ON ENDO-PRIME AND ENDO-COPRIME MODULES

HOJJAT MOSTAFANASAB AND AHMAD YOUSEFIAN DARANI

Abstract. The aim of this paper is to investigate properties of endo-prime and endo-coprime modules which are generalizations of prime and simple rings, respectively. Various properties of endo-coprime modules are obtained. Duality-like connections are established for endo-prime and endo-coprime modules.

1. Introduction and preliminaries

Throughout all rings are associative with non-zero identity elements and modules are unital. We know that R is a prime ring if and only if any non-zero ideal of R has zero left annihilator, or stated otherwise, any non-zero fully invariant submodule of $_RR$ is faithful over the endomorphism ring $\text{End}_R(R) \simeq R$. Haghany and Vedadi [5] generalized this property to modules: An R-module M with $S = \text{End}_R(M)$ is called endo-prime if for any non-zero fully invariant submodule K of M, $\text{Ann}_S(K) = 0$. They show that being endo-prime is a Morita invariant property, and an endo-prime module has a prime endomorphism ring. An R-module M is a direct sum of isomorphic simple modules if and only if each non-zero element of $\sigma[M]$ is an endo-prime module. The dual notion of endo-prime modules defined by Wijayanti [11]: An R-module M with $S = \text{End}_R(M)$ is called endo-coprime if for any proper fully invariant submodule K of M, $\text{Ann}_S(M/K) = 0$. In the special case, $_RR$ is endo-coprime if and only if R is a simple ring. It is shown in [11] that endo-coprime modules have prime endomorphism rings.

In section 2, we give sufficient conditions for an endo-prime module to be fully prime and polyform. Some general properties of endo-coprime R-module M are obtained. We see that for endo-coprime f-coretractable module $_RM$, $\text{Ann}_R(M)$ is a prime ideal of R. Now consider comodules over coalgebra C over a commutative ring R, provided that the coalgebra C satisfies the α-condition. In this context one of the questions one may ask is when the dual algebra $C^* = \text{Hom}_R(C,R)$ of an R-coalgebra C is a prime algebra. The first paper to consider this was by Xu, Lu, and Zhu [14] who observed that this is the case if C is a coalgebra over a field k and $(C^* * f) \rightarrow C = C$ for any non-zero element $f \in C^*$. Another approach in this direction can be found in Jara et. al. [6] and Nekooei-Torkzadeh [8] where coprime coalgebras (over fields) are defined by using the wedge product. We show that a coalgebra C over a base field is fully coprime if and only if its dual algebra C^* is prime. It turns out that each non-zero element of $\sigma[M]$ is an endo-prime module if and only if each non-zero element of $\sigma[M]$ is an endo-coprime module. Being endo-coprime is also a Morita invariant property.

2010 Mathematics Subject Classification. Primary 16D50; Secondary 16D60, 16N60.

Key words and phrases. endo-prime, endo-coprime, dual modules.
In section 3, we shall deal with \(R \)-duals. It is proved that for a finitely generated module \(M \) over a quasi-Frobenius ring \(R \), \(M \) is an endo-prime (resp. endo-coprime) \(R \)-module if and only if \(M^* = \text{Hom}_R(M, R) \) is an endo-coprime (resp. endo-prime) \(R \)-module.

As before, \(R^M \) is a non-zero left module over the ring \(R \), its endomorphism ring \(\text{End}_R(M) \) will act on the right side of \(R^M \), in other words, \(R^M \text{End}_R(M) \) will be studied mainly. For the convenience of the readers, some definitions of modules that will be used in the next sections are provided. Let \(M \) be a left \(R \)-module. We say that \(N \in R\text{-Mod} \) is subgenerated by \(M \) if \(N \) is a submodule of an \(M \)-generated module (see the [12]). The category of \(M \)-subgenerated modules is denoted by \(\sigma[M] \). For submodule \(N \) of \(M \), we write \(N \leq_M M \) when \(N \) is a superfluous (or small) submodule of \(M \). In the category of left \(R \)-modules there are various notions of prime objects which generalize the well-known notion of a prime associative (commutative) ring \(R \). For the notions of (co)primeness of modules we refer to [11] and [13].

Definition 1.1. Recall that \(R^M \) is

- **prime** if for any non-zero (fully invariant) submodule \(K \) of \(M \), \(\text{Ann}_R(K) = \text{Ann}_R(M) \).
- **coprime** if for any proper (fully invariant) submodule \(K \) of \(M \), \(\text{Ann}_R(M/K) = \text{Ann}_R(M) \).
- **fully prime** if for any non-zero fully invariant submodule \(K \) of \(M \), \(M \) is \(K \)-cogenerated.
- **fully coprime** if for any proper fully invariant submodule \(K \) of \(M \), \(M \) is \(M/K \)-generated.
- **strongly coprime** if for any proper fully invariant submodule \(K \) of \(M \), \(M \) is sub-generated by \(M/K \), i.e., \(M \in \sigma[M/K] \).

\(M \) is called **retractable** (resp. **fi-retractable**) if for any non-zero submodule (resp. fully invariant submodule) \(K \) of \(M \), \(\text{Hom}_R(M, K) \neq 0 \).

