Seasonal variation and natural infection of *Lutzomyia antunesi* (Diptera: Psychodidae: Phlebotominae), an endemic species in the Orinoquia region of Colombia

Adolfo Vásquez Trujillo¹/+*, Angélica E González Reina¹, Agustín Góngora Orjuela², Edgar Prieto Suárez³, Jairo Enrique Palomares⁴, Luz Stella Buitrago Alvarez⁵

¹Corporación para la Investigación en Salud Tropical, Villavicencio, Meta, Colombia ²Escuela de Ciencias Animales, Universidad de los Llanos, Villavicencio, Meta, Colombia ³Departamento de Salud Pública, Facultad de Medicina, Universidad Nacional de Colombia, Bogotá DC, Colombia ⁴Clinical Sciences Department, Colorado State University, Fort Collins, CO, USA ⁵Laboratorio de Entomología, Secretaría de Salud del Meta, Villavicencio, Meta, Colombia

Lutzomyia antunesi has been commonly reported in outbreaks of cutaneous leishmaniasis (CL) in the Orinoquia region of Colombia. The bionomics of this species were studied in the municipality of Villavicencio (Meta, Colombia). Sandflies were captured over the course of one week per month for one year in intradomiciliary, peridomiciliary, and extradomiciliary housing areas. The captures were performed from 06:00 pm-06:00 am using CDC light traps and the females were processed for polymerase chain reaction (PCR) to detect Leishmania spp. A total of 22,097 specimens and 19 species were captured. The species that were the most abundant were *L. antunesi* (89%) and *L. walkeri* (3%). Other species recognised as anthropophilic (*Lutzomyia panamensis*, *L. gomezi*, *L. flavicutellata*, and *L. fairtigi*) were present in very low abundance (< 2%). Natural infection with *Leishmania* spp was detected using PCR in *L. antunesi*, *L. panamensis* and *L. flavicutellata*, showing infection rates of 1%, 4.8% and 7.5%, respectively. The present paper provides information on various ecological aspects of *L. antunesi*. An analysis of seasonality shows that this species increases in abundance in the hottest months (December, January and February), directly correlating with the maximum temperature and inversely correlating with precipitation. The natural infection rate is associated with the peaks of highest abundance.

Key words: sandflies - seasonal variation - natural infection - *Lutzomyia antunesi* - leishmaniasis - Colombia

The number of cases of American cutaneous leishmaniasis (ACL) per year in the department of Meta (ME) of Colombia has increased during the last decade (139 in 2005 to 1,062 in 2012) (SIVIGILA 2012). Several outbreaks have been recorded in different municipalities and are mainly related to new human settlements in rural areas that have been affected by different social factors (Velez et al. 2001); peridomiciliary transmission has been reported (INS 2012). This epidemiological profile has been associated with legal or illegal urbanisations in deforested areas of Villavicencio.

Lutzomyia antunesi (Coutinho, 1939) is likely the primary ACL vector in ME. This fly is naturally infected with *Leishmania (Leishmania) chagasi* in Brazil (Ryan et al. 1984) and has been determined that this species plays an important role in the transmission of *Leishmania (Viannia) lindenbergi* (Silveira et al. 2002). The first report of leishmaniasis infection in Colombia involved the observation of undetermined flagellates in an ACL focus in a case of intradomiciliary and peridomiciliary transmission (Ferro et al. 1997). Natural infection with *Leishmania* spp was recently confirmed (Vásquez-Trujillo et al. 2008).

Preliminary studies have been conducted in Colombia to assess the existing sandfly fauna associated with ACL transmission areas (Montoya-Lerma & Ferro 1999, Barreto et al. 2000, Bejarano 2006). Recent studies investigating *L. antunesi* have determined its relative abundance, vector-human contact, the presence of *Leishmania* parasites and sandflies in the same geographical area and the detection of these parasites in insects and domestic animals (Vásquez-Trujillo 2006, Vásquez-Trujillo et al. 2008), thereby fulfilling some criteria for vector incrimination (Young & Lawyer 1987, Killick-Kendrick 1990). However, environmental determinants and their relationship with seasonal abundance and infection have not yet been studied. This study aimed to increase the knowledge of *Lutzomyia* species and to determine the effects of seasonal variations in *L. antunesi* abundance and infection with *Leishmania* spp in an ACL-endemic area of Villavicencio.

