The Comparison of Eight Weeks of HIIT and BFR on Mitochondrial Biogenesis and Angiogenesis Markers in Vastus Lateralis Muscle of Amateur Male Runners

*Seyyed Yaser Alavi, Shadmehr Mirdar

1. Department of Exercise Physiology, Faculty of Physical Education and Sports Sciences, University of Mazandaran, Babolsar, Iran.

ABSTRACT

Background and Aims: Post-exercise Blood Flow Restriction (BFR) is a novel training method that, through alterations to the haemodynamic, metabolic, and hypoxic stimulus, could augment skeletal muscle adaptation in endurance-trained individuals. This study aimed to compare the effect of eight weeks of High-Intensity Interval Training (HIIT) and BFR on PGC-1α and Vascular Endothelial Growth Factor (VEGF) as mitochondrial biogenesis and angiogenesis biomarkers, respectively, in amateur male runners.

Methods: In the current study, 15 runners (Mean±SD of age: 23±3 years; height: 172±5 cm; weight: 73±4 kg; BMI: 23±1.7 kg/m²) voluntarily participating in this study were divided into three groups: 1-Control 2-HIIT and 3-HIIT+BFR or BFR. The experimental groups performed three sessions a week (six trials each session) for eight weeks. The biopsy samples were collected from the vastus lateralis muscle at the first and end of eight weeks. The protein expression levels of the PGC-1α and VEGF were studied by immunohistochemical method. Data analysis was performed using the one-way Analysis of Covariance (ANCOVA), and a significance level of P<0.05 was considered.

Results: The findings showed that PGC-1α values were significantly increased in the HIIT and BFR groups (54.9% and 60.85%, respectively) compared to the control group, as well as VEGF levels were 51.31% and 57.52%, respectively (P<0.05). There were also significant differences between experimental groups in the protein expressions (P<0.05).

Conclusion: Given that activation of VEGF from the PGC-1 pathway is part of cellular-molecular mechanisms of high-intensity interval training, it seems that the combination of intense interval training and BFR can effectively affect the process of angiogenesis in the vastus lateralis muscle of amateur runners.

Keywords: High-Intensity Interval Training (HIIT), PGC-1α, Vascular Endothelial Growth Factor (VEGF)

Received: 17 Mar 2021
Accepted: 16 Jun 2021
Available Online: 01 Jul 2021

Citation: Alavi SY, Mirdar S. The Comparison of Eight Weeks of HIIT and BFR on Mitochondrial Biogenesis and Angiogenesis Markers in Vastus Lateralis Muscle of Amateur Male Runners. Scientific Journal of Rehabilitation Medicine. 2021; 10(3):424-435. https://doi.org/10.32598/sjrm.10.3.4

https://doi.org/10.32598/sjrm.10.3.4

Extended Abstract

1. Introduction

Post-exercise Blood Flow Restriction (BFR) is a novel training method that, through alterations to the haemodynamic, metabolic, and hypoxic stimulus, could augment skeletal muscle adaptation in endurance-trained individuals. Therefore this study aimed to compare the effect of eight weeks of HIIT and BFR on Peroxisome proliferator-activated receptor-γ coactivator 1α (PGC-1α) and Vascular Endothelial Growth Factor (VEGF) as mitochondrial biogenesis and angiogenesis biomarkers, respectively, in amateur male runners.
2. Methods

In the current study, 15 runners (Mean±SD of age: 23±3 years; height: 172±5 cm; weight: 73±4 kg; BMI: 23±1.7 kg/m²) voluntarily participating in this study were divided into three groups: 1-Control 2-HIIT and 3-HIIT+BFR or BFR. Unlike the control group, which did not participate in any training, the experimental groups performed the 10-20-30 training pattern for eight weeks/three sessions per week. The 10-20-30 training consisted of a 15-min warm-up at a low intensity followed by 6×5 min running periods interspersed by 4 min of rest. Each 5-min running period consisted of five consecutive 1-min intervals divided into 30, 20, and 10 s at an intensity of ∼30%, ∼60%, and ∼90–100% of maximal running speed.

