PalFM-Index: FM-Index for Palindrome Pattern Matching

Shinya Nagashita
Kyushu Institute of Technology, Fukuoka, Japan

Tomohiro I
Kyushu Institute of Technology, Fukuoka, Japan

Abstract

The palindrome pattern matching (pal-matching) is a kind of generalized pattern matching, in which two strings x and y of same length are considered to match (pal-match) if they have the same palindromic structures, i.e., for any possible $1 \leq i < j \leq |x| = |y|$, $x[i..j]$ is a palindrome if and only if $y[i..j]$ is a palindrome. The pal-matching problem is the problem of searching for, in a text, the occurrences of the substrings that pal-match with a pattern. Given a text T of length n over an alphabet of size σ, an index for pal-matching is to support, given a pattern P of length m, the counting queries that compute the number occ of occurrences of P and the locating queries that compute the occurrences of P. The authors in [I et al., Theor. Comput. Sci., 2013] proposed an $O(n \lg n)$-bit data structure to support the counting queries in $O(m \lg \sigma)$ time and the locating queries in $O(m \lg \sigma + \text{occ})$ time. In this paper, we propose an FM-index type index for the pal-matching problem, which we call the PalFM-index, that occupies $2n \lg \min(\sigma, \lg n) + 2n + o(n)$ bits of space and supports the counting queries in $O(m)$ time. The PalFM-indexes can support the locating queries in $O(m + \Delta \text{occ})$ time by adding $n \Delta \lg n + n + o(n)$ bits of space, where Δ is a parameter chosen from $\{1, 2, \ldots, n\}$ in the preprocessing phase.

2012 ACM Subject Classification Theory of computation → Pattern matching

Keywords and phrases Palindrome matching, Generalized string pattern matching, Indexing

Digital Object Identifier 10.4230/LIPIcs.CPM.2023.23

Related Version Previous Version: https://arxiv.org/abs/2206.12600

Funding This work was supported by JSPS KAKENHI (Grant Number 19K20213). Tomohiro I: KAKENHI (Grant Numbers 19K20213).

1 Introduction

A palindrome is a string that can be read same backward as forward. Palindromic structures in a string are one of the most fundamental structures in the string and have been extensively studied. For example, it is known that any string w contains at most $|w| + 1$ distinct palindromic substrings [6], and the strings reaching the maximum values have some intriguing properties [15, 28]. Another concept regarding palindromic structures is the palindrome complexity [1, 4, 2], which is the number of distinct palindromic substrings of a given length in a string.

Instead of thinking about distinct palindromic substrings, one might be interested in occurrences of palindromic substrings. The palindromic structures in such a sense are captured by the maximal palindromes from all possible “centers” in a string. Manacher’s algorithm [26], originally proposed for computing a prefix-palindrome, can be extended to compute all the maximal palindromes in $O(|w|)$ time for a string w. The authors in [18] considered the problem of inferring strings from a given set of maximal palindromes and showed that the problem can be solved in $O(|w|)$ time.
In [19], a new concept called palindrome pattern matching was introduced as a generalized pattern matching. Two strings x and y of the same length are said to palindromic pattern match (pal-match in short) iff they have the same palindromic structures, i.e., the following condition holds: for any possible $1 \leq i < j \leq |x| = |y|$, $x[i..j]$ is a palindrome iff $y[i..j]$ is a palindrome. We remark that x and y themselves are not necessarily palindromes. The palindrome pattern matching has potential applications to genomic analysis, in which some palindromic structures play an important role to estimate RNA secondary structures [21].

The pal-matching problem is to search for, in a text, the occurrences of the substrings that pal-match with a pattern. Given a text T of length n and a pattern P of length m, a Morris-Pratt type algorithm for solving the pal-matching problem in $O(n)$ time was proposed in [19]. The method in [19] is based on the $lpal$-encoding of a string w, denoted as $lpal_w$, that is the integer array of length $|w|$ such that $lpal_w[i]$ is the length of the longest suffix palindrome of $w[1..i]$. The $lpal$-encoding is helpful because two strings x and y pal-match iff $lpal_x = lpal_y$. When T is large and static, and patterns come online later, one might think of preprocessing T to construct an index for pal-matching. An index for pal-matching is to support the counting queries that compute the number occ of occurrences of P and the locating queries that compute the occurrences of P. For this purpose, I et al. [19] proposed the palindrome suffix tree of T, which is a compacted tree of the $lpal$-encoded suffixes of T. The palindrome suffix tree takes $O(n \lg n)$ bits of space and supports the counting queries in $O(m \lg \sigma)$ time and the locating queries in $O(m \lg \sigma + occ)$ time, where σ is the size of the alphabet from which characters in T are taken and occ is the number of occurrences.

In this paper, we present a new index, named the PalFM-index, by applying the technique of the FM-index [7] to the pal-matching problem. In so doing we introduce a new encoding, named the ssp-encoding, that is based on the non-trivial shortest suffix-palindrome of each prefix. In contrast to the $lpal$-encoding, the ssp-encoding has a good property to design the PalFM-index. The PalFM-index occupies $2n \lg \min(\sigma, \lg n) + 2n + o(n)$ bits of space and supports the counting queries in $O(m + \Delta occ)$ time. The locating queries can be supported in $O(m + \Delta occ)$ time by adding $\frac{n}{\Delta} \lg n + n + o(n)$ bits of space, where Δ is a parameter chosen from $\{1, 2, \ldots, n\}$ in the preprocessing phase.

1.1 Related work

One of the well-studied algorithmic problems related to palindromes is factorizing a string into non-empty palindromes, or in other words, recognizing a string that is obtained by concatenating a certain number of non-empty palindromes [26, 24, 12, 9, 20, 25, 3, 29]. The combinatorial properties discovered during tackling this factorization problem are useful to work on palindromes-related problems.

Developing techniques of designing space-efficient indexes for generalized pattern matching is of great interest. Our PalFM-index was inspired by that of Kim and Cho [23], which is a simplified version of the FM-index for parameterized pattern matching [13]. Indexes based on the FM-index for other generalized pattern matching problems were considered in [14, 11, 22].

