Evaluation of teamwork assessment tools for interprofessional simulation: a systematic literature review

E.L. Wooding, T.C. Gale, and V. Maynard

ABSTRACT
There is growing evidence supporting the use of simulation-based education to improve teamwork in the clinical environment, which results in improved patient outcomes. Interprofessional simulation improves awareness of professional roles and responsibilities, promotes teamwork and provides training in non-technical skills. Tools have been developed to assess the quality of teamwork during simulation, but the use of these tools should be supported by validity evidence in appropriate contexts. This study aims to assess the validity of teamwork tools used in simulation-based interprofessional training for healthcare workers and students, and to compare the design and reporting of these studies. Medline, EMBASE, ERIC, and CINAHL were searched using terms synonymous with simulation, crew resource management, training, assessment, interprofessional, and teamwork, from 2007–2017. Interprofessional healthcare simulation studies involving objectively rated teamwork training were included. The initial search provided 356 records for review, of which 24 were ultimately included. Three tools demonstrated good validity evidence underpinning their use. However, three studies did not explore tool psychometrics at all, and the quality of reporting amongst these studies on design and participant demographics was variable. Further research to generate reporting guidelines and validate existing tools for new populations would be beneficial.

Introduction

Errors in healthcare cause significant patient morbidity and mortality and remain an important focus for clinical education, forming the basis for the development of Crew Resource Management (CRM) training in healthcare. Team Strategies and Tools to Enhance Performance and Patient Safety (TeamSTEPPS), a widely recognized CRM model (King et al., 2008), was developed as a direct result of the Institute of Medicine report ‘To Err is Human’ (2000), which itself was inspired by industry including aviation. The importance of good teamwork in clinical care is well evidenced, and non-technical skills training, including in the form of simulation, plays a strong role in this (Gordon, Darbyshire, & Baker, 2012). The literature abounds with examples of simulated learning interventions pertaining to improve teamwork or non-technical skills. In some cases, this is objectively measured by tools, but it is unclear to what extent these tools are fit for purpose and adequately validated (Onwochei, Halpern, & Balki, 2017; Rosen et al., 2008). This research will be relevant to those planning simulated teamwork training in the clinical environment or the skills laboratory for interprofessional groups.

Background

Rosen et al. (2008) proposed a best practice framework for designing team performance measurement tools, proposing that teamwork training cannot be considered to be effective unless it is accurately measured and used to provide feedback to trainees on performance, areas for improvement and ongoing training needs. Key proposals pertinent to this review were that tools should be formed with an understanding of the theory underpinning teamwork models and with a clear learning objective for the training. Tools should focus on observable behaviors and be used by trained observers from multiple sources, who are appraised by analyzing tool performance (Rosen et al., 2008).

On reviewing the literature around teamwork tools, it was noted that there were a wide variety of teamwork measurement tools available, but that the validity evidence supporting them was variable. A number of teamwork tools came up repeatedly in published literature, but in many cases were reused without consideration for the population studied and new tools were created despite validated tools existing for the relevant population. Previous systematic reviews have looked at the quality of teamwork assessment tools in Obstetrics (Onwochei et al., 2017) and internal medicine (Havyer et al., 2014) and how simulation-based interprofessional teamwork training changes behaviors or patient outcome (Fung et al., 2015). Havyer et al. (2016) carried out a systematic review focussing on teamwork assessment instruments in undergraduate education, some of which was interprofessional and relevant to this review. Following literature review, it remained unclear which tools were best for assessing interprofessional teamwork simulation across all clinical specialties, among both under- and postgraduate healthcare professional groups.
Objectives

The objective of this review was to assess the validity of teamwork tools used in simulation-based interprofessional teamwork training for healthcare professionals and students. The review aimed to compare the design and reporting of studies in this area.

Methods

The protocol was designed by E.W. and revised by all authors (E. W., T.G., V.M.). A search was performed to locate studies in English on four databases: Medline, EMBASE, ERIC and CINAHL, using the following search terms and combination: simulat* AND (“cr* resource management” OR training OR education) AND assess* AND (inter*profession* OR multi*profession* OR multi*disciplin*) AND (team*work OR team train*). The databases were selected due to their education, interprofessional and medical foci. Each database was searched for studies published between 1 January 2007 and 31 March 2017. Database searching was supplemented with hand searching of key journals and sourcing additional papers from reference lists of included studies and relevant review articles.

Eligibility criteria

To be eligible for inclusion studies needed to contain interprofessional groups of participants, either as qualified practitioners or students, taking part in simulated training with an intention to improve teamwork in healthcare. This teamwork had to be formally assessed in the study and an appraisal made of its change as a result of the intervention by raters who themselves were not participating in the simulation. Assessment of teamwork did not necessarily need to be the primary aim of the study, so long as it was appropriately assessed using a teamwork metric. Studies were excluded if they did not adequately describe their methodology for performing the intervention or analyzing its effect on the teamwork. Interprofessional student groups were included, but interdisciplinary and intraprofessional learning alone was excluded. Studies where the team entirely comprised non-clinical interprofessionals were excluded, but where these participants accompanied frontline clinical professionals, the studies were included. Simulated interventions from both the skills laboratory and clinical settings were eligible. The review is reported according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) Statement, and the quality of studies was assessed using the PRISMA checklist and was a primary focus of this review (Moher, Liberati, Tetzlaff, & Altman, 2010).

Selection and analysis

Titles and abstracts of identified citations were reviewed by E. W. Full-text articles were reviewed by E.W. and areas of uncertainty regarding eligibility were discussed and resolved by consensus by E.W., T.G., and V.M. One researcher (E.W.) extracted data and entered it into a spreadsheet for evidence synthesis. Data extraction incorporated study design, location, participant profile, course design, outcome measures, teamwork measurement tool and its psychometrics, rater credentials and follow-up outcome measurement. The literature search identified 233 articles, and a further 123 were added through hand searches and reference lists. Nineteen duplicates were removed, and 328 citations were screened. Eighty-nine full-text articles met screening criteria and were reviewed in full, providing 24 articles which met all inclusion criteria and contributed to this review. The 65 remaining full-text articles were removed due to lack of eligible outcomes (n = 21), unprofessional groups of participants (n = 11), no objective rater of teamwork (n = 15), or ineligible educational intervention (n = 18). This process is summarised in Figure 1. The data were analyzed and reported using a narrative description as meta-analysis was deemed unsuitable for the dataset due to the heterogeneity of study designs.