The difference between the experimental groups was that the BFR group had to lay supine on an adjacent carpet immediately after each trial. By installing an inflatable cuff on the highest part of the thigh of both legs, blood restriction was applied for two minutes and immediately rested for two minutes by removing the cuff from the position and then prepared for the next attempt. All runners were present in the medical laboratory 72 hours before exercise training and 72 hours after the last exercise session, and needle biopsies were taken from them. Tissue samples were stored in formalin-containing tubes for approximately one month until transfer to the histology laboratory. After transferring the models, the protein expression levels of the PGC-1α and VEGF were studied by immunohistochemical method. Data analysis was performed using the One-Way Analysis of Covariance (ANCOVA), and a significance level of P<0.05 was considered.

3. Results

The results showed that the levels of PGC-1α in the HIIT and BFR groups increased by 54.9% and 60.85%, respectively, compared to the control group (P<0.05), and the difference between the experimental groups in the expression of this protein was significant (P<0.05). Figure 1 shows that the lowest expression of this protein is seen in the control group, and the highest expression belongs to the BFR.

Also, VEGF levels in HIIT and BFR groups increased significantly by 51.31% and 57.52%, respectively, compared to the control group (P<0.05), and the difference between the experimental groups in the expression of this protein was significant (P<0.05). Immunohistochemical expression of PGC-1α protein of the vastus lateralis muscle cells has been shown for experimental and control groups (Figure 1). The lowest expression of this protein is seen in the control group, and the highest expression is seen in the BFR.

Figure 1. Immunohistochemical expression of PGC-1α protein of the vastus lateralis muscle cells in the groups (Control, BFR, and HIIT)

White spots are related to protein expression.

Figure 2. Immunohistochemical expression of VEGF protein of the vastus lateralis muscle cells in the groups (Control, BFR, and HIIT)

White spots are related to protein expression.
4. Discussion and Conclusion

Given that activation of VEGF from the PGC-1 pathway is part of cellular-molecular mechanisms of high-intensity interval training, it seems that the combination of intense interval training and BFR can effectively affect the process of angiogenesis in the vastus lateralis muscle of amateur runners.

Ethical Considerations

Compliance with ethical guidelines

This study was approved by the Research Ethics Committee of the University of Mazandaran Biology Research Center (Code: IR.UMZ.REC.1397.048). All ethical principles are considered in this article. The participants were informed about the purpose of the research and its implementation stages. They were also assured about the confidentiality of their information. They were free to leave the study whenever they wished, and if desired, the research results would be available to them.

Funding

This research did not receive any grant from funding agencies in the public, commercial, or non-profit sectors.

Authors’ contributions

Conceptualization, methodology, research analysis, resources, drafting, visualization, project management and financing: Seyed Yaser Alavi; Validation, editing and finalization of writing and supervision: Both authors.

Conflict of interest

The authors declared no conflict of interest.

Acknowledgments

We would like to thank the University of Mazandaran for providing the research equipment needed.
مقاله پژوهشی
مقایسه هفت هفته تمرینات تناوبی شدید و محدود کننده جریان خون بر شاخص‌های بیوژنز میتوکندریایی و آنژیوژنزی عضله پهن خارجی دوندگان مرد

*سید پاسار علیوی، شاه‌محmor مدیراد

1. گروه فیزیولوژی ورزشی، دانشکده رئیسی و مدیری، دانشگاه مازندران، بابلسر، ایران.

چکیده
در این مطالعه بررسی ایکات و تاثیر هفت هفته تمرین تناوبی شدید و محدود کننده جریان خون بر شاخص‌های بیوژنز میتوکندریایی و آنژیوژنزی عضله پهن خارجی دوندگان مرد انجام می‌گردد.

