Supplement of

Estimating 2010–2015 anthropogenic and natural methane emissions in Canada using ECCC surface and GOSAT satellite observations

Sabour Baray et al.

Correspondence to: Sabour Baray (sabour@yorku.ca)

The copyright of individual parts of the supplement might differ from the article licence.
S1 Supplement

S1.1 Monthly GOSAT Data in the Canadian Domain

Figure S1 shows the GOSAT data available per month using 2013 as an example year, this corresponds to the data coverage shown in Fig. 1 of the main text but highlights the variability in satellite observational coverage over a single year. GOSAT data shown passes all quality assurance flags and includes our domain filter to land data that is within 50°W to 150°W longitude and 45°N to 60°N latitude. The minimum in December observations ($n=112$) and neighbouring months is due to less solar radiation in the winter resulting in less retrievals. Fewer observations cause the inversion to favour the prior state of emissions. There are less methane emissions from Canadian wetlands in the coldest months of the winter, and the comparison between the prior, the posterior using GOSAT data, and the posterior using ECCC data shows very small differences in emissions estimates for these coldest months.

![GOSAT XCH₄ (ppb)](image-url)
Figure S1: GOSAT observations per month in the year 2013 corresponding to Fig. 1 in the main text (n=7656 observations for the entire year). Observations are filtered to land data that is within 50°W to 150° W longitude and 45°N to 60° N latitude.

S1.2 Sensitivity of Seasonal Emissions to Climatological Data

We select four climatological stations shown in Table S1 to sample temperature and precipitation data from 2010–2015 in the four provinces where wetland emissions are concentrated (Alberta, Saskatchewan, Manitoba, and Ontario). These stations are not exhaustive and are chosen for their proximity to the stations shown in Table 1. Station measurements are quality-controlled from the National Climate Data Archive from Environment and Climate Change Canada (Hutchinson et al., 2009).

Table S1: Climatological sites used for air temperature and total precipitation measurements for the seasonality comparison.

Site Name, Province	Latitude	Longitude
Lac La Biche Climate, Alberta	54.8° N	112.0° W
La Ronge, Saskatchewan	55.1° N	105.3° W
Churchill Climate, Manitoba	58.7° N	94.1° W
Moosonee, Ontario	51.3° N	80.6° W

Figure S2 shows the mean 2010–2015 seasonal pattern of natural methane emissions constrained by ECCC and GOSAT data corresponding to Fig. 6 in the main text. These emissions are compared to monthly mean air temperature and precipitation averaged over the four climatological stations in Table S1. We consider air temperature a reasonable proxy for the surface skin temperature that is used in WetCHARTS. Surface skin temperature is itself a proxy for soil temperatures deeper beneath the surface where methane is produced (Miller et al., 2016). Hence both metrics may be lagging indicators for the peak of methane emissions. Both air temperature and precipitation show peaks in July which correspond well with the maxima of methane emissions in the prior from WetCHARTS. Methane emissions in the prior begin to accelerate from March to April, however for both months air temperature is below freezing. It is not likely that soil temperatures and subsurface soil temperatures would be above freezing in these months. Air temperature crosses from below 0° to above freezing one month later from April to May, which corresponds to where the posterior ECCC and GOSAT emissions begin to accelerate. Total precipitation shows the highest acceleration one month later from May to June. As the peak in July is passed, late-summer and autumn air temperatures are higher than the months opposite of the peak (August is warmer than June, September is warmer than May, October is warmer than April). This pattern is corroborated by the precipitation measurements. Air temperatures go below freezing from October to November. As shown by Zona et al. (2016), “zero-curtain” emissions may continue even when the soil is at freezing temperatures. This mechanism may be more likely to occur in the months after the peak if subsurface soils are slower to thaw in the spring and slower to freeze in the autumn. These simple climatological measurements and the described mechanisms suggested in other studies corroborate our posterior results of lower spring methane emissions and
lower peak methane emissions in the summer. Our results suggest process models may benefit from better parameterization of possible lagging effects from air temperature and precipitation for Boreal Canada methane emissions.

Figure S2: Mean seasonal pattern of 2010-2015 methane emissions from the prior (gray), posterior constrained with ECCC data (blue), posterior constrained with GOSAT data (green). This is compared to the seasonal pattern of monthly mean air temperature (orange, right axis) and precipitation (pink, left axis) from station measurements listed in Table S1. Both air temperature and precipitation show an asymmetry about the July peak, with higher temperature and precipitation in the fall months than the spring.

S1.3 Evaluation of Bias in the Global Model

In this section we test the GEOS-Chem representation of background methane for both surface ECCC data and column GOSAT data using global and/or boundary condition observations. We show the model representation of methane can be improved using surface and column bias corrections which are presented as the base case in the main text. We test the sensitivity of the posterior emissions to the use of these bias corrections and show the inversions produce consistent results.

