Bridelia retusa (L.) Spreng. Fruits: Antimicrobial Efficiency and their Phytochemical Constituents

Aniel Kumar OWK, Mutyala Naidu LAGUDU*

Andhra University, Department of Botany, Visakhapatnam, 530 003 (A.P.), India; lagudu3@gmail.com (corresponding author)

Abstract
Antimicrobial analysis of hexane, chloroform, methanol and aqueous extracts of *Bridelia retusa* fruits was performed by agar well method and minimum inhibitory concentration was determined by serial two-fold dilution method. Seven human pathogenic bacteria species including Gram positive and Gram negative bacteria and three fungal species were used in the study and the results indicated that the Gram positive bacteria and fungi were more sensitive than the Gram negative bacteria, to both solvent and aqueous *Bridelia retusa* fruit extracts. Moreover, *Enterococcus faecalis* was found as the most sensitive bacteria, whereas *Proteus vulgaris* and *Apergillus niger* were the most resistant to the tested extracts. Phytochemical analysis of fruits revealed the presence of secondary metabolites like alkaloids, saponins and terpenoids, which have been implicated in antimicrobial activities. Hence, it would be recommended to explore the maximum potential of *Bridelia retusa* in the medicinal and pharmaceutical field and investigation are endorsed for further application useful in phytomedicine.

Keywords: antimicrobial activity, *Bridelia retusa*, fruit extracts, phytochemical

Introduction

Bridelia retusa Spreng. (family Euphorbiaceae) is a small to moderate sized deciduous tree, found in India, Bangladesh, Nepal, Sri Lanka, Southern China, Indochina and Sumatra. Traditionally, it is valuable as astringent, used in rheumatism problems, urinary infections; the plant promote antifebrile and wound healing. Stem bark is used to treat dysentery, diarrhea and diabetes. Leaves and fruits are used as antifungal and for stomach ache (Mishra and Sahu, 1984; Nadkarni and Nadkarni, 2000; Jayasinghe et al., 2003). These different pharmacological properties are due to the presence of different chemical constituents as isolavone (Adhavet, 1998), decanoic acie, stigmastanol, dehydrostigmasterol, β-sitosterol, tannins and triterpenes. Fruit pulp contains gallic acid, ellagic acid and β-sitosterol (Malhotra and Moorthy, 1973). It is well known also for the presence of tannins. It is reported to be used traditionally in snake bites, wounds and tonics for veterinary purposes (Joshi et al., 1980). Phenolics, including tannins, are the natural products present in abundant amount and possess various biological properties related to anti-inflammatory effects (Mehare and Hatapkki, 2003), wound healing activity (Bagad, 2007), antioxidant (Tatiya et al., 2011), antimicrobial activity of stem bark (Tatiya et al., 2011; Kurdekar et al., 2012) or leaves (Khan and Khan, 2013). Various parts of the plants were reported for antimicrobial activity, but there are no reports on antimicrobial activity of fruits, hence the present investigation was carried out. Thus the antimicrobial activities of both solvent and aqueous extracts of *B. retusa* fruits were analyzed.

Material and Methods

Collection, identification and extraction

Bridelia retusa (L.) Spreng. fruits were collected from Kambalakonda forest area, Visakhapatnam, Andhra Pradesh, India. The collected fruits were identified by Prof. M. Venkaiha, Department of Botany, Andhra University, Visakhapatnam, India. The collected fruits were dried in the shadow until completely dried. Then the dried fruits were powdered in the mixture grinder and packed in Soxhlet apparatus. Sequential extraction was done using hexane, chloroform, followed by methanol. The filtrates were concentrated by removing the solvents under reduced pressure, at 40 °C, using a rotary evaporator. The concentrated crude extracts were labeled and stored at 4 °C.

Simultaneously, the aqueous extract of the fruits was prepared by adding boiled water to the powdered fruits in a beaker on water bath, with occasional stirring for 4 hrs. The aqueous extract was then filtered and reduced under pressure.

