Coordination of Directional overcurrent, Distance, and Breaker failure relays using Genetic Algorithm including pilot protection.

Tahseen Ali Abd Almuhsen¹, Ahmed Jasim Sultan²

¹General Company of Electricity Transmission/Middle Region, Ministry of Electricity, Baghdad, Iraq
²Department of Electrical Engineering, Electrical Engineering Technical College, Middle Technical University, Baghdad, Iraq

Abstract. Protection relays play an important role in the power systems to maintain stability, reliability, selectivity, and security for the power systems. In this paper, genetic algorithm (GA) optimization technique with pilot protection (PP) and without pilot protection (WPP) has been used to obtain proper coordination and the optimum value of transmission lines protection relays between distance relays (DRs) and directional overcurrent relays (DOCRs), as well as the critical case for fails in high voltage circuit breaker (HVCB) during faults, so using breaker failure relays (BFRs) for IEEE-8 bus system. The main aim of the used PP to reduce the overall time of DOCRs. A comparison is made with previous work in literature to show the efficiency and accuracy of the proposed algorithm with PP and the total operation time of DOCRs in the network is minimized.

1. INTRODUCTION

High voltage circuit breaker may be fails to clear faults during a fault. Therefore, it requires strong, secure, and correct coordination between protection relays especially at transmission and sub transmission lines due to frequent faults on this part of the power system.

Transmission and sub-transmission lines contain both distance relay (DR) and directional overcurrent relay (DOCR) widely [1]. The DR is used as the main protection relay and the DOCR as a backup protection relay in transmission and sub-transmission systems [2]. Protection relays detect a fault in which, part of a power system during abnormal conditions, and it is operating to isolate this faulty part of a system as fast as possible [3]. Therefore, proper coordination between main and backup protection relays have required, in case fails main protection relay to isolate HVCB during a fault, the Backup relay should isolate HVCB in the faulty part from the other healthy parts [4]. To improve power system reliability is required a functional duplicate of HVCB. This is a breaker failure relay (BFR) protection role, which distinguishes when HVCB fails to interrupt current after receiving a tripping signal from the main protection relay and operates with a suitable coordinate time delay to isolate backup breakers which feed HVCB faulty [5], [6]. Protection relays should have special specifications such as sensitivity, selectivity, speed, and proper setting for each relay to obtain reliability in the power systems [7] - [10]. Conventional methods such as (simplex, dual simplex, etc) have been used previously [11] - [15]. Nowadays, evaluation algorithms such as GA and particle swarm optimization are used as intelligent optimization methods to coordinate of overcurrent relays [16] – [18].
In this paper, GA optimization technique has used to obtain proper coordination between protection relays on transmission lines, also to obtain optimum values of TMS for DOCR, TZ2 for DR with PP and WPP as well as a time of BFR for IEEE-8 bus system.

2. PROBLEM FORMULATION

Transmission lines have contained on DR as the main protection, DOCR as backup protection, and BFR as local backup protection in the case of HVCB fails to isolate faulty part during faults as illustrated in Figure 1.

![Figure 1. Transmission line bay with protection relays.](image)

There are four scenarios that should be studied to achieve proper coordination of protection relays in the transmission lines. These scenarios are coordination between (main and backup DR, main and backup DOCR, local DOCR and TZ2 for backup DR, and critical case coordination between BFR and main DR and local DOCR at case fails HVCB.

Figure 2 illustrates a logic diagram of BFR. This BFR should exceed pickup current setting and waiting to receive a trip signal from any protection relays DR or local DOCR during faults, as well as HVCB, it must stay in the closing position. BFR has contained two-timer, the timer 1 operated re trip for the same HVCB but via second tripping coil. timer 2 is used as a backup trip to all HVCB which neighboring local HVCB at the case this local HVCB faulty.

![Figure 2. Basic logic scheme for BFR.](image)

Timer 1 set as an instantaneous trip but because of temporary and transient faults must be greater than any expected transient to change the state of auxiliary contact HVCB, so (0.025 sec) sufficient to avoid
that unnecessary faults. While, timer 2 should be set 0.1-0.11 sec to be greater than interrupting time of HVCB, current detector reset, and safety margin [19].

