CAATT/Enhancer-binding Proteins α and δ Interact with NKX2-1 to Synergistically Activate Mouse Secretoglobin 3A2 Gene Expression

Takeshi Tomita‡1, Taketomo Kido‡, Reiko Kurotani‡§, Shun-ichiro Iemura‡, Esta Sterneck¶, Tohru Natsume‡, Charles Vinson§, and Shiko Kimura‡2

From the ‡Laboratory of Metabolism, NCI, National Institutes of Health, Bethesda, Maryland 20892, the §Cardiovascular Research Institute, Yokohama City University, Yokohama 236-0006, Japan, the ¶National Institutes of Advanced Industrial Science and Technology, Biological Information Research Center, Tokyo 135-0064, Japan, and the †Laboratory of Cell and Developmental Signaling, NCI, Frederick, Maryland 21702-1201

Secretoglobin (SCGB) 3A2 is a small molecular weight secreted protein predominantly expressed in lung airways. We previously demonstrated that the expression of SCGB3A2 is regulated by homeodomain transcription factor NKX2-1. Here we show that CCAAT/enhancer-binding proteins, C/EBPs, regulate mouse Scgb3a2 gene transcription in vivo and in vitro by binding to specific sites located in the Scgb3a2 promoter and the activity is synergistically enhanced through cooperative interaction with NKX2-1. Six C/EBP binding sites lie within 500 bp of the Scgb3a2 gene promoter, of which two sites, located at −44 to −54 bp and −192 to −201 bp, appear to be critical for the synergistic activation of Scgb3a2 gene transcription with NKX2-1. All three transcription factors, C/EBPs, C/EBPδ, and NKX2-1, are expressed in the epithelial cells of airways, particularly the bronchus, where high expression of SCGB3A2 is found. The expression of these transcription factors markedly increases toward the end of gestation, which coincides with the marked increase of SCGB3A2, suggesting the importance of C/EBPα and C/EBPδ, and their synergistic interaction with NKX2-1 in mouse Scgb3a2 gene transcription and lung development.

Secretoglobin 3A2 (SCGB3A2), previously named as uteroglobin-related protein 1 (UGRP1), is a member of the SCGB gene superfamily that consists of secretory proteins of small molecular weight (1). SCGB3A2 is predominantly expressed in the conducting airway epithelium of the lung (2). The expression in mouse embryonic lung becomes detectable in embryonic day (E) 12.5, markedly increases by E16.5, and remains high throughout adulthood (2). SCGB3A2 suppresses the allergen-induced lung inflammation in a mouse model for allergic airway inflammation when intranasally administered with recombinant adenovirus expressing SCGB3A2 (3).

SCGB3A2 was originally identified as a downstream target for the homeodomain transcription factor NKX2-1 (previously called TTF1, TTF1, NKX2.1, or T/E/EBP) in Nkx2.1-null versus wild-type mouse embryo lungs using suppressive subtractive hybridization screening (2). The direct involvement of NKX2-1 in mouse Scgb3a2 gene expression was further demonstrated by transfection analysis (2). NKX2-1 is one of the major transcription factors responsible for expression of many genes preferentially expressed in lung, including SCGB3A2, surfactant protein (SP)-A (4), SP-B (5), SP-C (6), and Clara cell secretory protein (CCSP), also named SCGB1A1 (7, 8), FOXA1 (HNF3α), FOXA2 (HNF3β), and C/EBPs are among other transcription factors that are critical for the expression of lung-specific genes and lung morphogenesis (9, 10). Whether these transcription factors are involved in SCGB3A2 expression is not known.

C/EBPs (CCAAT/enhancer-binding proteins) are a family of transcription factors containing the basic leucine zipper (bZIP) domain at the C terminus that is involved in dimerization and DNA binding (11). All six members have been cloned to date, and they play pivotal roles in controlling cellular proliferation and differentiation, metabolism, inflammation, and numerous other responses, particularly in hepatocytes, adipocytes, and hematopoietic cells (11). In lung, C/EBPα, C/EBPδ, and C/EBPδ are highly expressed in alveolar type II cells and bronchiolar epithelial cells with various degrees of expression depending on C/EBP subtype and developmental stages (10, 12–14). A role for C/EBPα in lung morphogenesis was demonstrated using a mouse model overexpressing or lacking C/EBPα expression in lung (14, 15). In vitro studies have shown a role for C/EBPs in the transcriptional regulation of lung-specific genes including SP-A, SP-D, and SCGB1A1 (10, 13, 16–19). In particular, the regulation of SCGB1A1 expression by C/EBPα and...
Synergistic Regulation of Mouse Scgb3a2 Gene

C/EBPβ, and their synergistic interaction with NKX2-1 have been extensively studied (13, 19).

NKX2-1 is expressed in the lung, thyroid, and brain, and plays a central role in structural development and regulation of tissue-specific (or enriched) genes in these organs (20). Activation of the tissue-specific genes by NKX2-1 often involves its interaction with other proteins (see Table S1 in supplemental materials). These include transcription factors such as the aforementioned FOXA1 (21, 22), FOXA2 (21), C/EBPs (19), and GATA6 (23) and NF I (24), and co-factors such as p300 (25), RAR (26), TAZ (transcriptional co-activator with PDZ-binding domain) (27), DREAM (28), calreitculin (29), and BR22 (30). It is of interest to examine whether NKX2-1 interacts with any other proteins, resulting in increased expression of SCGB3A2.

In this study, we demonstrate that C/EBPα and C/EBPβ regulate mouse Scgb3a2 gene transcription in vivo and in vitro by binding to specific binding sites located in the Scgb3a2 promoter and the activity is synergistically enhanced through cooperative interaction with NKX2-1. There are six C/EBP binding sites within 500 bp of the Scgb3a2 gene promoter, of which two C/EBP sites located at −44 to −54 bp and −192 to −201 bp appear to be critical for the synergistic activation of Scgb3a2 gene transcription with NKX2-1. The implication of this synergistic activation of mouse Scgb3a2 gene transcription to the pattern and site of SCGB3A2 expression in mouse airways is discussed.

