One-step Conversion of Levulinic Acid to Succinic Acid Using I$_2$/t-BuOK System: The Iodoform Reaction Revisited

Ryosuke Kawasumi1, Shodai Narita1, Kazunori Miyamoto1, Ken-ichi Tominaga2, Ryo Takita3 & Masanobu Uchiyama1,3

The iodoform reaction has long been used as a qualitative test for acetyl and/or ethanol units in organic molecules. However, its synthetic applications are quite limited. Here, we describe a tuned iodoform reaction for oxidative demethylation reaction with I$_2$ and t-BuOK in t-BuOH, in which in situ-generated t-BuOI serves as the chemoselective iodinating agent. This system enables one-step conversion of levulinic acid to succinic acid, a major four-carbon chemical feedstock. This oxidative demethylation is also applicable to other compounds containing an acetyl group/ethanol unit, affording the corresponding carboxylic acids in a selective manner.

Given the high cost, unsustainability, and environmental burden of petroleum, alternative processes for production of key chemical building blocks from non-petroleum-based resources such as natural gas, coal, or biomass, are of great interest$^{1-6}$. For example, a fermentation route from edible biomass (glucose) to succinic acid2 has recently been commercialized7. But, the use of non-edible lignocellulosic biomass as a source of valuable chemicals would be even more useful on the grounds of low cost and sustainability6,9. One of our group has established that simple treatment of lignocellulose with Lewis/Brønsted acid catalyst systems in water or methanol efficiently affords levulinic acid 1 or its methyl ester in a single step$^{10-15}$. Therefore, a direct, simple chemical conversion of 1 to 2 (Fig. 1) is needed, because 2 is an important four-carbon feedstock for conversion to a range of useful chemicals, such as 1,4-butanediol, γ-butyrolactone, and 2-pyrrolidone, as well as being a raw material for bio-based polymers and green sustainable plastics$^{16-18}$.

Thus, a straightforward and practical methodology for conversion of non-edible lignocellulose to succinic acid 2 via 1 should have important industrial applications. However, existing chemical methods for the conversion of 1 to 2 involve tedious multi-step synthesis$^{19-21}$, harsh reaction conditions22,23, use of toxic heavy metals24, and/or low chemical yields25,26. For example, the gas-phase oxidation of 1 with vanadium catalyst affords a reasonable yield of 2, but requires high temperature (375 °C)22. Silica-coated magnetic nanoparticle-supported Ru(III) catalyzes the oxidation at somewhat lower temperature (150 °C), but 10 bar pressure of O$_2$ is needed23. In 2015, a convenient method using aq. 30% H$_2$O$_2$ in acidic media was reported by Mascal, based on an unusual terminal Baeyer-Villiger oxidation (BVO)27,28 of 1 to afford 2 in 62% yield (Fig. 2)29. However, large amounts of acetic acid and 3-hydroxypropionic acid are formed concomitantly via normal BVO (ca. 6:4 selectivity). Thus, the development of a kinetically well-controlled transformation from 1 to 2 under mild conditions is still highly desirable. Herein, we report a new protocol for the direct conversion of 1 to 2 at room temperature in high chemical yield. Customization of the haloform reaction has enabled us to achieve one-step, regioselective oxidative demethylation of 1 under mild conditions. The procedure has also been successfully applied to a range of methyl ketones and secondary ethanol derivatives.

1Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan. 2National Institute of Advanced Industrial Science and Technology (AIST), Central 5, 1-1-1 Higashi, Tsukuba, Ibaraki, 305-8565, Japan. 3Advanced Elements Chemistry Team, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako-shi, Saitama, 351-0198, Japan. Correspondence and requests for materials should be addressed to M.U. (email: uchiyama@mol.f.u-tokyo.ac.jp)
Results and Discussion

Synthesis of succinic acid from levulinic acid. The haloform reaction has traditionally been used as a chemical test to determine the presence of a methyl ketone. However, its synthetic use as for oxidative demethylation of methyl ketones is problematic because of side reactions such as internal α-CH oxidation/halogenation, aldol reaction, Favorskii rearrangement, etc. Indeed, only limited success has been reported to date, and the substrate generality and chemoselectivity of this reaction are therefore still unclear. We thus commenced our studies with an examination of the “classical” iodoform reaction of 1. Exposure of 1 to a large excess of I$_2$ and KOH in water at room temperature in air resulted in immediate precipitation of canary-yellow iodoform and 2 was obtained in 36% yield, but significant side reactions affording 2-hydroxysuccinic acid (34%) and fumaric acid (3%) were also observed (Fig. 3). Decreasing the amounts of both reagents (I$_2$ and KOH) significantly decreased the yield of 2, but failed to improve the chemoselectivity. The use of methyl levulinate gave comparable results in terms of reactivity and selectivity. No further oxidation of 2 was observed under the reaction conditions, indicating that the 4 and 5 should be produced directly from starting material 1 or 6 (i.e., not via 2).

