AN OBSERVATION ON INITIALLY κ-COMPACT SPACES

ÇETIN VURAL

Abstract. In [2], Chaber has proved that countably compact spaces with a quasi-G_δ-diagonal are compact. We prove that initially κ-compact spaces with a quasi-G_κ-diagonal are compact, for any infinite cardinal κ.

1. Introduction and Terminology

Chaber, in [2] has proved that countably compact spaces with a (quasi-) G_δ-diagonal are compact. We observe that this result may be generalised by using any infinite cardinal instead of the first infinite cardinal ω. For that purpose, we regard countable compactness as initial ω-compactness and extend it naturally to initial κ-compactness, and the quasi-G_δ-diagonal property to quasi-G_κ-diagonal property which allows us to conclude that initially κ-compact spaces with a quasi-G_κ-diagonal are still compact, for any infinite cardinal κ.

Throughout this paper, κ is an infinite cardinal, ω is the first infinite ordinal and cardinal, and X is a topological space. Let us recall some basic definitions. If $A \subseteq X$ and \mathcal{H} is a family of subsets of X, then the star of \mathcal{H} about A is denoted by $\text{st}(A, \mathcal{H}) = \bigcup \{ H \in \mathcal{H} : H \cap A \neq \emptyset \}$. For $x \in X$, we write $\text{st}(x, \mathcal{H})$ instead of $\text{st}(\{x\}, \mathcal{H})$. A transfinite sequence $\{ \mathcal{O}_\alpha : \alpha \in \kappa \}$ of collections of open subsets of X is said to be a quasi-G_κ-diagonal sequence for X if for each $x, y \in X$ with $x \neq y$, there exists an $\alpha \in \kappa$ with $x \in \bigcup \{ O : O \in \mathcal{O}_\alpha \}$ and $y \notin \text{st}(x, \mathcal{O}_\alpha)$. If each \mathcal{O}_α is a cover of X, then the quasi-G_κ-diagonal sequence $\{ \mathcal{O}_\alpha : \alpha \in \kappa \}$ is called a G_κ-diagonal sequence for X. For $\kappa = \omega$, a (quasi-) G_ω-diagonal sequence is called a (quasi-) G_δ-diagonal sequence.

It is said that X has a G_κ-diagonal if the diagonal $\Delta_X = \{(x, x) : x \in X \}$ of X is a G_κ-set in $X \times X$, (that is, the set Δ_X is the intersection of κ-many open sets of $X \times X$). In [1], it was shown that X has a G_δ-diagonal if and only if X has a G_δ-diagonal sequence. It can easily be seen that X has a G_κ-diagonal if and only if X has a G_κ-diagonal sequence. The diagonal number $\Delta(X)$ of a space X is the smallest infinite cardinal κ such that the

\textit{2010 Mathematics Subject Classification.} 54D20, 54D30, 54A25, 22C05.

\textit{Key words and phrases.} Initially κ-compact, countably compact, compact, G_κ-diagonal, topological group.

The author would like to thank Süleyman Önal for fruitful discussions and Hasan Gül for the first draft of manuscript, and the referee for valuable remarks.
diagonal Δ_X of X is the intersection of κ-many open sets of $X \times X$. Thus, if X has a G_κ-diagonal, then $\Delta(X) \leq \kappa$.

Recall that a topological space X is said to be initially κ-compact if every open cover of X of cardinality not exceeding κ has a finite subcover. For $\kappa = \omega$, initial ω-compactness is equivalent to countable compactness. For a survey of initial κ-compactness see [5].

The cardinality of a set A is denoted by $|A|$. Recall that the the weight of X is denoted by $w(X)$ and is defined as the smallest cardinal number of the form $|\mathcal{B}|$, where \mathcal{B} is a base for X.

2. Main Result

The following statement generalizes Chaber’s theorem in [2].

Theorem 2.1. An initially κ-compact space with a quasi G_κ-diagonal is compact.

