Mating system of *Datura inoxia*: Association between selfing rates and herkogamy within populations

Vania Jiménez-Lobato¹,², Juan Núñez-Farfán*¹

¹ Facultad de Desarrollo Sustentable, Universidad Nacional Autónoma de México, Técpan de Galena, Guerrero, Mexico
² Laboratorio de Genética Ecológica y Evolución, Departamento de Ecología Evolutiva, Instituto de Ecología, Universidad Nacional Autónoma de México, Ciudad de México, Distrito Federal, Mexico

Corresponding Author: Juan Núñez-Farfán
Email address: farfan@unam.mx

Plant mating system determines, to a great extent, the demographic and genetic properties of populations, hence their potential for adaptive evolution. Variation in plant mating system has been documented between phylogenetically related species as well between populations of a species. A common evolutionary transition, from outcrossing to selfing, is likely to occur under environmental spatial variation in the service of pollinators. Here, we studied two phenotypically (in floral traits) and genetically (in neutral molecular markers) differentiated populations of the annual, insect-pollinated, plant *Datura inoxia* in Mexico, that differ in the service of pollinators (Mapimí and Cañada Moreno). First, we determined the populations’ parameters of phenotypic in herkogamy, outcrossing and selfing rates with microsatellite loci, and assessed between generation (adults and seedlings) inbreeding, and inbreeding depression. Second, we compared the relationships between parameters in each population. Results point strong differences between populations: plants in Mapimí have, on average, approach herkogamy, higher outcrossing rate ($t_m = 0.68$), lower primary selfing rate ($r = 0.35$), and lower inbreeding at equilibrium ($F_e = 0.24$) and higher inbreeding depression ($\delta = 0.25$), than the populations of Cañada. Outcrossing seems to be favored in Mapimí while selfing in Cañada. The relationship between r and F_e were negatively associated with herkogamy in Mapimí; here, progenies derived from plants with no herkogamy or reverse herkogamy had higher selfing rate and inbreeding coefficient than plants with approach herkogamy. The difference $F_e - F$ is positively related to primary selfing rate (r) only in Cañada Moreno which suggests inbreeding depression in selfing individuals and then genetic purging. In conclusion, mating system evolution may occur differentially among maternal lineages within populations of *Datura inoxia*, in which approach herkogamy favors higher outcrossing rates and low levels of inbreeding and inbreeding depression, while no herkogamy or reverse herkogamy lead to the evolution of the "selfing syndrome" following the purge of
deleterious alleles despite high inbreeding among individuals.
Introduction

Plant mating systems affect the demographic dynamics and genetic structure of plant populations, and thus their adaptive potential (Charlesworth & Charlesworth, 1979; Eckert et al., 2009).

Mating systems often vary widely among populations of self-compatible species, from predominant or complete selfing to complete outcrossing. Intermediate (or mixed) mating systems, i.e., those that combine selfing and outcrossing strategies, are also common in nature (Stebbins, 1957; Goodwillie, Kalisz & Eckert, 2005; Barrett, 2010).

The transition from outcrossing to selfing is one of the most frequent evolutionary shifts in flowering plants (Stebbins, 1957; Barrett, 2010; Sicard & Lenhard, 2011). Evidence of this phenomenon comes from phylogenetic studies (Goodwillie, 1999; Foxe et al., 2009), investigating differences within and among species, and at different geographic scales (Duncan & Rausher, 2013; Wright, Kalisz & Slotte, 2013).

Two main scenarios are thought to favor the evolution of selfing. One is the transmission advantage of selfers relative to outcrossers (3:2 gametes), which would promote the spread of selfing modifiers in a population unless prevented by natural selection (Fisher, 1941). The second scenario considers that under ecological conditions that are unfavorable for cross-pollination (i.e., rarity or absence of potential mates and/or pollen vectors), natural selection would favor reproductive assurance through selfing (Baker, 1955; Stebbins, 1957; Schoen & Lloyd, 1992; Schoen, Morgan & Bataillon, 1996). Despite the potential transmission and reproductive advantages, selfing as a mating system may also restrict gene flow within and among populations. Consequently, selfing might increase levels of inbreeding and homozygosity, and ultimately the likelihood of inbreeding depression (δ) in populations (Charlesworth & Charlesworth, 1987; Charlesworth & Wright, 2001; Takebayashi & Morrell, 2001). Therefore, the inbreeding coefficient (F) is expected to correlate with historical level of selfing in a
population. In the long term, however, theoretical models and empirical evidence suggest that increasing levels of inbreeding promote selection against inbred individuals by purging populations of lethal or deleterious alleles, thus reducing genetic load (Husband & Schemske, 1996; Takebayashi & Delph, 2000; Crnokrak & Barrett, 2002; Morran, Parmenter & Phillips, 2009). Hence, populations with a long history of inbreeding are expected to have lower levels of inbreeding depression (Yahara, 1992).

Herkogamy, the spatial segregation of sex organs within the flower, is considered a main floral trait affecting selfing rates (Webb & Lloyd, 1986). In hermaphroditic flowers, the likelihood of selfing is reduced when the stigma surpasses the length of the anthers (i.e., approach herkogamy), because flower stigmas are prevented from receiving self-pollen. In presence of pollinators, this also provides the opportunity for outcross pollen to first reach the stigmas. In contrast, when the anthers and stigmas are placed at the same level (i.e., no - herkogamy) or the stigmas are below the anthers (i.e., reverse herkogamy), selfing is likely to occur, with (facilitated) or without (autonomous) pollinators (Lloyd, 1992). At the population level, the relationship between herkogamy and selfing/outcrossing rates may be an indicator of the historical reliability of pollination (Opedal, 2018). Within-population, this relationship may also be explained by other causal mechanisms. For instance, stigma clogging may increase competition between self- and cross-pollen in non-herkogamous flowers, favoring higher outcrossing rates in herkogamous flowers, or just because self-pollen deposition during pollinator visits creates a 'shield' against interference from heterospecific pollen (Opedal, 2018). Also, a positive correlation between approach herkogamy and floral traits related to pollinator attraction, contributes to the maintenance of the relationship between herkogamous flowers and an outcrossing strategy (Opedal 2018). In other species herkogamy may reduce the interference between sexual functions enhancing pollen export efficiency (Lloyd & Webb, 1986; Barret, 2002). Further, reverse or no herkogamy might increase reproductive fitness (i.e., seed number).
and thus be favored by selection, but it should also positively correlate with selfing rate. Contrary, natural selection might favor/maintain approach herkogamy thus increasing outcrossing rate (Motten & Stone, 2000; Elle & Hare, 2002; Herlihy & Eckert, 2007).

Herkogamy is a complex trait determined by genetic and ecological factors (Ashman & Majetic, 2006; Opedal et al., 2017). Within populations, standing genetic variation in herkogamy would depend on the history of selection of herkogamy on individual lineages, and its adaptive value could depend upon selection pressures exerted by pollinators – particularly when the abundance of pollinators fluctuates in time – or to other selective factors. When associations among selfing rate (s), inbreeding coefficient (F) and herkogamy are maintained over time, within-population covariance among these variables may be established at the lineage level. Significant associations between high outcrossing rate and approach herkogamy have been reported before (Takebayashi, Wolf & Delph, 2006; de Vos et al., 2018; but see Chen et al., 2009; Brys & Jacquemyn, 2012; Opedal, Armbruster & Pélabon, 2015; Toräng et al., 2017).

