Draft genome sequence of *Lampropedia cohaerens* strain CT6^T isolated from arsenic rich microbial mats of a Himalayan hot water spring

Charu Tripathi¹, Nitish K. Mahato¹, Pooja Rani¹, Yogendra Singh², Komal Kamra³ and Rup Lal^{1*}

Abstract

Lampropedia cohaerens strain CT6^T, a non-motile, aerobic and coccoid strain was isolated from arsenic rich microbial mats (temperature ~45 °C) of a hot water spring located atop the Himalayan ranges at Manikaran, India. The present study reports the first genome sequence of type strain CT6^T of genus *Lampropedia cohaerens*. Sequencing data was generated using the Illumina HiSeq 2000 platform and assembled with ABySS v 1.3.5. The 3,158,922 bp genome was assembled into 41 contigs with a mean GC content of 63.5 % and 2823 coding sequences. Strain CT6^T was found to harbour genes involved in both the Entner-Duodoroff pathway and non-phosphorylated ED pathway. Strain CT6^T also contained genes responsible for imparting resistance to arsenic, copper, cobalt, zinc, cadmium and magnesium, providing survival advantages at a thermal location. Additionally, the presence of genes associated with biofilm formation, pyrroloquinoline-quinone production, isoquinoline degradation and mineral phosphate solubilisation in the genome demonstrate the diverse genetic potential for survival at stressed niches.

Keywords: *Lampropedia cohaerens*, Hot spring, Biofilm, Mineral phosphate solubilisation, Arsenic tolerance, Pyrroloquinoline-quinone

Abbreviations: BGI, Beijing Genomics Institute; COG, Cluster of orthologous groups; ED, Entner-Duodoroff pathway; GDH, Glucose dehydrogenase; IMG, Integrated microbial genomes; KDG, 2-keto-3-deoxy-D-gluconate; KDGP, 2-keto-3-deoxy-6-phosphogluconate; MPS, Mineral phosphate solubilisation; nED, Non-phosphorylated ED pathway; PQQ, Pyrroloquinoline-quinone

Introduction

The genus *Lampropedia*, a member of the family *Comamonadaceae* [1] was established by Schroeter in 1886 [2] with the description of square, tablet forming cells of *Lampropedia hyalina*. Henceforth, strains of the same species, *L. hyalina* have been isolated from pond water [2], liquid manure of a dairy farm yard [3], fistulated heifer [4] and activated sludge [5]. *L. hyalina* was isolated from activated sludge, and was tested for its phosphate removal capabilities and was classified as belonging to the functional group of polyphosphate accumulating microorganisms [5]. Another species, *L. cohaerens* strain CT6^T [6] was isolated from arsenic rich microbial mats of a Himalayan hot water spring from Manikaran, India as a continuation to our efforts to explore the culturable [7–10] and unculturable [11] diversity at the Himalayan hot spring to understand the role played by niche specific genetic determinants in shaping the genomes of organisms inhabiting this stressed niche. *L. cohaerens*, a biofilm forming and arsenic tolerating bacterium [6], showed limited carbohydrate assimilation potential but could utilize some organic acids. Currently, the genus *Lampropedia* is represented by three species, *L. hyalina* ATCC 11041^T [12], “*L. puyangensis* 2-bin^T” (not validly published) [13] and *L. cohaerens* CT6^T [6], leading to the description of the genus being emended [6], however, the genomic potential of this small group remains unresolved. The genome of strain CT6^T, which is the type strain for

* Correspondence: ruplal@gmail.com

¹Molecular Biology Laboratory, Department of Zoology, University of Delhi, Delhi 110007, India

Full list of author information is available at the end of the article

© 2016 The Author(s). Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.
Lampropedia cohaerens was sequenced in order to supplement the phenotypic taxonomical observations with genetic data and obtain genomic insights into heavy metal resistance and metabolic potential of gene complements of this microbial mat dweller. Here, we describe the summary classification, properties, genome sequencing, assembly and annotation of L. cohaerens CT6\(^7\) (DSM 100029\(^7\)=KCTC 42939\(^\text{T}\)).

