Epigenetic promoter alterations in GI tumour immune-editing and resistance to immune checkpoint inhibition

Raghav Sundar,1,2,4,5 Kie-Kyon Huang,3 Vikrant Kumar,3 Kalpana Ramnarayan,3 Deniz Demircioğlu,6 Zhisheng Her,7 Xuwen Ong,3 Zul Fazreen Bin Adam Isa,3,6,8 Manjie Xing,3,6,8 Angie Lay-Keng Tan,3 David Wai Meng Tai,9 Su Pin Choo,9,10 Weiwei Zhai,6 Jia Qi Lim,6 Meghna Das Thakur,11 Luciana Molinero,11 Edward Cha,11 Marcella Fasso,11 Monica Niger,12 Filippo Pietrantonio,12 Jeeyun Lee,13 Anand D Jeyasekharan,1,14 Aditi Qamra,1,15,16 Radhika Patnala,17 Arne Fabritius,17 Mark De Simone,18 Joe Yeong,7,14 Cedric Chuan Young Ng,19 Sun Young Rha,20,21 Yukiya Narita,22 Kei Muro,22 Yu Amanda Guo,6 Anders Jacobsen Skanderup,6 Jimmy Bok Yan So,5,23,24 Wei Peng Yong,1,2 Qingfeng Chen,3,7,25 Jonathan Göke,6 Patrick Tan,3,5,6,14,26,27

Correspondence to
Dr Patrick Tan, Cancer and Stem Cell Biology Program, Duke-NUS Medical School, Singapore, Singapore; gmtstan@duke-nus.edu.sg and Dr Raghav Sundar, Department of Haematology-Oncology, National University Cancer Institute, Singapore; National University Hospital, Singapore, Singapore; rahghav_sundar@nuhs.edu.sg

K-KH, VK, KR, DD and ZH contributed equally.
RS and PT are joint senior authors.
Received 15 February 2021
Accepted 3 August 2021

ABSTRACT

Objectives Epigenomic alterations in cancer interact with the immune microenvironment to dictate tumour evolution and therapeutic response. We aimed to study the regulation of the tumour immune microenvironment through epigenetic alternate promoter use in gastric cancer and to expand our findings to other gastrointestinal tumours.

Design Alternate promoter burden (APB) was quantified using a novel bioinformatic algorithm (proActiv) to infer promoter activity from short-read RNA sequencing and samples categorised into APBhigh, APBintermediate and APBlow groups. Single-cell RNA sequencing was performed to analyse the intratumour immune microenvironment. A humanised mouse cancer in vivo model was used to explore dynamic temporal interactions between tumour genetics, alternate promoter usage and the human immune system. Multiple cohorts of gastrointestinal tumours treated with immunotherapy were assessed for correlation between APB and treatment outcomes.

Results APBhigh gastric cancer tumours expressed decreased levels of T-cell cytolytic activity and exhibited signatures of immune depletion. Single-cell RNA sequencing analysis confirmed distinct immunological populations and lower T-cell proportions in APBhigh tumours. Functional in vivo studies using ‘humanised mice’ harbouring an active human immune system revealed distinct temporal relationships between APB and tumour growth, with APBhigh tumours having almost no human T-cell infiltration. Analysis of immunotherapy-treated patients with GI cancer confirmed resistance of APBhigh tumours to immune checkpoint inhibition. APBhigh gastric cancer exhibited significantly poorer progression-free survival compared with APBlow (median 55 days vs 121 days, HR 0.40, 95% CI 0.18 to 0.93, p=0.032).

Conclusion These findings demonstrate an association between alternate promoter use and the tumour microenvironment, leading to immune evasion and immunotherapy resistance.

Significance of this study

What is already known on this subject?
► Immune escape is a key factor for tumourigenesis.
► Epigenetic alterations in cancer interact with the immune microenvironment to control tumourigenesis and response to therapy.
► Studies in gastric cancer have shown an association between epigenetic alternate promoters, immune-editing and immune checkpoint inhibitor (ICI) resistance.

What are the new findings?
► Gastric tumours with higher epigenetic promoter alterations exhibited decreased levels of T-cell cytolytic markers and expressed signatures of immune depletion.
► These findings were orthogonally validated using novel technologies and platforms such as single-cell RNA sequencing and ‘humanised mice’.
► Multiple gastrointestinal tumour types with higher alternate promoter burden also correlated significantly with poorer survival with ICI therapy.

INTRODUCTION

Tumour growth and metastases in the presence of robust host immunosurveillance is a hallmark of cancer. Immune-editing is a process harnessed by tumour cells to evade immune recognition using mechanisms such as modifications in antigen
presentation, dysregulation of immune checkpoints and immunity-resistant clonal selection. \(^1^3\) Previous studies have suggested that tumours may enhance immune-editing by co-opting epigenetic mechanisms such as DNA methylation, histone acetylation and chromatin modification to regulate T-cell reprogramming, neoantigen production and immune gene expression.\(^4^5\) Notably, as epigenetic changes are potentially reversible, these represent potential nodes for anticancer therapeutic targets.\(^9\) \(^10\)

We have previously described a novel mechanism of immune-editing in gastric cancer (or stomach adenocarcinoma (STAD)) using alternate promoters.\(^9\) \(^10\) Promoters are cis-regulatory elements upstream of transcription start sites, and more than half of all human genes have multiple promoters.\(^11\) Promoter activity is epigenetically regulated and use of alternate promoters can produce distinct 5′ untranslated regions and first exons, enhancing mRNA and protein isoform diversity.\(^12\) Using epigenomic profiling, we demonstrated that a significant proportion of STADs can employ alternate promoters at highly expressed genes, generating 5′ truncated protein isoforms missing immunogenic N-terminal peptides. STADs with high levels of alternate promoter use were found to have an immunologically quiet phenotype and possible resistance to immune checkpoint inhibitor (ICI) therapy.\(^9\) \(^10\)

In this study, we sought to study associations between alternate promoter use and the tumour immune microenvironment in gastric cancer, including temporal effects on tumour growth using a novel animal model. We expand our findings in gastric cancer to other gastrointestinal (GI) tumours by mining public datasets and using multiple immunotherapy-treated cohorts.

METHODS

Alternate promoter burden (APB) algorithm

APB was computed with a formula incorporating proActiv, an algorithm that estimates promoter activity from short-read RNA sequencing (RNA-Seq) data by mapping and quantifying first intron junctions of the genome, proActiv has been previously described and is available as an R package (online supplemental methods).\(^13\) Samples were classified into groups: those in the top quartile of APB were classified as APB\(_{\text{high}}\), those in the lowest quartile were classified as APB\(_{\text{low}}\), and the rest of the samples were classified as APB\(_{\text{med}}\) (figure 1A). APB levels were normalised across batches/cohorts prior to categorising into groups.

