Two different scaling regimes in Ginzburg-Landau model with Chern-Simons term

Hagen Kleinert, and Flavio S. Nogueira

Institut für Theoretische Physik, Freie Universität Berlin, Arnimallee 14, D-14195 Berlin, Germany

(Dated: Received November 21, 2018)

The Ginzburg-Landau model with a Chern-Simons term is shown to possess two different scaling regimes depending on whether the mass of the scalar field is zero or not. In contrast to pure \(\phi^4\) theories, the Ginzburg-Landau model with a topologically generated mass exhibits quite different properties in perturbation theory. Our analysis suggests that the two scalings could coincide at a non-perturbative level. This view is supported by a \(1/N\)-expansion in the massive scalar field regime.

PACS numbers: 74.20.-z, 05.10Cc, 11.25.Hf

I. INTRODUCTION

The Ginzburg-Landau (GL) model with the Lagrange density

\[
L_{GL} = \frac{1}{2}(\nabla \times \mathbf{a})^2 + |(\nabla - i q \mathbf{a}) \phi|^2 + r|\phi|^2 + \frac{u}{2} |\phi|^4
\]  

was set up more than 50 years ago to describe superconductivity. Since then it has been used to describe a variety of other physical systems, where complex order field \(\psi(x)\) and vector potential \(\mathbf{a}(x)\) are not related to Cooper pairs and magnetic fields. An important application deals with smectic liquid crystals where \(\psi(x)\) describes the smectic order and \(A(x)\) the transverse displacement of the nematic director. Other fascinating applications arise by adding a topological Chern-Simons (CS) term for the vector potential to the GL model:

\[
L_{CS} = \frac{i \theta}{2} \mathbf{a} \cdot (\nabla \times \mathbf{a}).
\]

In this case one speaks of a Chern-Simons-Ginzburg-Landau (CSGL) model. This model possesses properties found in the famous fractional quantum Hall effect, where the coupling parameter of the CS term determines a nontrivial phase factor for the exchange of two complex fields and thus the statistics of Laughlin quasi-particles.

Without an initial Maxwell term \((\nabla \times \mathbf{a})^2/2\), this interpretation as been advanced by Zhang. All gradient terms in his effective action are caused by fluctuations of a vector potential with only a CS term. But also the theory with a Maxwell term has physical significance since it emerges naturally when constructing a dual disorder model of CSGL model without the Maxwell term. In addition, such a model has been found when bosonizing theories of strongly interacting fermions in three dimensions.

Another interesting application of the CSGL model without a Maxwell term arises in the field theoretical approach to polymers, where the degree of entanglement is controlled by the parameter \(\theta\). Detailed results have been obtained recently.

In this paper we shall discuss the fixed point structure of the the CSGL model with a Maxwell term. The Lagrangian of the model is

\[
L_{CSGL} = L_{GL} + L_{CS}.
\]

The fixed-point structure of a standard GL Lagrangian has been investigated at various places. In the presence of a CS term, it has been discussed in Refs. 17 and 18. It must be emphasized that in these references the Maxwell term is explicitly included in contrast to earlier work where it was ignored. This makes an important differences in the fixed-point structure since in the presence Maxwell term, the charge is no longer dimensionless, and there is the generation of another mass called the topological mass. An important result of Ref. 18 was that, although the CS term is not renormalized, the \(\beta\)-function of the topological coupling is not zero due to the presence of the Maxwell term.

It was noted by Semenoff that the renormalization of the CSCL model depends on the mass of the scalar field. Kleinert and Schake considered the CSGL and derived scaling laws as a function of the renormalized mass of the scalar field. Later, de Calan et al. considered the same model, but within renormalization group (RG) approach at the critical point. They obtained considerably more involved RG functions than those of Ref. 17.

