Of mice and men
Andersen, Troels Askhøj; Troelsen, Karin de Linde Lind; Larsen, Lars Allan

Published in:
Cellular and molecular life sciences : CMLS

DOI:
10.1007/s00018-013-1430-1

Publication date:
2014

Document Version
Publisher's PDF, also known as Version of record

Citation for published version (APA):
Andersen, T. A., Troelsen, K. D. L. L., & Larsen, L. A. (2014). Of mice and men: molecular genetics of congenital heart disease. DOI: 10.1007/s00018-013-1430-1
Of mice and men: molecular genetics of congenital heart disease

Troels Askhøj Andersen · Karin de Linde Lind Troelsen · Lars Allan Larsen

Received: 3 June 2013 / Revised: 16 July 2013 / Accepted: 18 July 2013 / Published online: 10 August 2013
© The Author(s) 2013. This article is published with open access at Springerlink.com

Abstract Congenital heart disease (CHD) affects nearly 1 % of the population. It is a complex disease, which may be caused by multiple genetic and environmental factors. Studies in human genetics have led to the identification of more than 50 human genes, involved in isolated CHD or genetic syndromes, where CHD is part of the phenotype. Furthermore, mapping of genomic copy number variants and exome sequencing of CHD patients have led to the identification of a large number of candidate disease genes. Experiments in animal models, particularly in mice, have been used to verify human disease genes and to gain further insight into the molecular pathology behind CHD. The picture emerging from these studies suggest that genetic lesions associated with CHD affect a broad range of cellular signaling components, from ligands and receptors, across down-stream effector molecules to transcription factors and co-factors, including chromatin modifiers.

Keywords Congenital heart disease · CHD · Disease genes · Copy number variants · CNVs

Introduction

Congenital heart disease (CHD) is the most prevalent birth defect, with a postnatal incidence of 0.8 % [1] and an approximately tenfold higher prenatal incidence [2]. CHD is a group of structural abnormalities of the heart, which include septal defects, valve defects and lesions affecting the outflow tract. The treatment of CHD has improved during the last 50 years, and today 95 % of CHD patients survive to adulthood, which has resulted in a growing population of adults living with CHD [3].

The etiology of CHD is complex and is associated with both environmental and genetic causes. Genetically, CHD is a very heterogeneous disease; 55 human disease genes have been identified so far (Table 1 and text below), however, experiments with targeted deletions in mice have revealed more than 500 genes which lead to heart defects when mutated (http://www.informatics.jax.org/). Thus it is likely that at least the same number of human CHD disease genes exist.

During the last two decades, linkage analysis has been used to successfully identify CHD disease genes in large families, segregating isolated CHD and genetic syndromes, where CHD is part of the phenotypic spectrum (syndromic CHD). Furthermore, fine-mapping of genomic copy number variants (CNVs) in patients with isolated CHD, or CHD in combination with additional birth defects, have been used to identify candidate disease genes. Follow-up studies of candidate genes in animal models, particularly in mice, have been very successful in validating the candidates, and to gain insight into the function of the gene products in heart development.

Identifying disease genes in CHD is critically important to understand the disease. Identification of a novel disease gene or a causative pathway will enhance current knowledge of the molecular biology involved in human cardiac development, and the molecular pathology underlying CHD. Such knowledge may lead to new preventive strategies and perhaps new treatments. Furthermore, such knowledge may also increase our understanding of the factors involved in cardiomyogenic stem cell differentiation, and may thus aid in the development of regenerative
Table 1 Genes associated with CHD via intragenic mutations

HCNG gene symbol (alternative symbol)	Protein function\(^a\)	Type of CHD\(^b\)	Reference
Genes encoding transcription factors			
CITED2	Transcriptional co-activator	I	[18]
FOXH1	Forkhead box TF	I	[29]
FOXP1	Forkhead box TF	I	[246]
GATA4	GATA-binding TF	I	[89–91]
GATA6	GATA-binding TF	I	[247, 248]
IRX4	Iroquois homeobox TF	I	[249]
MEDI13L	Multiprotein coactivator subunit	I	[250]
NKX2-5	Homeobox TF	I	[69–71]
NKX2-6	Homeobox TF	I	[251]
TBX1	T-box TF	S (DiGeorge syndrome)	[156]
TBX5	T-box TF	S (Holt–Oram syndrome)	[102, 103]
TBX20	T-box TF	I	[104]
SALL4	Zinc finger TF	I, S (Duane-radial ray syndrome)	[252–255]
TFAP2B	AP-2 TF	I, S (Char syndrome)	[110–112]
ZFPM2	Zinc finger TF	I	[255, 256]
ZIC3	Zinc finger TF	HTX	[19]
Genes involved in cell signaling			
ACRV1	Activin receptor, type 1	I	[257]
ACRV2B	Activin receptor 2B	HTX	[14]
BRAF	Serine/threonine protein kinase	S (NS, LS, CFC)	[56, 64]
CBL	E3 ubiquitin ligase	S (NS-like)	[66]
CFC1	Ligand (EGF family)	HTX	[17]
GDF1	Ligand (BMP/TGFbeta family)	HTX	[16]
HRA5	RAS GTPase	S (Costello syndrome)	[63]
JAG1	NOTCH ligand	S (Alagille syndrome)	[37, 38]
LEFTY2 (LEFTYA)	Ligand (BMP/TGFbeta family)	HTX	[14]
KRAS	RAS GTPase	S (NS, CFC)	[56, 57]
MAP2K1 (MEK1)	MAP kinase kinase	S (CFC)	[64]
MAP2K2 (MEK2)	MAP kinase kinase	S (CFC)	[64]
NF1	Negative regulator of RAS-MAPK signalling	S (neurofibromatosis-NS)	[67]
NRAS	RAS GTPase	S (NS)	[62]
NOX1	Ligand (BMP/TGFbeta family)	HTX	[12, 13]
NOTCH1	NOTCH receptor	I	[45–47]
NOTCH2	NOTCH receptor	S (Alagille syndrome)	[41, 42]
PTFGFRα	PTFGFRα receptor	I	[258]
PTPN11	Protein tyrosine phosphatase	S (NS)	[55]
RAF1	MAP kinase kinase kinase	S (NS, LS)	[60, 61]
RIT1	Ras-related GTPase	S (NS)	[259]
SHOC2	RAS-MAPK modulator	S (NS)	[65]
SMAD6	BMP/TGFbeta modulator	I	[260]
SOS1	Guanine nucleotide exchange factor (RAS-MAPK pathway)	S (NS)	[58, 59]
TAB2	Activator of MAP3K7 (TAK1)	I	[236]
TDGF1	Co-receptor for TGF-β ligands	I	[29]
Genes encoding structural proteins			
ACTC1	Cardiac α-actinin	I	[124]
ELCN	Elastin	f	[184]
therapy for treatment of myocardial infarction. In familial cases of CHD, identification of disease genes will benefit the genetic counseling process for CHD-afflicted families. Such knowledge is particularly important for the growing population of adults with CHD, due to the high recurrence risk of certain forms of CHD [4].

In this review, we aim to summarize current knowledge in the molecular genetics of CHD, from the perspective of, disease gene identification efforts in humans, and functional analyses of disease genes in animal models.

Part I: genes associated with congenital heart disease

Below we discuss genes associated with syndromic and isolated CHD, juxtaposing studies from multiple model systems to clarify why errors in the underlying molecular machinery manifests themselves as congenital heart defects.

Genes associated with laterality defects

The heart is the first organ to break the bilateral symmetry of the developing embryo. During early embryogenesis, left–right asymmetry of the body-axis is established via intricate cross-talk amongst signaling pathways such as Notch, Nodal, Hedgehog, FGF and BMP, ultimately restricting NODAL signaling to the left side of the embryo. The nodal cilia model is the predominant model to elucidate induction of embryonic asymmetry in the developing embryo, although other models have been proposed [5]. Briefly, nodal cilia in the node of the primitive streak produce a directional fluid flow which induces left–right asymmetry by delivering morphogens to the left side of the embryo and/or by acting on mechanosensory cilia [6–9]. Ultimately, laterality cues are relayed downstream to ensure left-sided expression of the PITX2 transcription factor in the lateral plate mesoderm [10], a critical component in determining organ laterality [11].

\[NODAL \] [12, 13], \[LEFTY2 \] [14], \[ACVR2B \] [15], \[GDF1 \] [16] \[CFC1 \] [17], \[CITED2 \] [18] and \[ZIC3 \] [19] have all been localized to the laterality signaling pathway. Albeit human mutations in these genes show a wide range of heart malfunctions, many cluster around laterality defects such as heterotaxy and faulty looping of the heart. Interestingly, a recent study identified mutations in \[Nephronophthisis-4 \] (\[NPHP4 \]), a cilia related gene, and linked them to a variety of cardiac laterality defects such as transposition of the great arteries (TGA), atrioventricular septal defects (AVSD), double outlet right ventricle (DORV), dextrocardia and abnormal pulmonary venous return. Laterality defects of the abdominal organs were also observed. Morpholino knock down of \[nphp4 \] in zebrafish resulted in reverse orientation or faulty looping of the heart [20]. Previous studies have also connected other NPHP family members to inborn heart defects and laterality deficiencies [21, 22].

The \[ZIC3 \] gene encodes a zinc finger transcription factor known to cause cardiovascular defects when mutated...
in humans. Mutations in ZIC3 cause X-linked familial heterotaxy but are also found in sporadic cases of heterotaxy and isolated CHDs [19, 23, 24]. Null and heterozygous Zic3 mice display a variety of cardiac defects such as TGA, interrupted aortic arch (IAA), atrial septum defect (ASD) and ventricular septal defect (VSD) in combination with various other developmental anomalies, thus resulting in a phenocopy of the clinical spectrum of malfunctions found in humans with heterotaxy [25]. How mutations in ZIC3 result in faulty heart looping is currently unknown. However, recent reports place ZIC3 upstream in the Nodal signal cascade [25, 26] with conditional loss-of-function studies showing that ZIC3 is required in the migrating mesoderm but not for heart progenitors and in the heart compartment [27].

Recently, the transcription factor FOXH1 was outlined as a possible signaling intersection between BMP and Nodal signaling to establish left/right asymmetry [28]. Mutations in FOXH1 have been linked to human heart defects [29], as well as the lack of outflow tract and right ventricle is seen in Foxh1−/− mouse embryos [30].

In humans, mutations in the transcriptional co-activator CITED2 (Cbp/p300-interacting transactivator, with Glu/Asp-rich carboxy-terminal domain 2) are associated with laterality defects and cardiac anomalies such as septal defects and TGA [18]. Mice deficient in Cited2 die during gestation expressing partially penetrant laterality defects and fully penetrant heart defects [31, 32]. The heart anomalies include ASD, VSD, common atroventricular canal (CAVC), DORV and IAA type B [32, 33]. Recently, Lopes et al. [31] showed that specific deletions of Cited2 in heart progenitors do not produce heart defects and that the cardiac malfunctions seen in Cited2−/− embryos arise during the early phases of establishing the left–right body axis in close relation to NODAL signaling.

Genes encoding components of signaling pathways

Animal models have illustrated that cardiac development involves spatial and temporal coordination of a number of signaling pathways [34, 35]. The identification of disease genes in syndromic and isolated CHD has confirmed the involvement of a subgroup of these pathways in human heart development, and has further contributed new information about additional pathways.

The NOTCH signaling pathway acts locally as a cell fate regulator, and as a patterning signal effector in many developmental processes. Its activity includes left–right axis partitioning and heart morphogenesis. For an extensive review on Notch signaling in cardiac development see [36].

Identification of mutations in JAG1, encoding a NOTCH signaling ligand, in patients with Alagille syndrome provided the first link between NOTCH signaling and human CHD [37, 38]. Alagille syndrome (AGS, OMIM #118450) is a multisystem disorder, which involves the liver, heart, eyes, face and skeleton [39]. Approximately 90 % of these patients have cardiovascular anomalies, often presenting in the form of stenosis in the pulmonary artery branch, valvular pulmonary stenosis (PS) and tetralogy of Fallot (TOF) [40]. The majority (>90 %) of AGS cases are caused by mutations in JAG1, however select (<1 %) cases are caused by mutation in NOTCH2 [41, 42]. Mice homozygous for targeted deletion of Jag1 die during embryonic development possibly due to vascular defects while heterozygous Jag1+/− mice display ocular defects [43].

In contrast, doubly heterozygous Jag1+/−, Notch2+/− mice exhibit multiorgan abnormalities characteristic of AGS, supporting a genetic interaction between JAG1 and NOTCH2 in AGS [44].

Mutations in NOTCH1 have been identified in patients with isolated CHD [45–47]. Patients with NOTCH1 mutations often present malfunctions of the aortic valve. NOTCH1 signaling has been linked to endothelial-to-mesenchymal transformation (EMT), a fundamental process in the early stages of cardiac valve formation, where endocardial cells detach to become a migratory mesenchyme that forms endocardial cushions, precursors of cardiac valves. Notch1 mutant mice develop hypoplastic endocardial cushions due to impaired EMT [48]. Recently, Luna-Zurita et al. and others [48–50] outlined that a NOTCH1, WNT4 and BMP2 signal interplay between the endocardium and myocardium underlie valve morphogenesis. Furthermore, Bosse et al. [51] showed that compound mutant Notch+/−; Nos3−/− mice display an accelerated bicuspid aortic valve phenotype compared to Notch+/− and Nos3−/− alone, suggesting an interaction between nitric oxide (NO) and NOTCH signaling in the development of the aortic valve. In the same paper, these data were further supported by in vitro data, suggesting that NO regulates Notch signaling in aortic valve interstitial cells.

Signal transduction through the RAS-mitogen activated protein kinase (MAPK) pathway can stimulate cell proliferation, differentiation, survival and metabolism. Identification of disease genes in Noonan syndrome (OMIM #163950), Costello syndrome (OMIM #218040), LEOPARD syndrome (OMIM #151100), Cardio-facio-cutaneous (CFC) syndrome (OMIM #115150) and a few other syndromes with distinct but overlapping phenotypes, collectively known as RASopathies (see [52] for review), have firmly established a link between the RAS-MAPK signal transduction pathway and human CHD. The RASopathies are manifested by a wide range of multisystem anomalies, including CHD. In Noonan syndrome approximately 85 % of patients have a variety of cardiac defects, most commonly including pulmonary valve stenosis, ASD and hypertrophic cardiomyopathy [53, 54].
Molecular genetics of CHD

Linkage analysis and mutation screening has identified mutations in PTPN11 as the cause of approximately half of cases with Noonan syndrome [55]. Subsequently, mutations in KRAS [56, 57], SOS1 [58, 59], RAS [60, 61], NRAS [62], Hras [63], BRAF [56, 64], SHOC2 [65], MAP2K1 (MEK1) and MAP2K2 (MEK2) [64], CBL [66] and NF1 [67] have been associated with RASopathies in which CHD are observed (Table 1).

Genes encoding cardiac transcription factors

Cardiac developmental signals are conveyed to transcriptional circuits that regulate gene expression during normal heart development. At the heart of these transcriptional networks lie a set of core transcription factors many of which are associated with isolated CHD (Table 1). Transcriptional focal points include NKX2-5, GATA4 and TBX5. These transcription factors interact at cardiac promoters in synergistic fashions (see below). Their function and molecular signatures have been thoroughly described and excellently reviewed elsewhere, and will only be briefly mentioned here (see [68] for a recent review).

In humans, disease causing mutations in the homeodomain protein NKX2-5 result in a plethora of CHDs including ASD, VSD, TOF and DORV [69–71]. Septal defects and atrio-ventricular conduction defects are commonly seen in patients with a mutated NKX2-5 gene [70]. Disruption of Tinman, the homologue of NKX2-5 in Drosophila melanogaster, results in a fruit fly devoid of the dorsal vessel, a structure analogous to the human heart [72]. Similarly, Nkx2-5 functionality is crucial in mice as homozygous mutations cause embryonic lethality due to faulty cardiac looping and insufficient myocardial differentiation during chamber formation [73, 74]. Mouse studies show that Nkx2-5 gene dosage is critically important for properly regulated development of the cardiac conduction system as Nkx2-5 null mice lack the primordium of the AV node and the conduction system of heterozygous mutant embryos only contain half the normal number of cells [75]. Additionally, Pashmforoush et al. [76] generated ventricular-restricted Nkx2-5 knockout mice that display progressive complete heart block and massive trabecular muscle overgrowth.

