Results of a UK real world study of polatuzumab vedotin, bendamustine, and rituximab for relapsed/refractory large B-cell lymphoma

Tracking no: ADV-2021-005953R2

Michael Northend (Cancer Research UK & UCL Cancer Trials Centre, United Kingdom) William Wilson (Cancer Research UK & UCL Cancer Trials Centre, United Kingdom) Wendy Osborne (Newcastle upon Tyne Hospitals NHS Foundation trust, United Kingdom) Christopher Fox (Nottingham University Hospitals, United Kingdom) Andrew Davies (University of Southampton, United Kingdom) Dima El-Sharkawi (Royal Marsden Hospital, United Kingdom) Shalal Sadullah (James Paget University Hospitals NHS Foundation Trust, United Kingdom) Nimish Shah (Norfolk and Norwich University Hospital, United Kingdom) Ying Ying Peng (St George’s University Hospitals NHS Foundation Trust, United Kingdom) Iman Qureshi (University Hospitals Birmingham NHS Foundation Trust, United Kingdom) Juanah Addada (Royal Derby Hospital, United Kingdom) Rocio Mora (Nottingham University Hospitals NHS Trust, United Kingdom) Neil Phillips (University Hospitals of the North Midlands NHS Trust, United Kingdom) Andrea Kuhn (King’s College Hospital NHS Foundation Trust, United Kingdom) Elizabeth Davies (Manchester University NHS Foundation Trust, United Kingdom) David Wrench (Guy’s and St. Thomas' NHS Foundation Trust, United Kingdom) Pamela McKay (Beatson West of Scotland Cancer Centre, United Kingdom) Indrani Karpha (The Clatterbridge Cancer Centre, United Kingdom) Anna Cowley (East Sussex Healthcare NHS Trust, United Kingdom) Richard Karim (Dorset County Hospital NHS Foundation Trust, United Kingdom) Sarah Challenor (Royal Cornwall Hospital Trust, United Kingdom) Vikram Singh (Aintree University Hospital, United Kingdom) Catherine Burton (St James’s University Hospital, United Kingdom) Rebecca Auer (Bart’s Health NHS Trust, United Kingdom) Chris Williams (Northumbria Healthcare NHS Foundation Trust, United Kingdom) Joel Cunningham (James Paget University Hospitals NHS Foundation Trust, United Kingdom) Angus Broom (Western General Hospital, United Kingdom) Anita Arasaretnam (University Hospitals Sussex NHS Trust, United Kingdom) Claire Roddie (UCL, United Kingdom) Tobias Menne (Newcastle upon Tyne Hospitals NHS Foundation Trust, United Kingdom) William Townsend (University College London Hospitals, United Kingdom)

Abstract:
The addition of polatuzumab vedotin to bendamustine and rituximab (Pola-BR) has been shown to improve overall survival (OS) in stem cell transplant (SCT)-ineligible patients with relapsed/refractory (R/R) diffuse large B-cell lymphoma (DLBCL). It is also increasingly used as bridging to CAR T-cell therapy (CAR-T). We retrospectively analysed the efficacy of Pola-BR in 133 patients at 28 UK institutions. Treatment intent was bridging to CAR-T for N=40, re-induction with planned SCT for N=13 and stand-alone treatment for N=78. The overall response rate (ORR) was 57.0% (complete response (CR) 32.8%). After median 7.7 months follow-up, median PFS and OS were 4.8 months and 8.2 months respectively. For stand-alone treatment shortened PFS was associated with bulk disease (>7.5cm) (HR 2.32 (95% CI 1.23-4.38), p=0.009), >1 prior treatment (HR 2.17 (95% CI 1.19-3.95), p=0.01) and refractoriness to the last treatment (HR 3.48 (95% CI 1.79-6.76), p<0.001). For CAR-T bridging the ORR was 42.1% (CR 18.4%) and for treatment after CAR-T failure the ORR was 43.8% (CR 18.8%). These data demonstrate efficacy for Pola-BR as a treatment for SCT-ineligible patients with R/R DLBCL, help to delineate which patients may benefit most, and provide preliminary evidence of efficacy as bridging to CAR-T and after CAR-T failure.