In this paper we shall improve considerably the discussions of Refs. 17 and 18 and exhibit the relation between both scaling behaviors at the one-loop level. The plan of the paper is the following. In Section II we discuss an effective mean-field theory which only includes fluctuations of the gauge field. From this we can already observe a particular feature coming from the CS term: for large \(\theta\), there is no tricritical point and therefore no first-order phase transition, in contrast to the pure GL mode. This approximation, however, does not distinguish reliably critical from tricritical behavior. For this we employ in Section III the RG to obtain information on the phase transition. At the one-loop level we are then able to distinguish two different scaling behaviors with quite different physical properties. The relation between them is illuminated in Section IV by comparing a non-perturbative \(1/N\) expansion in the nonzero-mass regime with the one-loop approximation in the massless regime. The qualitative behavior of the non-perturbative result shows a remarkable agreement with the one-loop
approximation. In Section V we obtain the exponents for the “fermionic” fixed point, which is reached for a specific value of the CS coupling parameter obtained from the bosonization scheme. A final discussion is given in Section VI.

II. EFFECTIVE MEAN-FIELD THEORY

Let us integrate out the vector potential in the effective action to derive a lowest-order effective mean-field theory for the model (3), by analogy with the procedure on the pure GL theory by Halperin et al. For a uniform order field $\phi = \phi_0/\sqrt{2}$, where $\phi_0$ is a real constant, this operation can be done exactly. The result is a free energy density

$$\mathcal{F} = \frac{1}{12\pi} \left\{ [M_+^2(\phi_0^2)]^{3/2} + [M_-^2(\phi_0^2)]^{3/2} \right\} + \frac{r}{2} \phi_0^2 + \frac{u}{8} \phi_0^4,$$

where

$$M_\pm^2(\phi_0^2) = q^2 \phi_0^2 + \frac{\theta^2}{2} \pm \frac{|\theta|}{\sqrt{2}} \sqrt{q^2 + 4q^2 \phi_0^2}.$$

In (4) we have dropped field-independent infinite term and absorbed a term proportional to the ultraviolet cutoff in $r$. For $\theta = 0$, our result reduces to the usual Halperin-Lubensky-Ma (HLM) expression which displays a first-order phase transition. This remains true for sufficiently small $\theta \neq 0$. At larger values of $\theta$, however, the transition is of second-order. This change of order is quite subtle: if we expand $\mathcal{L}_{\text{eff}}$ à la Landau up to the power $\phi_0^4$, we obtain for a constant order field

$$\mathcal{F}_L \sim \frac{\theta^4}{12\pi} + \left( \frac{r}{2} - \frac{q^2|\theta|}{4\pi} \right) \phi_0^2 + \frac{u}{8} \phi_0^4,$$

and we see that the above equation does not have the correct $\theta \to 0$ limit, being valid only for large $\theta$. The free energy (5) has only a second-order phase transition, with a critical point at $r_c = q^2|\theta|/2\pi$. Note that in contrast to the GL case there is no cubic term in $\phi_0$, and that the $\phi_0^4$-term receives no contribution from the CS coupling—both properties would have generated a tricritical point in this approximation. The latter property implies that the one-loop gauge field graph with four external scalar field lines vanishes if the external momenta are set to zero, as a peculiar feature of the CSGL model noted earlier in Ref. 17. The same graph is, however, non-vanishing at nonzero external momenta. This is the origin of the two different scaling regimes in this model which we want to discuss in this paper.

III. RENORMALIZATION GROUP FUNCTIONS

We now calculate the RG functions of the model. As discussed in Section II, the scaling with a finite scalar field mass looks different from the one where such a mass is absent, as noted by Semenoff. Let us study these scaling behaviors separately and see how they are related to each other. Many of the results of this section have been obtained before in Refs. 17, 18. However, a discussion on the relation between the two scalings of Refs. 17 and Ref. 18 is new. This relation will require an extension of the CSGL model (3) to $N/2$ complex scalar field.

