Antimicrobial susceptibility of *Helicobacter pylori* strains isolated from patients in Shiraz, Southern Iran

Shohreh Farshad, Abdolvahab Alborzi, Aziz Japoni, Reza Ranjbar, Kazem Hosseini Asl, Parisa Badiee, Maneli Amin Shahidi, Marziyeh Hosseini

Abstract

AIM: To improve our understanding of Iranian regional variation in *Helicobacter pylori* (H. pylori) antibiotic resistance rates to find the best antibiotic therapy for eradication of *H. pylori* infections.

METHODS: A total of 266 patients undergoing endoscopy in Shiraz, Southern Iran, were included in this study. *H. pylori* strains were isolated from antral biopsies by culture and confirmed by the rapid urease-test and gram staining. Antibiotic susceptibility of *H. pylori* isolates was determined by E-test.

RESULTS: A total of 121 *H. pylori* strains were isolated, 50 from male and 71 from female patients. Data showed that 44% (*n* = 53), 20% (*n* = 24), 5% (*n* = 6), and 3% (*n* = 4) of all strains were resistant to the antibiotics metronidazole, amoxicillin, clarithromycin, and tetracycline, respectively. When the antibiotics were considered together we found 11 sensitivity patterns for the strains. Resistance to metronidazole was significantly higher in female than in male patients (*P* < 0.05). In about 71% of the metronidazole-resistant isolates, the minimum inhibitory concentrations (MICs) exceeded 256 µg/mL.

CONCLUSION: We found a moderate rate of primary resistance to metronidazole. However, a high MIC (> 256 mg/L) which was found in 71% of the isolates is considerable. In the case of amoxicillin, an increased resistance rate of 20% is worrying. Resistance to clarithromycin and tetracycline is also emerging among the *H. pylori* strains in our region.

Key words: Gastric disorders; *Helicobacter pylori*; Iran; Sensitivity; Treatment

Peer reviewer: Peter Konturek, Professor, First Department of Medicine, University of Erlangen-Nuremberg, Ulmenweg 18, DE-91054, Erlangen, Germany

Farshad S, Alborzi A, Japoni A, Ranjbar R, Hosseini Asl K, Badiee P, Amin Shahidi M, Hosseini M. Antimicrobial susceptibility of *Helicobacter pylori* strains isolated from patients in Shiraz, Southern Iran. *World J Gastroenterol* 2010 December 7; 16(45): 5746-5751 Available from: URL: http://www.wjgnet.com/1007-9327/full/v16/i45/5746.htm DOI: http://dx.doi.org/10.3748/wjg.v16.i45.5746

INTRODUCTION

Helicobacter pylori (H. pylori) is involved in the pathogenesis...
of a number of gastrointestinal diseases, including acute and chronic gastritis, peptic ulceration, gastric carcinoma and gastric lymphoma. Eradication treatment of \textit{H. pylori} infection usually consists of various combinations of drugs. Most commonly, an acid suppressor (usually a proton pump inhibitor) or an \(\text{H}^{-}\)-\text{receptor} antagonist (e.g. ranitidine) is prescribed in combination with two antibiotics usually amoxicillin, metronidazole or clarithromycin\cite{9,10}. The combination of two antibiotics can increase the success of eradication therapy and decrease the possibility of secondary antibiotic resistance\cite{6-8}. Antibiotic resistance in \textit{H. pylori} is the major cause of eradication failure. Growing resistance often parallels the patterns of antibiotic consumption, and may vary within patient groups according to the geographic region, patient age and sex, type of disease, birthplace, other infections and other factors. The geographic map and the process of primary \textit{H. pylori} resistance are clinically important, and should be considered when choosing eradication regimens, as is constant monitoring at both national and global level in an attempt to reach the recently recommended goal of eradicating more than 95\% of resistant cases\cite{4}. The prevalence of clarithromycin, metronidazole and amoxicillin resistance varies between countries and is highest for metronidazole\cite{3,33}. Resistance to tetracycline and ciprofloxacin has been reported but appears uncommon\cite{6-8}.

There are several problems with antimicrobial susceptibility testing of \textit{H. pylori}\cite{8,9,10}. Agar or broth dilution methods are difficult to perform routinely\cite{11,12}, thus, disk-diffusion testing is often used because it is simple, easy to perform, and economical\cite{9,10}. However, the E-test has proved to be an accurate method for assaying the susceptibility of fastidious organisms, including \textit{H. pylori}, to antibiotics. The E-test has a more stable pattern of antibiotic release and has been found to tolerate prolonged incubation\cite{10,12}. This is the main reason why the E-test rather than the disk diffusion method, has been recommended for \textit{H. pylori}.

