CONCLUSIONS: Common genetic polymorphisms influence the strength of correlation between p53 codon 72 and colon cancer suggesting a possible explanation of the contrasting result observed between different populations. Moreover, the results support the multi-factorial origin of cancer.

Key words: p53 codon 72; ACP1; PTPN22; ADA2; ADA6; Colon cancer

© 2016 The Author(s). Published by ACT Publishing Group Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Spina C, Gloria-Bottini F, Coppeta L, Neri A, Magrini A, Bottini E. Association of P53 Codon 72 with Colon Cancer: the Role of Genetic Factors. Journal of Tumor 2016; 4(5-6): 478-481 Available from: URL: http://www.ghrnet.org/index.php/jt/article/view/1789

INTRODUCTION

Studies on the association between p53 codon 72 and colon cancer have given contrasting results: in some populations a positive association has been found with *Pro variant, in other with *Arg variant and in other populations no association has been observed. We have studied the possible effect of genetic variability within four common polymorphisms on the association between p53 codon 72 and colon cancer.

METHODS AND MATERIAL: 106 subjects with colon cancer and 476 controls from the White population of Rome were studied. p53 codon 72, ACP1, PTPN22, ADA2 and ADA6 polymorphisms were determined by DNA analysis. Statistical analyses were carried out by SPSS programs.

RESULTS: The proportions of the joint genotypes of *Pro allele carriers with *B/*B genotype of ACP1, with carriers of *T allele of PTPN22, with the ADA2*1/*1 genotype and with carriers of ADA6*1 allele are higher in colon cancer than in controls. A statistically significant positive correlation is observed in colon cancer between the proportion of *Pro allele carriers and the number of the four genetic factors considered. Sex and cancer grade influence this correlation.

CONCLUSIONS: Common genetic polymorphisms influence the strength of correlation between p53 codon 72 and colon cancer suggesting a possible explanation of the contrasting result observed between different populations. Moreover, the results support the multi-factorial origin of cancer.

Key words: p53 codon 72; ACP1; PTPN22; ADA2; ADA6; Colon cancer

Claudio Spina, Fulvia Gloria-Bottini, Luca Coppeta, Anna Neri, Andrea Magrini, Egidio Bottini

Claudio Spina, Department of Surgery, University of Rome Tor Vergata, 00123 Rome, Italy
Fulvia Gloria-Bottini, Luca Coppeta, Anna Neri, Andrea Magrini, Egidio Bottini, Department of Biomedicine and Prevention, University of Rome Tor Vergata, 00123 Rome, Italy

Conflict-of-interest statement: The author(s) declare(s) that there is no conflict of interest regarding the publication of this paper.

Correspondence to: Fulvia Gloria-Bottini, MD, Department of Biomedicine and Prevention, University of Rome Tor Vergata, Via Montpellier, 1, 00133 Rome, Italy.
Email: gloria@med.uniroma2.it
Telephone: +39-630889514

Received: July 18, 2016
Revised: October 23, 2016
Accepted: October 28, 2016
Published online: December 18, 2016

ABSTRACT

AIM: Studies on the association between p53 codon 72 and colon cancer have given contrasting results: in some populations a positive association has been found with *Pro variant, in other with *Arg variant and in other populations no association has been observed. We have studied the possible effect of genetic variability within four common polymorphisms on the association between p53 codon 72 and colon cancer.
colon cancer. A possible interaction of p53 codon 72 with PTPN22 has been also considered. The role of these polymorphisms on the strength of the association between p53 codon 72 and colon cancer has been analyzed.

Acid phosphatase locus I (ACP 1) gene encodes for the protein cLMWPTP (cytosolic Low Molecular Weight Protein Tyrosine Phosphatase) and shows a polymorphism due the presence of three codominant alleles *A, *B, *C at an autosomal locus. *C is the minor allele. There are six genotypes with total enzymatic activity decreasing in the order: *C/*C > *C/*B/*C/*A = *B/*B > *A/*B > *A/*A. *B allele is associated to the lowest while *C allele to the highest enzymatic activity [8, 10]. ACP is involved in the regulation of glucose metabolism and flavo-enzymes activity. Moreover, the enzyme dephosphorylates a negative regulatory phosphorylation site of ZAP70 tyrosine kinase in T cells resulting in an increased activity of this kinase and enhanced signaling from T cell receptors suggesting an involvement of ACP in immune disorders [11]. cLMWPTP is composed by two isoforms F and S that show different concentrations among genotypes: *B/*B genotype shows the highest concentration of F isoform.

