Critical Temperature T_c versus Charging Energy E_c in MgB$_2$ and C$_{60}$/CHBr$_3$

Chikao Kawabataa,*, Nobuhiko Hayashib, and Fumihisa Onoc

aDivision of Liberal Arts and Sciences, Okayama University, Okayama 700-8530, Japan
bComputer Center, Okayama University, Okayama 700-8530, Japan
cDepartment of Physics, Okayama University, Okayama 700-8530, Japan

Abstract

The boride compounds MB$_x$ related to the magnesium-boron stacking layered material MgB$_2$ are discussed in terms of the B-B layers in the borides analogous to the Cu-O ones in the cuprates. We propose a possibility of superconducting materials which exhibit higher critical temperature T_c than 39 K of MgB$_2$. We point out a role of interstitial ionic atoms M (e.g., Mg in MgB$_2$) as capacitors, which reduce the condensation-energy loss due to the charging energy E_c between the B-B layers. In the viewpoint of the present model, the recently discovered 117-Kelvin superconductor C$_{60}$/CHBr$_3$ is also discussed in terms of the intercalation molecules CHBr$_3$ as possible capacitors among the superconducting grains of C$_{60}$ molecules.

Key words:
MgB$_2$, C$_{60}$/CHBr$_3$, Josephson Junction Array model, Electric polarizability, Charging energy
PACS: 74.62.-c, 74.62.Bf

1 Introduction

Since Akimitsu and co-workers presented a remarkably high temperature (~ 39 K) superconducting magnesium diboride MgB$_2$ in the beginning of 2001 [1,2],

* Corresponding author.
Postal address: Faculty of Environmental Science and Technology, Okayama University, 3-1-1 Tsushima-naka, Okayama 700-8530, Japan
Fax: +81-86-273-6750
Email address: kawabatact@nifty.com (Chikao Kawabata).
much attention has been focused on this diboride material and some related boride compounds [2–5]. The material MgB$_2$ takes the layered structure of B-Mg-B stacking and has a coupling between 2-dimensional (2D) B-B layers [1,2,6]. According to several band calculations [7–10], in the MgB$_2$-type crystal structure there exist a strong covalent B-B bonding and an ionic B-Mg bonding. The strong covalent B-B bonding and the presence of the ionic Mg atoms lead to hole-like cylindrical Fermi surfaces in MgB$_2$ [7,8], and the holes are conducted in each 2D B-B layer. It is observed that the 2D B-B layers, like the Cu-O layers in high-T_c cuprates, play an important role in the electrical transport properties [11]. The superconductor MgB$_2$ can then be beautiful realization of the essential physics of superconductivity in cuprates, without the complications of Cu $d_{x^2-y^2}$ orbitals [12].

In a previous paper [13], on the basis of a theoretical model of the B-B layers analogous to the Cu-O layers [15–19], we investigated the ionic diboride compounds (M$^{2+}$)(B$^-$)$_2$, (e.g., (Mg$^{2+}$)(B$^-$)$_2$ in the case of MgB$_2$), and discussed their superconducting critical temperature T_c. We made investigation into T_c assuming a simple linear relation between T_c and the inter-layer charging energy E_c [13]. In the present paper, instead of assuming the linear relation, we will analyze T_c and E_c in more detail on the basis of an original formula for T_c presented in Refs. [15–17], and also mention general boride compounds MB$_x$ in which the interstitial ionic atoms M between B-B layers are not restricted to M$^{2+}$. The purpose of this paper is to grope for various possible boride compounds with T_c over 39 K and to give a hint as to new material synthesis. In the viewpoint of our theoretical model, the recently discovered 117-Kelvin superconductor C$_{60}$/CHBr$_3$ [14] is also discussed.