A. Massive Scaling Regime

In the scaling regime with a massive scalar field the propagators are given by

$$G(p) = \frac{1}{p^2 + r}, \quad r \neq 0,$$

for the scalar and

$$D_{\mu\nu}(p) = \frac{1}{p^2 + \theta^2} \left( \delta_{\mu\nu} - \frac{p_\mu p_\nu}{p^2} - \theta \epsilon_{\mu\nu\lambda} \frac{p_\lambda}{p^2} \right)$$

for the vector field in the Landau gauge. The Lagrangian is written in terms of renormalized quantities as

$$L = \frac{Z_a}{2} (\nabla \times a_r)^2 + i \theta_r a_r \cdot (\nabla \times a_r) + Z_\phi (|\nabla - iq a_r| a_r|^2 + Z_\phi^2 m^2 |a_r|^2 + Z_\phi^2 m g |\phi_r|^4.$$

The renormalized fields are given by $\phi_r = Z^{-1/2}_\phi \phi$ and $a_r = Z_a^{-1/2} a$, and we have set $u_r = mg$ to have a dimensionless coupling constant $g$. We also have introduced a mass of the scalar field $m$ by $m^2 = Z_\phi (2) Z_\phi^2 r$. Note that the CS term is not renormalized, implying that $\theta_r = Z_\phi r$. The renormalized charge is $q_r = Z_a^{1/2} q$. We introduce two dimensionless gauge coupling constants by $t = \theta_r/m$ and $f = q_r^2/m$. The renormalization constants are fixed by imposing normalization conditions for the one-particle irreducible two- and four-point functions:

$$\Gamma^{(2)}_{\phi,11}(0) = m^2,$$

where

$$\Gamma^{(2)}_{\phi,11}(0) = m^2,$$
\[
\frac{\partial \Gamma^{(2)}_{r,11}}{\partial \mathbf{p}^2}\bigg|_{\mathbf{p}=0} = 1, \quad \frac{\Gamma_{r,\mu\mu}}{\partial \mathbf{p}^2}\bigg|_{\mathbf{p}=0} = 2. \tag{11}
\]

\[
\Gamma_{r,1111}(0,0,0,0) = 3mg, \tag{12}
\]

\[
\Gamma_{r,11}(0,0,0) = 1, \tag{13}
\]

Let us define the RG functions:

\[
\gamma_\phi \equiv m \frac{\partial \ln Z_\phi}{\partial m}, \quad \gamma_a \equiv m \frac{\partial \ln Z_a}{\partial m}, \quad \gamma^{(2)}_\phi \equiv m \frac{\partial \ln Z^{(2)}_\phi}{\partial m}. \tag{15}
\]

Within the present renormalization scheme, these functions are given explicitly in the one-loop approximation by

\[
\gamma_\phi = -\frac{2}{3\pi} \frac{f}{(1 + |t|)^2}, \quad \gamma_a = \frac{Nf}{48\pi}, \quad \gamma^{(2)}_\phi = \frac{(N + 2)g}{16\pi}. \tag{16}
\]

The \( \beta \)-functions are given by

\[
\beta_f \equiv m \frac{\partial f}{\partial m} = (\gamma_a - 1)f, \tag{17}
\]

\[
\beta_t \equiv m \frac{\partial t}{\partial m} = (\gamma_a - 1)t, \tag{18}
\]

\[
\beta_g \equiv m \frac{\partial g}{\partial m} = (2\gamma_\phi - 1)g + \frac{N + 8}{16\pi}g^2. \tag{19}
\]

Note the absence of a term proportional to \( f^2 \) in Eq. (19). This generalizes the observation in the previous approximation that the \( \phi^4 \)-term in the Landau expansion (1) is \( \theta \)-independent. This is in contrast to the pure GL model where a \( f^2 \)-term is present \( \beta_g \). The present absence of the \( f^2 \)-term is the reason for the existence of a charged fixed point (which remains true for all values of \( N \), if the model is extended to \( N/2 \) complex fields, in contrast to the pure GL model where \( N > 365 \) is needed as pointed out by Halperin et al. \[21\].

