A brief glimpse of a tangled web in a small world: Tumor microenvironment

Iman M. Talaat¹ and Byoungkwon Kim²*

¹Clinical Sciences Department, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates; ²Department of Pathology, H.H. Sheikh Khalifa Specialty Hospital, Ras Al Khaimah, United Arab Emirates

A tumor is a result of stepwise accumulation of genetic and epigenetic alterations. This notion has deepened the understanding of cancer biology and has introduced the era of targeted therapies. On the other hand, there have been a series of attempts of using the immune system to treat tumors, dating back to ancient history, to sporadic reports of inflamed tumors undergoing spontaneous regression. This was succeeded by modern immunotherapies and immune checkpoint inhibitors. The recent breakthrough has broadened the sight to other players within tumor tissue. Tumor microenvironment is a niche or a system orchestrating reciprocal and dynamic interaction of various types of cells including tumor cells and non-cellular components. The output of this complex communication dictates the functions of the constituent elements present within it. More complicated factors are biochemical and biophysical settings unique to TME. This mini review provides a brief guide on a range of factors to consider in the TME research.

KEYWORDS
- tumor microenvironment
- Immune Checkpoint Inhibitors
- immune system
- network
- immunotherapy

Introduction

The earliest form of cancer immunotherapy using infection started around 1550 BCE (1). In the modern era, an incidental observation of tumor regression after surgical wound infection was advanced into a more controlled approach using bacterial vaccines to treat sarcoma (2). This journey was then succeeded by application of Bacillus Calmette-Guerin (BCG), various types of oncolytic viruses and Immune Checkpoint Inhibitors (ICIs) (3). Substantial efficacy and superior safety profiles with tumor-agnostic features have immediately positioned ICIs in the main treatment arm in most advanced cancers. This has turned the focus from genetic and epigenetic alterations of tumor cells to immune cells. However, ICIs are no exception in primary or secondary resistance of drugs. This has led the investigators to place a heavier emphasis on other players and the surroundings of tumor cells. Long before the era of ICIs, histologic description of tumor tissues had already provided some insights in tumor surroundings. For instance, melanomas are characterized by fibrosis, melanophages (a type of macrophage), new blood vessels and infiltration of lymphocytes in and around the nests of dying tumor cells (4). Exuberant lymphoid reaction was the hallmark of colorectal cancer (CRC).
with high microsatellite instability (MSI-high) (5). The study of CRC with MSI-high, either in Lynch syndrome or sporadic cases has indicated the hypermutator phenotype and MSI is still the most relevant predictive biomarker of ICIs currently (6). It is quite logical to speculate that the tumor mutational burden (TMB) follows MSI. However, the TMB is not a one-marker-fit-for-all (7). An example that displays this fact to the furthest extent was from an animal study where fibroblasts having inactivated TGF-β type II receptor induced precancerous lesions and carcinomas from an otherwise normal epithelium (8). With all these factors to consider, the center of attention always has been revolving around tumor cells. Environment is defined as the circumstances, objects, or conditions by which one is surrounded (9). The circumstances surrounding tumor cells theoretically ranges from ions, humoral factors and matrixines to various types of cells and tissues and even to host itself. Like the stem cell niche, tumor cells reside in their own niche or TME, and also have a reciprocal non-static spatiotemporal coordination with each other to regulate functions and differentiation of tumor cells and non-tumor cells, under the influence of specific physicochemical conditions (10–16). The current mini-review aims to cover as many attributes in this complex system, ranging from ions to cell and extracellular matrix (ECM), to physico-chemical properties of TME in an attempt to assist future studies.

Definition of tumor microenvironment

The National Cancer Institute defines the TME as “The normal cells, molecules, and blood vessels that surround and feed a tumor cell. A tumor can change its microenvironment, and the microenvironment can affect how a tumor grows and spreads.” (17). This definition may appear simple at first, but encompasses the idea of reciprocal interaction and regulation of a tumor cell behavior. The most common ones are based on a structural view (18). Regularly emphasized is the dynamic nature of the cell population, such as the resident players and non-resident cellular components (19, 20). However, these definitions do not specifically identify other elements, such as tumor interstitial fluid, and physicochemical properties. To better depict a dynamic symbiotic system, “Seed and Soil,” an analogy of the stem cell niche, was introduced (14). “The TME comprises of a diverse cellular and acellular milieu, in which cancer stem cells (CSCs) develop and thrive, and various stromal and immune cells are recruited to form and maintain this self-sustained environment” (21). In that regard, the definition of “seed and soil” is comprehensive enough to cover all components in TME.

Cellular component

Histologic observation of tumors shows cancer cells intricately mixed with various inflammatory cells, fibroblasts, fibrotic stroma and blood vessels. One of the most studied examples is colorectal cancer (CRC) with high microsatellite instability (MSI). The tumor cells exhibit morphologic alterations such as mucinous change, signet ring cell feature and medullary histology (22). The presence of other cellular players is observed such as high number of tumor infiltrating lymphocytes (TILs) and peritumoral lymphoid follicles reminiscent of the inflammatory pattern of Crohn's disease (5). There are many cases providing morphologic evidence of multiple players in tumor tissues (6). On the other hand, data-driven approach was able to characterize complex alterations from genes to transcription, and has brought in molecular classifications agnostic about morphology (23). However, immune cells are still the major focus in the era of ICIs, and the classification systems based on proportion of these cells have been proposed (24–26). Two tier system such as a hot tumor vs. a cold tumor is widely accepted one. A three tier system, such as immune infiltrated/inflamed, immune excluded, and immune silent/desert is also a commonly used method of classification (25).

