Application of Learning Theories in Online Instructional Environments and Materials: A Study for Developing a Set of Criteria

Seda ÖZER ŞANAL*a, Arif AKÇAYb, Meral ÇİÇEK TUTULMAZc, Mukaddes ERDEMd

Abstract

The aim of this study was to develop a set of agreed criteria for the examination or formation of online instructional environments and materials from the viewpoint of learning theories. Based on the understanding that the guidance of learning theories is needed in all stages of an instructional design process from planning to implementation, this study first examined the behaviourist, cognitive, and constructivist learning theories about learning. Instructional practice examples were then examined to determine statements showing how these explanations reflect on the instructional environments or materials. The first statements revised in line with the expert opinions were turned into a 5-point Likert type scale. The opinions of the experts were received on the scale and the necessary revisions were made. Using the 70-item scale, six different open access instructional materials from the Educational Informatics Network (EBA) were examined. Content validity indices were calculated based on the opinions of 26 experts for the final scale, for which the acceptable levels of conformity were determined. At the end of the final review, a set of criteria consisting of 60 items was developed.

Article History:
Received: 19.02.2019
Accepted: 03.06.2019
Published: 30.06.2019

Keywords:
Learning theory,
Online learning environment,
scale development.

Article Type:
Research article

*Corresponding Author: sedaozer@firat.edu.tr

Öğrenme Kuramlarının Çevrimiçi Öğretim Ortamlarında ve Materyallerinde Uygulanması: Bir Ölçütler Takımı Geliştirme Çalışması

Bu çalışma, çevrimiçi öğretim ortamlarının ve materyallerinin öğrenme kuramları perspektifinden incelenmesini ve materyallerinin öğrenme kuramları perspektifinden incelemesini ya da oluşturulmasını olanaklı kılacak, üzerinde uzaşmış bir öğretim takımı oluşturmak üzere gerekeçileştirilmiş. Bir öğretim tasarım sürecinin, planlanmasından uygulanıp geliştirilmesine kadar geçen tüm aşamalarında öğrenme kuramlarını rehberliğine gerekşimini oldukça anlayışyla gerekeçileştirilen çalışmadır; öncelikle davranışci, bilisel ve yapılandırmacı öğrenme kuramlarının öğrenmeeye ilişkin açıklamaları incelenmiştir. Daha sonra, bu açıklamaların öğretim ortam ve materyallerinde nasıl karşılaşıcağı, öğretimsel uygulamalar türünden belirlenmeye çalışılmıştır. Uzman görüşleri doğrultusunda gözden geçirilen bu ilk ifadeler, 5’li likert tipinde bir ölçek formunda düzenlenmiştir. Ölçek yeniden uzman görüşe sunulmuş ve alınan görüşler doğrultusunda düzenlenmiştir. 70 maddeden oluşan yeni form kullanılarak, EBA (Eğitim Bilişim Ağı) dan herkese açık 6 farklı öğretim materyali incelenmiştir.
Introduction

Instructional design is the systematic development process of instructional practices paving the way for qualified learning using learning and education theories. Education cannot take place randomly but requires well-organized processes (Seels and Glasgow, 1990: 3-4). Thus, organizing instructional activities that lead to desirable results is closely associated with the extent to which the explanations on what learning is and how it takes place are taken into consideration.

Within this framework, the present study was conducted considering the question of how to transform learning theories into instructional practices. In the study were addressed online instructional environments or materials according to their content and interaction dynamics.

Behaviourist Learning Theories

According to behaviourist learning theories, learning is the production of an appropriate reaction to a specific stimulant (Ertmer and Newby, 2013). Learning occurs when a change is made in the form or frequency of an observable behaviour (Schunk, 2014). Behaviourist theories are not interested in students’ existing information structures or cognitive processes. They instead focus on the production of observable behaviours which are openly and clearly specified in the education targets. In this respect, in behaviourist learning, it is essential to clearly describe and plan all phases of a process like a machine so that education is completed successfully and target behaviours are acquired for the fulfilment of the targets (Mechlova and Malcik, 2012; Reed, 2012; Tennyson, 2010).

In the behaviourist approach, learning is triggered by an observable and reliable connection between the stimulant and the reaction (Zhou, 2004) while learning is considered to have taken place when a change occurs in the behaviour as a result of the repetition of the stimulant and the resulting reaction (Mechlova and Malcik, 2012; Deubel, 2003; Schunk, 2014). In this approach which explains learning as strengthening the stimulant-reaction connection, there should not be any suspicion on what the stimulant leading to the behaviour is. The main role of the education in the learning process is to create the stimulant-reaction connection (Ertmer and Newby, 2016). Thus, initiation of the process with a single natural and context-free stimulant can be recommended (McKenna and Laycock, 2004).

In a behaviourist instructional environment or material, learning is explained with the stimulant, reaction, and the reward/punishment cycle related to the reaction. Reaction of the student to an ambient stimulant is compulsory for the completion of a behaviourist instructional practice, and the student is obliged to react (Kay and Kibble, 2016; Hassan, 2011). One of the significant stimulants which compel individuals to react and render reaction inevitable is the question. On condition that they lead to the reaction, other stimulants can be used as well, but questions are a significant stimulant in instructional environments and materials. As stated by Bognar (2016), in the behaviourist approach, instructional materials provide a framework of fragmented and elaborated series. This framework consists of statements and questions. If a student answers a question correctly, the process will allow them to proceed to the next part. The behaviourist approach interprets the student’s correct answer as the sign of a successful conditioning and continues the behavioural enhancement by rewarding the correct reactions (Boghossian, 2006).

The question to be used in the behaviourist environment or material should have a single correct answer. The answer must be clear so that the response by the learner is correct or incorrect. Deciding on awards and penalties should not the hesitation. Additionally, since students are considered to be nonreflective respondents in the learning process (Boghossian, 2006), open-ended questions which require interpretation should be avoided, and as few choices as possible should be offered when multiple-choice questions are asked. It is not a problem for the student to find the correct answer coincidentally by trial and error for questions having few choices (Aliakbari et al., 2015; Hean, Craddock and O’Halloran, 2009). Learning can take place via a reward gained thanks to a correct answer found by chance (Kay and Kibble, 2016; Aliakbari et al., 2015; Hassan, 2011).

In the behaviourist approach, repetitions and the use of the reward/punishment cycle are needed for enhancing the behaviour after the stimulant-reaction connection is established. Reward or punishment is given after the behaviour is displayed, and reward aims for permanence if the behaviour is correct while punishment aims for a change in the behaviour if it is wrong (Kay and Kibble, 2016; Aliakbari et al, 2015). There is only one correct reaction of the student to the stimulant which results in the reward and all other reactions are considered wrong and requiring punishment (Burton, Moore and Magliaro, 2004). The feedback, which makes the reaction...
permanent or ensures learning, is the reward. The student, who is rewarded in response to his reactions, becomes motivated and frequent rewards activate the intrinsic motivation mechanism resulting from the success. As for the punishment, it is applied in the case of a wrong reaction (Kay and Kibble, 2016; Aliakkharie et al., 2015). During the learning process, in addition to concrete rewards and punishments to be given as feedback, informative feedbacks stating that the behavior in question is correct or wrong are also possible (Rizi and Ketabi, 2015; Russell, 2009; Burton, Moore and Magliaro, 2004).

In a behaviourist learning environment or material, the student reacts to the stimulant presented. The student receives feedback on the reaction in the form of reward or punishment. In the learning environment, the student displays a behaviour and receives feedback and learns at his own speed accordingly. Therefore, learning environments or materials based on behaviourist learning theories should be grounded on one-to-one learning and should be arranged in accordance with the self-study principle (Bognar, 2016; Kay and Kibble, 2016; Wu et al., 2012; Burton et al., 2004). In addition, Bloom addressed this principle as a complete success criterion in his complete learning theory (Wong and Kang, 2012; Ghani, Hamim and Ishak, 2006).

Learning tasks or contents are not always easy to learn at one time. In order to overcome this problem, Skinner (1986) proposed the small steps principle. If the behaviour is difficult or complicated, the content can be divided into the smallest subunits and applied in an order (Clemons, 2006; Mergel, 1998; Mishra, 2002). The student is not allowed to proceed to the next task without successfully completing the previous learning tasks (Bognar, 2016; Hassan, 2011). Some researchers have stated that the tasks for the realization of observable behaviours should be arranged in a simple-to-complex and easy-to-difficult order in the behaviourist approach (Deubel, 2003; Aydin, 2000). It can be argued that the small steps principle of Skinner’s programmed learning process corresponds to this arrangement from simple to complex or easy to difficult (Akgün and Akgün, 2011; Özbeck, 2005; Yaşar, 1989).

In a behaviourist instructional environment or material, education takes place in an integrated manner with assessment (Tamim and Grant, 2016). Since the process focuses on the realization of the desired observable behaviours, the fulfillment of the task by the student means success while the inability of the student to fulfill the task means failure. Therefore, all sequenced tasks should be evaluated separately (Mechlova and Malcik, 2012; Reed, 2012). In a learning environment or material based on behaviourist approach, each one of sequenced tasks serves as the stimulant of the next task and the students are compelled to react to these stimulants. Thus, since learning takes place in the stimulant, reaction and reward/punishment system and the student cannot proceed to the next task without giving the valid reaction to a stimulant in the sequenced tasks, it can be argued that learning can only progress through learning. If an assessment activity is carried out at the end of an unblocked process, it should check only the level of recall. In other words, either the same or very similar questions should be used and the students should be assessed with the same criteria. It should not be forgotten that the aim is to create a clear stimulant-reaction connection. While Khalil and Elkhider (2016) stated that education recall tasks can be used as assessment tools in addition to the multiple-choice questions, Ertmer and Newby (2013) argued that task analysis, behavioural targets, and criteria-based assessment are the types of assessment that can be used in the behaviourist education processes.

Cognitive Learning Theories

In contrast to the behaviourist approach, which explains learning with the stimulant-reaction connection, cognitive learning theories deal with what happens in the mind of the student. According to cognitive learning theories, such fundamental cognitive processes as attention, perception, memory, problem solving, and metacognition are used in the acquisition and use of knowledge and skills (Schunk, 2014). Learning is identified as the process of receiving, conceptualizing, coding, transforming, organizing, repeating, storing, and reusing information (Schunk, 2014; Ertmer and Newby, 2013; Mechlova and Malcik, 2012; Zhou, 2004). Cognitive learning theories consider the student as the active processor of information and deal with how the student processes and stores it during the process (Kay and Kibble, 2016). Knowledge and skills are acquired in the form of schemes or symbolic mental structures and learning is explained as the changes in these structures (Cognitive Approaches to Learning, 2008; Zhou, 2004). These theories try to explain the cognitive activities which increase the significant knowledge levels of the students and contribute to their developments and capacities (Gillani and O’Guinn, 2004; Dobozy and Danziel, 2016).

Cognitive learning theories explain learning on the basis of the basic assumption that the student obtains information by establishing new relations, creating schemes, or organizing the existing schemes. The student learns the new information by building on the existing schemes related to the subject (Mechlova and Malcik, 2012; Mödritscher, 2006; Mergel, 1998). Based on this assumption, it is recommended that the learning process is
initiated with a number of activities activating the previous knowledge of the student (Tamim and Grant, 2016). In this respect, learning environments and materials should include tools/tests for determining the characteristics of the student (Mergel, 1998). In parallel to this suggestion, Kay and Kibble (2016) applied a pre-test in the cognitive learning environment they prepared in order to determine the previous knowledge of the students. Apart from the determination of the previous knowledge of the students at the beginning of the learning process, some authors suggested instructions or hints that will facilitate learning and explanations motivating for learning (Mergel, 1998). Ertmer and Newby (2013) emphasized the importance of the existence of guiding elements such as instructional explanations, displays, and explanatory examples in the education process.

Determining the characteristics of the learner at the beginning of the education process is important both to determine the previous knowledge of the students and to direct them to the appropriate learning materials during the process. An environment which is diversified or shaped in accordance with the characteristics of the student at the beginning of the process assists in their learning process. Gagne (1965) mentioned the importance of presenting the content in the learning environments at varying forms and levels (cited by Wu et al., 2012). In instructional materials and environments providing students with personalisation options, the content should be presented from different learning levels in different formats and various practices (Alzaghoul, 2012; Romero et al., 2000).

In cognitive learning theories, some instructional principles assisting the acquisition of knowledge and skills and the development of relations and schemes are the known-to-unknown, easy-to-difficult, and simple-to-complex principles, etc. (Tamim and Grant, 2016; Edgar, 2012; Krause, Bochner and Duchesne, 2003; Romero et al., 2000; Mergel, 1998). When it is thought that the cognitive learning process relies on the understanding that a student improves the schemes on the basis of the existing schemes, complex information should be presented with the information forming its basis. The activities in the education and learning processes encourage the students to think about and analyse a specific subject in increasingly more complicated ways (Krause, Bochner and Duchesne, 2003). It is seen that this principle is applied in some practices based on cognitive learning theories (Kay and Kibble, 2016; Wu et al., 2012).

