A mod p variant of the André–Oort conjecture

Bas Edixhoven1 · Rodolphe Richard1

Received: 3 October 2018 / Accepted: 29 November 2018
© The Author(s) 2018

Abstract
We state and prove a variant of the André–Oort conjecture for the product of 2 modular curves in positive characteristic, assuming GRH for quadratic fields.

Keywords
Elliptic curves · Complex multiplication · Positive characteristic

Mathematics Subject Classification 11G15 · 14G35 · 14K22

1 Introduction

The André–Oort conjecture says that, for Σ any set of special points in a Shimura variety S, the irreducible components of the Zariski closure of Σ are special subvarieties. See [8,15] for the current state of affairs around this conjecture. In the simplest non-trivial case of this conjecture the Shimura variety S is \mathbb{C}^2, the product of two copies of the j-line, hence the coarse moduli space for pairs of complex elliptic curves. The irreducible special curves in \mathbb{C}^2 are, apart from the fibres of the two projections, the images of the modular curves $Y_0(n)$ ($n \geq 1$), and consist of the pairs $(j(E), j(E/\langle P \rangle))$ with E a complex elliptic curve and $P \in E$ of order n. In this case, the conjecture was proved in [1], and, conditionally on the generalised Riemann hypothesis (GRH) for quadratic fields, in [4]. In this article we state a variant in positive characteristic, and prove it under GRH for quadratic fields.

Definition 1.1 For a point x in a scheme X we let $\kappa(x) = \mathcal{O}_{X,x}/m_x$ be its residue field, and we denote $\iota_x : \text{Spec}(\kappa(x)) \to X$ the induced $\kappa(x)$-point of X. So we may view ι_x as an element of $X(\kappa(x))$, the set of $\kappa(x)$-valued points of X. For $X = \mathbb{A}^2$, we have $X(\kappa(x)) = \kappa(x)^2$.

By CM-point in $\mathbb{A}^2_{\mathbb{Q}}$ we mean a closed point s of the affine plane over \mathbb{Q}, such that both coordinates of $\iota_s \in \kappa(s)^2$ are j-invariants of CM elliptic curves.

By CM-point in $\mathbb{A}^2_{\mathbb{Z}}$ we mean the closure in $\mathbb{A}^2_{\mathbb{Z}}$ of a CM-point in $\mathbb{A}^2_{\mathbb{Q}}$. We view such a CM-point $[s]$ as a closed subset, or as a reduced closed subscheme. For any prime number p we then denote by $[s]_{\mathbb{F}_p}$ the reduced fibre over p and call it the reduction of s at p.

1 Universiteit Leiden, Leiden, The Netherlands

Published online: 17 December 2018
Theorem 1.2 Assume the generalised Riemann hypothesis for quadratic fields. Let p be a prime number. Let Σ be a set of finite closed subsets s of $\mathbb{A}^1_{\mathbb{Z}}$ that are reductions of CM-points in $\mathbb{A}^2_{\mathbb{F}_p}$. Let Z be the Zariski closure of the union of all s in Σ. Then every irreducible component of dimension 1 of Z is special: a fibre of one of the 2 projections, or an irreducible component of the image in $\mathbb{A}^2_{\mathbb{F}_p}$ of some $Y_0(n)_{\mathbb{F}_p}$ with $n \in \mathbb{Z}_{\geq 1}$.

Remark 1.3 If K_1, \ldots, K_r are quadratic subfields of \mathbb{Q}, then GRH holds for their compositum K if and only if it holds for each quadratic subfield of K (the zeta function of K is the product of the Riemann zeta-function and the L-functions of the quadratic subfields of K).

2 Some facts on CM elliptic curves

We will need some results on CM elliptic curves and their reduction mod p. For more detail see [4, Sect. 2], and references therein.

For E over $\overline{\mathbb{Q}}$ an elliptic curve with CM, $\text{End}(E)$ is an order in an imaginary quadratic field K, hence isomorphic to $\mathcal{O}_K, f = \mathbb{Z} + f \mathcal{O}_K$, with \mathcal{O}_K the ring of integers in K, and $f \in \mathbb{Z}_{\geq 1}$, unique, called the conductor.

For $K \subset \overline{\mathbb{Q}}$ imaginary quadratic and $f \geq 1$, we let $S_{K, f}$ be the set of isomorphism classes of (E, α), where E is an elliptic curve over $\overline{\mathbb{Q}}$ and $\alpha: \mathcal{O}_K, f \rightarrow \text{End}(E)$ is an isomorphism, such that the action of $\text{End}(E)$ on the tangent space of E at 0 induces the given embedding $K \rightarrow \overline{\mathbb{Q}}$. The group $\text{Pic}(\mathcal{O}_K, f)$ acts on $S_{K, f}$, making it a torsor. This action commutes with the action of $G_K := \text{Gal}(\overline{\mathbb{Q}}/K)$, giving a group morphism $G_K \rightarrow \text{Pic}(\mathcal{O}_K, f)$ through which G_K acts on $S_{K, f}$.

