This article describes the whole genome sequencing data from 5 extrapulmonary tuberculosis clinical isolates. The whole genome sequencing was carried out on Illumina MiSeq platform to identify single nucleotide variations (SNVs) associated with drug resistance. A total of 214 SNVs in the coding and promoter regions were identified in the whole genome sequencing analysis. Among the...
1. Data

The data represents whole genome sequencing of 5 extra pulmonary isolates from 3 different sites. All five clinical isolates sequenced in this data set belonged to East-African-Indian lineage (Lineage 3) (Fig. 1A). A scientific interpretation of this data set was performed by Sharma et al. [1]. Data analysis led to the identification of 15 SNVs in the coding region of genes (Fig. 1B), which are known to confer
drug resistance to first and second line anti-tubercular drugs (Supplementary Table 1A). Apart from known drug resistance SNVs, we also identified 199 SNVs in the promoter regions corresponding to 157 genes (Supplementary Table 1B) (Fig. 2). Three of these 157 genes are associated with drug resistance show promoter region SNVs in all of the 5 isolates (Fig. 1B).

2. Experimental design, materials and methods

2.1. Culturing and DNA isolation of extrapulmonary isolates

The 5 EPTB isolates were obtained from Department of Medical Microbiology, The Postgraduate Institute of Medical Education and Research, Chandigarh, India. The isolates were cultured and
Fig. 2. Circos plot depicting the promoter region SNVs identified in the study.

Table 1

Sample ID	Category	R1	R2	Total Reads
PGI-14	Cerebrospinal fluid (CSF)	2,532,274	2,532,274	5,064,548
PGI-98	Joint aspirate pus	2,250,203	2,250,203	4,500,406
PGI-100	Fine needle aspiration cytology (cervical lymph node)	2,088,387	2,088,387	4,176,774
PGI-103	Fine needle aspiration cytology (cervical lymph node)	2,315,946	2,315,946	4,631,892
PGI-155	Fine needle aspiration cytology (cervical lymph node)	2,454,773	2,454,773	4,909,546
maintained as described in [1]. The LJ slants were incubated at 37°C for a maximum period of 8 weeks. They were inspected daily for growth or for contamination. The isolates were then tested to rule out non tuberculous mycobacteria (NTM) or other infection and were cultured for DNA extraction as previously described [1]. DNA was extracted from the isolates cultured on the LJ slants using cetyltrimethylammonium bromide (CTAB) protocol [2].

2.2. Library preparation and sequencing

DNA libraries were constructed and sequencing was carried out on Illumina MiSeq instrument as described previously [1]. Sequencing was performed using a 2 × 100 paired-end (PE) configuration (Table 1).

2.3. Variant calling and data analysis

Paired end reads were quality checked using FastQC version-0.11.5. Raw reads of Phred quality score of < 20 were discarded. High quality reads were mapped to the H37Rv reference genome (NC_000962.3) using Burrows-Wheeler Alignment Tool (BWA version-0.7.15) [3]. Variants were identified using GATK [4]. The variants were annotated using in-house perl scripts. Phylogenetic analysis was carried out using KvarQ version-0.12.2 [5]. SNVs identified in the isolates were used to generate phylogenetic tree FastTree version-2.1.10 [6].

Acknowledgements

Jayshree Advani is a recipient of Senior Research Fellowship from Council of Scientific & Industrial Research (CSIR) Government of India. Renu Verma is a recipient of Senior Research Fellowship from University Grants Commission (UGC), Government of India. Oishi Chatterjee is a recipient of the Senior Research Fellowship under the INSPIRE Scheme from the Department of Science and Technology (DST), Government of India. Kusum Sharma is thankful to HTRP-NIH financial support in the form of three months fellowship for learning the analysis of WGS at JHU. Kusum Sharma acknowledges the financial support to NYSOM, NYU under HTRP-NIH for three months fellowship. The authors also thank Yenepoya (Deemed to be University) for internal funding to cover sequencing costs.

Transparency document. Supporting information

Transparency data associated with this article can be found in the online version at http://dx.doi.org/10.1016/j.j.dib.2018.08.048.

Appendix A. Supporting information

Supplementary data associated with this article can be found in the online version at http://dx.doi.org/10.1016/j.j.dib.2018.08.048.

References

[1] K. Sharma, R. Verma, J. Advani, et al., Whole genome sequencing of mycobacterium tuberculosis isolates from extra-pulmonary sites, OMICS. 21 (7) (2017) 413–425.

[2] D. van Soolingen, P.W. Hermans, P.E. de Haas, et al., Occurrence and stability of insertion sequences in Mycobacterium tuberculosis complex strains: evaluation of an insertion sequence-dependent DNA polymorphism as a tool in the epidemiology of tuberculosis, J. Clin. Microbiol. 29 (11) (1991) 2578–2586.
[3] H. Li, R. Durbin, Fast and accurate short read alignment with Burrows-Wheeler transform, Bioinformatics 25 (14) (2009) 1754–1760.

[4] A. McKenna, M. Hanna, E. Banks, et al., The genome analysis toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data, Genome Res. 20 (9) (2010) 1297–1303.

[5] A. Steiner, D. Stucki, M. Coscolla, et al., KvarQ: targeted and direct variant calling from fastq reads of bacterial genomes, BMC Genom. 15 (2014) 881.

[6] M.N. Price, P.S. Dehal, A.P. Arkin, FastTree 2-approximately maximum-likelihood trees for large alignments, PLoS One 5 (3) (2010) e9490.