Palatal rugoscopy as an adjunct for sex determination in forensic odontology (Sri Ganganagar population): A cross-sectional study of 100 subjects

Vineet Gupta, Amanpreet Kaur
Department of Oral and Maxillofacial Pathology and Microbiology, MGSDC, Sri Ganganagar, Rajasthan, India

Abstract

Introduction: Palatorugoscopy is the term used to study the rugae patterns. The word rugae came from the Greek word seam. Moreover, it relates the crisscrossing or joining or stitching of the parts of two biological structures during fetal differentiation. The aim of this study is to determine the gender difference in rugae pattern with regard to length, number, shape, unification and direction in the population of Sri Ganganagar, Rajasthan.

Objective: The objective is to determine the gender difference in rugae pattern with regard to length, number, shape, unification and direction; to investigate the difference in division of rugae in males and females and to compare rugae pattern in males and females of different age group.

Materials and Methods: This study included 100 subjects, in which 50 were males (Group A) and other 50 were females (Group B). After the formation of primary cast, all quantitative as well as qualitative characteristics of palatal rugae patterns were recorded. Mainly, two classifications were used in this study, Thomas et al. and Kapali et al.

Statistical Analysis: Student t-test was used, and “P” value of <0.05 was considered statistically significant.

Results: A statistically significant value was found in left-sided palatal rugae patterns depending upon the size, where we found that primary rugae were more in males. On comparing the angulation of palatal rugae patterns of left-sided rugae, a statistically significant value was found among the negative angulation which was higher in male subjects. Next, while comparing the angulation of palatal rugae of right side, we found a statistically significant value among zero (perpendicular rugae), which was more in male population. On comparing the unification of right-sided rugae patterns, we found that divergent rugae were more in male subjects.

Conclusion: Palatal rugae patterns act as individualistic, and are unique patterns, and are helpful in determining the human gender. Further, more studies are required on palatal rugae patterns used in forensics on large population scale.

Keywords: Kapali et al., palatal rugae, Thomas et al., Vernier caliper

Address for correspondence: Dr. Vineet Gupta, C 40, East Krishna Nagar, Opp Metro Pillar No 91, New Delhi, India.
E-mail: ving.30@gmail.com
Received: 24-May-2021, Accepted: 15-Nov-2021, Published: 11-Jan-2022

Access this article online

Quick Response Code: [QR Code Image]
Website: www.jomfp.in
DOI: 10.4103/jomfp.jomfp_155_21

How to cite this article: Gupta V, Kaur A. Palatal rugoscopy as an adjunct for sex determination in forensic odontology (Sri Ganganagar population): A cross-sectional study of 100 subjects. Oral Maxillofac Pathol 2021;25:556.

This is an open access journal, and articles are distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 License, which allows others to remix, tweak, and build upon the work non-commercially, as long as appropriate credit is given and the new creations are licensed under the identical terms.

For reprints contact: WKHLRPMedknow_reprints@wolterskluwer.com
INTRODUCTION

According to the Federation Dentaire Internationale, forensic dentistry is the branch of dentistry which works for exact assessment and inspection of dental proofs, and helps in conservation and detection of records for proper fairness in decision.[1]

The study of palatal rugae for evaluating human specification and naming is defined as palatoscopy.[2] The word rugae came from the Greek word seam. Moreover, it relates the crisscrossing or stitching of the parts of two biological structures during fetal differentiation.[3] Design and placement of palatal rugae patterns are organized between the 12th and 14th weeks of intrauterine phase, and this alignment lasts for whole life unless the soft tissue decays afterward decease.[4]

Epithelial–mesenchymal interchange is the factor which controls and expands the dimensions of rugae patterns, and along with this, some molecules are also identified during growing.[5] Acids, chemicals, injuries, wounds, eruption and dropping of teeth or life-threatening conditions do not alter or affect the configuration of palatal rugae patterns.[6] Rugae are useful in recognition methods due to their simplicity, accuracy and cost-effectiveness.[7] Hence, with these features, palatal rugae patterns are one of the specific postmortem proofs.

