ABSTRACT
The thermodynamics of complexation and thermal properties of mixed ionic complexes of the types M(H$_2$L)X$_2$ and M(HL)X (where M = Fe(II), Fe(III), Co(III), Ni(II), and Cu(II), L = bis(2,2'-methylidene phenol) diaminoethane, and X = anions of the types Cl$^-$, NO$_3$-, SO$_4^{2-}$, ClO$_4$- or OH$^-$) prepared using extractive method have been investigated. Thermal decomposition of the transition metal complexes took place in two or three distinct steps in exothermic reaction up to 800°C. The heat capacity change (ΔC_p), transition midpoint temperature (T_m), entropy change (ΔS_m), calorimetric enthalpy (ΔH_m), Gibbs free energy change ($\Delta G_m(T)$), denaturation enthalpy ($\Delta H_d(T)$) and denaturation entropy ($\Delta S_d(T)$) were calculated from the results of differential scanning calorimetry (DSC) while Vant Hoff thermodynamic properties was used to calculate the stability constants of the complexes in solution. It was found that the stability constants of the complexes follow the order Fe(II) > Fe(III) > Cu(II) > Ni(II) > Co(II) while the denaturation enthalpy and entropy of the complexes follow the order Ni(II) > Fe(II) > Fe(III) > Co(II) > Cu(II) respectively.

KEYWORDS: bis(2,2'-methylidene phenol) diaminoethane, transition metal complexes, thermal analysis, thermodynamic parameters.
H₂L complexes prepared using extractive techniques. In this work, spectral, thermodynamic and thermal methods were applied in the characterization of H₂L transition metal complexes which are very important in bioinorganic chemistry and applications.

2.0 MATERIALS AND METHODS
2.1 Reagents and equipment.
Analytical grade reagents (Merck, Germany) were used without further purification unless otherwise mentioned. All aqueous solutions were prepared in distilled water and working solutions prepared by dilution as required. Bis(2,2'-methylene phenol) diaminoethane (H₂L) shown in figure 1 was prepared as reported elsewhere [20]. Stock solutions of Fe(II), Fe(III), Co(II), Ni(II) and Cu(II) were prepared using (NH₄)₂SO₄, FeSO₄·6H₂O, Fe₂(SO₄)₃·9H₂O, CoCl₂·6H₂O, NiSO₄·7H₂O and CuSO₄·5H₂O (Merck, Analar grade). Stock solutions of mineral acids (HCl, HNO₃ and H₂SO₄) were prepared by diluting the concentrated acids and were standardized using appropriate standard bases.

Electronic spectra of the ligand and complexes in chloroform solution were obtained on Jenway UV – Vis spectrophotometer model 6105. DSC analysis (Thermal degradation pattern) was determined using NETZSCHDTA 404PC Differential scanning calorimeter. Metal-ligand mole ratio was determined using jobs method of continuous variation as described elsewhere [21]. Microanalysis of the ligand and complexes were done at the Department of Chemistry, Rhodes University, South Africa.

2.2. Synthesis of metal complexes
An aliquot of a sample solution containing 100μg each of Fe(II), Fe(III), Cu(II), Ni(II) and Co(II) was transferred into a 20 mL calibrated extraction bottle and volume was made up to 5 mL with acid solution of concentration 0.0001M. This was followed with the addition of 0.5mL of ligand solution. 5 minutes for colour development was allowed and complexes formed extracted with 5 mL chloroform. The organic extracts were allowed to dry and product recrystallized using carbon tetrachloride, dried and characterized (M.P >250°C for Fe(II) while for Fe(III), Cu(II), Ni(II) and Co(II) M.P >300°C).

