Stability analysis with general fuzzy measure: An application to social security organizations

Nasim Arabjazi, Mohsen Rostamy-Malkhalifeh*, Farhad Hosseinizadeh Lotfi, Mohammad Hasan Behzadi

Department of Mathematics, Faculty of Science, Science and Research Branch, Islamic Azad University, Tehran, Iran

* mohsen_rostamy@yahoo.com

Abstract

An effective method for evaluating the efficiency of peer decision-making units (DMUs) is data envelope analysis (DEA). In engineering sciences and real-world management problems, uncertainty in input and output data always exists. To achieve reliable results, uncertainties must be taken into account. In this research, a General Fuzzy (GF) approach is designed to cope with uncertainty in the presence of fuzzy observations for categorizing and specifying stability radius and alterations ranges of efficient and inefficient DMUs, which is applicable to real-world decision-making problems. For this purpose, a DEA sensitivity analysis model is presented, which will be modeled by fuzzy sets. Then, by applying the General Fuzzy (GF) approach, the fuzzy DEA sensitivity analysis model is transformed into the equivalent crisp form of fuzzy chance constraints according to specific confidence levels. Finally, a numerical example and a case study of branches of the social security organization are presented to illustrate sensitivity and stability analysis in the presence of fuzzy data. The obtained results provide the input and output changes of the evaluated units according to the attitude and preference of the decision maker with different confidence levels so that the data changes in the fuzzy environment do not change the units' classification from efficient to inefficient and vice versa.

1. Introduction

Scrutinizing the performance of entities and organizations is a crucial liability of the top-level management team that can be carried out by various techniques. Data envelopment analysis (DEA), first suggested by Charnes et al. [1] (Charnes-Cooper-Rhodes (CCR model)) and continued by Banker et al. [2] (Banker-Charnes-Cooper (BCC model)), is a nonparametric way to appraise the relative efficiency of decision-making units (DMUs) with multiple input-output. Both CCR and BCC have been developed for many topics and with many successful applications and case studies, as reported in the DEA published works [3–5]. Since DEA is data-based, data entry errors, statistical noise, and incomplete data create disturbances in evaluating DEA’s efficiency. A commonly asked question is, "How sensitive are the DMUs to possible
variations in the data?" This matter has been considered as a performance stability analysis in DEA. Numerous studies have focused on this topic. For the most up-to-date sensitivity analysis problems, the interested reader can observe: Zhu [6], Jahanshahloo et al. [7], Abri et al. [8], Zamani and Borzouei [9], Neralić and Wendell [10], Hladík [11], Khoveyni and Eslami [12], Arabjazi et al. [13], among others.

In early studies of DEA stability analysis, which was named the “Algorithmic approach,” Charnes et al. [14] treated the sensitivity of a single output of an efficient unit by using the optimal basis matrix of an LP problem. This approach was extended and improved by a few sensitivity analysis papers by Charnes and Neralić in which sufficient conditions were determined to preserve efficiency (see, for example, [15, 16]).

Thompson et al. [17] and Thompson et al. [18] provided a DEA multiplier approach to sensitivity analysis using the strong complementary slackness condition (SCSC) of centrality. Sensitivity analysis based on the super-efficiency technique in DEA is also another type of sensitivity analysis in which the DMU under evaluation is not included in the reference set. Charnes et al. [19] and Charnes et al. [20] proposed a super-efficiency DEA model where the simultaneous proportional variation of all inputs and outputs is applied to a DMU under test. Seiford and Zhu [21, 22] considered input and output changes separately and proposed an iterative procedure to define an input stability region (ISR) and an output stability region (OSR). Zhu [6] presented the maximum radius that preserves efficiency or inefficiency when the data of all DMUs are changed simultaneously and unequally.

Metters et al. [23] inspected the stability of a DMU batch. They divided DMUs and then specified the stability of DMUs using a trial and error unit scheme. Jahanshahloo et al. [24] developed the largest stability region for BCC and additive models by supporting hyperplanes for the DMU under evaluation. Liu et al. [25] studied the sensitivity analysis for efficient DMU when the data uncertainty occurred locally. They considered the constancy of an efficient DMU by worsening a class of DMUs simultaneously in the same directions to keep the under evaluation DMU remaining on the efficient frontier. Boljunić [26] used an iterative procedure so that data changes do not affect the optimal basis matrix, and parametric programming was applied to obtain possible input or output perturbation.

Mozaffari et al. [27] offered a step method (STEM), an interactive technique of multiple objective linear programming (MOLP), for maintaining efficiency classification when all interval data is simultaneously altered for the DMU under test. Abri et al. [28] to define the consistency radius for efficient DMUs and quasi-efficient DMUs presented a super-efficiency model in DEA. Singh [29] provided multiparametric sensitivity analysis by classifying the perturbation parameters as “focal” and “nonfocal” and found critical regions for the efficient DMU under evaluation. Wen et al. [30], Khalili-Damghani and Taghavifard [31] surveyed the stable states of efficiency of DMUs in a fuzzy environment. Hladík [32] proposed stability analysis in linear programming and addressed the expansion of the maximum tolerance area. Jahanshahloo et al. [7] obtained a stability region for inefficient DMUs. Their method was considered a new frontier with a performance score of $\alpha < 1$ for a specific inefficient DMU that α defined as constant by the manager.

Abri [8] demonstrated the sensitivity of returns to scale by stability radius. Daneshvar et al. [33] offered a DEA model by modifying the variable returns to scale (VRS) model to improve the efficiency stability region obtained from this model. Khodabakhshi et al. [34] and He et al. [35] determined the stability radius based on input relaxation super-efficiency measure and interval data, respectively. Arabjazi et al. [36] studied efficiency stability in the presence of stochastic data for DMUs in which data perturbations do not affect their classifications.
Agarwal et al. [37] scrutinized the robustness of DEA efficiency scores by changing the reference set of the inefficient DMUs via a new slack model (NSM). Banker et al. [38] inspected stability in stochastic data envelopment analysis. They applied the stochastic DEA (SDEA) model and obtained the necessary and sufficient conditions to preserve the efficiency classification of all DMUs. Zamanii and Borzouei [9] offered a tolerance area when an extra unit needs to be joined to the set of the observed units by defining hyperplanes of the production possibility set (PPS). Of late, an alternative method has been proposed, focusing on enlarging the maximum tolerance radius and tolerance region. See, for example, Ghazi et al. [39], Arabjazi et al. [13], and Neralić and Wendell [10].

Recently, chaotic systems have many potential applications in various fields of technical sciences and engineering. Among them, we can mention its applications in medical issues, financial issues, encryption techniques, control systems and optimization algorithms. Tian et al. [40] introduced a new deep-learned type-3 fuzzy logic system to develop a model for CO2 solubility estimation. Moreover, a new type-3 fuzzy logic system with an online optimization scheme is proposed for stabilizing and synchronizing financial chaotic systems [41]. For more information about the new type-3 fuzzy logic system, see references [42, 43].

Mombini et al. [44] focused on sensitivity analysis in DEA and proposed an approach to determine the stability radius of the cost efficiency of units with interval data. Mahla et al. [45] detailed the sensitivity and stability analysis of the fuzzy SBM DEA and obtained lower and upper sensitive bounds for input and output variables for both the inefficient and efficient DMUs to determine the input and output targets. In order to assess the efficacy of DMUs with uncertain random inputs and outputs, Jiang et al. [46] created an uncertain random DEA model. The sensitivity and stability of this new model were then examined in order to determine the stability radius of each DMU. Aslani Khavi et al. [47] used the network inverse data envelopment analysis approach to develop a structure for the optimal regulation of the bullwhip effect and considered the effect of time and delays on the bullwhip effect score.

Also lately, innovative meta-heuristic algorithms with biological and naturalistic inspirations have been developed to address challenging real-world optimization problems. A prairie dog optimization algorithm was presented by Ezugwu et al. [48] and replicates the actions of prairie dogs in their natural environment. A dwarf mongoose optimization algorithm was suggested by Agushaka et al. [49] and mimics the foraging social interactions and ecological adaptations of three social groups of dwarf mongooses. A reptile search algorithm that is inspired by crocodile hunting behavior was also proposed by Abualigah et al. [50]. Moreover, Oyelade et al. [51] introduced the Ebola optimization search algorithm based on the spread mechanism of the Ebola virus disease. Readers can find references [52, 53] if they are interested in learning more about meta-heuristic techniques for optimization issues.

In standard models of DEA, it is supposed that the data values are known and fixed. However, in real conditions, there may be uncertainty and ambiguity. Many topics with many successful applications have examined situations in which the inputs and outputs are not exactly known. Recently, some researchers addressed the matter with fuzzy data [54–57]. Hence, the methods of sensitivity analysis proposed in DEA are not suitable for DMUs with fuzzy data. So in this paper, first, we present a DEA model in an uncertain environment, which will be modeled by fuzzy sets. Then, the sensitivity and stability analysis of the proposed fuzzy DEA modeling is also shown. To that end, by applying the General Fuzzy (GF) approach, the fuzzy DEA sensitivity analysis model is transformed into the equivalent crisp form of fuzzy chance constraints according to specific confidence levels.
The difference between our work and the existing fuzzy procedures is that the existing approaches consider the optimistic, pessimistic, and compromised attitudes of the decision maker based on the possibility, necessity, and credibility measures in three separate models in fuzzy DEA, while the proposed stability analysis takes into account the different optimistic-pessimistic attitudes of the decision maker in one model only by setting an adjustable parameter. The drawback of the possibility, necessity, and credibility measures is that these three measures reflect the decision maker’s attitude as extremely optimistic, pessimistic, and compromising. While in order to estimate the efficiency of DMUs, we require an adjustable, flexible, and applicable measure for fuzzy decision-making problems so that this measure can reflect different perspectives of the decision maker. To put it another way, in our proposed approach, decision makers can apply different attitudes that they have obtained according to their experiences and judgments by adjusting the optimistic-pessimistic parameter for better decision-making and forecasting. In addition, GF measure models are formulated in the form of fuzzy linear programming.

