Alteplase (Actilyse or Activase) is the gold standard acute treatment of ischemic stroke1 and receives attention for hematoma resolution in hemorrhagic stroke. The active principle of Alteplase is the recombinant form of an endogenous protease, tissue-type plasminogen activator (tPA). Its intravascular thrombolytic activity is well known, but less are its multifaceted functions in the central nervous system (CNS). Endogenous tPA is not only released in the blood by endothelial cells but also expressed by many cells within the brain parenchyma (online-only Data Supplement), and it can act on all cell types of the brain virtually. Endogenous tPA has been involved in an ever-increasing number of brain functions, of which several are highly relevant during and after stroke. Importantly, knowledge on the mechanisms of action of endogenous tPA may hold true for recombinant tPA.

In this review, we provide an up-to-date overview of the current knowledge on the enzymatic or cytokine-like effects of action of tPA in the CNS, its various molecular substrates or receptors, focusing on the processes occurring during and after ischemic or hemorrhagic stroke, including excitotoxicity, apoptosis, blood–brain barrier breakdown, inflammation, axonal damage, and demyelination.

tPA Is More Than a Fibrinolytic Enzyme
tPA is a mosaic protease of 527 amino acids consisting of 5 distinct modules: a Finger domain, an epidermal growth factor (EGF)-like domain, 2 kringle domains (K1 and K2), and a serine protease proteolytic domain. Through these domains, tPA can interact with a variety of binding proteins and receptors in the brain parenchyma, thus extending its functions above the conversion of plasminogen into plasmin (Figure 1).

tPA is not fibrinolytic by itself. To promote fibrinolysis, tPA activates fibrin-bound plasminogen into plasmin. The binding of plasminogen to fibrin is a necessary step to change its closed conformation to an open form, allowing its cleavage by tPA.2 The Finger domain of tPA is involved in its binding to fibrin and is necessary to promote fibrinolytic activity at low plasminogen activator concentrations.3 In the brain, the Finger domain, by interacting with low-density lipoprotein receptor–related proteins (LRPs), supports blood–brain barrier (BBB) crossing,4 astrocytic clearance,5 or microglial activation.6,7

The EGF-like domain shows homology with EGF and is accordingly thought to mediate the trophic and mitogenic functions of tPA in the brain.8,11 O-glycosylation of the EGF-like domain has been shown to promote the hepatic recapture of tPA.12

The role of the K1 domain in the brain is poorly investigated, but its high mannose-type glycosylation could be involved in uptake processes as shown on liver endothelial cells via mannose receptors.13 Because of the presence of loops and of a lysine binding site, the K2 domain binds to various proteins in the blood and in the brain parenchyma, including the platelet-derived growth factor-CC,14 N-methyl-D-aspartate receptors (NMDARs)15 or high mobility group box-1 protein.16 In the K2 domain, the Asn184 glycosylation site segregates 2 tPA variants (type I is fully glycosylated, whereas type II lacks glycosylation),17 which may exert different functions although this remains to be investigated. Interestingly, desmoteplase, the thrombolytic agent used in Desmoteplase in Acute Ischemic Stroke (DIAS) clinical trials, derived from a bat salivary gland, is closely related to tPA but lacks a K2 domain18 and is accordingly devoid of toxic actions, likely because of the inability to interact with NMDARs.19,20 Also, the specific amino acids involved in the backbone structure of the lysine binding site are also key in the ability of tPA to promote excitotoxicity on neurons.21

The catalytic domain supports the functions of tPA dependent on its protease activity. A specific cleavage at the Arg275-Ile276 peptide bond converts the single-chain form to the 2-chain form, maintained by a disulphide bond. In contrast to the other members of the chymotrypsin family of serine proteases, tPA is active in both its single- and 2-chain forms. However, some functions of tPA are specific to 1 form: for example, only the single-chain form of tPA can promote NMDAR-driven neurotoxicity.22

Role of tPA on the BBB Permeability
Strong experimental and clinical evidence link tPA to BBB damage, with subsequent risks of edema and bleeding23,24 (Figures 1 and 2). Several mechanisms may contribute to tPA-induced alteration of BBB permeability. These mechanisms are exacerbated with time of oxygen–glucose...
deprivation and delay to reperfusion.25 In endothelial cells, tPA induces the synthesis of metalloproteinases, matrix metalloproteinase-9 and matrix metalloproteinase-3, which in turn contribute to enhanced BBB permeability and intracranial bleeding.26,27 In perivascular astrocytes, tPA induces the shedding of LRPs,28 which activates nuclear factor-xB29 and Akt30 pathways leading to the expression of matrix metalloproteinase-9,31 which finally promotes the detachment of astrocyte end-feet processes.28 tPA can also alter the BBB by activating the platelet-derived growth factor-CC pathway on perivascular astrocytes14,32 (Figures 1 and 2). tPA also contributes to cleavage of the monocyte chemoattractant protein 1 (officially known as C-C motif chemokine 2), leading to a disruption of tight-junctions and thus to BBB leakage.33 It is important to note that the role of plasmin generation in the effect of tPA on the BBB remains controversial, as recently deeply reviewed.25 All these mechanisms have mainly been associated with BBB leakage and which of them is/are involved in hemorrhagic transformation remains unclear. The extent of ischemia is likely critical to determine whether BBB leakage will convert to bleeding. The delay of tPA administration is also suspected to influence the occurrence of bleeding but this lacks clinical evidence.

Figure 2. Mechanisms of tissue-type plasminogen activator (tPA) action on blood–brain barrier (BBB) breakdown. In endothelial cells, tPA activates nuclear factor (NF)-xB signaling through low-density lipoprotein receptor–related protein (LRP) to induce the synthesis of metalloproteinases matrix metalloproteinase (MMP)-9 and MMP-3, which in turn contribute to enhanced BBB permeability and intracranial bleeding. In perivascular astrocytes, tPA induces the shedding of LRPs, which activates NF-xB and Akt pathways, induces the expression of MMP-9 by perivascular astrocytes, which finally promotes the detachment of astrocyte end-feet processes. TPA effect on perivascular astrocytes can also be mediated by activating the platelet-derived growth factor (PDGF) pathway.

Effects of tPA on NMDAR-Mediated Signaling and Subsequent Neuronal Outcome

Several studies have shown that inhibitors of tPA in the CNS can protect neurons against toxicity induced by the overactivation of NMDARs.34-36 This suggested that tPA can promote neurotoxicity by acting on NMDARs. The mechanism of action of tPA on NMDARs has been a subject of debate37,38 (Figures 1 and 3), turning around 3 main questions: Is it proteolytic or nonproteolytic? Does it require plasmin generation? Is a coreceptor involved?

It is now established that the enhancement of NMDAR signaling by tPA depends on its proteolytic activity.15,39,40 Both plasmin-dependent and plasmin-independent mechanisms have been reported to sustain the potentiation of NMDAR signaling by tPA,37,41,42 but the most recent studies agree that it can occur independently of plasminogen activation.32,39,41,44 LRP can act as a coreceptor for tPA. Indeed, tPA would act on a nonplasminogen substrate, engaging LRP receptors, which in turn would enhance Ca^{2+} downstream of NMDARs.45 Whether tPA requires LRP to enhance NMDAR signals could depend on the type of neurons (hippocampal versus cortical), their state of maturation, the kinetic of tPA application or on

Figure 3. Mechanisms of tissue-type plasminogen activator (tPA) modulation of N-methyl-D-aspartate receptor (NMDAR) signaling. 1. Synthesized as a single-chain tPA (sc-tPA), tPA can be processed in its 2-chain form (tc-tPA) by plasmin and plasmin-like proteases. Both forms can activate plasminogen (plg) into plasmin (plm). 2. Both tPA (direct effect) and plasmin/matrix metalloproteinase (MMP) generated by tPA (indirect effect) can interact and cleave NMDARs. 3. Interaction with NMDAR may require previous binding to type 1 low-density lipoprotein receptor–related protein (LRP)-1. 4. Different NMDA subunits can be cleaved. Depending on the composition in subtypes of GluN2 subunit (GluN2a-d), different effects (detailed in the figure) can be achieved.
the action of astrocytes. Interestingly, in PC12 and N2a neuron-like cells, tPA may signal through a complex containing NMDAR, LPR1, and Trk receptors.

tPA interacts with the GluN1 subunit of NMDARs, and as already mentioned, this interaction involves the lysine binding site of tPA K2 domain. Accordingly, desmoteplase, a variant of tPA lacking the K2 domain, does not interact with NMDAR and does not promote NMDAR signaling in cortical cultures. Several groups reported that the cleavage of the amino-terminal domain of GluN1 subunit is necessary for enhancement of NMDAR signaling by tPA (Figure 3), whereas others did not detect tPA-dependent cleavage of GluN1, despite enhancement of NMDAR function by exogenous tPA in cortical cultures. Plasmin generated by tPA has also been reported to cleave NMDARs, specifically the GluN2 subunit (Figure 3) at 2 sites: Lys317 on GluN2A, which relieves Zn⁺ inhibition (Zn⁺ is a negative allosteric modulator of NMDAR) and thereby increases NMDAR function, and Arg67 on GluN2B, which increases sensitivity of the NMDAR to the coagonist of NMDARs, glycine.

A recent study showed that only single-chain tPA can promote NMDAR signaling and neurotoxicity in cortical neurons, as well as late phase of long-term potentiation (LTP) in hippocampal neurons. Of note, Actilys is a mix of single-chain recombinant tPA (90%) and 2-chain recombinant tPA (10%).

Studies in transgenic mice overexpressing tPA in neurons (T4 transgenic mice) suggested that tPA can also have neuroprotective effects through a mechanism that is also dependent on the activation of NMDARs and independent on plasmin. The fact that tPA induces toxic or protective effects in neurons could depend on the different subtypes of GluN subunits involved, as well as on their location (synaptic versus extrasynaptic). In fact, exogenous tPA promotes neurotoxicity on cortical neurons by activating extrasynaptic GluN2D-containing NMDARs, but leads to a neuroprotective effect by activating synaptic GluN2A-containing NMDARs. tPA may also have opposite effects depending on its concentration, with low concentrations of tPA being protective, and higher concentrations being detrimental, which suggests that there are multiple receptors for tPA with distinct affinities or coreceptors.

Interestingly, tPA can enhance NMDAR activity not only in neurons but also in brain endothelial cells. tPA also seems to play role in neurovascular coupling, an effect involving NMDARs, but the actual mechanisms involved need to be investigated further.

Effects of tPA on Apoptosis
Several in vitro studies reported antiapoptotic effects of tPA on neurons and oligodendrocytes progenitors. Despite the heterogeneity of the toxic paradigms used in these different studies, they all show that this effect of tPA occurs independently of its proteolytic activity, through the so-called cytokine-or growth factor–like effect. A consensus also emerges around the necessity of PI3K/Akt pathway for neuroprotection by tPA. Two candidates have been proposed as the receptors mediating the antiapoptotic effects of tPA: annexin II and EGF receptor (Figure 2). Annexin II mediates these nonproteolytic effects of tPA in neurons (but the participation of EGF receptor was not addressed), whereas EGF receptor does so in oligodendrocytes progenitors (but the participation of annexin II was not addressed). Through this antiapoptotic effect on oligodendrocytes, tPA sustains the protection of the white matter after experimental ischemic stroke.

