Extracorporeal Hepatic Resection and Autotransplantation Using Temporary Portocaval Shunt Provides an Improved Solution for Conventionally Unresectable HCC

Pei-Hung Wen • Kuo-Hua Lin • Yao-Li Chen • Chia-En Hsieh • Chih-Jan Ko • Shou-Jen Kuo

Patient Selection and Pre-operative Evaluation

In 2011, ECHRA was performed in three patients with liver tumors at anatomically critical locations that were deemed technically impossible to resect (Fig. 1). Patient characteristics and indications for this technique are outlined in Table 1. To ensure sufficient liver function after liver resection, we estimated pre- and post-operative liver volumes using 3-D computed tomography volumetry. Indocyanine green (ICG) test was performed in selected patients. None of the patients showed evidence of portal hypertension.

Surgery

ECHRA was performed as described previously with minor modifications [6]. Unlike previous reports, we employed temporary portocaval shunt during the anhepatic period (Fig. 2). In patients with tumor-invaded major vasculature, the vessel wall was pared and reconstruction with a venous patch harvested from the explanted liver (Fig. 3). Details of the surgery are given in Table 2. The affected segments of liver were resected after total hepartectomy and the autograft was re-implanted orthotopically. Pathology evaluation confirmed all three tumors to be HCC.

Results and Outcome

The outcomes are outlined in Table 3. Patient 3 had major complications included postoperative biliary leakage and intra-abdominal abscess, which were treated with endoscopic retrograde cholangiopancreatography and surgical drainage of the abscess, respectively. There was no hospital mortality.

Two of the three patients experienced tumor recurrence 8 months after the operation. Patient 2 was treated with radiofrequency ablation while the other was treated by transarterial chemoembolization. All patients are currently alive with stable disease at the most recent follow-up.
To date, the only large series involving ECHRA was reported by Oldhafer et al. [7]. The difficulty of the surgical technique and the high perioperative and postoperative morbidity impede surgeons from using this procedure. We are the first institution to use preoperative liver volumetry to prevent postoperative hepatic failure, the most serious
complication. The preoperative evidence of preserved liver function and without liver cirrhosis or portal hypertension were other determinants for a good outcome. The three patients did well after the operation. In the literature reporting patients with HCC receiving ECRHA, our first patient had the longest survival [5, 7].

Unlike other studies, we used a temporary portocaval shunt instead of venovenous bypass to facilitate hemodynamic stability during the anhepatic period. Temporary portocaval shunts have been shown to improve hemodynamic status, reduce requirement of intraoperative blood transfusion, and preserve renal function during orthotopic liver transplantation [8]; however, it has not been reported to be used in ECRHA. We believed that the relatively short cold ischemic time and preservation of the inferior vena cava enhanced the functionality of the temporary portocaval shunt during the anhepatic period.

Table 2 Operation characteristics

Operation (OP) details	Patient 1	Patient 2	Patient 3
Replanted graft segments	S 2, 3, and partial S 4	S 5–8	S 2, 3, and S 6, 7
Graft weight (g)	440	696	961
Blood loss (ml)	1,500	5,300	7,000
Cold ischemic time (min)	120	202	162
Warm ischemic time (min)	40	14	43

Table 3 Postoperative data

Post-op data	Patient 1	Patient 2	Patient 3
ICU days (days)	8	7	8
Length of stay (days)	30	22	39
Ishak score	3	3	4
Metavir fibrosis score	F2	F2	F3
Post-op complication	1. Sepsis	1. Sepsis	1. Sepsis
	2. Transient hepatic insufficiency	2. Transient hepatic insufficiency	3. Biliary leakage
	4. Intra-abdominal abscess		4. Intra-abdominal abscess
Intervention	None	None	ERCP for biliary leakage
Reoperation	None	None	Laparotomy for drainage of abscess
Long-term follow-up			
Recurrence	None	In post-op 8 month	In post-op 8 month
Management for recurrence	None	RFA	TACE
Current status	Alive (28 months)	Alive (26 months)	Alive (23 months)

RFA radiofrequency ablation, *TACE* transarterial chemoembolization

a Alive until May, 2013

![Fig. 3](image_url) **a** Large HCC compressing the juncture of left hepatic vein and IVC. **b** Part of the IVC wall was excised and repaired with a venous patch (arrow). **c** Unification of V7 and right hepatic vein, which was later widened with a venous patch.
Conclusions

ECHRA represents an additional surgical option in the treatment of unresectable hepatic tumors, including HCC. In addition, the use of a temporary portocaval shunt is a feasible alternative to venovenous bypass during the anhepatic period.

Open Access This article is distributed under the terms of the Creative Commons Attribution Noncommercial License which permits any noncommercial use, distribution, and reproduction in any medium, provided the original author(s) and the source are credited.

References

1. Morris-Stiff G, Gomez D, de Liguori Carino N, Prasad KR. Surgical management of hepatocellular carcinoma: is the jury still out? Surg Oncol. 2009;18:298–321.
2. Gruttadauria S, Marsh JW, Bartlett DL, Gridelli B, Marcos A. Ex situ resection techniques and liver autotransplantation: last resource for otherwise unresectable malignancy. Dig Dis Sci. 2005;50:1829–1835.
3. Ikegami T, Soejima Y, Taketomi A, et al. Extracorporeal hepatic resection for unresectable giant hepatic hemangiomas. Liver Transpl. 2008;14:115–117.
4. Hemming AW, Cattral MS. Ex vivo liver resection with replacement of the inferior vena cava and hepatic vein replacement by transposition of the portal vein. J Am Coll Surg. 1999;189:523–526.
5. Sugimachi K, Shirabe K, Taketomi A, et al. Successful curative extracorporeal hepatic resection for far-advanced hepatocellular carcinoma in an adolescent patient. Liver Transpl. 2010;16:685–687.
6. Pichlmayr R, Grosse H, Hauss J, Gubernatis G, Lamesch P, Bretschneider HJ. Technique and preliminary results of extracorporeal liver surgery (bench procedure) and of surgery on the in situ perfused liver. Br J Surg. 1990;77:21–26.
7. Oldhafer KJ, Lang H, Schlitt HJ, et al. Long-term experience after ex situ liver surgery. Surgery. 2000;127:520–527.
8. Figueras J, Llado L, Ramos E, et al. Temporary portocaval shunt during liver transplantation with vena cava preservation. Results of a prospective randomized study. Liver Transpl. 2001;7:904–911.