A Note on Bounding Regret of the C²UCB Contextual Combinatorial Bandit

Bastian Oetomo Malinga Perera Renata Borovica-Gajic Benjamin I. P. Rubinstein*

February 21, 2019

Abstract

We revisit the proof by [Qin et al., 2014] of bounded regret of the C²UCB contextual combinatorial bandit. We demonstrate an error in the proof of volumetric expansion of the moment matrix, used in upper bounding a function of context vector norms. We prove a relaxed inequality that yields the originally-stated regret bound.

1 Introduction

In deriving a regret bound on the C²UCB contextual combinatorial bandit, Qin et al. (2014) use the following equality within the proof of their Lemma 4.2.

Claim 1. Let \(k, m, n \) be natural numbers, \(V \) be a \(d \times d \) real and positive definite matrix, and \(S_t \subseteq [m] \) with \(|S_t| \leq k \leq m \) for \(t \in [n] \). Let \(x_t(i) \in \mathbb{R}^d \) be vectors for \(t \in [n], i \in [m] \), and define \(V_n = V + \sum_{i=1}^{n} \sum_{i \in S_t} x_t(i)x_t(i)^T \).

Then \(\det(V_n) = \det(V) \prod_{i=1}^{n} \left(1 + \sum_{i \in S_t} \|x_t(i)\|^2_{V_{t-1}} \right) \), where we define \(\|a\|_M = \sqrt{a^TMa} \).

We present a counterexample to Claim 1 in Section 2, and then in Section 3 prove the relaxation given by,

Lemma 2. Under the same conditions as Claim 1, \(\det(V_n) \geq \det(V) \prod_{i=1}^{n} \left(1 + \sum_{i \in S_t} \|x_t(i)\|^2_{V_{t-1}} \right) \).

In the setting of C²UCB, \([n], [m] \) correspond to rounds and arms, \(S_t \) the (super arm of) played arms in round \(t \), \(x_t(i) \) the context vector for arm \(i \) at round \(t \), and \(V_t \) the covariance matrix from the played contexts added to \(V \) (taken to be a scaled identity, for achieving ridge regression reward estimates). We detail in Section 3 how Lemma 2 can be used within the remainder of the proof of (Qin et al., 2014) Lemma 4.2, ultimately yielding the C²UCB regret bound originally claimed. The regret analysis of C²UCB is based on previous analysis of contextual bandits (Auer, 2002; Dani et al., 2008; Chu et al., 2011). We demonstrate that the bound in Lemma 2 is sharp, by describing conditions for equality.

Notation. We denote by \(\lambda_j(A) \) the eigenvalues of the \(n \times n \) matrix \(A \), where, without loss of generality, \(\lambda_1(A) \leq \lambda_2(A) \leq \cdots \leq \lambda_n(A) \). We likewise order \(S_t = \{s_{(1,t)}, s_{(2,t)}, \ldots, s_{(|S_t|,t)}\} \), where \(s_{(1,t)} < s_{(2,t)} < \cdots < s_{(|S_t|,t)} \).

Generalised Matrix Determinant Lemma. We make use of the identity: Let \(A \) be an invertible \(n \times n \) matrix, and \(B, C \) be \(n \times m \) matrices, then \(\det(A + BC^T) = \det(I_n + C^TA^{-1}B) \det(A) \).

2 A Counterexample

Claim 1 derives from the assertion within the proof of (Qin et al., 2014) Lemma 4.2 that,

\[
\det(V_{n-1}) \det \left(I + \sum_{i \in S_n} (V_{n-1}^{-1/2} x_n(i))(V_{n-1}^{-1/2} x_n(i))^T \right) = \det(V_{n-1}) \det \left(I + \sum_{i \in S_n} \|x_n(i)\|^2_{V_{n-1}} \right).
\]

This appears to conflate outer and inner products, after basis transformation by \(V_{n-1}^{-1/2} \). The following counterexample to Claim 1 establishes that indeed it does not hold in general.

*School of Computing and Information Systems, University of Melbourne, Parkville, VIC 3010, Australia. {boetomo,wpperera}@student.unimelb.edu.au, {rborovica,brubinstein}@unimelb.edu.au
Example 3. Consider \(n = 1 \), the \(2 \times 2 \) matrix \(V = 1.2I_2 \), \(S_t = \{1, 2, 3\} \) and let \(x_1(1) = \begin{bmatrix} 0.3 \\ 0.1 \end{bmatrix} \), \(x_1(3) = \begin{bmatrix} 0.1 \\ 0.5 \end{bmatrix} \). It follows that \(V_1 = \begin{bmatrix} 1.66 & 0.32 \\ 0.32 & 1.95 \end{bmatrix} \). Then we have

