An Enzyme-Free Sandwich Amperometry-Type Immunosensor Based on Au/Pt Nanoparticle-Functionalized Graphene for the Rapid Detection of Avian Influenza Virus H9 Subtype

Jiaoling Huang, Zhixun Xie*, Meng Li, Sisi Luo, Xianwen Deng, Liji Xie, Qing Fan, Tingting Zeng, Yanfang Zhang, Minxiu Zhang, Sheng Wang, Zhiqin Xie and Dan Li

Abstract

Avian influenza virus H9 subtype (AIV H9) has contributed to enormous economic losses. Effective diagnosis is key to controlling the spread of AIV H9. In this study, a nonenzymatic highly electrocatalytic material was prepared using chitosan (Chi)-modified graphene sheet (GS)-functionalized Au/Pt nanoparticles (GS-Chi-Au/Pt), followed by the construction of a novel enzyme-free sandwich electrochemical immunosensor for the detection of AIV H9 using GS-Chi-Au/Pt and graphene–chitosan (GS-Chi) nanocomposites as a nonenzymatic highly electrocatalytic material and a substrate material to immobilize capture antibodies (avian influenza virus H9-monoclonal antibody, AIV H9/MAb), respectively. GS, which has a large specific surface area and many accessible active sites, permitted multiple Au/Pt nanoparticles to be attached to its surface, resulting in substantially improved conductivity and catalytic ability. Au/Pt nanoparticles can provide modified active sites for avian influenza virus H9-polyclonal antibody (AIV H9/PAb) immobilization as signal labels. Upon establishing the electrocatalytic activity of Au/Pt nanoparticles on graphene towards hydrogen peroxide (H₂O₂) reduction for signal amplification and optimizing the experimental parameters, we developed an AIV H9 electrochemical immunosensor, which showed a wide linear range from 10¹.₃₇ EID₅₀ mL⁻¹ to 10⁶.₃₇ EID₅₀ mL⁻¹ and a detection limit of 10⁰.₈₂ EID₅₀ mL⁻¹. This sandwich electrochemical immunosensor also exhibited high selectivity, reproducibility and stability.

Keywords: Electrochemical immunosensor, Au/Pt nanoparticles, Electrocatalysis, Avian influenza virus H9 subtype

Introduction

Since avian influenza virus H9 subtype (AIV H9) was isolated from affected chickens in 1994, AIV H9 has become widespread in poultry [1, 2]. AIV H9 mainly causes poor weight gain, difficulty breathing and reduced egg production, leading to substantial economic losses in the poultry industry [3]. Therefore, rapid, sensitive and specific assays are urgently needed to screen for and control AIV H9 infection.

In recent years, electrochemical immunosensors have attracted increasing attention in clinical diagnosis due to their simple operation, rapid response, low instrumentation cost, excellent sensitivity of electrochemical techniques and high specificity of immunoreactions. In particular, sandwich-type electrochemical immunosensors have been widely applied in clinical diagnosis.

*Correspondence: xiezihun@126.com
Guangxi Key Laboratory of Veterinary Biotechnology, Key Laboratory of China (Guangxi)-ASEAN Cross-Border Animal Disease Prevention and Control, Ministry of Agriculture and Rural Affairs of China, Guangxi Veterinary Research Institute, 51 You Ai North Road, Nanning 530001, Guangxi, China

© The Author(s) 2022. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
because double signal amplification with the substrate material and detection antibody labels enhance the electrochemical immunosensor sensitivity [4, 5]. The signal amplification strategy is the most important factor for developing sandwich-type electrochemical immunosensors, and it largely relies on employing various signal amplification labels in combination with secondary antibodies to form conjugated immunocomplexes [6–8]. Nanomaterials have attracted considerable research interest because they not only show enzyme-mimetic activity but also have some improved properties over native enzymes, such as good stability, easy synthesis and cost effectiveness [9, 10]. Among the variety of nanomaterials, noble metal nanostructures have been widely used as labels to fabricate enzyme-free electrochemical immunosensors due to their excellent stability, high electrocatalytic activity, simple synthesis and easy storage [11–13]. In particular, Au and Pt nanoparticles have aroused wide interest due to their excellent electrochemical catalytic properties towards the reduction of H₂O₂, and thus, Au and Pt nanoparticles have been used to electrochemically catalyse the reduction of H₂O₂ and increase the sensitivity of electrochemical immunosensors [14–16]. Moreover, bimetallic nanomaterials usually show much higher catalytic activity than their monometallic counterparts because of the synergistic effect [17, 18].

A graphene sheet (GS) is a material with a two-dimensional monolayer carbonaceous structure that shows remarkable mechanical stiffness, a high specific surface area, high thermal conductivity and fast electron transport and has been utilized in different applications in various fields, including biomedical applications, energy conversion and storage systems, electrocatalysts and disease diagnosis [19–23]. GSs are usually used as electrode modification materials and signal amplifier materials in electrochemical sensor applications because of their unique physicochemical and biological properties [24–26]. Nonetheless, GSs displayed poor hydrophilicity and difficulty immobilizing biomolecular molecules, which generally adversely affect the performance of electrochemical sensors. Hence, GSs have been modified with organic molecules or inorganic molecules to avoid this problem. We have found that GS-chitosan (GS-Chi) nanocomposites are easily immobilizing biomolecular molecules and are better dispersed in water [27]. Interestingly, Chi is rich in amino groups [28], and GS-Chi might improve the loading capacity and dispersion of Au/Pt through covalent binding between noble metal nanoparticles and amino (-NH₂) groups. In addition, Au/Pt might also enable the facile conjugation of capture antibodies due to the formation of stable Au–N and Pt–N bonds between Au/Pt and –NH₂ residues on antibodies [29]. Therefore, the combination of Au/Pt and GS-Chi may ideally enhance the signal response of the electrochemical immunosensor.

Substrate materials with effective immobilization of capture antibodies and high conductivity to facilitate transfer of electrons between the electrode and electrolyte are another important factor to improve the quality of electrochemical immunosensors. The GS-Chi nanocomposite was employed as the electrode substrate material. Due to the large specific surface area of the GS-Chi nanocomposite, more capture antibodies were stably immobilized onto the surface of the GS-Chi nanocomposite via glutaraldehyde. The superior conductivity of the GS-Chi nanocomposite enhanced electron transfer from the electrolyte to the electrode surface, further enhancing the signal response of the electrochemical immunosensor [28].

