Suertides A–C: selective antibacterial cyclic hexapeptides from *Amycolatopsis* sp. MST-135876v3

Heather J. Lacey1,2 · Rachel Chen1 · Daniel Vuong1 · Mark F. Fisher3 · Ernest Lacey1,4 · Peter J. Rutledge2 · Andrew M. Piggott4

Received: 26 April 2022 / Revised: 22 June 2022 / Accepted: 29 June 2022 / Published online: 26 July 2022
© The Author(s) 2022. This article is published with open access

Abstract

Amycolatopsis sp. MST-135876 was isolated from soil collected from the riverbank of El Pont de Suert, Catalonia, Spain. Cultivation of MST-135876 on a range of media led to the discovery of a previously unreported dichlorinated cyclic hexapeptide, suertide A (D-Ser, 5-Cl-D-Trp, 6-Cl-D-Trp, L-Ile, D-Val, D-Glu), featuring an unprecedented pair of adjacent 5/6-chlorotryptophan residues. Supplementing the growth medium with KBr resulted in production of the mono- and dibrominated analogues suertides B and C, respectively. Suertides A–C displayed selective activity against *Bacillus subtilis* (MIC 1.6 µg ml\(^{-1}\)) and *Staphylococcus aureus* (MIC 3.1, 6.3, and 12.5 µg ml\(^{-1}\), respectively), while suertides A and B showed appreciable activity against methicillin-resistant *S. aureus* (MIC 1.6 and 6.3 µg ml\(^{-1}\), respectively).

Introduction

The genus *Amycolatopsis* was first described in 1986 along with *Amycolata* to accommodate nocardioform actinomycetes, forming new branches in the evolutionary tree of Pseudonocardiaceae [1]. Before this, *Amycolatopsis* species were categorised as *Streptomyces* and then *Nocardia*. To date, 96 verified *Amycolatopsis* species have been acknowledged in the List of Prokaryotic names with Standing in Nomenclature (LPSN) database [2], making it the 28th most well-described bacterial genus. A thorough review of the published *Amycolatopsis* secondary metabolites by Song et al. [3] revealed that between 1989 and 2020, 159 chemical entities had been isolated from 8 known and 18 unidentified *Amycolatopsis* species. Only 8 compounds, from the pargamicins and valgamicins families, possessed a simple cyclic peptide structure [4–6]. Since 2020, another 2 cyclic peptides have been identified, amycolatomycins A and B [7].

Amycolatopsis sp. MST-135876 was isolated from soil collected from the riverbank of El Pont de Suert, 230 km east of Pamplona, Spain. Preliminary HPLC of a crude extract of the strain identified a metabolite profile unreported in *Amycolatopsis*. On passage, the strain lost its vitality and productivity, which were restored on monospore selection. The variant 3 subculture of the original isolate yielded a stable strain with high secondary metabolite productivity. Analysis of the metabolite profile revealed several compounds with UV–vis spectra commonly associated with the amino acid tryptophan (\(\lambda_{\text{max}}\) 192, 228, 284 nm) in addition to several others with UV–vis spectra comparable to the previously reported amycolatopsins [8]. This report describes the metabolic restoration and cultivation of MST-135876, and the isolation, spectroscopic characterisation, and biological profiling of three new cyclic hexapeptides, suertides A–C (1–3) (Fig. 1).
Experimental section

Mono-spore culture preparation

Culture MST-135876 was used to inoculate one ISP2 agar plate, which was then incubated in a dark temperature-controlled room at 28 °C. On day 3, individual colonies (10) were picked from the plate using a sterile toothpick, and individually streaked onto separate ISP2 daughter plates. The daughter plates were incubated at 28 °C for 7 days, at which point they were subsampled (1 g) and extracted in MeOH (2 ml) for 1 h and analysed by HPLC to determine their metabolite profiles. The residual culture from each daughter plate was preserved at −80 °C under glycerol (40%).