Back to the role of each population in TME, cells are generally classified as tumor-promoting vs. tumor-suppressing (27) (Table 1). In this scheme, players are not simply dysfunctional in TME, but also actively suppress other immune cells and promote tumor cells, ranging from growth, invasion, metastasis to immune evasion (27). Members found to promote tumors are regulatory T cells (Tregs), myeloid-derived suppressor cells (MDSCs), M2 tumor-associated macrophages (TAMs), resident or derived from bone marrow/spleen, N2 tumor-associated neutrophils (TANs), cancer-associated fibroblasts (CAF), tolerogenic dendritic cells (DCs) and more details are summarized in Table 1 (76–78). Once cells migrate into the TME, they are polarized or differentiated under the local condition, and in return, these cells accelerate the immune-suppressive and tumor-promoting environment (37). Hence, the state is not static but can be dynamic depending on the context or milieu of cytokines and signaling molecules. For example, M1 macrophage can turn into the M2 type and vice versa, while an intermediate form between M1 and M2 has been discovered (37). Proportion-wise, cancer-associated fibroblasts (CAFs) are the most abundant component in the tumor tissue (13). CAFs have a critical position in all steps, from tumor initiation to metastasis, and even being related to therapeutic resistance (8, 79). CAFs are derived from resident fibroblasts and other cells such as smooth muscle cells, vascular pericytes and bone marrow-derived mesenchymal cells, adipocytes and this process is caused by various factors [stromal cell-derived factor 1 (SDF1), platelet-derived growth factor (PDGF), transforming...
growth factor-β (TGF-β), fibroblast growth factor 2 (FGF2)) produced by tumor cells and immune cells (18, 80–83). CAFs then reciprocally promote tumor progression by production of growth factors (PDGF, TGF-β, epidermal growth factor (EGF), bone morphogenetic proteins (BMP) and C-X-C motif chemokine 12 (CXCL12), CXCL13) and these cells also stimulate angiogenesis by secreting vascular endothelial growth factor (VEGF), CXCL12 and FGF2 (72–75). Recently, focus was turned to rare cell populations in TME such as mast cells, basophils, eosinophils (84–86). The next-generation pathology, together with the single-cell analysis and systems pathology, will provide new insightful hints for developing effective therapeutic protocols targeting the TME (87, 88).

Extracellular matrix

Tumor stroma shows fibrosis or even desmplasia in certain types of tumors, such as biliary cancer and gray-colored myxoid change, likely due to the ECM alteration (89, 90). ECM undergoes a remodeling process in physiologic and pathologic conditions, and it is an intricate phenomenon involving more than 700 proteins (91, 92). The characteristics of the remodeled ECM eventually affect the fate of cells (91, 92). The major alterations of tumor ECM are degradation, stiffening and physical remodeling (18, 93). In TME, acidic condition, excessive amount of proteases [i.e., matrix metalloproteases (MMPs), disintegrin and metalloproteinases (ADAMs), disintegrin and metalloproteinases with thrombospondin motifs (ADAMTS)] and production of reactive oxygen species (ROS) from tumor cells, CAF, TAN and TAM cause degradation of ECM (18). During this process, Extracellular Matrix-Derived Fragments are produced. These undertake active biological functions as matrikines leading to various effects such as acceleration of matrix production, promoting or suppressing tumor progression and angiogenesis (93, 94). Neoplastic stromas are stiffer than adjacent normal tissues and this is due to an excessive laydown of ECM and altered post-translational modification (PTM) (18). At first, CAFs secrete ECM in excess, including collagens, glycoproteins, proteoglycans, and polycarboxamides (18). Then, the hypoxic condition enhances the cross-linking via production of lysyl oxidase (LOX) and transglutaminase from CAGs (95, 96). These modified rigid collagen fibrils are known to facilitate tumor cell migration and progression (97–100). In addition to the structural changes, PTM of ECM directly controls the tumor cell behavior by modulating the function of various growth factors embedded in the matrix (46, 101–103). For example, heparan sulfate proteoglycans (HSPGs) have different binding and releasing capacity of growth factors, depending on the sulphation pattern. This pattern is modified by the enzyme called endosulfatase (Sulf). In tumor tissue, the isotypes of Sulf are differentially expressed that the sulphation pattern made by Sulf inhibits the signaling pathways promoting tumors, while conversely, the other formed by Sulf2 enhances them (101, 102). Altered glycosylation patterns are reported in tumor tissues, and are currently under research (22, 104, 105). Lastly, mechanical force causes physical remodeling of the ECM, and makes fibers aligned to make routes for tumor cell migration (93). In TME, the ECM is continuously remodeled in terms of the amount, structure and chemical properties and this process shapes the interplay of the components modulating the fate of tumor cells in their progression (93). High-throughput proteomics approach is expected to acquire more insight from this process (91, 106).

Biochemical component

One of the approaches to understand the biochemical property of TME is to look into the fluid of tumor or tumor interstitial fluid (TIF) (107, 108). TIF is characterized by high P_{CO_2}, low P_{O_2} and low pH, and these parameters are linked with each other (11, 12). Hypoxia in tumor tissues is the major contributor to acidic environment. Rapid proliferation of tumor cells and insufficient oxygen supply cause hypoxia. This condition reprograms tumor cells favoring aerobic glycolysis with production of lactate (109). Major regulators in this process are hypoxia-inducible factor (HIF)-1α, c-Myc, and p53 (110–114). Hypoxia induces inhibition of prolyl-hydroxylases and this stabilizes the HIFs. HIF-1α switches metabolisms in tumor by upregulating the transcription of enzymes of glycolysis, such as hexokinase 1/2 (HK 1/II) and pyruvate kinase isoenzyme M2 (PKM2), glucose transporters (Glut) such as Glut-1 and 3, alongside other genes inhibiting oxidative phosphorylation (115–118). As the dimer form of PKM2 prevails in the tumor, glucose metabolism is shifted to lactate production (118, 119). Abnormal vessels are unable to clear hydrogen ions effectively and hydration of CO$_2$ by carbonic anhydrase IX in hypoxic areas further increase acidity (120). This altered biochemical environment reconditions the cells under its influence forming a selective pressure which favors cancer cells over normal cells (120–128). This situation promotes tumorigenesis, tumor progression and immune evasion and is related with a poor clinical prognosis and resistance to therapy. Recently reported findings suggest that the lactic acid not only intensifies acidity but also directly impacts cellular signaling pathways preferentially polarizing TAM to M2 type (129).