Dually, \(M \) is called **coretractable** (resp. **fi-coretractable**) if for any proper submodule (resp. fully invariant submodule) \(K \) of \(M \),

\[
\pi_K \circ \text{Hom}_R(M/K, M) = \{ f \in S \mid (K)f = 0 \} \neq 0.
\]

We use \(\circ \) for the composition of mappings written on the right side. The usual composition is denoted by \(\circ \). Thus, from now on, we use \((u)f \circ g = g \circ f(u) \).

2. **Endo-Prime and Endo-Coprime Modules**

We begin with investigating the relation between endo-prime and fully prime modules. For any fully invariant submodules \(K, L \) of \(M \), consider the product

\[
K \ast_M L := K\text{Hom}_R(M, L).
\]

According to [11, 1.6.3], \(M \) is fully prime if and only if for any fully invariant submodules \(K, L \) of \(M \), the relation \(K \ast_M L = 0 \) implies \(K = 0 \) or \(L = 0 \).

Lemma 2.1. Let \(R^M \) be a fi-retractable module and \(S = \text{End}_R(M) \). If \(S \) is prime, then \(M \) is fully prime.

Proof. Let \(K, L \) be non-zero fully invariant submodules of \(M \) which satisfy \(K \ast_M L = K\text{Hom}_R(M, L) = 0 \). By assumption we have

\[
M\text{Hom}_R(M, K)\text{Hom}_R(M, L) = 0.
\]
Since S is prime, $\text{Hom}_R(M, K) = 0$ or $\text{Hom}_R(M, L) = 0$, a contradiction, because M is fi-retractable. Consequently M is fully prime.

A submodule U of R-module N is called M-rational in N if for any $U \subseteq V \subseteq N$, $\text{Hom}_R(V/U, M) = 0$. M is called polyform if any essential submodule is rational in M. The dual notions are: A submodule X of N is called M-corational in N if for any $Y \subseteq X \subseteq N$, $\text{Hom}_R(M, X/Y) = 0$. M is called copolyform if any superfluous submodule is corational in M.

An R-module E is called pseudo-injective in $\sigma[M]$ if any diagram in $\sigma[M]$ with exact row

\[
\begin{array}{c}
0 & \longrightarrow & L & \overset{f}{\longrightarrow} & N \\
& & \downarrow{g} & & \downarrow{h} \\
& & E & & \downarrow{E} \\
& & & & \downarrow{E} \\
\end{array}
\]

can be extended nontrivially by some $s \in \text{End}_R(E)$ and $h : N \rightarrow E$ to the commutative diagram

\[
\begin{array}{c}
0 & \longrightarrow & L & \overset{f}{\longrightarrow} & N \\
& & \downarrow{g} & & \downarrow{h} \\
& & E & \overset{s}{\longrightarrow} & E \\
\end{array}
\]

that is, $gs = fh \neq 0$ (see [3]).

The following result shows sufficient conditions for endo-prime modules to be fully prime and polyform.

Proposition 2.2. Let M be an endo-prime R-module with $S = \text{End}_R(M)$. Then the following statements hold:

(1) If M is fi-retractable, then M is fully prime.

(2) If M is semi-injective, then the center of S is a field.

(3) If M is pseudo-injective in $\sigma[M]$ with $\text{Soc}(M) \neq 0$, then M is polyform.

Proof. (1) Since R is endo-prime, then S is prime. Hence the assertion follows from Lemma 2.1.

(2) Let f be a non-zero central element of S. Then $\text{Ker } f$ is a fully invariant submodule of M. Because M is semi-injective, $fS = \text{Ann}_S(\text{Ker } f)$. Now since M is endo-prime, we must have $\text{Ker } f = 0$ which implies that $fS = S$. Consequently f is an invertible element of S.

(3) Because M is endo-prime, we see that for any non-zero fully invariant submodule K of M, $\text{Hom}_R(M/K, M) = 0$. Since $\text{Soc}(M)$ is a non-zero fully invariant submodule of M, $\text{Hom}_R(M/\text{Soc}(M), M) = 0$. For any essential submodule $L \leq M$, $\text{Soc}(M) \leq L$. Thus $\text{Hom}_R(M/L, M) = 0$ and by pseudo-injectivity of M in $\sigma[M]$, $\text{Hom}_R(L'/L, M) = 0$ for any $L \subseteq L'$, i.e., L is M-rational.

Corollary 2.3. The following statements hold on a prime ring R:

(1) If R is semi-injective, then the center of R is a field.

(2) If R is pseudo-injective with $\text{Soc}(R) \neq 0$, then R is polyform.
In continuation, we study endo-coprime modules. The following examples show that the concepts endo-coprime and coprime are different in general.

Example 2.4. (1) Let F be a field, $R = \begin{pmatrix} F & F \\ 0 & F \end{pmatrix}$, $e = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$, $M = Re$. Then $\text{End}_R(M) \cong eRe \cong F$ as rings, so R is endo-coprime by [11, 1.5.2 part (1)]. Consequently M is not coprime by [11, Lemma 1.3.3 part (1)].

Now consider two left ideals $I = \begin{pmatrix} 0 & F \\ 0 & 0 \end{pmatrix}$ and $J = \begin{pmatrix} 0 & F \\ 0 & 0 \end{pmatrix}$ of R. We can easily see that $I, J \subseteq \text{Ann}_R(M)$ and $IJ = 0$. Thus $\text{Ann}_R(M)$ is not a prime ideal of R. Then R is not coprime, by [11, Lemma 1.3.3 part (1)].

