Different Designs of Feeding Aids for Cleft Palatal Defects

Anshul Chugh1*, Divya Dahiya1, Harleen Thukral1, Sunita Verma1, Anamika Ahlawat1 and Amit Dahiya2
1Department of Prosthodontics and Crown and Bridge, Pandit Bhagwat Dayal Shrama Post Graduate Institute of Dental Sciences, Rohtak, Haryana, India
2Department of Orthodontics, Pandit Bhagwat Dayal Shrama Post Graduate Institute of Dental Sciences, Rohtak, Haryana, India

Abstract
Cleft lip and palate is a congenital anomaly resulting in functional, esthetic and psychological disharmony of the patient. In infants, parents face a major problem in feeding them because of oro-nasal communication prior to any surgical intervention. In this article, various designs of passive feeding plates have been described to meet the nutritional demands of the infants. In young children, active feeding plates help in improving functioning along with the naso alveolar moulding.

Keywords: Cleft lip and palate; Feeding aid; Active plates; Passive plates

Clinical Significance
This article presents various designs of passive and active feeding aids for nutritional needs of cleft lip and palate patients.

Introduction
Cleft lip and palate involving orofacial region are most common congenital anomaly. It can either be syndrome associated or non-syndromic. Cleft patients are associated with a lot of problems like, feeding difficulties, facial growth deficiency, dental, esthetic, psychological problems, velo-pharyngeal incompetence, otologic problems like middle ear infection, Eustachian tube dysfunction, delayed speech. These necessitate a multidisciplinary approach. But immediate concern for a newborn is feeding difficulty [1-6].

Feeding problems occurs because child is not able to create sufficient negative intraoral pressure (suction) during feeding. It also affects bolus organization, bolus retention before swallowing, and also initiation of swallowing itself (Wolf and Glass) Feeding is further complicated by, nasal regurgitation, excessive air intake, and burping, coughing, choking and prolonged feeding causing fatigue [7].

A study by Pandya and Boorman found a significant decrease in failure-to-thrive rates for all infants with cleft palate, including syndromic cases after an early feeding program was implemented that involved growth monitoring, domiciliary visits, support of breast-feeding and feeding education. However, there is increasing emphasis on neonatal intervention that may include modified bottles and nipples, feeding plates, direct breast-feeding, and particular feeding techniques. But this management is insufficient if defect are large. Early surgical repair of the palate is a viable option. But usually it needs to be postponed until certain age and weight gain of the infant. Oropharyngeal or nasogastric tube can be used but for limited time. In such patients, feeding obturator is a ray of hope [3,4,8].

Objectives of Feeding Obturator

- Create rigid platform against which baby can press the nipple and extract milk.
- Help in creating negative pressure thus reducing regurgitation, choking and thus reduces time of feeding also.
- Help in proper tongue position thus preventing its interface in growth of palatal shelves and allowing functional development of jaw.
- Contribute to speech development.
- Reduces nasopharyngeal infection preventing food regurgitation in nasopharynx [5-12].

Materials and Methods
In this article we have fabricated various designs of the feeding plate. We are discussing the role of each design their merits and demerits [10-14].

Depending upon whether appliance places any force on alveolar segment or not these can be grouped into

a) Active b) Passive

Different possible designs of feeding obturators are

Based on material used
1. Heat cure resin
2. Autopolymerising resin
3. Visible light cure resin
4. Clear autopolymerising resin
5. Flexible plates

Based on age of the patient
Days and months:
1. Flexible plates
2. Feeding plate with extraoral elastics
3. Feeding plate with extraoral wire/suture
4. Feeding plate with added nasal stent
5. Feeding plate with cheek pad
6. Overlay type feeding plate

Years:
1. Nance type feeding plate
2. Feeding plate with Jackson’s clasp

*Corresponding author: Dr. Anshul Chugh, MDS, Associate Professor, Department of Prosthodontics and Crown and Bridge, Pandit Bhagwat Dayal Shrama Post Graduate Institute of Dental Sciences, India, Tel: +9101262213007; E-mail: dr.anshulchugh@rediffmail.com

Received June 13, 2016; Accepted August 01, 2016; Published August 03, 2016

Citation: Chugh A, Dahiya D, Thukral H, Verma S, Ahlawat A, et al. (2016) Different Designs of Feeding Aids for Cleft Palatal Defects. J Health Edu Res Dev 4: 180. J Health Edu Res Dev 4: 180. doi: 10.4172/2380-5439.1000180

Copyright: © 2016 Chugh A, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Passive plates

The passive plates do not apply any force, they serve to provide an artificial palate for the infant and permit functions like swallowing and feeding in a more normal manner. They also serve to prevent the widening of the cleft due to the activity of the tongue.