After extensive experimentation to find a better base/solvent system than HO–/water, we found that the combination of t-BuO– (base) and t-BuOH (solvent) improved the chemo/regioselectivity of the oxidative demethylation reaction (Table 1). This reaction system has a number of attractive features compared to the prototype iodoform conditions, as follows. Firstly, the t-BuOH (tertiary alcohol) is inherently resistant to the oxidation conditions, which represents an obvious advantage over other common alcohols, such as MeOH, EtOH, i-PrOH, etc. The use of t-amyl alcohol gave comparable results. Secondly, t-BuO– base would abstract a terminal α-methyl proton with kinetic preference over an internal α-proton. Thirdly, t-BuOII would be generated in situ, serving as the chemoselective iodinating agent. These three factors would result in high selectivity, so that the internal CH$_2$ group remains almost intact under these conditions. The reaction protocol in Table 1 involves i) pre-treatment with 3 equivalents (theoretical amount) of iodine and theoretical amount of t-BuOK in t-BuOH...
in order to form \(t\text{-BuOI} \), followed by ii) addition of \(H_2O \), and then iii) a solution of \(1 \) in \(t\text{-BuOH} \), affording the desired product \(2 \) with high selectivity. It is important to note that the pre-treatment is crucial for selective formation of \(2 \). Direct addition of \(I_2 \) to the mixture of \(1 \) and \(t\text{-BuOK} \) in \(t\text{-BuOH} \) was unsatisfactory, resulting in a low yield (9%) of \(2 \) and low selectivity: 2-methylsuccinic acid \((25\%) \) and trace amount of glutaric acid \((8\%) \) were formed, probably through Favorovsii-type rearrangement via cyclopropanone intermediate \(9 \) (Fig. 4)\(^{42} \).

We found that the amount of water and the concentrations of the reagents are critical factors affecting the reaction efficiency. Increased chemical yields of \(2 \) were obtained by the use of 1–10 equivalents of water (entries 1–3). Slow addition (~10 min) of \(1 \) to the solution of \(t\text{-BuOH} \) improved the reaction outcome (entries 4–10). The best result was obtained when 0.2 M of \(1 \) in \(t\text{-BuOH} \) was used as a stock solution (entry 5), while 2.2 M solution of \(1 \) gave a lower yield of \(2 \) (entry 6). The optimized conditions could be scaled-up to 10 mmol (1.16 g) without any column purifications, although slight decrease in efficiency was observed (entry 7). It should be noted that the counter-ion of the base and the source of the halogen also played critical roles in determining the yield of this oxidative demethylation reaction. The use of \(t\text{-BuONa} \) instead of \(t\text{-BuOK} \) dramatically decreased the yield of \(2 \) (entry 8), probably due to the relatively poor solubility of \(t\text{-BuONa} \). We also found that other halogen sources, such as \(t\text{-BuOCl} \) and \(t\text{-BuOBr} \), were ineffective, yielding only a small amount of \(2 \) (for details, see Supporting Information, Figure S1).

Table 1. Procedure and optimization of iodoform reaction of \(1 \) with *in situ*-generated \(t\text{-BuOP}^+ \). \(^a\)Reaction conditions: \(I_2 \) (3 eq.), \(t\text{-BuOK} \) (9 eq.) in \(t\text{-BuOH} \) at rt for 5 min under argon. Initial net concentration of \(1 \) in \(t\text{-BuOH} \) is 0.05 M. \(^b\)Concentration of stock solution of \(1 \) in \(t\text{-BuOH} \). \(^c\)\(^1\)H NMR yields. Numbers in parentheses are isolated yields. \(^d\)\(^1\) in \(t\text{-BuOH} \) was added dropwise to a \(t\text{-BuOI} \) solution in \(t\text{-BuOH} \) over 10 min. \(^e\)10 mmol scale. \(^f\)\(^1\)BuONa was used instead of \(t\text{-BuOK} \).

We found that the amount of water and the concentrations of the reagents are critical factors affecting the reaction efficiency. Increased chemical yields of \(2 \) were obtained by the use of 1–10 equivalents of water (entries 1–3). Slow addition (~10 min) of \(1 \) to the solution of \(t\text{-BuOH} \) improved the reaction outcome (entries 4–10). The best result was obtained when 0.2 M of \(1 \) in \(t\text{-BuOH} \) was used as a stock solution (entry 5), while 2.2 M solution of \(1 \) gave a lower yield of \(2 \) (entry 6). The optimized conditions could be scaled-up to 10 mmol (1.16 g) without any column purifications, although slight decrease in efficiency was observed (entry 7). It should be noted that the counter-ion of the base and the source of the halogen also played critical roles in determining the yield of this oxidative demethylation reaction. The use of \(t\text{-BuONa} \) instead of \(t\text{-BuOK} \) dramatically decreased the yield of \(2 \) (entry 8), probably due to the relatively poor solubility of \(t\text{-BuONa} \). We also found that other halogen sources, such as \(t\text{-BuOCl} \) and \(t\text{-BuOBr} \), were ineffective, yielding only a small amount of \(2 \) (for details, see Supporting Information, Figure S1).