2 Physical Model

We model the boride compounds MB$_x$ (M= Mg, Be, etc.) as quantum-capacitive Josephson junction arrays (JJA) with weakly coupled superconducting grains on a 3D lattice, following Kawabata-Shenoy-Bishop (KSB) theory [15–19], originally proposed to the high-T_c cuprates with 2D Cu-O layers and a coupling between the Cu-O layers. In the present JJA model, the Josephson coupling energy E_J via the Cooper pair tunneling within and between the B-B layers enhances the critical temperature T_c, while the charging energy E_c between the B-B layers depresses T_c. The origin of E_c is that, when the Cooper pairs tunnel between the layers, local inter-layer charge unbalance is induced between the superconducting grains in JJA. This charge unbalance gives rise to the electric fields between the grains and it costs the electromagnetic energies and destroys the phase coherence of superconductivity [15–17,20]. Here, an important point for our analysis is that the interstitial ionic atoms, M, located between the B-B layers play a role of capacitors, reducing the charging
energy E_c by the electric polarization of the ionic atom.

We estimate T_c which is a function of E_c. According to the KSB theory [15–17], in the present JJA model T_c is expressed, with an unknown function f, as

$$\frac{E_J}{k_B T_c} = 0.454 f(\gamma_0^2, E_c/E_J),$$ \hfill (1)

and for zero charging energy $E_c = 0$ it must reduce to a known equation

$$\frac{E_J}{k_B T_c} = 0.454 f(\gamma_0^2, 0),$$ \hfill (2)

which is the dimensionless critical coupling [21,22] in terms of the coupling anisotropy γ_0^2 in the classical anisotropic 3D XY/JJA system ($\gamma_0^2 = E_{J \perp}/E_{J \|}$, where $E_{J \perp}$ is the inter-layer Josephson coupling energy, $E_{J \|}$ the intra-layer one, and $E_J = \sqrt{E_{J \perp} E_{J \|}}$). In the 3D limit $\gamma_0^2 \rightarrow 1$, the present JJA model may be applied to the superconductor C$_{60}$/CHBr$_3$, where the coupled superconducting grains on a 3D lattice in the 3D JJA are composed of C$_{60}$ molecules. We discuss this superconductor in Sec. 4.

Expanding f with respect to E_c/E_J, we obtain from Eq. (1) the expression for T_c as [15–17]

$$k_B T_c \sim \frac{E_J}{f_0 + f_0 E_c/E_J},$$ \hfill (3)

where $f_0 = f(\gamma_0^2, 0)$. In this paper, we rewrite Eq. (3) as

$$T_c = \frac{T_c^{\text{max}}}{1 + A E_c}$$

$$\equiv F(E_c),$$ \hfill (4)

with the phenomenological parameters T_c^{max} and A, which should be determined empirically. We use Eq. (4) to fit data and estimate T_c for some borides in the next section.

3 Estimation of E_c and T_c in the boride compounds

Referring to Kittel's textbook and Shockley’s tables [23–26] for the ionic radius d and electronic polarizability ε of the ionic atoms M, we have obtained the
charging energy $E_c \sim d/\varepsilon$ between the B-B layers as in Table 1, following the KSB theory [15–19].

We discuss first the ionic compounds $M^{2+}(B^-)_2$ expected to have nearly the same electronic structure [9] as MgB$_2$ ($Mg^{2+}(B^-)_2$) and to have almost the same Josephson coupling energy E_J [i.e., the same “bare T_c” (T_c^{max}) without any influence of the M-atom-dependent charging energy E_c, and the same value of A in Eq. (4)]. By hypothesizing the same E_J for any $M^{2+}(B^-)_2$ compounds, we estimate critical temperatures $T_c (= F(E_c))$. In Fig. 1 we show two points, as experimentally known data, for BeB$_2$ ($T_c \simeq 0$ K (< 5 K) [3], $E_c = 43.75$) and MgB$_2$ ($T_c = 39$ K [1], $E_c = 6.91$), where $E_c (\sim d/\varepsilon)$ are of Table 1 and in arbitrary units. From Eq. (4) and the values of T_c and E_c for MgB$_2$, we obtain an equation $T_c^{\text{max}} = 39 \times (1 + 6.91 A)$. From this equation and Eq. (4) with $T_c < 5$ K and $E_c = 43.75$ for BeB$_2$, we obtain $A < 0$, which is contrary to the condition that the charging energy E_c decreases T_c in Eq. (4). It should be remedied by taking higher order terms of E_c/E_J when obtaining Eq. (3). Instead, we plot the T_c vs. E_c curve in Fig. 1 on the basis of Eq. (4), assuming $T_c^{\text{max}} = 120$ K as representative. In this case $T_c(\text{BeB}_2) = 8.6$ K at $E_c = 43.75$. Even if T_c^{max} is increased further, T_c at $E_c = 43.75$ only decreases a little. On the other hand, when T_c^{max} is decreased, T_c at $E_c = 43.75$ is increased and deviates more from the experimental result [3] $T_c(\text{BeB}_2) < 5$ K. We then believe that the T_c vs. E_c curve drawn in Fig. 1 is not so unreasonable. It is expected that the diborides, which contain the ionic atoms M with the electric polarizability ε and have the corresponding E_c in Table 1, are distributed on the T_c vs. E_c graph along the curve drawn in Fig. 1.

