CD27, a Member of the Tumor Necrosis Factor Receptor Superfamily, Activates NF-κB and Stress-activated Protein Kinase/c-Jun N-terminal Kinase via TRAF2, TRAF5, and NF-κB-inducing Kinase*

(Received for publication, September 11, 1997, and in revised form, March 12, 1998)

Hisaya Akiba‡, Hiroyasu Nakano‡‡, Shigeyuki Nishinaka†, Masahisa Shindo, Tetsuji Kobata‡, Machiko Atsuta‡, Chikao Morimoto, Carl F. Ware**, Nikolai L. Malinin‡‡, David Wallach‡‡, Hideo Yagita‡, and Ko Okumura‡

‡ From the Department of Immunology, Juntendo University School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113, the ‡Exploratory Group, Sumitomo Pharmaceuticals Research Center, 4-2-1 Takatsukasa, Takarazuka 665, the §Department of Clinical Immunology, Institute of Medical Science, the University of Tokyo, 4-6-1 Shirokanedai, Minatoku, Tokyo 108, Japan, the **Division of Molecular Immunology, La Jolla Institute for Allergy and Immunology, La Jolla, California 92121, the ‡‡Department of Membrane Research and Biophysics, The Weizmann Institute of Science, 76100 Rehovot, Israel, and the ‡‡‡Department of Immunology, Institute of Medical Science, the University of Tokyo, 4-6-1 Shirokanedai, Minatoku, Tokyo 101, Japan

CD27 is a member of the tumor necrosis factor (TNF) receptor superfamily and is expressed on T, B, and NK cells. The signal via CD27 plays pivotal roles in T-T and T-B cell interactions. Here we demonstrate that overexpression of CD27 activates NF-κB and stress-activated protein kinase (SAPK)/c-Jun N-terminal kinase (JNK). Deletion analysis of the cytoplasmic domain of CD27 revealed that the C-terminal PIQEDYR motif was indispensable for both NF-κB and SAPK/JNK activation and was also required for the interaction with TNF receptor-associated factor (TRAF) 2 and TRAF5, both of which have been implicated in NF-κB activation by members of the TNF-R superfamily. Co-transfection of a dominant negative TRAF2 or TRAF5 blocked NF-κB and SAPK/JNK activation induced by CD27. Recently, a TRAF2-interacting kinase has been identified, termed NF-κB-inducing kinase (NIK). A kinase-inactive mutant NIK blocked CD27-, TRAF2-, and TRAF5-mediated NF-κB and SAPK/JNK activation. These results indicate that TRAF2 and TRAF5 are involved in NF-κB and SAPK/JNK activation by CD27, and NIK is a common downstream kinase of TRAF2 and TRAF5 for NF-κB and SAPK/JNK activation.

CD27 is a member of the tumor necrosis factor receptor (TNF-R) superfamily and is expressed on T, B, and NK cells as a disulfide-linked homodimer (1). CD27 ligand (CD70) belongs to the TNF superfamily and is expressed on the surface of activated T and B cells. Cross-linking of CD27 along with a suboptimal dose of phytohemagglutinin, phorbol 12-myristate 13-acetate, anti-CD2, or anti-CD3 antibodies resulted in vigorous proliferation of T cells, indicating that CD27 transmits a costimulatory signal in T cells (2). On the other hand, ligation of CD27 on B cells enhanced IgG production (3). These studies implicated the important roles of CD27/CD70 interaction in immunoregulation through T-T and T-B cell interactions. A recent report also demonstrated a critical role of CD27/CD70 interaction in T cell development (4). Although biological function of CD27/CD70 interaction has been extensively investigated, the mechanism by which CD27 transmits the signal has been largely unknown, except for a previous study, which demonstrated involvement of the protein tyrosine kinase cascade (2).

