Feasibility of Recycled Concrete in Pavements with Demolished Building Waste in UAE

Priyanka Sunil Sabhnan, Vidya P Mohanan

Abstract—The growing population has increased the demand for residential and commercial buildings. As a result of demolition of these buildings, lot of construction waste is generated. Most of these waste are non-biodegradable. When put into landfills, these waste pollute the land and harm the environment. Therefore, need of recycling these materials and using them is necessary. Concrete aggregates from demolished buildings can be reused to make concrete. However, its strength is immensely affected due to cement paste and mortar attached to it. Experimental research was carried out to determine how strengths of concrete made of natural aggregate, rejected concrete batch aggregate, aggregate from 8 years and 16 years old demolished buildings vary and also the feasibility of each. Different ratios of each type of recycled aggregates were taken along with the natural aggregates to determine how strength varies with change in ratio.

Keywords—recycled concrete aggregate; compressive strength; moisture content; porosity; specific gravity; void ratio

I. INTRODUCTION

A. Concrete

The need to build has been there since pre-historic times. The ideology and methods of past has helped us shape our present. Previously, wood and stones were the materials used for construction. Slowly, methods and techniques evolved. People began using mud and clay to build houses. As time passed, it was understood by people that the material and the way it is used are key factors in order to get a structure which is strong and has a greater lifespan. Romans were the first ones to use concrete as a construction material [5]. Its main advantage is its workability. Its ability to remain workable and strong has made it an incredible versatile material with room for innovation. Today, concrete is produced in large quantities. Technology has helped us decrease time and cost for construction as large amount of concrete can be produced and placed at once without compromising the strength of the structure.

B. Constituents of concrete

Concrete is a composite mixture of four main ingredients: Portland cement, water, fine aggregate and coarse aggregate. The ratio of these four ingredients can be varied to get desired properties of concrete and can be used for construction. (Table 1)

I. INTRODUCTION

A. Concrete

The need to build has been there since pre-historic times. The ideology and methods of past has helped us shape our present. Previously, wood and stones were the materials used for construction. Slowly, methods and techniques evolved. People began using mud and clay to build houses. As time passed, it was understood by people that the material and the way it is used are key factors in order to get a structure which is strong and has a greater lifespan. Romans were the first ones to use concrete as a construction material [5]. Its main advantage is its workability. Its ability to remain workable and strong has made it an incredible versatile material with room for innovation. Today, concrete is produced in large quantities. Technology has helped us decrease time and cost for construction as large amount of concrete can be produced and placed at once without compromising the strength of the structure.

B. Constituents of concrete

Concrete is a composite mixture of four main ingredients: Portland cement, water, fine aggregate and coarse aggregate. The ratio of these four ingredients can be varied to get desired properties of concrete and can be used for construction. (Table 1)

C. Quality parameter of fresh concrete

Fresh concrete is a freshly mixed composite material which can be placed and molded into any shape. The amount of aggregates, water and cement used in the mixture control the properties of wet concrete. Table 2 shows the factors need to be taken into consideration as they affect wet concrete.

D. Recycled concrete aggregate

Concrete is most widely used since it is available easily and at affordable cost. However, demolition of buildings can produce lot of concrete waste. Concrete is a non-biodegradable material which harms the environment to large extent.

TABLE I: MIX DESIGN FOR DIFFERENT COMPRESSIVE

Designation	Mix design	Characteristic compressive strength in n/mm²	Group (as per is:456-2000)
M5	1:5:10	5	Lean mix
M7.5	1:4:8	7.5	
M10	1:3:6	10	Ordinary concrete
M15	1:2:4	15	
M20	1:1 ½:3	20	
M25	1:1 ½:2	25	Standard concrete
M30	Designed	30	
M35		35	
M40		40	
M45		45	
M50		50	
M55		55	
M60		60	High strength concrete

