The brain’s best friend: microglial neurotoxicity revisited

Sabine Hellwig1, Annette Heinrich1 and Knut Biber1,2*

1 Department of Psychiatry and Psychotherapy, University Hospital Freiburg, Freiburg, Germany
2 Department of Neuroscience, University Medical Center Groningen, Groningen, Netherlands

*Correspondence:
Knut Biber, Department of Psychiatry and Psychotherapy, University Hospital Freiburg, Hauptstrasse 5, 79104 Freiburg, Germany.
e-mail: knut.biber@uniklinik-freiburg.de

INTRODUCTION

Microglia research has intensified enormously in the last decade, and many surprising findings have been published. However, microglia still rank among the most mysterious cells of the brain and only recent results have begun to provide answers to the most basic questions in microglial biology, for example the origin of these cells, or the fact that microglia are not replaced by peripheral monocytes/macrophages in the healthy situation (Ajami et al., 2007; Ginosous et al., 2010; Kierdorf et al., 2013). Moreover, it has become clear that “resting” microglia are by no means just idle cells (Nimmerjahn et al., 2005; Sierra et al., 2010; Tremblay et al., 2010; Paolicelli et al., 2011; Viner et al., 2012) and there is good evidence to suggest that microglia are not only important in brain pathology but also play important roles in the healthy brain (Wake et al., 2009; Sierra et al., 2010; Tremblay et al., 2010; Paolicelli et al., 2011; Schaefer et al., 2012). Thus, the general and simple concept of microglia “activation” is now questionable (see for recent reviews: Hanisch and Kettenmann, 2007; Colton, 2009; Ransthooff and Perry, 2009; Yong and Rieset, 2009; Graeber, 2010; Parkhurst and Arora, 2010; Ransthooff and Graham, 2010; Kettenmann et al., 2011; Prinz et al., 2011; Tremblay et al., 2011; Aguzzi et al., 2013; Kettenmann et al., 2013). One long standing aspect of microglia biology, however, has never been challenged; namely, their involvement in brain disease. This assumption was first based on morphological data, whereby ramified microglia in the healthy brain were described as “resting,” the rounded, macrophage-like microglia in the diseased brain were designated as “activated” microglia. Later it was shown that “activated” microglia sometimes express potential harmful substances, which led to the suggestion that these cells are detrimental during brain disease. On top of this, numerous cell culture experiments, most of which involved lipopolysaccharide (LPS)-treated microglia that have the potential to kill neurons, have further corroborated the assumption that “activated” microglia are neurotoxic cells (see for recent reviews: Block et al., 2007). However, from an evolutionary point of view it is difficult to understand why a highly sensitive, but otherwise long-lived, post-mitotic organ like the brain would serve as a host to such a large number of potentially toxic cells.

This review therefore aims to critically reconsider the common view that “activated” microglia are neurotoxic cells, and to highlight studies in which the role of microglia in vivo was specifically targeted, often revealing a protective function of these cells.

MICROGLIA IN VITRO STUDIES

The first direct evidence concerning microglia as neurotoxic cells was published some 20 years ago (see for example: Boge and Arora, 1992; Chao et al., 1992). These experiments utilized standard microglia cultures (shake-off microglia from cultured neonatal brain homogenate) that were stimulated with rather high concentrations of single or combined pro-inflammatory stimuli such as LPS, interferon-gamma (IFN-γ), or tumor necrosis factor-α (TNF-α). These cells (or the resulting supernatant) were transferred to plates containing cultured neurons, and incubated for some time before neuronal survival was assessed (Boge and Arora, 1992; Chao et al., 1992). Ever since these pioneering experiments were performed, numerous variations of this experimental paradigm have identified a plethora of toxic microglial secretory products and/or detrimental microglial functions that obviously add weight to the notion that microglia are neurotoxic cells (see for recent examples: Lehnardt et al., 2008; Pais et al., 2008; Levesque et al., 2010; Burguillos et al., 2011; Gao et al., 2011). Thus, from the numerous papers that have investigated the influence of in vitro microglia on the survival of neurons, the majority has described a detrimental microglia...
role. Fewer studies have also found a neuroprotective function of cultured microglia showing that not all functions of cultured microglia are detrimental for neurons (see for recent review: Polazzi and Monti, 2010).

Cell culture experiments, however, should be approached with caution, especially when highly sensitive and reactive cells such as microglia are used. Standard cultured microglia have at least three major disadvantages: First, since standard cultured microglia are derived from the neonatal brain, these cells have missed the potential maturation process that occurs in vivo. Second, cultured microglia are grown in serum-containing (usually 10%) medium, whereas in vivo microglia normally never come in contact with serum components. Third, nowadays it is also very well known that in vivo microglia are kept under constant restraint by a variety of inhibitory inputs such as CX3CL1, CD200, CD22, or CD172 (see for review: Bieber et al., 2007; Ransohoff and Cardona, 2010; Prinz et al., 2011), which, of course, is not the case in culture. Indeed, the genetic removal of even just one of these inhibitory factors in animal models dramatically changes the reaction profile of microglia, often causing overshooting microglia reactions and sometimes even toxic microglia responses (Heek et al., 2000; Cardona et al., 2006); therefore, it is very likely that the complete lack of normal inhibition has a dramatic influence on the reactivity of cultured microglia.