2.3 Thermal Analysis Using Differential Scanning Calorimeter
The sample and reference pan were placed at separate furnaces maintained by separate heaters. Both sample and reference were maintained at same temperature and the difference in thermal power required maintaining them at the same temperature measured and plotted as a function of temperature or time. Differential heat flow was due to heat capacity associated with heating the sample. Small samples (5.00 mg) were weighed into an aluminia crucible and mass noted. The crucible was covered with its cover usually slightly smaller. The TA Blue DSC sample press was used to close the crucible. The enclosed sample was placed side by side with the empty aluminia crucible as reference. The instrument was purged with ultra pure N₂ gas at regulated pressure between 100 and 140 Kpa guage (15 and 20 Psi). The gas flow rate was set at 50 mL per min and experiment run from room temperature to 800°C at scan rate of 10°C min.

3.0 RESULTS AND DISCUSSION
3.1 UV-Vis Data and metal-ligand mole ratio.
Electronic spectrum of the Ni(II)H₂BMPDE complex exhibited three bands in the region 24691cm⁻¹ assignable to 1A₁g → 1T₂g and 33898 and 38462 cm⁻¹ due to charge transfer transitions respectively notable in square planar environment for Ni(II) ion [22]. The absence of bands around 10120-11605, 16062-16180 and 25210 - 25575 cm⁻¹ assignable to, 3A₂g(F) → 3T₂g(F) 3A₂g(F) → 3T₁g(F) and 3A₂g(F) → 3T₁g(P) respectively are due to charge transfer transitions from ligand to Ni(II) ion [23-25].

Figure 1: Synthesis of the ligand H₂L
The electronic spectrum of cobalt (II) oxidized to Co(III) complex a d⁶ ion consists of three bands in the region 25000, 29851 and 38462 cm⁻¹. The appearance of the band in the region 25000 cm⁻¹ assignable to 4A₂g → 2T₁g(F) indicated distorted octahedral geometry around the cobalt(II) ion whereas the band in the region 29851 and 38462 cm⁻¹ are due to charge transfer transitions [26-27]. Similarly the broad band region of the electronic spectra of Co³⁺, a d⁶ covering the long wavelength region 335-400 nm was assigned to an octahedral 3A₂g → 2T₁g(F) transition [28].

For Cu²⁺ ion a d⁹, a band displayed in the electronic spectrum in the region of 28571 cm⁻¹ characteristic of 2B₁g → 2E₉ transitions was typical of a distorted octahedral geometry. The 2E₉ and 2B₁g states of d⁹ octahedral copper (II) ion splits up under the influence of octahedral field (tetragonal distortion). The distortion can cause three transitions 2B₁g → 2A₁g, 2B₁g → 2B₉ and 2B₁g → 2E₉ typical of distorted octahedral geometry [29]. The electronic spectra of Fe³⁺ H₂BMPDE a d⁷ ion consist of three bands in the region of 43478, 37037 and 23529 cm⁻¹. The band at 23529 cm⁻¹ assignable to 6A₁g → 4T₁g G(c) suggested distorted octahedral geometry [30-31]. The other band 43478 and 37037 cm⁻¹ are due to charge transfer transition [26,31]. The electronic spectra of Fe³⁺ H₂BMPDE a d⁷ ion consists of three bands in the region 30762, 40000 and 47619 cm⁻¹. The band at 30762 cm⁻¹ was assigned to 4A₂g → 2T₁g(F) indicating distorted octahedral geometry of Fe(II) ion (El-Gamel, 2012). The band at 40000 and 47619 cm⁻¹ are due to charge transfer transitions [22]. The metal-ligand mole ratio as determined from jobs plot indicated 1:1 stoichiometry for all the transition metal complexes and similar observations have been made [32] with related derivatives.

3.2 Thermodynamics of Complexation

The Vant Hoff thermodynamic properties of H₂L and HL complexes are shown in table I. Entropy and enthalpy changes were positive for all the complexes. The stability constants of the complexes increased in the order Fe(II) > Fe(III) > Cu(II) > Ni(II) > Co(II).