Organism information
Classification and features
L. cohaerens was characterized by using a polyphasic approach with the integration of genotypic, phenotypic and chemotaxonomic methods [6]. This Gram-stain-negative, aerobic bacterial strain, forms white, smooth colonies with irregular margins on LB agar [6]. Transmission electron microscopy (TEM) revealed coccoid, unflagellated cells approximately 0.62 \(\mu\)m \(\times\) 0.39 \(\mu\)m in dimension (Fig. 1). Summary characteristics are mentioned in Table 1. The slightly thermophilic and arsenic tolerant L. cohaerens strain CT6 can tolerate temperature in the range 20–55 °C and can tolerate arsenic trioxide up to 80 parts per billion [6]. The NaCl tolerance for strain CT6\(^7\) was tested as 1–3 % (w/v) and pH range as 6–9. Biofilm formation is observed in LB media, inspiring its etymology. L. cohaerens showed closest phylogenetic similarity to “L. puyangensis 2-bin\(^\text{T}\)” (96.4 %) and L. hyalina ATCC 11041\(^\text{T}\) (95.4 %) on the basis of 16S rRNA gene sequences. A maximum-likelihood [14] phylogenetic tree based on Jukes-Cantor [15] model using MEGA version 6 [16] constructed with closely related members of family Comamonadaceae on the basis of Blast-n [17] of 16S rRNA gene placed strain CT6\(^7\) along with the members of genus Lampropedia with bootstrap [18] confidence value of 98 % (Fig. 2). Positive biochemical tests included the hydrolysis of tween 20, tween 80 and starch and utilization of capric acid, malic acid, citric acid, xanthine and hypoxanthine [6]. Catalase test was positive whereas oxidase test was negative [6]. The most prominent fatty acid methyl esters were C$_{16:0}$ summed feature 8 (C$_{18:1}\omega_7c$/C$_{18:1}\omega_6c$), C$_{14:0}$, C$_{19:0}\omega_8c$ cyclo and summed feature 3 (C$_{16:1}\omega_7c$/C$_{16:1}\omega_6c$) [6]. The major polar lipids detected in

Table 1 Classification and general features of Lampropedia cohaerens CT6\(^7\) [39, 40]

MIGS Id	Property Term	Evidence code\(^a\)
Classification	Domain Bacteria	TAS [41]
Phylum	Proteobacteria	TAS [42, 43]
Class	Betaproteobacteria	TAS [44, 45]
Order	Burkholderiales	TAS [44, 46]
Family	Comamonadaceae	TAS [1]
Genus	Lampropedia	TAS [2, 47]
Species	cohaerens	TAS [6]
Type strain:	Strain CT6\(^7\) (Accession: DSM 100029\(^7\))	TAS [6]
Gram stain	Negative	TAS [6]
Cell-shape	Cocoid	TAS [6]
Motility	Non-motile	TAS [6]
Sporulation	Not reported	NAS
Temperature range	20–55 °C	TAS [6]
Optimum temperature	37 °C	TAS [6]
pH range; Optimum	6–9	TAS [6]
Carbon source	Capric acid, Malic acid, Citric acid	TAS [6]
MIGS-6 Habitat	Microbial mat	TAS [6]
MIGS-6.3 Salinity	1–3 % NaCl (w/v)	TAS [6]
MIGS-22 Oxygen requirement	Aerobic	TAS [6]
MIGS-15 Biotic relationship	Free-living	NAS
MIGS-14 Pathogenicity	Non-pathogenic	NAS
MIGS-4 Geographic Location	India	TAS [6]
MIGS-5 Sample collection	2014	IDA
MIGS-4.1 Latitude	31.378473	IDA
MIGS-4.2 Longitude	77.406945	IDA
MIGS-4.4 Altitude	1700 m	IDA

\(^a\)Evidence codes - IDA Inferred from Direct Assay, TAS Traceable Author Statement (i.e., a direct report exists in the literature), NAS Non-traceable Author Statement (i.e., not directly observed for the living, isolated sample, but based on a generally accepted property for the species, or anecdotal evidence). These evidence codes are from the Gene Ontology project [48]

Fig. 1 TEM of Lampropedia cohaerens strain CT6\(^7\) cells. Length of bar = 0.5 \(\mu\)m
strain CT6T were phosphatidylethanolamine, phosphatidylglycerol and a glycolipid [6]. Strain CT6T demonstrated the presence of putrescine, 2-hydroxyputrescine and spermidine as the major polyamines and ubiquinone-8 as the major quinone [6].

