Diabetes and Oral Health: Summary of Current Scientific Evidence for Why Transdisciplinary Collaboration Is Needed

Wenche Sylling Borgnakke* and Prakash Poudel

1 School of Dentistry, University of Michigan, Ann Arbor, MI, United States, 2 Centre for Oral Health Outcomes and Research Translation (COHORT), Western Sydney University, Liverpool, NSW, Australia, 3 Drug Health Services, South Western Sydney Local Health District (SWSLHD), Cabramatta, NSW, Australia

This Perspective provides a brief summary of the scientific evidence for the often two-way links between hyperglycemia, including manifest diabetes mellitus (DM), and oral health. It delivers in a nutshell examples of current scientific evidence for the following oral manifestations of hyperglycemia, along with any available evidence for effect in the opposite direction: periodontal diseases, caries/periapical periodontitis, tooth loss, peri-implantitis, dry mouth (xerostomia/hyposalivation), dysbiosis in the oral microbiome, candidiasis, taste disturbances, burning mouth syndrome, cancer, traumatic ulcers, infections of oral wounds, delayed wound healing, melanin pigmentation, fissured tongue, benign migratory glossitis (geographic tongue), temporomandibular disorders, and osteonecrosis of the jaw. Evidence for effects on quality of life will also be reported. This condensed overview delivers the rationale and sets the stage for the urgent need for delivery of oral and general health care in patient-centered transdisciplinary collaboration for early detection and management of both hyperglycemia and oral diseases to improve quality of life.

Keywords: diabetes mellitus, early diagnosis, health care costs, interdisciplinary communication, interprofessional relations, periodontal diseases, prevention and control, referral and consultation

INTRODUCTION

Regrettably, dentistry was separated from general health care and became an independent profession (1), leaving little education and awareness regarding oral health and its links to general health among the other health professions (2–10). The most prevalent chronic diseases share the same “common risk factors” (11–13) (Figure 1) and hence often occur in the same patients, regardless of whether causal links and not merely associations exist. Nonetheless, rapidly emerging scientific evidence demonstrates that oral diseases and hyperglycemia (elevated blood glucose concentration), including manifest diabetes mellitus (DM), independently and mutually affect each other. The term “transdisciplinary” is used to include practitioners of all health care disciplines, such as physicians, assistants of the physician, nurses, nurse practitioners, midwives, dietitians, DM educators, speech therapists, social workers, etc., in contrast to “interprofessional” that implicitly accepts the siloed approach regarding dentistry and general health care as separate professions.
This research summarizes, in a nutshell, the current evidence for links between oral diseases and DM to support the need for transdisciplinary collaboration.

HYPERGLYCEMIA/DM AND ORAL HEALTH MUTUALLY AFFECT EACH OTHER

While type 1 DM (T1DM) is due to no or insufficient insulin production affecting about 5% of patients with DM, type 2 DM (T2DM) is a syndrome characterized by elevated blood glucose levels due to insufficient insulin production, insufficient insulin uptake, or both (15–17). About 463 million (9.3%) adults suffer from DM, with 700 million (10.9%) expected by the year 2045 (18, 19). An additional 374 million people have prediabetes (preDM) and are at risk of developing T2DM (18).

Systemic hyperglycemia causes complications such as retinopathy; nephropathy; neuropathy; heart, peripheral arterial, and cerebrovascular disease; obesity, cataracts; erectile dysfunction; and non-alcoholic fatty liver disease (20). Regardless of DM type, it is the hyperglycemia, not the diagnosis of DM per se, that leads to several oral complications (21) and oral health-related decreased quality of life (QoL) (22).

These oral manifestations are described, followed by any effects in the opposite direction.

For succinct brevity, DM is used for any type of diabetes or hyperglycemia; and the comparison group is non-traditionally omitted. For example, in the sentence "People with DM have greater xxxx," the comparison “than people without DM” is implicit, but not shown.

Periodontal Diseases

Periodontal diseases affect up to 90% of adults globally, with the reversible form, gingivitis, affecting almost everybody (23). In contrast, periodontitis is chronic, irreversible destruction of soft and hard tissues around the teeth that results from an interplay between polymicrobial dysbiosis in the plaque microbiome in the gingival sulcus and the especially susceptible host (24, 25). Periodontitis affects 42.2% of US dentate adults (26), likely varies globally, and is the 12th of 291 most prevalent diseases worldwide (27), with “severe” periodontitis being the sixth most prevalent disease (28), affecting 11.2% of adults (28).

Periodontitis and hyperglycemia share the same risk factors (29, 30) and hence often occur in the same individuals with compromised immune systems or exhibiting hyperinflammatory responses; and they additionally adversely affect each other.

A much greater proportion of people with DM suffer from periodontitis (31–33), and the severity of periodontitis is much greater, especially in poorly or uncontrolled DM (31, 34, 35). Citing clinical studies from Denmark (36), Australia (37), Finland (38), Argentina (39), and the US (40, 41), including among the Pima Indians in Arizona (42–46), periodontitis was declared the sixth complication of DM in 1993 (47), but with negligible effect on the medical and dental communities.

In the opposite direction, people with periodontitis are much more likely to have T2DM (33, 48). Periodontitis, via bacteremia (49, 50) and inflammatory responses of which hyperglycemia is a normal part (Figure 1), is a risk factor for DM, that is, incident T2DM, gestational DM, poorer glycemic control in existing DM, and more severe DM complications (51, 52). Furthermore, periodontitis is increasingly regarded as an independent risk factor for the macro-vascular DM complications cardiovascular disease (CVD) (53–58) and ischemic stroke (54, 56), and is associated with the microvascular DM complications: neuropathy (54, 59), nephropathy (54, 60–62), and retinopathy (54, 60).

Cognitive Impairment in DM

Alzheimer’s disease has been named “type 3 DM” (63) as a DM complication (64) partly due to glucose hypometabolism causing cognitive decline (65). Novel research supports the role of especially Porphyromonas gingivalis (Pg), a key periodontitis-associated bacterium, in Alzheimer’s disease (66–72), with promising experimental treatment with gingipain inhibitors to reduce Pg brain colonization and neurodegeneration reported (73).

COVID-19

With DM being a risk factor for COVID-19, oral manifestations of the SARS-CoV-2 virus (74, 75) are reported in DM, such as painful ulcers (76, 77) and necrotizing periodontitis (78).

