The Banach space $H^1(X, d, \mu)$, II

Paul F.X. Müller
Department of Mathematics
J. Kepler University
A-4040 Linz, Austria

1991 Mathematics Subject Classification: 46 B25, 30 D55
Keywords, Hardy space, Isomorphic classification
1 Introduction

In this paper we give the isomorphic classification of atomic $H^1(X,d,\mu)$, where (X,d,μ) is a space of homogeneous type, hereby completing a line of investigation opened by the word of Bernard Maurey [Ma1], [Ma2], [Ma3] and continued by Lennard Calrleson [C] and Przemyslaw Wojtaszczyk [Woj1], [Wpj2].

The resulting isomorphic representatives dyadic $H^1, (\sum H^1_n)_1^\infty$ and l^1; each isomorphic type is characterized by geometric properties of (X,d,μ).

Technically, the present paper deals with the existence of “Franklin-type” function on a space of homogeneous type (X,d,μ) and with the boundedness (in $H^1(X,d,\mu)$) of the orthogonal projection onto the span of this “Franklin-system”.

To this end a construction of S. Jaffard and Y. Meyer [J-M], together with methods of P. Wojtaszczyk [Woj2] have been adapted. (See Sections 3,4).

Applying Wojtaszczyk’s method one concludes that the “Franklin-system” in $H^1(X,d,\mu)$ is equivalent to special three valued martingale differences in some martingale H^1 space; (see Section 4). Using repeatedly Pełczyński’s decomposition method, this allows us to reduce in Section 5 the classification problem for atomic H^1 spaces to some of the other’s precious work on this subject:

- Classification of (the span of) special three valued martingale differences in martingale H^1 space [Mü2].

- Classification of the isomorphic type of martingale H^1 space [Mü1].
Atomic H^1 spaces are isomorphic to complemented subspaces of martingale H^1 [Mü3].

2 Preliminaries concerning spaces of homogeneous type

Definition and Notation

Let $d : X \times X \to \mathbb{R}^+$ be a quasi metric on a set X and let $B(x, r) := \{ y \in X : d(x, y) < r \}$. Let μ be a non negative measure on X.

Let $A_1, A_2, K_1, K_2 (K_2 \leq 1 \leq K_1)$ be positive finite constants such that for each $x \in X$ and $r > 0$ the following relations hold:

1. $A_1 r \leq \mu(B(x, r))$ if $r \leq K_1 \mu(X)$
2. $B(x, r) = X$ if $r > K_1 \mu(X)$
3. $A_2 r \geq \mu(B(x, r))$ if $r \geq K_2 \mu(\{x\})$
4. $B(x, r) = \{x\}$ if $r < K_2 \mu(\{x\})$.

We assume moreover that there exists $\alpha > 0$ and $K_0 > 0$ such that for each $x, y, z \in X$

5. $|d(x, y) - d(y, z)| \leq K_0 r^{1-\alpha} d(x, y)^\alpha$

whenever $d(x, z) < r$ and $d(y, z) < r$.

Following Masias & Segovia [M-S1,2] a set X equipped with a measure μ and a quasi metric d satisfying (1) – (5) is called a “normal space of order α”. The standard reference to these spaces is the article by Coifman & Weiss [C-W].
On \((X, d, \mu)\) certain analogues of dyadic intervals have been constructed by G. David and M. Christ; see [Dv] and [Ch].

Theorem 1 There exists a collection \(\{Q^k_i \subset X : k \in \mathbb{Z}, i \in I_k\}\) and constants \(\delta \in (0, 1), \alpha_0 > 0, \eta > 0\) and \(C_1, C_2 < \infty\) such that:

\[
\mu(X \setminus \bigcup Q^k_i) = 0.
\]

If \(l \geq k\) then either \(Q^l_j \subset Q^k_i\) or \(Q^l_j \cap Q^k_i = 0\).

For each \((k, i)\) and \(l < k\) there exists a unique \(j\) such that \(Q^k_i \subset Q^l_j\).

\[
\text{diam } Q^k_i \leq C_1 \delta^k.
\]

Each \(Q^k_i\) contains a ball \(B(z^k_i, a_0, \delta^k)\).

\[
\mu\{x \in Q^k_i : d(x, X \setminus Q^k_i) \leq td^k\} \leq C_2 t^\eta \mu(Q^k_i) \text{ for each } k \in \mathbb{Z}, i \in I_k \text{ and } t \geq 0.
\]

As we shall see, the structure of this collection determines the isomorphic type of \(H^1(X, d, \mu)\). However we have to discard measure and diameter is too big.

Lemma 2 In every normal space of order \(\alpha\) \((X, d, \mu)\) there exists \(L > 0\) depending on so that for every nonempty \(Q \subset X\) we have: \(\mu(Q)/\text{diam } Q > L\) implies \(Q\) consists of exactly one point.

Proof. Select \(M > 1\) so that \(2M > 1\). Then consider two cases.

Case 1 Suppose there exists \(x_0 \in Q\) so that \(\mu(\{x_0\}) \geq M \text{diam } Q\) then \(\{x : d(x, x_0) < KM \text{ diam } Q\} = \{x_0\}\). Hence \(Q = \{x_0\}\).

Case 2 For each \(x_0 \in Q\) we have \(\mu(\{x_0\}) \leq M \text{ diam } Q\); then as \(MK_2 > 1\)

\[
\begin{align*}
\mu(Q) & \leq \mu(B(x_0, K_2 M \text{ diam } Q) \\
& \leq A_2 MK_2 \text{ diam } Q.
\end{align*}
\]
Let now $L = A_2 MK_2$ then we have either $\mu(Q)/\text{diam } Q \leq L$ or $Q = \{x_0\}$ for some $x_0 \in X$.

Let $\mathcal{E} := \{Q^k_\alpha : k \in \mathbb{Z}, \alpha \in I_k\}$. And let \mathcal{F}_n be the σ-Algebra generated the n-th generation of \mathcal{E} and \mathcal{F}_{n-1}.

The following properties of \mathcal{F}_n are easily observed:

1. There exits $N_0 \in \mathbb{N}$, depending on δ (and the geometry of (X,d,μ)) so that for every $Q \in \mathcal{E}$ the cardinality of $G_1(Q|\mathcal{E})$ is bounded by N_0.

