Probing the Seesaw Mechanism and Leptogenesis with the International Linear Collider*

Stefan Antusch1,2, Eros Cazzato1, Marco Drewes3,4, Oliver Fischer5, Björn Garbrecht6, Dario Gueter6,2,4, and Juraj Klaric6,4

1Department of Physics, University of Basel, Klingelbergstr. 82, CH-4056 Basel, Switzerland
2Max-Planck-Institut für Physik (Werner-Heisenberg-Institut), Föhringer Ring 6, 80805 München, Germany
3Centre for Cosmology, Particle Physics and Phenomenology, Université catholique de Louvain, Louvain-la-Neuve B-1348, Belgium
4Excellence Cluster Universe, Boltzmannstr. 2, D-85748, Garching, Germany
5Institute for Nuclear Physics, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, D-76344 Eggenstein-Leopoldshafen, Germany
6Physik Department T70, Technische Universität München, James Franck Straße 1, D-85748 Garching, Germany

\textbf{Abstract}

We investigate the potential of the International Linear Collider (ILC) to probe the mechanisms of neutrino mass generation and leptogenesis within the minimal seesaw model. Our results can also be used as an estimate for the potential of a Compact Linear Collider (CLIC). We find that heavy sterile neutrinos that simultaneously explain both, the observed light neutrino oscillations and the baryon asymmetry of the universe, can be found in displaced vertex searches at ILC. We further study the precision at which the flavour-dependent active-sterile mixing angles can be measured. The measurement of the ratios of these mixing angles, and potentially also of the heavy neutrino mass splitting, can test whether minimal type I seesaw models are the origin of the light neutrino masses, and it can be a first step towards probing leptogenesis as the mechanism of baryogenesis. Our results show that the ILC can be used as a discovery machine for New Physics in feebly coupled sectors that can address fundamental questions in particle physics and cosmology.

*Talk presented at the International Workshop on Future Linear Colliders (LCWS2017), Strasbourg, France, 23-27 October 2017. C17-10-23.2.
Neutrino masses and New Physics. Neutrino flavour oscillations clearly indicate that neutrinos have masses. They are the only established piece of evidence for the existence of physics beyond the Standard Model (SM) of particle physics that has been observed in the laboratory. Unveiling the origin of neutrino masses may therefore provide an important key to understand how the SM may be embedded into a more fundamental theory of nature. In addition, it may also shed light on one of the deepest questions in cosmology, the baryon asymmetry of the universe (BAU), i.e., the tiny excess $\sim 10^{-10}$ \cite{1} of matter over antimatter in the early universe that formed the origin of the baryons we find today after mutual annihilation of all other particles and antiparticles, cf. e.g. \cite{2} for a discussion. If CP-violation in the lepton sector is responsible for generating the BAU, then detailed questions in particle physics and cosmology. As an example we in the following study the discovery machine for New Physics in feebly coupled sectors that can address fundamental questions in particle physics and cosmology. As an example we in the following study the type-I seesaw \cite{3–8}.

Low Scale Seesaw. If the neutrino masses are at least partially generated by the Higgs mechanism in the same way as the masses of all other fermions in the SM, then this requires the existence of right handed neutrinos ν_R to form a Dirac mass term $\nu_R M_D \nu_R$. Here $\nu_L = (\nu_e, \nu_\mu, \nu_\tau)^T$ and $M_D = v Y^T$, v is the Higgs field value and Y is a $n_s \times 3$ matrix of Yukawa couplings. n_s is the number of right handed neutrino flavours, which must at least equal the number of non-zero light neutrino masses m_i if the ν_R are the sole source of light neutrino masses. The most general renormalisable Lagrangian that can be constructed from ν_R and SM fields reads

$$\mathcal{L} = \mathcal{L}_{\text{SM}} + \overline{\nu_R} c \phi \nu_R - \frac{1}{2} (\overline{\nu_R} M_{ij} \nu_R^i + \overline{\nu_R} M^*_{ij} \nu_R^j) - Y^T a c \phi \nu_R - Y^T a \overline{\nu_R} c^\dagger \ell_a. \tag{1}$$

Here ℓ_a with $a = e, \mu, \tau$ are the SM lepton doublets and ϕ is the Higgs field. The superscript c denotes charge conjugation, and c is the antisymmetric SU(2)-invariant tensor with the convention $c_{12} = 1$. The ν_R can have a Majorana mass term M with eigenvalues M_i because they are gauge singlets. The magnitude of the M_i is unknown and may vary over many orders of magnitude, with different implications for particle physics, astrophysics and cosmology, see e.g. \cite{9}. For $M_i \gg m_i$ the seesaw mechanism is at work, and one can expand all quantities in the entries of the flavour matrix $\theta = m_D M^{-1} = v Y^T M^{-1}$. The light neutrino mass matrix at second order in θ is $m_\nu = m_D M^{-1} m_D^T = \theta M \theta^T$. The physical mass eigenstates can be described by the Majorana spinors

$$\nu_i = \left[V_\nu^\dagger \nu_L - U_\nu^\dagger \theta \nu_R + V_\nu^T \nu_L^c - U_\nu^T \theta \nu_R^c \right]_i , \quad N_i = \left[V_N^\dagger \nu_R + \Theta^\dagger \nu_L^c + V_N^T \nu_R^c + \Theta^\dagger \nu_L \right]_i . \tag{2}$$