Conflict of interest: COI declared – see note
COI notes: C.P.F - Consultant or advisory role Roche; Research funding Roche; Travel grants Roche
A.J.D - Consultant or advisory role Celgene (A BMS Company), Roche, Kite (A Gilead Company), Takeda, Karyopharm Therapeutics, Incyte; Honoraria Celgene (A BMS Company), Roche, Kite (A Gilead Company), Takeda, Janssen, Acerta Pharm/AstraZeneca, ADC Therapeutics; Research funding Celgene (A BMS Company), Roche, Karyopharm Therapeutics, Janssen, Acerta Pharm/AstraZeneca, ADC Therapeutics, BioInvent; Travel grants Celgene (A BMS Company), Roche. D.E. - Consultant or advisory role Abbvie, ASTEX, AstraZeneca, Beigene, Janssen, Kyowa Kirin; Honoraria Abbvie, AstraZeneca, Janssen, Roche, Takeda; Travel grants Abbvie, Novartis. N.S. - Consultant or advisory role Abbvie, Janssen, Roche; Travel grants Abbvie, Janssen, Roche A.K. - Honoraria Kite, Novartis, Celgene P.M. - Consultant or advisory role Roche; Honoraria Roche. R.K. Honoraria Bristol Myers Squibb, Roche. V.K. - Travel grants Gilead, Novartis, Abbvie. R.A. - Consultant or advisory role Beigene; Research funding Janssen. W.T. - Consultant or advisory role Roche, Gilead, Celgene, Janssen; Honoraria Roche, Gilead, Celgene, Janssen

Preprint server: No;

Author contributions and disclosures: M.N. and W.T. designed the research; M.N., W.O., D.E., E.H.P., H.W.S., S.S, N.S., Y.Y.P., I.Q., J.A., R.F.M., N.P., A.K., E.D., D.W., P.M., I.K., A.C., R.K., S.C., V.K., C.B., R.A., C.W., A.B., and T.M. collected the data; W.W. analysed the data; M.N., W.O., C.P.F., A.J.D., C.R. and W.T. wrote the paper.

Non-author contributions and disclosures: No;

Agreement to Share Publication-Related Data and Data Sharing Statement: Emails to the corresponding author

Clinical trial registration information (if any):
Results of a UK real world study of polatuzumab vedotin, bendamustine, and rituximab for relapsed/refractory large B-cell lymphoma

Michael Northend 1,2, William Wilson 2, Wendy Osborne 3, Christopher P Fox 4, Andrew J Davies 5, Dima El-Sharkawi 6, Elizabeth H Phillips 7,8, Hau Wui Sim 9, Shalal Sadullah 10, Nimirah Shah 11, Ying Ying Peng 12, Iman Qureshi 13, Juana Addada 14, Rocio Figueroa Mora 4, Neil Phillips 15, Andrea Kuhnl 16, Elizabeth Davies 17, David Wrench 18, Pamela McKay 19, Indrani Karpah 20, Anna Cowley 21, Richard Karim 22, Sarah Challenor 23, Vikram Singh 24, Cathy Burton 25, Rebecca Auer 26, Chris Williams 27, Joel Cunningham 28, Angus Broom 28, Anita Arasaretnam 29, Claire Roddie 1, Tobias Menne 3, William Townsend 1