In contrast to its reported antiapoptotic effects, tPA was shown to play proapoptotic effects on neurons, an effect possibly involving NMDARs and counteracted by the anticoagulant serine protease, activated protein C. However, the mechanisms through which this antiapoptotic effect occurs remain rather controversial. The state of maturation of neurons critically influences whether the effects of tPA are neurotoxic or neuroprotective. Indeed, during cortical development, tPA is toxic to neurons in deep layers (which are mature) through an NMDAR-dependent effect, whereas it protects neurons against apoptosis in superficial layers (which are immature) through an EGF receptor–dependent effect. Thus, it seems that the target of the antiapoptotic effects of tPA is generally immature cells, such as developing neurons or oligodendrocyte progenitors.

tPA and Cerebral Inflammatory Processes
tPA can promote microglial activation (Figure 1), independently of plasminogen activation, and via its finger domain interacting with microglial LRP and annexin II. A study using cell-specific tPA knockout mice challenged with kainate injection in the hippocampus revealed a regulatory loop in which neuron-derived tPA activates microglia, which in turn produces additional tPA. This microglia-derived tPA has autocrine, self-proliferative effects on microglia, and paracrine, neurotoxic effects. Data also indicate that annexin II may act in concert with the lectin galectin-1, which has previously been described as a receptor for tPA outside the CNS, to induce microglial activation by activating extracellular signal-regulated kinases 1/2 and c-Jun N-terminal kinase pathways and inflammatory responses by activating the Akt pathway. Interestingly, in the context of ischemia-reperfusion, plasmin and tPA have been reported to contribute to neutrophil and leukocyte infiltrations of reperfused tissue. Interestingly, tPA was suggested to have a biphasic action: first, via plasmin and matrix metalloproteinase, the activation would promote neutrophil transmigration and BBB injuries, and then would favor tPA extravasation in the brain, amplifying neutrophil recruitment via nonproteolytic activation of mast cells and lipid mediator release. Similarly, in in vitro models of BBB, tPA was reported to contribute to the adhesion and transmigration of monocytes and T lymphocytes, an effect prevented by blockade of the tPA–NMDAR interaction or of the LRP.

Dare are sparse, and additional studies are warranted to determine the actual influence of tPA on brain inflammatory processes.

Role of tPA in Axonal Damage and Regeneration
Fibrin deposits within the CNS can lead to axonal damage and limited capacities of axonal regeneration. tPA might prevent both side effects of fibrin deposits. In fact, tPA is a key regulator of cellular migration and extension of
cellular processes during development, by promoting the degradation of extracellular matrix (ECM) and cell adhesions. Similarly, tPA can promote the formation of new axonal varicosities during regenerative processes after axon degeneration. In general, the activation of plasmin by tPA results in the degradation of the ECM toward a more permissive environment for axonal growth. More specifically, in models of spinal cord injury, tPA action on axonal regeneration was shown to involve the degradation of chondroitin sulfate proteoglycans, a set of ECM proteins with inhibitory action on axon regrowth. Accordingly, tPA activates the chondroitin sulfate proteoglycan–degrading protease, a disintegrin and metalloprotease with thrombospondin domains-4, thus promoting axonal growth and functional recovery. These effects of tPA could be amplified by the fact that tPA, through its proteolytic activity, can facilitate the migration of macrophages, which in turn may locally release proteases that can degrade ECM components. Unfortunately, because of a low percentage of white matter in the brain of a rodent, these pathways remain poorly investigated in stroke models.

tPA Is Involved in Neuronal Plasticity

Via its ability to activate plasminogen and to regulate metabolism of the ECM, particularly at the growth cone, tPA is surely a crucial regulator of neuronal growth and motility. Indeed, tPA-dependent plasminogen activation was first demonstrated in neuronal cell lines, suggesting that it may have roles in neuronal growth. tPA-mediated neuronal plasticity thus, at least in part, occurs via facilitation of structural changes by degradation of the ECM to establish new or reinforce existing synapses. These effects on neuronal plasticity underlie the link between tPA and LTP. Indeed, experimentally induced LTP rapidly induces the transcription of tPA in hippocampal neurons via an NMDAR-dependent mechanism. Accordingly, the treatment of hippocampal slices with tPA enhances the late phase of LTP. Furthermore, transgenic mice overexpressing tPA show an enhanced and prolonged hippocampal LTP, whereas tPA knockout mice show reduced hippocampal and corticostriatal LTP. There are several other mechanisms by which tPA can promote synaptic plasticity. These include binding to and the activation of LRP, leading to protein kinase A activation. Also, recent data show a link between tPA and the neurotrophin brain-derived neurotrophic factor (BDNF) in hippocampal LTP. In hippocampal neurons, tPA, plasminogen, and pro-BDNF are copackaged in dense-core granules that can be efficiently recruited into active spines and can undergo activity-dependent release. Plasmin, generated by tPA, is necessary for late phase of LTP and cleaves pro-BDNF to its active form mBDNF that is known to promote the conversion of early to late hippocampal LTP. In agreement with this, a study demonstrated that high-frequency stimulation of hippocampal neurons leads to neuronal secretion of tPA, concomitant with an increase in extracellular mBDNF.

To sum up, tPA (of neuronal and astrocytic origin) might promote poststroke recovery, via both plasmin-dependent effects (ECM degradation and BDNF activation) and plasmin-independent effects (activation of LRP-dependent pathways and enhancement of NMDAR signaling).

Conclusions and Prospects

Research of the past 20 years has changed our image of tPA from a protease with vascular functions to a protease/cytokine with key roles in the brain parenchyma. Compelling evidence shows that tPA exerts multiple and sometimes opposite effects in the CNS, depending on the target cell type and the surrounding environment. Recent advances have explained this variety of effects by the different mechanisms of action of tPA, which are supported by its 5 functional domains and their interaction with their respective binding partners. In animal models of stroke, tPA is mainly reported to display deleterious effects, by promoting excitotoxicity and by enhancing BBB permeability. By contrast, in addition to fibrinolysis, tPA could also have beneficial effects after stroke, as it was reported to display oligotrophic and neurotrophic functions and to promote axonal regeneration and brain plasticity.

Several adjunctive therapies have been investigated in preclinical models to counteract the possible deleterious effects of tPA after stroke. For instance, thanks to the ever-increasing knowledge on how tPA might be noxious, such strategies include among other, coadministration of tPA with an antibody targeting the effect of tPA on NMDAR signaling, with annexin-2 to prevent BBB damages, with activated protein C or progesterone to prevent bleeding. Although efficient in preclinical models, the transfer to the clinic of these candidates remains to be established. However, with our ongoing improvement in the comprehension of the molecular mechanisms of action of tPA, as shown in the present review, one can truly expect an optimization of the clinical use of tPA.

A challenging question is whether these effects can be exerted by exogenous recombinant tPA, injected to patients in an attempt to achieve reperfusion. Overall, Alteplase improves the outcome of patients with stroke, despite variable efficiencies of reperfusion, as a function of the cause, size, and location of the clot, as well as the time-to-treatment delay. Clinical evidence of the occurrence of tPA effects shown in animal models is challenging, but it is worth mentioning that after ischemic stroke, exogenous tPA was independently associated with seizure occurrence (a mechanism that involves tPA) and a worse outcome at 3 months in this seizure subgroup of patients. In addition, brain imaging studies evidenced that exogenous tPA indeed promotes BBB leakage in patients with stroke.

Similar questions can be asked in the context of hemorrhagic stroke, for which hematoma evacuation with tPA seems safe and efficient, while first preclinical evidence supports proedema, proinflammatory, and proneurototic effects in addition to hematoma resolution.

Disclosures

None.
References

1. The National Institute of Neurological Disorders and Stroke rt-PA Stroke Study Group. Tissue plasminogen activator for acute ischemic stroke. N Engl J Med. 1995;333:1581–7.

2. Flemming M, Melzig MF. Serine-proteases as plasminogen activators in terms of fibrinolysis. J Pharm Pharmacol. 2012;64:1025–1039.

3. Larsen GR, Henson K, Blue Y. Variants of human tissue-type plasminogen activator. Fibrin binding, fibrinolytic, and fibrinogenolytic characterization of genetic variants lacking the fibronectin finger-like and/or the epidermal growth factor domains. J Biol Chem. 1988;263:1023–1029.

4. Benchenane K, Berezowski V, Ali C, Fernández-Monreal M, López-Atalaya JP. Brulliat J, et al. Tissue-type plasminogen activator crosses the intact blood-brain barrier by low-density lipoprotein receptor-related protein-mediated transcytosis. Circulation. 2005;111:2241–2249.

5. Cassé F, Bardou I, Danglot L, Briëns A, Montagne A, ParcJ, et al. Glutamate controls ‘PA recycling by astrocytes, which further influences glutamatergic signals. J Neurosci. 2012;32:5186–5199.

6. Siao CJ, Tsirka SE. Tissue plasminogen activator mediates microglial activation via its finger domain through annexin II. J Neurosci. 2002;22:3352–3358.

7. Pineda D, Ampurndáns C, Medina MG, Serratos A, Tussell JM, Saura J, et al. Tissue plasminogen activator induces microglial inflammation via a noncatalytic molecular mechanism involving activation of mitogen-activated protein kinases and Akt signaling pathways and AnnexinA2 and Galectin-1 receptors. Glia. 2012;60:526–540.

8. Correa F, Gauberti M, ParcJ, Macrez H, Hommet Y, Obiang P, et al. Tissue plasminogen activator prevents white matter damage following stroke. J Exp Med. 2011;208:1229–1242.

9. Haile WB, Wu J, Echeverry R, Wu F, An J, Yepes M. Tissue-type plasminogen activator has a neuroprotective effect in the ischemic brain mediated by neuronal TNF-α. J Cereb Blood Flow Metab. 2012;32:57–69.

10. Li et al. H, Li H, Fieber C, Li X, Eriksson U. Fredriksson L, et al. HMGB-1 promotes fibrinolysis and reduces neurotoxicity mediated by tissue plasminogen activator administration in a rat model of embolic stroke. Brain Res. 2007;114:3352–3358.

11. Li et al. H, Li H, Fieber C, Li X, Eriksson U. Fredriksson L, et al. HMGB-1 promotes fibrinolysis and reduces neurotoxicity mediated by tissue plasminogen activator administration in a rat model of embolic stroke. Brain Res. 2007;114:3352–3358.
44. Wu F, Wu J, Nicholson AD, Echeverry R, Haile WB, Catano M, et al. Tissue-type plasminogen activator regulates the neuronal uptake of glucose in the ischemic brain. J Neurosci. 2012;32:9848–9858.

45. Samson AL, Nevin ST, Croucher D, Niego B, Daniel PB, Weiss TW, et al. Tissue-type plasminogen activator requires a co-receptor to enhance NMDA receptor function. J Neurochem. 2008;107:1019–1071.

46. Mantuano E, Lam MS, Gonias SL. LRPI assembles unique co-receptor systems to initiate cell signaling in response to tissue-type plasminogen activator and myelin-associated glycoprotein. J Biol Chem. 2013;288:34009–34018.

