1 Introduction

BSEPACK is a parallel ScALAPACK-style library for solving the Bethe–Salpeter eigenvalue problem
\[
\begin{bmatrix}
A & B \\
-B & -A
\end{bmatrix}
\begin{bmatrix}
X_1 & \overline{X}_2 \\
X_2 & \overline{X}_1
\end{bmatrix}
= \begin{bmatrix}
X_1 & \overline{X}_2 \\
X_2 & \overline{X}_1
\end{bmatrix}
\begin{bmatrix}
\Lambda & 0 \\
0 & -\Lambda
\end{bmatrix},
\]
and computing the absorption spectrum
\[
\epsilon(\omega) = \left[\begin{array}{c} d \\ -\overline{d} \end{array} \right] \ast \delta \left(\omega I - \begin{bmatrix}
A & B \\
-B & -A
\end{bmatrix} \right) \left[\begin{array}{c} d \\ -\overline{d} \end{array} \right],
\]
where \(A, B, X_1, X_2 \in \mathbb{C}^{2n \times 2n}, \Lambda \in \mathbb{R}^{n \times n}, d \in \mathbb{C}^n, \) and \(\delta(\cdot) \) is the Dirac \(\delta \)-function. The matrix
\[
\Omega = \begin{bmatrix}
A & B \\
B & A
\end{bmatrix}
\]
is required to be Hermitian and positive definite.

The library BSEPACK is written in Fortran 90 with MPI, and targets distributed memory HPC systems. This document concerns the usage of BSEPACK. For the description of the algorithm and implementation, we refer to [3, 5, 7].

2 Installation

In the following, we provide an installation guide for Unix-like systems.

2.1 Prerequisites

To build the library, the following software is required.

- A Fortran 90/95 compiler.
• The MPI library, e.g., OpenMPI or MPICH.
• An optimized BLAS library, e.g., ATLAS or OpenBLAS.
• The LAPACK library, version $\geq 3.4.0$.
• The ScaLAPACK library (including BLACS and PBLAS), version $\geq 2.0.2$.

2.2 How to compile the library

Download location.
The software can be downloaded from the BSEPACK homepage [4].

Files in the tar-ball.
By unpacking the tar-ball through

```
tar xzfv bsepack.tar.gz
```

a directory `BSEPACK/`, which is the root directory of the library, is created with the following files and subdirectories.

File	Description
BSEPACK_UG.pdf	The User’s Guide of BSEPACK (i.e., this document).
EXAMPLES/	This directory contains two simple drivers.
Legal.txt	Copyright notice of BSEPACK.
License.txt	License agreement of BSEPACK.
MAKE_INC/	This directory contains templates of `make.inc`.
Makefile	The Makefile for building the library. This file does not need to be modified.
make.inc	This is the only file which requires modifications when building the library. It contains settings for compilers and external libraries used by the Makefile. The user needs to modify this file according to the target computational environment before compiling the library. Templates of this file are provided in the directory `MAKE_INC/`.
README.md	A shorter version of this document contains a quick installation guide.
SRC/	This directory contains source code for all computational routines of the library.
SSEIG/	This directory contains a set of BLAS/LAPACK-like subroutines for real skew-symmetric matrices.
TESTING/	This directory contains testing examples.
Figure 1: The 2D block-cyclic data layout across a 2×2 processor grid. For example, processor (0,1) owns all highlighted blocks.

Build the library.

After `make.inc` has been properly modified according to the computational environment, the library can be built by

```
make all
```

from the root directory of BSEPACK. This command generates the two library archives `libbsepack.a` and `libseigeig.a` in `lib/`, four examples in `EXAMPLES/`, and test programs in `TESTING/`. The script `runall.sh` in `TESTING`, which performs a set tests, needs to be run after the compilation. You may need to modify the MPI execution command in this script, as well as in `SSEIG/runpar.sh`, according to your system (e.g., `mpirun`, `mpiexec`, etc.). Hopefully something similar to the following will be displayed on the screen:

```
% 4096 out of 4096 tests passed!
% 4096 out of 4096 tests passed!
% 8192 out of 8192 tests passed!
% 8192 out of 8192 tests passed!
...
```

The result is also collected in the file `summary.txt`. If all runs passed the test, then the compilation has been successful.

3 Using the package

3.1 ScaLAPACK’s 2D block-cyclic data layout convention

In ScaLAPACK, the $p = p_r p_c$ processors are usually arranged into a $p_r \times p_c$ grid. Matrices are distributed across the rectangular processor grid in a 2D block-cyclic layout with block size $m_b \times n_b$.
The information regarding the data layout is stored in an array descriptor to establish the mapping between the entries of the global matrix and their corresponding locations in the memory hierarchy. We adopt ScLAPACK’s data layout convention in BSEPACk. In addition we require that the $n \times n$ input matrices A and B have identical data layout with square data blocks (i.e., $m_b = n_b$), and the output matrix X has the same block factor as that of A or B. The processor grid, however, does not need to be square.

A distributed matrix, A, is referenced by two arrays A (local matrix entries) and DESCA (array descriptor). A typical setting of DESCA is listed below.

