Structural Transition in Layered As$_{1-x}$P$_x$ Compounds: A Computational Study

Zhen Zhu, Jie Guan, and David Tománek

Phys. and Astronomy Department, Michigan State University, East Lansing, Michigan 48824, USA

As a way to further improve the electronic properties of group V layered semiconductors, we propose to form in-layer 2D heterostructures of black phosphorus and grey arsenic. We use ab initio density functional theory to optimize the geometry, determine the electronic structure, and identify the most stable allotropes as a function of composition. Since pure black phosphorus and pure grey arsenic monolayers differ in their equilibrium structure, we predict a structural transition and a change in frontier states, including a change from a direct-gap to an indirect-gap semiconductor, with changing composition.

PACS numbers: 73.20.At, 73.61.Cw, 61.46.-w, 73.22.-f

INTRODUCTION

Few-layer structures of group V elements, including phosphorene and arsenene, are emerging as promising candidates for two-dimensional (2D) electronic materials application[1][5]. Different from semi-metallic graphene[6][7], these systems display a large band gap while still maintaining a high carrier mobility[8][9][11]. Even though phosphorus and arsenic are both group V elements, they crystallize in different structures. Most stable and thus more abundant are the layered allotropes such as black phosphorus[12], with the designation A17 or α-P, and grey arsenic[4], with the designation A7 or β-As[13]. Since a conversion of the α to the β phase is possible[14][15], combining both elements in the same layer and changing the composition is bound to cause a structural transition[16][17]. Since both structures are almost equally stable, we may expect phase coexistence that should bring an unexpected richness in both structural and electronic properties[5][16][18][19]. This way of isoelectronic doping could turn into an effective way to fine tune the electronic properties, improve the carrier mobility[5] and reduce the chemical reactivity of the compound from those of pristine phosphorene and arsenene[20].

In this study we report ab initio density functional theory (DFT) calculations of As$_{1-x}$P$_x$ monolayers. We determine the optimum geometry, the electronic structure, and identify the most stable allotropes as a function of composition. We predict a structural transition from the α to the β phase to occur near x≈0.93. This structural transition is accompanied by a change in frontier states from lone pair electron states in α-P to σ-bond states in β-As and from a direct to an indirect fundamental gap.

RESULTS AND DISCUSSION

We present in the following computational results for the equilibrium geometry and electronic structure of As$_{1-x}$P$_x$ compounds as a function of composition. The monolayer structures have been optimized using DFT with the Perdew-Burke-Ernzerhof (PBE)[21] exchange-correlation functional, as discussed in the Methods Section. Since group V elements phosphorus and arsenic are both threefold coordinated and display a tetrahedral bonding character, they possess the freedom to arrange atoms in a layered structure that is not flat, which leads to various buckled allotropes that are topologically related to a honeycomb lattice[22]. Among these, the α and β phases are most stable[14]. Under ambient pressure, phosphorus favors the α and arsenic the β structure, but an α→β transition has been reported under high pressure[15][23]. As seen in Fig. 1(a), a monolayer of α-P (black phosphorus) can be viewed as a distorted honeycomb lattice with a rectangular primitive unit cell. The structure of a β-As (grey arsenic) monolayer, presented in Fig. 1(b), resembles more closely the honeycomb lattice of graphene with a hexagonal unit cell.

We explored the structures of As$_{1-x}$P$_x$ compounds with 0 < x < 1 by considering different arrangements of As and P atoms in systems with x = 0.25, 0.5 and 0.75. We optimized the lattice structure for each system and found that the lattice constants depend primarily on x and increase with increasing As concentration due to the larger atomic radius of arsenic in comparison to phosphorus. In the strongly anisotropic α phase, we found an increase of 4% along the softer a$_1$ direction and a 10% increase along the harder a$_2$ direction when moving from pristine phosphorus to arsenic. The corresponding change in both a$_1$ and a$_2$ was an increase by 9% in the isotropic β phase. The data for the dependence of the lattice parameters on composition are presented in the Supporting Information.