In COVID-19, a radiographic study found periodontitis to be associated with more intensive unit admissions, increased ventilation needs, and mortality in COVID-19 (79), and gingivitis is also reported (80). This is probably the case also in DM with its weakened immune system. Likely, periodontal pockets (81, 82), gingival crevicular fluid (83), and saliva acting as reservoirs for SARS-CoV-2 virus (81, 84–86) may even facilitate COVID-19 development (87), persistence (88), and mortality especially in people with DM (89).

Caries/Periapical Periodontitis

Untreated caries in permanent teeth is the most prevalent condition of the world affecting 2.4+ billion people (90). The evidence for links to DM is mixed, although adolescents with DM have 2- and 3-fold greater numbers of filled teeth and teeth with untreated caries, respectively (91). Patients with DM receiving hemodialysis have more caries (92); and periapical infections and their abscesses seem to be more prevalent in DM (93, 94).

Tooth Loss

Worldwide, people with DM have lost many more teeth (36, 37, 95–101), [about twice the magnitude (102)], especially if uncontrolled (103), and at an earlier age (96).

Tooth loss is a risk factor for hyperglycemia that is not usually mentioned as such, even though this has possibly the greatest immediate importance for DM management. Having loose teeth (due to periodontitis), sensitive teeth (due to deep caries lesions), few teeth left (104), or removable dentures will automatically cause problems with mastication, resulting in people not being able to eat crisp foods that need biting off or proper mastication. That is, such people are simply unable to follow the recommendations for a proper diet intended for controlling their DM by consuming appropriate
amounts and kinds of healthy nutrients (105–107). In contrast, they resort to soft, processed food items with high Glycemic Index scores (108) and high Dietary Inflammatory Index scores (105, 106), typically laden with fat, sugar, and salt but deficient in fibers and vitamins (109), as opposed to fresh vegetables and fruit and whole-grain products. Alone for this reason, sincere efforts to prevent tooth loss should be invested in transdisciplinary DM management including dietitians (109).

Missing teeth are also associated with DM complications, such as myocardial infarction (110, 111) and retinopathy (36, 112); and lack of proper mastication negatively impacts cognitive function (113, 114).

Peri-Implantitis

Even though dental implants can osseointegrate, albeit delayed (115), and survive in patients with poorly controlled DM (116), hyperglycemia is a risk factor for peri-implantitis (breakdown of peri-implant soft and hard tissues) that is independent of smoking (117–119).

Dry Mouth

Individuals with DM often suffer from dry mouth, meaning xerostomia (subjective feeling of mouth dryness) or hyposalivation (decreased salivary production), decreasing QoL. Patients with DM often suffer from bad breath (halitosis), foul taste, and multimorbidity with polypharmacy (22, 32, 120). All major groups of pharmaceuticals can cause mouth dryness and various periodontal complications (121). Hyposalivation also majorly impacts the oral microbiome composition (122).

Hyposalivation can lead to trouble keeping removable dentures in place, mastication, swallowing (dysphagia), and speech (104); and greater incidence of coronal and root caries and periodontitis, ultimately leading to tooth loss.

In transdisciplinary collaboration, physicians can prescribe fewer or less xerogenic medications or change the dosage.
and frequency. Since both hyposalivation and cancer are more prevalent in DM, they should also ensure proper protection of the (unaffected) salivary glands during radiation therapy in the head and neck region.

Microbiome Dysbiosis

Hyperglycemia causes changes (123) such as in composition (122, 124, 125) and decreased diversity (126, 127) and abundance (126, 128) of certain bacteria in the subgingival microbiome in periodontitis. Moreover, severities of DM and periodontitis are associated (129, 130). DM treatment leads to changes in the salivary microbiome (131).

Oral and gut microbiomes are closely linked (132); even a small number of periodontal bacteria predict change in glucose level in young healthy adults (133). *Pg* alters the gut microbiome and causes metabolic syndrome (134) and preDM (135).

Candidiasis

DM is an independent predictor of oral candidiasis (136), especially in hyposalivation (137), as DM favors the acidogenic bacteria that in turn promote the development of caries and candidiasis. *Candida albicans*, a commensal yeast in the oral microbiome causing candidiasis, can bind to the oral mucosa and, hence, contribute to the cumulative burden of inflammation, directly or via denture stomatitis caused by unclean dentures (138). Over 900 different species of microbes reside in biofilm adhering to dentures (139) and are an important source of sepsis that is largely unnoticed (138).

Taste Disturbances (Dysgeusia, Ageusia, and Hypogeusia)

Due to hyposalivation, neuropathy of nerves sensing taste, microangiopathy in taste buds or medications, (120), and taste impairment and disorders occur frequently in DM (59). Altered taste (gustatory changes) could be the first sign of T2DM, a useful fact for all health professionals. Ageusia is also a COVID-19 symptom (140).

Burning Mouth Syndrome

DM can contribute to the complex burning mouth syndrome that likely is caused by neuropathy and other local and systemic factors and, therefore, needs transdisciplinary treatment (32, 120, 141–143).

Cancer

Cancer is associated with inflammation and occurs more frequently in DM (144), including oral cancer that has a 4.3-fold greater risk of developing and a 2.1 times greater risk of mortality in DM than in non-DM (145). Potentially malignant oral mucosal lesions are also associated with DM, such as leukoplakia, erythroplakia, lichen planus and other lichenoid lesions, and actinic cheilitis (145).

Other Oral Mucosal Lesions and Conditions

People with DM have a greater risk of traumatic ulcer, infections of oral wounds, delayed wound healing, melanin pigmentation, fissured tongue, and benign migratory glossitis (geographic tongue), and temporomandibular disorders (21, 32).

Osteonecrosis of the Jaw (ONJ)

DM is an established risk factor for ONJ in general (146–148) and medication-related ONJ (MRONJ) (149–154). Microvascular complications (angiopathy, ischemia, endothelial cell dysfunction) impair blood circulation and hence bone nutrition and quality with reduced remodeling (155). DM also causes increased apoptosis of osteoblasts and osteocytes and changes in immune cell function, promoting inflammation (155).

Quality of Life

DM decreases QoL with a further decrease in oral health-related QoL (OHRQoL) (59, 156–160). Importantly, QoL correlates strongly with OHRQoL (161), so treating oral diseases increases QoL in DM (160, 162, 163).

Dental Treatment in DM

Non-surgical periodontal treatment (NSPT) consisting of scaling and root planing (SRP), or “deep cleaning,” home oral hygiene instruction, and maintenance follow-up visits can be performed in any dental office by dental hygienists or dentists and improves the periodontal health status also in DM (164, 165). However, advanced cases need treatment by periodontists or other especially skilled clinicians. Adults with DM and periodontitis manage to incorporate new, effective oral hygiene measures into daily life (166); and frequent tooth brushing is negatively associated with incident DM (167).

