The beneficial effects of meditation: contribution of the anterior cingulate and locus coeruleus

Nancy A. Craigmyle*

Edited by: Zoran Josipovic, New York University, USA
Reviewed by: Zoran Josipovic, New York University, USA
Baruch Rael Cahn, University of California Irvine, USA
Nancy A. Craigmyle*

*Correspondence: Nancy A. Craigmyle, 2135 Via Fuentex, Vero Beach, FL 32967, USA
e-mail: ncmyle@ix.netcom.com

During functional magnetic resonance imaging studies of meditation the cortical salience detecting and executive networks become active during "awareness of mind wandering," "shifting," and "sustained attention." The anterior cingulate (AC) is activated during "awareness of mind wandering." The AC modulates both the peripheral sympathetic nervous system (SNS) and the central locus coeruleus (LC) norepinephrine systems, which form the principal neuromodulatory system, regulating in multiple ways both neuronal and non-neuronal cells to maximize adaptation in changing environments. The AC is the primary source of central norepinephrine (C-NE) and nearly the exclusive source of cortical norepinephrine. Normally activated by novel or salient stimuli, the AC initially inhibits the SNS reflexively, lowering peripheral norepinephrine and activates the LC, increasing C-NE. Moderate levels of C-NE enhance working memory through alpha 2 adrenergic receptors, while higher levels of C-NE, acting on alpha 1 and beta receptors, enhance other executive network functions such as the stopping of ongoing behavior, attentional set-shifting, and sustained attention. The actions of the AC on both the central and peripheral noradrenergic systems are implicated in the beneficial effects of meditation. This paper will explore some of the known functions and interrelationships of the AC, SNS, and LC with respect to their possible relevance to meditation.

Keywords: meditation, salience detecting, anterior cingulate, locus coeruleus, norepinephrine

INTRODUCTION

During a recent functional magnetic resonance imaging (fMRI) study of focused mindfulness meditation the cortical salience detecting and executive networks, were shown to become active during "awareness of mind wandering," "shifting," and "sustained attention," while the default mode network (DMN) was active during "mind wandering" (Hasenkamp et al., 2012). This paper will primarily address mindfulness meditation, but awareness of mind wandering, shifting, and sustained attention could be expected to be involved, at least initially, in all forms of meditation.

The salience detecting and executive networks include the anterior insula, anterior cingulate (AC), anterior inferior parietal, dorsolateral prefrontal cortex (DLPFC), and anterior medial prefrontal cortex (Sturm et al., 1999; Sridharan et al., 2008; Dien et al., 2003; Sturm et al., 1999; Kiehl et al., 2001, 2005; Dien et al., 2003; Calhoun et al., 2006).

The AC is a major component of the medial prefrontal cortex (mPFC). In much of the relevant literature, the mPFC is roughly divided into two subregions, relative to the genu of the corpus callosum: the dorsal medial prefrontal cortex (dmPFC) and the ventral medial prefrontal cortex (vmPFC) (Kim et al., 2011a).

Broadly defined, the dmPFC includes areas of the salience detecting/executive FPC network including the dorsal AC [BA24 and BA32], the anterior medial frontal cortex [BA10], and the DLPFC [BA8/46]. The areas of the medial frontal gyrus encompassing the dorsal attention network (DAN), including the pre-supplementary motor area (pre-SMA) and frontal eye fields [BA8], and the supplementary motor area (SMA) [BA6] are also a part of the dmPFC. The vmPFC includes the subgenual AC area [BA25], the vmPFC [ventral portions of BA32 and BA10], and the medial orbitofrontal cortex [BA11 and BA12], areas associated with the DMN and the amygdala (AM).

The salience detecting/executive FPC network shifts between and relates to both the externally directed DAN, which receives the stimuli of the present moment from the external environment, and to the internally directed hippocampal-cortical memory system, a part of the DMN (Sridharan et al., 2008; Vincent et al., 2008).

The salience detecting anterior insula and AC of the FPC network also receive the interoceptive information from within the organism, which underlies the sense of oneself and of one’s emotions (Craig, 2009). The interoceptive information is carried to the cortical anterior insula and AC, as well as to the somatosensory cortex, ventrolateral medulla (VLM), and the locus coeruleus (LC) (Craig, 1992) from the peripheral noradrenergic sympathetic nervous system (SNS) via its ascending lamina I spinobalancocortical tract (STT) (Craig, 2009).

In turn, the dorsal AC (Verberne, 1996; Verberne et al., 1997; Verberne and Owen, 1998; Viltart et al., 2003) and the insula (Hady, 1994; Ter Horst et al., 1996) modulate activity in the SNS via the rostral VLM. Inhibition of the rostral VLM causes a reflex fall in SNS nerve activity, resulting in decreased peripheral sympathetic nerve activity and increased parasympathetic nerve activity.
The LC acts both synaptically and by volume transmission (O’Donnell et al., 2012) on its target neurons in the brain and differentially effects the different types of neurons found within each section of the areas to which it projects (Chandler and Waterhouse, 2012). C-NE participates in the rapid modulation of cortical circuits and cellular energy metabolism, and on a slower time scale in neuroplasticity and inflammation (O’Donnell et al., 2012).

Silent only during rapid eye movement (REM) sleep (Hobson and Stickgold, 1994), increases in LC baseline firing progressively increases wakefulness, cortical arousal (Berridge et al., 2012a), the neuronal signal to noise ratio (Anton-Jones et al., 1999), and receptivity to the sensory signals of the present moment (Foote et al., 1991). Although the LC can be activated by stress (Anton-Jones and Cohen, 2003), this wakeful receptivity and cortical arousal are not the same as the SNS arousal under stress; there is an inverse relationship between cortical arousal and peripheral sympathetic arousal (Nagai et al., 2004a,b, 2009; Duschek et al., 2007, 2013).

The integrated P-NE and C-NE systems form the principal neuroendocrine system, a homeostatic system regulating in multiple ways the activity of both neuronal and non-neuronal (astrocytes and microglial) cells (O’Donnell et al., 2012) to adapt the state of both the body and the brain for optimal functioning in changing environments.

As a part of the salience detecting/executive FPC network, the AC is in a position to integrate the information (Wang et al., 2005; Vincent et al., 2008) concerning the state of the external, the internal (Vincent et al., 2008), and the interoceptive environments in the present moment. By rapidly modulating the activity levels of both the principal NE systems, the AC is in a position to adapt the state of the whole organism to optimize attention and behavior as changes are detected in any of these environments.

The LC is thought to optimize attention and behavior in changing environments (Anton-Jones and Cohen, 2005). Activation of the AC is accompanied by a widespread coactivation of other areas of the brain (Wang et al., 2005). A number of fMRI studies of the cortical orienting response of intrinsic alertness have indicated that activity in the salience-detecting/executive FPC network is accompanied by an activation of the LC (Sturm et al., 1999; Kiehl et al., 2001, 2005; Dien et al., 2003; Calhoun et al., 2006). This activation of the LC is associated with the widespread coactivation of other areas until the event-encoding cycle ends (Halgren et al., 1998). As the cycle ends activity decreases in the initial areas associated with orienting, while effective connectivity between relevant cortical areas increases (Büchel et al., 1999; McIntosh et al., 1999).

All the areas of the brain activated by the intentional, impartial, sustained attention of meditation are of significant, interrelated importance, including the insula, the other cortical salience detecting network area (Craig, 2009; Menon and Uddin, 2010). One of the largest activations at the moment of awareness of mind wandering, however, is seen in the AC (Hassenkamp et al., 2012). In this paper we will briefly explore some of the known functions and interrelationships of the AC, the SNS, and the LC with respect to their possible relevance to the process of meditation. The LC core and the subcoeruleus (Westlund and Coulter, 1980) or pericoerulear (Shipley et al., 1996; Anton-Jones et al., 2004)
areas will be, here, treated as one, except where specifically mentioned.

UNCONSCIOUS DETERMINANTS OF CONSCIOUS DECISIONS

Immediately prior to the conscious awareness of voluntary, self-determined conscious decisions there is a consistent decrease in heart rate (Tallon-Baudry, 2012). Studies of the unconscious determinants of voluntary conscious decisions (Soon et al., 2008; Bode et al., 2011; Fried et al., 2011; Kreiman, 2012) have shown that the anterior medial prefrontal cortex, also called the rostral AC [BA10] (Soon et al., 2008; Bode et al., 2011; Fried et al., 2011), the SMA, pre-SMA, and the dorsal AC are active prior to conscious awareness (Fried et al., 2011; Kreiman, 2012). The SMA, pre-SMA, and AC are known to inhibit the SNS via the rostral VLM (Villar et al., 2003) causing a reflex fall in sympathetic nerve activity and blood pressure (Standish et al., 1995). The ventral AC (Hersley et al., 1991; Buchanan et al., 1994) and the pre-SMA (Buchanan et al., 1994) can also modulate the SNS through their projections to the parasympathetic vagal nucleus, while the anterior medial prefrontal cortex [BA10], along with ventral portions of BA 32, has been found to covary inversely with skin conductance (Crichley et al., 2000; Nagai et al., 2004c) and directly with HF-HRV (Lane et al., 2009).

HEART RATE VARIABILITY

Ventral AC activation has been found in fMRI studies to be significantly correlated with HF-HRV suggesting AC control of parasympathetic activity (Tang et al., 2009). The pregenual mPFC [BA10/BA32], right superior frontal gyrus [BA10/46], and left and right parietal cortex [BA40] of the salience detecting/executive FPC cortical orienting system are also positively correlated with HF-HRV, indicating that as activity increases in these cortical areas the vagal breaking action on the heart also increases, reflecting a vagal inhibition of sympathetic influences (Lane et al., 2009).