Pre-treatment resistance rates in \textit{H. pylori} vary markedly between countries and regions. In Europe, mean resistance rates of 27\% for metronidazole and 10\% for clarithromycin are typical\cite{13,14}. There is no systematic surveillance of primary antibiotic resistance rates in Shiraz, and widely divergent rates have been reported in Iran, depending on the local population.

The present study aimed to improve our understanding of the Iranian regional variation in \textit{H. pylori} antibiotic resistance rates in relation to gender, and to find the best antibiotic therapy for the eradication of \textit{H. pylori} infections.

\textbf{MATERIALS AND METHODS}

\textbf{The patient groups and sample collection}

In this study, 266 patients attending the endoscopy ward of Motahhary Clinic of Shiraz University of Medical Sciences during the period between October 2008 and October 2009 were enrolled. Exclusion criteria for patient recruitment to the study were: previous attempts to eradicate \textit{H. pylori}, use of antibiotics or proton pump inhibitors within the last 2 wk prior to endoscopy, and previous gastric surgery. The diagnosis of \textit{H. pylori} infection and confirmation of gastric disease by histology were established by a central study pathologist. Antral biopsies taken from each patient were transferred to the lab in an appropriate transfer medium (brain heart infusion broth, supplemented with 20\% glucose) for \textit{H. pylori} isolation and identification.

\textbf{Isolation and identification of \textit{H. pylori}}

Biopsy samples were gently homogenized and cultured on rapid urease-test media and colombia agar base (Merck, Germany), supplemented with 10\% lyzed horse blood and 7\% fetal calf serum and the antibiotics amphotericin B (5 \(\mu\text{g/L}\)), trimethoprim (5 \(\mu\text{g/L}\)) and vancomycin (10 \(\mu\text{g/L}\)). The cultures were kept in a microaerophilic atmosphere (7\% \(\text{O}_2\), 7.1\% \(\text{CO}_2\), 7.1\% \(\text{H}_2\), 79.8\% \(\text{N}_2\)), provided by Anoxomat (Mark II, Mart Microbiology BV, Netherlands) at 37\°C for 2-4 d. The isolates were then confirmed as \textit{H. pylori} by positive oxidases, catalase and rapid urease-tests. The samples were also evaluated for the presence of \textit{H. pylori} by the modified gram staining and rapid urease-tests. If any of the two tests were positive simultaneously, the sample was considered \textit{H. pylori} positive.

\textbf{Antibiotic susceptibility test}

For \textit{in vitro} susceptibility testing of the \textit{H. pylori} strains, a suspension equal to the McFarland tube no. 3 was prepared for each isolate. We used only one colony from each patient for the analysis. Brain heart infusion broth (Merck, Germany) plates, supplemented with fetal calf serum (Gibco, USA) were inoculated by confluent swabbing of the surface with the adjusted inoculum suspensions. The E-test strips (Biomerieux, France) for the antibiotics amoxicillin, metronidazole, tetracycline, and clarithromycin, were aseptically placed onto the dried surface of inoculated agar plates. The plates were then incubated at 37\°C under microaerophilic conditions. The minimum inhibitory concentrations (MICs) were read after 48-72 h of incubation on the basis of the intersection of the elliptical zone of growth inhibition using the MIC scale on the E-test strip, as per the manufacturer’s instructions\cite{10}. Susceptibility results were recorded as resistant according to the following interpretive criteria: for metronidazole, clarithromycin, tetracycline and amoxicillin, MIC breakpoints of \(\geq 8 \text{mg/L}\), \(\geq 1 \text{mg/L}\), \(\geq 4 \text{mg/L}\) and \(\geq 0.5 \text{mg/L}\), respectively\cite{8,9,10}.

\textbf{Statistical analysis}

Fisher’s exact test and \(P\) values were determined. A \(P\) value of \(< 0.05\) was considered significant.

