Holomorphic bundles on $\mathcal{O}(-k)$ are algebraic
Elizabeth Gasparim

Abstract

We show that holomorphic bundles on $\mathcal{O}(-k)$ for $k > 0$ are algebraic. We also show holomorphic bundles on $\mathcal{O}(-1)$ are trivial outside the zero section.

1 Preliminaires

The line bundle on \mathbb{P}^1 given by transition function z^k is usually denoted $\mathcal{O}(-k)$. Since we will be studying bundles over this space, we will denote $\mathcal{O}(-k)$ by M_k when we want to view this space as the base of a bundle. We give M_k the following charts $M_k = U \cup V$, for

$$U = \mathbb{C}^2 = \{(z, u)\}$$
$$V = \mathbb{C}^2 = \{ (\xi, v) \}$$
$$U \cap V = (\mathbb{C} - \{0\}) \times \mathbb{C}$$

with change of coordinates

$$(\xi, v) = (z^{-1}, z^k u).$$

Since $H^1(\mathcal{O}(-k), \mathcal{O}) = 0$, using the exponential sheaf sequence it follows that $Pic(\mathcal{O}(-k)) = \mathbb{Z}$, and holomorphic line bundles on M_k are classified by their Chern classes. Therefore it is clear that holomorphic line bundles over M_k are algebraic. We will denote by $\mathcal{O}^l(j)$ the line bundle on M_k given by transition function z^{-j}.

If E is a rank n bundle over M_k, then over the zero section (which is a \mathbb{P}^1) E splits as a sum of line bundles by Grothendieck’s theorem. Denoting the zero section by ℓ it follows that for some integers j_i uniquely determined up to order $E_\ell \simeq \bigoplus_{i=1}^n \mathcal{O}(j_i)$. We will show that such E is an algebraic extension of the line bundles $\mathcal{O}^\ell(j_i)$.
2 Bundles on $\mathcal{O}(-k)$ are algebraic

Lemma 2.1: Holomorphic bundles on M_k are extensions of line bundles.

Proof: We give the proof for rank two for simplicity. The case for rank n is proved by induction on n using similar calculations. Suppose rank $E = 2$ and $E \cong \mathcal{O}(-j_1) \oplus \mathcal{O}(-j_2)$ which we may assume to satisfy $j_1 \geq j_2$. A transition matrix for E from U to V therefore takes the form

$$T = \begin{pmatrix} z^{j_1} + ua & uc \\ ud & z^{j_2} + ub \end{pmatrix}$$

where $a, b, c, \text{ and } d$ are holomorphic functions in $U \cap V$. We will change coordinates to obtain an upper triangular transition matrix

$$\begin{pmatrix} z^{j_1} & uc \\ 0 & z^{j_2} \end{pmatrix},$$

which is equivalent to an extension

$$0 \to \mathcal{O}^l(-j_1) \to E \to \mathcal{O}^l(-j_2) \to 0.$$

Our required change of coordinates will be

$$\begin{pmatrix} 1 & 0 \\ \eta & 1 \end{pmatrix} \begin{pmatrix} z^{j_1} + ua & uc \\ ud & z^{j_2} + ub \end{pmatrix} \begin{pmatrix} 1 & 0 \\ \xi & 1 \end{pmatrix}$$

where ξ is a holomorphic function on U and η is a holomorphic function on V whose values will be determined in the following calculations.

After performing this multiplication, the entry $e(2, 1)$ of the resulting matrix is

$$e(2, 1) = \eta(z^{j_1} + ua) + ud + [\eta uc + (z^{j_2} + ub)] \xi.$$

We will choose ξ and η to make $e(2, 1) = 0$. We write the power series expansions for ξ and η as $\xi = \sum_{i=0}^{\infty} \xi_i(z) u^i$ and $\eta = \sum_{i=0}^{\infty} \eta_i(z^{-1}) (z^k u)^i$, and plug into the expression for $e(2, 1)$. The term independent of u in $e(2, 1)$ is

$$\eta_0(z^{-1}) z^{j_1} + \xi_0(z) z^{j_2}.$$

Since $j_2 - j_1 \leq 0$ we may choose $\eta(z^{-1}) = z^{j_2 - j_1}$ and $\xi(z) = 1$. After these choices $e(2, 1)$ is now a multiple of u. Suppose that the coefficients of η and
\[\xi \] have been chosen up to power \(u^{n-1} \) so that \(e(2, 1) \) becomes a multiple of \(u^n \). Then the coefficient of \(u^n \) in the expression for \(e(2, 1) \) is

\[\eta_n z^{j_1+kn} + \xi_n z^{j_2} + \Phi \]

where

\[\Phi = \sum_{s+i=n} \eta_s a_i d_n z^{sk} + \sum_{s+i+m=n} \eta_s c_i \xi_m z^{sk} \sum_{m+i=n} \xi_m b_i. \]