47. Kvaio M, Albrecht H, Meins M, Hengst U, Troncoso E, Lefort S, et al. Regulation of brain proteolytic activity is necessary for the in vivo function of NMDA receptors. J Neurosci. 2004;24:9734–9743.

48. Macrez R, Bezirn L, Le Mauff B, Ali C, Vivien D. Functional occurrence of the interaction of tissue plasminogen activator with the NR1 Subunit of N-methyl-D-aspartate receptors during stroke. Stroke. 2010;41:2950–2955.

49. Yuan H, Vance KM, Junge CE, Gebulle MT, Snyder JP, Hepler JR, et al. The serine protease plasmin cleaves the amino-terminal domain of the NR2A subunit to relieve zinc inhibition of the N-methyl-D-aspartate receptors. J Biol Chem. 2009;284:12862–12873.

50. Ng KS, Leung HW, Wong PT, Low CM. Cleavage of the NR2B subunit amino terminus of N-methyl-D-aspartate (NMDA) receptor by tissue plasminogen activator: identification of the cleavage site and characterization of dimeroid and glycine affinities on truncated NMDA receptor. J Biol Chem. 2001;276:25529–25532.

51. Jullienne A, Montagne A, Orset C, Lesept F, Jane DE, Monaghan DT, et al. Selective inhibition of GluN2D-containing N-methyl-D-aspartate receptors prevents tissue plasminogen activator-promoted neurotoxicity both in vitro and in vivo. Mol Neurodegener. 2011;6:68.

52. Baron A, Montagne A, Cassé F, Laumy S, Maubert E, Ali C, et al. NR2D-containing NMDA receptors mediate tissue plasminogen activator-promoted neuronal excitotoxicity. Cell Death Differ. 2010;17:860–871.

53. Wu F, Echeverry R, Wu J, An J, Haile WB, Cooper DS, et al. Tissue-type plasminogen activator protects neurons from excitotoxin-induced cell death via activation of the ERK1/2-CREB-ATF3 signaling pathway. Mol Cell Neurosci. 2013;52:9–19.

54. Reijerk VJ, Gallo EF, Anrather J, Wang G, Norris EH, Paul J, et al. Key receptors prevents tissue plasminogen activator-promoted neurotoxicity. J Biol Chem. 2013;288:34009–34018.

55. Malis RS, Cheng M, Chintala SK. Plasminogen activator receptor LRP1 assembles unique co-receptor systems to initiate cell signaling in response to tissue-type plasminogen activator. J Biol Chem. 2011;286:34009–34018.

56. Lee HY, Huang Y, Im H, Koh JY, Kim YH. Non-proteinaceous trophic effects of tissue plasminogen activator on cultured mouse cerebrocortical neurons. J Neurosci. 2007;11:1236–1247.

57. Flavin MP, Zhao G. Tissue plasminogen activator protects hippocampal neurons from oxygen-glucose deprivation injury. J Neurosci Res. 2001;63:388–394.

58. Lee HY, Huang Y, Im H, Koh JY, Kim YH. Non-proteinaceous trophic effects of tissue plasminogen activator on cultured mouse cerebrocortical neurons. J Neurosci. 2007;11:1236–1247.

59. Flavin MP, Zhao G, Ho LT. Microglial tissue plasminogen activator (tPA) triggers neuronal apoptosis in vitro. Glia. 2000;29:347–354.

60. Liu D, Cheng T, Guo H, Fernández JA, Griffin JH, Song X, Zlokovic BV. Tissue plasminogen activator neuronal toxicity is controlled by activated protein C. Nat Med. 2004;10:1379–1383.

61. Medina MG, Ledesma MD, Domínguez JE, Medina M, Zafra D, Alameda F, et al. Tissue plasminogen activator mediates amyloid-induced neurotoxicity via Erk1/2 activation. EMBO J. 2005;24:1706–1716.

62. Henry Medina MG, Ledesma MD, Domínguez JE, Medina M, Zafra D, Alameda F, et al. Tissue plasminogen activator promotes postsynaptic neurotrophin recruitment via its proteinolytic and nonproteinolytic properties. Articocerterol: Tissue Plasmin Vasc Biol. 2014;34:1495–1504.

63. Zhang J, Zhang X, Mu L, Zhang M, Gao Z, Zhang J, et al. tPA acts as a cytokine to regulate lymphocyte-endothelium adhesion in experimental autoimmune encephalomyelitis. Clin Immunol. 2014;152:90–100.

64. Wu J, Zuchtriegel G, Puhr-Westerheide D, Pratner M, Rehberg M, Fabritius C, et al. Tissue plasminogen activator promotes postsynaptic neurotrophil recruitment via its proteolytic and nonproteolytic properties. Science. 2005;309:817–819.

65. Siao CJ, Fernandez SR, Tirak IE. Cell type-specific roles for tissue plasminogen activator released by neurons or microglia after excitotoxic injury. J Neurosci. 2003;23:3234–3242.
98. Lochner JE, Spangler E, Chavarha M, Jacobs C, McAllister K, Schuttner LC, et al. Efficient copackaging and cotransplant yields postsynaptic colocalization of neuromodulators associated with synaptic plasticity. Dev Neurobiol. 2008;68:1243–1256.

99. Pang PT, Teng HK, Zaitsev E, Woo NT, Sakata K, Zhen S, et al. Cleavage of proBDNF by tPA/plasmin is essential for long-term hippocampal plasticity. Science. 2004;306:487–491.

100. Lu Y, Christian K, Lu B. BDNF: a key regulator for protein synthesis-dependent LTP and long-term memory? Neurobiol Learn Mem. 2008;99:312–323.

101. Nagappan G, Zaitsev E, Senatorov VV Jr, Yang J, Hempstead BL, Lu B. Control of extracellular cleavage of ProBDNF by high frequency neuronal activity. Proc Natl Acad Sci U S A. 2009;106:1267–1272.

102. Li Y, Liu Z, Xin H, Chopp M. The role of astrocytes in mediating exogenous cell-based restorative therapy for stroke. Glia. 2014;62:1–16.

103. Macez R, Obiang P, Gauberti M, Roussel B, Baron A, Parcq J, et al. Antibodies preventing the interaction of tissue-type plasminogen activator with N-methyl-D-aspartate receptors reduce stroke damages and extend the therapeutic window of thrombolysis. Stroke. 2011;42:2315–2322.

104. Wang X, Fan X, Yu Z, Liao Z, Zhao J, Mandeville E, et al. Effects of tissue plasminogen activator and annexin A2 combination therapy on long-term neurological outcomes of rat focal embolic stroke. Stroke. 2014;45:619–622.

105. Cheng T, Petraglia AL, Li Z, Thiagarajan M, Zhong Z, Wu Z, et al. Activated protein C inhibits tissue plasminogen activator-induced brain hemorrhage. Nat Med. 2006;12:1278–1285.

106. Won S, Lee JH, Wali B, Stein DG, Sayeed I. Progesterone attenuates hemorrhagic transformation after delayed tPA treatment in an experimental model of stroke in rats: involvement of the VEGF-MMP pathway. J Cereb Blood Flow Metab. 2014;34:72–80.

107. Le Behot A, Gauberti M, Martinez De Lizarroondo S, Montagne A, et al. GpIIb-IIIa/VWF blockade restores vessel patency by dissolving platelet aggregates formed under very high shear rate in mice. Blood. 2014;123:3354–3363.

108. Bhutia R, Hill MD, Shobha N, Menon B, Bal S, Kochar P, et al. Low rates of acute recanalization with intravenous recombinant tissue plasminogen activator in ischemic stroke: real-world experience and a call for action. Stroke. 2010;41:2254–2258.

109. Riedel CH, Zimmermann P, Jensen-Kondering U, Stingle R, Deuschl G, Jansen O. The importance of size: successful recanalization by intravenous thrombolysis in acute anterior stroke depends on thrombus length. Stroke. 2011;42:1775–1777.

110. Pawlik R, Melchor JP, Matys T, Skrzypiec AE, Strickland S. Ethanol withdrawal seizures are controlled by tissue plasminogen activator via modulation of NR2B-containing NMDA receptors. Proc Natl Acad Sci U S A. 2005;102:443–448.

111. Alvarez V, Rossetti AO, Papavasileiou V, Michel P. Acute seizures in acute ischemic stroke: does thrombolysis have a role to play? J Neurol. 2013;260:55–61.

112. Mould WA, Carhuapoma JR, Muschelli J, Lane K, Morgan TC, McBee NA, et al. Minimally invasive surgery plus recombinant tissue-type plasminogen activator for intracerebral hemorrhage evacuation decreases perihematomal edema. Stroke. 2013;44:627–34.

113. Thiex R, Mayfrank L, Rohde V, Gilisbach JM, Tsirka SA. The role of endogenous versus exogenous tPA on edema formation in murine ICH. Exp Neurol. 2004;189:25–32.

114. Rohde V, Rohde I, Thiex R, Ince A, Jung A, Dückers G, et al. Fibrinolysis therapy achieved with tissue plasminogen activator and aspiration of the liquefied clot after experimental intracerebral hemorrhage: rapid reduction in hematoma volume but intensification of delayed edema formation. J Neurosurg. 2002;97:954–962.

115. Thiex R, Weis J, Krings T, Barreiro S, Yakisikli-Alemi F, Gilisbach JM, et al. Addition of intravenous N-methyl-D-aspartate receptor antagonists to local fibrinolytic therapy for the optimal treatment of experimental intracerebral hemorrhages. J Neurosurg. 2007;106:314–320.

116. Gaberel T, Montagne A, Lesept F, Gauberti M, Lernarchand E, Orset C, et al. Urokinase versus Alteplase for intraventricular hemorrhage fibrinolysis. Neuropharmacology. 2014;85:267–271.
Understanding the Functions of Endogenous and Exogenous Tissue-Type Plasminogen Activator During Stroke
Fabian Docagne, Jérôme Parcq, Roger Lijnen, Carine Ali and Denis Vivien

Stroke. 2015;46:314-320; originally published online November 13, 2014;
doi: 10.1161/STROKEAHA.114.006698
Stroke is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 2014 American Heart Association, Inc. All rights reserved.
Print ISSN: 0039-2499. Online ISSN: 1524-4628

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://stroke.ahajournals.org/content/46/1/314

Data Supplement (unedited) at:
http://stroke.ahajournals.org/content/suppl/2014/11/13/STROKEAHA.114.006698.DC1
http://stroke.ahajournals.org/content/suppl/2016/04/10/STROKEAHA.114.006698.DC2

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in Stroke can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to Stroke is online at:
http://stroke.ahajournals.org//subscriptions/
Expression of tPA in the brain

In the adult mouse or human brain, tPA mRNA distribution is widespread within the hippocampus, cerebellum, cortex, amygdala, olfactory bulb and in thalamic and hypothalamic nuclei, and the pattern of tPA proteolytic activity generally matches that of tPA mRNA.