2 Preliminaries

2.1 Notations

An integer interval $\{i, i+1, \ldots, j\}$ is denoted by $[i..j]$, where $[i..j]$ represents the empty interval if $i > j$.
Let Σ be a finite alphabet, a set of characters. An element of Σ* is called a string. The length of a string w is denoted by |w|. The empty string ε is a string of length 0, that is, |ε| = 0. The concatenated string of two strings x and y are denoted as x · y or simply xy. The i-th character of a string w is denoted by w[i] for 1 ≤ i ≤ |w|, and the substring of a string w that begins at position i and ends at position j is denoted by w[i..j] for 1 ≤ i ≤ j ≤ |w|, i.e. w[i..j] = w[i]w[i+1]···w[j]. For convenience, let w[i..j] = ε if i > j. A substring of the form w[1..j] (resp. w[i..|w|]) is called a prefix (resp. suffix) of w and denoted as w[..j] (resp. w[..i]) in shorthand. Note that w is a substring/prefix/suffix of any string w. A substring of w is called proper if it is not w itself. When needed we use parentheses to indicate positions in a concatenated string, for example, (xy)[i] refers to the i-th character of the string xy. Hence, (xy)[i] should be distinguished from xy[i], which can be interpreted as the concatenated string of x and y[i].

Let < denote the total order over an alphabet we consider. In particular, we will consider strings over a set consisting of integers and ∞, in which natural total order based on their values is employed. We extend < to denote the lexicographic order of strings over the alphabet. For any strings x and y that do not match, we say that x is lexicographically smaller than y and denote it by x < y iff x[i+1] < y[i+1] for largest integer i with x[i..] = y[i..], where we assume that x[i+1] or y[i+1] refers to the lexicographically smallest character $\$ if it points to out of bounds.

For any string w, let w^R denote the reversed string of w, that is, $w^R = w[|w|]···w[2]w[1]$. A string w is called a palindrome if $w = w^R$. The radius of a palindrome w is $\frac{|w|}{2}$. The center of a palindromic substring w[i..j] of a string w is $\frac{i+j}{2}$. A palindromic substring w[i..j] is called the maximal palindrome at the center $\frac{i+j}{2}$ if no other palindromes at the center $\frac{i+j}{2}$ have a larger radius than w[i..j], i.e., if $w[i-1] \neq w[j+1]$, $i = 1$, or $j = |w|$.

Two strings x and y of same length are said to palindromic pattern match (pal-match in short) if they have the same palindromic structures, i.e., the following condition holds: for any possible 1 ≤ i < j ≤ |x| = |y|, x[i..j] is a palindrome iff y[i..j] is a palindrome. For example, abcbaaca and bcacbbdb pal-match since their palindromic structures coincide (see Figure 1). Note that pal-matching induces a substring consistent equivalent relation [27], i.e., if x and y pal-match then x[i..j] and y[i..j] pal-match for any possible 1 ≤ i < j ≤ |x| = |y|.

The pal-matching problem is to search for, in a text string T, the occurrences of the substrings that pal-match with a pattern P. In the pal-matching problem, an occurrence of P refers to a position i such that $T[i..i+|P| - 1]$ and P pal-match. Throughout this paper we consider indexing a text T of length n over an alphabet Σ of size σ.

Figure 1 Illustration of the palindromic structures for pal-matching strings abcbaaca and bcacbbdb. Check that the radii of their maximal palindromes for all possible centers, which are illustrated by two-headed arrows, coincide.
2.2 Toolbox

As a component of our PalFM-index, we use a data structure for a string \(w \) over an integer alphabet \(U \) supporting the following queries.

- \(\text{rank}_w(i, c) \): return the number of occurrences of character \(c \in U \) in \(w[i..j] \).
- \(\text{select}_w(i, c) \): return the \(i \)-th smallest position of the occurrences of character \(c \in U \) in \(w \).
- \(\text{rangeCount}_w(i, j, c, d) \): return the number of the occurrences of any character in \([e..d] \subseteq U \) in \(w[i..j] \).

The Wavelet tree \([17]\) supports these queries in \(O(\lg |U|) \) time using \(|w|\mathcal{H}_0(w) + o(|w| \lg |U|) \) bits of space, where \(\mathcal{H}_0(w) = O(\lg |U|) \) is the 0-th order empirical entropy of \(w \). The subsequent studies \([8, 16]\) improved the complexities, resulting in the following theorem.

\[\text{Theorem 1 ([16])}. \] For a string \(w \) over an integer alphabet \(U \), there is a data structure in \(|w|\mathcal{H}_0(w) + o(|w|) \) bits of space that supports \(\text{rank}, \text{select} \) and \(\text{rangeCount} \) in \(O(1 + \frac{\lg |U|}{\lg \lg |U|}) \) time.

We also use a data structure for the Range Maximum Queries (RMQs) over an integer array \(V \). Given an interval \([i..j]\) over \(V \), a query \(\text{RMQ}_V(i, j) \) returns a position in \([i..j]\) that has the maximum value in \(V[i..j] \), that is, \(\text{RMQ}_V(i, j) = \arg \max_{k \in [i..j]} V[k] \). We use the following result.

\[\text{Theorem 2 ([10])}. \] For an integer array \(V \) of length \(n \), there is a data structure with \(2n + o(n) \) bits of space that supports the RMQs in \(O(1) \) time.