1 University College London Hospitals NHS Foundation Trust, Department of Haematology, 250 Euston Road, London NW1 2PG
2 Cancer Research UK & UCL Cancer Trials Centre, Haematology Trials Team, 90 Tottenham Court Road, London W1T 4JT
3 The Newcastle-upon-Tyne Hospitals NHS Foundation Trust, Department of Haematology, Freeman Hospital, Freeman Road, High Heaton, Newcastle-upon-Tyne NE7 7DN
4 Nottingham University Hospitals NHS Trust, Department of Haematology, Nottingham City Hospital, Hucknall Road, Nottingham NG5 1PB
5 University of Southampton, Southampton Cancer Research UK/NIHR Experimental Cancer Medicines Centre, Southampton General Hospital, Tremona Road, Southampton SO16 6YD
6 The Royal Marsden NHS Foundation Trust, Department of Haematology, Downs Road, Sutton SM2 5PT
7 The Christie NHS Foundation Trust, Department of Haematology, Wilmslow Road, Manchester, M20 4BX
8 University of Manchester, Division of Cancer Sciences, Faculty of Biology, Medicine and Health, The Christie Hospital, Unit 26, Wilmslow Road, Manchester M20 4BX
9 London North West Healthcare NHS Trust, Department of Haematology, Watford Road, Harrow, Middlesex HA1 3UJ
10 James Paget University Hospitals NHS Foundation Trust, Department of Haematology, Lowestoft Road, Gorleston-on-Sea, Great Yarmouth NR31 6LA
11 Norfolk & Norwich University Hospitals NHS Foundation Trust, Department of Haematology, Colney Lane, Norwich NR4 7UY
12 St George’s University Hospitals NHS Foundation Trust, Department of Haematology, Blackshaw Road, London SW17 0QT
13 University Hospitals Birmingham NHS Foundation Trust, Department of Haematology, Queen Elizabeth Hospital, Mindelsohn Way, Birmingham B15 2TH
14 University Hospital of Derby & Burton NHS Foundation Trust, Department of Haematology, Royal Derby Hospital, Uttoxeter Road, Derby DE22 3NE
15 University Hospitals of North Midlands NHS Trust, Department of Haematology, Royal Stoke University Hospital, Newcastle Road, Stoke-on-Trent ST4 6QG
16 King’s College Hospital NHS Foundation Trust, Department of Haematology, King’s College Hospital, Denmark Hill, London SE5 9RS
17 Manchester University NHS Foundation Trust, Department of Haematology, Manchester Royal Infirmary, Oxford Road, Manchester M13 9WL
18 Guy’s & St Thomas’ NHS Foundation Trust, Department of Haematology, Guy’s Hospital, Great Maze Pond, London SE1 9RT
19 Beatson West of Scotland Cancer Centre, Department of Haematology, 1053 Great Western Road, Glasgow G12 0YN
20 The Clatterbridge Cancer Centre, Department of Haematology, Clatterbridge Road, Benington, Birkenhead, Wirral CH63 4JT
21 East Sussex Healthcare NHS Trust, Department of Haematology, Eastbourne District Hospital, Kings Drive, Eastbourne BN21 2UD
22 Dorset County Hospital NHS Foundation Trust, Department of Haematology, Williams Avenue, Dorchester DT1 2JY
23 Royal Cornwall Hospitals NHS Trust, Department of Haematology, Treliske, Truro TR1 3LJ
24 Aintree University Hospital, Department of Haematology, Lower Lane, Fazakerley, Liverpool L9 7AL
25 Leeds Teaching Hospitals NHS Trust, Department of Haematology, St James’ University Hospital, Beckett Street, Leeds LS9 7TF
26 Bart’s Health NHS Trust, Department of Haematology, St Bartholomew’s Hospital, West Smithfield, London EC1A 7BE
27 Northumbria Healthcare NHS Foundation Trust, Department of Haematology, Hexham General Hospital, Corbridge Road, Hexham NE46 1QJ
28 Western General Hospital, Department of Haematology, Crewe Road South, Edinburgh EH4 2XU
29 Brighton & Sussex University Hospitals NHS Trust, Department of Haematology, Royal Sussex County Hospital, Eastern Road, Brighton BN2 5BE

Correspondence: Michael Northend, University College London Hospitals NHS Foundation Trust, michael.northend@nhs.net
Data sharing statement: For data sharing, contact the corresponding author: michael.northend@nhs.net.
Ten to 15% of patients with diffuse large B-cell lymphoma (DLBCL) have primary refractory disease and 20-30% relapse.\(^1\) For stem cell transplant (SCT)-eligible patients second-line chemotherapy and autologous SCT is curative in around 20%, while third-line anti-CD19 chimeric antigen receptor T-cell therapy (CAR-T) results in durable remissions in up to 40% of treated patients.\(^2\)–\(^4\)

For SCT/CAR-T ineligible patients, and those with progressive disease (PD) after CAR-T, outcomes remain poor and new approaches are required.\(^1\) Where CAR-T is planned, up to 20% of patients do not go on to receive the product, often due to PD, and novel bridging strategies are needed for this largely chemotherapy-refractory group.\(^5\)–\(^8\)

In the randomised phase 2 G029365 trial polatuzumab vedotin (an anti-CD79b monoclonal antibody conjugated to the cytotoxin monomethyl auristatin E) with bendamustine and rituximab (Pola-BR) was compared to bendamustine-rituximab for treatment of relapsed/refractory (R/R) DLBCL in SCT-ineligible patients. For Pola-BR the objective response rate (ORR) was 62.5% (complete response (CR) 50%). Median progression-free survival (PFS) and overall survival (OS), at 9.2 and 12.4 months respectively, were both superior for Pola-BR.\(^9\) A single arm cohort identified primary refractory disease, >1 prior treatment, and refractoriness to the last treatment as predictors of inferior PFS and OS.\(^10\)

Prior to UK regulatory approval Pola-BR was available via the Early Access to Medicines Scheme (EAMS) between June 2019-January 2020 in line with the intended label.\(^11\) Subsequently, interim funding (March-August 2020) was provided via the Cancer Drugs Fund (CDF) for Pola-BR as CAR-T bridging therapy due to potential delays in CAR-T delivery during the Covid-19 pandemic. We analysed outcomes of patients treated on these schemes.

