A fully genetically encoded protein architecture for optical control of peptide ligand concentration

Daniel Schmidt1, Paul W. Tillberg2,*, Fei Chen1,* & Edward S. Boyden1

Ion channels are among the most important proteins in biology, regulating the activity of excitable cells and changing in diseases. Ideally it would be possible to actuate endogenous ion channels, in a temporally precise and reversible manner, and without requiring chemical cofactors. Here we present a modular protein architecture for fully genetically encoded, light-modulated control of ligands that modulate ion channels of a targeted cell. Our reagent, which we call a lumitoxin, combines a photoswitch and an ion channel-blocking peptide toxin. Illumination causes the photoswitch to unfold, lowering the toxin’s local concentration near the cell surface, and enabling the ion channel to function. We explore lumitoxin modularity by showing operation with peptide toxins that target different voltage-dependent K⁺ channels. The lumitoxin architecture may represent a new kind of modular protein-engineering strategy for designing light-activated proteins, and thus may enable development of novel tools for modulating cellular physiology.
on channels govern cellular signaling and computation, in neurons and neural compartments as well as other excitable cell classes, and are significant drug targets for a variety of disorders. Ideally, one could genetically target ion channels for perturbation to assess their causal contribution to complex systems. Earlier studies have approached this problem by several kinds of innovation. For example, one line of inquiry has resulted in genetically encoded membrane-targeted peptide toxins that can be expressed in cell types of interest. Peptide toxins comprise a broad class of genetically encoded ion channel modulators from venomous animals that are capable of recognizing targets from every major ion channel family, with extraordinary specificity. These reagents function without requiring exogenously supplied chemicals, and are inducible and reversible over timescales of hours to days, and have been shown to function in mammalian brain in vivo. A second line of inquiry has utilized light-responsive chemical modulators that are anchored to specific sites engineered into ion channels (for example, SPARK, LiGluR and HyLighter), and thus are capable of fast induction and reversal with light. They incorporate exogenously supplied engineered chemicals, which bind to engineered sites on targeted ion channels. The first technology is fully genetically encoded but not light-modulatable; the second technology is rapidly light-modulatable but not genetically encoded.

Here we devise a novel protein architecture capable of modulating endogenous ion channels, but which is both fully genetically encoded, and actutable by light. We accordingly here adapt three different technology building blocks in a novel protein architecture to yield a fully genetically encoded reagent that can actuate endogenous voltage-gated K⁺ (Kv) channels with light. We create a fusion protein containing a peptide toxin as the ion channel ligand and a light-oxygen-voltage (LOV) domain photoswitch tethered to the cell membrane. We hypothesize that upon illumination, conformational changes in the LOV domain lower the local concentration of the peptide toxin near the cell surface, resulting in a decreased apparent association rate constant (k⁺) for binding to the channel (Ch) and then blocking it (Ch × LL or Ch × LD). As approximations, we assume that the lumitoxin and channel are expressed to similar levels, and further assume that the dynamics of light-dependent conformational changes in the LOV-Jz photoreceptor are independent of the peptide toxin/channel binding equilibrium.

We found that when using published values for the binding of α-DTX to Kv24,25 and the light-dependent transitions of an isolated LOV2-Jz domain from Avena sativa26,27 (see Methods for details), the system equilibrates with most ion channels (>90%) being occupied by a peptide toxin—that is, most Kv channels are blocked by the tethered α-DTX in the dark state (Fig. 1d, compare cyan (blocked channel) and orange (unblocked channel) lines). Illumination leads to a rapid increase in unblocked ion channels, followed by a somewhat slower re-blocking of those channels when illumination ceases. On the basis of our simulations we predict that a synthetic fusion protein, as we described above, will react to illumination with reasonably fast response times (s) and will allow fully reversible repeated activation/deactivation cycles.

Lumitoxins mediate optical modulation of cellular K⁺ current. We synthesized a gene coding for a lumitoxin that contained Dendroaspis angusticeps α-DTX, which specifically binds to Kv1.1 and Kv1.2 channels, connected to the A. sativa LOV2-Jz domain (AsLOV2) via a 26-residue flexible linker. This fusion protein was targeted for the secretory pathway using a cleavable signal peptide and was anchored to the extracellular side of the cell membrane by a single-pass transmembrane domain derived from the human platelet-derived growth factor receptor (PDGF-R). We expressed α-DTX-lumitoxins in cultured PC12 cells co-transfected with Kv1.2, and saw healthy expression (Fig. 2a), as might be expected, given that both AsLOV2-containing proteins and peptide toxins had previously been shown separately to express in mammalian cells. Whole-cell patch clamp recordings showed characteristic baseline voltage-dependent K⁺ currents in a cell expressing α-DTX–lumitoxins (Fig. 2b, left panel). Illumination of the same cell with modest levels (500 μW mm⁻²) of blue (455 nm) light increased the whole-cell K⁺ current approximately twofold within seconds (Fig. 2c, orange circles and Fig. 2b, middle panel). After cessation of illumination, the whole-cell K⁺ current recovered to pre-illumination levels within 2 min (Fig. 2b, right panel).