What about the ions in TME? Previous studies have shown that the concentration of ions in TIF is similar to that in plasma (130). Recently, this notion has been revisited. More sophisticated analysis revealed that the potassium concentration is higher in TIF, while other ions such as sodium, chloride and magnesium remain within normal range (131). Higher potassium level was found to suppress activation and effector function of T cells (131). A starvation response is induced by local hyperkalemia, and this in turn reduces nutrient uptake, resulting in the imbalance of Acetyl Co-A (AcCoA) level in
TABLE 1 Tumor-suppressing and tumor-promoting roles of diverse cells in tumor microenvironment.

Tumor-suppressing	Tumor-promoting	References	
T lymphocyte	Th1→↑CTL, M1, NK	Treg suppress CTL	(25, 28–36)
	via IFN-γ, IL-2	Treg→↑costimulatory molecules on DC	
	→↑angiogenesis via IFN-γ	Treg modulate homeostasis of NK via IL-2	
	CTL→↑angiogenesis	Treg→↑tumor growth via FGFs	
	Th9→↑CTL via IL-9 and ↑NK via IL-21	Th9 recruit CTL, PMN, DC via CCL2, CCL7, CCL20, CXCL9, CXCL10	
	Th17 recruit CTL, PMN, DC via CCL2, CCL7, CCL20, CXCL9, CXCL10	Th2→↑Th1 and ↑M2	
	DC as APC and stimulate Th1, CTL, NK via IL-12, IL-15	Th17→↑angiogenesis	
	DC→↑Ag expression by tumor via TNF-α, IL-6		
B lymphocyte	B cell as APC to T cell	Breg→↑CTL, macrophage, TAN via IL-10, TGF-β	(25)
	B cell→antibody & IFN-γ→↑CTL		
Macrophage	M1 cells as APC to Th1, NK	M2 produce IL-10→↑production PD-L1 on monocyte via ↑infiltration of Treg and ↓CTL	(25, 37–43)
	M1 produces pro-inflammatory cytokine, ROS, RNS and ADCC→killing tumor cells	M2→↑PD-1 via ↑macrophage phagocytosis via tumor PD-L1	
	→↑angiogenesis	M2→↑PD-L2→↑immune escape and tumor promotion via PD-1	
	DC recruit naïve T cell via CCL17, CCL19, CCL22, IL-32	M2→↑tumor growth via EGF, FGF, PDGF, IL-4	
	DC stimulate Th1, CTL, NK via IL-12, IL-15	M2→↑angiogenesis via VEGF, IL-8, FGE, MIP-9	
	DC→↑Ag expression by tumor via TNF-α, IL-6		
Dendritic cell	DC as APC and stimulate CTL via ICAM-1, CD86, CD40, CD80	IL-10, TGF-β in TME→↑PD-1 on DC	(44–50)
	DC recruit naïve T cell via CCL17, CCL19, CCL22, IL-32	→immune-suppressive DC	
	DC stimulate Th1, CTL, NK via IL-12, IL-15	DC→↑Treg but ↓CTL, Th, macrophage, PMNs via IL-10, PD1L, IDO, Arginase-1	
	DC→↑Ag expression by tumor via TNF-α, IL-6		
NKT cell	NKT as APC via CD1d	NKT II→↑M2, MDSC and ↓CTL via IL-4, IL-13	(51, 52)
	NKT activates NK, DC, CTL via IL-12, IL-40		
NK cell	NK kill tumor cells via ADCC, Fas-Fasl, perforin-granzyme and cytokines (TNF, IFN-γ, GM-CSF, IL-6, and CCL5)	TGF-β in TME→↑disfunctional NK	(53–56)
	NK stimulates DC via FLT3L		
Neutrophil	N1 TANs kill tumor cells via ADCC and pro-inflammatory factors (IFN-γ, MMP-8) & ROS	TGF-β in TME→↑disfunctional NK	
	N1 TAN recruit DC via CCL19, CCL20 and T cells via CXCL9, CXCL10 and stimulate CTL, NK via TNF-α	TGF-β in TME→↑disfunctional NK	
Myeloid-Derived Suppressor Cell (MDSC)	Tumor cells produce GM-CSF→↑PD-L1 expression in TAN via JAK/STAT pathway→↑PD-L1 via TAN inhibit T-cell immunity (N2 TAN)		(25, 57–62)
	TAN suppress immune cells via Arginase-1, i-NOS		
	TAN recruit Treg via CCL17		
	TAN→↑angiogenesis via VEGF, MIP-9		
Mast cell	Mast cells regulate immune cells (T, B, APC) via cytokines	MDSC→↓metabolites in TME	(36, 63–65)
		Arginase-1, PGE-2 through PD-L1/PD-1	
		MDSC→↑angiogenesis via VEGF	
		MDSC block lymphocyte homing via ↓e-selectin	
		MDSC→↑angiogenesis via VEGF	
		Mast cells secrete angiogenic (VEGF, CXCL8, and MMP-9) and lymphangiogenic factors (VEGF-C and VEGF-F)	(66–69)
		Mast cells secrete IL10→↑Treg in draining lymph nodes	
		Mast cells secrete TNF-α→↑PD-L1 in mast cells via NF-κB pathway	

(Continued)
This concept can be applied to patient treatment via an EV engineering. EVs derived from proven fighters such as active TILs and chimeric antigen receptor (CAR)-T cells may potentially recondition dysfunctional or anergic immune cells in tumor tissue (158–162).

