The complex structure on the six dimensional sphere

Gábor Etesi

Department of Algebra and Geometry, Institute of Mathematics, Budapest University of Technology and Economics, Műegyetem rkp. 3., H-1111 Budapest, Hungary

October 8, 2024

Abstract

Proof of existence of at least one complex structure on the six-sphere, followed by an explicit computation of its underlying integrable almost complex tensor by the aid of inner automorphisms of the octonions, is exhibited. Both are elementary and self-contained however the size and complexity of the emerging almost complex tensor field on the six-sphere is perplexing.

AMS Classification: Primary: 32J17, 32J25; Secondary: 22C05, 53C56

Keywords: Six-sphere; Complex structure; Octonions

1 Introduction

Unlike their real counterparts, complex manifolds are quite rigid objects therefore constructing new examples is often not an easy task. Nevertheless there are two main islands, both within the Kähler realm, of the archipelago of complex manifolds comprising tractable cases. One is the category of projective manifolds, standing in the focal point of algebraic geometry. The other one is the category of Stein manifolds which, on the contrary, can be conveniently studied with the techniques of complex analysis in several variables. Although the in-between terra incognita is not so easily accessible, it is still quite populated: its inhabitants are the numerous irregular neither projective nor Stein—or even not Kähler—manifolds, either compact or non-compact. Examples in two complex dimensions are for example the various non-algebraic tori, Hopf surfaces, Inu e surfaces, non-algebraic K3 surfaces, etc. (cf., e.g. [1, Chapter VI] for a survey of irregular complex surfaces) while in higher dimensions the picture is not so clear yet. Nevertheless in all dimensions the deviation, at least from the algebraic scenario, is captured in some extent by the concept of the algebraic dimension of a complex manifold i.e. the transcendental degree over \(C \) of its field of global meromorphic functions. Compact complex manifolds whose algebraic and geometric dimensions match (sometimes called Moishezon manifolds) are still not far from being algebraic: it is known that after performing finitely many blowing-ups they become projective algebraic. However in general the lower the algebraic dimension of a manifold is the larger its detachment is from the familiar world of complex algebraic manifolds.

An interesting family of higher dimensional non-algebraic examples relevant to us here is based on even dimensional compact Lie groups. Samelson discovered [13] that they carry complex structures

*E-mail: etesi@math.bme.hu, etesigabor@gmail.com
which are surely non-Kähler if the underlying group is simply connected and simple. It is therefore guessed that in general they admit lower algebraic dimension than possible. It also has been known for some time that if the six dimensional sphere carries a complex structure then this compact complex 3-manifold must be of zero algebraic dimension [2].

In this paper we shall construct explicitly at least one complex structure on the six dimensional sphere. The proof is based on identifying \(S^6 \) with an exceptional conjugate orbit in the exceptional compact Lie group \(G_2 \), taking its explicit deformation within \(G_2^C \) and then restricting a Samelson complex structure to this deformation. The proof to be presented here is elementary and self-contained hence is independent of our former Yang–Mills–Higgs theoretic approach [5]; nevertheless those considerations definitely have been used here as a source of ideas. We just note that meanwhile the treatment in [5] is based on the well-known \(SU(3) \)-fibration: the projection (i.e. a surjective mapping) \(\pi : G_2 \to S^6 \), our present proof rests on a certain less-known but very remarkable injection \(f : S^6 \to G_2 \). Therefore the two approaches are dual to each other in this sense.

The paper is organized as follows. Sect. 2 consists of a self-contained and elementary proof that \(S^6 \) can carry complex structures (cf. Theorem 2.1). It has been known for a long time (cf. e.g. [9, 7]) that if \(S^6 \) carries a complex structure then there exist “exotic \(\mathbb{CP}^3 \)’s” i.e. complex manifolds diffeomorphic to \(\mathbb{CP}^3 \) as real 6-manifolds however not complex-analytically isomorphic to it. Here we prove another striking consequence: the complex structure on \(S^6 \) implies the existence of “large exotic \(\mathbb{C}^3 \)’s” in a similar sense (cf. Lemma 2.1). By a large exotic \(\mathbb{C}^3 \) we mean a complex manifold which is diffeomorphic to \(\mathbb{R}^6 \) however is not complex analytically equivalent to the standard \(\mathbb{C}^3 \) moreover does not admit a complex-analytic embedding into the standard \(\mathbb{C}^3 \) (the failure of the higher dimensional analogue of the Riemannian mapping theorem implies the existence of an abundance of small exotic \(\mathbb{C}^3 \)’s i.e. open complex analytic subsets of the standard \(\mathbb{C}^3 \) not complex-analytically equivalent to it).

In Sect. 3 we outline the explicit construction of the integrable almost complex tensor field on \(S^6 \) underlying its complex structure. The construction is based on identifying the original conjugate orbit of \(G_2 \), homeomorphic to \(S^6 \), with the subset of \textit{inner automorphisms} within the full automorphism group of the octonions which is \(G_2 \) (cf. Lemma 3.1 as well as [3]) and then taking its explicit perturbation within \(G_2^C \) (cf. Lemma 3.2). The integrable Samelson almost complex structures then restrict to this perturbation rendering \(S^6 \) a complex manifold. The components of the underlying almost complex tensor field considered as local \(6 \times 6 \) matrix functions in principle drop out explicitly from this construction however the result is so unexpectedly complicated that we cannot display it fully here. Nevertheless the steps towards its construction are clearly explained and the curious reader can reproduce the calculations (using a computer is strongly advised) by himself or even go further and bring these matrices into a more digestable form. But already the present form allows to conclude that all complex structures constructed here are equivalent.

Finally Sect. 4 is an appendix and has been added in order to gain a more comprehensive picture. Following [3] we re-prove that the conjugate orbit of \(G_2 \) playing the central role here, when regarded as a continuous map \(f : S^6 \to G_2 \), represents the generator of \(\pi_6(G_2) \cong \mathbb{Z}_3 \) (cf. Theorem 4.1).

\textbf{Acknowledgement.} The author is grateful to F. Burstall, B. Csikós, Sz. Szabó and R. Szőke for the criticism of earlier versions and the stimulating discussions many years ago. The math software Maple has been extensively used to carry out the massive but \textit{strictly symbolic} calculations in Sect. 3.
2 Proof of existence

In this section we present a proof that the six dimensional sphere carries complex structures. The proof is based on identifying S^6 with a geometrically deformed conjugate orbit inside the complexified exceptional compact Lie group G^C_2 and then restricting a Samelson complex structure to this deformed orbit. The proof to be presented here is elementary and self-contained hence is independent of our former Yang–Mills–Higgs theoretic approach [5].

Recall [12, 13] that if G is an even dimensional compact real Lie group with real Lie algebra g the complex linear subspace $\mathfrak{s} \subset g^C := g \otimes_{\mathbb{R}} \mathbb{C}$ is a Samelson subalgebra if it is a complex Lie subalgebra of g^C satisfying $\dim_{\mathbb{C}} \mathfrak{s} = \frac{1}{2} \dim_{\mathbb{C}} g^C$ and $\mathfrak{s} \cap g = 0$ as real subspaces within g^C. One can demonstrate that at least one Samelson subalgebra in g^C always exists if g is the Lie algebra of a compact even dimensional Lie group. A choice for a Samelson subalgebra gives rise to a vector space decomposition $g^C = \mathfrak{s} \oplus \mathfrak{t}$ hence the existence of a real linear isomorphism $\text{Re} : \mathfrak{s} \rightarrow g$ given by $W \mapsto \text{Re}W$ for all $W \in \mathfrak{s}$ and a real linear map $J_\mathfrak{s} : g \rightarrow g$ with $J_\mathfrak{s}(\text{Re}W) := - \text{Im}W$ satisfying $J_\mathfrak{s}^2 = - \text{Id}_g$. Consequently a choice of a Samelson subalgebra gives rise to a complex vector space $(g, J_\mathfrak{s})$ such that $g^{1,0} := \mathfrak{s}$ is the $+\sqrt{-1}$-eigenspace while $g^{0,1} := \mathfrak{t}$ is the $-\sqrt{-1}$-eigenspace of the complexified map $J_\mathfrak{s}^C : g^C \rightarrow g^C$. The operator $J_\mathfrak{s} = J_{\mathfrak{s},e}$ on $g = T_eG$ can be extended to a left-invariant almost complex structure $J_\mathfrak{s}$ over the whole G if $J_{\mathfrak{s},g}$ on T_gG is defined by left-translating everything i.e. by the aid of the complexified group G^C taking the splitting $T_gG^C = L_g \mathfrak{s} \oplus L_g \mathfrak{t}$ and observing that $T_gG^C = T_gG \otimes_{\mathbb{R}} \mathbb{C}$ such that $L_g \mathfrak{s} \cap T_gG = 0$ inside T_gG^C for every $g \in G \subset G^C$. Note that simply $J_{\mathfrak{s},g} = L_g J_{\mathfrak{s},e} L_g^{-1}$. In this way we come up with an almost complex manifold $(G, J_\mathfrak{s})$. The Lie algebra property of $g^{1,0}$ has not been exploited so far: Taking into account $g^C = g^{1,0} \oplus g^{0,1}$ as well, it additionally tells us that

$$[g^{1,0}, g^{1,0}]^{0,1} = 0$$

also holds. The identification $X \mapsto X^{1,0} := \frac{1}{2}(X - \sqrt{-1} J_\mathfrak{s}X)$ of real vector fields with $(1,0)$-type complex ones over G maps left-invariant real fields into left-invariant $(1,0)$-type ones and these latter fields can be viewed as $(1,0)$-type complex Lie algebra elements. Observing that $(X, Y) \mapsto [X^{1,0}, Y^{1,0}]^{0,1}$ is $C^\infty(G, \mathbb{R})$-bilinear we recognize that the vanishing commutator above actually says that the Nijenhuis tensor of $J_\mathfrak{s}$ is zero. Consequently $(G, J_\mathfrak{s})$ is integrable to a homogeneous complex manifold $Y_\mathfrak{s}$ in light of the Newlander–Nirenberg theorem. (For a different proof cf. [12, Proposition 2.3].)

After these general considerations take the 14 dimensional real compact exceptional Lie group G_2. As we outlined above it can be given the structure of a compact complex 7-manifold; more precisely referring to [12, Example on p. 123] we know\(^1\) that if $\mathfrak{h} \subset g_2$ is the Cartan subalgebra with its complexification $\mathfrak{h}^C \subset g_2^C$ then for every $u \in P(\mathfrak{h}^C) \setminus P(\mathfrak{h})$ i.e. the projectivization of \mathfrak{h}^C with that of its real part removed, there exist Samelson subalgebras $\mathfrak{s}_u \subset g_2^C$ with corresponding mutually non-isomorphic compact homogeneous complex 7-manifolds Y_u whose underlying real spaces are all diffeomorphic to G_2. This Lie group has a maximal subgroup isomorphic to $SU(3)$ and let $\Lambda \in G_2$ be the generator of its center i.e. $\Lambda \in Z(SU(3)) \subset SU(3) \subset G_2$ is the generator, hence $\Lambda \neq e$ but $\Lambda^3 = e$. Strongly motivated by [3, 4] we begin with considering the exceptional conjugate orbit

$$O(\Lambda) := \{ g \Lambda g^{-1} | g \in G_2 \} \quad (1)$$

passing through this generator. It is a real submanifold of G_2 diffeomorphic to $G_2/SU(3) \cong S^6$. Let G_2^C be the complexification of G_2. Our real conjugate orbit $O(\Lambda) \subset G_2$ also complexifies in an obvious way to the complexified conjugate orbit

$$O(\Lambda)^C = \{ g \Lambda g^{-1} | g \in G_2^C \}.$$

\(^1\)But we will also recover this result explicitly in Sect. 3.
By compactness of G_2 there exists a diffeomorphism $G_2^C \cong TG_2$ as a real manifold hence we can use the zero section of the tangent bundle to write $G_2 \subset G_2^C$. This by restriction gives $O(\Lambda) \subset O(\Lambda)^C$ and the real isomorphism above implies $O(\Lambda)^C \cong TO(\Lambda)$. Note that $O(\Lambda)^C$ is complex-analytically isomorphic to $G_2^C/\text{SU}(3)^C \cong (S^6)^C$ where $(S^6)^C \subset C^7$ is the “complex 6-sphere” whose points satisfy $z_1^2 + \cdots + z_7^2 = 1$ with $z_1, \ldots, z_7 \in C$. Therefore our embeddings are in accordance with the classical fact that $(S^6)^C \cong TS^6$ as a real manifold and with the existence of an embedding $S^6 \subset (S^6)^C$ by the zero section. To summarize, there exists a commutative diagram

$$
G_2 \subset G_2^C \cong TG_2 \cong G_2 \times g_2
$$

and $O(\Lambda) \subset O(\Lambda)^C \cong TO(\Lambda)$

$$
S^6 \subset (S^6)^C \cong TS^6
$$
of compatible embeddings and isomorphisms.

