First Experiences Optimizing Smith-Waterman on Intel’s Knights Landing Processor

Enzo Rucci*, Carlos Garcia†, Guillermo Botella‡, Armando De Giusti², Marcelo Naiouf³, and Manuel Prieto-Matias¹

¹III-LIDI, CONICET, Facultad de Informática, Universidad Nacional de La Plata
²Depto. Arquitectura de Computadores y Automática, Universidad Complutense de Madrid
³III-LIDI, Facultad de Informática, Universidad Nacional de La Plata

February 24, 2017

Abstract

The well-known Smith-Waterman (SW) algorithm is the most commonly used method for local sequence alignments. However, SW is very computationally demanding for large protein databases. There exist several implementations that take advantage of computing parallelization on many-cores, FPGAs or GPUs, in order to increase the alignment throughput. In this paper, we have explored SW acceleration on Intel KNL processor. The novelty of this architecture requires the revision of previous programming and optimization techniques on many-core architectures. To the best of authors knowledge, this is the first KNL architecture assessment for SW algorithm. Our evaluation, using the renowned Environmental NR database as benchmark, has shown that multi-threading and SIMD exploitation reports competitive performance (351 GCUPS) in comparison with other implementations.

1 Introduction

Nowadays the greatest challenge of Bioinformatics is no longer data generation but also efficient information analysis and interpretation. In fact, sequencing technologies [11] is currently considered one of the most successful instruments in Bioinformatics, basically solved by heuristic methods.

*erucci@lidi.info.unlp.edu.ar
†garsanca@ucm.es
‡gbotella@ucm.es
The key aspect of Smith-Waterman (SW) algorithm [20] is that always finds the optimal local alignment between two sequences. This characteristic makes this method the basis of more sophisticated alignment technologies, so its study and acceleration in different platforms has motivated a great interest for the scientific community. Although, many approaches, such as BLAST [1] and FASTA [13] are more efficient in term of execution time, they do not guarantee the optimal alignment.

SW establishes similar regions between two DNA or protein sequences. A score matrix must be built in order to determine the best alignment. Besides, matrix size depends on sequence lengths which determines the parallel scalability. From parallel processing perspective, regarding DNA alignment with sequences up to hundreds of million nucleotide, the huge matrix created only permits to perform a single sequence pair, so the low-level parallelism available in the alignment can be exploited by means of the intra-task scheme. Nevertheless, protein sequences which are shorter requires small matrices. This aspect permits to exploit coarse level parallelism computing multiple independent alignments simultaneously in inter-task approach way.

The computational complexity of the SW algorithm has motivated a large amount of research in order to reduce execution time by means of acceleration on a great variety of architectures. In the last years in the context of SW protein alignment, we have witnessed SIMD-vector exploitation [4, 16, 15] available now on modern CPUs, highlighting the recently released Parasail library [3]. In the field of heterogeneous computing, the most successful solution is the CUDA++ software [9] for multi CUDA-enabled Graphics Processor Units (GPUs) with concurrent CPU computing. Moreover, for Intel’s co-processors based on Xeon Phi, we highlight both optimized hand-tuned SW implementations denominated as SWAPHI [10] and LSBDS [7]. Besides centering on Intel Xeon Phi alternative, Rucci et al. [17] have recently studied also energy efficiency on a hybrid implementation that exploits both CPU and co-processors simultaneously. Using FPGAs as accelerators, we can found linear systolic array implementations for Xilinx Virtex FPGAs [6, 12], custom instructions [8] and the proposal of Rucci et al. [18] where the behavior of the novel paradigm of OpenCL on Altera’s FPGAs is studied, whose most relevant results show that these devices are the most efficient from energy footprint perspective.

Our paper proposes and evaluates a SW algorithm using the last generation of Intel’s Xeon Phi with the Knights Landing (KNL) architecture. We would like to note that although there exist SW studies in old Xeon Phi with Knights Corner (KNC) architecture [10, 7, 17], to the best of authors knowledge there are no related works in Bioinformatics scenario with KNL architecture due to its recent commercialization. Among the main differences of KNL respect to its predecessor, are the incorporation of AVX-512 extensions, a remarkable number of vector units increment and new on-package high-bandwidth memory. These aspects make necessary the re-
vision of the previous optimization proposals for the SW algorithm.

Section 2 introduces the basic concepts of the Smith-Waterman algorithm. Section 3 briefly introduces the Intel’s Xeon Phi architecture and in Section 4 we describe our implementation of the SW algorithm. In Section 5 we discuss performance results and finally in Section 6 we conclude with some ideas for future research.