S1.3.1 Evaluation of the ECCC Surface Data Background and Bias Corrections

The left panel of Figure S3 shows the comparison of monthly mean GEOS-Chem surface methane concentrations and methane measured at the ECCC station ESP from 2009 to 2015. ESP is located at the west coast of Vancouver Island (Fig. 1); this site
is used as an evaluation of background methane and tests the bias in the global model as it is the least sensitive to Canadian emissions due to westerly prevailing winds. The model reliably reproduces surface observations at this station and the growth rate in background methane due to the source-sink imbalance of +13 Tg a\(^{-1}\) in the model global budget (Maasakkers et al., 2019) with a small mean model-observation bias of +5.3 ppb. The right panel of Figure S3 shows the comparison of modelled methane to NOAA aircraft profiles at the same site. Aircraft profiles occur approximately once a month continuously over the study period. The data is not averaged here and is directly compared to GEOS-Chem simulated grid boxes at the pressure level of the measurement. The reduced mean axis (RMA) regression shows a slope of 0.86 and a coefficient of regression \(r^2 = 0.67\) which shows a reasonable model representation of the measurements. These statistics are consistent with previous inversions using GEOS-Chem that showed relatively unbiased conditions against NOAA surface stations globally (Turner et al., 2015; Maasakkers et al., 2019). A high resolution inversion over North America over the same 2010–2015 time-period using the same prior have shown adjustments to US emissions near the Canadian border are relatively minimal (Maasakkers et al., 2021), so we treat US emissions as constant in the inversion. The acceptable reproducibility of background methane at this site allows us to attribute much larger differences observed at other sites, up to a maximum of ~1000 ppb in the summer (Figure 4), to Canadian emissions which are optimized using Canadian observations while holding other global emissions constant.

Figure S3: Time-series comparison (left) from 2009–2015 of surface GEOS-Chem simulated methane (red) and measured in situ methane (black) at site ESP off the west coast of British Columbia. Comparison to NOAA aircraft profiles (right) from 2009–2015 at the same site using a reduced major axis (RMA) regression along with the 1:1 line (black).

While the mean model bias of +5.3 ppb in Figure S3 shows a net over-estimation in the model, the later years 2014 and 2015 show a model underestimation primarily due to underestimated tropical emissions (Maasakkers et al., 2019). This positive-to-negative difference in the model background can project errors onto the trend of ECCC-constrained emissions. This is
addressed by removing the annual-mean background bias at the Canadian boundary conditions from the observation vector. We use the westmost boundary condition site ESP and a second northernmost background site at Alert, Nunavut (ALT) to diagnose errors in the methane background and show the annual mean model-observation differences in Table S2. The average of these two sites is used to adjust the model for the base-case ECCC inversion in the main text. In Section 1.3.2 of the Supplement, we test the sensitivity of the posterior emissions to the use of these various background corrections and show consistent results, with the background-adjusted inversion showing slightly more agreement with the GOSAT inversion.

Table S2: Mean annual model-measurement differences at background sites ESP and ALT.

Year	ESP\(^a\)	ALT\(^b\)	Average\(^c\)
2010	+5.0	+8.8	+6.9
2011	+5.8	+8.5	+7.2
2012	+3.6	+5.9	+4.8
2013	+2.6	+10.5	+6.6
2014	+2.1	+11.3	+6.7
2015	−6.9	−4.7	−5.8

\(^a\)Site ESP is located at 49.38°N, 126.54°W, and is the westernmost boundary condition for Canada.

\(^b\)Site ALT is located at 82.45°N, 62.51°W, and is the northernmost boundary condition for Canada.

\(^c\)The average is used in the base-case ECCC inversions shown in the main text. The three alternatives: adjustments using ESP, ALT and no background adjustments are shown as sensitivity tests in the Supplement.

S1.3.2 Sensitivity Tests of ECCC-Constrained Emissions

Figure S4 shows the sensitivity tests comparing the ECCC inversions with an unadjusted model to the two background-adjusted ECCC inversions using either the mean yearly bias from ESP or ALT. The three inversions are consistent with each other within their error intervals, but the adjusted ECCC inversions show improved agreement with the GOSAT results. For anthropogenic sources, the mean yearly emissions are 6.0 ± 0.4 Tg a\(^{-1}\) in the unadjusted ECCC inversion, 6.1 ± 0.4 Tg a\(^{-1}\) with the ESP-adjusted ECCC inversion, and 6.0 ± 0.4 Tg a\(^{-1}\) with the ALT-adjusted inversion. For natural sources, the mean yearly emissions are 10.5 ± 1.9 Tg a\(^{-1}\) in the unadjusted ECCC inversion, 12.0 ± 1.4 Tg a\(^{-1}\) in the ESP-adjusted ECCC inversion, and 11.0 ± 1.2 Tg a\(^{-1}\) in the ALT-adjusted ECCC inversion. The background-adjusted inversions show higher natural emissions in the years 2010–2014 compared to the unadjusted case, and lower natural emissions in 2015 due to the negative background bias that is removed. The background-adjusted inversions show better agreement with the GOSAT mean yearly natural emissions of 11.7 ± 1.2 Tg a\(^{-1}\). In addition, the trend in natural emissions over this time period is reduced by 40-45% from 1.0 Tg a\(^{-1}\) in the unadjusted inversion to 0.55–0.60 Tg a\(^{-1}\) in the adjusted inversions. These results show that the background error does not largely affect the average 2010–2015 results regarding the overall increase in anthropogenic emissions and decrease
in natural emissions. Correcting for the model background minimizes the projection of under-estimated tropical emissions onto the Canadian fluxes in the later years, which improves the consistency with the GOSAT inversion and significantly reduces the presence of a large trend that was not corroborated by GOSAT.