Figure 3 illustrates the coordination of main and backup DOCR at near and far-end faults with the constraints of the following equations:

At the near-end faults (F1), the constraint is:
\[\text{TRB}(F1) - \text{TRA}(F1) \geq \text{CTI1} \]
(1)

Where TRA(F1) is the operating time of the main DOCR at near-end fault.

At the far-end fault (F2), the constraint is:
\[\text{TRB}(F2) - \text{TRA}(F2) \geq \text{CTI2} \]
(2)

Where TRA(F2) is the operating time of the main DOCR at the far-end fault.

Figure 3. Constraints to coordinate between main and backup DOCR.

Figure 4 illustrates the coordination of main DR with backup DOCR at far-end fault and coordination of main local DOCR with backup DR at near-end fault with the following constraints:

At the near-end faults (F3), the constraint is:
\[\text{TRD}(F1) - \text{TRA}(F1) \geq \text{CTI2} \]
(3)

Where TRD(F1) is the operating time of the second zone of backup DR at the near-end fault.

At the far-end fault (F2), the constraint is:
\[\text{TRB}(F2) - \text{TRC}(F2) \geq \text{CTI2} \]
(4)

Where TRB(F2) is the operating time of the backup DOCR at the far-end fault.

CTI2 is the coordination time interval between main RA and backup RB relays at the near-end fault (F1).

CTI2 is the coordination time interval between main RA and backup RB relays at the far-end fault (F2).
Figure 4. Constraints to coordinate between DR and DOCR.

The scheme of PUTT requires both underreaching (UR) and overreaching (OR) and Figure 5 is shown scheme logic of PUTT. UR function is represented as zone 1 setting 80% of the line length and OR function is set to reach beyond remote substations for both relay 1 and relay 2. If the fault occurs in the middle of a line at a zone of UR, the CB1 and CB2 at both substations are tripped instantaneous and if the fault occurs in one of the relays in OR zone 120% of line length at zone 2, the other one in UR will send signals to accelerate trip without delay time of zone 2 [20], [21].

Figure 5. PUTT scheme.

PP communication signal permissive under reach transfer trip (PUTT) has used to coordinate of main DR and backup DOCR in Matlab code simulation. The purpose of PUTT signal to accelerate and minimize tripping time between distance protection relays used to protect the same transmission line. The calculation of DR divided into three zones, zone 1 is set instantaneous tripping time, while zone 2 is set with an operating time equal to 0.4 sec. Therefore, PUTT used to accelerate the trip and minimize the time from 0.4 sec to 0.02-0.04 sec, and zone 2 in Figure 4 will become illustrates in Figure 6 with the same constraint but with different operating time.
Figure 6. Constraints to coordinate between DR and DOCR with PUTT.

Figure 7 illustrates coordinate BFR as a backup trip with main DR and local main DOCR, so used with the near end faults with the constraints of the following equations:

\[\text{TRE}_1(F_1) = \text{TRC zone 1}(F_1) + T \text{ BFR} \] \hspace{1cm} (5)

\[\text{TRE}_2(F_1) = \text{TRA}(F_1) + T \text{ BFR} \] \hspace{1cm} (6)

Where \(\text{TRE}_1(F_1) \) is the total operating time of the backup BFR when it fails HVCB trip with DR trip.

\(\text{TRE}_2(F_1) \) is the total operating time of the backup BFR when it fails HVCB with DOCR trip.

\(\text{TRC zone 1}(F_1) \) is the operating time of the first zone of the main DR at the near-end fault.

\(\text{TRA}(F_1) \) is the operating time of the main DOCR at the near-end fault.

\(T \text{ BFR} \) is the real setting time (backup trip) of BFR.

Figure 7. Constraints to coordinate between BFR and DR & DOCR.
2.1. Objective function for main DRs and backup DOCRs

The problem of DRs and DOCRs coordination in the interrelated power systems can be defined as an optimization problem the main purpose of it to minimize total operating time and the objective function formula as

\[
OF = \text{MIN} \left[\sum_{i=1}^{N} T_i + \sum_{j=1}^{M} TZ2_j \right]
\]

(7)

Where \(OF \) is Objective function, \(T_i \) is Operating time for \(i^{th} \) DOCR for near-end fault, \(N \) is the total number of DOCRs, \(TZ2_j \) is operating time for the second zone \(j^{th} \) DR, \(M \) is the total number of DRs.

