On the $\pi\mathfrak{F}$-norm and the \mathfrak{H}-\mathfrak{F}-norm of a finite group*

Xiaoyu Chen, Wenbin Guo†

Department of Mathematics, University of Science and Technology of China,
Hefei 230026, P. R. China
E-mails: jelly@mail.ustc.edu.cn, wbguo@ustc.edu.cn

Abstract

Let \mathfrak{H} be a Fitting class and \mathfrak{F} a formation. We call a subgroup $N_{\mathfrak{H},\mathfrak{F}}(G)$ of a finite group G the \mathfrak{H}-\mathfrak{F}-norm of G if $N_{\mathfrak{H},\mathfrak{F}}(G)$ is the intersection of the normalizers of the products of the \mathfrak{F}-residuals of all subgroups of G and the \mathfrak{H}-radical of G. Let π denote a set of primes and let \mathfrak{G}_π denote the class of all finite π-groups. We call the subgroup $N_{\mathfrak{G}_\pi,\mathfrak{F}}(G)$ of G the $\pi\mathfrak{F}$-norm of G. A normal subgroup N of G is called $\pi\mathfrak{F}$-hypercentral in G if either $N = 1$ or $N > 1$ and every G-chief factor below N of order divisible by at least one prime in π is \mathfrak{F}-central in G. Let $Z_{\pi\mathfrak{F}}(G)$ denote the $\pi\mathfrak{F}$-hypercentre of G, that is, the product of all $\pi\mathfrak{F}$-hypercentral normal subgroups of G. In this paper, we study the properties of the \mathfrak{H}-\mathfrak{F}-norm, especially of the $\pi\mathfrak{F}$-norm of a finite group G. In particular, we investigate the relationship between the $\pi'\mathfrak{F}$-norm and the $\pi\mathfrak{F}$-hypercentre of G.

1 Introduction

All groups considered in this paper are finite, and all classes of groups \mathfrak{X} mentioned are non-empty. G always denotes a group, p denotes a prime, π denotes a set of primes, and \mathbb{P} denotes the set of all primes. Also, let $\pi(G)$ denote the set of all prime divisors of the order of G, and let $\pi(\mathfrak{X}) = \bigcup\{\pi(G) : G \in \mathfrak{X}\}$ for a class of groups \mathfrak{X}.

Recall that a class of groups \mathfrak{F} is called a formation if \mathfrak{F} is closed under taking homomorphic images and subdirect products. A formation \mathfrak{F} is said to be saturated if $G \in \mathfrak{F}$ whenever $G/\Phi(G) \in \mathfrak{F}$. The \mathfrak{F}-residual of G, denoted by $G^\mathfrak{F}$, is the smallest normal subgroup N of G.

*Research is supported by a NNSF grant of China (grant #11371335) and Research Fund for the Doctoral Program of Higher Education of China (Grant 20113402110036).
†Corresponding author.
Keywords: norm, $\pi\mathfrak{F}$-norm, $\pi\mathfrak{F}$-hypercentre, \mathfrak{F}-maximal subgroups, \mathfrak{F}-critical group.
Mathematics Subject Classification (2000): 20D10, 20D15.
G with $G/N \in \mathfrak{F}$. The formation product $\mathfrak{F} \circ \mathfrak{F}$ of a class of groups \mathfrak{F} and a formation \mathfrak{F} is the class of all groups G such that $G^{\mathfrak{F}} \in \mathfrak{F}$. A class of groups \mathfrak{H} is called a Fitting class if \mathfrak{H} is closed under taking normal subgroups and products of normal \mathfrak{H}-subgroups. The \mathfrak{H}-radical of G, denoted by $G_{\mathfrak{H}}$, is the maximal normal \mathfrak{H}-subgroup of G. The Fitting product $\mathfrak{H} \diamond \mathfrak{X}$ of a Fitting class \mathfrak{H} and a class of groups \mathfrak{X} is the class of all groups G such that $G/G_{\mathfrak{H}} \in \mathfrak{X}$. A class of groups \mathfrak{B} is called a Fitting formation if \mathfrak{B} is both a formation and a Fitting class. Note that for a Fitting formation \mathfrak{B}, a formation \mathfrak{F} and a Fitting class \mathfrak{H}, $\mathfrak{H} \circ (\mathfrak{B} \circ \mathfrak{F}) = (\mathfrak{H} \circ \mathfrak{B}) \circ \mathfrak{F}$ always holds, and we denote it by $\mathfrak{H} \circ \mathfrak{B} \circ \mathfrak{F}$.

The class of the groups of order 1 is denoted by 1, and the class of all finite groups is denoted by \mathfrak{G}. We use \mathfrak{G} (resp. \mathfrak{N}, \mathfrak{U}, \mathfrak{A}) to denote the class of finite soluble (resp. nilpotent, supersolvable, abelian) groups and \mathfrak{G}_π (resp. \mathfrak{N}_π, \mathfrak{U}_π) to denote the class of finite π-solvable (resp. π-nilpotent, π-supersolvable) groups. Also, the symbol \mathfrak{G}_π denotes the class of all finite π-groups.

A formation function f is a local function $f: \mathbb{P} \to \{\text{classes of groups}\}$ such that $f(p)$ is a formation for all $p \in \mathbb{P}$. Let $L F(f)$ denote the set of all groups G whose chief factors L/K are all f-central in G, that is, $G/C_G(L/K) \in f(p)$ for all $p \in \pi(L/K)$. The canonical local definition of a saturated formation \mathfrak{F} is the uniquely determined formation function F such that $\mathfrak{F} = L F(F)$, $F(p) \subseteq \mathfrak{F}$ and $\mathfrak{G}_\pi \circ F(p) = F(p)$ for all $p \in \mathbb{P}$ (for details, see [11] Chap. IV).

Following [11], for a class of groups \mathfrak{X}, we define closure operations as follows:

- $\mathfrak{N}(G) = \{N \in \mathfrak{X} : G \leq H \text{ for some } H \in \mathfrak{X}\}$
- $\mathfrak{S}_H \mathfrak{X} = \{G : G \text{ is subnormal in } H \text{ for some } H \in \mathfrak{X}\}$
- $\mathfrak{Q} \mathfrak{X} = \{G : \text{ there exist } H \in \mathfrak{X} \text{ and an epimorphism from } H \text{ onto } G\}$
- $\mathfrak{E} \mathfrak{X} = \{G : \text{ there exists a series of subgroups of } G : 1 = G_0 \leq G_1 \leq \cdots \leq G_n = G \text{ with each } G_i/G_{i-1} \in \mathfrak{X}\}$

Recall that the norm $\mathcal{N}(G)$ of G is the intersection of the normalizers of all subgroups of G, and the Wielandt subgroup $\omega(G)$ of G is the intersection of the normalizers of all subnormal subgroups of G. These concepts were introduced by R. Baer [11] and H. Wielandt [31] in 1934 and 1958, respectively. Much investigation has focused on using the concepts of the norm and the Wielandt subgroup to determine the structure of finite groups (see, for example, [2, 3, 6, 9, 12, 13, 18, 20, 22]).

Recently, Li and Shen [19] considered the intersection of the normalizers of the derived subgroups of all subgroups of G. Also, in [12] and [24], the authors considered the intersection of the normalizers of the nilpotent residuals of all subgroups of G. Furthermore, for a formation \mathfrak{F}, Su and Wang [29] investigated the intersection of the normalizers of the \mathfrak{F}-residuals of all subgroups of G and the intersection of the normalizers of the products of the \mathfrak{F}-residuals of all subgroups of G and $O_{\pi'}(G)$. As a continuation of the above ideas, we now introduce the notion of $\mathfrak{H} \mathfrak{F}$-norm as follows:

Definition 1.1. Let \mathfrak{H} be a Fitting class and \mathfrak{F} a formation. We call a subgroup $\mathcal{N}_{\mathfrak{H} \mathfrak{F}}(G)$ of G the $\mathfrak{H} \mathfrak{F}$-norm of G if $\mathcal{N}_{\mathfrak{H} \mathfrak{F}}(G)$ is the intersection of the normalizers of the products of
the \(\mathfrak{F} \)-residuals of all subgroups of \(G \) and the \(\mathfrak{S} \)-radical of \(G \), that is,

\[
N_{\mathfrak{S}, \mathfrak{F}}(G) = \bigcap_{H \leq G} N_G(H^{\mathfrak{F}}G_H).
\]

In particular, when \(\mathfrak{S} = 1 \), the subgroup \(N_{\mathfrak{F}}(G) \) of \(G \) is called the \(\mathfrak{F} \)-norm of \(G \), and we denote it by \(N_{\mathfrak{F}}(G) \), that is,

\[
N_{\mathfrak{F}}(G) = \bigcap_{H \leq G} N_G(H^{\mathfrak{F}}); \quad \text{when} \quad \mathfrak{S} = \mathfrak{G}_\pi, \text{the subgroup} \quad N_{\mathfrak{G}_\pi, \mathfrak{F}}(G) \text{ of } G \text{ is called the } \pi \mathfrak{F} \text{-norm of } G, \text{ and we denote it by } N_{\pi \mathfrak{F}}(G), \text{ that is,}
\]

\[
N_{\pi \mathfrak{F}}(G) = \bigcap_{H \leq G} N_G(H^{\mathfrak{F}}O_{\pi}(G)).
\]

Definition 1.2. Let \(N_{\mathfrak{G}_1, \mathfrak{F}}(G) = 1 \) and \(N_{\mathfrak{G}_i, \mathfrak{F}}(G) / N_{\mathfrak{G}_{i-1}, \mathfrak{F}}(G) = N_{\mathfrak{G}_i, \mathfrak{F}}(G / N_{\mathfrak{G}_{i-1}, \mathfrak{F}}(G)) \) for \(i = 1, 2, \ldots \). Then there exists a series of subgroups of \(G \):

\[
1 = N_{\mathfrak{G}_0, \mathfrak{F}}(G) \leq N_{\mathfrak{G}_1, \mathfrak{F}}(G) \leq N_{\mathfrak{G}_2, \mathfrak{F}}(G) \cdots \leq N_{\mathfrak{G}_n, \mathfrak{F}}(G) = N_{\mathfrak{G}_{n+1}, \mathfrak{F}}(G) = \cdots.
\]

Denote \(N_{\mathfrak{G}_\infty, \mathfrak{F}}(G) \) the terminal term of this ascending series. In particular, when \(\mathfrak{S} = 1 \), we denote \(N_{\mathfrak{G}_1, \mathfrak{F}}(G) \) by \(N_{\mathfrak{F}}(G) \); when \(\mathfrak{S} = \mathfrak{G}_\pi \), we denote \(N_{\mathfrak{G}_\infty, \mathfrak{F}}(G) \) by \(N_{\pi \mathfrak{F}}(G) \).

Let \(\mathfrak{F} \) be a formation. A \(G \)-chief factor \(L/K \) is said to be \(\mathfrak{F} \)-central in \(G \) if \((L/K) \simeq (G/C_G(L/K)) \in \mathfrak{F} \). Following [17], a normal subgroup \(N \) of \(G \) is called \(\pi \mathfrak{F} \)-hypercentral in \(G \) if either \(N = 1 \) or \(N > 1 \) and every \(G \)-chief factor below \(N \) of order divisible by at least one prime in \(\pi \) is \(\mathfrak{F} \)-central in \(G \). Let \(Z_{\pi \mathfrak{F}}(G) \) denote the \(\pi \mathfrak{F} \)-hypercentre of \(G \), that is, the product of all \(\pi \mathfrak{F} \)-hypercentral normal subgroups of \(G \). The \(\mathfrak{F} \pi \mathfrak{F} \)-hypercentre of \(G \) is called the \(\mathfrak{F} \)-hypercentre of \(G \), and we denote it by \(Z_{\mathfrak{F}}(G) \).

Let \(\mathfrak{X} \) be a class of groups. Recall that a subgroup \(U \) of \(G \) is called \(\mathfrak{X} \)-maximal in \(G \) if \(U \in \mathfrak{X} \) and \(G \) does not have a subgroup \(V \) such that \(U < V \) and \(V \in \mathfrak{X} \). Following [27], we use \(\text{Int}_{\mathfrak{X}}(G) \) to denote the intersection of all \(\mathfrak{X} \)-maximal subgroups of \(G \).

