Approximation by Lipschitz functions
L. A. Coburn

Abstract

On any metric space, I provide an intrinsic characterization for the uniform closure of the set of all complex-valued Lipschitz functions. There are applications to function theory on complete Riemannian manifolds and, in particular, on bounded symmetric domains (BSD) in \mathbb{C}^n.

2020 AMS Subject Classification: 46E36 (primary), 54C35

Key words: Lipschitz functions, approximation

1. Introduction. On any metric space $(X, \beta(\cdot, \cdot))$, we say a complex-valued function f is uniformly continuous if, for arbitrary real $\epsilon > 0$, and x, y in X, there is a real $\delta = \delta(\epsilon) > 0$ so that $|f(x) - f(y)| < \epsilon$ whenever $\beta(x, y) < \delta$. The set of all uniformly continuous functions on (X, β) is denoted by $UC(X)$. The Lipschitz functions $Lip(X)$ are the subset of $UC(X)$ with the property that, for all x, y in X and f in $Lip(X)$, $|f(x) - f(y)| \leq C\beta(x, y)$, for some positive constant $C = C(f)$.

We will be concerned with an intermediate set of functions, the uniform closure of $Lip(X)$, which I denote by $Lip_c(X)$. I will show that $Lip_c(X)$ consists precisely of those functions f for which, given any $\epsilon > 0$, there is a constant $C = C(\epsilon)$ so that

\[(*) \quad |f(x) - f(y)| < \epsilon + C(\epsilon)\beta(x, y),\]

for all x, y in X.

As an application of this result, I give a concise proof of the known equivalence $UC(X) \equiv Lip_c(X)$ for the special case of complete (connected) Riemannian manifolds X, with metric the usual Riemannian distance function induced by the infinitesimal Riemannian metric. The prototypical complete Riemannian manifold is real n-dimensional space \mathbb{R}^n and for x, y in \mathbb{R}^n, we have the usual norm $|x|$ and the Riemannian distance function is just $\beta(x, y) = |x - y|$. This application holds, in particular, for all bounded symmetric domains (BSD) Ω in \mathbb{C}^n. In this case, stronger results (with a more complicated proof) are known [1]: the real-analytic Lipschitz functions are uniformly dense in $UC(\Omega)$.

1
For a definitive, fairly recent, treatment of approximation by Lipschitz functions, see [6]. The result characterizing $\text{Lip}_c(X)$ does not seem to be in the literature. While evidently not as useful as the notion of "Lipschitz in the small," it still seems to be worth some attention.

2. A characterization of $\text{Lip}_c(X)$. For $(X, \beta(\cdot, \cdot))$ any metric space, we recall the extension result due to E. J. McShane [8] for real-valued Lipschitz functions:

Proposition 1. For any non-empty subset S of X and any real-valued function f in $\text{Lip}(S)$, there is a real-valued function F in $\text{Lip}(X)$ with $F|_S = f$ and with F having the same Lipschitz constant as f.

Proof. Suppose that $|f(s) - f(t)| \leq C\beta(s, t)$ for all s, t in S. For any x in X we define

$$F(x) = \inf \{ f(s) + C\beta(x, s) : s \in S \}.$$

To see that $F(x)$ is finite for every x in X, fix s_0 in S. Then we can check that for any s in S

$$f(s) + C\beta(s, x) \geq f(s_0) - C\beta(s, s_0) + C\beta(s, x) \geq f(s_0) - C\beta(x, s_0).$$

For x in S, $F(x) \leq f(x)$. But, for all s in S, $f(x) \leq f(s) + C\beta(x, s)$ so $f(x) \leq F(x)$.

Finally, we check that F is Lipschitz on X. For x, y in X, note that

$$F(x) = \inf \{ f(s) + C\beta(s, x) : s \in S \}$$

$$\leq \inf \{ f(s) + C\beta(s, y) + C\beta(y, x) : s \in S \}$$

$$\leq \inf \{ f(s) + C\beta(s, y) ; s \in S \} + C\beta(y, x)$$

$$\leq F(y) + C\beta(x, y)$$

so $|F(x) - F(y)| \leq C\beta(x, y)$.