The main contributions of the current research can be mentioned as follows:

• Providing an additive DEA model with fuzzy data.
• Proposing a sensitivity and stability analysis of the fuzzy additive DEA model.
• Presenting novel general fuzzy approach and chance constrained programming to tackle the uncertainty of the fuzzy chance-constraints in the fuzzy DEA sensitivity analysis model and convert them into their equivalent crisp values.
• Determining the stability region and stability radius for both efficient and inefficient DMUs.
• The efficiency of the proposed approach is illustrated by a numerical example.
• Implementation of the suggested method in a real-world case study from social security organization.

The rest of the paper has been organized as follows: In Section 2, first the general fuzzy measure is introduced, and then some basic concepts about the DEA additive model with fuzzy data will be presented. A sensitivity and stability analysis technique for DMUs with fuzzy data is shown in Section 3. An illustrative numerical example and a case study of social security organizations are discussed in Section 4. In the final Section 5, conclusions are expressed.

2. Fundamentals and concepts
2.1. Mathematical notations and nomenclatures
The symbols, parameters, and variables that will be utilized in this study are defined as follows:

Indices

\(j \) the index of DMUs, \(j = 1, \ldots, n \)

\(i \) the index of inputs, \(i = 1, \ldots, m \)

\(r \) the index of outputs, \(r = 1, \ldots, s \)

\(o \) the index of DMU under test
Para mete rs

X_j: the inputs vector of DMU_j
Y_j: the outputs vector of DMU_j
x_{ij}: the i^{th} input of DMU_j
y_{rj}: the r^{th} output of DMU_j
X_o: the inputs vector of DMU_o under test
Y_o: the outputs vector of DMU_o under test
x_{io}: the i^{th} input of DMU_o under test
y_{ro}: the r^{th} output of DMU_o under test
\tilde{x}_{ij}: the i^{th} fuzzy input of DMU_j
\tilde{y}_{rj}: the r^{th} fuzzy output of DMU_j
\tilde{x}_{io}: the i^{th} fuzzy input of DMU_o under test
\tilde{y}_{ro}: the r^{th} fuzzy output of DMU_o under test
τ: a crisp number
γ: a specific confidence level for satisfying the uncertain constraint
η: the optimistic – pessimistic parameter of general fuzzy (GF) measure
K: a large enough number

\mu_j: the non-negative coefficient of DMU_j data in the convex combination
s^-i: non-radial decrease of i^{th} input of DMU_o under test in the additive model
s^+_i: non-radial increase of r^{th} output of DMU_o under test in the additive model
ρ_i: the stability radius of i^{th} input of DMU_o under test
φ_r: the stability radius of r^{th} output of DMU_o under test
Ω: a binary variable for linearization of incompatible constraints

Definition 1. A region of permissible data changes is called a stability region of DMU_o if and only if the classification of all DMUs remains stable after such changes occur.

Definition 2. Given DMU_o, the stability radius is the largest number, r, such that feasible perturbations to DMU_o strictly <r preserve the efficiency classification of all DMUs (Arabjazi et al. [13]).
2.2. General fuzzy measure

General Fuzzy (GF) is a measure used to express the chance of fuzzy phenomena that was developed by Xu and Zhou [58, 59]. Here, we will state some basic concepts in general fuzzy measure. For any fuzzy event \(P \in \Psi(\Theta) \) that occurs on possibility space \((\Theta, \Psi(\Theta), \text{Pos})\), the general fuzzy measure is defined as follows:

\[
GF\{P\} = \text{Nec}\{P\} + (\eta)(\text{Pos}\{P\} - \text{Nec}\{P\}) = (\eta)\text{Pos}\{P\} + (1 - \eta)\text{Nec}\{P\}
\]

That is to say, the general fuzzy measure is equal to the convex combination of possibility (Pos) and necessity (Nec) in which \(\eta (0 \leq \eta \leq 1) \), is the optimistic-pessimistic parameter to determine the attitude of a decision-maker. \(GF(.) \) is a general fuzzy measure if and only if:

- \(GF\{\emptyset\} = 0, GF\{\Theta\} = 1 \)
- \(\forall P \in \Psi(\Theta) \Rightarrow 0 \leq GF\{P\} \leq 1 \)
- \(\forall P \in \Psi(\Theta), \eta \leq 0.5 \Rightarrow 0 \leq GF\{P\} + GF\{P'\} \leq 1 \)
- \(\forall P \in \Psi(\Theta), \eta \geq 0.5 \Rightarrow 1 \leq GF\{P\} + GF\{P'\} \leq 2 \)
- \(\forall P, R \in \Psi(\Theta), P \subseteq R \Rightarrow GF\{P\} \leq GF\{R\} \)
- \(\forall P, R \in \Psi(\Theta), \eta \geq 0.5 \Rightarrow GF\{P \cup R\} \leq GF\{P\} + GF\{R\} \)
- \(\forall P \in \Psi(\Theta) \Rightarrow \text{Pos}\{P\} \geq GF\{P\} \geq \text{Nec}\{P\} \)

Suppose that, \(\tilde{x}(x_1, x_2, x_3, x_4) \) with the condition of \(x_1 < x_2 < x_3, < x_4 \) is a trapezoidal fuzzy variable on possibility space \((\Theta, \Psi(\Theta), \text{Pos})\). The membership function of \(\tilde{x} \) is expressed below:

\[
\mu(x) = \begin{cases}
\frac{x - x_1}{x_2 - x_1}, & \text{if } x_1 \leq x \leq x_2; \\
1, & \text{if } x_2 \leq x \leq x_3; \\
\frac{x_4 - x}{x_4 - x_3}, & \text{if } x_3 \leq x \leq x_4; \\
0, & \text{otherwise.}
\end{cases}
\]

(1)

Also, assume that \(\tau \) is a crisp number. The GF measure of fuzzy events is as follows:

\[
GF(\tilde{x} \leq \tau) = \begin{cases}
0, & \text{if } x_1 \geq \tau; \\
\eta \left(\frac{\tau - x_1}{x_2 - x_1} \right), & \text{if } x_1 \leq \tau \leq x_2; \\
\eta, & \text{if } x_2 \leq \tau \leq x_3; \\
\eta + (1 - \eta) \left(\frac{\tau - x_3}{x_4 - x_3} \right), & \text{if } x_3 \leq \tau \leq x_4; \\
1, & \text{if } x_4 \leq \tau.
\end{cases}
\]

(2)
According to the fuzzy general measure properties, the certain counterparts crisp ones of fuzzy chance constraints under specific confidence level γ for both conditions of γ greater or less than η, are as follows:

$$\begin{align*}
GF(\tilde{a} \geq \tau) = & \begin{cases}
1, & \text{if } a_1 \geq \tau; \\
\eta + (1 - \eta) \left(\frac{a_2 - \tau}{a_2 - a_1} \right), & \text{if } a_1 \leq \tau \leq a_2; \\
\eta, & \text{if } a_2 \leq \tau \leq a_3; \\
\eta \left(\frac{a_4 - \tau}{a_4 - a_3} \right), & \text{if } a_3 \leq \tau \leq a_4; \\
0, & \text{if } a_4 \leq \tau.
\end{cases}
\end{align*}$$

(3)

According to the fuzzy general measure properties, the certain counterparts crisp ones of fuzzy chance constraints under specific confidence level γ for both conditions of γ greater or less than η, are as follows:

$$\begin{align*}
GF(\tilde{a} \leq \tau) \geq \gamma & \iff \begin{cases}
\left(\frac{\eta - \gamma}{\eta} \right) a_1 + \left(\frac{\gamma}{\eta} \right) a_2 \leq \tau, & \text{if } \gamma \leq \eta; \\
\left(\frac{1 - \gamma}{1 - \eta} \right) a_3 + \left(\frac{\gamma - \eta}{1 - \eta} \right) a_4 \leq \tau, & \text{if } \gamma \geq \eta.
\end{cases}
\end{align*}$$

(4)

$$\begin{align*}
GF(\tilde{a} \geq \tau) \geq \gamma & \iff \begin{cases}
\left(\frac{\gamma}{\eta} \right) a_3 + \left(\frac{\eta - \gamma}{\eta} \right) a_4 \geq \tau, & \text{if } \gamma \leq \eta; \\
\left(\frac{\gamma - \eta}{1 - \eta} \right) a_1 + \left(\frac{1 - \gamma}{1 - \eta} \right) a_2 \geq \tau, & \text{if } \gamma \geq \eta.
\end{cases}
\end{align*}$$

(5)

In the above relations, if η is equal to 1, 0, and 0.5, then the GF measure represents possibility, necessity, and credibility, respectively [60, 61]. To put it another way, by setting η in the GF measure, the decision-maker can achieve the desired attitude. And lastly, in recent years, the popularity and applicability of the GF measure have been increasing among researchers, and it is widely used in real-world problems in fuzzy environments [62–64].

2.3. The DEA additive model

Assume that n DMUs need to be appraised. The symbols and notations are given as follows: DMU_j denotes the jth DMU, where $j = 1, 2, \ldots, n$. DMU_o is the DMU under evaluation. The vectors $X_j = (x_{1j}, x_{2j}, \ldots, x_{mj})$ and $Y_j = (y_{1j}, y_{2j}, \ldots, y_{sj})$ are the inputs and outputs of DMU_j, $j = 1, 2, \ldots, n$. The inputs and outputs vectors of the target DMU_o are $X_o = (x_{1o}, x_{2o}, \ldots, x_{mo})$ and $Y_o = (y_{1o}, y_{2o}, \ldots, y_{so})$. Also, the production possibility set (PPS) and the additive model of Charnes et al. [14] are defined in Eqs (6) and (7) as follows:

$$PPS = \left\{ (X, Y) \left| X \geq \sum_{j=1}^{n} \mu_j X_j, Y \leq \sum_{j=1}^{n} \mu_j Y_j, \sum_{j=1}^{n} \mu_j = 1, \mu_j \geq 0, j = 1, \ldots, n \right. \right\}$$

(6)
\[
\begin{align*}
\text{Max} \quad & \sum_{i=1}^{m} s_i^- + \sum_{r=1}^{i} s_r^+ \\
\text{s.t.} \quad & \sum_{j=1}^{n} \mu_j x_{ij} = x_{io} - s_i^- \quad \forall i \\
& \sum_{j=1}^{n} \mu_j y_{rj} = y_{ro} + s_r^+ \quad \forall r \\
& \sum_{j=1}^{n} \mu_j = 1 \quad \forall j \\
& \mu_j \geq 0 \quad \forall j \\
& s_i^- , s_r^+ \geq 0, \quad \forall i, r
\end{align*}
\]

\textbf{Definition 3.} DMU\textsubscript{o}, the DMU under test, is efficient if and only if an optimum is attained with all slacks zero in Model (7).

