A microscopic model of ballistic-diffusive crossover

Debarshee Bagchi1 and P K Mohanty1,2

1 Condensed Matter Physics Division, Saha Institute of Nuclear Physics, 1/AF Bidhan Nagar, Kolkata 700064, India
2 Max Planck Institute for the Physics of Complex Systems, Nöthnitzer Strasse 38, 01187 Dresden, Germany
E-mail: pkmohanty@saha.ac.in

Received 10 October 2014
Accepted for publication 20 October 2014
Published 18 November 2014

Online at stacks.iop.org/JSTAT/2014/P11025
doi:10.1088/1742-5468/2014/11/P11025

Abstract. Several low-dimensional systems show a crossover from diffusive to ballistic heat transport when system size is decreased. Although there is some phenomenological understanding of this crossover phenomenon at the coarse-grained level, a microscopic picture that consistently describes both the ballistic and the diffusive transport regimes has been lacking. In this work we derive a scaling form for the thermal current in a class of one dimensional systems attached to heat baths at boundaries and rigorously show that the crossover occurs when the characteristic length scale of the system competes with the system size.

Keywords: exact results, transport processes/heat transfer (theory), heat conduction
Low-dimensional thermal transport [1–3] is a field of active research because of its surprises [4, 5] and intriguing features [6, 7]. Most one dimensional (1D) models violate the Fourier law and exhibit size-dependent thermal conductivity. Examples include harmonic chains [8,9] the FPU models [10,11] and the hard-point gas model [12–14]. Some 1D models with unusual scatterers [15,16], external potential [17–19] or strong nonlinearity (e.g. interacting classical spins [20, 21]) however obey the Fourier law; the thermal current in 1D scales as L^{-1} and the thermal conductivity $\kappa(T)$ is an intensive constant dependent on the temperature and other system parameters. It has been seen that models which show diffusive heat propagation in the thermodynamic limit, also show a crossover to ballistic transport regime when system size is lowered [21–23]; the crossover scale is usually temperature dependent. This ballistic-diffusive crossover has been observed experimentally in many low-dimensional systems such as the graphene nanoribbon [6], SiGe nanowires [7], stretched polymer nanofibres [24], carbon nanotubes [25] and other nanowires (see [4] and references therein). Several theoretical attempts have been made to understand this ballistic-diffusive crossover at the coarse-grained level, dealing with Boltzmann transport equations [26], scaling theory [21,27], Langevin dynamics [28], the Buttiker formalism [29] or the nonequilibrium Greens function approach [30] etc. However, a unified microscopic formalism that goes beyond the recent phenomenological attempts [26–33] and consistently describes both the regimes is still lacking. Here, we propose a scaling ansatz for the heat current in driven finite systems in terms of the size and the characteristic length scale of the system. We rigorously derive this scaling form starting from microscopic dynamics and show that it seamlessly connects the ballistic regime to the diffusive regimes.

Heat transfer in material systems generally involves a wide spectrum of energy carriers, e.g. electrons, phonons, photons, molecules etc but they operate at different energy and length scales. Typically, one of the energy carriers provides the dominant contribution to heat conductivity (see [34] for a comparison of length scales). It is believed that scattering of the carriers, either at the material boundaries or from the impurities, is essential for normal heat transport. In semiconductors or graphene nano-structures, heat carriers are predominantly phonons which are modeled by the Boltzmann transport equation [23,26].

3 For a brief review on ballistic-diffusive crossover observed recently in experiments and model systems and their phenomenological explanations, see supplemental material at www.saha.ac.in/cmp/pk.mohanty/Crossover.pdf.
As such these studies are not only of theoretical significance but also have immense technological implications [31].

