RRNPP_detector: a tool to detect RRNPP quorum sensing systems in chromosomes, plasmids and phages of gram-positive bacteria

AUTHORS
Charles Bernard 1,2, Yanyan Li 2, Eric Bapteste 1 and Philippe Lopez 1,*

AFFILIATIONS
1 Institut de Systématique, Evolution, Biodiversité (ISYEB), Sorbonne Université, CNRS, Museum National d'Histoire Naturelle, EPHE, Université des Antilles, Campus Jussieu, Bâtiment A, 4eme et. Pièce 429, 75005 Paris, France
2 Unité Molécules de Communication et Adaptation des Micro-organismes (MCAM), CNRS, Museum National d'Histoire Naturelle, CP 54, 57 rue Cuvier, 75005 Paris, France

CORRESPONDING AUTHOR
* Correspondence to Philippe Lopez;
Phone: +33 (01) 44 27 34 70; E-mail address: philippe.lopez@upmc.fr
ABSTRACT
Gram-positive bacteria (e.g. Firmicutes) and their mobile genetic elements (plasmids, bacteriophages) encode peptide-based quorum sensing systems (QSSs) that regulate behavioral transitions in a density-dependent manner. In their simplest form, termed “RRNPP”, these QSSs are composed of two adjacent genes: a communication propeptide and its cognate intracellular receptor. Despite the prime importance of RRNPP QSSs in the regulation of key biological pathways such as virulence, sporulation or biofilm formation in bacteria, conjugation in plasmids or lysogeny in temperate bacteriophages, no tools exist to predict their presence in target genomes/mobilomes. Here, we introduce RRNPP_detector, a software to predict RRNPP QSSs in chromosomes, plasmids and bacteriophages of gram-positive bacteria, available at https://github.com/TeamAIRE/RRNPP_detector. RRNPP_detector does not rely on homology searches but on a signature of multiple criteria, which are common between distinct families of experimentally-validated RRNPP QSSs. Because this signature is generic while specific to the canonical mechanism of RRNPP quorum sensing, it enables the discovery of novel RRNPP QSSs and thus of novel “languages” of biocommunication. Applying RRNPP_detector against complete genomes of viruses and Firmicutes available on the NCBI, we report a potential 7.5-fold expansion of RRNPP QSS diversity, alternative secretion-modes for certain candidate QSS propeptides, 'bilingual' bacteriophages and plasmids, as well as predicted chromosomal and plasmidic Biosynthetic-Gene-Clusters regulated by QSSs.

INTRODUCTION
Quorum sensing is the mechanism by which microbial entities sense when their population density reaches a threshold level, and thereupon typically switch from individual to group behaviors (1). The population density is reflected by the extracellular concentration of a communication signal, produced and secreted by individual entities. The quorum is met when this signal reaches a threshold concentration, at which it starts to be robustly detected and transduced population-wide by its cognate receptor module. In bacteria of the Proteobacteria or Actinobacteria phyla, these communication signals typically are small molecules synthesized by enzymes (2,3) whereas in the Firmicutes phylum, these are oligopeptides, matured from genetically encoded pro-peptides (4). Peptide-based quorum sensing systems can be divided into two main categories: those with a receptor module composed of a membrane-bound sensor coupled with an intracellular response regulator (two-components system) (5), and those in which the receptor is an intracellular transcription factor (or a protein inhibitor) that gets either turned-on or -off upon binding with the imported communication peptide (one component system) (6,7). The latter are generally included under the term RRNPP, named after the 5 first experimentally-characterized families of such receptors: Rap (Bacillus genus), Rgg (Streptococcus genus), NprR (Bacillus cereus group), PlcR (Bacillus cereus group) and PrgX (pCF10 plasmid of Enterococcus faecalis) (7–9).
The initial members of the RRNPP group of QSSs were reported to trigger key biological pathways when their encoding population reach high densities: from virulence (Rgg, PlcR) to competence (Rgg, Rap), necrotropism (NprR), sporulation, biofilm formation (Rap, NprR) and inhibition of conjugation (PrgX) (7–9). Considering that the virulence of Bacillus and Streptococcus pathogens may cause infectious diseases in humans (10,11), that the spore is the transmissive form of many Bacillus and Clostridium human pathogens (12), that biofilms contribute to infections or food-poisinging (13–15), and that competence and conjugation are responsible for the spread of antibiotic resistance genes (16), RRNPP QSSs are directly linked to central health issues.

Interestingly, the case of the plasmidic PrgX system illustrates that RRNPP QSSs may not only be present on bacterial chromosomes but also on mobile genetic elements (MGEs). Consistently, the conjugation-regulating TraA-Ipd1 system have later on expanded the list of plasmidic RRNPP QSSs (17). In 2017, Erez et al. even discovered that some temperate bacteriophages encode RRNPP QSSs, namely the “arbitrium” systems that guide the lysis-lyogeny decision upon Bacillus infection (18,19). Recently, two other chromosomal RRNPP QSSs have been experimentally validated: the QsrB-QspB system that delays sporulation and solvent formation in Clostridium acetobutylicum (20) and the AloR13-AloP13 sporulation-regulator in Paenibacillus polymyxa (21).

As important the experimentally-validated RRNPP QSSs are in the regulation of the biology of their encoding microbial entity, they represent only the tip of the iceberg. Indeed, the diversity of RRNPP QSSs is likely not fully explored, as hinted by the numerous candidate RRNPP QSS receptors in Clostridium and Enterococcus species reported to harbor local similarities with regions of Rap, NprR, PlcR or Rgg (20,22,23). Uncovering novel RRNPP QSS families would unveil new bacterium-bacterium, plasmid-plasmid or phage-phage modes of communication but most and foremost reveal novel density-dependent evolutionary strategies that could transform our views of microbial interaction, adaptation and evolution. Expanding RRNPP QSS diversity would also likely pave way to major practical outcomes as novel RRNPP QSSs could regulate the production of novel antimicrobial compounds (24,25) or could underlie mechanisms by which some human pathogens acquire virulence (26–29).

Conveniently, we noticed that the different members of the RRNPP group share a common signature of 5 criteria (Fig. 1): i) the pro-peptide is a small protein (10-70aa), ii) the pro-peptide is secreted, except in rare exceptions (e.g. Shp and PrgQ (7)), via the SEC-translocon and further matured by exopeptidases into a communication peptide, iii) the receptor has a length comprised between 250 and 500aa, iv) the receptor harbors tetratricopeptide repeats (TPR), which are structural motifs involved in the binding of small peptides (in this case, the cognate communication peptide), v) the genes encoding the pro-peptide and the receptors are directly adjacent to each
other. Advantageously, a large amount of reference Hidden-Markov-Models (HMMs) from the Cath-
Gene3D (30), Superfamily (31), SMART (32), Pfam (33) and TIGRFAM (34) databases are already
available to detect TPRs in protein sequences. Moreover, a tool called SignalP specifically
computes the likelihood that proteins harbor a signal sequence for the SEC-translocon
(35) (Fig. 1). Consequently, the generic, yet specific signature of RRNPP QSSs is detectable in
silico, without requiring homology searches that would limit the output to representatives of already
known QSSs. On this basis, we have developed RRNPP_detector, a python software that detects
the RRNPP signature in chromosomes and MGEs of gram-positive bacteria. We present its
workflow, its usage and showcase practical examples of analyses against the complete genomes
of viruses and of Firmicutes available on the NCBI.

