Prognosis of Pregnancy-associated Breast Cancer: A Meta-analysis

Chunchun SHAO
Second hospital of Shandong University

Zhi gang YU
Second hospital of Shandong University

Juan XIAO
Second hospital of Shandong University

Li yuan LIU
Second hospital of Shandong University

Fan zhen HONG
Second Hospital of Shandong University

Yuan ZHANG (✉ ebmzhangyuan@yeah.net)
https://orcid.org/0000-0003-0527-6017

Hong ying JIA
Second hospital of Shandong University

Research article

Keywords: Pregnancy-associated breast cancer; Prognosis; Survival; Dose-response; Meta-analysis

DOI: https://doi.org/10.21203/rs.2.17528/v3

License: ☋ This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License
Abstract

Background Pregnancy-associated breast cancer (PABC) is defined as breast cancer that is diagnosed during pregnancy and/or the postpartum period. Definitions of the duration of the postpartum period have been controversial, and this variability may lead to diverse results regarding prognosis. Moreover, evidence on the dose-response association between the time from the last pregnancy to breast cancer diagnosis and overall mortality has not been synthesized.

Methods We systematically searched PubMed, Embase, and the Cochrane Library for observational studies on the prognosis of PABC published up to June 1, 2019. We estimated summary-adjusted hazard ratios (HRs) and the corresponding 95% confidence intervals (CIs). Subgroup analyses based on diagnosis time, PABC definition, geographic region, year of publication and estimation procedure for HR were performed. Additionally, dose-response analysis was conducted by using the variance weighted least-squares regression (VWLS) trend estimation.

Results A total of 54 articles (76 studies) were included in our study. PABC was associated with poor prognosis for overall survival (OS), disease-free survival (DFS) and cause-specific survival (CSS), and the pooled HRs with 95% CIs were 1.45 (1.30-1.63), 1.39 (1.25-1.54) and 1.40 (1.17-1.68), respectively. The corresponding reference category was non-PABC patients. According to subgroup analyses, the varied definition of PABC led to diverse results. The dose-response analysis indicated a nonlinear association between the time from the last delivery to breast cancer diagnosis and the HR of overall mortality (P<0.001). Compared to nulliparous women, the mortality was almost 60% higher in women with PABC diagnosed at 12 months after the last delivery (HR=1.59, 95% CI 1.30-1.82), and the mortality was not significantly different at 70 months after the last delivery (HR=1.14, 95% CI 0.99-1.25). This finding suggests that the definition of PABC should be extended to include patients diagnosed up to approximately six years postpartum (70 months after the last delivery) to capture the increased risk.

Conclusion This meta-analysis suggests that PABC is associated with poor prognosis, and the definition of PABC should be extended to include patients diagnosed up to approximately six years postpartum.

1. **Background**

Breast cancer is the second most common cancer worldwide and the most commonly occurring malignancy in women [1]. Due to the trend of delayed delivery, the number of women with breast cancer during a pregnancy or in the subsequent few years after a pregnancy is expected to increase [2]. Breast cancer occurring during pregnancy is a challenging clinical situation since the welfare of both the mother and the foetus must be considered in any treatment plan. Conventionally, pregnancy-associated breast cancer (PABC) is defined as breast cancer that is diagnosed during pregnancy or the postpartum period. Definitions of how many years after delivery breast cancer can be diagnosed under this definition have ranged from 0.5 to 5 years, and sometimes even longer [3, 4]. PABC is viewed as a clinically and biologically special type of breast cancer and only comprises 0.2-0.4% of all breast cancers [5, 6]. However, it is the most common cancer in pregnancy and is diagnosed in approximately 15 to 35 per 100,000 births, and the number of breast cancer cases diagnosed during pregnancy is less than after delivery [7-10].

Pregnancy itself may temporarily increase the risk of developing breast cancer, although it has a long-term protective effect on the development of breast cancer [11, 12]. However, whether PABC has a worse prognosis is currently controversial. A meta-analysis published in 2016 showed that the risk of death increased in women with PABC compared with women with non-PABC (pooled hazard ratio (HR), 1.57; 95% confidence interval (CI), 1.35-1.82) [13]. However, other recent studies found no significant difference in the prognosis of PABC and non-PABC [14-17]. Meanwhile, the specific definition of PABC has varied and this variability may lead to diverse results on the relationship among pregnancy, postpartum and breast cancer. Therefore, it is necessary to specify the definition of PABC by summarizing epidemiological evidence. This study was initiated to understand the prognosis of PABC and examine the dose-response relationship to provide quantitative evidence for defining PABC.

2. **Methods**

2.1 **Search Strategy**

This meta-analysis was performed in accordance with the preferred reporting items for systematic reviews and meta-analyses (PRISMA) guidelines. We did our best to include studies published to date regarding the prognosis of PABC. Eligible studies were found by searching PubMed, Embase, and the Cochrane Library for relevant reports published before June 1, 2019. The keywords used for the search were (“pregnancy” OR “gestation” OR “childbirth” OR “postpartum” OR “parity”) AND “breast” AND (“cancer” OR “neoplasia” OR “carcinoma”). The references lists of all retrieved articles and previous systematic reviews were manually searched.

2.2 **Inclusion and Exclusion Criteria**

All eligible studies met the following criteria: (1) observational prognostic studies with a follow-up period longer than 6 months; (2) participants were diagnosed with breast cancer by clinical diagnosis and/or histologically; (3) the case group was diagnosed with PABC, and the control group was non-PABC or nulliparity; (4) the outcomes were in terms of overall survival (OS), disease-free survival (DFS) or cause-specific survival (CSS); and (5) the risk point estimate was reported as an HR with 95% CI, or the data were presented such that an HR with 95% CI could be calculated. The exclusion criteria were as follows: (1) duplicated or irrelevant articles; (2) reviews, letters, and case reports; (3) non-human studies; and (4) studies with inappropriate data for meta-analysis, such as incomplete or inconsistent data.

2.3 **Data Extraction**
Two reviewers extracted the data independently using a predefined data extraction form. Any disagreements were resolved by discussion. The extracted data included the first author, publication year, country, PABC definition, control definition, sample size, cancer type, stage or grade, age, matching criteria, adjusted variables, and adjusted HRs with 95% CIs.