(2) Notice that $\text{End}_R(\mathbb{Q}) \cong \mathbb{Q}$ and hence \mathbb{Q} has no nontrivial fully invariant submodules. Then \mathbb{Q} is a coprime \mathbb{Z}-module. Also any non-zero factor module $\mathbb{Z}_{p^{\infty}}/K$ of $\mathbb{Z}_{p^{\infty}}$ (for any prime number p) is isomorphic to $\mathbb{Z}_{p^{\infty}}$ itself. Thus $\mathbb{Z}_{p^{\infty}}$ is a coprime \mathbb{Z}-module. Therefore $\mathbb{Z}_{p^{\infty}} \oplus \mathbb{Q}$ is a coprime \mathbb{Z}-module (see [11, Lemma 1.3.9]). But $\mathbb{Z}_{p^{\infty}} \oplus \mathbb{Q}$ is not endo-coprime, because $\text{Hom}_\mathbb{Z}(\mathbb{Z}_{p^{\infty}}, \mathbb{Q}) = 0$ and thus $\text{End}_\mathbb{Z}(\mathbb{Z}_{p^{\infty}} \oplus \mathbb{Q})$ cannot be a prime ring.

For any fully invariant submodules $K, L \subseteq M$, consider the inner coproduct

$$K :_M L = \bigcap \{ (L)f^{-1} \mid f \in \text{End}_R(M), K \subseteq \text{Ker } f \}$$

$$= \text{Ker}(\pi_K \circ \text{Hom}_R(M/K, M) \circ \pi_L),$$

where $\pi_K : M \to M/K$ and $\pi_L : M \to M/L$ denote the canonical projections. By [11, Proposition 1.7.3], M is fully coprime if and only if for any fully invariant submodules K, L of M, the relation $K :_M L = M$ implies $K = M$ or $L = M$. Notice that such a coproduct is considered in Bican et.al. [1] for any pair of submodules $K, L \subseteq M$ (not necessary fully invariant) and then a definition of “coprime modules” is derived from this coproduct.

In [11], Wijayanti introduced the following condition for an R-module M:

(**) For any proper (fully invariant) submodule K of M, $\text{Ann}_R(K) \not\subseteq \text{Ann}_R(M)$.

Proposition 2.5. Let M be an R-module with $S = \text{End}_R(M)$.

1. If R is coprime and satisfies (**), then it is endo-coprime.
2. If R is commutative and R is endo-coprime, then R is coprime.
3. If R is endo-coprime and fi-coretractable, then for every left ideal I of R either $IM = 0$ or $IM = M$.
4. If R is fi-coretractable and S is prime, then R is fully coprime.

Proof. (1) Let R be coprime and K be a proper fully invariant submodule of M. If there exists $0 \neq f \in \text{Ann}_S(M/K)$, then we have

$$\text{Ann}_R(M) = \text{Ann}_R(M/\text{Ker } f) = \text{Ann}_R((M)f),$$

by coprimeness of M. Thus $\text{Ann}_R(K) \subset \text{Ann}_R(M)$, a contradiction since M satisfies (**).

(2) Let K be a proper fully invariant submodule of M and $r \in \text{Ann}_R(M/K)$. Since R is commutative, multiplication on M by r (say f_r) is indeed an R-endomorphism of M. Therefore $(M)f_r \subseteq K$ and endo-coprimeness of M implies that $f_r = 0$. Consequently $r \in \text{Ann}_R(M)$ as desired.

(3) Suppose that pM is endo-coprime and fi-coretractable. Let $0 \neq IM \neq M$ for some left ideal I of R. Since R is fi-coretractable, there is $0 \neq f \in S$ such that $(IM)f = 0$, consequently $I(M)fS = 0$ which implies that $(M)fS \subseteq M$. Since
RM is fi-coretractable, there is $0 \neq g \in S$ such that $fSg = 0$, contradicting the primeness of S.
(4) For proper fully invariant submodules K, L of M, by fi-coretractibility we have
$\pi_K \circ \text{Hom}_R(M/K, M) \neq 0$, $\pi_L \circ \text{Hom}_R(M/L, M) \neq 0$ and
$$\pi_K \circ \text{Hom}_R(M/K, M) \circ \pi_L \circ \text{Hom}_R(M/L, M) \neq 0,$$
because S is prime. Thus $K : M L \neq M$. Consequently M is fully coprime. □

As a consequence we obtain:

Corollary 2.6. For RM suppose that at least one of the following conditions hold:
(1) RM is fi-coretractable and satisfies the (***) condition.
(2) RM satisfies the (***) condition and R is commutative.
Then the following statements are equivalent:
(a) RM is coprime.
(b) RM is endo-coprime.
(c) RM is fully coprime.
(d) For every left ideal I of R either $IM = 0$ or $IM = M$.
(e) $\text{Ann}_R(M)$ is a prime ideal of R.

