Electric-Field-Induced Nuclear Spin Resonance Mediated by Oscillating Electron Spin Domains in GaAs-Based Semiconductors

N. Kumada, T. Kamada, S. Miyashita, Y. Hirayama, and T. Fujisawa

1NTT Basic Research Laboratories, NTT Corporation, 3-1 Morinosato-Wakamiya, Atsugi 243-0198, Japan
2Department of Physics, Tohoku University, Sendai 980-8578, Japan
3NTT-AT, 3-1 Morinosato-Wakamiya, Atsugi 243-0198, Japan
4ERATO Nuclear Spin Electronics Project, Sendai 980-8578, Japan

We demonstrate an alternative nuclear spin resonance using radio frequency (RF) electric field (nuclear electric resonance: NER) instead of magnetic field. The NER is based on the electronic control of electron spins forming a domain structure. The RF electric field applied to a gate excites spatial oscillations of the domain walls and thus temporal oscillations of the hyperfine field to nuclear spins. The RF power and burst duration dependence of the NER spectrum provides insight into the interplay between nuclear spins and the oscillating domain walls.

In GaAs-based semiconductors, electronic and nuclear spins are coupled with each other through the contact hyperfine interaction. This allows nuclear spins to be dynamically polarized by manipulating electron spins using electrical [1, 2, 3, 4] or optical [5] means. In two-dimensional systems, a combination of the dynamic nuclear spin polarization and the irradiation of radio frequency (RF) magnetic field is used to control nuclear spins coherently in submicron regions [6, 7, 8] or to perform nuclear magnetic resonance (NMR) for probing electronic properties in quantum Hall (QH) systems [9, 10]. In these experiments, nuclear spin resonance is induced by RF magnetic field generated by a coil wound around the sample or a strip line fabricated on the sample. An alternative is the electric-field-induced nuclear spin resonance (nuclear electric resonance: NER). Since oscillating electric field can be generated by exciting a gate, it has an advantage of spatial selectivity. The advantage of NER combined with a scanning gate technique [11] would allow local probing of electronic properties or nuclear resonance imaging with nanoscale resolution.

For electronic systems, single-spin resonance utilizing the spatial selectivity of an oscillating electric field has been proposed [12, 13, 14, 17] and demonstrated [16, 17]. In these studies, electron motion induced by an oscillating electric field is coupled to the spin through the spin-orbit interaction [12, 13, 14, 16], a slanting magnetic field [15] or an inhomogeneous hyperfine field [17]. For nuclear spins, however, the techniques exploiting spin-motion coupling can not be applied because nuclei are fixed at their lattice sites. So far, there is only a proposal [18] of NER mediated by the electron-spin-orbit and hyperfine interactions.

In this Letter, we propose and demonstrate NER exploiting electronic control of the hyperfine field from electron spin domains. We use current-induced nuclear spin polarization along domain walls in a QH system formed in a GaAs quantum well [2]. After the nuclear spin polarization, a burst of RF electric field is applied to a gate covering the whole area of the device. When the RF frequency is set at the nuclear resonance frequency, nuclear spins are depolarized. The RF power and burst duration dependence of the NER spectrum indicates that the NER is caused by temporal oscillations of the hyperfine field due to spatial oscillations of the domain walls excited by the RF electric field.

The experimental setup is schematically shown in Fig.1(a). The sample, which consists of a 20-nm-wide GaAs quantum well, was processed into a 50-µm-wide Hall bar. The low-temperature mobility is 2.3×10^6 cm^2/V·s at an electron density of 1.7×10^11 cm^-2. The density can be controlled using an n^-GaAs substrate acting as a gate. The sample was mounted in a dilution refrigerator with a base temperature of 100 mK. The longitudinal resistance R_{xx} was measured by a standard low-frequency lock-in technique. A relatively large current of 100 nA was used for the dynamic nuclear spin polarization [19]. Throughout this work, we fixed the static magnetic field B = 7.13 T perpendicular to the two-dimensional electron system. RF electric field for the NER is applied to the gate through a bias-tee. To perform NMR as a reference, a wire loop for generating RF magnetic field was placed around the sample.

We use current-induced and resistively detected nuclear spin polarization [2], which occurs at the phase transition point between the spin-polarized and -unpolarized states of the QH system at Landau level filling factor ν = 2/3; at the transition point, a domain structure of the two phases is formed [19, 20] and flip-flop scattering upon transport across the domain walls produces nuclear spin polarization, which acts as an additional source of scattering and can be detected via R_{xx} [19, 21]. Figure1(b) presents R_{xx} obtained by sweeping the gate bias V_g at normal and slow sweep rates. At the two R_{xx} minima at V_g = −0.84 V and −0.64 V indicated by arrows, the spin-polarized and -unpolarized states are formed, respectively. Nuclear spin polarization is manifested as the slow enhancement of R_{xx} between the two minima,
where the domain structure is formed. In this system, the domain structure depends on V_g as illustrated in the inset of Fig. 1(b). Therefore, the application of an RF electric field to the gate excites spatial oscillations of the domain walls and thus temporal oscillations of the hyperfine field to nuclear spins at the RF frequency. Since the hyperfine field in the domain walls has an in-plane component perpendicular to the static magnetic field, its oscillation at the resonance frequency can induce NER.

