Title
Measurement of the (anti-)\(^3\)He elliptic flow in Pb-Pb collisions at sNN=5.02TeV

Permalink
https://escholarship.org/uc/item/1tg4z3n0

Authors
Acharya, S
Adamová, D
Adhya, SP
et al.

Publication Date
2020-06-10

DOI
10.1016/j.physletb.2020.135414

Peer reviewed
Measurement of the (anti-)\(^3\)He elliptic flow in Pb–Pb collisions at \(\sqrt{s_{NN}} = 5.02\) TeV

ALICE Collaboration*

1. Introduction

The primary goal of studying ultra-relativistic heavy-ion collisions is to investigate the properties of the Quark–Gluon Plasma (QGP), a phase of matter made of deconfined quarks and gluons, which is created under extreme conditions of high temperature and energy density. At the Large Hadron Collider (LHC), the QGP can be studied in a region of the phase diagram where a cross-over transition from the deconfined phase to ordinary nuclear matter is expected based on Quantum Chromodynamics (QCD) calculations on the lattice [1–3].

In ultra-relativistic heavy-ion collisions, light nuclei, hypernuclei, and their antiparticles are produced in addition to other particle species. The production mechanism of these loosely bound composite objects in heavy-ion collisions is not clear and is still under debate. Two phenomenological models are typically used to describe the light (anti-)\(^\Lambda\) hyper-nuclei production: the statistical hadronization model [4–9] and the coalescence approach [10–13]. In the former, light nuclei are assumed to be emitted by a source in local thermal and hadrochemical equilibrium and their abundances are fixed at chemical freeze-out. This model reproduces the light-flavored hadron yields measured in central nucleus–nucleus collisions, including those of (anti-)nuclei and (anti-)hypernuclei [4]. However, the detailed mechanism of hadron production and the explanation of the propagation of loosely-bound states through the hadron gas phase without a significant reduction in their yields are not addressed by this model. It has been conjectured that such objects could be produced at the phase transition as compact colorless quark clusters which are expected to interact little with the surrounding matter [8]. In the coalescence approach, light nuclei are assumed to be formed by the coalescence of protons and neutrons which are close in phase-space at kinetic freeze-out [11]. In the simple version of this model, nucleons are treated as point-like particles and the coalescence process is assumed to happen if the difference between their momenta is smaller than a given threshold, typically of the order of 100 MeV/c, which is a free parameter of the model, while space coordinates are ignored. On the contrary, in the state-of-the-art implementations of the coalescence approach, the quantum-mechanical properties of nucleons and nuclei are taken into account and the coalescence probability is calculated from the overlap between the wave functions of protons and neutrons which are mapped onto the Wigner density of the nucleus. The phase-space distributions of protons and neutrons at the kinetic freeze-out are generated from particle production models, such as A Multi-Phase Transport Model (AMPT) [14], or from hydrodynamical simulations coupled to hadronic transport models [15]. The advanced coalescence model qualitatively describes the deuteron-to-proton and \(^{3}\)He-to-proton ratios measured in different collision systems as a function of the charged-particle multiplicity [15], while the simple coalescence approach provides a description of \(p_T\) spectra of light (anti-)nuclei measured in high-energy hadronic collisions only in the low-multiplicity regime [16].

A key observable to study the production mechanism of light (anti-)nuclei is the elliptic flow, i.e. the second harmonic \((v_2)\) of the Fourier decomposition of their azimuthal production distri-
bution with respect to a collision symmetry plane. The latter is defined by the impact parameter of the incoming nuclei and the beam direction [17]. The elliptic flow of light nuclei was measured by PHENIX [18] and STAR [19] at the Relativistic Heavy Ion Collider (RHIC). The centrality dependence of \(v_2 \) for deuterons (d) and antideuterons (\(\bar{d} \)) was found to be qualitatively similar to that of identified hadrons [19]. An approximate atomic mass number (A) scaling was observed for the elliptic flow of light nuclei when compared to the proton \(v_2 \) up to \(p_T/A = 1.5 \text{ GeV}/c \), with slight deviations for higher \(p_T/A \) [19]. The flow of identified hadrons is often described using the Blast-Wave model [20–22]. This is a model inspired by hydrodynamics, which assumes that the system produced in heavy-ion collisions is locally thermalized and expands collectively with a common velocity field. The system undergoes a kinetic freeze-out at the temperature \(T_{\text{kin}} \) and is characterized by a common transverse radial flow velocity \(\langle \beta \rangle \) at the freeze-out surface. The Blast-Wave model, however, fails in reproducing the \(v_2 \) of light nuclei measured in Au–Au collisions at \(\sqrt{s_{NN}} = 200 \text{ GeV} \) [19], which is instead well described by a more sophisticated coalescence model where the phase-space distributions of nucleons are generated using the string-melting version of AMPT [14].

The elliptic flow of d and \(\bar{d} \) was measured by the ALICE Collaboration in Pb–Pb collisions at \(\sqrt{s_{NN}} = 2.76 \text{ TeV} \) in the transverse-momentum range \(0.8 \leq p_T < 5 \text{ GeV}/c \) for different centrality classes [23]. The scaling of \(v_2 \) with the number of constituent quarks (\(n_q \)) is violated for identified hadrons including deuterons, with deviations up to 20% [23]. Predictions from simultaneous fits of the \(p_T \) spectra and the \(v_2 \) of charged pions, kaons, and protons using a Blast-Wave model provide a good description of the \(v_2 \) of deuterons in the measured \(p_T \) range for all centralities, consistent with common kinetic freeze-out conditions [23]. A simple coalescence model, based on the A-scaling of \(v_2 \) [24], fails in reproducing the data for all centralities and in the entire \(p_T \) range [23]. The data are fairly well described by a coalescence approach which uses as an input the phase-space distributions generated with the default AMPT settings [13]. However, this model does not describe the coalescence parameter \(\beta_2 \), defined as the ratio between the invariant yield of deuterons and the square of the invariant yield of protons [23]. The predictions obtained using the string-melting version of AMPT, which described RHIC data, are not consistent with the ALICE measurement [23].

The first measurement of the (anti-)\(^3\)He elliptic flow in Pb–Pb collisions at \(\sqrt{s_{NN}} = 5.02 \text{ TeV} \) is presented in this paper. This measurement complements the picture obtained from that of the proton and deuteron flow at LHC energies.

