Generalized additive bases, König’s lemma, and the Erdős-Turán conjecture*

Melvyn B. Nathanson†
Department of Mathematics
Lehman College (CUNY)
Bronx, New York 10468
Email: nathansn@alpha.lehman.cuny.edu

November 14, 2018

Abstract

Let \(A \) be a set of nonnegative integers. For every nonnegative integer \(n \) and positive integer \(h \), let \(r_A(n,h) \) denote the number of representations of \(n \) in the form \(n = a_1 + a_2 + \cdots + a_h \), where \(a_1, a_2, \ldots, a_h \in A \) and \(a_1 \leq a_2 \leq \cdots \leq a_h \). The infinite set \(A \) is called a basis of order \(h \) if \(r_A(n,h) \geq 1 \) for every nonnegative integer \(n \). Erdős and Turán conjectured that \(\limsup_{n \to \infty} r_A(n,2) = \infty \) for every basis \(A \) of order 2. This paper introduces a new class of additive bases and a general additive problem, a special case of which is the Erdős-Turán conjecture. König’s lemma on the existence of infinite paths in certain graphs is used to prove that this general problem is equivalent to a related problem about finite sets of nonnegative integers.

1 Representation functions and the Erdős-Turán conjecture

Let \(\mathbb{N}_0 \) and \(\mathbb{Z} \) denote the nonnegative integers and integers, respectively. Let \(A \) be a finite set of integers. We denote the largest element of \(A \) by \(\max(A) \) and the cardinality of \(A \) by \(\text{card}(A) \). For any real numbers \(a \) and \(b \), we denote by \([a,b] \) the finite set of integers \(n \) such that \(a \leq n \leq b \).

For any set \(A \) of integers, we denote by \(r_A(n,h) \) the number of representations of \(n \) in the form \(n = a_1 + a_2 + \cdots + a_h \), where \(a_1, a_2, \ldots, a_h \in A \) and \(a_1 \leq a_2 \leq \cdots \leq a_h \). The function \(r_A \) is called the unordered representation function of the set \(A \), or, simply, the representation function of \(A \).

*2000 Mathematics Subject Classification: 11B13, 11B34, 11B05. Key words and phrases. Additive bases, sumsets, representation functions, Erdős-Turán conjecture, König’s lemma.

†This work was supported in part by grants from the NSA Mathematical Sciences Program and the PSC-CUNY Research Award Program.
The set A of nonnegative integers is called a \textit{basis of order h} if every nonnegative integer can be represented as the sum of h not necessarily distinct elements of A. If A is a basis of order h with representation function r_A, then

$$1 \leq r_A(n, h) < \infty$$

for all nonnegative integers n. We call A an \textit{asymptotic basis of order h} if

$$r_A(n, h) = f(n)$$

for all $n \geq 0$, where $f : \mathbb{N}_0 \to \mathbb{N}_0 \cup \{\infty\}$ is any function such that $\text{card}(f^{-1}(0)) < \infty$.

In the case of additive bases for the set of all integers, Nathanson \cite{5} proved that every function is a representation function, that is, if $f : \mathbb{Z} \to \mathbb{N}_0 \cup \{\infty\}$ satisfies the condition $\text{card}(f^{-1}(0)) < \infty$, then for every $h \geq 2$ there exists a set A of integers such that $r_A(n, h) = f(n)$ for every integer n.

A special case of the representation function problem for nonnegative integers with $h = 2$ is the conjecture of Erdős and Turán \cite{2} that the representation function $r_A(n, 2)$ of an asymptotic basis A of order 2 must be unbounded, that is,

$$\liminf_{n \to \infty} r_A(n, 2) > 0 \implies \limsup_{n \to \infty} r_A(n, 2) = \infty.$$

This is an important unsolved problem in additive number theory.

Dowd \cite{1} and Grekos, Haddad, Helou, and Pikho \cite{3} have given various equivalent formulations of the Erdős-Turán conjecture. In particular, Dowd proved that there exists a set A of nonnegative integers and a number c such that $r_A(n, 2) \in [1, c]$ for all nonnegative integers n if and only if for every N there exists a finite set A_N of nonnegative integers with $\max(A_N) \geq N$ and $r_A(n, 2) \in [1, c]$ for all $n = 0, 1, \ldots, \max(A_N)$. In this paper we apply Dowd’s method to obtain similar results for a new class of generalized additive bases.

