Endovascular Treatment of Patients with Ruptured Intracranial Aneurysms: A Series of 468 Patients Treated Over a 14-Year Period

FRANNY HULSCHER
BENJAMIN MINE
STÉPHANIE ELENS
THOMAS BONNET
JUAN VAZQUEZ SUAREZ
BORIS LUBICZ

*Author affiliations can be found in the back matter of this article

ABSTRACT

Purpose: Non-traumatic subarachnoid hemorrhage (SAH) is an emergency usually caused by the rupture of a saccular intracranial aneurysm. Endovascular treatment (EVT) is now considered as the first therapeutic option. The aim of our study is to evaluate, over a 14-year period in a single center, the result of EVT of ruptured intracranial aneurysms.

Methods: From the retrospective analysis of our prospectively maintained database, we collected data of 457 patients successfully treated by endovascular approach for a SAH. Descriptive statistics and percentages were used to report clinical and anatomical outcomes, procedure-related complications, post procedural events, morbidity and mortality.

Results: EVT was unsuccessful in eleven patients but effective in 457 patients with two patients who experienced a rebleeding (0.4%). In 6.3% of cases, a second EVT was necessary. The final aneurysm occlusion was complete (65.7%), with a neck remnant (28.2%) or incomplete (6.1%). Procedure-related complications occurred in 5.9% of patients and were associated with five clinical worsening and one death. Overall EVT-related morbidity and mortality were thus of 1.3% and 0.4% respectively. At discharge, 71% of patients had a good recovery (mRS 0–2), 11.2% had a poor outcome (mRS 3–5), and 17.8% died.

Conclusion: This study seems to prove that high-volume centers with experienced interventional neuroradiologists carry low rates of technical failure and complication from EVT of ruptured intracranial aneurysm.
INTRODUCTION

Non-traumatic subarachnoid hemorrhage (SAH) is a major life-threatening emergency. In 80% of cases, it is caused by the rupture of a saccular intracranial aneurysm (sIA). Other common causes are dissecting aneurysms, cerebral arteriovenous malformations and vasculitis [1–3].

The hallmark symptom is a sudden and severe headache. Associated signs include nausea, vomiting, photophobia, neck stiffness, focal neurologic deficits, seizure or depressed consciousness [1, 2, 4]. The initial clinical severity is determined by simple validated grading system like the World federation of Neurosurgical Societies (WFNS) that is the most used indicators and considered as a major determinant of the prognosis [4, 5].

SAH may cause acute hydrocephalus and brain edema. Later complications include vasospasm and delayed cerebral ischemia that are associated with serious damages even after the aneurysm treatment [1, 2, 5].

Aneurysmal SAH are most often treated within 24 – 72 hours [3–5]. Neurosurgical clipping and endovascular treatment (EVT) by endosaccular coiling are both effective for the treatment of saccular intracranial aneurysms. These treatments have been compared and EVT is now considered as the first therapeutic option in most cases. Treatment choice is made by a multidisciplinary team including interventional neuroradiologists (INR), neurosurgeons, intensivists, and neurologists [3–9].

The aim of our study is to evaluate, over a 14-year period in a single high-volume center, the results of EVT of ruptured intracranial aneurysm.

PATIENTS & METHODS

STUDY DESIGN AND PATIENTS

This study was approved by our institutional ethical committee (n°P2019/152). Our prospectively maintained database was retrospectively analyzed to identify, between April 2004 and June 2018, all patients treated only by endovascular approach for a ruptured IA.

COLLECTED DATA

Available data were collected from the admission date in different institutions to collect the first bleeding time. The outcomes of our patients were followed until they were discharged from our hospital, or another medical institution and no clinical results were collected beyond three months of follow-up after EVT.

ENDOVASCULAR PROCEDURE AND EXTERNAL VENTRICULAR DRAIN

All EVT were performed by an INR from our institution. As it is reflected in Figure 1, the majority of patients were treated within the first days following the SAH (median = day 1 and interquartile range = 2 days).

Placement of an external ventricular drainage (EVD) was decided by our neurovascular team. Patients were then monitored in our intensive care unit until the overall stabilization of their condition.