MATERIALS AND METHODS
Overview of the RRNPP_detector workflow

Given a fasta of protein sequences and the coordinates of their coding sequences in target
genome(s), Metagenomics-Assembled-Genome(s) or contig(s), RRNPP_detector first reduces the
search space by retaining only proteins that have a length compatible with RRNPP receptors (250-
500aa) and pro-peptides (10-70aa). Next, only the 250-500aa proteins whose coding sequences
(CDSs) are found adjacent with the CDS of a 10-70aa protein are retained, and vice versa. Then,
HMMs of TPRs found in reference RRNPP receptors (PFAM: PF13181, PF13424; Gene 3D:
1.25.40.400, 1.25.40.10; TIGRFAM: TIGR01716; Superfamily: 48452, SMART: SM00028) are
queried with hmmsearch (36) against the remaining 250-500aa proteins. Only the proteins
matched by at least one HMM of TPRs (E-value < 1E-5) are retained and designated as potential
receptors. These potential receptors next undergo a computational characterization. First, a
BLASTp search (37) of reference RRNPP receptors (Rap, Rgg, NprR, PlcR, PrgX, TraA, AimR of
Bacillus phage phi3T, AimR of Bacillus phage Waukesha, QsrB and AloR13) against these
potential receptors are launched to identify the homologs of already known QSSs (by default: E-
value <= 1E-5, identity >= 20%, and alignment coverage >= 60% of the length of both the query
and the target sequences). Then, an HMMsearch of DNA-binding domains found in reference
receptors (PFAM: PF01381; Gene3D: 1.10.260.40; Superfamily: 47413; SMART: SM00530) is
launched against the potential receptors to identify those that may be transcription factors. After
this characterization step, the 10-70aa proteins are further reduced to those with a CDS adjacent
to the one of a potential receptor. At this stage, each tandem of remaining adjacent pro-peptide and
receptor are considered forming a potential QSS and will eventually be outputed. However, either a
‘permissive’ or a ‘conservative’ label will be assigned to these candidate QSSs according to the
next filters. First, any QSS with an intergenic distance > 400 base pairs between the two CDSs will
be considered as ‘permissive’ because low intergenic distance tends to correlate with functional
association (38). Second, only the remaining QSSs with a pro-peptide predicted by SignalP (35) to harbor a signal for the SEC-translocon under the ‘-org gram+’ option will be considered as ‘conservative’ (Fig. 2). Because a few experimentally-characterized pro-peptides are known to be secreted via other systems than the SEC-translocon (e.g. Shp2 and PrgQ (7)), we thought that it would be relevant to keep the QSSs in which the pro-peptides are not predicted to be secreted via the SEC-translocon in the ‘permissive’ output.

Usage, input and output of RRNPP_detector

RRNPP_detector was designed to take two kinds of input. The first option is to provide a nucleotide sequence (fna) of either one or multiple genetic elements. RRNPP_detector will then call Prodigal (39) to detect the CDSs in these nucleotide sequences and produce a fasta of the predicted protein sequences (faa) and an annotation file of the coordinates of their CDSs (gff). Alternatively, the user can submit a fasta of the protein sequences from one or multiple genomes/MAGs/contigs (faa) along with an annotation file of these genetic elements (in one concatenated gff or in one concatenated NCBI Assembly feature table). Option 2 has the advantage to integrate pre-computed annotations and therefore to keep reference IDs of proteins along the analysis. RRNPP_detector was designed to be launched in two modes: a default fast mode that processes all the target genomes/MAGs/contigs together in a single run; and a ‘preserve_ram’ mode designed to minimize RAM usage at the expense of speed by processing multiple genomes one by one in a for loop. RRNPP_detector outputs a fasta directory with the protein sequences of the ‘permissive’ pro-peptides, the ‘permissive’ receptors, the ‘conservative’ pro-peptides and the ‘conservative’ receptors. In addition, two ‘permissive’ and ‘conservative’ summary tabular files with various information regarding each candidate QSS are produced. A summary file typically displays, for each QSS, the ID of the encoding genetic element, the intergenic distance between the pro-peptide and the receptor genes, the genomic orientation of these two genes, the IDs and the genomic coordinates of the receptor and the propeptide, the best HMM of TPRs and DNA-binding domains found in the sequence of the receptor (with associated E-value), the BLASTp results in case of an homology of the candidate receptor with a reference receptor, and the SignalP prediction of the secretion mode of the pro-peptide (with associated likelihood score).

RESULTS

RRNPP_detector reveals thousands of candidate RRNPP QSSs in complete bacterial chromosomes, plasmids and phage genomes