As predicted by our model (Fig. 1), the majority of ion channels were blocked in the dark state, as judged by the baseline behaviour to gain insight into the characteristic parameters. Our simulation predicts that the number of peptide collisions with the cell surface is decreased as the tether length is increased, the computational analogue to the unfolding of the Jz helix. Specifically, by inspecting the probability distribution in the x-z plane (that is, looking at the lumitoxin from the side as in Fig. 1a) we get an appreciation of the changes in the mean peptide localization. Shown are the simulation results for a six-membered and a 27-membered membrane linker (Fig. 1b, upper left and lower left panels, respectively). The distribution difference demonstrates that after unfolding of the Jz helix, it is more likely to find the peptide 6 nm away from the membrane plane; the local concentration close to the peptide toxin’s binding site on a membrane-bound ion channel would accordingly be greatly reduced (Fig. 1b, right panel).
K⁺ currents recorded in cells co-expressing both αDTX–lumitoxin and Kv1.2 versus cells expressing Kv1.2 alone (mean current at +50 mV: 40 ± 12 pA/pF versus 206 ± 24 pA/pF, P < 0.0001 two-tailed Student’s t-test, n = 7–20). Furthermore, as predicted by our model, the whole-cell K⁺ current rose within seconds and then, post illumination, attenuated back to baseline somewhat more slowly, but completely (Fig. 2c, orange circles).

An important aspect of the utility of peptide toxins in physiology and neuroscience is their excellent specificity; they can differentiate between subfamilies of closely related ion channels and receptors. To test whether the observed light-dependent current increase was ion channel-specific, we co-expressed the Shaker channel and αDTX–lumitoxin in the same cell. Kv1.2 and Shaker are similar in many aspects, but differ in affinity, while its affinity for Shaker is very low (micromolar)²⁵. As expected, illumination did not alter whole-cell K⁺ current in cells that co-expressed Shaker and αDTX–lumitoxin, demonstrating that peptide toxins embedded within lumitoxins maintain their binding specificity (Fig. 2c, black circles). Neither were the properties of the AsLOV2 domain overtly perturbed by embedding within a lumitoxin, as current modulation was dependent on blue light, and was not affected by green light (Fig. 2d). We measured the time constant for light-driven lumitoxin effect—that is, the time constant constant by which the Jα helix unfolds and presumably lowers the local αDTX concentration near the cell surface—leading to an increase in available Kv1.2 channels. We found the time constant to be a function of irradiance, consistent with Jα helix unfolding being dependent on photon absorption. The apparent half-maximum time constant is achieved at 80 μW mm⁻² (Fig. 2e, left panel). Thus, note that K⁺ current could be modulated by non-damaging, relatively low light intensities. On the other hand, the post-illumination recovery of K⁺ current to pre-illumination baseline, associated with an increase in αDTX concentration close to the membrane-bound ion channel and increased block of Kv1.2, solely depends on the spontaneous dark-state refolding of LOV2–Jα and is thus expected to be independent of irradiance, which we confirmed experimentally (Fig. 2e, right panel). Repeated stimulation with blue light demonstrates that αDTX–lumitoxins are able to carry out consecutive K⁺ current modulations and are not undergoing destructive conformational changes (Fig. 2f).

The lumitoxin architecture enables rational protein design. We assessed the tunability of the lumitoxin architecture by utilizing a family of mutated αDTX variants, which are known to possess altered affinity towards Kv1.2. High-affinity binding of αDTX depends crucially on the peptide residues K5 and L9, and changing them to alanine decreases the binding affinity by three orders of magnitude²⁴. We thus expect two things when introducing the
corresponding mutations K5A and L9A into αDTX-lumitoxins. First, we expect the initial K\(^+\) current to increase, as our model predicts that decreasing the peptide affinity results in fewer channels being blocked in the dark (off) state. Second, we expect the activation ratio \((I_{\text{off}}/I_{\text{dark}})\) to decrease as fewer channels are now primed to become unmasked by illumination. We experimentally confirmed these expectations, and, after investigation of a suite of mutated αDTX–lumitoxins (Fig. 3a), we found that both baseline current and activation ratio depended monotonically on peptide toxin affinity, as would be expected given previous reports on free, that is, non-tethered, toxin\(^2^4\), and consistent with our predictions. For example, the mutations R3A and R4A, which decrease the binding affinity 10-fold for free αDTX, decreased the activation ratio by 20%. The mutations K5A and L9A, which decrease the binding affinity >1,000-fold, completely abolished the light-dependent increase in K\(^+\) current (Fig. 3b).

