Computing Top-k Closeness Centrality Faster in Unweighted Graphs
Elisabetta Bergamini, Michele Borassi, Pierluigi Crescenzi, Andrea Marino, Henning Meyerhenke

To cite this version:
Elisabetta Bergamini, Michele Borassi, Pierluigi Crescenzi, Andrea Marino, Henning Meyerhenke. Computing Top-k Closeness Centrality Faster in Unweighted Graphs. Eighteenth Workshop on Algorithm Engineering and Experiments, ALENEX 2016, 2016, Arlington, United States. 10.1137/1.9781611974317.6 : hal-01390137

HAL Id: hal-01390137
https://inria.hal.science/hal-01390137v1
Submitted on 14 Nov 2016

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Computing top k Closeness Centrality Faster in Unweighted Graphs*

Elisabetta Bergamini · Michele Borassi ·
Pierluigi Crescenzi · Andrea Marino ·
Henning Meyerhenke

Received: date / Accepted: date

Abstract Given a connected graph $G = (V,E)$, the closeness centrality of a vertex v is defined as $\frac{n-1}{\sum_{w \in V} d(v,w)}$. This measure is widely used in the analysis of real-world complex networks, and the problem of selecting the k most central vertices has been deeply analysed in the last decade. However, this problem is computationally not easy, especially for large networks: in the first part of the paper, we prove that it is not solvable in time $O(|E|^{2-\epsilon})$ on directed graphs, for any constant $\epsilon > 0$, under reasonable complexity assumptions. Furthermore, we propose a new algorithm for selecting the k most central nodes in a graph: we experimentally show that this algorithm improves significantly both the textbook algorithm, which is based on computing the distance between all pairs of vertices, and the state of the art. For example, we are able to compute the top k nodes in few dozens of seconds in real-world networks with millions

* This paper is an extended and improved version of the conference paper [6]. A preliminary study appeared in [10].

E. B.’s and H. M.’s work is partially supported by German Research Foundation (DFG) grant ME 3619/3-1 within the Priority Programme 1736 Algorithms for Big Data. P. C.’s and A. M.’s work is partially supported by the Italian Ministry of Education, University, and Research (MIUR) under PRIN 2012C4E3KT national research project AMANDA — Algorithmics for MAssive and Networked DAta.

E. Bergamini, H. Meyerhenke
Institute of Theoretical Informatics, Karlsruhe Institute of Technology (KIT), Germany.
E-mail: {elisabetta.bergamini,meyerhenke}@kit.edu

M. Borassi
IMT Institute for Advanced Studies Lucca, Italy.
E-mail: michele.borassi@imtlucca.it

P. Crescenzi
Dipartimento di Ingegneria dell’Informazione, Università di Firenze, Italy.
E-mail: pierluigi.crescenzi@unifi.it

A. Marino
Dipartimento di Informatica, Università di Pisa, Italy.
E-mail: marino@di.unipi.it
of nodes and edges. Finally, as a case study, we compute the 10 most central actors in the IMDB collaboration network, where two actors are linked if they played together in a movie, and in the Wikipedia citation network, which contains a directed edge from a page p to a page q if p contains a link to q.
1 Introduction

The problem of identifying the most central nodes in a network is a fundamental question that has been asked many times in a plethora of research areas, such as biology, computer science, sociology, and psychology. Because of the importance of this question, dozens of centrality measures have been introduced in the literature (for a recent survey, see [8]). Among these measures, closeness centrality is certainly one of the oldest and of the most widely used [5]: almost all books dealing with network analysis discuss it (for example, [22]), and almost all existing graph libraries implement algorithms to compute it.

In a connected graph, the closeness centrality of a node \(v \) is defined as:

\[
c(v) = \frac{n - 1}{\sum_{w \in V} d(v, w)}.
\]

The idea behind this definition is that a central node should be very efficient in spreading information to all other nodes; for this reason, a node is central if the average number of linkes needed to reach another node is small. If the graph is not strongly connected, the definition is more complicated, but still very established in the literature [21,31,7,8,24] (see Sect. 2.2 for more details).

In order to compute the \(k \) vertices with largest closeness, the textbook algorithm computes \(c(v) \) for each \(v \) and returns the \(k \) largest found values. The main bottleneck of this approach is the computation of \(d(v, w) \) for each pair of vertices \(v \) and \(w \) (that is, solving the All Pairs Shortest Paths or APSP problem). This can be done in two ways: either by using fast matrix multiplication, in time \(O(n^{2.373} \log n) \) [35,33], or by performing a breadth-first search (in short, BFS) from each vertex \(v \in V \), in time \(O(mn) \), where \(n = |V| \) and \(m = |E| \). Usually, the BFS approach is preferred because the other approach contains big constants hidden in the \(O \) notation, and because real-world networks are usually sparse, that is, \(m \) is not much bigger than \(n \). However, also this approach is too time-consuming if the input graph is very big (with millions of nodes and hundreds of millions of edges).

Our first result proves that, in the worst case, the BFS-based approach cannot be improved, under reasonable complexity assumptions. Indeed, we construct a reduction from the problem of computing the most central vertex (the case \(k = 1 \)) to the Orthogonal Vector problem [3]. This reduction implies that we cannot compute the most central vertex in \(O(m^{2-\epsilon}) \) for any \(\epsilon > 0 \), unless the Orthogonal Vector conjecture [3] is false. Note that the Orthogonal Vector conjecture is implied by the well-known Strong Exponential Time Hypothesis (SETH, [17]), and hence all our results hold also if we assume SETH. This hypothesis is heavily used in the context of polynomial-time reductions, and, informally, it says that the \textsc{Satisfiability} problem is not solvable in time \(O((2 - \epsilon)^N) \) for any \(\epsilon > 0 \), where \(N \) is the number of variables. This result still holds if we assume the input graph to be sparse, that is, if we assume that \(m = O(n) \) (of course, if the input graph is not sparse, then the BFS-based approach can be improved using fast matrix multiplication). The proof is provided in Sect. 3.
Knowing that the BFS-based algorithm cannot be improved in the worst case, in the second part of the paper we provide a new exact algorithm that performs much better on real-world networks, making it possible to compute the k most central vertices in networks with millions of nodes and hundreds of millions of edges. The new approach combines the BFS-based algorithm with a pruning technique: during the algorithm, we compute and update upper bounds on the closeness of all the nodes, and we exclude a node v from the computation as soon as its upper bound is “small enough”, that is, we are sure that v does not belong to the top k nodes. We propose two different strategies to set the initial bounds, and two different strategies to update the bounds during the computation: this means that our algorithm comes in four different variations. The experimental results show that different variations perform well on different kinds of networks, and the best variation of our algorithm drastically outperforms both a probabilistic approach [23], and the best exact algorithm available until now [24]. We have computed for the first time the 10 most central nodes in networks with millions of nodes and hundreds of millions of edges, in very little time. A significant example is the wiki-Talk network, which was also used in [27], where the authors propose an algorithm to update closeness centralities after edge additions or deletions. Our performance is about 30,000 times better than the performance of the textbook algorithm: if only the most central node is needed, we can recompute it from scratch more than 150 times faster than the geometric average update time in [27]. Finally, our approach is not only very efficient, but it is also very easy to code, making it a very good candidate to be implemented in existing graph libraries. Indeed, it is already implemented in NetworKit [29], and one of its variations is implemented in Sagemath [14]. We sketch the main ideas of the algorithm in Sect. 4, and we provide all details in Sect. 5-8. We experimentally evaluate the efficiency of the new algorithm in Sect. 9. In the last part of the paper (Sect. 10, 11), we consider two case studies: the actor collaboration network (1,797,446 vertices, 72,880,156 edges) and the Wikipedia citation network (4,229,697 vertices, 102,165,832 edges). In the actor collaboration network, we analyze the evolution of the 10 most central vertices, considering snapshots taken every 5 years between 1940 and 2014. The computation was performed in little more than 45 minutes. In the Wikipedia case study, we consider both the standard citation network, that contains a directed edge (p,q) if p contains a link to q, and the reversed network, that contains a directed edge (p,q) if q contains a link to p. In a few minutes, we are able to compute the 10 most central pages of most of these graphs, making them available for future analyses.

2 Preliminaries

2.1 Related Work

Closeness is a “traditional” definition of centrality, and consequently it was not “designed with scalability in mind”, as stated in [18]. Also in [11], it is said
that closeness centrality can “identify influential nodes”, but it is “incapable to be applied in large-scale networks due to the computational complexity”. The simplest solution considered was to define different measures, that might be related to closeness centrality [18].

A different line of research has tried to develop more efficient algorithms, or lower bounds for the complexity of this problem. In particular, in [10] it is proved that finding the less closeness central vertex is not subquadratic-time solvable, unless SETH is false. In the same line, it is proved in [3] that finding the most central vertex is not solvable in $O(m^{2-\epsilon})$, assuming the Hitting Set conjecture. This conjecture is very recent, and there are not strong evidences that it holds, apart from its similarity to the Orthogonal Vector conjecture. Conversely, the Orthogonal Vector conjecture is more established: it is implied both by the Hitting Set conjecture [3], and by SETH [32], a widely used assumption in the context of polynomial-time reductions [17,32,34,25,26,4,2,1,10,3,9]. Similar hardness results were also proved in the dense weighted context [1], by linking the complexity of centrality measures to the complexity of computing the All Pairs Shortest Paths.

In order to avoid these hardness results, it is possible to design approximation algorithms: the simplest approach samples the distance between a node v and l other nodes w, and returns the average of all values $d(v, w)$ found [15]. The time-complexity is $O(lm)$, to obtain an approximation $\tilde{c}(v)$ of the centrality of each node v such that $P\left(\left|\frac{1}{c(v)} - \frac{1}{\tilde{c}(v)}\right| \geq \epsilon D\right) \leq 2e^{-\Omega(\epsilon^2)}$ where D is the diameter of the graph. A more refined approximation algorithm is provided in [12], which combines the sampling approach with a 3-approximation algorithm: this algorithm has running time $O(lm)$, and it provides an estimate $\tilde{c}(v)$ of the centrality of each node v such that $P\left(\left|\frac{1}{\tilde{c}(v)} - \frac{1}{c(v)}\right| \geq \frac{\epsilon}{c(v)}\right) \leq 2e^{-\Omega(\epsilon^2)}$ (note that, differently from the previous algorithm, this algorithm provides a guarantee on the relative error). However, even if these approximation algorithms work quite well, they are not suited to the ranking of nodes: indeed, we work with so-called small world networks, having a low diameter. Consequently, in a typical graph, the average distance between v and a random node w is between 1 and 10, meaning that most of the n centrality values lie in this range. In order to obtain a ranking, we need the error to be close to $\frac{10}{n}$, which might be very small. Nevertheless, an approximation algorithm was proposed in [23], where the sampling technique developed in [15] was used to actually compute the top k vertices: the result is not exact, but it is exact with high probability. The authors proved that the time-complexity of their algorithm is $O(mn\frac{k}{\epsilon^2} \log n)$, under the rather strong assumption that closeness centralities are uniformly distributed between 0 and D, where D is the maximum distance between two nodes (in the worst case, the time-complexity of this algorithm is $O(mn)$).

Other approaches have tried to develop incremental algorithms that might be more suited to real-world networks. For instance, in [20], the authors develop heuristics to determine the k most central vertices in a varying environment. Furthermore, in [27], the authors consider the problem of updating the close-
ness centrality of all nodes after edge insertions or deletions: in some cases, the time needed for the update could be orders of magnitude smaller than the time needed to recompute all centralities from scratch.

Finally, some works have tried to exploit properties of real-world networks in order to find more efficient algorithms. In [19], the authors develop a heuristic to compute the \(k \) most central vertices according to different measures. The basic idea is to identify central nodes according to a simple centrality measure (for instance, degree of nodes), and then to inspect a small set of central nodes according to this measure, hoping it contains the top \(k \) vertices according to the “complex” measure. The last approach [24], proposed by Olsen et al., tries to exploit the properties of real-world networks in order to develop exact algorithms with worst case complexity \(O(mn) \), but performing much better in practice. As far as we know, this is the only exact algorithm that is able to efficiently compute the \(k \) most central vertices in networks with up to 1 million nodes, before this work.

However, despite this huge amount of research, the major graph libraries still use the textbook algorithm, or the algorithm presented in this paper: among them, Boost Graph Library [16], Sagemath [14], igraph [30], NetworkX [28], and NetworKit [29]. This is due to the fact that efficient available exact algorithms for top \(k \) closeness centrality, like [24], are relatively recent and make use of several other non-trivial routines.

2.2 Preliminary Definitions

We assume the reader to be familiar with the basic notions of graph theory (see, for example, [13]): all the notations and definitions used throughout this paper are summarised in Table 1 (in any case, all notations are also defined in the text). Here, let us only define precisely the closeness centrality of a vertex \(v \). As already said, in a connected graph, the farness of a node \(v \) in a graph \(G = (V, E) \) is \(f(v) = \frac{\sum_{w \in V} d(v, w)}{n-1} \), and the closeness centrality of \(v \) is \(\frac{1}{f(v)} \). In the disconnected case, the most natural generalization would be \(f(v) = \frac{\sum_{w \in R(v)} d(v, w)}{r(v)-1} \), and \(c(v) = \frac{1}{f(v)} \), where \(R(v) \) is the set of vertices reachable from \(v \), and \(r(v) = |R(v)| \). However, this definition does not capture our intuitive notion of centrality: indeed, if \(v \) has only one neighbor \(w \) at distance 1, and \(w \) has out-degree 0, then \(v \) becomes very central according to this measure, even if \(v \) is intuitively peripheral. For this reason, in the literature [21,31,7,8,24], the most common generalization is:

\[
f(v) = \frac{\sum_{w \in R(v)} d(v, w)}{r(v)-1} \cdot \frac{n-1}{r(v)-1} \quad c(v) = \frac{1}{f(v)}
\]

(1)

If a vertex \(v \) has (out)degree 0, the previous fraction becomes \(0 \). In this case, the closeness of \(v \) is set to 0.
3 Complexity of Computing the Most Central Vertex

In this section, we show that, even in the computation of the most central vertex, the textbook algorithm is almost optimal in the worst case, assuming the Orthogonal Vector conjecture [32, 3], or the well-known Strong Exponential Time Hypothesis (SETH) [17]. The Orthogonal Vector conjecture says that,
given N vectors in $\{0, 1\}^d$, where $d = O(\log^k N)$ for some k, it is impossible to decide if there are two orthogonal vectors in $O(N^{2-\epsilon})$, for any $\epsilon > 0$ not depending on k. The SETH says that the k-Satisfiability problem cannot be solved in time $O((2 - \epsilon)^N)$, where N is the number of variables and ϵ is a positive constant not depending on k. Our reduction is summarized by the following theorem.

