BLOCH WAVES IN AN ARBITRARY TWO-DIMENSIONAL LATTICE OF SUBWAVELENGTH DIRICHLET SCATTERERS

ORY SCHNITZER* AND RICHARD V. CRASTER†

Abstract. We study waves governed by the planar Helmholtz equation, propagating in an infinite lattice of subwavelength Dirichlet scatterers, the periodicity being comparable to the wavelength. Applying the method of matched asymptotic expansions, the scatterers are effectively replaced by asymptotic point constraints. The resulting coarse-grained Bloch-wave dispersion problem is solved by a generalised Fourier series, whose singular asymptotics in the vicinities of scatterers yield the dispersion relation governing modes that are strongly perturbed from plane-wave solutions existing in the absence of the scatterers; there are also empty-lattice waves that are only weakly perturbed. Characterising the latter is useful in interpreting and potentially designing the dispersion diagrams of such lattices. The method presented, that simplifies and expands on Krynkin & McIver [Waves Random Complex, 19 347 2009], could be applied in the future to study more sophisticated designs entailing resonant subwavelength elements distributed over a lattice with periodicity on the order of the operating wavelength.

Key words. Bloch waves, Periodic media, Singular perturbations

AMS subject classifications. 34D15, 35P20, 35B27, 78M35

1. Introduction. There is immense current interest in wave phenomena in artificial periodic media. In subwavelength metamaterials (SWM), that are constructed using tiny resonant elements, the periodicity is small compared with the operating wavelength [35]. SWM mimic natural materials whose macroscopic properties are endowed by an underlying atomic structure. Ingenious designs — introduced in electromagnetics but since adapted to acoustics, elasticity and seismology — have enabled unusual effective properties and capabilities unfamiliar in nature, including negative refractive index and cloaking. Photonic (similarly platonic and phononic) crystals constitute a separate class of artificial materials, in which operating wavelengths are typically on the order of the periodicity of the microstructure [32]. Here, wave manipulation is enabled by the surprisingly coherent outcome of multiple scattering events, mimicking the way electron waves are sculptured in solid-state crystals. Studies of photonic crystals were initially focused on the existence of complete photonic band gaps [42]. Nowadays, however, artificial crystals broadly interpreted are in the spotlight as a less lossless alternative to SWM, with the plethora of phenomena demonstrated including slow light [3], dynamic anisotropy [2], defect and interface modes [14], cloaking [9], topologically protected edge states [20], and unidirectional propagation [29] amongst others.

Artificial “metacrystals”, made out of subwavelength particles, inclusions, or microstructured resonators periodically distributed with spacing on the order of the operating wavelength, are an amalgam of SWM and photonic crystals. The smallness of the scattering elements in this setup suggests a relatively weak modulation of waves propagating through the crystal. When this is indeed the case, the effect of the lattice can be captured by a perturbation approach [28] in the spirit of the “empty-lattice approximation” popularised in solid-state physics [16]. There are scenarios, however, where the modulation cannot be reasonably regarded as small, regardless of the scatterer dimensions. An elementary example is the propagation of flexural waves in a periodically pinned plate, where the time-harmonic displacement field is governed

*Department of Mathematics, Imperial College London, London SW7 2AZ, UK

This manuscript is for review purposes only.
by the two-dimensional Biharmonic reduced-wave equation and a zero-displacement
“Dirichlet” condition on pinned boundaries. Since the Green function of the latter
equation is regular, a valid leading-order approximation is obtained by simply ignor-
ing the finite size of the scatterers, treating these as Dirichlet point constraints. The
resulting problem offers a convenient framework for detailed mathematical studies
of Bloch-wave dispersion surfaces and scattering from finite and semi-infinite arrays
[10, 36, 12], and was also utilised for demonstrating the method of “High-Frequency
Homogenisation” [1, 23].

A related scenario is the propagation of planar electromagnetic waves through a
doubly periodic array of perfectly conducting cylinders in transverse-electric polari-
sation, where the time-harmonic electric-field component along the cylindrical axes
satisfies the Helmholtz equation and vanishes on the cylindrical boundaries [31]. The
acoustic analogue of the latter problem entails soft cylinders on which the velocity
potential vanishes. Mathematically, the singular nature of the Helmholtz Green func-
tion implies that, contrary to the Biharmonic case, one cannot prescribe the value of
the wave field at a point. Accordingly, the small-scatterer limit needs to be handled
with care. One approach is to reduce an exact multipole-expansion solution in the
latter limit [27]. A more general and systematic approach is to employ the method of
matched asymptotic expansions [13], where “inner” expansions valid in the vicinities
of the scatterers are matched with an “outer” expansion valid away from the scat-
terers. The pertinent essentials of the approach are outlined in [7] and [24] in the
context of low-frequency scattering from isolated subwavelength Dirichlet scatterers,
and in the context of singularly perturbed eigenvalues of the Laplace operator in [41].

A matched asymptotics solution of the Bloch-wave dispersion problem for a dou-
bly periodic array of small cylindrical Dirichlet scatterers was given by Krynkin and
McIver [17]. In that work, the analysis of the inner region and the matching procedure
follow closely the approach in [7], generalised to a cylinder of arbitrary cross-sectional
shape. The outer solution is sought from the start as a quasi-periodic Green function,
namely an infinite double sum of Hankel functions whose convergence is accelerated
using the addition theorem and highly developed techniques for manipulation of lat-
tice sums. The main result is an asymptotic dispersion relation, for which several
accurate and semi-accurate methods of solution are suggested. A key finding is that
deviations from empty-lattice eigenvalues, identified there as lattice-sum poles, can
be either appreciable or negligible, i.e., logarithmically or algebraically small with
respect to the inclusion size.

In this paper, we revisit the doubly periodic Helmholtz–Dirichlet problem. We
aim to streamline the approach of Krynkin and McIver [17] thereby allowing the
methodology to be more readily applied, and also to generalise to lattices with ele-
mental unit cells occupied by multiple scatterers (e.g. the honeycomb lattice that is
of much current interest due to its connection to graphene and isolated Dirac points).
In our approach, those empty-lattice Bloch waves that are weakly perturbed are sys-
tematically identified a priori by considering the existence (and dimension of the
space) of empty-lattice waves that vanish at the positions of all scatterers. In addi-
tion to simplifying the analysis, this approach provides insight when interpreting the
resulting dispersion surfaces, and potentially in the design of tailored media. We also
take a different matching route from that of Krynkin and McIver [17]. They adopt an
infinite asymptotic expansion in inverse logarithmic powers, and following [7], iden-
tify, in the course of the analysis, a Poincaré perturbation parameter, corresponding
to a summation of the infinite logarithmic series. In contrast, we note that the inner
and outer problems are linear and similar at all logarithmic orders and hence it is
more efficient to group all logarithmic and $O(1)$ terms together and apply van Dyke’s matching rule \cite{38, 8, 15}.

