Electronic Band Structure of Transition Metal Dichalcogenides from \textit{ab initio} and Slater-Koster Tight-Binding Model

Jose Ángel Silva-Guillén1, Pablo San-Jose2, and Rafael Roldán2

1Fundación IMDEA Nanociencia, C/Faraday 9, Campus Cantoblanco, 28049 Madrid, Spain
2Instituto de Ciencia de Materiales de Madrid, CSIC, Sor Juana Ines de la Cruz 3, 28049 Cantoblanco, Madrid, Spain

(Dated: November 15, 2016)

Semiconducting transition metal dichalcogenides present a complex electronic band structure with a rich orbital contribution to their valence and conduction bands. The possibility to consider the electronic states from a tight-binding model is highly useful for the calculation of many physical properties, for which first principle calculations are more demanding in computational terms when having a large number of atoms. Here we present a set of Slater-Koster parameters for a tight-binding model that accurately reproduce the structure and the orbital character of the valence and conduction bands of single layer MX\textsubscript{2}, where \(M = \text{Mo}, \ W\) and \(X = \text{S}, \ \text{Se}\). The fit of the analytical tight-binding Hamiltonian is done based on band structure from \textit{ab initio} calculations. The model is used to calculate the optical conductivity of the different compounds from the Kubo formula.

I. INTRODUCTION

Soon after the discovery of graphene by mechanical exfoliation, this technique was applied to the isolation of other families of van der Waals materials11 Among them, semiconducting transition metal dichalcogenides (TMD) are of special interest because they have a gap in the optical range of the energy spectrum, what makes them candidates for applications in photonics and optoelectronics2,3. The electronic properties of these materials are highly sensitive to the external conditions such as strain, pressure or temperature. For instance, a direct-to-indirect gap and even a semiconducting-to-metal transition can be induced under specific conditions4,5. They also present a strong spin-orbit coupling (SOC) that, due to the absence of inversion symmetry in single layer samples, lifts the spin degeneracy of the energy bands5. In time reversal-symmetric situations, inequivalent valleys have opposite spin splitting, leading to the so called spin-valley coupling6,7, which has been observed experimentally8,9. The coupling of the spin and valley degrees of freedom in semiconducting TMDs opens the possibility to manipulate them for future applications in spintronics and valleytronics nano-devices8,10,11.

On the other hand, TMDs present a high stretchability. Moreover, external strain can be used to efficiently manipulate their electronic and optical properties12. Non-uniform strain profiles can be used to create \textit{funnels of excitons}, that allows to capture a broad light spectrum, concentrating carriers in specific regions of the samples13,14. Strain engineering can be also used to exploit the piezoelectric properties of atomically thin layers of TMDs, converting mechanical to electrical energy15.

The rich orbital structure of the valence and conduction bands of semiconducting TMDs16 complicates the construction of a tight-binding (TB) model for these systems. Such a TB model must be precise enough as to include all the pertinent orbitals of the relevant bands, but at the same time, simple enough as to be used without too much effort in calculations of optical and transport properties of these materials. The advantage of a tight-binding description with respect to first-principles methods is that it provides a simple starting point for the further inclusion of many-body electron-electron interaction, external strains, as well as of dynamical effects of the electron-lattice interaction. Tight-binding approaches are often more convenient than \textit{ab initio} methods for investigating systems involving a very large number of atoms17,18 disordered and inhomogeneous samples19, strained and/or bent samples20,21 materials nanostructured in large scales (nanoribbons22,23 or ripples43) or in twisted multilayer materials. The aim of the present paper is twofold. Starting from the TB model for MoS\textsubscript{2} developed by Cappelluti \textit{et al.}25, we present a more accurate set of Slater-Koster parameters obtained from a more sophisticated fitting procedure, and we further generalize it to the other families of semiconducting TMDs, namely WS\textsubscript{2}, MoSe\textsubscript{2} and WSe\textsubscript{2}. Finally, we apply the obtained tight-binding models to calculate the optical conductivity of the four compounds.

II. ELECTRONIC BAND STRUCTURE

The crystal structure of MX\textsubscript{2} is schematically shown in Fig. 1. A single layer is composed by an inner layer of
metal M atoms ordered on a triangular lattice, which is sandwiched between two layers of chalcogen X atoms placed on the triangular lattice of alternating hollow sites. We use a notation such that a corresponds to the distance between nearest neighbor in-plane $M - M$ and $X - X$ atoms, b is the nearest neighbor $M - X$ separation and u is the distance between the M and X planes. The MX_2 crystal forms an almost perfect trigonal prism structure with $b \simeq \sqrt{3}a/2$ and $u \simeq a/2$. The lattice parameters of the bulk compounds corresponding to the more commonly studied TMDs are given in Table I. Fig. 2. The in-plane Brillouin zone is an hexagon, and it is shown in Fig. 2. It contains the high-symmetry points $\Gamma = (0,0)$, $K = 4\pi/3a(1,0)$ and $M = 4\pi/3a(0,\sqrt{3}/2)$. The six Q points correspond to the approximate position of a local minimum of the conduction band.