We do not know whether mutations in αDTX affect the lumitoxin affinity through altering peptide toxin/channel association or dissociation. However, by using the model developed above, we can simulate the theoretical activation ratios of αDTX–lumitoxin variants using either assumption and found that the effects of all mutations except H10A on the experimentally determined activation ratios were consistent with a decrease in the association rate constant (Fig. 3b, solid lines).

Lumitoxins are modular and channel specificity is adjustable. In the ideal case, it would be possible to tether multiple light-switchable protein ligands to the cell membrane without any optimization of the non-ligand protein parts. Consequently, we explored whether the lumitoxin architecture fulfills this requirement by creating lumitoxin genes containing different peptide toxins that target distinct Kv channel types. Whereas αDTX blocks both Kv1.1 and Kv1.2 channels\(^2^8\), *Dendroaspis polyplepis* DTX-K, which shares only 63% sequence identity with αDTX, blocks mainly Kv1.1 channels\(^2^9\). Conkunitzin-S1 (CONK1), isolated from the marine cone snail *Conus striatus*, specifically blocks the Drosophila Shaker Kv channel\(^3^0\). We expressed the resulting lumitoxins in mammalian cell culture co-transfected with the Kv channels Kv1.1, Kv1.2 and Shaker. We used a variant of the Shaker Kv containing a mutation (K427D) shown to increase CONK1 affinity\(^3^0\). Whole-cell patch clamp electrophysiology reveals a clear specificity in the ability of lumitoxins to modulate K\(^+\) currents in response to blue-light illumination (500 \(\mu\)W mm\(^{-2}\)). Whereas αDTX-containing

![Figure 2](image-url)
lumitoxins affect both Kv1.1 and Kv1.2, but not Shaker (K427D) (Fig. 3c upper row, Fig. 3d). DTX-K-containing lumitoxins are specific for Kv1.1 (Fig. 3c middle row, Fig. 3d). Similarly, CONK1-containing lumitoxins only affect Shaker Kv channels, but not the mammalian homologs Kv1.1 or Kv1.2 (Fig. 3c bottom row, Fig. 3d). These results imply that lumitoxin specificity can be altered by swapping the genetically encoded protein ligand without the necessity of optimizing non-ligand protein domains, resulting in multiple genetically encoded reagents for the actuation of specific subclasses of endogenous Kv channels.

Discussion

We here present the architecture of a fully genetically encoded tool for modulating the concentration of a protein ligand near the surface of a specified cell or set of cells by light. The resultant ‘lumitoxins’ are fusion proteins of two fundamentally useful functional elements, peptide neurotoxins and the photoreceptor LOV2-Jα, which serves as the tether between the protein ligand and the membrane. We demonstrated the functionality of our technology by creating several genetically encoded peptide toxins, targeting different classes of Kv channels, whose concentration could be modulated by light, in a fully reversible manner. Our architecture was capable of yielding lumitoxins that modulated K⁺ currents with subfamily precision (for example, favouring Kv1.1 over Kv1.2 with perfect discrimination), demonstrating that peptide toxins, when part of a light-activated membrane-tether fusion protein, retain their activity and specificity. This specificity might be further facilitated by the addition of subcellular protein-trafficking motifs so that, for example, just the subset of Kv channels located on the axons or dendrites might be modulated. Exploring whether other classes of ion channels, and other membrane proteins such as neurotransmitter receptors, GPCRs, receptor tyrosine kinases and so forth, can be actuated by lumitoxins may represent a natural field of exploration in the future.