2 Smith-Waterman Algorithm

Given two sequences S_1 and S_2, with sizes $|S_1| = m$ and $|S_2| = n$, the recurrence relations for the SW algorithm with affine gap penalties \([5]\) are defined below.

\[
H_{i,j} = \max\{0, H_{i-1,j-1} + SM(S_1[i], S_2[j]), E_{i,j}, F_{i,j}\}
\]

\[
E_{i,j} = \max\{H_{i,j-1} - G_{oc}, E_{i,j-1} - G_e\}
\]

\[
F_{i,j} = \max\{H_{i-1,j} - G_{oc}, F_{i-1,j} - G_e\}
\]

$H_{i,j}$ contains the score for aligning the prefixes $S_1[1..i]$ and $S_2[1..j]$. $E_{i,j}$ and $F_{i,j}$ are the scores of prefix $S_1[1..i]$ aligned to a gap and prefix $S_2[1..j]$ aligned to a gap, respectively. SM is the scoring matrix which defines the substitution scores for all residue pairs. Generally SM rewards with a positive value when q_i and d_j are identical or relatives, and punishes with a negative value otherwise. G_{oc} is the sum of gap open and gap extension penalties while G_e is the gap extension penalty. The recurrences should be calculated with $1 \leq i \leq m$ and $1 \leq j \leq n$, after initializing H, E and F with 0 when $i = 0$ or $j = 0$. The maximum value in the alignment matrix H is the optimal local alignment score.

It is important to note that H values can not be computed in any order due to the data dependences inherent to this problem. To be able to calculate the value of any cell, all the values of the previous cells at the same row and column have to be computed first, as shown in Figure 1. These dependences restrict the ways in that H can be computed.

3 Intel’s Xeon Phi

With the Exascale challenge as a target in High Performance Computing (HPC), accelerators seem to be the alternative to achieve such goals due to consumption constrains in general-purpose processors. Xeon Phi (Phi) is the code brand name given by Intel to a series of massively many-core processor designed for HPC purposes. Phi corresponds to an specialized architecture
denominated as Intel Many Core Architecture (MIC) in contrast to Multi-Core Architecture for General-purpose processors. Phi architecture derived from the defunct Larrabee project [19] and the Teraflops Research Chip research project. In 2012, Intel launches the first Phi generation (KNC) which main features up to 61 x86 pentium cores with extended vector units (512-bit) and simultaneous multithreading (four hardware threads per core). Meanwhile first Phi was attached to the host processor via PCI Express bus, second generation (KNL) can operate as standalone processor.

As shown in Figure 2, KNL architecture corresponds up to 36 Tiles interconnected by 2D mesh. Each Tile includes 2 cores based on the out-of-order Intel’s Atom micro-architecture (4 threads per core), 2 Vector Processing Units (VPUs) with AVX-512 support and a shared L2 cache of 1 MByte.

One of the main differences of the KNL architecture with respect to its predecessor is the availability of on-package high-bandwidth memory (HBM). This particular technology permits three configuration modes: Flat mode, Cache Mode and Hybrid mode. While in Cache mode, HBM is used as classical cache with lower performance rates and null source code changes, in Flat mode the HBM is used as addressable memory being necessary the programmer intervention to indicate manually which part of its source code is allocated to HBM. It is important to note that in Flat mode, MCDRAM is treated as Non-Uniform-Memory-Access architectures (NUMA), thus programmer should take special care for achieving efficient memory access from the cores [2].

KNL supports not only old Intel’s multimedia extensions such as 128-bit SSEx and 256-bit AVXx, but also modern 512-bit AVX-512. In fact, Intel will unify the SIMD instruction-set on both general purpose (announce its support on Xeon E5-26xx V5 at 2017) and KNL processors by means of AVX-512. AVX-512 performs 512-bit SIMD capabilities, 32 logical registers, vector predication via eight new mask registers and gather/scatter indirect vector accesses. Currently, modern Phi has two VPUs per core al-
lowing SIMD parallelism which acts as 32 SIMD-lanes for single-precision (512 bits registers/32 bits in SP × 2 VPUs = 32 lanes) and 16 SIMD-lanes for double-precision [21]. Although Intel AVX-512 instructions contains several categories, Xeon Phi KNL architecture only supports four: AVX-512F (foundation instructions); AVX-512CD (conflict-detection); AVX-512ER (exponential and reciprocal); and AVX-512PF (prefetch instructions).

