A Simple and Accurate Syntax-Agnostic Neural Model for Dependency-based Semantic Role Labeling

Diego Marcheggiani1, Anton Frolov2, Ivan Titov1
1ILLC, University of Amsterdam
2Machine Intelligence Department, Yandex
\{marcheggiani, titov\}@uva.nl
anton-fr@yandex-team.ru

Abstract

We introduce a simple and accurate neural model for dependency-based semantic role labeling. Our model predicts predicate-argument dependencies relying on states of a bidirectional LSTM encoder. The semantic role labeler achieves respectable performance on English even without any kind of syntactic information and only using local inference. However, when automatically predicted part-of-speech tags are provided as input, it substantially outperforms all previous local models and approaches the best reported results on the CoNLL-2009 dataset. Syntactic parsers are unreliable on out-of-domain data, so standard (i.e. syntactically-informed) SRL models are hindered when tested in this setting. Our syntax-agnostic model appears more robust, resulting in the best reported results on the standard out-of-domain test set.1

1 Introduction

The task of semantic role labeling (SRL), pioneered by Gildea and Jurafsky (2002), involves prediction of predicate argument structure, i.e. both identification of arguments as well as their assignment to an underlying semantic role. These representations have been shown beneficial in many NLP applications, including question answering (Shen and Lapata, 2007) and information extraction (Christensen et al., 2011). Semantic banks (e.g., PropBank (Palmer et al., 2005)) typically represent arguments as syntactic constituents or, more generally, text spans (Baker et al., 1998). In contrast, CoNLL-2008 and 2009 shared tasks (Surdeanu et al., 2008; Hagice et al., 2009) popularized dependency-based semantic role labeling where the goal is to identify syntactic heads of arguments rather than entire constituents. Figure 1 shows an example of such a dependency-based representation: node labels are senses of predicates (e.g., “01” indicates that the first sense from the PropBank sense repository is used for predicate \textit{makes} in this sentence) and edge labels are semantic roles (e.g., A0 is a proto-agent, ‘doer’).

Until recently state-of-the-art SRL systems relied on complex sets of lexico-syntactic features (Pradhan et al., 2005) as well as declarative constraints (Punyakanok et al., 2008; Roth and Yih, 2005). Neural SRL models instead exploited feature induction capabilities of neural networks, largely eliminating the need for complex hand-crafted features. Initially achieving state-of-the-art results only in the multilingual setting, where careful feature engineering is not practical (Titov et al., 2009; Gesmundo et al., 2009; Henderson et al., 2013), neural SRL models now also outperform their traditional counterparts on standard benchmarks for English (FitzGerald et al., 2015; Roth and Lapata, 2016; Swayamdipta et al., 2016; Foland and Martin, 2015).

Recently, it has been shown that an accurate span-based SRL model can be constructed without relying on syntactic features (Zhou and Xu, 2015). Nevertheless, state-of-the-art methods for dependency-based SRL still heavily rely on syntactic features (Roth and Lapata, 2016; FitzGerald et al., 2015; Lei et al., 2015; Roth and Wood-...
send, 2014; Swayamdipta et al., 2016). In particular, Roth and Lapata (2016) argue that syntactic features are necessary and show that performance of their model degrades dramatically if syntactic paths between arguments and predicates are not provided as an input. In this work, we are the first to show how to construct a very accurate dependency-based semantic role labeler which either does not use any kind of syntactic information or uses very little (automatically predicted part-of-speech tags). This suggests that our LSTM model can largely capture syntactic information, and this information can, to a large extent, substitute treebank syntax.

Our model is inspired by recent work in syntactic dependency parsing (Kiperwasser and Goldberg, 2016; Cross and Huang, 2016). In their simplest version, they encoded a sentence by a bidirectional LSTM encoder, and then dependency edges in a candidate dependency tree are scored independently from each other, relying only on the concatenation of two LSTM states, one for the head word and one for the dependent word. We observe that the direct application of this idea does not lead to competitive results on dependency-based SRL. Instead, we find it necessary to use a multi-pass approach where we first identify predicates and disambiguate them, then, for each predicate, we re-encode the sentence with an LSTM while indicating (in the input) which word is chosen as a predicate. Finally, for each predicate, arguments and their roles are predicted in the same way as before, i.e. relying on the two LSTM states (a state of the predicate word and a state of the argument word). Intuitively, in this way, on each run, the LSTM encoder does not need to represent all argument-predicate dependencies in its state trajectory but can focus on a single predicate at a time. We hypothesize that this constitutes a more effective way to use the LSTM capacity. This re-encoding idea is reminiscent of the region marking features used in the span-based model of Zhou and Xu (2015).