مقدمه
در سال‌های اخیر، تمرینات تناوبی شدید (HIIT) به عنوان یکی از روش‌های تمرینی سودمند قرار گرفته که با تمرینات شدید و کوتاه‌مدت و محدود کننده جریان خون، به ویژه در عضلات بالینی و عضله پهن خارجی دوندگان می‌تواند به‌طور مؤثر فرآیندهای ساختاری و وابسته به افزایش سطح PGC-1α و VEGF بر روی انژیوژنزی و میتوکندریایی عضله پهن خارجی دوندگان می‌باشد.

مواد و روش‌ها
تعداد 25 داوطلب عضله پهن خارجی دوندگان مرد از 20 تا 40 ساله در این مطالعه شامل هفته وردی در بین 20 و 25 ساله، قهرمان دونده و کنترل پایه، دو گروه داوطلب انتخاب شدند. داوطلبان به سه گروه تقسیم شدند. گروه تجربی دو جلسه در هفته (در هر جلسه شش وهله) تمرین را به مدت هشت هفته انجام دادند.

نتایج
نتایج نشان داد که تمرینات تناوبی شدید با تاثیر مثبتی بر برخی شاخص‌های بیوژنز میتوکندریایی و آنژیوژنزی عضله پهن خارجی دوندگان مرد مواجه می‌باشند.

کلیدواژه‌ها:
تمرینات تناوبی شدید، تمرینات محدود کننده جریان خون، عامل پرکسیموکس، عامل رشد اندوتلیال عروقی.

1. High-Intensity Interval Training (HIIT)
2. Peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α)
3. Estrogen related receptor-α (ERRα)
4. Vascular Endothelial Growth Factor (VEGF)

فوتی ایلی: yaseralavi@gmail.com
شاکی علی، سید یاسر علوی و شادمهر میردار. مقایسه هشت هفته تمرینات تناوبی شدید و محدود کننده جریان خون بر شاخص های بیوژنز میتوکندریایی و آنژیوژنیک عضله پهن خارجی دوندگان مرد. مجله بیلیولوژی: علم پوست و ریز، 1387(11): 1501-1512.

با توجه به اینکه تمرینات تناوبی شدید و محدود کننده جریان خون با تمرینات عادی در مقایسه با هم تأثیراتی متفاوتی می‌گذارند، این مطالعه بررسی تأثیرات حاد و حمایتی از تمرین‌های تناوبی شدید و محدود کننده جریان خون (BFR HIIT) بر روی شاخص‌های بیوژنز میتوکندریایی و آنژیوژنیک عضله پهن خارجی دوندگان مرد و خود را به عنوان یکی از دو گروه تحقیقی انتخاب کرد.

با توجه به اینکه در سال‌های اخیر رویکردهای تمرینی منفرد و همراه با بی‌فیدینگ (BFR) به همراه با تمرینات سرعت بالا (HIIT) افزایش یافته است؛ این مطالعه بررسی تأثیرات حاد و حمایتی از تمرین‌های تناوبی شدید و محدود کننده جریان خون (BFR HIIT) بر روی شاخص‌های بیوژنز میتوکندریایی و آنژیوژنیک عضله پهن خارجی دوندگان مرد را بررسی کرد.

در این مطالعه، 20 نفر دونده نیمه استقامت فعال آماتور (میانگین سن 23±5 سال) با اجرای این تمرینات در سه گروه پنج نفره کنترل پایه برنده شدند. معیار ورود افراد به این تحقیق، عدم مصرف مواد مخدر، قند خون بالا، افزایش وزن و کاهش توده بدنی بود.

در این تحقیق، تمرینات تناوبی شدید و محدود کننده جریان خون با تمرینات عادی در مقایسه با هم تأثیراتی متفاوتی می‌گذارند. این مطالعه بررسی تأثیرات حاد و حمایتی از تمرین‌های تناوبی شدید و محدود کننده جریان خون (BFR HIIT) بر روی شاخص‌های بیوژنز میتوکندریایی و آنژیوژنیک عضله پهن خارجی دوندگان مرد را بررسی کرد.

