A SPITZER INFRARED SPECTROGRAPH SPECTRAL SEQUENCE OF M, L, AND T DWARFS

MICHAEL C. CUSHING,1,2 THOMAS L. ROELLIG,3 MARK S. MARLEY,4 D. SAUMON,5 S. K. LEGGETT,6 J. DAVY KIRKPATRICK,7 JOHN C. WILSON,3 G. C. SLOAN,9 AMY K. MAINZER,10 JEFF E. VAN CLEVE,11 AND JAMES R. HOUCK12

1,2 Steward Observatory, University of Arizona, 933 North Cherry Avenue, Tucson, AZ 85721; mcushing@as.arizona.edu.
3 Spitzer Fellow.
4 NASA Ames Research Center, Mail Stop 245-6, Moffett Field, CA 94035; thomas.roellig@nasa.gov.
5 NASA Ames Research Center, Mail Stop 254-3, Moffett Field, CA 94035; mmarley@mail.arc.nasa.gov.
6 Los Alamos National Laboratory, Applied Physics Division, Mail Stop P365, Los Alamos, NM 87544; dsaumon@lanl.gov.
7 Gemini Northern Operations, 670 North A'ohoku Place, Hilo, HI 96720; s.leggett@jach.hawaii.edu.
8 Infrared Processing and Analysis Center, California Institute of Technology, Mail Stop 100-22, Pasadena, CA 91125; davy@ipac.caltech.edu.
9 Astronomy Department, Cornell University, Ithaca, NY 14853; sloan@isc.cornell.edu.
10 Jet Propulsion Laboratory, Mail Stop 169-506, 4800 Oak Grove Drive, Pasadena, CA 91109; amainzer@jpl.nasa.gov.
11 Ball Aerospace and Technologies Corporation, 1600 Commerce Street, Boulder, CO 80301; jvanlew@ball.com.
12 Astronomy Department, Cornell University, Ithaca, NY 14853; jrh13@cornell.edu.

ABSTRACT

We present a low-resolution ($R = \lambda/\Delta \lambda \approx 90$), 5.5–38 μm spectral sequence of a sample of M, L, and T dwarfs obtained with the Infrared Spectrograph (IRS) on board the Spitzer Space Telescope. The spectra exhibit prominent absorption bands of H2O at 6.27 μm, CH4 at 7.65 μm, and NH3 at 10.5 μm and are relatively featureless at $\lambda \gtrsim 15$ μm. Several spectral indices that measure the strengths of these bands are presented; H2O absorption features are prominent throughout the MLT sequence, while the CH4 and NH3 bands first appear at roughly the L/T transition. Although the spectra are, in general, qualitatively well matched by synthetic spectra that include the formation of spatially homogeneous silicate and iron condensate clouds, the spectra of the mid-type L dwarfs show an unexpected flattening from roughly 9 to 11 μm. We hypothesize that this may be a result of a population of small silicate grains that is not predicted in the cloud models. The spectrum of the peculiar T6 dwarf 2MASS 10937+2931 is suppressed from 5.5 to 7.5 μm relative to typical T6 dwarfs and may be a consequence of its mildly metal-poor/high surface gravity atmosphere. Finally, we compute bolometric luminosities of a subsample of the M, L, and T dwarfs by combining the IRS spectra with previously published 0.6–4.1 μm spectra and find good agreement with the values of Golimowski et al., who use L^*- and M^*-band photometry to account for the flux emitted at $\lambda > 2.5$ μm.

Subject headings: infrared: stars — stars: late-type — stars: low-mass, brown dwarfs

1. INTRODUCTION

The discovery of the first bona fide brown dwarf (BD) Gl 229B (Nakajima et al. 1995) and the confirmation of other BD candidates (Basri et al. 1996; Rebole et al. 1996) ushered in a new era in both stellar and planetary astrophysics, since BDs bridge the gap in mass between stars and planets. Over 400 very low mass stars and BDs, collectively known as “ultracool” dwarfs, have since been discovered, primarily in wide-field optical and near-infrared surveys such as the Two Micron All Sky Survey (2MASS; Skrutskie et al. 2006), the Deep Near Infrared Southern Sky Survey (DENIS; Epchtein et al. 1997), and the Sloan Digital Sky Survey (SDSS; York et al. 2000). Ultracool dwarfs have effective temperatures (T_{eff}) less than ~2700 K and spectral types later than ~M7 V, and include the new L and T dwarfs. Since their spectral energy distributions (SEDs) peak near ~1 μm, considerable observational (Basri 2000; Kirkpatrick 2005) and theoretical (Chabrier & Baraffe 2000; Burrows et al. 2001) effort has gone into studying them at both red-optical and near-infrared wavelengths.

Nevertheless, observations at $\lambda > 2.5$ μm can also provide important constraints on the fundamental parameters and atmospheric physics of ultracool dwarfs. For example, the T_{eff} of an ultracool dwarf is typically determined by combining an observational bolometric luminosity with a theoretical radius (e.g., Dahn et al. 2002; Golimowski et al. 2004). Since spectroscopic observations are typically limited to $\lambda \lesssim 2.5$ μm, the T_{eff} scale therefore depends critically on an accurate accounting of the flux emitted at longer wavelengths. The effects of nonequilibrium chemistry on the abundances of CO, CH4, N2, and NH3 due to the vertical transport of gas within the atmospheres of ultracool dwarfs, and hence the band strengths of CO, CH4, and NH3, are also strongest at these wavelengths (Saumon et al. 2003a, 2003b). In addition, observations at $\lambda > 2.5$ μm are easier to interpret using atmospheric models because the dominant absorption bands (H2O, CO, CH4, and NH3) at these wavelengths arise from fundamental transitions with nearly complete line lists compared to the overtone and combination bands at near-infrared wavelengths. Finally, mid-infrared spectroscopy adds important information about the vertical structure and properties of atmospheric condensates. In principle, Mie scattering effects of iron and silicate grains expected in the atmospheres of the L dwarfs may be apparent near 10 μm.