- $\text{DESCA}(1)$: Type of the matrix. In our case, $\text{DESCA}(1) = 1$ since A is stored as a dense matrix.
- $\text{DESCA}(2)$: The handle of the BLACS context.
- $\text{DESCA}(3), \text{DESCA}(4)$: The size of A, i.e., $\text{DESCA}(3) = \text{DESCA}(4) = n$.
- $\text{DESCA}(5), \text{DESCA}(6)$: Blocking factors m_b and n_b. We require that $\text{DESCA}(5) = \text{DESCA}(6)$.
- $\text{DESCA}(7), \text{DESCA}(8)$: The process row and column that contain h_{11}. Usually, $\text{DESCA}(7) = \text{DESCA}(8) = 0$.
- $\text{DESCA}(9)$: Leading dimension of the local part of A on the current processor. This value needs to be at least one, even if the local part is empty.

3.2 Computing the spectral decomposition

One functionality of this package is to compute the spectral decomposition of a definite Bethe–Salpeter Hamiltonian matrix

$$H = \begin{bmatrix} A & B \\ -B & -A \end{bmatrix}. \tag{1}$$

The spectral decomposition is of the form

$$H \begin{bmatrix} X_1 & \overline{X}_2 \\ X_2 & \overline{X}_1 \end{bmatrix} = \begin{bmatrix} X_1 & \overline{X}_2 \\ X_2 & \overline{X}_1 \end{bmatrix} \begin{bmatrix} \Lambda & 0 \\ 0 & -\Lambda \end{bmatrix}, \tag{2}$$

where the eigenvectors are normalized to satisfy

$$\begin{bmatrix} X_1 & -\overline{X}_2 \\ -X_2 & \overline{X}_1 \end{bmatrix}^* \begin{bmatrix} X_1 & \overline{X}_2 \\ X_2 & \overline{X}_1 \end{bmatrix} = I. \tag{3}$$

This can be done by calling the subroutine PDBSEIG for a real H, and PZBSEIG for a complex H. The interface of $\text{PDBSEIG}/\text{PZBSEIG}$ displayed below follows the convention of LAPACK/ScLAPACK subroutines [1, 2].
The interfaces of `PDBSEIG` and `PZBSEIG` are nearly identical, except that `PZBSEIG` requires one extra workspace `RWORK` of length `LRWORK`. Examples of calling these subroutines are provided in `EXAMPLES/eigenvalue_real.f` and `EXAMPLES/eigenvalue_complex.f`. Similar to most LAPACK/ScaLAPACK subroutines, we advice that `PDBSEIG/PZBSEIG` is called twice—the first call for performing a workspace query (by setting `LWORK = -1`) and the second call for actual computation.

A detailed list of the arguments for `PDBSEIG`.

- **SOLVER**: (global input) INTEGER.
 See Table 2 in Section 3.4 for a full list of supported solvers.

- **N**: (global input) INTEGER.
 The order of `A` (and `B`).

- **A**: (local input) DOUBLE PRECISION array of dimension (DESCA(9),*).
 IA,JA: (global input) INTEGER.
 DESCA: (global and local input) INTEGER array descriptor of dimension 9.
 A, IA, JA, and DESCA define the distributed matrix `A`.
 On entry, the lower triangular part of `A` contains that of the real symmetric matrix `A`, and its strictly upper triangular part is not referenced.
 If Tamm–Dancoff approximation (TDA) is used, `A` is destroyed on exit.
• **B**: (local input) **DOUBLE PRECISION** array of dimension \((\text{DESCB}(9),\ast)\).

 IB, JB: (global input) **INTEGER**.

 DESCB: (global and local input) **INTEGER** array descriptor of dimension 9.

 B, IB, JB, and DESC: define the distributed matrix \(B\).

 On entry, the lower triangular part of \(B\) contains that of the real symmetric matrix \(B\), and its strictly upper triangular part is not referenced.

 If Tamm–Dancoff approximation (TDA) is used, \(B\) is not referenced. However, **DESCB** still needs to be consistent with **DESCA**.

• **LAMBDA**: (global output) **DOUBLE PRECISION** array of dimension \(N\).

 The positive eigenvalues of \(H\) defined by \(A\) and \(B\) as in (1). The eigenvalues are sorted in ascending order.

• **X**: (local output) **DOUBLE PRECISION** array of dimension \((\text{DESCX}(9),\ast)\).

 IX, JX: (global input) **INTEGER**.

 DESCX: (global and local input) **INTEGER** array descriptor of dimension 9.

 X, IX, JX, and DESCX define the distributed matrix \(X\). In current release, only \(IX = JX = 1\) is supported.

 On exit, \(X\) contains the normalized eigenvectors associated with the positive eigenvalues of \(H\), i.e.

 \[
 X = \begin{bmatrix} X_1 \\ X_2 \end{bmatrix}
 \]

 as in (2) and satisfies (3). In the case of Tamm–Dancoff approximation (TDA), the \(X_2\) block is not referenced.

• **WORK**: (local workspace) **DOUBLE PRECISION** array of dimension \(LWORK\).