Single-cell RNA-Seq of gastric cancer

Sample cohort description

Patients diagnosed with gastric adenocarcinoma and undergoing surgical resection at the National University Hospital, Singapore, were enrolled after obtaining written informed consent.

Single-cell RNA sequencing (scRNA-Seq) library preparation

Enriched 5′ gene expression libraries were constructed by generating gel beads in emulsion from single cells dissociated from tumour samples. Barcoded 10×, full-length cDNA was amplified via PCR, generating sufficient material to construct multiple libraries from the same cells. Libraries were subsequently sequenced on an Illumina HiSeq sequencer (online supplemental methods).

Single-cell gene expression quantification and determination of the major cell types

Unique molecular identified count matrices were first generated for each sample by passing the raw data in the cell ranger software. The count matrix was later used to generate a Seurat object which was used for clustering analysis.\(^14\) \(^15\) Marker genes were compared for each cluster to literature-based markers of cell lineages to assign a cell lineage per cluster. Cell clusters were labelled based on curated and described cell markers.\(^16\)

Humanised mouse model

All experiments and procedures were approved by the Institutional Animal Care and Use Committee (IACUC, IACUC# 191440) of A*STAR in accordance with guidelines of Agri-Food and Veterinary Authority and the National Advisory Committee for Laboratory Animal Research of Singapore.

Generation of humanised mice

One to three-day-old NOD-scid Il2r\(^{null}\) (NSG) pups were sublethally irradiated at 1 Gy and engrafted with 1 \times 10^3 human CD34\(^+\) cord blood cells (HLA-A24:02, Stemcell Technologies) via intrahepatic injection. Mice with more than 10% human immune cell reconstitution (calculated based on the proportion of human CD45 relative to the sum of human and mouse CD45) were included in the study. In total, five cell lines of HLA-A24:02 subtype were selected for the experiment (two APB\(_{\text{high}}\) (SNU1750 and GSU), one APB\(_{\text{med}}\) (YCC21) and two APB\(_{\text{low}}\) (NCC59 and SNU16) cell lines).

For each cell-line, five humanised mice and five NSG mice were injected with the tumour cells and observed for 1 month. Mice were sacrificed at the end of 1 month; necropsies were performed; and tumours were harvested for further analysis (online supplemental methods).

Immunotherapy-treated clinical cohorts

In a multicentre, industry-academic collaborative effort, a cohort of immunotherapy-treated GI cancer samples was collected to assess APB levels. A majority of the samples were from various ICI clinical trials conducted by the respective groups. The contributing site, tumour type, ICI treatment and type of transcriptomic analysis performed (RNA-Seq vs NanoString) are listed in online supplemental table S1. All patients were treated with ICIs in the metastatic, palliative intent setting.

Pan-cancer The Cancer Genome Atlas (TCGA) analysis

Gene expression data and clinical data from the PanCanAtlas were downloaded from Firebrowse.\(^17\) Illumina HiSeq RNA-SeqV2 RSEM normalised gene values were used for correlations of CD8A, GZMA and PRF1 and other immune correlates. All tumour types within the database were included except for tumours of haematological or immune origin (online supplemental methods).

Statistical analysis

Qualitative data in proportions were compared used Fisher’s exact test. Two-sample t-test was used to compare parametric quantitative data. Wilcoxon rank-sum test was used to compare non-parametric quantitative data. Spearman’s correlation was used for non-parametric bivariate quantitative comparisons. Kaplan-Meier curves and log-rank test were used for survival analysis. HRs and 95% CIs were evaluated using the Cox proportional hazards regression model. All analyses were done using R V4.0.5.

RESULTS

RNA-Seq-based prediction of alternate promoter use enables pan-cancer analysis

H3K4me3 ChiP-Seq or Cap Analysis of Gene Expression tag sequencing are gold-standard techniques for detecting promoter activity.\(^18\) However, data using these methods are typically...
GI cancer

available only for small tumour cohorts, and not for large datasets or clinical trial populations. To overcome these limitations, we harnessed proActiv, a previously described bioinformatic algorithm to infer promoter activity from short-read RNA-Seq data. We employed proActiv to estimate tumour-associated promoter changes using a predefined set of alternate promoters corresponding to epigenomic regions gained or lost in primary STADs relative to matched normal gastric tissues, determined by previous H3K4me3 ChIP-seq. Dysregulated alternate promoters identified by proActiv were quantified, generating for each tumour a sample-specific 'APB' score (APB) (figure 1A).

First, we computed APB for 416 STAD samples from TCGA. The STAD samples were categorised as APB high: n=103 (25%), APB intermedium: n=210 (50%) and APB low: n=103 (25%). APB high tumours exhibited decreased expression of the T-cell cytolytic markers CD8A (CD8+ tumour-infiltrating lymphocytes (TILs)), GZMA (granzyme A) and PRF1 (perforin 1) (APB high vs APB low: Wilcoxon test, p<0.001; figure 1B). As a negative control, correlations to CD8A, GZMA and PRF1 expression were not observed when APB was calculated using randomly selected promoter subsets of similar size (empirical p<0.01). These results are similar to previous observations in STAD, supporting the use of proActiv to infer promoter activity from RNA-Seq data.

To investigate relationships between APB and the four TCGA STAD molecular subtypes: chromosomal unstable (CIN), genome stable (GS), Epstein-Barr virus associated (EBV) and microsatellite instability (MSI), we analysed 376 STADs where TCGA subtype classification was available. MSI and EBV subtypes were found to have few/no APB high tumours (4% and 0%, respectively), while CIN and GS subtypes had significantly higher proportions of APB high tumours compared with APB low tumours (29% vs 17%, p<0.0001, and 38% vs 16%, p=0.012, respectively).
respectively) (figure 1C). There were no significant differences between APB groups when categorised by Lauren’s histological subtype (ie, diffuse vs intestinal) (online supplemental figure S1A). The APB groups were also correlated with nine immune checkpoint genes of therapeutic relevance (PD-1, PD-L1, PD-L2, CTLA4, LAG3, TIM3, ICOS, BTLA and TIGIT). All immune checkpoint genes displayed lower expression in APB high tumours compared with APB low (p ≤ 0.01 for all nine genes) (figure 1D). After excluding MSI tumours, there was no difference in tumour mutation burden (TMB) between APBlow and APB high tumours (3.6 vs 3.0 muts/Mb, p = 0.12) (online supplemental figure S1B).