Unfortunately, observations of ultracool dwarfs at $\lambda > 2.5$ μm are not as common as they are at shorter wavelengths, due to the difficulty of observing from the ground at these wavelengths. The majority of the observations consist of L^*- and M^*-band photometry (Stephens et al. 2001; Leggett et al. 2002; Golimowski et al. 2004), although some spectroscopy has been performed at these wavelengths (Noll et al. 1997, 2000; Oppenheimer et al. 1998; Burgasser 2001; Cushing et al. 2005). In particular, the ν_3 absorption bands of H2O at 6.27 μm, CH4 at 7.65 μm, and NH3 at 10.5 μm are relatively featureless at $\lambda > 15$ μm. Several spectral indices that measure the strengths of these bands are presented; H2O absorption features are prominent throughout the MLT sequence, while the CH4 and NH3 bands first appear at roughly the L/T transition. Although the spectra are, in general, qualitatively well matched by synthetic spectra that include the formation of spatially homogeneous silicate and iron condensate clouds, the spectra of the mid-type L dwarfs show an unexpected flattening from roughly 9 to 11 μm. We hypothesize that this may be a result of a population of small silicate grains that is not predicted in the cloud models. The spectrum of the peculiar T6 dwarf 2MASS 10937+2931 is suppressed from 5.5 to 7.5 μm relative to typical T6 dwarfs and may be a consequence of its mildly metal-poor/high surface gravity atmosphere. Finally, we compute bolometric luminosities of a subsample of the M, L, and T dwarfs by combining the IRS spectra with previously published 0.6–4.1 μm spectra and find good agreement with the values of Golimowski et al., who use L^*- and M^*-band photometry to account for the flux emitted at $\lambda > 2.5$ μm.
fundamental band of CH₄ at ~3.3 μm has been detected in the spectra of L and T dwarfs (Oppenheimer et al. 1998; Burgasser 2001; Noll et al. 2000; Cushing et al. 2005), and the fundamental CO band at ~4.7 μm has been detected in the T dwarf Gl 229B (Noll et al. 1997; Oppenheimer et al. 1998). Even fewer ground-based observations of ultracool dwarfs exist at λ > 5 μm and are limited to photometric observations (Matthews et al. 1996; Cleece-Eakman et al. 2004; Sterzik et al. 2005) of just a few dwarfs.

The launch of the *Spitzer Space Telescope* (Werner et al. 2004), which is sensitive from 3.6 to 160 μm, has opened a heretofore untapped wavelength range for the study of ultracool dwarfs. In particular, the Infrared Array Camera (IRAC; Fazio et al. 2004) and the IRS (Houck et al. 2004) are providing unprecedented photometric and spectroscopic observations of ultracool dwarfs at mid-infrared wavelengths. Roellig et al. (2004) presented the first mid-infrared spectra of an M, L, and T dwarf and identified absorption bands of H₂O, CH₄, and NH₃. In this paper we extend the work of Roellig et al. and present a 5.3–38 μm spectral sequence of M, L, and T dwarf spectra obtained with the IRS. Forthcoming papers will provide a more in-depth analysis of the spectra. We describe the observations, data reduction, and absolute flux calibration of the spectra in § 2, while in § 3 we discuss the spectra sequence, derive three spectral indices that measure the strengths of the H₂O, CH₄, and NH₃ bands, and discuss a number of interesting objects. In § 4 we present full 0.6–15 μm SEDs of a subsample of M, L, and T dwarfs and compute their bolometric luminosities.

2. OBSERVATIONS AND DATA REDUCTION

Our current sample consists of 14 M dwarfs, 21 L dwarfs, and 11 T dwarfs drawn from the literature. The observations were conducted with the IRS as part of the “Dim Suns” IRS Science Team Guaranteed Time Observation (GTO) program. The IRS is composed of four modules capable of performing low (R ≈ λ/Δλ ≈ 90) to moderate resolution (R ≈ 600) spectroscopy from 5.3 to 38 μm. We used the Short-Low (SL) module that covers from 5.3 to 15.3 μm at R ≈ 90 in 2 orders, and the Long-Low (LL) module that covers from 14.0 to 38 μm at R ≈ 90, also in 2 orders. A log of the observations, including the *Spitzer* AOR key, spectroscopic module, and total on-source integration time, is given in Table 1. Although both optical and infrared spectral types are listed in Table 1, we hereafter use optical types for the M and L dwarfs (Kirkpatrick et al. 1991, 1999) and infrared types for the T dwarfs (Burgasser et al. 2006b) unless otherwise noted. In addition, we hereafter abbreviate the numerical portions of the 2MASS, SDSS, and DENIS target designations as Jhmm ± dddmm, where the suffix is the sexigesimal right ascension (hours and minutes) and declination (degrees and arcminutes) at J2000.0 equinox.

The observations consisted of a series of exposures obtained at two positions along each slit. The raw IRS data were processed with the IRS pipeline (version S12) at the *Spitzer* Science Center. The data were reduced using custom IDL procedures based on the SpeXtool (Cushing et al. 2004) data reduction package. The background signal was first removed from each science frame by subtracting the median of the frames obtained in the same spectroscopic module but with the target in the other order. Any residual background was removed by subtracting off the median signal in the slit at each column, excluding regions that contain signal from the target. The spectra were then extracted with a fixed-width aperture (6′0 in the SL module and 9′0 in the LL module) and wavelength calibrated using the technique employed by the IRS data reduction package, the Spectroscopic Modeling Analysis and Reduction Tool (SMART; Higdon et al. 2004).

Observations of standard stars obtained as part of the normal IRS calibration observations were used to remove the instrument response function and flux calibrate the science targets. We used α Lac (A0 V) to correct the SL spectra and HR 6348 (K1 III) for the LL spectra. The standard star spectra were extracted in a fashion similar to that used for the science targets. Model spectra of the two standard stars from Cohen et al. (2003) were used to remove the intrinsic SED from the raw standard star spectra. The spectra from the SL module were then merged into a single 5.3–15.3 μm spectrum, and the spectra from the LL module were merged into a single 14.0–38 μm spectrum. Finally, for those targets with both SL and LL data, the spectra from the two modules are merged together; any offset in the flux density levels of the two spectra is removed by scaling the LL spectrum to the flux density level of the SL spectrum.

The final step in the reduction process is to absolutely flux calibrate the spectra using IRAC Band 4 photometry. Fortunately, 27 of the dwarfs in our sample have been observed as part of an IRAC Science Team GTO program (Patten et al. 2006). Below we describe the process used to absolutely flux calibrate the dwarf spectra in our sample.

IRAC observations are reported as a flux density, f_IRAC(λ₀), at a nominal wavelength λ₀ (λ₀ = 7.872 μm for Band 4 [Reach et al. 2005]) assuming the target has a SED given by

\[\nu f_\nu(\nu) = \text{constant} = \nu_0 f_\nu^\text{IRAC}(\lambda_0), \]

where \(\nu_0 = c/\lambda_0 \). If this assumption is invalid, as it is for ultracool dwarfs, then the quoted flux density is not the flux density of the target at \(\lambda_0 \). Therefore, in order to compare an IRAC observation to an IRS spectrum, we must compute an equivalent \(f_\nu^\text{IRS}(\lambda_0) \), given the IRS spectrum.

