Clonal hematopoiesis, myeloid disorders and BAX-mutated myelopoiesis in patients receiving venetoclax for CLL

Blombery P, Lew TE, Dengler MA, Thompson ER, Lin VS, Chen X, Nguyen T, Panigrahi A, Handunnetti SM, Carney DA, Westerman DA, Tam CS, Adams JM, Wei AH, Huang DCS, Seymour JF, Roberts AW, Anderson MA

Supplementary Material

Supplementary Table 1 – Scoring system (adapted from Drake et al. British Journal of Haematology 1997) for cumulative exposure to prior lines of myelotoxic therapy

Toxicity score	Chemotherapeutic agent
0	Prednisolone, Dexamethasone
1	Vincristine, Vinblastine, Bleomycin, Alpha interferon, Mercaptopurine
2	Cyclophosphamide, Anthracyclines, Cisplatin, Etoposide, Fludarabine, Radiotherapy, Cladribine, Mitoxantrone
3	Chlorambucil, Procarbazine
4	Melphalan, Carmustine, Mechlorethamine, Lomustine, Bendamustine

Chemotherapeutic agents in bold were added, as they did not appear in the original scoring system. Each line of therapy was assigned as score by adding the component agents i.e. fludarabine-cyclophosphamide = 2 + 2 = 4

Supplementary Table 2 – Genes and regions targeted with unique molecular index-based next generation sequencing

Gene	Transcript	Targeted exons	Gene	Transcript	Targeted exons	Gene	Transcript	Targeted exons
ABL1	NM_007313.2	4-10	FOXO1	NM_002015.3	1	PIGA	NM_002641.3	All coding
ANKR2D26	NM_014915.2	5'UTR	FLT3	NM_004119.2	14, 15, 17, 20	PHF6	NM_01015877.1	7-10
ARAF	NM_001654.4	7,10,15	FYN	NM_002037.5	7	PLCG1	NM_002660.2	11
ASXL1	NM_015338.5	10,11,12	GATA1	NM_002049.3	2-6	PLCG2	NM_002661.3	16,19,20,24
BAK1	NM_011188.3	All coding	GATA2	NM_032638.4	All coding	RHOA	NM_001664.2	2
BAX	NM_138761.3	All coding	HAVCR2	NM_032782.3	All coding	RUNX1	NM_001754.4	All coding
BCL2	NM_000633.2	All coding	ID1	NM_002167.4	1.2	SETBP1	NM_015599.2	4
BCL2L1	NM_001191.2	All coding	ID2	NM_002168.2	4, 7	SF3B1	NM_012433.2	14-16
BIRC3	NM_001165.4	6-9	IDH2	NM_002168.2	4, 7	SH2B3	NM_005475.2	All coding
BRF1	NM_004333.4	15	IKZF1	NM_006060.4	All coding	SRSF2	NM_003016.4	1
BTK	NM_000061.2	11, 15, 16	IRAF	NM_002163.2	3	STAT3	NM_139276.2	6,13,15,18-21
CALR	NM_004343.3	9	JAK2	NM_004972.3	12, 13, 14, 16	STAT5B	NM_012664.3	16
CAV1L1	NM_002415.4	4-9,15,20	JAK3	NM_000215.3	11, 13, 15	STAT6	NM_001178078.1	10, 13, 16
CBL	NM_005188.3	8, 9	KIT	NM_002222.2	8, 10, 11, 17	TCF3	NM_00136139.2	17
CD274	NM_014143.3	All coding, 3'UTR	Kras	NM_033602.2	2-4	TET2	NM_001127208.2	All coding
CD79B	NM_000626.2	58	MAP2K1	NM_002755.3	2.3	TP53	NM_000546.5	All coding
CEBPA	NM_004364.3	1	MCL1	NM_021960.4	All coding	TDAF1	NM_006758.2	2.6
CSF3R	NM_156039.3	14, 17	MPL	NM_005373.2	All coding	XP01	NM_003400.3	15,16
CUXCR4	NM_003467.2	1	MYD88	NM_002468.4	4.5	ZRSR2	NM_005089.3	All coding
DDX41	NM_012222.2	All coding	NOTCH1	NM_017671.3	26-28,34,3'UTR			
DNMT3A	NM_002552.4	All coding	NPM1	NM_002520.6	11			
ETK1	NM_018638.4	3	NRAS	NM_002524.4	2-4			
EZH2	NM_004456.4	All coding	PDCD1LG2	NM_025239.3	All coding, 5'UTR			
Supplementary Table 3 – Clinical characteristics of patients with therapy-related myeloid neoplasm emergent on venetoclax (diagnosed during venetoclax therapy or after venetoclax discontinuation if cytopenias emerged during venetoclax therapy)

