Atomic Layer Deposition of Gallium Oxide Films as Gate Dielectrics in AlGaN/GaN Metal–Oxide–Semiconductor High-Electron-Mobility Transistors

Huan-Yu Shih1, Fu-Chuan Chu2, Atanu Das2, Chia-Yu Lee2, Ming-Jang Chen1 and Ray-Ming Lin2*

Abstract
In this study, films of gallium oxide (Ga2O3) were prepared through remote plasma atomic layer deposition (RP-ALD) using triethylgallium and oxygen plasma. The chemical composition and optical properties of the Ga2O3 thin films were investigated; the saturation growth displayed a linear dependence with respect to the number of ALD cycles. These uniform ALD films exhibited excellent uniformity and smooth Ga2O3–GaN interfaces. An ALD Ga2O3 film was then used as the gate dielectric and surface passivation layer in a metal–oxide–semiconductor high-electron-mobility transistor (MOS-HEMT), which exhibited device performance superior to that of a corresponding conventional Schottky gate HEMT. Under similar bias conditions, the gate leakage currents of the MOS-HEMT were two orders of magnitude lower than those of the conventional HEMT, with the power-added efficiency enhanced by up to 9%. The subthreshold swing and effective interfacial state density of the MOS-HEMT were 78 mV decade−1 and 3.62 × 1011 eV−1 cm−2, respectively. The direct-current and radio-frequency performances of the MOS-HEMT device were greater than those of the conventional HEMT. In addition, the flicker noise of the MOS-HEMT was lower than that of the conventional HEMT.

Keywords: GaN, Ga2O3, Remote plasma atomic layer deposition (RP-ALD), Metal–oxide–semiconductor high-electron-mobility transistor (MOS-HEMT), MOCVD

Background
Gallium nitride (GaN)-based semiconductor materials are useful not only in optoelectronic devices but also in millimeter-wave power devices, especially for the fabrication of high-electron-mobility transistors (HEMTs) [1, 2]. For microwave power applications, an AlGaN/GaN HEMT must exhibit high speed, high radio-frequency (RF) power performance, and a high breakdown voltage [3]. Nevertheless, a high gate leakage current is the factor most responsible for limiting the direct-current (DC) and RF power performances of conventional Schottky gate HEMTs [4]. Metal–oxide–semiconductor HEMTs (MOS-HEMTs) can decrease the gate leakage current when incorporating a variety of gate oxide/insulators, including electron beam (EB)-evaporated Pr2O3 and Er2O3 [5, 6], thermally oxidized TiO2/NiO [7], sputtered Al2O3 [8], and atomic layer-deposited HfO2 and Al2O3 [9, 10].

Among the established dielectric deposition methods, atomic layer deposition (ALD)—a low-temperature chemical vapor deposition technique in which layer-by-layer deposition occurs based on surface-limited reactions—is attractive because of its accurate control over thickness, excellent step coverage, conformity, high uniformity over large areas, low-defect density, good reproducibility, and low deposition temperatures arising from the self-limiting reactions [11]. These features make ALD a strong candidate for manufacturing nanoscale dielectric layers for electronic devices. Indeed, ALD has been exploited to prepare a variety of high-dielectric-constant (high-k) materials (e.g., Al2O3 [12], HfO2 [13], ZrO2 [14]) that are used widely in Si-based devices.

* Correspondence: rmlin@mail.cgu.edu.tw
1 Department of Electronic Engineering, Chang Gung University, Taoyuan 333, Taiwan
2 Full list of author information is available at the end of the article

© 2016 Shih et al. Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.
ALD-deposited high-k materials, including HfO$_2$, Sc$_2$O$_3$, and Al$_2$O$_3$, have been employed as gate dielectric and surface passivation layers to improve the properties of HEMTs [15]. In addition, such binary oxides are thermodynamically stable when they are contacted with III–V semiconductors. Among the high-k materials, trivalent Ga$_2$O$_3$ is a promising material for application as a gate dielectric and passivation layer in III–V semiconductor-based devices because its large band gap (4.9 eV) and moderate dielectric constant (10.6) can help to decrease the leakage current [16]. It was also reported that Ga$_2$O$_3$ could be a good candidate as a gate dielectric of AlGaN/GaN HEMTs due to the good interface characteristics [17].