Proof. Let X be an initially κ-compact space, and let $\{\mathcal{O}_\alpha : \alpha \in \kappa\}$ be a quasi-G_κ-diagonal sequence for X. Suppose that X is not compact. Let \mathcal{M} be a maximal open cover of X without any finite subcover, (that is, \mathcal{M} is an open cover of X without any finite subcover, and the cover $\mathcal{M} \cup \{O\}$ has a finite subcover for any open subset O of X with $O \notin \mathcal{M}$). Since the space X is initially κ-compact, \mathcal{M} has no subcover of cardinality at most κ. We claim that for each x in X there exists an $\alpha(x) \in \kappa$ such that $x \in \bigcup \mathcal{O}_{\alpha(x)}$ and $st(x, \mathcal{O}_{\alpha(x)}) \in \mathcal{M}$. To prove this claim, suppose that $st(x, \mathcal{O}_\alpha) \notin \mathcal{M}$ for all $\alpha \in \kappa$ satisfying $x \in \bigcup \mathcal{O}_\alpha$. Let $J = \{\alpha \in \kappa : x \in \bigcup \mathcal{O}_\alpha\}$. Since $st(x, \mathcal{O}_\alpha)$ is an open subset of X, the maximality of \mathcal{M} gives us a finite subcover \mathcal{H}_α of the open cover $\mathcal{V}_\alpha = \mathcal{M} \cup \{st(x, \mathcal{O}_\alpha)\}$, for all $\alpha \in J$. So, we have a finite subfamily \mathcal{W}_α of \mathcal{M} such that $\mathcal{H}_\alpha = \mathcal{W}_\alpha \cup \{st(x, \mathcal{O}_\alpha)\}$, for each $\alpha \in J$. Since \mathcal{H}_α is a cover of X and $\{\mathcal{O}_\alpha : \alpha \in \kappa\}$ is a quasi-G_κ-diagonal sequence for X, we have $X \setminus \{x\} \subseteq \bigcup_{\alpha \in J} (\bigcup \mathcal{W}_\alpha)$. Take an $M \in \mathcal{M}$ with $x \in M$. It is clear that the family $\{W : W \in \mathcal{W}_\alpha, \alpha \in J\} \cup \{M\}$ is a subcover of \mathcal{M} and its cardinality is at most κ. But this contradicts the fact \mathcal{M} has no subcover of cardinality at most κ. Hence, our claim is true. So, choose an $\alpha(x) \in \kappa$ such that $x \in \bigcup \mathcal{O}_{\alpha(x)}$ and $st(x, \mathcal{O}_{\alpha(x)}) \in \mathcal{M}$, for each $x \in X$. Let $Y_\alpha = \{x \in X : \alpha(x) = \alpha\}$. Obviously, $X = \bigcup_{\alpha \in \kappa} Y_\alpha$.

Now, we claim that Y_α is covered by a finite subfamily of \mathcal{M}, for each $\alpha \in \kappa$. Take an $\alpha \in \kappa$. We have two cases:

Case 1: Suppose $st(Y_\alpha, \mathcal{O}_\alpha) \in \mathcal{M}$. Then Y_α is covered by $\{st(Y_\alpha, \mathcal{O}_\alpha)\}$.

Case 2: Suppose $st(Y_\alpha, \mathcal{O}_\alpha) \notin \mathcal{M}$. In this case, by the maximality of \mathcal{M}, we have a finite subfamily \mathcal{S} of \mathcal{M} such that $X = st(Y_\alpha, \mathcal{O}_\alpha) \cup (\bigcup \mathcal{S})$. Now, we claim that if $Y_\alpha \setminus (\bigcup \mathcal{S}) \neq \emptyset$, then there exists a finite subset $\{x_0, x_1, ..., x_n\}$ of Y_α such that $Y_\alpha \setminus (\bigcup \mathcal{S}) \subseteq \bigcup_{i=0}^n st(x_i, \mathcal{O}_\alpha)$. Indeed, take a point $x_0 \in Y_\alpha \setminus (\bigcup \mathcal{S})$. If $Y_\alpha \setminus (\bigcup \mathcal{S}) \setminus st(x_0, \mathcal{O}_\alpha) \neq \emptyset$, we can choose a point $x_1 \in Y_\alpha \setminus (\bigcup \mathcal{S}) \setminus st(x_0, \mathcal{O}_\alpha)$. If we can choose inductively a point $x_n \in Y_\alpha \setminus (\bigcup \mathcal{S}) \setminus \bigcup_{m<n} st(x_m, \mathcal{O}_\alpha)$, for each $n \in \omega$, then we obtain a sequence...
AN OBSERVATION ON INITIALLY κ-COMPACT SPACES