2. There exists L_0, depending on δ, (and the geometry of (X,d,μ)) so that for every $Q \in \mathcal{E}$ and every $P \in G_1(Q|\mathcal{E})$ we have

$$\frac{\mu(P)}{\mu(Q)} \geq \frac{1}{L_0}.$$

3. Moreover for $Q \in \mathcal{E}$ we have $\frac{1}{C} \text{diam } Q \leq \mu(Q) \leq C \text{diam } Q$ where C is as in Lemma 1.

The collection \mathcal{E} has been linked to problems concerning the isomorphic structure of $H^1(X,d,\mu)$; see [Mü].

There we found finitely many sequences of increasing, pure by atomic α-algebras

$$[\mathcal{F}_1]^\infty_{n=1}, \ldots, [\mathcal{F}_N]^\infty_{n=1}$$

so that $H^1(X,f,\mu)$ is isomorphic to a complemented subspace of the direct sum of the related martingale H^1-spaces, namely to

$$H^1([\mathcal{F}_1]^\infty_{n=1}) \oplus \ldots \oplus H^1([\mathcal{F}_N]^\infty_{n=1}).$$
Although not stated explicitly there, when combined with the result in [Mü] one observes the following implications:

1. If

\[E = \{ t \in X : t \text{ lies in infinitely many } Q \in \mathcal{C} \} \]

satisfies \(\mu(E) = 0 \), then for each \(j \leq N \): \(H^1(\mathcal{F}_n^j \cup_{n=1}^\infty) \) is isomorphic to a complemented subspace of \((\sum H_n^1)_\mu \).

2. If

\[
\sup_{Q \in \mathcal{E}} \sup_{P \subset Q, P \in \mathcal{E}} \frac{\mu(P)}{\mu(Q)} < \infty,
\]

then for \(1 \leq j \leq N \) \(H^1(\mathcal{F}_n^j \cup_{n=1}^\infty) \) is isomorphic to a complemented subspace of \(l^1 \).

3 A smooth unconditional basic sequence in \(L^2(X, \mu) \)

Let \(Q \) be in \(G_n(X|\mathcal{E}) \) and let \(P_0, P_1, \ldots, P_N \) be an enumeration of \(G_1(Q|\mathcal{E}) \). By the above preliminary remarks, \(N \leq N_0 \), where \(N_0 \) is independent of \(Q \) and

\[
\inf_i \frac{\mu(P_i)}{\mu(Q)} > \frac{1}{C}
\]

\[
\frac{1}{C} \leq \inf_i \frac{\mu(P_i)}{\mu(P_0)} \leq \sup_i \frac{\mu(P_i)}{\mu(P_0)} \leq C
\]

where \(C \), depending on \(\delta \), is independent of \(Q \).

Let, for \(1 < i \leq N \), the function \(h_{Q,i} \) satisfy the following conditions

1. \(\text{supp } h_{Q,i} \subset Q \)
2. \(h_{Q,i} \) is constant when restricted to one the sets \(P_j, 0 \leq j \leq N \).

3. There exists \(C > 0 \) (not depending on \(\delta \) or \(N \)) so that for \(\alpha_i \in \mathbb{R} \)
\[
\frac{1}{C} \left(\sum_{i=1}^{N} \alpha_i^2 \right) \leq \left\| \sum_{i=1}^{N} h_{Q,i} \alpha_i \right\|_{L^2(X,\mu)} \leq C \left(\sum_{i=1}^{N} \alpha_i^2 \right)^{1/2}.
\]

Using ideas related to the local Pełczyński decomposition, such a sytem was constructed by B. Maurey [Ma1].

As martingale differences an orthogonal in \(L^2(X,\mu) \) we get for \(f \in L^2(X,\mu) \) a uniquely determined sequence of coefficients \(\alpha_{Q,i}, Q \in \mathcal{E} \) so that
\[
f = \sum_{Q \in \mathcal{E}} \sum_{i \in I_Q} h_{Q,i} \alpha_{Q,i}
\]
and
\[
||f||_2 = \left(\sum_{Q \in \mathcal{E}} \left\| \sum_{i \in I_Q} h_{Q,i} \alpha_{Q,i} \right\|_2^2 \right)^{1/2} \sim \left(\sum_{Q \in \mathcal{E}} |Q| \sum_{i \in I_Q} \alpha_{Q,i}^2 \right)^{1/2}.
\]

In the other words \(h_{Q,i} \in \mathcal{E}, i \in I_Q \) forms an unconditional basis in \(L^2(X,\mu) \). Using smoth partition of unity we will modify \(h_{Q,i} \) to become a smoth unconditional basis for \(L^2(X,\mu) \).

For \(Q \in G_n(X|\mathcal{E}) \) we have
\[
C_2 \delta^n \leq \text{diam } Q < C_1 \delta^n.
\]

For \(\tau < 1/C_1500 \) we consider a partition of unity \(\psi_k^{(n)}, k = 1, \ldots, N_n \), so that:
\[
\text{diam} (\text{ supp } \psi_k^{(n)}) \leq \tau \delta^n \quad \text{Lip}_\beta(\psi_k^{(n)}) \leq (\tau \delta^n)^{-\beta} \quad \sum_{k=1}^{N_n} \psi_k^{(n)} = 1.
\]
See [M.-S.2] for a construction of such a partition of unity. We use it here to define the kernel

\[K_n(x, y) := \sum_{k=1}^{N_n} \psi_k^{(n)}(x) \psi_k^{(n)}(y) \frac{1}{\|\psi_k^{(n)}\|_1} \]

and define

\[\tilde{\varphi}_{Q,i}(x) := \int_X K_{n+1}(x, y) h_{Q,i}(y) d\mu(y) \]
\[\varphi_{Q,i}(x) := \frac{\tilde{\varphi}_{Q,i}(x)}{\|\varphi_{Q,i}\|_2}. \]

* By construction we obtain at once the following properties of \(\varphi_{Q,i} \):

\[\text{supp} \ varphi_{Q,i} \subset \{ z \in X, \ \text{dist}(\text{supp} h_{Q,i}, z) \leq \tau \delta^n \} \]
\[\text{Lip}_\beta(\varphi_{Q,i}) \leq \left(\frac{\mu(Q)}{\tau \delta} \right)^\beta \left(\frac{\mu(Q)}{\delta} \right)^{-1/2} \]
\[\int_X \varphi_{Q,i} d\mu = 0. \]

And for \(Q \in \mathcal{E} \) fixed we obtain

\[\frac{1}{C} \left(\sum_i \alpha_i^2 \right)^{1/2} \leq \left\| \sum_i \alpha_i \varphi_{Q,i} \right\|_{L^2(X, \mu)} \leq \left(\sum_i \alpha_i^2 \right)^{1/2} C \]

where \(C \) is independent of \(Q \) or \(\tau \) and depends only on the geometry of \((X, d, \mu) \).