The complexation process increased as temperature increased for all the metal ions until at a maximum of about 35 °C. The increased complexation of the metal ions to the ligand at relatively high temperatures (between 20-35 °C) showed that the complexation process may be endothermic [33]. From table II, Gibb’s free energy change values were found to be negative indicating the feasibility and spontaneity of the complexation. The positive sign of enthalpy change confirmed that the complexation process was endothermic. The negative value of entropy change showed that the complexation involved solvation process [34]. Similarly the values of stability constants indicated that iron (II) and iron (III) metal ion complexes are more stable than others [34]. The thermodynamic parameters of complexation such as enthalpy (ΔH⁰), entropy (ΔS⁰), Gibb’s free energy (ΔG⁰) and stability constant (βn) are listed in table I and are calculated from the variation of the thermodynamic equilibrium constant, K₀ at different temperatures as shown in equation 1.

\[K₀ = \frac{C₁}{C₂} \] …………………………………………1

C₁ is the amount of metal ion complexed per unit mass of ligand and C₂ the concentration of metal ion in the aqueous phase [33].

The standard enthalpy change of complexation (ΔH⁰), the standard entropy change of complexation (ΔS⁰), and Gibb’s free energy of complexation (ΔG⁰) and stability constant for complexation (βn) were calculated as shown in equation 2, 3 and 4.

\[\ln K₀ = \frac{ΔS⁰}{R} - \frac{ΔH⁰}{RT} \quad (Vant \ Hoff \ plot) \] …………………2

\[ΔG⁰ = -RT\ln K₀ \] …………………………………………3

\[ΔG⁰ = -2.303RT\beta_n \] …………………………………………4

Thus, T represents the temperature in K while R is the universal gas constant (KJ Mol⁻¹k⁻¹). The thermodynamic values are given in Table 2.
3.4 Kinetics of complexation

The kinetics of complexation of metal ions to the ligand (H\textsubscript{2}L) at different contact time (1, 3, 5, 10 and 15 minutes) and at constant ligand and acid concentration of 0.5 % and 10-4 M respectively was performed. Contact time of 10, 5, 10, 10 and 5 mins was sufficient to achieve equilibrium for iron (III), iron(II), cobalt(II), nickel(II) and copper(II) metal ions complexation with H\textsubscript{2}L ligand respectively. The commonly used kinetic models were applied on the complexation data the Lagergren pseudo-first –order model and pseudo-second –order shown in equations 5 and 6 respectively.

\[\ln(qe - qt) = \ln qe - k_1t \]

\[\frac{t}{qt} = \frac{1}{K_2} qe^2 + \frac{t}{qe} \]

\[qe \] is the amount of metal ion complexed with ligand at equilibrium (µg) and \[qt \] is the amount (µg) of metal complexed at time \[t \] (min) whereas \[K_1 \] and \[K_2 \] are rate constants of pseudo-first order and second –order models respectively. A linear plot of \[\ln(qe-qt) \] versus \[t \] for Pseudo-first –order model and \[t/qt \] versus \[t \] for second –order –model clearly described the relevance of the models with the slopes as \[K_1 \] and \[K_2 \] respectively. Based on the high regression coefficient of the metal ions complexation on the ligand as shown from the pseudo-second –order kinetic model (\[R^2 =0.9984, 0.9993, 0.9948, 0.9983, 0.9994 \] for iron(II), iron (III), cobalt(II), nickel(II) and copper(II) respectively in relation with pseudo-first –order kinetic model (\[R^2=0.6634, 0.6102, 0.3382, 0.383 \) and \[0.6118 \] for iron(II), iron (III), cobalt(II), nickel(II) and copper(II) respectively), the complexation was best described by the Pseudo –second –order kinetic model.

Table 1: Vant Hoff Thermodynamic Parameters of H\textsubscript{2}L and HL complexes