However, few studies have evaluated the association between herkogamy and outcrossing rate within-populations (Epperson & Clegg, 1987; Moten & Antonovics, 1992; Carr & Fenster, 1994; Karron et al., 1997; Brunet & Eckert 1998; Takebayashi & Delph, 2000; Elle & Hare, 2002; Medrano, Herrera & Barret, 2005; Herlihy & Eckert, 2007) and even fewer have considered relationships among herkogamy, inbreeding coefficient and mating system.

Many annual, self-fertilizing, plant species evolve in stressful environments (e.g. disturbed and/or arid habitats) where pollinator abundance is reduced and/or unpredictable (Friedman & Rubin, 2015). Under variable pollination service, daily and seasonal fluctuations present different opportunities for cross- or self-fertilization maintaining variation on traits that affect the plants’ mating system, such as herkogamy or the inbreeding history of each maternal lineage (Schoen & Lloyd, 1992; Schoen, Morgan & Bataillon, 1996; Morgan & Wilson, 2005; Eckert, Samis & Dart, 2006; Barrett, 2010; Shirk & Hamrick, 2014; Pannell, 2015). However, it
is not clear how strong and how frequently the association between mating strategies, herkogamy and inbreeding history of lineages occur within populations in short-lived species. Here, we assessed the within-population mating system dynamics, with replication in two populations of the annual plant *Datura inoxia* Mill. We focus on the within-population level and less on among-population expectations in order to detect if individuals with more herkogamous flowers show a history of less inbreeding associated to lower levels of selfing. Until now, relative few studies (see review in Opedal, 2018) have assessed these associations within (rather than among) populations.

Materials and Methods

Study species and sampled populations

Datura inoxia (Solanaceae) is a summer annual, self-compatible plant that inhabits arid and semi-arid lands in Mexico and Southern USA (i.e., The Chihuahuan desert) (Barclay, 1959; Lockwood, 1973). High daily fluctuation of ambient temperature is a characteristic of these ecosystems. The onset of flowering of *D. inoxia* is in July and lasts through September, similar to other *Datura* species (Bronstein et al., 2009). *Datura inoxia* produces large, funnel-shaped, and nectar producing hermaphroditic flowers that open at dusk and remain receptive for only one night. During the flowering period, individuals can display from a few up to tens of flowers each night. Flower traits related to mating system such as herkogamy and flower size, vary widely within and among populations (Jiménez-Lobato & Núñez-Farfán, 2012). Further, comparisons between genetic differentiation at neutral loci (*F*_ST) and phenotypic differentiation (*Q*_ST) in floral traits suggest adaptive evolution under diverging selection (Jiménez-Lobato & Núñez-Farfán, 2012). Flowers are commonly visited by honeybees, which collect pollen, and hawkmoths.
(Manduca sexta, M. quinquemaculata and Hyles lineata) which forage for nectar (Barclay, 1959; Lockwood, 1973; Grant, 1983; McCall et al., 2018; V. Jiménez-Lobato, pers. Obs.).

Two populations of D. inoxia were selected to assess the relationships between herkogamy, selfing rate, and inbreeding. A previous report (Jiménez-Lobato & Núñez-Farfán, 2012) indicated substantial within-population variation in herkogamy and flower size. The Cañada de Moreno population (CM) is located in the State of Querétaro (21° 17’ 43” N; 100° 31’ 00” W) in the Mexican Bajio at 1933 m a.s.l. During the flowering period of D. inoxia (July to September), this locality has an average temperature of 18.8 °C, with a daily range from 7.4 °C to 30.8 °C, and a three-month total precipitation of 314 mm. The Mapimi population (Map) is located at 1157 m a.s.l. in the Mexican Plateau in the States of Coahuila and Durango (26° 41’ 11” N; 103° 44’ 49” W). This is a more xeric environment, with a quarterly average temperature of 22.8 °C (range: 12.6 °C to 32.9 °C) and a total three-month precipitation of 253 mm (Meteorological Service of Mexico: http://smn.cna.gob.mx/). Collection of seed material for experimental analyses was made under the permission SGPA-DGGFS-712-1596-17 (Subsecretaría de Gestión para la Protección Ambiental, Secretaría de Medio ambiente y Recursos Naturales, Mexico).

Variation in the level of herkogamy within and among populations

Thirty reproductive plants were randomly selected and tagged for sampling in a 1 ha area within each population. For each individual plant, 4 - 6 open flowers were randomly selected to measure herkogamy. Herkogamy was calculated as the difference between pistil and stamen length. Approach herkogamy was defined as the pistil surpassing the stamens in length (henceforth “positive herkogamy”), whereas reverse herkogamy was the opposite trend (henceforth “negative herkogamy”). Absence of herkogamy occurred when pistil and stamens had equal lengths.

Mating system parameters
To estimate mating system parameters from each marked plant in the field, five mature fruits derived from natural pollination were collected, labelled and bagged. In the laboratory, seeds of each fruit were separated and germinated in a greenhouse, and seeds of each fruit within each family (maternal plant) were sown in separate pots. Germination per fruit per family was recorded for 30 days. To obtain an average estimate of germination rate per fruit, we recorded the final number of seeds germinated in each pot. Germination percentage was ≥ 90% (se = 3.18) for all plants. Once seedlings emerged, we collected leaf tissue from young plants, bagged, labelled, and stored in an ultra-freezer at -97 °C. Finally, we analyzed mating system parameters in 20 seedlings from each of 30 maternal families per population (N = 600).

DNA was extracted from seedlings following the Miniprep protocol (Doyle & Doyle, 1987). Five microsatellite nuclear loci developed for *D. stramonium* (Andraca, 2009) were amplified for each seedling. Further, we standardized one additional microsatellite locus for *D. inoxia* (F8: Rw: 5’ -GGACAACATCTTTGCGACC- 3’), in order to obtain a total of six polymorphic microsatellite loci per individual plant. Primers were labelled with PET, VIC, 6-FAM, and NED dyes (Applied Biosystems) (see Supplemental Information: PCR protocols).

