Prospective Study on Evidence Based Management of Chronic Kidney Disease with Comorbidities

Shareefa Habeeba*, Rafya Fatima, Noor Us Sabah, Nausheen Sehar, Shumaila yousuf, Umama Yezdani and Mohammad Gayoor khan
Department of Pharmacy Practice, MRM College of Pharmacy, India

Abstract
Chronic Kidney Disease (CKD) is a global public health problem affecting the adult population in several continents and increasing the risk of adverse outcomes. This prospective study has been conducted to understand the evidence-based pharmacotherapy, Rationality of prescribed medications, Prevalence of co-occurring conditions and also to know the rate of progression of Glomerular Filtration. This research has been conducted on randomly selected inpatients (n=70) in Thumbay New Life Hospital during the months of January and February. The tools used include Informed Consent Form, Patient Counselling, Patient Medical and Laboratory Reports. Finally, the study conclude that the most common symptom of CKD is pedal edema, Most commonly occurred stage of CKD is G5, prevalence of comorbidities from High include Hypertension, Diabetes Mellitus and Coronary Artery Disease respectively. Estimated GFR has been improved in most of the patients from the duration of admission to discharge but statistical analysis shows a non-significant p value.

Keywords: Chronic kidney disease; Co-occurring diseases; Global problem; Prevalence; Glomerular filtration rate

Introduction
Chronic Kidney Disease (CKD) is a common condition defined as abnormalities of kidney structure or function for more than 3 months with Implications for health conditions [1]. Diabetes and hypertension cause up to two-thirds of CKD [2]. CKD can be detected with routine laboratory tests, and some treatments can prevent development and slow disease progression, reduce complications of decreased GFR and risk of cardiovascular disease, and improve survival and quality of life [3]. Chronic Kidney Disease (CKD) is a global public health problem [4-6], affecting 10 to 16% of the adult population in several continents [7-10] and increasing the risk of adverse outcomes. CKD was earlier considered to be a health problem only in developed countries, 4 out of 5 chronic disease deaths now occur in low- and middle-income countries. In India the projected number of deaths due to chronic diseases will rise from 3.78 million in 1990 (40.4% of all deaths) to an expected 7.63 million in 2020 (66.7% of all deaths) [11]. In another hospital-based study, in which data was collected from 48 hospitals representing the whole of India, the prevalence of CKD stage 3 and beyond was found to be approximately 0.8% [12]. CKD is a common condition affecting up to 10% of the population in western societies and is more common in some ethnic minority populations and in females. The incidence increases exponentially with age such that some degree of CKD is almost inevitable in persons over 80 years of age. Social deprivation is also associated with a higher prevalence of CKD [13]. A decreasing GFR is associated with CVD independently of other risk factors [14]. In the Die Deutsche Diabetes Dialyse studie (4D) trial in a cohort of 1200 patients with diabetes on haemodialysis, atorvastatin had no positive effect on the primary composite endpoint of CVD [15].

Classification of CKD based on Glomerular Filtration Rate (GFR) [1] can be seen in (Table 1) (Figures 1-20).

Etiology
Volume depletion, Glomerulonephritis, Pyelonephritis, Diabetes, Hypertension, Renal vascular disease, Heart failure, Liver failure, and Polycystic Kidney [13].

CKD comorbidities
Hypertension: Hypertension is most commonly associated with CKD and it develops more than 75% of patients with Chronic Kidney Diseases [16]. The mechanisms of hypertension in CKD include

Citation: Habeeba S, Fatima R, Sabah NU, Sehar N, yousuf S, Yezdani U, et al. Prospective Study on Evidence Based Management of Chronic Kidney Disease with Comorbidities. Biomed Res Health Adv. 2020;2(1):1009.
Copyright: © 2020 Shareefa Habeeba
Publisher Name: Medtext Publications LLC
Manuscript compiled: May 14th, 2020
*Corresponding author: Shareefa Habeeba, Department of Pharmacy Practice, MRM College of Pharmacy, Telangana, India, Tel: +917987723543; E-mail: shareefahabeeba789@gmail.com

Figure 1: Age and gender distribution.
Figure 2: Social history of CKD patients.

Figure 3: Family history.

Figure 4: Medication compliance history.

Figure 5: Anti-Hypertensive history.

Figure 6: Anti-Diabetic history.

Figure 7: Other medications history.

Figure 8: Stages of CKD.

Figure 9: Stages based on MDRD equation.
Figure 10: Stages based on CKD-EPI creatinine equation.

Figure 11: Percentage of CKD symptoms.

Figure 12: Comorbidities.

Figure 13: Anti-Hypertensive prescribed to patients with CKD.

Figure 14: Anti-Diabetic categories prescribed to patients with CKD.

Figure 15: Medications prescribed for dyslipidemic patients with CKD.