The value of \(f_\nu^\text{IRS}(\lambda_0) \) is determined for any source with a SED given by \(f_\nu(\lambda) \) from the requirement that the number of electrons detected per second from the source, \(N_e \), be equal to the number of electrons detected per second from a hypothetical target with a SED given by equation (1), \(\bar{N}_e \). That is,

\[A \int \frac{\bar{f}_\nu(\lambda)}{h \nu} S(\nu) \, d\nu = A \int \frac{f_\nu(\lambda)}{h \nu} S(\nu) \, d\nu, \]

where \(A \) is the area of the telescope and \(S(\nu) \) is the system response function of the telescope plus instrument plus detector system in units of photons/second/μm². Substituting equation (1) into equation (2), and solving for \(f_\nu^\text{IRS}(\lambda_0) \), we find

\[f_\nu^\text{IRS}(\lambda_0) = \frac{\int (\nu_0/\nu) f_\nu(\lambda) S(\nu) \, d\nu}{\int (\nu_0/\nu)^2 S(\nu) \, d\nu}. \]

Equation (3) can be used to predict the flux density IRAC would report if it were to observe a source with a SED given by \(f_\nu(\lambda) \). The IRS spectra of the dwarfs with IRAC observations were absolutely flux calibrated by multiplying each spectrum by a scale factor \(C \), given by

\[C = \frac{f_\nu^\text{IRS}(\lambda_0)}{f_\nu^\text{IRAC}(\lambda_0)}, \]

where \(f_\nu^\text{IRS}(\lambda_0) \) was determined using the IRS spectrum and equation (4), and \(f_\nu^\text{IRAC}(\lambda_0) \) is the reported IRAC flux density for the dwarf in question. The correction factors ranged from

13 Databases of known L and T dwarfs can be found at http://DwarfArchives.org and http://www.jach.hawaii.edu/~skl/LTdata.html.
The constant of 1.4826 is defined such that MAD = median(|xi - median(x)|) and is a robust estimate of the standard deviation, σ, of a distribution. The constant of 1.4826 is defined such that MAD = σ if the random variable x follows a normal distribution and the sample is large. A subset of the M, L, and T dwarf SL spectra is shown in Figures 1–3. The signal-to-noise ratio (S/N) of the spectra ranges from several hundred for the early-type M dwarfs to a few for the faintest T dwarfs. Prominent absorption features of H2O, CH4, and NH3 are indicated. Figure 4 shows the LL spectra of those dwarfs in our sample with the highest S/ N. The S/ N of the spectra ranges from >100 for Gl 229A to a few for DENIS J0255-4700. The LL
spectra of ultracool dwarfs are relatively featureless at the resolving power of the IRS. Weck et al. (2004) found that the inclusion of the ground-state $\Delta \nu = +1$ bands of LiCl at $\sim 15.8 \mu m$ affects synthetic spectra at the level of a few percent at $T_{\text{eff}} = 1500$ K (the approximate T_{eff} of DENIS J0255$-$4700). Given the low S/N of the LL spectra, and the predicted weakness of the LiCl bands, we cannot assess whether this band is present in the spectra of ultracool dwarfs. We do not discuss the LL spectra further.

3. DISCUSSION

To aid the reader in the interpretation of these spectra, a sequence of model spectra with values of T_{eff} ranging from 3800 K down to 600 K in steps of 400 K with a log $g = 5.0$ is shown in
Figure 5. The models with $T_{\text{eff}} \geq 2600$ K are AMES-COND models (Allard et al. 2001), the models with $1400 \leq T_{\text{eff}} < 2600$ K are cloudy models (Marley et al. 2002; M. S. Marley et al. 2006, in preparation), and the models with $T_{\text{eff}} < 1400$ K are cloudless models. The spectra have been smoothed to $R = 90$ and resampled onto the wavelength grid of the IRS spectra. Also shown are the approximate spectral types corresponding to each T_{eff} (Leggett et al. 2000; Golimowski et al. 2004).

The spectra of the M and L dwarfs at $\lambda > 5$ μm are dominated almost entirely by absorption features arising from the ν_2 fundamental band of H$_2$O centered at ~ 6.27 μm, and the $2\nu_2 - \nu_2$ overtone band centered at ~ 6.42 μm. However, due to a combination of the weakness of these features and the low spectral resolving power of the IRS spectra ($R \approx 90$), the only H$_2$O feature readily identifiable is a “break” at ~ 6.5 μm. As the T_{eff} decreases, this break generally increases in strength until eventually
additional H$_2$O absorption at longer and shorter wavelengths transforms it into an emission-like feature in the spectra of the T dwarfs. In actuality, this emission feature is a result of a minimum in the H$_2$O opacity, which allows the observer to see deeper, and thus hotter, atmospheric layers. Counterintuitively, the $T_{\text{eff}} = 2600$ K COND model (\simM7 V) shows stronger H$_2$O absorption from 8 to 10 μm (P. Hauschildt 2005, private communication) than the $T_{\text{eff}} = 2200$ K cloudy model (\simL1). As can be seen in Figures 1 and 2, we see no evidence of this absorption in the spectra of the late-type M and early-type L dwarfs. The ν_4 fundamental band of CH$_4$ centered at \sim7.65 μm first appears in the spectra of the latest L dwarfs ($T_{\text{eff}} \approx 1500$ K) and
grows in strength through the T sequence. The combination of H\textsubscript{2}O and CH\textsubscript{4} absorption from roughly 4 to 9 \textmu{}m heavily suppresses the flux at these wavelengths in the spectra of the T dwarfs. Finally, the v\textsubscript{2} fundamental band of NH\textsubscript{3} centered at 10.5 \textmu{}m appears in the spectra of the early- to mid-type T dwarfs. The only clearly discernible NH\textsubscript{3} feature is the double Q-branch feature centered at 10.5 \textmu{}m; the double Q-branch is a result of inversion doubling (Herzberg 1945). Overall, the theoretical spectra provide a reasonably good match to the mid-infrared spectra of M, L, and T dwarfs. A more detailed comparison between the models and the observations is currently in progress (M. C. Cushing et al. 2006, in preparation).

We have defined three spectral indices that measure the depths of the H\textsubscript{2}O bands at 6.25 \textmu{}m, the 7.65 \textmu{}m CH\textsubscript{4} band, and the 10.5 \textmu{}m NH\textsubscript{3} band in the IRS spectra of the M, L, and T dwarfs. Figure 6 shows an illustration of the three spectral indices along with the spectrum of 2MASS J0559–1404 (T4.5). As described above, the only H\textsubscript{2}O feature readily identifiable in the IRS spectra of ultracool dwarfs is located at 6.5 \textmu{}m. We have therefore defined an index that measures the amplitude of the 6.25 \textmu{}m peak relative to the two minima on either side. This index is given by

\[
\text{IRS H}_2\text{O} = \frac{f_{6.25}}{0.562 f_{5.80} + 0.474 f_{6.75}}. \tag{5}
\]

Fig. 4.—The 15–38 \textmu{}m spectra of Gl 229A (M1 V), Gl 1001A (M3.5 V), Gl 65AB (M5.5 V), LHS 3005 (M7 V), and DENIS J0255–4700 (L8). The spectra have been normalized at 22 \textmu{}m and offset by constants (dotted lines); the flux densities at 22 \textmu{}m are 242, 11.5, 91.0, 4.87, and 1.57 mJy, respectively. The longest wavelengths have been removed from some of the spectra due to a low S/N.

Fig. 5.—Model sequence from T\textsub{eff} = 3800 to 600 K, in steps of 400 K. The models with T\textsub{eff} \geq 2600 K are AMES-COND models (Allard et al. 2001), the models with 1400 K \leq T\textsub{eff} < 2600 K are cloudy models (Marley et al. 2002; M. S. Marley et al. 2006, in preparation), and the models with T\textsub{eff} < 1400 K are cloudless models. The spectra have been smoothed to R = 90 and resampled onto the wavelength grid of the IRS spectra. The approximate spectral types corresponding to the effective temperatures are from Leggett et al. (2000) and Golimowski et al. (2004).

