Convolution estimates and the number of disjoint partitions

Paata Ivanisvili*
Department of Mathematics, Kent State University
1300 Lefton Esplanade, Kent OH 44242
pivanisv@kent.edu

Submitted: May 27, 2017; Accepted: May 27, 2017; Published: XX
Mathematics Subject Classifications: 11B30

Abstract

Let X be a finite collection of sets. We count the number of ways a disjoint union of $n - 1$ subsets in X is a set in X, and estimate this number from above by $|X|^{c(n)}$ where

$$c(n) = \left(1 - \frac{(n - 1)\ln(n - 1)}{n \ln n}\right)^{-1}.$$

This extends the recent result of Kane–Tao, corresponding to the case $n = 3$ where $c(3) \approx 1.725$, to an arbitrary finite number of disjoint $n - 1$ partitions.

1 Introduction

Let $\{0, 1\}^m$ be the Hamming cube of dimension $m \geq 1$. Set $1^m := (1, 1, \ldots, 1)$ to be the corner of $\{0, 1\}^m$. Take a finite number of functions $f_1, \ldots, f_n : \{0, 1\}^m \rightarrow \mathbb{R}$, and define the convolution at the corner 1^m as

$$f_1 * f_2 * \ldots * f_n(1^m) := \sum_{x_1, x_2, \ldots, x_n \in \{0, 1\}^m : x_1 + \ldots + x_n = 1^m} f_1(x_1) \cdots f_n(x_n).$$

Given $f : \{0, 1\}^m \rightarrow \mathbb{R}$ define its L^p norm ($p \geq 1$) in a standard way

$$\|f\|_p := \left(\sum_{x \in \{0, 1\}^m} |f(x)|^p\right)^{1/p}.$$

*This paper is based upon work supported by the National Science Foundation under Grant No. DMS-1440140 while the author was in residence at the Mathematical Sciences Research Institute in Berkeley, California, during the Spring 2017 semester.
For $n \in \mathbb{N}$ we set
\[
p_n := \ln \frac{n^n}{(n-1)^{n-1}} \ln n.
\]

Our main result is the following theorem

Theorem 1. For any $n, m \geq 1$, and any $f_1, \ldots, f_n : \{0, 1\}^m \to \mathbb{R}$ we have
\[
f_1 \ast f_2 \ast \cdots \ast f_n(1^m) \leq \prod_{j=1}^{n} \|f_j\|_{p_n}.
\]

Moreover, for each fixed n exponent p_n is the best possible in the sense that it cannot be replaced by any larger number.

As an immediate application we obtain the following corollary (see Section 2.3 below).

Corollary 2. Let X be a finite collection of sets. Then
\[
\left| \left\{ (A_1, \ldots, A_{n-1}, A) \in \underbrace{X \times \cdots \times X}_n : A = \bigsqcup_{j=1}^{n-1} A_j \right\} \right| \leq |X|^\frac{n}{p_n},
\]
where \bigsqcup denotes the disjoint union, and $|X|$ denotes cardinality of the set.

The corollary extends a recent result of Kane–Tao [1], corresponding to the case $n = 3$ where $\frac{3}{p_3} \approx 1.725$, to an arbitrary finite number $n \geq 3$ disjoint partitions.

2 The proof of the theorem

Following [1] the proof goes by induction on the dimension of the cube $\{0, 1\}^m$. The case $m = 1$, which is the most difficult, is the main contribution of the current paper.

2.1 Basis: $m = 1$

In this case, set $f_j(0) = u_j$ and $f_j(1) = v_j$ for $j = 1, \ldots, n$. Then the inequality (1) takes the form
\[
\sum_{j=1}^{n} u_j \prod_{i=1, i \neq j}^{n} v_i \leq \prod_{j=1}^{n} (|u_j|^{p_n} + |v_j|^{p_n})^{1/p_n}.
\]

We do encourage the reader first to try to prove (3) in the case $n = 3$, or visit [1], to see what is the obstacle. For example, when $n = 3$ equality in (3) is attained at several points. Besides, direct differentiation of (3) reveals many “bad” critical points at which finding the values of (3) would require numerical computations [1]. The number of critical points together with equality cases increases as n becomes larger, therefore one is forced
to come up with a different idea. We will overcome this obstacle by looking at (3) in dual coordinates.

Without loss of generality we can assume that \(u_j \) and \(v_j \) are nonnegative for \(j = 1, \ldots, n \). Moreover, we can assume that \(v_j \neq 0 \) for all \(j \) otherwise the inequality (3) is trivial.