STATISTICAL ANALYSIS

The sample was analyzed by descriptive statistics. Quantitative data were expressed in mean values ± standard deviation (SD) or medians and 95% confidence intervals (CI) or interquartile range, accordingly, after verification of normality of distributions by the Kolmogorov-Smirnov test. Qualitative data were expressed by the way of percentages.

Figure 1 Percentage of patients treated according to the day following the SAH.
PATIENT CHARACTERISTICS
Four hundred sixty-eight patients were identified. In eleven patients, there was a failure of EVT (2.4%). These patients were excluded from the present analysis and are detailed in Appendix.

Our final cohort includes 457 patients successfully treated by endovascular approach. Patient characteristics are detailed in Table 1.

Imaging characteristics of 457 patients successfully treated by endovascular approach are detailed in Table 2.

RESULTS
PROCEDURES
Figure 2 shows the endovascular technique used for EVT. In 6.3% of the cases (n = 29/457), a second EVT was necessary to completely exclude the aneurysm or the arterial dissection. Figure 3 shows the second endovascular method.

ANATOMICAL OUTCOME
Regarding aneurysm or arterial dissection occlusion, EVT achieved a complete occlusion in 65.7% of the cases. There was a neck remnant in 28.2% and an incomplete occlusion in 6.1% of the cases.

PROCEDURE RELATED COMPLICATIONS AND CLINICAL OUTCOMES
Procedure-related complications occurred in 27 cases (5.9%) in 26 patients.

Complications included 9 thromboembolic events (2%), 6 aneurysm perforations (1.3%), 5 vasospasms (1.1%), 2 coil migrations (0.4%), 4 arterial dissections (0.9%), one WEB device migration (0.2%). These complications were associated with clinical consequences in 6 patients with 5 worsening of neurological exam and 1 death. Immediate EVT-related morbidity and mortality were thus 1.1% and 0.2% respectively.

IMMEDIATE POST-PROCEDURAL GLASGOW OUTCOME SCORE (GOS)
Immediate clinical outcomes were collected within 24 hours after EVT and are detailed in Figure 4.

POST-PROCEDURAL EVENTS
Clinical complications occurred in 246/457 (53.8%) patients. These events are detailed in Table 3.

Table 1 Patient characteristics (n = 457). Abbreviations as in the text.

AGE (YEARS)	52 ± 14.2 (SD)	
Gender		
Male	169 (37%)	
Female	288 (63%)	

WFNS (before the first procedure)	
Grade 1	231 (50.6%)
Grade 2	75 (16.4%)
Grade 3	8 (1.8%)
Grade 4	81 (17.7%)
Grade 5	62 (13.6%)

Evd	
Yes	192 (42%)
No	255 (58%)

Table 2 Imaging characteristics (n = 457). Abbreviations as in the text.

a Dissection (n = 33) size was not measured.

b Maximal diameter.

c Before EVT.

Table 3 ORIGIN OF SAH (n = 457)

Origin of SAH	Count (Percentage)
Saccular aneurysm	414 (90.6%)
Fusiform aneurysm	10 (2.2%)
Dissecting aneurysm	33 (7.2%)

Table 4 Imaging characteristics (n = 457). Abbreviations as in the text.
Aneurysm rebleeding occurred in 2/457 patients (0.4%):

- A 34-year-old woman with a WFNS grade 3 and a large MCA s1A was treated by coiling on the 8th day after SAH. A vasospasm was identified before EVT and the occlusion of the s1A was incomplete. The next day, a rebleeding occurred and an EVD was needed with a second EVT by stenting and coiling. The patient kept a moderate disability at discharge and a neck remnant regarding the occlusion of the s1A.

- A 66-year-old man with a WFNS grade 4 and a posterior cerebral artery dissection was treated by stenting on the 2nd day after SAH. The patient presented then a major vasospasm and hydrocephalus that had worsened his clinical situation. The rebleeding occurred ten days after the EVT and left him in a brain-dead state.

Overall EVT-related morbidity and mortality were thus 1.3% and 0.4% respectively.

There were 37 ventriculitis and 2 meningitis among 192 EVDs placed. Overall EVD-related infections were thus 20.3%.