در این مطالعه، 20 نفر دونده نیمه استقامت فعال آماتور (میانگین سن 23±5 سال) با اجرای این تمرینات در سه گروه پنج نفره کنترل پایه برنده شدند. معیار ورود افراد به این تحقیق، عدم مصرف مواد مخدر، قند خون بالا، افزایش وزن و کاهش توده بدنی بود.

در این تحقیق، تمرینات تناوبی شدید و محدود کننده جریان خون با تمرینات عادی در مقایسه با هم تأثیراتی متفاوتی می‌گذارند. این مطالعه بررسیت تأثیرات حاد و حمایتی از تمرین‌های تناوبی شدید و محدود کننده جریان خون (BFR HIIT) بر روی شاخص‌های بیوژنز میتوکندریایی و آنژیوژنیک عضله پهن خارجی دوندگان مرد را بررسی کرد.
به وسیله سرگذشته تولید کنسرتین تریک و پیروی می‌شود.

تصویر 1، 13 و 14 نمودار این ایموتیوسترسیمیپای یا VEGF، به منظور مقایسه به‌طور کلی، با استفاده از آنتی‌بادی‌های PGC-1α و VEGF که توسط شرکت‌های پژوهشی سانتاکروز و ابکم ساخته شده، بررسی شد، به منظور بررسی تغییرات بین گروه‌های مختلف.

در گروه تجربی HIIT+BFR، جریان خون به عدد سریع‌تری و بیشتری به مدت بیشتری به سمت جلو می‌رسد، در حالی که در گروه کنترل، جریان خون بیشتری به سمت عقب می‌رسد.

پدیده‌ی مغز خونی در سلول‌های عضله پهن خارجی در گروه‌های مختلف PGC-1α و VEGF، به وسیله سرگذشته تولید کنسرتین تریک و پیروی می‌شود.
جدول 1. میکائین و احتمال بهبود در گروه‌های HIIT و VEGF بر اساس نسبت به PGC-1α

گروه	HIIT	HIIT+BFR
میکائین	0.56/0.57	0.53/0.56
VEGF	0.52/0.58	0.53/0.56

یافته‌ها نشان می‌دهد که HIIT به صورت حداکثر گسته‌های نسبت به PGC-1α در گروه HIIT+BFR نسبت به گروه HIIT می‌تواند در اثر اجرای تمرین بهبود در گروه‌های HIIT و VEGF جلوگیری از میکائین و احتمال بهبود در گروه‌های HIIT و VEGF بر اساس نسبت به PGC-1α

منبع:
1. Reactive Oxygen Species (ROS)
2. Ca²⁺/calmodulin dependent protein kinase II (CaMKII)
3. AMP-activated protein kinase (AMPK)
4. P38 Mitogen Activated Protein Kinase (P38 MAPK)
5. VEGF
نمی‌فرمایید، پیام ویژه‌ای‌ها ۱۰٫۵۰٪ و PGC-۱α mRNA را در محدوده وحیان نهایی می‌دهند و منجر به کاهش می‌شوند و از نظر گروه‌بندی‌های TIGR، BFR و همکاران [۱۸] نشان می‌دهند. در این آزمایش، بررسی‌های بی‌بستگی‌دار با انجام تمرین‌های متغیرکاری و PGC-۱α اخیر در محدوده وحیان نهایی می‌داشته و از نگاه روند کاهش درصد نشان دهنده این مکانیسم میتواند باعث کاهش درصد PGC-۱α mRNA در محدوده وحیان نهایی بررسی‌های بی‌بستگی‌دار با انجام تمرین‌های متغیرکاری و PGC-۱α اخیر در محدوده وحیان نهایی می‌داشته و از نگاه روند کاهش درصد نشان دهنده این مکانیسم میتواند باعث کاهش درصد PGC-۱α mRNA در محدوده وحیان نهایی بررسی‌های بی‌بستگی‌دار با انجام تمرین‌های متغیرکاری و PGC-۱α اخیر در محدوده وحیان نهایی می‌داشته و از نگاه روند کاهش درصد NADH بهدرد می‌دهد. در این آزمایش، بررسی‌های بی‌بستگی‌دار با انجام تمرین‌های متغیرکاری و PGC-۱α اخیر در محدوده وحیان نهایی می‌داشته و از نگاه روند کاهش درصد NADH بهدرد می‌دهد. در این آزمایش، بررسی‌های بی‌بستگی‌دار با انجام تمرین‌های متغیرکاری و PGC-۱α اخیر در محدوده وحیان نهایی می‌داشته و از نگاه روند کاهش درصد NADH بهدرد می‌دهد.
نتیجه‌گیری
یافته‌های تحقیق فعلی نشان می‌دهد انجام یک دوره مشاهده‌نامه BFR همراه با HIIT و به صورت منفرد، VEGF مصرف پهن‌تر خارجی و PGC-1α نیز استخوان‌های مرد آماتور را افزایش دهد. با توجه به اینکه فعالیت‌های سریالی PGC-1α از طریق کاهشی از فراری‌های سلولی مولکولی ویژه به تمرین‌های تناسبی شدید است، به نظر می‌رسد تا نتیجه‌گیری تطبیقی شدید و BFR می‌تواند به طور مؤثری فعالیت در رگ‌زایی که در عملکرد موسیقی مؤثر است را در عضله پهن‌تر خارجی دهند. آماتور تحت تأثیر قرار دهد.