Despite the caveats associated with studying microglial function in vitro, there is surprisingly little research regarding the question of whether cultured microglia can be reliably compared to their in vivo counterparts. One such report by Boucsein et al. (2000) investigated the electrophysiological properties of microglia by comparing cultured (with or without LPS treatment) and embryonic microglia in acute brain slice preparations. It was found that ramified microglia barely display membrane currents, in stark contrast to primary cultured microglia, which elicited inward and outward rectifying currents (depending on LPS treatment) that were similar to those found in cultured macrophages (Boucsein et al., 2000). More recently, Schmid et al., 2009 compared mRNA expression profiles between cultured microglia and alveolar macrophages stimulated with LPS/IFN-γ and microglia rapidly isolated from the brain of LPS/IFN-γ-treated animals. This study also reported that cultured microglia and macrophages are much more alike than the microglia that have been acutely derived from brain tissue (Schmid et al., 2009). Recently, a similar comparative analysis was performed for post-mortem human microglia and macrophages derived from the choroid plexus (Melfi et al., 2012). These authors not only provided convincing evidence for major differences in surface marker and mRNA expression pattern between brain-derived microglia and macrophages, they further showed that acutely isolated microglia are not able to respond to LPS stimulation, most likely because these cells lack CD14 (Melfi et al., 2012). It is yet not known whether this lack of CD14 and LPS response is due to the isolation technique used in the study. However, overnight incubation in culture increased CD14 levels and rendered the cells sensitive to LPS treatment, again suggesting that growing microglia in culture can have a tremendous influence on the reactivity of these cells (Melfi et al., 2012). These results strongly imply that cultured microglia share few similarities with their in vivo counterparts, which leads to the conclusion that in vitro evidence concerning microglia should be interpreted with the utmost caution when extrapolating data into the context of the brain.

NEURONAL LOSS AND THE PRESENCE OF AMOEBOID MICROGLIA: CHICKEN OR EGG?

Histological studies by Del Rio-Hortega identified microglia almost a century ago (see Kettenmann et al., 2011 for an excellent overview on microglia history) and even back in the early days of microglia research, the potential importance of these cells in brain disease was already been recognized. Indeed, these seminal histological studies on microglia morphology also gave rise to the concept of microglia “activation,” which states that ramified microglia in the healthy brain are in a resting state, and that upon any potential danger signal these cells morph into an amoeboid or macrophage-like shape. Because the complexity of this morphological transition is limited, microglial responses were generally seen as graded and stereotypic (see for review: Kettenmann et al., 2011). In other words it was more or less believed that microglia always had the same role once they become amoeboid. Numerous in vivo reports have concluded that amoeboid microglia can potentially confer neurotoxicity by expressing substances (that are toxic in vivo) such as pro-inflammatory cytokines (Blais and Rivest, 2004; Xie et al., 2004; Allen et al., 2005; Kim and de Vellis, 2005; Walker and Lue, 2005). Other reports used minocycline (a potential microglia inhibitor) or other anti-inflammatory drugs to ameliorate damage in different models of brain diseases and since at the same time a decreased morphological transition of microglia was observed these results were often discussed in favor of a neurotoxic role of amoeboid microglia (see for example: Yrjänheikki et al., 1998; He et al., 2001; Tikka et al., 2001; Kriz et al., 2002; Hunter et al., 2004; Fan et al., 2005).

However, it could very well be that the morphological transition of microglia is the result rather than the cause of neuronal damage, as was shown in a model of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) and methamphetamine (METH)-induced neurotoxicity (O’Callaghan et al., 2008). In addition, the fact that microglia may undergo morphological transition in the absence neuronal loss is often disregarded. For example, although the injection of LPS in vivo causes rapid morphological transition of microglia, yet it does not induce massive neuronal death, except when injected into the substantia nigra (Kim et al., 2000; Nadeau and Rivest, 2001; Tikka et al., 2001; Fan et al., 2005). Moreover, it has been known for more than 10 years that microglia in the spinal cord become amoeboid in response to peripheral nerve injury, which is important for the development of neuropathic pain. However, despite the presence of activated microglia, neuronal loss is not a hallmark of neuropathic pain.

Taken together, we think that there is a bias in the field regarding the function of amoeboid microglia. The temporal and spatial relationship between amoeboid microglia-like cells (see next chapters) and dead or dying neurons - which inevitably occurs in case of neuronal damage - is often seen as indication for a neurotoxic role of microglia. Such correlation, of course, does not allow conclusions about causality.
TARGETING MICROGLIA IN MOUSE MODELS OF DISEASE

Using an experimental approach to understand microglial function is a challenging task and as a result most studies, although carefully performed, did not specifically target microglia. In numerous studies a microglia reaction is induced by exogenous application of pro-inflammatory molecules (injection of IL-1, TNFα, LPS, and others) that unleash an uncontrollable immune response, not only in the brain (which also potentially involves astrocytes, oligodendrocytes, endothelial cells, perivascular macrophages, and neurons), but also most likely causes an immune response in the periphery. The second-generation tetra-cycline minocycline is often referred to as a specific inhibitor of microglia (see for example: Raghavendra et al., 2005; Ledeboer et al., 2005; Mika et al., 2007; Osikowicz et al., 2009). However, it should be kept in mind that minocycline is much less specific than often stated, as it clearly affects peripheral macrophages (Dunstan et al., 2011) and T cells (Streto et al., 2011), and can have a direct influence on the survival of neuronal cell lines and cultured neurons (Hashimoto and Ishima, 2010; Huang et al., 2010; Schäfler et al., 2011; Ossola et al., 2012), thus, numerous microglia-independent effects of minocycline have been published (Hughes et al., 2004). Moreover, it was reported that the microglia reaction in response to facial nerve injury is unchanged in the presence of even high concentrations of minocycline (Fendrick et al., 2005). Similarly, other anti-inflammatory drugs are not specific for microglia either; for example, the neuroprotective effect of the anti-inflammatory compound triflusal was found not to depend on the presence of microglia (Montero Domínguez et al., 2009). It can thus be concluded that more specific methods are needed to address microglia function.

MICROGLIA VS. OTHER PERIPHERAL MONOCYTES/MACROPHAGES

THE PROBLEM OF IDENTIFICATION

Microglia are derived from early myeloid precursor cells that appear in the yolk sac before major vascularization or hematopoiesis occurs in the developing embryo (Sorokin et al., 1992; Alliot et al., 1998; Herbonnel et al., 2001; Ginioux et al., 2010; Mizutani et al., 2012). Strikingly, it was found that microglia stem from primitive erythromyeloid progenitor cells that develop via a special program into mature microglia, and most importantly that these cells form a stable self-contained population that is not replaced by peripheral monocytes in the unchallenged brain (Kierdorf et al., 2013; Neumann and Wekerle, 2013).

