MUC1 expression in primary and metastatic pancreatic cancer cells for in vitro treatment by \(^{213}\)Bi-C595 radioimmunoconjugate

Control of micrometastatic pancreatic cancer remains a major objective in pancreatic cancer treatment. The overexpression of MUC1 mucin plays an important role in cancer metastasis. The aim of this study was to detect the expression of MUC1 in human primary tumour tissues and three pancreatic cancer cell lines (CAPAN-1, CFPAC-1 and PANC-1), and target MUC1-positive cancer cells in vitro using \(^{213}\)Bi-C595 alpha-immunoconjugate (AIC). The expression of MUC1 on pancreatic tumour tissues and cancer cell lines was performed by immunohistochemistry and further confirmed by confocal microscope and flow cytometry analysis on the cell surface. Cytotoxicity of \(^{213}\)Bi-C595 was tested by MTS assay. Apoptosis was documented using TUNEL assay. Overexpression of MUC1 was found in ~90% of tested tumour samples and the three pancreatic cancer cell lines. \(^{213}\)Bi-C595 is specifically cytotoxic to pancreatic cancer cells in a concentration-dependent fashion. These results suggest that overexpression of MUC1 in pancreatic cancer is a useful target, and that the novel \(^{213}\)Bi-C595 AIC selectively targets pancreatic cancer cells in vitro. \(^{213}\)Bi-C595 may be a useful agent for the treatment of micrometastases or minimal residual disease (MRD) in pancreatic cancer patients with overexpression of MUC1 antigen.

Keywords: MUC1 mucin; pancreatic tumours; pancreatic cancer cell lines; C595 monoclonal antibody; \(\alpha\)-particle emitter \(^{213}\)Bi; radioimmunoconjugate

Pancreatic cancer is one of the leading cause of cancer death in the US, where an estimated 29,200 new cases per year will be diagnosed, and 28,900 people will die from the disease (Landis et al, 1999). The 5-year survival rate is only 5.2% for those who had no cancer-directed treatment (Sener et al, 1999) and the median survival is ~6 months. Although some improvements in surgical outcome occur in patients who also receive chemotherapy and/or radiotherapy, the impact on long-term survival has not changed in two decades (Sener et al, 1999). The major problem in the management of postsurgical cases is failure to control cancer micrometastases. Many carcinoma-associated markers have aberrant expression in cancer cells. A monoclonal antibody (MAb) with high specificity and affinity could be used for targeted therapy, and may serve to overcome this problem.

MUC1 is a well-documented example of a marker that influences pathophysiological behaviour. High molecular weight glycoproteins, described as mucins or mucin-like glycoproteins, are frequently found associated with breast carcinoma and other epithelial cell adenocarcinomas (Zotter et al, 1988). Cancer-associated MUC1 is structurally different from normal MUC1 in that the former has shorter and less dense O-glycan chains, exposing novel regions of the protein core. The large extracellular domain is dominated by a heavily O-glycosylated region consisting of a variable number of 20 amino-acid tandem repeats (VNTRs) (Gendler et al, 1988). The number of these VNTR sequences is subject to genetic polymorphism, varying between 30 and over 100. MUC1 function involves mediating cellular transformation in integrating the growth factor receptor and Wnt signalling pathways (Ren et al, 2002). MUC1 expression causes anchorage-independent growth and tumour formation, and is a useful marker for the prognosis of the patients with carcinoma. Patients with MUC1 expression in the carcinoma show significantly lower survival rates than those without MUC1 expression (Kitamura et al, 1996; Utsunomiya et al, 1998).

MAb C595 (also known as NCRC48) is reactive with the protein core of MUC1 mucin. The target epitope of the MAB C595 is the tetrameric motif Arg-Pro-Ala-Pro that is repeated many times within the MUC1 protein core (Gendler et al, 1988; Price et al, 1990). The reactivity of the MAB C595 with synthetic peptides containing this motif permits efficient antibody purification using peptide-epitope affinity chromatography, which, unlike other methodologies, enables exclusive recovery of functionally active antibody.