Several groups have reported the ALD growth of Ga$_2$O$_3$. Shan et al. performed thermal ALD of GaN using [(CH$_3$)$_2$GaNH$_2$]$_3$ and O$_2$ plasma as precursors [18]. In 2012, Comstock and Elam described the ALD of Ga$_2$O$_3$ films from trimethylgallium and ozone [19]. In 2013, Donmez et al. applied low-temperature ALD to grow Ga$_2$O$_3$ thin films from trimethylgallium and O$_2$ plasma [20]. A temperature window of 100–400 °C has been reported for this process.

In this present study, we prepared high-quality Ga$_2$O$_3$ thin films through remote plasma ALD (Fiji F202, Cambridge Nanotech) using TEG and O$_2$ plasma as precursors. The remote O$_2$ plasma was generated by an RF coil under an alternative RF power at 300 W.

Methods

Ga$_2$O$_3$ was prepared through remote plasma ALD (Fiji F202, Cambridge Nanotech) using TEG and O$_2$ plasma as precursors. The remote O$_2$ plasma was generated by an RF coil under an alternative RF power at 300 W. Figure 1 provides a schematic representation of the ALD cycles during the Ga$_2$O$_3$ deposition process. Each ALD cycle comprised four steps: (1) TEG pulse, (2) Ar purge, (3) O$_2$ plasma, and (4) Ar purge. The films were deposited at a temperature of 250 °C with a base pressure of approximately 0.4 Torr.

The thickness and optical characteristics of the Ga$_2$O$_3$ thin films were measured through spectroscopic ellipsometry (SE, Elli-SE, Ellipsio Technology) in the wavelength range 280–980 nm at an incident angle of 70°. The film thickness was confirmed using high-resolution transmission electron microscopy (HRTEM). The chemical compositions and bonding states in the films were characterized using X-ray photoelectron spectrometry (XPS) with Al Kα (1486.6 eV) radiation; pre-sputtering was performed for 10 s to remove any contamination from the surface. The crystal structure of the Ga$_2$O$_3$ films were characterized by high-power grazing incidence X-ray diffractometer (GI-XRD; Rigaku TTRAX 3, 18 kW) in θ–2θ mode with Cu Kα radiation. Atomic force microscopy (AFM; Bruker, Edge) was used to evaluate the roughness of the Ga$_2$O$_3$ surface and interface.

The epitaxial structure was grown on a 2-in silicon carbide substrate using a Nippon Sanso SR-2000 metalorganic chemical vapor deposition system (MOCVD). The epilayer consisted of a 26-nm Al$_{0.275}$Ga$_{0.725}$N barrier layer, a 1-nm AlN inter layer, a 2-μm GaN layer, a 0.7-μm Al$_{0.07}$Ga$_{0.93}$N transition layer, and a 300-nm AlN buffer layer. All epitaxial layers were unintentionally doped. The HEMT structure exhibited a sheet charge density of 1.02 × 1013 cm$^{-2}$ and a Hall electron mobility of 1880 cm2 V$^{-1}$ s$^{-1}$ at 300 K.

Fig. 1 Schematic representation of the ALD process during Ga$_2$O$_3$ deposition
Devices were processed using conventional optical lithography and lift-off technology. Device isolation was accomplished through mesa dry etching down to the unintentionally doped GaN layer in a BCl$_3$ plasma reactive ion etching chamber. Ohmic contacts of Ti/Al/Ni/Au (19/120/30/75 nm) metals were deposited through EB evaporation, followed by rapid thermal annealing at 850 °C for 30 s in a N$_2$-rich chamber. After gate lithography pattern formation and surface cleaning, the samples were loaded into the ALD chamber, and a 10-nm Ga$_2$O$_3$ layer was deposited at 250 °C to function as the gate dielectric and passivation layer between the source and drain contact. Ni/Au (70/140 nm) gate metals were then deposited. For comparison, a conventional Ni/Au Schottky gate AlGaN/GaN HEMT was also fabricated. The Ti/Au (50/1100 nm) metals were deposited as interconnection and probe pads. A schematic cross-sectional structure and a cross-sectional TEM image of a Ga$_2$O$_3$/AlGaN/AlN/GaN HEMT are presented in Fig. 2a, b, respectively. The gate dimensions of each device were 1 × 100 μm2 with a source-to-drain spacing of 6 μm. The microstructures of the fabricated devices were characterized using high-resolution transmission electron microscopy (HRTEM, FEI TecnaiG2 F20). DC characterization of the HEMT devices was performed using an Agilent B1500A semiconductor device analyzer; microwave power measurements were conducted using an ATN load-pull system.
Results and Discussion
Characteristics of ALD Ga_2O_3

