Predominant role of gut-vagus-brain neuronal pathway in postoperative nausea and vomiting: evidence from an observational cohort study

Nana Li
The First Affiliated Hospital of Nanjing Medical University

Lu Liu
The First Affiliated Hospital of Nanjing Medical University

Menghan Sun
Zhongda Hospital Southeast University

Ruiliang Wang
The First Affiliated Hospital of Nanjing Medical University

Wenjie Jin
The First Affiliated Hospital of Nanjing Medical University

Cunming Liu
The First Affiliated Hospital of Nanjing Medical University

Youli Hu (✉ huyouli@njmu.edu.cn)
The First Affiliated Hospital of Nanjing Medical University

Research Article

Keywords: postoperative nausea and vomiting, vagotomy, emetic neuronal pathway

DOI: https://doi.org/10.21203/rs.3.rs-148137/v1

License: © This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License
Abstract

Background

Postoperative nausea and vomiting (PONV) as a clinically most common postoperative complication requires multimodal antiemetic medications targeting at a wide range of neurotransmitter pathways. Lacking of neurobiological mechanism makes this big little problem still unresolved. We hypothesized that gut-vagus-brain reflex generally considered as one of four typical emetic neuronal pathways is the primary mediator of PONV.

Methods

3223 patients who underwent vagotomy (esophagectomy and gastrectomy) and non-vagotomy surgery (hepatectomy, pulmonary lobectomy and colorectomy) from December 2016 to January 2019 were enrolled. Nausea and intensity of vomiting (mild, < 3 times; severe, ≥ 3 times) was recorded within 24 h after the operation.

Results

In the whole PONV incidence, vagotomy surgeries with vagus nerve trunk resection significantly reduced PONV incidence by approximately 4-fold (from 80.6–19.4%). Multivariate logistic regression result revealed that vagotomy was one of underlying factor that significantly involved in PONV (OR = 0.311; 95% CI, 0.246–0.393). Propensity score matching found that 35.3% patients who underwent vagus nerve trunk resection experienced PONV, while PONV was seen in 60.9% patients undergoing surgeries with intact vagus nerve (P < 0.001). Nausea was reported in 5.9%–8.6% vagotomy and 12%–17% non-vagotomy patients. Most vomiting were mild, being approximately 3% in vagotomy and 8%–13% in non-vagotomy patients. Sever vomiting was much less experienced in patients undergoing vagotomy (1%) and non-vagotomy (3%).

Conclusion

Vagus nerve dependent gut-brain signaling mainly contributes to PONV, highlighting the new approach that modulates vagal activation to alleviate anesthetics and surgical stress-induced nausea and vomiting.

Introduction

Postoperative nausea and vomiting (PONV) are among the most common postoperative complications. Inhalational agents,[1–6] opioid analgesic[7–9], and several types of surgeries (cholecystectomy, gynecological, and laparoscopic surgery) is closely associated with increased risk of PONV. With effective
prophylaxis by using anti-emetic agents to block the activation of a wide range of neurotransmitter pathways via serotonin 5-HT3, dopamine D2, and histamine H1, PONV prevalence can be reduced to approximately 30% in patients with the recognized risk factors (female sex, smoking status, history of PONV or motion sickness and expected postoperative opioids).[10, 11] Because it cannot be predicted which neuronal pathway is postoperatively activated, multimodal antiemetic medications targeting different mechanisms of action is inevitably used to the patients either at high risk of PONV or require rescue anti-emetics.

There are four neural pathways potentially responsible for triggering vomiting by direct projections to the nucleus of the solitary tract (NTS) in the hindbrain: 1) gut vagal afferent fibers innervate the stomach and intestine and are stimulated by paracrine factors (e.g., serotonin),[10, 12–14] 2) motion-related vestibular input from the vestibule in the inner ear[10, 15, 16] 3) area postrema (AP) potentially detects circulating toxins[17] and 4) descending pathways from the forebrain.[18, 19] Vagotomy and AP ablation in dog and ferret revealed that opioids produce emesis by action on the AP[20] while isoflurane-induced emesis is mediated by an action on the hindbrain rather than the abdominal vagus[21]. It is therefore argued that PONV may be the potential result of anesthetic agents performing their primary actions either in the gut or the brain. However, substantial evidence as to which one of these four neuronal pathways is the primary mediator of PONV is still lacking.

