Diabetes Mellitus Type II: Treatment Strategies and Options: A Review
Muhammad Akram*
Department of Eastern Medicine and Surgery, Faculty of Medical and Health Sciences, The University of Poonch, Pakistan

Abstract
Traditional medicines are practiced worldwide for treatment of type II diabetes mellitus since ancient times. This review provides a comprehensive summary of medicinal plant throughout the world regarding their traditional usage by various tribes/ethnic groups for treatment of type II diabetes mellitus. Various treatment options are available in allopathic system of medicine. The prevalence of type II diabetes mellitus is increasing in all over the world. The need for achieving better control of blood glucose level has been evident in type II diabetes mellitus management. A wide number of herbal products are employed in the treatment of type II diabetes mellitus for their better efficacy and safety compared to synthetic medicine. Objective of study is to review conventional and herbal treatment of type II diabetes mellitus and document the medicinal plants used for treatment of type II diabetes mellitus that will help the physician in their practice. The material for this review was taken mostly from endocrinology textbooks & electronic journal Up to date. To collect publication Pub Med, Google scholars and the Cochrane database of systematic reviews was used. Some other relevant references were collected from personal database of papers on type II diabetes mellitus. World health organization (WHO) is also supporting the research on herbal medicine regarding type II diabetes mellitus. Various hypoglycemic agents from medicinal plants have been found that are effective and safe. The medicinal plants used for the treatment of type II diabetes mellitus were reviewed based on the ethnobotanic, some chemical and biochemical reports. Various plants species belonging to different families have been documented used for treatment of type II diabetes mellitus.

Keywords: Type II diabetes mellitus; Medicinal plants; Efficacy; Herbal medicine; Literature review

Introduction
Type II diabetes mellitus is a clinical syndrome due to relative or absolute deficiency of insulin or resistance to the action of insulin at the cellular level as a result hyperglycemia and glycosuria occurs [1]. Various new therapies have been introduced such as inhibition of enzymes that are involved in hydrolysis of dietary polysaccharides in the gut which can lead to reduction in blood glucose levels after a meal by reducing the absorption of monosaccharide by the enteroctes of the small intestine. Enzymes that are involved in hydrolysis of dietary polysaccharides are pancreatic amylase and glycosidase. With the advancement in treatment strategy there is risk of side effect such as excessive inhibition of pancreatic amylase may lead to abdominal distention, flatulence and diarrhea. Currently available therapies for type II diabetes mellitus are as follows oral insulin secretagogues, sulfonylureas, repaglinide, nateglinide, biguanides, thiazolidinediones, alpha-glucosidase inhibitors, insulin, pramlintide and exenatide. Oral hypoglycemic drugs are valuable in the treatment of patients with type II diabetes mellitus (NIDDM). Sulphonylureas and biguanides are traditional drugs which are mainstay of treatment while there are certain new drugs available now [2,3]. Insulin is used as hypoglycemic agent in Type II diabetes mellitus [4]. The use of herbal medicines (medicinal plants or phyotherapy) has recently gained popularity in all over the world for their efficacy in Type II diabetes mellitus (Table 1) and some plants have minor side effects when given in large doses (Table 2). But there is lack of understanding the actual mechanism of action of these medicines. These medicines are used since centuries in Unani system of medicine and they have more efficacy and fewer or no side effects therefore emphasis should be given on herbal medicine because allopathic system of medicine has failed in providing health to all. Herbal medicines are only alternative medicine that can relieve the patients. Various research studies have been carried in all over the world to evaluate the efficacy of herbs in the treatment of Type II diabetes mellitus [5]. Medicinal plants have been used for the treatment of type II diabetes mellitus since ancient times, and for a long time type II diabetes mellitus has been treated orally with herbal medicines or their extracts, because plant products are frequently prescribed due to their less toxicity than conventional medicines. Shanmugam et al. reported medicinal plants used for the treatment of type II diabetes mellitus [6]. Type II diabetes mellitus is associated with disturbances in learning, memory, and cognitive skills in the diabetic patients. A study was conducted to evaluate the effect of chronic intraperitoneal administration of Atripia graveolens on learning and memory in diabetic rats using passive avoidance and Y-maze tests. As a conclusion, it was suggested that Atripia graveolens enhances the consolidation and recall capability of stored information in diabetic animals [7]. Zingiber officinale has been used in type II diabetes mellitus [8-11]. Thomson et al. study shows that Allium sativum has anti-diabetic and hypolipidemic properties in streptozotocin-induced diabetic rats [12]. According to one study, it has been determined that the Withania somnifera root and leaf extracts possess antidiabetic activities in alloxan-induced diabetic rats [13]. In one study, the hypoglycemic effect of the rhizomes of Smilax glabra (Liliaceae) was investigated in normal and diabetic mice. The methanol extract of Smilax glabra reduced the blood glucose of normal mice and also significantly lowered the blood glucose of diabetic mice. This study shows that Smilax glabra has hypoglycemic effect [14]. The discovery and use of modern medicine led to a dramatic decline in the occurrence of diseases. The harmful toxic effects of synthetic drugs

*Corresponding author: Muhammad Akram, Department of Eastern Medicine and Surgery, Faculty of Medical and Health Sciences, The University of Poonch, Azad Jammu and Kashmir, Pakistan, E-mail: makram_0451@yahoo.com, makram_0451@hotmail.com

Received September 20, 2013; Accepted October 25, 2013; Published October 30, 2013

Citation: Akram M (2013) Diabetes Mellitus Type II: Treatment Strategies and Options: A Review. J Diabetes Metab 4: 304. doi:10.4172/2155-6156.1000304

Copyright: © 2013 Akram M. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Table 1: List of plants having hypoglycemic activity.