Endothelial cells are the main source of tPA in the CNS. Nevertheless, in vitro and in vivo data show that neurons also express tPA (mRNA and activity). It is concentrated at the growth cone during neuritogenesis and locally synthesized in dendrites. It is released from axon terminals by Ca²⁺-dependent exocytosis following neuronal depolarization. tPA expression and/or activity has also been detected in all subtypes of glial cells: astrocytes, microglial cells, and oligodendrocytes. Other sources of tPA in the CNS are perivascular mast cells, pericytes, infiltrating blood cells, and blood.

Supplemental references

1. Sappino AP, Madani R, Huarte J, Belin D, Kiss JZ, Wohlwend A, et al. Extracellular proteolysis in the adult murine brain. *J Clin Invest*. 1993;92:679-85.
2. Teesalu T, Kulla A, Simisker A, Sirén V, Lawrence DA, Asser T, et al. Tissue plasminogen activator and neuroserpin are widely expressed in the human central nervous system. *Thromb Haemost*. 2004;92:358-68.
3. Salles FJ, Strickland S. Localization and regulation of the tissue plasminogen activator-plasmin system in the hippocampus. *J Neurosci*. 2002;22:2125-34.
4. Levin EG, Santell L, Osborn KG. The expression of endothelial tissue plasminogen activator in vivo: a function defined by vessel size and anatomic location. *J Cell Sci*. 1997;110:139-48.
5. Tsirka SE, Rogove AD, Bugge TH, Degen JL, Strickland S. An extracellular proteolytic cascade promotes neuronal degeneration in the mouse hippocampus. *J Neurosci*. 1997;17:543-52.
6. Docagne F, Nicole O, Marti HH, MacKenzie ET, Buisson A, Vivien D. Transforming growth factor-beta1 as a regulator of the serpins/t-PA axis in cerebral ischemia. *FASEB J*. 1999;13:1315-24.
7. Krystosek A, Seeds NW. Plasminogen activator release at the neuronal growth cone. *Science*. 1981;213:1532-4.
8. Shin CY, Kundel M, Wells DG. Rapid, activity-induced increase in tissue plasminogen activator is mediated by metabotropic glutamate receptor-dependent mRNA translation. *J Neurosci*. 2004;24:9425-33.
9. Gualandris A, Jones TE, Strickland S, Tsirka SE. Membrane depolarization induces calcium-dependent secretion of tissue plasminogen activator. *J Neurosci*. 1996;16:2220-5.
10. Parmar RJ, Mahata M, Mahata S, Sebald MT, O'Connor DT, Miles LA. Tissue plasminogen activator (t-PA) is targeted to the regulated secretory pathway. Catecholamine storage vesicles as a reservoir for the rapid release of t-PA. *J Biol Chem*. 1997;272:1976-82.
11. Nicole O, Docagne F, Ali C, Margaill I, Carmeliet P, MacKenzie ET, et al. The proteolytic activity of tissue-plasminogen activator enhances NMDA receptor-mediated signaling. *Nat Med*. 2001;7:59-64.
12. Vincent VA, Löwik CW, Verheijen JH, de Bart AC, Tilders FJ, Van Dam AM. Role of astrocyte-derived tissue-type plasminogen activator in the regulation of endotoxin-stimulated nitric oxide production by microglial cells. *Glia*. 1998;22:130-7.
13- Hultman K, Tjärnlund-Wolf A, Fish RJ, Wilhelmsson U, Rydenhag B, Pekny M, et al. Retinoids and activation of PKC induce tissue-type plasminogen activator expression and storage in human astrocytes. *J Thromb Haemost.* 2008;6:1796-803.

14- Xin H, Li Y, Shen LH, Liu X, Hojeska-Solgot A, Zhang RL, et al. Multipotent mesenchymal stromal cells increase tPA expression and concomitantly decrease PAI-1 expression in astrocytes through the sonic hedgehog signaling pathway after stroke (in vitro study). *J Cereb Blood Flow Metab.* 2011;31:2181-8.

15- Rogove AD, Siao C, Keyt B, Strickland S, Tsirka SE. Activation of microglia reveals a non-proteolytic cytokine function for tissue plasminogen activator in the central nervous system. *J Cell Sci.* 1999;112:4007-16.

16- Joo SH, Kwon KJ, Kim JW, Kim JW, Hasan MR, Lee HJ, et al. Regulation of matrix metalloproteinase-9 and tissue plasminogen activator activity by alpha-synuclein in rat primary glial cells. *Neurosci Lett.* 2010;469:352-6.

17- Sillaber C, Baghestanian M, Bevec D, Willheim M, Agis H, Kapiotis S, et al. The mast cell as site of tissue-type plasminogen activator expression and fibrinolysis. *J Immunol.* 1999;162:1032-41.

18- Correa F, Gauberti M, Parcq J, Macrez R, Hommet Y, Obiang P, et al. Tissue plasminogen activator prevents white matter damage following stroke. *J Exp Med.* 2011;208:1229-42.

19- Kose N, Asashima T, Muta M, Iizasa H, Sai Y, Terasaki T, et al. Altered expression of basement membrane-related molecules in rat brain pericyte, endothelial, and astrocyte cell lines after transforming growth factor-beta1 treatment. *Drug Metab Pharmacokinet.* 2007;22:255-66.

20- Moonen G, Grau-Wagemans MP, Selak I. Plasminogen activator-plasmin system and neuronal migration. *Nature.* 1982;298:753-5.

21- Tabengwa EM, Wheeler CG, Yancey DA, Grenett HE, Booyse FM. Alcohol-induced up-regulation of fibrinolytic activity and plasminogen activators in human monocytes. *Alcohol Clin Exp Res.* 2002;26:1121-7.

22- Benchenane K, Berezowski V, Ali C, Fernández-Monreal M, López-Atalaya JP, Brillault J, et al. Tissue-type plasminogen activator crosses the intact blood-brain barrier by low-density lipoprotein receptor-related protein-mediated transcytosis. *Circulation.* 2005;111:2241-9.
Понимание функций эндогенного и экзогенного тканевого активатора плазминогена при инсульте

Источник: F. Docagne, J. Parcq, R. Lijnen, C. Ali, D. Vivien. Understanding the Functions of Endogenous and Exogenous Tissue-Type Plasminogen Activator During Stroke. Stroke 2015;46:1:314-320

Дополнительные данные доступны on-line по адресу: http://stroke.ahajournals.org/lookup/suppl/doi:10.1161/STROKEAHA.114.006698/-/DC1.

INSERM UMR-S U919 Serine Proteases and Pathophysiology of the Neurovascular Unit, Université Caen Basse Normandie, GIP Cyceron, Caen, France (F.D., J.P., C.A., D.V.); and Center for Molecular and Vascular Biology, KU Leuven, Leuven, Belgium (R.L.).

Ключевые слова: инсульт (stroke), тромболитическая терапия (thrombolytic therapy), тканевой активатор плазминогена (tissue-type plasminogen activator)

Альтеплаза (Активиле или Активазе) является золотым стандартом лечения ишемического инсульта в остром периоде [1] и заслуживает внимания в отношении лизиса гематомы при геморрагическом инсульте. Действующим веществом Альтеплазы является рекомбинантная сыворотка плазминогена (ТАП). Его внутрисосудистая тромболитическая активность хорошо известна, но менее изучены его многофакторные функции в центральной нервной системе (ЦНС). Эндогенный ТАП не только высвобождается в кровь эндотелиальными клетками, но также экспрессируется многими клетками в паренхиме головного мозга (дополнительные данные on-line), и практически он может оказывать влияние на все типы клеток головного мозга.

Эндогенный ТАП участвует в осуществлении всех больших количеств функций головного мозга, некоторые из которых являются весьма актуальными во время и после развития инсульта. Важно отметить, что знание о механизмах действия эндогенного тканевого активатора плазминогена могут быть актуальны и в отношении рекомбинантного тканевого активатора плазминогена.

В настоящем обзоре мы предоставляем современные данные о ферментативных и цитокин-подобных эффектах действия ТАП в ЦНС, его различных молекулярных субстратах или рецепторах, сосредоточив внимание на процессах, происходящих во время и после ишемического или геморрагического инсульта, в т.ч. на экскретондезе, апоптозе, разрушении гематоэнцефалического барьера, воспалении, повреждении аксонов и демиелинизации.

ТАП больше, чем фибринолитический фермент

ТАП является мозаичной протеазой из 527 аминокислот, имеющей в своем составе 5 различных модулей: пальцевой домен, эпидермальный фактор роста (ЭФР)-подобный домен, 2 пальцевых домена (К1 и К2), и протеолитический домен сериновой протеазы. Посредством этих доменов ТАП может взаимодействовать с различными связывающими белками и рецепторами в паренхиме головного мозга, таким образом выполняя функции, отличные от простого преобразования плазминогена в плазмин (рис. 1).

Сам по себе ТАП не является фибринолитическим ферментом. Для выполнения фибринолиза ТАП преобразует связанный с фибрином плазминоген в плазмин. Связывание плазминогена с фибрином является необходимым этапом в изменении его закрытой конформации в открытую форму, что обеспечивает его расщепление с помощью ТАП [2]. Пальцевой домен ТАП участвует в его связывании с фибрином и необходим для обеспечения фибринолитической активности при низкой концентрации активатора плазминогена [3]. В головном мозге пальцевой домен, взаимодействуя с белками, связанными с рецепторами липопротеинов низкой плотности (LRP), обеспечивает проницаемость гематоэнцефалического барьера (ГЭБ) [4], липрин астроцитов [5] или активацию микроглии [6, 7].

ЭФР-подобный домен гомологичен ЭФР и, соответственно, опосредует трофические и митогенные функции ТАП в головном мозге [8–11]. Было показано, что O-гликирование ЭФР-подобного домена способствует повторному захвату ТАП печенчью [12].

Роль домена К1 в мозге плохо изучена, но его высоко маннозный тип гликозилирования может принимать участие в процессах захвата, как это показано в отношении эндотелиальных клеток печени через рецепторы к маннозе [13]. Из-за наличия петли и связывающего лизина сайте, К2 домен связывается с различными белками в крови и в паренхиме головного мозга, в т.ч. тромбоцитарным фактором роста-СС [14], рецепторами N-метил-D-аспартата (NMDAR) [15] или с протеином группы белков с высокой подвижностью-1 [16]. В доме- не K2 сайт гликозилирования Asn184 различает 2 варианта ТАП (тип I – полностью гликозилированный, тип II – без гликозилирования) [17], которые могут выполнять разные функции, хотя это еще предстоит изучить. Интересно, что десмопептаза, тромболитический препарат, используемый в клинических испытаниях десмопептазы при остром ишемическом инсульте (DIAS), полученной из слюнной железы летучих мышей, по своей структуре очень напоминает ТАП, но в нем нет K2
домена [18] и, соответственно, он лишен токсических воздействий, скорее всего из-за неспособности взаимодействовать с NMDAR [19, 20]. Кроме того, специфические аминокислоты, входящие в основную структуру связывающего лизин сайта, также играют ключевую роль в способности ТАП обеспечивать экспрессию активности на нейроны [21].

Катализитический домен поддерживает функции Tap в зависимости от протеиновой активности. Специфическое разглаживание на связанном пептиде Arg275-Ile276 преобразует одноцепочечную форму в двухцепочечную, структура которой поддерживается за счет дисульфидных связей. В отличие от других членов химотрипсинового семейства сериновых протеаз ТАП активен в одноцепочной и в двухцепочной формах. Тем не менее некоторые функции ТАП являются специфическими для одной из форм: например только в виде одноцепочной формы ТАП может обеспечивать NMDAR-специфическую нейротропность.

