The Interplanetary Network Supplement to the BATSE Catalogs of Untriggered Cosmic Gamma-Ray Bursts

K. Hurley

khurley@ssl.berkeley.edu

B. Stern

J. Kommers

T. Cline

E. Mazets, S. Golenetskii

J. Trombka, T. McClanahan

J. Goldsten

M. Feroci

F. Frontera

C. Guidorzi

E. Montanari

W. Lewin

C. Meegan, G. Fishman, C. Kouveliotou

S. Sinha, S. Seetha,
ABSTRACT

We present Interplanetary Network (IPN) detection and localization information for 211 gamma-ray bursts (GRBs) observed as untriggered events by the Burst and Transient Source Experiment (BATSE), and published in catalogs by Kommers et al. (2001) and Stern et al. (2001). IPN confirmations have been obtained by analyzing the data from 11 experiments. For any given burst observed by BATSE and one other distant spacecraft, arrival time analysis (or “triangulation”) results in an annulus of possible arrival directions whose half-width varies between 14 arcseconds and 5.6 degrees, depending on the intensity, time history, and arrival direction of the burst, as well as the distance between the spacecraft. This annulus generally intersects the BATSE error circle, resulting in a reduction of the area of up to a factor of \(\sim 650 \). When three widely separated spacecraft observed a burst, the result is an error box whose area is as much as 30000 times...
smaller than that of the BATSE error circle.

Because the IPN instruments are considerably less sensitive than BATSE, they generally did not detect the weakest untriggered bursts, but did detect the more intense ones which failed to trigger BATSE when the trigger was disabled. In a few cases, we have been able to identify the probable origin of bursts as soft gamma repeaters. The vast majority of the IPN-detected events, however, are GRBs, and the confirmation of them validates many of the procedures utilized to detect BATSE untriggered bursts.

Subject headings: gamma-rays: bursts; catalogs

1. Introduction

This paper presents the 8th catalog of gamma-ray burst (GRB) localizations obtained by arrival time analysis, or “triangulation” between the missions in the 3rd interplanetary network (IPN), which began operations in 1990 and continues to operate today. Two of these catalogs (Hurley et al. 1999a,b) were supplements to the BATSE 3B and 4Br burst catalogs (Meegan et al. 1996; Paciesas et al. 1999). The others involved bursts observed by numerous other spacecraft (Laros et al. 1997, 1998; Hurley et al., 2000a,b,c). In this paper, we present IPN data on 211 untriggered bursts which occurred throughout the entire Compton Gamma-Ray Observatory (CGRO) mission (1991 April through 2000 May). The BATSE data on these events, such as durations, fluxes, fluences, and coarse location information, appear in two catalogs, Kommers et al. (2001) and Stern et al. (2001). A final IPN supplement catalog, to the BATSE 5B catalog, is in preparation (Hurley et al. 2004, Briggs et al., 2004).

The purpose of searching the BATSE data for untriggered events was mainly to extend the number-intensity (log N-log S) distribution to weaker bursts than those that could trigger the detector, and thus to gain more information on the burst distribution, particularly at the weak end. Other objectives included the detection of bursts from known and unknown soft gamma repeaters, and very soft transients which could constitute a previously unknown phenomenon. (One significant outcome of this effort was the detection of the bursting pulsar). The purpose of searching the IPN data for these events was to confirm as many of them as possible, reduce the sizes of their error circles, and validate the procedures used to identify these untriggered events.
2. Instrumentation, Search Procedure, Derivation of Annuli, and Burst Selection Criteria

We have used the same procedures as those employed in the other BATSE catalog supplements, and refer the reader to Hurley et al. (1999a,b) for the detailed descriptions. Generally speaking, using the arrival time and direction of a burst at BATSE, and its time history, we searched the data of the near-Earth spacecraft for a confirmation at the same time; for the spacecraft which were far from Earth, we searched for a confirmation (i.e., an event with a matching time history) in the appropriate crossing time window. Although more than 15 separate gamma-ray burst experiments were operating on over a dozen missions throughout the duration of the CGRO mission, confirmations were obtained from the data of just 11 experiments: the BeppoSAX Gamma-Ray Burst Monitor (Frontera et al. 1997; Feroci et al. 1997), the Defense Meteorological Satellite Program (DMSP, Terrell et al. 1992), Ginga (Murakami et al. 1989), Konus-A (Aptekar et al. 1997), Konus-Wind (Aptekar et al. 1992), the Near Earth Asteroid Rendezvous mission (NEAR, Goldsten et al. 1997), PHEBUS (Terekhov et al. 1994), Pioneer Venus Orbiter (Klebesadel et al. 1980), SROSS C-2 (Kasturirangan et al. 1997), Ulysses (Hurley et al. 1992), and WATCH - GRANAT (Brandt, Lund, & Rao 1990). We note here, however, two important differences in the procedures and results between the triggered and untriggered events.

First, the untriggered burst catalogs contain a much higher proportion of weak events than the BATSE triggered burst catalogs. Because the IPN instruments are generally much less sensitive than BATSE, they detected a smaller fraction of the untriggered than the triggered ones.

Second, the untriggered event time histories were recorded in the 1.024 s resolution BATSE data, while the triggered event time histories were recorded with much higher time resolution. Thus when an untriggered event was detected only by BATSE and another near-Earth spacecraft, the low time resolution and the proximity of the two spacecraft results in a very wide annulus which is consistent with, but does not constrain the BATSE error circle. Twenty-one events fell into this category, and it is only possible to confirm their detection, but not to obtain a meaningful annulus or error box for them.