Since the cohesive energy of phosphorus is larger than that of arsenic, we expect a larger cohesive energy in phosphorus-rich structures. In the first approximation, ignoring structural and short-range order differences, we expect the cohesive energy of the As$_{1-x}$P$_x$ compound to be a linear combination of the cohesive energies of the pristine components in their respective structures, $E_{coh} = (1-x)E_{coh}$(As) + xE_{coh}(P). In a compound with a particular structure, we define the cohesive energy per “average atom” by E_{coh}(As$_{1-x}$P$_x$) =
FIG. 1. (Color online) Equilibrium structure of a monolayer of (a) black phosphorus (α-P), (b) grey arsenic (β-As), and (c) the β allotrope of the $\text{As}_{0.25}\text{P}_{0.75}$ compound. Ball-and-stick models in top and side view, with the primitive unit cell highlighted by shading, are shown in the upper panels and the Brillouin zones in the lower panels.

$-E_{\text{tot}}(\text{As}_{1-x}\text{P}_x)/N + (1 - x)E_{\text{tot}}(\text{As atom}) + xE_{\text{tot}}(\text{P atom})$, where $E_{\text{tot}}(\text{As}_{1-x}\text{P}_x)$ is the total energy of the N-atom unit cell, $E_{\text{tot}}(\text{As atom})$ is the total energy of an isolated As atom and $E_{\text{tot}}(\text{P atom})$ the total energy of a P atom. As seen in Fig. 2(a), the cohesive energy $E_{\text{coh}}(\text{As}_{1-x}\text{P}_x)$ will generally deviate from the expectation value $<E_{\text{coh}}>$ for specific geometries andatomic arrangements, but the deviations are rather small.

To better investigate these deviations, we define the relative stability of a given structure by $E_{\text{coh}}(\text{As}_{1-x}\text{P}_x) - <E_{\text{coh}}> > 0$. In general, we find that combining both elements in the same layer is always associated with an energy penalty with respect to the $<E_{\text{coh}}>$ value, caused by the size mismatch of As and P atoms. For a given composition, we found cohesive energy differences between particular arrangements of As and P atoms to be as large as 20 meV/atom at $x = 0.5$. Since the cohesive energy ranges of the different atomic arrangements within the phases overlap, we expect a coexistence of the two phases in realistic samples.

We found the monolayer of β-As to be more stable by ≈ 26 meV/atom than that of α-As, whereas the monolayer of α-P is favored by ≈ 3 meV/atom over β-P. As seen in Fig. 2(b), the energy penalty in the β phase is smaller than that in the α phase for lower x values. Only in very phosphorus-rich compounds we find the α phase to be more stable. Consequently, we expect a structural transition between the α and the β phase to occur as a function of composition. Our results indicate that this structural transition should occur near $x \approx 0.93$.

To illustrate how the relative position of arsenic and phosphorus atoms affects the stability of the compounds, we present three different structures of $\text{As}_{0.5}\text{P}_{0.5}$ in the α phase in Fig. 2(c) to (e) and in the β phase in Fig. 2(f) to (h). As the cohesive energy of phosphorus is larger than that of arsenic, P-P bonds are stronger than As-As bonds. Consequently, the structure with the largest number of P-P bonds should be most stable. On the other hand, maximizing the P-P interaction would imply segregating P from As, which will strain the structure. There is a trade-off between the two trends. For the sake of convenience, we called the least stable structural arrangement “structure I” and the most stable arrangement “structure III” in Fig. 2. As seen in Fig. 2(c) and 2(h), the two most stable structures in either phase contain an alternating arrangement of isolated P-P and As-As dimers. In this arrangement, the strain caused by different bond lengths can be minimized, while still keeping at least some P-P bonds. Strain is also low in the α-II and β-I structures, but absence of P-P bonds makes them less stable. The largest number of P-P bonds is realized in the α-I and β-II structures, but the large strain energy caused by the coexistence of phosphorus and arsenic chain arrangements makes these structures energetically unfavorable.