Theorem 1 On directed graphs, in the worst case, an algorithm computing the most closeness central vertex in time $O(m^{2-\epsilon})$ for some $\epsilon > 0$ would falsify the Orthogonal Vector conjecture. The same result holds even if we restrict the input to sparse graphs, where $m = O(n)$.

It is worth mentioning that this result still holds if we restrict our analysis to graphs with small diameter (where the diameter is the maximum distance between any two connected nodes). Indeed, the diameter of the graph obtained from the reduction is 9. Moreover, it is well known that the Orthogonal Vector conjecture is implied by SETH [32,10,3]: consequently, the following corollary holds.

Corollary 1 On directed graphs, in the worst case, an algorithm computing the most closeness central vertex in time $O(n^{2-\epsilon})$ for some $\epsilon > 0$ would falsify SETH. The same result holds even if we restrict the input to sparse graphs, where $m = O(n)$.

The remainder of this section is devoted to the proof of Theorem 1. We construct a reduction from the l-TwoDisjointSet problem, that is, finding two disjoint sets in a collection C of subsets of a given ground set X, where $|X| = O(|C| \log^l |C|)$. For example, X could be the set of numbers between 0 and h, and C could be the collection of subsets of even numbers between 0 and h (in this case, the answer is True, since there are two disjoint sets in the collection). It is simple to prove that this problem is equivalent to the Orthogonal Vector problem, by replacing a set X with its characteristic vector in $\{0, 1\}^{|X|}$ [10]; consequently, an algorithm solving this problem in $O(|C|^2 - \epsilon)$ would falsify the Orthogonal Vector conjecture. For a direct reduction between the l-TwoDisjointSet problem and SETH, we refer to [32] (where the TwoDisjointSet problem is named CooperativeSubsetQuery).

Given an instance (X, C) of the l-TwoDisjointSet problem, and given a set $C \in C$, let R_C be $|\{C' \in C : C \cap C' \neq \emptyset\}|$. The TwoDisjointSet problem has no solutions if and only if $R_C = |C|$ for all $C \in C$; indeed, $R_C = |C|$ means that C intersects all the sets in C. We construct a directed graph $G = (V, E)$, where $|V|, |E| = O(|C| |X|) = O(|C| \log^l |C|)$, such that:

1. V contains a set of vertices C_0 representing the sets in C (from now on, if $C \in C$, we denote by C_0 the corresponding vertex in C_0);
2. the centrality of C_0 is a function $c(R_C)$, depending only on R_C (that is, if $R_C = R_{C'}$ then $c(C_0) = c(C'_0)$);
3. the function $c(R_C)$ is decreasing with respect to R_C;
4. the most central vertex is in C_0.

6
In such a graph, the vertex with maximum closeness corresponds to the set \(S \) minimizing \(R_S \): indeed, it is in \(C_0 \) by Condition 4, and it minimizes \(R_S \) by Condition 2-3. Hence, assuming we can find \(S_0 \) in time \(O(n^{2-\epsilon}) \), we can easily check if the closeness of \(S_0 \) is \(c(|C|) \): if it is not, it means that the corresponding \(\text{TwoDisjointSet} \) instance has a solution of the form \((S,S_1)\) because \(R_S \neq C \). Otherwise, for each \(C \), \(R_C \geq R_S = |C| \), because \(c(C_0) \leq c(S_0) = c(|C|) \), and \(c \) is decreasing with respect to \(R_C \). This means that \(R_C = |C| \) for each \(C \), and there are no two disjoints sets. This way, we can solve the \(l\text{-TwoDisjointSet} \) problem in \(O(n^{2-\epsilon}) = O((|C| \log^d |C|)^{2-\epsilon}) = O(|C|^{2-\frac{d}{2}}) \), against the Orthogonal Vector conjecture, and SETH. If we also want the graph to be sparse, we can add \(O(|C| \log^d |C|) \) nodes with no outgoing edge.

To construct this graph (see Figure 1), we start by adding to \(V \) the copy \(C_0 \) of \(C \), another copy \(C_1 \) of \(C \) and a copy \(C_1 \) of \(X \). These vertices are connected as follows: for each element \(x \in X \) and set \(C \in C \), we add an edge \((C_0,x)\) and \((x,C_1)\), where \(C_0 \) is the copy of \(C \) in \(C_0 \), and \(C_1 \) is the copy of \(C \) in \(C_1 \). Moreover, we add a copy \(X_2 \) of \(X \) and we connect all pairs \((C_0,x)\) with \(C \in C \), \(x \in X \) and \(x \notin C \). This way, the closeness centrality of a vertex \(C_0 \in C_0 \) is \(\frac{|X|+R_C}{(n-1)|X|+2R_C} \) (which only depends on \(R_C \)). To enforce Conditions 3-4, we add a path of length \(p \) leaving each vertex in \(C_1 \), and \(q \) vertices linked to each vertex in \(C_0 \), each of which has out-degree \(|C| \): we show that by setting \(p = 7 \) and \(q = 36 \), all required conditions are satisfied.

More formally, we have constructed the following graph \(G = (V,E) \):

- \(V = Z \cup Y \cup C_0 \cup X_1 \cup X_2 \cup C_1 \cup \ldots \cup C_p \), where \(Z \) is a set of cardinality \(q|C| \), \(Y \) a set of cardinality \(q \), the \(C_i \)s are copies of \(C \) and the \(X_i \)s are copies of \(X \);
- each vertex in \(Y \) has \(|C| \) neighbors in \(Z \), and these neighbors are disjoint;
- for each \(x \in C \), there are edges from \(C_0 \in C_0 \) to \(x \in X_1 \), and from \(x \in X_1 \) to \(C_1 \in C_1 \);
- for each \(x \notin C \), there is an edge from \(C_0 \in C_0 \) to \(x \in X_2 \);
- each \(C_i \in C_i \), \(1 \leq i \leq p \), is connected to the same set \(C_{i+1} \in C_{i+1} \);
- no other edge is present in the graph.
Note that the number of edges in this graph is $O(|C||X|) = O(|C| \log^2(|C|))$, because $|X| < \log^2(|C|)$.

Lemma 1 Assuming $|C| > 1$, all vertices outside C_0 have closeness centrality at most $\frac{2|C|}{n-1}$, where n is the number of vertices.

Proof If a vertex is in $Z, X_2,$ or C_p, its closeness centrality is not defined, because it has out-degree 0.

A vertex $y \in Y$ reaches $|C|$ vertices in 1 step, and hence its closeness centrality is $\frac{|C|^2}{n(n-1)} = \frac{|C|}{n-1}$.

A vertex in C_i reaches $p - i$ other vertices, and their distance is $1, \ldots, p - i$: consequently, its closeness centrality is $\frac{(p-i)^2}{(p-i)(n-1)} = \frac{2(p-i)}{(n-1)(p-i+1)} \leq \frac{2}{n-1}$.

Finally, for a vertex $x \in X_1$ contained in N_x sets, for each $1 \leq i \leq p$, x reaches N_x vertices in C_i, and these vertices are at distance i. Hence, the closeness of x is $\frac{(pN_x)}{n(n-1)} = \frac{2pN_x}{n-1} - \frac{2|C|}{n-1}$. This concludes the proof. \hfill \Box

Let us now compute the closeness centrality of a vertex $C \in C_0$. The reachable vertices are:

- all q vertices in Y, at distance 1;
- all $|C|$ vertices in Z, at distance 2;
- $|X|$ vertices in X_1 or X_2, at distance 1;
- R_C vertices in C_i for each i, at distance $i + 1$ (the sum of the distances of these vertices is $\sum_{i=1}^{p+1} i = -1 + \sum_{i=1}^{p+1} i = \frac{(p+2)(p+1)}{2} - 1$).

Hence, the closeness centrality of C is:

$$c(R_C) = \frac{(q(1 + |C|) + |X| + pR_C)^2}{(q(1 + 2|C|) + |X| + \left(\frac{(p+1)(p+2)}{2} - 1\right)R_C)(n-1)}$$

$$= \frac{(q(1 + |C|) + |X| + pR_C)^2}{(q(1 + 2|C|) + |X| + g(p)R_C)(n-1)}$$

where $g(p) = \frac{(p+1)(p+2)}{2} - 1$. We want to choose p and q verifying:

a. the closeness of vertices in C_0 is bigger than $\frac{2|C|}{n-1}$ (and hence bigger than the closeness of all other vertices);

b. $c(R_C)$ is a decreasing function of R_C for $0 \leq R_C \leq |C|$.

In order to satisfy Condition b., the derivative $c'(R_C)$ of c is $\frac{(q(1 + |C|) + |X| + pR_C)^2}{(q(1 + 2|C|) + |X| + g(p)R_C)(n-1)} - g(p)(q(1 + |C|) + |X|) - g(p)(q(1 + |C|) + |X|) < 0$. Assuming $g(p) \geq 5p$ and $R_C < |C|$, this value is:

$$p(g(p)R_C + 2p(g(1 + 2|C|) + |X|) - g(p)(q(1 + |C|) + |X|) \leq p(g(p)|C| + 2pq + 4pq|C| + 2pq|X| - g(p)(q - |C|) - |X|) \leq p(g(p)|C| + 4pq|C| - g(p)|C| \leq p(g(p)|C| - pq|C|).$$
Assuming \(q > g(p) \), we conclude that \(c'(R_C) < 0 \) for \(0 \leq R_C \leq |C| \), and we verify Condition b. In order to verify Condition a., we want \(c(R_C) \geq \frac{2|C|}{n+1} \) (since \(c(R_C) \) is decreasing, it is enough \(c(|C|) \geq \frac{2|C|}{n+1} \)). Under the assumptions \(q > g(p) \), \(0 < |X| \leq |C| \) (which trivially holds for \(|C| \) big enough, because \(|X| \leq \log^p |C| \)),

\[
c(|C|) = \frac{(q+1|C|) + |X| + pRC}{(q+2|C|) + |X| + g(p)RC} \frac{2}{n-1}
\geq \frac{q|C|}{5(n-1)} > \frac{2|C|}{n-1}
\]

if \(q > 10 \).

To fulfill all required conditions, it is enough to choose \(p = 7, g(p) = 35 \), and \(q = 36 \).

4 Overview of the Algorithm

In this section, we describe our new approach for computing the \(k \) nodes with maximum closeness (equivalently, the \(k \) nodes with minimum farness, where the farness \(f(v) \) of a vertex \(v \) is \(\frac{1}{c(v)} = \frac{(n-1) \sum_{w \in R(v)} d(v,w)}{(n-1) p} \), as in Table 1). If we have more than one node with the same score, we output all nodes having a centrality bigger than or equal to the centrality of the \(k \)-th node.

In the previous section, we have shown that the trivial algorithm cannot be improved in the worst case: here, we describe an algorithm that is much more efficient when tested on real-world graphs. The basic idea is to keep track of a lower bound on the farness of each node, and to skip the analysis of a vertex \(v \) if this lower bound implies that \(v \) is not in the top \(k \).

More formally, let us assume that we know the farness of some vertices \(v_1, \ldots, v_l \), and a lower bound \(L(w) \) on the farness of any other vertex \(w \). Furthermore, assume that there are \(k \) vertices among \(v_1, \ldots, v_l \) verifying \(f(v_i) > L(w) \) \(\forall w \in V - \{v_1, \ldots, v_l\} \), and hence \(f(w) \leq L(w) < f(w) \) \(\forall w \in V - \{v_1, \ldots, v_l\} \). Then, we can safely skip the exact computation of \(f(w) \) for all remaining nodes \(w \), because the \(k \) vertices with smallest farness are among \(v_1, \ldots, v_l \).

This idea is implemented in Algorithm 1: we use a list \(\text{Top} \) containing all “analysed” vertices \(v_1, \ldots, v_l \) in increasing order of farness, and a priority queue \(\text{Q} \) containing all vertices “not analysed, yet”, in increasing order of lower bound \(L \) (this way, the head of \(\text{Q} \) always has the smallest value of \(L \) among all vertices in \(\text{Q} \)). At the beginning, using the function \(\text{computeBounds}() \), we compute a first bound \(L(v) \) for each vertex \(v \), and we fill the queue \(\text{Q} \) according to this bound. Then, at each step, we extract the first element \(v \) of \(\text{Q} \); if \(L(v) \) is smaller than the \(k \)-th biggest farness computed until now (that is, the farness
of the k-th vertex in variable Top), we can safely stop, because for each $x \in Q$, $f(x) \leq L(x) \leq L(v) < f(\text{Top}[k])$, and x is not in the top k. Otherwise, we run the function updateBounds(v), which performs a BFS from v, returns the farness of v, and improves the bounds L of all other vertices. Finally, we insert v into Top in the right position, and we update Q if the lower bounds have changed.

Algorithm 1: Pseudocode of our algorithm for top k closeness centralities.