Plant Name	Side effects in human	Dose
Anacardium occidentale linn	Dermatitis	2-25 grams per day
Tribulus terrestris	Sleep disturbance and irregular periods. Tribulus terrestris can interact with some heart medicine and increase their effect in the body such as beta blockers and digoxin	5-7 grams per day
Ricinus communis L.	Excessive use in any form is harmful for stomach	Seeds 3-5 in number, leaves 7-12 gram, fixed oil 25-50 ml
Aloe vera	Aloe should not be taken internally during pregnancy, since it can stimulate contraction	125-500 mg
Hyssopus officinalis	Its use is contraindicated in patients suffering from liver affections	3-7 grams
Trigonella foenum-graecum L.	Long term use may produce headache and nausea	3-5 grams
Smilax chinensis	Excessive use may produce dryness	5-7 grams
Urginea indica	Nausea, convulsion and paralysis	3-5 grams
Acacia nilotica	Prolonged use causes constipation	Bark: 3-5 gram, gum: 1-3 grams, extract: 1 gram
Achyranthes aspera	The plant seeds may cause emesis and decrease appetite	5-7 grams (Plant) 500 mg (Salt)
Aegle marmelos	Excessive use may cause obstruction and hemorrhoids	Fresh fruit: 24-48 grams Dry pulp (in powdered from) 2-3 grams
Laurus nobilis	Stomatitis, cheilitis and dermatitis	1-2 grams
Curcuma longa	Curcuminoids may possibly cause stomach ulcer	1-3 grams
Sesamum indicum	Flatulence	7-12 grams
Allium cepa L.	Headache and hyperuricemia	Juice: 24-36 grams Seeds: 1-3 grams
Semecarpus anacardium linn	Blisters, swelling, painful micturation, inflammation, and pharyngitis	Seeds kernels: 250-500 Juice of pericarp: 12-25
Matricaria chamomilla	Large doses may cause emesis	1-3 grams
Gymnema sylvestre	When chewed, it temporarily paralyses the sense of taste for sweet and bitter substances	3-7 grams
Ficus bengalensis	It may cause harmful effects on stomach and intestine	3-5 grams

Table 2: Side effects in human and dose [101].
led to alternative sources which would be safe and effective in various diseases. The present study is to document the medicinal plants used in type II diabetes mellitus.

Materials and Methods

The material for this review was taken mostly from endocrinology textbooks & electronic journal Up to date. To collect publication Pub Med, Google scholars and the Cochrane database of systematic reviews was used. Some other relevant references were collected from personal database of papers on type II diabetes mellitus.

Treatment of Type II Diabetes Mellitus

Oral hypoglycemic drugs

Sulfonylureas: Sulfonylureas include tolbutamide, glibenclamide, chlorpropamide, glipizide, acetohexamide, gliclazide and tolazamide [15].

Biguaniides: Phenformin and metformin [16].

Miscellaneous: Acarbose and guar gum.

New drugs for NIDDM

These include insulin sensitizers, drugs which reduce insulin resistance by interaction with the PPAR- (peroxisome proliferators-activated receptor-) a nuclear receptor which regulates genes involved in lipid metabolism. The effect on insulin sensitivity may result from decreased production of nonesterified fatty acids. They have the capacity to potentiate the effect of endogenous insulin. One of these, troglitazone, which belongs to the thiazolidinedione group, is used in Type II diabetes mellitus. Repaglinide, a benzoic acid derivation which stimulates insulin production at meal times has been used in type II diabetes mellitus patients [17].

DPP-4 inhibitors: Drugs targeting the incretin pathway are the latest addition to the available anti diabetic agents. Incretin-based therapy is either delivered orally (dipeptidyl peptidase-4 [DPP-4]) inhibitors or injected subcutaneously (glucagon-like peptide-1 [GLP-1] mimetics and analogues). Dipeptidyl peptidase-4 inhibitors are effective either as a single or combination therapy in lowering glycated hemoglobin, fasting and postprandial glucose levels, with a low incidence of hypoglycemia and no weight gain. There are 3 DPP-4 inhibitors currently available (sitagliptin, saxagliptin, and vildagliptin), with more expected to be available in the future. DPP-4 inhibitors are effective in the treatment of patients with type 2 diabetes [18].

Incretin mimetics: Incretin-related therapies offer great potential for the treatment of people with type II diabetes mellitus. Major incretins that affect glucose metabolism are GLP-1: glucagon-like peptide-1 and GIP: glucose-dependent insulino tropic polypeptide. These therapies have a unique mechanism of action that addresses glucose appearance as well as glucose disappearance [19].

Thiazolidinediones: The thiazolidinediones also known as glitazones, are a class of medications that are used in the treatment of diabetes mellitus type 2. They were introduced in the late 1990s [20].

Alpha glucosidase inhibitors: One alternative approach o the treatment of overweight patients with NIDDM is to use drugs which inhibit the enzymes involved in the breakdown of carbohydrates in the intestine. Acarbose is a sham sugar that competitively inhibits α-glucosidase enzymes situated on the brush border of the intestine. As a result, dietary carbohydrates are poorly absorbed, and the postprandial rise in blood glucose is reduced. Undigested starch enters the large intestine where it is broken down by fermentation. Abdominal discomfort, flatulence and diarrhea can result, and dosage needs careful adjustment to avoid these side effects. Very little acarbose enters the circulation, since it is mainly inactivated in the gut, but liver dysfunction may rarely occur with high doses [21].

Medicinal Plants Possessing Alpha -Glucosidase Inhibitory Activities

Glycosidasases are involved in metabolic disorders including type II diabetes mellitus. Inhibition of these glycosidase may be proved effective in type II diabetes mellitus. Various medicinal plants have been evaluated for their efficacy to inhibit glycosidase. *Euryonias sachalinensis*, *Rhododendron schlippenbachii*, *Astitbe chinesis* and *Juglans regia* have inhibitory effect on glycosidase, therefore can be a potential natural source for the treatment of type II diabetes mellitus [22].

Tussilago farfara

Family: Asteraceae. Chemical constituents: It contains mucilage, tannin, phytosterol, dihydride alcohol and faradial. Medicinal uses: It is used in catararrh, colds, whooping cough, respiratory problems, spasmodic lung problem, stomach trouble, inflammation and bleeding. Pharmacological activity: It is anti-inflammatory, anti-spasmodic and hypoglycemic. Study: Gao et al. reported the α-glucosidase inhibitory activity of this plant and concluded that flower bud of *Tussilago farfara* is useful in type II diabetes mellitus [23].

Medicinal Plants Used as Hypoglycemic Agents

Prinsepia utilis Royle

Family: Rosaceae. Parts used: Aerial parts. Chemical constituents: It contains pentacyclic triterpenoids. Medicinal uses: Oil from seeds is rubifacient and is applied locally in rheumatism. Pharmacological activity: It is anti-inflammatory, anti-arthritic and hypoglycemic. Study: A study was conducted to investigate the anti-hyperglycemic activity of flavonoids from *Prinsepia utilis Royle* in allloxan-induced diabetic mice. Study duration was four weeks. Drug was administered orally. Dose of drug was 300 mg/kg of flavonoids from *Prinsepia utilis Royle*. There was significant hypoglycemic activity of Flavonoids from *Prinsepia utilis Royle* compared with model control group (P<0.01) [24].

Ricinus communis L.