In the present study, a GS-Chi nanocomposite was used as a substrate material to immobilize capture antibodies (AIV H9/MAbs) and as a carrier to load catalytically active material (Au/Pt) and detection antibodies (AIV H9/PAbs) to fabricate an enzyme-free sandwich-type electrochemical immunosensor for AIV H9 detection. Due to its very large specific surface area and excellent electrical conductivity, GS-Chi not only increased the amounts of AIV H9/MAbs, Au/Pt and AIV H9/PAbs immobilized but also improved the electron transfer efficiency. A substantial increase in sensitivity towards the reduction of H₂O₂ was obtained with the synergetic effect of GS-Chi-Au/Pt. The established electrochemical immunosensor exhibited excellent analytical performance for AIV H9 detection and could potentially be applied as an electrochemical immunosensor for the detection of other pathogens.

Materials and Methods

Reagents and Materials

Chloroplatinic acid hexahydrate (H₂PtCl₆·6H₂O), chloroauric acid tetrahydrate (HAuCl₄·4H₂O) and bovine serum albumin (BSA) were obtained from Sigma–Aldrich Chemical Co. (St. Louis, MO, USA). Graphite powder (< 45 mm), NaNO₃, H₂SO₄ and KMnO₄ were supplied from Guoyao Group Chemical Reagents Co., Ltd. (Shanghai, China). All chemicals were analytical reagent grade. Double-distilled deionized water (ddH₂O) prepared with a Millipore water purification system was used throughout the experiments. Phosphate-buffered saline (PBS, pH 7.0), which was prepared with 10 mmol/L NaH₂PO₄ and 10 mmol/L Na₂HPO₄ and containing 0.9% NaCl, was used as washing buffer. Electrolytes with different pH values were prepared by mixing different volumes of 10 mmol/L NaH₂PO₄ and 10 mmol/L Na₂HPO₄ and contained 0.1 mol/L KCl. Viral transport medium was
prepared with PBS containing 5% (v/v) foetal bovine serum, streptomycin (10 mg/mL), kanamycin (10 mg/mL), gentamycin (10 mg/mL) and penicillin (10,000 units/mL).

Viruses and Antibodies
The AIVs used in this study included AIV subtypes H9, H1, H2, H3, H4, H5 (H5N9 subtype), H6, H7, H8, H10, H11, H12, H13, H14, H15 and H16. All the viruses were collected and stored in a −80 °C freezer in our laboratory prior to use (Table 1). AIV H9/PAbs and AIV H9/MAbs were prepared by our group [30].

Table 1 Viruses used in this study

Avian pathogen	Source	Viral titre
A/Duck/Guangxi/030D/2009 (AIV H1)	GVRI	10^5.61 EID50 mL^-1
A/Duck/HK/77/76 d77/3 (AIV H2)	UHK	10^5.29 EID50 mL^-1
A/Chicken/Guangxi/01SC10/2009 (AIV H3)	GVRI	10^5.43 EID50 mL^-1
A/Duck/Guangxi/070D/2010 (AIV H4)	GVRI	10^5.45 EID50 mL^-1
Inactivated A/Chicken/QT35/98 (AIV H5)	UHK	10^5.19 EID50 mL^-1
A/Chicken/Guangxi/121/2013 (AIV H6)	GVRI	10^5.37 EID50 mL^-1
A/Chicken PA/3979/97 (AIV H7)	PU	10^5.23 EID50 mL^-1
A/Turkey/Ontario/611B/68 (AIV H8)	UHK	10^5.37 EID50 mL^-1
A/Chicken/Guangxi/116C4/2012 (AIV H9)	GVRI	10^5.37 EID50 mL^-1
A/Duck/HK/876/90 (AIV H10)	UHK	10^5.37 EID50 mL^-1
A/Duck/PA/2099/12 (AIV H11)	PU	10^5.23 EID50 mL^-1
A/Duck/HK/862/80 (AIV H12)	UHK	10^5.12 EID50 mL^-1
A/Gull/Md/704/77 (AIV H13)	UHK	10^5.37 EID50 mL^-1
A/Mallard/Astrakhan/263/82 (AIV H14)	UCONN	10^5.72 EID50 mL^-1
A/Shearwater/Western Australia/2576/79 (AIV H15)	UCONN	10^5.81 EID50 mL^-1
A/Shorebird/Delaware/168/06 (H16N3)	CIVDC	10^5.63 EID50 mL^-1

Synthesis of GS-Chi-Au/Pt-AIV H9/PAbs
First, GSs were prepared using the method reported by Hummers, with some modifications [31]. Briefly, 1.0 g of graphite powder and 2.5 g of NaNO₃ were added to 100 mL of concentrated H₂SO₄ and stirred for 2 h at room temperature. Then, 5 g of KMnO₄ were slowly added to this mixture with continuous stirring and cooled with ice at the same time. The mixture was reacted at 35 °C for 24 h with continuous stirring. Then, 100 mL of ddH₂O was slowly added to the mixture and stirred at 80 °C for 3 h, and then, 300 mL of ddH₂O was added. Subsequently, 6 mL of 30% H₂O₂ was added to the mixture, many bubbles appeared, and the mixed solution immediately turned bright yellow. The resulting solution was stirred for 3 h, and then, the supernatant was decanted after precipitation for 24 h at room temperature. The obtained yellow slurry was washed with 500 mL of 0.5 mol/L HCl and centrifuged. Next, the slurry was washed with ddH₂O by centrifugation until the pH of the supernatant was approximately 7.0. Then, 100 mL of ddH₂O was added and ultrasonicated for 2 h, and GS oxide was obtained. Ten millilitres of 1.0% NaBH₄ was added dropwise at 95 °C while stirring and incubated for 3 h, and GS oxide was reduced. After centrifugation, the supernatant was decanted, and the precipitate was washed with ddH₂O three times and then dried in a vacuum drying oven at 90 °C for 8 h to obtain GS.