Moreover we have the following theorem.

Theorem 3 Let \(E_1 = \bigcup_{n=1}^{\infty} G_{2n}(X|\mathcal{E}) \) then for

\[f = \sum_{Q \in E_1} \sum_{i \in I_Q} \alpha_{Q,i} \varphi_{Q,i} \]

we have

\[\left(\sum_Q \sum_{i \in I_Q} \alpha_{Q,i}^2 \right)^{1/2} \leq \|f\|_2 \leq \left(\sum_Q \sum_{i \in I_Q} \alpha_{Q,i}^2 \right)^{1/2}. \]
Proof. Suppose \(\text{supp} \varphi_{Q,i} \cap \text{supp} \varphi_{Q,i} \neq 0 \) then w.l.o.g. assume that

\[
\text{diam (supp } \varphi_{Q,i} \text{)} \leq \text{diam (supp } \varphi_{P,j} \text{)}.
\]

Let \(z \) be a fixed point in \(\text{supp} \varphi_{Q,i} \), then

\[
\int_X \varphi_{Q,i} \varphi_{P,j} d\mu = \int_X \varphi_{Q,i}(\varphi_{p,j} - \varphi_{p,j}(z)) d\mu \leq ||\varphi_{Q,i}||_{1} \sup_{x \in Q} |\varphi_{p,j}(x) - \varphi_{p,j}(z)| \leq |\delta^{1/2} \mu(Q)^{1/2}(\text{Lip}_\beta \varphi_{p,j}) \text{diam (supp } \varphi_{Q})^\beta|
\]

\[
\leq \frac{\mu(Q)^{1/2+\beta}}{\mu(P)^{1/2+\beta}} \frac{1}{(\tau \delta)^{\beta}}.
\]

Then given \(Q \), consider \(P \in G_n(Q|E_1) \) then \(\frac{\mu(P)}{\mu(Q)} \leq C \delta^{2n} \) and \(G_n(Q|E) \) contains at most \(C \delta^{-2n} \) elements.

From these observations we see (using e.g. the argument in [U, Lemma 3.3]) that there exists \(C \) (not depending on \(\delta \) or \(\tau \)) so that

\[
C ||f||_2^2 + \frac{\delta^{2\beta}}{(\tau \delta)^\beta} \sum \sum \alpha_{Q,i}^2 \geq \frac{1}{C} \sum \sum \alpha_{Q,i}^2
\]

and

\[
||f||_2^2 < 2C \sum \sum \alpha_{Q,i}^2.
\]

Now choosing \(\delta \) so small that \((\frac{\delta}{\tau})^\beta < \frac{1}{C^2} \) we obtain the result.

4 A smooth biorthogonal sequence in \(L^2(X, \mu) \)

Let \(G_n := G_n(X|E) \). Fix \(K \gg 1 \). Using Lemma 9 from [Mü3] we split \(G_n \) into \(P_{n,1}, \ldots, P_{n,l} \) so that for \(P, Q \in P_{n,j} \) we have \(\text{dist}(P, Q) \geq K \mu\{\mu(P), \mu(Q)\} \) and \(l \) depends only on \(K \) and the geometry of \((X, d, \mu) \).
Now fix $m \in \mathbb{N} \setminus \{1\}$ $0 < s \leq m$ and $j \leq l$. Then let $\mathcal{F} := \bigcup_{k=0}^{\infty} \mathcal{P}_{mk+s,j} \cup \{X\}$.

Next fix $i_0 \leq N$ and for $Q \in \mathcal{F}$ let

$$\varphi_Q := \varphi_{Q,i_0}$$
$$\varphi_X := 1_X.$$

Observe now that for $P,Q \in \mathcal{P}_{mk+s,j}$

$$\text{supp } \varphi_Q \cap \text{supp } \varphi_P \neq \emptyset$$

and for each $P \in \mathcal{P}_{mk+s,j}$ and $r \in \mathbb{N}$ there exists at most one $Q \in \mathcal{P}_{m(k-r)+s,j}$ so that

$$\text{supp } \varphi_Q \cap \text{supp } \varphi_P = \emptyset.$$

Moreover by Theorem 3 the Gram matrix

$$G := \left(\int \varphi_Q \varphi_P d\mu \right)_{Q,P \in \mathcal{F}}$$

is invertible (and positive definite).

The Gram-matrix is used to construct a biorthogonal system from the $\varphi_Q - s$.

Theorem 4

a) The coefficients $(a_{P,Q})_{P,Q \in \mathcal{F}}$ of the matrix $G^{-1/2}$ satisfy the estimates

$$|a_{P,Q}| \leq C \min \left\{ \frac{\mu(P) \mu(Q)}{\mu(Q)}, \frac{\mu(P)}{\mu(Q)} \right\}^{1/2-\alpha} \left(1 + \frac{\text{dist}(P,Q)}{3 \max\{\mu(P),\mu(Q)\}} \right)^{-1-\alpha}$$

where $0 < \alpha < \beta/2$.

b) The functions

$$f_Q := \sum_{P \in \mathcal{F}} a_{P,Q} \varphi_P, \quad Q \in \mathcal{F}$$

form an orthonormal system in $L^2(X,\mu)$, the closed span of which coincides with the closed span of $\{\varphi_Q : Q \in \mathcal{F}\}$.

9
Proof. Part b) is a well known algebraic identity, so we shall concentrate on the Proof of part a):

Recall first that for \(Q \cap P \neq 0 \) we have the estimate

\[
\int \varphi_Q \varphi_P d\mu \leq \left(\frac{1}{\tau_0} \right)^{\beta} \min \left\{ \frac{\mu(Q)}{\mu(P)}, \frac{\mu(P)}{\mu(Q)} \right\}^{1/2+\beta}.
\]

Combining this with \(\text{supp} \varphi_Q \subseteq \{ z \in X : d(z, Q) \leq \alpha \} \) we obtain in particular

\[
(3.1) \int \varphi_Q \varphi_P d\mu \leq \min \left\{ \frac{\mu(P)}{\mu(Q)}, \frac{\mu(Q)}{\mu(P)} \right\}^{1/2+\beta} \left(1 + \frac{\text{dist}(P, Q)}{\max\{\mu(P), \mu(Q)\}} \right)^{-1-\beta}.
\]

Moreover if \(Q, P \in \mathcal{F}, Q \neq P \) and \(\int \varphi_Q \varphi_P \neq 0 \) then necessarily

\[
\min \left\{ \frac{\mu(P)}{\mu(Q)}, \frac{\mu(Q)}{\mu(P)} \right\} \leq \delta^m.
\]

(To obtain this conclusion we introduced the splitting of \(G_n \) into \(\mathcal{P}_{n,j} \).)

