Trans. Robot. 26 542–54
[7] Gil P 2019 Bluff Body Drag Control using Synthetic Jet 12 293–302
[8] Kercher D S, Lee J, Brand O, Allen M G and Glezer A 2003 Microjet Cooling Devices for Thermal Management of Electronics IEEE Trans. COMPONENTS Packag. Technol. 26 359–66
[9] Pavlova A and Amitay M 2016 Electronic Cooling Using Synthetic Jet Impingement J. Heat Transfer 128 897–907
[10] Glezer A 1988 The formation of vortex rings Phys. Fluids 31 3532
[11] Shariff K and Field M 1992 Vortex rings Annu. Rev. Fluid Mech. 24 235–79
[12] Rosenfeld M, Rambod E and Gharib M 1998 Circulation and formation number of laminar vortex rings J. Fluid Mech. 376 297–318
[13] Didden B N, Strumungsforschung M and Didden N 1979 On the Formation of Vortex Rings: Rolling-up and Production of Circulation J. Appl. Math. Phys. 30 101–16
[14] James S and Madnia C K 1996 Direct numerical simulation of a laminar vortex ring Phys. Fluids 8 2400–14
[15] Heeg R S and Riley N 1997 Simulations of the formation of an axisymmetric vortex ring J. Fluid Mech. 339 199–211
[16] Hettel M, Wetzel F, Habisreuther P and Bockhorn H 2007 Numerical verification of the similarity laws for the formation of laminar vortex rings J. Fluid Mech. 590 35–60
[17] Danailla I and Hélie J 2008 Numerical simulation of the postformation evolution of a laminar vortex ring Phys. Fluids 20 73602
[18] Weigand A and Gharib M 1997 On the evolution of laminar vortex rings Exp. Fluids 22 447–57
[19] Saha A, Wei Y, Tang X and Law C K 2019 Kinematics of vortex ring generated by a drop upon impacting a liquid pool J. Fluid Mech. 875 842–53
[20] Uchiyama T and Shimada S 2016 Numerical simulation of the interactions between a vortex ring and solid particles suspended above a horizontal wall Powder Technol. 301 966–80
[21] Musta M N 2016 Interaction of a vortex ring with a cutting thin plate MEASUREMENT 88 104–12
[22] New T H and Zang B 2017 Head-on collisions of vortex rings upon round cylinders J. Flu 833 648–76
[23] Shengxian T H N and Zang S B 2016 Some observations on vortex - ring collisions upon inclined surfaces Exp. Fluids 57 109
[24] Long J and New T H 2016 Vortex dynamics and wall shear stress behaviour associated with an elliptic jet impinging upon a flat plate Exp. Fluids 57 121
[25] Syed A H and Sung 2009 Propagation of Orifice-and Nozzle-Generated Vortex Rings in Air J. Fl. Vis. 12 139–56
[26] Prasad M J and Sundararajan T 2016 Numerical simulation of fuel mixing with air in laminar buoyant vortex rings Int. J. Heat Fluid Flow 62 174–88
[27] Ishizuka S, Yamashita T and Shimokuri D 2013 Further investigation on the enhancement of flame speed in vortex ring combustion Proc. Combust. Inst. 34 745–53
[28] Palacios-Morales C and Zenit R 2013 Vortex ring formation for low Re numbers Acta Mech. 224 383–97
[29] Kristiansen U and Amielh M 2016 Measurements on a little known sound source - the Vortex Whistle 1–13
[30] Syed A U H and Sung H J 2009 Effect of an exit-wedge angle on pinch-off and mass entrainment of vortex rings in air Flow, Turbul. Combust. 82 391–406
[31] Palacios-Morales C and Zenit R 2013 The formation of vortex rings in shear-thinning liquids J. Nonnewton. Fluid Mech. 194 1–13
[32] Akhmetov D G and Kisarov O P 1966 HYDRODYNAMIC STRUCTURE OF A VORTEX RING J. Appl. Mech. Tech. Phys. 7 120–3
[33] Oshima Y 1988 Bifurcation of an elliptic vortex ring Fluid Dyn. Res. 3 133–9
[34] Romeo A and Lemonis G 2009 Multisensor Hot Wire Vorticity Probe Measurements of the Formation Field of Two Corotating Vortices Multisensor Hot Wire Vorticity Probe Measurements of the Formation Field of Two Corotating Vortices Flow Turbul. Combust. 83 153–83
[35] Dziedzic M and Leuthesser H J 1996 An experimental study of viscous vortex rings Exp. Fluids 21 315–24
[36] Glezer A and Coles D 1990 An experimental study of a turbulent vortex ring J. Fluid Mech. 211 243–83