Second, GS-Chi was prepared using our previously described method [32]. Briefly, 0.05 mg of Chi powder was added to 100 mL of a 1.0% (v/v) acetic acid solution while stirring until it was completely dispersed, and a 0.5 wt% Chi solution was obtained. Then, 100 mg of GSs was added to the 100 mL 0.5 wt% Chi solution, ultrasonicated for 1 h, continuously stirred for 24 h at room temperature, and GS-Chi was obtained.

Third, GS-Chi-Au/Pt was prepared using the following procedure: 1 mL of HAuCl₄ (10 mmol/L) and 1 mL of K₂PtCl₄ (10 mmol/L) were added to 20 mL of the GS-Chi (1 mg/mL) solution, and the mixture was stirred at 25 °C for 3 h. Then, the mixture was heated to 80 °C in a water bath and stirred for 1 h. Au³⁺ and Pt²⁺ were reduced to Au/Pt by Chi at 80 °C. Finally, the GS-Chi-Au/Pt nanocomposite was generated. Different proportions of GS-Chi-Au/Pt were prepared using the method mentioned above by adding different volumes of HAuCl₄ (10 mmol/L) and K₂PtCl₄ (10 mmol/L) to 20 mL of the GS-Chi (1 mg/mL) solution.

Finally, the as-prepared GS-Chi-Au/Pt (10 mL) was mixed with 500 μL of 10 μg/mL AIV H9/PAb (0.5 μg/mL), and the mixture was oscillated in a shaking water bath at 4 °C overnight. The product was centrifuged and washed three times with PBS (pH 7.0) to remove the unbound AIV H9/PAb. The immunocomplex was redispersed into
10 mL of PBS (pH 7.0) containing 1 wt% BSA. Figure 1 shows the procedure used to prepare GS-Chi-Au/Pt-AIV H9/PAbs.

Fabrication of the Electrochemical Immunosensor

The process used to fabricate the electrochemical immunosensor is shown in Fig. 1. The GCE was successively polished with 1.0 μm, 0.3 μm, and 0.05 μm alumina polishing powders and rinsed with ddH2O after each polishing step. The GCE was sonicated in ddH2O, ethanol, and ddH2O for 5 min each.

Next, 8 μL of GS-Chi (1 mg/mL) was dropped onto the surface of the clean GCE and dried at room temperature. Then, the modified GCE was incubated with 8 μL of 5% glutaraldehyde for 2.5 h and washed with ddH2O. Eight microlitres of AIV H9/MAbs (10 μg/mL) was deposited onto the modified GCE and incubated at 4 °C for 8 h. Excess AIV H9/MAbs were removed by washing three times with PBS (pH 7.0). Subsequently, 8 μL of BSA (1 wt%) was dropped on the integrated AIV H9/MAbs-GS-Chi-GCE and reacted for 30 min at 37 °C to block the nonspecific adsorption sites of AIV H9/MAbs-GS-Chi-GCE. Then, the electrode was washed with PBS (pH 7.0) to remove unbound BSA. Finally, the immunosensor was steeped in 1 mL of PBS (pH 7.0) containing 1 wt% BSA and stored at 4 °C when not in use.

Electrochemical Measurement

First, the immunosensor was incubated with 8 μL of varying concentrations of AIV H9 or clinical samples for 40 min at 37 °C. Second, the unbound AIV H9 and interfering substances were removed by washing the sensor three times with PBS, and 8 μL of GS-Chi-Au/Pt-H9/PAbs was incubated on the immunosensor at 37 °C for 60 min. Finally, the immunosensor was rinsed to remove unbound GS-Chi-Au/Pt-H9/PAbs, and amperometric i–t measurements were performed. We minimized the response of common interfering components and reduced the background current by selecting −0.4 V as the working potential for the amperometric i–t measurements (Additional file 1: Fig. S1). After the background current was stabilized (approximately 50 s later), 10 mmol/L H2O2 was added to the electrolyte, unless indicated otherwise, and the current change was monitored and recorded. Electrochemical impedance spectroscopy (EIS) was performed at frequencies ranging from 0.01 Hz to 100 kHz using an amplitude of 10 mV at 0.2 V.

Clinical Sample Preparation

Oral and cloacal swab samples were gently collected from chickens at different live poultry markets in Guangxi Province and used as clinical samples. The oral swab and the cloacal swab from the same chickens were placed together into a collection tube that contained 1 mL of viral transport medium and counted as a single clinical sample, and the clinical samples were placed in an ice box for transport to our laboratory. Then, cotton swabs were repeatedly shaken and wiped in the transport medium, leading to viral transfer to the transport medium. The cotton swabs were discarded, and the obtained solutions were stored at −70 °C. Before detection, the samples were repeatedly frozen and thawed 3 times and then centrifuged at 4000 rpm for 5 min. The obtained supernatant was analysed using the fabricated electrochemical immunosensor according to the steps described in “Electrochemical Measurement” section.

Results and Discussion

Characterization of the GS-Chi-Au/Pt Nanocomposite

FT-IR spectroscopy was performed to confirm that GS was modified with Chi. The FT-IR spectrum of Chi presented all of the characteristic bands for Chi, including C–C–O bond stretching vibrations at 1034 cm⁻¹.
1081 cm⁻¹ and 1154 cm⁻¹; –NH₂ bending vibrations at 1596 cm⁻¹ and 1653 cm⁻¹; and C–H stretching at 2920 cm⁻¹ and 2878 cm⁻¹. In addition, –NH₂ and –OH bond stretching vibrations were observed at 3425 cm⁻¹ (Fig. 2A, black line) [33]. Additionally, the FT-IR spectrum of GS preserved all the characteristic bands of GS: benzene ring backbone stretching vibrations at 1420 cm⁻¹, 1459 cm⁻¹ and 1555 cm⁻¹; C=O stretching vibration at 1659 cm⁻¹; C–H stretching vibration at 2916 cm⁻¹; and O–H stretching vibration at 3406 cm⁻¹ (Fig. 2A, green line) [34]. FT-IR spectra of the GS-Chi combination presented all the characteristic bands of GS and Chi, except that the characteristic absorption bands of GS-Chi had different intensities from those of GS and Chi.