To clarify the potential role of intact gastric-vagal-brain reflex in the occurrence of PONV, we performed the cohort study in patients undergoing foregut surgery including esophagectomy with the reconstructed gastric tube (vagotomy involving vagus nerve trunk resection), gastrectomy with gastrojejunostomy with subdiaphragmatic vagotomy, and other three non-vagotomy surgeries including hepatectomy, pulmonary lobectomy, and hindgut surgery (colorectomy). (Fig. 2)

Methods And Materials

The study was designed as an observational cohort study to investigate the difference of PONV incidence as the result of vagotomy with vagus nerve trunk resection. We collected data from five types of surgical procedures which were further divided into two groups: vagotomy (esophagectomy and gastrectomy) and non-vagotomy (hepatectomy, pulmonary lobectomy and colorectomy) groups. The study was approved by the Ethics Committee of the First Affiliated Hospital of Nanjing Medical University (protocol number SR-396).

In-patients scheduled to undergo elective surgery at Jiangsu Province Hospital from December 2016 to January 2019 were enrolled in this study (Fig. 1). They underwent one of five procedure types requiring general anaesthesia and follow-up for the first post-operative day. Patients were excluded from this study according to the exclusion criteria: (1) less than one-hour operation time; (2) over 800 ml intraoperative blood loss; (3) incomplete data. The premedication, anaesthetic techniques and postanaesthetic care were performed by experienced anaesthetic staff based on their usual practice.

Perioperative medication management
Routinely, intravenous infusion of propofol and remifentanil along with 1% sevoflurane were used for the maintenance of anesthesia. Fentanyl at 10 µg/kg was applied for the patients during surgery, while the opioid analgesics for postoperative patient-controlled analgesia was 0.15 mg/kg butorphanol ± 0.5 mg fentanyl. The perioperative anti-emetic paradigm included: 1) 10 mg dexamethasone prior to the anesthesia induction; 2) intra-operative 5HT3 antagonist (ondansetron); 3) postoperative 9 mg ondansetron along with patient-controlled opioid analgesia. Laparoscopy was performed in gastrectomy, colorectomy and pulmonary lobectomy, while hepatectomy and esophagectomy were all undergoing laparotomy.

Data collection

The questionnaire contained items including patient characteristics as well as details of anaesthesia and surgery performed and items on the postoperative outcome under observation. The anaesthetic nurses completed the items on the surgical procedure, the premedication and the anaesthetic given based on the data extracted from local hospital information system. The follow-up interview team interviewed patients with focus on the items covering postoperative nausea and vomiting and its treatment, medication for postoperative pain on the first day after surgery. The assessment intervals were the initial observation in the recovery room and the following interview on the surgical ward at 24 h after the operation. The interviewer firstly recorded emetic episodes, anti-emetics used and pain medication from the medical notes before visiting the patient. The patients were then interviewed with the questionnaire about the presence of nausea, intensity of vomiting and pain postoperatively and the overall satisfaction with surgery, anesthesia and postoperative care.

Assessment of symptoms and outcome

For the aim of this study, we were interested in the effect of vagus nerve truck resection on the incidence of PONV. The primary outcome of the study was the incidence of PONV which was defined as occurrence of nausea and vomiting within 24 hours after the surgery. Nausea was evaluated by the patient's subjective sensation of feeling sick or wishing to vomit without further intensity assessment. Emetic episodes were recorded as both retching and vomiting since occurrence of sole retching was relatively rare in this study. The intensity of vomiting was graded into two levels: mild (< 3 times) and severe (≥ 3 times). Patients experienced retching only were recorded as mild vomiting.

Covariates

Previous studies and guidelines showed that the risk factors of PONV were female gender, nonsmoking status, history of motion sickness, age, the use of inhaled anesthetics, postoperative opioid, in addition to ASA physical and duration of anesthesia.[22, 23] All these data except smoking status and history of motion sickness were collected as covariates.