The present study is conducted to determine the gender difference in rugae pattern with regard to length, number, shape, unification and direction in the population of Sri Ganganagar, Rajasthan.

MATERIALS AND METHODS

Candidates were selected from the Outpatient Department of Maharaja Ganga Singh Dental College and Research Centre, Sri Ganganagar, Rajasthan. This study included 100 subjects, in which 50 were males (Group A) and other 50 were females (Group B). Sample size was correctly distributed within the age group 30–70 years.

After the settlement of the patient on the dental chair, mixing of alginate impression material was carried out. Measured amount of powder and water was added into the bowl and mixed in the figure-of-eight motion up to 1 min. Quickly after mixing of alginate material, maxillary impression tray was filled with the material and instantly inserted into the patient's mouth. Impression tray was stationary and immobile during the setting of impression material. After taking maxillary impression, suddenly primary cast was made with the use of dental stone.

After the formation of primary cast, all quantitative as well as qualitative characteristics of palatal rugae patterns were recorded.

Mainly, two classifications were used in this study, Thomas et al. and Kapali et al.[8]

Parameters are as follows [Figure 1]:
- Length of palatal rugae was measured with the use of manual Vernier caliper (primary rugae, secondary rugae and fragmental rugae)
- Unification: Meeting point of two different rugae patterns at the same place may be at starting or terminal point of rugae (convergent and divergent rugae)
- Shape: Curved, wavy, straight and circular
- Angulation or direction: Angle formed between the line joining starting and terminal portion of palatal rugae and it must be perpendicular to the median raphe (forwardly directed, backwardly directed and perpendicular rugae)
- Number of palatal rugae was evaluated.

Statistical analysis

Findings were recorded, tabulated and subjected to statistical analysis.

Student's \(t\)-test was used. “\(P\)” value of < 0.05 was considered statistically significant.

RESULTS

1. In our study, we found statistically significant value in left-sided palatal rugae patterns depending upon the size, where we found the mean value of primary rugae size (length) in male participants to be higher \(3.62 \pm 0.67\) as compared to female participants \(3.1 \pm 0.77\) [Table 1]

2. On comparing the angulation of palatal rugae patterns of left-sided rugae, a statistically significant value was found among the negative angulation which was having higher mean value in male subjects \(1.36 \pm 1.17\) than females \(0.9 \pm 0.83\) [Table 2]
3. Next, while comparing the angulation of palatal rugae of right side, we found a statistically significant value with respect to zero angulation (perpendicular rugae), with mean value more in females (0.92 ± 0.82) than males (0.56 ± 0.61) [Table 3]

4. On comparing the unification of right-sided rugae patterns, we found divergent rugae of higher mean value in males (0.56 ± 0.64) than females (0.3 ± 0.46) with statistically significant value [Table 4]

5. In addition, on comparing the variables between males and females in general (taking left- and right-sided palatal rugae simultaneously), we found statistically significant values for size (length) of primary rugae (mean value in males 3.57 ± 0.08 higher than females 3.32 ± 0.81) and size of secondary rugae (mean value in males 1.83 ± 1.98 higher than females 0.19 ± 0.44), shape (straight; mean value in females 0.36 ± 0.68 higher than males 0.20 ± 0.42) and divergent unification (mean value in males 0.49 ± 0.57 higher than females 0.29 ± 0.45) [Table 5].

DISCUSSION

In human-made as well as in natural disasters (mass casualties), dental records are highly useful for human identification, as finger records are not precise in each condition. The philosophy behind this is that postmortem dental records can be compared with the same person's antemortem record for identification along with the use of models and photographic views. Various methods are available for the recognition of humans such as determination of gender, blood grouping, age estimation, weighting, dental records, dactyloscopy and anthropometry. A palatal rugae pattern study (palatorugoscopy) is one of them as palatal rugae patterns are extremely distinctive and isolated in each and every human being.\(^8\)

These patterns do not undergo any positional, locational and functional change in complete lifespan of person. The utilization of patterns in forensic odontology is because of its cost-effective and convenient procedure for analysis, along with other profitable points of rugae.\(^9\)

In our study, we examined and studied the rugae length, number, shape, size, unification and direction on both the sides (left and right) of midpalatal suture of both male and female groups. Many differences were present between both the genders.