2.4 Assessment of Study Quality

The methodological quality of the studies was assessed by the Newcastle-Ottawa scale (NOS) [18]. A score of 0-9 was allocated to each study, with higher scores indicating higher quality.

2.5 Meta-analysis and Statistical Analysis

We used adjusted HRs and 95% CIs, which are most appropriate for time-to-data events. If HRs were not reported, we estimated HRs from the raw data or Kaplan-Meier curves [19]. The I-square (I^2) test was performed to assess the impact of study heterogeneity on the results of the meta-analysis. If severe heterogeneity was present at $I^2 > 50\%$, a random effects model was chosen; otherwise, a fixed effects model was used. Visual inspection of the funnel plot and Egger's and Begg's tests were performed to assess publication bias. Subgroup analyses were performed according to the diagnosis time, PABC definition, geographic region, year of publication and estimation procedure for HR.

Variance-weighted least squares regression (VWLS) model was used to evaluate the dose-response association between the time from the last pregnancy to breast cancer diagnosis and HR of overall mortality. [20]. Restricted cubic splines were used to check the time from the last pregnancy as a continuous, nonlinear exposure, and the time was defined by the 5th, 35th, 65th and 95th percentiles of the distribution [21]. The time from the last pregnancy to breast cancer diagnosis reported in each study was converted to months. We used the average value of the lower and upper limits of each category. If the lowest category was open ended, the average value of the upper limit and 0 was used. If the highest category was open ended, the average value was defined as 1.5 times the lower limit. All statistical analyses were performed using STATA Version 13.0. $P<0.05$ was considered significant.

3. Results

3.1. Search Results and Study Characteristics

We initially identified 12414 articles and screened their titles and abstracts (Figure 1). After duplicated and irrelevant articles were excluded, 54 articles with 76 studies met the inclusion criteria and were thus included in our meta-analysis. The quality of the studies was assessed based on the NOS and ranged from 6 to 9 (mean of 7.2). The characteristics of the studies are summarized in Table 1.