Cultivation and extraction (1)

MST-135876v3 was cultured on ISP2 agar plates for 7 days at 28 °C. A spore suspension (H2O; 100 ml) was used to inoculate 260 × Modified Bennett’s (MS) agar plates (2.1 kg), which were incubated for 10 days at 28 °C, before being bagged and frozen at −20 °C for three days. The frozen plates were thawed at 28 °C for 24 h over a sieve, resulting in an aqueous extract (1800 ml) and dehydrated agar plates. The agar plates were extracted in 3:1 CHCl3/MeOH (3 × 2000 ml) and the organic solvent extractions were filtered, combined and reduced in vacuo to an aqueous slurry (400 ml) before being partitioned against ethyl acetate (2 × 1000 ml). The peptides were observed in both the aqueous and organic phases of the separation. The ethyl acetate extract was reduced in vacuo, dissolved in MeOH (150 ml) and partitioned against hexanes (2 × 300 ml). The MeOH fraction was reduced in vacuo to a residue. The MeOH from the hexanes-methanol partition and the aqueous fraction of the ethyl acetate-water partition were dissolved in 3:1 CHCl3.

Cultivation and extraction (2 and 3)

MST-135876v3 was cultured on ISP2 agar plates for 7 days at 28 °C. A spore suspension (H2O; 100 ml) was used to inoculate 250 × MS + 2% KBr agar plates (2.2 kg), which were incubated for 10 days at 28 °C, before being bagged and frozen at −20 °C for 2 days. The frozen plates were thawed at 28 °C for 24 h over a sieve, resulting in an aqueous extract (1800 ml) and dehydrated agar plates. The agar plates were extracted in 3:1 CHCl3/MeOH (3 × 2000 ml) and the organic solvent extractions were filtered, combined and reduced in vacuo to an aqueous slurry (400 ml) before being partitioned against ethyl acetate (2 × 1000 ml). The peptides were observed in both the aqueous and organic phases of the separation. The ethyl acetate extract was reduced in vacuo, dissolved in MeOH (150 ml) and partitioned against hexanes (2 × 300 ml). The MeOH fraction was reduced in vacuo to a residue. The MeOH from the hexanes-methanol partition and the aqueous fraction of the ethyl acetate-water partition were dissolved in 3:1 CHCl3.
and MeOH (300 ml), applied to a silica gel column (80 g) and eluted with a stepwise gradient of 0–100% MeOH in CHCl₃, collecting a total of 12 fractions (500 ml). The UV–vis spectra of the peptides were observed in fractions C10 and C11. Fraction C11 was dissolved in MeOH (4 ml) and fractionated by preparative HPLC (C₁₈-enhanced polar selectivity, 250 × 22 mm, isocratic 36.25% MeCN, 36.25% MeOH, and 27.5% H₂O containing 0.1% TFA, 20 ml min⁻¹) to yield 2 (tᵣ = 7.65 min, 4.0 mg) and 3 (tᵣ = 13.63 min, 8.9 mg).

Marfey’s analysis

To determine the absolute configuration of the amino acids, compound 1 (0.50 mg) was dissolved in H₂O (100 µl) and HCl (5 M; 50 µl) was added. The solution was heated at 60 °C for 24 h, then dried under nitrogen prior to the addition of NaHCO₃ solution (10 M; 50 µl) and Marfey’s reagent in acetone (1% w/v; 20 µl). The reaction mixture was heated at 60 °C for 2 h and the reaction neutralised with HCl (10 M; 25 µl) before analysis on LC-MS. Marfey’s conjugate standards for D- and L-valine, isoleucine, allo-isoleucine, serine, tryptophan, 5-chlorotryptophan, 6-chlorotryptophan, and glutamic acid were prepared and compared with the amino acids hydrolysed from 1.