Figure 3a displays the growth rate of the Ga_2O_3 thin films as a function of the TEG pulse time and plasma time, at a deposition temperature of 250 °C. The O_2 flow rate was fixed at 20 sccm. The growth rate is defined here in terms of the film thickness divided by the total number of applied ALD cycles. We observed that the growth rate increased initially upon increasing the TEG dose, but then remained constant at 0.062 nm/cycle when the TEG pulse time was greater than 0.1 s. The growth rate became saturated at plasma times of longer than 5 s. These results suggest that the Ga_2O_3 thin films were grown in a self-limiting manner when using the RP-ALD technique. Figure 3b presents the film thickness plotted with respect to the number of applied ALD cycles; the linear dependence implies that the deposition followed the ALD mode and that the film thickness could be control precisely by varying the number of ALD cycles.

Figure 4 displays the XPS spectra of a Ga_2O_3 thin film. A single binding energy (BE) peak for the Ga 3d core level, situated at 20.1 eV, confirmed the presence of Ga–O bonds [21] in the sample and the absence of elemental Ga in the film. A single, sharp O 1 s peak, centered at a BE of 531.0 eV, is consistent with previously reported values for the oxide [21]. Taken together, these features confirm that the RP-ALD system facilitated the successful deposition of Ga_2O_3 thin films. By measuring relative areas under the curves of the XPS spectra, we calculated average atomic compositions for Ga, O, and C of 41.53, 58.26, and 0.21 %, respectively, in the Ga_2O_3 thin film.

Fig. 4 a Ga 3d and b O 1 s XPS spectra of the Ga_2O_3 thin film

Fig. 5 Refractive index and extinction coefficient of the Ga_2O_3 thin film plotted with respect to the wavelength

Fig. 6 The GI-XRD pattern of the Ga_2O_3 films
The molecular ratio of Ga and O in the ALD thin film was slightly higher than ideal (2:3), suggesting the existence of a Ga-rich Ga₂O₃ film featuring some O vacancies. The content of carbon atoms was negligible, suggesting that the ethyl groups of TEG had been removed almost completely during exposure to the remote O₂ plasma.

We used SE to investigate the optical properties of the Ga₂O₃ thin film. Figure 5 displays the dispersion of the refractive index and extinction coefficient at wavelengths in the range 280–980 nm. We fitted the SE data to the Tauc–Lorentz model, which is widely used for amorphous semiconductors [22]. The measured refractive index of our ALD Ga₂O₃ at a wavelength of 633 nm was 1.91, and its band gap was 4.51 eV; these values are close to those reported [23] for amorphous Ga₂O₃. Figure 6 shows the GI-XRD pattern of the Ga₂O₃ films. The result was performed with a low-grazing angle of incidence in order to obtain the signal from the thin film. There are no obvious peaks of Ga₂O₃ so that the crystal structure was amorphous which was consistent with the SE results.

To investigate the interface quality, the roughness of the HEMT structure before and after Ga₂O₃ grown by ALD were measured by atomic force microscopy (AFM), as shown in Fig. 7. The roughness remained the same order after deposition, this result indicated that the interface between AlGaN and Ga₂O₃ should be smooth.

Characteristics of Ga₂O₃ MOS-HEMT

The capacitance-voltage (C-V) characteristic measured at 1 MHz is shown Fig. 8. The C_{ox} value come from MOS capacitance; the calculated C_{ox} values of the conventional HEMT and the Ga₂O₃ MOS-HEMT were 28 pF and 14.7 pF, respectively.

Figure 9 displays the measured $I_{DS-V_{DS}}$ characteristics of the conventional HEMT and the Ga₂O₃ MOS-HEMT; they both exhibited good gate modulation and pinch-off characteristics. The measured drain current of the conventional HEMT at a value of V_G of 0 V (I_{DSS}) was 609 mA mm⁻¹; it was slightly higher (720 mA mm⁻¹) for the Ga₂O₃ MOS-HEMT.