This map is surjective, unramified outside f, and the Frobenius element at a maximal ideal m of \mathcal{O}_K outside f is the class $[m^{-1}]$ in $\text{Pic}(\mathcal{O}_K, f)$.

For $f' \geq 1$ dividing f, the inclusion $\mathcal{O}_K, f \rightarrow \mathcal{O}_K, f'$ induces compatible surjective maps of groups $\text{Pic}(\mathcal{O}_K, f) \rightarrow \text{Pic}(\mathcal{O}_K, f')$ and of torsors $S_{K, f} \rightarrow S_{K, f'}$: (E, α) is mapped to $O_{K, f'} \otimes_{\mathcal{O}_K, f} E$ with its $O_{K, f'}$-action. In terms of complex lattices: $O_{K, f'} \otimes_{\mathcal{O}_K, f} \mathbb{C}/\Lambda = \mathbb{C}/O_{K, f'} \Lambda$.

For p a prime number, and f' the prime to p part of f, the map $S_{K, f} \rightarrow S_{K, f'}$ is the quotient by the inertia subgroup at any of the maximal ideals m of \mathcal{O}_K containing p (to show this, use the adelic description of ramification in class field theory).

Elliptic curves with CM over $\overline{\mathbb{Q}}$ extend uniquely over $\overline{\mathbb{Z}}$ (the integral closure of \mathbb{Z} in $\overline{\mathbb{Q}}$), and their endomorphisms as well.

For K and f as above we define $j_{K, f}$ to be the image of $j(E): \text{Spec}(\overline{\mathbb{Z}}) \rightarrow \mathbb{A}^1_{\overline{\mathbb{Q}}}$, where E is an elliptic curve over $\overline{\mathbb{Q}}$ with $\text{End}(E)$ isomorphic to $O_{K, f}$; this does not depend on the choice of E. Then $j_{K, f}$ is an irreducible closed subset of $\mathbb{A}^1_{\overline{\mathbb{Z}}}$. We equip it with its reduced induced scheme structure. Then it is finite over \mathbb{Z} of degree $\#\text{Pic}(\mathcal{O}_K, f)$, and in fact $j_{K, f}(\overline{\mathbb{Z}})$ is in bijection with $S_{K, f}$ and hence is a $\text{Pic}(\mathcal{O}_K, f)$-torsor (here we use that K has a given embedding into $\overline{\mathbb{Q}}$). For p prime, we let j_{K, f, \mathbb{F}_p} be the fibre of $j_{K, f}$ over \mathbb{F}_p.

Let p be a prime number, and K and f as above. If p is not split in \mathcal{O}_K then j_{K, f, \mathbb{F}_p} consists of supersingular points, and $j_{K, f}$ can be highly singular above p (by lack of supersingular targets). If p is split in \mathcal{O}_K then j_{K, f, \mathbb{F}_p} consists of ordinary points, and the corresponding elliptic curves over \mathbb{F}_p have endomorphism ring isomorphic to $O_{K, f'}$, where f' is the prime to p part of f, and then $j_{K, f', \mathbb{F}_p} = (j_{K, f, \mathbb{F}_p})_{\text{red}}$, and for each morphism of rings $\overline{\mathbb{Z}} \rightarrow \mathbb{F}_p$ the map $j_{K, f'}(\overline{\mathbb{Z}}) \rightarrow j_{K, f'}(\mathbb{F}_p)$ is a bijection and it makes $j_{K, f', \mathbb{F}_p}(\mathbb{F}_p)$ into a $\text{Pic}(O_{K, f'})$-torsor. Note that every ordinary point x in \mathbb{F}_p belongs to exactly one $j_{K, f'}(\mathbb{F}_p)$.
3 Some facts about pairs of CM elliptic curves

Let \(s \) be a CM-point in \(\mathbb{A}^2_\mathbb{Q} \) as in Definition 1.1. Then \(s(\mathbb{Q}) \) is a \(G_\mathbb{Q} \)-orbit. Let \((x_1, x_2) \) be in \(s(\mathbb{Q}) \). Then \(x_1 \) is in \(j_{K_1, f_1}(\mathbb{Q}) \) for a unique imaginary quadratic subfield \(K_1 \) of \(\mathbb{Q} \), and similarly for \(x_2 \), and \(G_{K_1, K_2} \) acts through \(\text{Pic}(O_{K_1, f_1}) \times \text{Pic}(O_{K_2, f_2}) \), and \(s(\mathbb{Q}) \) decomposes into at most 4 orbits under \(G_{K_1, K_2} \).