3. A Few Statistics

There are 873 untriggered bursts in the Kommers et al. (2001) catalog and 1838 untriggered bursts in the Stern et al. (2001) catalog. The two sets are not mutually exclusive (Stern et al. 2001), and the total number of untriggered bursts is approximately 2000, de-
pending on the exact acceptance criteria. Their peak fluxes range from 0.06 to 25 photons cm\(^{-2}\) s\(^{-1}\). Figure 1 gives the IPN efficiency for detecting untriggered bursts as a function of their peak fluxes. This is defined as the number of bursts detected by the IPN divided by the total number of untriggered bursts in a particular flux range. There are many factors which determine whether a burst is detected by an IPN spacecraft. In addition to the burst intensity and time history, solar activity, Earth-blocking for spacecraft in low Earth orbit, the number of spacecraft active in the IPN, and data return all play important, time-variable roles. Figure 1 therefore gives time-averaged efficiencies. Approximately one out of nine untriggered BATSE bursts was observed by at least one spacecraft in the IPN. Their fluxes range from 0.15 to 25 photons cm\(^{-2}\) s\(^{-1}\). For comparison, approximately one out of every three triggered BATSE bursts was observed by IPN spacecraft (Hurley et al. 1999b). Of the 211 IPN events, only 90 could be localized (85 to annuli only, and 5 to error boxes).

4. Tables of Confirmed Bursts, Annuli, and Error Boxes

For each confirmed untriggered burst, table 1 lists the spacecraft which observed the event. (A list of all GRBs and the IPN spacecraft which detected them may be found at http://ssl.berkeley.edu/ipn3/masterli.html or http://heasarc.gsfc.nasa.gov/W3Browse/.)

For those bursts which can be localized, either to a single annulus whose width is comparable to or less than the diameter of the BATSE error circle (an example is shown in figure 2), or to an error box (an example is shown in figure 3), the 6 columns in table 2 give:

1) the date of the burst, in yymmdd format, 2) the Universal Time of the burst at Earth in seconds, 3) the right ascension of the center of the IPN annulus, epoch J2000, in the heliocentric frame, in degrees, 4) the declination of the center of the IPN annulus, epoch J2000, in the heliocentric frame, in degrees, 5) the angular radius \(R_{IPN1}\) of the first IPN annulus, in the heliocentric frame, in degrees, and 6) the half-width \(\delta R_{IPN1}\) of the first IPN annulus, in degrees; the 3 \(\sigma\) confidence annulus is given by \(R_{IPN1} \pm \delta R_{IPN1}\).

If the burst was detected by a third, distant spacecraft, and a non-degenerate second annulus could be derived for it, the information in columns 4, 5, and 6 is repeated for this annulus.

For the bursts in table 2, table 3 gives the BATSE error circles, from Kommers et al. (2001) and Stern et al. (2001), and either a) the intersection points of the IPN annulus with the error circle, or b) for the three-spacecraft localizations, the four corners of the IPN error box.
For each entry, the first line contains:

1) the date of the burst, in yymmdd format, 2) the Universal Time of the burst at Earth, in seconds, 3) the right ascension of the center of the BATSE error circle, in degrees, 4) the declination of the center of the BATSE error circle, in degrees, and 5) the radius of the BATSE error circle, in degrees; this is the combination of the one sigma statistical error and a 1.6 degree systematic error, summed in quadrature.

The four following lines contain the right ascension and declination, in degrees, of the error box. For those bursts which were observed by BATSE and a single IPN spacecraft (e.g. figure 2), the coordinates are those of the intersection of the 3σ IPN annulus with the 1σ (statistical plus systematic) BATSE error circle. Although all of the annuli are statistically consistent with the positions of their respective 1σ BATSE error circles, in some cases part or all of the annulus does not actually intersect the error circle. In those cases, the coordinates are set to zero. For those bursts which were observed by two distant IPN spacecraft (e.g. figure 2), and for which an IPN-only error box can be derived, the coordinates given are those of the IPN error box.

All coordinates are J2000, and all event times are the ones used to identify the bursts in the Stern et al. (2001) and Kommers et al. (2001) catalogs.

5. Notes on specific events

We note here a number of unusual circumstances surrounding some of the bursts in the Stern et al. (2001) and Kommers et al. (2001) catalogs.

- Some of the bursts in the two catalogs in fact correspond to BATSE triggers. In some cases, the triggers were not caused by the bursts, but the bursts were nevertheless recorded in triggered mode.

- The Kommers et al. (2001) catalog was divided into two parts: high energy (HE) events, and low energy (LE) events. Initially, there were 125 LE events, but 75 of them were intentionally eliminated from the final catalog because their origin was suspected to be either magnetospheric, X-ray binaries in outburst, or activity from soft gamma repeaters (SGRs). We have identified four of the 75 eliminated events as bursts from SGR1806-20. These four can be found in the complete list of SGR bursts identified in the Kommers et al. (2001) search, available at http://space.mit.edu/BATSE/data.html.

- A total of 9 of the untriggered events probably originated from soft gamma repeaters. In some cases, they had in fact triggered BATSE and were recorded in triggered mode.
The IPN localizations of these SGR bursts serve as a good calibration of the techniques and data used here, however. They verify, for example, that the 1 s resolution BATSE data files in the Stern et al. (2001) and Kommers et al. (2001) catalogs have the correct timing, and that the localization procedures used in these catalogs, and by the IPN, are accurate.

The following list gives the details.

GRB920903, 05728 s. This burst was observed by WATCH-GRANAT (Sazonov et al. 1995). Both the Ulysses/WATCH and Ulysses/BATSE annuli are consistent with the WATCH error circle, but do not intersect the BATSE error circle. The BATSE error circle lies ~ 7 degrees away from the WATCH error circle, but is consistent with it, given the statistical and systematic uncertainties. The intersection of the narrower Ulysses/BATSE annulus with the WATCH error circle is given here.

GRB920920, 04415 s. This event was recorded in triggered mode following BATSE trigger 1948. The trigger occurred due to a different GRB.

GRB930209, 15737 s. This event was recorded in triggered mode following BATSE trigger 2177. The trigger occurred due to a solar flare.