\subsection{2.4. The fuzzy additive model}

A hypothesis underlying DEA is that all the data take the form of specific numerical values. However, in a great variety of applications, the presence of imprecise or vague data like fuzzy data is undeniable. To this end, we present the additive Model (8) with fuzzy data in which \(\tilde{x}_i = (x^{(1)}, x^{(2)}, x^{(3)}, x^{(4)}) \) with the condition of \(x^{(1)} < x^{(2)} < x^{(3)} < x^{(4)} \) and \(\tilde{y}_j = (y^{(1)}, y^{(2)}, y^{(3)}, y^{(4)}) \) with the condition of \(y^{(1)} < y^{(2)} < y^{(3)} < y^{(4)} \) represent the \(i^{th} \) fuzzy input and \(j^{th} \) fuzzy output of DMU\textsubscript{j}, \(j = 1, 2, \ldots, n \), respectively under trapezoidal distribution.

\[
\begin{align*}
\text{Max} \quad & \sum_{i=1}^{m} s_i^- + \sum_{r=1}^{i} s_r^+ \\
\text{s.t.} \quad & \sum_{j=1}^{n} \mu_j \tilde{x}_{ij} = \tilde{x}_{io} - s_i^- \quad \forall i \\
& \sum_{j=1}^{n} \mu_j \tilde{y}_{rj} = \tilde{y}_{ro} + s_r^+ \quad \forall r \\
& \sum_{j=1}^{n} \mu_j = 1 \quad \forall j \\
& \mu_j \geq 0 \quad \forall j \\
& s_i^- , s_r^+ \geq 0, \quad \forall i, r
\end{align*}
\]

To tackle the uncertainty of fuzzy chance constraints in Model (8) and convert them to their equivalent crisp values by applying general fuzzy measure and chance constrained
programming, Model (8) will be converted to the following model:

\[
\begin{align*}
\text{Max} & \quad \sum_{i=1}^{m} s_i^- + \sum_{r=1}^{s} s_r^+ \\
\text{s.t.} & \quad \text{GF} \left\{ \sum_{j=1}^{n} \mu_j \tilde{x}_{ij} \leq \tilde{x}_{io} - s_i^- \right\} \geq \gamma \quad \forall i \\
& \quad \text{GF} \left\{ \sum_{j=1}^{n} \mu_j \tilde{y}_{rj} \geq \tilde{y}_{ro} + s_r^+ \right\} \geq \gamma \quad \forall r \\
& \quad \sum_{j=1}^{n} \mu_j = 1 \quad \forall j \\
& \quad \mu_j \geq 0 \quad \forall j \\
& \quad s_i^-, s_r^+ \geq 0, \quad \forall i, r
\end{align*}
\]

(9)

Definition 4. For the Model (9), DMU \(\gamma \) is efficient if an optimum is obtained with all slacks zero in Model (9) namely, the values of \(s_i^- \), \((i = 1, \ldots, m) \) and \(s_r^+ \), \((r = 1, \ldots, s) \) are equal to zero where \(s_i^- \) and \(s_r^+ \) are the optimal solutions of the Model (9).

From the properties of the GF approach and using relations (4) and (5), we can rewrite Model (9) as Model (10). It is significant that in the GF approach, an equivalent crisp of fuzzy chance constraints for the \(\gamma \) greater than or less than \(\eta \), is not similar. So it has been applied a binary variable \(\Omega \) and a large enough number \(K \) in Model (10) to the linearization of the incompatible constraints.

\[
\begin{align*}
\text{Max} & \quad \sum_{i=1}^{m} s_i^- + \sum_{r=1}^{s} s_r^+ \\
\text{s.t.} & \quad \sum_{j=1}^{n} \mu_j \left(\frac{\gamma - \eta}{\eta} x_{ij}^{(1)} + \frac{\eta - \gamma}{\eta} x_{ij}^{(2)} \right) + \mu_o \left(\frac{\gamma - \eta}{\eta} x_{io}^{(3)} + \frac{\eta - \gamma}{\eta} x_{io}^{(4)} \right) \leq \left(\frac{\gamma - \eta}{\eta} x_{io}^{(3)} + \frac{\eta - \gamma}{\eta} x_{io}^{(4)} \right) - s_i^- + K \Omega, \quad \forall i \\
& \quad \sum_{j=1}^{n} \mu_j \left(\frac{1 - \eta}{1 - \eta} x_{ij}^{(1)} + \frac{\eta - \gamma}{1 - \eta} x_{ij}^{(4)} \right) + \mu_o \left(\frac{\gamma - \eta}{1 - \eta} x_{io}^{(1)} + \frac{1 - \eta}{1 - \eta} x_{io}^{(2)} \right) \leq \left(\frac{\gamma - \eta}{1 - \eta} x_{io}^{(1)} + \frac{1 - \eta}{1 - \eta} x_{io}^{(2)} \right) - s_i^- + K(1 - \Omega), \quad \forall i \\
& \quad \sum_{j=1}^{n} \mu_j \left(\frac{\gamma - \eta}{\eta} y_{rj}^{(3)} + \frac{\eta - \gamma}{\eta} y_{rj}^{(4)} \right) + \mu_o \left(\frac{\gamma - \eta}{\eta} y_{ro}^{(3)} + \frac{\eta - \gamma}{\eta} y_{ro}^{(4)} \right) \geq \left(\frac{\gamma - \eta}{\eta} y_{ro}^{(3)} + \frac{\eta - \gamma}{\eta} y_{ro}^{(4)} \right) + s_r^+ - K \Omega, \quad \forall r \\
& \quad \sum_{j=1}^{n} \mu_j \left(\frac{1 - \eta}{1 - \eta} y_{rj}^{(1)} + \frac{\gamma - \eta}{1 - \eta} y_{rj}^{(2)} \right) + \mu_o \left(\frac{1 - \eta}{1 - \eta} y_{ro}^{(1)} + \frac{\gamma - \eta}{1 - \eta} y_{ro}^{(2)} \right) \geq \left(\frac{1 - \eta}{1 - \eta} y_{ro}^{(1)} + \frac{\gamma - \eta}{1 - \eta} y_{ro}^{(2)} \right) + s_r^+ - K(1 - \Omega), \quad \forall r \\
& \quad \sum_{j=1}^{n} \mu_j = 1 \quad \forall j \\
& \quad \gamma \leq \eta + K \Omega \\
& \quad \gamma > \eta - K(1 - \Omega) \\
& \quad \Omega \in \{0, 1\} \\
& \quad \mu_j \geq 0 \quad \forall j \\
& \quad s_i^-, s_r^+ \geq 0, \quad \forall i, r
\end{align*}
\]

(10)
Theorem 2.1. If DMU\(_o\) is an \(\gamma\)-inefficient DMU, then an optimum is obtained with \(\mu^*_o = 0\) in Model (9).

Proof Let us hypothesize that for a fixed \(\gamma\), the solution \((\mu^*_j, \mu^*_o, s_i^+, s_i^-)\) is the optimal value of Model (9) with the optimal objective \(\sum_{i=1}^{m} s_i^+ + \sum_{i=1}^{s} s_i^-\), the theorem is proved if \(\mu^*_o = 0\). Otherwise, since DMU\(_o\) is inefficient, there is at least one \(s_i^+ > 0\) \((i = 1, \ldots, m)\) or \(s_r^- > 0\) \((r = 1, \ldots, s)\) such that \(\mu^*_o > 0\). Suppose that \(s_k^+ > 0\) \((k \in \{1, \ldots, m\})\). If \(\mu^*_o = 1\), in that case \(GF\{\bar{x}_{ik} \leq \bar{x}_{ik} - s_i^-\} = 0\). This antilogy states that \(\mu^*_o \neq 1\).

Now, we consider the case \(0 < \mu^*_o < 1\).

\[
GF\left\{ \sum_{j=1}^{n} \mu^*_j \bar{x}_{ij} \leq \bar{x}_{io} - s_i^- \right\} = GF\left\{ \sum_{j=1}^{n} \mu^*_j \bar{x}_{ij} + \mu^*_o \bar{x}_{io} \leq \bar{x}_{io} - s_i^- \right\} \\
= GF\left\{ \sum_{j=1}^{n} \mu^*_j \bar{x}_{ij} \leq (1 - \mu^*_o) \bar{x}_{io} - s_i^- \right\} \\
= GF\left\{ \sum_{j=1}^{n} \mu^*_j \bar{x}_{ij} \right\}
\]

\[
\frac{1}{(1 - \mu^*_o)} \leq \bar{x}_{io} - \frac{s_i^-}{(1 - \mu^*_o)} \geq \gamma, \quad i = 1, \ldots, m.
\]

In a similar way,

\[
GF\left\{ \sum_{j=1}^{n} \mu^*_j \bar{y}_{rj} \geq \bar{y}_{ro} + s_r^+ \right\} = GF\left\{ \sum_{j=1}^{n} \mu^*_j \bar{y}_{rj} \right\}
\]

\[
\frac{\sum_{j=1}^{n} \mu^*_j \bar{y}_{rj}}{(1 - \mu^*_o)} \geq \bar{y}_{ro} + \frac{s_r^+}{(1 - \mu^*_o)} \geq \gamma, \quad r = 1, \ldots, s.
\]

It is straightforward \(\sum_{j=1}^{n} \mu^*_j \bar{y}_{rj} = 1\). Hence \(\left(\frac{\mu^*_1}{1 - \mu^*_o}, \ldots, \frac{\mu^*_1}{1 - \mu^*_o}, 0, \frac{\mu^*_s}{1 - \mu^*_o}, \ldots, \frac{\mu^*_s}{1 - \mu^*_o}\right)\) is a feasible solution for Model (9) such that the objective value for this solution is \(\frac{1}{1 - \mu^*_o} \left(\sum_{i=1}^{m} s_i^+ + \sum_{r=1}^{s} s_r^+\right)\).

