Study of composite coal-water fuel rheological properties

Zvereva E., Sabitov L., Khabibullina R., Akhmetvalieva G., Mongush Y., Ermolaev D.
Kazan Federal University, 420008, Kremlevskaya 18, Kazan, Russia

Abstract

© Published under licence by IOP Publishing Ltd. The rheological characteristics of composite water-coal fuel, as well as the possibility of reducing the viscosity of composite water-coal fuel due to the use of nanomaterials, are studied. Improved rheological properties of composite fuel containing small additions of these substances: carbon nanomaterial at a concentration of 0.005 wt. % or 0.3 wt. % of the dehydrated carbonate slurry. Possible mechanisms for changing the viscosity properties of fuel are considered.

http://dx.doi.org/10.1088/1757-899X/412/1/012082

References

[1] Glushkov D O, Strizhak P A and Chernetskii M Y 2016 Organic coal-water fuel: Problems and advances (Review) Thermal Engineering 63 707-17
[2] Shamsutdinov E V and Zueva O S 2014 Nanomaterials and Nanotechnologies in Power-Engineering (Kazan: KSPEU)
[3] Khodakov G S 2007 Coal-water suspensions in power engineering Thermal Engineering 54 36-47
[4] Trubetskoi K N, Kondrat’ev A S, Murko V I, Zaidenvarg V E, Kassikhin G A and Nekhoroshii I K 2008 Water-coal fuel: the results of technology development and perspectives of its utilization in Russia Thermal Engineering 55 413-17
[5] Khil’ko S L and Titov E V 2008 Fuel coal suspensions Chemistry and Technology of Fuels and Oils 44 73-79
[6] Khodakov G S 2003 Rheology of Suspensions. A Theory of Phase Flow and Its Experimental Substantiation Ross. Khim. Zh 47 33-44
[7] Khodakov G S 2004 On suspension rheology Theoretical Foundations of Chemical Engineering 38 430-39
[8] Mukherjee A and Pisupati S V 2016 Effect of additives on interfacial interactions for viscosity reduction of carbonaceous solid-water slurries Fuel 180 50-58
[9] Mingaleeva G R, Gaynetdinov A V, Shakirov R R and Akhmetov E A 2015 Comparative analysis of reduce the viscosity of coal-water fuels Proceedings of the higher educational institutions. Energy sector problems 7-8 37-46
[10] Mingaleeva G R, Shamsutdinov E V, Ermolaev D V, Afanas’eva O V, Gil’manov R M, Fedotov A I and Gal’keeva A A 2014 Mechanism of Influence of Finely Disperse Coal Fraction on Rheological Properties of Water-Suspended Coal Fuels Chemistry and Technology of Fuels and Oils 49 459-68
[11] Zvereva E R, Akhmetvalieva G R, Makarova A O, Ermolaev D V, Mongush Y K, Shaikhudtinova A R and Zueva O S 2017 Alteration of coal-water fuel rheological properties in the presence of nanomaterials Bulletin of Kazan State Power Engineering University 3 77-84
[12] Mingaleeva G R, Ermolaev D V, Afanasyeva O V and Timofeeva S S 2012 An experimental study of the viscosity of coal-water slurry with a bifractional composition of its dispersed phase Thermal Engineering 59 446-48
[13] Zvereva E R, Zueva O S, Khabibullina R V, Yermolaev D V, Akhmetvalieva G R, Salihzyanova D R and Magdeeva A M 2016 Environmental safety improvement and composition (water-coal) fuel efficiency increase with various additives at fuel and energy complex enterprises International Journal of Pharmacy and Technology 8 26744-52
