Salmonella Serovars from Foodborne and Waterborne Diseases in Korea, 1998-2007: Total Isolates Decreasing Versus Rare Serovars Emerging

Shukho Kim1,2
Division of Enteric Bacterial Infections1, Center for Infectious Diseases, National Institute of Health, Seoul; Department of Microbiology2, Kyungpook National University, School of Medicine, Daegu, Korea

Accepted: 22 July 2010
Received: 18 May 2010

INTRODUCTION

Salmonella has been a major foodborne and waterborne pathogen in Korea (1, 2). In 2006, Salmonella was a major foodborne bacterial pathogen in the United States, causing more deaths than any other foodborne pathogen (3). S. enterica Typhi, a causative agent of typhoid fever, has especially threatened Korean health (4). There were 1,921 deaths resulting in 17% mortality because of typhoid fever during 1945-1960 in Korea. Salmonellosis caused by non-typhoid Salmonella (NTS) gives rise to diarrhea, vomiting, abdominal pain, and enteric fever. Occasionally, systemic infection with bowel peroration, septicemia, and osteomyelitis are also caused by NTS (5-8).

At present, there are more than 2,500 Salmonella serovars in the world with new serovars emerging yearly. Salmonella serotyping is very important to the epidemiology study. Unquestionably, Salmonella serotyping is time-consuming and complex work for the serological identification of bacteria (9). To serotype Salmonella, lipopolysaccharide epitopes in bacterial membrane (O antigens) and flagella proteins (H antigens) should be identified with the respective antibodies. For the identification of S. enterica Typhi, additional antibody specific to capsular polysaccharides (Vi antigen) is essential. Until 1990, reference laboratories in Korea merely performed sero-grouping with only O antigen-specific and Vi-specific antibodies. Therefore, they were unable to complete serotyping of Salmonella due to expensive commercial antibodies and lack of interest in surveillance. Truly, at present, most poor or developing countries perform only sero-grouping of Salmonella because of the cost problem (10).

Korea National Institute of Health (KNIH) is the headquarters for the national surveillance of Salmonella in Korea. KNIH gathered Salmonella isolates and analyzed their epidemiological data from 17 Research Institutes of Health and Environment located in cities and provinces and 13 quarantine stations located in airports and harbors in Korea. The microbiologists in these 17 regional institutes covering all country and 13 quarantine stations isolated enteric bacteria from patients according to the standardized protocols distributed by KNIH. According to Korea’s Infectious Diseases Prevention Act which has been enforced since 1954, certain infectious diseases must be reported to government authorities. These diseases are classified into four classes according to the grade of danger and threat to public health. Among the infectious diseases caused by Salmonella species, typhoid fever and paratyphoid fever are classified as Class 1 notifiable infectious diseases, and NTS-causing diseases are classified as Class 4.

As Korea has developed, the desire for an advanced social hygiene system for the well-being of the people has increased.

Salmonella enterica has been one of the most widespread foodborne pathogens in Korea. Between 1998 and 2007, a total of 9,472 Salmonella isolates were identified from foodborne and waterborne illness patients. During that time, Korea was transitioning into a developed country in industry as well as in its hygiene system. Although the isolation number of total Salmonella including serovar Typhi has decreased since 1999, the isolation of rare Salmonella serovars has emerged. Three most prevalent serovars during 1998-2007 were S. enterica Typhi, S. enterica Enteritidis, and S. enterica Typhimurium. There were remarkable outbreaks caused by rare serovars such as S. enterica Othmanschen, S. enterica London and S. enterica Paratyphi A, and overseas traveler-associated infections caused by S. enterica Weltevreden and S. enterica Anatum. Salmonella serovars from overseas travelers made a diverse Salmonella serovar pool in Korea. This study is the first review of the status of the human Salmonella infection trend in a developing country during 1998-2007. Newly emerging rare Salmonella serovars should be traced and investigated to control new type pathogens in the developed world.

Key Words: Salmonella; Serovar; Foodborne Diseases
Transportation, water supply and drainage, medical and food-processing systems were developed. Between the 1990s and 2000s, Korea had one of the highest economic growths in the world. This rapid growth resulted in dramatic changes in lifestyles as well as in incidence of foodborne *Salmonella* (11).