GRB930702, 68333 s. This burst corresponds to BATSE trigger 2426, which is believed to be a Cygnus X-1 fluctuation.

GRB931005, 82288 s. This burst is a Kommers et al. (2001) LE event which was eliminated from the final catalog. It is BATSE trigger 2565, from SGR1806-20.

GRB940710, 35477 s. This event occurred 251 s before BATSE trigger 3071, whose duration is $T90=71$ s. The location of the Kommers et al. (2001) event is RA, Decl. = 99.4°, -33.3°, with uncertainty 3.4°, and that of BATSE 3071 is RA, Decl. = 96.42°, -36.59°, with uncertainty 1.33°. The centers of the two circles are therefore 4.1° apart. The IPN annulus is consistent with both error circles. Thus the Kommers et al. (2001) event may be a precursor to 3071.

GRB950730, 76147 s. This burst is a Kommers et al. (2001) LE event which was eliminated from the final catalog. The IPN annulus is consistent with the position of SGR1806-20.
GRB961119, 21536 s. This burst is a Kommers et al. (2001) LE event which was eliminated from the final catalog. It is probably from SGR1806-20, but it cannot be triangulated with any precision.

GRB961119, 26961 s. This burst is a Kommers et al. (2001) LE event which was eliminated from the final catalog. It is probably from SGR1806-20, but it cannot be triangulated with any precision.

GRB980622, 51085 s. This event is BATSE trigger 6861. It originates from SGR1627-41.
GRB980728, 64911 s. This event is BATSE trigger 6954. It originates from SGR1627-41.
GRB980801, 12920 s. This event is BATSE trigger 6959. It originates from SGR1627-41.
GRB980913 at 19983 s. This is BATSE trigger 7087.
GRB981022, 56447 s. This event is BATSE trigger 7171, from SGR1900+14.
GRB990110, 31141 s. This is BATSE trigger 7315. This burst originates from SGR1900+14.
GRB990429, 35555 s. This event is BATSE trigger 7536. It originates from SGR1900+14.
GRB990507, 71334 s. This is BATSE trigger 7552.
GRB991101, 54480 s. This is BATSE trigger 7835. It is probably a GRB observed with particle contamination.

6. Discussion and Conclusion

The Kommers et al. (2001) and Stern et al. (2001) studies of untriggered BATSE bursts pointed to different conclusions about the GRB population. The sample of Stern et al. provides evidence for a GRB number-intensity relation which continues to increase at low intensities, while the sample of Kommers et al. provides evidence for a flattening. The analysis which we have presented here indicates only that many of the events with peak fluxes above ~ 0.15 photon cm$^{-2}$ s$^{-1}$ are likely to be real, and that relatively few of them have been misclassified. The likelihood of reality increases with peak flux (figure 1). As there are hundreds of untriggered bursts below the IPN threshold, the possibility exists that the different conclusions about the number-intensity relation are due to the differences in classifying weak untriggered events. A recent study of untriggered BATSE bursts by Mitrofanov et al. (2004) reinforces and quantifies this idea. While this study is a preliminary one and does not draw any conclusions about the weak events, it should eventually lead to a clearer classification of them. A definitive statement about the weak burst population may
also be forthcoming after the launch of the Swift mission (Gehrels et al. 2004).

7. Acknowledgments

Support for the *Ulysses* GRB experiment is provided by JPL Contract 958056. Joint analysis of *Ulysses* and BATSE data was supported by NASA Grants NAG 5-1560 and NAG5-9701. NEAR data analysis was supported under NASA Grants NAG 5-3500 and NAG 5-9503. We are also grateful to the NEAR team for their modifications to the XGRS experiment which made gamma-ray burst detection possible. The Konus-Wind experiment was supported by Russian Space Agency Contract and RBRF grant #03-02-17517.
REFERENCES

Aptekar, R., et al. 1992, in AIP Conf. Proc. 265, Gamma-Ray Bursts, ed. W. Paciesas and G. Fishman (New York: AIP), 359

Aptekar, R., et al. 1997, Astron. Lett. 23(2), 147

Brandt, S., Lund, N., and Rao, A. 1990, Adv. Space Res. 10(2), 239

Briggs, M., et al., 2004, in preparation

Feroci, M., et al., 1997, in X-Ray, and Gamma-Ray Instrumentation for Astronomy VIII, Eds. O. Siegmund and M. Gummin, SPIE Vol. 3114, 186

Frontera, F., et al. 1997, A&AS 122, 357

Gehrels, N., et al. 2004, ApJ 611, 1005

Goldsten, J., et al. 1997, Space Sci. Rev. 82(1/2), 169

Guidorzi, C., et al. 2004, in preparation

Hurley, K., et al. 1992, A&AS 92, 401

Hurley, K., et al. 1999a, ApJS 120, 399

Hurley, K., et al. 1999b, ApJS 122, 497

Hurley, K., et al. 2000a, ApJ 533, 884

Hurley, K., et al. 2000b, ApJ 534, 258

Hurley, K., et al. 2000c, ApJS 128, 549

Hurley, K., et al. 2004, in preparation

Kasturirangan, K., Padmini, V. N., Prasad, N. L., Rao, U. R., and Seetha, S. 1997, A&A 322, 778

Klebesadel, R., et al. 1980, IEEE Trans. on Geoscience and Remote Sensing, GE-18, 1

Kommers, J., Lewin, W., Kouveliotou, C., van Paradijs, J., Pendleton, G., Meegan, C., and Fishman, G., 2001, ApJS 134, 385