2
Corollary. For S any non-empty subset of X and f any complex-valued function in $Lip(S)$ with $|f(x) - f(y)| \leq C \beta(x, y)$, there is a complex-valued function in $Lip(X)$ with $F|_S = f$ and $|F(x) - F(y)| \leq 2C \beta(x, y)$ for all x, y in X.

Proof. We first check that the real and imaginary parts of f are in $Lip(S)$ with the same Lipschitz constant C as f. By Proposition 1, there are real-valued U, V in $Lip(X)$ with the same Lipschitz constant C and such that $U|_S = Re(f), V|_S = Im(f)$. Taking $F = U + iV$ gives the desired result.

Let $t_0 = \sup \{ \beta(x, y) : x, y \in X \}$. If β is unbounded, take $t_0 = \infty$.

Assume that $t_0 > 0$. I can now prove the main result.

Theorem 1. On any metric space (X, β), a complex-valued function f is in $Lip_c(X)$ if and only if for every $\epsilon > 0$, there is a $C = C(\epsilon) > 0$ so that

\[(*) \quad |f(x) - f(y)| < \epsilon + C(\epsilon) \beta(x, y)\]

for all x, y in X.

Proof. If g is Lipschitz, with $|f(x) - g(x)| < \epsilon/2$ for all x in X, then

\[|f(x) - f(y)| \leq |f(x) - g(x)| + |g(x) - g(y)| + |g(y) - f(y)|\]

\[< \epsilon + C \beta(x, y),\]

where C is a Lipschitz constant for g.

For the converse, suppose f satisfies $(*)$ for every $\epsilon > 0$. Without loss of generality, we may choose $C(\epsilon)$ in $(*)$ with $C(\epsilon) > \epsilon/t_0$ so there are $x_1, x_2 \in X$ with $\beta(x_1, x_2) \geq \epsilon/C(\epsilon)$. By Zorn’s Lemma, with $t = \epsilon/C(\epsilon)$ there is a maximal t-separated subset of X, $S = S_\epsilon$, which contains x_1, x_2. For any x, y in S with $x \neq y$, we have $\beta(x, y) \geq t$ and by $(*)$,

\[
\frac{|f(x) - f(y)|}{\beta(x, y)} < \frac{\epsilon}{\beta(x, y)} + C(\epsilon)
\leq \epsilon t^{-1} + C(\epsilon)
\leq 2C(\epsilon),
\]

so $f|_S$ is Lipschitz with Lipschitz constant $2C(\epsilon)$. 3
By the Corollary to Proposition 1, \(f|_S \) extends to a function \(F \) which is in \(\text{Lip}(X) \) and has Lipschitz constant \(4C(\epsilon) \). For any \(x \) in \(X \), by maximality of \(S \), we may choose a \(y \) in \(S \) with \(\beta(x,y) < t \). Now \(F(y) = f(y) \) so

\[
|F(x) - f(x)| \leq |F(x) - F(y)| + |f(y) - f(x)| \\
\leq 4C(\epsilon)\beta(x,y) + C(\epsilon)\beta(x,y) + \epsilon \\
< 6\epsilon.
\]

Since \(\epsilon > 0 \) was arbitrary, the proof is complete.

Corollary. \(\text{Lip}_c(X) \subset UC(X) \).

Proof. Trivial.

Remarks. The proof of Theorem 1 benefitted from a reading of [4, Proposition 2.1]. Functions in \(\text{Lip}_c(X) \) can grow no faster than \(f(x) = \beta(a,x) \) for any fixed \(a \) in \(X \). In the next sections, I discuss some known examples where \(\text{Lip}_c(X) = UC(X) \).

3. Complete Riemannian manifolds.

I give a concise proof, using Theorem 1, of a known result [6, pp.286,289]. The key property of metric distance functions of complete (connected) Riemannian manifolds used here is:

geodesic completeness–between every two points \(a, b \) there is a geodesic arc \(\gamma \) of length \(\beta(a,b) \).

Proposition 2. For any complete (connected) Riemannian manifold \((X, \beta) \), \(\text{Lip}_c(X) = UC(X) \).