Figure S4: Sensitivity analysis of inversion results depending on the use of model background correction for surface pixels. Referred to as the monthly inversion, this approach optimizes annual total Canadian anthropogenic emissions (top) and monthly total natural emissions (bottom) in an n = 78 state-vector element setup. The prior emissions (gray) are compared to the posterior results using GOSAT (green), and the posterior using ECCC data with an unadjusted background (blue), ECCC data using a background adjusted according to the yearly difference at ESP (teal) and ALT (purple) from Table S2.
To address the possibility of US emissions influencing the posterior results near the Canadian border, we show a sensitivity test where the two stations most influenced by cross-border transport, Egbert (EGB) and Sable Island (SBL) are removed from the ECCC inversion. Figure S5 shows posterior-ECCC emissions where EGB and SBL (at latitudes of 44.2°N and 43.9°N, respectively) are removed (note in this case, the background is left un-adjusted to avoid overlap in the issues). The mean of anthropogenic emissions in the inversion without these stations is \(6.4 \pm 0.6\) Tg a\(^{-1}\), and the mean of natural emissions is \(10.9 \pm 1.5\) Tg a\(^{-1}\). These results are similar to the posterior from the unadjusted ECCC inversion (\(6.0 \pm 0.4\) Tg a\(^{-1}\) anthropogenic, \(10.5 \pm 1.9\) Tg a\(^{-1}\) natural) and the GOSAT inversion (\(6.5 \pm 0.7\) Tg a\(^{-1}\) anthropogenic, \(11.7 \pm 1.2\) Tg a\(^{-1}\) natural). This sensitivity test shows that the US signal does not substantially affect the results from the optimization of large biases observed by Canadian observations due to Canadian emissions.
Figure S5: Sensitivity analysis of inversion results depending on the inclusion of sites EGB and SBL which are sensitive to cross-border transport from the United States. Similar to Fig. S4, the monthly inversion optimizes annual total Canadian anthropogenic emissions (top) and monthly total natural emissions (bottom) in an $n = 78$ state-vector element setup. The prior emissions (gray) are compared to the posterior results using GOSAT (green), and the posterior using ECCC data including all sites (blue) and ECCC data excluding EGB and SBL (yellow).

S1.3.3 Evaluation of Global GOSAT Data and Bias Corrections

The GEOS-Chem simulation of column averaged methane shows three global biases previously discussed in the literature: (1) a latitude-dependent bias, (2) a seasonal bias and (3) a background change for 2014 and 2015 due to differences in the global source-sink imbalance in these two years (Turner et al., 2015; Saad et al., 2018; Maasakkers et al., 2019; Stanevich et al.,
We apply these corrections to the simulated column of methane on a global basis to produce an unbiased background for our target Canadian domain (45° N to 60°N, 50° W to 150° W). The latitude-dependent bias (1) is likely due to excessive polar stratospheric transport (Stanevich et al., 2020). We correct for this bias by fitting the model-GOSAT difference for global 2° × 2.5° grid cells according to a second-order polynomial as shown in Figure S6:

\[
\xi = (2.20^2 - 340) \times 10^{-3} - 2.7
\]

where \(\xi\) is the resulting bias correction in ppb and \(\theta\) is latitude in degrees. The correction in this work for the latitude bins of our target domain (45° N to 60° N) is between 0.3 to 2.9 ppb. This correction is lower than what has been shown previously (Turner et al., 2015; Maasakkers et al., 2019) and we attribute this improvement to our use of a 2°x2.5° gridded simulation instead of a 4°x4.5° as recommended by Stanevich et al. (2020) to reduce transport errors. A seasonally oscillating bias (2) remains after this correction. The seasonal bias has an amplitude of ±4 ppb with repeating maxima in June and minima in December. It is not clear whether this seasonal bias is due to emissions and/or transport errors. In our base case we remove the seasonal bias on a monthly basis following Maasakkers et al. (2019) and show a sensitivity test without the correction for our inversion of monthly natural emissions in Canada (Supplement 1.3.4). Inversion results using GOSAT data with and without bias corrections in the model simulation of total column methane do not show major differences (Fig. S7). These scenarios all show agreement with the posterior emissions adjustments determined using unadjusted ECCC in situ data – which is a useful benchmark since modelled methane at the surface is not subject to any bias corrections. The background change (3) that appears in the simulated methane column from 2014 onwards is corrected for in Maasakkers et al. (2019) by optimizing emissions, emissions trends and trends in OH using a global inversion. In that work correction factors do not appear over Canada and the United States that would significantly influence the global change in atmospheric methane, and the main adjustment in 2014 and 2015 were to tropical wetland emissions and OH. Here we treat this as a background change and apply a uniform correction to the simulated column since emissions outside of Canada and changes in OH are treated as fixed in our Canada-focused inversion. The background change (3) is 5 ppb in 2014 and 10 ppb in 2015. The right panel of Figure S6 shows the latitude dependent bias correction and the left panel shows the resulting global time-series of GEOS-Chem total column methane from 2010–2015 after corrections are applied. The global GEOS-Chem – GOSAT differences in the methane column can be limited globally to within 10 ppb without including the seasonal bias correction, and within 5 ppb with its inclusion. This shows a steady background in methane for the entire time period from 2010–2015 so global emissions do not affect the optimization of Canadian emissions. While biases within 10 ppb have been treated as acceptable for methane inversions (Buchwitz et al., 2015), we evaluate our GOSAT inversion results against inversions with independent ECCC in situ measurements that do not require any bias corrections in the model to produce more robust emissions estimates.
Figure S6: Time series (left) from 2010–2015 of the difference between GEOS-Chem simulated total column methane and GOSAT observations after applying bias corrections, showing a consistent global background for methane. Data used in the inversion for Canada is from 45° N to 60° N (purple line) and shows acceptable differences within 5 ppb over the entire global latitude band. To produce the left figure, the latitude-dependent bias (right) is shown with the polynomial correction that is applied (gray dash) that is within a magnitude of 0.3 to 2.9 ppb for the same latitude.