Metal Complexed	T(K)	logK\textsubscript{a}	BH	\(\Delta G \) (KJ Mol-1)	\(\Delta H \) (KJ Mol-1)	\(\Delta S \) (KJ Mol-1K-1)
Fe(III)	288	4.59	1.813	-10.99	20187.85	-52.406
	293	2.43	1.055	-5.919		
	298	0.559	0.243	-1.385		
	303	0.198	0.086	-0.498		
Fe(II)	288	4.18	1.814	-10.00	5462.11	-65.63
	293	4.056	1.76	-9.88		
	293	3.94	1.71	-9.76		
	303	3.17	1.38	-7.98		
	308	3.112	1.35	-7.96		
	313	2.94	1.27	-7.65		
Ni(II)	288	3.17	1.38	-7.59	1155.74	-0.1817
	293	3.10	1.35	-7.55		
	293	3.00	1.30	-7.55		
	303	2.90	1.26	-7.43		
	308	2.923	1.27	-7.48		
	313	2.923	1.27	-7.60		
Co(II)	288	2.495	1.08	-5.97	14680.49	-47.51
	293	2.429	1.05	-5.97		
	293	2.31	0.985	-5.62		
	303	0	0	0		
Cu(II)	288	3.66	1.59	-8.76	7654.36	-22.50
	293	3.47	1.506	-8.45		
	293	2.99	1.298	-7.41		
	303	2.09	0.906	-5.26		
	308	2.034	0.8817	-5.20		
	313	1.967	0.854	-5.12		

Legend: \(T= \) temperature, \(\beta_n= \) stability constant, \(\Delta G^0= \) Gibb’s free energy.
3.5 DSC studies

Metal complex	T	T_m	ΔH⁰_m (J/K)	ΔC_p (°C)	ΔS⁰_m (J/K)	ΔGo (T) (kJ/mol)	ΔH⁰ (T) (kJ/mol)	ΔS⁰ (T) (kJ/mol)
Fe³⁺ HL	317.7	302.1	235	34.1	0.778	-0.034	766.96	2.49
	425.4	405.2	138.4	34.9	0.342	-0.178	843.38	2.04
	783.6	776.9	880.2	8.6	1.13	2.103	937.82	1.20
Fe³⁺ HL	109.2	98.1	-49.62	23.9	-0.506	0.019	220.45	2.055
	290	275.4	536.2	40.9	1.95	-0.83	1133.3	4.06
	811.1	802.4	108.6	18.9	0.135	0.276	273.03	0.338
Ni²⁺ HL	146.4	141.4	31.24	13.7	0.221	-0.009	99.74	0.697
	509.2	496.1	-101.8	19.4	-0.205	-0.099	152.34	0.300
	617.6	573.1	576.7	55.5	1.006	0.161	3046.4	5.156
	842.2	836.6	444.66	14.1	0.531	0.365	523.56	0.623
Co²⁺L	117.8	124.8	-181.3	12.8	-1.45	-0.34	270.9	0.711
	519.2	505.6	234	29.1	0.46	1.424	874.27	1.427
	626.3	601.6	106.1	31.1	0.176	0.218	700.45	-1.036
	667.3	695.4	269	34.5	0.387	0.119		
Cu²⁺L	345.6	332.3	166.9	19.6	0.502	0.085	427.58	1.27
	539.1	545.2	10.7	8.8	0.019	0.341	-42.98	-0.08
	623.2	619.6	54.81	37.4	0.088	0.285	189.45	0.304
	792.2	802.7	36.8	51.1	0.046	-0.124	-499.75	-0.626

| Table 2 : Thermodynamic Data on the DSC Decomposition of H₂L and HL Complexes. |