$\{x_n : n \in \omega\}$ in the closed subspace $X \setminus (\bigcup \mathcal{S})$ of X. Since initial κ-compactness is hereditary with respect to closed subsets and every initially κ-compact space is countably compact, the sequence $\{x_n : n \in \omega\}$ has an accumulation point x in $X \setminus (\bigcup \mathcal{S})$. Since $X = \text{st} (Y_\alpha, \mathcal{O}_\alpha) \cup (\bigcup \mathcal{S})$, we have $x \in \text{st} (Y_\alpha, \mathcal{O}_\alpha)$. So, there exists $O \in \mathcal{O}_\alpha$ with $x \in O$. Note that $|O \cap \{x_n : n \in \omega\}| \leq 1$. But this contradicts the fact that x is an accumulation point of the sequence $\{x_n : n \in \omega\}$.

Since $X = \text{st} (Y_\alpha, \mathcal{O}_\alpha) \cup (\bigcup \mathcal{S})$, we have $x \in \text{st} (Y_\alpha, \mathcal{O}_\alpha)$. So, there exists $O \in \mathcal{O}_\alpha$ with $x \in O$. Note that $|O \cap \{x_n : n \in \omega\}| \leq 1$.

Hence, each Y_α is covered by a finite subfamily of M of cardinality at most κ. This contradiction enables us to claim that X is compact. □

Since $\Delta (X) = w (X)$, for a compact Hausdorff space X (for example, in [4, 7.6. Corollary]), we can assert the following.

Corollary 2.2. If X is a Hausdorff initially κ-compact space with a G_κ-diagonal, we have $w (X) \leq \kappa$.

Recall that the pseudocharacter of X at a subset A, denoted by $\psi (A, X)$, is defined as the smallest cardinal number of the form $|U|$, where U is a family of open subsets of X such that $\bigcap U = A$. If $A = \{x\}$ is a singleton, then we write $\psi (x, X)$ instead of $\psi (\{x\}, X)$. The pseudocharacter of a space X is defined to be $\psi (X) = \sup \{\psi (x, X) : x \in X\}$. Evidently, the diagonal number $\Delta (X)$ of a space X is equal to the pseudocharacter of its square $X \times X$ at its diagonal $\Delta_X = \{(x, x) : x \in X\}$.

It is well known that, if G is a topological group, we have $\Delta (G) = \psi (G)$. So, Theorem 2.1 enables us to claim the following.

Corollary 2.3. If G is an initially κ-compact topological group with $\psi (G) \leq \kappa$, then G is compact.

References

[1] J. G. Ceder, 'Some generalizations of metric spaces', *Pacific J. Math.* 11 (1961) 105-125.
[2] J. Chaber, 'Conditions which imply compactness in countably compact spaces', *Bull. Acad. Pol. Sci. Ser. Math.* 24 (1976) 993-998.
[3] R. Engelking, *General Topology*, Heldermann Verlag, Berlin, 1989.
[4] R. Hodel, 'Cardinal Functions I', in: *Handbook of Set Theoretic Topology*; K. Kunen and J. E. Vaughan eds, Elsevier, North-Holland, Amsterdam, 1984, pp 1-61.
[5] R. M. Stephenson, Jr, 'Initially κ-Compact and Related Spaces', in: *Handbook of Set Theoretic Topology*; K. Kunen and J. E. Vaughan eds, Elsevier, North-Holland, Amsterdam, 1984, pp 603-632.

Gazi Universitesi, Fen Fakultesi, Matematik Bölümü, 06500 Teknikokullar, Ankara, Turkey

E-mail address: cvural@gazi.edu.tr