MAbs are being realised for their potential in anticancer therapeutics. It was reported that the most widely explored strategy for enhancing the efficacy of antitumour antibodies is...
direct arming by chelator linkage to toxins or radionuclides (Farah et al., 1998). However, the evaluation of specific cancer MAbS remains a major task for antibody-based therapies. MUC1 may provide a good basis for targeting pancreatic cancer cells in transit or in preangiogenic cancer cell clusters. MAb C595 has been labelled with 67Cu and 188Re for radioimmunotherapy in bladder cancer (Hughes et al., 1997, 2000a; Murray et al., 2001).

Alpha-emitting radionuclides such as 212Bi emit α particles with energies of 4–8 MeV, which are up to an order of magnitude greater than most β rays. Yet, their ranges are two orders of magnitude less as α particles have a linear energy transfer (LET) that is about 100 times greater (Allen, 1999). Since α particles, by comparison with β particles, have a much shorter path length as well as a much higher LET, they are significantly more selective and potent in killing targeted cells (McDevitt and Scheinberg, 2002). Owing to the short path length, little collateral damage may be inflicted upon nontarget cells, while a single decay of an α-radionuclide to that cancer cell.

In the present study, we have demonstrated moderate to strong MUC1 expression on the majority of human primary pancreatic tumours and pancreatic cancer cell lines using MAb C595. We also evaluated an anticancer effect of 212Bi-C595 against human pancreatic cells in vitro. We suggest that 212Bi-C595 may have the potential to target micrometastatic pancreatic cancer cells with MUC1 overexpression and represent a new therapeutic modality for the control of pancreatic cancer metastases.

MATERIALS AND METHODS

Monoclonal antibodies

C595 MAb was obtained from Nottingham University, UK. A nonspecific control IgG1 MAb (known as A2, offered MOPC) was provided by Professor A Collins (University of New South Wales, Australia). Rabbit anti-mouse IgG conjugated to HRP and mouse IgG1 negative control MAb were purchased from Dakopatts (Glostrup, Denmark). Goat anti-mouse-fluorescein isothiocyanate (FITC) MAb was purchased from Silenus (Sydney, NSW, Australia). Alexa Fluor 488 goat anti-mouse IgG MAb was purchased from Molecular Probes (Eugene, OR, USA).

Human pancreatic tumour tissues

Following institutional approval from the Northern Sydney Health Human Research Ethics Committee, informed consent was obtained from 53 patients (male: 31, female: 22; age range 41 – 81 years, average 68.7 years) undergoing pancreatic resection for a pancreatic mass at Royal North Shore Hospital, NSW, Australia. Tumour sections included normal pancreatic tissue. Slides from pancreas obtained from 53 patients (male: 31, female: 22; age range 41 – 81 years, average 68.7 years) undergoing pancreatic resection for a pancreatic mass at Royal North Shore Hospital, NSW, Australia. Slides from the pancreas were prepared for histological examination.

Immunohistochemistry

MUC1 expression was detected by immunohistochemistry. Briefly, paraffin-embedded tissues were cut at 5 mm sections, mounted on gelatine-coated glass slides and then incubated for 20 min at 60°C. The slides were deparaffinised in xylene, followed by a graded series of alcohols (100, 95 and 75%) and rehydrated in Tris-buffer saline (TBS, pH 7.5). The following steps were performed at room temperature (RT). The primary C595 MAb (13.0 μg ml$^{-1}$) was incubated for 1 h. After washing with TBS, slides were incubated with HRP-conjugated rabbit anti-mouse IgG (6.5 μg ml$^{-1}$) for 45 min and then washed with TBS two times, and developed with diaminobenzidine (DAB) substrate solution for 5–10 min. The criteria for assessment are to combine staining intensity with percentage of positive cancer cells as follows: −, <25%; + (weak), 25–50%; ++ (moderate), 50–75%; +++ (strong), >75% of the neoplastic cells stained. An average of the grades for two independent observers is taken.