![Image](image_url)
Chi, which indicates that the surfaces of GS were successfully modified with Chi.

Moreover, Raman spectroscopy was employed to confirm the successful synthesis of GS-Chi. As shown in Fig. 2B, the Raman spectrum obtained from GS showed two prominent bands: one was the D-band at 1349 cm\(^{-1}\) due to stretching of \(sp^3\) carbons, and the other was the G-band at 1582 cm\(^{-1}\) due to stretching of \(sp^2\) carbons. These two peaks were also observed in GS-Chi [35], revealing that GS-Chi still retains the basic structure of GS. In addition, previous studies indicate that the D/G-band ratio changes in the presence of oxygenated groups at the upper and lower surfaces, as well as the edges of sheets. Here, the D/G-band ratios of GS and GS-Chi were 1.086 and 1.095, respectively. This difference might be due to the increased number of oxygenated groups at the upper and lower surfaces of GS after it was modified with Chi. In addition, the 2D band is usually used to confirm the presence of a few layers of GS. The value of the 2D band decreased as the number of layers GS increased. Here, the value of the 2D band of GS was slightly higher than the value of the 2D band of GS-Chi, which clearly indicates that Chi was successfully adsorbed onto the GS surface.

Figure 2C shows the structural features of GS-Chi. From the TEM image, GS-Chi, which was present as thin, wrinkled, rippled and flake-like structures, was readily observed. A TEM image of Chi-Au/Pt is shown in Fig. 2D. The obtained Chi-Au/Pt had a uniform globular morphology. Figure 2E shows the TEM image of GS-Chi-Au/Pt. Clearly, Au/Pt was bound to the GS. Here, Au\(^{3+}\) and Pt\(^{2+}\) ions were adsorbed by GS-Chi from aqueous solutions via chelation and then reduced to Au/Pt nanoparticles by Chi. GS-Chi-Au/Pt was formed, and Chi was used as a stabilizing agent and reducing agent. However, we found that the Au/Pt nanoparticles immobilized on the surface of GS-Chi became larger than the Au/Pt nanoparticles dispersed in the Chi solution. The potential explanation is that Chi agglomerated when a large amount Chi was adsorbed to the surface of GS, and agglomeration of Chi would cause the Au/Pt nanoparticles to agglomerate. Figure 2F shows the HRTEM image of Chi-Au/Pt, and Fig. 2G–I shows the TEM elemental mapping image of Chi-Au/Pt. The diameter of Au/Pt was approximately 1–5 nm, and the Au and Pt elements were distributed uniformly randomly and relatively independently. Figure 2J shows the HRTEM image of GS-Chi-Au/Pt, and Fig. 2K–M shows the TEM elemental mapping image of GS-Chi-Au/Pt. The diameter of Au/Pt was approximately 60 nm, and Au and Pt elements were distributed uniformly randomly and centralized. In addition, the EDS spectrum of GS-Chi-Au/Pt confirmed the presence of Chi, Au, and Pt elements, indicating that Au/Pt had been loaded on the surface of GS. Cu was observed because the samples were fixed on the Cu network for testing.

Electrochemical Characterization of the Immunosensor

Chronocoulometry was employed to investigate the effective surface areas of the bare GCE and GS-Chi-GCE (Additional file 1: Fig. S3). The effective surface areas of the electrode were calculated using Eq. (1), which was devised by Anson [36].

\[
Q(t) = 2nFACD^{1/2}t^{1/2}/\pi^{1/2} + Q_{dl} + Q_{ads}
\]

(1)

Here, 0.1 mM K\(_3\)[Fe(CN)\(_6\)] was used as a model complex, and the diffusion coefficient \(D\) was 7.6 \(\times\) 10\(^{-6}\) cm\(^2\) s\(^{-1}\). In Eq. (1), \(A\) is the effective surface area of the electrode, \(Q_{dl}\) is the double layer charge, \(n\), \(F\) and \(c\) have their usual meanings, and \(Q_{ads}\) is the faradic charge. The effective surface areas of the bare GCE and GS-Chi-GCE were calculated to be 0.087 cm\(^2\) and 0.301 cm\(^2\) from the slope of the \(Q\) versus \(t^{1/2}\) curve (Additional file 1: Fig. S3B). The effective surface area of GS-Chi-GCE was 3.5 times larger than that of the bare GCE. The effective surface area of GCE increased substantially after modification with GS-Chi.

In this study, the step-by-step assembly process of the GCE was investigated by performing EIS in an electrolyte (pH 7.0) containing 5 mM [Fe(CN)\(_6\)]\(^{3−/4−}\) and recorded from 0.01 Hz to 100 kHz using an amplitude of 10 mV at 0.2 V. Figure 3A shows Nyquist plots of EIS during electrode modification. In the Nyquist plots, the linear portion occurs at low frequencies and is related to electrochemical behaviour limited by diffusion. The semicircular portion occurs at high frequencies, and the semicircle diameter corresponds to the electron transfer resistance (\(R_{et}\)) [37, 38]. The results are shown in Fig. 3A and B. The bare GCE exhibited a perfect semicircle (Fig. 3A, curve a) with a \(R_{et}\) of 1141 \(\Omega\) (%RSD) = 2.97 (Fig. 3B, columnar a), while a very small semicircle (Fig. 3A, curve b) with a \(R_{et}\) of 103 \(\Omega\) (%RSD) = 1.87 (Fig. 3B, columnar b) was observed after modification with GS-Chi because of the large electron transfer-promoting effect and excellent conductivity of GS. When AIV H9/MAbs, BSA and AIV H9 (10\(^{-6}\)–37 EID\(_{50}\)/mL) were successively loaded onto the modified electrode, and the relevant \(R_{et}\) increased sequentially (1526 \(\Omega\) (%RSD) = 2.73, 1934 \(\Omega\) (%RSD) = 3.21 and 3434 \(\Omega\) (%RSD) = 3.21, respectively) (Fig. 3B, columns c-e) because the resistance increased due to the poor conducting power of AIV H9/MAbs, BSA and AIV H9. These results revealed the successful construction of the modified electrode. The electron transfer rate constant (\(K_{et}\)) was successfully obtained from Eq. (2), which shows the relationship between \(R_{et}\) and \(K_{et}\) [39], as follows:
$K_{et} = \frac{RT}{n^2F^2R_{et}A_{redox}}$ \hspace{1cm} (2)