Amino acid sequence determination

LC-MS was used to support the structure of 1 as determined by NMR. The peptide was first linearised according to a previous method, slightly modified [9]. Briefly, an aliquot (20 µl) of a solution of the peptide in MeOH (250 µg ml⁻¹) was diluted to 100 µl with water and HCl (1.2 M; 100 µl) was added. The resulting solution was heated at 90 °C for 40 min to partially hydrolyse the peptide. The reaction was cooled on ice and quenched with an equimolar quantity of NaOH. The sample was dried in a vacuum centrifuge (Labconco) and redissolved in an aqueous solution of 5% MeCN / 0.1% formic acid (20 µl). LC-MS analysis was conducted on a Q Exactive Focus instrument (Thermo Fisher Scientific). Raw data returned from the laboratory were analysed with the software package Xcalibur Qual Browser 3.0.63 (Thermo Fisher Scientific) and manually sequenced de novo (Supplementary Fig. S27). The Orbitrap LC-MS data were acquired by the Thermo Fisher Proof of Concept Laboratory at Edith Cowan University, Perth, Australia.

Results and discussion

The secondary metabolite distribution of MST-135876 was highly media-dependent, with 1 produced on only one of fifteen media, MS liquid medium. During these experiments, it was noticed that the vitality and metabolic productivity of the strain were unstable and diminished with iterative passage. A limited dilution spread of the original strain on agar identified 80% of the strains as non-producers and the productivity was stabilised by selection of a stable mono-spore, variant 3 (v3). MST-135876v3 was used in all subsequent cultivations, with optimal production of 1 observed on day 7 of a culture on MS agar. Supplementing MS agar with 2% KBr suppressed the production of 1, while triggering the production of two novel non-polar
analouges. Both the MS and MS+2% KBr cultures were processed separately and extracted with acetone, the crude extract then partitioned between ethyl acetate and water followed by removal of the fats by hexane/methanol partition, provided an enriched fraction that was further fractionated by reversed phase C18 preparative HPLC to yield pure 1–3 (Supplementary Fig. S1).

16S rRNA gene sequence analysis indicated that the strain MST-135876v3 has 99.57% similarity to Amycolatopsis xuchangensis str. CFH S0322 [10]. The MST-135876v3 also showed strong similarity to Amycolatopsis maugensis str. KT2025 (98.72%) [11], Amycolatopsis albispora str. WP1 (97.60%) [12], Amycolatopsis jiguansensis str. CFHS01580 (97.04%) [10], and Amycolatopsis xylanica str. CPCC 202699 (96.74%) [13]. A total of ten strain type Amycolatopsis species showed over 96% similarity to the 16S data for MST-135876v3 (Supplementary Table S1), hence the microbial species was tentatively identified as an Amycolatopsis species. The 16S sequence was submitted to GenBank under accession number OK487575.

HRESI(+)/MS analysis of 1 indicated a molecular formula C_{41}H_{56}Cl_{2}N_{3}O_{5} ([M + Na]^{+} m/z 891.2968, Δμm 0.392). A distinctive isotopic pattern ([M + H]^{+} m/z 869/871/873 with 9:6:1 relative intensities was observed (Supplementary Fig. S20), which is characteristic of dichlorinated compounds. The 13C NMR spectrum of 1 revealed 41 distinct peaks, while the 1H NMR peak integration suggested an enriched fraction that was further fractionated by reversed phase C18 preparative HPLC to yield pure 1–3 (Supplementary Fig. S1).

Using LC-MS to compare
Table 1 1H (600 MHz) and 13C (150 MHz) NMR data for suertides A–C (1–3) in DMSO-d$_6$.