\textbf{RESULTS}

A total of 121 \textit{H. pylori} strains were isolated from the patients under study, 50 from males and 71 from females. The antimicrobial susceptibility results of the \textit{H. pylori} strains are presented in Table 1. According to the data, 44\% (\(n = 53\)), 20\% (\(n = 24\)), 5\% (\(n = 6\)), and 3\% (\(n = 4\)) of the strains were resistant to metronidazole, amoxicillin, clarithromycin, and tetracycline, respectively. Fifty isolates were

\[\text{\(n\) is isolation of the Iranian regional variation in antibiotic resistance...}

\[\text{\(P\) values were determined. A \(P\) value of \(< 0.05\) was considered significant.}

\[\text{The present study aimed to improve our understanding...}

\[\text{\% for metronidazole and 10\% for clarithromycin are typical...}

\[\text{There is no systematic surveillance of primary antibiotic resistance rates in Shiraz...}

\[\text{The prevalence of clarithromycin, metronidazole and amoxicillin resistance varies between...}

\[\text{Resistance to tetracycline and ciprofloxacin has been reported but appears uncommon...}

\[\text{There are several problems with antimicrobial susceptibility testing of \textit{H. pylori}...}

\[\text{Agar or broth dilution methods are difficult to perform routinely...}

\[\text{However, the E-test has proved to be an accurate method for assaying the susceptibility...}

\[\text{The E-test has a more stable pattern of antibiotic release and has been found to tolerate prolonged...}

\[\text{This is the main reason why the E-test rather than the disk diffusion method, has been...}

\[\text{Pre-treatment resistance rates in \textit{H. pylori} vary markedly between countries and regions...}

\[\text{In Europe, mean resistance rates of 27\% for metronidazole and 10\% for clarithromycin are...}

\[\text{There is no systematic surveillance of primary antibiotic resistance rates in Shiraz, and widely...}

\[\text{The present study aimed to improve our understanding of the Iranian regional variation in...}

\[\text{The prevalence of clarithromycin, metronidazole and amoxicillin resistance varies between...}

\[\text{Resistance to tetracycline and ciprofloxacin has been reported but appears uncommon...}

\[\text{There are several problems with antimicrobial susceptibility testing of \textit{H. pylori}...}

\[\text{Agar or broth dilution methods are difficult to perform routinely...}

\[\text{However, the E-test has proved to be an accurate method for assaying the susceptibility...}

\[\text{The E-test has a more stable pattern of antibiotic release and has been found to tolerate prolonged...}

\[\text{This is the main reason why the E-test rather than the disk diffusion method, has been...}

\[\text{Pre-treatment resistance rates in \textit{H. pylori} vary markedly between countries and regions...}

\[\text{In Europe, mean resistance rates of 27\% for metronidazole and 10\% for clarithromycin are...}

\[\text{There is no systematic surveillance of primary antibiotic resistance rates in Shiraz, and widely...}

\[\text{The present study aimed to improve our understanding...}
Farshad S et al. Antimicrobial susceptibility of *H. pylori* strains

Table 1 Rates of antibiotic resistance in *Helicobacter pylori* isolates in relation to patient gender

Sex No.	No. of isolates (% of resistance)			
MTZ	AMX	CLA	TET	
Male (n = 50)	17 (34)	9 (18)	1 (2)	1 (2)
Female (n = 71)	36 (50)	15 (21)	5 (7)	3 (4)
Total (n = 121)	53 (43)	24 (19)	6 (9)	4 (3)

MTZ: Metronidazole; AMX: Amoxicillin; CLA: Clarithromycin; TET: Tetracyline.

Table 2 Antibiotic resistance patterns of the *Helicobacter pylori* strains

Antibiotic resistance patterns	n	Male	Female
MTZ	44	15	29
AMX	14	7	7
CLA	1	0	1
TET	1	1	0
MTZ-AMX	3	1	2
MTZ-TET	1	0	1
AMX-TET	1	0	1
AMX-CLA	1	0	1
MTZ-AMX-TET	1	0	1
MTZ-AMX-CLA	4	1	3
Sensitive	50	25	25
Total	121	50	71

MTZ: Metronidazole; AMX: Amoxicillin; CLA: Clarithromycin; TET: Tetracycline.