Laros, J., et al. 1997, ApJS 110, 157

Laros, J., et al. 1998, ApJS 118, 391

Meegan, C., et al., 1996, ApJS 106, 65

Mitrofanov, I., et al. 2004, ApJ 603, 624

Murakami, T., et al. 1989, PASJ 41, 405

Paciesas, W., et al. 1999, ApJS 122, 465
Piro, L., & Costa, E. 1998, GCN Circ. 99
Sazonov, S., Sunyaev, R., Terekhov, O., Lund, N., Brandt, S., and Castro-Tirado, A. 1998, A&AS 129, 1
Stern, B., Tikhomirova, Y., Kompaneets, D., Svensson, R., and Poutanen, J., 2001, ApJ 563, 80
Terekhov, O., et al. 1994, Astron. Lett. 20(3), 265
Terrell, J., Klebesadel, R., Lee, P., and Griﬃee, J. 1992, in AIP Conf. Proc. 265, Gamma-Ray Bursts, ed. W. Paciesas and G. Fishman (New York: AIP), 48
Tkachenko, A., et al. 1998, Astron. Lett. 24(6), 722

This preprint was prepared with the AAS LATEX macros v5.2.
FIGURE CAPTIONS

Fig. 1.— The IPN efficiency for detecting a BATSE untriggered burst. This is the number of bursts in a flux range detected by the IPN, divided by the number detected by BATSE. The peak fluxes of the untriggered bursts range from 0.06 to 25 photons cm$^{-2}$ s$^{-1}$. The efficiencies are time-averaged.

Fig. 2.— The BATSE 1σ (statistical + systematic) error circle for the untriggered event on 980629, and the 3σ IPN annulus. Note that in general the curvature of the annulus makes it impossible to describe the resulting error box with only the four annulus/error circle intersection points.

Fig. 3.— The BATSE 1σ (statistical + systematic) error circle for the untriggered event on 000403, and the 3σ IPN error box, formed by the intersection of the two annuli.
Table 1. BATSE untriggered bursts confirmed by the IPN

Date UT	IPN spacecraft
910601 62220	Ulysses
910830 05148	Ulysses
910908 33924	Ulysses
910910 14747	Ulysses
911029 17453	Ulysses, PVO\(^a\), Ginga\(^b\)
911120 43957	Ulysses
920109 23306	Ulysses
920216 58688	Ulysses
920303 24523	Ulysses
920622 23828	Ulysses
920626 64276	Ulysses
920717 57852	Ulysses
920903\(^c\) 05728	Ulysses, WATCH/GRANAT\(^d\)
930118 64426	Ulysses
930209\(^e\) 15737	Ulysses, PHEBUS\(^e\)
930408 06847	PHEBUS\(^e\)
930424 38888	Ulysses
930506 55245	Ulysses
930626 07023	Ulysses
930710 13810	Ulysses
930909 45100	Ulysses
940213 07260	Ulysses
940222 08083	Ulysses
940311 44967	Ulysses
940710\(^f\) 35477	Ulysses
940712 00070	Ulysses
940727 40865	Ulysses
940730 39690	Ulysses, DMSP\(^f\), SROSS-C
940930 23017	Ulysses
941104 35178	Ulysses
950104 32438	Konus-Wind
Table 1—Continued

Date	UT	IPN spacecraft
950111	46528	Ulysses
950131	78592	Ulysses, Konus-Wind
950203	08456	Ulysses, SROSS-C
950207	72568	Konus-Wind
950211	15919	Ulysses, Konus-Wind
950224	33800	Konus-Wind
950603	21257	Konus-Wind
950611	21122	Ulysses
950614	00779	Konus-Wind
950615	12104	Ulysses
950622	71470	Ulysses, Konus-Wind
950625	09685	Konus-Wind
950722	64127	Ulysses, Konus-Wind
950723	73608	Konus-Wind
950728	45743	Konus-Wind
950730c	76147	Ulysses, Konus-Wind
950904c	52777	Ulysses
951001	41868	Ulysses, Konus-Wind
951005	14826	Konus-Wind
951013	57096	Konus-Wind
951112	67850	Ulysses
951124	25132	Ulysses, Konus-Wind
951213	32675	Konus-Wind
951215	73379	Konus-Wind
951218	28745	Ulysses, Konus-Wind
951231	77068	Konus-Wind
960107	68607	Konus-Wind
960115	31956	Ulysses, Konus-Wind
960123	43643	Konus-Wind
960201	82195	Ulysses
960202	05968	Ulysses, Konus-Wind
Table 1—Continued

Date	UT	IPN spacecraft
960207	65033	*Ulysses, Konus-Wind*
960304	48776	*Ulysses*
960321	19663	*Konus-Wind*
960418	08267	*Konus-Wind*
960504	18779	*Konus-Wind*
960602	42667	*Konus-Wind*
960603	60930	*Konus-Wind*
960614	83621	*Konus-Wind*
960715	58326	*BeppoSAX*
960725	63535	BeppoSAX*
960817	24647	*Konus-Wind*
960826	58072	*Konus-Wind*
960905	02568	*Konus-Wind*
961017	23648	*Ulysses*
961023	07747	BeppoSAX*
961106	43031	BeppoSAX*
961107	12691	*Konus-Wind*
961110	26976	Konus-Wind, BeppoSAX*
961113	80523	*Konus-Wind*
961119c	21322	*Ulysses, Konus-Wind*
961119c	21536	*Konus-A*
961119c	26961	*Konus-A*
961120	30433	BeppoSAX*
961123	59316	Konus-Wind
961208	68232	BeppoSAX*
961209	74677	*Ulysses*
961213	49966	*Ulysses, Konus-Wind*
961222	43207	BeppoSAX*
961224	36648	Konus-Wind, BeppoSAX*
970116	58238	*Ulysses, Konus-Wind*
970119	42607	*Konus-Wind*
Date	UT	IPN spacecraft
-----------	------	--
970221	13750	BeppoSAX
970223	64885	BeppoSAX
970311	30254	BeppoSAX
970406	25471	Ulysses, Konus-Wind, BeppoSAX
970525	31783	BeppoSAX
970610	36151	BeppoSAX
970617	61459	BeppoSAX
970720	68515	Konus-Wind
970801	29048	Ulysses, Konus-Wind
970817	69692	BeppoSAX
970825	40632	BeppoSAX
970827	25872	BeppoSAX
970926	79655	Konus-Wind
971015	20356	Konus-Wind
971017	01897	Konus-Wind
971019	57427	Konus-Wind
971027	09808	Ulysses, BeppoSAX
971028	75126	BeppoSAX
971101	23483	Ulysses, Konus-Wind
971102	05581	BeppoSAX
971103	27090	BeppoSAX
971121	43992	Ulysses, Konus-Wind
971207	67900	Ulysses, Konus-Wind
971207	75492	Ulysses, BeppoSAX
971228	53605	BeppoSAX
971228	79012	Konus-Wind, NEAR
980106	44231	Konus-Wind
980205	19783	Ulysses, Konus-Wind, BeppoSAX, NEAR
980207	58212	Konus-Wind
980223	76640	BeppoSAX
980226	41332	BeppoSAX
Table 1—Continued