ملاحظات اخلاقی
پژوهش در اجرای اخلاقی منجر به مرحله تحقیقاتی، اخلاقی مطابق با دستورالعمل کمیته‌های اخلاق دانشگاه مازندران در نظر گرفته شده و کد اخلاق STROBE شده است. اصول اخلاقی پژوهش در این مقاله رعایت شده و کد اخلاقی IRUMZ.REC.1397.048 به شماره 1362 اجرا می‌شود. شرکت‌کنندگان اجازه می‌دهند که هر زمان که مایل بودند از پژوهش خارج شوند.

حامی مالی
این تحقیق هیچ گونه کمک مالی از سازمان‌های تأمین مالی نداشت.

مشارکت‌کنندگان
سید یاسر علوی و شادمهر میردار. تجدید می‌کنند با توجه به پیشرفت‌های شدید بیش از صد درصدی از موسیقی می‌تواند مؤثر باشد. نظرات و نقد‌ها در این مقاله مورد توجه قرار دارد.
References

[1] Macinnes MJ, Gibala MJ. Physiological adaptations to interval training and the role of exercise intensity. The Journal of Physiology. 2017; 595(9):2915-30. [DOI:10.1113/JP273196] [PMID] [PMCID]

[2] Gibala J, Little JP, MacDonald MJ, Hawley JA. Physiological adaptations to low- volume, high intensity interval training in health and disease. The Journal of Physiology. 2012; 590(5):1077-84. [DOI:10.1113/physiol2011.224725] [PMID] [PMCID]

[3] Perry CG, Lally J, Holloway GP, Heigenhauser GJ, Bonen A, Spriet LL. Repeated transient mRNA bursts precede increases in transcriptional and mitochondrial proteins during in human skeletal muscle. The Journal of Physiology. 2010; 588(23):4795-810. [DOI:10.1113/jphysiol.2010.199448] [PMID] [PMCID]

[4] Little JP, Safdar A, Wilkin GP, Tarnopolsky MA, Gibala MJ. A practical model of low volume high-intensity interval training: induces mitochondrial biogenesis in human skeletal muscle; potential mechanisms. The Journal of Physiology. 2010; 588(6):1011-22. [DOI:10.1113/jphysiol.2009.181743] [PMID] [PMCID]

[5] Chinsomboon J, Ruas J, Gupta RK, Thom R, Shoaq J, Rowe GC, et al. The transcriptional coactivator PGC-1α mediates exercise induced angiogenesis in skeletal muscle. Proceedings of the National Academy of Sciences of the United States of America. 2009; 106(S0):21401-6. [DOI:10.1073/pnas.0909131106] [PMID] [PMCID]