Proof. Suppose RM is fi-coretractable with (***) condition. Then (a) ⇒ (b) by part (1) of Proposition 2.5.
(b) ⇒ (c). Since S is prime, we can apply part (4) of 2.5.
(c) ⇒ (a) is trivial.
(b) ⇒ (d) by part (3) of Proposition 2.5, and (d) ⇒ (e) is clear.
(e) ⇒ (a) by [11, Lemma 1.3.3 part (2)].
We now assume (2). It is easy to see that RM is fi-coretractable and so the conditions are equivalent for RM by the previous case. □

Now we offer a short outline of basic facts about coalgebras and comodules referring to Brzeziński and Wisbauer [2] for details, and then we will state Proposition 2.5 and Corollary 2.6 for comodules and coalgebras (as in Jara et al. [6], Nekooei and Torkzadeh [8], Wijayanti [11] and Xu et al. [14]).

Let C be a coalgebra over a commutative ring R with counit $\varepsilon: C \to R$. Its dual algebra is $C^* = \text{Hom}_R(C, R)$ with multiplication defined as
$$(f \ast g)(c) = \mu \circ (f \otimes g) \circ \Delta(c) = \sum f(e_1)g(e_2)$$
for any $c \in C$ and $f, g \in C^*$, where $\Delta(c) = \sum e_1 \otimes e_2$ (Sweedler’s notation).
A right C-comodule is an R-module M with an R-linear map $g^M: M \to M \otimes_R C$
called a right C-coaction, with the properties
$$(I_M \otimes \Delta) \circ g^M = (g^M \otimes I_C) \circ g^M \text{ and } (I_M \otimes \varepsilon) \circ g^M = I_M.$$ Denote by $\text{Hom}_C^R(M, N)$ the set of C-comodule morphisms from M to N. The class of right comodules over C together with the comodule morphisms form an additive category, which is denoted by M_C.
Similarly to the classical Hom-tensor relations, there are Hom-tensor relations in M_C (see [2]). For any $M \in M_C$ and $X \in M_R$, there is an R-linear isomorphism
$$\phi: \text{Hom}_C^R(M, X \otimes_R C) \to \text{Hom}_R(M, X), \ f \mapsto (I_X \otimes \varepsilon) \circ f,$$
For $X = R$ and $M = C$ the map ϕ yields an algebra (anti-)isomorphism $\text{End}^C(C) \simeq C^*$.
Any $M \in M^C$ is a (unital) left C^*-module by
$$\rightarrow: C^* \otimes_R M \rightarrow M, \quad f \otimes m \mapsto (I_M \otimes f) \circ \phi^M(m),$$
and any morphism $h: M \rightarrow N$ in M^C is a left C^*-module morphism, i.e.,
$$\text{Hom}^C(M, N) \subset C^* \text{Hom}(M, N).$$
C is a subgenerator in M^C, that is all C-comodules are subgenerated by C as C-comodules and C^*-modules. Thus we have a faithful functor from M^C to $C^* M$, where the latter denotes the category of left C^*-modules.
C satisfies the α-condition if the following map is injective for every $N \in M_R$,
$$\alpha_N : N \otimes_R C \rightarrow \text{Hom}_R(C^*, N), \quad n \otimes c \mapsto [f \mapsto f(c)n].$$
M^C is a full subcategory of $C^* M$ if and only if C satisfies the α-condition, and then M^C is isomorphic to $\sigma[C^*, C]$.
Throughout, C will be an R-coalgebra which satisfies the α-condition.

For the following definition and more information on the topic, see [11].

Definition 2.7. Recall that a right C-comodule M with $S = \text{End}_C(M)$ is
- coprime, fully coprime and strongly coprime if M is coprime, fully coprime and strongly coprime as a left C^*-module, respectively.
- endo-coprime if for any proper fully invariant subcomodule K of M, $\text{Ann}_S(M/K) = 0$.

Proposition 2.8. Let M be a right C-comodule such that at least one of the following conditions hold on M:
1. M is fi-coretractable and satisfies the (**) condition as a left C^*-module.
2. M satisfies the (**) condition and C^* is a commutative algebra.
Then the following statements are equivalent:
(a) M is a coprime comodule.
(b) M is an endo-coprime comodule.
(c) M is a fully coprime comodule.
(d) For every left ideal I of C^* either $I \hookrightarrow M = 0$ or $I \hookrightarrow M = M$.
(e) $\text{Ann}_{C^*}(M)$ is a prime ideal of C^*.

Proof. By Corollary 2.6. \Box

For $M = C$, the assertions in 2.8 yield the following theorem that is a part of the main result 2.11.7 of [11], that concluded from [11, 1.7.11]. But [11, 1.7.11 part (i)] has an incorrect proof, because in its proof for finitely generated right ideals $I, J \subseteq \text{End}_R(M)$, submodules $K = \text{Ker} I$ and $L = \text{Ker} J$ are not fully invariant. If we consider I and J as finitely generated left or two sided ideals, then we cannot apply [11, 1.1.9 part (2)].

Theorem 2.9. If C is a coalgebra over a field k, then the following statements are equivalent:
(a) C is coprime as a right C-comodule.
(b) C is coprime as a left C-comodule.
(c) C is endo-coprime as a right C-comodule.
(d) C is fully coprime as a right C-comodule.
For every left ideal I of C^* either $I \twoheadrightarrow C = 0$ or $I \rightarrowtail C = C$.