While microglia can be easily identified in the healthy brain, this changes under pathological conditions in which peripheral monocytes/macrophages enter the brain. Despite the fact that microglia and peripheral monocytes/macrophages have different developmental origins, both cell populations share many properties. The expression of general innate pattern recognition receptors such as Toll-like receptors (TLR), nucleotide-binding oligomerization domain (NOD)-like receptors (NLR), or complement receptors are common to both microglia and peripheral monocytes/macrophages, as is the ability to secrete a whole variety of different cytokines (pro- and anti-inflammatory) growth factors, chemokines, reactive oxygen, and nitrogen species (Kettenmann et al., 2011; Jung and Schwartz, 2012). The lack of reliable microglia-specific markers makes it very difficult both to discriminate between microglia and peripheral monocytes/macrophages, to allocate functions to either cell type (Jung and Schwartz, 2012). This difficulty may have added confusion to the question whether or not microglia in the diseased brain are neurotoxic cells: an example here is the chemokine receptor CCR2. On one hand there are various reports in which CCR2 expressing cells are suggested to be microglia (Abbadie et al., 2003; Zhang et al., 2007; Fernández-López et al., 2012) or described as microglia/macrophages (Yao and Tisika, 2012) or referred to as amoeboid microglia cells (Deng et al., 2009). Often CCR2 is discussed to be an important receptor for the recruitment of microglia to injured brain areas (El Khoury et al., 2007; Zhang et al., 2007; Deng et al., 2009; Raber et al., 2013) and the inhibition or lack of CCR2 signaling is related to improved disease outcome (Abbadie et al., 2003; Dimitrijevic et al., 2007; Zhang et al., 2007; Fernández-López et al., 2012; Yao and Tisika, 2012) implicating that CCR2-expressing microglia at least contribute to disease progression.

On the other hand there is convincing evidence from different transgenic mouse models and bone-marrow transplantation experiments that microglia do not express CCR2 in the healthy or diseased brain (Mildner et al., 2007; Jung et al., 2009; Sæderup et al., 2010; Mizutani et al., 2012), moreover mouse microglia lack the mRNA for CCR2 (Zuurman et al., 2003; Ohal et al., 2012). In bone-marrow transplantation experiments it was shown that the response of endogenous microglia to stroke was not affected in CCR2 deficient animals, showing that CCR2 is not regulating microglia responses here (Schilling et al., 2009a,b). In these studies it was shown that the infiltration of peripheral monocytes into the brain was greatly reduced, which is in agreement with other reports clearly showing that peripheral monocytes require CCR2 in order to invade the diseased central nervous system (CNS; Mildner et al., 2007; Schilling et al., 2009a,b; Prinz and Friller, 2010; Prinz and Mildner, 2011; Mizutani et al., 2012).

Thus CCR2 in the brain should be regarded as marker of peripheral monocytes/macrophages making it questionable whether the published (mostly detrimental) effects of CCR2 expressing cells can be allocated to microglia. CCR2 most likely is not the only example in this respect, showing that without a proper identification it is not possible to draw conclusions about microglia function.

HOW TO TELL THEM APART?

One way to discriminate between monocytes/macrophages and microglia is offered by flow cytometry analysis ([fluorescence assisted cell sorting (FACS)] of acutely isolated cell preparations from the diseased brain using CD11b and CD45 antibodies. Although monocytes/macrophages and microglia are both positive for CD11b and CD45, microglia can be identified by their relatively low expression levels of CD45 (“CD45dim”) compared to those of peripheral monocytes/macrophages (“CD45high”). Thus microglia and monocytes/macrophages appear as separate cell populations in FACS analysis (Sedgwick et al., 1998; de Haas et al., 2007, 2008; Jersild et al., 2007). We used such a FACS-based identification approach in a mouse model of cuprizone-induced loss of oligodendrocytes, whereby
As mentioned above, nowadays it is clear that microglia in the brain are under constant restraint, particularly because they specifically express receptors for a variety of inhibitory factors that are constitutively expressed in the brain, mostly by neurons (Biber et al., 2007; Ransohoff and Perry, 2009). The most prominent ligand-receptor pairs in this respect are CX3CL1-CX3CR1 and CD200-CD200r. Regarding the CX3CR1-CX3CL1 axis, one of the most used mouse model in microglia research is the CX3CR1-EGFP mouse line in which all microglia are green fluorescent protein (GFP)-positive (Jung et al., 2000). This mouse line, has since contributed enormously to our current understanding of microglia biology, and CX3CR1-deficient homoyzogotes have been used extensively to study the role of CX3CR1 in various models of brain disease. Indeed, the consequences of CX3CR1 deletion in microglia largely depends on the mouse model used (see for extensive review: Prinz et al., 2011; Ransohoff and Prinz, 2011; Wolf et al., 2013); however, the overall idea at the moment is that a lack of CX3CR1 leads to the “hyperactivity” of microglia in the diseased brain, thereby unleashing potential neurotoxic properties (Wolf et al., 2013). Accordingly, administration of CX3CL1 into the brain causes neuroprotection in experimental stroke and two models of Parkinsons disease (Cipriani et al., 2011; Pabon et al., 2011; Morganti et al., 2012). Similarly, removing the inhibitory input that is normally modulated by CD200 (i.e., as in CD200 knockout (KO) mice) reportedly promotes microglial morphological transition even in the healthy brain (Hock et al., 2000) and leads to an exaggerated disease course both in EAE (Broderick et al., 2002) and retinal inflammation (Hock et al., 2000).