The anomalous dimension of the gauge field \( \eta_a \equiv \gamma^*_a \) has an interesting property. From Eq. (17) we see that \( \eta_a = 1 \), implying a fixed point also in (18) for any \( t \), which means that the critical exponents can vary continuously. The charged fixed point is given by

\[
f_* = 48\pi/N, \quad g_* = \frac{16\pi}{N + 8} \left[ \frac{64}{N(1 + |t_*|^2)} + 1 \right]. \tag{20}
\]

Note that \( \beta_t \) does not vanish identically as in the absence of a Maxwell term. It does, however, vanish at the fixed point where \( \gamma_a = 1 \) for all values of \( t \), which has the same effect as \( \beta_t \equiv 0 \), thus allowing for arbitrary fixed-point values \( t_* \).
fixed-point value of the RG function \( \nu_\phi = 1/(2 + \gamma_\phi^{(2)} - \gamma_\phi) \), which is
\[
\nu = \left[ 2 - \frac{N + 2}{N + 8} - \frac{N - 4}{N + 8} \left( \frac{32}{N} \right) \right]^{-1}.
\] (23)
This is plotted in Fig. 2 as a function of \( t_* \) for \( N = 68 \).

**B. Massless Scaling Regime**

We now derive the scaling behavior at the critical point, where the mass of the scalar field vanishes. Then the coupling constants must be defined at nonzero external momenta of the vertex functions. For \( g \) we choose the normalization condition
\[
\Gamma_{1111}^{(4)}(p_1, p_2, p_3, p_4)|_{SP} = 3\mu g,
\] (24)
where the symbol \( SP \) stands for the symmetry point.\(^5\)

\[
p_i \cdot p_j = \frac{\mu^2}{4} (4\delta_{ij} - 1).
\] (25)

We shall distinguish the RG functions of the massive from those of the massless scaling regime by adding a tilde over the latter. The \( \beta \)-functions of the gauge couplings have the same form as before. The anomalous dimension of the vector field changes, however, being now
\[
\tilde{\gamma}_a = \frac{Nf}{32}.
\] (26)

Also the beta function \( \tilde{\beta}_g \) is now different, since the one-loop gauge field graph with four external legs is now nonzero. This leads to an \( f^2 \)-term in \( \tilde{\beta}_g \):
\[
\tilde{\beta}_g = \mu \frac{\partial g}{\partial \mu} = (2\tilde{\gamma}_\phi - 1)g + \frac{N + 8}{16} g^2 + \frac{\delta}{4\pi} f^2,
\] (27)
where
\[
\tilde{\gamma}_\phi = -\frac{f}{4\pi} \left[ \frac{3\pi}{4t^2} + \frac{\pi}{2} - \frac{3t^2}{4} + 3|t| - \frac{3}{|t|} - \left( \frac{3}{2t^2} - 1 + \frac{3t^2}{2} \right) \arctan \left( \frac{1 - t^2}{2|t|} \right) \right],
\] (28)
\[
\delta = \frac{\pi}{2t^2} + \frac{1}{|t|} - \frac{5\pi}{4} + \left( -\frac{3}{2t^4} - \frac{4}{t^2} + 8 \right) \arctan \left( \frac{1}{2|t|} \right) + \left( \frac{3}{2t^4} + \frac{3}{t^2} - \frac{5}{2} \right) \arctan \left( \frac{1 - t^2}{2|t|} \right).
\] (29)

In the limit \( t \to 0 \) we have \( \tilde{\gamma}_\phi \to -f/4 \) and \( \delta \to 3\pi/2 \), corresponding to the GL limit.