Here $V_\nu = (1 - \frac{1}{2} \theta^T \theta^\dagger) U_\nu$ is the matrix that diagonalises m_ν, with U_ν its unitary part, while $V_N = (1 - \frac{1}{2} \theta^T \theta^\dagger) U_N \simeq (1 - \frac{1}{2} \theta^T \theta^\dagger)$ diagonalises the heavy neutrino mass matrix $M_N = M + \frac{1}{2} (\theta^T \theta M + M^T \theta^T \theta^*)$. The ν_i can be identified with the familiar light neutrinos.
with masses m_i. The existence of the additional heavy neutrinos N_i is a prediction of the seesaw mechanism. The N_i interact with a weak interaction that is suppressed by the mixing angles $\Theta_{ai} = (\theta U_N^*)_{ai} \approx \theta_{ai}$ and via their Yukawa couplings to the physical Higgs particles.

Leptogenesis. The Yukawa interactions Y_{ia} in general violate the charge-parity (CP) symmetry, allowing the heavy neutrinos to generate a matter-antimatter asymmetry amongst leptons in the early universe [10], which can be transferred into a baryon asymmetry via sphalerons processes [11]. This process is called *leptogenesis* and provides an elegant explanation for the observed BAU.\(^1\) The N_i may therefore be the common origin on neutrino masses and baryonic matter in the universe.\(^2\) In the mass range $M_i < \text{TeV}$ that is accessible to collider experiments, leptogenesis can proceed in two different ways. For M_i above the electroweak scale, the BAU can be generated during the freeze-out and decay of the N_i [25] in the early universe (“freeze-out scenario”). For masses below the electroweak scale, the BAU can be generated in CP-violating oscillations [22, 26] and Higgs decays [27] during their production (“freeze-in scenario”). We focus on the second possibility, which allows for an efficient production of N_i at the ILC in weak gauge boson decays. The minimal implementation of this scenario with $n_s = 2$ [23, 24, 28–39], its realisation within inverse and linear seesaw models [40, 41] and the slightly more general case with $n_s = 3$ heavy Majorana neutrinos [31–33, 42–44] have been studied by many authors. Here we consider the minimal model with $n_s = 2$, i.e., the smallest number of N_i that is required for consistency with light neutrino oscillation data. This effectively also described leptogenesis in the νMSM. In this scenario the N_i must have quasi-degenerate masses with $\mu = |M_2 - M_1|/(M_2 + M_1) < 0.1$ [39] to generate the observed BAU. For $n_s > 2$ no degeneracy is required for leptogenesis [31, 32, 42, 44].

Searches at the ILC. High energy colliders provide the best tool to search for N_i with masses above 5 GeV. For smaller masses, fixed target experiments like NA62 [45–47] or SHiP [48, 49] are more sensitive. An overview of possible signatures at different collider types can e.g. be found in ref. [50–53]. At lepton colliders [54] displaced vertex searches turn out to provide the highest sensitivity for M_i below the electroweak scale, cf. figure 1.\(^3\)

\(^1\)Various aspects of leptogenesis have recently been reviewed in refs. [12–17].

\(^2\) N_i with sufficiently small $|\theta_{ai}|$ are also a viable DM candidate [18, 19], see [20] for a recent review. However, those N_i that compose the DM cannot make a significant contribution to the generation of light neutrino masses and leptogenesis because their Yukawa couplings are constrained to be tiny in order to make them sufficiently long lived. This does of course not exclude the possibility that different N_i flavours in the same model can play the two different roles: One of them may compose the Dark Matter while the two (or more) others can explain the neutrino masses and the BAU. This possibility has been proposed in the νMSM [21, 22], its feasibility in that model was show in refs. [23, 24].

\(^3\) Previous studies suggest that the LHC cannot probe the parameter region where leptogenesis is possible in the minimal model with $n_s = 2$ because the U_{ai}^2 required for leptogenesis [39] are too small to yield observable event rates [55–58]. However, the possibility of a flavour asymmetric washout can make leptogenesis feasible for larger U_{ai}^2 that can be probed at the LHC for $n_s > 2$ [44]. Moreover, upgrades like MATHUSLA [59] could increase the sensitivity of the LHC.
Figure 1: Heavy neutrinos with masses below the electroweak scale are long lived particles with lifetimes $\propto U^{-2}_i M^{-5}_i$ [60]. This leads to a displacement between the collision point and the decay vertex.

The event rates are determined by the quantities $U^2_{ai} = |\Theta_{ai}|^2$, which characterise the interaction strength of heavy neutrino N_i with SM leptons ℓ_a. Since both, m_i and U^2_{ai} are $\propto \theta^2_{ai}$, it is in general difficult to make observable event rates consistent with the small neutrino masses [61]. It is, however, possible in a natural way if one assumes that the exact $B - L$ symmetry of the SM is approximately preserved by whatever New Physics the Lagrangian (1) is embedded into [61–63]. This can e.g. be realised in “inverse seesaw” type scenarios [64–67], with a “linear seesaw” [68, 69], in scale invariant models [43] or the Neutrino Minimal Standard Model νMSM [21, 22, 62]. In the symmetric limit one observes $U^2_{a1} = U^2_{a2}$ and $M_1 = M_2 \equiv M$. It is therefore instructive to introduce the quantities $U^2_a = \sum_i U^2_{ai}$, with $U^2_a \simeq U^2_{a}/2$. The symmetry automatically provides a natural explanation for the $\mu \ll 1$ required for leptogenesis.