 LWORK: (local input) **INTEGER**.

 In case \(LWORK = -1\), a workspace query will be performed and on exit, \(\text{WORK}(1)\) is set to the required length of the double precision workspace. No computation is performed in this case.

• **IWORK**: (local workspace) **INTEGER** array of dimension \(LIWORK\).

 LIWORK: (local input) **INTEGER**.

 In case \(LIWORK = -1\), a workspace query will be performed and on exit, \(\text{IWORK}(1)\) is set to the required length of the integer workspace. No computation is performed in this case.

• **INFO**: (global output) **INTEGER**.

 If \(INFO = 0\), **PDBSEIG** returns successfully.

 If \(INFO < 0\), let \(i = -INFO\), then the \(i\)-th argument had an illegal value.

 If \(INFO > 0\), the eigensolver failed to converge. (This is a rare case.)

A detailed list of the arguments for PZBSEIG.

• **SOLVER**: (global input) **INTEGER**.

 See Table 3 in Section 3.4 for a full list of supported solvers.

• **N**: (global input) **INTEGER**.

 The order of \(A\) (and \(B\)).
• **A**: (local input) COMPLEX*16 array of dimension (DESCA(9),*).
 IA, JA: (global input) INTEGER.
 DESCA: (global and local input) INTEGER array descriptor of dimension 9.
 A, IA, JA, and DESCA define the distributed matrix A.
 On entry, the lower triangular part of A contains that of the Hermitian matrix A, and its
 strictly upper triangular part is not referenced.
 If Tamm–Dancoff approximation (TDA) is used, A is destroyed on exit.

• **B**: (local input) COMPLEX*16 array of dimension (DESCB(9),*).
 IB, JB: (global input) INTEGER.
 DESCB: (global and local input) INTEGER array descriptor of dimension 9.
 B, IB, JB, and DESCB define the distributed matrix B.
 On entry, the lower triangular part of B contains that of the complex symmetric matrix B,
 and its strictly upper triangular part is not referenced.
 If Tamm–Dancoff approximation (TDA) is used, B is not referenced. However, DESCB still
 needs to be consistent with DESCA.

• **LAMBDA**: (global output) DOUBLE PRECISION array of dimension N.
 The positive eigenvalues of \(H \) defined by A and B as in (1). The eigenvalues are sorted in
 ascending order.

• **X**: (local output) COMPLEX*16 array of dimension (DESCX(9),*).
 IX, JX: (global input) INTEGER.
 DESCX: (global and local input) INTEGER array descriptor of dimension 9.
 X, IX, JX, and DESCX define the distributed matrix X. In current release, only IX = JX = 1 is
 supported.
 On exit, X contains the normalized eigenvectors associated with the positive eigenvalues of \(H \),
 i.e.
 \[
 X = \begin{bmatrix}
 X_1 \\
 X_2
 \end{bmatrix}
 \]
 as in (2) and satisfies (3). In the case of Tamm–Dancoff approximation (TDA), the \(X_2 \) block
 is not referenced.

• **WORK**: (local workspace) COMPLEX*16 array of dimension LWORK.
 LWORK: (local input) INTEGER.
 In case LWORK = -1, a workspace query will be performed and on exit, WORK(1) is set to the
 required length of the double precision complex workspace. No computation is performed in
 this case.

• **RWORK**: (local workspace) DOUBLE PRECISION array of dimension LRWORK.
 LRWORK: (local input) INTEGER.
 In case LRWORK = -1, a workspace query will be performed and on exit, RWORK(1) is set to the
 required length of the double precision real workspace. No computation is performed in
 this case.

• **IWORK**: (local workspace) INTEGER array of dimension LIWORK.
 LIWORK: (local input) INTEGER.
 In case LIWORK = -1, a workspace query will be performed and on exit, IWORK(1) is set to the
 required length of the integer workspace. No computation is performed in this case.
• \textbf{INFO}: (global output) \texttt{INTEGER}.

 If \texttt{INFO} = 0, \texttt{PZBSEIG} returns successfully.
 If \texttt{INFO} < 0, let \(i = -\text{INFO} \), then the \(i \)-th argument had an illegal value.
 If \texttt{INFO} > 0, the eigensolver failed to converge. (This is a rare case.)

3.3 Computing the absorption spectrum

Another functionality of this package is to compute the absorption spectrum

\[
\epsilon(\omega) = \left[\begin{array}{c} d \\ -d \end{array} \right]^* \delta \left(\omega I - \begin{bmatrix} A & B \\ -B & -A \end{bmatrix} \right) \left[\begin{array}{c} d \\ -d \end{array} \right]
\]

over a number of sampling points \(\omega \). This can be done by calling the subroutine \texttt{PDBSABSP} for a real \(H \) and \(d \), and \texttt{PZBSABSP} for a complex \(H \) and \(d \). Two options are provided: one is to compute \(\epsilon(\sigma) \) by diagonalizing \(H \), and the other is to estimate \(\epsilon(\sigma) \) by Lanczos algorithm. Note that the former is much more expensive compared to the latter, though more accurate also.