2. Experimental apparatus and data sample

ALICE is one of the four big experiments at the LHC dedicated to the study of heavy-ion collisions at ultra-relativistic energies. A detailed description of the ALICE apparatus and its performance can be found in Refs. [25] and [26].

Trajectories of charged particles are reconstructed in the ALICE central barrel with the Inner Tracking System (ITS) [25] and the Time Projection Chamber (TPC) [27]. These are located within a large solenoidal magnet, providing a highly homogeneous magnetic field of 0.5 T parallel to the beam line. The ITS consists of six cylindrical layers of silicon detectors with a total pseudorapidity coverage \(\eta < 0.9 \) with respect to the nominal interaction region. The ITS is used in the determination of primary and secondary vertices, and in the track reconstruction. The TPC is the largest detector in the ALICE central barrel, with a pseudorapidity coverage \(\eta < 0.9 \). It is used for track reconstruction, charged-particle momentum measurement and for particle identification via the measurement of the specific energy loss of particles in the TPC gas. The transverse-momentum resolution ranges from about 1% at 1 GeV/c to about 10% at 50 GeV/c in Pb–Pb collisions at \(\sqrt{s_{NN}} = 2.76 \text{ TeV} \) [26] and at \(\sqrt{s_{NN}} = 5.02 \text{ TeV} \) [28]. The \(\text{d}E/\text{d}x \) resolution depends on centrality and is in the range 5–6.5% for minimum ionizing particles crossing the full volume of the TPC [26]. Collision events are triggered by two plastic scintillator arrays, V0A and V0C [29], located on both sides of the interaction point, covering the pseudorapidity regions \(-3.7 < \eta < -1.7 \) and \(2.8 < \eta < 5.1 \). Each V0 array consists of four rings in the radial direction, with each ring comprising eight cells with the same azimuthal size. The V0 scintillators are used to determine the collision centrality from the measured charged-particle multiplicity [30,31], and to measure the orientation of the symmetry plane of the collision.

The data used for this analysis were collected in 2015 during the LHC Pb–Pb run at \(\sqrt{s_{NN}} = 5.02 \text{ TeV} \). A minimum bias event trigger was used, which requires coincident signals in the V0 detectors synchronous with the bunch crossing time defined by the LHC clock.

3. Data analysis

3.1. Event selection

In order to keep the conditions of the detectors as uniform as possible and reject background collisions, the coordinate of the primary vertex along the beam axis is required to be within 10 cm from the nominal interaction point. Collisions with multiple primary vertices are tagged as pile-up events and rejected. A centrality-dependent non-uniformity in the angular distribution of the symmetry plane, of maximum 6% is found. In order to correct for this non-uniformity, the events are re-weighted based on the collision centrality (C) and the angle of the symmetry plane \(\Psi_2 \). The weight for a given two-dimensional cell (C, \(\Psi_2 \)) is defined as the ratio between the average number of events, for all C and \(\Psi_2 \), and the actual number of events in the same two-dimensional cell. The centrality classes used for the analysis presented in this Letter are 0–20%, 20–40%, and 40–60%. In total, approximately 20 million events are selected in each centrality class.

3.2. Track selection and particle identification

(Anti-)\(^3\)He candidates are selected from the charged-particle tracks reconstructed in the ITS and TPC in the kinematic range \(p_T/|z| > 1 \text{ GeV}/c \) and \(|\eta| < 0.8 \), where \(z \) is the particle electric charge in units of the elementary charge. Tracks are required to have a minimum number of clusters in the TPC, \(N_{\text{TPC}} \), of at least 70 out of a maximum of 159, and in the ITS, \(N_{\text{ITS}} \), of at least two with one cluster located in any of the two innermost ITS layers. The number of TPC clusters used in the \(\text{d}E/\text{d}x \) calculation, \(N_{\text{TPC}} \) (\(\text{d}E/\text{d}x \)) is required to be larger than 50. Good quality of the track fit is also required, expressed by \(\chi^2/N_{\text{TPC}} < 4 \) and a ratio of the number of TPC clusters attached to the track over the number of findable TPC clusters (accounting for track length, location, and momentum) larger than 80%. The contribution from secondary tracks is reduced by requiring a minimum Distance of Closest Approach (DCA) to the primary vertex in the transverse plane (DCA\(_{xy} < 0.1 \text{ cm} \)) and in the longitudinal direction (DCA\(_{z} < 1 \text{ cm} \)). These selection criteria ensure a high track-reconstruction efficiency, which is larger than 80%, and a resolution in the \(\text{d}E/\text{d}x \) measured in the TPC of about 6% in the centrality and \(p_T \) ranges used for this measurement.

The expected average \(\text{d}E/\text{d}x \) for (anti-)\(^3\)He, \(\langle \text{d}E/\text{d}x \rangle_{1\text{He}} \), is given by the Bethe formula and the standard deviation of the distribution of \(\text{d}E/\text{d}x - \langle \text{d}E/\text{d}x \rangle_{1\text{He}} \), denoted \(\sigma_{\text{He}} \), is the TPC \(\text{d}E/\text{d}x \) resolution measured for (anti-)\(^3\)He. For the (anti-)\(^3\)He identification, the \(\text{d}E/\text{d}x \) measured in the TPC is required to be within 3 \(\sigma_{\text{He}} \) from the expected average for \(^3\)He. The distributions
of \((dE/dx - (dE/dx)_\text{He})/\sigma_{dE/dx}\) for the transverse-momentum ranges \(2 \leq p_T < 3\,\text{GeV}/c\) and \(3 \leq p_T < 4\,\text{GeV}/c\) are shown in Fig. 1. The range used for the (anti)-He selection is indicated by the vertical black-dotted lines. The contamination by (anti)-H is estimated by fitting the measured \((dE/dx - (dE/dx)_\text{He})/\sigma_{dE/dx}\) distribution in a given \(p_T\) range using two Gaussian functions, one for (anti)-H and the other for (anti)-He. The (anti)-H contribution is subtracted from the distribution to extract the (anti)-He signal in the range within \(\pm 3\sigma_{dE/dx}\). The contamination from (anti)-H is negligible for \(p_T > 3\,\text{GeV}/c\) (see right panel of Fig. 1). The contamination from (anti)-He is expected to be negligible over the full \(p_T\) range considering that its production rate measured in Pb–Pb collisions at \(\sqrt{s_{NN}} = 2.76\,\text{TeV}\) is suppressed compared to that of (anti)-He by a factor \(\sim 300\) [32].