TABLE 1 Continued

Tumor-suppressing	Tumor-promoting	References
Endothelial cell	• Tumor-derived HIF → ↑endothelial cell sprouting via PDGF, EGF, VEGF, FGF, Ang-2, IL-8 → ↑endothelial cell migration → support nutrient and metabolite to tumor cells	(25, 79, 71)
	• ↓ICAM-1, VCAM on endothelial cells → ↓immune cell infiltration	
Cancer	• ↑TGF-β, BMP in TME convert endothelial cells to CAF	
Associated Fibroblast (CAF)	• Cancer cells secrete FGF, PDGF, SDF→ ↑CAF→ ↑PDGE	(72–75)
	TGF-β → ↑tumor growth	
	• CAF → immunosuppression via TGF-β	
	• CAF → ↑angiogenesis via VEGF, CXCL12	
	• CAF → MDSC recruitment via CCL7	
	• CAF → glucosaminoglycans and MMP-2 → ↑tumor migration	

ADCC, antibody-dependent cellular cytotoxicity; Ag, antigen; Ang, angiotensin; APC, antigen-presenting cell; BMP, bone morphogenic protein; Breg, B-regulatory lymphocyte; CAF, cancer-associated fibroblast; CAM, cell adhesion molecule; CAR, chimeric antigen receptor; CCL, CXCL, chemokines, CD, Cluster of differentiation; CTL, cytotoxic lymphocyte; DC, dendritic cell, ECM, extracellular matrix; EGF, epidermal growth factor; FasL, Fas-ligand, FGF, fibroblast growth factor; GE, growth factors; HIF-1, hypoxia-inducible factor-1; ICOS, inducible T-cell costimulator; IGF, insulin-like growth factor; IL, interleukin; iNOS, inducible nitric oxide synthase; M1, M1 macrophage; M2, M2 macrophage; MAB, monoclonal antibody; MDSC, myeloid-derived suppressor cell; MMP, matrix metalloproteinase; NK cell, natural killer cell; NKT, natural killer T cell; N2 TAN, N2 type tumor associated neutrophil; NKT I I; type II NKT cells; NO, nitric oxide; PDL-1, programmed death-ligand-1; PGE2, prostaglandin E2; PMN, polymorphonuclear neutrophil; RNAs (LncRNAs), and circular RNAs (circRNAs); ROS, reactive oxygen species; TAN, Tumor associated neutrophil; TGF-β, transforming growth factor-β; Th1, Th1 helper lymphocyte; Th2, Th2 helper lymphocyte; Th17, Th17 helper lymphocyte; Treg, T regulatory lymphocyte; VEGF, vascular endothelial growth factor; →, influence; ↑, increase; ↓, decrease.

Altered metabolic condition is a common survival strategy by tumor cells (136–139).

Clinically, cachexia represents increased catabolic status to feed cancer cells (140, 141). Abnormally increased anabolism is also seen in cancer patients. Non-Islet Cell Tumor Hypoglycemia (NICTH) is a paraneoplastic syndrome where non-endoctrine tumors cause hypoglycemia, while promoting anabolism of tumor cells by aberrantly producing insulin-like growth factor II (IGF-II), insulin receptor antibodies and various cytokines (tumor necrosis factor-α, interleukin-1 and —6) (142–145). Metabolic condition comes into play at microscopic level as well. As immune cells enter into tumor tissue, those cells face hypoglycemia and a scant amount of essential amino acids including glutamine and lipids. This condition hinders all steps of immune cell functions such as infiltration, proliferation and effector because these tasks have great demand for energy, nutrition and metabolic reprogramming (136–139). This competitive condition places the immune system in an anergy and exhaustion state (146, 147).

Extracellular vesicles (EVs) are rich in TIF (148). EVs such as exosomes, microvesicles, and apoptotic bodies carry active signaling and regulatory molecules like miRNA, miRNA, signaling proteins, microRNAs (miRNAs), long non-coding RNAs (LncRNAs), and circular RNAs (circRNAs) (149–151). All types of cells including cancer stem cells are known to secrete them (152, 153). Isolated EVs enriched in TME have the capability of promoting angiogenesis, modulating immune cells, enhancing tumor migration and epithelial-mesenchymal transition (EMT), metastasis and increasing drug resistance (148, 154, 155). However, EVs in TIF are not always tumor-promoting. Some EVs were found to exhibit anti-tumor effects (156, 157). This concept can be applied to patient treatment via an EV engineering. EVs derived from proven fighters such as active TILs and chimeric antigen receptor (CAR) can potentially recondition dysfunctional or anergic immune cells in tumor tissue (158–162).

Subcellular compartments (132).

In this setting, mitochondrial AcCoA is relatively higher than nucleocytosolic AcCoA, and this disproportionate state causes reduction of histone acetylation promoting stemness of T cells, eventually impeding the activation of effector genes (132).

ROS are known as the byproduct of hypoxic environment produced by tumor cells in TME, and the up-to-date interpretation is that ROS are not only radicals having damaging effect, but also have diverse biologic effects such as stabilization of HIFs to promote angiogenesis, activation of cell proliferation, as well as survival pathways, metabolic reprogramming, differentiation of CAFs and deregulation of immune cells (133). Reactive Nitrogen Species (RNS) are also rich in TME, due to an increase in arginine metabolism within tumor cells and tumor-infiltrating myeloid cells (134). RNS causes nitration of chemokine (C-C motif) ligand 2 (CCL2), and this modification suppresses infiltration and effector function of lymphocytes (134, 135).