In this review, three major *Salmonella* serovars, *S. enterica* Typhi, *S. enterica* Enteritidis, and *S. enterica* Typhimurium, and several remarkable outbreaks caused by rare *Salmonella* serovars in 1998-2007 are discussed. As complete serotyping of *Salmo- nella* was started and its security electronic database was constructed in national reference laboratories from 1998, this study is the first review of the status of the human *Salmonella* infections trend in Korea during 1998-2007. Finally, overseas-travel associated infection cases and the effects on serovar prevalence in Korea are also discussed.

THREE PREVALENT SEROVARS

From 1998 to 2007, *S. enterica* Typhi, *S. enterica* Enteritidis, and *S. enterica* Typhimurium were the most frequent *Salmonella* serovars in diarrhea patients and foodborne diseases in Korea (Fig. 1, Table 1) (12). From 422 to 2,252 culture-proven *Salmo- nella* infection cases and their isolates have been identified every year since 1998. The percentage of these 3 serovars among *Salmonella* isolates was over 70% almost every year from 1998 to 2007.

S. enterica Typhi is a causative pathogen of typhoid fever. Typhoid was an endemic enteric fever disease in Korea. It is not only systemic infection with high morbidity but also a common public health problem in Korea. The overall incidence of typhoid fever was 0.41 per 100,000 population from 1992 to 2000 (4). The number of *S. enterica* Typhi isolates was always among the three

![Incidence of four serovars, *S. enterica* Typhi, *S. enterica* Paratyphi A, *S. enterica* Typhimurium and *S. enterica* Enteritidis and nontyphoidal *Salmonella* serovars excluding *S. enterica* Typhi, 1998-2007.](http://jkms.org)

Table 1. Top 15 Salmonella serovars from foodborne and waterborne diseases and their number of isolates, 1998-2007.

Year	Serovar	Number of Isolates
1998	Typhi	626
1999	Typhi	1,334
2000	Typhi	3,681
2001	Typhi	3,157
2002	Typhi	3,443
2003	Typhi	4,454
2004	Typhi	5,083
2005	Typhi	5,257
2006	Typhi	5,472
2007	Typhi	5,734

Year	Serovar	Number of Isolates
1998	Enteritidis	718
1999	Enteritidis	1,147
2000	Enteritidis	2,154
2001	Enteritidis	2,115
2002	Enteritidis	2,221
2003	Enteritidis	2,261
2004	Enteritidis	2,342
2005	Enteritidis	2,405
2006	Enteritidis	2,482
2007	Enteritidis	2,571

Year	Serovar	Number of Isolates
1998	Typhimurium	195
1999	Typhimurium	427
2000	Typhimurium	715
2001	Typhimurium	864
2002	Typhimurium	1,084
2003	Typhimurium	1,211
2004	Typhimurium	1,303
2005	Typhimurium	1,367
2006	Typhimurium	1,431
2007	Typhimurium	1,496

Year	Serovar	Number of Isolates
1998	Infantis	38
1999	Infantis	95
2000	Infantis	131
2001	Infantis	190
2002	Infantis	261
2003	Infantis	317
2004	Infantis	378
2005	Infantis	407
2006	Infantis	437
2007	Infantis	464

Year	Serovar	Number of Isolates
1998	Bareilly	8
1999	Bareilly	12
2000	Bareilly	15
2001	Bareilly	19
2002	Bareilly	25
2003	Bareilly	30
2004	Bareilly	35
2005	Bareilly	40
2006	Bareilly	45
2007	Bareilly	50

Year	Serovar	Number of Isolates
1998	Derby	11
1999	Derby	15
2000	Derby	19
2001	Derby	23
2002	Derby	28
2003	Derby	32
2004	Derby	36
2005	Derby	40
2006	Derby	45
2007	Derby	50

Year	Serovar	Number of Isolates
1998	Paratyphi A	7
1999	Paratyphi A	12
2000	Paratyphi A	17
2001	Paratyphi A	22
2002	Paratyphi A	27
2003	Paratyphi A	32
2004	Paratyphi A	37
2005	Paratyphi A	42
2006	Paratyphi A	47
2007	Paratyphi A	52

