DIET AND MENTAL HEALTH IN THE ARCTIC: IS DIET AN IMPORTANT RISK FACTOR FOR MENTAL HEALTH IN CIRCUMPOLAR PEOPLES? – A REVIEW

Nancy K. McGrath-Hanna1,2,*, Dana M. Greene2,3,*, Ronald J. Tavernier2,3,*, Abel Bult-Ito2,3

1 Department of Psychology, 2 Department of Biology and Wildlife, 3 Behavioral and Evolutionary Neuroscience Laboratory, Institute of Arctic Biology, University of Alaska Fairbanks, *Equal contributions

ABSTRACT

Background. The people living in Arctic and Subarctic environments have adapted to cold temperatures, short growing seasons, and low precipitation, but their traditional ways are now changing due to increased contact with Western society. The rapid alteration of circumpolar cultures has led to generational changes in diet from traditional foods to the processed groceries common in modern stores.

Objectives. Develop a link between changing traditional diets and mental health that may have substantial consequences for circumpolar peoples.

Methods. Review of English language literature pertaining to the northern circumpolar environments of the world that consist of the Arctic and Subarctic areas. Electronic resources such as ISI Web of Science and PubMed were utilized, using keywords such as arctic, circumpolar, diet, omega-3 fatty acids, mental health, seasonal affective disorder, and suicide. In addition, we used the cited references of obtained articles and the extensive University of Alaska Fairbanks library collections to identify additional publications that were not available from the electronic resources. The years covered were not restricted to any particular period, although 83% of the sources were published in the last 16 years.

Conclusion. The change in traditional diets has already led to increased health problems, such as obesity, cardiovascular disease, and diabetes, while the mental health of circumpolar peoples has also declined substantially during the same time period. The decline in mental health is characterized by increased rates of depression, seasonal affective disorder, anxiety, and suicide, that now often occur at higher rates than in lower-latitude populations. Studies in non-circumpolar peoples have shown that diet can have profound effects on neuronal and brain development, function, and health. Therefore, we hypothesize that diet is an important risk factor for mental health in circumpolar peoples.

Key words: depression, suicide, mental health, diet, circumpolar peoples
OBJECTIVES OF THIS REVIEW

In this literature review, we propose that diet is an important risk factor for mental health in circumpolar peoples. This hypothesis is developed through the review of current knowledge of arctic environments and circumpolar peoples, traditional circumpolar diets and changes in these diets, mental health in circumpolar regions of circumpolar and non-circumpolar peoples, and the connection between diet and mental health as revealed by studies of non-circumpolar peoples.

ARCTIC ENVIRONMENTS AND CIRCUMPOLAR PEOPLES

The northern circumpolar environments of the world consist of the Arctic and Subarctic areas. These ecosystems are dominated by tundra and taiga (1) and are characterized by cold average yearly temperatures, short growing seasons, below average precipitation and low net primary productivity (2). The tundra is characterized by its dwarf plants and lack of trees caused by permafrost (3, 4), with temperature averages of at most 10 degrees C and precipitations of less than 25 mm per year (5). The taiga, or boreal coniferous forest, has a cool, or cold average temperature, with more precipitation than the tundra (5).

The circumpolar areas also experience large yearly fluctuations in daylight, with long days in the summer and short days in the winter. High Arctic areas can experience the midnight sun of summer and days with no sunlight in the winter (4). The lower temperatures require increased energy expenditure and other physiological adaptations by eutherian inhabitants to stay warm and survive (6). These harsh living conditions and the low primary productivity of the circumpolar regions have limited human population growth (1, 4) and have led to low species diversity among all animal taxa (2, 4).

Circumpolar populations have developed similar cultural practices that have allowed them to utilize the scant and seasonal resources of the Arctic and Subarctic to survive (1). The major modes of subsistence include land hunting, sea-mammal hunting, fishing, reindeer herding, and gathering (7). Traditionally, two or three of these were combined over the year to maximize chances of survival. Traps were also extensively used for both fish and game. Skin clothing, semi-subterranean
housing, and skin-covered tents were universally used in the north (4, 6, 8, 9). Transportation was by canoe, skin boat, skis, snowshoes, sleds, and toboggans. Dogs and domesticated reindeer were used as pack animals. The circumpolar peoples traded very early in their history and had extensive trading networks by the time they were contacted by Western society. These trading networks ensured that vital materials, such as meteoritic iron and lithic resources, were shared among groups (1).

The ephemeral and seasonal nature of circumpolar resources led to highly mobile societies that followed their seasonal food resources (4, 7). As a result, no permanent large settlements were established. The circumpolar people stayed mostly in kin-based bands that would join others at certain times of the year to exploit seasonal resources, such as migrating caribou, or spawning salmon (4). Traditionally, most circumpolar people believed in a form of animism, which holds that all parts of the natural world are inhabited by spirits and are sacred. Clan elders, or shamans, that could placate these spirits would insure that enough resources were secured to survive. Through this system, the resources were not over-harvested and every part of the animal was used, helping to ensure that animals would be available for future generations (1,10).

TRADITIONAL DIETS

Traditional diets of the circumpolar people vary from region to region, but have several commonalities. These diets are generally rich in marine mammals, fish, ungulates, fur-bearing animals, birds and their eggs, plants, and berries (11-17). These foods are nutrient dense, with high levels of protein, fat (especially omega-3 fatty acids), and antioxidants (e.g., selenium), while low in carbohydrates (11, 18-22). Despite the high protein and fat content of the diet, obesity, diabetes, and cardiovascular disease were historically rare in circumpolar people (23-30). An increasing number of studies suggest that this may in part be due to the high content of omega-3 fatty acids and antioxidants in the traditional diet. These nutrients correlate with a reduced prevalence of cardiovascular disease (31-42) and normal glucose metabolism (43). The physical, social and cultural activities associated with hunting, fishing, harvesting, and storing wild game and plants also contribute positive-
ly to the physical and mental health of circumpolar people (44-46). With traditional lifestyles, however, the incidence of cerebrovascular disease and injury, or death due to accidents are increased (47, 48).