Input	A graph $G = (V,E)$		
Output	Top k nodes with highest closeness and their closeness values $c(v)$		
1	global $L,Q \leftarrow \text{computeBounds}(G)$;		
2	global Top $\leftarrow \{\}$;		
3	global Farn;		
4	for $v \in V$ do Farn[v] $\leftarrow +\infty$;		
5	while Q is not empty do		
6	$v \leftarrow Q.$extractMin();		
7	if $	\text{Top}	\geq k$ and $L[v] > \text{Top}[k]$ then return Top;
8	Farn[v] $\leftarrow \text{updateBounds}(v)$; // This function might also modify L		
9	add v to Top, and sort Top according to Farn;		
10	update Q according to the new bounds;		

The crucial point of the algorithm is the definition of the lower bounds, that is, the definition of the functions computeBounds and updateBounds. We propose two alternative strategies for each of these two functions: in both cases, one strategy is conservative, that is, it tries to perform as few operations as possible, while the other strategy is aggressive, that is, it needs many operations, but at the same time it improves many lower bounds.

Let us analyze the possible choices of the function computeBounds. The conservative strategy computeBoundsDeg needs time $O(n)$: it simply sets $L(v) = 0$ for each v, and it fills Q by inserting nodes in decreasing order of degree (the idea is that vertices with high degree have small farness, and they should be analysed as early as possible, so that the values in Top are correct as soon as possible). Note that the vertices can be sorted in time $O(n)$ using counting sort.

The aggressive strategy computeBoundsNB needs time $O(mD)$, where D is the diameter of the graph: it computes the neighborhood-based lower bound $L^\text{NB}(v)$ for each vertex v (we will explain shortly afterwards how it works), it sets $L(v) = L^\text{NB}(v)$, and it fills Q by adding vertices in decreasing order of L. The idea behind the neighborhood-based lower bound is to count the number of paths of length l starting from a given vertex v, which is also an upper bound U_l on the number of vertices at distance l from v. From U_l, it is possible to define a lower bound on $\sum_{x \in V} d(v,x)$ by “summing U_l times the distance l”, until we have summed n distances: this bound yields the desired lower bound on the farness of v. The detailed explanation of this function is provided in Sect. 5.
For the function `updateBounds(w)`, the conservative strategy `updateBoundsBFSCut(w)` does not improve L, and it cuts the BFS as soon as it is sure that the farness of w is smaller than the k-th biggest farness found until now, that is, $\text{Farn}[\text{Top}[k]]$. If the BFS is cut, the function returns $+\infty$, otherwise, at the end of the BFS we have computed the farness of v, and we can return it. The running time of this procedure is $O(m)$ in the worst case, but it can be much better in practice. It remains to define how the procedure can be sure that the farness of v is at least x: to this purpose, during the BFS, we update a lower bound on the farness of v. The idea behind this bound is that, if we have already visited all nodes up to distance d, we can upper bound the closeness centrality of v by setting distance $d+1$ to a number of vertices equal to the number of edges “leaving” level d, and distance $d+2$ to all the remaining vertices. The details of this procedure are provided in Sect. 6.

The aggressive strategy `updateBoundsLB(v)` performs a complete BFS from v, and it bounds the farness of each node w using the level-based lower bound. The running time is $O(m)$ for the BFS, and $O(n)$ to compute the bounds. The idea behind the level-based lower bound is that $d(w,x) \geq |d(v,w) - d(v,x)|$, and consequently $\sum_{x \in V} d(w,x) \geq \sum_{x \in V} |d(v,w) - d(v,x)|$. The latter sum can be computed in time $O(n)$ for each w, because it depends only on the level d of w in the BFS tree, and because it is possible to compute in $O(1)$ the sum for a vertex at level $d+1$, if we know the sum for a vertex at level d. The details are provided in Sect. 7.

Finally, in order to transform these lower bounds on $\sum_{x \in V} d(v,x)$ into bounds on $f(v)$, we need to know the number of vertices reachable from a given vertex v. In Sect. 5, 6, 7, we assume that these values are known: this assumption is true in undirected graphs, where we can compute the number of reachable vertices in linear time at the beginning of the algorithm, and in strongly connected directed graphs, where the number of reachable vertices is n. The only remaining case is when the graph is directed and not strongly connected: in this case, we need some additional machinery, which are presented in Sect. 8.

5 Neighborhood-Based Lower Bound

In this section, we propose a lower bound $S^{NB}(v, r(v))$ on the total sum $S(v) = \sum_{w \in R(v)} d(v,w)$ of an undirected or strongly-connected graph. If we know the number $r(v)$ of vertices reachable from v, this bound translates into a lower bound on the farness of v, simply multiplying by $(n - 1)/(r(v) - 1)^2$. The basic idea is to find an upper bound $\tilde{\gamma}_i(v)$ on the number of nodes $\gamma_i(v)$ at distance i from v. Then, intuitively, if we assume that the number of nodes at distance i is greater than its actual value and “stop counting” when we have $r(v)$ nodes, we get something that is smaller than the actual total distance. This is because we are assuming that the distances of some nodes are smaller than their actual values. This argument is formalized in Prop. 1.
Proposition 1 If \(\tilde{\gamma}_i(v) \) is an upper bound on \(\gamma_i(v) \), for \(i = 0, \ldots, \text{diam}(G) \) and \(\text{ecc}(v) := \max_{w \in E(v)} d(v, w) \), then \(S^{NB}(v, r(v)) := \sum_{k=1}^{\text{ecc}(v)} k \cdot \gamma_k(v) \).

Let us consider the number of nodes at distance 1 in the BFS tree from \(w \) and \(\text{NB}(v, r(v)) \) is actually equal to \(\gamma_1(v) \), which means that the algorithm can be used to compute closeness of all nodes in a tree exactly.

Computing closeness on trees. Let us consider a node \(s \) for which we want to compute the total distance \(S(s) \) (notice that in a tree \(c(s) = (n - 1)/S(s) \)). The number of nodes at distance 1 in the BFS tree from \(s \) is clearly the degree of \(s \). What about distance 2? Since there are no cycles, all the neighbors of the nodes in \(I_1(s) \) are nodes at distance 2 from \(s \), with the only exception of \(s \) itself. Therefore, naming \(I_k(s) \) the set of nodes at distance \(k \) from \(s \) and \(\gamma_k(s) \) the number of these nodes, we can write \(\gamma_2(s) = \sum_{w \in I_1(s)} \gamma_1(w) - \deg(s) \). In general, we can always relate the number of nodes at each distance \(k \) of \(s \) to the number of nodes at distance \(k - 1 \) in the BFS trees of the neighbors of \(s \). Let us now consider \(\gamma_k(s) \), for \(k > 2 \). Figure 2 shows an example where \(s \) has three neighbors \(w_1, w_2 \) and \(w_3 \). Suppose we want to compute \(I_k(s) \) using information from \(w_1, w_2 \) and \(w_3 \). Clearly, \(I_3(s) \subset I_3(w_1) \cup I_3(w_2) \cup I_3(w_3) \); however, there are also other nodes in the union that are not in \(I_3(s) \). Furthermore, the nodes in \(I_3(w_1) \) (red nodes in the leftmost tree) are of two types: nodes in \(I_3(s) \) (the ones in the subtree of \(w_1 \)) and nodes in \(I_2(s) \) (the ones in the subtrees of \(w_2 \) and \(w_3 \)). An analogous behavior can be observed for \(w_2 \) and \(w_3 \) (central and rightmost trees). If we simply sum all the nodes in \(\gamma_3(w_1), \gamma_3(w_2) \) and \(\gamma_3(w_3) \), we would be counting each node at level 2 twice, i.e. once for each node in
\[\gamma_k(s) = \sum_{w \in \Gamma_1(s)} \gamma_{k-1}(w) - \gamma_{k-2}(s) \cdot (\deg(s) - 1). \] (2)

Algorithm 2: Closeness centrality in trees

```
Input : A tree \( T = (V,E) \)
Output: Closeness centralities \( c(v) \) of each node \( v \in V \)
1 foreach \( s \in V \) do
2    \( \gamma_1(s) \leftarrow \deg(s) \);  
3    \( S(s) \leftarrow \deg(s) \);  
4    \( k \leftarrow 2; \)  
5    \( nFinished \leftarrow 0; \)  
6    while \( nFinished < n \) do  
7        foreach \( s \in V \) do  
8            if \( k = 2 \) then  
9                \( \gamma_k(s) \leftarrow \sum_{w \in N(s)} \gamma_{k-1}(w) - \deg(s) \);  
10               else  
11                  \( \gamma_k(s) \leftarrow \sum_{w \in N(s)} \gamma_{k-1}(w) - \gamma_{k-2}(s)(\deg(s) - 1); \)  
12            foreach \( s \in V \) do  
13                \( \gamma_{k-2}(s) \leftarrow \gamma_{k-1}(s); \)  
14                \( \gamma_{k-1}(s) \leftarrow \gamma_k(s); \)  
15                if \( \gamma_{k-1}(s) > 0 \) then  
16                    \( S(s) \leftarrow S(s) + k \cdot \gamma_{k-1}(s); \)  
17                else  
18                    \( nFinished \leftarrow nFinished + 1; \)  
19            \( k \leftarrow k + 1; \)  
20        foreach \( s \in V \) do  
21            \( c(v) \leftarrow (n - 1)/S(v); \)  
22    return \( c \)
```

From this observation, we define a new method to compute the total distance of all nodes, described in Algorithm 2. Instead of computing the BFS tree of each node one by one, at each step we compute the number \(\gamma_k(v) \) of nodes at level \(k \) for all nodes \(v \). First (Lines 1 - 3), we compute \(\gamma_1(v) \) for each
node (and add that to \(S(v)\)). Then (Lines 6 - 19), we consider all the other levels \(k\) one by one. For each \(k\), we use \(\gamma_{k-1}(w)\) of the neighbors \(w\) of \(v\) and \(\gamma_{k-2}(v)\) to compute \(\gamma_k(v)\) (Line 9 and 11). If, for some \(k\), \(\gamma_k(v) = 0\), all the nodes have been added to \(S(v)\). Therefore, we can stop the algorithm when \(\gamma_k(v) = 0\) for all \(v \in V\).

Proposition 2 Algorithm 2 requires \(O(D \cdot m)\) operations to compute the closeness centrality of all nodes in a tree \(T\).

Proof The for loop in Lines 1 - 3 of Algorithm 2 clearly takes \(O(n)\) time. For each level of the while loop of Lines 6 - 19, each node scans its neighbors in Line 9 or Line 11. In total, this leads to \(O(m)\) operations per level. Since the maximum number of levels that a node can have is equal to the diameter of the tree, the algorithm requires \(O(D \cdot m)\) operations. \(\square\)

Lower bound for undirected graphs. For general undirected graphs, Eq. (2) is not true anymore – but a related upper bound \(\tilde{\gamma}_k(\cdot)\) on \(\gamma_k(\cdot)\) is still useful. Let \(\tilde{\gamma}_k(s)\) be defined recursively as in Eq. (2): in a tree, \(\tilde{\gamma}_k(s) = \gamma_k(s)\), while in this case we prove that \(\tilde{\gamma}_k(s)\) is an upper bound on \(\Gamma_k(s)\). Indeed, there could be nodes \(x\) for which there are multiple paths between \(s\) and \(x\) and that are therefore contained in the subtrees of more than one neighbor of \(s\). This means that we would count \(x\) multiple times when considering \(\tilde{\gamma}_k(s)\), overestimating the number of nodes at distance \(k\). However, we know for sure that at level \(k\) there cannot be more nodes than in Eq. (2). If, for each node \(v\), we assume that the number \(\tilde{\gamma}_k(v)\) of nodes at distance \(k\) is that of Eq. (2), we can apply Prop. 1 and get a lower bound \(S_{NB}(v, r(v))\) on the total sum for undirected graphs.

The procedure is described in Algorithm 3. The computation of \(S_{NB}(v, r(v))\) works basically like Algorithm 2, with the difference that here we keep track of the number of the nodes found in all the levels up to \(k\) \((nVisited)\) and stop the computation when \(nVisited\) becomes equal to \(r(v)\) (if it becomes larger, in the last level we consider only \(r(v) - nVisited\) nodes, as in Prop. 1 (Lines 22 - 25).

Proposition 3 For an undirected graph \(G\), computing the lower bound \(S_{NB}(v, r(v))\) described in Algorithm 3 takes \(O(D \cdot m)\) time.

Proof Like in Algorithm 2, the number of operations performed by Algorithm 3 at each level of the while loop is \(O(m)\). At each level \(i\), all the nodes at distance \(i\) are accounted for (possibly multiple times) in Lines 11 and 13. Therefore, at each level, the variable \(nVisited\) is always greater than or equal to the number of nodes \(v\) at distance \(d(v) \leq i\). Since \(d(v) \leq D\) for all nodes \(v\), the maximum number of levels scanned in the while loop cannot be larger than \(D\), therefore the total complexity is \(O(D \cdot m)\). \(\square\)

Lower bound on directed graphs. In directed graphs, we can simply consider the out-neighbors, without subtracting the number of nodes discovered in the subtrees of the other neighbors in Eq. (2). The lower bound (which we still
Algorithm 3: Neighborhood-based lower bound for undirected graphs

Input: A graph \(G = (V, E) \)
Output: Lower bounds \(L_{NB}(v, r(v)) \) of each node \(v \in V \)

1. foreach \(s \in V \) do
2. \(\gamma_{k-1}(s) \leftarrow \deg(s) \);
3. \(\tilde{S}^{(un)}(s) \leftarrow \deg(s) \);
4. \(nVisitied[s] \leftarrow \deg(s) + 1 \);
5. \(finished[s] \leftarrow false \);
6. \(k \leftarrow 2 \);
7. \(nFinished \leftarrow 0 \);
8. while \(nFinished < n \) do
9. foreach \(s \in V \) do
10. if \(k = 2 \) then
11. \(\gamma_k(s) \leftarrow \sum_{w \in N(s)} \gamma_{k-1}(w) - \deg(s) \);
12. else
13. \(\gamma_k(s) \leftarrow \sum_{w \in N(s)} \gamma_{k-1}(w) - \gamma_{k-2}(s)(\deg(s) - 1) \);
14. foreach \(s \in V \) do
15. if \(finished[v] \) then
16. continue;
17. \(\gamma_{k-1}(s) \leftarrow \gamma_{k-1}(s) \);
18. \(\gamma_k(s) \leftarrow \gamma_k(s) \);
19. \(nVisitied[s] \leftarrow nVisitied[s] + \gamma_{k-1}(s) \);
20. if \(nVisitied[s] < r(v) \) then
21. \(\tilde{S}^{(un)}(s) \leftarrow \tilde{S}^{(un)}(s) + k \cdot \gamma_{k-1}(s) \);
22. else
23. \(\tilde{S}^{(un)}(s) \leftarrow \tilde{S}^{(un)}(s) + k(r(v) - (nVisitied[s] - \gamma_{k-1}(s))) \);
24. \(nFinished \leftarrow nFinished + 1 \);
25. \(finished[s] \leftarrow true \);
26. \(k \leftarrow k + 1 \);
27. foreach \(v \in v \) do
28. \(L_{NB}(v, r(v)) \leftarrow \frac{(n-1)\tilde{S}^{(un)}}{(r(v)-1)^2} \);
29. return \(L_{NB}(r(v)) \)

refer to as \(S_{NB}(v, r(v)) \) is obtained by replacing Eq. (2) with the following in Lines 11 and 13 of Algorithm 3:

\[
\tilde{\gamma}_k(s) = \sum_{w \in F(s)} \tilde{\gamma}_{k-1}(w) \quad (3)
\]

6 The updateBoundsBFSCut Function

The updateBoundsBFSCut function is based on a simple idea: if the \(k \)-th biggest farness found until now is \(x \), and if we are performing a BFS from vertex \(v \) to compute its farness \(f(v) \), we can stop as soon as we can guarantee that \(f(v) \geq x \).