\section{Generalized additive bases}

We extend the idea of an additive basis of order h as follows: Let $\mathcal{H} = \{H_n\}_{n=0}^\infty$ be a sequence of nonempty finite sets of positive integers. For any set A of nonnegative integers, we define the representation function

$$r_A(n, H_n) = \sum_{h_n \in H_n} r_A(n, h_n).$$

The set A of nonnegative integers will be called a \textit{basis of order \mathcal{H}} if

$$r_A(n, H_n) \geq 1$$

for all $n \geq 0$, and an \textit{asymptotic basis of order \mathcal{H}} if the representation function satisfies \text{\textit{(1)}} for all sufficiently large n.

Let $\mathcal{R} = \{R_n\}_{n=0}^\infty$ be a sequence of nonempty finite sets of positive integers. If

$$r_A(n, H_n) \in R_n$$

for all $n \geq 0$, and an \textit{asymptotic basis of order \mathcal{H}} if the representation function satisfies \text{\textit{(1)}} for all sufficiently large n. In this paper we apply Dowd’s method to obtain similar results for a new class of generalized additive bases.
for every nonnegative integer n, then A will be called an R-basis of order \mathcal{H}. Since each R_n is a nonempty set of positive integers, it follows that every R-basis of order \mathcal{H} is a basis of order \mathcal{H}. We shall call the set A an asymptotic R-basis of order \mathcal{H} if (2) holds for all sufficiently large n.

For any sequences $\mathcal{H} = \{H_n\}_{n=0}^\infty$ and $\mathcal{R} = \{R_n\}_{n=0}^\infty$ of nonempty finite sets of positive integers, we can ask if there exists an R-basis of order \mathcal{H} or an asymptotic R-basis of order \mathcal{H}. This is the generalized representation function problem. The original Erdős-Turán conjecture corresponds to the special case $H_n = \{2\}$ and $R_n = [1, c]$ for all $n \geq 0$. It is an open problem to determine the number of distinct \mathcal{R}-bases of order \mathcal{H} and asymptotic \mathcal{R}-bases of order \mathcal{H} for a given pair of sequences \mathcal{H} and \mathcal{R}.

Let $h \geq 2$ and let f be a function such that $f(n)$ is a positive integer for every nonnegative integer n. We introduce the sets $H_n = \{h\}$ and $R_n = \{f(n)\}$ for all n, and the sequences $\mathcal{H} = \{H_n\}_{n=0}^\infty$ and $\mathcal{R} = \{R_n\}_{n=0}^\infty$. Then an R-basis of order \mathcal{H} is a basis A of order h whose representation function satisfies $r_A(n, h) = f(n)$ for all $n \in \mathbb{N}_0$, and so the representation function problem for bases of order h is a special case of the generalized representation function problem.

An R-basis of order \mathcal{H} is not necessarily infinite. For example, if $H_0 = R_0 = \{1\}$ and if $H_n = \{n\}$ and $1 \in R_n$ for all $n \geq 1$, then the set $\{0, 1\}$ is an R-basis of order \mathcal{H}.

Theorem 1 Let $\mathcal{H} = \{H_n\}_{n=0}^\infty$ be a sequence of nonempty finite sets of positive integers. There exists a finite set A that is a basis of order \mathcal{H} or an asymptotic basis of order \mathcal{H} if and only if

$$
\liminf_{n \to \infty} \frac{\max(H_n)}{n} > 0.
$$

Proof. Let $h_n^* = \max(H_n)$. Let A be a finite set of nonnegative integers that is a basis of order \mathcal{H}. Then $0, 1 \in A$ and so $\max(A) \geq 1$. Every positive integer n can be represented as the sum of h_n elements of A for some $h_n \in H_n$, and so

$$
n \leq h_n \max(A) \leq h_n^* \max(A).
$$

It follows that

$$
\liminf_{n \to \infty} \frac{h_n^*}{n} \geq \frac{1}{\max(A)} > 0.
$$

Conversely, if $\liminf_{n \to \infty} h_n^*/n > 0$, then there exists a positive integer m such that

$$
h_n^* \geq \frac{n}{m}
$$

for all $n \geq 0$. Consider the finite set $A = [0, m]$. By the division algorithm, every positive integer n can be written in the form $n = qm + r$, where q and r are nonnegative integers and $0 \leq r \leq m - 1$. If $r = 0$, then $q = n/m \leq h_n^*$ and

$$
n = q \cdot m + (h_n^* - q) \cdot 0 \in h_n^* A.
$$
If \(1 \leq r \leq m - 1 \), then \(q = (n - r)/m < h_n^* \). Since \(h_n^* \) and \(q \) are integers, it follows that \(h_n^* \geq q + 1 \) and

\[
n = q \cdot m + 1 \cdot r + (h_n^* - q - 1) \cdot 0 \in h_n^*A.
\]