Date UT	IPN spacecraft
980304	52863 Konus-Wind, BeppoSAX®
980329	55486 BeppoSAX®
980429	20493 Konus-Wind
980518	67488 BeppoSAX®
980520	52002 BeppoSAX®
980523	31208 Ulysses, Konus-Wind
980602	46528 Konus-Wind
980605	51131 Konus-Wind, BeppoSAX®
980613	17465 BeppoSAX®
980622c	51085 Ulysses
980626	70184 Konus-Wind
980629	32377 Ulysses, Konus-Wind
980705	23165 BeppoSAX®
980706	63987 Konus-Wind, BeppoSAX®
980709	16963 BeppoSAX®
980712	18577 BeppoSAX®
980713	13301 Konus-Wind, BeppoSAX®
980715	35282 BeppoSAX®
980728	53879 Konus-Wind
980728	55355 Konus-Wind
980808	78791 BeppoSAX®
980810	15944 BeppoSAX®
980812	17640 BeppoSAX®
980812	18950 Ulysses, Konus-Wind, BeppoSAX®
980907	40388 BeppoSAX®
980908	02480 BeppoSAX®
980913c	19983 Ulysses, NEAR
980916	73322 BeppoSAX®
980917	35279 BeppoSAX®
980923	30178 BeppoSAX®
981002	05466 BeppoSAX®
Table 1—Continued

Date	UT	IPN spacecraft
981018	01612	BeppoSAX
981019	79603	*Ulysses*, Konus-Wind, BeppoSAX
981022	21682	BeppoSAX
981022	56447	*Ulysses*, Konus-Wind
981101	26940	*Ulysses*, Konus-Wind, NEAR
981106	38479	BeppoSAX
981215	80709	Konus-Wind, NEAR
981216	19755	BeppoSAX
990104	39597	BeppoSAX
990109	41054	*Ulysses*, Konus-Wind
990110	31141	*Ulysses*
990128	37252	*Ulysses*, Konus-Wind, BeppoSAX
990204	30169	*Ulysses*, Konus-Wind
990305	34451	Konus-Wind
990421	65775	*Ulysses*
990504	40929	BeppoSAX
990509	74345	*Ulysses*
990526	47273	BeppoSAX
990603	66686	BeppoSAX
990606	11124	Konus-Wind
990618	37636	BeppoSAX
990621	43943	BeppoSAX
990705	57685	*Ulysses*, Konus-Wind, BeppoSAX, NEAR
990707	54801	*Ulysses*, Konus-Wind, BeppoSAX
990711	49110	BeppoSAX
990719	79380	BeppoSAX
990720	00025	BeppoSAX
990725	41016	BeppoSAX
990727	48288	BeppoSAX
990803	57565	BeppoSAX
990806	60168	Konus-Wind
Table 1—Continued

Date	UT	IPN spacecraft
990828	70019	*Ulysses, Konus-Wind*
990917	52494	*BeppoSAX*
990917	71095	*BeppoSAX*
990919	49338	Konus-Wind, *BeppoSAX*, NEAR
990919	86038	Konus-Wind
990926	32653	NEAR
991002	15031	*BeppoSAX*
991004	22825	*BeppoSAX*
991005	15265	*Ulysses*
991011	35968	Konus-Wind, *BeppoSAX*
991120	27069	NEAR
991205	82651	*BeppoSAX*
991217	21782	*BeppoSAX*
000102	27709	*Ulysses*
000205	45486	*Ulysses, BeppoSAX*
000206	09183	*Ulysses, BeppoSAX*
000210	14030	Konus-Wind
000211	45217	*BeppoSAX*
000224	82209	*BeppoSAX*
000318	12931	Konus-Wind
000403	13199	*Ulysses, Konus-Wind, NEAR*
000405	77386	*Ulysses*
000420	61374	*Ulysses, Konus-Wind*
000502	54060	*BeppoSAX*
000511	66298	*Ulysses, Konus-Wind*

