TOPOLOGICAL STRUCTURE ON ABEL-GRASSMANN’S
GROUPOIDS

QAI SER MUSHTAQ AND MADAD KHAN

ABSTRACT. In this paper we have discussed the ideals in Abel Grassmann’s
groupoids and construct their topologies.

1. INTRODUCTION

An Abel-Grassmann’s groupoid (AG-groupoid) [3] is a groupoid S with left in-
vertive law

\[(ab)c = (cb)a, \text{ for all } a, b, c \in S.\]

Every AG-groupoid S satisfy the medial law [2]

\[(ab)(cd) = (ac)(bd), \text{ for all } a, b, c, d \in S.\]

In every AG-groupoid with left identity the following law [3] holds

\[(ab)(cd) = (db)(ca), \text{ for all } a, b, c, d \in S.\]

Many characteristics of several non-associative AG-groupoids similar to a com-
mutative semigroup.

The aim of this note is to define the topological spaces using ideal theory. Several
ideals concerning the number of occurrence of topological spaces in AG-groupoids.
The topological spaces formation guarantee for the preservation of finite intersection
and arbitrary union between the set of ideals and the open subsets of resultant
topologies.

A subset I of an AG-groupoid S is called a right (left) ideal if

\[IS \subseteq I \text{ (SI \subseteq I),\}

and is called an ideal if it is two sided ideal, if I is a left ideal of S then \(I^2\) becomes
an ideal of S. By a bi-ideal of an AG-groupoid S, we mean a sub AG-groupoid
B of S such that \((BS)B \subseteq B.\) It is easy to note that each right ideal is a bi-
ideal. If S has a left identity then it is not hard to show that \(B^2\) is a bi-ideal
of S and \(B^2 \subseteq SB^2 = B^2S.\) If \(E(B_S)\) denote the set of all idempotents subsets
of S with left identity e, then \(E(B_S)\) form a semilattice structure also if \(C = C^2\)
then \((CS)C \in E(B_S).\) The intersection of any set of bi-ideals of an AG-groupoid
S is either empty or a bi-ideal of S. Also the intersection of prime bi-ideals of an
AG-groupoid S is a semiprime bi-ideal of S.

If S is an AG-groupoid with left identity e, and assume that \(a^3 = a^2a\) then

\[(x^n_1 x^n_2) (x^q_3 x^r_4) = (x^{m p(1)}_n x^{m p(2)}_n) (x^{q p(3)}_r x^{q p(4)}_r), \text{ for } m, n, q, r \geq 2,\]

\[2000 \text{ Mathematics Subject Classification. 20M10 and 20N99.}\]

\[Key \ words \ and \ phrases. \ AG-groupoid, \ Anti-rectangular \ band, \ Medial \ law, \ bi-ideals \ and \ prime \ bi-ideals.\]
where \{p(1), p(2), p(3), p(4)\} means any permutation on the set \{1, 2, 3, 4\}. As a consequence \((x_{i_{p(1)}}x_{i_{p(2)}}x_{i_{p(3)}}x_{i_{p(4)}})^k = (x_{i_1}x_{i_2}x_{i_3}x_{i_4})^k \), for \(k \geq 2 \). The result can be generalized for finite numbers of elements of \(S \). If \(0 \in S \), then \(0s = s0 = 0 \), for all \(s \) in \(S \).

Proposition 1. Let \(T \) be a left ideal and \(B \) is a bi-ideal of an AG-groupoid \(S \) with left identity, then \(BT \) and \(T^2B \) are bi-ideals of \(S \).

Proof. Using (2), we get

\[
((BT)S)(BT) = ((BT)B)(ST) \subseteq ((BS)B)T \subseteq BT,
\]
also \((BT)(BT) = (BB)(TT) \subseteq BT. \)

Hence \(BT \) is a bi-ideal of \(S \). Now using (2), we obtain

\[
(T^2B)S(T^2B) = ((T^2S)(BS))(T^2B) \subseteq (T^2(BS))(T^2B) = (T^2T^2)((BS)B) \subseteq T^2B,
\]
also \((T^2B)(T^2B) = (T^2T^2)(BB) \subseteq T^2B. \)

Hence \(T^2B \) is a bi-ideal of \(S \).

Proposition 2. The product of two bi-ideals of an AG-groupoid \(S \) with left identity is a bi-ideal of \(S \).

Proof. Using (2), we get

\[
((B_1B_2)S)(B_1B_2) = ((B_1B_2)(SS))(B_1B_2) = ((B_1S)(B_2S))(B_1B_2)
\]
\[
= ((B_1S)B_1)((B_2S)B_2) \subseteq B_1B_2.
\]

If \(B_1 \) and \(B_2 \) are non-empty, then \(B_1B_2 \) and \(B_2B_1 \) are connected bi-ideals. Also the above Proposition leads us to easy generalizations that is, if \(B_1, B_2, B_3, \ldots \) and \(B_n \) are bi-ideals of an AG-groupoid \(S \) with left identity, then

\[
((B_1B_2)B_3)B_n = (...((B_1B_2)B_3)B_4)...B_n
\]

are bi-ideals of \(S \), consequently the set \(\mathfrak{C}(S_B) \) of bi-ideals form an AG-groupoid.