In this article, we formulate a theoretical framework to study this ballistic-diffusive crossover using a few simple 1D models. First, we show that the microscopic energy conserving dynamics in these models can be described effectively by classical heat carriers. Next, we show that any small scattering probability, either due to collision or interaction with other degrees of freedom, results in diffusive behavior in the thermodynamics limit. Here, the thermodynamic limit implies that the system size is much larger than all other characteristic length scales present in the system. The underlying idea of our work is that the characteristic length ξ of the system (mean free path of the phonons or other carriers, or the spin–spin correlation length in magnetic systems) which is a function of average temperature of the system determines the ballistic to diffusive crossover. For $\xi \gg L$, the entire system is correlated (mean free path exceeds system size) and the carriers propagate through the system without undergoing scattering and thus we have ballistic transport i.e. $J \sim L^0$. In the other case, when $\xi \ll L$, the carriers undergo random scattering in the bulk of the system and hence the transport is diffusive $J \sim L^{-1}$.

In solid insulators, thermal energy is predominantly transferred by phonons (lattice vibrations); electron movements via collision appear in a conductor. We start with a simple 1D model to describe such lattice vibrations classically, which we refer to as the coupled map lattice model. Consider a 1D lattice having particles with position variables x_i ($i = 1, 2, ..., L$). Let the energy function of the model be defined as

$$E = \frac{k}{2} \sum_{i=1}^{L} (x_{i+1} - x_i)^2$$

where k is the coupling strength and $L = 2n + 1$ ($n = 1, 2, ...)$. This is similar to the simple harmonic oscillator but without the kinetic energy term.

Using the transformation $u_i = \sqrt{k/2}(x_{i+1} - x_i)$ equation (1) reduces to $E = \sum_i \epsilon_i$ where $\epsilon_i = u_i^2$ is the energy of the bond connecting the masses i and $i + 1$. The heat bath is modeled by attaching two masses at the left and right end with coordinates x_0 and x_{L+1}. These masses oscillate in such a way that the bond energies ϵ_0 and ϵ_L have Boltzmann distribution with temperatures β_0^{-1} and β_L^{-1} respectively, i.e.

$$P(\epsilon_0) = e^{-\beta_0 \epsilon_0} \quad \text{and} \quad P(\epsilon_L) = e^{-\beta_1 \epsilon_L}.$$ (2)

To study energy transport in this model we use a local odd–even parallel update scheme, where lattice sites belonging to the even and odd sublattice are updated synchronously. To mimic the equation of motion, which conserves the total energy, we implement a dynamical rule so that the energy is conserved locally. When a site i is updated without disturbing the neighbors $i \pm 1$ (which belong to a different sublattice), both u_i and u_{i+1} are updated keeping their sum $u_i + u_{i+1} = x_{i+1} - x_{i-1}$ unaltered. Along with this constraint, energy conservation also demands that $u_i^2 + u_{i+1}^2$ must be conserved. Thus the only possible solutions are

$$(u_i \rightarrow u_i, u_{i+1} \rightarrow u_{i+1}) \text{ or } (u_i \rightarrow u_{i+1}, u_{i+1} \rightarrow u_i).$$

Clearly, the first solution does not update the positions $\{x_i\}$ and we choose to work with the second which effectively exchanges the energies ϵ_i and ϵ_{i+1} of the bonds connected to the i-th site. As can be seen from figure 1, during the odd sublattice update, the energies ϵ_i^* of the bond that connect mass i and $i + 1$, are exchanged.

doi:10.1088/1742-5468/2014/11/P11025

3
A microscopic model of ballistic-diffusive crossover

Figure 1. Spring-mass model with parallel sub-lattice update: each site of a 1D lattice has a particle with position x_i, with $i = 0, 2n + 2$ denoting the heat-baths. The energy is given by equation (1). The first (second) row corresponds to the odd (even) site update; boxes in each row depict the neighboring pair of bond energies $\epsilon_{i,o,e}^0$ which are exchanged during the update.