EXPERIMENTAL PROCEDURES

Construction of C/EBP Expression Plasmids—Total RNA was isolated from mouse embryonic lungs (embryonic day (E) 17.5) by using TRIzol (Invitrogen) and then treated with DNase I (Ambion, Austin, TX). DNase I-treated samples were utilized as a template for cDNA synthesis with reverse transcriptase (SuperScript II, Invitrogen). PCR were carried out using the following primers: 5′-TTAGTACATGAGATGCAGCTACCCCATATGATTCGGCAAT-3′ and 5′-TTACCAGCGCCCACTTACGAC-3′ for C/EBPα, 5′-TAAGTACATGATGCGCAGCTACCCCATATGATTCGGCAAT-3′ and 5′-TTATCTAGACGCGCCTACCCCATATGATTCGGCAAT-3′ for the dominant negative form of C/EBPα (C/EBPαDN), and 5′-TTAGTACATGAGATGCAGCTACCCCATATGATTCGGCAAT-3′ and 5′-TTATCTAGACGCGCCTACCCCATATGATTCGGCAAT-3′ for C/EBPβ.

The PCR products were purified by a spin column (QiAquick PCR Purification Kit, Qiagen, Valencia, CA), digested with restriction enzymes, and subcloned into the KpnI-XbaI site of the cytomegalovirus driven mammalian expression vector, pcDNA3.1/myc-HisA (Invitrogen). DNA sequences were confirmed by sequencing analyses using CEQ-200XL (Beckman Coulter, Fullerton, CA).

Construction of NKX2-1 and NKX2-1-FLAG Expression Plasmids—To construct NKX2-1 expression plasmids, RT-PCR were carried out using 5′-TTAGAATTCCGCGCCTGATCAGTGCAGCTACCCCATATGATTCGGCAAT-3′ and 5′-AACATTATGAGATGCAGCTACCCCATATGATTCGGCAAT-3′ for NKX2-1, and 5′-TAAAGAATTCCGCGCCTGATCAGTGCAGCTACCCCATATGATTCGGCAAT-3′ and 5′-AACATTATGAGATGCAGCTACCCCATATGATTCGGCAAT-3′ for NKX2-1-FLAG. The amplified products were subcloned into the EcoRI-XbaI site of the pcDNA3.1/myc-HisA vector. The NKX2-1 construct was used for luciferase assay and electrophoretic mobility shift analysis (EMSA), whereas NKX2-1 with the C-terminal FLAG construct was used in co-immunoprecipitation assays.

Construction of Mouse Scgb3a2 Gene Promoter-Luciferase Plasmids—To make serial deletion mutant constructs, PCR were carried out using mouse genomic DNA and the following primers: forward primers, 5′-ATGACTAGTTAGGAAAGATTGCCCTGCATGCTC-3′ for −113, 5′-ATTACATGTGCCCTT-CAACCTCGTTTAGTGTCTTC-3′ for −292, 5′-TTAAC- TAGTGCCGTTGTCAGTAGGACTAATC-3′ for −387, 5′-ATAACTAGTAAACACATGCTCATTTTCCTCCCTGG-3′ for −506, and 5′-AGAAGTTAGTTGATCCTTTAAAAACGATACC-3′ for −907 constructs, and common reverse primer 5′-ATTGGAGTCTCTGTGATTTTTCCGGAGC-3′. PCR products were double-digested by SpeI-BamHI and cloned into the Nhel-BglIII site of the firefly luciferase pGL4.11 vector (Promega, Madison, WI). Each construct has a Scgb3a2 promoter region represented by a construct name in addition to the 5′-untranslated region. The C/EBP binding element mutations were generated by the site-directed mutagenesis kit (Stratagene, La Jolla, CA). All plasmids were confirmed by nucleotide sequencing.

Reporter Assay—COS-1 cells were cultured in Dulbecco’s modified Eagle’s medium high glucose with 10% fetal bovine serum, at 37 °C in a 5% CO2 incubator. Cells were seeded in 24-well tissue culture plates. A transfection mixture contained 20 μl of serum-free Dulbecco’s modified Eagle’s medium, 1 μl of FuGENE 6 (Roche Applied Science), 250 ng of pGL4.11-based reporter construct (Promega), 5 ng of pGL4.74 having the Renilla luciferase gene connected to the herpes simplex virus-thymidine kinase promoter as an internal control (Promega), and a total 50 ng of pcDNA3.1-C/EBPα or C/EBPβ mammalian expression vector (Invitrogen). When the C/EBP construct was not incorporated, pcDNA3.1 vector (50 ng) was added to adjust the total DNA amount. This transfection mixture was added to a well, mixed briefly, and cells were incubated for 48 h. Cells were washed once with phosphate-buffered saline (PBS) and lysed with passive lysis buffer (Promega). Luciferase activity was assayed using the Dual-Luciferase Reporter Assay System (Promega) and a luminometer (Pharmingen, model monolight 3010).

Nuclear Extracts—COS-1 cells were grown in 150-mm dishes to 50–80% confluence. One ml of serum-free Dulbecco’s modified Eagle’s medium containing expression constructs (C/EBPs or C/EBPβ, 20 μg) was mixed with 50 μl of FuGENE HD (Roche Applied Science), the mixture was left to stand for 15 min at room temperature, and added dropwise to cells. Media were changed 8 h after transfection and cells were cultured for an additional 48 h before harvest. The cells were washed twice with 6 ml of cold PBS and harvested in 6 ml of cold PBS. The cell suspension was centrifuged at 1,000 × g for 5 min and the cell pellet was re-suspended in 2 ml of Buffer A (10 mM HEPES, pH 7.6, 15 mM KCL, 2 mM MgCl2, 0.1 mM EDTA, 1 mM dithiothreitol, 0.5 mM phenylmethylsulfonyl fluoride). Cell Buffer A was placed in 1.5-ml plastic tubes and spun by a table-top centrifuge at 2,500 × g for 3 min. The cell pellet was then suspended in Buffer B (Buffer A + 0.2% IGEPAL) followed by centrifugation at 2,500 × g for 3 min to obtain nuclei pellet. The
nuclei pellet was washed with Sucrose buffer (250 mM sucrose, 10 mM HEPES, pH 7.6, 15 mM KCl, 2 mM MgCl₂, 0.5 mM EDTA, 1 mM dithiothreitol, 0.5 mM phenylmethylsulfonyl fluoride) and mixed with Extraction buffer (50 mM HEPES, pH 7.9, 400 mM KCl, 0.1 mM EDTA, 10% glycerol, 0.5 mM phenylmethylsulfonyl fluoride) by rotating in a cold room for 30 min. Finally, nuclear extract was obtained by centrifugation and the protein concentration was determined using the Bradford protein assay (Bio-Rad) with bovine serum albumin as a standard. The final concentration was adjusted to 2 mg/ml.