In earlier studies, the LOV domain had been customized in several ways to embed various different peptides and enzymes within or next to the LOV domain. Our new architecture is modular in the sense that the LOV domain does not require customization for each target peptide and thus might present a more general solution to make peptides or proteins available...
upon illumination. Another set of earlier studies fused protein ligands to membrane anchors, enabling fully genetically encoded blockade of endogenous ion channels9–11. Our architecture builds on these pioneering studies by enabling ion channel activity to be dynamically controlled over rapid timescales. Finally, a third line of past inquiry utilizes light-responsive, externally added chemical ligands anchored to specific sites engineered into ion channels13–19, enabling fast induction and reversal, by modulating the concentration of the ligand relative to the ion channel surface. Our current methodology extends these ideas by being fully genetically encoded, eliminating the need for exogenous chemical application.

Table 1	Lumitoxin construct generation.	
Fusion protein component	**Amino acid sequence**	**DNA sequence**
Secretion signal/FLAG tag	MSALL ILALV GAAVA	atg aqc gcc ctg ctg atc ctg ggc ctg atc ctg ggc gcc
	DYKDDD DDKL	gcc ggc ggc gac aag gag gcag gac aag ctg
2DTX (wt)	QPRRK LCLIL RNPGGR	cag ccc aga aga aag ctg tgc atc ctg cag aca aac
	CYDKF PAPFY NQKKK	ccc ggc aga tgc tac gac aag acc gcc ttc ttc tac
	QCERF DWSGC GNNSN	taa cacc cag aag cag tgc gag aga ttc gag
	RFKFR EECRR TCIG	tgg aqc ggc tgc ggc gac aac agc aag aac ttc ttc
		gtc gac gag tgc aga aag acc gtc ttc gcc ggc
DTX-K	AAAKC KLPLR IGPCG	ggc gcc aag tac tgc aag ctg gcc ctg atc gag tgg
	RKPIS FYWYM KAKQC	cca tgc aag cgg aac aag atc gcc ttc tac aag ttc
	LFWFDY SGGCG NANRF	cgg tgc gga ggc aac gcc aac cgc ttc aag acc ttc
	KTIBE CRRTC VG	gag taa tgc aga acc gcc tgc gag ttc aag
CONKI	KDRPS LCDLP ADSGS	aag cag ccg ccc agc tgc tgc gac cct gcc gat
	GTRAE KRIYY NARK	ccc ggc aag cgc agg tgc cct gcc ttc ttc ctc ttc
	QCDFR DTFTQ GGNEN	ttc gcc tctgcc aag ggc gag agg ccg atc tac
	NFRTF YDCQR TCLYR	tca aac gcc gag ggc gag aag gag aac ttc ggg
		cgg acc tac tgc cag aac gcc tgc ttc ttc tac ttc
Linker	GTAAA DYKDD DDKD	ggt acc gcc ggc gcc gag tac aag gag gac gac
	AAAG GCNC NEF	aag atc gag gcc gcc gcc ggc gcc gtc ttc gag
LOV2-Jx	VATTL ERIEK NFVIT	tgg gct act aca ctt gaa cgt att gag aag aac ttt
	DPFLP DNPPI FASDS	gtc att act gac cca aga tgg cca gat aac ctt
	FLQFR EYSRE EILGR	at a ttc gcc tgc gat att ttc tgc gag aca gag
	NCRLQ GQPET DRTAV	tat agc gct gaa aat tgg gga aag acc tgc agg
	RKKRD GIDNO TEVIT	ttt cta caa ggt cct gaa act gtc gcc gcg aca gtc
	QLNYX TKSGF KPVNL	aga aac atc gag gcc ata gat aac cca aca gag
	FHLQQP MRDQK GDVQY	gtc act gtt cag ctg att att tat aca aag aat ggt
	FIGVQ LDDGT HVRDA	aag aac ttc ggc aac ctt ctc tgg cag cct att
	AEREG VMLIK KTAEN	cga gat cag aag gag gat ctc gac tac att ttt ggg
	IDEA AKEL	ggt ctc gag aag gaa gtc cag atg att aag aat ggt
		gca gaa aat att gat gag gcg gca aag ctt
PDGF-R-mCherry	RAVVG QDQF VIVVP	cgc gtc gct gtt ggc cag cag cag gac atc
	HLSLVF KVVVI SAILA	gtc gtc gta cca cac ctc ttc ccc ttt aag gtt gtt gtg
	LVVLVF IISLL ILILML	gtt gct ctc ggc cct gct gct ctc gcc aac gcc
	WQKPP PRIMI VISGEE	atc tcc aac atc atc atc aag cct ctt ctt cgg cag aag
	EDNMA IIEK MRFKV	aaa cca ctt agg att ctt atg att gag aag ggc gag
	HMEGS VNGH FEIEG	gag gat aac atg gcc atc aac aag gag gag gcc tgc
	EGEGR PYBTG QTAKL	ttc aac ggc ggc gac gcc ggc ggc ggc gcc ggc gcc
	KVTKG GLPFLF AMDIL	cag gag ttc gag agg gag gag gag gcc ggc ccc
	SPQFM YGSKA YVHKP	cag gag ggc acc acc agg aag ctg ggg ctg aag
	ADIPD YLKL FPEEGF	cgg aag agg agg gcc gcc ctg gcc gcc ggt gcc
	kWVFR MNFSD GGVVT	gtc cct tcc gag atg tgc cag gcc gcc gcc gcc gcc
	VQDQG SLQGD EFYK	ttc cct gcc ggc ctg gcc gcc gcc gcc gcc gcc
	VKLNG TNPS DOPJUN	aac gcc ggc gcc gcc atc ttc gcc ttc gcc ttc
	QKKTQ DWLASS SERMY	gac gcc gcc ggc ggc ggc ggc gcc gcc gcc gcc
	PEDGA LKGEIK QRLKL	gac gcc ctc ctc ctc ctc ctc gcc gcc gcc gcc
	KDGHH YDAEV KTTYK	gcc gta atc cag aag aac acc atg ggc gag ggc
	AKKPV QLPYA YNVNI	ctc ctc gcc gag agg gcc gcc gcc gcc gcc tgg
	KLDIT SHNED YTITVE	aag ggc gag atc aag cag agg ctg aag ctg gag
	QYBRA EGRHS TGMD	ggc ggc cac tac gac gct gag tgc aag acc acc ttc
	ELYK*	aag gcc aag aag cgc ctc gag ctc gcc gcc tgc
		aac gcc aac gcc ctc gag ctc gcc gcc tgc
		aac gcc aac gcc gcc gcc gcc tgc
		aac gcc aac gcc gcc gcc tgc
		aac gcc aac gcc gcc gcc tgc
		aac gcc aac gcc gcc gcc tgc
		aac gcc aac gcc gcc gcc tgc
		aac gcc aac gcc gcc gcc tgc
		aac gcc aac gcc gcc gcc tgc
		aac gcc aac gcc gcc gcc tgc
		aac gcc aac gcc gcc gcc tgc
		aac gcc aac gcc gcc gcc tgc
		aac gcc aac gcc gcc gcc tgc
		aac gcc aac gcc gcc gcc tgc