pairwise: $\epsilon_0^o \leftrightharpoons \epsilon_1^e, \epsilon_2^o \leftrightharpoons \epsilon_2^e, \ldots, \epsilon_{2n}^o \leftrightharpoons \epsilon_{2n+1}^e$. For the even sublattice update, energy exchange similarly occurs between $\epsilon_1^e \leftrightharpoons \epsilon_2^o, \ldots, \epsilon_{2n-1}^e \leftrightharpoons \epsilon_{2n}^o$ and the boundary energies ϵ_0^o and ϵ_1^e are refreshed by random values drawn respectively from the Boltzmann distributions $\langle \epsilon_0^o \rangle$, $\langle \epsilon_1^e \rangle$ moves one step to the right (left) during each sublattice update and goes out of the system through the other end exactly after L odd–even updates. This undeflected motion of the energy packets would result in ballistic heat-transport. In the stationary state we have

$$ \langle \epsilon_{2i}^e \rangle = \langle \epsilon_L \rangle; \quad \langle \epsilon_{2i+1}^o \rangle = \langle \epsilon_0 \rangle; \quad \langle \epsilon_{2i+1}^e \rangle = \langle \epsilon_0 \rangle; \quad \langle \epsilon_{2i+1}^o \rangle = \langle \epsilon_L \rangle. $$

and thus the energy current $J = \langle \epsilon_{2i}^e \rangle - \langle \epsilon_{2i+1}^o \rangle$ is independent of the system size. This result is the same as the ballistic transport observed in the simple harmonic lattice [8] with usual Hamiltonian dynamics, the only difference being the absence of the kinetic term.

1. Scattering of heat carriers

In order to have normal transport we need to introduce some scattering mechanism in this model, which can change right movers (generated at the left end of the system) to left movers and vice versa. This can be incorporated if, during an update, particles change their position x_i with a nonzero probability p, i.e. now both the solutions of equation (3) are chosen (the first with probability $1 - p$ or otherwise the second).

$$ (\epsilon_i, \epsilon_{i+1}) \xrightarrow{1-p} (\epsilon_i, \epsilon_{i+1}); \quad (\epsilon_i, \epsilon_{i+1}) \xrightarrow{p} (\epsilon_{i+1}, \epsilon_i). $$

(4)

This modified dynamics produces a scattering of both right and left movers with probability $q = 1 - p$. Thus the stationary energy profile must satisfy the following equations

$$ e_{2i}^o = qe_{2i}^e + pe_{2i+1}^e; \quad e_{2i+1}^o = qe_{2i+1}^e + pe_{2i}^e; $$

$$ e_{2i}^e = qe_{2i}^o + pe_{2i+1}^o; \quad e_{2i+1}^e = qe_{2i+1}^o + pe_{2i}^o, $$

(5)

where $\epsilon_i^{o,e}$ are the average of the bond energy after odd and even sublattice updates. In the second equation, which stands for even sublattice update, i runs from 1 to $n - 1$ and the boundary energies must satisfy $\epsilon_0^e = \langle \epsilon_0 \rangle$, $\epsilon_{2n+1}^e = \langle \epsilon_L \rangle$. This set of equations can be solved along with the boundary conditions, resulting in

$$ e_{2i}^e = (1 - 2iq)e_0^e + 2iqe_1^e $$

$$ e_{2i+1}^e = -2iqe_0^e + (1 + 2iq)e_1^e, $$

(6)

doi:10.1088/1742-5468/2014/11/P11025 4
Figure 2. (a) Energy current J versus L (simulation results (symbols) are compared with equation (8) in solid line) and (b) the energy profile $\epsilon(x)$ for different p. Here $\langle \epsilon_0 \rangle = 2$, $\langle \epsilon_L \rangle = 1$ and ballistic limit is approached when $p \rightarrow 1$. (c) J versus L for the model with random-sequential dynamics which results in diffusive transport even when $p = 1$. (d) and (e) show evolution of the system for odd–even parallel and random-sequential dynamics respectively with $p = 0.95$ and $L = 200$. Energy carriers introduced at the hot (left) and cold (right) boundaries are marked with different colors (red and blue).

