Caliciopsis moriondi, a new species for a fungus long confused with the pine pathogen C. pinea

Duccio Migliorini¹, Nicola Luchi¹, Alessia Lucia Pepori¹, Francesco Pecori¹, Chiara Aglietti¹,², Fabio Maccioni¹, Isabel Munck³, Stephen Wyka⁴, Kirk Broders⁴,⁵, Michael J. Wingfield⁴, Alberto Santini¹

¹ Institute for Sustainable Plant Protection – National Research Council (IPSP-CNR), Via Madonna del Piano 10, I-50019, Sesto Fiorentino, Firenze, Italy
² Department of Agrifood Production and Environmental Sciences, University of Florence, Piazzalle delle Cascine 28, I-50144, Firenze, Italy
³ Forest Health Protection, USDA Forest Service, 271 Mast Road, Durham, NH 03824, Durham, USA
⁴ Department of Bioagricultural Sciences and Pest Management, Colorado State University, Fort Collins, Colorado, USA
⁵ Smithsonian Tropical Research Institute, Apartado 0843-03092, Balboa, Ancon, Panama
⁶ Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Private Bag X20, Pretoria 0028, South Africa

Corresponding author: Nicola Luchi (nicola.luchi@ipsp.cnr.it); Alberto Santini (alberto.santini@cnr.it)

Academic editor: D. Haelewaters | Received 8 April 2020 | Accepted 5 August 2020 | Published 25 September 2020

Citation: Migliorini D, Luchi N, Pepori AL, Pecori F, Aglietti C, Maccioni F, Munck I, Wyka S, Broders K, Wingfield MJ, Santini A (2020) Caliciopsis moriondi, a new species for a fungus long confused with the pine pathogen C. pinea. MycoKeys 73: 87–108. https://doi.org/10.3897/mycokeys.73.53028

Abstract

The genus Caliciopsis (Eurotiomycetes, Coryneliales) includes saprobic and plant pathogenic species. Caliciopsis canker is caused by Caliciopsis pinea Peck, a species first reported in the 19th century in North America. In recent years, increasing numbers of outbreaks of Caliciopsis canker have been reported on different Pinus spp. in the eastern USA. In Europe, the disease has only occasionally been reported causing cankers, mostly on Pinus radiata in stressed plantations. The aim of this study was to clarify the taxonomy of Caliciopsis specimens collected from infected Pinus spp. in Europe and North America using an integrative approach, combining morphology and phylogenetic analyses of three loci. The pathogenicity of the fungus was also considered. Two distinct groups were evident, based on morphology and multilocus phylogenetic analyses. These represent the known pathogen Caliciopsis pinea that occurs in North America and a morphologically similar, but phylogenetically distinct, species described here as Caliciopsis moriondi sp. nov., found in Europe and at least one location in eastern North America. Caliciopsis moriondi differs from C. pinea in various morphological features including the length of the ascomata, as well as their distribution on the stromata.

Keywords

Caliciopsis canker, Caliciopsis spp., forest pathogen, one new species, pine trees, taxonomy
Introduction

Species in the Coryneliaceae (Eurotiomycetes) have a worldwide distribution; they occur in both hemispheres and in both temperate and tropical climates (Fitzpatrick 1942). The family accommodates seven genera including *Caliciopsis* Peck, *Corynelia* Ach. ex Fr., *Coryneliopsis* Butin, *Coryneliospora* Fitzp., *Fitzpatrickella* Benny, Samuelson & Kimbr., *Hypotheca* Ellis & Everh., *Lagenulopsis* Fitzp. and *Tripospora* Sacc. (Crous et al. 2019; Wood et al. 2016; Wijayawardene et al. 2020). The genus *Caliciopsis* includes both saprobic and plant pathogenic species. Recently, a taxonomic key for the genus *Caliciopsis* has been presented (Garrido-Benavent and Perez-Ortega 2015). *Caliciopsis nigra* [now recombined to *Hypotheca nigra* (Crous et al. 2019)] is the causal agent of cankers on stems of the Mediterranean cypress, *Cupressus sempervirens* and common juniper, *Juniperus communis* (Intini 1980) and *C. indica* is a pathogen on *Garcinia indica* leaves (Pratibha et al. 2010). *Caliciopsis arceuthobii* infects the flowers of several species of dwarf mistletoe in the genus *Arceuthobium* (Ramsfield et al. 2009), *Caliciopsis rhoina* is associated with bark and trunk cankers on *Toona sinensis* (Rikkinen 2000), while *Caliciopsis brevipes* was reported on needles and bark of *Arceuthobium recurvatum*, *Cochlearia* and *C. arborescens* on needles and twigs of *A. araucana*, *Fitzroya cupressoides*, *Austrocedrus chilensis*, *Pilgerodendron uviferum* and *Podocarpus nubigenus* (Butin 1970). More recently, *Caliciopsis pleomorpha* [now recombined in *Hypotheca* as *H. pleomorpha* (Crous et al. 2019)] has been reported as the causal agent of a canker disease on various *Eucalyptus* species in Australia (Pascoe et al. 2018).

Caliciopsis canker has been reported as an emerging disease of *Pinus* in the eastern USA (Munck et al. 2015, 2016; Costanza et al. 2018; Haines et al. 2018; Schulz et al. 2018a, b; Whitney et al. 2018) and is caused by the fungus *Caliciopsis pinea*. The pathogen gives rise to cankers and abundant resin bleeding on branches and stems of young and mature *Pinus strobus* trees, which can lead to crown wilting and defoliation and, in some cases, killing significant portions of the tree crowns. In the USA, *C. pinea* has been known since at least 1920 (Fitzpatrick 1920). It was considered “not uncommon” in eastern North America on *P. strobus* and on various conifer species in western North America (Ray 1936). After the accidental introduction of white pine blister rust (*Cronartium ribicola* J.C. Fisch.) into the USA in the early 1900s, *Caliciopsis canker* was ignored.

Caliciopsis pinea is considered native to North America (Harrison 2009). In Europe, Lanier (1965) reported this species for the first time from France on *P. halepensis, P. insignis, P. nigra* and *P. pinaster*, although the pathogen had been known in the region since the late 1800s (Rehm 1896). The disease was also reported in Italy (Capretti 1978, 1980) on several different *Pinus* species, both native and non-native. While all of these reports of *Caliciopsis canker* have been attributed to *C. pinea*, a recent study by Munck et al. (2015) suggested that a closely related, but distinct lineage of the fungus was present on *P. nigra* and *P. radiata* in Italy. Recently, an extensive survey of pine plantations in central-south Italy revealed several *P. radiata* stands showing crown yellowing, die-back and profuse resin production on the stems and shoots associated with depressed cankers. Fungal fruiting bodies resembling those of *Caliciopsis* in all stages of development were found on the cankered tissues (N. Luchi unpublished data).
No comprehensive phylogenetic study has been undertaken on *Caliciopsis* spp. associated with cankers on *Pinus* spp. including both Europe and North America. Given the findings of Munck et al. (2015), it is possible that a distinct species of *Caliciopsis* is present in Europe. Furthermore, this fungus could have a host range, ecology and epidemiology different to those of its North American congener. The aim of this study was to compare pine-infecting *Caliciopsis* isolates from Europe and North America, based on morphological features and phylogenetic inference and to determine whether these represent a single or more than one species.