Cell culture

The human pancreatic cell lines (CAPAN-1, CFPAC-1 and PANC-1) were purchased from American Type Culture Collection (ATCC, Rockville, MD, USA). CAPAN-1 and CFPAC-1 cell lines are cultured in Iscove’s modified Dulbecco’s medium supplemented with 20 and 10% (v/v) heated-inactivated fetal bovine serum (FBS), 50 U ml$^{-1}$ penicillin and 50 U ml$^{-1}$ streptomycin, respectively. PANC-1 cells are cultured in Dulbecco’s modified eagle’s medium supplemented with 10% FBS, 50 U ml$^{-1}$ penicillin and 50 U ml$^{-1}$ streptomycin. All tissue culture reagents were supplied by Life Technologies Inc. (Grand Island, NY, USA), unless otherwise stated. Three cell lines were maintained in a humidified incubator at 37°C and 5% CO$_2$ and detached with Dulbecco’s phosphate-buffer saline (DPBS)/trypsin (0.25%)/ethylene diamine tetraacetic acid (EDTA) (0.05%) at 37°C for 5–10 min.

Immunocytochemistry

An indirect conjugated peroxidase method was used to detect the expression of MUC1 on CAPAN-1, CFPAC-1 and PANC-1 pancreatic cancer cell lines as described previously (Li et al., 2002).

Confocal microscope for MUC1 expression

1 × 105 cultured cells including CAPAN-1, CFPAC-1 and PANC-1 were grown on coverslips. After washing with PBS, the cells were fixed on coverslips in ice-cold acetone for 10 min. C595 MAb (13.0 μg ml$^{-1}$) was incubated for 12 h at 4°C or for 2 h at RT on a shaking table and rinsed with PBS. Thereafter, a goat-anti-mouse-conjugated Alexa 488 green antibody (1:100 dilution) was added for 1 h at RT, rinsed in PBS for 10–15 min. The slides were mounted with coverslips using glycerol (Sigma-Aldrich Pty, Limited, Castle Hill, NSW, Australia). Examination was performed with Confocal Microscope (FV300/FV500 Olympus, Japan).

Flow cytometry

Indirect immunofluorescence imaging counter was performed to detect cell-surface expression of MUC1 in CAPAN-1, CFPAC-1 and PANC-1 pancreatic cancer cell lines as described previously (Li et al., 2002).

Preparation of α conjugates

212Bi has a short half-life ($t_{1/2} = 46$ min), short range (80 μm) and emits an α particle with energy of 8 MeV. 212Bi was eluted from the 222Ac/212Bi column, which was supplied by the Institute for Transuranium Elements (ITU), Germany, with 240 μl of freshly prepared 0.15 M hydriodic acid (HI) as the (BiI$_5$)$_2$$^{–}$ anion species, neutralised to pH 4 – 4.5 with the addition of 3 M ammonium acetate and immediately used to radiolabel the MAb construct (Boll et al., 1997). A time of 2 – 3 h was allowed for 212Bi to grow back in the generator for the next elution. C595 and A2 MAbS were conjugated with the chelator, cyclic diethylenetriaminepentacetic acid anhydride (cDTPA) (Sigma-Aldrich Pty, Limited, Castle Hill, NSW, Australia), using published methods (Abbas Rizvi et al., 2000). The conjugated C595 and A2 were measured by plate reader at 280 nm wavelength using ProMax software (Bio-TEC).
In vitro cell cytotoxicity