Multilocus outcrossing (t_m) and selfing ($s = 1-t_m$) rates, primary selfing rate (r) and inbreeding coefficient (F) were estimated for each maternal family for each population. Mating system parameters (t_m and s) at the family level were estimated with MLTR 3.2 (Ritland, 2002) using the Expectation-Maximization method (EM), which allows missing data and undetected null alleles (Ritland & Jain, 1981). Standard errors and standard deviations were estimated by bootstrapping, with 1000 replicates and re-sampling individuals at the family level. The frequency of null alleles per locus, per population, was assessed using Micro-Checker v.2.2.3 (Cock et al., 2004). One locus (G8) did not amplify for any of the plants from CM, so analyses were carried out with five loci in that population, and six loci in Map. Selfing rates (s) obtained from molecular markers, after fertilization and germination, might not be completely independent.
from inbreeding depression and thus may underestimate its true value (Lande, Schemske & Schultz, 1994). Primary selfing rate \((r)\) is a better predictor of mating system because it assesses separately the magnitude of inbreeding depression. Hence, \(r\) refers to the proportion of selfed progeny at the time of fertilization (Lande, Schemske & Schultz, 1994). The primary selfing rate \((r)\) was calculated for each maternal family as: \(r = s / [1 - \delta + s\delta]\), where \(s\) is the selfing rate obtained from microsatellite loci, and \(\delta\) is the cumulative inbreeding depression obtained for each population (see below).

The inbreeding coefficient \((F)\) may include components of inbreeding other than just self- or cross- fertilization, such as biparental inbreeding or population substructure. Here, we used \(F\) as a proxy of the inbreeding history of each maternal family (i.e., adult cohort) (Latta & Ritland, 1994). Inbreeding coefficient \((F)\) values were inferred for each lineage from the microsatellite loci amplified previously, with GenePop v.4.2 (Rousset & Raymond, 1995; Rousset, 2008). To investigate whether inbreeding depression was associated with the selfing rate and herkogamy, we calculated inbreeding coefficients at equilibrium \((F_e)\) (i.e., progeny cohort) for each lineage, assuming that adult \(F\) and \(t_m\) are constant among generations (Ritland, 1990). We then related these differences with selfing rate and herkogamy. Since \(F_e\) increases in relation to \(F\) due to self-fertilization, larger differences between \(F\) and \(F_e\) at each maternal lineage should indicate the presence of higher inbreeding depression. Once selection against inbred progeny has occurred, \(F_e\) and \(F\) will be equal (Ritland, 1990; Shirk & Hamrick 2014). This approach yields an estimation of potentially late-acting inbreeding depression in each lineage. \(F_e\) was calculated as \(F_e = (1-t_m) / (1+t_m)\), where \(t_m\) is the outcrossing rate calculated from MLTR for each maternal family (Allard, Jain & Workman. 1968; Ritland, 1990).

Inbreeding depression
To estimate inbreeding depression (δ), we collected 150 fruits from different individual plants in each population. These plants did not include the maternal families previously analyzed. From each fruit, we sowed ten seeds on separate pots under greenhouse conditions. Average (± S.E.) environmental variables in the greenhouse (March-September), measured by HOBO sensors (Onset Computer Corporation, USA) were: temperature 27.10 ± 0.06 °C; relative humidity 42.93 ± 0.09% and light intensity 3,133.59 ± 18.73 Lux (Camargo, 2009). When seeds germinated, one seedling per fruit was randomly chosen and grown under controlled conditions until flowering.

For each population, 100 individuals were randomly chosen to act as pollen receptors (mothers) and 50 individuals as pollen donors (fathers). Two manual pollination treatments were applied to each maternal plant: (1) cross-pollination (o), where two flowers were emasculated before anthesis and hand-pollinated with pollen from one donor randomly chosen from the same population; (2) self-pollination treatment (s), where two flowers of each receptor plant were fertilized with self-pollen. After pollination, flowers in both treatments were bagged individually with a fine nylon mesh. Since many mother plants did not produce the four flowers needed for pollination treatment application, the final sample included mother plants that produced at least one fruit per treatment (CM: N = 77; Map: N = 41). Two fitness components per pollination treatment were evaluated in each population: seed-set mean (i.e., number of seeds/ number of ovules) and seed mass. Seed mass was obtained from a random sample of 30 seeds per fruit using an analytical balance (Adventurer OHAUS). Allocating more resources to seeds can increase quality of seeds, increasing the likelihood of successful seedlings’ establishment and mothers’ fitness (Stanton & Young, 1994; Byers & Waller, 1999). In D. inoxia, as in D. stramonium, under greenhouse experiments conditions, inbreeding depression on seed mass has been detected even when maternal plants have been fertilized with a single pollen donor (Sosensky, 2004; Jiménez-Lobato, 2013). Likely seed mass may influence germination rate and seedling establishment in Datura species.
Cumulative inbreeding depression coefficient (δ) was calculated for each population as:

$$\delta = 1 - \frac{\hat{w}_s}{\hat{w}_o},$$

where \hat{w}_s and \hat{w}_o are the mean fitness of progenies derived from self- or cross-pollination, respectively. Average fitness of self- and out-cross progenies was calculated as the product of seed-set and seed mass (Schemske & Lande, 1985), and it was used to estimate the primary selfing rate (r) at each maternal lineage. This approach yields an estimate of early-acting inbreeding depression.

Statistical analyses

Statistical analyses were implemented in R software version 4.0.2 (R Development Core Team 2020). To estimate phenotypic variation in herkogamy within each population, we quantified the variance components within and between individuals. Using the nlme package (Pinheiro et al., 2017), we fitted a linear mixed model for each population where maternal family and plants nested within families were considered as random factors.

Statistical differences in primary selfing rates (r), inbreeding in adult cohort (F), inbreeding at equilibrium (F_e) and an estimate of inbreeding depression ($F_e - F$) between populations were tested by Analysis of Covariance (ANCOVA) in multcomp package (Hothorn, Bretz & Westfall, 2008). Population was considered as fixed factor and herkogamy as the quantitative variable.

Multilocus outcrossing (t_m) and primary selfing rates (r) were strongly negatively correlated (CM: estimate = -1.00, $p = 0.000$, d.f. = 25; Map: estimate = -0.969, $p = 0.000$, d.f. = 27), hence we present here only the analyses for primary selfing rates (r). Since r is a proportion, its relationship with herkogamy was analyzed with a beta regression using the betareg package (Cribari-Neto & Zeileis, 2010; Douma & Weedon, 2018). This regression has been proposed for
modeling continuous data limited to a specific interval (0, 1) (Ferrari & Cribari-Neto, 2004). We tested for cloglog, logit and log link functions and based on Akaike’s criterion we selected the model that best fit to the data. Estimates of β and \varnothing were obtained by maximum likelihood estimation. F, F_e and their differences were associated to herkogamy with a generalized linear model with Gaussian error distribution (Crawley, 2013). It must be noted that F_e is a theoretical prediction based on the selfing rate (r), and these quantities are therefore correlated by construction. Likewise, their correlation with other variables would be very similar. Thus, to avoid redundancy, we present the correlations of selfing rate with other variables.

Results

Variation in herkogamy and mating system parameters within and among populations

At CM plants were, on average, non-herkogamous (mean = -4.72; sd = 5.5 mm; range = 17.48 mm, from -13.83 to + 3.65 mm). In this population 20 out of 27 individual plants (74%) had reverse or no herkogamy and 7 (26%) exhibited approach herkogamy (Fig. 1A). Herkogamy varied proportionally more among plants at Map than at CM (N = 29) but the average was positive (Mean = 2.57 mm; sd = 11.15 mm; range = 44.8 mm, from -20 to +24.8 mm) (Fig. 1B).