Figure 16: eGFR during admission and discharge using CKD-EPI equation.

Figure 17: eGFR during admission and discharge using MDRD equation.
volume overload, sympathetic over activity, salt retention, endothelial dysfunction, and alterations in hormonal systems that regulate blood pressure [17]. Recommendations for BP control has been changed to <130/80 mm Hg according to the 2017 ACC/AHA guidelines as more evidence becomes available. In certain CKD populations (aged or with multiple comorbidities), aggressive BP control could lead to negative outcomes such as acute deterioration in kidney function, increased risk for cardiovascular events and orthostatic hypotension [18].

Diabetes

Diabetic kidney disease, or CKD attributed to diabetes, occurs in 20% to 40% of patients with diabetes [19-22]. Diabetic kidney disease typically develops after diabetes duration of 10 years in type 1 diabetes, but may be present at diagnosis of type 2 diabetes. Diabetic kidney disease can progress to End-Stage Renal Disease (ESRD) requiring dialysis or kidney transplantation and is the leading cause of ESRD in the United States [23]. In addition, among people with type 1 or type 2 diabetes, the presence of CKD markedly increases cardiovascular risk [24].

Dyslipidaemia

Dyslipidaemias cover a broad spectrum of lipid abnormalities, some of which are of great importance in CVD prevention. Dyslipidaemias may be related to other diseases (secondary dyslipidaemias) or to the interaction between genetic predisposition and environmental factors. Elevation of Total Cholesterol (TC) and low-density lipoprotein-cholesterol (LDL-C) has received most attention, particularly because it can be modified by lifestyle changes and drug therapies. The lipid profile shows both quantitative and qualitative abnormalities that worsen with declining GFR, being most pronounced in subjects with End-Stage Renal Disease (ESRD). Dyslipidaemia comprises typically elevations of TG and lowering of HDL-C, whereas the changes of TC and LDL-C are less marked in stage 1 to stage 2 CKD. Most patients with stage 3 to stage 5 CKD have mixed dyslipidaemia and the lipid profile is highly atherogenic with adverse changes in all lipoproteins [25].

Management

CKD with hypertension: ACE inhibitors and angiotensin II receptor antagonists (blockers) (ARBs) have both cardioprotective and renoprotective properties and are therefore of particular value in patients with CKD [26], although ACE inhibitors may be used as first-line agents in those with hypertension and non-proteinuric CKD, CCBs and thiazide or thiazide-like diuretics should also be considered as alternative first-line choices in this population [27]. Diuretic therapy can reduce volume expansion and has been shown to improve left ventricular mass index and arterial stiffness in those with CKD [28,29] Thus, diuretics are frequently used as part of combination drug therapy in CKD and offer antihypertensive and cardioprotective effects [28].

Table 1: CKD stages based on eGFR.

GFR Category	GFR (ml/min/1.73 m²)	Terms
G1	>90	Normal or High
G2	60-89	Mildly decreased
G3a	45-59	Mildly to Moderately decreased
G3b	30-44	Moderately to severely decreased
G4	15-29	Severely Decreased
G5	<15	Kidney Failure

Table 2: Management of dyslipidaemia in CKD.

CKD Patient Population	Treatment
Age ≥ 50 years with eGFR < 60 mL/min/1.73 m² and no previous kidney transplant (G3a-G5)	Statin or statin + ezetimibeβ
Age ≥ 50 years with eGFR≥60 mL/min/1.73 m² (G1-G2)	Statin
Age 18-49 with eGFR≥60 mL/min/1.73 m² (G1-G2) and either: known coronary disease (myocardial infarction or coronary revascularization), diabetes mellitus, prior ischemic stroke, or estimated 10-year incidence of coronary death or non-fatal myocardial infarction >10%36	Statin

Diabetes: Diabetic kidney disease, or CKD attributed to diabetes, occurs in 20% to 40% of patients with diabetes [19-22]. Diabetic kidney disease typically develops after diabetes duration of 10 years in type 1 diabetes, but may be present at diagnosis of type 2 diabetes. Diabetic kidney disease can progress to End-Stage Renal Disease (ESRD) requiring dialysis or kidney transplantation and is the leading cause of ESRD in the United States [23]. In addition, among people with type 1 or type 2 diabetes, the presence of CKD markedly increases cardiovascular risk [24].

Dyslipidaemia: Dyslipidaemias cover a broad spectrum of lipid abnormalities, some of which are of great importance in CVD prevention. Dyslipidaemias may be related to other diseases (secondary dyslipidaemias) or to the interaction between genetic predisposition and environmental factors. Elevation of Total Cholesterol (TC) and low-density lipoprotein-cholesterol (LDL-C) has received most attention, particularly because it can be modified by lifestyle changes and drug therapies. The lipid profile shows both quantitative and qualitative abnormalities that worsen with declining GFR, being most pronounced in subjects with End-Stage Renal Disease (ESRD). Dyslipidaemia comprises typically elevations of TG and lowering of HDL-C, whereas the changes of TC and LDL-C are less marked in stage 1 to stage 2 CKD. Most patients with stage 3 to stage 5 CKD have mixed dyslipidaemia and the lipid profile is highly atherogenic with adverse changes in all lipoproteins [25].