Synthesis of succinic acid from cellulose. To elucidate the efficiency of modified iodoform reaction, direct one-pot synthesis of succinic acid \(2 \) from cellulose \(10 \) was investigated (Fig. 5). In \((OTf)_3\text{-TsOH} \) catalyzed refining of \(10 \) yielding methyl levulinate \(6 \), proceeded in high yield\(^{11,12} \). The reaction mixture was then hydrolyzed in water by remaining acids to give \(1 \) quantitatively, which was followed by the demethylated under optimized reaction conditions to afford \(2 \) in 81% yield (72%, three steps).

Scope and limitations. These reaction conditions were also applicable to various methyl ketones and secondary ethanol derivatives (Fig. 6). Simple methyl ketones such as 2-octanone \(11 \) and sec-butyl methyl ketone...
smoothly underwent oxidative demethylation reactions yielding corresponding carboxylic acids and in high yields, respectively. 4-Phenylbut-3-en-2-one was efficiently converted to the corresponding carboxylic acid in 95% yield. t-BuOI-mediated conditions were found to be suitable for a wide range of aromatic- and heteroaromatic systems. Not only electron deficient (but also electron rich (aromatic methyl ketones serve as good substrates. In classical haloform reaction, electron rich aryl groups are troublesome substrates, but they were available in our system. For these heterocycles, neither iodination of aromatic ring nor decarboxylation of products were observed. Cyclopropyl methyl ketone gave the desired product in high yield and the cyclopropane ring remained intact. The stereochemistry of the starting materials was almost completely retained in the products, implying high regioselectivity of the iodination.

Figure 5. Direct one-pot three steps synthesis of 2 from cellulose. H NMR yields. Isolated yield after dehydration of 2.

Figure 6. Oxidative demethylation of ketones and alcohols. The reactions were performed after pre-treatment of I (3 eq.) and t-BuOK (9 eq.), using 3 eq. of H2O at room temperature for 1 h (same as the conditions in Table 1, entry 5). Isolated yields. (H NMR yields are shown in parentheses). Isolated yields after benzylation. The endo:exo ratio was unchanged during the course of reaction, as determined by H NMR measurements. t-BuOK (10 eq.) and I (4 eq.) were used.

13 smoothly underwent oxidative demethylation reactions yielding corresponding carboxylic acids 12 and in high yields, respectively. 4-Phenylbut-3-en-2-one 15 was efficiently converted to the corresponding carboxylic acid 16 in 95% yield. t-BuOI-mediated conditions were found to be suitable for a wide range of aromatic- and heteroaromatic systems. Not only electron deficient (17 and 19) but also electron rich (21 and 23) aryl methyl ketones serve as good substrates. In classical haloform reaction, electron rich aryl groups are troublesome substrates, but they were available in our system. For these heterocycles, neither iodination of aromatic ring nor decarboxylation of products (22 and 24) were observed. Cyclopropyl methyl ketone gave the desired product 26 in high yield and the cyclopropane ring remained intact. The stereochemistry of the starting materials (27 and 29) was almost completely retained in the products (28 and 30), implying high regioselectivity of the iodination.
step with these substrates. This system was also applicable to a secondary ethanol derivative 31, affording non-anonic acid 32 in 71% yield via oxidation/demethylation sequences. Similarly, N-acyl-N,O-acetal 33 undergoes demethylation 34 selectively, albeit in a moderate yield.

Conclusions
In summary, we have developed a simple, chemo-selective, cost-effective oxidative demethylation reaction of methyl ketones utilizing in situ-generated t-BuOIL, which enables one-pot conversion of levulinic acid 1 to succinic acid 2 at room temperature. 2 is an important chemical feedstock, and our study offers the efficient chemical process to provide 2 from non-edible lignocellulose via 1. This system was also shown to be applicable to various substrates containing acetyl/ethanol units. Further studies to expand the scope of the reaction and to elucidation of the reaction mechanism with the help of theoretical and spectroscopic studies are in progress in our laboratory.

