Two-dimensional Weyl points and nodal lines in pentagonal materials and their optical response

Sergio Bravo,∗ M. Pacheco,† and V. Nuñez
Departamento de Física, Universidad Técnica Federico Santa María, Valparaíso, Chile

J.D. Correa
Facultad de Ciencias Básicas, Universidad de Medellín, Medellín, Colombia

Leonor Chico
Departamento de Física de Materiales, Facultad de Ciencias Físicas, Universidad Complutense de Madrid, 28040 Madrid, Spain

(Dated: December 30, 2021)

Two-dimensional pentagonal structures based on the Cairo tiling are the basis of a family of layered materials with appealing physical properties. In this work we present a theoretical study of the symmetry-based electronic and optical properties of these pentagonal materials. We provide a complete classification of the space groups that support pentagonal structures for binary and ternary systems. By means of first-principles calculations, their electronic band structures and the local spin textures in momentum space are analyzed. Our results show that pentagonal structures can be realized in chiral and achiral lattices with Weyl nodes pinned at high-symmetry points and nodal lines along the Brillouin zone boundary; these degeneracies are protected by the combined action of crystalline and time-reversal symmetries. Additionally, we discuss the linear and nonlinear optical features of some penta-materials, such as the shift current, which shows an enhancement due to the presence of nodal lines and points, and their possible applications.

I. INTRODUCTION

Low-dimensional materials have provided multiple possibilities for the development of technological applications as well as the exploration of novel physical phenomena and states of matter. Within this class of materials, layered structures and two-dimensional (2D) systems [1], have stimulated great interest: graphene, hexagonal BN, transition metal dichalcogenides and few-layer stacking of van der Waals materials show unexpected characteristics which are being intensely explored [2, 3]. Furthermore, from the technological viewpoint, 2D materials are highly adaptable for their use on devices, within fields like electronics, spintronics and valleytronics, thanks to their planar geometry which is desirable for gate-controlled designs [4, 5].

The upsurge of interest in these materials has motivated many computational high-throughput searches. This has resulted in the generation of several databases [6–11], with a great amount of prospective 2D materials with energetically favorable phases. In some of them, interlayer van der Waals interactions imply that they might be obtained by exfoliation [9].

Among the most interesting candidates are the so-called pentagonal materials, for which the first experimental example has been synthesized recently, in the form of PdSe2 [12]. The origin of pentagonal materials can be traced to the theoretical prediction of pentagraphene [13, 14], and their hallmark is the geometry of their planar projection, the so-called Cairo tiling. After these seminal works, many pentagonal systems have been proposed by means of first-principles calculations [15–24], with remarkable characteristics such as excellent thermoelectrical properties [25], potential application for anode materials [26] and auxetic behavior [27], among others. Also, recent experimental studies have shown that the pentagonal material PdSe2 presents good performance as an ohmic contact [28, 29].

Such findings have compelled us to classify systematically these pentagonal materials and their symmetry-based properties. Previous work along this line was done by H. Zhuang et al. in a series of articles [30–32]. They studied all possible pentagonal tessellations of the plane (with fifteen different types of pentagons [33]) and their possible realizations in monolayer materials by first-principles calculations. They showed that the pentagonal lattice structure is feasible with only two configurations composed of two kinds of pentagons, namely, type-2 and type-4 pentagons [31]. An example of the planar projection of these two structures is presented in Fig. 1.

Despite of this result, no further studies have been done in order to relate these two possible structures with spatial groups, which would be greatly advantageous in the search for particular electronic properties linked to symmetry protection.

Thus, in this work, we classify all (layer) space groups (SG) that support unstrained pentagonal structures with up to ternary composition. We also provide a partial classification for few-layer structures with specific stackings. Further, we analyze the electronic properties constrained by crystalline symmetries. This allows us to identify nodal points and nodal lines in noncentrosym-
metric SG hosting pentagonal lattices. In such cases, if a significant spin-orbit coupling (SOC) is present, it can lead to topological nontrivial Weyl nodes pinned at high-symmetry points, as well as to nodal lines at the Brillouin zone (BZ) boundary. We present first-principles calculations for several examples of pentagonal materials supporting the group-theoretical predictions. Also, with the aim to complement our findings, we provide calculations of the linear optical conductivity, natural optical activity and for the nonlinear shift current for all such examples.

This article is organized as follows. In Section II we provide a brief description of the conditions under which the first-principles calculations were performed. Also the specific formulas for the optical responses are sketched. In Section III our main results are presented. Firstly, the electronic properties of several fivefold materials with noncentrosymmetric character are reviewed, providing their band structures and spin textures. To close this Section, optical calculations based on the first-principles code [35]. After the Wannier model is obtained, calculations with very dense momentum space grids can be performed. We used grids ranging from $301 \times 301 \times 1$ to $901 \times 901 \times 1$ in order to check convergence. Additional post processing of the band structure calculations were carried with the WannierTools package [36]. Optical calculations were performed also with WANNIER90 (postw90). In particular, the optical conductivity is calculated with the Kubo formula in terms of the Berry connection, given as a function of the photon energy $\hbar \omega$ by [35]

$$\sigma_{\alpha\beta}(\hbar \omega) = \frac{ie^2}{\hbar N_k V} \sum_{k,n,m} f_{mn} E_{mn} \frac{A_{nm}^\alpha A_{mn}^\beta}{E_{mn} - (\hbar \omega + i\delta)} ,$$

where $A_{nm}^\alpha = \langle u_n | i\nabla_{k_{mn}} | u_m \rangle$ is the Berry connection and n and m are band indices. Also, V is the cell volume, N_k is the number of k-points in the BZ, $E_{mn} = E_m - E_n$ ($E_n = E_{nk}$ is the band dispersion), $f_{mn} = f(E_{nk}) - f(E_{mk})$, where $f(E_{nk})$ is the Fermi-Dirac function, and δ is a parameter with units of energy.

The rotary power was calculated using the expression [37]:

$$\rho(\omega) = \frac{\omega^2}{2c^2} \text{Re}[\gamma_{xyz}(\omega)]$$

where the tensor γ_{abc} is defined in terms of the band properties as $(\partial_c = \partial/\partial k_c)$ [37] and

$$\text{Re}[\gamma_{abc}(\omega)] = \frac{e^2}{\epsilon_0 \hbar^2} \int [dk] \sum_{n,l} \text{occ,emp} \left[\text{Re} \left(A_{ln}^b B_{nl}^{ac} - A_{ln}^a B_{nl}^{bc} \right) \right]$$

$$- \frac{3\omega_l^2 - \omega^2}{(\omega_l^2 - \omega^2)^2} \partial_c (E_l + E_n) \text{Im} (A_{nl}^a A_{nl}^b) .$$

Here $[dk] = d^dk/(2\pi)^d$ (with d as the dimension), $\omega_n = (E_l - E_n)/\hbar$ and B_{nl}^{ac} (also valid for B_{nl}^{bc}) is given by

$$B_{nl}^{ac} = B_{nl}^{ac \text{ ORB}} + B_{nl}^{ac \text{ SPIN}},$$

where $B_{nl}^{ac \text{ ORB}}$ is the orbital contribution and $B_{nl}^{ac \text{ SPIN}}$ is the spin part which are respectively expressed as

$$B_{ln}^{ac \text{ (ORB)}} = \langle u_n | \partial_c H | \partial_l u_l \rangle - \langle \partial_c u_n | \partial_l H | u_l \rangle$$

and

$$B_{ln}^{ac \text{ (SPIN)}} = -\frac{i\hbar^2}{m_e} \epsilon_{abc} \langle u_n | \sigma_b | u_l \rangle .$$

Finally, we compute the interband contribution to the nonlinear shift current. It relates the appearance of a current density J_a in the system due to an electric field E to second order, such that $J_a = 2\sigma_{abc} \text{Re}[E_b E_c]$, where
\(\sigma_{abc} \) is the third rank shift current tensor \([38]\). This is obtained using the following formula:

\[
\sigma_{abc}(0; \omega, -\omega) = -\frac{i\pi e^3}{2\hbar^2} \int [dk] \sum_{nm} f_{nm} \times \left(r_{mn}^b r_{nm,a}^c + r_{mn}^c r_{nm,a}^b \right) \delta(\omega_{mn} - \omega),
\]

where \(r_{nm,a}^b = \partial_{ka} r_{nm}^b - i (A_{nn}^a - A_{nn}^b) r_{nm}^b \) and \(r_{nm}^a = (1 - \delta_{nm}) A_{nm}^a \). The rest of the quantities are defined as in the previous formulas.

III. RESULTS AND DISCUSSION

A. Space groups supporting pentagonal structures

Pentagonal materials have the Cairo tiling as their two dimensional projection. The essential feature of this pattern is that it possesses two glide planes, as it can be visually appreciated in Fig. 1. This greatly constrains the spatial groups of a pentagonal structure. Therefore, we start identifying the largest tetragonal (layer) SG with this characteristic. In Table I we find that SG #127, which possesses 16 symmetry operations, is the greatest layer group with this feature [39]; note that SG#129 also has two glide planes, but it does not have the adequate Wyckoff positions (WP), as explained below. Within this group, we can search for all the subgroups that preserve this two-glide-plane condition. Since we are only using the lattice symmetry, we are implicitly assuming that all atomic positions are equal. However, this condition can be relaxed by considering that the spatial symmetry classifies the atomic sites in different Wyckoff positions [40].

Thus, in order to preserve a SG we must only care about having equal elements within each WP. As it is well-known, the basic pentagonal structure comprises two WPs, namely, a 4-fold WP and a 2-fold WP, giving six atoms per unit cell [41]. We have checked that for binary compounds with different atomic species at each WP, the possible SG does not change, being the same as for monatomic pentamaterials. We present all possible SG supporting a monolayer pentagonal structure composed of one or two elements in Table I.