From a programming point of view, one of the main goals of this platform is the support of existing parallel programming models traditionally used on HPC scenario such as the OpenMP, MPI or TBB paradigms [14], which simplifies code development and improves portability over other alternatives based on accelerator-specific programming languages such as CUDA or OpenCL. In fact, although it should not be the most efficient way, KNL allows binary compatibility with Xeon families.

However, minimal programming efforts such as the introduction of some directives to inform the compiler about pointer disambiguation or data alignment data dependencies usually provide poor performance rates. In fact, guided auto-vectorization is not able to achieve the best performance in most cases and programmers usually need to make an extra effort to hand-tune the codes to exploit SIMD capabilities. Indeed, intrinsics are currently the only option for complex applications which suffer from data dependencies or irregular access patterns that can be hidden using specific code transformations. Unfortunately, improving performance comes at the expense of losing cross-platform portability.

Figure 2: Xeon Phi KNL architecture.
4 SW Implementation

In this section we will address the optimizations performed on the Intel Xeon Phi KNL processor. Before describing them in detail, we would like to point out the algorithm flow which can be summarized in the following steps:

1. Pre-processing stage: database sequences are pre-processed to allow subsequent parallel computation.

2. SW stage: alignments are carried out.

3. Sorting stage: alignment scores are sorted in descending order.

The inter-task parallelism approach is performed in order to exploit the SIMD vector capabilities available on the Xeon Phi KNL processor. In that sense, database sequences are processed in groups and the size of the groups is determined by the number of SIMD vector lanes. Before grouping sequences, database sequences are sorted by their lengths in ascending order and padded with dummy symbols. This is done to favor memory pattern access and minimize workload imbalances.

4.1 Multiple Parallelism Levels

Our implementation exploits both data and thread parallelism levels. On one hand, we have used SIMD instructions by means of hand-tuned intrinsic functions. In particular, we have explored the usage of SSE4.1, AVX2 and AVX-512 extensions. On the other hand, we take advantage of the OpenMP programming model to express parallelism across multiple cores. The database sequences are dynamically distributed among the cores as soon as the threads become idle. Each alignment matrix is divided into vertical blocks and computed in a row-by-row manner (see Figure 3). This blocking technique improves data locality reducing the number of cache misses. In addition, the inner loop is fully unrolled to increase performance.

Figures 4, 5 and 6 show the core instructions of SSE4.1, AVX2 and AVX-512 extensions, respectively. v_{Cur} is the block row being calculated while v_{Prev} is the previous one. After computing the current block row, v_{Cur} and v_{Prev} are swapped to process the next row. Besides, v_{Sub} represents the substitution scores for the database sequence residues against the query residue. v_{E} and v_{F} are the score vectors for alignments ending in a gap in the query and the database sequence, respectively. v_{Goe} represents the vector for the sum of gap open and gap extension penalties while v_{Ge} is the vector for gap extension penalty. Last, v_{S} keeps the current optimal alignment score.
4.2 Instruction Set and Integer Range Selection

Although almost all alignment scores can be represented using an 8-bit integer range in order to express as much SIMD parallelism available, there are some alignments that cannot be expressed with this integer range so a wider range should be used. In the context of KNL processors, it is supported SSEx, AVXx and AVX-512 instructions sets. While SSE4.1 extensions allow computation of 16 alignments in parallel, AVX2 instructions double this number. Saturated arithmetic operations are used in additions operation to detect overflow computation. When potential overflow is detected (i.e. the alignment score is equal to the maximum value of the integer representation employed), the alignment is recalculated using the next wider integer range. Overflow checking is performed to verify if overflow occurred in the lower/upper half or in both halves of the score vector in order to avoid unnecessary recalculations. Unfortunately Xeon Phi KNL processors do not include AVX-512BW subset (byte and word version of instructions in AVX-512F). This fact means that the narrowest integer range in these devices is 32 bit for AVX-512. So AVX-512 cannot compute more alignments simultaneously than SSE4.1 or AVX2. In contrast, operations for overflow
detection are not required.

4.3 Substitution scores

Our code also implements other well-known optimizations of the SW algorithm that have been proposed in previous works, such as the Query Profile (QP) \cite{16} and Score Profile (SP) \cite{15} optimisations.

- The QP strategy is based on creating an auxiliary two-dimensional array of size $|q| \times |\sum|$, where q is the query sequence and \sum is the alphabet. Each row of this array contains the scores of the corresponding query residue against each possible residue in the alphabet. Since each thread compares the same query residue against different ones from the database, this optimization improves data locality at the cost of a negligible increment in memory requirements.