Method
General Information. IR spectra were recorded on a JASCO FT-IR 4700 spectrometer. 1H NMR and 13C NMR spectra were obtained on a Bruker AVANCE III HD spectrometer. Chemical shifts (δ) are reported in parts per million (ppm) downfield from internal MeSi. Mass spectra (MS) were obtained on a Bruker microOTOF-QII spectrometer or an Agilent Model 5977B spectrometer. Preparative thin-layer chromatography (TLC) was carried out on pre-coated plates of silica gel (MERCK, silica gel F-254).

Substrate. 3-Acetyl-1-pentyl-1H-indole (23) was prepared from commercially available 3-acetyllindole in 2 steps according to the literature procedure44,45. A 4:1 mixture of endo- and exo-2-acetylindanorbane (27) was prepared from commercially available endo- and exo-2-acetylindanorbane-5-ene by hydrogenation with Pd/C and H2 according to the literature procedure46. 3-β-Methoxy-5-pregnen-20-one (29) was prepared from commercially available 3-β-hydroxy-5-pregnen-20-one according to the literature procedure47. N-(t-Butoxycarbonyl)-2,2-dimethyl-4-(1-hydroxyethyl)oxazolidine (33) was prepared from corresponded aldehyde according to the literature procedure48.

Oxidative demethylation of levulinic acid (1) in water. To a stirred solution of KOH (315 mg, 5.6 mmol) and levulinic acid (1) (53 mg, 0.40 mmol) in water (10 mL) was added I2 (560 mg, 2.2 mmol) and the resulting yellow suspension was stirred at room temperature for 5 min. After treatment of HCl-acidified reaction mixture (pH ca. 1) with excess (≥1 mL) 30% aqueous H2O2, the mixture was washed several times with dichloromethane until the color of I2 and CHI3 faded. The aqueous phase was then concentrated in vacuo and extracted with acetone several times, which was concentrated in an aspiratory vacuum to give a mixture of dicarboxylic acids as a white powder. 1H NMR analysis (1,1,2,2-tetrachloroethane as an internal standard) showed the formation of succinic acid (2) (36%), 2-hydroxysuccinic acid (4) (34%), and fumaric acid (5) (4%) (Fig. 3).

Succinic acid (2). colorless needles (recrystallized from acetone): IR (neat): ν = 3364–2159, 1680, 1410, 1306, 1196, 892, 800, 635, 581, 545 cm⁻¹; 1H NMR (500 MHz, D2O): δ = 2.80 ppm (s, 4 H); 13C NMR (125 MHz, D2O): δ = 177.0, 28.7 ppm; MS (ESI (–)): m/z: 117 [(M-H)–49].

Demethylation of levulinic acid (1) with I2 and t-BuOK in t-BuOH. To a stirred solution of t-BuOK (95 mg, 0.85 mmol) in distilled t-BuOH (1.4 mL) was added I2 (72 mg, 0.28 mmol) and the mixture was stirred at room temperature for a few minutes. After fading the color of I2, the beige suspension was added H2O (5.0 mg, 0.28 mmol) and then the solution of levulinic acid (1) (11 mg, 0.092 mmol) in dry t-BuOH (0.48 mL) dropwise during 10 min. After the reaction mixture was stirred at room temperature for additional 1 h, the mixture was concentrated in vacuo and dissolved in water. After treatment of HCl-acidified reaction mixture (pH ca. 1) with excess (≥1 mL) 30% aqueous H2O2, the mixture was washed several times with dichloromethane until the color of I2 and CHI3 faded. The aqueous phase was then concentrated in vacuo, and extracted with acetone several times, which was followed by the concentration in an aspiratory vacuum to give the mixture of dicarboxylic acids (10 mg) as a white powder. 1H NMR analysis (1,4-dioxane as an internal standard) showed the formation succinic acid (2) (83%), fumaric acid (5) (2%), and 2-hydroxysuccinic acid (4) (2%). Further recrystallization with acetone gave pure succinic acid (2) as colorless needles (9 mg, 83%) (Table 1, entry 5).

One-pot synthesis of succinic acid from cellulose. 1st step (Caution! the reaction should be carried out behind the safety screen): According to the literature procedure51, cellulose (10) (428 mg, 2.64 mmol), indium(III) trifluoromethanesulfonate (22.4 mg, 0.04 mmol), and p-toluenesulfonic acid (38 mg, 0.2 mmol) were suspended in methanol (20 mL) in a Schlenk flask under argon and vigorously stirred at 200 °C for 12 h, the reaction mixture was cooled to room temperature and concentrated under an aspiratory vacuum to give brown oil. 1H NMR analysis (1,4-dioxane as an internal standard) showed the formation of methyl levulinate (11) (89%), fumaric acid (5) (2%), and 2-hydroxysuccinic acid (4) (2%). Further recrystallization with acetone gave pure succinic acid (2) as colorless needles (5 mg, 83%) (Fig. 5).