NKX2-5 ranks high in the cardiac regulatory hierarchy and is expressed in both the first- and second heart field (SHF) [77]. Its expression is closely coordinated through GATA factors, SMAD proteins and by self-autoregulation [78–81]. Proliferation of the SHF and outflow tract (OFT) morphology is regulated by Nkx2-5 feedback repression of BMP2/SMAD1 signaling [82]. It was recently shown that JARID2, which is also implicated in OFT development, is a direct target of NKX2-5 regulation [83]. Furthermore, it has been demonstrated that Nkx2-5 interacts with Gata4 within cardiac promoters, suggesting that the proteins cooperate in the transcriptional activation of cardiac target genes [84, 85]. Nkx2-5 interacts with Tbx5 in vitro and the two proteins were shown to activate a cardiac-specific Nppa promoter in a synergistic fashion [86] and Nkx2-5 cooperates with Tbx5 in development of the cardiac conduction system in vivo [87].

GATA binding protein 4 (GATA4) plays a pivotal role near the top of the transcriptional cascades that control heart development (see [88] for a recent review). In humans, the cardiac defects found in patients with interstitial deletions in 8p23.1 are attributed to haplinsufficiency of GATA4 (see below). Intragenic GATA4 mutations can also cause isolated CHDs, primarily cardiac septal defects, but PS, TOF and other defects have been reported [89–91]. In a recent paper human missense mutations in GATA4 were shown to disrupt GATA4–SMAD4 interactions in the BMP/TGF-β signaling pathway, likely causing AVSD and valve abnormalities in the affected patients [92]. Embryonic development in Gata4 deficient mice is arrested at E10.5 with incorrect ventral folding, endocardial malfunctions and an inability to establish a primitive heart tube [93, 94]. Correct Gata4 dosage is critically important for normal heart development, as mice homozygous for a hypomorphic allele develop CAVC, DORV and a hypoplastic ventricular myocardium [95]. Furthermore, it has also been shown that mice heterozygous for GATA4 mutations develop septation and endocardial cushion defects [90]. Heterozygous knock-in mice harbouring a Gata4 G296S mutation, previously identified in patients with septum defects and pulmonary valve stenosis, display ASD and semilunar valve stenosis [96].

GATA4 interacts with numerous transcription factors that promote cardiogenesis [88]. Direct downstream targets of GATA4 include HAND2 and MEF2C required for SHF development [97, 98]. GATA4 and TBX5 proteins physically interact and this interaction is disrupted by mutations in GATA4 [89]. Furthermore, Gata4 and Tbx5 double heterozygous mice develop cardiovascular defects, which point towards a genetic interaction between the two [99].

The T-box transcription factors are important cardiac transcription factors. They are involved in fundamental cardiac developmental processes, including development of the chamber myocardium, outflow tract and the conduction system [100]. TBX1 regulates proliferation of cardiac progenitors in the SHF and haploinsufficiency of TBX1 is considered the primary cause of CHD in patients with DiGeorge syndrome (see below). TBX5 participates in regulation of gene expression in the developing chamber myocardium and conduction system [101]. Mutations in TBX5 cause Holt–Oram syndrome (OMIM #142900), a syndrome distinguished by upper limb defects and heart defects—primarily septal and conduit defects [102, 103]. Tbx5 null mice possess a deformed linear heart tube.
and underdeveloped atria while heterozygous Tbx5 mice model heart and limb abnormalities observed in Holt-Oram syndrome, potentially explaining cardiac conduction system defects seen in these patients [101].

Human mutations in Tbx20 cause aberrant valvulogenesis, septal defects, TOF and cardiomyopathy [104]. Deletion of Tbx20 in mice generates a linear heart tube which fails to loop properly and exhibits insufficient chamber formation [105]. Heterozygous Tbx20 mice show onset of dilated cardiomyopathy recapitulating some of the human defects [106]. Recent papers by Cai and co-workers [107, 108] place TBX20 in the formation of the cardiac atrioventricular canal in a complex signaling network involving TBX20, TBX2 and BMP2.

In vitro, transcription factor AP-2gamma (TFAP2C) has been shown to bind the TBX20 promoter site and repress TBX20 expression [109]. Interestingly, mutations in TFAP2B causes Char syndrome (OMIM #169100) characterized by facial dysmorphism, anomalies of the fifth finger and patent ductus arteriosus (PDA) [110]. Isolated PDA has also been linked to mutations in TFAP2B [111, 112] and a recent Tfap2B knock out study in mice reported phenotypes resembling the characteristics of Char syndrome [113]. TFAP2 isoforms form a complex with CITED2, CREBBP and EP300 [114, 115]. Mutations in the transcriptional co-activators CREBBP and EP300 are associated with Rubinstein–Taybi syndrome (OMIM #180849) displaying mental retardation, broad thumbs and toes, facial abnormalities, and in some cases, CHD [116, 117].

Genes encoding components of the cardiac sarcomere

Mutations in genes encoding cardiac structural proteins have also been connected to CHD. Several studies link mutations in the cardiac sarcomeric protein MYH6 (myosin heavy chain 6) to ASD [118–120]. Morpholino knock down of myh6 in the developing chicken heart implies that its functionality is required in the formation of the atrial septum [120]. Molecular regulation of MYH6 expression involves transcription factors such as GATA4 [121], TBX5 and MEF2C [122].

Other members of the contractile units in cardiovascular muscle include MYH7 and ACTC1. A mutation in MYH7 encoding myosin heavy chain 7 was shown to cause CHDs such as Ebstein’s anomaly and septal defects [123]. Mutations in ACTC1 encoding the human α-cardiac muscle actin can cause ASD and morpholino knock down of Actc1 causes looping and atrial septal anomalies in chicken embryos [124].

Mutations in MYH11, encoding the major contractile protein of smooth muscle cells can cause thoracic aortic aneurysm and/or aortic dissection and PDA [125]. Mice homozygous for deletion of Myh11 show a delayed closure of the ductus arteriosus [126], which is connected to the shunting functions of smooth muscle cells upon birth [127, 128].

Genes encoding chromatin modifiers

Analysis of model organisms has shown that dynamic modification of chromatin structure serves as an important regulator of gene expression during heart development (reviewed in [129]). Genes that encode proteins which modify or bind to histones have been implicated as disease genes in syndromes causing heart defects. This evidence supports a functional link between chromatin modification and human heart development and defects.

Kabuki syndrome (OMIM #147920) is characterized by intellectual disability, craniofacial anomalies, skeletal and hand malformations. Abnormal organ development is also recurrent and includes CHD in approximately 50% of the cases [130]. Heart defects usually present in the form of septal defects and CoA [131]. Recently, Ng et al. [132] used exome sequencing to identify mutation of KMT2D (MLL2) as a major cause of Kabuki syndrome. KMT2D encodes a histone methyltransferase involved in di- and tri-methylation of the Lys-4 position of histone H3, which marks actively transcribed genes [133].

CHARGE syndrome (OMIM #214800) is characterized by growth retardation and malformation of eyes, ears, genitals, choanae and heart defects—often in the form of outflow tract malformations [134–136]. Approximately two-thirds of the cases are caused by mutation of CHD7, which encodes a member of the chromodomain helicase DNA binding (CHD) family [134, 135, 137]. In vitro studies have shown that CHD7 binds DNA regions which correlate closely to regions of H3K4 methylation and regions with characteristics of enhancer elements. This hints that the protein is involved in transcriptional activation [138]. Recently, it was shown that CHD7 controls core components of the transcriptional circuit of neural crest cells and that CHD7 is essential for neural crest cell migration [139]. This function may explain the high frequency of outflow tract defects in CHARGE syndrome, as neural crest cells are known to play a crucial role in septation of the cardiac outflow tract [140].

In a recent study, Zaidi et al. [141] conducted a comprehensive screening of all protein coding genes in hundreds of patients with severe forms of CHD. In this study, whole-exomes of 362 children with CHD and their healthy parents were screened for de novo nucleotide variants by next-generation sequencing (NGS). De novo variants from these parent-offspring trios were compared to de novo variants identified in 264 healthy parent-offspring trios. The authors performed transcriptionome profiling experiments to identify genes with a high expression in mouse embryonic hearts (HHE genes). In the trio datasets, they compared the number of de novo variants in genes, homologous to HHE
Methylation. Moreover, in CHD patients 27% of the significant enrichment for mutations in genes involved in H3K4 de novo mutations identified in CHD patients revealed significance in the pathogenesis of isolated CHD.

Human genome analysis in combination with functional analysis of candidate genes in animal models has been instrumental in identifying the genes responsible for heart defects in several microdeletion syndromes (see below). Interestingly, several of these genes also encode chromatin modifying proteins, which support the potentially significant role of epigenetic mechanisms in both isolated and syndromic CHD.

Part II: chromosomal aberrations in congenital heart disease

Microscopically visible chromosomal aberrations are present in 8–18% of CHD patients [142–144]. Furthermore, CHD is a characteristic part of the clinical spectrum in a significant number of syndromes caused by a chromosome abnormality. The most common chromosome syndrome associated with CHD is Down syndrome [145]. Congenital heart defects are seen in 45% of individuals with Down syndrome, with the majority of cardiac defects being AVSD, ASD and VSD [146]. Cardiac defects are also found at a high frequency in other aneuploidy syndromes, including Turner syndrome (monosomy X), Edward syndrome (trisomy 18) and Patau syndrome (trisomy 13) [147–150].

CHD is a component of the clinical spectrum in a number of syndromes caused by submicroscopic chromosomal deletions or duplications (listed in Table 2). Some of these syndromes are well-studied microdeletion syndromes, for which the molecular defect has been known for many years. In addition, several novel microdeletion and microduplication syndromes associated with CHD have recently been discovered due to the widespread use of molecular cytogenetic methods.

CHD candidate genes identified from microdeletion and microduplication syndromes

Genotype–phenotype comparisons in patients with microdeletion and microduplication syndromes have identified candidate CHD disease genes. Subsequent mutation screening of candidate genes in patients and studies of the genes and their product in animal models have substantially added to the understanding of CHD and cardiac developmental biology.

The majority of DiGeorge syndrome (DGS, OMIM #188400, also known as 22q11.2 deletion syndrome and velocardiofacial syndrome) are caused by a 3 Mb deletion in 22q11.2 [151]. 22q11.2 duplication syndrome (OMIM #608363) is caused by duplication of genomic material in 22q11.2. Most of the 22q11.2 duplications that have been reported are reciprocal to the common 3 Mb deletion involved in DGS [152].

The common 3 Mb deletion affects more than 50 genes, including the gene encoding the T-box transcription factor TBX1. It is generally accepted that haploinsufficiency of TBX1 significantly contributes to the CHD phenotype in DGS patients. Tbx1−/− mice display similar cardiac phenotypes to individuals with 22q11.2 DS [153, 154]. Conditional knock-out experiments in mice have shown that Tbx1 is required for proliferation of cardiac progenitors in the SHF—a cell population which contributes to the development of the cardiac outflow tract [155]. Additionally, point mutations in TBX1 have been reported in patients without the 22q11.2 deletion, but exhibit a clinical presentation similar to DGS [156, 157].

Transgenic mice overexpressing Tbx1 display phenotypic similarities consistent with 22q11 duplication patients, including cardiac outflow tract defects. This suggests that correct gene-dosage of TBX1 is important for normal cardiac development [152, 158, 159].

Conversely, cases with cardiac defects carrying smaller (1.5 Mb) deletions within the common 3 Mb region, distal to TBX1 have also been reported [160–162], which implies that other genes in the 3 Mb region may contribute to the cardiac phenotype of DGS patients. An interesting candidate gene within this region is CRKL, encoding a protein kinase. Mice with targeted deletion of Crkl exhibit defective OFT development and VSDs [160, 163]. Furthermore, experiments with compound heterozygous Tbx1+/−, Crkl−/− mice indicate a possible genetic interaction between the two genes, leading to the increased severity of the cardiac phenotypes in the double mutants [164]. A genetic interaction between Crkl and Fgf8 has also been shown [165], supporting a link among FGF8, TBX1 and CRKL in the pathogenesis of DGS (see below).

A high degree of phenotypic variability is a characteristic feature of DGS and 22q11.2 duplication syndrome. Parts of this variation may perhaps be explained by variations in genes located within 22q11.2, with TBX1 as the most likely candidate. An alternative explanation involves epistasis, as TBX1 has been shown to regulate or interact with several proteins and signaling networks. Gene
Table 2 Microdeletion and microduplication syndromes with genomic copy number variation and CHD

Syndrome	Chromosome region	Frequency of CHD among patients (%)	CHD candidate gene(s) in region	Function of candidate gene(s)	Reference (OMIM #)
Microdeletion syndromes					
8p23.1 deletion syndrome	8p23.1	94	GATA4	GATA-binding TF	[195]
17q23 microdeletion syndrome	17q23	86	TBX2	T-box TF	[216] (613355)
DiGeorge syndrome	22q11.2	65–75	TBX1: CRKL	T-box TF; Tyrosine kinase	[263] (188400)
1p36 deletion syndrome	1p36	71	DVL1	WNT signaling component	[264] (607872)
2q31.1 microdeletion syndrome	2q31.1	70	SP3	Sp TF	[265]
Kleeftstra syndrome	9q34	40	EMT1	H3K9 methyl transferase	[205, 206, 208] (610253)
16p12.2–p11.2 microdeletion syndrome	16p12.2–p11.2	60	N/A	N/A	[266] (613604)
Jacobsen syndrome	11q23-qter	56	N/A	N/A	[267] (147791)
Wolf–Hirschhorn syndrome	4p16.3	50	WHSC1; FGFRL1	H3K36 methyl transferase; fibroblast growth factor receptor	[268] (194190)
Williams–Beuren Syndrome	7q11.23	53–85	ELF1; BAZ1B	Elastin; subunit of chromatin remodeling complex	[180] (194050)
Smith–Magenis syndrome	17p11.2	40–45	MAPK7	MAP kinase	[269, 270] (182290)
Koolen-De Vries syndrome	17q21.31	27–36	KANSL1	Subunit of NSL histone acetylation complex	[210, 212] (604433)
1q21.1 deletion syndrome	1q21	29	GJA5	Connexin 40	[197, 271]
Miller–Dieker lissencephaly syndrome	17p13.3	22	NSD1	H3K36 methyl transferase	[274–276] (117550)
Sotos syndrome	5q35	21	HDAC4	Histone deacetylase	[277, 278] (600430)
Brachyactly-mental retardation syndrome	2q37	20	N/A	N/A	[279, 280] (612001)
15q13 microdeletion syndrome	15q13	15	N/A	N/A	
Microduplication syndromes					
16p13.3 microduplication	16p13.3	40	CREBBP	Histone acetyltransferase	[281] (613458)
16p13.11 microduplication	16p13.11	20	MYH11	Smooth muscle myosin HC	[282]
Potocki–Lupski syndrome	17p11.2	50	MAPK7	MAP kinase	[283, 284] (608833)
22q11.2 duplication syndrome	22q11.2	15	TBX1	T-box TF	[285] (608363)
Chromosomal aneuploidy					
Patau syndrome	47, +13 (trisomy 13)	86	N/A	N/A	[150]
Edward syndrome	47, +18 (trisomy 18)	61–94	N/A	N/A	[147, 148]
Down syndrome	47, +21 (trisomy 21)	50	N/A	N/A	[146] (190685)

a Genes causing heart defects when deleted in mice (http://www.informatics.jax.org) (bold) and/or by point mutations in additional patients with CHD as part of the clinical spectrum (underlined)
b Point mutations in RAI1 causes Smith–Magenis syndrome, but CHD have not been reported in patients with point mutations in RAI1 and cardiac defects are not observed in the RAI1 mouse model [286]
c One out of four KDVS patients with point mutations in KANSL1 had CHD
d The lissencephaly phenotype of MDLS is caused by haploinsufficiency of the PAFAH1B1 gene (also known as LIS1) [287, 288], but it is presently unknown which gene is responsible for heart defects in MDLS patients
e TF transcription factor
expression profiling of tissues in the pharyngeal region from mouse models with targeted deletion of Tbx1, have identified several Tbx1 target genes, which include genes involved in homeostasis of retinoic acid (RA) [166–168]. Interestingly, RA regulates Tbx1 expression [169], thus there seems to be a dual relationship between TBX1 expression and RA signaling. During development of the pharyngeal arches TBX1 expression in the pharyngeal endoderm is regulated by the Hedgehog signaling pathway though the action of forkhead transcription factors [170–174]. TBX1 itself regulates the expression of FGF8 in the SHF and in the pharyngeal endoderm [172, 173]. A genetic interaction among Tbx1, Six1/Eya1 and Fgf8 was recently demonstrated in mouse models [174]. Further, TBX1 can act as a negative modulator of BMP signaling by binding SMAD1 and hereby interfere with the SMAD1/SMAD4 interaction [175].