TNF receptor-associated factors (TRAFs) have emerged as signal transducers for some members of the TNF-R superfamily (5–10). All TRAFs, except for TRAF1, are composed of N-terminal zinc RING finger, multiple zinc fingers, coiled-coil, and C-terminal receptor binding (TRAF) domains (5, 6, 9–11). Whereas an N-terminal RING finger domain of TRAF2, TRAF5, and TRAF6 is responsible for NF-κB activation, the TRAF and coiled-coil domains are required for homo- and heterodimerization and receptor association (5, 6, 9, 10, 12). With the exception of TRAF4, all other TRAFs have been shown to interact directly with the non-death domain receptors, CD30, CD40, TNFR80, lymphotoxin-βR (LT-βR), and interleukin-1R (9, 10, 12–16). TRAF2 has been shown to interact indirectly with death domain receptors, TNFR60 and death receptor 3, via the adapter molecule TRADD (17–19). TRAF2, TRAF3, and TRAF5 also interact with latent infection membrane protein 1, the transforming protein of Epstein-Barr virus (11). TRAF2 also participates in the activation of stress-activated kinase (SAPK)/c-Jun N-terminal kinase (JNK) induced by TNF (20–22). TRAF3 and TRAF5 are involved in CD32 up-regulation by CD40 (6, 16). TRAF3 has been shown to be involved in apoptosis by LT-βR (23). The mechanism by which TRAFs activate NF-κB remains to be solved. Recently, a serine/threonine kinase was identified that interacts with TRAF2 and activates NF-κB, named NF-κB-inducing kinase (NIK) (24). However, the functional role of NIK in TRAF5- or TRAF6-mediated NF-κB activation is uncertain.

CD27 is functionally similar to other co-stimulatory recep-
CD27 Activates NF-κB and SAPK/JNK

MATERIALS AND METHODS

Reagents and Cell Line—Biotin-conjugated monoclonal antibody (mAb) to Flag (M2) (Kodak), anti-hemagglutinin A (HA) (12CA5) (Boehringer Mannheim), horseradish peroxidase-conjugated rabbit anti-mouse IgG (Zymed), rabbit antibodies to NF-κB subunits, p65 and p50 (Santa Cruz Biotechnology) were obtained from the indicated commercial sources. The anti-human CD27 mAb (1A4) has been described previously (28). The human embryonic kidney (HEK) 293 cells were cultured in Dulbecco's modified Eagle's medium supplemented with 10% fetal calf serum.

Expression Vectors—Flag-tagged expression vectors for TRAF2 (Dr. T. Watanabe, Institute of Medical Science, University of Tokyo), TRAF3 (Dr. M. Messiah, Harvard Medical School), TRAF5, and TRAF6 were constructed by inserting each cDNA into pCR-Flag vector, which has two copies of Flag tag sequence downstream of cytomegalovirus promoter in pCMV (Invitrogen). Deletion mutants of ΔTRAF2-272–501 and ΔTRAF5-235–558 were amplified by polymerase chain reaction (PCR) using primers corresponding to the numbered amino acids. The PCR products were ligated directly into pCR-Flag vector. The C-terminal deletion mutants of human CD27 (Δ5, Δ8, Δ10, and Δ16) were made by PCR, and the appropriate PCR fragments were inserted into pCR-3 vector. pCR-CD90 (15) (Dr. T. Watanabe, Institute of Medical Science, University of Tokyo), pCDM8-CD80 (29) (Dr. H. Kikutani, Research Institute for Microbial Disease, University of Osaka), pcDNA-LT-βR (9), pcDNA-NIK, pc-Flag-NIK, pcDNA-NIK-KM (KK429–430AA), and pc-Flag-NIK-KM (KK429–430AA) (24), and pcSh-HA-SAPK (30) (Dr. E. Nishida, Kyoto University) were described previously. Recombinant GST-c-Jun-1–79 (Dr. E. Nishida, Kyoto University) was expressed and purified as described previously (31).