What remains to be established is the question whether the CX3CL1-CX3CR1 or CD200-CD200r axes are affected in the diseased brain. To this end, there are only a few reports about CX3CL1 levels in the brain and CX3CR1 expression levels in microglia during the course of disease. For example, Cardona et al. (2006) detected rather high levels of free CX3CL1 in the brain (around 300pg/mg), which is suggestive of constitutive CX3CL1 release under normal physiological conditions. In the diseased (rodent or human) brain, the levels of CX3CL1 and/or CX3CR1 were found either to be unchanged or increased (Hughes et al., 2002; Tarozzo et al., 2002; Hulshof et al., 2003; Lindia et al., 2005; Xu et al., 2012), indicating that the inhibitory function of the CX3CL1-CX3CR1 axis is not generally weakened under diseased conditions. This might be different in the aged brain or brains of Alzheimer patients where a downregulation of CX3CL1 was recently observed (Wyune et al., 2010; Cho et al., 2011).

Even less is known about the regulation of CD200 or CD200r expression in disease. It was reported that in human multiple sclerosis (MS) patients, CD200 expression in neurons diminishes around the periphery and in the center of MS lesions (Konig et al., 2007); however, astrocytes in these lesions acquire CD200 expression (Koning et al., 2009). In a mouse model of hippocampal excitotoxicity, an increase in neuronal CD200 expression was observed (Yi et al., 2012), while a decrease in CD200 and CD200r expression was reported in a mouse model of Alzheimer’s disease (Walker et al., 2009).

Thus, it is at the moment unclear whether CX3CR1 or CD200r signaling is diminished in the diseased brain. To gain more knowledge about the regulation of the microglia inhibitory environment during brain disease is, however, of importance for our interpretation of the results gained in mice with mutated CX3CL1-CX3CR1 or CD200-CD200r signaling. In other words it remains to be established whether or not in a given brain disease the inhibitory input for microglia is decreased and as a result these cells become “hyperactivated” and potentially neurotoxic.
OTHER MOUSE MODELS WITH MUTATED MICROGLIA

FUNCTION

In amyotrophic lateral sclerosis (ALS), mutations within the ubiquitously expressed enzyme superoxide dismutase 1 (SOD1) gene are responsible for about a quarter of the inherited disease cases. Accordingly, mice that express mutant human SOD1 exhibit motoneuron degeneration and a decreased life span (see for review: Lobinger and Cleveland, 2007). The role of microglia in this disease has been investigated in various elegant experiments in which mutant SOD1 was expressed in specific cell types (Pramatarova et al., 2001; Lin et al., 2002; Clement et al., 2003; Beers et al., 2006; Boillot et al., 2006). The conclusion that arose from these experiments was that microglia with mutated SOD1 do not initiate motor neuron degeneration but rather accelerate disease progression (see for review: Lobiger and Cleveland, 2007), since the replacement of SOD1 mutated microglia with wild-type cells slowed down disease progression and prolonged the life span of the animals (Kang and Rivest, 2007). Similarly, it was recently reported that transplantation of wild-type microglia into the brains of mice deficient for methyl-CpG binding protein (MECP2), a model for Rett syndrome, ameliorated disease progression and significantly increased the life span of the animals (Derecki et al., 2012).

MUTATED HUMAN MICROGLIA

Triggering receptor expressed on myeloid cells-2 (TREM2) is another receptor that is in brain microglia of human microglia (for review see: Linnartz et al., 2010). TREM2 belongs to the family of immunoreceptor tyrosine-based activation motif (ITAM) receptors for which the ligand has yet not been identified. Activation of TREM2 stimulates phagocytic activity in microglia and downregulates TNFα and inducible nitric oxide synthase (iNOS) expression (Jiakashi et al., 2005). TREM2 is thus an anti-inflammatory receptor that at the same time promotes phagocytic activity. TREM2 is intracellularly coupled to the adapter protein DAP12 (see for review: Linnartz et al., 2010), and interestingly, loss of function mutations of either TREM2 or DAP12 lead to a rare chronic neurodegenerative disease known as Nasu–Hakola or polyglucosan-like leukoencephalopathy (PLOSL), an inherited autosomal recessive human disease characterized by early onset presenile dementia (Colonna, 2003).

It can thus be appreciated from the studies discussed in the last three chapters that milder disease or less neuronal loss in the presence of mutated microglia is seldom occurring. In contrast, the perturbation of proper microglia function by various mutations regularly leads to neuronal dysfunction and/or neurodegeneration, findings that would not corroborate the idea that microglia can become neurotoxic cells. It should be noted that the problem of microglia vs. peripheral monocytes/macrophages, however, is also of importance here since none of the above described mutated genes is exclusively found in microglia.

MODELS OF MICROGLIAL INHIBITION OR DEPLETION

MICROGLIA DEPLETION WITH CLODRONATE

The bisphosphonate drug clodronate is toxic to cells of the myeloid lineage and can be used to selectively deplete them in vivo and in vitro (Buiting and Van Rooijen, 1994). Since microglia are of myeloid origin, clodronate can also be used to deplete microglia in cell culture, organotypic hippocampal slice cultures (OHSC) and in vivo (Kohli et al., 2003; Lauro et al., 2010; Drabek et al., 2012). OHSC are in vitro explant cultures that reflect many aspects of the hippocampus in vivo situation by maintaining a certain degree of intrinsic connectivity and lamination (see for example: Frotscher et al., 1995). With respect to microglia, it is known that after 10 days in culture these cells acquire a ramified morphology that is comparable to their in vivo counterparts (Hailer et al., 1996). OHSC neurons of the CA1, CA3, and DG regions display distinct and selective neuronal vulnerability toward N-methyl-D-aspartate (NMDA)-induced excitotoxicity, with CA1 neurons being the most susceptible, followed by CA3 and DG neurons, respectively (Vornow et al., 1991; Cronberg et al., 2005; Boscia et al., 2006; Gie et al., 2006). Importantly, this effect has also been observed in vivo (Kirino and Sano, 1984; Horn and Schлёte, 1992; Acarin et al., 1996; Won et al., 1999; Schauecker, 2002). In addition, there is a strict correlation between the amount of neuronal loss occurring and the morphological profile of microglia in OHSC subjected to excitotoxicity (Heynper et al., 1998; van Weering et al., 2011; Vinet et al., 2012). We have used OHSC to address the function of microglia in NMDA-induced neuronal loss by depleting microglia and then replenishing them with microglia (Vinet et al., 2012). It was found that neuronal cell loss was predominantly increased in the absence of microglia and that even neurons of the DG were affected by the NMDA treatment when microglia cells were not present (Vinet et al., 2012). These findings are in agreement with earlier reports from our group, as well as from others (Montero et al., 2009; van Weering et al., 2011). In addition to earlier findings, we also showed that when microglia-free OHSC were replenished with microglia, these cells invaded the tissue, distributed themselves evenly across the slice and acquired an in vivo-like, ramified morphology (Vinet et al., 2012). Most importantly, neurons in the presence of these ectopic microglia were protected from NMDA-induced toxicity to the same extent as in non-depleted control slices (Vinet et al., 2012). These findings convincingly show not only that microglia have a neuroprotective capacity, but also that this property applies to ramified microglia (Vinet et al., 2012). Thus, neurons are protected in the vicinity of ramified microglia, while removing microglia from the local environment renders neurons more vulnerable to excitotoxicity.

