ST-ABN: Visual Explanation Taking into Account Spatio-temporal Information for Video Recognition

Masahiro Mitsuhara
mitsuhara@mprg.cs.chubu.ac.jp

Tsubasa Hirakawa
hirakawa@mprg.cs.chubu.ac.jp

Takayoshi Yamashita
takayoshi@isc.chubu.ac.jp

Hironobu Fujiyoshi
fujiyoshi@isc.chubu.ac.jp

1 Department of Robotic Science and Technology
Graduate School of Engineering
Chubu University
1200 Matsumoto, Kasugai
Aichi, 487-8501, Japan

2 Center for Mathematical Science and Artificial Intelligence
Chubu University
1200 Matsumoto, Kasugai
Aichi, 487-8501, Japan

Abstract

It is difficult for people to interpret the decision-making in the inference process of deep neural networks. Visual explanation is one method for interpreting the decision-making of deep learning. It analyzes the decision-making of 2D CNNs by visualizing an attention map that highlights discriminative regions. Visual explanation for interpreting the decision-making process in video recognition is more difficult because it is necessary to consider not only spatial but also temporal information, which is different from the case of still images. In this paper, we propose a visual explanation method called spatio-temporal attention branch network (ST-ABN) for video recognition. It enables visual explanation for both spatial and temporal information. ST-ABN acquires the importance of spatial and temporal information during network inference and applies it to recognition processing to improve recognition performance and visual explainability. Experimental results with Something-Something datasets V1 & V2 demonstrated that ST-ABN enables visual explanation that takes into account spatial and temporal information simultaneously and improves recognition performance.

1 Introduction

Convolutional neural networks (CNNs) [1, 30], which achieved higher image classification performance, have been applied to video recognition tasks. CNN-based video recognition methods can be categorized as either 2D CNN-based [7, 9, 12, 13, 19, 28, 31, 33, 34, 47, 54, 63, 68] or 3D CNN-based [3, 14, 21, 26, 43, 50, 51, 55, 60, 66, 69, 72]. Most 2D CNN-based methods involve using a two-stream network structure [12, 13, 19, 47, 63] where each
video frame and an optical flow are input to two different CNNs. The two-stream methods then learns spatial and temporal information simultaneously by fusing spatial and temporal feature maps obtained from the two input networks. 3D CNN-based methods use a 3D convolution that extends the 2D convolution in the temporal direction. By stacking multiple 3D convolution layers, 3D CNNs can extract spatio-temporal features.

These methods achieve high recognition performance. However, these methods suffer from understanding the decision-making process of the recognition results during inference, which is a common problem with CNN-based image recognition methods. Visual explanation methods have been widely investigated as image classification methods to interpret the basis of a CNN’s decisions. As shown in Fig. 1(a), visual explanation methods [4, 15, 16, 17, 25, 41, 42, 44, 45, 48, 49, 64, 67] analyze the decision-making of a 2D CNNs by visualizing an attention map that highlights discriminative regions. Typical visual explanation methods include class activation mapping (CAM) and gradient-weighted class activation mapping (Grad-CAM). CAM outputs an attention map by using the response of the convolution layer. Grad-CAM outputs an attention map by using the positive gradients of a specific category. Although these methods enable us to interpret the basis for a CNN’s decisions, such interpretation using CNN-based video recognition methods is still challenging. The reason is that video recognition requires not only spatial but also temporal information.

To solve this problem, we propose a visual explanation method for video recognition called spatio-temporal attention branch network (ST-ABN). Figure 1(b) illustrates an overview of the ST-ABN. It consists of 3D CNN and an attention module that outputs spatial and temporal attentions simultaneously. We introduce an spatio-temporal (ST) attention branch that takes into account both spatial and temporal information. Spatial attention highlights the importance of spatial information for each temporal segment. Temporal attention represents the importance of temporal information. We also apply an attention mechanism [2, 5, 24, 29, ...]
by weighting the acquired importance of spatial and temporal information to feature maps obtained from a feature extractor. This enables network training with a focus on significant spatio-temporal features for video recognition, improving recognition accuracy.

2 Related Work

In this section, we introduce CNN-based video recognition methods and visual explanations.

2.1 Video Recognition

CNN-based video recognition methods can be categorized as either 2D CNN-based [7, 9, 12, 13, 19, 28, 31, 33, 34, 47, 54, 63, 68] or 3D CNN-based [3, 14, 21, 26, 43, 50, 51, 55, 60, 66, 69, 72].