In Ref. [4], $T_c = 0.72$ K is observed in BeB$_{2.75}$, which has the crystal structure different from MgB$_2$. It has also been suggested that nonstoichiometry may be an important point in the superconductivity of some boride compounds [2]. It is then interesting to synthesize various borides MB$_x$ and try to measure their T_c. We give in Table 1 various atoms M for which the polarizability has been obtained [24,25]. The present theory can be applied to the borides MB$_x$ which have the B-M-B stacking structure. In this case the values of the Josephson coupling energy E_J and the coupling anisotropy γ_0^{-2} (and thus, the corresponding T_c^{max} and A in Eq. (4)) would be different in general for each compound. It is, however, expected that the compounds with smaller E_c is adventageous to the superconductivity, which can be a guide in the synthesis of new materials. The thin films of MB$_x$ with the B-M-B stacking structure could be synthesized by, for example, the epitaxial methods.
Quite recently, Schön et al. [14] found a new superconducting system $C_{60}/CHBr_3$ which exhibits very high critical temperature $T_c = 117$ K. It is a C_{60} superconductor intercalated with CHBr$_3$ molecules. This T_c is about two times larger than 52 K [27] of C_{60} without intercalations. The critical temperatures of C_{60} superconductors increase with the lattice constants a; C_{60} ($T_c = 52$ K, $a = 14.15$ Å), $C_{60}/CHCl_3$ ($T_c \sim 70$ K, $a = 14.29$ Å), and $C_{60}/CHBr_3$ ($T_c = 117$ K, $a = 14.45$ Å) [14]. One of the promising courses of attaining higher T_c is certainly to search for new spacer molecules which expand the separation between C_{60} molecules [14]. However, it seems to be open to further discussion whether the only 2 % expansion of the lattice constant is sufficient for the increase of the electronic density of states which corresponds to rather drastic rise of T_c from 52 to 117 K.

In the viewpoint of our theory, we would like to point out another possibility that the intercalation molecules would play a role of the capacitors in the C_{60} superconductors as discussed for the atoms M in the boride compounds MB$_x$. By the electric polarization of the neutral molecules, the intercalation molecules such as CHBr$_3$ may reduce the charging energy E_c between the C_{60} molecules which constitute a 3D JJA as superconducting grains on a 3D lattice. The smaller the charging energy E_c is, the higher the critical temperature T_c is, as discussed in the preceding sections. According to experimental data listed in Table 11 of Ref. [28], the molecular polarizability of CHBr$_3$ is indeed larger than that of CHCl$_3$, which is in accord with the present scenario that the intercalation molecules act as capacitors which reduce E_c.

We can estimate T_c of other intercalated C_{60} superconductors as follows. The experimental values of the molecular polarizability are $\varepsilon(CHCl_3) = 57.56$ au and $\varepsilon(CHBr_3) = 79.9$ au [28]. Assuming an approximately constant value of the lattice constant a, the charging energies $E_c \sim a/\varepsilon \sim \varepsilon^{-1}$ in arbitrary units are obtained as $E_c(C_{60}/CHCl_3) = 0.0174$ and $E_c(C_{60}/CHBr_3) = 0.0125$. On the T_c vs. E_c graph, extrapolating the straight line which goes through two points $(T_c, E_c) = (70, 0.0174)$ for $C_{60}/CHCl_3$ and $(117, 0.0125)$ for $C_{60}/CHBr_3$, namely, $T_c = -9592E_c + 237$, we predict $T_c \approx 158$ K (C_{60}/CHI_3), 127 K (C_{60}/CH_2I_2), 137 K ($C_{60}/C_6H_4Cl_2$), 127 K ($C_{60}/C_6H_5NO_2$), 121 K (C_{60}/C_6H_5Cl), and 175 K ($C_{60}/C_{12}H_{26}$). Here, we use $\varepsilon = 121.74$ au (CHI$_3$), 87.05 au (CH$_2$I$_2$), 95.83 au (C$_6$H$_4$Cl$_2$), 87.19 au (C$_6$H$_5$NO$_2$), 82.67 au (C$_6$H$_5$Cl), and 153.86 au (C$_{12}$H$_{26}$) [28]. Depending on actual lattice constants, other molecules with relatively large polarizability listed in Ref. [28] may also be interesting as candidates of the intercalation molecules.
5 Conclusions