Let \(p \) be a prime. Let \(s \) be a finite closed subset of \(\mathbb{A}^2_{\mathbb{F}_p} \) that is the reduction at \(p \) of a CM-point in \(\mathbb{A}^2_\mathbb{Z} \) (see Definition 1.1). Then \(s(\mathbb{F}_p) \) is a finite subset of \(\mathbb{F}_p \times \mathbb{F}_p \) that is stable under \(G_{\mathbb{F}_p} := \text{Gal}(\mathbb{F}_p/\mathbb{F}_p) \). For each of the 2 projections, the image of \(s(\mathbb{F}_p) \) consists entirely of ordinary points or entirely of supersingular points (this follows from the facts recalled in Sect. 2). If for all \((x_1, x_2) \) in \(s(\mathbb{F}_p) \) both \(x_1 \) and \(x_2 \) are ordinary, then the \(x_1 \) form a \(\text{Pic}(O_{K_1, f_1}) \)-orbit, and the \(x_2 \) form a \(\text{Pic}(O_{K_2, f_2}) \)-orbit, with \(f_1 \) and \(f_2 \) prime to \(p \).

4 Images under suitable Hecke correspondences

For \(\ell \) a prime number, \(T_\ell \) denotes the correspondence on the \(j \)-line, over any field not of characteristic \(\ell \), sending an elliptic curve \(E \) over an algebraically closed field \(k \) to the sum of its \(\ell + 1 \) quotients by the subgroups of \(E(k) \) of order \(\ell \). Similarly, \(T_\ell \times T_\ell \) is the correspondence on the \(j \)-line times itself that sends a pair of elliptic curves \((E_1, E_2) \) to the sum of all \((E_1/C_1, E_2/C_2) \) with \(C_1 \) and \(C_2 \) subgroups of order \(\ell \).

Theorem 4.1 Assumptions as in Theorem 1.2, and assume that all irreducible components of \(Z \) are of dimension 1, and are not a fibre of any of the \(2 \) projections. There are infinitely many prime numbers \(\ell \) such that \(Z \cap (T_\ell \times T_\ell)Z \) is of dimension 1.

Proof There are only finitely many points \((x_1, x_2) \) in \(Z(\mathbb{F}_p) \) such that \(x_1 \) or \(x_2 \) is not ordinary. Therefore we can replace \(\Sigma \) by its subset of \(s \)’s whose images under both projections are ordinary.

At this point we combine the arguments of [5] with reduction modulo \(p \). Let \(d_1 \) and \(d_2 \) be the degrees of the projections from \(Z \) to \(\mathbb{A}^2_{\mathbb{F}_p} \).

For \(s \) in \(\Sigma \) and \((x_1, x_2) \) in \(s(\mathbb{F}_p) \), let \(O_{1,s} \) and \(O_{2,s} \) be the endomorphism rings of the elliptic curves \(E_1 \) and \(E_2 \) over \(\mathbb{F}_p \) corresponding to \(x_1 \) and \(x_2 \).

We claim that for all but finitely many \(s \) there is a prime number \(\ell \) such that \(\ell \) is split in both \(O_{1,s} \) and \(O_{2,s} \), and \(\#s(\mathbb{F}_p) > 2d_1d_2(\ell + 1)^2 \), and \(\ell > \log(\#s(\mathbb{F}_p)) \). This claim follows, as in the proof of [5, Lemma 7.1], from the (conditional) effective Chebotarev theorem of Lagarias and Odlyzko [9] as stated in Theorem 4 of [12], and Siegel’s theorem on class numbers of imaginary quadratic fields [14] and [10, Chap. XVI].