Another key difference is that we bypass the machinery of addition theorems and lattice sums. Rather, in the case of strongly perturbed modes, we represent the outer-region solution in terms of a generalised Fourier series. The dispersion relation is then derived by matching the singular asymptotics of the latter in the vicinities of the scatterers with the respective inner solutions. The present analysis thereby corrects the Fourier-series example of Refs. \cite{1} and \cite{23} for the singular Helmholtz case; the Fourier series solutions there were prescribed to vanish at the scatterers’ positions, whereas those series actually diverge there.

In \S\S\ 2.1 we formulate the Bloch-wave dispersion problem for an arbitrary two-dimensional Bravais lattice of small Dirichlet scatterers. In \S\S\ 2.2 we outline the asymptotic procedure for replacing the finite scatterers with point-singularity constraints, leading to the coarse-grained eigenvalue problem of \S\S\ 2.3. Weakly and strongly perturbed modes are analysed in \S\S\ 2.4 and \S\S\ 2.5, respectively, and dispersion diagrams for square and hexagonal lattices are shown and discussed in \S\S\ 2.6. The approach is generalised in \S\ 3 to lattices with multiply occupied elementary cells, and the dispersion diagram for a honeycomb lattice is shown and interpreted. In \S\ 4 we briefly consider the applicability of the asymptotic procedure to solving scattering problems involving a finite collection of scatterers, and employ the resulting scheme towards demonstrating the strong dynamic anisotropy suggested by the infinite-lattice dispersion surfaces. Lastly, in \S\ 5 we give concluding remarks and discuss further research directions.

2. Small Dirichlet scatterers at Bravais lattice points.

2.1. Problem formulation. Consider the dimensionless Helmholtz equation in two dimensions,

\begin{equation}
\nabla^2 u + \omega^2 u = 0.
\end{equation}

Here $u(x)$ is an arbitrarily normalised field, x being the position vector normalised by a characteristic length scale L, and ω is the frequency scaled by the wave speed divided by L. An infinite number of identical Dirichlet scatterers, of characteristic dimension ϵL and arbitrary cross-sectional shape, are distributed with their centroids, say, at the vertices of a two-dimensional Bravais lattice,

\begin{equation}
R = n a_1 + m a_2,
\end{equation}

where a_1 and a_2 are lattice base vectors and n and m are arbitrary integers. According to Bloch’s theorem \cite{16}, waves propagating through the crystal satisfy a Bloch condition in the form

\begin{equation}
u(x) = U(x)e^{ik \cdot x}, \quad U(x + R) = U(x),\end{equation}

where U possesses the periodicity of the lattice and k is the Bloch wave vector. Given \begin{equation}, we only need to consider an elementary unit cell encapsulating a single scatterer centred at the origin $x = 0$, to which we attach polar coordinates (r, θ). The Dirichlet constraint is then written as

\begin{equation}
u = 0 \quad \text{on} \quad r = \epsilon \kappa(\theta),\end{equation}
where $\kappa(\theta)$ is the shape function associated with the scatterer. Our goal here is to calculate the dispersion surfaces $\omega = \Omega(\mathbf{k})$. The latter inherit the periodicity of the reciprocal lattice, i.e. $\Omega(\mathbf{k} + \mathbf{G}) = \Omega(\mathbf{k})$, where

$$G = n\mathbf{b}_1 + m\mathbf{b}_2,$$

n and m being arbitrary integers, and \mathbf{b}_1 and \mathbf{b}_2 the reciprocal lattice base vectors defined through $\mathbf{a}_i \cdot \mathbf{b}_j = 2\pi \delta_{ij}$. Additional symmetries further limit the \mathbf{k} vectors required to be considered to the “irreducible Brillouin zone” [14], which we shall define on a case-by-case basis.

2.2. Matched asymptotics. Henceforth we consider the asymptotic limit $\epsilon \to 0$, with ω and $\kappa(\theta) = O(1)$. To this end, we conceptually decompose the elementary cell into an “outer” domain where $r = O(1)$ and an “inner” domain where $\rho = \rho / \epsilon = O(1)$. As prompted in the introduction, logarithmic terms are treated on par with $O(1)$ terms. Since Bloch eigenmodes are determined only up to a multiplicative constant, we may assume without loss of generality that $u = O(1)$ in the outer domain. The inner region u is, at most, of comparable magnitude.

Accordingly, we assume an inner expansion of the form

$$u \sim \Phi(\rho, \theta; \epsilon) + a.e.(\epsilon), \quad \rho, \Phi = O(1),$$

where “a.e.” denotes algebraic error. Substituting (6) into (1) and (4), we find that Φ satisfies Laplace’s equation

$$\nabla^2 \Phi = 0, \quad \nabla^2_{\rho} = \frac{1}{\rho} \frac{\partial}{\partial \rho} \left(\rho \frac{\partial}{\partial \rho} \right) + \frac{1}{\rho^2} \frac{\partial^2}{\partial \theta^2},$$

subject to the Dirichlet condition holding on the surface of the scatterer

$$\Phi = 0 \quad \text{on} \quad \rho = \kappa(\theta),$$

and matching with the outer region as $\rho \to \infty$. Regardless of the shape function, $\kappa(\theta)$, at large distances [4]

$$\Phi \sim A \ln \rho + B + O(1/\rho) \quad \text{as} \quad \rho \to \infty,$$

where terms algebraically growing with ρ are disallowed as they become algebraically large in ϵ in the outer region. In (9), A is a constant that, once known, determines the solution of the inner problem the constant B and similarly smaller terms in the far-field expansion. For example, for a circular cylinder, $\kappa = 1$, the solution is simply $\Phi = A \ln \rho$. Since this inner problem is harmonic, solutions for other cross-sectional shapes are obtained by conformal mapping of the solution for a circular cylinder. Specifically, let $z = \rho \exp(i\theta)$ and $w = f(z)$ be a conformal mapping from $\rho > \kappa(\theta)$ to $|w| > 1$, where $f(z) \sim Sz + O(1)$ as $|z| \gg 1$ and $S > 0$ is a parameter determined by the shape of the inclusion. Then $\Phi/A = \text{Re}[\ln w] = \text{Re}[\ln f(z)]$ and hence $\Phi/A \sim \ln |z| + \ln S + O(1/|z|)$ as $|z| \to \infty$. It follows that, for a general shape,

$$\Phi \sim A \ln(S\rho) + O(1/\rho) \quad \text{as} \quad \rho \to \infty,$$

where A is a constant to be determined from matching with the outer region. To leading algebraic error, only the large ρ expansion (10) of the inner solution is relevant.