CHANGES IN TRADITIONAL DIETS

Western societies brought new diseases and new diets to the circumpolar regions. Diseases such as measles, smallpox, tuberculosis, and influenza took a toll on the populations of many villages (49, 50). With the loss of so many lives, traditional knowledge that used to be transferred from one generation to another was lost (51). Other factors, such as loss of traditional language, regulated hunting, restricted access to land, protection of endangered species, and a decrease in wildlife density, have made the traditional lifestyle difficult to maintain (51-54). Contaminants, e.g., mercury and organochlorines, found in fish eaten in circumpolar regions may currently not pose an important health risk (45, 55-57), but see references 58 and 59. Nevertheless, possible harmful contamination of traditional food sources is of great concern to circumpolar peoples and has led to a decrease in the use of these food resources (51, 60). These factors have contributed to the replacement of most of the traditional diet with a Western-style diet, which is high in carbohydrates and saturated fats, and low in essential nutrients such as omega-3 fatty acids (11, 16, 46, 61-65). These changes in diet, in combination with other changes in lifestyle (44, 52, 66, 67), have led to significant increases in diseases in circumpolar people, including obesity (26, 28, 63, 66-71), diabetes (26, 28, 63, 72, 73), cardiovascular diseases (28, 47, 74, 75), and dental disease (70, 76). These chronic diseases may also affect mental health (77, 78).

MENTAL HEALTH IN CIRCUMPOLAR REGIONS

The extreme environment of the Arctic has been hypothesized to contribute to an increased rate of mental distress when compared to more temperate climates (79, 80). The most common circumpolar mental illnesses are depression, seasonal affective disorder (SAD), subsyndromal seasonal affective disorder (SSAD) and increased anxiety. SAD
is characterized by symptoms of depression, such as sadness, increased anxiety and irritability, which occur only during one part of the year, and reoccur year after year (81). SSAD is a condition in which an individual experiences mild difficulties with seasonal changes (82). Other mental disturbances, such as seasonality (mood changes that correspond to the seasons of the year), sleep disturbances, and anxiety, have also been commonly reported (79-86). Increased depression and sleep disturbances have also been observed in Antarctic workers (87-89).

Circumpolar Peoples
More isolated circumpolar populations do not have an increase in seasonal mood changes as compared to non-Arctic populations, have less SAD, and have unexpectedly low rates of depression in winter (80, 90-92). A unique characteristic of these populations is that many have been virtually isolated during the past 1000 years and retain their traditional lifestyles and diets. These isolated circumpolar populations more closely resemble circumpolar peoples prior to contact with Western society. These populations may, therefore, represent the best opportunity to assess the mental health of circumpolar peoples prior to the adoption of a more Western lifestyle, because careful scientific studies of mental health of past circumpolar populations is lacking (80, 91). Low rates of SAD in circumpolar peoples may also have a genetic component (93).

Studies conducted on the mental health of current circumpolar populations have found notably different results in less isolated areas. Rates of depression, SAD, seasonality, anxiety, and other mental disorders have increased in non-isolated circumpolar populations and often occur at higher rates than in lower-latitude populations (47, 86, 94-97). In addition, suicide rates have increased for many non-isolated circumpolar populations (74, 98-102). Suicides are discussed in more detail in the Diet and Mental Health section.

Non-Circumpolar Peoples Living in Arctic and Subarctic Regions
As populations have increased and more people are moving to the Arctic, more studies are investigating the effects of the environment on unacclimated populations. In Fairbanks, Alaska, non-circumpolar residents were found to have increased fatigue, sleep duration, and melatonin levels in the blood in winter (103, 104). Increased melato-
nin levels may have been due to seasonal variations in caloric and macronutritional intake that also may influence L-tryptophan, a pre-
cursor to melatonin and serotonin (103). Changes in the serotonin sys-
ystem have been shown to play a role in the development of depression (105, 106). Increased melatonin in the blood has been suggested as a possible marker for winter SAD (104, 107, 108) and has been linked to disruptive sleep-wake patterns (109). In Alaska, army soldiers from non-circumpolar communities had a high prevalence of SAD (110). Increased seasonal depression and sleep disturbances were also found to be prevalent in non-circumpolar Alaskan and Siberian populations (111, 112). The difference in the response of circumpolar and non-
circumpolar populations to the Arctic environment was also evident in the Svalbard studies by Nilssen et al. (113, 114), in which two popu-
lations, Norwegians originally from an Arctic climate and Russians who had migrated from lower latitudes, were compared. Although both populations were living in the same village, the Russians had ra-
tes of depression 2-3 times higher and more sleeping problems than the Norwegians.

Recent studies have investigated a link between latitude and men-
tal distress, such as SAD. Several studies were compiled, reviewed and analyzed in a recent article by Mersch et al. (115). They found that latitude was positively correlated with the prevalence of SAD, but North American populations had a stronger correlation than European populations. Latitude may have an influence on mental disorders, but other factors, such as drug abuse, hospital admission, social and cultural change, climate, and genetic predisposition, may also contribu-
te to the development of mental disorders (97, 98, 100, 113-117). How-
ever, a genetic basis alone cannot explain the rapid increase of men-
tal distress (depression, SAS, SSAD, and suicide) in circumpolar peoples and gives rise to the question of etiology.