In [5] Remark 4, J. C. Beidleman and H. Heineken observed that \(N_{\mathfrak{G}_c, \mathfrak{F}}(G) \) coincides with \(\text{Int}_{\mathfrak{N}_c}(G) \) for every group \(G \), where \(\mathfrak{N}_c \) denotes the class of nilpotent groups of class at most \(c \). In [27], A. N. Skiba gave conditions under which the \(\mathfrak{F} \)-hypercentre \(Z_{\mathfrak{F}}(G) \) coincides with \(\text{Int}_{\mathfrak{F}}(G) \) for every group \(G \). Also, Guo and A. N. Skiba [10] gave conditions under which the \(\pi \mathfrak{F} \)-hypercentre \(Z_{\pi \mathfrak{F}}(G) \) coincides with \(\text{Int}_{\mathfrak{F}}(G) \) for every group \(G \).

Motivated by the above observations, the following questions naturally arise:

Problem (I). Under what conditions \(N_{\mathfrak{F}}(G) \) coincides with the \(\mathfrak{N} \circ \mathfrak{F} \)-hypercentre \(Z_{\mathfrak{N} \circ \mathfrak{F}}(G) \)? More generally, under what conditions \(N_{\pi \mathfrak{F}}(G) \) coincides with the \(\pi(\mathfrak{N} \circ \mathfrak{F}) \)-hypercentre \(Z_{\pi(\mathfrak{N} \circ \mathfrak{F})}(G) \)?

Problem (II). Under what conditions \(N_{\mathfrak{F}}(G) \) coincides with \(\text{Int}_{\mathfrak{N} \circ \mathfrak{F}}(G) \)? More generally, under what conditions \(N_{\pi \mathfrak{F}}(G) \) coincides with \(\text{Int}_{\pi(\mathfrak{N} \circ \mathfrak{F})}(G) \)?
For a class of groups \mathfrak{X}, a group G is called \mathfrak{S}-critical for \mathfrak{X} if $G \notin \mathfrak{X}$ but all proper subgroups of G belong to \mathfrak{X}. Let $\text{Crit}_\mathfrak{S}(\mathfrak{X})$ denote the set of all groups G which are \mathfrak{S}-critical for \mathfrak{X}. For convenience of statement, we give the following definition.

Definition 1.3. We say that a formation \mathfrak{F} satisfies:

1. The π-boundary condition (I) if $\text{Crit}_\mathfrak{S}(\mathfrak{F}) \subseteq \mathfrak{N}_\pi \circ \mathfrak{F}$ (equivalently, $\text{Crit}_\mathfrak{S}(\mathfrak{F}) \subseteq \mathfrak{G}_\pi \circ \mathfrak{F}$, see Lemma 2.7 below).
2. The π-boundary condition (II) if for any $p \in \pi$, $\text{Crit}_\mathfrak{S}(\mathfrak{F}_p \circ \mathfrak{F}) \subseteq \mathfrak{G}_\pi \circ \mathfrak{F}$.
3. The π-boundary condition (III) if for any $p \in \pi$, $\text{Crit}_\mathfrak{S}(\mathfrak{F}_p \circ \mathfrak{F}) \subseteq \mathfrak{N}_\pi \circ \mathfrak{F}$.
4. The π-boundary condition (III) in \mathfrak{G} if for any $p \in \pi$, $\text{Crit}_\mathfrak{S}(\mathfrak{F}_p \circ \mathfrak{F}) \cap \mathfrak{G} \subseteq \mathfrak{N}_\pi \circ \mathfrak{F}$.

Note that a formation \mathfrak{F} satisfies the π-boundary condition (III) (resp. the π-boundary condition (I)) if and only if $\mathfrak{N}_\pi \circ \mathfrak{F}$ satisfies the π-boundary condition (resp. the π-boundary condition in \mathfrak{G}) in the sense of [17].

Remark 1.4. If a formation \mathfrak{F} satisfies the π-boundary condition (II), then clearly, \mathfrak{F} satisfies the π-boundary condition (I). However, the converse does not hold. For example, let $\pi = \mathbb{P}$ and $\mathfrak{F} = \mathfrak{N}_3$. By [17, Chap. IV, Satz 5.4], $\text{Crit}_\mathfrak{S}(\mathfrak{N}_3) \subseteq \mathfrak{N} \circ \mathfrak{N}_3$. Now let $G = A_5$, where A_5 is the alternating group of degree 5. Then $G \in \text{Crit}_\mathfrak{S}(\mathfrak{N}_3 \circ \mathfrak{N}_3)$, but $G \notin \mathfrak{G} \circ \mathfrak{N}_3$. Hence $\text{Crit}_\mathfrak{S}(\mathfrak{N}_3 \circ \mathfrak{N}_3) \not\subseteq \mathfrak{G} \circ \mathfrak{N}_3$.

Remark 1.5. If a formation \mathfrak{F} satisfies the π-boundary condition (III), then \mathfrak{F} satisfies the π-boundary condition (II). However, the converse does not hold. For example, let $\pi = \mathbb{P}$ and $\mathfrak{F} = \mathfrak{G}_3$. For any prime $p \neq 3$, $\text{Crit}_\mathfrak{S}(\mathfrak{G}_p \circ \mathfrak{G}_3) \subseteq \mathfrak{N}_3 \cup \text{Crit}_\mathfrak{S}(\mathfrak{N}_3)$. If there exists a group H such that $H \in \text{Crit}_\mathfrak{S}(\mathfrak{G}_p \circ \mathfrak{G}_3) \setminus (\mathfrak{G} \circ \mathfrak{G}_3)$, then by [17, Chap. IV, Satz 5.4], we have that $H \in \mathfrak{N}_3$. Hence H has the normal 3-complement A. If $A < H$, then $A \in \mathfrak{G}_p \circ \mathfrak{G}_3 \subseteq \mathfrak{G}$, and thereby $H \in \mathfrak{G}$, a contradiction. Therefore, $H = A \in \mathfrak{G}_p \cup \text{Crit}_\mathfrak{S}(\mathfrak{G}_p) \subseteq \mathfrak{G}$, also a contradiction. This shows that $\text{Crit}_\mathfrak{S}(\mathfrak{G}_p \circ \mathfrak{G}_3) \subseteq \mathfrak{G} \circ \mathfrak{G}_3$, and so \mathfrak{G}_3 satisfies the \mathbb{P}-boundary condition (II). Now let $G = S_3$, where S_3 is the symmetric group of degree 3. Then it is easy to see that $G \in \text{Crit}_\mathfrak{S}(\mathfrak{G}_2 \circ \mathfrak{G}_3)$, but $G \notin \mathfrak{N} \circ \mathfrak{G}_3$. Hence $\text{Crit}_\mathfrak{S}(\mathfrak{G}_2 \circ \mathfrak{G}_3) \not\subseteq \mathfrak{G} \circ \mathfrak{G}_3$.

Firstly, we give a characterization of $\mathfrak{H} \circ \mathfrak{N} \circ \mathfrak{F}$-groups by using their \mathfrak{H}-\mathfrak{F}-norms.

Theorem A. Let \mathfrak{H} be a saturated Fitting formation such that $\mathfrak{G}_{\pi'} \subseteq \mathfrak{H} = \mathfrak{E}\mathfrak{H}$ and \mathfrak{F} a formation such that $\mathfrak{F} \subseteq \mathfrak{S}\mathfrak{F}$. Suppose that one of the following holds:

(i) $G^{\mathfrak{H} \circ \mathfrak{N} \circ \mathfrak{F}} \in \mathfrak{G}_{\pi'}$.

(ii) \mathfrak{F} satisfies the π-boundary condition (I).

Then the following statements are equivalent:

1. $G \in \mathfrak{H} \circ \mathfrak{N} \circ \mathfrak{F}$.
2. $G/N_{\mathfrak{H},\mathfrak{F}}(G) \in \mathfrak{H} \circ \mathfrak{N} \circ \mathfrak{F}$.
3. $G/N_{\mathfrak{H},\mathfrak{F}}(G) \in \mathfrak{H} \circ \mathfrak{N} \circ \mathfrak{F}$.
4. $N_{\mathfrak{H},\mathfrak{F}}(G/N) > 1$ for every proper normal subgroup N of G.
5. $G = N_{\mathfrak{H},\mathfrak{F}}(G)$.

4
The main purpose of this paper is to give answers to Problem (I) and (II). In the universe of all groups, we prove:

Theorem B. Let \(\mathfrak{F} \) be a formation such that \(\mathfrak{F} = \mathfrak{SF} \). Then:

1. If \(\mathfrak{F} \) satisfies the \(\pi \)-boundary condition (II), then \(\mathcal{N}_{\pi \mathfrak{F}}(G) = Z_{\pi(\mathfrak{F})}(G) \) holds for every group \(G \).
2. If \(\mathcal{N}_{\pi \mathfrak{F}}(G) = Z_{\pi(\mathfrak{F})}(G) \) holds for every group \(G \), then \(\mathfrak{F} \) satisfies the \(\pi \)-boundary condition (I).
3. \(\mathcal{N}_{\pi \mathfrak{F}}(G) = Z_{\pi(\mathfrak{F})}(G) \) holds for every group \(G \) if and only if \(\mathcal{N}_{\pi \mathfrak{F}}(G) = Z_{\pi(\mathfrak{F})}(G) \) holds for every group \(G \in \bigcup_{\pi \mathfrak{F} \subseteq \mathfrak{F}} (\text{Crit}_{\mathfrak{F}}(\mathfrak{S}_p \circ \mathfrak{F}) \setminus (\mathfrak{S}_p \circ \mathfrak{F})) \).

Remark 1.6. The converse of statement (2) of Theorem B does not hold. For example, let \(\pi = \mathbb{P} \) and \(\mathfrak{F} = \mathfrak{U} \). By K. Doerk’s result \(\mathbb{11} \), \(\text{Crit}_{\mathfrak{U}}(\mathfrak{E}) \subseteq \mathfrak{N} \circ \mathfrak{U} \). This means that \(\mathfrak{U} \) satisfies the \(\mathbb{P} \)-boundary condition (I). Let \(A \) be the 2-Frattini module of \(A_5 \), where \(A_5 \) is the alternating group of degree 5. By \(\mathbb{14} \) Example 1], the dimension of \(A \) is 5. Then by \(\mathbb{11} \), Appendix \(\beta \), Proposition \(\beta.5 \], there exists a Frattini extension \(G \) such that \(\mathbb{G}/A \cong A_5 \) and \(A = Z(G) \). Now we show that \(\mathcal{N}_{\mathfrak{U}}(G) = \Phi(G) \). As \(\mathcal{N}_{\mathfrak{U}}(G) < G \), it will suffice to prove that for any subgroup \(H \) of \(G \), \(\Phi(G) \leq N_G(H^{\mathfrak{U}}) \). If \(H/H \cap \Phi(G) \subseteq \mathfrak{U} \), then \(H^{\mathfrak{U}} \leq \Phi(G) \), and so \(\Phi(G) \leq N_G(H^{\mathfrak{U}}) \). Hence, consider that \(H/H \cap \Phi(G) \notin \mathfrak{U} \). Since \(G/\Phi(G) \cong A_5 \), \(H\Phi(G)/\Phi(G) \cong A_4 \), where \(A_4 \) is the alternating group of degree 4. This implies that \(H\Phi(G) \) is a Hall 5'-subgroup of \(G \), and thereby \(H \) is a Hall 5'-subgroup of \(G \). Thus \(\Phi(G) \leq H \), and consequently \(\Phi(G) \leq N_G(H^{\mathfrak{U}}) \). Therefore, \(\mathcal{N}_{\mathfrak{U}}(G) = \Phi(G) \). If \(\mathcal{N}_{\mathfrak{U}}(G) = Z_{\mathfrak{U}_{2\mathcal{U}}}(G) \), then \(Z_{\mathfrak{U}_{2\mathcal{U}}}(G) = \Phi(G) \). Since \(G^{2\mathfrak{U}} = G \), by \(\mathbb{11} \) Chap. IV, Theorem 6.10], \(Z(G) = \Phi(G) \). It follows that \(G \) is quasisimple. By \(\mathbb{13} \), Table 4.1], the Schur multiplier of \(A_5 \) is a cyclic group of order 2, a contradiction. Hence \(\mathcal{N}_{\mathfrak{U}}(G) \neq Z_{\mathfrak{U}_{2\mathcal{U}}}(G) \). Besides, we currently do not know whether the converse of statement (1) of Theorem B is true or not.