In order to study the electronic band structure of single-layer TMDs, we use the Density Functional Theory (DFT) calculations presented by some of the authors in Ref. 28, in which the intrinsic spin-orbit interaction term for all atoms is included. Fig. 3 shows the band structures for single-layer MX_2 (black lines) together with the TB bands that will be discussed later (red lines). One of the main characteristics of TMDs is that, contrary to what happens in other 2D crystals like graphene or phosphorene, the valence and conduction bands of MX_2 present a very rich orbital contribution. As explained in detail in Ref. 35, they are made by hybridization of the d orbitals of the transition metal, and the p orbitals of the chalcogen. More specifically, the analysis of the orbital content of the set of bands containing the first four conduction bands and the first seven valence bands, which cover an energy window from -7 to 5 eV around the Fermi level, approximately, reveals that these bands are dominated by the five 4d (5d) orbitals of the metal Mo (W) and the six (three for each layer) 3p (4p) orbitals of the chalcogen S (Se), summing up to the 93% of the total orbital weight.

Single-layer TMDs are direct gap semiconductors, with the gap located at the two inequivalent K and K' points of the Brillouin zone (Fig. 3). The main orbital character at the edge of the valence band is due to a combination of d_{z^2} and d_{xy} orbitals of the metal M, plus some contribution of p_x and p_y orbitals of the chalcogen X. On the other hand, the edge of the conduction band is formed by $d_{3z^2−r^2}$ orbital of M, plus some contribution of p_x and p_y orbitals of X.

Contrary to single-layer samples, multi-layer compounds are indirect gap semiconductors. The edge of the valence band lies at the Γ point of the BZ, having a major contribution from $d_{3z^2−r^2}$ and p_z orbitals of M and X atoms, respectively. The edge of the conduction band in multi-layer samples is placed at the Q point of the BZ. It is important to notice that the Q point is not a high symmetry point of the Brillouin zone, and therefore its exact position depends on the number of layers and on the specific compound. The orbital character at the Q point originates mainly from the d_{xy} and $d_{x^2−y^2}$ orbitals of the metal M, plus p_z and p_y orbitals of the chalcogen X, plus a non negligible contribution of p_x and $d_{3z^2−r^2}$ of X and M.

FIG. 2. Two dimensional Brillouin zone of MX_2. The high symmetry points $\Gamma = (0,0)$, $K = 4\pi/3a(1,0)$ and $M = 4\pi/3a(0,\sqrt{3}/2)$ are shown. The Q points (which are not high symmetry points) indicate the position of the edges of the conduction band in multi-layer samples.

FIG. 3. Electronic band structure of single-layer MX_2 from DFT calculations (black lines) and from tight-binding (red lines).

Material	a	u	c'
MoS$_2$	3.160	1.586	6.140
MoSe$_2$	3.288	1.664	6.451
WS$_2$	3.153	1.571	6.160
WSe$_2$	3.260	1.657	6.422

TABLE I. Lattice parameters for the TMDs considered in the text. a represents the $M-M$ atomic distance, u the internal vertical separation between the M and the X planes, and c' the distance between the metal M layers. In bulk systems $c = 2c'$ accounts for the z-axis lattice parameter. All values are in Å units.
FIG. 4. Band structure and orbital character of single-layer MoS$_2$. The thickness of the bands represents the orbital weight, where the \(d \) character (\(d_{2-z^2-r^2}, d_{xz}, d_{yz} \)) refers to the Mo atom 4\(d \) orbitals, while the \(p \) character (where \(p_{xy} = p_x, p_y \)) refers to 3\(p \) orbitals of sulfur. Top panels correspond to orbital weight from DFT calculations, whereas bottom panels correspond to orbital weight from TB results. The black lines in the bottom panels are the DFT bands. Notice that spin-orbit coupling is not included in these plots.

III. TIGHT-BINDING MODEL

In this section we consider the electronic band structure of TMDs, in the whole BZ, from a Slater-Koster tight-binding approximation.\[^{13}\] We use the model developed by Cappelluti et al.\[^{35}\] which contains 11 orbitals per layer. In particular, the model contains the five \(d \) orbitals of the metal M atom and the six \(p \) orbitals of the two chalcogen X atoms in the unit cell. The used scheme has been recently used in other works studying the electronic band structure of TMDs from a tight-binding perspective.\[^{13,19}\]