Glycated Hemoglobin Level

Non-surgical periodontal treatment can lead to a decrease in glycated hemoglobin (HbA1c) level in T2DM after 3 months, which is of clinical significance as it is of the same order of magnitude as adding a second oral antidiabetic medication to metformin (156, 168, 169). Results of meta-analyses upon systematic reviews are displayed in Table 1. Greater effect is seen with greater baseline HbA1c levels (186).

Few studies last longer than 3 months. Noteworthy is a definitive 12-months study (N = 133) demonstrating that intensive periodontal treatment (including surgery) reduced the crude mean HbA1c level from 8.1 (±1.7)% to 7.8 (±0.2)% (187). Upon adjustment, intensive treatment reduced the mean HbA1c value by 0.6 (95% CI: 0.3–0.9)% more than routine NSPT (187).

Inflammatory Markers

Non-surgical periodontal treatment can lead to decreased levels of inflammatory markers, such as C-reactive protein and leukocyte counts that are risk indicators for CVD (188, 189), and the subgingival periodontal biofilm is disturbed, mitigating periodontitis progression (123).

Full-mouth extraction, the ultimate treatment of terminally periodontally diseased teeth, significantly lowers systemic inflammatory markers (190).
TABLE 1 | Effect of non-surgical periodontal treatment (scaling, root planing, and oral hygiene instruction) (NSPT) on glycated hemoglobin (HbA1c) level in type 2 diabetes (T2DM) 3 and 6 months post-intervention: meta-analyses.

References	# Studies	# RCTs	Pooled # Subjects	Mean HbA1c% Change	95% CI	P-value
Janket et al. 2005 (170)	4	1	268	−0.68	−2.2; +0.9	n.s.
Darré et al. 2008 (171)	9	5	485	−0.46	−0.82; −0.11	0.01
Simpson et al. 2010 (172) (Cochrane Review)	3	3	244	−0.40	−0.78; −0.01	0.04
Teeuw et al. 2010 (173)	5	3	180	−0.40	−0.77; −0.04	0.03
Corbella et al. 2013 (174) (3 mos) (6 mos)	15	15*	678	−0.38	−0.53; −0.23	<0.001
Engebretson and Kocher 2013 (175)	3	3	235	−0.31	−0.74; 0.11	n.s.
Liew et al. 2013 (–antibiotics) (–antibiotics) (176)	6*	6*	473*	−0.41	−0.73; −0.09	0.013
Simpson et al. 2010 (3–4 mos)	3	3	143	−0.24	−0.62; +0.14	0.217
Li et al. 2015 (179)	9	9	1,082	−0.27	−0.46; −0.07	0.007
Simpson et al. 2015 (3–4 mos) (Cochrane Review) (180) (6 mos)	14	14	1,499	−0.29	−0.48; −0.10	<0.05
Teshome et al. 2016 (181) (3 mos) (study end)	5	5	826	0.02	−0.20; 0.16	n.s.
Cao et al. 2019 (182) (3–12 mos)	14	14	940	−0.48	−0.18; −0.78	<0.00001
Jain et al. 2019 (183)	6	6	812	−0.53	−0.24; −0.81	<0.00001
Yap and Pulikkotil (184) (+ doxycycline)	6	6	208	−0.13	−0.41; 0.15	n.s.
Baeza et al. 2020 (185) (3 mos × 6 studies; 6 mos × 3 studies)	9	9	623	−0.56	−0.75; −0.36	<0.00001
Chen et al. 2021 (186) (3 mos) (+− antibiotics; +− surgery) (6 mos)	19	19	1,660	−0.51	−0.73; −0.29	<0.000
* +− antibiotics, with or without antibiotics; CI, confidence interval; HbA1c, glycated haemoglobin; mos, months posttreatment; n/a, not available; n.s., nonsignificant; RCT, randomized controlled trial; sig., significant. Including one study with 30 T1DM and one study with 12 T1DM.	10	10	1,441	−0.54	−0.859; −0.238	<0.000

Tooth Loss

Scaling and root planing in patients with T2DM is modeled to significantly decrease tooth loss by 34.1% overall (191) and in microvascular diseases by 20.5% in nephropathy, 17.7% in neuropathy, and 19.2% in retinopathy, respectively (191). Nonetheless, insurance data identify DM as a risk factor for tooth loss during periodontal maintenance (95).

DENTAL TREATMENT REDUCES HEALTHCARE-RELATED COSTS IN DIABETES

Dental care has been shown to reduce overall medical care costs in people with DM. Acknowledging inherent methodologic issues (192), population studies and analyses of claims data, from people with DM simultaneously insured for dental, medical outpatient care, hospitalization, and pharmacy expenses, report savings in medical care costs, hospitalization, and introduction of insulin among insureds with DM from studies in Germany (193), Japan (194, 195), the Netherlands (196), United Kingdom (197), and the US (191). A correlation between periodontitis severity and future increases in medical care costs was found among older Japanese (198).

Adults with DM consistently have fewer regular dental check-ups than their non-DM peers (22, 199–208) with between 25 and 60% having had a dental visit the last year. Nonetheless, patients with DM who do receive dental care experience incremental higher costs for more complex treatment and restoration of missing teeth rather than preventive visits (203).

TRANSDISCIPLINARY CARE

Transdisciplinary Care Initiated in the Medical Setting

Screening for Periodontitis in the Medical Office

Attainment of good oral health deserves the attention of medical care providers as a novel tool in DM management (209, 210). Medical care providers recognize grossly cavitated (carious) teeth and thrush (Candidiasis) and could suspect undiagnosed periodontitis based on evident signs such as having few or loose teeth, bad breath, or swollen and spontaneously bleeding gums. Several questionnaires for assessing the risk of periodontitis by self-report exist. For example, the U.S. Centers for Disease...
Control and Prevention (CDC) jointly with the American Academy of Periodontology (AAP), developed a set of eight easy-to-pose-and-respond-to items that were validated and found to associate with clinically diagnosed periodontitis (211–213). These or similar questions could be included in the medical visit (22, 214). Such screening in medical practice is well-accepted by both patients (206) and medical professionals (206, 215).

Guidelines for Medical Care Providers and Their Patients
Acknowledging the importance of good oral health in DM management, several professional organizations have published guidelines for (a) medical care professionals in DM practice: AAP (156); American Diabetes Association (ADA) (20); International Diabetes Federation (IDF) (Appendix 1, available online only) (169); and the European Federation of Periodontology (EFP) (156, 169) (Appendix 1); and (b) people with DM or at risk for T2DM in medical practice: AAP (156); ADA (216); IDF (169, 217) (Appendix 1), and EFP (156, 169) (Appendix 1).