To illustrate RRNPP_detector, we launched it against the 4974 complete genomes of Firmicutes and the 32919 complete genomes of Viruses Firmicutes available on the NCBI Assembly Database
We describe how such analyses can be easily done with the practical example of Viruses in the readme file of RRNPP_detector: https://github.com/TeamAIRE/RRNPP_detector/readme.md. We report the identification of 6467 ‘permissive’ candidate RNPP QSSs, distributed across 1074 different taxa (Table S1). Some receptors of these ‘permissive’ candidate QSSs notably include the RopB regulator of virulence in Streptococcus pyogenes (27), as well as additional members of the AimR, AloR13, NprR, PlcR, PrgX, QsrB, RapA and Rgg2 experimentally-validated families that did not pass the ‘conservative’ thresholds of RRNPP_detector (Table S1). Interestingly, 105 ‘permissive’ RRNPP QSSs have been detected in 97 isolated genomes of viruses, of which 89 bacteriophages and 8 giant eukaryotic viruses of the Mimiviridae taxonomic family. Accordingly, some bacteriophage genomes are found to encode multiple ‘permissive’ candidate QSSs (up to 4 in Brevibacillus phage SecTim467) (Table S1). Last but not least, 435 and 47 ‘permissive’ candidate QSSs include a propeptide predicted to be secreted via the LIPO (Sec/SpII) and TAT (TaT/SPI) secretion systems, respectively, pointing at alternative secretion modes than SEC (Sec/SpI) for some candidate RRNPP propeptides (Table S1). In addition, we report the identification of 3529 ‘conservative’ candidate RRNPP QSSs that we hereafter characterize in more depth (Table S2). We first used the Phaster API (40) for each chromosome or plasmid carrying at least one QSS to identify whether the genomic coordinates of the QSS(s) fell within prophage regions (genomes of lysogenic phages inserted within host genomes) and should be thus considered as viral instead of bacterial. Of the 3529 conservative candidate RRNPP QSSs, we found that 2793 are chromosomal (on 941 different chromosomes), 222 are plasmidic (on 172 different plasmids), 505 are predicted to be prophage-encoded (on 219 predicted intact prophages, 102 questionable prophages and 176 incomplete prophages) and 9 are encoded by genomes isolated from free temperate bacteriophages (on 8 distinct bacteriophages) (Table S2). Although the presence of multiple QSSs on single chromosomes is not rare (8,21) due to the selective pressure that may exist for the acquisition of additional subpopulation-specific QSSs (41,42), only 1 MGE (Bacillus phage phi3T) has been previously reported to encode two RRNPP QSSs (43). Here, we report the identification of 30 plasmids and 8 (pro)phages encoding multiple candidate RRNPP QSSs (up to 5 in the pBMB400 plasmid of Bacillus thuringiensis serovar kurstaki str. YBR-1520) (Table S3). Interestingly, multiple QSSs might enable a MGE to produce distinct communication peptides that accumulate differentially in the medium, hence to sense and react to multiple population density levels (43).
are connected if they show a sequence identity \(\geq 30\%\) over more than \(80\%\) of the lengths of both sequences, as in (44) (Fig. 3). We report the identification of 31 groups of homologous receptors (with at least 2 homologous sequences in it) and of 29 singletons (any receptor with no clear homology to others) (Table S2 and Fig. 3). If a singleton or at least one sequence in a group of homologous receptors was matched by an experimentally-validated receptor in a BLASTp search (same thresholds as above), we considered this group as already known. Of the 60 different types of receptors detected, 8 were hence considered as already known: the Rap + NprR group (\(N=2991\)), PlcR (\(N=279\)), AimR of \(B.\ subtilis\) phages (\(N=20\)), AloR13 (\(N=16\)), AimR of \(B.\ cereus\) phages (\(N=10\)), TraA (\(N=5\)), Rgg2 (\(N=4\)) and QsrB (\(N=2\)) (Fig. 3 and Fig. 4). Our results thus increase the diversity of RRNPP QSSs by a factor of 7.5 and paves the way to the identification of multiple novel peptide-based biocommunication “languages” (Fig. 4). Importantly, these different groups of QSSs cover a substantial phylogenetic diversity. Indeed, they are distributed across 21 bacterial taxonomic families (Fig. 4), some of which include notorious pathogenicity-associated genera like \(Clostridium\), \(Bacillus\), \(Enterococcus\) or \(Streptococcus\) (Table S2). Functional investigations of the candidate RRNPP QSSs encoded by these genera could hence potentially unearth novel density-dependent mechanisms linked to pathogenicity. Moreover, this analysis reveals that some of the previously identified poly-encoding QSSs MGEs (Table S3) encode candidate RRNPP QSSs that belong to distinct groups/gene families (e.g. Rap and AimR in bacteriophages of \(B.\ subtilis\); AloR13 and group5 in pBRLA3 plasmid of \(B.\ laterosporus\) (Fig. 4)) and could be thus considered as ‘bilingual’. From a host-MGE coevolution perspective, it is also interesting to note that besides the two lysis-lysogeny regulating AimR groups that should be 100% viral (Phaster failed to predict a prophage origin for 8 QSSs (unlike Prophage Hunter)), 6 groups of homologous QSSs were found to be shared between chromosomes and MGEs (Fig. 3). This suggests that some QSSs may be externalized between chromosomes, plasmids, and phages (45), with the possibility that such QSSs interfere with the regulation of genes in different genomes/genetic elements. Typically, QSS families shared by MGEs and chromosomes can give rise to density-dependent manipulations of bacterial hosts by MGEs, as exemplified in our previous study on the host-derived Rap-Phr QSS of Bacillus phage phi3T (43) or in the study of Silpe and Bassler on the host-derived VqmA quorum sensing receptor of Vibrio phage VP882 (46).

Post-processing functional prediction of candidate RRNPP QSS reveals 50 putative QSS-regulated biosynthetic gene clusters

QSSs with a one component receptor module tend to be located nearby their target genes (47–49) and RRNPP QSSs are no exceptions to this trend, especially not MGE-encoded RRNPP QSSs (as shown in Fig. 1). The genomic neighborhood of a RRNPP QSS can thus provide insights on the potential function(s) regulated in a density-dependent by the QSS, as suggested in our previous study on the functional inference of viral RRNPP QSSs...
For instance, one function regulated by quorum sensing typically is the production of public good metabolites, e.g. antimicrobial compounds, because only a collective production may bring such molecules to the concentration levels required to exert a significant effect on the microbial community (50). Consistently, many natural product biosynthetic gene clusters (BGCs) have been demonstrated to be controlled by a QSS located in their genomic vicinity, be it a molecule-based QSS (48,49) or a peptide-based QSS (Fig. 5A) (24,25). To illustrate how the output of RRNPP_detector can be coupled with functional insights, we chose to focus on this practical example of putative QSS-regulated BGCs. Indeed, as a major challenge in the field of natural-product discovery is that many BGCs are not expressed under laboratory growth conditions (51), QSS-regulated BGCs are promising: they may represent a source of novel natural products for which the link to population density provides some understanding about how to elicit production. Hence, to identify candidate QSS-regulated BGCs, we first searched for BGCs with antiSMASH standalone version 6.0.0 (default parameters) (52) in the 474 genetic elements encoding at least one candidate RRNPP QSS with a receptor detected as a transcription factor (harboring a DNA binding domain). We then intersected the list of the 3153 BCGs detected by antiSMASH with our list of candidate RRNPP QSSs on the basis of the inclusion of the QSS region (from the start codon of the first gene to the stop codon of the second gene) within the region of a BGC defined by antiSMASH. This resulted in a subset of 46 candidate BGCs inferred to be regulated by RRNPP QSSs (Table S4 and Fig. 5). Among these 46 putative QSS-regulated BGCs, 3 are plasmidic and are inferred by antiSMASH to produce antimicrobial peptides (Fig. 5B). As these plasmidic RRNPP QSSs likely enact the production of defense metabolites only when the quorum of plasmids is met, they might create a selective pressure for the acquisition of the plasmid by host cells at high plasmid densities, supporting complex scenarios of co-evolution. Interestingly, the 46 putative QSS-regulated BGCs produce major classes of natural products (Table S4 and Fig. 5C), including ribosomally synthesized and posttranslationally-modified peptides (RiPPs), non-ribosomal peptides and polyketides. Worth to note, RiPPs are of most frequent occurrence, likely reflecting the important roles of RiPPs in bacterial physiology (53). Last but not least, the inference that these BGCs are expressed at high population densities hints at important ecological roles for their biosynthesized natural products, among which could be novel defense metabolites of medical relevance.