If \(S \) an AG-groupoid with left identity \(e \) then \((a)_L = Sa, (a)_R = aS \) and \((a)_S = (Sa)_S \) are bi-ideals of \(S \). Now it is not hard to show that \((ab)_L = (a)_L(b)_L, (ab)_R = (a)_R(b)_R \) and \((ab)_R = (b)_L(a)_L \), from these it can be deduce that \((a)_{R}^{2}R = (b)_{L}^{2}(a)_L \) and \((a)_{L}^{2}L = (b)_{R}^{2}(a)_R \). Also \((a)_{L}^{2}L = (b)_{R}^{2}(a)_R, (a)_{L}^{2}L = (a)_{L}^{2}, (a)_{R}^{2}R = (a)_{R}^{2}, (a)_{L}^{2}L = (a)_{R}^{2} \) and \((a)_{L} = (a)_{R} \) (if \(a \) is an idempotent), consequently \((a)_{L}^{2}L = (a)_{R}^{2} \). It is easy to show that \((a)_{R}^{2}a^{2} = a^{2}(a)_L. \)

Lemma 1. If \(B \) is an idempotent bi-ideal of an AG-groupoid \(S \) with left identity, then \(B \) is an ideal of \(S \).

Proof. Using (1),

\[
BS = (BB)S = (SB)B = (SB^2)B = (B^2S)B = (BS)B,
\]
and every right ideal in \(S \) with left identity is left.

Lemma 2. If \(B \) is a proper bi-ideal of an AG-groupoid \(S \) with left identity \(e \), then \(e \notin B. \)

Proof. Let \(e \in B, \) since \(sb = (es)b \in B, \) now using (1), we get \(s = (ee)s = (se)e \in (SB)B \subseteq B. \)
It is easy to note that \(\{ x \in S : (xa)x = e \} \not\subseteq B \).

Proposition 3. If \(A, B \) are bi-ideals of an AG-groupoid \(S \) with left identity, then the following assertions are equivalent.

(i) Every bi-ideal of \(S \) is idempotent,
(ii) \(A \cap B = AB \), and
(iii) the ideals of \(S \) form a semilattice \((L_S, \land) \) where \(A \land B = AB \).

Proof. (i) \(\Rightarrow \) (ii): Using Lemma 1, it is easy to note that \(AB \subseteq A \cap B \). Since \(A \cap B \subseteq A, B \) implies \((A \cap B)^2 \subseteq AB \), hence \(A \cap B \subseteq AB \).

(ii) \(\Rightarrow \) (iii): \(A \land B = AB = A \cap B = B \land A \) and \(A \land A = AA = A \cap A = A \).

Similarly, associativity follows. Hence \((L_S, \land) \) is a semilattice.

(iii) \(\Rightarrow \) (i):

\[
A = A \land A = AA.
\]

\(\square \)

A bi-ideal \(B \) of an AG-groupoid \(S \) is called a prime bi-ideal if \(B_1B_2 \subseteq B \) implies either \(B_1 \subseteq B \) or \(B_2 \subseteq B \) for every bi-ideal \(B_1 \) and \(B_2 \) of \(S \). The set of bi-ideals of \(S \) is totally ordered under inclusion if for all bi-ideals \(I, J \) either \(I \subseteq J \) or \(J \subseteq I \).

Theorem 1. Each bi-ideal of an AG-groupoid \(S \) with left identity is prime if and only if it is idempotent and the set of bi-ideals of \(S \) is totally ordered under inclusion.

Proof. Assume that each bi-ideal of \(S \) is prime. Since \(B^2 \) is an ideal and so is prime which implies that \(B \subseteq B^2 \), hence \(B \) is idempotent. Since \(B_1 \cap B_2 \) is a bi-ideal of \(S \) (where \(B_1 \) and \(B_2 \) are bi-ideals of \(S \)) and so is prime, now by Lemma 1, either \(B_1 \subseteq B_1 \cap B_2 \) or \(B_2 \subseteq B_1 \cap B_2 \) which further implies that either \(B_1 \subseteq B_2 \) or \(B_2 \subseteq B_1 \). Hence the set of bi-ideals of \(S \) is totally ordered under inclusion.