Materials and methods

Sampling and isolation of fungal strains

Isolates used in this study were obtained from a number of surveys of Caliciopsis canker on native and non-native *Pinus* spp. in plantations and naturally regenerated eastern white pine stands growing in different areas of Europe (EU) and North America (NA). Isolates from NA were obtained from Georgia, North Carolina, Tennessee and Virginia (this study) and Maine, Massachusetts, New Hampshire in the USA (Munck et al. 2015). Isolates from EU were obtained from France, Italy and Spain (Table 1).

Samples from Italy were obtained from pine trees with Caliciopsis canker symptoms from three different locations in Tuscany (Central Italy). Five shoots with Caliciopsis canker from five different trees were collected at each of the three Italian sites. Other isolates from *Pinus* and other host species used in this study included *Caliciopsis pinea* LSVN1233 (from France, supplied by Dr. R. Ioos), *C. pinea* SP 1 (from Spain, supplied by Dr. P. Capretti), *C. pinea* CBS 139.64 (from Canada), *C. orientalis* CBS 138.64 (from Canada) and *C. pseudotsugae* CBS 140.64 (from Canada). All isolates are maintained in the culture collections of the Institute for Sustainable Plant Protection – National Research Council (IPSP-CNR, Italy) and the Department of Bioagricultural Sciences, Colorado State University.

Samples were placed in paper bags and transferred to the laboratory for isolation. Pine twigs (5 cm long; 0.5 to 1 cm diameter) were surface disinfested with 75% ethanol (1 min) and 3% sodium hypochlorite (NaOCl) (3 min), after which they were rinsed three times in sterile water. A sterile scalpel was used to remove the outer portions. Necrotic tissues were cut in small pieces and placed in 90-mm Petri dishes containing 1.5% Potato Dextrose Agar (PDA, DIFCO, Detroit, Michigan, USA), amended with streptomycin (0.050 g/l). All plates were incubated in the dark at 20 °C for 10–15 days. Fungal colonies with a morphology resembling *C. pinea* were transferred to fresh plates to obtain pure cultures.

Morphology and culture characteristics

Caliciopsis fruiting bodies on cankered bark of the Italian specimens were mounted on glass slides in 80% lactic acid, amended with bromothymol blue and examined using a
Table 1. List of Caliciopsis spp. and Corynelia spp. used in comparisons of the morphology and culture characteristics and phylogenetic analyses and inoculation tests in this study.

Species	Isolate ID	Substrate	Location1	GenBank accession numbers
Caliciopsis pinea	US 27	Pinus strobus	Blackwater, NH, USA	KY099598 MK913567 MN150097
	US 42	P. strobus	Farmington, NH, USA	MK785367 MK913566 MN150096
	US 52	P. strobus	Bethel, ME, USA	MK785366 MK913565 MN150095
	US 67	P. strobus	Greenfield, NH, USA	MK785365 MK913564 MN150098
	US 71	P. strobus	Parsonsfield, ME, USA	MK785364 MK913563 MN150101
	US 76	P. strobus	Bear Brook, NH, USA	MK785363 MK913562 MN150102
	US 81	P. strobus	West Groton, MA, USA	KY099601 MK913561 MN150094
	US 100	P. strobus	Merrimack, NH, USA	MK785361 MK913560 MN150092
	US 110	P. strobus	Burns Farm, Milford, NH, USA	MK785360 MK913559 MN150091
	US 124	P. strobus	Albany, ME, USA	MK785359 MK913558 MN150090
	US 137	P. strobus	Alternate Brownfield, ME, USA	MK785358 MK913557 MN150089
	US 139	P. strobus	Sebago Lake, ME, USA	MK785357 MK913556 MN150100
	US 149	P. strobus	Brownfield, ME, USA	MK785356 MK913555 MN150088
	US 151	P. strobus	Little Osispee Farm, Livingston, USA	MK785355 MK913554 MN150087
	US 161	P. strobus	Androscoggin River Park, ME, USA	MK785354 MK913553 MN150086
	US 163	P. strobus	Androscoggin River Park, ME, USA	MK785353 MK913552 MN150085
	US 167	P. strobus	Bowdoinham, ME, USA	MK785352 MK913551 MN150084
	US 172	P. strobus	Naples, ME, USA	MK785351 MK913550 MN150083
	US 199	P. strobus	Sauford, ME, USA	MK785350 MK913549 MN150082
	US 206	P. strobus	Androscoggin River Park, ME, USA	MK785349 MK913548 MN150081
	US 220	P. strobus	New Castle, ME, USA	MK785348 MK913547 MN150080
	US 222b	P. strobus	Palmer, MA, USA	MK785347 MK913546 MN150099
	US 225a	P. strobus	Douglas, MA, USA	MK785346 MK913545 MN150078
	US 230d	P. strobus	Peru, ME, USA	KY099602 MK913544 MN150077
	US 232b	P. strobus	Barre, MA, USA	MK785344 MK913543 MN150076
	US 234a	P. strobus	Hollis, NH, USA	MK785343 MK913542 MN150075
	US 237	P. strobus	Macion, NC, USA	MK785342 MK913541 MN150074
	US 238	P. strobus	Needa, VA, USA	MK785341 MK913540 MN150073
	US 240	P. strobus	Lyme, NH, USA	MK785340 MK913539 MN150072
	US 252	P. strobus	USA	MK785339 MK913538 MN150071
	US 255	P. strobus	Unicio State Park, GA, USA	MK785338 MK913537 MN150070
	US 256	P. strobus	Warthurg, TN, USA	MK785336 MK913536 MN150069
	US 257	P. strobus	Unicio State Park, GA, USA	MK785336 MK913535 MN150079
C. moriondi	IT 1, CBS	P. radiata	Carcheri, Tuscany, Italy	MN150640 MK913580 MN150120
	146717	P. radiata	Carcheri, Tuscany, Italy	MN150640 MK913580 MN150120
	IT 2	P. radiata	Carcheri, Tuscany, Italy	MK785385 MK913585 MN150119
	IT 4	P. radiata	Carcheri, Tuscany, Italy	MK785384 MK913584 MN150118
	IT 5	P. radiata	Carcheri, Tuscany, Italy	MK785383 MK913583 MN150117
	IT 6	P. radiata	Carcheri, Tuscany, Italy	MK785382 MK913582 MN150116
	IT 7	P. radiata	Carcheri, Tuscany, Italy	MK785381 MK913581 MN150115
	IT 9	P. radiata	Carcheri, Tuscany, Italy	MK785380 MK913580 MN150114
	IT 11	P. radiata	Carcheri, Tuscany, Italy	MK785379 MK913579 MN150113
	IT 13	P. radiata	Carcheri, Tuscany, Italy	MK785378 MK913578 MN150112
	IT 14	P. radiata	Carcheri, Tuscany, Italy	MK785377 MK913577 MN150111
	IT 15	P. radiata	Carcheri, Tuscany, Italy	MK785376 MK913576 MN150110
	SP 1	P. radiata	San Sebastian de Garabandal, Spain	MK785372 MK913571 MN150106
	IT 17	P. nigra	Antella, Tuscany, Italy	MK785375 MK913575 MN150109
	IT 20	P. radiata	Carcheri, Tuscany, Italy	MK785374 MK913574 MN150108
	IT 22	P. radiata	Fucecchio, Tuscany, Italy	MK785373 MK913573 MN150107
	LSVN1233	P. radiata	Pyrénées Atlantiques, France	MK785368 MK913572 MN150121
	US 64	P. resinosa	Bear Brook State Park, NH, USA	MK785371 MK913570 MN150105
	US 65	P. resinosa	Bear Brook State Park, NH, USA	MK785370 MK913569 MN150104
	US 66	P. resinosa	Bear Brook State Park, NH, USA	MK785369 MK913568 MN150103
C. orientalis	CBS 138.64	Tsuga canadiensis	Nashville, Canada	KP881690 MK913585 MN150122
C. pinea	CBS 139.64	P. strobus	Chalk River, Canada	KP881691 DQ677937 MN150093
dissection microscope (SMZ800, Nikon, Japan). The length and width of 50 released ascospores and 30 fruiting bodies were measured under a light microscope (Axioskop 50 Zeiss, Germany) and images captured with a Nikon Digital Sight DS-5M camera (Nikon Instruments Software-Elements Basic Research). The means and range dimensions of fruiting bodies and ascospores were compared with those reported in literature (Table 2). The morphology of fungal colonies was determined for cultures grown for four weeks on 1.5% Malt Extract Agar (MEA, DIFCO, Detroit, Michigan, USA) and 1.5% PDA.