In a learning process based on cognitive understanding, transitions in the content presented to the students are not dependent on the reactions of the student as in behaviourist learning approaches. Since a task does not serve as the stimulant of the next task in a cognitive learning environment or material, the student can pass to the next phase without completing the previous one. In the study where they examined the theoretical foundations of game-based learning, Wu et al. (2011) emphasized this principle by stating that the students had control over the instructional game and could play in the sections they wished.

Informative feedback is one of the significant elements for a cognitive instructional environment or material. According to Romero et al. (2000), in an online instructional design based on cognitive learning theories, students should be provided with warnings in case of misconceptions and informative feedbacks to correct their errors. However, these informative feedbacks are not limited to “correct or wrong” statements as in behaviourism. In cognitive learning environments, feedback assessing the conception as correct or wrong should be supported by different informative feedback in explanatory or thought-provoking form (Ertmer and Newby, 2013).

In a learning process based on cognitive understanding, assessment is not integrated with learning as in behaviourist learning theories and requires an additional assessment and evaluation module. More importantly, the learner should be expected to implement the task in different but related situations rather than a direct implementation in the assessments based on cognitive learning understanding (Gagne, 1970; Wu et al., 2012).

Students might be asked for explanations about the choices they make in the multiple-choice questions directed in the cognitive learning environment or material (Mechlova and Malčík, 2012). Questions with higher numbers of distracters or open-ended questions might be recommended. However, for a valid and comparable process, questions should have specific correct answers. Also, concept maps can be used for assessment in order to see how the students organize and associate the concepts learned in the content (Kay and Kibble, 2016; Khalil and Elkhider, 2016).

Constructivist Learning Theories

According to constructivist learning theories, learning is the individuals’ process of forming subjective knowledge and meanings (Girvan and Savage, 2010). The individuals form and construct their own knowledge in each process (Mechlova and Malčík, 2012; Sen, 2011). In other words, the constructivist perspective is based on the idea that human beings are constructivist. Thus, an instructional material or environment should be arranged
in order to create environments suitable for the constructivist nature of the individuals, not to enable them to construct (Jonassen, 1994).

Constructivist learning theories argue that individuals learn in realist learning environments and social environments by using multiple viewpoints and their own self-awareness (Reed, 2012; Lainema and Makkonen, 2003; Jonassen, 1994). In a constructivist education process where all types of opinions are respected and individuals can select and address the information in line with their needs, aims, beliefs, and other personal experiences, individuals play a key role by taking the responsibility of decisions and control over their own learning processes and also by evaluating their learning processes (Bay, Kaya and Gündoğdu, 2010; Zhou, 2004). It is thought that the statements of teachers or students during the learning process dominate and restrict the process. Constructivist theories are flexible, holistic, and variable. In this process, anyone can share the information. In this respect, it can be stated that there are no rigid tasks and roles in a constructivist learning environment or material (Aqda, Hamidi and Ghorbandordinejad, 2011).

In the design of a constructivist learning environment or material, researchers draw attention to a situation-specific learning within a context (McKenna and Laycock, 2004). It might be recommended to present the information and skills students are expected to gain embedded in a situation, event, or story. McKenna and Laycock (2004) stated that situation-based scenarios are needed for an authentic learning context and these scenarios are essential for the acquisition of the knowledge and construction of the mental models. In cases where the individual does not have personal experiences, story scenarios are needed in order to make up the knowledge deficiency concerning the context (Sen, 2011). In addition, Sen (2011) stated that constructivist learning environments focus on the solution of a problem, question, or project. Thus, providing students with a question or problem designed with the context during the constructivist education process might be a good start for the process (Jonassen, 1994).

Constructivist theories address learning as the act of an individual to make sense of their experiences (Johnson, 2014). The key point of learning is the integration of the content with real life context (Khalil and Elkhider, 2016; Jonassen, Cernusca and Ionas, 2007). McKenna and Laycock (2004) stated that learning should take place in authentic environments and learning gains can be increased only in this way. Likewise, Karagiorgi and Symeou (2005) stated that learning taking place in authentic environments is important for the association of information as well as meaningful learning. In the education process based on constructivist learning theories, content should be presented in different contexts and conditions (Karagiorgi and Symeou, 2005; Jonassen, 1994). In a learning environment or material based on this approach, the content focuses on the transfer of the knowledge and skills in the current learning process to those in the contexts offered (Ertmer and Newby, 2013).

While the student carries out a subjective construction, what individuals share with one another, the use of multiple viewpoints, and the interactions of these viewpoints occupy an important place as well (Aliakbari et al., 2015; Johnson, 2014; Tinker, 1997; Cennamo, Abell and Chung, 1996; Jonassen, 1994). Kanjug and Chaijaroen (2012) stated that learning environments designed with a constructivist approach to enable the students to acquire the desired knowledge and skills and to form mental models without spending time and exerting efforts should support such behaviours as establishing dialogues, knowledge sharing, reflecting individual meanings, and interacting. Some researchers have mentioned that the students need to question different understandings and explain their own perspectives in a constructivist learning environment or material (Aqda, Hamidi and Ghorbandordinejad, 2011; Karagiorgi and Symeou, 2005; McKenna and Laycock, 2004).

The assessment phase of a constructivist learning process is almost completely different from those of behaviourist and cognitive theories. A constructivist assessment does not aim to determine the level of the behaviour or knowledge the student has but is considered an improvement tool which is necessary for supporting learning and improving self-awareness and thus should be used frequently (Hassan, 2011). A constructivist assessment is based on the common opinion of the self, peer, and teacher and considers the entire process rather than the performance of the student in a specific moment. The aim is to determine the processes of thinking rather than the behaviours or knowledge gained by the students (Karagiorgi and Symeou, 2005). Assessment is carried out to obtain development data, not to produce data for comparison (Erdem and Ekici, 2016).

Cunningham and Duffy (1996) stated that the constructivist assessment processes should include concept maps, product files, performance tests, and group tests as tools and verbal statements, group discussions, information transfers, and problem-solving process records as techniques. Semerci (2001) emphasized the use of open-ended exams, performance-based assessment, personal interviews, and personal development files as constructivist exam types. Vural (2005) stated that such methods as discussions, presentations, experiments, exhibitions, projects,
observations, interviews, and development files should be used. Khalil and Elkhider (2016) argued in their study that peer review and critique can be used as constructivist assessment tools. While questions are given with their validity conditions in the assessment of a constructivist education process, these conditions must be taken into consideration in the answers, which can vary according to the validity conditions (Erdem and Ekici, 2016; Sen, 2011). Thus, an environment based on constructivist learning theories should not have multi-choice questions with a single correct answer. Expecting only one correct answer is contradictory to the argument that the meaning of an individual matters.

As it is seen in the above example, applying an explanatory theory is more difficult than developing it. Although it has been argued that it is more feasible for instructors to try to develop instructional design theories instead of seeking ways for applying the explanatory theories (Pogrow, 1996 cited by Reigeluth 1999: 15), there are many suggestions and principles of the learning theories, which are definite enough, concerning the design of the learning environments. These principles should be taken into consideration while designing education processes. An education environment or process can explain or justify itself in terms of the processes and results only with the learning theory or understanding on which it is based. Based on this understanding, certain criteria which allow for designing an online learning material or environment and examining the existing materials or environments in order to predict the learning understanding on which they are based were developed in the present study.

Method

A scale functioning as a set of criteria to determine the learning theory on which instructional materials and environments are based and to design learning environments based on a specific learning theory was developed.

Data Collection

For the purpose of the study, instructional activity statements, which are thought to represent the reflections of the behaviourist, cognitive, and constructivist learning approaches, were formed and experts were asked their opinions to determine the learning approaches that the statements represent. Based on the expert opinions, statements were revised and the necessary adjustments were made. In the end, a 5-point Likert type scale consisting of 70 items was obtained.

In the following step, different materials were examined by using these items in order to clearly determine the observability of the items in a learning environment or material and complete the deficiencies. To this end, the open access materials available in the Educational Informatics Network (EBA), an online education platform operated by the General Directorate of Innovation and Education Technologies, were used. Six materials of different types available on the platform were examined separately by 3 researchers using the items of the scale. Items were then evaluated again.

Scores ranged from 1 to 5 (1= Shows the feature specified in the item at a very low level; 5=Shows the feature specified in the item at a very high level). Following the assessment, 4 researchers examined items which received highly varied scores and all scores were calculated again. Conformity among the assessments were calculated as .79, .75, .88, .91, .90, and .83 for “English 9”, “Word group”, “Mathematical tools”, “Mathematics”, “Structure in paragraph”, and “SanLab”, respectively. Some of the items were excluded from the scale in this step and the final scale consisting of 60 items was tested for content validity. The data collection process is visualized in Figure 1 for a better understanding.
Experts were consulted to examine the content validity of the scale. Experts were asked to assess the items of the scale in terms of compliance with theory, feasibility, and observability, and the content validity of the items were analysed through content validity ratios and indices known as Lawshe technique. This technique consists of six phases (Lawshe, 1975). (Figure 2)

1. To this end, instructional activity statements, which are thought to represent the reflections of the behaviourist, cognitive, and constructivist learning approaches, were formed.

2. Experts were asked their opinions to determine the learning approaches that the statements represent.

3. Based on the expert opinions, statements were revised and the necessary adjustments were made. (70 items)

4. Different six EBA materials were examined by using these items in order to clearly determine the observability of the items in a learning environment or material and complete the deficiencies.

5. Six materials were examined separately by 3 researchers using the items of the scale. Items were then evaluated again. (60 items)

6. The content validity of the simplified scale of Lawshe technique was calculated.

Figure 1. Data collection process

Content Validity

Experts were consulted to examine the content validity of the scale. Experts were asked to assess the items of the scale in terms of compliance with theory, feasibility, and observability, and the content validity of the items were analysed through content validity ratios and indices known as Lawshe technique. This technique consists of six phases (Lawshe, 1975). (Figure 2)
Scoring of the Scale

This 5-point Likert type scale was composed of three sub-dimensions consisting of 20 items each. There were 20 items representing the behaviourist, cognitive, and constructivist learning theories. Thus, the minimum score to be obtained from each sub-dimension was 20 while the maximum score was 100. The theoretical basis of the learning environment and material was determined to be the sub-dimension with the highest score. A calculation of a total score for the whole scale was not made.

Findings

Twenty-six experts from the field were chosen to test the content validity of the scale. Prospective scale forms were prepared and expert opinions were received online. The items were categorized as “Necessary (N) – the item measures the targeted structure”, “Useful/Unnecessary (U/U) – the item is associated with the structure but is unnecessary”, and “Unnecessary (U) – the item does not measure the targeted structure”. After this categorization, content validity ratios of the items were obtained. According to Lawshe (1975), the content validity ratio (CVR) is obtained by deducting 1 from the ratio of the number of the experts categorizing the item as “Necessary” to the half of the number of the experts expressing opinions on the item.

\[CVR = \frac{NGN}{2} - 1 \] (Equation 1)

CVRs of the items were obtained through Equation 1. While the items whose CVRs were found to be 0 and negative were eliminated first, the items with positive CVRs were tested for significance. While significance values of the items with positive CVRs are calculated, content validity criterion (CVC) of the items are determined. While cumulative normal distribution was used to determine the CVC, the criteria having the significance level of .05 were expressed with the values shown in Table 1 for ease of calculation (Veneziano and Hooper, 1997). According to this table, values concerning the number of experts represent the significance values of the items as well.

The content validity index (CVI) of the scale was obtained from the total CVR means of the items which had a significance level of .05 and were included in the final scale. In addition, the CVIs of the factors were obtained by taking the CVRs of the items included in the factors. CVRs and CVIs expressing the compliance of the scale with theory as well as its feasibility, and observability are given in Appendix 1. Item 2 (p>.05) did not meet the
validity criteria in terms of feasibility within the scope of the items considered as indicators of the behaviourist learning approach. As for the items representing the cognitive learning understanding, Item 25 had a lower value in terms of compliance with theory. Other items of the scale had adequate content validity values in all aspects (compliance with theory, feasibility, and observability). The content validity indices of the sub-dimensions of the scale were .78 (p<.05), .87 (p<.05), and .85 (p<.05) in behaviourism, cognitive understanding, and constructivism, respectively, in terms of compliance with theory. In terms of the feasibility of the feature expressed in the item, CVIs were .84 (p<.05), .88 (p<.05), and .85 (p<.05) for behaviourism, cognitive understanding, and constructivism, respectively. CVIs for observability, which assesses whether the feature expressed in the item can be observed in the environment or material, were .89 (p<.05), .92 (p<.05), and .89 (p<.05) in behaviourism, cognitive understanding, and constructivism, respectively. The overall CVIs of the scale were .81 (p<.05), .85 (p<.05), and .88 (p<.05) for compliance with theory, feasibility, and observability, respectively. Based on the validity of the calculated CVI values of the scale, problematic items were corrected and retained. The final scale consisted of 60 items with 20 items for each learning theory (Appendix 1).