As mentioned, rapid autonomic changes, including cardiovascular and respiratory changes, such as respiratory rate, respiratory sinus arrhythmia, and heart rate variability (Reyes Del Paso et al., 2013; Tonhajzerova et al., 2013), are thought to occur by way of the parasympathetic NA (Porges, 1995; Standish et al., 1995; Wong et al., 2007; Tonhajzerova et al., 2013), in conjunction with the rostral and caudal VLM (Standish et al., 1995).

Central and autonomic interactions altered by short-term meditation suggest control of parasympathetic activity by the ventral AC [BA25 and BA32] (Tang et al., 2009). This control of parasympathetic activity and the resultant inhibition of the SNS during meditation may occur by way of the AC [BA 25 and BA 32] projections to the NA (Hirse et al., 1991; Buchanan et al., 1994).

During meditation greater parasympathetic activity is observed in the lower heart rate and skin conductance, increased belly respiratory amplitude, decreased chest respiratory rate, and increased HF-HRV (Tang et al., 2009).

The decreases in respiratory rate, whether spontaneous or intentional, and the increases in HF-HRV that occur during meditation may all reflect the same vagal inhibition of sympathetic influences.

The positive correlation of the FPC cortical areas with HF-HRV also suggests that HF-HRV is low when peripheral arousal is high (Lane et al., 2009). As mentioned, a withdrawal of vagal efferent outflow from the NA is seen during both acute and chronic stress, accompanied, in healthy individuals, by increased sympathetic tone (Porges, 1995; Tonhajzerova et al., 2013). The influence of FPC cortical activity on the vagal nuclei may also contribute to the inverse correlation between cortical and peripheral arousal (Nagai et al., 2004a,b, 2009).

THALAMUS AND CORTEX

The C-NE of the LC has potent and long-lasting effects on thalamic and cortical neurons (McCormick et al., 1991; Coull et al., 1999) and is intimately involved in determining both the level of neuronal excitability and the pattern of activity generated by neurons in thalamocortical systems (McCormick et al., 1991). C-NE, for example, was shown, via alpha 2 adrenergic receptors, to increase functional integration and connectivity from the LC to the parietal cortex and from the parietal cortex to the thalamus and frontal cortex, implicating the LC-noradrenergic system in mediating the functional integration of attentional brain systems (Coull et al., 1999).

Increases in C-NE and serotonin in both the thalamic reticular nucleus (RN) and the lateral geniculate nucleus (LGN) shift the thalamic firing pattern from a spontaneous rhythmic bursting mode to a single-spike mode (McCormick and Wang, 1991). These modes of firing are associated, respectively, with inattention, drowsiness, and sleep or with wakefulness and arousal (Steriade and Llinás, 1988).

Stimulation of the LC, stimulating LC burst firing, increases neuronal firing in the LGN resulting in a highly discriminable signal in the LGN. During waking, LGN neurons have a single-spike firing mode when sensory information is faithfully relayed from the retina to the cortex and a burst-firing mode when the transfer of this information is degraded (Houtte and Jacobs, 1994). During REM sleep the transfer of retinal information to the cortex ceases when the LC and the serotonergic dorsal raphe nucleus stop firing (Hobson and Stickgold, 1994).

EEG WAVES

Large-scale cortical synchrony, which depends on the integrity of corticothalamic feedback, is thought to act predominantly through the RN (Desterhe et al., 1998). Although the fusiform gyrus is implicated in the generation of high amplitude gamma synchrony during meditation (Lutz et al., 2004), it has been suggested that the RN plays a pacemaker function in the genesis of 40-Hz gamma oscillations in the thalamus and cortex during states of focused arousal (Pinault and Deschénes, 1999).

The C-NE of the LC has potent and long-lasting effects on thalamic and cortical neurons (McCormick et al., 1991; Coull et al., 1999) and is intimately involved in determining both the level of neuronal excitability and the pattern of activity generated by neurons in thalamocortical systems (McCormick et al., 1991). C-NE, for example, was shown, via alpha 2 adrenergic receptors, to increase functional integration and connectivity from the LC to the parietal cortex and from the parietal cortex to the thalamus and frontal cortex, implicating the LC-noradrenergic system in mediating the functional integration of attentional brain systems (Coull et al., 1999).

Increases in C-NE and serotonin in both the thalamic reticular nucleus (RN) and the lateral geniculate nucleus (LGN) shift the thalamic firing pattern from a spontaneous rhythmic bursting mode to a single-spike mode (McCormick and Wang, 1991). These modes of firing are associated, respectively, with inattention, drowsiness, and sleep or with wakefulness and arousal (Steriade and Llinás, 1988).

Stimulation of the LC, stimulating LC burst firing, increases neuronal firing in the LGN resulting in a highly discriminable signal in the LGN. During waking, LGN neurons have a single-spike firing mode when sensory information is faithfully relayed from the retina to the cortex and a burst-firing mode when the transfer of this information is degraded (Houtte and Jacobs, 1994). During REM sleep the transfer of retinal information to the cortex ceases when the LC and the serotonergic dorsal raphe nucleus stop firing (Hobson and Stickgold, 1994).

EEG WAVES

Large-scale cortical synchrony, which depends on the integrity of corticothalamic feedback, is thought to act predominantly through the RN (Desterhe et al., 1998). Although the fusiform gyrus is implicated in the generation of high amplitude gamma synchrony during meditation (Lutz et al., 2004), it has been suggested that the RN plays a pacemaker function in the genesis of 40-Hz gamma oscillations in the thalamus and cortex during states of focused arousal (Pinault and Deschénes, 1999).

The C-NE of the LC has potent and long-lasting effects on thalamic and cortical neurons (McCormick et al., 1991; Coull et al., 1999) and is intimately involved in determining both the level of neuronal excitability and the pattern of activity generated by neurons in thalamocortical systems (McCormick et al., 1991). C-NE, for example, was shown, via alpha 2 adrenergic receptors, to increase functional integration and connectivity from the LC to the parietal cortex and from the parietal cortex to the thalamus and frontal cortex, implicating the LC-noradrenergic system in mediating the functional integration of attentional brain systems (Coull et al., 1999).

Increases in C-NE and serotonin in both the thalamic reticular nucleus (RN) and the lateral geniculate nucleus (LGN) shift the thalamic firing pattern from a spontaneous rhythmic bursting mode to a single-spike mode (McCormick and Wang, 1991). These modes of firing are associated, respectively, with inattention, drowsiness, and sleep or with wakefulness and arousal (Steriade and Llinás, 1988).

Stimulation of the LC, stimulating LC burst firing, increases neuronal firing in the LGN resulting in a highly discriminable signal in the LGN. During waking, LGN neurons have a single-spike firing mode when sensory information is faithfully relayed from the retina to the cortex and a burst-firing mode when the transfer of this information is degraded (Houtte and Jacobs, 1994). During REM sleep the transfer of retinal information to the cortex ceases when the LC and the serotonergic dorsal raphe nucleus stop firing (Hobson and Stickgold, 1994).
correlated with sympathetic activation (Kubota et al., 2001). The phase of the low-frequency theta rhythm modulates power in the high gamma wave band, with stronger modulation occurring at higher theta amplitudes (Calhoun et al., 2006). The task-related increase in theta-phase locking indicates AC theta-phase locking forms part of a large network involving widespread cortical locations, consistent with the widespread coactivation of the AC with other areas as observed with fMRI (Wang et al., 2005). The widespread coactivation has been associated with an activation of the LC (Sturm et al., 1999; Kishl et al., 2001, 2005; Dior et al., 2005; Calhoun et al., 2006).

There are both direct cholinergic and serotonergic pathways and indirect modulatory LC and AM pathways in EEG activation (Dringenberg and Vanderwolf, 1997, 1998). Increases in LC neuronal activity increases EEG activity in both the hippocampal theta and cortical high-frequency gamma wave bands (Berridge and Foote, 1991, 1996; Berridge, 1998) through its action on the medial septum (Berridge et al., 1996; Smiley et al., 1999).

Alpha waves, on the other hand, are associated with the DMN, which was found to be active during mind wandering in a focused mindfulness meditation study (Hasenkamp et al., 2012). Alpha waves are seen in novice mindfulness meditators, however, a decrease in alpha waves accompanies increased experience in longer term mindfulness meditators (Saggar et al., 2012).

Alpha waves spontaneously occur intermittently during an awake, relaxed, resting state, particularly with closed eyes (Goldman et al., 2002; DiFrancesco et al., 2008), when the vmPFC and DMN are active and they normally stop during salience detecting orienting responses to novel or significant stimuli, or with mental effort (Goldman et al., 2002), when the dmPFC and DAN are active.

Understanding of the origins of the occipital alpha rhythm is incomplete, but a plausible scheme is thought to include a complex interplay between the LGN and RN of the thalamus and the visual cortex (DiFrancesco et al., 2008). The central role of the thalamus in resting state networks is correlated with alpha activity (DiFrancesco et al., 2008) and it has been suggested that the alpha rhythm may be in part generated by the thalamus (Goldman et al., 2002).

In the resting state a decrease in the release of C-NE and serotonin in the thalamus may promote the occurrence of rhythmic oscillations (McCormick and Wang, 1991).