2.2. The setting of DOCRs in optimization problems.

The time multiplier setting (TMS) bounded between two values lower and upper bound to each DOCR, as well as pickup current setting (Ips) to each one depends on lower minimum fault current and max load current.

\[
\text{TMS}_j \text{Min} \leq \text{TMS}_j \leq \text{TMS}_j \text{Max}
\]

(8)

Where \(\text{TMS}_j \text{Min} \) is minimum bound of TMS for \(j^{th} \) DOCR.

\[
\text{TMS}_j \text{Max} \text{ is maximum bound of TMS for } j^{th} \text{ DOCR.}
\]

\[
\text{Ips}_j \text{Max} - \text{load} \leq \text{Ips}_j \leq \text{Ips}_j \text{Min} - \text{fault}
\]

(9)

Where \(\text{Ips}_j \text{Max} - \text{load} \) is pickup current setting for max load.

\(\text{Ips}_j \text{Min} - \text{fault} \) is pickup current setting for min fault.

According to the bounded value for TMS in equation (8) will obtain the operating time in equations (1) and (2).in this study according to IEC60255 standard, the normal inverse characteristic curve(IDMT) has used with the following equation [22] - [24]: -

\[
T' = \left[\frac{0.14}{\left(\frac{I_{sc}}{I_{ps}} \right)^{0.02} - 1} \right] \times \text{TMS}
\]

(10)

Where \(T' \) is operating time for each DOCR.

\(I_{sc} \) is the value for short circuit current passing during the relay coil. \(I_{ps} \) is the pickup current setting for each DOCR.

2.3. Flow chart of the tripping sequence of protection relays.

The sequence of tripping to clear fault during faults according to the priority of main and backup protection relays as well as a critical case, in case of CB fails to clear a fault. All these sequences illustrated in Figure 8.
3. GENETIC ALGORITHM OPTIMIZATION TECHNIQUE

Flow chart for GA used for coordination between main and backup DOCR and the main local DOCR and DR is illustrated in Figure (9). While Table 1 shows the parameters setting of GA used in this work.

Table 1. Genetic algorithm parameter.

Parameters	Value or function
Number of iteration	272
Population size	200
Crossover	Arithmetic
Mutation	Adapt feasible
Figure 9. Flow chart for GA to solve the coordination problems between protection relays.

4. RESULTS AND DISCUSSION
In this paper, the IEEE-8 bus system has been used to coordinate protection relays for transmission lines and BFR for the critical case at case fails HVCB to clear faults. This system consists of two step-up transformers, two generators, an extension network at bus 4 with 400 MVA short circuits, and seven transmission lines as illustrated in Figure (10). The near-end, far-end three-phase short circuit fault current, pickup current for DOCR, and current transformer ratio have been taken from [25]. The system has forty-two protection relays, fourteen DRs, fourteen DOCRs, and fourteen for BFRs according to the number of transmission lines and HVCB in the network.
The range of CTI is (0.2-0.5) second [22]- [28]. The CTI1 and CTI2 in equations 1 to 4 have taken 0.2. According to equation 8, TMS lower and upper bound limited values chosen 0.1 to 1.1 to each DOCR. While zones setting time to each DR is chosen, zone 1 = 0 sec. zone 2= 0.4 sec and zone 3= 0.8 sec [29]. The system has tested with GA optimization in an environment Matlab 2017b and compared with the results in [25]. GA has tested with PP and WPP. There are (sixty-eight) linear inequality constraints and (twenty-eight) variable fourteen for DOCRs and fourteen for DRs, all these constraints in MATLAB simulation have achieved. Table 2 and Table 3 illustrate the optimum TMS values for DOCRs from relay 1 (R1) to relay 14 (R14) and TZ2 for DRs from relay 15 (R15) to relay 28 (R28) with proposed GA with PP and WPP respectively.

Figure 10. IEEE-8-Bus system.