In practice the Dirac \(\delta \)-function must be regularized. \texttt{BSEPACK} supports two types of broadening of the \(\delta \)-function as follows, with broadening factor \(\sigma > 0 \).

1. Gaussian function
 \[
 f_{\sigma}(x) = \frac{1}{\sqrt{2\pi}\sigma} \exp \left(-\frac{x^2}{2\sigma^2} \right);
 \]
 \[
 (4)
 \]

2. Lorentzian function
 \[
 f_{\sigma}(x) = \frac{\sigma}{\pi(x^2 + \sigma^2)}.
 \]
 \[
 (5)
 \]

Hence, a broadened absorption spectrum

\[
\epsilon_{\sigma}(\omega) = \left[\begin{array}{c} d \\ -d \end{array} \right]^* f_{\sigma} \left(\omega I - \begin{bmatrix} A & B \\ -B & -A \end{bmatrix} \right) \left[\begin{array}{c} d \\ -d \end{array} \right]
\]

(6)
is actually computed.

The interface of \texttt{PDBSABSP/PZBSABSP} displayed below also follows the convention of LAPACK/\texttt{ScaLAPACK}. A workspace query call is recommended before the call for actual computation. As a remark, even if the Lanczos algorithm is used, all matrices are treated as dense matrices in the current release.
A detailed list of the arguments for \texttt{PDBSABSP}.

- **SOLVER**: (global input) INTEGER.

 See Table 4 in Section 3.4 for a full list of supported solvers.

- **N**: (global input) INTEGER.

 The order of A (and B).

- **NPTS**: (global input) INTEGER.

 Number of sampling points for ω.

```latex
\begin{verbatim}
SUBROUTINE PDBSABSP( SOLVER, N, NPTS, SIGMA, OMEGA, EPS, A, IA,
                    JA, DESCA, B, IB, JB, DESCB, LAMBDA, X, IX,
                    JX, DESCX, D, ID, JD, DESCD, ALPHA, BETA,
                    RESUME, ITMAX, WORK, LWORK, IWORK, LIWORK,
                    INFO )

* INTEGER SOLVER, N, NPTS, IA, JA, IB, JB, IX, JX, ID,
* DOUBLE PRECISION SIGMA
* .. Array Arguments ..
* DOUBLE PRECISION OMEGA( * ), EPS( * ), LAMBDA( * ), A( * ),
* B( * ), X( * ), D( * ), ALPHA( * ), BETA( * ),
* WORK( * )
* INTEGER DESCA( * ), DESCB( * ), DESCX( * ), DESCD( * ),
* IWORK( * )

SUBROUTINE PZBSABSP( SOLVER, N, NPTS, SIGMA, OMEGA, EPS, A, IA,
                    JA, DESCA, B, IB, JB, DESCB, LAMBDA, X, IX,
                    JX, DESCX, D, ID, JD, DESCD, ALPHA, BETA,
                    RESUME, ITMAX, WORK, LWORK, RWORK, LRWORK,
                    IWORK, LIWORK, INFO )

* .. Scalar Arguments ..
* INTEGER SOLVER, N, NPTS, IA, JA, IB, JB, IX, JX, ID,
* DOUBLE PRECISION SIGMA
* .. Array Arguments ..
* DOUBLE PRECISION OMEGA( * ), EPS( * ), LAMBDA( * ), ALPHA( * ), BETA( * ),
* RWORK( * )
* COMPLEX*16 A( * ), B( * ), X( * ), D( * ), WORK( * )
* INTEGER DESCA( * ), DESCB( * ), DESCX( * ), DESCD( * ),
* IWORK( * )
\end{verbatim}
```
• **SIGMA**: (global input) **DOUBLE PRECISION**.
The broadening factor in the approximation of the δ-function.

• **OMEGA**: (global input) **DOUBLE PRECISION** array of dimension **NPTS**.
The sampling points for ω.

• **EPS**: (global output) **DOUBLE PRECISION** array of dimension **NPTS**.
The broadened absorption spectrum $\epsilon_\sigma(\omega)$ evaluated at the sampling points of ω.

• **A**: (local input) **DOUBLE PRECISION** array of dimension (DESCA(9),*).
 IA, JA: (global input) **INTEGER**.
 DESCA: (global and local input) **INTEGER** array descriptor of dimension 9.
 A, IA, JA, and DESCA define the distributed matrix A.
 On entry, the lower triangular part of A contains that of the real symmetric matrix A, and its strictly upper triangular part is not referenced.
 If Tamm–Dancoff approximation (TDA) and full diagonalization are both specified, A is destroyed on exit.

• **B**: (local input) **DOUBLE PRECISION** array of dimension (DESCB(9),*).
 IB, JB: (global input) **INTEGER**.
 DESCB: (global and local input) **INTEGER** array descriptor of dimension 9.
 B, IB, JB, and DESCB define the distributed matrix B.
 On entry, the lower triangular part of B contains that of the real symmetric matrix B, and its strictly upper triangular part is not referenced.
 If Tamm–Dancoff approximation (TDA) is used, B is not referenced. However, DESCB still needs to be consistent with DESCA.

