Heebie Jeebies among children and parents towards dentistry

Dr. Saumya Paul, Dr. Megha Chawla, Dr. Ekta, Dr. Bhavna Gupta Saraf and Dr. Neha Sheoran

DOl: https://doi.org/10.22271/oral.2020.v6.i4b.1054

Abstract
The aim of this study was to assess the anxiety in children which would help the pedodontist to modify the child's behavior and deliver the treatment effectively and efficiently. The present study consisted of 100 subjects which included 50 school going children (6-12 year) of age and their parents accompanying them to the dentist. A Facial Scale was used to assess children’s anxiety levels, while Corah's Dental Anxiety Scale (DAS) was used to assess Parents anxiety level. Results of this study shows that 27% children show high anxiety level, 50% children have light anxiety level and 23% children show intermediate anxiety level with different dental instruments and equipment. The study concluded that assessment of parents fear prior to child’s dental treatment may help the clinician in modifying behavior management strategies also whenever parental anxiety is high, efforts to reduce the parents’ level of anxiety may also benefit the child.

Aim: Assessment of anxiety in children which would help the pedodontist to modify the child's behavior and deliver the treatment effectively and efficiently.

Objectives: To correlate the dental anxiety level of children and their parents.
To evaluate the dental instruments which elicits the maximum anxiety in children.

Keywords: Anxiety, children, facial scale, behaviour management

Introduction
Fear is an individual's response to a life threatening event or dangerous situation to protect himself or herself [1]. Fear and/or anxiety are recurring feelings and a cause of concern in paediatric dental treatment, since emotions influence children’s behaviour and play an important role in pain perception [2]. Dental anxiety can be defined as a feeling of apprehension about dental treatment, which is not necessarily connected to a specific external stimulus. It may lead to avoidance of dental care, increasing the risk of caries development and oral diseases [3].

Factors related to dental anxiety includes age, gender, parental anxiety, etc. Painful or negative dental experience is the most common causes of dental anxiety [4]. The onset of anxiety is thought to originate in childhood, and the effect of this fear persists into adulthood [5]. As a result, anxious individuals postpone dental treatment, are quite uncooperative during dental visits and develop lower pain threshold [6].

Girls and younger children are most often reported as more fearful than boys and older children [7].

Parents play an important role in teaching their children to deal with fearful situations [8]. As early as the 1990s, citing the increased parental participation in dental treatment, it was recognized that the traditional approach of keeping the parent out of the operatory may not be feasible or effective in all cases [9].

The influence of parental anxiety on children’s behavior is well recognized by dentists in clinical situations. Parents are known to subtly transmit feelings of fear and anxiety to their children. Of the two parents, mothers with high anxiety levels have most often been shown to exert a negative influence on their children’s behavior.
It has been suggested that one can understand, predict, and influence a child’s dental behavior through the mother’s attitude toward dental care [10].

Many measurement techniques have been proposed to assess dental fear and anxiety and DBMPs; behavioral ratings, psychometric scales, physiological measures, and projective techniques [10].

Therefore, careful assessment of child’s anxiety is an important step for proper patient management and delivery of good quality of dental care. Also, assessment of the caregiver’s anxiety might be very helpful to form an understanding of the basis of the child’s anxiety. Therefore parents can play an important role in their children’s dental treatment and behaviour during visits to the dentist [11].

Aim of the study was to assess anxiety in children which would help the pedodontist to modify the child’s behavior and deliver the treatment effectively and efficiently.

Materials and Methods

The present study was conducted in the Department of Pedodontics and Preventive Dentistry, Sudha Rustagi Dental College of Science and Research Faridabad. Study population consist of 100 subjects which is comprised of 50 school going children (6-12 year) of age and their parents accompanying them to the dentist, was selected for the study.

Sample Selection

The sample size consisted of 50 healthy children and their parents who were willing to participate in the study. Children and their parents were informed about the study design explaining the contents of the study also children and their parents suffering from any systemic disease, or handicapping conditions were excluded from the study. A Facial Scale was used to assess children’s anxiety levels, while Corah’s Dental Anxiety Scale (DAS) was used to assess parents anxiety level [12].

Parent’s anxiety levels was assessed by using the Dental Anxiety Scale (DAS) proposed by Corah. Corah’s DAS is a well known psychometric scale that was developed in 1969. It is simple, easy to use, has high reliability and predictive validity [14]. Dental concern assessment scale was developed by J. H. Clarke and S. Rustvold in 1993. It comprised of four multiple choice questions, each having 5 options, which were scored as A = 1, B = 2, C = 3, D = 4, E = 5; with (A) being a level of no anxiety and (E) representing the maximum level of anxiety. The total score for the Norman Corah scale ranges from 4 to 20 and anxiety ratings are classified: 4 to 8 = no anxiety, 9 to 12 = moderate anxiety, 13 to 14 = high anxiety, 15 to 20 = severe anxiety [15].
Statistical Analysis

- The data was analyzed using SPSS software 17.0. Data will be evaluated by using Friedman test to check any differences in children’s anxiety levels relative to the equipment/instruments.
- To found correlation between parents anxiety levels and their children’s the Spearman test was applied between the average anxiety levels found for parents and the average anxiety levels found for children.