where

$$\epsilon^e_1 = \frac{\langle \epsilon_L \rangle + \langle \epsilon_0 \rangle q(L-1)}{Lq + p}. $$

Thus the steady-state energy profile $\langle \epsilon_i \rangle = \frac{1}{2} (\langle \epsilon^e_i \rangle + \langle \epsilon^o_i \rangle)$ can be written, taking $x = i/L$ and $\Delta E = \langle \epsilon_0 \rangle - \langle \epsilon_L \rangle$, as

$$\epsilon(x) = \langle \epsilon_0 \rangle + \frac{p \Delta E}{2(Lq + p)} - \frac{\Delta E}{1 + p/Lq} x. \quad (7)$$

Here $L = 2n + 1$ is system size (excluding the two sites $i = 0, L$ which are considered to be part of the heat reservoir). Clearly the profile is linear, but there are boundary layers at both ends (second term in above equation) which vanish when $L \rightarrow \infty$. For any finite L, however, the profile becomes flat when $p \rightarrow 1$ (see figure 2(b)); an indication that energy transport occurs ballistically in this limit. Now the thermal current (figure 2(a)) is

$$J = \epsilon^e_0 - \epsilon^o_0 = p(\epsilon^e_0 - \epsilon^o_1) = p \frac{\Delta E}{Lq + p}. \quad (8)$$

Thus, for any $p < 1$, the coupled map lattice model shows diffusive transport with conductivity $\kappa = p/q$ and is independent of system size. The deterministic limit $p = 1$ however shows ballistic transport with heat current being independent of the system size. Thus, diffusive behavior here is a consequence of stochasticity which provides a scattering
mechanism for the heat carriers, even though energy is conserved. In fact, if stochasticity is introduced differently, say by using a random sequential dynamics in this model instead of parallel sublattice update, we get diffusive transport even for $p = 1$ (see figure 2(c)). To get a more physical picture of this ballistic-diffusive crossover we rewrite J as

$$J = \kappa \frac{\Delta E}{L} \mathcal{F} \left(\frac{\xi}{L} \right)$$

(9)

where $\xi = 1/q$ is the relevant length scale (see discussions below) and $\mathcal{F}(x)$ is the scaling function. In general, $\mathcal{F}(x)$ has the following property: $\mathcal{F}(0) = 1$ and $\mathcal{F}(x) \sim 1/x$ for large x and for this simple model, $\mathcal{F}(x) = \frac{1}{1+px}$. In fact, this scaling form is not accidental. We argue that such a scaling form always occurs in models of heat conduction and becomes prominent only near the ballistic limit, where the dominant length scale of the system ξ competes with the system size L. This situation may arise near a critical point (where ξ is the correlation length), in low-dimensional disordered systems (ξ is the localization length) and in colliding particle systems (ξ is the mean-free path).

The model discussed here, can be interpreted as though energy carriers (say phonons) are generated randomly and independently at both boundaries. At the left (right) end they are generated with unit rate as right (left) movers to carry an energy unit $\epsilon_0(\epsilon L)$ drawn from a Boltzmann distribution; they move in assigned directions (left or right) synchronously with unit rate and may change their direction with probability q (see figure 2(d) for evolution of the left and right movers). Thus they can move exactly n steps persistently with probability $q e^{-n/\xi}$ where $\xi = |\ln p|^{-1}$ is the persistent length which diverges in the limit $q \to 0$. In this limit $\xi = |\ln(1-q)|^{-1} \sim q^{-1}$.