The corresponding base can be expressed as:\[^{35}\]

\[
(p_{x}^t, p_{y}^t, p_{z}^t, d_{3z^2-r^2}, d_{xz}, d_{yz}, d_{x^2-y^2}, d_{xy}, p_{x}^b, p_{y}^b, p_{z}^b)
\]

where the indices \(t \) and \(b \) label the top and bottom chalcogen planes, respectively. The model is defined by the hopping integrals between the different orbitals, which are described in terms of \(\sigma, \pi \) and \(\delta \) ligands. In the following we reproduce the most important results, and we refer the reader to Refs.\[^{35}\] and\[^{40}\] for details of the model. The Slater-Koster parameters that account for the relevant hopping processes of the model are \(V_{pd\sigma} \) and \(V_{pd\pi} \) for \(M-X \) bonds, \(V_{dd\sigma}, \ V_{dd\pi} \) and \(V_{dd\delta} \) for \(M-M \) bonds, and \(V_{pp\sigma} \) and \(V_{pp\pi} \) for \(X-X \) bonds. Additional parameters of the theory are the crystal fields \(\Delta_0, \ \Delta_1, \ \Delta_2, \ \Delta_p, \ \Delta_z \), describing respectively the atomic level of the \(l = 0 \) \((d_{3z^2-r^2}), \) the \(l = 1 \) \((d_{xz}, d_{yz}), \) the \(l = 2 \) \((d_{x^2-y^2}, d_{xy}) \) \(M \) orbitals, the in-plane \((p_x, p_y) \) \(X \) orbitals and of the out-of-plane \(p_z \) \(X \) orbitals.

This model can be simplified by performing an unitary transformation that takes the \(p \) orbitals of the top and bottom layers of the \(X \) atoms into their symmetric and antisymmetric combinations with respect to the \(z \)-axis. This way the 11-bands model is decoupled into a \(6 \times 6 \) block with even (odd) symmetry of the \(p_x, p_y \) \((p_z) \) orbitals with respect to \(z \rightarrow -z \) inversion, and a \(5 \times 5 \) bands block with opposite combination. Since low energy excitations belong exclusively to the
first block, the fit to DFT that we will present later will be performed within this sector. Therefore the relevant bands above and below the gap are well accounted by the reduced Hilbert space:

$$\psi = (d_{z^2-r^2}, d_{x^2-y^2}, d_{xy}, p_x, p_y, p_z)$$ \hspace{1cm} (2)

where the S and A superscripts stand for the symmetric and antisymmetric combinations of the p-orbitals of the X atom, $p_i^S = 1/\sqrt{2}(p_i^x + p_i^y)$ and $p_i^A = 1/\sqrt{2}(p_i^x - p_i^y)$, with $i = x, y, z$. The tight-binding Hamiltonian defined by the base \mathcal{V}, including local spin-orbit coupling, can be expressed in real space as

$$H = \sum_{i,\mu,\nu} \epsilon_{\mu,\nu} c_{i,\mu}^\dagger c_{i,\nu} + \sum_{i,j,\mu,\nu} [t_{ij,\mu,\nu} c_{i,\mu}^\dagger c_{j,\nu} + \text{H.c.}],$$ \hspace{1cm} (3)

where $c_{i,\mu}^\dagger (c_{i,\mu})$ creates (annihilates) an electron in the unit cell i in the atomic orbital $\mu = 1, \ldots, 6$, belonging to the Hilbert space defined by \mathcal{V}. The Hamiltonian in k-space can be expressed as:

$$H = \begin{pmatrix} H_{MM} & H_{MX} \\ H_{MX}^\dagger & H_{XX} \end{pmatrix},$$

$$H_{MM} = \epsilon_M + 2 \sum_{i=1,2,3} t_{iM}^M \cos (k \cdot a_i),$$

$$H_{MX} = \epsilon_X + 2 \sum_{i=1,2,3} t_{iX}^M \cos (k \cdot a_i),$$

$$H_{XX} = \epsilon_X + 2 \sum_{i=1,2,3} t_{iX}^X \cos (k \cdot a_i),$$

$$H_{MX} = \sum_{i=1,2,3} t_{iM}^X e^{-i k \cdot \delta_i},$$

where the vectors (δ_i) and (a_i) are shown in Fig. 1(c). The analytical expressions for the TB model are given in Appendix A.

IV. SLATER-KOSTER PARAMETERS FROM FITTING TO AB INITIO CALCULATIONS

Finding the optimal set of Slater-Koster parameters for the TB model considered here is a difficult task. Two main requirements must be satisfied: a good reproduction of the structure of the relevant electronic bands, and faithful representation of the orbital contribution along such bands. The last condition is especially relevant because, for example, different kinds of strain do not affect all the hoppings in the same manner. Therefore capturing the proper orbital contribution is essential when using the TB model for calculations of physical properties of strained membranes. The same happens when one consider the effect of vacancies, adatoms, etc.