An MTS assay was used to test cell cytotoxicity after treatment. Cultured CAPAN-1, CFPAC-1 and PANC-1 pancreatic cancer cells were washed twice with DPBS and seeded into 96-well flat-bottomed plates at a density of 2 × 10^4 cells in 100 μl of RPMI-1640 medium plus 5% FBS. The activity of 213Bi-C595 (test) and 213Bi-A2 (control) preparations was measured using an individual radioisotope calibrator (Biodex Medical System ATOMLAB 200, Shirley, NY, USA) and neutralised to pH 7.0 via the addition of 10% (v/v) 1 M NaHCO3 (pH 9.0). After this, six serial activities of 213Bi-C595 AIC (1 ~ 10 μCi) were added to each well in triplicate. Controls included nonspecific 213Bi-A2 (10 μCi), cDTTPA-C595, 213Bi MAb alone or cell alone (no treatment) were also performed in triplicate in the same 96-well plate for each experiment. The plates were then incubated o/n in a 5% CO2 atmosphere at 37°C. The cells were then washed and incubated with 100 μl phenol-red free medium (without FBS) containing 20 μl of the cellTiter 96 Aqueous One Solution reagents (Promega, Madison, WI, USA). After a 3 h incubation in a 5% CO2 atmosphere at 37°C, the reaction was stopped by the addition of 10% SDS, and the absorbance in each well was recorded at 570 nm using a SPECTRO max plate reader (BIO-RAD, Hercules, CA, USA). The absorbance reflects the number of surviving cells. Blanks were subtracted from all data and analysed using Prism software (GraphPad Software Inc., USA).

RESULTS

Expression of MUC1 on human pancreatic cancer tissues

Immunoreactivity identified in pancreatic cancer tissues using paraffin section stained with MAb C595 is summarised in Table 1. Typical staining results are shown in Figure 1. Strong MUC1 expression was found in 28 out of 53 (53%) tested samples (Figure 1A, patient 1). Moderate MUC-1 expression was found in 15 out of 53 (28.4%) (Figure 1B, patient 2), and weak expression in five out of 53 (9.4%) samples. No significant expression of MUC1 was found in five out of 53 (9.4%) samples. The control A2 MAb was negative to pancreatic cancer section (Figure 1C). Normal tissues were not detected with immunoreactivity in 50 out of 53 (94.6%) (Figure 1D). Only three samples with weak immunoreactivity were detected in the normal part of the pancreatic gland.

Tissue staining with C595 MAb	+++++	++	+	–
Tumour	28	15	5	5
Normal pancreas	0	0	3	50

Cancer and normal tissue sections were collected from 53 pancreatic cancer patients.

Expression of MUC1 in pancreatic cancer cell lines

The immunoreactivity of the three pancreatic cancer cell lines to MAb C595 is summarised in Table 2. Immunocytochemical staining of CAPAN-1, CFPAC-1 and PANC-1 cell lines was positive for MAb C595 (Figure 2A, B and C), but negative for control MAb A2 (Figure 2D, E and F) or omitted primary MAb (data not shown). These results indicate that high expression of target antigens (MUC1) was found in metastatic and primary pancreatic cancer cell lines.
Immunocytochemical staining appeared to localise to the cell membranes and Confocal Microscopy confirmed this. The Confocal results indicate that surface expression of MUC1 was found in CAPAN-1 (Figure 2G), CFPAC-1 (Figure 2H) and PANC-1 (Figure 2I) using MAb C595, but not for MAb A2 (data not shown).

Flow cytometry analysis also demonstrated distinct differences in the patterns of reactivity of the MAb C595 with three cancer cell lines compared with control MAb as shown by the representative histograms. There were positive shifts (increases in the intensity of fluorescence) in the CAPAN-1 (Figure 2J), CFPAC-1 (Figure 2K) and PANC-1 cell lines (Figure 2L).

Table 2 Summary of immunocytochemistry, flow cytometry, confocal microscope and cytotoxicity results

MUC1	Flow cytometry*	Immunocytochemistry	Gated %	Median value	Confocal microscope	Cytotoxicity	D0 value
CAPAN-1	++	95	40	++	4.5		
CFPAC-1	+++	99.5	500	+++	3.8		
PANC-1	+++	98.5	80	+++	4.3		

*= negative staining; + = weak staining; ++ = moderate staining; +++ = strong staining; *positive cells percentage.