If the collider is operated at at the Z-pole ($\sqrt{s} = 90$ GeV), then N_i with $M_i < 90$ GeV are primarily produced via s-channel exchange of on-shell Z bosons along with a SM neutrino ν_a. At higher collision energies the production through charged current interactions dominates. This has direct implications for the dependence of the production rates on the heavy neutrino flavour mixing pattern, i.e., the relative size of the U^2_{ai} for fixed $U^2_i = \sum_a U^2_{ai}$. The reason is that the production via s channel Z bosons is independent of the flavour of the associated neutrino ν_a (and therefore only depends on U^2_i), while the production via channel W boson exchange necessarily involves the electron flavour and is always proportional to U^2_{ei}. The N_i are detected via their weak decays into charged particles. If all masses in the final state can be neglected, then the decay rate practically only depends on U^2_i. Hence, in Z pole runs the total event rate is roughly determined by M_i and U^2_i alone, while it depends on the flavour mixing pattern for higher energy runs. The ratios U^2_{ai}/U^2_i are strongly constrained by neutrino oscillation data [28, 34, 35, 47, 72–74]. In ref. [47] it was shown that the combined data from neutrino oscillation experiments is sufficient to identify statistically preferred regions for the U^2_{ai}/U^2_i, cf. figure 2. Hence, it is possible to define a “most optimistic” and a “most pessimistic” scenario for the high energy run within this allowed range.

The ILC sensitivity for the different cases is shown in figure 4. Figs ?? and 5 show the
Figure 2: The different shades indicate the 1σ (darkest), 2σ and 3σ (lightest) probability contours for the ratios U_{α}^2/U^2 for $n_s = 2$ that can be obtained from the NuFIT 3.1 global fit to neutrino oscillation data [70, 71], assuming a flat prior for the unconstrained Majorana phase. The results depend only mildly on the choice of this prior. Figure taken from ref. [47].
expected number of events. The numerical calculation of the cross section for the different discussed performance parameters of the considered colliders is done in WHIZARD [75, 76] by including initial state radiation and by including also a (L,R) initial state polarisation of (80%,20%) and beamstrahlung effects.

Testing Leptogenesis. If any heavy neutral leptons are discovered at ILC, independent measurements of the U_{ai}^2 would in principle allow to determine all parameters in the Lagrangian (1) with $n_s = 2$ [34], making the minimal low scale seesaw a fully testable model of neutrino masses and baryogenesis. This may, however, be practically difficult because leptogenesis with $n_s = 2$ requires a mass degeneracy $\mu \equiv |M_2 - M_1|/(M_2 + M_1) < 0.1$ [39], with $\mu \ll 0.1$ in most of the parameter space, cf. figure 7. It may therefore not be possible to resolve the signatures of N_1 and N_2, so that the experiment is only sensitive to the combined mixings $U_{ai}^2 = U_{a1}^2 + U_{a2}^2$. However, since $U_{a1}^2 \simeq U_{a2}^2$ in the B-L symmetric limit, this measurement already provides a strong test of the hypothesis that these particles are the origin of neutrino masses [34, 35, 77] and allows to constrain the CP-violating phases in U_{ν} [34, 35, 77]. Such a measurement would also provide a test of leptogenesis, as not all combinations of the U_{ai}^2 that are in agreement with neutrino oscillation data can lead to successful leptogenesis [34, 35], cf. figure 3. As an optimistic example, we show the precision at which U_{ae}^2 can be determined with the ILC for IO in figure 6. However, an identification of the flavour mixing pattern alone would not be sufficient to prove that the N_i are indeed responsible for baryogenesis because the BAU strongly depends on the heavy neutrino mass spectrum, and less strongly on an additional phase in θ that does not appear in U_{ν}. A direct kinematic measurement of μ is only possible in a small fraction of the leptogenesis parameter region [39], indirect measurements may be possible from a comparison of the rates for lepton number violating and conserving processes [79, 80] or N_i oscillations in the detector [81].

Conclusions. We have studied the potential of the ILC to discover heavy neutrinos that can simultaneously explain the light neutrino flavour oscillations and the origin of the baryon asymmetry of the universe. We have focussed on the minimal model with two heavy neutrinos, which effectively also describes leptogenesis in the νMSM. For heavy neutrino masses below the Z mass m_Z, the best sensitivity can be achieved with searches for displaced vertices.