Alpha EEG waves are frequently recorded during studies of transcendental meditation (Travis and Shear, 2010). Beyond the categories of focused and open monitoring meditation, a third meditation category of automatic self-transcending has been proposed to explain the differences in the prevalence of alpha waves (Travis and Shear, 2010).

During mindfulness meditation, increased EEG activity in both theta (Kubota et al., 2001; Cahn and Polich, 2006; Slagter et al., 2009; Tang et al., 2009; Cahn et al., 2013) and gamma (Lutz et al., 2004; Cahn and Polich, 2006; Cahn et al., 2010, 2013) wave lengths have been recorded. The AC and its relationship with the LC may contribute to the changes in theta and gamma waves.
ATTENTIONAL SET-SHIFTING, SUSTAINED ATTENTION, AND THE STOP OF ON GOING BEHAVIOR

In the cortex, relatively low, moderate levels of C-NE act on the alpha 2 adrenergic receptors to enhance working memory in the DLPFC in an inverted U shaped manner (Arnsten, 2011). Higher levels of C-NE are required to act on alpha 1 adrenergic receptors in order to enhance the executive network functions of attentional set-shifting and sustained attention (Berridge and Arnsten, 2012; Berridge et al., 2012b). Improvement was blocked by the alpha 1-antagonist prazosin (Berridge et al., 2012b). Higher levels of C-NE, from the activation of the LC by the AC, may contribute to the attentional shifting and sustained attention observed during meditation.

During the salience detecting orienting response there is an initial inhibition of ongoing behavior (Foote et al., 1980, 1991; Rasmussen et al., 1986), a stop, including a cessation of movement (Ball et al., 1999).

A stop of on going behavior is required for attentional set-shifting, as seen in meditators. As with attentional set-shifting and sustained attention, the stopping of on going behavior is improved by higher levels of C-NE acting on cortical alpha 1 and beta adrenergic receptors (Lapiz and Morilak, 2006; Berridge and Arnsten, 2012; Berridge et al., 2012b). Improvement was blocked by the alpha 2-antagonist prazosin (Berridge et al., 2012b).

The synaptic specializations of the dorsal AC area BA32 indicate it has complementary roles, potentially enhancing the inhibition of spontaneous firing in the working memory DLPFC area [BA46] and strengthening excitation in the anterior medial prefrontal cortex [BA10], enhancing the capacity for more difficult, complex multi-task operations (Medalla and Barbas, 2010). LC activity, similarly, increases with task difficulty (Rajkowski et al., 2004; Raizada et al., 2013), including to low salience and habituated standard stimuli (Cahn et al., 2013), suggestive of higher tonic baseline LC activity.

Increased receptivity to stimuli, as initiated by the activation of the FPC orienting system to oddball stimuli, causes a subjective expansion of time (Ilie et al., 2004). Such a subjective expansion of time has recently been observed in meditators (Kramer et al., 2013).

LC BEHAVIOR PATTERNS

TONIC BASELINE FIRING

Higher baseline (tonic) firing in the LC is associated with enhanced labile attention and modest burst firing to various low salience distractor stimuli. This enhanced receptivity to the stimuli of the present moment is thought to optimize learning in unknown novel environments (Aston-Jones and Cohen, 2005).

During one of the earliest western scientific studies of meditation, the Zen masters reported that during meditation they had "more clearly perceived each stimulus than in their ordinary awakening state" (Kasamatsu and Hirai, 1966). Long-term meditators have repeatedly been found to exhibit an enhanced receptivity to stimuli (Iba et al., 2007; Slager et al., 2007, 2009; Kerr et al., 2008; MacLean et al., 2010; Naranjo and Schmidt, 2012; Cahn et al., 2013), including to low salience and habituated standard stimuli (Cahn et al., 2013), suggestive of higher tonic baseline LC activity.

PHASIC BASELINE FIRING

In contrast, lower, intermediate, more synchronous phasic baseline firing in the LC promotes larger, robust bursts to attended significant known stimuli, rapid well-learned dominant, autoassociative responses, enhanced selective attention, and reduced responding to distractor stimuli. This pattern is thought to optimize behavior in known familiar environments (Aston-Jones and Cohen, 2005) with a well-known coping response available.

SNS MODULATION OF LC BASELINE FIRING

In the LC, changes in baseline firing, along with their associated subsequent bursting patterns, differentially modulate the state of the brain, the central nervous system, to optimize behavior.
in either novel or familiar environments, particularly if they are stressful environments.

Similarly, in the peripheral SNS, epinephrine (P-E) and P-NE are differentially released from the adrenal medulla (Mason et al., 1961; Brady, 1967; Frankenhuaser, 1971; Stoddard et al., 1987; Morrison and Cao, 2000) under stress. Although they do not cross the blood brain barrier, P-E (Holdefer and Jensen, 1987) and P-NE (Svensson et al., 1980; Elm et al., 1984) inversely modify baseline firing in the LC.

During circumstances of novel stress a substantial amount of P-E is released from the adrenal medulla along with a small amount of P-NE (Mason et al., 1961; Brady, 1967; Frankenhuaser et al., 1968; Frankenhuaser, 1971). P-E elevates the baseline tonic firing in the LC (Holdefer and Jensen, 1987). This increases the release of C-NE, causing increased cortical arousal, decreased selective attention, and increased receptivity to the novel stimuli of the present moment. By the elevating of tonic baseline firing in the LC, P-E also enhances memory (Holdefer and Jensen, 1987) for the novel events through the increase in C-NE (Lemon et al., 2009; Reid and Harley, 2010).

In contrast to novel stress, under conditions of familiar stress (Mason et al., 1961; Brady, 1967; Frankenhuaser et al., 1968; McCarty and Kopin, 1978; McCarty et al., 1978), especially with a well-known coping response available (Mandler, 1967; Frankenhuaser et al., 1968), substantial amounts of P-NE are released from the adrenal medulla with virtually no P-E (Brady, 1967; Frankenhuaser and Rissler, 1970; Frankenhuaser, 1971).

By elevating blood pressure, P-NE dose-dependently inhibits baseline tonic firing in the LC via the vagus and the NTS (Svensson et al., 1980; Elm et al., 1984). This causes rapid well-known dominant, autoassociative coping responses, increased selective attention, decreased responding to low salience distractor stimuli, and increased resistance to extinction (Craigymyle, N. A., unpublished data). Decreased perception of affect has also been observed (McCubbin et al., 2011). This classic stress and arousal behavior pattern (Easterbrook, 1959; Friedman et al., 1960, 1975; Zajonc, 1965; Eskenz, 1976; Green, 1976; Green and Gange, 1977) is consistently associated with relatively low, intermediate, phasic baseline LC activity (Aston-Jones and Cohen, 2005).

INVERSE RELATIONSHIP OF CORTICAL AND PERIPHERAL SNS AROUSAL

As mentioned, there is an inverse relationship between cortical arousal and peripheral SNS arousal (Nagai et al., 2004a,b, 2009; Duschek et al., 2007, 2013). The contingent negative variation (CNV) has been used as an index of cortical arousal during orienting and attention, while changes in skin conductance were measured and pharmacological and biofeedback methods were used to elevate blood pressure, a measure of peripheral SNS arousal. Elevated blood pressure was shown to decrease the CNV amplitude in normotensive subjects (Duschek et al., 2007, 2013).

The dose-dependent inhibition of baseline firing in the LC by elevated blood pressure (Svensson et al., 1980; Elm et al., 1984) may contribute to this inverse correlation of peripheral SNS and cortical arousal.

In contrast, enhanced CNV cortical arousal-related activity in the AC, the midcingulate/ SMA and the insula is associated with decreases in peripheral SNS arousal (Nagai et al., 2004b), which may be due to the capacity of these areas of the brain to inhibit the rostral VLM (Vilhart et al., 2003), causing a reflex fall in SNS nerve activity and blood pressure (Standish et al., 1995). This relationship may also contribute to the inverse relationship of cortical and peripheral SNS arousal seen during meditation.

PRINCIPAL AREAS MODULATING THE LC AND SNS – DIRECTLY AND RECIprocALLY

A limited number of areas differentially influence activity in the integrated central noradrenergic LC and the peripheral noradrenergic SNS systems.

AC, SMA, Pre-SMA

These areas have been briefly addressed above.

ORBIFRONTAL CORTEX

The orbifrontal cortex (OFC) is another prominent descending cortical projection to the LC (Aston-Jones and Cohen, 2005). Activity in the AC and OFC is negatively correlated and they have complementary and reciprocal roles in monitoring the outcome of behavior (Aston-Jones and Cohen, 2005). While the AC is active in relation to self-generated decision-making, the OFC is active when the decisions are guided by the experimenter (Ulrich and von Cramon, 2004; Walton et al., 2004), when the decisions and the reward characteristics of the stimuli are predictable (Baxter and Cowson, 2013; Rudebeck et al., 2013), are essentially known, and a coping response is available. Whereas the activity in the AC during salience detection and decision-making elevates tonic baseline firing in the LC enhancing receptivity to the various stimuli of the present moment, activity in the OFC may lower baseline firing in the LC, potentiating selective attention and the rapid performance of expected well-known, autoassociative responses.

ASCENDING AUTONOMIC TRACTS

The ascending autonomic tracts from the periphery also influence the LC. Cardiorespiratory, visceral and somatosensory autonomic stimuli regulate LC activity through ascending autonomic tracts with putative implications for psychiatry and psychopharmacology (Svensson, 1987). The cardiovascular stimuli from the autonomic environment seem to predominate over external environmental stimuli with respect to the LC’s influence on behavior (Svensson, 1987).