No of relays	TMS with GA	TMS for NLM [25]				
	PP	WPP	Only with near-end fault	PP	WPP	Only with near-end fault
R1	0.1551	0.1551	0.1551	0.1562	0.1562	0.1562
R2	0.1900	0.1900	0.1904	0.1913	0.1913	0.1913
R3	0.1742	0.1742	0.1742	0.1751	0.1751	0.1751
R4	0.1366	0.1366	0.1368	0.1375	0.1375	0.1375
R5	0.1347	0.1347	0.1350	0.1357	0.1357	0.1357
R6	0.1458	0.1458	0.1458	0.1465	0.1465	0.1465
R7	0.3599	0.3599	0.3605	0.3623	0.3623	0.3623
R8	0.1254	0.1254	0.1254	0.1261	0.1261	0.1261
R9	0.1437	0.1437	0.1440	0.1447	0.1447	0.1447
R10	0.1301	0.1301	0.1388	0.1310	0.1310	0.1395
R11	0.1358	0.1357	0.1360	0.1367	0.1367	0.1367
R12	0.1895	0.1895	0.1870	0.1880	0.1880	0.1880
Table 2 shows the TMS results and the overall operating time for DOCRs are best with GA optimization technique by using PP and WPP and reduced about 0.0337 sec in case of GA with near-end fault only, 0.0371 in case nonlinear multivariable (NLM) with PP and WPP and 0.0689 sec in case NLM only with near end fault only.

Table 3. TZ2 for DRs

No of relays	TZ2 with GA	TZ2 for NLM [25]			
R13	0.1073	0.1076	0.1081	0.1081	0.1081
R14	0.3547	0.3553	0.3570	0.3570	0.3570
\(\sum_{i=1}^{N} T_i \)	7.0244	7.0581	7.0615	7.0615	7.0933

Table 3 shows The TZ2 results and GA optimization technique is better than NLM optimization in obtained optimal values and performance. The overall time is reduced by about 0.0037 sec.

The time of T BFR is 0.1 in equations (5) and (6) and the BFR from relay 29 (R29) to relay 42 (R42). Therefore, the operating time for each DOCR, TZ2 for DR, the timing of third zone (TZ3) will be (TZ2+ 0.4), the operating time for each BFR, and constraints CTI1, CTI2 are illustrated in Table 4 and represent as a bar chart in Figure 11. According to results if the main zone 1 of DR and main DOCR fails to clear faults, TZ2 for backup DR and time of backup DOCR will clear a fault at the same time almost. This study gives more reliability, stability, and sensitivity to the tested system.
Table 4. The operating time for DOCRs, DRs and BFRs.

NO of Main relay	Time main DOCR (sec)	NO of backup relay	Time backup DOCR (sec)	NO of DR	TZ2 DR (sec)	TZ3 DR (sec)	NO of BFR (sec)	BFR time after DR (sec)	BFR time after DOCR (sec)	CTI 1 (sec)	CTI 2 (sec)
R1	0.4152	R6	0.6152	R20	0.6152	1.0152	R29	0.1	0.5152	0.2	0.2
R2	0.5892	R1	0.7874	R15	0.7892	1.1892	R30	0.1	0.6892	0.2	0.2
R3	0.5606	R2	0.7584	R16	0.9182	1.3182	R31	0.1	0.6606	0.2	0.3576
R4	0.5192	R3	0.7192	R17	0.7192	1.1192	R32	0.1	0.6192	0.2	0.2
R5	0.4948	R4	0.6935	R18	0.6948	1.0948	R33	0.1	0.5948	0.2	0.2
R6	0.4438	R5	0.7873	R19	0.7889	1.1889	R34	0.1	0.5438	0.3435	0.3451
R7	0.5889	R13	0.7867	R27	0.7889	1.1889	R35	0.1	0.6889	0.2	0.2
R8	0.3823	R7	0.7879	R21	0.7892	1.1892	R36	0.1	0.4823	0.4056	0.4069
R9	0.4873	R10	0.6442	R24	0.6873	1.0873	R37	0.1	0.5873	0.3972	0.3987
R10	0.4873	R11	0.7176	R25	0.7190	1.1190	R38	0.1	0.5873	0.2303	0.2317
R11	0.5293	R12	0.7389	R26	0.7293	1.1293	R39	0.1	0.6293	0.2096	0.2
R12	0.5889	R13	0.7867	R27	0.7889	1.1889	R40	0.1	0.6889	0.2	0.2
R13	0.3564	R8	0.5564	R22	0.5564	0.9564	R41	0.1	0.4564	0.2	0.2
R14	0.5810	R1	0.7874	R15	0.7892	1.1892	R42	0.1	0.6810	0.2064	0.2082
R9	0.7795	R23	0.7810	R18	0.7892	1.1892	R42	0.1	0.6810	0.2	0.2
The operating time of protection relays in Figure 11 above are matching according to the flow chart in Figure 8 which explains the sequence of operating time protection relays during a fault.

