A HALFWISP TYPE FORMULA FOR THE R-MATRIX OF A SYMMETRIZABLE KAC-MOODY ALGEBRA

PETER TINGLEY

Abstract. Kirillov-Reshetikhin and Levendorskii-Soibelman developed a formula for the universal R-matrix of \(U_q(\mathfrak{g}) \) of the form \(R = (X^{-1} \otimes X^{-1}) \Delta(X) \). The action of \(X \) on a representation \(V \) permutes weight spaces according to the longest element in the Weyl group, so is only defined when \(\mathfrak{g} \) is of finite type. We give a similar formula which is valid for any symmetrizable Kac-Moody algebra. This is done by replacing the action of \(X \) on \(V \) with an endomorphism that preserves weight spaces, but which is bar-linear instead of linear.

1. Introduction

Let \(\mathfrak{g} \) be a finite type complex simple Lie algebra, and let \(U_q(\mathfrak{g}) \) be the corresponding quantized universal enveloping algebra. In [KR] and [LS], Kirillov-Reshetikhin and Levendorskii-Soibelman developed a formula for the universal \(R \)-matrix

\[
R = (X^{-1} \otimes X^{-1}) \Delta(X),
\]

where \(X \) belongs to a completion of \(U_q(\mathfrak{g}) \). The element \(X \) is constructed using the braid group element \(T_{w_0} \) corresponding to the longest word of the Weyl group, so only makes sense when \(\mathfrak{g} \) is of finite type.

The element \(X \) defines a vector space endomorphism \(X_V \) on each representation \(V \), and in fact \(X \) is defined by this system \(\{ X_V \} \) of endomorphisms. With this point of view, Equation (1) is equivalent to the claim that, for any finite dimensional representations \(V \) and \(W \) and \(u \in V \otimes W \),

\[
R(u) = (X_V^{-1} \otimes X_W^{-1}) X_V \otimes W(u).
\]

In the present work we replace \(X_V \) with an endomorphism \(\Theta_V \) which preserves weight spaces. We show that, for any symmetrizable Kac-Moody algebra \(\mathfrak{g} \), and any integrable highest weight representations \(V \) and \(W \) of \(U_q(\mathfrak{g}) \), the action of the universal \(R \)-matrix on \(u \in V \otimes W \) is given by

\[
R(u) = (\Theta_V^{-1} \otimes \Theta_W^{-1}) \Theta_V \otimes W(u).
\]

There is a technical difficulty because \(\Theta_V \) is not linear over the base field \(\mathbb{Q}(q) \), but instead is compatible with the automorphism of \(\mathbb{Q}(q) \) which inverts \(q \). For this reason \(\Theta_V \) depends on a choice of a “bar involution” on \(V \). To make Equation (3) precise we define a bar involution on \(V \otimes W \) in terms of chosen involutions of \(V \) and \(W \), and then show that the composition \((\Theta_V^{-1} \otimes \Theta_W^{-1}) \Theta_V \otimes W \) does not depend on any choices.

The system of endomorphisms \(\Theta \) was previously studied in [T], where it was used to construct the universal \(R \)-matrix when \(\mathfrak{g} \) is of finite type. Essentially we have extended this previous work to include all symmetrizable Kac-Moody algebras. However, the action of \(\Theta \) on a tensor product is defined differently here than in [T], so the constructions of \(R \) are a-priori not identical, and we have not in fact proven that the construction in [T] gives the universal \(R \)-matrix in all cases.

This note is organized as follows. In Section 2 we establish notation and review some background material. In Section 3 we construct the system of endomorphisms \(\Theta \). In Section 4 we prove our main
2.1. Conventions. We first fix some notation. For the most part we follow conventions from [CP].

- \(g \) is a complex simple Lie algebra with Cartan algebra \(\mathfrak{h} \) and Cartan matrix \(A = (a_{ij})_{i,j \in I} \).
- \(\langle \cdot , \cdot \rangle \) denotes the paring between \(\mathfrak{h} \) and \(\mathfrak{h}^* \) and \((\cdot, \cdot) \) denotes the usual symmetric bilinear form on either \(\mathfrak{h} \) or \(\mathfrak{h}^* \). Fix the usual bases \(a_i \) for \(\mathfrak{h}^* \) and \(H_i \) for \(\mathfrak{h} \), and recall that \(\langle H_i, a_j \rangle = a_{ij} \).
- \(d_i = (\alpha_i, a_i)/2 \), so that \((H_i, H_j) = d_j^{-1}a_{ij} \).
- \(\rho \) is the weight satisfying \(\langle \alpha_i, \rho \rangle = d_i \) for all \(i \).
- \(U_q(\mathfrak{g}) \) is the quantized universal enveloping algebra associated to \(\mathfrak{g} \), generated over \(\mathbb{Q}(q) \) by \(E_i \) and \(F_i \) for all \(i \in I \), and \(K_w \) for \(w \) in the co-weight lattice of \(\mathfrak{g} \). As usual, let \(K_i = K_{H_i} \). We use conventions as in [CP].