And since \(0 < \mu^*_o < 1\), it contradicts the assumption \(\left(\sum_{i=1}^{m} s_i^+ + \sum_{r=1}^{s} s_r^+\right)\). Therefore \(\mu^*_o = 0\).

3. Sensitivity analysis with fuzzy data

3.1. Stability radius for efficient DMUs

Suppose that DMU\(_o\) is an \(\gamma\)-efficient DMU. The aim is to find scalars \(\rho_i\) \((i = 1, \ldots, m)\) and \(\varphi_r\) \((r = 1, \ldots, s)\) such that if \(i^{th}\) input of DMU\(_o\) is increased by \(\rho_i\) and \(r^{th}\) output of DMU\(_o\) is decreased by \(\varphi_r\), then DMU\(_o\) remains \(\gamma\)-efficient. For this purpose, we consider the following
therefore we have:

\[
\begin{align*}
\text{Min} & \quad \sum_{i=1}^{m} \rho_i \leq \sum_{i=1}^{s} \varphi_i \\
\text{s.t.} & \quad \text{GF} \left\{ \sum_{j=1}^{n} \mu_j \tilde{x}_{ij} \leq \tilde{x}_{io} + \rho_i \right\} \geq \gamma \quad \forall i \\
& \quad \text{GF} \left\{ \sum_{j=1}^{n} \mu_j \tilde{y}_{ij} \geq \tilde{y}_{ro} - \varphi_r \right\} \geq \gamma \quad \forall r \\
& \quad \sum_{j=1}^{n} \mu_j = 1 \quad \forall j \\
& \quad \mu_j \geq 0 \quad \forall j \\
& \quad \rho_i, \varphi_r \geq 0, \quad \forall i, r
\end{align*}
\]

(11)

Theorem 3.1. Theorize that DMU\(_o\) is an \(\gamma\)-efficient DMU, and

\((\mu_1^*, \ldots, \mu_n^*, \rho_1^*, \ldots, \rho_m^*, \varphi_1, \ldots, \varphi_s^*)\) is an optimal solution of Model (11). In this case \(\overline{DMU}_o\)
with inputs \((\tilde{x}_{io} + \rho_i^*), (i = 1, \ldots, m)\) and outputs \((\tilde{y}_{ro} - \varphi_r^*), (r = 1, \ldots, s)\) remains an \(\gamma\)-efficient DMU.

Proof Assume that \((\tilde{\mu}_1, \tilde{\mu}_n, \tilde{s}_i^+, \tilde{s}_r^+)\) is the optimal value of Model (9) when evaluating \(\overline{DMU}_o\) therefore we have:

\[
\begin{align*}
\text{GF} \left\{ \sum_{j=1,j\neq o}^{n} \tilde{\mu}_j \tilde{x}_{ij} + \tilde{\mu}_o (\tilde{x}_{io} + \rho_i^*) \leq (\tilde{x}_{io} + \rho_i^*) - \tilde{s}_i^+ \right\} \geq \gamma \quad \forall i \\
\text{GF} \left\{ \sum_{j=1,j\neq o}^{n} \tilde{\mu}_j \tilde{y}_{ij} + \tilde{\mu}_o (\tilde{y}_{ro} - \varphi_r^*) \geq (\tilde{y}_{ro} - \varphi_r^*) + \tilde{s}_r^+ \right\} \geq \gamma \quad \forall r
\end{align*}
\]

Assume that \(\overline{DMU}_o\) is inefficient thus from Theorem 2.1, \(\tilde{\mu}_o = 0\) and we have:

\[
\begin{align*}
\text{GF} \left\{ \sum_{j=1,j\neq o}^{n} \tilde{\mu}_j \tilde{x}_{ij} \leq (\tilde{x}_{io} + \rho_i^*) - \tilde{s}_i^+ \right\} \geq \gamma \quad \forall i \\
\text{GF} \left\{ \sum_{j=1,j\neq o}^{n} \tilde{\mu}_j \tilde{y}_{ij} \geq (\tilde{y}_{ro} - \varphi_r^*) + \tilde{s}_r^+ \right\} \geq \gamma \quad \forall r
\end{align*}
\]

We set \(\hat{\rho}_i = \rho_i^* - \tilde{s}_i^+\) and \(\hat{\varphi}_r = \varphi_r^* - \tilde{s}_r^+\). Thus \((\tilde{\mu}_1, \ldots, \tilde{\mu}_n, \hat{\rho}_1, \ldots, \hat{\rho}_m, \hat{\varphi}_1, \ldots, \hat{\varphi}_s)\) is a feasible solution for Model (11) and the objective value is \(\sum_{i=1}^{m} \hat{\rho}_i + \sum_{r=1}^{s} \hat{\varphi}_r \leq \sum_{i=1}^{m} \rho_i^* + \sum_{r=1}^{s} \varphi_r^*\), which leads to a contradiction with the assumption.

From the above analysis, if DMU\(_o\) is an \(\gamma\)-efficient DMU, and

\((\mu_1^*, \ldots, \mu_n^*, \rho_1^*, \ldots, \rho_m^*, \varphi_1, \ldots, \varphi_s^*)\) is an optimal solution of Model (11), then for each \(\rho_i\)
\((i = 1, \ldots, m)\) and \(\varphi_r\) \((r = 1, \ldots, s)\), where \(\rho_i \in [0, \rho_i^*], (i = 1, \ldots, m)\) and \(\varphi_r \in [0, \varphi_r^*], (r = 1, \ldots, m)\)
if \((\tilde{x}_{io} + \rho_i), (i = 1, \ldots, m)\) and \((\tilde{y}_{ro} - \varphi_r), (r = 1, \ldots, m)\) then DMU\(_o\) remains \(\gamma\)-efficient.
We can rewrite Model (11) as a fuzzy DEA crisp model for the γ greater than or less than η according to the GF measure as follows:

Min $\sum_{i=1}^{m} \rho_i + \sum_{r=1}^{i} \varphi_r$

s.t.

$$\sum_{j=1}^{n} \mu_j \left(\frac{1-\gamma}{\eta} x_{ij}^{(1)} + \frac{\gamma}{\eta} x_{ij}^{(2)} \right) \leq \left(\frac{\gamma}{\eta} x_{io}^{(3)} + \left(\frac{1-\gamma}{\eta} \right) x_{io}^{(4)} \right) + \rho_i + K\Omega, \quad \forall i$$

$$\sum_{j=1}^{n} \mu_j \left(\frac{1-\gamma}{\eta} y_{ij}^{(1)} + \frac{\gamma}{\eta} y_{ij}^{(2)} \right) \leq \left(\frac{\gamma}{\eta} y_{io}^{(3)} + \left(\frac{1-\gamma}{\eta} \right) y_{io}^{(4)} \right) + \rho_i + K(1-\Omega), \quad \forall i$$

$$\sum_{j=1}^{n} \mu_j \left(\frac{1-\gamma}{\eta} y_{ij}^{(3)} + \frac{\gamma}{\eta} y_{ij}^{(4)} \right) \geq \left(\frac{\gamma}{\eta} y_{io}^{(3)} + \left(\frac{1-\gamma}{\eta} \right) y_{io}^{(4)} \right) - \varphi_r - K(1-\Omega), \quad \forall r$$

$$\sum_{j=1}^{n} \mu_j = 1 \quad \forall j$$

$$\gamma \leq \eta + K\Omega$$

$$\gamma > \eta - K(1-\Omega)$$

$$\Omega \in \{0, 1\}$$

$$\mu_j \geq 0 \quad \forall j$$

$$\rho_i, \varphi_r \geq 0, \quad \forall i, r$$

3.2. Stability radius for inefficient DMUs

In this case, we imagine that DMU$_{o}$ is an γ-inefficient DMU; that is, $\mu_{o}^* = 0$. The aim is to find scalars ρ_i ($i = 1, \ldots, m$) and φ_r ($r = 1, \ldots, s$) such that if i^{th} input of DMU$_{o}$ is decreased by ρ_i and r^{th} output of DMU$_{o}$ is increased by φ_r, then DMU$_{o}$ remains γ-inefficient. To this end, we have the following model:

Max $\sum_{i=1}^{m} \rho_i + \sum_{r=1}^{i} \varphi_r$

s.t.

$$GF \left\{ \sum_{j=1}^{n} \mu_j \bar{x}_{ij} \leq \bar{x}_{io} - \rho_i \right\} \geq \gamma \quad \forall i$$

$$GF \left\{ \sum_{j=1}^{n} \mu_j \bar{y}_{ij} \geq \bar{y}_{io} + \varphi_r \right\} \geq \gamma \quad \forall r$$

$$\sum_{j=1}^{n} \mu_j = 1 \quad \forall j$$

$$\mu_j \geq 0 \quad \forall j$$

$$\rho_i, \varphi_r \geq 0, \quad \forall i, r$$

Theorem 3.2. Imagine that DMU$_{o}$ is an γ-inefficient DMU, and
$$(\mu_1^*, \ldots, \mu_m^*, \varphi_1^*, \ldots, \varphi_s^*)$$ is the optimal solution of Model (13). In this case DMU$_{o}$
with inputs \((\tilde{x}_i - \rho_i), (i = 1, \ldots, m)\) where \(\rho_i \in [0, \rho_i^*], (i = 1, \ldots, m)\) and outputs \((\tilde{y}_i + \varphi_i), (r = 1, \ldots, s)\) where \(\varphi_i \in [0, \varphi_i^*], (r = 1, \ldots, s)\) remains an \(\gamma\)-inefficient DMU, i.e. \(\rho_i^* = 0\).

\[\text{Proof.}\] The theorem's proof is like to that of Theorem 2.1 and is eliminated.