3.3. Secondary \(^3\text{He}\) from spallation processes

The main background for this measurement is represented by secondary \(^3\text{He}\) produced by spallation reactions in the interactions between primary particles and nuclei in the beam pipe. This background source is relevant only for \(^3\text{He}\), while this effect is negligible for anti-\(^3\text{He}\). Nuclear fragments emitted in spallation processes have almost uniform angular distributions with respect to the direction of the incoming particle, while primary \(^3\text{He}\) tracks originate from the primary vertex. The contribution of secondary \(^3\text{He}\) produced by spallation can be investigated from the DCA\textsubscript{xy} distribution, which has a peak around zero for primary \(^3\text{He}\) and is almost flat for secondary \(^3\text{He}\). The DCA\textsubscript{xy} distributions for \(^3\text{He}\) candidates measured in the transverse-momentum ranges \(2 \leq p_T < 3\,\text{GeV}/c\) and \(3 \leq p_T < 4\,\text{GeV}/c\) are shown in Fig. 2. The sign of the DCA\textsubscript{xy} is positive if the primary vertex is inside the track curvature and negative if it lies outside. These distributions are obtained by selecting tracks with \(|\text{DCA}| < 1\,\text{cm}\) and applying a stricter requirement for the selection of \(^3\text{He}\) candidates, given by \(-2 \leq (dE/dx - (dE/dx)_\text{He})/\sigma_{dE/dx} < 3\). This asymmetric range is used to increase the purity of the \(^3\text{He}\) sample by suppressing the \(^1\text{H}\) contamination. The contribution from secondary \(^3\text{He}\) produced by spallation is found to be relevant in this analysis only in the transverse-momentum range \(2 \leq p_T < 3\,\text{GeV}/c\).

For the measurement presented in this Letter, \(^3\text{He}\) are used for \(2 \leq p_T < 3\,\text{GeV}/c\), while the sum of \(^3\text{He}\) and \(^4\text{He}\) is used for higher \(p_T\) where the contribution from secondary \(^3\text{He}\) from spallation is negligible. This is possible because the elliptic flow of \(^3\text{He}\) and \(^4\text{He}\) are consistent within the statistical uncertainties in the \(p_T\) range where these two measurements can be compared, i.e. \(p_T > 3\,\text{GeV}/c\), and in all centrality intervals. A vanishing difference between the elliptic flow of matter and antimatter nuclei at LHC energies is already observed for (anti-)protons [33,34] and (anti-)deuterons [23]. This observation is consistent with the decreasing trend of the difference between the elliptic flow of protons and antiprotons, deuterons and antideuterons with increasing center-of-mass energy at RHIC going from \(\sqrt{s_{NN}} = 7.7\,\text{GeV}\) to \(\sqrt{s_{NN}} = 200\,\text{GeV}\) [35].

3.4. The event-plane method

The initial spatial anisotropy of the hot and dense matter created in non-central nucleus–nucleus collisions results in an azimuthal anisotropy of particle emission with respect to the symmetry plane. The azimuthal distribution of the emitted particles can be expressed as a Fourier series [36]

\[
\frac{dN}{d\phi} \propto 1 + \sum_{n=1}^{\infty} v_n \cos(n(\phi - \Psi_n)),
\]

where \(\Psi_n\) indicates the orientation of the \(n\)th symmetry plane, \(\phi\) is the azimuthal angle of a particle, and the Fourier coefficients \(v_n\) are also referred to as the flow coefficients.

Experimentally, the true symmetry plane can only be reconstructed approximately because of the finite detector resolution. The measured symmetry plane is called `event plane'. The elliptic
Considering the centrality dependence of R_{ϕ_2}, the elliptic flow measurements are performed in centrality intervals of 5% width for the range 0–40%, and of 10% width for the range 40–60%. The latter two intervals are larger due to the limited number of (anti-)3He candidates. The resolutions for the centrality ranges 40–50% and 50–60% are given by the weighted averages of the resolutions calculated in centrality bins of 5% width, with the number of charged tracks in the corresponding centrality ranges as a weight. Finally, the elliptic flow measurements for the wider centrality classes used in this analysis are obtained as weighted averages of the measurements in the smaller centrality ranges

$$v_2(p_T) = \frac{\sum_i v_2^i(p_T) \cdot N_i^{(\text{anti-})^3\text{He}}(p_T)}{\sum_i N_i^{(\text{anti-})^3\text{He}}(p_T)},$$

where $v_2^i(p_T)$ is the elliptic flow measured in a given p_T range and in the centrality interval i, and $N_i^{(\text{anti-})^3\text{He}}$ is the number of (anti-)3He candidates for the same centrality and p_T range.

4. Systematic uncertainties

The main sources of systematic uncertainties in this measurement are related to the event selection criteria, track reconstruction, particle identification, occupancy effects in the TPC, and the subtraction of the feed-down contribution from weak decays of hypernuclei. Except for the systematic uncertainty due to the event selection, all other contributions are estimated using Monte Carlo (MC) simulations based on the HIJING generator [39]. Simulated events are enriched by an injected sample of (anti-)hyper-nuclei generated with a flat p_T distribution in the transverse-momentum range $0 < p_T < 10$ GeV/c and a flat rapidity distribution in the range $-1 < y < 1$. The interactions of the generated particles with the experimental apparatus are modeled by GEANT 3 [40]. The input transverse-momentum distribution of injected (anti-)He nuclei is corrected using centrality and p_T-dependent weights to reproduce its measured shape, which is described by the Blast-Wave function. The parameters are taken from the (anti-)3He measurement in Pb–Pb collisions at $\sqrt{s_{NN}} = 2.76$ TeV [41] assuming the same spectral shape in Pb–Pb collisions at $\sqrt{s_{NN}} = 5.02$ TeV. The systematic uncertainties estimated using the MC simulations are found to be independent on the input parametrization of the (anti-)He spectrum. A good matching between the distributions of variables used for track selection and particle identification is found between data and MC simulations. This guarantees the reliability of the detector response description and of the systematic uncertainties obtained based on MC simulations.