Theorem C. Let \(\mathfrak{F} \) be a formation such that \(\mathfrak{F} = \mathfrak{SF} \). Then the following statements are equivalent:

1. \(\mathcal{N}_{\pi \mathfrak{F}}(G) = \text{Int}_{\pi \mathfrak{F}}(G) \) holds for every group \(G \).
2. \(Z_{\pi(\mathfrak{F})}(G) = \text{Int}_{\pi(\mathfrak{F})}(G) \) holds for every group \(G \).
3. \(\mathfrak{F} \) satisfies the \(\pi \)-boundary condition (III).

In the universe of all solvable groups, we prove:

Theorem D. Let \(\mathfrak{F} \) be a formation such that \(\mathfrak{F} = \mathfrak{SF} \). Then \(\mathcal{N}_{\pi \mathfrak{F}}(G) = Z_{\pi(\mathfrak{F})}(G) \) holds for every group \(G \in \mathfrak{S}_p \circ \mathfrak{F} \).

Theorem E. Let \(\mathfrak{F} \) be a formation such that \(\mathfrak{F} = \mathfrak{SF} \). Then the following statements are equivalent:

1. \(\mathcal{N}_{\pi \mathfrak{F}}(G) = \text{Int}_{\pi \mathfrak{F}}(G) \) holds for every \(G \in \mathfrak{S} \).
2. \(Z_{\pi(\mathfrak{F})}(G) = \text{Int}_{\pi(\mathfrak{F})}(G) \) holds for every \(G \in \mathfrak{S} \).
3. \(\mathfrak{F} \) satisfies the \(\pi \)-boundary condition (III) in \(\mathfrak{S} \).
2 Preliminaries

The following two lemmas are well known.

Lemma 2.1. Let \(\mathfrak{F} \) be a formation. Suppose that \(H \leq G \) and \(N \leq G \). Then:

1. \(G^\delta N/N = (G/N)^\delta \).

2. If \(\mathfrak{F} = S\mathfrak{F} \) (resp. \(\mathfrak{F} = S_n\mathfrak{F} \)), then \(H^\delta \leq G^\delta \cap H \) (resp. \(N^\delta \leq G^\delta \cap N \)).

Lemma 2.2. Let \(\mathfrak{F} \) be a Fitting class. Suppose that \(H \leq G \) and \(N \leq G \). Then:

1. \(G_\delta \cap N = N_\delta \).
2. If \(\mathfrak{F} = S\mathfrak{F} \), then \(G_\delta \cap H \leq H_\delta \).
3. If \(\mathfrak{F} = Q\mathfrak{F} \), then \(G_\delta N/N \leq (G/N)_\delta \).
4. If \(\mathfrak{F} = E\mathfrak{F} \) and \(N \leq G_\delta \), then \((G/N)_\delta \leq G_\delta /N \).

Lemma 2.3. Let \(\mathfrak{F} \) be a Fitting class and \(\mathfrak{F} \) a formation. Suppose that \(H \leq G \) and \(N \leq G \). Then:

1. \(N_\delta,\mathfrak{F}(G) \cap N \leq N_{\delta,\mathfrak{F}}(N) \).
2. If \(\mathfrak{F} = S\mathfrak{F} \), then \(N_{\delta,\mathfrak{F}}(G) \cap H \leq N_{\delta,\mathfrak{F}}(H) \).
3. If \(\mathfrak{F} = Q\mathfrak{F} \), then \(N_{\delta,\mathfrak{F}}(G) N/N \leq N_{\delta,\mathfrak{F}}(G/N) \).
4. If \(\mathfrak{F} = S\mathfrak{F} \) and \(G \in \mathfrak{F} \circ \mathfrak{M} \circ \mathfrak{F} \), then either \(G = 1 \) or \(N_{\delta,\mathfrak{F}}(G) \geq 1 \).

Proof.

1. By definition and Lemma 2.2(1), \(N_{\delta,\mathfrak{F}}(G) N/N = (\cap_{H \leq G} N_{G/H}(H^\delta G_\delta)) \cap N \leq \cap_{H \leq G} N_{H^\delta G_\delta}(N) \).

The proof of statement (2) is similar to (1).

3. By definition, Lemma 2.1(1) and Lemma 2.2(3), \(N_{\delta,\mathfrak{F}}(G) N/N \geq (\cap_{H \leq G} N_{G/H}(H^\delta G_\delta)) N/N \leq \cap_{N \leq H \leq G} N_{G/H}(H^\delta G_\delta)/N \leq \cap_{N \leq H \leq G} N_{G/H}(H^\delta G_\delta) N/(G/N)_\delta = N_{\delta,\mathfrak{F}}(G/N) \).

4. We may suppose that \(G > 1 \) and \(G_\delta = 1 \). Since \(G \in \mathfrak{F} \circ \mathfrak{M} \circ \mathfrak{F} \), \(G = G / G_\delta \in \mathfrak{M} \circ \mathfrak{F} \). Then \(G^\delta \in \mathfrak{M} \), and so \(Z(G^\delta) > 1 \). As \(\mathfrak{F} = S\mathfrak{F} \), we have that \(H^\delta \leq G^\delta \) for every subgroup \(H \) of \(G \) by Lemma 2.1(2). It follows that \(N_{\delta,\mathfrak{F}}(G) \geq Z(G^\delta) > 1 \).

Lemma 2.4. Let \(f \) be a subgroup functor assigning to every group \(G \) a characteristic subgroup \(f(G) \) of \(G \). Define a subgroup functor \(f_i \) as follows: for every group \(G \), \(f_0(G) = 1 \); \(f_1(G)/f_i-1(G) = f(G/f_i-1(G)) \) for \(i = 1, 2, \ldots \).

1. If \(f(G) N/N \leq f(G/N) \) for every group \(G \) and every normal subgroup \(N \) of \(G \), then \(f_1(G) N/N \leq f_1(G/N) \) for every group \(G \) and every normal subgroup \(N \) of \(G \).

2. If \(f(G) N/N \leq f(G/N) \) and \(f(G) \cap N \leq f(N) \) for every group \(G \) and every normal subgroup \(N \) of \(G \), then \(f_1(G) \cap N \leq f_1(N) \) for every group \(G \) and every normal subgroup \(N \) of \(G \).

3. If \(f(G) N/N \leq f(G/N) \) for every group \(G \) and every normal subgroup \(N \) of \(G \), and \(f(G) \cap H \leq f(H) \) for every group \(G \) and every subgroup \(H \) of \(G \), then \(f_1(G) \cap H \leq f_1(H) \) for every group \(G \) and every subgroup \(H \) of \(G \).

Proof.

1. By induction, we may suppose that \(f_{i-1}(G) N/N \leq f_{i-1}(G/N) \). Let \(f_{i-1}(G/N) = A_{i-1}/N \) and \(f_i(G/N) = A_i/N \). Then \(f_{i-1}(G) \leq A_{i-1} \) and \(A_i/A_{i-1} = f(G/A_{i-1}) \). It follows
that \((f_1(G)A_{i-1}/f_{i-1}(G))/A_{i-1}/f_{i-1}(G)) \leq f((G/f_i(G))/(A_{i-1}/f_{i-1}(G))) = (A_i/f_i(G))/(A_{i-1}/f_{i-1}(G))\). Therefore, \(f_i(G) \leq A_i\), and so \(f_i(G)N/N \leq f_i(G/N)\).

(2) By induction, we may assume that \(f_{i-1}(G) \cap N \leq f_{i-1}(N)\). Let \(f_{i-1}(G) \cap N = C_{i-1}\) and \(f_{i}(G) \cap N = C_i\). Then \(f(N/C_{i-1})(f_{i-1}(N)/C_{i-1})/(f_{i-1}(N)/C_{i-1}) \leq f((N/C_{i-1})/(f_{i-1}(N)/C_{i-1})) = (f_i(N)/C_{i-1})/(f_{i-1}(N)/C_{i-1})\). This implies that \(f(N/C_{i-1}) \leq f_i(N)/C_{i-1}\). Clearly, \(C_i f_{i-1}(G)/f_{i-1}(G) = f(G/f_{i-1}(G)) \cap (f_{i-1}(G)N/f_{i-1}(G)) \leq f(f_{i-1}(G)N/f_{i-1}(G))\). It follows that \(C_i/C_{i-1} \leq f(N/C_{i-1}) \leq f_i(N)/C_{i-1}\). Therefore, \(C_i \leq f_i(N)\), and so \(f_i(G) \cap N \leq f_i(N)\).

The proof of statement (3) is similar to (2).

Lemma 2.5. Let \(\mathfrak{F}\) be a Fitting class and \(\mathfrak{G}\) a formation. Suppose that \(H \leq G\) and \(N \trianglelefteq G\). Then:

1. If \(\mathfrak{F} = \mathfrak{Q}\mathfrak{F}\), then \(\mathcal{N}_{\mathfrak{F}}(G/N) \leq \mathcal{N}_{\mathfrak{F}}(G/N)\).
2. If \(\mathfrak{F}\) is a Fitting formation such that \(\mathfrak{F} = \mathfrak{S}\mathfrak{F}\), then \(\mathcal{N}_{\mathfrak{F}}(G/N) \leq \mathcal{N}_{\mathfrak{F}}(G/N)\).
3. If \(\mathfrak{F} = \mathfrak{Q}\mathfrak{F}\) and \(N \leq \mathcal{N}_{\mathfrak{F}}(G)\), then \(\mathcal{N}_{\mathfrak{F}}(G/N) = \mathcal{N}_{\mathfrak{F}}(G/N)\).
4. If \(\mathfrak{F} = \mathfrak{Q}\mathfrak{F}\) and \(N \leq \mathcal{N}_{\mathfrak{F}}(G)\), then \(\mathcal{N}_{\mathfrak{F}}(G/N) = \mathcal{N}_{\mathfrak{F}}(G/N)\).
5. If \(\mathfrak{F} = \mathfrak{Q}\mathfrak{F}\), then \(\mathcal{N}_{\mathfrak{F}}(G/N) = \bigcap \{N \mid N \leq G, \mathcal{N}_{\mathfrak{F}}(G/N) = 1\}\).

Proof. Statements (1)-(3) directly follow from Lemmas 2.3 and 2.4.

4. By definition and (3), we have that \(\mathcal{N}_{\mathfrak{F}}(G/N)/(\mathcal{N}_{\mathfrak{F}}(G/N)/N) \leq \mathcal{N}_{\mathfrak{F}}(G/N)/(\mathcal{N}_{\mathfrak{F}}(G/N)/N)\) = 1. Therefore, \(\mathcal{N}_{\mathfrak{F}}(G/N) = \mathcal{N}_{\mathfrak{F}}(G/N)/N\).

5. By definition, \(\mathcal{N}_{\mathfrak{F}}(G/N)/\mathcal{N}_{\mathfrak{F}}(G/N) = 1\). On the other hand, if \(N \trianglelefteq G\) such that \(\mathcal{N}_{\mathfrak{F}}(G/N) = 1\), then \(\mathcal{N}_{\mathfrak{F}}(G/N) = 1\). Hence by (3), \(\mathcal{N}_{\mathfrak{F}}(G) \leq N\). Therefore, we have that \(\mathcal{N}_{\mathfrak{F}}(G) = \bigcap \{N \mid N \leq G, \mathcal{N}_{\mathfrak{F}}(G/N) = 1\}\).

Lemma 2.6. Let \(\mathfrak{F}\) be a Fitting class and \(\mathfrak{G}\) a formation such that \(\mathfrak{G} \subseteq \mathfrak{S}\). Suppose that \(G_1\) and \(G_2\) are groups with \(|G_1|, |G_2| = 1\). Then \(\mathcal{N}_{\mathfrak{G}}(G_1 \times G_2) = \mathcal{N}_{\mathfrak{G}}(G_1) \times \mathcal{N}_{\mathfrak{G}}(G_2)\) and \(\mathcal{N}_{\mathfrak{G}}(G_1 \times G_2) = \mathcal{N}_{\mathfrak{G}}(G_1) \times \mathcal{N}_{\mathfrak{G}}(G_2)\).