A corresponds to the geometrical area of the electrode surface, while redox is the concentration of Fe(CN)$_6^{4-/3-}$. The K_{et} values were calculated to be 6.62 × 10$^{-5}$ cm s$^{-1}$, 7.36 × 10$^{-5}$ cm s$^{-1}$, 4.92 × 10$^{-5}$ cm s$^{-1}$, 3.87 × 10$^{-5}$ cm s$^{-1}$ and 2.18 × 10$^{-5}$ cm s$^{-1}$ for GCE, GS-Chi-GCE, AIV H9/MAbs-GS-Chi-GCE, BSA-AIV H9/MAbs-GS-Chi-GCE and AIV H9-BSA-AIV H9/MAbs-GS-Chi-GCE, respectively.

In addition, cyclic voltammetry (CV) is an effective technique for evaluating the successful modification of electrodes. The results are shown in Fig. 3C and D. The CV curve of the GCE electrode showed a reversible redox
label of Fe(CN)$_{6}^{4-}$, while the peak current of GS-Chi-
GCE increased substantially due to the large electron
transfer-promoting effect and excellent conductivity of
GS. After AIV H9/MAbs, BSA and $10^{6.37}$ EID$_{50}$/mL AIV
H9 were immobilized on the modified electrode, the rele-
vant peak current decreased in turn. The CV results were
consistent with the EIS results, indicating the successful
construction of the AIV H9 immunosensor.

Amperometric i–t curve measurements were employed
to investigate the electrocatalytic performance of the pro-
posed immunosensor. The results are shown in Fig. 3E
and F. The electrocatalytic activity of GS-Chi (curve a)
was ignored because it was weaker than that of GS-Chi-
Au/Pt (curve b). During the immunosensor detection
process, the electrocatalytic performance between GS-
Chi-H9/PAbs, GS-Chi-Au-H9/PAbs, Chi-Au/Pt-H9/
PAbs, GS-Chi-Pt-H9/PAbs and GS-Chi-Au/Pt-H9/PAbs
as labels was compared. The immunosensors from the
same batch were incubated with $10^{6.37}$ EID$_{50}$/mL AIV H9
and then incubated with the two different types of labels.
Finally, amperometric i–t measurements were per-
formed in electrolyte (pH 7.0) with 10 mmol/L H$_{2}$O$_{2}$. As
expected, the immunosensor using GS-Chi-Au/Pt-H9/
PAbs (curve b) as the label displayed a much higher
amperometric change than that using GS-Chi-H9/PAbs
(curve c), GS-Chi-Au-H9/PAbs (curve d), Chi-Au/Pt-H9/
PAbs (curve e) and GS-Chi-Pt-H9/PAbs (curve f) as the
labels. The high sensitivity was mainly attributed to the
large specific surface area, enhanced electrical conduc-
tivity and fast electron transport of GS and the excellent
catalytic activity of Au/Pt. When no AIV H9 was immo-
bilized on the electrode, the peak current was similar to
curve a after the immunosensor was reacted with GS-
Chi-Au/Pt-H9/PAbs (curve g), indicating that our devel-
oped immunosensor has good selectivity.

Optimization of the Method
The following parameters were optimized: (a) GS-Chi
concentration; (b) AIV H9/MAb concentration; (c) AIV
H9/PAb concentration; (d) ratio of Au, Pt and GS; (e)
ph value of the electrolyte; (f) H$_{2}$O$_{2}$ concentration; (g)
incubation time of AIV H9; and (h) incubation time of
GS-Chi-Au/Pt-AIV H9/PAbs bioconjugates. Respective
descriptions and figures of optimization methods are
provided in Electronic Supporting Material. Briefly, the
following experimental conditions were observed to pro-
duce the best results: (a) the best concentration of GS-
Chi was 1.0 mg/mL; (b) best concentration of AIV H9/
MAbs was 10 μg/mL; (c) best concentration of AIV H9/
PAbs was 0.5 μg/mL; (d) best ratio of Au, Pt and GS was
2:2:20 (Au (0.1 mg/mL), Pt (0.1 mg/mL) and GS (1 mg/
ml)); (e) best pH value of the electrolyte was 7.0; (f) best
concentration of H$_{2}$O$_{2}$ was 10 mM; (g) best incubation
time of AIV H9 was 40 min; and (h) best incubation
time of GS-Chi-Au/Pt-AIV H9/PAbs bioconjugates was
60 min.

Detection of AIV H9 with the Immunosensor
Under the optimized reaction conditions, the detection
capability of the proposed electrochemical immunosen-
sor was determined by constructing an amperometric i–t
curve at an initial potential of −0.4 V in 10 mL of elec-
trolyte (pH 7.0) containing 10 mM H$_{2}$O$_{2}$ to detect AIV
H9 at a concentration ranging from $10^{2.37}$ EID$_{50}$/mL$^{-1}$ to
$10^{4.7}$ EID$_{50}$/mL$^{-1}$. As shown in Fig. 4A, the current sig-
nal responses of the electrochemical immunosensor were
enhanced with increasing concentrations of AIV H9. The
difference in current signal intensity between the blank
(curve a) and the AIV H9 curve indicated that the non-
specific adsorption on the electrochemical immunosen-
sor and the effects of the background current of GS-Chi
were negligible. The calibration plot showed a good lin-
ar relationship between the change in the current signal
and the logarithm values of the AIV H9 concentration
(Fig. 4B). The linear regression equation of the calibration
curve was I (mA) = 0.9517 lgEID$_{50}$/mL$^{-1}$. 0.1936, with a
correlation coefficient of R = 0.9932 and a low detection
limit of $10^{0.82}$ EID$_{50}$/mL$^{-1}$ ($S/N = 3$). In addition, the
analytical performance of this immunosensor was superior
to that of the previous methods developed for the detec-
tion of AIV H9 (Table 2). The reasons are attributable to
the following aspects: (1) the GS-Chi-Au/Pt nanocom-
posites used as signal labels had superior electrocatalytic
capability towards the reduction of H$_{2}$O$_{2}$ because the
planar electric transport properties were enhanced by
electron–electron correlation assistance, and (2) GS-Chi
used as a matrix not only had remarkable electroconduc-
tivity that promoted electron transfer towards the surface
of the electrode but also provided a large specific surface
area to firmly bind AIV H9/PAbs, which improved the
antigen–antibody reaction to detect AIV H9.