Hence shape dependence can be effectively captured by assuming a circular cylinder.
with effective radius \((\epsilon/S)L\); the effective radius is a familiar concept in potential
theory and is provided in the literature for various cross-sectional shapes [13, 40, 17].
Without loss of generality we set \(S = 1\) and henceforth interpret \(\epsilon\) as an effective
radius.

In the outer region we assume the expansion
\[u \sim \phi(x; \epsilon) + a.e.(\epsilon), \quad r, \phi = O(1) \]
where \(\phi\) satisfies (1), the Bloch condition (3), and matching with the inner region as
\(r \to 0\). The solution is necessarily of the form
\[\phi = \psi(x) + a H_0^{(1)}(\omega r), \]
where \(\psi(x)\) is a solution of (1) that is regular at \(r = 0\), \(a\) is an undetermined constant,
and \(H_0^{(1)}\) is the zeroth-order Hankel function of the first kind. The latter is the
fundamental outward-radiating solution of (1), which is logarithmically singular as
\(r \to 0\). Higher-order singularities, i.e. products of constant tensors and gradients of
\(H_0^{(1)}\) are disallowed at this order since such solutions are algebraically singular as
\(r \to 0\) and hence become algebraically large in the inner region.

We may now match the inner and outer expansions using Van Dyke’s matching
rule (specifically, see pg. 220 in [38] and [8]), treating logarithmic terms, such as \(\ln \epsilon\,
on par with \(O(1)\) terms. Thus, on the one hand, the inner expansion to \(O(1)\), written
in terms of the outer variable, and then expanded to \(O(1)\), is
\[A \ln(r/\epsilon). \]
On the other hand — noting the regularity of \(\psi\) and that
\[H_0^{(1)}(\omega r) \sim \frac{2i}{\pi} \left[\ln(r\omega) + \gamma - \ln 2 \right] + 1 \quad \text{as} \quad r \to 0, \]
\(\gamma \approx 0.5772\) being the Euler constant — the outer expansion to \(O(1)\), written in terms
of the inner variable, and then expanded to \(O(1)\), is
\[\psi(0) + a \left\{ \frac{2i}{\pi} \left[\ln(r\omega) + \gamma - \ln 2 \right] + 1 \right\}, \]
upon rewriting in terms of \(r\). Comparing expansions (13) and (15), one finds
\[a = -\frac{\pi i}{2} \frac{\psi(0)}{\ln \frac{2}{\omega r} - \gamma + \pi i}, \]
and \(A = (2i/\pi)a\). Hence, the presence of a scatterer in general causes a perturbation
which is \(O(1/\ln \frac{1}{\epsilon})\), formally small, but appropriately regarded as being \(O(1)\) for all
practical purposes as well as when using the matching rule.

2.3. Effective eigenvalue problem. The preceding analysis gives rise to an
effective eigenvalue problem, which can be formulated in two equivalent ways. Thus,
we may seek a regular eigenfunction \(\psi\) that satisfies an inhomogeneous Bloch condition
owing to the aperiodicity of \(a H_0^{(1)}(\omega r)\), \(a\) being proportional to \(\psi(0)\) through (16).
An alternative formulation is obtained by noting from (12) that \(\phi\) satisfies the forced
Helmholtz equation
\[\nabla^2 \phi + \omega^2 \phi = 4ai\delta(x), \]
where \(\delta(x) \) denotes the Dirac delta function. In addition, \(\phi \) satisfies the Bloch condition (3) and the asymptotic constraint

\[
\lim_{r \to 0} \left[\phi(x, \{\omega, k\}) + a \frac{2i}{\pi} \ln \epsilon \right] = 0,
\]

that follows from the matching condition (16) in conjunction with (12).

2.4. Empty-lattice Bloch waves and weakly perturbed modes.

Prior to solving the effective Bloch eigenvalue problem formulated above, we note that in the absence of scatterers there are plane-wave solutions of (1) that satisfy the Bloch condition (3). Indeed, substituting the generalised Fourier series

\[
u = \sum_{G} U_G \exp \left[i (k + G) \cdot x \right]
\]

into (1), where \(U_G \) are constants, we find the empty-lattice dispersion relation

\[
\omega^2 = |k + G|^2.
\]

It is evident from (5) that for any given \(k \) there are infinitely many “eigenpairs” \((\omega, k)\). A distinction can be made between those pairs that are simple and those that are degenerate. Generally, we write the empty-lattice eigenmode space as

\[
u = \sum_{j=1}^{D} U_j \exp \left[i (k + G_j) \cdot x \right],
\]

where \(D \) denotes the level of degeneracy, and \(\{G_j\}_{j=1}^{D} \) those reciprocal lattice vectors satisfying (20) for the eigenpair \((\omega, k)\). Since (21) vanishes at the origin if

\[
\sum_{j=1}^{D} U_j = 0,
\]

for degenerate eigenpairs we may form a subspace, of dimension \(D - 1 \), of empty-lattice plane-wave solutions that vanish at \(x = 0 \). Empty-lattice waves in the latter space also satisfy the true eigenvalue problem, with \(a = 0 \) (and hence \(\phi = \psi \)), and hence are perturbed only weakly — algebraically in \(\epsilon \) — from the empty-lattice dispersion relation (20). In appendix A it is verified that there are no \(\phi \) eigensolutions satisfying (20) for which \(a \neq 0 \).

2.5. Strongly perturbed modes.

Consider next the possibility of eigenpairs of the effective eigenvalue problem that do not satisfy the empty-lattice dispersion relation (20). Since eigensolutions with \(a = 0 \) necessarily satisfy (20), we may assume here that \(a \neq 0 \).