Next we perform a complex deformation of $O(\Lambda)$ within G_2^C. Take a fixed Samelson subalgebra $\mathfrak{s}_u \subset \mathfrak{g}_2^C$ with corresponding complex analytic Lie subgroup $S_u \subset G_2^C$ and likewise take their complex conjugate counterparts $\overline{\mathfrak{s}}_u \subset \mathfrak{g}_2^C$ and $\overline{S}_u \subset \mathfrak{g}_2^C$. Consider a new complex analytic submanifold

$$
O'(\Lambda)^C := \{ s_1 A^2 s_1^{-1} s_2 A^2 s_2^{-1} \mid s_1 \in \mathfrak{s}_u, s_2 \in \overline{\mathfrak{s}}_u \}
$$

inside G_2^C and its “real part” $O'(\Lambda) \subset O'(\Lambda)^C$ defined by

$$
O'(\Lambda) := \{ s A^2 s^{-1} \overline{\mathfrak{a}} A^2 \overline{\mathfrak{a}}^{-1} \mid s \in \mathfrak{s}_u \}
$$

and regarded as a *deformed conjugate orbit* through Λ (note that $\Lambda \in O'(\Lambda)$ continues to hold) but within G_2^C (note that $O'(\Lambda) \not\subset G_2$). We assert that $O'(\Lambda)$ is homeomorphic to S^6.

To prove this first we observe that $O(\Lambda)^C$ and $O'(\Lambda)^C$ are isotopic in G_2^C. The decomposition $\mathfrak{g}_2^C = \mathfrak{s}_u \oplus \overline{\mathfrak{s}}_u$ implies $G_2^C \supset \mathfrak{s}_u \overline{\mathfrak{s}}_u$ is open and $G_2^C \supset \mathfrak{s}_u \oplus \overline{\mathfrak{s}}_u$ is discrete; thus $\mathfrak{s}_u A^2 \mathfrak{s}_u^{-1} \mathfrak{s}_u A^2 \mathfrak{s}_u^{-1} \subset G_2^C$ is discrete and since both $\mathfrak{s}_u \cap \text{SU}(3)^C$ and $\overline{\mathfrak{s}}_u \cap \text{SU}(3)^C$ are 4 dimensional and A^2 commutes with them $\dim C O'(\Lambda)^C = 2 \cdot (7 - 4) = 6$. Take the 1-parameter subgroups $\sigma_1 : \mathbb{R} \to S_u$ and $\sigma_2 : \mathbb{R} \to \overline{S}_u$ satisfying $\sigma_1(0) = e$ and $\sigma_1(1) = s_i$. Observe that \mathfrak{s}_u is solvable [12, Proposition 2.4] and simply connected hence $\exp : \mathfrak{s}_u \to S_u$ is a diffeomorphism [16, Theorem 3.18.11] and likewise for \overline{S}_u. Consequently σ_i uniquely exist thus for every $n \in \mathbb{N}$ and s_i one can unambiguously put $s_i^{1/n} := \sigma_i(1/n)$ and hence define $S_u^{1/n} := \{ s_1^{1/n} \mid s_1 \in \mathfrak{s}_u \}$ and likewise for $\overline{S}_u^{1/n}$. Furthermore G_2^C is a complex simple group with trivial center hence $\exp : \mathfrak{g}_2^C \to G_2^C$ is surjective [11, Corollary 3.4] but not injective. Consequently, recalling Trotter’s formula $\exp(X_1 + X_2) = \lim (\exp X_1 \exp X_2)^n$ from e.g. [16, Corollary 2.12.5], any $g \in G_2^C$ can be written as $g = \lim s_i^{1/n} s_1^{1/n}$ that is, $G_2^C = \mathfrak{s}_u \oplus \overline{\mathfrak{s}}_u$ globalizes to $G_2^C = \lim S_u^{1/n} \overline{S}_u^{1/n}$ but in a non-unique way. However uniqueness is achieved for the quotient $G_2^C/\text{SU}(3)^C$. Indeed, take a small open subset $U \subset G_2^C$ about the origin and consider the local model $U/\mathfrak{su}(3)^C$ for $G_2^C/\text{SU}(3)^C$. Picking elements $a \in \exp U \subset G_2^C$ and $X, Y \in \exp -1(\mathfrak{su}(3)^C)$, since $\mathfrak{su}(3)^C \subset G_2^C$ has maximal rank hence $\mathfrak{su}(3)^C$ contains the real integer lattice of \mathfrak{g}_2^C which generates the kernel of the relative exponential map $\exp : (\mathfrak{g}_2^C, \mathfrak{su}(3)^C) \to (G_2^C, \text{SU}(3)^C)$ we find that $X + \mathfrak{su}(3)^C = Y + \mathfrak{su}(3)^C$ i.e. $Y \in X + \mathfrak{su}(3)^C$; since $\exp U$ generates G_2^C we conclude that $X, Y \in \exp -1(g \mathfrak{su}(3)^C)$ implies $Y \in X + \mathfrak{su}(3)^C$ for $g \in G_2^C$. Thus if $X = X_1 + X_2$ is the unique Samelson decomposition then surely $Y = (X_1 + V_1) + (X_2 + V_2)$ where $V_1 \in \mathfrak{s}_u \cap \mathfrak{su}(3)^C$ and $V_2 \in \overline{\mathfrak{s}}_u \cap \mathfrak{su}(3)^C$ hence using Trotter’s formula we obtain that to *any* coset
gSU(3)C one can **uniquely** find a coset \(s_1 (S_u \cap \text{SU}(3)) \) and another one \(s_2 (\overline{S_u} \cap \text{SU}(3)) \) such that
\[
gSU(3)^C = \lim_n \left(s_1^{1/n} (S_u \cap \text{SU}(3))^{1/n} s_2^{1/n} (\overline{S_u} \cap \text{SU}(3))^{1/n} \right)^n.
\]

In this way the assignment
\[
t \mapsto \lim_n \left(\sigma_1 \left(\frac{t}{n} \right) \sigma_2 \left(\frac{i t}{n} \right) \right)^n \Lambda^2 \lim_n \left(\sigma_1 \left(\frac{i t}{n} \right) \sigma_2 \left(\frac{i t}{n} \right) \right)^{-n} \lim_n \left(\sigma_1 \left(\frac{i t}{n} \right) \sigma_2 \left(\frac{i t}{n} \right) \right)^n \Lambda^2 \lim_n \left(\sigma_1 \left(\frac{i t}{n} \right) \sigma_2 \left(\frac{i t}{n} \right) \right)^{-n}
\]
is single-valued and \(\text{SU}(3)^C \)-invariant consequently gives rise to a well-defined isotopy connecting \(g \Lambda^2 g^{-1} g \Lambda g^{-1} \in O(\Lambda)^C \) at \(t = 0 \) with \(s_1 \Lambda^2 s_1^{-1} s_2 \Lambda^2 s_2^{-1} \in O'(\Lambda)^C \) at \(t = 1 \) and **vice versa**. Clearly \(\Lambda \in O(\Lambda)^C \cap O'(\Lambda)^C \) is kept fixed during this deformation.

Concerning the assertion itself now, first observe that \(g = \lim_n (s^{1/n} \overline{s}^{1/n})^n \) with any \(s \in S_u \) is a real element i.e. \(g \in G_2 \subset G_2^C \). Thus the assertion follows since the homeomorphic image of \(O(\Lambda) \subset G_2 \) as in (1) by the isotopy is precisely \(O'(\Lambda) \subset G_2^C \) given by (4); however \(O(\Lambda) \) is homeomorphic to \(S^6 \) hence so is \(O'(\Lambda) \). As a global aspect of the construction note that the embedding of \(S^6 \) provided by \(O(\Lambda) \subset G_2 \) hence by \(O'(\Lambda) \subset G_2^C \) is not null-homotopic (cf. Theorem 4.1) and obviously the square of the corresponding homotopy class is represented by the twin conjugate orbit \(O(\Lambda^2) \subset G_2 \) while its third power by \(O(\Lambda^3) = e \subset G_2 \) i.e. it is already trivial.

After these preliminary constructions and considerations we are ready to state

Theorem 2.1. Take the family \(s_u \subset g_2^C \) of Samelson subalgebras with \(u \in P(h^C) \setminus P(h) \) and consider the induced compact complex 7-manifolds \(Y_u \) which are all diffeomorphic to \(G_2 \subset G_2^C \).

Then for every moduli parameter \(u \) the corresponding Samelson construction gives rise to a compact complex 3-manifold \(X_u \) too which is diffeomorphic to \(O'(\Lambda) \subset G_2^C \) hence rendering \(S^6 \) a compact complex 3-manifold.

Proof. The strategy is simple: we check that the left-translated and intersected Samelson splittings \((L_g s_u \oplus L_g \overline{s}_u) \cap T_g O'(\Lambda)^C \) are nice for every \(g \in O'(\Lambda) \) hence these splittings induce complex structures on \(T_g O'(\Lambda) \) in the standard way which are integrable along \(O'(\Lambda) \).

The standard root basis in \(g_2^C \) looks like\(^2\)
\[
\{ H_{\pm a, b}, V_{\pm 1}, V_{\pm 2}, V_{\pm 3}, U_{\pm 1}, U_{\pm 2}, U_{\pm 3} \}
\]
where \(a, b \) are real parameters with \(a \neq 0 \). It has the following pleasant three properties: the first is that \(\{ H_{\pm a, b}, V_{\pm k} \} \) with \(k = 1, 2, 3 \) span \(su(3)^C \subset g_2^C \); secondly \(\{ H_{\pm a, b}, V_{\pm k} \} \) with \(k = 1, 2, 3 \) span \(\text{su}(3)^C \subset g_2^C \); thirdly \(\{ H_{+ a, b}, V_{+ 1}, V_{- 2}, V_{- 3}, U_{+ 1}, U_{- 2}, U_{+ 3} \} \) span all the family of Samelson subalgebras \(s_u \subset g_2^C \) provided \(P(h^C) \setminus P(h) \cong \text{CP}^1 \setminus \mathbb{R}P^1 \cong \mathbb{C} \setminus \mathbb{R} \cup a + i \mathbb{R} b \) i.e. \(a \neq 0 \). Moreover \(\overline{H}_{+ a, b} = - H_{- a, b}, \overline{V}_{+ k} = V_{- k} \) and \(\overline{U}_{+ k} = U_{- k} \) hence the remaining basis elements span the complex conjugate subalgebra \(\overline{s}_u \subset g_2^C \). Finally we note that there exist precisely two orthogonal (with respect to the Ad-invariant metric on \(G_2 \)) complex structures at \(\overline{t}_{a, b} = \pm \sqrt{a^2 - b^2} \).

With respect to this basis consider the usual vector space decomposition \(g_2^C = \text{su}(3)^C \oplus m \). Intersecting it with \(g_2^C = s_u \oplus \overline{s}_u \) we obtain \(g_2^C = s_u \cap \text{su}(3)^C \oplus s_u \cap m \oplus \overline{s}_u \cap m \oplus \overline{s}_u \cap \text{su}(3)^C \) implying a splitting \(m = s_u \cap m \oplus \overline{s}_u \cap m \). It is straightforward that \(m \) is spanned by \(\{ U_{\pm k} \} \) with \(k = 1, 2, 3 \) therefore \(s_u \cap m \) is spanned by \(\{ U_{+1}, U_{-2}, U_{+3} \} \) and likewise \(\overline{s}_u \cap m \) by \(\{ U_{-1}, U_{+2}, U_{-3} \} \). Thus we find that \(\dim_C (s_u \cap m) = 3 = \dim_C (\overline{s}_u \cap m) \) for all moduli parameters \(u \).