5. CONCLUSION
In this paper, GA optimization technique to coordinate between protection relays at transmission lines has used. The results obtained with this algorithm have compared with NLM algorithm, and it was better and more accurate for reducing the overall times for all protection relays in the network.

TZ2 of DR has set as autonomous value to each relay and the main aim of that is to obtain proper coordination and give priority for the main local DOCR to clear the fault before TZ2 of backup DR and backup DOCR. It is so important to study critical case for HVCB to fail during faults, so BFR has used to coordinate with DR and DOCR.

6. REFERENCES

[1] L. G. Perez and A. J. Urdaneta, "Optimal computation of distance relays second zone timing in a mixed protection scheme with directional relays," IEEE Trans. on Power Delivery,, vol. 16, no. 3, pp. 385-388, July 2001.

[2] Y. Damchi, S. Javad and M. H. Rajabi, "Optimal coordination of distance and directional overcurrent relays considering different network topologies," Iranian Journal of Electrical \& Electronic Engineering, vol. 11, no. 3, pp. 231-240, 2015.

[3] P. A. Bangar and A. A. Kalage, "Optimum coordination of overcurrent and distance relays using JAYA optimization algorithm," in 2017 International Conference on Nascent Technologies in Engineering (ICNTE), Navi Mumbai, IEEE, 2017, pp. 1-5.

[4] S. V. Khond and G. A. Dhomane, "Optimum coordination of directional overcurrent relays for combined overhead/cable distribution system with linear programming technique," Protection and Control of Modern Power Systems, vol. 4, no. 1, pp. 1-7, APR 2019.
[5] c. J. Altuve, M. J. Thompson and J. Mooney, "Advances in breaker-failure protection," in *Proc. Of the 33rd Western Protective Relay Conference*, 2006 October.

[6] Y. Xue, M. Thakhar, J. C. Theron and D. P. Erwin, "Review of the breaker failure protection practices in utilities," in *2012 65th Annual Conference for Protective Relay Engineers*, IEEE, 2012, pp. 260–268.

[7] Khoudry E, Belfiqh A, Ouaderhman T, Boukherouaa J and Elmariami F, "Multi-scale morphological gradient algorithm based ultra-high-speed directional transmission line protection for internal and external fault discrimination," *International Journal of Electrical \& Computer Engineering (2088-8708)*, vol. 9, no. 5, October 2019.

[8] M. Dazahra, F. Elmariami, A. Belfqih and J. Boukherouaa, "Smart Local Backup Protection for Smart Substation," *International Journal of Electrical \& Computer Engineering (2088-8708)*, vol. 7, no. 5, 2017.

[9] H. A. Abyaneh, S. S. H. Kamangar, F. Razavi and R. M. Chabanloo, "A new genetic algorithm method for optimal coordination of overcurrent relays in a mixed protection scheme with distance relays," in *2008 43rd International Universities Power Engineering Conference*, IEEE, 2008, pp. 1-5.

[10] Y. Damchi, J. Sadeh and H. Rajabi Mashhadi, "Preprocessing of distance and directional overcurrent relays coordination problem considering changes in network topology," *International Transactions on Electrical Energy Systems*, vol. 26, no. 1, pp. 32-48, 2016.

[11] A. J. Urdaneta, H. Restrepo, S. Marquez and J. Sanchez, "Coordination of directional overcurrent relay timing using linear programming," *IEEE Transactions on Power Delivery*, vol. 11, no. 1, pp. 122–129, 1996.

[12] B. Chattopadhyay, M. Sachdev and T. Sidhu, "An on-line relay coordination algorithm for adaptive protection using linear programming technique," *IEEE Transactions on Power Delivery*, vol. 11, no. 1, pp. 165–173, 1996.