The DSC curve for Fe²⁺HL, Cu²⁺HL, Co²⁺H_L, Fe³⁺HL and Ni²⁺HL was subdivided into two, three, two and three main exothermic stages respectively as shown in table II. The thermal degradation patterns could have been due to loss of hydroxyl group, loss of component attached to the phenolic moiety, ligand degradation or decomposition and final decomposition to metal oxide. For Fe³⁺HL, the weak endothermic peak at 98.1 °C corresponds to morphology transformation or loss of hydroxyl group or smaller fragment [35] while the sharp endothermic peak at 275.4 °C corresponds to the melting point of the complex. This was followed by a strong exothermic peak at 802.4 °C corresponding to the decomposition of the complex. For Cu²⁺HL, the DSC thermogram showed single sharp endothermic peak at 332.3 °C corresponding to the melting point of the complex. This was followed by three exothermic peaks at 545.2, 619.6 and 802.7 °C corresponding to the stepwise decomposition of the complex. The DSC curve of Fe³⁺HL showed three peaks, one of the peaks corresponds to endothermic process while two corresponds to exothermic processes. The sharp endothermic peak at 302.1 °C corresponds to the melting point of the complex whereas the broad peaks at 405.2 °C and 776.9 °C corresponds to stepwise decomposition of the complex. The DSC curve of Ni²⁺HL showed four peaks, 141.4 °C, 496.1 °C, 573.1 °C and 836.6 °C. The first weak endothermic peak (141.4 °C) corresponds to morphological transformation while the second sharp endothermic peak 496.1 °C corresponds to the melting point of the complex. The last two peaks at 573.1 °C and 836.6 °C corresponds to stepwise decomposition of the complex. The DSC curve of Co²⁺H_L showed four peaks. The first weak endothermic peak at 124.8 °C corresponds to morphological transformation while the second sharp endothermic peak 505.6 °C corresponds to melting point of the complex. The last two broad exothermic peaks at 601.6 °C and 695.4 °C correspond to stepwise decomposition of the complex.

Calculations from DSC data as shown in table II, presented negative values of ΔS at some steps indicating the reactions are slower than expected thereby establishing nonspontaneous nature of the reaction. Positive value
The complexation which indicated formation of mixed ionic complexes was nonspontaneous and the DSC decomposition of the complexes have shown their degrees of biochemical stability.

CONCLUSION
In conclusion, the thermal properties of the complexes of H$_2$L synthesized using extractive technique have been critically studied. The complexation which indicated formation of mixed ionic complexes was nonspontaneous and the DSC decomposition of the complexes have shown their degrees of biochemical stability.
REFERENCES:

1. Wololdemarian G A, Mandal S S. Iron(III) salen Damages DNA and Induces Apoptosis in Human Cell Via. *J. Inorg. Biochem.* 2008;102: 740-7.

2. Rosas-Garcia VM, Martinez PE, Rodriguez N P, Martinez BN. Potential Oxygen –Carrying Complexes by Design. *Quimica Hoy Chemistry Sciences*. 2012; 2(4): 30-3.

3. Sonkár P K, Ganesan V, Rao V. Electrocatlytic Oxidation and Determination of Cysteine at Oxovanadium(IV) salen Coated Electrodes. *Int. Journal of Electrochemistry*. 2014; 1-6.

4. Katsuki T. Functionalization of Metallosalem Complexes: Diverse Catalytic Performances and High Asymmetry Inducing Ability. *Chem Lett*, 2006; 124:1-12.

5. Zhang W, Loebach JL, Wilson SR, Jacobsen EN. Enantioselective Epoxidation of Unfunctionalized Olefins Catalyzed by (Salen) Manganese Complexes. *J.Am. Chem. Soc.* 1990; 112: 2801-3.

6. Perumal S, Thangadurai V, Thiruthimuthu K, Chandra R S. Electrocatalytic Oxidation and Determination of Cysteine at Oxovanadium(IV) salen Coated Electrodes. *J. Mex. Chem. Soc*. 2004;58(2): 211-17.

7. Alioke C U, Ukoha P O, Ukwueze N N, Asegbeloyin J N. Kinetics and Mechanism of the Reduction of N,N,N-salicylideneiminatoiron(III) Complex Ion by L-ascorbic acid in Aqueous Acid Medium. *Chemistry and Materials Research*. 2012;2(7):48-57.

8. Du J, Cheng F, Wang S, Zhang T, Chen J. M(salen)-Derived Nitrogen Doped M/C (M=Fe, Co, Ni) Porous Nanocomposites for Electrocatalytic Oxygen Reduction. *Scientific Reports* (4386) Conference Proceedings AP Energy 2014; 4: 1-7.

9. Zhu Z, Wang S, Du J, Jin Q, Zhang T, Cheng F, Chen J. Ultrasmall Sn Nanoparticle Embedded in Nitrogen – Doped Porous Carbon as High Performance Anode for Lithium-ion Batteries. *Nano Lett*. 2014; 14(1):153-7.