Electrophoretic Mobility Shift Assay (EMSA) —Synthetic oligonucleotides were radiolabeled with [γ-³²P]ATP (PerkinElmer Life Sciences) and T4 polynucleotide kinase. Nuclear extract (1 µl) was diluted with Binding buffer (0.1 µg/µl poly(dI-dC), 10 mM Tris, pH 8.0, 1 mM dithiothreitol, 80 mM KCl, 20% glycerol, 0.04 µg/µl bovine serum albumin) and incubated 15 min at room temperature with radiolabeled probe in the presence or absence of cold competitor. For supershift assays, 1 µl of antibody was added to the sample solution prior to the probe. Samples were electrophoresed on a 4% polyacrylamide gel using 0.5 X TBE buffer. Gels were dried and exposed to a phosphorimager screen and signals detected with Storm 840 (Amersham Biosciences). Sequences for probes and competitors are listed in Table 1. For antibody supershift analysis, anti-C/EBPα, anti-C/EBPβ, anti-TTF1 (sc-13040), and normal rabbit IgG (sc-2027) were purchased from Santa Cruz Biotechnology (Santa Cruz, CA).

Effect of A-C/EBP —Expression plasmid pcDNA3.1 containing the A-C/EBP cDNA (35) was transfected with FuGENE 6 (Roche) with bovine serum albumin as a standard. The final concentration was determined using the Bradford protein assay (Bio-Rad). The SCGB3A2 mRNA level was determined by quantitative RT-PCR using the following primers: 5′-GGGGAGGATGGGATGGAGTC-3′ and 5′-TGTTCTAC-3′ for amplification of the promoter region, and 5′-TCTGCCATTGCACCAGATGTCGTC-3′ for the reference. Sample solution was mixed with each primer set and Tag polymerase, followed by PCR of 32 cycles with 95 °C denaturation, 15 s, 57 °C annealing, 15 s, and 72 °C extension, 30 s.

Co-immunoprecipitation —The Tnt T7-coupled reticulocyte lysate systems (Promega) were used to generate NXX2-1, C/EBPα, and C/EBPβ proteins using pcDNA3.1/myc-HisA-C/EBPα, C/EBPβ, and NXX2-1 expression plasmids, respectively, which have T7 promoter that allows T7 polymerase to transcribe genes of interest, followed by translation. The [³⁵S]methionine (GE Healthcare) was incorporated into the reaction mixture. Translated proteins were combined and immunoprecipitated by anti-FLAG-agarose resin (Sigma, A2220). After rigorous washing, the eluted fraction was subjected to SDS-PAGE, and 10% PAGE gel was fixed, treated with amplifier (NAMP100 Amplify Fluorographic Reagent, GE Healthcare), dried, and exposed to phosphorimager screen.

Northern Blot —Total RNA (3 µg) isolated from adult lung was electrophoresed on 1% agarose gel containing 0.22 mM formaldehyde and transferred onto nitrocellulose membrane (Immobilon-Ny+, Millipore, Billerica, MA). Filters were hybridized with C/EBPα, C/EBPβ, and ribosomal protein B36 (loading control) as a probe. Hybridization was performed in Perfect Hybridization solution (Amersham Biosciences) at 68 °C overnight. The membrane was washed twice with 2× SSC containing 0.1% SDS at 68 °C for 30 min, followed by exposure to a phosphorimager screen. Data processing was carried out using ImageQuant TL 2005 software (GE Healthcare).

Western Blot —COS-1 cells after transfection of C/EBPα, C/EBPβ, or NXX2-1 expression plasmids (50 ng each/well of 24 well plate) were washed with PBS and lysed in RIPA buffer (20 mM Tris-HCl, 150 mM NaCl, 0.1% SDS, 0.1% sodium deoxycholate, 1% Triton X-100, 2 mM EDTA, 10 mM sodium fluoride, 1 mM sodium orthovanadate) with Protease Inhibitor Mixture tablets (Complete Mini; Roche Applied Science). The protein lysates were mixed with SDS sample loading buffer containing β-mercaptoethanol, electrophoresed on 10% SDS-PAGE, which were then electrotransferred to a polyvinylidene difluoride membrane (Hybond-P, GE Healthcare). Membranes were blocked with PBS, 5% bovine serum albumin, and incubated with first antibody in PBS + 5% bovine serum albumin overnight at 4 °C. Membranes were then washed with PBS containing 0.1% Tween 20 (PBST) three times before proceeding to the second antibody (NA9340V, GE Healthcare) incubation.
Synergistic Regulation of Mouse Scgb3a2 Gene

Protein bands were detected using chemiluminescence reagent (NEL 104001EA, PerkinElmer Life Sciences) and the CCD camera system (Alpha Innotech Fluor Chem HD2, San Leandro, CA).

Immunohistochemical Analysis—Mouse embryos at E16.5 or adult lungs were fixed in 4% paraformaldehyde and embedded in paraffin. Serial 4-μm sections were mounted on glass slides and deparaffinized with xylene and graded ethanol. Antibodies used for immunohistochemistry were all rabbit polyclonal antibodies against C/EBPα (Santa Cruz, 1:800), C/EBPδ (Santa Cruz, 1:200), NKX2-1 (1:1000), and mouse SCGB3A2 (1:1600) as previously described (2). NKX2-1 antibody was produced using 3 peptides (MSPKHTTPFSVSD, NMSELPPYQDTMR, PGWYGAPNDPRFP) as an antigen by Global Peptide Services (Fort Collins, CO). In brief, rehydrated sections were first pre-treated by incubation in PBS for 5 min for permeabilization and immersed in 0.3% hydrogen peroxide for 30 min. The sections were blocked by 5% skim milk for 30 min and incubated with first antibody at 4 °C overnight. Sections were then incubated with biotinylated anti-rabbit IgG for 30 min, and avidin-biotinylated peroxidase complexes (Vector Laboratory, Burlingame, CA) for 30 min. The bound peroxidase activity was visualized by incubation with the DakoCytomation Liquid DAB Substrate Chromagen System (DAKO). Sections were rinsed in water after each step of the immunostaining procedure. Finally, the sections were counterstained with Hematoxylin QS (Vector Laboratories), dehydrated, and mounted in permanent mounting medium.