Patient	Sex	Age at VEN initiation	Prior treatments	Time from FCT to tMN diagnosis (years)	VEN dose	Time on VEN (months)	Time from VEN initiation to tMN (months)	Cytogenetics at tMN diagnosis*	Effect of VEN cessation	tMN treatment	Follow up post tMN (months)	Status
CLL69	M	66	CLB; FCR; ofatumumab	7	400 mg	14	6	NA	No improvement in cytopenias	Supportive care	8	Dead (sudden death)
CLL7	F	63	FCR	10	300 mg	58	15	Monosomy 2, monosomy 10, t(1;2), derived (1;9) chromosome, abn(5q), abn(6q), abn(8p), abn(12q), marker chromosome	NA (did not cease VEN) Spontaneous resolution	No directed MDS therapy	73	Alive
CLL30	M	66	CLB + R, FCR; CVP + R, R monotherapy	7	400 mg	11	22	#1: del(5q), t(5;15), #2: del(5q), abn(8p), abn(17p)	NA (ceased VEN prior to tMN diagnosis)	Supportive care	4	Dead (sepsis)
CLL80	M	73	CLB; CLB; FCR; FCR; FCR; duvelisib; ibrutinib	9	400 mg	29	29	#1: -1, -4, -21, abn(X), abn(9p), abn(10q), abn(17p), t(?;1q) #2: Hypotetraploid with stemline doubling, abn(1q), abn(6q), abn(9p), add(1), -15. #3: t(X;1), dic(6;17), del(6q), del(17p), -18, ring chromosome	No improvement in cytopenias	Azacitidine	3	Dead (cardiac arrest)
CLL57	M	47	FCRx6; R-CHOP; navitoclax. After VEN: autoSCT; zanubrutinib	9	400 mg	15	33	#1: del(6q), del(9q), abn(5q), abn(10q) #2: del(11q) #3: del(7q)	NA (ceased VEN prior to tMN diagnosis)	No tMN therapy. AlloSCT 3 years after tMN diagnosis for progressive CLL	60	Alive
CLL45	M	68	CVP; FC; F	16	400 mg	61	42	-7	Worsening thrombocytopenia New diagnosis plasmacytoid dendritic neoplasm, likely tMN related	Supportive care (planned for azacitidine)	19	Alive
Patient	Sex	Age at VEN initiation	Prior treatments	Time from FCT to tMN diagnosis (years)	VEN dose	Time on VEN (months)	Time from VEN initiation to tMN (months)	Cytogenetics at tMN diagnosis*	Effect of VEN cessation	tMN treatment	Follow up post tMN (months)	Status
---------	-----	----------------------	------------------	--------------------------------------	---------	---------------------	---------------------------------	-----------------------------------	--------------------------	----------------	-----------------------------	--------
CLL23	M	78	FCR	5	150 mg	37	43	abn(1q), abn(5q), 6-, two marker chromosomes	NA (ceased VEN prior to tMN diagnosis)	Supportive care (planned for azacitidine)	2	Dead (intracranial hemorrhage)
CLL16	M	73	CLB; R monotherap y; FCR	11	400 mg (+ rituximab)	76	68	-7, -18, del(5q), abn(1p)	Complete resolution of cytopenias, loss of excess blasts (azacitidine commenced at VEN cessation)	Azacitidine	14	Alive
CLL9	F	62	CLB; FCR; FC; MP+R	9	300 mg (+ rituximab)	87	73	t(3;12;21), abn(3q) abn(12q), abn(21p)	No improvement in cytopenias	Supportive care	17	Dead (tMN)
CLL12	M	69	C + R; FCR; alemtuzumab; MP + R	11	400 mg (+ rituximab)	31	86	del(5q), del(7q), del(13q), -Y, -10, -13, -14, -15, -17, t(4;10), abn(1q), abn(9p), abn(8q), abn(18q), three marker chromosomes	NA (ceased VEN prior to tMN diagnosis)	Supportive care	2	Alive