Altered metabolic condition is a common survival strategy by tumor cells (136–139). Clinically, cachexia represents increased catabolic status to feed cancer cells (140, 141). Abnormally increased anabolism is also seen in cancer patients. Non-Islet Cell Tumor Hypoglycemia (NICTH) is a paraneoplastic syndrome where non-endoctrine tumors cause hypoglycemia, while promoting anabolism of tumor cells by aberrantly producing insulin-like growth factor II (IGF-II), insulin receptor antibodies and various cytokines (tumor necrosis factor-α, interleukin-1 and —6) (142–145). Metabolic condition comes into play at microscopic level as well. As immune cells enter into tumor tissue, those cells face hypoglycemia and a scant amount of essential amino acids including glutamine and lipids. This condition hinders all steps of immune cell functions such as infiltration, proliferation and effector because these tasks have great demand for energy, nutrition and metabolic reprogramming (136–139). This competitive condition places the immune system in an anergy and exhaustion state (146, 147).

Extracellular vesicles (EVs) are rich in TIF (148). EVs such as exosomes, microvesicles, and apoptotic bodies carry active signaling and regulatory molecules like miRNA, miRNA, signaling proteins, microRNAs (miRNAs), long non-coding RNAs (LncRNAs), and circular RNAs (circRNAs) (149–151). All types of cells including cancer stem cells are known to secrete them (152, 153). Isolated EVs enriched in TME have the capability of promoting angiogenesis, modulating immune cells, enhancing tumor migration and epithelial-mesenchymal transition (EMT), metastasis and increasing drug resistance (148, 154, 155). However, EVs in TIF are not always tumor-promoting. Some EVs were found to exhibit anti-tumor effects (156, 157). This concept can be applied to patient treatment via an EV engineering. EVs derived from proven fighters such as active TILs and chimeric antigen receptor (CAR) can potentially recondition dysfunctional or anergic immune cells in tumor tissue (158–162). There
are other humoral factors not mentioned here. Proteomic approach is expected to find unique signatures of TIF and further develop our understanding of the complex nature of TME.

Biophysical component

Highly cellular tumors like lymphoma, seminoma, and Ewing sarcoma frequently present characteristic bulging cut surfaces. These features are related to an increased pressure inside tumor tissue (163). High tissue pressure is due to an increase in the proliferation and migration of tumor cells, alteration of ECM and increased interstitial fluid pressure (IFP) (163). The increased IFP is caused by the abnormal vessels having higher permeability, lack of pericytes, vascular compression by tumor growth and abundant ECM (164–167). IFP is elevated by 10–40 mmHg in tumor tissues (168, 169). Increased IFP generates an outward tissue flow and cell velocity flow, which hinders an inward penetration of cells, antibodies and drugs (164, 165, 170, 171). Interestingly, high pressure itself has been shown to enhance tumor proliferation and is often related to a poor clinical outcome (172–174). Vascular endothelial growth factor inhibitors, pegylated human recombinant hyaluronidase-α, collagenase and angiotensin inhibitors are suggested for potential drugs which can reduce IFP and promote the delivery of various molecules into tumor tissues (165). Migration and homing of immune cells is an entrenched process involving various chemokines, gradients and APC interaction (175–179). However, movement of immune cells under high IFP and altered ECM are not well studied, requiring further research.

Conclusion

The main stream in cancer research has been about decoding genetic and epigenetic alterations in tumor cells. This scheme has been powerful to understand the nature of cancer diseases, and has led to the discovery of means to restore it. Meanwhile, a distinct course of ideas appeared long ago from the ancient time to the modern concept of immunotherapies and ICIs. This different perspective has widened sight to other attributes within tumor tissue. TME is a system consisting of a reciprocal communication network among components under unique physicochemical conditions. This process influences all components and the output influences TME in an iterative way. Various attempts such as data-driven approaches will rapidly improve understanding of surroundings of tumor cells and lead to several discoveries of predictive biomarkers and an eventual control of resistance. Another aspect not discussed in this mini review is about the host factors such as host genetic makeup. Certain single nucleotide polymorphisms (SNPs) in genes of the immune system were found to affect cancer susceptibility of an individual and these may also influence response to ICIs (180–182). There are case reports on renal cell carcinomas undergoing regression after transfusion of plasma from another patient of the same family (183, 184). This may indicate the presence of an inherited resistance to cancer. Even though these are still speculative and can be explained by other mechanisms, this macro-environment also needs to be considered in the dimension of future studies.

Author contributions

BK drafted the initial version of the manuscript. IT reviewed it and added comments. Both authors contributed to the article and approved the submitted version.

Acknowledgments

The authors would like to thank Seohyun Kim, a medical student at Universita Cattolica del Sacro Cuore, for English editing.

Conflict of interest

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.

References

1. Dawson WR, Ebbell B. The papyrus ebers; the greatest egyptian medical document. J Egypt Archaeol. (1938) 24:250–51. doi: 10.1177/030751333802400149

2. Coley WB. Treatment of inoperable malignant tumors with toxins of erysipelas and the bacillus prodigiosus. Trans Am Surg Assn. (1894) 12:183–212.