2nd step: To the mixture was added H2O (10 mL) and stirred at 100 °C for 18 h until the disappearance of 11. After the mixture was cooled to room temperature, the mixture was concentrated in vacuo to give brown oil. 1H NMR analysis (1,4-dioxane as an internal standard) showed the formation of levulinic acid (1) (100%). The residue was dissolved in t-BuOH (10 mL) and transferred into a syringe in order to use for further transformations.

3rd step: To a stirred solution of t-BuOK (2.4 g, 21.2 mmol) in distilled t-BuOH (30 mL) in a Schlenk flask was added I2 (1.8 g, 7.05 mmol) and the mixture was stirred at room temperature for a few minutes. After fading the color of I2, the beige suspension was added H2O (127 mg, 7.05 mmol) and then the above solution of levulinic acid (1) (2.35 mmol) in dry t-BuOH (10 mL) dropwise during 10 min. After the reaction mixture was stirred at room temperature for additional 1 h, the mixture was concentrated in vacuo and dissolved in water. After treatment of...
HCl-acidified reaction mixture (pH ca. 1) with excess (≥ 2 mL) 30% aqueous H$_2$O$_2$, the mixture was washed several times with dichloromethane until the color of I$_2$ and CHI$_3$ faded. The aqueous phase was then concentrated in vacuo, and extracted with acetone several times. After the addition of acetic anhydride, the mixture was heated at 80 °C for 8 h. The mixture was cooled to room temperature and concentrated in vacuo to give succinic anhydride as a white powder (190 mg, 81%).

Succinic anhydride. 1H NMR (500 MHz, DMSO-$_d_6$): δ = 2.91 ppm (s, 4H)\(^{30}\).

General procedure for demethylation of methyl ketones with I$_2$ and t-BuOK in t-BuOH. A typical example: demethylation of 2-octanone (11). To a stirred solution of t-BuOK (85 mg, 0.75 mmol) in distilled t-BuOH (1.4 mL) was added I$_2$ (72 mg, 0.28 mmol) and the mixture was stirred at room temperature for a few minutes. After fading the color of I$_2$, the beige suspension was added H$_2$O (5.0 mg, 0.28 mmol) followed by the solution of 2-octanone (11) (12 mg, 0.093 mmol) in dry t-BuOH (0.46 mL) dropwise during 10 min. After the reaction mixture was stirred at room temperature for additional 1 h, the mixture was concentrated in vacuo. The residue was dissolved in water and washed with dichloromethane three times. HCl-acidified aqueous phase was extracted with dichloromethane two times and then with diethyl ether. The combined organic phase was washed with aqueous Na$_2$SO$_4$ solution and brine, dried over Na$_2$SO$_4$, filtered, and concentrated under an aspiratory vacuum to give heptanoic acid (12) (12 mg) as an oil (93% purity, confirmed by 1H NMR). The residue was dissolved in DMF (2.0 mL) and added K$_2$CO$_3$ (13.8 mg, 0.1 mmol), benzyl bromide (18 mg, 0.1 mmol), and 18-crown-6 (8.0 mg, 0.030 mmol). After heating the solution at 85 °C for 24 h, the mixture was concentrated in vacuo, and purified by silica gel column chromatography (hexane:toluene = 1:1) to give benzyl heptanoate (7.2 mg) as a pale yellow oil\(^{31}\). IR (neat): ν = 2958, 2928, 2857, 1737, 1455, 1376, 1216, 1160, 1003, 733, 696, 527 cm$^{-1}$; 1H NMR (500 MHz, CDCl$_3$): δ = 7.40–7.30 (m, 5 H), 5.11 (s, 2 H), 2.35 (t, J = 7.5 Hz, 2 H), 1.64 (quint, J = 7.5 Hz, 2 H). 1.36–1.24 (m, 6 H), 0.87 ppm (t, J = 7.5 Hz, 3 H); 13C NMR (125 MHz, CDCl$_3$): δ = 173.7, 136.2, 128.5, 128.17 (o, p), 66.1, 34.4, 31.4, 28.8, 24.9, 22.5, 14.0 ppm. (Fig. 6)