DIET AND MENTAL HEALTH

It is increasingly apparent that diet has major effects on mental health. Nutrients and dietary supplements, e.g., folate and vitamin B12, ap-
pear to be beneficial for mental health (118-120), although this benefit has not been confirmed by all studies (121). Several lines of evidence reveal an important role for omega-3 fatty acids in mental health (122-24). Omega-3 fatty acids are important for neuronal and
brain development, function, and health (125-138), but see Simmer (139), and are only available from dietary intake such as fish. Lower levels of fish consumption and omega-3 fatty acids have been linked to increased rates of depression and possibly suicide (140-43). Decreased omega-3 fatty acid content in breast milk and an increased risk of postpartum depression in mothers have also been linked to lower levels of fish consumption (144). In addition, depressed patients show a depletion of systemic omega-3 fatty acids compared to healthy controls (105, 106, 145-148). Increased levels of omega-3 fatty acids also have a beneficial effect on patients’ bipolar symptoms (149, 150).

Aggression has been linked to low concentrations of serotonin and dopamine metabolites, and is negatively correlated with omega-3 fatty acids (131, 151, 152). Deficiencies in omega-3 fatty acids can change serotonergic and dopaminergic neurotransmission in the frontal cortex and hippocampus (153-155). Interestingly, these changes mirror those found in the prefrontal cortex of suicide victims (156, 157) and in the cortex of patients with dysfunctional attitudes and depression (158, 159). In addition, aggressive and compulsive behaviors have been correlated with suicide (160, 161), and changes in the serotonergic systems in the brain are linked to depression (162) and aggressive and compulsive behaviors (163, 164). Suicide rates have increased several-fold for many non-isolated circumpolar populations over the past several decades (74, 98-102). The rates of completed suicides for the Canadian Inuit from 1987-1991 were 3.9 times higher than that of the general Canadian population and continued to increase over the study period (1982-1996) (98). These results are comparable to suicide rates found in other circumpolar peoples (74, 99, 102, 117, 165-169).

A LINK BETWEEN MENTAL HEALTH AND DIET OF CIRCUMPOLAR PEOPLES?

The decline of mental health in circumpolar peoples has been attributed to the large cultural and social changes they have undergone, as well as to increases in chronic diseases, such as obesity, cardiovascular disease, and diabetes. We agree that these factors play a role, but we would like to add another important factor, which has received little attention. We hypothesize that diet is an important risk factor for mental health in circumpolar peoples. As we reviewed here, the diet of
circumpolar people has changed considerably from a traditional diet high in omega-3 fatty acids and antioxidants, to a Western-style diet high in carbohydrates and saturated fat. Several lines of evidence reveal that omega-3 fatty acids and other nutrients that are rich in traditional diets are beneficial for mental health and that depletion of omega-3 fatty acids are associated with increased levels of depression and possibly suicide. The combined decline in mental health and the disappearance of traditional diets in circumpolar peoples makes a direct connection between diet and mental health in these people a very real possibility. We believe that this possible link should receive considerable attention and we suggest that epidemiological and clinical studies be done with a focus on diet and mental health, in order to make this connection directly in circumpolar peoples. With suicide rates in circumpolar peoples among the highest in the world and other chronic diseases increasing rapidly, all avenues should be explored to improve this health crisis. Prevention and treatment of chronic diseases in circumpolar peoples can only be truly effective when all the major causes are understood.

Acknowledgements
We are grateful to Drs. Lawrence K. Duffy, Anita M. Hartmann, Erica Hill, and Daní K. Raap for very helpful comments on an earlier version of the manuscript. This work was partially supported by an NSF EPSCoR Undergraduate Research Internship to N.K. McGrath-Hanna, NIH grant 1U54NS41069 (SNRP: NINDS, NIMH, NCRR, NCMHD) to A. Bult-Ito, and the University of Alaska Fairbanks Department of Biology and Wildlife (all authors).
REFERENCES

1. Graburn NHH, Strong BS. Circumpolar Peoples: An Anthropological Perspective. California: Goodyear Publishing Company, Inc 1973.

2. Begon M, Harper JL, Townsend CR. Ecology: Individuals, Populations and Communities. Boston: Blackwell Scientific Publications 1990.

3. Raven PH, Johnson GB. Understanding Biology, 2nd Ed. St. Louis: Mosby Year Book 1991.

4. Moran EF. Human Adaptation to Arctic Zones. Ann Rev Anthropol 1981; 10: 1-25.

5. Kormondy EJ. Concepts of Ecology, 3rd Ed. New Jersey: Prentice Hall, Inc 1984.

6. Irving L. Adaptations to Cold. Arch Environ Health 1968; 17: 592-4.

7. Nokolaev ME, Arctic Ecology and Identity. Los Angeles: International Society for Trans-Oceanic Research 1997; 1-30.

8. Lee M, Reinhardt GL. Eskimo Architecture - dwelling and structure in the early historic period. Fairbanks: University of Alaska Press 2003.

9. Woodbury RL, Clothing, its evolution and development by the inhabitants of the Arctic. Arch Environ Health 1968; 17: 586-91.

10. Mousalimas SA, Arctic ecology and identity. Los Angeles: International Society for Trans-Oceanic Research 1997; 1-30.

11. Håglin L. The nutrient density of present-day and traditional diets and their health aspects: the sami and lumberjack families living in rural areas of northwestern Sweden. Int J Circumpolar Health 1999; 58: 30-43.

12. Kuhnlein HV. Change in the use of traditional foods by the Nuxalk Native people of British Columbia. Ecol Food Nutr 1992; 27: 259-82.

13. MacMillan DB. Food supply of the Smith Sound Eskimos. A story of primitive life maintained on the natural resources of a frozen Arctic land and sea. Am Mus Nat Hist J 1918; 18: 161-76.