For convenience, we recall the exact formula for the coproduct:

\[
\begin{align*}
\Delta E_i &= E_i \otimes K_i + 1 \otimes E_i \\
\Delta F_i &= F_i \otimes 1 + K_i^{-1} \otimes F_i \\
\Delta K_i &= K_i \otimes K_i
\end{align*}
\]

2.2. The R-matrix. We briefly recall the definition of a universal \(R \)-matrix, and the related notion of a braiding.

Definition 2.1. A braided monoidal category is a monoidal category \(\mathcal{C} \), along with a natural system of isomorphisms \(\sigma_{V,W}^{br} : V \otimes W \to W \otimes V \) for each pair \(V, W \in \mathcal{C} \), such that, for any \(U, V, W \in \mathcal{C} \), the following two equalities hold:

\[
\begin{align*}
\sigma_{U,V,W}^{br} \otimes \text{Id} \circ \text{Id} \otimes \sigma_{V,W}^{br} &= \sigma_{U \otimes V,W}^{br} \\
\text{Id} \otimes \sigma_{U,V}^{br} \circ \sigma_{U,V,W}^{br} \otimes \text{Id} &= \sigma_{U \otimes V,W}^{br}.
\end{align*}
\]

The system \(\sigma^{br} := \{ \sigma_{V,W}^{br} \} \) is called a braiding on \(\mathcal{C} \).

Let \(U_q(\mathfrak{g}) \) be the completion of \(U_q(\mathfrak{g}) \) in the weak topology defined by all matrix elements of \(V_\lambda \otimes V_\mu \), for all ordered pairs of dominant integral weights \((\lambda, \mu) \).

Definition 2.2. A universal \(R \)-matrix is an element \(R \) of \(U_q(\mathfrak{g}) \) such that \(\sigma_{V,W}^{br} := \text{Flip} \circ R \) is a braiding on the category of \(U_q(\mathfrak{g}) \) representations. Equivalently, an element \(R \) is a universal \(R \)-matrix if it satisfies the following three conditions

(i) For all \(u \in U_q(\mathfrak{g}) \), \(R\Delta(u) = \Delta^{op}(u)R \).

(ii) \((\Delta \otimes 1)R = R_{13}R_{23} \), where \(R_{ij} \) mean \(R \) placed in the \(i \) and \(j \)th tensor factors.

(iii) \((1 \otimes \Delta)R = R_{13}R_{12} \).
A FORMULA FOR THE R-MATRIX

The following theorem is central to the theory of quantized universal enveloping algebra. See [CP] for a discussion when \(g \) is of finite type, and [LL] for the general case. Unfortunately the conventions in [LL] are quite different from those used here. An explicit proof that our statement follows from [L, Chapter 4] can be found at http://www.ms.unimelb.edu.au/~ptingley/lecturenotes/RandquasiR.pdf.

Proposition 2.3. Let \(g \) be a symmetrizable Kac-Moody algebra. Then \(U_q(g) \) has a unique universal \(R \)-matrix of the form

\[
R = A \left(1 \otimes 1 + \sum_{\text{positive integral weights } \beta \text{ (with multiplicity)}} X_\beta \otimes Y_\beta \right),
\]

where \(X_\beta \) has weight \(\beta \), \(Y_\beta \) has weight \(-\beta\), and for all \(v \in V \) and \(w \in W \), \(A(v \otimes w) = q^{(\text{wt}(v), \text{wt}(w))} \).

2.3. Constructing isomorphisms using systems of endomorphisms. In this section we review a method for constructing natural systems of isomorphisms \(\sigma_{V,W} : V \otimes W \rightarrow W \otimes V \) for representations \(V \) and \(W \) of \(U_q(g) \). This idea was used by Henriques and Kamnitzer in [HK], and was further developed in [KT2]. The data needed is:

(i) An algebra automorphism \(C_\xi \) of \(U_q(g) \) which is also a coalgebra anti-automorphism.
(ii) A natural system of invertible (vector space) endomorphisms \(\xi_V \) of each representation \(V \) of \(U_q(g) \) such that the following diagram commutes for all \(V \):

\[
\begin{array}{ccc}
V \otimes V & \xrightarrow{\xi_V} & V \\
\downarrow c_\xi \downarrow & & \downarrow c_\xi \\
U_q(g) & \xrightarrow{C_\xi} & U_q(g).
\end{array}
\]

It follows immediately from the definition of coalgebra anti-automorphism that

\[
\sigma^\xi := \text{Flip} \circ (\xi_V^{-1} \otimes \xi_W^{-1}) \circ \xi_{V \otimes W}
\]

is an isomorphism of \(U_q(g) \) representations from \(V \otimes W \) to \(W \otimes V \).