For the outer field \(\phi \) we write the generalised Fourier-series solution

\[
\phi(x)/a = \sum_{G} \phi'_G \exp \left[i (k + G) \cdot x \right],
\]

which satisfies the Bloch condition (3). The coefficients \(\phi'_G \) are determined by substituting (23) into (17) and applying orthogonality relations. Denoting the area of the unit cell by \(A \), we find

\[
\phi(x)/a = \frac{4i}{A} \sum_{G} \frac{\exp [i (k + G) \cdot x]}{\omega^2 - |k + G|^2}.
\]
The series solution (24) is conditionally convergent for $|x| \neq 0$ and diverges for $x = 0$, as would be expected from the asymptotic constraint (18). In appendix B, we derive the singular asymptotics of (24),

$$\phi(x)/(ai) \sim \frac{2}{\pi} \left[\ln \frac{r}{2} + \gamma \right] + \sigma(\omega, k) + o(1) \quad \text{as} \quad r \to 0,$$

where the limit

$$\sigma(\omega, k) = \frac{4}{A} \lim_{R \to \infty} \left[\sum_{|G| < R} \frac{1}{\omega^2 - |k + G|^2} + \frac{A}{2\pi} \ln R \right]$$

converges and is easy to compute. Substituting (25) into (18) furnishes the asymptotic dispersion relation governing the strongly perturbed modes as

$$\sigma(\omega, k) + \frac{2}{\pi} \left(\ln \frac{\epsilon}{2} + \gamma \right) = 0.$$

2.6. Square and hexagonal lattices.

We now demonstrate the preceding results by calculating the dispersion surfaces for square and hexagonal (or triangular) lattices. Consider first a square lattice,

$$a_1 = 2\hat{e}_x, \quad a_2 = 2\hat{e}_y, \quad b_1 = \pi\hat{e}_x, \quad b_2 = \pi\hat{e}_y, \quad A = 4.$$

Following common practice, we plot in Fig. 1 (left panel) the dispersion surfaces for $\epsilon = 0.05$ along the edges of the irreducible Brillouin zone, which in the present case is bounded by straight lines in reciprocal space connecting the symmetry points

$$\Gamma = 0, \quad X = b_1/2, \quad M = (b_1 + b_2)/2.$$

Red solid lines depict strongly perturbed eigenvalues, which are solutions of the dispersion relation (27). Blue solid lines depict weakly perturbed modes. As shown in §§2.4, the eigenpairs of the latter are given to algebraic order by the degenerate empty-lattice eigenpairs; they are readily identified from (20) in conjunction with (28). As shown in §§2.4, if the degeneracy in the absence of a scatterer was D, the degeneracy is reduced to $D - 1$. The black dashed lines depict simple empty-lattice eigenpairs that are no longer part of the dispersion surfaces.

Let us interpret the dispersion diagram in light of the distinction between weakly and strongly perturbed empty-lattice waves. To begin with, the notable zero-frequency band gap is not specific to a square lattice, but in fact exists for any lattice of the class considered in this study. This is because the zero-frequency light line, obtained by substituting $G = 0$ in (20), is always simple, hence according to the discussion in §§2.4 the perturbation from it must be appreciable. Next we note that in the empty-lattice case the first X point, $(\omega, k) = (\pi/2, X)$, is doubly degenerate.

In the present case that eigenpair is therefore simple, which explains the partial gap opening above X, with the originally degenerate first band from X to M splitting into a weakly perturbed blue curve and a strongly perturbed red curve that joins the second strongly perturbed red curve from Γ to X. Also of interest are the high symmetry crossing points at $k = \Gamma, X$, and M, where the original four-degeneracy in the empty-lattice case is reduced to three. Dispersion surfaces in the vicinity of degenerate symmetry points are either conical or paraboloidal, while those in the vicinity of simple symmetry points are necessarily paraboloidal [16, 6]. Thus, by noting which
Dispersion curves for square (left) and hexagonal (right) lattices of Dirichlet scatterers of effective radius \(\epsilon = 0.05 \). Blue and red lines respectively depict weakly and strongly perturbed eigenpairs, the latter coinciding with degenerate empty-lattice eigenpairs. Dotted-black lines depict simple empty-lattice eigenpairs. Inset show unit cells and first Brillouin zone (square — scale 3:10, hexagonal — 2:10).

Surviving empty-lattice curves have zero or conversely nonzero slopes at symmetry points, it becomes possible to qualitatively sketch dispersion diagrams without any computation.

Clearly, the above qualitative features of the dispersion surfaces are independent of the effective radius \(\epsilon \), at least as long as \(\epsilon \ll 1 \). Indeed, it is clear from (27) that \(\epsilon \) merely affects the magnitude of the strongly perturbed modes. The apparent dominance of the blue weakly perturbed curves in Fig. 1 is misleading; within the irreducible Brillouin zone, rather than along its edges, degenerate empty-lattice eigenpairs are rare. This is clarified by the isofrequency contour shown in Fig. 3 for the frequency marked by the horizontal dashed green line in Fig. 1.

Consider next the triangular (or hexagonal) lattice, with lattice base vectors

\[
\begin{align*}
\mathbf{a}_1 &= \hat{e}_x - \sqrt{3}\hat{e}_y, \\
\mathbf{a}_2 &= \hat{e}_x + \sqrt{3}\hat{e}_y,
\end{align*}
\]

and reciprocal-lattice base vectors

\[
\begin{align*}
\mathbf{b}_1 &= \pi \left(\hat{e}_x - \frac{1}{\sqrt{3}}\hat{e}_y \right), \\
\mathbf{b}_2 &= \pi \left(\hat{e}_x + \frac{1}{\sqrt{3}}\hat{e}_y \right).
\end{align*}
\]

The cell area is \(\mathcal{A} = 2\sqrt{3} \). The irreducible Brillouin zone is formed by straight lines in reciprocal space connecting the symmetry points

\[
\begin{align*}
\Gamma &= 0, \\
M &= \mathbf{b}_1/2, \\
K &= \frac{|\mathbf{b}_1|}{\sqrt{3}}\hat{e}_x.
\end{align*}
\]

Fig. 1 (right panel) shows the dispersion curves for \(\epsilon = 0.05 \). Note that the dimension of the eigenmode space at the second \(\Gamma \) point is now 5, having been reduced by one from the empty-lattice degeneracy there, \(D = 6 \). Note also the crossing at the first \(K \) point, where the level of degeneracy has been reduced from \(D = 3 \) to 2. The latter implies that any additional constraint further reducing the degeneracy there will open an omnidirectional gap.