As mentioned above, the relatively small stability difference between the α and β phase of $\text{As}_{1-x}\text{P}_x$ com-
FIG. 2. (Color online) (a) Cohesive energy E_{coh} of an $\text{As}_{1-x}\text{P}_x$ monolayer as a function of the phosphorus concentration x. The most stable allotropes are shown by larger symbols. $<E_{coh}>$, shown by the dash-dotted line, is a linear interpolation between the most stable allotropes of As and P. (b) Relative stability $E_{coh}-<E_{coh}>$ of $\text{As}_{1-x}\text{P}_x$ as a function of x. The vertical dashed line indicates the expected composition for an $\alpha \rightarrow \beta$ structural transition. Ball-and-stick models of selected stable structures of $\text{As}_{0.5}\text{P}_{0.5}$ in the [(c) to (e)] α phase and [(f) to (h)] β phase. For each phase, the structural indices I, II and III are arranged in the order of increasing stability.

FIG. 3. (Color online) Fundamental electronic band gap E_g in $\text{As}_{1-x}\text{P}_x$ monolayers. DFT-PBE values of E_g are presented as a function of composition for compounds in the (a) α- and (b) β-phase. The dashed lines are guides to the eye.

Compounds suggests a likely coexistence of different allotropes. Understanding the electronic properties of such a complex system requires obtaining information about every such structural arrangement. We have performed the corresponding calculations and show the fundamental electronic band gap of $\text{As}_{1-x}\text{P}_x$ compounds as a function of composition in Fig. 3. As indicated in Fig. 3(a), the electronic band gap value of the α phase does not depend sensitively on the phosphorus concentration x and lies in the range between 0.9 - 1.0 eV. For the β phase of $\text{As}_{1-x}\text{P}_x$ compounds, the band gap is much larger and its value increases with increasing phosphorus concentra-
...tion, as seen in Fig. 3(b). The band gap values not only display a larger value range from 1.6 – 2.0 eV, but also depend on the relative arrangement of P and As atoms within the unit cell at a given composition.

More interesting than the absolute value of the band gap are changes in the band structure of $\text{As}_{1-x}\text{P}_x$ compounds caused by changing composition, which should be correctly captured by DFT-PBE. Especially important appears to be the position of the valence band maximum, since these compounds are expected to behave as p-type semiconductors. The band structure of α-phase compounds is shown in Fig. 4(a) for pristine phosphorus, Fig. 4(c) for pristine arsenic, and in Figs. 4(b) through 4(e) for intermediate compositions. Careful comparison of these band structure results indicates a transition from a direct gap in α-P to an indirect gap in α-As. For the sake of discussion, we found it useful to identify the valence band maximum at Γ as point “A”, another local valence band maximum along the $\Gamma - X$ line as point “B”, and the conduction band minimum at Γ as point “C”. With increasing concentration of As, the valence band maximum switches from “A” to “B”, with the transition occurring near $\text{As}_{0.75}\text{P}_{0.25}$ as seen in Fig. 4(d). Consequently, the character of the fundamental band gap in $\text{As}_{1-x}\text{P}_x$ compounds in the α phase is expected to change from direct for $x \gtrsim 0.75$ to indirect for $x \lesssim 0.75$. This behavior is reminiscent of the direct-to-indirect gap transition in a pure α-phosphorene monolayer that is induced by tensile in-layer strain and may be rationalized by the fact that the larger atomic radius of As atoms causes such strain. In reality, we find that the relative positions of the “A” and “B” peaks depend not only on the composition, but also the relative arrangement of phosphorus and arsenic atoms. We compare the electronic band structure of different structural arrangements with $x=0.5$ in the Supporting Information.