Genome sequencing information

Genome project history

Whole genome sequencing was performed at Beijing Genomics Institute Technology Solutions, Hong Kong, China using the Illumina HiSeq 2000 technology. Sequencing was done using 500 bp and 2 kbp paired end libraries. Raw data was generated within a duration of 3 months. De-novo assembly was performed in-house at the University of Delhi. The draft genome sequence was submitted to NCBI under the accession number LBNQ00000000 (version 1 LBNQ01000000). The sequences were also submitted to IMG-JGI portal under GOLD Analysis Project ID Ga0079366. Sequence project information in compliance with MIGS version 2.0 is given in Table 2.

Growth conditions and genomic DNA preparation

Genomic DNA was isolated from a 25 ml culture grown in LB medium incubated at 37 °C. Mid-logarithmic phase culture (O.D. 0.6) was harvested and cells were lysed in TE25S buffer (25 mM Tris-HCl pH 8.0, 25 mM EDTA, 0.3 M sucrose, 1.0 mg/ml lysozyme), followed by removal of proteins by 1.0 % SDS and 1.0 mg/ml proteinase-K at 55 °C. This was followed by DNA purification steps.
using Phenol : Chloroform : Isoamyl alcohol (25 : 24 : 1) and Chloroform : Isoamyl alcohol (24 : 1). DNA was precipitated using 0.6 volume of Isopropanol. After washing with 70 % ethanol, DNA was dissolved in 5 mM Tris-EDTA. Sample concentration was estimated as 347.1 ng/μl by microplate reader and integrity was checked using agarose gel electrophoresis prior to sequencing. Purity ratios 260/280 and 260/230 were 1.89 and 1.91 respectively.

Genome sequencing and assembly
Genomic DNA was sequenced using 500 bp and 2 kbp paired-end libraries. Raw read filtering and removal of adapters were carried out at the BGI Technology Solutions Co. Limited, China. A total of 7.5 Gb raw data was generated with 33,961,144 clean reads encompassing a total of 3,056,502,960 clean bases. De-novo assembly of raw reads using ABySS version 1.3.5 [19] generated 41 contigs greater than 500 bp at k-mer 51 with n50 value of 165,853. Assembly validation was done by aligning raw reads onto finished contigs using Burrows Wheeler Aligner version 0.7.9a [20] followed by visual inspection using Tablet version 1.14.04.10 [21]. The final draft was assembled into 41 contigs with a mean contig size of 77,047 bp. The assembled genome had 3,158,922 bases with 63.5 % G+C content.

Genome annotation
For initial annotations, sequences were submitted to the NCBI Prokaryotic Genomes Annotation Pipeline. Additionally, the sequences were uploaded on Integrated Microbial Genomes pipeline [22] under the umbrella of Joint Genome Institute [22]. Coding sequence prediction was performed using Prodigal V2.6.2 [23]. rRNA operons were predicted using RNAmmer version 1.2 [24]. tRNAs and tmRNAs were predicted using ARAGORN [25]. Phage Search Tool [26] was used to find phages in the genome. CRISPRs were found online by CRISPR finder online server [27]. For prediction of signal peptides and transmembrane domains, SignalP 4.1 server [28] and TMHMM server v. 2.0 [29] were used respectively. COG category assignment and Pfam domain predictions were done using WebMGA server [30].

Table 2 Project information

MIGS ID	Property	Term
MIGS 31	Finishing quality	Improved-High-Quality Draft
MIGS 28	Libraries used	500-bp and 2-kbp paired-end library
MIGS 29	Sequencing platform	Illumina HiSeq 2000
MIGS 31.2	Fold coverage	>10x
MIGS 30	Assemblers	ABySS v 1.3.5
MIGS 32	Gene calling method	Prodigal 1.4
	Locus Tag	AAV94
Genbank ID		LBNQ000000000
Genbank Date of Release		May 8, 2015
GOLD ID		Ga0079366
BIOPROJECT		PRJNA282900
MIGS 13	Source material identifier	DSM 100029, KCTC 42939
	Project relevance	Heavy metal tolerant, biofilm forming bacterium

Using Prodigal V2.6.2 [23], rRNA operons were predicted using RNAmmer version 1.2 [24]. tRNAs and tmRNAs were predicted using ARAGORN [25]. Phage Search Tool [26] was used to find phages in the genome. CRISPRs were found online by CRISPR finder online server [27]. For prediction of signal peptides and transmembrane domains, SignalP 4.1 server [28] and TMHMM server v. 2.0 [29] were used respectively. COG category assignment and Pfam domain predictions were done using WebMGA server [30].