| Table 1 | Characteristics of the studies included in the meta-analysis |
Study ID	Country	No. of PABC cases	No. of controls	PABC definition	Cancer stage or grade	Mean/modian age of PABC follow-up years	Outcomes measured	HR estimate	95% CI	matching criteria		
Mausner, 1969 [22]	USA	73	647	Pregnancy & <6 months postpartum	Stage 4	35	OS	indirect	1.36	1.07-1.73	7	-
Wallgren, 1977[23]	Sweden	15	58	Pregnancy & <12 months postpartum	Stage 1-3	<30	OS	indirect	1.35	0.71-2.58	7	-
Nague, 1988 [24]	USA	19	155	Pregnancy	Stage 3	32	OS	indirect	0.96	0.55-1.77	7	-
Trevi, 1988-Postpartum [25]	Norway	20	40	Pregnancy	Stage 3	33	OS	indirect	2.41	1.32-4.37	7	-
Trevi, 1988-Postpartum [25]	Norway	15	40	Unspecified	Stage 3	36	OS	indirect	1.47	0.66-3.27	7	-
Greene, 1989[26]	USA	8	36	Pregnancy	NA	<35	OS	indirect	1.50	0.18-12.62	7	-
Petrek, 1991[27]	USA	56	166	Pregnancy & <12 months postpartum (unspecified)	Stage 0-3	33	CSS	indirect	1.25	0.93-1.69	7	-
Zemlickis, 1992[28]	Canada	102	269	Pregnancy & <12 months postpartum	Stage 4	32	OS	indirect	2.00	1.27-3.46	7	-
Ishida, 1992 [29]	Japan	192	191	Pregnancy & <24 months postpartum	Stage 0-3	32	OS	indirect	1.28	1.24-6.45	7	-
Guine, 1994-Pregnancy[30]	USA	26	139	Pregnancy	NA	28(20-29)	OS	paper	1.28	1.08-1.52	7	-
Guine, 1994-Pregnancy[30]	USA	40	139	<12 Months postpartum	Stage 1-3	28(20-29)	OS	paper	1.18	0.88-1.59	7	-
Von Schoultz, 1995 [31]	Sweden	173	1740	Pregnancy & <60 months postpartum	Stage 0-3	<50	DFS	paper	1.02	0.72-1.43	7	-
Ezzat, 1996-OS[32]	Saudi Arabia	28	84	Pregnancy & <6 months postpartum	Stage 0-3	20-45	OS	indirect	0.90	0.6-1.3	7	-
Ezzat, 1996-DFS[32]	Saudi Arabia	28	84	Pregnancy	Stage 0-3	20-45	DFS	paper	1.10	0.8-1.5	7	-
Anderson, 1996-OS[33]	USA	22	205	Pregnancy & <12 months postpartum	Stage 0-3	<30	OS	paper	1.24	0.78-2.00	8	-
Anderson, 1996-DFS[33]	USA	22	205	Pregnancy & <12 months postpartum	Stage 0-3	<30	DFS	paper	2.04	1.28-3.40	8	-
Bonnier, 1997-OS[34]	France	154	308	Pregnancy & <6 months postpartum	Stage 3	33.9(23.2-46.4)	OS	indirect	0.46	0.72-2.96	7	-
Bonnier, 1997-DFS[34]	France	154	308	Pregnancy & <6 months postpartum	Grade 3	5	DFS	paper	1.48	1.00-2.20	7	-
Olson, 1998[35]	USA	146	-	-	NA	<45	OS	paper	-	-	7	-
Reeves, 2000[36]	UK	-	-	-	Stage 0-3	<60	OS	paper	-	-	7	-
Ibrahim, 2000[37]	Saudi Arabia	72	216	Pregnancy	Stage 0-3	34	OS	indirect	0.94	0.62-1.44	7	-
Daling, 2002[38]	USA	83	309	<24 Months postpartum	Stage 0-3	<45	OS	indirect	2.30	1.4-3.9	7	-
Aziz, 2003[39]	Pakistan	24	48	Pregnancy & <12 months postpartum	Stage 4	32(20-45)	OS	indirect	1.67	0.82-3.41	7	-
Siegelmann-Daniel, 2003-OS[40]	Israel	22	192	Pregnancy & <12 months postpartum	Stage 0-3	33(25-27)	OS	indirect	3.39	2.54-19.81	7	-
Siegelmann-Daniel, 2003-DFS[40]	Israel	20	181	Pregnancy & <12 months postpartum	Stage 0-3	33(25-27)	DFS	indirect	4.81	1.46-15.9	7	-
Bladstrom, 2003[41]	Sweden	94	14599	Pregnancy	≤45	5	OS	paper	2.40	2.0-2.9	7	-
Bladstrom, 2003[20-41]	Sweden	94	14599	Pregnancy	≤45	10	OS	paper	1.20	0.9-1.7	7	-
White, 2004[42]	USA	59	355	<12 Months postpartum	Stage 0-3	20-45	OS	paper	1.51	1.02-2.33	7	-
Rodriguez, 2008[43]	USA	797	4177	Pregnancy & <12 months postpartum	Stage 0-3	<55	OS	paper	1.14	1.00-1.29	7	-
Stensheim, 2001-Pregnancy[44]	Norway	59	13106	Pregnancy	NA	<50	CSS	paper	1.23	0.82-1.81	7	-
Stensheim, 2001-Pregnancy[44]	Norway	46	13106	<6 Months postpartum	NA	<50	CSS	paper	1.95	1.36-2.78	7	-
Beadle, 2009-DFS[45]	USA	104	564	Pregnancy & <12 months postpartum	Stage 3	≤35	OS	indirect	1.35	0.90-1.95	7	-
Beadle, 2009-DFS (distant metastasis) [45]	USA	104	564	Pregnancy & <12 months postpartum	Stage 3	≤35	DFS	indirect	1.35	0.90-1.95	7	-
Beadle, 2009-DFS (locoregional recurrence) [45]	USA	104	564	Pregnancy & <12 months postpartum	Stage 3	≤35	DFS	indirect	1.44	0.78-2.66	7	-
Ali, 2012-OS[46]	Greece 32 32	Pregnancy & <12 months postpartum	Grade	<45	10	OS	indirect	1.42	0.58-3.48	6	Age at diagnosis, tumour size, axillary lymph node status, presence or absence of metastatic deposits	
Largillier, 2009-OR[47]	France 105 788	Pregnancy & <12 months postpartum	Grade	<35	10	OS	paper	1.51	1.05-2.20	7		
Phillips, 2009[48]	Multicentre 676 -	Pregnancy	Grade	NA	-	10	OS	paper	-	-	8	Study, education time, full-term pregnancy diagnosis
Moreira, 2010[49]	Brazil 87 252	Pregnancy & <12 months postpartum	NA	≤ 45	10	OS	paper	1.52	1.10-2.10	7	Registration institution, age, registration year	
Johansson, 2013[50]	Sweden 1110 14611	Pregnancy & <24 months postpartum	NA	15-44	15	OS	paper	1.51	1.36-1.68	7		
Murphy, 2012[51]	USA 99 186	Pregnancy & <12 months postpartum	Grade	35(24-48)	18	OS	paper	0.59	0.29-1.17	7	Age, year of diagnosis	
Azim, 2012-OS[52]	Italy 65 130	Pregnancy	NA	<50	6	OS	paper	1.70	0.80-3.90	7	Age, year of surgery, pathological tumour size, pathological nodal status	
Azim, 2012-DFS[52]	Italy 65 130	Pregnancy	NA	<50	6	DFS	paper	2.30	1.30-4.20	7		
Ali, 2012-OS[53]	USA 40 40	Pregnancy & <12 months postpartum	Stage	33(24-42)	16	OS	indirect	2.15	1.13-4.09	7		
Ali, 2012-DFS[53]	USA 40 40	Pregnancy & <12 months postpartum	Stage	33(24-42)	16	DFS	indirect	2.00	1.12-3.59	7		
Amant, 2013-OS[54]	Belgium 311 865	Pregnancy	Grade	33(31-36)	5	OS	paper	1.19	0.75-1.93	8		
Amant, 2013-DFS[54]	Belgium 311 865	Pregnancy	Grade	33(31-36)	5	DFS	paper	1.34	0.93-1.91	8		
Litton, 2013-OS[55]	USA 75 150	Pregnancy	Stage	24-45	5	OS	paper	1.87	1.04-3.36	7		
Litton, 2013-DFS[55]	USA 75 150	Pregnancy	Stage	24-45	5	DFS	paper	2.09	1.19-3.67	7		
Valentini, 2013[56]	USA 75 269	Pregnancy & <12 months postpartum	NA	32.5(20-45)	15	OS	paper	0.79	0.25-2.44	7		
Dimitrakakis, 2013[57]	Greece 39 39	Pregnancy & <12 months postpartum	Stage	34.3 ± 5.0	5	OS	paper	9.28	2.94-29.27	6	Stage, age, year of diagnosis	
Caltiha, 2013-OS[58]	USA 76 86	Pregnancy & <60 months postpartum	Grade	≤45	5	OS	paper	2.65	1.09-6.42	6	Tu biol subtype stage dia	
Caltiha, 2013-DFS[58]	USA 74 84	Pregnancy & <60 months postpartum	Grade	≤45	5	DFS	paper	2.80	1.12-6.57	6	Tu biol subtype stage diagn rec	
Bell, 2013-OS[59]	Australia 13 377	Pregnancy & <12 months postpartum	NA	<48	5	OS	paper	2.50	0.5-11.7	6		
Bell, 2013-DFS[59]	Australia 13 377	Pregnancy & <12 months postpartum	NA	<48	5	DFS	paper	0.90	0.2-4.4	6		
Moller, 2013[60]	UK - -	Pregnancy & <12 months postpartum	Grade	10-54	10	OS	paper	-	-	7	Age	
Framarino-dei-Malesta, 2014[61]	Italy 22 45	Pregnancy	NA	37.2±3.2	10	OS	indirect	0.96	0.29-3.21	6	Age	
Madamis, 2014[62]	Hungary 31 31	Pregnancy & <12 months postpartum	-	34	10	OS	indirect	5.76	2.09-15.98	7	Age, year of first breast cancer diagnosis	
Nagatsuma, 2014[63]	Japan - -	Pregnancy & <60 months postpartum	Grade	≤45	5	DFS	paper	1.62	1.04-2.54	8		
Strasser-Weipler, 2014[64]	China 109 1274	Pregnancy & <60 months postpartum	Grade	≤45	5	DFS	paper	1.62	1.04-2.54	8	Age, receipto progest receptor status, stage	