Transdisciplinary Care Initiated in the Dental Setting
Screening for T2DM in the Dental Office
Because about half the people with manifest DM and 90% of those with preDM are unaware thereof (18), the dental setting can be important for T2DM screening and referral (218–220), especially for dental patients who do not see a physician regularly (221). It is crucial to identify T2DM in its early stages during which the chances for reversal or mitigation are greatest (222–225). Periodontitis can serve as an early sign of T2DM (226), just like few teeth and recurrent periapical abscesses (93, 94). Random blood glucose or HbA1c levels can be measured chairside by quick finger-prick blood sample analysis (221, 227–241).

Interestingly, 30–54% of dental patients who denied having DM had T2DM with 1.3–5.8% having manifest T2DM as reported from studies in Denmark (227), Saudi Arabia (228), Spain (229), United Kingdom (230, 231), and the US (232–238), aided by electronic health records (239). Whereas, 7.8% of US minority elders (240), 17.2% of patients with Dutch periodontal, and, respectively, 14.6% (241) and 19.1% (221) of Indians had T2DM.

PreDM was found in 9.9% of unaware dental patients in Sweden (242), 28.7% in the US (235), and 46.6% among patients with Dutch periodontal (243).

Guidelines for Dental Care Providers and Their Patients
Acknowledging the importance of identifying undiagnosed T2DM early in dental patients, several professional organizations have published guidelines for a) dental care professionals in dental practice: AAP (156); EFP (156, 169) (Appendix 1); IDF (169) (Appendix 1); Indian Society of Periodontology (244); and Research Society for the Study of Diabetes in India (244); and b) people with DM or at risk for DM in dental practice: AAP (156); EFP (156, 169) (Appendix 1); and IDF (169) (Appendix 1).

Such screening in dental offices is well-accepted by patients (245–247), dentists (246–250) and physicians (251), and their professional organizations (252), and can lead to positive lifestyle changes and decreased HbA1c level (253, 254).

DISCUSSION
Research to promote the understanding of mechanisms underlying reciprocal links between various aspects of oral health and DM is rapidly emerging. However, the current evidence is sufficient to act. The major causes of tooth loss are the two most common oral diseases, namely caries and periodontitis that occur in great proportions of populations globally. These diseases are associated as their respective prevalence in large population studies are not independent of each other (255). Nonetheless, both are largely preventable or treatable/manageable when developed, resulting in the survival of the teeth. Edentulism (having no natural teeth) is decreasing globally, so people keep their teeth at higher ages (28, 256). Furthermore, life expectancy also increases (28, 256); and the prevalence of DM is increasing rapidly all over the world (18). Consequently, increasing numbers of people with DM worldwide are at risk for the oral manifestations described here.

In conclusion, all health care professionals must join forces. However, such transdisciplinary patient-centered collaboration requires paradigm shifts in awareness, attitude, education, and medical and dental practice delivery systems for all health care professionals.

DATA AVAILABILITY STATEMENT
The original contributions presented in the study are included in the article/Supplementary Material, further inquiries can be directed to the corresponding author/s.

ETHICS STATEMENT
Ethical review and approval was not required for the study on human participants in accordance with the local legislation and institutional requirements. Written informed consent from the participants’ legal guardian/next of kin was not required to participate in this study in accordance with the national legislation and the institutional requirements.

AUTHOR CONTRIBUTIONS
All authors listed have made a substantial, direct and intellectual contribution to the work, and approved it for publication.

SUPPLEMENTARY MATERIAL
The Supplementary Material for this article can be found online at: https://www.frontiersin.org/articles/10.3389/fdmed.2021.709831/full#supplementary-material
57. Van Dyke TE, Kholy KE, Ishai A, Takx RAP, Mezue K, Abohashem R, et al. Periodontal disease and inflammation in Pima Indians: a 19-fold greater incidence than in Rochester, Minnesota. Am J Epidemiol. (1978) 108:497–505. doi: 10.1093/oxfordjournals.aje.a112648

58. Nelson RG, Shlossman M, Budding LM, Pettitt DJ, Saad MF, et al. Periodontal disease in non-insulin-dependent diabetes mellitus. J Periodontol. (1991) 62:213–31. doi: 10.1902/jop.1991.62.2.123

59. Borgnakke WS, Anderson PF, Shannon C, Jivanescu A. Is there a relationship between oral health and diabetic neuropathy? Curr Diab Rep. (2015) 15:93. doi: 10.1007/s11882-015-0673-7

60. Wu HQ, Wei X, Yao Y, Qi JY, Xie HM, Sang AM, et al. Association between retinopathy, nephropathy, and periodontitis in type 2 diabetic patients: a meta-analysis. Int J Ophtalmol. (2021) 14:141–7. doi: 10.18240/ijo.2021.01.20

61. Zhao D, Khawaja AT, Jin L, Chan KW, Tonetti M, Tang SCW, et al. Effect of non-surgical periodontal therapy on renal function in chronic kidney disease patients with periodontitis: a systematic review and meta-analysis of interventional studies. Clin Oral Investig. (2020) 24:1607–18. doi: 10.1007/s00784-019-03066-w

62. Zhao D, Khawaja AT, Jin L, Li KY, Tonetti M, Pelekos G. The directional and non-directional associations of periodontitis with chronic kidney disease: a systematic review and meta-analysis of observational studies. J Periodontal Res. (2018) 53:682–704. doi: 10.1111/jre.12565

63. de la Monte SM, Wands JR. Alzheimer's disease is type 3 diabetes-evidence reviewed. J Diabetes Sci Technol. (2008) 2:1101–13. doi: 10.1177/193229680800200619

64. Bello-Chavolla OY, Aguilar-Salinas CA, Avila-Funes JA. The type 2 diabetes-specific dementia risk score (DSDRS) is associated with frailty, cognitive and functional status amongst Mexican community-dwelling older adults. BMC Geriatr. (2020) 20:363. doi: 10.1186/s12877-020-01776-5

65. Kuehn BM. In Alzheimer research, glucose metabolism moves to center stage. J Am Med Assoc. (2020) 323:297–9. doi: 10.1001/jama.2019.20399

66. Kamer AR, Pushakal S, Gulivindala D, Butler T, Li Y, Annam KRC, et al. Periodontal dysbiosis associates with reduced CSF Aβ42 in cognitively normal elderly. Alzheimers Dement. (2021) 13:e12172. doi: 10.1016/j.dalf.2021.12172