Year	Serovar	Number of Isolates
1998	Total	1,135
1999	Total	1,390
2000	Total	1,673
2001	Total	1,897
2002	Total	2,104
2003	Total	2,215
2004	Total	2,322
2005	Total	2,433
2006	Total	2,544
2007	Total	2,655

Source: Reference (12).
most prevalent Salmonella serovars in Korea from 1998 to 2007, excluding 2002 (Table 1). In 2002, S. enterica Paratyphi A and S. enterica Braenderup were the third and fourth most prevalent respectively followed by S. enterica Typhi. During 1961-1963, S. enterica Typhi was the most dominant serovar in Daegu, Korea, showing 92.6% frequency (13).

Unlike other serovars, S. enterica Typhi infects only humans. Therefore, with good hygiene and control of healthy carriers, the incidence of typhoid fever could be decreased (4). Korea Ministry of Health has controlled typhoid fever as a Class 1 notifiable disease. KNH receives S. enterica Typhi isolates along with the epidemiological data from medical doctors according to the Infectious Diseases Prevention Act. Vi-passive hemagglutination for preliminary test and S. enterica Typhi isolation and identification are performed with the stool and the blood culture of the patients. In addition, quarantine stations obtain stool samples from overseas travelers who come from high-risk infectious diarrheal disease areas. Regional Health & Environment Institutes then isolate and identify the pathogens from the specimens (14).

The number of S. enterica Typhi isolates has decreased gradually since 1998. Busan and Gyeongsang-do, which face the East Sea, were higher incidence areas for typhoid fever than other Korea peninsulas (4). The integron-associated multidrug-resistant (MDR) S. enterica Typhi was first identified in Korea in 1999. The MDR isolates were resistant to six antimicrobial agents that were ampicillin, chloramphenicol, trimethoprim-sulfamethoxazole, streptomycin, tetracycline, and gentamicin. All the resistance determinants, aacA4b, catB8, aadA1, dfrA1, aac(6′)-Ila, and blaP2, were clustered in about a 50 kb plasmid (15). Even though most S. enterica Typhi strains are susceptible to antimicrobial agents, drugs for the treatment of typhoid fever should be chosen carefully (16). From the early 2000s, nalidixic acid resistant S. enterica Typhi isolates were also identified in Korea. The genetic relation by PFGE revealed that the nalidixic acid resistant S. enterica Typhi in Korea was closely linked to those in India, Nepal, and Bangladesh. Increased overseas travelers were one of the main reasons. From the 1990s in Korea, ciprofloxacin was recommended as the drug of choice for typhoid fever (4). Since then, ciprofloxacin has been used widely in other developing and developed countries. According to recent phage-typing study of S. enterica Typhi, major phage type transition from M1 and E1 to A occurred in Korea from 1992 to 2006 (17).

S. enterica Typhimurium is a zoonotic pathogen infecting domestic animals and causing salmonellosis in humans (18). S. enterica Typhimurium was one of the major foodborne pathogens in Korea during 1998-2007 (Table 1). It was a more serious problem because the frequency of MDR S. enterica Typhimurium human isolates increased yearly. MDR S. enterica Typhimurium definitive type (DT) 104 first emerged in Korea in 1997 (19). S. enterica Typhimurium DT104, which harbors SGI1, has been identified as a worldwide threat to human and animal health, and showed a high degree of clonality between isolates obtained from different countries (20-22). Over 50% of MDR S. enterica Typhimurium DT104 isolates during 1997-2007 in Korea were resistant to five antimicrobial agents that were ampicillin, chloramphenicol, streptomycin, sulfonamides, and tetracycline (ACSSuT) like the antibiogram of pandemic S. enterica Typhimurium DT104. During 1997-1998, there were five S. enterica Typhimurium DT104-associated foodborne-disease outbreaks nationwide (Table 2). Some S. enterica Typhimurium DT104 Korean isolates had an additional genetic arrangement of antibiotic resistance determinants with those of pandemic S. enterica Typhimurium DT104 (19). A PFGE experiment revealed that some S. enterica Typhimurium DT104 Korean isolates had an indistinguishable PFGE pattern with those of S. enterica Typhimurium DT104 isolates from American cattle (20). Even S. enterica Typhimurium swine isolates in Korea were resistant to at least 4 antimicrobial agents with class 1 integron. Among the isolates, DT104 was found by phage typing (23). Salmonella Genomic Island 1 (SGI1) in S. enterica Typhimurium DT104 chromosome harboring resistance determinants with two class 1 integrons was first identified only in S. enterica Typhimurium, but it has been discovered in other Salmonella serovars now (24), for example, S. enterica Derby (25), S. enterica Paratyphi B (26), and S. enterica Schlessehim (S. Kim, unpublished data). DT104 represented approximately 7% of phage types of all S. enterica Typhimurium human isolates. However, the major phage type was U302 (approximately 45%) (S. Kim, unpublished data).