Included studies were evaluated according to Downing’s validity framework for evidence of validity of each tool in specific contexts. (Downing, 2003) Validity evidence may commonly include test re-test reliability, reproducibility and generalisability of scores, and statistical characteristics of assessment components. Reliability of the teamwork tool expresses the extent to which the results can be reproduced. This can include test re-test reliability and interrater agreement. The interrater agreement is high when multiple raters assign a consistent score to each other when using the same assessment tool (Downing, 2003). The interrater agreement may be expressed using the intraclass correlation coefficient (ICC), whilst Cronbach’s alpha measures internal consistency (Onwochei et al., 2017). Test re-test reliability looks at the extent to which an assessment tool would produce the same test score if applied on multiple occasions (Berchtold, 2016).

Results

Of the 356 records identified on database and hand searches, 19 studies from 24 papers met all inclusion criteria and contributed to this review (Bradley, Cooper, & Duncan, 2009; Auerbach et al., 2014; Burton et al., 2011; Cooper et al., 2010; Daniels, Lipman, Harney, Arafeh, & Druzin, 2008; Frengley et al., 2011; Ghazali et al., 2016; Hobgood et al., 2010; Jankouskas et al., 2007; MacDonnell, Rege, Mist, Dollase, & George, 2012; Morgan, Pittini, Regehr, Marrs, & Haley, 2007; Morgan et al., 2012; Oriot, Bridier, & Ghazali, 2016; Paige et al., 2014; Patterson, Geis, Falcone, LeMaster, & Wears, 2013; Phitayakorn, Minehart, Hemingway, Pian-Smith, & Petrusa, 2015; Rovamo, Nurmi, Mattila, Suominen, & Silvennoinen, 2015; Sigalet et al., 2013; Sigalet, Donnon, & Grant, 2015; Walker et al., 2011; Weller et al., 2011, 2013; Zhang, Miller, Volkman, Meza, & Jones, 2015). In the case of three studies, two or more manuscripts were published for each utilizing the same dataset. For the purpose of this review, these were considered to be three studies, rather than seven. The first pair was Oriot et al. (2016) and Ghazali et al. (2016), the second set was Weller et al. (2011), Weller et al. (2013), and Frengley et al. (2011). The final pair was Sigalet et al. (2013), and Sigalet et al. (2015). This made the total number of studies included as 19.
Study characteristics and demographics

The studies included spanned from 2007 to 2016. Five studies employed comparator groups (Bradley et al., 2009; Hobgood et al., 2010; Morgan et al., 2012; Oriot et al., 2016; Rovamo et al., 2015). Oriot et al. (2016) and Ghazali et al. (2016) in their study used two comparator groups, but the control group was not interprofessional. Fourteen studies did not use comparator groups or controls (Auerbach et al., 2014; Burton et al., 2011; Cooper et al., 2010; Daniels et al., 2008; Jankouskas et al., 2007; MacDonnell et al., 2012; Morgan et al., 2007; Paige et al., 2014; Patterson et al., 2013; Phitayakorn et al., 2015; Sigalet et al., 2013, 2015; Walker et al., 2011; Weller et al., 2011, 2013; Zhang et al., 2015).

Thirteen studies stated the exact total number of participants attending their simulations (Bradley et al., 2009; Auerbach et al., 2014; Burton et al., 2011; Daniels et al., 2008; Hobgood et al., 2010; Jankouskas et al., 2007; Morgan et al., 2007; Oriot et al., 2016; Patterson et al., 2013; Phitayakorn et al., 2015; Rovamo et al., 2015; Sigalet et al., 2013, 2015; Zhang et al., 2015). This totaled 1740 people. The remaining, Morgan et al. (2012) define the number of ‘performances’ rather than the number of individual participants, stating 136 performances completed by 10 teams. Three studies stated the number of simulations or teams, but not specific participant numbers (Cooper et al., 2010; Walker et al., 2011; Weller et al., 2011).

Eight studies cited demographic data on participants. Bradley et al. (2009) collected detailed information on participants covering baseline characteristics, prior qualifications and prior experience, including interprofessional learning, teamwork or leadership experience, and resuscitation training. Morgan et al. (2007) gathered baseline data and previous experience in simulation, but also asked participants to rate their level of sleep deprivation and stress levels at the time of participation. Rovamo et al. (2015) collected data on the clinical and academic experience of participants in relation to the clinical content of the simulation, and years of working experience, but not on non-technical skills knowledge or training, or further demographics such as age or gender. Sigalet et al. (2013) report 82% female participants and collected data on previous team-based learning, experienced by a 93% proportion of participants. They specifically asked about prior interprofessional learning, reported by 11.7% of the total 196 participants. Daniels et al. (2008) reported the number of years of postgraduate experience demonstrated by participants and years of experience in labor and delivery.

Figure 1. PRISMA search and selection pathway for included studies.
practice, but no further demographics were given. Paige et al. (2014) cited ethnic origin and clinical role of participants, and that gender distribution was even, but without further detail. The remaining 11 studies lacked demographic data on participants.

Team profiles

Only studies describing interprofessional simulation were included. Of these, 12 study teams contained nurses, and 11 contained doctors. Other professions stated included midwives (Rovamo et al., 2015), respiratory therapists (Burton et al., 2011; Patterson et al., 2013), scrub technicians (Phitayakorn et al., 2015), paramedics (Oriot et al., 2016; Patterson et al., 2013) and physician assistants (Auerbach et al., 2014). Other studies included interprofessional student groups, either exclusively, in the case of Zhang et al. (2015) with exclusively physical therapy and nursing students; respiratory therapy, nursing and medical students by Sigalet et al. (2013), medical, nursing and pharmacy students in MacDonnell et al. (2012), and five studies with medical and nursing students only (Bradley, et al., 2009; Cooper et al., 2010; Hobgood et al., 2010; Paige et al., 2014). Auerbach et al. (2014) was the only study to state inclusion of both professionals and students, in this case medical students. They also detailed a number of other staff groups involved in simulations, namely allied health workers, social workers, diagnosticians, and transport workers. However, the extent of their role in the simulations was not fully elucidated. This is also true of Patterson et al. (2013) who stated the presence of patient care assistants and “others” in their simulations. Seven studies specifically named the presence of interdisciplin ary professionals within their interprofessional group. (Daniels et al., 2008; Jankouskas et al., 2007; Morgan et al., 2007, 2012; Phitayakorn et al., 2015; Rovamo et al., 2015; Walker et al., 2011).