RESULTS

NKX2-1 Interacting Proteins—To identify NKX2-1 interacting proteins that may be responsible for activation of mouse Scgb3a2 gene expression, the yeast two-hybrid system and anti-FLAG immunoprecipitation (anti-FLAG IP) using liquid chromatography (31), followed by tandem mass spectrometry (LC/MS/MS) were employed. Seventeen genes were identified from the yeast two-hybrid system, whereas 12 genes were from anti-FLAG IP-LC/MS/MS as NKX2-1 interacting proteins. Interestingly, none of the genes identified by these two methods overlapped. Separately, several transcription factors/co-factors were chosen based on prior literature that interact with NKX2-1 and are involved in the expression of thyroid- or lung-specific (or enriched) genes (see supplemental Table S1). Expression plasmids for these NKX2-1 interacting proteins were prepared in plasmid pcDNA3.1, which were then subjected to transfection analysis with the mouse Scgb3a2-promoter (−907 bp) luciferase reporter construct using mtCC (32), MLE 15 (33), TC-1, and/or COS-1 cells. The former three cell lines are derived from mouse lung epithelial cells. Within the −907 bp of the promoter sequence, two NKX2-1 binding sites, located at −120 to −125 and −182 to −187 bp from the transcription start site of the gene, were previously found to be critical for expression of the mouse Scgb3a2 gene (2). Among 44 interacting proteins examined (listed in Table S1), C/EBPα was the only protein that demonstrated significant activation of Scgb3a2 gene expression in the presence as well as absence of the NKX2-1 expression plasmid in mtCC, MLE15, and COS-1 cells (see below). C/EBPδ was also found to activate transcription of the Scgb3a2 gene. We therefore focused on C/EBPα and C/EBPδ in further studies.

C/EBPα and C/EBPδ Are Involved in Mouse Scgb3a2 Gene Promoter Activity—When a series of Scgb3a2 gene promoter deletion constructs were co-transfected with C/EBPα or C/EBPδ expression plasmid in COS-1 cells. Each deletion construct has the promoter sequence from −113, −292, −387, −506, or −907 to +55 bp, pGL4, vector only used as a control. B, relative luciferase activity was determined using construct −506 and increasing amounts of C/EBPα or C/EBPδ expression plasmid or both plasmids together. Relative luciferase activity is shown as the mean ± S.D. based on the activity of control vector pGL4 as 1 from three independent experiments, each carried out in duplicate. C, levels of overexpressed NKX2-1, C/EBPα, and C/EBPδ in COS-1 cells were determined by Western blotting using cell lysates with (+) and without (−) transfection of expression plasmid for each transcription factor. Exposure time was 1 min for C/EBPα and 10 min for NKX2-1 and C/EBPδ.
dent with constructs −506 and −907. This was further demonstrated by a titration analysis in which the −506 construct was co-transfected with an increasing amount of C/EBPβ or C/EBPα expression plasmid individually or together (Fig. 1B). Three- to 4-fold higher reporter activity was obtained with C/EBPα than C/EBPβ at the same concentration, and co-transfection with 25 ng each of C/EBPα and C/EBPβ expression plasmids together produced a reporter activity slightly lower to that obtained with 25 ng of C/EBPα expression plasmid alone. When actual levels of expressed proteins were examined by Western blotting, C/EBPα appeared to be expressed at higher levels than C/EBPβ (Fig. 1C). It has to be pointed out, however, that the protein expression level determined by Western blotting does not necessarily reflect the actual expression level because of the specificity of antibody used. Nevertheless, these results may suggest that in this experimental system, the lower reporter activity obtained with the C/EBPβ expression plasmid as compared with the C/EBPα expression plasmid, regardless of the presence of NKK2-1, could be due to a lower expression of C/EBPβ protein (see also Figs. 3B, 4, and 5).

Analysis of C/EBP Binding Sites in the Mouse Scgb3a2 Gene Promoter—C/EBP protein has a wide spectrum of DNA binding preferences. Within −506 bp of the mouse Scgb3a2 promoter, 11 C/EBP binding sites were predicted using the AliBaba.2.1 (darwin.nmsu.edu/~mollb470/fall2003/Projects/solorz/aliBaba_2.1.htm) (Fig. 2A). Thus, 11 oligonucleotides harboring putative C/EBP binding sites in the mouse Scgb3a2 promoter were used as a competitor for EMSA using nuclear extracts prepared from COS-1 cells overexpressing C/EBPα or C/EBPβ and an oligonucleotide containing the C/EBP binding site present in the rat Mrp (multidrug resistance-associated protein) 3 gene proximal promoter region (−141 to −160 bp) as a probe (Fig. 2B and Table 1). The intensity of a specific protein-DNA shifted band was similar between C/EBPα and C/EBPβ under the same experimental conditions, considering that the gel for examining the C/EBPβ binding was exposed twice as long as the gel for C/EBPα binding. The addition of 100-fold excess of competitor oligonucleotides 1, 2, 6, 7, 9, and 10 abolished or greatly reduced the intensity of mobility shifted bands for both C/EBPα and C/EBPβ. Oligonucleotides 1 and 2 are present within the −506/−387-bp region, oligonucleotides 6 and 7 are within the −113/−292-bp region, and oligonucleotides 9 and 10 are between −113 bp and the transcription start site of the gene. These areas are the ones that showed increased reporter activity as described in the legend to Fig. 1.

