Resource Article: Genomes Explored

Chromosome-scale assembly of barley cv.
‘Haruna Nijo’ as a resource for barley genetics

Areej Sakkour1, Martin Mascher2,3, Axel Himmelbach2, Georg Haberer4, Thomas Lux4, Manuel Spannagl4, Nils Stein2,5, Shoko Kawamoto6, and Kazuhiro Sato1*

1Institute of Plant Science and Resources, Okayama University, Kurashiki 710-0046, Japan, 2Department Genebank, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), OT Gatersleben, 06466 Seeland, Germany, 3German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, 04103 Leipzig, Germany, 4Plant Genome and Systems Biology (PGSB), Helmholtz Center Munich, German Research Center for Environmental Health, 85764 Neuherberg, Germany, 5Center for Integrated Breeding Research (CiBreed), Georg-August-University Göttingen, 37075 Göttingen, Germany, and 6Department of Informatics, National Institute of Genetics, Mishima 411-8540, Japan

*To whom correspondence should be addressed. Tel: +81-86-434-1244. Fax: +81-86-434-1249. Email: kzsato@okayama-u.ac.jp

Received 26 December 2021; Editorial decision 9 January 2022; Accepted 10 January 2022

Abstract
Cultivated barley (Hordeum vulgare ssp. vulgare) is used for food, animal feed, and alcoholic beverages and is widely grown in temperate regions. Both barley and its wild progenitor (H. vulgare ssp. spontaneum) have large 5.1-Gb genomes. High-quality chromosome-scale assemblies for several representative barley genotypes, both wild and domesticated, have been constructed recently to populate the nascent barley pan-genome infrastructure. Here, we release a chromosome-scale assembly of the Japanese elite malting barley cultivar ‘Haruna Nijo’ using a similar methodology as in the barley pan-genome project. The 4.28-Gb assembly had a scaffold N50 size of 18.9 Mb. The assembly showed high collinearity with the barley reference genome ‘Morex’ cultivar, with some inversions. The pseudomolecule assembly was characterized using transcript evidence of gene projection derived from the reference genome and de novo gene annotation achieved using published full-length cDNA sequences and RNA-Seq data for ‘Haruna Nijo’. We found good concordance between our whole-genome assembly and the publicly available BAC clone sequence of ‘Haruna Nijo’. Interesting phenotypes have since been identified in Haruna Nijo; its genome sequence assembly will facilitate the identification of the underlying genes.

Key words: Hordeum vulgare, full-length cDNA, RNA-Seq, genome sequencing, pseudomolecules

1. Introduction
Cultivated barley is used for many purposes, including animal feed, human food, and malting for brewing. Malting barley has only been cultivated in Japan for ca. 140 years.¹ The founder cultivars were mainly introduced from Europe and crossed with Japanese landraces, which prior to that had been used for human food. In 1978, the malting barley cultivar ‘Haruna Nijo’ was released from Sapporo Breweries (Tokyo, Japan) and has since been used as a donor of high-quality profiles in Japanese malting barley breeding programs.
At Okayama University (Okayama, Japan), ‘Haruna Nijo’ is used as a key genotype in genetics and genomics studies. ‘Haruna Nijo’ was used for the generation of expressed sequence tags (see also https://harvest.ucr.edu/ last accessed Jan 19, 2022). Using these transcript sequences, a high-density genetic map was constructed from a cross between ‘Haruna Nijo’ and the wild barley (H. vulgare ssp. spontaneum) accession ‘OUH602’., which have been used for the annotation of gene models in the reference genome of the cultivar ‘Morex’. Whole-genome shotgun sequencing was performed for ‘Haruna Nijo’ to enable the estimation of the genomic differences among the genotypes. A similar sequencing methodology was also recently applied to the wild barley accessions.20,21 The mitochondrial genome of ‘Haruna Nijo’ was also sequenced and found to be highly similar to that of ‘OUH602’. Here, we utilized the TRITEX pipeline to generate a chromosome-scale genome assembly of ‘Haruna Nijo’. We aligned the assembly to the most recently updated assembly, ‘Morex’ V3, which is a key genotype in genetics and genomics studies. ‘Haruna Nijo’ was used to generate full-length cDNA (fl-cDNA) sequences, which have been used for the annotation of gene models in the reference genome of the cultivar ‘Morex’., Whole-genome shotgun sequencing was performed for ‘Haruna Nijo’ to enable the estimation of the genomic differences among the genotypes. A similar sequencing methodology was also recently applied to the wild barley accession ‘OUH602’.; however, the assembly of the ‘Haruna Nijo’ genome is desirable for its economic and breeding importance.