Although it is yet not clear whether similar processes also occur in vivo, it is tempting to speculate that numerous protective properties of microglia have simply gone unnoticed because ramified microglia were generally long considered to be inactive cells. This speculation is corroborated by recent findings in the neonatal brain subjected to middle cerebral artery occlusion (MCAO), a widely used stroke model. Here it was reported by Fantino et al. (2011) that the depletion (or reduction) of ramified microglia in vivo (by intracerebral injection of clodronate-filled liposomes)
Another way to specifically target microglia is through the use of EAE (referred to as microglia paralysis) (Heppner et al., 2005), or morphological microglia transition to amoeboid cells in the case of animals. Ganciclovir application leads to the inhibition of compartment from ganciclovir treatment. In these resulting chimeric bone-marrow is required to spare the peripheral myeloid compartment, and second ramified microglia are thus not in favor of a major neurotoxic function of microglia in the brain but would argue more for a protective role of the innate immune cells of the brain.

CONCLUSION
Innate immunity was originally seen as a stereotypic response to pathogen-associating molecular patterns (DAMPs) and acting in reverse to remove debris of dead tissue and damage. Moreover, innate immune cells are no longer considered to elicit a stereotypic response. In striking contrast, it now is apparent that tissue damage or cellular stress is also a potent inducer of microglial function. Therefore, it is now clear that tissue damage or cellular stress is also a potent inducer of innate immunity, where the ultimate goal is to protect and restore cellular function, thereby guaranteeing the functional integrity of the body in terms of microglial function in CD11b-HSVTK animals was only advantageous in a disease model in one reported case (Heppner et al., 2005). All other reports either provided evidence for a beneficial role of microglial function in vivo (Lalancette-Hébert et al., 2007; Mirrione et al., 2010) or showed no effect of blunting the microglial response (Gowing et al., 2008; Grahwohl et al., 2009). It should be noted here that the latter studies inhibited or depleted microglia for a limited time at rather late stages of chronic disease models (Gowing et al., 2008; Grahwohl et al., 2009), which may explain the surprising lack of effect. The inhibition or depletion of microglial function may have been too late or too short to unravel the role of these cells in mouse models of AD and ALS (Gowing et al., 2008; Grahwohl et al., 2009). Thus, inhibition or depletion of microglia for longer time periods may be required for chronic disease models.
infections with exogenous pathogens are (luckily) scarce events in the brain making cellular stress or tissue damage more likely signals for microglia.

In this review we argue that amoeboid microglia have a bad reputation. Based on correlative histological data and correspondingly in vitro experiments these cells are often discussed to be neurotoxic. Moreover, their striking similarity with peripheral monocytes/macrophages has blurred our picture concerning the function of these cells. Microglia colonize the CNS very early and are sequestered there throughout a lifetime, making it very likely that these cells have an elaborate repertoire of brain specific functions that may not be appropriately taken over by peripheral monocytes/macrophages (Neumann and Wekerle, 2013). Therefore to discriminate microglia from peripheral monocytes/macrophages and to elucidate the functional spectrum of microglia in the (healthy and diseased) brain will be a major challenge.

New mouse models may be helpful here. It was recently shown that following chemical depletion of microglia (Cd11b–HSVTK mouse) there is a rapid and efficient repopulation of the brain with CD45 high and CXCR2 low blood monocytes, which gradually engrafted into the microglia-free tissue with an overall distribution and morphology reminiscent (yet different) to that of endogenous microglia (Varvel et al., 2012). This mouse model thus offers an opportunity to investigate the question whether or not invading monocytes/macrophages can become true brain microglia (Varvel et al., 2012; Neumann and Wekerle, 2013). Other new mouse models may also be helpful to distinguish microglia (function) from peripheral monocytes/macrophages. The double knock-in mouse models are also helpful to distinguish microglia (function) from peripheral monocytes/macrophages that may also be helpful to distinguish microglia (function) from peripheral monocytes/macrophages (Neumann and Wekerle, 2013). Other new mouse models are now emerging to do such analysis, it is anticipated that more surprising findings about “the brain’s best friend” will be published.

ACKNOWLEDGMENTS
Knut Biber is supported by the DFG (FOR 1336 “From monocytes to brain macrophages—conditions influencing the fate of myeloid cells in the brain”; DFG BI 668/5-1), DFG grant BI 668/2-2 and BMBF-funded Competence Network Degenerative Diseases (KNDD). The authors are grateful to Dr. Sandra Dheni for critical reading and editing.

REFERENCES
Ajamian, R. M., Corrigan, J. S., Inoue, K., Inoue, K., and Neumann, H. (2013). “Achilles’ heel of microglia: neurotoxicity revisited”.