Simulation context

All but one study (Hobgood et al., 2010) stated the clinical context of the simulation scenarios. The most common content was pediatric emergencies (Auerbach et al., 2014; Jankouskas et al., 2007; Oriot et al., 2016; Patterson et al., 2013; Sigalet et al., 2013) and neonatal emergencies (Burton et al., 2011; Rovamo et al., 2015; Sigalet et al., 2013). Four studies focused on anesthetic or surgical complications mid-operation (Daniels et al., 2008; Morgan et al., 2012; Paige et al., 2014; Phitayakorn et al., 2015), three on trauma (Auerbach et al., 2014; Paige et al., 2014; Zhang et al., 2015), and three on obstetric emergencies (Daniels et al., 2008; Morgan et al., 2007, 2012). Four studies focused primarily on resuscitation skills (Bradley, et al., 2009; Cooper et al., 2010; Walker et al., 2011; Weller et al., 2011), although most studies had a resuscitation element.

Simulations in 14 of the 19 studies took place in the simulation suite (Bradley, et al., 2009; Burton et al., 2011; Daniels et al., 2008; Ghazali et al., 2016; Hobgood et al., 2010; Jankouskas et al., 2007; MacDonnell et al., 2012; Morgan et al., 2007, 2012; Paige et al., 2014; Patterson et al., 2013; Rovamo et al., 2015; Sigalet et al., 2013; Zhang et al., 2015), two took place solely in situ, i.e. in the clinical environment (Auerbach et al., 2014; Phitayakorn et al., 2015), and in Weller et al. (2011) it was unclear whether the ‘recreated ICU’ was in the simulation suite or in situ. Two studies incorporated both simulation suite and in situ elements (Cooper et al., 2010; Walker et al., 2011).

Tool selection

Ten studies used a previously developed tool in its original state (Burton et al., 2011; Cooper et al., 2010; Jankouskas et al., 2007; Morgan et al., 2012; Paige et al., 2014; Patterson et al., 2013; Phitayakorn et al., 2015; Rovamo et al., 2015; Sigalet et al., 2013; Zhang et al., 2015). In the case of Morgan et al. (2012) the study was created by the same group and previously validated (Tregunno, Pittini, Haley, & Morgan, 2009). These were the Objective Teamwork Assessment System (OTAS) (Phitayakorn et al., 2015), the Team Emergency Assessment Measure (TEAM) (Cooper et al., 2010; Rovamo et al., 2015), the KidSIM Team Performance Scale (Sigalet et al., 2013) and the Anaesthetists’ Non-Technical Skills (ANTS) behavioural scale (Jankouskas et al., 2007; Patterson et al., 2013). Hobgood et al. (2010), and Weller et al. (2013) also used the Mayo Scale, but adapted it for their use.

Four groups developed their own tool for the purpose of their study. (Auerbach et al., 2014; Daniels et al., 2008; MacDonnell et al., 2012; Oriot et al., 2016). The Team Average Performance Assessment Scale (TAPAS) developed by Oriot et al. (2016) is a 129-item scale in six sections designed for assessing teamwork in pediatric and life-threatening emergencies. Their tool design was linked to anticipated learning outcomes and developed by subject experts, although it is unclear whether the development was also informed by relevant literature. Daniels et al. (2008) developed a Checklist of Expected Actions, incorporating both anticipated clinical outcomes and a behavioral performance domain rated on a Likert scale, which was described as informed by contemporary literature. Two studies did not name their teamwork measures but described them as a validated tool (Auerbach et al., 2014), or a tool based on a validated tool (MacDonnell et al., 2007) without detailing specific psychometrics or how the tool was informed or developed.

Quality of teamwork rating process

Included studies had objective ratings performed during or after the simulation to assess the quality of teamwork observed. Six studies used interprofessional groups of raters commensurate with the populations studied (Cooper et al., 2010; Jankouskas et al., 2007; Morgan et al., 2012; Phitayakorn et al., 2015; Sigalet et al., 2013; Zhang et al., 2015). A further four studies used doctors alone as raters (Daniels et al., 2008; Oriot et al., 2016; Rovamo et al., 2015; Weller et al., 2011). Others did not state the profession of their rater, although one was the lead researcher in the study (Auerbach et al., 2014), two described “trained” raters (Paige et al., 2014; Patterson et al., 2013), and as “independent scorers” (Hobgood et al., 2010). Only one study (Burton et al., 2011) did not provide any information on the raters.
Training provided for raters was variable and inconsistently reported. However, nine studies described some form of rater training in the teamwork tool utilised (Burton et al., 2011; Daniels et al., 2008; Hobgood et al., 2010; Morgan et al., 2012; Oriot et al., 2016; Paige et al., 2014; Patterson et al., 2013; Phitayakorn et al., 2015; Weller et al., 2011). No specific rater training was cited in four studies (Auerbach et al., 2014; Rovamo et al., 2015; Sigalet et al., 2013; Zhang et al., 2015), although Zhang et al. (2015) did choose raters with previous training in teamwork skills.

Video rating was predominantly performed retrospectively, in 14 cases (Bradley, et al., 2009; Burton et al., 2011; Daniels et al., 2008; Hobgood et al., 2010; Jankouskas et al., 2007; Morgan et al., 2007, 2012; Patterson et al., 2013; Phitayakorn et al., 2015; Rovamo et al., 2015; Sigalet et al., 2013; Walker et al., 2011; Weller et al., 2011; Zhang et al., 2015). The contemporaneous rating took place in four cases (Auerbach et al., 2014; MacDonnell et al., 2012; Oriot et al., 2016; Paige et al., 2014). One study used a mixture of contemporaneous and retrospective rating (Cooper et al., 2010).