Using this information, the proof of Lemma 3.3 in [U] gives that for \(a := (a_P)_{P \in \mathcal{F}}, a_P \in \mathbb{R} \) the following norm estimate for the matrix \(\text{Id} - G \) holds:

\[
\left\| (\text{Id} - G)a \right\|_{l^2} \leq \left(\frac{\delta^m}{(\delta \tau)^{\beta}} \right) C_2 \|a\|_{l^2}.
\]

(\(C_2 \) is a universal constant.) Now put \(R = \text{Id} - G \). Observe that \(G^{-1/2} \) can be developed in a power series of \(R \), indeed:

\[
G^{-1/2} = \sum_{k=0}^{\infty} C_k R^k
\]

where \(C_k = o(k^{-1/2}) \).

Clearly the coefficients \(R(P, Q), P, Q \in \mathcal{F} \) of \(R \) satisfy the estimates (3.1).

Now by a result of Frazier-Jawerth, estimates of this form are stable under the formation of products. More precisely by [F-J, Theorem 9.1] for \(0 < \gamma < \beta \)
there exists $C_1 > 1$ so that for each $k \in \mathbb{N}$ the coefficients $R^{(k)}(P, Q)$ of R^k satisfy

$$R^{(k)}(P, Q) \leq \left(\frac{1}{\tau \beta} \right)^\beta C_1 \min \left\{ \frac{\mu(P)}{\mu(Q)}, \frac{\mu(Q)}{\mu(P)} \right\}^{1/2+\gamma} \left(1 + \frac{\text{dist}(P, Q)}{\max\{\mu(P), \mu(Q)\}} \right)^{-1-\gamma}.$$

On the other hand we trivially have

$$R^{(k)}(P, Q) \leq ||R^k||_{l^2} \leq \left[\frac{\delta m C_2}{(\tau \delta)^\beta} \right]^k.$$

Fix now $P, Q \in \mathcal{F}$ and let

$$\sigma(P, Q) := \left\{ \min \frac{\mu(P)}{\mu(Q)}, \frac{\mu(Q)}{\mu(P)} \right\}^{1/2+\gamma} \left(1 + \frac{\text{dist}(P, Q)}{\max\{\mu(P), \mu(Q)\}} \right)^{-1-\gamma}.$$

Next consider the number $k_0 = k_0(P, Q)$ which is defined by

$$k_0 := \left[\frac{\gamma \log \sigma(P, Q)}{2 \log(C_1/(\delta \tau))} \right].$$

We assume that k_0 is integer. At this point we make a suitable choice for m. Namely we choose m so that

$$\frac{\log(C_2 \delta^m/((\delta \tau)^\beta))}{\log((\tau \delta)^\beta C_1)} \geq 1 + \frac{\gamma}{2}.$$

(Observe that m is of course not depending on P, Q.)

We then have the numerical estimates:

$$\sum_{k=0}^{k_0} \left(\frac{C_1}{(\delta \tau)^\beta} \right)^k \leq \sigma(P, Q)^{-\gamma/2} C'$$

$$\sum_{k=k_0+1}^{\infty} \left(\frac{\delta^m}{(\tau \delta)^\beta C_2} \right)^k \leq \sigma(P, Q)^{1+\gamma/2} C'.$$

11
Hence the following estimates hold for $P,Q \in \mathcal{F}$

$$\sum_{k=0}^{k_0} R^{(k)}(P,Q) \leq \sigma(P,Q)^{1+\gamma/2} C$$

$$\sum_{k=k_0+1}^{\infty} R^{(k)}(P,Q) \leq \sigma(P,Q)^{1+\gamma/2} C.$$

Summing up we have for the coefficients of $G^{-1/2}$ the following estimate

$$G^{-1/2}(P,Q) \leq C \min \left\{ \frac{\mu(P)}{\mu(Q)}, \frac{\mu(Q)}{\mu(P)} \right\}^{1/2+\gamma/2} \left(1 + \frac{\text{dist}(P,Q)}{\max\{\mu(P), \mu(Q)\}} \right)^{-1-\gamma/2} C.$$

Remark. The above proof merges arguments of Franzier & Jawerth [F,J] and Uchiyama [U] with those of Jaffard & Meyer [J-M] to conclude that – in the language if Franzier and Jawerth – $G^{-1/2}$ is an almost diagonal matrix.

As a consequence f_Q is centered around Q. More precisely we have the following pointwise estimate.

Lemma 5 There exists $C = C(\delta) \sim \log \delta$ so that

1. for $x \in X$

 $$|f_Q(x)| \leq C \left(1 + \frac{\text{dist}(x,Q)}{\mu(Q)} \right)^{-1-\alpha/2} \frac{1}{\mu(Q)^{1/2}}$$

2. for $x,y \in X$ with $d(x,y) \leq \mu(Q)$

 $$|f_Q(x) - f_Q(y)| \leq C \left(1 + \frac{\text{dist}(x,Q)}{\mu(Q)} \right)^{-1-\alpha/2-\beta} \frac{d(x,y)^{\beta}}{\mu(Q)^{1/2+\beta}}.$$
Proof. Given the estimates of $G^{-1/2}$ the proof is quite standard, and only the argument for part 1) will be outlined. Fix $x \in X$ then clearly for some $C > 1$

$$|f_Q(x)| \leq C \sum_{\{P : \text{dist}(x,P) \leq C\mu(P)\}} \min\left\{\frac{\mu(P)}{\mu(Q)}, \frac{\mu(Q)}{\mu(P)}\right\}^{1/2+\alpha}$$

$$\times \frac{1}{\mu(P)^{1/2}} \left(1 + \frac{\text{dist}(P,Q)}{\max\{\mu(P)\mu(Q)\}}\right)^{-1-\alpha}.$$

\[\square\]