[6] Leick L, Hellsten Y, Pentz J, Lynghy SS, Wojtaszewski JF, Hidalgo J, et al. PGC-1α mediates exercise induced skeletal muscle VEGF expression in mice. American Journal of Physiology-Endocrinology and Metabolism. 2009; 297(1):92-103. [DOI:10.1152/ajpendo.00076.2009] [PMID] [PMCID]

[7] Bayat M, Gharrakhanlou R, Nikkah M, Amani Shalamzari S. The effect of Four Weeks of High-intensity Interval Training on PGC-1α and VEGF Protein Contents in Skeletal Muscle of Active Men. Journal of Arak University of Medical Sciences. 2018; 21(3):24-32. http://jams.arakum.ac.ir/article-1-5641-en.html

[8] Gliemann L, Gunnarsson TP, Hellsten Y, Bangsbo J. 10-20:30 training increases performance and lowers blood pressure and VEGF in runners. Scandinavian Journal of Medicine & Science in Sports. 2015; 25(S5):e479-89. [DOI:10.1111/sms.12356] [PMID]

[9] Spranger MD, Krishnan AC, Levy PD, O’Leary DS, Smith SA. Blood flow restriction training and the exercise pressor reflex: A call for concern. American Journal of Physiology-Heart and Circulatory Physiology. 2015; 309(9):H1440-52. [DOI:10.1152/ajpheart.00208.2015] [PMID] [PMCID]

[10] Kajser LE, Sundberg CJ, Iken O, Nygren AN, Estbjornsm M, Sylvén C, et al. Muscle oxidative capacity and work performance after training under local leg ischemia. Journal of Applied Physiology. 1990; 69(2):785-7. [DOI:10.1152/jappl.1990.69.2.785] [PMID] [PMCID]

[11] Abe T, Fujita S, Nakajima T, Sakamaki M, Ozaki H, Ogawara R, et al. Effects of low-intensity cycle training with restricted leg blood flow on thigh muscle volume and VO2 max in young men. Journal of Sports Science & Medicine. 2010; 9(3):452-8. [PMID] [PMCID]

[12] Park S, Kim JK, Choi HM, Kim HG, Beekley MD, Nho H. Increase in maximal oxygen uptake following 2-week walk training with blood flow occlusion in athletes. European Journal of Applied Physiology. 2010; 109(4):591-600. [DOI:10.1007/s00421-010-1377-y] [PMID]

[13] Paton CD, Addis SM, Taylor LA. The effects of muscle blood flow restriction during running training on measures of aerobic capacity and run time to exhaustion. European Journal of Applied Physiology. 2017; 117(12):2579-85. [DOI:10.1007/s00421-017-3745-3] [PMID]

[14] Paiva FM, Vianna LC, Fernandes IA, Nobrega AC, Lima RM. Effects of disturbed blood flow during exercise on endothelial function: A time course analysis. Brazilian Journal of Medical and Biological Research. 2016; 49. [DOI:10.1590/1414-431X20151500]

[15] Karabulut M, McCarron J, Abe T, Sato Y, Bemben M. The effects of different initial restrictive pressures used to reduce blood flow and thigh composition on tissue oxygenation of the quadriceps. Journal of Sports Sciences. 2011; 29(9):951-8. [DOI:10.1080/02644141.2011.572992] [PMID]

[16] Suga T, Okita K, Takada S, Ornokawa M, Kadoguchi T, Yokota T, et al. Effect of multiple set on intramuscular metabolite stress during low-intensity resistance exercise with blood flow restriction. European Journal of Applied Physiology. 2012; 112(11):3915-20. [DOI:10.1007/s00421-012-2377-x] [PMID] [PMCID]

[17] Takarada Y, Sato Y, Ishii N. Effects of resistance exercise combined with vascular occlusion on muscle function in athletes. European Journal of Applied Physiology. 2002; 86(4):308-14. [DOI:10.1007/s00421-001-0561-5] [PMID]