Tool psychometrics

Four studies used tools where their psychometric properties had been previously investigated and demonstrated to be acceptable (Burton et al., 2011; Jankouskas et al., 2007; Patterson et al., 2013; Rovamo et al., 2015), although it was not specifically clarified that the validity has been demonstrated for the population in question. Seven studies (Cooper et al., 2010; Morgan et al., 2007, 2012; Oriot et al., 2016; Walker et al., 2011; Weller et al., 2011; Zhang et al., 2015) assessed the reliability and validity of their tools during their studies.

Hobgood et al. (2010) modified their tool and found acceptable intraclass correlations on 19 out of 20 items on their tool, and also analyzed variance but did not extensively re-calculate the psychometrics. Several studies did not refer to, or attempt to calculate, the psychometrics of the tool employed (Auerbach et al., 2014; Daniels et al., 2008; MacDonnell et al., 2012) making it difficult to draw satisfactory conclusions from their findings.

Cronbach’s alpha was calculated in six studies (Cooper et al., 2010; Morgan et al., 2007, 2012; Oriot et al., 2016; Rovamo et al., 2015; Sigalet et al., 2013; Walker et al., 2011; Weller et al., 2011). Intra-class correlation and/or correlation coefficients were calculated in six studies (Burton et al., 2011; Hobgood et al., 2010; Morgan et al., 2007; Oriot et al., 2016; Paige et al., 2014; Walker et al., 2011), and interrater reliability in three (Morgan et al., 2012; Phitayakorn et al., 2015; Rovamo et al., 2015). However, poor to moderate interrater reliability was demonstrated by Rovamo et al. (2015). See Table 1 for further details of statistical significance.

Outcome measures

Six studies aimed to validate a teamwork tool as their primary objective. (Cooper et al., 2010; Morgan et al., 2007, 2012; Oriot et al., 2016; Walker et al., 2011; Weller et al., 2011). Zhang et al. (2015) specifically aimed to improve the subjectivity of their tool, the TPOT, using targeted behavioral markers. Thirteen studies assessed quality of teamwork as a surrogate measure of performance or as a secondary aim (Bradley, et al., 2009; Auerbach et al., 2014; Burton et al., 2011; Daniels et al., 2008; Hobgood et al., 2010; Jankouskas et al., 2007; Morgan et al., 2007; Oriot et al., 2016; Paige et al., 2014; Patterson et al., 2013; Phitayakorn et al., 2015; Rovamo et al., 2015; Sigalet et al., 2013). Three studies specifically measured the impact of simulation on teamwork scores over other media (Hobgood et al., 2010; Rovamo et al., 2015; Sigalet et al., 2013).

Follow up

No studies carried out specific follow-up cohorts, but some studies continued simulation over a long period of time and noted an improvement in teamwork scores over time (Auerbach et al., 2014; Burton et al., 2011; Sigalet et al., 2013; Weller et al., 2011).

Discussion

The importance of teamwork in the clinical setting is undeniable; however, there is a lack of agreement as to which tools are best for assessing teamwork in interprofessional simulation settings. All assessment methods in clinical education should be underpinned by validity evidence, without which they lack inherent meaning. This is no less relevant to the assessment of teamwork in interprofessional simulation. The following tools were used or adapted for use in the included studies: the Objective Teamwork Assessment System (OTAS) (Phitayakorn et al., 2015), the Team Emergency Assessment Measure (TEAM) (Cooper et al., 2010; Rovamo et al., 2015), the KidSIM Team Performance Scale (Sigalet et al., 2013) and the Anaesthetists’ Non-Technical Skills (ANTS) behavioural scale (Jankouskas et al., 2007; Patterson et al., 2013), the Mayo Scale (Hobgood et al., 2010; Weller et al., 2011), the Observational Skill-based Clinical Assessment tool for Resuscitation (OSCAR) (Walker et al., 2011), the Team Average Performance Assessment Scale (TAPAS) (Oriot et al., 2016), the Team Performance Observation Tool (TPOT) (Zhang et al., 2015), the Assessment of Obstetrical Team Performance (AOTP) and Global AOTP (Morgan et al., 2012), and a Checklist of Expected Actions. (Daniels et al., 2008). One included study (Auerbach et al., 2014) used a validated, but unnamed tool. With such a variety of teamwork tools being utilized, it is important to consider which of the teamwork domains are actually being measured. Teamwork can be sub-divided into communication, situation monitoring, leadership and mutual support based on the Team Strategies and Tools to Enhance Performance and Patient Safety (TeamSTEPPS) principles, which are widely recognized (King et al., 2008, p. 10). However, the content of tools and definitions of teamwork are highly subjective and variable. The problem of loose definitions between studies in non-technical skills training is corroborated in a related systematic review (Gordon et al., 2012).