\(^2\)An explicit matrix representation of the members of this basis will be exhibited soon in Sect. 3; therefore the interested reader can check all assertions about this basis by hand.
Let $s_1(t)$ be a smooth curve in S_u with the property $s_1(0) = s_1$ and likewise $s_2(t)$ in \mathfrak{su} such that $s_2(0) = s_2$. Then a generic curve in $S_u \Lambda^2 S_u^{-1} \subset G_2^C$ passing through $s_1 \Lambda^2 s_1^{-1}$ looks like $s_1(t) \Lambda^2 s_1^{-1}(t)$ and similarly for the curve $s_2(t) \Lambda^2 s_2^{-1}(t)$. Also let $L \in g_2^C$ be an element satisfying $\Lambda = \exp(L)$ hence $\Lambda^2 = \Lambda^{-1} = \exp(-L)$. Then $s_1(t) \Lambda^2 s_1^{-1}(t) = \exp(-s_1(t) L s_i^{-1}(t))$ for $i = 1, 2$. Let us compute the tangent vectors of these curves in the standard way:

$$L_{s_i \Lambda^2 s_i^{-1}} \left(\frac{d}{dt} \exp \left(-s_i(t) L s_i^{-1}(t) \right) \bigg|_{t=0} \right) = \frac{d}{dt} \left(\exp(s_i L s_i^{-1}) \exp \left(-s_i(t) L s_i^{-1}(t) \right) \right) \bigg|_{t=0}$$

$$= \exp(s_i L s_i^{-1}) \exp \left(-s_i(t) L s_i^{-1}(t) \right) \frac{d}{dt} \left(-s_i(t) L s_i^{-1}(t) \right) \bigg|_{t=0}$$

$$= 1 - \exp \left(-s_i L s_i^{-1} \right) \left[R_{s_i}^{-1} L s_i^{-1} + s_i L s_i^{-1} \right]$$

$$= s_i \left(\frac{e^{adL} - 1}{adL} \right) \left(L_{s_i}^{-1} \right) s_i^{-1}$$

$$= s_i \left(e^{adL} - 1 \right) L_{s_i}^{-1} s_i^{-1} \bigg|_{s_i}$$

Obviously $L_{s_i}^{-1} s_i \in \mathfrak{su}$ and $L_{s_2}^{-1} s_2 \in \mathfrak{su}$. Moreover $L \in h^C \subset g_2^C$ i.e. it is from the Cartan subalgebra hence ad_L acts diagonally on (5) thus $\left(e^{adL} - 1\right) L_{s_1}^{-1} s_1 \in \mathfrak{su}$ and $\left(e^{adL} - 1\right) L_{s_2}^{-1} s_2 \in \mathfrak{su}$ too. The additional datum that $\exp(L) \in Z(\text{SU}(3)^C)$ therefore $ad_L(\mathfrak{su}_G \subset \text{SU}(3)^C) = 0 = ad_L(\mathfrak{su}_H \subset \text{SU}(3)^C)$ implies that the right hand side in fact belongs to $s_1(\mathfrak{su}_H \subset \mathfrak{su}) s_1^{-1} \subset \mathfrak{su}$ or $s_2(\mathfrak{su}_H \subset \mathfrak{su}) s_2^{-1} \subset \mathfrak{su}$ respectively. For simplicity write $p_i := s_i \Lambda^2 s_i^{-1}$ moreover $P_1 := s_1 \Lambda^2 s_1^{-1}$ and $P_2 := s_2 \Lambda^2 s_2^{-1}$. Thus we find that $T_{p_1}P_1 = L_{p_1} \text{Ad}_s(\mathfrak{su}_H \subset \mathfrak{su})$ and $T_{p_2}P_2 = L_{p_2} \text{Ad}_s(\mathfrak{su}_H \subset \mathfrak{su})$. Recalling that $O'(\Lambda)^C = P_1 P_2$ such that $P_1 \cap P_2$ is discrete we can apply Leibniz’s rule and then insert these identities to split the tangent space

$$T_{p_1}T_{p_2}O'(\Lambda)^C = R_{p_2}T_{p_1} \langle P_1 \rangle \oplus T_{p_1}T_{p_2} = L_{p_1}R_{p_2} \text{Ad}_s(\mathfrak{su}_H \subset \mathfrak{su}) \quad \oplus \quad L_{p_1}L_{p_2} \text{Ad}_s(\mathfrak{su}_H \subset \mathfrak{su}) \ .$$

Put $s = p = \mathfrak{su}$ hence $p_1 = p = \mathfrak{su}_H$ yielding $T_{p_1}T_{p_2}O'(\Lambda)^C = L_{p_1}R_{p_2} \text{Ad}_s(\mathfrak{su}_H \subset \mathfrak{su}) \quad \oplus \quad L_{p_1}L_{p_2} \text{Ad}_s(\mathfrak{su}_H \subset \mathfrak{su}) \ .$ From (4) we know that $p = \mathfrak{su}$ is a real point such that the realification of e.g. the complex summand $L_{p_2} \text{Ad}_s(\mathfrak{su}_H \subset \mathfrak{su}) \subset T_{p_2}O'(\Lambda)^C$ is the real tangent space $T_{p_2}O'(\Lambda)$ whose complexification gives back again $T_{p_2}O'(\Lambda)^C$. For a complex subspace $V \subset T_{g}G_2^C$ writing its complex conjugate within $T_{g}G_2^C$ as $V^\perp := T_{g}L_{g}^{-1}V \text{ then with } V := L_{p_2} \text{Ad}_s(\mathfrak{su}_H \subset \mathfrak{su}) \text{ we obtain } T_{p_2}O'(\Lambda)^C = (V^\perp) \subset V^\perp \text{ V. Therefore the asymmetric splitting constructed above in the real case induces a new and symmetric one}$

$$T_{p_1}T_{p_2}O'(\Lambda)^C = L_{p_1}L_{p_2}^{-1} \text{Ad}_{s}(\mathfrak{su}_H \subset \mathfrak{su}) \quad \oplus \quad L_{p_1}L_{p_2} \text{Ad}_{s}(\mathfrak{su}_H \subset \mathfrak{su})$$

moreover readily $L_{p_1} \text{Ad}_{s}(\mathfrak{su}_H \subset \mathfrak{su}) = L_{p_2} \text{Ad}_{s}(\mathfrak{su}_H \subset \mathfrak{su}) \text{ and } L_{p_2} \text{Ad}_{s}(\mathfrak{su}_H \subset \mathfrak{su}) = L_{p_1} \text{Ad}_{s}(\mathfrak{su}_H \subset \mathfrak{su})$. Thus summing up all of our findings so far we conclude that

$$T_gO'(\Lambda)^C = L_{g} \text{Ad}_{s}(\mathfrak{su}_H \subset \mathfrak{su}) \bigg(O'(\Lambda)^C \bigg) \quad \oplus \quad L_{g} \text{Ad}_{s}(\mathfrak{su}_H \subset \mathfrak{su}) \bigg(O'(\Lambda)^C \bigg)$$

(6) is a left-invariant decomposition with dim$C(\mathfrak{g}_+ \mathfrak{su}_H \cap T_gO'(\Lambda)^C) = 3 = \dim_C(\mathfrak{g}_+ \mathfrak{su}_H \cap T_gO'(\Lambda)^C)$ over all $g \in O'(\Lambda)$ and for all Samelson moduli parameters $u \in P(h^C) \setminus P(h)$.

Thus working over $g \in O'(\Lambda)$ as defined in (4) the Samelson splittings $T_{g}G_2^C = L_{g} \mathfrak{su}_H \bigoplus L_{g} \mathfrak{su}_H \text{ induce sub-splittings } T_{g}O'(\Lambda)^C = Z_{u,g} \bigoplus Z_{u,g}$ where $Z_{u,g} := L_{g} \mathfrak{su}_H \cap T_gO'(\Lambda)^C$ and $Z_{u,g} := L_{g} \mathfrak{su}_H \cap T_gO'(\Lambda)^C$. We know additionally that they are both 3 complex dimensional moreover $T_{g}O'(\Lambda)^C \cong T_{g}O'(\Lambda) \bigotimes_{\mathbb{R}} \mathbb{C}$ and $T_{g}O'(\Lambda) \cap Z_{u,g} = 0$. Consequently $T_{g}O'(\Lambda)^C = Z_{u,g} \bigoplus Z_{u,g}$ gives rise to a complex vector space
structure $J_{u,g} : T_gO'(\Lambda) \to T_gO'(\Lambda)$ on the underlying real vector space by the general theory. In this way $O'(\Lambda)$ is improved to an almost complex manifold $(O'(\Lambda), J_u)$. Concerning its integrability, let X be a real vector field along $O'(\Lambda)$ and $X^{1,0} = \frac{1}{2}(X - \sqrt{-1} \Pi_u X)$ its corresponding $(1,0)$-type vector field along $(O'(\Lambda), J_u)$. Moreover let $\{Z_1^{1,0}, \ldots, Z_7^{1,0}\}$ be a basis over \mathbb{C} of $g_{2}^{1,0} \subset g_{2}^{C}$ hence satisfying $[Z_i^{1,0}, Z_j^{1,0}]_{0,1} = 0$ for all $i, j = 1, \ldots, 7$ (recall that $g_{2}^{1,0} = g_{2}^{1,0} \oplus g_{2}^{0,1}$ such that $g_{2}^{1,0} = s_u$ and $g_{2}^{0,1} = \mathbb{C}$). After identifying these basis elements with pointwise \mathbb{C}-linearly independent left-invariant $(1,0)$-type complex vector fields along G_{2}^{C} we can pick \mathbb{C}-valued smooth functions f_1, \ldots, f_7 along $O'(\Lambda)$ (and extend them by zero over the whole G_{2}^{C}) to write $X^{1,0} = \sum_i f_i Z_i^{1,0}$. The Nijenhuis bracket of any two real vector fields $X, Y \in C^{\infty}(O'(\Lambda); TO'(\Lambda))$ then looks like

$$N_{J_u}(X, Y) = [X^{1,0}, Y^{1,0}]_{0,1} = \left[\sum_{i=1}^{7} f_i Z_i^{1,0}, \sum_{j=1}^{7} g_j Z_j^{1,0} \right]_{0,1} = \sum_{i, j=1}^{7} f_i g_j [Z_i^{1,0}, Z_j^{1,0}]_{0,1} = 0.$$

Thus the Nijenhuis tensor N_{J_u} of $(O'(\Lambda), J_u)$ itself vanishes consequently the almost complex structure is integrable yielding a complex manifold X_u. Finally we observe that X_u is homeomorphic to the 6-sphere.

Remark. 1. Note that *a priori* the complex manifolds X_u might be non-isomorphic for different values of the Samelson moduli parameter u. However we will see by the aid of the explicit construction at the end of Sect. 3 that these complex structures do not depend on u. Likewise, repeating everything so far with the apparently different twin conjugate orbit $O(\Lambda^2) \subset G_{2}$ we do not obtain new complex manifolds because we will see in Lemma 3.1 that $O(\Lambda^2) = O(\Lambda)$ as subsets of G_{2}.

2. On the other hand Gray [6] found in 1997 that if X was a hypothetical complex manifold diffeomorphic to S^6 then $H^{0,1}(X) \cong \mathbb{C}$ and raised the question how to interpret the generator of this cohomology group. In addition Ugarte [15, Corollary 3.3] proved in 2000 that either (i) $H^{1,1}(X) \not\cong 0$, or (ii) $H^{1,1}(X) \cong 0$ and $H^{0,2}(X) \not\cong 0$. Therefore $H^{0,1}(X_u) \cong \mathbb{C}$ and either $H^{1,1}(X_u) \not\cong 0$, or $H^{1,1}(X_u) \cong 0$ and $H^{0,2}(X_u) \not\cong 0$. On the other hand Pittie [12, Proposition 4.5] calculated in 1988 the complete Dolbeault cohomology ring of Y_u and in particular demonstrated that $H^{0,1}(Y_u) \cong \mathbb{C}$, $H^{1,1}(Y_u) \cong \mathbb{C}$ and $H^{0,2}(Y_u) \cong 0$ for all moduli parameters $u \in \mathbb{C}P^1 \setminus \mathbb{R}P^1$. That is, observe that there is a resemblance between the lower degree cohomologies of X_u and Y_u.