TABLE II: FACTORS AND QUALITY PARAMETERS OF FRESH CONCRETE

Factors	Quality Parameter
Colour of concrete	Grey colour due to cement
Workability	Try to reduce water cement ratio and use admixtures to improve workability so that strength is not compromised. Use the right mix proportion. Use bigger size of aggregate that is well graded and cubical in shape.
Bleeding	For concrete to be of good quality, water should not come out to the surface.
Segregation	Constituent materials of concrete should not separate in the mix. Mix the concrete properly and use vibrators appropriately for compaction to avoid segregation.
Temperature	Temperature of wet concrete should be between 25 to 30 °c.
Studies are been done to find out how this concrete waste can be used economically in construction to reduce waste accumulation and waste pollution. One such material that can be reused from these demolished waste is recycled concrete aggregate.

Recycled concrete aggregate are aggregates taken from demolished structures. They can be reused as aggregates to prepare fresh concrete and can be used. This will help in reducing the cost of aggregates and also help to reduce the accumulation of waste due to demolished or waste concrete.

Objectives

- To find out how strength varies with different proportions of recycled aggregate and natural aggregate.
- To find out how various aggregate properties vary when compared to natural aggregate.

II. LITERATURE REVIEW

A. Research paper reference: A study on recycled aggregate as a substitute to natural aggregate for sustainable development in India [4]

The use of recycled aggregates for concrete can help reduce the environmental impact of constructional waste. The uses of RCA is limited since its properties are not up to the mark as that of NCA. However, up to some proportion of NCA with RCA can be used for construction. The properties of RCA as compared to NCA show that there are lots of problems when it comes to using RCA. Therefore, high quality of RCA needs to be used to get better results.

In this experimental analysis, M65 concrete mixture was prepared with water to binder ratio of 0.45 with cement content of 400 kg/m^3 having recycled concrete aggregate content of 0%, 20%, 50% and 100%. These were tested for compressive strengths after 1 day, 4 days, 7 days, 28 days and 90 days. It was noted that as the amount of RCA in the concrete mix increases the compressive strength of the concrete decreases. It was concluded that up to 20% RCA can be utilized for economical and sustainable development of concrete.

B. Research paper reference: Recycled concrete as aggregate for structural concrete production [2]

An experimental analysis was done with different ratios of natural concrete aggregate (NCA) with recycled concrete aggregate (RCA). Samples having 100% NCA (R0), 50% NCA and 50% RCA (R50) and 100% RCA (R100) were considered. 99 specimens were prepared and tested.

When concrete is crushed to make RCA, certain amount of cement paste and mortar of the original concrete is stuck to stones which result in low quality of RCA compared to NA. In order to get a better quality of RCA this cement paste and mortar paste has to be separated from the stones.

Since this mortar that is attached to the recycled aggregate cannot be completely removed, the water absorption of RCA is higher than that of NA. Therefore, to obtain the desired workability certain amount of water needs to be added to saturate recycled concrete before or during mixing if no water reducing admixtures are used. Either the aggregate could be “water saturated surface dry”
C. Research paper reference: Use of recycled aggregate as an alternative of natural coarse aggregate for structural construction [1]

The increased pollution due to construction waste has led to become a concern for the environment, therefore the use of recycled concrete aggregate is being done to have a sustainable environment in which they have compared Bangladeshi standard and ASTM.

For the following research Natural coarse aggregate, recycled coarse aggregate, fine aggregate, cement is being used. To analyze the compressive strength of concrete, cylinder of size 6 inch diameter and 12 inch height were prepared. The ratio of cement: sand: aggregate was taken 1:2:4 and constant water-cement ratio of 0.48 was used in all the samples.

Ratios which they considered or performed was (80%NA-20%RA), (60%NA-40%RA), (40%NA-60%RA) and (20%NA-80%RA). The observation they got shows that the bulk density of NA is higher than all the samples, all the samples possessed value above the minimum standard of 90lb/ft3. From their first experiment they observed that the compressive stress of RA was more than NA.

