Magnesia compositions with technogenic fillers

O A Miryuk

1Rudny Industrial Institute, 50 let Oktyabrya St., 38, Rudny, Kostanay Region, 111500, Kazakhstan

*psm58@mail.ru

Abstract. The paper presents the results of researching magnesia compositions, which contain caustic magnesite and porous technogenic fillers. The research is aimed at creating resource-saving magnesia materials with the density less than 1000 kg/m³. The dependence of the magnesia composition’s density and strength on the size of arboreal particles is exposed. The increase of the particles’ size lowers the density of materials, but worsens the moulding characteristics. The influence of ash microsphere on the structural and mechanical properties of magnesia materials is found out. The content of hollow particles in the magnesia mixture is restricted due to the decrease of the raw materials’ mass plasticity. The mathematical models, presenting the dependences of moulding mass’ properties and composition density on the filler’s composition, are obtained. The compositions of raw materials’ mixtures for getting materials with a reduced density are determined. Moulding masses, which contain the integral filler (20-50% of arboreal particles with the size 0.63-2.5 mm and 50-80% of the ash microsphere), are preferable. The combination of fibrous and spherical hollow particles provides mouldability of the raw materials’ mixture as well as a reduced density of magnesia compositions. The electronic microscopy is used to research the materials’ structure.

1. Introduction

The energy effectiveness of the construction to a considerable degree is provided by the materials, having heat-shielding properties. This determines the availability of porous composite materials, for instance, of porous concretes and light-weight concretes based on porous fillers. Porous concretes are favourably distinguished by a vast source of raw materials, by the variety of product, by the economy of maintenance [1, 2]. However, a low strength and the inclination to the shrink deformations restrict the sphere of porous concretes’ use.

The development of effective light-weigh concretes’ technology depends on the quality of porous fillers. The researches, aimed at the decrease of density and the increase of the fillers’ strength, as well as at the lowering of manufacture’s energy intensity are relevant [3–9].

The use of new raw materials and the technology’s improvement allowed obtaining effective porous granular and composite materials on the basis of liquid glass [10, 11]; and high-strength light-weight concretes on the basis of nanomodification and microdispersed reinforcement [12].

Frequently, the technologies of porous materials are based on the power-intensive processes which provide thermoplastic bulging of the raw materials’ mass [3, 11], and hardening under the influence of raised temperatures and pressure [1,2].

The technologies of roasting free granular fillers, in which the filler’s particles are cemented, are being developed. The use of cement determines the technological complexities of moulding and high values of granular fillers’ density.
Magnesia binding is an effective variety of low power-intensive materials, and is distinguished by an intensive hardening and high strengthening characteristics. The adhesion to mineral and organic materials provides the compatibility of magnesia binding with different fillers. This is the basis for the technology of famous materials based on an arboreal filler: xylolite, fibrolite and cement wood, the production of which often requires intensive compaction methods. A high activating capability of caustic magnesite allows obtaining combined binding substances with improved properties [13–21]. Unique properties of magnesia bindings are insufficiently used, especially while creating materials of a porous structure.

The aim of the study is the developing of resource-saving magnesia compositional material with a lower density.

To achieve the set goal the following tasks have to be done: to study the influence of porous technogenic particles on the materials’ structure; to design the moulding mixture composition, providing the getting of the composition with the density not more than 1000 kg/m³.

2. Materials and methods
Caustic magnesite with 85% of active MgO content was used in the experiments; the technogenic fillers of a porous structure were sawdust and the ash microsphere.

Sawdust is a friable mass obtained in the result of crushing and fractionating the woodworking waste. Sawdust of different fractures was used.

The ash microsphere is a dry material consisting of hollow particles of a spherical shape with the diameter 100 – 350 μm; it is the waste of heat and power engineering which is obtained as a light ash fraction in the process of solid fuel burning. The apparent density is 400 kg/m³. The chemical composition, %, is SiO₂ 65 – 70; Al₂O₃ 1 – 2; Fe₂O₃ 2 – 4; CaO up to 10.

Raw material’s mixtures were prepared by the introduction of the filler into the suspension, which was obtained by tempering of the caustic magnesite with the magnesium chloride solution with the density of 1230 kg/m³.

The moulding properties of the raw material’s mixture were determined by the cone’s flow. Magnesia compositions hardened at the temperature of 50°C. The models with the sizes of 40x40x160 mm were tested for strength. The microstructure of the materials was researched by the method of electronic microscopy.