Figure 1(c) demonstrates the response of nuclear spins to the RF electric field applied to the gate. Prior to the RF application, nuclear spins are polarized at $\nu = 2/3$ ($V_g = -0.74 V$), where R_{xx} increases slowly (not shown here). Then the RF burst at a frequency f_{RF} is applied to the gate, which causes the depolarization of nuclear spins as manifested by the R_{xx} drop. Here, the size of the resistance drop ΔR_{xx} is defined by subtracting the average of R_{xx} over 5 s just after the RF application from that before.

In Fig. 2(a), ΔR_{xx} is plotted as a function of f_{RF} (solid circles). The spectrum shows a peak at $f_{RF} = 51.971 MHz$, which corresponds to the resonance frequency of 75As at $B = 7.13 T$. To rule out unintentional irradiation of the RF magnetic field generated by the current in the leads, we carried out a similar measurement while depleting electrons by a large negative static bias $V_g = -2.3 V$ during the RF application. ΔR_{xx} at depletion (open circles in Fig. 2(a)) does not show any resonance feature, indicating that the observed nuclear spin resonance for the $\nu = 2/3$ system is indeed electric field induced.

The NER spectrum for the $\nu = 2/3$ system is compared to the resistively detected NMR spectra, which are obtained by applying RF magnetic field B_{RF}. Figure 2(b) shows the NMR spectra for the $\nu = 2/3$ system (solid diamonds) and at depletion (open diamonds). The NMR spectrum at depletion gives a resonance frequency of nuclei free from the hyperfine interaction. In the NMR
The resonance strength increases monotonically with a long time constant of the order of 1 s. As \(P_{RF} \) is increased, on the other hand, the resonance strength slightly increases and then saturates at a smaller value for \(P_{RF} \geq -15 \) dBm. In addition, for larger \(P_{RF} \), the peak splits into two peaks.

The \(P_{RF} \) and \(\tau_{RF} \) dependence can be explained by the spatial and time dependence of the hyperfine field. Consider a domain wall with a width \(W \) centered at \(x = 0 \) between the spin-polarized \((x < 0)\) and \(-\) unpolarized \((x > 0)\) regions. Corresponding hyperfine field, \(B_{x}^{HF} \) and \(B_{z}^{HF} \) respectively for the in-plane \((x)\) and out-of-plane \((z)\) components, is illustrated as a function of \(x \) in Figs. 4(a). \(B_{x}^{HF} \) is finite only in the domain wall, while \(B_{z}^{HF} \) changes between the values for the full and null spin polarizations across the domain wall. Note that \(W \) is estimated to be \(\sim 100 \) nm. Under the RF electric field, the domain wall oscillates spatially with an amplitude \(A \) determined by \(P_{RF} \) [dotted vertical lines in Fig. 4(a)], which causes temporal oscillations of \(B_{x}^{HF}(t) \) and \(B_{z}^{HF}(t) \) at a position near the domain wall [Fig. 4(c)].

The resonance strength is determined by the spectral density of \(B_{x}^{HF}(t) \) at the resonance frequency. The amplitude of the oscillation of \(B_{x}^{HF}(t) \) increases with \(P_{RF} \) until \(A \) reaches \(W \), above which it is limited by the strength of the hyperfine interaction independent of \(P_{RF} \) [Fig. 4(c)]. As a result, the resonance strength saturates for larger \(P_{RF} \). This implies that if the relation between \(P_{RF} \) and \(A \) is known, \(W \) can be obtained from the \(P_{RF} \) dependence of the resonance strength. The slow \(\tau_{RF} \) dependence is due to the small Fourier component of \(\dot{B}_{x}^{HF}(f = f_{RF}) \) at \(f_{RF} \). The Fourier spectrum \(B_{x}^{HF}(f) \) contains not only a fundamental at \(f_{RF} \) but also large amount of harmonics because \(B_{x}^{HF}(t) \) is not a sinusoidal function [Fig. 4(c)].