Management

CKD with hypertension: ACE inhibitors and angiotensin II receptor antagonists (blockers) (ARBs) have both cardioprotective and renoprotective properties and are therefore of particular value in patients with CKD [26], although ACE inhibitors may be used as first-line agents in those with hypertension and non-proteinuric CKD, CCBs and thiazide or thiazide-like diuretics should also be considered as alternative first-line choices in this population [27]. Diuretic therapy can reduce volume expansion and has been shown to improve left ventricular mass index and arterial stiffness in those with CKD [28,29] Thus, diuretics are frequently used as part of combination drug therapy in CKD and offer antihypertensive and cardioprotective effects [28].
Recently updated ESC/ESH guidelines which advocate combination therapy with an ACE inhibitor and CCB as first-line therapy in proteinuric patients [27].

CKD with diabetes: Metformin in patients with eGFR between 30-45 mL/min/1.73 m² can be used and it is contraindicated in patients with eGFR <30 mL/min/1.73 m² due to increased risk of lactic acidosis. Assess risk vs. benefit of continuing metformin if eGFR drops below 45 mL/min/1.73 m².

CKD with dyslipidaemia: Management of Chronic Kidney Disease in patients with Dyslipidaemia is shown in Table 2.

Objectives
- To screen and diagnose patients with CKD
- To decrease progression of renal deterioration
- To assess the rationality of drugs
- To evaluate the prevalence of comorbidities

Materials and Methods

Study design
This is the cross-sectional and observational study conducted over a period of two months at general ward of Thumbay New Life Hospital, Chaderghat, Hyderabad, Telangana, India.

The patients admitted during the period of January 2020 and February 2020 was eligible for enrollment.

Collection of data
Using a suitably designed data collection form, the details were collected during patient counselling and also from medical records including patient demographics, prescription chart, Lab data, doctor's and nursing notes.

Inclusion criteria
- Patients above 20 years of age.
- CKD patients with any other Co-occurring conditions.
- Patients willing to participate in the study.
- Patients willing to sign the Informed Consent Form.

Exclusion criteria
- Pregnant women.
- Nursing mothers.
- Patients below 20 years of age.
- Patients who are not willing to sign the Informed Consent Form.

Duration of the study
The study is conducted for a period of two months.

Place of study
Thumbay New Life Hospital, Chaderghat, Hyderabad, Telangana, India.

Conclusion
The patients have been managed therapeutically based on evidence and physicians were adhered almost 90% to the standard guidelines. Estimated Glomerular Filtration Rate has been improved for most of the Patients during their admission and discharge. However, Estimated Glomerular Filtration Rate can’t be improved to the highest within 6-7 days of hospitalization hence the statistical results were insignificant.

Acknowledgement
I would like to thank my all co-authors for time to time support and contribution towards the manuscript.