We find that the ILC has the potential to observe a few hundred displaced vertex events from the decays of heavy neutrinos. For centre-of-mass collision energies \sqrt{s} at the Z pole ($\sqrt{s} = m_Z$), this number is roughly independent of the heavy neutrino flavour mixing pattern because the heavy neutrinos can be produced in the decays of on-shell Z bosons. At $\sqrt{s} = 500$ GeV, where the heavy neutrinos are mainly produced via charged current interactions, the production relies on their mixing with the first generation, which is predicted to be suppressed for a “normal ordering” of light neutrino masses. The performance of a Compact Linear Collider (CLIC) at $\sqrt{s} = 500$ GeV for similar values of the luminosity would be comparable to that of the ILC, while it is expected to be better
Figure 3: The region within the black lines is allowed by light neutrino oscillation data for $n_s = 2$, cf. figure 2. The colour indicates the largest mixing angle U^2 that allows to produce the observed BAU for the cases of normal ordering (left) and inverted ordering (right) for right-handed neutrino with an average mass $\bar{M} = 30$ GeV. The largest viable mixing angles are found in the case of a highly hierarchical flavour mixing pattern ($U^2_a \ll U^2$ for one of the flavours). This hierarchy allows to protect part of the asymmetries from the washout in the early universe even if U^2 is large enough that the heavy neutrinos come into equilibrium before sphalerons freeze out. The hierarchy between the smallest U^2_a and U^2_i can be much larger for $n_s > 2$, which makes leptogenesis feasible for larger U^2_i [44] and thereby improves the perspectives for an experimental discovery in comparison to the minimal $n_s = 2$ scenario discussed here.
Figure 4: The blue “BAU” line shows the largest possible mixings $U^2 = \sum_i U^2_i$ for which the BAU can be generated in the seesaw model with $n_s = 2$ for given $\bar{M} = |M_2 + M_1|/2$. The grey area is ruled out by the DELPHI experiment [82, 83] (on the top) and by neutrino oscillation data (at the bottom). We display no lower bound on U^2 from leptogenesis because this constraint is weaker than that from neutrino oscillation data in this mass range. The coloured lines mark the parameter regions in which the ILC experiment is expected to observe at least four displaced vertex events from N_i with properties that are consistent with successful leptogenesis. The orange lines show the regions accessible with $\sqrt{s} = 500$ GeV and an integrated luminosity of $\mathcal{L} = 0.1\, \text{ab}^{-1}$ and $\mathcal{L} = 5\, \text{ab}^{-1}$, which depend on the relative size of the heavy neutrinos mixings U^2_{ei} to individual SM flavours because the N_i production is dominated by charged current interactions, which necessarily involve the mixing U^2_{ei} with the electron flavour. The solid and dashed lines correspond to the most optimistic and most pessimistic scenario consistent with light neutrino oscillation data. The lack of orange lines in the left panel is due to the suppression of U^2_{ei} for normal ordering of light neutrino masses for $n_s = 2$, cf. figure 2. This suppression is less efficient for $n_s > 2$ [84, 85]. The purple lines indicate the regions accessible with \sqrt{s} at the Z pole, which only depend on the total U^2. Figure taken from ref. [39].
Figure 5: The number of events expected to be seen at the ILC with $\sqrt{s} = 90$ GeV (upper panels) and $\sqrt{s} = 500$ GeV (lower panels) as a function of M_i and U_{2i}^2 for the most pessimistic (small U_{ei}^2/U_{2i}^2, left panel) and most optimistic (large U_{ei}^2/U_{2i}^2, right panel) consistent with neutrino oscillation data and successul leptogenesis (cf. figure 2) with $n_s = 2$ and IO. Note that the number can be much larger above the “BAU” line, where leptogenesis is not feasible for $n_s = 2$, but the low scale seesaw mechanism can still provide an explanation for the observed neutrino oscillation. Moreover, leptogenesis is believed to be feasible for larger U_{2i}^2 with $n_s > 2$ [44]. Figure taken from ref. [39].
Figure 6: The lines indicate the precision that can be achieved for measuring U_{e2}^2/U_{22}^2 at the ILC with $\sqrt{s} = 90\text{ GeV}$ (left) and $\sqrt{s} = 500\text{ GeV}$ (right) for the case of inverse ordering (IO) of the light neutrino masses. The coloured area corresponds to the parameter region where leptogenesis with $n_s = 2$ was found to be feasible in ref. [39]. The two heavy neutrinos are assumed to be almost degenerate in mass at $M = 10\text{ GeV}$.

(compared to the ILC’s high energy run) at the higher planned collision energies because the heavy neutrino production peaks at energies above 1 TeV.

For the largest mixings U_{ij}^2 consistent with leptogenesis this allows to extract information about the heavy neutrino flavour mixing pattern at a precision of a few percent. If any heavy neutral leptons are discovered at the ILC, this measurement provides a test for the hypothesis that these particles are responsible for the origin of neutrino masses. Together with a determination of the heavy neutrino mass spectrum it can also be a first step towards probing leptogenesis as the mechanism of baryogenesis.

Acknowledgements. This research was supported by the DFG cluster of excellence ‘Origin and Structure of the Universe’ (www.universe-cluster.de), by the Collaborative Research Center SFB1258 of the Deutsche Forschungsgemeinschaft, by the Swiss National Science Foundation, by the “Fund for promoting young academic talent” from the University of Basel under the internal reference number DPA2354, and it has received funding from the European Unions Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie grant agreement No 674896 (Elusives).
Figure 7: The allowed total mixing U^2 in comparison to the splitting of the eigenvalues of the Majorana mass M in the Lagrangian (ΔM, upper panels) and the physical mass splittings (ΔM_{phys}, lower panels). ΔM_{phys} is given by the eigenvalues of M_N and involves corrections from the Higgs mechanism [28]. It determines the oscillation time t_{osc} of the heavy neutrinos in the laboratory, which can be compared to their lifetime $1/\Gamma$, where Γ is the N_i decay width, cf. the yellow line. We used an average mass $\bar{M} = 30 \text{ GeV}$. The red line represents the “seesaw limit”, below which the parameter region is excluded by neutrino oscillation data for $n_s = 2$. The vertical, dashed, green lines correspond to the contribution to ΔM_{phys} solely from the coupling to the Higgs field. Note that leptogenesis is possible even for $\Delta M = 0$ due to this contribution during the electroweak crossover. Figure taken from ref. [39].
References

[1] P. A. R. Ade et al. “Planck 2015 results. XIII. Cosmological parameters”. In: Astron. Astrophys. 594 (2016), A13. DOI: 10.1051/0004-6361/201525830. arXiv: 1502.01589 [astro-ph.CO].