(f) C^* is a prime algebra.

Proof. Over a field, C is self-cogenerator and so fi-coretractable. According to [11, Lemma 2.2.9], C satisfies condition $(**)$ as a left C^*-module. Also by [11, 2.6.3 part (i)], C is coprime as a left C-comodule if and only if C is endo-coprime. On the other hand C is a faithful C^*-module (see [2, 4.6 part (2)]).

The following Proposition shows that a self-injective coprime module (in the sense of Bican et.al. [1]) is endo-coprime.

Proposition 2.10. Let RM be self-injective. If every non-zero factor module of M generates M, then $\text{End}_R(M)$ is a prime ring and RM is endo-coprime.

Proof. Let $f \in S := \text{End}_R(M)$ and $I := fS$. By assumption M is generated by $M/\text{Ker} I$, i.e., there is a short exact sequence $(M/\text{Ker} I)^{(A)} \rightarrowtail M \rightarrow 0$. Applying $\text{Hom}_R(-, M)$ to this exact sequence yields the commutative diagram

$$
\begin{array}{ccc}
0 & \longrightarrow & \text{Hom}_R(M, M) \\
\downarrow & & \downarrow \cong \\
0 & \longrightarrow & S \\
\end{array}
$$

since $\text{Hom}_R((M/\text{Ker} I)^{(A)}, M) \cong \text{Hom}_R(M/\text{Ker} I, M)^A$ and, by injectivity of M, $\pi_{\text{Ker} I} \circ \text{Hom}_R(M/\text{Ker} I, M) = I$ (see [12, 28.1 part (4)]). Thus I is a faithful right S-module. Consequently $\text{End}_R(M)$ is a prime ring.

By assumption, $\text{Tr}(M/K, M) = M$ for all proper submodule $K \subset M$. Thus $\text{Hom}_R(M/K, M) \neq 0$, i.e., M is coretractable. Then by [11, 1.5.2 part (iii)], M is endo-coprime.

Let N be a fully invariant submodule of M and $f \in \text{End}_R(M)$, then we define $\overline{f} \in \text{End}_R(M/N)$ with $(m + N)\overline{f} = (m)f + N$ (or $f\pi_N = \pi_N\overline{f}$, where π_N is the canonical projection $M \rightarrow M/N$).

We shall need the following Proposition that is a slight modification of 1.5.3 of [11].

Lemma 2.11. Let M be an R-module and N be a proper fully invariant submodule of M. Consider the ring homomorphism $\psi : \text{End}_R(M) \rightarrow \text{End}_R(M/N)$ with $f \mapsto \psi(f) := \overline{f}$, where \overline{f} defined in the above statement.

(1) If M is endo-coprime or M is copolyform and $N \ll M$, then ψ is injective.

(2) If M is self-projective, then ψ is surjective.

Proof. We only need to show that if M is copolyform and $N \ll M$, then ψ is injective, the other statements are proved in [11, 1.5.3]. Suppose that $\psi(f) = \overline{f} = 0$. Then $(M)f \subseteq N$, so $(M)f \ll M$. Since M is copolyform, $(M)f$ is M-corational. Consequently $f \in \text{Hom}_R(M, (M)f) = 0$.

Further properties of endo-coprime modules are collected in the following.

Proposition 2.12. Let RM be an endo-coprime module. Then the following statements hold:

(e) For every left ideal I of C^* either $I \twoheadrightarrow C = 0$ or $I \rightarrowtail C = C$.

(f) C^* is a prime algebra.
(1) M cannot have a nontrivial fully invariant submodule which is a direct summand. Consequently $R/\text{Ann}_R(M)$ has no nontrivial central idempotents.

(2) If $M = K \oplus L$ for non-zero submodules K and L of M, then $\text{Hom}_R(K, L) \neq 0$.

(3) If M is coretractable, then any proper fully invariant submodule $N \subset M$ is superfluous and M/N is coretractable.

(4) For any proper fully invariant submodule $N \subset M$, M/N is endo-coprime provided that M is self-projective.

(5) M is Dedekind finite if and only if there exists a proper fully invariant submodule $N \subset M$ for which M/N is Dedekind finite.

(6) If M is semi-projective, then the center of $S = \text{End}_R(M)$ is a field.

Proof. (1) Since M is endo-coprime, then $S = \text{End}_R(M)$ is a prime ring. Similar to the proof of [5, Proposition 1.9 part (1)], M cannot have a fully invariant submodule which is a direct summand. Let e be a nontrivial central idempotent element of $R/\text{Ann}_R(M)$. Thus M can be decomposed to $M = eM \oplus (1 - e)M$. Then $eM = 0$ or $(1 - e)M = 0$. Consequently $e = 0$ or $e = 1$, since M is a faithful $R/\text{Ann}_R(M)$-module.

(2) Assume that $M = K \oplus L$ for non-zero submodules K and L of M such that $\text{Hom}_R(K, L) = 0$. Then $\text{End}_R(M) = \begin{bmatrix} \text{End}_R(K) & \text{Hom}_R(L, K) \\ 0 & \text{End}_R(L) \end{bmatrix}$. It follows that $(0 \oplus L) | \text{End}_R(M) \subseteq (0 \oplus L)$. Thus $(0 \oplus L)$ is a fully invariant submodule of M. By part (1), $K = 0$ or $L = 0$, a contradiction.