It was observed that 44% of the isolates in this study were resistant to metronidazole with a MIC range of 0.064 to >256 µg/mL. This resistance rate was consistent with reports from some developed countries, where it has been reported that 15.8%-40% of *H. pylori* strains were resistant to metronidazole.[22-24] However, most reports from developing countries describe a high level of resistance to metronidazole, which varies from 66.2% to 100%.[25-29] Resistance rates to metronidazole may also vary within a country. For example, in India, the resistance rate to metronidazole was high in Lucknow, Chennai and Hyderabad (68%, 88.2% and 100%, respectively), whereas a moderate rate was observed in Delhi (37.5%) and Chandigarh (38.2%).[24] Similarly, the resistance rate was high (78%) in Tehran, Iran in one study carried out by Falsafi et al., while in another study it was reported to be 34%.[30,31] In Europe, according to studies conducted between 1989-2001 and 1990-2002, respectively, the resistance rate varied between 16.0% and 43% in pediatric patients and between 14.9% and 40.3% in adult patients.[32] It seems that primary resistance to nitroimidazole has been attributed to frequent use of the drug, which is commonly prescribed for other diseases, especially parasitic conditions, and peridontal or gynecological infections. The higher resistance rate to metronidazole in females reported in this and other studies could be due to the treatment of gynecological infections using this drug which is also used in the treatment of bacterial vaginosis. Moreover, the use or abuse of this inexpensive drug may contribute to the increased metronidazole resistance seen in developing countries.[33] For this reason, metronidazole has been excluded from first-line empirical therapy plans in some countries.[24] However, it has been reported that the results of *in vitro* resistance to this drug are also poorly correlated with the outcome of therapy, and consequently, susceptibility testing is not rou-

DISCUSSION

Resistance to antimicrobials is of particular concern to practitioners in this field, and is a major cause of the failure to eradicate *H. pylori* infections.[25,31] It has also been shown that resistance to different antibiotics develops in *H. pylori* strains by acquiring chromosomal mutations at the site where the drug acts.[25] However, many reports have indicated that the prevalence of resistance varies geographically and that there is a broad range of resistance variability depending on the drug used.[23]. The special nutritional and atmospheric conditions required by these organisms make susceptibility testing relatively difficult; however, the E-test technique developed to determine the minimum inhibitory concentration (MIC) has remained valid.[24] Accordingly, in the present study we evaluated the sensitivity of *H. pylori* strains isolated from patients with gastric disorders to 4 antibiotics using the E-test to find the resistance pattern in these strains in our region.

It was observed that 44% of the isolates in this study were resistant to metronidazole with a MIC range of 0.064 to >256 µg/mL. This resistance rate was consistent with reports from some developed countries, where it has been reported that 15.8%-40% of *H. pylori* strains were resistant to metronidazole.[22-24]. However, most reports from developing countries describe a high level of resistance to metronidazole, which varies from 66.2% to 100%[25-29]. Resistance rates to metronidazole may also vary within a country. For example, in India, the resistance rate to metronidazole was high in Lucknow, Chennai and Hyderabad (68%, 88.2% and 100%, respectively), whereas a moderate rate was observed in Delhi (37.5%) and Chandigarh (38.2%).[24]. Similarly, the resistance rate was high (78%) in Tehran, Iran in one study carried out by Falsafi et al., while in another study it was reported to be 34%.[30,31]. In Europe, according to studies conducted between 1989-2001 and 1990-2002, respectively, the resistance rate varied between 16.0% and 43% in pediatric patients and between 14.9% and 40.3% in adult patients.[32]. It seems that primary resistance to nitroimidazole has been attributed to frequent use of the drug, which is commonly prescribed for other diseases, especially parasitic conditions, and periodontal or gynecological infections. The higher resistance rate to metronidazole in females reported in this and other studies could be due to the treatment of gynecological infections using this drug which is also used in the treatment of bacterial vaginosis. Moreover, the use or abuse of this inexpensive drug may contribute to the increased metronidazole resistance seen in developing countries.[33]. For this reason, metronidazole has been excluded from first-line empirical therapy plans in some countries[24]. However, it has been reported that the results of *in vitro* resistance to this drug are also poorly correlated with the outcome of therapy, and consequently, susceptibility testing is not rou-
tinely indicated[38]. Therefore, assessment of the drug concentration in blood samples could be recommended to assess the correlation with in vitro results. Another important finding from the present study was that in about 71% of the metronidazole-resistant isolates, the MICs exceeded 256 µg/mL, which has rarely been reported[7].