Electrophoretic Mobility Shift Assay (EMSA)—HEK293 cells (4 × 10⁶) were plated in 100-mm dishes. The following day the cells were transfected with 5 μg of pCR-CD27 or an empty vector using LipofectAMINE reagent (Life Technologies, Inc.) according to a manufacturer's instruction. After 36 h, nuclear extracts were prepared from transfected cells, and EMSA was performed as described previously (9).

NF-κB-dependent Reporter Assays—HEK293 cells (1 × 10⁶) were plated in 35-mm dishes. The following day the cells were transfected using LipofectAMINE. Transfections included 50 ng of β-actin-β-galactosidase expression plasmid to normalize for transfection efficiency, together with 100 ng of reporter plasmid and various amounts of each expression vector. Total DNA (1 μg) was kept constant by supplementation with pCR-3. A reporter plasmid, 3x kB-luc, has three repeats of the NF-κB site upstream of a minimal thymidine kinase promoter and a luciferase reporter gene in pGL-2 vector (Promega) (32) (Dr. M. Kashivada, NIH, Japan). After 24 h, the cells were harvested in phosphate-buffered saline and lysed in luciferase lysis buffer, LC-β (Promega). The lysates were assayed for luciferase and β-galactosidase activities using a luminometer (Berthold).

Co-immunoprecipitation and Western Blotting—HEK293 cells (1.5 × 10⁶) were plated in 60-mm dishes and transfected with various expression vectors using LipofectAMINE. After 24–36 h, the cells were washed in ice-cold phosphate-buffered saline and lysed for 30 min on ice in 1 ml of a lysis buffer containing 1% Nonidet P-40, 50 mM HEPES (pH 7.3), 250 mM NaCl, 2 mM EDTA, 1 μg/ml aprotinin, 1 μg/ml leupeptin, 1 μg/ml pepstatin, 1 mM phenylmethylsulfonyl fluoride. Cellular debris was removed by centrifugation, and the supernatant was precleared with protein A-conjugated beads (Bio-Rad) for 1 h at 4 °C. After the addition of protein A beads, the lysates were rotated at 4 °C for 1 h. The beads were washed three times with the lysis buffer, and bound proteins were eluted with 1% SDS sample buffer, subjected to 10% SDS-polyacrylamide gel electrophoresis, and then blotted onto polyvinylidene difluoride membrane (Millipore). Expression of transfected constructs was verified by immunoblotting of aliquots of cell lysates.

RESULTS

Overexpression of CD27 Activates NF-κB—Transient transfection of HEK293 cells with full-length CD27 activated a significant amount of NF-κB as measured by DNA binding activity (Fig. 1). Supershift assay with antibodies against each component of the NF-κB complex demonstrated that this complex was mainly composed of p50/p65 subunits. To delineate the functional domain of CD27 for NF-κB activation, we constructed a series of C-terminal deletion mutants (Fig. 2A) and performed a reporter gene assay after transfection into HEK293 cells. As expected from the result of EMSA, full-length human CD27 increased NF-κB-dependent lucifer-
CD27 Activates NF-κB and SAPK/JNK

Involvement of NIK in TRAF5- and CD27-mediated NF-κB Activation—NIK has been identified as a TRAF2-interacting kinase (24) and, thus, a likely candidate for mediating NF-κB activation by CD27. Co-transfection of a kinase-inactive mutant NIK (NIK-KM) with TRAF2, TRAF5, or CD27 blocked NF-κB activation (Fig. 4B). In addition, we also observed a dominant negative effect of NIK-KM on TRAF6-, CD30-, CD40-, and LT-βR-mediated NF-κB activation (Fig. 4B). These results indicated that NIK is a common downstream kinase of TRAF2, TRAF5, and TRAF6 for NF-κB activation in HEK293 cells.