The parasympathetic vagus nerve influences activity in the LC, primarily via the NTS, while the ascending sympathetic lamina 1 STT projects directly and reciprocally to the LC (Craig, 1992).

CENTRAL AUTONOMIC NUCLEI

The LC projects reciprocally to central autonomic nuclei including the sympathetic VLM, the parasympathetic DM, and regions of the NTS. The LC also projects to the region of the parasympathetic NA (Sakai et al., 1977; Westland and Counsell, 1980). The LC core has been found to project extensively to regions giving rise to parasympathetic outflow, while the subcoeruleus (peri-coeruleus) region projects to sympathetic regions (Westland and Counsell, 1980). The LC is a distinct part of the central neuronal circuit innervating various regions of the rat heart (Standish et al., 1995).
As mentioned, the NA contains primary source nuclei for the cardiorespiratory branch of the vagus (Standish et al., 1995), has myelinated axons thought to rapidly modulate and regulate the function of the heart and lungs (Standish et al., 1995) and some of its neurons simultaneously innervate both the adrenal gland and the stellate sympathetic ganglion (Jansen et al., 1995) through which it can rapidly modulate the SNS.

There are alpha 1 (Boychuk et al., 2012), alpha 2 (Hashiu et al., 2003), and beta 1 (Bateman et al., 2012) adrenergic receptors in the NA, each differentially modulating NA function. Alpha 1 receptors facilitate inhibitory neurotransmission (Boychuk et al., 2012), while beta 1 adrenergic receptors decrease both inhibitory and excitatory neurotransmission to cardiac vagal neurons (Bateman et al., 2012).

Locus coeruleus activation dilates the airways via NA alpha 2 adrenergic receptors (Hashiu et al., 2003), while fear and emotional distress may facilitate bronchoconstrictive attacks (Lehrer et al., 1993; Hashiu et al., 2003; Rosenkranz et al., 2005, 2012). Exercise spontaneously activates the LC (Hashiu et al., 2003) and dilates the airways (Warren et al., 1984; Hashiu et al., 2003). The dilatation of the airways by the LC via the NA may contribute to the decreased respiratory rate and HF-HRV, which are associated with meditation (Lazar et al., 2005; Tang et al., 2009; Kodituwakku et al., 2012) and yoga. The AC appears to be a critical component in the circuitry that links the development of peripheral symptoms with emotion and cognition in asthma (Rosenkranz and Davidson, 2009). Activation of the LC by the AC may play a role in the beneficial effects of mind-body influences in asthma.

The NA is also, as previously mentioned, closely linked to the rapid expression and regulation of emotional state (Porges, 1995; Tomhajnerova et al., 2013). A withdrawal of the cardiorespiratory vagal efferent outflow from the NA is seen during both acute and chronic stress, which, in healthy individuals, is accompanied by increased sympathetic tone (Porges, 1995), by increased levels of P-NE.

Following bilateral lesions of the LC, animals fail to show noradrenergic hyperactivity (Liddell et al., 2005, 2012). Exercise spontaneously activates the LC (Hashiu et al., 2003) and dilates the airways (Warren et al., 1984; Hashiu et al., 2003). The dilatation of the airways by the LC via the NA may contribute to the decreased respiratory rate and HF-HRV, which are associated with meditation (Lazar et al., 2005; Tang et al., 2009; Kodituwakku et al., 2012) and yoga. The AC appears to be a critical component in the circuitry that links the development of peripheral symptoms with emotion and cognition in asthma (Rosenkranz and Davidson, 2009). Activation of the LC by the AC may play a role in the beneficial effects of mind-body influences in asthma.

The AM is a particular importance in influencing the LC, SNS, and the AC.

The AM forms the core of a second, early-activated emotional salience detecting network or orienting system comprised of the superior colliculus, pulvinar, and AM (Liddell et al., 2005; Luo et al., 2007; Tamietto and de Gelder, 2010; Van den Stock et al., 2011; de Gelder et al., 2012). This system acts as a pre-consciousness early warning system (Liddell et al., 2005; Luo et al., 2007; Tamietto and de Gelder, 2010; Van den Stock et al., 2011; de Gelder et al., 2012), particularly to threatening emotional stimuli, including threatening subliminal stimuli (Liddell et al., 2005). An early activation of the LC following subliminal stimuli has been observed, indicating this AM system may initially activate the LC (Liddell et al., 2005).

The early AM and the later cortical salience detecting orienting networks are reciprocally interconnected, sequentially activated, and both modulate the activity levels in the LC and in the SNS, each contributing differentially to adapt the state of the whole organism to environmental change.

The AM has reciprocal projections to the LC, the AC, and to the NTS and DM, amongst various other regions including the VLM, insula, and OFC. (Price and Amaral, 1981; Amaral and Price, 1981). When conditioned to a new tone or other stimulus, the AM is excited (Liddell et al., 2005) or inhibited (Lindsay et al., 2005). The AM projects reciprocally to both the dorsal AC of the dmPFC and to the ventral AC of the vmPFC. The tract between the AM and the ventral AC is a white matter tract (Kim and Whalen, 2009), allowing for rapid transmission. Increased activity in the vmPFC is correlated with increased parasympathetic vagal activity (Lane et al., 2009; Tang et al., 2009) and the vmPFC is thought to exert a tonic influence on the parasympathetic NA during the resting state (Wong et al., 2007). Both the AM and the AC, independently, are required for the occurrence of conditioned bradyarrhythmia, the conditioned heart rate decrease that develops in response to significant stimuli (Pollack et al., 1997).

Although the AM was long presumed to project to the NA (Schwaber et al., 1982; Volz et al., 1990) to rapidly activate the SNS (Porges, 1995), more recently, this could not be confirmed (Standish et al., 1995). The AM may, however, rapidly modulate activity in the NA through its white matter tract with the vmPFC.

Following stimuli, the AM directly receives an early relatively “crude” version of the stimuli via the superior colliculus and pulvinar in 10–20 ms (Luo et al., 2007; Van den Stock et al., 2011). If the stimulus is significant, the AM responds rapidly within 20–30 ms and activates the LC (Liddell et al., 2005), in another 10–20 ms (Bouret et al., 2003). These activations occur before the cortical frontal eye fields are activated at approximately 64 ms, the supplementary eye field at 81 ms, and the AC at 100 ms (Pouget et al., 2005). All the above activations appear to commence prior to conscious awareness of the stimuli (Fried et al., 2011; Kringel, 2012).

When conditions allow for cortical processing, the mPFC, both dorsal and ventral, is believed to regulate and control the AM, either increasing or decreasing AM activity (Ohman, 2005; Kim et al., 2011a,b). During rest, in normal low anxiety humans, activity in the vmPFC is positively correlated with the AM, while dmPFC activity is negatively correlated (Kim et al., 2011b).

Following a familiar, stressful, significant stimulus, with a known coping response available, the AM is thought to take “the PFC “off line” to allow faster, more habitual responses mediated by the posterior and/or subcortical structures to regulate behavior” (Arnsen, 1997).

The cortical mPFC, however, can in turn regulate and control the AM (Ohman, 2005; Kim et al., 2011a,b), to either enhance activity in the AM or to take the AM, itself, “off line.”

Mediators exhibit lower activity in the AM (Breitung-Lewis et al., 2007; Creswell et al., 2007; Lutz et al., 2008), an inhibition of the AM occurs during meditation (Lutz et al., 2008) and decreased gray matter density in the AM emerges over time (Holzel et al., 2010).

Arnsen (1997) has suggested the AM may take the PFC “off line” by activating the LC, causing high levels of C-NE and...
Activation of the LC modulates activity in the basolateral amygdala (BLA) by releasing C-NE. The C-NE inhibits spontaneous firing in the majority of the BLA neurons via alpha 2 adrenergic receptors, while exciting others via beta adrenergic receptors (Buffalari and Grace, 2007).

Elevated activity in the LC acts via the BLA beta adrenergic receptors to enhance the consolidation of memory (Booij et al., 2009) and in the insula (Bernardes-Rattoni et al., 2005).

Arousal-induced release, or systemic injection of the peripheral adrenal hormones P-E and cortioli (corticosterone in rats) enhances the consolidation of memory via the action of C-NE on the BLA beta receptors (Chavez, 2013).

Considerable evidence indicates that peripheral action on the vagus nerve stimulates the LC to release this C-NE in the BLA (Holdefer and Jensen, 1997). In contrast, amphetamines, like methamphetamine, like F-NE (Evenson et al., 1980; Elam et al., 1994), inhibit LC baseline firing (Holdefer and Jensen, 1987).

Activation of the LC by exercise has also been shown to enhance memory, including in older people and those with the early stages of Alzheimer's disease (Segal et al., 2012).

Following acute stress there is a period of increased connectivity, the LC, AC, and AM, which may contribute to the consolidation of memory for the significant events (van Marle et al., 2010). The LC is active during slow wave sleep contributing to the consolidation and the reconsolidation of memory (Sara, 2010; Eschenko et al., 2012) and is also involved in the successful retrieval of emotional memory (Sterpenich et al., 2006).

Long-term stress induces homeostatic changes in the interrelationship between the AM and the LC

In controls, increased norepinephrine in the BLA inhibited spontaneous firing in the majority of the BLA neurones, with some showing excitation at lower doses but inhibition at higher doses. Norepinephrine also decreased responsiveness of these neurones to electrical stimulation of the entorhinal and sensory association cortices (Buffalari and Grace, 2009). However, following chronic cold stress, norepinephrine led to an increase in the excitatory effects of norepinephrine on BLA neurones and a facilitation of responses to the stimulation of the entorhinal and sensory association cortices (Buffalari and Grace, 2009).

