Probing the neutron skin with ultrarelativistic isobaric collisions

Hanlin Li, Hao-jie Xu, Ying Zhou, Xiaobao Wang, Jie Zhao, Lie-Wen Chen and Fuqiang Wang

1 College of Science, Wuhan University of Science and Technology, Wuhan, Hubei 430065, China
2 School of Science, Huzhou University, Huzhou, Zhejiang 313000, China
3 School of Physics and Astronomy and Shanghai Key Laboratory for Particle Physics and Cosmology, Shanghai Jiao Tong University, Shanghai 200240, China
4 Department of Physics and Astronomy, Purdue University, West Lafayette, Indiana 47907, USA

(Dated: October 15, 2019)

Particle production in ultrarelativistic heavy ion collisions depends on the details of the nucleon density distributions in the colliding nuclei. We demonstrate that the charged hadron multiplicity distributions in isobaric collisions at ultrarelativistic energies provide a novel approach to determine the poorly known neutron density distributions and thus the neutron skin thickness in finite nuclei, which can in turn put stringent constraints on the nuclear symmetry energy.

PACS numbers: 25.75.-q, 21.60.-n, 21.10.Gv, 25.75.Gz

Introduction. Nuclei are bound states of protons and neutrons by the attractive nuclear force. The nuclear force is short ranged, and is surpassed by Coulomb repulsion between protons in heavy nuclei. This is compensated by more neutrons to keep heavy nuclei bound. With more neutrons comes the penalty symmetry energy associated with the asymmetry between the proton and neutron numbers. The symmetry energy influences the proton and neutron density distributions, and in particular, the neutron skin thickness (difference between the rms radii of the neutron and proton distributions, $\Delta r_{np} \equiv r_n - r_p$) [1]. The symmetry energy and its density dependence are critical for our understanding of the masses and drip lines of neutron-rich nuclei and the equation of state (EOS) of nuclear and neutron star matter [2, 10].

Measurements of the neutron density and the Δr_{np}, complemented by state-of-the-art theoretical calculations [11–14], can yield valuable information on the symmetry energy [15–18]. Exact knowledge of nucleon density distributions is also crucial to new physics search beyond the standard model [19]. Because protons are charged, its density distributions are well measured by electron scattering off nuclei [20, 21]. The neutron density distributions are not as well measured [17]. For example, the Δr_{np} measurements of the benchmark, closed shell and spherical 208Pb nucleus fall in the range of 0.15–0.22 fm with a typical precision of 20–50% [16, 17, 22]. One limitation is the inevitable uncertainties in modeling the strong interaction of the reaction mechanisms [22]. A promising way to measure neutron densities is through electroweak parity-violating electron scattering, exploiting the large weak charge of the neutron compared to the diminishing one of the proton [24, 25]. Such measurements, although much cleaner to interpret, require large luminosities [18]. The current measurement by PREX (Parity Radius Experiment) on the 208Pb Δr_{np} is $0.33^{+0.16}_{-0.18}$ fm [26]. In addition, the coherent elastic neutrino-nucleus scattering [27] also provides a clean way to extract the neutron densities, but the current uncertainty is too large [13].

The symmetry energy has been shown to affect observables in low to intermediate energy heavy ion collisions, such as the isospin diffusion [28, 29], the neutron-proton flow difference [30], the isospin dependent pion production [31], and light cluster formation [32]. Heavy ion collisions at relativistic energies are generally considered insensitive to nuclear structures and the symmetry energy. Recent studies of isobaric 44Ru+44Ru and 96Zr+96Zr collisions indicate, however, that nuclear density distributions have a noticeable effect on the total charged hadron multiplicity (N_{ch}) [33]. This can be understood because the numbers of participants (N_{part}) and binary nucleon-nucleon collisions (N_{bin}) differ slightly for different nuclear densities and because N_{ch} depends on N_{part} and N_{bin} in relativistic collisions. In fact, this can be readily used to distinguish simplistic Woods-Saxon nuclear density parameterizations from more sophisticated calculations by energy density functional theory (DFT) [34]. Since N_{ch} can be measured very precisely, we demonstrate in this work that the N_{ch} distributions in isobaric collisions may be used to determine the Δr_{np} (and hence the symmetry energy) to a precision that may exceed those achieved by traditional low energy nuclear experiments.