This procedure can be extended to ternary penta-monolayer compounds. This is done by either replacing one atom in the 2-fold WP or by replacing two atoms of the same type in the 4-fold WP (replacing one atom is also possible, but it generally gives the trivial space group P1 as a result). The list of SG for ternary monolayer structures is given in Table II, obtained by choosing one SG in Table I and replacing the atoms in the WP as described, which yields a new SG with lower symmetry. Further increasing the number of elements is not pursued here since, in general, it will give similar low-symmetry SG as the ones listed in Tables I and II.

Another route to explore is the stacking of pentagonal layers. We have studied translational (the so-called slip configurations, no rotation implied) stackings of few-layer pentagonal structures. The translational vectors were selected to comprise typical stackings such as AA, AB, AC and other, more exotic stackings. These stackings are amenable to automated SG calculation; we have obtained the SG for binary structures for two and three layers (composed of the same monolayer). The results are presented in the Supplementary Material.

Let us remark two features related to the obtained SG.

(i) There are planar and non-planar structures, which provide a means to study the effects of buckling in the electronic properties. For example, SG #127 and #55 can describe planar (atomically thin) structures [42], but they can also correspond to non-planar pentagonal structures with eight-coordinated atoms where an eight-fold WP is used to describe the site symmetry, such as in [43].

(ii) Restricting ourselves to monatomic and binary systems, SG#113, SG#100, SG#90, SG#32, SG#18 and SG#8 are noncentrosymmetric. This is one of the conditions needed for the appearance of nontrivial degeneracy points and lines in the electronic structure [44] (see part III B). These noncentrosymmetric SG can also be subdivided in chiral and achiral groups depending on the presence of mirror and roto-inversion symmetry operations [45]. Thus, SG#90 and SG#18 are chiral and SG#113, SG#100, SG#32 and SG#8 are achiral.

We center the upcoming discussion in the noncentrosymmetric SG, as we aim to find novel examples of pentagonal systems with Weyl points in their electronic band structure. In the following we discuss the nature of degeneracy points in the band structure for some specific materials, based on the characteristics of their SG.

Group Label (#)	Point group	Wyckoff positions
P4/mmbm (#127)	4/mmm	(4c,2a)
P4b2 (#117)	4/mmm	(4c,2a)
P2121m (#113)	T2m	(4d,2a)
P4bm (#100)	4mm	(4c,2a)
P422 (#90)	422	(4d,2b)
Pbam (#55)	mm2	(4c,2a)
Pbna2 (#32)	mm2	(4c,2a)
P21212 (#18)	222	(4c,2a)
P21223 (#14)	2/m	(4c,2a)
Cm (#8)	m	(4b,2a)

TABLE I. Space groups that can support pentagonal structures with one and two elements. The Wyckoff positions used to conform the structure are given in the third column.

B. Electronic structure of noncentrosymmetric pentagonal materials

Since the proposal of penta-graphene, several pentagonal materials have been put forward. Most of the materials with one and two elements belong to SG #14, #113

\[
\sigma_{abc}(0; \omega, -\omega) = -\frac{i\pi e^3}{2\hbar^2} \int [dk] \sum_{nm} f_{nm} \times \left(r_{mn}^b r_{nm,a}^c + r_{mn}^c r_{nm,a}^b \right) \delta(\omega_{mn} - \omega),
\]
and #127. To our knowledge, there are not reported materials for the rest of the groups in Table I. Those from SG #14 are the most numerous; several databases for 2D materials report them [8, 9]. In fact, PdSe2, the only pentagonal 2D material synthesized to date, pertains to this SG [12]. From these three groups, only SG #113 is noncentrosymmetric. We focus on materials with noncentrosymmetric SG because they can host nodal points or lines, Weyl points and non-trivial topological features when SOC is relevant. In order to find more examples of those, we propose two possible routes. First, we search for ternary materials with noncentrosymmetric SG (Table II). This is the case of SG #4; a list of ternary materials has already been presented in [47]. We take an alternative route for SG #4 and start with highly stable SG #14 materials [8] to derive new ternary materials via atomic substitution, following the information of Table II. We propose two systems, PdSeS and PdSeTe, which are formed from PdSe2.

Another example is SG #81, for which dynamically stable materials with formula XP5 (X=Al, Ga, In) have also been proposed [20]. Note that although XP5 materials are compositionally binary, from the group-theoretical viewpoint it can be considered ternary, given that one P atom is located in a WP different to the other four P atoms, breaking the two-glide plane symmetries present in the parent SG #113. We select the InP5 system for SG #81; although it was studied previously, SOC was not considered [20]. We include this effect in order to explore the spin texture and the appearance of Weyl points.

A second possible route is related to bilayers. Specifically, bilayers composed of SG #113 monolayers with AB stacking give rise to noncentrosymmetric achiral SG #111. However, we do not follow this approach in the present work.

To summarize, we have chosen three noncentrosymmetric SG for pentagonal 2D materials, namely, #4, #81, and #113. We provide examples of the lattice structure for SG #4 and #81 in Fig. 2 a) and c), respectively. Notice that the SG #113 lattice is similar to the SG #81, but the 4-coordinated atoms are equal for the #113 case. Our selection for these particular SG is guided by two factors: on one hand, their proximity to recently reported materials, such as PdSe2, and on the other hand, the attractive chiral/achiral relationship of their nodal points and lines, as discussed below.

The first example we present is from SG #4 (P2₁), with formula PdSeTe, which has been derived by atomic substitution of two Se atoms by Te atoms at a 4-fold WP. The electronic band structure including SOC for PdSeTe is presented in Fig. 3 a), where the typical stick-together bands along the high symmetry line X-M can be observed, due to the nonsymmetric character of the SG [48]. Further, around the Γ point we can observe the spin splitting of bands, which show a 2-fold degeneracy just at Γ.

In order to analyze the character of this nodal point we have numerically calculated the Berry phase [49] along a circular path around the Γ point, which yields a value of

TABLE II. Ternary space groups supporting the pentagonal structure, arising from site substitutions in the SG of Table I. Information was retrieved from the Bilbao Crystallographic Server [46]. *The SG #117 gives the same ternary groups as the same WP coordinates are used for both groups.

Parent group	WP change	Ternary group	Point Group
#127*	2a → 1a,1b	P4/m (#83)	4/m
#127	4g → 2i,2g	Cmmm (#65)	mmm
#127	4g → 2a,2a	Pmc2₁ (#26)	mm2
#113	2b → 1a,1b	P2₁ (#7)	m
#113	2b → 1a,1b	P2₁ (#4)	2
#100	2a → 1a,1b	P4 (#75)	4
#100	4c → 2e,2d	Cmmm (#35)	mm2
#100	4c → 2a,2a	Pc (#7)	m
#90	2c → 1a,1b	P4 (#75)	4
#90	4d → 2e,2g	C222 (#21)	222
#90	4d → 2a,2a	P2₁ (#4)	2
#55	2a → 1a,1e	P2/m (#10)	2/m
#55	4e → 2m,2n	P2/m (#10)	2/m
#55	4e → 2a,2b	Pmc2₁ (#26)	2
#32	2a → 1a,1a	P2 (#3)	2
#32	4c → 2e,2e	P2 (#3)	2
#32	4c → 2a,2a	Pc (#7)	m
#18	2a → 1a,1a	P2 (#3)	2
#18	4d → 2e,2e	P2 (#3)	2
#18	4d → 2a,2e	P2₁ (#4)	2
#14	2a → 1a,1a	P2 (#2)	2
#14	4e → 2a,2a	P2₁ (#4)	2
#14	4e → 2a,2a	Pc (#7)	2
#8	2a → 1a,1b	Pm (#6)	m
#8	4b → 2a,2a	P1 (#1)	1
#8	4b → 2a,2b	Pm (#6)	m

FIG. 2. Lattice structure for (a) SG #4 and (c) SG #81. Brillouin zone for (b) SG #4 and (d) SG #81. The angles given are measured considering only the planar projection and not the entire three-dimensional lattice structure.
\[\pi, \text{ indicating that it corresponds to a Weyl point with topological charge } |C| = 1 \ [50, 51]. \] Additionally, we present in Fig. 3 c) the spin texture of the fourth uppermost valence band to gain further insight into the nature of the Weyl node. For this particular band the spin texture shows a radial pattern near \(\Gamma \), suggesting that these Weyl points are indeed a two-dimensional version of Kramers-Weyl points, as it was recently realized in other systems [44]. Kramers-Weyl points are present in every chiral SG. They are pinned to high-symmetry points as long as no nodal lines are connected to them [52]. In view of this, the \(\Gamma \) point at the corner of the BZ can also host a Kramers-Weyl node, as it can been seen from Fig. 3 a). From a direct analysis of the physically irreducible representations (irreps) of this SG [39], it can be seen that the \(\Gamma \) and \(Y \) points only have two-dimensional irreps, indicating that only Weyl nodes can be formed. Additionally, along the X-M high-symmetry line, only two dimensional irreps are possible, thus implying the formation of a Weyl nodal line.

This nodal line also has a little group that only has a two-dimensional irrep if time-reversal holds. This irrep can be expressed as \(e^{i\pi u} \sigma_z \), where \(u \) is the fractional coordinate along the nodal line [39]. Following the results in [53, 54], the ratio \(\alpha_u/\alpha_{\mu} \), where \(\alpha_u/\mu \) are the irrep eigenvalues, indicates the type of Weyl point present along a symmetry line. In this case \(\alpha_u/\alpha_{\mu} = -1 \), meaning that a symmetry-protected Weyl node is produced at every point along the BZ boundary, with Chern number of magnitude \(|C| = 1 \).