In this work we have obtained the Slater-Koster parameters for each compound from a minimization procedure which has the possibility to consider a band/momentum resolved weight, that allows us to resolve more accurately particular k regions of selected bands (e.g. edges of the valence and conduction bands). Furthermore, we can apply constrains for the orbital contribution at specific band regions, taking as a reference the information from the DFT wave-functions. The sets of Slater-Koster parameters that we have obtained for the four compounds are given in Table 1. During the fitting we have used only the 6×6 block of the Hamiltonian because, as explained above, it accounts for the valence and conduction bands. Therefore, we obtain as output all the Slater-Koster parameters but one, Δ_1, which is the crystal field corresponding to $d_{2z^2-r^2}$ orbitals, whose contribution is absent in the 6×6 block. What we have done to estimate the value of Δ_1 is to impose that the edges of the TB and DFT bands coincide for the lower

| TABLE II. Comparison of the orbital contribution at band edges at Γ and X points obtained from DFT and TB models. K' (K'') refers to the edge of the valence (conduction) band at K point, and Γ' refers to the edge of the valence band at the Γ point. |
|-----------------|-----------------|-----------------|-----------------|
| | δV_{pd} | δV_{ps} | δV_{px} |
| MoS$_2$ | 0.00 | 0.00 | 0.00 |
| MoSe$_2$ | 0.00 | 0.00 | 0.00 |
| WS$_2$ | 0.00 | 0.00 | 0.00 |
| WSe$_2$ | 0.00 | 0.00 | 0.00 |

| TABLE III. Comparison of the orbital contribution at band edges at K and Γ points obtained from DFT and TB models. K' (K'') refers to the edge of the valence (conduction) band at K point, and Γ' refers to the edge of the valence band at the Γ point. |
|-----------------|-----------------|-----------------|
| | δV_{pd} | δV_{ps} |
| MoS$_2$ | 0.00 | 0.00 |
| MoSe$_2$ | 0.00 | 0.00 |
| WS$_2$ | 0.00 | 0.00 |
| WSe$_2$ | 0.00 | 0.00 |
Once we have the tight-binding models for the four compounds, we can use them to calculate physical observables as, for example, the optical conductivity \(\sigma(\omega) \). For this aim we use the Kubo formula

\[
\sigma(\omega) = \frac{e^2}{\hbar} \sum_{mn,k} (f(E_n) - f(E_m)) \times \frac{|\langle \Psi_n(k) | \hat{v} | \Psi_m(k) \rangle|^2}{\Delta} h \omega - (E_n(k) - E_m(k))
\]

where \(A \) is the area of the unit cell, \(\Psi_n(k) \) is the eigenstate of energy \(E_n \), \(f(E_n) = 1/(1 + e^{E_n/E_F}) \) is the Fermi-Dirac distribution function, in terms of the inverse temperature \(\beta = 1/k_BT \) and considering that the Fermi energy lies in the gap, and \(\hat{v} = (1/h) \partial H / \partial k \) is the velocity operator.

The results are shown, for the approximate range of validity of our TB models (~ 1 eV above and below the band gap), in Fig. 5. We observe that, for all the compounds there is a threshold for the onset of optical transitions that is equal to the gap \(\Delta \). The steplike structure of \(\sigma(\omega) \) at low energies (see insets of each panel in Fig. 5) is due to the SOC, that leads to two set of optical transitions in the spectrum. Due to the stronger SOC of heavier W atoms, the effect is specially visible in WS\(_2\) and WSe\(_2\), with plateaus of ~ 0.4 eV in \(\sigma(\omega) \), corresponding to the energy splitting of the valence band at the K and K’ points of the Brillouin zone (see Fig. 3). These transitions lead to the well known A and B absorption peaks observed in photoluminescence\([28]\). We further notice that our results for the optical conductivity are in good agreement, even for the onset energy, with experimental measurements (see e.g. Ref. 36). At higher energies, the optical conductivity shows a series of peaks that are associated to optical transitions between flat bands in the spectrum (van Hove singularities). Such van Hove singularities are clearly evident for the valence and conduction bands at the M point of the Brillouin zone (see Fig. 3). We notice that disorder (vacancies, adatoms, etc.), not included here, can lead to the creation of midgap states that allows for additional optical transitions in the spectrum\([29]\).

VI. SUMMARY

In summary, we have generalized the tight-binding model for MoS\(_2\) of Ref. 35 to the other families of semiconducting TMDs: MoSe\(_2\), W\(_2\)S\(_2\) and WSe\(_2\). Our main result is the set of Slater-Koster parameters of Table I which have been obtained from a fit to DFT calculations in which special care was paid to capture the main orbital contribution of the TB bands at the relevant regions of the band structure. The obtained models have been used to calculate the optical conductivity of the different compounds. This approximation can be straightforwardly generalized to multi-layer systems with arbitrary stacking orders, heterostructures made from the stacking of layers of different compounds, twisted multilayers, strained and/or disordered samples, etc.
ACKNOWLEDGMENTS

We appreciate useful conversations with E. Cappelluti, P. Ordejón, F. Guinea, M.P. López-Sancho and H. Rostami. J.A. S.-G. acknowledges financial support from European Union’s Seventh Framework Programme (FP7/2007- 2013) through the ERC Advanced Grant NOV-GRAPHENE (GA 290846). P. S.-J. was supported by MINECO through Grant No. FIS2015-65706-P and the Ramón y Cajal programme RYC-2013-14645. R.R. acknowledges financial support from MINECO (FIS2014-58445-JIN).