CONCLUSION AND FUTURE PERSPECTIVES

RRNPP_detector is able to predict a wide range of candidate RRNPP QSSs in chromosomes or in mobile genetic elements (e.g. plasmids, phages) of gram-positive bacteria (e.g. Firmicutes). Because RRNPP_detector does not rely on sequence homology to known QSS components to detect candidate QSS gene families, it can detect novel families of RRNPP QSSs, as exemplified in this article. Moreover, as RRNPP QSSs tend to regulate adjacent genes in a density-dependent
manner, post-processing genomic context analyses can couple RRNPP_detector output with functional insights, as shown in this article with the specific example of putative QSS-regulated BGCs.

RRNPP_detector presents a first step towards the large-scale identification of peptide-based QSSs. However, this software is dedicated to the sole detection RRNPP QSSs and we already anticipate to expand its usage to peptide-based QSSs with two-component systems. We believe that our work will unlock new biological knowledge regarding peptide-based biocommunication and will reveal many novel density-dependent decision-making processes in bacteria, plasmids and bacteriophages that could likely transform our views of microbial adaptation and bacteria-MGE co-evolution. Importantly, Firmicutes represent with Bacteroidetes the most prevalent phyla in human gut microbiomes (54), which makes the use of RRNPP_detector particularly relevant against human-associated metagenomics-assembled genomes or mobile genetic elements (e.g. from the human MGE database (55) or the Gut Phage Database (56)) to infer density-dependent behaviors that may take place within human intestinal microbiomes, plasmidomes and viromes.

DATA AVAILABILITY

RRNPP_detector is freely available on github at https://github.com/TeamAIRE/RRNPP_detector

FUNDING

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors. C. Bernard was supported by a PhD grant from the Ministère de l'Enseignement supérieur, de la Recherche et de l'Innovation.

REFERENCES

1. Mukherjee S, Bassler BL. Bacterial quorum sensing in complex and dynamically changing environments. Nat Rev Microbiol [Internet]. 2019 Jun 3 [cited 2019 Jun 12];17(6):371–82. Available from: http://www.nature.com/articles/s41579-019-0186-5

2. Papenfort K, Bassler BL. Quorum sensing signal-response systems in Gram-negative bacteria. Nat Rev Microbiol [Internet]. 2016 [cited 2019 May 11];14(9):576–88. Available from: http://www.ncbi.nlm.nih.gov/pubmed/27510864

3. Polkade A V., Mantri SS, Patwekar UJ, Jangid K. Quorum sensing: An under-explored phenomenon in the phylum Actinobacteria. Vol. 7, Frontiers in Microbiology. Frontiers Media S.A.; 2016.

4. Bhatt VS. Quorum sensing mechanisms in gram positive bacteria. In: Implication of Quorum Sensing System in Biofilm Formation and Virulence. Springer Singapore; 2019. p. 297–311.
5. Sturme MHJ, Kleerebezem M, Nakayama J, Akkermans ADL, Vaughan EE, De Vos WM. Cell to cell communication by autoinducing peptides in gram-positive bacteria. Antonie van Leeuwenhoek, Int J Gen Mol Microbiol. 2002;81(1–4):233–43.

6. Rocha-Estrada J, Aceves-Diez AE, Guarneros G, de la Torre M. The RNPP family of quorum-sensing proteins in Gram-positive bacteria. Appl Microbiol Biotechnol [Internet]. 2010 Jul 26 [cited 2019 Oct 16];87(3):913–23. Available from: http://link.springer.com/10.1007/s00253-010-2651-y

7. Neiditch MB, Capodagli GC, Prehna G, Federle MJ. Genetic and Structural Analyses of RRNPP Intercellular Peptide Signaling of Gram-Positive Bacteria [Internet]. Vol. 51, Annual Review of Genetics. Annual Reviews Inc.; 2017 [cited 2020 Nov 19]. p. 311–33. Available from: https://www.annualreviews.org/doi/abs/10.1146/annurev-genet-120116-023507

8. Do H, Kumaraswami M. Structural Mechanisms of Peptide Recognition and Allosteric Modulation of Gene Regulation by the RRNPP Family of Quorum-Sensing Regulators. J Mol Biol [Internet]. 2016 Jul 17 [cited 2019 Oct 16];428(14):2793–804. Available from: http://www.ncbi.nlm.nih.gov/pubmed/27283781

9. Perez-Pascual D, Monnet V, Gardan R. Bacterial Cell-Cell Communication in the Host via RRNPP Peptide-Binding Regulators. Front Microbiol [Internet]. 2016 [cited 2019 Oct 16];7:706. Available from: http://www.ncbi.nlm.nih.gov/pubmed/27242728

10. Baldwin VM. You Can’t B. cereus – A Review of Bacillus cereus Strains That Cause Anthrax-Like Disease. Vol. 11, Frontiers in Microbiology. Frontiers Media S.A.; 2020. p. 1731.

11. Lannes-Costa PS, de Oliveira JSS, da Silva Santos G, Nagao PE. A current review of pathogenicity determinants of Streptococcus sp. [Internet]. Journal of Applied Microbiology. Blackwell Publishing Ltd; 2021 [cited 2021 Jul 26]. Available from: https://pubmed.ncbi.nlm.nih.gov/33779268/

12. Mallozzi M, Viswanathan VK, Vedantam G. Spore-forming Bacilli and Clostridia in human disease [Internet]. Vol. 5, Future Microbiology. Future Medicine Ltd.; 2010 [cited 2021 Mar 12]. p. 1109–23. Available from: https://pubmed.ncbi.nlm.nih.gov/20632809/

13. Costerton JW, Stewart PS, Greenberg EP. Bacterial biofilms: A common cause of persistent infections [Internet]. Vol. 284, Science. American Association for the Advancement of Science; 1999 [cited 2021 Jul 26]. p. 1318–22. Available from: https://science.sciencemag.org/content/284/5418/1318

14. Høiby N, Ciofu O, Johansen HK, Song ZJ, Moser C, Jensen PØ, et al. The clinical impact of bacterial biofilms. In: International Journal of Oral Science [Internet]. Int J Oral Sci; 2011 [cited 2021 Jul 26]. p. 55–65. Available from: https://pubmed.ncbi.nlm.nih.gov/21485309/

15. Galié S, García-Gutiérrez C, Miguélez EM, Villar CJ, Lombó F. Biofilms in the food industry: Health aspects and control methods [Internet]. Vol. 9, Frontiers in Microbiology. Frontiers Media S.A.; 2018 [cited 2021 Jul 26]. Available from: /pmc/articles/PMC5949339/