CLINICAL OUTCOMES AT DISCHARGE

Modified Rankin Scale (mRS) at discharge is shown in Figure 5.

Figure 6 shows the comparison between GOS immediately after EVT (darker gray, see Figure 4) and GOS at discharge (lighter grey).
The report of the clinical results (mRS) at discharge according to the initial WFNS grade is detailed in Table 4.

DISCUSSION

PATIENTS AND IMAGING CHARACTERISTICS

Our WFNS grades correspond to the ARETA trial and the CLARITY studies and show a similar population with most patients with a favorable grade at admission [10, 11].

In this study, the proportion of saccular intracranial aneurysms (90.6%) and arterial dissection (7.2%) is probably higher because we have excluded etiologies that did not require an EVT. The most common sites of ruptured aneurysms are the ACom, the Pcom and the MCA with often unique aneurysm which are in line with our results. The median size of ruptured aneurysms is around 6 mm and most of intracranial aneurysms are smaller than 1 cm (around 80–90% of cases) like in our study which highlights the rupture risk even with small aneurysms [2, 6, 7, 9–11, 14–17].

EVT PROCEDURE AND ANATOMICAL OUTCOME

Our results show high use of intracranial stents and vascular occlusion. It can be explained by several factors: (1) a high percentage (9.4%) of dissections and fusiform aneurysms; (2) stents are more often used for larger aneurysms (18.4% in our study) and/or wide neck aneurysms (although neck size was not measured in our data).

Oclusion rates reported in our series were like the CLARITY and Park et al. studies [6, 9, 10, 16, 18–21].

PROCEDURE-RELATED COMPLICATIONS AND CLINICAL OUTCOMES

In our study, the rates of intraoperative complications, EVT-related morbidity and mortality are lower than in the literature [19, 21, 22].

Table 3 Post-procedural events (n = 246).

Event	Events	Percent
Vasospasm and delayed cerebral ischemia (DCI)	166	67.5%
Intracranial hypertension	54	22%
Epileptic seizure	38	15.5%
Ventriculitis	37	15%
Hydrocephalus	23	9.4%
Stroke	12	4.9%
Septic shock	11	4.5%
Terson syndrome	9	3.7%
Status epileptic	9	3.7%
Cardiogenic shock	5	2%
EVD related hemorrhage	5	2%
Pulmonary embolism	4	1.6%
Digestive ischemia	3	1.2%
Acute respiratory distress syndrome (ARDS)	2	0.8%
Meningitis	2	0.8%
Aneurysm rebleeding	2	0.8%
Transient ischemic attack	1	0.4%
Myocardial infarction	1	0.4%
Cardiorespiratory arrest	1	0.4%
Intra-stent stenosis	1	0.4%

Figure 4 Percentage of immediate GOS after EVT.
Regarding thromboembolic events (2% in our study), the range in the literature is between 2.5% and 28.0% [19, 21–23]. Good results can possibly be explained by the use of a strict heparinization protocol, the same as for unruptured aneurysms. The aim is to double the activated clotting time (ACT) during EVT, and to control it every 30 minutes. Heparinization is then prolonged for 12–24h in most patients. Some studies showed comparable good results using continuous heparin for 24h without a significant increase of hemorrhagic complications [22, 24].

The rate of intraoperative rupture in our study was 1.3% which is lower to the reported rates found in literature (4.4–7.6%) [19, 21, 23]. Practitioner experience and centers with high number of patients have lower complication rate and improve outcomes from SAH which could also explain our good results. Indeed, in our center, around 250 IA are yearly treated, most of them

Figure 5 Percentage of mRS at discharge.