In the current work we require a little more freedom: we will sometimes use automorphisms \(C_\xi \) of \(U_q(g) \) which are not linear over \(\mathbb{C}(q) \), but instead are bar-linear (i.e. invert \(q \)). This causes some technical difficulties, which we deal with in Section 3.

Comment 2.4. To describe the data \((C_\xi, \xi) \), it is sufficient to describe \(C_\xi \), and the action of \(\xi_{V_\lambda} \) on any one vector \(v \) in each irreducible representation \(V_\lambda \). This is usually more convenient then describing \(\xi_{V_\lambda} \) explicitly. Of course, the choice of \(C_\xi \) imposes a restriction on the possibilities for \(\xi_{V_\lambda}(v) \), so when we give a description of \(\xi \) in this way we are always claiming that the action on our chosen vector in each \(V_\lambda \) is compatible with \(C_\xi \).

2.4. A useful lemma. Let \((V_\lambda, v_\lambda) \) and \((V_\mu, v_\mu) \) be irreducible representations with chosen highest weight vectors. Every vector \(u \in V_\lambda \otimes V_\mu \) can be written as

\[
u = v_\lambda \otimes c_0 + b_1 \otimes c_1 + \ldots + b_k \otimes c_{k-1} + b_0 \otimes v_\mu,
\]

where, for \(0 \leq j \leq k-1 \), \(b_j \) is a weight vector of \(V_\lambda \) of weight strictly less then \(\lambda \), and \(c_j \) a weight vector of \(V_\mu \) of weight strictly less then \(\mu \). Furthermore, the vectors \(b_0 \in V_\lambda \) and \(c_0 \in V_\mu \) are uniquely determined by \(u \). Thus we can define projections from \(V_\lambda \otimes V_\mu \) to \(V_\lambda \) and \(V_\mu \) as follows:
Definition 2.5. The projections \(p^1_{\lambda,\mu} : V_\lambda \otimes V_\mu \to V_\lambda \) and \(p^2_{\lambda,\mu} : V_\lambda \otimes V_\mu \to V_\mu \) are given by, for all \(u \in V_\lambda \otimes V_\mu \),

\[
\begin{align*}
(11) & \quad p^1_{\lambda,\mu}(u) := b_0 \\
(12) & \quad p^2_{\lambda,\mu}(u) := c_0.
\end{align*}
\]

Lemma 2.6. Let \(S_{\lambda,\mu} \) be the space of singular vectors in \(V_\lambda \otimes V_\mu \). The restrictions of the maps \(p^1_{\lambda,\mu} \) and \(p^2_{\lambda,\mu} \) from Definition 2.5 to \(S_{\lambda,\mu} \) are injective.

Proof. We prove the Lemma only for \(p^2_{\lambda,\mu} \), since the proof for \(p^1_{\lambda,\mu} \) is completely analogous. Let \(c_1, \ldots, c_m \) be a weight basis for \(V_\mu \). Let \(u \) be a singular vector of \(V_\lambda \otimes V_\mu \) of weight \(\nu \). Then \(u \) can be written uniquely as

\[
(13) \quad u = \sum_{j=1}^{m} v_j \otimes c_j,
\]

where each \(v_j \) is a weight vector in \(V_\lambda \). Let \(\gamma \) be a maximal weight such that there is some \(j \) with \(\text{wt}(v_j) = \gamma \) and \(v_j \neq 0 \). It suffices to show that \(\gamma = \lambda \), so assume for a contradiction that it does not. Then \(v_j \) is not a highest weight vector, so \(E_i(v_j) \neq 0 \) for some \(i \). But then

\[
(14) \quad E_i(u) = \sum_{\text{wt}(v_{j_s}) = \gamma} E_i(v_{j_s}) \otimes c_{j_s} + \text{terms whose first factors have weight strictly less then } \gamma + \alpha_i.
\]

Since the \(c_j \) are linearly independent and \(E_i(v_j) \neq 0 \) for some \(j \) with \(\text{wt}(v_j) = \gamma \), this implies that \(E_i(u) \neq 0 \), contradicting the fact that \(v \) is a singular vector. \(\square \)