The symmetry energy and the neutron skin. The nuclear matter EOS is conventionally defined as the binding energy per nucleon and can be approximately expressed as

$$E(\rho, \delta) = E_0(\rho) + E_{\text{sym}}(\rho) \delta^2 + O(\delta^4),$$

where $\rho = \rho_n + \rho_p$ is the nucleon number density and $\delta = (\rho_n - \rho_p)/\rho$ is the isospin asymmetry with ρ_p (ρ_n) denoting the proton (neutron) density. $E_0(\rho) \equiv E(\rho, \delta = 0)$ and the symmetry energy is defined by $E_{\text{sym}}(\rho) = \frac{1}{2} \frac{\partial^2 E(\rho, \delta)}{\partial \delta^2} |_{\delta=0}$. At the saturation density ρ_0, the $E_0(\rho)$ can be expanded in $\chi = (\rho - \rho_0)/3\rho_0$ as
TABLE I: Effective nuclear rms radii, $\sqrt{\langle r^2 \rangle} = \sqrt{\int \rho(r) r^4 dr / \int \rho(r) r^2 dr}$, for neutron ($r_n$) and proton ($r_p$) distributions, and the neutron skin thickness ($\Delta r_{np} = r_n - r_p$) of the 96Ru and 96Zr nuclei, for four sets of the symmetry energy slope parameters $L(p_c)$, $L(\rho_0)$. The 208Pb Δr_{np} values are also listed. The unit for the radii is fm and for the slope parameters is MeV.

	$L(p_c)$	$L(\rho_0)$	r_n	r_p	Δr_{np}	r_n	r_p	Δr_{np}	Δr_{np}
Lc20	20	13.1	4.386	4.27	0.115	4.327	4.316	0.011	0.109
Lc47	47.3	55.7	4.449	4.267	0.183	4.360	4.319	0.042	0.190
Lc70	70	90.0	4.494	4.262	0.232	4.385	4.326	0.066	0.264
SLy4	42.7	46.0	4.432	4.271	0.161	4.356	4.327	0.030	0.160

$E_0(\rho) = E_0(\rho_0) + \frac{1}{2} K_0 \chi^2 + \frac{1}{12} J_0 \chi^3 + O(\chi^4)$, where K_0 is the incompressibility coefficient and J_0 is the skewness coefficient. Similarly, at a reference density ρ_r, $E_{sym}(\rho) = E_{sym}(\rho_r) + L(\rho_r) \chi_r + \frac{1}{2} K_{sym}(\rho_r) \chi_r^2 + O(\chi_r^3)$, where $\chi_r = (\rho - \rho_r)/3\rho_r$ with the slope parameter $L(\rho_r) = 3\rho_r \frac{dE_{sym}(\rho)}{d\rho} \bigg|_{\rho=\rho_r}$ and the curvature parameter $K_{sym}(\rho_r) = 9\rho_r^2 \frac{d^2E_{sym}(\rho)}{d\rho^2} \bigg|_{\rho=\rho_r}$. The $L \equiv L(\rho_0)$ and $K_{sym} \equiv K_{sym}(\rho_0)$ characterize the density dependence of the $E_{sym}(\rho)$ around ρ_0.

In the present work, we use two different nuclear energy density functionals to describe the properties of finite nuclei, namely, the standard Skyrme-Hartree-Fock (SHF) model (see, e.g., Ref. [33]) and the extended SHF (eSHF) model [34, 37]. These two models have been shown to be very successful in describing the structures of finite nuclei, especially global properties such as binding energies and charge radii. Compared to SHF, the eSHF model contains additional momentum and density-dependent two-body forces to effectively simulate the momentum dependence of the three-body forces [37]. Fitting to data using the strategy in Ref. [38], we first obtain a parameter set (denoted as Lc47) within eSHF by fixing $E_{sym}(\rho_c) = 26.65$ MeV and $L(\rho_c) = 47.3$ MeV at the subsaturation density $\rho_c = 0.11\rho_0/0.16$. We also construct two more parameter sets denoted as Lc20 and Lc70 with $L(\rho_c) = 20$ MeV and 70 MeV, respectively, keeping $E_{sym}(\rho_c) = 26.65$ MeV [38], to cover the current range of uncertainty on the symmetry energy.