3. Results and discussions
Magnesia composites were prepared with the ratio “caustic magnesite: arboreal filler – 1:0.5”. Factionated particles were used as a filler (Figures 1, 2). A comparative analysis of the compositions, containing different fractions of the filler, showed that with the decrease of the particles’ size the characteristics of the materials’ density and strength increase (Figures 1, 2). The substitution of small arboreal particles (size 0.14 – 0.63 mm) with large particles (size 2.5 – 5.00 mm) is accompanied by the porosity increase and, correspondingly, by the density decrease by 30 %. The porosity of the materials is mainly concentrated in the arboreal particles (Figure 3). An additional amount of pores is generated due to the high content of the tempering solution, i.e. the solution of magnesium chloride. The maximum strength of the materials is reached while using the fractions with the sizes of 0.63 – 1.25 mm. With the further decrease of the particles’ size the strength of the materials decreases as a result of the fibrous filler’s reinforced role diminishing.
Figure 1. The influence of the size of the arboreal filler’s particles on the materials’ density.

Figure 2. The influence of the size of the arboreal filler’s particles on the materials’ strength.

Figure 3. The influence of the size of the arboreal filler’s particles on the materials’ strength.

The use of long-staple particles hampers preparing the moulding mixtures. The material on the basis of polyfractional particles with the size 0.63 – 1.25 mm does not demonstrate the sufficient changes in the density in comparison with the composition from the particles with the size 0.63 – 1.25 mm. However, the polyfractional material strength is by 20% less.

Magnesia compositions with different content of the ash microsphere are researched (Figure 4). The introduction of 5 % additive lowers the density of the magnesia composition by 130 kg/m³; along
with this, the strength of the material does not practically decrease. The structure of hollow particles is characterized by the presence of small cells in the microsphere membranes (Figure 5). That is why at the content of 30 % of the ash microsphere in the composition the composition’s density lowers by 500 kg/m³. The density of such material is 32 % lower than the density of a magnesia stone without additives. The increase of the ash microsphere part by more than 30 % is unreasonable due to the worsening of moulding and strength properties of the magnesia composition.

Figure 4. The influence of the size of the arboreal filler’s particles on the materials’ strength.

Figure 5. The influence of the size of the arboreal filler’s particles on the materials’ strength.

The analysis of the properties of the compositions on the basis of different origin porous particles allowed assuming the reasonability of the combination of arboreal fraction’s particles 0.63 – 2.5 mm with the ash microsphere. To design compositions of a complex structure the method of the experiment’s mathematical planning was used (Tables 1, 2). The results of testing the materials of different structure are presented in Table 3.

As a result of the experimental data processing the dependence of liquid-solid ratio on the researched factors was presented as the regression equation of the complete quadric model:

$$Y_1 = 0.531 + 0.0015x_1 - 0.022x_2 + 0.0045x_1^2 - 0.067x_2^2 - 0.021x_1x_2.$$ \hspace{1cm} (1)

Factors	Variation levels			
Natural kind	Encoded kind	-1	0	+1
Binding: filler	x_1	3	4	5
The part of the ash microsphere in the filler	x_2	20	50	80
Table 2. Matrix of the experiment’s mathematical planning.

No.	The researched factors	Binding : filler	The part of the ash microsphere in the filler, %
1	1	1	5
2	0	1	4
3	−1	1	3
4	1	0	5
5	0	0	4
6	−1	0	3
7	1	−1	5
8	0	−1	4
9	−1	−1	3

Table 3. The results of magnesia materials’ test.

No.	Binding : filler	The part of the ash microsphere in the filler, %	Liquid : Solid	Density, kg/m³
1	5	80	0.417	1068
2	4	80	0.450	1358
3	3	80	0.500	1173
4	5	50	0.542	1313
5	4	50	0.550	1184
6	3	50	0.450	990
7	5	20	0.500	1444
8	4	20	0.500	1301
9	3	20	0.500	1218

The geometric image, corresponding to the function, is presented in Figure 6.

The regression equation for the dependence of the composition’s density on the substantial structure of the filler is as follows:

\[Y_2 = 1228 + 74x_1 - 60.667x_2 + 222x_1^2 - 182x_2^2 - 82.75x_1x_2. \] (2)

The geometric interpretation of the density’s dependence on the substantial structure of the filler is presented in Figure 7.

The lowering of the magnesia compositions’ density is provided in case of restricting the binding in the composition of the moulding mixture. However, the substantial structure of the filler influences mostly the materials’ density. The compositions, obtained with the use of the combined filler, in which the ash microsphere is not less than 50%, are preferable. The introduction of the salt solution in the ratio liquid : solid 0.45 – 0.50 provides the mouldability of the raw materials’ mixtures.

Magnesia compositions with the density of 950 – 1000 kg/m³ are characterized by the strength under the pressure of 17.5 – 21.4 MPa.
Figure 6. The surfaces of the response of the liquid-solid ratio’s dependence on the filler’s structure.