Unit	Pos.	Suertide A (1)	Suertide B (2)	Suertide C (3)			
		δ_C	δ_H, mult (J in Hz)	δ_C	δ_H, mult (J in Hz)	δ_C	δ_H, mult (J in Hz)
t-Ser	NH	8.19, d (6.1)	8.19, d (5.7)	8.20, m			
	CO	170.3	170.3	170.4			
	α	56.2	4.12, q (6.5)	56.2	4.12, m		
	β	60.3	3.27, m	60.3	3.28, m		
OH							
5-X-d-Trp	NH	8.66, d (8.2)	8.65, d (8.0)	8.66, d (8.1)			
	CO	170.8	170.9	170.8			
	α	54.2	4.26, m	54.3	4.26, m		
	β_a	26.9	3.20, dd (15.2, 3.7)	27.0	3.25, m		
	β_b	2.90, dd (15.2, 10.8)	2.89, dd (15.0, 11.0)				
	1	11.00, d (2.2)	10.8	11.00, d (1.9)			
	2	125.3	123.2	125.1			
	3	110.6		110.5			
	3a	128.3	127.1	129.0			
	4	117.4	118.0	120.4			
	5	123.1	118.3	111.0			
	6	120.8	120.9	123.3			
	7	112.8	111.3	113.3			
	7a	134.5	136.0	134.7			
6-Y-d-Trp	NH	7.37, d (2.0)	7.37, d (7.1)	7.37, d (7.1)			
	CO	170.0	170.0	170.0			
	α	53.5	4.72, m	53.4	4.73, m		
	β_a	28.6	3.07, dd (14.0, 8.6)	28.6	3.09, dd (14.1, 8.4)		
	β_b	2.98, dd (14.0, 4.7)	2.99, dd (14.1, 4.9)				
	1	11.00, d (1.9)	10.97, d (2.1)	11.00, d (1.9)			
	2	124.6	124.5	124.6			
	3	109.9		109.9			
	3a	126.5	126.8	126.7			
	4	120.1	120.5	120.5			
	5	118.5	121.0	121.0			
	6	125.5	113.6	113.6			
	7	110.7	113.6	113.5			
	7a	136.4	136.8	136.8			
t-Ile	NH	8.21, d (7.6)	8.21, d (7.3)	8.20, m			
	CO	172.2	172.2	172.2			
	α	57.9	4.00, dd (8.8, 7.6)	57.9	4.00, dd (8.7, 7.6)		
	β	34.9	1.50, m	34.9	1.51, m		
	γ_1a	25.0	1.17, m	24.9	1.19, m		
	γ_1b	0.91, m	0.93, m				
	γ_2	14.6	0.47, d (6.8)	14.6	0.49, d (6.9)		
	δ	10.7	0.73, t (7.4)	10.7	0.75, t (7.4)		
d-Val	NH	8.34, d (8.8)	8.34, d (8.8)	8.35, d (8.8)			
	CO	170.4	170.4	170.3			
	α	58.0	4.07, dd (8.8, 4.5)	58.0	4.07, dd (8.8, 4.5)		
	β	29.0	2.26, m	29.0	2.26, m		

Suertides A–C: selective antibacterial cyclic hexapeptides from Amycolatopsis sp..
the retention times of the Marfey’s-conjugated amino acids liberated from acid-catalysed hydrolysis of 1 to those of amino acid standards (Supplementary Figs. S26–S31), we identified the presence of d-Glu, 5-Cl-d-Trp, 6-Cl-d-Trp, l-Ile, d-Val, and d-Glu. Taken together, the absolute configuration of 1 was confirmed, as depicted in Fig. 1.

HRESI(+)MS analysis of 2 revealed a molecular formula \(\text{C}_{41}\text{H}_{51}\text{Br}_2\text{N}_8\text{O}_9 \) ([M + Na]\(^+\) m/z 901.2855, \(\Delta \text{mmu} 0.0 \)). A distinctive isotopic pattern m/z 901/903 with 1:1 relative intensity (Supplementary Fig. S21), suggested the incorporation of one bromine atom into the cyclic peptide. The NMR data for 2 were very similar to those for 1, with the only significant difference being the presence of an additional aromatic methine proton (H-5; \(\delta_H 6.98 \)) on the tryptophan residue adjacent to serine, suggesting the presence of non-halogenated tryptophan. This was supported by COSY correlations between H-4 (\(\delta_H 7.53 \)) and H-5, between H-5 and H-6 (\(\delta_H 7.04 \)), and between H-6 and H-7 (\(\delta_H 7.31 \)) (Fig. 2). As the remaining inter- and intra-amino acid correlations were consistent with the previously described non-substituted tryptophan amino acids, this indicated that the compound was a monobromo-derivative of 1. A chemical shift comparison between the 6-substituted tryptophan residues of 1 and 2 revealed an upfield shift in C-6 from \(111.0 \) (\(\delta_C 125.5 \)) to \(113.6 \) (\(\delta_C 126.7 \)) and C-7 were observed, as were reciprocal COSY correlations between H-4 and H-5. Similarly, in the 5-substituted tryptophan, there was a change from \(\delta_C 123.1 \) (\(\delta_C 111.0 \)) at the 5-position. Downfield shifts were also noted in the positions ortho to the brominated carbon, with C-4 changing from \(\delta_C 7.57 / \delta_C 117.4 \) (\(\delta_H 7.71 / \delta_C 120.4 \)) (3), and C-6 changing from \(\delta_C 7.71 / \delta_C 120.8 \) (\(\delta_H 7.15 / \delta_C 123.3 \)) (3). The characteristic HMBC correlations from H-6 to C-4 and C-7 were observed, as were reciprocal COSY correlations between H-6 and H-7 (\(\delta_H 7.29 \)), used to confirm the amino acid was 5-bromo-substituted. Taken together, the HRESI(−)MS and NMR data confirmed that the structure of 3 was \(\text{cyclo(p-Ser, 5-Br-d-Trp, 6-Br-d-Trp, l-Ile, d-Val, d-Glu)} \), as shown in Fig. 1.