Daily growth rate in culture

Six-mm diameter mycelial plugs were taken from the margins of actively growing seven-day-old colonies on PDA, using a flame-sterilised cork borer and were placed at the centres of 90-mm Petri dishes containing 1.5% PDA or 1.5% MEA. Five replicates were used for each of five selected strains (IT6, IT9, IT16, IT17, IT22) at each temperature. Dishes were incubated at 4 °C, 15 °C and 20 °C. Two measurements of colony diameter perpendicular to each other were made at 3, 7, 14, 21 and 28 days and daily growth rate was calculated as an average for each strain on each substrate. Data were analysed using a factorial ANOVA, considering temperature and substrate as the independent factor and daily growth rate as the dependent factor.

DNA extraction and PCR amplification

Fungal isolates, including those from the Westerdijk Fungal Biodiversity Institute (CBS 138.64, CBS 139.64 and CBS 140.64) listed in Table 1, were grown in 90-mm Petri dishes containing MEA covered with 300PT cellophane membrane (Celsa, Varese,
Table 2. Morphological characteristics of *C. pinea* isolates described in literature and in this study and compared with *C. moriondi*. Measurements are presented as height × width, both measured reported as (min value) mean+/-SD (max value).

	C. moriondi	*C. pinea*				
Host	*P. radiata*	*P. radiata*	*P. pinaster*	*P. nigra var. austriaca*	*P. mugo*	*P. strobus*
Reference	Capretti 1978	Capretti 1978	Capretti 1980	Rehm 1896	Fitzpatrick 1920	Lanier 1965
Sampling location	France, Italy, Spain, USA (New Hampshire)	Italy	Italy	Italy	Germany	Eastern North America
Ascomata height	(450) 845±24 (1240) µm	2–5mm	2–5mm	–	1–3 mm	2–3 mm
Stalk width	(51) 79±2 (135) µm	–	–	–	100–140 µm	100–125 µm
Ascigerous swelling	terminal	Apical	Apical	Apical	Apical	Apical or sub-apical
Swelling size	(106)281±8(406) × (81)142±5(268) µm	–	–	–	400 × 175–275 µm	175 µm in diameter
Ascospore shape	Small, oval	Small, oval	Small, oval	Small, oval	Ellipsoidal to ovoidal or globose	Ellipsoidal
Ascospore size	(3)4.4±0.07(6.2) × (1.8)2.5±0.04(3.5) µm	(3.5)4.6±0.07(6.3) × (3.1)1.4±0.04(4) µm	(3.5)4.6±0.07(6.3) × (3.1)1.4±0.04(4) µm	(3.7)5.3±0.07(7.9) × (2.8)4.2±0.04(4.4) µm	3.5–6 × 2–4 µm	5–6 × 3 µm
Asci size	(26)37±6.53(53) × (5.36)3±0.04(7.4) µm	–	–	–	12–17 × 5–8 µm	20 × 8 µm
Colonies on malt agar	White-hyaline appressed to the agar. Turning to brown in time.	White-brown with frequent anastomoses	White-brown with frequent anastomoses	–	–	–
Caliciopsis moriondi

Italy) and incubated at 20 °C in the dark for 10 days. Fresh mycelium (ca. 80 mg) was scraped from the surface of the cellophane and ground in 2 ml microfuge tubes with two tungsten beads (3 mm) (Qiagen, Hilden, Germany) and 400 µl Buffer P1 (EZNA Plant DNA Kit, Omega Bio-tek, Norcross, GA, USA) using a Mixer Mill 300 (Qiagen, Hilden, Germany) [2 min; 20 Hz]. DNA was extracted from all samples using the EZNA Plant DNA Kit (Omega Bio-tek, Norcross, Georgia, USA), following the manufacturer’s instructions. The DNA concentration was measured using a Nanodrop ND-1000 spectrophotometer (NanoDrop Technologies, Wilmington, Delaware, USA).