Selectivity, Reproducibility and Stability
of the Immunosensor
The selectivity of the immunosensor played a cru-
ial role in detecting target samples without separa-
tion. Several interfering substances, including AIV
subtype H1 (10$^{3.5}$ EID$_{50}$/mL$^{-1}$), H2 (10$^{6.25}$ EID$_{50}$/mL$^{-1}$),
H3 (10$^{2.43}$ EID$_{50}$/mL$^{-1}$), H4 (10$^{5.45}$ EID$_{50}$/mL$^{-1}$), H5
(128 HAUs), H6 (10$^{6.19}$ EID$_{50}$/mL$^{-1}$), H7 (256 HAUs),
H8 (10$^{6.23}$ EID$_{50}$/mL$^{-1}$), H10 (10$^{5.73}$ EID$_{50}$/mL$^{-1}$), H11
(10$^{6.47}$ EID$_{50}$/mL$^{-1}$), H12 (10$^{7.12}$ EID$_{50}$/mL$^{-1}$), H13
(10$^{5.37}$ EID$_{50}$/mL$^{-1}$), H14 (10$^{7.62}$ EID$_{50}$/mL$^{-1}$), H15 (10$^{5.81}$
EID$_{50}$/mL$^{-1}$), H16 (10$^{6.63}$ EID$_{50}$/mL$^{-1}$), BSA (1.0 μg/
ml), glucose (1.0 μg/mL) and vitamin C (1.0 μg/mL),
were used in this work to evaluate the selectivity of the
developed immunosensor. The results are shown in Fig. 4C. The current responses of the mixtures of AIV H9 (10$^{4.37}$ EID$_{50}$ mL$^{-1}$) with other possible interfering substances were similar to those of AIV H9 (10$^{4.37}$ EID$_{50}$ mL$^{-1}$) alone, while nonspecific substances and blank solution showed similar current responses, indicating that the proposed electrochemical immunosensor had high selectivity for AIV H9 detection.

The reproducibility of the proposed electrochemical immunosensor was investigated by recording the current responses of the immunosensor towards the addition of 10 mM H$_2$O$_2$ for detecting the following different concentrations of AIV H9 at −0.4 V versus SCE: (a) 10$^{0.37}$ EID$_{50}$ mL$^{-1}$, (b) 10$^{1.37}$ EID$_{50}$ mL$^{-1}$, (c) 10$^{2.37}$ EID$_{50}$ mL$^{-1}$, (d) 10$^{3.37}$ EID$_{50}$ mL$^{-1}$, (e) 10$^{4.37}$ EID$_{50}$ mL$^{-1}$, (f) 10$^{5.37}$ EID$_{50}$ mL$^{-1}$ and (g) 10$^{6.37}$ EID$_{50}$ mL$^{-1}$.

The reproducibility of the developed immunosensor in the presence of 10$^{6.37}$ EID$_{50}$ mL$^{-1}$ AIV H9.
responses in the presence of the same concentrations of $10^{6.37}$ EID$_{50}$ mL$^{-1}$ AIV H9. The results are shown in Fig. 4D. The RSD of the intra-assay reproducibility of the immunosensor, which was 1.6%, is shown as an error bar and indicated that the developed immunosensor has good reproducibility.

The long-term stability of the fabricated electrochemical immunosensor was further investigated by storing BSA-AIV H9/MAbs-GS-Chi-GCE at 4 °C when not in use and then successively incubating it with AIV H9 ($10^{6.37}$ EID$_{50}$ mL$^{-1}$) and GS-Chi-Au/Pt-AIV H9/PAbS bioconjugates. As shown in Fig. 4E, the current responses decreased by less than 4% after 2 weeks of storage. The current responses eventually retained 89.72% of the initial value. Based on the results, the long-term stability of the proposed electrochemical immunosensor for AIV H9 detection was acceptable.

Analysis of AIV H9 in Clinical Samples

Ninety-eight clinical samples were obtained from chickens with the permission of the host of the live poultry markets, and clinical samples were detected using the developed immunosensor. Three AIV H9-positive samples were identified. The results were confirmed by virus isolation. The results are shown in Table 3a and b. All the results obtained from the clinical samples detected using the proposed immunosensor were consistent with the results obtained through virus isolation [40].

Standard spiking was also employed to evaluate the accuracy and practical applicability of the developed immunosensor. A series of different concentrations of AIV H9 (100.00, 150.00, 200.00, 250.00, 300.00 and 400.00 EID$_{50}$ mL$^{-1}$) was added to the three AIV H9-positive samples (from the aforementioned clinical samples that were identified as the AIV H9-positive sample),

Table 2 Comparison of the proposed immunosensor with other methods for AIV H9 detection

Method	Detection time	Detection limit	References
Virus isolation	4 days	1 EID$_{50}$ mL$^{-1}$	[6]
RT–PCR	6 h	100 EID$_{10}$ mL$^{-1}$	[7]
Real-time RT–PCR	4 h	1 EID$_{10}$ mL$^{-1}$	[8]
RT-LAMP	3 h	10 copies per reaction	[9]
ELISA	2 h	$10^{-2.3}$ TCID$_{50}$	[10]
Proposed immunosensor	1.5 h	$10^{0.82}$ EID$_{50}$ mL$^{-1}$	This study

TCID$_{50}$ 50% Tissue culture infective dose

Table 3 Results from clinical samples (a); results from the analysis of positive samples (b); and results for the recovery of different concentrations of AIV H9 from clinical samples (c)