Statistical analysis
Numbers and percentages were used to represent categorical variables and continuous variables by mean values with standard deviation (SD), t-test, and x^2 test was used to compare continuous variables and categorical variables between groups. Variables were compared between different groups by using univariate analysis. Variables with statistically significant differences in univariate analysis were entered into a multivariate model by the forward condition method.

Next, we performed propensity score matching analysis to reduce bias by using the nearest neighbor method and one-to-one matching with caliper set at 0.1. Variables used for matching were gender, age, the use of volatile anesthetics, BMI, postoperative opioid, ASA physical, and duration of anesthesia. All statistical analyses were carried out in SPSS 22.0 (SPSS Inc, Chicago, IL USA), and $P < 0.05$ was considered statistically significant.

Result

Patient characteristics

There were total 3435 patients who underwent five types of surgical procedures questionnaired and interviewed, with 3223 patients remaining in this study after exclusion criteria applied as operation time less than one hour ($n = 111$), incomplete data ($n = 71$) and intraoperative bleeding more than 800 ml ($n = 30$)) (Fig. 1). They are initially divided into PONV ($n = 726$) and non-PONV ($n = 2497$) groups. To reduce bias, a matched patient group was established for propensity score matching analysis between the two groups ($n = 700$ equally in each group).

The demographic characteristics of the patients in PONV and non-PONV groups were showed in Table 1. Most of male patients (68.84%) did not experience PONV; Same as described in previous investigation, male patients were much less likely to have nausea and vomiting after surgery as compared with females (38.84% in male vs 61.16% in female). The operation time was slightly shorter in the PONV group. Other characteristics including ASA physical status, age and BMI were quite similar in both groups. In the whole PONV incidence, use of inhaled anesthetics and postoperative opioid account for 83.7% and 82.6% respectively, indicating both anesthetic agents highly involved in the occurrence of emetic episode. In non-PONV group, 65.4% patient with inhaled anesthetics did not experience PONV; however, when postoperative opioid was used, the number of non-PONV patient went up to 94.5%.
Table 1
Comparison of patient characteristics data between non-PONV group and PONV group. Data presents as mean±SD, n (%).

Variables	non-PONV group (n = 2497)	PONV group (n = 726)	P-Value
Female (n,%)	778 (31.2%)	444 (61.2%)	< 0.001
Age(median-IQR, year)	59.99 ± 11.12	59.10 ± 11.07	0.056
BMI	23.54 ± 3.08	23.27 ± 3.15	0.04
ASA physical status			0.534
≤60	1144(45.8%)	365(50.3%)	
>60	1353 (54.2 %)	361 (49.7%)	
Duration of anesthesia	2.55 ± 1.03	2.32 ± 0.98	< 0.001
Postoperative opioid	2360(94.5%)	600(82.6%)	< 0.001
Inhaled anesthesia	1633(65.4%)	608(83.7%)	< 0.001
Vagus nerve trunk resection	1046(41.9%)	141(19.4%)	< 0.001
Non-vagus nerve trunk resection	1451(58.1%)	585(80.6%)	

Notably, as compared with non-vagotomy surgeries (hepatectomy, pulmonary lobectomy and colorectomy), vagus nerve trunk resection performed in both esophagectomy and gastrectomy significantly reduced PONV incidence by approximately 4-fold, dropping from 80.6–19.4%. This result suggested that vagus nerve stimulation might play a predominant role in triggering PONV occurrence.

Vagotomy associated with PONV in the multivariate logistic regression model

To further examine the potential role of vagus nerve in PONV, we performed multivariate logistic regression analysis with factors associated with PONV in entire cohort (Table 2). There are four variables examined including gender, inhaled anesthetics, postoperative opioid and vagotomy. As expected, gender is one of risk factors of PONV as male patients had an OR value of 0.310 (95% CI, 0.258–0.373) as
compared with females. In addition, the use of inhaled anesthetics was highly involved in PONV (OR = 3.946; 95%, CI, 3.135–4.966). Much lower incidence of PONV (OR = 0.325; 95% CI, 0.245–0.432) with postoperative opioid application was unexpectedly found in multivariate logistic regression analysis, in contrast to common point of view which consider postoperative opioid as a risk factor for PONV. This might be due to: 1) dexamethasone being regularly used in premedication along with intra-operative 5HT3 antagonists; 2) sufficient anti-emetic (normally 9 mg ondansetron) accompanying opioid analgetics (butorphanol ± fentanyl at much lower dosage) during postoperative patient-controlled analgesia in our hospital. Butorphanol is less likely to cause PONV.[24]

Table 2
Multivariate logistic regression analysis with factors associated with PONV in entire cohort. CI, confidence interval.