[2] L. Canetti, M. Drewes, and M. Shaposhnikov. “Matter and Antimatter in the Universe”. In: New J. Phys. 14 (2012), p. 095012. DOI: 10.1088/1367-2630/14/9/095012. arXiv: 1204.4186 [astro-ph.CO].

[3] P. Minkowski. “$\mu \to e\gamma$ at a Rate of One Out of 10^9 Muon Decays?” In: Phys. Lett. 67B (1977), pp. 421–428. DOI: 10.1016/0370-2693(77)90435-X.

[4] M. Gell-Mann, P. Ramond, and R. Slansky. “Complex Spinors and Unified Theories”. In: Conf. Proc. C790927 (1979), pp. 315–321. arXiv: 1306.4669 [hep-th].

[5] R. N. Mohapatra and G. Senjanovic. “Neutrino Mass and Spontaneous Parity Violation”. In: Phys. Rev. Lett. 44 (1980), p. 912. DOI: 10.1103/PhysRevLett.44.912.

[6] T. Yanagida. “Horizontal Symmetry and Masses of Neutrinos”. In: Prog. Theor. Phys. 64 (1980), p. 1103. DOI: 10.1143/PTP.64.1103.

[7] J. Schechter and J. W. F. Valle. “Neutrino Masses in SU(2) x U(1) Theories”. In: Phys. Rev. D22 (1980), p. 2227. DOI: 10.1103/PhysRevD.22.2227.

[8] J. Schechter and J. W. F. Valle. “Neutrino Decay and Spontaneous Violation of Lepton Number”. In: Phys. Rev. D25 (1982), p. 774. DOI: 10.1103/PhysRevD.25.774.

[9] M. Drewes. “The Phenomenology of Right Handed Neutrinos”. In: Int. J. Mod. Phys. E22 (2013), p. 1330019. DOI: 10.1142/S0218301313300191. arXiv: 1303.6912 [hep-ph].

[10] M. Fukugita and T. Yanagida. “Baryogenesis Without Grand Unification”. In: Phys. Lett. B174 (1986), pp. 45–47. DOI: 10.1016/0370-2693(86)91126-3.

[11] V. A. Kuzmin, V. A. Rubakov, and M. E. Shaposhnikov. “On the Anomalous Electroweak Baryon Number Nonconservation in the Early Universe”. In: Phys. Lett. 155B (1985), p. 36. DOI: 10.1016/0370-2693(85)91028-7.

[12] P. S. B. Dev et al. “Flavor effects in leptogenesis”. In: (2017). arXiv: 1711.02861 [hep-ph].

[13] M. Drewes et al. “ARS Leptogenesis”. In: (2017). arXiv: 1711.02862 [hep-ph].

[14] B. Dev et al. “Resonant enhancement in leptogenesis”. In: (2017). arXiv: 1711.02863 [hep-ph].

[15] S. Biondini et al. “Status of rates and rate equations for thermal leptogenesis”. In: (2017). arXiv: 1711.02864 [hep-ph].

[16] E. J. Chun et al. “Probing Leptogenesis”. In: (2017). arXiv: 1711.02865 [hep-ph].

[17] C. Hagedorn et al. “CP Violation in the Lepton Sector and Implications for Leptogenesis”. In: (2017). arXiv: 1711.02866 [hep-ph].
[18] S. Dodelson and L. M. Widrow. “Sterile-neutrinos as dark matter”. In: *Phys. Rev. Lett.* 72 (1994), pp. 17–20. DOI: 10.1103/PhysRevLett.72.17. arXiv: hep-ph/9303287 [hep-ph].

[19] X.-D. Shi and G. M. Fuller. “A New dark matter candidate: Nonthermal sterile neutrinos”. In: *Phys. Rev. Lett.* 82 (1999), pp. 2832–2835. DOI: 10.1103/PhysRevLett.82.2832. arXiv: astro-ph/9810076 [astro-ph].

[20] R. Adhikari et al. “A White Paper on keV sterile neutrino Dark Matter”. In: *Journal of Cosmology and Astroparticle Physics* 2017.01 (2017). Ed. by M. Drewes et al., p. 025. arXiv: 1602.04816 [hep-ph]. URL: http://stacks.iop.org/1475-7516/2017/i=01/a=025.

[21] T. Asaka, S. Blanchet, and M. Shaposhnikov. “The muMSM, dark matter and neutrino masses”. In: *Phys. Lett.* B631 (2005), pp. 151–156. DOI: 10.1016/j.physletb.2005.09.070. arXiv: hep-ph/0503065 [hep-ph].