The 2D CNN-based methods apply 2D convolution to extract feature maps from each video frame and aggregate frame-by-frame information. These methods typically use a two-stream network structure [12, 13, 19, 47, 63] in which each frame and the optical flow of motion information are input to two separate CNNs. Each network extracts spatial features from video frames and temporal features representing motion context from an optical flow. The spatial and temporal features are then fused. Temporal segment networks (TSN) [54], which are derived from these methods, learn in video units instead of frame units. A temporal relation network (TRN) [68] replaces an average pooling operation that aggregates spatial and temporal, i.e., motion, features with an interpretable relational module. A temporal shift module (TSM) [34] can learn the temporal relationships between neighboring video frames without any additional computational costs. These 2D CNN-based methods fuse the spatial and temporal features extracted from different networks separately. Therefore, 2D CNN-based methods are vulnerable to discrepancy between two network outputs, and it is difficult to learn the inter-relationship between spatial and temporal information.

The 3D CNN-based video recognition methods use 3D convolution that extend a 2D convolution into spatial and temporal directions. The 3D CNN-based methods extract spatio-temporal features by stacking multiple 3D convolution layers [26, 50]. Unlike 2D CNN-based methods, the extracted spatio-temporal features take into account the inter-relationship between spatial and temporal information. Various 3D CNN-based methods have been proposed such as inflating 2D convolution kernels [3], decomposing 3D convolution kernels [43, 51, 60, 66], and the slowfast networks [14] that is a two-stream network structure for extracting spatial features at a low temporal resolution and motion features at a high temporal resolution.

Video recognition methods that use an attention mechanism [2, 5, 24, 29, 38, 40, 52, 53, 56, 58, 61, 62, 65] have also been proposed [6, 10, 18, 46, 56, 59, 70]. Non-local neural networks [56], which are commonly used for introducing an attention mechanism, improve the accuracy of video recognition by capturing long-distance temporal dependency with a non-local operation capable of providing global information.

Although these 2D and 3D CNN-based video recognition methods have achieved high recognition performance, the decision-making process for network inference results is unclear. The difficulty in interpreting the video recognition decision-making process is that not only spatial but also temporal information needs to be taken into account.
2.2 Visual Explanation

Visual explanation \([4, 15, 16, 17, 25, 41, 42, 44, 45, 48, 49, 64, 67]\) is often used to interpret the decision-making of deep learning and has been widely investigated in image classification tasks. Visual explanation in an image classification task analyzes the decision-making of 2D CNNs by visualizing an attention map that highlights discriminative regions.

Visual explanation methods can be categorized into two approaches: gradient-based, which outputs an attention map using gradients, and response-based, which outputs an attention map using the response of the convolution layer. Grad-CAM \([44]\), one of the gradient-based method, obtains an attention map for a specific category by using the response of the convolution layer and a positive gradient in the backpropagation process. Grad-CAM can be used for various pre-trained models. One of the response-based visual explanation methods is CAM \([67]\), which outputs an attention map by using a \(K\) channel feature map from the convolution layer of each category. The attention maps of each category are calculated using the \(K\) channel feature map and the weight at a fully connected layer. However, CAM degrades recognition accuracy because spatial information is removed due to the global average pooling (GAP) \([35]\) layer between the convolution and fully connected layers. To solve this problem, the attention branch network (ABN) was proposed \([17]\), which extends an attention map for visual explanation to an attention mechanism. By applying an attention map to the attention mechanism, the ABN improves recognition performance and obtains an attention map simultaneously. These visual explanation methods can be applied to video to visualize spatial attention at each frame.

However, these attention maps are not referred to as the importance of temporal information. We aim to consider visual explanation of spatial and temporal information to video recognition.

3 Proposed Method

In this paper, we propose a spatio-temporal attention branch network (ST-ABN), which enables visual explanation that takes into account the importance of spatial information and temporal information in video simultaneously. As shown in Fig. 2, ST-ABN involves three
modules: a feature extractor, spatio-temporal (ST) attention branch, and perception branch. The feature extractor consists of multiple convolution layers and outputs feature maps from the inputs. We introduce an ST attention branch that outputs spatial attention, which indicates the importance of spatial information, and temporal attention, which indicates the importance of temporal information, in a network based on 3D CNNs. The perception branch inputs feature maps with spatial and temporal attentions weighted on the feature maps by the attention mechanism and outputs the probability of each class.

3.1 Spatio-Temporal Attention Branch

As shown in Fig. 2, the ST attention branch generates spatial attention that represents the importance of spatial information and temporal attention, indicating the importance of temporal information. The ST attention branch also outputs the classification results via 3D global average pooling (3D GAP). In the ST attention branch, the feature maps output from the feature extractor are first fed into the 3D convolution layers consisting of multiple residual blocks, which have the same structure as the perception branch. We set the stride of the convolution layer at the first residual block as 1 to maintain the resolution of the feature maps. The feature maps from the 3D convolution layers are then input to another 3D convolution layer of $K \times T \times W \times H$, where K indicates the number of classes and T indicates the number of frames. In other words, we can obtain K feature maps for each frame. The feature maps, the size of which is $K \times T \times W \times H$, are input to the $K \times T \times W \times H$ 3D convolution layer, 3D GAP, and a softmax function. As a result, we can obtain the classification probabilities for each class.

