Topological phases of spinless p-orbital fermions in zigzag optical lattices

Gaoyong Sun,†‡ Wen-Long You,†‡ and Tao Zhou†‡

1College of Science, Nanjing University of Aeronautics and Astronautics, Nanjing, 211106, China
2Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Materials,
GPETR Center for Quantum Precision Measurement,
SPTE, and Frontier Research Institute for Physics,
South China Normal University, Guangzhou 510006, China

Motivated by the experiment [St-Jean et al., Nature Photon. 11, 651 (2017)] on topological phases with collective photon modes in a zigzag chain of polariton micropillars, we study spinless p-orbital fermions with local interorbital hoppings and repulsive interactions between p_x and p_y bands in zigzag optical lattices. We show that spinless p-band fermions in zigzag optical lattices can mimic the interacting Su-Schrieffer-Heeger model and the effective transverse field Ising model in the presence of local hoppings. We analytically and numerically discuss the ground-state phases and quantum phase transitions of the model. This work provides a simple scheme to simulate topological phases and the quench dynamics of many-body systems in optical lattices.

I. INTRODUCTION

Topological phases of matter are fascinating quantum states in modern condensed matter physics, which are characterized by some prominent features such as string orders, robust edge states beyond the Landau-Ginzburg symmetry-breaking theory [1]. The Su-Schrieffer-Heeger (SSH) model that exhibits topological nontrivial phases was originally proposed for fermionic particles with staggered hoppings in polyacetylene chains [2, 3]. The SSH model is a simple but very important model in studying the topology of the single-particle band structure in solid-state physics. Thanks to the rapid development of quantum simulations [4–6], the SSH model was recently realized in many platforms, such as coupled semiconductor micropillars with the collective photon modes [7, 8], and optical lattices with ultracold atoms [9–12].

A natural proposal to realize the SSH model in optical lattices is to create a double well superlattice with the same unit cell as the original SSH model [9–12]. Interestingly, an orbital version of the SSH Hamiltonian was implemented by using polariton micropillars in a p-band zigzag chain in Ref.[8], where the topological nontrivial phases and topological trivial phases were found to form in the orthogonal p_x and p_y subspaces. However, the impact from the mixing of the p_x and p_y orbitals and the on-site interactions were not investigated in Ref.[8], which we believe are important to engineer rich many-body physics in optical lattices. This is because: (i) In cold atoms, it may be very difficult to prepare orthogonal p_x and p_y orbitals with perfect 90° angles. In fact, it would be interesting to introduce such deformations of the local lattice wells to tune the phase transitions [13] instead of considering only the orthogonal p_x and p_y subspaces. (ii) When placing the bosons or spinful fermions on p-band optical lattices, the pair hopping terms due to the Hund effect would cause a mixing of p_x and p_y orbitals of a given lattice well. (iii) In the strong on-site interaction limit, a small mixing of orbitals may lead to a phase transition because the effective coupling strength from the second-order perturbation theory is small.

In this paper, we generalize the work of Ref.[8] that realizes the SSH model with polariton micropillars by considering spinless fermions loaded in a p-band zigzag optical lattice with the on-site hopping (band mixing) and on-site interactions, which were discarded in Ref.[8]. We show that the topological phases persists under such local deformations and the phase transition in the strong interacting limit at half-filling is described by the effective transverse field Ising model. We note that the p-bands systems in optical lattices have been investigated experimentally [14–18] and theoretically [13, 19–41].

This paper is organized as follows. In Sec.II, we introduce the p-band model with spinless fermions in zigzag optical lattices. In Sec.III, we study the quantum phases of spinless p-orbital fermions in zigzag optical lattices. This work provides a simple scheme to simulate topological phases and the quench dynamics of many-body systems in optical lattices.

FIG. 1. (Color online) Geometry of the p-band model discussed in this work. (a) Zigzag lattice with degenerate p_x and p_y orbitals occupied by spinless fermions, where t_\parallel and t_\perp denote the longitudinal and transverse hopping between the same orbitals in nearest-neighboring lattice sites, λ and U refer to the local hopping and interaction between different orbitals in a given site. (b) The equivalent ladder geometry of (a). (c) The representation for the Hamiltonian in Eq. (1) in terms of spinless fermions on a SSH-like chain.