Variables	OR (odds ratio)	95% CI	P-value
Sex (male vs female)	0.310	0.258–0.373	< 0.001
Inhaled anesthesia	3.958	3.145–4.980	< 0.001
Postoperative opioid	0.327	0.247–0.434	< 0.001
Vagus nerve trunk resection	0.321	0.259–0.399	< 0.001

Multivariate logistic regression result revealed that vagus nerve trunk resection served as one factor that significantly modulated the occurrence of PONV (OR = 0.311; 95% CI, 0.246–0.393), further providing the evidence that vagus nerve works as a primary afferent nerve to receive PONV-related signal inputs. These data also support the potential underlying mechanism by which intact gastric-vagal-brain reflex play a key role for PONV.

Vagus nerve trunk resection is associated with the incidence of PONV

To further investigate the role of vagus nerve in PONV, we performed propensity score matching to adjust the imbalance of concomitant variable in order to avoid the bias. Propensity score matching is an effective method to analyze the observational data when randomized trials are not feasible.[25] After propensity score matching, 700 patients remained in the PONV group and 700 remained in the non-PONV group. Gender, age, the use of volatile anesthetics, BMI, postoperative opioid, ASA physical, and duration of anesthesia were similar between two groups. In PONV group, 35.3% patients underwent surgeries (esophagectomy and gastrectomy) with vagus nerve trunk resected, while 60.9% patients in non-PONV group had surgeries (hepatectomy, pulmonary lobectomy and colorectomy) with intact vagus nerve (P < 0.001) (Table 3).
Emetic outcomes related to vagotomy

As crucial role of vagus nerve trunk resection was confirmed through multiple statistical analysis, we further evaluated the detailed percentage of nausea and the intensity of vomiting (Table 4). Most of patients with esophagectomy and gastrectomy in vagus nerve trunk resection group did not report nausea and vomiting (90.9% and 86.5% respectively), while the percentage of non-PONV was reduced to approximately 70% in patients without vagus nerve trunk resection. The overall incidence of PONV were

Table 3

Prospensity score matching analysis on the association of vagus nerve trunk resection with PONV

Variables	Before propensity score matching	P-Value	After propensity score matching	P-Value
	non-PONV group		PONV group	
	(n = 2497)		(n = 726)	
Female (n,%)	778 (31.2%)	< 0.001	285 (40.7%)	0.870
Age(median-IQR, year)	59.99 ± 11.12	0.056	58.99 ± 11.8	0.963
Age(year)	0.034			
≤ 60	1144 (45.8%)	340 (48.6%)	349 (49.9%)	0.963
> 60	1353 (54.2%)	360 (51.1%)	351 (50.1%)	0.963
BMI	23.54 ± 3.08	0.04	23.13 ± 3.15	0.380
ASA physical status	0.534			0.929
†	172 (6.9 %)	46 (6.6%)	49 (7.0%)	
‡	2063 (82.6 %)	590 (84.3%)	585 (83.6%)	
≥ 3	262 (10.5 %)	64 (9.1%)	66 (9.4%)	
Duration of anesthesia	2.55 ± 1.03	< 0.001	2.35 ± 0.96	0.848
Postoperative opioid	2360 (94.5%)	< 0.001	605 (86.4%)	0.700
Inhaled anesthesia	1633 (65.4%)	< 0.001	590 (84.3%)	0.848
Vagus nerve trunk resection	1046 (41.9%)	< 0.001	426 (60.9%)	< 0.001
much lower in vagotomy patients with 9.1% in esophagectomy and 13.5% in gastrectomy. By contrast, when intact vagus nerve was maintained, the highest incidence of PONV (30%) was reported in pulmonary lobectomy and hepatectomy, followed by 23% of PONV incidence in colorectomy patients. Consistently, nausea was reported in 5.9% esophagectomy patients and 8.6% gastrectomy patients as compared with that in 12% patients without vagotomy. Most vomiting episodes were reported less than 3 times, being around 3% in vagotomy patients including esophagectomy and gastrectomy and 8% in non-vagotomy patients. Severe vomiting graded as more than 3 times were much less experienced in patients undergoing vagotomy (1%) or non-vagotomy (3%).