Page 5/15
3.2 Overall survival (OS)

Forty-five studies comprising 6602 PABC patients and a total of 157657 individuals were identified for the meta-analysis of OS. There was an overall increased risk of death for PABC patients compared to controls, with a pooled hazard ratio of 1.45 (95% CI 1.30-1.63). There was significant heterogeneity ($I^2 = 64.9$, $P=0.001$). The subgroup analysis according to different follow-up durations (4 years, 5 years, 6 years, 7 years, 10 years and >10 years) had similar results to the overall analysis (Figure 2). However, the 6-year and 7-year OS, with few studies, showed nonsignificant results.

3.3 Disease-free survival (DFS)

Twenty studies comprising 1786 PABC patients and a total of 9762 individuals were identified for the meta-analysis of DFS. The overall HR was 1.39 (95% CI, 1.25-1.54). There was no significant heterogeneity ($I^2 = 24.5$, $P=0.146$). The subgroup analysis according to different follow-up durations (5 years, 6 years, 10 years and >10 years) had similar results as the overall analysis (Figure 3). However, the 7-year DFS, with only 2 studies, showed nonsignificant results.

3.4 Cause-specific survival (CSS)

Only 6 studies provided information on CSS with 296 PABC patients and a total of 29598 individuals. The overall HR was 1.40 (95% CI, 1.17-1.68). There was no significant heterogeneity ($I^2 = 53.1$, $P=0.074$). The subgroup analysis (5-year CSS) had similar results as the overall analysis (Figure 4).

3.5 Subgroup analyses
Several factors that may have induced differences in outcomes were investigated with subgroup analyses, including diagnosis time, PABC definition, geographic region, year of publication and estimation procedure for HR. The results consistently showed worse prognoses in women with PABC than in those with non-PABC, except for the subgroup based on PABC definition and year of publication (Table 2). It is worth noticing that the specific definition has varied and this variability led to diverse results. Studies published during the years 2000-2010 and 2011-2019 had a clear trend of poor prognoses, which was less apparent in those published before 2000. The pooled HR of DFS based on studies published before 2000 was 1.27 (95% CI, 0.97-1.72).

Table 2 Subgroup analyses

Subgroups	No. of Articles (No. of Studies)	HR (95% CI)	Heterogeneity Test	
			I² (%)	P-value
All studies included	54 (76)	-	-	-
Diagnosed time				
During pregnancy	OS 13 (14)	1.46 (1.12-1.90)	73.6	<0.001
	DFS 7 (7)	1.32 (1.11-1.53)	26.3	0.228
During postpartum period	OS 13 (13)	1.97 (1.67-2.33)	49.0	0.023
	DFS 2 (2)	1.86 (1.17-2.93)	0.0	0.740
PABC definition				
Pregnancy & < 6 months postpartum	OS 2 (2)	1.37 (1.09-1.72)	0.0	0.852
	DFS 8 (9)	1.52 (1.27-1.81)	17.4	0.288
Pregnancy & < 12 months postpartum	OS 20 (20)	1.44 (1.20-1.72)	60.7	<0.001
	DFS 2 (2)	1.30 (1.11-1.53)	26.3	0.228
Pregnancy & < 24 months postpartum	OS 3 (3)	1.42 (1.01-2.01)	67.4	0.047
	DFS 5 (6)	1.68 (1.35-2.08)	53.2	0.005
Geographic region				
Europe	OS 15 (17)	1.53 (1.26-1.86)	71.1	<0.001
	DFS 9 (9)	1.32 (1.15-1.52)	8.7	0.363
North America	OS 16 (17)	1.38 (1.17-1.63)	53.2	0.005
Asia	OS 9 (9)	1.42 (1.02-1.85)	60.0	0.010
Others	OS 2 (2)	1.55 (1.23-2.13)	0.0	0.544
Year of publication				
Before 2000	OS 11 (13)	1.46 (1.18-1.82)	45.4	0.038
	DFS 3 (3)	1.27 (0.97-1.62)	50.7	0.107
2000-2010	OS 11 (12)	1.48 (1.19-1.85)	79.0	<0.001
	DFS 4 (5)	1.40 (1.14-1.71)	20.5	0.284
2011-2019	OS 20 (20)	1.43 (1.20-1.72)	62.7	<0.001
HR estimate				
Paper report	OS 24 (25)	1.42 (1.22-1.65)	73.1	<0.001
	DFS 12 (12)	1.35 (1.19-1.53)	29.1	0.160
Indirect	OS 19 (20)	1.43 (1.28-1.60)	47.4	0.010
	DFS 7 (9)	1.48 (1.22-1.79)	24.7	0.232

3.6 Dose-response association between the time from the last pregnancy to breast cancer diagnosis and HR of overall mortality

As the meta-analysis included studies reporting the HRs with their 95% CIs of overall mortality relating to three or more categories of time since the last pregnancy, all the studies were eligible to be included in the dose-response analysis. A total of ten studies were included in the dose-response meta-analysis, and nulliparous women were taken as the corresponding reference category (Table 3). The analysis of departure from linearity indeed indicated a nonlinear association between the time from the last delivery to breast cancer diagnosis and the hazard ratio of PABC overall mortality (P<0.001). The nonlinear spline showed a decreasing trend. Compared to nulliparous women, the mortality was almost 60% higher in women with PABC diagnosed at 12 months after the last delivery (HR=1.59, 95% CI 1.30-1.82), and the mortality was not significantly different at 70 months after the last delivery (HR=1.14, 95% CI 0.99-1.25) (Figure 5). These results showed a higher risk of death than that in nulliparous patients, suggesting that the definition of PABC should be extended to include patients diagnosed up to approximately 6 years postpartum (70 months since the last delivery) to capture the increased risk.