CD27 Activates SAPK/JNK Pathway via TRAF2 and TRAF5—It has been shown that ligation of TNFR60 activated SAPK/JNK pathway, and this activation is dependent on TRAF2 (20–22). Together the data suggests that TRAF2 interacts with CD27 and thus CD27 may also activate SAPK/JNK pathway. To test this, HEK293 cells were co-transfected with HA-tagged SAPK and the C-terminal deletion mutants of CD27. The extent of SAPK/JNK activity was determined by immunoprecipitation of SAPK/JNK followed by in vitro kinase assay using GST-c-Jun-(1–79) as a substrate. Full-length CD27, CD27Δ5, and CD27Δ8, but not CD27Δ16, induced a 2.3- to 5.4-fold increase in SAPK/JNK activity (Fig. 5A). Overexpression of TRAF2 or TRAF5, but not TRAF3, also increased SAPK/JNK activity (Fig. 5B). These results indicated that CD27 activates SAPK/JNK pathway, and this activation is probably mediated by TRAF2 and TRAF5. This hypothesis was confirmed by the demonstration that N-terminal deletion mutants of TRAF2 or TRAF5 partially blocked SAPK/JNK activa-
Fig. 4. Involvement of TRAFs and NIK in CD27-mediated NF-κB activation. A, N-terminal deletion mutants of TRAF2 or TRAF5 blocked NF-κB activation by CD27. 293 cells were co-transfected with 100 ng of 3x-κB-tk-luc reporter gene plasmid, 50 ng of β-actin-β-galactosidase, and the indicated amounts of expression plasmids. B, NIK-KM blocks NF-κB activation by TRAF2, TRAF5, TRAF6, CD27, CD30, CD40, and LT-βR. HEK293 cells were co-transfected with 100 ng of 3x-κB-tk-luc reporter gene plasmid, 50 ng of β-actin-β-galactosidase, and 0.5 μg of indicated expression vectors. Data are shown as the mean ± S.D. of triplicate samples and represent one of three independent experiments with similar results.

Fig. 5. CD27 activates SAPK/JNK via TRAF2 and TRAF5. SAPK/JNK activation by CD27 (A), TRAF2 and TRAF5 (B). HEK293 cells were co-transfected with 0.5 μg of HA-SAPK and 1.5 μg of CD27, deletion mutants of CD27, Flag-TRAF2, Flag-TRAF5, or Flag-ΔTRAF5. HA-SAPK was immunoprecipitated, and kinase activity was assayed as described under “Materials and Methods.” Phosphorylation of GST-c-Jun-(1–79) was quantified by an image analyzer, and the fold increase in the kinase activity is indicated below the autoradiograms. The expression levels of CD27 and its deletion mutants, Flag-TRAF2, Flag-TRAF5, and Flag-ΔTRAF5 were monitored by immunoblotting with anti-CD27 mAb (A) or anti-Flag mAb (B). The positions of Flag-TRAFs are indicated at the right. C, inhibition of CD27-mediated SAPK/JNK activation by N-terminal deletion mutants of TRAF2 (ΔTRAF2) or TRAF5 (ΔTRAF5). HEK293 cells were co-transfected with 0.5 μg HA-SAPK and 1 μg of CD27 along with or without 0.5 μg of Flag-ΔTRAF2 or Flag-ΔTRAF5. HA-SAPK was immunoprecipitated, and in vitro phosphorylation of GST-c-Jun-(1–79) was performed as in A and B. The expression levels of CD27, Flag-ΔTRAF2, and Flag-ΔTRAF5 were determined by immunoblotting with anti-CD27 or anti-Flag mAb. The positions of Flag-ΔTRAF2 and Flag-ΔTRAF5 are indicated at the right.

*NIK Activates SAPK/JNK and Is Involved in CD27-, TRAF2-, and TRAF5-mediated SAPK/JNK Activation—Considering that NIK is structurally related to mitogen-activated protein kinase kinase kinase, we tested whether NIK activates SAPK/JNK. Overexpression of NIK, but not a kinase-inactive mutant NIK (NIK-KM), substantially increased SAPK/JNK activity to 6.9-fold compared with the vector-transfected cells (Fig. 6A). We next examined the effect of NIK-KM on SAPK/JNK activation by CD27, TRAF2, and TRAF5. As shown in Fig. 6, B and C, co-transfection of NIK-KM partially inhibited CD27-, TRAF2-, and TRAF5-mediated SAPK/JNK activation, suggesting that NIK is a common downstream kinase for SAPK/JNK activation as well as for NF-κB activation, induced by these molecules.