Informally, assume that we have already visited all nodes up to distance \(d \): we can lower bound \(S(v) = \sum_{w \in V} d(v, w) \) by setting distance \(d + 1 \) to a number of vertices equal to the number of edges “leaving” level \(d \), and distance \(d + 2 \) to all the remaining reachable vertices. Then, this bound yields a lower bound on the farness of \(v \). As soon as this lower bound is bigger than \(x \), the \texttt{updateBoundsBFSCut} function may stop; if this condition never occurs, at the end of the BFS we have exactly computed the farness of \(v \).

More formally, the following lemma defines a lower bound \(S_d^\text{CUT}(v, r(v)) \) on \(S(v) \), which is computable after we have performed a BFS from \(v \) up to level \(d \), assuming we know the number \(r(v) \) of vertices reachable from \(v \) (this assumption is lifted in Sect. 8).

Lemma 2 Given a graph \(G = (V, E) \), a vertex \(v \in V \), and an integer \(d \geq 0 \), let \(N_d(v) \) be the set of vertices at distance at most \(d \) from \(v \), \(n_d(v) = |N_d(v)| \), and let \(\tilde{\gamma}_{d+1}(v) \) be an upper bound on the number of vertices at distance \(d + 1 \) from \(v \) (see Table 1). Then,

\[
S(v) \geq S_d^\text{CUT}(v, r(v)) := \sum_{w \in N_d(v)} d(v, w) - \tilde{\gamma}_{d+1}(v) + (d + 2)(r(v) - n_d(v)).
\]

Proof The sum of all the distances from \(v \) is lower bounded by setting the correct distance to all vertices at distance at most \(d \) from \(v \), by setting distance \(d + 1 \) to all vertices at distance \(d + 1 \) (there are \(\gamma_{d+1}(v) \) such vertices), and by setting distance \(d + 2 \) to all other vertices (there are \(r(v) - n_{d+1}(v) \) such vertices, where \(r(v) \) is the number of vertices reachable from \(v \) and \(n_{d+1}(v) \) is the number of vertices at distance at most \(d + 1 \)). More formally, \(f(v) \geq \sum_{w \in N_d(v)} d(v, w) + (d + 1)\gamma_{d+1}(v) + (d + 2)(r(v) - n_{d+1}(v)). \)

Since \(n_{d+1}(v) = \gamma_{d+1}(v) + n_d(v) \), we obtain that \(f(v) \geq \sum_{w \in N_d(v)} d(v, w) - \gamma_{d+1}(v) + (d + 2)(r(v) - n_d(v)) \). We conclude because, by assumption, \(\tilde{\gamma}_{d+1}(v) \) is an upper bound on \(\gamma_{d+1}(v) \). \(\square \)

Corollary 2 For each vertex \(v \) and for each \(d \geq 0 \),

\[
f(v) \geq L_d^\text{CUT}(v, r(v)) := \frac{(n - 1)S_d^\text{CUT}(v, r(v))}{(r(v) - 1)^2}.
\]

It remains to define the upper bound \(\tilde{\gamma}_{d+1}(v) \): in the directed case, this bound is simply the sum of the out-degrees of vertices at distance \(d \) from \(v \). In the undirected case, since at least an edge from each vertex \(v \in I_d(v) \) is directed towards \(I_{d-1}(v) \), we may define \(\tilde{\gamma}_{d+1}(v) = \sum_{w \in I_d(v)} \deg(w) - 1 \) (the only exception is \(d = 0 \); in this case, \(\tilde{\gamma}_1(v) = \gamma_1(v) = \deg(v) \)).

Remark 1 When we are processing vertices at level \(d \), if we process an edge \((x, y)\) where \(y \) is already in the BFS tree, we can decrease \(\tilde{\gamma}_{d+1}(v) \) by one, obtaining a better bound.

Assuming we know \(r(v) \), all quantities necessary to compute \(L_d^\text{CUT}(v, r(v)) \) are available as soon as all vertices in \(N_d(v) \) are visited by a BFS. This function performs a BFS starting from \(v \), continuously updating the upper bound
Algorithm 4: The $updateBoundsBFSCut(v)$ function in the case of directed graphs, if $r(v)$ is known for each v.

1. $x \leftarrow \text{Farn}(\text{Top}[k])$; // Farn and Top are global variables, as in Algorithm 1.
2. Create queue Q; $\text{Farn}(v)$;
3. Mark v as visited;
4. $d \leftarrow 0$; $S \leftarrow 0$; $\tilde{\gamma} \leftarrow \text{outdeg}(v)$; $nd \leftarrow 1$;
5. while Q is not empty do
6. $u \leftarrow Q$.dequeue();
7. if $d(v,u) > d$ then
8. $d \leftarrow d + 1$;
9. $L^\text{CUT}_d(v, r(v)) \leftarrow \frac{(n-1)(S-\tilde{\gamma}+(d+2)(r(v)-nd))}{r(v)-1}$;
10. if $L^\text{CUT}_d(v, r(v)) \geq x$ then return $+\infty$;
11. $\tilde{\gamma} \leftarrow 0$
12. for w in adjacency list of u do
13. if w is not visited then
14. $S \leftarrow S + d(v,w)$;
15. $\tilde{\gamma} \leftarrow \tilde{\gamma} + \text{outdeg}(w)$;
16. $nd \leftarrow nd + 1$;
17. Q.enqueue(w);
18. Mark w as visited
19. else
20. // we use Remark 1
21. $L^\text{CUT}_d(v, r(v)) \leftarrow L^\text{CUT}_d(v, r(v)) + \frac{(n-1)}{r(v)-1}$;
22. if $L^\text{CUT}_d(v, r(v)) \geq x$ then return x;
23. return $\frac{S(n-1)}{r(v)-1}$;

$L^\text{CUT}_d(v, r(v)) \leq f(v)$ (the update is done whenever all nodes in $I_d(v)$ have been reached, or Remark 1 can be used). As soon as $L^\text{CUT}_d(v, r(v)) \geq x$, we know that $f(v) \geq L^\text{CUT}_d(v, r(v)) \geq x$, and we return $+\infty$.

Algorithm 4 is the pseudo-code of the function $updateBoundsBFSCut$ when implemented for directed graphs, assuming we know the number $r(v)$ of vertices reachable from each v (for example, if the graph is strongly connected). This code can be easily adapted to all the other cases.

7 The $updateBoundsLB$ Function

Differently from $updateBoundsBFSCut$ function, $updateBoundsLB$ computes a complete BFS traversal, but uses information acquired during the traversal to update the bounds on the other nodes. Let us first consider an undirected graph G and let s be the source node from which we are computing the BFS. We can see the distances $d(s,v)$ between s and all the nodes v reachable from s as levels: node v is at level i if and only if the distance between s and v is i, and we write $v \in \Gamma_i(s)$ (or simply $v \in \Gamma_i$ if s is clear from the context). Let i and j be two levels, $i \leq j$. Then, the distance between any two nodes v at level
Lemma 3 $\sum_{w \in R(s)} |d(s, w) - d(s, v)| \leq S(v) \quad \forall v \in R(s)$.

To improve the approximation, we notice that the number of nodes at distance 1 from v is exactly the degree of v. Therefore, all the other nodes w such that $|d(s, v) - d(s, w)| \leq 1$ must be at least at distance 2 (with the only exception of v itself, whose distance is of course 0). This way we can define the following lower bound on $S(v)$:

$$2(\#\{w \in R(s) : |d(s, w) - d(s, v)| \leq 1\} - \deg(v) - 1) + \sum_{w \in R(s)} |d(s, w) - d(s, v)|,$$

that is:

$$2 \cdot \sum_{|j-d(s,v)|\leq 1} \gamma_j + \sum_{|j-d(s,v)|> 1} \gamma_j \cdot |j-d(s,v)| - \deg(v) - 2,$$

where $\gamma_j = |I'_j|$.

Multiplying the bound of Eq. (4) by $\frac{(n-1)}{(r(v)-1)r}$, we obtain a lower bound on the farness $f(v)$ of node v, named $\mathcal{L}^{LB}(v, r(v))$. A straightforward way to compute $\mathcal{L}^{LB}(v, r(v))$ would be to first run the BFS from s and then, for each node v, to consider the level difference between v and all the other nodes. This would require $O(n^2)$ operations, which is clearly too expensive. However, we can notice two things: First, the bounds of two nodes at the same level differ only by their degree. Therefore, for each level i, we can compute $2 \cdot \sum_{j-i \leq 1} \gamma_j + \sum_{|j-i|> 1} \gamma_j \cdot |j-i| - 2$ only once and then subtract $\deg(v)$ for each node at level i. We call the quantity $2 \cdot \sum_{j-i \leq 1} \gamma_j + \sum_{|j-i|> 1} \gamma_j \cdot |j-i| - 2$ the level-bound $\mathcal{L}(i)$ of level i. Second, we can prove that $\mathcal{L}(i)$ can actually be written as a function of $\mathcal{L}(i-1)$.

Lemma 4 Let $\mathcal{L}(i) := 2 \cdot \sum_{j-i \leq 1} \gamma_j + \sum_{|j-i|> 1} \gamma_j \cdot |j-i| - 2$. Also, let $\gamma_j = 0$ for $j \leq 0$ and $j > \max D$, where $\max D = \max_{s \in R(s)} d(s, v)$. Then $\mathcal{L}(i) - \mathcal{L}(i-1) = \sum_{j<i-2} \gamma_j - \sum_{j>i+1} \gamma_j$, $\forall i \in \{1, ..., \max D\}$.

Proof Since $\gamma_j = 0$ for $j \leq 0$ and $j > \max D$, we can write $\mathcal{L}(i)$ as $2 \cdot (\gamma_{i-2} + \gamma_{i-1} + \gamma_i) + \sum_{j-i \leq 1} \gamma_j \cdot |j-i| - 2$, $\forall i \in \{1, ..., \max D\}$. The difference between $\mathcal{L}(i)$ and $\mathcal{L}(i-1)$ is $2 \cdot (\gamma_{i-1} + \gamma_i + \gamma_{i+1}) + \sum_{j-i \leq 1} |j-i| \cdot \gamma_j - 2 \cdot (\gamma_{i-2} + \gamma_{i-1} + \gamma_i) + \sum_{j-i \leq 1} |j-i| \cdot \gamma_j = 2 \cdot (\gamma_{i+1} - \gamma_{i-2}) + 2 \cdot \gamma_{i-2} - 2 \cdot \gamma_{i+1} + \sum_{j<i-2} \gamma_j - \sum_{j>i+1} \gamma_j$. \Box
Lemma 4 (Line 11). The lower bound according to its definition (Line 9) and those of the other level according to number of nodes in each level and the number of nodes in levels all the distances between complexity of Lines 1 - 4 is that of running a BFS, i.e. v

Computing the lower bound Proposition 4 is repeated once for each node in is repeated once for each level (which cannot be more than w whose level is smaller than v

shortcut from Γ

$LB_v(r(v))$

$\Gamma(w, v)$

Algorithm 5: The updateBoundsLB function for undirected graphs

```plaintext
Input : A graph $G = (V, E)$, a source node $s$
Output: Lower bounds $L_s^{LB}(v, r(v))$ of each node $v \in R(s)$
1 $d \leftarrow$ BFSfrom$(s)$;
2 $\text{maxD} \leftarrow \max_{r \in V} d(s, r)$;
3 $\text{sum}_{\gamma \leq 0} \leftarrow 0; \text{sum}_{\gamma < 1} \leftarrow 0; \text{sum}_{\gamma \leq \text{maxD} + 1} \leftarrow 0$;
4 for $i = 1, 2, ..., \text{maxD}$ do
5     $\Gamma_{\gamma} \leftarrow \emptyset$;
6     $\gamma_i \leftarrow \#\Gamma_{\gamma}$;
7     $\text{sum}_{\gamma \leq i} \leftarrow \text{sum}_{\gamma \leq i - 1} + \gamma_i$;
8     $\sum_{\gamma_i > 1} \leftarrow |V| - \sum_{\gamma_i \leq 1}$;
9     $L(1) \leftarrow \gamma_1 + \gamma_2 + \sum_{\gamma_i > 2} - 2$;
10    for $i = 2, ..., \text{maxD}$ do
11       $L(i) \leftarrow L(i - 1) + \sum_{\gamma \leq i - 2} \sum_{\gamma \geq i}$;
12    for $i = 1, ..., \text{maxD}$ do
13       foreach $v \in \Gamma_{\gamma}$ do
14          $L_s^{LB}(v, r(v)) \leftarrow (L(i) - \deg(v)) \cdot \frac{(n - 1)}{\Gamma(v) - 1}$;
15 return $L_s^{LB}(v, r(v))$ \quad \forall v \in V$
```

Algorithm 5 describes the computation of $L_s^{LB}(v, r(v))$. First, we compute all the distances between s and the nodes in $R(s)$ with a DFS, storing the number of nodes in each level and the number of nodes in levels $j \leq i$ (Lines 1 - 4). Then we compute the level bound $L(1)$ of level 1 according to its definition (Line 9) and those of the other level according to Lemma 4 (Line 11). The lower bound $L_s^{LB}(v, r(v))$ is then computed for each node v by subtracting its degree to $L(d(s, v))$ and normalizing (Line 14). The complexity of Lines 1 - 4 is that of running a BFS, i.e. $O(n + m)$. Line 11 is repeated once for each level (which cannot be more than n) and Line 14 is repeated once for each node in $R(s)$. Therefore, the following proposition holds.