The proportion of variance among individual plants in herkogamy was higher in Map (77.32%) than in CM (50.62%), indicating higher intra-individual variation in the latter population (Map: 22.68%; CM: 49.38%).

ANCOVAs indicate that primary selfing rates (r), inbreeding at equilibrium (F_e) and inbreeding depression ($F_e - F$) (Table S1) differed between populations and are affected by herkogamy. Inbreeding in adult cohort (F) was not different between populations and was unaffected by herkogamy (Table S1).
Mating system estimation and inbreeding coefficient (F)

The multilocus outcrossing rate (t_m) was, on average, higher in Map than in CM (0.682 vs. 0.294) although high variation in this parameter was detected among lineages in each population (Map, 0.022 to 1; CM, 0 to 1). The distribution of t_m is skewed toward low values in CM (ca. 60% of mother plants), but towards high values in Map (50% of the families with $t_m > 0.8$) (Fig. 2A and 2B, respectively). Primary selfing rate (r) was two-fold higher in CM than in Map (0.716 vs. 0.353), varying from $r = 0$ to 1 and from $r = 0$ to 0.978, respectively.

Inbreeding coefficient in the adult cohort (F) was negative in the two populations and highly variable (CM: $F = -0.193$, range -1 to 0.75; Map: $F = -0.085$, range -0.553 to 1).

Inbreeding coefficient at equilibrium (F_e) was higher in CM than Map ($F_e = 0.626$ vs. 0.238) and highly variable in both populations (from 0 to 1). The difference between the F of the adult cohort and the F_e of the progeny cohort was much higher in CM than in Map ($F_e - F = 0.819$ vs. 0.323). The estimated magnitude of cumulative inbreeding depression, measured on greenhouse conditions, was higher in Map than in CM ($\delta = 0.25$ vs. $\delta = 0.09$).

Relationships between herkogamy and mating system parameters

Correlations between primary selfing rate (r), inbreeding coefficient (F), inbreeding coefficient at equilibrium (F_e) and herkogamy were only significant in the Map population (Table 1, Figs. 3 and 4). Primary selfing rate (r) (and hence F_e) were negatively associated with herkogamy only in Map population (Table 1; Figs. 3A and 3B), indicating that individuals with reverse herkogamy or without herkogamy had progenies with higher selfing rate and inbreeding coefficient than plants with approach herkogamy. The best beta regression model between r and herkogamy was fitted with the log link function according to the Akaike’s criterion (Table S2). In addition, the breeding history of each maternal lineage (F) was associated with selfing (r) in the Map population only (Figs. 4A and 4B), but not with herkogamy in either of the two populations (F).
vs. herkogamy) (Table 1; Figs. 3C and 3D). The $F_e - F$ difference was positively correlated with primary selfing rate (r) only in CM (Table 1; Figs. 4C and 4D). We did not find any indication of a significant correlation between $F_e - F$ and herkogamy (Table 1; Figs. 3E and 3F). As expected, progenies’ inbreeding coefficient (F_e) was positively correlated with primary selfing rates (r) in both populations (results not shown).

Discussion

In annual, short-lived, plant species, the evolution of plant mating system in association with flower traits, such as herkogamy, depends on the constancy of natural selection within populations according to the opportunity for cross- and self-fertilization every year (Shirk & Hamrick 2014). Because herkogamy is a direct modifier of the efficiency of self- and cross-pollination, it is likely to coevolve with the plants’ mating system, and the different within-population lineages would be expected to vary in their history of inbreeding. Here, we evaluated the association of herkogamy, mating system and inbreeding history at a lineage level within two populations of *Datura inoxia*, an annual/short lived species distributed in arid and semiarid environments in Mexico and southern USA.

We found that herkogamy, selfing rates and inbreeding coefficients, as well as associations among them, varied considerably between and within populations. In line with expectations the Map population, where plants show pronounced approach herkogamy, had higher average outcrossing rate and lower inbreeding coefficient of progenies than individual plants that exhibited absence of and/or reverse herkogamy. These results are in line with the hypothesis of adaptive herkogamy as a mechanism that prevents selfing in populations and avoid inbreeding between individuals (Web & Lloyd 1986; Lloyd 1992). The relationship between
selfing/outcrossing rate and herkogamy has been found in other species of *Datura* such as *D. stramonium* (Motten & Antonovics, 1992; Motten & Stone, 2000) and *D. wrightii* (Elle & Hare, 2002) as well as in other species like *Gilia achilleifolia* (Takebayashi & Morrell, 2001), *Clarkia temblorensis* (Holtsford & Ellstrand, 2006), *Mimulus ringens* (Karron et al., 1997), *Nicotiana glauca* (Shueller, 2004), *Aquilegia canadensis* (Herlihy & Eckert, 2007), *Gesneria citrina* (Chen et al., 2009) and *Dalechampia scandens* (Opedal et al., 2016).

In the adult cohort of *D. inoxia*, we did not detect a significant association between the inbreeding coefficient and herkogamy. This result suggests that the inbreeding history of each lineage does not depend on herkogamy alone, and that purging of more inbred individuals and/or biparental inbreeding may also come into play (Charlesworth & Charlesworth, 1987). Reports of low survival rate of inbred individuals at early life, i.e., high inbreeding depression, suggests reductions of genetic load in adult plants (Medrano, Herrera & Barret, 2005; Abdelaziz et al., 2014). In fact, in partially selfing populations it has been observed that \(F \) in progeny cohorts increase in relation to \(F \) of the parental population, and later decrease again in the adult stage (Ritland 1990; Eguiarte et al., 1993). If the purge of inbred individuals occurs at Mapimí, the relationship between selfing rate in relation to flower herkogamy would be related to the differential contribution of lineages to the next generation, yielding evidence of natural selection on herkogamy (Medrano, Herrera & Barret, 2005).

Although we do not know the causes of the relationship between herkogamy and mating system found in this study, fluctuation of environmental factors, especially pollinator abundance, as it happens at Mapimí, can contribute to the maintenance of variation in herkogamy within populations. Variation in herkogamy is linked with plants’ reproductive assurance when pollinators are scarce, or with high outcrossing rates when abundant (Kalisz, Vogler & Hanley, 2004; Goodwillie, Kalisz & Eckert, 2005; Chen et al., 2009). Since outcrossing rates in Mapimí
are related to herkogamy, episodes of differential (or even contrasting) selection on herkogamy among lineages over time may have favored either outcrossing (approach herkogamy) or selfing (no herkogamy and/or reverse herkogamy). Further, phenotypic/genetic variance in herkogamy could facilitate the maintenance of the mixed mating system of \textit{D. inoxia} in Mapimi. The among individual plants variance component in herkogamy strongly suggests genetic differences between plants, beyond within-individual variance (i.e. heritability > 0). In this sense, our results may provide evidence the herkogamy is a functional trait linked to the reliability of pollinator service in the different populations (Moeller, 2006; Opedal, 2018).