Tandem oxidation–demethylation of 2-decanol (31) with I$_2$ and t-BuOK in t-BuOH. To a stirred solution of t-BuOK (81 mg, 0.72 mmol) in distilled t-BuOH (1.4 mL) was added I$_2$ (69 mg, 0.27 mmol) and the mixture was stirred at room temperature for a few minutes. After fading the color of I$_2$, the beige suspension was added H$_2$O (4.8 mg, 0.27 mmol) and then the solution of 2-decanol (31) (7.5 mg, 0.089 mmol) in dry t-BuOH (0.43 mL) dropwise during 10 min. After the reaction mixture was stirred at room temperature for additional 1 h, the mixture was concentrated in vacuo. The residue was suspended in MeCN (1.8 mL) and added benzyl bromide (17 mg, 0.097 mmol) and 18-crown-6 (3.0 mg, 0.012 mmol). After heating the solution at 75 °C for 24 h, the mixture was concentrated in an aspiratory vacuum to give an oil, which was purified by silica gel column chromatography (hexane then hexane-ethyl acetate = 1:1) to give benzyl cyclopropanecarboxylate as an oil. 1H NMR analysis (1,4-dioxane as an internal standard) showed the formation of benzyl cyclopropanecarboxylate (88%). Further purification by silica gel column chromatography (hexane:toluene = 1:1) to give benzyl cyclopropanecarboxylate (11 mg, 67%) as a pale yellow oil\(^{32}\). IR (neat): ν = 3102–2750, 1725, 1455, 1397, 1360, 1265, 1164, 1065, 890, 747, 697 cm$^{-1}$; 1H NMR (500 MHz, CDCl$_3$): δ = 7.40–7.31 (m, 5 H), 5.12 (s, 2 H), 1.66 (tt, J = 7.5, 4.5 Hz, 1 H), 1.03 (dt, J = 7.5, 4.5 Hz, 2 H), 0.87 ppm (td, J = 7.5, 4.5 Hz, 2 H); 13C NMR (125 MHz, CDCl$_3$): δ = 174.8, 136.2, 128.6, 128.2 (3 C), 66.3, 12.9, 8.6 ppm; MS: m/z (%): 176 (30) (M$^+$), 104 (18), 91 (100), 77 (32), 69 (56), 65 (31), 51 (16) (Fig. 6).

References

1. Pileidis, F. D. & Titirici, M.-M. Levulinic Acid Biorefineries: New Challenges for Efficient Utilization of Biomass. *ChemSusChem* **9**, 562–582 (2016).
2. Mukherjee, A., Dumont, M.-I. & Raghavans, V. Sustainable Production of Hydroxymethylfurural and Levulinic Acid: Challenges and Opportunities. *Biomass and Bioenergy* **72**, 143–183 (2015).
3. Isikgor, F. H. & Remzi Becker, C. Lignocellulosic biomass: a sustainable platform for the production of bio-based chemicals and polymers. *Polym. Chem* **6**, 4497–4559 (2015).
4. Climent, M. J., Corma, A. & Iborra, S. Conversion of biomass platform molecules into fuel additives and liquid hydrocarbon fuels. *Green Chem.* **16**, 516–547 (2014).

5. Deues, P. J., Barta, K. & de Vries, J. G. Homogeneous catalysts for the conversion of biomass and biomass-derived platform chemicals. *Catal. Sci. Technol.* **4**, 1174–1196 (2014).

6. Dutta, S. & Pal, S. Promises in direct conversion of cellulose and lignocellulosic biomass to chemicals and fuels: Combined solvent-nanocatalyst approach for biorefinery. *Biomass and Bioenergy* **62**, 182–197 (2014).

7. Cok, B., Tsipouroupolis, L., Roe, A. L. & Patel, M. K. Succinic acid production derived from carbohydrates: An energy and greenhouse gas assessment of a platform chemical toward a bio-based economy. *Biofuel. Bioprod. Bior.* **16**, 6–29 (2014).

8. Deng, W., Zhang, Q. & Wang, Y. Catalytic transformations of cellulose and cellulose-derived carbohydrates into organic acids. *Catalysis Today* **234**, 31–41 (2014).

9. Kobayashi, H. & Fukuzaka, A. Synthesis and utilisation of sugar compounds derived from lignocellulosic biomass. *Green Chem.* **15**, 1740–1763 (2013).

10. Nemoto, K., Tominaga, K. & Sato, K. Facile and Efficient Transformation of Lignocellulose into Levulinic Acid Using an AlCl₃-H₂O/ H₃PO₄ Hybrid Acid Catalyst. *Bull. Chem. Soc. Jpn* **88**, 1752–1754 (2015).

11. Nemoto, K., Tominaga, K. & Sato, K. Striaghtforward Synthesis of Levulinic Acid Ester from Lignocellulose Biomass Resources. *Chem. Lett.* **43**, 1327–1329 (2014).

12. Tominaga, K., Mori, A., Fukushima, Y., Shimada, S. & Sato, K. Mixed-acid systems for the catalytic synthesis of methyl levulinate from cellulose. *Green Chem.* **13**, 810–812 (2011).

13. Other groups have also reported methods for conversion of cellulose to levulinic acid, albeit in moderate yields (see references 13 and 14).

14. Josh, S. S., Zodge, A. D., Pandare, K. V. & Kulkarni, B. D. Efficient Conversion of Cellulose to Levulinic Acid by Hydrothermal Treatment Using Zirconium Dioxide as a Recyclable Solid Acid Catalyst. *Ind. Eng. Chem. Res.* **53**, 18796–18805 (2014).