2.3 FM-index

The suffix array \(\text{SA} \) of \(T \) is the integer array of length \(n + 1 \) such that \(\text{SA}[i] \) is the starting position of the lexicographically \(i \)-th suffix of \(T \).\(^1\) We define the string \(L \) (a.k.a. the Burrows-Wheeler Transform (BWT) \([5]\) of \(T \)) of length \(n + 1 \) as follows:

\[
L[i] = \begin{cases}
8 & (\text{SA}[i] = 1), \\
T[\text{SA}[i] - 1] & (\text{SA}[i] > 1).
\end{cases}
\]

We define the string \(F \) of length \(n + 1 \) as \(F = T[\text{SA}[1]]T[\text{SA}[2]] \cdots T[\text{SA}[n + 1]] \). The so-called LF-mapping \(LF \) is the function defined to map a position \(i \) to \(j \) such that \(\text{SA}[j] = \text{SA}[i] - 1 \) (with the corner case \(LF(i) = 1 \) for \(\text{SA}[i] = 1 \)). A crucial point is that LF-mapping can be efficiently implemented by rank queries on \(L \) and select queries on \(F \) with \(LF(i) = \text{select}_F(\text{rank}_L(i, L[i]), L[i]) \).\(^2\) The occurrences of pattern \(P \) in \(T \) can be answered by finding the maximal interval \([P_a..P_b]\) in the \(\text{SA} \) array such that \(T[\text{SA}[i]..] \) is prefixed by \(P \) iff \(i \in [P_a..P_b] \), and computing the \(\text{SA} \)-values in the interval. For a string \(w \) and character \(c \), the so-called backward search computes the maximal interval in the \(\text{SA} \) prefixed by \(cw \) from that of \(w \) using a similar mechanism of the LF-mapping (see \([7]\) for more details).

\(^1\) Against convention, we include the empty string that starts with the position \(n + 1 \) to \(\text{SA} \). In particular, \(\text{SA}[1] = n + 1 \) holds as the empty string is always the smallest suffix.

\(^2\) In the plain LF-mapping, select queries on \(F \) can be implemented by a simple table that counts, for each character \(c \), the number of occurrences of characters smaller than \(c \) in \(T \), but it is not the case in our generalized LF-mapping for pal-matching.
Table 1 A comparison between \(l_{\text{pal}} \) and \(s_{\text{sp}} \) for \(w = \text{abbbabb} \) and \(w' = bw = \text{babbbabb} \). The values that change when prepending \(b \) to \(w \) are underlined.

\(w = \)	a	b	b	b	a	b	b
\(l_{\text{pal}} \)	1	1	2	3	5	3	5
\(s_{\text{sp}} \)	\(\infty \)	\(\infty \)	2	2	5	3	2
\(w' = \)	b	a	b	b	a	b	b
\(l_{\text{pal}} \)	1	1	3	2	3	5	\(\infty \)
\(s_{\text{sp}} \)	\(\infty \)	\(\infty \)	3	2	5	3	2

3 Encodings for pal-matching

The pal-matching algorithms in [19] are based on the \(l_{\text{pal}} \)-encoding of a string \(w \), denoted as \(l_{\text{pal}} \). \(l_{\text{pal}} \) is the integer array of length \(|w| \) such that, for any position \(1 \leq i \leq |w| \), \(l_{\text{pal}}[i] \) is the length of the longest suffix-palindrome of \(w[i..i] \). See Table 1 for example.

Lemma 3 (Lemma 2 in [19]). For any strings \(x \) and \(y \), \(x \) and \(y \) pal-match iff \(l_{\text{pal}}[x] = l_{\text{pal}}[y] \).

Although Lemma 3 is sufficient to design suffix-tree type indexes, it seems that the \(l_{\text{pal}} \)-encoding is not suitable to design FM-index type indexes. For example, more than one position could change when a character is prepended (see Table 1) and this unstable property make messes up lexicographic order of \(l_{\text{pal}} \)-encoded suffixes, which prevents us to implement LF-mapping space efficiently.

In this paper, we introduce a new encoding suitable to design FM-index type indexes for pal-matching. Our new encoding is based on the shortest suffix-palindrome for each prefix, \(s_{\text{sp}} \)-encoding has a stable property when prepending \(a \) character. In what follows, we focus on the opposite direction; \(x \) and \(y \) pal-match iff \(s_{\text{sp}}[x] = s_{\text{sp}}[y] \).

Lemma 4. Two strings \(x \) and \(y \) pal-match iff \(s_{\text{sp}}[x] = s_{\text{sp}}[y] \).

Proof. Since the \(s_{\text{sp}} \)-encoding relies only on palindromic structures, the direction from left to right is clear.

In what follows, we focus on the opposite direction: \(x \) and \(y \) pal-match if \(s_{\text{sp}}[x] = s_{\text{sp}}[y] \). Assume for contrary that \(x \) and \(y \) does not pal-match. Without loss of generality, we can assume that there are positions \(i \) and \(j \) such that \(x[i..j] \) is a palindrome but \(y[i..j] \) is not, with smallest \(j \) if there are many. Note that the smallest assumption on \(j \) implies that \(y[i+1..j-1] \) is a palindrome: If \(y[i+1..j-1] \) is not a palindrome (clearly \(|y[i+1..j-1]| > 1 \) in such a case), \(j-1 \) must be a smaller position that satisfies the above condition because \(x[i+1..j-1] \) is a palindrome. Let \(k = s_{\text{sp}}[j] = s_{\text{sp}}[y][j] \). Since \(x[i..j] \) is a palindrome, it holds that \(1 < k \leq |x[i..j]| \). Moreover, \(k \neq |y[i..j]| \) as \(y[i..j] \) is not a palindrome. Since the palindrome \(x[i..j] \) has a suffix-palindrome of length \(k \), the prefix \(x[i..i+k-1] \) of length \(k \) is a palindrome, too. On the other hand, since \(y[i..j] \) is not a palindrome that has a suffix-palindrome of length \(k \), the prefix \(y[i..i+k-1] \) of length \(k \) cannot be a palindrome. This contradicts the smallest assumption on \(j \) because \(i+k-1 \) is a smaller position such that \(x[i..i+k-1] \) and \(y[i..i+k-1] \) disagree on their palindromic structures.

In contrast to the \(l_{\text{pal}} \)-encoding, the \(s_{\text{sp}} \)-encoding has a stable property when prepending a character.
Lemma 5. For any string w and character c, there is at most one position i ($1 \leq i \leq |w|$) such that $ssp_w[i] \neq ssp_w[i + 1]$. Moreover, if such a position i exists, $ssp_w[i] = \infty$ and $ssp_w[i + 1] = i + 1$.