- The SP technique is based on constructing an auxiliary $n \times L \times |\sum|$ score array, where n is the length of the database sequence, L is the number of vector lanes and \sum is the alphabet. This auxiliary structure contains the substitutions scores for each query-database residue combination and is constructed before matrix computation. Since each row of the SP forms an L-lane score vector, an advantage is that its values can be gathered using a single vector load reducing the number of operations in the innermost loop. However, because the SP must be re-built for each database sequence, its suitability must be evaluated, especially for short queries.

5 Experimental Results

5.1 Experimental Design

All tests have been performed on an Intel server running CentOS 7.2 equipped with a Xeon Phi 7250 processor 68-core 1.40GHz (4 hw thread per core and 16GB HBW memory) and 64GB main memory. The processor was run in Flat memory mode and Quadrant cluster mode.

We have used Intel’s ICC compiler (version 17.0.1.132) with the -O3 optimization level by default. The experiments used to assess performance are similar to those in previous work \cite{18, 17, 9, 15}. We have evaluated our application by searching 20 query protein sequences against the well-known Environmental NR database (release 20161). This database comprises 1384686404 amino acid residues in 6962291 sequences, 11944 being the maximum length. The queries have been extracted from the Swiss-Prot

1The Environmental NR database is available online at ftp://ftp.ncbi.nih.gov/blast/db/FASTA/env_nr.gz
database\(^2\) (accession numbers: P02232, P05013, P14942, P07327, P01008, P03435, P42357, P21177, Q38941, P27895, P07756, P04775, P19096, P28167, P0C6B8, P20930, P08519, Q7TMA5, P33450, and Q9UKN1), ranging in length from 144 to 5478. The scoring matrix selected was BLOSUM62, and gap insertion and extension penalties were set to 10 and 2, respectively.

5.2 Performance Results

Cell updates per second (CUPS) is a commonly used performance measure in the Smith-Waterman context, because it allows removal of the dependency on the query sequences and the databases utilized for the different tests. A CUPS represents the time for a complete computation of one cell in matrix \(H\), including all memory operations and the corresponding computation of the values in the \(E\) and \(F\) arrays. Given a query sequence \(Q\) and a database \(D\), the GCUPS (billion cell updates per second) value is calculated by:

\[
\frac{|Q| \times |D|}{t \times 10^9}
\]

where \(|Q|\) is the total number of residues in the query sequence, \(|D|\) is the total number of residues in the database and \(t\) is the runtime in seconds \(^1\). Figure 7 shows the performance for the different instruction sets used varying the number of threads\(^3\). The best performances are achieved by

\(^2\)The Swiss-Prot database is available online at http://web.expasy.org/docs/swiss-prot_guideline.html

\(^3\)SSE4.1 and AVX2 versions using QP technique were excluded from the analysis to improve figure readability since we found that SP scheme always achieved the best performance, as in previous work \cite{17}
AVX2 extensions (340.3 GCUPS) followed by AVX-512 (157.8 GCUPS) and, last, SSE4.1 (97.6 GCUPS). As mentioned before, data level exploitation is critical to achieve maximum performance in this application. Even though AVX-512 doubles vectorial width of AVX2 instructions, the lack of low-range integer operations imposes a strong limit to its performance taking into account that almost all alignment scores can be represented using 8-bit integer data. Despite the fact that the SSE4.1 version computes 16 alignments in parallel as the AVX-512 counterparts, the performance of the former is slower compared to the latter. As only one of the VPUs of each core has support for a subset of byte and word SSE instructions, codes that use these operations suffer performance losses.

In relation to the number of threads, AVX2 implementation reaches top performance using 136 threads although performance with 68 threads is very close (just 1% slower). Similar behaviors are presented with AVX-512 and SSE4.1 intrinsics. In the AVX-512 case, performance with 68 threads is 3% higher than the corresponding to 136 threads; while SSE4.1 version is slightly better (1%) employing 204 threads compared to 272 threads.

Lastly, this figure also allows us to evaluate the performance gains obtained by HBM usage. As the entire application fits in the MCDRAM, we can benefit from placing all data in that memory using the `numactl` utility (without source code modification). In particular, MCDRAM exploitation achieves an average speedup of $1.04 \times$ and a maximum speedup of $1.1 \times$.