15. Weingarten, R., Conner, W. C. & Huber, G. W. Production of levulinic acid from cellulose by hydrothermal decomposition combined with aqueous phase dehydrogenation with a solid acid catalyst. *Energy Environ. Sci.* **5**, 7559–7574 (2012), and references therein.

16. Werry, T. et al. Top value added chemicals from biomass. *Volume 1-Results of screening for potential candidates from sugars and synthesis gas*. (DTIC Document, 2004).

17. McKinlay, J. B., Vielle, C. & Zeikus, J. G. Prospects for a bio-based succinate industry. *Appl. Microbiol. Biotechnol.* **76**, 727–740 (2007).

18. Bechthold, I., Brecht, K., Kabaschi, S., Printzky, R. & Springer, Succinic Acid: A New Platform Chemical for Biobased Polymers from Renewable Resources. *A. Chem. Eng. Technol.* **31**, 647–654 (2008).

19. Multi-step transformations of 1 to 2: see: Motoki, S. Synthetic Studies Starting from Levulinic Acid. VI. Syntheses of β-Ketoglutaric Acid, Succinic Semialdehyde and Glutamic Acid. *Nippon Kagaku Zasshi* **82**, 740–743 (1961).

20. Ozonolytic cleavage of β-benzylidene levulinic acid, readily prepared from levulinic acid and benzaldehyde, to form 2-oxo-oxoglutaric acid, see: Mitschka, R. et al. General approach for the synthesis of polynquinanes. Facile generation of molecular complexity via reaction of 1,2-dicarboxyl compounds with dimethyl 3-ketoglutarate. *Tetrahedron* **37**, 4521–4542 (1981).

21. Oxidative decarboxylation of 2-oxoglutaric acid to yield succinic acid with H₂O₂ and Amberlyst-15, see: Choudhary, H., Nishimura, S. & Ebata, K. Metal-free oxidative synthesis of succinic acid from biomass-derived furan compounds using a solid acid catalyst with hydrogen peroxide. *Appl. Cat. A: General* **458**, 55–62 (2013).

22. Dunlop, A. P. & Smith, S. Preparation of succinic acid. US Patent, 2676186 (1954).

23. Podolean, I. *R*, α, β-trialkylbut-1-en-3-one*. J. Org. Chem. **55**, 1941–1943 (1990).

24. Pandey, S. K., Yadav, S. P. S., Prasad, M. & Prasad, J. Mechanism of Ru(III) Catalysis in Oxidation of Levulinic Acid by Acidic Oxidants. *Appl. Cat. A: General* **307**, 1740–1763 (2013).

25. Tuominen, K., Mori, A., Fukushima, Y., Shimada, S. & Sato, K. Mixed-acid systems for the catalytic synthesis of methyl levulinate from cellulose. *Green Chem.* **13**, 810–812 (2011).

26. Caretto, A. & Perosa, A. Upgrading of Levulinic Acid with Dimethylcarbonate as Solvent/Reagent. *Synthesis* **9**, 989–994 (2013).

27. Caretto, A. & Perosa, A. Upgrading of Levulinic Acid with Dimethylcarbonate as Solvent/Reagent. *ACS Sustainable Chem. Eng.* **1**, 989–994 (2013).

28. Krow, G. R. The Baeyer-Villiger Oxidation of Ketones and Aldehydes. *Org. React.* **43**, 251–798 (1993).

29. Dutta, S., Wu, L. & Mascl, M. Efficient, metal-free production of succinic acid by oxidation of biomass-derived levulinic acid with hydrogen peroxide. *Green Chem.* **17**, 2335–2338 (2015).

30. Only limited success in haloform reaction of aliphatic ketones with internal C–H bonds has been reported (see references 31–34).

31. Kajigaeshi, S., Nakagawa, T., Nagasaki, N. & Fujisaki, S. An Efficient Variant of the Haloform Reaction using Sodium Bromite. *Synthesis* **3077–3082 (2013).

32. Podolean, I. et al. *R*-based magnetic nanoparticles (MNP) for succinic acid synthesis from levulinic acid. *Green Chem.* **15**, 3077–3082 (2013).

33. Tuominen, K., Mori, A., Fukushima, Y., Shimada, S. & Sato, K. Mixed-acid systems for the catalytic synthesis of methyl levulinate from cellulose. *Green Chem.* **13**, 810–812 (2011).

34. Other groups have also reported methods for conversion of cellulose to levulinic acid, albeit in moderate yields (see references 13 and 14).

35. Only limited success in haloform reaction of aliphatic ketones with internal C–H bonds has been reported (see references 31–34).