Some tools, such as the ANTS had previously tested psychometrics, but they were not validated for the specific new population. (Jankouskas et al., 2007; Patterson et al., 2013)
Study Details	Population Studied	Objective/Outcome measure	Raters and Rating Process	Psychometric Properties/Outcomes
Anaesthetists’ Non-Technical Skills (ANTS) behavioural scale	Patterson et al. (2013) Paediatricians, nurses, paramedics, respiratory therapists, patient care assistants, others (n = 218)	Primary outcome was the number and type of Latent Safety Threats identified during sims. Secondary measures were participants' assessment of impact on patient care value to participants, quality of teamwork assessed with ANTS.	Rater: (n = 1) Training: Yes Rating Process: Blinded retrospective, independent video review	No significant improvement in team behaviours during study period, although mean scores noted to be high throughout. Previously validated by Fletcher et al. (2003) for anaesthetists, but no further psychometric properties tested. Previous validation by Fletcher et al. (2003) cited, but no further psychometric properties tested.
	Jankouskas et al. (2007) Paediatricians, anaesthetists, nurses (n = 140 participants in 7 groups)	Primary outcome was perceived levels of collaboration and satisfaction about care decisions using a tool for this purpose. As a secondary outcome measure teamwork was measured using the ANTS.	Raters: paediatric nurse and anaesthesia resident (n = 2) Training: Not stated Rating process: Blinded to scenario order, retrospective independent video review	
Assessment of Obstetrical Team Performance (AOTP) and Global Assessment of Obstetrical Team Performance (GAOTP)	Morgan et al. (2012) Anaesthetists, nurses, obstetricians, family doctors (n = 136 ‘performances’ from 10 teams)	To validate a behavioural marking tool in obstetric high-fidelity simulations.	Raters: 3 nurses, 1 midwife, 2 anaesthetists, 2 obstetricians (n = 8) Training: 8 hour session Rating Process: Retrospective, independent video review	Debriefing after 2nd or 3rd sessions did not affect teamwork scores significantly (p = .6). 1088 evaluations completed (136 performances x 8 raters). Internal consistency for AOTP was 0.96 and GAOTP was 0.91 with Cronbach’s alpha. Collectively as a 22-point scale this was 0.97, Acceptable interrater reliability with 8 raters (single rater ICC 0.81)
Emergency Team Dynamics scale	Bradley et al. (2009) Medical and nursing students (n = 30 students in the interprofessional arm)	To identify the effects on interprofessional resuscitation skills teaching on students’ attitudes, leadership, team working and performance skills.	Raters: 1 author rated all videos, a 2nd author rated 10% sample (n = 2) Training: Not stated Rating Process: Retrospective, independent video review	Previous validation cited but not stated or accessible via references, no further psychometric properties tested. There was no significant difference in performance between inter- and uniprofessional groups in the ETD scores.
Human Factors Rating Scale (HFRS) and Global Rating Scale (GRS)	Morgan et al. (2007) Obstetricians, anaesthetists, obstetric nurses (n = 34 participated in 12 simulations)	To determine if 2 new rating scales could reliably assess obstetric team performance	Raters: Healthcare professionals with experience in obstetrics or human factors (n = 9) Training: not stated Rating Process: Retrospective, independent video review	Single rater ICC for the HFRS was low (0.341) but collectively Cronbach’s alpha was 0.823.For the GRS the single rater ICC was 0.446 compared to 9-rater Cronbach’s alpha of 0.879. Pearson product-moment correlation between HFRS and GRS was 0.934 suggesting they were measuring similar constructs.
KidSIM Team Performance Scale (KidSIM)	Sigale et al. (2013) Nursing, medical and respiratory therapy students (n = 196)	To assess the impact of team training in addition to team simulation for teamwork scores in multiprofessional student teams using KidSIM team performance scale. Does simulation training improve scores and is this heightened by the additional use of teamwork training prior to simulations?	Raters: 2 doctors, 2 nurses, 1 respiratory therapist (n = 6) Training: Not stated Rating Process: Retrospective, video review, all raters reviewed all content.	Improved mean aggregate performance scores from sim 1 to 2 in both groups (paired t-tests), smaller mean effect size in intervention group (Cohen’s d = 0.56 vs 0.28 with p < .001 and p < .05) Good internal reliability (Cronbach’s Alpha = 0.9) and factor analysis performed
Mayo High Performance Teamwork Scale (Mayo Scale)	Weller et al. (2011) Doctors and nurses “Adapted Mayo Scale” New Zealand (n = 40 teams of 4)	To develop and validate an instrument to measure teamwork behaviours in critical care.	Raters: Anaesthetists or Critical Care clinicians (n = 3) Training: Yes Rating process: Retrospective video review	Exploratory Factor Analysis clustered items into 3 categories, all gave acceptable-good Cronbach’s alpha (internal consistency). A significant improvement was seen in performance with time and seniority (implying construct validity). Sems led by specialists over trainees have a statistically significantly higher team score (p < .001).