Fig. 6.—Illustration of the H\textsub{2}O, CH\textsub{4}, and NH\textsub{3} spectral indices with the spectrum of 2MASS J0559–1404 (T4.5).
where f_{k_0} is the mean flux density in a 0.15 μm window centered around k_0. Both the CH$_4$ and NH$_3$ indices are simple ratios of the flux density in and out of an absorption feature and are defined as

$$IRS \text{ CH}_4 = \frac{f_{10.0}}{f_{8.5}}$$ \hspace{1cm} (6)$$

$$IRS \text{ NH}_3 = \frac{f_{10.0}}{f_{10.8}}$$ \hspace{1cm} (7)$$

where f_{k_0} is the mean flux density in a 0.3 μm window centered around k_0. The values of the indices computed for the dwarfs in our sample are shown as a function of spectral type in Figure 7. The errors were computed from the uncertainties in the mean flux densities f_{k_0}. Larger values of a given index imply stronger absorption.

The IRS H$_2$O values indicate that, overall, the H$_2$O absorption-band strength increases with increasing spectral type until it saturates in the T spectral class. Nevertheless, there also appears to be a plateau from about \simM7 V to \simL5, indicating that late-type M dwarfs and early- to mid-type L dwarfs have similar H$_2$O band strengths. BRI 0021−0214 (M9.5 V) and 2MASS J1439+1929 (L1) appear to have anomalously low H$_2$O band strengths. The variations of the IRS CH$_4$ and IRS NH$_3$ values with spectral type are, in contrast, much simpler. The onset of CH$_4$ absorption occurs at roughly the L/T transition. A more precise spectral type cannot be assigned, given the coarse wavelength sampling, low resolving power, and moderate S/N of the IRS spectra. It is interesting to note that the ν_3 fundamental band of CH$_4$ at 3.3 μm has been detected in the spectra of mid-type L dwarfs (Oppenheimer et al. 1998; Burgasser 2001; Noll et al. 2000; Cushing et al. 2005). The absorption cross section of the ν_4 band of CH$_4$ centered at 7.65 μm is roughly an order of magnitude smaller than that of the ν_3 band ($T = 1000$ K, $P = 1$ bar; R. Freedman 2005, private communication), so it is not surprising that the ν_4 band appears later in the spectral sequence than the ν_3 band. Finally, the IRS NH$_3$ values also indicate that the onset of NH$_3$ absorption also occurs near the L/T transition. It is interesting to note that the values of both the IRS CH$_4$ and IRS NH$_3$ indices decrease through the L spectral class, a behavior we discuss in § 3.1.1.

3.1. Objects of Interest

As described above, the mid-infrared spectral features of M, L, and T dwarfs generally show a smooth variation with spectral type and are qualitatively well matched by model spectra. However, there are a number of interesting objects that stand out against this sequence, which we discuss in the following subsections.

3.1.1. Mid-Type L Dwarfs

It has been apparent for some time that the atmospheres of L dwarfs are cloudy. The formation of these condensate (i.e., dust) clouds in the atmospheres of ultracool dwarfs has a dramatic
impact on their atmospheric structure (T/P profile) and thus their emergent spectra. Models that neglect dust formation produce near-infrared colors that are much bluer than the observations (Allard et al. 2001; Marley et al. 2002; Knapp et al. 2004; Burrows et al. 2006). However, the limited wavelength span of near-infrared spectra has precluded definitive determinations of either particle size or condensate composition. IRS spectra both substantially increase the wavelength range of L dwarf spectra—allowing for Mie scattering effects to be constrained—and cover the location of the $10 \mu m$ silicate feature.

While the IRS spectra of the early-type L dwarfs and the T dwarfs are in generally good agreement with the model predictions...
(Roellig et al. 2004; M. C. Cushing et al. 2006, in preparation), the spectra of mid- to late-type L dwarfs differ substantially from the models. Figure 8 shows a sequence of L dwarfs with spectral types ranging from L1 to L6.5. As can been seen, the spectrum of 2MASS J2224−0158 (L4.5) exhibits a prominent plateau from roughly 9 to 11 μm. A similar, although weaker, plateau can also be seen in the spectra of 2MASS J0036+1821 (L3.5) and 2MASS J1507−1627 (L5). This feature is also clearly absent in the spectra of L dwarfs with both earlier and later spectral types. This plateau is the cause of the decreasing IRS CH4 and IRS NH3 values in the L dwarfs (see § 3), since these indices are also a measure of the overall spectral slope in the M and L dwarf spectra. The broad deviation of the model from the observed spectra implies that the model is missing or incorrectly characterizing a continuum opacity source. Given the good agreement between model and data at early and late spectral types, a missing gaseous opacity source with a smooth continuum seems unlikely. We thus conclude that the most likely explanation for the deviation is the description of the cloud opacity.

The IRS spectral region of course includes the 10 μm silicate feature that arises from the Si−O stretching vibration in silicate grains. The spectral shape and importance of the silicate feature depend on the particle size and composition of the silicate grains. In BD atmospheres the first expected silicate condensate is forsterite, MgSiO3 (Lodders 2002), at T ≈ 1700 K (P = 1 bar). Since Mg and Si have approximately equal abundances in a solar composition atmosphere, the condensation of forsterite leaves substantial silicon, present as SiO, in the gas phase. In equilibrium, at temperatures about 50 to 100 K cooler than the forsterite condensation temperature, the gaseous SiO reacts with the forsterite to form enstatite, Mg2SiO4 (Lodders 2002). Since the precise vertical distribution of silicate species depends on the interplay of the atmospheric dynamics and chemistry, the models (M. S. Marley et al. 2006, in preparation) do not attempt to capture those details. Instead, all of the silicate condensates are assumed to be forsterite—since it condenses first—and the optical properties of forsterite are employed in the calculation of the Mie absorption and scattering efficiencies.

In addition to composition, the cloud spectral properties are sensitive to particle size. There is likely a range of particle sizes ranging from very small, recently condensed grains, to larger grains that have grown by accumulation (Ackerman & Marley 2001; Woitke & Helling 2004). The atmosphere model includes a calculation of turbulent diffusion and particle sedimentation to compute a mean particle size (Ackerman & Marley 2001), assuming a log-normal size distribution with fixed width σ = 2. The Ackerman & Marley cloud model predicts submicron particle sizes high above the condensation layer (as do Woitke & Helling 2004), but these small particles do not provide enough opacity to produce a detectable effect on the model spectra. In the optically thick cloud the model predicts mean particle sizes of 5−10 μm and larger. Such a population of particles is too large to produce a 10 μm silicate feature.