To study the effect of tumour–stroma composition, we correlated APB with tumour purity obtained from a consensus estimation method.21 We found only a weak positive correlation between tumour content and APB (Pearson r = 0.09, p = 0.062) (online supplemental figure S1C). These findings suggest that the estimation of alternate promoter use by the tumours is not merely driven by the fraction of cancer cells within a tumour sample. Next, we correlated the relative proportions of major immune cell types (from CIBERSORT) of the TCGA STAD sample. Next, we correlated the relative proportions of major immune cell types (from CIBERSORT) of the TCGA STAD samples.22 Consistent with previous analysis, APBlow tumours had higher T-cell abundance (CD4 (p = 0.0068), CD8 (p = 0.011) and T follicular helper cells (p = 0.033)) and macrophage M1 abundance (p = 0.039). In contrast, APBhigh had higher abundance of mast cells (p = 0.0079) (online supplemental figure S1D–H), suggesting a possible role of innate immunity in APB high tumours. We also correlated APB with intratumour heterogeneity scores calculated by ABSOLUTE.22 APBhigh tumours appeared to have higher intratumour heterogeneity than the APBlow tumours (p = 0.022) (online supplemental figure S1I).

scRNA-Seq confirms distinct immunological populations in APBhigh and APBlow tumours

To further investigate if APBhigh tumours have distinct or reduced tumorous immune-cell infiltrates compared with APBlow tumours, we performed scRNA-Seq. We generated paired bulk RNA-Seq and scRNA-Seq data (55 071 cells) on 11 surgically resected primary STAD samples (APB can be derived only from bulk RNA-Seq as measurements of RNA at isoform-specific levels are below the limits of detection of current scRNA-Seq technology), classifying 3 samples as APBlow (19 920 cells), 5 as APBint (18 335 cells) and 3 as APBhigh (16 816 cells) (online supplemental table S2). To identify cellular populations, unsupervised cell clustering based on gene expression profiles was performed, allowing for dimensionality reduction to six major cell types: T cells, epithelial cells, B cells, macrophages, endothelial cells and fibroblasts (figure 2A).

Expressions of CD8A, GZMA, PRF1 and immune checkpoint genes were studied within the specific cellular populations. CD8A, GZMA and PRF1 were expressed almost exclusively within T cells (≥ 40% to 55% of T cells) validating the expression of CD8A, GZMA and PRF1 in bulk RNA-Seq as appropriate surrogates for T-cell cytolytic activity (online supplemental figure 2A). Similarly, immune checkpoint traditionally described as expressed on T cells such as PD-1, LAG3, TIGIT, TIM3, CTLA4 and ICOS had significantly higher single-cell transcript expression in T cells (online supplemental figure S2A). We compared cellular proportions between the APB groups (online supplemental figure S2B). Overall, T-cell proportions were higher in APBhigh tumours compared with APBlow (42% vs 30%, p < 0.0001) (figure 2B). In contrast, epithelial cell proportions were lower in APBlow tumours (13% vs 21%, p < 0.0001). Notably, there were no significant differences in B-cell composition between the groups (14% vs 14%, p = 0.82) (online supplemental table S3). APBhigh tumours had significantly higher expression of CD8A, GZMA and PRF1 within T cells compared with APBlow tumours (Wilcoxon p < 0.0001), supporting the bulk RNA-Seq analysis. Immune checkpoints also had significantly higher expression in APBhigh tumours compared with APBlow tumours (Wilcoxon p < 0.0001) (figure 2C and online supplemental figure S2C), similar to bulk RNA-Seq data. Taken collectively, these results highlight distinct tumour immune microenvironments and regulation of immune checkpoints between tumours with high and low alternate promoter uses.

Interaction between alternate promoter use and the immune system in a humanised-mouse model

Analysis of primary tumours often represents only a single temporal snapshot of the tumour, obtained at the time of surgical resection or biopsy. To explore dynamic temporal interactions between tumour kinetics, alternate promoter usage and the human immune system, we used a humanised-mouse cancer in vivo model. NOD-scid IL2rgnull (NSG) immune-deficient mice pups were engrafted with HLA-A24:02 human umbilical cord blood CD34+ cells, and mice with postgraft human immune-cell reconstitution (termed ‘humanised mice’) were selected for the study. Five HLA-A24:02 subtype STAD cell lines (two APBhigh, one APBint and two APBlow cell lines) were selected (online supplemental table S4). These cell lines were either commercially available or acquired from academic collaborators.23-25 For each STAD cell line, five humanised mice and five NSG immune-deficient mice were injected subcutaneously in the flank with tumour cells. The resulting tumours were analysed for growth rate, tumour size, mass, volume and histopathological analysis (figure 3A).

Reflecting the importance of studying tumour growth kinetics within the context of an active immune system, tumour uptake and growth initiation were faster in NSG compared with humanised mice: 97% of NSG and 63% of humanised mice developed a tumour by day 7 (Fisher’s exact p = 0.00056). Notably, APBhigh and APBint cell lines exhibited faster tumour growth rates compared with APBlow cell lines in humanised mice, consistent with APBhigh tumours exhibiting immune escape potential and demonstrating tumourigenesis in an active immune system. Specifically, in the humanised mice, APBhigh cell lines had 90% tumour development (vs 100% in immune-deficient mice); APBint had 100% tumour development (vs 100% in immune-deficient mice); and APBlow had 20% (vs 93% in NSG) tumour development by day 7 (APBhigh/APBint vs APBlow, Fisher’s exact p = 0.039). Growth rates between NSG and humanised mice were compared for each cell line. For APBhigh and APBint cell lines, tumours in humanised mice appeared to grow faster than tumours in NSG mice, while the converse was observed for APBlow cell lines, with tumours in NSG mice growing faster than humanised mice (figure 3B). By the end of the experiment, APBlow tumours grown in humanised mice were smaller than those grown in NSG mice (median 375 mm3 vs 512 mm3, p = 0.033). In contrast, for APBint and APBhigh cell lines, humanised-mice tumours trended towards being larger than those grown in NSG mice (median 418 mm3 vs 257 mm3, p = 0.073).

At the end of 1 month, mice were sacrificed, and tumours were harvested and analysed by microscopy and immunohistochemistry. APBlow tumours showed significant human T-cell infiltration into tumours, while APBhigh tumours had almost no human T-cell infiltration (figure 3C). APBhigh tumours had significantly higher CD3+ (broad T-cell marker) cellular infiltration compared with
APB$_{high}$ tumours (15% vs 4%, p=0.0085), and a trend towards higher CD8+ (cytotoxic T-cell marker) cellular infiltration (10% vs 2%, p=0.088) (figure 3D). Next, we performed bulk RNA-Seq on the tumours harvested from the humanised mice at the end of the experiment, studying the expression of genes marking specific cellular subtypes. APB$_{low}$ tumours exhibited higher levels of both adaptive immunity cells (CD8A and PRF1) and innate immunity cells (PLD4 (dendritic cells) and CD163 (macrophages)) (online supplemental figure S3A). In contrast, APB$_{high}$ tumours grown in humanised mice did not show these features and demonstrated higher levels of only dendritic cells and macrophages (PLD4 and CD163, associated with innate immunity) (online supplemental figure S3B). In addition to immune cell types, we also studied expression of immune checkpoints in the tumours grown in humanised mice. APB$_{low}$ tumours expressed higher levels of LAG3, a marker of T-cell exhaustion, and TIM3 (online supplemental figure S3C,D).