Now let \(s \), \((x_1, x_2) \) and \(\ell \) be as in the claim above. Let \(\varphi : \overline{\mathbb{Z}} \to \overline{\mathbb{F}_p} \) be a morphism of rings. Then there are unique embeddings of \(O_{1,s} \) and \(O_{2,s} \) into \(\overline{\mathbb{Z}} \) that composed with \(\varphi \) give the actions on the tangent spaces at 0 of \(E_1 \) and \(E_2 \). Let \(m \) be a maximal ideal of index \(\ell \) in \(O_{1,s}O_{2,s} \subseteq \overline{\mathbb{Z}} \), and \(m_1 \) and \(m_2 \) the intersections of \(m \) with \(O_{1,s} \) and \(O_{2,s} \). By the facts recalled at the end of Sect. 2, there are canonical \(\tilde{x}_1 \) and \(\tilde{x}_2 \) in \(\overline{\mathbb{Z}} \) lifting \(E_1 \) and \(E_2 \) to \(\tilde{E}_1 \) and \(\tilde{E}_2 \), with \(\text{End}(\tilde{E}_1) = \text{End}(E_1) \) and \(\text{End}(\tilde{E}_2) = \text{End}(E_2) \). Let \(\sigma \) be a Frobenius element in \(G_{K_1, K_2} \) at \(m \). Then \(\tilde{E}_1 = [m_1]^{-1}[m_1]\tilde{E}_1 \) shows that \(\tilde{E}_1 \) is \(\ell \)-isogenous to \([m_1]\tilde{E}_1 \) which is the conjugate of \(\tilde{E}_1 \) by \(\sigma^{-1} \), and similarly for \(\tilde{E}_2 \). Then \(([m_1]E_1, [m_2]E_2) \) is the reduction of \(\sigma^{-1}(\tilde{E}_1, \tilde{E}_2) \), hence in \(s(\mathbb{F}_p) \). So \((x_1, x_2) \) is in \((T_\ell \times T_\ell)([m_1]E_1, [m_2]E_2) \). So \((x_1, x_2) \) is both in \(s(\mathbb{F}_p) \) and in \((T_\ell \times T_\ell)(s(\mathbb{F}_p)) \). We conclude that \(s(\mathbb{F}_p) \) is contained in \(Z(\mathbb{F}_p) \cap (T_\ell \times T_\ell)Z(\mathbb{F}_p) \).
Now the degrees of the projections from \((T_\ell \times T_\ell)Z\) to \(\mathbb{A}^1_p\), are \((\ell + 1)^2d_1\) and \((\ell + 1)^2d_2\), so the intersection number (in \((\mathbb{P}^1 \times \mathbb{P}^1)_\ell\)) of \(Z\) and \((T_\ell \times T_\ell)\) is \(2d_1d_2(\ell + 1)^2\). But the intersection contains \(s(\mathbb{P}^1_\ell)\), which has more points than this intersection number, so the intersection is not of dimension 0.

\[\square\]

5 Goursat’s lemma and Zarhin’s theorem

Here we deviate from the topological approach in [4,5].

Theorem 5.1 Let \(C\) be an irreducible reduced closed curve in \(\mathbb{A}^2_p\), not a fibre of one of the 2 projections, such that there are infinitely many prime numbers \(\ell\) for which \((T_\ell \times T_\ell)(C)\) is reducible. Then there is an \(n \in \mathbb{Z}_{\geq 0}\) such that \(C\) is the image of an irreducible component of \(Y_0(n)_{\mathbb{P}^1_p}\) in \(\mathbb{A}^2_p\).

Proof Let \(K\) denote the function field of \(C\), and let \(E_1\) and \(E_2\) be elliptic curves over \(K\) with \(j\)-invariants the projections \(\pi_1\) and \(\pi_2\), viewed as functions on \(C\); these \(E_1\) and \(E_2\) are unique up to quadratic twist. We must prove that \(E_1\) is isogeneous to a twist of \(E_2\).

Let \(K \to K_{\text{sep}}\) be a separable closure and let \(G := \text{Gal}(K_{\text{sep}}/K)\). For \(\ell \neq p\) a prime number, let \(V_{\ell, 1} := E_1(K_{\text{sep}})[\ell]\) and \(V_{\ell, 2} := E_2(K_{\text{sep}})[\ell]\) and let \(G_\ell\) be the image of \(G\) in \(GL(V_{\ell, 1}) \times GL(V_{\ell, 2})\), with projections \(G_{\ell, 1}\) and \(G_{\ell, 2}\). Because of the Weil pairing, \(G\) acts on \(\text{det}(V_{\ell, 1})\) and \(\text{det}(V_{\ell, 2})\) by the cyclotomic character \(\chi_\ell:\ G \to [\mathbb{F}_\ell^\times = \text{Aut}(\mu_\ell(K_{\text{sep}}))].\)