16. Von Wintersdorff CJH, Penders J, Van Niekerk JM, Mills ND, Majumder S, Van Alphen LB, et al. Dissemination of antimicrobial resistance in microbial ecosystems through horizontal gene transfer [Internet]. Vol. 7, Frontiers in Microbiology. Frontiers Media S.A.; 2016 [cited 2021 Jul 26]. p. 173. Available from: /pmc/articles/PMC4759269/
17. Kohler V, Keller W, Grohmann E. Regulation of gram-positive conjugation [Internet]. Vol. 10, Frontiers in Microbiology. Frontiers Media S.A.; 2019 [cited 2021 Mar 12]. p. 1134. Available from: www.frontiersin.org

18. Erez Z, Steinberger-Levy I, Shamir M, Doron S, Stokar-Avihail A, Peleg Y, et al. Communication between viruses guides lysis-lysogeny decisions. Nature [Internet]. 2017 [cited 2019 Jul 4];541(7638):488–93. Available from: http://www.ncbi.nlm.nih.gov/pubmed/28099413

19. Stokar-Avihail A, Tal N, Erez Z, Lopatina A, Sorek R. Widespread Utilization of Peptide Communication in Phages Infecting Soil and Pathogenic Bacteria. Cell Host Microbe [Internet]. 2019 May 8 [cited 2019 Nov 24];25(5):746-755.e5. Available from: http://www.ncbi.nlm.nih.gov/pubmed/31071296

20. Kotte AK, Severn O, Bean Z, Schwarz K, Minton NP, Winzer K. RRNPP-type quorum sensing affects solvent formation and sporulation in clostridium acetobutylicum. Microbiol (United Kingdom). 2020;166(6):579–92.

21. Voichek M, Maaß S, Kroniger T, Becher D, Sorek R. Peptide-based quorum sensing systems in Paenibacillus polymyxa. Life Sci Alliance [Internet]. 2020 Oct 1 [cited 2021 Apr 22];3(10). Available from: https://doi.org/10.26508/lsa.202000847

22. Feng J, Zong W, Wang P, Zhang ZT, Gu Y, Dougherty M, et al. RRNPP-Type quorum-sensing systems regulate solvent formation, sporulation and cell motility in Clostridium saccharoperbutylacetonicum. Biotechnol Biofuels [Internet]. 2020;13(1):1–16. Available from: https://doi.org/10.1186/s13068-020-01723-x

23. Parthasarathy S, Jordan LD, Schwarting N, Woods MA, Abdullahi Z, Varahan S, et al. Involvement of chromosomally encoded homologs of the RRNPP protein family in enterococcus faecalis biofilm formation and urinary tract infection pathogenesis. J Bacteriol [Internet]. 2020 Sep 1 [cited 2021 Jul 18];202(17). Available from: https://doi.org/10.1128/JB

24. Hoover SE, Perez AJ, Tsui HCT, Sinha D, Smiley DL, Dimarchi RD, et al. A new quorum-sensing system (TprA/PhrA) for Streptococcus pneumoniaeD39 that regulates a lantibiotic biosynthesis gene cluster. Mol Microbiol [Internet]. 2015 Jul 1 [cited 2021 Jul 18];97(2):229–43. Available from: /pmc/articles/PMC4676566/

25. Rued BE, Covington BC, Bushin LB, Szewczyg K, Laczkovich I, Seyedsayamdost MR, et al. Quorum sensing in streptococcus mutans regulates production of tryglysin, a novel ras-ripp antimicrobial compound. MBio. 2021 Mar 1;12(2):1–25.

26. Edwards AN, Tamayo R, McBride SM. A novel regulator controls Clostridium difficile sporulation, motility and toxin production. Mol Microbiol [Internet]. 2016 Jun 1 [cited 2021 Jul 26];100(6):954–71. Available from: /pmc/articles/PMC4899322/

27. Do H, Makthal N, VanderWal AR, Rettel M, Savitski MM, Peschek N, et al. Leaderless secreted peptide signaling molecule alters global gene expression and increases virulence of a human bacterial pathogen. Proc Natl Acad Sci U S A [Internet]. 2017 Oct 3 [cited 2021 Jul 26];114(40):E8498–507. Available from: www.pnas.org/cgi/doi/10.1073/pnas.1705972114
28. Edwards AN, Anjuwon-Foster BR, McBride SM. Rsta is a major regulator of clostridioides difficile toxin production and motility. MBio [Internet]. 2019 [cited 2021 Jul 26];10(2):1–21. Available from: https://doi.org/10

29. Do H, Makthal N, VanderWal AR, Saavedra MO, Olsen RJ, Musser JM, et al. Environmental pH and peptide signaling control virulence of Streptococcus pyogenes via a quorum-sensing pathway. Nat Commun [Internet]. 2019 Dec 1 [cited 2021 Jul 26];10(1):1–14. Available from: https://doi.org/10.1038/s41467-019-10556-8

30. Sillitoe I, Bordin N, Dawson N, Waman VP, Ashford P, Scholes HM, et al. CATH: Increased structural coverage of functional space. Nucleic Acids Res [Internet]. 2021 Jan 8 [cited 2021 Jul 26];49(D1):D266–73. Available from: https://academic.oup.com/nar/article/49/D1/D266/1009184

31. Wilson D, Pethica R, Zhou Y, Talbot C, Vogel C, Madera M, et al. SUPERFAMILY - Sophisticated comparative genomics, data mining, visualization and phylogeny. Nucleic Acids Res [Internet]. 2009 Jan 1 [cited 2021 Jul 26];37(SUPPL. 1):D380–6. Available from: https://academic.oup.com/nar/article/37/suppl_1/D380/100940513

32. Letunic I, Khedkar S, Bork P. SMART: Recent updates, new developments and status in 2020. Nucleic Acids Res [Internet]. 2021 Jan 8 [cited 2021 Jul 26];49(D1):D458–60. Available from: https://academic.oup.com/nar/article/49/D1/D458/100940513

33. Mistry J, Chuguransky S, Williams L, Qureshi M, Salazar GA, Sonnhammer ELL, et al. Pfam: The protein families database in 2021. Nucleic Acids Res [Internet]. 2021 Jan 8 [cited 2021 Jul 26];49(D1):D412–9. Available from: https://covid-19

34. Haft DH, Selengut JD, Richter RA, Harkins D, Basu MK, Beck E. TIGRFAMs and genome properties in 2013. Nucleic Acids Res [Internet]. 2013 Jan 1 [cited 2021 Jul 26];41(D1):D412–9. Available from: https://pubmed.ncbi.nlm.nih.gov/23197656/