S. enterica Enteritidis has been the most ubiquitous Salmonella serovar from diarrhea patients since 1998 in Korea. The percentage of S. enterica Enteritidis from all isolated Salmonella spp. from 1998 to 2007 was 47.5% (Table 1). This result indicated that half of the Salmonella isolates from humans were S. enterica Enteritidis. Similarly, S. enterica Enteritidis was the most prevalent serovar among the NTS serovars between 2000-2002 in the world (27). Main infection sources were poultry and eggs.

Table 2. Selected Salmonella outbreaks in Korea mentioned in this review

Salmonella	Year	Source	Region	Number of patients	Reference
S. enterica Typhimurium DT104	1997-1998	Pork and beef	Nation-wide	41	Kim et al., 2009 (19)
S. enterica Enteritidis	1999	Boiled cockle and beef	Hamyang	>200	Kim et al., 1999 (30)
S. enterica London	2000-2001	Powdered milk	Nation-wide	>70	Kim et al., 2003 (33)
S. enterica Paratyphi A	2002	Water	Busan	>200	Kim et al., 2003 (40)
S. enterica Infantis	2007	Not found	Jeollanam-do	>49	S. Kim, unpublished data
S. enterica Ochtmarschen	2007	Eggs, squash, and seafood	Guri	72	Kim et al., 2007 (45)
which were contaminated easily with *Salmonella enterica* Enteritidis. Molecular epidemiological and phage typing study with *Salmonella enterica* Enteritidis isolated from patients and chickens revealed that common phage types and PFGE patterns were found in both isolates. The common phage types in isolates from both patients and chickens were PT1 and PT21. Moreover, they were also the most predominant types among the isolates (28). The PFGE patterns of *Salmonella* Enteritidis isolates from various sources by using XbaI, SpeI, or NotI restriction enzyme were highly clonal and related (29).

In 1999, there were huge foodborne-disease outbreaks caused by *Salmonella enterica* Enteritidis in Korea (Table 2). The outbreaks which resulted in more than 200 inpatients and one death, occurred by consumption of *Salmonella* Enteritidis contaminated boiled cockle and beef (30). In addition to these outbreaks, there were many other outbreaks caused by *Salmonella* Enteritidis infections in 1999. Consequently, the number of *Salmonella* Enteritidis isolates showed the highest peak in 1999 (Fig. 1).

Most of *Salmonella* Enteritidis isolates from layers were not MDR (23). However, antimicrobial resistance rate of human isolates has been increasing yearly. Resistance to clinically important antimicrobial agents such as quinolone and cephalosporine has increased in *Salmonella* Enteritidis isolates. Resistance rate to nalidixic acid was 21.6% which was higher than that of *Salmonella* Typhimurium (12.1%) (31). PT1 was the most frequent phage type among nalidixic acid resistant isolates (31). Extended spectrum β-lactamase (ESBL)-producing *Salmonella enteritidis* isolates were found. The ESBL type was TEM-52 which spread clonally and horizontally in Korea (32).

REMARKABLE OUTBREAKS BY RARE SEROVARS OF SALMONELLA

There were many *Salmonella* outbreaks in Korea during 1998-2007. Here, I would like to introduce four outbreaks caused by rare *Salmonella* serovars that are worthy of note in *Salmonella* human infection history in Korea (Table 2). The rare *Salmonella* serovars mentioned in this review have not been spotlighted or ranked among the most widespread *Salmonella* serovars in Korea before 1998.