From the physical properties and compressive strength of RA, NA and percentile mixing samples of RA and NA was investigated. From the experimental physical property analysis, it is clear that all the samples confirm to the standard value for bulk density. For specific gravity and % void determination, RA and 20%NA-80%RA combination failed to meet the standard rate. Only the NA and 80%NA-20%RA combinations exhibit the absorption capacity value within the standard range. The NA, RA and all other mixing combinations confirm 28 days compressive stress value above BNBC minimum standard for structural use.

III. METHODOLOGY

A. Sample collection

In order to conduct our experiment samples had to be collected. Natural aggregate and recycled aggregate samples were collected from concrete mixing company. 8 years old recycled aggregate (Figure 1) and 16 years old recycled aggregate (Figure 2) samples was collected from demolition sites.

B. Sample treatment

Once the samples were collected (Figure 3) they had to be treated before concrete could be made. Recycled aggregate obtained from batching plant had to be washed and dried properly as it had cement attached to it. 8 years old aggregate had glass pieces in them as they were collected from demolition sites. Therefore, it was manually removed.

16 years old aggregate had wood pieces and tiles in it and were big in size. Therefore, they had to be broken down into smaller pieces using a hammer.

C. Experiments conducted

Experiments were done to determine the specific gravity, void ratio, porosity, bulk density, fineness modulus and moisture content of sample aggregates. After performing test for these aggregates, concrete will be prepared (Figure 4) with different ratios of aggregate (Table 3) and compression tests will be performed on them. [3]

Aggregates	Percentage
Natural aggregate	100%
Recycled aggregate (batching plant)	100%
Recycled aggregate (batching plant)	50%
Recycled Aggregate (8 years)	100%
Recycled Aggregate (8 years)	50%
Recycled Aggregate (16 years)	100%
Recycled Aggregate (16 years)	50%
IV. DATA ANALYSIS AND OBSERVATION

The above experiments were performed and the following observations were made:

Graph 1: Representation of bulk density, specific gravity and void ratio for different types of aggregates

Bulk density depends upon how densely the aggregate is packed. Higher bulk density means the voids present in the aggregate are less. Graph 1 shows aggregate from the rejected concrete batch has high bulk density means the voids are less. Therefore, less cement and water will be required to fill the voids. On the other hand, recycled concrete aggregate of 16 years has low bulk density means the more voids are present so more cement and water will be required to fill the voids.

Specific Gravity is the ratio of the weight of a given volume of aggregate to the weight of an equal volume of water. Graph 1 shows recycled concrete aggregate of 16 years has low specific gravity which means its weak and natural aggregate has high specific gravity which means it’s stronger.

Void ratio is the gap between different particles. Graph 1 shows that the void ratio of natural aggregate is the highest. Table 4 shows that the highest porosity was of Recycled concrete aggregate of 16 years meaning that as more water will be needed for concrete, once it dries up many pores will be formed as water will evaporate, reducing the overall strength of concrete.

Graph 2: Representation of fineness modulus for different types of aggregates

Higher the fineness modulus, coarser in the aggregate. Graph 2 and figure 5 shows that natural aggregate has a higher fineness modulus meaning it is coarser compared to other aggregates.

Fig 5: Result of sieve analysis for different aggregates

Table 5 shows that the moisture content for recycled concrete aggregate of 8 years has highest moisture content means it has high absorption rate.

TABLE V: MOISTURE CONTENT FOR DIFFERENT TYPES OF AGGREGATES

	Moisture content
Natural aggregate	1.83%
Aggregate from rejected concrete batch	6.08%
Recycled concrete aggregate- 8 years	10.71%
Recycled concrete aggregate- 16 years	7.75%
The strengths of natural aggregate are less as compared to other aggregates which contradict our assumption before the test that it will be able to take maximum compression. The reason for concrete made up of natural aggregate to have such low strength is that it had high void ratio. Also, it had many aggregates of one size i.e. 10mm because of which the concrete could only give a maximum strength of 68 kN. The probable reason that recycled aggregates from batching plant that had 100% recycled content showed maximum strength could be because of cement attached to the aggregate from the batching plant. With such high and unexpected variations in the compressive strengths it can also be concluded that the age of aggregates may not be a significant factor in the compressive strength of recycled concrete. However, the place, the type and mix of proportion of the aggregates can greatly influence the strength of recycled concrete.