	Non-PONV	PONV			
Vagus nerve trunk resection group (n,%)					
Esophagectomy	401(90.9%)	26(5.9%)	10(2.3%)	4(0.9%)	40(9.1%)
Gastrectomy	645(86.5%)	64(8.6%)	29(3.9%)	8(1.1%)	101(13.5%)
Non-vagus nerve trunk resection group (n,%)					
Colorectomy	442(77%)	71(12.4%)	46(8.0%)	15(2.6%)	132(23%)
Hepatectomy	366(69.8%)	87(16.6%)	57(10.9%)	14(2.7%)	158(30.2%)
Pulmonary lobectomy	643(68.6%)	144(15.4%)	122(13.0%)	29(3.1%)	295(31.4%)

Discussion

In the present study we found that based on the surgical procedures, vagus nerve trunk resection performed during esophagectomy and gastrectomy caused much less incidence of PONV as compared with that when vagus nerve trunk was intact. PONV occurred in an increasing order as: esophagectomy < gastrectomy < colorectomy < hepatectomy and pulmonary lobectomy. As compared to the similar occurrence of PONV (23–30%) among the last three types of surgery, subdiaphragmatic vagotomy and inherent trunk vagotomy commonly seen in gastrectomy and esophagectomy reduced PONV to the lowest extent at 9.1% and 13.5% respectively. These observations indicated that stomach and esophagus with intact vagal nerve innervation should work as primary site to trigger PONV, as vagotomy accounts for approximately three-fold decrease on PONV. Hence, the hindgut, liver and lung surgery could create PONV-relevant neuronal and/or endocrine signals to activate the common afferent neuronal pathways typically via the gastrointestinal tract. In addition, the gastro-vagal independent neuronal circuits including AP, vestibular and forebrain pathways are much less involved in PONV.
The vagus mediates reciprocal communication between gut and brain. It is known that signs from the gut could make activation on the vagus through the enteric sensory system. Gastric dysrhythmias as an established biomarker for nausea and vomiting could stimulate the vagus following the stimulation on local enteric neurons.[26, 27] Therefore after some potentially PONV-inducing types of surgery including laparoscopic and gynecological surgery, common side-effects such as postoperative ileus[28] and subsequent disruptions of gastrointestinal motor rhythms could contribute to the etiology of PONV. Both opioids and inhalational anesthesia also disrupt gastrointestinal function. It is known that inhalational anesthetic agents (halothane, isoflurane, and sevoflurane) stimulate vagal afferent fibers in dogs.[29] Furthermore, surgical manipulation and trauma could produce local release of substance P, 5-HT, or other mediatorsthat affect signaling of extrinsic afferent fibers.[14, 30] Inhaled anesthetics can enhance 5-HT3 receptor function.[31] Given the high levels of serotonin in the gut, exposure of the gut to the surgical procedures and anesthetics might increase the excitability of intrinsic primary afferent neurons in the myenteric plexus and then vagal nerve, contributing to the PONV. Indeed, much less PONV observed after vagotomy suggest that in human major role of gut-vagal pathway is actually underlying anesthetics-inducing emesis.

It is known that oesophagus can regulate the gastric motility via intact brainstem vago-vagal circuits. The NTS, pars centralis, receives oesophageal afferent projections from the vagus nerve and sends axons to the dorsal motor nucleus of the vagus to mediate parasympathetic control over the stomach. There are two neuronal subpopulations in dorsal motor nucleus which may be either activated or inhibited by oesophageal distension.[32] Intravenous and inhaled anesthetic agents could decrease the esophageal sphincter tone, the phenomenon being considered as a sign to monitor the anesthesia depth.[33] Therefore, anesthesia-induced esophageal distension might disrupt gastric motor rhythms by functioning differently on the vagal inhibitory and excitatory pathways to induce PONV.