(3) Suppose N is not superfluous in M and $N + K = M$ for some proper submodule K. Since M is coretractable, there exists a non-zero $f \in S = \text{End}_R(M)$ such that $(K)f = 0$. Then $(M)f \subseteq N$, which contradicts the assumption that M is endo-coprime. Now to show that M/N is coretractable, let K/N be a proper submodule of M/N. Then there exists $0 \neq f \in S = \text{End}_R(M)$ with $(K)f = 0$. Now define the map $g \in \text{End}_R(M/N)$ by $(m + N)g = (m)f + N$. If $g = 0$, then $(M)f \subseteq N$, which contradicts the assumption that M is endo-coprime. On the other hand $(K/N)g = 0$. Consequently M/N is coretractable.

(4) Let K/N be a proper fully invariant submodule of M/N. Then by [11, Corollary 1.1.21], K is a proper fully invariant submodule of M. Suppose there exists $\overline{f} \in \text{End}_R(M/N)$ with $(M/N)\overline{f} \subset K/N$. By Lemma 2.11 there is $f \in \text{End}_R(M)$ with $f\pi_N = \pi_N \overline{f}$. Thus $(M)f \subseteq K$, which implies $f = 0$, because M is endo-coprime. Consequently $\overline{f} = 0$.

(5) The necessity is clear. Conversely, let $N \subset M$ be a proper fully invariant submodule which M/N is Dedekind finite. Since M is endo-coprime, $\text{End}_R(M)$ is isomorphic to a subring of $\text{End}_R(M/N)$, by Lemma 2.11. The remainder of proof is similar to [5, Proposition 1.9 part (4)].

(6) Suppose that f is a non-zero central element of S. Then $(M)f$ is a fully invariant submodule of M. If $(M)f \neq M$, then $f \in \text{Ann}_S(M/(M)f) = 0$, which contradicts our assumption. Thus $(M)f = M$, and because M is semi-projective, we have $S = Sf$ which means that f is invertible.

\square

Corollary 2.13. Let $R M$ be self-projective copolyform with N a superfluous fully invariant submodule. Then $R M$ is endo-coprime if and only if so is M/N.

Proof. (\Rightarrow). By part (3) of Proposition 2.12.

(\Leftarrow). Let M/N be endo-coprime and K be a proper fully invariant submodule of M, with $(M)f \subseteq K$ for some $f \in \text{End}_R(M)$. Then $K + N \neq M$, and $(K + N)/N$ is
fully invariant in M/N by [11, Lemma 1.1.20 part (ii)]. We have $(M)f \subseteq K + N$, hence $(M/N)f \subseteq (K + N)/N$ for f which defined in prior of Lemma 2.11. Since M/N is an endo-coprime module we must have $f = 0$. But then again by Lemma 2.11 we deduce that $f = 0$. □

Remark 2.14. A direct sum of endo-coprime modules need not be endo-coprime. To see this we recall that the endomorphism rings of the quasi-cyclic group \mathbb{Z}/\mathbb{Z} and the group of p-adic integers \mathbb{Q}_p^* are isomorphic commutative domains. On the other hand \mathbb{Z}/\mathbb{Z} is a self-cogenerator \mathbb{Z}-module, so by [11, 1.5.2 part (iii)], \mathbb{Z}/\mathbb{Z} is endo-coprime. But $\text{End}_{\mathbb{Z}}(\mathbb{Q}/\mathbb{Z}) \simeq \prod_p \mathbb{Q}_p^*$ is not a prime ring, thus \mathbb{Q}/\mathbb{Z} is not an endo-coprime \mathbb{Z}-module.

A non-zero module is called **endo-simple** if it has no nontrivial fully invariant submodules.

Lemma 2.15. Let R_M be a projective module in $\sigma[M]$. Then the following statements are equivalent:

(a) M is fully coprime.

(b) M is strongly coprime.

(c) M is endo-simple.

Proof. (a) \iff (c). See [9, Corollary 4.6], but notice that two concepts coprime modules in [9] and fully coprime modules in [11] are coincide.

(b) \iff (c). Assume that M is projective in $\sigma[M]$. Then for any non-zero fully invariant submodule U of M, $M \not\subseteq \sigma[M/U]$ (see [10, Lemma 2.8]). In this case if M is also strongly coprime, then M has no nontrivial fully invariant submodules. □

The following result generalizes [11, 1.7.4].

Corollary 2.16. The following statements are equivalent for the ring R:

(a) R is coprime.

(b) R is endo-coprime.

(c) R is fully coprime.

(d) R is strongly coprime.

(e) R is a simple ring.

Corollary 2.17. Let R_M be projective in $\sigma[M]$. If M is strongly coprime or fully coprime, then M is copolyform.

Proof. By Lemma 2.15 and [11, 1.9.15]. □

Endo-coprimeness is preserved under isomorphism. We further have:

Proposition 2.18. Being endo-coprime is a Morita invariant property.