S1.3.4 Sensitivity Tests of GOSAT-Constrained Emissions

We test the sensitivity of the posterior GOSAT-constrained methane emissions in our analysis to the use of latitude-dependent and seasonal bias corrections in the GEOS-Chem simulated total column of methane. The latitude-dependent bias correction has a magnitude less than 3.5 ppb for our domain of interest (45 to 60°N). On a global basis the seasonal bias correction has an amplitude of ±4 ppb with a maximum in June and a minimum in December. Figure S7 shows the sensitivity of posterior monthly emissions to these bias corrections using 2013 as an example. We show four versions of the posterior methane emissions using GOSAT data: GOSAT11 (green) is the base case which applies the latitude-dependent bias correction and the seasonal bias correction, GOSAT10 (purple) applies the latitude-dependent bias correction and does not apply the seasonal correction, GOSAT01 (orange) does not apply the latitude-dependent bias correction and applies the seasonal correction, and GOSAT00 (light blue) uses neither bias correction. The range of emissions from all four examples is 9.7 – 10.7 Tg a⁻¹, which are all consistent with the unadjusted ECCC emissions of 10.0 Tg a⁻¹ and lower than the prior emissions of 14.3 Tg a⁻¹. Not applying the latitude-dependent bias correction results in a decrease in the resulting emissions and maintains the same seasonal pattern. Not applying the seasonal bias correction results in a change in the temporal distribution of emissions that better matches the August peak in the posterior with ECCC data. Emissions are lower than the base case in the spring and higher than the base case in autumn. This change enhances the autumn-shift in emissions that has been described in Section 3.2 of the
While this may be more consistent with our interpretations, it is not clear whether the difference is due to emissions or transport biases. Stanevich et al. (2020) showed that the latitude dependent bias is most likely due to excessive polar stratospheric transport at high latitudes. If the seasonal bias is indeed due to mischaracterized natural emissions, it is not clear why the bias would be equally large in December (−4 ppb) as June (+4 ppb) on a global basis. The magnitude of natural emissions in December is much lower than June and emissions mischaracterization would not itself produce an equally large bias as the largely overestimated summertime emissions. Our analysis with ECCC data shows most of the adjustments to wetlands are in the peak of summer with some extension into the autumn. These results show that the bias corrections produce minor differences in the magnitude and seasonal pattern of emissions.

Figure S7: Sensitivity of 2013 posterior GOSAT constrained methane emissions to bias corrections used in the GEOS-Chem simulated total column of methane. For comparison, the prior in 2013 (gray) and the posterior in 2013 constrained by ECCC data (unadjusted, blue) are shown. The digits in the GOSAT label represent the binary use of bias corrections (1 = applied, 0 = not applied). The first digit corresponds to the use of the latitude bias correction, the second digit corresponds to the use of the monthly bias correction, hence GOSAT11 is the base case that applies both bias corrections and GOSAT00 is the case with no bias corrections applied.

S1.3.5 Evaluation of the Prior and Posterior Fluxes Using Global Observations Outside of the Canadian Domain

The inverse model design in this study uses a simplified approach, where Canadian emissions are optimized using only observations in Canada. The results from this approach may be sensitive to errors in the global model projected onto the Canadian domain if errors in the global model are sufficiently large relative to the local biases in Canada (Figure 4 in the main text).
text) and the observational error used in the inversion procedure (16 ppb for GOSAT, 65 ppb for ECCC). Figure S8 shows an independent evaluation of the prior global model and the posterior in this study to 2010–2015 background observations from the NOAA cooperative flask sampling network (https://gml.noaa.gov/ccgg/flask.html) outside of the Canadian domain. We use a simple version of the posterior where Canadian anthropogenic emissions are scaled up by 37% to 6.0 Tg a\(^{-1}\) and natural emissions are scaled down by 24% to 11.2 Tg a\(^{-1}\). This captures the central results of the monthly, sectoral, and provincial inversions in the main text and avoids a large number of model comparisons. The analysis shows that the prior model reasonably reproduces the methane background, and the posterior from adjusted Canadian emissions does not degrade this result. In the reduced-major axis regression, the prior r\(^2\) coefficients are in the range of 0.77–0.92 and the prior slopes are in the range of 0.94–0.97 across the three surface, ship, and aircraft datasets. In the posterior, the r\(^2\) is in the range of 0.76–0.91 and the slope is in the range of 0.93–0.96. The posterior reflects a decrease of 2.0 Tg a\(^{-1}\) in the global budget due to a net decrease in Canadian emissions, which is shown in the improvements to the mean bias comparisons. This decrease in emissions slightly improves the global model agreement with independent data in the years 2010–2013 (since the model overestimates emissions) and slightly degrades the agreement in 2014–2015 (since the model underestimates tropical emissions), which is understandable considering only Canadian emissions are adjusted and the global model is not optimized. A net decrease in Canadian emissions is consistent with previous global inversion studies using GEOS-Chem (Turner et al., 2015; Maasakkers et al., 2019). The results from the Canada-focused inversion with subnational details in this study show that the net-decrease in Canadian natural emissions masks an increase in anthropogenic emissions in Western Canada which should be considered in global inverse studies.
Figure S8: Model comparison to independent NOAA observations globally from 2010–2015. The top panel shows data used in the global model comparison. Red diamonds indicate NOAA surface flasks, purple circles indicate NOAA ship data, and blue lines indicate HIPPO III, IV and V aircraft data. Comparison of the prior and posterior emissions in GEOS-Chem is shown using a reduced-major axis regression against NOAA Surface flasks (bottom-left), HIPPO III, IV and V aircraft data (bottom-middle), and NOAA Ship data (bottom-right).