In a recent work [22] a model of persistent walkers has been studied on a 1D lattice with asynchronous (continuous time) update rules, where the right and left moving walkers can get interchanged at a small rate p. These persistent walkers keep moving along one direction until they convert to the other type, generating a characteristic length scale similar to the mean free path of free carriers in a solid. This gives rise to a length scale in the system. The authors showed that the electrical current can be expressed as

$$J_{el} = \frac{\ell v \Delta \rho}{L(1 + \ell/L)}$$

(10)

where ℓ is the coherence length scale, v being the mean velocity and $\Delta \rho$ the difference in carrier density of left and right reservoirs. Comparing this result with equation (8), we find that in our model $\ell \equiv p/q$ and $v = 1$ here. From a purely phenomenological argument, an expression similar to equations (8) and (10) where energy transmission in carbon nanotubes [29, 30], current in the Heisenberg model [21] has been introduced recently; a more generic scaling form, equation (9), has also been obtained for conductivity in anharmonic chains [27].

2. Spring mass-spin model

Until now we have discussed models where heat carriers move independently. It is important to know if equation (9) still holds for a system in which the motion of heat carriers is correlated. To this end, we introduce the following model. We assume that every particle i of the spring mass model has a spin $s_i = \pm$. These Ising spins interact
ferromagnetically, as described in figure 3 and evolve following the Glauber dynamics

$$\pm \frac{1}{2} - \Delta V \mp, \quad \text{where } V = -\frac{K}{4} \sum_{i=0}^{L} s_i s_{i+1} - h s_0. \quad (11)$$

The magnetic field h at the left boundary controls the magnetization profile of the system. The masses follow the parallel sublattice update rule with the energy function given by equation (11), but now x_i is updated (i.e. associated bond energies ϵ_i and ϵ_{i+1} are exchanged) only when $s_i = \pm$. In this simple model, the spatial spin–spin correlation affects the energy transport, even though the spins do not take part directly and dictate only the update dynamics of the particles.

For simplicity, we consider $h \to \infty$ limit, which forces the spin at site $i = 0$ to be $s_0 = \pm$. The stationary probability p_i that $s_i = \pm$ at site i, can be calculated from the standard transfer matrix $\langle s|T|s' \rangle = \exp(Ke_{ss'}/4)$ as

$$p_i = \frac{1}{2} \left[1 + \tanh(\lambda K/4) \right]. \quad (12)$$

Now, $q_i = 1 - p_i$ is the scattering probability of the heat carriers at the lattice site i. In other words, q_i is the probability that a left (right) moving energy carrier becomes a right (left) mover at site i.

We proceed with a generic function p_i and will finally consider equation (12) as a special case. Following the steps similar to the $p_i = p$ case, we find that in steady state, the average energies after odd-sublattice update are

$$\epsilon_{2i}^o = q_{2i+1} \epsilon_{2i+1}^o + p_{2i+1} \epsilon_{2i+1}^e; \quad \epsilon_{2i+1}^o = q_{2i+1} \epsilon_{2i+1}^e + p_{2i+1} \epsilon_{2i}^e,$$

and the same after even-sublattice update ($i = 1, 2, \ldots, n - 1$) are

$$\epsilon_{2i}^e = q_{2i} \epsilon_{2i}^o + p_{2i} \epsilon_{2i-1}^o; \quad \epsilon_{2i-1}^e = q_{2i} \epsilon_{2i-1}^o + p_{2i} \epsilon_{2i}^o,$$

where $q_i = 1 - p_i$. These equations need to be solved with boundary conditions $\epsilon_{0}^o = \langle \epsilon_0 \rangle$ and $\epsilon_{n}^e = \langle \epsilon_L \rangle$. It is now straightforward to obtain the energy profile (after odd-sublattice update),

$$\epsilon_{2i}^e = (1 - \lambda_i) \langle \epsilon_0 \rangle + \lambda_i \epsilon_{2i}^e, \quad \epsilon_{2i+1}^e = \epsilon_{2i}^e + p_{2i} \frac{\langle \epsilon_0 \rangle - \epsilon_{2i+1}^e}{p_{2i+1}} \quad \text{with} \quad \lambda_i = p_{2i} \sum_{j=1}^{2i+1} p_{j-1} - 2p_{2i} i. \quad (13)$$