In contrast with the massive scaling regime, the present equations yield a charged fixed point only for a limited range of \( N \). The beta functions vanish at
\[
f_* = 32/N, \quad g^*_+ = \frac{8}{N + 8} \left[ 1 - 2\tilde{\eta} \pm \sqrt{(1 - 2\tilde{\eta})^2 - \frac{160\delta}{\pi}} \right],
\] (30)
where \( \tilde{\eta} \equiv \tilde{\gamma}_\phi(f_*, t_*) \) is the anomalous dimension of the complex field in the massless scaling regime. Remarkably, there we find a tricritical fixed point \( g^*_+ \), which is absent in the massive regime. The two regimes are similar for \( \delta_+ = 0 \), in which case there will be no tricritical fixed point in both regimes. This happens for \( t_* = t_0 \simeq 0.802693 \). For \( t_* > t_0 \) we find \( \delta_+ < 0 \), in which case the tricritical point becomes unstable, since it corresponds to \( g^*_+ < 0 \). In Fig. 3 we plot \( \delta \) as a function of \( t \).

The charged fixed points are accessible only if \( t_* \geq t_c(N) \), where \( t_c(N) \) is the value of \( t_* \) that vanishes the discriminant in Eq. (30). For example, if \( N = 10 \) we have \( t_c(10) \simeq 0.752751 \). From Eq. (23) we find \( t_c(10) \simeq
In order to calculate the $\tilde{\nu}$-exponent, we need the RG function $\tilde{\gamma}^{(2)}$. This function is much more complicated in the massless scaling regime and is given explicitly by

$$\tilde{\gamma}^{(2)}\rho = \frac{\pi}{4\sqrt{3}t^2} \arctan \left( \frac{3 - 4t^2}{4\sqrt{3}|t|} \right) + \frac{(3 - 4t^2)(3 + 4t^2)}{8|t|\Delta} \left[ 1 + \frac{|t|}{\sqrt{\Delta}} \arctan \left( \frac{\sqrt{\Delta}}{|t|} \right) \right],$$

where

$$\Delta \equiv t^4 + \frac{t^2}{2} + \frac{9}{16}. \quad (32)$$

In Fig. 3 we plot $\delta$ as a function of $t$. The curve has a maximum for $t_\ast \simeq 1.631$, where $\delta_{\max} = 1.7$.

IV. SIGN OF ANOMALOUS DIMENSION $\eta$ AND LARGE-$N$ LIMIT

A much debated topic in the GL theory is the physical meaning of a negative sign of the $\eta$-exponent found in analytic calculations\(^{16,24,25}\) and computer simulations\(^{26}\). In early discussions of the subject it had been argued that a negative $\eta$ would be unphysical since it would violate the Källen-Lehmann spectral representation\(^{24}\). However, it is now being understood that a negative sign of $\eta$ in the GL model makes sense. In fact, there are several physical systems where negative $\eta$s have been found before, most prominently magnetic systems, which show strong momentum space instabilities\(^{28}\). These can produce a non-uniform phase with a modulated order parameter. The point where the modulated phase sets in is called a Lifshitz point\(^{29}\). Physical systems with a Lifshitz point have a negative $\eta$-exponent. It has recently been argued by us\(^{16,25}\) that such momentum space instabilities occur also in superconductors, implying the existence of a Lifshitz point in the phase diagram, and thus explaining the negative sign of $\eta$. A different explanation has been given recently in Ref. 30, focusing on the geometric properties of the critical fluctuations. There the anomalous dimension is related to the Hausdorff dimension of the critical fluctuations\(^{30}\).

The CS term in the GL model is expected to affect this picture, since for infinite $t_\ast$, the gauge field decouples from the scalar field. In this limit, the critical exponents are those of a pure scalar field theory which has $\eta > 0$. Thus we may wonder at which finite value of $t_\ast$ the sign change of $\eta$ occurs.