* Corresponding author: gysun@nuaa.edu.cn
† Corresponding author: wlyou@nuaa.edu.cn
‡ Corresponding author: tzhou@scnu.edu.cn
without interactions by the single particle spectrum. In Sec.IV, we discuss the quantum phases, phase transitions with interactions and derive the effective transverse field Ising model. Finally, in Sec.V, we summarize this work.

II. MODEL

We consider spinless fermions loaded in a zigzag optical lattice [13, 31, 32] as shown in Fig.1(a), where two degenerate p_x and p_y orbitals are active within the x-y plane per lattice site due to a strong confinement along z-direction. The Hamiltonian of the system composed of N lattice wells is given by [19, 22],

$$
H = -\sum_{i=1,l=1,2}^N (t_{i,l}^\dagger c_{i+1,l} + \lambda c_{i,p_x}^\dagger c_{i,p_y} + h.c.) + \sum_{i=1}^N U c_{i,p_x}^\dagger c_{i,p_x} c_{i,p_y}^\dagger c_{i,p_y},
$$

with $t = -\frac{1}{2}t_\parallel [1 + (-1)^{i+l}] + \frac{1}{2}t_\perp [1 - (-1)^{i+l}]$, where t_\parallel and t_\perp are the longitudinal and transverse hopping amplitudes along the same orbital p_x (or p_y) between two nearest-neighbor lattice sites, and $l = 1, 2$ indicates the p_x, p_y orbital in a given lattice site. In Fig.1(a), the longitudinal hopping t_\parallel is much larger than the transverse hopping t_\perp because the overlap integrals of hopping amplitudes are dependent on the orientation of orbitals [19, 22]. The local interorbital hopping λ that leads to a mixing of the p_x and p_y orbitals can be tuned by a deformation of the lattice wells such as by an additional weak tilted lattice [13]. Here $c_{i,l}^\dagger, c_{i,l}$ are the creation and annihilation operators at lth orbital of the ith site, and $U > 0$ is the on-site repulsive interaction between p_x and p_y orbitals in a single given well. It is easy to find that the p-band model in zigzag lattices is equivalent to a spinless fermionic model on a two-leg ladder [cf. Fig.1(b)] or a one-dimensional SSH chain [cf. Fig.1(c)], which we will discuss in more detail below.

III. TOPOLOGICAL PHASES IN THE NON-INTERACTING SSH-LIKE MODEL

Let us first consider the noninteracting case ($U = 0$) of Hamiltonian in Eq.(1). In the absence of interorbital hopping ($\lambda = 0$), the p_x orbitals and the p_y orbitals are decoupled into two independent chains (subspaces) with staggered t_\parallel and t_\perp hopping as shown in Fig.1(b). In the chains with open boundary conditions, considering the longitudinal hopping t_\parallel is typically much larger than the transverse hopping t_\perp due to the orientation of orbitals [19, 22], the p_x subspace consequently exhibits a dimerization on the $(2i - 1, 2i)$ bonds without edge states as shown in Fig.2(a), while the p_y subspace forms a dimerization on the $(2i, 2i + 1)$ bonds with topological edge states as demonstrated in Fig.2(b). The odd-bond dimerizations in p_x subspaces correspond to the topological trivial phase while the even-bond dimerization in p_y subspaces exhibit the topological nontrivial phase of the SSH model that was experimentally investigated with polariton micropillars in Ref.[8].