Figure 2 Expression of MUC1 in pancreatic cancer cell lines. Representative pictures are shown for immunostaining with MAb C595 (test) and A2 (control). MAb C595 was strongly positive in three cell lines (A–C), while MAb A2 was negative in three cancer cell lines (D–F). Brown staining indicates positive cells. The MUC1 cell surface expression in three cancer cell lines was confirmed by Confocal Microscope (G–I). Green staining indicates positive cells. Expression of MUC1 in three viable pancreatic cancer cell lines was assessed by FACA analysis (J–L). Data are presented as histograms, using a mouse IgG1-negative control to determine background fluorescence and to set the marker (M1). All of the photographs are at × 200 magnification.
and PANC-1 (Figure 2L) cells stained with MAb C595. These results indicate that the target antigen (MUC1), recognised by MAB C595, are on the cell surface of viable cells, and confirm our immunocytochemical observations.

213Bi-C595 inhibits pancreatic cancer cells proliferation in vitro

Varying concentrations of 213Bi-C595 were added to the cultured cell lines for 24 h, and their effect on cell growth was assessed using MTS assays in triplicate. D0 (37% cell survival) values of 213Bi-C595 are at 3.8, 4.5 and 4.3 μCi in 300 μl for three cell lines (Figure 3), whereas the D0 values of 213Bi-A2 are at 60–69 μCi, 13–18-fold, respectively. 213Bi-C595 AIC inhibits the growth of the three pancreatic cancer cell lines in vitro in a concentration-dependent fashion. At the maximum dose of 10 μCi, cell survival when treated with 213Bi-C595 was reduced to 5–10%, while those treated with nonspecific 213Bi-A2 AIC was 90–95%, and DTPA-C595 or C595 MAB alone were more than 95%. The higher the overexpression of MUC-1, the lower the D0 value (See Table 2).

213Bi-C595 induces apoptosis

After treatment with 213Bi-C595, the treated cells in the 96-well plates showed typical apoptotic morphology, that is, cells became rounded, shrunken and detached, whereas untreated controls and cells treated with the nonspecific control 213Bi-A2 did not exhibit apoptotic morphology. Representative morphological changes are shown in Figure 4A–F. The exposed 3′–OH ends of DNA fragments generated by apoptotic DNA cleavage were detected by TUNEL assay, in which the nonapoptotic cells stained green, while apoptotic cells stained brown. A representative experiment is shown in Figure 4G–L. After treatment, 213Bi-C595-treated cells showed typical apoptotic morphology, whereas cells treated with 213Bi-A2 did not. The results are summarised in Figure 4. 213Bi-C595 causes morphological changes of treated cancer cells and induces apoptosis. The percentages of apoptotic cells are 11, 18, 42, 87, 92 and 81% at 4, 8, 12, 24, 48 and 72 h after treatment with 10 μCi106 cells −1, respectively (Figure 5). However, the percentage of apoptotic cells for nonspecific control groups remains low (<15%).

DISCUSSION

Monoclonal antibody-based therapeutics is an important option to control metastases and improve survival rate of pancreatic cancer. These strategies include MAB combination with cytotoxic drugs, conjugation with radionuclides or immunological effector cells. High specification and affinity to targeted cancer tissue are essential for the selection of targeted antigens and targeting vectors. In the present study, we first demonstrated the expression of the MUC1 antigen on human pancreatic cancer specimens and human pancreatic cancer cell lines using MAB C595. MUC1 is a mucin, high MW glycoprotein. The biological function of MUC1 may be in part due to its large size and the extended rigid structure. The expression of MUC1 in tumours may function as an antiadhesion molecule, which inhibits cell–cell adhesion, inducing a release of cells from tumour nests and causing micrometastasis (Feng et al., 2002). Overexpression of MUC1 in cancer cells may effect efficient lysis by cytotoxic lymphocytes and therefore contribute to escape from immune surveillance (van de Wiel-van Kemenade et al., 1993). It has been proposed that enhanced levels of MUC1 expression by cancer cells may mask extracellular domains from immune surveillance, confer a survival advantage on malignant cells and play an important role in the ability of tumours to invade and metastasise (Mommers et al., 1999; Hughes et al., 2000b). It was also reported that increased MUC-1 expression correlates with the stage and grade of pancreatic cancer. MUC1 upregulation was significantly correlated to the depth of invasion, lymph node metastasis and peritoneal dissemination (Satoh et al., 2000). In this study, we found that over 90% of primary pancreatic tumours...
expressed MUC1, while the majority of normal pancreases did not. This finding is significant because this may provide a useful target for TAT in postsurgical MRD while sparing the normal pancreas.