The NTS and specific nuclei in area of the reticular formation, including the respiratory nuclear groups, as important sites for generating emesis.[19, 34–36] In the present study postoperative vomiting still occurred in about 3% patients even with esophageal vagotony. This finding suggests that in addition to the major vagal pathway, specific brainstem nucleis such as the respiratory nuclear groups work as a complementary neuronal pathway for emesis which is responsible for the surgical and anesthetic stimulus.

Nausea can occur separately from vomiting. The role of vagal nerve in the stimulation of nausea could be speculated from the observation that esophageal vagotony reduced nausea by 3–4 fold, especially in female patients. The dorsal pons (potentially the parabrachial nucleus), amgydala, and putamen are considered as a relay to transmit sensory input from the NTS between the emetic circuitry and forebrain, which is underlying the neurobiological mechanism of nausea.[37] Hence, the vagal nerve innervated on the esophagus play an important role in surgery and anesthesia induced nausea by activating NTS-nausea circuitry-forebrain pathway.
The limitation in the present study is that the surgical vagotomy performed disrupts both the sensory and motor components of the vagus, making it impossible to resolve the role of only the sensory input versus motor output. Additionally, the spinal afferents supplying the gastrointestinal system could have become sensitive to emetic stimulus after vagotomy, an effect that occurs in the context of chemotherapy-induced emesis.[38] Meanwhile, due to missing recording of history of motion sickness in some of follow-up data collection, we did not include motion sickness as one of PONV variables in this study.

Clinically vagal stimulation is an FDA approved treatment for intractable depression and also has been used in the treatment of refractory epilepsy. Our results reveal the predominant role of vagus nerve in the PONV and may promote new approaches to prevent/treat such uncomfortable postoperative side effect by selectively modulating peripheral vagal sensitivity and activity. Our findings support the view that vagus nerve dependent gut-brain signaling mainly contributes to the effects of PONV and further highlight the potential neuronal approaches that may not even require therapeutic agents to enter the circulation.

Abbreviations

PONV postoperative nausea and vomiting

OR Odds ratio

SD Standard deviation

PSM Propensity score matching

CI Confidence interval

Declarations

Authors’ contributions

YLH, NNL designed the study. LL, YLH wrote the manuscript. NNL, MHS analyze the data and did the statistical analysis. RLW, WJJ contributed to data collection. CML contributed to study coordination. All authors approved the manuscript.

Acknowledgments

We are very grateful for the contribution and great efforts in the data collection and recording by many doctors and nurses in our follow-up interview team, especially thankful for Pan He, Jia Liu, Fangting Xie and Yuan Zhang.

Funding

This work was sponsored by the National Natural Science Foundation of China (No.81801061)
vailability of data and materials

The datasets used and analyzed during the current study are available from the corresponding author on reasonable request.

Ethics approval and consent to participate

This study was approved by the Ethics Committee of The First Affiliated Hospital of Nanjing Medical University (No. SR-396), which waived the requirement for obtaining informed patient consent. All procedures performed in studies involving human participants were conducted in accordance with the ethical standards of the institutional and national research committee and with the 1964 Helsinki Declaration and its later amendments or comparable ethical standards.

Consent for publication

Not applicable

Competing interests

The authors declare that they have no competing interests.