FCR = Fludarabine, cyclophosphamide, rituximab, R = rituximab, C = cyclophosphamide, MP = methylprednisolone, CVP = cyclophosphamide, vincristine, prednisolone, CLB = chlorambucil, VEN = venetoclax, M = male; F = female, tMN = therapy-related myeloid neoplasm

*Cytogenetics were performed on the diagnostic bone marrow sample, except for patient CLL9 (cytogenetics preceded WHO MDS diagnosis by 6 months) and CLL30 (cytogenetics preceded WHO MDS diagnosis by 18 months). Where multiple subclonal cell populations are identified, these are distinguished by #. Cytogenetic lesions that had been detected prior to VEN initiation are bolded.
Supplementary Table 4 – Univariate analysis of variables associated with development of therapy-related myeloid neoplasm in patients receiving venetoclax

Variable	n =	tMN cases	HR	95%CI	p value	
Age ≥ 65	Yes	53	7 (13%)	1.45	0.37-5.6	0.583
	No	36	3 (8%)			
≥ 4 prior therapy lines	Yes	35	4 (11%)	1.10	0.31-3.9	0.889
	No	54	6 (11%)			
F-combination exposed	Yes	72	10 (14%)	Undefined	Undefined	0.05
	No	17	0 (0%)			
VEN < 400 mg/day	Yes	22	3 (14%)	0.93	0.24-3.7	0.914
	No	67	7 (10%)			
VEN ≥ 24 months	Yes	52	7 (13%)	0.55	0.13-2.2	0.418
	No	37	3 (8%)			
Adapted Drake score ≥ 8*	Yes	46	5 (11%)	1.13	0.32-3.93	0.851
	No	43	5 (12%)			

*The median adapted Drake score for the cohort was 8

F = Fludarabine, VEN = venetoclax, tMN = therapy-related myeloid neoplasm

Supplementary Table 5 – Clinical characteristics of patient cohort with relapsed/refractory chronic lymphocytic leukaemia (CLL) treated with venetoclax (n=41) with adequate samples for molecular assessment and low CLL burden

Clinical characteristic	Cohort (n=41)
Age at venetoclax initiation, years	67 (46-86)
Male:Female	35:6
Median number of prior therapies	2 (0-8)
Prior fludarabine-combination therapy exposure	29 (72%)
Del(17p) and/or TP53 mutation prior to venetoclax initiation (n/N, %)	18/37 (49%)
Median duration on venetoclax, months	34 (9-90)
Median survivor follow-up from venetoclax initiation, months	66 (21-93)
Supplementary Table 6 – Mutations detected in genes associated with age-related clonal hematopoiesis (ARCH)/myeloid neoplasia in patients with chronic lymphocytic leukemia treated with long-term venetoclax