Lyp is a protein tyrosine phosphatase encoded by the PTPN22 gene that is involved in the regulation of T cell receptor signaling. The gene shows a single nucleotide polymorphism C/T at +1858 resulting in the W620 variant that is associated with autoimmune disorders. The variant is a gain of function of the enzyme that more strongly inhibits T cell receptor mediated signals and it has been suggested that increased susceptibility to autoimmune disorders is due to failure to delete autoreactive T cells during intratymic selection [12]. The PTPN22 polymorphism has two alleles: *C1858 (encoding R620 variant) and *T1858 (encoding W620 variant), correspondingly there are three genotypes: *C/*C, *C/*T and *T/*T. *T is the minor allele.

ADA is a locus on intron 2 of ADA gene (nt 19466-19470) and its polymorphism is detected by the Psal restriction enzyme. ADA shows two alleles: ADA*1 with higher frequency and ADA*2 with lower frequency. Correspondingly there are three genotypes: ADA*1/*1, ADA*1/*2 and ADA*2/*2. ADA is another polymorphic locus within ADA gene (exon 6 nt 31230-31235). Its polymorphism is detected by the MluNI restriction enzyme and shows two alleles ADA*1 with lower frequency and ADA*2 with higher frequency. Correspondingly there are three genotypes: ADA*1/*1, ADA*1/*2 and ADA*2/*2. The genetic variability in these loci of ADA gene could influence enzymatic activity and/or functions of ADA as ectoenzyme.

**MATERIALS AND METHODS**

We have studied 106 subjects admitted to the hospital for colon cancer and 476 control subjects of comparable age and sex proportion without cancer. All subjects were from the White population of Rome and gave informed consent to participate to the study that was approved by the Council of Department. These subjects have been considered also in previous studies [7, 8]. The population of Rome is a mixture of people from all regions of Italy.

Genetic polymorphisms were determined by DNA analysis as previously described [13, 14]. Three way contingency tables were analyzed by a log linear model according to Sokal and Rohlf [15]. Chi-square of independence and Odds Ratio analysis were carried out by SPSS package [16]. Eta (η) is a measure of the strength of association: η² indicates the proportion of variance in the dependent variable that is explained by the independent variable.

In both cases and controls the observed proportions of ACP, ADA and PTPN22 genotypes do not show appreciable difference with the expected proportion assuming Hardy-Weinberg equilibrium. Statistically significant differences (p < 0.05) are observed for ADA*1/*1 genotype: in controls the observed proportion of *1/*1 genotype is 58.2% vs 60.8% for H.W. expected proportion while in colon cancer the expected proportion of this genotype is 66.0% vs 60.0% for expected proportion assuming H.W. equilibrium.

**RESULTS**

Table 1 shows the joint genotype distribution of p53 codon 72 with ACP, PTPN22, ADA*1 and ADA*2. Subjects carrying the *Pro allele of p53 codon 72 and *B/*B genotype of ACP show a frequency higher in colon cancer than in controls. Subjects carrying the *Pro allele and the *T allele of PTPN22 show a frequency higher in colon cancer than in control. For these two joint genotypes however the difference between cancer and controls does not reach the level of statistical significance. Subjects carrying the *Pro allele and the ADA*1/*1 allele and subjects carrying the *Pro allele and the ADA*1/*1 allele show a frequency higher in colon cancer than in controls and these differences are statistically significant. The difference with respect to controls is very marked for ADA*1 polymorphism.