References

1. Apfel C, Heidrich F, Jukar-Rao S, Jalota L, Hornuss C, Whelan R, Zhang K, Cakmakkaya OJBjoa: Evidence-based analysis of risk factors for postoperative nausea and vomiting. 2012, 109(5):742-753.
2. Apfel C, Kranke P, Katz M, Goepfert C, Papenfuss T, Rauch S, Heineck R, Greim CA, Roewer NJBjoa: Volatile anaesthetics may be the main cause of early but not delayed postoperative vomiting: a randomized controlled trial of factorial design. 2002, 88(5):659-668.
3. Hofer C, Zollinger A, Büchi S, Klaghofer R, Serafino D, Bühlmann S, Buddeberg C, Pasch T, Spahn DJBjoa: Patient well-being after general anaesthesia: a prospective, randomized, controlled multicentre trial comparing intravenous and inhalation anaesthesia. 2003, 91(5):631-637.
4. Moore J, Elliott R, Payne K, Moore E, St Leger A, Harper N, Pollard B, Kerr JJEJoA: The effect of anaesthetic agents on induction, recovery and patient preferences in adult day case surgery: a 7-day follow-up randomized controlled trial. 2008, 25(11):876-883.
5. Raeder J, Gupta A, Pedersen FJAas: Recovery characteristics of sevoflurane-or propofol-based anaesthesia for day-care surgery. 1997, 41(8):988-994.
6. Vari A, Gazzanelli S, Cavallaro G, De Toma G, Tarquini S, Guerra C, Stramaccioni E, Pietropaoli PJTAS: Post-operative nausea and vomiting (PONV) after thyroid surgery: a prospective, randomized study comparing totally intravenous versus inhalational anesthetics. 2010, 76(3):325-328.
7. Watcha MF, White PF. Postoperative nausea and vomiting: etiology, treatment, and prevention. 1992, 77(1):162-184.
8. Woodhouse A, Mather L. Nausea and vomiting in the postoperative patient-controlled analgesia environment. 1997, 52(8):770-775.
9. Andrews PL, Horn CC. Signals for nausea and emesis: Implications for models of upper gastrointestinal diseases. 2006, 125(1-2):100-115.
10. Stoops S, Kovac AJ, Anaesthesiology RC. New insights into the pathophysiology and risk factors for PONV. 2020.
11. Gan TJ. Postoperative nausea and vomiting—can it be eliminated? 2002, 287(10):1233-1236.
12. Hu DL, Zhu G, Mori F, Omoe K, Okada M, Wakabayashi K, Kaneko S, Shinagawa K, Nakane AJ. Staphylococcal enterotoxin induces emesis through increasing serotonin release in intestine and it is downregulated by cannabinoid receptor 1. 2007, 9(9):2267-2277.
13. Minami M, Endo T, Hirafuji M, Hamaue N, Liu Y, Hiroshige T, Nemoto M, Saito H, Yoshioka M. Pharmacological aspects of anticancer drug-induced emesis with emphasis on serotonin release and vagal nerve activity. 2003, 99(2):149-165.
14. De Winter BY, van den Wijngaard RM, de Jonge WJ. Intestinal mast cells in gut inflammation and motility disturbances. 2012, 1822(1):66-73.
15. Yates B, Grelot L, Kerman I, Balaban C, Jakus J, Miller AJ. Organization of vestibular inputs to nucleus tractus solitarius and adjacent structures in cat brain stem. 1994, 267(4):R974-R983.
16. Yates B, Miller A, Lucot JJ. Physiological basis and pharmacology of motion sickness: an update. 1998, 47(5):395-406.
17. Jovanović-Mićić D, Štrbac M, Krstić S, Japundžić N, Samardžić R, Beleslin DJ. Ablation of the area postrema and emesis. 1989, 4(1):55-60.
18. Beleslin D, Rezvani AH, Myers RJ. Rostral hypothalamus: a new neuroanatomical site of neurochemically-induced emesis in the cat. 1987, 19(2):239-244.
19. Bashashati M, McCallum RW. Neurochemical mechanisms and pharmacologic strategies in managing nausea and vomiting related to cyclic vomiting syndrome and other gastrointestinal disorders. 2014, 722:79-94.
20. Chen JD, Qian L, Ouyang H, Yin J, Disorders EN. Gastric electrical stimulation with short pulses reduces vomiting but not dysrhythmias in dogs. 2003, 124(2):401-409.
21. Gupta RG, Schafer C, Ramaroson Y, Sciullo MG, Horn CC. Role of the abdominal vagus and hindbrain in inhalational anesthesia-induced vomiting. 2017, 202:114-121.
22. Gan TJ, Belani KG, Bergese S, Chung F, Diemunsch P, Habib AS, Jin Z, Kovac AL, Meyer TA, Urman RD. et al. Fourth Consensus Guidelines for the Management of Postoperative Nausea and Vomiting. 2020.
23. Gan TJ, Diemunsch P, Habib AS, Kovac A, Kranke P, Meyer TA, Watcha M, Chung F, Angus S, Apfel CCJA et al: Consensus guidelines for the management of postoperative nausea and vomiting. 2014, 118(1):85-113.