S1.4 Diagnostics of Sectoral and Provincial Inversions

In this analysis we first evaluate the correlations and/or independence of the state vector elements from the posterior error covariance matrix \hat{S} as follows (Heald et al., 2004):

$$r_{ij} = \frac{\hat{s}_{ij}}{\sqrt{\hat{s}_{ii} \hat{s}_{jj}}}$$ (2s)
The error-normalized posterior correlation matrix r provides information on the independence of the state vector elements. This is corroborated by the averaging kernel matrix A which shows which state vector elements contain independent pieces of information, with the trace of A providing the total degrees of freedom for signal for the inversion. To further evaluate the signal-to-noise ratio of the observation-constrained state vector elements and their independence from each other we use an eigenanalysis. The Jacobian matrix K is normalized about the observational and prior error covariance matrices as follows (Rodgers, 2000):

$$\tilde{K} = S_o^{-1/2} K S_a^{1/2}$$ \hspace{1cm} (3s)

The singular value decomposition of \tilde{K} gives its rank which is the number of singular values greater than one. The singular values also correspond to the signal-to-noise ratio of state vector elements and hence quantify the strength of the observational constraints on individual emissions categories.

Figure S9 shows this series of diagnostics for the sectoral (5 state vector element) inversion and Figure S10 shows the same analysis for the provincial (16 state vector element) inversion. Figure S9 (top left) shows the error-normalized correlation matrix for the sectoral inversion. The most important result is that the primary source of natural emissions, wetlands, is not correlated with the primary source of anthropogenic emissions, energy. Within the anthropogenic category however, we see that energy is strongly correlated with agriculture, showing that these two elements cannot be distinguished by the observation system. For natural emissions, other natural sources are weakly correlated with wetlands and are not completely independent. Emissions from waste are shown to be slightly more independent and can be distinguished from the other sources. The averaging kernel matrix corroborates this result, and shows the three independent pieces of information are energy, wetlands and waste, with partial information content from other natural sources and a lack of information on agriculture. The singular values show strong constraints on wetlands with a signal-to-noise ratio of 37.3, and strong constraints on energy with a signal-to-noise ratio of 5.2. Waste sources are 2.2, other natural are 1.2 and agriculture is below the noise at 0.4. These diagnostics demonstrate that a joint ECCC in situ and GOSAT satellite inversion system can successfully provide constraints on and distinguish the three major categories of methane emissions in Canada: wetlands, energy and waste. Emissions from agriculture cannot be distinguished in this system and should be aggregated with energy, this is likely because of the strong spatial overlap between these emissions in Western Canada and the lower signal from lower magnitude agriculture emissions. Emissions from other natural sources (biomass burning, seeps, and termites) also are at the noise and should be aggregated with wetlands. This is because minor natural sources are much lower in magnitude (0.8 Tg a$^{-1}$ out of 14.8 Tg a$^{-1}$) and also show spatial overlap with wetlands.
Figure S10 shows the diagnostics on the provincial (16 state vector element) inversion. This choice of state vector elements challenges the observing system and results in a largely underdetermined solution. These diagnostics allow us to identify where the limitations of the ECCC + GOSAT observing system are. The posterior error correlation matrix r shows the provincial emissions are somewhat correlated a) between anthropogenic/natural emissions of the same province and b) with neighboring provinces in the same category of emissions. For example, AB anthropogenic emissions show a small inverse correlation with AB natural emissions. AB anthropogenic emissions also show a small correlation with the anthropogenic emissions of nearby provinces BC and SK. For the natural emissions, natural emissions within a province in most cases extend correlations into the provinces to the east and west. These correlations are not as large as the case of Energy and Agriculture emissions in Fig. S9, and show a more moderate influence of nearby provinces on the optimized emissions. The primary limitation of the provincial inversion is the inability to distinguish provinces with a very small magnitude of emissions. This is shown in the averaging kernel matrix, which has a degrees of freedom for signal of 7.9 out of 16 elements. The 6 regions that are best constrained are AB anthropogenic, ON anthropogenic, AB natural, SK natural, MB natural, and ON natural, with partial constraints on BC anthropogenic, SK anthropogenic, QC anthropogenic, BC natural, QC natural and NOR natural. The singular vectors corroborate this result and show that there are 8 regions that are above the noise and 8 that are at or below the noise. The best constraints on anthropogenic emissions are in Alberta, with a signal to noise ratio as good as 15.1 (solid blue line), followed by Ontario (2.5-2.8).