Figure 9 compares the absorption efficiency of silicate grains of various sizes, composition, and crystal structures to the spectrum of 2MASS J2224−0158 (L4.5). For each species the quantity Qabs/ps, or Mie absorption efficiency divided by particle radius, is shown. This is the relevant quantity, since, all else being equal, the total cloud absorption optical depth is proportional to this quantity (Marley 2000). The middle panel of Figure 9 leads us to conclude that the mismatch between the models and data may arise from a population of silicate grains that is not captured by the cloud model. The large grain sizes computed by the cloud model (~10 μm) tend to have relatively flat absorption spectra (dashed lines) across the IRS spectral range. Only grains smaller than about 2 μm in radius show the classic 10 μm silicate feature (Hanner et al. 1994), which suggests that the cloud model does not produce enough small grains. In addition, the combined width of the enstatite, whose opacity is currently not included in the atmosphere models, and forsterite features is a better match to the width of the plateau in the spectrum of 2MASS J2224−0158.

Furthermore, the model employs amorphous silicate optical properties. It is possible, especially at the higher pressures found in BD atmospheres, that the grains are crystalline, not amorphous. Indeed, laboratory solar-composition condensation experiments at relevant pressures produce crystalline, not amorphous, silicates (Toppiani et al. 2004). Crystalline grains (Fig. 9, bottom panel) can have larger and spectrally richer absorption cross sections. The strongest absorption feature of crystalline enstatite in the IRS wavelength range occurs at ~9.17 μm. The weak absorption feature in the IRS spectrum of 2MASS J1507−1627 (L5; see Fig. 8) at the same wavelength may therefore be carried by crystalline enstatite. However, higher S/N spectra would be required to confirm this tentative identification.

Finally, we note that Helling et al. (2006) predicted that non-equilibrium effects will lead to the condensation of quartz (SiO2) grains within the silicate cloud. Quartz absorption begins somewhat bluer than that of enstatite and, given small enough particle sizes, also might add to the spectral flattening seen in Figures 8 and 9. Along with IRS observations of more mid-type L dwarfs, detailed cloud modeling considering a range of cloud sizes and compositions will be required to fully constrain the particular species, particle sizes, and crystallinity present in the silicate cloud.

3.1.2. Gl 337CD and SDSS J0423−0414AB

Gl 337CD was discovered by Wilson et al. (2001) and later resolved into a near-equivalent-magnitude (Ks flux ratio of 0.93 ± 0.10) binary separated by 0.56 by Burgasser et al. (2005a). Its unresolved near-infrared spectrum exhibits weak CH4 absorption (McLean et al. 2003), resulting in a near-infrared spectral type of T0 (Burgasser et al. 2006b), while its unresolved red-optical spectrum has been typed as L8 (Wilson et al. 2001). The absolute Ks magnitudes of the components provide little constraint on the individual spectral types of the two objects, since the MK values are consistent with a broad range of types from late-type L dwarfs through mid-type T dwarfs. Given the composite optical and near-infrared spectral types of L8 and T0, respectively, the pair is likely composed of a late-type L and early- to mid-type T dwarf. SDSS J0423−0414AB (hereafter SDSS 0423AB) was discovered by Geballe et al. (2002) and subsequently resolved into a binary separated by 0.16 by Burgasser et al. (2005b). It was also classified as T0 based on the presence of weak CH4 absorption in its near-infrared spectrum (Geballe et al. 2002; Burgasser et al. 2006b) and has an unresolved optical spectral type of L7.5 (Cruz et al. 2003; J. D. Kirkpatrick 2006, in preparation). Burgasser et al. (2005b) found that a hybrid spectrum composed of an L6.5 and T2 dwarf provides an excellent match to the unresolved near-infrared spectrum of SDSS 0423AB.

Figure 10 shows the IRS spectra of SDSS 0423AB and Gl 337CD. Although the spectra have almost identical (unresolved) optical and near-infrared spectral types, their mid-infrared spectra look markedly different. In particular, the CH4 band centered at 7.65 μm is much stronger in the spectrum of Gl 337CD (see also Fig. 7). Also shown are composite L5+T2 and L8+T4.5 spectra.

15 Iron-bearing species [e.g., olivine, (Mg,Fe)2SiO4] are not expected, since iron condenses well before the first silicate.
Fig. 10.—IRS spectra of SDSS 0423–0414AB and Gl 337CD (black lines). Their unresolved optical/near-infrared spectral types are L7.5/T0 and L8/T0, respectively. Also shown are composite L5+T2 and L8+T4.5 spectra (red) constructed from the spectra of 2MASS J1507-1627 (L5), SDSS J1254–0122 (T2), Gl 584C (L8), and 2MASS J0559-1404 (T4.5). The spectra have been normalized to unity at 12 μm and offset by constants (dotted lines).

Fig. 11.—IRS spectra of 2MASS J0937+2931 (T6p; black) and 2MASS SDSS J1624+0029 (T6; red). The spectrum of SDSS J1624+0029 has been scaled by the ratio of the distances of the two objects to adjust its flux to the level that would be observed if it were at the distance of 2MASS J0937+2931. The spectrum of SDSS J1624+0029 differs significantly from that of 2MASS J0937+2931 at λ < 7.5 μm.
(red lines) constructed after scaling the spectra of 2MASS J1507−1627 (L5), SDSS J1254−0122 (T2), DENIS J0255−4700 (L8), and 2MASS J0559−1404 (T4.5) to appear as if they were at a common distance. Although Burgasser et al. (2005b) found that an L6.5+T2 composite near-infrared spectrum was the best match to that of SDSS 0423AB, we used an L5 dwarf, since our sample lacks an L6 dwarf with a measured trigonometric parallax. Nevertheless, the agreement between the data and composite spectra is quite good. The weak CH4 band in SDSS 0423AB is therefore a result of the intrinsically brighter L6.5 dwarf, which lacks CH4 absorption, veiling the CH4 band in the spectrum of the T2 dwarf. In contrast, both components of Gl 337CD (L8, T4.5) exhibit CH4 absorption resulting in a prominent CH4 band in its unresolved spectrum.

3.1.3. 2MASS J0937+2931

2MASS J0937+2931 (hereafter 2MASS 0937) is the archetypal peculiar T dwarf. It is classified as a T6p (Burgasser et al. 2006b) because it exhibits a number of spectral peculiarities, including an enhanced emission peak at 1.05 μm, weak K-band K i lines, and a heavily suppressed K-band spectrum (Burgasser et al. 2002; Knapp et al. 2004). All of these spectral features are indicative of high-pressure (high surface gravity) and/or low-metallicity atmospheres. In particular, the suppression of the K band is a result of collision-induced H2 1−0 dipole absorption (CIA H2) centered at 2.4 μm (Borysow 2002; Knapp et al. 2004), which is enhanced in such environments. Indeed, Burgasser et al. (2006a) have shown that a synthetic spectrum with a moderately low metallicity (−0.1 ≤ [M/H] ≤ −0.4) and high surface gravity (5.0 ≤ log g ≤ 5.5) is required to adequately fit its 0.7−2.5 μm spectrum.