Роль тканевого активатора плазминогена в проиницаемости ГЭБ

Надежные доказательства экспериментальных и клинических исследований свидетельствуют о наличии связи между ТАП и повреждением ГЭБ с последующим риском развития отека и кровотечения [23–25] (рис. 1 и 2). В изменении проиницаемости ГЭБ, индуцированном действием ТАП, могут участвовать несколько механизмов. Эти механизмы усугубляются при увеличении сроков кислород-глюкозной депривации и отсечения реперфузии [25]. В эндотелиальных клетках ТАП индуцирует синтез металлопротеиназы, матриксной металлопротеиназы-9 и матриксной металлопротеиназы-3, которые в свою очередь способствуют повышению проиницаемости ГЭБ и развитию внутричерепных кровоизлияний [26, 27]. В периваскулярных астроцитах TAP вызывает разрушение LRP [28], которые активируют сигнальные пути нуклеарного фактора-κB [29] и Akt [30], ведущие к экспрессии матриксной металлопротеиназы-9 [31]. Это, в конечном итоге, способствует отслаблению синаптических нервных окончаний отростков астроцитов [28]. ТАП может также оказывать влияние на ГЭБ путем активации сигнального пути фактора роста тромбоцитов-СС в периваскулярных астроцитах [14, 32] (рис. 1 и 2). ТАП также способствует разглаживанию моноцитарного хемоаттрактантного белка 1 (официально известного как СС-момив) 2, что приводит к разрушению плотных контактов и, таким образом, повышению проницаемости ГЭБ [33].

Важно отметить, что роль образования плазмамина при взаимодействии ТАП на ГЭБ остается спорной и в последнее время тщательно изучается [25]. Все эти механизмы ассоциированы с повышением проницаемости ГЭБ, и какие из них участвуют в геморрагической трансформации до сих пор неизвестно. Для преобразования повышения проницаемости ГЭБ, по всей видимости, решающее значение имеет выраженность ишемии. Также считается, что отсрочка введения ТАП, оказывает влияние на риск развития кровоизлияния, но это предположение не имеет клинических доказательств.

Влияние тканевого активатора плазминогена на NMDAR-опосредованные сигнальные пути и последующие нейрональные исходы

В нескольких исследованиях показали, что ингибито́ры ТАП в ЦНС могут защищать нейроны от токсичности, вызванной избыточной активацией NMDAR [34–36]. Согласно этому предположению, ТАП может способствовать нейротропности, действуя на NMDAR. Механизм действия ТАП на NMDAR был предметом споров [37, 38] (рис. 1 и 3), и заключался в решении трех основных вопросов: является ли он протеолитическим или непроцедуральным? Необходимо ли для этого образование плазмамина? Участвует ли в процессе корецептор? В настоящее время установлено, что усиление сигнального пути NMDAR посредством действия ТАП зависит от его протеолитической активности [22, 39, 40]. Приводили данные, что плазмин-зависимые и плазмин-независимые механизмы поддерживают потенцирование сигнального пути NMDAR с помощью ТАП [37, 41, 42], но в своих последних исследованиях пришли к выводу, что это может произойти независимо от активации плазминогена [22, 39, 43, 44].

LRP может выступать в качестве корецептора для ТАП. Действительно, ТАП будет действовать на неплаз-
миногенный субстрат, занимающая места связывания для LRP, что в свою очередь будет способствовать снижению Ca^{2+} в NMDAR [45]. ТАП требует наличия LRP для усиления сигнальных путей NMDAR, может зависеть от типа нейронов (гиппокампальные по сравнению с кортикальными), их зрелости, кинетике применения ТАП или действия астроцитов [39, 44, 46]. Интересно, что в PC12 и p2а нейрона-подобных клетках сигнальные пути TAP опосредованы через комплекс, состоящий из NMDAR, LRP I и рецепторов к тирозин киназе [46].

ТАП взаимодействует с GluN1 субъединицей NMDAR, и, как уже упоминалось выше, это взаимодействие включает в себя сайт связывания лизина K2 домена TAP [15, 21]. Соответственно, десмотеплаза, один из типов TAP без K2 домена, не взаимодействует с NMDAR и не влияет на сигнальные пути NMDAR в кортикальные структуры [18–20]. В нескольких исследовании привели данные о том, что расщепление аминотермального домена субъединиц GluN1 необходимо для усиления сигнальных путей NMDAR под действием TAP (рис. 3) [47, 48], в то время как вдругих исследовании обнаружили TAP-зависимого расщепления GluN1, несмотря на повышение лиганд NMDAR под действием экзогенного TAP в кортикальных структурах [45]. Кроме того, приводили данные о том, что образованный под действием TAP плазмин расщепляет NMDARs, в частности субъединицу GluN2 (рис. 3) в 2 сайтах: Lys317 на GluN2A, которая освобождает ингибирование Zn^{2+} (Zn^{2+} является отрицательным альлостерическим модулятором NMDAR) и тем самым увеличивает функцию NMDAR [49] и Arg67 на GluN2B, что повышает чувствительность NMDAR к коагулину NMDAR (рис. 46 [50]).

В недавно проведенном исследовании показали, что только одноцепочечный TAP может способствовать сигнализация и нейротоксичности в кортикальных нейронах, а также поздней стадии долгосрочной потенциации (LTP) в гиппокампальных нейронах [22]. Следует отметить, что Активизация является сочетанием одноцепочечного рекомбинантного TAP (90%) и 2-цепочечного омобинитного TAP (10%) [22].

Исследования, проведенные на трансгенных мышах с избыточной экспрессией TAP в нейронах (трансплантированные мышь T4) позволяют предположить, что TAP также оказывает нейропротективное действие [9, 44] посредством механизма, который также зависит от активации NMDAR и не зависит от плазмина. Способности или защитные эффекты TAP в нейронах головного мозга могут зависеть от участия в этих процессах различных подтипов субъединиц GluN, а также от их локализации (синаптическая по сравнению с внесинаптической). Действительно, экзогенный TAP способствует нейротоксичности на нейроны коры головного мозга путем активации NMDAR, содержащих внесинаптическую GluN2D [51, 52] и оказывает нейропротекторное действие путем активации NMDAR, содержащих синаптическую GluN2A [53]. TAP может также оказывать и противоположные действия в зависимости от концентрации, при этом низкая концентрация TAP может оказывать защитное действие [53, 46], а более высокие концентрации — негативное действие [22, 46], и это позволяет предположить наличие нескольких рецепторов TAP с различными эффектами или корецепторами. Определяется, что TAP может повышать активность NMDAR не только в нейронах, но и в эндотелиальных клетках головного мозга [54, 55]. По всей видимости, TAP также играет роль в нейроваскулярных связях с участием NMDAR, но фактические механизмы, участвующие в этих связях, требуют дальнейшего изучения [56, 57].

Влияние тканевого активатора плазминогена на апоптоз

В нескольких in vitro исследованиях сообщали об антиапоптозном влиянии TAP на нейроны [10, 28, 58] и клетки-предшественники олигодендроцитов [8]. Несмотря на гетерогенность парадигмы токсичности, использованных в этих исследованиях, все они показывают, что это действие TAP не зависит от его протеолитической активности и опосредовано через цитокин-подобным или фактор роста-подобным эффектом. В отношении необходимости активации сигнального пути РЭК/Akt для реализации неоподобной, обусловленной действием TAP, также пришли к общему мнению [8, 10, 59]. В качестве рецепторов, опосредующих антиапоптозный эффект TAP, были предложены два кандидата: аннексин II и рецептор ЭФР (рис. 2). Аннексин II опосредовал непротеолитические эффекты TAP в нейронах (но участие режим-
Тора ЭФР не рассматривали) [59], а рецептор ЭФР описывает влияние ТАП на клетки-предшественники олигодендроцитов (участие аннексина II не рассматривали) [8]. Путем этого антиапоптотического влияния на олигодендроциты ТАП обеспечивает защиту белого вещества головного мозга после экспериментального иншемического инсульта [8].

В отличие от зарегистрированных антиапоптотических эффектов было показано, что ТАП оказывает проапоптотическое влияние на нейроны [60], и в этом процессе принимают участие NMDAR, а противодействующее влияние оказывает антикоагулянтная сериновая протеаза, активированный протеин C [61]. Однако механизмы, посредством которых этот антиапоптотический эффект реализуется, остаются предметом споров [60–62]. Зре́лость нейронов имеет решающее значение в реализации нейротоксических или нейропротективных эффектов ТАП. Действительно, в ходе созревания коры, ТАП оказывает токсическое действие на нейроны глубоких слоев коры (зрелые) посредством NMDAR-зависимого эффекта, в то время как защищает от апоптоза нейроны в поверхностных слоях (незрелые) посредством ЭФР-рецептор-зависимого эффекта [63]. Таким образом, видимо, антиапоптотический эффект ТАП нацелен на незре́льные клетки, такие как развивающиеся нейроны и клетки-предшественники олигодендроцитов.

ТАП и воспалительные процессы в головном мозге

ТАП может способствовать активации микроглобулины (рис. 1), независимо от активации плазминогена, посредством своего пальцевого домена, взаимодействующего с LRP микроглобулины и аннексином II [6, 7, 64]. В исследовании с использованием мышей со специфическим нокаутом ТАП выполняли инъекцию капли в гипоталамус, и выявили регуляторную петлю, по которой ТАП нейронов активирует микроглобулину, которая в свою очередь дополнительно образует ТАП. ТАП, образованный микроглобулиной, оказывает аутокринное самостоятельное пролиферативное влияние на микроглобулину, а также паракринный нейротоксический эффект [65]. Согласно некоторым данным, аннексин II также может действовать совместно с лектин галектином-1, который ранее был описан как рецептор ТАП за пределами ЦНС [66], вызывая активацию микроглобулины путем усиления внеклеточных сигнальных путей киназы 1/2 и с-Jun N-концевой киназы, а также индукции воспалительных реакций путем активации сигнального пути Akt [7]. Интересно, что в контексте ишемии-реперфузии, плазмин [67] и ТАП [68] способствуют инфильтрации тканей, подвергшихся реперфузии, нейтрофилами и лейкоцитами. Было высказано предположение, что ТАП оказывает двухфазное действие: во-первых, активация посредством плазмин и матриксной металлопротеиназы, будет

Рисунок 3. Механизмы модуляции сигнального пути рецепторов N-метил-D-аспартата (NMDAR) под действием тканевого актива́тора плазминогена (ТАП). 1. Синтезированный в виде одноцепочечной структуры (SC-TPA) под действием плазмин и плазмино-подобных протеаз ТАП может образовать двухцепочечную структуру (TC-TPA). Обе формы могут активировать плазминоген (Plg) в плазмин (Plm).

2. PTP (прямой эффект) и образованные под действием ТАП плазмин/матриксная металлопротеиназа (MMP) (косвенный эффект) могут взаимодействовать и расщеплять NMDAR. 3. Для взаимодействия с NMDAR необходимо предварительное связывание с белком, связанным с рецептором липопротеинов низкой плотности-1 (LRP-1).