Proof. We only need to prove that \(\mathcal{N}_{\mathfrak{G}}(G_1 \times G_2) = \mathcal{N}_{\mathfrak{G}}(G_1) \times \mathcal{N}_{\mathfrak{G}}(G_2)\). Let \(G = G_1 \times G_2\). Since \(|G_1|, |G_2| = 1\), for every subgroup \(H\) of \(G\), we have that \(H = (H \cap G_1) \times (H \cap G_2)\).

By [M] Chap. IV, Theorem 1.18, \(H^\delta = (H \cap G_1)^\delta \times (H \cap G_2)^\delta\). Then it is easy to see that \(G\delta = (G_1)\delta \times (G_2)\delta\), and so \(H^\delta G\delta = (H \cap G_1)^\delta (G_1)\delta \times (H \cap G_2)^\delta (G_2)\delta\). This implies that \(G\delta = \mathcal{N}_{G}(H^\delta G_\delta) = G_\delta((H \cap G_1)(G_1)\delta \times (H \cap G_2)(G_2)\delta)\). Hence \(\mathcal{N}_{\mathfrak{G}}(G) = \mathcal{N}_{G}(H^\delta G_\delta) = \mathcal{N}_{G}(H \cap G_1)^\delta (G_1)\delta \times \mathcal{N}_{G}(H \cap G_2)^\delta (G_2)\delta) = \mathcal{N}_{\mathfrak{G}}(G_1) \times \mathcal{N}_{\mathfrak{G}}(G_2)\).

Lemma 2.7. Let \(\mathfrak{G}\) be a formation. Then \(\mathfrak{G}\) satisfies the \(\pi\)-boundary condition (I) if and only if \(\text{Crit}(\mathfrak{G}) \subseteq \mathfrak{S}\).

Proof. The necessity is evident. So we only need to prove the sufficiency. Suppose that \(\text{Crit}(\mathfrak{G}) \subseteq \mathfrak{S}\). Let \(G \in \text{Crit}(\mathfrak{G})\). If \(G^\delta \not\leq \Phi(G)\), then there is nothing to prove. We may, therefore, assume that \(G^\delta \not\leq \Phi(G)\). Let \(G^\delta/L\) be a \(G\)-chief factor. Clearly, \(G^\delta/L \in \mathfrak{S}\).

If \(L \not\leq \Phi(G)\), then \(G\) has a maximal subgroup \(M\) such that \(G = LM\). Since \(M \in \mathfrak{G}\), \(G/L \cong M/L \cap M \in \mathfrak{G}\), and so \(G^\delta \leq L\), which is absurd. Hence \(L \leq \Phi(G)\). This implies
that $L = G^\delta \cap \Phi(G)$. Since $G^\delta \Phi(G)/\Phi(G) \cong G^\delta /G^\delta \cap \Phi(G) \in \mathfrak{N}_\pi$, we have that $G^\delta \in \mathfrak{N}_\pi$ by [4, Lemma 3.1]. This shows that $G \in \mathfrak{N}_\pi \circ \mathfrak{F}$, and thus $\text{Crit}_G(\mathfrak{F}) \subseteq \mathfrak{N}_\pi \circ \mathfrak{F}$.

Lemma 2.8. Let \mathfrak{F} be a saturated formation and $\pi \subseteq \pi(\mathfrak{F})$. Suppose that $H \leq G$ and $N \leq G$. Then:

1. If $N \leq Z_{\pi(\mathfrak{F})}(G)$, then $Z_{\pi(\mathfrak{F})}(G/N) = Z_{\pi(\mathfrak{F})}(G)/N$.
2. If $\pi(\mathfrak{F}) \cap G \leq \pi(\mathfrak{F}) \cap N \leq \pi(\mathfrak{F})$.
3. If $\mathfrak{F} = \mathfrak{F}_0$ (resp. $\mathfrak{F} = \mathfrak{F}_n$), then $Z_{\pi(\mathfrak{F})}(G) \cap H \leq Z_{\pi(\mathfrak{F})}(H)$ (resp. $Z_{\pi(\mathfrak{F})}(G) \cap N \leq Z_{\pi(\mathfrak{F})}(N)$).
4. If $\mathfrak{G}_{\pi'} \circ \mathfrak{F} = \mathfrak{F}$ and $G/Z_{\pi(\mathfrak{F})}(G) \in \mathfrak{F}$, then $G \in \mathfrak{F}$.
5. If $\mathfrak{F} = \mathfrak{F}_0$ (resp. $\mathfrak{F} = \mathfrak{F}_n$), $\mathfrak{G}_{\pi'} \circ \mathfrak{F} = \mathfrak{F}$ and $H \in \mathfrak{F}$ (resp. $N \in \mathfrak{F}$), then $HZ_{\pi(\mathfrak{F})}(G) \in \mathfrak{F}$ (resp. $NZ_{\pi(\mathfrak{F})}(G) \in \mathfrak{F}$).
6. If $\pi(\mathfrak{F}) \cap G \leq \pi(\mathfrak{F}) \cap N \leq \pi(\mathfrak{F})$.
7. If $\mathfrak{F} = \mathfrak{F}_n$, then $Z_{\pi(\mathfrak{F})}(G) \in \mathfrak{G}_{\pi'} \circ \mathfrak{F}$.

Proof. Statement (1) is evident by definition.

Statements (2)-(5) were proved in [16, Lemma 2.2].

(6) Let $\mathfrak{F} = LF(F)$, where F is the canonical local definition of \mathfrak{F}. Then by [11, Chap. IV, Theorem 3.13], $\mathfrak{G}_{\pi'} \circ \mathfrak{F} = LF(H)$, where $H(p) = F(p)$ for all $p \in \pi$ and $H(p) = \mathfrak{G}_{\pi'} \circ \mathfrak{F}$ for all $p \in \pi'$. Then by definition, it is easy to see that $Z_{\pi(\mathfrak{F})}(G) = Z_{\pi(\mathfrak{G}_{\pi'}, \mathfrak{F}_n)}(G)$.

Statement (7) follows from (5) and (6).

Remark 2.9. Note that there exist several minor mistakes in [16]. In [16, Lemmas 2.2(6) and 2.2(7)] and [16, Lemma 2.4(g)], “$\mathfrak{G}_{\pi'} \circ \mathfrak{F} = \mathfrak{F}$” should be corrected as “$\mathfrak{G}_{\pi'} \circ \mathfrak{F} = \mathfrak{F}'$”; and in [16, Lemma 2.2(5)], “$Z_{\pi(\mathfrak{F})}(H) \cap A$” should be corrected as “$Z_{\pi(\mathfrak{F})}(A) \cap H$”.

Lemma 2.10. [27, Lemma 2.5] Let $\mathfrak{F} = LF(F)$ be a saturated formation, where F is the canonical local definition of \mathfrak{F}, and E a normal p-subgroup of G. If $E \leq Z_{\mathfrak{F}}(G)$, then $G/C_G(E) \in F(p)$.

Lemma 2.11. Let \mathfrak{F} be a formation and $\mathfrak{B} = \mathfrak{N}_\pi \circ \mathfrak{F}$. Then:

1. $\mathfrak{B} = LF(b)$ with $b(p) = \mathfrak{F}$ for all $p \in \pi$ and $b(p) = \mathfrak{N}_\pi \circ \mathfrak{F}$ for all $p \in \pi'$.
2. The canonical local definition B of \mathfrak{B} can be defined as follows: $B(p) = \mathfrak{G}_p \circ \mathfrak{F}$ for all $p \in \pi$ and $B(p) = \mathfrak{N}_\pi \circ \mathfrak{F}$ for all $p \in \pi'$.

Proof. Statement (1) directly follows from [25, Lemma 1], and Statement (2) follows from [11, Chap. IV, Lemma 3.13].

Lemma 2.12. Let \mathfrak{F} be a formation. Then:

1. $Z_{\pi(\mathfrak{F})}(G) = 1$ if and only if $C_G(G^\mathfrak{F}) = 1$ and $O_{\pi'}(G) = 1$.
2. $Z_{\pi(\mathfrak{F})}(G) \cap G^\mathfrak{F} = Z_{\pi(\mathfrak{F})}(G^\mathfrak{F})$.
3. $Z_{\pi(\mathfrak{F})}(G)/Z_{\pi(\mathfrak{F})}(G^\mathfrak{F}) = Z_{\pi(\mathfrak{F})}(G/Z_{\pi(\mathfrak{F})}(G^\mathfrak{F}))$.

Proof. (1) Suppose that $C_G(G^\mathfrak{F}) = 1$ and $O_{\pi'}(G) = 1$. If $Z_{\pi(\mathfrak{F})}(G) > 1$, then let N be a minimal normal subgroup of G contained in $Z_{\pi(\mathfrak{F})}(G)$. Clearly, N is not a π'-group. Then by Lemma 2.11(1), we have that $G/C_G(N) \in \mathfrak{F}$, and so $N \leq C_G(G^\mathfrak{F}) = 1$, a contradiction.
Thus \(Z_{\pi(p)}(G) = 1 \). Now assume that \(Z_{\pi(p)}(G) = 1 \). Then clearly, \(O_{\pi'}(G) = 1 \). Suppose that \(C_G(G^\pi) > 1 \), and let \(N \) be a minimal normal subgroup of \(G \) contained in \(C_G(G^\pi) \). Then \(G^\pi \leq C_G(N) \) and \(N \) is not a \(\pi'\)-group. Hence by Lemma 2.11(1) again, \(N \leq Z_{\pi(p)}(G) \), which is impossible. Therefore, \(C_G(G^\pi) = 1 \).

(2) Firstly, we prove that \(Z_{\pi(p)}(G^\pi) \leq Z_{\pi(p)}(G) \). If \(Z_{\pi(p)}(G) > 1 \), then by induction, \(Z_{\pi(p)}((G/Z_{\pi(p)}(G))(G^\pi)) \leq Z_{\pi(p)}(G/Z_{\pi(p)}(G)) = 1 \). By Lemmas 2.1(1) and 2.8(2), \(Z_{\pi(p)}(G^\pi) \leq Z_{\pi(p)}(G) \). We may, therefore, assume that \(Z_{\pi(p)}(G) = 1 \). Then by (1), \(C_G(G^\pi) = 1 \) and \(O_{\pi'}(G) = 1 \). It follows that \(Z(G^\pi) = 1 \) and \(O_{\pi'}(G^\pi) = 1 \). By (1) again, \(Z_{\pi(p)}(G^\pi) = 1 \). Consequently, \(Z_{\pi(p)}(G^\pi) \leq Z_{\pi(p)}(G) \).

Suppose that \(Z_{\pi(p)}(G^\pi) > 1 \). Then by induction and Lemma 2.1(1), \(Z_{\pi(p)}(G/Z_{\pi(p)}(G^\pi)) \cap (G^\pi/Z_{\pi(p)}(G^\pi)) = Z_{\pi(p)}(G^\pi/Z_{\pi(p)}(G^\pi)) = 1 \). Hence by Lemma 2.8(1), \(Z_{\pi(p)}(G) \cap G^\pi = Z_{\pi(p)}(G^\pi) \). We may, therefore, assume that \(Z_{\pi(p)}(G^\pi) = 1 \). Then by (1), \(Z(G^\pi) = 1 \) and \(O_{\pi'}(G^\pi) = 1 \). If \(Z_{\pi(p)}(G) \cap G^\pi > 1 \), then let \(N \) be a minimal normal subgroup of \(G \) contained in \(Z_{\pi(p)}(G) \cap G^\pi \). Since \(O_{\pi'}(G^\pi) = 1 \), \(N \) is not a \(\pi'\)-group. It follows from Lemma 2.11(1) that \(G/C_G(N) \in \mathfrak{F} \), and so \(N \leq Z(G^\pi) \), a contradiction. Therefore, \(Z_{\pi(p)}(G) \cap G^\pi = 1 \).