On the other hand, the mating system of the population of Cañada de Moreno is predominantly selfing, and no association between selfing rates, herkogamy and inbreeding coefficients in the adult cohort were detected at this locality. Nevertheless, like the Mapimi population, there is a positive relationship between selfing rate and the F_e-F difference. These results suggest inbreeding depression in selfing individuals followed by genetic purging (Ritland, 1990). The latter explanation is supported by the contrasting average values of inbreeding depression found in the two populations of \textit{D. inoxia}, being lower in CM than in Map.

Theoretical models and experimental results have demonstrated that mutations that cause strong inbreeding depression can be purged from one generation to the next (Willis, 1999; Charlesworth & Willis, 2009), but mutations that cause mild inbreeding depression and are rare can be maintained in populations for multiple generations (Lande, Schemske & Schultz, 1994; Charlesworth & Willis 2009). The expression of mutations with mild deleterious effects among inbred individuals of \textit{D. inoxia} can help to explain the differences in inbreeding coefficients between progeny and adult generations and its relationship with selfing rate.

The magnitude of inbreeding depression has been shown to be higher in more stressful than benign environments (i.e., field vs. greenhouse conditions) (Crnokrak & Roff, 1999;
both inbred and outcross individuals may perform better under benign environments, and inbreeding depression expresses only as limit and/stressful conditions (Angeloni, Ouborg & Leimu, 2011). Further, it has been predicted that selection against deleterious mutations occurs mainly during the early life history stages and lowers towards later life cycle stages (Angeloni, Ouborg & Leimu, 2011). In this study the assessment of early inbreeding depression under greenhouse conditions could have underestimated the magnitude it can reach in natural, stressful conditions, inhabited by *Datura inoxia*. Yet, since we did detect early-acting inbreeding depression, results seem to be in agreement with expected trends: CM population, a predominantly selfing population, expresses low value of inbreeding depression than Map, possibly due to a faster purge of deleterious alleles.

Phenotypic variance in herkogamy results from genetic, developmental and environmental factors (Herlihy & Eckert, 2007; Vallejo-Marín & Barrett, 2009; Camargo et al., 2017). However, the evolution of mating system, linked to floral traits like herkogamy, requires additive genetic variance. Additive genetic variance of corolla length and herkogamy has been detected in populations of the annual *Datura stramonium* (Motten & Stone, 2000; Juárez-Ramírez, 2008; Camargo et al., 2017). Further, a quantitative survey of evolvability of herkogamy measured as mean-scaled additive variance, points out the high evolutionary potential of herkogamy compared to male and female sexual organs or flower size (Opedal et al., 2017). Our results, derived from the partition of phenotypic variance in herkogamy among individual plants and random variation (within individual variation or residual term), indicate a large amount of proportional variance between individuals in each population, but notably more so in Mapimí (77.32%) than in Cañada de Moreno (50.62 %). Thus, there is a strong indication that individual variation in average herkogamy in *D. inoxia* in Mapimi is genetically based and potentially adaptive (see Jiménez-Lobato & Núñez-Farfán 2012). High within-individual variation could be adaptive if, on average,
high intra-individual variation is linked to higher fitness (Herrera, 2009; Camargo et al., 2017). Otherwise, high intra-individual variation can be maintained in environments that are highly unpredictable in pollinator’s service along time. In the Cañada de Moreno population, the high within-plant variation in herkogamy could limit selection on it, constraining an adaptive response in this population (Falconer & MacKay, 1996; Lynch & Walsh, 1998).

Within-individual variation in plant traits, particularly in flower characters, can be developmental in origin or elicited in response to environmental variability (Herrera, 2009; Camargo et al., 2017). The stability of development or homeostasis has been associated with different levels of heterozygosity, so that heterozygous individuals better buffer environmental variation (Lerner, 1954). However, there is not clear consensus on this hypothesis; some evidence points to the potential effect of inbreeding, with the fixation of deleterious alleles and genetic drift influencing individuals’ level of developmental stability (Clarke, 1993). To what extent inbreeding and deleterious mutations are responsible for intra-individual flower trait variation in the CM population is not known yet, but evidence suggests some developmental variation in flower size and herkogamy, as shown in one highly inbred population of D. stramonium, is linked to environmental variation (Camargo et al., 2017)

Conclusions

Associations between herkogamy, mating system and inbreeding history at a lineage level are expected to occur within populations of self-compatible, hermaphroditic plant species. In D. inoxia, as in other species of Datura, approach herkogamy is associated with higher outcrossing rates and low levels of inbreeding in progeny. The results of this study show that populations of D. inoxia are diverging in mating system characteristics with important genetic implications.

Acknowledgments
We thank the members of the Laboratory of Ecological Genetics and Evolution for field assistance, particularly to Armando López Velázquez. Thanks to Rosalinda Tapia López for lab assistance and to Rafael Torres and Adriana Pérez for greenhouse work assistance. We are indebted to Øystein H. Opedal, Samuel Carleial and one anonymous reviewer for the critical review, and editing, that greatly improved this contribution. We are particularly grateful to Kiko Herrera’s family in the Mapimí Biosphere Reserve and to Tito Galván and family in Cañada de Moreno. This study is part of the Ph. D. thesis of V. Jiménez-Lobato.

References

Abdelaziz M, Muñoz-Pajares AJ, Berbel M, Perfectti F, Gómez JM. 2014. Association between inbreeding depression and floral traits in a generalist-pollinated plant. *Journal of Evolutionary Biology* 27:2495–2506. DOI: 10.1111/jeb.12492.

Andraca GG. 2009. Genética de poblaciones comparada entre *Datura stramonium* y su herbívoro especialista *Lema trilineata*. Unpubl. B. Sc. Biology Thesis. National Autonomous University of Mexico. Mexico.

Allard R, Jain S, Workman P. 1968. The genetics of inbreeding populations. *Journal of Chemical Information and Modeling* 110:1689–1699.

Angeloni F, Ouborg NJ, Leimu R. 2011. Meta-analysis on the association of population size and life history with inbreeding depression in plants. *Biological Conservation* 144:35–43. DOI: 10.1016/j.biocon.2010.08.016.

Armbruster P, Reed DH. 2005. Inbreeding depression in benign and stressful environments. *Heredity* 95:235–242. DOI: 10.1038/sj.hdy.6800721.
Ashman TL, Majetic CJ. 2006. Genetic constraints on floral evolution: A review and evaluation of patterns. *Heredity* 96:343–352. DOI: 10.1038/sj.hdy.6800815.

Baker H. 1955. Self-compatible and establishment after “long distance” dispersal. *Evolution* 9:347–349.

Barclay SA. 1959. Studies in the genus *Datura* (Solanaceae). I. Taxonomy of Subgenus *Datura*. Harvard University, Cambridge MA, USA.

Barrett SCH. 2002. Sexual interference of the floral kind. *Heredity* 88: 154–159.

Barrett SCH. 2010. Understanding plant reproductive diversity. *Philosophical Transactions of the Royal Society B: Biological Sciences* 365:99–109. DOI: 10.1098/rstb.2009.0199.

Bronstein JL, Huxman T, Horvath B, Farabee M, Davidowitz G. 2009. Reproductive biology of *Datura wrightii*: the benefits of a herbivorous pollinator. *Annals of Botany* 103:1435–1443. DOI: 10.1093/aob/mcp053.