Williams–Beuren syndrome (WBS, OMIM #194050) is caused by deletion of genomic material in 7q11.23. Most patients with WBS are heterozygous for a 1.5–1.8 Mb deletion encompassing ~28 genes [176–179]. Cardiovascular abnormalities are present in 75 % of individuals with WBS, predominantly in the form of supravalvular aortic stenosis (SVAS) and pulmonary arterial stenosis [180]. In 6–10 % of cases aortic or mitral valve defects are also seen, and other so-called “atypical” cardiac defects in the form of ASD, VSD and TOF are observed in a significant fraction of the patients [180, 181].

The ELN gene, encoding elastin, is believed to be the gene responsible for SVAS in WBS. Patients with atypical deletions including only ELN and LIMK1 genes and SVAS have been reported [182, 183]. In addition, point mutations in ELN are associated with familial and sporadic SVAS [184, 185]. Targeted deletion of the Eln gene in mice results in reduced aortic lumen diameter due to subendothelial accumulation of smooth muscle cells [186].

However, deletion of ELN does not explain the occurrence of the atypical heart defects in a proportion of WBS patients. Results gained from a recently reported mouse model with targeted deletion of Baz1b, indicate that deletion of this gene may account for these defects. Baz1b is located within the WBS common deleted region, and homozygous Baz1b−/− mice exhibit a range of cardiovascular defects, which include ASD, VSD, trabeculation defects, coarctation of the aorta (COA), hypoplastic pharyngeal arch artery and a low frequency of DORV [187]. Baz1b (also known as WSTF) acts as a subunit in three ATP-dependent chromatin remodeling complexes; the WSTF including nucleosome assembly complex (WINAC) [188], the WICH complex (WSTF-ISWI chromatin remodeling complex) [189] and the B-WICH complex [190]. These complexes are important for gene regulation, DNA replication and DNA repair [189, 191]. Thus, the cardiac phenotypes of Baz1b knockout mice and the chromatin remodeling function of BAZ1B suggests that some of the phenotypes involved in WBS, including “atypical” heart defects, may be caused by epigenetic effects.

Wolf–Hirschhorn syndrome (WHS, OMIM #194190) is caused by microdeletions in 4p16.3. Genotype–phenotype comparisons in patients with submicroscopic deletions suggest that haploinsufficiency of the gene encoding the histone lysine methyl transferase WHSC1 (also known as NSD2) contributes significantly to the WHS phenotype [152, 192]. A recently published investigation of mice with targeted deletion of the H3K36me3-specific histone methyltransferase gene Whsc1 puts forth Whsc1 as another component in heart development [193]. The Whsc1−/− mutant mice displayed ASD and VSD, and co-immunoprecipitation experiments with nuclear extracts prepared from embryonic hearts showed that Whsc1 interacts with the cardiac transcription factor Nkx2-5. Furthermore, ChIP assays demonstrated that Whsc1 cooperates with Nkx2-5 in the transcriptional regulation of target genes. Cross-breeding experiments with Whsc1+/− and Nkx2-5−/+ mice suggested a genetic interaction between the two genes during cardiac septal formation. Another candidate gene for heart defects in WHS is the FGFR1 gene, which encode a member of the fibroblast growth factor receptor family. During mouse development Fgfr1 is expressed in the brain, cranial placodes, pharyngeal arches, somites and heart [194]. Targeted deletion of Fgfr1 in mice can result in a range of developmental defects, including heart defects in the form of VSD, and both semilunar and atrioventricular valve deformation [194].

Cardiac defects are observed in 94 % of cases with interstitial deletions in 8p23.1 [195]. The defects range from isolated septal defects to complex heart defects like TOF and hypoplastic left heart syndrome (HLHS). A proportion of the patients carry a ~3.7 Mb recurrent deletion flanked by low copy repeats, although some patients have larger deletions that may extend to the 8p telomere. The gene encoding the cardiac zinc finger transcription factor GATA4 is located within the recurrent deletion, and it is well documented that this gene is associated with congenital heart defects. Mutations in GATA4 cause human CHD, often in the form of septal defects, but other defects have been reported [89, 91, 196]. Mice homozygous for targeted deletion of Gata4 display early defects in cardiovasculargenesis [93, 94], and phenotypic characterization of mice homozygous for a hypomorphic allele of Gata4 supports that haploinsufficiency of GATA4 can cause CHD [95]. GATA4 interacts with several other transcription factors during cardiac development, including Nkx2-5, TBX5,

Springer
Koolen-De Vries syndrome (KDVS, OMIM #610443) is caused by recurrent deletions in 17q21.31. Between 27 and 36 % of KDVS patients have CHD [210, 211]. Recent delineation of the critical region of 17q21.31 and mutation screening of KDVS patients without deletion of 17q21 revealed that KDVS is caused by haploinsufficiency of KANSL1 [212, 213]. One out of four patients with point mutations in KDVS has CHD, hinting that KANSL1 is a CHD disease gene, although further patient data is needed to confirm this link. KANSL1 encodes a member of the male specific lethal (MSL) complex initially described in Drosophila (reviewed in [214]). Within the MSL complex KANSL1 interacts with KAT8, a histone acetyltransferase which regulates gene expression through acetylation of H4 lysine 16 (H4K16) [215].

Another interesting CHD candidate gene is \textit{TBX2}, which is located within the deleted region in \textit{17q23} deletion syndrome [216]. \textit{TBX2} is expressed in non-chamber myocardium of the developing heart, and mice with targeted mutation in \textit{Tbx2} have defects in the development of the atrioventricular canal (AVC) and the OFT [217]. It has been hypothesized that \textit{TBX2} is involved in cardiac chamber development and functions as a local repressor of the chamber-specific gene program in non-chamber regions like the AVC and OFT [218, 219].

Other microdeletion and microduplication syndromes which comprise CHD

The widespread use of molecular cytogenetic methods like fluorescent in situ hybridization (FISH) and especially array comparative genome hybridization (array CGH) in clinical genetics laboratories has led to the recent delineation of a number of microdeletion and microduplication syndromes, which incorporate CHD as a component of their clinical spectrum (Table 2).

The minimal deleted region in \textit{1q21.1} deletion syndrome contains the \textit{GJA5} gene [197]. A recent screen of 807 TOF cases revealed significant enrichment of small duplications encompassing \textit{GJA5}, thus providing convincing evidence for a link between GJA5 and CHD [152, 192, 198]. Cardiac defects have been reported in a proportion of mice with targeted deletion of \textit{Gja5} [199, 200], suggesting that haploinsufficiency of \textit{GJA5} may be responsible for cardiac defects in some individuals with \textit{1q21.1} deletions. \textit{GJA5} encodes the cardiac gap junction subunit Connexin 40, which is expressed in the atrial myocardium and the atrioventricular conduction system [201, 202]. Gap junctions are cell membrane channels that interconnect the cytoplasm of neighboring cells. In the heart, these channels contribute to the atrioventricular conduction [203, 204], but at present there is no proposed mechanism describing how \textit{GJA5} haploinsufficiency results in structural heart defects.

Molecular delineation of \textit{9q34} microdeletions and mapping of the chromosomal breakpoints in a patient with a t(X;9) translocation suggested that the \textit{EHMT1} gene is responsible for Kleefstra syndrome (KS, OMIM #610253) [205–207]. Mutation screening in patients without deletions in 9q34 subsequently confirmed that haploinsufficiency of \textit{EHMT1} causes KS [205, 208]. Approximately 40 % of patients with KS and deletion of 9q34 have CHD, and the presence of CHD in five out of eleven KS patients with point mutations in \textit{EHMT1} confirm that this gene is responsible for CHD in KS. \textit{EHMT1} encodes euchromatic histone-lysine N-methyltransferase 1, which regulates transcription by methylation of histone H3 lysine 9 (H3K9Me2) in euchromatic DNA [209].

Koolen-De Vries syndrome (KDVS, OMIM #610443) is caused by recurrent deletions in 17q21.31. Between 27 and 36 % of KDVS patients have CHD [210, 211]. Recent delineation of the critical region of 17q21.31 and mutation screening of KDVS patients without deletion of 17q21 revealed that KDVS is caused by haploinsufficiency of \textit{KANSL1} [212, 213]. One out of four patients with point mutations in KDVS has CHD, hinting that \textit{KANSL1} is a CHD disease gene, although further patient data is needed to confirm this link. \textit{KANSL1} encodes a member of the male specific lethal (MSL) complex initially described in Drosophila (reviewed in [214]). Within the MSL complex \textit{KANSL1} interacts with KAT8, a histone acetyltransferase which regulates gene expression through acetylation of H4 lysine 16 (H4K16) [215].

Another interesting CHD candidate gene is \textit{TBX2}, which is located within the deleted region in \textit{17q23} deletion syndrome [216]. \textit{TBX2} is expressed in non-chamber myocardium of the developing heart, and mice with targeted mutation in \textit{Tbx2} have defects in the development of the atrioventricular canal (AVC) and the OFT [217]. It has been hypothesized that \textit{TBX2} is involved in cardiac chamber development and functions as a local repressor of the chamber-specific gene program in non-chamber regions like the AVC and OFT [218, 219].

Pathogenic copy number variants identified in cohorts of CHD patients

Array CGH and similar methods have been used to screen cohorts of CHD patients for pathogenic CNVs in the form of duplications and deletions. Since 2007, 14 whole-genome CNV screening studies have been reported, comprising more than 5,000 patients (Table 3, [220–234]). The reported studies show large differences, which include size and phenotypic composition of patient cohorts and the experimental and analytical setup, thus it is somewhat difficult to compare the results. Nevertheless, we find it safe to conclude that pathogenic CNVs are found among a significant portion of CHD patients.

The highest frequency of pathogenic CNVs is found among patients with CHD and extra-cardiac anomalies. Based on the current reports [220, 224, 228, 230, 233, 234] we estimate that pathogenic CNVs are present in 15–20 % of patients with CHD and extra-cardiac anomalies.

Among patients with isolated CHD, the frequency of pathogenic CNVs is significantly lower. Here, we estimate the frequency to be between 4 and 14 % [221, 222, 225, 231, 232]. However, this estimate should be treated with caution, due to the aforementioned large differences in study design.

Identification of disease genes and pathways from CNVs detected in cohorts of CHD patients

In principle, CNVs identified as pathogenic in CHD patients should contain one or more dosage sensitive cardiac developmental genes. Thus, each pathogenic CNV, or at least overlapping CNVs should define a disease locus for
Table 3 CNV screens in patients with heart defects

Patients	Phenotype of patients\(^a\)	Microarray type	Main results	Candidate genes in CNVs\(^g\)	Reference
60	Congenital heart disease and extracardiac abnormalities	In-house-made microarray containing BAC/PAC\(^c\) clones. Average genomic distance of probes were 1 Mbp	CNVs considered to be causal were identified in 10 (17%) patients	**EHMT1, NKX2-5, NOTCH1, NSD1**	[233]
105	Congenital heart disease with and without extracardiac abnormalities. Subjects with documented syndromes were excluded	In-house-made microarray containing 32 k overlapping BAC clones	Rare de novo or inherited CNVs (0.34–13.9 Mb in size) were detected in 18 (17%) patients	**GJA5, LTBP1, TBX1**	[222]
40	Congenital heart disease with and without extracardiac abnormalities	NimbleGen Systems, Inc. whole-genome 385 K oligo array	Seven large CNVs were identified in 5 (12.5%) patients	N/A	[230]
114	Tetralogy of Fallot (TOF)	Affymetrix Genome-Wide Human SNP Array 6.0	Eleven (9.6%) rare de novo CNVs (>20 kb) were identified in 114 TOF trios	**JAG1, NOTCH1, RAB10, RAF1, TBX1**	[225]
150\(^a\)	Congenital heart disease and extracardiac abnormalities	In-house-made microarray containing BAC/PAC clones. Average genomic distance of probes were 1 Mbp	CNVs considered to be causal were identified in 26 (17.3%) patients	**ATRX, CREBBP, EHMT1, FOXC1, GATA4, NOTCH1, RAI, TBX1**	[220]
46	Isolated congenital heart disease	Affymetrix Genome-Wide Human SNP Array 6.0	De novo CNVs were identified in two (4%) patients	**GJA5, NOTCH1, PDGFRA, TBX1**	[221]
58	Congenital heart disease and extracardiac abnormalities	Affymetrix GeneChip 100 K microarray	Potentially pathogenic CNVs (0.2–9.6 Mb in size) were detected in 12 (20.7%) patients	**ADAM19, HAND1, MESP1, NRP1, NTRK**	[224]
53	Hypoplastic left heart syndrome (HLHS)	Agilent customized genome-wide 400 K array	Thirty-three rare non-polymorphic CNVs (2–1,554 kb in size) were detected in 25 (47%) patients	**BMPR2, ZNF423**	[227]
262	Heterotaxy (patients with D-transposition of the great arteries were also included in the sample)	Illumina 610Quad Beadchip platform	Forty-five previously unrecorded genic CNVs (0.27–25 Mb in size) were identified in 39 (14.5%) patients. A significant (\(p = 1.5e^{-4}\)) burden of rare genic CNVs were found in HTX cases (14.5%) compared to controls (7.4%)	**GALNT11, NEK2, NUP188, ROCK2, TGFBR2**	[223]
43	HLHS	NimbleGen Systems, Inc. whole-genome 385 K oligo array	A significant (\(p < 0.03\)) burden of CNVs were found in patients (4.6/subject) compared to controls (2.94/subject). The burden of unique CNVs in CHD patients was not found to be significant	N/A	[229]
Table 3 continued

Patients	Phenotype of patients^d	Microarray type	Main results	Candidate genes in CNVs^g	Reference
67^b	Left-sided congenital heart disease (BAV, AS, COA, HLHS)	Affymetrix Human Genome-Wide SNP Array 6.0	A total of 73 unique inherited or de novo CNVs (>20 kb) were identified in 54 individuals	ADORA2B, ANG, CACNA1C, COX5B, CRMP1, CTHR1, ECRCC5, EVC2, FLII, GPR101, HSD17B10, ITGA10, LIMS1, MAPK7, MFA4, MSX1, MTHFD2, NCO1, NGF, PLA2G1A2, PRPSAP2, RASD1, SBEF1, SMCF1A, ULK2	[226]
2,539	Isolated congenital heart disease (808 TOF and 1,448 other CHDs). Subjects with documented syndromes known to cause CHD were excluded	Illumina 660 W-Quad SNP platform	A significant (p = 0.008) burden of rare genic CNVs were found in CHD cases (7.8 %) compared to controls (4.4 %)	CNOT6, EDIL3, GATA4, GJAS, HAND2, PPM1K and 13 genes in the WNT-signaling pathway (CDH18, CDH2, CTBP1, CTNNB1, FAT1, LRPS1, NFATC1, PCDH15, PCDHB7, PCDHB8, PRKCB, PRKRCQ, WNT7B)	[232]
203 + 511^c	Congenital heart disease and extracardiac abnormalities.	Customized 105 k oligonucleotide arrays manufactured by Agilent. Average resolution of 30 kb, with denser coverage at disease loci	A total of 55 rare CNVs (>50 kb) were identified in patients from the discovery cohort. Sixteen of these CNVs were identified in the second cohort	PDE1A, NALCN, ANKRD11, SOX7, GATA4, CRK, CAMTA2, CECR1	[228]
433	Tetralogy of Fallot-pulmonary atresia or pulmonary atresia and ventricular septal defect. Subjects with documented syndromes were excluded	Affymetrix Genome-Wide Human SNP Array 6.0	47 large (>500 kb) rare CNVs were found in 43 (9.9 %) patients	LPL, PDGFRA, GATA4, CAMTA2, CECR1, HAND2, PPM1K, and 13 genes in the WNT-signaling pathway (CDH18, CDH2, CTBP1, CTNNB1, FAT1, LRPS1, NFATC1, PCDH15, PCDHB7, PCDHB8, PRKCB, PRKRCQ, WNT7B)	[231]
945	Congenital heart disease with and without extracardiac abnormalities	Affymetrix Genome-Wide Human SNP Array 6.0	Known CHD-related chromosomal abnormalities^f were identified in 135 (14.3 %) patients. Large, rare CNVs (0.22–32.1 Mb in size) were identified in 35 (3.7 %) patients	FKBP6, FLNX, GTF2IRD1, GATA4, CRKL, TBX1, ATRX, GP3, BCO1, ZIC3, FLNA, MID1, PRKAB2, FM05, CHD1L, BCL9, ACP6, GJAS, HRA5, HRA6, RUNXI	[234]

Genes known to cause CHD in humans are underlined, genes with reported cardiovascular system involvement (e.g., from targeted deletion in mice) are bold

^a Includes 60 patients from Thienpont et al. [233]
^b A total of 174 patients from 67 families
^c A discovery cohort of 203 patients and a second independent cohort of 511 patients were analyzed
^d AS aortic stenosis, BAV bicuspid aortic valve, COA coarctation of the aorta, HLHS hypoplastic left heart syndrome, TOF tetralogy of Fallot
^e BAC bacterial artificial chromosome, PAC P1-derived artificial chromosome
^f Trisomy 21 (n = 80), trisomy 18 (n = 1), 22qDS (n = 42), Turner syndrome (n = 8), William’s syndrome (n = 3), and Triple X syndrome (n = 1)
^g Candidate genes suggested by the authors
CHD and it therefore should be possible to use CNVs to detect CHD disease genes. Several groups have reported identification of CNVs spanning genes, which span genes previously recognized to cause CHD in animal models (Table 3), thereby providing a plausible link between these genes and CHD in humans.