On comparing the length of palatal rugae patterns on left side (primary, secondary and fragmentary) in both male and female groups, we noticed that in the male population, the length (primary rugae) \(P = 0.001\) was more as compared to female population. Furthermore, length primary rugae \(P = 0.020\) and secondary rugae \(P = 0.000\) were more in males than females when compared in general that is taking left- and right-sided palatal rugae simultaneously.

Table 1: The comparison of size among male and female participants on the basis of primary, secondary and fragmentary (left-sided palatal rugae patterns)

Group	N	Mean±SD	T	P
Primary				
Female	50	3.1±0.67	−3.560	0.001*
Male	50	3.62±0.77		
Secondary				
Female	50	0.24±0.47	1.31	0.261
Male	50	0.14±0.40		
Fragmentary				
Female	50	0.0±0.00		
Male	50	0.0±0.00		

*Statistically significant \((P<0.05)\). n: Number of participants, SD: Standard deviation, t: Student t-test

Table 2: Comparison of angulation among males and females on the basis of positive, negative and zero (left-sided palatal rugae patterns)

Group	N	Mean±SD	T	P
Positive				
Female	50	1.42±0.97	0.090	0.928
Male	50	1.36±1.25		
Negative				
Female	50	0.9±0.83	−2.254	0.026*
Male	50	1.36±1.17		
Zero				
Female	50	1.14±1.03	0.623	0.535
Male	50	1.02±0.89		

*Statistically significant. n: Number of participants, SD: Standard deviation, t: Student t-test

Table 3: Comparison of angulation among males and females on the basis of angulation (right-sided palatal rugae patterns)

Group	N	Mean±SD	T	P
Positive				
Female	50	1.08±0.87	−0.738	0.463
Male	50	1.22±1.01		
Negative				
Female	50	1.6±1.17	−0.533	0.595
Male	50	1.72±1.06		
Zero				
Female	50	0.92±0.82	2.471	0.015*
Male	50	0.5±0.61		

*Statistically significant. n: Number of participants, SD: Standard deviation, t: Student t-test

Table 4: Comparison among the male and female participants on the basis of unification (right-sided palatal rugae patterns)

Group	n	Mean±SD	t	P
Convergent				
Female	50	0.04±0.1979	0.581	0.563
Male	50	0.02±0.1442		
Divergent				
Female	50	0.3000±0.46291	−2.318	0.023*
Male	50	0.5600±0.64397		

*Statistically significant. n: Number of participants, SD: Standard deviation, t: Student t-test
Gupta and Kaur: Palatal rugoscopy as an adjunct for sex determination

Table 5: Comparison of variables among males and females

Variables	Groups	Mean±SD	t	Significant	
Number	Female	3.5100±0.88186	-1.117	0.265	
	Male	3.6400±0.75905			
Size	Primary	Female	3.3200±0.81501	-2.348	0.020*
		Male	3.5700±0.68542		
	Secondary	Female	0.9900±0.42556	-8.102	0.000*
		Male	1.8367±1.98288		
	Fragmental	Female	0.0000±0.00000		
		Male	0.0000±0.00000		
Angulation	Positive	Female	1.4100±1.10184	0.699	0.485
		Male	1.3000±1.12367		
	Negative	Female	1.2500±1.07661	-1.856	0.065
		Male	1.5400±1.13191		
	Zero	Female	0.9500±0.84537	1.379	0.170
		Male	0.7900±0.79512		
Shape	Curved	Female	1.7800±1.01085	0.215	0.830
		Male	1.7500±0.95743		
	Wavy	Female	1.0900±0.81767	-0.765	0.445
		Male	1.1800±0.84543		
	Straight	Female	0.3600±0.68931	1.974	0.050*
		Male	0.2000±0.42640		
	Circular	Female	0.0100±0.10000	-0.579	0.563
		Male	0.0200±0.14071		
Unification	Convergent	Female	0.0300±0.17145	0.451	0.653
		Male	0.0200±0.14071		
	Divergent	Female	0.2900±0.45605	-2.719	0.007*
		Male	0.4900±0.57726		