VI. CHALLENGES

The main challenges that were faced initial in this experiment was arranging the samples. Various companies were contacted to get samples. Later on the problems faced were of transporting the sample to the laboratory.

Fig 6: Hammering big pieces of aggregate to smaller pieces

The aggregates from batching plant had to be washed and dried before using as it had some cement attached to it. The 8 year old aggregates had glass pieces in it and had to be separated. The 16 year old aggregate were big in size and had to be broken to smaller pieces which was done by a hammer (Figure 6). It also had wooden pieces that had to be removed before further use.

ACKNOWLEDGMENT

We would like to take this opportunity to express our profound gratitude and deep regard to Mrs. Vidya Mohanan, for her exemplary guidance, valuable feedback and constant encouragement throughout the duration of the research project. Her valuable suggestions were of immense help throughout our project work. Her perceptive criticism kept us working to make this project in a much better way. Working under her was an extremely knowledgeable experience for us.

We would also like to thank Mr Praseena from Al Nasr Contracting and Demolition Company L.L.C. for his help in providing us materials and information that helped us with the completion of this project.

We would also like to thank Connix LTD for their guidance, support and constant help during the project.

REFERENCES

1. Kabir, F; Chakrabarty, S & Ali, S.M. 2014. Use of Recycled Coarse Aggregate as an Alternative of Natural Coarse Aggregate for Structural Construction. International Journal of Advances in Engineering Sciences, 4(4). pp. 1-4. In-text citation: (Kabir, Chakrabarty & Ali, 2014)

2. Malesević, Mirjana, Vlastimir Radonjanin, and Snezana Marinković. "Recycled Concrete As Aggregate For Structural Concrete Production". http://www.mdpi.com/journal/sustainability (2010): 1-22. Print.

3. Obla, K, Kim, H & Lobo, C. 2007. Crushed Returned Concrete as Aggregates for New Concrete. RMC Research & Education Foundation Project (.), pp. 1-51. In-text citation: (Obla, Kim & Lobo, 2007)

4. Rathod, H.A & Pitroda, J. 2013. A Study on Recycled Aggregate as a Substitute to Natural Aggregate for Sustainable Development in India. Global Research Analysis, 2(2),pp. 73-75. In-text citation: (Rathod & Pitroda, 2013)

5. Shetty, M.S (2008). Concrete Technology: Theory and Practice. : S Chand.
6. D. Urge-Vorsatz, A. Novikova, Potentials and costs of carbon dioxide mitigation in the world's buildings, Energy Policy 36 (2) (2008) 642–661 [2]
7. Mohd Monish, Vikas Srivastava, V.C. Agarwal, P.K. Mehta and Rakesh Kumar Demolished waste as coarse aggregate in concrete J. Acad. Indus. Res. Vol. 19(9) February 2013 [3]
8. Fatheri Ramadan salehamein, Mochamad Solikin, Ir.sriSunarjono Effect of Recycled Coarse Aggregate on Concrete Properties International Journal of Innovative Research in Science Engineering and Technology Vol. 4, Issue 1, January 2015
9. Paulo B. Cachim Mechanical properties of brick aggregate concrete Construction and Building Materials 23 (2009) 1292–1297
10. I. B. Topcu, S. Sengel Properties of concretes produced with waste concrete aggregate Cement and Concrete Research 34 (2004) 1307–1312 [6] Farid Debieb, Said Kenai The use of coarse and fine crushed bricks as aggregate in concrete, Construction and Building Materials 22 (2008) 886–893