[22] T. Asaka and M. Shaposhnikov. “The muMSM, dark matter and baryon asymmetry of the universe”. In: *Phys. Lett.* B620 (2005), pp. 17–26. DOI: 10.1016/j.physletb.2005.06.020. arXiv: hep-ph/0505013 [hep-ph].

[23] L. Canetti, M. Drewes, and M. Shaposhnikov. “Sterile Neutrinos as the Origin of Dark and Baryonic Matter”. In: *Phys. Rev. Lett.* 110.6 (2013), p. 061801. DOI: 10.1103/PhysRevLett.110.061801. arXiv: 1204.3902 [hep-ph].

[24] L. Canetti et al. “Dark Matter, Baryogenesis and Neutrino Oscillations from Right Handed Neutrinos”. In: *Phys. Rev.* D87 (2013), p. 093006. DOI: 10.1103/PhysRevD.87.093006. arXiv: 1208.4607 [hep-ph].

[25] A. Pilaftsis and T. E. J. Underwood. “Resonant leptogenesis”. In: *Nucl. Phys.* B692 (2004), pp. 303–345. DOI: 10.1016/j.nuclphysb.2004.05.029. arXiv: hep-ph/0309342 [hep-ph].

[26] E. K. Akhmedov, V. A. Rubakov, and A. Yu. Smirnov. “Baryogenesis via neutrino oscillations”. In: *Phys. Rev. Lett.* 81 (1998), pp. 1359–1362. DOI: 10.1103/PhysRevLett.81.1359. arXiv: hep-ph/9803255 [hep-ph].

[27] T. Hambye and D. Teresi. “Higgs doublet decay as the origin of the baryon asymmetry”. In: *Phys. Rev. Lett.* 117.9 (2016), p. 091801. DOI: 10.1103/PhysRevLett.117.091801. arXiv: 1606.00017 [hep-ph].

[28] M. Shaposhnikov. “The muMSM, lepton asymmetries, and properties of singlet fermions”. In: *JHEP* 08 (2008), p. 008. DOI: 10.1088/1126-6708/2008/08/008. arXiv: 0804.4542 [hep-ph].

[29] L. Canetti and M. Shaposhnikov. “Baryon Asymmetry of the Universe in the NuMSM”. In: *JCAP* 1009 (2010), p. 001. DOI: 10.1088/1475-7516/2010/09/001. arXiv: 1006.0133 [hep-ph].
[30] T. Asaka, S. Eijima, and H. Ishida. “Kinetic Equations for Baryogenesis via Sterile Neutrino Oscillation”. In: JCAP 1202 (2012), p. 021. DOI: 10.1088/1475-7516/2012/02/021. arXiv: 1112.5565 [hep-ph].

[31] B. Shuve and I. Yavin. “Baryogenesis through Neutrino Oscillations: A Unified Perspective”. In: Phys. Rev. D89.7 (2014), p. 075014. DOI: 10.1103/PhysRevD.89.075014. arXiv: 1401.2459 [hep-ph].

[32] P. Hernandez et al. “Leptogenesis in GeV scale seesaw models”. In: JHEP 10 (2015), p. 067. DOI: 10.1007/JHEP10(2015)067. arXiv: 1508.03676 [hep-ph].

[33] M. Drewes and S. Eijima. “Neutrinoless double β decay and low scale leptogenesis”. In: Phys. Lett. B763 (2016), pp. 72–79. DOI: 10.1016/j.physletb.2016.09.054. arXiv: 1606.06221 [hep-ph].

[34] M. Drewes et al. “Testing the low scale seesaw and leptogenesis”. In: JHEP 08 (2017), p. 018. DOI: 10.1007/JHEP08(2017)018. arXiv: 1609.09069 [hep-ph].

[35] P. Hernández et al. “Testable Baryogenesis in Seesaw Models”. In: JHEP 08 (2016), p. 157. DOI: 10.1007/JHEP08(2016)157. arXiv: 1606.06719 [hep-ph].

[36] M. Drewes et al. “Leptogenesis from Oscillations of Heavy Neutrinos with Large Mixing Angles”. In: JHEP 12 (2016), p. 150. DOI: 10.1007/JHEP12(2016)150. arXiv: 1606.06689 [hep-ph].

[37] T. Asaka et al. “Initial condition for baryogenesis via neutrino oscillation”. In: (2017). arXiv: 1704.02692 [hep-ph].

[38] S. Antusch et al. “Probing Leptogenesis at Future Colliders”. In: (2017). arXiv: 1710.03744 [hep-ph].

[39] A. Abada et al. “Lepton number violation as a key to low-scale leptogenesis”. In: JCAP 1511.11 (2015), p. 041. DOI: 10.1088/1475-7516/2015/11/041. arXiv: 1507.06215 [hep-ph].

[40] V. V. Khoze and G. Ro. “Leptogenesis and Neutrino Oscillations in the Classically Conformal Standard Model with the Higgs Portal”. In: JHEP 10 (2013), p. 075. DOI: 10.1007/JHEP10(2013)075. arXiv: 1307.3764 [hep-ph].