35. Almagro Armenteros JJ, Tsirigos KD, Sønderby CK, Petersen TN, Winther O, Brunak S, et al. SignalP 5.0 improves signal peptide predictions using deep neural networks. Nat Biotechnol [Internet]. 2019 Apr 18 [cited 2019 Oct 16];37(4):420–3. Available from: http://www.nature.com/articles/s41587-019-0036-z

36. Eddy SR. Accelerated Profile HMM Searches. Pearson WR, editor. PLoS Comput Biol [Internet]. 2011 Oct 20 [cited 2019 May 28];7(10):e1002195. Available from: https://dx.plos.org/10.1371/journal.pcbi.1002195

37. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment search tool. J Mol Biol [Internet]. 1990 Oct 5 [cited 2019 Oct 16];215(3):403–10. Available from: http://www.ncbi.nlm.nih.gov/pubmed/2231712

38. Junier I, Unal EB, Yus E, Lloréns-Rico V, Serrano L. Insights into the Mechanisms of Basal Coordination of Transcription Using a Genome-Reduced Bacterium. Cell Syst. 2016 Jun 22;2(6):391–401.

39. Hyatt D, Chen GL, LoCascio PF, Land ML, Larimer FW, Hauser LJ. Prodigal: Prokaryotic gene recognition and translation initiation site identification. BMC Bioinformatics [Internet]. 2010 Mar 8 [cited 2021 Jul 21];11. Available from: https://pubmed.ncbi.nlm.nih.gov/20211023/
40. Arndt D, Grant JR, Marcu A, Sajed T, Pon A, Liang Y, et al. PHASTER: a better, faster version of the PHAST phage search tool. Nucleic Acids Res [Internet]. 2016 [cited 2020 Aug 4];44(Web Server issue):W16. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4987931/

41. Even-Tov E, Omer Bendori S, Pollak S, Eldar A. Transient Duplication-Dependent Divergence and Horizontal Transfer Underlie the Evolutionary Dynamics of Bacterial Cell–Cell Signaling. Gore J, editor. PLOS Biol [Internet]. 2016 Dec 29 [cited 2019 Oct 17];14(12):e2000330. Available from: http://dx.plos.org/10.1371/journal.pbio.2000330

42. Kalamara M, Spacapan M, Mandic-Mulec I, Stanley-Wall NR. Social behaviours by Bacillus subtilis: quorum sensing, kin discrimination and beyond. Mol Microbiol [Internet]. 2018 [cited 2019 Oct 16];110(6):863. Available from: http://www.ncbi.nlm.nih.gov/pubmed/30218468

43. Bernard C, Li Y, Lopez P, Bapteste E. Beyond arbitrium: identification of a second communication system in Bacillus phage phi3T that may regulate host defense mechanisms. ISME J [Internet]. 2020; Available from: http://dx.doi.org/10.1038/s41396-020-00795-9

44. Méheust R, Watson AK, Lapointe FJ, Papke RT, Lopez P, Bapteste E. Hundreds of novel composite genes and chimeric genes with bacterial origins contributed to haloarchael evolution. Genome Biol. 2018 Jun 7;19(1).

45. Corel E, Méheust R, Watson AK, McInerney JO, Lopez P, Bapteste E. Bipartite Network Analysis of Gene Sharings in the Microbial World. Mol Biol Evol [Internet]. 2018 [cited 2019 Nov 24];35(4):899–913. Available from: http://www.ncbi.nlm.nih.gov/pubmed/29346651

46. Silpe JE, Bassler BL. A Host-Produced Quorum-Sensing Autoinducer Controls a Phage Lysis-Lysogeny Decision. Cell [Internet]. 2019 Jan 10 [cited 2019 Jun 12];176(1–2):268-280.e13. Available from: http://www.ncbi.nlm.nih.gov/pubmed/30554875

47. Engebrecht J, Nealson K, Silverman M. Bacterial bioluminescence: isolation and genetic analysis of functions from Vibrio fischeri. Cell [Internet]. 1983 [cited 2021 Jul 28];32(3):773–81. Available from: https://pubmed.ncbi.nlm.nih.gov/6831560/

48. Brotherton CA, Medema MH, Greenberg EP. luxR Homolog-Linked Biosynthetic Gene Clusters in Proteobacteria. mSystems [Internet]. 2018 Jun 26 [cited 2021 Jul 18];3(3). Available from: /pmc/articles/PMC5872303/

49. He H, Ye L, Li C, Wang H, Guo X, Wang X, et al. SbbR/SbbA, an Important ArpA/AfsA-Like System, Regulates Milbemycin Production in Streptomyces bingchenggensis. Front Microbiol [Internet]. 2018 May 23 [cited 2021 Jul 28];9(MAY):1064. Available from: https://www.frontiersin.org/article/10.3389/fmicb.2018.01064/full

50. Heilmann S, Krishna S, Kerr B. Why do bacteria regulate public goods by quorum sensing?– How the shapes of cost and benefit functions determine the form of optimal regulation. Front Microbiol [Internet]. 2015 [cited 2021 Jul 28];6(AUG):767. Available from: /pmc/articles/PMC4517451/

51. Rutledge PJ, Challis GL. Discovery of microbial natural products by activation of silent biosynthetic gene clusters [Internet]. Vol. 13, Nature Reviews Microbiology. Nature
52. Blin K, Shaw S, Kloosterman AM, Charlop-Powers Z, van Wezel GP, Medema MH, et al. antiSMASH 6.0: improving cluster detection and comparison capabilities. Nucleic Acids Res [Internet]. 2021 Jul 2 [cited 2021 Jul 28];49(W1):W29–35. Available from: https://doi.org/10.1093/nar/gkab335

53. Li Y, Rebuffat S. The manifold roles of microbial ribosomal peptide-based natural products in physiology and ecology [Internet]. Vol. 295, Journal of Biological Chemistry. American Society for Biochemistry and Molecular Biology Inc.; 2020 [cited 2021 Aug 17]. p. 34–54. Available from: /pmc/articles/PMC6952617/

54. Manor O, Dai CL, Kornilov SA, Smith B, Price ND, Lovejoy JC, et al. Health and disease markers correlate with gut microbiome composition across thousands of people. Nat Commun [Internet]. 2020 Dec 1 [cited 2021 Jul 18];11(1):1–12. Available from: https://doi.org/10.1038/s41467-020-18871-1

55. Lai S, Jia L, Subramanian B, Pan S, Zhang J, Dong Y, et al. mMGE: A database for human metagenomic extrachromosomal mobile genetic elements. Nucleic Acids Res [Internet]. 2021 Jan 8 [cited 2021 Jul 18];49(D1):D783–91. Available from: https://academic.oup.com/nar/article/49/D1/D783/5930394