These features should be present in every material with the SG #4 and time-reversal symmetry. These point nodes and nodal lines are protected by the combined action of time-reversal \(T \) and \(2_1 \) symmetries (\(TC_2 \))[1/2, 0, 0) [40, 55]. Similar results are obtained for PdSeS, which are presented in the Supplementary Material. The Weyl points and nodal line can be clearly identified in a color map plot of the energy difference between two adjacent bands, as shown in Fig. 3 b), for the lowest pair of conduction bands, where the Weyl nodes are clearly spotted and the nodal line appears along all the X-M line.

Next, we turn to the SG #81 (P4), presenting the first-principles band structure with SOC for InP5 in Fig. 4 a). The spin splitting can also be observed, being larger for the lowest conduction bands near the \(\Gamma \) point. We also have computed the Berry phase for this material, obtaining a value of \(\pi \) for all the high-symmetry points of interest, mentioned below. In this case the lattice structure is achiral, due to the presence of roto-inversion \(S_4 \) and mirror planes. Still, as mentioned in [44], there exists the possibility to have a reminiscence of chirality, so to say, at momentum space. This is because certain little groups (at high-symmetry points) of these achiral groups could be chiral [46]. This is the case for SG #81, where the X(Y) point located at [1/2,0] ([0,1/2]) has a chiral little group [40]. To explore this assertion, the spin texture for the first conduction band is presented in Fig. 4 c), in the vicinity of the X point. It can be observed that the radial pattern is partially present, which is related to the competition of the spin-orbit interactions that can be present in the neighborhood of X, due to the \(C_2 \) little group. This competition distorts the spin texture and masks the chiral signatures of the node.

![Fig. 3](image1.png)

FIG. 3. a) First-principles electronic band structure for PdSeTe. b) A color map for the energy difference between the lowest pair of conduction bands mapped over the entire BZ for PdSeTe. c) Spin texture for the fourth valence band in the vicinity of the \(\Gamma \) point for PdSeTe.

![Fig. 4](image2.png)

FIG. 4. a) Electronic band structure for InP5. b) Color map for the energy difference between the third and fourth uppermost valence bands, mapped over the entire BZ for InP5. Darker zones away from high-symmetry points are not degenerate, but very close in energy. c) The spin texture for the first conduction band for a region near the X point for InP5.

It can be mentioned that at the \(\Gamma \) point (and also at the M point), there exists a Weyl point that is hosted by an achiral little group, and therefore no Kramers-Weyl node is allowed [56]. One of the interesting characteristics of
these points (Γ and M) is that they can be considered as two-dimensional projections of Kramers-Weyl nodal lines [52]. That is to say, they correspond separately to the end points of two nodal lines that would exist in a three-dimensional BZ for the same SG along Γ-A and M-R [52]. Notice also that there are no nodal lines, since only one-dimensional irreps are present away from the high-symmetry points [46]. All these facts can be better appreciated in the color map of the spin splitting (energy difference) for the second pair of adjacent valence bands in Fig. 4 b). It can be seen that the Weyl nodes appear exactly at the high-symmetry points, along with zones of relative high and low spin splitting. Similar conclusions could be attained for the SG #111 (P42m), where the X(Y) point also hosts Kramers-Weyl nodes. The reason is the same as for SG #81. As was mentioned, this SG can be formed by a bilayer composed of two (equal) SG #113 monolayers with AB stacking. We leave the detailed analysis of multilayer pentagonal structures for a later work.

Finally, we propose a stable binary SG #113 (P421m) material, GeBi$_2$. Its band structure with SOC is presented in Fig. 5 a). In this achiral SG, the M point little group protects a fourfold degenerate node [57, 58]. This can be clearly observed in the band structure of Fig. 5, as for example in the upper group of valence bands, where the fourfold fermion locates at an energy of -0.20 eV. This fermion is not chiral, since the little group of the M point is isomorphic to D_{2d} [46]. The rest of the high-symmetry points have two-fold Weyl points with no chiral character, namely, the Γ, X and Y points. However, only the Γ point comprises an isolated node, since the X and Y points are part of a closed twofold nodal line that goes around the whole BZ boundary, as was reported in our previous work [41]. The analysis for this nodal line is analogous to that of the SG #4 case. The ratio for the 2D irrep in the little group is $\alpha_x/\alpha_y = -1$, giving again a line of Weyl points along the BZ boundary, with $|C| = 1$ [54]. We should mention that this twofold nodal line is formed by the splitting of a fourfold nodal line present in the case without SOC. The two-dimensional character of this nodal line, and that occurring in SG #4, is an interesting feature that has attracted the attention of several groups [59–63].

To recapitulate, in this SG we encounter the peculiar coexistence of a fourfold fermion, a twofold Weyl node and a closed twofold nodal line, which gives several possibilities to study the interaction between degenerate fermions. Additional insight can be acquired by looking at Fig. 5 b), where all the nodal points and the closed nodal line mentioned above are clearly shown in the color map for the upper pair of valence bands. We complete this characterization by presenting the spin texture for the top valence band in the vicinity of the Γ point in Fig. 5 c). It shows a Dresselhaus-like spin texture, as allowed by the point group associated to SG #113 [40]. The fourfold M point also presents this type of spin-orbit texture, as it can be observed in Fig. S.21 in the Supplementary Material.

The diverse patterns arising in the spin textures can be better explained by resorting to an effective model that we present in the Appendix. There, it is shown that the spin texture patterns depend on the relative magnitude of the coefficients accompanying the momentum components in the $\mathbf{k} \cdot \mathbf{p}$ Hamiltonian. One of the most appealing features of the SG #4 materials is that the spin texture depends not only on the spin-orbit interaction but also on the anisotropy due to the low spatial symmetry. Likewise, the distortion of the spin texture due to the competition between SOC and anisotropy found in group #81 is further analyzed in the Appendix. Different spin textures are realized for each band in these materials; several examples are depicted in the Appendix illustrating the situations found in the three groups under study.

We have chosen several penta-materials to illustrate the characteristics associated with different SG. We would like to emphasize that, to the best of our knowledge, there are not any reported materials for the SG #90 to this date. Nonetheless, this group is of great interest, since it can host chiral multifold fermions [64]. In particular, at the M point this SG has a chiral fourfold degenerate fermion, with a double spin-1/2 representation [57, 64]. Also a twofold chiral fermion is present at Γ, and twofold nodal lines along the whole BZ boundary are present, similar to the SG #113 but with chiral nature. This implies that the interplay between chiral multifold and chiral twofold fermions could be studied in this particular SG. Finding a material realization of this SG would certainly be appealing.
C. Optical properties

The existence of Weyl points is related to enhanced physical responses, compared to materials without topological nodes. For example, a large magnetoresistance [65, 66] in magnetic materials, transport characteristics such as the chiral magnetic effect, the nonlinear anomalous Hall effect, the kinetic Faraday effect and the gyrotropic magnetic effect [50, 67, 68]. In addition, optical effects are among the most promising responses due to the momentum space selection rules, that could give characteristic features at certain frequencies [44, 69]. Here we report optical first-principles calculations in the Wannier basis for the materials previously analyzed. Specifically, we have computed the optical conductivity, the rotatory power in terms of the natural optical activity (NOA) and the interband contribution to the nonlinear shift current (for details see Section II). In what follows we describe some of the main aspects of the optical properties.

First, all calculations were carried out using Wannier-interpolated models for each material. In particular, for PdSeTe it includes the outermost valence orbitals from each atom; i.e., d orbitals for Pd and p orbitals for Se and Te; the same type of orbitals were employed for PdSeS. For InP$_5$, p valence orbitals were used for P and sp^3 hybrid orbitals for In. In the case of GeBi$_2$, p orbitals were used for Ge and hybrid sp^3 orbitals for Bi. These choices yield a good agreement for the low-energy bands. The Wannier band structures for each material are presented in the Supplementary Material.

We begin by reporting the optical conductivity for PdSeTe, projected in the spin z direction, which is presented in Fig. 6. It can be seen that no spin polarization is present in this system (other spin directions give similar results). Due to the low symmetry of this SG, there are nonzero off-diagonal (Hall-like) components of the optical conductivity, which are two orders of magnitude smaller than the longitudinal part. Still, this could give rise to photoinduced currents in the transverse directions and also to optical rotation. The low symmetry also implies that there are few selection rules for interband transitions in momentum space. In consequence, contributions from all the BZ make the distinction of peaks rather opaque.

In order to gain insight about the optical response we calculated the interband contribution to the rotatory power, obtained from the NOA tensor, as shown in Fig. 7 (a) for PdSeTe. There exists a nonzero response in a wide range of frequencies, which gives to this material a great potential for optoelectronic applications [70]. We hypothesize that such response could be augmented by using multilayers, since the chiral nature is enhanced by increasing thickness [71]. Even a higher outcome could be obtained if rotated layers are employed, as previous works on twisted materials have reported [72, 73]. Note that the orbital contribution is generally greater than the spin contribution, with the exception of the low-frequency region, including the zone below the absorbing edge (~ 1.2 [eV]). This is shown in Fig. 7 (b), where it is evident that the spin contribution is of the same order as the orbital contribution, even surpassing it close to the gap. This last behavior is encountered also in the NOA response of GeBi$_2$ along the whole frequency range, as shown in Fig. S.23 in the Supplementary Material. This is in fair contrast with other materials such as elemental tellurium, where the spin contribution was found to be marginal [68].

Nonlinear optical effects occurring in these materials with chiral nodes have special relevance for potential applications [74–77]. In order to explore this issue, we com-
puted the interband contribution to the nonlinear shift current σ_{abc}, which arises due to the charge center shift associated to the effects of a nonzero interband Berry connection [74, 78]. The effect depends on the type of (linear) polarization of light and the symmetry character of the σ_{abc} tensor, given in Eq. 4. For PdSeTe(S) (SG#4) the tensor has 4 independent nonzero components, while for InP$_5$ (SG #81) the tensor has 2 nonzero independent components [79].