67. Mai F, Xie M, Huang X, Long Y, Lu X, Wang X, et al. Porphyromonas gingivalis and Its systemic impact: current status. Pathogens. (2020) 9:944. doi: 10.3390/pathogens9110944

68. Nadim R, Tang J, Dilmohamed A, Yuan S, Wu C, Bakre AT, et al. Influence of periodontal disease on risk of dementia: a systematic literature review and a meta-analysis. Eur J Epidemiol. (2020) 35:821–33. doi: 10.1007/s10654-020-00648-x

69. Norins LC. Licensed anti-microbial drugs logical for clinical trials against pathogens currently suspected in Alzheimer's disease. Antibiotics. (2021) 10:327. doi: 10.3390/antibiotics10030327

70. Olsen I, Singhrao SK. Can oral infection be a risk factor for Alzheimer's disease? J Oral Microbiol. (2015) 7:29143. doi: 10.3402/jom.v7.29143

71. Olsen I. Possible link between Porphyromonas gingivalis and amyloidosis in the pathogenesis of Alzheimer's and Parkinson's disease. Int J Pathol Immunol. (2020) 1:1. doi: 10.4690/jipi.100101

72. Olsen I, Kell DB, Pretorius E. Is Porphyromonas gingivalis involved in Parkinson's disease? Eur J Clin Microbiol Infect Dis. (2020) 39:2013–8. doi: 10.1007/s10096-020-03944-2

73. Dominy SS, Lynch C, Ermini F, Benedyck M, Marczyk A, Konradi A, et al. Porphyromonas gingivalis in Alzheimer's disease brains: evidence for disease causation and treatment with small-molecule inhibitors. Sci Adv. (2019) 5:eavaa3333. doi: 10.1126/sciadv.aava3333

74. Iranmanesh B, Khalili M, Amiri R, Zartab H, Aflatoonian M. Oral symptoms associated with COVID-19. J Oral Dis. (2021) 13:e12172. doi: 10.3390/pathogens9110944

75. Tsuchiya H. Oral symptoms associated with COVID-19 and their pathogenic mechanisms: a literature review. Dent J. (2021) 9:32. doi: 10.3390/dj9030032

76. Ansari R, Gheitani M, Heidari F, Heidari F. Oral cavity lesions as a manifestation of the novel virus (COVID-19). Oral Dis. (2020) 26:771–2. doi: 10.1111/odi.13465

77. Martin Carreras-Presas C, Amaro Sánchez J, López-Sánchez AF, Jané-Salas E, Somacarrera Pérez ML. Oral vesiculobullous lesions associated with SARS-CoV-2 infection. Oral Dis. (2021) 27(Suppl. 3):710–2. doi: 10.1111/odi.13382

78. Patel J, Woolley J. Necrotizing periodontal disease: oral manifestation of COVID-19. Oral Dis. (2021) 27(Suppl. 3):768–9. doi: 10.1111/odi.13462

79. Marouf N, Cai W, Said KN, Daas H, Chinta VR, et al. The COVID-19 pathway: extra-oral infections and inflammation. J Oral Med Dent Res. (2020) 10:157. doi: 10.1007/s40257-020-00012-x

80. Elibol E. Otolaryngological symptoms in COVID-19. Pathogens. (2020) 9:32. doi: 10.3390/pathogens9110944

81. Lloyd-Jones G, Molayem S, Pontes CC, Chapple I. The COVID-19 pathway: a proposed oral-vascular-pulmonary route of SARS-CoV-2 infection and the importance of oral healthcare measures. J Oral Med Dent Res. (2021) 2:1–25.
82. Räisänen JT, Umeizudike KA, Pärnänen P, Heikkilä P, Tervahartiala T, Nwhator SO, et al. Periodontal disease and targeted prevention using aMMP-8 point-of-care oral fluid analytics in the COVID-19 era. *Med Hypotheses*. (2020) 144:110276. doi: 10.1016/j.mehy.2020.110276

83. Gupta S, Mohindra T, Chauhan PK, Singla V, Goyal K, Sahni V, et al. SARS-CoV-2 detection in gingival crevicular fluid. *J Dent Res*. (2021) 100:187–93. doi: 10.1177/0022034520970536

84. Aquino-Martinez R, Hernandez-Vigueras S. Severe COVID-19 lung infection in older people and periodontitis. *J Clin Med*. (2021) 10:279. doi: 10.3390/jcm10020279

85. Huang N, Perez P, Kato T, Mikami Y, Okuda K, Gilmore RC, et al. SARS-CoV-2 infection of the oral cavity and saliva. *Nat Med*. (2021) 27:892–903. doi: 10.1038/s41591-021-01296-8

86. Xu J, Li Y, Gan F, Du Y, Yao Y. Salivary gland potential reservoirs for COVID-19 asymptomatic infection. *J Dent Res*. (2020) 99:989. doi: 10.1177/002203452018518

87. Pitones-Rubio V, Chávez-Cortez EG, Hurtado-Camarena A, González-Rascón A, Serrafín-Higuera N. Is periodontal disease a risk factor for severe COVID-19 illness? *Med Hypotheses*. (2020) 144:109966. doi: 10.1016/j.mehy.2020.109969

88. Liu R, Yi S, Zhang J, Lv Z, Zhu C, Zhang Y. Viral load dynamics in sputum and nasopharyngeal swab in patients with COVID-19. *J Dent Res*. (2020) 99:1239–44. doi: 10.1177/0022034520946251

89. Bode B, Garrett V, Messler I, McFarland R, Rowe J, Booth R, et al. Glycemic characteristics and clinical outcomes of COVID-19 patients hospitalized in the United States. *J Diabetes Sci Technol*. (2020) 14:813–21. doi: 10.1177/1932996220292469

90. Kassebaum NJ, Bernabe E, Dahiyat M, Bhardari B, Murray CJ, Marcenes W. Global burden of untreated caries: a systematic review and meta-regression. *J Dent Res*. (2015) 94:650–8. doi: 10.1177/0022034515573272

91. Beheshti M, Badner V, Shah P, Margulis KS, Yeroshalmi F. Association of diabetes mellitus and the evolution of endodontic pathology. *Quintessence Int*. (2019) 52:297–306. doi: 10.1111/iej.13011

92. Räisänen IT, Umeizudike KA, Pärnänen P, Heikkilä P, Tervahartiala T, Wkly Rep. *MMWR Morb Mortal Wkly Rep*. (2013) 144:478–85. doi: 10.14219/jada.archive.2013.0149