MATERIALS AND METHODS

Study area - The study was conducted in a rural area near Villavicencio, northern ME, a subregion of the Eastern Plains (Llanos Orientales) region on the border of the western Andean foothills of Colombia, which together form part of the Colombian Orinoquia ecoregion. Samples were collected in three rural areas: La Re-

doi: 10.1590/0074-0276108042013011
+ Corresponding author: adolfovasquezmvz@gmail.com
Received 15 August 2012
Accepted 10 April 2013
form (4°45′81″N 73°28′34″W), Barcelona (4°39′05″N 73°35′68″W) and Cocuy (4°24′94″N 73°36′36″W), located 12 km, 4 km and 7 km away from Villavicencio, respectively (Fig. 1). These sites have similar environmental conditions, including an elevation 380 m above sea-level, an average temperature of 25°C, 85% relative humidity (RH) and 3,600 mm annual rainfall according to the Colombian Institute of Hydrology, Meteorology and Environmental Studies (IDEAM). Sampling was conducted from June 2008-May 2009, encompassing both the wet and dry periods. The area is characterised as premontane humid tropical forest and has some elements of humid tropical forest (Holdrige 1967).

Lutzomyia capture sites, collection and identification - A preliminary study was conducted on all properties in La Reforma (21), Barcelona (82) and Cocuy (44) to establish a rough composition of the populations of *Lutzomyia* species present in these areas and to determine which properties had the highest abundance of sandflies. Those properties with the highest abundance were then selected as monthly follow-up units (MFUs) for further longitudinal sampling. The preliminary study used CDC-type light traps placed 1.5 m above the ground in peridomiciliary areas, 15 m away from the houses; collections were performed between 06:00 pm-06:00 am. Seasonal sampling was then conducted at three dwellings selected as MFUs according to the following selection criteria: (i) the houses were a minimum distance of 200 m away from the forest, (ii) there was a recent registry of confirmed cases of ACL in humans or canines and (iii) the inhabitants provided informed consent. Intradomiciliary, peridomiciliary and extradomiciliary sites (forests adjacent to the dwellings located a minimum of 200 m away) were sampled as capture habitats. The sampling lasted for one week per month over a 12-month period, simultaneously in the three rural areas, from June 2008-May 2009.

The sandflies collected were transferred to the Laboratory of Entomology of Department of Health of Meta, sacrificed at 0ºC and stored in Eppendorf tubes with 70% ethanol at 4ºC until taxonomic identification was conducted. A clarifying process was performed to identify male sandflies according to the methodology reported by Maroli et al. (1997). Female taxonomic classification was based on the following characteristics: fifth palp length, scutum pigmentation, flagellomere length and alpha and beta veins in the wings and spermathecae. For males, all taxonomic characteristics were evaluated after the clarifying process. The classification used was based on Young and Duncan (1994).

Determination of natural infection - Natural infection was determined by polymerase chain reaction (PCR). DNA was extracted using the phenol-chloroform protocol described by Golczer and Arrivillaga (2008) and amplified by the protocol standardised by Cabrera et al. (2002) using the Leishmania genus-specific OL1 and OL2 universal primers, which target kinetoplast minicircle DNA (Romero et al. 2001). This test was only performed for *Lutzomyia* species that had a vector-related background. The *Lutzomyia* species were tested in pools with a maximum of 30 insects classified by capture habitat (intradomiciliary, peridomiciliary and extradomiciliary) and by capture month. The head and thorax of the insects were used in an attempt to obtain infective forms only from the upper digestive tract.

Statistical analysis - Seasonal variation was evaluated first by transforming the variable “abundance” into its natural logarithm plus one [logn (y+1)] and a one-way ANOVA was performed, followed by Tukey’s multiple comparison test (95% confidence level). Spearman’s rank correlation non-parametric test (ρ) was used to evaluate the correlations between the abundance and environmental determinants. Data regarding the daily maximum, minimum and average temperatures, maximum, minimum and average daily rainfall and daily RH were obtained from the weather station closest to the sampling sites in the IDEAM weather station network (Unillanos station: 3503507, main climate type). Data were also obtained for one, two and 15 days prior to sampling to determine the relationship between the abundance and preceding daily climatic variables.