To calculate the energy profile explicitly we need ϵ_1^e; the boundary condition $\epsilon_{2n+1}^e = \langle \epsilon_L \rangle$ gives

$$\epsilon_{1}^e = \frac{(\lambda_n - 1) \langle \epsilon_0 \rangle + \langle \epsilon_L \rangle}{\lambda_n} = \langle \epsilon_0 \rangle - \frac{\Delta E}{\lambda_n}. \quad (14)$$

doi:10.1088/1742-5468/2014/11/P11025
It is evident, from equations (8) and (14), that the energy current is

$$ J = p_i \frac{\Delta E}{\lambda_n} \simeq \frac{\Delta E}{L(\alpha_1 - 1) + 1} $$

(15)

where in the last step we have taken the continuum limit $x = i/L$ to write equation (13) as,

$$ \lambda_n \simeq p_i[L(\alpha_1 - 1) + 1] \quad \text{with} \quad \frac{d\alpha_x}{dx} = \frac{1}{p(x)}.$$

(16)

In the continuum limit, the energy profile (from (13)) is

$$ \epsilon(x) = \epsilon_0 + \frac{\Delta E}{2L(\alpha_1 - 1) + 1} - \Delta E \frac{L(\alpha_x - 1) + 1}{L(\alpha_1 - 1) + 1}. $$

Note that, for a given boundary drive, both current and energy profile depend only on the scattering probability $q(x) = 1 - p(x)$ (through α_x from equation (16)); details of the dynamics, interaction or disorder plays a role in generating a spatial variation of scattering. These exact results, though derived here for a class of interacting systems driven at boundaries, are expected to be generic; it explains in general, why current and density profile in driven systems depend only on the scattering probability of the current-carriers in the bulk of the sample.

Evidently, the current J in equation (15) becomes ballistic when $\alpha_1 = 1$ and for any $\alpha_1 > 1$ one gets the Fourier law in the thermodynamic limit $L \gg (\alpha_1 - 1)^{-1}$. Thus $(\alpha_1 - 1)^{-1}$ plays the role of correlation length ξ, which diverges in the limit $\alpha_1 \rightarrow 1$. To verify that $(\alpha_1 - 1)$ actually plays the role of ξ^{-1}, we consider a simple example $p(x) = e^{-\gamma x}$ where γ^{-1} is a measure of spatial correlation. Now $\alpha_1 - 1 = \gamma^{-1}(e^{-\gamma} - 1) - \gamma)$ which, for small γ, gives $\gamma/2$. Thus $J = \Delta E/(1 + L\gamma/2)$ is consistent with the ansatz (9). Again, for a spring mass-spin model p_i is given by equation (12); then $\alpha_1 - 1 \simeq |\ln(\tanh(K/4))|/4$, which is inversely proportional to the correlation length known for the Ising model. Also note that for $p_i = p$ we trivially recover the result for equation (8) from equation (15).

3. Discussion

The model that we have introduced here can be considered to be formally identical to a system of free particles with momentum p_i, $H = \sum_i p_i^2/2m$. The odd–even dynamics is nothing but the integration of the equation of motion using a finite integration time step Δt. The additional constraint introduced in the spring mass system, i.e. $u_i + u_{i+1}$ is not altered during update of x_i, translates to momentum conservation during collision of particles i and $i + 1$. Finally, the scattering probability q in the spring mass system becomes the collision probability. Thus one obtains ballistic transport when collision occurs pairwise and deterministically, whereas energy transport is diffusive when collisions are missed out with finite probability. Using these simple models we have rigorously proven that the scaling ansatz proposed for the current, equation (9) can seamlessly describe both the ballistic transport regime with the diffusive regime. There are, however, a few drawbacks of the current formalism. First, the heat carriers are assumed to carry a quantized packet of energy with them which does not get scattered and redistributed and is therefore unrealistic for real-life transport problems. Secondly, in the spring mass-spin model, introduced as a model with spatial correlation, the dynamics of the background
spins is completely decoupled from that of the heat carriers. It remains a challenge to address these issues in the future.