(a) Method	Total number of samples	Number of positive samples	Positivity rate (%)
Proposed immunosensor	98	3	3.06
Virus isolation	98	3	3.06

(b) No	Results from the proposed immunosensor	Results of virus isolation
	Measured concentration (EID$_{50}$ mL$^{-1}$)	Average (EID$_{50}$ mL$^{-1}$)
1	60.24, 57.31, 62.17, 63.54, 64.49	61.55
2	141.25, 137.86, 143.74, 136.47, 142.18	140.30
3	192.67, 188.34, 193.28, 187.59, 195.73	191.52

(c) No	Initial AIV H9 concentration in the sample (EID$_{50}$ mL$^{-1}$)	Added amount of AIV H9 (EID$_{50}$ mL$^{-1}$)	Total found	Recovery rate (%) ($n = 5$)
	Average (EID$_{50}$ mL$^{-1}$)	RSD (%) ($n = 5$)		
1	61.55	100.00	169.03	3.47
2	61.55	150.00	206.93	2.73
3	140.30	200.00	326.74	4.07
4	140.30	250.00	381.37	2.17
5	191.52	300.00	497.31	4.18
6	191.52	400.00	584.62	3.75
followed by detection using the fabricated electrochemical immunosensor according to the steps listed above in “Electrochemical Measurement” section. The recovery was calculated as the ratio between the Found and Added AIV H9. The results are shown in Table 3c. The recoveries were obtained from 96.02 to 104.63% with an RSD of 2.17–4.18% (n = 5), indicating that the developed immunosensor was feasible for AIV H9 detection in clinical samples.

Conclusions
In this study, we synthesized Au/Pt nanoparticle-functionalized GS (GS-Chi-Au/Pt) with high electrocatalytic activity towards H2O2 reduction. We have developed an enzyme-free sandwich electrochemical immunosensor utilizing GS-Chi as the matrix platform and GS-Chi-Au/Pt as the signal amplification label. This assay system is capable of detecting AIV H9 in clinical samples. Benefiting from the favourable cooperation of GS-Chi-Au/Pt with good H2O2 catalysis, ideal conductivity of GS-Chi and efficient antibody immobilization, the established immunosensor exhibited good sensitivity, specificity, reproducibility, accuracy and stability. Importantly, this developed method not only expands the application of GS-Chi-Au/Pt in electrochemical biosensors but also provides a novel nonenzymatic method for the accurate determination of other biomolecules in clinical diagnosis.

Supplementary Information
The online version contains supplementary material available at https://doi.org/10.1186/s11671-022-03747-8.

Additional file 1. Appendix A. Supplementary data.

Acknowledgements
Not applicable.

Author contributions
JLH and ZXX designed and conceived the experiments. JLH and ML performed the experiments. JLH, SSL, XWD, LIX, QF, TTZ, YFZ, MXZ, SW, ZQX and DL analysed the data and contributed to reagents/materials/analytical tools.

All authors reviewed the manuscript. All authors read and approved the final manuscript.

Funding
This research project was funded by the Guangxi Science and Technology Projects (AB21076004), Guangxi Science Great Special Program (AA17204057) and Guangxi BaGui Scholars Program Foundation (2019A50).

Availability of Data and Materials
All data generated or analysed during this study are included in this article and its supplementary information file.

Declarations

Ethical Approval and Consent to Participate
The authors confirm that relevant guidelines were followed for the care and use of animals. This work was approved and conducted by the Animal Ethics Committee of the Guangxi Veterinary Research Institute, which supervises all live bird markets in Guangxi Province.

Consent for Publication
We agree with the publication of the paper in Nanoscale Research Letters.

Competing interests
The authors have no competing interests to declare.

Received: 29 June 2022 Accepted: 14 November 2022
Published online: 21 November 2022

References
1. Venkatesh D, Poen MJ, Bestebroer TM, Scheuer RD, Vuong O, Chkhaidze M, Machablisvili A, Mamuchadze J, Nimua L, Fedorova NB, Halpin RA, Lin X, Ransier A, Stockwell TB, Wentworth DE, Kriti D, Dutta J, van Bakel H, Puranik A, Slomka MJ, Essen S, Brown IH, Fouchier RAM, Lewis NS (2018) Avian influenza viruses in wild birds: virus evolution in a multilhost ecosystem. J Virol 92:e00433. https://doi.org/10.1128/jvi.00433-18
2. Cheng KL, Wu J, Shen WL, Wong AY, Guo Q, Yu J, Zhuang X, Su W, Song T, Peiris M, Yen HH, Lau EHY (2020) Avian influenza virus detection rates in poultry and environment at live poultry markets, Guangdong, China. Emerg Infect Dis 26:591–595. https://doi.org/10.3201/eid2603.190888
3. Swieton E, Olszewska M, Giza A, Smietanka K (2019) Evolution of H9N2 low pathogenic avian influenza virus during passages in chickens. Infect Genet Evol 75:103979. https://doi.org/10.1016/j.megen.2019.103979
4. Li W, Yang Y, Ma C, Song Y, Qiao X, Hong C (2020) A sandwich-type electrochemical immunosensor for carcinoembryonic antigen detection based on signal amplification technique for the determination of carcinoembryonic antigen via biocatalytic precipitation amplification and by using gold nanoparticle composites. Microchim Acta 186(7):473. https://doi.org/10.1007/s00604-019-3542-2
5. Shen C, Wang L, Zhang H, Liu S, Jiang J (2020) An electrochemical sandwich immunosensor based on signal amplification technique for the determination of alpha-fetoprotein. Front Chem 8:589560. https://doi.org/10.3389/fchem.2020.589560
6. Zheng S, Li M, Li H, Li C, Li P, Qian L, Yang B (2020) Sandwich-type electrochemical immunosensor for carcinoembryonic antigen detection based on the cooperation of a gold–vertical graphene electrode and gold@silica-methylene blue. J Mater Chem B 8:298–307. https://doi.org/10.1039/c9tb01803d
7. Tang D, Su B, Tang J, Ren J, Chen G (2010) Nanoparticle-based sandwich electrochemical immunosensor for carcinoembryonic antigen 125 with signal enhancement using enzyme-coated nanometer-sized enzyme-doped silica beads. Anal Chem 82:1527–1534. https://doi.org/10.1021/ac902768f
8. Yu W, Sang Y, Wang T, Liu W, Wang X (2020) Electrochemical immunosensor based on carboxylated single-walled carbon nanotube-chitosan functional layer for the detection of cephalixin. Food Sci Nutr 8:1001–1011. https://doi.org/10.1002/fsn3.1382
10. Zhang Q, Li L, Qiao Z, Lei C, Fu Y, Xie Q, Yao S, Li Y, Ying Y (2017) Electrochemical conversion of Fe3O4 magnetic nanoparticles to electroactive Prussian blue analogues for self-sacrificial label biosensing of avian influenza virus H5N1. Anal Chem 89(22):12145–12151. https://doi.org/10.1021/acs.analchem.7b02784