We separate \(\Phi \) into two parts

\[\Phi = \Phi_{>j_2} + \Phi_{\leq j_2} \]

where \(\Phi_{>j_2} \) is the part of \(\Phi \) containing the powers \(z^i \) for \(i > j_2 \) and \(\Phi_{\leq j_2} \) is the part of \(\Phi \) containing powers \(z^i \) for \(i \leq j_2 \). We then choose the values of \(\eta_n \) and \(\xi_n \) as

\[\eta_n = z^{-j_1-nk} \Phi_{\leq j_2} \]

and

\[\xi_n = z^{-j_2} \Phi_{>j_2}. \]

These choices cancel the coefficient of \(u^n \) in \(e(2, 1) \). Induction on \(n \) gives \(e(2, 1) = 0 \) And provides a transition matrix of the form

\[T = \begin{pmatrix} z^{j_1} + ua & uc \\ 0 & z^{j_2} + ub \end{pmatrix}. \]

Now do a similar trick using the change of coordinates

\[\begin{pmatrix} \eta_1 & 0 \\ 0 & \eta_2 \end{pmatrix} \begin{pmatrix} z^{j_1} + ua & uc \\ 0 & z^{j_2} + ub \end{pmatrix} \begin{pmatrix} \xi_1 & 0 \\ 0 & \xi_2 \end{pmatrix} \]

and choose \(\xi_1, \xi_2, \eta_1 \) and \(\eta_2 \) appropriately to obtain a transition matrix of the form

\[T = \begin{pmatrix} z^{j_1} & uc \\ 0 & z^{j_2} \end{pmatrix}. \]

\[\blacksquare \]

Theorem 2.2 : Holomorphic bundles over \(M_k, k > 0 \) are algebraic.
Proof: Let E be a holomorphic bundle over M_k whose restriction to the exceptional divisor is $E_t \simeq \oplus_{i=1}^n \mathcal{O}(j_i)$, then E has a transition matrix of the form

\[
\begin{pmatrix}
 z^{j_1} & p_{12} & p_{13} & \cdots \\
 0 & z^{j_2} & p_{23} & p_{24} & \cdots \\
 \vdots & \vdots & & \ddots & \ddots \\
 0 & \cdots & 0 & z^{j_{n-1}} & p_{n-1,n} \\
 0 & \cdots & 0 & 0 & z^{j_n}
\end{pmatrix}
\]

from U to V, where p_{ij} are polynomials defined on $U \cap V$.

Once again we will give the detailed proof for the case $n = 2$. The general proof is by induction on n and is essentially the same as for $n = 2$ only notationally uglier.

For the case $n = 2$ we restate the theorem giving the specific form of the polynomial.

Theorem 2.3 : Let E be a holomorphic rank two vector bundle on M_k whose restriction to the exceptional divisor is $E_t \simeq \mathcal{O}(j_1) \oplus \mathcal{O}(j_2)$, with $j_1 \geq j_2$. Then E has a transition matrix of the form

\[
\begin{pmatrix}
 z^{j_1} & p \\
 0 & z^{j_2}
\end{pmatrix}
\]

from U to V, where the polynomial p is given by

\[
p = \sum_{i=1}^{\lfloor (j_1-j_2-2)/k \rfloor} \sum_{l=ki+j_2+1}^{j_1-1} p_{il} z^l u^i
\]

and $p = 0$ if $j_1 < j_2 + 2$.