\[
\det(V) = \prod_{i=1}^{n} \left(1 + \sum_{t \in S_t} ||x_t(i)||^2 \right)
\]

\[
= \det(V) \left(1 + \sum_{t \in S_t} x_t(i)^T V^{-1} x_t(i) \right)
\]

\[
= \det(1.2I_2) \left(1 + x_1(1)^T \left(\frac{1}{1.2} \right) x_1(1) + x_1(2)^T \left(\frac{1}{1.2} \right) x_1(2) + x_1(3)^T \left(\frac{1}{1.2} \right) x_1(3) \right)
\]

\[
= 1.2^2 \left(1 + \frac{1}{1.2} (0.3^2 + 0.7^2) + \frac{1}{1.2} (0.6^2 + 0.1^2) + \frac{1}{1.2} (0.1^2 + 0.5^2) \right)
\]

\[
= 2.892 \neq 3.1346 = 1.66 \times 1.95 - 0.32 \times 0.32 = \det(V_1).
\]

3 Proof of Lemma [2]

Let \(X_n = [x_n(s_{1,n}) \ldots x_n(s_{|S_n|,n})] \). Then,

\[
\det(V_n) = \det \left(V + \sum_{t=1}^{n-1} \sum_{i \in S_t} x_t(i)x_t(i)^T + \sum_{i \in S_n} x_n(i)x_n(i)^T \right)
\]

\[
= \det(V_n - 1 + X_nX_n^T)
\]

\[
= \det(V_n - 1) \det \left(I_{|S_n|} + X_n^T V_{n-1}^{-1} X_n \right)
\]

\[
= \det(V_n - 1) \left[\prod_{i=1}^{|S_n|} \lambda_i \left(I_{|S_n|} + X_n^T V_{n-1}^{-1} X_n \right) \right]
\]

where the fourth and final equalities follow from the Generalised Matrix Determinant Lemma and the fact that adding the identity to a square matrix increases eigenvalues by one. Now, the final line's product can be expanded as

\[
1 + \sum_{i=1}^{|S_n|} \lambda_i (X_n^T V_{n-1}^{-1} X_n) + \sum_{1 \leq t < i \leq |S_n|} \lambda_t \lambda_i (X_n^T V_{n-1}^{-1} X_n) (X_n^T V_{n-1}^{-1} X_n) + \cdots + \prod_{i=1}^{|S_n|} \lambda_i (X_n^T V_{n-1}^{-1} X_n).
\]

(1)

Since \(V \) is positive definite and \(x_t(i)x_t(i)^T \) is positive semi-definite (with one eigenvalue being \(x_t(i)^T x_t(i) \) and the remainder all zero) for all \(t \) and \(i \), we have that \(V_n - 1 = V + \sum_{t=1}^{n-1} \sum_{i \in S_t} x_t(i)x_t(i)^T \) is positive definite. Therefore, we conclude that \(V_{n-1}^{-1} \) is also positive definite, hence it has a symmetric square root matrix \(V_{n-1}^{-1/2} \). It also follows that \(X_n^T V_{n-1}^{-1} X_n \) is positive semi-definite. Therefore, the terms starting from the third term in the expansion (1) are all non-negative because they are products of the eigenvalues of \(X_n^T V_{n-1}^{-1} X_n \). Thus, we have,

\[
\det(V_n) = \det(V_n - 1) \left[\prod_{i=1}^{|S_n|} \left(1 + \lambda_i \left(X_n^T V_{n-1}^{-1} X_n \right) \right) \right]
\]

\[
\geq \det(V_n - 1) \left(1 + \sum_{i=1}^{|S_n|} \lambda_i (X_n^T V_{n-1}^{-1} X_n) \right)
\]

\[
= \det(V_n - 1) \left(1 + \text{tr}(X_n^T V_{n-1}^{-1} X_n) \right)
\]

\[
= \det(V_n - 1) \left(1 + \sum_{i \in S_n} x_n(i) V_{n-1}^{-1} x_n(i) \right)
\]

2
= \det(V_{n-1}) \left(1 + \sum_{i \in S_n} ||x_n(i)||^2_{V_{n-1}} \right),

where the third equality follows from expanding out the argument to the trace as

\[X_n^T V_{n-1}^{-1} X_n = \begin{bmatrix}
 x_n(s_{(1,n)})^T V_{n-1}^{-1} x_n(s_{(1,n)}) & \cdots & x_n(s_{(1,n)})^T V_{n-1}^{-1} x_n(s_{(|S_n|,n)}) \\
 \vdots & \ddots & \vdots \\
 x_n(s_{(|S_n|,n)})^T V_{n-1}^{-1} x_n(s_{(|S_n|,n)}) & \cdots & x_n(s_{(|S_n|,n)})^T V_{n-1}^{-1} x_n(s_{(|S_n|,n)})
\end{bmatrix}. \]

Applying our recurrence relation on \(V_t \) for \(1 \leq t \leq n \), we can telescope to arrive at the result.