1 K. S. Novoselov, D. Jiang, F. Schedin, T. J. Booth, V. V. Khotkevich, S. V. Morozov, and A. K. Geim, “Two-dimensional atomic crystals,” Proc. Natl. Acad. Sci. USA 102, 10451–10453 (2005).
2 Qing Hua Wang, Kourosh Kalantar-Zadeh, Andras Kis, Jonathan N. Coleman, and Michael S. Strano, “Electronics and optoelectronics of two-dimensional transition metal dichalcogenides,” Nature Nanotech. 7, 699 (2012).

3 Deep Jariwala, Vinod K. Sangwan, Lincoln J. Lauhon, Tobin J. Marks, and Mark C. Hersam, “Emerging device applications for semiconducting two-dimensional transition metal dichalcogenides,” ACS Nano 8, 1102–1120 (2014).

4 Rudren Ganatra and Qing Zhang, “Few-layer mos2: A promising layered semiconductor,” ACS Nano 8, 4074–4099 (2014).

5 Ji Feng, Xiaofeng Qian, Cheng-Wei Huang, and Ju Li, “Strain-engineered artificial atom as a broad-spectrum solar energy funnel,” Nature Photonics 6, 866–872 (2012).

6 Hui Pan and Yong-Wei Zhang, “Tuning the electronic and magnetic properties of mos2 nanoribbons by strain engineering,” The Journal of Physical Chemistry C 116, 11752–11757 (2012).

7 Hartwin Peelaers and Chris G Van de Walle, “Effects of strain on band structure and effective masses in mos2,” Phys. Rev. B 86, 241401 (2012).

8 E. Scalise, M. Houssa, G. Pourtois, V.V. Afanas’ev, and A. Stesmans, “First-principles study of strained 2d mos2,” Physica E: Low-dimensional Systems and Nanостructures 56, 416 – 421 (2014).

9 Alejandro Molina-Sánchez, Kerstin Hummer, and Ludger Wirtz, “Vibrational and optical properties of mos2: From monolayer to bulk,” Surface Science Reports 70, 554 – 586 (2015).

10 Thomas Brumme, Matteo Calandra, and Francesco Mauri, “First-principles theory of field-effect doping in transition-metal dichalcogenides: Structural properties, electronic structure, Hall coefficient, and electrical conductivity,” Phys. Rev. B 91, 155436 (2015).

11 Z. Y. Zhu, Y. C. Cheng, and U. Schwingenschlögl, “Giant spin-orbit-induced spin splitting in two-dimensional transition-metal dichalcogenide semiconductors,” Phys. Rev. B 84, 153402 (2011).

12 Di Xiao, Gui-Bin Feng, Xiandong Fu, and Wang Yao, “Coupled spin and valley physics in monolayers of mos2 and other group-vi dichalcogenides,” Phys. Rev. Lett. 108, 196802 (2012).

13 Xiaoandong Xu, Wang Yao, Di Xiao, and Tony F Heinz, “Spin and pseudospins in layered transition metal dichalcogenides,” Nature Physics 10, 343–350 (2014).

14 S. Babae Touski, M. Pourfath, R. Roldán, and M. P. López-Sancho, “Enhanced Spin-Flip Scattering by Surface Roughness in WS2 and MoS2 Nanoribbons,” ArXiv e-prints (2016), arXiv:1606.03339

15 H. Zeng, J. Dai, W. Yao, D. Xiao, and X. Cui, “Valley polarization in mos2 monolayers by optical pumping,” Nature Nanotech. 7, 490 (2012).

16 Kin Fai Mak, Keliang He, Jie Sahn, and Tony F. Heinz, “Control of valley polarization in monolayer mos2 by optical helicity,” Nature Nanotech. 7, 494 (2012).

17 T. Cao, G. Wang, W. Han, H. Ye, C. Zhu, J. Shi, Q. Niu, P. Tan, E. Wang, B. Liu, and J. Feng, “Valley-selective circular dichroism of monolayer molybdenum disulphide,” Nature Commun. 3, 887 (2012).

18 Hualing Zeng, Gui-Bin Liu, Junfeng Dai, Yajun Yan, Bairen Zhu, Ruicong He, Lu Xie, Shijie Xu, Xianhui Chen, Wang Yao, and Xiaodong Cui, “Optical signature of symmetry variations and spin-valley coupling in atomically thin tungsten dichalcogenides,” Scientific Reports 3, 1609 (2013).