However, many of the identified CNVs do not contain a well-established cardiac developmental gene. These CNVs often contain several genes, although only one is likely to be the gene responsible for CHD. Three approaches have been utilized to identify the causal genes in such cases: (1) narrowing of the locus by comparison of multiple samples with overlapping CNVs, (2) in silico gene prioritization and (3) functional investigations of candidate genes within the CNVs.

Hitz et al. [226] used Endeavour [235] to test for enrichment of angiogenesis-associated genes within 73 CNVs identified in patients with left-sided CHD. They also searched for genes with expression in the developing heart in serial analysis of gene expression (SAGE) and public databases. By combining these prioritization methods, they identified 25 CHD candidate genes (Table 3). Soemedi et al. [232] performed genomic region annotation enrichment analysis on rare deletions and duplications identified in 2,256 CHD cases. They found enrichment of 13 genes encoding proteins involved in the WNT signaling pathway (Table 3). Silversides et al. [231] performed a systematic review of genes within rare CNVs identified among 433 cases with TOF and identified 62 CHD candidate genes (Table 3). They also assessed whether genes, in predefined gene-sets derived from GeneOntology (GO) annotations and pathway and protein domain databases, were significantly overrepresented in CNVs detected in TOF cases compared to controls. They found enrichment of gene-sets belonging to five functional clusters: vasculature development, chromosome organization, cell motility, chemotaxis and neuron projection and development. Lalani et al. [228] identified eight candidate genes in CNVs identified in patients with CHD and extracardiac anomalies (Table 3). They grouped genes within enriched CNVs based on GO categories and found enrichment for genes encoding proteins involved in G-protein coupled receptor internalization, hemopoiesis and cytoskeleton organization. Furthermore they analyzed protein–protein interactions between proteins encoded by candidate genes in CNVs identified in patients and a set of 276 proteins from GO cardiac development categories. They identified 11 proteins with at least one connection with a human cardiac-specific protein (significant at p = 0.03).

Thienpont et al. [236] identified TAB2 as a dosage sensitive CHD disease gene by comparing overlapping CNVs within 6q25. The overlapping region of seven CNVs identified in CHD patients revealed a CHD locus containing 11 candidate genes, including TAB2. For prioritization of the candidate genes in the locus and surrounding genomic region, the authors performed in silico analyses of 105 genes in 6q24–25, using an adapted version of Endeavour [235]. This analysis predicted TAB2 as the highest-ranking candidate gene in 6q24–25. Further functional analyses of TAB2 in human embryonic heart tissues and zebrafish suggested that TAB2 is a cardiac developmental gene. Point mutations localized within TAB2 in two unrelated CHD patients and mapping of a translocation breakpoints within TAB2 in a CHD family segregating a t(2;6) translocation, further verified TAB2 as a CHD disease gene.

Fakhro et al. [223] performed whole-genome CNV screening of 262 patients with Heterotaxy and isolated TGA. They identified 45 unrecorded gene-containing CNVs, including two different CNVs affecting TGFβR2. Evaluation of candidate genes using in situ hybridization and Morpholino-based gene knock-down in X. tropicalis showed that the genes tgfbr2, rock2, galnt11, nek2 and nup188 are involved in left–right patterning of the heart (Table 3). ROCK2 and NEK2 are ciliary proteins, thus this study confirmed the importance of cilia and TGF-β signaling in LR patterning [237]. In addition, this study identified two novel genes (GALNT11 and NUP188) with unknown functions in LR development.

The molecular pathology of congenital heart disease

Cardiac development is controlled by a large number of signaling pathways, which are tightly regulated in time and space, and interact in complex developmental networks [34]. The CHD disease genes, which have been identified to date, suggest that all aspects of developmental signaling pathways may be involved in human CHD: from ligands (e.g. JAG1) and receptors (e.g. NOTCH, PDGFRA), across down-stream signaling effectors (e.g. PTPN11, SMAD6), to transcription factors (e.g. GATA4, NKX2-5) and targets (e.g. ACTC1, MYH6) (Fig. 1). Moreover, discoveries of disease genes encoding histone-modifying proteins (e.g. CHD7, KMT2D), suggest that epigenetic regulation of an unknown number of target genes, may add an additional layer of regulation on consensus cardiac developmental networks.

Lage et al. [238] have recently shown that a wide range of CHD risk factors, functionally converge in complex, yet discrete, protein networks driving heart development. These findings, combined with the potentially hundreds of CHD disease genes [141], suggest that CHD may be caused by a very large number of combinations of mutations and environmental risk factors.

Reduced penetrance of CHD are often observed in human pedigrees (e.g. [239], unpublished observations in Danish pedigrees) and in carriers of CNVs known to
cause CHD (see Table 2 and discussions in text). Some of the reduced penetrance may simply be due to unidentified asymptomatic heart defects in some carriers, but may also be caused by epistasis. Several examples of epistasis in mouse models are mentioned in the text above. Winston et al. [240] performed a systematic study of the influence of genetic background on the expression of heart defects in $Nkx2.5^{+/−}$ heterozygous mice. The authors compared $Nkx2.5^{+/−}$ heterozygous C57Bl/6 mice with $Nkx2.5^{+/−}$ heterozygous F1 progeny from crosses with two other mouse strains. The data showed that the F1 hybrid mice presented with a significantly lower incidence of septal defects compared to mice with the original C57Bl/6 background. The authors suggest that modifying alleles can either direct the manifestation of a cardiac developmental defect or buffer the effect from perturbations. The latter situation, which was the case in the study, may ensure robustness of normal heart development.

How the large heterogeneity in CHD and potentially large epistatic effects translates into lesions in the personal genome of the individual patient remains to be investigated. One possible scenario could be that individual combinations of several risk alleles may be the cause of CHD in part of the patients.

Future perspectives

It was recently demonstrated that exome-sequencing is a powerful tool for identification of de novo mutations in CHD [141]. It is very likely that more studies based on exome-sequencing will reveal new CHD disease genes in the near future. The high number of variants identified in exome-sequencing experiments is a big challenge in very heterogeneous disorders like CHD. Thus, it is likely that such studies will be performed on large numbers of parent-offspring trios or on families with dominant or recessive inherited CHD.

The past 5 years have shown that analysis of genome rearrangements in the form of CNVs, translocations or inversions can lead to detection of new CHD disease genes or loci. The technology for mapping such rearrangements is continuously improving, and breakpoints in balanced translocations and inversions can now be mapped within days using NGS [241].

Untreated, CHD is a disorder with a high mortality rate, therefore a large part of the disease causing mutations are likely rare in populations due to negative selection. However, it is also possible that some variants associated with CHD may escape negative selection. Such variants may be discovered through genome wide association studies, as has recently been demonstrated [242–244].

Interesting therapeutic opportunities could arise from the current knowledge of the molecular pathogenesis of CHD. A significant part of CHD seems to be caused by mutations which perturb complex developmental networks. These networks are characterized by extensive communication within and between specific signaling pathways, and with the environment. Thus, given the apparent epistatic effects observed in patients and animal models, it should be possible to manipulate the signaling pathways in the developmental networks with synthetic agonists or antagonists, and thereby alleviate effects from mutations or redirect
signaling events towards normal heart development. A recent study suggests that this could be possible someday. Tian et al. [245] showed that defects in the cardiac inflow tract and AV canal (resembling complete CAVC in humans) in Wnt2−/− mice, could be rescued by transient pharmacological activation of Wnt signaling with LiCl.

Naturally, such therapeutic opportunities are presently very hypothetical, and to become reality, much more knowledge about the molecular genetics and the molecular pathology of CHD are needed. Combining human genetics/genomics with functional studies in cell models or animal models like zebrafish, *Xenopus* frogs, chicken or mice are likely to have the greatest impact on our understanding of the molecular pathology in human CHD.

Acknowledgments We thank Josie Bodle for language editing of the manuscript. LAL and TAA were supported by The Danish Council for Independent Research. KDT was supported by the Lundbeck foundation. Wilhelm Johansen Centre for Functional Genome Research is established by the Danish National Research Foundation.

Open Access This article is distributed under the terms of the Creative Commons Attribution License which permits any use, distribution, and reproduction in any medium, provided the original author(s) and the source are credited.

References

1. Reller MD, Strickland MJ, Riehle-Colarusso T, Mahle WT, Correa A (2008) Prevalence of congenital heart defects in metropolitan Atlanta, 1998–2005. J Pediatr 153(6):807–813
2. Hoffman JI (1995) Incidence of congenital heart disease: II. Prenatal incidence. Pediatr Cardiol 16(4):155–165
3. Warnes CA, Williams RG, Bashore TM, Child JS, Connolly HM, Dearani JA, del Nido P, Fasules JW, Graham TP Jr, Hijazi YZ, Hunt SA, King ME, Landzberg MJ, Miner PD, Radford MJ, Walsh EP, Webb GD (2008) ACC/AHA 2008 guidelines for the management of adults with congenital heart disease: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (writing committee to develop guidelines on the management of adults with congenital heart disease). Circulation 118(23):e714–e833
4. Parrott A, Ware SM (2012) The role of the geneticist and genetic counselor in an ACHD clinic. Prog Pediatr Cardiol 34(1):15–20
5. Vandenberg LN, Levin M (2013) A unified model for left-right asymmetry? Comparison and synthesis of molecular models of embryonic laterality. Dev Biol 374(1):1–15
6. Takanashi Y, Okada Y, Hirokawa N (2005) FGF-induced vesicular release of Sonic hedgehog and retinoic acid in leftward nodal flow is critical for left-right determination. Nature 435(7039):172–177
7. McGrath J, Somlo S, Makova S, Tian X, Brueckner M (2003) Two populations of node monolica initiate left-right asymmetry in the mouse. Cell 114(1):61–73
8. Nonaka S, Shiratori H, Saijo Y, Hamada H (2002) Determination of left-right patterning of the mouse embryo by artificial nodal flow. Nature 418(6893):96–99
9. Nonaka S, Tanaka Y, Okada Y, Takeda S, Harada A, Kanai Y, Kido M, Hirokawa N (1998) Randomization of left-right asymmetry due to loss of nodal cilia generating leftward flow of extraembryonic fluid in mice lacking KIF3B motor protein. Cell 95(6):829–837
10. Ramsdell AF (2005) Left-right asymmetry and congenital cardiac defects: getting to the heart of the matter in vertebrate left-right axis determination. Dev Biol 288(1):1–20
11. Yoshioka H, Motto C, Koshiha K, Sugihara M, Itoh H, Ishimaru Y, Inoue T, Ohuchi H, Semina EV, Murray JC, Hamada H, Noji S (1998) Pitx2, a bicoid-type homeobox gene, is involved in a left-signaling pathway in determination of left-right asymmetry. Cell 94(3):299–305
12. De Luca A, Sarkozy A, Consoli F, Ferese R, Guida V, Dentici ML, Mingarelli R, Bellacchio E, Tuo G, Limongelli G, Dignole MC, Marino B, Dallapiccola B (2010) Familial transposition of the great arteries caused by multiple mutations in laterality genes. Heart 96(9):673–677
13. Mohapatra B, Casey B, Li H, Ho-Dawson T, Smith L, Fernbach SD, Molinari L, Niesh SR, Jefferies JL, Craigen WJ, Towbin JA, Belmont JW, Ware SM (2009) Identification and functional characterization of NODAL rare variants in heterotaxy and isolated cardiovascular malformations. Hum Mol Genet 18(5):861–871
14. Kosaki K, Bassi MT, Kosaki R, Levin M, Schauer G, Casey B (1999) Characterization and mutation analysis of human LEFTY A and LEFTY B, homologues of murine genes implicated in left-right axis development. Am J Hum Genet 64(3):712–721
15. Kosaki R, Gebbia M, Kosaki K, Levin M, Bowers P, Towbin JA, Casey B (1999) Left-right axis malformations associated with mutations in ACVR2B, the gene for human activin receptor type IIB. Am J Med Genet 82(1):70–76
16. Karker JA, Lee JS, Rosessler E, Banerjee-Basu S, Oupsenskaia MV, Mez J, Goldmuntz E, Bowers P, Towbin J, Belmont JW, Baxevanis AD, Schier AF, Muenke M (2007) Loss-of-function mutations in growth differentiation factor-1 (GDF1) are associated with congenital heart defects in humans. Am J Hum Genet 81(5):987–994
17. Goldmuntz E, Bamford R, Karker JA, dela Cruz J, Rosessler E, Muenke M (2002) CFC1 mutations in patients with transposition of the great arteries and double-outlet right ventricle. Am J Hum Genet 70(3):776–780
18. Sperling S, Grimm CH, Dunkel I, Mebus S, Sperling HP, Ebner A, Galli R, Lehrach H, Fusch C, Berger F, Hammer S (2005) Identification and functional analysis of CITED2 mutations in patients with congenital heart defects. Hum Mutat 26(6):575–582
19. Ware SM, Peng J, Zhu L, Fernbach S, Colicos S, Casey B, Towbin J, Belmont JW (2004) Identification and functional analysis of ZIC3 mutations in heterotaxy and related congenital heart defects. Am J Hum Genet 74(1):93–105
20. French VM, van de Laar IM, Wessels MW, Rohe C, Roos-Hesselink JW, Wang G, Frohn-Mulder IM, Severijnen LA, de Graaf BM, Schot R, Breedveld G, Mientjes E, van Tienhoven BA, Amack JD, Bertoli-Avella AM (2012) NPHP4 variants are associated with pleiotropic heart malformations. Circ Res 110(12):1564–1574
21. Otto EA, Schermer B, Obara T, O’Toole JE, Hiller KS, Mueller AM, Ruf RG, Hoeiele J, Beekmann F, Landau D, Foreman JW, Goodship IA, Strachan T, Kispert A, Wolf MT, Gagnadoux MF, Nivet H, Antignac C, Walz G, Drummond IA, Bentzig NE, Hildebrandt F (2003) Mutations in INVS encoding invisin cause nephronophthisis type 2, linking renal cystic disease to the function of primary cilia and left-right axis determination. Nat Genet 34(4):413–420

Springer
22. Chaki M, Hoefele J, Allen SJ, Ramaswami G, Janssen S, Bergmann C, Heckenlively JR, Otto EA, Hildebrand F (2011) Genotype-phenotype correlation in 440 patients with NPHP-related ciliopathies. Kidney Int 80(11):1239–1245

23. Gebbia M, Ferrero GB, Pilia G, Bassi MT, Aylsworth A, Pennman-Split M, Bird LM, Bamforth JS, Burn J, Schlessinger D, Nelson DL, Casey B (1997) X-linked situs abnormalities result from mutations in ZIC3. Nat Genet 17(3):305–308

24. Megarbane A, Salem N, Stephan E, Ashoush R, Lenoir D, Delague V, Kassab R, Loisset J, Bouvagnet P (2000) X-linked transposition of the great arteries and incomplete penetrance among males with a nonsense mutation in ZIC3. Eur J Hum Genet 8(9):704–708

25. Purandare SM, Ware SM, Kwan KM, Gebbia M, Bassi MT, Deng JM, Vogel B, Behringer RR, Belmont JW, Casey B (2002) A complex syndrome of left-right axis, central nervous system and axial skeletal defects in Zic3 mutant mice. Development 129(9):2293–2302

26. Ware SM, Harutyunyan KG, Belmont JW (2006) Heart defects in X-linked heterotaxy: evidence for a genetic interaction of Zic3 with the nodal signaling pathway. Dev Dyn 235(6):1631–1637

27. Sutherland MJ, Wang S, Quinn ME, Haaning J, Ware SM (2013) Zic3 is required in the migrating primitive streak for node morphogenesis and left-right patterning. Hum Mol Genet 22(10):1913–1923