Proof. Assume that A and B are Morita equivalent rings with inverse category equivalences $\alpha : A\text{-Mod} \to B\text{-Mod}$ and $\beta : B\text{-Mod} \to A\text{-Mod}$. Let M be an endo-coprime A-module, we want to show that $(M)\alpha$ is an endo-coprime B-module. Suppose that N is a proper fully invariant submodule of $(M)\alpha$ and $h \in \text{End}_B((M)\alpha)$ such that $((M)\alpha)h \subseteq N$. Let i denotes the inclusion map from N to $(M)\alpha$, $g := (i)\beta$ and $N' := (N)\beta$. We have $(M)\alpha\beta(h)\beta \subseteq (N')g$. Since $(N')g$ is a proper fully invariant submodule of $(M)\alpha\beta$, by the endo-coprimeness of the latter, we deduce that $(h)\beta = 0$, and consequently $h = 0$. This shows that $(M)\alpha$ is an endo-coprime B-module. □
The following proposition is a generalization of [5, 1.15].

Proposition 2.19. The following statements are equivalent on a module RM:
(a) RM is homogeneous semisimple.
(b) Each non-zero element of $\sigma[M]$ is an endo-prime module.
(c) Each non-zero element of $\sigma[M]$ is an endo-coprime module.
(d) Each non-zero element of $\sigma[M]$ is an endo-simple module.

Proof. (a) \Leftrightarrow (b). [5, Proposition 1.15].
(d) \Rightarrow (b) and (d) \Rightarrow (c) are obvious.
(b) \Rightarrow (d). Let $N \in \sigma[M]$ with $S = \text{End}_R(N)$ and K be a nontrivial fully invariant submodule of N. Since $(N/K) \bigoplus N$ is endo-prime, $\text{End}_R((N/K) \bigoplus N)$ is a prime ring and so $\text{Ann}_S(K) = \pi_K \circ \text{Hom}_R(N/K, N) \neq 0$, that contradicts endo-primeness of N.
(c) \Rightarrow (d). Let $N \in \sigma[M]$ with $S = \text{End}_R(N)$ and K be a nontrivial fully invariant submodule of N. Since $\text{End}_R(N \bigoplus K)$ is a prime ring, $\text{Ann}_S(N/K) = \text{Hom}_R(N, K) \neq 0$, which is a contradiction with our hypothesis. □

Proposition 2.20. The following statements are equivalent on a ring R:
(a) R is a simple Artinian ring.
(b) Each non-zero left R-module is endo-prime.
(c) Each non-zero finitely generated left R-module is endo-prime.
(d) Each non-zero left R-module is endo-coprime.
(e) Each non-zero finitely generated left R-module is endo-coprime.
(f) Each non-zero left R-module is endo-simple.

Proof. By 2.19 the statements (a), (b), (d) and (f) are equivalent.
(b) \Rightarrow (c) and (d) \Rightarrow (e) are trivial.
(c) \Rightarrow (a). See [5, Proposition 1.16].
(e) \Rightarrow (a). Clearly R must be prime ring. For any simple module RN and proper left ideal I of R, since $N \bigoplus R$ and $R/I \bigoplus R$ are endo-coprime, their endomorphism rings are prime and consequently $\text{Hom}_R(N, R)$ and $\text{Hom}_R(R/I, R)$ cannot be zero. The reminder of the proof is similar to [5, Proposition 1.16]. □

3. Duality for Endo-Prime and Endo-Coprime Modules

In this section, we shall investigate R-duals. If M is an R-module, then the R-dual of M is $\text{Hom}_R(M, R)$, and this will be denoted by M^*.

Notice that M^* is a right R-module and so its endomorphism ring $\text{End}_R(M^*)$ will act on the left side of M^*. The double dual of M, that is, $(M^*)^*$, will be denoted by M^{**}. If the natural map $\iota: M \rightarrow M^{**}$ given by

$$[(m)\iota](f) = (m)f \ (m \in M, f \in M^*),$$

is injective, M will be called torsionless. It is clear that M is torsionless if and only if the reject $\text{Rej}(M, R)$ is zero. A torsionless module RM is said to be reflexive if the injection map ι is in fact an isomorphism (of left R-modules). For any submodule $K \subseteq M$, put $K^\perp := \{f \in M^* \mid (K)f = 0\}$, which is a submodule of M^*. Similarly, for any submodule $I \subseteq M^*$, put $I^\perp := \bigcap\{\ker f \mid f \in I\}$ (a submodule of M). We recall that, for any $f \in \text{End}_R(M)$, the map $f^* : M^* \rightarrow M^*$ given by $f^*(g) = fg$ is a right R-module homomorphism. If M is a reflexive R-module, then the mapping $()^* : \text{End}_R(M) \rightarrow \text{End}_R(M^*)$ is a ring anti-isomorphism (see [4, Proposition 2.2]).

We recall from [7, Theorem 15.11] that, over quasi-Frobenius (QF) ring R any
finitely generated module $R M$ is reflexive. Furthermore, under this assumption, for any submodules $K \subseteq M$ and $I \subseteq M^*$ we have $K^{\perp \perp} = K$ and $I^{\perp \perp} = I$. The reader is referred to Lam [7] and Wisbauer [12].

Theorem 3.1. Let M be a finitely generated left module over QF ring R. Then the following statements hold:

1. $R M$ is endo-prime if and only if M^* is endo-coprime (as a right R-module).
2. $R M$ is endo-coprime if and only if M^* is endo-prime (as a right R-module).