Spatial Attention
We generate spatial attention from the above-mentioned $K \times T \times W \times H$ feature maps. We apply a $1 \times T \times W \times H$ 3D convolution layer for the $K \times T \times W \times H$ feature maps and obtain a single $1 \times T \times W \times H$ feature map for each frame. This means that we aggregate the K feature maps with respect to each video frame into a single feature map. After that, we can obtain a spatial attention map M_s for each frame by applying a sigmoid function.

Temporal Attention
Similar to spatial attention, we generate temporal attention from the $K \times T \times W \times H$ feature maps. These feature maps are first aggregated into a single $1 \times T \times W \times H$ feature map with respect to each frame by applying a $1 \times T \times 3 \times 3$ 3D convolution layer. The channel dimensions of the $1 \times T \times W \times H$ feature maps are then reduced and transformed into $T \times W \times H$ feature maps. The $T \times W \times H$ feature maps are further input to a $T \times 1 \times 1$ 2D convolution layer, and $T \times W \times H$ feature maps are obtained. We calculate the mean value of each feature map in the spatial direction by the convolution layer with the number of channels for the number of frames and GAP. Finally, the temporal attention is generated via the fully connected layer, rectified linear unit (ReLU), and sigmoid functions. Here, we adopt a simple gating mechanism that uses sigmoid functions such as squeeze-and-excitation networks (SENet) [24]. This enables our network model to emphasize multiple frames instead of only a single frame.

3.2 Attention Mechanism

The spatial and temporal attentions acquired from the ST attention branch is further used as an attention mechanism for weighting feature maps. Let x_i be the i-th sample in a dataset and
\(f(x_i) \) be the corresponding feature maps obtained from the feature extractor. The weighted feature maps \(f'_s(x_i) \) by spatial attention \(M_s(x_i) \) is defined as

\[
f'_s(x_i) = (1 + M_s(x_i) \cdot f(x_i)).
\] (1)

For spatial attention, we apply a residual mechanism [53] and add the unweighted feature maps to the weighted feature maps. This can suppress the disappearance of the feature maps, and the attention maps can be efficiently reflected in the recognition. The attention mechanism with the temporal attention \(M_t(x_i) \) calculates the weighted feature maps \(f'_t(x_i) \) as

\[
f'_t(x_i) = M_t(x_i) \cdot f(x_i).
\] (2)

For the temporal attention mechanism, we apply simple weighting and do not use a residual attention mechanism.

These \(f'_s(x_i) \) and \(f'_t(x_i) \) are combined in the channel direction by

\[
f'(x_i) = \text{conv}_\theta (\text{concat}[f'_s(x_i), f'_t(x_i)])
\] (3)

where \(f'(x_i) \) denotes the concatenated feature maps. The number of channels is doubled because the two feature maps are channel-wise concatenated. The concatenated \(f'(x_i) \) are then integrated by applying the 3D convolution layer of \(C/2 \times T \times 1 \times 1 \) that halves the number of channels of the concatenated feature maps. These integrated feature maps are inputted into the perception branch, and the final recognition results are obtained. This enables learning focusing on important spatio-temporal features.

3.3 Training

The loss function of ST-ABN \(\mathcal{L}(x_i) \) is calculated as

\[
\mathcal{L}(x_i) = \mathcal{L}_{\text{att}}(x_i) + \mathcal{L}_{\text{per}}(x_i),
\] (4)

where \(\mathcal{L}_{\text{att}}(x_i) \) denotes the training loss at the ST attention branch, and \(\mathcal{L}_{\text{per}}(x_i) \) denotes the training loss at the perception branch. The \(\mathcal{L}_{\text{att}}(x_i) \) and \(\mathcal{L}_{\text{per}}(x_i) \) can be calculated by the softmax function and cross-entropy error. The loss function of ST-ABN is trained in an end-to-end manner.

3.4 Implementation Details

In this section, we explain the implementation of ST-ABN. ST-ABN is constructed by dividing a backbone network into a feature extractor and perception branch and adding an ST attention branch between the feature extractor and perception branch. Therefore, it can be easily introduced into various network models (e.g., C3D, 3D ResNet). In this study, we used 3D ResNet, which is a temporal direction inflated version of ResNet [22], as the backbone network. Specifically, ST-ABN is constructed using 3D ResNet based on the slow pathway of slowfast networks [14]. The spatial dimension of the input is \(224 \times 224 \), and input data size is \(C \times T \times W \times H \). We apply a dropout [23] of 0.5 for the ST attention branch and perception branch to suppress overfitting.
Table 1: Performance evaluation (top-1 and top-5 accuracies) of conventional methods and ST-ABN for Something-Something datasets V1 & V2 [%]

4 Experiments

We evaluated the effectiveness of ST-ABN using Something-Something datasets V1 & V2, which are benchmarks for action recognition. We first compared the recognition accuracy of ST-ABN, with those of conventional methods. We also qualitatively and quantitatively evaluated the explainability of spatial and temporal attentions.