93. Oluwagbemigun K, Dietrich T, Pischon N, Bergmann M, Boeing H. Association between number of teeth and chronic systemic diseases: a cohort study followed for 13 years. *PLoS ONE*. (2015) 10:e0123879. doi: 10.1371/journal.pone.0123879

94. Choi HM, Han K, Park YG, Park JB. Associations between the number of natural teeth and renal dysfunction. *Medicine*. (2016) 95:e4681. doi: 10.1097/MD.0000000000004681

95. Suma S, Furuta M, Yamashita Y, Matsuhashi K, Aging, mastication, and malnutrition and their associations with cognitive disorder: evidence from epidemiological data. *Curr Oral Health Rep*. (2019) 6:89–99. doi: 10.1007/s40496-019-00220-8

96. Listl S. Oral health conditions and cognitive functioning in middle and later adulthood. *BMC Oral Health*. (2014) 14:70. doi: 10.1186/1472-6831-14-70

97. Oates TW, Dowell S, Robinson M, McMahan CA. Glycemic control and implant stabilization in type 2 diabetes mellitus. *J Dent Res*. (2009) 88:367–71. doi: 10.1177/002203450934203

98. Eskow CC, Oates TW. Dental implant survival and complication rate over 2 years for individuals with poorly controlled type 2 diabetes mellitus. *Clin Implant Dent Relat Res*. (2017) 19:423–31. doi: 10.1111/cid.12465

99. Lorean A, Ziv-On H, Perlis V, Ormianer Z. Marginal bone loss of dental implants in patients with type 2 diabetes mellitus with poorly controlled HbA1c values: a long-term retrospective study. *Int J Oral Maxillofac Implants*. (2021) 36:355–60. doi: 10.11607/omi.8476

100. Meza Mauricio J, Miranda TS, Almeida ML, Silva HD, Figueiredo LC, Duarte PM. An umbrella review on the effects of diabetes on implant failure and peri-implant diseases. *Braz Oral Res*. (2019) 33:e070. doi: 10.1590/0323-1707-bo2019.vol33.0070

101. Monje A, Catena A, Borgnakke WS. Association between diabetes mellitus/hyperglycaemia and peri-implant diseases: systematic review and meta-analysis. *Clin Periodontal*. (2017) 44:636–48. doi: 10.1111/cpe.12724
159. Ivanescu A, Bratu E, Goguta L, Borgnakke WS. Effect of improvement of complete dentures on quality of life in type 2 diabetes. *Diabetes Stoffw Herz*. (2013) 22:207–11.

160. Machado V, Botelho J, Proença L, Alves R, Oliveira MJ, Amaro L, et al. Periodontal status, perceived stress, diabetes mellitus and oral hygiene care on quality of life: a structural equation modelling analysis. *BMC Oral Health*. (2020) 20:229. doi: 10.1186/s12903-020-01219-y

161. Sekulic S, John MT, Davey C, Rener-Sitar K. Association between oral health-related and health-related quality of life. *Zdr Zdravstv*. (2020) 59:65–74. doi: 10.2478/zph-2020-0009

162. Mizuno H, Ekuni D, Maruyama T, Kataoka K, Yoneda T, Fukuhara D, et al. The effects of non-surgical periodontal treatment on glycemic control, oxidative stress balance and quality of life in patients with type 2 diabetes: a randomized clinical trial. *PloS ONE*. (2017) 12:e0188171. doi: 10.1371/journal.pone.0188171

163. Vergnes JN, Canceill T, Vinel A, Laurentin-Daliecieux S, Maupas-Schwalm F, Blasco-Baque V, et al. The effects of periodontal treatment on diabetic patients: the DIAPERIO randomized controlled trial. *J Clin Periodontol*. (2018) 45:1150–63. doi: 10.1111/jcpe.13003

164. Pedroso JF, Lotofahli Z, Albattarni G, Arruada Schulz M, Monteiro A, Sehnem AL, et al. Influence of periodontal disease on cardiovascular markers in diabetes mellitus patients. *Sci Rep*. (2019) 9:16138. doi: 10.1038/s41598-019-52498-7

165. Zhang H, Li C, Shang S, Luo Z. Scaling and root planing with enhanced root planing on healthcare for type 2 diabetes mellitus: a randomized controlled clinical trial. *J Dent Sci*. (2019) 172:108641. doi: 10.1016/j.jdent.2020.108641

166. Machado V, Botelho J, Proença L, Alves R, Oliveira MJ, Amaro L, et al. Periodontal treatment to improve metabolic control in patients with chronic periodontitis and type 2 diabetes: a meta-analysis of randomized clinical trials. *J Periodontol*. (2013) 84:958–73. doi: 10.1902/jop.2012.120377

167. Wang TF, Jen IA, Chou C, Lei YP. Effects of periodontal therapy on metabolic control in patients with type 2 diabetes mellitus and periodontal disease: a meta-analysis. *Med*. (2014) 93:e292. doi: 10.1097/MED.0000000000000292

168. Li Q, Hao S, Fang J, Xie J, Kong XH, Yang JX. Effect of non-surgical periodontal treatment on glycemic control of patients with diabetes: a meta-analysis of randomized controlled trials. *Trials*. (2015) 16:291. doi: 10.1186/s13063-015-0810-2

169. Simpson TC, Weldon JG, Worthington HV, Needleman I, Wild SH, Moles DR, et al. Treatment of periodontal disease for glycemic control in people with diabetes mellitus. *Cochrane Database Syst Rev*. (2015) 11:CD004714. doi: 10.1002/14651858.CD004714.pub3

170. Teschke A, Yitayeh A. The effect of periodontal therapy on glycemic control and fasting plasma glucose level in type 2 diabetic patients: systematic review and meta-analysis. *BMC Oral Health*. (2016) 17:31. doi: 10.1186/s12903-016-0249-1

171. Cao R, Li Q, Wu Q, Yao M, Chen Y, Zhou H. Effect of non-surgical periodontal therapy on glycemic control of type 2 diabetes mellitus: a systematic review and Bayesian network meta-analysis. *BMC Oral Health*. (2019) 19:176. doi: 10.1186/s12903-019-0828-y

172. Jain A, Gupta J, Bansal D, Sood S, Gupta S, Jain A. Effect of scaling and root planing as monotherapy on glycemic control in patients of Type 2 diabetes with periodontitis: a systematic review and meta-analysis. *J Indian Soc Periodontol*. (2019) 23:303–10. doi: 10.4103/jisp.jisp_417_18