Next, we consider the effect of the orbital deformation that introduces the on-site interorbital hopping ($\lambda \neq 0$) between the p_x and p_y orbitals of the local lattice wells and was neglected in Ref.[8]. In this context, we arrive at the following noninteracting Hamiltonian with periodicity two [see Fig.1(a)] by considering only the leading terms,

$$
H' = -\sum_{i=1,l=1,2}^N (t'c_{i,l}^\dagger c_{i+1,l} + \lambda c_{i,p_x}^\dagger c_{i,p_y} + h.c.),
$$

where $t' = -\frac{1}{2}t_\parallel [1 + (-1)^{i+l}]$, and we have discarded the transverse hopping term t_\perp because $t_\perp \ll t_\parallel$. The Bogoliubov-de Gennes (BdG) Hamiltonian of Eq.(2) under periodic boundary conditions can be easily derived as

$$
H' = \begin{pmatrix}
0 & 0 & t_\parallel e^{-ik} & \alpha_k \\
-\lambda & 0 & 0 & b_k \\
0 & t_\parallel & 0 & -\lambda \\
t_\parallel e^{ik} & 0 & -\lambda & 0
\end{pmatrix}
$$

by using the Nambu basis $\psi^T_k = (a_k, b_k, c_k, d_k)$. Here a_k, b_k, c_k, d_k are the annihilation operators in the momen-
term space of $c_{2i−1,p_x}$, $c_{2i−1,p_y}$, c_{2i,p_x}, c_{2i,p_y}. Diagonalizing the Hamiltonian, we obtain the energy spectrum of the bulk states:

$$ E(k) = \pm \sqrt{\lambda^2 + t_\parallel^2 \pm 2\lambda t_\parallel \cos(k/2)}, $$

with $k = \frac{2\pi}{N}j$ and $j = 1, 2, \ldots, N/2$. Equivalently, four bands in Eq.(5) can be reduced to two bands of the SSH model by simply setting $k' = k/2$ as

$$ E(k') = \pm \sqrt{\lambda^2 + t_\parallel^2 + 2\lambda t_\parallel \cos(k')}, $$

where $k' = \frac{2\pi}{N}j$ and $j = 1, 2, \ldots, N$. Obviously, if the degenerate p_x and p_y orbitals are regarded as two sublattice sites in each unit cell, one can easily arrive at the standard SSH model [see Fig.1(c)]. Consequently, when $\lambda > t_\parallel$, a dimerized state is formed between the p_x and p_y sublattices in each single well as shown in Fig.2(c), which corresponds to the topological trivial phase of SSH model. When $\lambda < t_\parallel$, the system exhibits the dimerization induced interorbital hopping λ. We note that when the transverse hopping terms t_\perp are finite, the model becomes a SSH model with the third-neighbor hopping [42, 43]. However, it qualitatively would not change the underlying physics with $t_\perp = 0$ because the hopping strength t_\perp is much smaller than t_\parallel due to the orientation of orbitals [19, 22].

IV. EFFECTIVE STRONG-COUPLING MODEL

In the following, we will study the ground-state properties and the associated quantum phase transitions of Hamiltonian in Eq.(1) with on-site repulsive interaction $U \neq 0$. For simplicity but without loss of generality, we still overlook the transverse hopping t_\perp terms in the following discussions. The model is then the usual SSH model with the nearest-neighbor interaction U between the p_x and p_y orbitals within a unit cell. In addition to the topological nontrivial phase and the trivial phase, a density wave phase (or Aoki phase in the Gross-Neveu model) appears [44–46] owing to the presence of local interaction U. To understand the nature of the quantum phases and the phase transitions of the p-band model in Eq.(1), we derive an effective antiferro-orbital (AF-orbital) Ising model in the strongly interaction limit with $U \gg t_\parallel$, by the second-order perturbation theory at half-filling [13, 19, 22, 31]:

$$ H_{\text{eff}} = \sum_{i=1}^{N} JS_i^z S_{i+1}^z - 2\lambda S_i^x, $$

where $J = 2t_\parallel^2/U$, $S_i^\dagger = c_{i,p_x}^\dagger c_{i,p_y}$ and $S_i^- = (c_{i,p_x}^\dagger c_{i,p_y} - c_{i,p_y}^\dagger c_{i,p_x})/2$. Hence, for $\lambda > t_\parallel^2/2U$, it is a para-orbital phase, while for $\lambda < t_\parallel^2/2U$, it is an antiferro-orbital Ising phase ($p_x, p_y, p_x, p_y, \cdots$), in which one particle is located in the p_x orbital of ith well and the other dwells on the p_y orbital of the nearest neighbor $i + 1$th well.