Proof: Based on the proof of Theorem 2.1 we know that E has a transition matrix of the form

\[
\begin{pmatrix}
 z^{j_1} & uc \\
 0 & z^{j_2}
\end{pmatrix}
\]

We are left with obtaining the form of the polynomial p, for which we perform another set of coordinate changes as follows.

\[
\begin{pmatrix}
 1 & \eta \\
 0 & 1
\end{pmatrix}
\begin{pmatrix}
 z^{j_1} & uc \\
 0 & z^{j_2}
\end{pmatrix}
\begin{pmatrix}
 1 & \xi \\
 0 & 1
\end{pmatrix}
\]
where the coefficients of $\xi = \sum_{i=0}^{\infty} \xi_i(z) u^i$ and $\eta = \sum_{i=0}^{\infty} \eta_i(z^{-1}) (z^k u)^i$, will be chosen appropriately in the following steps. After performing this multiplication, the entry $e(1, 2)$ of the resulting matrix is

$$e(1, 2) = z^{j_1} \xi + uc + z^{j_2} \eta.$$

The term independent of u in the expression for $e(1, 2)$ is $z^{j_1} \xi_0(z) + z^{j_2} \eta_0(z^{-1})$. However, we know from the expression for our matrix T (proof of lemma 2.1), that $e(1, 2)$ must be a multiple of u; accordingly we choose $\xi_0(z) = \eta_0(z^{-1}) = 0$. Placing this information into the above equation, we obtain

$$e(1, 2) = \sum_{n=1}^{\infty} (\xi_n(z) z^{j_1} + c_n(z, z^{-1}) + \eta_n(z^{-1}) z^{j_2+kn}) u^n.$$

Proceeding as we did in the proof of Lemma 2.1, we choose values of ξ_n and η_n to cancel as many coefficients of z and z^{-1} as possible. However, here ξ_n appears multiplied by z^{j_1} (and η_n multiplied by z^{j_2+kn}), therefore the optimal choice of coefficients cancels only powers of z^i with $i \geq j_1$ (resp. z^i with $i \leq j_2 + kn$). Consequently, $e(1, 2)$ is left only with terms in z^l for $j_2 + nk < l < j_1$, and we have the expression

$$e(1, 2) = \sum_{i=1}^{j_1-1} \sum_{l=nk+j_2+1}^{j_1-1} c_{il} z^l u^i.$$

But i may only vary up to the point where $nk + j_2 + 1 \leq j_1 - 1$ and the polynomial p is given by

$$p = \sum_{i=1}^{\left\lfloor (j_1-j_2-2)/k \right\rfloor} \sum_{l=ik+j_2+1}^{j_1-1} p_{il} z^l u^i.$$

3 Triviality outside the zero section

From the previous section we know that bundles on M_k are extensions of line bundles. First we have the following lemma.

Lemma 3.1: Line bundles on M_k are trivial outside the zero section.
Proof: A line bundle on M_k can be given by a transition function z^j for some integer j. Then the function given by $z^{k-j}u$ on U and z^ku on V is a global holomorphic section which trivializes the bundle outside the zero section.

We now show that the extensions given in Section 2 are trivial outside the zero section.

Theorem 3.2 Holomorphic vector bundles on $\mathcal{O}(-1)$ are trivial outside the zero section.

Proof: Let E be a holomorphic bundle on $\mathcal{O}(-1)$. According to the previous section we know that E is algebraic. Call F the restriction of E to the complement of the zero section, i.e. $F = E|_{\mathcal{O}(-1)}$. Let $\pi: \mathcal{O}(-1) \to \mathbb{C}^2$ be the blow up map. Then $\pi_*(F)$ is an algebraic bundle over $\mathbb{C}^2 - 0$ and therefore it extends to a coherent sheaf \mathcal{F} over \mathbb{C}^2. Then \mathcal{F}^{**} is a reflexive sheaf and as such has singularity set of codimension 3 or more, hence in this case \mathcal{F}^{**} is locally free. Moreover, as a bundle on \mathbb{C}^2 it must be holomorphically trivial. But \mathcal{F}^{**} restricts to $\pi_*(F)$ on $\mathbb{C}^2 - 0$, hence $\pi_*(F)$ is trivial and so is F.

Corollary 3.3 Holomorphic bundles on the blow up of a surface are trivial on a neighborhood of the exceptional divisor minus the exceptional divisor.

Proof: Apply Theorem 3.2 to $\tilde{\mathbb{C}}^2 = \mathcal{O}(-1)$.

References

[1] Gasparim, E. Ph.D. thesis. *University of New Mexico* (1995)

[2] Hartshorne, R. *Algebraic Geometry*. Graduate Texts in Mathematics 56, *Springer Verlag* (1977)

[3] Hurtubise, J. *Instantons and Jumping Lines*. Commun. Math. Phys. 105,107-122(1986)

Elizabeth Gasparim
International Centre for Theoretical Physics