In table 2 we have analyzed in more detail the interaction among ADA*1, p53 codon 72 and colon cancer. There is a highly significant interaction among the three variables suggesting that the association between p53 codon 72 and colon cancer is strongly influenced by the ADA*1 genotype.
Figure 1 shows the proportion of *Pro allele carriers in colon cancer in relation to the number of genetic factors considered (PTPN22, ACP1, ADA2, and ADA6). There is a positive correlation suggesting that the strength of association between colon cancer and p53 codon 72 depends on the number of factors considered.

In Figure 2 we have considered only the sites of ADA gene. The results are similar to those shown in Figure 1 but the strength of association is lower (η = 0.23 considering only ADA2 and ADA6 while η = 0.32 considering also ACP1 and PTPN22). This suggests that ACP1 and PTPN22 give a significant contribution to the relationship.

Table 3 shows the effect of sex and grade on the relationship between the proportion of *Pro carriers and the number of factors considered (PTPN22, ACP1, ADA1, and ADA6).

|             | Linear correlation | η    |
|-------------|--------------------|------|
| **FOUR FACTORS** |                    |      |
| All patients | P = 0.010          | 0.326|
| Males       | P = 0.254          | 0.290|
| Females     | P = 0.010          | 0.611|
| Grade ≤ 2   | P = 0.255          | 0.241|
| Grade >2    | P = 0.024          | 0.471|
| **TWO FACTORS (ADA2 and ADA6)** | | |
| All patients | P = 0.020          | 0.240|
| Males       | P = 0.479          | 0.117|
| Females     | P = 0.011          | 0.494|
| Grade ≤ 2   | P = 0.185          | 0.186|
| Grade >2    | P = 0.042          | 0.317|

Table 3 The effect of sex and grade on the relationship between the proportion of *Pro carriers and the number of factors considered (PTPN22, ACP1, ADA2, and ADA6).

**DISCUSSION**

Common genetic polymorphisms influence the strength of correlation between p53 codon 72 and colon cancer suggesting a possible explanation for the contrasting result observed between different populations. The present results support the multi factorial origin of colon cancer. Since all polymorphisms studied are involved in immunological functions our data suggest an involvement of immune system in the pathogenesis of colon cancer. In stress conditions there is an increase of adenosine concentration in both intra and extra cellular compartments and this inhibits the immune response through ADA2R and ADA3R adenosine receptors[17,18]. Since adenosine deaminase contributes to the control of adenosine concentration, this could explain the stronger effect of the two ADA gene polymorphism as compared to ACP1 and PTPN22.

Both ACP1 and ADA, however, show also important effects on glucose metabolism; therefore, the possibility that these metabolic effects could contribute to the association cannot be excluded.

The strong differences between sexes supports the hypothesis of an immunological mechanism since it is known[19] that most immune disorders are more frequent in females than in males.

The difference observed between low grade and high cancer grade patients supports the hypothesis that the factors considered have a significant role in colon cancer and make unlikely that the associations observed are a mere chance sampling artifacts.

The limitation of the present study is represented by the relatively small number of patients examined.
REFERENCES

1 Csejtei A, Tibold A, Varga Z, Koltai K, Ember A, Orsos Z et al. GSTM, GSTT and p53 polymorphisms as modifiers of clinical outcome in colorectal cancer. *Anticancer Res.* 2008; 28: 1917-1922. [PMID: 18630481]

2 Koushik A, Tranah GJ, Ma J, Stampfer MJ, Sesso HD, Fuchs CS et al. p53 Arg72Pro polymorphism and risk of colorectal adenoma and cancer. *Int J Cancer.* 2006; 119: 1863-1868. [PMID: 16721787; DOI: 10.1002/ijc.22057]

3 Pérez LO, Abba MC, Dulout FN, Golijow CD. Evaluation of p53 codon 72 polymorphism in adenocarcinomas of the colon and rectum in La Plata, Argentina. *World J Gastroenterol.* 2006; 12: 1426-1429. [PMID:16552814; PMCID:PMC4124323]

4 Dakouras A, Nikiteas N, Papadakis E, Perakis M, Valis D, Rallis G et al. P53Arg72 homozygosity and its increased incidence in left-sided sporadic colorectal adenocarcinomas, in a Greek-Caucasian population. *Anticancer Res.* 2008; 28: 1039-1043. [PMID: 18507052]