We note that in contrast to SU(2) symmetric Heisenberg interactions in spin models, the orbital exchange Hamiltonian evokes Ising-type interactions without quantum fluctuations, similar to the systems with t_\parallel orbital degeneracy [47, 48]. Especially, the interorbital hopping λ herein is responsible for substantial quantum fluctuations and plays a role of an external transverse field, which is hardly experimentally controlled in the orbital-only models of Mott insulators [47, 48]. To verify our theoretical analysis, we compute the correlation function,

$$ C_{1,j} = \langle S_i^z S_j^z \rangle, $$

and the fidelity susceptibility per orbital [49–52],

$$ \chi_{\text{L}}(\lambda) = \frac{1}{2N} \lim_{\delta \lambda \to 0} \frac{-2 \ln F(\lambda, \lambda + \delta \lambda)}{(\delta \lambda)^2}, $$

with periodic boundary conditions. Where $F(\lambda, \lambda + \delta \lambda) = |\langle \psi_0(\lambda) | \psi_0(\lambda + \delta \lambda) \rangle|$ evaluates the overlap of two infinitesimally close states. The numerical results are

![Graph](image-url)
obtained and presented in Fig. 3 by performing the exact diagonalization with periodic boundary conditions up to $N = 11$ wells [equivalent to $N = 22$ orbitals of Fig. 1(c)]. As is shown in Fig. 3(b), one can see clearly that a quantum phase transition occurs between the antiferro-orbital Ising phase ($\lambda < \lambda_c$) and the para-orbital phase ($\lambda > \lambda_c$). The phase transition is also detected by the peak of the fidelity susceptibility as shown in Fig. 3(c). The dependence of the critical values λ_c on U is presented in Fig. 3(a), which agrees well with the analytical results $\lambda_c = t_j^2/2U$ from the perturbation theory. Regarding the finite-size scaling of the peak of the fidelity susceptibility for a continuous phase transitions in one-dimensional system [50–54],

$$\chi_N^m \propto N^{2/\nu-1},$$

we obtain the critical exponent of the correlation length $\nu \approx 0.98$ consistent with Ising transition $\nu = 1$ from maximal values of the fidelity susceptibility as shown in Fig. 3(c). Consequently, one can simulate the Ising phase transition or dynamical quantum phase transitions [55, 56] with spinless fermions in zigzag lattices.

V. CONCLUSION

In summary, we have shown that spinless fermions loaded in a p-band zigzag optical lattice can engineer the interacting SSH model, which shows a topological phase transition from the trivial phase to the topological nontrivial phase, where the edge states appear in open boundary conditions. In the strong interaction limit, the transverse field Ising model can be mimicked owing to the on-site band mixing and repulsion. We show the spinless fermions in p-band zigzag lattice can host rich quantum phases and the associated phase transitions due to the interplay between the lattice geometry, the deformation of the lattice wells and the interactions.

In addition, when the dipolar particles are loaded into the lattices, one may simulate the long-range interacting SSH and long-range Ising models [5]. Consequently, our proposal opens a simple way to study quantum phase transitions and the quench dynamics, such as dynamical quantum phase transitions with broken symmetries [57] of many-body systems. We note that it may also be possible to simulate a non-Hermitian SSH model or a non-Hermitian Ising model if the gain and loss are introduced into the systems [58, 59]. Moreover, it would be very interesting to investigate the bosons placed in the zigzag optical lattices to understand the Hund effects in the future.

Finally, we would like to emphasize that the orbital symmetry in p-band zigzag lattice leads to z-component Ising interactions along any direction in the xy plane in the regime of large U, i.e., for $U \gg t_j$, in stark contrast to the ferromagnetic Kitaev interactions with nonequivalent components of Ising superexchange along different axes [60–62]. We note that the hole propagation described by the tJ_z model in antiferro-orbital and para-orbital background may lead to a nontrivial many-body problem [47, 63].

ACKNOWLEDGMENTS

G. S. is appreciative of support from the NSFC under the Grant Nos. 11704186 and 11874220. W.-L. You acknowledges support by the startup fund of Nanjing University of Aeronautics and Astronautics under Grant No. 1008-YAH20006. Numerical simulations were performed on the clusters at Nanjing University of Aeronautics and Astronautics, and National Supercomputing Center in Shenzhen.