10. Murugaiyan M, Madhu P, Vennila P, Venkatesh Investigation of Schiff Base N, N-[bis (Salicylidene)- 1,2-Diaminoethene(salen) as Corrosion Inhibitor for Mild Steel in H3PO4 Solution. *International journal of Chem Tech Research*. 2014/2015; 7(5): 2489-98

11. Starkie C. Advances in Carbon Capture and Storage Research. *John Matthey Technol. Rev* 2015; 59(3): 182-187.

12. Bae HJ, Hwang KY, Lee M H, Do Y. Salen-Aluminium Complexes as Host Materials for Red Photophile Organic Light Emitting Diodes. *Bull. Korean. Chem. Soc*. 2011; 32(9): 3290-94.

13. Abe Y, Nakabayashi K., Matsukawa N, Takashima H, Lida M, Tanase T, Sugibayashi M, Mukai H, Ohta K.. Chain Formation via the VO Units in the Liquid Crystal. *Inorg. Chin. Acta*. 2006; 359(12): 3934-46.

14. Doctrow SR, Huffman K, Marcus CB, Tocco G, Malfroy E, Adinolfi, C A, Kruk H, Baker K, Lazarowych N, Mascarenhas J, Malfroy B. Salen Manganese Complexes as Catalytic Scavengers of Hydrogen Peroxide and Cytoprotective Agents: Structure- Activity Relationship Studies. *J. Med. Chem*. 2002;45: 4549

15. Doctrow S R, Liesa M, Melov S, Shirihai OS, Tofilon P. Salen Mn Complexes are Superoxide Dismutase/ Catalase Mimetics that Protect the Mitochondria. *Curr. Inorg. Chem*. 2012; 2: 325-334

16. Johnson C, Long B, Nguen JG, Day V W, Borovi AS, Subramaniam B, Guzman J. Correlation Between Active Centre Structure and Enhanced Dioxygen Binding in Co(salen) Nanoparticles: Characterization by In Situ Infrared, Raman, and X-ray Absorption Spectroscopies. *J. phy. Chem. C*. 2008; 112(32) :12272-81

17. Kumar D N, Garg BS. Some New Cobalt(II) Complexes: Synthesis, Characterization and Thermal Studies. *Jour-
18. Al-hamadani UJ, Abid DS. Synthesis of Iron(III) Complex of Polyester and Study of its Liquid Crystalline and Catalytic Properties. *Journal of Basrah Researchers (sciences).* 2011;37(3A):100-103

19. Cozzi PG. Metal-salen Schiff Base Complexes in Catalysis. Practical Aspects. *Chem. Soc. Rev.* 2004; 33: 410-21.

20. Nworie FS, Nwabue FI. Solvent Extraction Studies of Metal Complexes Derived from a Tetradentate Schiff Base Bis(salicylidene)ethylenediamine (H_2SAL) in Acid Medium. *International Journal of Innovative and Applied Research.* 2014; 2 (6): 66-75.

21. Nwabue FI, Okafo E N. Studies on the Extraction and Spectrophotometric Determination of Ni(II), Fe(II), Fe(III) and V (IV) with Bis (4-hydroxypent-2-ylidine) Diaminothane. *Talanta.* 1991; 39(3): 273-280.

22. Boghaei DM, Lashanizadega M. Template Synthesis Characterization of Highly Unsymmetrical Tetradentate Schiff Base Complexes of Nickel(II) and Copper(II). *J. Sci. I. R. Iran.* 2000; 2: 301.

23. Rathore K, Singh RK, Singh HB. Structural, Spectroscopic and Biological Aspects of O, N Donor Schiff Base Ligand and its Cr(III), Co(II) Ni(II) and Cu(II) Complexes Synthesized through Green Chemical Approach. *E- Journal of Chemistry.* 2010; 7: 5566-72.

24. Ukoh PO, Oruma US. Synthesis and Antimicrobial Studies of N,N^1^-bis(4-dimethylaminobenzylaldehyde) ethane-1,2-diamine and its Nickel(II) and platinum(IV) Complexes. *Journal Chem Soc. Nigeria.* 2014; 39(2):102-7.