Let now $K \in \mathbb{N}$ be such that

$$K\mu(Q) \leq \text{dist}(x,Q) \leq 2K\mu(Q),$$

and split the above sum into three, by dividing the index set:

$$\{P : \text{dist}(x,P) < C\mu(P)\} = A \cup B \cup D$$

where

$$A := \{P : \text{dist}(x,P) \leq C\mu(P) \text{ and } \mu(P) > K\mu(Q)\}$$

$$B := \{P : \text{dist}(x,P) \leq C\mu(P) \text{ and } \mu(Q) \leq \mu(P) \leq K\mu(Q)\}$$

$$D := \{P : \text{dist}(x,P) \leq C\mu(P) \text{ and } \mu(P) \leq \mu(Q)\}.$$

Case 1

$$\sum_A \left\{\frac{\mu(Q)}{\mu(P)}\right\}^{1/2+\alpha} \left(1 + \frac{\text{dist}(P,Q)}{\mu(P)}\right)^{-1-\alpha} \frac{1}{\mu(P)^{1/2}}$$

$$\leq \sum_{\mu(P)>K\mu(Q)} \left\{\frac{\mu(Q)}{\mu(P)}\right\}^{1/2+\alpha} \frac{1}{\mu(P)^{1/2}}$$

$$\leq \frac{\mu(Q)^{\alpha+1/2}}{(K\mu(Q))^{1+\alpha}} = \frac{1}{\mu(Q)^{1/2}K^{1+\alpha}}.$$

13
\[
\leq \frac{1}{\mu(Q)^{1/2}} \left(1 + \frac{\text{dist}(x,Q)}{\mu(Q)}\right)^{-1-\alpha}
\]

Case 2 Let \(\mu(P) = \mu(Q)\delta^{-k}\) and \(\delta^{-k_1} = K\). Then

\[
\sum_{\mathcal{B}} \left\{ \frac{\mu(Q)}{\mu(P)} \right\}^{1/2+\alpha} \left(1 + \frac{\text{dist}(P,Q)}{\mu(P)}\right)^{-1-\alpha} \frac{1}{\mu(P)^{1/2}}
\]

\[
\leq \sum_{k=0}^{k_1} \delta^{k(1/2+\alpha)} \frac{\mu(Q)^{\delta^k}}{k} \frac{1}{\mu(Q)^{1/2}}
\]

\[
\leq \mu(Q)^{1+\alpha} \mu(Q)^{-1/2} \frac{k_1}{K^{1+\alpha}}
\]

\[
\leq \mu(Q)^{-1/2} \left|\log \delta\right| \log K \frac{1}{K^{1+\alpha}}
\]

\[
\leq c_\alpha (\log \delta) \mu(Q)^{-1/2} \left(1 + \frac{\text{dist}(x,Q)}{\mu(Q)}\right)^{-1-\alpha/2}
\]

Case 3

\[
\sum_{\mathcal{D}} \left\{ \frac{\mu(Q)}{\mu(P)} \right\}^{1/2+\alpha} \left(1 + \frac{d(P,Q)}{\mu(Q)}\right)^{-1-\alpha} \frac{1}{\mu(P)^{1/2}} \leq \begin{cases} \frac{1}{\mu(Q)^{1/2}} & \text{if dist}(x,Q) \leq C\mu(Q) \\ 0 & \text{otherwise.} \end{cases}
\]

5 **Bounded Projections in** \(H^1(X,d,\mu)\)

First we determine the norm of \(f_Q, Q \in \mathcal{F}\) in \(H^1(X,d,\mu)\). Given the decay of \(f_Q\) and the fact that \(\int_X f_Q d\mu = 0\) it is natural to use molecules as in [Woj].

Theorem 6 There exists \(C = C(\delta,\alpha)\) and \(\varepsilon > 0\) so that for each \(Q \in \mathcal{F}\) we have

\[
\left(\int f_Q^2 \frac{d\mu}{\mu(Q)}\right) \left(\int f_Q^2(x) d(x,Q)^{1-\varepsilon} \frac{d\mu}{\mu(Q)}\right)^{1/\varepsilon} \leq C(\delta,\alpha).
\]

14
PROOF. First we have clearly
\[\int f_Q^2 \frac{d\mu}{\mu(Q)} = \frac{1}{\mu(Q)}. \]
Let \(Q_n := \{ x \in X, \mu(Q)(2^n - 1) \leq d(x, Q) \leq (2^{n+1} - 1)\mu(Q) \} \), then
\[\int f_Q^2(x)d(x, Q)^{1+\varepsilon}d\mu = \sum_{n=0}^{\infty} \int_{Q_n} f_Q^2(x)d(x, Q)^{1+\varepsilon}d\mu. \]
Let us first consider the case \(n \geq 1 \):
\[\int_{Q_n} f_Q^2(x)d(x, Q)^{1+\varepsilon}d\mu \leq C(\delta) \int_{Q_n} \left(1 + \frac{d(x, Q)}{\mu(Q)} \right)^{-2-\alpha} (d(x, Q)^{1+\varepsilon} \frac{d\mu}{\mu(Q)^{1/2}} \leq C(\delta)2^{n(-2-\alpha)} \mu(Q)^{-1} (2^{n+1} \mu(Q))^{1+\varepsilon}2^{n+1} \mu(Q) \leq C(\delta) \mu(Q)^{1+\varepsilon}4 \cdot 2^{n(-\alpha+\varepsilon)}. \]
And for \(n = 0 \) we have
\[\int_{Q_0} f_Q^2(x)d(x, Q)^{1+\varepsilon}d\mu \leq \mu \frac{1}{\mu(Q)} \int_{Q_0} d(x, Q)^{1+\varepsilon}d\mu \leq \mu(Q)^{1+\varepsilon}. \]
Summing up we obtain
\[\int_X f_Q^2(x)d(x, Q)^{1+\varepsilon}d\mu \leq C(\delta) \frac{1}{1 - 2^{-\alpha+\varepsilon}} \mu(Q) \]
and finally
\[\left(\int f_Q^2 \frac{d\mu}{\mu(Q)} \right)^{1/\varepsilon} \left(\int f_Q^2(x)d(x, Q)^{1+\varepsilon} \frac{d\mu}{\mu(Q)} \right)^{1/\varepsilon} \leq \left(C(\delta) \frac{1}{1 - 2^{-\alpha+\varepsilon}} \right)^{1/\varepsilon}. \]
Choosing \(\varepsilon = \alpha/2 \) gives the required estimate.
We shall show next that \(\text{span} \{ f_Q : Q \in \mathcal{F} \} \) is a complemented subspace of \(H^1(X, d, \mu) \) and that \(\{ f_Q : Q \in \mathcal{F} \} \) is equivalent to a martingale difference sequence in \(H^1([\mathcal{F}_n]) \) (where \(\mathcal{F}_n \) was defined in Section 1).
The operator $Pf = \sum_{Q \in \mathcal{F}} (f|_{f_Q})f_Q$ is clearly a projection, i.e., satisfies $P^2 = P$.