Discussion and Conclusion

In the present study, a set of agreed criteria was developed to enable the development and examination of online instructional environments and materials from the perspective of learning theories.

It is thought that the criteria set obtained in this study will be useful in examining existing instructional environments and materials or developing new environments and materials. As a platform where instructional materials and environments produced by teachers in Turkey are shared, the EBA is expected to support the production of materials and environments of high quality and to guide teachers in the development of new materials and environments. Otherwise, especially when the education system is considered, the resulting products may not be acceptable or personal criteria will stand out in the development and assessment of these products. The scale developed within the scope of this study might ensure consistency and increase the quality of the products.

The design of an instructional process, environment, or material should rest on the explanations of learning theories concerning what learning is and how it takes place. As stated above, an instructional environment or material can explain and justify itself in terms of its processes and results only with the learning theory or understanding on which it is based. Seels and Glasgow (1990: 3-4) explained this requirement by stating that, “Instructional design is the process of the systematic development of instructional practices, which pave the way for qualified learning, based on education and learning theories. Education cannot be coincidental, it requires well-designed processes and it should generate observable outputs”. Furthermore, “the duty of the instructional designers and instructors is to put the learning and education principles into practices for instructional materials and activities” (Smith and Ragan, 1993: 12).

Reflecting the learning theories into instructional processes and transforming them into instructional practices are considerably challenging. Thus, the theories’ learning explanations and practices should be distinguished (Hung, 2001). How and when are the education targets determined, how is the content formed, how are the instructional activities organized, and how and when is learning tested according to the learning theory taken as the basis? Determining the overall reflection of the answers of these questions on an online learning environment or material might be a second challenge. This study was conducted to support instructional designers by helping them overcome such challenges and ensuring compliance between learning theory and instructional practice. Clarity to be achieved with respect to the reflections of the theories on instructional materials or environments via practices might be useful in developing new materials as well as improving the existing ones.
Öğrenme Kuramlarının Çevrimiçi Öğretim Ortamlarında ve Materyallerinde Uygulanması: Bir Ölçütler Takımı Geliştirme Çalışması

Giriş

Öğretim tasarımı, nitelikli öğretmeler gerçekleştirilmesi sağlayan öğretimsel düzeneklerin, öğrenme ve öğretme kuramlarından yararlanmaları sistematis olarak oluşturulması sürecidir. Öğretim rastlantılarla bırakılamaz, iyi düzenlenmiş süreçler gerektirir (Seels ve Glasgow, 1990: 3-4). O halde diyebiliriz ki, istenilrlen sonuçlar veren öğretim etkinlikleri düzenlemek, öğrenmenin ne olduğu ve nasıl gerçekleştiği ile ilgili açıklamaların ne kadar dikkate alındığını ziyade önemlidir. Bu çerçevede bu çalışma, öğrenme kuramlarının öğretim uygulamalarına nasıl dönüştürebileceği sorusunu doğrultusunda gerçekleştirilmiştir. Çalışma çevrimiçi öğretim ortam ya da materyalleri içeriğinde ve etkileşim dinamikleri esasında ele alınmıştır.

Davranışci Öğrenme Kuramları

Davranışci öğrenme kuramlarına göre öğrenme, spesifik çevresel bir uyarıcıya uyun tepkinin verilmesidir (Ertmer ve Newby, 2013). Gözlemlenbilir davranışın biçiminde ya da sırlığında bir düşüş meydana geldiğinde, öğrenme gerçekleşmesi demektir (Schunk, 2014). Davranışci kuramlar öğrencilerin mevcut bilgi yapılarıyla ya da zihinsel süreçleriyle ilgilenmemeler. Öğretim hedeflerinde açık ve net bir biçimde belirtilen gözlemlenebilir davranışlarla üretilen üzerine odaklımlar. Bu bakımdan davranış yanışımları öğrenmede, öğretnin başarı bir şekilde tamamlanması ve bu hedeflerde ulaşılabilmesi adına hedef davranışların kazanılması için sırre bir makine mantığı ile tüm aşamalarının bir şekilde tamamlanması ve planlanması gerekir (Mechlova ve Malcik, 2012; Reed, 2012; Tennyson, 2010).

Davranışci bir yaklaşımda öğrenci, uyarıcı ile tepki arasında görülüşü bulunur ve güvenilir bir bağlantı ile görülebilir ve davranışı ile tepkiye verilecek ödül/ceza aile veya Malcik, 2012; Deubel, 2003; Schunk, 2014). Öğrenci davranışının uyarıcı-tepki biçimindeki ilgileme, öğrencinin davranışının uygulanması üzerinden bir odaklanır. Bu bakımdan davranış yanışımları öğrenmede, öğrencinin başarı bir şekilde tamamlanması ve bu hedeflerde ulaşılabilmesi adına hedef davranışların kazanılması için sırre bir makine mantığı ile tüm aşamalarının bir şekilde tamamlanması ve planlanması gerekir (Mechlova ve Malcik, 2012; Reed, 2012; Tennyson, 2010).

Davranışci bir yaklaşımda öğrenci, uyarıcı ile tepki arasında görülüşü bulunur ve güvenilir bir bağlantı olabilir ve davranış yanışımları öğrenmede, öğrencinin başarı bir şekilde tamamlanması ve bu hedeflerde ulaşılabilmesi adına hedef davranışların kazanılması için sırre bir makine mantığı ile tüm aşamalarının bir şekilde tamamlanması ve planlanması gerekir (Mechlova ve Malcik, 2012; Reed, 2012; Tennyson, 2010).

Davranışci bir yaklaşımda öğrenci, uyarıcı ile tepki arasında görülüşü bulunur ve güvenilir bir bağlantı olabilir ve davranış yanışımları öğrenmede, öğrencinin başarı bir şekilde tamamlanması ve bu hedeflerde ulaşılabilmesi adına hedef davranışların kazanılması için sırre bir makine mantığı ile tüm aşamalarının bir şekilde tamamlanması ve planlanması gerekir (Mechlova ve Malcik, 2012; Reed, 2012; Tennyson, 2010).

Davranışci bir yaklaşımda öğrenci, uyarıcı ile tepki arasında görülüşü bulunur ve güvenilir bir bağlantı olabilir ve davranış yanışımları öğrenmede, öğrencinin başarı bir şekilde tamamlanması ve bu hedeflerde ulaşılabilmesi adına hedef davranışların kazanılması için sırre bir makine mantığı ile tüm aşamalarının bir şekilde tamamlanması ve planlanması gerekir (Mechlova ve Malcik, 2012; Reed, 2012; Tennyson, 2010).

Davranışci bir yaklaşımda öğrenci, uyarıcı ile tepki arasında görülüşü bulunur ve güvenilir bir bağlantı olabilir ve davranış yanışımları öğrenmede, öğrencinin başarı bir şekilde tamamlanması ve bu hedeflerde ulaşılabilmesi adına hedef davranışların kazanılması için sırre bir makine mantığı ile tüm aşamalarının bir şekilde tamamlanması ve planlanması gerekir (Mechlova ve Malcik, 2012; Reed, 2012; Tennyson, 2010).

Davranışci bir yaklaşımda öğrenci, uyarıcı ile tepki arasında görülüşü bulunur ve güvenilir bir bağlantı olabilir ve davranış yanışımları öğrenmede, öğrencinin başarı bir şekilde tamamlanması ve bu hedeflerde ulaşılabilmesi adına hedef davranışların kazanılması için sırre bir makine mantığı ile tüm aşamalarının bir şekilde tamamlanması ve planlanması gerekir (Mechlova ve Malcik, 2012; Reed, 2012; Tennyson, 2010).

Davranışci bir yaklaşımda öğrenci, uyarıcı ile tepki arasında görülüşü bulunur ve güvenilir bir bağlantı olabilir ve davranış yanışımları öğrenmede, öğrencinin başarı bir şekilde tamamlanması ve bu hedeflerde ulaşılabilmesi adına hedef davranışların kazanılması için sırre bir makine mantığı ile tüm aşamalarının bir şekilde tamamlanması ve planlanması gerekir (Mechlova ve Malcik, 2012; Reed, 2012; Tennyson, 2010).

Davranışci bir yaklaşımda öğrenci, uyarıcı ile tepki arasında görülüşü bulunur ve güvenilir bir bağlantı olabilir ve davranış yanışımları öğrenmede, öğrencinin başarı bir şekilde tamamlanması ve bu hedeflerde ulaşılabilmesi adına hedef davranışların kazanılması için sırre bir makine mantığı ile tüm aşamalarının bir şekilde tamamlanması ve planlanması gerekir (Mechlova ve Malcik, 2012; Reed, 2012; Tennyson, 2010).

Davranışci bir yaklaşımda öğrenci, uyarıcı ile tepki arasında görülüşü bulunur ve güvenilir bir bağlantı olabilir ve davranış yanışımları öğrenmede, öğrencinin başarı bir şekilde tamamlanması ve bu hedeflerde ulaşılabilmesi adına hedef davranışların kazanılması için sırre bir makine mantığı ile tüm aşamalarının bir şekilde tamamlanması ve planlanması gerekir (Mechlova ve Malcik, 2012; Reed, 2012; Tennyson, 2010).

Davranışci bir yaklaşımda öğrenci, uyarıcı ile tepki arasında görülüşü bulunur ve güvenilir bir bağlantı olabilir ve davranış yanışımları öğrenmede, öğrencinin başarı bir şekilde tamamlanması ve bu hedeflerde ulaşılabilmesi adına hedef davranışların kazanılması için sırre bir makine mantığı ile tüm aşamalarının bir şekilde tamamlanması ve planlanması gerekir (Mechlova ve Malcik, 2012; Reed, 2012; Tennyson, 2010).

Davranışci bir yaklaşımda öğrenci, uyarıcı ile tepki arasında görülüşü bulunur ve güvenilir bir bağlantı olabilir ve davranış yanışımları öğrenmede, öğrencinin başarı bir şekilde tamamlanması ve bu hedeflerde ulaşılabilmesi adına hedef davranışların kazanılması için sırre bir makine mantığı ile tüm aşamalarının bir şekilde tamamlanması ve planlanması gerekir (Mechlova ve Malcik, 2012; Reed, 2012; Tennyson, 2010).

Davranışci bir yaklaşımda öğrenci, uyarıcı ile tepki arasında görülüşü bulunur ve güvenilir bir bağlantı olabilir ve davranış yanışımları öğrenmede, öğrencinin başarı bir şekilde tamamlanması ve bu hedeflerde ulaşılabilmesi adına hedef davranışların kazanılması için sırre bir makine mantığı ile tüm aşamalarının bir şekilde tamamlanması ve planlanması gerekir (Mechlova ve Malcik, 2012; Reed, 2012; Tennyson, 2010).

Davranışci bir yaklaşımda öğrenci, uyarıcı ile tepki arasında görülüşü bulunur ve güvenilir bir bağlantı olabilir ve davranış yanışımları öğrenmede, öğrencinin başarı bir şekilde tamamlanması ve bu hedeflerde ulaşılabilmesi adına hedef davranışların kazanılması için sırre bir makine mantığı ile tüm aşamalarının bir şekilde tamamlanması ve planlanması gerekir (Mechlova ve Malcik, 2012; Reed, 2012; Tennyson, 2010).

Davranışci bir yaklaşımda öğrenci, uyarıcı ile tepki arasında görülüşü bulunur ve güvenilir bir bağlantı olabilir ve davranış yanışımları öğrenmede, öğrencinin başarı bir şekilde tamamlanması ve bu hedeflerde ulaşılabilmesi adına hedef davranışların kazanılması için sırre bir makine mantığı ile tüm aşamalarının bir şekilde tamamlanması ve planlanması gerekir (Mechlova ve Malcik, 2012; Reed, 2012; Tennyson, 2010).

Davranışci bir yaklaşımda öğrenci, uyarıcı ile tepki arasında görülüşü bulunur ve güvenilir bir bağlantı olabilir ve davranış yanışımları öğrenmede, öğrencinin başarı bir şekilde tamamlanması ve bu hedeflerde ulaşılabilmesi adına hedef davranışların kazanılması için sırre bir makine mantığı ile tüm aşamalarının bir şekilde tamamlanması ve planlanması gerekir (Mechlova ve Malcik, 2012; Reed, 2012; Tennyson, 2010).