Brunet J, Eckert CG. 1998. Effects of floral morphology and display on outcrossing in Blue Columbine, *Aquilegia caerulea* (Ranunculaceae). *Functional Ecology* 12:596–606. DOI: 10.1046/j.1365-2435.1998.00231.x.

Brys R, Jacquemyn H. 2012. Effects of human-mediated pollinator impoverishment on floral traits and mating patterns in a short-lived herb: An experimental approach. *Functional Ecology* 26:189–197. DOI: 10.1111/j.1365-2435.2011.01923.x.

Byers DL, Waller DM. 1999. Do plant populations purge their genetic load? effects of population size and mating history on inbreeding depression. *Annual Review of Ecology and Systematics* 30: 479–513.
Camargo ID, 2009. Valor adaptativo de la plasticidad fenotípica de Datura stramonium en respuesta a la variación de grano fino y grueso en la disponibilidad de agua. Unpubl. M. Sc. Thesis, Biological Sciences, National Autonomous University of Mexico, Mexico.

Camargo ID, Nattero J, Careaga SA, Núñez-Farfán J. 2017. Flower-level developmental plasticity to nutrient availability in Datura stramonium: Implications for the mating system. Annals of Botany 120:603–615. DOI: 10.1093/aob/mcx093.

Cheptou PO, Donohue K. 2011. Environment-dependent inbreeding depression: Its ecological and evolutionary significance. New Phytologist 189:395–407. DOI: 10.1111/j.1469-8137.2010.03541.x.

Carr DE, Fenster CB. 1994. Levels of genetic variation and covariation for Mimulus (Scrophulariaceae) floral traits. Heredity 72:606–618.

Charlesworth D, Charlesworth B. 1979. The evolutionary genetics of sexual systems in flowering plants. Proceedings of the Royal Society of London - Biological Sciences 205:513–530. DOI: 10.1098/rspb.1979.0082.

Charlesworth D, Charlesworth B. 1987. Inbreeding Depression and its Evolutionary Consequences. Annual Review of Ecology and Systematics 18:237–268. DOI: 10.1146/annurev.es.18.110187.001321.

Charlesworth D, Willis JH. 2009. The genetics of inbreeding depression. Nature Reviews Genetics 10:783–796. DOI: 10.1038/nrg2664.

Charlesworth D, Wright SI. 2001. Breeding systems and genome evolution. Current Opinion in Genetics & Development 11:685–690.

Chen XS, Martén-Rodríguez S, Li QJ, Fenster CB. 2009. Potential autonomous selfing in
Gesneria citrina (Gesneriaceae), a specialized hummingbird pollinated species with variable expression of herkogamy. *Journal of Integrative Plant Biology* 51:973–978. DOI: 10.1111/j.1744-7909.2009.00867.x.

Clarke GM. 1993. The genetic basis of developmental stability. I. Relationships between stability, heterozygosity and genomic coadaptation. *Genetica* 89:15–23. DOI: 10.1007/BF02424502.

Cock O, Hutchinson WF, Willis D, Shipley P. 2004. Micro-Checker: Software for identifying and correcting genotyping errors in microsatellite data. *Molecular Ecology Notes* 4:535–538.

Crawly MJ. 2013. *The R Book*. London: Wiley. DOI: 10.1016/0025-5408(96)80018-3.

Cribari-Neto F, Zeileis A. 2010. Beta Regression in R. *Journal of Statistical Software* 34: 24.

Crnokrak P, Barrett SCH. 2002. Perspective: purging the genetic load: a review of the experimental evidence. *Evolution* 56:2347–2358.

Crnokrak P, Roff DA. 1999. Inbreeding depression in the wild. *Heredity* 83:260–270. DOI: 10.1038/sj.hdy.6885530.

Douma JC, Weedon JT. 2019. Analysing continuous proportions in ecology and evolution: A practical introduction to beta and Dirichlet regression. *Methods in Ecology and Evolution* 10:1412–1430. DOI: 10.1111/2041-210X.13234.

Doyle JJ, Doyle JL. 1987. A rapid DNA isolation procedure from small quantities of fresh leaf tissues. *Phytochemical Bulletin* 19:11–15.

Duncan TM, Rausher MD. 2013. Evolution of the selfing syndrome in Ipomoea. *Frontiers in*
Plant Science 4:1–8. DOI: 10.3389/fpls.2013.00301.

Eckert CG, Kalisz S, Geber MA, Sargent R, Elle E, Cheptou P-O, Goodwillie C, Johnston MO, Kelly JK, Moeller DA, Porcher E, Ree RH, Vallejo-Marin M, Winn AA. 2009. Plant mating systems in a changing world. Trends in Ecology and Evolution 25:35–43. DOI: 10.1016/j.tree.2009.06.013

Eckert CG, Samis K, Dart S. 2006. Reproductive assurance and the evolution of uniparental reproduction in flowering plants. In: Harder LD, Barrett SCH eds. The ecology and evolution of flowers. UK: Oxford University Press, 183–203.

Eguiarte LE, Búrquez A, Rodríguez J, Martínez-Ramos M, Sarukhan J, Piñero D. 1993. Direct and indirect estimates of neighborhood and effective population size in a tropical palm, Astrocaryum mexicanum. Evolution 47:75–87.

Elle E, Hare D. 2002. Environmentally induced variation in floral traits affects the mating system in Datura wrightii. Functional Ecology 16:79–88. DOI: 10.1046/j.0269-8463.2001.00599.x.

Epperson BK, Clegg MT. 1987. First-pollination primacy and pollen selection in the morning glory, Ipomoea purpurea. Heredity 58:5–14.

Falconer D, MacKay TF. 1996. Introduction to quantitative genetics. Pearson.

Ferrari SLP, Cribari-Neto F. 2004. Beta regression for modeling rates and proportions. Journal of Applied Statistics 31:799–815.

Fisher RA. 1941. Average excess and average effect of a gene substitution. Annals of Eugenics banner 11:53–63.
Fox CW, Reed DH. 2011. Inbreeding depression increases with environmental stress: An experimental study and meta-analysis. *Evolution* 65:246–258. DOI: 10.1111/j.1558-5646.2010.01108.x.

Foxe JP, Slotte T, Stahl EA, Neuffer B, Hurka H, Wright SI. 2009. Recent speciation associated with the evolution of selfing in *Capsella*. *Proceedings of the National Academy of Sciences* 106:5241–5245. DOI: 10.1073/pnas.0807679106.

Friedman J, Rubin MJ. 2015. All in good time: Understanding annual and perennial strategies in plants. *American Journal of Botany* 102: 497–499. DOI: 10.3732/ajb.1500062.

Goodwillie C. 1999. Multiple origins of self-compatibility in Linanthus section *Leptosiphon* (Polemoniaceae): Phylogenetic evidence from internal-transcribed-spacer sequence data. *Evolution* 53:1387–1395. DOI: doi.org/10.1111/j.1558-5646.1999.tb05403.x.