3. Constructing the system of endomorphisms \(\Theta \)

Constructing and studying \(\Theta = \{ \Theta_V \} \) is the technical heart of this work. As we mentioned in the introduction, \(\Theta_V \) is bar linear instead of linear, which makes it more difficult to choose a normalization. To get around this, we introduce the notion of a bar involution \(\text{bar}_V \) on \(V \), and actually define \(\Theta \) on the category of representations with a chosen bar involution. We then define a tensor product on this new category, and show that \((\Theta_{V, \text{bar}_V} \otimes \Theta_{W, \text{bar}_W}) \circ \Theta_{(V, \text{bar}_V) \otimes (W, \text{bar}_W)} \) does not depend on the choices of \(\text{bar}_V \) and \(\text{bar}_W \). The real work is in defining this tensor product, which essentially amounts to defining a bar involution on \(V \otimes W \) in terms of bar involutions \(\text{bar}_V \) and \(\text{bar}_W \).

3.1. Bar involution. The following \(\mathbb{Q} \) algebra involution of \(U_q(\mathfrak{g}) \) has been studied in several places, for example \[K\] Section 1.3, and is usually called bar involution. We use the notation \(C_{\text{bar}} \) because we will also work with bar involutions \(\text{bar}_V \) on representations \(V \), which are compatible with \(C_{\text{bar}} \) in the sense of Equation \[K\].

Definition 3.1. \(C_{\text{bar}} : U_q(\mathfrak{g}) \to U_q(\mathfrak{g}) \) is the \(\mathbb{Q} \)-algebra involution defined by

\[
\begin{align*}
C_{\text{bar}}q &= q^{-1} \\
C_{\text{bar}}K_i &= K_i^{-1} \\
C_{\text{bar}}E_i &= E_i \\
C_{\text{bar}}F_i &= F_i.
\end{align*}
\]

It is perhaps useful to imagine that \(q \) is specialized to a complex number on the unit circle (although not a root of unity), so that \(C_{\text{bar}} \) is conjugate linear.

Definition 3.2. Let \(V \) be a representation of \(U_q(\mathfrak{g}) \). A bar involution on \(V \) is a \(\mathbb{Q} \)-linear involution \(\text{bar}_V \) such that
(i) bar_V is compatible with C_{bar} in the sense that the following diagram commutes:

\[
\begin{array}{ccc}
V & \xrightarrow{\text{bar}_V} & V \\
\downarrow & & \downarrow \\
U_q(\mathfrak{g}) & \xrightarrow{C_{\text{bar}}} & U_q(\mathfrak{g}).
\end{array}
\]

(ii) Let $V^{\text{inv}} = \{ v \in V \text{ such that } \text{bar}_V(v) = v \}$. Then $V = \mathbb{Q}(q) \otimes_{\mathbb{Q}} V^{\text{inv}}$.

Comment 3.3. It is straightforward to check that C_{bar}^2 is the identity. Along with condition (ii), this implies that bar_V is the identity, so the term “involution” is justified.

Comment 3.4. When it does not cause confusion we will denote $\text{bar}_V(v)$ by \bar{v}.

Proposition 3.5. Fix λ and a highest weight vector $v_\lambda \in V_\lambda$. There is a unique bar involution $\text{bar}_{(V_\lambda,v_\lambda)}$ on V_λ such that $\text{bar}_{(V_\lambda,v_\lambda)}(v_\lambda) = v_\lambda$.

Proof. Recall that V_λ has a basis consisting of various $F_i \cdots F_i v_\lambda$. All of these vectors must be fixed by any bar involution preserving v_λ, so there is at most one possibility. On the other hand, it is clear that the unique \mathbb{Q}-linear map sending $f(q)F_i \cdots F_i v_\lambda$ to $f(q^{-1})F_i \cdots F_i v_\lambda$ for each of these basis vectors is a bar involution. □

Corollary 3.6. Every representation V has a (non-unique) bar involution bar_V.

Proof. Choose a decomposition of V into irreducible components, and a highest weight vector in each irreducible component, then use Proposition 3.5. □

Definition 3.7. Fix (V, bar_V) and (W, bar_W), where bar_V and bar_W are involutions of V and W compatible with C_{bar}. Let $\text{bar}_{V \otimes W}$ be the vector space involution on $V \otimes W$ defined by $f(q)v \otimes w \rightarrow f(q^{-1})\bar{v} \otimes \bar{w}$ for all $f(q) \in \mathbb{Q}(q)$ and $v \in V, w \in W$.