Patient	Gene	HGVSc/HGVSp	Variant allele frequency (%)*	
CLL3	ASXL1	NM_015338.5:c.2338C>T; p.(Gln780*)	39	
	DNMT3A	NM_022552.4:c.1144A>T; p.(Lys382*)	1.0	
	DNMT3A	NM_022552.4:c.923del; p.(Gly308Alafs*8)	1.0	
	DNMT3A	NM_022552.4:c.2257T>A; p.(Trp753Arg)	1.5	
CLL5	TET2	NM_001127208.2:c.2050C>T; p.(Gln684*)	13.6	
CLL8	TP53	NM_000546.5:c.743G>A; p.(Arg248Gln)	6.7	
	ASXL1	NM_015338.5:c.1585C>T; p.(Gln529*)	27.2	
	EZH2	NM_004456.4:c.403G>A; p.(Gly135Arg)	1.8	
CLL11	Nil			
CLL12	DNMT3A	NM_022552.4:c.2635A>G; p.(Asn879Asp)	4.1	
CLL16	DNMT3A	NM_022552.4:c.2644C>T; p.(Arg882Cys)	26.1	
	SF3B1	NM_012433.2:c.2098A>G; p.(Lys700Glu)	7.4	
	U2AF1	NM_006758.2:c.101C>T; p.(Ser34Tyr)	6.9	
	DNMT3A	NM_022552.4:c.2663T>C; p.(Leu888Pro)	8.1	
	TP53	NM_000546.5:c.817C>T; p.(Arg273Cys)	4.5	
	TP53	NM_000546.5:c.916del; p.(Arg306Glufs*39)	5.4	
CLL20	TET2	NM_001127208.2:c.4073G>A; p.(Cys1358Tyr)	1.2	
	ZRSR2	NM_0005089.3:c.407T>A; p.(Leu136*)	2.5	
	TET2	NM_001127208.2:c.3501-2A>T; p. ?	1.6	
	DNMT3A	NM_022552.4:c.2579G>A; p.(Trp860*)	1.4	
	DNMT3A	NM_022552.4:c.1532dup; p.(Gly512Argfs*34)	1.1	
	DNMT3A	NM_022552.4:c.2159G>C; p.(Arg720Pro)	0.8	
CLL21	TET2	NM_001127208.2:c.4210C>T; p.(Arg1404*)	1.3	
	TP53	NM_000546.5:c.826G>C; p.(Ala276Pro)	0.8	
	TP53	NM_000546.5:c.743G>A; p.(Arg248Gln)	1.3	
	TP53	NM_000546.5:c.422G>A; p.(Cys141Tyr)	1.9	
CLL26	DNMT3A	NM_022552.4:c.2663T>C; p.(Leu888Pro)	31.9	
	DNMT3A	NM_022552.4:c.855+1G>A; p. ?	4.6	
	U2AF1	NM_006758.2:c.101C>T; p.(Ser34Tyr)	14.6	
CLL27	DNMT3A	NM_022552.4:c.2478+1G>A; p. ?	3.7	
	DNMT3A	NM_022552.4:c.1851+1G>T; p. ?	3.0	
	DNMT3A	NM_022552.4:c.1610G>C; p.(Cys537Ser)	1.4	
CLL32	TET2	NM_001127208.2:c.3796A>C; p.(Asn1266His)	13.8	
	ZRSR2	NM_0005809.3:c.896G>T; p.(Cys299Phe)	1.8	
	DNMT3A	NM_022552.4:c.1430-2A>G; p. ?	1.5	
	ZRSR2	NM_0005089.3:c.827+1G>A; p. ?	6.0	
CLL34	TP53	NM_000546.5:c.416A>C; p.(Lys139Thr)	2.8	
CLL35	ASXL1	NM_015338.5:c.1934dup; p.(Gly646Trpfs*12)	2.8	
	ZRSR2	NM_0005089.3:c.716T>G; p.(Phe239Cys)	1.4	
CLL36	DNMT3A	NM_022552.4:c.1015-2A>T; p. ?	22.3	
CLL38	U2AF1	NM_006758.2:c.101C>A; p.(Ser34Tyr)	1.9	
-------	--------	----------------------------------	-----	
	DNMT3A	NM_022552.4:c.2204A>C; p.(Tyr735Ser)	1.1	
	DNMT3A	NM_022552.4:c.2383T>A; p.(Trp795Arg)	1.6	
CLL39	TP53	NM_000546.5:c.376T>C; p.(Tyr126His)	2.7	
	DNMT3A	NM_022552.4:c.2302G>T; p.(Asp768Tyr)	2.6	
	DNMT3A	NM_022552.4:c.2645G>A; p.(Arg882His)	1.1	
	DNMT3A	NM_022552.4:c.2104del; p.(Asp702Ilefs*3)	2.5	