For the phylogenetic analyses, partial regions of three loci were amplified. Amplification of the internal transcribed spacer ITS region (including spacers ITS1 and ITS2 and the 5.8S gene of the rDNA) was done using primers ITS1 and ITS4 (White et al. 1990), of β-tubulin 1 (Bt1) gene using primers Bt2a and Bt2b (Glass and Donaldson 1995) and of translation elongation factor 1-α (EF1-α) gene using primers EF1-983F and EF-gr (Rehner and Buckley 2005). PCR reaction mixtures (25 µl) contained 1 µl of genomic DNA, 2.5 µl of each 10 µM primer, 0.5 µl of 10 mM dNTPs (GeneSpin, Milan, Italy), 2.5 µl of 10X PCR Buffer (GeneSpin), 3 µl of 25 nM MgCl and 0.5 µl (5 U/µl) of Taq polymerase (TaqPol, GeneSpin). Amplifications were carried out in a Mastercycler (Eppendorf, Hamburg, Germany) using the following PCR conditions: for ITS and Bt1: initial denaturation at 95 °C for 5 min; followed by 35 cycles of denaturation at 94 °C for 90 sec, annealing at 56 °C for 1 min and extension at 72 °C for 2 min; and a final elongation step at 72 °C for 10 min. For EF1-α: initial denaturation at 95 °C for 8 min; followed by 35 cycles of denaturation at 95 °C for 30 sec, annealing at 55 °C for 30 sec and extension at 72 °C for 1 min; and a final elongation step at 72 °C for 5 min (modified from Pepori et al. 2015). Amplification products were separated by electrophoresis on gels containing 1% (w/v) of agarose LE (GeneSpin). The approximate length (bp) of the amplification products was determined using the 100-bp DNA ladder Ready to Load (Genespain). PCR amplicons were purified with a miPCR Purification Kit (Metabion International, Planegg, Germany) and sequenced in both directions at Macrogen (Seoul, South Korea). The quality of amplified nucleotide sequences was checked with the software package Geneious version 10.0.9 (Biomatters, Auckland, New Zealand). Generated sequences were submitted to NCBI GenBank (Table 1).

Multi-locus phylogenetic analyses

BLAST searches of the generated sequences were done against the NCBI GenBank database (https://blast.ncbi.nlm.nih.gov/Blast.cgi) to identify the most closely-related sequences. Sequences were compared to those of known Caliciopsis species and other Coryneliaceae obtained from GenBank: ITS sequences of Caliciopsis beckhausii (NR_132090), C. calicioides (JX968549), C. eucalypti (KY173391), C. indica (NR_119752), C. orientalis (KP881690), C. pinea (KP881691, KY099598, KY099601, KY099602), Hypsoteca pleomorpha (MG641785), C. valentina (NR_132091), Corynelia uberata (KP881707), Co. fructigena (KP881704), Co. africana (KP881693),
Lagenulopsis bispora (KP881709); EF1-α sequence of Caliciopsis pinea (DQ677937). Lagenulopsis bispora (KP881709) was selected as outgroup in the ITS dataset, whereas C. orientalis (CBS 138.64) and C. pseudotsugae (CBS 140.64) were selected as outgroup taxa in the EF1-α and Bt1 datasets. The software package Geneious (Auckland, New Zealand) was used for manual optimisation and alignment (ClustalW) of the sequences. Gaps were treated as missing data.

Phylogenetic analyses of all obtained sequences were performed using MEGA 7 (Kumar et al. 2016), Maximum Parsimony (MP) was performed using the heuristic research option with random stepwise addition with 1000 replicates, tree bisection and reconnection (TBR) as branch swapping algorithm and random taxon addition of sequences for the construction of MP trees. All characters were weighted equally and character state transitions were treated as unordered. Parameters measured for parsimony included tree length (TL), consistency index (CI), rescaled consistency index (RC), retention index (RI) and homoplasy index (HI). Bootstrap support values were evaluated using 5000 bootstrap replicates (Hills and Bull 1993).

Datasets were also analysed by Bayesian Inference (BI) using MrBayes 3.1.2 (Ronquist and Huelsenbeck 2003), with a General Time Reversible (GTR) model and gamma distributed rate variation across sites. Six Markov Chain Monte Carlo (MCMC) chains (Larget and Simon 1999) were run for 3 million generations, starting from a random tree and using the default temperature. Every 100th tree was sampled and the first 100,000 generations were discarded as burn-in. The burn-in period was determined after testing for stationarity of likelihood values, that is, by plotting numbers of generation versus the log probability and checking for the convergent diagnostic PSRF, which approached 1 (Ronquist et al. 2005). The consensus tree was calculated in MrBayes with the command sumt (Ronquist et al. 2005). The resulting phylogenetic tree was visualised using TreeView (Page 1996) and edited in TreeGraph2 (Stöver and Müller 2010).

Inoculation tests

An inoculation experiment was carried out at the IPSP-CNR nursery facilities, located at Antella, Province of Florence, Italy (43°43’N, 11°22’E; 170 m a.s.l.). Three-year-old seedlings of Pinus halepensis, P. pineaster and P. pinea, with 36 plants per species, were planted in a randomised block design. The plants were maintained in rows 1 m apart and grown in a substrate comprised of commercially-produced loam and drip irrigated. The site had been completely cleared and ploughed prior to planting and was weeded each month.

Inoculations were performed in June 2014. A 6-mm diameter cork borer was used to remove the bark and expose the cambium on each plant. A plug of mycelium of the test fungus that had been grown in Petri dishes on 1.5% PDA for 20 days at 25 °C in the dark was inserted, with the mycelium side placed downwards into each wound. For inoculations, four different Italian Caliciopsis isolates (IT5, IT7, IT20 and IT22), recovered from infected Pinus sp. in the field, were used (Table 1). The inoculation trial
was performed using eight trees per isolate on each of the *Pinus* spp. Four plants for each *Pinus* sp. were mock-inoculated using sterile PDA as controls.

Pathogenicity was assessed, based on the length of lesions (mm) after six months. Statistical analyses were performed by using Statistica 10.0 (StatSoft Inc. 1984–2011). To fulfill Kock’s postulates, re-isolations were carried out from the lesions on all the inoculated and control plants.

Results

Morphology and culture characteristics

Fruiting bodies on bark taken from infected trees were black ascomata assembled in tufts with ascigerous swellings at the apices containing ascospores. The Italian specimens had different morphological characteristics from those reported in literature for *Caliciopsis pinea* (Table 2, Figures 1, 2). Colonies of the Italian strains grown on MEA were white, appressed to the agar surface, turning to brown with time.

Growth in culture

No growth was detected for any isolate at 4 °C. Isolates showed significantly greater growth at 20 °C. Mean daily growth rate (mm/day) at 4 °C = 0 ± 0; at 15 °C = 0.037 ± 0.017; at 20 °C = 0.076 ± 0.028; F = 412.371; p < 0.000). No significant differences in growth were recorded on the different growth media (F = 0.801; p = 0.373).

DNA sequence analysis

The final combined ITS–EF1-α–Bt1 data matrix of *Caliciopsis* included 53 ingroup and 2 outgroup sequences (length = 137, CI = 0.9444, RI = 0.99633, RC = 0.98178, HI = 0.940979) (Figure 3), comprising 1611 alignment characters, including gaps. Of these, 1434 characters were constant and 112 characters were parsimony informative (Figure 3). Single ITS, EF1-α and Bt1 datasets included, respectively, 458, 762 and 373 characters (Figure 4, Suppl. material 1: Figure S1 and Suppl. material 2: Figure S2).