Family: Euphorbiaceae, Common name: Harnoli. Parts used: Root, leave, oil. Chemical constituents: It contains ricinolein, flavonoids, ricin, ricinolic acid, sodium ricinoleate, tristeerin. Medicinal uses: It is used in constipation, pain and inflammation. Pharmacological activity: It is anti-inflammatory, laxative and hypoglycemic. Study: Hypoglycemic activity of 50% ethanolic extract of roots of *Ricinus communis* was investigated. Effective dose was 500 mg/kg body weight. There was significant decrease in fasting blood glucose level. Hypoglycemic activity was observed in normal as well as diabetic animal model. Study duration was 20 days. There was significant reduction in lipid profile and liver and kidney functions were normal during the study period. Fraction of this extract was done and these were tested for antihyperglycemic activity. Fraction (R-18) exhibited significant hypoglycemic activity. This drug was safe because there was no effect on liver and kidney function and all enzymes were normal [25].
Aloe vera

Family: Xanthorrhoeaceae. Chemical constituents: It contains anthraquinone glycosides, free anthraquinones, resins, glucocmannan, steroids, organic acids, enzymes, antibiotic principles, amino acids, cinnamic acid and salicylic acid, essential oil. Medicinal uses: It is used in inflammation, wounds and bacterial infections. Pharmacological activity: It is soothing, anti-inflammatory, emmenagogue, emollient, and antibacterial. Study: Rajasekaran et al. reported the hypoglycemic effect of Aloe vera gel on streptozotocin-induced hyperglycemia in experimental rats [26]. Okyar et al. reported the anti-diabetic effect of Aloe vera in type II diabetic rat models [27].

Crataeva nurvala Buch

Family: Capparidaceae. Parts used: Leaves. Chemical constituents: It contains tannin and saponin. Medicinal uses: It is used in diabetes mellitus. Pharmacological activity: It is hypoglycemic. Study: Sikarwar and Patil reported the anti-diabetic activity of Crataeva nurvala stem bark extracts in alloxan-induced diabetic rats [28].

Hyssopus officinalis

Family: Lamiaceae. Chemical constituents: It contains glycosides, essential oil, tannins, resins, fats, sugar, mucilage, flavonoid glycoside. Medicinal uses: It is used in abdominal pain, respiratory tract infections, insomnia, constipation, viral infections and gastrointestinal disorders. Pharmacological activity: It is antispasmodic, expectorant, sedative, carminative, diaphoretic, antiviral, astringent, tonic and stomachic. Study: Miyazaki et al. has studied the inhibitory effect of Hyssopus officinalis extracts on intestinal alpha-glucosidase activity and postprandial hyperglycemia [29].

Trigonella foenum-graecum L.

Family: Fabaceae. English Name: Fenugreek. Local Name: Maithi. Chemical constituents: It contains trigonelline, flavonoid, glycosides, saponin, ascorbic acid, fenugreekine. Medicinal uses: It is used in type II diabetes mellitus, respiratory tract infections, swelling, body pain, stomach pain, piles, dandruff, baldness, breast pain, lungs infection, ulcer and diarrhea. Pharmacological activity: It is anti-inflammatory, tonic and hypoglycemic. Study: Trigonelline produces hypoglycemic effect in diabetic rats which lasts for 24 hours [30].

Smilax chinensis

Family: Liliaceae. Chemical constituents: It contains beta sitosterol, oil, diosgenin, smilacin, resin, tannin, starch, gum, sarsapogenin, sapogenins, parillin, sarsasaponin and saponins. Medicinal uses: It is used in inflammation, cancer and type II diabetes mellitus. Pharmacological activity: It is anti-inflammatory and anti-diabetic. Study: The anti-diabetic effects of the methanol extracts of the Smilax chinensis L. (MESC) on alloxan induced hyperglycemia were evaluated on albino wistar rats. Ethanolic extract of Smilax chinensis exhibited potential hypoglycemic effect with potential hypolipidemic effect with potential hypolipidemic effect (Venkidesh et al. 2010) [31]. The anti-diabetic effects of the methanol extracts of the Smilax chinensis L. on alloxan induced hyperglycemia were evaluated on albino wistar rats. Ethanolic extract of Smilax chinensis exhibited a potential hypoglycemic effect with potential hypolipidemic effect [32].

Salvadora oleoides Decne

Family: Salvadorean. Common name: Peelu. Parts used: Fruit, root, seed. Medicinal uses: It is used in anemia, constipation and pyorrhea. Pharmacological activity: It is anti-anemic, laxative and anti-septic. Study: Yadav et al. reported the hypoglycemic activity of ethanolic extract of Salvadora oleoides [33].

Urginea indica

Family: Liliaceae. Tibbi name: Jangli Piyaz. Chemical constituents: It contains glycosides, sciliaren A and scilaren B. Medicinal uses: It is used in urinary tract infections and type II diabetes mellitus. Pharmacological activity: It is anti-septic and hypoglycemic. Study: The extract of this plant has hypoglycemic activity [34].

Acacia nilotica

Family: Fabaceae. Local name: Kikar. Parts used: Wood, leaf and gum. Chemical constituents: It contains gum arabic, tannins, mucilage, magnesium, potassium, calcium, catechin, arabin, acid, malic acid and flavonoid compounds. Medicinal uses: It is prescribed for treatment of type II diabetes mellitus. Pharmacological activity: It is astringent and hypoglycemic. Study: Usmanhiani et al. documented its anti-diabetic activity [35].

Achyranthes aspera

Family: Amaranthaceae. Parts used: Leaves, stems and roots. Chemical constituents: Saponins, ecodysterone, inokosterone, achyranthine, and potassium, ash of leaves, stems and root contains considerable amount of potassium. Medicinal uses: It is used in diabetes mellitus. Pharmacological activity: It is hypoglycemic. Study: A study was conducted to evaluate its efficacy in diabetic rat. Alcoholic extract of whole plant was given to albino rat. Alcoholic extract exhibited hypoglycemic activity in albino rats [36].

Luffa aegyptiaca Mill

Family: Cucurbitaceae. Medicinal uses: It is used in joint pain, backache, colic, splenitis and phlegmatic diseases. Pharmacological activity: It is anti-inflammatory and hypoglycemic. Study: El-Fiky et al. investigated the efficacy of oral administration of the ethanolic extracts of Luffa aegyptiaca on blood glucose levels both in normal and streptozotocin diabetic rats. Hypoglycemic activity was observed significantly in streptozocin diabetic rats during the first three hours of treatment. In normal rats, hypoglycemic activity was insignificant compared to glibenclamide treatment [37].