Genome properties
The final draft genome consists of 41 contigs with a total of 3,158,922 bp and a G+C mol% of 63.5. A total of 2909 coding sequences were predicted accounting for a coding density of 88.92 %. Out of the total coding sequences, 83.84 % were assigned functions. Protein coding genes were 2823 and comprised 97.04 % of the total; RNA coding genes were 86 in number and 56 tRNAs were detected. Five rRNA operons were predicted with complete 5S-16S-23S rRNA genes (Fig. 3). Three confirmed CRISPRs were detected, one on contig 13 and two on contig 33. Two incomplete phages were also detected having a phage integrase and an attR site for integration. Pfam domains were detected for 2539 genes, 238 genes were found to code for proteins harbouring signal peptides and 665 genes with transmembrane domains (Table 3). Out of the total genes, 2713 (92.09 %) were assigned to COG categories. COG category assignment placed majority of genes to general function prediction only (10.62 %), amino acid transport and metabolism (10.31 %), inorganic ion transport and metabolism (6.92 %) and energy production and conversion (6.21). 6.24 % genes were placed in the function using Prodigal V2.6.2 [23]. rRNA operons were predicted using RNAmmer version 1.2 [24]. tRNAs and tmRNAs were predicted using ARAGORN [25]. Phage Search Tool [26] was used to find phages in the genome. CRISPRs were found online by CRISPR finder online server [27]. For prediction of signal peptides and transmembrane domains, SignalP 4.1 server [28] and TMHMM server v. 2.0 [29] were used respectively. COG category assignment and Pfam domain predictions were done using WebMGA server [30].

Fig. 3 A graphical circular map of the genome performed with CGview comparison tool [49]. From outside to centre, ring 1 and 2 show protein coding genes on both the forward and reverse strand; ring 3 shows G+C% content plot, and ring 4 shows GC skew.
unknown category, whereas 7.91 % genes were not placed into the COGs (Table 4).

Table 4 Number of genes associated with general COG functional categories

Code	Value	%age	COG category
J	169	5.70	Translation, ribosomal structure and biogenesis
A	1	0.03	RNA processing and modification
K	172	5.84	Transcription
L	131	4.45	Replication, recombination and repair
B	3	0.10	Chromatin structure and dynamics
D	27	0.92	Cell cycle control, cell division, chromosome partitioning
V	37	1.25	Defense mechanisms
T	119	4.04	Signal transduction mechanisms
M	163	5.53	Cell wall/membrane/envelope biogenesis
N	39	1.32	Cell motility
U	83	2.82	Intracellular trafficking, secretion, and vesicular transport
O	106	3.59	Posttranscriptional modification, protein turnover, chaperones
C	183	6.21	Energy production and conversion
G	111	3.76	Carbohydrate transport and metabolism
E	304	10.31	Amino acid transport and metabolism
F	71	2.41	Nucleotide transport and metabolism
H	111	3.76	Coenzyme transport and metabolism
I	110	3.73	Lipid transport and metabolism
P	204	6.92	Inorganic ion transport and metabolism
Q	72	2.44	Secondary metabolite biosynthesis, transport and catabolism
R	313	10.62	General function prediction only
S	184	6.24	Function unknown
-	233	7.91	Not in COGs

Insights from the genome sequence

Consistent with the limited metabolic potential of *L. cohaerens*, the genome sequence was found to lack hexokinase and glucokinase, key enzymes involved in glycolysis. Additionally, the lack of pentose phosphate pathway genes glucose-6-phosphate 1-dehydrogenase and 6-phosphogluconolactonase are responsible for the organism’s inability to utilize carbohydrates. However, genes involved in Entner-Doudoroff pathway and non-phosphorylated ED pathways were identified. nED pathway enzyme D-gluconate dehydratase (EC 4.2.1.39) which brings about the conversion of D-gluconate to 2-keto-3-deoxy-D-gluconate [31] was identified, along with conventional ED pathway enzyme 2-keto-3-deoxy-6-phosphogluconate aldolase (EC 4.1.2.14) which brings about the conversion of KDPG (generated after the first step in ED pathway) to pyruvate and glyceraldehyde-3-phosphate [32]. Although *L. cohaerens* possesses enzymes involved in both the ED and nED pathway, the link between the two could not be established as the enzyme KDG kinase which brings about the conversion of KDG to KDPG could not be identified.