Proof. By definition it is obvious that $ssp_w[i] = ssp_w[i + 1]$ if $ssp_w[i] \neq \infty$. In what follows, we assume for contrary that there exist two positions i and i' with $1 \leq i < i' \leq |w|$ such that $ssp_w[i] = \infty > ssp_w[i + 1]$ and $ssp_w[i'] = \infty > ssp_w[i' + 1]$. Note that $ssp_w[i + 1] = i + 1$ and $ssp_w[i' + 1] = i' + 1$ by definition, and $(cw)[..i + 1]$ and $(cw)[..i' + 1]$ are palindromes. Since $(cw)[..i + 1]$ is a prefix-palindrome of $(cw)[..i' + 1]$, it is also a suffix-palindrome of $(cw)[..i' + 1]$. It contradicts that $(cw)[..i' + 1]$ is the non-trivial shortest suffix-palindrome of $(cw)[..i' + 1]$.

We consider yet another encoding based on the shortest suffix of $w[..i - 1]$ that is extended outwards when appending a character $w[i]$. The concept is closely related to the ssp-encoding because the extended palindrome is the non-trivial shortest suffix-palindrome of $w[..i]$. An advantage of this new encoding is that we can reduce the number of distinct integers to be used to $O(\min(\sigma, \lg |w|))$, which will be used (in a symmetric way) to define L_{pal} and obtain a space-efficient FM-index specialized for pal-matching.

For any string w we partition the suffix-palindromes (including the empty suffix) by the characters they have immediately to their left and call each group a suffix-pal-group for w. We utilize the following lemma.

Lemma 6. For any string w, the number of suffix-pal-groups for w is $O(\min(\sigma, \lg |w|))$.

Proof. It is obvious that the number of suffix-pal-groups is at most σ because each character is associated to at most one suffix-pal-group. Also it is known that the lengths of the suffix-palindromes can be represented by $O(\lg |w|)$ arithmetic progressions and each arithmetic progression induces a period in the involved suffix (e.g., see [20]). Then we can see that every suffix-palindrome represented by an arithmetic progression is in the same group. Hence there are $O(\lg |w|)$ groups.

The next lemma shows that pal-matching strings share the same structure of suffix-pal-groups.

Lemma 7. Let x and y be strings that pal-match and let i and j be integers with $1 \leq i < j \leq |x| = |y|$. If $x[i+1..]$ and $x[j+1..]$ are palindromes with $x[i] = x[j]$, then $y[i+1..]$ and $y[j+1..]$ are palindromes with $y[i] = y[j]$.

Proof. Since the palindrome $x[i+1..]$ has a suffix-palindrome of length $k = |x[j+1..]|$, it also has a prefix-palindrome of length k, that is, $x[i+1..i+k]$ is a palindrome. Also, $x[i+k+1] = x[j]$ holds. Since $x[i+1..i+k+1] = x[i+1..i+k+1]$ is a palindrome.

Since x and y pal-match, $y[i+1..]$, $y[j+1..]$ and $y[i..i+k+1]$ are palindromes. By transition of equivalence induced by the palindromes $y[i..i+k+1]$ and $y[i+1..]$, we can see that $y[i] = y[i+k+1] = y[j]$. Thus the claim holds.

Let the shortest palindrome in a suffix-pal-group be the representative of the group. We assign consecutive integer identifiers starting from 1 to the suffix-pal-groups in increasing order of their representative’s lengths. See Figure 2 for example.

For any string w, we define the shortest suffix-pal-group encoding $sspg_w$ of w as the integer array of length $|w|$ such that, for any position $1 \leq i \leq |w|$, $sspg_w[i]$ is the identifier assigned to the suffix-pal-group of the suffix-palindrome in $w[..i-1]$ that is extended outwards by appending $w[i]$, if such exists, and otherwise ∞. See Table 2 and Figure 3 for example. Since
Figure 2 An example of suffix-pal-groups for \texttt{bababacababacababacababa}. The number enclosed in a circle denotes the pal-group-id. The suffix-palindromes in the suffix-pal-group with identifier 1 (resp. 2 and 3) have a (resp. b and c) immediately to their left. The identifiers are given in increasing order of their representative’s lengths, that is, \(|\varepsilon| = 0, |a| = 1\) and \(|ababa| = 5\).

the non-trivial shortest suffix of \(w[\ldots i]\) is extended outwards from the representative of the suffix-pal-group for \(w[1..i-1]\) that has \(w[i]\) immediately to the left, \(\text{sspg}_w[i]\) has essentially equivalent information to \(\text{ssp}_w[i]\). Formally the next lemma holds.

\begin{lemma}
For any string \(x\) of length \(k\), suppose we have the set of lengths of the representatives of suffix-pal-groups of \(x[1..k-1]\). Given \(\text{sspg}_x[k]\) we can identify \(\text{ssp}_x[k]\), and vice versa.
\end{lemma}

\begin{proof}
It is clear that \(\text{ssp}_x[k] = \infty\) iff \(\text{sspg}_x[k] = \infty\). Given \(\text{sspg}_x[k] \neq \infty\) we can identify \(\text{ssp}_x[k]\) from the representative of the suffix-pal-group with identifier \(\text{sspg}_x[k]\). Given \(\text{ssp}_x[k] \neq \infty\) we can identify \(\text{sspg}_x[k]\) from the representative that has length \(\text{ssp}_x[k] - 2\).
\end{proof}

The next lemma shows that the \(\text{sspg}\)-encoding is another encoding for pal-matching, and induces the same lexicographic order with the \(\text{ssp}\)-encoding.

\begin{lemma}
Let \(x\) and \(y\) be strings of length \(k\) such that \(\text{ssp}_x[1..k-1] = \text{ssp}_y[1..k-1]\). Then, \(\text{ssp}_x[k] = \text{ssp}_y[k]\) iff \(\text{sspg}_x[k] = \text{sspg}_y[k]\). Also, \(\text{ssp}_x[k] < \text{ssp}_y[k]\) iff \(\text{sspg}_x[k] < \text{sspg}_y[k]\).
\end{lemma}

\begin{proof}
It follows from Lemma 7 that \(x[1..k-1]\) and \(y[1..k-1]\) have the same structure of suffix-pal-groups. By Lemma 8, \(\text{ssp}_x[k] = \text{ssp}_y[k]\) if \(\text{sspg}_x[k] = \text{sspg}_y[k]\), and vice versa. Since the identifiers of suffix-pal-groups are given in increasing order of their representative’s lengths, it holds that \(\text{ssp}_x[k] < \text{ssp}_y[k]\) if and only if \(\text{sspg}_x[k] < \text{sspg}_y[k]\).
\end{proof}