Theorem together with the smoothness and localization properties of f_Q will be used to show that P defines a bounded projection on $H^1(X, d, \mu)$.

Theorem 7 There exists $C > 0$ so that for $f \in H^1(X, d, \mu)$

$$
\left\| \sum_{Q \in \mathcal{F}} (f|_{f_Q})f_Q \right\|_{H^1(X, d, \mu)} \leq \|f\|_{H^1(X, d, \mu)}.
$$

Remark. The following proof not new! It is a simple modification of the proof in [Woj Theorem], and is included here just for sake of completeness.

Proof. It is enough to consider atoms in (X, d, μ): Let $a : X \to \mathbb{R}$ be supported on a ball B so that $\int ad\mu = 0$, $\|a\|_{\infty} \leq \mu(B)^{-1}$ and $\mu(B) \leq C \text{ diam } B$. Then decompose $\mathcal{F} = E \cup F \cup G$ where

$$
E = \{Q \in \mathcal{F} : \mu(Q) \geq \mu(B)\}
$$

$$
F = \{Q \in \mathcal{F} : \mu(Q) \geq \mu(B) \text{ and } \text{dist}(P, Q) \leq L\mu(Q)\}
$$

$$
G = \{Q \in \mathcal{F} : \mu(Q) \geq \mu(B) \text{ and } \text{dist}(P, Q) \geq L\mu(Q)\}.
$$

Case 1 By the triangle inequality we have: using Theorem 6:

$$
\left\| \sum_{Q \in E} (a|_{f_Q})f_Q \right\|_{H^1} \leq \sum_{Q \in E} |(a|_{f_Q})| \cdot \|f_Q\|_{H^1}
$$

$$
\leq \sum_{Q \in E} \mu(Q)^{1/2} \frac{\text{diam } B^\beta}{\mu(Q)^{1/2+\beta}} \left\{ 1 + \frac{d(B, Q)}{\mu(Q)} \right\}^{-1-\alpha/2-\beta}
$$
\[
\sum_{\mu(Q) > \mu(B)} \left\{ \sum_{k=1}^{\mu(Q)-1} k^{-1-\alpha/2-\beta} \right\} \text{diam } B^3 \mu(Q)^{-3} \\
\leq \frac{1}{\alpha/2 + \beta} \left\{ \sum_{\mu(Q) > \mu(B)} \mu(Q)^{-\beta} \right\} \text{diam } (B) \\
\leq \frac{1}{\alpha/2 + \beta} \mu(B)^{-\beta} \text{diam } (B) \leq \text{const.}
\]

Case 2 Again by triangle inequality and Theorem 6:

\[
\left\| \sum_{Q \in G} (a|f_Q)f_Q \right\|_{H^1} \leq \sum_{Q \in G} \int_B |f_Q| d\mu(B)^{-1}\mu(Q)^{1/2} \\
\leq C \sum_{Q \in G} \mu(Q)^{-1/2} \left(1 + \frac{\text{dist}(B,Q)}{\mu(Q)} \right)^{1-\alpha/2} \mu(Q)^{1/2} \\
\leq C \sum_{\mu(Q) \leq \mu(B)} \left(1 + \frac{\mu(B)}{\mu(Q)} \right)^{-\alpha/2} \\
\leq C \sum_{\mu(Q) \leq \mu(B)} \left(\frac{\mu(Q)}{\mu(B)} \right)^{\alpha/2} \leq C \text{const.}
\]

Case 3 Here we show that \(\sum_{Q \in F} (a|f_Q)f_Q \) is a molecule.

Consider first

\[
\int_B \left\| \sum_{Q \in F} (a|f_Q)f_Q \right\|^2 d(x,x_B)^{1+\epsilon} \leq C \mu(B)^{1+\epsilon} \|a\|_2^2 \leq c\mu(B)^\epsilon.
\]

Then we consider

\[
\int_{X \setminus B} \left\| \sum_{Q \in F} (a|f_Q)f_Q \right\|^2 d(x,x_B)^{1+\epsilon} d\mu(x) \\
\leq C \|a\|_2^2 \sum_{Q \in F} \mu(Q)^{-1} \int_{X \setminus B} \left(1 + \frac{d(x,Q)}{\mu(Q)} \right)^{-2-\alpha} d(x,x_B)^{1+\epsilon} d\mu \\
\leq C \mu(B)^{-1} \sum_{\mu(Q) \leq \mu(B)} \frac{\mu(B)}{\mu(Q)} \int_{X \setminus B} \left(\frac{d(x,x_B)}{\mu(Q)} \right)^{-2-1} d(x,x_B)^{1+\epsilon} d\mu
\]
\[
\leq C \sum_{\mu(Q) \leq \mu(B)} \mu(Q)^\alpha \int_{X \setminus B} d(x, x_B)^{-1+\varepsilon-\alpha} d\mu
\]
\[
\leq C \left\{ \sum_{\mu(Q) \leq \mu(B)} \mu(Q)^\alpha \mu(B)^\alpha \right\} \mu(B)^\varepsilon.
\]

Summing up we have for \(\varepsilon < \alpha\):
\[
\left(\int_X \left\| \sum_{Q \in F} |a| f_Q f_Q \right\|^2 d(x, x_B)^{1+\varepsilon} \right)^{1/\varepsilon} \leq C \mu(B)
\]
and
\[
\int_X \left\| \sum_{Q \in F} |a| f_Q f_Q \right\|^2 d\mu \leq ||a||^2 \leq C \mu(B)^{-1}.
\]
Multiplying the above estimates one sees that \(\sum_{Q \in F} |a| f_Q f_Q\) is indeed a molecule.