Discussion

Accumulating data have indicated important roles of TRAFs in signaling through certain members of the TNF-R superfamily. Here, we demonstrated that CD27 associates with TRAF2 and TRAF5, and these TRAFs are implicated in NF-κB and SAPK/JNK activation by CD27. Our results suggest that other members of the TNF-R superfamily, such as 4-1BB and OX40, may also interact with TRAFs and activate NF-κB and SAPK/JNK pathways. We also demonstrated that a kinase-inactive mutant NIK blocked TRAF5- and TRAF6-mediated NF-κB activation, indicating that NIK is a common downstream kinase of TRAF2, TRAF5, and TRAF6 for NF-κB activation. Previous studies (20, 34) implied that mitogen-activated protein kinase/ERK kinase kinase-1 may be responsible for TNF- and TRAF-mediated SAPK/JNK activation. Here we demonstrated that NIK also activates SAPK/JNK pathway and a kinase-inactive mutant NIK partially inhibited SAPK/JNK activation by TRAF2, TRAF5, and CD27. The dominant negative effect of NIK-KM on SAPK/JNK activation by CD27 and TRAFs appeared to be weaker than that on NF-κB activation. These results suggest that other mitogen-activated protein kinase kinase kinases, such as mitogen-activated protein kinase/ERK kinase kinase-1, could compensate the dominant negative effect of NIK-KM on SAPK/JNK activation. The mechanism by which NIK activates SAPK/JNK pathway is currently under investigation. A previous study showed that CD27 cross-linking induced tyrosine phosphorylation of several signal transducing molecules including ZAP70, and the treatment with a Src family kinase inhibitor, herbimycin, completely blocked co-stimulatory signal through CD27 (2). Collectively, these data suggest that CD27 activates two distinct signaling pathways, one is protein tyrosine kinase-dependent and another is TRAF-dependent pathway, the latter of which activates NF-κB and SAPK/JNK.

To date, it has been shown that CD27, CD30, CD40, LT-βR, and HVEM interact with both TRAF2 and TRAF5 (9, 15, 16, 26, 27). A common consequence of signaling through these receptors is the activation of NF-κB that can now be explained by...
their use of a similar set of TRAF proteins. However, these receptors display unique functions in vivo at several levels. For example, CD40 is involved in class switching and proliferation at several levels. For example, TRAF5 does not interact with the TRAF2-binding proteins, TRADD2 or IAPs (40). On the other hand, TRAF5 interacts with TRAF3, but TRAF2 does not.2 These results suggested that TRAF2 and TRAF5 could exert unique functions through interaction with distinct sets of downstream signaling molecules. The recent generation of TRAF2-deficient mice revealed that SAPK/JNK activation, but not NF-κB activation, by TNF is abrogated in these mice (41). Our preliminary results showed that a truncated TRAF5 partially inhibited NF-κB activation by TNF, suggesting that TRAF2 and TRAF5 may act redundantly in NF-κB activation by TNF. In contrast, SAPK/JNK activation may be more efficiently mediated by TRAF2 than TRAF5. Consistent with this notion, a higher potential of TRAF2 to activate SAPK/JNK (Fig. 5B) and truncated TRAF2 to inhibit CD27-mediated SAPK/JNK activation were noted (Fig. 5C). At this moment, it remains to be determined whether TRAF2 and TRAF5 are functionally redundant in signals via CD27 and other members of the TNF-R family in TRAP-2 and TRAP-5-deficient mice.

Acknowledgments—We thank Masaki Kashiwada, Kyoko Yokota, Hitoshi Kikutani, Toshiki Watanabe, Eisaue Nishida, George Mosialos, and Elliott Kieff for reagents. We also thank Sachiho Sakon for technical assistance.