Using the MAb C595, we found MUC1 expression on the surface of CAPAN-1, CFPAC-1 and PANC-1 cancer cells by flow cytometric analysis and confocal microscopy. CAPAN-1 and CFPAC-1 are metastatic cancer cell lines, while PANC-1 is a primary cancer cell line. Overexpression of MUC1 was found in all three cell lines, suggesting that this overexpression may involve pancreatic cancer metastases and that cancer clones that escape from primary tumours do not lose the MUC1 antigen. This means that targeting by systemic radiolabelled MAb C595 may be possible. Our results clearly indicated that MUC1 is an effective tumour surface marker for targeting pancreatic carcinoma.

The overexpression of MUC1 can provide a good target for further investigating in vitro efficacy.

Cytotoxicity of 213Bi-C595 to three pancreatic cancer cells proved to be specific and concentration-dependent. Three cell

![Figure 4](image)

Figure 4 Morphological changes in three cell lines incubated with 213Bi-C595 (A–C) for 24 hours. (D–F) Matched, untreated cells are shown. TUNEL assays of CAPAN-1, CFPAC-1 and PANC-1 cells are shown in (G–I), and control in (J–L). Typical apoptotic cells with condensed or fragmented nuclei are observed in treated cell lines, while control cells show normal shapes. All of the photographs are at \times200 magnification.

![Figure 5](image)

Figure 5 Observation of apoptosis in time course after treatment with 213Bi-C595 and 213Bi-A2 AICs. Blue and red columns represent 213Bi-C595 and 213Bi-A2, respectively. The PANC-1 cells were treated with 213Bi-C595 and 213Bi-A2 with concentrations of 10^4 cells $/\mu$Ci, incubated at 4, 8, 12, 24, 48 and 72 h, tested by TUNEL assay, and expressed as a percentage of TUNEL-positive cells in total cells. Each experiment was performed in triplicate, and each point represents the mean of three experiments.
Expression and targeting of MUC1 in human pancreatic cancer

CF Qu et al

Using electron micrographs in studies of murine lymphoma, Macklis et al (1992) have demonstrated bizarre blebbing patterns, condensation of chromosomal material and internucleosomal DNA fragmentation patterns characteristic of programmed cell death (apoptosis) after treatment with AIC, and suggested that z-particles may kill cells by apoptotic mechanisms. In this study, we found typical morphologic changes and a high percentage of TUNEL-positive cells in three pancreatic cancer cell lines after treatment using 213Bi-C595 in vitro. These data suggest that the lethal pathway for the three cell lines in vitro after TAT involves apoptosis.

CONCLUSION

We have demonstrated moderate to strong MUC1 expression on the majority of human primary tumours and pancreatic cancer cell lines using MAb C595. MUC1 is therefore an ideal targeted antigen for targeted z therapy using 213Bi-C595. This AIC can target and selectively kill pancreatic cancer cells in vitro. The lethal pathway involves apoptosis. The specific cytotoxic effects obtained in this in vitro study suggest this AIC may target and kill the majority of human primary and metastatic pancreatic cancer cells harbouring moderate to strong MUC1 overexpression.

ACKNOWLEDGEMENTS

We acknowledge the ongoing support of Professor J Kearsley, Director, Cancer Services Division, St George Hospital. CF Qu is grateful to the Shirley Edwards Foundation and to the CanSur Foundation for financial support. We also specially thank the staff of the Department of Pathology, Royal North Shore Hospital, NSW, Australia for tumour section preparation.