4. Может происходить расщепление различных субъединиц NMDAR. В зависимости от состава подтипов субъединиц GluN2 (GluN2a-d) возможно развитие различных (подробности на рисунке).
способствовать трансмиграции нейтрофилов и повреждению ГЭБ, а затем в связи с проникновением ТАП в головной мозг, усиливать миграцию нейтрофилов с помощью непротеолитической активации тучных клеток и высвобождении лигандного медиатора [68]. Кроме того, в моделях ГЭБ in vitro ТАП способствовал адгезии и трансмиграции моноцитов и Т-лимфоцитов, и этот эффект предотвращал блокирование взаимодействия ТАП и NMDAR или LRP [54, 69].

Необходимо проведение дополнительных исследований для определения фактического влияния ТАП на воспалительные процессы в головном мозге.

Роль тканевого активатора плазминогена в повреждении и регенерации аксонов

Отложение фибрина в ЦНС может привести к повреждению аксонов и снижению возможности регенерации аксонов. ТАП может предотвращать развитие побочных эффектов отложений фибрина [70]. Действительно, ТАП является ключевым регулятором клеточной миграции и клеточных процессов во время развития, способствуя клеточной адгезии и разрушению внеклеточного матрикса (ВКМ). Кроме того, ТАП может способствовать образованию новых разветвлений аксонов во время восстановительных процессов после дегенерации аксонов [71]. В целом активация плазмина с помощью ТАП приводит к разрушению ВКМ с целью создания более благоприятной среды для роста аксонов. В моделях повреждения спинного мозга действие ТАП на регенерацию аксонов был продемонстрировано более специфическим образом с разрушением кондриотин сульфата протеогликанов [72, 73], комплекса белков ВКМ, обладающего подавляющим действием на рост аксонов. Соответственно ТАП активизирует протеазу, разрушающую кондриотин сульфат протеогликанов, дезинтегрирующую и металлопротеазу с тромбоспондилом домена-4, и тем самым способствует росту аксонов и функциональному восстановлению [74]. Эти эффекты ТАП можно усиливать, поскольку ТАП посредством протеолитической активности способствует миграции макрофагов, которые в свою очередь локально высвобождают протеазы, разрушающие компоненты ВКМ [75]. К сожалению, в связи с тем, что белое вещество в головном мозге грызнушек представлено небольшим количеством, эти метаболические пути плохо изучены в моделях инсульта.

ТАП участвует в пластичности нейронов

В связи со способностью активировать плазминоген и регулировать метаболизм ВКМ, особенно в конусе роста [76], ТАП, безусловно, является важным регулятором роста и подвижности нейронов. Действительно, ТАП-зависимая активация плазминогена была впервые продемонстрирована в нейрональных линиях клеток, что позволяет предположить его роль в росте нейронов [77–79]. ТАП-опосредованная пластичность нейронов при этом, по меньшей мере, частично обусловлена упрощением структурных изменений вследствие разрушения ВКМ с образованием новых или укреплением уже существующих синапсов [80–82]. Эти эффекты нейрональной пластичности подчеркивают наличие связи между ТАП и LTP. Действительно, экспериментально индуцированная LTP быстро вызывает транскрипцию ТАП в нейронах гиппокампа посредством NMDAR-зависимого механизма [83]. Соответственно, обработка срезов гиппокампа ТАП усиливает позадую фазу LTP [84]. Кроме того, у трансгенных мышей с гипергликемией ТАП вызывали более прочную и продленную гиппокампальную LTP [85], в то время как у мышей с нокаутом ТАП отметили снижение гиппокампальной [86] и кортико-стриатной [87] LTP. Существует ряд других механизмов, посредством которых ТАП может способствовать синаптической пластичности. К ним относятся связывание и активация LRP, что приводит к активации протеинкиназы A [88]. Кроме того, последние данные демонстрируют наличие связи между ТАП и нейротрофическим нейротрофическим фактора головного мозга (BDNF) в длительной потенциации (LTP) гиппокампа. В нейронах гиппокампа ТАП, плазминоген и про-BDNF находятся в гранулах спинного центра, которые легко перемещаются в активные шипы и высвобождаются в зависимости от активности нейронов [89]. Плазмин, образованный под действием ТАП, необходим для поздней стадии LTP и расцепляет про-BDNF в активную форму mBDNF [90], которая, как известно, содействует конверсии ранией LTP гиппокампа в позднюю [91]. В соответствии с этим в одном исследовании [92] показали, что высокочастотная стимуляция нейронов гиппокампа приводит к секреции ТАП нейронами, одновременно с увеличением внеклеточного содержания mBDNF.

ТАП, в частности одноцепочной ТАП, также может содействовать LTP посредством способности к усилению активации сигнального пути NMDAR [21]. Подводя итог, ТАП (нейронального и астроцитарного происхождения) [93] может содействовать восстановлению после инсульта путем плазмин-зависимого действия (разрушение ВКМ и активация BDNF) и плазмин-независимого действия (активация LRP-индуцированных метаболических путей и усиление сигнальных путей NMDAR).

Выводы и перспективы

Исследования, проведенные за последние 20 лет, изменили наше представление о ТАП от протеазы с сосудистыми функциями до протеазы/цитокина с ключевыми ролями в паренхиме головного мозга. Убедительные доказательства свидетельствуют о наличии у ТАП многочисленных и иногда противоположных эффектов в ЦНС в зависимости от типа клетки: мишеня и окружающей среды. Благодаря последним достижениям в науке удалось объяснить, что это разнообразие эффектов обусловлено различными механизмами действия ТАП, которые поддерживаются его 5 функциональными доменами и их взаимодействием с соответствующими субстратами для связывания. В моделях инсульта у животных ТАП оказывал неблагоприятное влияние, путем содействия эксктотоксичности и повышению проницаемости ГЭБ. В отличие от этого в дополнение к фибринолизу ТАП также
могет оказывать благоприятное воздействие после инсульта посредством олиготрофных и нейротрофических функций, а также способствовать регенерации аксонов и пластичности головного мозга.

В доклинических исследованиях были изучены несколько дополнительных препаратов, способных оказывать противодействие возможным вредным эффектам ТАП после инсульта. Например, благодаря постоянно растущему числу доказательств негативного воздействия ТАП, новые стратегии лечения предусматривают совместное применение ТАП с антителом, направленным на действие ТАП на сигнальный путь NMDAR [94], с аннексином-2 для предотвращения повышения проницаемости ГЭБ [95], с активированным протеином С [96] или прогестероном [97] для предотвращения развития кровотечений. Несмотря на эффективность в доклинических моделях, трансляция результатов использования этих препаратов в клиническую практику является сложной задачей. Тем не менее в связи с постоянным улучшением понимания молекулярных механизмов действия ТАП, как показано в настоящем обзоре, можно действительно ожидать оптимизации использования ТАП в клинической практике.

Главный вопрос заключается в том, оказывает ли эти эффекты экзогенный рекомбинантный тканевой активатор плазминогена, который вводят пациентам с целью реперфузии. В целом альплазма улучшает исход у пациентов с инсультом [1], несмотря на различную эффективность реперфузии в зависимости от причины, размера и локализации тромба, а также увеличение времени до начала лечения [98–100]. Демонстрация клинических признаков развития эффектов ТАП на модели животных является сложной задачей, но стоит отметить, что после ишемического инсульта экзогенный ТАП был независимо ассоциирован с развитием судорог (механизм, в котором участвует ТАП) [101] и улучшением исхода через 3 месяца в подгруппе пациентов с судорогами [102]. Кроме того, исследования с проведением нейровизуализации головного мозга свидетельствуют о том, что экзогенный ТАП действительно способствует повышению проницаемости ГЭБ у пациентов с инсультом [24].

Подобные вопросы можно задавать в контексте геморрагического инсульта, при котором эвакуация гематомы с помощью ТАП, по-видимому, является безопасным и эффективным методом лечения [103], в то время как первые доклинические данные подтверждают наличие отечного, провоспалительного и нейротоксического эффектов в дополнение к рассасыванию гематомы [104].