19 Sanfeng Wu, Jason S Ross, Gui-Bin Liu, Grant Alivazian, Aaron Jones, Zaiyao Fei, Wenguang Zhu, Di Xiao, Wang Yao, David Cobden, and X. Xu, “Electrical tuning of valley magnetic moment through symmetry control in bilayer mos2,” Nature Physics 9, 149 (2013).

20 Qinsheng Wang, Shaofeng Ge, Xiao Li, Jun Qiu, Yanxin Ji, Ji Feng, and Dong Sun, “Valley carrier dynamics in monolayer molybdenum disulphide from helicity-resolved ultrafast pump-probe spectroscopy,” ACS Nano 7, 11087–11093 (2013).

21 Kin Fai Mak, Keliang He, Changgu Lee, Gwan Hyoung Lee, James Hone, Tony F. Heinz, and Jie Shan, “Tightly bound trions in monolayer mos2,” Nature Mat. 12, 207 (2013).

22 G. Sallen, L. Bouet, X. Marie, G. Wang, C. R. Zhu, W. P. Han, Y. Lu, P. H. Tan, A. Mando, B. L. Liu, and U. Urbaszek, “Robust optical emission polarization in mos2 monolayers through selective valley excitation,” Phys. Rev. B 86, 081301 (2012).

23 Andor Kormányos, Viktor Zólyomi, Neil D. Drummond, and Guido Burkard, “Spin-orbit coupling, quantum dots, and qubits in monolayer transition metal dichalcogenides,” Phys. Rev. X 4, 011034 (2014).

24 Andor Kormányos, Guido Burkard, Martin Gmitra, Jaroslav Fabian, Viktor Zólyomi, Neil D Drummond, and Vladimir Fal’ko, “k * p theory for two-dimensional transition metal dichalcogenide semiconductors,” 2D Materials 2, 022001 (2015)

25 R. Roldán, A. Castellanos-Gomez, E. Cappelluti, and F. Guinea, “Strain engineering in semiconducting two-dimensional crystals,” J. of Phys.: Condens. Matter 27, 313201 (2015).

26 Pablo San-Jose, Vincenzo Parente, Francisco Guinea, Rafael Roldán, and Elsa Prada, “Inverse funnel effect of excitons in strained black phosphorus,” Phys. Rev. X 6, 031046 (2016)

27 Wenzhuo Wu, Lei Wang, Yi Lei, Fan Zhang, Long Lin, Simiao Niu, Daniel Chenet, Xian Zhang, Yufeng Hao, Tony F Heinz, and Zhong L. Hone, James Wang, “Piezolectricity of single-atomic-layer mos2 for energy conversion and piezotronics,” Nature 514, 470–474 (2014).

28 Rafael Roldán, Jose A. Silva-Guillén, M. Pilar López-Sancho, Francisco Guinea, Emmanuele Cappelluti, and Pablo Ordejón, “Electronic properties of single-layer and multilayer transition metal dichalcogenides mx2 (m = mo, w and x = s, se),” Annalen der Physik 526, 347–357 (2014).

29 Shengjun Yuan, Rafael Roldán, M. I. Katsnelson, and Francisco Guinea, “Effect of point defects on the optical and transport properties of mos2 and ws2,” Phys. Rev. B 90, 041402 (2014).
DFT calculations were done using the S37A Kumar and PK Ahluwalia, "Electronic structure of transitionmetal dichalcogenides," Phys. Rev. B 92, 195402 (2015).

A. J. Pearce and G. Burkard, "A Tight Binding Approach to Strain and Curvature in Monolayer Transition-Metal Dichalcogenides," ArXiv e-prints (2015), arXiv:1511.06254 [cond-mat.mes-hall]

H. Rostami, R. Asgari, and F. Guinea, "Edge modes in zigzag and armchair ribbons of monolayer MoS2," ArXiv e-prints (2015), arXiv:1511.07003

Mojtaba Farmanbar, Taher Amlaki, and Geert Brocks, "Green’s function approach to edge states in transition metal dichalcogenides," Phys. Rev. B 93, 205444 (2016).

Andres Castellanos-Gomez, Rafael Roldán, Emmanuele Cappelluti, Michele Buscema, Francisco Guinea, Herre S. J. van der Zant, and Gary A. Steele, "Local strain engineering in atomically thin mos2," Nano Letters 13, 5361 (2013).

E. Cappelluti, R. Roldán, J. A. Silva-Guillén, P. Ordejón, and F. Guinea, "Tight-binding model and direct-gap/indirect-gap transition in single-layer and multilayer mos2," Phys. Rev. B 88, 075409 (2013).