The resulting SRL model is very simple. Not only do we not rely on syntax, our model is also local, i.e. we do not globally score or constrain sets of arguments. On the standard in-domain CoNLL-2009 benchmark we achieve 87.6 F1 which compares favorable to the best local model (86.7% F1 for PathLSTM (Roth and Lapata, 2016)) and approaches the best results overall (87.9% for an ensemble of 3 PathLSTM models with a reranker on top). Moreover, as syntactic parsers are not reliable when used out-of-domain, standard (i.e. syntactically-informed) dependency SRL models are crippled when applied to such data. In contrast, our syntax-agnostic model appears to be considerably more robust: we achieve the best result so far on the out-of-domain Brown test set, 77.3% F1. This constitutes a 2% absolute improvement over the comparable previous model (75.3% for the local PathLSTM) and substantially outperforms any previous method (76.5% for the ensemble of 3 PathLSTMs). The key contributions can be summarized as follows:

- we propose the first effective syntax-agnostic model for dependency-based SRL;
- it achieves the best results among local models on the English in-domain test set;
- it substantially outperforms all previous methods on the out-of-domain test set.

Note that, in this work, we are not arguing that neither global inference nor integration of treebank syntax is not beneficial to SRL. Instead, we leave these questions for future work. In fact, we believe that the proposed SRL model, given its simplicity and efficiency, can be used as a natural building block for future global and syntactically-informed SRL models.

2 Our Model

The focus of this paper is on argument identification and labeling, as these are the steps which have been previously believed to require syntactic information. For predicate disambiguation we use a simple LSTM model, described in Section 2.4.

As we sketched in the introduction, in order to identify and classify arguments, we use a Bidirectional LSTM (BiLSTM). LSTM takes as input word representations x_i of each word w_i in a sentence w. LSTM states provide dynamic representation of words and their contexts in a sentence. The actual prediction of roles is done by a classifier which takes as an input the BiLSTM representation of the candidate argument and the BiLSTM representation of the predicate.

2 In the CoNLL-2009 benchmark, predicates do not even need to be identified: their positions are provided as input at test time. Consequently, as standard for dependency SRL, we ignore this subtask in further discussion.
2.1 Word Representation

We represent each word \(w \) as the concatenation of three vectors: a randomly initialized word embedding \(x^\text{re} \in \mathbb{R}^{d_e} \), a pre-trained word embedding \(x^\text{pe} \in \mathbb{R}^{d_w} \), a randomly initialized part-of-speech tag embedding \(x^\text{pos} \in \mathbb{R}^{d_p} \) and a randomly initialized lemma embedding \(x^\text{le} \in \mathbb{R}^{d_l} \) that is only active if the word is one of the predicates. The randomly initialized embeddings \(x^\text{re}, x^\text{pe}, x^\text{pos} \) and \(x^\text{le} \) are fine-tuned during training, while the pre-trained ones are kept fixed. The final word representation is given by \(x = x^\text{re} \circ x^\text{pe} \circ x^\text{pos} \circ x^\text{le} \), where \(\circ \) represents the concatenation operator.

2.2 Bidirectional LSTM Encoder

One of the most effective ways to model sequences are recurrent neural networks (RNN) (Elman, 1990), more precisely their gated versions, for example, Long Short-Term Memory (LSTM) networks (Hochreiter and Schmidhuber, 1997).

Formally, we can define an LSTM as a function \(LSTM_i(x_{1:i}) \) that takes as input the sequence \(x_{1:i} \) and returns a hidden state \(h_i \in \mathbb{R}^{d_h} \). This state can be regarded as a representation of the sentence from the start to the position \(i \), or, in other words, it encodes the word at position \(i \) along with its left context. Bidirectional LSTMs make use of two LSTMs: one for the forward pass, and another for the backward pass, \(LSTM_F \) and \(LSTM_B \), respectively. In this way the concatenation of forward and backward LSTM states encodes both left and right contexts of a word, \(BiLSTM(x_{1:n}, i) = LSTM_F(x_{1:i}) \circ LSTM_B(x_{n:i}) \). In this work we stack \(k \) layers of bidirectional LSTMs, each layer takes the lower layer as its input.