(3) If \(Z_{\pi(p)}(G^\pi) > 1 \), then by induction, \(Z_{\pi(p)}(G/Z_{\pi(p)}(G^\pi)) = Z_{\pi\pi}(G/Z_{\pi(p)}(G^\pi)) \). Hence by (2) and Lemma 2.8(1), \(Z_{\pi(p)}(G)/Z_{\pi(p)}(G^\pi) = Z_{\pi\pi}(G/Z_{\pi(p)}(G^\pi)) \). We may, therefore, assume that \(Z_{\pi(p)}(G^\pi) = 1 \). Then by (2), \(Z_{\pi(p)}(G) \cap G^\pi = 1 \), and so \(Z_{\pi(p)}(G) \leq C_G(G^\pi) \). By [11] Chap. IV, Theorem 6.13, \(C_G(G^\pi) = Z_{\pi\pi}(G) \leq Z_{\pi\pi}(G) \leq Z_{\pi(p)}(G) \). This implies that \(Z_{\pi(p)}(G) = Z_{\pi\pi}(G) \).

Lemma 2.13. [27] Lemma 2.10] Let \(\mathfrak{F} = LF(F) \) be a saturated formation with \(p \in \pi(\mathfrak{F}) \), where \(F \) is the canonical local definition of \(\mathfrak{F} \). Suppose that \(G \) is a group of minimal order in the set of all groups \(G \in \text{Crit}_S(F(p)) \) and \(G \notin \mathfrak{F} \). Then \(G^\pi \) is the unique minimal normal subgroup of \(G \) and \(O_{\pi}(G) = \Phi(G) = 1 \).

3 Proofs of Main Results

Lemma 3.1. Let \(\mathfrak{H} \) be a saturated Fitting formation such that \(\mathfrak{H}^\pi \subseteq \mathfrak{H} = E\mathfrak{H} \) and \(\mathfrak{F} \) a formation. Then \(N_{\pi\pi}(G) \in \mathfrak{H} \cap \mathfrak{F} \) if one of the following holds:

(i) \(\mathfrak{F} = S_{\pi} \mathfrak{F} \) and \(G^{\delta_{\pi\pi\pi}} \in \mathfrak{S}_{\pi} \).

(ii) \(\mathfrak{F} \) satisfies the \(\pi \)-boundary condition (I).

Proof. Assume that the result is false and let \(G \) be a counterexample of minimal order. Note that if the condition (i) holds, then since \(\mathfrak{H} \cap \mathfrak{F} \cap \mathfrak{F} = S_{\pi}(\mathfrak{H} \cap \mathfrak{F} \cap \mathfrak{F}) \), we have that \((N_{\pi\pi\pi}(G))^{\delta_{\pi\pi\pi\pi}} \leq G^{\delta_{\pi\pi\pi\pi}} \in \mathfrak{S}_{\pi} \) by Lemma 2.1(2). Hence the condition (i) holds for \(N_{\pi\pi\pi}(G) \) when the condition (i) holds for \(G \). If \(N_{\pi\pi\pi}(G) < G \), then by the choice of \(G \) and Lemma 2.5(1), \(N_{\pi\pi\pi}(G) = N_{\pi\pi\pi}(N_{\pi\pi\pi}(G)) \in \mathfrak{H} \cap \mathfrak{F} \cap \mathfrak{F} \), a contradiction. We may, therefore, assume that \(N_{\pi\pi\pi}(G) = G \). Let \(N \) be any minimal normal subgroup of \(G \). Then by Lemma 2.1(1), the condition (i) holds for \(G/N \) when the condition (i) holds for \(G \). Hence by the choice of \(G \) and Lemma 2.5(3), \(G/N = N_{\pi\pi\pi}(G/N) \in \mathfrak{H} \cap \mathfrak{F} \cap \mathfrak{F} \). Clearly, \(\mathfrak{H} \cap \mathfrak{F} \cap \mathfrak{F} \) is a saturated
formation by \[11\] Chap. IV, Theorem 4.8]. This implies that N is the unique minimal normal subgroup of G.

If $G_\delta > 1$, then $N \leq G_\delta$. By Lemmas 2.2(3) and 2.2(4), $(G/N)_\delta = G_\delta/N$. Since $G/N \in \mathfrak{H} \circ \mathfrak{N} \circ \mathfrak{F}$, $G/G_\delta \in \mathfrak{N} \circ \mathfrak{F}$, and thus $G \in \mathfrak{H} \circ \mathfrak{N} \circ \mathfrak{F}$, a contradiction. Therefore, $G_\delta = 1$, and so $O_{\pi'}(G) = 1$. If $N \notin \Phi(G)$, then $G \in \mathfrak{H} \circ \mathfrak{N} \circ \mathfrak{F}$, which is impossible. Hence $N \notin \Phi(G)$. It follows that G has a maximal subgroup M such that $N \nsubseteq M$. Since $\mathcal{N}_{\delta, \delta}(G) > 1$ and N is the unique minimal normal subgroup of G, we have that $N \leq \mathcal{N}_{\delta, \delta}(G)$. Then by the definition of $\mathcal{N}_{\delta, \delta}(G)$, $N \leq N_G(M^\delta)$. This induces that $M^\delta \leq G$. Hence $M^\delta = 1$, and so $M \in \mathfrak{F}$. It follows that $G/N \cong M/N \cap M \in \mathfrak{F}$, and thereby $G^\delta \leq N$. Since $1 < G^{G_\delta \circ \rho_\pi \delta} \leq G^\delta \leq N$, $N = G^{G_\delta \circ \rho_\pi \delta} = C^\delta$.

We claim that $N \in \mathfrak{N}$. If the condition (i) holds, then $N \in \mathfrak{S}_\pi$. As $O_{\pi'}(G) = 1$, $N \in \mathfrak{N}$. Now assume that the condition (ii) holds. Then since $G \notin \mathfrak{F}$, we may take a subgroup K of G such that $K \in \text{Crit}_\mathfrak{F}(\mathfrak{F}) \subseteq \mathfrak{N}_\pi \circ \mathfrak{F}$. If $N \notin \mathfrak{N}$, then $C_G(N) = 1$. Since $N \leq \mathcal{N}_{\delta, \delta}(G)$ and $G_\delta = 1$, we have that $N \leq N_G(K^\delta)$, and so $N \cap K^\delta \leq N$. As $K^\delta \in \mathfrak{N}_\pi$ and $O_{\pi'}(G) = 1$, $K^\delta \in \mathfrak{N}$. By \[11\] Chap. A, Proposition 4.13(b)], $N \cap K^\delta = 1$. It follows that $K^\delta \leq C_G(N) = 1$, and thus $K \in \mathfrak{F}$, a contradiction. Hence $N \in \mathfrak{N}$. Therefore, our claim holds. This induces that $G \in \mathfrak{N} \circ \mathfrak{F} \subseteq \mathfrak{F} \circ \mathfrak{N} \circ \mathfrak{F}$. The final contradiction completes the proof.

Proof of Theorem A. It is obvious that (1) implies (2) and (2) implies (3). Suppose that (3) holds, that is, $G/\mathcal{N}_{\delta, \delta}^\infty(G) \in \mathfrak{H} \circ \mathfrak{N} \circ \mathfrak{F}$. If $\mathcal{N}_{\delta, \delta}(G/N) = 1$ for some proper normal subgroup N of G, then by Lemma 2.5(5), $\mathcal{N}_{\delta, \delta}^\infty(G) \leq N$, and so $G/N \in \mathfrak{H} \circ \mathfrak{N} \circ \mathfrak{F}$. Hence by Lemma 2.3(4), either $G = N$ or $\mathcal{N}_{\delta, \delta}(G/N) > 1$, a contradiction. This induces that (3) implies (4). Now assume that (4) holds. Then since $\mathcal{N}_{\delta, \delta}(G/\mathcal{N}_{\delta, \delta}^\infty(G)) = 1$, we have that $G = \mathcal{N}_{\delta, \delta}^\infty(G)$. Hence (4) implies (5). Finally, by Lemma 3.1, we get that (5) implies (1). This finishes the proof of the theorem.

Since $\mathfrak{N}_\pi = \mathfrak{S}_\pi \circ \mathfrak{N} = \mathfrak{S}_\pi \circ \mathfrak{N}$, the next corollary directly follows from Theorem A, which is also a generalization of \[29\] Theorem A] and \[29\] Theorem B].

Corollary 3.2. Let \mathfrak{F} be a formation such that $\mathfrak{F} = \mathfrak{S}_\pi \circ \mathfrak{F}$. Suppose that one of the following holds:

(i) $G \in \mathfrak{S}_\pi \circ \mathfrak{F}$.

(ii) \mathfrak{F} satisfies the π-boundary condition (I).

Then the following statements are equivalent:

(1) $G \in \mathfrak{N}_\pi \circ \mathfrak{F}$.

(2) $G/\mathcal{N}_{\pi, \delta}^\infty(G) \in \mathfrak{N}_\pi \circ \mathfrak{F}$.

(3) $G/\mathcal{N}_{\pi, \delta}^\infty(G) \in \mathfrak{N}_\pi \circ \mathfrak{F}$.

(4) $\mathcal{N}_{\pi, \delta}^\infty(G/N) > 1$ for every proper normal subgroup N of G.

(5) $G = \mathcal{N}_{\pi, \delta}^\infty(G)$.

In the sequel of this section, we restrict our attention to $\pi \mathfrak{F}$-norms.
Lemma 3.3. Let \(\mathfrak{F} \) be a formation such that \(\mathfrak{F} = S\mathfrak{F} \). Then \(Z_{\pi(\mathfrak{G})}(G) \leq N_{\pi(\mathfrak{G})}^\infty(G) \).

Proof. If \(N_{\pi(\mathfrak{G})}(G) > 1 \), then by induction, \(Z_{\pi(\mathfrak{G})}(G/N_{\pi(\mathfrak{G})}^\infty(G)) \leq N_{\pi(\mathfrak{G})}^\infty(G/N_{\pi(\mathfrak{G})}^\infty(G)) = 1 \). By Lemma 2.8(2), \(N_{\pi(\mathfrak{G})}(G)N_{\pi(\mathfrak{G})}^\infty(G)/N_{\pi(\mathfrak{G})}^\infty(G) = 1 \), and so \(Z_{\pi(\mathfrak{G})}(G) \leq N_{\pi(\mathfrak{G})}^\infty(G) \). Hence we may assume that \(N_{\pi(\mathfrak{G})}(G) = 1 \). Since \(\mathfrak{F} = S\mathfrak{F} \), \(H^\mathfrak{F} \leq G^\mathfrak{F} \) for every subgroup \(H \) of \(G \) by Lemma 2.1(2), and thereby \(C_G(G^\mathfrak{F})O_{\pi}(G) \leq N_G(H^\mathfrak{F}O_{\pi}(G)) \). This implies that \(C_G(G^\mathfrak{F}) = 1 \) and \(O_{\pi}(G) = 1 \). Then by Lemma 2.12(1), \(1 = Z_{\pi(\mathfrak{G})}(G) \leq N_{\pi(\mathfrak{G})}^\infty(G) \).

Proofs of Theorem B(1) and Theorem D. We need to prove that if either \(G \in \mathfrak{S}_\pi \circ \mathfrak{F} \) or \(\mathfrak{F} \) satisfies the \(\pi \)-boundary condition (II), then \(N_{\pi(\mathfrak{G})}^\infty(G) = Z_{\pi(\mathfrak{G})}(G) \). Suppose that the result is false and let \(L \) be a counterexample of minimal order. By Lemma 3.3, \(Z_{\pi(\mathfrak{G})}(L) \leq N_{\pi(\mathfrak{G})}^\infty(L) \). We may, therefore, assume that \(N_{\pi(\mathfrak{G})}(L) > 1 \). If \(N_{\pi(\mathfrak{G})}(L) > 1 \), then by the choice of \(L \) and Lemma 2.8(1), \(N_{\pi(\mathfrak{G})}^\infty(L/Z_{\pi(\mathfrak{G})}(L)) = Z_{\pi(\mathfrak{G})}(L/Z_{\pi(\mathfrak{G})}(L)) = 1 \). Hence by Lemma 2.5(4), \(N_{\pi(\mathfrak{G})}^\infty(L) = Z_{\pi(\mathfrak{G})}(L) \), a contradiction. Therefore, \(Z_{\pi(\mathfrak{G})}(L) = 1 \), and thereby \(O_{\pi}(L) = 1 \).