L. cohaerens CT67 was isolated from hot spring microbial mats, known to be rich in heavy metal sulfides. Microbiota present at hot springs have developed resistance mechanisms to withstand and survive high heavy metal concentrations. Consequently, *L. cohaerens* demonstrated a repertoire of heavy metal resistance genes.

Among genes imparting resistance against arsenic, arsenate reductase genes *arsC* (AAV94_10615), arsenic resistance genes *arsH* (AAV94_10620), arsenic transporter *ACR3* (AAV94_10610) and transcriptional regulator *arsR* (AAV94_10600, AAV94_10605) were found. Two arsenic resistance clusters were found on contig 33 harbouring two copies of *arsR*, a copy of *ACR3*, and a copy of arsenate reductase *arsC*. In one of the clusters, an additional gene *arsH*, coding for arsenical resistance protein was found. Additionally, a gene *arsB* coding for arsenic efflux pump protein was identified. Among heavy metals, copper, a trace mineral element is taken up by living cells to get incorporated into a number of enzymes, particularly cytochrome oxidases; however, in excess it becomes toxic to the cells. Copper resistance mechanisms in bacteria involve the *cus* system, the *cue* system and the *pco* system [33]. Excess copper is removed either by efflux of the cations or by periplasmic detoxification. *Cue* system genes *copA*, an ion translocating ATPase; *cueO*...
[34], a periplasmic multicopper oxidase and cueR, a copper response metalloregulatory protein which acts as the regulator of both copA and cueO [35] were identified. Cus system genes cusA and cusB both coding for cation efflux proteins are harbourd by L. cohaerens. Additionally, pco system genes, copC and copD were present in its genome. Genes imparting resistance to other heavy metals including cobalt, zinc and cadmium efflux system genes czcA, czcD,czcB and czcC which code for outer membrane transporter efflux proteins were identified. Magnesium and cobalt transport protein encoding genes corA and corC were identified. Transcriptional regulators of merR family were found in six copies. MerR transcriptional factors are known to be regulators of various environmental stimuli, particularly, high concentrations of heavy metals and oxidative stress [36].

The genetics of biofilm formation in bacteria is a complex process and is dependent on the modulation of expression of a number of genes, mainly those involved in adhesion and autoregulation [37]. The PGA operon is comprised of genes coding for the synthesis of a secreted polysaccharide poly-β-1,6-N-acetyl-D-glucosamine responsible for cell-cell and cell-surface adhesion in biofilms. Strain CT6T demonstrated biofilm formation in vitro, the genes responsible for which were found in its genome. The PGA operon genes pgaA - biofilm secretion outer membrane secretion, pgaB - biofilm PGA synthesis deacetylase and pgaC - biofilm PGA synthesis N-glucosyltranserase were found to be harbourd as a single operon in the genome.

Members of the family Comamonadaceae have been shown to possess a mineral phosphate solubilisation phenotype. Genes associated with the MPS phenotype include a glucose dehydrogenase and a pyrroloquinoline-quinone synthase system. PQQ is a cofactor for glucose dehydrogenase. PQQ, a small molecule that serves as a redox cofactor in several enzymes has been found to be produced by Pseudomonas fluorescens, Enterobacter intermedium and many other bacteria. PQQ production has been shown to be involved in plant growth promoting effects in soil dwelling bacteria. Additionally, PQQ production has been associated with higher tolerance to radiation and free oxygen radicals, thus bringing to light its free radical scavenging role in bacteria [38]. PQQ dependent enzymes like GDH play a role in the availability of insoluble phosphates to plants, thus contributing to their mineral phosphate solubilisation phenotype. The MPS phenotype contributes significantly to the mineralization of phosphates, playing a key role in geochemical cycling of the element. Consequently, three copies of PQQ dependent glucose dehydrogenase gene were found. PQQ synthase genes pqqB, D, E were also found. Further, genes coding for isoquinoline 1-oxidoreductase α and β subunit corresponding to the isoquinoline degradation system were found. Isoquinoline 1-oxidoreductase catalyzes the first step in the hydroxylation of isoquinoline, a N-heterocyclic compound which is commonly associated with coal gasification, shale oil, coal tar, crude oil contaminated sites.