In contrast to most studies, we found a high resistance (20%) to amoxicillin among H. pylori isolates. Most studies have shown that H. pylori resistance to this drug is either very rare or non-existent[32,33,34]. Usually, the MIC of amoxicillin for H. pylori is very low (0.03 µg/mL); nevertheless, in our study, we found a few sensitive isolates with reduced susceptibility (MICs < 0.016 µg/mL)[35]. However, high resistance rates have been reported in some studies from other parts of the world: 18.5% in South Korea[36], 19.4% in Indonesia[37], 32.8% in India[38], and 38% in Brazil[39]. In a study conducted in Ile-Ife, southwest of Nigeria, 100% of the 32 isolates were resistant[36]. It has been shown that resistance to amoxicillin could have emerged by genomic mutation in the pbp1A gene[40]. When comparing different sets of data, it is important to note that variations in rates may arise due to the effects of inter-laboratory reproducibility, caused by the lack of standardized testing protocols or regional prescribing practice. This may be the reason why the resistance rates for amoxicillin in H. pylori isolates have been reported to be 1.6% and 27% in different studies conducted in Iran[101,32]. Moreover, high resistance to amoxicillin observed in the present study reflects the importance of its use in our country.

Clarithromycin is a macrolide used frequently in combination with other antimicrobial agents for the treatment of H. pylori infection[41]. However, resistance to clarithromycin has become one of the major reasons for treatment failure[42]. The prevalence of H. pylori resistance to clarithromycin varies in different countries, and was 12% in Japan, 1.7%-23.4% in Europe and 10.6%-25% in North America[32]. Resistance in 5% of our isolates resembles data from the Northern regions of Europe[27]. In contrast, two other studies from Tehran, Iran reported a high rate of resistance to clarithromycin ranging from 16.7% to 21.5%[28,30]. Since clarithromycin is not currently used in Iran, emerging resistance to this antibiotic is unexpected. On the other hand, it has been shown that there is cross-reactivity between clarithromycin and other macrolides such as erythromycin, which implies that resistance to one macrolide could cause the emergence of resistance to other macrolides[42]. Genetic studies have revealed that clarithromycin resistance is often associated with point mutation of the 23S rRNA[15].

We observed a low resistance (3%) to tetracycline among the isolates, which is consistent with most studies which have reported no resistance or low resistance to this antibiotic in H. pylori strains[27,32,56,64]. In contrast, a high resistance rate (20%) to tetracycline was reported by Falsafi et al.[23]. Similarly, these variations could be due to the effects of inter-laboratory reproducibility caused by the lack of standardized testing protocols or regional prescribing practice. However, resistance to tetracycline, mainly caused by mutations in the 16S rRNA gene, is emerging and can impair the efficacy of such second-line regimens[44]. Thus, it seems that molecular methods can help verify the exact rate of resistance to this antibiotic. Recently a novel real-time PCR has been described which is able to detect the strains carrying the mutant genes for tetracycline resistance[44].

In conclusion, this study showed a moderate rate of primary resistance to metronidazole which is included in the guidelines for the empirical therapy of H. pylori infections. However, a high MIC (> 256 mg/L) observed in about 71% of the isolates is considerable. On the other hand, in the case of amoxicillin, there was an increased resistance which is worrying. In particular, it is important to determine whether the increased resistance to amoxicillin is a result of its increased use or due to the ethnic differences of the populations described herein. The data also indicate that resistance to clarithromycin and tetracycline is emerging among the H. pylori strains in our region. Therefore, considering the increasing resistance rate in many countries, monitoring of susceptibility of H. pylori to these antibiotics appears to be necessary in order to choose effective therapy to eradicate H. pylori infections and to optimize the regimen in case of treatment failure. Finally, taking into account the present findings along with other reported findings, continued surveillance of the resistance profiles and the resistance mechanisms present in H. pylori strains isolated in Iran is essential, if therapeutic plans are to satisfy the country’s needs.

ACKNOWLEDGMENTS

The authors wish to thank Dr. Hassan Khajeh for his critical editorial assistance. The authors also thank all the staffs in Professor Alborzi Clinical Microbiology Research Centre for their critical technical assistance.

COMMENTS

Background
Antibiotic resistance in Helicobacter pylori (H. pylori) is the major cause of eradication failure. Growing resistance often parallels the patterns of antibiotic consumption, and may vary within patient groups according to the geographic region, patient age and sex, type of disease, birthplace, other infections and other factors.

Research frontiers
Geographic mapping and the process of primary H. pylori resistance are clinically important, and should be considered when choosing eradication regimens. These should also be constantly monitored both at national and global level in an attempt to reach the recently recommended goal of eradicating the highest rate of resistance. The present study aimed to improve our understanding of Iranian regional variation in H. pylori antibiotic resistance rates in relation to gender and to find the best antibiotic therapy for the eradication of H. pylori infections.

