Abstract. This essay advocates the view that any problem that has a meaningful empirical content, can be formulated in constructive, more definitely, finite terms. We consider combinatorial models of dynamical systems and approaches to statistical description of such models. We demonstrate that many concepts of continuous physics — such as continuous symmetries, the principle of least action, Lagrangians, deterministic evolution equations — can be obtained from combinatorial structures as a result of the large number approximation. We propose a constructive description of quantum behavior that provides, in particular, a natural explanation of appearance of complex numbers in the formalism of quantum mechanics. Some approaches to construction of discrete models of quantum evolution that involve gauge connections are discussed.

Keywords: combinatorial models, quantum mechanics, finite groups, gauge invariance, statistical descriptions

PACS numbers: 02.20.-a, 03.65.Aa, 03.65.Ta
References

[1] Tolman R.C. The Principles of Statistical Mechanics. 1938, Oxford University Press.

[2] Rosen K.H. et al Handbook of discrete and combinatorial mathematics. 2000, Boca Raton, London, New York, Washington, D.C.: CRC Press.

[3] Feller W. An Introduction to Probability Theory and its Applications, Vol. 1. 1968, New York, London, Sydney: John Wiley & Sons, Inc.

[4] Chandler D. Introduction to Modern Statistical Mechanics. 1987, New York, Oxford: Oxford University Press, Inc.

[5] Knuth K.H. The Problem of Motion: The Statistical Mechanics of Zitterbewegung. 2014, 7pp., arXiv:1411.1854v1 [quant-ph]

[6] Feynman R.P. and Hibbs A.R. Quantum Mechanics and Path Integrals. 1965, New York: McGraw-Hill.

[7] Kornyak V.V. Classical and Quantum Discrete Dynamical Systems. Phys. Part. Nucl. 2013, 44, No 1, pp. 47 – 91, arXiv:1208.5734v4 [quant-ph]

[8] Nielsen M.A. and Chuang I.L. Quantum Computation and Quantum Information. 2000, Cambridge: Cambridge University Press.

[9] Magnus W. Residually finite groups. Bull. Amer. Math. Soc. 1969, 75, No 2, pp. 305 – 316.

[10] Mal’cev A. On isomorphic matrix representations of infinite groups. Mat. Sb. 1940, 8(50), No 3, pp. 405 – 422 (Russian).

[11] Hall M., Jr. The Theory of Groups. 1959, New York: Macmillan.

[12] Serre J.-P. Linear Representations of Finite Groups. 1977, Springer-Verlag.

[13] Wielandt H. Finite Permutation Groups. 1964, New York and London: Academic Press.

[14] Cameron P. J. Permutation Groups. 1999, Cambridge University Press.

[15] Dixon J. D. and Mortimer B. Permutation Groups. 1996, Springer.

[16] Kornyak V.V. Permutation interpretation of quantum mechanics. J. Phys.: Conf. Ser. 2012, 343 012059; doi:10.1088/1742-6596/343/1/012059

[17] Kornyak V.V. Quantum mechanics and permutation invariants of finite groups. J. Phys.: Conf. Ser. 2013, 442 012050; doi:10.1088/1742-6596/442/1/012050
[18] Gleason A.M. *Measures on the closed subspaces of a Hilbert space*. Indiana Univ. Math. J. 1957, 6, No. 4, pp. 885 – 893.

[19] Weyl H. *Ars Combinatoria*. Appendix B; in *Philosophy of Mathematics and Natural Science*, Princeton University Press, 1949.

[20] Oeckl R. *Discrete Gauge Theory (From Lattices to TQPT)*. 2005, London: Imperial College Press.

[21] McDonald J.R., Alsing P.M. and Blair H.A. *A geometric view of quantum cellular automata*. Proc. SPIE 8400, Quantum Information and Computation X, 84000S (May 1, 2012); doi:10.1117/12.921329.

[22] Venegas-Andraca S.E. *Quantum walks: a comprehensive review*. Quantum Inf. Process. 2012, 11, No. 5, pp. 1015 – 1106, arXiv:1201.4780v2 [quant-ph]