3. Unit cells occupied by multiple scatterers.
3.1. Effective eigenvalue problem. We here generalise to the case where in each cell there are \(P > 1 \) particles at \(x = x_j, \ j = 1 \ldots P \). It is assumed that \(|x_m - x_n| \gg \epsilon \) for \(m \neq n \); otherwise, the neighbouring scatterers share a common inner region, in which case we are back to a Bravais lattice with the particle multiplicity captured by an effective \(\epsilon \). The analysis of the present case closely follows that of §2. Thus, the outer potential (12) generalises to

\[
\phi = \psi(x) + \sum_{p=1}^{P} a_p H_0^{(1)}(\omega|x - x_p|),
\]

where \(\psi(x) \) is a regular function, and \(\phi \) satisfies the Bloch condition (3). It follows from (33) that \(\phi \) satisfies the governing equation

\[
\nabla^2 \phi + \omega^2 \phi = -\frac{4}{i} \sum_{p=1}^{P} a_p \delta(x - x_p),
\]

where matching with the inner region of each scatterer provides \(P \) conditions,

\[
\left[\frac{2i}{\pi} \left(\ln \frac{2}{\omega} - \gamma \right) - 1 \right] a_j = \psi(x_j) + \sum_{p \neq j}^{P} a_p H_0^{(1)}(\omega|x_p - x_j|), \quad j = 1 \ldots P.
\]

From (33), the right hand side of (35) is the limit

\[
\lim_{x \to x_j} \left[\frac{\phi(x) - a_j H_0^{(1)}(\omega|x - x_j|)}{i} \right],
\]

whereby, using (14), conditions (35) simplify to

\[
\lim_{x \to x_j} \left[\phi(x) - a_j \frac{2i}{\pi} \ln \frac{\epsilon}{|x - x_j|} \right] = 0, \quad j = 1 \ldots P.
\]

In the case of multiply occupied unit cells, empty-lattice waves survive as weakly perturbed modes mainly at high symmetry points, though in some incidental cases also along edges of the irreducible Brillouin zone. We next focus on the strongly perturbed modes, identifying and analysing in §§3.3 the weakly perturbed empty-lattice waves in the context of an important example.

3.2. Dispersion relation. Generalising the Fourier-series solution (24) to satisfy (34) gives

\[
\frac{A}{i} \phi = \sum_{p=1}^{P} a_p \exp[ik \cdot (x - x_p)] \sum_{G} \exp[iG \cdot (x - x_p)] \frac{\exp[iG \cdot (x - x_p)]}{\omega^2 - |k + G|^2}.
\]

The singular asymptotics of the double sum in (38) is obtained by generalising the derivation in appendix §B, which gives [cf. (25)]

\[
\phi/i \sim \left[\frac{2}{\pi} \left(\ln \frac{|x - x_j|}{2} + \gamma \right) + \sigma(\omega, k) \right] a_j
\]

\[
+ \frac{4}{A} \sum_{p \neq j}^{P} a_p \sum_{G} \exp[i(G + k) \cdot (x_j - x_p)] \frac{\exp[i(G + k) \cdot (x_j - x_p)]}{\omega^2 - |k + G|^2} \quad \text{as} \quad x \to x_j, \quad j = 1 \ldots P.
\]
Substituting (39) into (37), we find a set of equations for the scattering coefficients $\{a_j\}_{j=1}^P$:

$$
\left(\frac{2}{\pi} \left(\ln \frac{\epsilon}{2} + \gamma \right) + \sigma(\omega, k) \right) a_j + 4 \mathcal{A} \sum_{p \neq j} a_p \sum_G \frac{\exp[i(G + k) \cdot (x_j - x_p)]}{\omega^2 - |k + G|^2} = 0, \quad j = 1 \ldots P.
$$

The dispersion relation is obtained by requiring the determinant of the coefficient matrix to vanish. Clearly, for $P = 1$ we retrieve (27). For $P = 2$, the dispersion relation can be written as

$$
\left(\frac{2}{\pi} \left(\ln \frac{\epsilon}{2} + \gamma \right) + \sigma(\omega, k) \right)^2 = \frac{16}{\mathcal{A}^2} \left| \sum_G \frac{\exp[iG \cdot (x_1 - x_2)]}{\omega^2 - |k + G|^2} \right|^2.
$$

The sum on the right hand side is conditionally convergent, yet at a fast algebraic rate. The convergence deteriorates as the two scatterers approach; as already noted, however, the extreme case where the centroid-to-centroid separation is $O(\epsilon)$ is actually covered by the analysis of §2.

3.3. Honeycomb lattice

A honeycomb lattice is equivalently a triangular lattice with two scatterers in each elementary cell, positioned so that closest neighbours are equidistant. Choosing the elementary cell as the parallelogram generated by the hexagonal base vectors a_1 and a_2 [cf. (30)], the two scatterers are positioned at

$$
x_1 = \frac{2}{3} a_1 + \frac{1}{3} a_2, \quad x_2 = \frac{1}{3} a_1 + \frac{2}{3} a_2.
$$

The dispersion curves are plotted in Fig. 2 along the edges of the irreducible Brillouin zone as defined for the underlying triangular lattice in §§2.6. (The inset shows an alternative choice of the elementary cell.) Red curves depict strongly perturbed modes calculated from the asymptotic dispersion relation (41). Blue lines depict empty-lattice eigenpairs that remain as weakly perturbed empty-lattice waves; in contrast, the dotted and dash-dotted lines depict, respectively, simple and doubly degenerate empty-lattice eigenpairs that do not satisfy the asymptotic Bloch problem.

Following the discussion in §§2.4, one might expect that for doubly occupied unit cells the degeneracy D of empty-lattice eigenpairs reduces to $D - 2$. Namely, that no simple or doubly degenerate pairs remain, triply degenerate pairs survive as simple eigenpairs, etc. This is consistent with the narrow gap opening up above the first band, the level of degeneracy at the second Γ point being reduced to 4, and the fact that most of the blue curves in the right panel of Fig. 1 are replaced by red ones. However, the above rule of thumb does not universally hold, as demonstrated by the remaining blue curves in Fig. 2, and by the third M point, which according to the above rule of thumb should have detached from the crossing of the light lines but remains there nevertheless.