RESULTS

A total of 14,553 *Lutzomyia* specimens were collected during the preliminary sampling. The most abundant species was *Lu. antunesi* (63%, 86% and 93.3% of the total specimens captured in Barcelona, Cocuy and La Reforma, respectively), followed by *Lutzomyia walkeri* (35%, 17% and 6%), *Lutzomyia gomezi* (0.4%, 0% and 2.5%) and *Lutzomyia panamensis* (1%, 0.4% and 1%). For the selected MFUs, 4,356 *Lutzomyia* per trap/night were obtained from a dwelling in the Barcelona rural area, 3,413 *Lutzomyia* per trap/night from the Cocuy rural area and 1,034 *Lutzomyia* per trap/night in the La Reforma rural area.

A total of 22,094 *Lutzomyia* specimens were captured during the seasonal sampling. The evaluation of the richness observed at each habitat revealed seven species captured in the intradomiciliary areas, 18 in the peridomiciliary areas and 19 in the extradomiciliary areas. The most abundant species was *Lu. antunesi* (89%), followed by various species with vector backgrounds: *Lu. panamensis* (2.3%), *Lutzomyia flaviscutellata* (1.05%), *Lu. gomezi* (0.8%) and *Lutzomyia fairtigi* (0.6%) (Table 1). The seasonal variation analysis obtained by ANOVA
TABLE I
The number of *Lutzomyia* specimens collected in an endemic area of the municipality of Villavicencio, department of Meta, Colombia, from June 2008-May 2009

Species	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	♀	♂	♀	♂	Total	(%)		
-------------------------------	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----								
Lu. antunesi	764	261	950	552	923	386	3,073	2,840	3,272	513	5,560	604	2,481	2,840	3,272	2,481	5,952	7,333	19,698	89.087
Lu. aragaoi	-	-	-	-	-	-	-	-	-	-	-	-	-	-	2	-	2	15	19	0.086
Lu. barrettoi barrettoi	-	-	-	-	-	-	-	2	6	1	1	-	-	-	1	-	-	1	5	0.045
Lu. barrettoi majuscula	-	-	-	8	2	9	5	13	7	5	-	-	-	1	-	-	5	-	0.226	
Lu. begonae	3	2	1	4	-	-	1	2	-	-	-	-	-	2	6	1	4	13	0.059	
Lu. chagasi	-	-	-	1	-	1	-	1	-	-	-	-	-	1	-	1	3	4	0.018	
Lu. fairtigi	1	5	8	2	41	1	61	-	1	4	11	4	-	1	11	13	19	95	0.629	
Lu. flaviscutellata	21	11	1	24	12	31	28	33	23	30	8	-	-	18	12	128	76	234	1.058	
Lu. gomezi	2	8	5	9	12	10	41	56	10	22	6	10	1	29	14	55	83	190	0.859	
Lu. micropyga	0	-	-	-	-	-	1	-	-	-	-	-	-	1	-	1	-	1	0.005	
Lu. nematoducta	2	1	4	1	2	-	2	-	-	4	-	-	-	4	1	12	-	17	0.077	
Lu. panamensis	21	16	50	42	32	18	70	82	55	15	35	73	3	61	137	54	221	509	2.302	
Lu. preclara	1	1	2	-	-	2	-	1	-	17	-	-	-	18	6	24	-	0.109		
Lu. punctigeniculata	2	1	3	6	6	-	-	-	-	-	-	-	-	2	3	5	12	22	0.099	
Lu. saulensis	-	2	1	1	1	1	1	-	-	-	-	-	-	1	-	2	5	8	0.036	
Lu. sordellii	5	1	-	-	-	1	3	3	9	3	1	0	1	14	2	7	1	26	0.118	
Lu. vattierae	1	1	57	-	1	4	2	1	1	10	-	-	-	-	4	-	14	59	0.353	
Lu. walkeri	295	43	14	20	26	15	42	155	207	99	95	38	34	35	163	462	221	134	1,049	4.744
Lu. yuilli	-	-	1	-	-	-	-	-	-	-	-	-	-	2	-	2	-	0.009		
Lu. (Sciopemyia) spp	-	-	-	-	-	-	-	9	-	9	-	-	3	-	15	-	18	0.081		

Environmental determinants (average)

Environmental determinants (average)	Rainfall (mm)	Maximum temperature (ºC)
	14.4	30.6
	13.7	30.8
	9.19	32.4
	16.4	31.8
	12.3	31.4
	12.3	33.2
	3.4	32.8
	4.24	33.2
	1.78	34.2
	8.3	33.2
	15.5	32.6
	11.7	30.6
	-	-
	-	-
	-	-
	-	-
	-	-
	-	-
	-	-
	-	-

*a: new *Lutzomyia* species record for Meta; E: extradomiciliary; I: intradomiciliary; P: peridomiciliary.*
showed that only total *Lu. antunesi* (F = 4.99; p < 0.001) and *Lu. antunesi* at extradomiciliary sites (F = 5.99; p < 0.001) exhibited significant seasonal variation. These groups had different rates of abundance during the sampling months of December (t = 2.212; p = 0.0367), January (t = 2.237; p = 0.0257), February (t = 2.343; p = 0.0277) and April (t = 3.162; p = 0.004) and these months exhibited the highest abundance according to Tukey’s multiple comparison test.