The present barley genome annotation, e.g. EnsemblPlants (http://plantsensembl.org/Hordeum_vulgare/ last accessed Jan 19, 2022), is based on ‘Morex’, which is the North American malting cultivar with a Manchurian landrace pedigree, and differs from malting barleys in other areas of the world. In a recent barley pan-genome analysis, gene projection was performed using informant gene models of ‘Morex’, the German malting cultivar ‘Barke’, and an Ethiopian landrace ‘HOR10350’, which were predicted from transcriptome data and protein homology information using a previously described annotation pipeline. In addition to protein-coding genes, ‘pseudogene’-type mappings were previously projected and included in the CDSs and GFF files but were obviously missing from the protein sequence files.

2. Materials and methods

2.1 DNA extraction, library construction, and sequencing

High-molecular-weight DNA was isolated from leaf material of seedlings of ‘Haruna Nijo’ and size selected for a molecule size of 40 kb or higher. The 440-bp paired-end (PE) libraries were prepared with the Hyper Kapa Library Preparation kit (Kapa Biosystems) with no polymerase chain reaction amplification. The 8- to 10-kb mate-pair (MP) libraries were constructed with the Nextera Mate Pair library Sample Prep kit (Illumina, San Diego, CA, USA) followed by the TruSeq DNA Sample Prep kit. The 10X libraries were constructed with the Chromium Genome Library Kit & Gel Bead Kit v2 (10X Genomics). Sequencing was performed following Sato et al. In brief, the 440-bp PE libraries were sequenced for 251 cycles using a NovaSeq 6000 system (Illumina). The 10X and MP libraries were sequenced for 151 cycles from each end of the fragments on the NovaSeq 6000 system. All libraries were prepared and sequenced at the University of Illinois Roy J. Carver Biotechnology Center (Urbana, IL, USA). In situ Hi-C libraries were prepared as described by Padmarasu et al. Sequencing data generated from each of the libraries are listed in Supplementary Table S1. The Hi-C data were used to prepare chromosome-scale assemblies using the TRITEX pipeline, which was also used for the contig assembly and scaffolding with the PE, MP, and 10X data (Supplementary Table S1).

2.2 Transcript sequencing

Published RNA-Seq reads from the seedling root, shoot, spike at flowering, and seeds of ‘Haruna Nijo’ were used for the transcript sequencing. An additional RNA sample of a young spike (3 cm in length) from ‘Haruna Nijo’ was also extracted and subjected to an RNA-Seq analysis, as described by Sato et al. These RNA-Seq libraries were sequenced with the MiSeq Reagent Kit V3 (2 × 300 bp cycles) on a MiSeq system (Illumina).

2.3 Gene projection

To derive the projected gene structures for ‘Haruna Nijo’, informant gene models of ‘Morex’, ‘Barke’, and ‘HOR10350’ were employed, which were predicted from transcriptome data and protein homology information using a previously described annotation pipeline. The projection was based on a stepwise procedure, as previously described. Briefly, BLASTN and Exonerate alignments of the coding sequences (CDSs) of each of the barley sources of the ‘Haruna Nijo’ genome sequence were computed. The matches were clustered by their genomic loci, and the top-scoring match was selected using a stepwise integration approach. In addition to protein-coding genes, ‘pseudogene’-type mappings were previously projected and included in the CDSs and GFF files but were obviously missing from the protein sequence files.