28. Lenhart KF, Holtzman NG, Williams JR, Burdine RD (2013) Integration of nodal and BMP signals in the heart requires Foxh1 to create left-right differences in cell migration rates that direct cardiac asymmetry. PLoS Genet 9(1):e1003109

29. Roessler E, Ouspenskaia MV, Vakser IA, Velediz J, Kantipong A, Lachmann B, Fowers P, Belmont JW, Tovbin JA, Goldmuntz E, Feldman B, Muenke M (2008) Reduced NODAL signaling strength via mutation of several pathway members including FOXH1 is linked to human heart defects and holoprosencephaly. Am J Hum Genet 83(1):18–29

30. von Both I, Silvestri C, erdemir T, Lickert H, walls JR, Henkelmann RM, Rossant J, Harvey RP, Attisano L, wrana JL (2004) Cited2 controls left-right patterning and heart development through a Nodal-Pitx2c pathway. Nat Genet 36(11):1189–1196

31. McBride KL, Riley MF, Zender GA, Fitzgerald-Butt SM, Towbin JA, Belmont JW, Cole SE (2008) NOTCH2 mutations cause Alagille syndrome, a heterogenous disorder of the notch signaling pathway. Am J Hum Genet 79(1):169–173

32. Timmerman LA, Grego-Bessa J, Raya A, Bertran J, Perez-Pomares JM, Diz J, Aranda S, Palomo S, McCormick F, Izpisua-Belmonte JC, de la Pompa JL (2004) Notch1 and Notch2 in the mouse model of Alagille syndrome: Notch2 as a genetic modifier of Jag1 haploinsufficiency. Development 129(4):1075–1082

33. Wang Y, Wu B, Chamberlain AA, Lui W, Koirala P, Susztak K, Klein D, Taylor V, Zhou B (2013) Endocardial to myocardial notch-wnt-bmp axis regulates early heart valve development. PLoS ONE 8(4):e60244

34. Luna-Zurita L, Prados B, Grego-Bessa J, Laxan G, del Monte G, Benguria A, Adams RH, Perez-Pomares JM, de la Pompa JL (2010) Integration of a Notch-dependent mesenchymal gene program and Bmp2-driven cell invasiveness regulates murine cardiac valve formation. J Clin Invest 120(10):3493–3507

35. Bosse K, Hans CP, Zhao N, Koenig SN, Huang N, Guggilam A, Lahaye S, Tao G, Lucchesi PA, Lincoln J, Lilly B, Garg V (2013) Endothelial nitric oxide signaling regulates Notch1 in aortic valve disease. J Mol Cell Cardiol 60:27–35

36. de la Pompa JL, Epstein JA (2012) Coordinating tissue interactions: Notch signaling in cardiac development and disease. Dev Cell 22(2):244–254
53. Szajner Y, Keren B, Baumann C, Pereira S, Alberti C, Elion J, Cave H, Verloes A (2007) The spectrum of cardiac anomalies in Noonan syndrome as a result of mutations in the PTPN11 gene. Pediatrics 119(6):e1325–e1331
54. Marino B, Digilio MC, Toscano A, Giannotti A, Dellapiccola B (1999) Congenital heart lesions in children with Noonan syndrome: an expanded cardiac spectrum with high prevalence of atrioventricular canal. J Pediatr 135(6):703–706
55. Tartaglia M, Mehler EL, Goldberg R, Zampino G, Brunner HG, Kremer H, van der Burgt I, Crosby AH, Ion A, Jeffery S, Kalidas K, Patton MA, Kucherlapati RS, Gelb BD (2001) Mutations in PTPN11, encoding the protein tyrosine phosphatase SHP-2, cause Noonan syndrome. Nat Genet 29(4):465–468
56. Niihori T, Aoki Y, Narumi Y, Neri C, Gelb BD, Schackwitz W, Ustaszewska A, Martin J, Bristow J, Carta C, Lepri F, Neri C, Vasta I, Gibson K, Curry CJ, Siguero JP, Digilio MC, Zampino G, Dellapiccola B, Bar-Sagi D, Gelb BD (2007) Gain-of-function SOS1 mutations cause a distinctive form of Noonan syndrome. Nat Genet 39(1):75–79
57. Schubbert S, Zanker K, Rowe SL, Boll S, Klein C, Bollag G, Niihori T, Aoki Y, Narumi Y, Neri G, Cave H, Verloes A, Yamanaka T, Hirota H, Kure S, Matsubara Y (2005) Germline KRAS mutations cause Noonan syndrome. Am J Hum Genet 77(6):1092–1101
58. McCulley DJ, Black BL (2012) Transcription factor pathways and congenital heart disease. Curr Top Dev Biol 100:253–277
59. Schott JJ, Benson DW, Basson CT, Pease W, Silbergh BM, Moak JP, Maron BJ, Seidman CE, Seidman JG (1998) Congenital heart disease caused by mutations in the transcription factor NFATC1. Science 281(5373):108–111
60. Jansen E, van den Berg M, Manning A, Seidman CE, Plowden J, Kugler JD (1999) Mutations in the CBL tumor-suppressor gene cause a Noonan syndrome-like phenotype. Am J Hum Genet 74(2):250–257
61. Lien CL, McAnally J, Richardson JA, Olson EN (2002) Cardiac-specific activity of an Nk2–5 enhancer requires hypertrophic cardiomyopathy. Nat Genet 32(3):294–296
62. Ruiz-Mateos J, Malhotra D, McCulley DJ, Black BL (2012) Transcription factor pathways and congenital heart disease. Curr Top Dev Biol 100:253–277
63. Lepri F, Caputo V, Silvano M, Buscherini E, Consoli F, Ferrara G, Digilio MC, Cavaliere M, van Hagen JM, Zampino G, van der Burgt I, Ferrero GB, Zampino G, Scarpelli I, Yatema H, Nillesen WM, Savarirayan R, Zenker M, Dellapiccola B, Gelb BD, Tartaglia M (2010) Heterozygous germline mutations in the CBL tumor-suppressor gene cause a Noonan syndrome-like phenotype. Am J Hum Genet 87(2):250–257
64. Cordeddu V, Spinelli M, Pennacchio LA, Ma’ayan A, Sarkozy A, Fodale V, Cechetti S, Cardinale A, Martin J, Schackwitz W, Lipzen A, Zampino G, Mazzanti L, Digilio MC, Martinelli S, Flex E, Lepri F, Bartholdi D, Kutsche K, Ferrero GB, Anichini C, Selicorni A, Rossi C, Tenconi R, Zenker M, Merlo D, Dellapiccola B, Iyengar R, Bazzicalupo P, Gelb BD, Tartaglia M (2009) Mutation of SHOC2 promotes aberrant protein N-myristoylation and causes Noonan-like syndrome with loose anagen hair. Nat Genet 41(9):1022–1026
65. Martinelli S, de Luca A, Stellacci E, Rossi C, Checquolo S, Lepri F, Caputo V, Silvano M, Buscherini E, Consoli F, Ferrara G, Digilio MC, Cavaliere M, van Hagen JM, Zampino G, van der Burgt I, Ferrero GB, Mazzanti L, Scarpelli I, Yatema H, Nillesen WM, Savarirayan R, Zenker M, Dellapiccola B, Gelb BD, Tartaglia M (2010) Heterozygous germline mutations in the CBL tumor-suppressor gene cause a Noonan syndrome-like phenotype. Am J Hum Genet 87(2):250–257
66. McAloney K, Black BL (2012) Transcription factor pathways and congenital heart disease. Curr Top Dev Biol 100:253–277
67. Schott JJ, Benson DW, Basson CT, Pease W, Silbergh BM, Moak JP, Maron BJ, Seidman CE, Seidman JG (1998) Congenital heart disease caused by mutations in the transcription factor NFATC1. Science 281(5373):108–111
68. Jansen E, van den Berg M, Manning A, Seidman CE, Plowden J, Kugler JD (1999) Mutations in the CBL tumor-suppressor gene cause a Noonan syndrome-like phenotype. Am J Hum Genet 74(2):250–257
69. Lepri F, Caputo V, Silvano M, Buscherini E, Consoli F, Ferrara G, Digilio MC, Cavaliere M, van Hagen JM, Zampino G, van der Burgt I, Ferrero GB, Zampino G, Scarpelli I, Yatema H, Nillesen WM, Savarirayan R, Zenker M, Dellapiccola B, Gelb BD, Tartaglia M (2010) Heterozygous germline mutations in the CBL tumor-suppressor gene cause a Noonan syndrome-like phenotype. Am J Hum Genet 87(2):250–257
an evolutionarily conserved Smad binding site. Dev Biol 244(2):257–266
80. Lien CL, Wu C, Mercer B, Webb R, Richardson JA, Olson EN (1999) Control of early cardiac-specific transcription of Nk2–5 by a GATA-dependent enhancer. Development 126(1): 75–84
81. Liberatore CM, Searcy-Schrick RD, Vincent EB, Yutzey KE (2002) Nkx-2.5 gene induction in mice is mediated by a Smad consensus regulatory region. Dev Biol 244(2):243–256
82. Prall OW, Menon MK, Solloway MJ, Watanabe Y, Zaffran S, Bajolle F, Bienc B, McBride JJ, Robertson BR, Chauvelet H, Stennard FA, Wise N, Schaft D, Wolstein O, Furtado MB, Shiratori H, Chien KR, Hamada H, Black BL, Saga Y, Robertson EJ, Buckingham ME, Harvey RP (2007) An Nk2–5/Bmp2/Smad1 negative feedback loop controls heart progenitor specification and proliferation. Cell 128(5):947–959
83. Barth JL, Clark CD, Fresco VM, Knoll EP, Lee B, Arggraves WS, Lee KH (2010) Jarid2 is among a set of genes differentially regulated by Nkx2.5 during outflow tract morphogenesis. Dev Dyn 239(7):2024–2033
84. Durocher D, Charron F, Warren RJ, Schwartz RJ, Nemer M (1997) The cardiac transcription factors Nk2–5 and GATA-4 are mutual cofactors. EMBO J 16(8):5687–5696
85. Schlesinger J, Schueler M, Fischer JJ, Zhang Q, Schlesinger J, Schueler M, Grunert M, Fischer JJ, Zhang Q, Schlesinger J, Schueler M, Grunert M, Fischer JJ, Zhang Q, Schlesinger J, Schueler M, Grunert M, Fischer JJ, Zhang Q, Schlesinger J, Schueler M, Grunert M, Fischer JJ, Zhang Q (2012) Regulation of GATA4 transcription factor genes Smad4 and Gata4 cooperatively regulate cardiac valve development (corrected). Proc Natl Acad Sci USA 109(10):4006–4011
86. Hiroi Y, Kudo S, Monzen K, Ikeda Y, Yazaki Y, Nagai R, Komuro I (2001) Tbx5 associates with Nk2–5 and synergistically promotes cardiomyocyte differentiation. Nat Genet 28(3):276–280
87. Moskowitz IP, Kim JB, Moore ML, Wolf CM, Peterson MA, Shendure J, Nobrega MA, Yokota Y, Berul C, Izumo S, Seidman JC, Seidman CE (2007) A molecular pathway including Id2, Tbx5, and Nk2–5 required for cardiac conduction system development. Cell 129(7):1365–1376
88. Zhou P, He A, Pu WT (2012) Regulation of GATA4 transcriptional activity in cardiovascular developmental and disease. Curr Top Dev Biol 100:143–169
89. Garg V, Kathiriya IS, Barnes R, Schlueterman MK, King IN, Butler CA, Rorthrock CR, Eapen RS, Hirayama-Yamada K, Joo K, Matsuoka R, Cohen JC, Sivashchak D (2003) GATA4 mutations cause human congenital heart defects and reveal an interaction with TBX5. Nature 424(6947):443–447
90. Rajagopal SK, Ma Q, Obler D, Shen J, Maniachiluk A, Tomita-Mitchell A, Boardman K, Briggs C, Garg V, Sivashchak D, Goldmuntz E, Broman KW, Benson DW, Smoot LB, Pu WT (2007) Spectrum of heart disease associated with murine and human GATA4 mutation. J Mol Cell Cardiol 43(6):677–685
91. Tomita-Mitchell A, Maslen CL, Morris CD, Garg V, Goldmuntz E (2007) GATA4 sequence variants in patients with congenital heart disease. J Med Genet 44(12):779–783
92. Moskowitz IP, Wang J, Peterson MA, Pu WT, Mackinnon AC, Oxburgh L, Chu GC, Sarkar M, Berul C, Smoot L, Robertson EJ, Schwartz R, Seidman JG, Seidman CE (2011) Transcription factor genes Smad4 and Gata4 cooperatively regulate cardiac valve development (corrected). Proc Natl Acad Sci USA 108(10):4006–4011
93. Kuo CT, Morrissey EE, Anandappa R, Sigrist K, Lu MM, Parmacek MS, Soudais C, Leiden JM (1997) GATA4 transcription factor is required for ventral morphogenesis and heart tube formation. Genes Dev 11(8):1048–1060
94. Molkentin JD, Lin Q, Duncan SA, Olson EN (1997) Requirement of the transcription factor GATA4 for heart tube formation and ventral morphogenesis. Genes Dev 11(8):1061–1072
95. Pu WT, Ishiwata T, Juraszek AL, Ma Q, Izumo S (2004) GATA4 is a dosage-sensitive regulator of cardiac morphogenesis. Dev Biol 275(1):235–244
96. Misra C, Sachan N, McNally CR, Koenig SN, Nichols HA, Guggilam A, Lucchesi PA, Pu WT, Srivastava D, Garg V (2012) Congenital heart disease-causing Gata4 mutation displays functional deficits in vivo. PLoS Genet 8(5):e1002690
97. McFadden DG, Charlie J, Richardson JA, Srivastava D, Firulli AB, Olson EN (2000) A GATA-dependent right ventricular enhancer controls dHAND transcription in the developing heart. Development 127(24):5331–5341
98. Dodou E, Verzi MP, Anderson JP, Xu SM, Black BL (2004) MeF2c is a direct transcriptional target of ISL1 and GATA factors in the anterior heart field during mouse embryonic development. Development 131(16):3931–3942
99. Maitra M, Schlueterman MK, Nichols HA, Richardson JA, Lo CW, Srivastava D, Garg V (2009) Interaction of Gata4 and Gata6 with Tbx5 is critical for normal cardiac development. Dev Biol 326(2):368–377
100. Greulich F, Rudat C, Kispert A (2011) Mechanisms of T-box gene function in the developing heart. Cardiovasc Res 91(2):212–222
101. Bruneau BG, Nemer G, Schmitt JP, Charron F, Robitaille L, Caron S, Conner DA, Gessler M, Nemer M, Seidman CE, Seidman JG (2001) A murine model of Holt–Oram syndrome defines roles of the T-box transcription factor Tbx5 in cardiovascular and gene. Cell 106(6):709–721
102. Li QY, Newbury-Ecob RA, Terrett JA, Wilson DJ, Curtis AR, Yi CH, Gebhehr T, Bullen PJJ, Robson SC, Strachan T, Bonnet D, Lyonnnet S, Young ID, Raeburn JA, Buckler AJL, Law DJ, Brook JD (1997) Holt–Oram syndrome is caused by mutations in Tbx5, a member of the Brachyury (T) gene family. Nat Genet 15(1):21–29
103. Basson CT, Bachinsky DR, Lin RC, Levi T, Elkins JA, Souls T, Grayzel D, Kroumpouzou E, Traill TLA, Leblanc-Straceski J, Renault B, Kucherlapati R, Seidman JC, Seidman CE (1997) Mutations in human Tbx5 (corrected) cause limb and cardiac malformation in Holt–Oram syndrome. Nat Genet 15(1):30–35
104. Kirk EP, Sunde M, Costa MW, Rankin SA, Wolstein O, Castro ML, Butler TL, Hyun C, Guo G, Otway R, Mackay JP, Waddell LB, Cole AD, Hayward C, Keogh A, Macdonald P, Griffths L, Fatkin D, Sholler GF, Zorn AM, Feneley MP, Wilmaw DS, Harvey RP (2007) Mutations in cardiac T-box factor gene TBX20 are associated with diverse cardiac pathologies, including defects of septation and valvulogenes and cardiomyopa thy. Am J Hum Genet 81(2):280–291
105. Singh MK, Christoffels VM, Dias JM, Trowe MO, Petry M, Schuster-Gossler K, Burger A, Ericson J, Kispert A (2005) Tbx20 is essential for cardiac chamber differentiation and repression of Tbx2. Development 132(12):2697–2707
106. Stennard FA, Costa MW, Lai D, Biben C, Furtado MB, Soloway MJ, McCulley DJ, Leimena C, Preis J, Dunwoodie SL, Elliott DE, Prall OW, Black BL, Fatkin D, Harvey RP (2005) Murine T-box transcription factor Tbx20 acts as a repressor during heart development, and is essential for adult heart integrity, function and adaptation. Development 132(10):2451–2462
107. Cai CL, Zhou W, Yang L, Bu L, Qyang Y, Zhang X, Li X, Rosenfeld MG, Chen J, Evans S (2005) Tbx20 genes coordinate regional rates of proliferation and regional specification during cardiogenesis. Development 132(10):2475–2487
108. Cai X, Nomura-Kitabayashi A, Cai W, Yan J, Christoffels VM, Cai CL (2011) Myocardial Tbx20 regulates early atriocentric Canal formation and endocardial epithelial-mesenchymal transition via Bmp2. Dev Biol 360(2):381–390
109. Hammer S, Toenjes M, Lange M, Jorgensen M, Carstens F, Berger F, Sperling S (2008)
Characterization of TBX20 in human hearts and its regulation by TFAP2. J Cell Biochem 104(3):1022–1033