14. Michael HN, Lieutenant Zagoskin’s Travels in Russian America, 1842-1844. Translation from Russian sources. No. 7. Toronto, Canada: University of Toronto Press 1967.

15. Nilsen H, Utsi E, Bona KH. Dietary and nutrient intake of a Sami population living in traditional reindeer herding areas in north Norway: comparisons with a group of Norwegians. Int J Circumpolar Health 1999; 58:120-33.

16. Nobmann ED, Lanier AP. Dietary intake among Alaska native women resident of Anchorage, Alaska. Int J Circumpolar Health 2001; 60: 123-37.

17. Nobmann ED, Mamleeva FR, Rodigina TA. A preliminary comparison of nutrient intake of Siberian and Chukotka and Alaska Natives. In: Postl BD, Gilbert P, Goodwill J, Moffatt MEK, O’Neil JD, Sarsfield PA, Young TK, Eds. Circumpolar Health 90, Proceedings of the 8th International Congress on Circumpolar Health, Winnipeg, Manitoba, Canada, University of Manitoba Press; 1990: 752-5.

18. Barceloux D. Selenium, Clin Toxicol 1999; 37: 145-72.

19. E. Kuhnlein HV, Chan HM, Leggee D, Barthet V, Macronutrient, mineral and fatty acid composition of traditional Arctic traditional food. J Food Comp Analysis 2002; 15: 545-66.

20. Pedersen HS, Mortensen SA, Rohde M, et al., High serum coenzyme Q10, positively correlated with age, selenium and cholesterol, in Inuit of Greenland. A pilot study. Biofactors 1999; 9: 319-23.

21. Ringstad J, Aaseth J, Johnsen K, Utsi E, Thomassen Y, High serum selenium concentrations in reindeer breeding Lappish men. Arct Med Res 1991; 50:103-6.

22. Simopoulos AP. Evolutionary aspects of omega-3 fatty acids in the food supply, Prostaglandins Leukot Essent Fatty Acids 1999; 60: 421-9.

23. Kromann N, Green A. Epidemiological studies in the Upernavik district, Greenland. Incidence of some chronic diseases 1950-1974. Acta Med Scand 1980;208: 401-6.

24. Mouratoff GJ, Carroll NV, Scott EM. Diabetes mellitus in Eskimos. JAMA 1967; 199: 107-12.

25. Mouratoff GJ, Carroll NV, Scott EM. Diabetes mellitus in Athabaskan Indians in Alaska. Diabetes 1969; 18: 29-32.

26. Mouratoff GJ, Scott EM. Diabetes mellitus in Eskimos after a decade. JAMA 1973; 226: 1345-6.

27. Scott EM, Griffith IV. Diabetes mellitus in Eskimos. Metabolism 1957; 6: 320-5.

28. Thouez JP, Ekoe JM, Foggin PM, et al., Obesity, hypertension, hyperuricemia and diabetes mellitus among the Cree and Inuit of northern Quebec. Arctic Med Res 1990; 49:180-8.

29. West KM. Diabetes in American Indians and other native populations of the New World. Diabetes 1974; 23: 841-55.

30. Young TK, Schraer CD, Shubnikoff EV, Szathmary EJ, Nikitin YP. Prevalence of diagnosed diabetes in circumpolar indigenous populations. Int J Epidemiol 1992; 21: 730-6.

31. Bang HO, Dyerberg J, Nielsen AB. Plasma lipid and lipoprotein pattern in Greenlandic West-coast Eskimos. Lancet 1971; 1(7710): 1143-5.

32. Bilo HJG, Gans ROB. Fish oil: a panacea? Biomed Pharmacother 1990; 44: 169-74.

33. Das UN. Beneficial effect(s) of n-3 fatty acids in cardiovascular diseases: but, why and how? Prostaglandins Leukot Essent Fatty Acids 2000; 63: 351-62.
34. De Lorgeril M, Salen P, Martin J-L, Monjaud I, Delavy J, Mamelle N, Mediterranean diet, traditional risk factors, and the rate of cardiovascular complications after myocardial infarction. Final report of the Lyon diet heart study. Circulation 1999; 99: 779-85.

35. Dyerberg J, Bang HO, Hjorne N, Fatty acid composition of the plasma lipids in Greenland Eskimos. Am J Clin Nutr 1975; 28: 958-66.

36. Gerrard J, Popeski D, Ebbeling B, Brown, P, Hornstra G, Dietary omega-3 fatty acids and gestational hypertension in the Inuit. In: Postl BD, Gilbert P, Goodwill J, Moffatt MEK, O’Neil JD, Sarsfield PA, Young TK, Eds. Circumpolar Health 90, Proceedings of the 8th International Congress on Circumpolar Health. Winnipeg, Manitoba, Canada: University of Manitoba Press 1990; 763-7.

37. Harris WS, Nonpharmacologic treatment of hypertriglyceridemia: focus on fish oils. Clin Cardiol 1999; 22: 1140-3.

38. Kromhout D, Bosschieter EB, de Lezenne Coulander C, The inverse relation between fish consumption and 20-year mortality from coronary heart disease. New Engl J Med 1985; 312: 1205-9.

39. Luoma PV, Näyhä S, Sikkila K, Hassi J, High serum alpha-tocopherol, albumin, selenium and cholesterol, and low mortality from coronary heart disease in northern Finland. J Intern Med 1995; 237: 49-54.

40. O’Keefe JH Jr, Harris WS, From Inuit to implementation: omega-3 fatty acids come of age. Mayo Clin Proc 2000; 75: 607-14.