An analysis of Spearman’s correlation revealed that rainfall was the variable that best explained the total abundance of *Lutzomyia* species (ρ = -0.704; p < 0.0001). *Lu. antunesi* (the most abundant species) had a similar pattern and was similarly affected by rainfall (ρ = -0.688; p < 0.0001) (Fig. 2). Other environmental determinants, such as the maximum temperature one day before sampling and the minimum temperature two days before sampling, positively correlated with the *Lu. antunesi* abundance in all capture habitats. The maximum temperature (29-31°C; ρ = 0.627; p < 0.0001) was the variable that most significantly correlated with *Lu. gomezi*, whereas the maximum temperature one day before sampling (ρ = 0.419; p = 0.0110) and rainfall were the main environmental variables (ρ = -0.408; p = 0.0136) that correlated with *Lu. flaviscutellata* and *Lu. panamensis*, respectively (Table II).

A total of 10,760 female *Lutzomyia* were assessed by PCR to investigate the rate of natural infection. The evaluated species were *Lu. antunesi*, *Lu. panamensis*, *Lu. gomezi* and *Lu. flaviscutellata*. The monthly infection rates obtained primarily correlated with the months that had the least rainfall (November-February) and those months for which the high abundance was recorded (December, January and April). *Lu. antunesi* was found to be an important species, as it was the most abundant, and also had the most consistent monthly infection rates. The importance of *Lu. flaviscutellata*, *Lu. panamensis* and *Lu. gomezi* as vectors was also confirmed, as they were found to be naturally infected despite very low abundance rates compared to *Lu. antunesi* (Table III).

DISCUSSION

Of the total species identified in this study, *Lutzomyia begonae*, *Lutzomyia nematoducta* and *Lutzomyia punctigeniculata* were identified for the first time in ME. *Lu. begonae* has been identified in other departments that have different ecological characteristics, such as Guaviare (Cabrera et al. 2009), and the species is always associated with wooded areas. *Lu. nematoducta* and *Lu.

![Fig. 2: average monthly total of Lutzomyia, Lutzomyia antunesi and Lutzomyia antunesi extradomiciliary population and monthly rainfall reported for the endemic area of the municipality of Villavicencio, department of Meta, Colombia, from June 2008-May 2009. There were no significant differences for groups having the same letter.](image)

TABLE II

Environmental determinants correlated with the most abundant *Lutzomyia* species in the municipality of Villavicencio, department of Meta, Colombia

	Rainfall (mm)	Maximum temperature < 1 day (°C)		Minimum temperature < 2 days (°C)				
	ρ	p	ρ	p	ρ	p		
Total	-0.704	< 0.0001	0.26	0.1256	0.378	0.0232	0.431	0.0086
Lu. antunesi	-0.688	< 0.0001	0.257	0.1296	0.382	0.0216	0.441	0.0071
Lu. antunesi (I)	-0.507	0.0016	0.21	0.2201	0.346	0.0385	0.337	0.0446
Lu. antunesi (P)	-0.509	0.0015	0.227	0.1829	0.55	0.0005	0.18	0.2939
Lu. antunesi (E)	-0.579	0.0002	**0.364**	0.0291	0.266	0.1171	**0.527**	0.0010
Lu. flaviscutellata	-0.384	0.0209	0.307	0.0688	**0.419**	0.0110	**0.356**	0.0333
Lu. panamensis	-0.408	0.0136	**0.378**	0.0230	**0.342**	0.0410	0.326	0.0525
Lu. gomezi	-0.122	0.4779	**0.627**	< 0.0001	**0.383**	0.0211	**0.335**	0.0457
Lu. gomezi (E)	-0.143	0.4059	**0.566**	0.0003	0.307	0.0683	**0.334**	0.0462

Significant Spearman’s coefficient of correlation (ρ) values regarding an alpha threshold = 0.05 are shown in bold. E: extradomiciliary; I: intradomiciliary; P: peridomiciliary.
punctigeniculata were found in both peridomiciliary and extradomiciliary areas, though they exhibited higher abundance in extradomiciliary habitats. *Lu. antunesi, Lu. panamensis* and *Lu. gomezi* were the most abundant species in all the capture habitats, demonstrating their adaptation to anthropophilic settings where blood meal sources and possible breeding sites can be found. Therefore, dwellings and their surrounding areas are high-risk areas for acquiring ACL (Pardo et al. 2006, Santamaría et al. 2006), which is evident from previous studies conducted in the area (Vásquez-Trujillo et al. 2008).