a J. Laros, private communication, 1991

b T. Murakami, private communication, 1991

c See section 5
dSazonov et al. 1998

eTkachenko et al. 1998

fJ. Terrell, private communication, 1995

gGuidorzi et al. 2004

hPiro & Costa 1998
Date	UT	$\alpha_{2000,\text{IPN}}$	$\delta_{2000,\text{IPN}}$	R_{IPN}	δR_{IPN}
910601	62220	307.008	-20.544	31.555	0.602
910830	05148	152.409	12.566	48.690	0.306
910908	33924	154.638	11.730	84.755	0.092
910910	14747	155.049	11.574	19.634	0.072
911029	17453	344.478	-7.880	29.352	0.050
911120	43957	167.141	6.825	86.994	0.049
920109	23306	347.750	-6.711	47.721	0.173
920216	58688	342.389	-8.336	32.244	0.135
920303	24523	338.881	-8.709	21.076	0.083
920622	23828	150.168	6.668	48.411	0.135
920626	64276	330.525	-6.378	65.379	0.045
920717	57852	152.612	4.858	77.394	0.050
920903	05728	338.736	-0.545	54.228	0.063
930118	64426	163.857	-13.874	54.969	0.035
930209	15737	159.547	-14.829	70.983	0.050
930424	38888	144.212	-12.262	78.603	0.549
930506	55245	323.364	11.717	66.872	0.992
930626	07023	325.198	11.491	67.667	0.374
930710	13810	326.814	12.090	82.054	0.024
930909	45100	336.355	17.978	87.746	0.038
940213	07260	151.385	-51.418	39.877	0.189
940222	08083	146.406	-52.260	86.434	0.118
940311	44967	136.417	-52.192	85.580	0.439
940710	35477	128.502	-39.575	25.746	0.750
940712	00070	128.902	-39.677	44.911	0.058
940727	40865	313.160	41.197	47.661	0.206
940730	39690	134.062	-41.599	35.990	0.072
940930	23017	341.171	58.806	65.096	0.510
941104	35178	26.375	73.600	57.376	0.187
950111	46528	322.648	-44.901	66.079	0.119
950131	78592	331.984	-31.567	29.273	0.527

Table 2. *IPN annuli*
Table 2—Continued

Date UT	$\alpha_{2000,IPN}$	$\delta_{2000,IPN}$	R_{IPN1}	δR_{IPN}	
950203	08456	332.839	-30.167	89.992	0.030
950211	15919	335.834	-25.077	30.200	0.130
950611	21122	196.445	-57.824	26.966	1.033
950615	12104	198.715	-60.874	56.631	0.518
950622	71470	204.112	-66.756	68.801	0.141
950722	64127	98.551	83.396	57.905	0.379
950730	76147	320.422	-82.230	77.858	0.039
950904	52777	190.636	67.767	36.463	0.144
951001	41868	202.666	60.024	80.559	0.068
951112	67850	216.222	54.930	39.289	0.202
951124	25132	219.201	55.029	38.194	1.044
951218	28745	44.049	-57.317	39.343	0.089
960115	31956	45.389	-63.277	45.746	0.090
960201	82195	41.130	-68.152	88.655	0.146
960202	05968	221.086	68.185	49.051	0.164
960207	65033	218.206	69.749	73.961	0.089
960304	48776	192.220	74.434	75.937	0.404
961017	23648	174.945	32.043	15.768	0.302
961209	74677	179.842	31.294	2.542	5.564
961213	49966	179.845	31.446	24.486	0.129
970116	58238	176.897	33.808	84.760	0.143
970406	25471	335.943	-35.323	42.658	0.277
970801	29048	337.672	-22.111	38.624	0.222
971027	09808	169.177	13.952	58.403	0.013
971101	23483	349.656	-13.606	27.793	0.014
971121	43992	351.033	-12.487	73.989	0.115
971207	67900	171.412	11.889	75.290	0.226
971207	75492	171.412	11.887	62.197	0.051
971228	79012	83.395	20.899	81.666	2.305
980205	19783	165.363	12.132	53.914	0.040
	183.317	72.020	38.790	2.212	
Table 2—Continued

Date UT	$\alpha_{2000, IPN}$	$\delta_{2000, IPN}$	R_{IPN1}	δR_{IPN}	
980523 31208	329.478	-11.682	36.270	0.183	
980622 51085	330.752	-9.840	77.221	0.029	
980629 32377	331.305	-9.351	80.020	0.019	
980812 18950	336.276	-5.670	38.173	0.061	
980913 19983	340.559	-2.546	31.980	0.278	
		67.928	25.235	56.955	0.483
981019 79603	344.985	1.273	45.039	0.029	
981022 56447	345.260	1.560	58.633	0.012	
981101 26940	346.143	2.571	61.551	0.180	
		275.722	-23.305	44.973	0.085
981215 80709	301.383	-18.295	16.297	0.223	
990109 41054	345.757	8.751	60.734	0.016	
990110 31141	345.649	8.805	58.037	0.004	
990128 37252	342.818	9.649	62.261	0.007	
990204 30169	161.450	-9.832	73.846	0.169	
990421 65775	146.070	-7.792	55.096	0.026	
990509 74345	144.820	-7.244	81.947	0.375	
990705 57685	147.515	-8.031	76.306	0.004	
		167.925	-19.482	71.632	0.008
990707 54801	147.737	-8.132	56.409	0.010	
990828 70019	155.115	-12.504	67.522	0.024	
990919 49338	149.773	12.594	74.222	0.082	
990926 32653	335.529	-9.725	14.580	1.019	
991005 15265	340.866	17.520	18.198	0.110	
991120 27069	198.957	-13.840	45.024	0.095	
000102 27709	165.147	-34.791	51.204	0.236	
000205 45486	156.800	-40.955	70.209	0.128	
000206 09183	336.592	41.031	51.005	0.395	
000403 13199	314.499	40.072	63.855	0.040	
		308.246	19.750	46.194	0.167
000405 77386	133.665	-39.692	57.653	0.304	
Table 2—Continued

Date	UT	$\alpha_{2000,IPN}$	$\delta_{2000,IPN}$	R_{IPN1}	δR_{IPN}
000420	61374	310.666	37.563	86.354	0.181
000511	66298	309.117	34.756	75.388	0.712
Table 3. *IPN error boxes*