[41] L. Canetti, M. Drewes, and B. Garbrecht. “Probing leptogenesis with GeV-scale sterile neutrinos at LHCB and Belle II”. In: Phys. Rev. D90.12 (2014), p. 125005. DOI: 10.1103/PhysRevD.90.125005. arXiv: 1404.7114 [hep-ph].
C. Lazzeroni et al. “Search for heavy neutrinos in \(K^+ \rightarrow \mu^+\nu_\mu \) decays”. In: Phys. Lett. B772 (2017), pp. 712–718. DOI: 10.1016/j.physletb.2017.07.055. arXiv: 1705.07510 [hep-ex].

E. Cortina Gil et al. “Search for heavy neutral lepton production in \(K^+ \) decays”. In: (2017). arXiv: 1712.00297 [hep-ex].

M. Drewes et al. “NA62 sensitivity to heavy neutral leptons in the low scale seesaw model”. In: (2018). arXiv: 1801.04207 [hep-ph].

M. Anelli et al. “A facility to Search for Hidden Particles (SHiP) at the CERN SPS”. In: (2015). arXiv: 1504.04956 [physics.ins-det].

S. Alekhin et al. “A facility to Search for Hidden Particles at the CERN SPS: the SHiP physics case”. In: (2015). arXiv: 1504.04855 [hep-ph].

S. Banerjee et al. “Prospects of Heavy Neutrino Searches at Future Lepton Colliders”. In: Phys. Rev. D92 (2015), p. 075002. DOI: 10.1103/PhysRevD.92.075002. arXiv: 1503.05491 [hep-ph].

F. F. Deppisch, P. S. Bhupal Dev, and A. Pilaftsis. “Neutrinos and Collider Physics”. In: New J. Phys. 17.7 (2015), p. 075019. DOI: 10.1088/1367-2630/17/7/075019. arXiv: 1502.06541 [hep-ph].

S. Antusch, E. Cazzato, and O. Fischer. “Sterile neutrino searches at future \(e^-e^+, pp, \) and \(e^-p \) colliders”. In: Int. J. Mod. Phys. A32.14 (2017), p. 1750078. DOI: 10.1142/S0217751X17500786. arXiv: 1612.02728 [hep-ph].

Y. Cai et al. “Lepton-Number Violation: Seesaw Models and Their Collider Tests”. In: (2017). arXiv: 1711.02180 [hep-ph].

S. Antusch, E. Cazzato, and O. Fischer. “Displaced vertex searches for sterile neutrinos at future lepton colliders”. In: JHEP 12 (2016), p. 007. DOI: 10.1007/JHEP12(2016)007. arXiv: 1604.02420 [hep-ph].

J. C. Helo, M. Hirsch, and S. Kovalenko. “Heavy neutrino searches at the LHC with displaced vertices”. In: Phys. Rev. D89 (2014). [Erratum: Phys. Rev.D93,no.9,099902(2016)], p. 073005. DOI: 10.1103/PhysRevD.89.073005, 10.1103/PhysRevD.93.099902. arXiv: 1312.2900 [hep-ph].

E. Izaguirre and B. Shuve. “Multilepton and Lepton Jet Probes of Sub-Weak-Scale Right-Handed Neutrinos”. In: Phys. Rev. D91.9 (2015), p. 093010. DOI: 10.1103/PhysRevD.91.093010. arXiv: 1504.02470 [hep-ph].

A. M. Gago et al. “Probing the Type I Seesaw Mechanism with Displaced Vertices at the LHC”. In: Eur. Phys. J. C75.10 (2015), p. 470. DOI: 10.1140/epjc/s10052-015-3693-1. arXiv: 1505.05880 [hep-ph].

S. Antusch, E. Cazzato, and O. Fischer. “Sterile neutrino searches via displaced vertices at LHCb”. In: (2017). arXiv: 1706.05990 [hep-ph].
[59] J. P. Chou, D. Curtin, and H. J. Lubatti. “New Detectors to Explore the Lifetime Frontier”. In: Phys. Lett. B767 (2017), pp. 29–36. DOI: 10.1016/j.physletb.2017.01.043. arXiv: 1606.06298 [hep-ph].

[60] D. Gorbunov and M. Shaposhnikov. “How to find neutral leptons of the νMSM?” In: JHEP 10 (2007). [Erratum: JHEP11,101(2013)], p. 015. DOI: 10.1007/JHEP11(2013)101, 10.1088/1126-6708/2007/10/015. arXiv: 0705.1729 [hep-ph].

[61] J. Kersten and A. Yu. Smirnov. “Right-Handed Neutrinos at CERN LHC and the Mechanism of Neutrino Mass Generation”. In: Phys. Rev. D76 (2007), p. 073005. DOI: 10.1103/PhysRevD.76.073005. arXiv: 0705.3221 [hep-ph].

[62] M. Shaposhnikov. “A Possible symmetry of the nuMSM”. In: Nucl. Phys. B763 (2007), pp. 49–59. DOI: 10.1016/j.nuclphysb.2006.11.003. arXiv: hep-ph/0605047 [hep-ph].

[63] K. Moffat, S. Pascoli, and C. Weiland. “Equivalence between massless neutrinos and lepton number conservation in fermionic singlet extensions of the Standard Model”. In: (2017). arXiv: 1712.07611 [hep-ph].

[64] D. Wyler and L. Wolfenstein. “Massless Neutrinos in Left-Right Symmetric Models”. In: Nucl. Phys. B218 (1983), pp. 205–214. DOI: 10.1016/0550-3213(83)90482-0.