Table 1 (continued)

Unit	Pos.	\(\delta_C \)	\(\delta_H \), mult (J in Hz)	\(\delta_C \)	\(\delta_H \), mult (J in Hz)	\(\delta_C \)	\(\delta_H \), mult (J in Hz)
d-Glu	NH	170.3		170.3		170.3	
	CO	51.0	4.40, q (6.7)	51.0	4.40, q (6.7)	51.0	4.41, d (6.7)
	\(\alpha \)	28.5	1.89, m	28.4	1.89, m	29.0	1.88, m
	\(\beta_a \)	1.79, m		1.78, m			
	\(\gamma_a \)	29.7	2.18, t (8.3)	29.7	2.18, t (8.3)	29.7	1.80, m
	\(\delta \)	173.9				173.9	
	OH	12.10, br s		12.10, br s		12.09, br s	

\(^{ac} \)Signals overlapping
Suertides A–C: selective antibacterial cyclic hexapeptides from *Amycolatopsis* sp.

Table 2 In vitro bioassay data for compounds 1–3

Compound	MIC (µg ml⁻¹)		
	BSᵃ	SAᵇ	MRSAᶜ
1	1.6	3.1	1.6
2	1.6	6.3	6.3
3	1.6	25	>100

Experiments were conducted in triplicate to determine MIC. MIC was taken at 48 h

ᵃ*Bacillus subtilis* (ATCC 6633)
ᵇ*Staphylococcus aureus* (ATCC 25923)
ᶜMethicillin-resistant *Staphylococcus aureus* (ATCC 33592)

Biological activity

The suertides were evaluated for in vitro biological activity in antibacterial, antifungal, antiprotozoal, herbicidal, and antimitour bioassays and found to be selective antibacterial compounds. All compounds showed strong biological activity against *Bacillus subtilis* (ATCC 6633) (MIC 1.6 µg ml⁻¹, Table 2), while differences in antibacterial activity were observed against *Staphylococcus aureus* (ATCC 25923), with the presence of brominated tryptophan residues resulting in reduced activity (3.1, 6.3, and 25.0 µg ml⁻¹, for 1, 2, and 3, respectively). The compounds were also tested against methicillin-resistant *S. aureus* (MRSA, ATCC 33592), revealing increased potency of 1 (1.6 µg ml⁻¹), comparable activity for 2 (6.3 µg ml⁻¹) and no activity for 3. The reported compounds showed no activity up to 100 µg ml⁻¹ against the Gram-negative bacterium *Escherichia coli* (ATCC 25922), the fungus *Candida albicans* (ATCC 10231), a mouse myeloma cell line (NS-1), a human fibroblast cell line (NFF), the protozoan *Trichromonas foetus* (strain KV-1) or the monocotyleonous plant *Eragrostis tef* (teff).