Citrus paradisi

Family: Rutaceae. Medicinal uses: It is used in diabetes mellitus type II and bacterial infections. Pharmacological activity: Anti-bacterial and hypoglycemic. Study: Adeneye reported that methanol seed extract of Citrus paradisi lowers blood glucose, lipids and cardiovascular disease risk indices in normal Wistar rats [38].

Aegle marmelos

Family: Rutaceae. Part used: Fruits, leaves. Medicinal uses: It is used in chronic constipation, piles, dysentery, hyperacidity, abdominal pain and type II diabetes mellitus. Pharmacological activity: It is mucilaginous, anti-diabetic and antidiysenteric. Study: A study was conducted on normal and diabetic rats. Fruit of this plant exhibited hypoglycemic activity in normal rats [39].

Cymbopogon citratus

Family: Poaceae. Medicinal uses: It is used in type II diabetes mellitus, gouty arthritis and tuberculosis. Pharmacological activity: It is anti-inflammatory and hypoglycemic. Study: Mirghani et al. documented the hypoglycemic activity [40].
Momordica balsamina L.

Family: Cucurbitaceae. **Common name:** Jangli Karela. **Parts used:** Fruit and seeds. **Chemical constituents:** It contains vitamin C and momorcidin. **Medicinal uses:** It is used in type II diabetes mellitus, gas trouble, constipation, flatulence, obesity, boils and pimples. **Pharmacological activity:** It is hypoglycemic, stomachic and blood purifier. **Study:** Leung et al. stated its anti-diabetic and hypoglycemic activity [41].

Psidium guajava L.

Family: Myrtaceae. **Common name:** Amrood. **Parts used:** Leaves, fruit. **Chemical constituents:** It is used in type II diabetes mellitus and intestinal worms. **Pharmacological activity:** It is hypoglycemic and antidiabetic. **Study:** Shen et al. reported the hypoglycemic activity of *Psidium guajava* Linn. in type II diabetic patients [42].

Syzygium cumini

Family: Myrtaceae. **Common name:** Jaman. **Parts used:** Leave, bark, fruit, nut. **Chemical constituents:** It contains myrcetin, kaemferol, isorquercetin, ellagic acid, glucosides, anthocyanins, alkoloids, jambolin, jambosine and antimellin. **Medicinal uses:** It is used in fever, motion, vomiting, anemia, painful swellings and type II diabetes mellitus. **Pharmacological activity:** It is anti-inflammatory and hypoglycemic. **Study:** It prevents oxidative damage in diabetic rats [43].

Morus alba L.

Family: Moraceae. **Common name:** Shehtoot. **Parts used:** Leave, fruit. **Chemical constituents:** It contains polyphenol pigment, anthocyanins, resveratrol, vitamin C, carotene, xea xanthin, iron, magnesium, manganese and potassium. **Medicinal uses:** It is used in sore throat, cough and abdominal worms. **Pharmacological activity:** It is anthelmintic and hypoglycemic. **Study:** Mohammadi and Naik reported the hypoglycemic activity and are prescribed to treat diabetes mellitus type II [44].

Aerva lanata

Chemical constituents: It contains galactoside and kamperol. **Medicinal uses:** It is used in kidney stones, constipation and diabetes mellitus type II. **Pharmacological activity:** It is vasodilator and hypoglycemic. **Study:** Vertrichoven and Jegadesan reported the anti-diabetic activity of alcoholic extract of *Aerva lanata* in rats and concluded that this plant can be prescribed to treat diabetes mellitus type II [45].

Laurus nobilis

Parts used: Leaf and berry. **Chemical constituents:** It contains cineole, eugenol, geraniol, alpha and beta pinene, lauric acid, palmitic acid, linoleic acid, reticuline, boldine, laurostearine, methyl eugenol. **Medicinal uses:** It is used in hysteria, colic, indigestion, loss of appetite. **Pharmacological activity:** It is antirheumatic, anti-septic, bactericidal, digestive, diuretic, emmenagogue, stomachic, hypotensive and sedative. **Study:** Khan et al. reported that Bay leaves improve glucose and lipid profile of people with type II diabetes mellitus [46].

Curcuma longa

Family: Zingiberaceae. **Parts used:** Tubers and rhizomes. **Chemical constituents:** It contains essential oil, turmerol, curcumin, sesquiterpenic ketone, arturmerone, bisaboline, c lure, guaiine, tumerone, zingerberone. **Medicinal uses:** It is used in whooping cough, asthma, bronchitis, scabies, irritation, chronic skin disorders, wounds, strokes, bruises, ezcema, prurigo and ringworm. **Pharmacological activity:** It is expectorant, blood purifier and hypoglycemic. **Study:** Suryanarayana et al. reported that curcumin and turmeric delay streptozotocin-induced diabetic cataract in rats [47].

Sesamum indicum

Family: Pedaliaceae. **Tibbi name:** Til, Kunjad. **Chemical constituents:** It contains molybdenum, thamine, niacin, carbohydrates, methionine, tryptophan, lecithin, sesamin, sesamol, phytosterol, cobalt, iodine, iron, zinc, calcium and sitosterol. **Medicinal uses:** It is used in cough, sexual debility, asthma, thorax complaints, inflammations and bleeding piles. **Pharmacological activity:** It is aphrodisiac, anti-inflammatory and hypoglycemic. **Study:** Takeuchi et al. documented hypoglycemic activity of this plant [48].

Ginkgo biloba

Family: Ginkgoaceae. **Chemical constituents:** It contains flavonoids and terpenoids. **Medicinal uses:** It is used in dementia, intermittent claudication, anxiety, glaucoma, macular degeneration, premenstrual syndrome, cardiovascular disorders and diabetes mellitus type II. **Pharmacological activity:** It is hypoglycemic and antioxidant. **Study:** Chen et al. reported that *Ginkgo biloba* extract reduces high-glucose-induced endothelial adhesion by inhibiting the redox-dependent interleukin-6 pathways [49].

Ziziphus mauritiana Lam.

Common names: Beri, **Parts used:** Leaves, fruit. **Chemical constituents:** It is used in type II diabetes mellitus. **Pharmacological activity:** It is hypoglycemic. **Study:** Bhatia and Mishra reported the hypoglycemic activity of *Ziziphus mauritiana* aqueous ethanol seed extract in alloxan-induced diabetic mice [50].

Allium cepa L.