25. Zahid H L, Syed KAS. Spectral, Magnetic and Biological Studies on Some Bivalent 3d Metal Complexes of Hydrazine Derived Schiff Base Ligands. *Metal –Based Drugs.* 1997; 4(2): 65-8.

26. Yang S, Kwon H, Wang H, Chang K, Wang J. Efficient Electrolyte of N, N-drazine Derived Schiff Base Ligands. *New. J. Chem.* 2010; 34, 313-7.

27. Singh K, Baruwa MS, Tyagi P. Synthesis, Characterization and biological activities of Co(II), Ni(II), Cu(II) and Zn(II) Complexes with Bidentate Schiff Bases Derived by Heterocyclic Ketone. *Eur Journ Medicinal Chem.* 2006; 41 (1): 147 -153.

28. Prakash A, Pal Ganwar M, Singh KK. Synthesis, Spectroscopy and Biological Studies of Ni(II) Complexes with Tetradentate Schiff Bases having N_2O_2 Donor Group. *J. Dev. Biol. Tissue Eng.* 2011;3(2): 13-19.

29. El-Gamel N E A, Zayed MA. Fluoroquinoline Antibiotic (Enrofloxacin) Metal Complexes. Synthesis, Spectroscopic and In vitro Antimicrobial Screening Properties. *World Journal of pharmaceutical research,* 2014; 4(1):142-62.

30. El-Gamel NEA. Co-ordination Behavior and Biopotency of Metal N, N- Salen Complexes. *RSC Advances,* 2012; 2:5870-6.

31. El-Gamel NEA, Zayed MA. Synthesis, Structural Characterization and Antimicrobial Activity Evaluation of Metal Complexes of Sparfloxacin. *Spectrochim Acta,* 2011; 82:414-23.

32. Lloret F, Moratal J, Faus J. Hydrolytic Decomposition of Salen in Acid Solution: Solution Chemistry of N,N^1^- ethylenebis(salicylideneiminato)Iron(III). *International Journal of Inorganic and Organometallic Chemistry.* 1983; 10: 1743-8.

33. El- Binday A- A, El- sonbaty, M A D, Abd – El kader M K. Potentiometric and Thermodynamic Studies of Some Schiff Base Derivative of 4- Aminooantipyrene and their Metal Complexes. *Journal of Chemistry.* 2013. 68218: 1-6

34. Samir A A, Saber EM, Abdulrahman, A F Potentiometric, Spectrophotometric, Conductimetric and Thermodynamic Studies on Some Transition Metal Complexes Derived from 3___ methyl-l-phenyl-and 1,3- diphenyl- 4___ arylazo- 5- pyrazolones. *Nature and science.* 2012; 2: 793- 803.

35. Lee CH, Hsu CK, Chang CL. A Study on the Thermal Decomposition Behaviours of PETN, RDX, HNS and HMX, *Thermochem. Acta.* 2002; 173: 392-3.

36. Borah D, BaruaHM K. Kinetic and Thermodynamic Studies on Oxidation and Desulphurization of Organic Sulphur from India Coal at 50-150°C. *Fuel Processing Technology.* 2001;72(2):83-101

37. Bruylant G, Wouters J, Michaux C. Differential Scanning Calorimetry in Life Science: Thermodynamics Stability, Molecular Recognition and Application in Drug Design. *Current Medicinal Chemistry.* 2005; 12: 2011-20.

38. oshi K R, Rojivadiya A J, Pandya J H. Synthetic and Spectroscopic and Antimicrobial Studies of Schiff Base Metal Complex Derived from 2-hydroxy-3- methoxy-5-nitrobenzaldehyde. *Int. Journal of Inorganic Chem.* 2014, 817412.

39. Emara AAA, Ali AM, El-Asmy AF, Ragab EM. Investigation of the Oxygen Affinity of Manganese(II), Cobalt (II) and Nickel(II) Complexes with Some Tetradentate Schiff Bases. *Journal of Saudi Chemical Society.* 2011; 18 (6): 762-73.