Supplementary Information

Mechanistic insights of key host proteins and potential repurposed inhibitors regulating SARS-CoV-2 pathway

Debabrata Pramanik1+, Aiswarya B Pawar2+, Sudip Roy*2 and Jayant Kumar Singh*1,2

1Department of Chemical Engineering
Indian Institute of Technology, Kanpur, India
2Prescience Insilico Private Limited
Old Madras Road, Bangalore 560049, India

*Corresponding authors: Sudip Roy (sudip@prescience.in) and Jayant Kumar Singh (jayantks@iitk.ac.in)

+These authors contributed equally.
Table S1: Table shows the interacting residues of target protein that remain in contact with the respective drug molecules for more than 75% of the simulation time.

Target	PDB ID	Drug	Interacting Residues
eIF4E2	2JGB	Nafamostat	ARG23, THR29, SER30, SER31, TYR34, ASP68, TRP80, LYS90, VAL126, SER128, ILE135, SER137, PRO180, LEU189
eIF4E2	2JGB	Camostat	THR29, SER30, SER31, TRP80, ILE177, MET179, PRO180
eIF4E2	2JGB	Zotatifin	PRO28, THR29, SER31, TRP80, SER176, ILE177, MET179, PRO180, GLU186, ARG187, LEU188, PHE190
HDAC2	4LY1	Nafamostat	TYR29, MET35, ARG39, ILE40, ALA141, LEU144, HIS145, GLY154, PHE155, CYS156, HIS183, GLY305, TYR308
HDAC2	4LY1	Valproic Acid	TYR29, MET35, PRO37, ARG39, ILE40, PHE114, ALA141, GLY142, GLY143, LEU144, CYS156, GLY305
CSK22	6HMB	Silmitasertib	LEU46, GLY47, ARG48, GLY49, VAL54, VAL66, LYS69, ILE96, PHE114, ILE117, ASN119, MET164, ILE175, ASP176
Figure S1: eIF4E target and Zotatifin ligand interaction, hydrophobic interactions are shown in green and pi stacking in purple.
Figure S2: The minimum distance plot of the protein residues with that of the ligand heavy atoms. For six systems we show the distance plots for 10 independent runs for (a) HDAC2-Nafamostat, (b) eIF4E2-Nafamostat, (c) eIF4E2-Camostat, (d) CSK22-Silmitasertib, (e) eIF4E2-Zotatifin, (f) HDAC2-Valproic Acid over the metadynamics trajectories.
Figure S3: The minimum distance plot of the protein residues with that of the ligand heavy atoms with minimum distance < 0.2 nm for at least one independent run over the metadynamics trajectories for (a) HDAC2-Nafamostat, (b) eIF4E2-Nafamostat, (c) eIF4E2-Camostat, (d) CSK22-Silmitasertib, (e) eIF4E2-Zotatifin, (f) HDAC2-Valproic Acid.
Figure S4: “Normalized probability distribution” with “distance” for each of those protein residues having the minimum distance < 0.2 nm for at least in one of the independent simulations for HDAC2-Nafamostat.
Figure S5: “Normalized probability distribution” with “distance” for each of those protein residues having the minimum distance < 0.2 nm for at least in one of the independent simulations for eIF4E2-Nafamostat.
Figure S6: “Normalized probability distribution” with “distance” for each of those protein residues having the minimum distance < 0.2 nm for at least in one of the independent simulations for eIF4E2-Camostat.
Figure S7: “Normalized probability distribution” with “distance” for each of those protein residues having the minimum distance < 0.2 nm for at least in one of the independent simulations for CSK22–Silmitasertib.
Figure S8: “Normalized probability distribution” with “distance” for each of those protein residues having the minimum distance < 0.2 nm for at least one of the independent simulations for eIF4E2-Zotatifin.
Figure S9: “Normalized probability distribution” with “distance” for each of those protein residues having the minimum distance < 0.2 nm for at least in one of the independent simulations for HDAC2-Valproic Acid.