Bacterial and fungal strains used

The strains used within the experiment were procured from the Microbial Type Culture and Collection (MTCC), Chandigarh, India. Seven bacterial strains namely *Bacillus subtilis* MTCC B2274, *Enterococcus faecalis* MTCC B3159, *Micrococcus luteus* MTCC B1538, *Staphylococcus aureus* MTCC B3160, *Streptococcus pneumoniae* MTCC B2672, *Escherichia coli* MTCC B1560, *Klebsiella pneumoniae* MTCC B4030, *Pseudomonas aeruginosa* MTCC B297, *Proteus vulgaris* MTCC B7299, and three fungal strains such as *Apergillus niger*...
The lyophilized culture was sub-cultured and concentration of working stock culture was assessed as 10^6 CFU/ml. Specified quantity of nutrient agar was prepared and plated in aseptic conditions. The agar well diffusion technique was performed for antimicrobial susceptibility test for crude extracts and dimethyl sulfoxide (DMSO), whereas agar disc diffusion method was followed for antimicrobial susceptibility test for standard antibiotic discs. The extracts were dissolved in DMSO to get the known concentrations of 25 mg/ml, 50 mg/ml and 100 mg/ml respectively. After 24 h of incubation at 37 °C, the zone of inhibition was measured using an antibiotic zone reader scale (HiAntibiotic ZoneScale-c) and tabulated. For the antifungal activity, the same method as for bacteria, of nutrient agar respectively, was adopted, whereas Saboraud dextrose agar was used. The inoculated medium was incubated at 25 °C for 48 h. The lowest concentration inhibiting growth of microorganism was regarded as the MIC of the extracts. For the fungi, the inoculated medium was incubated at 25 °C for two days.

MTCC F4325, Candida albicans MTCC F7315, and Saccharomyces cerevisiae MTCC F2567 were used for testing the antimicrobial effect of Bridelia retusa (L) Spreng. fruit extracts.

Antimicrobial efficiency

The lyophilized culture was sub-cultured and concentration of working stock culture was assessed as 10^6 CFU/ml. Specified quantity of nutrient agar was prepared and plated in aseptic conditions. The agar well diffusion technique was performed for antimicrobial susceptibility test for crude extracts and dimethyl sulfoxide (DMSO), whereas agar disc diffusion method was followed for antimicrobial susceptibility test for standard antibiotic discs. The extracts were dissolved in DMSO to get the known concentrations of 25 mg/ml, 50 mg/ml and 100 mg/ml respectively. After 24 h of incubation at 37 °C, the zone of inhibition was measured using an antibiotic zone reader scale (HiAntibiotic ZoneScale-c) and tabulated. For the antifungal activity, the same method as for bacteria, of nutrient agar respectively, was adopted, whereas Saboraud dextrose agar was used. The inoculated medium was incubated at 25 °C for 48 h. The lowest concentration inhibiting growth of microorganism was regarded as the MIC of the extracts. For the fungi, the inoculated medium was incubated at 25 °C for two days.

Statistical analysis

Each experimental data from triplicates was subjected to one way ANOVA using Minitab version 15. A significant level of p < 0.01 was used for all statistical analyses.

Results and Discussion

The antimicrobial activity of fruit extracts of B. retusa was assayed by agar well diffusion method against seven bacterial strains including Gram positive B. subtilis, E. faecalis, M. luteus, S. aureus, S. pneumoniae, Gram negative E. coli, K. pneumoniae, P. aeruginosa, P. vulgaris, fungi A. niger, C. albicans and S. cerevisiae. Table 1 shows the microbial growth inhibition zones.
of both solvent and aqueous extracts of B. retusa fruits. All extracts found to be effective against all tested bacteria and fungi except that of P. vulgaris and A. nigra. Chloroform, methanol and aqueous extracts exhibited the antimicrobial activity with the maximum zone of inhibition against C. albicans, while hexane extract was most effective against E. faecalis; aqueous extract exhibited the maximum zone of inhibition against E. faecalis and S. pneumoniae along with C. albicans.

E. faecalis exhibited inhibition zones similar or larger than standard antibiotic tetracycline, while B. subtilis, S. pneumoniae, C. albicans gave better results for chloroform, methanol and aqueous extracts; S. aureus had a larger inhibition zone in the case of methanol extract. Methanol and aqueous extracts also showed high inhibition zones against fungal strains C. albicans and S. cerevisiae. Although the Gram negative bacteria were sensitive for all extracts, did not show a broad spectrum of antimicrobial activity. The control of DMSO had no effect on the microbial growth of all tested bacteria and fungi. Hence, the absence of inhibition zones confirmed that DMSO could not act as antimicrobial agent.

The effect of different solvents such as water, ethanol (50%), methanol (50%) and acetone (70%) of B. retusa stem bark exhibited antimicrobial activity against Gram positive bacteria B. subtilis, S. aureus and Gram negative bacteria E. coli and fungi C. albicans (Tatiya et al., 2011), whereas in the present study B. retusa fruits extracts had also shown high antimicrobial activity against Gram positive bacteria B. subtilis, E. faecalis, S. pneumoniae and fungi C. albicans.

Table 2 shows the MIC values that were exhibited by solvent and aqueous extracts of B. retusa fruits. Methanol extract had low MIC values against E. faecalis, S. pneumonia and C. albicans, whereas aqueous extract was effective against E. faecalis at a concentration of 31.2 μg/ml concentration. The current findings are in agreement the results obtained with various extracts of B. retusa stem bark which have shown the strongest MIC values against fungi C. albicans and lowest effect against Gram positive bacteria B. subtilis (Tatiya et al., 2011).