S. enterica serovar Paratyphi A (antigenic formula: 1,2,12: a: [1,5])

Salmonella enterica Paratyphi A was a rare serovar until 2001. Since 2002, *Salmonella* Paratyphi A has been ranked among the top 10 *Salmonella* serovars. *Salmonella* Paratyphi A is a causative pathogen for paratyphoid fever which is a Class 1 notifiable disease in Korea like typhoid fever (35). Outbreaks by this pathogen infection were not frequent in the world but were reported in India, Nepal, and Singapore (36-39). There was a big waterborne outbreak in Busan by *Salmonella* Paratyphi A infection in early 2002 (40). More than 200 people were hospitalized. Epidemiologists found that the water-supply system was contaminated with the bacteria. Most of the isolates were resistant to nalidixic acid. The resistance mechanism was due to the point mutation in the 83rd codon of gyrA gene as found by performing allele-specific PCR and restriction fragment length polymorphism (AS-PCR-RFLP). Recent studies showed that plasmid-mediated quinolone resistances were spreading to Enterobacteriaceae, suggesting that the mechanisms of resistance to quinolone or fluoroquinolone are developing in bacteria (41).

Some patients were not cured after being treated with ciprofloxacin because of decreased susceptibility to the antimicrobial agent (42). Currently, nalidixic acid resistant *Salmonella* Paratyphi A is very common in Korea as well as India and Mid-East Asia (42, 43).

S. enterica serovar Infantis (antigenic formula: 6,7,14: r: 1,5)

In fact, *Salmonella* Infantis was not a rare serovar but steady during 1998-2007 (Table 1). It was the fifth common serovar in 2002 worldwide and had been commonly isolated from farm animals and their feed in Europe nations (27). In 2007, there was a huge outbreak caused by *Salmonella* Infantis infection in Jeollanam-
do, a rural site in Korea (S Kim, unpublished data). Although 49 culture proven human cases were found from the outbreak, the source of contamination was not found. The antibiotic phenotype of the isolates was susceptible to 16 antimicrobial agents which were a standard set for antimicrobial test of enteric pathogens in Korean reference laboratories. Due to the outbreak, S. enterica Infantis ranked second most-frequent among serovars in 2007.

S. enterica serovar Othmarschen (antigenic formula: 6,7,14: g,m[1]: -)

Many foodborne outbreaks arise in schools, parties, companies, and other gathering places today (44). Mass catering is rising because of increased provision of meals in public; so many people are exposed to possible foodborne diseases. An outbreak in 2007 caused by *Salmonella enterica* Othmarschen was such a case. In a funeral service, more than 300 mourners were exposed to contaminated foods with the pathogen and among them 72 persons became ill. The characteristics of this salmonellosis were severe diarrhea, abdominal pain, and fever. Yellow or white watery diarrhea for about 5 days with maximum 50 incidents was a typical symptom. *S. enterica* Othmarschen was isolated from those patients, food handlers, and foods containing eggs, squash, and seafood. The PFGE patterns of the outbreak isolates were all identical and indistinguishable from that of an American *S. enterica* Othmarschen isolate (45). It was very interesting that the identical clones were found in geographically distant nations even though *S. enterica* Othmarschen is such a rare *Salmonella* serovar in the world (46). All these molecular epidemiological evidences could be harvested because of the PulseNet International activities.

SALMONELLA SEROVARS FROM OVERSEAS TRAVELERS

For the quarantine activity and early detection of contagious diseases in airports and harbors, quarantine stations carry out rectal swabs or stool sampling from overseas travelers and crew who show fever, or notify symptoms of diarrhea, abdominal pain, vomit in questionnaire sheets and come from Thailand, and other East South-Asian nations. The 3 serovars were mostly isolated from such travelers. *S. enterica* Weltevreden has been isolated from seafood at relatively high frequency in those nations. In Thailand, *S. enterica* Weltevreden had been the most prevalent serovar among *Salmonella* isolates from 1993 to 2002 (48). Recently, there were outbreaks caused by *S. enterica* Weltevreden infections in France (49), Norway, Denmark, and Finland (50). These phenomena indicated that contaminated food trades and infected travelers between nations seriously affects the health of people in a distance and a nation’s health defense (51).