For any string \(w\), let \(\pi(w) = \text{sspg}_{w,n}[|w|]\). Intuitively, \(\pi(w)\) holds the information from which prefix-palindrome of \(w[2..]\) the non-trivial shortest prefix-palindrome of \(w\) is extended, and the information is encoded with the identifier defined in the completely symmetric way as the case of the suffix-pal-groups. The function \(\pi(\cdot)\) will be applied to the suffixes of \(T\) to define \(F_{\text{pal}}\) and \(L_{\text{pal}}\), and the next lemma is a key to implement LF-mapping for our PalFM-index.
Table 2 A comparison between \(\text{ssp}_w \) and \(\text{sspg}_w \) for \(w = \text{babbbabb} \). \(\text{ssp}_w[6] = 5 \) because the non-trivial shortest suffix-palindrome of \(w[1..6] = \text{babbb} \) is \(\text{abbba} \), which is of length 5. On the other hand, \(\text{sspg}_w[6] = 2 \) because the shortest suffix-palindrome \(\text{abbba} \) ending at 6 is extended from \(\text{bbb} \) and the suffix-pal-group to which \(\text{bbb} \) belongs for \(w[1..5] = \text{babbb} \) has the identifier 2.

\[w = \text{babbbabb} \]

\[
\begin{array}{cccccccc}
\text{ssp}_w & = & \infty & \infty & 3 & 2 & 2 & 5 & 3 & 2 \\
\text{sspg}_w & = & \infty & \infty & 2 & 1 & 1 & 2 & 2 & 2 \\
\end{array}
\]

\[w = \text{babbbabb} \]

\[\text{sssp}_w[6] = 2 \]

Figure 3 Illustration to show \(\text{sspg}_w[6] = 2 \) for \(w = \text{babbbabb} \).

Lemma 10. Let \(x \) and \(y \) be strings of length \(\geq 1 \) such that \(\pi(x) = \pi(y) \). Then, \(\text{ssp}_x \prec \text{ssp}_y \) iff \(\text{ssp}_x[2..i] \prec \text{ssp}_y[2..i] \).

Proof. Let \(i \) be the largest integer such that \(x[2..i] \) and \(y[2..i] \) pal-match. Since \(\pi(x) = \pi(y) \), using Lemma 9 in a symmetric way, it holds that \(x[2..i] \) and \(y[2..i] \) pal-match. Recall Lemma 5 that at most one \(\infty \) in \(\text{ssp}_x[2..i] \) (resp. \(\text{ssp}_y[2..i] \)) turns into the largest possible integer at the changed position when prepending \(x[1] \) (resp. \(y[1] \)). We analyze the cases focusing on the changed positions:

1. The claim clearly holds if neither \(\text{ssp}_x \) nor \(\text{ssp}_y \) has the changed position less than or equal to \(i + 1 \).

2. If both of \(\text{ssp}_x \) and \(\text{ssp}_y \) have the changed position at \(j \leq i + 1 \), it holds that \(\text{ssp}_x[j] = \text{ssp}_y[j] = j \) and \(\text{ssp}_x[2..i][j - 1] = \text{ssp}_y[2..i][j - 1] = \infty \), which also indicates that \(j < i + 1 \). Since this change does not affect the lexicographic order, the claim holds. See the left part of Figure 4 for an illustration of this case.

3. Assume \(\text{ssp}_y \) has the changed position at \(j \leq i + 1 \), but \(\text{ssp}_x \) does not. Since \(x[2..i] \) and \(y[2..i] \) pal-match, \(j \) cannot be less than \(i + 1 \), and hence, \(j = i + 1 \) and \(\text{ssp}_y[i + 1] = \text{ssp}_x[2..i][i] \). Note that the lexicographic order between \(\text{ssp}_x \) and \(\text{ssp}_y \) (resp. \(\text{ssp}_x[2..i] \) and \(\text{ssp}_y[2..i] \)) is determined by that between \(\text{ssp}_x[i + 1] \) and \(\text{ssp}_y[i + 1] \) (resp. \(\text{ssp}_x[2..i][i] \) and \(\text{ssp}_y[2..i][i] \)). Since the lexicographic order between \(\text{ssp}_x[i + 1] \) and \(\text{ssp}_y[i + 1] \) is the same as that between \(\text{ssp}_x[2..i][i] \) and \(\text{ssp}_y[2..i][i] \), the claim holds. See the right part of Figure 4 for an illustration of this case.

Thus, we conclude that the lemma holds.
4 Computational results for new encodings

In this section, we show that the ssp- and sspg-encodings can be computed in linear time for a given string.

We use the following known results.

▶ Lemma 11 ([26]). For any string \(w \), we can compute all the maximal palindromes in \(O(|w|) \) time.

▶ Lemma 12 (Lemma 3 in [19]). For any string \(w \), we can compute \(\text{lpal}_w \) in \(O(|w|) \) time.

Using Lemmas 11 and 12, we obtain:

▶ Lemma 13. For any string \(w \), we can compute \(\text{ssp}_w \) in \(O(|w|) \) time.

Proof. Manacher’s algorithm [26] can compute the radius of the maximal palindrome in increasing order of centers in linear time. It can be extended to compute the length \(\text{lpal}_w[i] \) of the longest palindrome ending at each position \(i \) because the maximal palindrome with the smallest center that ends at position \(i \) gives us the longest suffix-palindrome ending at \(i \) by truncating the palindrome at \(i \) (e.g., see Lemma 3 of [19]). In a similar way, we can compute the length \(\text{lpal}'_w[i] \) of the second longest palindrome ending at \(i \).