41. Simopoulos AP, Omega-3 fatty acids in inflammation. Am J Clin Nutr 1999; 22: 1140-3.

42. Simopoulos AP, Omega-3 fatty acids in inflammation and autoimmune diseases. J Am Coll Nutr 2002; 21: 495-505.

43. Ebbesson SOE, Kennish J, Ebbesson L, Go O, Yeh J, Diabetes is related to fatty acid imbalance in Eskimos. Int J Circumpolar Health 1999; 58: 108-19.

44. Adler AI, Boyko EJ, Schraer CD, Murphy NJ, The negative association between traditional physical activities and the prevalence of glucose intolerance in Alaska Natives. Diabet Med 1996; 13: 555-60.

45. Doolan N, Appavoo D, Kuhnlein HV, Benefit-risk considerations of traditional food use by the Sahtu (Hare) Dene/Metis of Fort Good Hope, N.W.T. In: Postl BD, Gilbert P, Goodwill J, Moffatt MEK, O’Neil JD, Sarsfield PA, Young TK, Eds. Circumpolar Health 90, Proceedings of the 8th International Congress on Circumpolar Health. Winnipeg, Manitoba, Canada: University of Manitoba Press 1990; 747-51.

46. Kuhnlein HV, Receveur O, Chan HM, Traditional food systems research with Canadian indigenous peoples. Int J Circumpolar Health 2001; 60: 112-22.

47. Näyhä S, Järvelin M-R, Health trends in northern Finland. Int J Circumpolar Health 1998; 57: 94-103.

48. Wiklund K, Holm L-E, Eklund G, Mortality among Swedish reindeer breeding Lapps in 1961-1985. Arct Med Res 1991; 50: 3-7.

49. Black LT, Atka an ethnohistory of the Western Aleutians, The Limestone Press, Ontario, Canada 1984.

50. Fortuine R, Chills and fevers. Health and disease in the early history of Alaska. Fairbanks: University of Alaska Press 1992; 197-264.

51. Garza D, Alaska Natives assessing the health of their environment. Int J Circumpolar Health 2001; 60: 479-86.

52. Kuhnlein HV, Receveur O, Dietary change and traditional food systems of indigenous peoples. Ann Rev Nutr 1996; 16: 417-42.

53. Statistics Canada, Post Censal Surveys Program, Language, tradition, health, lifestyle and social issues. Minister of Industry, Science and Technology 1993.

54. Berti PR, Receveur O, Chan HM, Kuhnlein HV, Dietary exposure to chemical contaminants from traditional food among adult Dene/Metis in the western Northwest Territories, Canada. Environ Res 1998; 76: 131-42.

55. Furberg A-S, Sandanger T, Thune I, Burkow IC, Lund E, Fish consumption and plasma levels of organochlorines in a female population in Northern Norway. J Environ Monit 2002; 4: 175-81.

56. Rothschild RNF, Duffy LK, Preliminary study on total mercury in the common prepared subsistence foods of a rural Alaskan village. Alaska Med Res 1991; 50: 3-7.

57. Wiklund K, Holm L-E, Eklund G, Mortality among Swedish reindeer breeding Lapps in 1961-1985. Arct Med Res 1991; 50: 3-7.

58. Wongittilin, J. Sr., Savoonga, Traditional knowledge & contaminants project. Int J Circumpolar Health 90, Proceedings of the 8th International Congress on Circumpolar Health. Winnipeg, Manitoba, Canada: University of Manitoba Press 1990; 728-30.

59. Kuhnlein HV, Receveur O, Dietary change and traditional food systems of indigenous peoples. Ann Rev Nutr 1996; 16: 417-42.

60. Statistics Canada, Post Censal Surveys Program, Language, tradition, health, lifestyle and social issues. Minister of Industry, Science and Technology 1993.

61. Fortuine R, Chills and fevers. Health and disease in the early history of Alaska. Fairbanks: University of Alaska Press 1992; 197-264.

62. Garza D, Alaska Natives assessing the health of their environment. Int J Circumpolar Health 2001; 60: 479-86.
62. Knapp B, Panruk P. Southwest Alaskan Eskimo dietary survey 1978. Bethel, Alaska: Yukon Kuskokwim Health Corporation Publishing, 1978.

63. Murphy NJ, Schraer CD, Thiele MC, et al. Dietary change and obesity associated with glucose intolerance in Alaska Natives. J Am Diet Assoc 1995; 95: 676-82.

64. Thiele MC, Boushey CJ. Soft drink consumption among Yup'ik Eskimo teenagers. Alaska Medicine 1989; 31: 1-3.

65. Whiting SJ, Mackenzie ML. Assessing the changing diet of indigenous peoples. Nutr Rev 1998; 56(8): 248-250.

66. Rode A, Shephard RT. Growth, development and acculturation—ten year comparison of Canadian Inuit children. Human Biol 1984; 56: 217-30.

67. Taylor R, Ram P, Zimmer P, Raper LR, Ringrose H. Physical activity and prevalence of diabetes in Melanesian and Indian men in Fiji. Diabetologia 1984; 27: 578-82.

68. Aubrey LP, Langner N, Lawn J, Sainanawap B, Beardy B. Nutrient intake of adults aged 15 to 65 years in two northern Ontario communities. In: Postl BD, Gilbert P, Goodwill J, Moffatt MEK, O’Neil JD, Sarsfield PA, Young TK, Eds. Circumpolar Health 90, Proceedings of the 8th International Congress on Circumpolar Health. Winnipeg, Manitoba, Canada: University of Manitoba Press 1990; 774-7.

69. Broussard BA, Johnson A, Himes JH, et al. Prevalence of obesity in American Indians and Alaska Natives. Am J Clin Nutr 1991; 53(suppl): 1535S-42S.

70. Draper HH. A review of recent nutritional research in the Arctic. In: Shephard RJ, Itoh S, Eds. Circumpolar Health, Proceedings of the 3rd International Symposium. Toronto, Canada: University of Toronto Press 1976; 120-9.