Innovations and breakthroughs
The E-test has proven to be an accurate method of assaying the susceptibility of fastidious organisms, including H. pylori, to antibiotics. Using this method and improved culture conditions, we found a moderate rate of primary resistance to metronidazole which is included in the guidelines for the empirical therapy of H. pylori infections. However, a high minimum inhibitory concentration (MIC) (> 256 mg/L) observed in 71% of the isolates is considerable. On the other hand, in the case of amoxicillin, there was an increased resistance (20%) which is worrying. The data also indicate that resistance to clarithromycin and tetracycline is emerging among the H. pylori strains in our region.
Farshad S et al. Antimicrobial susceptibility of H. pylori strains

Applications
Considering the increasing rate of resistance in many countries and based on the varied results from different studies, even in the same regions, the results of this study can improve the monitoring of H. pylori susceptibility to antibiotics, which is necessary in order to choose effective therapy to eradicate H. pylori infections and to optimize the regimen in case of treatment failure in our region.

Terminology
MIC is minimum inhibitory concentration. E test is the epilometry test, a test to determine the MIC of antimicrobial agents using strips with epilometric concentrations of antimicrobials.

Peer review
It is an interesting publication showing the prevalence of antibiotic resistance of H. pylori in southern part of Iran (Shiraz).

REFERENCES

1 Cameron EA, Powell KU, Baldwin LN, Jones P, Bell GD, Williams SC. Helicobacter pylori: antibiotic resistance and eradication rates in Suffolk, UK, 1991-2001. J Med Microbiol 2004; 53: 535-538
2 Mishra KK, Srivastava S, Garg A, Ayyagari A. Antibiotic susceptibility of Helicobacter pylori clinical isolates: comparative evaluation of disk-diffusion and E-test methods.Curr Microb 2006; 53: 329-334
3 Boyanova I, Mitov I. Geographic map and evolution of primary Helicobacter pylori resistance to antibacterial agents. Expert Rev Anti Infect Ther 2010; 8: 59-70
4 Debets-Ossenkopp VJ, Sparrius M, Kusters JG, Kolkman JJ, Vandenbroucke-Grauls CM. Mechanism of clarithromycin resistance in clinical isolates of Helicobacter pylori. FEMS Microbiol Lett 1996; 142: 37-42
5 van der Wouden EJ, van Zewt AA, Vosmaer GD, Oom JA, Jong A, Kleibeuker JH. Rapid increase in the prevalence of metronidazole-resistant Helicobacter pylori in the Netherlands. Emerg Infect Dis 1997; 3: 385-389
6 Midolo PD, Korman MG, Turnidge JD, Lambert JR. Helicobacter pylori resistance to tetracycline. Lancet 1996; 347: 1194-1195
7 Mégraud F. Resistance of Helicobacter pylori to antibiotics. Aliment Pharmacol Ther 1997; 11: 43-53
8 Lahaye RG, Gaudreaux C. Helicobacter pylori antibiotic resistance: trends over time. Can J Gastroenterol 2000; 14: 895-899
9 Glupczynski Y, Lábbé M, Hansen W, Crokaert F, Youras A. Evaluation of the E test for quantitative antimicrobial susceptibility testing of Helicobacter pylori. J Clin Microbiol 1999; 29: 2072-2075
10 Hirschl AM, Hirschl MM, Rotter ML. Comparison of three methods for the determination of the sensitivity of Helicobacter pylori to metronidazole. J Antimicrob Chemother 1993; 32: 45-49
11 DeCross AJ, Marshall BJ, McCallum RW, Hoffman SR, Barrett LJ, Guerant RL. Metronidazole susceptibility testing for Helicobacter pylori: comparison of disk, broth, and agar dilution methods and their clinical relevance. J Clin Microbiol 1993; 31: 1971-1974
12 Chaves S, Gadanoth M, Tenreiro R, Cabrita J. Assessment of metronidazole susceptibility in Helicobacter pylori: statistical validation and error rate analysis of breakpoints determined by the disk diffusion test. J Clin Microbiol 1999; 37: 1628-1631