The band structure changes in β-$\text{As}_{1-x}\text{P}_x$ compounds with changing composition are presented in Fig. 4(f) to 4(j). Similar to the α-phase structures discussed above, we label the valence band maximum at Γ as point “A”, another local valence band maximum away from Γ as point “B”, and the bottom of the conduction band as point “C”. Even though – unlike the α-phase compounds – all β-phase structures are indirect-gap semiconductors, the position of the valence band maxima and conduction band minima still changes with composition. There is a change in β-$\text{As}_{1-x}\text{P}_x$ from the top of the valence band being at “B” in P-rich compounds with $x \gtrsim 0.5$ to “A” at Γ in As-rich compounds with $x \lesssim 0.5$. Similarly, changes in the valence frontier states have been observed in a pure As...
monolayer under strain[4]. Also here, we find that point “A” corresponds to in-plane σ-bond states, whereas point “B” corresponds to lone pair electron states[4] same as in a β-P monolayer. In other words, changing the composition allows to change the character of the frontier states in the valence band region and thus to effectively tune the electronic properties of the system.

In conclusion, we have performed ab initio density functional theory (DFT) calculations of As$_{1-x}$P$_x$ monolayers in search of ways to further improve the electronic properties of group V layered semiconductors and reduce their chemical reactivity. We have determined the optimum geometry, the electronic structure, and have identified the most stable allotropes as a function of composition. We have found the most stable allotropes to be based on the α (A17) structure of black phosphorus and the β (A7) structure of grey arsenic. Since the stability difference between these two phases is very small, we expect coexistence of α- and β-type structures within a large composition range. Based on our results, we expect a structural transition from the α to the β phase to occur near $x=0.93$. This structural transition should be accompanied by a change in frontier states from lone-pair electron states in α-P to σ-bond states in β-As and from a direct to an indirect fundamental gap.

METHODS

Our computational approach to gain insight into the equilibrium structure, stability and electronic properties of various phosphorene structures is based on ab initio density functional theory as implemented in the SIESTA code.[24] We used periodic boundary conditions throughout the study. We used the Perdew-Burke-Ernzerhof[21] exchange-correlation functional, norm-conserving Troullier-Martins pseudopotentials,[25] and a double-ζ basis including polarization orbitals. The reciprocal space was sampled by a fine grid[26] of $8 \times 8 \times 1$ k-points in the Brillouin zone of the primitive unit cell. We used a mesh cutoff energy of 180 Ry to determine the self-consistent charge density, which provided us with a precision in total energy of ≤ 2 meV/atom. All geometries have been optimized by SIESTA using the conjugate gradient method[27], until none of the residual Hellmann-Feynman forces exceeded 10^{-2} eV/Å.

We thank Bilu Liu for useful discussions. This study was supported by the National Science Foundation Cooperative Agreement #EEC-0832785, titled “NSEC: Center for High-rate Nanomanufacturing”. Computational resources have been provided by the Michigan State University High Performance Computing Center. The authors declare no competing financial interest.