71. Evers S. Dietary intake and nutritional status of Canadian Indians: a review. In: Postl BD, Gilbert P, Goodwill J, Moffatt MEK, O’Neil JD, Sarsfield PA, Young TK, Eds. Circumpolar Health 90, Proceedings of the 8th International Congress on Circumpolar Health. Winnipeg, Manitoba, Canada: University of Manitoba Press 1990; 731-4.

72. Gittelsohn J, Wolaver TMS, Harris SB, Harris-Giraldo R. Specific patterns of food consumption and preparation are associated with diabetes and obesity in a native Canadian community. J Nutr 1998; 128: 541-7.

73. Schraer CD, Lanier AP, Boyko EJ, Gohdes D, Murphy NJ. Prevalence of diabetes mellitus in Alaskan Eskimos, Indians, and Aleuts. Diabetes Care 1988; 11: 693-700.

74. Bjorregaard P. Disease pattern in Greenland: Studies on morbidity in Upernavik 1979-1980 and mortality in Greenland 1968-1985. Arctic Med Res 1991; 50: 1-62.

75. Hegele RA, Young TK, Connelly PW. Are Canadian Inuit at increased genetic risk for coronary heart disease? J Mol Med 1997; 75: 364-70.

76. Niendorff WJ, Jones CM. Prevalence and severity of dental caries among American Indians and Alaska Natives. J Publ Health Dentistry 2000; 60 Suppl 1: 243-9.

77. Clarke DM. Psychological factors in illness and recovery. N Z Med J 1998; 111: 410-2.

78. Steinhauer PD, Mushin DN, Rae-Grant Q. Psychological aspects of chronic illness. Pediatr Clin North Am 1974; 21: 825-40.

79. Hansen V, Jacobsen, Husby B. Mental distress during winter. An epidemiologic study of 7759 adults north of Arctic Circle. Acta Psychiatr Scand 1991; 84: 137-41.

80. Hansen V, Lund E, Smith-Sivertsen T. Self-reported mental distress under the shifting daylight in the high north. Psychol Med 1998; 28: 447-52.

81. Rosenthal NE, Sack DA, Gillin JC, et al. Seasonal Affective Disorder, a description of the syndrome and preliminary findings with light therapy. Arch Gen Psychiatry 1984; 41: 72-80.

82. Kasper S, Rogers B, Yancey A, Schulz PM, Skrwerer RG, Rosenthal NE. Phototherapy in individuals with and without subsyndromal seasonal affective disorder. Arch Gen Psychiatry 1989; 46: 837-44.

83. Brennen T, Martinussen M, Hansen BO, Hjemdal O. Arctic cognition: a study of cognitive performance in summer and winter at 69 degrees N. Appl Cognit Psychol 1999; 13: 561-80.

84. Husby R, Lingjærde O. Prevalence of reported sleeplessness in northern Norway in relation to sex, age and season. Acta Psychiatr Scand 1990; 81: 542-7.

85. Lingjærde O, Bratlid T, Triazolam (Halcion) versus flunitrazepam (Rohypnol) against midwinter insomnia in Northern Norway. Acta Psychiatr Scand 1981; 64: 260-9.

86. Zvolensky MJ, McNeil DW, Porter CA, Stewart SH. Assessment of anxiety sensitivity in young American Indians and Alaska Natives. Behav Res Ther 2001; 39: 477-93.

87. Palinkas LA. Going to extremes: the cultural context of stress, illness and coping in Antarctica. Soc Sci Med 1992; 35: 651-64.

88. Palinkas LA, Houseal M, Miller C. Sleep and mood during a winter in Antarctica. Int J Circumpolar Health 2000; 59: 63-73.

89. Reed HL, Reedy KR, Palinkas LA, et al. Impairment in cognitive and exercise performance during prolonged Antarctic Residence: Effect of Thyroxine supplementation in the polar triiodothyronine syndrome. J Clin Endocrinol Metabolism 2001; 86: 110-6.
90. Magnússon A, Steffansson JG. Prevalence of seasonal affective disorder in Iceland. Arch Gen Psychiatry 1993; 50: 941-6.

91. Magnússon A, Axelsson J, Karlsson MM, Oskarsson H. Lack of seasonal mood change in the Icelandic population: results of a cross-sectional study. Am J Psychiatry 2000; 157: 234-8.

92. Näyhä S, Viisanen E, Hassi J. Season and mental illness in an Arctic area of northern Finland. Acta Psychiatr Scand (Suppl), 1994; 377: 46-9.

93. Magnússon A, Axelsson J. The prevalence of seasonal affective disorder is low among descendants of Icelandic emigrants in Canada. Arch Gen Psychiatry 1993; 50: 947-51.

94. Haggarty JM, Cernovsky Z, Kermeen P, Merskey H. Psychiatric disorders in an Arctic community. Can J Psychiatry 2000; 45: 357-62.

95. Haggarty JM, Cernovsky Z, Husni M, Minor K, Kermeen P, Merskey H. Seasonal affective disorder in an Arctic community. Acta Psychiatr Scand 2002; 105: 378-84.

96. Saarijärvi S, Lauerma H, Helenius H, Saarilehto S. Seasonal affective disorders among rural Finns and Lapps. Acta Psychiatr Scand, 1999; 99: 95-101.

97. Sampath HM. Modernity, social structure, and mental health of Eskimos in the Canadian eastern Arctic. In: Shephard RJ, Itoh S, Eds. Circumpolar Health. Proceedings of the 3rd International Symposium, Toronto, Canada: University of Toronto Press 1976; 479-89.