During stress, the LC is a major source of elevated corticotropin-releasing factor (CRF) in the peri-coeruleus LC (Van Bockstaele et al., 2001, 2010), the area of the LC that projects to sympathetic regions (Westlund and Coulter, 1980). CRF activates the LC raising C-NE levels in the posterior parts of the ventral medial (VPM) thalamus (Devibius et al., 2012). Although increased levels of LC output can facilitate sensory-evoked responses of VPM thalamic and barrel field cortical neurons in an inverted U dose-response relationship, high levels of peri-coeruleus LC infusions of CRF caused a dose-dependent suppression of sensory-evoked discharge in the VPM thalamus and in cortical barrel field neurons resulting in a net decrease in signal-to-noise of sensory-evoked responses (Devibius et al., 2012).

PAIN AND THE COERULEOSPINAL CENTRIFUGAL PAIN CONTROL SYSTEM

The VPM thalamus is the thalamic relay nucleus for the sympathetic STT, which carries the afferent interosseous information, including pain, to the anterior insula (by way of the dorsal posterior insula) and to the somatosensory BA3 (Craig, 2004, 2009). The branch of the STT that projects to the AC relays in the ventrocaudal portion of the medial dorsal thalamic nucleus (Craig, 2004).

The LC projects reciprocally to the STT (Craig, 1992; Westlund and Craig, 1996). The descending coeruleospinal inhibitory pathway from the LC and subcoeruleus (peri-coeruleus) is one of the centrifugal pain control systems. The function of this LC system is thought to maintain the accuracy of intensity coding in the dorsal horn, while inhibiting nociceptive signals in order to extract other sensory information that is essential for circumstantial judgment (Turrusaka et al., 2011).

Activation of the LC can produce profound antinociception (Turrusaka et al., 2011, 2012; Hayashi et al., 2012) and can inhibit the nociceptive activity of spinal dorsal horn neurons and trigeminal subnucleus caudalis neurons (Hayashi et al., 2012). Nociceptive signals from visceral organs and cutaneous receptive fields converge on single dorsal horn neurons. Electrical stimulation of the LC inhibited both the visceral (colorectal distention) and the cutaneous pinch responses, with a reduction in the intensity-response magnitude curve without a change in the response threshold (Hayashi et al., 2012).

Fear-induced antinociception also occurs via LC pathways (Biagioni et al., 2013), seizure-induced antinociception involves LC alpha 2 and beta adrenergic receptors (Felippoti et al., 2011) and the LC is thought to play a role in the antinociception caused by stimulation of the motor cortex (Visanen and Pertovaara, 2010).

Locus coeruleus responses to noxious stimulation were initially enhanced following experimental neuropathy, however, after 10–14 days microinjections of glutamate into the CeA produced a dose-related inhibition of the discharge rate of LC neurons. There was no significant effect on discharge rates in control groups. Spinal antinociception due to LC electrical stimulation was also
Weaker in the nerve injured rats. The enhanced inhibition of the LC by the CeA was thought to suppress the noradrenergic pain inhibition and promote neuropathic pain (Viswanath and Pertovaara, 2009). Long-term pain can increase the likelihood of mood or anxiety disorders by as much as threefold (The Neuroscientist, 2012).

Long-term chronic pain (>28 days) caused an increase in LC bursting activity, tyrosine hydroxylase expression and that of the norepinephrine transporter; and enhanced expression and sensitivity of the inhibitory alpha 2 adrenoceptors in the LC. This was accompanied by an inability to cope with stressful situations, depressive and anxiogenic-like behaviors (Alba-Delgado et al., 2013). As mentioned, increased LC bursting activity is associated with lower, inhibited, LC baseline levels.

Vagus nerve stimulation

Chemical or electrical stimulation of the vagus nerve alters LC activity and that of its forebrain targets suggesting that the therapeutic effects of vagal nerve stimulation (VNS) may involve the LC-noradrenergic system (George and Aston-Jones, 2010). It has been demonstrated in the AC, DLPFC, and OFC, amongst other areas (Chandley and Ordway, 2012). The mechanism by which C-NE reduces the expression of pro-inflammatory cytokines, while enhancing production of brain-derived neurotrophic factor (BDNF) to promote neuronal survival (O’Donnell et al., 2012). C-NE modulates microglia disease responses, suppressing inflammatory gene transcription and reducing expression of pro-inflammatory cytokines, while enhancing production of brain-derived neurotrophic factor (BDNF) to promote neuronal survival (O’Donnell et al., 2012). The mechanism by which C-NE reduces the expression of pro-inflammatory cytokines is still a topic of debate, but may involve the regulation of the NF-kB signaling system by B2-adrenergic receptor driven increases in cAMP (O’Donnell et al., 2012).

Vagal meditation downregulated transcripts of pro-inflammatory cytokines, decreasing expression of NF-kB associated pro-inflammatory genes (Black et al., 2013). Mindfulness-based stress reduction training also resulted in a significantly smaller post-stress inflammatory response (Rosenkranz et al., 2013). The regulation of gene expression by yoga, meditation, and related practices has recently begun to be investigated (Saatcioglu, 2013). The activation of the LC, by the AC and by exercise, may again be a contributing factor.

Neuroplasticity

In post-mortem studies of depressed humans a loss of glial cells has been demonstrated in the AC, DLPCF, and OFC, amongst other areas (Chandley and Ordway, 2012). It has been hypothesized that the intimate functional relationship between C-NE and glia, particularly astrocytes, the glial deficits may be secondary to a deficiency of C-NE (Chandley and Ordway, 2012). Humans with
dopamine-B-hydroxylase deficiency, who have no norepinephrine, exhibit a smaller total brain volume (Iyemura et al., 2011).

Research indicates that LC neuron loss appears with aging (Shibata et al., 2006) and depression (Shibata et al., 2007), and that such loss is prominent in Parkinson’s and Alzheimer diseases (Bekar et al., 2012). A diminished ability to couple blood volume to oxygen demand (Bekar et al., 2012), and to support other neuronal and non-neuronal cellular requirements (Bekar et al., 2008; Chandley and Ordway, 2012; O’Donnell et al., 2012) due to a reduction in C-NE from LC neurons, may contribute to their pathogenesis.

Structural changes are observed in various brain areas of meditators (Lazar et al., 2005; Holzel et al., 2010; Tang et al., 2009; 2012; Luders et al., 2011, 2013; Grant et al., 2013; Kang et al., 2013; Luders, 2013). The elevated C-NE due to the activation of the LC by the AC may play a role.

DISCUSSION

In early 2012, when the Hasenkamp paper was published and research for this paper began, some aspects of the AC’s activation of the LC and inhibition of the SNS to maximize adaptation in changing environments were already known. Included were the increased receptivity to the stimuli of the present moment caused by activating the LC; the possible reduction of stress through the inhibition of the stress associated SNS; the LC behavior patterns and the potential importance of understanding that the LC is not activated in tandem with the SNS, but that stress associated elevated P-NE inhibits the LC dose-dependently enhancing the phasic behavior pattern; that higher tonic base line firing is not associated only with stress and arousal, but with increased receptivity to the stimuli of the present moment, with increased awareness. These aspects were already understood and seemed of significant importance to understanding the neuroscientific process underlying the changes in state initiated by meditation.

During 2012 and 2013, however, numerous papers have been published that further implicate the integrated norepinephrine systems in the enhancement of cortical executive network functions and in the modulation of the AM, NA, VPM, ST, and pain, as well as in the modulation of astrocytes and glia, blood volume, oxygen supply, cellular energy metabolism, inflammation, and even of neuroplasticity.

These aspects were generally unknown in early 2012, and have vastly expanded the understanding of the role of the AC’s activation of the LC and inhibition of the SNS in general, and potentially in the beneficial changes initiated by meditation.

The AC and the anterior insula, together, form the cortical salience detecting network, are usually jointly activated, contain numerous recently evolved von Economo neurons, and undergo structural changes in longer term mediators. Reviews of their functions (Craig, 2009; Medford and Critchley, 2010; Menon and Uddin, 2010) imply them in the capacity for awareness of self and awareness of the moment.

The AC is active during salience detecting and monitoring of the stimuli in the present moment, is naturally activated by novel or significant stimuli and normally ceases activity as the event-encoding cycle ends. During mindfulness meditation the AC is active “at the moment of awareness of mind wandering.” This suggests the AC is active “at the moment of awareness” of whatever is occurring now, in the present moment.

During meditation, following the initial “awareness of mind wandering,” one “shifts” to “sustained attention,” one shifts to sustain the attention of awareness of the present moment. Without the development of a capacity to intentionally sustain the attention of awareness of the present moment, this quality of attention will normally be lost as the event-encoding cycle ends. The various practices of meditation, however, can develop a capacity to intentionally sustain the attention of awareness of whatever is occurring in the present moment, irrespective of the nature of the stimuli and irrespective of the environment from which they come, whether external, internal, or interoceptive.

As mentioned, the salience detecting/executive FPC cortical orienting network, including both the AC and the insula, shifts between the external DAN and the internal DMN, while the AC and insula receive information from the interoceptive STT. This may allow the AC, in coordination with the insula, to monitor and detect the salience of the stimuli of the present moment from all environments, irrespective of the nature of the stimuli, whether known or unknown.

