Supplementary belongs to:

Biochemical characterization of the functional roles of residues in the active site of the β-galactosidase from Bacillus circulans ATCC 31382

Huifang Yin†, Tjaard Pijning§, Xiangfeng Meng†, Lubbert Dijkhuizen†,* Sander S. van Leeuwen†

†Microbial Physiology, Groningen Biomolecular Sciences and Biotechnology Institute (GBB), University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands

§Biophysical Chemistry, Groningen Biomolecular Sciences and Biotechnology Institute (GBB), University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands
Table S1. The primer pairs used for site-directed mutagenesis of BgaD-D.

Primer name	DNA sequence (5' to 3')
Arg185-F	CACCCAGCCGAGCAGCNGKCTTGCATTCCGGGAGCG
Arg185-R	CGCTCCCAATACCCAMNNNGCTCTCGGCTGGGTG
Asp481-F	GATCGGCGAGNKNKAAAACCC
Asp481-R	GGTTTTMNNCTCTCGGCGATC
Asp481Lys-F	GATCGGCGAGAAGAAACC
Asp481Lys-R	GGTTTTCTTCTCGCGGATC
Asp481Arg-F	GATCGGCGAGGGAACCC
Asp481Arg-R	GGTTTTTCCGCTCGGCGATC
Asp481Asn-F	GATCGGCGAGAACAACCC
Asp481Asn-R	GGTTTTGTTCTCGGCGATC
Asp481Gln-F	GATCGGCGAGGGAACCC
Asp481Gln-R	GGTTTTCTGCTCGGCGATC
Asp481Leu-F	GATCGGCGAGGGAACCC
Asp481Leu-R	GGTTTTCACTCGGCGATC
Asp481Trp-F	GATCGGCGAGGGAACCC
Asp481Trp-R	GGTTTTCACTCGGCGATC
Asp481Gly-F	GATCGGCGAGGGAACCC
Asp481Gly-R	GGTTTTCCCTCGGCGATC
Lys487-F	CGCGGAGACNNKGTAAATGTTCAC
Lys487-R	GTGTAAACATTTCACNNNGTTTCGCC
Tyr511-F	GGACTGAACNKAGCGAGAACACTATGAGGCC
Tyr511-R	GCCATCATAGTTGCTCGCTMNNGTTCAGTCC
Tyr511Phe-F	GGACTGAACATAGCGAGGAGAACAACCTATGAGGCC
Tyr511Phe-R	GCCATCATAGTTGCTCGCTMNNGTTCAGTCC
Tyr511Trp-F	GGACTGAACATGCGAGGAGAACAACCTATGAGGCC
Tyr511Trp-R	GCCATCATAGTTGCTCGCTMNNGTTCAGTCC
Trp570-F	GTCGGCNNKGGAGCAGAAGCTGCGAGAAG
Trp570-R	CTTCGCGATCTGCGMNNNGCCGAC
Trp570Tyr-F	GTCGGCTACCGAGCAGAAGCTGCGAGAAG
Trp570Tyr-R	GCAGTTTCGGCTCGTACGCGAGCAGCAGG
Trp570Phe-F	GTCGGCTTGGAGCAGAAGCTGCGAGAAG
Trp570Phe-R	GCAGTTTCGCTCGAAAGGAGCAGCAGG
Trp570Ala-F	GTCGGCCTGCGGAGCAGAAGCTGCGAGAAG
Trp570Ala-R	GCAGTTTCGTCAGCGGCGAGCAGCAGG
Trp570Val-F	GTCGGCCGTGGAGCAGAAGCTGCGAGAAG
Trp570Val-R	GCAGTTTCGTCAGCGGCGAGCAGCAGG
Trp570Leu-F	GTCGGCCCTTGGAGCAGAAGCTGCGAGAAG
Trp570Leu-R	GCAGTTTCGTCAGCGGCGAGCAGCAGG
Trp570Cys-F	GTCGGCTCGGAGCAGAAGCTGCGAGAAG
Trp570Cys-R	GCAGTTTCGTCGCGAGCAGCAGCAGG
Trp593-F	ACCTGAGCATATTGCAGGGCAATTTCNTKACCGGGCTTTGATTATTAGG
Trp593-R	CCAAATATAATCAAGGCGAGTCMNNGATAATAATTCCTCGCAAATGCTGAGT
Glu601-F	CCGGCCCTTGGATTATATGCGCGNKNCCGACGCCATATTATAATTC
Codon	Sequence
------------------	---
Glu601-R	GGAATTATAATATGGCCTCGGACGACCGATATAATCAAAGCCGG
Glu601Asp-F	CCGGCTTTGATTATATTGCGACCGATATATATTATAATCCGG
Glu601Asp-R	GGAATTATAATATGGCCTCGGACGACCGATATAATCAAAGCCGG
Phe616-F	GCAAAAAGCTCTATATNNKGGTGCTTGGATACCGG
Phe616-R	CCGTATCCACAGCACCNNATAGGACGCGTTTTTCG
Phe616Trp-F	GCAAAAAGCTCTATATTTGCGTGCTTGGATACCGG
Phe616Trp-R	CCGTATCCACAGCACCNNATAGGACGCGTTTTTCG
Phe616His-F	GCTCTATACAGTGCTTGGATAC
Phe616His-R	GTATCCACAGCACCAGATAGGAC
Phe616Ser-F	GCTCTATACAGTGCTTGGATAC
Phe616Ser-R	GTATCCACAGCACCAGATAGGAC
Phe616Thr-F	GCTCTATACAGTGCTTGGATAC
Phe616Thr –R	GTATCCACAGCACCAGATAGGAC
Phe616Asn-F	GCTCTATAGTGCTTGGATAC
Phe616Asn-R	GTATCCACAGCACCAGATAGGAC
Phe616Cys-F	GCTCTATACAGTGCTTGGATAC
Phe616Cys-R	GTATCCACAGCACCAGATAGGAC
Phe616Pro-F	GCTCTATACAGTGCTTGGATAC
Phe616Pro-R	GTATCCACAGCACCAGATAGGAC
Phe616Ala-F	GCTCTATAGTGCTTGGATAC
Phe616Ala-R	GTATCCACAGCACCAGATAGGAC
Phe616Ile-F	GCTCTATACAGTGCTTGGATAC
Phe616Ile-R	GTATCCACAGCACCAGATAGGAC
Phe616Met-F	GCTCTATAGTGCTTGGATAC
Phe616Met-R	GTATCCACAGCACCAGATAGGAC
Phe616Tyr-F	GCTCTATACAGTGCTTGGATAC
Phe616Tyr-R	GTATCCACAGCACCAGATAGGAC