For the purpose of yielding more reliable results, the shift current of the layered system is rescaled by a numerical factor taking into account the slab geometry, as implemented in [69, 80]. This factor is defined as the ratio between the length of the vacuum region d_{vac} and the monolayer thickness d_m, such that the final shift current tensor σ_{abc} is given by [69]

$$\sigma_{abc} = \left(\frac{d_{vac}}{d_m}\right) \sigma_{abc}^{layer}$$

We present the shift current tensor for PdSeTe along the x and y directions in Fig. 7 (c) and (d). The rest of the components are not shown because they have a negligible value in comparison. Additionally, in Fig. 8 the shift current for InP$_5$ is shown, with values in other polarization directions, specifically, in the z direction.

![Fig. 8. Components of the shift current tensor $\sigma_{abc}(\omega)$ for InP$_5.$](image)

This current is more sensitive to specific regions in momentum space, at variance with other optical responses [81]. Peaks in these currents are slightly related to peaks in the optical conductivity contributions since two-band and three-band transitions are the most important weights [57, 81, 82]. Points where Weyl nodes are located (Γ and Y) have a large contribution, as for example in σ_{xyy} for PdSeTe, depicted in Fig. 7 (c). The peaks are localized within regions which coincide with the energy difference between two Weyl points. Unfortunately, this contribution from Weyl points is not exclusive for this particular energy range, due to the low symmetry of the material and to the proximity in energy of trivial bands along the BZ.

To sum up, whereas Weyl points contribute significantly to the shift current and, in fact, certain peaks in the spectrum can be attributed to them, no intrinsic Weyl signatures are expected in this system, such as it occurs in the circular photogalvanic effect [81]. A similar conclusion is reached by inspecting the shift current of InP$_5$ in Fig. 8, where achiral Weyl nodes do not show any particular features. Still, there are certain aspects that can be pointed out, such as the occurrence of anisotropy, which is observed by contrasting different components of the σ_{xxy} tensor. Since the contribution to the shift current from these components depends on the polarization of light, anisotropy introduces selectivity along some particular spatial directions. This is highly desirable for applications in photovoltaics, which requires preferred directions in materials in order to efficiently transport the induced current to the electrodes [78].

One of the main drawbacks of this bulk photovoltaic response is the low conversion ratio, which can hinder the applicability of the effect [74]. Consequently, the magnitude of the shift current is also important [83, 84]. The search for novel materials with high shift currents is thus the focus of great interest [75]. In this line, we would like to emphasize the remarkable values obtained for the pentagonal material PdSeTe for component σ_{zzz}, as shown in Fig. 7 (c), with a peak value of 60 [μA/V2] at \sim 1.9 eV and for σ_{yxy} in Fig. 7 (d), with a peak value of \sim76 [μA/V2] at \sim 2.5 eV. We can also observe in Fig. 8(a) that the σ_{zzz} component in InP$_5$ has a peak value of 130 [μA/V2] at \sim 5.55 eV. Finally, σ_{xxy} has two peaks of 89 [μA/V2] and 98 [μA/V2] at \sim 2.88 eV and \sim 3.87 eV, respectively. These magnitudes compare very favorably with previously reported values for layered materials, as for example with monolayer GeS, which possesses a shift current of 100 [μA/V2] [80]. Furthermore, since the values are within the visible/UV spectrum, they convey very promising prospects for these systems as photovoltaic materials [85].

As it is well-known, the use of the PBE functional underestimates the band gaps. This also has an obvious consequence in the optical spectra, producing a redshift of the optical features. For those materials including a transition group element, we also calculated the electronic properties with a hybrid functional, showing that our results are not affected by this approximation, besides the expected energy displacement mentioned above.

In the Supplementary Information we present additional material related to the optical response of InP$_5$ and for GeBi$_2$ (SG #113).

IV. CONCLUSIONS AND OUTLOOK

In this work we have classified all the layer groups that can support a pentagonal structure with up to three elements. We have also classified multilayer structure with slip stackings up to three layers. We have focused on specific noncentrosymmetric SG, with chiral and achiral point groups. The corresponding SG were described in detail and their degeneracies linked to Weyl nodes and Kramers-Weyl nodes depending on their little group. This framework was subsequently applied to several examples of pentagonal materials to describe their electronic structures. Additionally, their optical properties
were reported, complementing the description of their electronic band structures. Although the existence of Weyl points in these materials does not imply any specific signature in their physical properties, they can be related to the enhancement of the shift currents, yielding high values of this magnitude.

We expect that pentagonal materials such as PdSeTe and PdSeS to be fairly feasible experimentally, since they are closely related with the recently synthesized pentagonal material PdSe$_2$. Other routes that are worth to be explored further are the signatures of the spin textures and their spin-orbit competition and anisotropy. Also, multilayers are highly attractive since little work has been done for pentagonal systems and, as we mentioned above, different stackings could give emergent SG with contrasting symmetry-related properties or boost chirality-related phenomena. Finally, our results indicate that the optical response for other pentagonal materials deserves to be explored, since the interplay of Weyl nodes, low-symmetry and chemical composition could yield novel systems with enhanced photovoltaic currents.

APPENDIX: EFFECTIVE MODELS AND SPIN TEXTURES FOR TWO-FOLD WEYL POINTS

Since the degenerate points are local properties in momentum space, effective models are helpful to understand in more detail the relation between structural chirality and spin textures. Here we analyze specific nodal points in SG #4, SG #81 and SG #113, selected from those presented in section III B.

SG #4 and SG #81. For both groups, the most interesting k points are those with chiral little groups (Γ and Y for SG #4 and X for SG #81). These little groups are all isomorphic to C_2 [46], which has only one symmetry operation, namely, a π rotation about the axis perpendicular to the layer plane. Using the theory of invariants [86], the most general $\mathbf{k} \cdot \mathbf{p}$ effective model can be expressed up to linear order in the crystal momentum

$$H_{C_2} = \alpha_0 + \alpha_{1xx} k_x \sigma_x - \alpha_{1xy} k_x \sigma_y + \alpha_{1yx} k_y \sigma_x - \alpha_{1yy} k_y \sigma_y,$$

(A.1)

where k_i is the crystal momentum in the i direction measured from the corresponding high-symmetry point, σ_i are the Pauli matrices; α_0 and α_{1ij} correspond to the free parameters that describe the energy bands in the vicinity of the chiral point. Note that this model allows for the presence of anisotropy, given that different parameters are associated with the x and y momentum components. Besides, depending on the sign relation of these parameters, different spin-orbit interactions can be realized. Thus, a competition between spin-orbit effects could be present, depending on the relative magnitudes and signs of the linear parameters. The competing interplay of both effects, anisotropy and spin-orbit, produces in some cases spin textures appreciably different from the ideal radial textures which are characteristic of Kramers-Weyl nodes [44]. These different spin textures appear by choosing different values for the parameters α_{1ij} in Eq. (A.1).

For instance, to realize the spin textures that are observed in the pentagonal materials of SG #4, an additional condition is imposed such that $\alpha_{1xy} \ll \alpha_{1xx}, \alpha_{1yy}$ and $\alpha_{1yx} \ll \alpha_{1xx}, \alpha_{1yy}$. Taking this into account, the Hamiltonian in Eq. (A.1) can be reduced to

$$H_{SG\#4} = \alpha_0 + \alpha_{1xx} k_x \sigma_x - \alpha_{1yy} k_y \sigma_y.$$

(A.2)

For the sake of illustrating this point, Figs. A.1 a) and b) depict these cases for parameter values chosen without the aim of modeling a particular material. In Fig. A.1 a) a Dresselhaus-like texture is obtained by using the constraint $\text{sign}(\alpha_{1xy}) = \text{sign}(\alpha_{1xx})$. This texture can be appreciated in the uppermost valence bands of PdSeTe as shown in Fig. S12 of the Supplementary Information. In the case of Fig. A.1 b) the condition $\text{sign}(\alpha_{1xy}) = -\text{sign}(\alpha_{1xx})$ gives a radial spin texture, very similar to the one presented above for PdSeTe in Fig. 3 c). The competition and variability in spin textures within the same material generalizes the exclusive radial textures encountered in previous works and opens the way to explore the interplay of anisotropy and competing spin-orbit couplings in pentagonal systems.

![FIG. A.1. Spin texture from the $\mathbf{k} \cdot \mathbf{p}$ model for a) SG #4 with $\text{sign}(\alpha_{1xy}) = \text{sign}(\alpha_{1xx})$ b) SG #4 with $\text{sign}(\alpha_{1xy}) = -\text{sign}(\alpha_{1xx})$ c) X point in SG #81 and d) Γ point in SG #113.](image-url)
the effective model is isotropic, and up to linear order in crystal momentum is given by

\[H_{SG#113} = \beta_0 + \beta_1(k_x \sigma_x - k_y \sigma_y), \]

(A.3)

where \(\beta_i \) are free parameters. This model produces isotropic spin textures in the neighborhood of the \(\Gamma \) point, as it can be observed in Fig. A.1 d), where a Dresselhaus spin texture arises. This compares well with the results for GeBi\(_2\) depicted in Fig. 5 c), which indicates the dominating spin-orbit interaction is this material. The analysis of the fourfold fermion requires a four-band model along with new symmetry considerations, which are outside the scope of this Appendix.

ACKNOWLEDGEMENTS

This work has been partially supported by Chilean FONDECYT Grant 1201876, Spanish MCIU and AEI and the European Union under Grant No. PGC2018-097018-B-I00 (MCIU/AEI/FEDER, UE), and by Grant USM-DGIP PI-LI 1925. V. N. acknowledges financial support from Beca Doctorado Nacional ANID No. 21170872 (CL). J. D. C. acknowledges Universidad Universidad de Medellín under grant 1120 and the Laboratorio de Simulación y Computación Científica for computational facilities.