\section{Implication of Lemma 2}

By rearranging the inequality, we know that

\[\prod_{t=1}^{n} \left(1 + \sum_{i \in S_t} ||x_t(i)||^2_{V_{t-1}} \right) \leq \frac{\det(V_n)}{\det(V)}, \]

provided that \(\det(V) > 0 \), which is guaranteed for our positive definite \(V \). The next steps of (Qin et al., 2014, Lemma 4.2)'s proof follow the original pattern now with the second inequality in what follows (due to our Lemma 2 and monotonicity), rather than the original equality:

\[\sum_{t=1}^{n} \sum_{i \in S_t} ||x_t(i)||^2_{V_{t-1}} \leq 2 \sum_{t=1}^{n} \log \left(1 + \sum_{i \in S_t} ||x_t(i)||^2_{V_{t-1}} \right) = 2 \log \left(\prod_{t=1}^{n} \left(1 + \sum_{i \in S_t} ||x_t(i)||^2_{V_{t-1}} \right) \right) \]

\[\leq 2 \log \left(\frac{\det(V_n)}{\det(V)} \right) = 2 \log(\det(V_n)) - 2 \log(\det(V)), \]

which yields the regret bound as presented by Qin et al. (2014), without further modification to the proof of their Lemma 4.2.

\section{Discussion}

The proof of Lemma 2 offers intuition as to when the inequality holds with equality. Namely, it is true when the matrix \(X_t^T V_{t-1}^{-1} X_t \) has at most one non-zero eigenvalue \(i.e. \), be either a rank-1 or rank-0 matrix for all \(1 \leq t \leq n \). This is because the terms that we dropped in calculating the determinant of \(I_{|S_t|} + X_t^T V_{t-1}^{-1} X_t \) are then identically 0. This agrees with the result of the non-generalised matrix determinant lemma.

This occurs when intra-round, played context vectors are co-linear to each other: if the context vector of arm \(i \) can be written as \(x_t(i) = a_i u_i \), then we can write \(X_t = u_i a_i^T \), where \(a_i \) is a column vector with \(a_{ij} \) as its components. The matrix we are interested in becomes \(X_t^T V_{t-1}^{-1} X_t = (u_i a_i^T)^T V_{t-1}^{-1} (u_i a_i^T) = ||u_i||^2_{V_{t-1}} a_i a_i^T \), which is a rank-1 matrix. Thus, it also follows that the trace of this matrix is \(||u_i||^2_{V_{t-1}} ||a_i||^2 \). One interesting thing to notice here is that the context vectors need not to be co-linear across rounds.

A special case of the co-linearity scenario is the non-combinatorial bandit. In this scenario, \(|S_t| = 1 \) for all \(t \). This means that given a particular round \(t \), there is only one context vector available. In particular, \(\det \left(I_{|S_t|} + X_t^T V_{t-1}^{-1} X_t \right) = \det \left(I_t + x_t^T V_{t-1}^{-1} x_t \right) = 1 + x_t^T V_{t-1}^{-1} x_t \), which is the bound that we had for calculating \(\det \left(I_{|S_t|} + X_t^T V_{t-1}^{-1} X_t \right), \) were \(|S_t| = 1 \).

\section{References}

Peter Auer. Using confidence bounds for exploitation-exploration trade-offs. \textit{Journal of Machine Learning Research}, 3(Nov):397–422, 2002.

Wei Chu, Lihong Li, Lev Reyzin, and Robert Schapire. Contextual bandits with linear payoff functions. In \textit{Proceedings of the Fourteenth International Conference on Artificial Intelligence and Statistics}, pages 208–214, 2011.

Varsha Dani, Thomas P. Hayes, and Sham M. Kakade. Stochastic linear optimization under bandit feedback. In \textit{Proceedings of the 21st Annual Conference on Learning Theory}, pages 355–366, 2008.

Lijing Qin, Shouyuan Chen, and Xiaoyan Zhu. Contextual combinatorial bandit and its application on diversified online recommendation. In \textit{Proceedings of the 2014 SIAM International Conference on Data Mining}, pages 461–469, 2014.

\footnote{Here as in the original proof, we leverage assumptions: \(\lambda_1(V) \geq k \) and the context vectors are of bounded norm \(||x_t(i)||_2 \leq 1 \).}