ЛИТЕРАТУРА

1. The National Institute of Neurological Disorders and Stroke rt-PA Stroke Study Group. Tissue plasminogen activator for acute ischemic stroke. N Engl J Med. 1995;333:1581–7.
2. Flemming M, Melzig MF. Serine-proteases as plasminogen activators in terms of fibrinolysis. J Pharm Pharmacol. 2012;64:1025–1039.
3. Larsen G.R., Henson K., Blue Y. Variants of human tissue-type plasminogen activator. Fibrin binding, fibrinolytic, and fibrinogenolytic characterization of genetic variants lacking the fibrinectin finger-like domain and/or the epidermal growth factor domains. J Biol Chem. 1998;263:1023–1029.
4. Benchenane K., Berezowski V., Ali C., Fernandez-Monreal M., Lopez-Atalaya J.P., Braillet J., et al. Tissue-type plasminogen activator crosses the intact blood-brain barrier by low-density lipoprotein receptor-mediated protein- mediated transcytosis. Circulation. 2005;111:2241–2249.
5. Cassé F., Bardou I., Danglot L., Briens A., Montagne A., Parcq J., et al. Glutamate controls IPA recycling by astrocytes, which in turn influences glutamatergic signals. J Neurosci. 2012;32:5186–5199.
6. Siao C.J., Tarsiak S.E. Tissue plasminogen activator mediates microglial activation via its finger domain through annexin II. J Neurosci. 2002;22:3352–3358.
7. Pineda D., Ampurdatcés C., Medina M.G., Serratos J., Tusell J.M., Saura J., et al. Tissue plasminogen activator induces microglial inflammation via a noncatalytic molecular mechanism involving activation of mitogen-activated protein kinases and Akt signaling pathways and AnnexinA2 and Galectin-1 receptors. Glia. 2012;60:526–540.
8. Correa F., Gauberti M., Parcq J., Macrez R., Hommet Y., Obiang P., et al. Tissue plasminogen activator prevents white matter damage following stroke. J Exp Med. 2011;208:1229–1242.
9. Haile W.B., Wu J., Echeverry R., Wu F., An J., Yepes M. Tissue-type plasminogen activator has a neuroprotective effect in the ischemic brain mediated by neuronal TNF-a. J Cereb Blood Flow Metab. 2012;32:57–69.
10. Liot G., Roussel B.D., Lebourrier N., Benchenane K., Lopez-Atalaya J.P., Vivien D., et al. Tissue-type plasminogen activator rescues neurons from serum deprivation-induced apoptosis through a mechanism independent of its proteolytic activity. J Neurochem. 2006;98:1458–1464.
11. Ortiz-Zapater E., Peiro S., Roda O., Corinoncés J.M., Aguilar S., Ampurdans c., et al. Tissue plasminogen activator induces pancreatic cancer cell proliferation by a non-catalytic mechanism that requires extracellular signal-regulated kinase ½ activation through epidermal growth factor receptor and annexin A2. Am J Pathol. 2007;170:1573–1584.
12. Hajjar K.A., Reynolds C.M. alpha-Fucose-mediated binding and degradation of tissue-type plasminogen activator by HepG2 cells. J Clin Invest. 1994;93:703–710.
13. Kuiper J., Van’t Hof A., Otter M., Biessen E.A., Rijken D.C., van Berkel T.J. Interaction of mutants of tissue-type plasminogen activator with liver cells: effect of domain deletions. Biochem J. 1996;313(Pt 3):775–780.
14. Fredriksson L., Li H., Fiebert C., Li X., Eriksson U. Tissue plasminogen activator is a potent activator of PDGF-CC. EMBO J. 2004;23:3793–3802.
15. Lopez-Atalaya J.P., Roussel B.D., Levrat D., Parcq J., Nicole O., Hommet Y., et al. Toward safer thrombolytic agents in stroke: molecular requirements for NMDA receptor-mediated neurotoxicity. J Cereb Blood Flow Metab. 2008;28:1212–1221.
16. Roussel B.D., Mysiorek C., Rouhainen A., Jullienne A., Parcq J., Hommet Y., et al. HMGB-1 promotes fibrinolysis and reduces
neurotoxicity mediated by tissue plasminogen activator. J Cell Sci. 2011;124(12):2070–2076.
17. Rathore Y.S., Rehan M., Pandey K., Sahni G., Ashish. First structural model of full-length human tissue-plasminogen activator: a SAXS data-based modeling study. J Phys Chem B. 2012;116:496–502.
18. Schleuning W.D. Vampire bat plasminogen activator DSPA-alpha-1 (desmotase): a thrombolytic drug optimized by natural selection. Haemostasis. 2001;31:118–122.
19. Liberatore G.T., Samson A., Bladin C., Schleuning W.D., Medcalf R.L. Vampire bat salivary plasminogen activator (desmotase): a unique fibrinolytic enzyme that does not promote neurodegeneration. Stroke. 2003;34:537–543.
20. López-Alatiay J.P., Roussel B.D., Ali C., Maubert E., Petersen K.U., Berezowski V., et al. Recombinant Desmodus rotundus salivary plasminogen activator crosses the blood-brain barrier through a low-density lipoprotein receptor-related protein-dependent mechanism without exerting neurotoxic effects. Stroke. 2007;38:1036–1043.
21. Parcq J., Bertrand T., Baron A.F., Hommet Y., Anglès-Cano E., Vivien D. Molecular requirements for safer generation of thrombolytics by bioengineering the tissue-type plasminogen activator A chain. J Thromb Haemost. 2013;11:539–546.
22. Parcq J., Bertrand T., Montagne A., Baron A.F., Macrez R., Billard J.M., et al. Unveiling an exceptional zymogen: the single-chain form of tPA is a selective activator of NMDA receptor-dependent signaling and neurotoxicity. Cell Death Differ. 2012;19:1983–1991.
23. Yepes M., Roussel B.D., Ali C., Vivien D. Tissue-type plasminogen activator in the ischemic brain: more than a thrombolytic. Trends Neurosci. 2009;32:48–55.
24. Kassner A., Roberts T.P., Moran B., Silver F.L., Mikulis D.J. Recombinant tissue plasminogen activator increases blood-brain barrier disruption in acute ischemic stroke: an MR imaging permeability study. AJNR Am J Neuroradiol. 2009;30:1864–1869.
25. Niego B., Medcalf R.L. Plasmin-dependent modulation of the blood-brain barrier: a major consideration during tPA-induced thrombolysis? J Cereb Blood Flow Metab. 2014;34:1283–1296.
26. Wang X., Lee S.R., Arai K., Lee S.R., Tsuji K., Rebeck G.W., et al. Lipoprotein receptor-mediated induction of matrix metalloproteinase by tissue plasminogen activator. Nat Med. 2003;9:1313–1317.
27. Suzuki Y., Nagai N., Yamakawa K., Kawakami J., Lijnen H.R., Usuki Y., Tsira K.S., Monocyte chemoattractant protein-1 and the blood-brain barrier. Cell Mol Life Sci. 2014;71:683–697.
28. Docagne F., Nicole O., Marti H.H., MacKenzie E.T., Buisson A., Vivien D. Transforming growth factor-beta1 as a regulator of the serpins/t-PA axis in cerebral ischemia. FASEB J. 1999;13:1315–1324.
29. Buisson A., Nicole O., Docagne F., Sartolet H., Mackenzie E.T., Vivien D. Up-regulation of a serine protease inhibitor in astrocytes mediates the neuroprotective activity of transforming growth factor beta1. FASEB J. 1998;12:1683–1691.
30. Zhang Z., Zhang L., Yepes M., Jiang Q., Li Q., Amiego P., et al. Adjuvant treatment with neuroserpin increases the therapeutic window for tissue-type plasminogen activator administration in a rat model of embolic stroke. Circulation. 2002;106:740–745.
31. Matys T, Strickland S. Tissue plasminogen activator and NMDA receptor cleavage. Nat Med. 2003;9:371–2.
32. Vivien D., Fernandez-Monreal M., Nicole O., Buisson A. Reply to “Tissue plasminogen activator and NMDA receptor cleavage”. Nat Med. 2003;9:372.
33. Echeverry R., Wu J., Haile W.B., Guzman J., Yepes M. Tissue-type plasminogen activator is a neuroprotectant in the mouse hippocampus. J Clin Invest. 2010;120:2194–2205.
34. Armstead W.M., Riley J., Cines D.B., Higazi A.A. tPA contributes to impairment of ATP and Ca sensitive K channel mediated cerebrovasoconstriction following hypoxia/ischemia through up-regulation of ERK MAPK. Brain Res. 2011;1376:88–93.
35. Nicole O., Docagne F., Ali C., Margail I., Carmeliet P., MacKenzie E.T., et al. The proteolytic activity of tissue-plasminogen activator enhances NMDA receptor-mediated signaling. Nat Med. 2001;7:59–64.
36. Pawiak R., Strickland S. Tissue plasminogen activator and seizures: a clot-buster’s secret life. J Clin Invest. 2002;109:1529–1531.
37. Samson A.L., Medcalf R.L. Tissue-type plasminogen activator: a multifaceted modulator of neurotransmission and synaptic plasticity. Neuron. 2006;50:673–678.
38. Wu F., Wu J., Nicholson A.D., Echeverry R., Haile W.B., Catanu M., et al. Tissue-type plasminogen activator regulates the neuronal uptake of glucose in the ischemic brain. J Neurosci. 2012;32:9848–9858.
39. Samson A.L., Nevin S.T., Croucher D., Niego B., Daniel P.B., Weiss T.W., et al. Tissue-type plasminogen activator requires a co-receptor to enhance NMDA receptor function. J Neurochem. 2008;107:1091–1101.
40. Mantuano E., Lam M.S., Gobias S.L. LRP1 assembles unique co-receptor systems to initiate cell signaling in response to tissue-type plasminogen activator and myelin-associated glycoprotein. J Biol Chem. 2013;288:34009–34018.
41. Kvaio M., Albrecht H., Meins M., Hengst U., Troncoso E., Lefort S., et al. Regulation of brain proteolytic activity is necessary for the in vivo function of NMDA receptors. J Neurosci. 2004;24:9734–9743.
42. Macrez R., Bezin L., Le Mauff B., Ali C., Vivien D. Functional occurrence of the interaction of tissue plasminogen activator with the NR1 Subunit of N-methyl-D-aspartate receptors during stroke. Stroke. 2010;41:2950–2955.
43. Yuan H., Vance K.M., Junge C.E., Geballe M.T., Snyder J.P., Hepler J.R., et al. The serine protease plasmin cleaves the amino-terminal domain of the NR2A subunit to relieve zinc inhibition of the N-methyl-D-aspartate receptors. J Biol Chem. 2009;284:12862–12873.
44. Ng K.S., Leung H.W., Wong P.T., Low CM. Cleavage of the NR2B subunit amino terminus of N-methyl-D-aspartate (NMDA) receptor
by tissue plasminogen activator: identification of the cleavage site and characterization of ifenprodil and glycine affinities on truncated NMDA receptor. J Biol Chem. 2012;287:25520–25529.
50. Juilienne A., Montagne A., Orset C., Lesepf F., Jane D.E., Monaghan D.T., et al. Selective inhibition of GluN2D-containing N-methyl-D-aspartate receptors prevents tissue plasminogen activator-promoted neurotoxicity both in vitro and in vivo. Mol Neurodegener. 2011;6:68.
51. Baron A., Montagne A., Cassé F., Launay S., Maubert E., Ali C., et al. NR2D-containing NMDA receptors mediate tissue plasminogen activator-promoted neuronal excitotoxicity. Cell Death Differ. 2010;17:860–871.
52. Wu F., Echeverry R., Wu J., An J., Haile W.B., Cooper D.S., et al. Tissue-type plasminogen activator protects neurons from excitotoxin-induced cell death via activation of the ERK1/2-CREB-ATF3 signaling pathway. Mol Cell Neurosci. 2013;52:9–19.
53. Reijerkork A., Kooij G., van der Pol S.M., Leyen T., Lakeman K., van Het Hof B., et al. The NR1 subunit of NMDA receptor regulates monocyte Transmigration through the brain endothelial cell barrier. J Neurochem. 2010;113:447–453.
54. Mali R.S., Cheng M., Chintala S.K. Plasminogen activators promote excitotoxicity-induced retinal damage. FASEB J. 2005;19:1280–1289.
55. Su E.J., Fredriksson L., Schielke G.P., Eriksson U., Lawrence D.A. Tissue plasminogen activator-mediated PDGF signaling and neurovascular coupling in stroke. J Thromb Haemost. 2009;7(suppl 1):155–158.