2.4 De novo gene annotation using RNA-Seq and fl-cDNA sequences

A structural gene annotation was performed by combining de novo gene calling and homology-based approaches with RNA-Seq, protein, isoform, and fl-cDNA datasets. Using evidence derived from expression data, RNA-Seq sequences were first mapped against the ‘Haruna Nijo’ genome assembly using STAR (version 2.7.8a) and subsequently assembled into transcripts using StringTie37 (version 2.1.5; parameters -m 150-t-f 0.3). Triticaceae protein sequences obtained from publicly available datasets (UniProt; https://www.uniprot.org; last accessed Jan 19, 2022 accessed 10 December 2021) were aligned against the genome sequence using GenomeThreader38 (version 1.7.1; arguments -startcodon-finalstopcodon -species rice -gmcmincoverage 70 -psreadlength 7 -prhdist 4). The fl-cDNAs and iso-seq were aligned to the genome assembly using GMAP (version 2018-07-04). All RNA-Seq, fl-cDNA, and aligned protein sequences were combined using Cuffcompare (version 2.2.1) and
subsequently merged with StringTie (version 2.1.5; parameters –merge -m150) into a pool of candidate transcripts. TransDecoder (version 5.5.0; http://transdecoder.github.io last accessed Jan 19, 2022) was used to find potential open reading frames (ORFs) and to predict protein sequences within the candidate transcript set. An ab initio annotation was performed using Augustus51 (version 3.5.3). GeneMark32 (version 4.35) was additionally used to further improve the structural gene annotation. To avoid potential over-prediction, guiding hints were generated using the above-described RNA-Seq, isoseq, protein, and fl-cDNA datasets and were then trained and optimized using a specific Augustus model for barley, as described by Hoff and Stanke.31 Structural gene annotations from different prediction methods were combined using EVidenceModeler33 (version 5.5.0; http://transdecoder.github.io last accessed Jan 19, 2022) was used to find potential open reading frames (ORFs) and to predict protein sequences within the candidate transcript set. An ab initio (Augustus: 5, GeneMark: 2) and homology based (10). Additionally, two rounds of PASA34 (version 2.4.1) were run to identify untranslated regions and isoforms using the above-described fl-cDNA dataset.

BLASTP24 (ncbi-blast-2.3.0+, parameters -max_target_seqs 1 -evalue 1e-05) was used to compare potential protein sequences with a trusted set of reference proteins (Uniprot Magnoliophyta, reviewed/Swissprot; downloaded on 3 August 2016; https://www.uniprot.org last accessed Jan 19, 2022). This differentiated candidates into complete and valid genes, non-coding transcripts, pseudogenes, and transposable elements. In addition, the PTREP database (Release 19; http://botserv2.uzh.ch/kelldata/trep-db/index.html last accessed Jan 19, 2022) was used in the BLASTp analysis; this database of hypothetical proteins contains deduced amino acid sequences in which internal frameshifts have been removed in many cases. This step is particularly useful for the identification of divergent transposable elements with no significant similarity at the DNA level. The best hits were selected for each predicted protein to each of the three databases: UniProt, SwissProt, and PTREP. Only hits with an e-value below 10^-10 were considered. Furthermore, the functional annotation of all predicted protein sequences was performed using the AHRD pipeline (https://github.com/groupschool/AHRD last accessed Jan 19, 2022).

The proteins were further classified into two confidence classes: high and low. Hits with subject coverage (for protein references) or query coverage (transposon database) above 80% were considered significant. The proteins were classified as high confidence if the sequence was complete and had a subject and query coverage above the threshold in the UniMag database or no BLAST hit in UniMag or PTREP but present in UniPoa. A protein sequence was defined as being low confidence if it was incomplete and had a hit in the UniMag or UniPoa database but not in PTREP. Alternatively, complete protein sequences with no hit in UniMag, UniPoa, or PTREP were also classified as low confidence. In a second refinement step, low-confidence proteins with an AHRD-score of 3* were promoted to high-confidence.

2.5 Repeat and transcript annotation

The final assembly was analysed for repetitive regions using RepeatMasker35 (version 4.0.9) with the TREP repeat library26 (trep-db_complete_Rel-19; downloaded from http://botserv2.uzh.ch/kelldata/trep-db/downloadFiles.html last accessed Jan 19, 2022 on 13 September 2020). The repetitive regions were changed to lower-case (-xsmall parameter). The output of RepeatMask was condensed using the perl script ‘one-code-to-find-them-all’37 with the parameters -strict and -unknown.