CONKI, Conkunitzin-S1; DTX, a-Dendrotoxin; LOV2, light-oxygen-voltage domain; PDGF-R, platelet-derived growth factor receptor.
We developed an analytical model for lumitoxin function, based on biophysical principles, and focusing on the hypothesis that the illumination of the lumitoxin would, as the LOV2-J2 unfold, modulate the local concentration of the peptide toxin near the cell surface when expressed on cellular membranes. In our theory, the signal magnitude is not determined by the detailed interactions between the LOV2 domain and the coupled effector domain (here, a peptide toxin), as in past LOV-based optogenetic tools, but rather by the difference in length and rotational freedom of the J2 helix between lit and dark states, which directly influences the difference in local concentration near the cell surface. Both the apparent forward and backward rates of the zDTX-containing lumitoxins are similar to the unfolding and folding kinetics of the isolated AsLOV2 domain, hinting at the rate-limiting step in light switching for lumitoxins utilizing AsLOV2 as the photoswitch. Our models, protein ligand swaps, and mutagenesis data suggest that the lumitoxin architecture is sufficiently modular for AsLOV2 properties such as kinetics, helix bending, and response to light, making it a potentially important modular and tunable architecture in the field of engineered light-activated proteins. Note that, in this context, the high light sensitivity of lumitoxins (activated by as little as 10 µW/mm²) relative to ‘traditional’ optogenetic tools such as ChR2 (routinely driven by >1,000 µW/mm²) may enable lumitoxins to be incorporated into existing experimental contexts without requiring disturbance of other engineered signaling pathways.

Systematic studies of a variety of different protein ligands, together with other structural features of lumitoxins such as linker length, composition and choice of membrane anchor, are needed to expand the family of lumitoxin reagents and improve its functional characteristic. Lumitoxins capable of blocking channels in response to light, in addition to mediating their actuation, would also be particularly useful. In the future, the lumitoxin architecture, or future variants thereof, might be utilized to tether arbitrary genetically encoded payloads beyond Kv channel modulating protein ligands—neuropeptides, growth factors, signaling domains—close to membrane-associated ion channels and receptors without requiring extensive re-optimization of the protein architecture.