Local name: Kashuh, **Parts used:** Leaves and bulbs. **Chemical constituents:** It contains phytoncides, vitamins, allicin, flavonoids, allylpropyl disulfide, essential oil, quercetin, scordine and fatty oil. **Medicinal uses:** It is used in ear pains, flatulence and skin diseases. **Pharmacological activity:** It is aphrodisiac and hypoglycemic. **Study:** Mathew and Augusti reported the hypoglycemic activity of *Allium cepa* and concluded that this plant can be prescribed to treat type II diabetes mellitus [51].

Ammi visnaga

Medicinal uses: It is used in angina and type II diabetes mellitus. **Pharmacological activity:** It is vasodilator and hypoglycemic. **Study:** Jouad et al. reported the hypoglycemic effect of aqueous extract of *Ammi visnaga* in normal and streptozotocin-induced diabetic rats [52].

Berberis lyceum Royle

Part used: Root. **Medicinal uses:** It is used in arthritis, osteoarthritis, inflammations, ophthalmia, mouth ulcers, skin ulcers and conjunctivitis. **Pharmacological activity:** It is hypoglycemic and anti-inflammatory. **Study:** Gulfranz et al. reported the antidiabetic activity of *Berberis lyceum* root extract and berberine in alloxan-induced diabetic rats [53].

Hippophae rhamnoides L.

Parts used: Fruit, stem, and leaves. **Medicinal uses:** It is used in skin problems, lung problems, cancer, ulcer, wounds, skin infection, joint pain, hair fall, type II diabetes mellitus, and blood pressure,
jaundice and heart problems. **Pharmacological activity:** It is anti-diabetic. **Study:** Arshad and Bibi reported the ethnomedical uses of *Hippophae rhamnoide* in type II diabetes mellitus [54].

Lavandula stoechas

Arabic name: Mumsik al-Arwaḥ, **Persian name:** Anis al-Arwaḥ, Ustukhudoos. **English name:** Arabian Lavender. **Chemical constituents:** It contains fenchone, sstroterol, ursolic acid, lavanol, camphor, and 7-methoxy coumarin. **Medicinal uses:** It is used in neuralgic headache, thoracic diseases and type II diabetes mellitus. **Pharmacological activity:** It is deobstuent, resolvent and tonic. **Study:** Gámez et al. reported the hypoglycemic activity in various species of the genus Lavandula and concluded that it can be used as hypoglycemic agent in patients with type II diabetes mellitus [55].

Panax ginseng

Family: Araliaceae. **Medicinal uses:** It is used in asthma, bronchitis, altitude sickness and type II diabetes mellitus. **Pharmacological activity:** It is anti-diabetic. **Study:** Attele et al. reported the anti-diabetic effects of Panax ginseng berry extract [56].

Fagopyrum tataricum

Family: Polygonaceae. **Parts used:** Leaves. **Medicinal uses:** It is used in diabetes mellitus. **Pharmacological activity:** It is hypoglycemic. **Study:** Lee et al. reported that *Fagopyrum tataricum* (buckwheat) improves high-glucose-induced insulin resistance in mouse hepatocytes and type II diabetes mellitus in fructose-rich diet-induced mice [57].

Semecarpus anacardium linn

Family: Anacardiaceae. **Parts used:** Fruit, seeds, gum, oil, juice of pericarb, seed kernels. **Chemical constituents:** It contains cryptophan, phenylalanine, nicotinic acid, riboflavin, thiamine, bilanwanol, fixed oil, anacardol, catechol, cardol, anacardic acid. **Medicinal uses:** It is used in infected wounds, boils and type II diabetes mellitus. **Pharmacological activity:** It is antiseptic and hypoglycemic. **Study:** Khan et al. reported the antidiabetic and antioxidant effect of *Semecarpus anacardium* Linn, nut milk extract in a high-fat diet STZ-induced type 2 diabetic rat model [58].

Glycyrrhiza glabra

Family: Fabaceae. **Parts used:** Roots. **Medicinal uses:** It is used in obesity, peptic ulcers, stress, eczema, asthma, hay fever, arthritis, gastritis, abdominal colic, hyperacidity, heart burn, indigestion, constipation, cough, bronchitis and other respiratory infections. **Pharmacological activity:** It is expectorant, febrifuge, antibacterial, anti-inflammatory, anti-allergy, estrogenic, demulcent, antispasmodic, laxative, anti-allergic, antacid and antiseptic. **Study:** Aoki et al. reported the hypoglycemic activity of this plant [59].

Matricaria chamomilla

Medicinal uses: It is used in headache, chest pain and conjunctivitis. **Pharmacological activity:** It is stimulant, demulcent, brain tonic and diuretic. **Study:** Cemek et al. reported the antihyperglycemic and antioxidative potential of *Matricaria chamomilla* L. in streptozotocin-induced diabetic rats and concluded that it can be prescribed to treat hyperglycemia [60].

Gymnema sylvestre

Medicinal uses: It is used in cardiovascular disorders and diabetes mellitus type II. **Pharmacological activity:** It is anti-oxidant and hypoglycemic agent. **Study:** Leach reported the antidiabetic activity of *Gymnema sylvestre* [61].

Eugenia caryophyllus

Parts used: Stems, leaves and dried flowers buds. **Chemical constituents:** It contains eugenol, beta carophyllene and terpenic oxides. **Medicinal uses:** It is used in skin infections, digestive problems and toothache. **Pharmacological activity:** It is carminative, anti-emetic, counterritant, expectorant, antihemintic, antirheumatic, antineuralgic, antiseptic, antiviral and anti-oxidant [62]. **Study:** Collip reported the hypoglycemic activity of alcoholic extract of *Eugenia caryophyllus* [63].

Ajugaiva L

Family: Lamiaceae. **Medicinal uses:** It is used in diabetes mellitus type II. **Pharmacological activity:** It is hypoglycemic. **Study:** A study was conducted to investigate the hypoglycemic activity of *Ajuga iva* L. in rat model. This plant is commonly available in Asia and Africa. Water extract of *Ajuga iva* L (AT) was administered to rats at a dose of 10 mg/kg that reduced blood glucose level in rats 6 hours. This study indicates that *Ajuga iva* L has hypoglycemic activity and validates its traditional use in hyperglycemic conditions [64].

Trubillus terrestris

Family: Zygophyllaceae. **Medicinal uses:** It is used in urinary tract infection and type II diabetes mellitus [65]. **Pharmacological activity:** It is diuretic, lithotriptic, anti-inflammatory and hypoglycemic. **Study:** A study was conducted to evaluate the efficacy of *Trubillus terrestris* in alloxan induced diabetic rats. After treatment, it was concluded that *Trubillus terrestris* has prominent antidiabetic effect [66].