To determine which C/EBP binding sites are most critical for activation of the mouse Scgb3a2 promoter, a mutation was introduced into the C/EBP binding site located in oligonucleotides 1, 2, 6, 7, 9, and 10, which were then subjected to EMSA and reporter analysis (Fig. 3 and Table 1). Because competitor oligonucleotides 1 and 9 had two potential C/EBP binding sites in their sequences, two mutant oligonucleotides having each C/EBP binding site mutated (m1 and m2) were prepared (Table 1). The EMSA results demonstrated that in both C/EBPα and C/EBPβ, mutant oligonucleotides 1m2, 2m1, 6m1, 7m1, 9m1, and 10m1 did not have any effect on formation of a specific DNA-protein band, suggesting that C/EBPs cannot bind to these mutated sites (Fig. 3A). Reporter assays using COS-1 cells

TABLE 1 Putative C/EBP binding sites are shown by boldface letters or in italics with underline. The actual C/EBP binding sites are underlined and the probe used for EMSA is boxed with a bracket. The actual C/EBP binding site of the gene is shown by +1. The primer sequences used for ChIP analysis are overlined with bracket. B, EMSA was carried out using nuclear extracts prepared from COS-1 cells overexpressing C/EBPα or C/EBPβ, an oligonucleotide containing the C/EBP binding site present in the rat Mrp (multidrug resistance-associated protein) 3 gene proximal promoter region (−141 to −160 bp) as a probe, and oligonucleotides containing putative C/EBP binding sites as a competitor. Note that the gel for C/EBPα binding was exposed to a phosphorimager screen twice longer than C/EBPβ.

Name	Sequence
Mrp3	5′-AGGCTGTTTTGCTACAAGCTG-3′
COMP1	5′-GAGTTTACAGGAGCAATTAGAAAGTCAGC-3′
COMP1m1	5′-GAGTTTACAGGAGCAATTAGAAAGTCAGC-3′
COMP1m2	5′-GAGTTTACAGGAGCAATTAGAAAGTCAGC-3′
COMP2	5′-GAGTTTACAGGAGCAATTAGAAAGTCAGC-3′
COMP2m1	5′-GAGTTTACAGGAGCAATTAGAAAGTCAGC-3′
COMP2m2	5′-GAGTTTACAGGAGCAATTAGAAAGTCAGC-3′
COMP3	5′-GAGTTTACAGGAGCAATTAGAAAGTCAGC-3′
COMP3m1	5′-GAGTTTACAGGAGCAATTAGAAAGTCAGC-3′
COMP3m2	5′-GAGTTTACAGGAGCAATTAGAAAGTCAGC-3′
COMP4	5′-GAGTTTACAGGAGCAATTAGAAAGTCAGC-3′
COMP4m1	5′-GAGTTTACAGGAGCAATTAGAAAGTCAGC-3′
COMP4m2	5′-GAGTTTACAGGAGCAATTAGAAAGTCAGC-3′
COMP5	5′-GAGTTTACAGGAGCAATTAGAAAGTCAGC-3′
COMP5m1	5′-GAGTTTACAGGAGCAATTAGAAAGTCAGC-3′
COMP5m2	5′-GAGTTTACAGGAGCAATTAGAAAGTCAGC-3′
COMP6	5′-GAGTTTACAGGAGCAATTAGAAAGTCAGC-3′
COMP6m1	5′-GAGTTTACAGGAGCAATTAGAAAGTCAGC-3′
COMP6m2	5′-GAGTTTACAGGAGCAATTAGAAAGTCAGC-3′
COMP7	5′-GAGTTTACAGGAGCAATTAGAAAGTCAGC-3′
COMP7m1	5′-GAGTTTACAGGAGCAATTAGAAAGTCAGC-3′
COMP7m2	5′-GAGTTTACAGGAGCAATTAGAAAGTCAGC-3′
COMP8	5′-GAGTTTACAGGAGCAATTAGAAAGTCAGC-3′
COMP9	5′-GAGTTTACAGGAGCAATTAGAAAGTCAGC-3′
COMP9m1	5′-GAGTTTACAGGAGCAATTAGAAAGTCAGC-3′
COMP9m2	5′-GAGTTTACAGGAGCAATTAGAAAGTCAGC-3′
COMP10	5′-GAGTTTACAGGAGCAATTAGAAAGTCAGC-3′
COMP10m1	5′-GAGTTTACAGGAGCAATTAGAAAGTCAGC-3′
COMP11	5′-GAGTTTACAGGAGCAATTAGAAAGTCAGC-3′
COMP1m2	5′-GAGTTTACAGGAGCAATTAGAAAGTCAGC-3′
COMP12	5′-GAGTTTACAGGAGCAATTAGAAAGTCAGC-3′
COMP13	5′-GAGTTTACAGGAGCAATTAGAAAGTCAGC-3′
Synergistic Regulation of Mouse Scgb3a2 Gene

were then carried out using −506 constructs with these individual C/EBP binding sites mutated and their relative luciferase activities compared (Fig. 3B). In the case of C/EBPα, mutant constructs of binding sites 1, 6, and 9 exhibited a similar reduction of ∼40% in luciferase activity, whereas the activity of the binding site 10 mutant was reduced ∼60% as compared with the parent construct −506 (Fig. 3B, left panel). Mutation of binding site 2 had very little effect on reporter activity. Among all sites, mutation of binding site 7 was the most effective in suppressing reporter activity. In the case of C/EBPβ, only mutations introduced into sites 6 and 7 demonstrated a significant reduction of reporter activities as compared with the construct −506; whereas other mutations were basically dispensable (Fig. 3B, right panel). In particular, the binding site 7 mutation showed the largest reduction of reporter activity. These results suggest that multiple C/EBP binding sites may be required for full activation of mouse Scgb3a2 promoter, and although both C/EBPα and C/EBPβ can bind to the same binding sites, it appears that the promoter activity through their binding to the specific binding sites depends on which C/EBP binds to which binding site. Furthermore, mutations in C/EBP binding sites 1, 2, and 9 only affected C/EBPα, but not C/EBPβ co-transfected luciferase activity. This may account for the large difference in luciferase activity between C/EBPα and C/EBPβ with the construct −506 as compared with construct −387 observed in Fig. 1A. Overall, binding site 7 may be the most critical C/EBP binding site among those examined (1, 2, 6, 7, 9, and 10) for the activation of the mouse Scgb3a2 promoter.