Now let \(N \) be any minimal normal subgroup of \(L \) contained in \(N_{\pi(\mathfrak{G})}(L) \). If \(L \) has a minimal normal subgroup \(R \) which is different from \(N \), then by the choice of \(L \), \(N_{\pi(\mathfrak{G})}^\infty(L/R) = Z_{\pi(\mathfrak{G})}(L/R) \). It follows from Lemma 2.5(3) that \(NR/R \leq N_{\pi(\mathfrak{G})}^\infty(L/R) = Z_{\pi(\mathfrak{G})}(L/R) \). By \(L \)-isomorphism \(N \cong NR/R \), we have that \(N \leq Z_{\pi(\mathfrak{G})}(L) \), which is absurd. Thus \(N \) is the unique minimal normal subgroup of \(L \). If \(N \not\leq \phi(L) \), then \(L \) has a maximal subgroup \(M \) such that \(N \not\leq M \). Since \(N \leq N_{\pi(\mathfrak{G})}(L) \), \(N \leq N_{\pi(\mathfrak{G})}(L) \in \mathfrak{F} \). Note that \(\mathfrak{F} \) satisfies the \(\pi \)-boundary condition (I) if \(\mathfrak{F} \) satisfies the \(\pi \)-boundary condition (II). By Corollary 3.2, we have that \(L \in \mathfrak{N}_\pi \circ \mathfrak{F} \). This induces that \(L = Z_{\pi(\mathfrak{G})}(L) = Z_{\pi(\mathfrak{G})}(L) \) by Lemma 2.8(6), a contradiction. Hence \(N \not\leq \phi(L) \), and so \(N \) is an elementary abelian \(p \)-group with \(p \in \pi \). Let \(M \) be any maximal subgroup of \(L \). By the choice of \(L \), \(N_{\pi(\mathfrak{G})}^\infty(M) = Z_{\pi(\mathfrak{G})}(M) \). Then by Lemma 2.5(2), \(N \leq N_{\pi(\mathfrak{G})}^\infty(M) \cap M \leq N_{\pi(\mathfrak{G})}^\infty(M) = Z_{\pi(\mathfrak{G})}(M) \). Thus \(N \leq Z_{\pi(\mathfrak{G})}(M) \). By Lemmas 2.10 and 2.11(2), \(M/C_M(N) \in \mathfrak{S}_p \circ \mathfrak{F} \). If \(C_L(N) \not\leq M \), then \(L = C_L(N) \), and so \(L/C_L(N) \cong M/C_M(N) \in \mathfrak{S}_p \circ \mathfrak{F} \). This shows that \(N \leq Z_{\pi(\mathfrak{G})}(L) \) by Lemma 2.11(2), which is impossible. Hence \(C_L(N) \leq M \), and thereby \(C_L(N) \leq \phi(L) \). Since \(N \) is the unique minimal normal subgroup of \(L \), \(\phi(L) \) is a \(p \)-subgroup of \(L \). Therefore, \(C_L(N) \) is also a \(p \)-subgroup of \(L \). This implies that \(M \in \mathfrak{S}_p \circ \mathfrak{F} \). If \(L \in \mathfrak{S}_p \circ \mathfrak{F} \), then \(L \in \mathfrak{N}_\pi \circ \mathfrak{F} \), a contradiction as above. Hence \(L \in \text{Crit}_\mathfrak{F}(\mathfrak{S}_p \circ \mathfrak{F}) \). Then, in both cases, \(L \in \mathfrak{S}_\pi \circ \mathfrak{F} \).

Let \(F_p(L) \) be the \(p \)-Fitting subgroup of \(L \), that is, the \(\mathfrak{N}_p \)-radical of \(L \). As \(N \) is the unique minimal normal subgroup of \(L \), we have that \(O_{\pi}(L) = 1 \), and so \(F_p(L) = O_p(L) \). By [11 Ch. A, Theorem 13.8(4)], \(F_p(L) \leq C_L(N) \leq \phi(L) \). This induces that \(F_p(L) = \phi(L) \). Since \(L \in \mathfrak{S}_\pi \circ \mathfrak{F} \), \(L^\mathfrak{F} \in \mathfrak{S}_\pi \). If \(L^\mathfrak{F} \not\leq \phi(L) \), then \(L \in \mathfrak{S}_p \circ \mathfrak{F} \), which is absurd. Thus \(L^\mathfrak{F} \not\leq \phi(L) \). Let \(A/\phi(L) \) be an \(L \)-chief factor contained in \(L^\mathfrak{F}\phi(L)/\phi(L) \). Then \(A/\phi(L) \in \mathfrak{N}_\pi \), and so \(A/\phi(L) \in \mathfrak{N}_p \). Hence by [14 Lemma 3.1], we have that \(A \in \mathfrak{N}_p \). This implies that \(A \leq F_p(L) = \phi(L) \), a contradiction. The proof is thus completed.
Proofs of Theorems B(2) and B(3). (2) Suppose that \(N_{\pi \delta}^\infty(G) = Z_{\pi(\delta_0 \delta)}(G) \) holds for every group \(G \). Obviously, for any group \(G \in \text{Crit}_{G} \), \(G = N_{\pi \delta}^\infty(G) = N_{\pi \delta}^\infty(G) \). It follows that \(G = Z_{\pi(\delta_0 \delta)}(G) \), and so \(G \in \mathfrak{N}_\pi \circ \mathfrak{F} \) by Lemma 2.8(7). Hence \(\mathfrak{F} \) satisfies the \(\pi \)-boundary condition (I).

(3) The necessity is obvious. So we only need to prove the sufficiency. For any group \(G \in \text{Crit}_{G} \) and any \(p \in \pi \), either \(G \in \mathfrak{G}_\pi \circ \mathfrak{F} \) or \(G \in \text{Crit}_{G}(\mathfrak{G}_\pi \circ \mathfrak{F}) \). In the former case, \(G \in \mathfrak{N}_\pi \circ \mathfrak{F} \) by Lemma 2.7. In the latter case, a same discussion as in the proof of (2) shows that \(G \in \mathfrak{N}_\pi \circ \mathfrak{F} \). Therefore, \(\mathfrak{F} \) satisfies the \(\pi \)-boundary condition (I). The rest of the proof is similar to the proofs of Theorem B(1) and Theorem D.

Corollary 3.4. Let \(\mathfrak{F} \) be a formation such that \(\mathfrak{F} = \mathfrak{S}_\mathfrak{F} \). Suppose that one of the following holds:

(i) \(G \in \mathfrak{G}_\pi \circ \mathfrak{F} \).

(ii) \(\mathfrak{F} \) satisfies the \(\pi \)-boundary condition (II).

Then \(N_{\pi \delta}^\infty(G)/Z_{\pi(\delta)}(G) = N_{\pi \delta}^\infty(G)/Z_{\pi(\delta_0 \delta)}(G) \). In particular, if \(\mathfrak{F} \) is saturated, then \(N_{\pi \delta}^\infty(G)/Z_{\pi(\delta)}(G) = N_{\pi \delta}^\infty(G)/Z_{\pi(\delta_0 \delta)}(G) \).

Proof. Obviously, \(Z_{\pi(\delta_0 \delta)}(G) \) is 1. By induction, Lemma 2.5(4) and Lemma 2.8(1), we may assume that \(Z_{\pi(\delta)}(G) = 1 \). Then by Lemma 2.12(2), \(Z_{\pi(\delta_0 \delta)}(G) \cap G = 1 \), and thus \(Z_{\pi(\delta_0 \delta)}(G) \leq C_G(G) \). Since \(\mathfrak{F} = \mathfrak{S}_\mathfrak{F} \), \(H \leq G \) for every subgroup \(H \) of \(G \), and so \(C_G(G) \leq N_{\pi \delta}^\infty(G) \). Hence \(Z_{\pi(\delta_0 \delta)}(G) \leq N_{\pi \delta}^\infty(G) \).

Lemma 3.5. Let \(\mathfrak{F} \) be a formation such that \(\mathfrak{F} = \mathfrak{S}_\mathfrak{F} \). Then \(N_{\pi \delta}^\infty(G) \leq \text{Int}_{\pi \delta}(G) \) if one of the following holds:

(i) \(G \in \mathfrak{G}_\pi \circ \mathfrak{F} \).

(ii) \(\mathfrak{F} \) satisfies the \(\pi \)-boundary condition (I).

Proof. Let \(H \) be any subgroup of \(G \) such that \(H \in \mathfrak{N}_\pi \circ \mathfrak{F} \). Then we only need to prove that \(HN_{\pi \delta}^\infty(G) \in \mathfrak{N}_\pi \circ \mathfrak{F} \). By Lemma 2.5(2), we have that \(N_{\pi \delta}^\infty(G) \leq N_{\pi \delta}^\infty(HN_{\pi \delta}^\infty(G)) \). It follows that \(HN_{\pi \delta}^\infty(G)/N_{\pi \delta}^\infty(HN_{\pi \delta}^\infty(G)) \cong (HN_{\pi \delta}^\infty(G)/N_{\pi \delta}^\infty(G))/N_{\pi \delta}^\infty(G)(HN_{\pi \delta}^\infty(G))/N_{\pi \delta}^\infty(G) \in \mathfrak{N}_\pi \circ \mathfrak{F} \).

Proof of Theorem C. By Lemma 2.11(2), the canonical local definition \(F \) of \(\mathfrak{N}_\pi \circ \mathfrak{F} \) can be defined as follows: \(F(p) = \mathfrak{G}_p \circ \mathfrak{F} \) for all \(p \in \pi \); \(F(p) = \mathfrak{N}_\pi \circ \mathfrak{F} \) for all \(p \in \pi' \). Note that \(Z_{\pi(\delta_0 \delta)}(G) = Z_{\pi(\delta)}(G) \) by Lemma 2.8(6). Then by [13, Theorem A], (2) is equivalent to (3).

Next we show that (1) is equivalent to (3). Suppose that (3) holds, that is, \(\mathfrak{F} \) satisfies the \(\pi \)-boundary condition (III). Then clearly, \(\mathfrak{F} \) satisfies the \(\pi \)-boundary condition (I). Therefore, for every group \(G \), we have that \(N_{\pi \delta}^\infty(G) \leq \text{Int}_{\pi \delta}(G) \) by Lemma 3.5. Since (2) is equivalent to (3), \(\text{Int}_{\pi \delta}(G) = Z_{\pi(\delta_0 \delta)}(G) \) by Lemma 3.3. Consequently,
\(\mathcal{N}_\pi^\infty(G) = \text{Int}_{\mathfrak{N}_\pi}(G) \) holds for every group \(G \), and so (3) implies (1).

Now suppose that \(\mathcal{N}_\pi^\infty(G) = \text{Int}_{\mathfrak{N}_\pi}(G) \) holds for every group \(G \), and there exists a prime \(p \in \pi \) such that \(\text{Crit}_\pi(\mathfrak{G}_p \circ \mathfrak{F}) \not\subseteq \mathfrak{N}_\pi \circ \mathfrak{F} \). Let \(L \) be a group of minimal order in the set of all groups \(G \in \text{Crit}_\pi(\mathfrak{G}_p \circ \mathfrak{F}) \setminus (\mathfrak{N}_\pi \circ \mathfrak{F}) \). Then by Lemma 2.13, \(L^\mathfrak{N}_\pi \circ \mathfrak{F} \) is the unique minimal normal subgroup of \(L \) and \(O_p(L) = \Phi(L) = 1 \). Hence by [11] Chap. B, Theorem 10.3], there exists a simple \(\mathbb{F}_pL \)-module \(P \) which is faithful for \(L \). Let \(V = P \rtimes L \). For any subgroup \(H \) of \(V \) such that \(H \in \mathfrak{N}_\pi \circ \mathfrak{F} \), if \(PH = V \), then \(P \cap H \leq V \). This implies that \(P \cap H = 1 \) for \(P \) is a simple \(\mathbb{F}_pL \)-module, and so \(H \not\leq \mathfrak{N}_\pi \circ \mathfrak{F} \), a contradiction. Hence \(PH < V \). Then clearly, \(PH \cap L < L \), and thus \(PH/P = P(PH \cap L)/P \cong PH \cap L \in \mathfrak{G}_p \circ \mathfrak{F} \). It follows that \(PH \in \mathfrak{G}_p \circ \mathfrak{F} \subseteq \mathfrak{N}_\pi \circ \mathfrak{F} \). Therefore, \(P \leq \text{Int}_{\mathfrak{N}_\pi}(V) = \mathcal{N}_\pi^\infty(V) \). If \(P \not\leq \mathcal{N}_\pi(\mathfrak{F}) \), then \(P \leq \mathcal{N}_\pi(\mathfrak{F}) \). This induces that \(\mathcal{N}_\pi(\mathfrak{F}) = 1 \). Hence by [11] Chap. B, Theorem 10.3, there exists an \(\mathbb{F}_pL \)-module, and so \(\mathcal{N}_\pi(\mathfrak{F}) \subseteq \mathfrak{N}_\pi \circ \mathfrak{F} \), a contradiction. Hence \(\mathcal{N}_\pi(\mathfrak{F}) = 1 \). Therefore, \(L \in \mathfrak{F} \), a contradiction. This shows that (1) implies (3). Consequently, (1) is equivalent to (3). The theorem is thus proved.