Using such models we may now be able to investigate the overall picture of microglia responses, for example in the development of neuropathic pain. There is compelling evidence that amoeboid microglia in the spinal cord release brain-derived neurotrophic factor (BDNF) in response to peripheral nerve lesion, which is crucial for the development of neuropathic pain (Tsuda et al., 2003; Coull et al., 2003; Ullmann et al., 2008). Accordingly, microglia are seen as inducers of a pathological pain reaction, again indicating that their action in response to nervous damage is detrimental (see for recent review: Tsuda et al., 2013). The whole functional spectrum of microglia derived BDNF under these circumstances, however, is not known at the moment. Since BDNF is a neuronal survival factor it is tempting to speculate that one reason for its release from microglia is to protect neurons from nerve injury. It therefore be of interest to analyze the neuronal fate after peripheral nerve injury in microglia-specific BDNF KO animals.

Taken together, mutating or deleting microglia very often leads to the development or worsening of a brain disease, results that are favoring a beneficial role of these cells in the CNS. It is discussed here that several experimental problems around these cells have led to potential misinterpretations concerning the role of microglia. It is thus clear that without (i) a detailed analysis of the causal relationship between microglial function and neuronal fate, and (ii) a thorough understanding of all aspects of the microglia response in a given disease (model), it is difficult to fully appreciate what microglia are doing in the brain. As new techniques and mouse models are now emerging to do such analysis, it is anticipated that more surprising findings about “the brain’s best friend” will be published.
resident microglia and activation state of inflammatory cells during experimental autoimmune encephalomyelitis. Am. J. Pathol. 161, 1669–1677.

Bunting, A. M., and Van Rooijen, N. (1994). Liposome mediated depletion of macrophages: an approach for fundamental studies. J. Exp. Med. 2, 357–362.

Burguillo, M., A. Deichert, T., Keranen, E., Parson, A., Heij, N., Garcia-Quintanilla, A., et al. (2011). CaCsp signaling controls microglial activation and neurotoxicity. Nature 472, 531–534.

Cardona, A. E., Pietro, E. P., Sase, M. E., Kostnik, V., Cardona, S. M., Dijkstra, J. H., et al. (2006). Control of microglial neurotoxicity by the fractalkine receptor. Nat. Neurosci. 9, 917–924.

Chao, C. G., Hu, Sh., Molter, T. W., Sk建国, E. G., and Peterson, P. K. (1992). Activated microglial mediate neuronal cell injury via a nitric oxide mechanism. J. Immunol. 149, 2736–2741.

Cho, S. H., Sun, B., Zhou, Y., Kauppum, T. M., Hakkio, R., Nos, P., et al. (2011). CXCR1 protein signaling mediates microglial activation and protects against plaque-independent cognitive deficits in a mouse model of Alzheimer disease. J. Biol. Chem. 286, 7327–7332.

Ciprus, E., Silla, P., Choo, G., Lauri, C., Fabbri, A., et al. (2011). CXCL1 is a proangiogenic factor in ischemia and the developing retina. J. Biol. Chem. 286, 56–65.

Claudio, M. N., Ngoj, M., Roberts, A. E., Garcia, M. C., Bolode, S. R., Ruhi, M., et al. (2005). Wild-type nonneuronal cells extend survival of SOOD mutant motor neurons in ALS mice. Science 307, 135–137.

Colanta, M. (2003). DAP12 signaling from immune cells to bone remodeling and brain myelination. J. Clin. Invest. 111, 513–514.

Colman, C. A. (2009). Heterogeneity of microglial activation in the innate immune response in the brain. J. Neuroimmunol. Pharmacol. 4, 309–418.

Cosk, I. A., Bugas, S., Boudreau, D., Bousin, D., Tuin, M., Kiss, E., et al. (2005). BDNF from microglia causes innate immune response in the developing brain. J. Immunol. 175, 146–152.

Cowell, J. A., Bugas, S., Boudreau, D., Bousin, D., Tuin, M., Kiss, E., et al. (2005). BDNF from microglia causes the shift in the neuronal gradient underlying neurotrophic pain. Nat. Neurosci. 8, 107–112.

Cromhout, T., Jensen, R., Bytter, A., and Wulff, T. (2005). Selective sparing of hippocampal CA3 cells following in vivo ischemia is due to selective inhibition by aciclovir. Eur. J. Neurosci. 21, 810–816.
Hulshof, S., van Haastert, E. S., Kuipers, P. M., Botham, M. S., Frentzel-Beyme, K., May 2013 | Volume 7 | Article 71 | Frontiers in Cellular Neuroscience www.frontiersin.org

Hellwig et al. Microglial neurotoxicity revisited
Kettenmann, H., Hanisch, U. K., Noda, S., Kettenmann, H., Kirchhoff, F., and Jung, S., and Schwartz, M. (2012). “Fractalkine/CX3CL1 and CX3CR1 expression in the rodent CNS.” J. Neurophysiol. 87, 314–327.

Kim, S. U., and de Vellis, J. (2005). “Microglia in health and disease.” J. Neurosci. Res. 81, 302–315.

Kim, W. G., Mohoney, R. P., Wilson, B., Jevka, G. H., Liu, B., and Hong, J. S. (2000). “Regional difference in susceptibility to lipopolysaccharide-induced neurotoxicity in the rat brain: role of microglia.” J. Neurosci. 20, 6306–6310.

Kim, T., and Souns, K. (1984). “Selective vulnerability in the gerbil hippocampus following transient ischemia.” Acta Neuropathol. 62, 201–208.

Kold, A., Delfham, E., Korf H. W., and Hailer, F. (2003). “The biphasic influence of pre-implantation and microglial cells in electrophysiologically inhibited hippocampal slice cultures.” Exp. Neurol. 181, 1–11.

Kohl, J. (2006). Self, non-self, and danger: a complementary view. Adv. Exp. Med. Biol. 586, 71–94.

Koning, N., Lehnardt, S., Schott, E., Trimbuch, T., Reus, J., and Woiciechowicz, M. (2004). “Minocycline prevents cholinergic loss in a mouse model of pain facilitation.” Neurobiol. Dis. 17, 296–303.