2.6 Data validation and quality control

Benchmarking Universal Single-Copy Orthologs38 (BUSCO; version 3.0.2) was used with the plant dataset (embryophyta_odb10) to validate the assembly and gene models. For gene prediction, BUSCO uses Augustus39,40 (version 3.3. For the gene-finding parameters in Augustus, the species was set to wheat and BUSCO was run in genome mode (-m geno -s wheat). The repetitive regions were changed to lower-case.

2.7 Alignment of published BAC sequences

Published ‘Haruna Nijo’ BAC clone sequences of kernel row type Vrsf,41 brittle rachis Btr1 and Btr2,42 and quantitative locus seed dormancy 1 Qsd113 were downloaded from NCBI. Each clone sequence was aligned to the pseudomolecule sequences of ‘Haruna Nijo’ and ‘Morex’V3 using minimap2.43

2.8 Genome browser

Pseudomolecule assembly, gene models of the CDS, and amino acid models were visualized in Jbrowse genome browser (version 1.16.9). The BLAST (version 2.2.18) and BLAT (version 34) servers were also installed to search for target sequences in the pseudomolecules and gene models.

2.9 Data availability

Raw reads have been deposited in the ENA sequence read archive. Bioproject: PRJEB44504 (ERS_ID: paired-end reads: ERS6294308; mate-pair reads: ERS6294309; 10X reads: ERS6294307; Hi-C reads: ERS6294313; assembly: ERS6294316) (Supplementary Table S2). The reference assembly is available for download or BLAST search from http://viewer.shigen.info/harunanijo/index.php. last accessed Jan 19, 2022.

3. Results and discussion

3.1 Genome assembly

We generated the genome assembly from PE and MP short reads and 10X reads. Approximately 868 Gb of raw data was generated, providing an estimated 170× coverage of the genome (Supplementary Table S1). An assembly generated using the TRITEX pipeline17 resulted in a scaffold N50 value of 18.9 Mb (Table 1). We integrated Hi-C data into the assembly, which uses a genomic distance matrix inferred from native chromatin folding to increase the scaffold-level contiguity to full chromosome size (Supplementary Fig. S1). The final pseudomolecule size was 4.28 Gb, comprising 352 scaffolds and a

Parameter	‘Haruna Nijo’	‘Morex’V2	‘Morex’V3
Number of scaffolds in pseudomolecules	552	273	103
Pseudomolecule size (Gb)	4.28	4.34	4.20
Scaffold N50* [Mb]	18.9	43.7	118.9
Scaffold N90 [Mb]	2.6	5.9	21.8
Cumulative size of unanchored scaffold (Mb)	154.3	82.9	29.1

*aScaffold‘ refers to top-level entities that constitute the pseudomolecules. In ‘Morex’V3, these are Bionano scaffolds of PacBio HiFi contigs; in the other assemblies, superscaffolds were constructed from PE, MP, and 10X data.
cumulative size of unanchored scaffolds of 154.3 Mb. The pseudo-
molecule size of ‘Haruna Nijo’ is comparable with that of the pan-
genome assemblies of ‘Morex’V2 obtained using similar sequencing
platforms but with a smaller scaffold N50 value. The datasets for
‘Morex’V3 showed improved statistics compared with our assem-
bies due to the use of accurate long-read sequencing by circular con-
sensus sequencing on the PacBio platform in the generation of this
assembly.11 The alignment of the pseudomolecules of ‘Haruna Nijo’
to ‘Morex’V3 individual chromosomes revealed some small inver-
sions (Fig. 1); however, the overall contiguity of entire chromosomes
was retained between ‘Haruna Nijo’ and ‘Morex’V3.

For easy access, the reference sequence is available in BLAST-
searchable form at http://viewer.shigen.info/harunanijo/index.php
last accessed Jan 19, 2022.