Figure 10a presents the transconductance (g_m) and drain current (I_{DS}) characteristics for these devices. The maximum transconductances ($g_{m\text{ max}}$) of the conventional HEMT and Ga₂O₃ MOS-HEMT when biased at a value of V_{DS} of 8 V were 179 and 200 mS mm⁻¹, respectively; their maximum drain currents ($I_{DSS\text{ max}}$) were 921 and 1123 mA mm⁻¹, respectively. Thus, the values of $I_{DSS\text{ max}}$ and $g_{m\text{ max}}$ of the MOS-HEMT were relatively high, presumably the result of enhanced mobility caused by decreased carrier scattering, due to surface passivation [24, 25]. In addition, the slight increase in the gate-to-channel separation, resulting from the presence...
of the Ga2O3 gate oxide layer, was responsible for the threshold voltage shifting from \(-3.8\) to \(-4.2\) V. For the HEMT with Ga2O3, the threshold voltage \(V_{th}\) shift, which was generally resulted from the defects in interface and gate oxide, was smaller than that with Al2O3 [26] and HfO2 [27]. The result may be caused by the excellent interface between Ga2O3 and AlGaN, optimized RP-ALD process condition, and the use of TEG (reduce defects in Ga2O3). To further investigate the gate control characteristics of both devices, we studied the region near the cut-off voltage. The subthreshold swing \(SS\) is a parameter that indicates how effectively a device can be turned off; it is defined as the decrease in the log \(I_{DS} - V_{GS}\) plot near the cut-off voltage as shown in Fig. 10b. We measured the values of \(I_{DS}\) with respect to \(V_{GS}\) for both devices biased at a value of \(V_{DS}\) of 8 V. The \(I_{ON}/I_{OFF}\) ratio and SS of the Ga2O3 MOS-HEMT \((1.5 \times 10^7\) and 78 mV decade\(^{-1}\), respectively) were superior to those of the conventional HEMT \((2.4 \times 10^7\) and 188 mV decade\(^{-1}\), respectively). Figure 10b also displays the values of the OFF-state \(I_{DS}\), revealing that the leakage current \((3.3 \times 10^{-3}\) mA mm\(^{-1}\)) of the conventional HEMT decreased \((7.45 \times 10^{-5}\) mA mm\(^{-1}\)) after deposition of the Ga2O3 thin layer. We calculated the effective interfacial state density from the SS [6]. By neglecting the depletion capacitance in the active layer, the value of \(N_t\) can be estimated as

\[
N_t = \left(\frac{SS}{\ln 10 \cdot \frac{q}{kT}}\right) \frac{C_{ox}}{q},
\]

where \(K\) is the Boltzmann constant, \(T\) is the temperature, \(C_{ox}\) is the capacitance of the gate oxide and \(q\) is the quantity of one electron, respectively. The effective interfacial states density \((4.77 \times 10^{12}\) eV\(^{-1}\) cm\(^{-2}\)) of the conventional HEMT decreased to \(3.62 \times 10^{11}\) eV\(^{-1}\) cm\(^{-2}\) for the Ga2O3 MOS-HEMT.

Figure 11a presents the gate leakage current densities of the two devices. Under reverse bias conditions, the leakage current density of the Ga2O3 MOS-HEMT reached as low as \(7.8 \times 10^{-6}\) mA mm\(^{-1}\) at a value of \(V_{GD}\) of \(-10\) V; this leakage current density is two order of magnitude lower than that of the conventional HEMT \((8.59 \times 10^{-4}\) mA mm\(^{-1}\)). Figure 11b displays the three-terminal off-state breakdown characteristics of the conventional HEMT and Ga2O3 MOS-HEMT measured at a value of \(V_{GS}\) of \(-6\) V. The drain breakdown voltage of the Ga2O3 MOS-HEMT \((170\) V) was 44 V larger than that of the conventional HEMT fabricated on the same wafer. The high quality of the ALD Ga2O3 film effectively suppressed the gate leakage current density and improved the breakdown voltage because of its large band gap [16].