Phylogenetic analysis, resulting in the most parsimonious tree from the concatenated dataset, showed that isolates, previously identified as *Caliciopsis pinea*, based on morphology, grouped in two different clades. One of these clades (Clade I) included most of the US strains and the *C. pinea* isolate CBS 139.64. The other clade (Clade II) included all EU isolates and three US strains from *P. resinosa* from a single location in New Hampshire (US64, US65, US66). Maximum Parsimony and Bayesian Inference produced nearly identical topologies for all single locus datasets: ITS, which included different species of *Caliciopsis* and other Coryneliaceae (*Corynelia africana*, *C. fructigena*, *C. uberata*...
and *Lagenulopsis bispora* (length = 168, CI = 0.721154, RI = 0.922043, RC = 0.762881, HI = 0.664935); Br1 (length = 62, CI = 0.926829, RI = 0.98404, RC = 0.936428, HI = 0.912039); EF1-α gene (length = 66, CI = 0.9999, RI = 0.9998, RC = 0.9988, HI = 0.9888) (Figure 4, Suppl. material 1: Figure S1 and Suppl. material 2: Figure S2).

Across the three loci sequenced, there were 31 fixed polymorphisms separating Clade I from Clade II. Of these, 12 were in the ITS region, 11 in EF1-α and 7 in Bt1 (Figure 5). The USA isolates US64, US65 and US66 shared the same fixed polymorphisms present in Clade II samples. However, samples US64 together with isolates SP1, LSVN1233 and IT17 did not have the insertion in position 459 of ITS, which was one of the fixed polymorphisms in Clade II samples. Ten fixed polymorphisms were specific to Clade I. Of these, two were in the ITS, two in the EF1-α and six in the Br1, where three in position 105, 122 and 128 were in common with isolates in Clade II. Fixed, unique polymorphisms were identified in all three loci, which produced congruent trees from the individual loci that separated Clade I (*C. pinea*) from Clade II isolates, suggesting that the latter isolates represent a novel species different from *C. pinea*.

Taxonomy

Caliciopsis moriondi N. Luchi, D. Migliorini & A. Santini, sp. nov.
MycoBank No: 833212
Figures 1, 2

Types. ITALY, Florence, Lastra a Signa, Carcheri, 43°71.58’N, 11°07.36’E, 110 m a.s.l., isolated from branches of *Pinus radiata*, 10 Oct. 2014, leg. N. Luchi, D. Migliorini & A. Santini, CBS 146717 (holotype); (IT1). ex-holotype sequences MN156540 (ITS), MK913586 (EF1-α), MN150120 (Bt1); duplicate deposited at Fungal Collection of the Institute for Sustainable Plant Protection-National Research Council (IT1; isotype). ITALY, Florence, Fucecchio, 43°47’17’’N, 10°46’37’’E, isolated from diseased *Pinus radiata*, 5 Dec. 2014, leg. N. Luchi, deposited at Fungal Collection of the Institute for Sustainable Plant Protection-National Research Council (IT22, paratype). ITALY, Florence, Lastra a Signa, Carcheri, 43°71.58’N, 11°07.36’E, isolated from diseased *Pinus radiata*, 10 Oct. 2014, leg. N. Luchi, deposited at Fungal Collection of the Institute for Sustainable Plant Protection-National Research Council (IT4, paratype). ITALY, Florence, Antella 43°44.00’N, 11°19.52’E, isolated from diseased *Pinus nigra*, 24 Nov. 2014, leg. D. Migliorini, deposited at Fungal Collection of the Institute for Sustainable Plant Protection-National Research Council (IT17, paratype). SPAIN, San Sebastián de Garabandal, 43°12.04’N, 4°25.25’W, isolated from diseased *Pinus radiata*, 25 May 2011, leg. P. Capretti, deposited at Fungal Collection of the Institute for Sustainable Plant Protection-National Research Council (SP1, paratype).

Description. Stromata developing beneath the surface of host periderm as small, more or less circular structures, giving little external evidence of their presence at early stages. Continued growth causing the bark to break and the minute cushion-shaped
Figure 1. *Caliciopsis moriondi* structures A cankers on a *Pinus radiata* trunk B–D ascomata growing from a canker B image of *C. pinea* ascigerous columns from an archive of 1970 (provided by Prof. Paolo Capretti) E–G asci H ascospores I ascigerous, terminal portion L four weeks colony grown at 20 °C on MEA. Scale bars: 2.5 µm (F–H), 5 µm (I).
stromata, developing a lobed appearance and increasing in diameter and thickness, in black short-stalked columnar ascomata. Ascomata mostly frequent protruding at the margin of cankers, single or double, rarely triple, stalks not branched, (0.45) 0.84 ± 0.02 (1.2) mm high and (51) 79 ± 2 (135) µm width. Ascigerous swelling, terminal, (106) 281 ± 8 (406) µm high and (81) 142 ± 5 (268) µm diameter, forming a brownish pulverulent mass of extruded ascospores. Asci bitunicate, clavate, 8-spored, slightly curved, pedicellate, (26) 37 ± 6 (53) µm long; pedicel 1–3 µm diameter; sporiferous part (12) 13 ± 0.4 (14.2) µm long and (5.3) 6.3 ± 0.4 (7.4) µm wide. Ascospores yellow-green colour, sub-globose to ellipsoidal and often aggregated in small masses, (3) 4.4 ± 0.07 (6.2) µm long and (1.8) 2.5 ± 0.04 (3.5) µm wide, brown when mature. Spermogonia sub-globose, papillate, sessile, aggregated below ascomatal tubes. Conidia unicellular, hyaline, smooth, slightly fusiform.

Culture characteristics. Cultures incubated on 2% PDA, showed optimal temperature for growth at 20 °C, with slow-growth rate (1.4 mm/day). Colonies white, pressed to the agar, circular to irregular, becoming fawn-colored with age, areas towards margin floccose; mycelium velutinous with funicolose areas or strongly funicolise in the inner and older parts of the mycelium. Reverse colony brownish, with brown diffusion zone in old cultures; branching septate hyphae, with frequent anastomoses and tips with dendroid branching.