In Fig. 5 we plot $N\tilde{\eta}$ as a function of $t_\ast$. We see that at one-loop order, $\tilde{\eta}$ is always negative and approaches zero for $t_\ast \to \infty$. It would be desirable to know the two-loop corrections in the massless scaling regime and check if there exists a finite value of $t_\ast$ where the sign of $\tilde{\eta}$ changes. We have not yet done this calculation due to its complexity for arbitrary $t$. We can, however, easily write down $\eta$ in the limit of large $N$ for all coupling strengths in the massive scaling regime. Then the CSGL model is in the same universality class as the $CP^{N/2-1}$ model with a CS term, and here the critical exponents have
been computed by Rajeev and Ferretti. The result for \( \eta \) is

\[
\eta = -\frac{40}{\pi^2 N} \left( 1 - \frac{16}{15} \left( \frac{\bar{t}}{1 + \bar{t}^2} \right) \right),
\]

(33)

where \( \bar{t} = 4t/\pi \). In the limit \( \bar{t} \to \infty \) this reduces correctly to \( \eta \) of the \( O(N) \)-symmetric scalar model to order \( 1/N \).

From Eq. (33) we see that \( \eta \) changes sign at \( \bar{t} = \sqrt{15} \).

In Fig. 6 we plot \( N\eta \) as given in Eq. (33) as a function of \( t \). Interestingly, Figs. 5 and 6 look very similar for low \( t \), up to a factor of two in the vertical scale, although the two curves come from two completely different approximations. In addition, the comparison teaches us that the sign of \( \eta \) may easily change in perturbation theory including higher-order corrections.

It is also interesting to consider the critical exponent \( \nu \) to leading order in \( 1/N \). We have

\[
\nu = 1 - \frac{96}{\pi^2 N} \left( 1 - \frac{8\bar{l}^2(\bar{l}^2 + 4)}{9(1+\bar{l}^2)^2} \right).
\]

(34)

We have plotted the \( \nu \)-exponent given above in Fig. 7 for \( N = 10 \), for the sake of comparison with the one-loop result for the massless scaling regime. There is again a remarkable similarity between this curve and the one for \( \tilde{\nu} \) in Fig. 4. This striking resemblance between the massive scaling regime at order \( 1/N \) and the massless scaling regime at one-loop seems to indicate that perturbation theory within the massive scaling regime is worse than perturbation theory within the massless scaling regime, and that the exact curves in the two regimes may ultimately coincide.

V. THE “FERMIONIC” FIXED POINT

Let us see what we can learn from our scaling study about strongly interacting fermions. General arguments involving bosonization and duality transformations indicate that the fixed points corresponding to fermions

lie, in the massless scaling regime, at \( t_* = 1/2\pi \) and \( f_* = 32/N \). Then there are no fixed points \( g^{\pm}_* \) for the physical case \( N = 2 \). We know, however, from duality arguments applied to the GL model that this one-loop result is not trustworthy for \( N = 2 \). Within the massless scaling regime it is possible to obtain a charged fixed point for all values of \( N \) at the one-loop level by introducing a new arbitrary parameter \( c \) which corresponds to the ratio between the two renormalization scales defining the gauge and scalar couplings, respectively. This procedure was also applied to the CSGL model in Ref. 18. A charged fixed point is found for \( N = 2 \) if \( c \) is chosen large enough. This happens since \( \gamma_a \) is modified to

\[
\gamma_a = \frac{cNf}{32}.
\]

(35)

Since \( \gamma_a = 1 \) at the fixed point,* a large \( c \) makes \( f_0 \) sufficiently small to reach the fixed point for \( N = 2 \). The main drawback of this technique is the fact that \( c \) is not determined by the formalism. In Ref. 18 it was chosen to reproduce the tricritical point determined in Ref. 20 by a disorder field theory of the GL model.