Figure 11 shows the IRS spectrum of 2MASS 0937 along with the spectrum of SDSS J1624+0029 (T6; hereafter SDSS 1624). The spectrum of SDSS 1624 has been scaled by the ratio of the distances of the two objects to adjust its flux to the level that would be observed if it were at the distance of 2MASS 0937. The spectrum of 2MASS 0937 appears significantly depressed shortward of 7.5 μm relative to the spectrum of SDSS 1624. Although we tentatively ascribe this behavior to the subsolar metallicity / high surface gravity of 2MASS 0937, we caution that additional high S/N IRS observations of late-type T dwarfs will be required to confirm that the mid-infrared spectrum of 2MASS 0937 is truly distinct from typical T dwarfs.

4. SPECTRAL ENERGY DISTRIBUTIONS AND BOLOMETRIC FLUXES

4.1. Spectral Energy Distributions

Figure 12 shows the 0.6−14.5 μm spectra of GJ 1111 (M6.5 V), 2MASS J1507−1627 (L5), and 2MASS J0559−1404 (T4.5). The red-optical spectra are from Kirkpatrick et al. (1991), Reid et al. (2000), and Burgasser et al. (2003), and the near-infrared spectra are from Cushing et al. (2005) and J. T. Rayner et al. (2006, in preparation). Note that the flux density units are Jy. The spectra have been normalized to unity at 1.3 μm and multiplied by constants. The CIA H2 absorption is indicated as a dashed line because it shows no distinct spectral features but rather a broad, smooth absorption.
et al. (2002), and Vrba et al. (2004). Bb, which is from Scholz et al. (2003). Spectral types for binaries are derived from unresolved spectra. Errors on spectral types are from Kirkpatrick et al. (2003), Burgasser et al. (2006b), and Knapp et al. (2004). The spectral types of the T dwarfs are from Burgasser et al. (2003, 2006b), except for the spectral type of τ Ind Ba/Bb, which is from Scholz et al. (2003). Spectral types for binaries are derived from unresolved spectra. Errors on spectral types are ±0.5 subclass unless otherwise noted.

The trigonometric parallaxes are from Golimowski et al. (2004) and were taken from van Altena et al. (1995), Perryman et al. (1997), Tinney et al. (1995, 2003), Dahn et al. (2002), Cruz et al. (2003), Burgasser et al. (2006b), and Knapp et al. (2004). The spectral types of the M dwarfs are from Kirkpatrick et al. (1991, 1995), Henry et al. (1994), Hawley et al. (1996), Rebolo et al. (1998), and J. D. Kirkpatrick (2006, private communication).

Mg-, and Si-bearing species also form and affect the emergent spectrum of this mid-tolate-type L dwarf. In particular, titanium- and carbon-bearing species in the upper, coolest layers of the atmosphere, since N2/NH3 < 1 for T ≤ 700 K at P = 1 bar (Lodders & Fegley 2002) and, consequently, the ν2 fundamental band of NH3 at ~10.5 μm is present in the spectra of T dwarfs.

As T eff approaches 2400 K, condensates begin forming in the atmospheres of ultracool dwarfs. In particular, titanium- and vanadium-bearing condensates form, resulting in a loss of TiO and VO from the gas (Lodders 2002); the weakening and eventual loss of the TiO and VO bands mark the transition to the L spectral class (1400 K ≤ T eff ≤ 2400 K). With the loss of the TiO and VO bands, the resonant K i doublet becomes very prominent in the spectra of L dwarfs and eventually comes to define the continuum hundreds of angstroms from line center. In the near-infrared, the H2O and CO bands strengthen with decreasing T eff. Additional condensates, most notably Ca-, Al-, Fe-, Mg-, and Si-bearing species, also form and affect the emergent spectra of L dwarfs by altering the temperature/pressure profile of the atmosphere and contributing their own opacities. The near-infrared colors of the L dwarfs become progressively redder due to the formation of these condensates. At the lower end of this T eff range, CH4 becomes the dominant carbon-bearing species in the upper, coolest layers of the atmosphere, since CO/CH4 < 1 for T ≤ 1100 K at P = 1 bar (Lodders & Fegley 2002). Indeed, the ν3 fundamental band of CH4 at 3.3 μm, which is ~100 times stronger than the combination and overtone bands in the near-infrared and ~10 times stronger than the ν4 fundamental band in the mid-infrared, can be seen in the spectra of mid- to late-type L dwarfs.

As T eff continues to decrease, CH4 becomes ever more dominant over CO; the appearance of the CH4 overtone and combination bands in the near-infrared signals the transition to the T spectral class (600 K ≤ T eff ≤ 1400 K). The condensates that help shape the spectral morphology of the L dwarfs form well below the observable photosphere in T dwarfs, resulting in a relatively condensate-free atmosphere. The strong H2O and CH4 bands carve the near-infrared spectra of T dwarfs up into narrow bands centered at 1.25, 1.6, and 2.2 μm. Finally, NH3 becomes the dominant nitrogen-bearing gas, since N2/NH3 < 1 for T ≤ 700 K at P = 1 bar (Lodders & Fegley 2002) and, consequently, the ν2 fundamental band of NH3 at ~10.5 μm is present in the spectra of T dwarfs.

4.2. Bolometric Luminosities

The effective temperatures of ultracool dwarfs are typically determined by combining observed bolometric luminosities with theoretical radii (Leggett et al. 2001; Dahn et al. 2002; Golimowski et al. 2004). The bolometric luminosities are measured using absolutely flux-calibrated optical and near-infrared spectra, L’-band (and sometimes M’-band) photometry to account for the flux between ~2.5 and ~4 μm, and a Rayleigh-Jeans tail at λ ≥ 4 μm. Although Cushing et al. (2005) have shown that L’-band photometry can be used as a substitute for spectroscopy from 2.9 to 4.1 μm for spectral types ranging from M1 to T4.5, the assumption of a Rayleigh-Jeans tail at λ ≥ 4 μm has never been tested observationally. The IRS spectra are ideal for this purpose.

Twelve of the dwarfs in our sample have both published absolutely flux-calibrated 0.6–4.1 μm spectra (Cushing et al. 2005) and IRS spectra. In order to construct spectra suitable for integration over all wavelengths, we modified each spectrum by linear interpolation between the flux densities at the gap edges. Finally, we extend a Rayleigh-Jeans tail from the reddest wavelength of each spectrum to infinity. In order to perform as accurate a comparison as possible with the results of Golimowski et al. (2004), we use the same parallaxes and assume Mbol,⊙ = +4.75. The results are listed in Table 2 along with the values derived by Golimowski et al. (2004). We find that the bolometric magnitudes of the twelve dwarfs agree within the errors, except for 2MASS J1439+1929.