Inoculation tests. All isolates from Italy and residing in Clade II inoculated on seedlings gave rise to symptoms and lesions of variable length after six months. These were all significantly different to those of the controls (F = 119.21, p < 0.000; F = 60.84, p < 0.000, respectively). Inoculated plants did not show a crown dieback,
Figure 3. One of the most parsimonious trees (length = 137) from the combined sequence datasets of the ITS rDNA, Brt1 and EF1-α loci is shown (CI = 0.9444, RI = 0.99633, RC = 0.98178, HI = 0.94098). MP bootstraps and Bayesian posterior probabilities are indicated alongside the branches. C. pseudotsugae and C. orientalis EF1-α were selected as outgroup taxa.
Figure 4. One of the most parsimonious trees of aligned ITS dataset (length = 168, CI = 0.721154, RI = 0.922043, RC = 0.762881, HI = 0.664935). The MP and Bayesian posterior probability are indicated next to the branches.
Figure 5. Polymorphic nucleotides from aligned sequence data of ITS, EF1-α and Bt1 loci showing the variation between isolates of Caliciopsis pinea from US and isolates of C. moriondi from the US and EU. Different colours demark variation in bases found in the sequences. Variation type is reported in the bottom part: “Sb” is the abbreviation for base’s substitution; “In” is the abbreviation for base’s insertion. Fix polymorphisms are signalled with “/”. Sequences US232b, US67 and IT1 are respectively marked with *1, *2, *3 as representative for the following groups of sequences not reported in the figure:

*1 (US151, US199, US238, US240, US232b); *2 (US52, US100, US81, US110, US149, US161, US163, US167, US172, US206, US220, US225a, US230d, US234a, US252); *3 (IT2, IT4, IT5, IT6, IT7, IT9, IT11, IT13, IT14, IT15, IT20, IT22, US66, US65)
but all had profuse resin production at the inoculation points. *Caliciopsis moriondi* fructification bodies were clearly visible on *P. halepensis*, while no fructifications were seen in any of the other inoculated *Pinus* species.

The lengths of lesions caused by the inoculated isolates were significantly longer on *P. halepensis* (28.6 ± 9.04 mm) and *P. pinaster* (30.1 ± 7.13 mm) than on *P. pinea* (16.4 ± 3.16 mm) (F = 297.43, p < 0.000). *Caliciopsis moriondi* was successfully re-isolated from all the seedlings inoculated with the pathogen, while no *Caliciopsis* species were re-isolated from mock-inoculated seedlings.

Hosts and distribution. Pathogen of pine trees *P. nigra*, *P. radiata* and *P. resinosa*, causing cankers and resin production in Europe (France, Italy, Spain) and North America (New Hampshire, USA).

Etymology. The name *moriondi* honours Prof. Francesco Moriondo (1926–2014). Francesco Moriondo was the founder of forest pathology as a discipline distinct from plant pathology in Italy. In this respect, he preferred a more ecological view of the topic as opposed to the typical mechanistic approach. During his career, he encouraged many young students to consider the reasons for the appearance of symptoms on trees, rather than considering only the causative agents. He also emphasised the importance of minor pathogens in the ecosystem, of which *Caliciopsis moriondi* (then *C. pinea*) was one.

Notes. *Caliciopsis moriondi* is commonly associated with a canker disease on *Pinus* spp. It differs subtly from *C. pinea*, based on morphological traits, including shorter ascomata, protruding and isolated from the stroma, rarely in groups of two-three, but never in more numerous groups, such as is common for *C. pinea* (Table 2).

Discussion

This study included a large number of isolates previously believed to be *Caliciopsis pinea*. Analysis of DNA sequences of the ITS, Bt1 and EF1-α regions clearly showed that these isolates represented two distinct taxa. One of these represented *C. pinea* and the other an undescribed species, which we have formally described here as *C. moriondi*.

Caliciopsis moriondi can be distinguished from *C. pinea* based on various morphological features including the length of the ascomata, as well as by their distribution on the stromata. In the absence of sequence data, previous authors confused isolates obtained in Europe with *C. pinea*, which was originally described from North America by Fitzpatrick (1920). *Caliciopsis moriondi* as the fungus is now known, has been found in Italy, France and Spain, mainly on *P. radiata* trees and, on one occasion, on *P. nigra*. Based on the wide sampling in this study, it appears likely that *C. pinea* does not occur in Europe.

Delatour (1969) described *Caliciopsis pinea* as a weak pathogen by basing his assessment on inoculations of *P. pinaster* in France. The results of the present study suggest that it is more likely that this author was working with *C. moriondi*. This view is supported by the illustrations of *C. pinea* by Lanier (1965) showing ascomata very similar to those of *C. moriondi*.
Caliciopsis moriondi was able to cause only mild symptoms when inoculated on Mediterranean Pinus spp. in pathogenicity trials. The symptoms were most noticeable on P. halepensis and less severe on P. pinaster and P. pinea, confirming the results of Delatour (1969). Caliciopsis moriondi was able to produce ascocarps when inoculated on P. halepensis, but not on P. pinaster and P. pinea.

Interestingly, the European isolates of Caliciopsis moriondi were mainly found on Pinus radiata. Our inoculation tests, as well as those of Delatour (1969), suggest that the non-native P. radiata is more susceptible than Mediterranean Pinus spp. Unfortunately, P. radiata and P. nigra plants were not available when this pathogenicity test was undertaken. A further inoculation experiment on these two Pinus spp., which are widely planted in Europe, will be necessary in order to assess their susceptibility to C. moriondi.

The results of this study suggest that Caliciopsis moriondi is native to Europe. This is supported by the fact that it caused only mild symptoms on artificially inoculated European Pinus spp. Yet on naturally infected non-native P. radiata, it gave rise to symptoms similar to those caused by the pitch canker pathogen Fusarium circinatum, which is an important quarantine pathogen in Europe and also commonly found on P. radiata (Capretti et al. 2013). Future studies will be necessary to determine whether infections on these trees are caused by F. circinatum or C. moriondi and the duplex real-time PCR assay developed and validated by Luchi et al. (2018) should be useful in this regard.

Caliciopsis moriondi and C. pinea are two vicariant species and it appears that the European C. moriondi has been accidentally introduced in North America. We hypothesise that this might have occurred at the end of the 1800s when European nurseries produced large volumes of Pinus spp. for the establishment of North American plantations (Maloy 1997). Caliciopsis moriondi could easily have moved on infected, but asymptomatic, seedlings at that stage.

The results of this study suggest that Caliciopsis pinea is not present in Europe. Its pathogenicity on European pines has never been assessed. Since the beginning of the present century, there has been a renewed interest in this species due to the damage it causes to the plantations of P. strobus in the north-eastern United States (Munck et al. 2015, 2016). An accidental introduction of this species into Europe could pose a threat to European pine plantations and natural forests. Consequently, it will be important to assess the susceptibility of European Pinus spp. to this pathogen and to prepare an ad hoc pest risk assessment for it.