3.2 Quality of assemblies
We used the spectra-cn function from the Kmer Analysis Toolkit
(KAT)44 to compare k-mer contents in the scaffolds and pseudomole-
cules. KAT generates a k-mer frequency distribution from the PE and
MP reads and identifies how many times k-mers from each part of
the distribution appear in the assemblies being compared.21 The
spectra-cn plot in Supplementary Fig. S2 generated from the contigs
shows sequencing errors (k-mer multiplicity <20) in black, as these
are not included in the assembly. Most of the content appears in a
single red peak, indicating sequences that appear once in the assem-
bly. The black region under the main peak is small, indicating that
most of this content from the reads is present in the assembly. The
content that appears to the right of the main peak and is present two
or three times in the assembly represents repeats. Pseudomolecules
may contain more miss-assemblies than scaffolds; this is not obvious
in the spectra-cn plot in Supplementary Fig. S2b.

We evaluated the quality of the ‘Haruna Nijo’ assembly using BUSCO.38,45 This program assesses the completeness of a genome by
identifying conserved single-copy orthologous genes. The scaffold and pseudomolecule stages had complete single-copy genes at a rate
of 96.0% and 95.7%, respectively (Table 2). These values are very
close to those recently published for the ‘Morex’V2 assembly, which had 97.2% single-copy genes.46 The differences are mainly due to the
greater number of duplicated genes in the scaffolds (1.3%) than
the pseudomolecules (1.2%). Only 1.0% of the fragmented sequen-
ces were present in both the scaffolds and pseudomolecules.

3.3 Repeat masking
We analysed each chromosome of the ‘Haruna Nijo’ assembly for re-
petitive regions using RepeatMasker with the TREP repeat library.
This analysis identified 72.8% (3.23 Gb) of the ‘Haruna Nijo’ assem-
bly as transposable elements (Supplementary Table S3), almost all of
which were retroelements. The same analysis was performed for
‘Morex’V2 and ‘Morex’V3, producing similar results
(Supplementary Table S3). The differences from the published results
for the ‘Morex’V2 and ‘Morex’V3 assemblies11,17 were due to the
different repeat libraries used.

3.4 Gene projection
We assessed the gene content of ‘Haruna Nijo’ using a gene projec-
tion approach, as described by Jayakodi et al.10 for the 20 barley
pan-genome assemblies. The total number of loci was 47,367, which
is within the range of 42,464 to 47,588 reported for the 20 pan-

Table 2. BUSCO statistics of ‘Haruna Nijo’

Factor	Scaffolds	Pseudomolecule
Complete BUSCOs	1,403 (97.5%)	1,396 (96.9%)
Complete BUSCOs: single copy	1,382 (96.0%)	1,378 (95.7%)
Complete BUSCOs: duplicated	21 (1.3%)	18 (1.2%)
Fragmented BUSCOs	14 (1.0%)	14 (1.0%)
Missing BUSCOs	23 (1.5%)	30 (2.1%)
Total BUSCO groups searched	1,440	1,440

Figure 1. Alignment of pseudomolecules of ‘Haruna Nijo’ to ‘Morex’V3 individual chromosomes.
genome assemblies. Of the 44,579 protein-coding genes, between 42,800 and 43,211 loci had a BLAST match with an e-value of < 1–30, and 34,427 and 38,005 were one-to-one reciprocal BLAST orthologs between ‘Haruna Nijo’ and ‘B1K-04-12’ or ‘Morex’V2, respectively. The overall and orthologous gene content of ‘Haruna Nijo’ is therefore highly conserved in comparison with other barley lines. Likewise, 15.9% (7,109) of the tandem-repeated genes in ‘Haruna Nijo’ had similar ranges as were detected for the 20 barley pan-genome assemblies and were located in 2,735 clusters. The gene content statistics above indicate that the ‘Haruna Nijo’ assembly contains a gene set with highly similar characteristics to those reported for the 20 barley pan-genome assemblies.

3.5 De novo gene annotation using RNA-Seq and fl-cDNA sequences

A final structural gene annotation yielded 161,721 gene models, including 49,524 high- and 112,197 low-confidence gene models (Table 3). The high number of total gene models is likely due to the ab initio prediction step, which was run without the use of