Proposition 4 Computing the lower bound $L_s^{LB}(v, r(v))$ takes $O(n + m)$ time.

For directed strongly-connected graphs, the result does not hold for nodes w whose level is smaller than $l(v)$, since there might be a directed edge or a shortcut from v to w. Yet, for nodes w such that $d(s, w) > d(s, v)$, it is still true that $d(v, w) \geq d(s, w) - d(s, v)$. For the remaining nodes (apart from the outgoing neighbors of v), we can only say that the distance must be at least 2. The upper bound $L_s^{UB}(v, r(v))$ for directed graphs can therefore be defined as:

$$2 \cdot \#\{w \in R(s) : d(s, w) - d(s, v) \leq 1\} + \sum_{w \in R(s), 0 < d(s, w) - d(s, v) > 1} (d(s, w) - d(s, v)) - \deg(v) - 2.$$

(5)

The computation of $L_s^{LB}(v, r(v))$ for directed strongly-connected graphs is analogous to the one described in Algorithm 5.
8 The Directed Disconnected Case

In the directed disconnected case, even if the time complexity of computing strongly connected components is linear in the input size, the time complexity of computing the number of reachable vertices is much bigger (assuming SETH, it cannot be $\mathcal{O}(m^{2-\epsilon})$ [9]). For this reason, when computing our upper bounds, we cannot rely on the exact value of $r(v)$: for now, let us assume that we know a lower bound $\alpha(v) \leq r(v)$ and an upper bound $\omega(v) \geq r(v)$. The definition of these bounds is postponed to Sect. 8.4.

Furthermore, let us assume that we have a lower bound $L(v, r(v))$ on the farness of v, depending on the number $r(v)$ of vertices reachable from v: in order to obtain a bound not depending on $r(v)$, the simplest approach is $f(v) \geq L(v, r(v)) \geq \min_{\alpha(v) \leq \omega(v)} L(v, r)$. However, during the algorithm, computing the minimum among all these values might be quite expensive, if $\omega(v) - \alpha(v)$ is big. In order to solve this issue, we find a small set $X \subseteq [\alpha(v), \omega(v)]$ such that $\min_{\alpha(v) \leq \omega(v)} L(v, r) = \min_{r \in X} L(v, r)$.

More specifically, we find a condition that is verified by “many” values of r, and that implies $L(v, r) \geq \min(L(v, r-1), L(v, r+1))$: this way, we may define X as the set of values of r that either do not verify this condition, or that are extremal points of the interval $[\alpha(v), \omega(v)]$ (indeed, all other values cannot be minima of $L(v, r)$). Since all our bounds are of the form $L(v, r) = \frac{(n-1)S(v, r)}{(r-1)^2}$, where $S(v, r)$ is a lower bound on $\sum_{w \in R(v)} d(v, w)$, we state our condition in terms of the function $S(v, r)$. For instance, in the case of the $\text{updateBoundsBFSCut}$ function, $S_d^{\text{CUT}}(v, r) = \sum_{w \in N_d(v)} d(v, w) - 5d+1(v) + (d + 2)(r - n_d(v))$, as in Lemma 2.

Lemma 5 Let v be a vertex, and let $S(v, r)$ be a positive function such that $S(v, r(v))) \leq \sum_{w \in R(v)} d(v, w)$ (where $r(v)$ is the number of vertices reachable from v). Assume that $S(v, r+1) - S(v, r) \leq S(v, r) - S(v, r-1)$. Then, if $L(v, r) := \frac{(n-1)S(v, r)}{(r-1)^2}$ is the corresponding bound on the farness of v, $\min(L(v, r+1), L(v, r-1)) \leq L(v, r)$.

Proof Let us define $d = S(v, r+1) - S(v, r)$. Then, $L(v, r+1) \leq L(v, r)$ if and only if $\frac{(n-1)S(v, r+1)}{(r-1)^2} \leq \frac{(n-1)S(v, r)}{(r-1)^2}$ if and only if $\frac{S(v, r)}{(r-1)^2} \leq \frac{S(v, r)+d}{(r-1)^2}$. If and only if $(r-1)^2(S(v, r) + d) \leq (r-1)^2S(v, r)$ if and only if $S(v, r)((r-1)^2 \geq (r-1)^2d$ if and only if $S(v, r)(2r-1) \geq (r-1)^2d$.

Similarly, if $d' = S(v, r) - S(v, r-1)$, $L(v, r-1) \leq L(v, r)$ if and only if $\frac{(n-1)S(v, r-1)}{(r-2)^2} \leq \frac{(n-1)S(v, r)}{(r-1)^2}$ if and only if $\frac{S(v, r)-d'}{(r-2)^2} \leq \frac{S(v, r)}{(r-1)^2}$. If and only if $(r-1)^2(S(v, r) - d') \leq (r-2)^2S(v, r)$ if and only if $S(v, r)((r-1)^2 \geq (r-2)^2d' if and only if $S(v, r)(2r-3) \leq (r-1)^2d'$ if and only if $S(v, r)(2r-3) \leq (r-1)^2d' + 2S(v, r)$.

We conclude that, assuming $d \leq d', (r-1)^2d \leq (r-1)^2d' \leq (r-1)^2d + 2S(v, r)$, and one of the two previous conditions is always satisfied. \(\square\)
8.1 The Neighborhood-Based Lower Bound

In the neighborhood-based lower bound, we computed upper bounds \(\hat{\gamma}_k(v) \) on \(I_k(v) \), and we defined the lower bound \(S^{NB}(v, r(v)) \) by

\[
S^{NB}(v, r(v)) := \sum_{k=1}^{\text{diam}(G)} k \cdot \min \left\{ \hat{\gamma}_k(v), r(v) - \sum_{i=0}^{k-1} \hat{\gamma}_i(v), 0 \right\}.
\]

The corresponding bound on \(f(v) \) is \(L^{NB}(v, r(v)) := \frac{(n-1)S^{NB}(v, r(v))}{r(v) - 1} \); let us apply Lemma 5 with \(S(v, r) = S^{NB}(v, r) \) and \(L(v, r) = L^{NB}(v, r) \). We obtain that the local minima of \(L^{NB}(v, r(v)) \) are obtained on values \(r \) such that \(S^{NB}(v, r + 1) - S^{NB}(v, r) > S^{NB}(v, r) - S^{NB}(v, r - 1) \), that is, when \(r = \sum_{i=0}^{l} \hat{\gamma}_i(v) \) for some \(l \). Hence, our final bound \(L^{NB}(v) \) becomes:

\[
\min \left\{ L^{NB}(v, \alpha(v)), L^{NB}(v, \omega(v)), \min \left\{ L^{NB}(v, r) : \alpha(v) < r < \omega(v), r = \sum_{i=0}^{l} \hat{\gamma}_i(v) \right\} \right\}.
\]

This bound can be computed with no overhead, by modifying Lines 20 - 25 in Algorithm 3. Indeed, when \(r(v) \) is known, we have two cases: either \(\text{nVisited}[s] < r(v) \), and we continue, or \(\text{nVisited}[s] \geq r(v) \), and \(S^{NB}(v, r(v)) \) is computed. In the disconnected case, we need to distinguish three cases:

- if \(\text{nVisited}[v] < \alpha(v) \), we simply continue the computation;
- if \(\alpha(v) \leq \text{nVisited}[v] < \omega(v) \), we compute \(L^{NB}(v, \text{nVisited}[v]) \), and we update the minimum in Eq. 6 (if this is the first occurrence of this situation, we also have to compute \(L^{NB}(v, \alpha(v)) \));
- if \(\text{nVisited}[v] \geq \omega(v) \), we compute \(L^{NB}(v, \omega(v)) \), and we update the minimum in Eq. 6.

Since this procedure needs time \(O(1) \), it has no impact on the running time of the computation of the neighborhood-based lower bound.

8.2 The updateBoundsBFSCut Function

Let us apply Lemma 5 to the bound used in the updateBoundsBFSCut function. In this case, by Lemma 2, \(S^{\text{CUT}}_d(v, r) = \sum_{w \in N_d(v)} d(v, w) - \hat{\gamma}_{d+1}(v) + (d + 2)(r - n_d(v)) \), and \(S^{\text{CUT}}_d(v, r + 1) - S^{\text{CUT}}_d(v, r) = d + 2 \), which does not depend on \(r \). Hence, the condition in Lemma 5 is always verified, and the only values we have to analyze are \(\alpha(v) \) and \(\omega(v) \). Hence, the lower bound becomes \(f(v) \geq L^{\text{CUT}}_d(v, r(v)) \geq \min_{\alpha(v) \leq r \leq \omega(v)} L^{\text{CUT}}_d(v, r) = \min(L^{\text{CUT}}_d(v, \alpha(v)), L^{\text{CUT}}_d(v, \omega(v))) \) (which does not depend on \(r(v) \)).

This means that, in order to adapt the updateBoundsBFSCut function (Algorithm 4), it is enough to replace Lines 10, 22 in order to compute both \(L^{\text{CUT}}_d(v, \alpha(v)) \) and \(L^{\text{CUT}}_d(v, \omega(v)) \), and to replace Lines 11, 23 in order to stop if \(\min(L^{\text{CUT}}_d(v, \alpha(v)), L^{\text{CUT}}_d(v, \omega(v))) \geq x \).
8.3 The \texttt{updateBoundsLB} Function

In this case, we do not apply Lemma 5 to obtain simpler bounds. Indeed, the \texttt{updateBoundsLB} function improves the bounds of vertices that are quite close to the source of the BFS, and hence are likely to be in the same component as this vertex. Consequently, if we perform a BFS from a vertex \(s \), we can simply compute \(L^\text{LB}_s(v, r(v)) \) for all vertices in the same strongly connected component as \(s \), and for these vertices we know the value \(r(v) = r(s) \). The computation of better bounds for other vertices is left as an open problem.

8.4 Computing \(\alpha(v) \) and \(\omega(v) \)

It now remains to compute \(\alpha(v) \) and \(\omega(v) \). This can be done during the pre-processing phase of our algorithm, in linear time. To this purpose, let us precisely define the node-weighted directed acyclic graph \(\mathcal{G} = (V, E) \) of strongly connected components (in short, SCCs) corresponding to a directed graph \(G = (V, E) \). In this graph, \(V \) is the set of SCCs of \(G \), and, for any two SCCs \(C, D \in V \), \((C, D) \in E\) if and only if there is an arc in \(E \) from a node in \(C \) to the a node in \(D \). For each SCC \(C \in V \), the weight \(w(C) \) of \(C \) is equal to \(|C| \), that is, the number of nodes in the SCC \(C \). Note that the graph \(\mathcal{G} \) is computable in linear time.

For each node \(v \in C \), \(r(v) = \sum_{D \in R(C)} w(D) \), where \(R(C) \) denotes the set of SCCs that are reachable from \(C \) in \(\mathcal{G} \). This means that we simply need to compute a lower (respectively, upper) bound \(\alpha_{\text{SCC}}(C) \) (respectively, \(\omega_{\text{SCC}}(C) \)) on \(\sum_{D \in R(C)} w(D) \), for every SCC \(C \). To this aim, we first compute a topological sort \(\{C_1, \ldots, C_l\} \) of \(V \) (that is, if \((C_i, C_j) \in E\), then \(i < j \)). Successively, we use a dynamic programming approach, and, by starting from \(C_l \), we process the SCCs in reverse topological order, and we set:

\[
\alpha_{\text{SCC}}(C) = w(C) + \max_{(C, D) \in E} \alpha_{\text{SCC}}(D) \quad \omega_{\text{SCC}}(C) = w(C) + \sum_{(C, D) \in E} \omega_{\text{SCC}}(D).
\]

Note that processing the SCCs in reverse topological ordering ensures that the values \(\alpha(D) \) and \(\omega(D) \) on the right hand side of these equalities are available when we process the SCC \(C \). Clearly, the complexity of computing \(\alpha(C) \) and \(\omega(C) \), for each SCC \(C \), is linear in the size of \(\mathcal{G} \), which in turn is smaller than \(G \).

Observe that the bounds obtained through this simple approach can be improved by using some “tricks”. First of all, when the biggest SCC \(\hat{C} \) is processed, we do not use the dynamic programming approach and we exactly compute \(\sum_{D \in R(\hat{C})} w(D) \) by performing a BFS starting from any node in \(\hat{C} \). This way, not only \(\alpha(\hat{C}) \) and \(\omega(\hat{C}) \) are exact, but also \(\alpha_{\text{SCC}}(C) \) and \(\omega_{\text{SCC}}(C) \) are improved for each SCC \(C \) from which it is possible to reach \(\hat{C} \). Finally, in order to compute the upper bounds for the SCCs that are able to reach \(\hat{C} \), we can run the dynamic programming algorithm on the graph obtained
from \mathcal{G} by removing all components reachable from \tilde{C}, and we can then add $\sum_{D \in R(\tilde{C})} w(D)$.