Let us divide (3) by \(\prod_{j=1}^{n} v_j \). Denoting \(x_j := (u_j/v_j)^{p_n} \) we see that it is enough to prove the following lemma.

Lemma 3. For any \(n \geq 2 \) and all \(x_1, \ldots, x_n \geq 0 \) we have

\[
\left(\sum_{i=1}^{n} x_i^{1/p_n} \right)^{p_n} \leq \prod_{i=1}^{n} (1 + x_i),
\]

where \(p_n = \frac{\ln \frac{n^n}{(n-1)^{n-1}}}{\ln n} \).

Proof. For \(n = 2 \) the lemma is trivial. By induction on \(n \), monotonicity of the map

\[
p \rightarrow \left(\sum_{i=1}^{n} x_i^{1/p} \right)^{p},
\]

and the fact that \(p_n \) is decreasing, we can assume that all \(x_i \) are strictly positive. For convenience we set \(p := p_n \). Introducing new variables we rewrite (4) as follows

\[
p \ln \left(\sum x_i \right) \leq \sum \ln(1 + x_i^p).
\]

Concavity of the function \(\ln(x) \) provides us with a simple representation of the logarithmic function

\[
\ln(x) = \min_{b \in \mathbb{R}} (b + e^{-b} x - 1).
\]

Therefore we are left to show that for all \(x_i > 0 \) and all \(b_i \in \mathbb{R} \) we have

\[
B(x, b) := \sum (b_i + (1 + x_i^p) e^{-b_i} - 1) - p \ln \left(\sum x_i \right) \geq 0,
\]

where \(x = (x_1, \ldots, x_n) \) and \(b = (b_1, \ldots, b_n) \). Notice that given a vector \(b \in \mathbb{R}^n \), the infimum of \(B(x, b) \) in \(x \) cannot be reached at infinity because of the slow growth of the logarithmic function. Therefore, we look at critical points of \(B \) in \(x \)

\[
x_k^* = \frac{b_k}{\sum_i e^{b_i/p-1}} \quad \text{for} \quad k = 1, \ldots, n.
\]

Notice that \(\sum x_i^* = \left(\sum_i e^{b_i/p-1} \right)^{p-1} \). Therefore

\[
B(x^*, b) = \sum_k (b_k + e^{-b_k}) + 1 - (p - 1) \ln \left(\sum_k e^{b_k/p-1} \right).
\]
Setting \(r := p - 1 > 0 \), and introducing new variables again we are left to show that

\[
f(y) := 1 - n + \sum \ln y_i + \sum \frac{1}{y_i^r} - r \ln \left(\sum y_i \right) \geq 0
\]

for all \(y_i > 0 \). It is straightforward to check that \(f(y) \geq 0 \) on the diagonal, i.e., when \(y_1 = y_2 = \ldots = y_n \).

In general, we notice that critical points of \(f(y) \) satisfy the equation

\[
\frac{1}{y_i} - \frac{1}{y_i^{r+1}} = \frac{1}{y_j} - \frac{1}{y_j^{r+1}} = \frac{1}{\sum y_k}.
\]

Equation (5) gives the identity \(\sum y_i^{-r} = n - 1 \), and so at critical points (5) we are only left to show

\[
\sum \ln y_i - \ln \left(\sum y_i \right) \geq 0.
\]

Since the mapping

\[
s \to \frac{1}{s} - \frac{1}{s^{r+1}}, \quad s > 0,
\]

is increasing on \((0, (1 + r)^{1/r}) \) and decreasing on the remaining part of the ray, we can assume without loss of generality that \(k \) numbers of \(x_i \) equal to \(u \geq (1 + r)^{1/r} \), and the remaining \(n - k \) numbers of \(x_i \) equal to \(v \leq (1 + r)^{1/r} \). Moreover, we can assume that \(0 < k < n \) otherwise the statement is already proved. From (5), we have

\[
\frac{1}{u} - \frac{1}{u^{r+1}} = \frac{1}{v} - \frac{1}{v^{r+1}} = \frac{1}{ku + (n - k)v}.
\]

From the equality of the first and the third expressions in (7) it follows that

\[
v = \frac{u^{r+1}(1 - k) + ku}{(u^r - 1)(n - k)}.
\]

In order \(v \) to be positive we assume that the numerator of (8) is non negative. If we plug the expression for \(v \) from (8) into the first equality of (7) then after some simplifications we obtain the following equation in the variable \(z := u^r \geq 1 + r \)

\[
\frac{(z - 1)^r(n - k)^{r+1}}{(z(1 - k) + k)^r} = (n - 1)z - k.
\]