Table 2

Object	Optical Spectral Typea	Infrared Spectral Typea	δ (mas)	Golimowski et al.	This Work
BRI 021−0214	M9.5 V		84.2 ± 2.6	13.37 ± 0.10	13.45 ± 0.08
2MASS J0746256+2000321AB	L0.5		81.9 ± 0.3	12.26 ± 0.07	12.29 ± 0.04
2MASS J14392836+1929149	L1		69.6 ± 0.5	13.88 ± 0.07	14.01 ± 0.04
Kelt-1AB	L2	L3 ± 1	53.6 ± 2.0	13.74 ± 0.11	13.78 ± 0.11
2MASS J00361617+1821104	L3.5	L4 ± 1	114.2 ± 0.8	14.67 ± 0.07	14.64 ± 0.04
2MASS J22244381+0158521	L4.5	L3.5 ± 1	87.02 ± 0.89	15.14 ± 0.07	15.16 ± 0.04
2MASS J1507476−162738	L5	L5.5	136.4 ± 0.6	15.16 ± 0.07	15.28 ± 0.04
SDSS J053951.99−005902.0	L5		76.12 ± 2.17	15.12 ± 0.09	15.21 ± 0.07
2MASS J08251968+2115521	L7.5	L6	94.22 ± 0.99	16.10 ± 0.17	16.13 ± 0.04
SDSS J125453.90−012247.4	T2	T2	73.96 ± 1.59	16.08 ± 0.10	16.22 ± 0.06
2MASS J05591914−1404488	T4.5		96.73 ± 0.96	16.07 ± 0.13	16.17 ± 0.04

*a Spectral types of the M dwarfs are from Kirkpatrick et al. (1991, 1995), Henry et al. (1994), Hawley et al. (1996), Rebolo et al. (1998), and J. D. Kirkpatrick (2006, private communication). Spectral types of the L dwarfs are from Kirkpatrick et al. (1999, 2000, 2001), Fan et al. (2000), Reid et al. (2000), Gizis et al. (2000), Wilson et al. (2001), Cruz et al. (2003), Burgasser et al. (2006b), and Knapp et al. (2004). The spectral types of the T dwarfs are from Burgasser et al. (2003, 2006b), except for the spectral type of τ Ind Ba/Bb, which is from Scholz et al. (2003). Spectral types for binaries are derived from unresolved spectra. Errors on spectral types are ±0.5 subclass unless otherwise noted.

b The trigonometric parallaxes are from Golimowski et al. (2004) and were taken from van Altena et al. (1995), Perryman et al. (1997), Tinney et al. (1995, 2003), Dahn et al. (2002), and Vrba et al. (2004).

c Mbol = −2.5 log f bol + 5 log π − 13.978, assuming L⊙ = 3.86 × 1026 W and Mbol,⊙ = +4.75.
(L1), which is discrepant by just over 1σ. The values of \(L_{\text{bol}} \) and thus the values of \(T_{\text{eff}} \), of the ultracool dwarfs with spectral types ranging from M1 V to T4.5 presented by Golimowski et al. (2004) are therefore robust against any systematic errors introduced using photometry and a Rayleigh-Jeans to account for the flux between 2.5 and 15 μm.

5. SUMMARY

We have presented a spectroscopic sequence of M, L, and T dwarfs from 5.5 to 38 μm at \(R \approx 90 \) obtained with the IRS on board the *Spitzer Space Telescope*. The spectra exhibit prominent absorption bands of \(\text{H}_2\text{O}, \text{CH}_4, \) and \(\text{NH}_3 \), and are relatively featureless at \(\lambda \lesssim 15 \) μm. H2O absorption features are present throughout the MLT sequence, while the \(\text{CH}_4 \) and \(\text{NH}_3 \) bands first appear at roughly the L/T transition. We tentatively ascribe a plateau in the spectra of a number of mid-type L dwarfs from 9 to 11 μm to the effects of a population of small silicate grains, likely lying above the main cloud deck, that are not predicted in current cloud models. The spectrum of the mildly metal-poor, high surface gravity, T dwarf 2MASS J0937+2931 (T6p) is suppressed from 5.5 to 7.5 μm relative to typical T6 dwarfs, indicating that mid-infrared spectroscopy may be a useful probe of surface gravity and/or metallicity variations. Finally, we computed bolometric magnitudes for 12 of the dwarfs in our sample with previously published 0.6–4.1 μm spectra and find good agreement with the values of Golimowski et al., who use \(L^* \)- and \(M^* \)-band photometry to account for the flux emitted at \(\lambda > 2.5 \) μm.

We thank Brian Patten for providing the IRAC Band 4 observations in advance of publication, Peter Hauschildt for providing the AMES-COND synthetic spectra, John Rayner for providing the near-infrared spectrum of GJ 1111 in advance of publication, and Richard Freedman, Katherina Lodders, Diane Wooden, Kelle Cruz, J. D. Smith, and William Vacca for useful discussions. This publication makes use of data from the Two Micron All Sky Survey, which is a joint project of the University of Massachusetts and the Infrared Processing and Analysis Center, and funded by the National Aeronautics and Space Administration and the National Science Foundation; the SIMBAD database, operated at CDS, Strasbourg, France; NASA’s Astrophysics Data System Bibliographic Services; the M, L, and T dwarf compendium housed at DwarfArchives.org and maintained by Chris Gelino, Davy Kirkpatrick, and Adam Burgasser; and the NASA/IPAC Infrared Science Archive, which is operated by the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration. This work is based (in part) on observations made with the *Spitzer Space Telescope*, which is operated by the Jet Propulsion Laboratory, California Institute of Technology, under a contract with NASA and is supported (in part) by the US Department of Energy under contract W-7405-ENG-36, and NASA through the *Spitzer Space Telescope* Fellowship Program, through a contract issued by the Jet Propulsion Laboratory, California Institute of Technology, under a contract with NASA. T. L. R. acknowledges the support of NASA’s Science Mission Directorate.

REFERENCES

Acknowledgments

We thank Brian Patten for providing the IRAC Band 4 observations in advance of publication, Peter Hauschildt for providing the AMES-COND synthetic spectra, John Rayner for providing the near-infrared spectrum of GJ 1111 in advance of publication, and Richard Freedman, Katherina Lodders, Diane Wooden, Kelle Cruz, J. D. Smith, and William Vacca for useful discussions. This publication makes use of data from the Two Micron All Sky Survey, which is a joint project of the University of Massachusetts and the Infrared Processing and Analysis Center, and funded by the National Aeronautics and Space Administration (New York: Van Nostrand)

Higdon, S. U., et al. 2004, PASP, 116, 975

Houck, J. R., et al. 2004, ApJS, 154, 18

Kirkpatrick, J. D. 2005, ARA&A, 43, 195

Kirkpatrick, J. D., Dahn, C. C., Monet, D. G., Reid, I. N., Gizis, J. E., Liebert, J., & Burgasser, A. J. 2004, ApJS, 154, 18

Kirkpatrick, J. D., Henry, T. J., & Simons, D. A. 1995, AJ, 109, 797

Kirkpatrick, J. D., et al. 1999, ApJ, 519, 802

———. 2000, ApJ, 120, 447

Knapp, G. R., et al. 2004, AJ, 127, 3553

Leggett, S. K., Allard, F., Dahn, C., Hauschildt, P. H., Kerr, T. H., & Rayner, J. 2000, ApJ, 535, 965

Leggett, S. K., Allard, F., Geballe, T. R., Hauschildt, P. H., & Schweitzer, A. 2001, ApJ, 548, 908