For all but finitely many \(\ell\), \(G_{\ell, 1}\) contains \(\text{SL}(V_{\ell, 1})\) and similarly for \(E_2\) (this follows, as in [2], from the fact that for \(n\) prime to \(p\) the geometric fibres of the modular curve over \(\mathbb{Z}[\zeta_n, 1/n]\) parametrising elliptic curves with symplectic basis of the \(n\)-torsion are irreducible [6, Theorem 3] and [7, Corollary 10.9.2]). Let \(q\) be the number of elements of the algebraic closure of \(\mathbb{F}_p\) in \(K\). Then, for all but finitely many \(\ell\), \(G_{\ell, 1}\) is the subgroup of elements of \(\text{SL}(V_{\ell, 1})\), whose determinant is a power of \(q\), and similarly for \(G_{\ell, 2}\). Let \(L\) be the set of prime numbers \(\ell \neq 2\) for which \(G_{\ell, 1}\) and \(G_{\ell, 2}\) are as in the previous sentence, and such that \((T_\ell \times T_\ell)(C)\) is reducible. Then \(L\) is infinite.

Let \(\ell\) be in \(L\). Let \(N_{\ell, 1} := \ker(G_\ell \to G_{\ell, 2})\) and \(N_{\ell, 2} := \ker(G_\ell \to G_{\ell, 1})\). Then \(N_{\ell, i}\) is a normal subgroup of \(G_{\ell, i} \cap \text{SL}(V_{\ell, i})\), and \(G_\ell\) is the inverse image of the graph of an isomorphism \(G_{\ell, 1}/N_{\ell, 1} \to G_{\ell, 2}/N_{\ell, 2}\). The only normal subgroups of \(\text{SL}(\mathbb{F}_\ell)\) are the trivial subgroups and the center \([\pm 1]\), with different number of elements. As \#\(G_{\ell, 1}\) = \#\(G_{\ell, 2}\), we have \#\(N_{\ell, 1}\) = \#\(N_{\ell, 2}\), and so there are 3 cases.

If \(N_{\ell, 1} = \text{SL}(V_{\ell, 1})\), then \(G_\ell\) contains \(\text{SL}(V_{\ell, 1}) \times \text{SL}(V_{\ell, 2})\), contradicting the reducibility of \((T_\ell \times T_\ell)(C)\). Hence \(N_{\ell, 1}\) is \([\pm 1]\) or \([1]\), and \(G_\ell\) gives us an isomorphism \(\varphi_\ell: G_{\ell, 1}/[\pm 1] \to G_{\ell, 2}/[\pm 1]\). As all automorphisms of \(\text{SL}(\mathbb{F}_\ell)/[\pm 1]\) are induced by \(\text{GL}(\mathbb{F}_\ell)\) ([11]), or [16, Sect. 3.3.4]), there is an isomorphism \(\gamma: V_{\ell, 1} \to V_{\ell, 2}\) of \(\mathbb{F}_\ell\)-vector spaces (not necessarily \(G\)-equivariant) that induces the restriction \(\varphi_\ell\) from \(\text{SL}(V_{\ell, 1})/[\pm 1]\) to \(\text{SL}(V_{\ell, 2})/[\pm 1]\). Let \(\alpha_\ell\) be the automorphism of \(G_{\ell, 1}/[\pm 1]\) obtained as the composition of first \(\varphi_\ell\), and then \(G_{\ell, 2}/[\pm 1] \to G_{\ell, 1}/[\pm 1]\), \(g \mapsto \gamma^{-1}g\gamma\). Consider the short exact sequence

\[\{1\} \to \text{SL}(V_{\ell, 1})/[\pm 1] \to G_{\ell, 1}/[\pm 1] \to \langle g \rangle \to \{1\}.\]