We conducted 1/f noise measurements to elucidate the relationship between the low-frequency noise and the gate electrode interface; here, we varied the frequency from 1 to 100 KHz and the gate overdrive bias.
Fig. 11
(a) Gate leakage current and
(b) three-terminal off-state breakdown characteristics of the conventional HEMT and the Ga$_2$O$_3$ MOS-HEMT

Fig. 12
(a) Normalized values of S_{Gh}/I_{Dh}^2 plotted at various values of $(V_{GS}-V_{th})$;
(b) Hooge's coefficient (α_H) plotted with respect to $(V_{GS}-V_{th})$ for the conventional HEMT and the Ga$_2$O$_3$ MOS-HEMT
(V_{GS}−V_{th}) from 0.4 to 1 V in steps of 0.2 V. Figure 12a displays the gate bias dependence of the normalized drain current noise spectral density (S_{ID}/I_{DS}) of both devices at a value of V_{DS} of 2 V. The 1/f noise spectrum of the Ga₂O₃ MOS-HEMT was lower than that of the conventional HEMT, due to its lower gate leakage current.

Our findings indicate that lower interfacial states can be achieved when using this ALD-deposited Ga₂O₃ film as a gate dielectric and passivation layer. Furthermore, Hooge’s coefficient (a_H) is another noise parameter that quantifies the 1/f noise; it can provide a measure of the total number of active traps causing the noise and can be used as a rough figure of merit for both devices. Hooge’s coefficient can be expressed as follows [28]:

\[aH = \left(\frac{fWLC}{qI^2D} \right) \]

where \(f \) is the measurement frequency, \(C_t \) is the unit capacitance of the gate material, and \(q \) is the elementary electron charge.

Figure 12b presents the values of a_H plotted with respect to (V_{GS}−V_{th}), measured at a value of \(f \) of 100 Hz. The average values of a_H for the conventional HEMT and Ga₂O₃ MOS-HEMT were 1.4 × 10⁻² and 1 × 10⁻³, respectively. The flicker noise spectral density of the Ga₂O₃ MOS-HEMT was lower than that of the conventional HEMT because of its lower number of interfacial states.

Figure 13 displays the microwave output power (P_{out}) and power gain (G_P) for both devices determined at 2.4 GHz with a drain bias of 16 V, measured on-wafer by the load-pull ATN system with automatic tuners measuring the optimum-load impedance for maximum output power. The conventional HEMT exhibited an output power of 25.6 dBm; the associated power-added efficiency was 40 % and the power gain was 21.9 dB. For the Ga₂O₃ MOS-HEMT, the output power was 27.3 dBm; the associated power-added efficiency was 49 % and the power gain was 23.6 dB. Output power and PAE can be expressed as

\[P_{\text{out}} = \frac{1}{8}(V_{DS}−V_{\text{knee}}) \times I_{DS} \]

and

\[\text{PAE} = \frac{P_{\text{out}}−P_{\text{in}}}{P_{\text{DC}}} \times 100\%, \]

where \(V_{\text{knee}} \) is the knee voltage, \(P_{\text{out}} \) is the output power, \(P_{\text{in}} \) is the input power, and \(P_{\text{DC}} \) is the DC power supply.

The relatively high RF power performance of the Ga₂O₃ MOS-HEMT resulted from its higher current drive, lower \(P_{\text{DC}} \) dissipation, and lower gate leakage current, all arising from the good passivation and gate insulation effects of the Ga₂O₃ film prepared through remote plasma ALD [5, 25, 29].

Conclusions

We have used remote plasma ALD to deposit Ga₂O₃ films that we then applied in AlGaN/AlN/GaN HEMTs on silicon carbide substrates. The thin Ga₂O₃ films prepared through RP-ALD exhibited saturation of the growth rate upon increasing the TEG pulse time and plasma time. The film thickness varied linearly with respect to the number of ALD cycles. This behavior is consistent with the growth of Ga₂O₃ following the ALD mode. The ALD Ga₂O₃ films possessed excellent uniformity and the Ga₂O₃−GaN interfaces were smooth. The fabricated Ga₂O₃ MOS-HEMT exhibited enhanced gate insulating and surface passivation effects, resulting in superior DC and RF performance relative to those of the conventional HEMT. Moreover, the low leakage current and low interfacial state density of the Ga₂O₃ MOS-HEMT provided a measured SS of 78 mV decade^{−1} and an I_{ON}/I_{OFF} ratio that was greater than 10⁷ times that of the conventional HEMT. These attractive features of the HEMT incorporating the ALD-prepared Ga₂O₃ gate dielectric suggest that ALD-prepared Ga₂O₃ might find further applicability in other high-power devices in the near future.