(Continued)
Study Details	Population Studied	Objective/Outcome measure	Raters and Rating Process	Psychometric Properties/Outcomes
Burton et al. (2011) U.S.A.	Nurses and respiratory therapists (n = 19)	To assess whether simulation would improve technical and non-technical skills in dealing with ECMO circuit emergencies and allow transfer skills from simulation to the clinical setting.	Raters: Not stated (n = 2 per simulation but not known if same raters for all) Training: Review of original tool publication, didactic session and group video review. Rating Process: Randomised, retrospective video review	Moderate correlation was found between reviewers (Pearson’s correlation coefficient = 0.41, p < .001). Scores improved through the quarters (but only significantly so from 1st to 2nd quarter). Previously validated by Malec et al. (2007)
Hobgood et al. (2010) U.S.A.	Medical and nursing students (n = 80 in simulation cohort)	To conduct a RCT of four pedagogical methods to deliver teamwork training and measure the effects of each method of student teamwork knowledge, skills and attitudes	Raters: Independent (n = 7) Rating Process: Randomised, retrospective video review The revised 20-item Mayo HPTS had inter-rater reliabilities with ICC from 0.83–1.0 on 19/20 items. There were no significant differences between cohorts with ANOVA (p = .134) Tool was previously validated by Malec et al. (2007)	
“Adapted Mayo Scale”				
Objective Teamwork Assessment System (OTAS) Phitayakorn et al. (2015) U.S.A.	Nurses, scrub technicians, anaesthetic residents, surgical residents (n = 25)	To explore the correlation between operating theatre teamwork and adherence to patient care guidelines; to assess the psychometrics of a range of teamwork tools for surgical in situ simulation	Raters: 2 anaesthetists, 1 surgeon, 1 scrub nurse and a social scientist (members of the simulation team) (n = 5) Training: 1 hour session and reviewed original paper generating tool Rating process: Retrospective video review No relationship was found between technical and non-technical skill usage in the sims. High OTAS scores were given for some teams who did not complete the majority of clinical tasks on the checklist. Interrater agreement was 0.42–0.9 (mean 0.7). No further exploration of psychometrics, but tool described as externally validated (Passauer-Baierl et al., 2014)	
Observational Skill-based Clinical Assessment tool for Resuscitation (OSCAR) Walker et al. (2011) U.K.	Anaesthetists, nurses, physicians in 8 simulations: 4 in the simulation suite and 4 in the hospital environment	To develop a feasible and psychometrically sound tool to assess team behaviours during cardiac arrest resuscitation attempts	Raters: 2 ‘expert clinical observers’ Training: not stated Rating process: Retrospective, independent Internal consistency was acceptable to good with Cronbach’s alpha ranging from 0.736–0.965, 15/18 items had Cronbach’s alpha >0.8. ICC ranged from 0.652–0.911, for individual domains and 0.767–0.807 overall (p < .001) demonstrating good inter-rater reliability. Overall performance, teamwork scores and clinical markers/checklist items improved over time (this was statistically significant). Psychometric properties not stated	
Other/Unnamed Instruments				
Auerbach et al. (2014) U.S.A.	Nurses, Physician Assistants, Physicians (student, resident, fellows, attendings), allied health, social workers, diagnosticians, transport (n = 398)	To evaluate the feasibility and measure the impact of an in situ interdisciplinary paediatric trauma quality improvement simulation program using a behavioural marker tool	Raters: Lead investigator who also developed scenarios, ran simulation and debriefed (n = 1) Training: Not stated Rating process: Contemporaneous Checklist internally but not formally validated. Learning points derived but conclusions cannot be drawn from this due to study design. Psychometric properties not stated	
Daniels et al. (2008) U.S.A.	Nurses, anaesthetic resident, obstetric residents (n = 49)	Can a simulation of obstetric crises be created for team training? Can simulation identify clinical performance deficiencies of obstetric residents that can serve as a basis for focused teaching?	Raters: Faculty Obstetricians (n = 2) Training: Yes, multiple sessions Rating process: Retrospective video review Team dynamics was rated from poor to excellent (poor 0%, fair 21%, good 36%, excellent 31%, outstanding 12%). Psychometric properties not stated	
A validated trauma simulation evaluation tool” Daniels et al. (2008) U.S.A.	Nurses, anaesthetic resident, obstetric residents (n = 49)	Can a simulation of obstetric crises be created for team training? Can simulation identify clinical performance deficiencies of obstetric residents that can serve as a basis for focused teaching?	Raters: Faculty Obstetricians (n = 2) Training: Yes, multiple sessions Rating process: Retrospective video review Team dynamics was rated from poor to excellent (poor 0%, fair 21%, good 36%, excellent 31%, outstanding 12%). Psychometric properties not stated	
Faculty developed Checklist of Expected Actions” MacDonnell et al. (2012) U.S.A.	Medical students, nursing students, pharmacy students in mixed teams of 3 (n = 251)	To evaluate healthcare students’ perceptions of an introductory interprofessional exercise and their team dynamics.	Raters: Faculty from the medical school Training: not stated Rating process: Contemporaneous Team dynamics was rated from poor to excellent (poor 0%, fair 21%, good 36%, excellent 31%, outstanding 12%). Psychometric properties not stated	
Teamwork global rating scale based on a validated evaluation instrument” Operating Room Team Assessment Scale (ORTAS)				
Study Details	Population Studied	Objective/Outcome measure	Raters and Rating Process	Psychometric Properties/Outcomes
---------------	--------------------	---------------------------	---------------------------	---------------------------------
Paige et al. (2014)	U.S.A.	Medical students, nursing anaesthesia students, nursing students in teams of 6 attended 2 simulations (n = 66)	To evaluate the immediate impact of conducting interprofessional student operating room team training using high-fidelity simulation on students’ team-related attitudes and behaviours.	Raters: 3–4 trained observers rated each scenario Training: 2 hour session Rating process: Contemporaneous Acceptable relative and absolute coefficients were demonstrated for multiple raters with generalisability coefficients of 0.94–0.95 for 3–4 raters. Mean observer rating scores improved from 1st to 2nd scenario.
OTPAS	France	1st team: multiprofessional teams of 4 (physicians, nurses, ambulance drivers) 2nd team (control): excluded as emergency physicians only was used to compare teamwork skills at 4 months (n = 48)	To develop and psychometrically assess a clinical evaluation tool for simulated adult, neonatal and paediatric emergencies.	Raters: Doctors (1 paediatric intensivist, 3 paediatric emergency physicians, 1 anaesthetist, 3 emergency physicians) (n = 8) Training: 2 hour session Rating process: Contemporaneous, 2 raters per simulation Acceptable internal consistency (Cronbach’s alpha 0.745, from 0.646–0.806 for various items) and modest correlation coefficient 0.64. Intraclass correlation coefficient was 0.862 (high reproducibility). Internal consistency and reliability assessed by Ghazali et al. (2016) in Sim-Stress study
Team Emergency Assessment Measure (TEAM)	Cooper et al. (2010)	Medical students and nursing students U.K.: 53 video recorded hospital simulations, number of participants not stated Australia: Teams of 5, completing 3 simulations (n = 15)	To develop a valid, reliable and feasible teamwork assessment measure for emergency resuscitation team performance.	Raters: 2 doctors, 4 nurses/resuscitation officers with 15–26 years acute care experience (n = 6) Training: Not stated Rating process: Contemporaneous for U.K. simulations, 1 rater per simulation, with 11% having second scoring by separate rater Content validity index was acceptable at 0.83 for individual items and 0.96 overall. Acceptable construct and concurrent validity between total item score and global rating (rho 0.95, p < .01) were demonstrated. Cronbach’s alpha coefficient = 0.89 demonstrating high internal consistency
Rovamo et al. (2015)	Finland	Paediatricians, anaesthetists, obstetricians, midwives, neonatal nurses in 2 units (n = 99)	To compare the TEAM scores in simulations between a control group (sim only) and an intervention group (lecture + sim) to evaluate the impact of CRM and ANTS instruction on teamwork during simulated newborn emergencies.	TEAM scoring has good internal consistency (Cronbach’s alpha 0.919, p < .01), moderate index of agreement between raters (0.41). Inter-rater reliability was poor to moderate. Tool previously validated by Cooper et al., 2010
Team Performance Observation Tool (TPOT)	Zhang et al. (2015)	Physical therapy and nursing students (n = 72)	To decrease the subjectivity of the TPOT and determine its psychometrics when using scenario-specific targeted behavioural markers.	Raters: Nurses and physical therapist (manuscript authors) (n = 3) Training: Not stated; but raters trained in teamwork Rating Process: Retrospective, independent video review. Higher TPOT overall ratings were associated with fewer team errors (p = .008). The addition of scenario-specific targeted behavioural markers improves the validity and reliability of the TPOT over the scale alone. Good test re-test reliability (k = 0.707, p < .001), interrater reliability (k = 0.73), Cronbach’s alpha 0.92
Where psychometric properties of tools were explored, these generally demonstrated acceptable to good internal consistency (e.g., Burton et al., 2011; Cooper et al., 2010; Hobgood et al., 2010; Morgan et al., 2007, 2012; Oriot et al., 2016; Paige et al., 2014; Phitayakorn et al., 2015; Rovamo et al., 2015; Sigalet et al., 2013; Walker et al., 2011; Weller et al., 2011; Zhang et al., 2015). Some studies did not explore tool psychometrics (Auerbach et al., 2014; Daniels et al., 2008; MacDonnell et al., 2012). Best practice would be to maximize the validity evidence supporting the use of all teamwork tools ensuring where pre-existing validation had taken place that it was specifically applicable to the current study setup. Where tools were adapted from their original format, it was not entirely clear whether these adaptations were necessary or completed appropriately. Of those studies that developed their own teamwork tools, none fully met the best practice guidance for team performance measurement developed by Rosen et al. (2008). Daniels et al. (2008) informed the development of their tool by referring to current literature. However, it was not clear whether the tool development was also linked to the learning objectives of the team training. Oriot et al. (2016) linked their tool design to learning outcomes for training and development was guided by experts. In this review, those tools with the strongest validity evidence supporting them were the TEAM tool (Cooper et al., 2010; Rovamo et al., 2015), TPOT (Zhang et al., 2015) and GATOP/AOTP (Morgan et al., 2012). They all demonstrated very good internal consistency with Cronbach’s alpha values >0.89 obtained from samples sized greater than 72. Zhang et al.’s TPOT (2015) demonstrated that higher TPOT scores were associated with fewer team errors (p = .0008), with good test re-test reliability (k = 0.707, p < .001) and good interrater reliability (k = 0.73). The TPOT was a tool created as part of the TeamSTEPPS curriculum. It has been validated elsewhere for nursing teams, similarly demonstrating good internal consistency (Maguire, Brenner, & Yanosky, 2014). The paper describing the initial development of the AOTP and GAOTP was published by Tregunno et al. (2009). The same study group published on its validation in 2012 (Morgan, et al.). Whilst Morgan et al. (2012) demonstrated good tool psychometrics our systematic review did not demonstrate the tool’s wider use in Obstetrics at present. The TEAM tool performed moderately well in terms of the rater index of agreement (0.41) and poor to moderate inter-rater reliability. (Rovamo et al., 2015). A better interrater reliability of 0.55 was demonstrated by Cooper et al. (2010) for the same tool, which is considered fair. The TEAM tool has been extensively validated in other interprofessional studies, including in live clinical resuscitations and in situ simulations (Cooper et al., 2010; Maingnan et al., 2016). Maingnan et al. (2016) demonstrated very good psychometrics; however, their simulations were rated by simulation participants, and as such was excluded from this review. The TEAM tool demonstrates promise as a reliable and valid teamwork tool and merits further validation for different settings. The Mayo scale was used by three earlier studies included in this review, when it was newest and most popular (Burton et al., 2011; Hobgood et al., 2010; Weller et al., 2011). However, the Mayo scale was validated initially for use as a self-rating rather than an objective scale (Malec et al., 2007). Limited psychometrics were explored by Hobgood et al. (2010) with an acceptable intraclass correlation coefficient, and Burton et al. (2011) with moderate reviewer correlation (Pearson’s coefficient = 0.41, p < .001).