1. Construction of feeding obturator in a day using autopolymerising resin and incorporation of dental floss to avoid gagging and accidental swallowing (Figure 1).
2. Construction of feeding obturator in a day using autopolymerising resin attaching two 18G orthodontic wire that extend out of mouth to avoid accidental ingestion or aspiration of obturator. Application of some acrylic resin at sharp end of wire to avoid injury to both child and parent. It can be modified by incorporating the elastics or head band to aid in retention (Figures 2-4).
3. Vacuum tray fabrication because of its added advantage over acrylic obturator of being mouldable and soft texture with less possibility of soft tissue injury, good fit to ridges and palate and light in weight. But these are not economical, and can cause irritation to palate (Figure 5).
4. Fabrication of pre alveolar nasal molding plate (PNAM) with heat cure clear acrylic resin with retentive acrylic button at 45 degree to occlusal plane in upward direction incorporation of stretchable extra oral elastic in retentive button in a hole that can be retained extraorally with micropore (Figure 6).
5. Fabrication of pre naso alveolar molding plate with nasal stent using clear heat polymerized resin with an extraoral retentive button positioned at 45 degree to occlusal plane on labial flange facing downward. A wire added to upper end of button end of wire coated with permasoft to avoid injury to nasal soft tissue. Nasal cartilage molding is done by applying gentle pressure by activating wire loop (Figure 7).
6. Nance obturator can be used when it is not feasible to close fistula in palate surgically, and removable appliance is also not possible. It is a modified Nance space maintainer with a acrylic plate covering the defect. Advantage is it also acts as space maintainer and we need not to remake it with growth of maxilla (Figure 8).
7. Acrylic plate retained with clasp around teeth (Figure 9).
8. Implant retained and magnet retained plate also can be made.

Active appliances

Latham’s appliance: It is a fixed appliance. It consists of two acrylic plates surgically fitted to palate under general anesthesia that are connected with a hinged bar posteriorly. Manipulation is done by

Clinical Implications

Days	Month	Year
1.		
1. Flexible plates
2. Feeding plate with clasp extraoral elastics
3. Feeding plate with extraoral wire suture
4. Feeding plate with nasal stent
5. Feeding plate with cheek pad

1. Overlay type feeding plate
2. Feeding plate with clasp extraoral elastics
3. Feeding plate with extraoral wire suture
4. Feeding plate with nasal stent
5. Feeding plate with cheek pad

Figure 1: Feeding obturator of autopolymerising resin with dental floss.

Figure 2: Feeding obturator of autopolymerising resin attaching two 18G orthodontic wire and elastics or head bands for retention.

Figure 3: Feeding obturator of autopolymerising resin attaching two 18G orthodontic wire and elastics or head bands for retention.

Figure 4: Feeding obturator of autopolymerising resin attaching two 18G orthodontic wire and elastics or head bands for retention.
rotating the hinged bar. In the area of the cleft a screw is present. The screw is turned 3/4th of a turn over 3-4 week period, every day until it is tight. It helps in repositioning of protruding premaxilla in bilateral cleft lip and palate patients, along with expansion of lateral maxillary segments. The advantage of this device is that it allows narrowing of defect by manipulating the palatal segments to desired location and thus make repair of cleft lip easy. Disadvantage is it does not cover the defect.

Jackscrew appliance: This consists of two acrylic plates fitted over the alveolar segments and attached by single or multiple jackscrews. By adjusting the jackscrew the palatal segments can be manipulated to desired location. And jackscrew also prevents the interference of tongue in cleft closure (Figure 10).