4. Numerical example

4.1. Illustrative example

This section provides an example with the data defined in Table 1 to demonstrate the stability analysis. The numerical example is related to five DMUs with two fuzzy inputs and two fuzzy outputs in the form of a trapezoidal fuzzy number.

We evaluated DMUs using Model (9) in the case of \(\gamma < \eta\) with confidence level \(\gamma = 0.2\) and adjustment parameter \(\eta = 0.4\), the results presented in Table 2.

Using Model (9), DMU_A and DMU_C are efficient, while DMU_B, DMU_D, and DMU_E are inefficient. Sensitivity analysis for efficient DMUs using Model (11) is shown in Table 3.

To interpret Table 3, we say that the second and third columns show the maximum increase in the first and second input of inefficient DMUs while keeping their inefficiency. Similarly, the fourth and fifth columns document the maximum increase in the first and second output of efficient DMUs while keeping the efficiency of DMUs. For instance, consider the first row of Table 3, DMU_A = \((x_{1A}, x_{2A}, y_{1A}, y_{2A})\) remains efficient if \(\widetilde{DMU}_A = (x_{1A} + \bar{\rho}_1, x_{2A} + \bar{\rho}_2, y_{1A}, y_{2A})\) in which \(0 \leq \bar{\rho}_1 \leq 0.75\) and \(0 \leq \bar{\rho}_2 \leq 0.375\).

Also, Table 4 gives sensitivity analysis for inefficient DMUs which estimated by Model (13).

The second and third columns document the lower bounds of variation ranges in the first and second output of efficient DMUs, respectively, while maintaining their efficiency. Similarly, the fourth and fifth columns document the upper bounds of variation ranges in the first and second output of inefficient DMUs while keeping the inefficiency of DMUs. For instance, we consider the first row of Table 4, DMU_B = \((x_{1B}, x_{2B}, y_{1B}, y_{2B})\) remains inefficient if

Table 1. Data set of five DMUs with two fuzzy inputs and two fuzzy outputs.

DMUs	DMUA	DMUB	DMUC	DMUD	DMUE
Input(I1)	(0.5, 1, 1.5, 2)	(2.25, 2.75, 3, 2.75, 3.75)	(3.25, 3.75, 4.25, 4.75)	(2.4, 6.8)	(3.5, 4.5, 5.5, 6.5)
Input(I2)	(1.5, 1.75, 2, 2.25)	(2.3, 4.5)	(2.25, 2.5, 2.75, 3)	(4.5, 5, 5.5)	(4.5, 5, 5.5, 6)
Output(O1)	(3, 4, 5, 6)	(1, 3.5, 7)	(1, 2.3, 4)	(0.5, 1, 1.5, 2)	(1.5, 2.5, 3)
Output(O2)	(2.25, 3.75, 4.25)	(1.5, 2.5, 3.5, 4.5)	(4.5, 5, 5.5)	(2.4, 5, 5)	(0.5, 0.75, 1)

Table 2. Results of evaluating DMUs in the case of \(\gamma < \eta\) by Model (9).

DMU	\(\sum_{i=1}^{m} x_i^* + \sum_{j=1}^{n} y_j^*\)	\((\rho_1^*, \rho_2^*, \rho_3^*, \rho_4^*)\)	Efficiency
DMUA	0	(1,0,0,0,0)	Efficient
DMUB	11	(1,0,0,0,0)	Inefficient
DMUC	0	(0,1,0,0,0)	Efficient
DMUD	16	(1,0,0,0,0)	Inefficient
DMUE	16.625	(1,0,0,0,0)	Inefficient

Table 3. Sensitivity analysis for efficient DMUs in the case of \(\gamma < \eta\) by Model (11).

DMU	\(\rho_1^*\)	\(\rho_2^*\)	\(\varphi_1^*\)	\(\varphi_2^*\)
DMUA	0.75	0.375	0	0
DMUC	0	0	0	0.077

https://doi.org/10.1371/journal.pone.0275594.t003
\[
DMU_B = (x_{1B} - \bar{\rho}_1, x_{2B} - \bar{\rho}_2, y_{1B} + \bar{\varphi}_1, y_{2B} + \bar{\varphi}_2)
\] in which
\[0 \leq \bar{\rho}_1 \leq 2.75, 0 \leq \bar{\rho}_2 \leq 2.875, 0 \leq \bar{\varphi}_1 \leq 3.5 \text{ and } 0 \leq \bar{\varphi}_2 \leq 1.875.

Similar to the above discussion will be presented in the case of \(\gamma < \eta\) with confidence level 0.8 and adjustment parameter 0.2. The results of the evaluating DMUs are shown in Table 5.

As shown in Table 5, in the case of \(\gamma < \eta\), four DMUs, namely DMUA, DMUB, DMUC and DMUD, are efficient, and DMUE is inefficient. Sensitivity analysis for the efficient DMUs using Model (11) and sensitivity analysis for the inefficient DMU using Model (13) are shown in Tables 6 and 7, respectively.

The interpretation of the last two tables is similar to Tables 4 and 5. Also, from the comparison between Tables 2 and 5, we find that in the case of \(\gamma < \eta\), the number of efficient units is more than in the case of \(\gamma > \eta\).

4.2. An applicable data set

A public system of compulsory insurance that should be provided by the government for all persons of society is called social security. Utilization of social security benefits, such as retirement, unemployment, old age, disability, loss of caretaker, helplessness, accidents, and injuries, requiring insurance or non-insurance medical and health care services, is a public right for all individuals in society. By considering all the things above, a comprehensive social security system is established to provide the aforementioned services.

Table 4. Sensitivity analysis for inefficient DMUs in the case of \(\gamma < \eta\) by Model (13).

DMU\(_j\)	\(\rho_1^j\)	\(\rho_2^j\)	\(\varphi_1^j\)	\(\varphi_2^j\)
DMUA	2.75	2.875	3.5	1.875
DMUB	6.25	3.625	4.75	1.375
DMUC	5.25	4.125	3.75	3.5
DMUD	5.937	(1,0,0,0)	Efficienct	
DMUE				

https://doi.org/10.1371/journal.pone.0275594.t004

Table 5. Results of evaluating DMUs in the case of \(\gamma > \eta\) by Model (9).

DMU\(_j\)	\(\sum_{s=1}^{m} s^{-1} + \sum_{s=1}^{m} s^+\)	\((\mu_1, \mu_2, \mu_3, \mu_4, \mu_5)\)	Efficiency
DMUA	0	(1,0,0,0,0)	Efficient
DMUB	0	(0,1,0,0,0)	Efficient
DMUC	0	(0,0,1,0,0)	Efficient
DMUD	0	(0,0,0,1,0)	Efficient
DMUE	5.937	(1,0,0,0,0)	Inefficient

https://doi.org/10.1371/journal.pone.0275594.t005

Table 6. Sensitivity analysis for efficient DMUs in the case of \(\gamma > \eta\) by Model (11).

DMU\(_j\)	\(\rho_1^j\)	\(\rho_2^j\)	\(\varphi_1^j\)	\(\varphi_2^j\)
DMUA	3.983	1.408	4.468	0
DMUB	0	0	3.25	2.063
DMUC	0	0	0.5	3.188
DMUD	0	0	0	2.122

https://doi.org/10.1371/journal.pone.0275594.t006

Table 7. Sensitivity analysis for inefficient DMU in the case of \(\gamma > \eta\) by Model (13).

DMU\(_j\)	\(\rho_1^j\)	\(\rho_2^j\)	\(\varphi_1^j\)	\(\varphi_2^j\)
DMUE	1.875	2.438	0.375	1.25

https://doi.org/10.1371/journal.pone.0275594.t007
In this section, considering the proposed method, the sensitivity analysis for efficient and inefficient DMUs is illustrated for evaluating 12 branches of the Social Security Organization in Tehran. Each branch (DMU) applies two inputs (total number of computers, and number of staff) to generate two outputs (sum of insured individuals’ contracts, and all individuals under insurance). Also, input and output data in the form of trapezoidal fuzzy numbers are documented in Tables 8 and 9, respectively.

By considering the adjustment parameter of 0.75, we evaluated the performance of these 12 branches of the Social Security Organization for some confidence levels in the case of $\gamma \leq 0.75$. The evaluation results are documented in Table 10.

Table 10 represents the amount of objective function of Model (10) for all DMUs to determine the efficiency classification of DMUs, in which $Z^* = \sum_{j=1}^{m} s_j^+ + \sum_{r=1}^{d} s_r^+$. As shown in Table 10, DMU$_2$ and DMU$_{12}$ are efficient for all confidence levels less than or equal to 0.75, while DMU$_1$ is efficient only for the confidence levels of 0.5 and 0.75, and the other DMUs are inefficient. Table 11 reports the stability radius for efficient DMUs with various confidence levels of $\gamma \leq 0.75$.

The second and third columns report the upper bounds of variation ranges in the total number of computers and the number of staff for efficient branches, respectively, while

Table 8. Inputs of 12 branch of social security organization in Tehran.