Kriz, J., Nguyen, M. D., and Julien, J. (1984). “Selective vulnerability in the gerbil hippocampus: a complementary view.” J. Neuropathol. Exp. Neurol. 43, 8062.

Kuroiwa, K., Miura, M., Kuroiwa, K., and Murakami, N. (2012). “Neuroprotective effects of the anti-inflammatory compound truffol on ischemia-like neurodegeneration in mouse hippocampal slice cultures.” Acta Neuropathol. 123, 145–156.

Kure, S., Nishiyama, K., and Nakamura, K. (2003). “Glucocorticoid receptor signaling is crucial for the development of glucocorticoid receptor deficiency in postnatal development in adulthood.” J. Immunol. 168, 29–36.

Kurimoto, M., Gonzalez, B., and Zimmerman, J. (2009). “Neuroprotective effects of microglia in mouse hippocampal slice cultures enhance ischemia-like neurodegeneration.” J. Neurosci. Res. 85, 357–360.

Lindia, J. A., Ishihara, M., and Sano, K. (1984). “Microglial immunosuppression suggests neuron-glia and glia-glia interactions.” J. Neurosci. Res. 10, 1355–1360.

Liu, M. M., Schneider, C., and Carson, P. (2002). “Accumulation of SO92 mutants in postnatal motoneurons does not cause motoneuron pathology or motoneuron disease.” J. Neurosci. 22, 4625–4652.

Lobo, C. S., and Cleveland, D. W. (2007). “Glia cells in intrinsic components of non-cell-autonomous neurodegenerative disease.” Nat. Neurosci. 10, 1350–1356.

Martinez, F. G., Sies, A., Mantovani, A., and Locasale, M. (2008). “Microglia polarization and activation.” Front. Immunol. 13, 413–441.

Matsuzawa, Y. (2002). “An innate sense of danger.” Nat. Neurosci. 5, 341–342.

Matsuzawa, Y. (2010). “Neurite outgrowth: role of growth cone receptor tyrosine-based activation and inhibition motif signaling in neuroprotection.” Ann. N. Y. Acad. Sci. 1198, 85–97.

Mirra, L. P., Ali, R. R., et al. (2004). “Microglia and lipopolysaccharide preconditioning affects p38/p21-mediated induction in mice.” Neurobiol. Dis. 19, 85–97.

Mizutani, M., Pino, P. A., Sadowski, N., Chao, I. F., Ransohoff, R. M., and Castrillo, A. E. (2012). “The fractalkine receptor but not CX3CR1 is present on microglia from embryonic development throughout adulthood.” J. Immunol. 188, 29–36.

Monteiro-Domingos, M., Gonzalez, B., and Zimmerman, J. (2009). “Neuroprotective effects of the anti-inflammatory compound truffol on ischemia-like neurodegeneration in mouse hippocampal slice cultures occur independently of microglia.” Exp. Neurol. 218, 11–23.

Monteiro, M., Gonzalez, B., and Zimmer, J. (2006). “Immune depletion of microglia in mouse hippocampal slice cultures enhances ischemia-like neurodegeneration.” J. Neurosci. Res. 85, 341–343.

Morganti, J. M., Nash, K. G., de Groot, B., Smolders, K. M., Varkonyi, T., and Gereben, Z. (2008). “The solution of the fractalkine receptor is crucial for the effector phase of innate immunity.” J. Immunol. 181, 1–11.

Nakamura, S., and Hirata, S. (2002). “Endovascularia prevents the central inflammatory wave induced by intracerebral lipopolysaccharide challenge injection: role of glucocorticoids and CD44.” J. Immunol. 168, 3170–3180.

Nakamura, S., and Hirata, S. (2003). “Glucocorticoids play a fundamental role in protecting the brain during innate immune response.” J. Neurosci. 23, 5526–5534.

Niemann, H., and Nohturft, H. (2003). “Microglia brain washout with podogen.” Nat. Neurosci. 16, 255–257.

Nimmrichter, A., Kirschhoff, E., and Heldner, F. (2008). “Defining “neuroprotection”.” Ann. N. Y. Acad. Sci. 1139, 518–520.
Olah, M., Anser, S., Brouwer, N., Vinet, J., Eggens, B., Bibik, E., et al. (2012). Identification of a microglial phenotype supportive of remyelination. Glia 60, 392–401.

Osikowska, M., Skup, M., Mikla, J., Malik, W., Grzeszczak-Boruch, J., and Pekolj, B. (2009). Glial inhibitors influence the mRNA and protein levels of miRNAs S. and 7 receptors and potentiate the anabolic effects of their ligands in a mouse model of neuropathic pain. Pain 147, 175–186.

Osada, R., Lattos, T. A., Putnam, K. A., Turesson, R. C., Auwerx, A., and Männistö, P. T. (2012). Microglia in the CNS: immigrants and CX3CR1 in myeloid cell entry applications. J. Neuroinflammation 9, 8.

Pain, T. F., Figueroa, C., Peirotto, R., Bruc, M. H., and Doherty, S. (2008). Neuronal necrosis enhances microglial neurotoxicity through induction of glutamate by a Mrp6-dependent pathway. J. Neurochemistry 103, 413–425.

Paolicelli, R. C., Bolisso, G., Pagani, F., Polazzi, E., and Monti, B. (2010). Minocycline protects SH-SYSY cells from 6-hydroxydopamine by inhibiting both caspase-dependent and -independent programmed cell death. J. Neurosci. Exp. Ther. 306, 624–630.

Pallotta, B. M., and Prima, M. (2013). Efferent profuse microglia—novel weapons in a mouse model of Parkinson’s disease. Neuroinflammation 8, 9.

Pals, T. F., and Tikka, T. A. (2012). May 2013 | Volume 7 | Article 71 | doi: 10.1186/2049-9618-7-71

Paturana, A., Laganière, J., Rousu, A., Paolicelli, R. C., Bolasco, G., Pagani, F., Polazzi, E., and Monti, B. (2010). Minocycline reduces neurotoxicity and microglial activation in a rat model of Parkinson’s disease. Neuroinflammation 8, 8.