In both cases, \(r_A(n, H_n) \geq r_A(n, h_n^*) \geq 1 \), and the finite set \(A \) is a basis of order \(\mathcal{H} \).

If \(A \) is an asymptotic basis of order \(\mathcal{H} \), then \(r_A(n, H_n) = 0 \) for only finitely many \(n \in \mathbb{N}_0 \), and so there is a finite set \(F \) of nonnegative integers such that \(A \cup F \) is a basis of order \(\mathcal{H} \). Therefore, there exists a finite set that is a basis of order \(\mathcal{H} \) if and only if there exists a finite set that is an asymptotic basis of order \(\mathcal{H} \). This completes the proof. \(\square \)

Let \(\mathcal{H} = \{ H_n \}_{n=0}^{\infty} \) and \(\mathcal{R} = \{ R_n \}_{n=0}^{\infty} \) be sequences of nonempty finite sets of positive integers. A nonempty finite set \(A \) of nonnegative integers will be called a finite basis of order \(\mathcal{H} \) if

\[
r_A(n, H_n) \geq 1
\]

for all \(n \in [0, \max(A)] \), and a finite \(\mathcal{R} \)-basis of order \(\mathcal{H} \) if

\[
r_A(n, H_n) \in R_n
\]

for all \(n \in [0, \max(A)] \).

Theorem 2 Let \(\mathcal{H} = \{ H_n \}_{n=0}^{\infty} \) and \(\mathcal{R} = \{ R_n \}_{n=0}^{\infty} \) be sequences of nonempty finite sets of positive integers.

(i) If \(A \) is a basis of order \(\mathcal{H} \), or if \(A \) is a finite basis of order \(\mathcal{H} \) with \(\max(A) \geq 1 \), then \(0, 1 \in A \).

(ii) If \(A \) is an \(\mathcal{R} \)-basis of order \(\mathcal{H} \) or if \(A \) is a finite \(\mathcal{R} \)-basis of order \(\mathcal{H} \) with \(\max(A) \geq 1 \), then \(\text{card}(H_0) \in R_0 \) and \(\text{card}(H_1) \in R_1 \).

(iii) If \(A \) is an \(\mathcal{R} \)-basis of order \(\mathcal{H} \), then \(A_N = A \cap [0, N] \) is a finite \(\mathcal{R} \)-basis of order \(\mathcal{H} \) for every \(N \geq 0 \).

(iv) If \(A \neq \{0\} \) is a finite \(\mathcal{R} \)-basis of order \(\mathcal{H} \), then \(F' = F \setminus \{\max(F)\} \) is also a finite \(\mathcal{R} \)-basis of order \(\mathcal{H} \).

Proof. To prove (i) and (ii), we observe that if \(r_A(0, H_0) \geq 1 \), then \(0 \in A \). If \(r_A(1, H_1) \geq 1 \), then \(1 \in A \). Since, for every \(h \geq 1 \), both 0 and 1 have unique representations as sums of exactly \(h \) nonnegative integers, it follows that if \(r_A(0, H_0) \in R_0 \), then

\[
r_A(0, H_0) = \sum_{h_0 \in H_0} r_A(0, h_0) = \sum_{h_0 \in H_0} 1 = \text{card}(H_0) \in R_0.
\]

Similarly, if \(r_A(1, H_1) \in R_1 \), then

\[
r_A(1, H_1) = \text{card}(H_1) \in R_1.
\]

The statements (iii) and (iv) follow immediately from the definition of a finite basis. \(\square \)
3 König’s lemma

The principal tool in this paper is König’s lemma on the existence of infinite paths in trees. For completeness, we include a short proof below.

A graph G consists of a nonempty set $\{v\}$, whose elements are called vertices, and a set $\{e\}$, whose elements are called edges. Each edge is a set $e = \{v, v'\}$, where v and v' are vertices and $v \neq v'$. Thus, we are considering only graphs without loops or multiple edges.