In Section 1, using successive, generations of \(\varepsilon\), an increasing sequence of \(\alpha\)-algebra, \((\mathcal{F}_n)_{n=1}^\infty\) has been defined.

In Section 2, we defined on unconditional basis \(\{h_{Q,i}, Q \in \varepsilon, i \in I_Q\}\) for \(L^2(X, \mu)\). As recorded in [Ma2] this system forms an unconditional basis in the martingale \(H^1([\mathcal{F}_n])\) space.

We fix now \(i_0 \leq N\) as in Section 3 and let
\[
h_Q = h_{Q,i_0}, \quad Q \in \mathcal{F}.
\]
The family \(\{h_Q : Q \in \mathcal{F}\}\) forms a three valued martingale difference sequence with respect to the filtration \([\mathcal{F}_n]_{n=1}^\infty\) satisfying the following condition:
\[
\text{supp } h_Q \cap \text{ supp } h_P \neq \emptyset
\]
implies
\[\text{supp } h_Q \subseteq \text{supp } h_P \text{ or } \text{supp } h_P \subseteq \text{supp } h_Q. \]

We will show next, that \(\{f_Q, Q \in \mathcal{F}\} \) in \(H^1(X, d, \mu) \) is equivalent to \(\{h_Q : Q \in \mathcal{F}\} \) in \(H^1([\mathcal{F}_n]) \).

Let \(Y \) be the closed linear span of \(\{f_Q : Q \in \mathcal{F}\} \) equipped with the norm inherited by \(H^1(X, d, \mu) \), then we have:

Theorem 8

\[
T : Y \to H^1([\mathcal{F}_n]) \\
f_Q \to h_Q
\]

extends to a bounded operator.

Proof. Let \(f \in Y \) implies clearly \(f \in H^1(X, d, \mu) \). Hence there exist atoms \(a_i \), and \(\lambda_i \in \mathbb{R} \) so that

\[
f = \sum \lambda_i a_i \text{ and } \sum |\lambda_i| \leq C\|f\|_{H^1}.
\]

Moreover

\[
f = Pf = \sum \lambda_i Pa_i
\]

and

\[
\|Pa_i\|_{H^1(x,d,\mu)} \leq C|a_i|_{H^1(x,d,\mu)}.
\]

So it remains to show that there exists \(C > 0 \) so that for any atom \(a \) on \((X, d, \mu) \) we have \(||TPa||_{H^1([\mathcal{F}_n])} \leq C. \)

To estimate

\[
TPa = \sum_{Q \in \mathcal{F}} (a|f_Q)h_Q
\]

19
in $H^1([F_n])$ we observe that

$$||h_Q||_{H^1([F_n])} \leq C\mu(Q)^{1/2},$$

split \mathcal{F} into $E \cup F \cup G$ as in the proof of Theorem (7) and argue exactly as P. Wojtaszczyk in [Woj2, Theorem 5].

Let Z be closure of the linear span of $\{h_Q : Q \in \mathcal{F}\}$ in $H^1([F_n])$, equipped with the norm inherited by $H^1([F_n])$. By [Ma1, Theorem 2] $\{h_{Q,i}, Q \in \varepsilon, i \in I_Q\}$ is an unconditional basis in $H^1([F_n])$ the natural restriction operator

$$Q : H^1([F_n]) \rightarrow H^1([F_n])$$

$$\sum_{Q \in \varepsilon} \sum_{i \in I_Q} \alpha_{Q,i} h_{Q,i} \rightarrow \sum_{Q \in \mathcal{F}} a_{Q,i_0} h_{Q,i_0}$$

is a bounded projection.

Moreover given any atom a in the martingale $H^1([F_n])$ space then Qa is again an atom in $H^1([F_n])$.

(In Section 1 we remarked that the filtration $[F_n]_{n=1}^{\infty}$ is regular (see [G, p 96]) and therefore an atom in $H^1([F_n])$ is simply a function $a : X \rightarrow \mathbb{R}$ for which is supported in an atom Q of F_n so that $||a||_{\infty} \leq \mu(Q)^{-1}C$ and $\int a d\mu = 0$.) Now we have the following

Theorem 9

$$S : Z \rightarrow H^1(X, d, \mu)$$

$$h_Q \rightarrow f_Q$$

defines a bounded operator.
PROOF. Let $f \in Z$. Then there exists a sequence of atoms a_i for $H^1([\mathcal{F}_n])$ and $\lambda_i \in \mathbb{R}$ so that

$$f = \sum \lambda_i a_i$$

and

$$\sum_{i=1}^{\infty} |\lambda_i| \leq C\|f\|_{H^1([\mathcal{F}_n])}.$$

As

$$f = Qf = \sum_{i=1}^{\infty} \lambda_i Qa_i,$$

we have: that for any $f \in Z$ there exists a sequence of atoms q_i: in $H^1([\mathcal{F}_n])$, $\lambda_i \in \mathbb{R}$ and $q_i \in Z$ (sic!) satisfying

$$f = \sum_{i=1}^{\infty} \lambda_i q_i \quad \text{and} \quad \sum_{i=1}^{\infty} |\lambda_i| \leq C\|f\|_{H^1([\mathcal{F}_n])}.$$

It is therefore enough to consider atoms q of the form

$$q = \sum_{Q \in \mathcal{F}} \alpha_Q h_Q$$

and to show that

$$\|Sq\|_{H^1(X,d,\mu)} = \left\| \sum_{Q \in \mathcal{F}} \alpha_Q f_Q \right\|_{H^1(X,d,\mu)}$$

is bounded by an absolute constant independent of q.

As moreover $\{h_Q : Q \in \mathcal{F}\}$ is biorthogonal it remains to show that there exists $C > 0$ so that for any atom $q \in Z$

$$\left\| \sum_{Q \in \mathcal{F}} (q|h_Q)f_Q \right\|_{H^1(X,d,\mu)} \leq C.$$

To do so we just follow the argument in [Woj Theorem 5] again.
6 Dénouement

In this paragraph we will give a solution to the classification problem of atomic $H^1(X, d, \mu)$ spaces:

In addition to the material developed in Sections 1 — 4 we will use the following ingredients:

- The isomorphic classification of martingal H^1-spaces generated by an increasing sequence of purely atomic σ-algebras.

- The isomorphic classification three-valued martingale difference sequences in martingale H^1 spaces.

- $H^1(X, d, \mu)$ is isomorphic to a complemented subspace of martingale H^1 space.