Figure 6 Comparison between percentage of GOS immediately after EVT (darker gray) and at discharge (lighter grey).
WFNS	mRS	N	%
grade 1			
0 = No symptoms at all		154	66.7
1 = No significant disability despite symptoms		35	15.2
2 = Slight disability		19	8.2
3 = Moderate disability		6	2.6
4 = Moderate severe disability		2	0.9
5 = Severe disability		1	0.4
6 = Dead		14	6.1
Total		**231**	**100**
grade 2			
0 = No symptoms at all		27	36.0
1 = No significant disability despite symptoms		20	26.7
2 = Slight disability		7	9.3
3 = Moderate disability		5	6.7
4 = Moderate severe disability		2	2.7
5 = Severe disability		2	2.7
6 = Dead		12	16.0
Total		**75**	**100**
grade 3			
0 = No symptoms at all		0	0
1 = No significant disability despite symptoms		3	37.5
2 = Slight disability		2	25
3 = Moderate disability		2	25
4 = Moderate severe disability		1	12.5
5 = Severe disability		0	0
6 = Dead		0	0
Total		**8**	**100**
grade 4			
0 = No symptoms at all		10	12
1 = No significant disability despite symptoms		20	25
2 = Slight disability		14	17
3 = Moderate disability		7	9
4 = Moderate severe disability		3	4
5 = Severe disability		1	1
6 = Dead		26	32
Total		**81**	**100**
grade 5			
0 = No symptoms at all		2	3
1 = No significant disability despite symptoms		7	11
2 = Slight disability		5	8
3 = Moderate disability		6	10
4 = Moderate severe disability		10	16
5 = Severe disability		3	5
6 = Dead		29	47
Total		**62**	**100**

Table 4 mRS according to initial WFNS. Abbreviations as in the text.
being unruptured and referred by other centers [4, 13, 19, 21, 22].

POST-PROCEDURAL EVENTS

In our series, delayed cerebral ischemia (DCI) occurred in 166 patients (36.3%) and was the most frequent complication. Our results are thus in accordance with the literature.

The incidence of acute re-rupture after coiling embolization of ruptured saccular intracranial aneurysms is between 1.0% to 3.6% [21, 25]. Dissecting aneurysms have different etiological and anatomical characteristics. The recurrence of SAH is not uncommon with a rate of 40% specifically for patient treated conservatively [16, 21, 25]. In the present series, two patients suffered from an early rebleeding. One was a saccular intracranial aneurysm with an acute re-rupture probably due to an incomplete occlusion during the first EVT. The second is a dissection treated by stenting. Our results compare favorably with the literature (0.4%).

CLINICAL OUTCOMES AT DISCHARGE

The ISAT study showed 74.6% of modified Rankin Scales (mRS) between 0 – 2 and 25.4% of mRS between 3 – 6 which are like our results even if we have more patients without any symptom (42%) and more fatalities (17.8%) compared to ISAT (20% and 7.5% respectively) [7, 8].

As illustrated in Figure 6, a significant proportion of patients at discharge are in a worse clinical condition than immediately after EVT. Post-procedural events like DCI, intracranial hypertension or epileptic seizure may explain this worsening.

LIMITATIONS

Our monocentric retrospective study has several limitations despite the fact that our database was prospectively maintained. Some data could have been collected to provide interesting information such as the aneurysm neck size, patient risk factors, the severity of the bleeding on CT scan, the detailed presentation of SAH. On the other hand, mid- and long-term results were not evaluated in the present study. Aneurysm recanalization and late rebleeding are significant issues and could be part of a complementary study to evaluate long-term results of EVT of ruptured IA [5, 12, 17, 25]. Finally, data concerning patients treated by surgical clipping were not evaluated.

CONCLUSION

This study shows that EVT is safe and effective for patients with ruptured intracranial aneurysms, especially when high practitioner experience and high-volume centers are available. However, even if SAH management has improved over the years, associated complications still lead to significant neurological impairment in some patients. Further research on these topics is mandatory to improve the clinical course of these patients.

APPENDIX

EVT FAILURES

PATIENT GENDER/AGE	WFNS BEFORE EVT	EVD ANEURYSM CHARACTERISTICS	REASON OF THE EVT FAILURE
F/36	2	No PICA, small	Unreachable
M/57	2	Yes ACom, large	Risk of vascular occlusion
M/78	4	Yes ACom, small	Carotid stenosis
F/56	1	Yes ACom, small	Coiling instability
F/54	2	Yes PICA, small	Risk of vascular occlusion
F/43	5	Yes ACom, small	Risk of vascular occlusion
F/84	1	Yes PCom, large	Coiling instability
F/43	2	Yes ACom, small	Carotid stenosis
F/50	1	Yes ACom, large	Coiling instability
M/56	1	Yes MCA, small	Coiling instability
M/53	1	No PCom, small	Too small aneurysm size

COMPETING INTERESTS

The authors have no competing interests to declare.