The six-sphere as a complex manifold is not homogeneous. Consequently blowing it up once in points belonging to different orbits of its automorphism group brings to life spaces which are all diffeomorphic to the complex projective three-space but not complex-analytically isomorphic to each other [7]. LeBrun calls in [9] the existence of such exotic $\mathbb{C}P^3$'s a “minor disaster”. Here we report on a further disaster namely the existence of large exotic \mathbb{C}^3's in a similar sense:

Lemma 2.1. Let $x_0 \in X_u$ be a point and consider the punctured complex manifold $X_u^\times := X_u \setminus \{x_0\}$. Then the space X_u^\times is diffeomorphic to \mathbb{C}^3 but is not complex-analytically isomorphic to it.

Proof. Obviously X_u^\times is diffeomorphic to $S^6 \setminus \{x_0\}$ i.e. to \mathbb{R}^6 like \mathbb{C}^3 does. Let $f : X_u^\times \to \mathbb{C}$ be a holomorphic function. By Hartogs’ theorem it extends to a holomorphic function $F : X_u \to \mathbb{C}$. However F must be constant [2] consequently f is constant on X_u^\times as well. Since there exists an abundance of non-trivial holomorphic functions on \mathbb{C}^3 we conclude that X_u^\times and \mathbb{C}^3 are not complex-analytically isomorphic. □
3 Explicit construction

In this section we calculate the integrable almost complex tensors J_u on $O'(\Lambda)$ underlying the complex manifolds X_u of Theorem 2.1. This computation allows one to read off at least that they do not depend on the Samelson parameter u hence the complex structures of Theorem 2.1 are in fact equivalent.

The six-sphere as a complex manifold is not easy to grasp. Since X_u is a compact space it cannot be embedded into the affine complex space \mathbb{C}^m of any dimension; likewise $H^2(X_u; \mathbb{C}) \cong 0$ shows that it is not Kähler–Hodge consequently it does not admit an embedding into any projective complex space \mathbb{CP}^n. Therefore its realization as a complex submanifold of some well-known complex manifold fails. Another odd feature is that the algebraic dimension of X_u is zero [2] which means that all global meromorphic functions are constant on it consequently the powerful methods of complex analysis also fail to say anything here. What we nevertheless can try is to seek the integrable almost complex manifold $(O'(\Lambda), J_u)$ underlying X_u. This indeed works but the result is so complicated that we decided not to display it fully here. In spite of this we write down carefully the main steps hence the curious (and computer-aided) reader can easily reproduce the calculations and face their quantitative complexity directly.

Finally, before sinking in the heavy details, we raise the question whether or not there exists a better general way to exhibit X_u in a more compact or comprehensible form.

We begin with an explicit construction of the Samelson family J_u with $u \in \mathbb{C} \setminus \sqrt{-1} \mathbb{R}$ of all integrable almost complex tensor fields on G_2 as we promised in a footnote of Sect. 2. We also promised in another footnote to write down the root basis (5) of the 14 dimensional $\mathfrak{g}_2^\mathbb{C}$ explicitly. So let us start with this. Our representation of the basis is the smallest possible one and is provided by the embedding $\mathfrak{g}_2^\mathbb{C} \subset \mathfrak{so}(7)\mathbb{C}$ therefore is in terms of 7×7 complex skew symmetric matrices. The corresponding matrices are orthonormal with respect to the Hermitian (thus not Ad-invariant!) scalar product $\langle V, W \rangle^\mathbb{C} := \text{tr}(V \overline{W}^T)$ on $\mathfrak{g}_2^\mathbb{C}$ and look as follows:

$$H_{\pm a,b} = \frac{1}{2\sqrt{a^2 + b^2 + b + 1}} \begin{pmatrix}
0 & 0 & \mp \sqrt{-1} & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & a \mp \sqrt{-1} b & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & a \sqrt{-1} (b + 1) & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0
\end{pmatrix}, \quad a, b \in \mathbb{R}, \quad a \neq 0$$

and one checks that $\{H_{\pm a,b}\}$ span the 2 dimensional complex Cartan subalgebra of $\mathfrak{h}_2^\mathbb{C} \subset \mathfrak{g}_2^\mathbb{C}$; moreover

$$V_{\pm 1} = \frac{1}{2\sqrt{2}} \begin{pmatrix}
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & \mp \sqrt{-1} & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & -1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0
\end{pmatrix}$$

$$V_{\pm 2} = \frac{1}{2\sqrt{2}} \begin{pmatrix}
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & \mp \sqrt{-1} & \pm \sqrt{-1} & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0
\end{pmatrix}$$

$$V_{\pm 3} = \frac{1}{2\sqrt{2}} \begin{pmatrix}
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & \mp \sqrt{-1} & \mp \sqrt{-1} & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0
\end{pmatrix}$$
and one checks that \(\{ H_{±a,b}, V_{±1}, V_{±2}, V_{±3} \} \) span the (maximal) subalgebra \(\mathfrak{su}(3)^C \subset \mathfrak{g}_2^C \); and finally

\[
U_{±1} = \frac{1}{2\sqrt{6}} \begin{pmatrix}
0 & ±2\sqrt{T} & -2 & 0 & 0 & 0 \\
±2\sqrt{T} & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & -1 & ±\sqrt{T} & 1 \\
0 & 0 & 1 & ±\sqrt{T} & 0 & 0 \\
0 & 0 & 0 & ±\sqrt{T} & 1 & 0 \\
\end{pmatrix}
\]

\[
U_{±2} = \frac{1}{2\sqrt{6}} \begin{pmatrix}
0 & 0 & 0 & ±2\sqrt{T} & 2 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
±2\sqrt{T} & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & ±\sqrt{T} & 0 & 0 \\
0 & 0 & 0 & ±\sqrt{T} & 1 & 0 \\
0 & 0 & 0 & 0 & ±\sqrt{T} & 0 \\
\end{pmatrix}
\]

\[
U_{±3} = \frac{1}{2\sqrt{6}} \begin{pmatrix}
0 & 0 & 0 & ±2\sqrt{T} & 2 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
±2\sqrt{T} & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & ±\sqrt{T} & 0 & 0 \\
0 & 0 & 0 & ±\sqrt{T} & 1 & 0 \\
±2\sqrt{T} & 0 & 0 & 0 & 0 & 0 \\
\end{pmatrix}
\]

and one checks that \(\{ H_{±a,b}, V_{±1}, V_{±2}, V_{±3}, U_{±1}, U_{±2}, U_{±3} \} \) span \(\mathfrak{s}_u \subset \mathfrak{g}_2^C \) where \(u \in \mathbb{C} \setminus \sqrt{-1}\mathbb{R} \) is written in the form \(u = a + \sqrt{-1}b \) with \(a \neq 0 \); we also find that the remaining elements from the root basis \(\{ H_{±a,b}, V_{±1}, V_{±2}, V_{±3}, U_{±1}, U_{±2}, U_{±3} \} \) form a basis in the complex conjugate subalgebra \(\overline{\mathfrak{s}}_u \subset \mathfrak{g}_2^C \).

Consequently picking \(a_i + \sqrt{-1}b_i \in \mathbb{C} \) \((i = 0, 1, \ldots, 6) \) to write an element \(W \in \mathfrak{s}_u \) as

\[
W := 2\sqrt{a^2 + b^2 + b + 1(a_0 + \sqrt{-1}b_0)H_{±a,b} + 2\sqrt{2}(a_4 + \sqrt{-1}b_4)V_{±1} + 2\sqrt{2}(a_5 + \sqrt{-1}b_5)V_{±2} + 2\sqrt{2}(a_6 + \sqrt{-1}b_6)V_{±3} + 2\sqrt{6}(a_1 + \sqrt{-1}b_1)U_{±1} + 2\sqrt{6}(a_2 + \sqrt{-1}b_2)U_{±2} + 2\sqrt{6}(a_3 + \sqrt{-1}b_3)U_{±3}
\]

and putting \(J_u : \mathfrak{g}_2 \to \mathfrak{g}_2 \) to be \(J_u(\text{Re}W) := -\text{Im}W \) dictated by the general theory we obtain an \(\mathbb{R} \)-linear transformation \(J_u \in \text{End} \mathfrak{g}_2 \). Its action on

\[
\text{Re}W = \begin{pmatrix}
0 & 2a_1 & -2a_1 & -2a_2 & 2a_2 & 2a_3 & 2b_3 \\
-2a_1 & 0 & -\frac{1}{2}b_0 & -b_3 - a_4 & a_3 + b_4 & -a_2 - a_5 & -b_2 - b_5 \\
2a_1 & -\frac{1}{2}b_0 & 0 & a_3 - b_4 & -a_4 + b_3 & b_2 - b_5 & -a_2 + a_5 \\
2b_2 & -a_3 - b_4 & a_4 - b_3 & \frac{1}{2}a_0 - \frac{1}{2}b_0 & 0 & b_1 - b_6 & -a_1 + a_6 \\
-2a_2 & a_2 + a_5 & a_4 - b_3 & \frac{1}{2}a_0 - \frac{1}{2}b_0 & 0 & b_1 - b_6 & -a_1 + a_6 \\
-2b_3 & -b_2 + b_5 & a_2 - a_5 & b_1 + b_6 & a_1 - a_6 & \frac{1}{2}a_0 - \frac{1}{2}b_0 & 0 \\
\end{pmatrix}
\]

is by definition

\[
-\text{Im}W = \begin{pmatrix}
0 & 2a_1 & -2a_1 & -2a_2 & 2b_3 & 2a_3 \\
-2a_1 & 0 & -\frac{1}{2}a_0 & a_3 - b_4 & b_2 + b_5 & a_2 - a_5 \\
-2b_1 & -\frac{1}{2}a_0 & 0 & a_4 - b_3 & b_3 + b_4 & a_2 - a_5 \\
2a_2 & a_3 - b_4 & a_4 + b_3 & \frac{1}{2}a_0 + \frac{1}{2}b_0 & b_1 + b_6 & a_1 - a_6 \\
2b_2 & -a_3 - b_4 & a_4 - b_3 & \frac{1}{2}a_0 + \frac{1}{2}b_0 & b_1 + b_6 & a_1 - a_6 \\
2b_3 & -b_2 + b_5 & a_2 - a_5 & -b_1 - b_6 & a_1 + a_6 & \frac{1}{2}(b + 1)a_0 + \frac{1}{2}ab_0 \\
-2a_3 & a_2 + a_5 & -b_2 - b_5 & a_1 + a_6 & -b_1 - b_6 & \frac{1}{2}(b + 1)a_0 - \frac{1}{2}ab_0 & 0 \\
\end{pmatrix}
\]
One can find precisely two integrable almost complex structures\(^\dagger\) orthogonal for the aforementioned natural Ad-invariant real scalar product on \(\mathfrak{g}_2\). Let \(\mathfrak{o}_\mp\) with the (positive definite) Ad-invariant real scalar product \(\langle V, W \rangle := \text{tr}(V W^T)\). A straightforward computation verifies that in this basis the action of \(J_u\) takes the simple blockdiagonal shape

\[
J_u H_+ = \frac{-2b+1}{2a} H_+ + \frac{2a^2+4b^2+4b+1}{2\sqrt{3}a} H_-, \quad J_u H_- = \frac{-\sqrt{3}}{2a} H_+ + \frac{2b+1}{2a} H_-.
\]

One can find precisely two integrable almost complex structures \(J_{u\pm}\) at \(a = \pm \frac{\sqrt{3}}{2}\) and \(b = -\frac{1}{4}\) which are orthogonal for the aforementioned natural Ad-invariant real scalar product on \(\mathfrak{g}_2\) i.e. \(\langle J_{u\pm} V, V \rangle = 0\) and \(|J_{u\pm} V| = |V|\) for all \(V \in \mathfrak{g}_2\). After left-translating the \(J_u\’s\) over the whole compact group they give rise to complex structures on \(G_2\) such that the two orthogonal \(J_{u\pm}\) yield two complex structures compatible with the bi-invariant metric on \(G_2\). This completes the construction of all the integrable almost complex tensors \(J_u\) on \(G_2\) à la Samelson (for further details cf. [12, Example on p. 123]).