4.1. Systematic uncertainties due to the event selection criteria

The effect of different event selection criteria is studied by comparing the v_2 measurements obtained by varying the selection range of the z-coordinate of the primary vertex, using different centrality estimators, selecting events corresponding to opposite magnetic field orientations, using different pile-up rejection criteria, and selecting events with different interaction rates. The limited number of (anti-)3He candidates prevents the estimation of this source of systematic uncertainties from data since the v_2 measurements obtained using these different selection criteria are consistent within their statistical uncertainties, i.e. the systematic uncertainties are comparable to or smaller than the statistical ones. The systematic uncertainty related to event selection criteria is assumed to be identical to that of the proton v_2 measured in Pb–Pb collisions at $\sqrt{s_{NN}} = 5.02$ TeV and it is taken from Ref. [34]. The total systematic uncertainty due to the event selection is 2.7% and is obtained by adding all contributions in quadrature.
4.2. Systematic uncertainties due to tracking and particle identification

The systematic uncertainties due to track reconstruction and particle identification are estimated using MC simulations. This is done to benefit from the larger number of (anti-)\(^3\)He in the simulation as compared to data to reduce the interference between statistical fluctuations and systematic uncertainties. The same azimuthal asymmetry as measured in data in each centrality and \(p_T\) range is artificially created for the injected (anti-)\(^3\)He with respect to a randomly oriented event plane by rejecting a fraction of the out-of-plane (anti-)\(^3\)He. This is done because the injected (anti-)\(^3\)He are produced with \(v_2 = 0\) by the MC generator. The \(v_2\) of the embedded (anti-)\(^3\)He is then measured using the reconstructed tracks in the simulation. Different track selection criteria and signal extraction ranges are used to measure the \(v_2\), in which the analysis parameters are selected randomly inside a range around the default value using a uniform probability distribution. The different selection criteria are varied simultaneously in order to include the effects of their possible correlations. In each centrality class and for each transverse-momentum range, the measurements obtained using different selection criteria follow a Gaussian distribution whose standard deviation is very similar to the statistical uncertainty, indicating a residual correlation between systematic variations and statistical fluctuations. Assuming that the spread of the different measurements is only due to statistical fluctuations, the mean of the Gaussian distribution is considered as the best estimate of the reconstructed \(v_2\). The difference between the injected \(v_2\) in the simulation and the mean of the Gaussian spread of the measurements is taken as the systematic uncertainty due to tracking and PID. This uncertainty ranges between 1% and 4%, depending on \(p_T\) and centrality. An additional component to the tracking uncertainty originates from the difference between the \(v_2\) measured using the positive and negative pseudorapidity regions of the TPC. This contribution cannot be estimated from data due to the limited number of (anti-)\(^3\)He and is assumed to be identical to that of the proton \(v_2\) measurement, which is 2% [34]. The latter is added in quadrature to the systematic uncertainties related to tracking and particle identification.

4.3. Systematic uncertainty due to occupancy effects in the TPC

Different reconstruction efficiencies for in-plane and out-of-plane particles, due to occupancy effects in the TPC, can create a bias in the \(v_2\) measurement. This effect is studied using MC simulations by comparing the reconstruction efficiency for different charged-particle multiplicities. The same track selection criteria used in data are applied to the reconstructed tracks in the simulation for the efficiency calculation. The maximum deviation between the reconstruction efficiencies for different multiplicities is 0.5%, corresponding to a ratio between in-plane and out-of-plane efficiencies of \(r = 0.995 \pm 0.001\). The difference between the \(v_2\) measured assuming \(r = 1\) and \(r = 0.995\) corresponds to the maximum variation range of \(v_2\). The systematic uncertainty from occupancy is then given by this maximum difference divided by \(\sqrt{2}\), assuming a uniform distribution. This uncertainty decreases with increasing \(p_T\) and yields at maximum 2% for the centrality range 0–20% and 0.5% for the centrality ranges 20–40% and 40–60%.

4.4. Systematic uncertainty due to the feed-down subtraction

The feed-down systematic uncertainty is due to the unknown \(v_2\) of (anti-)\(^3\)He from the weak decay of the (anti-)\(^3\)H. The fraction of secondary (anti-)\(^3\)He from the (anti-)\(^3\)H decays in the reconstructed track sample is calculated using MC simulations. This fraction is about 6% for the centrality range 0–20% and \(\sim 5\%\) for the centrality ranges 20–40% and 40–60%, slightly increasing with \(p_T\). The relative abundances of (anti-)\(^3\)H and (anti-)\(^3\)He in the simulation are adjusted to the measured values in Pb–Pb collisions at \(\sqrt{s_{NN}} = 5.02\ \text{TeV}\) for the centrality classes 0–20%, 20–40%, and 40–60%. The statistical uncertainties are shown as vertical bars, systematic uncertainties as boxes.

The feed-down subtraction is done by subtracting the yield of (anti-)\(^3\)He from the (anti-)\(^3\)H decay assuming a uniform distribution. This uncertainty decreases with increasing \(p_T\) and yields at maximum 2% for the centrality range 0–20% and 0.5% for the centrality ranges 20–40% and 40–60%.

Table 1

Source of systematic uncertainty	Value (%)
Primary vertex selection	1
Centrality estimator	1.5
Magnetic field orientation	1
Pile-up rejection	1
Interaction rate	1.5
Tracking and particle identification	2 – 4.5
Occupancy in the TPC	0.5 – 2
Feed-down	2
Total	4 – 6

Fig. 4. Elliptic flow \(\langle v_2 \rangle\) of (anti-)\(^3\)He measured in Pb–Pb collisions at \(\sqrt{s_{NN}} = 5.02\ \text{TeV}\) for the centrality classes 0–20%, 20–40%, and 40–60%. The statistical uncertainties are shown as vertical bars, systematic uncertainties as boxes.

The elliptic flow of (anti-)\(^3\)He measured in Pb–Pb collisions at \(\sqrt{s_{NN}} = 5.02\ \text{TeV}\) for the centrality classes 0–20%, 20–40%, and 40–60% is shown in Fig. 4 as a function of \(p_T\). The measurement in the transverse-momentum range 2 < \(p_T\) < 3 \text{ GeV/c} is done using only \(^3\)He. An increasing elliptic flow is observed going from central to semi-central collisions, as expected. This is due to the increasing azimuthal asymmetry of the overlap region of the colliding nuclei at the initial collision stage, which results in a larger azimuthal asymmetry of the momenta of the final-state particles. In each centrality class, the elliptic flow increases with \(p_T\) in the measured \(p_T\) range.