13 Cederbrant G, Kahlmeter G, Ljung A. The E test for antimicrobial susceptibility testing of Helicobacter pylori. J Antimicrob Chemother 1993; 31: 65-71
14 Mégraud F, Lénh N, Lind T, Bayerdörffer E, O’Morain C, Spiller R, Unger P, van Zanten SW, Wrangstadh M, Burman CF. Antimicrobial susceptibility testing of Helicobacter pylori in a large multicenter trial: the MACH 2 study. Antimicrob Agents Chemother 1999; 43: 247-257
15 Glupczynski Y, Mégraud F, Lopez-Brea M, Andersen L. European multicentre survey of in vitro antimicrobial resistance in Helicobacter pylori. Europ J Clin Microbiol Infec Dis 2001; 20: 820-823
16 E-test technical guide 8. Susceptibility testing of Helicobacter pylori. Solna, Sweden: AB Biodisk, 2000
17 Seck A, Mbengue M, Gassama Sow A, Diouf L, Ka MM, Boye CS. Antibiotic susceptibility of Helicobacter pylori isolates in Dakar, Senegal. J Infect Dev Cities 2009; 3: 137-140
18 Marie MA. Patterns of Helicobacter pylori resistance to Metronidazole, Clarithromycin and Amoxicillin in Saudi Arabia. J Bacteriol Viral 2008; 38: 173-178
19 Best LM, Haldane DJ, Keelan M, Taylor DE, Thompson AB, Loo V, Fallone CA, Lyn P, Small FM, Hunt R, Gaudreau C, Kennedy J, Afia M, Pelletier R, Veldhuyzen Van Zanten SJ. Multilaboratory comparison of proficiencies in susceptibility testing of Helicobacter pylori and correlation between agar dilution and E test methods. Antimicrob Agents Chemother 2003; 47: 3138-3144
20 Datta S, Chattopadhyay S, Patra R, De R, Ramamurthy T, Hembram J, Chowdhury A, Bhattacharya SK, Berg DE, Nair GB, Mukhopadhyay AK. Most Helicobacter pylori strains of Kolkata in India are resistant to metronidazole but susceptible to other drugs commonly used for eradication and ulcer therapy. Aliment Pharmacol Ther 2005; 22: 51-57
21 Toracchio S, Marzio L. Primary and secondary antibiotic resistance of Helicobacter pylori strains isolated in central Italy during the years 1998-2002. Dig Liver Dis 2003; 35: 541-545
22 Mégraud F. H pylori antibiotic resistance: prevalence, importance, and advances in testing. Gut 2004; 53: 1374-1384
23 Torres-Debat ME, Pérez-Pérez G, Olivares A, Fernández L, Raisier K, González N, Stein S, Basset MC, Alalón W, Cohen H. Antimicrobial susceptibility of Helicobacter pylori and mechanisms of clarithromycin resistance in strains isolated from patients in Uruguay. Rev Esp Enferm Dig 2009; 101: 757-762
24 Piccolomini R, Di Bonaventura G, Catamo G, Carbone F, Neri M. Comparative evaluation of the E test, agar dilution, and broth microdilution for testing susceptibilities of Helicobacter pylori strains to 20 antimicrobial agents. J Clin Microbiol 1997; 35: 1842-1846
25 Boyanova I, Kounanova R, Gergova G, Popova M, Mitov I, Kovacheva Y, Denojan S, Katsaros N, Nikolov R, Krastev Z. Prevalence of resistant Helicobacter pylori isolates in Bulgarian children. J Med Microbiol 2002; 51: 786-790
26 Parsons HK, Carter MJ, Sanders DS, Winstanley T, Lobo AJ. Helicobacter pylori antimicrobial resistance in the United Kingdom: the effect of age, sex and socio-economic status. Aliment Pharmacol Ther 2001; 15: 1473-1478
27 Teare I, Peters T, Saverymuttu S, Owen R, Tiwari I. Antibiotic resistance in Helicobacter pylori. Lancet 1999; 353: 242-247
28 Abdere OA, Abdur RA, Odetoyin B, Okeke IN, Lawal OO, Nububa DA, Agbakwuru AE, Lamikanra A. Antibiotic resistance of Helicobacter pylori from patients in Ille-Ife, South-west, Nigeria. Afr Health Sci 2007; 7: 143-147
29 Sherif M, Mohran Z, Fathy H, Rockabrand DM, Rozmajzl P, French RW. Universal high-level primary metronidazole resistance in Helicobacter pylori isolated from children in Egypt. J Clin Microbiol 2004; 42: 4832-4834