Anonymised data were collected retrospectively from 28 UK hospitals for consecutive patients treated with Pola-BR via EAMS or CDF interim funding. All patients who started Pola-BR treatment via either scheme were eligible (for EAMS: relapsed/refractory (R/R) DLBCL after ≥1 prior treatment and ineligible for SCT; for CDF R/R DLBCL after ≥2 prior treatments and approved to receive CAR-T). Polatuzumab was given on day 1 or 2 of a 28-day cycle at a dose of 1.8mg/kg for a maximum of 6 cycles. Dose reduction/treatment delay due to adverse events was permitted according to physician discretion. Response assessment was performed according to local policy.

The collection and analysis of the data were part of routine NHS service evaluation and did not require ethical review. Full methods, statistical analysis and treatment details are listed in the supplementary materials.

Data were collected from 133 patients (EAMS N=106, CDF N=27) treated June 2019-October 2020. Treatment intent was bridging to CAR-T for 30.1% (N=40), re-induction therapy with planned SCT consolidation for 9.8% (N=13) and stand-alone treatment (no planned CAR-T/SCT) for 58.6% (N=78). Table 1 summarises patient characteristics. Figure 1 shows sub-groups according to treatment intent.

A median of 4 cycles (range 1-6) were given (median 1 for CAR-T bridging versus 4 for stand-alone treatment, and 5 where SCT consolidation was planned). Pola-BR was initiated with full dose bendamustine for N=91 (68.4%) and reduced dose bendamustine for N=24 (18.0%), bendamustine was omitted for N=5 (3.8%) and data were missing for N=13 (9.8%). The investigator-assessed best ORR was 57.0% (CR 31.6%). Response rates for pre-defined subgroups are provided in figure 1. Median follow-up duration was 7.7 months and median PFS and OS were 4.8 months (95% CI 3.7-9.3) and 8.2 months (95% CI 5.9-14.3) respectively (figure 1).
For stand-alone Pola-BR (no planned CAR-T/SCT (N=78)), a majority were SCT-ineligible due to age or comorbidities (55.1% and 21.8% respectively), but for 17.9% this was due to insufficient response to prior therapy. Primary reasons for treatment discontinuation were completion of 6 cycles (N=33, 42.3%), PD (N=25, 32.1%), treatment-related toxicity (N=14, 17.9%), patient death (N=2, 2.6%), achieving CR (N=2, 2.6%), and ‘other’ (N=2, 2.6%).

In the stand-alone group N=26 (33.3%) experienced treatment delay due to adverse events, most commonly infection (N=14, 17.9%) and haematological toxicity (N=11, 14.1%), as well as nausea (N=1), diarrhoea (N=1), fatigue (N=4) and peripheral neuropathy (PN) (N=1). Bendamustine was dose reduced for N=33 (42.3%) and omitted for N=4 (5.1%) in at least 1 cycle. Reported reasons for bendamustine dose reduction or omission were haematological toxicity (N=7), patient age (N=7), infection (N=6), frailty (N=4), diarrhoea (N=3), bilirubin increased (N=2), infusion-related reaction (N=1), co-morbidities (N=1) and unknown (N=6). N=1 (1.3%) discontinued treatment due to PN. Where data were available, 16/59 patients (27.1%) required hospital admission due to Pola-BR-related toxicity during treatment.

The ORR for the stand-alone cohort was 65.8% (CR 39.7%), the median follow-up duration was 8.2 months and median PFS and OS were 5.4 months (95% CI 3.0-10.8) and 10.2 months (95% CI 5.2-14.3) respectively. The 12-month PFS rate was 37% (95% CI 24%-50%). For patients achieving CR, median PFS was 14.0 months and median OS was not reached (figure 1). For this stand-alone group, significant factors by univariate analysis for shortened PFS were bulky disease (>7.5cm) (HR 2.32 (95% CI 1.23-4.38), p=0.009), >1 prior treatment (HR 2.17 (95% CI 1.19-3.95), p=0.01) and refractoriness to the last treatment (HR 3.48 (95% CI 1.79-6.76), p<0.001). Significance was maintained in a multivariate model using these three variables.