Competing interests

The authors declare that they have no competing interests.

Authors’ contributions

MJC conceived the idea and project. MJC and RML designed the experiments. HYS optimized the growth of the ALD GaN compliant buffer layer. FCC and CYL optimized the MOCVD epitaxy. CYL achieved the fabrication of HEMT devices. HYS and AD carried out the material analyses and device’s electrical measurements. MJC provided the RP-ALD, and RML provided the MOCVD. HYS wrote the paper. All authors commented on the manuscript.
Acknowledgements
We thank Nano Device Labs (NDL), Hsinchu, Taiwan, for the low-frequency noise and load-pull measurements. This study was supported financially by the National Science Council (NSC), Taiwan, under contract no. NSC-102-2221-E-182-060 and Chang Gung Memorial Hospital BMRP 591.

Author details
1Department of Material Science and Engineering, National Taiwan University, Taipei 10617, Taiwan. 2Department of Electronic Engineering, Chang Gung University, Taoyuan 333, Taiwan.

Received: 29 January 2016 Accepted: 20 April 2016
Published online: 30 April 2016

References
1. Yu SF, Lin RM, Chang SJ, Chu FC. Efficiency droop characteristics in InGaN-based near ultraviolet-to-blue light-emitting diodes. Appl Phys Express. 2012;5(2):22102.
2. Kim DH, Kumar V, Chen G, Dabiran AM, Wowchak AM, Osnisky A, et al (2007) ALD AIO3 passivated MBE-grown AlGaN/GaN HEMTs on 6H-SiC. Electron Lett 43(2):127–8.
3. Lu W, Yang JW, Khan MA, Adesida I (2001) AlGaN/GaN HEMTs on SiC with over 100 GHz fT and low microwave noise. IEEE Electron Device Lett 24(3):581–5.
4. Saadat O, Chung JW, Piner EL, Palacios T (2009) Gate-first AlGaN/GaN HEMT technology for high-frequency applications. IEEE Elect Device Let 30(12):1254–6.
5. Chiu HC, Yang CW, Lin Y-H, Lin R-M, Chang L-B, Hong K-Y (2008) Device characteristics of AlGaN/GaN MOS-HEMTs using high-praseodymium oxide layer. IEEE Trans Electron Devices 55(11):3305–9.
6. Lin RM, Chu FC, Das A, Liao SY, Chou ST, Chang LB (2013) Physical and electrical characteristics of AlGaN/GaN metal-oxide-semiconductor high-electron-mobility transistors with rare earth ErO3 as a gate dielectric. Thin Solid Films 544:526–9.
7. Meng D, Lin SX, Wen CP, Wang MJ, Wang JY, Hao YL, et al (2013) Low leakage current and high-cutoff frequency AlGaN/GaN MOSHEMT using submicrometer-footprint thermal oxidized TiOx/NiO as gate dielectric. IEEE Electr Device Let 34(8):738–40.
8. Qaul HJ, Cheong KY (2013) Surface passivation of gallium nitride by ultrathin RF-magnetron sputtered Al2O3 gate. ACS Appl Mater Inter 5(15):6869–3.
9. Liu C, Chor EF, Tan LS. Investigations of HfO2/AlGaN/GaN metal-oxide-semiconductor high electron mobility transistors. Appl Phys Lett. 2006;88(17):3504.
10. Zhou H, Ng Gl, Liu ZH, Arul Kumar S. Improved device performance by post-oxide annealing in atomic-layer-deposited Al2O3/AlGaN/GaN metal-insulator-semiconductor high electron mobility transistor on Si. Appl Phys Express. 2011;4(10):104102.
11. George SM (2010) Atomic layer deposition: an overview. Chem Rev 110(1):111–31.
12. Gusev E, Copel M, Cartier E, Baumol I, Krug C, Gibelyuk M (2000) High-resolution depth profiling in ultrathin AlO2 films on Si. Appl Phys Lett 76(2):176–8.