We use the following terminology. The vertices v and v' are called adjacent if $\{v, v'\}$ is an edge. The degree of a vertex v is the number of edges e with $v \in e$. A path in G from vertex v to vertex v' is a sequence of vertices $v_0, v_1, v_2, \ldots, v_n$ such that $v_0 = v$, $v_n = v'$, and v_i is adjacent to v_j for all $i = 1, \ldots, n$. We define the length of this path by n. The graph G is connected if for every two vertices v and v' with $v \neq v'$ there is a path from v to v'. A graph is connected if and only if, for some vertex v_0, there is a path from v_0 to v for every vertex $v \neq v_0$.

A simple path in G is a path whose vertices are pairwise distinct. A simple circuit is a sequence of vertices $v_0, v_1, v_2, \ldots, v_n$ such that $n \geq 3$, $\{v_{i-1}, v_i\}$ is an edge for $i = 1, \ldots, n$, $v_i \neq v_j$ for $0 \leq i < j \leq n - 1$, and $v_0 = v_n$. A graph G has no simple circuits if and only if, for every pair of distinct vertices v and v', there is at most one simple path from v to v'. An infinite simple path is an infinite sequence of pairwise distinct vertices v_0, v_1, v_2, \ldots such that v_{i-1} is adjacent to v_i for all $i \geq 1$.

A tree is a connected graph with no simple circuits. A rooted tree is a tree with a distinguished vertex, called the root of the tree. In a rooted tree, for every vertex v different from the root, there is a unique simple path in the tree from the root to v.

Theorem 3 (König’s lemma) If T is a rooted tree with infinitely many vertices such that every vertex has finite degree, then T contains an infinite simple path beginning at the root.

Proof. Let v_0 be the root of the tree. We use induction to prove that for every n there is a simple path v_0, v_1, \ldots, v_n such that the tree T contains infinitely many vertices v for which the unique simple path from the root v_0 to v begins with the vertices v_0, v_1, \ldots, v_n. Since T has infinitely many vertices, the root v_0 satisfies this condition.

Let $n \geq 1$, and assume that we have constructed a simple path $v_0, v_1, \ldots, v_{n-1}$ of vertices of the tree T with the property that T contains an infinite set I_{n-1} of vertices such that, for every $v \in I_{n-1}$, the unique simple path from v_0 to v passes through vertex v_{n-1}. Since the degree of v_{n-1} is finite, the set F_n of vertices $v \neq v_{n-2}$ that are adjacent to v_{n-1} is a finite set. For every vertex $v \in I_{n-1}$, there is a unique simple path in T that begins at v_0, passes through v_{n-1} and exactly one of the vertices in F_n, and ends at v. By the pigeonhole principle, since I_{n-1} is infinite, there is a vertex $v_n \in F_n$ and an infinite set $I_n \subseteq I_{n-1}$ of vertices such that, for every $v \in I_n$, the unique path from v_0 to v
passes through \(v_n \). This completes the induction. The vertices \(v_0, v_1, v_2, \ldots \) are pairwise distinct, and \(v_0, v_1, v_2, \ldots \) is an infinite simple path in \(T \). \(\square \)

4 The generalized representation function problem

In this section we prove that there exists an infinite \(\mathcal{R} \)-basis of order \(\mathcal{H} \) if and only if there exist arbitrarily large finite \(\mathcal{R} \)-bases of order \(\mathcal{H} \).

Theorem 4 Let \(\mathcal{R} = \{ R_n \}_{n=0}^{\infty} \) and \(\mathcal{H} = \{ H_n \}_{n=0}^{\infty} \) be sequences of nonempty finite sets of positive integers such that

\[
\lim_{n \to \infty} \frac{\max(H_n)}{n} = 0.
\]

There exists an \(\mathcal{R} \)-basis \(A \) of order \(\mathcal{H} \) if and only if for every \(N \) there exists a finite \(\mathcal{R} \)-basis \(A_N \) of order \(\mathcal{H} \) with \(\max(A_N) \geq N \).