Conversely, assume that every bi-ideal of \(S \) is idempotent and the set of bi-ideals of \(S \) is totally ordered under inclusion. Let \(B_1, B_2 \) and \(B \) be the bi-ideals of \(S \) with \(B_1B_2 \subseteq B \) and without loss of generality assume that \(B_1 \subseteq B_2 \). Since \(B_1 \) is an idempotent, so \(B_1 = B_1B_1 \subseteq B_1B_2 \subseteq B \) implies that \(B_1 \subseteq B \) and hence each bi-ideal of \(S \) is prime. \(\square \)

A bi-ideal \(B \) of an AG-groupoid \(S \) is called strongly irreducible bi-ideal if \(B_1 \cap B_2 \subseteq B \) implies either \(B_1 \subseteq B \) or \(B_2 \subseteq B \) for every bi-ideal \(B_1 \) and \(B_2 \) of \(S \).

Theorem 2. Let \(D \) be the set of all bi-ideals of an AG-groupoid \(S \) with zero and \(\Omega \) be the set of all strongly irreducible proper bi-ideals of \(S \), then \(\Gamma(\Omega) = \{ O_B : B \in D \} \), form a topology on the set \(\Omega \), where \(O_B = \{ J \in \Omega : B \not\subseteq J \} \) and \(\phi : \text{bi-ideal}(S) \rightarrow \Gamma(\Omega) \) preserves finite intersection and arbitrary union between the set of bi-ideals of \(S \) and open subsets of \(\Omega \).

Proof. As \(\{ 0 \} \) is a bi-ideal of \(S \), and 0 belongs to every bi-ideal of \(S \), then \(O_{\{ 0 \}} = \{ J \in \Omega , \{ 0 \} \not\subseteq J \} = \{ \} \), also \(O_S = \{ J \in \Omega , S \not\subseteq J \} = \Omega \) which is the first axiom for the topology. Let \(\{ O_{B_\alpha} : \alpha \in I \} \subseteq \Gamma(\Omega) \), then \(\cup O_{B_\alpha} = \{ J \in \Omega , B_\alpha \not\subseteq J \} \), for some \(\alpha \in I \). Consider \(\cup B_\alpha \) in \(\Omega \), \(\cup B_\alpha \not\subseteq J \) and \(\cup B_\alpha \not\subseteq J \) is a bi-ideal of \(S \) generated by \(\cup B_\alpha \). Let \(O_{B_1} \) and \(O_{B_2} \in \Gamma(\Omega) \), if \(J \in O_{B_1} \cap O_{B_2} \), then \(J \in \Omega \) and \(B_1 \not\subseteq J \) or \(B_2 \not\subseteq J \). Suppose \(B_1 \cap B_2 \subseteq J \), this implies that either \(B_1 \subseteq J \) or \(B_2 \subseteq J \), which leads us to a contradiction. Hence \(B_1 \cap B_2 \not\subseteq J \) which further implies that \(J \in O_{B_1} \cup O_{B_2} \). Thus \(O_{B_1} \cup O_{B_2} \subseteq O_{B_1} \cap O_{B_2} \). Now if \(J \in O_{B_1} \cap O_{B_2} \), then \(J \in \Omega \) and \(B_1 \cap B_2 \not\subseteq J \). Thus \(J \in O_{B_1} \) and \(J \in O_{B_2} \), therefore \(J \in O_{B_1} \cap O_{B_2} \).
which implies that $O_{B_1 \cap B_2} \subseteq O_{B_1} \cap O_{B_2}$. Hence $\Gamma(\Omega)$ is the topology on Ω. Define $\phi : \text{bi-ideal}(S) \rightarrow \Gamma(\Omega)$ by $\phi(B) = O_B$, then it is easy to note that ϕ preserves finite intersection and arbitrary union.

An ideal P of an AG-groupoid S is called prime if $AB \subseteq P$ implies that either $A \subseteq P$ or $B \subseteq P$ for all ideals A and B in S.

Let P_S denote the set of proper prime ideals of an AG-groupoid S absorbing 0. For an ideal I of S define the set $\Theta_I = \{ J \in P_S : I \not\subseteq J \}$ and $\Gamma(P_S) = \{ \Theta_I, I \text{ is an ideal of } S \}$.

Theorem 3. Let S be an AG-groupoid with 0. The set $\Gamma(P_S)$ constitutes a topology on the set P_S.

Proof. Let $\Theta_{I_1}, \Theta_{I_2} \in \Gamma(P_S)$, if $J \in \Theta_{I_1} \cap \Theta_{I_2}$, then $J \in P_S$ and $I_1 \not\subseteq J$ and $I_2 \not\subseteq J$. Let $I_1 \cap I_2 \subseteq J$ which implies that either $I_1 \subseteq J$ or $I_2 \subseteq J$, which is contradiction. Hence $J \in \Theta_{I_1} \cap \Theta_{I_2}$. Similarly $\Theta_{I_1} \cap \Theta_{I_2} \subseteq \Theta_{I_1} \cap \Theta_{I_2}$. The remaining proof follows from Theorem 2.