The ecological behaviour of an ACL focus encompasses different characteristics: its niche, its reservoirs, the vector and its seasonal abundance pattern, which is influenced by environmental determinants. Molina et al. (2008) showed that *Lutzomyia fairtigi* underwent a seasonal variation in the department of Casanare that was mainly determined by increased rainfall ($\rho = 0.675; p < 0.001$), whereas no changes in abundance or any association with environmental determinants were recorded for *Lu. antunesi* throughout the year. In contrast, the present study showed that *Lu. antunesi* exhibited a seasonal variation in abundance ($F = 4.990; p < 0.001$) that was determined by rainfall ($\rho = -0.688; p < 0.001$), with abundance increasing during the hottest months and in the absence of rain (maximum temperature 1 day before sampling) ($\rho = 0.55; p < 0.001$). These differing results demonstrate that a particular species can behave differently depending on the local environmental conditions, its niche adaptation, food sources, soil and other factors that dominate and thereby affect Leishmania transmission in the area.

The increased *Lutzomyia* abundance determined by temperature (maximum temperature 1 and 2 days before sampling) could be explained by increased physiological lifecycle activity (Killick-Kendrick 1978, Ready & Croset 1980), primarily consisting of nocturnal activity patterns and biting behaviour (Morrison et al. 1995, González et al. 1999, Souza et al. 2002). Conversely, reduced rainfall abundance could be related to the reduced physiological activity of fourth-instar larvae (Killick-Kendrick 1978) or mechanical effects on breeding sites (wash out).

Importantly, the opposite effect was observed during the months with the highest precipitation, specifically September and April. This result is expected for September based on the correlation model obtained, which demonstrates an inverse effect between rain and abundance (Table II). However, in April, the abundance of *Lutzomyia* species increased despite the high rainfall (Fig. 2), which can be explained by the transition from summer to winter and its effect on the soil conditions, low water table, low saturation and high temperatures. These factors benefit the development of the larval stage, as opposed to September when rains were continuous and the temperature was two degrees lower (Table I).

With regard to *Lu. gomezi*, the increased abundance observed during the dry months (December, January and February) agreed with previous studies conducted in Venezuela (Feliciani 1987). In contrast, the behaviour of *Lu. panamensis* was different from a previous study by González et al. (1999), reporting that *Lu. panamensis* abundance increased dramatically with rainfall.

In terms of natural infection, *Lu. flaviscutellata, Lu. panamensis* and *Lu. gomezi* were confirmed as potential cutaneous leishmaniasis vectors in the rural areas of Villavicencio due to their constant infection rates, mainly during dry months (November-February), despite their very low abundance, particularly in wooded (extradomiciliary) areas (Table I). Studies conducted in the wild ar-

TABLE III

Monthly natural infection rate (%) regarding the most abundant *Lutzomyia* species in the municipality of Villavicencio, department of Meta, Colombia, Colombia

Lutzomyia	I	P	E	Lu. antunesi	Lu. flaviscutellata	Lu. panamensis	Lu. gomezi	
June	0	0	0	0	0	0	0	
July	0	0	0	0	0	0	0	
August	1.92	4.8	9.3	0.92	0.44	16	19	
September	0	0	0	0	0	0	4	
October	0	0	0	0	0	0	0	
November	8.2	42	10.1	3.7	4.7	57	25	
December	1.06	0	2.2	0.85	0.42	5.8	10.5	
January	4.9	64	0.51	3.7	4.7	5.5	7.6	
February	0.27	0	0.35	0.26	0.12	12.5	0	
March	0	0	0	0	0	0	0	
April	0.12	0	0	0.4	0.13	0	0	
May	0	0	0	0	0	0	0	
Total	**1.25**	**11.6**	**0.6**	**0.8**	**1.02**	**7.53**	**3.32**	**10.3**
	135/10,760	**56/479**	**24/3,606**	**54/6,675**	**99/9,707**	**11/146**	**15/452**	**9/87**

E: extradomiciliary; I: intradomiciliary; P: peridomiciliary.
eas of the department of Guaviare have shown that _Lu. flaviscutellata_ can act as a vector due to its anthropophilic behaviour (Cabrera et al. 2009). This fly predominates in the woods and savannahs of Brazil, has been implicated in the transmission of _Leishmania (Leishmania) amazonensis_ and identified as a possible vector of ACL in the state of Bolivar, in Venezuela (González & Devera 1999, Ribeiro et al. 2007, da Silva et al. 2010).