Methods

Modelling tethered-particle motion and lumitoxin stimulation. A system of two spheres, representing a LOV2 domain (2 nm diameter) and a peptide toxin (0.75 nm diameter), connected to each other and a solid wall via linkers with a variable number of elements (0.2 nm diameter) representing linker amino acids, was simulated in MATLAB. Each linker element (n) was connected to its neighboring linker elements (n+1 and n−1) with springs (spring constant 0.5 N m⁻¹ nm⁻²) at the distance of a peptide bond (0.4 nm). Pairs of second nearest neighbour elements were also connected to each other with a spring (spring constant 0.25 N m⁻¹ nm⁻²) in order to maintain the equilibrium bond angle between them at 109 degrees. Fluctuations of this system because of Brownian motion took the form of r = F_random + F_electrostatic + F_tether + F_molecular, and were simulated for 150 ns for several combinations of lengths of linkers.

Modelling of lumitoxin stimulation was performed using MATLAB scripts numerically integrating a set of ordinary differential equations describing the thermodynamic model depicted in Fig. 1c. Simulation parameters were nTOxin = nChannel = 0.009; reaction volume = 0.009; reaction time between 1 × 10⁻¹ to 1 × 10⁻³; (corresponding to a 13-μm (inner radius) hollow sphere with 15 nm wall thickness); z = 2 × 10⁸ M⁻¹ s⁻¹; z* = 6.6 × 10⁷ M⁻¹ s⁻¹; β = 2 × 10⁷ M⁻¹ s⁻¹; κ_m(lit) = 2.5 × 10⁻¹ M⁻¹ s⁻¹; κ_m(dark) = 1.6 × 10⁻² M⁻¹ s⁻¹; κ_m = 2.55 × 10⁻⁵ M⁻¹ s⁻¹. For theoretical activation ratios (Fig. 3b) z ranged from 3 × 10⁵ to 4 × 10⁶ M⁻¹ s⁻¹, z* ranged from 1.7 × 10⁶ to 1.4 × 10⁶ M⁻¹ s⁻¹, and β ranged from 2 × 10⁵ to 4 × 10⁶ M⁻¹ s⁻¹.

Molecular biology and construct generation. Genes encoding for fusion proteins were assembled as a multicompartment cloning cassette from annealed oligonucleotides (IDT DNA) containing these elements (in order): BglII or Nhel—Secretion Signal/FLAG tag—HindIII—(zDTX or DTX-K or CONK1)—KpnI—Linker—LOV2-J2 (404-546)—NcoI—PDGF-R-mCherry—XbaI. PDGF-R-mCherry was derived from pFU-MVIIA-PC (Addgene)10. See Table 1 for sequence details. This cassette was inserted into the mammalian expression vector pCDNA3.1+ (Invitrogen) using Nhel/XbaI restriction sites. The respective genes coding for rat Kv1.2 (Kv1.2), rat Kv1.1 (Kv1.1) or Shaker were amplified from Kv1.2-2.0 plasmid, Shaker-pBlueScript (gifts from Roderick Mackinnon), or BacMam Kv1.1 (Invitrogen) and inserted into pcDNA3.1+ (pEGFP-N3 using BamHII/EcoRI or Nhel/EcoRI, respectively. Both zDTX–lumitoxin and Kv1.2 cassettes were also inserted into the bidirectional expression vector pBli-CMV1 (Clontech) using BglII/ XbaI and BamHII/NcoI sites, respectively, to drive expression from the same plasmid.

Mammalian cell culture. PC12 cells (ATCC) were maintained in DMEM (Cellgro), 10% fetal bovine serum (Invitrogen), 5% horse serum (Invitrogen), 1% penicillin/streptomycin (Cellgro) and 1% sodium pyruvate (Biowhittaker). For electrophysiological recordings and imaging, cells were plated on glass coverslips treated with Matrigel (BD Bioscience). Adherent cells were transfected using Lipofectamine LTX (Invitrogen) following the manufacturer’s instructions and recorded 36–48 h later.

For confocal microscopy, cells were fixed with 4% formaldehyde, permeabilized with 0.4% saponin and either stained with anti-FLAG M2 peptide antibody (Sigma A2220, 1:1,000 dilution) followed by mouse-Alexa488 secondary antibody staining (Invitrogen) or directly observed using mCherry fluorescence.