Date	UT	α_{2000}	δ_{2000}	σ_{sys+stat,B}
910601	6220	297.900	8.300	2.330
		296.058	9.756	
		298.589	10.529	
		295.545	8.284	
		299.858	9.600	
910830	5148	202.100	14.700	2.130
		202.699	12.651	
		202.991	16.650	
		202.060	12.570	
		202.358	16.815	
910908	33924	230.800	-32.000	2.260
		230.053	-34.172	
		231.638	-29.857	
		229.842	-34.113	
		231.434	-29.806	
910910	14747	150.700	30.300	2.000
		148.384	30.285	
		152.795	31.170	
		148.393	30.134	
		152.864	31.031	
911029	17453	11.300	-18.700	2.130
		11.838	-20.769	
		13.048	-17.368	
		11.712	-20.794	
		12.966	-17.277	
911120	43957	74.300	35.100	3.050
		76.296	32.540	
		75.564	37.976	
		76.405	32.601	
		75.694	37.937	
920109	23306	345.500	33.800	11.410
		332.965	39.182	
		357.208	40.384	
		332.720	38.745	
		357.521	39.973	
920216	58688	322.900	18.200	2.260
		321.367	16.478	
		325.055	19.170	
		321.597	16.313	
		325.162	18.913	
920303	24523	318.400	-10.900	4.220
		318.255	-15.118	
		317.616	-6.752	
		318.434	-15.120	
		317.788	-6.724	
920622	23828	147.100	-39.400	2.720
Table 3—Continued

Date UT	α2000	δ2000	σ_{sys+stat,B}
920626	64276	1.000	50.900
		0.000	0.000
		0.000	0.000
		0.000	0.000
		0.000	0.000
920717	57852	159.300	-71.600
		153.631	-72.582
		165.497	-72.133
		165.564	-72.026
920903	05728	299.100	28.800
		295.016	35.387
		295.583	36.120
		295.067	35.214
		295.799	36.158
930118	64426	219.200	-32.600
		220.633	-34.866
		221.151	-30.652
		220.541	-34.904
		221.075	-30.599
930209	15737	239.300	-58.200
		237.240	-59.590
		237.460	-56.756
		237.051	-59.508
		237.272	-56.830
930424	38888	230.100	-57.600
		233.507	-58.979
		232.932	-55.956
		231.473	-59.744
		230.887	-55.382
930506	55245	259.300	34.400
		252.549	24.267
		253.061	45.092
		254.773	23.377
		256.039	45.844
930626	07023	21.800	-40.200
		8.784	-43.846
		21.353	-29.886
		8.494	-42.978
		20.326	-29.950
930710	13810	316.500	-69.200
		322.028	-69.921
Table 3—Continued

Date UT	α2000	δ2000	σ_{sys+stat,B}
930909 45100	310.697	-69.198	2.000
940213 07260	244.000	9.400	2.130
940222 8083	200.200	22.500	4.400
940311 44967	105.200	26.400	2.130
940710 35477	99.400	-33.300	3.760
940712 00070	66.700	-73.100	2.800
940727 40865	312.500	-1.900	2.260
940730 39690	79.700	-61.400	1.750
940930 23017	78.700	32.000	3.760
Table 3—Continued

Date UT	α_{2000}	δ_{2000}	$\sigma_{sys+stat,B}$	
941104	74.207	31.968	80.379	35.492
35178	345.300	18.500	5.920	
351.494	19.349			
340.023	21.742			
351.427	19.743			
340.265	22.072			
950111	24.300	-5.800	1.790	
46528	25.708	-6.916		
23.085	-4.481			
25.546	-7.092			
22.919	-4.654			
950131	319.400	-58.800	6.790	
78592	332.034	-61.367		
307.773	-56.126			
332.489	-60.312			
308.789	-55.212			
950203	274.600	42.700	2.000	
08456	273.162	41.011		
276.802	43.897			
273.232	40.979			
276.851	43.846			
950211	325.600	3.300	1.750	
15919	323.883	2.949		
327.178	4.064			
323.955	2.698			
327.274	3.822			
950611	269.800	-69.500	2.480	
21122	0.000	0.000		
0.000	0.000			
0.000	0.000			
0.000	0.000			
950615	310.200	-48.500	6.110	
12104	317.991	-52.050		
302.386	-45.503			
316.943	-52.875			
301.692	-46.428			
950622	213.400	-1.500	4.680	
71470	216.922	1.582		
210.342	2.043			
217.169	1.275			
210.055	1.773			
950722	74.200	25.800	3.580	
64127	78.163	25.551		
70.224	25.950			
78.144	26.310			
Table 3—Continued

Date	UT	α_{2000}	δ_{2000}	$\sigma_{sys+stat,B}$
950730	76147	70.337	26.703	2.193
		218.300	-13.400	
		216.499	-14.090	
		220.702	-13.533	
		216.511	-14.168	
		220.711	-13.611	
950904	52777	197.100	33.300	2.190
		196.048	31.299	
		198.492	31.452	
		195.522	31.561	
		198.968	31.778	
951001	41868	127.100	-0.300	2.970
		129.732	1.076	
		126.889	2.663	
		129.600	1.304	
		127.153	2.670	
951112	67850	225.700	16.900	1.940
		223.970	15.896	
		227.667	16.437	
		223.782	16.281	
		227.727	16.858	
951124	25132	157.300	47.600	2.190
		157.526	45.416	
		154.289	48.462	
		160.092	46.514	
		156.796	49.765	
951218	28745	20.700	-20.700	2.000
		19.312	-22.227	
		22.801	-21.085	
		19.491	-22.354	
		22.748	-21.288	
960115	31956	132.300	-50.200	4.030
		137.695	-52.409	
		127.935	-47.375	
		137.535	-52.562	
		127.746	-47.594	
960201	82195	170.700	-15.600	6.400
		177.126	-17.328	
		164.395	-13.665	
		177.042	-17.609	
		164.306	-13.944	
960202	05968	104.400	54.600	2.060
		107.037	53.246	
		100.892	54.993	
		107.379	53.511	
		101.036	55.318	
Table 3—Continued