Recently, we have succeeded in obtaining a charged fixed point at \( N = 2 \) by defining a new RG approach in the ordered phase17, where the two length scales of the
GL model are well defined by the correlation length $\xi$ and the penetration depth $\lambda$. This makes the parameter $c$ in Refs. 4 and 8 superfluous. The application of Sothis calculation procedure to the Lagrangian 6 is complicated due to the CS term. This creates a gauge field propagator in the ordered phase with two different masses, the CS mass and another one generated by the Higgs mechanism. To avoid this complication we shall restrict ourselves here to the $c$-approach. The constant $c$ will be fixed by demanding that in the $\theta = 0$ -model the critical exponent $\nu$ has a $XY$ value, as found in the duality approach 4. For the $XY$ value $\nu \simeq 0.67$, this fixes $c \approx 82.7$. In Ref. 8, a smaller value of $c$ was used by approximating the RG function $\hat{\nu}_o$ by $\hat{\nu}_o \simeq (1-\bar{\gamma}_o(2)/2+\bar{\gamma}_o(3)/2)/2$. However, this approximation gives $\hat{\nu} = 0.6$ for $f_o = t_o = 0$, while if we don’t use such an approximation we obtain a much better value in this limit, $\hat{\nu} = 0.625$, which is just the one-loop value for the $O(2)$-symmetric $\phi^4$ theory. Therefore we obtain, with $c = 82.7$ and $t_o = 1/2/\pi$:

$$\tilde{\eta} \simeq -0.05, \quad (36)$$

$$\hat{\nu} \simeq 0.66. \quad (37)$$

We see that the “fermionic” fixed point is not much different from the GL fixed point for the value of $c$ under consideration.

VI. CONCLUSION

We have studied and compared two scaling regimes in the CSGL model. In the massive scaling regime, charged fixed points exist for all values of $N$. However, not all of them lead to physical values of the critical exponents which restrict the range of allowed values of $N$. By restricting the values of $t_o$ we have been able to obtain physical exponents to all $N$ in the massive scaling regime. The interval of admissible $t_o$ is obtained from the inequality (22).

In the massless scaling regime we find a similar restriction through a more involved inequality, since $\tilde{\eta}$ has a far more complicate expression.

The discussion in the massive scaling regime yields no tricritical point, a result consistent with the Landau expansion of the mean-field free energy in Eq. 3. However, from the non-expanded mean-field free energy 4 it is seen that for sufficiently small $\theta$ we obtain a first-order phase transition. In particular, we recover the usual HLM result for $\theta = 0$, in contrast to Eq. 4 which does not have the correct $\theta \to 0$ -limit.

The behavior in the massless scaling regime is more consistent with Eq. 4 since it exhibits a tricritical fixed point for $t_o < t_o$. In the region $t_o \geq t_o$, the two scaling regimes look quite similar, at least qualitatively. The $1/N$-expansion applied to the massive scaling regime makes this similarity even greater and suggest that perturbation theory applied in the massless scaling regime is better behaved than in the massive regime.

An interesting point with respect to the $1/N$-expansion in the massive scaling regime is the sign change of $\nu$ for $t = \sqrt{1/2}$. This never happens for a GL model. Inspired by our recent work suggesting that the sign of $\eta$ is related to momentum space instabilities we may conjecture that when an external magnetic field is included in the CSGL model, vortex lattices should not exist above a certain critical value of the topological mass.

We have discussed briefly what we called “fermionic” fixed point, that is, the fixed point where the CSGL model corresponds to bosonized three-dimensional interacting fermions. At this fixed point $t_o = 1/2/\pi$. Unfortunately, $g^*_{\pm}$ is not real in this case if $N = 2$. In order to reach a charged fixed point for $N = 2$ we introduced an arbitrary parameter $c$ corresponding to the ratio between the renormalization points of the gauge couplings and scalar coupling. The value of $c$ has been fixed in the $t = 0$ model. As $t$ is turned on to $t_o = 1/2/\pi$ the values of the critical exponents doesn’t show an appreciable change with respect to the $t = 0$ case.