DMU$_j$	Total number of computers (I$_1$)	Number of staff (I$_2$)
DMU$_1$	(84,84.16,90.16,91.99)	(106,107.25,110.25,112)
DMU$_2$	(92,92.58,93.58,94.99)	(82,83.86.5,88)
DMU$_3$	(92,92.92,92,92)	(85,86,88.5,90)
DMU$_4$	(88,88.416,89.41,89.99)	(75,76.83,79.83,80.99)
DMU$_5$	(99,99.100.08,100.58,100.99)	(82,83.85.5,87)
DMU$_6$	(83,83.83,83)	(89,89.83,91.33,91.99)
DMU$_7$	(91,91.33,91.83,91.99)	(94,97.91,104.91,107.99)
DMU$_8$	(90,90.5,91.5,92)	(96,96.6,98.66,99.99)
DMU$_9$	(93,93.75,95.25,96)	(91,91.66,93.16,93.99)
DMU$_{10}$	(107,107.33,109.33,110.99)	(102,102,102,102)
DMU$_{11}$	(85,86,88.89)	(77,77.75,79.25,80)
DMU$_{12}$	(78,78,78,78)	(94,95.58,99.08,100.99)

Table 9. Outputs of 12 branch of social security organization in Tehran.

DMU$_j$	Sum of insured individuals’ contracts (O$_1$)	All individuals under insurance (O$_2$)
DMU$_1$	(43,50.58,77.58,96.99)	(85399,885810.25,86720.75,87220)
DMU$_2$	(28,31.83,39.33,42.99)	(87716,88807.25,89574.25,90250)
DMU$_3$	(11,14.16,16.26,26.99)	(42900,43963.83,46148.83,47269.99)
DMU$_4$	(0,7,83.18,83.21,99)	(36740,36770.25,36826.25,36852)
DMU$_5$	(29,56.14,204.41,324.99)	(27978,28475.91,30958.41,32942.99)
DMU$_6$	(9,18.08,35.08,42.99)	(52127,53398.54343,54817)
DMU$_7$	(13,16.83,22.83,24.99)	(78550,80892.75,86173.25,89111)
DMU$_8$	(47,70.08,111.08,128.99)	(32585,34220.66,36649.66,37442.99)
DMU$_9$	(10,20.16,42.66,54.99)	(35469,35577.08,35851.08,36016.99)
DMU$_{10}$	(30,36.49,5.57)	(56144,56814.41,58150.41,58815.99)
DMU$_{11}$	(11,14.33,22.33,26.99)	(38004,38225.08,38614.58,38782.99)
DMU$_{12}$	(81,129.75,210.25,242)	(36652,38567.16,42390.16,44297.99)
maintaining their efficiency. Similarly, the fourth and fifth columns report the lower bounds of variation ranges in the sum of insured individuals’ contracts and all individuals under insurance for efficient branches while keeping their efficiency. For instance, consider DMU \(_2\) with the confidence level of \(\gamma = 0.5\) in Table 11. DMU \(_2\) = \((x_{12}, x_{22}, y_{12}, y_{22})\) remains efficient if
\[
\begin{align*}
&g_{DMU_2} = x_{12}; x_{22} + \bar{r}_2; y_{12} - \phi_1; y_{22} - \phi_2 \quad \text{in which,} \\
&0 \leq \bar{r}_2 \leq 9.607, \quad 0 \leq \phi_1 \leq 7.003 \quad \text{and} \\
&0 \leq \phi_2 \leq 957.667.
\end{align*}
\]
In other words, if the number of computers in Branch 2 remains fixed and the number of staff increases by a maximum of 9.607, also if the sum of insured individuals’ contracts decreases by a maximum of 7.003 and all individuals under insurance decrease by a maximum of 957.667, then Branch 2 will remain efficient.

In the following, Table 12 reports the stability radius for inefficient DMUs with various confidence levels of \(\gamma \leq 0.75\).
Table 12. Sensitivity analysis for inefficient DMUs in the case of $\gamma \leq 0.75$.

DMU$_j$	Confidence level ($\gamma = 0$)	ρ'_1	ρ'_2	ϕ'_1	ϕ'_2
DMU$_1$		0	29.946	0	4826.969
DMU$_2$		0	8	31.990	47350
DMU$_3$		0	0	42.866	39834.255
DMU$_4$		8.990	5	13.990	62272
DMU$_5$		0	0	153.997	11665.978
DMU$_6$		0	25.960	30.058	11696.212
DMU$_7$		0.594	16.208	0	57439.994
DMU$_8$		4	11.990	32.990	54781
DMU$_9$		0	0	153.997	11665.978
DMU$_10$		18.990	20	12.990	34106
DMU$_{11}$		0	0	40.505	24747.040

DMU$_j$	Confidence level ($\gamma = 0.25$)	ρ'_1	ρ'_2	ϕ'_1	ϕ'_2
DMU$_1$		0	25.707	0	2197.972
DMU$_2$		0	6.595	30.875	46699.572
DMU$_3$		0	0	33.906	35473.758
DMU$_4$		8.660	4.167	3.723	61880.780
DMU$_5$		0	0	147.178	9570.478
DMU$_6$		0	23.871	29.030	10600.148
DMU$_7$		1.798	10.829	0	56106.891
DMU$_8$		3.557	11.383	23.777	54519.723
DMU$_9$		3.113	10.770	28.383	54258.447
DMU$_{10}$		17.497	19.333	6.550	33208.560
DMU$_{11}$		0	0	35.531	18464.332

DMU$_j$	Confidence level ($\gamma = 0.5$)	ρ'_1	ρ'_2	ϕ'_1	ϕ'_2
DMU$_1$		0	5.205	29.475	46054.277
DMU$_2$		0.403	0	27.427	28794.394
DMU$_3$		9.507	0	33.906	60932.134
DMU$_4$		0	0	140.289	7437.062
DMU$_5$		0	21.801	27.641	9510.629
DMU$_6$		3.436	4.305	0	54662.091
DMU$_7$		3.113	10.770	23.777	54258.447
DMU$_8$		17.497	19.333	6.550	33208.560
DMU$_9$		0	0	30.015	12066.917

DMU$_j$	Confidence level ($\gamma = 0.75$)	ρ'_1	ρ'_2	ϕ'_1	ϕ'_2
DMU$_1$		0	3.830	27.805	45413.861
DMU$_2$		0.803	0	21.235	22034.066
DMU$_3$		9.738	0	0	56911.740
DMU$_4$		0	0	133.327	5265.369
DMU$_5$		0	19.750	25.907	8427.328
DMU$_6$		4.766	0	0	51680.884
DMU$_7$		2.670	19.170	19.170	53997.170
DMU$_8$		16.75	19	3.330	32759.840
DMU$_9$		0	0	8.649	5769.371
In Table 12, the second and third columns show the maximum decrease in the total number of computers and the number of staff for inefficient branches, respectively, while maintaining their inefficiency. Similarly, the fourth and fifth columns show the maximum increase in the sum of insured individuals’ contracts and all individuals under insurance for inefficient branches while keeping their inefficiency. For instance, consider DMU
10
 with the confidence level of \(\gamma = 0.25\) in Table 12. DMU
10\(= (x_{110}, x_{210}, y_{110}, y_{210})\) remains inefficient if \(\bar{DMU}_{10} = (x_{110} - \bar{\rho}_1, x_{210} - \bar{\rho}_2, y_{110} + \bar{\phi}_1, y_{210} + \bar{\phi}_2)\) in which, \(0 \leq \bar{\rho}_1 \leq 18.243\), \(0 \leq \bar{\rho}_2 \leq 19.667\), \(0 \leq \bar{\phi}_1 \leq 9.770\) and \(0 \leq \bar{\phi}_2 \leq 33657.280\). That means if the number of computers in Branch 10 decreases by a maximum of 18.243, and the number of staff decreases by a maximum of 19.667, as well as if the sum of insured individuals’ contracts increases by a maximum of 9.770 and all individuals under insurance increase by a maximum of 33657.280, then Branch 10 will remain inefficient.

Now, by considering the adjustment parameter of 0.25, we estimated the performance of 12 branches of the Social Security Organization for some confidence levels in the case of \(\gamma = 0.25\). The evaluation results are documented in Table 13.

As shown in Table 13, all of the branches are efficient in various confidence levels except Branch 3, Branch 8, and Branch 9 which are inefficient in some confidence levels, also Branch 10 which is inefficient in all the confidence levels.

Tables 14 and 15 document the stability radius for efficient branches and inefficient branches respectively, with various confidence levels of \(\gamma \geq 0.25\).

The interpretation of the last two tables is similar to that of Tables 11 and 12. Also, from the comparison between Tables 10 and 13, we find that in the case of \(\gamma > \eta\), the number of efficient DMUs is greater than in the case of \(\gamma < \eta\). Also, as the level of confidence increases, DMUs approach the efficient frontier and the number of efficient DMUs increases.

Considering the discriminatory power of the \(GF\) measure compared to classical fuzzy methods, decision-makers and managers can achieve their desired results by including their preferences on the optimistic-pessimistic parameter at any confidence level in the fuzzy environment. As a result, decision-makers will be able to be aware of all efficiency scores and efficiency stability based on different optimistic-pessimistic attitudes and confidence levels. Thus, the \(GF\) measure provides more comprehensive information and is very proper for real-life decision-making problems.
DMU_j	Confidence level ($\gamma = 0.25$)	ρ_1'	ρ_2'	φ_1'	φ_2'
DMU₁	8.923	0	42.627	0	
DMU₂	0	27.250	0	3764	
DMU₄	0	3.147	0	0	
DMU₅	0	16.080	74.660	0	
DMU₆	2.611	0	0	0	
DMU₇	0.338	0	0	0	
DMU₁₁	2.257	4.461	0	0	
DMU₁₂	13.814	1.243	145.947	0	

DMU_j	Confidence level ($\gamma = 0.5$)	ρ_1'	ρ_2'	φ_1'	φ_2'
DMU₁	9.227	0	51.475	0	
DMU₂	0	28.167	0	4126.333	
DMU₄	0	4.610	0	0	
DMU₅	0	17.050	131.103	0	
DMU₆	3.227	0	0	0	
DMU₇	1.339	0	0	0	
DMU₈	0	3.277	3.550	0	
DMU₁₁	2.165	6.152	0	0	
DMU₁₂	14.019	1.971	163.915	0	