Paolicelli, R. C., Bolisso, G., Pagani, F., Polazzi, E., Rousu, A., et al. (2011). Synaptic pruning and microglia pruning follow different microglial interaction with tissue-infiltrating T cell blasts. J. Immunol. 186, 117,127–128.

Pals, T. F., Ford, A. L., Fouchet, E., and Airriess, R. (2009). Up-regulation of CX3CR1 expression and proliferation follows direct interaction with microglia in vitro and in vivo. J. Neurosci. 30, 5230–5235.

Pallas, B., and Laganière, J. (2013). Microglial neurotoxicity revisited and CX3CR1 in myeloid cell entry applications. J. Neuroinflammation 9, 8.

Pan, S., and Ransohoff, R. M. (2011). Heterogeneity of CNS myeloid cells in transgenic mice does not lead to migration into the central nervous system parenchyma. J. Neurosci. 31, 1456–1458.

Papsidero, L., Vannucci, R., Corbo, L., et al. (2011). Synaptic pruning in the visual system regulates supportive of remyelination. J. Neuroinflammation 8, 9.

Parks, G. A. (2001). Neuron-specific expression of fractalkine, and chemokine receptor usage by central nerve system myeloid cells in mice. Neuron 28, 499–502.

Park, G. E., et al. (2010). Neonatal p53 expression supports functional and anatomic maturation of the cerebellum. PLoS ONE 5, e15556.

Parkkonen, L., and Agar, B. (2010). Microglia and microglial neurotoxicity in vitro. Front. Biosci. 15, 2461–2470.

Pantaleo, A., Laganière, J., Rousu, A., et al. (2011). Microglia sculpt postnatal neural circuits in an early stage of postnatal development. J. Neurosci. 31, 691–698.

Pantaleo, A., and Laganière, J. (2002). Modulation of cell death by mouse genetic models of neurodegeneration. Annu. Rev. Neurosci. 25, 691–715.

Pantaleo, A., and Laganière, J. (2003). Microglia sculpt postnatal neural circuits in an early stage of postnatal development. J. Neurosci. 31, 691–698.

Pantoja, C., and Prima, M. (2013). Microglia by direct and specific screening of microglial mechanisms. J. Neurosci. 33, 15105–15117.

Parmentier, A., and Männistö, P. T. (2012). Microglia and microglial neurotoxicity in vitro. Front. Biosci. 15, 2461–2470.

Park, G. E., et al. (2010). Neonatal p53 expression supports functional and anatomic maturation of the cerebellum. PLoS ONE 5, e15556.

Park, G. E., et al. (2010). Neonatal p53 expression supports functional and anatomic maturation of the cerebellum. PLoS ONE 5, e15556.

Pantaleo, A., Laganière, J., Rousu, A., et al. (2011). Microglia sculpt postnatal neural circuits in an early stage of postnatal development. J. Neurosci. 31, 691–698.

Pantoja, C., and Prima, M. (2013). Microglia by direct and specific screening of microglial mechanisms. J. Neurosci. 33, 15105–15117.

Parmentier, A., and Männistö, P. T. (2012). Microglia and microglial neurotoxicity in vitro. Front. Biosci. 15, 2461–2470.

Pantoja, C., and Prima, M. (2013). Microglia by direct and specific screening of microglial mechanisms. J. Neurosci. 33, 15105–15117.

Parmentier, A., and Männistö, P. T. (2012). Microglia and microglial neurotoxicity in vitro. Front. Biosci. 15, 2461–2470.
Walker, D. G., and Lue, L. F. (2005). Investigations with cultured human microglia on pathogenic mechanisms of Alzheimer’s disease and other neurodegenerative diseases. J. Neurosci. Res. 83, 123–125.

Wölk, Y., Yona, S., Kim, K. W., and Jung, S. (2013). Microglia, seen from the CX3CR1 angle. Front. Cell. Neurosci. 7:26. doi: 10.3389/fncel.2013.00026

Wynne, A. M., Henry, C. J., Huang, Y., Cleland, A., and Godbout, J. P. (2010). Protracted downregulation of CX3CR1 on microglia of aged mice after lipopolysaccharide challenge. Brain Behav. Immun. 24, 1190–1201.

Xie, Z., Smith, C. J., and Van Eldik, L. J. (2004). Activated glia induce neuronal death via MAP kinase signaling pathways involving JNK and p38. Glia 43, 170–179.

Xu, Y., Zeng, K., Han, Y., Wang, L., Chen, D., Xi, Z., et al. (2012). Altered expression of CX3CL1 in patients with epilepsy and in a rat model. Am J. Pathol. 180, 1950–1962.

Yao, Y., and Tzika, S. E. (2012). The CCL2-CCR2 system affects the progression and clearance of intracerebral hemorrhage. Glia 60, 908–918.

Yi, M. J., Zhang, E., Kang, J. W., Shin, Y. N., Byun, J. V., Oh, S. H., et al. (2012). Expression of CD200 in alternative activation of microglia following an excitotoxic lesion in the mouse hippocampus. Brain Res. 1401, 90–96.

Yona, S., Kim, K. W., Wolf, Y., Mildner, A., Vianello, A., Vaziri, D., Boulet, K., et al. (2013). Fate mapping reveals origins and dynamics of microglia in aged mice after lipopolysaccharide challenge. Brain Res. 1401, 90–96.

Zhang, J., Shi, X. Q., EhwerONY, S., Mogil, J. S., De Koninck, Y., and Rivest, S. (2007). Expression of CCR2 in both resident and bone marrow-derived microglia plays a critical role in neuropathic pain. J. Neurosci. 27, 12396–12406.

Zuurman, M. W., Heeroma, J., Brouwer, N., Buddle, H. W., and Biber, K. (2005). LPS-induced expression of a novel chemokine receptor (L-CCR) in mouse glial cells in vitro and in vivo. Glia 51, 327–336.

Conflict of Interest Statement: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.