Meditation may develop the capacity for an intentional attention of awareness, which activates the AC of the salience detecting/executive FPC cortical orienting network, initiating a variety of physiological cascades through its modulation of the central LC and peripheral SNS norepinephrine systems, via both parasympathetic and sympathetic routes, to maximize receptivity and adaptation in changing environments.

Buddha realized he had found a pathway to the elimination of pain and suffering. The inhibition of the SNS and activation of the LC by the AC during meditation may be a contributing factor worthy of further scientific exploration.

ACKNOWLEDGMENTS

I would like to thank Dr. Phillip R. Shaver for his insight into the elevated peripheral norepinephrine behavior pattern, Dr. Torgny H. Svensson, Dr. Donald A. Powell, Dr. Gerald Epstein and Dr. Zoran Josipovic for their encouragement, and Carina Paraiso and Diana Boy of Frontiers in Psychology for inviting me.

REFERENCES

Amaral, D. G., and Price, J. L. (1984). Amygdalo-cortical projections in the monkey (Macaca fascicularis). J. Comp. Neurol. 230, 465–496. doi: 10.1002/cne.902300402

Bekar, F., et al. (2008). Altered central noradrenergic system and peripheral SNS norepinephrine systems, via both parasympathetic and sympathetic routes, to maximize receptivity and adaptation in changing environments. doi: 10.1016/j.biopsych.2011.01.027

Craigmyle, J. A., Sánchez-Blázquez, M., Horrillo, I., Ortega, J. E., Mico, J. A., Sánchez-Balaguer, P., et al. (2015). Chronic pain leads to concomitant noradrenergic impairment and mood disorders. Biol. Psychiatry 77, 54-62. doi: 10.1016/j.biopsych.2012.06.033

Arnsten, A. F. (1997). Catecholamine regulation of the prefrontal cortex. J Psychopharmacol 11, 151–162. doi: 10.1177/026988119701100208

Arnsten, A. T. F. (2011). Catecholaminergic influences on dorsomedial prefrontal cortical networks. Biol. Psychiatry 69, e89-e99. doi: 10.1016/j.biopsych.2011.01.027

Anton-Jones, G., and Cohen, J. D. (2005). An integrative theory of locus coeruleus-norepinephrine function: adaptive gain and optimal performance. Annu. Rev. Neurosci. 28, 403-430. doi: 10.1146/annurev.neuro.28.060404.155709

Antonen, J., Rajkowski, J., and Cohen, J. (1999). Role of locus coeruleus in attention and behavioral flexibility. Biol. Psychiatry 46, 1309–1322. doi: 10.1016/S0006-3223(99)00140-7

Amaral, D. G., and Price, J. L. (1984). Amygdalo-cortical projections in the monkey (Macaca fascicularis). J. Comp. Neurol. 230, 465–496. doi: 10.1002/cne.902300402

Arnsten, A. F. (1997). Catecholamine regulation of the prefrontal cortex. J Psychopharmacol 11, 151–162. doi: 10.1177/026988119701100208

Arnsten, A. F. (2011). Catecholaminergic influences on dorsomedial prefrontal cortical networks. Biol. Psychiatry 69, e89-e99. doi: 10.1016/j.biopsych.2011.01.027

Anton-Jones, G., and Cohen, J. D. (2005). An integrative theory of locus coeruleus-norepinephrine function: adaptive gain and optimal performance. Annu. Rev. Neurosci. 28, 403-430. doi: 10.1146/annurev.neuro.28.060404.155709

Antonen, J., Rajkowski, J., and Cohen, J. (1999). Role of locus coeruleus in attention and behavioral flexibility. Biol. Psychiatry 46, 1309–1322. doi: 10.1016/S0006-3223(99)00140-7

"fpsyg-04-00731" — 2013/10/14 — 12:21 — page 10 — #10
Aston-Joncas, G., Zhu, Y., and Card, J. P. (2004). Numerous GABAergic afferents to locus ceruleus in the perifornical denticulate zone possible instrumental motor area. J. Neurosci. 24, 2313–2321. doi: 10.1523/JNEUROSCI.3299-03.2004
Ball, T., Schroben, A., Foige, B., Wagner, M., Lücking, C. H., and Kröner-Eck, R. (1998). The role of higher-order motor areas in voluntary movement as revealed by high resolution ECoG and BMG. Neuroimage 10, 68–94. doi: 10.1006/nimg.1997.0070
Bari, A., Miot, A. C., Theohalid, D. E., Ulands, S. A., Oganian, K. C., Eagle, D. M., et al. (2010). Preferential and mnemonic contributions to stop-signal task performance in rats. J. Neurosci. 30, 10608–10611. doi: 10.1523/JNEUROSCI.3577-10.2010
Batenov, R. J., Boychuk, C. R., Khilin, B. E., and Mandelzweig, D. (2012). β-adrenergic receptor modulation of neurotransmitter to cardiac vagal neurons in the nucleus ambiguus. Neuroscience 17, 58–66. doi: 10.1016/j.neuroscience.2012.02.043
Bannet, M. G., and Conron, P. L. (2013). Behavioral control by the orbital prefrontal cortex: reversal of fortune. Nat. Neurosci. 16, 994–995. doi: 10.1038/nn.3472
Bekar, L. K., Hsu, W., and Nogedarr, M. (2008). Locus ceruleus alpha-1adrenoceptors modulate responses of cortical artery in vivo. Cereb. Circ. Res. 38, 2799–2795. doi: 10.1093/cercor/bhn140
Bekar, L. K., Wu, S., and Nogedarr, M. (2008). Locus ceruleus noradrenergic noradrenergic neurotransmitter network optimizes coupling of central blood volume with oxygen demand. J. Cereb. Blood Flow Metab. 32, 2153–2159. doi: 10.1038/sj.jbfm.2706113
Bermúdez-Rattoni, F., Okuda, S., Bekar, L. K., W ei, H. S., and Nedergaard, M. E. (1999). The role of the locus ceruleus-noradrenergic system: involvement of the medial septal area. Pharmacol. Rev. 42, 295–324. doi: 10.1016/S0031-6977(98)80058-6
Berridge, C. W. (1998). Modulation of forebrain electroencephalographic activity and behavioral state by the locus ceruleus-noradrenergic system: involvement of the medial septal area. Adv. Pharmacol. 40, 1–29. doi: 10.1016/S0065-3505(98)50023-8
Berridge, C. W., and Arntzen, A. F. (2012). Prechiasmatic and motivated behavior: arousal and orientation. Neurosci. Biobehav. Rev. 36, 1027–1048. doi: 10.1016/j.neubiorev.2012.11.005 [Epub ahead of print]
Berridge, C. W., Bolin, S. J., Manley, M. S., and Fosti, S. L. (1996). Modulation of forebrain electroencephalographic activity and behavioral state by the locus ceruleus-noradrenergic system: involvement of the medial septal area. Soc. Neurosci. Abstr. 22, 687. [Abstract]
Berridge, C. W., and Fosti, S. L. (1995). Effects of locus ceruleus activation on electroencephalographic activity in the medial septal region. J. Neurosci. 15, 7101–7102.
Berridge, C. W., and Fosti, S. L. (1996). Behavioral enhancement of and electroencephalographic indices of waking following stimulation of noradrenergic beta-receptors within the medial septal region of the basal forebrain. J. Neurosci. 16, 6998–7009.
Berridge, C. W., Schmichiel, B. E., and Fosti, S. L. (2012a). Noradrenergic modulation of wakefulness/arousal. Sleep Med. Rev. 16, 187–197. doi: 10.1016/j.smrv.2012.03.005
Berridge, C. W., Shumsky, J. S., Andreassone, M. E., McGaugh, J. A., Spencer, R. C., Devilbiss, D. M., et al. (2012b). Differential sensitivity to presynaptic actions across prefrontal cognitive tracts: differential involvement of noradrenergic α-1 and α-2 receptors. J. Physiol. 591, 667–673. doi: 10.1113/jphysiol.2011.217222
Baggent, A. F., de Freitas, R. L., de Silva, J. A., de Oliveira, R. C., de Oliveira, R., Abreu, V. M., et al. (2011). Supraspinal neurons in all levels from the dorsal raphe nucleus mediate defensive behaviors organized by the dorsomedial hypothalamus and the elaboration of fear-induced antinociception. J. Neurosci. 31, 6690–6696. doi: 10.1523/JNEUROSCI.0587-11.2011
Black, D. S., Cale, W. S., Iwzem, M. R., Brown, E., Stycy, N. M., Nairnauer, J. H., et al. (2005). Locus ceruleus modulation of reversal NF-kiB and IRF-related transcriptional dynamics in leukocytes of family dementia carriers in a randomized controlled trial. Psychoneuroendocrinology 30, 544–555. doi: 10.1016/j.psyneuen.2005.03.011
Bode, S. J., Zhang, H. H., C. S, Trampe, R., Turner, R., and Hurney, J. D. (2011). Tracking the uncorrelated generation of two decision using ultra-high field MRI. PLoS ONE 6, e18142. doi: 10.1371/journal.pone.0020162
Boulis, N. E., Cools, R. C., McClellan, R. E., and Mandelzweig, D. (2011). Alpha-adrenergic receptors facilitate inhibitory neurotransmission to cardiac vagal neurons in the nucleus ambiguus. Neuroscience 210, 58–66. doi: 10.1016/j.neuroscience.2011.03.055.
Budy, J. V. (1967). “Emotion and the loss of power is phase-locked to theta oscillations in human monsoon. Science 11, 1626–1628. doi: 10.1126/science.1528315
Carnegie, D. L., Pozzi, D. E., Callonnet, C., Ungery, Yu, L., Gu, B. G., and Petri- gno, J. D. (2005). Meditation alters perceptual rivalry in Tibetan Buddhist monks. Curr. Biol. 15, 842–845. doi: 10.1016/j.cub.2005.03.043
Chandler, D., and Waterhouse, B. D. (2012). Evidence for broad versus segregated projections from cholinergic and noradrenergic nuclei to functionally and anatomically distinct subregions of prefrontal cortex. Front. Behav. Neurosci. 6:26. doi: 10.3389/fnbeh.2012.00020
Chandler, M. J., and Sheth, G. A. (2012). “Noradrenergic dysfunction in depression and suicide,” in The Neurobiological Basis of Suicide, ed. V. Devarti (Boca Ratun: CRC Press), Chapter 5
Chaves, C. M., McGaugh, J. L., and Wiesner, J. B. (2013). Activation of the basal amygdala induces long-term enhancement of specific memory representations in the cerebral cortex. Neuronal. Learn. Mem. 101, 1–14. doi: 10.1016/j.nlm.2012.01.013
Clayton, E. C., Rajkowska, J., Cohen, J. D., and Aston-Jones, G. (2004). Phasic activation of monkey locus ceruleus neurons by simple decision in a forced-choice task. J. Neurosci. 24, 9914–9920. doi: 10.1523/JNEUROSCI.1359-04.2004
Corin, C., Gahwiler, B., Cools, R., and Frith, C. (1994). Noradrenergically mediated plasticity in a human attentional neural network. Neuroscience 10, 705–715. doi: 10.1016/0306-4522(94)00513-5
Craig, A. D. (1992). Spinal and trigeminal lamina I input to the locus ceruleus aminergic axon tract in Phascolus vulgaris lococolluginatin (PFLa-L) in the cat and the monkey. Brain Res. 584, 229–238. doi: 10.1016/0006-8992(92)91015-V
Craig, A. D. (2004). Human feelings: why are some more acute than others? Trends Cogn. Sci. 8, 19. doi: 10.1016/j.tics.2004.09.004
Craig, A. D. (2009). How do you feel — now? The anterior insula and human awareness. Nat. Rev. Neurosci. 10, 59–70. doi: 10.1038/nrn2523