Table I lists the nuclear radii of 96Zr and 96Ru, assuming spherical symmetry, from the eSHF calculations using Lc20, Lc47 and Lc70, together with the $L(\rho_0)$ and $L(\rho_c)$ parameters. Also included are the corresponding results from the SHF calculations with the famous SLy4 interaction [40, 41]. It is seen that the four interactions give similar proton rms radius r_p for 96Zr and 96Ru since they are experimentally well constrained, but the neutron radius r_n increases with $L(\rho_c)$ and L, leading to a positive correlation between Δr_{np} and $L(\rho_c)$ (and L) as expected. The Δr_{np} of 208Pb nucleus from our calculations are also listed in Tab. I We note that those values essentially cover the current uncertainty in the 208Pb measurements.

![FIG. 1: (Color online). Proton and neutron density distributions of (a) 96Ru and (b) 96Zr nuclei from Lc20, Lc47, Lc70 and SLy4.](image-url)

Heavy ion collision models. We use four typical, commonly used models for relativistic heavy ion collisions. The Hijing (Heavy ion jet interaction generator, v1.411) model [42, 43] simulates heavy ion collisions by binary nucleon-nucleon (NN) collisions based on the Glauber theory, incorporating nuclear shadowing effect and partonic energy loss in medium. Each NN collision is described by multiple mini-jet production inspired by perturbative Quantum Chromodynamics, with the LUND [44] string fragmentation. The default version of AMPT (A Multi-Phase Transport, AMPT-def, v1.26) model [45] uses Hijing but subjects the mini-jet partons to partonic scatterings via ZPC [46] and, after fragmentation, hadronic scatterings via ART [47]. The string melting version of AMPT (AMPT-sm, v2.26) [48] converts all hadrons from Hijing to partons under partonic scatterings, and uses a simple coalescence to hadronize, followed by hadronic rescatterings. The UrQMD (Ultra relativistic Quantum Molecular Dynamics, v3.4) model [49, 50] is a microscopic transport model with covariant propagation of hadrons on classical trajectories, combined with stochastic binary scatterings, color string formation and resonance decays. Except for the input nuclear density distributions, all parameters are set to default. About 30 million events within the impact parameter range [0, 20] fm are simulated in each model for each set of nuclear densities for Ru+Ru and Zr+Zr collisions at $\sqrt{s_{NN}} = 200$ GeV.

Model results of N_{ch} distributions. Charged hadrons are counted with transverse momentum $p_T > 0.2$ GeV/c.
and pseudo-rapidity $|\eta| < 0.5$. Figure 2(a) shows the N_{ch} distributions in Zr+Zr collisions calculated by the four models using the nuclear density set Lc47. The distributions are similar except at large N_{ch}. The absolute N_{ch} values are subject to large model dependence because particle production in heavy ion collisions is generally hard to model precisely. The shape of the N_{ch} distribution is, on the other hand, more robust. It is determined by the interaction cross-section as a function of the impact parameter (b). While the tail fall-off shapes are similar among AMPT-sm, AMPT-def, and UrQMD, that of Hijing is distinct. To quantify the shape, we fit the tail distributions by

$$dP/dN_{ch} \propto -\text{Erf}(-(N_{ch}/N_{1/2} - 1)/w) + 1,$$

where $N_{1/2}$ is the N_{ch} at half height and w is the width of the tail relative to $N_{1/2}$. The fitted curves are superimposed in Fig. 2(a). Figure 2(b) depicts the fit w values. The Hijing model has a factor of ~ 2 narrower tail than the other three, transport models which are similar. This feature can be used to readily distinguish models once data are available, though not the main goal of this work.

The main goal of this work is to identify which density set best describes data and hence to determine the neutron skin thickness and the symmetry energy. In a given model, at a given b, the N_{part} and N_{bin} slightly differ for different nuclear densities. Since N_{ch} generally depends on N_{part} and N_{bin}, those differences can produce an effect on N_{ch}. The effect is understandably small, hardly observable in a plot of the N_{ch} distributions themselves, but can be magnified by the ratio of the N_{ch} distribution in Ru+Ru to that in Zr+Zr [34]. These ratios using the four sets of densities, in AMPT-sm as an example, are shown in Fig. 3. The splittings of the N_{ch} tails are clear.