Then \(\alpha_\ell\) induces the identity on \(\text{SL}(V_{\ell, 1})/[\pm 1]\) and on \(\langle g \rangle\). Lemma 5.3 gives us that \(\alpha_\ell\) is the identity. Hence \(\varphi_\ell\) is the morphism \(G_{\ell, 1}/[\pm 1] \to G_{\ell, 2}/[\pm 1]\), \(g \mapsto \gamma g \gamma^{-1}\). If \(N_{\ell, 1} = \{1\}\) then \(G_\ell\) is \(G_{\ell, 1}/[\pm 1] \to G_{\ell, 2}/[\pm 1]\), \(g \mapsto \gamma g \gamma^{-1}\). If \(N_{\ell, 1} = \{\pm 1\}\) then \(G_\ell\) is \(G_{\ell, 1}/\gamma : \{(\pm g \gamma) \gamma^{-1} : g \in G_{\ell, 1}\}\). This means that \(\gamma : V_{\ell, 1}/[\pm 1] \to V_{\ell, 2}/[\pm 1]\) is \(G\)-equivariant. Even better, writing, for \(g\) in \(G\), \(\gamma(gv) = \varepsilon_\ell(g)g(\gamma(v))\) with \(\varepsilon_\ell(g) \in \{\pm 1\}\),
Let $U \subset C$ be the open subscheme where C is regular and where E_1 and E_2 have good reduction. Then for all ℓ in L, and all closed x in U, ε_ℓ is unramified at x. As U is a smooth curve over a finite field, there are only finitely many characters $\varepsilon : G \to \{ \pm 1 \}$ unramified on U, if $p \neq 2$ (this uses Kummer theory). For $p = 2$, one has to be more careful; we argue as follows. There are infinitely many characters $\varepsilon : G \to \{ \pm 1 \}$ unramified on U, but only finitely many with bounded conductor on the projective smooth curve C with function field K. Let $K' \subset K^{\text{sep}}$ be the extension cut out by $V_{3,1} \times V_{3,2}$, and let $\overline{C}' \to \overline{C}$ be the corresponding cover. Then both E_1 and E_2 have semistable reduction over \overline{C}' by [3, Corollary 5.18]. The Galois criterion for semi-stability in [13, Example IX, Proposition 3.5] tells us that all ε_ℓ become unramified on \overline{C}'. This shows that also for $p = 2$ there are only finitely many distinct ε_ℓ. The conclusion is that, for general p, there are only finitely many distinct ε_ℓ, and therefore we can assume (by shrinking L to an infinite subset) that they are all equal to some ε. Then we replace E_2 by its twist by ε, and then ε_ℓ are trivial.

Now Zarhin’s result [17, Corollary 2.7] tells us that there is a non-zero morphism $\alpha : E_1 \to E_2$. \hfill \square

Remark 5.2 Up to sign, there is a unique isogeny $\alpha : E_1 \to E_2$ of minimal degree n. Then C is an irreducible component of the image of $Y_0(n)_{\mathbb{F}_p}$. We write $n = p^k m$ with m prime to p. Then C is the image of the image of $Y_0(m)_{\mathbb{F}_p}$ by the p^k-Frobenius map on the first or on the second coordinate, and C is also an irreducible component of the images of all $Y_0(p^{2l} n)$ with $i \in \mathbb{Z}_{\geq 0}$.

Lemma 5.3 Let G be a group, N a normal subgroup of G and Q the quotient. Let α be an automorphism of G inducing the identity on N and on Q, and suppose that G acts trivially by conjugation on the center of N, and that there is no non-trivial morphism from Q to the center of N. Then α is the identity on G.

Proof We write, for all $g \in G$:

$$\alpha(g) = g \beta(g), \quad \text{with } \beta \text{ a map (of sets!) from } G \text{ to itself.}$$

As α induces the identity on Q, β takes values in N. As α is the identity on N, we have $\beta(n) = 1$ for all $n \in N$. For all g_1 and g_2 in G we have:

$$g_1 g_2 \beta(g_1 g_2) = \alpha(g_1 g_2) = \alpha(g_1) \alpha(g_2) = g_1 \beta(g_1) g_2 \beta(g_2),$$

and therefore

$$\beta(g_1 g_2) = g_2^{-1} \beta(g_1) g_2 \beta(g_2).$$

For g_1 in N, this gives that for all g_2 in G, $\beta(g_1 g_2) = \beta(g_2)$. Hence β factors through $\overline{\beta} : Q \to N : \beta(g) = \overline{\beta}(g)$. Now, for g_1 in G and g_2 in N, we have

$$\overline{\beta}(g_1) = \overline{\beta}(g_1 g_2) = g_2^{-1} \overline{\beta}(g_1) g_2.$$
6 Proof of the main theorem

We are now ready to prove Theorem 1.2.

If \(Z = \mathbb{A}^2_{\mathbb{F}_p} \) or is finite, then \(Z \) has no irreducible components of dimension 1. Now assume that \(Z \) has dimension 1. We write \(Z = V \cup H \cup F \cup Z' \) with \(V \) the union in \(Z \) of fibers of the 1st projection \(\text{pr}_1 \), \(H \) the union in \(Z \) of fibers of \(\text{pr}_2 \), and \(F \) the set of isolated points in \(Z \), and \(Z' \) the union of the remaining irreducible components of \(Z \). Let \(B_1 \) be the image of \(V \cup U \) under \(\text{pr}_1 \), and \(B_2 \) the image of \(H \cup U \) under \(\text{pr}_2 \).

