Short Note on the Riemann Hypothesis

Frank Vega

Abstract Robin criterion states that the Riemann hypothesis is true if and only if the inequality \(\sigma(n) < e^\gamma n \log \log n \) holds for all natural numbers \(n > 5040 \), where \(\sigma(n) \) is the sum-of-divisors function of \(n \) and \(\gamma \approx 0.57721 \) is the Euler-Mascheroni constant. Let \(q_1 = 2, q_2 = 3, \ldots, q_m \) denote the first \(m \) consecutive primes, then an integer of the form \(\prod_{i=1}^{m} q_i^{a_i} \) with \(a_1 \geq a_2 \geq \cdots \geq a_m \geq 0 \) is called an Hardy-Ramanujan integer. If the Riemann hypothesis is false, then there are infinitely many Hardy-Ramanujan integers \(n > 5040 \) such that Robin inequality does not hold and we prove that \(n \left(1 - \frac{0.6253}{\log \log n} \right) < N_m \), where \(N_m = \prod_{i=1}^{m} q_i \) is the primorial number of order \(m \) and \(q_m \) is the largest prime divisor of \(n \). In addition, we show that \(q_m \) will not have an upper bound by some positive value for these counterexamples and therefore, the value of \(q_m \) tends to infinity as \(n \) goes to infinity.

Keywords Riemann hypothesis · Robin inequality · sum-of-divisors function · prime numbers

Mathematics Subject Classification (2010) MSC 11M26 · MSC 11A41 · MSC 11A25

1 Introduction

In mathematics, the Riemann hypothesis is a conjecture that the Riemann zeta function has its zeros only at the negative even integers and complex numbers with real part \(\frac{1}{2} \) [4]. Let \(N_m = 2 \times 3 \times 5 \times 7 \times 11 \times \cdots \times q_m \) denotes a primorial number of order \(m \) such that \(q_m \) is the \(m^{th} \) prime number [3]. As usual \(\sigma(n) \) is the sum-of-divisors function of \(n \) [1]:

\[
\sum_{d \mid n} d
\]
where \(d \mid n \) means the integer \(d \) divides \(n \) and \(d \nmid n \) means the integer \(d \) does not divide \(n \). Define \(f(n) \) to be \(\frac{\sigma(n)}{n} \). Say Robins\((n)\) holds provided

\[
f(n) < e^\gamma \times \log \log n.
\]

The constant \(\gamma \approx 0.57721 \) is the Euler-Mascheroni constant and \(\log \) is the natural logarithm. The importance of this property is:

Theorem 1.1 If the Riemann hypothesis is false, then there are infinitely many natural numbers \(n > 5040 \) such that Robins\((n)\) does not hold [4].

We recall that an integer \(n \) is said to be square free if for every prime divisor \(q \) of \(n \) we have \(q^2 \nmid n \) [1]. Let \(q_1 = 2, q_2 = 3, \ldots, q_m \) denote the first \(m \) consecutive primes, then an integer of the form \(\prod_{i=1}^{m} q_i^{a_i} \) with \(a_1 \geq a_2 \geq \cdots \geq a_m \geq 0 \) is called an Hardy-Ramanujan integer [1]. Based on the theorem 1.1, we know this result:

Theorem 1.2 If the Riemann hypothesis is false, then there are infinitely many natural numbers \(n > 5040 \) which are an Hardy-Ramanujan integer and Robins\((n)\) does not hold [1].

We prove if the Riemann hypothesis is false, then there are infinitely many Hardy-Ramanujan integers \(n > 5040 \) such that Robins\((n)\) does not hold and \(n \left(1 - \frac{0.6253}{\log \log n} \right) < N_m \), where \(N_m = \prod_{i=1}^{m} q_i \) is the primorial number of order \(m \) and \(q_m \) is the largest prime divisor of \(n \). Furthermore, we show that \(q_m \) will not have an upper bound by some positive value for these counterexamples and thus, the value of \(q_m \) tends to infinity as \(n \) goes to infinity.

2 Known Results

These are known results:

Theorem 2.1 [1]. For \(n > 1 \):

\[
f(n) < \prod_{q \mid n} \frac{q}{q - 1}.
\]

Theorem 2.2 Let \(\frac{\pi^2}{6} \times \log \log n' \leq \log \log n \) for some \(n > 5040 \) such that \(n' \) is the square free kernel of the natural number \(n \). Then Robins\((n)\) holds [7].

Theorem 2.3 Robins\((n)\) holds for all natural numbers \(n > 5040 \) when a prime \(q \leq 1771559 \) complies with \(q \nmid n \) [7].

Theorem 2.4 [6]. For \(q_m \geq 20000 \), we have

\[
\log q_m < \log \log N_m + \frac{0.1253}{\log q_m}.
\]
Theorem 2.5 [5]. For $x \geq 286$:

$$\prod_{q \leq x} \frac{q}{q-1} < e^\gamma \times (\log x + \frac{1}{2 \times \log(x)}).$$

Theorem 2.6 [2]. For $x > -1$:

$$\frac{x}{x+1} \leq \log(1+x).$$

3 Proof of Main Theorem

Theorem 3.1 If the Riemann hypothesis is false, then there are infinitely many Hardy-Ramanujan integers $n > 5040$ such that Robins(n) does not hold and $n \left(1 - \frac{\sqrt{6253}}{\log q_m}\right) < N_m$, where $N_m = \prod_{i=1}^{m} q_i$ is the primorial number of order m and q_m is the largest prime divisor of n. In addition, q_m will not have an upper bound by some positive value for these counterexamples and therefore, the value of q_m tends to infinity as n goes to infinity.