Gui-Bin Liu, Wen-Yu Shan, Yuguai Yao, Wang Yao, and Di Xiao, "Three-band tight-binding model for monolayers of group-vib transition metal dichalcogenides," Phys. Rev. B 88, 085433 (2013).

K. Kosmider, J. W. González, and J. Fernández-Rossier, "Large spin splitting in the conduction band of transition metal dichalcogenide monolayers," Phys. Rev. B 88, 245436 (2013).

A. Kumar and PK Ahluwalia, "Electronic structure of transition metal dichalcogenides monolayers 1h-mx2 (m= mo, w; x= s, se, te) from ab-initio theory: new direct band gap semiconductors," The European Physical Journal B 85, 1–7 (2012).

DFT calculations were done using the SIESTA code with the exchange-correlation potential of Ceperly-Alder as parametrized by Perdew and Zunger. A split-valence double-ζ basis set including polarization functions was considered. The energy cutoff and the BZ sampling were chosen to converge the total energy with a value of 300 Ry and 30 × 30 × 1. The energy cutoff was set to 10−6 eV. Spin-orbit interaction of the different compounds was considered by following the method developed in Ref. 39. The lattice parameters used in the calculation are given in Table I.

R Roldán, M P López-Sancho, F Guinea, E Cappelluti, J A Silva-Guillén, and P Ordejón, "Momentum dependence of spin-orbit interaction effects in single-layer and multi-layer transition metal dichalcogenides," 2D Mater. 1, 034003 (2014)

\[t_{1}^{MX} = \frac{\sqrt{2}}{4\sqrt{7}} \begin{pmatrix} -9V_{pd\sigma} + \sqrt{3}V_{pd\sigma} & 3\sqrt{3}V_{pd\sigma} - V_{pd\sigma} & 12V_{pd\sigma} + \sqrt{3}V_{pd\sigma} \\ 5\sqrt{3}V_{pd\sigma} + 3V_{pd\sigma} & 9V_{pd\sigma} - \sqrt{3}V_{pd\sigma} & -2\sqrt{3}V_{pd\sigma} + 3V_{pd\sigma} \\ -V_{pd\sigma} - 3\sqrt{3}V_{pd\sigma} & 5\sqrt{3}V_{pd\sigma} + 3V_{pd\sigma} & 6V_{pd\sigma} - 3\sqrt{3}V_{pd\sigma} \end{pmatrix} \] (A3)

\[t_{2}^{MX} = \frac{\sqrt{2}}{4\sqrt{7}} \begin{pmatrix} 0 & -6\sqrt{3}V_{pd\sigma} + 2V_{pd\sigma} & 12V_{pd\sigma} + \sqrt{3}V_{pd\sigma} \\ 0 & -6V_{pd\sigma} - 4\sqrt{3}V_{pd\sigma} & 4\sqrt{3}V_{pd\sigma} - 6V_{pd\sigma} \end{pmatrix} \] (A4)

\[t_{3}^{MX} = \frac{\sqrt{2}}{4\sqrt{7}} \begin{pmatrix} 9V_{pd\sigma} - \sqrt{3}V_{pd\sigma} & 3\sqrt{3}V_{pd\sigma} - V_{pd\sigma} & 12V_{pd\sigma} + \sqrt{3}V_{pd\sigma} \\ -5\sqrt{3}V_{pd\sigma} - 3V_{pd\sigma} & 9V_{pd\sigma} - \sqrt{3}V_{pd\sigma} & -2\sqrt{3}V_{pd\sigma} + 3V_{pd\sigma} \\ -V_{pd\sigma} + 3\sqrt{3}V_{pd\sigma} & 3\sqrt{3}V_{pd\sigma} - V_{pd\sigma} & 12V_{pd\sigma} + \sqrt{3}V_{pd\sigma} \end{pmatrix} \] (A5)

For convenience we reproduce in this appendix the analytical expressions for the model. The on-site terms of the Hamiltonian can be written in the compact form:

\[\epsilon = \begin{pmatrix} \epsilon_{M} & 0 \\ 0 & \epsilon_{X} \end{pmatrix}, \] (A1)

where

\[\epsilon_{M} = \begin{pmatrix} \Delta_{0} & 0 & 0 \\ 0 & \Delta_{\lambda M} s_{z} & -i\lambda_{M} \Delta_{z} \\ 0 & i\lambda_{M} \Delta_{z} & \Delta_{2} \end{pmatrix}, \] (A2)

\[\epsilon_{X} = \begin{pmatrix} \Delta_{p} + t_{xx}^{1} & -i\lambda_{X} s_{z} & 0 \\ i\lambda_{X} s_{z} & \Delta_{p} + t_{yy}^{1} & 0 \\ 0 & 0 & \Delta_{z} - t_{zz}^{1} \end{pmatrix}, \] (A2)