110. Satoda M, Zhao F, Diaz GA, Burn J, Goodship J, Davidson HR, Pierpont ME, Gelb BD (2000) Mutations in TFAP2B cause Char syndrome, a familial form of patent ductus arteriosus. Nat Genet 25(1):42–46

111. Chen YW, Zhao W, Zhang ZF, Fu Q, Shen J, Zhang Z, Ji W, Wang J, Li F (2011) Familial nonsyndromic patent ductus arteriosus caused by mutations in TFAP2B. Pediatr Cardiol 32(7):958–965

112. Khetyar M, Syrris P, Tinworth L, Abushaban L, Carter N (2008) Novel TFAP2B mutation in nonsyndromic patent ductus arteriosus. Genet Test 12(3):457–459

113. Zhao F, Bosserhoff AK, Buettner R, Moser M (2011) A heart-hand syndrome gene: Tafap2b plays a critical role in the development and remodeling of mouse ductus arteriosus and limb patterning. PLoS One 6(7):e22908

114. Braganca J, Eloranta JJ, Bamforth SD, Ibbitt JC, Hurst HC, Shiota D, Bhattacharya S (2002) Human CREBBP-binding protein/p300-interacting transactivator with ED-rich tail (CITED) 4, a new member of the CITED family, functions as a co-activator for transcription factor AP-2. J Biol Chem 277(10):8559–8565

115. Braganca J, Eloranta JJ, Bamforth SD, Ibbitt JC, Hurst HC, Shiota D, Bhattacharya S (2003) Physical and functional interactions among AP-2 transcription factors, p300/CREBBP-binding protein, and CITED2. J Biol Chem 278(18):16021–16029

116. Pettij F, Giles RH, Daawerse HG, Saris JJ, Hennekam RC, Masuno M, Tommerup N, van Ommen GJ, Goodman RH, Peters DJ (1995) Rubinstein–Taybi syndrome caused by mutations in the transcriptional co-activator CBP. Nature 376(6538):348–351

117. Roelfsema JH, White SJ, Ariyurek Y, Bartholdi D, Niedrist D, Papadia F, Bacinio CA, den Dunnen JT, van Ommen GJ, Breuning MH, Hennekam RC, Peters DJ (2005) Genetic heterogeneity in Rubinstein–Taybi syndrome: mutations in both the CBP and EP300 genes cause disease. Am J Hum Genet 76(4):572–580

118. Posch MG, Waldmuller S, Muller M, Scheffold T, Fournier D, Andrade-Navarro MA, De GB, Guillaumont S, Dauphin C, Youssef D, Schmitt KR, Perrot A, Berger F, Hetzer R, Bouvag-net P, Ozcelik C (2011) Cardiac alpha-myosin (MYH6) is the predominant sarcomeric disease gene for familial atrial septal defects. PLoS One 6(12):e28872

119. Granados-Riveron JT, Ghosh TK, Pope M, Bu’Lock F, Thorn-borough C, Eason J, Kirk EP, Fatkin D, Feneley MP, Harvey RP, Armour JA, David BJ (2010) Alpha-cardiac myosin heavy chain (MYH6) mutations affecting myofibril formation are predominant sarcomeric disease gene for familial atrial septal defect. Nat Genet 43(4):306–314

120. Guyot D, Carriou D, Ollivier T, Francois C, Saboulle T, Bernard J, Roudot-Thoraval F, Dauwerse HG, Saris JJ, Hennekam RC, Peters DJ (2006) Congenital heart defects in Kabuki syndrome: Am J Med Genet A 155A(7):1511–1516

121. Bokenkamp R, DeRuiter MC, van Munsteren C, Gittenberger-de Groot AC (2010) Insights into the pathogenesis and genetic background of patency of the ductus arteriosus. Neontology 98(1):6–17

122. Ksiotis A, Bano B, Lalande A, Vosset S, Vosset S, Blumenthal C, Shendure J, Binhational M (2011) Spectrum of MLL2 (ALR) mutations in 110 cases of Kabuki syndrome. Am J Med Genet A 155A(7):1511–1516

123. Digilio MC, Marino B, Toscano A, Giannotti A, Dallapiccola B (2001) Congenital heart defects in Kabuki syndrome. Am J Med Genet 100(4):269–274

124. Ang SB, Bigham AW, Buckingham KJ, Hannibal MC, McMillin MJ, Gildersleeve HL, Beak AE, Tabor HK, Melford HC, Cook J, Yoshura K, Matsumoto K, Matsumoto N, Miyake N, Tokoni H, Haritomi K, Kaname T, Nogi K, Ohashi H, Kurokawa K, Hata J, Li, Dudo A, Sudo A, Morris CA, Banka S, Black GC, Clayton-Smith J, Nickerson DA, Zuckai EH, Shaikth DH, Donnai D, Niikawa N, Shendure J, Basmash M (2011) Spectrum of MLL2 (ALR) mutations in 110 cases of Kabuki syndrome. Am J Med Genet A 155A(7):1511–1516

125. Dhillon A, Mancini B, Tomasino A, Giannotti A, Dallapiccola B (2001) Congenital heart defects in Kabuki syndrome. Am J Med Genet 100(4):269–274

126. Shilatifard A (2008) Molecular implementation and physiological roles for histone H3 lysine 4 (H3K4) methylation. Curr Opin Cell Biol 20(3):341–348

127. Lalani SR, Safiullah AM, Fernbach SD, Harutyanun KY, Thaller C, Peterson LE, McPherson JD, Gibbs RA, White LD, Hefner M, Davenport SL, Graham JM, Bacino CA, Glass NL, Tovin JA, Kraigen WJ, Neish SR, Lin AE, Belmont JW (2006) Spectrum of CHD7 mutations in 110 individuals with CHARGE syndrome and genotype-phenotype correlation. Am J Hum Genet 78(2):303–314

128. Jongmans MC, Admiral RA, van der Donk KP, Vissers LE, Baas AF, Kapusta L, van Hagen JM, Donnai D, van Ravel TJ, Veltman JA, van Geurts KA, Van der Gaag CB, Brunner HG, Hekko- sloot LH, van Ravenswaaij CM (2006) CHARGE syndrome: the phenotypic spectrum of mutations in the CHD7 gene. J Med Genet 43(4):306–314
166. Liao J, Aggarwal VS, Nowotschin S, Bondarev A, Liperer S, Morrow BE (2008) Identification of downstream genetic pathways of Tbx1 in the second heart field. Dev Biol 316(2):524–537

167. Roberts C, Ivins SM, James CT, Scambler PJ (2005) Microarray analysis detects differentially expressed genes in the pharyngeal region of mice lacking Tbx1. Dev Biol 285(2):554–569

168. Ivins S, van Lammerts BK, Roberts C, James C, Lindsay e, van der Wallen B, van den Berg DL, Steffensen S, Ferreira J, varga-weisz PD (2004) wSTF-SNF2 h chromatin remodeling complex interacts with several nuclear proteins in transcription. J Biol Chem 279(21):15491–15502

169. Vitelli F, Taddei I, Morishima M, Meyers EN, Lindsay EA, Baldini A (2002) A genetic link between Tbx1 and fibroblast growth factor signaling. Development 129(19):4605–4611

170. Guo C, Sun Y, Zhou B, Adam RM, Li X, Wu WT, Morrow BE, Moon A, Li X (2011) A Tbx1–Six1/Eya1–Fgf8 genetic pathway controls mammalian cardiovascular and craniofacial morphogenesis. J Clin Invest 121(4):1585–1595

171. Fulcoli FG, Huynh T, Scambler PJ, Baldini A (2009) Tbx1 regulates the BMP-Smad1 pathway in a transcription independent manner. PLoS One 4(6):e6049

172. Ewart AK, Morris CA, Atkinson D, Jin W, Sternes K, Spallone M, Stock AD, Leppert M, Keating MT (1993) Hemizygosity at the elastin locus in a developmental disorder, Williams syndrome. Nat Genet 5(1):11–16

173. Lowery MC, Morris CA, Ewart A, Brothman LJ, Zhu XL, Leonard CO, Carey JC, Keating M, Brothman AR (1995) Strong correlation of elastin deletions, detected by FISH, with Williams syndrome: evaluation of 235 patients. Am J Hum Genet 57(1):49–53

174. Perez Jurado LA, Peoples R, Kaplan P, Hamel BC, Francke U (1996) Molecular definition of the chromosome 7 deletion in Williams syndrome and parent-of-origin effects on growth. Am J Hum Genet 59(4):781–792

175. Poher BR (2010) Williams–Beuren syndrome. N Engl J Med 362(3):239–252

176. del Pasqua A, Rinelli G, Toscano A, Iacobelli R, Digilio C, Marino B, Saffirio C, Mondillo S, Pasquini L, Sanders SP, de Zorzi A (2009) New findings concerning cardiovascular manifestations emerging from long-term follow-up of 150 patients with the Williams–Beuren–Beuren syndrome. Cardiol Young 19(6):563–567

177. Eronen M, Peippo M, Hiippala A, Raaitikka M, Arvio M, Johansson R, Kakhkonen M (2002) Cardiovascular manifestations in 75 patients with Williams syndrome. J Med Genet 39(8):554–558

178. Frangiskakis JM, Ewart AK, Morris CA, Mervis CB, Bertrand J, Robinson BF, Klein BP, Ensing GJ, Everett LA, Green ED, Proschel C, Goutowski NJ, Noble M, Atkinson DL, Odelberg SJ, Keating MT (1996) Lim-kinase1 hemizygosity implicated in impaired visuospatial constructive cognition. Cell 86(1):59–69

179. Tassabehji M, Metcalfe K, Karmiloff-Smith A, Carette MJ, Grant J, Dennis N, Reardon W, Splitter M, Read AP, Donnai D (1999) Williams syndrome: use of chromosomal microdeletions as a tool to dissect cognitive and physical phenotypes. Am J Hum Genet 64(1):118–125

180. Li DY, Toland AE, Boak BB, Atkinson DL, Ensing GJ, Morris CA, Keating MT (1997) Elastin point mutations cause an obstructive vascular disease, supravalvular aortic stenosis. Hum Mol Genet 6(7):1021–1028

181. Metcalfe K, Rucka AK, Smoot L, Hofstadler G, Tuzler G, McKeown P, Siu V, Rauch A, Dean J, Dennis N, Ellis I, Reardon W, Cytnrybaum C, Osborne L, Yates JR, Read AP, Donnai D, Tassabehji M (2000) Elastin: mutational spectrum in supravalvular aortic stenosis. Eur J Hum Genet 8(12):955–963

182. Li DY, Faury G, Taylor DG, Davis EC, Boyle RP, Stenzel P, Boak B, Keating MT (1998) Novel arterial pathologies in mice and humans hemizygous for elastin. J Clin Invest 105(10):1783–1787

183. Yoshimura K, Kitagawa H, Fujiki R, Tanabe M, Takezawa S, Takada I, Yamaoka I, Yonezawa M, Kondo T, Furutani Y, Yagi H, Yoshinaga S, Masuda T, Fukuda T, Yamamoto Y, Ebihara K, Li DY, Matsuoka R, Takeuchi JK, Matsumoto T, Kato S (2009) Distinct function of 2 chromatin remodeling complexes that share a common subunit, Williams syndrome transcription factor (WSTF). Proc Natl Acad Sci USA 106(23):9280–9285

184. Kitagawa H, Fujiki R, Yoshimura K, Mezaki Y, Uematsu Y, Matsui S, Ogawa S, Unno K, Okubo M, Tokita A, Nakagawa T, Ito T, Ishimi Y, Nagasawa H, Matsumoto T, Yanagisawa J, Kato S (2003) The chromatin-remodeling complex WINAC targets a nuclear receptor to promoters and is impaired in Williams syndrome. Cell 113(7):905–917

185. Bozhenok L, Wade PA, Varga-Weisz P (2002) WSTF-ISWI chromatin remodeling complex targets heterochromatic replication foci. EMBO J 21(9):2231–2241

186. Cavellan E, Asp P, Percipalle P, Farrants AK (2006) The WSTF-SNP2 h chromatin remodeling complex interacts with several nuclear proteins in transcription. J Biol Chem 281(24):16264–16271

187. Poot RA, Bozhenok L, van den Berg DL, Steffensen S, Ferreira F, Grimaldi M, Gilbert N, Ferreira J, Varga-Weisz PD (2004) The Williams syndrome transcription factor interacts with PCNA to target chromatin remodelling by ISWI to replication foci. Nat Cell Biol 6(12):1236–1244

188. Maas NM, Van BG, Hannes F, Thienpont B, Sanlaville D, Kok P, Koudela B, Schoumans J, Hordijk PW, Bakino C, Scaglia F, Zorzi RT, Cheung SW, Scott DA, Kang SH (2009) Chromosome 8p23.1 deletions as a cause of complex congenital heart defects and diaphragmatic hernia. Am J Med Genet A 149A(8):1661–1677
196. Zhang W, Li X, Shen A, Jiao W, Guan X, Li Z (2008) GATA4 mutations in 486 Chinese patients with congenital heart disease. Eur J Med Genet 51(6):527–535

197. Mefford HC, Sharp AJ, Baker C, Itsara A, Jiang Z, Buyske K, Huang S, Maloney VK, Crolla JA, Baralle D, Collins A, Mercer C, Norga K, de Ravel T, Devriendt K, Bongers EM, de Leeuw N, Reardon W, Gimelli S, Bena F, Hennekam RC, Male A, Gaunt L, Clayton-Smith J, Simonic I, Park SM, Mehta SG, Nik-Zainal S, Woods CG, Firth HV, Parkin G, Fichera M, Reitano S, Lo GM, Li KE, Casuga I, Broomer A, Conrad B, Schwarzmann M, Raber L, Gallati S, Striano P, Coppolla A, Tolmie JL, Tobias ES, Lilley C, Armengol L, Sspyschaert Y, Verloo P, De Coene A, Goossens L, Mortier G, Spelen F, van Binsbergen E, Nelen MR, Hochstenbach R, Poot M, Gallagher L, Gill M, McClellan J, King MC, Regan R, Skinner C, Stevenson RE, Antonarakis SE, Chen C, Estivill X, Menten B, Gimelli G, Grubbie S, Schwartz S, Sutcliffe JS, Walsh T, Knight SJ, Sebat J, Romano C, Schwartz CE, Veltman JA, de Vries BB, Vermeesch JR, Barber JC, Willart L, Tassabehji M, Eichler EE (2008) Recurrent rearrangements of chromosome 1q21.1 and variable pediatric phenotypes. N Engl J Med 359(16):1685–1699

198. Soemedi R, Topf A, Wilson J, Darlay R, Rahman T, Glen E, Hall D, Huang N, Bentham J, Bhattacharya S, Cosgrove C, Brook JD, Granados-Riveron J, Setchfield K, Bu’Lock F, Thornborough C, Devriendt K, Breckpot J, Holbeck M, Lathrop M, Rauch A, Blue GM, Winlaw DS, Hurles M, Sanitanchez-Koret M, Cordell HJ, Goodship JA, Keavney BD (2012) Phenotype-specific effect of chromosome 1q21.1 rearrangements and GJA5 duplications in 2436 congenital heart disease patients and 6760 controls. Hum Mol Genet 21(7):1513–1520

199. Gu H, Smith FC, Taffet SM, Delmar M (2003) High incidence of cardiac malformations in connexin40-deficient mice. Circ Res 93(3):201–206