Proof of Theorem E. We can prove the theorem similarly as in the proof of Theorem C by using [16] Theorem 4.22.

Now we give some conditions under which the formations satisfy the \(\mathbb{P} \)-boundary condition (I) (resp. the \(\mathbb{P} \)-boundary condition (II), the \(\mathbb{P} \)-boundary condition (III) in \(\mathfrak{G} \)). Recall that if \(\sigma \) denotes a linear ordering on \(\mathbb{P} \), then a group \(G \) is called a Sylow tower group of complexion (or type) \(\sigma \) if there exists a series of normal subgroups of \(G \): \(1 = G_0 \trianglelefteq G_1 \trianglelefteq \cdots \trianglelefteq G_n = G \) such that \(G_i/G_{i-1} \) is a Sylow \(p_i \)-subgroup of \(G_j/G_{i-1} \) for \(1 \leq i \leq n \), where \(p_1 < p_2 < \cdots < p_n \) is the ordering induced by \(\sigma \) on the distinct prime divisors of \(|G| \). Let \(\mathfrak{S}_\sigma \) denote the class of all Sylow tower groups of complexion \(\sigma \). By [11] Chap. IV, Example 3.4(g)], \(\mathfrak{S}_\pi \) is a saturated formation. Also, a formation \(\mathfrak{F} \) is said to be a \(\mathcal{S} \)-formation (or have the Shemetkov property) if \(\text{Crit}_\mathcal{S}(\mathfrak{F}) \subseteq \text{Crit}_\sigma(\mathfrak{N}) \cup \{ \text{cyclic groups of prime order} \} \). Clearly, \(\mathfrak{N}_\pi \) is a \(\mathcal{S} \)-formation. For details and more examples, see [15] Section 3.5. Moreover, a group \(G \) is said to be \(\pi \)-closed if \(G \) has a normal Hall \(\pi \)-subgroup. Let \(\mathfrak{C}_\pi \) denote the formation of all \(\pi \)-closed groups.

Proposition 3.6. A formation \(\mathfrak{F} \) satisfies the \(\mathbb{P} \)-boundary condition (I) if one of the following holds:

1. \(\mathfrak{F} \subseteq \mathfrak{S}_\sigma \).
2. \(\mathfrak{F} \) is a \(\mathcal{S} \)-formation.
3. \(\mathfrak{F} \subseteq \mathfrak{C}_2 \).
4. \(\mathfrak{F} \subseteq \mathfrak{N}_2 \).

Proof. (1) By [21], Theorem 8], \(\text{Crit}_\mathcal{S}(\mathfrak{S}_\sigma) \subseteq \mathfrak{G} \), and so \(\text{Crit}_\mathcal{S}(\mathfrak{F}) \subseteq \mathfrak{S}_\sigma \cup \text{Crit}_\mathcal{S}(\mathfrak{S}_\sigma) \subseteq \mathfrak{G} \).

Statement (2) is clear by definition.

(3) Note that \(\mathfrak{C}_2 \) is a \(\mathcal{S} \)-formation by [28], Remark]. Then by Feit-Thompson Theorem,
Proposition 3.7. A formation \(\mathfrak{F} \) satisfies the \(\mathbb{P} \)-boundary condition (II) if one of the following holds:

(1) \(\mathfrak{F} \subseteq \mathfrak{N} \).

(2) \(\mathfrak{F} \subseteq \mathfrak{S}_2 \) (equivalently, \(2 \notin \pi(\mathfrak{F}) \)).

Proof. (1) By [17, Chap. IV, Satz 5.4], for any \(p \in \mathbb{P} \), \(\text{Crit}_s(\mathfrak{S}_p \circ \mathfrak{N}) = \text{Crit}_s(\mathfrak{N}_p) \subseteq \text{crit}_s(\mathfrak{N}) \subseteq \mathfrak{S} \). Hence \(\text{Crit}_s(\mathfrak{S}_p \circ \mathfrak{N}) \subseteq \mathfrak{N}_p \cup \text{Crit}_s(\mathfrak{N}_p) \subseteq \mathfrak{S} \).

(2) Note that by [28, Remark], \(\text{Crit}_s(\mathfrak{S}_2 \circ \mathfrak{S}_2) = \text{Crit}_s(\mathfrak{S}_2) \subseteq \mathfrak{S} \), and for any odd prime \(p \), \(\text{Crit}_s(\mathfrak{S}_p \circ \mathfrak{S}_2) = \text{Crit}_s(\mathfrak{S}_2) = \{ \text{cyclic group of order } 2 \} \subseteq \mathfrak{S} \). Hence for any \(p \in \mathbb{P} \), \(\text{Crit}_s(\mathfrak{S}_p \circ \mathfrak{F}) \subseteq (\mathfrak{S}_p \circ \mathfrak{S}_2) \cup \text{Crit}_s(\mathfrak{S}_p \circ \mathfrak{S}_2) \subseteq \mathfrak{S} \).

Recall that a group \(G \) is called \(p \)-decomposable if there exists a subgroup \(H \) of \(G \) such that \(G = P \times H \) for some Sylow \(p \)-subgroup \(P \) of \(G \). Also, we use \(\mathfrak{N}_r \) to denote the class of all groups \(G \) with \(l(G) \leq r \), where \(l(G) \) is the Fitting length of \(G \).

Proposition 3.8. (1) Let \(\mathfrak{F} \) be a formation with \(\pi(\mathfrak{F}) = \mathbb{P} \) such that \(\mathfrak{F} \subseteq \mathfrak{N} \). Then \(\mathfrak{F} \) satisfies the \(\mathbb{P} \)-boundary condition (III).

(2) Let \(\mathfrak{L} \) be the formation of all \(p \)-decomposable groups. Then \(\mathfrak{N} \circ \mathfrak{L} \) satisfies the \(\mathbb{P} \)-boundary condition (III) in \(\mathfrak{S} \).

(3) Let \(\mathfrak{F} \) be a formation with \(\pi(\mathfrak{F}) = \mathbb{P} \) such that \(\mathfrak{F} \subseteq \mathfrak{N} \). Then \(\mathfrak{N} \circ \mathfrak{F} \) satisfies the \(\mathbb{P} \)-boundary condition (III) in \(\mathfrak{S} \).

Proof. Statement (1) was proved in [16, Proposition 4.9(ii)], and statement (2) follows from [26, Lemma 5.2] and [16, Proposition 4.9(i)].

(3) By [11, Chap. IV, Theorem 1.16], we have that \(\mathfrak{F} = \mathfrak{N} \mathfrak{F} \). It follows from (1) and [16, Proposition 4.9(i)] that \(\mathfrak{N} \circ \mathfrak{F} \) satisfies the \(\mathbb{P} \)-boundary condition (III) in \(\mathfrak{S} \).

4 Applications

In this section, we investigate the structure of groups \(G \) whose minimal subgroups are contained in \(\mathcal{N}_{\pi,\mathfrak{S}}(G) \). Let \(\Psi_p(G) = \langle x | x \in G, o(x) = p \rangle \) if \(p \) is odd, and \(\Psi_2(G) = \langle x | x \in G, o(x) = 2 \rangle \) if the Sylow 2-groups of \(G \) are quaternion-free, otherwise \(\Psi_2(G) = \langle x | x \in G, o(x) = 2 \text{ or } 4 \rangle \).

Lemma 4.1. Suppose that \(\Psi_p(G^{\mathfrak{N}_p}) \leq Z_{\mathfrak{N}_p}(G) \). Then \(G \in \mathfrak{N}_p \).

Proof. By Lemma 2.8(3), for any subgroup \(H \) of \(G \), \(\Psi_p(H^{\mathfrak{N}_p}) \leq H \cap Z_{\mathfrak{N}_p}(G) \leq Z_{\mathfrak{N}_p}(H) \). Then by induction, \(H \in \mathfrak{N}_p \). We may, therefore, assume that \(G \in \text{Crit}_s(\mathfrak{N}_p) \). It follows from [17, Chap. IV, Satz 5.4] that \(G^{\mathfrak{N}_p} \) is a Sylow \(p \)-subgroup of \(G \). By [23, Theorem 1.1], \(G^{\mathfrak{N}_p} \) is a \(G \)-chief factor, and the exponent of \(G^{\mathfrak{N}_p} \) is \(p \) or 4 (when \(p = 2 \) and \(G^{\mathfrak{N}_p} \) is non-abelian). If \(p = 2 \) and \(G^{\mathfrak{N}_2} \) is non-abelian and quaternion-free, then by [30, Theorem...
3.1], G^{n_2} has a characteristic subgroup L of index 2. This induces that $L = \Phi(G^{n_2})$, and so G^{n_2} is cyclic, which is contrary to our assumption. Hence p is odd or $p = 2$ and G^{n_2} is either abelian or not quaternion-free. This implies that $G^{\eta_p} = \Psi_p(G^{\eta_p}) \leq Z_{\eta_p}(G)$, and thereby $G \in \mathcal{N}_p$. The lemma is thus proved.

Lemma 4.2. Let \mathfrak{F} be a saturated formation such that $\mathfrak{F} = \mathcal{S}\mathfrak{F}$ and $\pi \subseteq \pi(\mathfrak{F})$. Suppose that $\Psi_p(G^{\mathfrak{F}}) \leq Z_{\pi^\mathfrak{F}}(G)$ for every $p \in \pi$. Then $G \in \mathcal{S}\mathfrak{F} \circ \mathfrak{F}$.

Proof. Assume that the result is false and let G be a counterexample of minimal order. If $O_\pi'(G) > 1$, then for every $p \in \pi$, $\Psi_p(G^{\mathfrak{F}}O_\pi'(G)) \leq Z_{\pi^\mathfrak{F}}(G)$ by Lemma 2.8(1). Hence by the choice of G, $G/O_\pi'(G) \in \mathcal{S}\mathfrak{F} \circ \mathfrak{F}$, and thereby $G \in \mathcal{S}\mathfrak{F} \circ \mathfrak{F}$, which is impossible. Therefore, $O_\pi'(G) = 1$. Let M be any maximal subgroup of G. Since $M^{\mathfrak{F}} \leq G^{\mathfrak{F}}$ by Lemma 2.1(2), for every $p \in \pi$, $\Psi_p(M^{\mathfrak{F}}) \leq M \cap Z_{\pi^\mathfrak{F}}(G) \leq Z_{\pi^\mathfrak{F}}(M)$ by Lemma 2.8(3). Then by the choice of G, $M \in \mathcal{S}\mathfrak{F} \circ \mathfrak{F}$. We may, therefore, assume that $G \in \text{Crit}_\mathfrak{F}((\mathcal{S}\mathfrak{F} \circ \mathfrak{F}) \mathfrak{F})$.