Our next task is to construct the deformed conjugate orbit \(O^t(\Lambda) \subset \mathfrak{g}_2^\mathbb{C}\). This will be achieved in two technical steps below. First we construct the original conjugate orbit (1) secondly its deformation as defined in (4).

Recall the classical fact that \(G_2\) coincides with the automorphism group of the octonions over the reals; this important fact has not been used so far explicitly. We shall identify \(O(\Lambda) \subset G_2\) with the subset of inner automorphisms of the octonions. Let \(\mathbb{O}\) denote the non-associative, unital normed algebra of the octonions (or Cayley numbers) over the reals. In the canonical oriented basis \(\{e_0, e_1, \ldots, e_7\}\) the \(e_0\) plays the role of the unit hence \(\text{Re} \mathbb{O} := \text{Re} e_0 \subset \mathbb{O}\) is the real part. To be absolutely unambiguous we communicate our octonionic multiplication convention here:

\(e_0\)	\(e_1\)	\(e_2\)	\(e_3\)	\(e_4\)	\(e_5\)	\(e_6\)	\(e_7\)	
\(e_0\)	\(e_0\)	\(e_1\)	\(e_2\)	\(e_3\)	\(e_4\)	\(e_5\)	\(e_6\)	\(e_7\)
\(e_1\)	\(-e_0\)	\(e_3\)	\(-e_2\)	\(e_5\)	\(-e_4\)	\(-e_7\)	\(e_6\)	
\(e_2\)	\(-e_3\)	\(-e_0\)	\(e_1\)	\(e_6\)	\(e_7\)	\(-e_4\)	\(-e_5\)	
\(e_3\)	\(e_2\)	\(e_1\)	\(-e_0\)	\(e_7\)	\(-e_6\)	\(e_5\)	\(-e_4\)	
\(e_4\)	\(-e_5\)	\(-e_6\)	\(e_7\)	\(-e_0\)	\(e_1\)	\(e_2\)	\(e_3\)	
\(e_5\)	\(e_4\)	\(e_7\)	\(e_6\)	\(-e_1\)	\(-e_0\)	\(-e_3\)	\(e_2\)	
\(e_6\)	\(e_7\)	\(e_4\)	\(-e_5\)	\(-e_2\)	\(e_3\)	\(-e_0\)	\(e_1\)	
\(e_7\)	\(-e_6\)	\(e_5\)	\(-e_3\)	\(-e_2\)	\(e_1\)	\(-e_0\)	\(e_0\)	

\(\dagger\) actually there are many different conventions in use). The basis gives rise to a canonical \(\mathbb{R}\)-linear isomorphism of oriented spaces \(\langle \mathbb{O}, e_0, \ldots, e_7 \rangle \cong \mathbb{R}^8\). We can use the standard scalar product on \(\mathbb{R}^8\).
to define $\text{Im} \mathbb{O} := (\text{Re} \mathbb{O})^\perp \subset \mathbb{O}$ and introduce a multiplicative norm $| \cdot |$ on \mathbb{O}. Then canonically $(\text{Im} \mathbb{O}, e_1, \ldots, e_7) \cong \mathbb{R}^7$ and in this way we can look at the six-sphere as the set of imaginary octonions of unit length i.e. we will suppose $S^6 \subset \text{Im} \mathbb{O}$. If $u, v \in \mathbb{O}$ and $v \neq 0$ then the identity of elasticity convincus us that $(vu)v^{-1} = v(uv^{-1})$ hence it is meaningful to talk about inner automorphisms of the octonions. An important result [8] says that v indeed gives rise to an inner automorphism if and only if $4(\text{Re} v)^2 = |v|^2$ i.e. $3(\text{Re} v)^2 = |\text{Im} v|^2$ holds. Note that this condition implies v^3 is a non-zero scalar therefore it corresponds to the trivial automorphism of \mathbb{O}. Picking an $x \in S^6$ the non-real octonion $v := e_0 + \sqrt{3}x$ satisfying $v^3 = -8e_0$ therefore gives an inner automorphism (hence parantheses can be omitted)

$$u \mapsto (e_0 + \sqrt{3}x)u(e_0 + \sqrt{3}x)^{-1} = \frac{1}{4}(e_0 + \sqrt{3}x)u(e_0 - \sqrt{3}x) \quad (8)$$

and all inner automorphisms of the octonions are of this form. In this way we get a remarkable map

$$f : S^6 \longrightarrow G_2 \quad (9)$$

Knowing that $\text{Re} \mathbb{O}$ is invariant under all automorphisms and that the corresponding reduced linear map of $\text{Im} \mathbb{O}$ is an orientation preserving orthogonal transformation of \mathbb{R}^7 we can embed G_2 into $\text{SO}(7)$ as usual. Under the canonical isomorphism $(\text{Im} \mathbb{O}, e_1, \ldots, e_7) \cong \mathbb{R}^7$ put $x = x_1e_1 + \cdots + x_7e_7$ and thus the image $f(x)$ of the map (9) at x takes the impressive shape

$$f \left(\begin{array}{c} x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \\ x_6 \\ x_7 \\ \end{array} \right) = \frac{\sqrt{3}}{2} \left(\begin{array}{c} \sqrt{3}x_1 \\ -x_3 + \sqrt{3}x_1x_2 \hspace{1cm} -x_5 + \sqrt{3}x_1x_3 - x_3 + \sqrt{3}x_1x_5 \\ -x_3 + \sqrt{3}x_1x_2 \\ x_4 + \sqrt{3}x_1x_4 \\ x_7 + \sqrt{3}x_1x_7 \\ x_7 + \sqrt{3}x_1x_7 \\ -x_3 + x_2x_5 + x_6 + \sqrt{3}x_2x_6 \\ -x_3 + x_2x_5 + x_6 + \sqrt{3}x_2x_6 \\ x_6 + \sqrt{3}x_2x_6 \\ -x_3 + x_2x_5 + x_6 + \sqrt{3}x_2x_6 \\ x_6 + \sqrt{3}x_2x_6 \\ x_6 + \sqrt{3}x_2x_6 \\ -x_3 + x_2x_5 + x_6 + \sqrt{3}x_2x_6 \\ x_6 + \sqrt{3}x_2x_6 \\ x_6 + \sqrt{3}x_2x_6 \\ x_6 + \sqrt{3}x_2x_6 \\ \end{array} \right)$$

of a 7×7 special orthogonal matrix with $x_1, \ldots, x_7 \in \mathbb{R}$ satisfying $x_1^2 + \cdots + x_7^2 = 1$. We shall need the derivative $f(x)_* : T_xS^6 \rightarrow T_{f(x)}G_2$ at $x \in S^6$ of this map, too. If $\xi \in T_xS^6$ is a tangent vector then $f(x)_*\xi \in T_{f(x)}G_2$ is its image. Putting $\xi = \xi_1e_1 + \cdots + \xi_7e_7$ satisfying $x_1\xi_1 + \cdots + x_7\xi_7 = 0$ a long but straightforward computation verifies that

$$f(x)_* \left(\begin{array}{c} \xi_1 \\ \xi_2 \\ \xi_3 \\ \xi_4 \\ \xi_5 \\ \xi_6 \\ \xi_7 \\ \end{array} \right) = \frac{3}{2} \left(\begin{array}{c} 2x_1\xi_1 - \frac{1}{\sqrt{3}}x_3\xi_1 + \frac{1}{\sqrt{3}}x_5\xi_1 + x_3\xi_1 - \frac{1}{\sqrt{3}}x_5\xi_1 + x_3\xi_1 + \frac{1}{\sqrt{3}}x_5\xi_1 + x_3\xi_1 \\ \frac{1}{\sqrt{3}}x_3\xi_1 + \frac{1}{\sqrt{3}}x_5\xi_1 + x_3\xi_1 - \frac{1}{\sqrt{3}}x_5\xi_1 + x_3\xi_1 + \frac{1}{\sqrt{3}}x_5\xi_1 + x_3\xi_1 \\ \frac{1}{\sqrt{3}}x_5\xi_1 + x_3\xi_1 + \frac{1}{\sqrt{3}}x_3\xi_1 + x_3\xi_1 - \frac{1}{\sqrt{3}}x_5\xi_1 + x_3\xi_1 + \frac{1}{\sqrt{3}}x_5\xi_1 + x_3\xi_1 \\ \frac{2x_2\xi_2}{} \\ -\frac{1}{\sqrt{3}}x_3\xi_2 + \frac{1}{\sqrt{3}}x_5\xi_2 + x_3\xi_2 - \frac{1}{\sqrt{3}}x_5\xi_2 + x_3\xi_2 + \frac{1}{\sqrt{3}}x_5\xi_2 + x_3\xi_2 \\ \frac{x_4\xi_4}{} \\ \frac{2x_3\xi_3}{} \\ \frac{2x_4\xi_4}{} \\ \frac{2x_5\xi_5}{} \\ \frac{2x_6\xi_6}{} \\ \frac{2x_7\xi_7}{} \\ \frac{2x_1\xi_1}{} \\ \frac{2x_2\xi_2}{} \\ \frac{2x_3\xi_3}{} \\ \frac{2x_4\xi_4}{} \\ \frac{2x_5\xi_5}{} \\ \frac{2x_6\xi_6}{} \\ \frac{2x_7\xi_7}{} \end{array} \right)$$
out of which we also obtain (but already will be unable to plot anything from now on) the pullback \(L_{f(x)*}^{-1}(f(x)*\xi) \in T_xG_2 = g_2 \). In less fancy notation this is \(f(x)^{-1}f(x)*\xi \in \mathbb{R}^7 \) i.e. the plain matrix product of the group-theoretic inverse \(f(x)^{-1} \) and \(f(x)*\xi \) above.

It readily follows from (8) or by a direct computation that \(f(x)^3 = 1_{\mathbb{R}^7} \) and \(f(x)x = x \) i.e. we can visualize \(f(x) \) as a degree \(\frac{2\pi}{3} \) rotation \(R_x \) about the axis through \(x \in \mathbb{R}^7 \). Since \(\Lambda \in Z(SU(3)) \cong \mathbb{Z}_3 \) satisfies \(\Lambda^3 = e \in G_2 \) it is also true that \(h^3 = e \) for all \(h \in O(\Lambda) \). In fact the two subsets \(f(S^6) \) and \(O(\Lambda) \) of \(G_2 \) are nothing but the same:

Lemma 3.1. (cf. [3, pp. 160-161]) The conjugate orbit \(O(\Lambda) \subset G_2 \) of (1) and the image \(f(S^6) \subset G_2 \) of the map (9) coincide as subsets within \(G_2 \) i.e.

\[
O(\Lambda) = \{ f(x) \mid x \in S^6 \}.
\]

Moreover \(O(\Lambda) = O(\Lambda^2) \), where \(O(\Lambda^2) = \{ g\Lambda^2g^{-1} \mid g \in G_2 \} \) is the conjugate orbit passing through the square of the generator \(\Lambda^2 \in Z(SU(3)) \subset G_2 \).

Proof. We quickly observe that

\[
\begin{pmatrix}
1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & -\frac{1}{\sqrt{2}} & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & -\frac{1}{\sqrt{2}} & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & -\frac{1}{\sqrt{2}} & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & -\frac{1}{\sqrt{2}} & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & -\frac{1}{\sqrt{2}}
\end{pmatrix}
\]

hence \(f(e_1) = \Lambda \in Z(SU(3)) \subset G_2 \). Therefore the action \(u \mapsto \Lambda u \) on \(u \in \mathcal{O} \) arises from the inner automorphism \(u \mapsto (e_0 + \sqrt{3}e_1)u(e_0 + \sqrt{3}e_1)^{-1} \) in (8). Now pick \(g \in G_2 \) then the twisted action \(u \mapsto (g\Lambda g^{-1})u \) looks like

\[
(g\Lambda g^{-1})u = g \left((e_0 + \sqrt{3}e_1)(g^{-1}u)(e_0 + \sqrt{3}e_1)^{-1} \right) = -\frac{1}{8}g \left((e_0 + \sqrt{3}e_1)(g^{-1}u)(e_0 + \sqrt{3}e_1)^2 \right)
\]

\[
= -\frac{1}{8}g(e_0 + \sqrt{3}e_1)u(g(e_0 + \sqrt{3}e_1)^{-1})^2 = -\frac{1}{8}(e_0 + \sqrt{3}(ge_1))u(e_0 + \sqrt{3}(ge_1))^{-1}
\]

consequently it comes from an inner automorphism by \(v := e_0 + \sqrt{3}(ge_1) \). Therefore \(f(ge_1) = g\Lambda g^{-1} \) and taking into account that \(G_2 \) acts transitively on \(S^6 \subset \text{Im} \mathcal{O} \) (with stabilizer subgroup \(SU(3) \subset G_2 \)) we conclude that \(f(S^6) = O(\Lambda) \).