• **LAMBDA**: (global output) **DOUBLE PRECISION** array.
 In case of full diagonalization, $LAMBDA$, of dimension N, contains the positive eigenvalues of H defined by A and B as in (1). In case of Lanczos algorithm, $LAMBDA$, of dimension $\min(N, ITMAX)$, contains the Ritz values. The eigenvalues or Ritz values are sorted in ascending order.

• **X**: (local output) **DOUBLE PRECISION** array of dimension (DESCX(9),*).
 IX, JX: (global input) **INTEGER**.
 DESCX: (global and local input) **INTEGER** array descriptor of dimension 9.
 X, IX, JX, and DESCX define the distributed matrix X. In current release, only $IX = JX = 1$ is supported.
 On exit, X contains the normalized eigenvectors associated with the positive eigenvalues of H (for full diagonalization) or Lanczos vectors (for Lanczos algorithm). In the case of Tamm–Dancoff approximation (TDA), the X_2 block is not referenced.

• **D**: (local input) **DOUBLE PRECISION** array of dimension (DESCD(9),*).
 ID, JD: (global input) **INTEGER**.
 DESCD: (global and local input) **INTEGER** array descriptor of dimension 9.
 D, ID, JD, and DESCD define the distributed matrix D. D has only one column of length n, and stores the optical transition vector d.

• **ALPHA**: (global output) **DOUBLE PRECISION** array of dimension **ITMAX**.
 On exit, **ALPHA** contains the diagonal entries of the tridiagonal matrix produced by the Lanczos procedure. **ALPHA** is not referenced in case of full diagonalization.

• **BETA**: (global output) **DOUBLE PRECISION** array of dimension **ITMAX**.
 On exit, **BETA** contains the subdiagonal entries of the tridiagonal matrix produced by the Lanczos procedure. **BETA** is not referenced in case of full diagonalization.

• **RESUME**: (global input) **INTEGER**.
 This argument is not supported in the current release.

• **ITMAX**: (global input) **INTEGER**.
 The maximum number of Lanczos iterations. **ITMAX** is not referenced in case of full diagonalization.

• **WORK**: (local workspace) **DOUBLE PRECISION** array of dimension **LWORK**.
 LWORK: (local input) **INTEGER**.
 In case **LWORK** = −1, a workspace query will be performed and on exit, **WORK(1)** is set to the required length of the double precision workspace. No computation is performed in this case.

• **IWORK**: (local workspace) **INTEGER** array of dimension **LIWORK**.
 LIWORK: (local input) **INTEGER**.
 In case **LIWORK** = −1, a workspace query will be performed and on exit, **IWORK(1)** is set to the required length of the integer workspace. No computation is performed in this case.

• **INFO**: (global output) **INTEGER**.
 If **INFO** = 0, **PDBSABSP** returns successfully.
 If **INFO** < 0, let i = −**INFO**, then the i-th argument had an illegal value.
 If **INFO** > 0, the eigensolver **PDBSEIG** failed to converge (for full diagonalization) or the Lanczos process breaks down after **INFO** steps and returns successfully (for Lanczos algorithm).

A detailed list of the arguments for PZBSABSP.

• **SOLVER**: (global input) **INTEGER**.
 See Table 5 in Section 3.4 for a full list of supported solvers.

• **N**: (global input) **INTEGER**.
 The order of A (and B).

• **NPTS**: (global input) **INTEGER**.
 Number of sampling points for ω.

• **SIGMA**: (global input) **DOUBLE PRECISION**.
 The broadening factor in the approximation of the δ-function.

• **OMEGA**: (global input) **DOUBLE PRECISION** array of dimension **NPTS**.
 The sampling points for ω.

• **EPS**: (global output) **DOUBLE PRECISION** array of dimension **NPTS**.
 The broadened absorption spectrum εσ(ω) evaluated at the sampling points of ω.
• **A**: (local input) COMPLEX*16 array of dimension (DESCA(9),*).
 IA,JA: (global input) INTEGER.
 DESCRA: (global and local input) INTEGER array descriptor of dimension 9.
 A, IA, JA, and DESCRA define the distributed matrix A.
 On entry, the lower triangular part of A contains that of the Hermitian matrix A, and its
 strictly upper triangular part is not referenced.
 If Tamm–Dancoff approximation (TDA) and full diagonalization are both specified, A is de-
 stroyed on exit.

• **B**: (local input) COMPLEX*16 array of dimension (DESCB(9),*).
 IB,JB: (global input) INTEGER.
 DESCRB: (global and local input) INTEGER array descriptor of dimension 9.
 B, IB, JB, and DESCRB define the distributed matrix B.
 On entry, the lower triangular part of B contains that of the complex symmetric matrix B,
 and its strictly upper triangular part is not referenced.
 If Tamm–Dancoff approximation (TDA) is used, B is not referenced. However, DESCRB still
 needs to be consistent with DESCRA.

• **LAMBDA**: (global output) DOUBLE PRECISION array.
 In case of full diagonalization, LAMBDA, of dimension N, contains the positive eigenvalues
 of H defined by A and B as in (1). In case of Lanczos algorithm, LAMBDA, of dimension
 min(N,ITMAX), contains the Ritz values. The eigenvalues or Ritz values are sorted in ascend-
 ing order.