Acknowledgements

We thank Dr. Renaud Ioos (Agency for Food, Environmental and Occupational Health & Safety, France) and Dr. Kaitlin Mooneyham for kindly providing isolates from France and Virginia, respectively. The Nucleo Carabinieri per la Biodiversità (Cecina, Italy) is thanked for providing plants used in the pathogenicity tests. We also wish to thank Prof. Paolo Capretti (University of Florence, Italy) who supported us in studying Caliciopsis and who followed in the footsteps of Prof. Francesco Moriondo.
This study has received funding from the project “Holistic management of emerging forest pests and diseases” (HOMED) a European Union’s Horizon 2020 Programme for Research & Innovation under grant agreement No 771271.

References

Butin H (1970) Zwei neue *Caliciopsis*-Arten auf chilenischen Koniferen. Journal of Phytopathology 69(1): 71–77. https://doi.org/10.1111/j.1439-0434.1970.tb03903.x

Capretti P (1978) *Caliciopsis pinea* Peck parassita di *Pinus pinaster* e *Pinus insignis*. Phytopathologia Mediterranea 17(2): 101–104.

Capretti P (1980) *Pinus nigra* var. *austriaca*, nuovo ospite di *Caliciopsis pinea* Peck. Informatore Fitopatologico 30(5): 19–21.

Capretti P, Luchi N, Migliorini D (2013) Occurrence of *Caliciopsis pinea* Peck on pine: interactions with other fungal pathogens. In: Mendel University in Brno (Ed.) Proceedings of the IUFRO working party 7.02.02 Foliage, shoot and stem diseases of forest trees, ‘Biosecurity in natural forests and plantations, genomics and biotechnology for biosecurity in forestry’, Brno, Czech Republic (33).

Costanza KKL, Whitney TD, McIntire CD, Livingston WH, Gandhi KJK (2018) A synthesis of emerging health issues of eastern white pine (*Pinus strobus*) in eastern North America. Forest Ecology and Management 423: 3–17. https://doi.org/10.1016/j.foreco.2018.02.049

Crous PW, Schumacher PK, Akulov A, Thangavel R, Hernández-Restrepo M, Carnegie AJ, Cheewangkoon R, Wingfield MJ, Summerell BA, Quaedvlieg W, Coutinho TA. (2019) New and interesting fungi. 2. Fungal Systematics and Evolution 3(1): 57–134. https://doi.org/10.3114/fuse.2019.03.06

Delatour C (1969) Contribution à l’étude du *Caliciopsis pinea* Peck: résultats complémentaires d’inoculations artificielles. Annales Des Sciences Forestières 26(2): 285–295. https://doi.org/10.1051/forest/19690205

Fitzpatrick HM (1920) Monograph of the Coryneliaceae. Mycologia 12(4): 206–237. https://doi.org/10.1080/00275514.1920.12016837

Fitzpatrick HM (1942) Revisionary studies in the Coryneliaceae. II. The genus Caliciopsis. Mycologia 34(5): 489–514. https://doi.org/10.1080/00275514.1942.12020918

Garrido-Benavent I, Pérez-Ortega S (2015) Unravelling the diversity of European Caliciopsis (Coryneliaceae, Ascomycota): Caliciopsis valentina sp. nov. and C.beckhausii comb. nov., with a worldwide key to Caliciopsis. Mycological Progress 14(3): 1–10. https://doi.org/10.1007/s11557-015-1034-2

Glass NL, Donaldson GC (1995) Development of primer sets designed for use with the PCR to amplify conserved genes from filamentous ascomycetes. Applied and Environmental Microbiology 61(4): 1323–1330. https://doi.org/10.1128/AEM.61.4.1323-1330.1995

Haines SL, Costanza KKL, Livingston WH (2018) Compartmentalization process in eastern white pine (*Pinus strobus* L.) documented using a native fungal pathogen. Forest Ecology and Management 423: 94–105. https://doi.org/10.1016/j.foreco.2018.03.003
Caliciopsis moriondi

Harrison KJ (2009) Forest disease records on eastern white pine in Atlantic Canada: 1950 to 1996. Forestry Chronicle 85(4): 604–608. https://doi.org/10.5558/tfc85604-4

Hillis DM, Bull JJ (1993) An empirical test of Bootstrapping as a method for assessing confidence in phylogenetic analysis. Systematic Biology 42(2): 182–192. https://doi.org/10.1093/sysbio/42.2.182

Intini M (1980) Caliciopsis nigra Schrader ex Fries, a parasite of Cupressus sempervirens. Informatore Fitopatologico 30(10): 7–9.

Kumar S, Stecher G, Tamura K (2016) MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Molecular Biology and Evolution 33(7): 1870–1874. https://doi.org/10.1093/molbev/msw054

Lanier L (1965) Note sur une espèce cryptogamique nouvelle pour la France sur différents Pins dont le Pin maritime des Landes. Revue Forestière Française 1: 1–34. https://doi.org/10.4267/2042/24685

Larget B, Simon DL (1999) Markov chain Monte Carlo algorithms for the Bayesian analysis of phylogenetic trees. Molecular Biology and Evolution 16(6): 750–759. https://doi.org/10.1093/oxfordjournals.molbev.a026160

Luchi N, Pepori AL, Bartolini P, Ioos R, Santini A (2018) Duplex real-time PCR assay for the simultaneous detection of Caliciopsis pinea and Fusarium circinatum in pine samples. Applied Microbiology and Biotechnology 102: 7135–7146. https://doi.org/10.1007/s00253-018-9184-1

Maloy OC (1997) White pine blister rust control in North America: A case history. Annual Review of Phytopathology 35: 87–109. https://doi.org/10.1146/annurev.phyto.35.1.87

Munck IA, Livingston W, Lombard K, Luther T, Ostrofsky WD, Weimer J, Wyka S, Broders K (2015) Extent and severity of Caliciopsis canker in New England, USA: An emerging disease of Eastern White Pine (Pinus strobus L.). Forests 6: 4360–4373. https://doi.org/10.3390/f6114360

Munck IA, Luther T, Wyka S, Keirstead D, McCracken K, Ostrofsky W, Searles W, Lombard K, Weimer J, Allen B (2016) Soil and stocking effects on caliciopsis canker of Pinus strobus L. Forests 7(269): 1–10. https://doi.org/10.3390/f7110269

Page RD (1996) Tree View: An application to display phylogenetic trees on personal computers. Bioinformatics 12(4): 357–358. https://doi.org/10.1093/bioinformatics/12.4.357

Pascoe IG, McGee PA, Smith IW, Dinh SQ, Edwards J (2018) Caliciopsis pleomorpha sp. nov. (Ascomycota: Corynelloides) causing a severe canker disease of Eucalyptus cladocalyx and other eucalypt species in Australia. Fungal Systematics and Evolution 2: 45–56. https://doi.org/10.3114/fuse.2020.05.13

Peck CH (1880) Report of the Botanist (1879) Annual Report on the New York State Museum of Natural History 33. https://www.biodiversitylibrary.org/item/110212#page/291/mode/1up