Theorem 10 If $H^1(X, d, \mu)$ is infinite dimensional, it is isomorphic to one of the following spaces: $H^1(\delta), (\sum H^1_n)^\mu, l^1$.

Proof.

1. **The Case $H^1(\delta)$**

Let $E = \{t \in X : t \text{ lies in infinitely many elements of } \varepsilon\}$. Suppose $\mu(E) > 0$. Then there exists a subcollection $\mathcal{F} \subset \varepsilon$ as constructed in Section 3 so that

$$F := \{t \in X : t \text{ lies in infinitely many elements of } \mathcal{F}\}$$

satisfies $\mu(F) > 0$.

By [Mu2], \(\text{span}\{h_Q : Q \in \mathcal{F}\} \) equipped with the norm of \(H^1([\mathcal{F}_n]) \) is then isomorphic to \(H^1(\delta) \). Hence by Section 4
\[
H^1(\delta) \overset{C}{\hookrightarrow} H^1(X,d,\mu).
\]
On the other hand by the results in [Mü3] and [Ma3]
\[
H^1(X,d,\mu) \overset{C}{\hookrightarrow} H^1(\delta).
\]
So the Pelczyński decomposition method gives that \(H^1(\delta) \) is isomorphic to \(H^1(X,d,\mu) \).

2. The Case \((\sum H^1_n)_{\mu} \)

Suppose that \(\mu(E) = 0 \) and \(\sup_{Q \in \varepsilon} \sum_{P \subset Q, P \in \varepsilon} \mu(P)/\mu(Q) = \infty \). Then there exists a subcollection \(\mathcal{F} \subset \varepsilon \) constructed as in Section 3 so that \(\mu(F) = 0 \) and
\[
\sup_{Q \in \mathcal{F}} \sum_{P \subset Q, P \in \mathcal{F}} \mu(P)/\mu(Q) = \infty.
\]
By the result of [Mu2] \(\text{span}\{h_Q : Q \in \mathcal{F}\} \) is then isomorphic to \((\sum |H^1_n|_{\mu}) \). Hence by Section 4
\[
(\sum H^1_n)_{\mu} \overset{C}{\hookrightarrow} H^1(X,d,\mu).
\]
On the other hand by [Mu2] \(\mu(E) = 0 \) implies
\[
H^1(X,d,\mu) \overset{C}{\hookrightarrow} (\sum H^1_n)_{\mu}.
\]
So the Pelczyński decomposition method gives that \((\sum H^1_n)_{\mu} \) is isomorphic to \(H^1(X,d,\mu) \).
3. The Case l^1

Suppose
\[\sup_{Q \in \varepsilon} \sum_{P \subseteq Q, P \in \varepsilon} \frac{\mu(P)}{\mu(Q)} < \infty \]

then by [Mü1] and [Mü3]
\[H^1(X, d, u) \overset{\mathcal{C}}{\rightarrow} l^1. \]

By a theorem of Pełczyński a complemented subspace of l^1 is either finite dimensional or isomorphic to l^1.

\[\blacksquare \]
References

[C] L. Carleson, An explicit unconditional basis in H^1, Bull. Sc. Math. 104 (1980), 405–416.

[Ch] M. Christ, A $T(b)$ Theorem with remarks on analytic capacity and the Cauchy Integral, Colloquium Math. (60/61) (1990), 601–628.

[C-W] R. Coifman & G. Weiss, Extensions of Hardy spaces and their use in Analysis, Bull, Amer. Math. Soc. 83 C (1977), 569–645.

[Dv] G. David, Wavelets and Singular Integrals, Springer LNM 1465, 1991.

[F-J] M. Frazier, B. Jawerth, A discrete Transform and Decompositions of Distribution Spaces, J. Funct. Anal. 93 (1990), 34–170.

[G] A. Garcia, Martingale Inequalities, Seminar Notes, W.A. Benjamin, 1973.

[J-M] S. Jaffard, Y. Meyer, Bases d’ondelettes dans des ouverts de \mathbb{R}^n, J. Math. pures et appl. 68 (189), 95–108.

[Ma1] B. Maurey, Plogement de H^1 dans un espace a base inconditionnelle, C.R. Acad. Sc. Paris, 287 (1978), 865–867.

[Ma2] B. Maurey, Isomorphismes entre espaces H^1, C.R. Acad. Sc. Paris, 288 (1979), 271–273.

[Ma3] B. Maurey, Isomorphism entres espaces H^1, Acta Math. 145, (1980), 79–120.
[M-S1] R. Macias, C. Segovia, Lipschitz functions on spaces of homogeneous type, Adv. in Math. 33 (1979), 257–270.

[M-S2] ..., A decomposition into atoms of distributions on spaces of homogeneous type, ibid, 271–309.

[M-Sch] P.F.X. Müller, G. Schechtman, Several Results concerning Unconditionality in vector valued L^p and $H^1(\mathcal{F}_n)$ spaces, Ill. J. Math. 35 (1991), 220–233.

[Mü1] P.F.X. Müller, Classification of the Isomorphic Types of Martingale H^1-spaces, Israel J. Math. 59 (1987), 195–212.

[Mü2] P.F.X. Müller, On the span of some three valued Martingale Difference Sequences in $L^p(1 < p < \infty)$ and H^1, Israel J. Math. 60 (1987), 39-53.

[Mü3] P.F.X. Müller, The Banach space $H^1(X,d,\mu)$, preprint (1991).

[Mü4] P.F.X. Müller, On linear topological properties of H^1 on spaces of homogeneous type, Trans. Amer. Math. Soc. 317 (1990), 463–484.

[U] A. Uchiyama, A constructive proof of the Feffermann-Stein decomposition of BMO(\mathbb{R}^n), Acta Math. 148 (1982), 215–241.

[Woj1] P. Wojtaszczyk, The Franklin system is an unconditional basis in H^1, Ark. f. Mat. (20) (1982), 293–300.

[Woj2] P. Wojtaszczyk, H_p-spaces, $p \leq 1$ and Spline systems, Studia Math. 77 (1984), 289–320.
[Woj3] P. Wojtaszczyk, The Banach Space H^1, in Functional Analysis: Surveys and Recent Results III, K.D. Bierstedt & B. Fuchssteiner (eds.) North Holland (1984).

Institut für Mathematik
Johannes Kepler Universität
A-4040 Linz
Austria