Electrophysiology and illumination. K⁺ currents were recorded from PC12 cells 36–48 post-transfection using whole-cell voltage clamp. Analog signals were filtered (1–5 kHz) using the built-in 4-pole Bessel filter of an Axopatch 200B patch clamp amplifier (Molecular Devices), digitized at 10 kHz (Digitdata 1440 A, Molecular Devices) and stored on a computer hard disk. The bath solution contained the following (mM): 125 NaCl, 2 KCl, 3 CaCl₂, 1 MgCl₂, 10 HEPES, 30 glucose, adjusted to pH 7.3 with NaOH. Electrodes were drawn from borosilicate patch glass (Warner Instruments) to a resistance of 5–10 MΩ.

Patches with access resistance of >50 MΩ were discarded from the data analysis. The reported n refers to the number of patched cells.

Cells were screened for mCherry expression using a 565-nm high-power LED (Thorlabs) filtered by a 560 ± 40 nm bandpass filter (Semrock) through a 40 × lens. Lumitoxins were stained with a 455-nm high-power LED (Thorlabs).

References

1. Kullmann, D. M. Neurological channelopathies. Annu. Rev. Neurosci. 33, 151–172 (2010).
2. Abbott, G. W. Molecular mechanisms of cardiac voltage-gated potassium channelopathies. Curr. Pharm. Des. 12, 3631–3644 (2006).
3. Kini, R. M. & Doleys, R. Structure, function and evolution of three-finger toxins: Mini proteins with multiple targets. Toxicon 56, 855–867 (2010).
4. Koh, D. C. L., Armagam, A. & Jeyaaseelan, K. Snake venom components and their applications in biomedicine. Cell. Mol. Life Sci. 63, 3030–3041 (2006).
5. Nirthanan, S. & Gwee, M. C. E. Three-finger alpha-neurotoxins and the nicotinic acetylcholine receptor, forty years on. J. Pharmacol. Sci. 94, 1–17 (2004).
6. Terfau, H. & Olivera, B. M. Conus venoms: a rich source of novel ion channel-targeted peptides. Physiol. Rev. 84, 41–68 (2004).
7. Corzo, G. & Escobas, P. Pharmacologically active spider peptide toxins. Cell. Mol. Life Sci. 60, 2409–2426 (2003).
8. Blumenthal, K. M. & Seibert, A. L. Voltage-gated sodium channel toxins: poisons, probes, and future promise. Cell Biochem. Biophys. 38, 215–238 (2003).
9. Ibáñez-Tallon, I. et al. Tethering naturally occurring peptide toxins for cell-autonomous modulation of ion channels and receptors in vivo. Neuron 43, 305–311 (2004).
10. Auer, S. et al. Silencing neurotransmission with membrane-tethered toxins. Nat. Methods 7, 229–236 (2010).
11. Stürzbecher, A. S. et al. RAPID REPORT: An in vivo tethered toxin approach for the cell-autonomous inactivation of voltage-gated sodium channel currents in nociceptors. J. Physiol. (Lond) 588, 1695–1707 (2010).
12. Wu, Y., Cao, G., Pavlicek, B., Luo, X. & Nitabach, M. N. Phase coupling of a circadian neuropeptide with rest/activity rhythms detected using a membrane-tethered spider toxin. PLoS Biol. 6, e273 (2008).
13. Banghart, M., Borges, K., Isacoff, E., Trauner, D. & Kramer, R. H. Light-activatable ion channels for remote control of neuronal firing. Nat. Neurosci. 7, 1381–1386 (2004).
14. Volgraf, M. et al. Allosteric control of an ionotropic glutamate receptor with an optical switch. Nat. Chem. Biol. 2, 47–52 (2006).
15. Szabota, S. et al. Remote control of neuronal activity with a light-gated nicotinic receptor. Nature 435, 535–545 (2005).
16. Zemelman, B. V., Nesnas, N., Lee, G. A. & Miesenböck, G. Photochemical gating of heterologous ion channels: remote control over genetically designated populations of neurons. Proc. Natl Acad. Sci. USA 100, 1352–1357 (2003).
17. Lima, S. Q. & Miesenböck, G. Remote control of behavior through genetically targeted photostimulation of neurons. *Cell* **121**, 141–152 (2005).

18. Sandsz, G., Levitz, J., Kramer, R. H. & Isacoff, E. Y. Optical control of endogenous proteins with a photoswitchable conditional subunit reveals a role for TREK1 in GABA(B) signaling. *Neuron* **74**, 1005–1014 (2012).

19. Janovjak, H., Szobota, S., Wyart, C., Trauner, D. & Isacoff, E. Y. A light-gated, potassium-selective glutamate receptor for the optical inhibition of neuronal firing. *Nat. Neurosci.* **13**, 1027–1032 (2010).