Anacardium occidentale linn

Family: Anacardiaceae, **Part used:** Leaves and fruit. **Medicinal uses:** It is used in diabetes mellitus type II. **Pharmacological activity:** It is anti-diabetic. **Study:** Ojewole reported the hypoglycemic effect of *Anacardium occidentale* Linn (Anacardiac) stem bark extracts in rats [67].

Bougainvillea glabra

Family: Nyctaginaceae, **Parts used:** Leaves, flowers and stems. **Chemical constituents:** It contains alkaloids, flavonoids, pinitol and betacyn. **Medicinal uses:** It is used in inflammation and diabetes mellitus type II. **Pharmacological activity:** It is anti-inflammatory, insecticidal and hypoglycemic. **Study:** Bhat et al. reported the antidiabetic properties of *Bougainvillea spectabilis*. This study justifies its use as herbal drug in type II diabetes mellitus [68].

Ferula assafoetida

Family: Umbelliferae. **Chemical constituents:** It contains organic sulphur compounds, volatile oil, foetidae, luteolin. The gum resin contains coumarins, 5-hydroxyumbelliprenin, assafoetidin, ferocolin, asacoumarin A and B, farnesiferol A, B, C and disulphide, asadisulphide and sec-butylpropenyl disulphide. **Medicinal uses:** It is used in constipation, abdominal pain, cough, intestinal worms, urinary tract infections and sexual disorders. **Pharmacological activity:** It is stimulant, carminative, antispasmodic, expectorant, slightly laxative, anthelmintic, diuretic, aphrodisiac, emmenagogue, nerve and pulmonary surfactant. **Study:** Abu-Zaiton reported the anti-diabetic activity of *Ferula assafoetida* extract in normal and alloxan-induced diabetic rats [69].
Ficus bengalensis

Family: Urticaceae.
Parts used: Latex, bark, fruits, roots, root bark, buds and aerial roots.
Chemical constituents: It contains triterpene, friedelin, sitosterol, tigliic acid, quercetin, rutin, tannins, waxes, albuminoids and carbohydrates.
Medicinal uses: It is used in diabetes mellitus type II.
Pharmacological activity: It is hypoglycemic.
Study: Singh et al. reported the antidiabetic effect of *Ficus bengalensis* aerial roots in experimental animals [70].

Conclusion

Many herbs and plants have been described as possessing hypoglycemic activity when taken orally. Some of these plants have also been pharmacologically tested and shown to be of some value in human type II diabetes mellitus treatment. The efficacy of herbal drugs is significant and they have fewer side effects than the synthetic allopathic medicines. Further, phytochemical characterization of medicinal plants is required to identify the specific compound(s) involved in the observed hypoglycemic activity.

Disclosure Statement

None of the authors have a financial or proprietary interest in the subject matter or materials discussed in the manuscript, including, but not limited to, employment, consultations, stock ownership, honoraria, and paid expert testimony.