Lu. gomezi and _Lu. panamensis_ have been proposed as vectors for _Leishmania (Viannia) braziliensis_ and _Leishmania (Viannia) panamensis_ in Venezuela and Panamá (Christensen et al. 1983, Rodriguez et al. 1999). These species are widely distributed throughout Colombia and are present in 18 of 32 departments (Bejarano 2006). Furthermore, it has been demonstrated that these species have a great ability to adapt to environmental changes in their habitat (Travi et al. 2002). _Lu. gomezi_ and _Lu. panamensis_ were incriminated as vectors in a suburban focus of visceral leishmaniasis in Chicomocha Canyon (Sandoval et al. 2006) and natural infection with _L. (V) panamensis_ has been recently found in areas of human activity in the department of Boyacá (0.5-0.6% natural infection rates) (Santamaria et al. 2006).

Conversely, _Lu. antunesi_ exhibited infection rates of 0.1-4.7%, which agree with the rates described in the literature (Travi et al. 1988). _Lu. antunesi_ stands out as the dominant species in the study area, as it is present in both anthropophilic (intradomiciliary and peridomiciliary) and extradomiciliary areas in great abundance (85%, 85% and 91% for each habitat). Even though this species has not been considered to be medically important in Colombia, it has been identified in regions with high ACL incidence and comprises equal or higher population percentages compared to species that have already been incriminated, indicating that it could be present for disease transmission (Sandoval et al. 2006). Ryan et al. (1984) first identified the natural infection of _Lu. antunesi_ in Brazil with the presence of flagellate forms in a focus of visceral leishmaniasis. The first epidemiological nexus in Colombia was registered in the department of Amazonas where _Lu. antunesi_ is considered an important species because it was present in high abundance in rural and periurban intradomiciliary and peridomiciliary areas of the municipalities of Leticia during an active focus (Ferro et al. 1997). Natural infection with _Leishmania_ spp was recently identified in an ACL focus in the rural area of Villavicencio (1.6% infection rate) (Vásquez-Trujillo et al. 2008).

Increased _Lu. antunesi_ abundance in anthropophilic areas and gallery forest, mainly during dry months, coupled with evidence of natural infection with _Leishmania_ spp highlights the epidemiological importance of this endemic species in Colombia’s Orinoquia region and the possible role it plays in parasite transmission in ME.

ACKNOWLEDGEMENTS

To Dr Martha Ayala and Parasitology Group (RNL), for the donation of reference strains of _Leishmania_, and Entomology Group from the National Institutes of Health, for their constant support.

REFERENCES

Barreto M, Burbano ME, Barreto P 2000. _Lutzomyia_ sand flies (Diptera: Psychodidae) from middle and lower Putumayo department, Colombia, with new records to the country. _Mem Inst Oswaldo Cruz_ 95: 633-639.

Bejarano EE 2006. Lista actualizada de psicódidos (Diptera: Psychodidae) de Colombia. _Folia Entomol Mexic_ 45: 47-56.

Cabrera OL, Mosquera L, Santamaria E, Ferro C 2009. Flebótomos (Diptera: Psychodidae) del departamento de Guaviare, Colombia, con nuevos registros para el país. _Biomedica_ 29: 73-86.

Cabrera OL, Munstermann LE, Cárdenas R, Gutiérrez R, Ferro C 2002. Definición de las condiciones de temperatura y almacenamiento adecuadas en la detección de ADN de _Leishmania_ por PCR en flebotomos. _Biomedica_ 22: 296-302.

Christensen HA, Fairchild GB, Herrer A, Johnson CM, Young DG, de Vásquez AM 1983. The ecology of cutaneous leishmaniasis in the Republic of Panama. _J Med Entomol_ 20: 463-484.

da Silva PES, Alves de Freitas R, Ferreira da Silva D, Alencar RB 2010. Fauna de flebotomíneos (Diptera: Psychodidae) de uma reserva de campana no estado do Amazonas e sua importância epidemiológica. _Rev Soc Bras Med Trop_ 43: 78-81.