11. Xiao J, Hu X, Wang K, Zou Y, Gou B, Wang S, Zhang Z (2020) A novel signal amplification strategy based on the competitive reaction between 2D Cu2T-CPP(Fe) and polyethyleneimine (PEI) in the presence of an enzyme-free and ultrasensitive electrochemical immunosensor for sulforhodamine detection. Biosens Bioelectron 150:111883. https://doi.org/10.1016/j.bios.2019.111883

12. Shen WJ, Zhuo Y, Chai YQ, Yang ZH, Han J, Yuan R (2015) Enzyme-free peroxidase-like properties of Au@Pt-DNs/NG/Cu2O nanosheet for highly sensitive detection of HBsAg. Bioelectrochemistry 138:107713. https://doi.org/10.1016/j.bioelechem.2020.107713

13. Li Y, Zhang Y, Li F, Feng J, Li M, Chen L, Dong Y (2017) A sandwich-type electrochemical immunosensor based on Au@Pd nanodendrite functionalized MoO3 nanosheet for highly sensitive detection of AFP. Biosens Bioelectron 92:33–39. https://doi.org/10.1016/j.bios.2017.01.065

14. Jin L, Meng Z, Zhang Y, Cai S, Zhang Z, Li C, Shang L, Shen Y (2017) Ultrasmall Pt nanoclusters as robust peroxidase mimics for colorimetric detection of hCG in human serum. ACS Appl Mater Interfaces 9(11):10072–10033. https://doi.org/10.1021/acsami.7b04160

15. Saxena R, Fouad H, Srivastava S (2020) Gold nanoparticle based electrochemical immunosensor for detection of T3 hormone. J Nanoscience Nanotechnol 20:6057–6062. https://doi.org/10.1016/j.jnn.2020.185611

16. Anson FC (1964) Application of potentiostatic current integration to the determination of reduced graphene oxide produced through a modified Hoffman method. Cogent Chem Sci 3:1298980. https://doi.org/10.1080/23312009.2017.1298980

17. Yen PI, Sahoo SK, Chiang YC, Huang SY, Wu CW, Hsu YC, Wei NH (2019) Using different ions to tune graphene stack structures from sheet-to-ribbon-like during plasma exfoliation, with supercapacitor applications. Nanoscale Res Lett 14:141. https://doi.org/10.1186/s11671-019-2963-5

18. Aydın EB, Aydin M, Sezginuklu MK (2018) Electrochemical immunosensor based on chitosan/conductive carbon black composite modified disposable ITO electrode: an analytical platform for p53 detection. Biosens Bioelectron 121:80–89. https://doi.org/10.1016/j.bios.2018.09.008

19. Pandey S, Karakoti M, Dhali S, Karki N, SanthiBhushan B, Rana S, Srivastava A, Melkani AB, Sahoo NG (2019) Bulk synthesis of graphene nanosheets from plastic waste: an invincible method of solid waste management for better tomorrow. Waste Manag 88:48–53. https://doi.org/10.1016/j.wasman.2019.03.023

20. Arat N, Yola ML (2021) A novel QCM immunosensor development based on gold nanoparticles functionalized sulfur-doped graphene quantum dot and h-ZnS-CdS NC for Interleukin-6 detection. Anal Chim Acta 1121:1–7. https://doi.org/10.1016/j.bios.2018.04.025

21. Zhang F, Yang K, Liu G, Chen Y, Wang M, Li S, Li R (2022) Recent advances on graphene: synthesis, properties and applications. Compos Part A Appl Sci Manuf 160:107051. https://doi.org/10.1016/j compa sa.2022.107051

22. Anson FC (1964) Application of potentiostatic current integration to the determination of reduced graphene oxide produced through a modified Hoffman method. Cogent Chem Sci 3:1298980. https://doi.org/10.1080/23312009.2017.1298980

23. Anson FC (1964) Application of potentiostatic current integration to the study of the adsorption of cobalt(II)-(ethylenedinitrosoetraacetate) on mercury electrodes. Anal Chem 36(4):932–934. https://doi.org/10.1021/ ac02010a068

24. Sanches C, Tenreiro Machado JA, Lopes AM, Vieira E, Delerue-Matos C (2020) Electrochemical impedance spectroscopy characterization of beverages. Food Chem 302:125345. https://doi.org/10.1016/j.foodchem.2019.125345

25. Ma F, Yan J, Sun L, Chen Y (2019) Electrochemical impedance spectroscopy for quantitation of matrix Metalloproteinase-14 based on peptides inhibiting its homodimerization and heterodimerization. Talanta 205:120142. https://doi.org/10.1016/j.talanta.2019.120142

26. Jampasa S, Lae-ngee P, Pataraku K, Ngamrojnavanch N, Chailapakul O, Rodthongkum N (2019) Electrochemical immunosensor based on gold-labeled monoclonal anti-LipL32 for leptospirosis diagnosis. Biosens Bioelectron 142:111539. https://doi.org/10.1016/j.bios.2019.111539

27. Luo S, Xie Z, Xie Z, Liu H, Huang J, Deng X, Zeng T, Wang S, Zhang Y (2017) Surveillance of live poultry markets for low pathogenic avian influenza viruses in Guangxi Province, southern China, from 2012–2015. Sci Rep 7:17577. https://doi.org/10.1038/s41598-017-17740-0

Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.