Results

A total of 50 children aged 6 to 12 year was evaluated, of which 34 (68%) was male and 16 (34%) was female (figure1). In which 10 year and 7 year children population are more as compared to other age group children (figure 2).

Figure 1 shows: Frequency distribution of children with respect to their anxiety to words specific dental equipment which show intense anxiety level regarding specific instrument in desending order: pediatric forcep> carpule syringe> High speed handpiece> Rubber dam clamp> Dental explorer> Tweezer> Rubber dam>X-ray equipment>Dental chair> Mouth mirror. The study found a statistically significant difference between the instruments/equipment and the level of anxiety these caused on the (p<0.001). And the children’s anxiety levels was found: 50% light, 23% intermediate, and 27% intense (figure 5)

Instrument/ Equipment / Equip	Average Anxiety Score	Standard Deviation	Children, S Anxiety Level (%)
Pediatric forcep	3.58	1.36	Mild 24.0, Moderate 22.0, Intense 54.0
Syringe	3.18	1.19	Mild 34.0, Moderate 18.0, Intense 48.0
Highspeed handpiece	3.16	1.25	Moderate 38.0, Intense 18.0, Intense 44.0
Tweezer	2.66	1.13	Mild 56.0, Moderate 12.0, Intense 32.0
Rubber dam clamp	2.78	1.22	Moderate 42.0, Intense 28.0, Intense 30.0
Dental explorer	2.74	1.26	Intense 40.0, Moderate 38.0, Intense 22.0
Rubber dam	2.34	1.31	Mild 68.0, Moderate 12.0, Intense 20.0
X-ray equipment	2.18	0.93	Moderate 60.0, Intense 28.0, Intense 12.0
Mouth mirror	1.90	1.30	Moderate 72.0, Intense 26.0, Intense 2.0
Dental chair	2.02	0.82	Intense 70.0, Moderate 28.0, Intense 2.0
In Table 2 describe parents anxiety level by in which the parents’ anxiety levels, 32% was found to be null, 38% was low, 30% was moderate, and 0% was exacerbated (figure 5).
Results of this study shows that 27% children show high anxiety level, 50% children have light anxiety level and 23% children show intermediate anxiety level with different dental instruments and equipment.

- In this study 32% parents anxiety level was null, 38% was low, 30% was moderate, and 0% parents was exacerbated anxiety level with dental procedure.

The children’s average anxiety level was 2.64, whereas the average for the parents was 9.92. No significant correlation was found (rs= -0.019, p=0.895) between the parents’ anxiety level and that of their children, which indicates that the children’s anxiety levels were not dependent on their parents’ or caretakers’ anxiety levels.

Table 2: Two-by-two analysis, using the Wilcoxon test, of the instruments/equipment and their respective p values.

Instruments/equipment	Pediatric forcep	Dental explorer	X ray equipment	RD	HS Handpiece	RD Clamps	MM	Tweezer	Dental chair
Syringe	0.089	0.079	<0.0001, S	0.004, S	0.951	0.103	<0.0001, S	0.089	<0.0001, S
Pediatric forcep	<0.0001, S	<0.0001, S	<0.0001, S	0.124	0.001, S	<0.0001, S	<0.0001, S	<0.0001, S	<0.0001, S
Dental explorer	0.044	0.091	0.103	0.748	0.001, S	0.749	0.001, S		
X ray equipment	0.414	<0.0001, S	0.036	0.107	0.091, S	0.391			
Rubber dam	<0.0001, S	0.195	0.020	0.258	0.074				
High speed handpiece	0.065	<0.0001, S	0.059	<0.0001, S					
Rubber dam clamp	<0.0001, S	<0.0001, S	0.793	0.001, S					
Mouth mirror	<0.0001, S	0.430							
Tweezer								0.002, S	

Discussion

Despite the technological advances in dentistry, dental anxiety and the fear of pain remains globally widespread and is considered a major barrier to dental treatment [16]. The various problems arising due to this are: dental avoidance, which worsens oral health and quality of life, and dental phobia, which may affect dentist – patient relationship further leading to a compromised dental treatment [11].

Managing children suffering from dental anxiety is challenging for the dental professionals. Therefore, the purpose of this study was to assess the correlation between the dental anxiety level in school going children and their parents visiting the department for dental treatment. In this study 30 school going children (6 to 12 year) and their parents were selected to assessed the anxiety level relative to instruments/equipment used in dental pediatric routine. A Facial Scale was used to assessed children’s anxiety levels, while Corah’s Dental Anxiety Scale (DAS) was used to assessed Parents anxiety level.

Results of this study shows that 27% children show high anxiety level, 50% children have light anxiety level and 23% children show intermediate anxiety level with different dental instruments and equipment. The pediatric forcep caused the highest anxiety levels, probably due to this instrument being associated with the application of extraction of teeth, which is identified as the most painful moment in the treatment. This suggests that apparently invasive procedures cause higher anxiety in children and the appearance of instruments can suggest an invasive. In this context, in addition to the pediatric forcep, the instruments that caused the highest anxiety levels were the carpule syringe, the High speed handpiece and the rubber dam clamp.