173. Yap KCH, Pulikkotil SJ. Systemic doxycycline as an adjunct to scaling and root planing in diabetic patients with periodontitis: a systematic review and meta-analysis. *BMC Oral Health*. (2016) 17:29. doi: 10.1186/s12903-016-0113-y

174. D’Auito F, Gkranias N, Bhowruth D, Khan T, Orlandi M, Suvan J, et al. Effect of periodontal treatment on healthcare costs in newly diagnosed diabetes patients: evidence from a German claims database. *Diabetes Res Clin Pract*. (2021) 172:108641. doi: 10.1016/j.diabres.2020.108641
194. Iwasaki M, Sato M, Yoshihara A, Miyazaki H. Effects of periodontal diseases on diabetes-related medical expenditure. Curr Oral Health Rep. (2016) 3:7–13. doi: 10.1007/s40406-016-0076-0

195. Shin JH, Takada D, Kunisawa S, Imanaka Y. Effects of periodontal management for patients with type 2 diabetes on healthcare expenditure, hospitalization and worsening of diabetes: an observational study using medical, dental and pharmacy claims data in Japan. J Clin Periodontol. (2021) 48:774–84. doi: 10.1111/jcpe.13441

196. Smits KPI, Lisil S, Plachkova AS, Van der Galien O, Kalusm O. Effect of periodontal treatment on diabetes-related healthcare costs: a retrospective study. BMJ Open Diabetes Res Care. (2020) 8:e001666. doi: 10.1136/bmddrc-2020-001666

197. Solowij-Wedderburn J, Ide M, Pennington M. Cost-effectiveness of non-surgical periodontal therapy for patients with type 2 diabetes in the UK. J Clin Periodontol. (2017) 44:700–7. doi: 10.1111/jcpe.12746

198. Sato M, Iwasaki M, Yoshihara A, Miyazaki H. Association between periodontitis and medical expenditure in older adults: a 33-month follow-up study. Geriatr Gerontol Int. (2016) 16:856–64. doi: 10.1111/ggi.12569

199. Allen EM, Ziada HM, O’Halloran D, Clerehugh V, Allen PF. Attitudes, awareness and oral-health-related quality of life in patients with diabetes. J Oral Rehabil. (2008) 35:218–23. doi: 10.1111/j.1365-2842.2007.01760.x

200. Baccaglini L, Kusi Appiah A, Ray M, Yu F. US adults with diabetes mellitus: variability in oral healthcare utilization. PLoS ONE. (2012) 7:e3251120. doi: 10.1371/journal.pone.0325120

201. Burton WN, Chen CY, Li X, Schultz AB. Association between employee dental claims, health risks, workplace productivity, and preventive services compliance. J Occup Environ Med. (2017) 59:721–26. doi: 10.1097/JOM.0000000000001069

202. Chaudhari M, Hubbard R, Reid RJ, Inge R, Newton KM, Spangler L, et al. Evaluating components of dental care utilization among adults with diabetes and matched controls via hurdle models. BMC Oral Health. (2012) 12:20. doi: 10.1186/1472-6831-12-20

203. Chen Y, Zhang P, Luman ET, Griffin RQ, Rolka DB. Incremental dental expenditures associated with diabetes among noninstitutionalized U.S. adults aged >=18 years old in 2016-2017. Diabetes Care. (2021) 44:1317–23. doi: 10.2337/dc20-0373

204. Luo H, Bell RA, Wright W, Wu Q, Wu B. Trends in annual dental visits among US dentate adults with and without self-reported diabetes and prediabetes, 2004-2014. J Am Dent Assoc. (2018) 149:460–9. doi: 10.1016/j.adaj.2018.01.008

205. Macek MD, Tomar SL. Dental care visits among dentate adults with diabetes and periodontitis. J Public Health Dent. (2009) 69:284–9. doi: 10.1111/j.1723-7635.2009.00136.x

206. McGowan K, Phillips T, Giels E, Dover T, Mitchell G, Mutch A, et al. Developing a prototype for integrated dental and diabetes care: understanding needs and priorities. Aust Dent J. (2011) 56:41–9. doi: 10.1111/j.1743-2177.2011.01280

207. Myers-Wright N, Lamster IB, Jasek JP, Charnamy S. Evaluation of medical and dental visits in New York City: opportunities to identify persons with and at risk for diabetes mellitus in dental settings. Community Dent Oral Epidemiol. (2018) 46:102–8. doi: 10.1111/cdoe.12334

208. Reid J, Koopu P, Burkhardt N, Stewart T, Anderson A, Harwood M. Oral and dental health and health care for Maori with type 2 diabetes: a qualitative study. Community Dent Oral Epidemiol. (2020) 48:101–8. doi: 10.1111/cdoe.12591

209. Darling-Fisher CS, Borgnakke WS, Haber J, Oral health and diabetes: gain the confidence to discuss this important topic with your patients. Am Nurse Today. (2017) 12:22–5.

210. Darling-Fisher CS, Kanjirath PP, Peters MC, Borgnakke WS. Oral health: an untapped resource in managing glycemic control in diabetes and promoting overall health. J Nurse Pract. (2015) 11:889–96. doi: 10.1016/j.nurpra.2015.08.001

211. Miller K, Eke PI, Schoua-Glusberg A. Cognitive evaluation of self-report questions for surveillance of periodontitis. J Periodontol. (2007) 78:1455–62. doi: 10.1902/jop.2007.060384

212. Eke PI, Dye B. Assessment of self-report measures for predicting population prevalence of periodontitis. J Periodontol. (2009) 80:1371–9. doi: 10.1902/jop.2009.080607

213. Eke PI, Dye BA, Wei L, Slade GD, Thornton-Evans GO, Beck JD, et al. Self-reported measures for surveillance of periodontitis. J Dent Res. (2013) 92:1041–7. doi: 10.1177/0022034513506521

214. Verhulst MF, Teeuw WJ, Bazzaro S, Muris J, Su N, Nicu EA, et al. A rapid, non-invasive tool for periodontitis screening in a medical care setting. BMC Oral Health. (2019) 19:87. doi: 10.1186/s12903-019-0784-7

215. Northridge ME, Kumar A, Kaur R. Disparities in access to oral health care. Annu Rev Public Health. (2020) 41:513–35. doi: 10.1146/annurev-publhealth-040119-094318

216. American Diabetes Association. Diabetes and Oral Health. Available online at: https://www.diabetes.org/diabetes/complications/keeping-your-mouth-healthy (accessed July 05, 2021).
232. Estrich CG, Araujo MWB, Lipman RD. Prediabetes and diabetes screening in dental care settings: NHANES 2013 to 2016. JDR Clin Trans Res. (2019) 4:76–85. doi: 10.1177/2380041817808818

233. Franck SD, Stolberg RL, Bilich LA, Payne LE. Point-of-care Hba1c screening predicts diabetic status of dental patients. J Dent Hyg. (2014) 88:42–52.