Felicangieli MD 1987. Ecology of sandflies (Diptera: Psychodidae) in a restricted focus of cutaneous leishmaniasis in northern Venezuela. IV. Sandfly monthly fluctuation and leishmaniasis incidence relationship. _Mem Inst Oswaldo Cruz_ 82: 177-179.

Ferro C, Pardo R, Diaz A, Pérez L, Munstermann L 1997. Composición de la fauna de flebotomíneos, género _Lutzomyia_, de la perifería de la ciudad de Leticia, Amazonas, Colombia. Congreso Internacional Investigación y Salud, INS 80 años 1917-1997. _Biómedica_ 17 (Suppl. 1): 84-85.

Golcezer G, Arrivillaga J 2008. Modificación de un protocolo estándar de extracción de ADN para flebotomíneos pequeños (Phlebotominae: _Lutzomyia_). _Rev Colomb Entomol_ 34: 199-202.

González R, de Sousa L, Devera R, Jorduera A, Ledeza E 1999. Seasonal and nocturnal domiciliary human landing/biting behaviour of _Lutzomyia (Lutzomyia) evansi_ and _Lutzomyia (Psychodopygius) panamensis_ (Diptera: Psychodidae) in a periurban area of a city on the Caribbean coast of eastern Venezuela (Barcelona, Anzoátegui state). _Trans R Soc Trop Med Hyg_ 93: 361-364.

González R, Devera R 1999. Fauna flebotominica (Diptera, Psychodidae, Phlebotominae) do estado Bolivar, Venezuela. _Rev Soc Bras Med Trop_ 32: 721-723.

Holdridge LR 1967. _Life zone ecology_, Tropical Science Center, San José, 206 pp.

INS - Instituto Nacional de Salud 2012. Informe del evento leishmaniasis hasta decimo periodo epidemiológico del año 2012. Available from: ins.gov.co/lineas-de-accion/Subdirección-Vigilancia/Informe%2de%2Evento%2Epidemiologico/LEISHMANIASIS%2EPeriodo%20%202012.pdf.

Killick-Kendrick R 1978. Recent advances and outstanding problems in the biology of phlebotomine sandflies. _Acta Trop_ 35: 297-313.

Killick-Kendrick R 1990. Phlebotomus vector of the leishmaniasis: a review. _Med Vet Entomol_ 4: 1-24.

Maroli M, Feliciangieli MD, Arias J 1997. _Métodos de captura, conservación y montaje de los flebotomos_ (Diptera: Psychodidae), OPS/OMS/HCP/HCT/95/97, Washington, p. 1-67.

Molina JA, Ortiz MI, Guhl F 2008. Seasonality of _Lutzomyia fairsi_ (Diptera: Psychodidae: Phlebotominae), a species endemic to eastern Colombia. _Mem Inst Oswaldo Cruz_ 103: 477-482.
Montoya-Lerma I, Ferro C 1999. Flebótomos (Diptera: Psychodidae) de Colombia. In G Amat, MG Andrade, F Fernández (eds.), *Insectos de Colombia*, Vol. II, Colección Jorge Álvarez Lleras 13, Academia Colombiana de Ciencias Exactas, Físicas and Naturales, Bogotá, 211-245.

Morrison AC, Ferro C, Pardo R, Torres M, Wilson ML, Tesh RB 1995. Nocturnal activity patterns of *Lutzomyia longipalpis* (Diptera: Psychodidae) at an endemic focus of visceral leishmaniasis in Colombia. *J Med Entomol* 32: 605-617.

Pardo RH, Cabrera OL, Becerra J, Fuya P, Ferro C 2006. *Lutzomyia longifrons* as suspected vector of cutaneous leishmaniasis in a focus of cutaneous leishmaniasis in the sub-Andean region of the Tolima department, Colombia, and knowledge on sandflies by the inhabitants. *Biomedicala* 26 (Suppl. 1): 95-108.

Ready PD, Croset H 1980. Diapause and laboratory breeding of *Phlebotomus perniciosus* newstead and *Phlebotomus ariasi* Tonomir (Diptera: Psychodidae) from southern France. *Bull Entomol Res* 70: 511-523.