CONCLUSIONS

In this study, I showed epidemiologic evidence that the incidences of *S. enterica* Typhi, *S. enterica* Enteritidis, and *S. enterica Typhimurium* decreased significantly in Korea during the last 10 yr since 1998. It was a very encouraging epidemiologic trend because these serovars have been health-threatening pathogens in Korea as well as the world. However, the rates of imported cases and outbreaks caused by rare serovars increased during that time. As reviewed in this study, I would like to stress that newly emerging rare *Salmonella* serovars should be traced and investigated to control new type pathogens in the developed world.

ACKNOWLEDGMENTS

I would like to thank Drs B. K. Lee, M. S. Park, and S. H. Kim for their heart warming supports.

REFERENCES

1. Cho SH, Shin HH, Choi YH, Park MS, Lee BK. *Enteric bacteria isolated from acute diarrheal patients in the Republic of Korea between the year 2004 and 2006*. J Microbiol 2008; 46: 325-30.
2. Lee WC, Lee MJ, Kim JS, Park SY. *Foodborne illness outbreaks in Korea and Japan studied retrospectively*. J Food Prot 2001; 64: 899-902.
3. Centers for Disease Control and Prevention (CDC). *Preliminary FoodNet data on the incidence of infection with pathogens transmitted commonly through food—10 States, United States, 2005*. MMWR Morb Mortal Wkly Rep 2006; 55: 392-5.
4. Yoo S, Pai H, Byeon JH, Kang YH, Kim S, Lee BK. *Epidemiology of Salmonella enterica serotype typhi infections in Korea for recent 9 years: trends of antimicrobial resistance*. J Korean Med Sci 2004; 19: 15-20.
5. Chiu CH, Su LH, He CC, Jaing TH, Luo CC, Lin TY. *Perforation of toxic megacolon in non-typhoid Salmonella enterocolitis spares young infants and is immune-mediated*. Pediatr Surg Int 2002; 18: 410-2.
6. Tsai MH, Huang YC, Chiu CH, Yen MH, Chang LY, Lin PY, Lin TY. *Non-typhoidal Salmonella bacteremia in previously healthy children: analy-
sis of 199 episodes. Pediatr Infect Dis J 2007; 26: 909-13.

7. Skoutelis A, Gogos C, Stamiou V, Dimitracopoulou G, Bassaris H. Salmonella westerstede vertebral osteomyelitis and sepsis in an immunocompetent patient. Int J Infect Dis 2001; 5: 228-9.

8. Ishpahni P, Slack RC. Enteric fever and other extraintestinal salmonellosis in University Hospital, Nottingham, UK, between 1980 and 1997. Eur J Clin Microbiol Infect Dis 2000; 19: 679-87.

9. Leader BT, Frye JG, Hu J, Fedorka-Cray PJ, Boyle DS. High-throughput molecular determination of Salmonella enterica serovars by use of multiple PCR and capillary electrophoresis analysis. J Clin Microbiol 2009; 47: 1290-9.

10. Petersen A, Aarestrup FM, Petersen A, Aarestrup FM, Angulo FJ, Wong S, Stohr K, Wegener HC. WHO global salm-surv external quality assurance system (EQAS): an important step toward improving the quality of Salmonella serotyping and antimicrobial susceptibility testing worldwide. Microb Drug Resit 2002; 8: 345-53.

11. Park JH. Preventive medicine in times of a rapid epidemiologic transition in Korea. J Prev Med Public Health 2006; 39: 2-6.

12. World Health Organization. Global Salm-Surv year data viewed/Republic of Korea. Available at http://www.who.int/salmsurv/en/ [Accessed on 4 January 2010].

13. Chun D. A review of Salmonella and Shigella in Korea. Endemic Dis Bull Nagasaka Univ 1964; 6: 125-38.

14. Kim S, Kim SH, Chun SG, Choi ES, Lee BK. Prevalence of Salmonella serovars isolated from domestic residents and overseas travelers in Korea, 2004-2005. J Bacteriol Virol 2006; 36: 69-72.