Pola-BR was planned as bridging to CAR-T for 40 patients: 31/40 (77.5%) received cell infusion (18 Axicabtagene ciloleucel, 12 Tisagenlecleucel and 1 clinical trial product), 5 died due to PD, 1 died due to infection during bridging, CAR-T infusion was pending for 2 and data were missing for 1. Leukapheresis occurred prior to bridging for 36 patients (90.0%) and after at least 1 cycle of Pola-BR for 3 (10.0%) (of these 2 patients received bendamustine and both underwent successful leukapheresis). The best ORR to Pola-BR bridging was 42.1% (CR 17.5%, partial response (PR) 22.5%, stable disease (SD) 15.0%, PD 40.0%, missing 5.0%). Sixteen patients received Pola-BR having progressed post-CAR-T. The ORR and CR rate were 43.8% and 18.8% respectively and 3/16 subsequently proceeded to allogeneic SCT.

In total 4 patients underwent SCT following Pola-BR (3 allogeneic, 1 autologous). Sixty patients died during follow-up including 48 due to PD and 6 due to infection during Pola-BR treatment.

These outcome data for 133 consecutive patients treated with Pola-BR add substantially to evidence from the registration trial and other studies.9,10,12-15 Within its limitations (investigator-reported outcomes and limited toxicity data) this retrospective study supports Pola-BR as a treatment for SCT-ineligible patients with R/R DLBCL and provides preliminary evidence of efficacy for CAR-T bridging and after CAR-T failure.

For stand-alone Pola-BR without planned consolidation the ORR (57.1%, 95% CI 54.0%-76.3%) is comparable to that reported in G029365 (62.5%), although fewer patients attained CR (39.7% versus 50%). Median PFS (5.4 months, 95% CI 3.0-10.8) and OS (10.2 months, 95% CI 5.2-14.3) are shorter than in the trial where they were 9.2 months (95% CI 6.2-13.9) and 12.4 months (95% CI 9-not estimable) respectively.9 The short median PFS in this group may reflect the frequency of high-risk features; more were SCT-ineligible due to age, co-morbidities or performance status (PS) than in the trial (78.2% versus 35.0%), and many had bulk disease (28.2%), high IPI (71.8%) or PS ≥2 (39.7%). Just
17.9% of patients in this group were SCT-ineligible due to insufficient response to prior treatment, compared to 30.0% of patients in the trial. Unsurprisingly, PFS was shorter after >1 prior treatment and for patients refractory to the preceding treatment. Bulky disease was also associated with inferior PFS – a finding not previously reported from G029365. For those achieving CR, median PFS was 14.0 months (median OS not reached), but further follow-up is required to have confidence in the durability of CR. The limited toxicity data available for this stand-alone group are overall in keeping with the known safety profile of Pola-BR, however it is of note that as a result of treatment-associated toxicity 17.9% of patients in the stand-alone treatment group stopped Pola-BR before completing 6 cycles and 27.1% required hospital admission.

While response rates for the 16 patients who received Pola-BR for PD post CAR-T were lower than for the whole cohort (ORR 43.8%, CR 18.8%) few other treatments have been tested in this setting, and it is of note that 3/16 were successfully bridged to allogeneic SCT.

A median of 1 cycle was given as bridging to CAR-T. The ORR and CR rate were 42.1% and 18.4% respectively, similar to the post CAR-T group. A majority (31/40 (77.5%)) proceeded to cell infusion, thus Pola-BR appears to be a feasible bridging strategy. Further studies are required to define who is most likely to benefit, and to assess other approaches for this chemotherapy-refractory group.17,18

This is the largest data set of patients treated with Pola-BR to date. Other series report broadly similar outcomes, but this study is unique in its sample size and inclusion of patients at different stages in the DLBCL treatment pathway.12–15 These outcomes support Pola-BR as a treatment for SCT-ineligible patients, help to delineate which groups stand to benefit most, and show efficacy in transformed low-grade lymphoma and double hit lymphoma which were not represented in the G029365 trial. Furthermore, these data offer new insights into its role as CAR-T bridging and as treatment after CAR-T failure. PFS appears shorter in this study than in the G029365 trial possibly reflecting patient characteristics including a higher median age in this study (72 versus 67), a higher proportion with PS ≥2 (30.1% versus 15%) and the inclusion of 16 patients with prior CAR-T. The optimal partner agent(s) for Polatuzumab, and its place in the DLBCL treatment algorithm, remains open questions worthy of further study.
Author contribution: M.N. and W.T. designed the research; M.N., W.O., D.E., E.H.P., H.W.S., S.S., N.S., Y.Y.P., I.Q., J.A., R.F.M., N.P., A.K., E.D., D.W., P.M., I.K., A.C., R.K., S.C., V.K., C.B., R.A., C.W., A.B., and T.M. collected the data; W.W. analysed the data; M.N., W.O., C.P.F., A.J.D., C.R. and W.T. wrote the paper.