[1] M. Levin and X.-G. Wen, Physical Review Letters 96, 110405 (2006).
[2] W. Su, J. Schrieffer, and A. J. Heeger, Physical Review Letters 42, 1698 (1979).
[3] W.-P. Su, J. Schrieffer, and A. Heeger, Physical Review B 22, 2099 (1980).
[4] I. Bloch, J. Dalibard, and W. Zwerger, Reviews of Modern Physics 80, 885 (2008).
[5] T. Lahaye, C. Menotti, L. Santos, M. Lewenstein, and T. Pfau, Reports on Progress in Physics 72, 126401 (2009).
[6] I. M. Georgescu, S. Ashhab, and F. Nori, Reviews of Modern Physics 86, 153 (2014).
[7] S. Kruk, A. Slobozhanyuk, D. Denkova, A. Podubny, I. Kravchenko, A. Miroshnichenko, D. Neshev, and Y. Kivshar, Small 13, 1603190 (2017).
[8] P. St-Jean, V. Goblot, E. Galopin, A. Lemaître, T. Ozawa, L. Le Gratiet, I. Sagnes, J. Bloch, and A. Amo, Nature Photonics 11, 651 (2017).
[9] S. Nakajima, T. Tomita, S. Taie, T. Ichinose, H. Ozawa, L. Wang, M. Troyer, and Y. Takahashi, Nature Physics 12, 296 (2016).
[10] M. Lohse, C. Schweizer, O. Zilberberg, M. Aidelsburger, and I. Bloch, Nature Physics 12, 350 (2016).
[11] S. de Léséleuc, V. Lienhard, P. Scholl, D. Barredo, S. Weber, N. Lang, H. P. Büchler, T. Lahaye, and A. Browaeys, Science 365, 775 (2019).
[12] D. Xie, W. Gou, T. Xiao, B. Gadway, and B. Yan, npj Quantum Information 5, 1 (2019).
[13] G. Sun, G. Jackeli, L. Santos, and T. Vekua, Physical Review B 86, 155159 (2012).
[14] A. Isacsson and S. Girvin, Physical Review A 72, 053604 (2005).
[15] T. Müller, S. Fölling, A. Widera, and I. Bloch, Physical Review Letters 99, 200405 (2007).
[16] G. Wirth, M. Ölschläger, and A. Hemmerich, Nature Physics 7, 147 (2011).
[17] L. Niu, S. Jin, X. Chen, X. Li, and X. Zhou, Physical
5

[18] M. Slot, S. Kempeks, E. Knol, W. Van Weerdenburg, J. Van Den Broeke, D. Wegner, D. Vanmaekelbergh, A. Khajetoorians, C. M. Smith, and I. Swart, Physical Review X 9, 011009 (2019).

[19] W. V. Liu and C. Wu, Physical Review A 74, 013607 (2006).

[20] C. Wu, D. Bergman, L. Balents, and S. D. Sarma, Physical Review Letters 99, 070401 (2007).

[21] C. Wu, Physical Review Letters 101, 186807 (2008).

[22] E. Zhao and W. V. Liu, Physical Review Letters 100, 160403 (2008).

[23] X. Lu and E. Arrigoni, Physical Review B 79, 245109 (2009).

[24] C. Wu, Modern Physics Letters B 23, 1 (2009).

[25] P. Hauke, E. Zhao, K. Goyal, I. H. Deutsch, W. V. Liu, and M. Lewenstein, Physical Review A 84, 051603(R) (2011).

[26] K. Kobayashi, M. Okumura, Y. Ota, S. Yamada, and M. Machida, Physical Review Letters 109, 235302 (2012).

[27] P. Soltan-Panahi, D.-S. Lühmann, J. Struck, P. Windpassinger, and K. Sengstock, Nature Physics 8, 71 (2012).

[28] X. Li, Z. Zhang, and W. V. Liu, Physical Review Letters 108, 175302 (2012).

[29] Y.-J. Wu, J. He, C.-L. Zang, and S.-P. Kou, Physical Review B 86, 085128 (2012).