3. Dobosz P, Dzieciatkowski T. The intriguing history of cancer immunotherapy. Front Immunol. (2019) 10:2965. doi: 10.3389/fimmu.2019.02965

4. Kang S, Barnhill RL, Mihm MC Jr, Sober AJ. Histologic regression in malignant melanoma: an interobserver concordance study. J Frontiers in Medicine. (2022) 10:1002715. doi: 10.3389/fmed.2022.1002715

Frontiers in Medicine
Cutan Pathol. (1993) 20:126–29. doi: 10.1111/1600-0560.1993.tb0228.x

5. Alexander J, Watanabe T, Wu T, Rashid A, Li S, Hamilton SR. Histo-pathological identification of colon cancer with microsatellite instability. Am J Pathol. (2001) 158:527–35. doi: 10.1016/S0002-9440(10)99344-6

6. Chmielik E. Pathology and tumor microenvironment: past, present, and future. Pathobiology. (2020) 87:55–57. doi: 10.1159/000507222

7. McGrail DJ, Pilie PG, Rashid NU, Chang JT, Moulder SL, Lin SY. High tumor mutation burden fails to predict immune checkpoint blockade response across all cancer types. Ann Oncol. (2021) 32:661–72. doi: 10.1093/annonc/mdab216

8. Bhosmuck NA, Chytl A, Plieh D, Gorska AE, Dumont N, Shappell S, et al. TGf-beta signaling in fibroblasts modulates the oncogenic potential of adjacent epithelia. Science. (2004) 303:848–51. doi: 10.1126/science.1098922

9. Merriam-Webster.com Dictionary. Environment. (2022). Available online at: https://www.merriam-webster.com/dictionary/environment

10. Amatangelo MD, Bassi DE, Klein-Santo AJ, Cukierman E. Stromaderived three-dimensional matrices are necessary and sufficient to promote desmoplastic differentiation of normal fibroblasts. Am J Pathol. (2005) 167:475–88. doi: 10.1016/S0002-9440(10)99344-6

11. Baronzio G, Parmar G, Baronzio M, Kiselevsky M. Tumor interstitial fluid proteome determination as a possible source of biomarkers. Cancer Genomics Proteomics. (2014) 11:225–37.

12. Wiig H, Zwart MA. Interstitial fluid and lymph formation and transport: physiological regulation and roles in inflammation and cancer. Physiol Rev. (2012) 92:1005–60. doi: 10.1152/physrev.00073.2011

13. Han C, Liu T, Yin R. Biomarkers for cancer-associated fibroblasts. Biomark Res. (2020) 8:84. doi: 10.1186/s40364-020-00245-w

14. Paget S. The distribution of secondary growths in the breast. Lancet. (1889) 133:571–3. doi: 10.1016/S0140-6736(04)94915-0

15. Burbrar A, Frenette PS. Niche heterogeneity in the bone marrow. Ann N Y Acad Sci. (2016) 1370:82–96. doi: 10.1111/nyas.13016

16. Jhala D. A review on extracellular matrix mimicking strategies for an artificial stem cell niche. Polymer Reviews. (2015) 55:361–95. doi: 10.1080/15583724.2015.1040552

17. National cancer Institute. NCI Dictionaries. Tumor Microenvironment. Available online at: https://www.cancer.gov/publications/dictionaries/cancer-terms/def/tumor-microenvironment

18. Brassart-Pasco S, Brezzillon S, Brassart R, Ramont L, Oudart J, Monboisse J. Tumor microenvironment: extracellular matrix alterations influence tumor progression. Front Oncol. (2020) 10:397. doi: 10.3389/fonc.2020.00397

19. Schiavoni G, Gabriele L, Mattei F. The tumor microenvironment: a pitch for physiological regulation and roles in inflammation and cancer. Immunol. (2010) 20:572–84. doi: 10.1093/bib/bby026

20. Xue J, Schmidt SV, Sander J, Drafhahn A, Krebs W, Vehres I, et al. Transcriptome-based network analysis reveals a spectrum model of human macrophage activation. Immunity. (2014) 40:274–88. doi: 10.1016/j.immuni.2014.01.006

21. Wyn W, Chawla A, Pollard J. Macrophage biology in development, homeostasis and disease. Nature. (2013) 496:445–55. doi: 10.1038/nature12034

22. Romano E, Kussio-Kobalka M, Foukas P, Baumgaertner P, Meyer C, Ballabeni P, et al. Imilimumab-dependent cell-mediated cytotoxicity of regulatory T cells ex vivo by nonclassical monocytes in melanoma patients. Proc Natl Acad Sci U S A. (2015) 112:6140–5. doi: 10.1073/pnas.1417320112

23. Gordon S, Miastne R, Dulken B, Hutter G, George B, McCracken M, et al. PD-1 expression by tumour-associated macrophages inhibits phagocytosis and tumour immunity. Nature. (2017) 545:495–9. doi: 10.1038/nature23896

24. Wen Z, Liu H, Gao R, Zhou M, Ma J, Zhang Y, et al. Tumor cell-released autophagosomes (TRAPs) promote immunosuppression through induction of M2-like macrophages with increased expression of PD-L1. J Immunother Cancer. (2018) 6:151. doi: 10.1182/immunothercancerm.2018.00452-5

25. Huber S, Hoffmann R, Musikens F, Voehringer D. Alternatively activated macrophages inhibit T-cell proliferation by Stat6-dependent expression of PD-L2. Blood. (2010) 116:3311–20. doi: 10.1182/blood-2010-02-271981

26. Kawai O, Ishii G, Kubota K, Murata I, Naito Y, Mizuno T, et al. Predominant infiltration of macrophages and CD8(+) T cells in cancer nests is a significant predictor of survival in stage IV nonsmall cell lung cancer. Cancer. (2008) 113:1387–95. doi: 10.1002/cncr.23712

27. Sathe A, Grimes S, Lau B, Chen J, Suarez C, Huang R, et al. Single-cell genomic characterization reveals the cellular reprogramming of the gastric tumor microenvironment. Clin Cancer Res. (2020) 26:2640–53. doi: 10.1158/1078-0432.CCR-19-3213

28. Barry KC, Hsu J, Broz ML, Cueto FJ, Binnewies M, Combes AJ, et al. A natural killer-dendritic cell axis defines checkpoint therapy-responsive tumor microenvironments. Nat Med. (2018) 24:1778–91. doi: 10.1038/s41591-018-0085-8