Conflict-of-interest statement: C.P.F - Consultant or advisory role Roche; Research funding Roche; Travel grants Roche A.J.D - Consultant or advisory role Celgene (A BMS Company), Roche, Kite (A Gilead Company), Takeda, Karyopharm Therapeutics, Incyte; Honoraria Celgene (A BMS Company), Roche, Kite (A Gilead Company), Takeda, Janssen, Acerta Pharm/AstraZeneca, ADC Therapeutics; Research funding Celgene (A BMS Company), Roche, Karyopharm Therapeutics, Janssen, Acerta Pharm/AstraZeneca, ADC Therapeutics, BioInvent; Travel grants Celgene (A BMS Company), Roche. D.E. - Consultant or advisory role Abbvie, ASTEX, AstraZeneca, Beigene, Janssen, Kyowa Kiirin; Honoraria Abbvie, AstraZeneca, Janssen, Roche, Takeda; Travel grants Abbvie, Novartis. N.S. - Consultant or advisory role Abbvie, Janssen, Roche; Travel grants Abbvie, Janssen, Roche A.K. - Honoraria Kite, Novartis, Celgene P.M. - Consultant or advisory role Roche; Honoraria Roche. R.K. Honoraria Bristol Myers Squibb, Roche. V.K. - Travel grants Gilead, Novartis, Abbvie. R.A. - Consultant or advisory role Beigene; Research funding Janssen. W.T. - Consultant or advisory role Roche, Gilead, Celgene, Janssen; Honoraria Roche, Gilead, Celgene, Janssen
References:

1. Chaganti S, Illidge T, Barrington S, et al. Guidelines for the management of diffuse large B-cell lymphoma. *Br J Haematol*. 2016;174(1):43–56.

2. Philip T, Guglielmi C, Hagenbeek A, et al. Autologous Bone Marrow Transplantation as Compared with Salvage Chemotherapy in Relapses of Chemotherapy-Sensitive Non-Hodgkin’s Lymphoma. *N Engl J Med*. 1995;333(23):1540–1545.

3. Schuster SJ, Bishop MR, Tam CS, et al. Tisagenlecleucel in Adult Relapsed or Refractory Diffuse Large B-Cell Lymphoma. *N Engl J Med*. 2019;380(1):45–56.

4. Locke FL, Ghobadi A, Jacobson CA, et al. Long-term safety and activity of axicabtagene ciloleucel in refractory large B-cell lymphoma (ZUMA-1): a single-arm, multicentre, phase 1-2 trial. *Lancet Oncol*. 2019;20(1):31–42.

5. Kuhnl A, Roddie C, Martinez-Cibrian N, et al. Real-world data of high-grade lymphoma patients treated with CD19 CAR-T in England. *Blood*. 2019;134(Supplement_1):767–767.

6. Kuhnl, Andrea, Roddie, Claire, Tholouli, Eleni, et al. Outcome of high-grade lymphoma patients treated with CD19 CAR-T - updated real-world experience in the UK. *European Haematology Association 25th Annual Conference*. 2020;

7. Wang J, Hu Y, Yang S, et al. Role of Fluorodeoxyglucose Positron Emission Tomography/Computed Tomography in Predicting the Adverse Effects of Chimeric Antigen Receptor T Cell Therapy in Patients with Non-Hodgkin Lymphoma. *Biol Blood Marrow Transplant*. 2019;25(6):1092–1098.

8. Dean EA, Mhaskar RS, Lu H, et al. High metabolic tumor volume is associated with decreased efficacy of axicabtagene ciloleucel in large B-cell lymphoma. *Blood Advances*. 2020;4(14):3268–3276.

9. Sehn LH, Herrera AF, Flowers CR, et al. Polatuzumab Vedotin in Relapsed or Refractory Diffuse Large B-Cell Lymphoma. *J Clin Oncol*. 2020;38(2):155–165.

10. Sehn LH, Hertzberg M, Opat S, et al. Polatuzumab Vedotin Plus Bendamustine and Rituximab in Relapsed/Refractory Diffuse Large B-Cell Lymphoma: Updated Results of a Phase Ib/II Randomized Study and Preliminary Results of a Single-Arm Extension. 2020;

11. Early Access to Medicines Scheme – Treatment protocol – Information for healthcare professionals. 2019;

12. Segman Y, Ribakovsky E, Avigdor A, et al. Outcome of relapsed/refractory diffuse large B-cell lymphoma patients treated with polatuzumab vedotin-based therapy: real-life experience. *Leuk Lymphoma*. 2020;1–7.