Davranışci bir yaklaşımda öğrenci, uyarıcı ile tepki arasında görülüşü bulunur ve güvenilir bir bağlantı olabilir ve davranış yanışımları öğrenmede, öğrencinin başarı bir şekilde tamamlanması ve bu hedeflerde ulaşılabilmesi adına hedef davranışların kazanılması için sırre bir makine mantığı ile tüm aşamalarının bir şekilde tamamlanması ve planlanması gerekir (Mechlova ve Malcik, 2012; Reed, 2012; Tennyson, 2010).

Davranışci bir yaklaşımda öğrencinin tepki bağını oluşturmaktır (Ertmer ve Newby, 2016). Bundan dolayı tepki net olmalıdır. Ödül ve ceza davranış yanışımlarının uygulanması için ceyan net olmalıdır. Ödül ve ceza yapmak öğrencilerin ne olduğu ve nasıl gerçekleştiği ile ilgili açıklamaların ne kadar dikkate alındığını ziyade önemlidir. Bu çerçevede bu çalışma, öğrenme kuramlarının öğretim uygulamalarına nasıl dönüştürebileceği sorusunu doğrultusunda gerçekleştirilmiştir. Çalışma çevrimiçi öğretim ortam ya da materyalleri içeriğinde ve etkileşim dinamikleri esasında ele alınmıştır.
öğreniminin başlarından gelen içsel güdüleme mekanizmasının çalışmasını sağlar. Ceza ise değişimi gerektiren, yıllar olarak teşkide yer verilir (Kay ve Kibble, 2016; Aliakbari ve diğerleri, 2015). Öğrenme süreçinde, dönüt olarak verilebilecek somut ödüllerin ve cezaların yanında, gerçekleştilen davranışın sadece doğru ya da yanlış olduğuna yönelik bilgilendirici dönüt verilebilir (Rizzi ve Ketabi, 2015; Russell, 2009; Burton, Moore ve Magliaro, 2004).

Davranışçı bir öğrenme ortamında ya da materyalinde öğrenci kendisine sunulan uygulara tepki gösterir. Öğrencinin tepkisinde de ödül veya ceza yolu ile dönüt verilir. Öğrenci öğrenme ortamında kendi davranış göstermesi, buna yönelik dönüt almakta ve kendi hızında öğrenmektedir. Dolayısıyla davranışçı öğrenme kuramlarına dayalı öğrenme ortam ya da materyalleri birebir öğrenmeyi esas almaktadır, bileşen olarak öğrenmeye göre düzenlenmektedir (Bognar, 2016; Kay ve Kibble, 2016; Wu ve diğerleri, 2012; Burton ve arkadaşları, 2004). Ayrıca Bloom’da tam öğrenme kurumunda bu ilkeyi, tam başı öncü olarak ele almıştır (Wong ve Kang, 2012; Ghani, Hamim ve Ishak, 2006).

Öğrenme görevleri ya da içerikler her zaman bir seferde öğrenilecek kadar kolay olmamaktadır. Bunun aşamak için Skinner (1986), küçük adımlar ilkesini önermektedir. Davranışın zor veya karşılık olması durumunda içerik, en küçük alt birimlere bölünerek verilekte ve sıralanmış bir şekilde uygulanmaktadır (Clemons, 2006; Mergel, 1998; Mishra, 2002). Sıralanan öğrenme görevlerin biri başları ile tamamlanmadan diğerine geçmeye de için verilmemektedir (Bognar, 2016; Hassan, 2011). Bazı araştırmacılar davranışçı yaklaşımda gözlemlenen davranışları gerçekleştirme görevlerinin basit karmasığa ve kolayland zor doğru sıralanması gerektiğiğini belirtmişlerdir (Deubel, 2003; Akyüz, 2005; Skinner, 2003). Skinner’in programlı öğretim sürecinin küçük adımlar ilkesinin, basit karmasığa ya da kolayland zorlun ile ilgili嘻iteşebilir (Akgün ve Akgün, 2011; Özel, 2005; Yaşar, 2009).

Davranışçı bir öğretim ortamında veya materyalinde öğretim, değerlendirmeyle entegre bir biçimde gerçekleşir (Tamim ve Grant, 2016). Sürek, istekli değerlendirmenin davranışların gerçekleştirmesi üzerine odaklanmaktadır; öğrencinin görevi yani uygulama yapması, yapmaması ise başarsızlık olarak değerlendirilmektedir. Öğrenme süreçleri öğrenicideki yenilikleri ve gelişimleri odaklanmaktadır (Mechlova ve Malcik, 2012; Reed, 2012). Davranışçı bir öğretim ortamında de, materyalinde sıralı görevlerin her biri bir sonrakına uyanırsa olmaz, öğrenci, öğretilen metinle ilgili, etiket veren öğrencinin bir uyanırsa öğrencinin öğrenmemesi de, öğrenmenin ancak öğrendikleri ilerleyebileceği söylenebilir. Dolayısıyla süreç sonunda bir değerlendirme etkinliği düzenlenirse ki, bunun bıçak engel yoktur, buna sadece hatırlamayı yokaladır. Yanı öğretimde kullanılan sorunun, öğrenciye de, öğrencinin kendi başarı ile ilgili yönlendirici dönütde verilebilir (Rizi ve Ketabi, 2015; Russell, 2009; Burton, Moore ve Magliaro, 2004). Öğrencinin, öğrenme öğretmenin uygulanan somut ödüllerin ve cezaların, gerçekleştirilen davranışın sadece doğru ya da yanlış olduğuna yönelik dönütde verilebilir (Kay ve Kibble, 2016; Wu ve diğerleri, 2012; Burton ve arkadaşları, 2004). Ayrıca Bloom’da tam öğrenme kurumunda bu ilkeyi, tam başı öncü olarak ele almıştır (Wong ve Kang, 2012; Ghani, Hamim ve Ishak, 2006).

Bilişsel Öğrenme Kuramları

Bilişsel öğrenme kuramları, öğrenneyi uyanırmış tepki bağlı ile açıklanan davranış yaklaşımlı aksine, öğrencinin zihininde neler olup bittiği ile ilgilenmektedir. Bilişsel öğrenme kuramlarına göre bilgi ve becerinin elde edilmesi ve kullanılmaları dikkate alınarak, alq, hafıza, problem çözme, üst biliş gibi temel biliş süreçleri işler (Schunk, 2014). Öğrenme; bilginin alınması, kavramsallaştırma, kodlanması, dönüştürülmesi, organize edilmesi, tekrarlanması, depolanması ve yeniden kullanılması süreç olarak tamamlanmaktadır (Schunk, 2014; Ertmer ve Newby, 2013; Mechlova ve Malcik, 2012; Zhou, 2004). Bilişsel öğrenme kuramları öğrençiyi bilginin aktif işleyeni olarak görmekte, süreç içerisinde bilgiyi nasıl işleyişdeki ile ilgilenmektedirler (Kay ve Kibble, 2016). Bilgi ve becerileri, etkinlikler ve beceri adımları ile ilgilenmektedirler (Clemons, 2006; Mergel, 1998). Bu yolla, öğrenmenin aksine, öğrenenin öğrenmeye biraktığı bilgiyi yeniden kullanmakta, öğrenme ise bu yapılandırdaki değişşimler olarak açıklanmaktadır (Cognitive Approaches to Learning; 2008; Zhou, 2004). Bu kuramlar, öğrencinin anlamlı bilgi düzeylerini artıran, geliştirme ve kapasitelerine katkıda bulunan bilişsel aktiviteleri açıklamaya çalışmaktadır (Gillani ve O’Guinn, 2004; Dobozví ve Danziel, 2016).
destekler nitelikte, Kay ve Kibble (2016) hazırlamış oldukları bilişsel öğrenme ortamında öğrencilerin ön bilgilerini belirlemek adına ön-test uygulamalarıdır. Öğrenme sürecinin başlangıcında öğrencilerin ön bilgilerinin belirlenmesinin dışında bazı yazarlar tarafından öğrenmeyi kolyaşılartarak yönergeler ya da ipuçları ile öğrenmeye gizlülüleyici açıklamalar bulunmaktadır da önerilemektedirler (Mergel, 1998). Ertmer ve Newby (2013)'da öğretim sürecinde öğretimSEL açıklamalar, gösterimler, açıklayıcı örnekler gibi yarhberlik edici unsurların olmadığını öne içinemini vurgulamaktadır.

Öğretim sürecinin başında öğrenen özelliklerinin belirlenmesi öğrencilerin geçmiş bilgilerini belirlemeyi yanında öğrencişi sürec içerisinde uygun öğrenme materyallerine yönlendirmek adına da önemlidir. Öğrençinin süreç başında belirlenen özelliklerine uymadığı durumlarda, öğrencilerin öğrenmeyi kolaylaştıracak yönergeler ya da ipuçları ile öğre(npere bu süreçte belirtilmiştir (A& Kay ve Kibble, 2016). Öğrencilerin öğrenmeye yönlendiricileri, öğrencilerin öğrenmeye yönelik düzenlemeleri ve uygulamaları da örnekler (Mergel, 1998). Öğrenme sürecinin sürecinde örenicisi merkezdir ve öğrencilerin öğrenmeye uyanımlarını belirlemektedir. Gagne (1965), bu konuya ilişkin olarak öğrenme ortamlarındaki öğrencinin öğrenmeye yönelik temelini oluştururunu bilgileri, temelini oluşturan bilgilerle iliskili olarak sunulması beklenir. Öğretim ve öğrenme sürecinde etkinlikler, öğrencileri bellii eklentiler giderce daha karmaşık olaylarla düştünmeye ve analiz etmeye teşvik eder (Krause, Bochner, ve Duchesne, 2003). Bilişsel öğrenme kuramlarını temel alan bazı uygulamalarda bu ilkenin uygulandığı görülmektedir (Kay ve Kibble, 2016; Wu ve diğerleri, 2012).

Bilişsel öğrenme kuramlarında bilgi ve becerileri edinilmesi, ilkel ilgilerin ve şemaların oluşturulması için yardımcı bazı öğretimsel ilkeler; bilinenden bilinmeyene, kolaydan zoraya, basitten karmaşığa vb. ilkelerdirler (Tamim ve Grant, 2016; Edgar, 2012; Krause, Bochner ve Duchesne, 2003; Romero ve diğerleri, 2000; Mergel, 1998). Bilişsel bir öğrenme sürecinin, öğrencilerin halihazırda varolan şemalarından yola kıraç şemaların geliştiği anlayışına dayanıg düşüncülür; karmaşık bilgilerin, temelini oluşturan bilgilerle iliskili olarak sunulması beklenir. Öğretim ve öğrenme sürecinde etkinlikler, öğrencileri bellii eklentiler giderce daha karmaşık olaylarla düştünmeye ve analiz etmeye teşvik eder (Krause, Bochner, ve Duchesne, 2003). Bilişsel öğrenme kuramlarını temel alan bazı uygulamalarda bu ilkenin uygulandığı görülmektedir (Kay ve Kibble, 2016; Wu ve diğerleri, 2012).

Bilişsel öğrenme ortamlarında bilgi ve becerilerin elde edilmesi, ilkel ilgilerin ve şemaların oluşturulması için yardımcı bazı öğretimsel ilkeler; bilinenden bilinmeyene, kolaydan zoraya, basitten karmaşığa vb. ilkelerdirler (Tamim ve Grant, 2016; Edgar, 2012; Krause, Bochner ve Duchesne, 2003; Romero ve diğerleri, 2000; Mergel, 1998). Bilişsel bir öğrenme sürecinin, öğrencilerin halihazırda varolan şemalarından yola kıraç şemaların geliştiği anlayışına dayanıg düşüncülür; karmaşık bilgilerin, temelini oluşturan bilgilerle iliskili olarak sunulması beklenir. Öğretim ve öğrenme sürecinde etkinlikler, öğrencileri bellii eklentiler giderce daha karmaşık olaylarla düştünmeye ve analiz etmeye teşvik eder (Krause, Bochner, ve Duchesne, 2003). Bilişsel öğrenme kuramlarını temel alan bazı uygulamalarda bu ilkenin uygulandığı görülmektedir (Kay ve Kibble, 2016; Wu ve diğerleri, 2012).