References

1. Satyanarayana U, Chakrapani A (2006) Insulin, glucose, homeostasis and diabetes mellitus. Biochem. Book and allied publisher India (3rd edn): 680-681.
2. Leopald EJ (1930) Areataeus, the cappadociam. Ann Med Hist 2: 424-455.
3. Pickow W (1997) Textbook of Diabetes (2nd edn) London: Blackwell Science: 3-10.
4. Hu G, Rico-Sanz J, Lakka TA, Tuomilehto J (2006) Exercise, genetics and prevention of type 2 diabetes. Essays Biochem 42: 177-192.
5. Lans CA (2006) Ethnomedicines used in Trinidad and Tobago for urinary problems and diabetes mellitus. J Ethnobiol Ethnomed 2: 45.
6. Shannmugam S, Manikandan K, Rajendran K (2009) Ethnomedical Survey of Medicinal Plants Used for the Treatment of Diabetes and Jaundice among the Villagers of Sivangani District, Tamilnadu. Ethno Bot Leaflets 13: 189-194.
7. Mehrdad R, Amin A, Reza a (2009) The Effect of Chronic Administration of Apiaceae Aqueous Extract on Learning and Memory in Normal and Diabetic Rats. BCN 1: 26-28.
8. Saghir AJ, Sohail A, Muhammad Q (2011) Hypoglycemic Effect of Ginger (Zingiber officinale) in Alloxan Induced Diabetic Rats. Pak Vet J 31: 160-162.
9. Abeyesekara W, Chandrasekara A, Liyanage P (2007)Amylase and glucosidase enzyme inhibitory activity of Zingiber officinale Roscoe an in vitro study. Trop Agri Res 19: 128-135.
10. Islam MS, Choi H (2008) Dietary red chilli (Capsicum frutescens L.) is insulino-ritropic rather than hypoglycemic in type 2 diabetes model of rats. Phytother Res 22: 1025-1029.
11. Islam MS, Choi H (2008) Comparative effects of dietary ginger (Zingiber officinalis) and garlic (Allium sativum) investigated in a type 2 diabetes model of rats. J Med Food 11: 152-159.
12. Thomson M, Al-Amin ZM, Al-Qattan KK (2007) Anti-diabetic and hypolipidaemic properties of Allium sativum in streptozocin-induced diabetic rats. Int J Diab Metabolism 15: 108-115.
13. Udaiyakumar R, Kaththirirangan S, Mariashibu TS, Rajesh M, Anthagahavan VR, et al. (2009)Hypoglycemic and hypolipidaemic effects of Withania somnifera root and leaf extracts on alloxan-induced diabetic rats. Int J Mol Sci 10: 2367-2382.
14. Fukunaga T, Miura T, Furuta K, Kato A (1997) Hypoglycemic effect of the rhizomes of Smilax glabra in normal and diabetic mice. Biol Pharm Bull 20: 44-46.
15. Wiwanikit S, Wiwanikit V (2011) Therapeutic goal of diabetes mellitus. J Midlife Health 2: 94-95.
16. Dichtwald S, Weinbroum AA, Sorkine P, Ekstein MP, Dahan E (2012) Metformin-associated lactic acidosis following acute kidney injury. Efficacious treatment with continuous renal replacement therapy. Diabet Med 29: 245-250.
17. Tomio A, Niemi M, Neuvonen M, Laitila J, Kallikoski A, et al. (2008) The Effect of gemfibrozil on repaglinide pharmacokinetics persists for at least 12 h after the dose: evidence for mechanism-based inhibition of CYP2C8 in vivo. Clin Pharmacol Ther 84: 403-411.
18. Palalau AI, Tahraani AA, Pya MK, Barnett AH (2009) DPP-4 inhibitors in clinical practice. Postgrad Med 121: 70-100.
19. Mikhail N (2008) Incretin mimetics and dipeptidyl peptide 4 inhibitors in clinical trials for the treatment of type 2 diabetes. Expert Opin Investig Drugs 17: 845-853.
20. Krentz AJ, Friedmann PS (2006) Type 2 diabetes, psoriasis and thiazolidinedio-nes. Int J Clin Pract 60: 362-363.
21. Chiasson JL, Josse RG, Gomis R, Hanefeld M, Karasik A, et al. (2003) Acarbose treatment and the risk of cardiovascular disease and hypertension in patients with impaired glucose tolerance: the STOP-NIDDM trial. JAMA 290: 486-494.
22. Shruti S, Sandesh S (2011) Screening of Korean Medicinal Plant Extracts for Alpha -Glucosidase Inhibitory Activities. Int J Pharm Res 10: 261-264.
23. Gao H, Huang Y, Gao B, Xu P, Inagaki C, et al. (2008) a-Glucosidase inhibitory effect by the flower buds of Tussilago farfara L. Food Chemistry 106: 1195-1201.
24. Jia RY, Yin ZQ, Wu XL, Liu DB, Du YH, et al. (2008) Hypoglycemic effect of flavonoids from Prunus persica utilis on alloxan-induced diabetic mice. Zhong Yao Cai 31: 399-403.
25. Shoeken P, Anand P, Murali YK, Tandon V (2008) Antidiabetic activity of 50% ethanolic extract of Ricinus communis and its purified fractions. Food Chem Toxicol 46: 3456-3466.
26. Rajasekaran S, Sivagnaman K, Ravi K, Subramanian S (2004) Hypoglycemic effect of Aloe vera gel on streptozotocin-induced diabetes in experimental rats. J Med Food 7: 61-66.
27. Olyar A, Can A, Akev N, Baktir G, Soltujan N (2001) Effect of Aloe vera leaves on blood glucose level in type I and type II diabetic rat models. Phytother Res 15: 157-161.
28. Sikarwar MS, Patil MB (2010) Antidiabetic activity of Crateva nurvala stem bark extracts in alloxan-induced diabetic rats. J Pharm Bioallied Sci 2: 18-21.
29. Miyazaki H, Matsuura H, Yanagya C, Mizutani J, Tsuji M, et al. (2003) Inhibitory effects of hyssop (Hyssopus officinalis) extracts on intestinal alpha-glucosidase activity and postprandial hyperglycemia. J Nutr Sci Vitaminol (Tokyo) 49: 346-349.
30. Pandiya C, Vohora B (1989) Research and development of indigenous drugs, Institute of history of medicine and medical research. Hamdard Nagar, New Delhi, India: 45-49.
31. Venkidesh R, Mandal SC, Pal D, Lakshmi SM, Saravananakumar A (2010) Anti-diabetic activity of Smilax chinensis in alloxan induced diabetic rats. Phthemol 2: 51-54.
32. Rajesh Bhati, Anurupa Singh, Vks Anand Saharan, Veerma Ram, Anil Shambhavi, et al. (2011) Pharmacognostical standardization, extraction and anti-diabetic activity of Smilax china L. rhizome. A J Trad Med 6: 218-223.
33. Yadav JP, Saini S, Kalia AN, Dangi AS (2008) Hypoglycemic and hypolipidemic activity of ethanolic extract of Salvador oloides in normal and alloxan-induced diabetic rats. Indian J Pharmacol 40: 23-27.
34. The Wealth of India (1976) A dictionary of Indian Raw Material and Industrial products, Volume X, Sp-W, Council of Scientific and Industrial Research, New Delhi, India: 87-83.
35. Usmanoglu K, Saeed A, Alam T (1997) Indusyunic Medicine, Department of Pharmacognosy, faculty of pharmacy, University of Karachi: 90-92.
36. Alta R, Vigur U (1986) Pak Encylopaedia Planta Medica, Hamdard foundation Pakistan 1: 56-60.
37. El-Fiky FK, Abou-Karam MA, Afify EA (1996) Effect of Luffa aegyptiaca (seeds) and Carissa edulis (leaves) extracts on blood glucose level of normal and streptozocin diabetic rats. J Ethnopharmacol 50: 43-47.
54. Ren J, Zhang X, Zhou L, Liu F, et al. (2012) Estragole inhibits adipogenesis and improves fatty liver in high-fructose-fed mice. J Food Sci 77: R199-R204.

55. Rakesh G, Verma A, Rani N, Vyas P, et al. (2010) Antidiabetic and antioxidant activity of Phyllanthus amarus aqueous leaf extract on streptozotocin-induced diabetic rats. J Ethnopharmacol 130: 465-472.

56. Ramakrishnaiah VS, Rajagopal S, Reddy KS, et al. (2010) Antioxidant activity of Terminalia chebula fruit extract on streptozotocin-induced diabetic rats. J Ethnopharmacol 127: 220-228.