Since for each word in a sentence we want to predict the semantic role given a predicate, we concatenate the hidden states at the \(k \)-th layer of the current word and the predicate word and use them as input to a classifier. Though we experimented with multilayer perceptrons, we obtained the best results with a simple log-linear model. The classifier computes the probability of the role (including special ‘NULL’ role to indicate that a word is not an argument of the predicate) given the candidate argument and the predicate:

\[
p(r|v_i, v_p, l) \propto \exp(W_{l,r}(v_i \circ v_p)), \tag{1}
\]

where \(v_i \) and \(v_p \) are hidden state calculated by respectively \(BiLSTM(x_{1:n}, i) \) and \(BiLSTM(x_{1:n}, p) \), \(l \) is the lemma of predicate \(p \) and the symbol \(\propto \) signifies proportionality. Instead of using a fixed matrix \(W_{l,r} \) or simply assuming that \(W_{l,r} = W_r \), we, inspired by FitzGerald et al. (2015), found it beneficial to jointly embed the role \(r \) and predicate lemma \(l \) using a nonlinear transformation:

\[
W_{l,r} = \text{ReLU}(U(u_l \circ v_r)), \tag{2}
\]

where \(\text{ReLU} \) is the rectilinear activation function, \(U \) is a parameter matrix, whereas \(u_l \in \mathbb{R}^{d_l} \) and \(v_r \in \mathbb{R}^{d_r} \) are randomly initialized embeddings of predicate lemmas and roles. In this way each role prediction is predicate-specific, and at the same time we expect to learn a good representation for roles associated to infrequent predicates.

2.3 Predicate-Specific Encoder

As we will show in Section 3, although this one-pass model, where the sentence is encoded only once, is very effective for syntactic dependency parsing, it does not perform well in SRL (Table 3, ‘-predicate flag’). Though we found this dramatic drop in performance surprising, the nature of dependencies, especially for nominal predicates, is different here with many arguments being
Table 2: Results on the out-of-domain test set.

System	P	R	F1
Lei et al. (2015) (local)	-	-	75.6
FitzGerald et al. (2015) (local)	-	-	75.2
Roth and Lapata (2016) (local)	76.9	73.8	75.3
Ours (local)	78.9	75.7	77.3
Björknelund et al. (2010) (global)	77.9	73.6	75.7
FitzGerald et al. (2015) (global)	-	-	75.2
Foland and Martin (2015) (global)	-	-	75.9
Roth and Lapata (2016) (global)	78.6	73.8	76.1
FitzGerald et al. (2015) (ensemble)	-	-	75.5
Roth and Lapata (2016) (ensemble)	79.7	73.6	76.5

2.4 Predicate Disambiguation

We also implemented a syntax-agnostic predicate sense disambiguator. For this subtask, we represented a word as a concatenation of its pre-trained word embedding, the predicate word we want to disambiguate, and the predicate flag. This word representation is fed to a single-layer BiLSTM. The concatenation of the hidden state of the predicate and the predicate word embeddings are passed to a linear classifier to obtain the predicate sense. At test time, if a predicate has never been seen during training, the first sense is predicted.

3 Experiments

We applied our model to the English CoNLL-2009 dataset with the standard split into training, test and development sets. For the semantic role labeler, we used external embeddings of Dyer et al. (2015) learned using the structured skip n-gram approach of Ling et al. (2015). Similarly to Kiperwasser and Goldberg (2016) we used word dropout (Iyyer et al., 2015); we replace a word with the unknown token UNK with probability \(\frac{\alpha}{f_r(w) + \alpha} \), where \(\alpha \) is a hyper-parameter and \(f_r(w) \) is the frequency of the word \(w \). We used the predicted POS tags provided by the CoNLL-2009 shared-task organizers. For the predicate disambiguator of Section 2.4 we used GloVe embeddings (Pennington et al., 2014). We optimized with Adam (Kingma and Ba, 2015). The hyper-parameters tuning and all model selection was performed on the development set, see Table 4 for their values.