4.1 Datasets

Something-Something datasets V1 & V2 [20] are used as benchmarks for large-scale action recognition, and they recognize 174 basic actions of a person handling everyday objects. The length of the videos ranges from 2 to 6 seconds. Something-Something dataset V1 contains 108,499 videos, and the training, validation, and evaluation data contain 168,913, 24,777, and 27,157 videos, respectively. Something-Something dataset V2 is a dataset that expands the number of videos in V1 by more than 2 times and contains 220,847 videos. The training, validation, and evaluation data contain 168,913, 24,777, and 27,157 videos, respectively. We conducted experiments using the training and validation data from these datasets.

4.2 Experiment Details

We used Something-Something datasets V1 & V2 to compare the recognition accuracies among conventional methods and ST-ABN. The backbone networks of ST-ABN were 3D ResNet-50 and 3D ResNet-101. As for the number of frames to be input, the recognition accuracies were compared between the case of inputting 32 frames selected at random and that
Figure 3: Visualization results of spatial attention and temporal attention for Something-Something dataset V2. Figures (a), (b), and (c) show the obtained attentions for video samples. From top to bottom, each figure shows input video frames, the corresponding temporal attention, spatial attention, and action class.

of inputting two 32 frames in which the input video is randomly divided into two segments. We optimized the networks by stochastic gradient descent (SGD) with momentum and set a momentum and weight decay of 0.9 and 0.0005, respectively. We used over 8 GPUs, and each GPU had a batch-size of 8, resulting in a mini-batch of 64 in total. Our models were initialized using pre-trained models on ImageNet [8]. All models started training at a learning rate of 0.01, and the learning rate was multiplied by 1/10 after the saturation of the validation loss.

4.3 Comparison with Conventional Methods

We compared the performances of various conventional methods and ST-ABN. ST-ABN performed better than the state-of-the-art methods. Table 1 shows the top-1 and top-5 accuracies of a comparison between the conventional methods and ST-ABN for Something-Something datasets V1 & V2. ST-ABN performed the best, indicating that recognition accuracy can be improved by applying spatial attention and temporal attention to the recognition process through the attention mechanism.

4.4 Evaluation of Attention

We qualitatively and quantitatively evaluated the visual explanation of the spatial and temporal attentions.

Qualitative Evaluation We visualized spatial and temporal attentions through qualitative evaluation. Figure 3 shows examples of visualized spatial and temporal attentions. For spatial attention, we visualized the attention maps of each frame as heat maps. The temporal
attention of each frame was visualized as the colors of a heat map. The color bar corresponding to each frame is a color representation of the weight of the temporal attention.

From the visualization results of spatial attention, spatial attention strongly highlights the hand regions handling any object and weakly highlights the object to be handled.

From the results of temporal attention, large weight outputs correspond to frames with the motion representing the class of action recognition. Furthermore, frames in which action took place were continuously outputting large weight values. This temporal attention provides intuitive insights into the attention mechanism of ST-ABN.

These results indicate that ST-ABN can enable visual explanation that takes into account both spatial and temporal information simultaneously.

Quantitative Evaluation To quantitatively evaluate the explanatory nature of spatial and temporal attentions, these attentions were reversed. We then carried out inference with the inverted spatial and temporal attentions were then carried out and compared the recognition accuracy of ST-ABN were compared with and without inverted attention to confirm the effectiveness of spatial and temporal information for recognition. Spatial attention and temporal attention are inverted by

$$M_{\text{inverse}}(x_i) = 1 - M(x_i),$$

where $M(x_i)$ represents spatial and temporal attentions, and $M_{\text{inverse}}(x_i)$ represents inverted spatial and temporal attentions. In this experiment, we compared four conditions: no reversal, reversal of spatial attention only, reversal of temporal attention only, and reversal of spatial and temporal attentions.

Table 2 shows the results of a comparing the recognition accuracy of ST-ABN by reversal of spatial and temporal attentions for Something-Something datasets V1 & V2. The recognition accuracy decreased when only spatial attention was reversed and when only temporal attention was reversed. Reversing both spatial and temporal attentions drastically reduced recognition accuracy. Therefore, effective attention regions for recognition were obtained because the recognition accuracy substantially decreased by reversing the spatial and temporal attentions.