These findings from the humanised-mouse model indicate that APB$_{high}$ tumours are likely to have the ability to evade the immune system and have an immunologically quiet phenotype, supporting orthogonal findings in primary tumours at both the bulk and single-cell levels.

High alternate promoter use is associated with resistance to ICIs across multiple tumour types

Early evidence has suggested that APB$_{high}$ STADs may be resistant to ICI therapy. We sought to build on those findings and to validate the hypothesis that APB$_{high}$ tumours are resistant to ICIs due to their immunologically quiet phenotype. APB was calculated from RNA-Seq data of 53 gastric cancer samples treated with pembrolizumab, nivolumab or atezolizumab (monoclonal antibodies against PD-1/PD-L1). The median age was 57 years and 75% were male (online supplemental table S5). All patients...
GI cancer

Figure 3

Humanised-mice model study of APB. (A) Study schema of humanised-mouse model experiment. Five cell lines were used (two APB\textsubscript{high}, one APB\textsubscript{int} and two APB\textsubscript{low} cell lines each). For each cell line, five humanised mice and five immune-deficient NSG mice were injected subcutaneously in the flank with the tumour cells and observed for 1 month. Mice were sacrificed at the end of 1 month, necropsies performed and tumours harvested for analysis. (B) Tumour growth in humanised mice versus NSG mice by APB group. Cyan lines are humanised mice; magenta lines are NSG mice. APB\textsubscript{high} and APB\textsubscript{int} tumours have faster growth in humanised mice compared with NSG mice, while in APB\textsubscript{low} tumours, humanised mice have slower growth compared with NSG mice. (C) Histology of tumours harvested from humanised mice with tumour growth. CD3 and CD8 immunohistochemistry staining imaging shows heavy TILs in SNU16 (APB\textsubscript{high}) (black arrows) and no infiltration in SNU1750 (APB\textsubscript{low}). APB\textsubscript{high} tumours had significantly lower levels of CD3 + and CD8+ T-cell infiltration into the tumour. Black bar magnification 50 µm. (D) Expression of CD3 and CD8 by immunohistochemistry scoring in humanised-mouse tumours by the APB group. Immunohistochemical and H&E staining was performed on the FFPE tissue with antibodies targeting CD3 and CD8. The percentage of cells displaying unequivocal staining of any intensity for CD3 or CD8 were determined by a pathologist blinded to clinicopathological and survival information. TILs expressing CD3 or CD8 were identified within the intratumoral area defined as lymphocytes within cancer cell nests and in direct contact with tumour cells. Quantification of TILs was determined by the percentage of the intratumoral areas occupied by the respective TIL population. Violin plots highlight the expression of CD3 and CD8 within these cells by the APB group (APB\textsubscript{high} (red) and APB\textsubscript{low} (blue)). APB, alternate promoter use burden; TIL, tumour-infiltrating lymphocyte.

in the cohort had metastatic gastric cancer and had received at least one prior line of systemic therapy before entering an ICI clinical trial. Of the 53 samples, 13 tumours were classified as APB\textsubscript{high}, 27 were classified as APB\textsubscript{int}, and 13 were classified as APB\textsubscript{low} (figure 4A). APB\textsubscript{low} tumours had a significantly poorer progression-free survival (PFS) compared with APB\textsubscript{int} (median PFS 55 vs 87 days, HR 0.39, 95% CI 0.19 to 0.80, p=0.01) and APB\textsubscript{high} tumours (median PFS 55 vs 121 days, HR 0.40, 95% CI 0.18 to 0.93, p=0.032) (figure 4B). TCGA subtyping and PD-L1 immunohistochemistry data were available for 44 (83%) and 40 (75%) samples, respectively (online supplemental methods, table S5). EBV and MSI subtype tumours had a significantly higher PFS compared with CIN or GS tumours (median PFS not reached vs 80 days, HR 0.22, 95% CI 0.08 to 0.62, p=0.0042) (online supplemental figure S4A). When the PD-L1 CPS <10 tumours were restricted to only the CIN/GS subtype (n=28), the results were similar (median PFS 119 vs 84 vs 48 days, HR 0.30, 95% CI 0.097 to 0.74, p=0.012) (online supplemental figure S4B).

To assess the specificity of APB in predicting responses to ICIs, we next studied the role of APB in predicting sensitivity to other types of systemic therapy. We analysed a separate cohort of 60 metastatic STADs treated with chemotherapy (first-line 5-fluorouracil and platinum-based chemotherapy, online supplemental table S1). There was no difference in PFS between the three APB groups (median PFS 158 (APB\textsubscript{low}) vs 129 (APB\textsubscript{int}) vs 154 days (APB\textsubscript{high}), p=0.9) (online supplemental figure S4C). To extend this to another systemic therapy regimen, we then tested an independent cohort of patients with gastric cancer treated in the PD-L1 CPS <10 and CIN/GS subgroups. We first studied APB in the PD-L1 CPS <10 subgroup (n=31) and found APB\textsubscript{low} and APB\textsubscript{int} tumours to have a significantly higher PFS compared with APB\textsubscript{high} (median PFS 119 vs 84 vs 48 days, HR 0.22, 95% CI 0.08 to 0.62, p=0.0042) (online supplemental figure S4A). When the PD-L1 CPS <10 tumours were restricted to only the CIN/GS subtype (n=28), the results were similar (median PFS 119 vs 84 vs 48 days, HR 0.30, 95% CI 0.097 to 0.74, p=0.012) (online supplemental figure S4B).
with a combination of chemotherapy and targeted therapy (paclitaxel and ramucirumab, n=47). We observed a similar lack of difference in PFS between the groups (median PFS 104 (APBhigh) vs 128 (APBint) vs 126 days (APBlow), p=0.8) (online supplemental figure S4D). These findings suggest that, within the limitations of the therapies tested, that the predictive nature of APB may be specific to ICI treatment.

For a large majority of clinical cohorts including those from clinical trials, only archival formalin fixed paraffin embedded (FFPE) tissue is available, which poses technical challenges, with respect to RNA extraction and characterisation using RNA-Seq.28 The NanoString platform has been validated to generate predictive gene-expression signatures from FFPE tissue that has been used in clinical practice.29 To explore additional cohorts, we thus designed a custom-made NanoString panel to infer APB in FFPE tissue, under the technical probe limitation of NanoString (800 probes). From 4519 promoters used to calculate the APB algorithm in RNA-Seq data, we identified the top-ranked promoters from the TCGA STAD analysis and designed alternate promoter probes for a NanoString panel. NanoString probes were designed to predominantly bind to the unique first exon junctions, allowing for identification and differentiation of alternate promoter transcripts. This approach is conceptually similar to the proActiv algorithm in identifying gain and loss promoter transcripts13 (online supplemental methods). We tested a heterogeneous cohort of 35 ICI-treated GI tumours using this custom-designed NanoString panel. The cohort included tumours of squamous (anal and oesophageal) (n=18) and non-squamous (colorectal, gastric, cholangiocarcinoma (CHOL) and hepatocellular carcinoma (HCC)) (n=17) histology. Patients were treated with a range of ICIs including nivolumab, avelumab and durvalumab (monoclonal antibodies against PD-1/PD-L1).