Proof. For any \(a \neq b \) in \(X \), there is a geodesic segment \(\gamma \) of length \(\beta(a,b) \) joining \(a \) to \(b \). For \(f \) in \(UC(X) \) and \(\epsilon, \delta(\epsilon) \) as in the definition of uniform continuity above, let \(N \) be the integer such that

\[
N \leq \beta(a,b)\delta(\epsilon)^{-1} < N + 1.
\]

Divide \(\gamma \) into \(N + 1 \) equal-length segments, each of length less than \(\delta(\epsilon) \).
The triangle inequality then shows that

\[
|f(a) - f(b)| < (N + 1)\epsilon \\
\leq \beta(a, b)\delta(\epsilon)^{-1}\epsilon + \epsilon \\
\leq C(\epsilon)\beta(a, b) + \epsilon,
\]

where \(C(\epsilon) = \epsilon\delta(\epsilon)^{-1}\). Thus, (*) holds.

Remark. This idea was used in [1, Lemma 2.1] when we considered the special case of bounded symmetric domains (BSD) \(\Omega\) and obtained real-analytic Lipschitz approximants for all functions in \(UC(\Omega)\).

4. Bounded symmetric domains

The bounded symmetric domains (BSD) in complex n-space \(C^n\) play a significant role in geometry and in representation theory [7]. These domains are all bounded open convex sets in \(C^n\) which carry intrinsic complete Riemannian (Bergman) metrics. The prototype is just the hyperbolic metric on the open disc. Using the results in [1], boundedness and compactness were determined for Toeplitz operators with uniformly continuous symbols on BSD’s in [2].

There are two quite different natural metrics on BSD \(\Omega\): the Bergman metric, with distance function \(\beta(\cdot, \cdot)\) and the restricted Euclidean metric from \(C^n\). The two different corresponding notions of uniform continuity are related by the fact [5, p. 1167] that \(|x - y| \leq C_\Omega \beta(x, y)\) so that \(UC(\Omega)_{|\cdot|} \subset UC(\Omega)_\beta\). This provides a useful source of bounded functions in \(UC(\Omega)_\beta\), which also includes unbounded functions like \(f(z) = \beta(a, z)\) for any fixed \(a\) in \(\Omega\). It follows easily from equation (*) of Theorem 1 that functions in \(UC(\Omega)_\beta\) grow no faster than \(\beta(a, z)\). Finally, we observe that [3, Theorem E] \(\beta(a, z)\) is of slow growth near the boundary of \(\Omega\): it is in \(L^p(\Omega, dv)\) for all \(p > 0\).
References

[1] Bauer, W. and Coburn, L. A., Heat flow, weighted Bergman spaces, and real analytic Lipschitz approximation, *Journal fur die Reine und Angewandte Mathematik* (2015) 225-246.

[2] Bauer, W. and Coburn, L.A., Toeplitz operators with uniformly continuous symbols, *Integral equations and operator theory* 83 (2015) 25-34.

[3] Bekolle, D., Berger, C. A., Coburn, L. A., Zhu, K. H., BMO in the Bergman metric on bounded symmetric domains, *Journal of functional analysis* 93 (1990)310-350.

[4] Benyamini, Y. and Lindenstrauss, J., *Geometric nonlinear functional analysis*, AMS Colloquium Publications 48 (2000) Providence, RI.

[5] Coburn, L. A., Sharp Berezin Lipschitz estimates, *Proceedings of the AMS* 135 (2007) 1163-1168.

[6] Garrido, M. I. and Jaramillo, J. A., Lipschitz-type functions on metric spaces, *J. Math. Analysis and Applications* 340 (2008) 282-290.

[7] Helgason, S., *Differential geometry, Lie groups, and symmetric spaces*, AMS Graduate Studies in Mathematics 34 (2001) Providence, RI.

[8] McShane, E. J., Extensions of range of functions, *Bulletin of the AMS* 40 (1934) 837-842.

Department of Mathematics, SUNY at Buffalo, Buffalo, New York 14260, USA
e-mail address: lcoburn@buffalo.edu
version: 5/13/2021