	TET2	NM_001127208.2:c.1A>T; p.?	1.8	
CLL40	TP53	NM_000546.5:c.818G>A; p.(Arg273His)	1.7	
	DNMT3A	NM_022552.4:c.2302G>T; p.(Asp768Tyr)	2.6	
	DNMT3A	NM_022552.4:c.2645G>A; p.(Arg882His)	1.1	
CLL41	Nil			
CLL42	STAT3	NM_139276.2:c.1940A>T; p.(Asn647Ile)	1.6	
	TET2	NM_001127208.2:c.4393C>T; p.(Arg1465*)	3.7	
	PHF6	NM_001015877.1:c.1024C>T; p.(Arg342*)	19.4	
	DNMT3A	NM_022552.4:c.892G>A; p.(Gly298Arg)	2.4	
	TET2	NM_001127208.2:c.236C>T; p.(Thr79Ile)	1.6	
	PHF6	NM_001015877.1:c.719A>G; p.(Tyr240Cys)	7.2	
CLL43	TET2	NM_001127208.2:c.5618T>C; p.(Ile1873Thr)	41.7	
	DNMT3A	NM_022552.4:c.2257T>C; p.(Trp753Arg)	47.6	
CLL45	TET2	NM_001127208.2:c.2756dup; p.(Tyr1919*)	42.6	
	DNMT3A	NM_022552.4:c.2645G>A; p.(Arg882His)	44.5	
	U2AF1	NM_006758.2:c.101C>T; p.(Ser34Phe)	34.7	
CLL46	ZRSR2	NM_005089.3:c.605T>C; p.(Ile202Thr)	5.3	
CLL49	TET2	NM_001127208.2:c.4075C>T; p.(Arg1359Cys)	1.1	
	DNMT3A	NM_022552.4:c.912_928del; p.(Trp305Cysfs*13)	0.9	
CLL53	DNMT3A	NM_022552.4:c.2666T>C; p.(Leu889Pro)	10.5	
	DNMT3A	NM_022552.4:c.1851+5G>A; p.?	5.9	
CLL69	TP53	NM_000546.5;c.524G>C; p.(Arg175Pro)	29.2	
	TP53	NM_000546.5;c.524G>A; p.(Arg175His)	33.7	
	DNMT3A	NM_022552.4:c.2063G>A; p.(Arg688His)	34.0	
CLL70	DNMT3A	NM_022552.4:c.1668G>C; p.(Arg556Ser)	3.3	
CLL73	Nil			
CLL74	Nil			
CLL75	TET2	NM_001127208.2:c.3379C>T; p.(Gln1127*)	0.94	
CLL76	TP53	NM_000546.5:c.713G>A; p.(Cys238Tyr)	2.2	
	DNMT3A	NM_022552.4:c.895A>T; p.(Lys299*)	4.5	
CLL78	DNMT3A	NM_022552.4;c.2478+1G>A; p.?	40.2	
	DNMT3A	NM_022552.4:c.941G>A; p.(Trp314*)	0.57	
CLL79	ASXL1	NM_015338.5:c.1934dup; p.(Gly646Trpfs*12)	6.6	
	DNMT3A	NM_022552.4:c.2257T>C; p.(Trp753Arg)	3.0	
CLL80	DNMT3A	NM_022552.4:c.1628G>T; p.(Gly543Val)	35.7	
CLL81	U2AF1	NM_006758.2:c.101C>T; p.(Ser34Phe)	8.5	
	DNMT3A	NM_022552.4:c.1660T>G; p.(Cys554Gly)	1.4	
	TET2	NM_001127208.2:c.2770C>T; p.(His924Tyr)	2.4	
	U2AF1	NM_006758.2:c.101C>T; p.(Ser34Tyr)	4.7	
CLL83	Nil			
CLL85	Nil			
CLL86	DNMT3A	NM_022552.4:c.2408+5G>A; p.?	1.7	
	Gene	Variant Description	Variant ID	Frequency
--------	----------	--	------------	-----------
CLL87	DNMT3A	NM_022552.4:c.2359G>A; p.(Ala787Thr)		1.7
	TET2	NM_001127208.2:c.3819T>G; p.(Cys1273Trp)		5.7
	U2AF1	NM_006758.2:c.101C>A; p.(Ser34Tyr)		22.0
	ZRSR2	NM_005089.3:c.1384C>T; p.(Arg462*)		2.0
CLL88	Nil			
CLL90	KRAS	NM_033360.2:c.351A>T; p.(Lys117Asn)		3.8
	TET2	NM_001127208.2:c.649dup; p.(Ser217Phefs*8)		0.6
CLL91	DNMT3A	NM_022552.4:c.1793_1809del; p.(Arg598Profs*8)		0.82