The ratios in Fig. 3 are illustrative to highlight the differences but are cumbersome to quantify. As seen from Fig. 2(b), the tail widths are equal among the densities in a given model, so the splittings are mostly due to the slight shifts in $N_{1/2}$, or differences in the average N_{ch} values. The $N_{1/2}$ value is sensitive to the chosen fit range. We thus use the relative $\langle N_{ch} \rangle$ difference between Ru+Ru and Zr+Zr,

$$R = 2\frac{\langle N_{ch} \rangle_{\text{RuRu}} - \langle N_{ch} \rangle_{\text{ZrZr}}}{\langle N_{ch} \rangle_{\text{RuRu}} + \langle N_{ch} \rangle_{\text{ZrZr}}},$$

(3)

to quantify the splitting of the N_{ch} tails. Experimental measurements of N_{ch} is affected by tracking efficiency, usually multiplicity dependent. While this effect is mostly canceled in R, it is better to use only central collisions, say top 5% centrality, where the tracking efficiency is constant to a good degree. To experimentally determine the centrality percentage, the peripheral collisions that are not recorded because of online trigger inefficiency should be taken into account. This trigger inefficiency can be experimentally corrected. Again, since R is a relative measure between Ru+Ru and Zr+Zr collisions, much of the experimental effects are cancelled.

The R in each model must depend on how much the Ru and Zr nuclear density distributions differ, which can be characterized by the neutron skin thickness of the Zr (or Ru) nucleus. We therefore plot in Fig. 3 the R in the top 5% centrality against Δr_{np} of the Zr nucleus from the eSHF (SHF) calculations of Lc20, Lc47 and Lc70 (SLy4). It is found that R monotonically increases with Δr_{np}. This is because, with increasing Δr_{np}, the difference between Ru and Zr densities increases. This results in an increasing difference in N_{ch} between Ru+Ru and Zr+Zr collisions.

Figure 4 further shows that the value of R has a relatively small model dependence. Experimentally, the N_{ch} distributions can be measured very precisely. The relative $\langle N_{ch} \rangle$ difference in central collisions is immune to many experimental uncertainties. Figure 4 thus strongly
suggests that the isobar data may determine Δr_{np} relatively precisely, a conclusion that is especially strong when considering that the large difference in the N_{ch} tails between Hijing and the other models can first be distinguished by data. The 208Pb Δr_{np} calculated by the eSHF (SHF) are written on the top of Fig. 4. The band indicates the experimental range of the 208Pb Δr_{np}, which covers the entire parameter range of our calculations. Our results in Fig. 4 indicate that with a given measurement of R, the precision in the derived Δr_{np} of 96Zr can be as good as 0.03 fm (or about 15%), as illustrated by the lower band (taking hypothetically $R = 0.06$). This would be an improvement of a factor of several over the current constraint from 208Pb. This shall provide a significant input to help constrain the symmetry energy, bearing important implications to nuclear matter and neutron star EOS.

We have assumed spherical nuclei in our calculations. The main idea of our work is still valid with deformed nuclei. There are a number of promising ways to determine neutron skin thickness from heavy ion collisions [51–54].

Conclusions. The neutron density distribution and the neutron skin thickness are not well measured experimentally but are crucial for our understanding of several important physics. In the present work, we calculated nuclear densities by energy density functional theory using several symmetry energy parameters. We show, using four heavy ion collision models, that the charged hadron multiplicity difference between isobar 96Ru+96Ru and 96Zr+96Zr collisions has an exquisite sensitivity to the neutron skin and symmetry energy, with small model dependence. Because the charged hadron multiplicity can be precisely measured and because the systematic uncertainties are largely canceled between the isobar collisions conducted at RHIC in 2018, our findings suggest potentially significant improvement to neutron skin and symmetry energy determination using relativistic heavy ion collision data.

Acknowledgments. The work is supported in part by the National Natural Science Foundation of China (Grant Nos. 11905059, 11625521, U1732138, 11605054, 11505056, 11847315), the Major State Basic Research Development Program (973 Program) in China under Contract No. 2015CB856904, and the U.S. Department of Energy (Grant No. de-sc0012910). HX acknowledges financial support from the China Scholarship Council.