In the non-squamous cohort, APBhigh tumours had inferior survival compared with APBlow tumours (median PFS 43 vs 288 days, HR 0.10, 95% CI 0.01 to 0.78, p=0.028) (figure 4C,D). Similar results could not be replicated in the squamous cancer cohort (median PFS APBhigh 241 days vs APBin 142 days vs APBlow 216 days, p=0.99) (see the Discussion section). To further improve on APB measured through NanoString (online supplemental methods), we performed an analysis on archival FFPE tissue.
of 53 patients with gastric cancer treated with anti-PD-1 axis therapy (online supplemental table S1). APB was inferred using a similar formula and identified 13 APB_{low}, 20 APB_{int} and 20 APB_{high} samples. PFS of APB_{low} patients was significantly lower compared with APB_{int} and APB_{high} patients (48 vs 64 vs 175 days, HR (APB_{high} vs APB_{int}) 0.25, 95% CI 0.11 to 0.57, p=0.001) (online supplemental figure S4E).

Having shown that APB could be potentially applied to other GI tumour types, we also studied RNA-Seq data of 66 HCC samples, of which 26 were treated with nivolumab and 40 were treated with pembrolizumab. Seventeen tumours were classified as APB_{high}; 32 were classified as APB_{int} and 17 were classified as APB_{low}. Tumours had a significantly better PFS compared with APB_{int}/APB_{low} tumours (median PFS 242 vs 90 vs 94 days, HR 0.51, 95% CI 0.27 to 0.99, p=0.046) (online supplemental figure S4F). Taken collectively, these findings suggest that our initial conclusions on gastric cancer could be expanded to GI tumours with high alternate promoter use, exhibiting a higher probability of primary resistance to immune checkpoint inhibition and suggesting a role for using APB as a predictive biomarker for immunotherapy.

High APB is associated with an immunologically quiet phenotype across multiple tumour types

Finally, to explore associations between APB and the immune microenvironment in a wide set of tumour types, we quantified APB for 10 165 samples across 26 tumour types from the TCGA PanCanAtlas RNA-Seq database. Tumours were categorised into APB_{high}, APB_{low} and APB_{int} subgroups based on tumour type-specific quartiles (online supplemental figure S5A). Similar to STADs, the majority of tumour types exhibited a significant correlation between the APB groups and CD8A, GZMA and PRF1 expression. Specifically, of the 26 tumour types analysed, 16 (62%) had significant correlations with all three markers (figure S5A and online supplemental table S6). Only three tumour types had no correlation between APB and CD8A, GZMA or PRF1 (adenocortical carcinoma (ACC), CHOL and uveal melanoma (UVM)). Notably, these latter three cohorts (ACC, CHOL and UVM) are all of relatively small sample sizes (<100, median-tumour-type dataset size=414). These results suggest that APB is associated with features of the immune microenvironment across multiple tumour types.

To investigate additional immunological phenotypes associated with high APB, genome-wide expression differences between APB_{high} and APB_{low} tumours were identified. From a total of ~20 000 genes compared, we selected the Immport subset—a database of ~4000 genes with immune-related functions and interactions. A larger number of Immport immune genes exhibited high expression in APB_{low} tumours relative to APB_{high} tumours for several tumour-types (threshold: fold change >1.5, adjusted p value<0.01). For example, in breast cancer, Immport gene sets were significantly overexpressed in APB_{low} tumours (APB_{low}: 731 genes vs APB_{high}: 339, p≤0.0001). Differential expressions of selected immune checkpoint genes (PD-1, PD-L1, PD-L2, CTLA4, LAG3, TIM3, ICOS, BTLA and TIGIT) were also studied between the APB groups. Similar to STAD, almost all immune checkpoints were overexpressed in APB_{low} tumours for a majority of tumour types (figure 5B). We also leveraged a pan-cancer TCGA study classifying tumours by immune signatures. APB_{low} tumours were found to have higher lymphocyte infiltration signature scores and interferon-γ response signatures (p<0.0001) (online supplemental figure S5B,C).

MSI status was available for 7919 samples, of which 176 tumours (2%) were found to be MSI-high. The prevalence of MSI-high in the APB groups was 3.3% APB_{low}, 2.5% APB_{int} and 1.5% APB_{high} (Fisher’s exact p=0.0016). Thus, similar to findings in STAD, there appears to be a trend for MSI-high tumours to be classified as APB_{low} (33% of all MSI-high tumours were APB_{low} compared with 15% being APB_{high}), although it is worth noting that MSI-high tumours are found in all three APB groups. There was no correlation between APB and TMB (median APB_{low} 1.8 vs APB_{int} 1.8 vs APB_{high} 1.8 muts/Mb, p=0.64) (online supplemental figure S5D). Within MSI-H tumours, there was no difference in TMB between APB_{high} and APB_{low} (p=0.13). Taken collectively, these results, based on gene expression analyses at the global, immune checkpoint and immune signature levels, suggest that APB_{high} tumours are consistently associated with an immunologically ‘cold’ tumour phenotype.

DISCUSSION

In this study, we sought to explore the role of alternate promoter use in cancer immunity and therapy response. Our results extend previous findings applying H3K4me3 histone profiling on primary STADs to infer promoter activity where tumour-associated promoter isoforms recurrently lost in STADs exhibited a significant enrichment in high-affinity major histocompatibility complex I binding peptides. We proposed that this may reflect a novel tumour immune-editing mechanism where promoter alterations are used to evade the host immune system, thereby facilitating nascent tumour development.

Usage of alternate promoters at cancer-related genes such as NOTCH has been described to play a role in T-cell development and carcinogenesis, while in EBV-associated Natural Killer T-cell lymphoma, downregulation of immunogenic viral nuclear antigens through alternate promoter use has been proposed as a mechanism of immune escape. In our study, we found pervasive genome-wide usage of alternate promoters by tumours which was associated with evidence of immune-editing and evasion. It is worth noting that these associations were observed in multiple tumour types, despite using a set of promoters originally derived from STADs. It is possible that alternate promoter usage may be less specific to related tissue origin and reflects a conserved pan-cancer response to host immunity. Correlation between alternate promoter use, TMB and MSI indicates that APB interacts with the tumour immune microenvironment through an independent mechanistic pathway, distinct from acquisition of DNA somatic mutations (represented by TMB and MSI status). Through correlative analysis of APB with tumour content and DNA somatic mutations (represented by TMB and MSI status).