These and other features of the dispersion diagram are understood by examining the existence of empty lattice plane waves that vanish at both x_1 and x_2. Alluding to the general form (21) of empty-lattice wave solutions, the conditions for this are

$$
\sum_{j=1}^D \mathcal{U}_j \exp(iG_j \cdot x_1) = 0, \quad \sum_{j=1}^D \mathcal{U}_j \exp(iG_j \cdot x_2) = 0,
$$

This manuscript is for review purposes only.
Fig. 2. *Same as Fig. 1 but for a honeycomb lattice (see §§3.3). Note that now there are degenerate empty-lattice eigenpairs that do not remain as weakly perturbed modes; the latter are depicted by black dash-dot lines.*

where \(D \) and \(\mathbf{G}_j = n_j \mathbf{b}_1 + m_j \mathbf{b}_2 \) are determined from (20) for any \((\omega, \mathbf{k})\) pair satisfying the empty-lattice dispersion relation. For \(D = 1 \), there are no nontrivial solutions of (43). Consistently with the rule of thumb suggested above, for \(D > 1 \), and if the two equations (43) are independent, the dimension of the space of solutions reduces to \(D - 2 \). If, however, they happen to be dependent, its dimension is \(D - 1 \).

As an example, consider for example \(\mathbf{k} \) traversing from \(\Gamma \) to \(M \). Setting \(\mathbf{k} = \frac{tb_1}{2} \), \(0 \leq t \leq 1 \), the empty-lattice dispersion relation (20) becomes

\[
\frac{3\omega^2}{\pi^2} = 4m^2 + 2m(2n + t) + (2n + t)^2.
\]

From (44) we see that the second \(\Gamma \) point is degenerate with \(D = 6 \), and \(\{(n_j, m_j)\}_{j=1}^6 = \{(0, \pm 1), (\pm 1, 0), (1, -1), (-1, 1)\} \). For \(0 < t \leq 1 \), the third light line is degenerate with \(D = 2 \) and \(\{(n_j, m_j)\}_{j=1}^2 = \{(0, -1), (-1, 1)\} \). In the former case, (43) read

\[
U_1 e^{i\frac{2}{3}\pi} + U_2 e^{-i\frac{2}{3}\pi} + U_3 e^{i\frac{1}{3}2\pi} + U_4 e^{-i\frac{1}{3}2\pi} + U_5 e^{i\frac{1}{3}2\pi} + U_6 e^{-i\frac{1}{3}2\pi} = 0,
\]

\[
U_4 e^{i\frac{2}{3}\pi} + U_2 e^{-i\frac{2}{3}\pi} + U_5 e^{i\frac{1}{3}2\pi} + U_6 e^{-i\frac{1}{3}2\pi} + U_5 e^{i\frac{1}{3}2\pi} + U_6 e^{-i\frac{1}{3}2\pi} = 0,
\]

which are independent. Thus, as predicted by the rule of thumb, the second \(\Gamma \) point is four-degenerate. In contrast, in the latter case, (43) read

\[
U_1 e^{-i\frac{2}{3}\pi} + U_2 e^{-i\frac{1}{3}2\pi} = 0,
\]

\[
U_1 e^{-i\frac{1}{3}2\pi} + U_2 e^{i\frac{2}{3}\pi} = 0,
\]

which are clearly dependent, explaining the lower blue curve in Fig. 2.

4. Scattering by a finite collection of scatterers. There is a close connection between the Bloch dispersion problem, which is defined on a unit cell of an infinite lattice, and the scattering properties of a truncated finite variant of the same lattice. In order to demonstrate this in the context of the dispersion surfaces calculated in the
Fig. 3. Dynamic anisotropy. Scattering at $\omega = 1.82$ from a finite square lattice of Dirichlet inclusions of radius $\epsilon = 0.05$, subjected to a point-source, acting as the incident field, at the origin $u_i = H_0^{(1)}(\omega r)$. Left panel: Isofrequency contour of the corresponding infinite lattice (Blue points — weakly perturbed eigenpairs; Dashed lines — empty-lattice eigenpairs). Right panel: $\text{Re}[u]$.

preceding sections, we shall employ a scattering formulation known as Foldy’s method [11, 19], which here readily follows from the inner-outer asymptotic procedure of §2.2.

To be specific, we consider scattering from N Dirichlet scatterers of effective radius ϵ, positioned at $x = \{x_i\}_{i=1}^N$, and subjected to an incident field $u_i(x)$. The field u satisfies the Helmholtz equation (1), Dirichlet condition $u = 0$ on the boundary of each scatterer, and a radiation condition at large distances on the scattering field $u - u_i$. In the limit $\epsilon \ll 1$, the “outer” solution of the scattering problem is readily seen to be [cf. (12) and (16)]

$$u \sim u_i(x) + \sum_{l=1}^N a_l H_0^{(1)}(\omega r_l) + \text{a.e.}(\epsilon),$$

where $r_l = |x - x_l|$ and the coefficients a_l are determined from N matching conditions,

$$a_l + \frac{\pi i}{2} \ln \frac{2}{\omega \epsilon} - \gamma + \frac{\pi}{2} \left[u_i(x_l) + \sum_{p \neq l} a_p H_0^{(1)}(\omega |x_l - x_p|) \right] = 0, \quad l = 1 \ldots N.$$

Numerically solving the above linear system is fairly straightforward, even for a large number of scatterers. Once the coefficients $\{a_l\}_{l=1}^N$ have been determined, the field is obtained from (49). The above approximate scheme was derived by Foldy, who conjectured isotropic scattering and obtained the “scattering coefficient” — essentially the ϵ-dependent prefactor in (50) — in a semi-heuristic manner. The validity of Foldy’s assumption and scattering coefficient was later confirmed by reducing, in the long-wavelength limit, the exact solution for an isolated scatterer [25], and also by asymptotic matching [24]. Foldy’s approach is applicable, with appropriate modifications, not only to the Helmholtz–Dirichlet problem, but whenever the material properties, and the type of waves considered, are such that the reaction of each scatterer is dominantly isotropic. For the Biharmonic–Dirichlet problem mentioned in the introduction Foldy’s method is particularly intuitive [10], since the equations analogous to (50) are obtained by applying regular Dirichlet point constraints.

This manuscript is for review purposes only.
Here we employ Foldy’s method to demonstrate the strong dynamic anisotropy implied by the dispersion relations calculated in §2.6. To this end, we solved (50) for finite square and hexagonal lattices, with a point source replacing a centrally located scatterer. In Figs. 3 and 4, the right panels depict the total fields $\text{Re}[u]$, calculated by solving (50) with a point source at the origin, $u_i = H_{0i}^{(1)}(\omega r)$, the frequencies being $\omega = 1.82$ and $\omega = 1.88$ in the square (Fig. 3) hexagonal cases (Fig. 4). The left panels show in reciprocal lattice space the corresponding isofrequency contours, calculated from the infinite-lattice dispersion relation (27). The latter complement the dispersion diagrams in Fig. 1, and are particularly convenient for interpreting the behaviour of finite lattices. At the selected frequencies, the dispersion contours are approximately straight lines connecting the crossing points of the empty-lattice light circles. The group velocities, which give the permissible directions for energy propagation [32], are normal to the isofrequency contours, hence the highly directional response.