98. Boothroyd LJ, Kirmayer LJ, Spreng S, Malus M, Hodgins S. Completed suicides among the Inuit of northern Quebec, 1982-1996: a case-control study. CMAJ 2001; 165: 749-55.

99. Grove O, Lyne J. Suicide and attempted suicide in Greenland. A controlled study in Nuuk (Godthaab). Acta Psychiatr Scand 1979; 60: 375-91.

100. Kirmayer LJ, Brass GM, Tait CL. The mental health of Aboriginal peoples: transformations of identity and community. Can J Psychiatry 2000; 45: 607-16.

101. Middlebrook DL, LeMaster PL, Beals J, Novins DK, Manson SM. Suicide prevention in American Indian and Alaska Native communities: a critical review of programs. Suicide and Life-Threatening Behavior 2001; 31 (Suppl): 132-6.

102. Thorslund J. Inuit suicides in Greenland. Arctic Med Res 1990; 49: 25-33.

103. Levine ME, Duffy LK. Seasonal variation of the amino acid, L-tryptophan, in interior Alaska. Int J Circumpolar Health, 1998; 57 Suppl 1: 389-8.

104. Levine ME, Milliron AN, Duffy LK, Diurnal and seasonal rhythms of melatonin, cortisol and testosterone in interior Alaska. Arctic Med Res 1994; 53: 25-34.

105. Charney DS, Southwick SM, Delgado PL, Krystal JH. Current status of the receptor sensitivity hypothesis of antidepressant action. In: Amsterdam JD, ed. Psychopharmacology of depression. New York: Marcel Dekker 1990; 13-34.

106. Simon H, Scatton B, Le Moal M. Dopaminergic Ana neurons are involved in cognitive functions. Nature 1980; 286: 150-1.

107. Danilenko KV, Putilov AA, Russkikh GS, Duffy LK, Ebbeson SO. Diurnal and seasonal variations of melatonin and serotonin in women with seasonal affective disorders. Arch Med Res 1994; 53: 137-45.

108. Káradóttir R, Axelsson J. Melatonin secretion in SAD patients and healthy subjects matched with respect to age and sex. Int J Circumpolar Health 2001; 60: 548-51.

109. Putilov AA, Booker JM, Danilenko KV, Zolotarev DY. The relationship of sleep-wake patterns to seasonal depressive behavior. Arct Med Res 1994; 53: 130-6.

110. Rosen L. Prevalence of seasonal affective disorder among U.S. army soldiers in Alaska. Mil Med 2002; 167: 581-4.

111. Booker JM, Hellekson CJ, Putilov AA, Danilenko KV. Seasonal depression and sleep disturbances in Alaska and Siberia: a pilot study. Arctic Med Res 1991; Suppl: 281-4.

112. Booker JM, Hellekson CJ. Prevalence of seasonal affective disorder in Alaska. Am J Psychiatry 1992; 149: 1176-82.

113. Nilssen O, Lipton R, Brenn T, Hoyer G, Boiko J, Tkatchev A. Sleeping problems at 78 degrees north: the Svalbard study. Acta Psychiatr Scand, 1997; 95: 44-8.

114. Nilssen O, Brenn T, Hoyer G, Lipton R, Boiko J, Tkatchev A. Self-reported seasonal variation in depression 78 degrees north. The Svalbard Study. Int J Circumpolar Health 1999; 58: 14-23.

115. Mersch PPA, Middendorp HM, Bouhuys AL, Beersma DGM, Van den Hoofdakker RH. Seasonal affective disorder and latitude: a review of the literature. J Affect Dis 1999; 53: 35-48.

116. Axelsson J, Steffansson JG, Magnússon A, Sigvaldason H, Karlsson MM. Seasonal affective disorders: relevance of Icelandic and Icelandic-Canadian evidence to etiologic hypotheses. Can J Psychiatry 2002; 47: 153-8.

117. Marshall D, Soule S. Accidental deaths and suicides among Alaska Natives, 1979-1994. In: Postl BD, Gilbert P, Goodwill J, Moffatt MEK, O’Neil JD, Sarsfield PA, Young TK, Eds. Circumpolar Health 90, Proceedings of the 8th International Congress on Circumpolar Health, Winnipeg, Manitoba, Canada, University of Manitoba Press 1990; 497-502.

118. Alpert JE, Mischoulon D, Nierenberg AA, Fava M. Nutrition and depression: focus on folate. Nutrition 2000; 16: 544-6.
119. Alpert JE, Mischoulon D, Rubenstein GEF, Bottornari K, Nierenberg AA, Fava M. Folinic acid (Leucovorin) as an adjunctive treatment for SSRI-refractory depression. Ann Clin Psychiatry 2002; 14: 33-8.

120. Fugh-Berman A, Gott JM. Dietary supplements and natural products as psychotherapeutic agents. Psychosomatic Med 1999; 61: 712-28.

121. Eussen SJPM, Ferry M, Hininger I, Haller J, Matthys C, Dirren H. Five year changes in mental health and associations with vitamin B12/folate status of elderly Europeans. J Nutr Health Aging 2002; 6: 43-50.

122. Bruinsma KA, Taren DL. Dieting, essential fatty acid intake, and depression. Nutr Rev 2000; 58 (4): 98-108.

123. Mischoulon D, Fava M. Docosahexanoic acid and omega-3 fatty acids in depression. Psychiatr Clin North Am 2000; 23: 785-94.

124. Settle JE. Diet and essential fatty acids. In: Shannon S, ed. Handbook of Complementary and Alternative Therapies in Mental Health. Academic Press, Inc 2001; 93-109.

125. Auestad N, Innis SM. Dietary n-3 fatty acid-restriction during gestation in rats: neuronal cell body and growth-cone fatty acids. Am J Clin Nutr 2000; 71 (Suppl): 312S-4S.