Actinobacteria-derived antibacterial chlorinated peptides are a large group of small molecules that continues to grow. However, until recently, few compounds were associated with the genus *Amycolatopsis* [3]. The suertides are a family of antibacterial cyclic hexapeptides that contain more than two-thirds of the constitutive amino acids in the rarer non-proteogenic D-configuration and represent the second example of two adjacent Trp moieties within a cyclic peptide from *Amycolatopsis*. The amycolatocymins, recently isolated by the Stadler laboratory, contain the same core amino acid units as suertide A, but with differing primary sequence, stereochemical configuration, and the presence of a distinct 2,6-dichloro-L-Trp residue [7].

To date, all the non-thiazolyl cyclic peptides isolated from *Amycolatopsis* have shown varying degrees of activity against MRSA [4–6] except for amycolatocycin A, which showed only weak antibacterial activity against *B. subtilis* (33.4 µg ml⁻¹) [7]. More distantly related dityrptophan-containing metabolites include the cyclic heptapeptide argyrin A, from the myxobacterium *Archangium gephyra* [15], the chlorotryptophan-containing cyclic heptadepsipeptide krisynomycin, from *Streptomyces canus* [16], the cyclic nonapeptide propeptin, from *Microbispora* sp. [17], and the cyclic octadepsipeptides telomycins, which contain adjacent tryptophanyl and dihydrotryptophanyl moieties within the macrocycle [18]. Alone among these cyclic peptides, the suertides are the sole examples featuring two adjacent D-Trp moieties.

In conclusion, three new halogenated cyclo-hexapeptides were isolated from a putative *Amycolatopsis* sp. collected from a riverbank in Spain. All three compounds display antibacterial activity, with two displaying strong activity against MRSA and no cytoxicity against mammalian cell lines up to 100 µg ml⁻¹. Ultimately, this study demonstrated the ongoing utility of novel, soil derived actinobacteria in the quest for chemical novelty in drug discovery.

Physical characterisation

Suertide A (1): white powder; [α]D +25 (c 0.03, MeOH); UV (MeCN) λmax (log ε) 200 (5.06); 230 (4.86); 288 (4.02) nm; HRMS m/z 891.2968; calcd. for C41H50Cl2N8O9Na⁺ [M + Na]⁺, 891.2968.

Suertide B (2): white powder; [α]D +9 (c 0.02, MeOH); UV (MeCN) λmax (log ε) 200 (5.06); 230 (4.86); 288 (4.02) nm; IR (ATR) νmax 3271, 2961, 2925, 2358, 1643, 1542, 1456, 744, 660 cm⁻¹; HRMS m/z 901.2855; calcd. for C41H49Br2N8O9Na⁺ [M + Na]⁺, 901.2855.

Suertide C (3): white powder; [α]D +23 (c 0.09, MeOH); UV (MeCN) λmax (log ε) 200 (5.06); 230 (4.86); 288 (4.02) nm; IR (ATR) νmax 3285, 2961, 2925, 2358, 1626, 1536, 1225, 795, 686 cm⁻¹; HRMS m/z 955.1995; calcd. for C41H46Br2N9O9Na⁺ [M – H]⁻, 955.1995.

Acknowledgements We thank Dr John Kalaitzis (MQ) for acquisition of NMR data. HRMS data were acquired by the Australian Proteome Analysis Facility, supported under the Australian Government’s National Collaborative Research Infrastructure Strategy (NCRIS). Heather Lacey is the recipient of an Australian Government Research Training Program Scholarship and receives financial support from WaterNSW. This research was funded, in part, by the Cooperative Research Centres Projects scheme (CRCFIVE000119).

Funding Open Access funding enabled and organized by CAUL and its Member Institutions.