Comment 3.8. It is straightforward to check that the action of $(\text{bar}_V \otimes \text{bar}_W)$ on a vector in $V \otimes W$ does not depend on its expression as a sum of elements of the form $f(q)v \otimes w$. The resulting map is a \mathbb{Q}-linear involution.

Definition 3.9. Fix $u \in V_\lambda \otimes V_\mu$ a weight vector of weight ν. Define u^β for each weight β as the unique element of $V_\lambda(\nu - \beta) \otimes V_\mu(\beta)$ such that

\[
u = \sum_{\text{weights } \beta} u^\beta.
\]

Lemma 3.10. Fix $(V_\lambda, \text{bar}_{V_\lambda})$ and $(V_\mu, \text{bar}_{V_\mu})$. Let v_ν be a singular weight vector in $V_\lambda \otimes V_\mu$, and write

\[
u = \sum_{j=1}^{N} b_j \otimes c_j,
\]

where each b_j is a weight vector of V_λ, and each c_j is a weight vector of V_μ. Then

\[
\text{bar}(v_\nu) := \sum_{j=0}^{N} q^{\langle \mu,\nu \rangle - (\nu, c_j) + 2(\mu, -c_j, \rho)} \bar{b}_j \otimes \bar{c}_j
\]

is also singular.
Proof. Fix \(i \in I \). The vector \(\nu_i \) is singular, so \(E_i \nu_i = 0 \) and hence \((E_i \nu_i)^\beta = 0\) for all \(\beta \). Then:

\[
0 = (E_i \nu_i)^\beta = \sum_{\text{wt}(c_j) = \beta} q^{(\beta,\alpha_i)} E_i b_j \otimes c_j + \sum_{\text{wt}(c_j) = \beta - \alpha_i} b_j \otimes E_i c_j.
\]

Using Equation (18):

\[
(E_i \bar{\nu}_i)^\beta = \sum_{\text{wt}(c_j) = \beta} q^{(\beta,\beta)+2(\mu-\beta,\rho)} q^{(\beta,\alpha_i)} E_i \bar{b}_j \otimes \bar{c}_j
\]

\[
+ \sum_{\text{wt}(c_j) = \beta - \alpha_i} q^{(\beta-\alpha_i,\beta-\alpha_i)+2(\mu-\beta+\alpha_i,\rho)} \bar{b}_j \otimes E_i \bar{c}_j
\]

\[
= q^{(\mu-\beta,\alpha_i)+2(\mu-\beta+\alpha_i,\rho)} \times
\]

\[
\sum_{\text{wt}(c_j) = \beta} q^{(\beta,\alpha_i)} E_i \bar{b}_j \otimes \bar{c}_j + \sum_{\text{wt}(c_j) = \beta - \alpha_i} \bar{b}_j \otimes E_i \bar{c}_j
\]

\[
= q^{(\mu-\beta,\alpha_i)+2(\mu-\beta+\alpha_i,\rho)} (\bar{\nu}_\lambda \otimes \bar{\nu}_\mu)(E_i \nu_i)^\beta,
\]

where \((\bar{\nu}_\lambda \otimes \bar{\nu}_\mu)\) is the involution from Definition 3.7. But \(E_i (\nu_i)^\beta = 0 \), so we see that \(E_i (\nu_i)^\beta = 0 \). Since this holds for all \(i \) and all \(\beta \), \(\bar{\nu}_i \) is singular. \(\square \)

Definition 3.11. Let \(\bar{\nu}_\lambda \otimes \bar{\nu}_\mu \) be the unique involution on \(V_\lambda \otimes V_\mu \) which agrees with the involution \(\bar{\nu} \) from Lemma 3.10 on singular vectors, and is compatible with \(C_{\bar{\nu}} \).

Lemma 3.12. \(\bar{\nu}_{(V_\lambda v_\lambda) \otimes (V_\mu v_\mu)} \) is a bar involution.

Proof. Definition 3.2 part (i) follows immediately from the definition of \(\bar{\nu}_{(V_\lambda v_\lambda) \otimes (V_\mu v_\mu)} \). To establish Definition 3.2 part (ii), it suffices to show that there is a basis for the space \(S_{\lambda,\mu} \) of singular vectors of \(V_\lambda \otimes V_\mu \) which is fixed by \(\bar{\nu}_{(V_\lambda v_\lambda) \otimes (V_\mu v_\mu)} \). Since \(V_\lambda = \mathbb{Q}(q) \otimes V_\lambda^{\text{inv}} \), there is a basis for \(S_{\lambda,\mu} \) consisting of elements of \(V_\lambda^{\text{inv}} \otimes V_\mu \). Using Lemma 2.6 we see that there is a basis for \(S_{\lambda,\mu} \) consisting of vectors of the form

\[
v_\lambda \otimes c_0 + \cdots + b_0 \otimes v_\mu,
\]

where \(b_0 = 0 \) and the missing terms are all of the form \(b \otimes c \) with \(\text{wt}(c) < \mu \). By Definition 3.11 and Lemma 2.6, this vector is invariant under \(\bar{\nu}_{(V_\lambda v_\lambda) \otimes (V_\mu v_\mu)} \). \(\square \)

