Complete Genome Sequence of *Clostridium stercorarium* subsp. *stercorarium* Strain DSM 8532, a Thermophilic Degrader of Plant Cell Wall Fibers

Anja Poehlein,* Vladimir V. Zverlov,* Rolf Daniel,† Wolfgang H. Schwarz,‡ Wolfgang Liebl*‡

Georg-August-University Goettingen, Institute of Microbiology and Genetics, Department of Genomic and Applied Microbiology & Goettingen Genomics Laboratory, Göttingen, Germany; Technische Universität München, Department of Microbiology, Freising-Weihenstephan, Germany; Institute of Molecular Genetics, Russian Academy of Science, Moscow, Russian Federation

Clostridium stercorarium strain DSM 8532 is a thermophilic bacterium capable of efficiently degrading polysaccharides in plant biomass and converting the resulting sugars to ethanol and acetate. The complete genome sequence of 2.96 Mbp reveals a multitude of genes for hydrolytic enzymes and enables further study of the organism and its enzymes, and their exploitation for biotechnological processes.

REFERENCES

1. Fardeau ML, Ollivier B, Garcia JL, Patel BKC. 2001. Transfer of *Thermobacteroides leptospartum* and *Clostridium thermolacticum* as *Clostridium stercorarium* subsp. *leptospartum* subsp. *thermolacticum* subsp. nov., (Intergrated Microbial Genomes/Expert Review) system (17) and manually curated by using the Swiss-Prot, TREMBL, and InterPro databases (18). The genome harbors 3 rRNA operons and 48 tRNA genes, which were identified with RNAmmer and tRNAscan, respectively (19, 20). The genes for tRNA^sec^ and for selenocysteine incorporation are missing. We identified 10 CRISPR loci with 3 to 63 repeats and 3 gene clusters encoding Cas proteins, 2 of which contain cas8a1 and are classified as subtype I-A/Apern type (21). Approximately 82% of the 2,687 protein-coding genes (CDS) could be assigned to functions, and the remaining 474 CDS (18%) are hypothetical proteins (455 CDS) and pseudogenes (18 CDS). Blast analysis revealed that approximately 79% of the CDS could be allocated to the 21 functional clusters of orthologous groups (COGs), a percentage that is in the same range as described for other clostridia. The most abundant groups are replication, recombination, and repair (6.85%); amino acid transport and metabolism (8.13%); and carbohydrate transport and metabolism (12.13%). Compared to results for other clostridia, the number of CDS belonging to the last group is relatively high.

Nucleotide sequence accession number. The genome sequence of *Clostridium stercorarium* subsp. *stercorarium* DSM 8532 has been deposited in GenBank under accession number CP004044.

ACKNOWLEDGMENTS

This work was supported by grants from the German Ministry of Education and Research (BMBF) in the framework of GenoMik Plus and GenoMik-Transfer to W.L. and by grant 03SF0346C (FABES) by the German Ministry of Food, Agriculture and Consumer Protection to V.V.Z. and W.H.S.

March/April 2013 Volume 1 Issue 2 e00073-13 Genome Announcements genomea.asm.org 1
Poehlein et al.

1. Le Ruyet P, Dubourguier HC, Albagac G, Prensier G. 1985. Characterization of *Clostridium thermoductum* sp. nov., a hydrolytic thermophilic anaerobe producing high amounts of lactate. Syst. Appl. Microbiol. 5:196–202.

2. Toda Y, Saiki T, Uozumi T, Beppu T. 1998. Isolation and characterization of a protease-producing, thermophilic, anaerobic bacterium, *Thermobacteroides leptopartum* sp. Agric. Biol. Chem. 52:1339–1344.

3. Zverlov VV, Liebl W, Bachleitner M, Schwarz WH. 2009. Puriﬁcation and characterization of the stable alpha-L-rhamnosidase RamA from *Clostridium stercorarium* sp. nov., cellulolytic thermophile. Int. J. Syst. Bacteriol. 59:855–864.

4. Zverlov VV, Hiegl W, Köck DE, Kellermann J, Köllmeier T, Schwarz WH. 2000. The thermostable alpha-L-rhamnosidase RamA of *Clostridium stercorarium* sp. nov., cellulolytic thermophile. Int. J. Syst. Bacteriol. 50:113–122.

5. Ludwig W, Schleifer K-H. 1986. The phylogeny of the genus clostridium: proposal of five new genera and eleven new species combinations. Int. J. Syst. Bacteriol. 36:164–179.

6. Zverlov VV, Hertel C, Glawischnig E, Zverlov VV, Schwarz WH. 2004. Enzyme system of *Clostridium stercorarium* for hydrolysis of arabinoxylan: reconstitution of the in vivo system from recombinant enzymes. Microbiology 150:2257–2266.

7. Zverlov VV, Hertel C, Glawischnig E, Zverlov VV, Schwarz WH. 2000. Enzyme system of *Clostridium stercorarium* for hydrolysis of arabinoxylan: reconstitution of the in vivo system from recombinant enzymes. Microbiology 150:2257–2266.

8. Kaur A, Singh S, Singh RS, Schwarz WH, Puri M. 2010. Hydrolysis of citrus peel naringin by recombinant alpha-L-rhamnosidase from *Clostridium thermocellum*. J. Chem. Technol. Biotechnol. 85:1419–1422.

9. Schwarz WH, Bronnenmeier K, Landmann B, Wanner G, Staudenbauer WL, Kurose N, Takayama T. 1995. Molecular characterization of four strains of the cellulolytic thermophile *Clostridium thermocellum*. Biochem. Biophys. Res. Commun. 208:1661–1665.

10. Chevreux B, Wetter T, Suhai S. 1999. Genome sequence assembly using trace signals and additional sequence information. Computer Science and Biology Proceedings of the German Conference on Bioinformatics GCB (1999) 99:45–56.

11. Markowitz VM, Mavromatis K, Ivanova NN, Chen IM, Chu K, Kyrpides NC. 2009. IMG er: a system for microbial genome annotation expert review and curation. Bioinformatics 25:2271–2278.

12. Zdobnov EM, Apweiler R. 2001. InterProScan—an integration platform for the signature recognition methods in interpro. Bioinformatics 17:847–848.

13. Lagesen K, Hallin P, Rødland EA, Staerfeldt HH, Rognes T, Ussery DW. 2007. RNAmmer: consistent and rapid annotation of ribosomal RNA genes. Nucleic Acids Res. 35:3100–3108.

14. Lowe TM, Eddy SR. 1997. tRNAscan-SE: a program for improved detection of transfer RNA genes in genomic sequence. Nucleic Acids Res. 25:955–966.

15. Makarova KS, Haft DH, Barrangou R, Brouns SJ, Charpentier E, Horvath P, Moineau S, Mojica FJ, Wolf YI, Yakunin AF, van der Oost J, Kooin EV. 2011. Evolution and classiﬁcation of the CRISPR-Cas systems. Nat. Rev. Microbiol. 9:467–477.

16. Madden H. 1983. Isolation and characterization of *Clostridium stercorarium* sp. nov., cellulolytic thermophile. Int. J. Syst. Bacteriol. 33:837–840.