Proof. If \(A \) is a \(\mathcal{R} \)-basis of order \(\mathcal{H} \), then, by (3) and Theorem 1, the set \(A \) is infinite, hence for every \(N \) there is an integer \(a(N) \in A \) with \(a(N) \geq N \). By Theorem 2, the set \(A_N = A \cap [0, a(N)] \) is a finite \(\mathcal{R} \)-basis of order \(\mathcal{H} \) with \(\max(A_N) \geq N \).

Conversely, suppose that for every \(N \) there exists a finite \(\mathcal{R} \)-basis \(A_N \) of order \(\mathcal{H} \) with \(\max(A_N) \geq N \). If \(N \geq 1 \), then \(0, 1 \in A_N \) and the sets \(\{0\} \) and \(\{0, 1\} \) are finite \(\mathcal{R} \)-bases of order \(\mathcal{H} \).

We construct the graph \(T \) whose vertices are the finite \(\mathcal{R} \)-bases of order \(\mathcal{H} \). This graph has infinitely many vertices, since there are finite \(\mathcal{R} \)-bases of order \(\mathcal{H} \) with arbitrarily large maximum elements.

Vertices \(V \) and \(V' \) will be called adjacent in this graph if \(V' \subseteq V \) and \(V \setminus V' = \{ \max(V) \} \). The sets \(\{0\} \) and \(\{0, 1\} \) are adjacent vertices of this graph, and \(\{0, 1\} \) is the only vertex adjacent to \(\{0\} \). If \(V \) is a vertex and \(\text{card}(V) \geq 2 \), then it follows from Theorem 2 that \(V' = V \setminus \{ \max(V) \} \) is a vertex. Moreover, \(V' \) is the unique vertex adjacent to \(V \) in \(T \) such that \(\text{card}(V') = \text{card}(V) - 1 \). If \(V'' \) is adjacent to \(V \) and \(V'' \neq V' \), then \(V = V'' \setminus \{ \max(V'') \} \) and \(\text{card}(V'') = \text{card}(V) + 1 \).

We shall prove that \(T \) is a rooted tree with root \(V_0 = \{0\} \). Let \(V = \{a_0, a_1, \ldots, a_n\} \) be a vertex, where \(0 = a_0 < a_1 < \cdots < a_n \). For every \(k = 0, 1, \ldots, n \), the set \(V_k = \{a_0, a_1, \ldots, a_k\} \) is a finite \(\mathcal{R} \)-basis of order \(\mathcal{H} \), hence is a vertex of \(T \). Then \(V_0 = \{0\} \), \(V_n = V \), and \(V_0, V_1, \ldots, V_n \) is a simple path in \(T \) from the root \(V_0 \) to \(V \). It follows that the graph \(T \) is connected.

Suppose that \(n \geq 3 \) and \(V_0, V_1, \ldots, V_{n-1}, V_n \) is a simple circuit in \(T \), where \(V_n = V_0 \). Let \(V_{n+1} = V_1 \). Since each vertex is a finite set of integers, we can choose \(k \in [1, n] \) such that \(V_k \) is a vertex in the circuit of maximum cardinality. Vertices \(V_{k-1} \) and \(V_{k+1} \) are adjacent to \(V_k \), hence \(\text{card}(V_k) - \text{card}(V_{k-1}) = \pm 1 \) and \(\text{card}(V_k) - \text{card}(V_{k+1}) = \pm 1 \). The maximality of \(\text{card}(V_k) \) implies
that \(\text{card}(V_k) - \text{card}(V_{k-1}) = \text{card}(V_k) - \text{card}(V_{k+1}) = 1 \), and so \(V_{k-1} = V_k \setminus \{\max(V_k)\} = V_{k+1} \), which is impossible. Therefore, \(T \) contains no simple circuit, and so \(T \) is a tree.

To apply König’s lemma, we must prove that every vertex of this tree has finite degree. The only vertex adjacent to the root \(\{0\} \) is \(\{0,1\} \), hence \(\{0\} \) has finite degree. Let \(V \neq \{0\} \) be a vertex of \(T \). Then \(1 \in V \) and so \(\max(V) \geq 1 \). Suppose that the \(V \) is adjacent to infinitely many vertices \(V' \). The only subset of \(V \) that is a vertex adjacent to \(V \) is \(V \setminus \{\max(V)\} \). Every other vertex \(V' \) adjacent to \(V \) is a superset of \(V \) of the form \(V' = V \cup \{\max(V')\} \). For each such \(V' \), the integer \(n = \max(V') - 1 \) must be an element of the sumset \(h \in H \) for some \(h \in H \), and so

\[
\begin{align*}
n &\leq h \max(V) \leq \max(H) \max(V),
\end{align*}
\]