15. Pai H, Byeon JH, Yu S, Lee BK, Kim S. Salmonella enterica serovar typhi strains isolated in Korea containing a multidrug resistance class 1 integron. Antimicrob Agents Chemother 2003; 47: 2006-8.

16. Lynch MF, Blanton EM, Bulens S, Polyak C, Vojdani J, Stevenson J, Medalia F, Barzilay E, Joyce K, Barrett T, Mintz ED. Typhoid fever in the United States, 1999-2006. JAMA 2009; 302: 859-65.

17. Kim S, Kim SH, Chun SG, Choi ES, Lee BK. Cluster analysis of Salmonella enterica serovar Typhi isolates in Korea by PFGE, ribotyping, and phage typing. Foodborne Pathog Dis 2009; 6: 733-8.

18. Graziani C, Busani L, Dionisi AM, Lucarelli C, Owczarek S, Ricci A, Mancin M, Caprioli A, Luzzi I. Antimicrobial resistance in Salmonella enterica serovar Typhimurium from human and animal sources in Italy. Vet Microbiol 2008; 128: 414-8.

19. Kim S, Kim SH, Park JH, Lee KS, Park MS, Lee BK. Phage types and pulsed-field gel electrophoresis patterns of Salmonella enterica serovar Enteritidis isolated from humans and chickens. J Microbiol 2008; 46: 209-13.

20. Chung YH, Kwon YI, Kim SY, Kim SH, Lee BK, Chang YH. Antimicrobial susceptibilities and epidemiological analysis of Salmonella enteritidis isolates in Korea by phage typing and pulsed-field gel electrophoresis. J Food Prot 2004; 67: 264-70.

21. Kim JR, Lee SW, Kim HB, Cha J, Lee KH, Bae KW. An epidemiological investigation on the mode of transmission of the lethal salmonellosis outbreak in Hamyang County. Korean J Epidemiol 1999; 21: 185-94.

22. Choi SH, Woo JH, Lee JE, Park SJ, Choo EJ, Kwak YG, Kim MN, Choi MS, Lee NY, Lee BK, Kim NJ, Jeong IV, Ryu J, Kim YS. Increasing incidence of quinolone resistance in human non-typhoid Salmonella enterica isolates in Korea and mechanisms involved in quinolone resistance. J Antimicrob Chemother 2005; 56: 1111-4.

23. Lee K, Yong D, Yum JH, Kim HH, Chong Y. Diversity of TEM-52 extended-spectrum beta-lactamase-producing non-typhoidal Salmonella isolates in Korea. J Antimicrob Chemother 2003; 52: 493-6.

24. Kim S, Lee BK, Kang YH, Nam HI, Lim OY, Seok WS, Park JK. A virulent strain of Salmonella enterica serovar London isolated in infants with enteritis traced by active surveillance and molecular epidemiological study. J Korean Med Sci 2003; 18: 325-30.

25. Yong D, Lim YS, Yum JH, Lee H, Lee K, Kim EC, Lee BK, Chong Y. Nosocomial outbreak of pediatric gastroenteritis caused by CTX-M-14-type extended-spectrum beta-lactamase-producing strains of Salmonella enterica serovar London. J Clin Microbiol 2005; 43: 3519-21.

26. Kapil A, Sood S, Reddaiyah VP, Das B, Seth P. Paratyphoid fever due to Salmonella enterica serotype Paratyphi A. Emerg Infect Dis 1997; 3: 407.

27. Bhutta DR, Bangtrakulnonth A, Tishyadhigama P, Saroj SD, Bandekar JR, Hendriksen RS, Kapadnis BP. Serotyping, PCR, phage-typing and antibiotic sensitivity testing of Salmonella serovars isolated from urban drinking water supply systems of Nepal. Lett Appl Microbiol 2007; 44: 588-94.