Bilişsel öğrenme ortamlarında bilgi ve becerilerin elde edilmesi, ilkel ilgilerin ve şemaların oluşturulması için yardımcı bazı öğretimsel ilkeler; bilinenden bilinmeyene, kolaydan zoraya, basitten karmaşığa vb. ilkelerdirler (Tamim ve Grant, 2016; Edgar, 2012; Krause, Bochner ve Duchesne, 2003; Romero ve diğerleri, 2000; Mergel, 1998). Bilişsel bir öğrenme sürecinin, öğrencilerin halihazırda varolan şemalarından yola kıraç şemaların geliştiği anlayışına dayanıg düşüncülür; karmaşık bilgilerin, temelini oluşturan bilgilerle iliskili olarak sunulması beklenir. Öğretim ve öğrenme sürecinde etkinlikler, öğrencileri bellii eklentiler giderce daha karmaşık olaylarla düştünmeye ve analiz etmeye teşvik eder (Krause, Bochner, ve Duchesne, 2003). Bilişsel öğrenme kuramlarını temel alan bazı uygulamalarda bu ilkenin uygulandığı görülmektedir (Kay ve Kibble, 2016; Wu ve diğerleri, 2012).

Yapılandırmacı Öğrenme Kuramları

Yapılandırmacı öğrenme yaklaşımında öğrenme, bireylerin öznel bilgi ve anlam oluşturma sürecidir (Girvan ve Savage, 2010). Birey her süreçte kendi bilgisi oluşturur, yapılandırır (Mechlova ve Malcik, 2012; Sen, 2011). Başka bir ifadeyle yapılandırmacı görüş, sanansin yapilandırıcı olduğu fiyki üzerine temellenir. Dolayısıyla yapılandırmacı bacak açılarına göre bir öğretim materyali ya da ortam, bireyin yapılandırmasına sahılmak için değil; onun yapılandırmacı doğasına uygun ortamlar oluşturulmak üzere düzenlenmişdir (Jonassen, 1994). Yapilandırmacı öğrenme kuramlarında, bireyen öğrenmeyi gerçekçi öğrenme ortamlarında, sosyal ortamlarda çoklu bacak açılarını değerlendirecek, kendi öz farkındalığı kullanarak gerçekleştirdirgini savunmaktadır (Reed, 2013).
Yapılandırıcı bir öğrenme ortamında veya materyaldede paylaşımış ve rollerini belirlemek için önemli olduğunu belirtmiştir. Yapılandırıcı bir öğretim sürecinde öğrencenin ifadesinin öğrenme sürecine yön verdiğini ve sınırlardırıldığı düşünülmektedir. Yapılandırıcı kuramların esnek, bütüncül, değişken bir yapıdadır. Bu süreçte bilgiyi herkes paylaşabilir. Bu bakımdan yapılandırıcı bir öğrenme ortamında veya materyaldede paylaşımış ve rollerini belirlemek için önemli olduğunu belirtmiştir (Aqda, Hamidi ve Ghorbandordinejad, 2011).

Yapılandırıcı bir öğrenme ortamı da materyalinin tasarlandığında araştırımlar, bir bağlam içerisinde duruma özgü öğrenmeye dikkat çekmektedirler (McKenna ve Laycock, 2004). Buna dayanarak öğrencile kazandırılacak istenen bilgi ve becerileri bir durum, olay veya öyküye gömülü biçimde sunulması önerilebilir. McKenna ve Laycock (2004) otantik bir öğrenme bağlamı için durum tabanlı senaryolar oluşturulması gerektiğini ve bu senaryoların bilginin kazanılması ve zihinsel modellerin oluşturulması için önemi olduğunu belirtmiştir. Öğrencinin kişisel deneyim yaşaması durumlar altında bilgiyi, becerilerini ve öykü senaryolarını gerekli olabildiğini belirtmiştir (Sen, 2011). Ayrıca Sen (2011) yapıştırıcı eğitimin ortamının bir problemin, sorunun ya da prenenin çözümine odaklandığı belirtmiştir. Bu bakımdan yapılandırıcı bir öğretim süreçinde öğrencilere, öğrencilerin materyaldeki rolü olan; sık sık gerçekle düzeyini belirlemek için değil, öğrencilerin öğrenmelerini değerlendirdikleri bir role sahip olabildikleri (Aqda, Hamidi ve Ghorbandordinejad, 2011; Karagiorgi ve Symeou, 2005; Jonassen, 1994). Bu yaklaşımı da bilgi ve becerinin sunulan bağlamlardaki transferine odaklanır (Ertmer ve Newby, 2013).

Yapılandırıcı bir öğrenme ortamında öğrencilere birbirleriley yaygınlaşan, çok büyük açısından faydalananması ve bu bağış açılarından faydalanmak, günahkarlara, biyolojik, psikolojik ve sosyal çevresi de önemlilere bir yere sahiptir (Khalil ve Elkrid, 2016; Jonassen, Cennusca ve Iona, 2007). McKenna ve Laycock (2004) öğrencilere öğrenmelerinin otantik ortamlarda çerçevesi gerekli olduğunun, öğrencinin, bireyin işlevini herhangi bir sürümlü arasında belirlemesini ve bu rolü ifade etmeleri gerektiğini belirtmiştir. Karagiorgi ve Symeou (2005) bu durumda etkilemekti ilişkisi tabii bir öğretim ortamında yapılan öğrencilerin bilgiyi, işlevini ve bu senaryoların bilginin kazanılması ve zihinsel modelle birleştirmesi için önemi olduğunu belirtmiştir. Yapılandırıcı bir öğrenme ortamında görev ve rolleri olan, bireyin anlamlarını yansıtan ve etkileşim içerisinde bulunma gibi davranışları desteklemesi gerektiğini belirtmiştir. Bazı araştırmalar yapıştırıcı eğitimin bir öğrenme ortamı ya da materyalde öğrencinin bireylerinin anlamlarını, bilginin ve bireyinankları açılarından ve kendi rolü açılarından analiz etmelerini ve kendi birizi cihazları açılarından analiz etmelerini gerektirmektedir (Aqda, Hamidi ve Ghorbandordinejad, 2011; Karagiorgi ve Symeou, 2005; McKenna ve Laycock, 2004). Bu yaklaşımı da bilgi ve becerinin sunulan bağlamlardaki transferine odaklanır (Ertmer ve Newby, 2013).

Yapılandırıcı bir öğrenme süreçinin değerlendirilme aşaması ise davranış ve bilişsel kuramdan neredeyse tamamen farklılaşmaktadır. Yapılandırıcı bir değerlendirme sürecinde öğrencinin, öğrencinin davranışları ve bilginin düzeyini değerlendirme için değil, öğrencinin öğrenmelerini desteklemek, öz-farkındalığı geliştirmek için gerekli olan; sık sık gerçekleştirmesi gereken bir davranış aracını olarak görülür (Hassan, 2011). Yapılandırıcı bir değerlendirme öğretnin, akranın ve öğrencinin ortak görüşüne dayalı bir birdeğerlendirme değil, tüm süreçte dikkate alınır. Amaç öğrencilerin edindiği davranışları veya bilgilerin birleştirmesi değil, yönetim süreçlerini belirlemektir (Karagiorgi ve Symeou, 2005). Değerlendirme, karışıma verilecek veri ayırt etmek için değil, gelişim verisi elde etmek için yapılır (Erdem ve Ekici, 2016).

2012; Lainema ve Makkonen, 2003; Jonassen, 1994). Yapılandırıcı bir öğretim sürecinde bireyler, kendi öğrenmelerine ilişkin karar vermek, kontrolü sorumlulüğuna adil olmalar, her türlü düşüncelerinin saygıyla karşılanmayı, ihtiyaçları, amaçları, inançları ve diğer kişisel deneyimleri ile bilgileri seçip ele alabildikleri ve kendi öğrenmelerini değerlendirikleri bir rol sahiptirler (Bay, Kaya ve Gündoğdu, 2010; Zhou, 2004). Öğrenme süreçinde öğrencenin ifadesinin öğrenme sürecine yön verdiğini ve sınırları olduğunu düşündüktedir. Yapılandırıcı bir öğretim sürecinde öğrencenin, öğrenme süreçinin değerlendirilmesi için önemi olduğunu belirtmiştir. Yapılandırıcı bir öğrenme ortamında ya da materyaldede paylaşımış ve rollerini belirlemek için önemli olduğunu belirtmiştir (Aqda, Hamidi ve Ghorbandordinejad, 2011).
sorular geçerlik koşulları ile birlikte verilirken, cevaplama aşamasında bu koşulların dikkate alınması beklenmektedir ve cevaplar geçerlik koşullarına göre değişiklik içermektedir (Erdem ve Ekici, 2016; Sen, 2011). Dolayısıyla yapılandırıcı öğrenme kuramlarına dayalı bir ortama çoktan seçmeli, tek doğru cevaplı soru sorulmamalıdır. Bireyin kendi anlamanın önemli olduğunu savunuyorsak, tek doğrunun beklenmesi bu görüşle çelişecektir.

Görüldüğü gibi; bir açıklayıcı teoriyi uygulamak onun oluşturulmasından çok daha güçtür ve eğitimcilerin, açıklayıcı teorileri uygulamanın yollarını arayarak yine Kerratin teorileri geliştirmek için çalışmaların çok daha uygun olur (Pogrow, 1996 Akt. Reigeluth 1999: 15) yönünde bazı görüşleri ilerlemiştir. Zira bir öğretim ortamı da da süreci, öğrenenin maruz bırakıldığı süreçler ve sonuçları açısından kendisini anlayabilecek öğrenme kuram ve da anlayışıyla açıklayabilir, mesgullaştırabilir. Bu anlayışla bu çalışmada, bir çevrimiçi öğrenme materyal ya da ortamın düzenlenmesi, mevcut materyal ya da ortamları, dayandığı öğrenme anlayışını yordamak üzere incelemeyi olanaklı kılar bazı ölçütler geliştirilmiştir.

Yöntem
Bu çalışma kapsamında, öğretim materyallerinin ve ortamlarının hangi öğrenme kuramına yakın düştüklerini belirlemek ya da belli bir öğrenme kuramına dayalı öğrenme ortamı tasarlamak için ölçütler takımı işlevi görecek bir ölçek geliştirilmiş.

Verilerin Toplanması
Çalışmanın amacı doğrultusunda; davranışçı, bilişsel ve yapılandırıcı öğrenme yaklaşımlarının öğretimine yansıma biçimlerini temsil ettiği düşünülen öğretim etkinlikleri oluşturulmuş. Öğretim etkinlikleri hangi öğrenme anlayışını temsil ettiği konusunda uzman görüşüne başvurulmuştur. Uzman görüşleri doğrultusunda ölçütler üzerinde yeniden çalışılmış, gerekli düzenlemeler yapılmıştır. Böylece 5'li likert tipinde 70 maddeden oluşan bir ölçek elde edilmiştir.

1-5 (1=Maddede belirtilen özelliği çok düşük düzeyde gösteriyor, 5=Maddede belirtilen özelliği çok güçlü biçimde gösteriyor) arasında puanlanarak gerçekleştirilen değerlendirmenin ardından, 4 araştırmacı allıkta 4 farklı maddeleri tekrar incelemiş ve tüm puanlamalar yeniden yapılmıştır. Değerlendirmeler arası uyum düzeyi incelenmiştir, “İngilizce 9” uygulaması için .79, “Kelime grubu” uygulaması için .75, “Matematik araçları” uygulaması için .88, “Matematik” uygulaması için .91, “Paragrafta yapı” uygulaması için .90, “SanLab” uygulaması için .83 olarak hesaplanmıştır. Bu süreçte bazı maddeler de ölçekte çıkarılmış, 60 maddelik yeni ölçek kapsam geçerlilik oranlarının belirlemek üzere elde edilmiştir. Verilerin toplanması süreci daha anlasılır olması için Şekil 1'de görselleştirilmiştir.
Öğrenme Kuramlarının Uygulanması

1. Davranışçı, bilisel ve yapılandırıcı öğrenme yaklaşımlarının öğretme yansıma biçimlerini temsil ettiği düşünen öğretim etkinliği ifadelerinin oluşturulması

2. Oluşturulan ifadelerin hangi öğrenme anlayışını temsil ettiği konusunda uzman görüşüne başvurulması

3. Uzman görüşleri doğrultusunda gerekli düzenlemelerin yapılması (70 madde)

4. Ölçekte yer alan maddelerin bir öğrenme ortam ya da materyalinde net olarak gözlenebilirliğini belirlemek ve eksik noktaları tamamlamak için 6 EBA materyali 70 maddeye göre incelemiştir.