[1] P. Miró, M. Audiffred, and T. Heine, An atlas of two-dimensional materials, Chem. Soc. Rev. 43, 6537 (2014).
[2] K. Novoselov, A. Mishchenko, A. Carvalho, and A. H. Castro Neto, 2d materials and van der waals heterostructures, Science 353, 10.1126/science.aac9439 (2016).
[3] D. Saptarshi, J. A. Robinson, M. Dubey, H. Terrones, and M. Terrones, Beyond graphene: Progress in novel two-dimensional materials and van der waals solids, Annual Review of Materials Research 45, 1 (2015).
[4] G. Fiori, F. Bonaccorso, G. Iannaccone, T. Palacios, D. Neumaier, A. Seabough, S. K. Banerjee, and L. Colombo, Electronics based on two-dimensional materials, Nature Nanotechnology 9, 768 (2014).
[5] Q. H. Wang, K. Kalantar-Zadeh, A. Kis, J. N. Coleman, and M. S. Strano, Electronics and optoelectronics of two-dimensional transition metal dichalcogenides, Nature Nanotechnology 7, 699 (2012).
[6] A. Jain, S. P. Ong, G. Hautier, W. Chen, W. D. Richards, S. Dacek, S. Cholia, D. Gunter, D. Skinner, G. Ceder, and K. A. Persson, Commentary: The Materials Project: A materials genome approach to accelerating materials innovation, APL Materials 1, 011002 (2013), publisher: American Institute of Physics.
[7] K. Choudhary, I. Kalish, R. Beams, and F. TavaZZa, High-throughput Identification and Characterization of Two-dimensional Materials using Density functional theory, Scientific Reports 7, 5179 (2017), number: 1 Publisher: Nature Publishing Group.
[8] S. Haastrup, M. Strange, M. Pandey, T. Deimann, P. S. Schmidt, N. F. Hinsche, M. N. Gjerding, D. Torelli, P. M. Larsen, A. C. Riis-Jensen, J. Gath, K. W. Jacobsen, J. Jørgen Mortensen, T. Olsen, and K. S. Thygesen, The Computational 2D Materials Database: high-throughput modeling and discovery of atomically thin crystals, 2D Mater. 5, 042002 (2018).
[9] N. Mounet, M. Gibertini, P. Schwallier, D. Campi, A. Merkys, A. Marrazzo, T. Sohier, I. E. Castelli, A. Copellotti, G. Pizzi, and N. Marzari, Two-dimensional materials from high-throughput computational exfoliation of experimentally known compounds, Nature Nanotech 13, 246 (2018), arXiv: 1611.05234.
[10] K. Choudhary, K. F. Garrity, A. C. E. Reid, B. DeCost, A. J. Biacchi, A. R. H. Walker, Z. Trautt, J. Hattrick-Simpers, A. G. Kusne, A. Centrone, A. Davydov, J. Jiang, R. Pachter, G. Cheon, E. Reed, A. Agrawal, X. Qian, V. Sharma, H. Zhuang, S. V. Kalinin, B. G. Sumpter, G. Pilania, P. Acar, S. Mandel, K. Haule, D. Vanderbilt, K. Rabe, and F. TavaZZa, JARVIS: An Integrated Infrastructure for Data-driven Materials Design, arXiv:2007.01831 [cond-mat, physics:physics] (2020), arXiv: 2007.01831.
nanostructure, Scientific Reports 6, 10.1038/srep33060 (2016).

[18] L.-S. Zhao, Y. Wang, C.-P. Chen, L.-L. Liu, H.-X. Yu, Y. Zhang, Y. Chen, and X.-C. Wang, Elastic, electronic and optical properties of stable pentagonal ZnO 2, Physica E: Low-dimensional Systems and Nanostructures 91, 82 (2017).

[19] Q. Pang, L. Liu, and J. Zhao, Mechanical anisotropy and strain-tailored band structures of pentagonal boron nitride monolayers, Journal of Applied Physics 122, 094302 (2017).

[20] M. Naseri, Investigation on the stability and electronic properties of Penta-XP5 (X = Al, Ga, In) monolayer semiconductors by using first principles calculations, Chemical Physics Letters 706, 99 (2018).

[21] M. Naseri, S. Lin, J. Jalilian, J. Gu, and Z. Chen, Penta-SiC 5 monolayer: A novel quasi-planar semiconductors: A first principles prediction, Front. Phys. 13, 138102 (2018).

[22] M. Naseri, Penta-SiC 5 monolayer: A novel quasi-planar indirect semiconductor with a tunable wide band gap, Physics Letters A 382, 710 (2018).

[23] L. Liu, I. Kankam, and H. L. Zhuang, Single-layer antiferromagnetic semiconductor CoS 2 with pentagonal structure, Phys. Rev. B 98, 205425 (2018).

[24] K. Zhao, Y. Guo, Y. Shen, Q. Wang, Y. Kawazoe, and P. Jena, Penta-BCN: A New Ternary Pentagonal Monolayer with Intrinsic Piezoelectricity, J. Phys. Chem. Lett. 11, 3501 (2020).

[25] H. Liu, G. Qin, Y. Lin, and M. Hu, Disparate strain dependent thermal conductivity of two-dimensional penta-structures, Nano Letters 16, 3831 (2016), pMID: 27228130, https://doi.org/10.1021/acs.nanolett.6b01311.

[26] B. Xiao, Y.-c. Li, X.-f. Yu, and J.-b. Cheng, Penta-graphene: A promising anode material as the lithium ion battery with both extremely high theoretical capacity and fast charge/discharge rate, ACS Applied Materials & Interfaces 8, 35342 (2016), pMID: 27977126, https://doi.org/10.1021/acsami.6b12727.

[27] S. Winczewski and J. Rybicki, Anisotropic mechanical behavior and auxeticity of penta-graphene: Molecular statics/molecular dynamics studies, Carbon 146, 572 (2019).

[28] A. D. Oyedele, S. Yang, T. Feng, A. V. Haglund, Y. Gu, A. A. Puretzky, D. Briggs, C. M. Rouleau, M. F. Chisholm, R. R. Uncic, D. Mandrus, H. M. Meyer, S. T. Pantelides, D. B. Geohegan, and K. Xiao, Defect-Mediated Phase Transformation in Anisotropic Two-Dimensional PdSe 2 Crystals for Seamless Electrical Contacts, J. Am. Chem. Soc. 141, 8928 (2019).

[29] G. D. Nguyen, A. D. Oyedele, A. Haglund, W. Ko, L. Liang, A. A. Puretzky, D. Mandrus, K. Xiao, and A.-P. Li, Atomically Precise PdSe 2 Pentagonal Nanoribbons, ACS Nano 14, 1951 (2020).

[30] L. Liu and H.-L. Zhuang, ptpt 2: An example of exploring the hiddencairo tesselation in the pyrite structure for discovering novel two-dimensional materials, Phys. Rev. Materials 2, 114003 (2018).

[31] H. L. Zhuang, From pentagonal geometries to two-dimensional materials, Computational Materials Science 159, 448 (2019).

[32] L. Liu, I. Kankam, and H. L. Zhuang, Ab initio playing of pentagonal puzzles, Electronic Structure 1, 015004 (2019).

[33] M. Rao, Exhaustive search of convex pentagons which tile the plane, arXiv e-prints, arXiv:1708.00274 (2017), arXiv:1708.00274 [math.CO].

[34] P. Giannoni, O. Baseggio, P. Bonfà, D. Brunato, R. Car, I. Carnimeo, C. Cavazzoni, S. de Gironcoli, P. Delugas, F. Ferrari Rufino, A. Ferretti, N. Marzari, I. Timrov, A. Urru, and S. Baroni, Quantum espresso toward the exascale, The Journal of Chemical Physics 152, 154105 (2020).

[35] A. A. Mostofi, J. R. Yates, G. Pizzi, Y.-S. Lee, I. Souza, D. Vanderbilt, and N. Marzari, An updated version of wannier90: A tool for obtaining maximally-localised Wannier functions, Computer Physics Communications 185, 2309 (2014).

[36] Q. Wu, S. Zhang, H.-F. Song, M. Troyer, and A. A. Soluyanov, Wanniertools: An open-source software package for novel topological materials, Computer Physics Communications 224, 405 (2018).

[37] A. Malashevich and I. Souza, Band theory of spatial dispersion in magnetoelectrics, Phys. Rev. B 82, 245118 (2010).

[38] J. E. Sipe and A. I. Shkrebtii, Second-order optical response in semiconductors, Phys. Rev. B 61, 5337 (2000).

[39] L. Elcoro, B. Bradlyn, Y. Wang, M. G. Vergniory, J. Cano, C. Felser, B. A. Bernevig, D. Orobengoa, G. de la Flor, and M. I. Aroyo, Double crystallographic groups and their representations on the Bilbao Crystallographic Server, Journal of Applied Crystallography 50, 1457 (2017).

[40] A. P. C. Christopher Bradley, The Mathematical Theory of Symmetry in Solids: Representation Theory for Point Groups and Space Groups, Oxford Classic Texts in the Physical Sciences (Oxford University Press, Oxford, New York, 2010).

[41] S. Bravo, J. Correa, L. Chico, and M. Pacheco, Symmetry-protected metallic and topological phases in penta-materials, Scientific Reports 9, 12754 (2019).

[42] K. Zhao, X. Li, S. Wang, and Q. Wang, 2D planar penta-MN 2 (M = Pd, Pt) sheets identified through structure search, Phys. Chem. Chem. Phys. 21, 246 (2019).

[43] S. Yuan, Q. Zhou, Q. Wu, Y. Zhang, Q. Chen, J.-M. Hou, and J. Wang, Prediction of a room-temperature eight-coordinate two-dimensional topological insulator: penta-Ru54 monolayer, npj 2D Mater Appl 1, 29 (2017).