13. Liebers N, Duell J, Nörenberg D, et al. Polatuzumab Vedotin in Relapsed and Refractory (r/r) Large B-Cell Lymphoma (LBCL): Real-World Data of the German National Compassionate Use Program (CUP). *Blood*. 2020;136(Supplement 1):11–13.

14. Liebers N, Duell J, Fitzgerald D, et al. Polatuzumab vedotin as a salvage and bridging treatment in relapsed or refractory large B-cell lymphomas. *Blood Adv*. 2021;5(13):2707–2716.

15. Dimou M, Papageorgiou SG, Stavroyianni N, et al. Real-life experience with the combination of polatuzumab vedotin, rituximab, and bendamustine in aggressive B-cell lymphomas. *Hematol Oncol*. 2021;

16. Pinnix CC, Gunther JR, Dabaja BS, et al. Bridging therapy prior to axicabtagene cileoleucel for relapsed/refractory large B-cell lymphoma. *Blood Adv*. 2020;4(13):2871–2883.

17. Sim AJ, Jain MD, Figura NB, et al. Radiation Therapy as a Bridging Strategy for CAR T Cell Therapy With Axicabtagene Cileoleucel in Diffuse Large B-Cell Lymphoma. *Int J Radiat Oncol Biol Phys*. 2019;105(5):1012–1021.

18. Marzolini MAV. Characterisation and Clinical Outcomes of Different Bridging Strategies in Patients Receiving CD19CAR-T Therapy for Relapsed/Refractory B-cell Lymphomas. *The European Society for Blood and Marrow Transplantation & The European Haematology Association 3rd European CAR-T Meeting*. 2021;
| Characteristic | All patients (N=133) | Stand-alone therapy (N=78) | Bridge to CAR-T (N=40) |
|--|----------------------|---------------------------|------------------------|
| Median age, years (range) | 72 (18-88) | 75 (41-88) | 66.5 (29-82) |
| Sex, N(%) | | | |
| Male | 87 (65.4%) | 54 (69.2%) | 23 (57.5%) |
| Female | 46 (34.6%) | 24 (30.8%) | 17 (42.5%) |
| ECOG, N(%) | | | |
| 0-1 | 90 (67.7%) | 46 (59.0%) | 31 (77.5%) |
| ≥2 | 40 (30.1%) | 31 (39.7%) | 7 (17.5%) |
| Unknown | 3 (2.3%) | 1 (1.3%) | 2 (5%) |
| Diagnosis, N(%) | | | |
| DLBCL (transformed low grade lymphoma) | 31 (23.3%) | 17 (21.8%) | 12 (30%) |
| DLBCL, not otherwise specified | 78 (58.6%) | 48 (61.5%) | 23 (57.5%) |
| Double/triple hit DLBCL | 14 (10.5%) | 9 (11.5%) | 4 (10.0%) |
| Post-transplant lymphoproliferative disorder | 1 (0.8%) | 1 (1.3%) | 0 |
| Plasmablastic lymphoma | 2 (1.5%) | 1 (1.3%) | 0 |
| Primary cutaneous DLBCL, leg type | 1 (0.8%) | 1 (1.3%) | 0 |
| Primary mediastinal large B-cell lymphoma | 4 (3.0%) | 0 | 1 (2.5%) |
| T-cell rich/histiocyte rich large B-cell lymphoma | 1 (0.8%) | 1 (1.3%) | 0 |
| IPI, N(%) | | | |
| 0-2 | 39 (29.3%) | 21 (26.9%) | 10 (25%) |
| ≥3 | 86 (64.7%) | 56 (71.8%) | 25 (62.5%) |
| Unknown | 8 (6.0%) | 1 (1.3%) | 5 (12.5%) |
| Bulky disease (>7.5cm), N(%) | | | |
| Yes | 29 (21.8%) | 22 (28.2%) | 2 (5.0%) |
| No | 73 (54.9%) | 53 (67.9%) | 10 (25.0%) |
| Unknown | 31 (23.3%) | 3 (3.8%) | 28 (70.0%) |
| Cell of origin, N(%) | | | |
| Non-germinatcentre | 40 (30.1%) | 27 (34.6%) | 7 (17.5%) |
| Germinal centre B-cell | 45 (33.8%) | 37 (47.4%) | 4 (10.0%) |
| Unknown | 48 (36.1%) | 14 (17.9%) | 29 (72.5%) |
| Lines of prior therapy, median (range) | | | |
| 1 | 45 (33.8%) | 43 (55.1%) | 1 (2.5%) |
| 2 | 25 (18.8%) | 13 (16.7%) | 25 (62.5%) |
| ≥3 | 34 (25.6%) | 20 (25.6%) | 14 (35.0%) |
| Unknown | 2 (1.5%) | 2 (2.6%) | 0 |
| Duration of response of last treatment, N(%) | | | |
| <12 months | 103 (77.4%) | 53 (67.9%) | 36 (90.0%) |
| >12 months | 23 (17.3%) | 20 (25.6%) | 3 (7.5%) |
| Unknown | 7 (5.3%) | 5 (6.4%) | 1 (2.5%) |
| Refractory to last line of treatment, N(%) | | | |
| Yes | 91 (68.4%) | 45 (57.7%) | 33 (82.5%) |
| No | 42 (31.6%) | 33 (42.3%) | 7 (17.5%) |
Table 1: Patient and disease characteristics and summary of prior treatment and Pola-BR treatment intent. ECOG – Eastern Cooperative Oncology Group Performance Status; IPI – International Prognostic Index; DLBCL – diffuse large B-cell lymphoma; SCT – Stem cell transplant; CAR-T – chimeric antigen receptor T-cell therapy; Auto-SCT – autologous stem cell transplant; Allo-SCT – allogeneic haematopoietic stem cell transplant.