13. Lee BH, Kang LG, Nieh R, Qi WL, Lee JC (2000) Thermal stability and electrical characteristics of ultrathin hafnium oxide gate dielectric reoxidized with rapid thermal annealing. Appl Phys Lett 77(14):1926–8.
14. Copel M, Gibelyuk M, Gusev E (2000) Structure and stability of ultrathin zirconium oxide layers on Si(001). Appl Phys Lett 76(4):436–8.
15. Wang XW, Saadat O, Xi B, Lou XB, Molnar RI, Palacios T, et al. Atomic layer deposition of SiO2 for passivating AlGaN/GaN high electron mobility transistor devices. Appl Phys Lett. 2012;101(23):232109.
16. Choi DW, Chung KB, Park JS (2013) Low temperature GaO3 atomic layer deposition using gallium tri-isopropoxide and water. Thin Solid Films 546:31–4.
17. Lee SA, Hwang JY, Kim JP, Cho CR, Lee WJ, Jeong SY (2005) Metal/Insulator/semiconductor structure using GaO3 layer by plasma enhanced atomic layer deposition. J Korean Phys Soc 47:5292–5295.
18. Shan FX, Liu GX, Lee WJ, Lee GH, Kim IS, Shin BC. Structural, electrical, and optical properties of transparent gallium oxide thin films grown by plasma-enhanced atomic layer deposition. J Appl Phys. 2005;98(2):023504.
19. Comstock DJ, Elam JW (2012) Atomic layer deposition of GaO3 films using trimethylgallium and ozone. Chem Mater 24(21):4011–8.
20. Donmez I, Ozgit-Akgun C, Buyikli N. Low temperature deposition of GaO3 thin films using trimethylgallium and oxygen plasma. J Vac Sci Technol A. 2013;31(1):01A110.
21. Moulder JF, Chastain J. Handbook of X-ray photoelectron spectroscopy: a reference book of standard spectra for identification and interpretation of XPS data. Waltham, Massachusetts 02451, USA: Physical Electronics Division: Perkin-Elmer Corporation; 1992.
22. Osipov A, Schmitt F, Hess P (2005) Real-time analysis of wetting-layer evolution and island nucleation using spectroscopic ellipsometry with Tauc–Lorentz parameterization. Thin Solid Films 472(1):31–6.
23. Passlack M, Schubert EF, Hobson WS, Hong M, Moriya N, Chu SN, et al (1995) GaO3 films for electronic and optoelectronic applications. J Appl Phys 77(2):686–93.
24. Liu XK, Low EK, Pan JS, Liu W, Teo KL, Tan LS, et al. Impact of in situ vacuum anneal and SiH4 treatment on electrical characteristics of AlGaN/GaN metal-oxide-semiconductor high-electron-mobility transistors. Appl Phys Lett. 2011;99(9):093504.
25. Liu HY, Chou BY, Hsu WC, Lee CS, Sheu JK, Ho CS (2013) Enhanced AlGaN/GaN MOS-FET performance by using hydrogen peroxide oxidation technique. IEEE T Electron Dev 60(1):23–20.
26. Ye PD, Yang B, Ng KK, Bude J, Wilk GD, Halder S, Huang JCM (2005) GaN metal-semiconductor-high-electron-mobility-tranisor with atomic layer deposited Al2O3 as gate dielectric. Appl Phys Lett 86(16):63501–63501.
27. Liu C, Eng FC, Leng ST (2006) Investigations of HfO2/AlGaN/GaN metal-oxide-semiconductor high electron mobility transistors. Appl Phys Lett 88(17):3504.
28. Chiu HC, Yang CW, Chen CH, Wu CH (2012) Quality of the oxidation interface of AlGaN in enhancement-mode AlGaN/GaN high-electron mobility transistors. IEEE T Electron Dev 59(12):3334–8.
29. Xu D, Chu K, Diao J, Zhu W, Roy R, Pleasant LM, et al (2013) 0.2-μm AlGaN/ GaN high electron-mobility transistors with atomic layer deposition passivation. IEEE Electron Device Lett 34(6):744–6.