To assess the tumour microenvironment from bulk RNA-Seq data, we used expression of specific genes such as CD8A, GZMA and PRF1 as surrogates. Using single-cell RNA-Seq, which allows for identification and characterisation of different cellular subtypes within a heterogenous tumour microenvironment, we validated the use of these surrogate markers by confirming that the expressions of these genes are largely restricted only to immune cells of interest. Our scRNA-Seq also describes the expression of various immune checkpoints by cell type in STAD. These findings, along with others describing the immune contexture in STAD, form an important resource for the development of cellular therapies and novel checkpoint inhibitor combinations and strategies. Our scRNA-Seq dataset included samples from various TCGA subtypes including CIN, GS and MSL. A limitation of our study is that we could not include EBV gastric...
GI cancer can be associated with high levels of T-cell infiltration and PD-L1 expression. EBV tumours tend to be more indolent, detected at earlier stages, and constitute the smallest subtype of gastric cancer in the TCGA (9%), with an even lower incidence in Asian cohorts (8%). Another interesting finding in our study was the higher levels of mast cells detected in the APB-high STAD TCGA cohort samples. Mast cells are tissue-resident innate immune cells that have been associated with both activation and downregulation of adaptive and innate immune responses, and whose activity can be mediated by epigenetic regulators. Mast cells ameliorate effector T-cell function by inhibiting regulatory T cells through the OX40 axis. Higher mast cells in APB-high tumours may reflect a compensatory upregulation of innate immunity due to the lower levels of T cells (adaptive immunity).

For this study, we established an in vivo model to study the dynamic temporal interactions between alternate promoter use and the human immune system. While generating the model, we considered several factors—first, the model required a functional immune system, thereby prohibiting the use of conventional immunodeficient mice. Second, as the model had to allow testing of tumours with diverse molecular phenotypes; traditional syngeneic murine models where tumours are derived from the same genetic background as the host mouse were ruled out. The humanised mouse model bridges a significant gap from traditional human patient-derived xenograft models which are grown in immunodeficient mice, or in vitro cell-line/T-cell co-culture models for testing of tumour-immune interactions. Humanised-mouse models have been used to study HCC, lung cancer, sarcoma and breast cancer. Our study is the first to

Figure 5 Pan-cancer APB association with immune correlates. (A) Association of APB groups in breast (BRCA), colorectal, head and neck (HNSC), kidney, squamous lung (LUSC) and melanoma (SKCM) with markers of T-cell cytolytic activity (CD8A, GZMA and PRF1). The APB-high group is denoted in red, APB-int in yellow and APB-low in blue. The APB-high group shows lower expression of these three genes compared with APB-low, which in turn shows a lower expression to the APB-low group (Wilcoxon test; ***p<0.001, **p<0.01, *p<0.05; n.s.). (B) Volcano plot of ~20 000 genes in the PanCanAtlas correlated with APB_low and APB_high for six tumour types (BRCA, colorectal, HNSC, kidney, LUSC and SKCM). The x-axis is the log2FC of gene expression (RSEM) between APB_high and APB_low. The y-axis is the −log10 adjusted p value results (Bonferroni correction). Genes that are at least >1.5x fold change and adjusted p<0.01 are coloured, while the rest are grey. Immune genes that are overexpressed APB_high are dark red, while non-immune genes are pale red. Similarly, APB_low overexpressed immune genes are dark blue, while non-immune genes are pale blue. Nine selected immune checkpoints (PD1, PD-L1, PD-L2, LAG3, CTLA4, TIM3, ICOS, TIGIT and BTLA) are labelled. As a general trend, immune checkpoints appear to be overexpressed in APB_low tumours. APB, alternate promoter use burden; HNSC, head and neck squamous cell; log2FC, log2 fold change; LUSC, lung squamous; n.s., not significant; SKCM, melanoma.
analyse STADs using humanised mice and employ experimental designs mirroring preceding studies, comparing tumour growth kinetics between humanised-mice and immune-deficient mice. APB\textsubscript{low} tumours appeared to grow later and slower in humanised mice compared with immune-deficient mice and to APB\textsubscript{high} tumours. Similar findings were seen in triple negative breast cancers, where tumours grew faster in immune-deficient mice compared with humanised mice.42 Increased presence of cytotoxic T cells within the tumours limiting growth in humanised mice was demonstrated in an HCC study, and treatment with pembrolizumab demonstrated a further increase of TILs.43 Notably, harvesting and analysing the tumours at the end of our experiment to evaluate the tumour immune microenvironment demonstrated the lack of TILs in APB\textsubscript{high} tumours, a finding consistent with the other experiments in our study. The humanised-mouse model developed in this study is an ideal platform to test therapeutic strategies such as these, which target the tumour–immune system interface. However, one of the limitations is the treatment of the model with immunotherapy and epigenetic agents will require rigorous optimisation and controlling as the platform has not been used in gastric cancer models previously. Other limitations of the mouse-model experiment include the subcutaneous flank injection of the tumours. Intragraft transplantation of tumours has been described in immune-deficient patient-derived organoid models and could potentially be incorporated in future humanised-mouse experiments with gastric cancer.43,44

Prognostic biomarkers guide on patient outcomes or survival regardless of therapy, while predictive biomarkers provide information on the effectiveness of a specified therapy.45 Currently, the most developed predictive biomarkers for ICI are PD-L1 expression measured by immunohistochemistry, MSI and TMB.46,47 These biomarkers are positive predictive biomarkers that identify tumours that are likely to respond to ICI. However, controversies surrounding these biomarkers have been raised and ICI responses in biomarker-negative populations have been observed.48 These observations highlight the complementary role of negative predictive biomarkers for ICIs that identify tumours resistant to therapy, similar to RAS mutations in colorectal cancer that predict resistance to anti-EGFR therapies.49 By analysing the predictive value of APB in chemotherapy and targeted therapy cohorts as well,50,51 we confirmed that within the limitations of the therapies tested, the predictive nature of APB may be specific to ICI treatment. Our findings may guide selection of patients with gastric cancer for immunotherapy treatment by categorising patients into three groups: first, the ‘likely responders’, which consist of MSI-H, EBV and PD-L1 CPS ≥10 subgroups. Second, the ‘unlikely responders’, consisting of APB\textsubscript{high} patients, with the remaining patients falling to the third category of ‘possible responders’. The remaining third group of patients tends to demonstrate moderate benefit from immunotherapy but with earlier resistance and modest PFS.