Let \(s \) be in \(\Sigma \) such that \(\text{pr}_1(s) \) meets \(B_1 \). Then either \(\text{pr}_1(s) (\overline{\mathbb{F}_p}) \) consists of supersingular points, or it consists of ordinary points with the same endomorphism ring as an ordinary \((\text{pr}_1 \text{ and } \text{pr}_2 \text{, and the intersection of this union with } Z) \) point in \(Z \). Hence for such a \(\text{pr}_1(s) \) there are only finitely many possibilities. Similarly for the \(\text{pr}_2(s) \). It follows that the \(s \) in \(\Sigma \) such that \(\text{pr}_1(s) \) disjoint from \(B_1 \) and \(\text{pr}_2(s) \) disjoint from \(B_2 \) are contained in \(Z' \). Let \(\Sigma' \) be the set of these \(s \). The \(s \) in \(\Sigma - \Sigma' \) lie on a finite union of fibres of \(\text{pr}_1 \) and \(\text{pr}_2 \), and the intersection of this union with \(Z' \) is finite. Therefore the union of the \(s \) in \(\Sigma' \) is dense in \(Z' \). We replace \(Z \) by \(Z' \), and \(\Sigma \) by \(\Sigma' \). Then all irreducible components of \(Z \) are of dimension 1 and are not a fibre of \(\text{pr}_1 \) or \(\text{pr}_2 \). Let \(d_i \) \((i \in \{1, 2\})\) be the degree of \(\text{pr}_i \) restricted to \(Z \).

There are only finitely many points \((x_1, x_2)\) in \(Z(\overline{\mathbb{F}_p}) \) such that \(x_1 \) or \(x_2 \) is not ordinary. Therefore we can replace \(\Sigma \) by its subset of \(s \)'s whose image under both projections is ordinary.

Theorem 4.1 gives us an infinite set \(L \) of primes \(\ell \) such that \(Z \cap (T_\ell \times T_\ell) Z \) is of dimension 1. Let \((Z_i)_{i \in I}\) be the set of irreducible components of \(Z \). Then for each \(\ell \) in \(L \) there are \(i \) and \(j \) in \(I \) such that \(Z_i \) is in \((T_\ell \times T_\ell) Z_j \). If moreover \(\ell > 12d_1 \) then \((T_\ell \times T_\ell) Z_j \) is reducible, because if not, then \((T_\ell \times T_\ell) Z_j \) equals \(Z_i \) (as closed subsets of \(\mathbb{A}^2_{\mathbb{F}_p} \)), but for any ordinary \((x, y)\) in \(Z_j(\overline{\mathbb{F}_p}) \), \(T_\ell(x, y) \) consists of at least \((\ell + 1)/12 > d_1 \) distinct points.

There is a \(j_0 \in I \) such that for infinitely many \(\ell \in L \), \((T_\ell \times T_\ell) Z_{j_0} \) is reducible. Theorem 5.1 then tells us that there is an \(n \geq 1 \) such that \(Z_{j_0} \) is the image in \(\mathbb{A}^2_{\mathbb{F}_p} \) of an irreducible component of \(Y_0(n)_{\overline{\mathbb{F}_p}} \). We let \(T(n) \) be the reduced closed subscheme of \(\mathbb{A}^2_{\mathbb{F}_p} \) whose geometric points correspond to pairs \((E_1, E_2)\) of elliptic curves that admit a morphism \(\varphi : E_1 \to E_2 \) of degree \(n \). Let \(J \) be the set of \(j \in I \) such that \(Z_j \) is an irreducible component of \(T(n)_{\overline{\mathbb{F}_p}} \), let \(Z(n) \) be their union, and let \(Z' \) be the union of the \(Z_i \) with \(i \notin J \).

We claim that any \(s \) in \(\Sigma \) that meets \(T(n)_{\overline{\mathbb{F}_p}} \) is contained in \(T(n)_{\overline{\mathbb{F}_p}} \). So let \((j(E_1), j(E_2))\) be in \(s(\overline{\mathbb{F}_p}) \), and \(\varphi : E_1 \to E_2 \) be of degree \(n \). Let \(\overline{\mathbb{F}_p} \to \overline{\mathbb{F}_p} \) be a morphism of rings, and \(\tilde{\varphi} : \tilde{E}_1 \to \tilde{E}_2 \) the canonical lift over \(\overline{\mathbb{F}_p} \). Then \(\tilde{\varphi} \) is of degree \(n \), and so are all its conjugates by \(G_\mathbb{Q} \), and so \(s(\overline{\mathbb{F}_p}) \), consisting of all reductions of these conjugates, lies in \(T(n)(\overline{\mathbb{F}_p}) \).

As \(T(n)_{\overline{\mathbb{F}_p}} \cap Z' \) is finite, the set \(\Sigma' \) of \(s \) in \(\Sigma \) that do not meet \(T(n)_{\overline{\mathbb{F}_p}} \) is dense in \(Z' \) and our proof is finished by induction on the number of irreducible components of \(Z \).