56. Park L., Gallo E.F., Arrather J., Wang G., Norris E.H., Paul J., et al. Key role of tissue plasminogen activator in neurovascular coupling. Proc Natl Acad Sci U S A. 2008;105:1073–1078.
57. Flavin M.P., Zhao G. Tissue plasminogen activator protects hippocampal neurons from oxygen-glucose deprivation injury. J Neurosci Res. 2001;63:388–394.
58. Lee H.Y., Hwang I.Y., Im H., Koh J.Y., Kim Y.H. Non-proteolytic neurotoxic effects of tissue plasminogen activator on cultured mouse cerebrocortical neurons. J Neurochem. 2007;101:1236–1247.
59. Flavin M.P., Zhao G., Ho L.T. Microglial tissue plasminogen activator (tPA) triggers neuronal apoptosis in vitro. Glia. 2009;50:347–354.
60. Liu D., Cheng T., Guo H., Fernández J.A., Griffin J.H., Song X., Zlokovic B.V. Tissue plasminogen activator neurovascular toxicity is controlled by activated protein C. Nat Med. 2004;10:1379–83.
61. Medina M.G., Ledesma M.D., Domínguez J.E., Medina M., Zafra D., Alameda F., et al. Tissue plasminogen activator mediates amyloid-induced neurotoxicity via Erk1/2 activation. EMBO J. 2005;24:1706–1716.
62. Henry V.J., Leconte M., Laudenbach V., Ali C., Macrez R., Juilienne A., et al. High tPA release by neonatal brain microvascular endothelial cells under glutamate exposure affects neuronal fate. Neurobiol Dis. 2013;50:201–208.
63. Zhang C., An J., Haile W.B., Echeverry R., Strickland D.K., Yepes M. Microglial low-density lipoprotein receptor–related protein 1 mediates the effect of tissue-type plasminogen activator on matrix metalloproteinase-9 activity in the ischemic brain. J Cereb Blood Flow Metab. 2009;29:1946–1954.
64. Siao C.J., Fernandez S.R., Tsirka S.E. Cell type-specific roles for tissue plasminogen activator released by neurons or microglia after excitotoxic injury. J Neurosci. 2003;23:3234–3242.
65. Roda O., Ortiz-Zapater E., Martinez-Bosch N., Gutiérrez-Gallego R., Vila-Perelló M., Ampurdanes C., et al. Galectin-1 is a novel functional receptor for tissue plasminogen activator in pancreatic cancer. Gastroenterology. 2009;136:1379–90, e1.
66. Reichel C.A., Lerchenberger M., Uhl B., Rehberg M., Berberich N., Zehaler S., et al. Plasmin inhibitors prevent leukocyte accumulation and remodeling events in the postischemic microvasculature. PLoS One. 2011;6:e17229.
67. Uhl B., Zuchtriegel G., Puhr-Westerheide D., Prættner M., Rehberg M., Fabritius M., et al. Tissue plasminogen activator promotes postischemic neutrophil recruitment via its proteolytic and nonproteolytic properties. Arterioscler Thromb Vasc Biol. 2014;34:1495–1504.
68. Wang J., Zhang X., Mu L., Zhang M., Gao Z., Zhang J., et al. t-PA acts as a cytokine to regulate lymphocyte-endothelium adhesion in experimental autoimmune encephalomyelitis. Clin Immunol. 2014;152:90–100.
69. Akassoglou K., Kombrinck K.W., Degen J.L., Strickland S. Tissue plasminogen activator-mediated fibrinolysis protects against axonal degeneration and demyelination after sciatic nerve injury. J Cell Biol. 2000;149:1157–1166.
70. Benaroch EE. Tissue plasminogen activator: beyond thrombolysis. Neurology. 2007;69:799–802.
71. Bukhari N., Torres L., Robinson J.K., Tsirka S.E. Axonal regrowth after spinal cord injury via chondroitinase and the tissue plasminogen activator (tPA)/plasmin system. J Neurosci. 2011;31:14931–14943.
72. Noln W.B., Emmetsberger J., Bukhari N., Zhang Y., Levine J.M., Tsirka S.E. tPA-mediated generation of plasmin is catalyzed by the proteoglycan NG2. Glia. 2008;56:177–189.
73. Lemarchant S., Pruvost M., Hébert M., Gabaudet M., Hommet Y., Briens A., et al. tPA promotes ADAMTS-4-induced CSPG degradation, thereby enhancing neuroplasticity following spinal cord injury. Neurobiol Dis. 2014;66:28–42.
74. Ling C., Zou T., Hsiao Y., Tao X., Chen Z.L., Strickland S., et al. Disruption of tissue plasminogen activator gene reduces macrophage migration. Biochim Biophys Res Commun. 2006;349:906–912.
75. Krystosek A., Seeds N.W. Plasminogen activator release at the neuronal growth cone. Science. 1981;213:1532–1534.
76. Moonen G., Grau-Wagemans M.P., Selak I. Plasminogen activator-plasmin system and neuronal migration. Nature. 1982;298:753–755.
77. Krystosek A., Seeds N.W. Plasminogen activator secretion by granule neurons in cultures of developing cerebellum. Proc Natl Acad Sci USA. 1981;78:7810–7814.
78. Seeds N.W., Basham M.E., Haffke S.P. Neuronal migration is retarded in mice lacking the tissue plasminogen activator gene. Proc Natl Acad Sci U S A. 1999;96:14118–14123.
79. Neuhoff H., Roeppe J., Schweizer M. Activity-dependent formation of perforated synapses in cultured hippocampal neurons. Eur J Neurosci. 1999;11:4241–4250.
80. Zhang Y., Kanaho Y., Frohman M.A., Tsirka S.E. Phospholipase D1-promoted release of tissue plasminogen activator facilitates neurite outgrowth. J Neurosci. 2005;25:1807–1805.
81. Nakagami Y., Abe K., Nishiyama N., Matsuki N. Laminin degradation by plasmin regulates long-term potentiation. J Neurosci. 2000;20:2003–2010.
82. Qian Z., Gilbert M.E., Colicos M.A., Kandel E.R., Kuhl D. Tissueplasminogen activator is induced as an immediate-early gene during seizure, kindling and long-term potentiation. Nature. 1993;361:453–457.
83. Baranes D., Lederlein D., Huang Y.Y., Chen M., Bailey C.H., Kandel E.R. Tissue plasminogen activator contributes to the late
phase of LTP and to synaptic growth in the hippocampal mossy fiber pathway. Neuron. 1998;21:813–825.
84. Madani R., Hulo S., Toni N., Madani H., Steimer T., Muller D., et al. Enhanced hippocampal long-term potentiation and learning by increased neuronal expression of tissue-type plasminogen activator in transgenic mice. EMBO J. 1999;18:3007–3012.
85. Huang Y.Y., Bach M.E., Lipp H.P., Zhuo M., Wolfer D.P., Hawkins R.D., et al. Mice lacking the gene encoding tissue-type plasminogen activator show a selective interference with late-phase long-term potentiation in both Schaffer collateral and mossy fiber pathways. Proc Natl Acad Sci U S A. 1996;93:8699–8704.
86. Centonze D., Napolitano M., Saulle E., Gubellini P., Picconi B., Martorana A., et al. Tissue plasminogen activator is required for corticostriatal longterm potentiation. Eur J Neurosci. 2002;16:713–721.
87. Zhuo M., Holtzman D.M., Li Y., Osaka H., DeMaro J., Jacquin M., et al. Role of tissue plasminogen activator receptor LRP in hippocampal long-term potentiation. J Neurosci. 2000;20:542–549.
88. Lochner J.E., Spangler E., Chavarha M., Jacobs C., McAllister K., Schuttner L.C., et al. Efficient copackaging and cotransport yields postynaptic colocalization of neuromodulators associated with synaptic plasticity. Dev Neurobiol. 2008;68:1243–1256.
89. Pang P.T., Teng H.K., Zaitsev E., Woo N.T., Sakata K., Zhen S., et al. Cleavage of proBDNF by tPA/plasmin is essential for long-term hippocampal plasticity. Science. 2004;306:487–491.
90. Lu Y., Christian K., Lu B. BDNF: a key regulator for protein synthesis-dependent LTP and long-term memory? Neurobiol Learn Mem. 2008;90:312–323.
91. Nagappan G., Zaitsev E., Senatorov V.V. Jr, Yang J., Hempstead B.L., Lu B. Control of extracellular cleavage of ProBDNF by high frequency neuronal activity. Proc Natl Acad Sci U S A. 2009;106:1267–1272.
92. Li Y., Liu Z., Xin H., Chopp M. The role of astrocytes in mediating exogenous cell-based restorative therapy for stroke. Glia. 2014;62:1–16.
93. Macrez R., Obiang P., Gaubert M., Rousselet B., Baron A., Parcq J., et al. Antibodies preventing the interaction of tissue-type plasminogen activator with N-methyl-D-aspartate receptors reduce stroke damages and extend the therapeutic window of thrombolysis. Stroke. 2011;42:2315–2322.
94. Wang X., Fan X., Yu Z., Liao Z., Zhao J., Mandeville E., et al. Effects of tissue plasminogen activator and annexin A2 combination therapy on long-term neurological outcomes of rat focal embolic stroke. Stroke. 2014;45:619–622.
95. Cheng T., Petraglia A.L., Li Z., Thiagarajan M., Zhong Z., Wu Z., et al. Activated protein C inhibits tissue plasminogen activator-induced brain hemorrhage. Nat Med. 2006;12:1278–1285.
96. Won S., Lee J.H., Wali B., Stein D.G., Sayeed I. Progesterone attenuates hemorrhagic transformation after delayed tPA treatment in an experimental model of stroke in rats: involvement of the VEGF-MMP pathway. J Cereb Blood Flow Metab. 2014;34:72–80.
97. Le Behot A., Gaubert M., Martinez De Lizarrondo S., Montagne A., et al. Gpiba-VWF blockade restores vessel patency by dissolving platelet aggregates formed under very high shear rate in mice. Blood. 2014;123:3354–3363.
98. Bhatia R., Hill M.D., Sholha N., Menon B., Bal S., Kochar P., et al. Low rates of acute recanalization with intravenous recombinant tissue plasminogen activator in ischemic stroke: real-world experience and a call for action. Stroke. 2010;41:2254–2258.
99. Riedel C.H., Zimmermann P., Jensen-Kondering U., Stinele R., Deuschl G., Jansen O. The importance of size: successful recanalization by intravenous thrombolysis in acute anterior stroke depends on thrombus length. Stroke. 2011;42:1775–1777.
100. Pawlik R., Melchor J.P., Matys T., Skrzypiec A.E., Strickland S. Ethanol withdrawal seizures are controlled by tissue plasminogen activator via modulation of NR2B-containing NMDA receptors. Proc Natl Acad Sci U S A. 2005;102:443–448.
101. Alvarez V., Rossetti A.O., Papavasileiou V., Michel P. Acute seizures in acute ischemic stroke: does thrombolysis have a role to play? J Neurol. 2013;260:55–61.
102. Mould W.A., Carhuapoma J.R., Muschell J., Lane K., Morgan T.C., McBee N.A., et al. Minimally invasive surgery plus recombinant tissue-type plasminogen activator for intracerebral hemorrhage evacuation decreases perihematomal edema. Stroke. 2013;44:627–34.
103. Thiex R., Mayfrank L., Rohde V., Gilsbach J.M., Tsirka S.A. The role of endogenous versus exogenous tPA on edema formation in murine ICH. Exp Neurol. 2004;189:25–32.
104. Rohde V., Rohde I., Thiex R., Ince A., Jung A., Dicke G., et al. Fibrinolysis therapy achieved with tissue plasminogen activator and aspiration of the liquefied clot after experimental intracerebral hemorrhage: rapid reduction in hematoma volume but intensification of delayed edema formation. J Neurosurg. 2002;97:954–962.
105. Thiex R., Weis J., Kring T., Barreiro S., Yakisiki-Alemi F., Gilsbach J.M., et al. Addition of intravenous N-methyl-D-aspartate receptor antagonists to local fibrinolytic therapy for the optimal treatment of experimental intracerebral hemorrhages. J Neurosurg. 2007;106:314–320.
106. Gaberel T., Montagne A., Le-sept F., Gaubert M., Lemarchand E., Orset C., et al. Urokinase versus Alteplase for intraventricular hemorrhage fibrinolysis. Neuropharmacology. 2014;85:158–165.
107. Gaberel T., Macrez R., Gaubert M., Montagne A., Hebert M., Petersen K.U., et al. Immunotherapy blocking the tissue plasminogen activator-dependent activation of N-methyl-D-aspartate glutamate receptors improves hemorrhagic stroke outcome. Neuropharmacology. 2013;67:267–271.