Figure 8 illustrates performance evolution varying query length with the most favorable configuration for each implementation: 204, 136 and 68 threads for SSE4.1, AVX2 and AVX-512 intrinsics, respectively. Also, data is placed in MCDRAM memory. SSE4.1 and AVX-512 implementations have a almost constant performance achievement. As expected, this behavior is motivated by the exploitation of inter-task parallelism scheme. AVX2
version achieves an increasing performance tendency that becomes soft with larger query sequences \((m \geq 2504) \). For AVX-512, the behavior of QP and SP differ, observing better performance for short sequences in QP. This aspect, also observed in previous research for the Xeon Phi KNC [10, 17], is due to the additional overhead incurred by the SP construction, which does not compensate for the indexation benefits in shorter queries. As summary, peak performances achieved are 351.2, 162.8, 157.2 and 98.9 GCUPS for AVX2, AVX-512 (SP), AVX-512 (QP) and SSE4.1 implementations.

5.3 Performance Comparison to Parasail Library

Finally, we have compared our implementation with the parasail_aligner application included in the Parasail library. As Parasail offers many different alignment scenarios, we tested all and select which reports the best performance rates: parasail_sw_striped_profile_avx2_256_sat. This variant is based on the stripped approach for intra-task parallelism with AVX2 intrinsics. Besides, it performs QP optimization using also 8-bit integer data with overflow checking.

Figure 9 shows the performance comparison between Parasail and our SW version on KNL. Both implementations run with 136 threads and make use of MCDRAM. Parasail intra-task approach limits parallel scalability for small alignments. Moreover, our developed version which is based on the inter-task and SP scheme outperforms Parasail for all query lengths considered. In particular, it runs on average 4.6× faster highlighting the larger differences for shorter queries.
6 Conclusions

The SW algorithm is a critical application in bioinformatics scenario and has become the base of more sophisticated alignment technologies, so its study and acceleration in different platforms has motivated a great interest for the scientific community. In this paper, we have explored SW acceleration on the last generation of Intel’s Xeon Phi processors with the KNL architecture. To the best of the authors knowledge, this is the first study of this kind.

Among main contributions of this research we can summarize:

- Exploitation of low-range integer vectors is crucial to achieve top performance. Even though AVX-512 doubles vectorial width of AVX2 instructions, the latter reach the maximal performance. The lack of this class of AVX-512 instructions in Xeon Phi KNL processors imposes a strong limit to its performance taking into account that almost all alignment scores can be represented using 8-bit integer data.

- Multi-threading must be carefully evaluated. Different number of threads produced the best results for each instruction set.

- MCDRAM usage demonstrated to be an effective way to increase performance with practically null programmer intervention. In particular, it produced an average speedup of 1.04× and a maximum speedup of 1.1×.

- Peak performances are 351.2, 162.8, 157.2 and 98.9 GCUPS for AVX2, AVX-512 (SP), AVX-512 (QP) and SSE4.1 implementations.

In view of the obtained results, as future works we will consider:

- Xeon Phi KNL processors offer different cluster and memory modes. We are interested in exploring the Flat mode with larger genomic databases that do not fit in MCDRAM, like UniProtKB/TrEMBL. Also, we will evaluate programming and optimization techniques in other available modes as a way to extract more performance.

- As Xeon Phi KNL processors reported competitive performance, we plan to perform a comparison with other accelerators not only from performance perspective but also from power efficiency point of view.

- Future Xeon KNL processors will include AVX-512BW set. As this characteristic enables more SIMD parallelism, we see a promising opportunity in accelerating SW database searches on these devices.

Acknowledgments

This work has been partially supported by Spanish government through research contract TIN2015-65277-R and CAPAP-H5 network (TIN2014-53522).
References

[1] Stephen F. Altschul, Thomas L. Madden, Alejandro A. Schaffer, Jinghui Zhang, Zheng Zhang, Webb Miller, and David J. Lipman. Gapped blast and psiblast: a new generation of protein database search programs. *NUCLEIC ACIDS RESEARCH*, 25(17):3389–3402, 1997.

[2] Ryo Asai. MCDRAM as High-Bandidth Memory (HBM) in Knights Landing Processors: Developer’s Guide, 2016. https://goparallel.sourceforge.net/wp-content/uploads/2016/05/Colfax_KNL_MCDRAM_Guide

[3] Jeff Daily. Parasail: SIMD C library for global, semi-global, and local pairwise sequence alignments. *BMC Bioinformatics*, 17 (81), 2016.