57. Rastogi P, Mehrotra N (1993) Compendium of Indian medicinal plants. New Delhi: 205-209.

58. Rastogi P, Mehrotra N (1994) Compendium of Indian medicinal plants. New Delhi: 205-209.

59. Rastogi P, Mehrotra N (1995) Compendium of Indian medicinal plants. New Delhi: 205-209.

60. Rastogi P, Mehrotra N (1996) Compendium of Indian medicinal plants. New Delhi: 205-209.

61. Rastogi P, Mehrotra N (1997) Compendium of Indian medicinal plants. New Delhi: 205-209.

62. Rastogi P, Mehrotra N (1998) Compendium of Indian medicinal plants. New Delhi: 205-209.

63. Rastogi P, Mehrotra N (1999) Compendium of Indian medicinal plants. New Delhi: 205-209.

64. Rastogi P, Mehrotra N (2000) Compendium of Indian medicinal plants. New Delhi: 205-209.

65. Rastogi P, Mehrotra N (2001) Compendium of Indian medicinal plants. New Delhi: 205-209.

66. Rastogi P, Mehrotra N (2002) Compendium of Indian medicinal plants. New Delhi: 205-209.

67. Rastogi P, Mehrotra N (2003) Compendium of Indian medicinal plants. New Delhi: 205-209.

68. Rastogi P, Mehrotra N (2004) Compendium of Indian medicinal plants. New Delhi: 205-209.

69. Rastogi P, Mehrotra N (2005) Compendium of Indian medicinal plants. New Delhi: 205-209.

70. Rastogi P, Mehrotra N (2006) Compendium of Indian medicinal plants. New Delhi: 205-209.

71. Rastogi P, Mehrotra N (2007) Compendium of Indian medicinal plants. New Delhi: 205-209.

72. Rastogi P, Mehrotra N (2008) Compendium of Indian medicinal plants. New Delhi: 205-209.

73. Rastogi P, Mehrotra N (2009) Compendium of Indian medicinal plants. New Delhi: 205-209.

74. Rastogi P, Mehrotra N (2010) Compendium of Indian medicinal plants. New Delhi: 205-209.

75. Rastogi P, Mehrotra N (2011) Compendium of Indian medicinal plants. New Delhi: 205-209.

76. Rastogi P, Mehrotra N (2012) Compendium of Indian medicinal plants. New Delhi: 205-209.

77. Rastogi P, Mehrotra N (2013) Compendium of Indian medicinal plants. New Delhi: 205-209.

78. Rastogi P, Mehrotra N (2014) Compendium of Indian medicinal plants. New Delhi: 205-209.

79. Rastogi P, Mehrotra N (2015) Compendium of Indian medicinal plants. New Delhi: 205-209.

80. Rastogi P, Mehrotra N (2016) Compendium of Indian medicinal plants. New Delhi: 205-209.

81. Rastogi P, Mehrotra N (2017) Compendium of Indian medicinal plants. New Delhi: 205-209.

82. Rastogi P, Mehrotra N (2018) Compendium of Indian medicinal plants. New Delhi: 205-209.

83. Rastogi P, Mehrotra N (2019) Compendium of Indian medicinal plants. New Delhi: 205-209.

84. Rastogi P, Mehrotra N (2020) Compendium of Indian medicinal plants. New Delhi: 205-209.

85. Rastogi P, Mehrotra N (2021) Compendium of Indian medicinal plants. New Delhi: 205-209.

86. Rastogi P, Mehrotra N (2022) Compendium of Indian medicinal plants. New Delhi: 205-209.

87. Rastogi P, Mehrotra N (2023) Compendium of Indian medicinal plants. New Delhi: 205-209.

88. Rastogi P, Mehrotra N (2024) Compendium of Indian medicinal plants. New Delhi: 205-209.

89. Rastogi P, Mehrotra N (2025) Compendium of Indian medicinal plants. New Delhi: 205-209.

90. Rastogi P, Mehrotra N (2026) Compendium of Indian medicinal plants. New Delhi: 205-209.

91. Rastogi P, Mehrotra N (2027) Compendium of Indian medicinal plants. New Delhi: 205-209.

92. Rastogi P, Mehrotra N (2028) Compendium of Indian medicinal plants. New Delhi: 205-209.

93. Rastogi P, Mehrotra N (2029) Compendium of Indian medicinal plants. New Delhi: 205-209.

94. Rastogi P, Mehrotra N (2030) Compendium of Indian medicinal plants. New Delhi: 205-209.

95. Rastogi P, Mehrotra N (2031) Compendium of Indian medicinal plants. New Delhi: 205-209.

96. Rastogi P, Mehrotra N (2032) Compendium of Indian medicinal plants. New Delhi: 205-209.

97. Rastogi P, Mehrotra N (2033) Compendium of Indian medicinal plants. New Delhi: 205-209.

98. Rastogi P, Mehrotra N (2034) Compendium of Indian medicinal plants. New Delhi: 205-209.

99. Rastogi P, Mehrotra N (2035) Compendium of Indian medicinal plants. New Delhi: 205-209.

100. Rastogi P, Mehrotra N (2036) Compendium of Indian medicinal plants. New Delhi: 205-209.
82. Ribnický DM, Poulév A, Watföld M, Cefalu WT, Raskin I (2006) Antihyperglycemic activity of Tarrailin, an ethanolic extract of Artemisia dracunculus L. Phytomedicine 13: 550-557.

83. Krisanapun C, Peungvicha P, Tensiririkkul R, Wongkrajang Y (2009) Aqueous extract of Abutilon indicum Sweet inhibits glucose absorption and stimulates insulin secretion in rodents. Nutr Res 29: 579-587.

84. Islam T, Rahman A, Islam AU (2012) Effects of Aqueous Extract of Fresh Leaves of Abroma augusta L. on Oral Absorption of Glucose and Metformin Hydrochloride in Experimental Rats. ISRN Pharm 2012: 472586.

85. Suthar M, Rathore GS, Pareek A (2009) Antioxidant and Antidiabetic Activity of Helicteres isora (L.) Fruits. Indian J Pharm Sci 71: 695-699.

86. Shirwaikar A, Rajendran K, Barik R (2006) Effect of aqueous bark extract of Garuga pinnata Roxb. in streptozotocin-nicotinamide induced type-II diabetes mellitus. J Ethnopharmacol 107: 295-299.

87. Kripa KG, Sangeetha R, Madhavi P, Deepthi P (2011) Phytochemical screening and in vitro amylase inhibitory effect of the leaves of Breynia retusa. Pak J Biol Sci 14: 894-899.

88. Kumar D, Kumar S, Kohli S, Arya R, Gupta J (2011) Antidiabetic activity of methanolic bark extract of Albizia odoratissima Benth. in alloxan induced diabetic albino mice. Asian Pac J Trop Med 4: 900-903.

89. Agunbiade OS, Oжеze OM, Oжеze JO, Ajayi AY (2012) Hypoglycemic activity of Commelina africana and Ageratum conyzoides in relation to their mineral composition. Afr Health Sci 12: 198-203.

90. Khosla P, Bhanwra S, Singh J, Seth S, Srivastava RK (2000) A study of hypoglycaemic effects of Azadirachta indica (Neem) in normaland alloxan diabetic rabbits. Indian J Physiol Pharmacol 44: 69-74.

91. Al-Shamaony L, al-Khazraji SM, Twaj HA (1994) Hypoglycaemic effect of Artemisia herba alba. II. Effect of a valuable extract on some blood parameters in diabetic animals. J Ethnopharmacol 43: 167-171.

92. Bavarva JH, Narasimhacharya AV (2008) Antihyperglycemic and hypolipidemic effects of Costus speciosus in alloxan induced diabetic rats. Phytother Res 22: 620-626.

93. Gupta R, Mathur M, Bajaj VK, Katariya P, Yadav S, et al. (2012) Evaluation of antidiabetic and antioxidant activity of Moringa oleifera in experimental diabetics. J Diabetes 4: 164-171.

94. Aftab S (2004) Aftab Saeed, Simple and Compound drugs. Pharmacopoeia 1: 2-400.