The pseudo-code is available in Algorithm 6.

\begin{algorithm}
\caption{Estimating the number of reachable vertices in directed, disconnected graphs.}
\label{alg:reachable}
\begin{algorithmic}[1]
\Input A graph $G = (V,E)$
\Output Lower and upper bounds $\alpha(v), \omega(v)$ on the number of vertices reachable from v
\State $(V, \tilde{C}) \leftarrow \text{computeSCCGraph}(G)$;
\State $\tilde{C} \leftarrow$ the biggest SCC;
\State $\alpha_{\text{SCC}}(\tilde{C}), \omega_{\text{SCC}}(\tilde{C}) \leftarrow$ the number of vertices reachable from \tilde{C};
\For{$X \in V$ in reverse topological order}
\If{$X == \tilde{C}$}
\Continue;
\EndIf
\State $\alpha_{\text{SCC}}(X), \omega_{\text{SCC}}(X) \leftarrow 0$ \For{Y neighbor of X in G}
\State $\alpha_{\text{SCC}}(X) \leftarrow \max(\alpha_{\text{SCC}}(X), \alpha_{\text{SCC}}(Y));$
\State $\omega_{\text{SCC}}(X) \leftarrow \omega_{\text{SCC}}(X) + \omega_{\text{SCC}}(Y);$
\EndFor
\If{W not reachable from \tilde{C}}
\State $\omega_{\text{SCC}}(X) \leftarrow \omega_{\text{SCC}}(X) + \omega_{\text{SCC}}(Y);$
\EndIf
\State $\alpha_{\text{SCC}}(X) \leftarrow \alpha_{\text{SCC}}(X) + w(X);$
\State $\omega_{\text{SCC}}(X) \leftarrow \omega_{\text{SCC}}(X) + w(X);$
\EndFor
\For{$v \in V$}
\State $\alpha(v) = \alpha_{\text{SCC}}(\text{the component of } v);$\State $\omega(v) = \omega_{\text{SCC}}(\text{the component of } v);$\EndFor
\State \Return α, ω
\end{algorithmic}
\end{algorithm}

9 Experimental Results

In this section, we test the four variations of our algorithm on several real-world networks, in order to evaluate their performances. All the networks used in our experiments come from the datasets SNAP (snap.stanford.edu/), NEXUS (nexus.igraph.org), LASAGNE (piluc.dsi.unifi.it/lasagne), LAW (law.di.unimi.it), KONECT (http://konect.uni-koblenz.de/networks/), and IMDB (www.imdb.com). The platform for our tests is a shared-memory server with 256 GB RAM and 2x8 Intel(R) Xeon(R) E5-2680 cores (32 threads due to hyperthreading) at 2.7 GHz. The algorithms are implemented in C++, building on the open-source NetworKit framework [29].

9.1 Comparison with the State of the Art

In order to compare the performance of our algorithm with state of the art approaches, we select 19 directed complex networks, 17 undirected complex
networks, 6 directed road networks, and 6 undirected road networks (the undirected versions of the previous ones). The number of nodes of most of these networks ranges between 5,000 and 100,000. We test four different variations of our algorithm, that provide different implementations of the functions computeBounds and updateBounds (for more information, we refer to Sect. 4):

DEGCUT uses the conservative strategies computeBoundsDeg and updateBoundsBFSCut;
DEGBOUND uses the conservative strategy computeBoundsDeg and the aggressive strategy updateBoundsLB;
NBCUT uses the aggressive strategy computeBoundsNB and the conservative strategy updateBoundsBFSCut;
NBOUND uses the aggressive strategies computeBoundsNB and updateBoundsLB.

We compare these algorithms with our implementations of the best existing algorithms for top k closeness centrality. The first one [24] is based on a pruning technique and on \(\Delta\)-BFS, a method to reuse information collected during a BFS from a node to speed up a BFS from one of its in-neighbors; we denote this algorithm as Ocl. The second one, Ocl, provides top k closeness centralities with high probability [23]. It performs some BFSes from a random sample of nodes to estimate the closeness centrality of all the other nodes, then it computes the exact centrality of all the nodes whose estimate is big enough. Note that this algorithm requires the input graph to be (strongly) connected; for this reason, differently from the other algorithms, we have run this algorithm on the largest (strongly) connected component of the input graph. Furthermore, this algorithm offers different tradeoffs between the time needed by the sampling phase and the second phase: in our tests, we try all possible tradeoffs, and we choose the best alternative in each input graph (hence, our results are upper bounds on the real performance of the Ocl algorithm).

In order to perform a fair comparison, we consider the *improvement factor*, which is defined as \(\frac{m_{vis}}{m_n}\) in directed graphs, \(\frac{2m_{vis}}{m_n}\) in undirected graphs, where \(m_{vis}\) is the number of arcs visited during the algorithm, and \(m_n\) (resp., \(2m_n\)) is an estimate of the number of arcs visited by the textbook algorithm in directed (resp., undirected) graphs (this estimate is correct whenever the graph is connected). Note that the improvement factor does not depend on the implementation, nor on the machine used for the algorithm, and it does not consider parts of the code that need subquadratic time in the worst case. These parts are negligible in our algorithm, because their worst case running time is \(O(n \log n)\) or \(O(mD)\) where \(D\) is the diameter of the graph, but they can be significant when considering the competitors. For instance, in the particular case of Ocl, we have just counted the arcs visited in BFS and \(\Delta\)-BFS, ignoring all the operations done in the pruning phases (see [24]).

1. Note that the source code of our competitors is not available.
Table 2 Complex networks: geometric mean and standard deviation of the improvement factors of the algorithm in [24] (Olh), the algorithm in [23] (Ocl), and the four variations of the new algorithm (DegCut, DegBound, NBCut, NBBound).

k	Algorithm	Directed	GMean	GStdDev	Undirected	GMean	GStdDev	Both	GMean	GStdDev
1	Olh	2.44	5.68	11.11	2.71	1.50	2.12	1.61		
	Ocl	1.71	1.54	2.71	1.50	2.12	1.61			
	DegCut	104.20	6.36	1.77	6.17	131.94	6.38			
	DegBound	3.61	3.50	5.83	8.09	4.53	5.57			
	NBCut	123.46	7.94	257.81	8.54	174.79	8.49			
	NBBound	17.95	10.73	56.16	9.39	30.76	10.81			
10	Olh	21.06	5.65	11.11	2.90	15.57	4.44			
	Ocl	1.31	1.31	1.47	1.11	1.38	1.24			
	DegCut	56.47	5.10	60.25	4.88	58.22	5.00			
	DegBound	2.87	3.45	2.94	1.45	2.44	2.59			
	NBCut	58.81	5.65	62.93	5.01	60.72	5.34			
	NBBound	9.28	6.29	10.95	3.76	10.03	5.05			
100	Olh	20.94	5.63	11.11	2.90	15.52	4.44			
	Ocl	1.30	1.31	1.46	1.11	1.37	1.24			
	DegCut	22.88	4.70	15.13	3.74	18.82	4.30			
	DegBound	2.56	3.44	1.67	1.36	2.09	2.57			
	NBCut	23.93	5.65	62.93	5.01	60.72	5.34			
	NBBound	4.87	4.01	4.18	2.46	4.53	3.28			

Table 3 Street networks: geometric mean and standard deviation of the improvement factors of the algorithm in [24] (Olh), the algorithm in [23] (Ocl), and the four variations of the new algorithm (DegCut, DegBound, NBCut, NBBound).

k	Algorithm	Directed	GMean	GStdDev	Undirected	GMean	GStdDev	Both	GMean	GStdDev
1	Olh	4.11	1.83	4.36	2.18	4.23	2.01			
	Ocl	3.39	1.28	3.23	1.28	3.31	1.28			
	DegCut	4.09	2.07	4.01	2.06	4.10	2.07			
	DegBound	187.10	1.65	272.22	1.67	225.69	1.72			
	NBCut	4.12	2.07	4.00	2.07	4.06	2.07			
	NBBound	250.66	1.71	385.47	1.63	309.63	1.74			
10	Olh	4.04	1.83	4.28	2.18	4.16	2.01			
	Ocl	2.93	1.24	2.81	1.24	2.87	1.24			
	DegCut	4.09	2.07	4.01	2.06	4.05	2.07			
	DegBound	172.06	1.65	245.96	1.68	205.72	1.72			
	NBCut	4.08	2.07	3.96	2.07	4.02	2.07			
	NBBound	225.26	1.71	336.47	1.68	275.31	1.76			
100	Olh	4.01	1.82	4.27	2.18	4.15	2.01			
	Ocl	2.90	1.24	2.79	1.24	2.85	1.24			
	DegCut	3.91	2.07	3.84	2.07	3.87	2.07			
	DegBound	123.91	1.56	164.65	1.67	142.84	1.65			
	NBCut	3.92	2.08	3.80	2.09	3.86	2.08			
	NBBound	149.02	1.59	201.42	1.69	173.25	1.67			

We consider the geometric mean of the improvement factors over all graphs in the dataset. In our opinion, this quantity is more informative than the arithmetic mean, which is highly influenced by the maximum value: for instance, in a dataset of 20 networks, if all improvement factors are 1 apart from one, which is 10000, the arithmetic mean is more than 500, which makes little sense, while the geometric mean is about 1.58. Our choice is further confirmed by the geometric standard deviation, which is always quite small.

The results are summarised in Table 2 for complex networks and Table 3 for street networks. For the improvement factors of all graphs, we refer to Appendix A.

On complex networks, the best algorithm is NBCut: when $k = 1$, the improvement factors are always bigger than 100, up to 258, when $k = 10$ they
are close to 60, and when \(k = 100 \) they are close to 20. Another good option is DegCut, which achieves results similar to NBCut, but it has almost no overhead at the beginning (while NBCut needs a preprocessing phase with cost \(O(mD) \)). Furthermore, DegCut is very easy to implement, becoming a very good candidate for state-of-the-art graph libraries. The improvement factors of the competitors are smaller: OLH has improvement factors between 10 and 20, and OCL provides almost no improvement with respect to the textbook algorithm.

We also test our algorithm on the three complex unweighted networks analysed in [24], respectively called web-Google (Web in [24]), wiki-Talk (Wiki in [24]), and com-dblp (DBLP in [24]). In the com-dblp graph (resp. web-Google), our algorithm NBCut computed the top 10 nodes in about 17 seconds (resp., less than 2 minutes) on the whole graph, having 1305444 nodes (resp., 875713), while OLH needed about 25 minutes (resp. 4 hours) on a subgraph of 400000 nodes. In the graph wiki-Talk, NBCut needed 8 seconds for the whole graph having 2394385 nodes, instead of about 15 minutes on a subgraph with 1 million nodes. These results are available in Table 9 in the Appendix.

On street networks, the best option is NBBound: for \(k = 1 \), the average improvement is about 250 in the directed case and about 382 in the undirected case, and it always remains bigger than 150, even for \(k = 100 \). It is worth noting that also the performance of DegBound are quite good, being at least 70% of NBBound. Even in this case, the DegBound algorithm offers some advantages: it is very easy to be implemented, and there is no overhead in the first part of the computation. All the competitors perform relatively poorly on street networks, since their improvement is always smaller than 5.

Overall, we conclude that the preprocessing function computeBoundsNB always leads to better results (in terms of visited edges) than computeBoundsDeg, but the difference is quite small: hence, in some cases, computeBoundsDeg could be even preferred, because of its simplicity. Conversely, the performance of updateBoundsBFSCut is very different from the performance of updateBoundsLB: the former works much better on complex networks, while the latter works much better on street networks. Currently, these two approaches exclude each other: an open problem left by this work is the design of a “combination” of the two, that works both in complex networks and in street networks. Finally, the experiments show that the best variation of our algorithm outperforms all competitors in all frameworks considered: both in complex and in street networks, both in directed and undirected graphs.

9.2 Real-World Large Networks

In this section, we run our algorithm on bigger inputs, by considering a dataset containing 23 directed networks, 15 undirected networks, and 5 road networks, with up to 3,774,768 nodes and 117,185,083 edges. On this dataset, we run the fastest variant of our algorithm (DegBound in complex networks, NBBound
Table 4 Big networks: geometric mean and standard deviation of the improvement factors of the best variation of the new algorithm (DegBound in complex networks, NBBound in street networks).

Input	Directed	Undirected	Both				
	k	GMean	GStdDev	GMean	GStdDev	GMean	GStdDev
Street	1	742.42	2.60	1681.93	2.88	1117.46	2.97
	10	724.72	2.67	1673.41	2.92	1101.25	3.03
	100	686.32	2.76	1566.72	3.04	1036.95	3.13
Complex	1	247.65	11.92	551.51	10.68	339.70	11.78
	10	117.45	9.72	115.30	4.87	116.59	7.62
	100	59.96	8.13	49.01	2.93	55.37	5.86

in street networks), using 64 threads (however, the server used only runs 16 threads, or 32 with hyperthreading).

Once again, we consider the **improvement factor**, which is defined as $\frac{m_2}{m_{vis}}$ in directed graphs, $\frac{2m_2}{m_{vis}}$ in undirected graphs. It is worth observing that we are able to compute for the first time the k most central nodes of networks with millions of nodes and hundreds of millions of arcs, with $k = 1, 10, 100$. The detailed results are shown in Table 9 in the Appendix, where for each network we report the running time and the improvement factor. A summary of these results is available in Table 4, which contains the geometric means of the improvement factors, with the corresponding standard deviations.

For $k = 1$, the geometric mean of the improvement factors is always above 200 in complex networks, and above 700 in street networks. In undirected graphs, the improvement factors are even bigger: close to 500 in complex networks and close to 1 600 in street networks. For bigger values of k, the performance does not decrease significantly: on complex networks, the improvement factors are bigger than or very close to 50, even for $k = 100$. In street networks, the performance loss is even smaller, always below 10% for $k = 100$.

Regarding the robustness of the algorithm, we outline that the algorithm always achieves performance improvements bigger than \sqrt{n} in street networks, and that in complex networks, with $k = 1$, 64% of the networks have improvement factors above 100, and 33% of the networks above 1 000. In some cases, the improvement factor is even bigger: in the com-Orkut network, our algorithm for $k = 1$ is almost 35 000 times faster than the textbook algorithm.