Using \(\text{lpal}_w \) and \(\text{lpal}'_w \), we can compute \(\text{ssp}_w[i] \) in increasing order as follows:

1. If \(\text{lpal}_w[i] = 1 \), then \(\text{ssp}_w[i] = \infty \).
2. If \(\text{lpal}_w[i] > 1 \) and \(\text{lpal}'_w[i] = 1 \), then \(\text{ssp}_w[i] = \text{lpal}_w[i] \).
3. If \(\text{lpal}_w[i] > 1 \) and \(\text{lpal}'_w[i] > 1 \), then \(\text{ssp}_w[i] = \text{ssp}_w[i - \text{lpal}_w[i]] + \text{lpal}'_w[i] \).

In the third case, we use the fact that the non-trivial shortest suffix-palindrome ending at \(i \) has length \(\leq \text{lpal}'_w[i] \) and it ends at \(i - \text{lpal}_w[i] + \text{lpal}'_w[i] \), too.

Clearly all can be done in \(O(|w|) \) time. ▶

For any string \(w \), let \(G_w \) denote the array of length \(|w| \) such that \(G_w[i] \) stores the number of suffix-pal-groups for \(w[..i] \).

▶ Lemma 14. For any string \(w \), we can compute \(G_w \) in \(O(|w|) \) time.
The PalFM-index of T conceptually sort the suffixes of T in lexicographic order of their ssp-encodings (or equivalently sspg-encodings). Let SA_pal be the integer array of length $n + 1$ such that $\text{SA}_\text{pal}[i]$ is the starting position of the i-th suffix of T in ssp-encoded order. We define the strings F_pal and l_pal of length $n + 1$ based on π function applied to the sorted suffixes. Formally, for any position i ($1 \leq i \leq n + 1$) we define:
Thus we focus on a single step of backward search. In a general setting, for any string \(T \) with \(n \) characters over an alphabet of size \(\sigma \), we show how to compute \(\pi \) of prefix-pal-groups of \(T \) in \(O(n) \) time.

\[
\pi[i] = \begin{cases}
\emptyset & \text{if } i = 1, \\
\pi(T[\text{SA}_\text{pal}[i]..]) & \text{otherwise.}
\end{cases}
\]

\[
L_\text{pal}[i] = \begin{cases}
\emptyset & \text{if } \text{SA}_\text{pal}[i] = 1, \\
\pi(T[\text{SA}_\text{pal}[i] - 1..]) & \text{otherwise.}
\end{cases}
\]

See Figure 6 for an example.

As in the case of LF, we define a function \(LF_\text{pal} : i \mapsto j \) so that \(\text{SA}_\text{pal}[j] = \text{SA}_\text{pal}[i] - 1 \) (with the corner case \(LF_\text{pal}(i) = 1 \) for \(\text{SA}_\text{pal}[i] = 1 \)). Thanks to Lemma 10, for any value \(c \), the suffixes used to obtain \(i \)-th \(k \) in \(L_\text{pal} \) and in \(F_\text{pal} \) are the same, which enables us to implement the \(LF_\text{pal} \) function by \(LF_\text{pal}(i) = \text{select}_{F_\text{pal}}(\text{rank}_{L_\text{pal}}(i, 0), L_\text{pal}[i]) \). See Figure 7 for an illustration.

For any string \(w \), let \(w \)-interval refer to the maximal interval \([b, e]\) such that \(\text{ssP}_{T[\text{SA}_\text{pal}[i]..]} \) is prefixed by \(\text{ssP}_w \), where \(w \)-interval is empty if there is no substring of \(T \) that pal-matches with \(w \). Notice that the substring of \(T \) of length \(|w| \) starting at \(\text{SA}_\text{pal}[i] \) pal-matches with \(w \) if and only if \(i \in [b, e] \). A single step of backward search computes \(cw \)-interval from \(w \)-interval for some character \(c \).

The following theorems are the main contributions of this paper.

Theorem 16. Let \(T \) be a string of length \(n \) over an alphabet of size \(\sigma \). There is a data structure of \(2n \log \min(\sigma, \log n) + 2n + o(n) \) bits of space to support the counting queries for the pal-matching problem in \(O(m) \) time, where \(m \) is the length of a given pattern \(P \).

Proof. We use the data structures of Theorem 1 for \(L_\text{pal} \) and \(F_\text{pal} \), and the \(\text{RMQ} \) data structure of Theorem 2 for the integer array \(V \) with \(V[i] = LF_\text{pal}(i) \). Since the number of distinct symbols in \(L_\text{pal} \) and \(F_\text{pal} \) are \(O(\min(\sigma, \log n)) \) by Lemma 6, the data structures occupy \(2n \log \min(\sigma, \log n) + 2n + o(n) \) bits of space in total and all queries (\(\text{rank} \), \(\text{select} \), \(\text{rangeCount} \) and \(\text{RMQ} \)) can be supported in \(O(1) \) time.

The number of occurrences of \(P \) can be answered by computing the width of \(P \)-interval. Thus we focus on a single step of backward search. In a general setting, for any string \(w \) and a character \(c \), we show how to compute \(cw \)-interval \([b..e]\) in \(O(1) \) time from \(w \)-interval \([b..e]\), \(\pi(cw) \) and the number \(g \) of prefix-pal-groups of \(w \). The procedure differs depending on \(\pi(cw) = \infty \) or not.

\(i \)	\(T[i..] \)	\(\text{ssP}_{T[i..]} \)	\(\text{ssP}_{T[\text{SA}_\text{pal}[i]..]} \)	\(\text{SA}_\text{pal}[i] \)	\(F_\text{pal}[i] \)	\(L_\text{pal}[i] \)	\(LF_\text{pal}(i) \)
1	ababbcbc	\(\infty:2432:33 \)	\(\varepsilon \)	10	\$	\infty	2
2	bbabbcbc	\(\infty:32:33 \)	\(\infty \)	9	\infty	\infty	5
3	abbbbc	\(\infty:32:33 \)	\(\infty:2:33 \)	2	1	1	6
4	abbbbc	\(\infty:2:33 \)	\(\infty \)	5	1	\infty	7
5	bbabc	\(\infty:2:33 \)	\(\infty \)	8	\infty	2	8
6	babc	\(\infty:33 \)	\(\infty:2432:33 \)	1	2	8	1
7	cbc	\(\infty:3 \)	\(\infty:2:33 \)	4	\infty	2	9
8	bc	\(\infty:3 \)	\(\infty:3 \)	7	2	2	10
9	c	\(\infty \)	\(\infty:32:33 \)	3	2	1	3
10	\(\varepsilon \)	\(\varepsilon \)	\(\infty:33 \)	6	2	1	4
1. When \(\pi(cw) = k \neq \infty \). Using Lemma 9 in a symmetric way, \([b',e']\) is obtained by mapping the positions of \(\pi(cw) \) in \(L_{pal}[b,e] \) by the \(L_{F_{pal}} \) function. More specifically, \(b' = select_{F_{pal}}(rank_{L_{pal}}(b - 1, k) + 1, k) \) and \(e' = select_{F_{pal}}(rank_{L_{pal}}(e, k), k) \), which can be computed in \(O(1) \) time.