AUTHOR AFFILIATIONS

Franny Hulscher
Hôpital Erasme, BE

Benjamin Mine
Hôpital Erasme, BE

Stéphanie Elens
Hôpital Erasme, BE

Thomas Bonnet
Hôpital Erasme, BE

Juan Vazquez Suarez
Hôpital Erasme, BE

Boris Lubizc
orcid.org/0000-0001-8312-2115
Hôpital Erasme, BE
REFERENCES

1. Lawton MT, Vates GE. Subarachnoid Hemorrhage. N Engl J Med. 2017; 377(3): 257–266. DOI: https://doi.org/10.1056/NEJMc1605827

2. Van Gijn J, Kerr RS, Rinkel GJ. Subarachnoid haemorrhage. Lancet. 2007; 369(9558): 306–318. DOI: https://doi.org/10.1016/S0140-6736(07)60153-6

3. Steiner T, Juvela S, Unterberg A, Jung C, Forsting M, Rinkel G. European Stroke Organization Guidelines for the Management of Intracranial Aneurysms and Subarachnoid Haemorrhage. Cerebrovasc Dis. 2013; 35(2): 93–112. DOI: https://doi.org/10.1159/000346087

4. Connolly ES, Jr, Rabinstein AA, Carhuapoma JR, et al. Guidelines for the Management of Aneurysmal Subarachnoid Hemorrhage. Stroke. 2012; 43(6): 1711–1737. DOI: https://doi.org/10.1161/STROKEAHA.111.003809

5. Rabinstein AA, Lanzino G, Wijdicks EF. Multidisciplinary management and emerging therapeutic strategies in aneurysmal subarachnoid haemorrhage. Lancet Neurol. 2010; 9(5): 504–519. DOI: https://doi.org/10.1016/S1474-4422(10)70087-9

6. Diaz O, Rangel-Castilla L. Endovascular treatment of intracranial aneurysms. Handbook of Clinical Neurology. 2016; 1303–1309. DOI: https://doi.org/10.1016/B978-0-444-53486-6.00067-3

7. Molyneux AJ. International Subarachnoid Aneurysm Trial (ISAT) of neurosurgical clipping versus endovascular coiling in 2143 patients with ruptured intracranial aneurysms: A randomised trial. Lancet. 2002; 360(9342): 1267–1274. DOI: https://doi.org/10.1016/S0140-6736(02)11314-6

8. Molyneux AJ, Kerr RS, Yu LM, Clarke M, Sneade M, Yarnold JA, Sandercock P. International subarachnoid aneurysm trial (ISAT) of neurosurgical clipping versus endovascular coiling in 2143 patients with ruptured intracranial aneurysms: A randomised comparison of effects on survival, dependency, seizures, rebleeding, subgroups, and aneurysm occlusion. Lancet. 2005; 366(9488): 809–817. DOI: https://doi.org/10.1016/S0140-6736(05)67214-5

9. Lubicz B, Balériaux D, Lefranc F, Brotchi J, Bruneau M, Levivier M. Endovascular treatment of intracranial aneurysms as the first therapeutic option. J Neurol. 2007; 344(6): 250–259. DOI: https://doi.org/10.1007/j11016.0007.001

10. Benaisaa A, Barbe C, Pierot L. Analysis of recanalization after endovascular treatment of intracranial aneurysm (ARETA trial): Presentation of a prospective multicenter study. J Neurol. 2015; 42(2): 80–85. DOI: https://doi.org/10.1016/j.neuro.2014.04.003

11. Pierot L, Cognard C, Ricolfi F, Anxionnat R. Immediate Anatomic Results after the Endovascular Treatment of Ruptured Intracranial Aneurysms: Analysis in the CLARITY Series. AJNR Am J Neuroradiol. 2010; 31: 907–911. DOI: https://doi.org/10.3174/ajnr.A1954