[44] G. Chang, B. J. Wieder, F. Schindler, D. S. Sanchez, I. Belopolski, S.-M. Huang, B. Singh, D. Wu, T.-R. Chang, T. Neupert, S.-Y. Xu, H. Lin, and M. Z. Hasan, Topological quantum properties of chiral crystals, Nature Mater 17, 978 (2018).

[45] J. F. Nye, Physical Properties of Crystals: Their Representation by Tensors and Matrices (Oxford University Press, Oxford, New York, 1985).

[46] M. I. Aroyo, A. Kirov, C. Capillas, J. M. Perez-Mato, and H. Wondratschek, Bilbao Crystallographic Server. II. Representations of crystallographic point groups and space groups, Acta Crystallographica Section A 62, 115 (2006).

[47] L. Liu and H. L. Zhuang, Computational prediction and characterization of two-dimensional pentagonal arsenopyrite FeAs, Computational Materials Science 166, 105 (2019).

[48] M. S. Dresselhaus, G. Dresselhaus, and A. Jorio, Group Theory: Application to the Physics of Condensed Matter
D. Vanderbilt, Berry Phases in Electronic Structure Theory: Electric Polarization, Orbital Magnetization and Topological Insulators (Cambridge University Press, 2018).

J. Hu, S.-Y. Xu, N. Ni, and Z. Mao, Transport of topological semimetals, Annual Review of Materials Research 49, 207 (2019).

N. Nagaosa, T. Morimoto, and Y. Tokura, Transport, magnetic and optical properties of Weyl materials, Nat Rev Mater 5, 621 (2020).

Y.-M. Xie, X.-J. Gao, X. Y. Xu, C.-P. Zhang, J.-X. Hu, and K. T. Law, Kramers Nodal Line Metals, arXiv:2008.03967 [cond-mat] (2020), arXiv: 2008.03967.

C. Fang, M. J. Gilbert, X. Dai, and B. A. Bernevig, Multi-weyl topological semimetals stabilized by point group symmetry, Phys. Rev. Lett. 108, 266802 (2012).

S. S. Tsirkin, I. Souza, and D. Vanderbilt, Composite weyl nodes stabilized by screw symmetry with and without time-reversal invariance, Phys. Rev. B 96, 045102 (2017).

M. El-Batanouny and F. Wooten, Symmetry and Condensed Matter Physics: A Computational Approach (Cambridge University Press, 2008).

D. S. Sanchez, I. Belopol’skii, T. A. Cochran, X. Xu, J.-X. Yin, G. Chang, W. Xie, K. Manna, V. Stiβ, C.-Y. Huang, N. A. Alidoust, D. Multer, S.-Z. Zhang, N. Shumiya, X. Wang, G.-Q. Wang, T.-R. Chang, C. Felser, S.-Y. Xu, S. Jia, H. Lin, and M. Z. Hasan, Topological chiral crystals with helicoid-arc quantum states, Nature 567, 500 (2019).

F. Flicker, F. de Juan, B. Bradlyn, T. Morimoto, M. G. Vergniory, and A. G. Grushin, Chiral optical response of multifold fermions, Phys. Rev. B 98, 155145 (2018).

M.-A. Sánchez-Martínez, F. de Juan, and A. G. Grushin, Linear optical conductivity of chiral multifold fermions, Phys. Rev. B 99, 155145 (2019).

Y.-J. Jin, R. Wang, J.-Z. Zhao, Y.-P. Du, C.-D. Zheng, L.-Y. Gan, J.-F. Liu, H. Xu, and S. Y. Tong, The prediction of a family group of two-dimensional node-line semimetals, Nanoscale 9, 13112 (2017).

J. Ahn, D. Kim, Y. Kim, and B.-J. Yang, Band topology and linking structure of nodal line semimetals with Z2 monopole charges, Phys. Rev. Lett. 121, 106403 (2018).

S. Li, Y. Liu, S.-S. Wang, Z.-M. Yu, S. Guan, X.-L. Sheng, Y. Yao, and S. A. Yang, Nonsymmetric-symmetry-protected hourglass dirac loop, nodal line, and dirac point in bulk and monolayer X3SnTe6 (x = ta, nb), Phys. Rev. B 97, 045131 (2018).

C. Zhong, W. Wu, J. He, G. Ding, Y. Liu, D. Li, S. A. Yang, and G. Zhang, Two-dimensional honeycomb borophene oxide: strong anisotropy and nodal loop transformation, Nanoscale 11, 2468 (2019).

W. Wu, Y. Jiao, S. Li, X.-L. Sheng, Z.-M. Yu, and S. A. Yang, Hourglass weyl loops in two dimensions: Theory and material realization in monolayer gatei family, Phys. Rev. Materials 3, 054203 (2019).

B. Bradlyn, J. Cano, Z. Wang, M. G. Vergniory, C. Felser, R. J. Cava, and B. A. Bernevig, Beyond Dirac and Weyl fermions: Unconventional quasiparticles in conventional crystals, Science 353, 10.1126/science.aaf5037 (2016).

C. Shekhar, A. K. Nayak, Y. Sun, M. Schmidt, M. Nicklas, I. Leermakers, U. Zeitler, Y. Skourski, J. Wosnitza, Z. Liu, Y. Chen, W. Schnelle, H. Borrmann, Y. Grin, C. Felser, and B. Yan, Extremely large magnetoresistance and ultrahigh mobility in the topological Weyl semimetal candidate NbP, Nature Physics 11, 10.1038/nphys3372 (2015).

X. Huang, L. Zhao, Y. Long, P. Wang, D. Chen, Z. Yang, H. Liang, M. Xue, H. Weng, Z. Fang, X. Dai, and G. Chen, Observation of the chiral-anomaly-induced negative magnetoresistance in 3d weyl semimetal taas, Phys. Rev. X 5, 031023 (2015).

S. Wang, B.-C. Lin, A.-Q. Wang, D.-P. Yu, and Z.-M. Liao, Quantum transport in dirac and weyl semimetals: a review, Advances in Physics: X 2, 518 (2017), https://doi.org/10.1080/23746149.2017.1327329.

S. S. Tsirkin, P. A. Puente, and I. Souza, Gyrotropic effects in trigonal tellurium studied from first principles, Phys. Rev. B 97, 035158 (2018).

J. Ibañez-Azpiroz, S. S. Tsirkin, and I. Souza, Ab initio calculation of the shift photocurrent by Wannier interpolation, Phys. Rev. B 97, 245143 (2018).

A. Pospischil and T. Mueller, Optoelectronic Devices Based on Atomically Thin Transition Metal Dichalcogenides, Applied Sciences 6, 10.3390/app6030078 (2016), number: 3 keywords = 2D materials, optoelectronic devices, transition metal dichalcogenides, pages = 78.

G. Long, R. Sabatini, M. I. Saidaminov, G. Lakhwani, A. Rasmitsa, X. Liu, E. H. Sargent, and W. Gao, Chiral-pervoskite optoelectronics, Nature Reviews Materials 5, 10.1038/s41578-020-0181-5 (2020), number: 6 pages = 423–439.

E. S. Morell, L. Chico, and L. Brey, Twisting dirac fermions: circular dichroism in bilayer graphene, 2D Materials 4, 035015 (2017).

Z. Addison, J. Park, and E. J. Mele, Twist, slip, and circular dichroism in bilayer graphene, Phys. Rev. B 100, 125418 (2019).

L. Z. Tan, F. Zheng, S. M. Young, F. Wang, S. Liu, and A. M. Rappe, Shift current bulk photovoltaic effect in polarmaterials—hybrid and oxide pervoskites and beyond, npj Comput Mater 2, 16026 (2016).

Q. Xu, Y. Zhang, K. Koepernik, W. Shi, J. van den Brink, C. Felser, and Y. Sun, Comprehensive scan for nonmagnetic Weyl semimetals with nonlinear optical response, npj Comput Mater 6, 32 (2020).

C. Le, Y. Zhang, C. Felser, and Y. Sun, Ab initio study of quantized circular photocalvanic effect in chiral multifold semimetals, Phys. Rev. B 102, 121111 (2020).

Z. Ni, B. Xu, M. A. Sanchez-Martinez, Y. Zhang, K. Manna, C. Bernhard, J. W. F. Venderbos, F. de Juan, C. Felser, A. G. Grushin, and L. Wu, Linear and nonlinear optical responses in the chiral multifold semimetal RhSi, arXiv:2005.13473 [cond-mat, physics:physics] (2020), arXiv: 2005.13473.

A. M. Cook, B. M. Fregoso, F. de Juan, S. Coh, and J. E. Moore, Design principles for shift current photovoltaics, Nat Commun 8, 14176 (2017).

S. V. Gallego, J. Etxebarria, L. Elcoro, E. S. Tasci, and J. M. Perez-Mato, Automatic calculation of symmetry-adapted tensors in magnetic and non-magnetic materials: a new tool of the Bilbao Crystallographic Server, Acta Crystallographica Section A 75, 438 (2019).
monochalcogenides, Phys. Rev. Lett. 119, 067402 (2017).

[81] Y. Zhang, H. Ishizuka, J. van den Brink, C. Felser, B. Yan, and N. Nagaosa, Photogalvanic effect in Weyl semimetals from first principles, Phys. Rev. B 97, 241118 (2018).

[82] Y. Zhang, F. de Juan, A. G. Grushin, C. Felser, and Y. Sun, Strong bulk photovoltaic effect in chiral crystals in the visible spectrum, Phys. Rev. B 100, 245206 (2019).

[83] S. M. Young and A. M. Rappe, First Principles Calculation of the Shift Current Photovoltaic Effect in Ferroelectrics, Phys. Rev. Lett. 109, 116601 (2012).

[84] S. M. Young, F. Zheng, and A. M. Rappe, First-Principles Calculation of the Bulk Photovoltaic Effect in Bismuth Ferrite, Phys. Rev. Lett. 109, 236601 (2012).