The (anti-)\(^3\)He elliptic flow is compared to that of pions, kaons, and protons measured using the scalar-product method at the
same center-of-mass energy [34] in Fig. 5. Given the good event-plane resolution shown in Fig. 3 and the large statistical uncertainties of the (anti-)3He v_2 measurements, the difference between the scalar-product and event-plane method to calculate the (anti-)3He elliptic flow is negligible. The v_2 of pions, kaons, and protons is measured in smaller centrality ranges compared to those used in this analysis. The corresponding v_2 for the centrality classes 0–20%, 20–40%, and 40–60% are obtained as weighted averages of the v_2 measured in smaller centrality classes using the p_T spectra taken from [43] as weights. A clear mass ordering is observed for $p_T < 3$ GeV/c, consistent with the expectations from relativistic hydrodynamics [44]. The v_2 of (anti-)3He shows a slower rise with p_T compared to that of pions, kaons, and protons due to its larger mass.

The comparisons between the measurements of v_2/n_q of (anti-)3He, pions, kaons, and protons are shown in Fig. 6 as a function of p_T/n_q (upper panels), and transverse kinetic energy per constituent quark E_T^{km}/n_q (lower panels). The transverse kinetic energy is defined as $E_T^{km} = \sqrt{m^2 + p_T^2} - m$, where m is the mass of the particle. The violation of n_q scaling for the measured range of $p_T/n_q \lesssim 0.7$ GeV/c, already established for the elliptic flow measurements of identified hadrons at the LHC [23,34,45], is observed also for (anti-)3He. The n_q scaling at larger p_T/n_q cannot be tested with the limited data sample used for this analysis.

5.2. Model comparisons

The (anti-)3He v_2 measurements are compared with the expectations from the Blast-Wave model and a simple coalescence approach using the same procedure followed in [23].

The Blast-Wave predictions are obtained from a simultaneous fit of the v_2 and the p_T spectra of pions, kaons, and protons measured in Pb–Pb collisions at $\sqrt{s_{NN}} = 5.02$ TeV [34,43] in the transverse-momentum ranges $0.5 \leq p_T^\pi < 1$ GeV/c, $0.7 \leq p_T^K < 2$ GeV/c, and $0.7 \leq p_T^n < 2.5$ GeV/c, respectively, and in the same centrality classes. The four parameters of the Blast-Wave fits represent the kinetic freeze-out temperature (T_{kin}), the mean transverse expansion rapidity ($\langle \eta_0 \rangle$), the amplitude of its azimuthal variation ($\langle \epsilon_2 \rangle$), and the variation in the azimuthal density of the source (s_2), as described in [21]. The values of the Blast-Wave parameters extracted from the fits are reported in Table 2 for each centrality interval. The elliptic flow of (anti-)3He is calculated using the parameters obtained from the simultaneous fit and the 3He mass, i.e., assuming the same kinetic freeze-out conditions.

The simple coalescence approach used in this context is based on the assumption that the invariant yield of (anti-)3He with transverse momentum p_T is proportional to the product of the invariant yields of its constituent nucleons with transverse momentum $p_T/3$ and on isospin symmetry, for which the proton and neutron v_2 are
identical. Considering only elliptical anisotropies of the constituent nucleons, i.e. neglecting higher order harmonics, the coalescence predictions are obtained from the elliptic flow of protons \(v_2\) measured in Pb–Pb collisions at \(\sqrt{s_{\text{NN}}} = 5.02\) TeV [34] using the scaling law [46]

\[
v_{2,\text{He}}(p_T) = \frac{3v_{2,p}(p_T/3) + 3v_{3,p}^2(p_T/3)}{1 + 6v_{2,p}^2(p_T/3)}.
\]

Fig. 7 shows the comparison of the \((\text{anti-})^3\text{He} v_2\) measurements with the predictions of the Blast-Wave model and the simple coalescence approach. The differences between the data and the model for each centrality interval are shown in the lower panels. These are calculated using the weighted averages of the models in the same \(p_T\) intervals of the measurement. For the Blast-Wave model, the \(p_T\) spectrum of \((\text{anti-})^3\text{He}\) measured in Pb–Pb collisions at \(\sqrt{s_{\text{NN}}} = 2.76\) TeV [41] is used as a weight. This is justified considering that the \((\text{anti-})^3\text{He}\) \(p_T\) spectrum in Pb–Pb collisions at \(\sqrt{s_{\text{NN}}} = 5.02\) TeV is expected to be similar to that at \(\sqrt{s_{\text{NN}}} = 2.76\) TeV, as observed for lighter hadrons [43]. The proton spectrum measured in Pb–Pb collisions at \(\sqrt{s_{\text{NN}}} = 5.02\) TeV [43], with \(p_T\) scaled by \(A = 3\), is used as a weight for the coalescence model. The data are located between the two model predictions in all centrality intervals except for more peripheral collisions, where the coalescence expectations are closer to the data.

The Blast-Wave model was found to be consistent with the \((\text{anti-})\text{deuteron}\) elliptic flow measured in Pb–Pb collisions at \(\sqrt{s_{\text{NN}}} = 2.76\) TeV in the centrality intervals 0–10%, 10–20% and 20–40%, although the \((\text{anti-})\text{deuteron} p_T\) distributions were slightly underestimated for \(p_T < 2\) GeV/c in the same centrality intervals [23]. Similarly to the results presented in this paper for \((\text{anti-})^3\text{He}\), the predictions from the simple coalescence model overestimated the \((\text{anti-})\text{deuteron} v_2\) in all centrality intervals. In general, the measurements of \((\text{anti-})\text{deuteron} \) and \((\text{anti-})^3\text{He}\) elliptic flow at the
ple coalescence predictions in Fig. 7. In this model, the coalescence probability is given by the superposition of the wave functions of the coalescing particles, and the Wigner function of the nucleus. The coalescence happens in a flowing medium, i.e., in the rest frame of the fluid cells. This introduces space-momentum correlations absent in the naive coalescence approach. The phase-space distributions of protons and neutrons are generated from the iEBEVISHNU hybrid model with AMPT initial conditions [13]. Although this model underestimates the yield of (anti-)\(^3\)He measured in Pb–Pb collisions at \(\sqrt{s_{NN}} = 2.76\) TeV in the transverse-momentum range of \(2 < p_T < 7\) GeV/c by almost a factor of two [13], it is able to reproduce quantitatively the elliptic flow measurements in the centrality classes 0–20% and 20–40% presented here. Moreover, this model provides a good description of the \(p_T\) spectra and \(p_T\)-differential elliptic flow of protons and deuterons for different centrality intervals in Au–Au collisions at \(\sqrt{s_{NN}} = 200\) GeV and in Pb–Pb collisions at \(\sqrt{s_{NN}} = 2.76\) TeV [15].