The results indicate that our full model (with POS tags and re-encoding) significantly outperforms all the local counter-parts on the in-domain tests (see Table 1, 87.6% F1 for our model vs. 86.7% for PathLSTM) and outperforms even ensemble models on the out-of-domain data (77.3% vs. 76.5% for the ensemble of PathLSTMs). The ablation studies (Table 3) demonstrate that POS tag information is beneficial, though not crucial for obtaining competitive performance. In contrast, one-pass processing without re-encoding badly hurts the performance (6% drop in F1 on the development set).

4 Conclusions

Our syntax-agnostic method is simple and fast, and surpasses comparable approaches (no system combination, local inference) on the standard in-domain benchmark for English. Moreover, it outperforms all previous methods (including ensembles) in the arguably more realistic out-of-domain setting. In the future, we will consider integration of syntactic information and joint inference as well as experiment with additional languages.
Acknowledgments

The project was supported by the European Research Council (ERC StG BroadSem 678254), the Dutch National Science Foundation (NWO VIDI 639.022.518) and an Amazon Web Services (AWS) grant. The authors would like to thank Michael Roth for his helpful suggestions.

References

Collin F. Baker, Charles J. Fillmore, and John B. Lowe. 1998. The berkeley framenet project. In 36th Annual Meeting of the Association for Computational Linguistics and 17th International Conference on Computational Linguistics, COLING-ACL ’98, August 10-14, 1998, Université de Montréal, Montréal, Quebec, Canada. Proceedings of the Conference., pages 86–90.

Anders Björkelund, Bernd Bohnet, Love Hafdell, and Pierre Nugues. 2010. A high-performance syntactic and semantic dependency parser. In Proceedings of the 23rd International Conference on Computational Linguistics: Demonstrations, pages 33–36. Association for Computational Linguistics.

Janara Christensen, Mausam, Stephen Soderland, and Oren Etzioni. 2011. An analysis of open information extraction based on semantic role labeling. In Proceedings of the 6th International Conference on Knowledge Capture (K-CAP 2011), June 26-29, 2011, Banff, Alberta, Canada, pages 113–120.

James Cross and Liang Huang. 2016. Incremental parsing with minimal features using bi-directional lstm. In Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pages 32–37. Berlin, Germany, August. Association for Computational Linguistics.

Chris Dyer, Miguel Ballesteros, Wang Ling, Austin Matthews, and Noah A. Smith. 2015. Transition-based dependency parsing with stack long short-term memory. In Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pages 334–343, Beijing, China, July. Association for Computational Linguistics.

Jeffrey L. Elman. 1990. Finding structure in time. Cognitive Science, 14(2):179–211.

Nicholas FitzGerald, Oscar Täckström, Kuzman Ganchev, and Dipanjan Das. 2015. Semantic role labeling with neural network factors. In Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing, pages 960–970, Lisbon, Portugal, September. Association for Computational Linguistics.

William Foland and James Martin. 2015. Dependency-based semantic role labeling using convolutional neural networks. In Proceedings of the Fourth Joint Conference on Lexical and Computational Semantics, pages 279–288, Denver, Colorado, June. Association for Computational Linguistics.

Andrea Gesmundo, James Henderson, Paola Merlo, and Ivan Titov. 2009. Latent variable model of synchronous syntactic-semantic parsing for multiple languages. In CoNLL 2009 Shared Task., Conf. on Computational Natural Language Learning, pages 37–42, Boulder, Colorado, USA.

Daniel Gildea and Daniel Jurafsky. 2002. Automatic labeling of semantic roles. Computational linguistics, 28(3):245–288.

Jan Hajic, Massimiliano Ciaramita, Richard Johanson, Daisuke Kawahara, Maria Antonia Martí, Luís Márquez, Adam Meyers, Joakim Nivre, Sebastian Padó, Jan Stepánek, Pavel Stranák, Mihai Surdeanu, Nianwen Xue, and Yi Zhang. 2009. The conll-2009 shared task: Syntactic and semantic dependencies in multiple languages. In Proceedings of the Thirteenth Conference on Computational Natural Language Learning: Shared Task, CoNLL 2009, Boulder, Colorado, USA, June 4, 2009, pages 1–18.

James Henderson, Paola Merlo, Ivan Titov, and Gabriele Musillo. 2013. Multi-lingual joint parsing of syntactic and semantic dependencies with a latent variable model. Computational Linguistics, 39(4).

Sepp Hochreiter and Jürgen Schmidhuber. 1997. Long short-term memory. Neural Computation, 9(8):1735–1780.