We indicated that, if the boride compounds are synthesized by using ionic atoms with larger polarizability ε or smaller diameter instead of the Mg atoms, the critical temperatures T_c will become higher than 39 K of MgB$_2$. We also pointed out that the recently discovered superconductor C$_{60}$/CHBr$_3$ will owe its very high critical temperature to the intercalation molecules CHBr$_3$ as *electronic capacitors* which reduce the charging energy $E_c (\sim a/\varepsilon)$ among the superconducting grains of C$_{60}$ molecules, rather than as simple spacer molecules which expand the separation a between C$_{60}$ molecules. We hope that the present proposals are a hint or an encouragement to future synthesis of new materials.

Acknowledgements

One of the authors (C.K.) would like to thank Professor S. R. Shenoy, Dr. A. R. Bishop and Dr. N. L. Saini for discussions and encouragement in the initial stage of this study.

References

[1] J. Nagamatsu, N. Nakagawa, T. Muranaka, Y. Zenitani, and J. Akimitsu, *Nature* 410 (2001) 63.

[2] For a review, C. Buzea and T. Yamashita, cond-mat/0108265.

[3] I. Felner, *Physica C* 353 (2001) 11.

[4] D. P. Young, P. W. Adams, J. Y. Chan, and F. R. Fronczek, cond-mat/0104063.

[5] D. Kaczorowski et al., cond-mat/0103571; V. A. Gasparov et al., cond-mat/0104323; G. K. Strukova et al., cond-mat/0105293.

[6] A. Bianconi, N. L. Saini, D. Di Castro, S. Agrestini, G. Campi, A. Saccone, S. De Negri, M. Giovannini, and M. Colapietro, cond-mat/0102410.

[7] J. Kortus, I. I. Mazin, K. D. Belashchenko, V. P. Antropov, and L. L. Boyer, *Phys. Rev. Lett.* 86 (2001) 4656.

[8] J. M. An, and W. E. Pickett, *Phys. Rev. Lett.* 86 (2001) 4366.

[9] G. Satta, G. Profeta, F. Bernardini, A. Continenza, and S. Massidda, cond-mat/0102358.
[10] M. J. Mehl et al., cond-mat/0104548; P. Ravindran et al., cond-mat/0104253; S. K. Kwon et al., cond-mat/0104483; N. I. Medvedeva et al., Phys Rev. B 64 (2001) 020502R.

[11] R. Jin, M. Paranthaman, H. Y. Zhai, H. M. Christen, D. K. Christen, and D. Mandrus, cond-mat/0104411.

[12] J. E. Hirsch, Phys. Lett. A 282 (2001) 392; cond-mat/0106310.

[13] C. Kawabata, N. Hayashi, and F. Ono, cond-mat/0108052 (to be published in J. Phys. Soc. Jpn. 70 (2001) No.10).

[14] J. H. Schön, Ch. Kloc, and B. Batlogg, to be published in Science (2001).

[15] C. Kawabata, S. R. Shenoy, and A. R. Bishop, Bulletin of the Electrotechnical laboratory Vol.58, No.6 (ETL, Ibaraki, 1994) p.426.

[16] C. Kawabata, S. R. Shenoy, and A. R. Bishop, Advances in Science and Technology 8, Superconductivity and Superconducting Materials Technologies, edited by P. Vincenzini (Techna Srl., Faenza, 1995) p.13.

[17] C. Kawabata, Advances in Superconductivity VII, edited by K. Yamafuji and T. Morishita (Springer-Verlag, Tokyo, 1995) p.233.