5. 6 materyalin, 3 araştırmacı tarafından ve ölçek maddeleri kullanılarak ayrı ayrı gerçekleştirildikleri incelemeye, Ölçek maddeleri tekrar değerlendirilmiştir. (60 madde)

6. Lawshe tekniği temel alınarak ölçeğin kapsam geçerliliği hesabılanmıştır.

Şekil 1. Veri toplanması süreci

Kapsam Geçerliliği

Ölçeğin kapsam geçerliliğini incelemek amacı ile uzman görüşlerine başvurulmuştur. Uzmanlardan kurama uyguluk, uygulanabilirlik ve gözlemlenebilirlik durumları bakımından incelemeleri istenen maddelerin kapsam geçerliliği, Lawshe tekniği olarak bilinen kapsam geçerlik oranları ve indeksleri ile analiz edilmiştir. Bu yaklaşım 6 aşamadan oluşmaktadır (Lawshe, 1975). (Şekil 2)
Şekil 2. Lawshe tekniğinin altı aşaması

Ölçegen Puanlanması

Ölçeğin 5'li likert biçiminde hazırlanmıştır ve her biri 20 maddeden oluşan üç alt boyutta toplam 60 maddeden oluşmaktadır. Davranışçı, bilisel ve yapilandırıcı öğrenme kuramlarını yansıyan 20'li maddelerin olduğunu belirtiyoruz. Dolayısıyla her alt boyutta alınabilecek minimum puan 20 ve maksimum puan 100'dür. Öğrenme ortamı da materyalinin kuramsal temeli, daha yüksek puan aldığı alt boyuta göre belirlenmektedir. Ölçeğin bütünü için bir toplam puan hesaplama durumu söz konusu değildir.

Bulgular

Ölçeğin kapsam geçeriğinin sağlanmasında bu çerçeve temel alınarak 26 kişilik ilgili alanın uzmanları belirlenmiştir. Daha sonrasında aday ölçek formları hazırlanmış ve çevrim içi olarak uzmanlardan görüşler elde edilmişdir. Maddeler uzmanlar tarafından “madde hedeflenen yapıyı ölçüyor” yani “Gerekli (G’li)”, “madde yapı ile ilişkili ancak gereksiz” yani “Yararlı/Gereksiz (Y’li/G’siz)” ve “madde hedeflenen yapıyı ölçmez” yani “Gereksiz (G’siz)” olarak kategorize edilmiştir. Bu kategorize işleminden sonra maddelerin kapsam geçeriğinin elde edilmiştir. Lawshe (1975)’ye göre kapsam geçeriğinin oranları (KGO), herhangi bir maddeye ilişkin “Gerekli” görüşünü belirten uzman sayılarının maddeye ilişkin görüş belirtirken toplam uzman sayısının yarısı oranının 1 eksiği ile elde edilmiştir.

\[
\text{KGO} = \frac{NGN}{2} - 1 \quad \text{(Eşitlik 1)}
\]

Maddelerin KGO’ları Eşitlik 1 ile verilen ifade yardımı ile elde edilmiştir. KGO değerleri 0 ve negatif değer olan maddeler ise elenen maddeler olurken, pozitif olan maddeler için anlamlılıkları test edilmiştir. KGO pozitif olan maddelerin anlamılıkları değerlendirilirken, maddelerin kapsam geçeriğinin ölçütleri (KGÖ) belirlenir. KGÖ belirlmek için birikilmiş normal dağılımdan yararlanılırken, hesaplama kolaylığı açısından .05 anlamlılık düzeyinde KGÖ’ler Tablo 1’dede gösterilen değerlerle ifade edilmiştir (Veneziano ve Hooper, 1997). Bu tabloya göre uzman sayısına ilişkin değerler, aynı zamanda maddelerin anlamılık değerlerini ifade etmektedir.

Uzman Sayısı	Minimum Değer	Uzman Sayısı	Minimum Değer
5	0.99	13	0.54
6	0.99	14	0.51
7	0.99	15	0.49
8	0.78	20	0.42
9	0.75	25	0.37
10	0.62	30	0.33
11	0.59	35	0.31
12	0.56	40+	0.29

Tablo 1 referans alınarak bu çalışmada, 26 uzmanın görüş belirttiği maddeler için .36 ve 19 uzmanın görüş belirttiği Madde57 ve Madde58 için .43 geçerli KGÖ olarak alınmıştır. Ölçeğin kapsam geçeriğindeki indeksleri ise yine Tablo 1’de belirtilen değerlerle karşılaştırılarak belirlenmiştir.
Öğrenme Kuramlarının Uygulanması

Ölçeğin kapsam içerik indeksi (KGİ) .05 anlamılık düzeyinde anlamlı olan ve ölçüte niyehi olanlar aralığında bulunan maddelerin KGO dikkate alınarak elde edilmiş. Ölçeğin kurama uygulanmasına, anlaşılabilirliği, uygulanabilirliği ve gözenebilirliği belirten KGO’ları ve KGI’leri Tablo 2’de belirtilmiştir.

Ek 2 incelendiğinde; davranışçı öğrenme anlayışının göstergesi olan maddelerin kapsam geçerlik indeksi (KGİ) .05 anlamlı olmaktadır, ve ölçekte nihai olarak yer alacak olan maddelerin toplam KGO ortalamaları üzerinden elde edilmiş. Yine faktörlerin KGI’leri, faktörlerde bulunan maddelerin KGO dikkate alınarak elde edilmiş. Ölçeğin kurama uygulanmasına, anlaşılabilirliği, uygulanabilirliği ve gözenebilirliği belirten KGO’ları ve KGI’leri Tablo 2’de belirtilmiştir.

Çalışmada, çevrimiçi öğretim ortamlarının ve materyallerinin öğrenme kuramları perspektifinden geliştirilmesini ve incelenmesini olanaklı kılacak, üzerinde uzlaşılmış bir ölçüt takımı oluşturulmuştur. Çalışmada elde edilen ölçütler takımıının hem mevcut öğretim ortam ve materyallerinin incelenmesinde hem de yeni ortam ve materyallerin geliştirilmesinde yararl olacaktır (kurama uygulanabilirlik, gözenebilirlik) yeterli kapsam içerik değerleri almaktadır. Ölçeğin alt boyutlarına göre kapsam içerik indeksleri; kurama uygulanıcılık .78 (p<.05), bilişsel anlayışta .87 (p<.05) ve yapılandırıcılıkta .85 (p<.05) değer almıştır. Maddede ifade edilen özellikin uygulanabilirliği indirijkeninde .84 (p<.05), bilişsel anlayışta .88 (p<.05) ve yapılandırıcılıkta .85 (p<.05) olarak hesaplanmıştır. Maddede ifade edilen özellikin ortamın da materyalde görülebilirliğini ifade eden gözenebilirliği indirijkeninde .89 (p<.05), bilişsel anlayış için .92 (p<.05) ve yapılandırıcılık için .89 (p<.05) düzeyindedir. Ölçeğin genel KGİ kurama uygulanıcılık için .81 (.p<.05), uygulanabilirlik için .85 (p<.05) ve gözenebilirlik için .88 (p<.05)'dir. Ölçeğin hesaplanan KGI değerlerinin genel KGI kurma uygunluğu için .81 (p<.05), uygulanabilirliği için .85 (p<.05) ve gözenebilirliği için .88 (p<.05)'dir. Bu çalışma kapsamında geliştirilen ölçek tutarlılığı sağlama ve niteliği geliştirmeye kilavuz olmaktadır.
References

Akgün, M., & Akgün, I.H. (2011). Dünyada ve Türkiye’de bilgisayar destekli öğretimin tarihi gelişimi. [Historical development of computer assisted instruction in the world and Turkey], 2nd International Conference on New Trends in Education and Their Implications, 27-29 Aralık 2011, Antalya-Türkiye.

Aliakbari, F., Parvin, N., Heidari, M., & Haghani, F. (2015). Learning theories application in nursing education. Journal of Education and Health Promotion, 4(2), 3-11. doi: 10.4103/2277-9531.151867

Alzaghoul, A. F. (2012). The implication of the learning theories on implementing e-learning courses. The Research Bulletin of Jordan ACM, 11(11), 27-30.

Aqda, M. F., Hamidi, F., & Ghorbandordinejad, F. (2011). The impact of constructivist and cognitive distance instructional design on the learner’s creativity. Procedia Computer Science, 3, 260-265. doi:10.1016/j.procs.2010.12.044

Aydın. C.H. (2000). Öğrenme ve öğretme kuramlarının eğitim iletişimine katkısı. [Contribution of learning and teaching theories to educational communication] Kurgu Dergisi, 17, 183-197.

Bay, E., Kaya, H. İ., & Gündoğdu, K. (2010). Demokratik yapılandırmacı öğrenme ortamı ölçeği geliştirilmesi. [Developing a democratic constructivist learning environment scale] E-Journal of New World Science Academy Educational Sciences, 5(2), 646-664.

Boghossian, P.(2006). Behaviorism, constructivism, and socratic pedagogy. Educational Philosophy and Theory, 38(6), 713-722.

Bogimar, B. (2016). Theoretical backgrounds of e-learning. Hrvatski časopis za obrazovanje, 18(1), 225-256.

Burton, J. K., Moore, D. M., & Magliaro, S. G. (2004). Behaviorism and instructional technology. In D.H. Jonassen (Ed.) Handbook of Research For Educational Communications and Technology, (2nd ed. pp. 3-36). Mahwah, NJ: Lawrence Erlbaum.

Cennamo, K. S., Abell, S.K., & Chung, M-L. (1996). A” Layers of Negotiation” Model for Designing Constructivist Learning Materials. Educational Technology, 36(4), 39-48.

Clemons, S. A. (2006). Constructivism pedagogy drives redevelopment of CAD course: a case study: Rather than feeding information to the student through direct instruction, the teacher is maintaining the role of facilitator in the learning process. The Technology Teacher, 65(5), 19-22.

Cognitive Approaches to Learning, (2008). Definition. http://www.sparkplug9.com/etec512/sparkplug9.com/etec512/2008/09/28/definition/index.html adresinden 08.05.2016 tarihinde erişilmiştir.

Cunningham, D., & Duffy, T. (1996). Constructivism: Implications for the design and delivery of instruction. Handbook of research for educational communications and technology, 170-198.

Deubel, P. (2003). An investigation of behaviorist and cognitive approaches to instructional multimedia design. Journal of educational multimedia and hypermedia, 12(1), 63-90.

Dobozy, E., & Dalziel, J. (2016). Transdisciplinary pedagogical templates and their potential for adaptive reuse. Journal of Interactive Media in Education, 8(1), 1-11. doi: http://dx.doi.org/10.5334/jime.402

Edgar, D. W. (2012). Learning Theories and Historical Events Affecting Instructional Design in Education. Sage Open, 2(4), 1-9.

Erdem, M. & Ekici, M. (2016). Yapılandırmacı Değerlendirme ve Çevrimiçi Öğrenme Ortamları. A. İşman, H. F., Odağaş, B. Akkoyunlu (Ed.) Eğitim Teknolojileri Okumaları 2016. (32. Bölüm s: 575-592). TOJET-The Turkish Online Journal of Educational Technology.

Ertmer, P. A., & Newby, T. J. (2013). Behaviorism, cognitivism, constructivism: Comparing critical features from an instructional design perspective. Performance Improvement Quarterly, 26(2), 43-71.
Ertmer, P.A., & Newby, T.J. (2016). *Learning theory and technology*. In The Wiley Handbook of Learning Technology (Eds. N. Rushby & D.W. Surry)(p. 58-76). Chichester: John Wiley & Sons.

Gagne, R. M. (1965). The analysis of instructional objectives for the design of instruction. *Teaching machines and programmed learning II: Data and directions*, 21-65.

Ghani, N. A., Hamim, N., & Ishak, N. I. (2006). Applying mastery learning model in developing e-tuition science for primary school students. *Malaysian Online Journal of Instructional Technology*, 3(2), 43-49.

Hassan, O. A.(2011). Learning theories and assessment methodologies—an engineering educational perspective. *European Journal of Engineering Education*, 36(4), 327-339.

Hean, S., Craddock, D., & O’Halloran, C. (2009). Learning theories and interprofessional education: A user’s guide. *Learning in Health and Social Care*, 8(4), 250-262. doi: 10.1111/j.1473-6861.2009.00227.x.

Hung, D. (2001). Theories of learning and computer-mediated instructional technologies. *Educational Media International*, 38(4), 281-287.

Johnson, G. M. (2014). The ecology of interactive learning environments: Situating traditional theory. *Interactive Learning Environments*, 22(3), 298-308. doi: http://dx.doi.org/10.1080/10494820.2011.649768

Jonassen, D. H. (1994). Thinking technology: Toward a constructivist design model. *Educational Technology*, 34(4), 34-37.

Kanjug, I., & Chaijaroen, S. (2012). The design of web-based learning environments enhancing mental model construction. Procedia - Social and Behavioral Sciences, 46, 3134-3140.

Karagiorgi, Y., & Symeou, L. (2005). Translating constructivism into instructional design: *Potential and limitations*. *Educational Technology ve Society*, 8(1), 17-27.