*Highest variant allele frequency detected if detected in multiple samples
Supplementary Table 7 – BAX mutations detected in the non-CLL hematopoietic compartment.
Samples with minimal or no residual CLL from patients treated with long-term venetoclax for CLL were analyzed to minimize the chance that the mutations were in CLL cells

Patient	HGVSc/HGVSp	Predicted consequence for BAX function	Variant allele frequency (%)	Sample type
CLL3	c.475-1G>A; p.?	Splice site mutation	39.7	BM
	c.280del; p.(Arg94Glufs*39)	Truncation/NMD	3.8	BM
	c.554_557del; p.(Leu185Profs*55)	Truncation	1.5	BM
CLL16	c.121del; p.(Glu41Argfs*19)	Truncation/NMD	24.2	BM
	c.547G>C; p.(Ala183Pro)	Missense (α9)	8.1	BM
	c.368A>T; p.(Lys123Met)	Missense (α5)	1.3	BM
	c.100C>T; p.(Arg34*)	Truncation/NMD	1.1	BM
	c.265C>T; p.(Arg89*)	Truncation/NMD	1.1	BM
	c.519_526del; p.(Thr174Cysfs*30)	Truncation	1.1	BM
	c.109C>T; p.(Arg37*)	Truncation/NMD	0.6	BM
CLL20	c.90C>G; p.(Phe30Leu)	Missense (α1)	0.8	BM
CLL21	c.475-32_475-19del; p.?	Splice site mutation	37.3	BM
	c.511C>T; p.(Gln171*)	Truncation	0.9	BM
CLL32	c.82C>T; p.(Gln28*)	Truncation/NMD	1.6	BM
CLL34	c.554_557del; p.(Leu185Profs*55)	Truncation	0.5	BM
CLL35	c.121del; p.(Glu41Argfs*19)	Truncation/NMD	3.6	BM
	c.509G>C; p.(Trp170Ser)	Missense (α9)	0.6	BM
CLL39	c.87-2A>G; p.?	Splice site mutation	3.9	BM
	c.547G>C; p.(Ala183Pro)	Missense (α9)	1.7	BM
	c.100C>T; p.(Arg34*)	Truncation/NMD	1.0	BM
CLL43	c.551C>G; p.(Ser184*)	Truncation	52.6	BM
CLL46	c.564del; p.(Trp188*)	Truncation	11.8	BM
CLL49	c.121del; p.(Glu41Argfs*19)	Truncation/NMD	3.8	BM
CLL78	c.121del; p.(Glu41Argfs*19)	Truncation/NMD	4.5	PB
	c.536_538delinsTCTTTGACCACCTCTT; p.(Gly179Valfs*66)	Truncation	0.7	PB
CLL81	c.121del; p.(Glu41Argfs*19)	Truncation/NMD	19.0	BM
	c.547G>A; p.(Ala183Thr)	Missense (α9)	0.9	BM
	c.109C>T; p.(Arg37*)	Truncation/NMD	0.7	BM

NMD = nonsense mediated decay, BM = bone marrow, PB = peripheral blood
NCBI RefSeq transcripts – NM_138761.3 (BAX)
Supplementary Table 8 – Comparison of characteristics of patients with BAX mutations developing in non-CLL compartment on venetoclax

Characteristic	BAX mutation detected (n = 13)	No BAX mutation detected (n = 28)	p value
Age	67 (54-86)	67 (46-84)	0.556
Lines of Rx pre-VEN	2 (0-8)	3 (1-8)	0.627
Prior FCT	9/13 (69%)	20/28 (71%)	>0.999
Adapted Drake score	10 (4-23)	9 (4-26)	0.725
del(17p)/TP53 pre VEN	5/11 (45%)	13/26 (50%)	>0.999
CK pre-VEN	0/8 (0%)	7/23 (30%)	0.146
tMN	1/13 (8%)	4/28 (14%)	>0.999

Rx = treatment; VEN = venetoclax, FCT = fludarabine-cyclophosphamide combination therapy; CK = complex karyotype; tMN = therapy-related myeloid neoplasm
Supplementary Table 9 – Variants detected in flow cytometry sorted myeloid compartment cells (CD3-/CD19-), T-cells (CD3+/CD19-) and CLL cells (CD3-/CD19+)