Conclusions

The genome of L. cohaerens strain CT6T, a biofilm forming and arsenic tolerating bacterium was found to harbour the genes necessary for arsenic tolerance and biofilm formation. Genes related with the transport and efflux of copper, cobalt, zinc and cadmium were identified. Limited metabolic potential was attributed to lack of key glycolysis and pentose phosphate pathway genes. A metabolically unique combination of genes involving both ED pathway and the nED pathway was encountered. Phylloquinoline-quinone synthetic genes were identified along with PQQ requiring glucose dehydrogenase. This was consistent with the phosphate removal phenotype of Lampropedia from sewage sludge samples [5]. L. cohaerens, which harbours MPS phenotype imparting genes, can be considered to belong to the group of MPS bacteria which are used to enhance the fertility of soil by ensuring availability of trapped phosphates to plants. The presence of isoquinoline degrading genes may be employed for removal of oil contaminations. Further experiments can be performed to link the genetic determinants of L. cohaerens with its actual functional potential. The genetic repertoire of L. cohaerens points towards survival capabilities at diverse stressed niches. The genes harbourd by L. cohaerens enable the organism to survive at heavy metal rich microbial mats of hot spring. Biofilm formation may be considered as a niche specialised strategy adapted to survive the hot spring waters forming microbial mats. The diverse survival instincts are reflected in the genome by the presence of genes for a PQQ synthase system and PQQ-dependent glucose dehydrogenases. Isoquinoline degradation genes provide a supplemental benefit for survival at oil contaminated sites. Further, the presence of isoquinoline-degradation genes makes L. cohaerens a potential candidate for bioremediation of oil contaminated sites.

Acknowledgements

The work was supported by grants from the National Bureau of Agriculturally Important Microorganisms (NBAIM), India, the Department of Biotechnology (DBT), Government of India, and University of Delhi-Department of Science and Technology Promotion of University Research and Scientific Excellence (DU-DST PURSE). CT, NKM and PR gratefully acknowledge Council for Scientific and Industrial Research, DBT and Indian Council of Agricultural Research respectively for providing research fellowships.

Authors’ contributions

CT carried out assembly and analysis and wrote the manuscript. RL, YS and KK participated in design of the study and drafting of the manuscript. PR participated in genomic DNA preparation and tree construction. NKM performed alignments and table preparations. RL conceived the study. All authors read and approved the final manuscript.

Competing interests

The authors declare that they have no competing interests.
References

1. Willems A, Ley JD, Gillis M, Kensters K. Comamonadaceae, a new family encompassing the Acidovoraxs RNA complex, including Variarox paradoxs gen. nov., comb. nov., for Alcaligenes paradoxs (Davis 1969). Int J Syst Bacteriol. 1991;41:445–50.

2. Schroeter J. Kryptogamen-Flora von Schlesien, Bd. 3, Heft 3, Pilze. In: Cohn F, editor. Pilze J. L. Breslau Kem’s Verlag. 1886. p. 1–814.

3. Pringsheim EG. Lampropedia hyalina Schroeter, eine apochlorotische Merisomopedia (Cyanophyceae). Arch Mikrobiol. 1966;55:208–14 (in German).

4. Hunagte RE. The rumen and its microbes. New York: Academic Press; 1966.

5. Lee L, Cellamare CM, Bastianutti C, Rossello-Mora R, Kampfer P, Ludwig W, Tripathi C, Mahato NK, Singh AK, Kampa K, Korpole S, Lal R. Lampropedia coherens sp. nov., a biofilm forming bacterium isolated from microbial mats of a hot water spring, and emended description of the genus Lampropedia. Int J Syst Evol Microbiol. 2016;66:1156–62.

6. Diwedi V, Kumar K, Gupta SK, Kumar R, Tripathi C, Lata P, Niharka N, Singh AK, Kumar R, Nigam A, Garg N, Lal R. Thermus paraventrisis RL sp. nov., isolated from a hot water spring, located atop the Himalayan ranges at Manikaran, India. Indian J Microbiol. 2015;55:357–65.

7. Mahato NK, Tripathi C, Verna H, Singh N, Lal R. Draft genome sequence of Deinococcus sp. strain RL isolated from sediments of a hot water spring. Genome Announc. 2014;4:e00703–14.

8. Sharma A, Hira P, Shaikdar M, Lal R. Draft genome sequence of Cellulosimicrobium sp. strain MM, isolated from arsine rich microbial mats of a Himalayan hot spring. Genome Announc. 2014;2:e00046–14.