Ribeiro AL, Missawa NA, Zeilhofer P 2007. Distribution of phlebotomine sandflies (Diptera: Psychodidae) of medical importance in Mato Grosso state, Brazil. *Rev Inst Med Trop S Paulo* 49: 317-321.

Rodríguez N, Aguilar CM, Barrios A, Barrer DC 1999. Detection of *Leishmania braziliensis* in naturally infected individual sand flies by the polymerase chain reaction. *Trans R Soc trop Med Hyg* 93: 47-49.

Romero GA, Guerra MV, Paes MG, Cupolillo E, Bentin Toaldo C, Macêdo VO, Fernandes O 2001. Sensitivity of the polymerase chain reaction for the diagnosis of cutaneous leishmaniasis due to *Leishmania (Viannia) guyanensis*. *Acta Trop* 79: 225-229.

Ryan L, Silveira FT, Lainson R, Shaw JJ 1984. Leishmanial infections in *Lutzomyia longipalpis* and *L. antunesi* (Diptera: Psychodidae) on the island of Marajó, Pará state, Brazil. *Trans R Soc trop Med Hyg* 78: 547-548.

Sandoval CM, Gutiérrez R, Cárdenas R, Ferro C 2006. Species of *Lutzomyia* (Psychodidae, Phlebotominae) in endemic cutaneous and visceral leishmaniasis foci of the department of Santander, in the eastern range of the Colombian Andes. *Biomedicala* 26 (Suppl. 1): 218-227.

Santamaria E, Ponce N, Zipa Y, Ferro C 2006. Presencia en el peri-domicilio de vectores infectados con *Leishmania (Viannia) panamensis* en dos focos endémicos en el occidente de Boyacá, piedemonte del valle del Magdalena medio, Colombia. *Biomedicala* 26 (Suppl. 1): 82-94.

Silveira FT, Ishikawa EA, de Souza AA, Lainson R 2002. An outbreak of cutaneous leishmaniasis among soldiers in Belém, Pará state, Brazil, caused by *Leishmania (Viannia) lindenbergi* n. sp. A new leishmanial parasite of man in the Amazon Region. *Parasite* 9: 43-50.

SIVIGILA - Sistema de Vigilancia en Salud Publica 2012. Estadísticas de vigilancia rutinaria. Available from: ins.gov.co/lineas-de-accion/Subdireccion-Vigilancia/sivigila/Paginas/vigilancia-rutinaria.aspx.

Souza NA, Andrade-Coelho CA, Vilela ML, Peixoto AA, Rangel EF 2002. Seasonality of *Lutzomyia intermedia* and *Lutzomyia whitmani* (Diptera: Psychodidae: Phlebotominae), occurring sympatrically in area of cutaneous leishmaniasis in the state of Rio de Janeiro, Brazil. *Mem Inst Oswaldo Cruz* 97: 759-765.

Travi BL, Adler GH, Lozano M, Cadena H, Montoya-Lerma J 2002. Impact of habitat degradation on Phlebotominae (Diptera: Psychodidae) of tropical dry forests in northern Colombia. *J Med Entomol* 39: 451-456.

Travi BL, Montoya J, Solarte Y, Lozano L, Jaramillo C 1988. Leishmaniasis in Colombia. I. studies on Phlebotomine fauna associated with endemic foci in the Pacific Coast region. *Am J Trop Med Hyg* 39: 261-266.

Vásquez-Trujillo A 2006. Registro de leishmaniasis cutánea en caninos presentes en zonas peri-urbana de Villavicencio, Meta, y su importancia en la salud pública. *Orinoquia* 10: 79-86.

Vásquez-Trujillo A, Santamaría-Herreño E, González-Reina AE, Buitrago-Alvarez LS, Góngora-Orjuela A, Cabrera-Quintero OL 2008. *Lutzomyia antunesi* as suspected vector of cutaneous leishmaniasis in the Orinoquian region of Colombia. *Rev Salud Publica* 10: 625-632.

Velez ID, Hendrickx E, Robledo S, Aguadelo S 2001. Leishmaniasis cutánea en Colombia y género. *Cad Saude Publica* 17: 171-180.

Young DG, Duncan MA 1994. Guide to the identification and geographic distribution of *Lutzomyia* sand flies in Mexico, the West Indies, Central and South America (Diptera: Psychodidae). *Mem Am Entomol Inst* 54: 1-881.

Young DG, Lawyer PG 1987. New world vectors of leishmaniasis. In KF Harris (ed.), *Current tropics in vector research*, Vol. 4, Springer-Verlag, New York, p. 29-71.