The fact \(f(-x) = f(x)^T = f(x)^{-1} \) gives the identity \(f(\pm x) = f(x)^{\pm1} \) for all \(x \in S^6 \). Therefore \(f(\pm e_1) = f(e_1)^{\pm1} = \Lambda^{\pm1} \) yielding \(f(-e_1) = \Lambda^{-1} = \Lambda^2 \). Taking an element \(g \in G_2 \) satisfying \(g\Lambda = -e_1 \) (unique up to two-sided multiplication with elements of \(SU(3) \subset G_2 \)) we can write \(\Lambda^2 = g\Lambda g^{-1} \); hence the two conjugate orbits of \(\Lambda \) and \(\Lambda^2 \) in \(G_2 \) are not distinct consequently they must coincide. \(\Box \)

Now we are in a position to construct the deformed conjugate orbit \(O^c(\Lambda) \subset G_2^c \). Replace the real vector \(x = x_1e_1 + \cdots + x_7e_7 \) satisfying \(x_1^2 + \cdots + x_7^2 = 1 \) with a complex vector \(z = z_1e_1 + \cdots + z_7e_7 \) such that \(z_1^2 + \cdots + z_7^2 = 1 \). Then \(w = e_0 + \sqrt{3}z \) continues to be invertible and satisfies \(3(\text{Re} w)^2 = |\text{Im} w|^2 \) hence generates an inner automorphism of the complexified octonions \(\mathcal{O} \otimes \mathbb{R} C \). Consequently inserting \(z \) into (9) we obtain the complexified map

\[
f^c : (S^6)^c \rightarrow G_2^c
\]

and by Lemma 3.1 we know that \(O(\Lambda)^C = \{ f^c(z) \mid z \in (S^6)^c \} \) and \(O(\Lambda)^C = O(\Lambda^2)^C \).
Lemma 3.2. There exists a bounded domain \(\Omega \subset \mathbb{C}^3 \) about the origin (whose more precise shape is not important) such that the deformed conjugate orbit \(O'(\Lambda) \subset G_2^C \) as defined in (4) looks like

\[
O'(\Lambda) = \left\{ f_C(z) f_C(\overline{z}) \mid z = -e_1 + z_2 e_2 - \sqrt{-1} z_2 e_3 + z_4 e_4 - \sqrt{-1} z_4 e_5 + z_6 e_6 - \sqrt{-1} z_6 e_7, \right. \\
(z_2, z_4, z_6) \in \Omega \}
\]

where \(\overline{z} \) denotes the conjugate of \(z \) as a complex vector in \(\mathbb{C}^7 \) (and not the conjugate as a complex octonion in \(\mathbb{O} \otimes_{\mathbb{R}} \mathbb{C} \)) i.e. for every \(v = v_1 e_1 + \cdots + v_7 e_7 \) we define \(\overline{v} := v_1 e_1 + \cdots + v_7 e_7 \).

Moreover \(O'(\Lambda) \) is homeomorphic to \(S^6 \), does not depend on the Samelson parameter \(u = a + \sqrt{-1} b \) with \(a \neq 0 \) and in particular \(f_C(-e_1) f_C(-e_1) = \Lambda \in O'(\Lambda) \) justifying the notation.

Proof. We have seen that \(\Lambda^2 = \Lambda^{-1} = f(e_1)^{-1} = f(-e_1) = f_C(-e_1) \) hence knowing that \(s_1 \in S_u \subset G_2^C \) is an automorphism we find \(f_C(z) = s_1 \Lambda^2 s_1^{-1} = s_1 f_C(-e_1) s_1^{-1} = f_C(s_1(-e_1)) \) hence \(z = -s_1 e_1 \). Consider the unique decomposition \(s_1 = \lim_n (A^{1/n} h_1^{1/n})^n \) where \(h_1 \in S_u \cap SU(3)^C \) and using the previously constructed root basis for \(S_u \) we introduced \(A := \exp(\sqrt{-6} z_2 U_{-1} - \sqrt{-6} z_4 U_{-2} + \sqrt{6} z_6 U_{+3}) \in S_u \).

This latter matrix is relatively easy to compute because fortunately \(U^3_{\pm k} = 0 \) for \(k = 1, 2, 3 \) yielding

\[
A =\begin{pmatrix}
1 & z_2 & \sqrt{-1} z_2 & z_4 & -\sqrt{-1} z_4 & z_6 & -\sqrt{-1} z_6 \\
-z_2 & 1-\frac{1}{2} z_2^2 & z_4 + \frac{1}{2} z_2^2 & z_6 + \sqrt{2} z_2 z_4 & \frac{1}{2} z_2^2 + z_4 + z_6 & \frac{1}{2} z_2^2 + z_4 - z_6 & \frac{1}{2} z_2^2 + z_4 + z_6 \\
\sqrt{-1} z_2 & z_4 + \frac{1}{2} z_2^2 & 1 + \frac{1}{2} z_2^2 & z_4 + \frac{1}{2} z_2^2 & \frac{1}{2} z_2^2 + z_4 + z_6 & \frac{1}{2} z_2^2 + z_4 - z_6 & \frac{1}{2} z_2^2 + z_4 + z_6 \\
-z_4 & -\frac{1}{2} z_2^2 - z_4 & 1 + \frac{1}{2} z_2^2 & z_4 + \frac{1}{2} z_2^2 & \frac{1}{2} z_2^2 + z_4 + z_6 & \frac{1}{2} z_2^2 + z_4 - z_6 & \frac{1}{2} z_2^2 + z_4 + z_6 \\
\sqrt{-1} z_4 & z_6 + \sqrt{2} z_4 z_2 & \frac{1}{2} z_2^2 + z_4 + z_6 & \frac{1}{2} z_2^2 + z_4 + z_6 & 1 + \frac{1}{2} z_2^2 & \frac{1}{2} z_2^2 - z_4 + z_6 & \frac{1}{2} z_2^2 - z_4 - z_6 \\
-z_6 & -\sqrt{2} z_4 z_2 & \frac{1}{2} z_2^2 + z_4 + z_6 & \frac{1}{2} z_2^2 + z_4 + z_6 & \frac{1}{2} z_2^2 - z_4 + z_6 & 1 + \frac{1}{2} z_2^2 & \frac{1}{2} z_2^2 - z_4 - z_6 \\
\sqrt{-1} z_6 & -\sqrt{2} z_4 z_2 & \frac{1}{2} z_2^2 + z_4 + z_6 & \frac{1}{2} z_2^2 + z_4 + z_6 & \frac{1}{2} z_2^2 - z_4 + z_6 & \frac{1}{2} z_2^2 - z_4 - z_6 & 1 + \frac{1}{2} z_2^2
\end{pmatrix}
\]

thus it is algebraic. Since \(h_1 \) is the stabilizer of \(e_1 \) and \(\dim_{\mathbb{C}} S_u \Lambda^2 S_u^{-1} = 3 \) as well as \(A \) already depends on 3 complex parameters by setting \(h_1 := e \) we can replace \(s_1 \) with the simple matrix \(A \) at the price of parameterizing an open subset of \(S_u \Lambda^2 S_u^{-1} \) only. Thus the action of this \(A \) on \(-e_1\) gives

\[
z = -e_1 + z_2 e_2 - \sqrt{-1} z_2 e_3 + z_4 e_4 - \sqrt{-1} z_4 e_5 + z_6 e_6 - \sqrt{-1} z_6 e_7
\]

thus \(z \in (S^6)^C \) with arbitrary parameters \(z_2, z_4, z_6 \in \mathbb{C} \). Likewise \(f_C(v) \in S_u \Lambda^2 S_u^{-1} \) if

\[
v = -e_1 + v_2 e_2 + \sqrt{-1} v_2 e_3 + v_4 e_4 + \sqrt{-1} v_4 e_5 + v_6 e_6 + \sqrt{-1} v_6 e_7
\]

hence \(v \in (S^6)^C \) with further \(v_2, v_4, v_6 \in \mathbb{C} \). In this case for the element \(s_2 \in S_u \) taking \(-e_1\) to \(v \) it is enough to put \(B := \exp(-\sqrt{-6} v_2 U_{-1} + \sqrt{-6} v_4 U_{+2} + \sqrt{6} v_6 U_{-3}) \in S_u \) which looks like

\[
B =\begin{pmatrix}
1 & v_2 & \sqrt{-1} v_2 & v_4 & \sqrt{-1} v_4 & v_6 & -\sqrt{-1} v_6 \\
-v_2 & 1-\frac{1}{2} v_2^2 & -\frac{1}{2} v_2^2 + v_4 & -\frac{1}{2} v_2^2 + v_6 & v_4 & \frac{1}{2} v_2^2 + v_6 & \frac{1}{2} v_2^2 + v_4 \\
\sqrt{-1} v_2 & -\frac{1}{2} v_2^2 + v_4 & 1 + \frac{1}{2} v_2^2 & -\frac{1}{2} v_2^2 + v_6 & -v_4 & \frac{1}{2} v_2^2 + v_6 & \frac{1}{2} v_2^2 + v_4 \\
v_4 & \frac{1}{2} v_2^2 + v_4 & \frac{1}{2} v_2^2 + v_6 & 1 + \frac{1}{2} v_2^2 & -v_4 & \frac{1}{2} v_2^2 + v_6 & \frac{1}{2} v_2^2 + v_4 \\
\sqrt{-1} v_4 & \frac{1}{2} v_2^2 + v_4 & \frac{1}{2} v_2^2 + v_6 & 1 + \frac{1}{2} v_2^2 & -v_4 & \frac{1}{2} v_2^2 + v_6 & \frac{1}{2} v_2^2 + v_4 \\
v_6 & \frac{1}{2} v_2^2 + v_6 & \frac{1}{2} v_2^2 + v_4 & 1 + \frac{1}{2} v_2^2 & -v_4 & \frac{1}{2} v_2^2 + v_6 & \frac{1}{2} v_2^2 + v_4 \\
\sqrt{-1} v_6 & \frac{1}{2} v_2^2 + v_4 & \frac{1}{2} v_2^2 + v_6 & 1 + \frac{1}{2} v_2^2 & -v_4 & \frac{1}{2} v_2^2 + v_6 & \frac{1}{2} v_2^2 + v_4
\end{pmatrix}
\]

akin to \(A \). The perturbed complexified orbit \(O'(\Lambda)^C \) as defined in (3) is of the form \(S_u \Lambda^2 S_u^{-1} \subset (S^6)^C \) consequently we obtain an open subset of it which is however obviously closed too; therefore we find that \(O'(\Lambda)^C = \{ f_C(z) f_C(v) \mid z, v \in (S^6)^C \} \) as above.
Let us turn now to $O'(\Lambda)$. As defined in (4) the “real part” $O'(\Lambda)$ arises within $O'(\Lambda)^C$ by imposing on the pairs $s_1 \in S_u$ and $s_2 \in S_u$ the further reality condition $s_1 = s = \overline{s}_2$. This is because we know that $g = \lim_n (s^{1/n}s^{1/n})^n$ is a decomposition of a real element; we also know that given $g \in G_2$ one can find an element $s \in S_u$ such that for every $h \in SU(3)^C$ there exist $h_1 \in S_u \cap SU(3)^C$ and $h_2 \in S_u \cap SU(3)^C$ satisfying $gh = \lim_n (s^{1/n}h_1^{1/n}s^{1/n}h_2^{1/n})^n$. Thus as s runs over S_u the correspondence

$$s\Lambda^2s^{-1}\overline{\Lambda}^2\overline{s}^{-1} \iff \lim_n (s^{1/n}s^{1/n})^n \Lambda \lim_n (s^{1/n}s^{1/n})^{-n}$$

is a homeomorphism between $O'(\Lambda)$ as defined in (4) and $O(\Lambda)$ as defined in (1) i.e. between $O'(\Lambda)$ and S^6. To find an explicit parameterization of $O'(\Lambda)$ we go on again with observing that every element $g \in G_2$ can be written non-uniquely in the form $g = \lim_n (A^{1/n}s^{1/n})^n$ where A is the matrix above and $h \in S_u \cap SU(3)^C$. Introducing $Z(z_2,z_4,z_6) := \sqrt{-6}z_2U_{+1} - \sqrt{-6}z_4U_{-2} + \sqrt{6}z_6U_{+3} \in g_2^C$ hence $\exp Z(z_2,z_4,z_6) = A(z_2,z_4,z_6)$ as so far and likewise $W \in g_2^C$ via $\exp W = h$ these Trotter decompositions imply that $g \in G_2$ can be written as

$$g = \exp \left(\frac{Z(z_2,z_4,z_6) + W + \overline{Z}(z_2,z_4,z_6) + \overline{W}}{2}\right).$$