FIG. 4: (Color online). The relative $\langle N_{ch} \rangle$ ratio R as a function of the Zr neutron skin thickness. The four sets of data points in order from left to right are from Lc20, SLY4, Lc47, Lc70 densities.
[21] L. Lapikas, Nucl. Phys. A553, 297e (1993).
[22] C. M. Tarbert et al., Phys. Rev. Lett. 112, 242502 (2014), 1311.0168.
[23] L. Ray, G. W. Hoffmann, and W. R. Coker, Phys. Rept. 212, 223 (1992).
[24] T. W. Donnelly, J. Dubach, and I. Sick, Nucl. Phys. A503, 589 (1990).
[25] C. J. Horowitz, G. W. Hoffmann, and W. R. Coker, Phys. Rept. 212, 223 (1992).
[26] T. W. Donnelly, J. Dubach, and I. Sick, Nucl. Phys. A503, 589 (1990).
[27] S. Abrahamyan et al., Phys. Rev. Lett. 108, 112502 (2012), 1201.2568.
[28] D. Akimov et al. (COHERENT), Science 357, 1123 (2017), 1708.01294.
[29] L.-W. Chen, C. M. Ko, and B.-A. Li, Phys. Rev. Lett. 94, 032701 (2005), nucl-th/0407032.
[30] M. B. Tsang, Y. Zhang, P. Danielewicz, M. Famiano, Z. Li, W. G. Lynch, and A. W. Steiner, Phys. Rev. Lett. 105, 122701 (2005), 0811.3107.
[31] B.-A. Li, Phys. Rev. Lett. 85, 4221 (2000), nucl-th/0009069.
[32] B.-A. Li, Phys. Rev. Lett. 91, 192701 (2003), nucl-th/0205002.
[33] L.-W. Chen, C. M. Ko, and B.-A. Li, Phys. Rev. C68, 017601 (2003), nucl-th/0302068.
[34] X. B. Wang, J. L. Friar, and A. C. Hayes, Phys. Rev. C94, 034907 (2016), 1607.02149.
[35] L.-W. Chen, C. M. Ko, and B.-A. Li, Phys. Rev. C68, 017601 (2003), nucl-th/0302068.
[36] H.-j. Xu, X. Wang, H. Li, J. Zhao, Z.-W. Lin, C. Shen, and F. Wang, Phys. Rev. Lett. 121, 022301 (2018), 1710.03086.
[37] H. Li, H.-j. Xu, J. Zhao, Z.-W. Lin, H. Zhang, X. Wang, C. Shen, and F. Wang, Phys. Rev. C98, 054907 (2018), 1808.06711.
[38] E. Chabanat, J. Meyer, P. Bonche, R. Schaeffer, and P. Haensel, Nucl. Phys. A627, 710 (1997).
[39] N. Chamel, S. Goriely, and J. M. Pearson, Phys. Rev. C80, 054304 (2009), 0911.3346.
[40] Z. Zhang and L.-W. Chen, Phys. Rev. C94, 064326 (2016), 1510.06459.
[41] Y. Zhou, L.-W. Chen, and Z. Zhang, Phys. Rev. D99, 121301 (2019), 1901.11364.
[42] Z. Zhang and L.-W. Chen, Phys. Lett. B726, 234 (2013), 1302.5327.
[43] E. Chabanat, P. Bonche, P. Haensel, J. Meyer, and R. Schaeffer, Nucl. Phys. A635, 231 (1998), [Erratum: Nucl. Phys.A643,441(1998)].
[44] X. B. Wang, J. L. Friar, and A. C. Hayes, Phys. Rev. C94, 034314 (2016), 1607.02149.
[45] X.-N. Wang and M. Gyulassy, Phys. Rev. D44, 3501 (1991).
[46] B. Zhang, C. Ko, and Z.-W. Lin, Phys. Rev. C61, 067901 (2000), nucl-th/9907017.
[47] B. Zhang, Comput. Phys. Commun. 109, 193 (1998), nucl-th/9709009.
[48] B.-A. Li and C. M. Ko, Phys. Rev. C52, 2037 (1995), nucl-th/9505016.
[49] Z.-W. Lin and C. Ko, Phys. Rev. C65, 034904 (2002), nucl-th/0108039.
[50] S. A. Bass et al., Prog. Part. Nucl. Phys. 41, 255 (1998), nucl-th/9803035.
[51] M. Bleicher et al., J. Phys. G25, 1859 (1999), hep-ph/9904007.
[52] A. Goldschmidt, Z. Qi, C. Shen, and U. Heinz, Phys. Rev. C92, 044903 (2015), 1507.03910.
[53] G. Giacalone, Phys. Rev. C99, 024910 (2019), 1811.03959.
[54] L.-G. Pang, K. Zhou, and X.-N. Wang (2019), 1906.06429.
[55] G. Giacalone (2019), 1910.04673.