C/EBP and NKX2-1 Synergistically Activate Mouse Scgb3a2 Gene Promoter—Previously, we reported that two NKX2-1 binding sites located at −120 to −125 and −182 to −187 bp of the mouse Scgb3a2 promoter are responsible for transcriptional activation of the gene (2). When C/EBP and NKX2-1 expression plasmids were co-transfected together with the −506 Scgb3a2 reporter construct, a robust synergistic effect was observed for both C/EBPα and C/EBPβ (Fig. 4A). The synergism was stronger with C/EBPβ and NKX2-1, whereas the final synergistic reporter activity appeared to be higher for C/EBPα than C/EBPβ. This could be due to an apparent higher expression level of C/EBPα than C/EBPβ in this experimental system (see Fig. 1C). When a dominant-negative form of C/EBPα (34) was used instead of C/EBPα, together with the NKX2-1 expression plasmid and the −506 Scgb3a2 reporter construct, Scgb3a2 expression was
about a one-half of the activity obtained with the NKX2-1 expression plasmid alone, suggesting some degree of interaction between NKX2-1 and C/EBPα dominant-negative. To understand which C/EBP binding site(s) is important for the synergistic effect, various C/EBP binding site mutants as described in the legend to Fig. 3 were subjected to co-transfection with C/EBP and NKX2-1 expression plasmids (Fig. 4B). A pattern of synergistic reporter activity among various binding site mutants was somewhat similar to that obtained by co-transfection of the C/EBP expression plasmid alone for both C/EBPα and C/EBPβ (compare Fig. 3B versus 4B). The transfection analysis revealed that mutations in C/EBP binding sites 7 and 10 appear to be similarly critical for C/EBP and NKX2-1 synergistic regulation of mouse Scgb3a2 gene expression. Of interest is that C/EBP binding site 7 is juxtaposed to the distal NKX2-1 binding site (~182 bp, see Fig. 2A).

The effect of mutations in the NKX2-1 binding sites on Scgb3a2 promoter activity was next examined using the −506 construct and those having mutations at −182 (site 1) or −120 bp (site 2) of NKX2-1 binding sites (group of constructs −506, Fig. 5A). When C/EBPα or C/EBPβ and NKX2-1 expression plasmids were co-transfected, synergistic luciferase activity was markedly reduced by mutation of either of the NKX2-1 binding sites, in which the degree of reduction was greater with the site 1 mutation than site 2. Both mutations together almost abolished the synergistic reporter activity, suggesting that NKX2-1 binding site 1 may be slightly more responsible for the synergistic activation of the Scgb3a2 gene promoter by C/EBP and NKX2-1, however, both NKX2-1 binding sites are required for full synergism. The similar effect of the NKX2-1 binding site mutation on luciferase activity was also observed with constructs having an additional mutation at C/EBP binding sites 7 (group of −506-7M) or 10 (group of −506-10M), although the actual activities were lower than those of a group of −506 constructs as expected (Fig. 5, B and C). In all three groups of constructs, the degree of synergism between C/EBPα and NKX2-1 appeared to be more affected by NKX2-1 binding site 1 mutation as compared with C/EBPβ and NKX2-1. In addition, activation of reporter activity by C/EBP alone seems to be affected by the NKX2-1 binding site 1 mutation (see 2nd versus 1st and 3rd rows in Fig. 5, A and C). However, this was not seen with C/EBP binding site 7 mutants (see Fig. 5B). These results suggest the importance of interaction between the binding site of C/EBP site 7 and interacting of NKX2-1 with binding site 1 for efficient Scgb3a2 gene expression. When both C/EBP binding sites 7 and 10 were mutated, luciferase activity was markedly reduced, which was further suppressed to almost zero by the additional mutation in the NKX2-1 binding sites (Fig. 5D). These results suggest that sites 7 and 10 may be the most critical C/EBP binding sites, and that the binding of C/EBP to these sites and their interaction with NKX2-1 bound at sites 1 and 2 may be responsible for full expression of the mouse Scgb3a2 gene.

C/EBP and NKX2-1 Directly Interact—To further understand the synergistic effect of C/EBP and NKX2-1 on mouse Scgb3a2 gene expression, EMSA was carried out using nuclear extracts prepared from COS-1 cells overexpressing C/EBPα, C/EBPβ, or NKX2-1 and an oligonucleotide containing C/EBP binding site 7 as a probe (Fig. 6A). EMSA revealed that in addition to an individual specific DNA-protein band for NKX2-1 and C/EBPα (Fig. 6A, lanes 2 and 4), which was supershifted by the addition of a specific antibody to each transcription factor, a higher molecular weight band appeared by co-incubation of nuclear extracts expressing C/EBPα and NKX2-1 together (Fig. 6A, lane 6). This band was completely abolished by the addition of either C/EBPα or NKX2-1-specific antibody (Fig. 6A, lanes 7 and
Synergistic Regulation of Mouse Scgb3a2 Gene

The results further suggest that NKX2-1 directly interacts with C/EBPα or C/EBPδ.

C/EBPα and/or C/EBPδ Are Responsible for Mouse Scgb3a2 Gene Expression in Vivo—Previously, we demonstrated that SCGB3A2 is a direct downstream target for NKX2-1 using Nkx2-1-null mouse studies and in vitro transfection analysis (2). To demonstrate that C/EBPα and/or C/EBPδ play a role in mouse Scgb3a2 gene expression in vivo, the endogenous SCGB3A2 mRNA level was determined using quantitative RT-PCR in the absence and presence of a dominant negative A-C/EBP that inhibits the DNA binding of all C/EBP family members (35). SCGB3A2 expression was decreased to ~70 and 50% in mtCC and embryonic lung primary cells, respectively, after transfection of A-C/EBP plasmid (Fig. 7, A and B). Furthermore, a tetracycline-regulated A-C/EBP transgenic mouse (TetO-A-C/EBP) (36) was crossed with a transgenic mouse expressing the rtTA under the CCSP (SCGB1A1) promoter (37). After treatment with doxycyclin in the feed for 1 month, the CCSP-rtTA/TetO-A-C/EBP double transgenic mouse had statistically significantly decreased levels of SCGB3A2 in their lungs as compared with CCSP-rtTA transgenic mice (Fig. 7C). Interestingly, C/EBPδ knock-out mice (38) did not have any differences in SCGB3A2 expression levels in their lungs as compared with wild-type (data not shown). This suggests that in the absence of C/EBPδ, C/EBPα was sufficient to compensate in regulating transcription of the Scgb3a2 gene. These results altogether demonstrate that C/EBPα and/or C/EBPδ are responsible for Scgb3a2 expression in vivo.