In light of Definition 3.2 part (ii), we can extend Definition 3.11 by naturality to construct a bar-involution on \((V, \bar{\nu}_V) \otimes (W, \bar{\nu}_W) \) in terms of any bar-involutions \(\bar{\nu}_V \) and \(\bar{\nu}_W \).

3.2. The system of endomorphisms \(\Theta \). Consider the \(\mathbb{Q} \)-algebra automorphism \(C_{\Theta} \) of \(U_\Phi(q) \):

\[
\begin{cases}
C_{\Theta}(E_i) = E_i K_i^{-1} \\
C_{\Theta}(F_i) = K_i F_i \\
C_{\Theta}(K_i) = K_i^{-1} \\
C_{\Theta}(q) = q^{-1}.
\end{cases}
\]

Notice that \(C_{\Theta} \) is not linear over \(\mathbb{Q}(q) \), but instead inverts \(q \). One can easily check that \(C_{\Theta} \) is a \(\mathbb{Q} \)-algebra involution, and that it is also a coalgebra anti-involution.

Definition 3.13. Fix a representation \(V \) with a bar involution \(\bar{\nu}_V \). Then \(\Theta_{V, \bar{\nu}_V} \) is the \(\mathbb{Q} \) linear endomorphism of \(V \) defined by

\[
\Theta_{V, \bar{\nu}_V}(v) = q^{-(\text{wt}(v),\text{wt}(v))/2+(\text{wt}(v),\rho)} \bar{\nu}_V(v).
\]
Comment 3.14. Using Definitions 3.11 one can see that, for any irreducible \(V_\lambda \subset V \), \(\Theta_{V,\text{bar}_V} \) restricts to an endomorphism of \(V_\lambda \).

Comment 3.15. There are sometimes weights \(\lambda \) for which \(- (\lambda, \lambda)/2 + (\lambda, \rho)\) is not an integer. However, it is always a multiple of \(1/k \) where \(k \) is twice the size of the weight lattice mod the root lattice. It is for this reason that we adjoin \(q^{1/k} \) to the base field.

Lemma 3.16. the following diagram commutes

\[
\begin{array}{ccc}
V & \xrightarrow{\Theta_V} & V \\
\downarrow{U_q(g)} & & \downarrow{U_q(g)} \\
C_\Theta & \xrightarrow{c_\Theta} & C_\Theta
\end{array}
\]

Proof. It is sufficient to check that \(C_\Theta(X)\Theta_V(v) = \Theta_V(Xv) \), where \(X = E_i \) or \(F_i \). We do the case of \(F_i \) and leave \(E_i \) as an exercise. Fix \(v \in V \).

\[
\begin{align*}
\Theta_V(F_i v) &= q^{-((\text{wt}(F_i v), \text{wt}(F_i)))/2 + (\text{wt}(F_i v), \rho) \text{bar}_V(F_i v)} \\
&= q^{-((\text{wt}(v) - \alpha_i, \text{wt}(v) - \alpha_i))/2 + (\text{wt}(v) - \alpha_i, \rho) F_i \text{bar}_V(v)} \\
&= q^{(\alpha_i, \text{wt}(v) - \alpha_i) - (\text{wt}(v), \rho) F_i \text{bar}_V(v)} \\
&= K_i F_i q^{-(\text{wt}(v), \text{wt}(v))/2 + (\text{wt}(v), \rho) \text{bar}_V(v)} \\
&= C_\Theta(F_i)\Theta_V(v).
\end{align*}
\]

where for Equation (29) we have used the fact that \((\alpha_i, \alpha_i)/2 = (\alpha_i, \rho) = d_i \). \(\square \)

Definition 3.17. Fix two representations with bar involutions \((V, \text{bar}_V)\) and \((W, \text{bar}_W)\). We set \(\Theta_{(V, \text{bar}_V) \otimes (W, \text{bar}_W)} \) to be the \(\mathbb{Q} \) linear endomorphism of \(V \otimes W \) defined by, for all \(u \in V \otimes W \),

\[
(\Theta_{(V, \text{bar}_V) \otimes (W, \text{bar}_W)})(u) = q^{-(\text{wt}(u), \text{wt}(u))/2 + (\text{wt}(u), \rho) \text{bar}(V \otimes W)}.
\]

Comment 3.18. By Lemma 3.16, \(\Theta_{(V, \text{bar}_V) \otimes (W, \text{bar}_W)} \) is a bar involution on \(V \otimes W \), so by Lemma 3.16 \(\Theta_{(V, \text{bar}_V) \otimes (W, \text{bar}_W)} \) is compatible with \(C_\Theta \).