Table 3 Characteristics of the studies included in the dose-analysis meta-analysis
We reviewed and meta-analyzed the existing scientific literature on the prognosis of PABC to draw a powerful conclusion that PABC is associated with a poor prognosis. Our results are consistent with those of the previous meta-analysis conducted in 2016[13]. However, the negative effect on OS and DFS appears to be less pronounced in our study overall than in the previous meta-analysis. This is the largest and latest meta-analysis in this field. It included a larger number of participants, thus reducing the small-study effect to a great degree. The studies included in our meta-analysis were of relatively high quality. The mean participants included in our meta-analysis were of relatively high quality. The mean

There are two explanations that may account for the results. On the one hand, mammary gland involution following pregnancy has been suggested to explain the poor prognosis [71]. Breast degeneration is the process of tissue remodelling, until wound healing, inflammatory bowel disease and immune infiltration reach a state indistinguishable from the non-productive breast [72, 73], which supposedly promotes tumour progression. On the other hand, pregnancy and breastfeeding lead to less timely detection and clinical examination. The delayed diagnosis allows more time for tumour growth, increasing the metastatic potential of the disease [52, 74]. Pregnancy also makes the treatment strategy more conservative to ensure the safety of the foetus [10, 75]. However, the exact reasons for the poor prognosis of PABC need to be explored in the future.

To the best of our knowledge, this is the first dose-response meta-analysis providing comprehensive insights into the association between the time from the last pregnancy to breast cancer diagnosis and the overall mortality of PABC. The scientific value of dose-response meta-analyses is higher than meta-analyses with exposure classified as two categories [20, 76]. Through the variance weighted least-squares regression with a random effects model, we found a nonlinear direct association between the time from the last pregnancy to breast cancer diagnosis and overall mortality. Compared with nulliparous women, the mortality was almost 60% higher in women with PABC diagnosed at 12 months after the last delivery, and the mortality had no significant difference at 70 months after the last delivery. We propose that the definition of PABC should include patients diagnosed up to at least 6 years postpartum to better delineate the increased risk imparted by a postpartum diagnosis. These findings also provide valuable insights into further research. Callihan's cohort demonstrated that breast cancer patients diagnosed within 5 years postpartum have a significantly higher risk of metastasis and mortality than nulliparous patients[58]. Compared to that cohort, our dose-response meta-analysis provides a higher quality of evidence to expand the definition of PABC. Understanding the differences between breast cancers diagnosed during different times postpartum would better permit the translation of informative data from basic science and epidemiologic studies into the clinical care and treatment of breast cancer in young women.

3.7 Publication Bias

As shown in Figure 6, each point represents an independent study of the indicated association, and a visual inspection of the funnel plot did not suggest evidence of publication bias among the articles (Egger's test, \(P=0.451\); Begg's test, \(P=0.077\)).

4. Discussion

Study ID	Time point of breast cancer diagnosis	Time after last delivery (months)	No. of participants	Adjusted HR*	95% CI
Gaines, 1994[30]	Postpartum 1-12 m	1-12	40	1.88	0.88-3.98
	Postpartum 13-48 m	13-48	51	1.09	0.54-2.19
	Postpartum ≥49 m	≥49	35	0.54	0.19-1.55
Olsson, 1998[35]	Postpartum <24 m	0-24	42	3.1	1.8-5.4
	Postpartum ≥24 m	≥24	352	1.3	0.9-2.0
Leeves, 2000[36]	Postpartum <60 m	0-60	67	1.56	1.01-2.42
	Postpartum 60-108 m	60-108	80	0.88	0.58-1.32
	Postpartum >120 m	>120	525	0.99	0.77-1.27
Xaling, 2002[38]	Postpartum <24 m	0-24	83	2.3	1.5-3.4
	Postpartum 24-60 m	24-60	120	1.5	1.0-2.1
	Postpartum >60 m	≥60	661	1.2	0.9-1.6
Siteman, 2004[42]	Postpartum ≤12 m	0-12	59	1.51	1.02-2.23
	Postpartum 13-48 m	13-48	213	1.25	0.95-1.64
	Postpartum >48 m	>48	1470	1.06	0.86-1.31
Hillips, 2009[48]	Postpartum <24 m	0-24	133	2.75	1.98-3.83
	Postpartum 24-60 m	24-60	231	2.2	1.65-2.94
	Postpartum ≥72 m	≥72	2867	0.98	0.79-1.22
Calilha, 2013[58]	Postpartum <60 m	0-60	86	2.65	1.09-6.42
	Postpartum ≥60 m	≥60	172	1.52	0.71-3.28
Gatsuwa, 2014[63]	Postpartum ≤24 m	0-24	37	2.19	1.05-4.56
	Postpartum 36-60 m	36-60	59	1.49	0.79-2.83
	Postpartum >60 m	>60	181	0.81	0.46-1.43
Hansson, 2018[2]	Postpartum 0-6 m	0-6	41	1.16	0.64-2.14
	Postpartum 6-12 m	6-12	84	1.3	0.83-2.03
	Postpartum 12-24 m	12-24	194	1.01	0.70-1.46
	Postpartum 24-60 m	24-60	629	1.22	0.96-1.55
	Postpartum 60-120 m	60-120	1186	1.08	0.87-1.33
Huang, 2018[69]	Postpartum >120 m	>120	1623	0.98	0.78-1.22
	Postpartum 0-12 m	0-12	347	1.29	0.96-1.74
	Postpartum 13-24 m	13-24	410	1.27	0.95-1.70
	Postpartum 25-60 m	25-60	1583	1.06	0.88-1.27

*Corresponding reference category: nulliparous.
The present meta-analysis has the following limitations that must be taken into account. First, if HRs and 95% CIs were not directly reported in the included studies, we estimated HRs from the crude data or Kaplan-Meier curves. This may cause bias without adjustment. However, we performed subgroup analysis based on the estimation procedure for HR. This analysis consistently showed a worse prognosis for women with PABC than for those with non-PABC. Second, the meta-analysis was based on data from observational studies; although most of the included studies adjusted for several relevant confounders (including age, year of diagnosis, tumour stage, axillary lymph node status, oestrogen receptor, hormonal receptor status, HER2 status, family history, etc.), residual confounding by other potential factors cannot be ruled out. Third, high between-study heterogeneity is another limitation of the current meta-analysis. This was likely due to significant differences in the sample sizes, definitions of PABC and/or treatment interventions. Last, the language of the studies was limited to English, which may result in potential language bias.