@fpss-004-00731 — 2013/10/14 — 12:21 — page 11 — #11
Craigmyle Meditation anterior cingulate locus coeruleus

Hikosaka, O., and Isoda, M. (2008). Brain mechanisms for switching from automatic to controlled eye movements. Prog. Brain Res. 171, 373–382. doi: 10.1016/S0079-6123(08)30559-5

Hobson, J. A., and McSweeney, R. (1994). Dreaming: a neurocognitive approach. Conscious. Cogn. 3, 1–15. doi: 10.1006/conc.1994.1001

Holden, R. N., and Jacobs, B. L. (2004). Phasic stimulation of the locus coeruleus affects on activity in the lateral geniculate nucleus. Exp. Brain Res. 159, 445–452. doi: 10.1007/s00221-004-1890-2

Kamen, A., and Hirai, T. (1994). An electrophysiological study of the zen meditation (Zazen). J. Psychiatric Neurosci. 20, 370–378.

Kert, C. E., Shaw, J. R., Wasserman, R. H., Chen, W. V., Kameya, A., Bayet, T., et al. (2008). Taste acuity in experienced Tai Chi practitioners: evidence for use dependent plasticity as an effect of sensory-attentional training. Exp. Brain Res. 188, 517–522. doi: 10.1007/s00221-008-1465-0

Kuhl, A. K., Laurens, K. R., Duffy, T., L. Gardner, B. R., and Liddle, P. F. (2011). Neural sources involved in auditory target detection and novelty processing: an event-related fMRI study. Psychophysiology 48, 135–142. doi: 10.1111/j.1469-8986.2010.01031.x

Kuhl, A. K., Stevens, M. C., Laurens, K. R., Pearson, G., Calhoun, V. D., and Liddle, P. F. (2005). An adaptive reflexive processing model of neurocognitive function: supporting evidence from a large scale (n = 100) fMRI study of an auditory oddball task. Neuroimage 25, 899–915. doi: 10.1016/j.neuroimage.2004.12.055

Kim, M. J., Loucks, R. A., Palmer, A. L., Brown, A. C., Solomon, K. M., Marchante, A. N., et al. (2011a). The structural and functional connectivity of the amygdala from normal emotion to pathophysiological anxiety. J. Neurosci. 31, 403–410. doi: 10.1523/JNEUROSCI.1463-10.2011

Kim, M. J., Lee, G. H., Kim, M. J., Loucks, R. A., Darin, P. C., and Whalen, P. J. (2013). Amygdala disinhibitory and ventral prefrontal circuit function: the connectivity with the amygdala at rest. Cereb. Cortex 23, 1667–1675. doi: 10.1093/cercor/bhs237

Kim, M. J., and Whalen, P. J. (2010). Central integration and deactivation of an amygdala-prefrontal pathway predicts trait anxiety. J. Neurosci. 29, 11614–11628. doi: 10.1523/JNEUROSCI.2235-09.2009

Koditschek, S., Lazic, S. W., Insko, P., Chen, Z., Brown, E. N., and Barbas, H. (2012). Point process time-frequency analysis of dynamic respiratory patterns during meditation-practice. Med. Biol. Eng. Comput. 50, 283–275. doi: 10.1007/s11517-012-0996-y

Koen, M. C. (1996). Pupillary dilation as an index of central nervous system alpha-2-adrenergic receptor activation. J. Pharmacol. Method 35, 1–19. doi: 10.1016/0378-5122(95)05002-1

Kramer, R. E., Weiger, U., and Ollenschläger, D. (1987). The effect of mindfulness on meditation time perception. Conscious. Cogn. 22, 846–852. doi: 10.1016/j.concog.2013.05.008

Kristan, B. W. (2012). "Pre-ottonion single neuron signals in the human medial frontal cortex," in Neurororhcecteting and Plannet (New York: Society for Neuroscience), 321–327.

Kubota, Y., Satoh, W., Itoh, M., Matsu, T., Okada, T., Hayashi, A., et al. (2008). Frontal midline theta rhythm is correlated with cardiac autonomic activities during the performance of an attention demanding manipulation procedure. Br. J. Clin. Psychol. 47, 281–297. doi: 10.1348/000712507X160942

Lane, R. D., Malhotra, K., Reiman, E. M., Chen, K., Ahern, G. L., and Thayer, J. F. (2009). Neural correlates of heart rate variability during emotion. Neuroimage 44, 213–222. doi: 10.1016/j.neuroimage.2008.07.056

Lapin, M. D., and Morilak, D. A. (2006). Noradrenergic modulation of cognitive function in rat medial prefrontal cortex as measured by attentional set shifting capability. Neuroscience 157, 1099–1104. doi: 10.1016/j.neuroscience.2005.09.051

Lazar, S. W., Kiehl, K. A., Wasserman, R. H., Gray, J. R., Greve, D. N., Tousheng, M. Y., et al. (2007). Meditation experience is associated with increased cortical thickness. Neuroreport 18, 1959–1962. doi: 10.1097/WNR.0b013e32801c3739

Mantle, G. (1977). “The conditions for emotional behaviors,” in Neurophysiology and Emotion, ed D. C. Glias (New York, NY: Rockefeller University Press), 397–413.

Mansfield, A., Raffone, A., Parmeci, M. G., Natalo, D., Ferrari, A., Arienti, V., et al. (2010). Neural correlates of focused attention and cognitive monitoring in meditation. Brain Res. Bull. 82, 46–56. doi: 10.1016/j.brainresbull.2010.03.001

Mantia, S., Dong, J., Dobsonnel, J., and Blier, P. (2003). Neural mechanisms underlying the enhancement of the function of rat serotonin and noradrenergic neurons by sustained vaga nerve stimulation. J. Psychiatry Neurosci. 28, 272–280.

Mantia, S., El Mansari, M., Dobsonnel, G., and Blier, P. (2013). Electrophysiological and neurochemical effects of long-term vaga nerve stimulation on the rat monoaminergic systems. J. Neurochemical Pharmacology 16, 439–447. doi: 10.1002/jn.23227

Marcus, R. B. (2012). Mindfulness-based stress reduction, mindfulness-based cognitive therapy, and meditation for depression, anxiety, pain, and psychological distress. J. Psychoac. Pract. 18, 233–232. doi: 10.1076/jppp.00451.1012551.86

“fpsyg:04-00731” — 2013/10/14 — 12:21 — page 13 — #13
McCubbin, J. A., Merritt, M. M., Sollers, McReynolds, J. R., Donowho, K., Abdi, McIntyre, C. K., McGaugh, J.

Frontiers in Psychology

Mason, J. W ., Mangan, G. F . Jr., Craigmyle Meditation anterior cingulate locus coeruleus

McCarty, R., and Kopin, I. J. (1978).

Williamson, A. (1991). Actions of biol. Learn. Mem.

Meditation Anterior cingulate locus coeruleus

McCarty, R., Chiueh, C. C., and A. B., Lane, R. D., et al. (2011).