Proof Let $\prod_{i=1}^{m} q_i^{a_i}$ be the representation of some natural number $n > 5040$ as a product of primes $q_1 < \cdots < q_m$ with natural numbers as exponents a_1, \ldots, a_m. The primes $q_1 < \cdots < q_m$ must be the first m consecutive primes and $a_1 \geq a_2 \geq \cdots \geq a_m \geq 0$ since the natural number $n > 5040$ could be an Hardy-Ramanujan integer. We assume that Robins(n) does not hold. Indeed, we know there are infinitely many Hardy-Ramanujan integers such as $n > 5040$ when the Riemann hypothesis is false according to the theorem 1.2. From the theorem 2.3, we know that necessarily $q_m \geq 1771559$. So,

$$e^\gamma \times \log \log n \leq f(n) < \prod_{q \leq q_m} \frac{q}{q-1} < e^\gamma \times (\log q_m + \frac{1}{2 \times \log(q_m)}),$$

because of the theorems 2.1 and 2.5. Hence,

$$\log \log n < \log q_m + \frac{0.5}{\log(q_m)}.$$

From the theorem 2.4, we have that

$$\log \log n < \log \log N_m + \frac{0.1253}{\log(q_m)} + \frac{0.5}{\log(q_m)}.$$

That is the same as

$$\log \log n - \log \log N_m < \frac{0.6253}{\log(q_m)}.$$
Then,
\[
\log \log n - \log \log N_m = \log \left(\log N_m + \log \left(\frac{n}{N_m} \right) \right) - \log \log N_m
\]
\[
= \log \left(\log N_m \times \left(1 + \frac{\log \left(\frac{n}{N_m} \right)}{\log N_m} \right) \right) - \log \log N_m
\]
\[
= \log \log N_m + \log \left(1 + \frac{\log \left(\frac{n}{N_m} \right)}{\log N_m} \right) - \log \log N_m
\]
\[
= \log \left(1 + \frac{\log \left(\frac{n}{N_m} \right)}{\log N_m} \right).
\]

In addition, we know that
\[
\log \left(1 + \frac{\log \left(\frac{n}{N_m} \right)}{\log N_m} \right) \geq \log \left(\frac{\log \left(\frac{n}{N_m} \right)}{\log n} \right)
\]
using the theorem 2.6 since \(\frac{\log \left(\frac{n}{N_m} \right)}{\log N_m} > -1\). Certainly, we will have that
\[
\log \left(1 + \frac{\log \left(\frac{n}{N_m} \right)}{\log N_m} \right) \geq \log \left(\frac{\log \left(\frac{n}{N_m} \right)}{\log n} \right)
\]
\[
\geq \frac{\log \left(\frac{n}{N_m} \right)}{\log n} + \log N_m = \frac{\log \left(\frac{n}{N_m} \right)}{\log n}.
\]

In this way, we have that
\[
\frac{\log \left(\frac{n}{N_m} \right)}{\log n} < 0.6253
\]
which is equivalent to
\[
\log \left(\frac{n}{N_m} \right) < \log (n^{0.6253})
\]
and thus
\[
\frac{n}{N_m} < n^{0.6253}.
\]

Finally, we obtain that
\[
\frac{n}{N_m} < n^{0.6253}.
\]

Moreover, we know that \(q_m\) will not have an upper bound by some positive value for these counterexamples because of the theorem 2.2. Certainly, if there is a possible upper bound for \(q_m\), then it cannot exist infinitely many Hardy-Ramanujan integers \(n > 5040\) such that \(\text{Robins}(n)\) does not hold as a consequence of the theorem 2.2.

Acknowledgments

The author would like to thank his mother, maternal brother and his friend Sonia for their support.
References

1. Choie, Y., Lichiardopol, N., Moree, P., Solé, P.: On Robin’s criterion for the Riemann hypothesis. *Journal de Théorie des Nombres de Bordeaux* 19(2), 357–372 (2007). DOI doi:10.5802/jtnb.591
2. Kozma, L.: Useful Inequalities. http://www.lkozma.net/inequalities_cheat_sheet/ineq.pdf (2021). Accessed on 2021-12-25
3. Nicolas, J.L.: Petites valeurs de la fonction d’Euler. *Journal of number theory* 17(3), 375–388 (1983). DOI 10.1016/0022-314X(83)90055-0
4. Robin, G.: Grandes valeurs de la fonction somme des diviseurs et hypothèse de Riemann. *J. Math. pures appl* 63(2), 187–213 (1984)
5. Rosser, J.B., Schoenfeld, L.: Approximate Formulas for Some Functions of Prime Numbers. *Illinois Journal of Mathematics* 6(1), 64–94 (1962). DOI doi:10.1215/ijm/1255631807
6. Solé, P., Planat, M.: Robin inequality for 7– free integers. *Integers: Electronic Journal of Combinatorial Number Theory* 11, A65 (2011)
7. Vega, F.: Robin Criterion on Divisibility (2021). URL https://hal.archives-ouvertes.fr/hal-03228263. To appear in The Ramanujan Journal