5. Conclusions

In summary, this meta-analysis suggests that PABC is associated with a poor prognosis for OS, DFS and CSS compared to non-PABC cases. The definition of PABC should be extended to include patients diagnosed up to approximately six years postpartum to capture the increased risk of death. Further long-term prospective cohort studies with larger sample sizes should be conducted to validate this article's findings.

Abbreviations

Abbreviation	Description
PABC	pregnancy-associated breast cancer
HR	hazard ratio
CI	confidence interval
VWLS	variance weighted least-squares regression
OS	overall survival
DFS	disease-free survival
CSS	cause-specific survival
PRISMA	preferred reporting items for systematic reviews and meta-analyses
NOS	Newcastle-Ottawa Scale
BMI	body mass index
ER	oestrogen receptor
PR	progesterone receptor
HER-2	human epidermal growth factor receptor-2

Declarations

Ethics approval and consent to participate: Not applicable.

Consent for publication: Not applicable.

Availability of data and material: Not applicable.

Competing interests: The authors declare that they have no competing interests.

Funding: This research was funded by the Youth Talent Fund of the Second Hospital of Shandong University (2018YT26). The study funders had no role in the design, data acquisition, analyses, or data interpretation of this project.

Authors' contributions: YZ and HJ designed the research study; CS and JX performed the literature search and statistical analysis; and CS interpreted the data and drafted the manuscript. Both YZ and HJ are corresponding authors. ZY, LL and FH critically revised the manuscript. All authors read and approved the final manuscript.

Acknowledgements: Not applicable.

References

1. Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A: *Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries*. CA Cancer J Clin 2018, 68(6):394-424.
2. Johansson ALV, Andersson TM, Hsieh CC, Jirstrom K, Cnattingius S, Fredriksson I, Dickman PW, Lambe M: *Tumor characteristics and prognosis in women with pregnancy-associated breast cancer*. Int J Cancer 2018, 142(7):1343-1354.
3. Lee GE, Mayer EL, Partridge A: *Prognosis of pregnancy-associated breast cancer*. Breast Cancer Res Treat 2017, 163(3):417-421.
4. Lyons TR, Schedin PJ, Borges VF: *Pregnancy and breast cancer: when they collide*. J Mammary Gland Biol Neoplasia 2009, 14(2):87-98.
5. Lee YY, Roberts CL, Dobbins T, Stavrout T, Black K, Morris J, Young J. Incidence and outcomes of pregnancy-associated cancer in Australia, 1994-2008: a population-based linkage study. *Bjog* 2012, 119(13):1572-1582.

6. Bae SY, Kim S, Lee J, Lee ES, Kim EK, Park HY, Suh YJ, Kim HK, You JY, Jung SP. Clinical subtypes and prognosis of pregnancy-associated breast cancer: results from the Korean Breast Cancer Society Registry database. *Breast Cancer Res Treat* 2018, 172(1):113-121.

7. Andersson TM, Johansson AL, Hsieh CC, Cnattingius S, Lambe M. Increasing incidence of pregnancy-associated breast cancer in Sweden. *Obstet Gynecol* 2009, 114(3):568-572.

8. Lambe M, Ekborn A. Cancers coinciding with childbearing: delayed diagnosis during pregnancy? *Bmj* 1995, 311(7020):1607-1608.

9. Smith LH, Danielsen B, Allen ME, Cress R. Cancer associated with obstetric delivery: results of linkage with the California cancer registry. *Am J Obstet Gynecol* 2003, 189(4):1128-1135.

10. Case AS. *Pregnancy-associated Breast Cancer*. Clinical Obstetrics and Gynecology 2016, 59(4):779-788.

11. Wohlfahrt J, Andersen PK, Mournidsen HT, Melbye M. Risk of late-stage breast cancer after a childbirth. *Am J Epidemiol* 2001, 153(11):1079-1084.

12. Nichols HB, Schoemaker MJ, Cai J, Xu J, Wright LB, Brook MN, Jones ME, Adami HO, Baglietto L, Bertrand KA et al. Breast Cancer Risk After Recent Childbirth: A Pooled Analysis of 15 Prospective Studies. *Ann Intern Med* 2018.

13. Hartman EK, Eslick GD. The prognosis of women diagnosed with breast cancer before, during and after pregnancy: a meta-analysis. *Breast Cancer Research and Treatment* 2016, 160(2):347-360.

14. Iqbal J, Amir E, Rochon PA, Giannakeas V, Sun P, Narod SA. Association of the Timing of Pregnancy With Survival in Women With Breast Cancer. *JAMA oncology* 2017, 3(5):659-665.

15. Ploquin A, Pistilli B, Tresch E, Frenel JS, Lerebours F, Lesur A, Loutslatol C, Bachelot T, Provansal M, Ferrero JM et al. 5-year overall survival after early breast cancer diagnosed during pregnancy: A retrospective case-control multicentre French study. *European Journal of Cancer* 2018, 95:30-37.

16. Boudy AS, Naoura I, Selleret L, Zilberman S, Gilgorov J, Richard S, Tomassini-Naggar I, Chabbert-Buffet N, Ballester M, Bendilla S et al. Propensity score to evaluate prognosis in pregnancy-associated breast cancer: Analysis from a French cancer network. *Breast* 2018, 40:10-15.

17. Choi M, Han J, Yang BR, Jang MJ, Kim M, Kim TY, Im SA, Lee HB, Moon HG, Han W et al. Prognostic Impact of Pregnancy in Korean Patients with Breast Cancer. *Oncologist* 2019.

18. Rong Y, Chen L, Zhu T, Song Y, Yu M, Shan Z, Sands A, Hu FB, Liu L. Egg consumption and risk of coronary heart disease and stroke: dose-response meta-analysis of prospective cohort studies. *BMJ (Clinical research ed)* 2013, 346:e8539.

19. Tierney JF, Stewart LA, Gherdi S, Burdett S, Sydes MR. Practical methods for incorporating summary time-to-event data into meta-analysis. *Trials* 2007, 8:16.