Phytochemical analysis (Table 3) revealed that B. retusa fruits posses alkaloids, aminoacids, anthraquinone, carbohydrates, cardiac glycosides, flavonoids, glycosides, phenols, saponins, steroids, tannins, terpenoids and volatile compounds. Methanol extract exhibited positive results for all tested phytochemicals, whereas the observed antimicrobial activity may be due to the presence of some metabolites like alkaloid, saponins and terpenoids, which are implicated in various biological activities (Thomas et al., 2013). The presence of these metabolites suggests great potential for the plant as a source of useful phytomedicines (Kunle et al., 2003).

Conclusions

It may be concluded that the results of the present study support the folkloric usage of the B. retusa as a medicine. The results indicated that the Gram positive bacteria and fungi were more sensitive than the Gram negative bacteria, to both solvent and aqueous Bridelia retusa fruit extracts. Phytochemical analysis revealed that B. retusa fruits posses alkaloids, aminoacids, anthraquinone, carbohydrates, cardiac glycosides, flavonoids, glycosides, phenols, saponins, steroids, tannins, terpenoids and volatile compounds; antimicrobial activity may be due to the presence of some metabolites like alkaloid, saponins and terpenoids, which are implicated in various biological activities. Hence, it is necessary to explore the maximum potential of the plant in medicinal field and pharmaceutical sciences for further application. Further studies are required about the appropriate characterization of the compounds present in the B. retusa fruits.

References

Adhav M, Solanki CM, Patel B, Ghoria A (1998). Evaluation of isoflavanone as an antimicrobial agent from leaves of Bridelia retusa. Oriental Journal of Chemistry 18(3):476-479.

Anil Kumar O, Krishna Rao M, Mutyala Naidu L (2014). Evaluation of antimicrobial activity of chemical constituents of Adhynanthus aspera L. roots against human pathogens. Indian Journal of Natural Products and Resources 5(3):278-281.

Anil Kumar O, Mutyala Naidu L, Raja Rao KG (2010). Antibacterial evaluation of snake weeds (Euphorbia hirta L.). Journal of Phytophony 2(3):08-12.

Bagad YM (2007). Evaluation of pharmacogonistical, phytochemical and pharmacological screening of leaves of Bridelia airlythusa, (Euphorbiaceae). M. Pharm. Thesis, Faculty of Pharmacognosy, North Maharashtra University, Jalgaon, India.

Jayasinghe K, Kumarihmy BK, Jayarathna KN, Gayathri NM (2003). Antifungal constituents of the stem bark of Bridelia retusa. Phytochemistry 62(4):637-641.
Joshi MC, Patel MB, Mehta PJ (1980). Bulletin of Medico-Ethnobotanical Research 1(2):8-24.

Khan NA, Khan AA (2013). Antimicrobial activities of Bridelia retusa (L.) Spreng belonging to family Euphorbiaceae. International Journal of Pharmacy & Life Sciences 4(8):2860-2863.

Kurle O, Okogun J, Egamana E, Emojevwe E, Shok M (2003). Antimicrobial activity of various extracts and carvacrol from Lippia multiflora leaf extract. Journal of Phytotherapy 10:59-61.

Kurdekar RR, Hegde GR, Hebbar SS (2012). Antimicrobial efficacy of Bridelia retusa (Linn.) Spreng. and Asclepias curassavica Linn. Indian Journal of Natural Products and Resources 3(4):589-593.

Malhotra SK, Moorthy S (1973). Some useful medicinal plants of Chandrapur district, Maharashtra state. Bulletin of the Botanical Survey of India 15:13-21.

Mehare ID, Hatapalki BC (2003). Antiinflammatory activity of ethanolic extract of bark of Bridelia retusa, Spreng. Indian Journal of Pharmaceutical Sciences 65(4):410-411.

Mishra DP, Sahu TR (1984). Euphorbiaceous plants used in the medicine by tribals of Madhya Pradesh. Journal of Economic and Taxonomic Botany 5:791-794.

Nadkarni AK, Nadkarni KR (2000). Indian Materia Medica. Vol Bombay, Popular Prakashan.

Tatiya AU, Tapadiya GG, Kotecha S, Surana SJ (2011). Effect of solvents on total phenolics, antioxidant and antimicrobial properties of Bridelia retusa Spreng stem bark. Indian Journal of Natural Products and Resources 2(4):442-447.

Thomas RP, Antony AM, Mamen AA (2013). Comparative phytochemical analysis of Diospyros chloroxylon leaves in various extracts. International Journal of Scientific and Research Publications 3(9):1-3.