[1] Narita, S.; Akahama, Y.; Tsukiyama, Y.; Muro, K.; Mori, S.; Endo, S.; Taniguchi, M.; Seki, M.; Suga, S.; Mikuni, A.; Kanzaki, H. Physica B+C 1983, 117/118, 422–424.
[2] Maruyama, Y.; Suzuki, S.; Kobayashi, K.; Tanuma, S. Physica B+C 1981, 105, 99–102.
[3] Liu, H.; Neal, A. T.; Zhu, Z.; Luo, Z.; Xu, X.; Tomaneck, D.; Ye, P. D. ACS Nano 2014, 8, 4033–4041.
[4] Zhu, Z.; Guan, J.; Tománek, D. Phys. Rev. B 2015, 91, 161404.
[5] Liu, B.; Kpf, M.; Abbas, A. N.; Wang, X.; Guo, Q.; Jia, Y.; Xia, F.; Weihrich, R.; Bachhuber, F.; Pielnhofer, F.; Wang, H.; Dhall, R.; Cronin, S.; Ge, M.; Fang, X.; Nilges, T.; and Zhou, C. Advanced Materials 2015, doi:10.1002/adma.201501758.
[6] Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y.; Dubonos, S. V.; Grigorieva, I. V.; Firsov, A. A. Science 2004, 306, 666–669.
[7] Zhang, Y.; Tan, Y.-W.; Stormer, H. L.; Kim, P. Nature 2005, 438, 201–204.
[8] Li, L.; Yu, Y.; Ge, G. J.; Ge, Q.; Ou, X.; Wu, H.; Feng, D.; Chen, X. H.; Zhang, Y. Nature Nanotech. 2014.
[9] Koenig, S. P.; Doganov, R. A.; Schmidt, H.; Castro Neto, A. H.; Özyilmaz, B. Appl. Phys. Lett. 2014, 104, 103106.
[10] Xia, F.; Wang, H.; Jia, Y. Nat Commun 2014, 5, 4458.
[11] Castellanos-Gomez, A.; Vicarelli, L.; Prada, E.; Island, J. O.; Narasimha-Acharya, K. L.; Blanter, S. I.; Groenendijk, D. J.; Buscema, M.; Steele, G. A.; Alvarez, J. V.; Zandbergen, H. W.; Palacios, J. J.; van der Zant, H. S. J. 2D Materials 2014, 1, 025001.
[12] Bridgman, P. W. J. Am. Chem. Soc. 1914, 36, 1344–1363.
[13] The designation of α- and β-phase to represents A17 and A7 is for the convenience of ordering layered black phosphorus allotropes with respect to their cohesive energy. This nomenclature is specially designed for layered group V elemental semiconductors and their isoelectronic counterparts, which should not be confused with other designations.
[14] Zhu, Z.; Tománek, D. Phys. Rev. Lett. 2014, 112, 176802.
[15] Boulefelid, S. E.; Seifert, G.; Grin, Y.; Leoni, S. Phys. Rev. B 2012, 85, 014110.
[16] Østers, O.; Nilges, T.; Bachhuber, F.; Pielnhofer, F.; Weihrich, R.; Schönle, M.; Schmidt, P. Angew. Chem. Internat. Ed. 2012, 51, 2994–2997.
[17] Krebs, H.; Holz, W.; Worms, K. H. Chemische Berichte 1957, 90, 1031–1037.
[18] Kamal, C.; Ezawa, M. Phys. Rev. B 2015, 91, 085423.
[19] Zhang, Z.; Xie, J.; Yang, D.; Wang, Y.; Si, M.; Xue, D. Applied Physics Express 2015, 8, 055201.
[20] Burbord, N.; Carpenter, Y.-Y.; Conrad, E.; Saunders, C. D. L. Biological Chemistry of Arsenic, Antimony and Bismuth; John Wiley & Sons, Ltd, 2010; pp 1–17.
[21] Perdew, J. P.; Burke, K.; Ernzerhof, M. Phys. Rev. Lett. 1996, 77, 3865–3868.
[22] Guan, J.; Zhu, Z.; Tománek, D. ACS Nano 2014, 8, 12763–12768.
[23] Jamieson, J. C. Science 1963, 139, 1291–1292.
[24] Artho, E.; Anglada, E.; Dieguez, O.; Gale, J. D.; Garcia, A.; Junquera, J.; Martin, R. M.; Ordejon, P;
Pruneda, J. M.; Sanchez-Portal, D.; Soler, J. M. *J. Phys. Cond. Mat.* **2008**, *20*, 064208.

[25] Troullier, N.; Martins, J. L. *Phys. Rev. B* **1991**, *43*, 1993.

[26] Monkhorst, H. J.; Pack, J. D. *Phys. Rev. B* **1976**, *13*, 5188–5192.

[27] Hestenes, M. R.; Stiefel, E. *J. Res. Natl. Bur. Stand.* **1952**, *49*, 409–436.