Consequently, taking into account the connectedness and compactness of G_2 and that the injective restriction of $\exp: g_2 \to G_2$ is a proper map, since $A(0,0,0) = e$ there exists a smallest bounded connected open subset $\Omega \subset \mathbb{C}^2$ about the origin, the “parameter space”, such that every element of G_2 can be obtained out of a matrix $A(z_2,z_4,z_6)$ satisfying $(z_2,z_4,z_6) \in \Omega$ and an element h also belonging to the closure of a neighbourhood of $e \in S_u \cap SU(3)^C$. Since $\dim_{\mathbb{R}} O'(\Lambda) = 6$ and the matrix $A(z_2,z_4,z_6)$ already depends on 6 real variables, we can represent an open subset of $O'(\Lambda)$ simply by matrices of the form $\Lambda \Lambda^2 \Lambda^{-1}$. It is easy to see that this subset is in fact closed too thus coincides with $O'(\Lambda)$. Because $f^C(z) = \Lambda \Lambda^2 \Lambda^{-1}$ hence $f^C(\overline{z}) = f^C(\overline{\Lambda}) = \Lambda \Lambda^2 \Lambda^{-1}$ we find that the claimed description $O'(\Lambda) = \{f^C(z)\mid \text{with } z \in (S^6)^C\}$ as above with $(z_2,z_4,z_6) \in \overline{\Omega}$ follows.

Finally observe that $O'(\Lambda)$ is homeomorphic to S^6 as we already know and it does not depend on $u = a + \sqrt{-1}b$. Moreover $z_2 = z_4 = z_6 = 0$ gives $z = -e_1$ and $f^C(-e_1) = \Lambda^2 \Lambda^2 = \Lambda \in O'(\Lambda)$ as stated. \hfill \Box

Our last steps are then as follows. Put

$$F(z,\overline{z}) := f^C(z)f^C(\overline{z})$$

and let $\{X_1, \ldots, X_6\}$ be a reasonable \mathbb{R}-basis at $T_F(z,\overline{z})O'(\Lambda)$ and extend it smoothly to an \mathbb{R}-frame over the punctured space $O'(\Lambda) \setminus \{\text{point}\}$ permitted by the parameterization of Lemma 3.2 i.e. take all $z = -e_1 + z_2e_2 - \sqrt{-1}z_2e_3 + z_4e_4 - \sqrt{-1}z_4e_5 + z_6e_6 - \sqrt{-1}z_6e_7$ with $(z_2,z_4,z_6) \in \Omega$ (note that no frame can extend further because $TO'(\Lambda) \cong TS^6$ is not trivial). Then the construction of J_u at g_2 allows one to compute the action of J_u at $T_F(z,\overline{z})O'(\Lambda)$ by left-invariance i.e. applying the formula $J_uX_i := L_F(z,\overline{z})J_uL_{-1}^{\cdot}F(z,\overline{z}) \cdot X_i$ or in simpler notation

$$J_uX_i := F(z,\overline{z})J_uF(z,\overline{z})^{-1}X_i.$$
order to expand the pullbacks $F(z, \overline{z})^{-1}X_i \in \mathfrak{g}_2^C$ in the C-linear extension of the \mathfrak{g}_2-basis $\{H_{\pm}, X_{\pm k}, Y_{\pm k}\}$ used in (7); secondly one uses the explicit action (7) of J_u in this basis to obtain $J_u F(z, \overline{z})^{-1}X_i \in \mathfrak{g}_2^C$; and thirdly by multiplying this matrix with $F(z, \overline{z})$ from the left one transfers the result from \mathfrak{g}_2^C back to $T_{F(z, \overline{z})} G_2^C$. Writing

$$J_{ij} := \langle J_u F(z, \overline{z})^{-1}X_i, F(z, \overline{z})^{-1}X_j \rangle^C$$

one tries to check that $J_u X_i - \sum_{j=1}^{6} J_{ij} X_j = 0$ implying $F(z, \overline{z}) J_u F(z, \overline{z})^{-1}X_i \in T_{F(z, \overline{z})} O'(\Lambda) \subset T_{F(z, \overline{z})} G_2^C$ i.e. the Samelson almost complex structure indeed restricts to $O'(\Lambda) \setminus \{\text{point}\}$. Moreover introducing the singular metric

$$g_{ik} := \langle F(z, \overline{z})^{-1}X_i, F(z, \overline{z})^{-1}X_k \rangle^C$$

and its inverse g^{ik} along $O'(\Lambda) \setminus \{\text{point}\}$ one tries to check that the matrix coefficients

$$J^i_k := \sum_{j=1}^{6} g^{ij} J_{jk}$$

of the true $(1, 1)$-tensor J_u are already smooth as $(z_2, z_4, z_6) \to \partial \Omega$ yielding a well-defined J_u over the whole $O'(\Lambda)$ as desired. However it is a mission impossible to perform and plot these brute force computations here.

The Samelson complex structure and its integrability shows up more clearly if we rather pass to complexification and exploit some technical observations made during the proof of Theorem 2.1. The obvious tangent vectors $\left\{ \frac{\partial F(z, \overline{z})}{\partial z_2}, \frac{\partial F(z, \overline{z})}{\partial z_5}, \ldots, \frac{\partial F(z, \overline{z})}{\partial z_6}, \frac{\partial F(z, \overline{z})}{\partial \overline{z}_2}, \ldots, \frac{\partial F(z, \overline{z})}{\partial \overline{z}_6} \right\}$ comprise a \mathbb{C}-basis in $T_{F(z, \overline{z})} O'(\Lambda)$. Consequently, writing $L_{F(z, \overline{z})}^{-1} \frac{\partial F(z, \overline{z})}{\partial z_{2k}}$ etc., simply as a matrix product $F(z, \overline{z})^{-1} \frac{\partial F(z, \overline{z})}{\partial z_{2k}}$ etc., from now on, $\left\{ F(z, \overline{z})^{-1} \frac{\partial F(z, \overline{z})}{\partial z_2}, \ldots, F(z, \overline{z})^{-1} \frac{\partial F(z, \overline{z})}{\partial z_6} \right\}$ is a \mathbb{C}-basis in $L_{F(z, \overline{z})}^{-1} T_{F(z, \overline{z})} O'(\Lambda) \subset \mathfrak{g}_2^C$. It has an asymmetric shape

$$\left\{ f^C(z)^{-1} \frac{\partial f^C(z)}{\partial z_2}, f^C(z)^{-1} \frac{\partial f^C(z)}{\partial z_5}, \ldots, f^C(z)^{-1} \frac{\partial f^C(z)}{\partial z_6}, f^C(z)^{-1} \frac{\partial f^C(z)}{\partial \overline{z}_2}, \ldots, f^C(z)^{-1} \frac{\partial f^C(z)}{\partial \overline{z}_6} \right\}.$$

Instead of this straightforward basis consider the not only symmetric but even simpler collection

$$\left\{ f^C(z)^{-1} \frac{\partial f^C(z)}{\partial z_2}, f^C(z)^{-1} \frac{\partial f^C(z)}{\partial z_5}, \ldots, f^C(z)^{-1} \frac{\partial f^C(z)}{\partial z_6}, f^C(z)^{-1} \frac{\partial f^C(z)}{\partial \overline{z}_2}, \ldots, f^C(z)^{-1} \frac{\partial f^C(z)}{\partial \overline{z}_6} \right\}$$

within \mathfrak{g}_2^C (but yet the full size of these matrices can be guessed from the shape of the real derivative $f(x)^{-1} f(x)*\xi$ computed above). Note that actually $\left\{ f^C(z)^{-1} \frac{\partial f^C(z)}{\partial z_2}, f^C(z)^{-1} \frac{\partial f^C(z)}{\partial z_5}, f^C(z)^{-1} \frac{\partial f^C(z)}{\partial z_6} \right\}$ gives a \mathbb{C}-basis in $L_{f^C(z)}^{-1} T_{f^C(z)} S_u \Lambda^2 S_u^{-1} \subset S_u$ and the rest forms a \mathbb{C}-basis in $L_{f^C(z)}^{-1} T_{f^C(z)} \overline{S}_u \Lambda^2 \overline{S}_u^{-1} \subset \overline{S}_u$. Consequently, since by recalling (6) we know that a splitting

$$L_{F(z, \overline{z})}^{-1} T_{F(z, \overline{z})} O'(\Lambda) \subset L_{f^C(z)}^{-1} T_{f^C(z)} S_u \Lambda^2 S_u^{-1} \oplus L_{f^C(z)}^{-1} T_{f^C(z)} \overline{S}_u \Lambda^2 \overline{S}_u^{-1}$$

holds, in fact this symmetric collection of matrices constitutes a \mathbb{C}-basis in $L_{F(z, \overline{z})}^{-1} T_{F(z, \overline{z})} O'(\Lambda) \subset$ too. Define $Z_{2k-1} := F(z, \overline{z}) f^C(z)^{-1} \frac{\partial f^C(z)}{\partial z_{2k}}$ and $Z_{2k} := F(z, \overline{z}) f^C(z)^{-1} \frac{\partial f^C(z)}{\partial \overline{z}_{2k}}$ for $k = 1, 2, 3$; then $\{Z_1, \ldots, Z_6\}$ gives rise to a smooth \mathbb{C}-frame field if $(z_2, z_4, z_6) \in \Omega$ that is over the punctured space $O'(\Lambda) \setminus \{\text{point}\}$.
From this point we proceed as before. Introducing again $J_u^{\mathbb{C}} := \langle J_u^{\mathbb{C}}F(z, \overline{z})^{-1}Z_i, F(z, \overline{z})^{-1}Z_j \rangle^{\mathbb{C}}$ we simply find that

$$J_{ij}^{\mathbb{C}} = \pm \sqrt{-1} g_{ij}$$

where we write again $g_{ij} := \langle F(z, \overline{z})^{-1}Z_i, F(z, \overline{z})^{-1}Z_j \rangle^{\mathbb{C}}$ and g^{kl} for the components of a complex singular metric and its inverse along $O'(\Lambda) \setminus \{\text{point}\}$. This is because from the observations on the frame made above we know that $F(z, \overline{z})^{-1}Z_k \in S_u = g_2^{1,0}$ for $k = 1, 3, 5$ and likewise $F(z, \overline{z})^{-1}Z_k \in \overline{S}_u = g_2^{0,1}$ for $k = 2, 4, 6$ where $g_2^{\mathbb{C}} = g_2^{1,0} \oplus g_2^{0,1}$ is the $\sqrt{-1}$-eigenspace decomposition of the complexified Lie algebra with respect to the complex linear extension $J_u^{\mathbb{C}}$ of the Samelson complex structure. Consequently by left-invariance of the Samelson complex structure the matrix elements $J_u^{\mathbb{C}}$ simply look like

$$J^{\mathbb{C}}_{ik} = \pm \sqrt{-1} \delta^{i}_k$$

hence it readily follows that despite the degeneration of the frame $\{Z_1, \ldots, Z_6\}$ the $(1, 1)$-tensor $J_u^{\mathbb{C}}$ itself remains smooth as $(z_2, z_4, z_6) \to \partial \Omega$ hence we obtain a well-defined $J_u^{\mathbb{C}}$ over the whole $O'(\Lambda)$.