• **X**: (local output) COMPLEX*16 array of dimension (DESCX(9),*).
 IX,JX: (global input) INTEGER.
 DESCX: (global and local input) INTEGER array descriptor of dimension 9.
 X, IX, JX, and DESCX define the distributed matrix X. In current release, only IX = JX = 1 is
 supported.
 On exit, X contains the normalized eigenvectors associated with the positive eigenvalues of H
 (for full diagonalization) or Lanczos vectors (for Lanczos algorithm). In the case of Tamm–
 Dancoff approximation (TDA), the X₂ block is not referenced.

• **D**: (local input) COMPLEX*16 array of dimension (DESCD(9),*).
 ID,JD: (global input) INTEGER.
 DESCMD: (global and local input) INTEGER array descriptor of dimension 9.
 D, ID, JD, and DESCMD define the distributed matrix D. D has only one column of length n, and
 stores the optical transition vector d.

• **ALPHA**: (global output) DOUBLE PRECISION array of dimension ITMAX.
 On exit, ALPHA contains the diagonal entries of the tridiagonal matrix produced by the Lanczos
 procedure. ALPHA is not referenced in case of full diagonalization.

• **BETA**: (global output) DOUBLE PRECISION array of dimension ITMAX.
 On exit, BETA contains the subdiagonal entries of the tridiagonal matrix produced by the
 Lanczos procedure. BETA is not referenced in case of full diagonalization.

• **RESUME**: (global input) INTEGER.
 This argument is not supported in the current release.
• ITMAX: (global input) INTEGER.
The maximum number of Lanczos iterations. ITMAX is not referenced in case of full diagonalization.

• WORK: (local workspace) COMPLEX*16 array of dimension LWORK.
 LWORK: (local input) INTEGER.
In case LWORK = −1, a workspace query will be performed and on exit, WORK(1) is set to the required length of the double precision complex workspace. No computation is performed in this case.

• RWORK: (local workspace) DOUBLE PRECISION array of dimension LRWORK.
 LRWORK: (local input) INTEGER.
In case LRWORK = −1, a workspace query will be performed and on exit, RWORK(1) is set to the required length of the double precision real workspace. No computation is performed in this case.

• IWORK: (local workspace) INTEGER array of dimension LIWORK.
 LIWORK: (local input) INTEGER.
In case LIWORK = −1, a workspace query will be performed and on exit, IWORK(1) is set to the required length of the integer workspace. No computation is performed in this case.

• INFO: (global output) INTEGER.
 If INFO = 0, PZBSABSP returns successfully.
 If INFO < 0, let i = −INFO, then the i-th argument had an illegal value.
 If INFO > 0, the eigensolver PZBSEIG failed to converge (for full diagonalization) or the Lanczos process breaks down after INFO steps and returns successfully (for Lanczos algorithm).

3.4 Lists of supported solvers

In the computational subroutines, the first argument, SOLVER, is an integer that specifies the choice of algorithm or algorithmic variant for the computation. In general, there are four classes of options, and SOLVER is the combination of up to four options, one from each class. The options are defined in the file solver.f, which needs to be included whenever calling the computational subroutines. A list of options is shown in Table 1. For example, when calling PZBSABSP,

\[
SOLVER = \text{BSE_FULLBSE} + \text{BSE_LANCZOS} + \text{BSE_LORENTZIAN} + \text{BSE_QUADAVGGAUSS}
\]

means using the Lanczos algorithm with generalized averaged Gauss quadrature to estimate the absorption spectrum broadened by the Lorentzian for complex full BSE. Some options can be omitted, especially when they do not make sense. For instance, neither BSE_GAUSSIAN nor BSE_LORENTZIAN should be specified when calling PDBSEIG. Lists of all supported solvers are provided in Tables 2–5.

*Future releases may allow multiple options from Class 4.
†There are known bugs with this option due to bugs in PZHEEV.
‡There are known bugs with this option due to bugs in PZHEEV.
§There are known bugs with this option due to bugs in PZHEEV.
Table 1: List of options for the argument `SOLVER`.

Name	Class	Meaning
BSE_FULLBSE	1 Full BSE solver	
BSE_TDA	1 Tamm–Dancoff	approximation (i.e., set $B = 0$)
BSE_DIRECT	2 Diagonalize the BSE	Hamiltonian
BSE_LANCZOS	2 Lanczos algorithm	(for estimating the absorption spectrum)
BSE_GAUSSIAN	3 Use the Gaussian	function (4) to approximate the δ-function
BSE_LORENTZIAN	3 Use the Lorentzian	function (5) to approximate the δ-function
BSE_PRODUCT	4 Solve the real BSE	through the product form (see [5])
BSE_SVD	4 Solve the real BSE	using SVD (see [5])
BSE_LAPACK_HEEV	4 Use $(P)\text{DSYEV}$	$(P)\text{ZHEEV}$ to diagonalize the matrix (see [1, 2])
BSE_LAPACK_HEEVD	4 Use $(P)\text{DSYEVD}$	$(P)\text{ZHEEVD}$ to diagonalize the matrix (see [1, 2])
BSE_LAPACK_HEEVR	4 Use $(P)\text{DSYEVR}$	$(P)\text{ZHEEVR}$ to diagonalize the matrix (see [1, 2])
BSE_LAPACK_HEEVX	4 Use $(P)\text{DSYEVX}$	$(P)\text{ZHEEVX}$ to diagonalize the matrix (see [1, 2])
BSE_QUADAVGGAUSS	4 Use generalized	averaged Gauss quadrature to estimate (6) (see [7])

Table 2: List of supported solvers for `PDBSEIG`.