DMU_j	Confidence level ($\gamma = 0.75$)	ρ_1'	ρ_2'	φ_1'	φ_2'
DMU₁	9.531	0	60.089	0	
DMU₂	0	29.083	0	4488.667	
DMU₄	0	6.276	0	0	
DMU₅	0	18.020	187.547	0	
DMU₆	3.844	0	0	0	
DMU₇	2.743	0	0	218.667	
DMU₈	0	4.133	25.770	0	
DMU₁₁	1.885	8.165	0	0	
DMU₁₂	14.222	2.704	181.610	0	

DMU_j	Confidence level ($\gamma = 1$)	ρ_1'	ρ_2'	φ_1'	φ_2'
DMU₁	9.835	0	68.475	0	
DMU₂	0	30	0	4851	
DMU₃	0	0.350	0	0	
DMU₄	0	8.295	0	0	
DMU₅	0	18.990	243.990	0	
DMU₆	3.642	1.603	0	0	
DMU₇	2.990	0	0	1395	
DMU₈	0	4.789	48.811	0	
DMU₉	0	2.191	0	0	
DMU₁₁	1.326	10.658	0	0	
DMU₁₂	14.423	3.443	199.037	0	

https://doi.org/10.1371/journal.pone.0275594.t014
Notably, it is worth noting that the measure of the GF converts into the measures of Pos, Nec, and Cr if η is equal to 100%, 0%, and 50%, respectively (Xu and Zhou [59]). Fig 1 is taken from Peykani et al. [61] to illustrate the attitude of fuzzy measures of Pos, Nec, Cr, and GF.

As shown in Fig 1, in the GF measure only by adjusting η, decision-makers customize their preferences.

For evaluating the efficiency sensitivity analysis of organizations, the consideration of input and output changes is very significant. The proposed fuzzy sensitivity analysis approach could be used as a "what-if" tool in managers' strategies to improve their managerial performance. In the sense that management is able to know what may happen to the efficiency of units if input or output data is altered. As a result, this subject can lead managers to better decision-

DMUj	Confidence level ($\gamma = 0.25$)	ρ^1	ρ^2	ψ^1	ψ^2
DMU3	0	0	6.339	32997.187	
DMU8	9.473	0	0	11154.520	
DMU9	1.970	0	0	48195.860	
DMU10	16.832	0	0	25537.510	

DMUj	Confidence level ($\gamma = 0.5$)	ρ^1	ρ^2	ψ^1	ψ^2
DMU3	0	0	2.289	29150.674	
DMU9	2.822	0	0	43145.851	
DMU10	17.363	0	0	21276.176	

DMUj	Confidence level ($\gamma = 0.75$)	ρ^1	ρ^2	ψ^1	ψ^2
DMU3	0.155	0	0	24039.072	
DMU9	3.255	14.418	0	44580.997	
DMU10	18.525	0	0	15073.940	

DMUj	Confidence level ($\gamma = 1$)	ρ^1	ρ^2	ψ^1	ψ^2
DMU10	20.903	0	0	5074.655	

https://doi.org/10.1371/journal.pone.0275594.t015

Notably, it is worth noting that the measure of the GF converts into the measures of Pos, Nec, and Cr if η is equal to 100%, 0%, and 50%, respectively (Xu and Zhou [59]). Fig 1 is taken from Peykani et al. [61] to illustrate the attitude of fuzzy measures of Pos, Nec, Cr, and GF.

As shown in Fig 1, in the GF measure only by adjusting η, decision-makers customize their preferences.

For evaluating the efficiency sensitivity analysis of organizations, the consideration of input and output changes is very significant. The proposed fuzzy sensitivity analysis approach could be used as a "what-if" tool in managers' strategies to improve their managerial performance. In the sense that management is able to know what may happen to the efficiency of units if input or output data is altered. As a result, this subject can lead managers to better decision-

![General Fuzzy Measure](https://doi.org/10.1371/journal.pone.0275594.g001)
making. Furthermore, this technique can be applied to each application of real-world problems such as hospitals, universities, schools, banks, companies, etc., since these rates of change give useful information to managers or decision-makers from the managerial and economic perspectives.

5. Conclusion

This research seeks to investigate the sensitivity and stability of efficiency for efficient and inefficient DMUs in the additive DEA model in the presence of fuzzy data so that by identifying the permitted changes in the data, the efficiency classification of the DMUs remains unchanged. In order to tackle the uncertainty of fuzzy chance constraints in the fuzzy DEA sensitivity analysis model and convert them into their equivalent crisp values, the General Fuzzy (GF) approach and chance-constrained programming are used. The GF approach, which incorporates all prior fuzzy DEA techniques based on possibility (an optimistic viewpoint), necessity (a pessimistic viewpoint), and credibility (a compromise viewpoint), is an adjustable and flexible fuzzy DEA strategy. The previous three measures are formulated in three separate models while the GF measure is taken into account by setting an optimistic-pessimistic parameter in one model so that, by altering this parameter and according to different confidence levels, decision-makers can obtain their desired results.

For future studies, the proposed approach can be used as a suitable framework for evaluating performance and analyzing efficiency sustainability in various fields of management and engineering, such as supply chain, transportation, energy, stock market, mutual fund, hotel, etc. [65–69]. Also, to tackle data uncertainty, Z-number theory [70, 71], and uncertainty theory [72, 73] can be considered.

Author Contributions

Conceptualization: Nasim Arabjazi, Mohsen Rostamy-Malkhalifeh.

Data curation: Nasim Arabjazi.

Formal analysis: Nasim Arabjazi, Mohsen Rostamy-Malkhalifeh, Farhad Hosseinzadeh Lotfi.

Investigation: Nasim Arabjazi, Mohsen Rostamy-Malkhalifeh, Farhad Hosseinzadeh Lotfi, Mohammad Hasan Behzadi.

Methodology: Nasim Arabjazi.

Project administration: Mohammad Hasan Behzadi.

Software: Nasim Arabjazi.

Supervision: Mohsen Rostamy-Malkhalifeh, Farhad Hosseinzadeh Lotfi, Mohammad Hasan Behzadi.

Validation: Nasim Arabjazi, Mohammad Hasan Behzadi.

Writing – original draft: Nasim Arabjazi, Mohsen Rostamy-Malkhalifeh, Farhad Hosseinzadeh Lotfi.

References

1. Charnes A., Cooper W. W., & Rhodes E. (1978). Measuring the efficiency of decision making units. *European journal of operational research*, 2(6), 429–444.

2. Banker R., Charnes A., & Cooper W. (1984). Models for Estimation of Technical and Scale Inefficiencies in Data Envelopment Analysis. *Management Science*, 30 (10788), 1078–1092.
Abri G. A., Shoja N., & Fallah J. M. (2009). Sensitivity and stability radius in data envelopment analysis.

Mozaffari M., Golem K., & Dehghand F. (2009). Sensitivity and stability analysis in DEA on interval data.

Boljun Liu F. H. F., & Lai C. H. (2006). Stability of efficiency in data envelopment analysis with local variations.

Jahanshahloo G. R., Hosseinzadeh F., Shoja N., Sanei M., & Tohidi G. (2005). Sensitivity and stability

Seiford L. M., & Zhu J. (1998a). Stability regions for maintaining efficiency in data envelopment analysis.

Seiford L. M., & Zhu J. (1998b). Sensitivity analysis of DEA models for simultaneous changes in all the data.

Charnes A., Cole W. W., Lewin A. Y., Morey R. C., & Rousseau J. (1985). Sensitivity and stability analysis in DEA. Annals of Operations Research, 2(1), 139–156.

Charnes A., & Neralić L. (1990). Sensitivity analysis of the additive model in data envelopment analysis. European journal of operational research, 48(3), 332–341.

Neralić L. (1997). Sensitivity in data envelopment analysis for arbitrary perturbations of data. Glasnik Matematički. 32(2): p. 315–335.

Thompson R., Dharmapala P., & Thrall R. M. (1994). Sensitivity analysis of efficiency measures with applications to Kansas farming and Illinois coal mining. In Data Envelopment Analysis: Theory, Methodology, and Applications (pp. 393–422). Springer.

Thompson R. G., Dharmapala P., Diaz J., González-Lima M. D., & Thrall R. M. (1996). DEA multiplier analytic center sensitivity with an illustrative application to independent oil companies. Annals of Operations Research, 66(2), 163–177.

Charnes A., Haag S., Jaska P., & Semple J. (1992). Sensitivity of efficiency classifications in the additive model of data envelopment analysis. International Journal of Systems Science, 23(5), 789–798.

Charnes A., & Semple J. H. (1996). Sensitivity and stability of efficiency classifications in data envelopment analysis. Journal of Productivity Analysis, 7(1), 5–18.

Seiford L. M., & Zhu J. (1998a). Stability regions for maintaining efficiency in data envelopment analysis. European journal of operational research, 108(1), 127–139.

Seiford L. M., & Zhu J. (1998b). Sensitivity analysis of DEA models for simultaneous changes in all the data. Journal of the Operational Research Society, 49(10), 1060–1071.

Metters R.D., Vargas V.A. and Whybark D.C. (2001). An investigation of the sensitivity of DEA to data errors. Computers & industrial engineering, 41(2), 163–171.

Jahanshahloo G. R., Hosseinzadeh F., Shoja N., Sanei M., & Tohid G. (2005). Sensitivity and stability analysis in DEA. Applied Mathematics and Computation, 169(2), 897–904.

Liu F. H. F., & Lai C. H. (2006). Stability of efficiency in data envelopment analysis with local variations. Journal of Statistics and Management Systems, 9(2), 301–317.

Boljunčić V. (2006). Sensitivity analysis of an efficient DMU in DEA model with variable returns to scale (VRS). Journal of Productivity Analysis, 25(1–2), 173–192.

Mozaffari M., Golem K., & Dehghand F. (2009). Sensitivity and stability analysis in DEA on interval data by using MOLP methods. Applied Mathematical Sciences, 3(18), 891–908.