56. Camarillo-Guerrero LF, Almeida A, Rangel-Pineros G, Finn RD, Lawley TD. Massive expansion of human gut bacteriophage diversity. Cell [Internet]. 2021 Feb [cited 2021 Mar 12];184(4):1098-1109.e9. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0092867421000726

SUPPLEMENTARY MATERIALS:

- **Table S1**: 6467 ‘permissive’ candidate RRNPP QSSs
- **Table S2**: 3529 ‘conservative’ candidate RRNPP QSSs
- **Table S3**: 38 MGEs encoding multiple ‘conservative’ candidate RRNPP QSSs
- **Table S4**: 46 putative QSS-regulated BGCs
B. subtilis

rapA phrA
A,C,D,F 0.99
378 aa -11 bp

B. thuringiensis

nprR nprX
A,C,D,F 0.62
423 aa 4 bp

B. cereus

plcR papR
A,C,E 0.80
285 aa 48 aa

Streptococcus pyogenes

shp2 rgg2
I,II,III,IV 0.31
21 aa 288 aa

Clostridium acetobutylicum

qsrB qspB
A,C,F 0.73
435 aa 50 aa

Paenibacillus polymyxa

aloR13 aloP13 spo0E
C 0.61
473 aa 44 aa

Bacillus phage phi3T

aimR aimP aimX
A,C 0.92
378 aa 49 aa

Enterococcus faecalis

prgX prgQ
B,C 0.32
318 aa 23 aa

Conjugation genes

Enterococcus faecalis

traA ipd
B,C 0.40
321 aa 21 aa

Conjugation genes

Genetic element

- Chromosome
- Plasmid
- Phage genome

Genes

- QS receptor
- QS pro-peptide
- Adjacent target genes

Matched C-terminal TPR repeats (HMM)

A CATH 1.25.40.10
B CATH 1.25.40.400
C SF SSF48452
D PFAM PF13424
E PFAM PF18768
F SMART SM00028
G TIGR TIGR01716

Matched N-terminal DNA binding domains (HMM)

I CATH 1.10.260.40
II SF SSF47413
III PFAM PF01381
IV SMART SM00530
FIGURE LEGENDS

Figure 1: Common features between experimentally validated RRNPP-type QSSs.

Each genomic context corresponds to the representative QSS of an experimentally characterized RRNPP-type QSS family. The icon at the left of each context indicates the genetic element that encodes the QSS (bacterial chromosome, phage genome or plasmid) and the associated label indicates the taxon to which this genetic element belongs. The green gene corresponds to the quorum sensing receptor and the red gene to its cognate propeptide, whereas a grey gene indicates an adjacent, target gene (or set of genes) demonstrated to be regulated by the QSS. The intergenic distance between the receptor and the propeptide genes is given in number of base pairs and the length of receptors and propeptides is given in number of aminoacids. The number above each pro-peptide corresponds to the likelihood, computed by SignalP, that the propeptide harbors a N-terminal signal sequence for the SEC-translocon. A likelihood score colored in red means that the propeptide is predicted by SignalP to be secreted via the SEC-translocon, whereas a score colored in grey means that it is predicted to be secreted otherwise. Shp2 and PrgQ are the only two propeptides predicted to be secreted otherwise, consistent with the fact that they are the only ones known to be secreted via another secretion system than Sec(SEC/Spl), namely the PptAB complex (7). The green letters above the C-terminal encoding region of each receptor indicate the names of the HMM (PFAM, SMART, TIGR) or of the HMM family (CATH, SuperFamily) of Tetratricopeptide repeats (TPRs) that are found within the sequence of the translated protein. The roman numbers above the N-terminal encoding region of each receptor indicate the names of the HMM or of the HMM family of DNA binding domains found in the sequence of the translated protein.
Identification of homologs of reference receptors (BLASTp)
Identification of transcription factors (HMMsearch)
Filter by TPR (HMMsearch)
Filter by intergenic distance (<400bp)
Filter by SP(Sec/SPI) dependent secretion according to SignalP
Filter by coding sequence adjacency
Filter by length (250-500 aa)
Filter by length (10-70 aa)

15,901,185 Protein Sequences

4,974 Complete Genomes
14,628,025 Encoded by Firmicutes
1,273,160 Encoded by Viruses
32,919 Complete Genomes

6,130,631 Protein Sequences

Filter by length (250-500 aa)

602,708 Protein Sequences

Filter by coding sequence adjacency

520,653 Protein Sequences

Filter by TPR (HMMsearch)

9,354 Putative Receptors

9,986 Putative Propeptides

Filter by intergenic distance (<400bp)

3,521 Conservative Candidate Receptors

3,525 Conservative Candidate Propeptides

3,529 Candidate RRNPP QSSs
Figure 2: Workflow of RRNPP_detector illustrated with real data from complete genomes of Firmicutes and viruses

RRNPP_detector defines candidate RRNPP-type quorum sensing systems as tandems of adjacent CDSs encoding a candidate receptor (250-500aa protein matching HMMs of peptide-binding tetracopeptide repeats (TPRs)) and a candidate pro-peptide (10-70aa protein predicted to be excreted via the SEC-translocon). Each green and red rectangle represents a step towards the final identification of candidate receptors and candidate propeptides, respectively. Each arrow represents a filtering operation to narrow down the search space to ‘conservative’ candidate RRNPP QSSs. The horizontal red line indicates the inclusion threshold after which all remaining pairs of adjacent receptors and propeptides will be outputed: pairs that pass all the filters below the inclusion threshold will be considered as ‘conservative’ candidate RRNPP QSSs, whereas the other pairs will be considered as ‘permissive’ candidates. RRNPP_detector identified 3529 ‘conservative’ candidate RRNPP QSSs from 3521 candidate receptors and 3525 candidate propeptides because a receptor can be flanked on both side by a candidate propeptide and vice versa.
Figure 3: Sequence similarity network of the receptors forming a ‘conservative’ candidate RNPP QSS with a cognate propeptide.