Reality of $O'(\Lambda) \subset O'(\Lambda)^{\mathbb{C}}$ implies that $F(z, \overline{z})F(z, \overline{z})^{-1}Z_{2k-1} = F(z, \overline{z})F(z, \overline{z})^{-1}Z_{2k}$ for $k = 1, 2, 3$ in $T_{F(z, \overline{z})O'(\Lambda)^{\mathbb{C}}} = T_{F(z, \overline{z})O'(\Lambda) \otimes \mathbb{R}} \mathbb{C}$. Consequently we can introduce an \mathbb{R}-frame over the punctured space $O'(\Lambda) \setminus \{\text{point}\}$ canonically induced by the \mathbb{C}-frame $\{Z_1, \ldots, Z_6\}$ i.e. $X_{2k-1} := \frac{1}{2}(Z_{2k-1} + Z_{2k})$ and similarly $X_{2k} := \frac{1}{2\sqrt{-1}}(Z_{2k-1} - Z_{2k})$ for all $k = 1, 2, 3$. In the resulting \mathbb{R}-frame $\{X_1, \ldots, X_6\}$ the real almost complex tensor field therefore takes the very simple form

$$J_u|_{O'(\Lambda)\setminus\{\text{point}\}} = \begin{pmatrix} 0 & 1 & 0 & 0 & 0 & 0 \\ -1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & -1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & -1 & 0 \end{pmatrix}$$

demonstrating its smooth extendibility over the whole $O'(\Lambda) \cong S^6$. Concerning its integrability however some care is needed because the frame $\{X_1, \ldots, X_6\}$ is not obviously torsion-free hence the constancy of J_u in this frame might not prove anything. Let us therefore compute the Nijenhuis tensor. Observe that the $(0, 1)$-parts $X_j^{1,0} = \frac{1}{2}(X_j - \sqrt{-1}J_uX_j)$ look simply $X_{2k-1}^{1,0} = \frac{1}{2}Z_{2k-1}$ and $X_{2k}^{1,0} = \frac{1}{2\sqrt{-1}}Z_{2k-1}$ for $k = 1, 2, 3$ consequently $F(z, \overline{z})^{-1}X_j^{1,0} \in g_2^{1,0}$ for all $j = 1, \ldots, 6$. Thus

$$N_{J_u}(X_i, X_j) = [X_i^{1,0}, X_j^{1,0}]^{0,1} = 0$$

because $[g_2^{1,0}, g_2^{1,0}]^{0,1} = 0$. Thus $N_{J_u} = 0$ guaranteeing integrability over $O'(\Lambda) \setminus \{\text{point}\}$ hence over the whole $O'(\Lambda)$.

Note that in this second picture all the computational difficulties and geometric subtleties concerning J_u have been compressed into the highly non-trivial frame field $\{X_1, \ldots, X_6\}$ in which J_u looks simply constant. For instance, since as exhibited in Lemma 3.2 the space $O'(\Lambda)$ hence the frame $\{X_1, \ldots, X_6\}$ along $O'(\Lambda) \setminus \{\text{point}\}$ are independent of the Samelson moduli parameter $u = a + \sqrt{-1}b$ with $a \neq 0$, we see that the constructed complex manifold X_u in Theorem 2.1 is unique i.e. independent of the Samelson moduli parameter $u \in \mathbb{C} \setminus \sqrt{-1} \mathbb{R}$.

With this observation we conclude the struggle with the explicit construction of the complex structure on the six-sphere.
4 Appendix: inner automorphisms and $\pi_6(G_2) \cong \mathbb{Z}_3$

To close we take a look at the conjugate orbit $O(\Lambda) \subset G_2$ in (1) from a topological viewpoint. As we have seen in Lemma 3.1 it can be identified with the image of the map $f : S^6 \to G_2$ in (9); we demonstrate that in this form the conjugate orbit represents the generator of the sixth homotopy group of the automorphism group of the octonions. Consequently this homotopy group is non-trivial and is generated by inner automorphisms (thus $O(\Lambda) \subset G_2^0$ in (4) is also homotopically non-trivial). We acknowledge that this group has been known for a long time [10] and even our proof is essentially the same as the nice geometric one in [3].

Theorem 4.1. (cf. [3, 10]) There exists an isomorphism $\pi_6(G_2) \cong \mathbb{Z}_3$. Moreover the map (9) constructed out of the collection of rotations induced by inner automorphisms (8) of the octonions, is a representative of the generator of this homotopy group.

Proof. Recall that $\text{Spin}(7) \subset \text{Cliff}_0(\mathbb{R}^7) \cong \text{Cliff}(\mathbb{R}^6) \cong \mathbb{R}(8)$ hence the unique spin representation of $\text{SO}(7)$ acts on \mathbb{R}^8. This gives rise to an embedding $\text{Spin}(7) \subset \text{SO}(8)$. The projection $P : \text{SO}(8) \to S^7$ sending a matrix onto its (let us say) first column restricts to $\text{Spin}(7)$ providing us with a projection $\tilde{p} : \text{Spin}(7) \to S^7$. Dividing this with the center $\mathbb{Z}_2 \cong \text{Z(SO}(8)) \subset \text{SO}(8)$ we obtain another projection $p : \text{SO}(7) \to \mathbb{R}P^7$. The geometric meaning of this map is straightforward: the preimage of a point of $\mathbb{R}P^7$ i.e. a line in \mathbb{R}^8 consists of those rotations which keep this line fixed therefore act only on a hyperplane perpendicular to this line: dimension counting shows that these transformations are exactly the automorphisms of the octonions hence their collection is isomorphic to G_2. Consequently the projection $p : \text{SO}(7) \to \mathbb{R}P^7$ is the classical G_2-fibration of $\text{SO}(7)$ over $\mathbb{R}P^7$. It has an associated homotopy exact sequence whose relevant segment for us is

$$
\begin{align*}
\pi_7(\text{SO}(7), G_2, e) & \xrightarrow{j_*} \pi_7(\text{SO}(7), e) \xrightarrow{p_*} \pi_7(\mathbb{R}P^7, p(e)) \xrightarrow{\partial_*} \pi_6(G_2, e) \xrightarrow{\partial_*} \pi_6(\text{SO}(7), e) \xrightarrow{\partial_*} \ldots
\end{align*}
$$

where $j : (\text{SO}(7), e, e) \to (\text{SO}(7), G_2, e)$ is induced by the embedding $e \in G_2 \subset \text{SO}(7)$.

First let us compute $\pi_6(G_2)$. Take $S^7 = \{2 \cos t \cdot e_0 + 2 \sin t \cdot x \mid 0 \leq t \leq \pi, x \in S^6\}$. The conjugation (8) can be enhanced to an orthogonal transformation of the octonions which on a particular $u \in \mathbb{O}$ has the form (again parantheses omitted)

$$
u \mapsto (2 \cos t \cdot e_0 + 2 \sin t \cdot x)u(2 \cos t \cdot e_0 + 2 \sin t \cdot x)^{-1} = (\cos t \cdot e_0 + \sin t \cdot x)u(\cos t \cdot e_0 - \sin t \cdot x) \quad (11)$$

and provides us with a map from S^7 into $\text{SO}(8)$. However this apparent $\text{SO}(8)$ transformation of $\mathbb{O} \cong \mathbb{R}^8$ leaves $\text{Re} \mathbb{O} \cong \mathbb{R}$ invariant i.e. acts only on $\text{Im} \mathbb{O} \cong \mathbb{R}^7$ therefore it is actually an $\text{SO}(7)$ transformation. This way we obtain a map $F : S^7 \to \text{SO}(7)$ such that $[F] = 1 \in \pi_7(\text{SO}(7)) \cong \mathbb{Z}$ i.e. its homotopy class is a generator [14]. Take now the 7-cell $e^7 := \{2 \cos t \cdot e_0 + 2 \sin t \cdot x \mid 0 \leq t \leq \frac{\pi}{2}, x \in S^6\} \subset S^7$. Its boundary is $\partial e^7 = \{e_0 + \sqrt{3}x \mid x \in S^6\}$ hence constitutes the inner automorphisms (8) of the octonions therefore via (11) it lies within $G_2 \subset \text{SO}(7)$. Consequently restriction to this 7-cell gives rise to a map $F|_{e^7} : (e^7, \partial e^7) \to (\text{SO}(7), G_2)$ satisfying $[F|_{e^7}] = 1 \in \pi_7(\text{SO}(7), G_2) \cong \pi_7(\mathbb{R}P^7) \cong \mathbb{Z}$ i.e. its homotopy class continues to be a generator. Taking into account that the third power of an inner automorphism is the identity it is clear that $j_*[F] = 3[F|_{e^7}]$. Consequently, since $\pi_6(\text{SO}(7)) \cong \mathbb{Z}$ we conclude from the homotopy exact sequence that $\pi_6(G_2) \cong \mathbb{Z}/3\mathbb{Z}$, written as \mathbb{Z}_3, as desired.

Regarding the generator, it readily follows from (8) and (11) that $\partial(F|_{e^7}) = f$ where $f : S^6 \to G_2$ is the map (9). Therefore $\partial_*[F|_{e^7}] = [f] \in \pi_6(G_2)$. By exactness $\partial_* \neq 0$ and $F|_{e^7}$ represents the generator, hence its image f also represents a non-trivial element in $\pi_6(G_2)$ which is the generator. \qed
References

[1] Barth, W.P., Hulek, K., Peters, C.A.M., Van de Ven, A.: Compact complex surfaces, Springer, Berlin (2004);

[2] Campana, F., Demailly, J.-P., Peternell, T.: The algebraic dimension of compact complex threefolds with vanishing second Betti number, Compos. Math. 112, 77-91 (1998);

[3] Chaves, L.M., Rigas, A.: On a conjugate orbit of G_2, Math. Journ. Okayama Univ. 33, 155-161 (1991);

[4] Durán, C., Püttmann, T., Rigas, A.: Some geometric formulas and cancellations in algebraic and differential topology, Matemática Contemporânea 28, 133-149 (2005);

[5] Etesi, G.: Complex structure on the six dimensional sphere from a spontaneous symmetry breaking, Journ. Math. Phys. 56, 043508 (2015), Erratum: Journ. Math. Phys. 56, 099901 (2015);

[6] Gray, A.: A property of a hypothetical complex structure on the six-sphere, Boll. Un. Mat. Ital. B11, 251-255 (1997);

[7] Huckleberry, A.T., Kebekus, S., Peternell, T.: Group actions on S^6 and complex structures on \mathbb{P}_3, Duke Math. Journ. 102, 101-124 (2000);

[8] Lamont, P.: Arithmetics in Cayley’s algebra, Proc. Glasgow Math. Ass. 6, 99-106 (1963);

[9] LeBrun, C.: Orthogonal complex structures on S^6, Proc. Amer. Math. Soc. 101, 136-138 (1987);

[10] Mimura, M.: The homotopy groups of Lie groups of low rank, Journ. Math. Kyoto Univ. 6, 131-176 (1967);

[11] Moskowitz, M.: The surjectivity of the exponential map for certain Lie groups, Annali di Matematica Pura ed Applicada 166, 129-143 (1994);

[12] Pittie, H.: The Dolbeault-cohomology ring of a compact even dimensional Lie group, Proc. Indian Acad. Sci. Math. Sci. 98, 117-152 (1988);

[13] Samelson, H.: A class of complex-analytic manifolds, Portugaliae Math. 12, 129-132 (1953);

[14] Toda, H., Saito, Y., Yokota, T.: A note on the generator of $\pi_7(SO(n))$, Mem. Coll. Sci. Univ. Kyoto A30, 227-230 (1957);

[15] Ugarte, L.: Hodge numbers of a hypothetical complex structure on the six sphere, Geom. Dedicata 81, 173-179 (2000);

[16] Varadarajan, V.S.: Lie groups, Lie algebras, and their representations, GTM 102, Springer-Verlag, New York (1984).