5 Sayhan N, Yazici H, Budak M, Bitsik O, Dalay N. P53 codon 72 genotypes in colon cancer. Association with human papillomavirus infection. *Res Commun Mol Pathol Pharmacol.* 2001; 109: 25-34. [PMID: 11458982]

6 Matlashewski GJ, Tuck S, Pim D, Lamb P, Schneider J, Crawford LV. Primary structure polymorphism at amino acid residue 72 of human p53. *Mol Cell Biol.* 1987; 7: 961-963. [PMID: 3547088]

7 Spina C, Saccucci P, Cozzoli E, Bottini E, Gloria-Bottini F. A study of three polymorphic sites of ADA gene in colon cancer. *Cancer Investigation* 2010; 28: 1039-1043. [PMID: 18507052]

8 Spina C, Saccucci P, Bottini E, Gloria-Bottini F. ACP1 genetic polymorphism and colon cancer. *Cancer Genet Cytogenet.* 2008; 186: 61-62. [PMID:18786445 DOI: 10.1016/j.cancergencyto.2008.06.006]

9 Hopkinson DA, Spencer N, Harris H. Red cell acid phosphatase variants: a new human polymorphism. *Nature.* 1963; 199: 969-971. [PMID: 14073798]

10 Bottini N, Bottini E, Gloria-Bottini F, Mustelin T. Low-molecular-weight protein tyrosine phosphatase and human disease: in search of biochemical mechanisms. *Arch Immunol Ther Exp* (Warsz). 2002; 50: 95-104. [PMID: 12022706]

11 Bottini N, Stefaniini L, Williams S, Alonso A, Jascur T, Abraham RT et al. Activation of ZAP-70 through specific dephosphorylation at the inhibitory Tyr-292 by the low molecular weight phosphotyrosine phosphatase (LMPTP). *J Biol Chem.* 2002; 277: 24220-24224. [PMID:11976341; DOI: 10.1074/jbc.M202885200]

12 Bottini N, Musumeci L, Alonso A, Rahmouni S, Nika K, Rostamkhani M et al. A functional variant of lymphoid tyrosine phosphatase is associated with type I diabetes. *Nat Genet.* 2004; 36: 337-338. [PMID:15004560]

13 Gloria-Bottini F, Ammendola M, Saccucci P, Pietropolli A, Magrini A, Bottini E. The association of PTPN22 polymorphism with endometriosis: effect of genetic and clinical factors. *Eur J Obstet Gynecol Reprod Biol.* 2013; 169: 60-63. [PubMed: 23453606; DOI: 10.1016/j.ejogrb.2013.01.014]

14 Sebastiani GD, Bottini N, Greco E, Saccucci P, Canu G, Lucarelli P, Gloria-Bottini F, Fontana L. A study of Adenosine-Deaminase genetic polymorphism in rheumatoid arthritis. *Int J Immunopathol Pharmacol.* 2010; 23: 791-795. [PMID: 20943049]

15 Sokal RR, Rohlf J. Biometry; W.H. Freeman and Company: New York, 1981.

16 SPSS/PC+ version 5. SPSS, Inc: Chicago,1992.

17 Gessi S, Varani K, Merighi S, Fogli E, Sacchetto V, Benini A et al. Adenosine and lymphocyte regulation. *Purinergic Signal.* 2007; 3: 109-116 [PMCID: PMC2096755; DOI: 10.1007/s11302-006-9042-y]

18 Hoskin DW, Mader JS, Furlong SJ, Conrad DM, Blay J. Inhibition of T cell and natural killer cell function by adenosine and its contribution to immune evasion by tumor cells (Review). *Int J Oncol.* 2008; 32: 527-535. [PMID:18292929]

19 Whitacre CC, Reingold SC, O’Looney PA. A gender gap in autoimmunity. *Science.* 1999; 283: 1277-1278. [PMID: 10084932]

Peer reviewer: Maaged Akiel; Guangwen Cao.