4. Main Theorem

Theorem 4.1. \((\Theta_{V, \text{bar}_V}^{-1} \otimes \Theta_{W, \text{bar}_W}^{-1})\Theta_{(V \otimes W, \text{bar}_{V \otimes W})} \) acts on \(V \otimes W \) as the standard \(R \)-matrix. This holds independent of the choice of bar involutions \(\text{bar}_V \) and \(\text{bar}_W \).

Proof. We will actually prove the equivalent statement that

\[
\sigma^\Theta := \text{Flip} \circ (\Theta_{V, \text{bar}_V}^{-1} \otimes \Theta_{W, \text{bar}_W}^{-1})\Theta_{(V \otimes W, \text{bar}_{V \otimes W})}
\]

acts on \(V \otimes W \) as the standard braiding \(\text{Flip} \circ R \). By Lemma 3.16 and the fact that \(C_\Theta \) is a \(\mathbb{Q} \) coalgebra anti-automorphism, the following diagram commutes:

\[
\begin{array}{ccc}
V \otimes W & \xrightarrow{\Theta_{(V \otimes W, \text{bar}_{V \otimes W})}} & V \otimes W \\
\downarrow{U_q(g)} & & \downarrow{U_q(g)} \\
C_\Theta & \xrightarrow{c_\Theta} & C_\Theta
\end{array}
\]

In particular, \(\sigma^\Theta : V \otimes W \rightarrow W \otimes V \) is an isomorphism. Thus it suffices to show that \(\sigma^\Theta(v_{\nu}) = \text{Flip} \circ R(v_{\nu}) \) for every singular weight vector \(v_{\nu} \in V \otimes W \). By naturality it is enough to consider the case when \(V \) and \(W \) are irreducible, so let \(v_{\nu} \) be a singular vector in \(V_\lambda \otimes V_\mu \). Write

\[
v_{\nu} = b_\lambda \otimes c_0 + b_{k-1} \otimes c_1 + \ldots + b_1 \otimes c_{k-1} + b_0 \otimes b_{\mu},
\]
where for $0 \leq j \leq k-1$, b_j is a weight vector of V_μ of weight strictly less than μ. By Definitions 3.11 and 3.13,

\begin{align}
\sigma^\Theta(v_\nu) &= \text{Flip} \circ (\Theta_{\nu_\lambda}^{-1} \otimes \Theta_{\nu_\mu}^{-1}) \Theta_{V_\lambda,\nu_\lambda} \otimes (V_\mu,\nu_\mu) (\cdots + b_0 \otimes b_\mu) \\
&= \text{Flip} \circ (\Theta_{\nu_\lambda}^{-1} \otimes \Theta_{\nu_\mu}^{-1}) (q^{-(\mu+\text{wt}(b_0),\mu+\text{wt}(b_0))/2+(\mu+\text{wt}(b_0),\rho)} (\cdots + b_0 \otimes b_\mu)) \\
&= q^{-(\text{wt}(b_0),\text{wt}(b_0))/2-(\mu,\mu)/2+(\mu+\text{wt}(b_0),\mu+\text{wt}(b_0))/2} b_\mu \otimes b_0 + \cdots \\
&= q^{\text{wt}(b_0),\mu} b_\mu \otimes b_0 + \cdots,
\end{align}

where \cdots always represents terms where the factor coming from V_μ has weight strictly less than μ.

It follows immediately from Proposition 2.3 that

\begin{align}
\text{Flip} \circ R(v_\nu) &= q^{\text{wt}(b_0),\mu} b_\mu \otimes b_0 + \cdots,
\end{align}

where again \cdots represents terms of the form $c \otimes b$ where $\text{wt}(c) < \mu$. Both $\sigma^\Theta(v_\nu)$ and $\text{Flip} \circ R(v_\nu)$ are singular vectors in $V_\mu \otimes V_\lambda$, so by Lemma 2.6 they are equal.