[18] C. Kawabata, S. R. Shenoy, and A. R. Bishop, Advances in Superconductivity VI, edited by T. Fujita and Y. Shiohara (Spring-Verlag, Tokyo, 1994) p.55.

[19] C. Kawabata, M. Takeuchi, S. R. Shenoy, and A. R. Bishop, Advances in Superconductivity VIII, edited by H. Hayakawa and Y. Enomoto (Spring-Verlag, Tokyo, 1996) p.271.

[20] E. Šimánek, Inhomogeneous Superconductors (Oxford Univ. Press, New York, 1994).

[21] B. Chattopadhyay and S. R. Shenoy, Phys. Rev. Lett. 72 (1994) 400.

[22] S. R. Shenoy and B. Chattopadhyay, Phys. Rev. B 51 (1995) 9129.

[23] C. Kittel, Introduction to Solid State Physics (Wiley & Sons, New York, 1996).

[24] J. R. Tessman, A. H. Kahn, and W. Shockley, Phys. Rev. 92 (1953) 890.

[25] L. Pauling, Proc. Roy. Soc. (London) A114 (1927) 181.

[26] R. D. Shanon, Acta Cryst. A32 (1976) 751.

[27] J. H. Schön, Ch. Kloc, and B. Batlogg, Nature 408 (2000) 549.

[28] P. Th. van Duijnen and M. Swart, J. Phys. Chem. A 102 (1998) 2399.
Fig. 1. The plot of the critical temperature T_c versus charging energy E_c (see text). Points are for MgB$_2$ ($T_c = 39$ K [1]) and BeB$_2$ ($T_c \simeq 0$ K (< 5 K) [3]). The values of E_c are of Table 1 for Mg$^{2+}$ and Be$^{2+}$.
Table 1

Ionic radius d [23] ionic electric polarizability ε [24] and charging energy $E_c \sim d/\varepsilon$. The data of ε in brackets are of Ref. [25] originally and the values of d for Cu are of Ref. [26].

Ionic atom	Ionic radius d [23,26]	Ionic electric polarizability ε [24,25]	Charging coupling energy $d/\varepsilon (E_c)$	Critical temperature T_c [K]
Be$^{2+}$	0.35 (0.008)	(43.75)	$\simeq 0$ (< 5) [3]	0.72
Mg$^{2+}$	0.65 (0.094)	(6.91)	39 [1]	
Ca$^{2+}$	0.99 (1.1) (0.47)	0.9 (2.11)		
Sr$^{2+}$	1.13 (1.6) (0.86)	0.71 (1.31)		
Ba$^{2+}$	1.35 (2.5) (1.55)	0.54 (0.87)		
Zn$^{2+}$	0.74 (0.8)	0.93		
Cd$^{2+}$	0.97 (1.8)	0.54		
Cu$^{2+}$	0.73 (0.2)	3.65		
Pb$^{2+}$	0.84 (4.9)	0.17		
Li$^+$	0.68 (0.03) (0.029)	22.67 (23.45)		
Na$^+$	0.97 (0.41) (0.179)	2.37 (5.42)		
K$^+$	1.33 (1.33) (0.83)	1 (1.6)		
Rb$^+$	1.48 (1.98) (1.4)	0.75 (1.06)		
Cs$^+$	1.67 (3.34) (2.42)	0.5 (0.69)		
Cu$^+$	0.77 (1.6)	0.48		
Ag$^+$	1.26 (2.4)	0.53		
Tl$^+$	0.95 (5.2)	0.18		
Al$^{3+}$	0.5 (0.052)	(9.62)		
Sc$^{3+}$	0.81 (0.286)	(2.83)		
Y$^{3+}$	0.93 (0.55)	(1.69)		
La$^{3+}$	1.15 (1.04)	(1.11)		
C$^{4+}$	0.15 (0.013)	(115.38)		
Si$^{4+}$	0.41 (0.0165)	(24.85)		
Ti$^{4+}$	0.68 (0.185)	(3.68)		
Ge$^{4+}$	0.53 (1)	0.53		
Zr$^{4+}$	0.8 (0.31)	(2.58)		
Sn$^{4+}$	0.71 (3.4)	0.21		
Ce$^{4+}$	1.01 (0.73)	(1.38)		