Quad helix:
Steps to be followed in fabrication of feeding plates

- **Step 1:** Selection of the impression tray: size of impression tray should be enough to include maxillary segments laterally, cover up maxillary tuberosities posteriorly. Prefabricated trays also are also available commercially (Coe laboratories, Chicago) for cleft lip and palate infants.

- **Step 2:** Making Primary impression. The making of the impression in an infant with a cleft palate is a critical procedure.

- **Step 3:** Primary cast was fabricated with dental stone (type III gypsum product)

- **Step 4:** Custom tray fabrication with autopolymerising resin.

- **Step 5:** Final impression made with rubber base impression materials to record precise details.

- **Step 6:** Master cast fabrication and excessive undercut blocking with modeling wax

- **Step 7:** Wax pattern adaption on master cast.

- **Step 8:** Flasking, dewaxing procedure and feeding plate fabrication with heat cure acrylic resin

- **Step 9:** Eyelets created on feeding plate to allow silk suture to pass through.

Various techniques are used to enhance retention of plate (Figure 11).

Discussion

Cleft lip and palate is congenital anomaly and it shows predilection for some races also. It may be syndromic or non-syndromic [15-17]. The syndromic types are definition associated with other malformations like in Apert’s syndrome, Pierre Robin sequence, trisomies 13 and 18, Treacher Collin syndrome, Warrensburg’s syndrome, Stickler’s syndrome. Isolated cleft lip and palate is reported to occur in approximately 1 in 700 live births, Male to female ratio for cleft lip and
Different materials that can be used for impression are:

Heavy body silicone impression material, polyvinyl siloxane impression material, low fusing impression compound and alginate have been routinely employed for making impressions of neonates with orofacial clefts.

The bite registration materials, impression compound has also been in use for the impressions of infants with oral clefts.

The putty wash impression can produce accurate impressions with good reproduction of the details and its biggest advantage is its greater tear strength and the possibility of making multiple casts with the same impression. Putty can be used with finger adaptation [23-29].

Complication encountered while making impression are:

- Engagement of impression in undercuts, and its fragmentation during withdrawal causing respiratory obstruction / asphyxiation.
- Impression should be made when the infant is fully awake
- Impression should be made in proper hospital setting with a surgeon present all the time to handle airway emergency.
- Maintaining airway patency by depressing tongue with mouth mirror.
- Clean remnants of impression material after the procedure.
- Infant has not had food for at least two hour before procedure. High volume suction should be ready at all times, in case of aspiration of gastric content.
- Maintain a proper patient and dentist position. A number of positions including prone, face down, upright, and even upside down have been adopted.

Summary and Conclusion

Adequate knowledge of available treatment modalities, procedures and appliances leads to a better coordination and understanding of the efforts of the various specialties which are involved in cleft lip and palate care. A basic knowledge of possible complications and their management makes us better equipped in handling emergencies if they arise. This article describes various possible designs of feeding obturator for a cleft palate baby. Feeding obturator promotes neonatal weight gain, which is important in preparing the baby for corrective surgery.