9. Sharma A, Gilbert JA, Lal R. (Meta)genomic insights into the pathogenome of Cellulosimicrobium cellulans. Sci Rep. 2016;6:2527.

10. Sangwan N, Lambert C, Sharma A, Gupta V, Khurana JP, Sorensen JT, Kim SB, et al. A rich cluster of arsenic-resistant bacteria in hot spring microbial mats: a portrait of extremophiles. Environ Microbiol Rep. 2015;7:212–23.

11. Lee L, Cellamare CM, Bastianutti C, Rossello-Mora R, Kampfer P, Ludwig W, Schleifer KH, Stante L. Emended description of the species Lampropedia hyalina. Int J Syst Evol Microbiol. 2004;54:1709–15.

12. Li Y, Wang T, Piao CG, Wang LF, Tian GZ, Zhu TH, Guo MW, Lampropedia puyangensis sp. nov., isolated from symptomatic bank of Papulus eurasienncs canker and emended description of Lampropedia hyalina (Ehrenberg 1832) Lee et al. 2004. Anton Van Leeuwenhoek. 2015;108:321–28.

13. Felsenstein J. PHYLP (phylogeny inference package), version 3.5c. Los Alamos National Laboratory, Los Alamos, NM.

14. Fitch W, Margoliash E. A method for constructing phylogenetic trees for many taxa and comparing such trees. Science. 1967;155:250–3.

15. Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution. 1985;39:783–91.

16. Simpson JT, Wong K, Jackman SD, Schein JE, Jones SJ, Bird I. ABYSS-a parallel assembler for short read sequence data. Genome Res. 2009;19:1117–23.

17. Li H, Durbin R. Fast and accurate short read alignment with Burrows-Wheeler Transform. Bioinformatics. 2009;25:1754–60.

18. Djoko KY, Chong LX, Wedd AG, Xiao Z. Reaction mechanisms of the Tetrahydrofolate reductase enzyme. J Bacteriol. 2001;183:2415–23.

19. Skerman VBD, McGowan V, Sneath PHA. Approved lists of bacterial names. Int J Syst Bacteriol. 1980;30:225–9.

20. Tripathi C, Mahato NK, Singh AK, Kampa K, Korpole S, Lal R. Lampropedia coherens sp. nov., a biofilm forming bacterium isolated from microbial mats of a hot water spring, and emended description of the genus Lampropedia coherens sp. nov., a biofilm forming bacterium isolated from microbial mats of a hot water spring. Genome Announc. 2014;5:e010220–1.

21. Grissa I, Vergnaud G, Pourcel C. CRISPRFinder: a web tool to identify clustered regularly interspaced short palindromic repeats. Nucleic Acids Res. 2007;35:W347–52.

22. Grissa I, Vergnaud G, Pourcel C. CRISPRFinder: a web tool to identify clustered regularly interspaced short palindromic repeats. Nucleic Acids Res. 2007;35:W347–52.

23. Petersen TN, Brunak S, von Heijne G, Nielsen H. SignalP 4.0: discriminating signal peptides from transmembrane regions. Nat Methods. 2011;8:785–96.

24. Brys W, Tripathi C, Mahato NK, Gupta SK, Kumar R, Singh AK, Kampa K, Korpole S, Lal R. Lampropedia coherens sp. nov., a biofilm forming bacterium isolated from microbial mats of a hot water spring, and emended description of the genus Lampropedia coherens sp. nov., a biofilm forming bacterium isolated from microbial mats of a hot water spring. Genome Announc. 2014;5:e010220–1.

25. Wroblewski D, Sepp R. A new family of aminopeptidases. J Bacteriol. 1990;172:2201–10.

26. Zhou Y, Liang Y, Lynch K, Dennis JJ, Wishart DS. PHAST: a fast phage search tool. Nucleic Acids Res. 2013;41:W347–52.

27. Liu J, Jiang B, Zhang Y, Zhang H, Song I, He S, et al. A new family of aminopeptidases. J Bacteriol. 1990;172:2201–10.

28. Skerman VBD, McGowan V, Sneath PHA. Approved lists of bacterial names. Int J Syst Bacteriol. 1980;30:225–9.

29. Skerman VBD, McGowan V, Sneath PHA. Approved lists of bacterial names. Int J Syst Bacteriol. 1980;30:225–9.