6. Summary

The first measurement of the (anti-)\(^3\)He elliptic flow in Pb–Pb collisions at \(\sqrt{s_{NN}} = 5.02\) TeV is presented. An increasing trend of \(v_2\) with \(p_T\) and one going from central to semi-central Pb–Pb collisions is observed. This measurement is compared to that of pions, kaons, and protons at the same center-of-mass energy. A clear mass ordering at low \(p_T\) is observed, as expected from relativistic hydrodynamics. The scaling behavior of \(v_2\) with the number of constituent quarks is violated for the measured range of \(p_T/n_q \lesssim 0.7\) GeV/c also for (anti-)\(^3\)He, as observed for the \(v_2\) of lighter particles measured at the LHC.

The (anti-)\(^3\)He elliptic flow measured in all centrality intervals lies between the predictions from the Blast-Wave model and a simple coalescence approach. This picture is consistent with that of the (anti-)deuteron \(v_2\) measured in Pb–Pb collisions at \(\sqrt{s_{NN}} = 2.76\) TeV, which was also overestimated by the simple coalescence model, although it was closer to the Blast-Wave predictions. The results on the (anti-)deuteron and (anti-)\(^3\)He elliptic flow measured at the LHC indicate that these two simple models represent upper and lower edges of a region where the elliptic flow of light (anti-)nuclei are typically located.

A more sophisticated coalescence approach based on phase-space distributions of protons and neutrons generated by the iEBEVISHNU hybrid model with AMPT initial conditions provides a good description of the data in the transverse-momentum interval \(2 \leq p_T < 6\) GeV/c for the centrality ranges 0–20% and 20–40%. The same model also provides a good description of the (anti-)deuteron \(v_2\) measured in Pb–Pb collisions at \(\sqrt{s_{NN}} = 2.76\) TeV. This model, however, fails in the description of the \(p_T\)-dependent yield of (anti-)\(^3\)He measured in Pb–Pb collisions at \(\sqrt{s_{NN}} = 2.76\) TeV.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Acknowledgements

The ALICE Collaboration would like to thank all its engineers and technicians for their invaluable contributions to the construction of the experiment and the CERN accelerator teams for the outstanding performance of the LHC complex. The ALICE Collaboration gratefully acknowledges the resources and support provided by all Grid centres and the Worldwide LHC Computing Grid (WLCG) collaboration. The ALICE Collaboration acknowledges the following funding agencies for their support in building and running the ALICE detector: A. I. Alikhanyan National Science Laboratory (Yerevan Physics Institute) Foundation (ANSL); State Committee of Science and World Federation of Scientists (WFS); Armenia; Austrian Academy of Sciences; Austrian Science Fund (FWF); [M 2467-N36] and Nationalstiftung für Forschung, Technologie und Entwicklung, Austria; Ministry of Communications and High Technologies, National Nuclear Research Center, Azerbaijan; Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Financiadora de Estudos e Projetos (Finep), Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) and Universidade Federal do Rio Grande do Sul (UFRGS), Brazil; Ministry of Education of China (MOEC); Ministry of Science & Technology of China (MSTC) and National Natural Science Foundation of China (NSFC), China; Ministry of Science and Education and Croatian Science Foundation, Croatia; Centro de Aplicaciones Tecnológicas y Desarrollo Nuclear (CEADEN), Cuba; Ministry of Education, Youth and Sports of the Czech Republic, Czech Republic; The Danish Council for Independent Research | Natural Sciences, the Villum Fonden and Danish National Research Foundation (DNRF), Denmark; Helsinki Institute of Physics (HIP), Finland; Commissariat à l’Énergie Atomique (CEA), Institut National de Physique Nucléaire et de Physique des Particules (IN2P3) and Centre National de la Recherche Scientifique (CNRS) and Région des Pays de la Loire, France; Bundesministerium für Bildung und Forschung (BMBF) and GSI Helmholtzzentrum für Schwerionenforschung GmbH, Germany; General Secretariat for Research and Technology, Ministry of Education, Research and Religions, Greece; National Research Development and Innovation Office, Hungary; Department of Atomic Energy, Government of India (DAE), Department of Science and Technology, Government of India (DST), University Grants Commission, Government of India (UGC) and Council of Scientific and Industrial Research (CSIR), India; Indonesian Institute of Science, Indonesia; Centro Fermi - Museo Storico della Fisica e Centro Studi e Ricerche Enrico Fermi and Istituto Nazionale di Fisica Nucleare (INFN), Italy; Institute for Innovative Science and Technology, Nagasaki Institute of Applied Science (IIST), Japanese Ministry of Education, Culture, Sports, Science and Technology (MEXT) and Japan Society for the Promotion of Science (JSPS) KAKENHI, Japan; Consejo Nacional de Ciencia (CONACYT) and Tecnología, through Fondo de Cooperación Internacional en Ciencia y Tecnología (FONCICYT) and Dirección General de Asuntos del Personal Académico (DGAPA), Mexico; Nederlandse Organisatie voor Wetenschappelijk Onderzoek (NWO), Netherlands; The Research Council of Norway, Norway; Commission on Science and Technology for Sustainable Development in the South (COMSATS), Pakistan; Pontificia Universidad Católica del Perú, Peru; Ministry of Science and Higher Education and National Science Centre, Poland; Korea Institute of Science and Technology Information and National Research Foundation of Korea (NRF), Republic of Korea; Ministry of Education and Scientific Research, Institute of Atomic Physics and Ministry of Research and Innovation and Institute of Atomic Physics, Romania; Joint Institute for Nuclear Research (JINR), Ministry of Education and Science of the Russian Federation, National Research Centre Kurchatov Institute, Russian Science Foundation and Russian Foundation for Basic Research, Russia; Ministry of Education, Science, Research and Sport of the Slovak Republic, Slovakia; National Research Foundation of South Africa, South Africa; Swedish Research Council (VR) and Knut & Alice Wallenberg Foundation (KAW), Sweden; European Organization for Nuclear Research, Switzerland; Suranaree University of Technology (SUT), National Science and Technology Development Agency (NSTDA) and Office of the Higher Education Commission under NRU project of Thailand, Thailand; Turkish Atomic Energy Agency (TAEK), Turkey; National Academy of Sciences of Ukraine, Ukraine; Science and Technology Facilities Council (STFC), United Kingdom; National Science Foundation of
the United States of America (NSF) and United States Department of Energy, Office of Nuclear Physics (DOE NP), United States of America.