Expression of C/EBPα and C/EBPδ in Embryonic and Adult Lungs—To understand how SCGB3A2 expression correlates with expression of C/EBPα and C/EBPδ in lung in vivo, Northern blotting and/or quantitative RT-PCR were carried out using lung RNAs isolated from embryos at various gestational stages and adult (Fig. 8). Northern blotting results demonstrated that C/EBPδ is expressed in adult lung at the level approximately twice that of C/EBPα (Fig. 8A). Using quantitative RT-PCR,
during embryonic development, a very small increase of C/EBPα expression was detected at E14.5, which markedly increased by E17.5 to the level approximately one-half of adult (Fig. 8B). The expression was further increased just before birth, and stayed at similar levels throughout adulthood. On the other hand, C/EBPδ expression remained low during early embryogenic stages, which slightly increased by E17.5. A dramatic increase was found just before birth (E19.0), followed by a decrease to about two-thirds of the peak levels at newborn and throughout adulthood. Quantitative RT-PCR further demonstrated that NKX2-1 expression was detected at E11.5, which was markedly increased around E14.5 and peaked just before and after birth. Adult NKX2-1 expression was at approximately one-fifth of the peak level. The expression of SCGB3A2 was detectable at E11.5 by quantitative RT-PCR, whereas a marked increase was found at E17.5. An additional increase in expression was found toward the end of gestation and in newborns. In adult, the expression was at approximately one-half the peak levels. These results suggest that the sharp increase in SCGB3A2 expression toward the end of gestation may be the results of increased expression of both C/EBPs and NKX2-1.

Immunohistochemistry was next carried out using antibodies against C/EBPα, C/EBPδ, NKX2-1, and SCGB3A2. At E16.5, embryonic lung expression of C/EBPα (Fig. 9A) and C/EBPδ (Fig. 9B) was mainly found in the epithelial cells of the airways with C/EBPδ expression being very weak and much lower than C/EBPα. At this stage, expression of NKX2-1 in the epithelia of bronchus was weak, whereas the expression in the bronchioles was intense (Fig. 9C) (39). SCGB3A2 expression was mainly found in the bronchial epithelial cells (Fig. 9D). At postnatal day 0, airway expression of C/EBPα (Fig. 9E), C/EBPδ (Fig. 9F), and SCGB3A2 (Fig. 9H) became stronger, particularly in bronchial epithelial cells. NKX2-1 expression was also found in the epithelial cells of bronchus (Fig. 9G). In adult lungs, strong C/EBPα and C/EBPδ expression was found in the airway epithelial cells, particularly bronchus, and type II cells (Fig. 9I and J, respectively), whereas NKX2-1 expression was high in type II cells and was also found in bronchial epithelial cells (Fig. 9K). In adult lung, high expression of SCGB3A2 was observed in bronchial epithelial cells (Fig. 9L). Expression of NKX2-1 was always found in the nucleus, whereas SCGB3A2 expression was in the cytoplasm. C/EBPα and C/EBPδ expression was observed in the nucleus of epithelial cells of the bronchus and bronchioles in E16.5 and postnatal day 0 lungs, whereas the expression was also found in the cytoplasm of bronchial epithelial cells of adult lung. These results demonstrate that all three transcription factors, C/EBPα, C/EBPδ, and NKX2-1, are simultaneously expressed in the airway epithelia, particularly bronchial cells where strong SCGB3A2 expression is found, supporting their role in synergistic activation of SCGB3A2 expression.

DISCUSSION

We demonstrate here that C/EBPα and C/EBPδ interact with NKX2-1 to synergistically regulate mouse Scgb3a2 gene transcription. Among 11 putative C/EBP binding sites present within −506 bp of the promoter of mouse Scgb3a2 gene, six binding sites appear to play a role in transcription of the gene, of which two binding sites located at −44 to −54 bp (site 10) and −192 to −201 bp (site 7) may be the most critical for the synergistic activation of Scgb3a2 gene promoter by C/EBPs and NKX2-1 (Fig. 10).

The involvement of C/EBP in Scgb3a2 regulation was found after examining 44 individual NKX2-1 interacting proteins; 17 identified by yeast two-hybrid, 12 by anti-FLAG-IP followed by mass spectrometric analysis, and 15 based on literature that are known to be involved in transcription of thyroid- or lung-specific (enriched) genes (see Table S1). One protein known to interact with NKX2-1 is PARP-1 (poly(ADP-ribose) polymerase-1), which activates the mouse Sftpb (SP-B) gene promoter in MLE15 cells (40). We found the same protein, also called ADPRT (ADP-ribosyltransferase), by anti-FLAG-IP-MS/MS. Interestingly, ADPRT did not have any effect on transcription of the Scgb3a2 gene in transient co-transfection analysis in four different cell lines examined including MLE15. This implies that the role of NKX2-1 interacting proteins in transcription of thyroid or lung-specific genes may be gene-dependent. This further suggests that the NKX2-1 interacting proteins we identified might play a role in transcription of other thyroid or lung-specific genes than Scgb3a2.

All three transcription factors, C/EBPα, C/EBPδ, and NKX2-1, are bound in vivo to the promoter region of Scgb3a2 flanking C/EBP binding sites 7 and 10, and two NKX2-1 binding sites as demonstrated by ChIP assays. Of note is that the PCR bands produced by ChIP analysis were relatively weak, suggesting the low abundance of these transcription factors and/or a low specificity of the antibodies used. In this regard, we tried co-IP studies using whole cell lysates as well as nuclear fractions from mtCC and mouse lung cells instead of overexpressed pro-
Synergistic Regulation of Mouse Scgb3a2 Gene

teins to demonstrate the interaction between C/EBPs and NKX2-1; however, we were not able to obtain successful results. This could be due to low expression levels of the three transcription factors in mtCC cells and mouse lung cells because we did not detect any bands corresponding to these transcription factors by Western blotting analysis (data not shown).