Full BSE	BSE_FULLBSE+BSE_DIRECT
	BSE_FULLBSE+BSE_DIRECT+BSE_PRODUCT
	BSE_FULLBSE+BSE_DIRECT+BSE_SVD
TDA	BSE_TDA+BSE_DIRECT
	BSE_TDA+BSE_DIRECT+BSE_LAPACK_HEEV
	BSE_TDA+BSE_DIRECT+BSE_LAPACK_HEEVD
	BSE_TDA+BSE_DIRECT+BSE_LAPACK_HEEVR
	BSE_TDA+BSE_DIRECT+BSE_LAPACK_HEEVX

Table 3: List of supported solvers for `PZBSEIG`.

Full BSE	BSE_FULLBSE+BSE_DIRECT
TDA	BSE_TDA+BSE_DIRECT
	BSE_TDA+BSE_DIRECT+BSE_LAPACK_HEEV
	BSE_TDA+BSE_DIRECT+BSE_LAPACK_HEEVD
	BSE_TDA+BSE_DIRECT+BSE_LAPACK_HEEVR
	BSE_TDA+BSE_DIRECT+BSE_LAPACK_HEEVX

3.5 Example programs

We provide four simple examples in the directory `EXAMPLES/`, two for real matrices and two for complex matrices.

The program `absorption_real.f` reads two 128×128 A and B, the optical transition vector d, and the broadening factor σ from the input file `input_real.txt`, and estimates the (broadened) absorption spectrum (6) on 1024 sampling points of ω by the Lanczos algorithm. The format of the input file is described in Table 6. The program `eigenvalue_real.f` reads A and B from `input_real.txt` (the rest of the input file is discarded), and computes the spectral decomposi-
Table 4: List of supported solvers for PDBSABSP.

	Full BSE/diagonalization
	BSE_FULLBSE+BSE_DIRECT+BSE_GAUSSIAN
	BSE_FULLBSE+BSE_DIRECT+BSE_GAUSSIAN+BSE_PRODUCT
	BSE_FULLBSE+BSE_DIRECT+BSE_GAUSSIAN+BSE_SVD
	BSE_FULLBSE+BSE_DIRECT+BSE_LORENTZIAN
	BSE_FULLBSE+BSE_DIRECT+BSE_LORENTZIAN+BSE_PRODUCT
	BSE_FULLBSE+BSE_DIRECT+BSE_LORENTZIAN+BSE_SVD
	Full BSE/Lanczos
	BSE_FULLBSE+BSE_LANCZOS+BSE_GAUSSIAN
	BSE_FULLBSE+BSE_LANCZOS+BSE_GAUSSIAN+BSE_QUADAVGGAUSS
	BSE_FULLBSE+BSE_LANCZOS+BSE_LORENTZIAN
	BSE_FULLBSE+BSE_LANCZOS+BSE_LORENTZIAN+BSE_QUADAVGGAUSS
	TDA/diagonalization
	BSE_TDA+BSE_DIRECT+BSE_GAUSSIAN
	BSE_TDA+BSE_DIRECT+BSE_GAUSSIAN+BSE_LAPACK_HEEV
	BSE_TDA+BSE_DIRECT+BSE_GAUSSIAN+BSE_LAPACK_HEEVD
	BSE_TDA+BSE_DIRECT+BSE_GAUSSIAN+BSE_LAPACK_HEEV
	BSE_TDA+BSE_DIRECT+BSE_GAUSSIAN+BSE_LAPACK_HEEV
	BSE_TDA+BSE_DIRECT+BSE_GAUSSIAN+BSE_LAPACK_HEEV
	BSE_TDA+BSE_DIRECT+BSE_GAUSSIAN+BSE_LAPACK_HEEV
	TDA/Lanczos
	BSE_TDA+BSE_LANCZOS+BSE_GAUSSIAN
	BSE_TDA+BSE_LANCZOS+BSE_GAUSSIAN+BSE_QUADAVGGAUSS
	BSE_TDA+BSE_LANCZOS+BSE_LORENTZIAN
	BSE_TDA+BSE_LANCZOS+BSE_LORENTZIAN+BSE_QUADAVGGAUSS

The programs absorption_complex.f and eigenvalue_complex.f are similar to their real counterparts absorption_real.f and eigenvalue_real.f, respectively. The corresponding input file input_complex.txt contains complex matrices with \(n = 32 \).

