A Prospective Observational Study Assessing the Relationship Between Solitary Thyroid Nodule Size and Incidence of Malignancy

Sherif Monib 1, Nicholas Farkas 2, Mohamed I. Abdelaziz 3

1. Breast Surgery, West Hertfordshire Hospitals NHS Trust, St. Albans and Watford General Hospitals, London, GBR 2. Surgery, West Hertfordshire Hospitals NHS Trust, St. Albans City Hospital, St. Albans, GBR. 3. Surgery, Fayoum University Hospital, Fayoum, EGY

Corresponding author: Sherif Monib, sherif.monib@nhs.net

Abstract

Background
Solitary thyroid nodule (STN) is a well-documented entity. Autopsy data indicate a 50% prevalence of thyroid nodules >10 mm in patients without clinical evidence of thyroid disease. Prevalence of palpable nodules is 4-7%. Solitary thyroid nodules are often asymptomatic and found incidentally. Fine needle aspiration cytology is recommended to determine the nature of the thyroid nodule. 5-10% of the thyroid nodules are found to be malignant following thyroidectomy.

Objective
Our study aims to explore the relationship between solitary thyroid nodule size and malignancy.

Methods
A prospective, observational analysis looking at preoperative thyroid ultrasound scan findings and post-operative histology for a total of 100 female patients referred to our unit within a university hospital from November 2016 to April 2019. Statistical analysis including One-Way ANOVA was performed where appropriate.

Results
Total number of patients was 100 female patients divided according to the size of the nodule into three groups with the correlation between the size of the nodule and the incidence of malignancy.

Group A: Patients with a STN <20 mm; eight patients; post-operative histology = all benign.

Group B: Patients with a STN measuring 20-40 mm; 80 patients: 68 patients were benign, and 12 patients (12%) were malignant (incidence of malignancy in the group is 15%).

Group C: Patients with a STN >40 mm; 12 patients: eight patients were benign, four patients were malignant, (incidence of malignancy = 33%).

Correlation between the size of the nodule and the incidence of malignancy:
Group A: 0/8 malignancy; Group B: 12/80 patients were malignant; Group C: 4/12 malignant.

Conclusion
Our results suggest that the size of a solitary thyroid nodule cannot be reliably used for at predicting malignancy and should not be influencing patient’s management.

Categories: Endocrinology/Diabetes/Metabolism, General Surgery
Keywords: thyroid, solitary thyroid nodule, ultrasound scan, thyroid cancer

Introduction
Solitary thyroid nodule is a common entity with autopsy data indicating a prevalence of 50% in patients with nodules larger than 1 cm without clinical evidence of thyroid disease. The prevalence of palpable nodules is 4-7% [1, 2].

Thyroid nodules warrant removal when they are large enough to be symptomatic, or if there is a concern for
malignancy. The majority of nodules are asymptomatic. With 5–10% of nodules being malignant, the decision to operate is made on therapeutic or diagnostic grounds [3, 4].

Most patients present with a large palpable thyroid nodule. However, some solitary thyroid nodules are incidentally found on imaging studies performed for other reasons [5].

Barroeta et al. found that a single dominant or solitary nodule is more likely to represent carcinoma than a single nodule within a multi-nodular gland. The incidence of malignancy increased from 2.7 to 30% and from 1.4 to 10%, respectively [6].

Important elements in a patient’s history increase the likelihood of malignancy, these include prior head and neck irradiation, rapid nodule growth, dysphagia, dysphonia, male gender, presentation at extremes of age (<20 years or >70 years) and family history of medullary thyroid carcinoma or multiple endocrine neoplasia [7,8].

Aim of our study

This study aims to determine the relationship between size and the incidence of malignancy in patients with a solitary thyroid nodule.

Materials And Methods

We conducted a prospective, observational analysis looking at preoperative thyroid ultrasound scan findings and post-operative histology for a total of 100 female patients referred to our unit within a university hospital from November 2016 to April 2019.

The study was approved by the local medical ethics committee. Inclusion criteria: female patients only (to eliminate sex-related bias) who were found to have a solitary thyroid nodule on neck ultrasound scan. All selected patients were euthyroid and fit for general anaesthesia. Exclusion criteria: male patients, patients with diffusely enlarged thyroid gland, patients not fit for general anaesthesia, recurrent cases and patients with thyrotoxicosis.