Sensitivity to immune checkpoint inhibition is driven through various factors including neoantigen formation, tumour mutational burden and PD-L1 expression.47 Our cohort of GI squamous cell cancers consisted of oesophageal and anal carcinoma, while our APB algorithm was derived from adenocarcinoma samples of gastric cancer origin. The TCGA comparison of squamous and adenocarcinoma histological subtypes of the oesophagus has also identified significant genomic and epigenetic differences.52 Squamous oesophageal cancer has also been shown to have a significantly higher proportion of responses to immune checkpoint inhibition compared with oesophageal adenocarcinoma, driven by higher PD-L1 expression.52,53 A similar high response rate of squamous anal carcinoma to pembrolizumab has also been demonstrated.54 These results were reflected in our cohort as well, with 72% of patients having disease control (stable disease or partial response) as best response to ICI in the squamous cohort, compared with 41% in the adenocarcinoma cohort. Thus, as our APB algorithm appears to best function as a negative predictive biomarker, identifying poor responders to ICI, the high sensitivity of squamous cancers to ICI and small numbers may be reasons for the NanoString panel failing to differentiate responders and non-responders in the squamous GI cancer cohort. The identification of a subgroup of tumours exhibiting primary resistance to immunotherapy that are associated with alternate promoters raises intriguing possibilities for biomarker-selected combination therapeutic strategies. Drugs targeting epigenetic pathways such as DNA methyltransferase and histone deacetylase have been shown to abrogate immune evasion through targeting mechanisms such as antigen processing and presentation, expression of chemokines and immune checkpoints, and host immune priming.55,56 Several trials are currently ongoing, looking at the role of combining epigenetic agents with ICI, aiming to convert immunologically ‘cold’ to ‘hot’ tumours that may be more sensitive to immunotherapy.55-57

In conclusion, our study describes alternate promoter usage as a conserved pan-cancer marker that is associated with an immune-depleted tumour microenvironment, and quantification of APB may serve as a novel negative predictive biomarker of immune checkpoint inhibition.
Acknowledgements We thank the patients and their families for participating in our trials and magnanimously providing consent for the use of tissue for further research.

Contributors Conceptualisation: RS, AQ, JG and PT; data curation: RS, KKH, DD, VK, KR, ZH, XO, ZFBAI, MX-AL-KT, DWMT, WZ, SPC, JQI, MDL, LT, EM, LF, MN, FM, FF, JL, YJ, CCY, SYR, JS, KM, YN, WPY, QC and JG; formal analysis: RS, KKH, AQ, VK, ADJ, MDS, YAG, AJJ, JG and PT; funding acquisition: JG and PT; methodology: RS, VK, MDS, QC, DD, AQ, JG and PT; project administration: RS and PT; resources and supervision: QC, JG and PT; visualisation: RS, AQ, KKH, RP and AF; writing of the original draft: RS; writing (review and editing): ZH, QC, JG and PT; approval of final version of manuscript: all authors.

Funding RS is supported by a National Medical Research Council (NMRC) Fellowship (NMRC/Fellowship/0059/2018 and MOH-000627). Singapore. FP is supported by a research grant from Associazione Italiana per la Ricerca sul Cancro (AIRC IG 19 19.123624). PT is supported by Duke-NUS Medical School and the Biomedical Research Council, Agency for Science, Technology and Research. Humanised mouse work was supported by National Research Foundation Singapore Fellowship (NRF-NRF Fellowship 2017-03) to QC. This work was also supported by National Medical Research Council grants OF-LCG18May-0023, NRIFMR1110M, and NMRC/STaR/0026/2015.

Competing interests The subject matter in this manuscript was submitted as a technology disclosure to the institutional Technology Transfer Office for potential intellectual property protection. PT had stock and other ownership interests in HealthSeq, research funding from Kyowa Hakko Kirin and Thermo Fisher Scientific, intellectual property protection. PT had stock and other ownership interests in NMRC/STaR/0026/2015.

Patient consent for publication Not required.

Ethics approval The study was approved by the local ethics board (DSRB reference number 2005/00440).

Data availability All data and source code are available in the public domain. Details of the accession numbers can be found in the references section.

Open access This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, and build upon the work, for non-commercial purposes, as long as the original work is credited and is not changed beyond the bounds of reasonable use (including by way of being transformed, combined, or adapted).

ORCID iDs
Kee-Kyon Huang http://orcid.org/0000-0003-4104-8951
Aditi Qamra http://orcid.org/0000-0003-2977-0087
Qingfeng Chen http://orcid.org/0000-0001-6431-1271
Patrick Tan http://orcid.org/0000-0002-0179-0840