234. Genco RJ, Schifferle RE, Dunford RG, Falkner KL, Hsu WC, Bahlikjan J. Screening for diabetes mellitus in dental practices: a field trial. J Am Dent Assoc. (2014) 145:57–64. doi: 10.14219/jada.2013.7

235. Herman WH, Taylor GW, Jacobson JJ, Burke R, Brown MB. Screening for prediabetes and type 2 diabetes in dental offices. J Public Health Dent. (2015) 75:175–82. doi: 10.1111/jphd.12082

236. Kalladka M, Greenberg BL, Padmashree SM, Venkateshiah NT, Yalangi S, Raghunanand BN, et al. Screening for coronary heart disease and diabetes risk in a dental setting. Int J Public Health. (2014) 59:485–92. doi: 10.1007/s00038-013-0350-x

237. Lalla E, Cheng B, Kunzel C, Burkett S, Lamster IB. Dental findings and identification of undiagnosed hyperglycemia. J Dent Res. (2013) 92:888–92. doi: 10.1177/0022034513502791

238. Philips KH, Zhang S, Moss K, Ciarrrocca K, Beck JD. Periodontal disease, undiagnosed diabetes, and body mass index: implications for diabetes screening by dentists. J Am Dent Assoc. (2021) 152:25–35. doi: 10.1016/j.adaj.2020.09.002

239. Acharya A, Cheng B, Koralkar R, Olson B, Lamster IB, Kunzel C, et al. Screening for diabetes risk using integrated dental and medical electronic health record data. JDR Clin Trans Res. (2018) 3:188–94. doi: 10.1177/2380041817759496

240. Marshall SE, Cheng B, Northridge ME, Kunzel C, Huang C, Lamster IB. Integrating oral and general health screening at senior centers for minority elders. Am J Public Health. (2013) 103:1022–5. doi: 10.2105/AJPH.2013.301259

241. Iadhan AV, Tarte PR, Puri SK. Dental clinic: potential source of high-risk screening for prediabetes and type 2 diabetes. Indian J Dent Res. (2019) 30:831–4. doi: 10.4103/ijdr.IJDR_80_18

242. Engström S, Berne C, Gahnberg L, Svärdsson K. Effectiveness of screening for diabetes mellitus in dental health care. Diabet Med. (2013) 30:239–45. doi:10.1111/dme.12099

243. Su N, Teeuw WJ, Loos BG, Kosho MXF, van der Heijden G. Development and validation of a screening model for diabetes mellitus in patients with periodontitis in dental settings. Clin Oral Investig. (2020) 24:4089–100. doi: 10.1007/s00784-020-03281-w

244. Jain A, Chawla M, Kumar A, Chawla R, Grover V, Ghosh S, et al. Management of periodontal disease in patients with diabetes- good clinical practice guidelines: a joint statement by Indian Society of Periodontology and Research Society for the Study of Diabetes in India. J Indian Soc Periodontol. (2020) 24:498–524. doi:10.4103/jisp.jisp_688_20

245. Bin Mubayrik A, Al Dosary S, Aldhaweef R, Alfurayh S, Aloiymmi T, et al. Public attitudes toward chairside screening for medical conditions in dental settings. Patient Prefer Adher. (2021) 15:187–95. doi:10.2147/PPA.S297882

246. Greenberg BL, Glick M. Providing health screenings in a dental setting to enhance overall health outcomes. Dent Clin North Am. (2018) 62:269–78. doi: 10.1016/j.cden.2017.11.006

247. Rosedale MT, Strauss SM. Diabetes screening at the periodontal visit: patient and provider experiences with two screening approaches. Int J Dent Hyg. (2012) 10:250–8. doi: 10.1111/j.1601-3037.2011.00542.x

248. Esmeili T, Ellison J, Walsh MM. Dentists’ attitudes and practices related to diabetes in the dental setting. J Public Health Dent. (2010) 70:108–14. doi: 10.1111/j.1752-7325.2009.00150.x

249. Greenberg BL, Glick M, Frantsve-Hawley J, Kantor ML. Dentists’ attitudes toward chairside screening for medical conditions. J Am Dent Assoc. (2010) 141:52–62. doi: 10.14219/jada.archive.2010.0021

250. Yonel Z, Yahyouche A, Jalal Z, James A, Dietrich T, Chapple ILC. Patient acceptability of targeted risk-based detection of non-communicable diseases in a dental and pharmacy setting. BMC Public Health. (2020) 20:1576. doi: 10.1186/s12889-020-09649-7

251. Greenberg BL, Thomas PA, Glick M, Kantor ML. Physicians’ attitudes toward medical screening in a dental setting. J Public Health Dent. (2015) 75:225–33. doi: 10.1111/jphd.12093

252. Friman G, Hultin M, Nilsson GH, Wärdh I. Medical screening in dental settings: a qualitative study of the views of authorities and organizations. BMC Res Notes. (2015) 8:580. doi: 10.1186/s13104-015-1543-8

253. Greenberg BL, Lamster IB. Assessment and management of patients with diabetes mellitus in the dental office. Dent Clin North Am. (2012) 56:819–29. doi: 10.1016/j.dclinm.2012.07.008

254. Lalla E, Cheng B, Kunzel C, Burkett S, Ferraro A, Lamster IB. Six-month outcomes in dental patients identified with hyperglycaemia: a randomized clinical trial. J Clin Periodontol. (2015) 42:228–35. doi: 10.1111/jcpe.12358

255. Haworth S, Shungin D, Kwak SY, Kim HY, West NX, Thomas SJ, et al. Tooth loss is a complex measure of oral disease: determinants and methodological considerations. Commun Dent Oral Epidemiol. (2018) 46:555–62. doi: 10.1111/cdeo.12391

256. Schwendicke F, Krois J, Kocher T, Hoffmann T, Micheels W, Jordan RA. More teeth in more elderly: periodontal treatment needs in Germany 1997–2030. J Clin Periodontol. (2018) 45:1400–7. doi: 10.1111/jcpe.13020

Conflict of Interest: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Publisher's Note: All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.

Copyright © 2021 Borgnakke and Poudel. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.