References

1. Avhad R, Sar R, Tembhumre J (2014) Pre-surgical management of unilateral cleft lip and palate in neonate. A clinical report. J Prosthett Dent 112: 676-679.
2. Ravichandra KS, Vijayaprasad KE, Vasa AAK, Suzan S (2010) A new technique of impression making for an obturator in cleft lip and palate patient. J Indian Soc Pedod Prev Dent 8: 311-314.
3. Narendra R, Sashi Purna CR, Reddy SD, Simhachalam Reddy N, Sesh Reddy P, et al. (2013) Feeding Obturator-a presurgical prosthetic aid for infants with cleft lip and palate-clinical report. Ann Essences Dent 5: 1-5.
4. Sikkiraj S, Shah S, Mulchandani V, Rachappa MM, Dave B, et al. (2014) A ray of hope in cleft lip and palate patients: case reports. European Journal of Dental Therapy and Research 3: 217-220.
5. Chandra P, Adiakha VK, Singh N (2011) Feeding obturator appliance for an infant with cleft lip and palate. J Indian Soc Pedod Prev Dent 29: 71-73.
6. Akulwar R (2014) Feeding Plate for the Management of Neonate Born With Cleft Lip and Palate. Int J Scient Res 3: 362-364.
7. McDonald R, Avery D, Dean J (2004) Dentistry for the Child and the Adolescent. 8th edn, St. Louis, Mosby Publishers, Missouri.
8. Samant A (1989) A one-visit obturator technique for infants with cleft palate. J Oral Maxillofac Surg 47: 539-540.
9. Kornmahan DA, Stark RB (1958) A new classification system for cleft lip and cleft palate. Plastic reconstr. Surg 22: 435-441.
10. Turner L, Jacobsen C, Humenczuk M, Singhal VK, Moore D, et al. (2001) The effects of lactation education and a prosthetic obturator appliance on feeding efficiency in infants with cleft lip and palate. Cleft Palate Craniofac J 38: 519-524.
11. Oliver HT (1969) Construction of orthodontic appliances for the treatment of newborn infants with clefts of the lip and palate. Am J Orthod 56: 468-473.
12. Gupta R, Singhal P, Mahajan K, Singhal A (2012) Fabricating feeding plate in CLP infants with two different material: A series of case report. J Ind Soc Pedod Prev Dent 30: 352-355.
13. Shahapur S, Talikoti A, Basutkar N (2011) Prosthetic Management of Nasoalveolar Clefts in Newborns: A series of case reports. J Indian Prosthodont Soc 11: 250-253.
14. Erkan M, Karaçay S, Atay A, Güney Y (2013) A Modified Feeding Plate for a Newborn With Cleft Palate. Cleft Palate Craniofac J 50: 109-112.
15. Duggal A, Arora A, Duggal P, Handa K (2014) Feeding obturator appliance in a cleft palate patient: A case report. Ind J Compr Dent Care 4: 64-67.
16. Goldberg WB, Ferguson FS, Miles RJ (1988) Successful use of a feeding obturator for an infant with a cleft lip. Spec Care Dentist 8: 86-89.
17. Vojvodic J, Jerolimov P (2001) The cleft palate patient: a challenge for prosthetic rehabilitation-clinical report. Quintessence Int 32: 521-524.
18. Marti SS, Tessore MMD, Henar TE (2006) Prosthetic assessment in cleft lip and palate patients: a case report with oronasal communication. Med Oral Patol Oral Cir Buca1 11: 493-496.
19. Reisberg DJ (2003) Dental and Prosthodontic Care for Patients with Cleft or Craniofacial Conditions. Cleft Palate Craniofac J 37: 534-537.
20. Laub DR (2015) Presurgical orthopedic therapy for cleft lip and palate. Medscape publishers, USA.
21. Jacobsson BN, Rosenstein SW (1984) Early maxillary orthopedics for the newborn cleft lip and palate patient. An impression and an appliance. Angle Orthod 54: 247-263.
22. Raffat A, Ijaz A (2009) Premaxillay retraction in bilateral complete cleft lip and palate with custom made orthopaedic plate having anterior acrylic ring. J Pak Med Assoc 59: 376-380.
23. Grayson BH, Shetye PR (2009) Presurgical nasoalveolar moulding treatment in cleft lip and palate patients. Indian J Plast Surg 42: 56-61.
24. Papadopoulos MA, Kourmpidou EN, Vakalis ML, Papageorgiou SN (2012) Effectiveness of pre-surgical infant orthopedic treatment for cleft lip and palate patients: a systematic review and meta-analysis. Ortho Cran Res 15: 207-236.
25. Osuji OO (1996) Preparation of feeding obturators for infants with cleft lip and palate. J Clin Pediatr Dent 19: 211-214.
26. Jones JE, Henderson L, Avery DR (1982) Use of a feeding obturator for infants with severe cleft lip and palate. Spec Care Dentist 2: 116-120.

27. Saunders ID, Geary L, Fleming P, Gregg TA (1989) A simplified feeding appliance for the infant with cleft lip and palate. Quintessence Int 20: 907-910.

28. Beumer J, Curtis TA, Marunick MT (1996) Maxillofacial rehabilitation: prosthodontic and surgical considerations. Medico Dental Media Intl, p: 339.

29. Shaw WC, Bannister RP, Roberts CT (1999) Assisted feeding is more reliable for infants with clefts - a randomized trial. Cleft Palate-Craniofacial Journal 36: 262-268.