Statistics	Complete sequences	High confidence	Low confidence
Number of genes	161,721	49,524	112,197
Number of monoexonc genes	67,724	12,645	55,079
Number of transcripts	181,980	68,751	113,229
Transcripts per gene	1.13	1.39	1.01
cDNA lengths (mRNAs)	1,294	1,696	1,050
CDS lengths (mRNAs)	1,154	1,377	1,018
Exons per transcript (mRNAs)	3.45	5.21	2.38
Exon lengths (mRNAs)	375	326	441
Intron lengths (mRNAs)	675	623	770
CDS exons per transcript (mRNAs)	3.33	4.95	2.35
CDS exon lengths	346	278	434
5' UTR exon number	54,193	48,584	5,609
3' UTR exon number	52,989	44,690	8,299

![BUSCO assessment results of 'Haruna Nijo' fl-cDNA sequences (upper), high-confidence genes (middle), and low-confidence genes (lower).](image)

Figure 2. BUSCO assessment results of ‘Haruna Nijo’ fl-cDNA sequences (upper), high-confidence genes (middle), and low-confidence genes (lower).
transposable elements hints; the high number of low-confidence gene models supports this rationale. The BUSCO score of the high-confidence genes was 98.4 (Fig. 2). The average number of transcripts per gene was 1.39 for the high-confidence gene models, which was much higher than 1.01 for the low-confidence gene models.

We next compared our sequences with the fl-cDNA dataset, which consisted of 22,651 sequences generated from ‘Haruna Nijo’.6,7 These sequences were created from plants grown in 12 different conditions and thus represent a good snapshot of the barley transcriptome. The average insert size of these fl-cDNA sequences was 1,711 bp, which was close to the cDNA length of the high-confidence gene models. Sequence similarities among our data and the fl-cDNA sequences, gene models of gene projection, and de novo gene annotations were compared using a BLASTN analysis with a threshold e-value of <e-100 (Table 3). The 22,651 fl-cDNA query sequences showed high similarity with the sequences from the gene projection (19,771) and de novo annotation (19,636) (Table 4). These numbers are consistent with the number of fl-cDNA sequences with complete ORFs (19,335) reported by Matsumoto et al.7; other fl-cDNA sequences had truncated ORF or non-protein-coding sequences. The results also indicated that almost 10% of each gene model did not overlap each other. The amino acid sequences showed a lower level of overlapping than the nucleotide sequences (0.707–0.731; Supplementary Table S4).

3.6 Alignment with BAC clone sequences

We aligned ‘Haruna Nijo’ BAC clone sequences to pseudomolecules of ‘Haruna Nijo’ and ‘Morex’V3. These numbers are consistent with the number of fl-cDNA sequences with complete ORFs (19,335) reported by Matsumoto et al.7; other fl-cDNA sequences had truncated ORF or non-protein-coding sequences. The results also indicated that almost 10% of each gene model did not overlap each other. The amino acid sequences showed a lower level of overlapping than the nucleotide sequences (0.707–0.731; Supplementary Table S4).

Table 4. BLASTN hits (<e-100) among nucleotide sequences of fl-cDNA, gene projection, and de novo gene model sequences

Target	Full-length cDNA	Gene projection	De novo annotation
Full-length cDNA	22,651	25,977	28,415
Gene projection	19,711	47,367	43,087
De novo annotation	19,636	42,336	49,524
Total hits	19,937	42,753	44,387
Ratio (total hits/number of queries)	0.880	0.903	0.896

Figure 3. Alignment of ‘Haruna Nijo’ BAC sequences of Btr, Qsd1, and Vrs1 regions to pseudomolecules of ‘Haruna Nijo’ and ‘Morex’V3.
3′ region, but the 5′ region showed higher contiguity. Another BAC clone sequence, QtdH, which was derived from a single clone, showed more contiguity with the pseudomolecules of ‘Haruna Nijo’; however, there was a significant gap between the BAC sequence and the pseudomolecule sequence of ‘Morex’V3. The quality of the BAC sequences was comparable with that of ‘Morex’V3, but with some structural disorders.

The observed mismatches between BAC clones and pseudomolecules indicate that the pseudomolecules of ‘Haruna Nijo’ do not have as high of a sequencing quality as those of ‘Morex’V3; however, they are useful for examining contiguity in the genome for gene identification.