Date UT	α 2000	δ 2000	σ sys+stat,B	
960207	65033	9.800	35.800	2.260
	8.257	33.928		
	12.029	34.464		
	8.022	34.072		
	12.193	34.665		
960304	48776	72.800	23.400	3.050
	75.184	21.292		
	69.613	22.567		
	75.734	21.995		
	69.476	23.427		
961017	23648	162.800	42.400	4.030
	157.992	40.590		
	164.912	46.136		
	158.495	40.001		
	165.805	45.805		
961209	74677	188.600	33.400	5.630
	188.241	27.778		
	184.992	38.211		
	183.130	30.222		
	181.856	33.794		
961213	49966	186.300	57.300	2.720
	189.274	55.140		
	181.933	56.019		
	188.793	54.961		
	182.254	55.744		
970116	58238	181.300	-49.300	2.560
	178.432	-51.084		
	184.499	-50.830		
	178.071	-50.803		
	184.795	-50.520		
970406	25471	287.300	-28.200	4.120
	284.199	-31.319		
	287.704	-24.096		
	284.742	-31.673		
	288.335	-24.186		
970801	29048	311.600	-54.200	2.260
	312.760	-56.361		
	307.838	-53.740		
	313.585	-56.156		
	308.119	-53.267		
971027	09808	194.600	67.500	1.630
	0.000	0.000		
	0.000	0.000		
	0.000	0.000		
	0.000	0.000		
971101	23483	359.000	13.100	1.840
Table 3—Continued

Date UT	α2000	δ2000	σ_{sys+stat,B}
0.531	12.026		
357.113	13.202		
0.513	12.003		
357.112	13.173		
971121	43992	-71.000	3.310
0.000	0.000		
0.000	0.000		
0.000	0.000		
971207	67900	56.000	5.150
89.818	50.916		
89.893	61.105		
90.537	50.865		
90.833	61.146		
971207	75492	71.100	5.540
125.571	65.980		
148.573	72.644		
125.820	65.945		
148.619	72.537		
971228	79012	-58.100	3.580
56.348	-60.131		
44.681	-56.488		
0.000	0.000		
980205	19783	-37.400	2.449
141.408	-36.889		
149.002	-39.630		
141.537	-36.855		
149.169	-39.591		
980523	31208	-50.600	5.440
328.652	-48.129		
341.734	-46.631		
328.989	-47.767		
341.252	-46.362		
980622	51085	-49.900	5.350
247.000	-41.315		
249.092	-44.724		
249.068	-55.100		
249.083	-44.739		
980629	32377	53.600	1.840
271.700	54.937		
270.855	51.833		
273.931	54.899		
270.917	51.822		
273.978	54.870		
980812	18950	33.900	3.140
337.300	32.346		
340.558	32.346		
Table 3—Continued

Date UT	α2000	δ2000	σ_{sys+stat,B}
980913 19983	333.941	32.499	3.580
980913 19983	340.474	32.231	
980913 19983	334.018	32.381	
981019 79603	318.700	-36.700	3.220
981019 79603	322.038	-38.539	
981019 79603	315.772	-34.531	
981019 79603	322.079	-38.490	
981019 79603	315.821	-34.489	
981022 56447	287.900	8.000	6.110
981022 56447	286.585	2.032	
981022 56447	287.253	14.077	
981022 56447	286.609	2.027	
981022 56447	287.278	14.079	
981101 26940	290.700	18.400	2.260
981101 26940	285.480	20.739	
981101 26940	285.453	20.570	
981101 26940	285.856	20.658	
981101 26940	285.829	20.489	
981215 80709	298.000	-2.800	2.720
981215 80709	295.278	-2.895	
981215 80709	300.530	-1.796	
981215 80709	295.333	-3.352	
981215 80709	300.663	-2.236	
990109 41054	319.500	-49.200	1.940
990109 41054	322.111	-48.305	
990109 41054	319.282	-47.265	
990109 41054	322.068	-48.254	
990109 41054	319.369	-47.262	
990110 31141	287.100	63.200	3.490
990110 31141	287.081	6.477	
990110 31141	286.582	12.883	
990110 31141	287.088	6.477	
990110 31141	286.589	12.884	
990128 37252	304.900	-41.900	1.680
990128 37252	306.488	-43.105	
990128 37252	303.203	-40.804	
990128 37252	306.503	-43.094	
990128 37252	303.216	-40.793	
990204 30169	131.600	63.200	3.490
990204 30169	130.012	59.793	
990204 30169	138.763	62.040	
Table 3—Continued

Date	UT	α_{2000}	δ_{2000}	$\sigma_{sys+stat,B}$
990421	65775	131.050	59.720	
		138.262	61.569	
990509	74345	93.000	-44.000	2.640
		0.000	0.000	
		0.000	0.000	
		0.000	0.000	
		0.000	0.000	
990705	57685	79.100	-72.300	1.750
		77.451	-72.112	
		77.488	-72.150	
		77.460	-72.090	
		77.497	-72.127	
990707	54801	102.700	-53.000	1.840
		105.730	-53.289	
		103.292	-51.196	
		105.730	-53.261	
		103.336	-51.202	
990828	70019	221.000	-66.600	2.560
		215.426	-67.990	
		219.021	-64.176	
		215.346	-67.937	
		218.889	-64.195	
990919	49338	69.400	74.000	2.720
		71.601	71.360	
		74.556	76.382	
		72.134	71.404	
		75.176	76.285	
990926	32653	350.600	-6.100	3.760
		351.358	-9.784	
		349.452	-2.518	
		349.287	-9.628	
		347.741	-3.646	
991005	15265	329.000	37.900	1.840
		0.000	0.000	
		0.000	0.000	
		0.000	0.000	
		0.000	0.000	
991120	27069	153.400	-28.700	2.060
		153.311	-30.759	
		152.564	-26.777	
		153.536	-30.757	
Table 3—Continued

Date UT	α 2000	δ 2000	σ sys+stat,B
000102 27709	152.770	-26.717	2.720
000205 45486	203.000	14.600	2.000
000206 09183	28.100	18.200	2.130
000403 13199	275.100	-10.700	1.710
000405 77386	226.900	-52.500	2.640
000420 61374	104.100	54.200	1.840
000511 66298	48.700	38.000	2.260