Previously, we demonstrated that NKX2-1 regulates SGB3A2 expression by transient transfection analysis (2). This was expected because SGB3A2 was originally identified as a downstream target for NKX2-1 using suppressive subtractive hybridization between normal and Nkx2-1-null embryo lungs (2). In the current study, C/EBPs and C/EBPδ were identified as transcription factors that also regulate Scgb3a2 transcription. The physiological importance of C/EBPs in the negative A-C/EBP by transfection analysis and transgenic mouse expressing a dominant negative A-C/EBP in lungs (2). In the current study, C/EBP

The role of C/EBPs and C/EBPδ and their synergistic interaction with NKX2-1 have been well documented for transcription of the Scgb1a1 (Cesp) gene (10, 13, 19). SCGB1A1 is the prototypical protein of the SCGB gene superfamily (1), and its immunomodulatory and anti-inflammatory function in lung have been extensively studied (41, 42). SCGB1A1 is specifically expressed in the Clara cells of the bronchiolar epithelium (41). The expression robustly increases after E16–17, which coincides with the marked increase of C/EBPα expression (10, 19). It was therefore suggested that the strong synergism between C/EBPα and NKX2-1, and the onset of C/EBPα expression in developing lung are the key to high levels of SCGB1A1 expression (19). In previous (2) and current studies, a similar robust increase in the expression of SGB3A2 was observed around E16.5–17.5. This may also be due to the marked increase in C/EBPα and C/EBPδ expression around this stage of development. Thus, two genes in the same superfamily are regulated by C/EBPs in a similar fashion. However, the Scgb1a1 gene is synergistically transactivated by NKX2-1 and C/EBPα, but not C/EBPβ (19). This is in sharp contrast to Sgb3a2, in which both C/EBPα and C/EBPδ can synergistically activate the gene with NKX2-1.

SCGB3A2 expression drastically increases toward the end of gestation and peaks around birth at a level approximately twice as high as adult. All three transcription factors C/EBPα, C/EBPδ, and NKX2-1 markedly increase their expression toward the end of gestation, and the expression stays relatively high throughout adulthood. These transcription factors are simultaneously expressed in the bronchial epithelial cells where high expression of SGB3A2 is found as demonstrated by immunohistochemistry. Thus, the expression pattern of SGB3A2 during gestation through adulthood may be the result of cooperative interaction of these three transcription factors. In particular, C/EBPδ expression in the bronchial epithelial cells became markedly intense at postnatal day 0 lungs as compared with E16.5 lungs, which was in good agreement with the marked increase in C/EBPδ expression toward the end of gestation as determined by quantitative RT-PCR. These results suggest that the marked increase in C/EBPδ in the bronchial epithelial cells may be largely responsible for the marked increase in expression of SGB3A2 in these cells toward the end of gestation. Several genes are known to display increased expression toward the end of gestation such as SP-A, -B, and -D (43, 44), aquaporin 1 (45), leptin receptor (46), and SCGB1A1 (10, 19). SGB3A2 may be added to the list of genes that increase their expression toward the end of gestation. The role for this increase in SGB3A2 toward the end of gestation needs to be understood.

In conclusion, we demonstrated that C/EBPα and C/EBPδ interact with NKX2-1, and synergistically activate transcription of the mouse Scgb3a2 gene through binding to specific binding sites located in the promoter of Scgb3a2 gene. These three transcription factors are simultaneously expressed in bronchial epithelial cells, which may allow their synergistic interaction to activate mouse Scgb3a2 gene transcription in lung.

Acknowledgments—We thank Drs. Jeffrey Whitsett (Cincinnati Children’s Hospital Medical Center, Cincinnati, OH) for providing us Ccsp-rTA transgenic mouse and MLE15 cells, Francesco DeMayo (Baylor College of Medicine, Houston, TX) for providing mtCC cells, Yatrik Shah for help in ChIP assays, and Frank Gonzalez for critical review of the manuscript.

REFERENCES

1. Klug, I., Beier, H. M., Bernard, A., Chilton, B. S., Fleming, T. P., Lehrer, R. I., Miele, L., Pattabiraman, N., and Singh, G. (2000) Am. J. Resp. Cell Mol. Biol. 23, 348–354
2. Niimi, T., Keck-Waggoner, C. L., Popescu, N. C., Zhou, Y., Levitt, R. C., and Kimura, S. (2001) Mol. Endocrinol. 15, 2021–2036
3. Chiba, Y., Kurotani, R., Kusakabe, T., Miura, T., Link, B. W., Misawa, M., and Kimura, S. (2006) Am. J. Respir. Crit. Care Med. 173, 958–964
4. Bruno, M. D., Bohinski, R. I., Huelsman, K. M., Whitsett, J. A., and Korfhagen, T. R. (1995) J. Biol. Chem. 270, 6531–6536
5. Bohinski, R. J., Di Lauro, R., and Whitsett, J. A. (1994) Mol. Cell. Biol. 14, 5671–5681
6. Kelly, S. E., Bachurski, C. J., Burhans, M. S., and Glasser, S. W. (1996) J. Biol. Chem. 271, 6881–6888
7. Ray, M. K., Chen, C. Y., Schwartz, R. J., and DeMayo, F. J. (1996) Mol. Cell. Biol. 16, 2056–2064
8. Sawaya, P. L., Stripp, B. R., Whitsett, J. A., and Luse, D. S. (1993) Mol. Cell. Biol. 13, 3860–3871
9. Costa, R. H., Kalinichenko, V. V., and Lim, L. (2001) Am. J. Physiol. 280, L823–L838
10. Cassel, T. N., and Nord, M. (2003) Am. J. Physiol. 285, L773–L781
11. Ramji, D. P., and Foka, P. (2002) Biochim. J. 365, 561–575
12. Cao, Z., Umek, R. M., and McKnight, S. L. (1991) Mol. Cell. Biol. 11, 469–480
13. Cassel, T. N., Nordlund-Moller, L., Andersson, O., Gustafsson, J. A., and Nord, M. (2000) Am. J. Respir. Cell Mol. Biol. 22, 469–480
14. Martinis, P. C., Whitsett, J. A., Xu, Y., Perl, A. K., Wan, H., and Ikegami, M. (2006) Development 133, 1155–1164
15. Berg, T., Didon, L., and Nord, M. (2006) Am. J. Physiol. 291, L683–L693
16. He, Y., and Crouch, E. (2002) J. Biol. Chem. 277, 19530–19537
17. Matlapudi, A., Wang, M., Rosenberg, E., Ewing, J. R., and Feinstein, S. I. (2002) Biochim. Biophys. Acta 1575, 91–98
18. Rosenberg, E., Li, F., Reisher, S. R., Wang, M., Gonzales, L. W., Ewing, J. R., Malek, S., Ballard, P. L., Notarfrancesco, K., Shuman, H., and Feinstein, S. I. (2002) Biochim. Biophys. Acta 1575, 82–90
Synergistic Regulation of Mouse Scgb3a2 Gene