Supporting Information

Synthesis of High Surface Area Porous Carbon from Anaerobic Digestate and it’s Electrochemical Study as an Electrode Material for Ultracapacitor

Vikash Chaturvedi a,b Saurabh Usgaonkar c, and Manjusha V. Shelke a,b,*

a Physical and Materials Chemistry Division, CSIR-National Chemical Laboratory, Pune-411008, MH, India.

b Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, UP, India.

c Polymer Science and Engineering Division, CSIR-National Chemical Laboratory, Pune-411008, MH, India

E-mail: mv.shelke@ncl.res.in

SI Table S1. Comparison chart for various bio-waste derived carbons on multiple parameters like specific capacitance at the particular current density, specific surface area achieved, the electrolyte used and activation method employed.

Sr.No.	Carbon source	Specific capacitance (F/g)	Current density/Scan rate	Specific surface area (m²/g)	Electrolyte	Activation method	References	
1	Coffee shell	150	1 mV/s	842	KOH	ZnCl₂	[1]	
	Material	RM	Current Density	Mass (g)	Frequency (Hz)	Electrolyte 1	Electrolyte 2	Reference
---	---------------------------	--------	-----------------	----------	----------------	---------------	---------------	-----------
2	Rice Husk	210	0.2 mA/g	1886	KCl	NaOH		[2]
3	Banana fibers	74	20 mA/g	686	Na$_2$SO$_4$	ZnCl$_2$		[3]
4	Corn grains	257	1 mA/cm2	2936-3420	KOH	KOH		[4]
5	Coconut shell (melamine)	368	Vs Frequency	3000	KOH	KOH		[5]
6	Dead neem leaves	400	0.5 A/g	1230	H$_2$SO$_4$	None		[6]
7	Dead ashoka leaves	250	0.5 A/g	705	H$_2$SO$_4$	None		[6]
8	Sugarcane bagasse	280	1 A/g	1260	KOH	KOH		[7]
SI Fig S1. Deconvoluted XPS spectra of Carbon C1s for all DDHPC-kh samples.
SI Fig S2. Deconvoluted XPS spectra of Oxygen O 1s for all DDHPC-\(kh\) samples.
SI Fig S3. TEM Images for DDHPC-4 (a, b, c), DDHPC-4k (d, e, f), and DDHPC-4kh (g, h, i)
References

[1] M.R. Jisha, Y.J. Hwang, J.S. Shin, K.S. Nahm, T. Prem Kumar, K. Karthikeyan, N. Dhanikaivelu, D. Kalpana, N.G. Renganathan, A.M. Stephan, Electrochemical characterization of supercapacitors based on carbons derived from coffee shells, Mater. Chem. Phys. 115 (2009) 33–39. https://doi.org/10.1016/j.matchemphys.2008.11.010.

[2] Y. Guo, J. Qi, Y. Jiang, S. Yang, Z. Wang, H. Xu, Performance of electrical double layer capacitors with porous carbons derived from rice husk, Mater. Chem. Phys. 80 (2003) 704–709. https://doi.org/10.1016/S0254-0584(03)00105-6.

[3] V. Subramanian, C. Luo, A.M. Stephan, K.S. Nahm, S. Thomas, B. Wei, Supercapacitors from activated carbon derived from areca fiber, J. Phys. Chem. C. 111 (2007) 7527–7531.

[4] M.S. Balathanigaimani, W.-G. Shim, M.-J. Lee, C. Kim, J.-W. Lee, H. Moon, Highly porous electrodes from novel corn grains-based activated carbons for electrical double layer capacitors, Electrochem. Commun. 10 (2008) 868–871. https://doi.org/https://doi.org/10.1016/j.elecom.2008.04.003.

[5] K. Jurewicz, K. Babel, Efficient Capacitor Materials from Active Carbons Based on Coconut Shell/Melamine Precursors, Energy & Fuels. 24 (2010) 3429–3435. https://doi.org/10.1021/ef901554j.

[6] M. Biswal, A. Banerjee, M. Deo, S. Ogale, From dead leaves to high energy density supercapacitors, Energy Environ. Sci. 6 (2013) 1249. https://doi.org/10.1039/c3ee22325f.

[7] M. Wahid, D. Puthusseri, D. Phase, S. Ogale, Enhanced capacitance retention in a supercapacitor made of carbon from sugarcane bagasse by hydrothermal pretreatment, Energy and Fuels. 28 (2014) 4233–4240. doi: https://doi.org/10.1021/ef500342d.