20. Doyle, D. A. *et al.* The structure of the potassium channel: molecular basis of K+ conduction and selectivity. *Science* **280**, 69–77 (1998).

21. Long, S. B., Tao, X., Campbell, E. B. & Mackinnon, R. Atomic structure of a voltage-dependent K+ channel in a lipid membrane-like environment. *Nature* **450**, 376–382 (2007).

22. Christie, J. M. Phototropin blue-light receptors. *Annu. Rev. Plant Biol.* **58**, 21–45 (2007).

23. Möglich, A., Yang, X., Ayers, R. A. & Moffat, K. Structure and function of plant photoreceptors. *Annu. Rev. Plant Biol.* **61**, 21–47 (2010).

24. Gasparini, S. *et al.* Delineation of the functional site of alpha-dendrotoxin. The functional topographies of dendrotoxins are different but share a conserved core with those of other Kv1 potassium channel-blocking toxins. *J. Biol. Chem.* **273**, 25393–25403 (1998).

25. Tytgat, J., Debont, T., Carmeliet, E. & Daenens, P. The alpha-dendrotoxin footprint on a mammalian potassium channel. *J. Biol. Chem.* **270**, 24776–24781 (1995).

26. Salomon, M., Christie, J. M., Knieb, E., Lempert, U. & Briggs, W. R. Photochemical and mutational analysis of the FMN-binding domains of the plant blue light receptor, phototropin. *Biochemistry* **39**, 9401–9410 (2000).

27. Strickland, D. *et al.* Rationally improving LOV domain-based photoswitches. *Nat. Methods* **7**, 623–626 (2010).

28. Harvey, A. L. Twenty years of dendrotoxins. *Toxicon* **39**, 15–26 (2001).

29. Robertson, B., Owen, D., Stow, J., Butler, C. & Newland, C. Novel effects of dendrotoxin homologues on subtypes of mammalian Kv1 potassium channels expressed in Xenopus oocytes. *FEBS Lett.* **383**, 26–30 (1996).

30. Bayrhuber, M. *et al.* Conkunitzin-S1 is the first member of a new Kunitz-type neurotoxin family. Structural and functional characterization. *J. Biol. Chem.* **280**, 23766–23770 (2005).

31. Lungu, O. L. *et al.* Designing photoswitchable peptides using the AsLOV2 domain. *Chem. Biol.* **19**, 507–517 (2012).

32. Wu, Y. I. *et al.* A genetically encoded photoactivatable Rac controls the motility of living cells. *Nature* **461**, 104–108 (2009).

33. Renicke, C., Schuster, D., Usherenko, S. & Essen, L. O. A LOV2 domain-based optogenetic tool to control protein degradation and cellular function. *Chem. Biol.* **20**, 619–626 (2013).

34. Strickland, D., Moffat, K. & Sosnick, T. R. Light-activated DNA binding in a designed allosteric protein. *Proc. Natl Acad. Sci. USA* **105**, 10709–10714 (2008).

Acknowledgements
This work was supported by NIH Grants NIH 1DP2OD002002, NIH 1R01DA029639, NIH 1R01NS075421, NIH 1RC1MH088182, the NSF CAREER Award CBET 1053233, DARPA Living Foundries Contract HR0011-12-C-0068 and the New York Stem Cell Foundation-Robertson Investigator Award. D.S. was supported by the Damon Runyon Cancer Research Foundation (DRG 2095-11). P.W.T was supported by the Fannie and John Hertz Foundation. F.C. was supported by the National Science Foundation Graduate Research Fellowship under grant no. 1122374 and the Synthetic Intelligence Project.

Author contributions
D.S. and E.S.B. designed the experiments and wrote the manuscript. D.S. performed the experiments. F.C. and P.W.T. implemented the tethered particle simulation.

Additional information
Accession codes: Construct sequences have been deposited in the DDBJ/EMBL/GenBank nucleotide database under accession codes KF878105 (aDTX-Lumitoxin), KF878106 (CONK1-Lumitoxin) and KF878110 (DTX-K-Lumitoxin) and are available on request at http://syntheticneurobiology.org/protocols.

Competing financial interests: The authors declare no competing financial interests.

Reprints and permission information is available online at http://npg.nature.com/reprintsandpermissions/

How to cite this article: Schmidt, D et al. A fully genetically encoded protein architecture for optical control of peptide ligand concentration. *Nat. Commun.* **5**:3019 doi: 10.1038/ncomms4019 (2014).