In our experiments, we also report the running time of our algorithm. Even for $k = 100$, a few minutes are sufficient to conclude the computation on most networks, and, in all but two cases, the total time is smaller than 3 hours. For $k = 1$, the computation always terminates in at most 1 hour and a half, apart from two street networks where it needs less than 2 hours and a half. Overall, the total time needed to compute the most central vertex in all the networks is smaller than 1 day. This is quite impressive if we consider that many input graphs have millions of nodes, and tens of millions of edges.

10 IMDB Case Study

In this section, we apply the new algorithm NBBound to analyze the IMDB graph, where nodes are actors, and two actors are connected if they played
together in a movie (TV-series are ignored). The data collected comes from the website \url{http://www.imdb.com} in line with \url{http://oracleofbacon.org}, we decide to exclude some genres from our database: awards-shows, documentaries, game-shows, news, realities and talk-shows. We analyse snapshots of the actor graph, taken every 5 years from 1940 to 2010, and 2014. The results are reported in Table 10 and Table 11 in the Appendix.

The Algorithm. Thanks to this experiment, we can evaluate the performance of our algorithm on increasing snapshots of the same graph. This way, we can have an informal idea on the asymptotic behavior of its complexity. In Figure 3, we have plotted the improvement factor with respect to the number of nodes: if the improvement factor is I, the running time is $O(mnI)$. Hence, assuming that $I = cn$ for some constant c (which is approximately verified in the actor graph, as shown by Figure 3), the running time is linear in the input size. The total time needed to perform the computation on all snapshots is little more than 30 minutes for $k = 1$, and little more than 45 minutes for $k = 10$.

The Results. In 2014, the most central actor is Michael Madsen, whose career spans 25 years and more than 170 films. Among his most famous appearances, he played as **Jimmy Lennox** in *Thelma & Louise* (Ridley Scott, 1991), as **Glen Greenwood** in *Free Willy* (Simon Wincer, 1993), as **Bob** in *Sin City* (Frank Miller, Robert Rodriguez, Quentin Tarantino), and as **Deadly Viper Budd** in *Kill Bill* (Quentin Tarantino, 2003-2004). The second is Danny Trejo, whose most famous movies are *Heat* (Michael Mann, 1995), where he played as Trejo, *Machete* (Ethan Maniquis, Robert Rodriguez, 2010) and *Machete Kills* (Robert Rodriguez, 2013), where he played as Machete. The third “actor” is not really an actor: he is the German dictator Adolf Hitler: he was also the most central actor in 2005 and 2010, and he was in the top 10 since 1990. This a consequence of his appearances in several archive footages, that were re-used in several movies (he counts 775 credits, even if most of them are in documentaries or TV-shows, that were eliminated). Among the movies where Adolf Hitler is credited, we find *Zelig* (Woody Allen, 1983), and *The Imitation Game* (Morten Tyldum, 2014). Among the other most central actors, we find
Table 5 Top 10 pages in Wikipedia directed graph, both in the standard graph and in the reversed graph.

Position	Standard Graph	Reversed Graph
1st	1989 United States	United States
2nd	1967 World War II	World War II
3rd	1979 United Kingdom	France
4th	1990 France	France
5th	1970 Germany	Germany
6th	1991 English language	English language
7th	1971 Association football	Association football
8th	1976 China	China
9th	1945 World War I	World War I
10th	1965 Latin	Latin

many people who played a lot of movies, and most of them are quite important actors. However, this ranking does not discriminate between important roles and marginal roles: for instance, the actress Bess Flowers is not widely known, because she rarely played significant roles, but she appeared in over 700 movies in her 41 years career, and for this reason she was the most central for 30 years, between 1950 and 1980. Finally, it is worth noting that we never find Kevin Bacon in the top 10, even if he became famous for the “Six Degrees of Kevin Bacon” game (http://oracleofbacon.org), where the player receives an actor \(x \), and he has to find a path of length at most 6 from \(x \) to Kevin Bacon in the actor graph. Kevin Bacon was chosen as the goal because he played in several movies, and he was thought to be one of the most central actors: this work shows that, actually, he is quite far from the top. Indeed, his closeness centrality is 0.336, while the most central actor has centrality 0.354, the 10th actor has centrality 0.350, and the 100th actor has centrality 0.341.

11 Wikipedia Case Study

In this section, we apply the new algorithm NBBound to analyze the Wikipedia graph, where nodes are pages, and there is a directed edge from page \(p \) to page \(q \) if \(p \) contains a link to \(q \). The data collected comes from DBPedia 3.7 (http://wiki.dbpedia.org/). We analyse both the standard graph and the reverse graph, which contains an edge from page \(p \) to page \(q \) if \(q \) contains a link to \(p \). The 10 most central pages are available in Table 5.

The Algorithm. In the standard graph, the improvement factor is 1784 for \(k = 1 \), 1509 for \(k = 10 \), and 870 for \(k = 100 \). The total running time is about 39 minutes for \(k = 1 \), 45 minutes for \(k = 10 \), and less than 1 hour and 20 minutes for \(k = 100 \). In the reversed graph, the algorithm performs even better: the improvement factor is 87 918 for \(k = 1 \), 71 923 for \(k = 10 \), and 21 989 for \(k = 100 \). The total running times are less than 3 minutes for both \(k = 1 \) and \(k = 10 \), and less than 10 minutes for \(k = 100 \).
The Results. If we consider the standard graph, the results are quite unexpected: indeed, all the most central pages are years (the first is 1989). However, this is less surprising if we consider that these pages contain a lot of links to events that happened in that year: for instance, the out-degree of 1989 is 1,560, and the links contain pages from very different topics: historical events, like the fall of Berlin wall, days of the year, different countries where particular events happened, and so on. A similar argument also works for other years: indeed, the second page is 1967 (with out-degree 1,438), and the third is 1979 (with out-degree 1,452). Furthermore, all the 10 most central pages have out-degree at least 1,269. Overall, we conclude that the central page in the Wikipedia standard graph are not the “intuitively important” pages, but they are the pages that have a biggest number of links to pages with different topics, and this maximum is achieved by pages related to years.

Conversely, if we consider the reversed graph, the most central page is United States, confirming a common conjecture. Indeed, in http://wikirank.di.unimi.it/, it is shown that the United States are the center according to harmonic centrality, and many other measures (however, in that work, the ranking is only approximated). A further evidence for this conjecture comes from the Six Degree of Wikipedia game (http://thewikigame.com/6-degrees-of-wikipedia), where a player is asked to go from one page to the other following the smallest possible number of link: a hard variant of this game forces the player not to pass from the United States page, which is considered to be central. In this work, we show that this conjecture is true. The second page is World War II, and the third is United Kingdom, in line with the results obtained by other centrality measures (see http://wikirank.di.unimi.it/), especially for the first two pages.

Overall, we conclude that most of the central pages in the reversed graph are nations, and that the results capture our intuitive notion of “important” pages in Wikipedia. Thanks to this new algorithm, we can compute these pages in a bit more than 1 hour for the original graph, and less than 10 minutes for the reversed one.

12 Conclusions

In this paper we have presented a hardness result on the computation of the most central vertex in a graph, according to closeness centrality. Then, we have presented a very simple algorithm for the exact computation of the k most central vertices. Even if the time complexity of the new algorithm is equal to the time complexity of the textbook algorithm (which, in any case, cannot be improved in general), we have shown that in practice the former improves the latter by several orders of magnitude. We have also shown that the new algorithm outperforms the state of the art (whose time complexity is still equal to the complexity of the textbook algorithm), and we have computed for the first time the most central nodes in networks with millions of nodes.
and hundreds of millions of edges. Finally, we have considered as a case study several snapshots of the IMDB actor network, and the Wikipedia graph.
References

1. Amir Abboud, Fabrizio Grandoni, and Virginia V. Williams. Subcubic equivalences between graph centrality problems, APSP and diameter. In Proceedings of the 26th ACM/SIAM Symposium on Discrete Algorithms (SODA), pages 1681–1697, 2015.
2. Amir Abboud and Virginia V. Williams. Popular conjectures imply strong lower bounds for dynamic problems. Proceedings of the 55th Annual Symposium on Foundations of Computer Science (FOCS), pages 434–443, 2014.
3. Amir Abboud, Virginia V. Williams, and Joshua Wang. Approximation and Fixed Parameter Subquadratic Algorithms for Radius and Diameter. In Proceedings of the 27th ACM/SIAM Symposium on Discrete Algorithms (SODA), pages 377–391, 2016.
4. Amir Abboud, Virginia V. Williams, and Oren Weimann. Consequences of Faster Alignment of Sequences. In Proceedings of the 41st International Colloquium on Automata, Languages and Programming (ICALP), pages 39–51, 2014.
5. Alex Bavelas. Communication patterns in task-oriented groups. Journal of the Acoustical Society of America, 22:725–730, 1950.
6. Elisabetta Bergamini, Michele Borassi, Pierluigi Crescenzi, Andrea Marino, and Henning Meyerhenke. Computing Top-k Closeness Centrality Faster in Unweighted Graphs. In Proceedings of the Meeting on Algorithm Engineering and Experiments (ALENEX), 2016.
7. Paolo Boldi and Sebastiano Vigna. In-core computation of geometric centralities with hyperball: A hundred billion nodes and beyond. In Proceedings of the 13th IEEE International Conference on Data Mining Workshops (ICDM), pages 621–628, 2013.
8. Paolo Boldi and Sebastiano Vigna. Axioms for centrality. Internet Mathematics, 10(3-4):222–262, 2014.
9. Michele Borassi. A Note on the Complexity of Computing the Number of Reachable Vertices in a Digraph. arXiv preprint 1602.02129, 2016.
10. Michele Borassi, Pierluigi Crescenzi, and Michel Habib. Into the square - On the complexity of some quadratic-time solvable problems. In Proceedings of the 16th Italian Conference on Theoretical Computer Science (ICTCS), pages 1–17, 2015.
11. Duanbing Chen, Linyuan Lu, Ming-Sheng Shang, Yi-Cheng Zhang, and Tao Zhou. Identifying influential nodes in complex networks. Physica A: Statistical Mechanics and its Applications, 391(4):1777–1787, 2012.
12. Edith Cohen, Daniel Delling, Thomas Pajor, and Renato F. Werneck. Computing classic closeness centrality, at scale. In Proceedings of the 2nd ACM conference on Online social networks (COSN), pages 37–50, 2014.
13. Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein. Introduction to Algorithms (3rd edition). MIT Press, 2009.
14. Gábor Csárdi and Tamás Nepusz. The igraph software package for complex network research. Inter.Journal. Vol: Complex Systems, 2006.
15. David Eppstein and Joseph Wang. Fast Approximation of Centrality. Journal of Graph Algorithms and Applications, pages 39–45, 2004.
16. Aric A. Hagberg, Daniel A. Schult, and Pieter J. Swart. Exploring network structure, dynamics, and function using NetworkX. In Proceedings of the 7th Python in Science Conference (SCIPY), pages 11–15, 2008.
17. Russell Impagliazzo, Ramamohan Paturi, and Francis Zane. Which Problems Have Strongly Exponential Complexity? Journal of Computer and System Sciences, 63(4):512–530, December 2001.
18. U Kang, Spiros Papadimitriou, Jimeng Sun, and Tong Hanghang. Centralities in large networks: Algorithms and observations. In Proceedings of the SIAM International Conference on Data Mining (SDM), pages 119–130, 2011.
19. Erwan Le Merrer, Nicolas Le Scouarnec, and Gilles Trédan. Heuristical Top-k: Fast Estimation of Centralities in Complex Networks. Information Processing Letters, 114:432–436, 2014.
20. Yeon-sup Lim, Daniel S. Menasché, Bruno Ribeiro, Don Towsley, and Prithwish Basu. Online estimating the k central nodes of a network. In Proceedings of the 2011 IEEE Network Science Workshop (NS), pages 118–122, 2011.
21. Nan Lin. Foundations of social research. McGraw-Hill, 1976.
22. Mark E. J. Newman. *Networks: An Introduction*. OUP Oxford, 2010.
23. Kazuya Okamoto, Wei Chen, and XY Li. Ranking of closeness centrality for large-scale social networks. *Frontiers in Algorithmics*, 5059:186–195, 2008.
24. Paul W. Olsen, Alan G. Labouseur, and Jeong-Hyon Hwang. Efficient top-k closeness centrality search. In *Proceedings of the 30th IEEE International Conference on Data Engineering (ICDE)*, pages 196–207, 2014.
25. Mihai Pătraşcu and Ryan Williams. On the possibility of faster SAT algorithms. *Proceedings of the 21st ACM/SIAM Symposium on Discrete Algorithms (SODA)*, 2010.
26. Liam Roditty and Virginia V. Williams. Fast approximation algorithms for the diameter and radius of sparse graphs. In *Proceedings of the 45th annual ACM Symposium on Theory of Computing (STOC)*, pages 515–524, 2013.
27. Ahmet E. Sariyüce, Kamer Kaya, Erik Saule, and Umit V. Catalyurek. Incremental algorithms for closeness centrality. In *Proceedings of the IEEE International Conference on Big Data (ICBDA)*, pages 118–122, 2013.
28. Jeremy G. Siek, Lie Quan Lee, and Andrew Lumsdaine. *The Boost Graph Library: User Guide and Reference Manual*. Pearson Education, 2001.
29. Christian Staudt, Aleksiej Sazonovs, and Henning Meyerhenke. Networkit: An interactive tool suite for high-performance network analysis. *arXiv preprint 1403.3005*, 2014.
30. William Stein and David Joyner. Sage: System for algebra and geometry experimentation. *SIGSAM Bulletin*, 39(2):61–64, 2005.
31. Stanley Wasserman and Katherine Faust. *Social Network Analysis: Methods and Applications*. Structural Analysis in the Social Sciences. Cambridge University Press, 1994.
32. Ryan Williams. A new algorithm for optimal 2-constraint satisfaction and its implications. *Theoretical Computer Science*, 348(2-3):357–365, 2005.
33. Virginia V. Williams. Multiplying Matrices Faster Than Coppersmith-Winograd. In *Proceedings of the 44th Annual ACM Symposium on Theory of Computing (STOC)*, pages 887–898, New York, NY, USA, 2012.
34. Virginia V. Williams and Ryan Williams. Subcubic Equivalences between Path, Matrix and Triangle Problems. *Proceedings of the 51st IEEE Annual Symposium on Foundations of Computer Science (FOCS)*, pages 645–654, 2010.
35. Uri Zwick. All Pairs Shortest Paths using Bridging Sets and Rectangular Matrix Multiplication. *Journal of the ACM*, 49(3):27, 2002.
Appendix

A Comparison with the State of the Art: Detailed Results

Table 6 Detailed comparison of the improvement factors, with $k = 1$.