Leggett, S. K., et al. 2002, ApJ, 564, 452

Lodders, K. 1999, ApJ, 519, 793

———. 2002, ApJ, 577, 974

Lodders, K., & Fegeley, B. 2002, Icarus, 155, 393

Marley, M. 2000, in ASP Conf. Ser. 212, From Giant Planets to Cool Stars, ed. C. A. Griffith & M. S. Marley (San Francisco: ASP), 152

Marley, M. S., Seager, S., Saumon, D., Lodders, K., Ackerman, A. S., Freedman, R. S., & Fan, X. 2002, ApJ, 568, 335

Matthews, K., Nakajima, T., Kulkarni, S. R., & Oppenheimer, B. R. 1996, AJ, 112, 1678

McLean, I. S., McGovern, M. R., Burgasser, A. J., Kirkpatrick, J. D., Prato, L., & Kim, S. S. 2003, ApJ, 596, 561

Nakajima, T., Oppenheimer, B. R., Kulkarni, S. R., Golimowski, D. A., Matthews, K., & Durniere, S. T. 1995, Nature, 378, 463

Noll, K. S., Geballe, T. R., Leggett, S. K., & Marley, M. S. 2000, ApJ, 541, L75

Oppenheimer, B. R., Kulkarni, S. R., Matthews, K., & van Kerkwijk, M. H. 1998, ApJ, 502, 932

Patten, B., et al. 2006, ApJ, in press (astro-ph/0606432)

Perryman, M. A. C., et al. 1997, A&A, 323, L49

Reach, W. T., et al. 2005, PASP, 117, 978

Rebolo, R., Martin, E. L., Basri, G., Marcy, G. W., & Zapatero-Osorio, M. R. 1996, ApJ, 469, L53

Rebolo, R., Zapatero Osorio, M. R., Madruga, S., Bejar, V. J. S., Arribas, S., & Licandro, J. 1998, Science, 282, 1309
Reid, I. N., Kirkpatrick, J. D., Gizis, J. E., Dahn, C. C., Monet, D. G., Williams, R. J., Liebert, J., & Burgasser, A. J. 2000, AJ, 119, 369
Roellig, T. L., et al. 2004, ApJS, 154, 418
Saumon, D., Marley, M. S., & Lodders, K. 2003a, preprint (astro-ph/0310805)
Saumon, D., Marley, M. S., Lodders, K., & Freedman, R. S. 2003b, in IAU Symp. 211, Brown Dwarfs, ed. E. Martín (San Francisco: ASP), 345
Scholz, R.-D., McCaughrean, M. J., Lodieu, N., & Kuhlbrodt, B. 2003, A&A, 398, L29
Skrutskie, M. F., et al. 2006, AJ, 131, 1163
Stephens, D. C., Marley, M. S., Noll, K. S., & Chanover, N. 2001, ApJ, 556, L97
Sterzik, M. F., et al. 2005, A&A, 436, L39
Tinney, C. G., Burgasser, A. J., & Kirkpatrick, J. D. 2003, AJ, 126, 975
Tinney, C. G., Reid, I. N., Gizis, J., & Mould, J. R. 1995, AJ, 110, 3014
Toppoti, A., Libourel, G., Robert, F., Ghanbaja, J., & Zimmermann, L. 2004, in 35th Lunar and Planetary Science Conf. Abstracts (Houston: LPI), 1726
van Altena, W. F., Lee, J. T., & Hoffleit, E. D. 1995, The General Catalogue of Trigonometric Paralaxes (4th ed.; New Haven: Yale Univ. Obs.)
Vrba, F. J., et al. 2004, AJ, 127, 2948
Weck, P. F., Schweitzer, A., Kirby, K., Hauschildt, P. H., & Stancil, P. C. 2004, ApJ, 613, 567
Werner, M. W., et al. 2004, ApJS, 154, 1
Wilson, J. C., Kirkpatrick, J. D., Gizis, J. E., Skrutskie, M. F., Monet, D. G., & Houck, J. R. 2001, AJ, 122, 1989
Wilson, J. C., Miller, N. A., Gizis, J. E., Skrutskie, M. F., Houck, J. R., Kirkpatrick, J. D., Burgasser, A. J., & Monet, D. G., 2003, in IAU Symp. 211, Brown Dwarfs, ed. E. L. Martin (San Francisco: ASP), 197
Woitke, P., & Helling, C. 2004, A&A, 414, 335
York, D. G., et al. 2000, AJ, 120, 1579
ERRATUM: “A SPITZER INFRARED SPECTROGRAPH SPECTRAL SEQUENCE OF M, L, AND T DWARFS” (2006, ApJ, 648, 614)

Michael C. Cushing, Thomas L. Roellig, Mark S. Marley, D. Saumon, S. K. Leggett, J. Davy Kirkpatrick, John C. Wilson, G. C. Sloan, Amy K. Mainzer, Jeff E. Van Cleve, and James R. Houck

1 Steward Observatory, University of Arizona, 933 North Cherry Avenue, Tucson, AZ 85721, USA
2 NASA Ames Research Center, MS 245-6, Moffett Field, CA 94035, USA; thomas.l.roellig@nasa.gov
3 NASA Ames Research Center, MS 254-3, Moffett Field, CA 94035, USA; mmarley@mail.arc.nasa.gov
4 Los Alamos National Laboratory, Applied Physics Division, MS P365, Los Alamos, NM 87544, USA; dsaumon@lanl.gov
5 Joint Astronomy Centre, University Park, Hilo, HI 96720, USA; s.leggett@jach.hawaii.edu
6 Infrared Processing and Analysis Center, MC 100-22, California Institute of Technology, Pasadena, CA 91125, USA; davy@ipac.caltech.edu
7 Astronomy Building, University of Virginia, 530 McCormick Road, Charlottesville, VA 22903, USA; jcw6z@virginia.edu
8 Astronomy Department, Cornell University, Ithaca, NY 14853, USA; sloan@isc.astro.cornell.edu, jrh13@cornell.edu
9 Jet Propulsion Laboratory, MS 169-506, 4800 Oak Grove Drive, Pasadena, CA 91109, USA; amainzer@jpl.nasa.gov
10 Ball Aerospace and Technologies Corporation, 1600 Commerce Street, Boulder, CO 80301, USA; jvanclev@ball.com

In the original article, the widths of the IRS H$_2$O, IRS CH$_4$, and IRS NH$_3$ indices were too small by a factor of 2 and should be 0.3, 0.6, and 0.6 μm, respectively. The correct version of Figure 7 is also presented here. We note that none of the conclusions of the paper are changed using the wider indices and we thank Stan Metchev and Amanda White for bringing this to our attention.

Figure 7. IRS-H$_2$O, IRS-CH$_4$, and IRS-NH$_3$ spectral indices of the dwarfs in our sample as a function of spectral type. Individual objects discussed in the text are indicated and known binaries are marked with open squares.

11 Current address: Institute for Astronomy, University of Hawai‘i, 2680 Woodlawn Drive, Honolulu, HI 96822; michael.cushing@gmail.com.