Figure 7. The surfaces of the response of the compositions density’s dependence on the filler’s structure.

4. Summary
Magnesia compositions on the basis of porous technogenic fillers are offered. The effectiveness of the fillers, containing arboreal particles and ash microsphere, is determined in order to create magnesia materials with a reduced density.

Combination of fibrous and hollow spherical particles improves moulding properties of the raw materials’ mixture, and provides the formation of a combined porosity.

The resource-saving of the developed compositions is provided by the use of technogenic materials of different origin, and by low power-intensity of magnesia products’ technology.

5. References
[1] Shang X, Li J and Zhan B 2020 Properties of sustainable cellular concrete prepared with environment-friendly capsule aggregates *J.of Cleaner Production* 267 (10) 122018
[2] Chica L and Alzate A 2019 Cellular concrete review: New trends for application in construction *Construction and Building Materials* 200(10) 637 – 47
[3] Zhou J, Ji L, Gong C, Lu L and Cheng X 2020 Ceramsite vegetated concrete with water and fertilizer conservation and light weight: Effect of w/c and fertilizer on basic physical performances of concrete and physiological characteristics of festuca arundinacea *Construction and Building Materials* 236 (10) 117785
[4] Kocianova M and Drochytka R 2017 Possibilities of lightweight high strength concrete
production from sintered fly ash aggregate Procedia Engineering 195 9–16

[5] Costa H, Ju’lio E and Lourenço J 2012 New approach for shrinkage prediction of high-strength lightweight aggregate concrete Construction and Building Materials 35 84–91

[6] Karamloo M, Mazloom M and Payganeh G 2016 Effects of maximum aggregate size on fracture behaviors of self-compacting lightweight concrete Construction and Building Materials. 123 508 – 15

[7] Miryuk O 2020 Liquid-glass concrete of variable density IOP Conference Series: Materials Science and Engineering 869 032025

[8] Vakhshouri B and Nejadi S 2016 Mix design of light-weight self-compacting concrete Case Studies in Construction Materials 4 1–14

[9] Miryuk O 2020 Porous aggregate development for lightweight concrete E3S Web of Conferences 159 06008

[10] Mizuriaev S A, Zhigulina A Yu and Solopova G S 2015 Production technology of waterproof porous aggregates based on alkali silicate and non-bloating clay for concrete of general using Procedia Engineering 111 540 – 4

[11] Kim G B, Jang I Y, Kim S K and Lee K W 2018 A properties of concrete using LCD waste glass subject to sulfate attack Key Engineering Materials 773 (7) 233 – 7

[12] Hou L, Li J, Lu Z, Niu Y and Li T 2019 Effect of nanoparticles on foaming agent and the foamed concrete Construction and Building Materials 227 116698

[13] Kumar S, Sonat C, Yang E-H and Unluer C 2020 Performance of reactive magnesia cement formulations containing fly ash and ground granulated blast-furnace slag Construction and Building Materials 232 117275

[14] Tang X-J, Du Z-Y, Zhu Y-M, Liu P-F, Li X-Y, Xu X-L, Zhao Y-Z and Kuang H-B 2020 Correlation between microstructure and dissolution property of magnesium hydroxide synthesized via magnesia hydroxylation: Effect of hydration agents J. of Cleaner Production 249 119371

[15] Wang D, Di S, Gao X, Wang R and Chen Z 2020 Strength properties and associated mechanisms of magnesium oxychloride cement-solidified urban river sludge Construction and Building Materials 250 118933

[16] Ruan S, Unluer C 2017 Influence of supplementary cementitious materials on the performance and environmental impacts of reactive magnesia cement concrete J. of Cleaner Production 159 62 – 73

[17] Ustinova Y V and Nikiforova T P 2015 Effect of various additives on the mechanical properties of magnesia binder based materials Procedia Engineering 111 807 – 814

[18] Egorova A 2018 Hongurin as hydraulic additive to magnesian-binding substance IOP Conference Series: Materials Science and Engineering 365 032065

[19] Chernykh T, Nosov A and Kramar L 2015 Dolomite magnesium oxychloride cement properties control method during its production IOP Conference Series: Materials Science and Engineering 71 012045

[20] Zhang H, Shen C, Xi P, Chen K, Zhang F and Wang S 2018 Study on flexural properties of active magnesia carbonation concrete with fly ash content Construction and Building Materials 187 884 – 91

[21] Miryuk O 2021 Porous magnesia compositions with various fillers Proceedings of the Lecture Notes in Civil Engineering 147 344 – 50

Acknowledgements
This research is funded by the Science Committee of the Ministry of Education and Science of the Republic of Kazakhstan (Grant No. AP08856219).