29. Lai J, Chien J, Staab J, Avula R, Greene EL, Matthews TA, et al. Loss of HSulf-1 up-regulates heparin-binding growth factor signaling in cancer. J Biol Chem. (2003) 278:23107–17. doi: 10.1074/jbc.M302230200

30. Schoenberger SP, Toes RE, van der Voort EL, Offringa R, Melief CJ. T-cell help for cytotoxic T lymphocytes is mediated by CD40-CD40L interactions. Nature. (1998) 393:480–3. doi: 10.1038/31002

31. Gardner A, de Mingo Pulido A, Ruffell B. Dendritic cells and their role in immunotherapy. Front Immunol. (2020) 11:924. doi: 10.3389/fimmu.2020.00924

32. Eisenring M, vom Berg J, Kristiansen G, Saller E, Becker B. IL-12 initiates tumor rejection via lymphoid tissue-inducer cells bearing the natural cytotoxicity receptor NKP46. Nat Immunol. (2010) 11:1030–8. doi: 10.1038/nium.2010.1947

33. Mallon J. Dendritic cells: master regulators of the immune response. Cancer Immunol Res. (2013) 1:145. doi: 10.1158/2326-0666.CIR-13-0102

34. Patil RS, Shah SU, Shrikhande SV, Goel M, Dikshit RP, Chiplunkar SV. IL17 producing VγT cells induce angiogenesis and are associated with poor survival in gallbladder cancer patients. Int J Cancer. (2016) 138:869–81. doi: 10.1002/ijc.31813
Repair. the overlooked component of the tumor microenvironment? Fibrogenesis Tissue Cell Metab. mediated expression of pyruvate dehydrogenase kinase: a metabolic consumption. mediates adaptation to hypoxia by actively downregulating mitochondrial oxygen (2014) 511:319–25. doi: 10.1038/nature13535 Nature. Symp Proc. Oncogenomics. (2015) 7:11–27. doi: 10.4137/TOG.S29652 Interplay between metabolism and oncogenic process: role of microRNAs. Cell. al. A structured tumor-immune microenvironment in triple negative breast Cancer. 7:52. doi: 10.3389/fimmu.2016.00052 effects on immune cells and therapeutic relevance. Front Immunol. (2016) 7:53. doi: 10.3389/fimmu.2016.00052 Selektiv: The role of hypoxia during tumor microenvironment development. Philos Trans R Soc Lond B Biol Sci. (2012) 368:205–19. doi: 10.1098/rstb.2012.0091. Selective: The role of hypoxia during tumor microenvironment development. Philos Trans R Soc Lond B Biol Sci. (2012) 368:205–19. doi: 10.1098/rstb.2012.0091.
of the literature including two new cases. Endocr Relat Cancer. (2007) 14:979–
93. doi: 10.1077/ERC-07-0161

143. Schwanck J, Cibickova L, Ctvrtlik F, Tudos Z, Karasek D, Jacobone M, et al. Hypoglycaemia as a symptom of neoplastic disease, with a focus on insulin-like growth factors producing tumors. J Cancer. (2019). 10:6475–
80. doi: 10.7150/ jcancer.03472

144. Bergman D, Halje M, Nordin M, Engstrom W. Insulin-like growth factor 2 in development and disease: a mini-review. Genotest. (2013). 59:240–
9. doi: 10.1159/000343995

145. Cerrato F, Sprago A, Verde G, De Crescenzo A, Cito V, Cubelis MV, et al. Different mechanisms cause impairing defects at the IGF2/H19 locus in Beckwith-Wiedemann syndrome and Wilms’ tumour. Hum Mol Genet. (2008). 17:1427–35. doi: 10.1093/hmg/ddn041

146. Chang CH, Qiu J, O’Sullivan D, Buck MD, Noguchi T, Curtis JD, et al. Metabolic competition in the tumour microenvironment is a driver of cancer progression. Cell (2015). 162:1229–41. doi: 10.1016/j. ce1l.2015.08.016

147. Crespo J, Sun H, Welling TH, Tian Z, Zou W. T cell anergy, exhaustion, senescence, and stemness in the tumour microenvironment. Curr Opin Immunol. (2013). 25:214–21. doi: 10.1016/j.coi.2012.12.003

148. Andaloussi SE, Mager I, Breakefield XO, Wood MJ. Extracellular vesicles: biology and emerging therapeutic opportunities. Nat Rev Drug Discov. (2013). 12:347–57. doi: 10.1038/nrd3978

149. Sansone P, Savini C, Kurelac I, Chang Q, Amato LB, Strellacci A, et al. Packaging and transfer of mitochondrial DNA via exosomes regulate escape from dormancy in hormonal therapy-resistant breast cancer. Proc Natl Acad Sci U S A. (2017). 114:90666–75. doi: 10.1073/pnas.1704621114

150. Zhou Y, Xia L, Lin J, Wang H, Oyang L, Tan S, et al. Exosomes in Nasopharyngeal Carcinoma. J Cancer. (2018). 9:767–77. doi: 10.7150/jca.25205

151. Tao SC, Guo SC. Role of extracellular vesicles in tumour microenvironment. Cell Cell Commun Signal. (2019). 17:678. doi: 10.1186/s12987-019-0403-2

152. Brown TJ, James V. The role of extracellular vesicles in the development of tumour microenvironment: eclectic supervisors. Front Cell Dev Biol. (2020). 8:38498. doi: 10.1038/srep38498

153. Bajenoff M, Egen JG, Koo LY, Laugier JP, Brau F, Glaichenhaus N, et al. Dynamic imaging of chemokine-dependent CD8+ T cell help for CD8+ T cell responses. Nat Immunol. (2007). 8:921–30. doi: 10.1038/ni.1495