Goodwillie C, Kalisz S, Eckert CG. 2005. The evolutionary enigma of mixed mating systems in plants: Occurrence, theoretical explanations, and empirical evidence. *Annual Review of Ecology, Evolution, and Systematics* 36:47–79. DOI: 10.1146/annurev.ecolsys.36.091704.175539.

Grant V. 1983. Behavior of hawkmoths on flowers of *Datura meteloides*. *Botanical Gazette* 144:280–284. DOI: 10.1086/337374.

Herlihy CR, Eckert CG. 2007. Evolutionary analysis of a key floral trait in *Aquilegia canadensis* (Ranunculaceae): Genetic variation in herkogamy and its effect on the mating system. *Evolution* 61:1661–1674. DOI: 10.1111/j.1558-5646.2007.00137.x.

Herrera CM. 2009. Fitness consequences of subindividual variability in organ traits for plants. In: *Multiplicity in unity: Plant subindividual variation & interactions with animals*. The
Holtsford TP, Ellstrand NC. 2006. Genetic and environmental variation in floral traits affecting outcrossing rate in *Clarkia tembloriensis* (Onagraceae). *Evolution* 46:216–225. DOI: 10.2307/2409816.

Hothorn T, Bretz F, Westfall P. 2008. Simultaneous inference in general parametric models. *Biometrical Journal*, 50: 346–363.

Husband CB, Schemske DW. 1996. Evolution of the magnitude and timing of inbreeding. *Evolution* 50:54–70.

Jiménez-Lobato, V. 2013. Diferenciación adaptativa de rasgos florales en *Datura inoxia* Mill. (Solanaceae). Unpubl. Doctoral Diss., Instituto de Ecología AC, Xalapa, Mexico.

Jiménez-Lobato V, Núñez-Farfán J. 2012. Population differentiation in floral characters of *Datura inoxia* mill. *Evolutionary Ecology Research* 14:1015–1038.

Juárez-Ramírez JO. 2008. Diferenciación adaptativa del fenotipo floral de *Datura stramonium*: varianza genética del néctar. Unpubl. B. Sc. Thesis, Biology. National Autonomous University of Mexico. Mexico.

Kalisz S, Vogler DW, Hanley KM. 2004. Context-dependent autonomous self-fertilization yields reproductive assurance and mixed mating. *Nature* 430:884–887.

Karron JD, Jackson RT, Thumser NN, Schlicht SL. 1997. Outcrossing rates of individual *Mimulus ringens* genets are correlated with anther-stigma separation. *Heredity* 79:365–370. DOI: 10.1038/sj.hdy.6882300.

Lande R, Schemske DW, Schultz ST. 1994. High inbreeding depression, selective interference
among loci, and the threshold selfing rate for purging recessive lethal mutation. *Evolution* 48:965–978.

Latta R, Ritland K. 1994. The relationship between inbreeding depression and prior inbreeding among populations of four *Mimulus* taxa. *Evolution* 48:806–817. DOI: 10.2307/2410488.

Lerner IM. 1954. *Genetic Homeostasis*. New York: Wiley.

Lloyd DG. 1992. Self- and Cross- fertilization in plants. II. The selection of selffertilization. *International Journal of Plant Science* 153:370–380.

Lloyd DG, Webb CJ. 1986. The avoidance of interference between the presentation of pollen and stigmas in angiosperms I. Dichogamy. *New Zealand Journal of Botany* 24:135–162. DOI: 10.1080/0028825x.1986.10409725.

Lockwood TE. 1973. Generic recognition of *Brugmansia*. *Botanical Museum Leaflets*:273–284.

Lynch M, Walsh B. 1998. *Genetics and analysis of quantitative traits*. Sinauer.

McCall AC, Richman S, Thomson E, Edgerton M, Jordan S, Bronstein JL. 2018. Do honeybees act as pollen thieves or pollinators od *Datura wrightii*?. *Journal of Pollination Ecology* 24:164–171. DOI: dx.doi.org/10.26786/1920-7603%282018%2917

Medrano M, Herrera CM, Barret SCH. 2005. Herkogamy and mating patterns in the self-compatible daffodil *Narcissus longispathus*. *Annals of Botany* 95:1105–1111.

Moeller DA. 2006. Geographic structure of pollinator communities, reproductive assurance, and the evolution of self-pollination. *Ecology* 87:1510–1522.

Morgan MT, Wilson WG. 2005. Self-fertilization and scape from pollen limitation in variable pollination environments. *Evolution* 59:1143–1148.
Morran LT, Parmenter MD, Phillips PC. 2009. Mutation load and rapid adaptation favour outcrossing over self-fertilization. *Nature* 462:350–352. DOI: 10.1038/nature08496.

Motten AF, Antonovics J. 1992. Determinants of outcrossing rate in a predominantly self-fertilizing weed, *Datura stramonium* (Solanaceae). *American Journal of Botany* 79:419–427. DOI: 10.2307/2445154.

Motten AF, Stone JC. 2000. Heritability of stigma position and the effect of stigma-anther separation on outcrossing in a predominantly self-fertilizing weed, *Datura stramonium* (Solanaceae). *American Journal of Botany* 87:339–347. DOI: 10.2307/2656629.

Opedal ØH. 2018. Herkogamy, a principal functional trait of plant reproductive biology. *International Journal of Plant Sciences* 179:677–687. DOI: 10.1086/700314.

Opedal ØH, Armbruster WS, Pélabon C. 2015. Inbreeding effects in a mixed-mating vine: Effects of mating history, pollen competition and stress on the cost of in breeding. *AoB PLANTS* 7:1–13. DOI: 10.1093/aobpla/plv133.

Opedal ØH, Bolstad GH, Hansen TF, Armbruster WS, Pélabon C. 2017. The evolvability of herkogamy: Quantifying the evolutionary potential of a composite trait. *Evolution* 71:1572–1586. DOI: 10.1111/evo.13258.

Opedal ØH, Albersten E, Armbruster WS, Pérez-Barrales R, Falahati-Anbaran M, Pélabon C. 2016. Evolutionary consequences of ecological factors: pollinator reliability predicts mating-system traits of a perennial plant. *Ecology Letters* 19: 1486:1495.

Pannell JR. 2015. Evolution of the mating system in colonizing plants. *Molecular Ecology* 24:2018–2037. DOI: 10.1111/mec.13087.
Pinheiro J, Bates D, Sarkar D, Team R. 2017. nlme: Linear and nonlinear mixed effects models. R package.

R Development Core Team. 2020. R: A language and environment for statistical computing.

Ritland K. 1990. Inferences about inbreeding depression based on changes of the inbreeding coefficient. *Evolution* 44:1230–1241. DOI: 10.2307/2409284.

Ritland K. 2002. Extensions of models for the estimation of mating systems using n independent loci. *Heredity* 88:221–228. DOI: 10.1038/sj/hdy/6800029.

Ritland K, Jain S. 1981. A model for the estimation of outcrossing rate and gene frequencies using n independent loci. *Heredity* 47:35–52. DOI: 10.1038/hdy.1981.57.