2. When \(\pi(cw) = \infty \). We note that \([b',e']\) is the maximal interval such that \(T[SA_{pal}[i]..] \) does not have non-trivial prefix-palindrome (i.e. \(\pi(T[SA_{pal}[i]..]) = \infty \)) or \(T[SA_{pal}[i]..] \) has the non-trivial shortest prefix-palindrome of length longer than \(|cw| \) (i.e. \(\pi(T[SA_{pal}[i]..]) > g \)). Thus, \(e' = b' + 1 \) is equivalent to the number of occurrences of values larger than \(g \) in \(L_{pal}[b,e] \), which can be computed in \(rangeCount_{L_{pal}}(b, e, g, \infty) \) in \(O(1) \) time. Moreover, it holds that \(e' = LF_{pal}(RMQ_{\pi}(b,e)) \) because \(ssp(T[SA_{pal}[i]..]) \) with \(\pi(T[SA_{pal}[i]..]) = L_{pal}[i] > g \) is always lexicographically larger than \(ssp(T[SA_{pal}[j]..]) \) with \(\pi(T[SA_{pal}[j]..]) = L_{pal}[j] \leq g \). Thus, we can compute \([b',e']\) in \(O(1) \) time.

Backward search for \(P \) requires \(\pi(P[i..]) \) and the number \(g \) of prefix-pal-groups of \(P[i..] \) for all \(1 \leq i \leq m \), which can be computed by \(sspg_{PN} \) and \(G_{PN} \) in \(O(m) \) time using Lemmas 15 and 14.

Putting all together, we get the theorem.

Theorem 17. Let \(T \) be a string of length \(n \) over an alphabet of size \(\sigma \) and \(\Delta \) be an integer in \([1,n]\). There is a data structure of \(2n \lg \min(\sigma, \lg n) + \frac{n}{\Delta} \lg n + 3n + o(n) \) bits of space to support the locating queries for the pal-matching problem in \(O(m + \Delta \text{occ}) \) time, where \(m \) is the length of a given pattern \(P \) and \(\text{occ} \) is the number of occurrences to report.
Proof. We use the data structure and the algorithm of Theorem 16 to compute P-interval in $2n(1 + \lg \min(\sigma, \lg n)) + o(n)$ bits of space and $O(m)$ time. The occurrences of P (in the sense of pal-matching) can be answered by the SA_{pal}-values in P-interval. We employ exactly the same sampling technique used in the FM-index to retrieve SA-values (e.g., see [7]): We make a bit vector B of length $n + 1$ marking the positions i in SA_{pal} such that $SA_{pal}[i] = \Delta k + 1$ for some integer k, and the sparse suffix array S holding only the marked SA_{pal}-values in the order. B is equipped with a data structure to support the rank queries and the additional space to Theorem 16 is $\frac{n}{\Delta} \lg n + n + o(n)$ bits in total.

If position i is marked, $SA_{pal}[i]$ is retrieved by $S[\text{rank}_B(i, 1)]$ in $O(1)$ time. If position i is not marked, we apply LF-mapping k times from i until we reach a marked position j and retrieve $SA_{pal}[i]$ by $S[\text{rank}_B(j, 1)] + k$. Since text positions are marked every Δ positions, the number k of LF-mapping steps is at most Δ, and hence, $SA_{pal}[i]$ can be retrieved in $O(\Delta)$ time. Therefore we can report each occurrence of P in $O(\Delta)$ time, and the theorem follows.

6 Conclusions and future work

In this paper, we developed new encoding schemes for pal-matching and proposed the PalFM-index, a space-efficient index for pal-matching based on the FM-index. Future work includes to present an efficient construction algorithm of the PalFM-index, and to reduce the space requirement (e.g. by incorporating with the idea of [13]). Another interesting research direction would be to develop a general framework to design FM-index type indexes in generalized pattern matching. We believe that switching encoding from $lpal$ to ssp to design the PalFM-indexes gives a good hint to pursue this direction, and conjecture that any generalized pattern matching under a substring consistent equivalent relation [27] admits such shortest positional encodings to design FM-index type indexes.

References

1. Jean-Paul Allouche, Michael Baake, Julien Cassaigne, and David Damanik. Palindrome complexity. *Theor. Comput. Sci.*, 292(1):9–31, 2003.
2. Mira-Cristiana Anisiu, Valeriu Anisiu, and Zoltán Kása. Total palindrome complexity of finite words. *Discrete Mathematics*, 310(1):109–114, 2010. doi:10.1016/j.disc.2009.08.002.
3. Kirill Borozdin, Dmitry Kosolobov, Mikhail Rubinchik, and Arseny M. Shur. Palindromic length in linear time. In *Proc. 28th Annual Symposium on Combinatorial Pattern Matching (CPM) 2017*, pages 23:1–23:12, 2017. doi:10.4230/LIPIcs.CPM.2017.23.
4. Srecko Brlek, Sylvie Hamel, Maurice Nivat, and Christophe Reutenauer. On the palindromic complexity of infinite words. *Int. J. Found. Comput. Sci.*, 15(2):293–306, 2004. doi:10.1142/S012905410400242X.
5. Michael Burrows and David J Wheeler. A block-sorting lossless data compression algorithm. Technical report, HP Labs, 1994.
6. Xavier Droubay, Jacques Justin, and Giuseppe Pirillo. Episturmian words and some constructions of de Luca and Rauzy. *Theor. Comput. Sci.*, 255(1-2):539–553, 2001. doi:10.1016/S0304-3975(99)00320-5.
7. Paolo Ferragina and Giovanni Manzini. Opportunistic data structures with applications. In *FOCS*, pages 390–398, 2000.
8. Paolo Ferragina, Giovanni Manzini, Veli Mäkinen, and Gonzalo Navarro. Compressed representations of sequences and full-text indexes. *ACM Trans. Algorithms*, 3(2), 2007.
9. Gabriele Fici, Travis Gagie, Juha Kärkkäinen, and Dominik Kempa. A subquadratic algorithm for minimum palindromic factorization. *Journal of Discrete Algorithms*, 28:41–48, 2014. StringMasters 2012 & 2013 Special Issue (Volume 1). doi:10.1016/j.jda.2014.08.001.
PalFM-Index: FM-Index for Palindrome Pattern Matching