Attention	Something-Something V1	Something-Something V2		
	Top-1	Top-5	Top-1	Top-5
✓	53.3	82.0	64.1	89.6
✓ ✓	28.8	57.8	32.3	60.2
✓ ✓ ✓	20.0	50.6	43.1	72.5
✓ ✓ ✓ ✓	6.9	24.3	14.2	33.5

Table 2: Comparison of top-1 and top-5 accuracies when spatial and temporal attentions were inverted for Something-Something datasets V1 & V2 [%]

5 Conclusion

In this paper, we proposed a spatio-temporal attention branch network (ST-ABN) for video recognition for visual explanation for both spatial and temporal information. ST-ABN acquires the importance of spatial and temporal information during the inference of 3D CNN-based models, which can be applied to the attention mechanism to improve the visual explanation and recognition performance. Experimental results with Something-Something datasets V1 & V2 showed that ST-ABN improves the top-1 and top-5 accuracy compared
with conventional methods. In a qualitative evaluation of spatial and temporal attentions, ST-ABN enabled visual explanation that takes spatial and temporal information into account simultaneously. In a quantitative evaluation of spatial and temporal attentions, we demonstrated that reversing spatial and temporal attentions significantly reduced the recognition accuracy and obtained effective attention regions for recognition. Our future work is to extend ST-ABN for other video recognition tasks.

References

[1] Krizhevsky Alex, Ilya Sutskever, and Geoffrey E. Hinton. Imagenet classification with deep convolutional neural networks. In Advances in Neural Information Processing Systems, pages 1097–1105, 2012.

[2] Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. Neural machine translation by jointly learning to align and translate. In International Conference on Learning Representations, 2016.

[3] Joao Carreira and Andrew Zisserman. Quo vadis, action recognition? a new model and the kinetics dataset. In 2017 IEEE Conference on Computer Vision and Pattern Recognition, pages 6299–6308, 2017.

[4] Aditya Chattopadhay, Anirban Sarkar, Prantik Howlader, and Vineeth N Balasubramanian. Grad-CAM++: Generalized gradient-based visual explanations for deep convolutional networks. In 2018 IEEE Winter Conference on Applications of Computer Vision, pages 839–847, 2018.

[5] Long Chen, Hanwang Zhang, Jun Xiao, Liqiang Nie, Jian Shao, Wei Liu, and Tat-Seng Chua. Sca-cnn: Spatial and channel-wise attention in convolutional networks for image captioning. In 2017 IEEE Conference on Computer Vision and Pattern Recognition, pages 5659–5667, 2017.

[6] Yunpeng Chen, Yannis Kalantidis, Jianshu Li, Shuicheng Yan, and Jiashi Feng. A^2-nets: Double attention networks. In Advances in Neural Information Processing Systems, pages 352–361, 2018.

[7] Nieves Crasto, Philippe Weinzaepfel, Karteek Alahari, and Cordelia Schmid. Mars: Motion-augmented rgb stream for action recognition. In 2019 IEEE Conference on Computer Vision and Pattern Recognition, pages 7882–7891, 2019.

[8] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale hierarchical image database. In 2009 IEEE Conference on Computer Vision and Pattern Recognition, pages 248–255, 2009.

[9] Ali Diba, Vivek Sharma, and Luc Van Gool. Deep temporal linear encoding networks. In 2017 IEEE Conference on Computer Vision and Pattern Recognition, pages 2329–2338, 2017.

[10] Wenbin Du, Yali Wang, and Yu Qiao. Rpan: An end-to-end recurrent pose-attention network for action recognition in videos. In 2017 IEEE International Conference on Computer Vision, pages 3725–3734, 2017.
[11] Quanfu Fan, Chun-Fu (Richard) Chen, Hilde Kuehne, Marco Pistoia, and David Cox. More is less: Learning efficient video representations by big-little network and depthwise temporal aggregation. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d’Alché-Buc, E. Fox, and R. Garnett, editors, Advances in Neural Information Processing Systems, volume 32. Curran Associates, Inc., 2019. URL https://proceedings.neurips.cc/paper/2019/file/3d779cae2d46cf6a8a99a35ba4167977-Paper.pdf.

[12] Christoph Feichtenhofer, Axel Pinz, and Andrew Zisserman. Convolutional two-stream network fusion for video action recognition. In 2016 IEEE Conference on Computer Vision and Pattern Recognition, pages 1933–1941, 2016.

[13] Christoph Feichtenhofer, Axel Pinz, and Richard P Wildes. Spatiotemporal multiplier networks for video action recognition. In 2017 IEEE Conference on Computer Vision and Pattern Recognition, pages 4768–4777, 2017.