5. Discussion. In this paper we studied wave propagation in lattices of subwavelength Dirichlet scatterers. To be precise, the asymptotic approach we use assumes that $\epsilon \ll 1$ with $\omega = O(1)$, namely it is implicit that wavelengths are both comparable to the periodicity and yet large compared to scatterer dimensions. Hence, whilst the analysis is robust at lower frequencies, it inevitably breaks down in the high frequency regime, $\omega = O(1/\epsilon)$, when the wavelength is comparable to scatterer size. Provided we are away from that regime the scheme we present is very versatile and, to summarise, our method entails: (i) effectively replacing the finite scatterers by singular point constraints by applying the method of matched asymptotic expansions; (ii) identifying the space of empty-lattice waves that are weakly perturbed; and (iii) deriving a dispersion relation for the strongly perturbed modes by extracting the singular “inner” asymptotics of a generalised Fourier-series solution of the “outer” eigenvalue problem. Using this method, we generated dispersion curves for the fundamental square, hexagonal, and honeycomb lattices, pointing out the essential role played by degeneracy and the existence of weakly perturbed modes. We also demonstrated using Foldy’s method the strong dynamical anisotropy implied by those dispersion curves. Our method can be readily employed to study more involved lattices of small Dirichlet scatterers. In particular, the topological properties of lattices breaking mirror symmetry are currently under intensive investigation [21].
the present formulation this can be easily achieved by asymmetrically positioning two
or more scatterers in a unit cell, or, alternatively, assigning symmetrically positioned
scatterers different effective radii.

The two dimensional Dirichlet–Helmholtz problem considered herein, which has
realisations in electromagnetics and acoustics, serves to demonstrate that small scat-
ters are not necessarily weak scatterers (though they are e.g. in the 3D variant of
this problem and for Neumann scatterers in both 2D and 3D). We already mentioned
in the introduction the Biharmonic pinned-plate problem, and other important ex-
amples include wire media [34], Faraday cages [25, 5], lattices of high-contrast rods
[33], and plasmonic nanoparticle waveguides and metasurfaces [22]. In addition, ongo-
ing research into photonic and mechanical analogues of topological insulators and the
integer-quantum-hall effect has stirred interest in media breaking time-reversal sym-
metry. This has led to novel metamaterial designs incorporating small-scale resonant
mechanical components [37] and high-contrast opto-magnetic rods [39]. We expect
that the type of analysis carried out herein can be adopted to study all of these ex-
amples, and in general media consisting of wavelength-scale lattices built out of small
strongly scattering elements. For any given example this would entail repeating the
inner-outer asymptotics, which enable replacing the small scale elements by point
constraints; this could be more involved than in the present case [18], especially if the
strong scattering results from a subwavelength resonance. Asymptotic coarse-grained
descriptions of such media would not only be technically advantageous, but may also
offer new insight by highlighting the existence of both weakly and strongly perturbed
modes.

It is worth noting that the Foldy methodology, often utilised in studies of random
scattering [26], appears somewhat under-employed in the periodic photonic, phononic
and platonic literature. As demonstrated here it provides an ideal setting, although
limited to small scatterers, for investigating many of the phenomena of interest (such
as for the dynamic anisotropy shown in Figs. 3 & 4) and their dependence upon
lattice geometry in an algebraic setting; the solutions are accessed far more rapidly
than, say, the more usual finite element approaches [30], popularised by COMSOL
and other commercial packages, commonly used that require refined meshes for very
small scatterers.

Appendix A. Solvability condition. Consider the effective eigenvalue prob-
lem formulated in §§2.3 for the outer field ϕ, in the case where ω, k satisfy the
empty-lattice dispersion relation (20). The corresponding space of empty-lattice plane
waves is given by (21), and we choose an arbitrary plane wave u from that space. The
complex conjugate of the latter, u^*, satisfies

$$\nabla^2 u^* + \omega^2 u^* = 0$$ \hspace{1cm} (51)

and the Bloch condition (3) at frequency ω and Bloch wave vector $-k$. Subtracting
(51) multiplied by ϕ from (17) multiplied by u^*, followed by an integration over the
unit cell, yields

$$\int \int (u^* \nabla^2 \phi - \phi \nabla^2 u^*) \, dA = 4 i \omega u^*(0).$$ \hspace{1cm} (52)

Using Green’s theorem, and the facts that $\phi \exp(-i k \cdot x)$ and $u^* \exp(i k \cdot x)$ both
possess the periodicity of the lattice, the left-hand side can be shown to vanish. We
therefore find, upon substituting (21),
\[a \sum_{j=1}^{D} U_j = 0. \]

Since we may choose the U_j’s arbitrarily, it must be the case that $a = 0$.

Hence, to conclude, when (ω, k) satisfy the empty-lattice dispersion relation (20), only ϕ eigensolutions with $a = 0$ — necessarily empty-lattice plane waves — are permitted. Furthermore, it then follows from (18) that only the empty-lattice plane waves that vanish at the position of the scatterer, as characterised in §§2.4, remain unperturbed to algebraic order in ϵ.

Appendix B. Double-sum asymptotics. We here derive the asymptotics of the outer Fourier-series solution (24) in the limit where $r = |x| \to 0$. As already noted, substituting $x = 0$ yields a diverging sum and hence this limit is singular. To overcome this, we separately sum terms corresponding to reciprocal lattice vectors G whose magnitudes are smaller and larger than an arbitrary large radius R satisfying $1 \ll R \ll 1/r$. This gives, after obvious approximations,
\[
\frac{A}{4\pi a} \delta(x) \sim \sum_{|G|<R} \frac{1}{\omega^2 - |k + G|^2} - \sum_{|G|>R} \frac{\exp(iG \cdot x)}{|G|^2} + o(1) \quad \text{as} \quad r \to 0.
\]

Both sums in (54) diverge logarithmically as $R \to \infty$ but the singularity must cancel out. Writing $G \cdot x = Gr \cos \theta$, the second sum in (54) becomes
\[
\sum_{|G|>R} \frac{\exp(iG \cdot x)}{|G|^2} = \sum_{G>R} \frac{\exp(iGr \cos \theta)}{G^2},
\]
which, in the considered limit, can be approximated by an integral,
\[
\sum_{|G|>R} \frac{\exp(iG \cdot x)}{|G|^2} \sim \frac{1}{A_G} \int_{R}^{\infty} \int_{0}^{2\pi} \frac{\exp(iGr \cos \theta)}{G} d\theta dG + o(1),
\]
where $A_G = 4\pi^2/A$ denotes the area of a unit cell in reciprocal space. Integrating with respect to θ gives after a change of variables $\xi = G/R$,
\[
\sim \frac{2\pi}{A_G} \int_{1}^{\infty} \xi^{-1} J_0(rR\xi) d\xi + o(1).
\]
Standard asymptotic evaluation of the latter integral for $rR \ll 1$ gives
\[
\sum_{|G|>R} \frac{\exp(iG \cdot x)}{|G|^2} \sim \frac{2\pi}{A_G} \left(\ln \frac{2}{rR} - \gamma \right) + o(1).
\]

Substituting into (54), and defining the limit (26), we find the asymptotic result (25) stated in the text. The derivation in the case of multiply occupied cells follows along the same lines.