All patients were euthyroid on preoperative blood tests and underwent a preoperative neck ultrasound scan and an ultrasound-guided fine-needle aspiration cytology (FNAC).

Statistical analysis

Data were collected and coded to facilitate data manipulation and double entered into Microsoft Access and data analysis was performed using Statistical Package of Social Science (SPSS) software version 18 (IBM Corp., Armonk, NY) in windows 7.

Results

Total number of patients included in our analysis was 100 patients; their age range was 20-55 years with mean ± SD 33 ± 9.5 years, 56 patients (56%) were younger than 30 years, 28 patients (28%) were 30-40 years, 12 patients (12%) were 40-50 years and four patients (4%) were older than 50 (Table 1).

Age	No.	%
<30 y	56	56%
30-40 y	28	28%
40-50 y	12	12%
>50 y	4	4%
Total	100	100%
Min.-Max.	20-55 ys	
Mean ± SD	33.0 ± 9.5 yrs	

TABLE 1: Distribution of studied sample according to patient’s age

Patients were divided according to the maximum diameter size of the solitary thyroid nodule on ultrasound scan. Similar categories were used for both pre-operative and post-operative size: group (A): less than 20
mm, group (B): 20-40 mm, and group (C) greater than 40 mm. Pre-operative ultrasound and post-operative histopathology reports demonstrated minimal difference ±1-2 mm between the two groups (Table 2).

Nodule size in each group	Size by US	Size in post-operative pathology
Group (A): size < 2 cm	8 (8%)	8 (8%)
Group (B): size 2-4 cm	80 (80%)	80 (80%)
Group (C): size >4 cm	12 (12%)	12 (12%)
Total	100 (100%)	100 (100%)
Min.-Max.	1.5 cm-5 cm	
Mean ± S.D.	3.5 cm ± 1.5 cm	

TABLE 2: Distribution of the studied sample according to the nodule size in preoperative ultrasound (US) compared to nodule size in postoperative histopathology reports.

Pre-operative FNAC revealed that 20 patients (20%) had colloid adenoma, 48 patients (48%) had a follicular lesion, 28 patients (28%) had papillary adenoma, four patients (4%) had papillary thyroid carcinoma (Table 3).

Pre-operative FNAC	Number	%
Colloid adenoma	20	20%
Follicular lesion	48	48%
Papillary adenoma	28	28%
Papillary carcinoma	4	4%
Total	100	100%

TABLE 3: Distribution of studied sample according to pre-operative FNAC results.

FNAC: Fine-needle aspiration cytology

A total of 80 patients (80%) had hemi-thyroidectomy of the affected lobe. Exploration of the contralateral lobe was carried out for all patients. Fine nodularity was found in 20 patients (20%). Total thyroidectomy with lymph node dissection was carried out for the four patients with carcinoma.

Post-operative histopathology results were divided into two groups:

Benign: 84 patients (84%) - 20 colloid adenoma, 36 follicular adenoma, 20 patients (20%) were papillary adenoma and eight patients (8%) were papillary adenoma with cystic degeneration; Malignant: 16 patients (16%) - 12 follicular carcinoma and four papillary carcinomas (Table 4).
TABLE 4: Distribution of studied sample according to patient's post-operative histopathology.

Post-operative histopathology	No	%
Colloid adenoma	20	20%
Follicular adenoma	36	36%
Papillary adenoma	20	20%
Papillary adenoma & cystic degeneration	8	8%
Follicular carcinoma	12	12%
Papillary carcinoma	4	4%
Total	100	100%

Correlation between the size of the nodule and the incidence of malignancy:

- Group A: 0/8 malignancy. Group B: 12/80 patients were malignant. Group C: 4/12 malignant (Table 5).

TABLE 5: Distribution of studied sample according to patient's post-operative histopathology in correlation with the incidence of malignancy.

* The percentage to the total number in the study (n = 100)

Groups of nodule size

Groups of nodule size	Benign No. (%)	Malignant No. (%)
Group A: <20 mm	8 patients (8%)*	0 (0%)*
Group B: 20-40 mm	68 patients (68%)*	12 patients (12%)*
Group C: >40 mm	8 patients (8%)*	4 patients (4%)*

Discussion

Thyroid nodules are observed in 8% of the adult population and seen more frequently in women than men. A solitary thyroid nodule is defined clinically as a localized thyroid enlargement with an apparently normal remaining gland. Such nodules carry a 5-15% prevalence of malignancy. Thyroid malignancies account for approximately 1% of all malignant neoplasms and are the most common endocrine neoplasia. With the use of ultrasound, up to 10 times more nodules are thought to be detected. They are found in 4%-8% of adults by palpation and in 13%-67% when ultrasound detection is utilized. In autopsy studies, they have a prevalence of approximately 50% [9-11].