The validity evidence supporting the teamwork tools included in this review predominantly assesses internal consistency using Cronbach’s alpha, either alone (Sigalet et al., 2013) or in combination with one other validity measure, such as inter-rater reliability (Morgan et al., 2012; Rovamo et al., 2015; Walker et al., 2011) or intraclass correlation coefficient (Oriot et al., 2016). The most detailed explorations of validity evidence were performed on the studies assessing the TEAM scale, especially Cooper et al. (2010) who assessed construct, content and concurrent validity, as well as internal consistency. The Mayo Scale studies collectively assess internal consistency, construct validity and intraclass correlation coefficient. (Burton et al., 2011; Hobgood et al., 2010; Weller et al., 2011). Zhang et al. (2015) assessed the test re-test reliability, interrater reliability and internal consistency of the TPOT. Future studies evaluating teamwork tools should go beyond measuring interrater reliability and should make an attempt to include other measures of validity evidence such as construct validity and internal consistency to investigate whether the tool is providing an accurate measure of appropriate constructs within each setting.

The quality of teamwork scoring can be improved by using multiple, trained raters. In the included studies the quality of rating, and rater training, was generally appropriate or very good. The majority of rating took place retrospectively with trained raters. Only six studies explicitly used interprofessional rater teams, which would be most appropriate for the population studied raters (Cooper et al., 2010; Jankouskas et al., 2007; Morgan et al., 2012; Phitayakorn et al., 2015; Sigalet et al., 2013; Zhang et al., 2015). The most comprehensive rater training and rating process and training were provided by Morgan et al. (2012), where eight interprofessional reviewers attended an 8-h workshop on rating, before all blindly reviewing 136 simulation performances. In some studies rating was carried out by individuals who were simulation faculty or the primary researcher (Bradley, et al., 2009; Auerbach et al., 2014; Daniels et al., 2008; MacDonnell et al., 2012), or the status of the rater was not stated (Burton et al., 2011; Hobgood et al., 2010; Paige et al., 2014; Patterson et al., 2013; Walker et al., 2011). Independent rating by adequately trained raters would be preferable, an assertion reflected in another recent systematic review (Onwochei et al., 2017). More detailed descriptions of rater demographics, experience and training would be beneficial to draw more detailed conclusions on the quality of training and its relationship with the rating and tool validation process. Havay et al. (2014) note that while many studies purport to measure teamwork the situations within the study are somewhat contrived team situations. To adequately measure teamwork, even in a simulated environment, more realistic representations of interprofessional collaboration, and linking teamwork measurement to patient outcome to a greater extent, would make study findings more clinically relevant and meaningful. In undergraduate teams it would also be beneficial to begin measuring teamwork skills pre-clinically, to explore how this changes through
time and to reinforce the benefits of interprofessional collaboration at the earliest juncture (Havyer et al., 2016), Whittaker, Abboudi, Khan, Dasgupta, and Ahmed (2015) in their systematic review of teamwork assessment tools in surgery were not eligible for inclusion in this review as its focus was not on simulation in interprofessional groups. However, individual studies included a focus on these themes, albeit not simultaneously. Whilst it does not meet the criteria for our review, it provides a useful overview of teamwork tools used in a surgical context. Our study adds to the literature as it focuses on the measurement of interprofessional teamwork in simulation across both professional and student populations, and all specialties.