[85] A. Zenkevich, Y. Matveyev, K. Maksimova, R. Gaynudinov, A. Tolstikhina, and V. Fridkin, Giant bulk photovoltaic effect in thin ferroelectric BaTiO3 films, Phys. Rev. B 90, 161409 (2014).

[86] G. Bir and G. Pikus, Symmetry and Strain-induced Effects in Semiconductors, A Halsted Press book (Wiley, 1974).
Supplementary Information for "Two-dimensional Weyl points and nodal lines in pentagonal materials and their optical response"

Sergio Bravo1, M. Pacheco1, V. Nuñez1, J.D. Correa2, and Leonor Chico3

1Departamento de Física, Universidad Técnica Federico Santa María, Valparaíso, Chile
2Facultad de Ciencias Básicas, Universidad de Medellín, Medellín, Colombia
3Departamento de Física de Materiales, Facultad de Ciencias Físicas, Universidad Complutense de Madrid, 28040 Madrid, Spain

ısergio.bravo.14@sansano.usm.cl
§monica.pacheco@usm.cl
$^⋆$leochico@ucm.es

Outline: The following supplementary material is divided in two parts. Part A presents extended information for the electronic, dynamical and optical calculations for all the materials presented in the main article. Part B deals briefly with the extension of the space group characterization for multilayer pentagonal structures, with two and three layers.

Part A: Additional information for pentagonal materials

We present further details for the first-principles results related to the novel pentagonal materials proposed in the main article. In particular, the geometric parameters and the band structure with GGA (PBE) and hybrid functionals are reported along with additional spin textures for each material. Also, the phonon band structure is given for the novel materials first proposed in this work. Finally, the optical responses not included in the main article are presented here.
Geometric properties of novel pentagonal materials

The structural parameters were calculated with two first-principles packages: QUANTUM ESPRESSO (QE) [1] and GPAW [2]. The reason for this is the possibility to calculate Wannier-interpolated bands with QE, and on the other side, to compute hybrid and phonon band structures with GPAW. We have checked carefully that both codes give the same electronic band structures for all the materials reported. Although relaxed geometric parameters could differ between the two codes, the difference is under the expected bounds related to the different numerical procedures that are applied. The GPAW relaxed lattice structures for PdSeTe PdSeS and GeBi$_2$ are depicted in Fig. S1. The geometric parameters for both QE and GPAW are presented in Table S1 and Table S2, respectively.

Computational details for GPAW calculations

For the electronic structure calculations the real-space projector augmented wavefunction method was employed, [3] together with the atomic simulation environment (ASE) [4, 5]. In order to check the QE results, the first exchange-correlation functional used was a PBE functional [6]. There is a very good agreement between the outcomes of both codes. This gives way to perform further computations with additional features. Thus, additional band structure calculations with a hybrid functional in the form of the HSE06 implementation [7] were obtained for PdSeS, PdSeTe and GeBi$_2$ as presented in Fig. S3, Fig. S10 and Fig. S18, respectively. The energy cutoff was set to 850 eV and the Brillouin zone was sampled via a $10 \times 10 \times 1$ Monkhorst-Pack k-grid. A vacuum space of 15 Å in the direction normal to the monolayer plane was used and the unit cell was relaxed until the atomic forces were less than 0.01 eV/atom. In addition to these electronic band calculations, we obtained the phonon dispersions. For this we employed a LCAO mode computation [8] with localized double-ζ and single-polarized atomic orbitals, with a $5 \times 5 \times 1$ supercell. Phonon bands for PdSeS, PdSeTe and GeBi$_2$ are depicted in Fig. S4, Fig. S11 and S19, respectively. Results show that all the materials presented are dynamically stable.
Table S.1: Structural parameters for PdSeS, PdSeTe and GeBi₂ extracted from GPAW. \(\mathbf{a} \) and \(\mathbf{b} \) are the lattice vectors in the \(x \) and \(y \) directions, respectively; \(\mathbf{d} \) is the distance between the bottom and top atoms. The bond length is given in the last column.

Material	\(\mathbf{a}(\text{Å}) \)	\(\mathbf{b}(\text{Å}) \)	\(\mathbf{d}(\text{Å}) \)	Bonds(Å)
PdSeS	5.619	5.754	1.469	Pd-S 2.351
				Pd-Se 2.445
				Se-S 2.278
PdSeTe	5.939	6.168	1.663	Pd-Te 2.595
				Pd-Se 2.486
				Se-Te 2.604
GeBi₂	5.831	5.831	3.558	Ge-Bi 2.775

Figure S.1: Lattice structure for the pentagonal materials presented in the main article.
Material	a(Å)	b(Å)	d(Å)	Bonds(Å)
PdSeS | 5.616 | 5.752 | 1.468 | Pd-S 2.350 Pd-Se 2.444 Se-S 2.277 |
PdSeTe | 5.951 | 6.183 | 1.664 | Pd-Te 2.610 Pd-Se 2.481 Se-Te 2.608 |
GeBi₂ | 5.849 | 5.849 | 3.500 | Ge-Bi 2.776 Bi-Bi 3.016 |

Table S.2: Structural parameters for PdSeS, PdSeTe and GeBi₂ extracted from QE. *a* and *b* are the lattice vectors in the *x* and *y* directions, respectively; *d* is the distance between the bottom and top atoms. The bond length is given in the last column.

PdSeS information

Figure S.2: Electronic band structure for PdSeS from a) QE and b) Wannier interpolation.
Figure S.3: Electronic band structure for PdSeS obtained with GPAW. Including calculations without SOC, with SOC and the PBE functional and with the hybrid functional with SOC. The results agree very well with those obtained from QE in Fig. S.2.
Figure S.4: Phonon band structure for PdSeS from GPAW.
Figure S.5: Spin texture near the Γ point for a) top b) second c) third and d) fourth valence bands for PdSeS.
Figure S.6: Optical conductivity with spin-resolved components along the spin x direction for PdSeS. Other directions give similar results.

Figure S.7: Natural optical activity in terms of the rotatory power ρ.
Figure S.8: Nonzero components of the shift current tensor σ_{abc}.

PdSeTe additional information

Figure S.9: Electronic band structure for PdSeTe from a) QE and b) Wannier interpolation. The band structure from QE has been repeated here for the sake of comparison.
Figure S.10: Electronic band structure for PdSeS obtained with GPAW. Including calculations without SOC, with SOC and the PBE functional and with the hybrid functional with SOC. The results agree very well with those obtained from QE in Fig. S.9.
Figure S.11: Phonon band structure for PdSeTe from GPAW.

Figure S.12: Spin texture for a) the top valence band and b) the second valence band for PdSeTe.
InP$_5$ additional information

Figure S.13: Electronic band structure for InP$_5$ from a) QE and b) Wannier interpolation. The band structure from QE has been repeated here to facilitate comparison. This material has been reported elsewhere; therefore, no further calculations are provided for phonons and band structure.
Figure S.14: Spin texture near the X point for a) the top valence band and b) the second uppermost valence band for InP$_5$.

Figure S.15: Optical conductivity with spin-resolved components along the spin z direction for InP$_5$. Other directions give similar results.
Figure S.16: Natural optical activity in terms of the rotatory power ρ for InP$_5$.

GeBi$_2$ additional information

Figure S.17: Electronic band structure for GeBi$_2$ from (a) QE and (b) Wannier interpolation. The band structure from QE has been repeated here to facilitate comparison.
Figure S.18: Electronic band structure for GeBi$_2$ obtained with GPAW. Including calculations without SOC, with SOC and the PBE functional and with the hybrid functional with SOC. The results agree very well with those obtained from QE in Fig. S.17.
Figure S.19: Phonon band structure for GeBi$_2$ from GPAW.

Figure S.20: Spin texture in the Γ point vicinity for a) bottom conduction band b) second conduction band for GeBi$_2$.
Figure S.21: Spin texture in the neighborhood of the M point for a) top valence band, b) second valence band, c) third valence band and d) fourth valence band for GeBi$_2$. Note that the spin (band) partners are not contiguous for the a) and d) case.
Figure S.22: Optical conductivity with spin-resolved components along the spin z direction for GeBi$_2$. Other directions give similar results.

Figure S.23: Natural optical activity in terms of the rotatory power ρ for GeBi$_2$.
Part B: Multilayer space groups information

Bilayer space groups

The most straightforward way to build multilayer structures is using the so-called slip (translational) stacking. In the bilayer case presented here, two monolayers with the same space group are positioned with a relative displacement described by the vector \((t_1, t_2, t_3)\). We consider the following relative translation vectors for the analysis (in units of the lattice vectors):

- \(\tau_1 = (0, 0, t_3)\)
- \(\tau_{2,1} = \left(\frac{1}{2}, 0, t_3\right)\) and \(\tau_{2,2} = \left(0, \frac{1}{2}, t_3\right)\).
- \(\tau_3 = \left(\frac{1}{4}, \frac{1}{4}, t_3\right)\).
- \(\tau_{4,1} = \left(\frac{1}{4}, 0, t_3\right)\) and \(\tau_{4,2} = \left(0, \frac{1}{4}, t_3\right)\).
- \(\tau_5 = \left(\frac{1}{4}, \frac{1}{4}, t_3\right)\).
- \(\tau_{6,1} = \left(\frac{1}{2}, \frac{1}{4}, t_3\right)\) and \(\tau_{6,2} = \left(\frac{1}{4}, \frac{1}{2}, t_3\right)\).
- \(\tau_{7,1} = (t_1, 0, t_3)\) and \(\tau_{7,1} = (0, t_2, t_3)\).