200. Kirchhoff S, Kim JS, Hagendorff A, Thonnissen E, Kruger O, Lamers WH, Willecke K (2000) Abnormal cardiac conduction and morphogenesis in connexin40 and connexin43 double-deficient mice. Circ Res 87(5):399–405

201. Gourdie RG, Severs NJ, Green CR, Severs NJ, Reardon S, Germroth P, Kirchhoff S, Nelles e, Hagendorff A, Kruger O, Traub O, Wilkie AO, Gros D, Jarry-Guichard T, Ten velde I, de Maziere A, van Kleefstra T, Brunner HG, Amiel J, Oudakker AR, Nillesen W, Smidt M, Banning MJ, Oudakker AR, van esch M, Magee A, Genevieve D, Cormier-Daire v, van Kleefstra T, Willart L, Tassabehji M, Eichler EE (2008) Recurrent rearrangements of chromosome 1q21.1 and variable pediatric phenotypes. N Engl J Med 359(16):1685–1699

202. Soemedi R, Topf A, Wilson J, Darlay R, Rahman T, Glen E, Hall D, Huang N, Bentham J, Bhattacharya S, Cosgrove C, Brook JD, Granados-Riveron J, Setchfield K, Bu’Lock F, Thornborough C, Devriendt K, Breckpot J, Holbeck M, Lathrop M, Rauch A, Blue GM, Winlaw DS, Hurles M, Sanitanchez-Koret M, Cordell HJ, Goodship JA, Keavney BD (2012) Phenotype-specific effect of chromosome 1q21.1 rearrangements and GJA5 duplications in 2436 congenital heart disease patients and 6760 controls. Hum Mol Genet 21(7):1513–1520

203. Simon AM, Goodenough DA, Paul DL (1998) Mice lacking connexin40 have cardiac conduction abnormalities characteristic of atrioventricular block and bundle branch block. Curr Biol 8(5):295–298

204. Kirchhoff S, Nelson E, Hagendorff A, Kruger O, Traub O, Willecke K (1998) Reduced cardiac conduction velocity and predisposition to arrhythmias in connexin40-deficient mice. Curr Biol 8(5):299–302

205. Kleefta S, Brunner HG, Amiel J, Oudakker AR, Nillesen WM, Magee A, Genevieve D, Cormier-Daire V, van EH, Fryns JP, Hamel BC, Sistermans EA, de Vries BB, van Bokhoven H (2006) Loss-of-function mutations in euchromatin histone methyl transferase 1 (EHMT1) cause the 9q34 subtelomeric deletion syndrome. Eur J Med Genet 42(4):299–306

206. Stewart DR, Huang A, Faravelli A, Fenderlin BM, Medne L, Ciprero K, Kaur M, Rossi E, Tenconi R, Nordenskjold M, Gripp KW, Nicholson L, Meschino WS, Capua E, Quarrrell OW, Flint J, Irons M, Giampietro PF, Schowalter DB, Zaleski CA, Malacarne M, Zackai EH, Spinner NB, Krantz ID (2004) Subtelomeric deletions of chromosome 9q: a novel microdeletion syndrome. Am J Med Genet A 128A(4):340–351

207. Willemsen MH, Vuto-van Silfhout AT, Nillesen WM, Wis-sink-Lindhout WM, van Bokhoven H, Philip N, Berry-Kravis EM, Kini U, van Ravenswaaij-Arts CM, Delle CB, Innes AM, Hougé H, Kosonen T, Cremer K, Fannenmel M, Stray-Pedersen A, Reardon W, Ignatius J, Lachlan K, Mircher C, Holderman van den EN, Mastbroek M, Cohn-Hokke PE, Yntema HG, Drunat S, Kleefstra T (2012) Update on Kleefstra syndrome. Mol Syndromol 3(2–3):202–212

208. Tachibana M, Ueda J, Fukuda M, Takeda N, Ohta T, Twnari H, Sakihama T, Kodama T, Hamakubo T, Shinaki Y (2005) Histone methyltransferases G9a and G9a-like and GLP form heterocomplexes and are both crucial for methylation of euchromatin at H3-K9. Genes Dev 19(7):815–826

209. Dubourg C, Sanlaville D, Doco-Fenzy M, Le CC, Missriani C, Jaillard S, Schluth-Bolard C, Landais E, Boute O, Philip N, Toutain A, David A, Edery P, Moncla A, Martin-Coignard D, Vincent-Delorme C, Mortemousque I, Duban-Bedu B, Drunat S, Beri M, Mosser J, Odent S, David V, Andrieux J (2011) Clinical and molecular characterization of 17q21.31 microdeletion syndrome in 14 French patients with mental retardation. Eur J Med Genet 54(2):144–151

210. Kooilen DA, Sharp AJ, Hurst JA, Firth HV, Knight SJ, Goldenberg A, Saugier-Verber P, Pfundt R, Vissers LE, Destree A, Grisart B, Rooms L, Van der As N, Field M, Hackett A, Bell K, Nowaczyk MJ, Mancini GM, Poddighe PJ, Schwartz CE, Rossi E, De Gregori M, Antonacci-Fulton LL, McLellan MD, Garrett JM, Wiechert MA, Miner TL, Crosby S, Cicone R, Willart L, Rauch A, Zenker M, Aradhy S, Manning MA, Strom TM, Wagensten K, Krepschis-Santos AC, Vianna-Morgante AM, Rosenberg C, Price SM, Stewart H, Shaw-Smith C, Brunner HG, Willke AO, Veltman JA, Zauffardi O, Eicher EE, de Vries BB (2008) Clinical and molecular delineation of the 17q21.31 microdeletion syndrome. J Med Genet 45(11):710–720

211. Kooilen DA, Kramer JM, Neveling K, Nillesen WM, Moore-Barton HL, Elsmies FV, Toutain A, Amiel J, Malan V, Tsai AC, Cheung SW, Glisenc C, Verwelie ET, Martens S, Feuth T, Bongers EM, de Vries P, Scheffer H, Vissers LE, de Brouwer AP, Brunner HG, Veltman JA, Schenck A, Yntema HG, de Vries BB (2012) Mutations in the chromatin modifier gene KANSL1 cause the 17q21.31 microdeletion syndrome. Nat Genet 44(6):639–641

212. Zollino M, Orteschi D, Murdolo M, Lattante S, Battaglia D, Stefancini F, Mercuri E, Chiurazzi P, Neri G, Marangi G (2012) Mutations in KANSL1 cause the 17q21.31 microdeletion syndrome. Nat Genet 44(6):639–641

213. Laverty C, Lucci J, Akhtar A (2010) The ML5 complex: X chromosome and beyond. Curr Opin Genet Dev 20(2):171–178

214. Smith EE, Clayrou C, Huang R, Lane WS, Cote J, Lucchesi JC (2005) A human protein complex homologous to the Drosophila ML5 complex is responsible for the majority of histone H4 acetylation at lysine 16. Mol Cell Biol 25(21):9175–9188

215. Ballif BC, Theisen A, Rosenfeld JA, Traylor RN, Gastier-Foster JM, Thrush DL, Astbury C, Bartholomew D, McBride KL, Pyatt RE, Shane K, Smith WE, Banks V, Gallentine WB, Brock P, Rudd MK, Adam MP, Keene JA, Phillips JA, III, Pottenhauer JP, Gowans GC, Stankiewicz P, Bejiani BA, Shaffer LG (2010) Identification of a recurrent microdeletion at 17q23.1q23.2 flanked by segmental duplications associated with heart defects and limb abnormalities. Am J Hum Genet 86(3):454–461
Molecular genetics of CHD

219. Habets Pe, Moorman AF, Clout DE, van Roon MA, Lingbeek M, Harrelson Z, Kelly RG, Goldin SN, Gibson-Brown JJ, Bollag RJ, Molecular genetics of CHD

221. Breckpot J, Thienpont B, Arens Y, Tranchevent LC, Vermeesch JR, Gewillig M, Devriendt K (2010) Array comparative genomic hybridization as a diagnostic tool for syndromic heart defects. J Pediatr 156(5):810–817

222. Erdogan F, Larsen LA, Zhang L, Tumer Z, Tommerup N, Chen W, Jacobsen JR, Schubert M, Jurkatis J, Tzschach A, Ropers HH, Ullmann R (2008) High frequency of submicroscopic genomic aberrations detected by tiling path array comparative genome hybridisation in patients with isolated congenital heart disease. J Med Genet 45(11):704–709

223. Fakhro KA, Choi M, Ware SM, Belmont JW, Towbin JA, Lifton RP, Khokha MK, Brueckner M (2011) Rare copy number variations in congenital heart disease patients identify unique genes in left-right patterning. PLoS Genet 8(4):1002597

224. Goldmuntz E, Paluru P, Glessner J, Hakonarson H, Biegel JA, White PS, Gai X, Shaikh TH (2011) Microdeletions and microduplications in patients with congenital heart disease and multisystem congenital anomalies. Congenit Heart Dis 6(6):592–602

225. Greenway SC, Pereira AC, Lin JC, DePalma SR, Israel SJ, Abbud M, van Lohuizen M, Campione M, Christoffels VM (2002) Cooperative action of Tbx2 and Nkx2.5 inhibits ANF expression in the atrioventricular canal: implications for cardiac chamber formation. Genes Dev 16(10):1234–1246

226. Hitz MP, Lemieux-Perreault LP, Marshall C, Feroz-Zada Y, Greenway SC, Pereira AC, Lin JC, DePalma SR, Israel SJ, Abbud M, van Lohuizen M, Campione M, Christoffels VM (2002) Cooperative action of Tbx2 and Nkx2.5 inhibits ANF expression in the atrioventricular canal: implications for cardiac chamber formation. Genes Dev 16(10):1234–1246

227. Iascone M, Ciccone R, Galletti L, Marchetti D, Seddio F, Lin J, Marchetti D, Seddio F, Lin J, Hitz MP, Lemieux-Perreault LP, Marshall C, Feroz-Zada Y, Greenway SC, Pereira AC, Lin JC, DePalma SR, Israel SJ, Abbud M, van Lohuizen M, Campione M, Christoffels VM (2002) Cooperative action of Tbx2 and Nkx2.5 inhibits ANF expression in the atrioventricular canal: implications for cardiac chamber formation. Genes Dev 16(10):1234–1246

228. Lalani SR, Shaw C, Hsu SM, Cheung SW, Penny DJ, Jefferies JL, Belmont JW (2013) Rare DNA copy number variants in cardiovascular malformations with extracardiac abnormalities. Eur J Hum Genet 21(2):173–181

229. Payne AR, Chang SW, Koeneig SN, Zinn AR, Garg V (2012) Submicroscopic chromosomal copy number variations identified in children with hypoplastic left heart syndrome. Pediatr Cardiol 33(5):757–763

230. Richards AA, Santos LJ, Nichols HA, Crider BP, Elder FF, Hauser NS, Zinn AR, Garg V (2008) Cryptic chromosomal abnormalities identified in children with congenital heart disease. Pediatr Res 64(4):358–363

231. Silversides CK, Lionel AC, Costain G, Merico D, Migita O, Liu B, Yuen T, Rickaby J, Thiruvahindrapuram B, Marshall CR, Scherer SW, Bassett AS (2012) Rare copy number variations in adults with tetralogy of Fallot implicate novel risk gene pathways. PLoS Genet 8(8):e1002843

232. Soemedi R, Wilson JJ, Benhaim J, Durlay R, Topf A, Zelenika D, Cosgrove C, Setchfield K, Thorburn C, Granados-Riveron J, Blue GM, Breckpot J, Hellens S, Zoulis K, Shen E, Mamasoula C, Rahman TJ, Hall D, Rauch A, Devriendt K, Gewillig M, O’Sullivan J, Winlaw DS, Bu’Lock F, Brook JD, Bhattacharya S, Lathrop M, Santibanez-Koref M, Cordell HJ, Goodship JA, Keavney BD (2012) Contribution of global rare copy-number variants to the risk of sporadic congenital heart disease. Am J Hum Genet 91(3):489–501

233. Thienpont B, Mertens L, de Ravel T, Eyssens B, Boshoff D, Maas N, Fryns JP, Gewillig M, Vermeesch JR, Devriendt K (2007) Submicroscopic chromosomal imbalances detected by array-CGH are a frequent cause of congenital heart defects in selected patients. Eur Heart J 28(22):2778–2784

234. Tomita-Mitchell A, Mahadek NA, Struble CA, Tuffnell ME, Stamm KD, Hidestrand M, Harris SE, Goetsch MA, Simpson PM, Dick DP, Broeckel U, Pelech AN, Tweddell JS, Mitchell ME (2012) Human gene copy number spectra analysis in congenital heart malformations. Physiol Genomics 44(9):518–541

235. Aerts S, Lambrechts D, Maity S, Van Looy P, Coessens B, De Smet F, Tranchevent LC, De Moor B, Marynen P, Hassan B, Carmeliet P, Moreau Y (2006) Gene prioritization through genomic data fusion. Nat Biotechnol 24(5):537–544

236. Thienpont B, Zhang L, Postma AV, Breckpot J, Tranchevent LC, Van Loo P, Mollgard K, Tommerup N, Bache I, Tumer Z, van Engelen K, Menten B, Mortier G, Waggoner D, Gewillig M, Moreau Y, Devriendt K, Larsen LA (2010) Haploinsufficiency of TAB2 causes congenital heart defects in humans. Am J Hum Genet 86(6):839–849

237. Shiratori H, Hamada H (2006) The left-right axis in the mouse: from origin to morphogenesis. Development 133(11):2095–2104

238. Lage K, Greenway SC, Rosenfeld JA, Wakimoto H, Graham JM, Segre AV, Roberts AE, Smoot LB, Pu WT, Pereira AC, Mesquita SM, Tommerup N, Brunak S, Ballif BC, Shaffer LG, Donahoe PK, Daly MJ, Seidman JG, Seidman CE, Larsen LA (2012) Genetic and environmental risk factors in congenital heart disease functionally converge in protein networks driving heart development. Proc Natl Acad Sci USA 109(35):14035–14040

239. McBride KL, Zender GA, Fitzgerald-Butt SM, Koehler D, Menesses-Diaz A, Fernbach S, Lee K, Towbin JA, Leal S, Belmont JW (2009) Linkage analysis of left ventricular outflow tract malformations (aortic valve stenosis, coarctation of the aorta, and hypoplastic left heart syndrome). Eur J Hum Genet 17(6):811–819

240. Winston JB, Erlich JM, Green CA, Aluko A, Kaiser KA, Talkowski Me, Rosenfeld JA, Blumenthal I, Pillalamarri V, Chiang C, Heilbut A, Ernst C, Hanscom C, Rossin E, Lindgren AM, Pereira S, Ruderfer D, Kirby A, Ripeke S, Harris DJ, Lee JH, Ha K, Kim HG, Solomon BD, Groisman AL, Lucente D,
Sims K, Ohsumi TK, Borowsky ML, Loranger S, Quade B, Lage K, Miles J, Wu BL, Shen Y, Neale B, Shaffer LG, Daly MJ, Morton CC, Gusella JF (2012) Sequencing chromosomal abnormalities reveals neurodevelopmental loci that confer risk across diagnostic boundaries. Cell 149(3):525–537

Hu Z, Shi Y, Mo X, Xu J, Zhao B, Lin Y, Yang S, Xu Z, Dai J, Pan S, Da M, Wang X, Qian B, Wen Y, Wen J, Xing J, Guo X, Xia Y, Ma H, Jin G, Yu S, Liu J, Zhou Z, Wang X, Chen Y, Sha J, Shen H (2013) A genome-wide association study identifies two risk loci for congenital heart malformations in Han Chinese populations. Nat Genet 45(7):818–821

Cordell HJ, Bentham J, Topf A, Zelenika D, Heath S, Mama-kohlhase J, Heinrich M, Schubert L, Liebers M, Kispert Heathcote K, Braybrook C, Abushaban L, Guy M, Khetyar Me, Kodo K, Nishizawa T, Furutani M, Arai S, Yamamura e, Joo Chang Sw, Mislankar M, Misra C, Huang N, Dajusta DG, Nemer G, Fadlalah F, Usta J, Nemier M, Dbaibo G, Obied M, Bitar F (2006) A novel mutation in the GATA4 gene in patients with Tetralogy of Fallot. Hum Mutat 27(3):293–294

Smith KA, Joziasse IC, Chocron S, von Dinther M, Guryev V, Verhoeven MC, Rehmann H, van der Smagt J, Doevendans PA, Cuppen E, Mulder BJ, Ten DP, Bakkers J (2009) Dominant-negative ALK2 allele associates with congenital heart defects. Circulation 119(24):3062–3069

