Environmental technology for processing waste from mining and processing plants

Vladimir Bobkov1,*, Valery Meshalkin2,3, Vitaly Aristov2 and Maxim Dli1

1National Research University "Moscow Power Engineering Institute” Smolensk Branch, Russian Federation
2D.I. Mendeleev University of Chemical Technology of Russia, Moscow, Russian Federation
3Kurnakov Institute of General and Inorganic Chemistry of RAS, Moscow Russian Federation

Abstract. This research proposes a system approach for the analysis of volumes, physicochemical, granulometric, lithologic and thermal characteristics of waste from ore-dressing and processing enterprises stored in the dumps (tailing dumps) of ore-dressing and processing plants to assess the economic potential of its use in the system of complex power and resource efficient environmentally safe processing including palletizing machines, conveyor indurating machines and ore–thermal furnaces. The obtained results allow the authors to formulate the basic engineering, technological, economic and environmental requirements for complex chemical and power engineering systems of processing technogenic waste from ore-dressing and processing plants, these results make it also possible to define the degree of variability for the characteristics of the waste lots from various dumps. The paper describes the developed intensional and mathematical formulations for the multiscale problem of optimizing chemical and power engineering processes of technogenic raw materials processing in a complex chemical and power engineering system as a problem for discrete dynamic programming. The distinctive feature of this problem is to take into account the spatio-temporal multistage processing in a moving multilayer mass of pelletized raw material, the intensity of the process of internal moisture transfer and the variables for the control flow of the heat carrier gas.

1 Introduction

Ore-dressing and processing complex is one of the most developed complexes in modern Russia, but the depletion of mineral raw material base and environmental problems of technogenic raw material storing makes it necessary to involve waste from ore-dressing and processing enterprises into the integrated processing and utilization.

Unused dumps is not only enormous damage for the environment, it is also mineral raw material irretrievably lost being the result of wind and water erosion. Tailing dumps take a special place among the technogenic deposits, fine-dispersed material is stored in the dumps, this fact enhances their susceptibility to wind and water erosion. Tailing dumps

* Corresponding author: vovabobkoff@mail.ru
occupy big areas, as a result territories, being much more larger than enterprises land allocation, are subjected to pollution, it influences Russian environment significantly. Ore-dressing and processing enterprises dumps represent a powerful raw material base for the production of phosphorus, ferrous and non-ferrous metals; to involve the dumps into processing is of significant interest to the country as a whole.

The purpose of the proposed integrated work is to create a fundamental physicochemical, technological engineering and organizational base of power efficient environmentally safe resource saving processing for waste from ore dressing and processing enterprises, this base will allow processing for the finished grinded raw material accumulated in the dumps into competitive products with added value. It will also allow the enterprises to reduce the amount of recourses allocated to store this waste; to increase significantly the degree of technogenic raw material converting into the finished useful products; to ensure the elimination of tailing dumps and landfills; to reduce negative environmental impact; to improve the quality of life for the population and to make a successful transition to sustainable socio-economic development of our country.

2 Methods

As a result of the implementation of the mentioned fundamental study technogenic waste from ore-dressing and processing enterprises will be valuable secondary raw material for the products with high added value.

Fig. 1. Basic fundamental research developments for the integrated processing program of technogenic waste from the ore-dressing and processing plants (ODPP) dumps.
Unfortunately, Russia imports a huge amount of valuable raw materials which are contained in the waste of ore-dressing and processing plants, they represent the most valuable import-substituting resources. In recent years the phosphorus and metallurgical industries have come to the conclusion that the advantage of pellets production is not only in the huge amount of ore fines accumulated in the deposits and dumps of ore-dressing and processing enterprises, but also in the possibility of transporting them to almost any distance with a minimum loss [1]. This advantage of the pellets is selected as the main one to forecast the production development. It can be said that raw materials have to be transported in greater volume over long distances, and pellets can be also transported but their transportation is profitable [2, 3]. Understanding of the strengths and weaknesses of this production comes due to the wide theoretical and experimental research, experimental industrial work, improvement of the engineering design for the main units and equipment [4]. In pellets production there is a lot of experience, many areas of production improvement have been identified, fundamentally new ideas have been expressed, they have already had and will still have a strong influence on the development of ore agglomeration processes [5] (fig.1).

The main reason for the violation of the roasting condition for the pelletized material is a change in the raw pellets properties: humidity, strength, granulometric composition [6, 7]. If the pellets with high humidity are fed for roasting with a steady roasting condition this leads to excessive heat and incomplete removal of moisture in the drying zone [8, 9]. Pellets with an increased amount of moisture in the heating zone are destroyed due to the intense vaporization. As a result a layer is clogged with fines, gas permeability is decreased, the quality becomes worse and the yield of a good product is decreased [10, 11]. Therefore, the implementation of drying processes in the optimum conditions of power consumption and maximum speed is of great importance for practice [12]. Since technological limitations narrow the range of roasting parameters variation significantly, a systematic analysis for the mutual influence of all factors determining the condition of pellets roasting is required [13].