24. Zhu X, Chen L, Zheng S, Pan LJBa: Comparison of ED95 of Butorphanol and Sufentanil for gastrointestinal endoscopy sedation: a randomized controlled trial. 2020, 20:1-7.

25. Haviland A, Nagin DS, Rosenbaum PRJPm: Combining propensity score matching and group-based trajectory analysis in an observational study. 2007, 12(3):247.

26. Kim MS, Chey WD, Owyang C, Hasler WLJAJoP-G, Physiology L: Role of plasma vasopressin as a mediator of nausea and gastric slow wave dysrhythmias in motion sickness. 1997, 272(4):G853-G862.

27. Percie du Sert N, Chu KM, Wai MK, Rudd JA, Andrews PLJEp: Telemetry in a motion-sickness model implicates the abdominal vagus in motion-induced gastric dysrhythmia. 2010, 95(7):768-773.

28. Viscusi ER, Gan TJ, Leslie JB, Foss JF, Talon MD, Du W, Owens GJA, Analgesia: Peripherally acting mu-opioid receptor antagonists and postoperative ileus: mechanisms of action and clinical applicability. 2009, 108(6):1811-1822.

29. Mutoh T, Tsubone H, Nishimura R, Sasaki NJRp: Effects of volatile anesthetics on vagal C-fiber activities and their reflexes in anesthetized dogs. 1998, 112(3):253-264.

30. Spiller RJN: Serotonin and GI clinical disorders. 2008, 55(6):1072-1080.

31. Parker RM, Bentley KR, Barnes NMJTips: Allosteric modulation of 5-HT3 receptors: focus on alcohols and anaesthetic agents. 1996, 17(3):95-99.

32. Rogers R, Hermann G, Travagli RJTJoP: Brainstem pathways responsible for oesophageal control of gastric motility and tone in the rat. 1999, 514(2):369-383.

33. Turan A, Dalton JE, Kasuya Y, Akça O, Sessler DI, Rauch SJMsimjoe, research c: Correlation between bispectral index, observational sedation scale, and lower esophageal sphincter pressure in volunteers using dexmedetomidine or propofol. 2012, 18(10):CR593.

34. Horn CCJA: Why is the neurobiology of nausea and vomiting so important? 2008, 50(2-3):430-434.

35. Shintani T, Mori R, Yates BJBr: Locations of neurons with respiratory-related activity in the ferret brainstem. 2003, 974(1-2):236-242.

36. Hornby PJJTAjom: Central neurocircuitry associated with emesis. 2001, 111(8):106-112.

37. Napadow V, Sheehan JD, Kim J, LaCount LT, Park K, Kaptchuk TJ, Rosen BR, Kuo BJCc: The brain circuitry underlying the temporal evolution of nausea in humans. 2013, 23(4):806-813.

38. Andrews P, Davis C, Bingham S, Davidson H, Hawthorn J, Maskell LJCjop, pharmacology: The abdominal visceral innervation and the emetic reflex: pathways, pharmacology, and plasticity. 1990, 68(2):325-345.

Figures
Figure 2

Schematic diagram illustrating the effect of vagotomy on PONV. Four neural pathways potentially send stimulating inputs to the nucleus of the solitary tract (NTS) in the hindbrain: 1) gut vagal afferent fibers (yellow line) from the gastrointestinal tract; 2) motion-related vestibular input from the vestibular nuclei (Vnu) ; 3) area postrema (AP) and 4) descending pathways from the forebrain. NTS then produces the emetic reflex by activating its output pathways within local brainstem areas and causes nausea by projecting to the mid- and forebrain. However, which one of these four neuronal pathways as the primary mediator of PONV is still unknown. In this cohort study, occurrence of PONV is about 30% after non-vagotomy surgery (hepatectomy, pulmonary lobectomy and colorectomy), while PONV is reduced to approximately 10% after vagotomy surgery (esophagectomy and gastrectomy), demonstrating that vagus nerve dependent gut-brain signaling mainly contributes to PONV.