REFERENCES

1. Hintzen, R. Q., de Jong, R., Lens, S. M. A., and van Lier, R. A. W. (1997) Immunol. Today 15, 307–311
2. Kobata, T., Agematsu, K., Kameoka, J., Schlossman, S. F., and Morimoto, C. (1994) J. Immunol. 153, 5422–5432
3. Kobata, T., Jacquot, S., Kozlowski, S., Agematsu, K., Schlossman, S. F., and Morimoto, C. (1995) Proc. Natl. Acad. Sci. U. S. A. 92, 11249–11253
4. Gravestein, L. A., van Ewijk, W., Ossendrop, F., and Borst, J. (1996) J. Exp. Med. 184, 675–685
5. Rothe, M., Wong, S. C., Henzel, W. J., and Goeddel, D. V. (1994) Cell 78, 681–692
6. Ono, G., Cleary, A. M., Ye, Z.-S., Hong, D. I., Lederman, S., and Baltimore, D. (1995) Science 267, 1494–1498
7. Hu, H.-M., O'Rourke, K., Boguski, M. S., and Dixit, V. M. (1995) J. Biol. Chem. 269, 30369–30372
8. Regnier, C. H., Tomasetto, C., Muog-Lutz, C., Chenard, M.-P., Wendling, C., Basset, P., and Rio, M.-C. (1995) J. Biol. Chem. 270, 25715–25721
9. Nakano, H., Oshima, H., Chung, W., Williams-Abbott, L., Ware, C. F., Yagita, H., and Okumura, K. (1996) J. Biol. Chem. 271, 14661–14664
10. Cao, Z., Xiong, J., Takeuchi, M., Kurama, T., and Goeddel, D. V. (1996) Nature 383, 443–446
11. Mosios, G., Birkenbach, M., Yalamanchili, R., VanArsdall, T., Ware, C. F., and Mosialos, G. (1995) J. Biol. Chem. 270, 18461–18464
12. Rothe, M., Sarma, V., Dixit, V. M., and Goeddel, D. V. (1995) Science 269, 1424–1427
13. Gedrich, R. W., Gilfillan, M. C., Dukett, C. S., Van Dongen, J. L., and Thompson, C. B. (1996) J. Biol. Chem. 271, 12852–12858
14. Itohda, T., Mizushima, S., Asauma, S., Kobayashi, N., Tojo, T., Suzuki, K., Aizawa, S., Watanabe, T., Mosios, G., Kieff, E., Yamamoto, T., and Inoue, J. (1996) J. Biol. Chem. 271, 28745–28748
15. Aizawa, S., Nakano, H., Ishida, T., Horie, R., Nagai, M., Ito, K., Yagita, H., Okumura, K., Inoue, J., and Watanabe, T. (1997) J. Biol. Chem. 272, 2042–2045
16. Ishida, T., Tojo, T., Aoki, T., Kobayashi, N., Ohiashi, T., Watanabe, T., Yamamoto, T., and Inoue, J.-J. (1996) Proc. Natl. Acad. Sci. U. S. A. 93, 9437–9442
17. Hsu, H., Shu, H.-B., Pan, M.-G., and Goeddel, D. V. (1996) Cell 84, 299–308
18. Chinnaiyan, A. M., O'Rourke, K., Yu, G.-L., Lyons, R. H., Garg, M., Duan, R., Xing, L., Gentz, R., Ni, J., and Dixit, V. M. (1996) Science 274, 990–992
19. Kitson, J., Raven, T., Jiang, Y.-P., Goeddel, D. V., Giles, K. M., Pan, K.-T., Grinnell, C. J., Brown, R., and Farrow, S. N. (1996) Nature 384, 572–575
20. Liu, Z.-G., Hsu, H., Goeddel, D. V., and Karin, M. (1996) Cell 87, 565–576
21. Reinhard, C., Shamon, B., Shyamala, V., and Williams, L. T. (1997) EMBO J. 16, 1080–1092