Rousset F. 2008. GENEPOP’007: A complete re-implementation of the GENEPOP software for Windows and Linux. *Molecular Ecology Resources* 8:103–106. DOI: 10.1111/j.1471-8286.2007.01931.x.

Rousset F, Raymond M. 1995. Testing heterozygote excess and deficiency. *Genetics* 140:1413–1419. DOI: 10.1016/j.j.peds.2008.07.054.

Schemske DW, Lande R. 1985. The evolution of self-fertilization and inbreeding depression in plants. II. Empirical observations. *Evolution* 39:41–52.

Schoen DJ, Lloyd DG. 1992. Self- and cross-fertilization in plants. III. Methods for studying modes and functional aspects of self-fertilization. *International Journal of Plant Sciences* 153:381–393. DOI: 10.1086/297042.

Schoen DJ, Morgan MT, Bataillon T. 1996. How does self-pollination evolve? Inferences from floral ecology and molecular genetic variation. *Philosophical Transactions of the Royal
Schueller SK. 2004. Self-pollination in island and mainland populations of the introduced hummingbird-pollinated plant, *Nicotiana glauca* (Solanaceae). *American Journal of Botany* 91:672–681.

Shirk RY, Hamrick JL. 2014. High but variable outcrossing rates in the invasive *Geranium carolinianum* (Geraniaceae). *American Journal of Botany* 101:1200-1206.

Sicard A, Lenhard M. 2011. The selfing syndrome: A model for studying the genetic and evolutionary basis of morphological adaptation in plants. *Annals of Botany* 107:1433–1443. DOI: 10.1093/aob/mcr023.

Sosenski, P. 2004. Variación geográfica en el sistema de apareamiento en *Datura stramonium*. Unpubl. B. Sc. Thesis, Biology, National Autonomous University of Mexico. Mexico.

Stanton M, Young HJ. 1994. Selecting for floral character associations in wild radish *Raphanus sativus* L. *Journal of Evolutionary Biology* 7: 271–285.

Stebbins LG. 1957. Self fertilization and population variability in the higher plants. *The American Naturalist* XCI:337–354.

Takebayashi N, Delph LF. 2000. An association between a floral trait and inbreeding depression. *Evolution* 54:840–846. DOI: 10.1111/j.0014-3820.2000.tb0084.x.

Takebayashi N, Morrell PL. 2001. Is self-fertilization an evolutionary dead end? Revisiting an old hypothesis with genetic theories and a macroevolutionary approach. *American Journal of Botany* 88:1143–1150. DOI: 10.2307/3558325.

Takebayashi N, Wolf DE, Delph LF. 2006. Effect of variation in herkogamy on outcrossing
within a population of *Gilia achilleifolia*. *Heredity* 96:159–165. DOI: 10.1038/sj.hdy.6800780.

Toräng P, Vikström L, Wunder J, Wötzel S, Coupland G, Ågren J. 2017. Evolution of the selfing syndrome: Anther orientation and herkogamy together determine reproductive assurance in a self-compatible plant. *Evolution* 71:2206–2218. DOI: 10.1111/evo.13308.

Vallejo-Marín M, Barrett SCH. 2009. Modification of flower architecture during early stages in the evolution of self-fertilization. *Annals of Botany* 103:951–962. DOI: 10.1093/aob/mcp015.

de Vos JM, Keller B, Zhang L-R, Nowak MD, Conti E. 2018. Mixed mating in homostyloous species: Genetic and experimental evidence from an alpine plant with variable herkogamy, *Primula halleri*. *International Journal of Plant Sciences* 179:87–99. DOI: 10.1086/695527.

Webb CJ, Lloyd DG. 1986. The avoidance of interference between the presentation of pollen and stigmas in angiosperms II. Herkogamy. *New Zealand Journal of Botany* 24:163–178. DOI: 10.1080/0028825X.1986.10409726.

Willis JH. 1999. The role of genes of large effect on inbreeding depression in *Mimulus guttatus*. *Evolution* 53:1678-1691. DOI: doi.org/10.1111/j.1558-5646.1999.tb05403.x.

Wright SI, Kalisz S, Slotte T. 2013. Evolutionary consequences of self-fertilization in plants. *Proceedings of the Royal Society B: Biological Sciences* 280. DOI: 10.1098/rspb.2013.0133.

Yahara T. 1992. Graphical analysis of mating system evolution in plants. *Evolution* 46:557-561.
Figure 1

Herkogamy value average of individual plants of *Datura inoxia*. A. Cañada de Moreno and B. Mapimí. Error bars indicate 1 standard deviation.
A. Cañada de Moreno

B. Mapimí
Figure 2

Histogram and boxplot graphs of outcrossing rate (t) for two populations of *Datura inoxia* in Mexico: A. Cañada de Moreno and B. Mapimí. Boxplots show quartiles and the median value for each population.
Figure 3

Relationships between primary selfing rates (r), inbreeding coefficients estimated in adult cohort (F), and inbreeding coefficients at equilibrium (Fe) (progeny cohort), with herkogamy values in two populations of *Datura inoxia* in Mexico. Fitted model is depicted only for the significant correlation (B).
Figure 4

Correlation between inbreeding coefficient (F), and the differences between inbreeding coefficients at equilibrium (Fe) and F ($Fe-F$), with primary selfing rates (r) in two populations of *Datura inoxia* in Mexico. Fitted model is depicted only for the significant correlations (B and C).
Cañada de Moreno

A.

Mapimí

B.

\[P < 0.01 \]
\[r^2 = 0.34 \]

C.

\[P < 0.01 \]
\[r^2 = 0.28 \]

D.

Fe-F

\[F \]
Table 1

Parameter	Cañada de Moreno	Mapimí
Primary selfing rate (r)		
Inbreeding coefficient (F)		
Equilibrium inbreeding (Fe)		
Difference (Fe - F)		
Herkogamy		

Correlation between primary selfing rate (r), inbreeding coefficient (adult cohort: F), inbreeding coefficient at equilibrium (progeny cohort: Fe), the difference between Fe and F (Fe-F) and herkogamy in two populations of *Datura inoxia* (Cañada de Moreno, and Mapimí). Parameter estimates (above diagonal) and their standard error (below diagonal). Significant values are shown in bold type. Statistical models used in each test are described in the Materials and Methods section.
Cañada de Moreno	r	Herkogamy	F	Fe	$Fe-F$
r	-	0.023	0.307	0.982***	0.739**
Herkogamy	0.016	-	-0.001	0.014	0.015
F	0.234	0.014	-	na	na
Fe	0.044	0.012	na	-	na
$Fe-F$	0.239	0.016	na	na	-

Mapimí	r	Herkogamy	F	Fe	$Fe-F$
r	-	-0.029*	0.572**	0.854***	0.283
Herkogamy	0.012	-	-0.006	-0.009*	-0.004
F	0.154	0.005	-	na	na
Fe	0.042	0.004	na	-	na
$Fe-F$	0.158	0.005	na	na	-

* $P < 0.05$, ** $P \leq 0.005$, *** $P < 0.0005$ indicate significant association between variables.