These diagnostics show that the ECCC+GOSAT observing system for Canada is limited in its ability to characterize agricultural emissions, and somewhat limited in its ability to characterize non-wetlands natural emissions. Hence we present Energy+Agriculture and Wetlands+Other Natural together for our conclusions. More precise and more dense measurements at a finer scale would better disaggregate these sources, although the use of the precise in situ data is primarily limited by the model error (Section 2.3 of the main text). In the provincial inversion, the observing system provides good constraints on anthropogenic emissions from AB and ON and is capable of distinguishing these emissions from natural sources in the same province. However, anthropogenic sources from other provinces with much lower emissions cannot be distinguished. Natural emissions can be characterized from the provinces that are most responsible for wetland emissions (AB, SK, MB, ON), however the observing system struggles in Atlantic and Northern Canada where the surface and satellite observations we use are limited. The emissions adjustments to state vector elements beneath the noise are due to aliasing with other sources and compensation effects due to interprovincial transport. We limit our conclusions to simple interpretations, we use the limited provincial inversion for spatial attribution to show higher posterior anthropogenic emissions are primarily from the total in Western Canada (BC+AB+SK+MB), and not emissions in Central Canada (ON+QC).
Figure S9: Diagnostics of the sectoral inversion used to evaluate the independence and information content of the 5 state vector elements. The error-normalized posterior correlation matrix (top left) shows the correlations between elements. The averaging kernel matrix (top right) shows where the independent pieces of information are (DOFS = 3.3). The singular vector decomposition of the pre-whitened jacobian (bottom) quantifies the signal-to-noise ratio of the significant elements – these are the singular values listed above one (4 in total). The singular vector below noise (agriculture) is shown as a dashed line.
Figure S10: Similar to Fig. S9 for the 16 state vector provincial inversion. The DOFS from the averaging kernel matrix are 7.9, which are consistent with the number of singular values greater than unity in the pre-whitened jacobian matrix (8 in total). In the bottom panel, the singular vectors below the noise (corresponding to singular values less than one) are shown as light-dashed lines, these show which emissions are not constrained by observations.

A possible solution to improving the resolution of the solution is to combine all six years of data to constrain finer scale emissions for the sectoral and provincial inversions. In the presented approach inversions were completed on a yearly basis for six years to produce an average result for 2010–2015. We used the year to year variance as a representation of noise in the system and real yearly variability in the state (due to emissions and/or transport). In principle using more years of data
provides a better signal to noise ratio. However, due to the way our state vector elements are defined in the sectoral and provincial inversions, the inverse approach is sensitive to aggregation error and overfitting the fewer number of well-defined state vector elements. Overfitting can be diagnosed using the reduced chi-squared metric:

\[
\chi^2_v = \frac{\chi^2}{v} \approx \frac{\sum(y-Kx)^2}{S_0} \tag{4s}
\]

Where \(\chi^2\) is the chi-square per degree of freedom \(v\). Here, the \(\chi^2\) is equal to the ratio of the square of the innovation, \(S_0\) is the diagonal element of the observational error covariance matrix corresponding to the same observation, \(m\) is the number of rows of the observation vector and \(n\) is the number of state vector elements. A value of \(\chi^2_v\) less than one indicates overfitting.

We calculate a value of 0.65 for the total vector containing ECCC and GOSAT data which shows evidence of overfitting. Hence using a larger amount of data for the same number of state vector elements would exasperate the issue.

We further test the improvement from combining 6 years of data against independent measurements. To evaluate the differences between using a repeated 1-year approach and a 6-year approach we use independent observations from NOAA ETL aircraft measurements and ECCC CHA in situ surface measurements. Table S3 lists the metrics of agreement that were in Figure 8 and compares them to the results using all 6 years of data simultaneously, using inversions with no model background corrections for the ECCC observation vector. For the sectoral inversion, using 6 years of data provides a small improvement in the slope (0.96 vs. 0.91), no improvement in the R² (0.20) and degrades the mean bias (+4.3 ppb vs. +0.4 ppb) when comparing to NOAA ETL. Similarly with ECCC CHA data, using 6 years of data for the sectoral inversion provides an improvement in the slope (1.01 vs. 0.98), a slightly worse R² (0.43 vs. 0.44) and largely degrades the mean bias comparison (+10.6 ppb vs. +5.9 ppb). For the provincial inversion evaluation at NOAA ETL, using 6 years of data slightly degrades the slope (0.83 vs. 0.86), gives an improvement in the R² (0.27 vs. 0.22), and degrades the mean bias (+3.2 ppb vs. +0.5 ppb). The same comparison at ECCC CHA degrades agreement in the slope (0.87 vs. 0.91), improves the R² (0.51 vs. 0.47), and improves the mean bias (+4.1 ppb vs. +4.9 ppb). These results show that using 6 years of data for the subnational inversions does not improve agreement against independent data and in many cases degrades the mean bias. The inversion converges on a solution within our defined prior error matrix \(S_O\) with only one year of data. These tests show that using one year of data at a time and calculating the average and variance of the repeated results is reasonable considering the limits of the observation system towards resolve low magnitude emissions.
Table S3: Sensitivity test against independent observations

	NOAA Aircraft Observations ETL	ECCC Surface Observations CHA				
	Slope	R²	Mean Bias (ppb)	Slope	R²	Mean Bias (ppb)
Prior	1.15	0.14	+6.8	1.17	0.36	+16.4
Posterior (1 yr)	0.91	0.20	+0.4	0.98	0.44	+5.9
Posterior (6 yr)	0.96	0.20	+4.3	1.01	0.43	+10.6
Posterior (1 yr)	0.86	0.22	+0.5	0.91	0.47	+4.9
Posterior (6 yr)	0.83	0.27	+3.2	0.87	0.51	+4.1