Abri G. A., Shoja N., & Fallah J. M. (2009). Sensitivity and stability radius in data envelopment analysis. International Journal of Industrial Mathematics, 1(3), 227–243.
29. Singh S. (2010). Multiparametric sensitivity analysis of the additive model in data envelopment analysis. *International Transactions in Operational Research*, 17(3), 365–380.
30. Wen M., Qin Z., & Kang R. (2011). Sensitivity and stability analysis in fuzzy data envelopment analysis. *Fuzzy Optimization and Decision Making*, 10(1), 1–10.
31. Khalili-Damghani K., & Taghivafard B. (2013). Sensitivity and stability analysis in two-stage DEA models with fuzzy data. *International Journal of Operational Research*, 17(1), 1–37.
32. Hladik M. (2011). Tolerance Analysis in Linear Systems and Linear Programming. *Optimization Methods and Software*, 26, 381–396.
33. Daneshvar S., Izbirak G., & Javadi A. (2014). Sensitivity analysis on modified variable returns to scale model in data envelopment analysis using facet analysis. *Computers & Industrial Engineering*, 76, 32–39.
34. Khodabakhshi M., Rashidi S., Asgharian M., & Nejadi L. (2015). Sensitivity Analysis of Input Relaxation Super Efficiency Measure in Data Envelopment Analysis. *Scientia Iranica. Transaction E, Industrial Engineering*, 22(5), 2852–2866.
35. He F., Xu X., Chen R., & Zhang N. (2016). Sensitivity and stability analysis in DEA with bounded uncertainty. *Optimization Letters*, 10(4), 737–752.
36. Arabjazi N., Rostamy-Malkhalifeh M., Hosseinzadeh Lotfii F., & Behzadi M. H. (2021). Stochastic Sensitivity Analysis in Data Envelopment Analysis. *Fuzzy Optimization and Modeling Journal*, 2(4), 52–64.
37. Agarwal S., Yadav S. P., & Singh S. (2014). Sensitivity analysis in data envelopment analysis. *International Journal of Operational Research*, 19(2), 174–185.
38. Banker R. D., Kotarac K., & Nejadi L. (2015). Sensitivity and stability in stochastic data envelopment analysis. *Journal of the Operational Research Society*, 66(1), 134–147.
39. Ghazi N. E., Lotfi F. H., Rostamy-Malkhalifeh M., Jahanshahloo G., & Namin M. A. (2018). Finding an improved region of efficiency via DEA-efficient hyperplanes. *Scientia Iranica. Transaction E, Industrial Engineering*, 25(5), 2852–2866.
40. Tian M.-W., Boutea Y., Alattas K. A., Yan S.-R., Alani A. K., Mohammadzadeh A., et al. (2022). A Type-3 Fuzzy Approach for Stabilization and Synchronization of Chaotic Systems: Applicable for Financial and Physical Chaotic Systems. *Complexity*, 2022.
41. Tian M.-W., Yan S.-R., Liu J., Alattas K. A., & Mohammadzadeh A. (2022). A New Type-3 Fuzzy Logic Approach for Chaotic Systems: Robust Learning Algorithm. *Mathematics*, 10(15), 2594.
42. Fan W., Mohammadzadeh A., Kausar N., Pamucar D., & Id N. A. D. (2022). A New Type-3 Fuzzy PID Approach for Mobile Robots. *Mathematics*, 10(17), 1–16.
43. Mombini E., Rostamy-Malkhalifeh M., & Saraj M. (2022). The sustainability radius of the cost efficiency in Interval Data Envelopment Analysis: A case study from Tehran Stocks. *Advances in Mathematical Finance and Applications*, 7(2), 279–291.
44. Mahla D., Agarwal S., & Mathur T. (2021). A novel fuzzy non-radiation data envelopment analysis: An application in transportation. *RAIRO-Operations Research*, 55(4), 2189–2202.
45. Jiang B., Feng W., & Li J. (2022). Uncertain random data envelopment analysis for technical efficiency. *Fuzzy Optimization and Decision Making*, 21(1), 1–20.
46. Aslani Khivi S., Hashemzadeh A., & Khaloozadeh H. (2021). Sensitivity analysis of the bullwhip effect in supply chains with time delay. *International Journal of Systems Science: Operations & Logistics*, 1–14.
47. Ezugwu A. E., Agushaka J. O., Abualigah L., Mirjalili S., & Gandomi A. H. (2022). Prairie dog optimization algorithm. *Neural Computing and Applications*, 1–49.
48. Agushaka J. O., Ezugwu A. E., & Abualigah L. (2022). Dwarf mongoose optimization algorithm. *Computer Methods in Applied Mechanics and Engineering*, 391, 114570.
49. Abualigah L., Abd Elaziz M., Sumari P., Geem Z. W., & Gandomi A. H. (2022). Reptile Search Algorithm (RSA): A nature-inspired meta-heuristic optimizer. *Expert Systems with Applications*, 191, 116158.
50. Oyelade O. N., Ezugwu A. E.-S., Mohamed T. I., & Abualigah L. (2022). Ebola optimization search algorithm: A new nature-inspired metaheuristic optimization algorithm. *IEEE Access*, 10, 16150–16177.
51. Abualigah L., Diabat A., Mirjalili S., Abd Elaziz M., & Gandomi A. H. (2021). The arithmetic optimization algorithm. *Computer Methods in Applied Mechanics and Engineering*, 376, 113609.
52. Abualigah L., Younis D., Abd Elaziz M., Ewees A. A., & Gandomi A. H. (2021). Aquila optimizer: a novel meta-heuristic optimization algorithm. *Computers & Industrial Engineering*, 157, 107250.
54. Peykani P., Memar-Masjedi E., Arabjazi N., & Mirmozaffari M. (2022). Dynamic performance assessment of hospitals by applying credibility-based fuzzy window data envelopment analysis. *Healthcare*, 10(5), 876. https://doi.org/10.3390/healthcare10050876 PMID: 35628013

55. Hatami-Marbini A., Emrouznejad A., & Tavana M. (2011). A taxonomy and review of the fuzzy data envelopment analysis literature: two decades in the making. *European journal of operational research*, 214(3), 457–472.

56. Wen M., Guo L., & Kang R. (2013). A new ranking method to fuzzy data envelopment analysis using Hurwicz criterion. *International Information Institute (Tokyo): Information*, 16(2), 847.

57. Peykani P., Namakshenas M., Arabjazi N., Shirazi F., & Kavand N. (2021). Optimistic and pessimistic fuzzy data envelopment analysis: empirical evidence from Tehran stock market. *Fuzzy Optimization and Modeling Journal*, 3(2), 12–21.

58. Xu J., & Zhou X. (2011). *Fuzzy-like multiple objective decision making* (Vol. 263). Springer.

59. Xu J., & Zhou X. (2013). Approximation based fuzzy multi-objective models with expected objectives and chance constraints: Application to earth-rock work allocation. *Information Sciences*, 238, 75–95.

60. Peykani P., Mohammadi E., Emrouznejad A., Pishvae M. S., & Rostamy-Malkhalifeh M. (2019). Fuzzy data envelopment analysis: an adjustable approach. *Expert Systems with Applications*, 136, 439–452.

61. Peykani P., Hosseinizadeh Lotf F., Sadjadi S. J., Ebrahimnejad A., & Mohammadi E. (2022). Fuzzy chance-constrained data envelopment analysis: a structured literature review, current trends, and future directions. *Fuzzy Optimization and Decision Making*, 21, 197–261.

62. Zhou W., & Xu Z. (2020). An overview of the fuzzy data envelopment analysis research and its successful applications. *International Journal of Fuzzy Systems*, 22(4), 1035–1055.

63. Peykani P., Mohammadi E., & Emrouznejad A. (2021). An adjustable fuzzy chance-constrained network DEA approach with application to ranking investment firms. *Expert Systems with Applications*, 166, 113938.

64. Ji A.-B., Qiao Y., & Liu C. (2019). Fuzzy DEA-based classifier and its applications in healthcare management. *Health Care Management Science*, 22(3), 560–568. https://doi.org/10.1007/s10729-019-09477-1 PMID: 30847730

65. Soheilirad S., Govindan K., Mardani A., Zavadskas E. K., Nilashi M., & Zakuan N. (2018). Application of data envelopment analysis models in supply chain management: A systematic review and meta-analysis. *Annals of Operations Research*, 271(2), 915–969.

66. Mahmoudi R., Emrouznejad A., Shetab-Boushehri S.-N., & Hejazi S. R. (2020). The origins, development and future directions of data envelopment analysis approach in transportation systems. *Socio-economic planning sciences*, 69, 100672.

67. Kaffash S., & Marra M. (2017). Data envelopment analysis in financial services: a citations network analysis of banks, insurance companies and money market funds. *Annals of Operations Research*, 253(1), 307–344.

68. Basso A., & Funari S. (2016). DEA performance assessment of mutual funds. *Data Envelopment Analysis*, 229–287.

69. Mardani A., Zavadskas E. K., Streimikiene D., Jusoh A., & Khoshnoudi M. (2017). A comprehensive review of data envelopment analysis (DEA) approach in energy efficiency. *Renewable and Sustainable Energy Reviews*, 70, 1298–1322.

70. Azadeh A., & Kokabi R. (2016). Z-number DEA: A new possibilistic DEA in the context of Z-numbers. *Advanced engineering informatics*, 30(3), 604–617.

71. Tavana M., Nazari-Shirkouhi S., & Farzaneh Kholghabad H. (2021). An integrated quality and resilience engineering framework in healthcare with Z-number data envelopment analysis. *Health Care Management Science*, 24(4), 768–785. https://doi.org/10.1007/s10729-021-09550-8 PMID: 33834321

72. Jiang B., Chen H., Li J., & Lio W. (2021). The uncertain two-stage network DEA models. *Soft Computing*, 25(1), 421–429.

73. Wen M., Yu X., & Wang F. (2020). A new uncertain DEA model and application to scientific research personnel. *Soft Computing*, 24(4), 2841–2847.