REFERENCES

Abbas Rizvi SM, Sarkar S, Goozee G, Allen BJ (2000) Radioimmunoconjuga-

tes for targeted alpha therapy of malignant melanoma. Melanoma Res 10: 281 – 289

Allen BJ (1999) Can alpha-immunotherapy succeed where other systemic modalities have failed? Nucl Med Commun 20: 205 – 207

Boll RA, Mirzaden S, Kennel SJ (1997) Optimizations of radiolabelling of

immunoproteins with 213Bi. Radiochim Acta 79: 145 – 149

Farah RA, Clinchy B, Herrera L, Vitetta ES (1998) The development of

monoclonal antibodies for the therapy of cancer. Crit Rev Eukar Gene Expr 8: 321 – 356

Feng H, Ghazizadeh M, Konishi H, Araki T (2002) Expression of MUC1 and

MUC2 mucin gene products in human ovarian carcinomas. Ipn J Clin Oncol 32: 525 – 529

Gavrieli Y, Shereman Y, Ben-Sasson SA (1992) Identification of programmed
cell death in situ via specific labeling of nuclear DNA fragmentation. J Cell Biol 119: 493 – 501

Gendler S, Taylor-Papadimitriou J, Duhig T, Rothbard J, Burchell J (1988)

A highly immunogenic region of a human polymorphic epithelial mucin expressed by carcinomas is made up of tandem repeats. J Biol Chem 263: 12820 – 12823

Hall BJ (1994) Molecular biology in radiation therapy: the potential impact of

recombinant technology on clinical practice. Int J Radiat Oncol Biol, Phys 30(5): 1019 – 1028

Hughes OD, Bishop MC, Perkins AC, Frier M, Price MR, Denton G, Smith A, Rutherford R, Schubiger PA (1997) Preclinical evaluation of copper-67 labelled anti-MUC1 mucin antibody C595 for therapeutic use in bladder cancer. Eur J Nucl Med 24: 439 – 443

Hughes OD, Bishop MC, Perkins AC, Wastie ML, Denton G, Price MR, Frier M, Renley H, Rutherford R, Schubiger PA (2000a) Targeting superficial bladder cancer by the intravesical administration of copper-67-labelled anti-MUC1 mucin monoclonal antibody C595. J Clin Oncol 18: 363 – 370

Hughes OD, Denley H, Kunker RB (2000b) MUC1 mucin expression in

transitional cell carcinoma of the bladder. J of Urol Pathol 12: 179 – 191

Juricic JG, Larson SM, Sgouros G, McDevitt MR, Finn RD, Divgi CR,

Ballangrud AM, Hamacher KA, Ma D, Humm JL, Brechbiel MW, Molinet R, Scheinberg DA (2002) Targeted alpha particle immunotherapy for myeloid leukemia. Blood 100: 1233 – 1239

Kennel SJ, Boll R, Stabin M, Schuller HM, Mirzadeh S (1999) Radio-
immunotherapy of micrometastases in lung with vascular targeted 213Bi. Br J Cancer 80: 175 – 184

Kitamura H, Yonezawa S, Tanaka S, Kim YS, Sato E (1996) Expression of

mucin carbohydrates and core proteins in carcinomas of the ampulla of Vater: their relationship to prognosis. Ipn J Cancer Res 87: 631 – 640

Landis SH, Murray T, Bolden S, Wingo PA (1999) Cancer statistics, 1999 (comment). Ca: a Cancer J Clin 49: 8 – 31, 1

Li Y, Tian Z, Rizvi S, Bander NH, Allen BJ (2002) In vitro and preclinical
targeted alpha therapy of human prostate cancer with Bi-213 labeled J591 antibody against the prostate specific membrane antigen. Prostate Cancer Prostast Dts 3: 36 – 46

Macklis RM, Lin JY, Beresford B, Atcher RW, Hines J, Humm JL (1992)

Cellular kinetics, dosimetry, and radiobiology of alpha-particle radio-
immunotherapy: induction of apoptosis. Radiat Res 130: 220 – 226