28. Goh YL, Puthucheary SD, Chaudhry R, Bhutta ZA, Lesmana M, Oyofo

http://jkms.org
BA, Punjabi NH, Ahmed A, Thong KL. Genetic diversity of Salmonella enterica serovar Paratyphi A from different geographical regions in Asia. J Appl Microbiol 2002; 92: 1167-71.
38. Sood S, Kapil A, Dash N, Das BK, Goel V, Seth P. Paratyphoid fever in India: An emerging problem. Emerg Infect Dis 1999; 5: 483-4.
39. Teoh YL, Goh KT, Neo KS, Yeo M. A nationwide outbreak of coconut-associated paratyphoid A fever in Singapore. Ann Acad Med Singapore 1997; 26: 548-8.
40. Kim S, Lim OY, Kim SH, Kim JY, Kang YH, Lee BK. Pulsed-field gel electrophoresis and mutation typing of gyrA gene of quinolone-resistant Salmonella enterica serovar Paratyphi A isolated from outbreak and sporadic cases, 1998-2002, Korea. J Microbiol Biotechnol 2003; 13: 155-8.
41. Tamang MD, Seol SY, Oh JY, Kang HY, Lee JC, Cho DT, Kim J. Plasmid-mediated quinolone resistance determinants qnrA, qnrB, and qnrS among clinical isolates of Enterobacteriaceae in a Korean hospital. Antimicrob Agents Chemother 2008; 52: 4159-62.
42. Dimitrov T, Udo EE, Albaksami O, Kilani AA, Shehab el-DM. Ciprofloxacin treatment failure in a case of typhoid fever caused by Salmonella enterica serotype Paratyphi A with reduced susceptibility to ciprofloxacin. J Med Microbiol 2007; 56: 277-9.
43. Joshi S, Amarnath SK. Fluoroquinolone resistance in Salmonella typhi and S. paratyphi A in Bangalore, India. Trans R Soc Trop Med Hyg 2007; 101: 308-10.
44. Scott E. Food safety and foodborne disease in 21st century homes. Can J Infect Dis 2003; 14: 277-80.
45. Kim S, Choi YG, Eom JW, Oh TJ, Lee KS, Kim SH, Lee ET, Park MS, Oh HB, Lee BK. An outbreak of Salmonella enterica serovar Othmarschen at a funeral service in Guri-si, South Korea. Jpn J Infect Dis 2007; 60: 412-3.
46. Morosini MI, Blázquez J, Negri MC, Cantón R, Loza E, Baquero F. Characterization of a nosocomial outbreak involving an epidemic plasmid encoding for TEM-27 in Salmonella enterica subspecies enterica serotype Othmarschen. J Infect Dis 1996; 174: 1015-20.
47. Deen JL, von Seidlein L, Sur D, Agtini M, Lucas ME, Lopez AL, Kim DR, Ali M, Clemens JD. The high burden of cholera in children: comparison of incidence from endemic areas in Asia and Africa. PLoS Negl Trop Dis 2008; 2: e173.
48. Bangtrakulnonth A, Pornreongwong S, Pulsrikarn C, Sawanpanyalert P, Hendriksen RS, Lo Fo Wong DM, Aarestrup FM. Salmonella serovars from humans and other sources in Thailand, 1993-2002. Emerg Infect Dis 2004; 10: 131-6.
49. D’Ortenzio E, Weill FX, Ragonneau S, Lebon JA, Renault P, Pierre V. First report of a Salmonella enterica serovar Weltevreden outbreak on Reunion Island, France, August 2007. Euro Surveill 2008; 13: pii: 18849.
50. Emberland KE, Ethelberg S, Kuusi M, Vold L, Jensvoll L, Lindstedt BA, Nygard K, Kjelsø C, Torpdahl M, Sorensen G, Jensen T, Lukinmaa S, Niskanen T, Kapperud G. Outbreak of Salmonella Weltevreden infections in Norway, Denmark and Finland associated with alfalfa sprouts, July-October 2007. Euro Surveill 2007; 12: E071129.4.
51. Swaminathan B, Gerner-Smidt P, Ng LK, Lukinmaa S, Kam KM, Rolando S, Gutierrez EP, Binsztein N. Building PulseNet International: an interconnected system of laboratory networks to facilitate timely public health recognition and response to foodborne disease outbreaks and emerging foodborne diseases. Foodborne Pathog Dis 2006; 3: 36-50.