Compliance with ethical standards

Conflict of interest The authors declare no competing interests.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

References

1. Lechevalier M, Prauser H, Labeda D, Ruan J-S. Two new genera of nocardioform actinomycetes: Amycolata gen. nov. and Amycolatopsis gen. nov. Int J Syst Evol Micr. 1986;36:29–37.
2. List of prokaryotic names with standing in nomenclature, vol. 2021. Leibniz Institute: Leibniz, Germany, 1998, https://lpsn.dsmz.de/.
3. Song Z, Xu T, Wang J, Hou Y, Liu C, Liu S, et al. Secondary metabolites of the genus Amycolatopsis: structures, bioactivities and biosynthesis. Molecules. 2021;26:1884.
4. Hashizume H, Iijima K, Yamashita K, Kimura T, Wada S-I, Sawa R, et al. Valgamicin C, a novel cyclic depsipeptide containing the unusual amino acid cleonine, and related valgamicins A, T and V produced by Amycolatopsis sp. ML1-hF4. J Antibiot. 2018;71:129–34.
5. Hashizume H, Sawa R, Yamashita K, Nishimura Y, Igarashi M. Structure and antibacterial activities of new cyclic peptide antibiotics, pargamicins B, C and D, from Amycolatopsis sp. ML1-hF4. J Antibiot. 2017;70:699–704.
6. Igarashi M, Sawa R, Kinoshita N, Hashizume H, Nakagawa N, Homma Y, et al. Pargamicin a, a novel cyclic peptide antibiotic from Amycolatopsis sp. J Antibiot. 2008;61:387–93.
7. Primahana G, Risdian C, Mozef T, Wink J, Surup F, Stadler M. Amycolatomycins A and B, cyclic hexapeptides isolated from an Amycolatopsis sp. 195334CR. Antibiotics 2021;10:261.
8. Khalil ZG, Salim AA, Vuong D, Cromble A, Lacey E, Blumenthal A, et al. Amycolatopsins A-C: antmycobacterial glycosylated polyketide macrolides from the Australian soil Amycolatopsis sp. MST-108494. J Antibiot. 2017;70:1097–103.
9. Fisher MF, Mylne JS. Sequencing orbitides by acid-mediated ring cleavage followed by tandem mass spectrometry. J Proteome Res. 2019;18:4065–71.
10. Huang J-R, Ming H, Li S, Zhao Z-L, Meng X-L, Zhang J-X, et al. Amycolatopsis xuchangensis sp. nov. and Amycolatopsis jiguanaensis sp. nov., isolated from soil. A Van Leeuw J Micro. 2016;109:1423–31.
11. Camas M, Sahin N, Sazak A, Spröer C, Klenk H-P. Amycolatopsis magusensis sp. nov., isolated from soil. Int J Syst Evol Micr. 2013;63:1254–60.
12. Zhang G, Wang L, Li J, Zhou Y. Amycolatopsis albispora sp. nov., isolated from deep-sea sediment. Int J Syst Evol Micr. 2016;66:3860–4.
13. Chen J, Su J-J, Wei Y-Z, Li Q-P, Yu L-Y, Liu H-Y, et al. Amycolatopsis xylanica sp. nov., isolated from soil. Int J Syst Evol Micr. 2010;60:2124–8.
14. Marfel P, Ottesen M. Determination of D-amino acids. I. Hydrolysis of DNP-L-amino acid methyl esters with carboxypeptidase-Y. Carlsberg Res Commun. 1984:49:585.
15. Sasse F, Steinmetz H, Schupp T, Petersen F, Memmert K, Hofmann H, et al. Argyrins, immunosuppressive cyclic peptides from myxobacteria I. production, isolation, physico-chemical and biological properties. J Antibiot. 2002;55:543–51.
16. Pérez-Bonilla M, Oves-Costales D, González I, de la Cruz M, Martín JS, Vicente F, et al. Krisynomyces, imipenem potentiators against methicillin-resistant Staphylococcus aureus, produced by Streptomyces canus. J Nat Prod. 2020;83:2597–606.
17. Esumi Y, Suzuki Y, Itoh Y, Uramoto M, Kimura K-I, Goto M, et al. Propeptin, a new inhibitor of prolyl endopeptidase produced by microbispora II. Determination of chemical structure. J Antibiot. 2002;55:296–300.
18. Sheehan JC, Mania D, Nakamura S, Stock JA, Maeda K. The structure of telomycin. J Am Chem Soc. 1968;90:462–70.