where \(\lambda_{M} \) and \(\lambda_{X} \) are the SOC of the metal (M) and chalcogen atoms (X), respectively, and \(s_{z} = \pm \) is the z-component of the spin degree of freedom. The effects of vertical hopping \(V_{pp} \) between top and bottom X atoms is considered through the terms \(t_{xx}^{1} = t_{yy}^{1} = V_{pp} \), and \(t_{zz}^{1} = V_{pp} \). The nearest neighbor hopping between M and X atoms are
where the direction of the hopping labelled by subindices 1, 2, and 3 is shown in Fig. 1(b). Hopping terms corresponding to processes between the same kind of atoms, \(M-M \) or \(X-X \) (see Fig. 1(c)), are given by

\[
\begin{align*}
t_{1MM}^M &= \frac{1}{4} \begin{pmatrix} 3V_{dd\delta} + V_{d\delta} & \frac{\sqrt{3}}{2}(-V_{dd\delta} + V_{dd\sigma}) & \frac{\sqrt{3}}{4}(V_{dd\delta} - V_{dd\sigma}) \\ \frac{\sqrt{3}}{2}(-V_{dd\delta} + V_{dd\sigma}) & \frac{1}{4}(V_{dd\delta} + 12V_{dd\pi} + 3V_{dd\sigma}) & \frac{\sqrt{3}}{4}(V_{dd\delta} - 4V_{dd\pi} + 3V_{dd\sigma}) \\ -\frac{3}{2}(V_{dd\delta} - V_{dd\sigma}) & \frac{3}{4}(V_{dd\delta} - 4V_{dd\pi} + 3V_{dd\sigma}) & \frac{1}{4}(3V_{dd\delta} + 4V_{dd\pi} + 9V_{dd\sigma}) \end{pmatrix} \\
t_{2MM}^M &= \frac{1}{4} \begin{pmatrix} 3V_{dd\delta} + V_{dd\sigma} & \sqrt{3}(V_{dd\delta} - V_{dd\sigma}) & 0 \\ \sqrt{3}(V_{dd\delta} - V_{dd\sigma}) & V_{dd\delta} + 3V_{dd\sigma} & 0 \\ 0 & 0 & 4V_{dd\pi} \end{pmatrix} \\
t_{3MM}^M &= \frac{1}{4} \begin{pmatrix} 3V_{dd\delta} + V_{dd\sigma} & \frac{\sqrt{3}}{2}(-V_{dd\delta} + V_{dd\sigma}) & \frac{3}{4}(V_{dd\delta} - 4V_{dd\pi} + 3V_{dd\sigma}) \\ \frac{\sqrt{3}}{2}(-V_{dd\delta} + V_{dd\sigma}) & \frac{1}{4}(V_{dd\delta} + 12V_{dd\pi} + 3V_{dd\sigma}) & \frac{3}{4}(V_{dd\delta} - V_{dd\sigma}) \\ \frac{3}{2}(V_{dd\delta} - V_{dd\sigma}) & \frac{3}{4}(V_{dd\delta} - 4V_{dd\pi} + 3V_{dd\sigma}) & \frac{1}{4}(3V_{dd\delta} + 4V_{dd\pi} + 9V_{dd\sigma}) \end{pmatrix} \\
t_{1XX}^X &= \frac{1}{4} \begin{pmatrix} 3V_{pp\pi} + V_{pp\sigma} + V_{pp\pi} & \sqrt{3}(V_{pp\pi} - V_{pp\sigma}) & 0 \\ \sqrt{3}(V_{pp\pi} - V_{pp\sigma}) & V_{pp\pi} + 3V_{pp\sigma} & 0 \\ 0 & 0 & 4V_{pp\pi} \end{pmatrix} \\
t_{2XX}^X &= \begin{pmatrix} V_{pp\sigma} & 0 & 0 \\ 0 & V_{pp\pi} & 0 \\ 0 & 0 & V_{pp\pi} \end{pmatrix} \\
t_{3XX}^X &= \frac{1}{4} \begin{pmatrix} 3V_{pp\pi} + V_{pp\sigma} & \sqrt{3}(V_{pp\pi} - V_{pp\sigma}) & 0 \\ \sqrt{3}(V_{pp\pi} - V_{pp\sigma}) & V_{pp\pi} + 3V_{pp\sigma} & 0 \\ 0 & 0 & 4V_{pp\pi} \end{pmatrix}.
\end{align*}
\]

Appendix B: Orbital contribution of the tight-binding bands

In this appendix we show the orbital contribution of the tight-binding bands, as compared to the DFT results, for MoSe\(_2\) (Fig. 6), WS\(_2\) (Fig. 7) and WSe\(_2\) (Fig. 8).
FIG. 6. Same as Fig. 4 but for MoSe$_2$.

FIG. 7. Same as Fig. 4 but for WS$_2$.
FIG. 8. Same as Fig. 4 but for WSe$_2$.