Tai Jun et al. concluded that male gender, microcalcification and lymphadenopathy are independent risk factors for predicting malignancy in patients with STN; patients with more than two of those risk factors should be subjected to further examination or thyroidectomy [9].

Some studies suggested that the size of a solitary thyroid nodule can be considered as an independent predictor for risk of malignancy, especially in the presence of underlying risk factor. McCoy et al. concluded that due to high false-negative rate for preoperative benign cytology, thyroid nodules greater than or equal to 4 cm should be considered for diagnostic lobectomy regardless of fine-needle aspiration biopsy (FNAB).
operative workup to ensure potential malignancies are not missed. We recommend a multicentric study Nevertheless, size of STN cannot be reliably used for predicting malignancy; we advocate thorough pre-operative fine-needle aspiration cytology findings. Our results suggest that increasing size of a solitary thyroid nodule and the risk of malignancy.

Management of solitary thyroid nodules is based on clinical assessment, ultrasound scan findings and preoperative fine-needle aspiration cytology findings. Our results suggest that increasing size of a solitary thyroid nodule may be a predictor for malignancy.

Nevertheless, size of STN cannot be reliably used for predicting malignancy; we advocate thorough pre-operative workup to ensure potential malignancies are not missed. We recommend a multicentric study
Additional Information

Disclosures

Human subjects: Consent was obtained by all participants in this study. Fayoum University Hospital medical ethics committee issued approval. Not applicable. The study was approved by the medical ethics committee at Fayoum University Hospital. **Animal subjects:** All authors have confirmed that this study did not involve animal subjects or tissue. **Conflicts of interest:** In compliance with the ICMJE uniform disclosure form, all authors declare the following: **Payment/services info:** All authors have declared that no financial support was received from any organization for the submitted work. **Financial relationships:** All authors have declared that they have no financial relationships at present or within the previous three years with any organizations that might have an interest in the submitted work. **Other relationships:** All authors have declared that there are no other relationships or activities that could appear to have influenced the submitted work.