We show a comparison of emissions estimates and methods to derive errors for the sectoral inversion in Table S4 and for the provincial inversion in Table S5. The tables compare two error estimates to three sensitivity tests. They show the error estimates from the diagonal elements of the posterior error covariance matrix \(\hat{S} \) and compares to the 1σ variance in the repeated yearly inversions. In both the sectoral and the provincial inversions, the error estimates from the diagonal elements of \(\hat{S} \) often show a more optimistic estimate of the uncertainties. This is likely due to spatial and temporal correlations in the daily-mean ECCC in situ observations and correlations in the GOSAT data that are difficult to quantify in the absence of a full OSSE study. We compare the 1σ variance from repeated yearly inversions from 2010–2015 to the relative change in posterior emissions from using only ECCC data, only GOSAT data, and using 6 years of ECCC+GOSAT data simultaneously. The 1σ yearly variance captures these differences except for state vector elements that were shown to be below the noise and highly correlated with other emissions in Figure S9 and S10. The lack of improvement against the comparison to independent data in Table S3 suggests that this may be suggestive of overfitting. We consider the agreement between the independent use of ECCC and GOSAT data to be a reliable sensitivity test to check the robustness of our results.
Table S4: Sensitivity analysis of the Sectoral (5 state vector) inversion. The error estimates from the posterior error covariance matrix are compared to the yearly variance and the change in emissions using alternative observation vectors.

Sector	Prior (Tg a\(^{-1}\))	Posterior (Tg a\(^{-1}\))	Posterior Ŝ Relative Error (%)	1σ Yearly Variance Relative Error (%)	ECCC-only (% change)	GOS-only (% change)	6-year (% change)
Energy	2.4	3.6	±11	±25	+9	−6	−24
Agriculture	1.0	1.5	±28	±25	−1	−19	+64
Waste	0.9	0.8	±25	±25	−8	+50	−29
Wetlands	14.0	9.6	±4	±11	+3	+3	+2
Other Natural	0.8	1.7	±20	±55	−31	−9	+69

Table S5: Sensitivity analysis of the Provincial (16 state vector) inversion. As per S4 error estimates from the posterior error covariance matrix are compared to the yearly variance and the change in emissions using alternative observation vectors.

Province	Prior (Tg a\(^{-1}\))	Posterior (Tg a\(^{-1}\))	Posterior Ŝ Relative Error (%)	1σ Yearly Variance Relative Error (%)	ECCC-only (% change)	GOS-only (% change)	6-year (% change)
BCA	0.5	0.8	±24	±41	−20	−11	+115
ABA	2.3	3.3	±5	±16	−6	+2	−2
SKA	0.3	0.3	±44	±37	+18	−1	+6
MBA	0.2	0.2	±50	±25	+2	+6	+22
ONA	0.5	0.5	±17	±14	−4	+11	+2
QCA	0.4	0.3	±51	±40	−4	+19	+14
ATLA	0.0	0.0	±51	±4	+1	+3	−8
NORA	0.0	0.0	±50	±1	0	0	+1
BCN	0.4	0.6	±32	±50	+2	+5	−76
ABN	2.4	1.9	±14	±34	+67	−29	−25
SKN	1.6	0.7	±28	±37	+7	−7	−4
MBN	1.5	1.4	±22	±32	+27	−6	−11
ONN	3.5	1.0	±32	±37	+12	−3	−13
QCN	1.6	1.2	±40	±41	+9	34	−51
ATLN	0.7	0.8	±39	±26	−29	+21	+48
NORN	0.7	1.9	±15	±35	−41	−2	+72
S1.5 Combined ECCC+GOSAT Monthly Inversion

Figure S11 shows the monthly inversion comparing the results from the ECCC-only inversion, the GOSAT-only inversion and the combined ECCC+GOSAT inversion. The mean 2010–2015 anthropogenic emissions in the combined inversion is 6.0 ± 0.4 Tg a\(^{-1}\). The mean 2010–2015 total natural emissions in the combined inversion is 12.0 ± 0.9 Tg a\(^{-1}\). The combined inversion agrees with the ECCC and GOSAT results and appears to follow the seasonality of natural emissions in the GOSAT-only inversion more closely. Combining the two datasets does not appear to improve the results of the individual inversions, hence the intercomparison between the ECCC-only and GOSAT-only inversions adds more value as a consistency test of the posterior results.
Figure S11: Sensitivity analysis of the results from the monthly inversion including a comparison to the combined ECCC+GOSAT inversion. Following Fig. 4 in the main text, the monthly inversion optimizes annual total Canadian anthropogenic emissions (top) and monthly total natural emissions (bottom) in an $n = 78$ state-vector element setup. The prior emissions (gray) are compared to the posterior results using GOSAT (green), and the posterior combining both ECCC and GOSAT data (purple).
References

Buchwitz, M., Reuter, M., Schneising, O., Boesch, H., Guerlet, S., Dils, B., Aben, I., Armante, R., Bergamaschi, P., Blumenstock, T., Bovensmann, H., Brunner, D., Buchmann, B., Burrows, J. P., Butz, A., Chevallier, F., Crevoisier, C. D., Deutscher, N. M., Frankenberg, C., Hase, F., Hasekamp, O. P., Heymann, J., Kaminski, T., Laeng, A., Lichtenberg, G., De Mazière, M., Noël, S., Orphal, J., Popp, C., Parker, R., Scholze, M., Sussmann, R., Stiller, G. P., Warneke, T., Zehner, C., Bril, A., Crisp, D., Griffith, D. W. T., Kuze, A., O’Dell, C., Oshchepkov, S., Sherlock, V., Suto, H., Wennberg, P., Wunch, D., Yokota, T. and Yoshida, Y.: The Greenhouse Gas Climate Change Initiative (GHG-CCI): Comparison and quality assessment of near-surface-sensitive satellite-derived CO2 and CH4 global data sets, Remote Sensing of Environment, 162, 344–362, doi:10.1016/j.rse.2013.04.024, 2015.