\begin{comment}
\textbf{Comment 4.2.} The above proof works independent of the choice of bar_V and bar_W. One can also see directly that σ^Θ does not depend on these choices. Restrict to the irreducible case, and notice that by Lemma 3.5, σ^Θ depends only on the choice of highest weight vectors v_λ and v_μ. It is straightforward to check that rescaling these vectors has no effect on σ^Θ.
\end{comment}

\begin{comment}
\textbf{Comment 4.3.} One can check that Θ_V is an involution of \mathbb{Q} vector spaces, so the inverses in the statement of Theorem 4 are in some sense unnecessary. We include them because Θ_V should really be thought of as an isomorphism between V and the module which is V as a \mathbb{Q} vector space, but with the action of $U_q(\mathfrak{g})$ twisted by C_Θ. We have not specified the action of Θ on this new module. The way the formula is written, Θ is always acting on V, W or $V \otimes W$ with the usual action, where it has been defined.
\end{comment}

5. Future directions

We have two main motivations for developing our formula for the R-matrix.

\textbf{Motivation 1.} In work with Joel Kamnitzer [KT2], we showed that Drinfeld’s unitarized R-matrix \bar{R} (see [D]) respects crystal basis (up to some signs). Composing with Flip, we see that \bar{R} descends to a crystal map from $B \otimes C$ to $C \otimes B$, which is fact agrees with the crystal commutator defined in [HK]. We make extensive use of Equation (11), so our methods are only valid in the finite type case. However Drinfeld’s unitarized R-matrix is defined in the symmetrizable Kac-Moody case, as is the crystal commutator (see [KT1] and [S]). We hope that the formula given in Theorem 4.1 will help us to extend some of the results in [KT2] to the symmetrizable Kac-Moody case.

\textbf{Motivation 2.} Recall that the action of the braiding $\text{Flip} \circ R$ on $V \otimes W$ can be drawn diagrammatically as passing a string labeled V over a string labeled W. If we use flat ribbons in place of strings, as it is often convenient to do, one can consider the following isotopy:
Roughly, if one interprets twisting a ribbon by 180 degrees as X, and twisting two ribbon together as at the bottom on the right side as $\text{Flip} \circ \Delta(X)$, the two sides of this isotopy correspond to the two sides of Equation (1), written as

$$\text{Flip} \circ R = \text{Flip} \circ (X^{-1} \otimes X^{-1}) \Delta(X) = (X^{-1} \otimes X^{-1}) \circ \text{Flip} \circ \Delta(X).$$

(41)

In work with Noah Snyder [ST], we make this precise. One should be able to use our new formula to give a precise interpretation of “twisting a ribbon by 180 degrees” in the symmetrizable Kac-Moody case. It is for this reason that we use the term “half twist type formula” in our title.

References

[CP] V. Chari and A. Pressley. A Guide to Quantum Groups, Cambridge University Press, 1994.

[D] V. G. Drinfeld. Quasi-Hopf algebras, Leningrad Math. J. 1 (1990), no. 6, 1419–1457.

[HK] A. Henriques and J. Kamnitzer, Crystals and coboundary categories, Duke Math. J., 132 (2006) no. 2, 191–216; [math.QA/0406478]

[KT1] J. Kamnitzer and P. Tingley. A definition of the crystal commutor using Kashiwara’s involution. To appear in J. Algebr Comb. [arXiv:math/0610952v2].

[KT2] J. Kamnitzer and P. Tingley. The crystal commutor and Drinfeld’s unitarized R-matrix. To appear in J. Algebr Comb. [arXiv:0707.2245v2].

[K] M. Kashiwara, On crystal bases of the q-analogue of the universal enveloping algebras, Duke Math. J., 63 (1991), no. 2, 465–516.

[KR] A. N. Kirillov and N. Reshetikhin, q-Weyl group and a multiplicative formula for universal R-matrices, Comm. Math. Phys. 134 (1990), no. 2, 421–431.

[LS] S. Z. Levendorskii and Ya. S. Soibelman, The quantum Weyl group and a multiplicative formula for the R-matrix of a simple Lie algebra, Funct. Anal. Appl. 25 (1991), no. 2, 143–145.

[L] G. Lusztig. Introduction to quantum groups, Birkhäuser Boston Inc. 1993.

[S] A. Savage. Crystals, Quiver varieties and coboundary categories for Kac-Moody algebras. Preprint [arXiv:0802.4083].

[ST] N. Snyder and P. Tingley. The half twist for $U_q(g)$. Preprint [arXiv:0810.0984v2].

[T] P. Tingley A formula for the R-matrix using a system of weight preserving endomorphisms. Preprint [arXiv:0711.4853v2].

E-mail address: P.Tingley@ms.unimelb.edu.au

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF MELBOURNE, PARKVILLE, VIC, 3010, AUSTRALIA