Bleyl SB, Saijoh Y, Bax NA, de Groot Gittenberger AC, Wisse LJ, Chapman SC, Hunter J, Shiratori H, Hamada H, Yamada S, Shiota K, Klewer SE, Leppert MF, Schoenwolf GC (2010) Dys-regulation of the PDGFRA gene causes inflow tract anomalies including TAPVR: integrating evidence from human genetics and model organisms. Hum Mol Genet 19(7):1286–1301

Kodo K, Nishizawa T, Furutani M, Arai S, Yamamura E, Joo K, Takahashi T, Matsuoka R, Yamagishi H (2009) GATA6 mutations cause human cardiac outflow tract defects by disrupting semaphorin-plexin signaling. Proc Natl Acad Sci USA 106(33):13933–13938

Maitra M, Koenig SN, Srivastava D, Gav V (2010) Identification of GATA6 sequence variants in patients with congenital heart defects. Pediatr Res 68(4):281–285

Cheng Z, Wang J, Su D, Pan H, Huang G, Li X, Li Z, Shen A, Xie X, Wang B, Ma X (2011) Two novel mutations of the IRX4 gene in patients with congenital heart disease. Hum Mutat (Epub ahead of print)

Kodo K, Nishizawa T, Furutani M, Arai S, Yamamura E, Joo K, Takahashi T, Matsuoka R, Yamagishi H (2009) GATA6 mutations cause human cardiac outflow tract defects by disrupting semaphorin-plexin signaling. Proc Natl Acad Sci USA 106(33):13933–13938

Maitra M, Koenig SN, Srivastava D, Gav V (2010) Identification of GATA6 sequence variants in patients with congenital heart defects. Pediatr Res 68(4):281–285

Cheng Z, Wang J, Su D, Pan H, Huang G, Li X, Li Z, Shen A, Xie X, Wang B, Ma X (2011) Two novel mutations of the IRX4 gene in patients with congenital heart disease. Hum Genet 130(5):657–662

Muncke N, Jung C, Rudiger H, Ulmer H, Roeth R, Hubert A, Goldmuntz E, Driscoll D, Goodship J, Schon K, Rap- old G (2003) Missense mutations and gene interruption in PROSIT240, a novel TRAP240-like gene, in patients with congenital heart defect (transposition of the great arteries). Circulation 108(23):2843–2850

Heathcote K, Braybrook C, Abushaban L, Guy M, Khetyar ME, Patton MA, Carter ND, Scambler PJ, Syrris P (2005) Common arterial trunk associated with a homeodomain mutation of NKX2.6. Hum Mol Genet 14(5):585–593

Kohlhase J, Heinrich M, Schubert L, Liebers M, Kispert A, Laccoone F, Turnpenny P, Winter RM, Reardon W (2002) Okihiro syndrome is caused by SALL4 mutations. Hum Mol Genet 11(23):2979–2987

Al-Baradie R, Yamada K, St HC, Chan WM, Andrews C, McIntosh N, Nakano M, Martonoy EJ, Raymond WR, Okumura S, Okihiro MM, Engle EC (2002) Duane radial ray syndrome (Okihiro syndrome) maps to 2q13 and results from mutations in SALL4, a new member of the SALL family. Am J Hum Genet 71(5):1195–1199

Wang B, Li L, Xie X, Wang J, Yan J, Mu Y, Ma X (2010) Genetic variation of SALL-4 (SALL4) in ventricular septal defect. Int J Cardiol 145(2):224–226

Pizzuti A, Sarkozy A, Newton AL, Conti E, Flex E, Digilio MC, Amati F, Gianni D, Tandoi C, Marino B, Crossley M, Dallapi-ccola B (2003) Mutations of ZFPM2/FOG2 gene in sporadic cases of tetralogy of Fallot. Hum Mutat 22(5):372–377

Nemer G, Fadlalah F, Usta J, Nemier M, Dbaibo G, Obied M, Bitar F (2006) A novel mutation in the GATA4 gene in patients with Tetralogy of Fallot. Hum Mutat 27(3):293–294

Smith KA, Joziasse IC, Chocron S, von Dinther M, Guryev V, Verhoeven MC, Rehmann H, van der Smagt J, Doevendans PA, Cuppen E, Mulder BJ, Ten DP, Bakkers J (2009) Dominant-negative ALK2 allele associates with congenital heart defects. Circulation 119(24):3062–3069

Bleyl SB, Saijoh Y, Bax NA, de Groot Gittenberger AC, Wisse LJ, Chapman SC, Hunter J, Shiratori H, Hamada H, Yamada S, Shiota K, Klewer SE, Leppert MF, Schoenwolf GC (2010) Dys-regulation of the PDGFRA gene causes inflow tract anomalies including TAPVR: integrating evidence from human genetics and model organisms. Hum Mol Genet 19(7):1286–1301

Aoki Y, Niibori T, Banjo T, Okamoto N, Mizuno S, Kurosawa K, Ogata T, Takada F, Yano M, Ando T, Hoshika T, Barnett C, Ohashi H, Kawame H, Hasegawa T, Okutani T, Nagashima T, Hasegawa S, Funayama R, Nagashima T, Nakayama K, Inoue SI, Watanabe Y, Ogura T, Matsubara Y (2013) Gain-of-Function Mutations in RIT1 Cause Noonan Syndrome, a RAS/ MAPK Pathway Syndrome. Am J Hum Genet 93(1):173–180

Tan HL, Glen E, Topf A, Hall D, O’Sullivan JJ, Sneddon L, Wren C, Avery P, Lewis RJ, Ten DP, Arthur HM, Goodship JA, Keavney BD (2012) Nonsynonymous variants in the SMAD6 gene predispose to congenital cardiovascular malformation. Hum Mutat 33(4):720–727

Robinson SW, Morris CD, Goldmuntz E, Keller MD, Jones MA, Steiner RD, Maslen CL (2003) Missense mutations in CRELD1 are associated with cardiac atrioventricular septal defects. Am J Hum Genet 72(4):1047–1052

Lalani SR, Ware SM, Wang X, Zapata G, Tian Q, Franco LM, Jiang Z, Bucasas K, Scott DA, Campeau PM, Hanchard N, Umana L, Cast A, Patel A, Cheung SW, McBride KL, Bray M, Craig CA, Boggs BA, Huang M, Baker MR, Hamilton S, Town- bin J, Jefferies JL, Fernbach SD, Potocki L, Belmont JW (2013) MCTP2 is a dosage-sensitive gene required for cardiac outflow tract development. Hum Mol Genet (Epub ahead of print)

Ryan AK, Goodship JA, Wilson DI, Philip N, Levy A, Seidel H, Schuiffenhauer S, Oechsler H, Belohradsky B, Prieur M, Aurias A, Raymond FL, Clayton-Smith J, Hatchwell E, McK-eown C, Beemer FA, Dallapiccola B, Novelli G, Hurst JA, Ignatiu J, Green AJ, Winter RM, Brueton L, Brundom-Nielsen K, Scambler PJ (1997) Spectrum of clinical features associated with interstitial chromosome 22q11 deletions: a European collaborative study. J Med Genet 34(10):798–804

Battaglia A, Hoyne HE, Dallapiccola B, Zackai E, Hudgins L, Donald-McGinn D, Bahi-Buisson N, Romano C, Williams CA, Brailey LL, Zuberi SM, Carey JC (2008) Further delineation of deletion 1p36 syndrome in 60 patients: a recognizable phenotype and common cause of developmental delay and mental retardation. Pediatrics 121(2):404–410
Molecular genetics of CHD

265. Mitter D, Chiaie BD, Ludecke HJ, Gilleslen-Kaesbach G, Bohring A, Kohlhase J, Caliebe A, Siebert R, Roepke A, Ramos-Arroyo MA, Nieva B, Menten B, Loeyes B, Mortier G, Wieczorek D (2010) Genotype-phenotype correlation in eight new patients with a deletion encompassing 2q31.1. Am J Med Genet A 152A(5):1213–1224

266. Ballif BC, Horner SA, Jenkins E, Madan-Khetarpal S, Surti U, Jackson KE, Asamoah A, Brock PL, Gowans GC, Conway RL, Graham JM Jr, Medne L, Zakai EH, Shakh IT, Geoghegan J, Selzer RR, Eis PS, Bejani BA, Shaffer LG (2007) Discovery of a previously unrecognized microdeletion syndrome of 16p11.2–p12.2. Nat Genet 39(9):1071–1073

267. Grossfeld PD, Mattina T, Lai Z, Favier R, Jones KL, Cotter F, Jones C (2004) The 11q terminal deletion disorder: a prospective study of 110 cases. Am J Med Genet A 129A(1):51–61

268. Battaglia A, Filippi T, Carey JC (2008) Update on the clinical features and natural history of Wolf-Hirschhorn (4p-) syndrome: experience with 87 patients and recommendations for routine health supervision. Am J Med Genet C Semin Med Genet 148C(4):246–251

269. Girirajan S, Vlangos CN, Szomju BB, Edelman E, Trevors CD, Grossfeld PD, Mattina T, Lai Z, Favier R, Jones KL, Cotter F, Jones C (2004) The 11q terminal deletion disorder: a prospective study of 110 cases. Am J Med Genet A 129A(1):51–61

270. Potocki L, Shaw CJ, Stankiewicz P, Lupski JR (2003) Variability in clinical phenotype despite common chromosomal deletion in Smith–Magenis syndrome: evidence that multiple genes in 17p11.2 contribute to the clinical spectrum. Genet Med 5(7):417–427

271. Brunetti-Pierri N, Berg JS, Scaglia F, Belmont J, Bacino CA, Potter OM, Hirotsune S, Wynshaw-Boris A, Dobyns WB, Ledbetter DH (2003) Refinement of a 400-kb critical region allows genotypic differentiation between isolated lissencephaly, Miller–Dieker syndrome, and other phenotypes secondary to deletions of 17p13.3. Am J Hum Genet 72(4):918–930

272. Miller–Dieker syndrome, and other phenotypes secondary to deletions of 17p13.3. Am J Hum Genet 72(4):918–930

273. Girirajan S, Vlangos CN, Szomju BB, Edelman E, Trevors CD, Grossfeld PD, Mattina T, Lai Z, Favier R, Jones KL, Cotter F, Jones C (2004) The 11q terminal deletion disorder: a prospective study of 110 cases. Am J Med Genet A 129A(1):51–61

274. Cardoso C, Leverent RJ, Ward Hl, Toyo-Oka K, Chung J, Gross A, Martin CL, Allanson J, Pilz DT, Olney AH, Mutch-Dickson LM, Nielesen WM, Innis JW, de Ravel TJ, Mercer CL, Fichera M, Stewart H, Connell LE, Onap K, Lachlan K, Castle B, Van der Aa N, van Ravenswaaij C, Nobrega MA, Serra-Juhe C, Simonic I, de Leeuw N, Piundt R, Bongers EM, Baecker C, Finnemore P, Huang S, Maloney VK, Crolla JA, van Kalmthout M, Elia M, Vandeweyer G, Fryns JP, Janssens S, Foulds N, Reitano S, Smith K, Parkel S, Loeyes B, Woods CG, Oostra A, Speleman F, Pereira AC, Kurg A, Willatt L, Knight SJ, Vermeersch JR, Romano C, Barber JC, Mortier G, Perez-Jurado LA, Koooy F, Brunner HG, Eichler EE, Kleefstra T, de Vries BB (2009) Further delineation of the 15q13 microdeletion and duplication syndromes: a clinical spectrum varying from non-pathogenic to a severe outcome. J Med Genet 46(8):511–523

275. Pan van Bw, Mefford HC, Menten B, Koolen DA, Sharp AJ, Millesen WM, Innis JW, de Ravel TJ, Mercer CL, Fichera M, Stewart H, Connell LE, Onap K, Lachlan K, Castle B, Van der Aa N, van Ravenswaaij C, Nobrega MA, Serra-Juhe C, Simonic I, de Leeuw N, Piundt R, Bongers EM, Baecker C, Finnemore P, Huang S, Maloney VK, Crolla JA, van Kalmthout M, Elia M, Vandeweyer G, Fryns JP, Janssens S, Foulds N, Reitano S, Smith K, Parkel S, Loeyes B, Woods CG, Oostra A, Speleman F, Pereira AC, Kurg A, Willatt L, Knight SJ, Vermeersch JR, Romano C, Barber JC, Mortier G, Perez-Jurado LA, Koooy F, Brunner HG, Eichler EE, Kleefstra T, de Vries BB (2009) Further delineation of the 15q13 microdeletion and duplication syndromes: a clinical spectrum varying from non-pathogenic to a severe outcome. J Med Genet 46(8):511–523

276. Cardoso C, Leverent RJ, Ward Hl, Toyo-Oka K, Chung J, Gross A, Martin CL, Allanson J, Pilz DT, Olney AH, Mutch-Dickson LM, Nielesen WM, Innis JW, de Ravel TJ, Mercer CL, Fichera M, Stewart H, Connell LE, Onap K, Lachlan K, Castle B, Van der Aa N, van Ravenswaaij C, Nobrega MA, Serra-Juhe C, Simonic I, de Leeuw N, Piundt R, Bongers EM, Baecker C, Finnemore P, Huang S, Maloney VK, Crolla JA, van Kalmthout M, Elia M, Vandeweyer G, Fryns JP, Janssens S, Foulds N, Reitano S, Smith K, Parkel S, Loeyes B, Woods CG, Oostra A, Speleman F, Pereira AC, Kurg A, Willatt L, Knight SJ, Vermeersch JR, Romano C, Barber JC, Mortier G, Perez-Jurado LA, Koooy F, Brunner HG, Eichler EE, Kleefstra T, de Vries BB (2009) Further delineation of the 15q13 microdeletion and duplication syndromes: a clinical spectrum varying from non-pathogenic to a severe outcome. J Med Genet 46(8):511–523

277. Thiernpont B, Bena F, Breekpot J, Philip N, Menten B, Van EH, Scalais E, Salamone JM, Fong CT, Kussmann JL, Grange DK, Gorski JL, Zahir F, Yong SL, Morris MM, Gimelli S, Fryns JP, Mortier G, Friedman JM, Villard L, Bottani A, Vermeersch JR, Cheung SW, Devriendt K (2010) Duplications of the critical Rubinstein-Taybi deletion region on chromosome 16p13.3 cause a novel recognisable syndrome. J Med Genet 47(3):155–161

278. Nagamani SC, Ereza E, Bader P, Lalani SR, Scott DA, Scaglia F, Plon SE, Tsai CH, Reimschisel T, Roeder E, Malphrus AD, Eng PA, Hixson PM, Kang SH, Stankiewicz P, Patel A, Cheung SW (2011) Phenotypic manifestations of copy number variation in chromosome 16p13.11. Eur J Hum Genet 19(3):280–286

279. Potocki L, Bi W, Treadwell-Deering D, Carvalho CM, Erfert A, Friedman EM, Glade D, Krull K, Lee JA, Lewis RA, Mendoza-Londono R, Robbins-Furman P, Shaw C, Shi X, Weissenberger G, Withers M, Yatsenko SA, Zackai EH, Stankiewicz P, Lupski JR (2007) Characterization of Potocki–Lupski syndrome [dup(17)(p11.2;p11.2)] and delineation of a dosage-sensitive critical interval that can convey an autism phenotype. Am J Hum Genet 80(4):633–649

280. Soler-Alfonso C, Mottil K, Turk CL, Robbins-Furman P, Friedman EM, Zhang F, Lupski JR, Fraley JK, Potocki L (2011) Potocki–Lupski syndrome: a microduplication syndrome associated with oropharyngeal dysphagia and failure to thrive. J Pediatr 158(4):655–659

281. Portnoi MF (2009) Microduplication 22q11.2: a new chromosomal syndrome. Eur J Med Genet 52(2–3):88–93
286. Bi W, Ohyama T, Nakamura H, Yan J, Visvanathan J, Justice MJ, Lupski JR (2005) Inactivation of Rai1 in mice recapitulates phenotypes observed in chromosome engineered mouse models for Smith–Magenis syndrome. Hum Mol Genet 14(8):983–995

287. Hirotsune S, Fleck MW, Gambello MJ, Bix GJ, Chen A, Clark GD, Ledbetter DH, McBain CJ, Wynshaw-Boris A (1998) Graded reduction of Pafah1b1 (Lis1) activity results in neuronal migration defects and early embryonic lethality. Nat Genet 19(4):333–339

288. Reiner O, Carrozzo R, Shen Y, Wehnert M, Faustinella F, Dohyins WB, Caskey CT, Ledbetter DH (1993) Isolation of a Miller–Dieker lissencephaly gene containing G protein beta-subunit-like repeats. Nature 364(6439):717–721