3.7 Genome browser
The high-performance and user-friendly graphical interface genome browser Jbrowse was used to visualize the pseudomolecule sequence and the gene models. Tracks of de novo annotations and gene projections each display the result of the associated annotation (e.g. exon structure, protein names, and transposable elements) to allow a comparison of each gene model. The fl-cDNA sequence track based on the BLAST search result against the pseudomolecule sequence was also provided, showing strict similarity to clones only. In addition to the browser, the user interface of the sequence similarity search programs BLAST and BLAT was also provided. The BLAST search results are directly linked to Jbrowse as a user track, which allows the mapping of query sequences against the reference genome and their comparison with the gene models. The assembled sequence and annotation files can be downloaded from the website (http://viewer.shigen.info/harananjio/index.php) last accessed on Jan 19, 2022 so that our data can be used in the local user’s environment.

3.8 Conclusion
Here, we present an assembly of ‘Haruna Nijo’ that is of similar quality to the ‘Morex’V2 reference.17 Importantly, it is a European-style Japanese two-row cultivar, expanding barley genomic resources to Japanese and European breeding materials in contrast to the American six-row cultivar ‘Morex’. Interesting phenotypes have since been identified in Haruna Nijo; its genome sequence assembly will facilitate the identification of the underlying genes.

Acknowledgements
We thank the National Bioresource Project, Japan, for providing seed samples and BAC clones of ‘Haruna Nijo’.

Funding
This work was supported by the JST Mirai Program (grant number 18076896 Japan) to KS, the German Ministry of Education and Research project de.NBI (grant no. 031A336B to M5 and GH) and project SHAPE I (grant no. 031B0190A to MM and NS). We thank Anne Fiebig for the data submission.

Accession numbers
Raw reads have been deposited in theENA sequence read archive. Bioproject: PRJEB44504 [ERS_ID: paired-end reads: ERS6294308; mate-pair reads: ERS6294309; 10X reads: ERS6294307; Hi-C reads: ERS6294313; assembly: ERS6294316].

Conflict of interest
None declared.

Supplementary data
Supplementary data are available at DNARES online.