20. Greenland S, Longnecker MP. Methods for trend estimation from summarized dose-response data, with applications to meta-analysis. *Am J Epidemiol* 1999, 151(1):1301-1309.

21. Witte JS, Greenland S. A nested approach to evaluating dose-response and trend. *Ann Epidemiol* 1997, 7(3):188-193.

22. Mausner JS, Shimkin MB, Moss NH, Rosemond GP. Cancer of the breast in Philadelphia hospitals 1951-1964. *Cancer* 1969, 23(2):260-274.

23. Wallgren A, Silfversward C, Hultborn A. Relation of time since last birth and parity to survival of young women with breast cancer. *Scand J Clin Lab Invest* 1992, 52(3):166-171.

24. Nugent P, O'Connell TX. Breast cancer and pregnancy. *Arch Surg* 1985, 120(1):1221-1224.

25. Tretli S, Kvalheim G, Thoresen S, Host H. Survival of breast cancer patients diagnosed during pregnancy or lactation. *Br J Cancer* 1988, 58(3):382-384.

26. Greene FL. Gestational breast cancer: a ten-year experience. *South Med J* 1988, 81(12):1509-1511.

27. Petrek JA, Dukoff R, Rogatko A. Prognosis of pregnancy-associated breast cancer. *Cancer* 1991, 67(4):869-872.

28. Zemlickis D, Lishner M, Degendorfer P, Panzarella T, Burke B, Sutcliffe SB, Koren G. Maternal and fetal outcome after breast cancer in pregnancy. *Am J Obstet Gynecol* 1992, 166(3):781-787.

29. Ishida T, Yohoe T, Kasumi F, Sakamoto G, Makita M, Tominaga T, Simozuma K, Enomoto K, Fujiwara K, Nanasawa T et al. Clinical-pathologic characteristics and prognosis of breast cancer patients associated with pregnancy and lactation: analysis of case-control study in Japan. *Jpn J Cancer Res* 1992, 83(11):1143-1149.

30. Guinee VF, Olsson H, Moller T, Hess KR, Taylor SH, Fahey T, Gladikov JV, van den Blink JW, Bonichon F, Dische S et al. Effect of pregnancy on prognosis for young women with breast cancer. *Lancet* 1994, 343(8913):1587-1589.

31. von Schoultz E, Johansson H, Wilking N, Rutqvist LE. Influence of prior and subsequent pregnancy on breast cancer prognosis. *J Clin Oncol* 1995, 13(2):430-434.

32. Ezzat A, Raja MA, Berry J, Zwaan FE, Jamshedd A, Rhynderch D, Rostom A, Bazarchi S. Impact of pregnancy on non-metastatic breast cancer: a case control study. *Clin Oncol (R Coll Radiol)* 1996, 8(6):367-370.

33. Anderson BO, Petrek JA, Byrd DR, Senee RT, Borgen PI. Pregnancy influences breast cancer stage at diagnosis in women 30 years of age and younger. *Ann Surg Oncol* 1996, 3(2):204-211.

34. Bonnier P, Romain S, Dilhuydy JM, Bonichon F, Julien JR, Charpin C, Lejeune C, Martin PM, Piana L. Influence of pregnancy on the outcome of breast cancer: a case-control study. *Societe Francaise de Senologie et de Pathologie Mammary Study Group. Int J Cancer* 1997, 72(5):720-727.

35. Olson SH, Zauber AG, Tang J, Harlap S. Relation of time since last birth and parity to survival of young women with breast cancer. *Epidemiology* 1998, 9(6):669-671.
36. Reeves GK, Patterson J, Vessey MP, Yeates D, Jones L: **Hormonal and other factors in relation to survival among breast cancer patients.** *Int J Cancer* 2000, **89**(3):293-299.

37. Ibrahim EM, Ezzat AA, Baloush A, Hussain ZH, Mohammed GH: **Pregnancy-associated breast cancer: a case-control study in a young population with a high-fertility rate.** *Med Oncol* 2000, **17**(4):293-300.

38. Daling JR, Malone KE, Doody DR, Anderson BO, Porter PL: **The relation of reproductive factors to mortality from breast cancer.** *Cancer Epidemiol Biomarkers Prev* 2002, **11**(3):235-241.

39. Aziz S, Perez S, Khan S, Siddiqui T, Kayani N, Israr M, Rahbar M: **Case control study of novel prognostic markers and disease outcome in pregnancy/lactation-associated breast carcinoma.** *Pathol Res Pract* 2003, **199**(1):15-21.

40. Siegelmann-Daniell N, Tamir A, Zohar H, Papa MZ, Cheтвер LL, Galliimidi Z, Stein ME, Kuten A: **Breast cancer in women with recent exposure to fertility medications is associated with poor prognostic features.** *Ann Surg Oncol* 2003, **10**(9):1031-1038.

41. Bladstrom A, Anderson H, Olsson H: **Worse survival in breast cancer among women with recent childbirth: results from a Swedish population-based register study.** *Clin Breast Cancer* 2003, **4**(4):280-285.

42. Whiteman MK, Hills SD, Curtis KM, McDonald JA, Wingo PA, Marchbanks PA: **Reproductive history and mortality after breast cancer diagnosis.** *Obstet Gynecol* 2004, **104**(1):146-154.

43. Rodriguez AO, Chew H, Cress R, Xing G, McElvy S, Danielsen B, Smith L: **Evidence of poorer survival in pregnancy-associated breast cancer.** *Obstet Gynecol* 2008, **112**(1):71-78.

44. Stensheim H, Moller B, van Dijk T, Fossa SD: **Cause-specific survival for women diagnosed with cancer during pregnancy or lactation: a registry-based cohort study.** *J Clin Oncol* 2009, **27**(1):45-51.

45. Beadle BM, Woodward WA, Middleton LP, Tereffe W, Strom EA, Litton JK, Meric-Bernstam F, Theriault RL, Buchholz TA, Perkins GH: **The impact of pregnancy on breast cancer outcomes in women<or=35 years.** *Cancer* 2009, **115**(6):1174-1184.