REFERENCES
[1] T. Antonakakis, R. V. Craster, and S. Guenneau, High-frequency homogenization of zero-frequency stop band photonic and phononic crystals, New J. Phys., 15 (2013), p. 103014.
[2] T. Antonakakis, R. V. Craster, and S. Guenneau, Homogenisation for elastic photonic crystals and dynamic anisotropy, J. Mech. Phys. Solids, 71 (2014), pp. 84–96.
[3] T. Baba, Slow light in photonic crystals, Nature Photon., 2 (2008), pp. 465–473.
[4] G. K. Batchelor, An introduction to fluid dynamics, Cambridge university press, 2000.
[5] S. J. Chapman, D. P. Hewett, and L. N. Trefethen, Mathematics of the Faraday cage, SIAM Rev., 57 (2015), pp. 398–417.
[6] R. V. Craster, J. Kaplunov, and A. V. Pichugin, High-frequency homogenization for periodic media, Proc. R. Soc. A, 466 (2010), pp. 2341–2362.
[7] D. G. Crighton, A. P. Dowling, J. E. F. Williams, M. A. Heckl, and F. A. Leppington, Modern methods in analytical acoustics: lecture notes, Springer Science & Business Media, 2012.
[8] D. G. Crighton and F. G. Leppington, Singular perturbation methods in acoustics: diffraction by a plate of finite thickness, Proc. R. Soc. Lond. A, 335 (1973), pp. 313–339.
[9] T. Ergin, N. Stenger, P. Brenner, J. B. Pendry, and M. Wegener, Three-dimensional invisibility cloak at optical wavelengths, Science, 328 (2010), pp. 337–339.
[10] D. V. Evans and R. Porter, Penetration of flexural waves through a periodically constrained thin elastic plate in vacuo and floating on water, J. Eng. Math., 58 (2007), pp. 317–337.
[11] L. L. Foldy, The multiple scattering of waves. I. General theory of isotropic scattering by randomly distributed scatterers, Phys. Rev., 67 (1945), p. 107.
[12] S. G. Haslinger, R. V. Craster, A. B. Movchan, N. V. Movchan, and I. S. Jones, Dynamic interfacial trapping of flexural waves in structured plates, arXiv preprint arXiv:1509.05367, (2015).
[13] E. J. Hinch, Perturbation methods, Cambridge University Press, 1991.
[14] J. D. Joannopoulos, S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic crystals: molding the flow of light, Princeton University Press, 2011.
[15] J. B. Keller and S. I. Rubinow, Slender-body theory for slow viscous flow, J. Fluid Mech., 75 (1976), pp. 705–714.
[16] C. Kittel, Introduction to solid state physics, Wiley, 2005.
[17] A. Kryazhimskii and P. McIver, Approximations to wave propagation through a lattice of Dirichlet scatterers, Waves Random Complex, 19 (2009), pp. 347–365.
[18] A. E. Lindsay, M. J. Ward, and T. Kolokolnikov, The transition to a point constraint in a mixed biharmonic eigenvalue problem, SIAM J. Appl. Math., 75 (2015), pp. 1193–1224.
[19] C. M. Linton and P. A. Martin, Semi-infinite arrays of isotropic point scatterers. A unified approach, SIAM J. Appl. Math., 64 (2004), pp. 1035–1056.
[20] L. Lu, J. D. Joannopoulos, and M. Soljačić, Topological photonics, Nature Photon., 8 (2014), pp. 821–829.
[21] T. Ma and G. Shvets, All-Si valley-Hall photonic topological insulator, New J. Phys., 18 (2016), p. 025012.
[22] S. A. Maier, Plasmonics: fundamentals and applications, Springer Science & Business Media, 2007.
[23] M. Makwana, T. Antonakakis, B. Maling, S. Guenneau, and R. V. Craster, Wave mechanics in media pinned at Bravais lattice points, SIAM J. Appl. Math., 76 (2016), pp. 1–26.
[24] P. A. Martin, Multiple scattering: interaction of time-harmonic waves with N obstacles, no. 107, Cambridge University Press, 2006.
[25] P. A. Martin, On acoustic and electric Faraday cages, Proc. R. Soc. A, 470 (2014), p. 20140344.
[26] P. A. Martin and A. Maurel, Multiple scattering by random configurations of circular cylinders: Weak scattering without closure assumptions, Wave Motion, 45 (2008), pp. 856–889.
[27] P. A. Martin and A. Maurel, Waves around almost periodic arrangements of scatterers: Analysis of positional disorder, Math. Method. Appl. Sci., 33 (2010), pp. 2215–2224.
[28] P. McIver, Approximations to wave propagation through doubly-periodic arrays of scatterers, Wave Random Complex, 17 (2007), pp. 439–453.
[29] R. C. McPhedran, A. B. Movchan, N. V. Movchan, M. Brun, and M. J. A. Smith, ‘Parabolic’ trapped modes and steered Dirac cones in platonic crystals, Proc. Roy. Soc. London A, 471 (2015), p. 20140746–20140746.
[30] A. Nicolet, S. Guenneau, C. Geuzaine, and F. Zolla, Modeling of electromagnetic waves in periodic media with finite elements, Jour. Comp. App. Math., 168 (2004), pp. 321–329.
[31] N. A. Nicorovici, R. C. McPhedran, and L. C. Botten, Photonic band gaps for arrays of perfectly conducting cylinders, Phys. Rev. E, 52 (1995), p. 1135.
[32] K. Sakoda, Optical properties of photonic crystals, vol. 80, Springer Science & Business Media,