The assignment $I \rightarrow \Theta_I$ preserves finite intersection and arbitrary union between the ideal I and their corresponding open subsets of Θ_I.

Let P be a left ideal of an AG-groupoid S. P is called quasi-prime if for left ideals A, B of S such that $AB \subseteq P$, we have $A \subseteq P$ or $B \subseteq P$.

Theorem 4. If S is an AG-groupoid with left identity e, then a left ideal P of S is quasi-prime if and only if $(Sa)b \subseteq P$ implies that either $a \in P$ or $b \in P$.

Proof. Let P be a left ideal of an AG-groupoid S with left identity e. Now assume that $(Sa)b \subseteq P$, then

$$S((Sa)b) \subseteq SP \subseteq P,$$

that is

$$S((Sa)b) = (Sa)(Sb)$$

Hence, either $a \in P$ or $b \in P$.

Conversely, assume that $AB \subseteq P$ where A and B are left of S such that $A \not\subseteq P$. Then there exists $x \in A$ such that $x \not\in P$. Now using the hypothesis we get $(Sx)y \subseteq (SA)B \subseteq AB \subseteq P$ for all $y \in B$. Since $x \not\in P$, so by hypothesis, $y \in P$ for all $y \in B$, we obtain $B \subseteq P$. This shows that P is quasi-prime.

An AG-groupoid S is called an anti-rectangular if $a = (ba)b$, for all a,b in S. It is easy to see that $S = S^2$. In the following results for an anti-rectangular AG-groupoid S, $e \notin S$.

Proposition 4. If A and B are the ideals of an anti-rectangular AG-groupoid S, then AB is an ideal.

Proof. Using (2), we get

$$(AB)S = (AB)(SS) = (AS)(BS) \subseteq AB,$$

also

$$S(AB) = (SS)(AB) = (SA)(SB) \subseteq AB$$

which shows that AB is an ideal.

Consequently, if $I_1, I_2, I_3,...$ and I_n are ideals of S, then

$$((I_1 I_2 I_3)...I_n)$$

are ideals of S and the set \otimes_I of ideals of S form an anti-rectangular AG-groupoid.
Lemma 3. Any subset of an anti-rectangular AG-groupoid S is left ideal if and only if it is right.

Proof. Let I be a right ideal of S, then using (1), we get, $si = ((xs)x)i = (ix)(xs) \in I$.

Conversely, suppose that I be a left ideal of S, then using (1), we get, $is = ((yi)y)s = (sy)(yi) \in I$.

It is fact that $SI = IS$. From above Lemma we remark that, each quasi prime ideals becomes prime in an anti-rectangular AG-groupoid.

Lemma 4. If I is an ideal of an anti-rectangular AG-groupoid S then, $H(a) = \{ x \in S : (xa)x = a, \text{ for } a \in I \} \subseteq I$.

Proof. Let $y \in H(a)$, then $y = (ya)y \in (SI)S \subseteq I$. Hence $H(a) \subseteq I$.

Also $H(a) = \{ x \in S : (xa)x = x, \text{ for } a \in I \} \subseteq I$. □

An ideal I of an AG-groupoid S is called an idempotent if $I^2 = I$. An AG-groupoid S is said to be fully idempotent if every ideal of S is idempotent.

Proposition 5. If S is an anti-rectangular AG-groupoid and A, B are ideals of S, then the following assertions are equivalent.

(i) S is fully idempotent,
(ii) $A \cap B = AB$, and
(iii) the ideals of S form a semilattice (LS, \wedge) where $A \wedge B = AB$.

The proof follows from Proposition 3.

The set of ideals of S is totally ordered under inclusion if for all ideals I, J either $I \subseteq J$ or $J \subseteq I$ and denoted by ideal (S).

Theorem 5. Every ideal of an anti-rectangular AG-groupoid S is prime if and only if it is idempotent and ideal (S) is totally ordered under inclusion.

The proof follows from Theorem 1.

REFERENCES

[1] Ahsen Javed and Liu Zhonghui, Strongly idempotent seminearrings and their prime ideals paces,G. Saad and M. J. Thomson (eds), Nearrings and K-Loops, 1997, 151 – 166.
[2] Kazim, M. A and M. Naseeruddin, On almost-semigroups, The Alig Bull. Math., 2 (1972), 1 - 7.
[3] Protic, P. V and M. Bozinovic, Some congruences on an AG**-groupoid, Algebra Logic and Discrete Mathematics, 14 – 16 (1995), 879 – 886.

DEPARTMENT OF MATHEMATICS, QUAD-I-AZAM UNIVERSITY, ISLAMABAD, PAKISTAN.

E-mail address: qmuhaq@isb.apollo.net.pk
E-mail address: madadmath@yahoo.com