In this study 32% parents anxiety level was null, 38% was low, 30% was moderate, and 0 % parents was exacerbated anxiety level with dental procedure. Some studies suggest a correlation between parents’ anxiety levels and those of their children Huber et al., 2010; Boman et al., 2008; Lee et al., 2008; Lara et al., 2012. On the other hand, other studies report that compared to other factors, parents’ fear and anxiety do not have significant effects on children’s anxiety and fear [Klaassen et al., 2003] [17]. But no significant correlation was found in this study between child and their parents anxiety level. It showed that that the children’s anxiety levels were not dependent on their parents’ or caretakers’ anxiety levels. Therefore it is necessary to focus on a patient entering any dental clinic with anxiety during treatment procedure. The information obtained from this study can be quite helpful for the dentists to accordingly modify the behavior management techniques and the manner in which the dental procedure would be effectively delivered to instill a positive attitude in children, which would help in making them better and healthy individuals for the future.

Conclusion

Parents’ perception of dental appointments being unpleasant may be passed onto children. An assessment of parents fear prior to child’s dental treatment may help the clinician in modifying behavior management strategies. Whenever parental anxiety is high, efforts to reduce the parents’ level of anxiety do not have significant effects on children’s anxiety and fear [Klaassen et al., 2003] [17]. But no significant correlation was found in this study between child and their parents anxiety level. It showed that that the children’s anxiety levels were not dependent on their parents’ or caretakers’ anxiety levels. Therefore it is necessary to focus on a patient entering any dental clinic with anxiety during treatment procedure. The information obtained from this study can be quite helpful for the dentists to accordingly modify the behavior management techniques and the manner in which the dental procedure would be effectively delivered to instill a positive attitude in children, which would help in making them better and healthy individuals for the future.

References

1. Steimer T. The biology of fear-and anxiety-related behaviors. Dialogues in clinical neuroscience 2002;4(3):231.
2. Leal AM, Serra KG, Queiroz RC, Araújo MA, Maia Filho EM. Fear and/or anxiety of children and parents associated with the dental environment. Eur J Paediatr Dent 2013;14(4):269-72.
3. Drummond BK, Meldrum AM, Boyd D. Influence of dental care on children’s oral health and wellbeing.
British dental journal 2013;214(11):E27-

4. Beena JP. Dental subscale of children's fear survey schedule and dental caries prevalence. European Journal of Dentistry 2013;7(2):181.

5. Locker D, Liddell A, Dempster L, Shapiro D. Age of onset of dental anxiety. Journal of dental research 1999;78(3):790-6.

6. Armfield JM, Heaton LJ. Management of fear and anxiety in the dental clinic: a review. Australian dental journal 2013;58(4):390-407.

7. Raj S, Agarwal M, Aradihya K, Konde S, Nagakishore V. Evaluation of dental fear in children during dental visit using children's fear survey schedule-dental subscale. International journal of clinical pediatric dentistry 2013;6(1):12.

8. National Academies of Sciences, Engineering, and Medicine. Parenting matters: Supporting parents of children ages 0-8. National Academies Press 2016, 21.

9. Pani SC, Alanazi GS, Albaragash A, Almosaihel M. Objective assessment of the influence of the parental presence on the fear and behavior of anxious children during their first restorative dental visit. Journal of International Society of Preventive & Community Dentistry 2016;6(Suppl 2):S148.

10. Shinde SD, Hegde RJ. Evaluation of the influence of parental anxiety on children's behavior and understanding children's dental anxiety after sequential dental visits. Indian Journal of Dental Research 2017;28(1):22.

11. Appukuttan DP. Strategies to manage patients with dental anxiety and dental phobia: literature review. Clinical, cosmetic and investigational dentistry 2016;8:35.

12. Leal AM, Serra KG, Queiroz RC, Araújo MA, Maia Filho Em. Fear and/or anxiety of children and parents associated with the dental environment. Eur j paediatr dent 2013;14(4):269-72.

13. Buchanan H, Niven N. Validation of a Facial Image Scale to assess child dental anxiety. International journal of paediatric dentistry 2002;12(1):47-52.

14. Facco E, Zanette G, Manani G. Italian version of Corah's Dental Anxiety Scale: normative data in patients undergoing oral surgery and relationship with the ASA physical status classification. Anesthesia progress 2008;55(4):109-15.

15. Mohammed RB, Lalithamma T, Varma DM, Sudhakar KN, Srinivas B, Krishnamraju PV, et al. Prevalence of dental anxiety and its relation to age and gender in coastal Andhra (Visakhapatnam) population, India. Journal of natural science, biology, and medicine 2014;5(2):409.

16. Morse Z, Takau AF. Dental anxiety in Fiji. Pacific health dialog 2004;11(1):22-5.

17. Klaassen M, Veerkamp J, Hoogstraten J. Predicting dental anxiety. The clinical value of anxiety questionnaires: an explorative study. European journal of paediatric dentistry 2003;4:171-6.