Patient	Myeloid compartment - CD3-/CD19- (VAF)	T-cell compartment - CD3+, CD19- (VAF)	CLL compartment - CD3-/CD19+ (VAF)
CLL3	ASXL1 Gln780* (38.7%) TET2 Leu1637Tyrfs*58 (1.3%) BAX c.475-1G>A (45.5%) BAX Arg94Glufs*39 (4.6%)	STAT3 Asp661Val (3.2%) ASXL1 Gln780* (1.0%) DNMT3A Lys382* (2.9%) DNMT3A Gly308Alafs*8 (6.2%) DNMT3A Ile670Leu (1.2%) DNMT3A Trp753Arg (9.9%) BAX c.475-1G>A (1.4%)	TP53 Arg273His (96.0%) SF3B1 Lys700Glu (49.6%) BCL2 Gly101Val (27.3%) BCL2 c.326-327insGCGCCCGCTACCG Arg107_Arg110dup (8.4%) BCL2 c.319_330dup Arg107_Arg110dup (6.4%)
CLL16	TP53 Arg306Glufs*39 (4.7%) TP53 Arg273Cys (7.0%) DNMT3A Arg882Cys (28.3%) BAX Arg37* (2.6%) BAX Glu41Argfs*19 (24.0%)	TP53 Arg273Cys (1.3%) DNMT3A Trp860* (0.9%)	KRAS Ala146Thr (33.9%) BCL2 Gly101Val (1.3%) TP53 c.993+1_993+20del (3.8%) TP53 c.783-2A>C (4.8%) BCL2 Ala113Gly (10.0%)
CLL81	U2AF1 Ser34Tyr (9.4%) U2AF1 Ser34Phe (6.9%) BAX Arg37* (0.9%) BAX Glu41Argfs*19 (15.3%)	Nil	KRAS Gln22Lys (17.0%) KRAS G12Asp (23.4%) TP53 Leu252_Ile254del (28.2%) TP53 Ser241Tyr (18.0%) TP53 Cys176Ser (16.9%) BCL2 Asp103Glu (20.0%)

VAF = variant allele frequency
NCBI RefSeq transcripts – NM_015338.5 (ASXL1), NM_138761.3 (BAX), NM_000633.2 (BCL2), NM_022552.4 (DNMT3A), NM_033360.2 (KRAS), NM_012433.2 (SF3B1), NM_139276.2 (STAT3), NM_001127208.2 (TET2), NM_000546.5 (TP53), NM_006758.2 (U2AF1)
Supplementary Figure 1 – Longitudinal changes in BAX mutations in non-CLL compartment over time for 9 patients with serial samples during treatment for CLL.
Supplementary Figure 2 – Distribution of BAX mutations across groups of myeloid dysfunction (tMN, IC/CC or no persistent cytopenias)

![Graph showing distribution of BAX mutations across groups.]

- **tMN** = therapy-related myeloid neoplasm; **IC/CC** = idiopathic cytopenias/clonal cytopenias

Supplementary Methods

Genomic analyses

UMI-based libraries were prepared using the standard protocol for QIAseq targeted DNA panel as per manufacturer’s specifications. Pooled libraries were sequenced on a NextSeq 500 instrument (Illumina, California). Alignment and variant calling was performed using the QIAGEN CLC Genomic Workbench (v12.0.2). All variant calls were manually inspected in Integrated Genome Viewer (Broad Institute, USA). Copy number was analysed using CNspector. For Sanger sequencing of the BAX homopolymer mutant (CLL16) genomic DNA was amplified using AmpliTaq Gold 360 Master Mix (Applied Biosystems) and a primer pair flanking BAX c.114_c.121 (homopolymer guanine) (forward primer: 5’-CCCCTTCTGATTCTGC-3’, reverse primer: 5’-ACTGTCCAGTGCTGC-3’, both primers were CS tagged). The cycling conditions were: 95°C for 5 minutes; followed by a program of 94°C for 30 seconds, 60°C for 45 seconds, and 72°C for 45 seconds for 40 cycles; and ending with a final extension at 72°C for 10 minutes. Amplicon product was purified using ExoSAP-IT (Applied Biosystems) and bidirectionally sequenced using ABI Big Dye v.3.1 Terminator Kit on an ABI3730 DNA Analyzer (Applied Biosystems). Data analysis was performed using Mutation Surveyor version 4.0.5 (SoftGenetics). For
hybridization-based next generation sequencing analysis (CLL43) indexed libraries were sequenced on an Illumina NextSeq (paired-end 75 bp reads). After base calling and de-multiplexing, a Seqliner-framework analysis pipeline was used to align reads to the human reference genome (GRCh37 assembly) using BWA-MEM, followed by marking of duplicate reads, base quality score recalibration, local indel realignment and variant calling using GATK Haplotype Caller (https://software.broadinstitute.org/gatk/). Copy number and B-allele frequency analysis was performed using on and off target reads from this hybridization-based NGS panel as described previously2,3.