[65] R. N. Mohapatra. “Mechanism for Understanding Small Neutrino Mass in Superstring Theories”. In: Phys. Rev. Lett. 56 (1986), pp. 561–563. DOI: 10.1103/PhysRevLett.56.561.

[66] R. N. Mohapatra and J. W. F. Valle. “Neutrino Mass and Baryon Number Nonconservation in Superstring Models”. In: Phys. Rev. D34 (1986), p. 1642. DOI: 10.1103/PhysRevD.34.1642.

[67] J. Bernabeu et al. “Lepton Flavor Nonconservation at High-Energies in a Superstring Inspired Standard Model”. In: Phys. Lett. B187 (1987), pp. 303–308. DOI: 10.1016/0370-2693(87)91100-2.

[68] E. K. Akhmedov et al. “Left-right symmetry breaking in NJL approach”. In: Phys. Lett. B368 (1996), pp. 270–280. DOI: 10.1016/0370–2693(95)01504-3. arXiv: hep-ph/9507275 [hep-ph].

[69] E. K. Akhmedov et al. “Dynamical left-right symmetry breaking”. In: Phys. Rev. D53 (1996), pp. 2752–2780. DOI: 10.1103/PhysRevD.53.2752. arXiv: hep-ph/9509255 [hep-ph].

[70] I. Esteban et al. “Updated fit to three neutrino mixing: exploring the accelerator-reactor complementarity”. In: JHEP 01 (2017), p. 087. DOI: 10.1007/JHEP01(2017)087. arXiv: 1611.01514 [hep-ph].

[71] NuFIT 3.1. 2017. URL: nu-fit.org.

[72] M. B. Gavela et al. “Minimal Flavour Seesaw Models”. In: JHEP 09 (2009), p. 038. DOI: 10.1088/1126-6708/2009/09/038. arXiv: 0906.1461 [hep-ph].
[73] T. Asaka, S. Eijima, and H. Ishida. “Mixing of Active and Sterile Neutrinos”. In: *JHEP* 04 (2011), p. 011. doi: 10.1007/JHEP04(2011)011. arXiv: 1101.1382 [hep-ph].

[74] O. Ruchayskiy and A. Ivashko. “Experimental bounds on sterile neutrino mixing angles”. In: *JHEP* 06 (2012), p. 100. doi: 10.1007/JHEP06(2012)100. arXiv: 1112.3319 [hep-ph].

[75] W. Kilian, T. Ohl, and J. Reuter. “WHIZARD: Simulating Multi-Particle Processes at LHC and ILC”. In: *Eur. Phys. J.* C71 (2011), p. 1742. doi: 10.1140/epjc/s10052-011-1742-y. arXiv: 0708.4233 [hep-ph].

[76] M. Moretti, T. Ohl, and J. Reuter. “O’Mega: An Optimizing matrix element generator”. In: (2001), pp. 1981–2009. arXiv: hep-ph/0102195 [hep-ph].

[77] A. Caputo et al. “The seesaw path to leptonic CP violation”. In: *Eur. Phys. J.* C77.4 (2017), p. 258. DOI 10.1140/epjc/s10052-017-4823-8. arXiv: 1611.05000 [hep-ph].

[78] A. Caputo et al. “The seesaw portal in testable models of neutrino masses”. In: *JHEP* 06 (2017), p. 112. DOI 10.1007/JHEP06(2017)112. arXiv: 1704.08721 [hep-ph].

[79] C. O. Dib et al. “Distinguishing Dirac/Majorana Sterile Neutrinos at the LHC”. In: *Phys. Rev.* D94.1 (2016), p. 013005. DOI 10.1103/PhysRevD.94.013005. arXiv: 1605.01123 [hep-ph].

[80] G. Anamiati, M. Hirsch, and E. Nardi. “Quasi-Dirac neutrinos at the LHC”. In: *JHEP* 10 (2016), p. 010. DOI 10.1007/JHEP10(2016)010. arXiv: 1607.05641 [hep-ph].

[81] S. Antusch, E. Cazzato, and O. Fischer. “Heavy neutrino-antineutrino oscillations at colliders”. In: (2017). arXiv: 1709.03797 [hep-ph].

[82] P. Abreu et al. “Searches for heavy neutrinos from Z decays”. In: *Phys. Lett.* B274 (1992), pp. 230–238. DOI: 10.1016/0370-2693(92)90528-C.

[83] P. Abreu et al. “Search for neutral heavy leptons produced in Z decays”. In: *Z. Phys.* C74 (1997). [Erratum: Z. Phys.C75,580(1997)], pp. 57–71. DOI: 10.1007/s002880050370.

[84] D. Gorbunov and A. Panin. “On the minimal active-sterile neutrino mixing in seesaw type I mechanism with sterile neutrinos at GeV scale”. In: *Phys. Rev.* D89.1 (2014), p. 017302. DOI: 10.1103/PhysRevD.89.017302. arXiv: 1312.2887 [hep-ph].

[85] M. Drewes and B. Garbrecht. “Combining experimental and cosmological constraints on heavy neutrinos”. In: *Nucl. Phys.* B921 (2017), pp. 250–315. DOI: 10.1016/j.nuclphysb.2017.05.001. arXiv: 1502.00477 [hep-ph].