22. Naito, G., Costanzo, A., Ianni, A., Templeton, D. J., Woodgett, J. R., Balsano, C., and Levervo, M. (1997) Science 275, 200–203
23. VanArsdall, T. L., Vanarsdall, S. L., Force, W. R., Walter, B. N., Mosialos, G., Kieff, E., Reed, J. C., and Ware, C. F. (1997) Proc. Natl. Acad. Sci. U. S. A. 94, 2460–2465
24. Malinin, N. L., Boldin, M. P., Kovalenko, A. V., and Wallach, D. (1997) Nature 385, 540–544
25. Montgomery, R. I., Warner, M. S., Lum, B. J., and Spear, P. G. (1996) Cell 87, 427–436
26. Marsters, S. A., Ayres, T. M., Skubatch, M., Gray, C. L., Rothe, M., and Thompson, C. B. (1996) J. Biol. Chem. 271, 14371–14374
27. Sugita, K., Torimoto, Y., Nojima, Y., Daler, J. F., Schlossman, S. F., and Morimoto, C. (1991) J. Immunol. 147, 1477–1483
28. Inui, S., Kaisho, T., Kikutani, H., Stamenkovic, H., Seed, B., Clark, A. E., and Kishimoto, T. (1990) Eur. J. Immunol. 20, 1747–1753
29. Shirakabe, K., Yamaguchi, K., Shibuya, H., Irie, K., Matsuda, S., Moriguchi, T., Gotoh, Y., Matsumoto, K., and Nishida, E. (1997) J. Biol. Chem. 272, 8141–8144
30. Moriguchi, T., Kawasaki, H., Matsuda, S., Gotoh, Y., and Nishida, E. (1995) J. Biol. Chem. 270, 12579–12572
31. Kashiwada, M., Shirakata, Y., Inoue, J.-J., Nakano, H., Okazaki, K., Okumura, K., Yamamoto, T., Nagaoka, H., and Takeomori, T. (1998) J. Exp. Med. 187, 257–244
32. Devergne, O., Hativavsilii, E., Iuzumi, K. M., Kaye, K. M., Kleijnen, M. F.,
34. Song, H. Y., Regnier, C. H., Kirschning, C. J., Goeddel, D. V., and Rothe, M. (1997) *Proc. Natl. Acad. Sci. U. S. A.* **94**, 9792–9796
35. Kooten, C.-V., and Banchereau, J. (1996) *Adv. Immunol.* **61**, 1–55
36. Amakawa, R., Haken, A., Kundig, T. M., Matsuyama, T., Simard, J. J. L., Timms, E., Wakeham, A., Mittrucker, H.-W., Griesser, H., Takimoto, H., Schmits, R., Shahinian, A., Ohashi, P. S., Penninger, J. M., and Mak, T. W. (1996) *Cell* **84**, 551–562
37. Ettinger, R., Browning, J. L., Michie, S. A., van Ewijk, W., and McDevitt, H. O. (1996) *Proc. Natl. Acad. Sci. U. S. A.* **93**, 13102–13107
38. Rennert, P. D., Browning, J. L., Mebius, R., Mackay, F., and Hochman, P. S. (1996) *J. Exp. Med.* **184**, 1999–2006
39. Nakano, H., Shinde, M., Yamada, K., Yoshida, M. C., Santee, S. M., Ware, C. F., Jenkins, N. A., Gilbert, D. J., Yagita, H., Copeland, N. G., and Okumura, K. (1997) *Genomics* **42**, 26–32
40. Roy, N., Deveraux, Q. L., Takahashi, R., Salvesen, G. S., and Reed, J. C. (1997) *EMBO J.* **16**, 6914–6925
41. Yeh, W.-C., Shahinian, A., Speiser, D., Kraunus, J., Billia, F., Wakeham, A., de la Pompa, J. L., Ferrick, D., Hum, B., Iscove, N., Ohashi, P., Rothe, M., Goeddel, D. V., and Mak, T. W. (1997) *Immunity* **7**, 715–725