10 Johannes Fischer and Volker Heun. Space-efficient preprocessing schemes for range minimum queries on static arrays. *SIAM J. Comput.*, 40(2):465–492, 2011.
11 Travis Gagie, Giovanni Manzini, and Rossano Venturini. An encoding for order-preserving matching. In *Proc. 25th Annual European Symposium on Algorithms (ESA) 2017*, pages 38:1–38:15, 2017. doi:10.4230/LIPIcs.ESA.2017.38.
12 Zvi Galil and Joel I. Seiferas. A linear-time on-line recognition algorithm for “palstar”. *J. ACM*, 25(1):102–111, 1978. doi:10.1145/322047.322056.
13 Arnab Ganguly, Rahul Shah, and Sharma V. Thankachan. pBWT: Achieving succinct data structures for parameterized pattern matching and related problems. In *Proc. 28th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA) 2017*, pages 397–407, 2017. doi:10.1137/1.9781611974782.25.
14 Arnab Ganguly, Rahul Shah, and Sharma V. Thankachan. Structural pattern matching - succinctly. In *Proc. 28th International Symposium on Algorithms and Computation (ISAAC) 2017*, pages 38:1–38:15, 2017. doi:10.1007/978-3-662-54542-5_35.
15 Amy Glen, Jacques Justin, Steve Widmer, and Luca Q. Zamboni. Palindromic richness. *Eur. J. Comb.*, 30(2):510–531, 2009. doi:10.1016/j.ejc.2008.04.006.
16 Alexander Golynski, Rajeev Raman, and S. Srinivasa Rao. On the redundancy of succinct data structures. In Joachim Gudmundsson, editor, *Proc. 11th Scandinavian Workshop on Algorithm Theory (SWAT) 2008*, volume 5124 of *Lecture Notes in Computer Science*, pages 148–159. Springer, 2008.
17 Roberto Grossi, Ankur Gupta, and Jeffrey Scott Vitter. High-order entropy-compressed text indexes. In *Proc. 14th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA) 2003*, pages 841–850. ACM/SIAM, 2003.
18 Tomohiro I, Shunsuke Inenaga, Hideo Bannai, and Masayuki Takeda. Counting and verifying maximal palindromes. In *Proc. 17th International Symposium on String Processing and Information Retrieval (SPIRE) 2010*, pages 135–146, 2010.
19 Tomohiro I, Shunsuke Inenaga, and Masayuki Takeda. Palindrome pattern matching. *Theor. Comput. Sci.*, 483:162–170, 2013. doi:10.1016/j.tcs.2012.01.047.
20 Tomohiro I, Shiho Sugimoto, Shunsuke Inenaga, Hideo Bannai, and Masayuki Takeda. Computing palindromic factorizations and palindromic covers on-line. In *Proc. 25th Annual Symposium on Combinatorial Pattern Matching (CPM) 2014*, volume 8486 of *Lecture Notes in Computer Science*, pages 150–161. Springer, 2014.
21 Ignacio Tinoco Jr., Olke C. Uhlenbeck, and Mark D. Levine. Estimation of secondary structure in ribonucleic acids. *Nature*, 230:362–367, 1971.
22 Sung-Hwan Kim and Hwan-Gue Cho. A compact index for cartesian tree matching. In Pawel Gawrychowski and Tatiana Starikovskaya, editors, *Proc. 32nd Annual Symposium on Combinatorial Pattern Matching (CPM) 2021*, volume 191 of *LIPIcs*, pages 18:1–18:19. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2021.
23 Sung-Hwan Kim and Hwan-Gue Cho. Simpler FM-index for parameterized string matching. *Inf. Process. Lett.*, 165:106026, 2021. doi:10.1016/j.ipl.2020.106026.
24 Donald E. Knuth, James H. Morris, and Vaughan R. Pratt. Fast pattern matching in strings. *SIAM J. Comput.*, 6(2):323–350, 1977.
25 Dmitry Kosolobov, Mikhail Rubinchik, and Arseny M. Shur. Pal k is linear recognizable online. In *SOFSEM 2015: Theory and Practice of Computer Science - 41st International Conference on Current Trends in Theory and Practice of Computer Science, Pec pod Sněžkou, Czech Republic, January 24-29, 2015. Proceedings*, pages 289–301, 2015. doi:10.1007/978-3-662-46078-8_24.
26 Glenn K. Manacher. A new linear-time “on-line” algorithm for finding the smallest initial palindrome of a string. *J. ACM*, 22(3):346–351, 1975. doi:10.1145/321892.321896.
27 Yoshiaki Matsuoka, Takahiro Aoki, Shunsuke Inenaga, Hideo Bannai, and Masayuki Takeda. Generalized pattern matching and periodicity under substring consistent equivalence relations. *Theor. Comput. Sci.*, 656:225–233, 2016.
28 Antonio Restivo and Giovanna Rosone. Burrows-wheeler transform and palindromic richness. *Theor. Comput. Sci.*, 410(30-32):3018–3026, 2009. doi:10.1016/j.tcs.2009.03.008.

29 Mikhail Rubinchik and Arseny M. Shur. EERTREE: an efficient data structure for processing palindromes in strings. *Eur. J. Comb.*, 68:249–265, 2018. doi:10.1016/j.ejc.2017.07.021.