*Statistically significant. SD: Standard deviation, t: Student t-test

Zero angulated rugae are those which have perpendicular directions. Moreover, this may be because, during the development of human embryo, the palatal rugae which are thick and leading occupy the large dimension of palatal structure. The inclination, orientation and direction of palatal rugae are established in intrauterine life by the accumulation of running fibers (collagen fibers) over the foundation of palatal rugae patterns in the direction of anteroposterior turns and in concentric loops. Moreover, in embroyogenesis, several variations also occur because of genetical factors.18

On comparing the unification of rugae patterns among both genders (male and female) of right side, divergent unification was more in males than females (P = 0.023). Furthermore, divergent unification was found to be more in males than females when taking into consideration both right- and left-sided palatal rugae simultaneously. Similar results were obtained by Thabitha et al. in 2015, Kalyani et al. in 2016, Bharath et al. in 2011 and Dr. Nagrale et al. in 2021 in their study.

This may be attributed as, in the embryo of mice, it has been demonstrated that on the fibroblast growth factor (FGF) and Sonic hedgehog signaling, activator–inhibitor system is dependent, in turn which further results in systematic generation of palatal rugae patterns in the specified growth areas in the growing palate. In mice, the absence of palatal rugae occurs, if loss of role related with FGF-10 or FGF-2. On the other side, in humans, the morphology of palatal rugae patterns is more complex than mouse, and the foundational mechanisms are probably to be maintained at the level of molecular genetics.

On comparing the shape of palatal rugae patterns between the males and females taking into consideration both right- and left-sided rugae simultaneously, straight-shaped rugae were found more in females than males (P = 0.050), curved and wavy rugae more in males (P < 0.05) which is in accordance with studies done by Nallamilli et al. in 2015, Azab et al. in 2016 and Selvamani et al. in 2019.
Discrepancy in shapes of palatal rugae with respect to gender differentiation may be precisely studied by considering larger sample size.

CONCLUSION

In our study, we found a statistically significant value in left-sided palatal rugae patterns depending upon the size, where we found that primary rugae were more in males. However, on comparing the angulation of palatal rugae patterns of left-sided rugae, a statistically significant value was found among the negative angulation which was higher in male subjects. Next, while comparing the angulation of palatal rugae of right side, we found a statistically significant value among zero (perpendicular rugae), which was more in male population. On comparing the unification of right-sided rugae patterns, we found that divergent rugae were more in male subjects. With these findings, we can conclude that palatal rugae patterns act as individualistic, and are unique patterns, and are helpful in determining the human gender.

Further, more studies are required on palatal rugae patterns used in forensics on large population scale.

Financial support and sponsorship
Nil.

Conflicts of interest
There are no conflicts of interest.