The resonance frequency reflects the Knight shift,
which corresponds to the time-averaged B_z^{HF}. When P_{RF} is large so that $A > W$, $B_z^{HF}(t)$ follows a square function with a duty ratio depending on x [Fig. 5(c)], where the Knight shift changes almost linearly between full and zero for $|x| < A/2$ [Fig. 5(b)]. In such a situation, the spatial distribution of $B_z^{HF}(x, f = f_{RF})$ modifies the shape of the spectrum through the Knight shift gradient. $B_z^{HF}(t)$ follows peaks whose interval depends on x with the repetition rate f_{RF} [Fig. 5(c)]. $B_z^{HF}(f = f_{RF})$ is finite for $|x| < A/2$ except at $x = 0$ [Fig. 5(b)]; at $x = 0$, the interval between the peaks is uniform at $1/2f_{RF}$, where the fundamental is $2f_{RF}$ and $B_z^{HF}(f = f_{RF})$ is zero. As a result, $B_z^{HF}(x, f = f_{RF})$ has two peaks, leading to the two resonance peaks. Note that the nuclear spin polarization is expected to be inhomogeneous across the domain wall and the distribution also modifies the spectrum. For $A < W$, $B_z^{HF}(t)$ is determined by the electron spin configuration in the domain wall and does not follow the square function. The single resonance peak for smaller P_{RF} suggests that $B_z^{HF}(t)$ fluctuates by electron spin fluctuations in the domain wall and the Knight shift is averaged out.

Finally, we show NER spectra obtained by shifting the position of the domain walls during the RF application. The NER spectra in Fig. 5 are obtained by setting the gate bias to a temporal value V_g during the RF application, while the nuclear spin polarization and its resistive detection are still carried out at $x = 2/3$ ($V_g = -0.74$ V). The shift of domain walls increases with $|V_g' + 0.74$ V| [25]. When the shift is small ($|V_g' + 0.74$ V| ≤ 0.03 V), the NER spectrum shows a clear resonance. For larger $|V_g' + 0.74$ V| ≥ 0.07 V, on the other hand, the resonance peak almost disappears. These results indicate that the NER is sensitive to the nuclear spin polarization along the domain walls. We suggest that the NER combined with a scanning gate technique can detect the position of the domain walls and thereby allows imaging of the domain structure.

The authors are grateful to T. Ota, K. Takahina and K. Muraki for fruitful discussions and T. Kobayashi for sample processing. This work was supported in part by Grant-in-Aid for Scientific Research from the Ministry of Education, Culture, Sports, Science and Technology (No. 19204033).

[1] K. R. Wald et al., Phys. Rev. Lett. 73, 1011 (1994).
[2] S. Kronmüller et al., Phys. Rev. Lett. 82, 4070 (1999).
[3] K. Ono and S. Tarucha, Phys. Rev. Lett. 92, 256803 (2004).
[4] M. Kawamura et al., App. Phys. Lett. 90, 022102 (2007).
[5] A. S. Bracker et al., Phys. Rev. Lett. 94, 047402 (2005).
[6] T. Machida et al., App. Phys. Lett. 82, 409 (2003).
[7] G. Yusa et al., Nature (London) 434, 1001 (2005).
[8] H. Sanada et al., Phys. Rev. Lett. 96, 067602 (2006).
[9] O. Stern et al., Phys. Rev. B 70, 075318 (2004).
[10] N. Kumada, K. Muraki and Y. Hirayama, Phys. Rev. Lett. 99, 075805 (2007).
[11] M. A. Topinka et al., Nature (London) 410, 183 (2001).
[12] S. Debald and C. Emary, Phys. Rev. Lett. 94, 226803 (2005).
[13] V. N. Golovach, M. Borhani, and D. Loss, Phys. Rev. B 74, 165319 (2006).
[14] C. Flindt, A. S. Sorensen, and K. Flensberg, Phys. Rev. Lett. 97, 240501 (2006).
[15] Y. Tokura et al., Phys. Rev. Lett. 96, 047202 (2006).
[16] K. C. Nowack et al., Science 318, 1430 (2007).
[17] E. A. Laird et al., Phys. Rev. Lett. 99, 246601 (2007).
[18] A. G. Aronov and Y. B. Lyanda-Geller, JETP Lett. 50, 431 (1990).
[19] S. Kraus et al., Phys. Rev. Lett. 89, 266801 (2002).
[20] B. Verdet et al., Nature Physics 3, 392 (2007).
[21] K. Hashimoto, T. Saku, and Y. Hirayama, Phys. Rev. B 69, 153306 (2004).
[22] Small difference in the NMR frequency for the spin-unpolarized domains and at depletion would be due to thermal spin excitations in the spin-unpolarized domains.
[23] The amplitude of the bias modulation V_g is obtained by measuring R_{xx} while applying the nonresonant RF electric field: R_{xx} becomes an average of the values for the bias between $V_g = \pm V_{RF}$.
[24] N. Shibata and K. Nomura, J. Phys. Soc. Jpn. 76, 103711 (2007).
[25] The domain structure disappears for $|V_g' + 0.74$ V| ≥ 0.1 V, where the current-induced nuclear spin polarization does not occur [Fig. 4(b)].