3 Results and Discussion

The authors developed and presented in [5 – 7] the multiscale mathematical and computer models and algorithms for the optimal control of the chemical and power engineering system (CPES) of the phosphorite pellets production and multilevel optimization according to the criterion of power resource efficiency (fig.2), taking into account the complex structural control scheme of CPES. The developed models and algorithms hierarchically include various levels [14 - 16].

Different levels presence determines the following circumstances. First, the formation of the criterion for power and resource efficiency of CETS pellets roasting involves the indicators such as: completeness for chemical and power engineering process (CPEP) of drying (average moisture content of pellets along the height of the multilayer at the exit of the drying zone); completeness for CPEP of calcination (average degree of response along the height of the multilayer when leaving the high-temperature roasting zone); the completeness of CPEP sintering (the required pellets strength, the average strength of pellets along the height of the layer at the exit from the high-temperature roasting zone); the minimum cost of power consumption for the implementation and completion of these CPEPs [17, 18].
Second, it is necessary to discretize CPES according to the time of a moving multilayer mass presence in various local vacuum chambers using the selected criterion to increase power resource efficiency and implement the discrete dynamic programming procedure presented by the authors [5].

4 Conclusions

Such a systematic approach made it possible to develop methodical, software and information support to make a decision on multilevel optimization of power and resource
efficiency of a chemical and power engineering system for pellets production [19, 20], architecture, software and information support, functioning modes of an automated decision support system for optimal control of power resources efficiency of CPES.

The proposed multilevel algorithms for power and resource efficiency of CPES optimization and developed multiscale mathematical models for CPES were realized in practice as a set of programs used to optimize the control of CPES for pellets production [21]. This complex makes it possible to calculate the main thermally activated SPEP occurring in pellets during the high–temperature roasting in the moving multilayer mass on the CPES conveyer. The architecture for the complex of programs for optimization of CPES power and resource efficiency is built according to the modular approach using Borland C ++ programming environment for Windows and MathCad software package.

The reported study was funded by RFBR according to the research project № 18-29-24094 MK.

References

1. Y. Bykova, and B. Ernolenko, Theor. Found. Chem. Eng., 45 542 (2011)
2. L. Aichmayer, J. Garrido, W. Wang, and B. Laumert, Energy, 159 184 (2018)
3. G. Chang, J. Pedro, and H. Kim, Chemosphere, 193 1087 (2018)
4. V. Bobkov, V. Borisov, M. Dli, and V. Meshalkin, Theor. Found. Chem. Eng., 49 842 (2015)
5. V. Bobkov, V. Borisov, M. Dli, and V. Meshalkin, Theor. Found. Chem. Eng., 49 176 (2015)
6. V. Bobkov, V. Borisov, M. Dli, and V. Meshalkin, Theor. Found. Chem. Eng., 51 70 (2017)
7. V. Bobkov, A. Fedulov, M. Dli, V. Meshalkin, and E. Morgunova, Clean Techn. Environ. Policy, 20 2209 (2018)
8. K. Brooke, L. Baker, and T. Boyer, H. Environ. Sci. Tech., 50 6606 (2016)
9. B. Bokovikov, V. Bragin, and V. Shvydkii, Steel., 44(8) 595 (2014)
10. R.M. Bustillo, Mineral Resources: From Exploration to Sustainability Assessment (Springer Nature, Cham, Switzerland, 2018) pp. 96-128.
11. A.A. Butkarev, and A.P. Butkarev, Steel Trans., 35 1 (2005)
12. C. Blank, R. Parks, and N. Hinman, J. Appl. Phycol. 28, 2753 (2016)
13. V. Abzalov, V. Bragin, V. Klein, S. Evstyugin, and A. Solodukhin, Steel Trans., 40 813 (2010)
14. S. Panchenko, and T. Shirokikh, Theor. Found. Chem. Eng., 48 77 (2014)
15. A. Palant, Russian Metallurgy, 2 109 (2007)
16. V. Shvydkii, Y. Yarochenko, N. Spirin, and V. Lavrov, Institution news. Ferrous metallurgy, 60(4) 329 (2018)
17. S.P. Sethi, The Maximum Principle: Continuous Time, (Optimal Control Theory. Springer, Cham, Switzerland, 2019), pp. 27-67
18. L. Leontyev, K. Grigorovich, and M. Kostina, Institution news. Ferrous metallurgy, 61(1) 11 (2018)
19. V. Meshalkin, V. Bobkov, M. Dli, and S. Khodchenko, Doklady Chemistry, 477(2) 286 (2017)
20. A. Cernea, and H. Frankowska, SIAM J. Control Optim., 44(2) 673 (2005)
21. A. Butkarev, A. Butkarev, P. Zhomiruk, V. Martynenko and N. Grinenko, Steel Trans., 40 239 (2010)