REFERENCES
1 Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell 2011;144:646–74.
2 Vinay DS, Ryan EP, Pawelec G, et al. Immune evasion in cancer: mechanistic basis and therapeutic strategies. Semin Cancer Biol 2015;35:518–95.
3 Schreiber RD, Old LJ, Smyth MJ. Cancer Immunodating: Integrating Immunity's Roles in Cancer Suppression and Promotion. Science 2011;331:1565–70.
4 Baylin SB. DNA methylation and gene silencing in cancer. Nat Clin Pract Oncol 2005;2:54–11.
5 Chiappinelli KB, Strisel PL, Desrichard A, et al. Inhibiting DNA methylation causes an interferon response in cancer via dRNA including endogenous retroviruses. Cell 2015;162:974–86.
6 Jung H, Kim HS, Kim JY, et al. DNA methylation loss promotes immune evasion of tumours with high mutation and copy number load. Nat Commun 2019;10:4278.
7 Philip M, Fairchild L, Sun L, et al. Chorionate defines theme-specific T cell dysfunction and reprogramming. Nature 2017;545:452–6.
8 Bennett RL, Licht JD. Targeting epigenetics in cancer. Annu Rev Pharmacol Toxicol 2018;58:187–207.
9 Qamra A, Xing M, Padmanabhan N, et al. Epigenomic promoter alterations amplify gene isoforms and immunogenic diversity in gastric adenocarcinoma. Cancer Discov 2017;7:630–51.
10 Sundar R, Huang K, Qamra A, et al. Epigenomic promoter alterations predict for benefit from immune checkpoint inhibition in metastatic gastric cancer. Annals of Oncology 2019;30:424–30.
11 Davuluri RV, Suzuki Y, Sugano S, et al. The functional consequences of alternative promoter use in mammalian genomes. Trends Genet 2008;24:167–77.
12 Bieberstein NI, Carillo Oesterreich F, Straube K, et al. First exon length controls active chromatin signatures and transcription. Cell Rep 2012;6:2–8.
13 Demircioglu D, Cukuroglu E, Kindermans M, et al. A pan-cancer transcriptome analysis reveals pervasive regulation through alternative promoters. Cell 2019;178:1465–77.
14 Butler A, Hoffman P, Smibert P, et al. Integrating single-cell transcriptomic data across different conditions, technologies, and species. Nat Biotechnol 2018;36:411–20.
15 Stuert T, Butler A, Hoffman P, et al. Comprehensive integration of single-cell data. Cell 2019;177:1888–902.
16 Zhang P, Yang M, Zhang Y, et al. Dissecting the single-cell transcriptome network underlying gastric premalignant lesions and early gastric cancer. Cell Rep 2019;27:1934–47.
17 Deng M, Brägelmann J, Krylov I, et al. FirebrowseR: an R client to the Broad Institute’s Firehose Pipeline. Database 2017;2017:baw160.
18 Furey TS. Chip-Seq and beyond: new and improved methodologies to detect and characterize protein-DNA interactions. Nat Rev Genet 2012;13:840–52.
19 Valcirèl LV, Amundainar A, Kilis M, et al. Gene expression derived from alternative promoters improves prognostic stratification in multiple myeloma. Leukemia 2021. doi:10.1038/s41375-021-01263-9. [Epub ahead of print: 10 May 2021].
20 Rooney MS, Shukla SA, Wu CL, et al. Molecular and genetic properties of tumors associated with local immune cytotoxic activity. Cell 2015;160:48–61.
21 Ghoshdastider U, Rohatgi N, Mojtavabi Naeni M, et al. Pan-Cancer analysis of ligand-receptor cross-talk in the tumor microenvironment. Cancer Res 2021;81:1802–12.
22 Thorsson V, Gibbs DL, Brown SD, et al. The immune landscape of cancer. Immunity 2018;48:812–30.
23 Xu J, Kim K-H, Choi J-S, et al. Establishment and characterization of six human gastric carcinoma cell lines, including one naturally infected with Epstein-Barr virus. Cell Oncol 2012;35:127–36.
24 Xu J-L, Park J-G. Biology of SNU cell lines. Cancer Res Treat 2005;37:1–19.
25 Kreisj I, Hartmann A, Pfarr N, et al. Influence of the her receptor ligand system on sensitivity to cetuximab and trastuzumab in gastric cancer cell lines. J Cancer Res Clin Oncol 2017;143:573–600.
26 Kim ST, Cristescu R, Bass AJ, et al. Comprehensive molecular characterization of clinical responses to PD-1 inhibition in metastatic gastric cancer. Nat Med 2018;24:1449–58.
27 Shitaya K, Özgüroğlu M, Bang YJ, et al. Pembrolizumab versus paclitaxel for previously treated, advanced gastric or gastro-oesophageal junction cancer (KEYNOTE-061): a randomised, open-label, controlled, phase 3 trial. Lancet 2018;392:123–33.
28 Hong M, Tao S, Zhang L, et al. RNA sequencing: new technologies and applications in cancer research. J Hematol Oncol 2020;13:166.
29 Walldén B, Storhoff J, Nielsen T, et al. Development and verification of the PAM50-R23 Cell RNA sequencing technologies and new biomarkers for breast cancer. Cancer Discov 2018;8:1024–37.
30 Murphy G, Pfeiffer R, Camargo MC, et al. Meta-Analysis shows that prevalence of Epstein-Barr virus-positive gastric cancer differs based on sex and anatomic location. Gastroenterology 2009;137:824–33.
37 Rigoni A, Colombo MP, Pucillo C. The role of mast cells in Molding the tumor microenvironment. *Cancer Microenvir*on 2015;8:167–76.

38 Monticelli S, Leoni C. Epigenetic and transcriptional control of mast cell responses. *F1000Res* 2017;6:2064.

39 Piconese S, Gri G, Tripodo C, et al. Mast cells counteract regulatory T-cell suppression through interleukin-6 and OX40/OX40L axis toward Th17-cell differentiation. *Blood* 2009;114:2639–48.

40 Slack E, Hapfelmeier S, Stecher B, et al. Innate and adaptive immunity cooperate flexibly to maintain host-microbiota mutualism. *Science* 2009;325:617–20.

41 Zhao Y, Shuen TWH, Toh TB, et al. Development of a new patient-derived xenograft humanised mouse model to study human-specific tumour microenvironment and immunotherapy. *Gut* 2018;67:1845–54.

42 Wang M, Yao L-C, Cheng M, et al. Humanized mice in studying efficacy and mechanisms of PD-1 targeted cancer immunotherapy. *FASEB J* 2018;32:1537–49.

43 Busuttil RA, Liu DS, Di Costanzo N, et al. An orthotopic mouse model of gastric cancer invasion and metastasis. *Sci Rep* 2018;8:825.

44 Reddavid R, Corso S, Moya-Rull D, et al. Patient-Derived orthotopic xenograft models in gastric cancer: a systematic review. *Updates Surg* 2020;72:951–66.

45 Oldenhuis CNAM, Oosting SF, Gietema JA, et al. Prognostic versus predictive value of biomarkers in oncology. *Eur J Cancer* 2008;44:946–53.

46 Lim JS, Sundar R, Chénard-Poirier M, et al. Emerging biomarkers for PD-1 pathway checkpoint inhibition in gastroesophageal cancers. *Front Oncol* 2020;10:763.

47 Havel JJ, Chowell D, Chan TA. The evolving landscape of biomarkers for checkpoint inhibitor immunotherapy. *Nat Rev Cancer* 2019;19:133–50.

48 Sundar R, Tan IBH, Chee CE. Negative predictive biomarkers in colorectal cancer: PRESSING ahead. *JCO* 2019;37:3066–8.

49 Yong WP, Rha ST, Tan IB-H, et al. Real-Time Tumor Gene Expression Profiling to Direct Gastric Cancer Chemotherapy: Proof-of-Concept “3G” Trial. *Clinical Cancer Research* 2018;24:5272–81.

50 Kim ST, Sa JK, Oh SY, et al. Comprehensive molecular characterization of gastric cancer patients from phase II second-line ramucirumab plus paclitaxel therapy trial. *Genome Med* 2021;13:11.

51 Cancer Genome Atlas Research Network, Analysis Working Group: Asan University, BC Cancer Agency, et al. Integrated genomic characterization of oesophageal carcinoma. *Nature* 2017;541:169–75.

52 Kojima T, Shah MA, Muro K, et al. Randomized phase III KEYNOTE-181 study of pembrolizumab versus chemotherapy in advanced esophageal cancer. *JCO* 2020;38:4138–48.

53 Ott PA, Plha-Paul SA, Munster P, et al. Safety and antitumor activity of the anti-PD-1 antibody pembrolizumab in patients with recurrent carcinoma of the anal canal. *Ann Oncol* 2017;28:1036–41.

54 Dunn J, Rao S. Epigenetics and immunotherapy: the current state of play. *Mol Immunol* 2017;87:227–39.

55 Chiappinelli KB, Zahnow CA, Ahuja N, et al. Combining epigenetic and immunotherapy to combat cancer. *Cancer Res* 2016;76:1683–9.

56 Meric-Bernstam F, Larkin J, Taberner J, et al. Enhancing anti-tumour efficacy with immunotherapy combinations. *Lancet* 2021;397:1010–22.