[14] Christoph Feichtenhofer, Haoqi Fan, Jitendra Malik, and Kaiming He. Slowfast networks for video recognition. In 2019 IEEE International Conference on Computer Vision, pages 6202–6211, 2019.

[15] Ruth Fong, Mandela Patrick, and Andrea Vedaldi. Understanding deep networks via extremal perturbations and smooth masks. In 2019 IEEE International Conference on Computer Vision, pages 2950–2958, 2019.

[16] Ruth C Fong and Andrea Vedaldi. Interpretable explanations of black boxes by meaningful perturbation. In 2017 IEEE International Conference on Computer Vision, pages 3429–3437, 2017.

[17] Hiroshi Fukui, Tsubasa Hirakawa, Takayoshi Yamashita, and Hironobu Fujiiyoshi. Attention branch network: Learning of attention mechanism for visual explanation. In 2019 IEEE Conference on Computer Vision and Pattern Recognition, pages 10705–10714, 2019.

[18] Rohit Girdhar and Deva Ramanan. Attentional pooling for action recognition. In Advances in Neural Information Processing Systems, pages 34–45, 2017.

[19] Rohit Girdhar, Deva Ramanan, Abhinav Gupta, Josef Sivic, and Bryan Russell. Actionvlad: Learning spatio-temporal aggregation for action classification. In 2017 IEEE Conference on Computer Vision and Pattern Recognition, pages 971–980, 2017.

[20] Raghav Goyal, Samira Ebrahimi Kahou, Vincent Michalski, Joanna Materzynska, Susanne Westphal, Heuna Kim, Valentin Haenel, Ingo Fruend, Peter Yianilos, Moritz Mueller-Freitag, et al. The” something something” video database for learning and evaluating visual common sense. In 2017 IEEE International Conference on Computer Vision, volume 1, page 5, 2017.

[21] Kensho Hara, Hirokatsu Kataoka, and Yutaka Satoh. Can spatiotemporal 3d cnns retrace the history of 2d cnns and imagenet? In 2018 IEEE Conference on Computer Vision and Pattern Recognition, pages 6546–6555, 2018.

[22] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recognition. In 2016 IEEE Conference on Computer Vision and Pattern Recognition, pages 770–778, 2016.
[23] Geoffrey E Hinton, Nitish Srivastava, Alex Krizhevsky, Ilya Sutskever, and Ruslan R Salakhutdinov. Improving neural networks by preventing co-adaptation of feature detectors. arXiv preprint arXiv:1207.0580, 2012.

[24] Jie Hu, Li Shen, and Gang Sun. Squeeze-and-excitation networks. In 2018 IEEE Conference on Computer Vision and Pattern Recognition, pages 7132–7141, 2018.

[25] Saumya Jetley, Nicholas A. Lord, Namhoon Lee, and Philip Torr. Learn to pay attention. In International Conference on Learning Representations, 2018. URL https://openreview.net/forum?id=HyzbhfWRW.

[26] Shuiwang Ji, Wei Xu, Ming Yang, and Kai Yu. 3d convolutional neural networks for human action recognition. IEEE transactions on pattern analysis and machine intelligence, 35(1):221–231, 2012.

[27] Boyuan Jiang, MengMeng Wang, Weihao Gan, Wei Wu, and Junjie Yan. Stm: Spatiotemporal and motion encoding for action recognition. In 2019 IEEE International Conference on Computer Vision, pages 2000–2009, 2019.

[28] Andrej Karpathy, George Toderici, Sanketh Shetty, Thomas Leung, Rahul Sukthankar, and Li Fei-Fei. Large-scale video classification with convolutional neural networks. In 2014 IEEE Conference on Computer Vision and Pattern Recognition, pages 1725–1732, 2014.

[29] Xu Kelvin, Ba Jimmy, Kiros Ryan, Cho Kyunghyun, Courville Aaron, Salakhudinov Ruslan, Zemel Rich, and Bengio Yoshua. Show, attend and tell: Neural image caption generation with visual attention. In International Conference on Machine Learning, pages 2048–2057, 2015.

[30] Y. LeCun, B. Boser, J. S. Denker, D. Henderson, R. E. Howard, W. Hubbard, and L. D. Jackel. Backpropagation applied to handwritten zip code recognition. Neural Computation, 1(4):541–551, 1989.

[31] Myunggi Lee, Seungeui Lee, Sungjoon Son, Gyutae Park, and Nojun Kwak. Motion feature network: Fixed motion filter for action recognition. In European Conference on Computer Vision, pages 387–403, 2018.

[32] Xianhang Li, Yali Wang, Zhipeng Zhou, and Yu Qiao. Smallbignet: Integrating core and contextual views for video classification. In 2020 IEEE Conference on Computer Vision and Pattern Recognition, pages 1092–1101, 2020.