Acknowledgments

The work of FSN is supported by the Alexander von Humboldt foundation.

* Electronic address: kleinert@physik.fu-berlin.de

† Electronic address: nogueira@physik.fu-berlin.de

1 V.L. Ginzburg and L.D. Landau, Zh. Eksperim. i Teor. Fiz. 20, 1064 (1950).

2 H. Kleinert, Gauge Fields in Condensed Matter, vol. 1, (World Scientific, Singapore, 1989), readable in the internet at http://www.physik.fu-berlin.de/~kleinert/re.html#b.

3 P.-G. de Gennes, Solid State Commun. 10, 753 (1972); B. I. Halperin and T. C. Lubensky, ibid. 14, 997 (1974).

4 S. Deser, R. Jackiw, and S. Templeton, Phys. Rev. Lett. 48, 975 (1982); Ann. Phys. (N.Y.) 140, 372 (1982).

5 The Quantum Hall Effect, R. Prange and S. Girvin (eds.) (Springer-Verlag, New York, 1987).

6 S. C. Zhang, T. H. Hansson, and S. Kivelson, Phys. Rev. Lett. 62, 82 (1989).

7 H. Kleinert and F. S. Nogueira, to be published.

8 C. Nayak, Phys. Rev. Lett. 85, 178 (2000); L. Balents, M. P. A. Fisher, C. Nayak, Phys. Rev. B 61, 6307 (2000).
9 E. Fradkin, *Field Theories of Condensed Matter Systems* (Addison-Wesley, Reading, MA, 1991).

10 See Chapters 15 and 16 in H. Kleinert, *Path Integrals in Quantum Mechanics, Statistics and Polymer Physics*, World Scientific, Singapore, 2nd edition 1995. The forthcoming 3rd Edition is readable on the internet [http://www.physik.fu-berlin.de/~kleinert/re0.html#b3]

11 F. Ferrari, H. Kleinert, and I. Lazzizzera, Eur. Phys. J. B 18, 645 (2000).

12 F. Ferrari and I. Lazzizzera, Nucl. Phys. B 559, 673 (1999).

13 R. Folk and Y. Holovatch, J. Phys. A 29, 3409 (1996).

14 I. F. Herbut and Z. Tešanović, Phys. Rev. Lett. 76, 4588 (1996).

15 H. Kleinert and V. Schulte-Frohlinde, *Critical Phenomena in $\Phi^4$-Theory*, World Scientific, Singapore 2001 [http://www.physik.fu-berlin.de/~kleinert/re0.html#b3]

16 H. Kleinert and F. S. Nogueira, cond-mat/0104573 [http://www.physik.fu-berlin.de/~kleinert/215].

17 M. Kiometzis and A. M. J. Schakel, Int. J. Mod. Phys. B 7, 4271 (1993).

18 W. Selke, in *Phase Transitions and Critical Phenomena*, edited by C. Domb and J. L. Lebowitz (Academic London, 1992), Vol. 15, pp. 1-72.

19 R. M. Hornreich, M. Luban and S. Shtrikman, Phys. Rev. Lett. 35, 1678 (1975); R. M. Hornreich, M. Luban and S. Shtrikman, Phys. Lett. A 55, 269 (1975).

20 J. Hove, S. Mo, and A. Sudbø, Phys. Rev. Lett. 85, 2368 (2000).

21 G. Ferretti and S. G. Rajeev, Mod. Phys. Lett. A 7, 2087 (1992).

22 J. Zinn-Justin, *Quantum Field Theory and Critical Phenomena* (Oxford, 1993).

23 C. Dasgupta and B. I. Halperin, Phys. Rev. Lett. 47, 1556 (1981).

24 M. Kiometzis, H. Kleinert and A. M. J. Schakel, Phys. Rev. Lett. 73, 1975 (1994) [cond-mat/9503019]; Fortschr. Phys. 43, 697 (1995) [cond-mat/9508142].