Proof. (1) (\Rightarrow). Let I be a proper fully invariant submodule of M^*. If $I^{\perp} = 0$, then $I = I^{\perp \perp} = M^*$, which contradicts our assumption. So I^{\perp} is a non-zero fully invariant submodule of M. Let $f^* \in \text{End}_R(M^*)$ with $f^*(M^*) \subseteq I$. Then for any $g \in M^*$, we have $f g = f^*(g) \in I$. Hence $(I^{\perp}) f \subseteq \text{Rej}(M, R) = 0$. Consequently from endo-prime properties of M we deduce that $f = 0$ and so $f^* = 0$.

(\Leftarrow). Let K be a non-zero fully invariant submodule of M. Then for any $f^* \in \text{End}_R(M^*)$ and any $g \in K^{\perp}$ we have $(K) f^*(g) = (K) f g \subseteq (K) g = 0$. Thus K^{\perp} is a proper fully invariant submodule of M^*. Now let $h \in \text{End}_R(M)$ with $(K) h = 0$. Then for any $g \in M^*$, $(K) h^*(g) = (K) h g = 0$, i.e., $h^*(M^*) \subseteq K^{\perp}$. Consequently endo-coprime properties of M^* implies that $h^* = 0$. Thus $\text{Im} h \subseteq \text{Rej}(M, R) = 0$.

(2) (\Rightarrow). Let I be a non-zero fully invariant submodule of M^* and $f^* \in \text{End}_R(M^*)$ such that $f^*(I) = 0$. Then for any $g \in I$, $(M) f \subseteq \text{Ker} g$, i.e., $(M) f \subseteq I^{\perp}$. Thus $f = 0$, because M is endo-coprime and I^{\perp} is a proper fully invariant submodule of M.

(\Leftarrow). Now assume that M^* is endo-prime and K is a proper fully invariant submodule of M. If $K^{\perp} = 0$, then $K = K^{\perp \perp} = M$, a contradiction. Hence K^{\perp} is a non-zero fully invariant submodule of M^*. Let $f \in \text{End}_R(M)$ with $(M) f \subseteq K$, then for any $g \in K^{\perp}$, $(M) f^*(g) = (M) f g \subseteq (K) g = 0$. Therefore $f^*(K^{\perp}) = 0$ and so $f^* = 0$, because M^* is endo-prime. Since M is torsionless f must be zero. □

References

[1] L. Bican, P. Jambor T. Kepka and P. Nemec, *Prime and Coprime Modules*, Fundamenta Mathematicae, 107 (1980) 33–44.

[2] T. Brzeziński and R. Wisbauer, *Corings and Comodules*, Cambridge University Press, 2003.

[3] J. Clark, Ch. Lomp, N. Vanaja and R. Wisbauer, *Lifting modules. Supplements and Projectivity in Module Theory*, Birkhauser, 2006.

[4] A. L. S. Corner, B. Goldsmith and S. L. Wallutis, *Anti-isomorphisms and the failure of duality*, Book chapter/book. Paper 2, Dublin Institute of Technology, 2008.

[5] A. Haghany and M. R. Vedadi, *Endoprime modules*, Acta Math. Hungar., 106 (2005) 89-99.

[6] P. Jara, L. Merino, G. Navarro and J. F. Ruiz, *Prime Path Coagebras*, Arab. J. Sci. Eng., 33 (2008) 273-283.

[7] T. Y. Lam, *Lectures on Modules and Rings*, Graduate Texts in Mathematics, Springer-Verlag, 1998.

[8] R. Nekooei and L. Torkzadeh, *Topology on Coalgebras*, Bull. Iranian Math. Soc., 27 (2001) 45-63.

[9] F. Raggi, J. R. Montes and R. Wisbauer, *Coprime preradicals and modules*, J. Pure Appl. Algebra, 200 (2005) 51-69.

[10] A. M. D. Viola-Prioli, J. E. Viola-Prioli and R. Wisbauer, *Module categories with linearly ordered closed subcategories*, Comm. in Algebra, 22 (1994) 3613-3627.

[11] I. E. Wijayanti, *Coprime Modules and Comodules*, Ph.D. Dissertation, Heinrich-Heine Universität, Düsseldorf, 2006.

[12] R. Wisbauer, *Foundations of Module and Ring Theory*, Philadelphia: Gordon and Breach, 1991.

[13] R. Wisbauer, *Modules and Algebras: Bimodule Structure and Group Actions on Algebras*, England: Addison Wesley Longman Limited, 1996.
[14] Y. Xu, D. Lu and H. Zhu, A Necessary and Sufficient Condition for Dual Algebras of Coalgebras to be Prime, Proc. Asian Math. Conf., Singapore, (1990) 502-510.

DEPARTMENT OF MATHEMATICS AND APPLICATIONS, UNIVERSITY OF MOHAGHEGH ARDABILI, P. O. BOX 179, ARDABIL, IRAN
E-mail address: h.mostafanasab@uma.ac.ir, h.mostafanasab@gmail.com

DEPARTMENT OF MATHEMATICS AND APPLICATIONS, UNIVERSITY OF MOHAGHEGH ARDABILI, P. O. BOX 179, ARDABIL, IRAN
E-mail address: yousefian@uma.ac.ir, youseffian@gmail.com