References

[1] Y. Aoki, S. Borsanyi, S. Durr, Z. Fodor, S.D. Katz, S. Krieg, K.K. Szabo, The QCD transition temperature: results with physical masses in the continuum limit II, J. High Energy Phys. 06 (2001) 004 [arXiv:0003155 [hep-lat]].
[2] HotQCD Collaboration, T. Bhattacharya, et al., QCD phase transition with chiral quarks and physical quark masses, Phys. Rev. Lett. 113 (2014) 082001, arXiv:1402.5175 [hep-lat].
[3] HotQCD Collaboration, A. Bazavov, et al., Equation of state in (2+1)-flavor QCD, Phys. Rev. D 90 (2014) 094503, arXiv:1407.3837 [hep-lat].
[4] J. Gyulassy, S. Kabana, I. Kraus, H. Oeschler, K. Redlich, N. Sharma, Antimatter production in proton-proton and heavy-ion collisions at ultrarelativistic energies, Phys. Rev. C 84 (2011) 054916, arXiv:1105.3719 [hep-ph].
[5] A. Andronic, P. Braun-Munzinger, J. Stachel, H. Stöcker, Production of light nucleons, hypernuclei and their antiparticles in relativistic nuclear collisions, Phys. Lett. B 697 (2011) 203–207, arXiv:1010.2995 [nucl-th].
[6] F. Becattini, E. Grossi, M. Bleicher, J. Steinheimer, R. Stock, Centrality dependence of hadronization and chemical freeze-out conditions in heavy ion collisions at E_{CM} = 2.76 TeV, Phys. Rev. C 90 (2014) 054907, arXiv:1405.0710 [nucl-th].
[7] V. Vovchenko, H. Stöcker, Examination of the sensitivity of the thermal fits to heavy-hadron yield data to the modeling of the eigenvalue interactions, Phys. Rev. C 95 (2017) 044904, arXiv:1606.06128 [hep-ph].
[8] A. Pracke, P. Braun-Munzinger, K. Redlich, J. Stachel, Decoding the phase structure of QCD via particle production at high energy, Nature 561 (2018) 321–330, arXiv:1710.09425 [nucl-th].
[9] N. Sharma, J. Gyulassy, B. Hippolyte, M. Paradza, A comparison of p-p, p-Pb, Pb-Pb collisions in the thermal model: multiplicity dependence of thermal parameters, Phys. Rev. C 99 (2019) 044914, arXiv:1811.00939 [nucl-th].
[10] S.T. Butler, C.A. Pearson, Deuteron from high-energy proton bombardment of matter, Phys. Rev. 129 (1963) 836–842.
[11] J.L. Kapusta, Mechanisms for deuterion production in relativistic nuclear collisions, Phys. Rev. C 21 (1980) 1301–1310, https://link.aps.org/doi/10.1103/PhysRevC.21.1301.
[12] R. Scheibl, U.W. Heinz, Coalescence and flow in ultrarelativistic heavy ion collisions, Phys. Rev. C 59 (1999) 1585–1602, arXiv:nucl-th/9809092 [nucl-th].
[13] W. Zhao, L. Zhu, H. Zheng, C.M. Ko, H. Song, Spectra and flow of light nuclei in relativistic heavy ion collisions at energies available at the BNL Relativistic Heavy Ion Collider and at the CERN Large Hadron Collider, Phys. Rev. C 98 (2018) 054905, arXiv:1807.02813 [nucl-th].
[14] Z.-W. Lin, C.M. Ko, B.-A. Li, B. Zhang, S. Pal, A multi-phase transport model for relativistic heavy ion collisions, Phys. Rev. C 72 (2005) 064901, arXiv:nucl-th/0411110 [nucl-th].
[15] K.-J. Sun, C.M. Ko, B. Donigus, Suppression of light nuclei production in collisions of small systems at the Large Hadron Collider, Phys. Lett. B 792 (2019) 132–137, arXiv:1812.05175 [nucl-th].
[16] ALICE Collaboration, S. Acharya, et al., Multiplicity dependence of light (anti-)nuclei production in p-Pb collisions at √s_{NN} = 5.02 TeV, arXiv:1906.03136 [nucl-ex].
[17] J.-Y. Olbricht, Anisotropy as a signature of transverse collective flow, Phys. Rev. D 49 (1992) 229–245.
[18] PHENIX Collaboration, S. Afanasiev, et al., Elliptic flow for phi mesons and (anti)deuterons in Au + Au collisions at √s_{NN} = 200 GeV, Phys. Rev. Lett. 99 (2007) 052301, arXiv:nucl-ex/0703024 [NUCLEX].
[19] STAR Collaboration, L. Adamczyk, et al., Measurement of elliptic flow of light nuclei at √s_{NN} = 200, 62.4, 39, 27, 19.6, 11.7, and 7.7 GeV at the BNL Relativistic Heavy Ion Collider, Phys. Rev. C 94 (2016) 034908, arXiv:1601.07052 [nucl-ex].
[20] E. Schnedermann, J. Sollfrank, U.W. Heinz, Thermal phenomenology of hadrons from 200-AGeV / S+Si collisions, Phys. Rev. C 48 (1993) 2462–2475, arXiv:nucl-th/9307020 [nucl-th].
[21] STAR Collaboration, C. Adler, et al., Identified particle elliptic flow in Au + Au collisions at √s_{NN} = 130 GeV, Phys. Rev. Lett. 87 (2001) 182301, arXiv:nucl-ex/0107003 [nucl-ex].