Each node corresponds to a receptor sequence found adjacent to a candidate pro-peptide and is colored according to the type of genetic element encoding the QSS, as displayed in the legend. Each edge corresponds to a similarity link between two receptors defined according to the following thresholds: percentage identity $\geq 30\%$, alignment coverage $\geq 80\%$ of the lengths of both receptors, E-value $\leq 1E^{-5}$. Each connected component of the graph thereby defines groups of homologous receptors, as in (44). The groups are ordered from the largest to the smallest. Labels that begin with an integer correspond to groups of homologous receptors (more than 1 sequence) whereas labels that begin with the ‘s’ character correspond to singletons (1 sequence only). A label followed by the name of a reference receptor in brackets means that at least one sequence in the group of homologous receptors is found to be homolog with a reference receptor according to the above thresholds.
A. Number of chromosomal QSSs per group (log10 scale)

B. Phages

Bacillus phage phi3T
B. subtilis MB9 B1 prophage
B. velezensis SRCM101368 prophage
B. velezensis SRCM102744 prophage
B. velezensis SRCM102747 prophage
B. subtilis 168 prophage 1
B. amyloliquefaciens FS1092 prophage
B. amyloliquefaciens SRCM101267 prophage
B. velezensis S4 prophage
Bacillus phage Waukesha92
Bacillus phage phiSS8
Bacillus phage v8_BIS_BMBtp16
B. anthracis MCC1A01412 prophage
B. cereus F837776 prophage
B. thuringiensis HD571 prophage
Brevibacillus phage Sundance
C. saccharoperbutylacetonicum N1-504 prophage
T. avium AR23208 prophage
B. laterosporus LMG 15441 prophage
B. brevis NCTC2611 prophage 1
B. brevis NCTC2611 prophage 2
B. selenitireducens MLS10 prophage
Bacillus phage phiCM3
Brevibacillus phage Emery
Bacillus phage v8_BIS_BMBtp14

C. Plasmids

Rap-encoding plasmids of B. subtilis group (N=12)
B. marisflavi plasmid p25
B. pseudofirmus plasmid pBpOF4-01
B. pseudofirmus plasmid pBpOF4-02
B. oceanisediminis plasmid unnamed1
E. faecalis plasmid pA
E. faecalis plasmid pDEF-2
E. faecalis plasmid pL8
E. faecalis plasmid pTEF1
E. faecalis plasmid unnamed1
B. laterosporus plasmid pBRLA33
B. cereus plasmid pBGM
B. tropicus plasmid unnamed1
A. acidocaldarius plasmid pAACI02

Legend

- Previously Characterized
- Novel
- Free phage genome
- Intact prophage
- Questionable prophage
- Incomplete prophage
- Mixed (pro)phages
- Genome with QSS(s) detected
- Genome without QSS(s) detected

QSS families

Bacterial genomes
Figure 4: Distribution of groups of ‘conservative’ candidate RRNPP QSSs across taxonomic families (chromosomal QSSs) or MGEs (plasmidic and (pro)phage-encoded QSSs).

A. Distribution of groups of RRNPP QSSs encoded by chromosomes (columns) across taxonomic families of the Firmicutes phylum (rows). Grey squares mean that no QSS of a given group has been detected in a given taxonomic family. Conversely, black and red squares mean that a given group has been detected in at least one chromosome of a given taxonomic family. Specifically, black squares highlight groups of RRNPP QSSs previously experimentally validated, whereas red squares represent candidate novel groups of RRNPP QSSs. The number of chromosomal representatives of each group of RRNPP QSSs is given in the histogram at the top of the heatmap (log10 scale). The number of chromosomes in each taxonomic family is given by the histogram at the right of the heatmap (log10 scale): the gold area corresponds to the number of chromosomes in which at least one ‘conservative’ RRNPP QSS has been identified, whereas the grey area depicts the remaining chromosomes without any RRNPP QSS detected.

B. Distribution of groups of RRNPP QSSs across isolated genomes of temperate bacteriophages or prophages detected by Phaster within genomes of Firmicutes. Each row represents a single phage genome or a single prophage, to the exceptions of the first three rows that depict groups of prophages in which a single RRNPP QSS of the Rap family has been detected. The color of each (pro)phage indicates the quality of the prediction that the QSS-encoding entity is a phage: dark purple corresponds to sequenced phage genomes (100% sure), whereas lighter shades of purple correspond to different prophage qualities assessed by Phaster.

C. Distribution of groups of RRNPP QSSs across plasmids sequenced in Firmicutes.
A
Grp: 1_PlcR (AVN86787.1) *Streptococcus pneumoniae* D39V (CP027540.1)

Experimentally validated Class II lanthipeptide cluster like mutacin II (U40620)

[B1 detected similar contexts]

B
Grp: 1_PlcR (ADC52264.1) *Bacillus pseudofirmus* OF4 - plasmid pBpOF4-01 (CP001879.1)

Linear azol(in)e-containing peptides

Grp: 26 (QKH59184.1) *Bacillus cereus* ATCC 4342 - plasmid pBGM (CP053956.1)

Class II lanthipeptide cluster like mutacin II (U40620)

[C1 detected similar context]

C
Grp: 1_PlcR (AGY39829.1) *Streptococcus* sp. I-G2 (CP006805.1)

Streptide-like thioether-bond ribosomally synthesised and post-translationally modified peptide product (RiPP) cluster

Grp: 9 (QKG83360.1) *Kroppenstedtia pulmonis* W9323 (CP048104.1)

Non-ribosomal peptide synthetase cluster

Grp: 12 (AQR95344.1) *Clostridium saccharoperbutylacetonicum* N1-504 (CP016087.1)

Type I PKS (Polyketide synthase)

Grp: 15 (QQY79072.1) *Keratinibaculum paraultunense* KD-1 (CP068564.1)

Class II lanthipeptide clusters like mutacin II (U40620)

Grp: 20 (ASS75455.1) *Tumebacillus algifaecis* THMBR28 (CP022657.1)

LAP

Streptide-like thioether-bond ribosomally synthesised and post-translationally modified peptide product (RiPP) cluster

Types of genes

- RRNPP QSS receptor
- Core biosynthetic gene
- Transport-related gene
- Other gene
- RRNPP QSS propeptide
- Additional biosynthetic gene
- Regulatory gene
Figure 5: Selection of BGCs outputed by antiSMASH that are likely regulated by candidate RRNPP QSSs.

Each genomic context corresponds to a BGC region outputed by antiSMASH within which a ‘conservative’ candidate RRNPP QSSs has been detected by RRNPP_detector. The genes are colored according to the legend displayed at the bottom of the figure. For each genomic context, a first line of information is composed of a thumbnail indicative of the genetic element encoding the BGC region (chromosome or plasmid). Then, a ‘receptor’ label indicates the group of homologous receptors to which the candidate RRNPP QSS receptor belongs and displays the NCBI ID of this receptor in brackets. Finally, the name of the genome along with its NCBI accession are given. The second line indicates the biosynthesis mode of the BGC as classified by antiSMASH, together with the number of similar genomic contexts identified in the taxon. The tickmarks at the bottom of each BGC correspond to genomic coordinates, given in number of base pairs. A. Proof of concept: BGC demonstrated to be regulated by a RRNPP QSS in (24) and captured by our method. B. Plasmidic BGCs inferred to be regulated by a candidate RRNPP QSS. The context displayed for plasmid pBGM is conserved in plasmid unnamed 1 of B. tropicus. C. Selection of chromosomal BGCs inferred to be regulated by candidate RRNPP QSSs to give an overview of putative QSS-regulated BGC diversity.