References
1. Seko, H. 1987, History of barley breeding in Japan. In: Barley Genetics V: Proceedings of the 5th Barley Genetics Symposium, Okayama, Maruzen Co. Ltd. Okayama Branch, Japan, pp. 915–922.
2. Sato, K. 2020, History and future perspectives of barley genomics, DNA Res., 27, dsaa023.
3. Sato, K., Nankaku, N. and Takeda, K. 2009, A high density transcript linkage map of barley derived from a single population, Heredity (Edmb), 110–7.
4. Close, T.J., Bhat, P.R., Lonardi, S., et al. 2009, Development and implementation of high-throughput SNP genotyping in barley, BMC Genomics, 10, 582–94.
5. Sato, K. and Takeda, K. 2009, An application of high-throughput SNP genotyping for barley genotype mapping and characterization of recombinant chromosome substitution lines, Theor. Appl. Genet., 119, 613–9.
6. Sato, K., Shin-I, T., Seki, M., et al. 2009, Development of 5086 fl-cDNAs in barley: a tool for accessing cereal genomes resources, DNA Res., 16, 81–9.
7. Matsumoto, T., Tanaka, T., Sakai, H., et al. 2011, Comprehensive sequence analysis of 24,783 barley fl-cDNAs derived from 12 clone libraries, Plant Physiol., 156, 20–8.
8. International barley Genome Sequencing Consortium. 2012, A physical, genetic and functional sequence assembly of the barley genome, Nature, 491, 711–6.
9. Mascher, M., Gundlach, H., Himmelpach, A., et al. 2017, A chromosome conformation capture ordered sequence of the barley genome, Nature, 544, 427–33.
10. Jayakodi, M., Padmarasu, S., Haberer, G., et al. 2020, The barley pan-genome reveals the hidden legacy of mutation breeding, Nature, 588, 284–9.
11. Mascher, M., Wicker, T., Jenkins, J., et al. 2021, Read-length sequence assembly: a technical evaluation in barley, Plant Cell, 33, 1888–906.
12. Sato, K., Shin-I, T., Seki, M., et al. 2009, Improvement of barley genome annotations by deciphering the Haruna Nijo genome, DNA Res., 16, 81–9.
13. Sasho, D., Myoroku, E., Kawasaki, S., Sato, K. and Takeda, K. 2007, Construction and characterization of a bacterial artificial chromosome (BAC) library for Japanese malting barley ‘Haruna Nijo’, Breed. Sci., 57, 29–38.
14. Taketa, S., Amano, S., Tsujiyo, Y., et al. 2008, Barley grain with adhering hulls is controlled by an ERF family transcription factor gene regulating a lipid biosynthesis pathway, Proc. Natl. Acad. Sci. U S A, 105, 4062–7.
15. Sato, K., Yamane, M., Yamaji, N., et al. 2016, Alanine aminotransferase controls seed dormancy in barley, Nat. Commun., 7, 11625.
16. Hsano, H., Tsujimura, M., Yoshida, H., et al. 2016, Alanine aminotransferase controls seed dormancy in barley, Nat. Commun., 7, 11625.
17. Monat, C., Padmarasu, S., Lux, T., et al. 2019, TRITEX: chromosome-scale sequence assembly of Triticeae genomes with open-source tools, Genome Biol., 20, 284.
18. Clavijo, B., Garcia Accinelli, G., Wright, J., et al. 2017, W2RAP: a pipeline for high quality, robust assemblies of large complex genomes from short read data, bioRxiv, doi: 10.1101/110999.
19. Jayakodi, M., Schreiber, M., Stein, N. and Mascher, M. 2021, Building pan-genome infrastructures for crop plants and their use in association genetics, DNA Res., 28, dsaa030.
20. Milner, S.G., Jost, M., Taketa, S., et al. 2019, Genebank genomics highlights the diversity of a global barley collection, Nat. Genet., 51, 319–26.
21. Sato, K., Mascher, M., Himmelbach, A., Haberer, G., Spannagl, M. and Stein, N. 2021, Chromosome-scale assembly of wild barley accession “OUH602”, G3 (Bethesda), 11, jkab244.
22. Dvorak, J., McGuire, P.E. and Cassidy, B. 1988, Apparent sources of the A genomes of wheats inferred from polymorphism in abundance and restriction fragment length of repeated nucleotide sequences, Genome, 30, 680–9.
23. Padmarasu, S., Himmelbach, A., Mascher, M. and Stein, N. 2019, In Situ Hi-C for plants: an improved method to detect long-range chromatin interactions. Methods Mol. Biol., 1933, 441–7.
24. Slater, G.S.C. and Birney, E. 2005, Automated generation of heuristics for biological sequence comparison, BMC Bioinformatics, 6, 31.
25. Dobin, A., Davis, C.A., Schlesinger, F., et al. 2013, STAR: ultrafast universal RNA-seq aligner, Bioinformatics, 29, 15–21.
26. Kovaka, S., Zimin, A.V., Pertea, G.M., et al. 2019, Transcriptome assembly from long-read RNA-seq alignments with StringTie2, Genome Biol., 20, 278.
27. Gremme, G., Brendel, V., Sparks, M.E. and Kurtz, S. 2005, Engineering a software tool for gene structure prediction in higher organisms, Inf. Soft. Technol., 47, 965–78.
28. Wu, T.D. and Watanabe, C.K. 2005, GMAP: a genomic mapping and alignment program for mRNA and EST sequences, Bioinformatics, 21, 1855–75.
29. Li, H. 2018, Minimap2: pairwise alignment for nucleotide sequences, Bioinformatics, 34, 3094–100.
30. Mapleson, D., Venturini, L., Kaithakottil, G. and Swarbreck, D. 2017, Efficient and accurate detection of splice junctions from RNAseq with Portcullis. bioRxiv (Preprint posted November 10, 2017).
31. Komatsuda, T., Pourkheirandish, M., He, C., et al. 2007, Six-rowed barley originated from a mutation in a homeodomain-leucine zipper I-class homeobox gene, Proc. Natl. Acad. Sci. U S A., 104, 1424–9.
32. Pourkheirandish, M., Hensel, G., Kilian, B., et al. 2015, Evolution of the seed dispersal system in barley, Cell, 162, 527–39.
33. Reuter, I., Sulpice, R., Schuster, T., et al. 2008, R repeater finder: a repeat-finding algorithm with improved sensitivity, Genome Res., 18, 1979–90.