30 Thayagarajan SP, Ray P, Das BK, Ayyagari A, Khan AA, Dharamalingam S, Rao UA, Rajasambandam P, Ramathilaga B, Bhasin D, Sharma MP, Naik SR, Habibullah CM. Geographical difference in antimicrobial resistance pattern of Helicobacter pylori clinical isolates from Indian patients. J Antimicrob Chemother 2003; 52: 1189-1195
31 Aboderin OA, Abdur RA, Odetoyin B, Okeke IN, Lawal OO, Nububa DA, Agbakwuru AE, Lamikanra A. Resistance of Helicobacter pylori from patients in Ille-Ife, South-west, Nigeria. Afr Health Sci 2007; 7: 143-147
32 Sherif M, Mohran Z, Fathy H, Rockabrand DM, Rozmajzl P, French RW. Universal high-level primary metronidazole resistance in Helicobacter pylori isolated from children in Egypt. J Clin Microbiol 2004; 42: 4832-4834
33 Falsafi T, Mohabery F, Nariman F, Najafi M. Susceptibilities to different antibiotics of Helicobacter pylori strains isolated from patients at the pediatic medical center of Tehran, Iran. J Clin Microbiol 2004; 42: 387-389
34 Malfertheiner P, Mégraud F, O’Morain C, Bazzoli F, El-Omar E, Graham D, Hunt R, Rokkas T, Vakil N, Kuipers EJ. Current concepts in the management of Helicobacter pylori infection:
the Maastricht III Consensus Report. Gut 2007; 56: 772-781
34 Alvarez A, Moncayo JI, Santacruz JJ, Santacoloma M, Corredor LF, Reinosa E. Antimicrobial susceptibility and mutations involved in clarithromycin resistance in Helicobacter pylori isolates from patients in the western central region of Colombia. Antimicrob Agents Chemother 2009; 53: 4022-4024
35 John Albert M, Al-Mekhaizeem K, Neil L, Dhar R, Dhar PM, Al-Ali M, Al-Abkal HM, Haridas S. High prevalence and level of resistance to metronidazole, but lack of resistance to other antimicrobials in Helicobacter pylori, isolated from a multiracial population in Kuwait. Aliment Pharmacol Ther 2006; 24: 1359-1366
36 Kim JM, Kim JS, Kim N, Kim SG, Jung HC, Song IS. Comparison of primary and secondary antimicrobial minimum inhibitory concentrations for Helicobacter pylori isolated from Korean patients. Int J Antimicrob Agents 2006; 28: 6-13
37 Kumala W, Rani A. Patterns of Helicobacter pylori isolate resistance to fluoroquinolones, amoxicillin, clarithromycin and metronidazoles. Southeast Asian J Trop Med Public Health 2006; 37: 970-974
38 Godoy AP, Ribeiro ML, Benvengo YH, Vitiello L, Miranda Mde C, Mendonça S, Pedrazzoli J Jr. Analysis of antimicrobial susceptibility and virulence factors in Helicobacter pylori clinical isolates. BMC Gastroenterol 2003; 3: 20
39 Okimoto T, Murakami K. [Acquisition of the drug resistance and Helicobacter pylori gene mutation] Nippon Rinsho 2009; 67: 2372-2377
40 Cavallaro LG, Egan B, O’Morain C, Di Mario F. Treatment of Helicobacter pylori infection. Helicobacter 2006; 11 Suppl 1: 36-39
41 Miyaji H, Azuma T, Ito S, Suto H, Ito Y, Yamazaki Y, Sato F, Hirai M, Kuriyama M, Kato T, Kohli Y. Susceptibility of Helicobacter pylori isolates to metronidazole, clarithromycin and amoxicillin in vitro and in clinical treatment in Japan. Aliment Pharmacol Ther 1997; 11: 1131-1136
42 Versalovic J, Shortridge D, Kibler K, Griffy MV, Beyer J, Flamm RK, Tanaka SK, Graham DY, Go MF. Mutations in 23S rRNA are associated with clarithromycin resistance in Helicobacter pylori. Antimicrob Agents Chemother 1996; 40: 477-480
43 Agudo S, Alarcón T, Cibrelus L, Urruzuno P, Martinez MJ, López-Brea M. [High percentage of clarithromycin and metronidazole resistance in Helicobacter pylori clinical isolates obtained from Spanish children] Rev Esp Quimioter 2009; 22: 88-92
44 Glocker E, Berning M, Gerrits MM, Kusters JG, Kist M. Real-time PCR screening for 16S rRNA mutations associated with resistance to tetracycline in Helicobacter pylori. Antimicrob Agents Chemother 2005; 49: 3166-3170

S-Editor Sun H L-Editor Webster JR E-Editor Lin YP