REFERENCES

1. Rajendran R, Sivapathasundram B. Shaffer’s Textbook Oral Pathology. 5th ed. Elsevier publication, Chennai; 1999. p. 1227-50.
2. Zowharsajid M, Singh P, Singh S, Kiran K, Agrawal S, Singh R, et al. Study of palatal rugae pattern for establishing individuality. IOSR J Dent Med Sci 2016;15:37-43.
3. Shailaja AM, Romana IR, Narayanappa G, Smitha T, Gowda NC, Vedavathi HK. Assessment of palata rugae pattern and its significance in orthodontics and Forensic odontology. J Oral Maxillofac Pathol 2018;22:430-5.
4. Shriram C Bansode, Meena M Kulkarni. Importance of palatal rugue in individual identification. J Forensic Dent Sci 2009;1:77-81.
5. Sabarigrinathan C, Vinayagavel K, Meenakshi A, Selvamani C, Srimanaprabhu G, Sivasakthikumar S, et al. Palatal rugae in forensic odontology a review: IOSR J Dent Med Sci 2015;14:837-7.
6. Patil MS, Patil SB, Acharya AB. Palatine rugae and their significance in clinical dentistry: A review of the literature. J Am Dent Assoc 2008;139:1471-8.
7. Indira AP, Gupta M, David MP. Rugoscopy for establishing individuality. Indian J Dent Adv 2011;3:427-32.
8. Thabitha RS, Reddy RE, Manjula M, Sreelakshmi N, Rajesh A, Kumar VL. Evaluation of palatal rugae Pattern in establishing identification and sex determination in Nalgonda children. J Forensic Dent Sci 2015;7:232-7.
9. Hemanth M, Vidhya M, Shetty N, Karkera BV. Identification of individuals using palatal rugae: Computerized method. J Forensic Sci 2010;2:86-90.
10. Balgi P, Bhalekar B, Bhalerao K, Bhide E, Palaskar S, Kathuriya P. Study of palatal rugae pattern in gender identification. J Dent Ailled Sci 2015;3:13-6.
11. Shrestha A, Shrestha S, Marla V, Agarwal N. Patterns of palatal rugae as an indicator of identification in young adults of Nepal. J Coll Med Sci Nepal 2017;13:241-5.
12. Mittal S, Vyas P, Bhullar M, Singla D, Aggarwal I, Hasan R. Arch length and palatal rugae: An adjunct in gender discrimination. Dent J Adv Stud Res 2019;7:110-3.
13. Pramanik A, Debnath M, Debnath M. A comparative study of gender difference in palatal rugae patterns among Bengali subjects in Murshidabad. Int J Anat Radiol Surg 2019;8:6-10.
14. Ahmed AA, Hamid A. Morphological study of palatal rugae in a Sudanese population. Int J Dent 2015;2015:650648.
15. Shenif AF, Hashim AA, Al Hanafi MA, Soliman EM. A pitor-cross sectional study of palatal rugae shape and direction among Egyptians and Malaysians. Egypt J Forensic Sci 2018;8:2-9.
16. Pillai J, Banekar A, Bhattacharya A, Gandhi R, Patel N, Parikh S. Quantitative and qualitative analysis of palatal rugae patterns in Gujarati population: A retrospective, cross-sectional study. J Forensic Dent Sci 2016;8:126-34.
17. Azab SM, Magdy R, EI Deen MA. Patterns of palatal rugae in the Egyptian population. Egypt J Forensic Sci 2016;6:78-83.
18. Abdalla ME, Emam AN. Is palatal rugae pattern a reliable tool in individual identification in forensic odontology medicine: Descriptive Study in Najran Region. Mansoura J Forens Med Clin Toxicol 2017;25:63-73.
19. Kalyani KR, Kumar KK, Selhar PC, Reddy GS, Prasad LK, Reddy BV. Analysis of palatal rugae patterns among two ethnic populations of Andhra Pradesh. J Dr NTR Univ Health Sci 2016;5:44-8.
20. Bhanraj ST, Kumar GR, Dhanapal R, Sarasватhi TR. Sex determination by discriminant function analysis of Palatal rugae from a population of Coastal Andhra. J Forensic Dent Sci 2011;3:58-62.
21. Nagule N, Ambal RS, Bankar N, Salankar H. Characteristics of patterns of palatal rugae in Central Indian individuals: A cross sectional study. Eur J Mol Clin Med 2021;8:372-5.
22. Armstrong J, Seehra J, Andiappan M, Jones AG, Papageorgiou SN, Cobourne MT. Palatal rugae morphology is associated with variation in tooth number. Univ Zurich 2020;10:19074.
23. Nallamilli SM, Tatapudi R, Reddy SR, Chennoju SK, Kotha R, Kotha P. Diversity of Palatal rugae patterns and their reliability in Sex discrimination in a South Indian population. J Indian Acad Oral Med Radiol 2015;27:9-12.
24. Selvamani M, Hosallimath S, Madhusankari, Basandi PS, Yamanadevi A. Dimensional and Morphological analysis of various rugae patterns in Kerala (South India) sample population. A cross sectional study. J Nat Sci Biol Med 2015;6:306-9.