References

1. Mortensen JD, Woolner LB, Bennet WA: Gross and microscopic findings in clinically normal thyroid glands. J Clin Endocrinol Metab. 1955, 15:1270-1280. 10.1210/jcem-15-10-1270
2. Sirger PA: Evaluation and management of the solitary thyroid nodule. Otolaryngol Clin North Am. 1996, 29:577-591.
3. Papini E, Guglielmis R, Bianchini A, et al.: Risk of malignancy in nonpalpable thyroid nodules: predictive value of ultrasound and color-Doppler features. J Clin Endocrinol Metab. 2002, 87:1941-1946. 10.1210/jcem.87.5.8504
4. Nam-Goog IS, Kim HY, Gong G, Lee HK, Hong SJ, Kim WB, Shong YK: Ultrasonography-guided fine-needle aspiration of thyroid incidentaloma: correlation with pathological findings. J Clin Endocrinol. 2004, 60:21-28. 10.1046/j.1365-2265.2003.01912.x
5. Kamran SC, Marquese E, Kim MI, et al.: Thyroid nodule size and prediction of cancer. J Clin Endocrinol Metab. 2013, 98:564-570. 10.1210/jc.2012-2968
6. Barroto I, Wang H, Shima N, Gupta PK, Livolsi VA, Baloch ZW: Is fine-needle aspiration (FNA) of multiple thyroid nodules justified? Endocr Pathol. 2006, 17:61-66. 10.1385/EP:17:1:61
7. Ferrone S, Marincola FM: Loss of HLA class I antigens by melanoma cells: molecular mechanisms, functional significance and clinical relevance. Immunol Today. 1995, 16:487-494. 10.1016/0167-5699(95)80035-6
8. Hegeduš L: The thyroid nodule. N Engl J Med. 2004, 351:1764-1771. 10.1056/NEJMcp031456
9. Tai Jun D, Yang Jin L, Wu Si C, Wang Bin W, Chang Cong J: Risk factors for malignancy in patients with solitary thyroid nodules and their impact on the management. J Can Res Ther. 2012, 8:379-383. 10.4103/0973-1482.103516
10. Li H, Li J: Thyroid disorders in women. Minerva Med. 2015, 106:109-114.
11. Frates MC, Benson CB, Doublet PM, et al.: Prevalence and distribution of carcinoma in patients with solitary and multiple thyroid nodules on sonography. J Clin Endocrinol Metab. 2006, 91:3411-3417. 10.1210/jc.2006-0690
12. Wierske JR, Chong WK, Fielding JR, Zou KH, Mittelstaedt CA: Sonographic features of benign thyroid nodules. J Ultrasound Med. 2003, 22:1027-1051. 10.7863/jum.2003.22.10.1027
13. McCoy KL, Jabbour N, Ogilvie JB, Ohori NP, Carty SE, Yim JH: The incidence of cancer and rate of false-negative cytology in thyroid nodules greater than or equal to 4 cm in size. Surgery. 2007, 142:837-844. 10.1016/s0039-6060(06)02356-8
14. Godazandeh G, Kashi Z, Zargarnataj S, Fazli M, Ebadi R, Kerdabadi EH: Evaluation the relationship between thyroid nodule size with malignancy and accuracy of fine needle aspiration biopsy (FNAB). Acta Inform Med. 2016, 24:547-550. 10.5455/aim.2016.24.547-550
15. Ghaziri H, Goldener JR: Fine-needle aspiration biopsy of the thyroid: an appraisal. Am Intern Med. 1993, 118:282-289. 10.7526/0003-4819-118-14-199302150-00007
16. Yassa L, Ghaba ES, Benson CB, et al.: Long-term assessment of a multidisciplinary approach to thyroid nodule diagnostic evaluation. Cancer. 2007, 111:508-516. 10.1002/cncr.213516
17. Musanti MA, Khan FA, Malik S, Khambaty Y: Fine needle aspiration cytology: sensitivity and specificity in thyroid lesions. J Ayub Med Coll Abbottabad. 2011, 23:34-36.
18. Shere SK, Kulkarni AS, Phulgirkar PP, Anjum S, Patil SP, Bindu R: Correlation of fine needle aspiration cytology with histopathology in diagnosis of thyroid lesions. J Evol Medical Sci. 2013, 2:4826.
19. Berker D, Aydin Y, Ustun I, et al.: The value of fine-needle aspiration biopsy in subcentimeter thyroid nodules. Thyroid. 2008, 18:603-608. 10.1089/thy.2007.0513
20. Rauzi S, Dionigi G, Frattini F, et al.: Nodule size and fine-needle aspiration biopsy: diagnostic challenges for thyroid malignancy. Am J Surg. 2011, 201:525-530. 10.1016/j.amjsurg.2010.05.008
21. McHenry CR, Hub ES, Machekano RN: Is nodule size an independent predictor of thyroid malignancy? J Surg. 2008, 144:1062-1069. 10.1016/j.jss.2008.07.021
22. Bestepe N, Ozdemir D, Tam AA, et al.: Malignancy risk and false-negative rate of fine needle aspiration cytology in thyroid nodules <4.0 cm. Surgery. 2016, 160:405-412. 10.1016/j.surg.2016.03.019
23. Kuru B, Gulcelik NE, Gulcelik MA, Dincer H: Predictive index for carcinoma of thyroid nodules and its integration with fine-needle aspiration cytology. Head Neck. 2009, 31:856-866. 10.1002/hed.21049
24. Cooper DS, Doherty GM, Haugen BR, et al.: Revised American Thyroid Association management guidelines for patients with thyroid nodules and differentiated thyroid cancer. Thyroid. 2009, 19:1167-1215.
10.1089/thy.2009.0110

25. Ozel A, Erturk SM, Ercan A, et al.: The diagnostic efficiency of ultrasound in characterization for thyroid nodules: how many criteria are required to predict malignancy?. Med Ultrason. 2012, 14:24-28.

26. Zhao L, Yan H, Pang P, et al.: Thyroid nodule size calculated using ultrasound and gross pathology as predictors of cancer: a 23-year retrospective study. Diagn Cytopathol. 2019, 47:187-193. 10.1002/dc.24068

27. Hong MJ, Na DG, Baek JH, Sung JY, Kim JH: Impact of nodule size on malignancy risk differs according to the ultrasonography pattern of thyroid nodules. Korean J Radiol. 2018, 19:534-541. 10.3348/kjr.2018.19.3.534