126. Bazan N. The supply of omega-3 polyunsaturated fatty acids to photoreceptors and synapses. In: Galili C, Simopoulos AI, eds. Dietary n-3 and n-6 fatty acids: biological effects and nutritional essentiality. New York: Plenum Publishing 1989; 227-39.

127. Birch EE, Garfield S, Hoffman DR, Uauy R, Birch DG. A randomized controlled trial of early dietary supply of long-chain polyunsaturated fatty acids and mental development in term infants. Dev Med Child Neurol 2000; 42: 174-81.

128. Bourre J-M, Francois M, Youyou A, et al. The effects of dietary alpha-linolenic acid on the composition of nerve membranes, enzymatic activity, amplitude of electrophysiological parameters, resistance to poisons and performance of learning tasks in rats. J Nutr 1989; 119: 1880-92.

129. Connor WE. The effects of n-3 fatty acids deficiency and repletion upon fatty acid composition and function of the brain and retina. Prog Clin Biol Res 1988; 282: 275-94.

130. Hibeljn JR, Salem N. Dietary polyunsaturated fatty acids and depression – When cholesterol does not satisfy. Am J Clin Nutr 1995; 62: 1-9.

131. Hibeljn JR, Umhau JC, George DT, Salem N. Docosahexaenoic acid decreases phospholipase A2 activity in the neurites/nerve growth cones of PC12 cells. J Neurosci Res 1998; 54: 805-13.

132. Martin RE, Bazan NG. Changing fatty acid content of growth cone lipids prior to synaptogenesis. J Neurochem 1992; 59: 318-25.

133. Hibeljn JR, Tuomilehto J, et al. Fish consumption and depressive symptoms in the general population in Finland. Psychiatry Services 2001; 52: 529-31.

134. Peet M. A dose-ranging study of the effects of ethyl-eicosapentaenoate in patients with ongoing depression despite apparently adequate treatment with standard drugs. Arch Gen Psychiatry 2002; 59: 913-9.

135. Adams PB, Lawson S, Sanigorski A, Sinclair AJ. Arachidonic acid to eicosapentaenoic acid ratio in blood correlates positively with clinical symptoms of depression. Lipids 1996; 31 (Suppl): S157-61.

136. Edwards R, Peet M, Shay J, Horrobin D. Omega-3 polyunsaturated fatty acid levels in the diet and in red blood cell membranes of depressed patients. J Affect Dis 1998; 48: 149-55.
147. Maes M, Christophe A, Delanghe J, Altamura C, Neels H, Meltzer HY, Lowered omega-3 polyunsaturated fatty acids in serum phospholipids and cholesteryl esters of depressed patients. Psychiatry Res 1999; 85: 275-91.

148. Peet M, Murphy B, Shuy J, Horrobin D, Depletion of omega-3 fatty acid levels in red blood cell membranes of depressive patients. Biol Psychiatry 1998; 43: 315-9.

149. Stoll AL, Locke CA, Marangell LB, Severus WE, Omega-3 fatty acids and bipolar disorder: a review. Prostaglandins Leukot Essent Fatty Acids 1999; 60: 329-37.

150. Stoll AL, Severus WE, Freeman MP, et al., Omega 3 fatty acids in bipolar disorder: a preliminary double-blind, placebo-controlled trial. Arch Gen Psychiatry 1999; 56: 407-12.

151. Hibbeln JR, Linnoila M, Umhau JC, Rawlings R, George DT, Salem N Jr., Essential fatty acids predict metabolites of serotonin and dopamine in cerebrospinal fluid among healthy control subjects and early- and late-onset alcoholics. Biol Psychiatry 1998; 44: 235-42.

152. Zimmer L, Hembert S, Durand G, et al., Chronic n-3 polyunsaturated fatty acid diet-deficiency acts on dopamine metabolism in the rat frontal cortex: a microdialysis study. Neurosci Lett 1998; 240: 177-81.

153. Delion S, Chalon S, Héraut J, Guilletteau G, Besnard J-C, Durand G, Chronic dietary alpha-linolenic acid deficiency alters dopaminergic and serotoninergic neurotransmission in rats. J Nutr 1994; 124: 2466-76.

154. Delion S, Chalon S, Guilletteau D, Besnard J-C, Durand G, a-Linolenic acid dietary deficiency alters age-related changes of dopaminergic and serotonergic neurotransmission in the rat frontal cortex. J Neurochem 1996; 66: 1582-91.

155. Gross-Isseroff R, Biegon A, Voet H, Weizman A, The suicide brain: a review of postmortem receptor/transporter binding studies. Neurosci Biobehav 1998; 22: 653-61.

156. Pandey GN, Dwivedi YR, Hooriyah S, et al., Higher expression of serotonin 5-HT(2A) receptors in the postmortem brains of teenage suicide victims. Am J Psychiatry 2002; 159: 419-29.

157. Mann JJ, Huang JY, Underwood MD, et al., A serotonin transporter gene promoter polymorphism (5-HTTLPR) and prefrontal cortical finding in major depression and suicide. Arch Gen Psychiatry 2000; 57(8): 729-738.

158. Meyer JH, McMain S, Kennedy SH, et al., Dysfunctional attitudes and 5-HT(2) receptors during depression and self-harm. Am J Psychiatry 2003; 160: 90-9.

159. Stoll AL, Locke CA, Marangell LB, Severus WE, Omega-3 fatty acids and bipolar disorder: a review. Prostaglandins Leukot Essent Fatty Acids 1999; 60: 329-37.

Abel Bult-Ito, Ph.D.
Institute of Arctic Biology
University of Alaska Fairbanks
P.O. Box 757000
Fairbanks, AK 99775-70000
USA
ffab@uaf.edu