Since \(n \in h \), it follows that

\[
\limsup_{n \to \infty} \frac{\max(H)}{n} \geq \frac{1}{\max(V)} > 0,
\]

which contradicts (3). Thus, every vertex of the infinite tree \(T \) has finite degree. By König’s lemma, the tree must contain an infinite simple path \(\{0\} = V_0, V_1, V_2, \ldots \). For each nonnegative integer \(n \), let \(a_n = \max(V_n) \). Then \(V_n = \{a_0, a_1, \ldots, a_n\} \) for all \(n = 0, 1, 2, \ldots \). Let

\[
A = \{a_n\}_{n=0}^{\infty} = \bigcup_{n=0}^{\infty} V_n.
\]

Since \(a_n \geq n \), it follows that

\[
r_A(n, H_n) = \sum_{h_n \in H_n} r_A(n, h_n) = \sum_{h_n \in H_n} r_{V_n}(n, h_n) = r_{V_n}(n, H_n) \in R_n,
\]

and so \(A \) is a \(R \)-basis of order \(\mathcal{H} \). This completes the proof. \(\square \)

Theorem 5 Let \(h \geq 2 \) and let \(f \) be a function such that \(f(n) \) is a positive integer for every nonnegative integer \(n \). There exists a basis \(A \) of order \(h \) with representation function \(r_A(n, h) = f(n) \) if and only if for every \(N \) there exists a finite set \(A_N \) of nonnegative integers with \(\max(A_N) \geq N \) and \(r_A(n, h) = f(n) \) for all \(n = 0, 1, \ldots, \max(A_N) \).

Proof. This follows immediately from Theorem 4 with \(H_n = \{h\} \) and \(R_n = \{f(n)\} \) for all nonnegative integers \(n \). \(\square \)

Applying Theorem 4 to the classical Erdős-Turán conjecture, we obtain the following result of Dowd [1, Theorem 2.1].

Theorem 6 Let \(c \geq 1 \) and \(h \geq 2 \). There exists a basis \(A \) of order \(h \) such that

\[
r_A(n, h) \leq c \quad \text{for all } n \geq 0
\]
if and only if, for every N, there exists a finite set A_N of nonnegative integers such that $\max(A_N) \geq N$ and

$$1 \leq r_{A_N}(n, h) \leq c$$

for all $n = 0, 1, \ldots, \max(A_N)$.

Proof. This follows immediately from Theorem 4 with $H_n = \{h\}$ and $R_n = [1, c]$ for all $n \geq 0$. □

5 Ordered representation functions

There are other important representation functions in additive number theory. For example, for any set A of integers, the **ordered representation function** $r_A'(n, h)$ counts the number of h-tuples $(a_1, \ldots, a_h) \in A^h$ such that $a_1 + \cdots + a_h = n$. Nathanson [4] proved the following uniqueness theorem for ordered representation functions: For any function $f : \mathbb{N}_0 \to \mathbb{N}_0$ and for any positive integer h, there exists at most one set A of nonnegative integers such that $r_A'(n, h) = f(n)$ for all $n \in \mathbb{N}_0$. He also showed that uniqueness does not hold if ordered representation functions only eventually coincide, and he described all pairs of sets A and B of nonnegative integers such that $r_A'(n, 2) = r_B'(n, 2)$ for all sufficiently large integers n.

We can define **basis of order H** and **\mathcal{R}-basis of order H** in terms of the ordered representation function. Theorem 4 is also true for ordered representation functions.

References

[1] M. Dowd, *Questions related to the Erdős-Turán conjecture*, SIAM J. Discrete Math. 1 (1988), 142–150.

[2] P. Erdős and P. Turán, *On a problem of Sidon in additive number theory and some related questions*, J. London Math. Soc. 16 (1941), 212–215.

[3] G. Grekos, L. Haddad, C. Helou, and J. Pihko, *On the Erdős-Turán conjecture*, Preprint, 2002.

[4] M. B. Nathanson, *Representation functions of sequences in additive number theory*, Proc. Amer. Math. Soc. 72 (1978), 16–20.

[5] M. B. Nathanson, *Every function is the representation function of an additive basis for the integers*, Preprint, 2003.