McDevitt MR, Barendswaard E, Ma D, Lai L, Curcio MJ, Sgouros G, Ballangrud AM, Yang WH, Finn RD, Pellegrini V, Geerlings Jr MW, Lee M, Brechbiel MW, Bander NH, Cordon-Cardo C, Scheinberg DA (2000) An alpha-particle emitting antibody. Cancer Res 60: 6095 – 6100

McDevitt MR, Scheinberg DA (2002) Ac-225 and her daughters: the many

fates of Shiva. Cell Death Differ 9: 593 – 594

Mommers EC, Leonhart AM, von Mensdorff-Pouilly S, Schol DJ, Hilgers J, Meijer CJ, Baak JP, van Diest PJ (1999) Aberrant expression of MUC1 mucin in ductal hyperplasia and ducal carcinoma in situ of the breast. Int J Cancer 84: 466 – 469

British Journal of Cancer (2004) 91(12), 2086 – 2093 © 2004 Cancer Research UK
Murray A, Simms MS, Scholfield DP, Vincent RM, Denton G, Bishop MC, Price MR, Perkins AC (2001) Production and characterization of 188Re-C595 antibody for radioimmunotherapy of transitional cell bladder cancer. *J Nucl Med* 42: 726–732

Price MR, Pugh JA, Hudecz F, Griffiths W, Jacobs E, Symonds IM, Clarke AJ, Chan WC, Baldwin RW (1990) C595 – a monoclonal antibody against the protein core of human urinary epithelial mucin commonly expressed in breast carcinomas. *Br J Cancer* 61: 681–686

Ren J, Li Y, Kufe D (2002) Protein kinase C delta regulates function of the DF3/MUC1 carcinoma antigen in beta-catenin signaling. *J Biol Chem* 277: 17616–17622

Satoh S, Hinoda Y, Hayashi T, Burdick MD, Imai K, Hollingsworth MA (2000) Enhancement of metastatic properties of pancreatic cancer cells by MUC1 gene encoding an anti-adhesion molecule. *Int J Cancer* 88: 507–518

Scheinberg DA, Strand M, Gansow OA (1982) Tumor imaging with radioactive metal chelates conjugated to monoclonal antibodies. *Science* 215: 1511–1513

Sener SF, Fremgen A, Menck HR, Winchester DP (1999) Pancreatic cancer: a report of treatment and survival trends for 100,313 patients diagnosed from 1985–1995, using the National Cancer Database (comment). *J Am Coll Surg* 189: 1–7

Sgouros G, Ballan gravid AM, Jurcic JG, McDevitt MR, Humm JL, Erdi YE, Mehta BM, Finn RD, Larson SM, Scheinberg DA (1999) Pharmacokinetics and dosimetry of an alpha-particle emitter labeled antibody: 213Bi-HuM195 (anti-CD33) in patients with leukemia. *J Nucl Med* 40: 1935–1946

Utsunomiya T, Yonezawa S, Sakamoto H, Kitamura H, Hokita S, Aiko T, Tanaka S, Irimura T, Kim YS, Sato E (1998) Expression of MUC1 and MUC2 mucins in gastric carcinomas: its relationship with the prognosis of the patients. *Clin Cancer Res* 4: 2605–2614

van de Wiel-van Kemenade E, Ligtenberg MJ, de Boer AJ, Vos HL, Melief CJ, Hilkens J, Fgdor CG (1993) Episialin (MUC1) inhibits cytotoxic lymphocyte-target cell interaction. *J Immunol* 151: 767–776

Vaughan AT, Bateman WJ, Fisher DR (1982) The in vivo fate of a 211At labelled monoclonal antibody with known specificity in a murine system. *Int J Radiat Oncol, Biol, Phys* 8: 1943–1946

Zotter S, Hageman PC, Lossnitzer A, van den Tweel J, Hilkens J, Mooi WJ, Hilgers J (1988) Monoclonal antibodies to epithelial sialomucins recognize epitopes at different cellular sites in adenolymphomas of the parotid gland. *Int J Cancer Suppl* 3: 38–44