Anterior cingulate synapses in pre-frontal areas 10 and 46 suggest differ- ent plasticity in dopaminergic and noradrenergic neurons

J. Neurosci. 10, 16068–16081. doi: 10.1523/JNEUROSCI.1773-10.2010

McElroy, N., and Critchley, H. D. (2010). Joint activity of anterior insula and anterior cingulate cortex: feedback and anterior cingulate locus coeruleus

McDaniel, 73, 743–750. doi: 10.1016/S0022-3856

Mccarty, R. Jr., Goldstein, L. H., Critchley, H. D., and Fenwick, P . B. (2004a). Integration of prefrontal cortex in relation to awareness of negative variation: an fMRI investigation.

Front. Neurosci.

Mccullagh, J. L., and Williams, C. L. (2012). Performance of prefrontal cortex in the monkey amygdala and nucleus accumbens

J. Neurosci. 11, 1059–1074. doi: 10.1523/JNEUROSCI.2994-11.2011

Peters, J. (2013). Developmental origins of heart rate variability in preterm infants

Psychosom. Med.

Peters, J. (2010). Developmental origins of heart rate variability in preterm infants

Psychosom. Med.

Peters, J. (2013). Developmental origins of heart rate variability in preterm infants

Psychosom. Med.

Peters, J. (2010). Developmental origins of heart rate variability in preterm infants

Psychosom. Med.

Peters, J. (2010). Developmental origins of heart rate variability in preterm infants

Psychosom. Med.

Peters, J. (2010). Developmental origins of heart rate variability in preterm infants

Psychosom. Med.

Peters, J. (2010). Developmental origins of heart rate variability in preterm infants

Psychosom. Med.

Peters, J. (2010). Developmental origins of heart rate variability in preterm infants

Psychosom. Med.

Peters, J. (2010). Developmental origins of heart rate variability in preterm infants

Psychosom. Med.

Peters, J. (2010). Developmental origins of heart rate variability in preterm infants

Psychosom. Med.

Peters, J. (2010). Developmental origins of heart rate variability in preterm infants

Psychosom. Med.

Peters, J. (2010). Developmental origins of heart rate variability in preterm infants

Psychosom. Med.

Peters, J. (2010). Developmental origins of heart rate variability in preterm infants

Psychosom. Med.

Peters, J. (2010). Developmental origins of heart rate variability in preterm infants

Psychosom. Med.

Peters, J. (2010). Developmental origins of heart rate variability in preterm infants

Psychosom. Med.

Peters, J. (2010). Developmental origins of heart rate variability in preterm infants

Psychosom. Med.

Peters, J. (2010). Developmental origins of heart rate variability in preterm infants

Psychosom. Med.

Peters, J. (2010). Developmental origins of heart rate variability in preterm infants

Psychosom. Med.

Peters, J. (2010). Developmental origins of heart rate variability in preterm infants

Psychosom. Med.

Peters, J. (2010). Developmental origins of heart rate variability in preterm infants

Psychosom. Med.

Peters, J. (2010). Developmental origins of heart rate variability in preterm infants

Psychosom. Med.

Peters, J. (2010). Developmental origins of heart rate variability in preterm infants

Psychosom. Med.

Peters, J. (2010). Developmental origins of heart rate variability in preterm infants

Psychosom. Med.
Saatcioglu, F. (2013). Regulation of gene expression by meditation, resolution of paradoxes: a review of recent studies. Asian J. Psychiatry, 6, 74–77. doi: 10.1016/j.ajp.2012.02.002

Bagger, M., King, G. R., Zanos, A. P., Maclean, K. A., Ashuel, S. R., Jacobs, T. L., et al. (2012). Intensive training induces longitudinal changes in meditation state-related EEG oscillatory activity. Front. Hum. Neurosci. 6, 256. doi: 10.3389/fnhum.2012.00256

Sakai, K., Jones, M., Sabet, D., Luger, L., and Joutel, M. (1997). Aligned projection to the rat locus coeruleus as visualized by the horseradish peroxidase technique. Brain Res. 719, 21–41. doi: 10.1016/S0006-8993(97)00938-0

Sara, S. J. (2010). Reactivation, retrieval, replay and reconsideration in and out of sleep: synopsis. Front. Behav. Neurosci. 4:185. doi: 10.3389/fnbeh.2010.00185

Shibata, E., Sasaki, M., Tohyama, K., Shibata, E., Sasaki, M., Tohyama, K., Kishida, E., Sasaki, M., and Aiba, S. (2007). Age-related changes in locus ceruleus on neuroimaging magnetic resonance imaging at 3 T. J. Magn. Reson. Imaging 3, 197–201. doi: 10.1002/jmri.21037

Shibata, E., Sasaki, M., Tolyyma, K., Otuka, K., and Sasaki, A. (2007). Reduced expression of locus ceruleus in depression: quantitative neuromagnetic resonance imaging. Neuroreport 18, 415–418. doi: 10.1097/WNR.0b013e32801e5774

Shapley, M. P., Fu, L., Emmis, M., Lui, W. L., and Anton, J. (1996). Distribution of locus coeruleus neurons extend preferentially into two periventricular zones J. Comp. Neurol. 365, 66–88. doi: 10.1002/(SICI)1096-9861(19960201)365:1<66::AID-CNE2>3.0.CO;2-C

Shook, B. L., Slagter, H. A., and Stief, M. (1987). Increases in plasma catecholamines during naturally elicited defense behavior in the cat. J. Neuroendocrinol. 19, 889–897. doi: 10.1111/j.1365-2826.1987.tb00905.x

Smiley, D. R., Huang, Y. H., and Redmond, E. D. Jr. (1977). Contribution of locus coeruleus-noradrenergic system to cardiac acceleration in non-human primates. J. Neurosci. 3, 828.

Som, C. S., Bras, M., Homan, H. J., and Hansen, J. D. (2008). Uncor- touchscreenous determinants of free decisions in the human brain. Nat. Neurosci. 11, 545–545. doi: 10.1038/nn.2112

Suhrbier, D., Levitin, D. J., and Menon, V. (2008). A critical role for the right frontal-subcortical circuit in switching between central-executive and default-mode networks. Proc. Natl. Acad. Sci. U.S.A. 105, 12500–12504. doi: 10.1073/pnas.0800051103

Stahl, A., Enquist, L. W., and Strother, S. (1999). Central noradrenergic circuit innervating the rat heart defined by transneuronal transport of pseudorabies virus. J. Neurosci. 19, 1998–2012.

Stone, T., and Swenson, C. A., Crisafi, N., Podlipsky, I., Kipervasser, S., Shipley, M. T., Fu, L., Ennis, M., Liu, W. L., and Aston-Jones, G. (1996). Noradrenergic activation enhances pericoerulear zones. Neuroscience, 649–742.

Sterpetich, V., Krylyshyn, A., Dussolles, M., Bahou, E., Alboz, G., Vangodsalles, G., et al. (2008). The locus ceruleus is involved in the successful retrieval of emotional memories in humans. J. Neurosci. 26, 7416–7423. doi: 10.1523/JNEUROSCI.1204-06.2006

Stoddard, S. L., Bargiello, V. K., Cons, P. S., and Levin, B. E. (1987). Different neurons affect the expression of long-term potentiation in the hippocampus. Science 234, 546–549. doi: 10.1126/science.3697472

Svensson, T. H., Elam, M., Yao, T., and Thoren, P. (1998). Parallel regu- lation of brain noradrenergic (NE) neurons and peripheral, splenic NE nerves by chemoner-ceptors, baroreceptors and blood volume receptors. Soc. Neurosci. 6, 254.

Talant-Baudry, C. (2002). “Should consciousness be considered as an/execu- tive function in Neuroscience” in Neuropsychology (New Orleans: Society for Neuroscience), 212-05

Tantum, M., and de Gelder, B. (2010). Neuroplasticity of the conscious perception of emotional signals. Nat. Rev. Neurosci. 11, 697–709. doi:10.1038/nrn3089

Tang, Y. Y., Liu, Q., Fan, M., Yang, Y., and Posner, M. I. (2012). Motor regions of white matter changes induced by meditation. Proc. Natl. Acad. Sci. U.S.A. 109, 10570–10574. doi: 10.1073/pnas.1207130109

Tang, Y. Y., Lu, Q., Gong, X., Stein, E. A., Yang, Y., and Posner, M. I. (2010). Short-term meditation induces white matter change in the anterior cingulate. Proc. Natl. Acad. Sci. U.S.A. 107, 15649–15652. doi: 10.1073/pnas.1013487107

Tang, Y. Y., Ma, Y., Fan, Y., Feng, H., Wang, J., Feng, S., et al. (2009). Central and autonomic nervous system interaction is altered by short-term meditation. Proc. Natl. Acad. Sci. U.S.A. 106, 8605–8610. doi: 10.1073/pnas.0904551106

Ter Horst, G. J., Hautvast, R. W., de Jonge, M. J., and Koole, J. (1996). Neuronal anatomy of cardiac autoregulating-circuitry: a transneu- ronal retrograde viral labelling study in the rat. Eur. J. Neurosci. 8, 2029–2041. doi: 10.1111/j.1460-9568.1996.tb03223.x

The Neuroscientist (2012). Perspectives on neuroscience and behavior. Neuro- science 18, 310–311.

Thumm, M., Neideck, K., Fink, G. R., and Sturm, W. (2012). Neural mechanisms underlying freedom to choose an object. Elife 30, 3368–2695. doi:10.1016/j.physrep.2011.04.004
Meditation anterior cingulate locus coeruleus

Takeda, P. U., Intriligator, J., Rivest, J., and Tonhajzerova, I., Mokra, D., and Vis-