[18] Christiansen D, Murphy RM, Bangsbo J, Stathis CG, Bishop DI. Increased FXYD1 and PGC-1α mRNA after blood flow-restricted running is related to fibre type-specific AMPK signalling and oxidative stress in human muscle. Acta Physiologica. 2018; 223(2):e13045. [DOI:10.1111/apha.13045] [PMID] [PMCID]

[19] Taylor CW, Ingham SA, Ferguson RA. Acute and chronic effect of sprint interval training combined with postexercise blood-flow restriction in trained individuals. Experimental Physiology. 2016; 101(1):143-54. [DOI:10.1113/EP085293] [PMID]

[20] Mitchell EA, Martin NR, Turner MC, Taylor CW, Ferguson RA. The combined effect of sprint interval training and postexercise blood flow restriction in trained individuals. Experimental Physiology. 2017; 117(12):2579-85. [DOI:10.1007/s00421-017-3745-3] [PMID]

[21] Hoshino D, Kitaoka Y, Hatta H. High-intensity interval training enhances oxidative capacity and substrate availability in skeletal muscle. The Journal of Physical Fitness and Sports Medicine. 2015; 6(1):13-23. [DOI:10.7600/jpfsm.5.13] [PMID]

[22] Hood DA. Invited Review: contractile activity-induced mitochondrial biogenesis in skeletal muscle. Journal of Applied Physiology. 2001; 90(3):1137-57. [DOI:10.1152/jappl.2001.90.3.1137] [PMID] [PMCID]

[23] Arany Z, Foo SY, Ma Y, Ruas JL, Bommi-Reddy A, Girnun G, et al. HIF-independent regulation of VEGF and angiogenesis by the transcriptional coactivator PGC-1α. Nature. 2008; 451(7181):1008-12. [DOI:10.1038/nature06613] [PMID]
[24] Hoier B, Passos M, Bangsbo J, Hellsten Y. Intense intermittent exercise provides weak stimulus for vascular endothelial growth factor secretion and capillary growth in skeletal muscle. Experimental Physiology. 2013; 98(2):585-97. [DOI:10.1113/expphysiol.2012.067967] [PMID]

[25] Cocks M, Shaw CS, Shepherd SO, Fisher JP, Ranasinghe AM, Barker TA, et al. Sprint interval and endurance training are equally effective in increasing muscle microvascular density and eNOS content in sedentary males. The Journal of Physiology. 2013; 591(3):641-56. [DOI:10.1113/jphysiol.2012.239566] [PMID] [PMCID]

[26] Gliemann, L. Training for skeletal muscle capillarization: a Janus-faced role of exercise intensity? European Journal of Applied Physiology. 2016; 116:1443-4. [DOI:10.1007/s00421-016-3419-6] [PMID]

[27] Gundermann DM, Fry CS, Dickinson JM, Walker DK, Timmerman KL, Drummond MJ, Volpi E, Rasmussen BB. Reactive hyperemia is not responsible for stimulating muscle protein synthesis following blood flow restriction exercise. Journal of Applied Physiology. 2012; 112(9):1520-8. [DOI:10.1152/japplphysiol.01267.2011] [PMID] [PMCID]

[28] Weston AR, Myburgh KH, Lindsay FH, Dennis SC, Noakes TD, Hawley JA. Skeletal muscle buffering capacity and endurance performance after high-intensity interval training by well-trained cyclists. European Journal of Applied Physiology and Occupational Physiology. 1996; 75(1):7-13. [DOI:10.1007/s004210050119] [PMID]

[29] Bickham DC, Bentley DJ, Le Rossignol PF, Cameron-Smith D. The effects of short-term sprint training on MCT expression in moderately endurance-trained runners. European Journal of Applied Physiology. 2006; 96(6):636-43. [DOI:10.1007/s00421-005-0100-x] [PMID]