[13] A. Urdaneta, L. Perez, J. Gomez, B. Feijoo and M. Gonzalez, "Presolve analysis and interior point solutions of the linear programming coordination problem of directional overcurrent relays," *International Journal of Electrical Power \& Energy Systems*, vol. 23, no. 8, pp. 819–825, 2001.

[14] L. G. Perez and A. J. Urdaneta, "Optimal computation of distance relays second zone timing in a mixed protection scheme with directional overcurrent relays," *IEEE Transactions on Power Delivery*, vol. 16, no. 3, pp. 385–388, 2001.

[15] L. G. Perez and A. J. Urdaneta, "Optimal coordination of directional overcurrent relays considering definite time backup relaying," *IEEE Transactions on Power Delivery*, vol. 14, no. 4, pp. 1276–1284, 1999.

[16] C.W. So and K.K. Li, "Overcurrent relay coordination by evolutionary programming," *Electric power systems research*, vol. 53, no. 2, pp. 83–90, 2000.

[17] C.W. So, K.K. Li, K.T. Lai and K.Y. Fung, "Application of genetic algorithm for overcurrent relay coordination," pp. 66-69, 1997.

[18] H. Zeineldin, E. El-Saadany and M. Salama, "Optimal coordination of overcurrent relays using a modified particle swarm optimization," *Electric Power Systems Research*, vol. 76, no. 11, pp. 988–995, 2006.

[19] "IEEE Guide for Breaker Failure Protection of Power Circuit Breakers," *IEEE Std C37.119-2016 (Revision of IEEE Std C37.119-2005)*, pp. 1-73, 2016.
[20] "IEEE Guide for Protective Relay Applications to Transmission Lines," IEEE Std C37.113-2015 (Revision of IEEE Std C37.113-1999), pp. 1-141, 2016.

[21] "Chapter 12 • Distance Protection schemes," in Network Protection & Automation Guide, pp. 192-201.

[22] J. M. Ghogare and V. Bapat, "Field based case studies on optimal coordination of overcurrent relays using Genetic Algorithm," in 2015 IEEE International Conference on Electrical, Computer and Communication Technologies (ICECCT), IEEE, 2015, pp. 1-7.

[23] P. P. Bedekar, S. R. Bhide and V. S. Kale, "Optimum coordination of overcurrent relays in distribution system using genetic algorithm," in 2009 International Conference on Power Systems, IEEE, 2009, pp. 1-6.

[24] V. S. Kale, Mayank Agarwal, Prathamesh D Kesarkar, Dev Raj Regmi, Anuj Chaudhary and Chitvan Killawala, "Optimal coordination of overcurrent relays using genetic algorithm and simulated annealing," in Proceedings of The 2014 International Conference on Control, Instrumentation, Energy and Communication (CIEC), IEEE, 2014, pp. 361--365.

[25] T. A. Abd Almuhsen and A. J. Sultan, "Coordination of directional overcurrent and distance relays based on nonlinear multivariable optimization," Indonesian Journal of Electrical Engineering and Computer Science, vol. 17, no. 3, pp. 1194--1205, 2020.

[26] M.-Ta. Yang and J.-Cheng Gu, "Optimal coordination of automatic line switches for distribution systems," Energies, vol. 5, no. 4, pp. 1150--1174, 2012.

[27] A. Yazdaninejad, S. Golshannavaz, D. Nazarpour, S. Teimourzadeh and F. Aminifar, "Dual-setting directional overcurrent relays for protecting automated distribution networks," IEEE Transactions on Industrial Informatics, vol. 15, no. 2, pp. 730--740, 2018.

[28] T. A. Abd Almuhsen and A. J. Sultan, “Using of Genetic algorithm to obtain proper Coordination of Directional overcurrent relays,” InIOP Conference Series: Materials Science and Engineering 2020 Jul 1 (Vol. 881, No. 1, p. 012131). IOP Publishing.

[29] S. R. Samantaray, and A. Sharma, "Supervising zone-3 operation of the distance relay using synchronised phasor measurements," IET Generation, Transmission & Distribution, vol. 13, no. 8, pp. 1238--1246, 2018.