12. Van Heuven AW, Dorhout Mees SM, Algra A, Rinkel GJE. Validation of a Prognostic Subarachnoid Hemorrhage Grading Scale Derived Directly From the Glasgow Coma Scale. Stroke. 2008; 39: 1347–1348. DOI: https://doi.org/10.1161/STROKEAHA.107.501345

13. Macdonald RL, Schweizer TA. Spontaneous subarachnoid haemorrhage. Lancet. 2017; 389(10069): 655–666. DOI: https://doi.org/10.1016/S0140-6736(16)30668-7

14. Dey M, Jaffe J, Stadnik A, Awad IA. External Ventricular Drainage for Intraventricular Hemorrhage. Curr Neurol Neurosci Rep. 2012; 12(1): 24–33. DOI: https://doi.org/10.1007/s11910-011-0231-x

15. Gigante P, Hwang BY, Appelboom G, Kellner CP, Kellner MA, Connolly ES. External ventricular drainage following aneurysmal subarachnoid haemorrhage. Br J Neurosurg. 2010; 24(6): 625–632. DOI: https://doi.org/10.3109/02688697.2010.505989

16. Debette S, Compter A, Labeyrie MA, et al. Epidemiology, pathophysiology, diagnosis, and management of intracranial artery dissection. Lancet Neurol. 2015; 14(6): 640–654. DOI: https://doi.org/10.1016/S1474-4422(15)00009-5

17. AlMatter M, Bhogal P, Aguilar Pérez M, et al. The Size of Ruptured Intracranial Aneurysms. Clinical Neurology. 2017; 29(1): 125–133. DOI: https://doi.org/10.1007/s00062-017-0632-6

18. Linzey JR, Williamson C, Rojajee V, Sheehan K, Thompson BG, Pandey AS. Twenty-four-hour emergency intervention versus early intervention in aneurysmal subarachnoid hemorrhage. J Neurosurg. 2018; 128(5): 1297–1303. DOI: https://doi.org/10.3171/2017.2.JNS163017

19. Pierot L, Cognard C, Anxionnat R, Ricolfi F. Ruptured Intracranial Aneurysms: Factors Affecting the Rate and Outcome of Endovascular Treatment Complications in a Series of 782 Patients (CLARITY Study). Radiology. 2010; 256(3): 916–923. DOI: https://doi.org/10.1148/radiol.10092209

20. Ryu CW, Park S, Shin HS, Koh JS. Complications in Stent-Assisted Endovascular Therapy of Ruptured Intracranial Aneurysms and Relevance to Antiplatelet Administration: A Systematic Review. AJNR Am J Neuroradiol. 2015; 36(9): 1682–1688. DOI: https://doi.org/10.3174/ajnr.A4365

21. Park HK, Horowitz M, Jungreis C, et al. Periprocedural morbidity and mortality associated with endovascular treatment of intracranial aneurysms. AJNR Am J Neuroradiol. 2005; 26(3): 506–514.

22. Renowden SA, Béné V, Bradley M, Molyneux AJ. Detachable coil embolisation of ruptured intracranial aneurysms: A single center study, a decade experience. Clin Neurol Neurosurg. 2009; 111(2): 179–188. DOI: https://doi.org/10.1016/j.clineu.2008.09.026
Hulscher et al. Journal of the Belgian Society of Radiology DOI: 10.5334/jbsr.2594

23. Bracard S, Barbier C, Derelle AL, Anxionnat R. Endovascular treatment of aneurisms: Pre, intra and post-operative management. Eur J Radiol. 2013; 82(10): 1633–1637. DOI: https://doi.org/10.1016/j.ejrad.2013.02.012

24. Vance AZ, Jayaraman MV, Dubel GJ, Doberstein CE, Haas RA. Safety of intravenous heparin administration after endovascular treatment for ruptured intracranial aneurysms. J Neurointerv Surg. 2009; 1(2): 136–141. DOI: https://doi.org/10.1136/jnis.2009.000570

25. Li K, Guo Y, Zhao Y, Xu B, Xu K, Yu J. Acute rerupture after coil embolization of ruptured intracranial saccular aneurysms: A literature review. Interv Neuroradiol. 2017; 24(2): 117–124. DOI: https://doi.org/10.1177/1591019917747245