36. Ali, K. & Mahto, S. Review on the synthesis of succinic acid from biomass. *J. Mol. Cat. B: Environ.* **56**, 14–27 (2008).

37. Kende, A. S. *Org. React.* **11**, 261–316 (1960).

38. Bergmann, E. D., Rabinovitz, M. & Levinson, Z. H. The Synthesis and Biological Availability of Some Lower Homologs of Cholesterol. *J. Am. Chem. Soc.* **81**, 1239–1243 (1959).

39. Coker, A., Okumura, S. & Minakata, S. Oxidative Dimerization of Aromatic Amines using BuOCl: Entry to Unsymmetric Aromatic Azo Compounds. *Angew. Chem. Int. Ed.* **51**, 7804–7808 (2012).

40. Minakata, S., Sasaki, I. & Ide, T. Atmospheric CO₂ Fixation by Unsaturated Alcohols Using BuOCl under Neutral Conditions. *Angew. Chem. Int. Ed.* **49**, 1309–1311 (2010).

41. BuOCl does not disproportionate to inactive IO₃⁻ and I⁻ which is sometimes observed when I₂ is used in alkaline aqueous solution. *Haimovich, O. & Treinin, A. Disproportionation of hypoiodite. J. Phys. Chem.* **71**, 1941–1943 (1967).

42. Kende, A. S. *Org. React.* **11**, 261–316 (1960).

43. Bergmann, E. D., Rabinovitz, M. & Levinson, Z. H. The Synthesis and Biological Availability of Some Lower Homologs of Cholesterol. *J. Am. Chem. Soc.* **81**, 1239–1243 (1959).

44. Hirayama, Y. *et al.* Stereochemical Assignment of C-24 and C-25 of Amarasterone A, A Putative Biosynthetic Intermediate of Cysterone. *J. Org. Chem.* **79**, 5471–5474 (2014).

45. Wang, J., Ma, X. & Wang, Y. The Synthesis of N-Acylsuccinic Acid Derivatives from Levulinic Acid. *Tetrahedron* **67**, 3997–4001 (2011).

46. Min, K. L., Steghens, J. P., Henry, R., Doutheau, A. & Collombel, C. Synthesis and differential properties of creatine analogues as inhibitors for human creatine kinase isoenzymes. *Eur. J. Biochem.* **238**, 446–452 (1996).
47. Thomas, A. F. & Wallhalm, B. Les spectres de masse dans l’analyse les transferts d’hydrogène dans des cétones norbornylques. Helv. Chim. Acta 50, 826–840 (1967).
48. Sawatzki, P. & Kolter, T. Syntheses of 3-C-Methylceramides. Eur. J. Org. Chem. 3693–3700 (2004).
49. Nilsson, M. et al. High-Resolution NMR and Diffusion-Ordered Spectroscopy of Port Wine. J. Agric. Food Chem. 52, 3736–3743 (2004).
50. Sakakura, A., Ohkubo, T., Yamashita, R., Akakura, M. & Ishihara, K. Bronsted Base-Assisted Boronic Acid Catalysis for the Dehydrative Intramolecular Condensation of Dicarboxylic Acids. Org. Lett. 13, 892–895 (2011).
51. Hiran, K., Yorimitsu, H. & Oshima, K. Nickel-Catalyzed 1,4-Addition of Trialkylboranes to α,β-Unsaturated Esters: Dramatic Enhancement by Addition of Methanol. Org. Lett. 9, 1541–1544 (2007).
52. Tummatorn, J., Albiniak, P. A. & Dudley, G. B. Synthesis of Benzyl Esters Using 2-Benzylxoy-1-methylpyridinium Triflate. J. Org. Chem. 72, 8962–8964 (2007).
53. Profir, I., Beller, M. & Fleischer, I. Novel ruthenium-catalyst for hydroesterification of olefins with formates. Org. Biomol. Chem. 12, 6972–6976 (2014).

Acknowledgements
This work was supported by JSPS KAKENHI (S) (No. 24229011) (to M.U.) and JSPS KAKENHI (C) (No. 25460016) (to K.M.). This research was also partly supported by grants (to M.U.) from Asahi Glass Foundation, Nagase Science Technology Development Foundation, Yamada Science Foundation, and Sumitomo Foundation.

Author Contributions
K.M. and M.U. designed and supervised the research as well as wrote the manuscript. R.K. carried out the optimization of the reaction and investigated the scope and limitations, and measured spectra of products. S.N. established one-pot synthesis of succinic acid from cellulose and investigated the scope and limitations of the reaction. K.T. and R.T. contributed to write the manuscript and revision.

Supplementary Information
Supplementary information accompanies this paper at https://doi.org/10.1038/s41598-017-17116-4.

Competing Interests:
The authors declare that they have no competing interests.

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Open Access
This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2017