154. Dustin ML, Bromley SK, Kan Z, Peterson DA, Unanue ER. Antigen receptor engagement delivers a stop signal to migrating T lymphocytes. Proc Natl Acad Sci U S A. (1997). 94:3909–13. doi: 10.1073/pnas.94.8.3909

155. Hampton HR, Chitano T. Lymphatic migration of immune cells. Front Immunol. (2019). 10:1168. doi: 10.3389/fimmu.2019.01168

156. Bajenoff M, Egen JG, Koo LY, Laugier JP, Brau F, Glaichenhaus N, et al. Stromal cell networks regulate lymphocyte entry, migration, and territoriality in lymph nodes. Immunity. (2006). 25:199–101. doi: 10.1016/j.immuni.2006.10.011

157. Reza AMT, Choi YJ, Yasuda H, Kim JH. Human adipose mesenchymal stem cell-derived exosomal-miRNAs are critical factors for inducing anti-
proliferation signalling to A2780 and SKOV-3 ovarian cancer cells. J Cancer. (2018). 9:3084–92. doi: 10.7150/jca.26422

158. Maia J, Caja S, Strano Moraes MC, Couto N, Costa-Silva B. Exosome-based cell-cell communication in the tumor microenvironment. Front Cell Dev Biol. (2018). 6:18. doi: 10.3389/fcell.2018.00118

159. Fonsato V, Collino F, Herrera MB, Cavallari C, Deregibus MC, Castera B, et al. Human liver stem cell-derived microvesicles inhibit hepatoma growth in SCID mice by delivering antitumor microRNAs. Stem Cells. (2012). 30:1885–
98. doi: 10.1002/stem.1161

160. Reza AMT, Choi YJ, Yasuda H, Kim JH. Human adipose mesenchymal stem cell-derived exosomal-miRNAs are critical factors for inducing anti-
proliferation signalling to A2780 and SKOV-3 ovarian cancer cells. Sci Rep. (2016). 6:38498. doi: 10.1038/srep38498

161. Cavallari C, Camussi G, Brizzi MF. Extracellular vesicles in the tumour microenvironment: ecletic supervisors. Int J Mol Sci. (2020). 21:6768. doi: 10.3390/ijms21167687

162. Beuzelin D, Kaefler B. Exosomes and mRNA-loaded biomimetic nanovesicles, a focus on their potentials preventing type-
2 diabetes linked to metabolic syndrome. Front Immunol. (2018). 9:2711. doi: 10.3389/fimmu.2018.02711

163. Baxter LT, Jain RK. Transport of fluid and macromolecules in tumors: role of interstitial pressure and convection. Microvasc Res. (1989). 37:77–
104. doi: 10.1016/0026-2828(89)90075-5

164. Tong RT, Boucher Y, Koizin SV, Winkler F, Hicklin DJ, Jain RK. Vascular normalization by vascular endothelial growth factor receptor 2 blockade induces a pressure gradient across the vasculature and improves drug penetration in tumors. Cancer Res. (2008). 64:3743–46. doi: 10.1158/0008-5472.CAN-08-0074

165. Kim HJ, Yu AR, Lee JJ, Lee YJ, Lim SM, Kim JS. Measurement of tumor pressure and strategies of imaging tumor pressure for radioimmunotherapy. Nucl Med Imaging. (2019). 53:235–41. doi: 10.1111/nmi.13098

166. Baluk P, Morikawa S, Haskell A, Mancuso M, McDonald DM. Abnormalities of basement membrane on blood vessels and endothelial sprouts in tumors. Am J Pathol. (2003). 163:1801–15. doi: 10.1016/s0002-9440(10)65346-7

167. Padera TP, Stoll RR, Toorend JD, Capen D, di Tomaso E, Jain RK. Pathology: cancer cells compress intratumour vessels. Nature. (2004). 427:695. doi: 10.1038/427695a

168. Fukumura D, Jain RK. Tumor microenvironment abnormalities: causes, consequences, and strategies to normalize. J Cell Biochem. (2007). 101:937–
49. doi: 10.1002/jcb.21187

169. Jain RK. Transport of molecules in the tumor interstitium: a review. Cancer Res. (1987). 47:3039–51.

170. Wu M, Friebees HB, McDougall SR, Chaplain MAJ, Cristina V, Lowengrub J. The effect of interstitial pressure on tumor growth: coupling with the blood and lymphatic vascular systems. J Theor Biol. (2013). 320:131–
51. doi: 10.1016/j.jtbi.2012.11.031

171. Hofmann M, Guschel M, Bernd A, Bereter-Hahn J, Kaufmann R, Tandi C, et al. Lowering of tumor interstitial fluid pressure reduces tumor cell proliferation in a xenograft tumor model. Neoplasia. (2006). 8:89–95. doi: 10.1593/neo.05469

172. Less JR, Postner MC, Boucher Y, Borovichit D, Wolmark N, Jain RK. Interstitial hypertension in human breast and colorectal tumors. Cancer Res. (1992). 52:6371–4.

173. Nathanson SD, Nelson L. Interstitial fluid pressure in breast cancer, benign breast conditions, and breast parenchyma. Antw Surg Oncol. (1994). 1:333–
8. doi: 10.1186/1808-230X-1-333

174. Zhu L, Kalimuthu S, Oh JM, Lee HW, Baek SH, et al. Phase II clinical trial of autologous ascites-derived exosomes combined with GM-
CSF for colorectal cancer. Mol Ther. (2008). 16:782–90. doi: 10.1038/m.2008.1

175. Zhu L, Kalimuthu S, Gangadaran P, Oh JM, Lee HW, Baek SH, et al. Exosomes derived from natural killer cells exert therapeutic effect in melanoma. Theranostics. (2017). 7:2732–45. doi: 10.1016/j.thera.18752