Kay, D., ve Kibble, J. (2016). Learning theories 101: Application to everyday teaching and scholarship. *Advances in Physiology Education*, 40, 17-25.

Khalil, M.K., & Elkhider, I.A. (2016). Applying learning theories and instructional design models for effective instruction. *Advances in Psyiology Education*, 40, 147-156. doi: 10.1152/advan.00138.2015.

Krause, K. L., Bochner, S., & Duchesne, S. (2003). *Educational psychology for learning and teaching*. Victoria: Thompson.

Lainema, T., & Makkonen, P. (2003). Applying constructivist approach to educational business games: Case REALGAME. *Simulation ve gaming. 34(1), 131-149.

Lawshe, C.H. (1975). A quantitative approach to content validity. *Personnel Psychology*, 28(4), 563-575.

McKenna, P., & Laycock, B. (2004). Constructivist or instructivist: Pedagogical concepts practically applied to a computer learning environment. *ACM SIGCSE Bulletin*, 36(3), 166-170.

Mechlova, E., & Malcik, M. (2012, November). ICT in changes of learning theories. *2012 IEEE 10th International Conference on Emerging eLearning Technologies ve Applications (ICETA)*, 253-262.

Mergel, B. (1998). Instructional design ve learning theory. http://etad.usask.ca/802papers/mergel/brenda.htm adresinden 1 Mayıs 2017 tarihinde erişilmiştir.

Mishra, S.(2002). A design framework for online learning environments. *British Journal of Educational Technology*, 33(4), 493-496.

Mödritscher, F. (2006). E-learning theories in practice: A comparison of three methods. *Journal of Universal Science and Technology of Learning*, 28, 3-18.

Özbek, R. (2005). Eğitim programlarının bireyselleştirilmesinin sebepleri. *Elektronik Sosyal Bilimler Dergisi*, 3(11), 66-83.

Reed, C. S. (2012). *Learning theories applied to teaching technology: constructivism versus behavioral theory for instructing multimedia software programs*. Dissertation of Doctoral of Philosophy. Capella University, Harold Abel School of Social and Behavioral Sciences, Minneapolis.
Reigeluth, C. M. (1999). What is instructional-design theory and how is it changing. Instructional-design theories and models: A new paradigm of instructional theory, 2, 5-29.

Romero, V.L., Berger, D.E., Healy, M.R., & Aberson, C.L. (2000). Using cognitive learning theory to design effective on-line statistics tutorials. Behavior Research Methods, Instruments, & Computers, 32(2), 246-249.

Schunk, D. H. (2014). Öğrenme teorileri: Eğitimsel bir bakışla (M. Şahin, Çev.). Ankara: Nobel Yayıncılık.

Seels, B., & Glasgow, Z. (1990). Exercises in instructional design. Columbus: Merrill Publishing Company.

Semerci, Ç. (2001). Olusturmacılar kuramına göre ölçme ve değerlendirme. [Measurement and evaluation according to the theory of constructivism] Kuram ve Uygulamada Eğitim Bilimleri, 1(2), 429-440.

Sen, A. (2011). Examining the evolution of instructional technology from the perspective of its foundational literature. Doctoral Dissertation. Northern Illinois University, Department of Educational Technology, Research and Assessment. DeKalb, Illinois, U.S.

Skinner, B. F. (1986). Programmed instruction revisited. Phi Delta Kappan, 68(2), 10-103.

Smith, P. L., & Ragan, T. J. (1993). Instructional Design. New York: Macmillan.

Tamim, S. R., & Grant, M. M. (2016). Exploring Instructional Strategies and Learning Theoretical Foundations of eHealth and mHealth Education Interventions. Health promotion practice, 1524839916646715.

Tennyson, R. D. (2010). Historical reflection on learning theories and instructional design. Contemporary Educational Technology, 1(1), 1-16.

Tinker, R. (1997). Thinking About Science. (Elektronik Sürüm).Concord: The Concord Consortium Educational Technology Lab, M.A.

Vural, M. (2005). İlköğretim okulu ders programları ve öğretim klavuzları (1-5. sınıflar). [Primary school curriculum and instruction manuals] Erzurum: Yakutije Yayncilik.

Wong, B. S., & Kang, L. (2012). Mastery learning in the context of university education. The Journal of the NUS Teaching Academy, 2, 206-22.

Wu, W.-H., Hsiao, H.-C., Wu, P.-L., Lin, C.-H., & Huang, S.-H. (2012). Investigating the learning-theory foundations of game-based learning: A meta-analysis. Journal of Computer Assisted Learning, 28, 265-279.

Yaşar, Ş. (1989). Yabancı dil öğretiminde çağdaş bir eğitim teknolojisi yaklaşımı: Programlı öğretim. [A contemporary educational technology approach in foreign language teaching] Eğitim ve Bilim, 13(74), 19-26.

Zhou, L. (2004). Influence of learning theories on research about computer technology applications in elementary classrooms. Doctoral Dissertation. Indiana University, The School of Graduate Studies and Research Professional Studies in Education, Pennsylvania, U.S.
CRITERIA

CRITERIA	Compliance with Theory	Feasibility	Observability
BEHAVIOURIST INSTRUCTIONAL PRACTICES			
1. Learning outputs to be obtained at the end of the process are clearly expressed.	22.00 0.69*	17.00 0.31	21.00 0.62*
2. Process is initiated by a specific context-free information.	23.00 0.77*	23.00 0.77*	24.00 0.85*
3. All individuals are provided with the same information in the same manner.	24.00 0.85*	22.00 0.69*	23.00 0.77*
4. Progress is designed to be “dependent” on the reactions of the students.	16.00 0.23	20.00 0.54*	24.00 0.85*
5. Education is largely built on the question (stimulant)-answer (reaction) relation.	21.00 0.62*	24.00 0.85*	23.00 0.77*
6. Questions test the information provided.	21.00 0.62*	23.00 0.77*	24.00 0.85*
7. Questions with a single correct answer and few distracters are used.	21.00 0.62*	25.00 0.92*	25.00 0.92*
8. Questions are repeated without any changes until the student finds the correct answer.	19.00 0.46*	24.00 0.85*	24.00 0.85*
9. The student is not expected to make an explanation for the answer given or choice made in the questions.	25.00 0.92*	25.00 0.92*	26.00 1.00*
10. Tasks are designed in a linear order and passing to the next task is not allowed without the completion of the previous ones.	20.00 0.54*	23.00 0.77*	25.00 0.92*
11. Activities are designed in line with the principle of self-study of the student.	22.00 0.69*	22.00 0.69*	25.00 0.92*
12. Activities are designed in a manner which enables the students to progress in their individual speeds.	26.00 1.00*	26.00 1.00*	26.00 1.00*
13. Numerous mechanical repetitions are made for permanent learning.	25.00 0.92*	25.00 0.92*	25.00 0.92*
14. Rewards/punishments are given to the students for their answers.	25.00 0.92*	26.00 1.00*	26.00 1.00*
15. Conformity to constant features such as age and sex is respected in the selection of the given reward or punishment.	25.00 0.92*	26.00 1.00*	26.00 1.00*
16. Content is offered in the form of small meaningful sub-units.	20.00 0.54*	21.00 0.62*	23.00 0.77*
17. Assessment is integrated with the learning process.	25.00 0.92*	26.00 1.00*	26.00 1.00*
18. All students are assessed with the same criteria.	26.00 1.00*	25.00 0.92*	25.00 0.92*
19. Assessment is system-centred.	24.00 0.85*	24.00 0.85*	24.00 0.85*
20. In the assessment sections designed independently from the education, assessment questions are same or very similar with the ones used in education.	26.00 1.00*	24.00 0.85*	23.00 0.77*
FACTOR CVI	0.79*	0.85*	0.89*
COGNITIVE INSTRUCTIONAL PRACTICES			
21. Process is initiated with an attention-grabbing stimulant.	26.00 1.00*	26.00 1.00*	26.00 1.00*
22. Learning outputs that the students are expected to gain at the end of the process are clearly expressed.	24.00 0.85*	25.00 0.92*	26.00 1.00*
23. Activities aiming at recalling the previous learnings are held at the beginning of the process.	26.00 1.00*	26.00 1.00*	25.00 0.92*
24. Tools/tests aiming at determining the features of the students (previous knowledge, learning styles etc.) are offered.

25. Process is independent from the student reactions.

26. Content is designed in a meaningful manner and relations among the information are emphasized.

27. Content contains questions enabling association with the daily life.

28. Questions with a single correct answer and many distracters or open-ended questions are included.

29. Questions are offered in different forms in the repetitive tests for the learning.

30. Design allows the student to progress and move as wished during the process.

31. The pace of the process is designed by taking the time that the student might need for processing and coding the information into consideration.

32. Design allows the students to adjust their progresses in line with their own learning speeds.

33. Techniques supporting the permanence of learning are implemented or recommended.

34. Incentive explanations as to where the information learned in the environment can be used are included.

35. The opportunity is provided for repetition with related but different examples for permanent learning.

36. Different materials or activities are used in line with the learning features of the students (learning preference or style).

37. Individual characteristics of the students are determined and students are recommended to prefer the materials or activities suitable for their characteristics.

38. Explanations facilitating the association of the new information with the previous knowledge are used.

39. Assessment is not integrated with the learning process, and a separate assessment activity is arranged.

40. Students are assessed with the same criteria in terms of their levels of attaining the objectives.

FACTOR	CVI		
CONSTRUCTIVIST INSTRUCTIONAL PRACTICES	0.91*	0.93*	0.92*

41. Process enables the student to follow different paths depending on the preferences.	25.00	0.92*	24.00	0.85*	24.00	0.85*
42. In the process, topics or problem areas to be elaborated and tasks to be carried out are given as options.	22.00	0.69*	25.00	0.92*	25.00	0.92*
43. Process is initiated with a question or problem given together with the context.	26.00	1.00*	26.00	1.00*	26.00	1.00*
44. Cases and real life tasks are presented/recommended to emphasize student-student interaction.	25.00	0.92*	23.00	0.77*	23.00	0.77*
45. As a principle, education is carried out in a deductive manner with an emphasis on the meaning relation between the whole and the part.	18.00	0.38*	23.00	0.77*	24.00	0.85*
46. Education is task-based and designed in a manner to include tasks which require going beyond the environment or material.	22.00	0.69*	24.00	0.85*	25.00	0.92*
47. Solutions of the questions or problems are given or asked under identified validity conditions (context).	19.00	0.46*	20.00	0.54*	21.00	0.62*
Öğrenme Kuramlarının Uygulanması

48.	Tools facilitating the interaction of the student with the others are offered.	26.00	1.00*	26.00	1.00*	26.00	1.00*
49.	Incentives embedded in the context are emphasized and highlighted.	26.00	1.00*	24.00	0.85*	24.00	0.85*
50.	Different activities which may satisfy the preferences of the students are offered.	25.00	0.92*	24.00	0.85*	24.00	0.85*
51.	In the case of a content offered in different forms, the selection of the form is left to the discretion of the student.	25.00	0.92*	25.00	0.92*	26.00	1.00*
52.	Environment provides the student with real life experiences.	25.00	0.92*	25.00	0.92*	26.00	1.00*
53.	On a topic, different and sometimes contradictory information are given together.	24.00	0.85*	24.00	0.85*	25.00	0.92*
54.	Content is offered embedded in a situation, event or story or in the form of a problem.	25.00	0.92*	25.00	0.92*	25.00	0.92*
55.	Assessment is not designed as a separate activity; it is integrated with learning.	26.00	1.00*	25.00	0.92*	26.00	1.00*
56.	In order to obtain data for self-assessment, reflective thinking questions requiring the student to answer by considering the entirety of his learning process are directed.	25.00	0.92*	25.00	0.92*	26.00	1.00*
57.	Assessment is designed in a manner to use the opinions of the student (self-assessment), peers and teacher (system) together.	18.00	0.89*	23.00	0.77*	24.00	0.85*
58.	Design allows the assessment of all performance data in the process along with the targeted learnings.	18.00	0.89*	23.00	0.77*	24.00	0.85*
59.	Tools enabling the determination of different performance levels are used in the process.	24.00	0.85*	24.00	0.85*	24.00	0.85*
60.	Students are allowed to choose the performance expression tool based on their preferences.	23.00	0.77*	22.00	0.69*	24.00	0.85*
	FACTOR CVI						
		0.85*	0.85*	0.89*			

Ek – 2.