Pepori AL, Kolařík M, Bettini PP, Vettraino AM, Santini A (2015) Morphological and molecular characterisation of Geomitibia species on European elms. Fungal Biology 119(11): 1063–1074. https://doi.org/10.1016/j.funbio.2015.08.003

Pratibha J, Amandeep K, Shenoy B, Bhat D (2010) Caliciopsis indica sp. nov. from India. MYCOSPHERE ONLINE-Journal of Fungal Biology 1: 65–72. http://irgu.unigoa.ac.in/drs/handle/unigoa/2394
Ramsfield TD, Shamoun SF, Van Der Kamp BJ (2009) The phenology and impact of Cali-
ciopsis arceuthobii on lodgepole pine dwarf mistletoe, Arceuthobium americanum. Botany
87(1): 43–48. https://doi.org/10.1139/B08-089

Ray WW (1936) Pathogenicity and cultural experiments with Caliciopsis pinea. Mycologia
28(3): 201–208. https://doi.org/10.1080/00275514.1936.12017130

Rehm H (1896) Rabenhorst Kryptogamen Flora. Pilze – Ascomyceten 1(3): 1–382.
Rehner SA, Buckley E (2005) A Beauveria phylogeny inferred from nuclear ITS and EF1-α se-
quences: evidence for cryptic diversification and links to Cordyceps teleomorphs. Mycologia
97(1): 84–98. https://doi.org/10.1080/15572536.2006.11832842

Rikkinen J (2000) Two new species of Caliciopsis (Coryneliaceae) from Hunan Province, Chi-
na. Karstenia 40(1–2): 147–151. https://doi.org/10.29203/ka.2000.365

Ronquist F, Huelsenbeck JP (2003) MrBayes 3: Bayesian phylogenetic inference under mixed
models. Bioinformatics 19(12): 1572–1574. https://doi.org/10.1093/bioinformatics/
btg180

Ronquist F, Huelsenbeck JP, van der Mark P (2005) MrBayes 3.1 Manual.

Schulz AN, Mech AM, Asaro C, Coyle DR, Cram MM, Lucardi RD, Gandhi KJK (2018a) Asses-
sement of abiotic and biotic factors associated with eastern white pine (Pinus strobus L.)
dieback in the Southern Appalachian Mountains. Forest Ecology and Management 423: 59–69. https://doi.org/10.1016/j.foreco.2018.02.021

Schulz AN, Mech AM, Cram MM, Asaro C, Coyle DR, Lucardi RD, Lucas S, Gandhi KJK
(2018b) Association of Caliciopsis pinea Peck and Matsucoccus macrocicatrices Richards with
eastern white pine (Pinus strobus L.) seedling dieback. Forest Ecology and Management
423: 70–83. https://doi.org/10.1016/j.foreco.2018.03.013

Stöver BC, Müller KF (2010) TreeGraph 2: combining and visualizing evidence from differ-
ent phylogenetic analyses. BMC Bioinformatics 11(1): 1–7.e https://doi.org/10.1016/j.
foreco.2018.03.013

TreeView (2006, 2008) TreeView. http://taxonomy.zoology.gla.ac.uk/rod/treview.html

White TJ, Bruns TD, Lee SB, Taylor JW (1990) Analysis of phylogenetic relationships by
amplification and direct sequencing of ribosomal RNA genes. In: Innis MA, Gelfand DH,
Sninsky JJ, White TJ (Eds) PCR Protocols: a guide to methods and applications. Academic
Press, San Diego, 315–322. https://doi.org/10.1016/B978-0-12-372180-8.50042-1

Whitney TD, Cram MM, Barnes BF, Yao J, Lucardi RD, Gandhi KJK (2018) Tree-level distri-
bution of a novel insect-pathogen complex and its potential contribution to eastern white
pine dieback. Forest Ecology and Management 423: 49–58. https://doi.org/10.1016/j.
foreco.2018.02.002

Wijayawardene NN, Hyde KD, Al-Ani LKT, Tedersoo L, Haelewaters D, Rajeshkumar KC,
Zhao RL, Aptroot A, Leontyev DV, Saxena RK, Tokarev YS, Dai DQ, Letcher PM, Step-
phenson SL, Ertz D, Lumbsch HT, Kukwa M, Issi IV, Madrid H, Phillips AJL, Selbmann
L, Pfiegler WP, Horváth E, Bensch K, Kirk PM, Koláříková K, Raja HA, Radek R, Papp
V, Dima B, Ma J, Malosso E, Takamatsu S, Rambold G, Gannibal PB, Triebel D, Gautam
AK, Avasthi S, Suetrong S, Timdal E, Fryar SC, Delgado G, Réblová M, Doilom M, Dola-
Supplementary material I

Figure S1. One of the most parsimonious trees from EF1-α sequence datasets
Authors: Duccio Migliorini, Nicola Luchi, Alessia Lucia Pepori, Francesco Pecori, Chiara Aglietti, Fabio Maccioni, Isabel Munck, Stephen Wyka, Kirk Broders, Michael J. Wingfield, Alberto Santini
Data type: Alignment of genomic sequences
Explanation note: One of the most parsimonious trees from EF1-α gene sequence datasets is shown (length = 66, CI = 0.9999, RI = 0.9998, RC = 0.9988, HI = 0.9888). The MP and Bayesian posterior probability are indicated next to the branches. C. pseudotsugae and C. orientalis are used as outgroup.
Copyright notice: This dataset is made available under the Open Database License (http://opendatacommons.org/licenses/odbl/1.0/). The Open Database License (ODbL) is a license agreement intended to allow users to freely share, modify, and use this Dataset while maintaining this same freedom for others, provided that the original source and author(s) are credited.
Link: https://doi.org/10.3897/mycokeys.73.53028.suppl1
Supplementary material 2

Figure S2. One of the most parsimonious trees from Bt1 sequence datasets
Authors: Duccio Migliorini, Nicola Luchi, Alessia Lucia Pepori, Francesco Pecori, Chiara Aglietti, Fabio Maccioni, Isabel Munck, Stephen Wyka, Kirk Broders, Michael J. Wingfield, Alberto Santini
Data type: Alignment of genomic sequences
Explanation note: One of the most parsimonious trees from Bt1 sequence datasets is shown (CI = 0.9268, RI = 0.9840, RC = 0.936428, HI = 0.912039). The MP and Bayesian posterior probability are indicated next to the branches. *C. pseudotsugae* and *C. orientalis* are used as outgroup.
Copyright notice: This dataset is made available under the Open Database License (http://opendatacommons.org/licenses/odbl/1.0/). The Open Database License (ODbL) is a license agreement intended to allow users to freely share, modify, and use this Dataset while maintaining this same freedom for others, provided that the original source and author(s) are credited.
Link: https://doi.org/10.3897/mycokeys.73.53028.suppl2