Remark 6.1 We think that Theorem 1.2 remains true if \(E \subset \overline{\mathbb{Q}} \) is a finite extension of \(\mathbb{Q} \) and we work with \(\mathbb{A}^2_{\overline{\mathbb{Q}}} \) and consider reductions of \(G_E \)-orbits of CM-points in \(\mathbb{A}^2(\overline{\mathbb{Q}}) \). However, the case \(E = \mathbb{Q} \) has a special feature: up to fibres of the projections, the \(Z \) are invariant under switching the coordinates. This comes from the dihedral nature of the Galois action. As soon as \(E \) contains an imaginary quadratic field, there are \(\Sigma \) such that \(Z \) consists of one irreducible component of \(Y_0(p)_{\overline{\mathbb{F}_p}} \).
A mod p variant of the André–Oort conjecture

References

1. André, Y.: Finitude des couples d’invariants modulaires singuliers sur une courbe algébrique plane non modulaire. J. Reine Angew. Math. 505, 203–208 (1998)
2. Cojocaru, A.C., Hall, C.: Uniform results for Serre’s theorem for elliptic curves. Int. Math. Res. Not. 50, 3065–3080 (2005). https://doi.org/10.1155/IMRN.2005.3065
3. Deschamps, M.: Réduction semi-stable. Séminaire sur les pinceaux de courbes de genre au moins deux. Astérisque 86, 1–34 (1981)
4. Edixhoven, B.: Special points on the product of two modular curves. Compos. Math. 114(3), 315–328 (1998). https://doi.org/10.1023/A:1000539721162
5. Edixhoven, B.: Special points on products of modular curves. Duke Math. J. 126(2), 325–348 (2005). https://doi.org/10.1215/S0012-7094-04-12624-7
6. Igusa, J.-I.: Fibre systems of Jacobian varieties. III. Fibre systems of elliptic curves. Am. J. Math. 81, 453–476 (1959). https://doi.org/10.2307/2372751
7. Katz, N.M., Mazur, B.: Arithmetic moduli of elliptic curves. In: Annals of Mathematics Studies, vol. 108. Princeton University Press, Princeton (1985)
8. Klingler, B., Ullmo, E., Yafaev, A.: Bi-algebraic geometry and the André–Oort conjecture. In: Algebraic Geometry: Salt Lake City 2015, 319–359, Proc. Sympos. Pure Math., 97.2. Amer. Math. Soc., Providence (2018). https://webusers.imj-prg.fr/~bruno.klingler/papiers/Survey2.pdf
9. Lagarias, J.C., Odlyzko, A.M.: Effective versions of the Chebotarev density theorem. In: Algebraic Number Fields: L-Functions and Galois properties (Proc. Sympos., Univ. Durham, Durham), pp. 409–464 (1975)
10. Lang, S.: Algebraic number theory. In: Graduate Texts in Mathematics, vol. 110, 2nd edn. Springer, New York (1994). https://link.springer.com/book/10.1007
11. Schreier, O., van der Waerden, B.L.: Die Automorphismen der projektiven Gruppen. Abh. Math. Sem. Univ. Hamburg 6, 303–322 (1928). https://doi.org/10.1007/BF02940620
12. Serre, J.-P.: Quelques applications du théorème de densité de Chebotarev. Inst. Hautes Études Sci. Publ. Math. 54, 323–401 (1981). http://archive.numdam.org/article/PMIHES_1981__54__123_0.pdf
13. SGA 7.1: Groupes de monodromie en géométrie algébrique. I. Séminaire de Géométrie Algébrique du Bois–Marie 1967–1969 (SGA 7 I). Dirigé par A. Grothendieck. Avec la collaboration de M. Raynaud et D.S. Rim. Lecture Notes in Mathematics, vol. 288. Springer, Berlin (1972)
14. Siegel, C.L.: Über die Classenzahl quadratischer Zahlkörper. Acta Arith. 1(1), 83–86 (1935). http://eudml.org/doc/205054
15. Tsimerman, J.: The André–Oort conjecture for A_g. Ann. Math. (2) 187(2), 379–390 (2018)
16. Wilson, R.A.: The Finite Simple Groups. Graduate Texts in Mathematics, vol. 251. Springer, London (2009). https://doi.org/10.1007/978-1-84800-988-2
17. Zarhin, Y.: Abelian varieties over fields of finite characteristic. Cent. Eur. J. Math. 12(5), 659–674 (2014). https://doi.org/10.2478/s11533-013-0370-1

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.