Targeted amplicon single cell sequencing

Cryopreserved cells were prepared and underwent unique barcoding and amplification with 70 custom primer pairs targeting 17 genes including BCL2, BCL2L1, BAX, MCL1, DNMT3A and ASXL1. The products were subsequently sequenced on a NextSeq 500 instrument (Illumina, California). FASTQ files were analyzed using the cloud-based Tapestri bioinformatics pipeline to perform adapter trimming, barcode correction, cell identification, read alignment to the human hg19 genome, and variant calling using a GATK-based algorithm.

Carbonate extraction of BAX

Carbonate extraction can be used to differentiate membrane-integrated BAX from that which is peripherally associated to the mitochondrial outer membrane (MOM). Treatment of membranes with sodium carbonate (high pH) disrupts protein-protein interactions, whereas protein-lipid interactions are largely retained. For carbonate extraction of BAX, treated cells were harvested and permeabilized with 0.025% w/v digitonin in fractionation buffer (20 mM HEPES KOH pH 7.5, 100 mM sucrose, 100 mM KCl, 2.5 mM MgCl₂) for 10 min on ice. Successful permeabilization of the cells was confirmed by trypan blue uptake and light microscopy. Cytosol and mitochondria-enriched heavy membrane were then separated by centrifugation. Membrane fractions were then re-suspended in sodium carbonate (0.1M, pH 11.5) and incubated on ice for 20 min before addition of an equal volume of 0.1 M HCL.
After treating the samples with DNase I (5 Units/50 μl), the supernatant fraction containing peripheral proteins and pellet fraction containing membrane-integrated proteins were separated by centrifugation. Cytosol, peripheral and integrated fractions were then run on SDS-PAGE and immunoblotted for BAX.

Immunoblotting

Protein lysates were prepared in Onyx buffer (20 mM Tris-HCl pH 7.4, 135 mM NaCl, 1.5 mM MgCl₂, 1 mM EGTA, 1% (v/v) Triton X-100, 10% (v/v) glycerol) containing protease inhibitor cocktail (Roche, USA). Proteins were gel electrophoresed and transferred onto nitrocellulose membranes (Life Technologies, USA). Primary antibodies used were rabbit polyclonal anti-BAX NT (#06-499, Merck Millipore, Germany), mouse monoclonal anti-HSP70 (WEHI, in-house). Secondary antibodies were (HRP)-conjugated anti-rabbit (#4010-05, Southern Biotech, Birmingham, USA) and anti-mouse (#1010-05, Southern Biotech, Birmingham, USA). Proteins were visualized by Luminata Forte Western HRP substrate (#WBLUF0500, Merck Millipore, Germany).

Statistical analysis

Comparison of characteristics between groups were performed using Mann-Whitney U test and Fisher’s exact test as appropriate. The Kaplan-Meier method was used to estimate overall survival from tMN diagnosis (censored at last follow-up or allogeneic stem cell transplant [alloSCT]). Estimates of the proportion of patients developing tMN were expressed as cumulative incidence, with death or alloSCT considered competing risks. Associations between clinicopathological variables and tMN diagnosis were analyzed using the Cox proportional hazards model to calculate hazard ratios with a significance level set at 0.05, with death or alloSCT considered as competing risks and treated as censorship events. Data were analyzed using Stata 14.1 for Mac (StataCorp, College Station, TX), GraphPad Prism 9 for Mac (GraphPad Software, La Jolla, CA), and in R v4.04 for Mac.
References

1. Drake M, Ranaghan L, Morris TC, et al. Analysis of the effect of prior therapy on progenitor cell yield: use of a chemotherapy scoring system. *Br J Haematol*. 1997;98(3):745-749.
2. Markham JF, Yerneni S, Ryland GL, et al. CNspector: a web-based tool for visualisation and clinical diagnosis of copy number variation from next generation sequencing. *Sci Rep.* 2019;9(1):6426.
3. Ryland GL, Jones K, Chin M, et al. Novel genomic findings in multiple myeloma identified through routine diagnostic sequencing. *J Clin Pathol.* 2018;71(10):895-899.