[4] Michael Farrar. Striped Smith-Waterman speeds database searches six time over other SIMD implementations. *Bioinformatics*, 23 (2):156–161, 2007.

[5] O. Gotoh. An improved algorithm for matching biological sequences. In *Journal of Molecular Biology*, volume 162, pages 705–708, 1981.

[6] M.N. Isa, K. Benkrid, T. Clayton, C. Ling, and A.T. Erdogan. An FPGA-based parameterised and scalable optimal solutions for pairwise biological sequence analysis. In *Adaptive Hardware and Systems (AHS), 2011 NASA/ESA Conference on*, pages 344–351, June 2011.

[7] Haidong Lan, W. Liu, B. Schmidt, and B. Wang. Accelerating large-scale biological database search on xeon phi-based neo-heterogeneous architectures. In *2015 IEEE International Conference on Bioinformatics and Biomedicine (BIBM)*, pages 503–510, Nov 2015.

[8] T I Li, W Shum, and K Truong. 160-fold acceleration of the Smith-Waterman algorithm using a field programmable gate array (FPGA). *BMC Bioinformatics*, 8:I85, 2007.

[9] Y Liu, A Wirawan, and B Schmidt. CUDASW++ 3.0: accelerating Smith-Waterman protein database search by coupling CPU and GPU SIMD instructions. *BMC Bioinformatics*, 14:117, 2013.

[10] Yongchao Liu and Bertil Schmidt. Swaphi: Smith-waterman protein database search on xeon phi coprocessors. In *25th IEEE International Conference on Application-specific Systems, Architectures and Processors (ASAP 2014)*, 2014.

[11] David W. Mount. *Bioinformatics: Sequence and Genome Analysis*. Mount, Bioinformatics. Cold Spring Harbor Laboratory Press, 2004.
[12] T. F. Oliver, B. Schmidt, and D. L. Maskell. Reconfigurable architectures for bio-sequence database scanning on FPGAs. *IEEE Transactions on Circuits and Systems II: Express Briefs*, 52(12):851–855, Dec 2005.

[13] W. R. Pearson and D. J. Lipman. Improved tools for biological sequence comparison. *Proceedings of the National Academy of Sciences of the United States of America*, 85(8):2444–2448, April 1988.

[14] James Reinders, Jim Jeffers, and Avinash Sodani. *Intel Xeon Phi Processor High Performance Programming Knights Landing Edition*. Morgan Kaufmann Publishers Inc., Boston, MA, USA, 2016.

[15] Torbjorn Rognes. Faster smith-waterman database searches with inter-sequence simd parallelisation. *BMC Bioinformatics*, 12(1):221, 2011.

[16] Torbjorn Rognes and Erling Seeberg. Six-fold speed-up of smithwaterman sequence database searches using parallel processing on common microprocessors. *Bioinformatics*, 16(8):699, 2000.

[17] Enzo Rucci, Carlos Garcia, Guillermo Botella, Armando De Giusti, Marcelo Naiouf, and Manuel Prieto-Matas. An energy-aware performance analysis of SWIMM: SmithWaterman implementation on Intel’s Multicore and Manycore architectures. *Concurrency and Computation: Practice and Experience*, 27(18):5517–5537, 2015.

[18] Enzo Rucci, Carlos Garcia, Guillermo Botella, Armando De Giusti, Marcelo Naiouf, and Manuel Prieto-Matas. OSWALD: OpenCL Smith-Waterman Algorithm on Altera FPGA for Large Protein Databases. *International Journal of High Performance Computing Applications*, page 1094342016654215, 06 2016.

[19] Larry Seiler, Doug Carmean, Eric Sprangle, Tom Forsyth, Pradeep Dubey, Stephen Junkins, Adam Lake, Robert Cavin, Roger Espasa, Ed Grochowski, Toni Juan, Michael Abrash, Jeremy Sugerman, and Pat Hanrahan. Larrabee: A Many-Core x86 Architecture for Visual Computing. *IEEE Micro*, 29(1):10–21, 2009.

[20] Temple F. Smith and Michael S. Waterman. Identification of common molecular subsequences. *Journal of Molecular Biology*, 147(1):195–197, March 1981.

[21] A. Sodani, R. Granunt, J. Corbal, H. S. Kim, K. Vinod, S. Chinthamani, S. Hutsell, R. Agarwal, and Y. C. Liu. Knights Landing: Second-Generation Intel Xeon Phi Product. *IEEE Micro*, 36(2):34–46, Mar 2016.