It follows from (7) that \((ku + (n - k)v)^r = (\frac{z}{z-1})^r \), and so using (9) we obtain

\[
v^r = \frac{z(n - k)}{(n - 1)z - k}.
\]
Therefore at critical points \((6)\) simplifies as follows

\[
(n-1) \ln z + (n-k) \ln \frac{n-k}{(n-1)z-k} - r \ln \frac{z}{z-1} \geq 0. \tag{10}
\]

Now it is pretty straightforward to show that \((10)\) is non negative even under the assumption \(z \geq 1 + r\) for \(r = p - 1 = \frac{(n-1) \ln \frac{n}{n-1}}{\ln n}\). Indeed, notice that \(z > \frac{n}{n-1}\), and the map

\[k \to (n-k) \ln \frac{n-k}{(n-1)z-k}\]

is increasing on \([1, n-1]\). Therefore it is enough to check nonnegativity of \((10)\) when \(k = 1\), in which case the inequality follows again using \(z > \frac{n}{n-1}\), and the fact that the map

\[z \to \frac{\ln \left(1 + \frac{1}{z(n-1)-1} \right)}{\ln \left(1 + \frac{1}{1-1} \right)}\]

is increasing for \(z \geq \frac{n}{n-1}\). \(\square\)

Remark 4. Choice \(x_1 = \ldots = x_n = \frac{1}{n-1}\) gives equality in \((4)\), and this confirms the fact that \(p_n\) is the best possible in Theorem 1.

2.2 Inductive step

Inductive step is the same as in \([1]\) without any modifications. This is a standard argument for obtaining estimates on the Hamming cube (see for example \([2]\)). In order to make the paper self contained we decided to repeat the argument.

Suppose \((1)\) is true on the Hamming cube of dimension \(m\). Without loss of generality assume \(f_j \geq 0\), and set \(g_j := f_j^p\) for all \(j\). Define

\[B_n(y_1, \ldots, y_n) := y_1^{1/p_n} \cdots y_n^{1/p_n}.
\]

For \(x_j \in \{0, 1\}^{m+1}\), let \(x_j = (\bar{x}_j, x'_j)\) where \(\bar{x}_j\) is the vector consisting of the first \(m\) coordinates of \(x_j\), and number \(x'_j\) denotes the last \(m+1\) coordinate of \(x_j\). Set

\[\tilde{g}_j(x'_j) := \sum_{\bar{x}_j \in \{0, 1\}^m} g_j(\bar{x}_j, x'_j) \quad j = 1, \ldots, n.
\]
We have
\[
\sum_{x_j \in \{0,1\}^{m+1} : x_1 + \ldots + x_n = 1} B(g_1(x_1), \ldots, g_n(x_n)) = \sum_{x_j' \in \{0,1\} : x_1' + \ldots + x_n' = 1} \sum_{x_j \in \{0,1\}^m : x_1 + \ldots + x_n = 1} B(g_1(x_1), \ldots, g_n(x_n)) \text{ induction} \leq \sum_{x_j' \in \{0,1\} : x_1' + \ldots + x_n' = 1} B(\tilde{g}_1(x_1'), \ldots, \tilde{g}_n(x_n')) \text{ basis} \leq \sum_{x_j \in \{0,1\}^{m+1}} g_1(x_1), \ldots, \sum_{x_n \in \{0,1\}^{m+1}} g_n(x_n) \right).
\]

2.3 The proof of Corollary 2
Without loss of generality we may assume that all the sets A in X are subsets of $\{1, \ldots, m\}$ with some natural $m \geq 1$ (see [1]). For $j = 1, \ldots, n$ define functions
\[
f_j : \{0,1\}^m \to \{0,1\}
\]
as follows:
\[
f_1(a_1, \ldots, a_m) = \ldots = f_{n-1}(a_1, \ldots, a_m) = 1
\]
if the set $\{1 \leq i \leq m : a_i = 1\}$ lies in X, and $f_j = 0$ otherwise. Finally we define
\[
f_n(a_1, \ldots, a_m) = 1
\]
if the set $\{1 \leq i \leq m : a_i = 0\}$ lies in X, and $f_n = 0$ otherwise. Notice that in this case inequality (1) becomes (2).

Acknowledgements
I would like to thank an anonymous referee, and Benjamin Jaye for helpful comments.

References
[1] D. Kane, T. Tao, A bound on Partitioning Clusters. *The Electronic Journal of Combinatorics*, Volume 24, Issue 2 (2017), Paper #P2.31, Pages 13.
[2] P. Ivanisvili, A. Volberg. Poincaré inequality 3/2 on the Hamming cube. arXiv:1608.04021 (2016).