Heald, C. L., Jacob, D. J., Jones, D. B. A., Palmer, P. I., Logan, J. A., Streets, D. G., Sachse, G. W., Gille, J. C., Hoffman, R. N. and Nehrkm, T.: Comparative inverse analysis of satellite (MOPITT) and aircraft (TRACE-P) observations to estimate Asian sources of carbon monoxide: COMPARATIVE INVERSE ANALYSIS, J. Geophys. Res., 109(D23), doi:10.1029/2004JD005185, 2004.

Hutchinson, M. F., McKenney, D. W., Lawrence, K., Pedlar, J. H., Hopkinson, R. F., Milewska, E. and Papadopol, P.: Development and Testing of Canada-Wide Interpolated Spatial Models of Daily Minimum–Maximum Temperature and Precipitation for 1961–2003, Journal of Applied Meteorology and Climatology, 48(4), 725–741, doi:10.1175/2008JAMC1979.1, 2009.

Maasakkers, J. D., Jacob, D. J., Sulprizio, M. P., Scarpelli, T. R., Nesser, H., Sheng, J.-X., Zhang, Y., Hersher, M., Bloom, A. A., Bowman, K. W., Worden, J. R., Janssens-Maenhout, G. and Parker, R. J.: Global distribution of methane emissions, emission trends, and OH concentrations and trends inferred from an inversion of GOSAT satellite data for 2010–2015, Atmos. Chem. Phys., 19(11), 7859–7881, doi:10.5194/acp-19-7859-2019, 2019.

Maasakkers, J. D., Jacob, D. J., Sulprizio, M. P., Scarpelli, T. R., Nesser, H., Sheng, J., Zhang, Y., Lu, X., Bloom, A. A., Bowman, K. W., Worden, J. R., and Parker, R. J.: 2010–2015 North American methane emissions, sectoral contributions, and trends: a high-resolution inversion of GOSAT observations of atmospheric methane, Atmos. Chem. Phys., 21, 4339–4356, https://doi.org/10.5194/acp-21-4339-2021, 2021.

Miller, S. M., Commane, R., Melton, J. R., Andrews, A. E., Benmergui, J., Dlugokencky, E. J., Janssens-Maenhout, G., Michalak, A. M., Sweeney, C. and Worthy, D. E. J.: Evaluation of wetland methane emissions across North America using atmospheric data and inverse modeling, Biogeosciences, 13(4), 1329–1339, doi:10.5194/bg-13-1329-2016, 2016.

24
Saad, K. M., Wunch, D., Deutscher, N. M., Griffith, D. W. T., Hase, F., De Mazière, M., Notholt, J., Pollard, D. F., Roehl, C. M., Schneider, M., Sussmann, R., Warneke, T., and Wennberg, P. O.: Seasonal variability of stratospheric methane: implications for constraining tropospheric methane budgets using total column observations, Atmos. Chem. Phys., 16, 14003–14024, https://doi.org/10.5194/acp-16-14003-2016, 2016.

Stanevich, I., Jones, D. B. A., Strong, K., Parker, R. J., Boesch, H., Wunch, D., Notholt, J., Petri, C., Warneke, T., Sussmann, R., Schneider, M., Hase, F., Kivi, R., Deutscher, N. M., Velazco, V. A., Walker, K. A., and Deng, F.: Characterizing model errors in chemical transport modeling of methane: impact of model resolution in versions v9-02 of GEOS-Chem and v35j of its adjoint model, Geosci. Model Dev., 13, 3839–3862, https://doi.org/10.5194/gmd-13-3839-2020, 2020.

Turner, A. J., Jacob, D. J., Wecht, K. J., Maasakkers, J. D., Lundgren, E., Andrews, A. E., Biraud, S. C., Boesch, H., Bowman, K. W., Deutscher, N. M., Dubey, M. K., Griffith, D. W. T., Hase, F., Kuze, A., Notholt, J., Ohyama, H., Parker, R., Payne, V. H., Sussmann, R., Sweeney, C., Velazco, V. A., Warneke, T., Wennberg, P. O. and Wunch, D.: Estimating global and North American methane emissions with high spatial resolution using GOSAT satellite data, Atmos. Chem. Phys., 15(12), 7049–7069, doi:10.5194/acp-15-7049-2015, 2015.

Zona, D., Gioli, B., Commame, R., Lindaas, J., Wofsy, S. C., Miller, C. E., Dinardo, S. J., Dengel, S., Sweeney, C., Karion, A., Chang, R. Y.-W., Henderson, J. M., Murphy, P. C., Goodrich, J. P., Moreaux, V., Liljedahl, A., Watts, J. D., Kimball, J. S., Lipson, D. A. and Oechel, W. C.: Cold season emissions dominate the Arctic tundra methane budget, Proc Natl Acad Sci USA, 113(1), 40–45, doi:10.1073/pnas.1516017113, 2016.