[30] X. Li, E. Zhao, and W. V. Liu, Nature Communications 4, 1 (2013).

[31] G. Sun, A. Kolezhuk, L. Santos, and T. Vekua, Physical Review B 89, 134420 (2014).

[32] W.-L. You, P. Horsch, and A. M. Oleś, Physical Review B 89, 104425 (2014).

[33] Z. Zhou, E. Zhao, and W. V. Liu, Physical Review Letters 114, 100406 (2015).

[34] O. Dutta, M. Gajda, P. Hauke, M. Lewenstein, D.-S. Lühmann, B. A. Malomed, T. Sowiński, and J. Zakrzewski, Reports on Progress in Physics 78, 066001 (2015).

[35] X. Li and W. V. Liu, Reports on Progress in Physics 79, 116401 (2016).

[36] Z.-F. Xu, L. You, A. Hemmerich, and W. V. Liu, Physical Review Letters 117, 085301 (2016).

[37] B. Liu, P. Zhang, H. Gao, and F. Li, Physical Review Letters 121, 015303 (2018).

[38] Y. Li, J. Yuan, A. Hemmerich, and X. Li, Physical Review Letters 121, 093401 (2018).

[39] S. Jin, W. Zhang, X. Guo, X. Chen, X. Zhou, and X. Li, arXiv preprint arXiv:1910.11880 (2019).

[40] G.-B. Zhu, Q. Sun, H.-M. Yang, L.-L. Wang, W.-M. Liu, and A.-C. Ji, Physical Review A 100, 043608 (2019).

[41] P. Saugmann and J. Larson, New Journal of Physics 22, 023023 (2020).

[42] T. E. Lee, Physical review letters 116, 133903 (2016).

[43] S. Yao and Z. Wang, Physical review letters 121, 086803 (2018).

[44] A. Bermudez, E. Tirrito, M. Rizzi, M. Lewenstein, and S. Hands, Annals of Physics 399, 149 (2018).

[45] Y. Kuno, Physical Review B 99, 064105 (2019).

[46] Y. Kuno and Y. Hatsugai, arXiv e-prints, arXiv (2020).

[47] K. Wohlfeld, M. Daghofer, A. M. Oleś, and P. Horsch, Physical Review B 78, 214423 (2008).

[48] M. Daghofer, K. Wohlfeld, A. M. Oleś, E. Arrigoni, and P. Horsch, Physical review letters 100, 066403 (2008).

[49] W.-L. You, Y.-W. Li, and S.-J. Gu, Physical Review E 76, 022101 (2007).

[50] S.-J. Gu, International Journal of Modern Physics B 24, 4371 (2010).

[51] G. Sun, Physical Review A 96, 043621 (2017).

[52] Z. Zhu, G. Sun, W.-L. You, and D.-N. Shi, Physical Review A 98, 023607 (2018).

[53] J. Ren, W.-L. You, and X. Wang, Physical Review B 101, 094410 (2020).

[54] J. Ren, W.-L. You, and A. M. Oleś, Physical Review B 102, 024425 (2020).

[55] M. Heyl, A. Polkovnikov, and S. Kehrein, Physical review letters 110, 135704 (2013).

[56] M. Heyl, Reports on Progress in Physics 81, 054001 (2018).

[57] G. Sun and B.-B. Wei, arXiv preprint arXiv:2006.00726 (2020).

[58] Y. Ashida, Z. Gong, and M. Ueda, arXiv preprint arXiv:2006.01837 (2020).

[59] L. Pickup, H. Sigurdsson, J. Ruostekoski, and P. Lagoudakis, arXiv preprint arXiv:2001.07616 (2020).

[60] G. Jackeli and G. Khaliullin, Physical review letters 102, 017205 (2009).

[61] W.-L. You, P. Horsch, and A. M. Oleś, Physical Review B 89, 104425 (2010).

[62] L. Cincio, J. Dziarmaga, and A. M. Oleś, Physical Review B 82, 104416 (2010).

[63] V. Emery, S. Kivelson, and H. Lin, Physical review letters 64, 475 (1990).