Note that the sampling points of \(\omega \) are not read from the input file. If you wish to handle your own input data format, you will have to modify the example programs.

4 Terms of Usage

BSEPACK is released under a modified BSD license; see License.txt for details. In addition, any use of the library should be acknowledged by citing the corresponding publication as follows:

- Cite [5, 6] if you use the subroutines PDBSEIG/PZBSEIG;
- Cite [3, 6, 7] if you use the subroutines PDBSABSP/PZBSABSP.
Table 5: List of supported solvers for PZBSABSP.

Solver Type	Supported Solvers
Full BSE/diagonalization	BSE_FULLBSE+BSE_DIRECT+BSE_LORENTZIAN
BSE_FULBSE+BSE_DIRECT+BSE_GAUSSIAN	
BSE_FULLBSE+BSE_DIRECT+BSE_LORENTZIAN	
BSE_FULLBSE+BSE_LANCZOS+BSE_GAUSSIAN+BSE_QUADAVGGAUSS	
BSEFULLBSE+BSE_LANCZOS+BSE_LORENTZIAN+BSE_QUADAVGGAUSS	
Full BSE/Lanczos	BSE_TDA+BSE_DIRECT+BSE_GAUSSIAN
BSE_TDA+BSE_DIRECT+BSE_GAUSSIAN+BSE_LAPACK_HEEV	
BSE_TDA+BSE_DIRECT+BSE_GAUSSIAN+BSE_LAPACK_HEEV§	
BSE_TDA+BSE_DIRECT+BSE_GAUSSIAN+BSE_LAPACK_HEEVD	
BSE_TDA+BSE_DIRECT+BSE_GAUSSIAN+BSE_LAPACK_HEEVR	
BSE_TDA+BSE_DIRECT+BSE_GAUSSIAN+BSE_LAPACK_HEEVX	
TDA/diagonalization	BSE_TDA+BSE_LANCZOS+BSE_GAUSSIAN
BSE_TDA+BSE_LANCZOS+BSE_GAUSSIAN+BSE_QUADAVGGAUSS	
BSE_TDA+BSE_LANCZOS+BSE_LORENTZIAN+BSE_QUADAVGGAUSS	
TDA/Lanczos	BSE_TDA+BSE_LANCZOS+BSE_GAUSSIAN
BSE_TDA+BSE_LANCZOS+BSE_GAUSSIAN+BSE_QUADAVGGAUSS	
BSE_TDA+BSE_LANCZOS+BSE_LORENTZIAN+BSE_QUADAVGGAUSS	

Table 6: The format of input_real.txt and input_complex.txt. For complex A, B, and d, each entry is represented by the real part followed by the imaginary part (in the same line).

line number(s)	content
1	two numbers n and n (the dimension of A)
2–(n^2 + 1)	the entries of A, one each line
n^2 + 2	two numbers n and n (the dimension of B)
(n^2 + 3)–(2n^2 + 2)	the entries of B, one each line
2n^2 + 3	two numbers n and 1 (the dimension of d)
(2n^2 + 4)–(2n^2 + n + 3)	the entries of d, one each line
2n^2 + n + 4	two numbers 1 and 1 (the dimension of σ)
2n^2 + n + 5	the value σ (always real even for complex data type)

Acknowledgements

The authors thank Fabien Bruneval, Felipe H. da Jornada, Daniel Kressner, Osni Marques, and Hongguo Xu for helpful comments on the implementation.

References

[1] E. Anderson, Z. Bai, C. H. Bischof, S. Blackford, J. W. Demmel, J. J. Dongarra, J. J. D. Croz, A. Greenbaum, S. J. Hammarling, A. McKenney, and D. C. Sorensen. LAPACK Users’ Guide,
3rd Edition. SIAM, Philadelphia, PA, USA, 1999.

[2] L. S. Blackford, J. Choi, A. Cleary, E. D’Azevedo, J. W. Demmel, I. Dhillon, J. J. Dongarra, S. Hammarling, G. Henry, A. Petitet, K. Stanley, D. Walker, and R. C. Whaley. *ScaLAPACK Users’ Guide*. SIAM, Philadelphia, PA, USA, 1997.

[3] J. Brabec, L. Lin, M. Shao, N. Govind, Y. Saad, C. Yang, and E. G. Ng. Efficient algorithms for estimating the absorption spectrum within linear response TDDFT. *J. Chem. Theory Comput.*, 11(11):5197–5208, 2015.

[4] BSEPACK homepage. See https://sites.google.com/a/lbl.gov/bsepack/.

[5] M. Shao, F. H. da Jornada, C. Yang, J. Deslippe, and S. G. Louie. Structure preserving parallel algorithms for solving the Bethe–Salpeter eigenvalue problem. *Linear Algebra Appl.*, 488:148–167, 2016.

[6] M. Shao and C. Yang. BSEPACK User’s Guide. 2016. (This document.)

[7] M. Shao, F. H. da Jornada, L. Lin, C. Yang, J. Deslippe, and S. G. Louie. A structure preserving Lanczos algorithm for computing the optical absorption spectrum. Available as arXiv:1611.02348, 2016.