The “N” base in the primers stands for a “A or T or C or G” base, and “K” stands for a “G or T” base. “NNK” codons are commonly used in screens for codon substitutions to reduce the presence of some codon-rich amino acids, thereby reducing their over representation in a particular library. Additionally, using NNK codons removes 2 out of 3 possible stop codons, which also limits the number of sequences in a library that produce unwanted truncated gene products. 1
Figure S1. SDS-PAGE gel analysis of the wild-type BgaD-D and the mutant enzymes (loaded with 5 µL of 0.1 mg/mL protein solutions). M, Marker proteins; 1, WT; 2, Trp570Gly; 3, Trp570Thr; 4, Trp570Arg; 5, Trp570Glu; 6, Trp570Tyr; 7, Trp570Phe; 8, Trp570Ala; 9, Trp570Val; 10, Trp570Cys; 11, Trp570Leu; 12, Trp593Tyr; 13, Trp593Phe; 14, Phe616Val; 15, Phe616Glu; 16, Phe616Gly; 17, Phe616Lys; 18, Phe616Gln; 19, Phe616Arg; 20, Phe616Asp; 21, Phe616Leu; 22, Phe616Trp; 23, Phe616His; 24, Phe616Ser; 25, Phe616Thr; 26, Phe616Asn; 27, Phe616Cys; 28, Phe616Pro; 29, Phe616Ala; 30, Phe616Ile; 31, Phe616Met; 32, Phe616Tyr; 33, Asp481Glu; 34, Asp481His; 35, Asp481Ser; 36, Asp481Asn; 37, Asp481Gln; 38, Lys487Met; 39, Lys487Phe; 40, Lys487Leu; 41, Lys487Gln; 42, Lys487Ser; 43, Lys487Gly; 44, Lys487Asn; 45, Lys487Cys.
Reference:

1. Tang, L., Gao, H., Zhu, X., Wang, X., Zhou, M., and Jiang, R. (2012) Construction of “small-intelligent” focused mutagenesis libraries using well-designed combinatorial degenerate primers. *Biotechniques*, 52 (3), 149–158.