For each of these vectors we computed the space group that describes the structure. The calculations were done with the aid of the \textit{spglib} python library [9] and checked with the \textit{FindSym} code [10]. The results of the computation of the space group for each particular stacking are summarized in Table S.3, with the exception of vector \(\tau_1 = (0, 0, t_3)\) which yields the same space group as the composing monolayers.
Space group of the monolayer	Translation vectors	Bilayer space group
\(P4/mbm\) \(\#127^*\)	\(\tau_{2,1}\) and \(\tau_{2,2}\)	\(Pcco\) \(\#54\)
	\(\tau_3\)	\(P4/mbm\) \(\#125\)
	\(\tau_{4,1}\) and \(\tau_{4,2}\)	\(P2_{1}/c\) \(\#14\)
	\(\tau_5\)	\(C2/m\) \(\#12\)
	\(\tau_{6,1}\) and \(\tau_{6,2}\)	\(P2/c\) \(\#13\)
	\(\tau_{7,1}\) and \(\tau_{7,2}\)	\(P2_{1}/c\) \(\#14\)
\(P\bar{T}2_1m\) \(\#113\)	\(\tau_{2,1}\) and \(\tau_{2,2}\)	\(P222_1\) \(\#17\)
	\(\tau_3\)	\(P\bar{T}2m\) \(\#111\)
	\(\tau_{4,1}\) and \(\tau_{4,2}\)	\(P2_1\) \(\#4\)
	\(\tau_5\)	\(Cm\) \(\#8\)
	\(\tau_{6,1}\) and \(\tau_{6,2}\)	\(P2\) \(\#3\)
	\(\tau_{7,1}\) and \(\tau_{7,2}\)	\(P2_1\) \(\#4\)
\(P4bm\) \(\#100\)	\(\tau_{2,1}\) and \(\tau_{2,2}\)	\(Pba2\) \(\#32\)
	\(\tau_3\)	\(P4bm\) \(\#100\)
	\(\tau_{4,1}\) and \(\tau_{4,2}\)	\(Pc\) \(\#7\)
	\(\tau_5\)	\(Cm\) \(\#8\)
	\(\tau_{6,1}\) and \(\tau_{6,2}\)	\(Pc\) \(\#7\)
	\(\tau_{7,1}\) and \(\tau_{7,2}\)	\(Pc\) \(\#7\)
\(P42_12\) \(\#90\)	\(\tau_{2,1}\) and \(\tau_{2,2}\)	\(P222_1\) \(\#17\)
	\(\tau_3\)	\(P42_2\) \(\#89\)
	\(\tau_{4,1}\) and \(\tau_{4,2}\)	\(P2_1\) \(\#4\)
	\(\tau_5\)	\(C2\) \(\#5\)
	\(\tau_{6,1}\) and \(\tau_{6,2}\)	\(P2\) \(\#3\)
	\(\tau_{7,1}\) and \(\tau_{7,2}\)	\(P2_1\) \(\#4\)
\(Pbam\) \(\#55\)	\(\tau_{2,1}\) and \(\tau_{2,2}\)	\(Pcco\) \(\#54\)
	\(\tau_3\)	\(Pbam\) \(\#50\)
	\(\tau_{4,1}\) and \(\tau_{4,2}\)	\(P2_{1}/c\) \(\#14\)
	\(\tau_5\)	\(P1\) \(\#2\)
	\(\tau_{6,1}\) and \(\tau_{6,2}\)	\(P2/c\) \(\#13\)
	\(\tau_{7,1}\) and \(\tau_{7,2}\)	\(P2_{1}/c\) \(\#14\)
\(Pba2\) \(\#32\)	\(\tau_{2,1}\) and \(\tau_{2,2}\)	\(Pba2\) \(\#32\)
	\(\tau_3\)	\(Pba2\) \(\#32\)
	\(\tau_{4,1}\) and \(\tau_{4,2}\)	\(Pc\) \(\#7\)
	\(\tau_5\)	\(P1\) \(\#1\)
	\(\tau_{6,1}\) and \(\tau_{6,2}\)	\(Pc\) \(\#7\)
	\(\tau_{7,1}\) and \(\tau_{7,2}\)	\(Pc\) \(\#7\)
\(P2_{1}2_{1}2\) \(\#18\)	\(\tau_{2,1}\) and \(\tau_{2,2}\)	\(P222_1\) \(\#17\)
	\(\tau_3\)	\(P2\) \(\#3\)
	\(\tau_{4,1}\) and \(\tau_{4,2}\)	\(P2_1\) \(\#4\)
	\(\tau_5\)	\(P1\) \(\#1\)
	\(\tau_{6,1}\) and \(\tau_{6,2}\)	\(P2\) \(\#3\)
	\(\tau_{7,1}\) and \(\tau_{7,2}\)	\(P2_1\) \(\#4\)
\(P2_{1}/c\) \(\#14\)	\(\tau_{2,1}\) and \(\tau_{2,2}\)	\(P2/c\) \(\#17\) and \(P2_{1}/c\) \(\#14\)
	\(\tau_3\)	\(P2/c\) \(\#13\)
	\(\tau_{4,1}\) and \(\tau_{4,2}\)	\(P1\) \(\#1\) and \(P2_{1}/c\) \(\#14\)
	\(\tau_5\)	\(C2\) \(\#5\)
	\(\tau_{6,1}\) and \(\tau_{6,2}\)	\(P2\) \(\#3\)
	\(\tau_{7,1}\) and \(\tau_{7,2}\)	\(P1\) \(\#1\)

Table S.3: Space groups for bilayer pentagonal structures based on the monolayers space groups. *The SG \#117 gives the same groups as the same WP coordinates are used for both groups.
Frequency tables for the case with $n = 3$ layers

When we add a third layer to the system, the stacking combinations increase substantially, implying that the enumeration of the space groups for these configurations becomes cumbersome and fairly impractical. Evidently this extends to $n > 3$. Despite that, we can do a general analysis for some space groups chosen as examples. We select SG #127 and SG #113, whose multilayers could be of interest due to great number of reported materials belonging to these two space groups. We present in Fig. S.25 and Fig. S.26 a summary for parent SG #127 and SG #113, respectively, in the form of two frequency charts that show the most recurring space groups arising from the stackings defined above.

![Frequency graph for the possible space groups that can be formed by translational stacking of SG #127 monolayers.](image)

Figure S.25: Frequency graph for the possible space groups that can be formed by translational stacking of SG #127 monolayers.
It can be noted in Fig. S.25 that for the space group #127, the most frequent three-layer group is #7. This is in contrast with what is generally expected: that the #1 space group dominates the frequency count, as happens for example with space group #113 in Fig. S.26.

The above procedure can be easily continued for $n > 3$ but in general the trivial space group $P1$, will have an even greater incidence.

References

[1] Paolo Giannozzi, Oscar Baseggio, Pietro Bonfà, Davide Brunato, Roberto Car, Ivan Carnimeo, Carlo Cavazzoni, Stefano de Gironcoli, Pietro Delugas, Fabrizio Ferrari Ruffino, Andrea Ferretti, Nicola Marzari, Iurii Timrov, Andrea Urru, and Stefano Baroni. Quantum espresso toward the exascale. The Journal of Chemical Physics, 152(15):154105, 2020.

[2] JE Enkovaara, Carsten Rostgaard, J Jørgen Mortensen, Jingzhe Chen, M Dulak, Lara Ferrighi, Jeppe Gavnholt, Christian Glinsvd, V Halkola, HA Hansen, et al. Electronic structure calculations with gpaw: a real-space implementation of the projector augmented-wave method. Journal of Physics: Condensed Matter, 22(25):253202, 2010.

[3] Jens Jørgen Mortensen, Lars Bruno Hansen, and Karsten Wedel Jacobsen. Real-space grid implementation of the projector augmented wave method. Physical Review B, 71(3):035109, 2005.
[4] S. R. Bahn and K. W. Jacobsen. An object-oriented scripting interface to a legacy electronic structure code. *Comput. Sci. Eng.*, 4(3):56–66, MAY-JUN 2002.

[5] Ask Hjorth Larsen, Jens Jørgen Mortensen, Jakob Blomqvist, Ivano E Castelli, Rune Christensen, Marcin Dulak, Jesper Friis, Michael N Groves, Bjørk Hammer, Cory Hargus, Eric D Hermes, Paul C Jennings, Peter Bjerre Jensen, James Kermode, John R Kitchin, Esben Leonhard Kolsbjerg, Joseph Kubal, Kristen Kaasbjerg, Steen Lysgaard, Jón Bergmann Maronsson, Tristan Maxson, Thomas Olsen, Lars Pastewka, Andrew Peterson, Carsten Rostgaard, Jakob Schiotz, Ole Schütz, Mikkel Strange, Kristian S Thygesen, Tejs Vegge, Lasse Vilhelmisen, Michael Walter, Zhenhua Zeng, and Karsten W Jacobsen. The atomic simulation environment—a python library for working with atoms. *Journal of Physics: Condensed Matter*, 29(27):273002, 2017.

[6] John P Perdew, Kieron Burke, and Matthias Ernzerhof. Generalized gradient approximation made simple. *Physical review letters*, 77(18):3865, 1996.

[7] Jochen Heyd, Gustavo E Scuseria, and Matthias Ernzerhof. Hybrid functionals based on a screened coulomb potential. *The Journal of chemical physics*, 118(18):8207–8215, 2003.

[8] A. H. Larsen, M. Vanin, J. J. Mortensen, K. S. Thygesen, and K. W. Jacobsen. Localized atomic basis set in the projector augmented wave method. *Phys. Rev. B*, 80(19):195112, 2009.

[9] Atsushi Togo and Isao Tanaka. Spglib: a software library for crystal symmetry search. *arXiv e-prints*, page arXiv:1808.01590, August 2018.

[10] Harold T. Stokes and Dorian M. Hatch. FINDSYM: program for identifying the space-group symmetry of a crystal. *Journal of Applied Crystallography*, 38(1):237–238, Feb 2005.