Limitations of review

The limitations of this review can be sub-divided into those related to the studies included and those related to the review process. Publication bias is such that studies with lower levels of impact did not reach publication and were therefore excluded. Incomplete descriptions of methodology by included studies limited our ability to interpret and synthesize findings. The study period was for 10 years from 2007–2017. However, there is a predominance of North American studies (n = 11). Additionally, only eight studies cited full demographic data. Location and lack of participant demographics affect the generalizability of findings.

In terms of our review process, we included all studies which claimed to measure teamwork, providing they met all other inclusion criteria, without enforcing a strict definition of what that teamwork involved. Simulations which took place in educational and clinical settings were included and deemed comparable. We also included teams including any groups of clinical interprofessionals from all specialties, which may affect the applicability of findings.

Conclusion

This review aimed to report on the validity of teamwork tools used to objectively assess interprofessional simulation teamwork training for healthcare professionals and students, and on the design and quality of reporting of these studies. We summarised 19 studies. The strongest psychometrics were reported by the TEAM tool (Cooper et al., 2010; Rovamo et al., 2015), TPOT (Zhang et al., 2015) and the GATOP/AOTP (Morgan et al., 2012). The methodological quality of studies was mostly reasonable; however, reporting of the details of specific interventions was poor. Reporting of tool design in line with best practice reporting guidance (Rosen et al., 2008), where relevant, was limited. Where new tools have been generated, their psychometric properties were often not adequately explored or inferior to the validation of existing tools such as TPOT or TEAM. Further validation of these tools in new interprofessional settings, and in similar settings with improved methodologies, would be beneficial to underpin their use. Where existing tools are re-used to assess teamwork, they should be chosen on the basis of their validity for the population studied or re-validated for that population. When assessing the psychometric properties of tools researchers should extend beyond the assessment of internal consistency alone to consider the construct validity and internal consistency. Generating a framework for the reporting of studies assessing teamwork in the simulation could improve the methodological quality of future studies and is a possible area for future research.

Acknowledgments

Study completed as part of a Masters Dissertation in Clinical Education at Plymouth University.

Declaration of interest

The authors report no conflicts of interest. The authors alone are responsible for the content and writing of this article.

Notes on contributors

Dr E.L. Wooding, BMBS, is Academic Clinical Fellow in Paediatrics at Royal Devon and Exeter NHS Foundation Trust and Masters student at Peninsula Medical School.

Dr T.C. Gale, BMBS, FRCA, MClinEd, is Consultant Anaesthetist at University Hospitals Plymouth NHS Trust and Director of Assessment at the Peninsula Medical School, Plymouth University.

Dr V. Maynard, PhD, is Associate Head of School (Postgraduate Medical Education) at Peninsula Medical School.

ORCID

T.C. Gale http://orcid.org/0000-0003-4551-5860

References

Auerbach, M., Roney, L., Ayseh, A., Gawel, M., Koziel, J., Barre, K., ... Santucci, K. (2014). In situ pediatric trauma simulation: Assessing the impact and feasibility of an interdisciplinary pediatric in situ trauma care quality improvement simulation program. *Pediatric Emergency Care*, 30, 884–891. doi:10.1097/PEC.0000000000000297

Berchtold, A. (2016). Test-retest: Agreement or reliability? *Methodological Innovations*, 9, 1–7. doi:10.1177/2059799116672875

Bradley, P., Cooper, S., & Duncan, F. (2009). A mixed-methods study of interprofessional learning of resuscitation skills. *Medical Education*, 43, 912-922. doi:10.1111/j.1365-2932.2009.03432.x

Burton, K. S., Pendergrass, T. L., Byczkowski, T. L., Taylor, R. G., Moyer, M. R., Falcone, R. A., ... Geis, G. L. (2011). Impact of simulation-based Extracorporeal Membrane Oxygenation training in the simulation laboratory and clinical environment. *Simulation in Healthcare*, 6, 284–291. doi:10.1097/SHI.0b013e3182dfceaa

Cooper, S., Cant, R., Porter, J., Sellick, K., Somers, G., Kinsman, L., ... Nestel, D. (2010). Rating medical emergency teamwork performance: Development of the team emergency assessment measure (TEAM). *Resuscitation*, 81, 446–452. doi:10.1016/j.resuscitation.2009.11.027

Daniels, K., Lipman, S., Harney, K., Arafeh, J., & Druzin, M. (2008). Use of simulation-based team training for obstetric crises in resident education. *Simulation in Healthcare*, 3, 154–160. doi:10.1097/SHI.0b013e3181818749

Downing, S. M. (2003). Validity: On the meaningful interpretation of assessment data. *Medical Education*, 37, 830–837.

Fletcher, G., Flin, R., McGeorge, P., Glavin, R., Maran, N., & Patey, R. (2003). Anaesthetists’ non-technical skills (ANTS): Evaluation of a behavioural marker system. *British Journal of Anaesthesia*, 90, 580–588. doi:10.1093/bja/aeg112

Frengley, R. W., Weller, J. M., Torrie, J., Dzendrowskyj, P., Yee, B., Paul, A. M., ... Henderson, K. M. (2011). The effect of a simulation-based training intervention on the performance of established critical care unit teams. *Critical Care Medicine*, 39, 2605–2611. doi:10.1097/CCM.0b013e3182282a98