Network	Directed Street	Undirected Street	Directed Complex	Undirected Complex		
	Olh	Ocl	DegCut	DegBound	NBCut	NBBound
faroe-islands	4.080	3.742	4.125	338.011	4.086	437.986
liechtenstein	2.318	2.075	2.114	130.575	2.115	137.087
isle-of-man	2.623	2.740	2.781	224.566	2.769	314.856
malta	5.332	4.351	4.147	73.836	4.141	110.665
belize	2.691	2.069	2.606	253.866	2.595	444.849
azores	13.559	1.038	19.183	230.939	19.164	266.488
	NBCut	NBBound				
	589.985	18.810	727.528	2.354	360.821	252.468
Table 7 Detailed comparison of the improvement factors, with $k = 10$.

Directed Street

Network	OLh	Ocl	DegCut	DegBound	NBCut	NBBound
faroe-islands	3.713	2.884	4.037	290.626	4.025	367.593
liechtenstein	2.318	2.002	2.104	111.959	2.106	116.713
isle-of-man	5.325	3.861	4.094	70.037	4.086	101.546
malta	4.768	3.615	3.920	115.574	3.910	209.192
iceland	2.690	4.638	2.792	244.275	2.580	416.210

Undirected Street

Network	OLh	Ocl	DegCut	DegBound	NBCut	NBBound
faroe-islands	3.702	2.594	4.046	320.588	3.848	388.713
liechtenstein	2.316	1.965	2.097	142.047	2.114	150.608
isle-of-man	2.612	2.889	2.695	241.431	2.636	323.185
malta	4.768	3.615	3.920	115.574	3.910	208.192
iceland	2.564	3.634	2.496	323.257	2.469	563.820

Directed Complex

Network	OLh	Ocl	DegCut	DegBound	NBCut	NBBound
faroe-islands	3.199	1.039	13.518	1.496	13.544	2.928
ciao	13.739	1.130	32.297	1.984	32.405	6.676
ca-GrQc	9.863	1.356	25.238	3.096	25.786	4.565
out.subelj_jung_jung-j	124.575	1.000	79.284	1.496	79.657	2.928

Undirected Complex

Network	OLh	Ocl	DegCut	DegBound	NBCut	NBBound
faroe-islands	3.102	1.240	10.714	1.496	10.036	3.098
facebooks	10.456	1.292	9.103	2.236	9.371	2.694
Mus_musculus	18.246	1.316	18.630	2.279	20.723	3.088
Caenorhabditis_elegans	11.445	1.405	58.729	1.904	68.905	7.605
ca-GrQc	6.567	1.340	26.050	3.052	26.769	5.001
com-amazon.all.cmty	414.765	1.618	3407.016	3.279	3952.370	199.386
Table 8 Detailed comparison of the improvement factors, with $k = 100$.

Directed Street	OLR	OCL	DegCut	DegBound	NBCut	NBBound
faroe-islands	3.713	2.823	3.694	150.956	3.691	168.092
liechtenstein	2.318	1.998	2.078	84.184	2.086	86.923
isle-of-man	2.620	2.902	2.551	139.139	2.567	167.808
malta	5.282	3.850	3.933	56.921	3.942	76.372
azores	3.314	2.628	18.380	204.718	2.516	268.634

Undirected Street	OLR	OCL	DegCut	DegBound	NBCut	NBBound
faroe-islands	3.702	2.548	3.693	159.472	3.523	171.807
liechtenstein	2.311	1.959	2.072	96.782	2.095	99.768
isle-of-man	2.607	2.847	2.533	153.859	2.468	183.982
malta	4.758	3.605	3.745	89.929	3.730	137.538
azores	2.562	3.629	2.428	226.582	2.406	323.257

Directed Complex	OLR	OCL	DegCut	DegBound	NBCut	NBBound
polblogs	3.198	1.037	3.951	1.245	3.961	1.731
out.opsahl-openflights	13.739	1.124	5.524	1.456	5.553	1.740
ca-GrQc	9.863	1.339	11.147	2.353	10.407	2.926
out.subelj_jung-jung-jung	123.393	1.000	78.470	1.021	78.798	1.787

Undirected Complex	OLR	OCL	DegCut	DegBound	NBCut	NBBound
HC-BIOGRID	5.528	1.236	4.452	2.154	4.345	1.999
facebook_combined	10.456	1.292	3.083	1.470	3.074	1.472
Mus_musculus	18.245	1.305	7.940	1.944	9.518	2.631
Caenorhabditis_elegans	11.445	1.391	11.643	1.463	12.296	3.766
ca-GrQc	6.567	1.331	11.311	2.346	10.389	3.105
as20000102	19.185	1.512	7.318	1.174	7.956	3.593
advogato	8.520	1.398	32.629	1.706	33.166	7.784
p2p-Gnutella09	3.744	1.625	11.378	1.374	11.867	3.695
out.ego-twitter	20.974	1.606	17.971	1.216	18.694	5.479
cit-HepTh	3.969	2.143	8.867	1.466	9.068	2.662
Table 9 Detailed comparison of the improvement factors of the new algorithm, in a dataset made of big networks.

Directed Street

Input	Nodes	Edges	k=1	k=10	k=100			
	Impr.	Time	Impr. Time	Impr. Time	Impr. Time			
egypt	105422	2128206	144.91	0:03:55	13.86	0:04:25	116.74	0:04:48
new_zealand	2750124	5692944	447.55	0:02:34	443.95	0:02:35	427.31	0:02:38
india	16283007	3355834	137.32	0:43:42	1369.05	0:44:17	1326.31	0:45:05
california	16905319	3403746	1273.66	0:54:56	1258.12	0:56:00	1225.73	0:56:02
north_am	35286615	7979453	1992.68	2:25:58	1967.87	2:29:25	1877.78	2:37:14

Undirected Street

Input	Nodes	Edges	k=1	k=10	k=100			
	Impr.	Time	Impr. Time	Impr. Time	Impr. Time			
egypt	2750124	2822257	811.75	0:02:47	786.52	0:03:02	734.20	0:03:02
new_zealand	16283007	17004400	2455.38	0:44:21	2484.70	0:44:38	2422.40	0:44:21
india	16905319	17600566	2648.08	0:39:15	2620.17	0:42:04	2504.86	0:44:19
california	35286615	36611653	7394.88	1:13:37	7530.80	1:15:01	7263.78	1:10:28

Directed Complex

Input	Nodes	Edges	k=1	k=10	k=100			
	Impr.	Time	Impr. Time	Impr. Time	Impr. Time			
egypt	2750124	1168613	20.31	0:00:01	346.20	0:00:34	291.71	0:00:37
new_zealand	2750124	2822257	811.75	0:02:47	786.52	0:03:02	734.20	0:03:02
india	16283007	17004400	2455.38	0:44:21	2484.70	0:44:38	2422.40	0:44:21
california	16905319	17600566	2648.08	0:39:15	2620.17	0:42:04	2504.86	0:44:19
north_am	35286615	36611653	7394.88	1:13:37	7530.80	1:15:01	7263.78	1:10:28

Undirected Complex

Input	Nodes	Edges	k=1	k=10	k=100			
	Impr.	Time	Impr. Time	Impr. Time	Impr. Time			
egypt	2750124	1168613	20.31	0:00:01	346.20	0:00:34	291.71	0:00:37
new_zealand	2750124	2822257	811.75	0:02:47	786.52	0:03:02	734.20	0:03:02
india	16283007	17004400	2455.38	0:44:21	2484.70	0:44:38	2422.40	0:44:21
california	16905319	17600566	2648.08	0:39:15	2620.17	0:42:04	2504.86	0:44:19
north_am	35286615	36611653	7394.88	1:13:37	7530.80	1:15:01	7263.78	1:10:28
C IMDB Case Study: Detailed Results

Table 10 Detailed ranking of the IMDB actor graph.

Year	1940	1945	1950	1955
1940	Semels, Harry (I)	Corrado, Gino	Flowers, Bess	Flowers, Bess
2	Corrado, Gino	Steers, Larry	Steers, Larry	Harris, Sam (II)
3	Steers, Larry	Flowers, Bess	Corrado, Gino	Steers, Larry
4	Bracey, Sidney	Semels, Harry (I)	Harris, Sam (II)	Corrado, Gino
5	Lucas, Wilfred	White, Leo (I)	Semels, Harry (I)	Miller, Harold (I)
6	White, Leo (I)	Mortimer, Edmund	Davis, George (I)	Farnum, Franklyn
7	Martell, Alphonse	Boteler, Wade	Magrill, George	Magrill, George
8	Conti, Albert (I)	Phelps, Lee (I)	Phelps, Lee (I)	Conaty, James
9	Flowers, Bess	Ring, Cyril	Ring, Cyril	Davis, George (I)
10	Sedan, Rolfe	Bracey, Sidney	Moorhouse, Bert	Cording, Harry

Year	1960	1965	1970	1975
1960	Flowers, Bess	Flowers, Bess	Flowers, Bess	Flowers, Bess
2	Harris, Sam (II)	Harris, Sam (II)	Harris, Sam (II)	Harris, Sam (II)
3	Farnum, Franklyn	Farnum, Franklyn	Farnum, Franklyn	Farnum, Franklyn
4	Miller, Harold (I)	Miller, Harold (I)	Farnum, Franklyn	Welles, Orson
5	Chefe, Jack	Holmes, Stuart	Miller, Harold (I)	Sayre, Jeffrey
6	Holmes, Stuart	Sayre, Jeffrey	Sayre, Jeffrey	Miller, Harold (I)
7	Steers, Larry	Steers, Larry	Quin, Anthony (I)	Farnum, Franklyn
8	Paris, Manuel	Paris, Manuel	Paris, Manuel	O’Brien, William H.
9	O’Brien, William H.	O’Brien, William H.	O’Brien, William H.	O’Brien, William H.
10	Sayre, Jeffrey	Stevens, Bert (I)	Stevens, Bert (I)	O’Brien, William H.

Year	1980	1985	1990	1995
1980	Flowers, Bess	Welles, Orson	Welles, Orson	Lee, Christopher (I)
2	Harris, Sam (II)	Flowers, Bess	Carradine, John	Welles, Orson
3	Welles, Orson	Harris, Sam (II)	Flowers, Bess	Quin, Anthony (I)
4	Sayre, Jeffrey	Quinn, Anthony (I)	Lee, Christopher (I)	Pleasence, Donald
5	Quinn, Anthony (I)	Sayre, Jeffrey	Harris, Sam (II)	Hitler, Adolf
6	Tamiroff, Akim	Carradine, John	Quin, Anthony (I)	Carradine, John
7	Miller, Harold (I)	Kemp, Kenner G.	Pleasence, Donald	Farnum, Franklyn
8	Kemp, Kenner G.	Miller, Harold (I)	Sayre, Jeffrey	Mitchum, Robert
9	Farnum, Franklyn	Niven, David (I)	Toey, Arthur	Harris, Sam (II)
10	Niven, David (I)	Tamiroff, Akim	Hitler, Adolf	Sayre, Jeffrey

Year	2000	2005	2010	2014
2000	Lee, Christopher (I)	Hitler, Adolf	Hitler, Adolf	Madsen, Michael (I)
2	Hitler, Adolf	Lee, Christopher (I)	Lee, Christopher (I)	Trejo, Danny
3	Pleasence, Donald	Steiger, Rod	Steiger, Rod	Hopper, Dennis
4	Welles, Orson	Sutherland, Donald (I)	Keitel, Harvey (I)	Roberts, Eric (I)
5	Quinn, Anthony (I)	Pleasence, Donald	Carradine, David	De Niro, Robert
6	Carradine, John	Keitel, Harvey (I)	Carradine, David	Dafoe, Willem
7	Sutherland, Donald (I)	von Sydow, Max (I)	Caine, Michael (I)	Keitel, Harvey (I)
8	Mitchum, Robert	Caine, Michael (I)	Sheen, Martin	Carradine, David
9	Connery, Sean	Sheen, Martin	Kier, Udo	Lee, Christopher (I)

38
Table 11: Detailed improvement factors on the IMDB actor graph.

Year	1930	1945	1950	1955
Nodes	69,011	83,068	97,824	120,430
Edges	3,417,144	5,160,584	6,793,184	8,674,159
Impr ($k = 1$)	51.74	61.46	67.50	91.46
Impr ($k = 10$)	32.95	40.73	44.72	61.52

Year	1960	1965	1970	1975
Nodes	146,253	174,826	210,527	257,896
Edges	11,197,509	12,649,114	14,209,908	16,080,065
Impr ($k = 1$)	122.63	162.06	211.05	285.57
Impr ($k = 10$)	80.50	111.51	159.32	221.07

Year	1980	1985	1990	1995
Nodes	319,278	373,922	464,978	595,343
Edges	18,252,462	20,970,510	24,573,288	28,542,684
Impr ($k = 1$)	380.52	513.40	719.21	971.11
Impr ($k = 10$)	296.24	416.27	546.77	694.72

Year	2000	2005	2010	2014
Nodes	681,305	880,032	1,237,875	1,797,446
Edges	33,564,142	41,079,259	53,625,608	72,880,156
Impr ($k = 1$)	1,326.53	1,897.31	2,869.14	2,601.52
Impr ($k = 10$)	838.53	991.89	976.63	1,390.32