Acknowledgment

PKM gratefully acknowledges the support of CEFIPRA under Project 4604-3.

References

[1] Bonetto F, Lebowitz J L and Rey-Bellet L 2000 Fourier Law: a Challenge to Theorists, in Mathematical Physics ed A Fokas et al (London: Imperial College Press)
[2] Lepri S, Livi R and Politi A 2003 Phys. Rep. 377 1
[3] Dhar A 2008 Adv. Phys. 57 457
[4] Liu S, Xu X F, Xie R G, Zhang G and Li B W 2012 Eur. Phys. J. B 85 337
[5] Yang N, Xu X, Zhang G and Li B 2012 AIP Adv. 2 041410
[6] Bae M-H, Li Z, Aksamija Z, Martin P N, Xiong F, Ong Z-Y, Knezevic I and Pop E 2013 Nat. Commun. 4 1734
[7] Hsiao T-K, Chang H-K, Liou S-C, Chu M-W, Lee S-C and Chang C-W 2013 Nat. Nanotechnol. 8 534
[8] Rieder Z, Lebowitz J L and Lieb E 1967 J. Math. Phys. 8 1073
[9] Nakazawa H 1968 Prog. Theor. Phys. Suppl. 39 236
[10] Lepri S, Livi R and Politi A 1997 Phys. Rev. Lett. 78 1896
[11] Lepri S, Livi R and Politi A 1998 Europhys. Lett. 43 271
[12] Hatano T 1999 Phys. Rev. E 59 R1
[13] Dhar A 2001 Phys. Rev. Lett. 86 3554
[14] Grassberger P, Nadler W and Yang L 2002 Phys. Rev. Lett. 89 180601
[15] Alonso D, Artuso R, Casati G and Guarneri I 1999 Phys. Rev. Lett. 82 1859
[16] Li B, Casati G and Wang J 2003 Phys. Rev. E 67 021204
[17] Casati G, Ford J, F Vivaldi and Visscher W M 1984 Phys. Rev. Lett. 52 1861
[18] Garrido P L, Hurtad o P I and Nadrowski B 2001 Phys. Rev. Lett. 86 5486
[19] Savin A V, Tsironis G P and Zotos X 2005 Phys. Rev. E 72 140402
[20] Gerling R W and D P Landau 1990 Phys. Rev. B 42 8214
[21] Oganessian V, Pal A and Huse D A 2009 Phys. Rev. B 80 115104
[22] Bagchi D and Mohanty P K 2012 Phys. Rev. B 86 214302
[23] Roy D and Dhar A 2007 Phys. Rev. B 75 195110
[24] Ni C and Murthy J Y 2012 J. Heat Transfer 134 082401
[25] Kim P, Shi L, Majumdar A and Mceuen P L 2001 Phys. Rev. Lett. 87 215502
[26] Chen G 2001 Phys. Rev. Lett. 86 2297
[27] Segal D, Nitzan A and Huggi P 2003 J. Chem. Phys. 119 6840
[28] Roy D 2008 Phys. Rev. E 77 062102
[29] Yamamoto T, Konabe S, Shiomi J and Maruyama S 2009 Appl. Phys. Express 2 095003
[30] Wang J and Wang J-S 2006 Appl. Phys. Lett. 88 111909
[31] Casati G and Li B 2004 Proc. NATO Advanced Research Workshop on Nonlinear Dynamics and Fundamental Interactions (Tashkent, Uzbekistan, 11–16 October 2004)
[32] Gilbert M J, Akis R and Ferry D K 2005 J. Appl. Phys. 98 094303
[33] Wójcik D K and Dorfman J R 2004 Physica B 187 223
[34] Chen G, Borca-Tasciuc D and Yang R G 2004 Nanoscale heat transfer Encyclopedia of Nanoscience and Nanotechnology vol 7 ed H S Nalwa (Stevenson Ranch, CA: American Scientific Publishers)