ALICE Collaboration

S. Acharya 14, D. Adamová 9, S.P. Adhya 14, A. Adler 73, J. Adolfsen 79, M.M. Aggarwal 98, G. Aglieri Rinella 34, M. Agnello 31, N. Agrawal 10,48,53, Z. Ahammed 141, S. Ahmad 17, S.U. Ahn 75, A. Akindinov 90, M. Al-Turany 105, S.N. Alam 141, D.S.D. Albuquerque 122, D. Aleksandrov 86.
5	California Polytechnic State University, San Luis Obispo, CA, United States
6	Central China Normal University, Wuhan, China
7	Centre de Calcul de l’IN2P3, Villeurbanne, Lyon, France
8	Centro de Aplicaciones Tecnológicas y Desarrollo Nuclear (CEADEN), Havana, Cuba
9	Centro de Investigación y de Estudios Avanzados (CINVESTAV), Mexico City and Mérida, Mexico
10	Centro Fermi – Museo Storico della Fisica e Centro Studi e Ricerche “Enrico Fermi”, Rome, Italy
11	Chicago State University, Chicago, IL, United States
12	China Institute of Atomic Energy, Beijing, China
13	Chonbuk National University, Jeonju, Republic of Korea
14	Comenius University Bratislava, Faculty of Mathematics, Physics and Informatics, Bratislava, Slovakia
15	COMSATS University Islamabad, Islamabad, Pakistan
16	Creighton University, Omaha, NE, United States
17	Department of Physics, Aligarh Muslim University, Aligarh, India
18	Department of Physics, Pusan National University, Pusan, Republic of Korea
19	Department of Physics, Sejong University, Seoul, Republic of Korea
20	Department of Physics, University of California, Berkeley, CA, United States
21	Department of Physics, University of Oslo, Oslo, Norway
22	Department of Physics and Technology, University of Bergen, Bergen, Norway
23	Dipartimento di Fisica dell’Università ‘La Sapienza’ and Sezione INFN, Rome, Italy
24	Dipartimento di Fisica dell’Università and Sezione INFN, Cagliari, Italy
25	Dipartimento di Fisica dell’Università and Sezione INFN, Trieste, Italy
26	Dipartimento di Fisica dell’Università and Sezione INFN, Turin, Italy
27	Dipartimento di Fisica e Astronomia dell’Università and Sezione INFN, Bologna, Italy
28	Dipartimento di Fisica e Astronomia dell’Università and Sezione INFN, Catania, Italy
29	Dipartimento di Fisica e Astronomia dell’Università and Sezione INFN, Padua, Italy
30	Dipartimento di Fisica ‘E.R. Caianiello’ dell’Università and Gruppo Collegato INFN, Salerno, Italy
31	Dipartimento DISAT del Politecnico and Sezione INFN, Turin, Italy
32	Dipartimento di Scienze e Innovazione Tecnologica dell’Università del Piemonte Orientale and INFN Sezione di Torino, Alessandria, Italy
33	Dipartimento Interateneo di Fisica ‘M. Merlin’ and Sezione INFN, Bari, Italy
34	European Organization for Nuclear Research (CERN), Geneva, Switzerland
35	Faculty of Electrical Engineering, Mechanical Engineering and Naval Architecture, University of Split, Split, Croatia
36	Faculty of Engineering and Science, Western Norway University of Applied Sciences, Bergen, Norway
37	Faculty of Nuclear Sciences and Physical Engineering, Czech Technical University in Prague, Prague, Czech Republic
38	Faculty of Science, Tj. Šafárik University, Košice, Slovakia
39	Frankfurt Institute for Advanced Studies, Johann Wolfgang Goethe-Universität Frankfurt, Frankfurt, Germany
40	Gangneung-Wonju National University, Gangneung, Republic of Korea
41	Gauhati University, Department of Physics, Guwahati, India
42	Helmholtz-Institut für Strahlen- und Kernphysik, Rheinische Friedrich-Wilhelms-Universität Bonn, Germany
43	Helsinki Institute of Physics (HIP), Helsinki, Finland
44	High Energy Physics Group, Universidad Autónoma de Puebla, Puebla, Mexico
45	Hiroshima University, Hiroshima, Japan
46	Hochschule Worms, Zentrum für Technologietransfer und Telekommunikation (ZTT), Worms, Germany
47	Horia Hulubei National Institute of Physics and Nuclear Engineering, Bucharest, Romania
48	Indian Institute of Technology Bombay (IIT), Mumbai, India
49	Indian Institute of Technology Indore, Indore, India
50	Indonesian Institute of Sciences, Jakarta, Indonesia
51	INFN, Laboratori Nazionali di Frascati, Frascati, Italy
52	INFN, Sezione di Bari, Bari, Italy
53	INFN, Sezione di Bologna, Bologna, Italy
54	INFN, Sezione di Cagliari, Cagliari, Italy
55	INFN, Sezione di Catania, Catania, Italy
56	INFN, Sezione di Padova, Padova, Italy
57	INFN, Sezione di Roma, Rome, Italy
58	INFN, Sezione di Torino, Turin, Italy
59	INFN, Sezione di Trieste, Trieste, Italy
60	Inha University, Incheon, Republic of Korea
61	Institut de Physique Nucléaire d’Orsay (IPNO), Institut National de Physique Nucléaire et de Physique des Particules (IN2P3/CNRS), Université de Paris-Sud, Université Paris-Saclay, Orsay, France
62	Institute for Nuclear Research, Academy of Sciences, Moscow, Russia
63	Institute for Subatomic Physics, Utrecht University/Nikhef, Utrecht, Netherlands
64	Institute of Experimental Physics, Slovak Academy of Sciences, Košice, Slovakia
65	Institute of Physics, Homi Bhabha National Institute, Bhubaneswar, India
66	Institute of Physics of the Czech Academy of Sciences, Prague, Czech Republic
67	Institute of Space Science (ISS), Bucharest, Romania
68	Institut für Kernphysik, Johann Wolfgang Goethe-Universität Frankfurt, Frankfurt, Germany
69	Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México, Mexico City, Mexico
70	Instituto de Física, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
71	Instituto de Física, Universidad Nacional Autónoma de México, Mexico City, Mexico
72	iThemba LABS, National Research Foundation, Somerset West, South Africa
73	Johann-Wolfgang-Goethe Universität Frankfurt Institut für Informatik, Fachbereich Informatik und Mathematik, Frankfurt, Germany
74	joint Institute for Nuclear Research (JINR), Dubna, Russia
75	Korea Institute of Science and Technology Information, Daejeon, Republic of Korea
76	KTO Karayay University, Konya, Turkey
77	Laboratoire de Physique Subatomique et de Cosmologie, Université Grenoble-Alpes, CNRS-IN2P3, Grenoble, France
78	Lawrence Berkeley National Laboratory, Berkeley, CA, United States
79	Lund University Department of Physics, Division of Particle Physics, Lund, Sweden
80	Nagasaki Institute of Applied Science, Nagasaki, Japan
81	Nara Women’s University (NWU), Nara, Japan
82	National and Kapodistrian University of Athens, School of Science, Department of Physics, Athens, Greece
83	National Centre for Nuclear Research, Warsaw, Poland