References
1. Kidney Disease: Improving Global Outcomes (KDIGO) Hepatitis C Work Group. KDIGO 2018 Clinical Practice Guideline for the Prevention, Diagnosis, Evaluation, and Treatment of Hepatitis C in Chronic Kidney Disease. Kidney Int Suppl. 2018;8(3):91-165.
2. Chen RA, Scott S, Mattern WD, Mohini R, Nissensohn AR. The case for disease management in chronic kidney disease. Dis Manag. 2006;9(2):86-92.
3. Levey AS, Coresh J. Chronic kidney disease. Lancet. 2012;379(9811):165-80.
4. Eknoyan G, Levin NW. KDQI clinical practice guidelines for chronic kidney disease: Evaluation, classification, and stratification. Am J Kidney Dis. 2002;39(2 suppl 1):S1-S26.
5. Levey AS, Atkins R, Coresh J, Cohen EP, Collins AJ, Eckardt KU, et al. Chronic kidney disease as a global public health problem: Approaches and initiatives - A position statement from Kidney Disease Improving Global Outcomes. Kidney Int. 2007;72(3):247-59.
6. Crowe E, Halpin D, Stevens P. Early Identification and Management of chronic kidney disease: Summary of NICE guidance. BMJ. 2008;337:a1530.
7. Chadban SJ, Briganti EM, Kerr PG, Dunstan DW, Welborn TA, Zimmet PZ, et al. Prevalence of kidney damage in Australian adults: The AusDiab kidney study. J Am Soc Nephrol. 2003;14(7 suppl 2):S13-I.
8. Hallan SJ, Coresh J, Astor BC, Ather B, Powe NS, Romundstad S, et al. International comparison of the relationship of chronic kidney disease prevalence and ESRD risk. J Am Soc Nephrol. 2006;17(8):2275-84.
9. Coresh J, Selvin E, Stevens LA, Manzi J, Kusek JW, Eggers P, et al. Prevalence of chronic kidney disease in the United States. JAMA. 2007;298(17):2038-47.
10. Wen CP, Cheng TY, Tsai MK, Chang YC, Chan HT, Tsai SP, et al. All-cause mortality attributable to chronic kidney disease: a prospective cohort study based on 462,933 adults in Taiwan. Lancet. 2008;371(9631):2173-82.
11. World Health Organization. Preventing Chronic Kidney Disease: A Vital Investment. Geneva, WHO. 2005.
12. Dash SC, Agarwal SK. Incidence of chronic kidney disease in India. Nephrol Dial Transplant. 2006;21(1):232-3.
13. Roger Walker.
14. Hyre AD, Fox CS, Astor BC, Cohen AJ, Mintner P. The impact of reclassifying moderate CKD as a coronary heart disease risk equivalent on the number of US adults recommended lipid-lowering treatment. Am J Kidney Dis. 2007;49(1):37-45.
15. Wanner C, Krane V, Ma¨rz W, Olschewski M, Mann JF, Ruf G, et al. Atorvastatin therapy in proteinuric patients [27].
16. Culleton B. Introduction to the Canadian Clinical Practice Guidelines. J Am Soc Nephrol. 2006;72(1):232-38.
17. Colleto D. Biomedical Research and Health Advances 2020 | Volume 2 | Article 1009
18. UMHS Chronic Kidney Disease Guideline. 2019.
19. Tuttel KR, Bakris GL, Bilous RW, Chiang JL, de Boer IH, Goldstein-Fuchs J, et al. Diabetic kidney disease: a report from an ADA Consensus Conference. Diabetes Care. 2014;37(10):2864-83.
20. Afkarian M, Zelnick LR, Hall YN, Heagerty PJ, Tuttel K, Weiss NS, et al. Clinical manifestations of kidney disease among US adults with diabetes, 1988-2014. JAMA. 2016;316(6):602-10.
21. DeBoer IH, Rue TC, Hall YN, Heagerty PJ, Weiss NS, Himmelfarb J. Temporal trends in the prevalence of diabetic kidney disease in the United States. JAMA. 2011;305(24):2532-9.

22. De Boer IH, DCCT/EDIC Research Group. Kidney disease and related findings in the Diabetes Control and Complications Trial/Epidemiology of Diabetes Interventions and Complications study. Diabetes Care. 2014;37(1):24-30.

23. United States Renal Data System. Annual Data Report: Epidemiology of Kidney Disease in the United States. Bethesda, National Institutes of Health, National Institute of Diabetes and Digestive and Kidney Diseases. 2016.

24. Fox CS, Matsushita K, Woodward M, Bilo HJ, Chalmers J, Heerspink HJ, et al. Associations of kidney disease measures with mortality and end-stage renal disease in individuals with and without diabetes: a meta-analysis. Lancet. 2012;380(9854):1662-73.

25. Reiner Z, Catapano AL, De Backer G, Graham I, Taskinen MR, Wiklund O, et al. ESC/EAS Guidelines for the management of dyslipidaemias. European Heart J. 2011;32:1769-1818.

26. Jafar TH, Stark PC, Schmid CH, Landa M, Maschio G, de Jong PE, et al. Progression of chronic kidney disease: the role of blood pressure control, proteinuria, and angiotensin-converting enzyme inhibition: a patient-level meta-analysis. Ann Intern Med. 2003;139(4):244-52.

27. Williams B, Mancia G, Spiering W, Agabiti Rosei E, Azizi M, Burnier M, et al. 2018 ESC/EAS Guidelines for the management of arterial hypertension: the Task Force for the Management of Arterial Hypertension of the European Society of Cardiology and the European Society of Hypertension: the Task Force for the Management of Arterial Hypertension of the European Society of Cardiology and the European Society of Hypertension. J Hypertens. 2018;36(10):1953-2041.

28. Zamboli P, De Nicola L, Minutolo R, Chiodini P, Crivaro M, Tassinario S, et al. Effect of furosemide on left ventricular mass in non-dialysis chronic kidney disease patients: a randomized controlled trial. Nephrol Dial Transplant. 2011;26(5):1575-83.

29. Edwards NC, Steeds RP, Stewart PM, Ferro CJ, Townend JN. Effect of spironolactone on left ventricular mass and aortic stiffness in early-stage chronic kidney disease: a randomized controlled trial. J Am Coll Cardiol. 2009;54(6):505-12.