Prior SCT, N(%)			
Yes	6 (4.5%)	0	6 (15.0%)
No	127 (95.5%)	78 (100%)	34 (85.0%)

Prior CAR-T, N(%)			
Yes	16 (12.0%)	6 (7.7%)	0
No	117 (88.0%)	72 (92.3%)	40 (100%)

Treatment intent, N(%)			
Bridge to auto-SCT	5 (3.8%)	0	0
Bridge to CAR-T	40 (30.1%)	0	40 (100%)
Bridge to allo-SCT	8 (6.0%)	0	40 (100%)
Standalone (no planned SCT/CAR-T)	78 (58.6%)	78 (100.0%)	0
Unknown	2 (1.5%)	0	0

Primary reason for SCT ineligibility, N(%)	
Age	43 (55.1%)
Co-morbidities	17 (21.8%)
Failed prior transplantation	1 (1.3%)
Insufficient CD34+ cells collected	1 (1.3%)
Insufficient response to salvage therapy	14 (17.9%)
Performance Status	1 (1.3%)
Unknown	1 (1.3%)
1a: Pola-BR treatment subgroups according to treatment intent

Best response to Pola-BR	All patients (N=133)	Prior CAR-T (N=16)	Bridge to CAR-T (N=40)	>1 prior lines of treatment (N=86)	Refractory to most recent (N=91)	Bulk (N=36)
CR	42 (31.6%)	3 (18.8%)	3 (21.4%)	31 (39.7%)	21 (24.4%)	16 (25.0%)
PR	31 (23.3%)	4 (25.0%)	2 (14.3%)	2 (24.4%)	9 (22.1%)	5 (8.3%)
SD	13 (9.8%)	3 (18.8%)	2 (14.3%)	5 (6.4%)	11 (12.8%)	6 (16.7%)
PD	42 (31.6%)	6 (37.5%)	6 (42.9%)	7 (22.6%)	16 (40.0%)	32 (41.7%)
Missing	5 (3.8%)	0 (0.0%)	1 (7.1%)	1 (3.2%)	2 (2.6%)	3 (5.5%)

1b: Response rates to Pola-BR. *p*-values are from a chi-squared test comparing ORR in the following subgroups: Prior CAR-T vs No prior CAR-T; Double/triple hit vs No double/triple hit; Stand-alone treatment vs all other treatment intention; Bridge to CAR-T vs all other treatment intention; >1 prior lines of treatment vs 1 prior line; Refractory to most recent vs Not refractory to most recent; Bulk vs No bulk. Patients with missing information on a subgroup are excluded from that comparison.

1c: Progression-free survival and overall survival

- **A:** Progression-free survival for all patients
- **B:** Overall survival for all patients
- **C:** Progression-free survival for patients in the ‘stand-alone’ Pola-BR cohort (no planned stem cell transplant or CAR T-cell therapy) according to treatment response. CR=complete response, PR=partial response, HR=hazard ratio, CI=confidence interval.
- **D:** Overall survival for patients in the ‘stand-alone’ Pola-BR cohort (no planned stem cell transplant or CAR T-cell therapy) according to treatment response.