46. Halaska MJ, Pen theroudakis G, Stmad P, Stankusova H, Chod J, Robova H, Petrusezka L, Rob L, Pavlidis N. **Presentation, management and outcome of 32 patients with pregnancy-associated breast cancer: a matched controlled study.** *Breast J* 2009, **15**(5):461-467.

47. Largillier R, Savignoni A, Gligorov J, Chollet P, Guilhaume MN, Spielmann M, Luporsi E, Asselain B, Coudert B, Namer M: **Prognostic role of pregnancy occurring before or after treatment of early breast cancer patients aged <35 years: a GET(N)A Working Group analysis.** *Cancer* 2009, **115**(22):5155-5165.

48. Phillips KA, Milne RL, West DW, Goodwin PJ, Giles GG, Chang ET, Figueiredo JC, Glendon G et al: **Prediagnosis reproductive factors and all-cause mortality for women with breast cancer in the breast cancer family registry.** *Cancer Epidemiol Biomarkers Prev* 2009, **18**(6):1792-1797.

49. Moreira WB, Brandao EC, Soares AN, Lucena CE, Antunes CM: **Prognosis for patients diagnosed with pregnancy-associated breast cancer: a paired case-control study.** *Sao Paulo Med J* 2010, **128**(3):119-124.

50. Johansson AL, Andersson TM, Hsieh CC, Cnattingius S, Lambe M: **Increased mortality in women with breast cancer detected during pregnancy and different periods postpartum.** *Cancer Epidemiol Biomarkers Prev* 2011, **20**(9):1865-1872.

51. Murphy CG, Mallam D, Stein S, Patil S, Howard J, Sklarin N, Hudis CA, Gemignani ML, Seidman AD: **Current or recent pregnancy is associated with adverse pathologic features but not impaired survival in early breast cancer.** *Cancer* 2012, **118**(13):3254-3259.

52. Azim HA, Jr., Santoro L, Russell-Edu W, Pentheroudakis G, Pavlidis N, Peccatori FA: **Prognosis of pregnancy-associated breast cancer: a meta-analysis of 30 studies.** *Cancer Treat Rev* 2012, **38**(7):834-842.

53. Ali SA, Gupta S, Sehgal R, Vogel V: **Survival outcomes in pregnancy-associated breast cancer: a retrospective case control study.** *Breast J* 2012, **18**(2):139-144.

54. Amant F, von Minckwitz G, Han SN, Bontenbal M, Ring AE, Giermek J, Wildiers H, Fehm T, Linn SC, Schlehe B et al: **Prognosis of women with primary breast cancer diagnosed during pregnancy: results from an international collaborative study.** *J Clin Oncol* 2013, **31**(20):2532-2539.

55. Litton JK, Warneke CL, Hahn KM, Palla SL, Kuerer HM, Perkins GH, Mittendorf EA, Barnett C, Gonzalez-Angulo AM, Hortobagyi GN et al: **Case control study of women treated with chemotherapy for breast cancer during pregnancy as compared with nonpregnant patients with breast cancer.** *Oncologist* 2013, **18**(4):369-376.

56. Valentini A, Lubinski J, Byrski T, Ghadri rian P, Moller P, Lynch HT, Ainsworth P, Neuhausen SL et al: **The impact of pregnancy on breast cancer survival in women who carry a BRCA1 or BRCA2 mutation.** *Breast Cancer Res Treat* 2013, **142**(1):177-185.

57. Dimitrakakis C, Zagouri F, Tsigginou A, Marinopoulos S, Sergentanis TN, Keramopoulos A, Zografos GC, Ampela K, Mpaltas D, Papadimitriou C et al: **Does pregnancy-associated breast cancer imply a worse prognosis? A matched case-case study.** *Breast Care (Basel)* 2013, **8**(3):203-207.

58. Callihan EB, Gao D, Jindal S, Lyons TR, Manthey E, Edgerton S, Urquhart A, Schedin P, Borges VF: **Postpartum diagnosis demonstrates a high risk for metastasis and merits an expanded definition of pregnancy-associated breast cancer.** *Breast Cancer Res Treat* 2013, **138**(2):549-559.

59. Bell RJ, Fradkin P, Paratthiasan N, Robinson RJ, Schwarz M, Davis SR: **Pregnancy-associated breast cancer and pregnancy following treatment for breast cancer, in a cohort of women from Victoria, Australia, with a first diagnosis of invasive breast cancer.** *Breast* 2013, **22**(5):980-985.

60. Moller H, Purushotham A, Linklater KM, Garmo H, Holmberg L, Lambe M, Yallop D, Devereux S: **Recent childbirth is an adverse prognostic factor in breast cancer and melanoma, but not in Hodgkin lymphoma.** *Eur J Cancer* 2013, **49**(17):3686-3693.

61. Framarino-Dei-Malatesta M, Piccioni MG, Brunelli R, Iannini I, Casiiali G, Sammartino P: **Breast cancer during pregnancy: a retrospective study on obstetrical problems and survival.** *Eur J Obstet Gynecol Reprod Biol* 2014, **173**:48-52.

62. Madaras L, Kovacs KA, Szasz AM, Kenessey I, Tokes AM, Szekely B, Baranyak Z, Kiss O, Dank M, Kula J: **Clinicopathological features and prognosis of pregnancy associated breast cancer - a matched case control study.** *Pathol Oncol Res* 2014, **20**(3):581-590.
Figures

Figure 1

Schematic representation of the study selection process
Figure 2

Hazard ratios and 95% CIs of studies included in the meta-analysis of OS

Figure 3

Hazard ratios and 95% CIs of studies included in the meta-analysis of DFS
Figure 4

Hazard ratios and 95% CIs of studies included in the meta-analysis of CSS

![Graph showing hazard ratios and 95% CIs of studies included in the meta-analysis of CSS]

Figure 5

Dose-response relation between the time from the last delivery to breast cancer diagnosis and the HR of overall mortality.

![Graph showing dose-response relation between time from last delivery to breast cancer diagnosis and HR of overall mortality]

Figure 6

![Funnel plot with pseudo 95% confidence limits]
Funnel plot to explore the presence of publication bias.

Supplementary Files

This is a list of supplementary files associated with this preprint. Click to download.

- PRISMA2009checklist.doc