[33] Yan Li, Bin Ji, Xintian Shi, Jianguo Zhang, Bin Kang, and Limin Wang. Tea: Temporal excitation and aggregation for action recognition. In 2020 IEEE Conference on Computer Vision and Pattern Recognition, pages 909–918, 2020.

[34] Ji Lin, Chuang Gan, and Song Han. Tsm: Temporal shift module for efficient video understanding. In 2019 IEEE International Conference on Computer Vision, pages 7083–7093, 2019.

[35] Min Lin, Qiang Chen, and Shuicheng Yan. Network in network. In International Conference on Learning Representations, Banff, AB, Canada, April 14-16, 2014, Conference Track Proceedings, 2014. URL http://arxiv.org/abs/1312.4400.
[36] Xingyu Liu, Joon-Young Lee, and Hailin Jin. Learning video representations from correspondence proposals. In 2019 IEEE Conference on Computer Vision and Pattern Recognition, pages 4273–4281, 2019.

[37] Chenxu Luo and Alan L Yuille. Grouped spatial-temporal aggregation for efficient action recognition. In 2019 IEEE International Conference on Computer Vision, pages 5512–5521, 2019.

[38] Thang Luong, Hieu Pham, and Christopher D. Manning. Effective approaches to attention-based neural machine translation. In Empirical Methods in Natural Language Processing, pages 1412–1421, 2015.

[39] Brais Martinez, Davide Modolo, Yuanjun Xiong, and Joseph Tighe. Action recognition with spatial-temporal discriminative filter banks. In 2019 IEEE International Conference on Computer Vision, pages 5482–5491, 2019.

[40] Volodymyr Mnih, Nicolas Heess, Alex Graves, and koray kavukcuoglu. Recurrent models of visual attention. In Neural Information Processing Systems, pages 2204–2212, 2014.

[41] Grégoire Montavon, Wojciech Samek, and Klaus-Robert Müller. Methods for interpreting and understanding deep neural networks. Digital Signal Processing, 73:1–15, 2018.

[42] Vitali Petsiuk, Abir Das, and Kate Saenko. Rise: Randomized input sampling for explanation of black-box models. In British Machine Vision Conference, 2018.

[43] Zhaofan Qiu, Ting Yao, and Tao Mei. Learning spatio-temporal representation with pseudo-3d residual networks. In 2017 IEEE International Conference on Computer Vision, pages 5533–5541, 2017.

[44] Selvaraju Ramprasaath, R., Cogswell Michael, Das Abhishek, Vedantam Ramakrishna, Parikh Devi, and Batra Dhruv. Grad-CAM: Visual explanations from deep networks via gradient-based localization. In 2017 IEEE International Conference on Computer Vision, pages 618–626, 2017.

[45] Marco Tulio Ribeiro, Sameer Singh, and Carlos Guestrin. Why should I trust you?: Explaining the predictions of any classifier. In 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pages 1135–1144, 2016.

[46] Shikhar Sharma, Ryan Kiros, and Ruslan Salakhutdinov. Action recognition using visual attention. arXiv preprint arXiv:1511.04119, 2015.

[47] Karen Simonyan and Andrew Zisserman. Two-stream convolutional networks for action recognition in videos. In Advances in Neural Information Processing Systems, pages 568–576, 2014.

[48] Daniel Smilkov, Nikhil Thorat, Been Kim, Fernanda Viégas, and Martin Wattenberg. Smoothgrad: removing noise by adding noise. arXiv preprint arXiv:1706.03825, 2017.

[49] Jost Tobias Springenberg, Alexey Dosovitskiy, Thomas Brox, and Martin A. Riedmiller. Striving for simplicity: The all convolutional net. In International Conference on Learning Representations, 2015.
[50] Du Tran, Lubomir Bourdev, Rob Fergus, Lorenzo Torresani, and Manohar Paluri. Learning spatiotemporal features with 3d convolutional networks. In 2015 IEEE International Conference on Computer Vision, pages 4489–4497, 2015.

[51] Du Tran, Heng Wang, Lorenzo Torresani, Jamie Ray, Yann LeCun, and Manohar Paluri. A closer look at spatiotemporal convolutions for action recognition. In 2018 IEEE Conference on Computer Vision and Pattern Recognition, pages 6450–6459, 2018.

[52] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. In Advances in Neural Information Processing Systems, pages 5998–6008, 2017.

[53] Fei Wang, Mengqing Jiang, Chen Qian, Shuo Yang, Cheng Li, Honggang Zhang, Xiaogang Wang, and Xiaoou Tang. Residual attention network for image classification. In 2017 IEEE Conference on Computer Vision and Pattern Recognition, pages 3156–3164, 2017.