Mohit Iyyer, Varun Manjunatha, Jordan Boyd-Graber, and Hal Daumé III. 2015. Deep unordered composition rivals syntactic methods for text classification. In Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pages 1681–1691, Beijing, China, July. Association for Computational Linguistics.

Diederik Kingma and Jimmy Ba. 2015. Adam: A method for stochastic optimization. In The 3rd International Conference for Learning Representations.

Eliyahu Kiperwasser and Yoav Goldberg. 2016. Simple and accurate dependency parsing using bidirectional lstm feature representations. Transactions of the Association for Computational Linguistics, 4:313–327.

Tao Lei, Yuan Zhang, Luís Márquez, Alessandro Moschitti, and Regina Barzilay. 2015. High-order low-rank tensors for semantic role labeling. In Proceedings of the 2015 Conference of the North American Chapter of the Association for Computational Linguistics.
Linguistics: Human Language Technologies, pages 1150–1160, Denver, Colorado, May–June. Association for Computational Linguistics.

Wang Ling, Chris Dyer, Alan W Black, and Isabel Trancoso. 2015. Two/too simple adaptations of word2vec for syntax problems. In Proceedings of the 2015 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pages 1299–1304, Denver, Colorado, May–June. Association for Computational Linguistics.

Martha Palmer, Paul Kingsbury, and Daniel Gildea. 2005. The proposition bank: An annotated corpus of semantic roles. Computational Linguistics, 31(1):71–106.

Jeffrey Pennington, Richard Socher, and Christopher Manning. 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP), pages 1532–1543, Doha, Qatar, October. Association for Computational Linguistics.

Sameer Pradhan, Kadri Hacioglu, Wayne H. Ward, James H. Martin, and Daniel Jurafsky. 2005. Semantic role chunking combining complementary syntactic views. In Proceedings of the Ninth Conference on Computational Natural Language Learning, CoNLL 2005, Ann Arbor, Michigan, USA, June 29-30, 2005, pages 217–220.

Vasin Punyakanok, Dan Roth, and Wen-tau Yih. 2008. The importance of syntactic parsing and inference in semantic role labeling. Computational Linguistics, 34(2):257–287.

Michael Roth and Mirella Lapata. 2016. Neural semantic role labeling with dependency path embeddings. In Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pages 1192–1202, Berlin, Germany, August. Association for Computational Linguistics.

Michael Roth and Kristian Woodsend. 2014. Composition of word representations improves semantic role labelling. In Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing, EMNLP 2014, October 25-29, 2014, Doha, Qatar, A meeting of SIGDAT, a Special Interest Group of the ACL, pages 407–413.

Dan Roth and Wen-tau Yih. 2005. Integer linear programming inference for conditional random fields. In Machine Learning, Proceedings of the Twenty-Second International Conference (ICML 2005), Bonn, Germany, August 7-11, 2005, pages 736–743.

Dan Shen and Mirella Lapata. 2007. Using semantic roles to improve question answering. In EMNLP-CoNLL 2007, Proceedings of the 2007 Joint Conference on Empirical Methods in Natural Language Processing and Computational Natural Language Learning, June 28-30, 2007, Prague, Czech Republic, pages 12–21.

Mihai Surdeanu, Richard Johansson, Adam Meyers, Lluís Màrquez, and Joakim Nivre. 2008. The conll 2008 shared task on joint parsing of syntactic and semantic dependencies. In Proceedings of the Twelfth Conference on Computational Natural Language Learning, CoNLL 2008, Manchester, UK, August 16-17, 2008, pages 159–177.

Swabha Swayamdipta, Miguel Ballesteros, Chris Dyer, and Noah A. Smith. 2016. Greedy, joint syntactic-semantic parsing with stack lstms. In Proceedings of the 20th SIGNLL Conference on Computational Natural Language Learning, CoNLL 2016, Berlin, Germany, August 11-12, 2016, pages 187–197.

Ivan Titov, James Henderson, Paola Merlo, and Gabriele Musillo. 2009. Online projectivisation for synchronous parsing of semantic and syntactic dependencies. In In Proceedings of the International Joint Conference on Artificial Intelligence (IJCAI), pages 1562–1567, Pasadena, California, USA.

Jie Zhou and Wei Xu. 2015. End-to-end learning of semantic role labeling using recurrent neural networks. In Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pages 1127–1137, Beijing, China, July. Association for Computational Linguistics.