Ölçütler	Kurama uygunluk	Uygulanabilirlik	Güzellebilirlik			
DAVRANIŞI ÖĞRETİMSEL DÜZENLEMELER	N	KGO	N	KGO	N	KGO
1. Onelikle, süreç sonunda elde edilecek öğrenme çıktıları, açık ve net bir şekilde ifade edilmiştir.	26.00	1.00*	24.00	0.85*	23.00	0.77*
2. Süreç, bağlamdan bağımsız spesifik bir bilgiyle başlatılmıştır.	22.00	0.69*	17.00	0.31	21.00	0.62*
3. Tüm bireyleere aynı bilgiler aynı yollarla sunulmuştur.	23.00	0.77*	23.00	0.77*	24.00	0.85*
4. İlerleme, öğrencilerin tepkilerine "bağmlı" olarak gerçekleşecek biçimde tasarlanmıştır.	24.00	0.85*	22.00	0.69*	23.00	0.77*
5. Öğretim, büyük ölçüde soru (soru-dava) cevap (tepsi) ikilisi üzerine kurulmuştur.	16.00	0.23	20.00	0.54*	24.00	0.85*
6. Sorular, verilen bilgileri yoklayacak düzeyde hazırlanmıştır.	21.00	0.62*	24.00	0.85*	23.00	0.77*
7. Tek doğru cevabı olan, çözdürücü soru sayısının soruların orandında tekrar edilmiştir.	21.00	0.62*	25.00	0.92*	25.00	0.92*
8. Sorular, öğrencinin doğru cevabı buluncaya kadar, üzerinde değişiklik yapılmaksızın tekrar edilmiştir.	21.00	0.62*	25.00	0.92*	25.00	0.92*
9. Öğrencinin sorulara verdiği cevaba ya da yaptığı seçime açıklama getirmesi beklenmemektedir.	25.00	0.92*	25.00	0.92*	26.00	1.00*
10. Görevler doğrusal bir sıralamada tasarlanmış ve bir aşamadaki görev tamamlanmadan dijgerine geçmeye izin verilmemiştir.

11. Etkinlikliler öğrencinin tek başına çalışmasını esasına göre düzenlenmiştir.

12. Etkinlikliler öğrencilerin kendi bireysel hızlarına göre ilerlemelerine olanak verecek biçimde düzenlenmiştir.

13. Kalıcı öğrenmeler için çok ve mekanik tekrara yer verilmiştir.

14. Öğrencilere yanıtlarının ardından ödül/ceza verilmiştir.

15. Verilen ödül ya da cezanın seçiminde yaş, cinsiyet gibi değişmez özelliklere uygunluk gözetilmiştir.

16. İçerik küçük, anlamlı biçimde sunulmuştur.

17. Değerlendirme öğrenme süreciyle bütünleşiktir.

18. Tüm öğrenciler aynı ölçütlerle değerlendirilecek biçimde tasarlanmıştır.

19. Değerlendirme sistem merkezlidir.

20. Öğretimden ayrı tasarlanmış değerlendirme bölümlerinde ölçme soruları, öğretimde kullanılan soruların aynı ya da çok benzeridir.

21. Süreç dikkat çekici hale getirilmiş bir uyarıcıyla başlatılmıştır.

22. Süreç sonunda öğrencilerin kazanması beklenen öğrenme çıktıları açık ve net bir şekilde belirtilmiştir.

23. Sürecin başında önceki öğrenmeleri hatırlatıcı etkinliklere yer verilmiştir.

24. Öğrencilerin özelliklerini (ön bilgiler, öğrenme stilleri vb.) belirlemeye dönük araçlar/testler sunulmuştur.

25. Sürecin ilerlemesi öğrenci tepkilerinden bağımsızdır.

26. İçerik, anlamlı biçimde örgütlenmiş, bilgiler arasındaki ilişkiler vurgulanmıştır.

27. İçerikte, günlük yaşamla ilişkilendirmeyi sağlayacak nitelikte sorulara yer verilmiştir.

28. Çeldirici sayısı fazla ya da açık uçlu ve tek doğru cevaplı sorulara yer verilmiştir.

29. Öğrenmelerin tekrarlı yoklamalarında sorular, farklı formlarda sunulmuştur.

30. Öğrencinin süreçte istediği gibi ilerlemesine, hareket etmesine izin veren bir tasarım yapılmıştır.

31. Sürecin akış hızı, öğrencinin bilgiyi işleyp kodlaması için ihtiyaç duyabileceği zaman dikkate alınarak tasarlanmıştır.

32. Öğrencilerin ilerlemelerini kendi öğrenme hızlarına göre ayarlamalarına izin verecek biçimde tasarlanmıştır.

33. Öğrenmelerin kalkışını destekleyen teknikler uygulanmış ya da önerilmştir.

34. Ortamda öğretimlerin neredede kullanılacağını ifade eden güdüleyici açıklamalara yer verilmiştir.

35. Kalıcı öğrenme için sürefe içinde, ilgili farklı örneklerde tekrar olanağı yaratılmıştır.

FACTOR CVI	0.79*	0.85*	0.89*			
BİLİŞSEL ÖĞRETİMSEL DÜZENLEMLER	N	KGO	N	KGO	N	KGO
21. Süreç dikkat çekici hale getirilmiş bir uyarıcıyla başlatılmıştır.	26.00	1.00*	26.00	1.00*	26.00	1.00*
22. Süreç sonunda öğrencilere kazanması beklenen öğrenme çıktıları açık ve net bir şekilde belirtilmiştir.	24.00	0.85*	25.00	0.92*	26.00	1.00*
23. Sürecin başında önceki öğrenmeleri hatırlatıcı etkinliklere yer verilmiştir.	26.00	1.00*	26.00	1.00*	25.00	0.92*
24. Öğrencilerin özelliklerini (ön bilgiler, öğrenme stilleri vb.) belirlemeye dönük araçlar/testler sunulmuştur.	26.00	1.00*	26.00	1.00*	22.00	0.69*
25. Sürecin ilerlemesi öğrenci tepkilerinden bağımsızdır.	26.00	1.00*	26.00	1.00*	24.00	0.85*
26. İçerik, anlamlı biçimde örgütlenmiş, bilgiler arasındaki ilişkiler vurgulanmıştır.	25.00	0.92*	24.00	0.85*	26.00	1.00*
27. İçerikte, günlük yaşamla ilişkilendirilebilecek nitelikte sorulara yer verilmiştir.	26.00	1.00*	26.00	1.00*	24.00	0.85*
28. Çeldirici sayısı fazla ya da açık uçlu ve tek doğru cevaplı sorulara yer verilmiştir.	23.00	0.77*	24.00	0.85*	26.00	1.00*
29. Öğrenmelerin tekrarlı yoklamalarında sorular, farklı formlarda sunulmuştur.	25.00	0.92*	26.00	1.00*	23.00	0.77*
30. Öğrencinin süreçte istediği gibi ilerlemesine, hareket etmesine izin veren bir tasarım yapılmıştır.	24.00	0.85*	23.00	0.77*	23.00	0.77*
31. Sürecin akış hızı, öğrencinin bilgiyi işleyp kodlaması için ihtiyaç duyabileceği zaman dikkate alınarak tasarlanmıştır.	25.00	0.92*	25.00	0.92*	25.00	0.92*
32. Öğrencilerin ilerlemelerini kendi öğrenme hızlarına göre ayarlamalarına izin verecek biçimde tasarlanmıştır.	24.00	0.85*	25.00	0.92*	26.00	1.00*
33. Öğrenmelerin kalkışını destekleyen teknikler uygulanmış ya da önerilmştir.	26.00	1.00*	26.00	1.00*	26.00	1.00*
34. Ortamda öğretimlerin neredede kullanılacağını ifade eden güdüleyici açıklamalara yer verilmiştir.	26.00	1.00*	26.00	1.00*	26.00	1.00*
35. Kalıcı öğrenme için sürefe içinde, ilgili farklı örneklerde tekrar olanağı yaratılmıştır.	26.00	1.00*	26.00	1.00*	26.00	1.00*
36. Öğrencilerin öğrenme özelliklerine (öğrenme tercih ya da stili vb.) uygun farklı materyal ya da etkinliklere yer verilmiştir.	21.00 0.62* 21.00 0.62* 21.00 0.62*					
---	---	---	---			
37. Öğrencilere, bireysel özelliklerini belirleyip, özelliklerine uygun materyal ya da etkinliklere yönelimleri önerilmiştir.	24.00 0.85* 24.00 0.85* 24.00 0.85*					
38. Yeni bilgi ile önceden bilgiler arasında bağ kuran açıklamalar yer verilmiştir.	25.00 0.92* 26.00 1.00* 26.00 1.00*					
39. Değerlendirme öğrenme sürecine bütünleşik değildir, ayrı bir değerlendirme etkinliği düzenlenmiştir.	19.00 0.46* 19.00 0.46* 20.00 0.54*					
40. Öğrenciler, aynı ölçütlerle ve hedeflere ulaşma düzeyleri bakımından değerlendirilmiştir.	22.00 0.69* 23.00 0.77* 24.00 0.85*					

| FACTOR CVI | 0.91* 0.93* 0.92* |

| YAPILANDIRMACI ÖĞRETİMSEL DÜZENLEMELER |
|---|---|---|
| N | KGO | N | KGO | N | KGO |
| 41. Süreç öğrencilerin tercihlerine göre farklı yollar izleyebileceği yapıda düzenlenmiştir. | 25.00 0.92* 24.00 0.85* 24.00 0.85* |
| 42. Süreç üzerinde durulacak konu ya da problem alanları, gerçekleştirilecek görevler, seçeneğe olanak belirlenmiştir. | 22.00 0.69* 25.00 0.92* 25.00 0.92* |
| 43. Süreç bağlamıyla birlikte verilmiş bir soru ya da problemle başlatılmış. | 26.00 1.00* 26.00 1.00* 26.00 1.00* |
| 44. Öğrenci-öğrenci etkileşimine vurgu yapan örnek durumlar, ortam dışı, gerçek yaşam görevleri sunulmuş/önerilmiştir. | 25.00 0.92* 23.00 0.77* 23.00 0.77* |
| 45. Öğretim; ilke ile örnek, bütün ile parça arasındaki anlam ilişkisi vurgulanarak, tüm dengelim anlayışıyla düzenlenmiştir. | 18.00 0.38* 23.00 0.77* 24.00 0.85* |
| 46. Öğretim görev tabanlıdır ve ortamın ya da materyalin dışına çıkmayı gerektiren görevlere{j} göre seçilerek hazırlanmıştır. | 22.00 0.69* 24.00 0.85* 25.00 0.92* |
| 47. Soru ya da problemlerin çözümleri, tanımlanmış geçerlilik koşulları (bağlam) altında verilmiş ya da istenmemiştir. | 19.00 0.46* 20.00 0.54* 21.00 0.62* |
| 48. Öğrencinin diğerleriyle etkileşime girmesini kolaylaştırıcı araçlar sunulmuştur. | 26.00 1.00* 26.00 1.00* 26.00 1.00* |

51. Bağlama gömülü güdüleyiciler vurgulanarak öne çıkarılmıştır.	26.00 1.00* 24.00 0.85* 24.00 0.85*
52. Ortam öğrencilerin öğrenme tercihlerinin kullanıldığını gösteren dengeler sunulmuş.	25.00 0.92* 24.00 0.85* 24.00 0.85*
53. Öğrencilere, biraz birbirileyle çelişen bilgiler birlikte sunulmuştur.	24.00 0.85* 24.00 0.85* 25.00 0.92*
54. İçerik bir durum, olay ya da öyküye gömülmüştür.	25.00 0.92* 25.00 0.92* 25.00 0.92*
55. Değerlendirme, ayrı bir etkinlik olarak değil, öğrenmenin viewesi olarak tasarlanmıştır.	26.00 1.00* 25.00 0.92* 26.00 1.00*
56. Öğrenci-öğrenci etkileşimine vurgu yapan örnek durumlar, ortam dışı, gerçek yaşam görevleri sunulmuş/önerilmiştir.	25.00 0.92* 25.00 0.92* 26.00 1.00*

57. Değerlendirme, bireyin kendisinin (öz değerlerinin), arkadaşlar ve öğretmenlerin (sistemler) görüşlerini birlikte kullanılabilecek şekilde tasarlanmıştır.	18.00 0.89* 23.00 0.77* 24.00 0.85*
58. Sadece hedeflenen öğrenme hedefi, tüm süreçteki performans verilerini değerlendirebilecek bir tasarım gerçekleştirelimştir.	18.00 0.89* 23.00 0.77* 24.00 0.85*
59. Süreç farklı performans düzeyi belirleme araçlarına yer verilmiştir.	24.00 0.85* 24.00 0.85* 24.00 0.85*
60. Öğrencinin tercihine uygun performans ifade aracını seçmesine olanak sağlanmıştır.

FACTOR CVI	23.00	22.00	24.00	0.85*
	0.77*	0.69*	0.85*	