[54] Limin Wang, Yuanjun Xiong, Zhe Wang, Yu Qiao, Dahua Lin, Xiaoou Tang, and Luc Van Gool. Temporal segment networks: Towards good practices for deep action recognition. In European Conference on Computer Vision, pages 20–36. Springer, 2016.

[55] Xiaolong Wang and Abhinav Gupta. Videos as space-time region graphs. In European Conference on Computer Vision, pages 399–417, 2018.

[56] Xiaolong Wang, Ross Girshick, Abhinav Gupta, and Kaiming He. Non-local neural networks. In 2018 IEEE Conference on Computer Vision and Pattern Recognition, pages 7794–7803, 2018.

[57] Junwu Weng, Donghao Luo, Yabiao Wang, Ying Tai, Chengjie Wang, Jilin Li, Feiyue Huang, Xudong Jiang, and Junsong Yuan. Temporal distinct representation learning for action recognition. In European Conference on Computer Vision, pages 363–378. Springer, 2020.

[58] Sanghyun Woo, Jongchan Park, Joon-Young Lee, and In So Kweon. Cbam: Convolutional block attention module. In European Conference on Computer Vision, pages 3–19, 2018.

[59] Tete Xiao, Quanfu Fan, Dan Gutfreund, Mathew Monfort, Aude Oliva, and Bolei Zhou. Reasoning about human-object interactions through dual attention networks. In 2019 IEEE International Conference on Computer Vision, pages 3919–3928, 2019.

[60] Saining Xie, Chen Sun, Jonathan Huang, Zhuowen Tu, and Kevin Murphy. Rethinking spatiotemporal feature learning: Speed-accuracy trade-offs in video classification. In European Conference on Computer Vision, pages 305–321, 2018.

[61] Zichao Yang, Xiaodong He, Jianfeng Gao, Li Deng, and Alex Smola. Stacked attention networks for image question answering. In 2016 IEEE Conference on Computer Vision and Pattern Recognition, pages 21–29, 2016.

[62] Quanzeng You, Hailin Jin, Zhaowen Wang, Chen Fang, and Jiebo Luo. Image captioning with semantic attention. In 2016 IEEE Conference on Computer Vision and Pattern Recognition, pages 4651–4659, 2016.
[63] Joe Yue-Hei Ng, Matthew Hausknecht, Sudheendra Vijayanarasimhan, Oriol Vinyals, Rajat Monga, and George Toderici. Beyond short snippets: Deep networks for video classification. In *2015 IEEE Conference on Computer Vision and Pattern Recognition*, pages 4694–4702, 2015.

[64] Matthew D. Zeiler and Rob Fergus. Visualizing and understanding convolutional networks. In *European Conference on Computer Vision*, pages 818–833, 2014.

[65] Liang Zhang, Guangming Zhu, Lin Mei, Peiyi Shen, Syed Afaq Ali Shah, and Mohammed Bennamoun. Attention in convolutional lstm for gesture recognition. In *Advances in Neural Information Processing Systems*, pages 1953–1962, 2018.

[66] Yue Zhao, Yuanjun Xiong, and Dahua Lin. Trajectory convolution for action recognition. In *Advances in Neural Information Processing Systems*, pages 2204–2215, 2018.

[67] Bolei Zhou, Aditya Khosla, Agata Lapedriza, Aude Oliva, and Antonio Torralba. Learning deep features for discriminative localization. In *2016 IEEE Conference on Computer Vision and Pattern Recognition*, pages 2921–2929, 2016.

[68] Bolei Zhou, Alex Andonian, Aude Oliva, and Antonio Torralba. Temporal relational reasoning in videos. In *European Conference on Computer Vision*, pages 803–818, 2018.

[69] Yizhou Zhou, Xiaoyan Sun, Chong Luo, Zheng-Jun Zha, and Wenjun Zeng. Spatiotemporal fusion in 3d cnns: A probabilistic view. In *2020 IEEE Conference on Computer Vision and Pattern Recognition*, pages 9829–9838, 2020.

[70] Wangjiang Zhu, Jie Hu, Gang Sun, Xudong Cao, and Yu Qiao. A key volume mining deep framework for action recognition. In *2016 IEEE Conference on Computer Vision and Pattern Recognition*, pages 1991–1999, 2016.

[71] Xinqi Zhu, Chang Xu, Langwen Hui, Cewu Lu, and Dacheng Tao. Approximated bilinear modules for temporal modeling. In *2019 IEEE International Conference on Computer Vision*, pages 3494–3503, 2019.

[72] Mohammadreza Zolfaghari, Kamaljeet Singh, and Thomas Brox. Eco: Efficient convolutional network for online video understanding. In *European Conference on Computer Vision*, pages 695–712, 2018.