If $Z_{\pi^\mathfrak{F}}(G) \leq \Phi(G)$, then G has a maximal subgroup M such that $G = Z_{\pi^\mathfrak{F}}(G)M$. It follows that $G/Z_{\pi^\mathfrak{F}}(G) \in \mathcal{S}\mathfrak{F} \circ \mathfrak{F}$. By Lemmas 2.8(4) and 2.8(6), $G \in \mathcal{S}\mathfrak{F} \circ \mathfrak{F}$, a contradiction. Hence $Z_{\pi^\mathfrak{F}}(G) \leq \Phi(G)$ is nilpotent. Since $O_\pi'(G) = 1$, $Z_{\pi^\mathfrak{F}}(G)$ is a π-group. Then it is easy to see that $Z_{\pi^\mathfrak{F}}(G) = Z_{\pi}(G)$. By [23], Chap. IV, Theorem 6.10, for every $p \in \pi$, $\Psi_p(G^{\mathfrak{F}}) \leq Z_{\pi}(G) \cap G^{\mathfrak{F}} \leq Z(G^{\mathfrak{F}})$. It follows from Lemma 4.1 that $G^{\mathfrak{F}} \in \mathcal{N}_\pi$. As $O_\pi'(G) = 1$, we have that $G^{\mathfrak{F}} \in \mathcal{N}_\pi \cap \mathcal{S}\mathfrak{F}$. Since $G \in \text{Crit}_\mathfrak{F}((\mathcal{S}\mathfrak{F} \circ \mathfrak{F}) \mathfrak{F})$ and $\mathfrak{F} = \mathcal{S}\mathfrak{F}$, $G \in \text{Crit}_\mathfrak{F}(\mathfrak{F})$. Then a similar discussion as in the proof of Lemma 4.1 shows that $G^{\mathfrak{F}}$ is a p-group with $p \in \pi$ such that the exponent of $G^{\mathfrak{F}}$ is p or 4 (when $p = 2$ and $G^{\mathfrak{F}}$ is not quaternion-free) by using [23], Theorem 1.1. This implies that $G^{\mathfrak{F}} = \Psi_p(G^{\mathfrak{F}}) \leq Z_{\mathfrak{F}}(G)$, and so $G \in \mathfrak{F}$. The final contradiction ends the proof.

Theorem 4.3. Let \mathfrak{F} be a formation such that $\mathfrak{F} = \mathcal{S}\mathfrak{F}$. Suppose that $\Psi_p(G^{\eta_\mathfrak{F}}) \leq \mathcal{N}_{\pi^\mathfrak{F}}(G)$ for every $p \in \pi$ and one of the following holds:

(i) $G \in \mathcal{S}\mathfrak{F} \circ \mathfrak{F}$.

(ii) \mathfrak{F} satisfies the π-boundary condition (II).

(iii) $2 \in \pi$ and \mathfrak{F} satisfies the $\{2\}$-boundary condition (II).

(iv) $\{2, q\} \subseteq \pi$, where q is an odd prime, and \mathfrak{F} satisfies the $\{2, q\}'$-boundary condition (II).

Then $G \in \mathcal{N}_\pi \circ \mathfrak{F}$.

Proof. If either the condition (i) or the condition (ii) holds, then by Theorem B(1), Theorem D and Lemma 2.8(6), $\Psi_p(G^{\eta_\mathfrak{F}}) \leq \mathcal{N}_{\pi^\mathfrak{F}}(G) = Z_{\pi^\mathfrak{F}}(G) = Z_{\pi^\mathfrak{F}}(G)$ for every $p \in \pi$. Hence in both cases, the theorem follows from Lemma 4.2.

Now suppose that the condition (iii) holds. Then it is easy to see that $\mathcal{N}_{\pi^\mathfrak{F}}(G) \leq \mathcal{N}_{2^\mathfrak{F}}(G)$ by definition, and so $\mathcal{N}_{\pi^\mathfrak{F}}(G) \leq \mathcal{N}_{2^\mathfrak{F}}(G)$. It follows that $\Psi_2(G^{\eta_\mathfrak{F}}) \leq \Psi_2(G^{\eta_\mathfrak{F}}) \leq \mathcal{N}_{\pi^\mathfrak{F}}(G) \leq \mathcal{N}_{2^\mathfrak{F}}(G)$. By applying the condition (iii), $G \in \mathcal{N}_2 \circ \mathfrak{F} \subseteq \mathcal{S} \circ \mathfrak{F}$, and thereby the condition (i) holds. Therefore, $G \in \mathcal{N}_\pi \circ \mathfrak{F}$.

15
Finally, we assume that the condition (iv) holds. Then for every $p \in \{2, q\}'$, $\Psi_p(G^{\pi_{(2,q)'}\circ \mathfrak{F}}) \leq \Psi_p(G^{\mathfrak{F}_{2,q}}} \leq N^\infty_{\mathfrak{F}_2}(G) \leq N^\infty_{\mathfrak{F}_{(2,q)}}(G)$. By applying the condition (ii), $G \in \mathfrak{N}_{(2,q)'} \circ \mathfrak{F} \subseteq \mathfrak{S} \circ \mathfrak{F}$ by Burnside’s p^aq^b-theorem, and so the condition (i) holds. Hence $G \in \mathfrak{N}_\pi \circ \mathfrak{F}$.

The next two corollaries can be regarded as generalizations of [24, Theorem 5.2] and [24, Theorem 5.3], respectively.

Corollary 4.4. Let \mathfrak{F} be a formation such that $\mathfrak{F} = \mathfrak{S}\mathfrak{F}$ and $\mathfrak{F} \subseteq \mathfrak{U}$. Suppose that all cyclic subgroups of G of odd prime order are contained in $N^\infty_{\mathfrak{F}}(G)$. Then:

1. $G \in \mathfrak{S}$.
2. The p-length of G is at most 2 for every odd prime p, and if $\mathfrak{F} \subseteq \mathfrak{U}$, then the p-length of G is at most 1 for every odd prime p.
3. The Fitting length of G is bounded by 4, and if $\mathfrak{F} \subseteq \mathfrak{U}$, then the Fitting length of G is bounded by 3.

Proof. By [17] Chap. IV, Satz 5.4], \mathfrak{N}_2 satisfies the $2'$-boundary condition (II), and so \mathfrak{F} also satisfies the $2'$-boundary condition (II) for $\mathfrak{F} \subseteq \mathfrak{U} \subseteq \mathfrak{N}_2$. Since $\Psi_p(G^{\mathfrak{F}_{2,q}}} \leq N^\infty_{\mathfrak{F}}(G) \leq N^\infty_{\mathfrak{F}_{(2,q)}}(G)$ for every odd prime p, by Theorem 4.3, $G \in \mathfrak{N}_{(2,q)} \circ \mathfrak{F} \subseteq \mathfrak{S}$. Hence for every odd prime p, $G^p \leq G^q \in \mathfrak{N}_{2q} \subseteq \mathfrak{N}_p$, and so the p-length of G is at most 2 for every odd prime p.

It is clear that $G^{2q^2} \leq G^0 \in \mathfrak{N}_{2q^2} \subseteq \mathfrak{N}_2$. This implies that the Fitting length of G is bounded by 4. Now consider that $\mathfrak{F} \subseteq \mathfrak{U}$. The discussion is similar as above.

Corollary 4.5. Let \mathfrak{F} be a formation such that $\mathfrak{F} = \mathfrak{S}\mathfrak{F}$ and $\mathfrak{F} \subseteq \mathfrak{U}$. Suppose that all cyclic subgroups of G of order prime or 4 are contained in $N^\infty_{\mathfrak{F}}(G)$. Then:

1. $G \in \mathfrak{S}$.
2. The p-length of G is at most 2 for every $p \in \mathbb{P}$, and if $\mathfrak{F} \subseteq \mathfrak{U}$, then the p-length of G is at most 1 for every $p \in \mathbb{P}$.
3. The Fitting length of G is bounded by 3, and if $\mathfrak{F} \subseteq \mathfrak{U}$, then the Fitting length of G is bounded by 2.

Proof. The corollary can be proved similarly as in the proof of Corollary 4.4.

Acknowledgments.

The authors are very grateful to the referee for his/her careful reading and helpful comments.

References

[1] R. Baer. Der kern eine charakteristische untergruppe. *Compos. Math.*, 1:254–283, 1934.

[2] R. Baer. Zentrum und kern von gruppen mit elementen unendlicher ordnung. *Compos. Math.*, 2:247–249, 1935.

[3] R. Baer. Norm and hypernorm. *Publ. Math. Debrecen*, 4:347–356, 1956.

[4] A. Ballester-Bolinches and M. D. Pérez-Ramos. On \mathfrak{F}-subnormal subgroups and Frattini-like subgroups of a finite group. *Glasgow Math. J.*, 36:241–247, 1994.
[5] J. C. Beidleman and H. Heineken. A note on intersections of maximal \mathcal{F}-subgroups. *J. Algebra*, 333:120–127, 2011.

[6] J. C. Beidleman, H. Heineken, and M. Newell. Center and norm. *Bull. Austral. Math. Soc.*, 69(3):457–464, 2004.

[7] R. A. Bryce and J. Cossey. The Wielandt subgroup of a finite soluble group. *J. London Math. Soc.*, 40(2):244–256, 1989.

[8] A. R. Camina. The Wielandt length of finite groups. *J. Algebra*, 15:142–148, 1970.

[9] J. Cossey. The Wielandt subgroup of a polycyclic group. *Glasgow Math. J.*, 33(2):231–234, 1991.

[10] K. Doerk. Minimal nicht überauflösbare, endliche gruppen. *Math. Z.*, 91:198–205, 1966.

[11] K. Doerk and T. Hawkes. *Finite Soluble Groups*. Walter de Gruyter, Berlin/New York, 1992.

[12] L. Gong and X. Guo. On the intersection of the normalizers of the nilpotent residuals of all subgroups of a finite group. *Algebra Colloq.*, 20(2):349–360, 2013.

[13] D. Gorenstein. *Finite Simple Groups*. Plenum Press, New York, 1982.

[14] R. L. Griess and P. Schmid. The Frattini module. *Arch. Math.*, 30(1):256–266, 1978.

[15] W. Guo. *The Theory of Classes of Groups*. Kluwer, Dordrecht, 2000.

[16] W. Guo and A. N. Skiba. On the intersection of the \mathcal{F}-maximal subgroups and the generalized \mathcal{F}-hypercentre of a finite group. *J. Algebra*, 366:112–125, 2012.

[17] B. Huppert. *Endliche Gruppen I*. Springer-Verlag, 1968.

[18] W. P. Kappe. Properties of groups related to the second center. *Math. Z.*, 101:356–368, 1967.

[19] S. Li and Z. Shen. On the intersection of the normalizers of derived subgroups of all subgroups of a finite group. *J. Algebra*, 323:1349–1357, 2010.

[20] E. A. Ormerod. Groups of Wielandt length two. *Math. Proc. Camb. Phil. Soc.*, 110(2):229–244, 1991.

[21] J. S. Rose. Finite groups with prescribed Sylow tower subgroups. *Proc. London Math. Soc.*, 16(3):577–589, 1966.

[22] E. Schenkman. On the norm of a group. *Illinois J. Math.*, 4:150–152, 1960.

[23] V. N. Semenchuk. Minimal non \mathcal{F}-groups. *Algebra and Logic*, 18:214–233, 1980.

[24] Z. Shen, W. Shi, and G. Qian. On the norm of the nilpotent residuals of all subgroups of a finite group. *J. Algebra*, 352:290–298, 2012.

[25] A. N. Skiba. The product of formations. *Algebra and Logic*, 22:414–420, 1983.

[26] A. N. Skiba. On the intersection of all maximal \mathcal{F}-subgroups of a finite group. *J. Algebra*, 343:173–182, 2011.

[27] A. N. Skiba. On the \mathcal{F}-hypercentre and the intersection of all \mathcal{F}-maximal subgroups of a finite group. *J. Pure Appl. Algebra*, 216:789–799, 2012.

[28] A. I. Starostin. Minimal groups not possessing a given property. *Mathematical Notes*, 3(1):22–24, 1968.
[29] N. Su and Y. Wang. On the intersection of the normalizers of the F-residuals of subgroups of a finite group. *Algebr. Represent. Theory*. DOI: 10.1007/s10468-013-9407-1.

[30] H. N. Ward. Automorphisms of quaternion-free 2-groups. *Math. Z.*, 112:52–58, 1969.

[31] H. Wielandt. Über der normalisator der subnormalen untergruppen. *Math. Z.*, 69(1):463–465, 1958.