Neuroendocrine Liver Metastasis From the Small Intestine – Is Surgery Beneficial for Survival?

Andreas Selberherr (Andreas.Selberherr@meduniwien.ac.at)
Medical University Vienna https://orcid.org/0000-0002-6545-7023

Simon Freermann
Medical University of Vienna: Medizinische Universitat Wien

Oskar Kopererk
Medical University of Vienna: Medizinische Universitat Wien

Martin Niederle
Medizinische Universität Wien: Medizinische Universitat Wien

Philipp Riss
Medizinische Universität Wien: Medizinische Universitat Wien

Christian Scheuba
Medizinische Universität Wien: Medizinische Universitat Wien

Bruno Niederle
Medizinische Universität Wien: Medizinische Universitat Wien

Research

Keywords: Neuroendocrine tumors, neuroendocrine neoplasia, livermetastasis, NET, NEN, small intestine

DOI: https://doi.org/10.21203/rs.3.rs-108784/v1

License: This work is licensed under a Creative Commons Attribution 4.0 International License.
Read Full License
Abstract

Background

Neuroendocrine neoplasia of the small intestine (siNEN) are frequently diagnosed with liver metastases. The impact of the presence of liver metastases on overall survival and the necessity of surgery for liver metastasis is discussed controversially. The aim of this study is to evaluate and compare the overall long-term survival of patients with neuroendocrine neoplasia of the small intestine (siNEN) with and without liver metastasis at initial diagnosis and the possible benefit of surgical treatment as compared to active surveillance of metastases. 123 consecutive patients with siNENs were treated between 1965 and 2016. All clinical and histological records were reevaluated including analysis of the proliferation rates in all specimens. The one-, five-, ten and twenty-year overall survival was estimated by Kaplan-Meier analysis for patients with and without liver metastasis and according to the type of treatment (surgical vs. surveillance) of liver metastases if present.

Results

The one-, five-, ten- and twenty-year overall survival rate was 89.0%, 68.4%, 52.8% and 31.0% in patients without and 89.5%, 69.5%, 33.2% and 3.6% in those with liver metastases. No statistically significant differences were observed comparing the two groups. Within the group of patients with liver metastases, the type of treatment (surgical vs. surveillance) was in favor of patients undergoing surgery.

Conclusion

The presence of liver metastasis at initial diagnosis does not have a statistically significant influence on survival. Surgery for hepatic metastasis seems to show a benefit for overall survival and may be indicated especially in patients symptomatic due to high tumor burden and serotonin hypersecretion to reduce hormone activity.

Background

Neuroendocrine neoplasia (NEN) of the small intestine (si) are rare tumors with an estimated incidence of 0.29 per 100,000 (1, 2). SiNENs remain asymptomatic for a long time because of the late onset of symptoms which are most commonly unspecific. Elevated levels of serotonin (5-HT) which correlate with tumor burden may cause carcinoid syndrome that is characterized by diarrhea, flushing, sweating and palpitations (3, 4). Diagnosis is frequently made in late stage with/without serotonin related symptoms or due to bowel obstruction caused by the tumor mass (5). In about 36% of patients, metastases are already present at initial diagnosis (6).

In the early stages of disease (I – III A (= N0, M0)] the treatment of choice is radical surgery of the primary and lymph nodes. This treatment is related to an excellent 5-year disease specific survival of 100%. In stage III B and IV patients’ 5-year survival rates of 97.1% and 84.8% are reported (2, 7).
The benefit of surgical therapy of liver metastasis is discussed controversially. A recent analysis showed that the type of liver resection (anatomic versus non-anatomic) in patients with M1 disease showed higher rates of recurrence after non-anatomic resection but the type of resection did not affect overall survival (8). Another analysis of 111 patients found that surgical resection influenced mortality after 5 but not after 10 years (9). It was the aim of this study to compare survival rates of patients with and without liver metastasis and to investigate whether surgery for hepatic metastasis can improve overall survival.

To our knowledge, this is the first study investigating the reasonability of liver surgery in a big cohort of patients with siNENs over a follow-up period of 20 years.

Results

Overall survival of M0 and M1 patients

The mean follow-up was 121±49.4 in group M0 and 86±7.6 months in group M1. The overall survival calculation by Kaplan-Meier showed an estimated survival of 176.3±30.3 months for patients without liver metastases and 98.1±8.1 months for patients with liver metastases. Although there was a clear trend for better survival in group M0 in the overall comparison with the log rank test, the result marginally did not reach statistical significance (p=0.051). The cumulative 1-, 5-, 10- and 20-year survivals calculated by Kaplan-Meier are summarized in table 2.

No statistical significance comparing the survival rates after 1 and 5 years was seen, yet after 10 and 20 years survival was in favor of M0 patients compared to M1 patients (p≤0.05).

Treatment specific overall survival of M1 patients

In the sub-analysis the mean overall survival estimated by Kaplan-Meier for patients without surgery for liver-metastases was 88.1±8.3 months and 130.7±18.5 months for patients who had received liver surgery. The log rank test shows statistical significance (p=0.04).

The Kaplan-Meier calculation demonstrated a 1-year survival of 86.5±4.4% (patients at risk: 49) for patients without and 96.0±3.9% (patients at risk: 21) for patients with liver surgery.

The 5-year and 10-year survival was 68.8±6.4% (patients at risk: 33) and 24.3±6.6% (patients at risk: 9) for patients with surveillance, 73.9±10.2% (patients at risk: 12) and 60.5±12% (patients at risk: 6) for patients with liver surgery, respectively. The 20-year survival calculations showed that one patient in the group without surgery was still alive. Details, including the sub-analysis according to the extent of surgery is listed in table 3.

No statistical significance with regard to overall survival was documented comparing group 2a (minor liver surgery) and 2b (major liver surgery).
Discussion

Due to a long indolent course, many patients with siNENs are diagnosed in a late, metastasized state. Therefore, not surprisingly, distant metastases were found in 81/117 (69.2%) patients, which is a higher number than reported in a former analysis (6). Current literature controversially discusses the surgical treatment of (asymptomatic) primary tumor(s) and lymph node metastasis and the influence on prognosis in patients with verified liver metastases (10-13). However, primary tumors and lymph node metastases may cause bowel obstruction or obstruction of the blood supply of the intestine resulting in life threatening ischemic damage of the intestine (2). Therefore, all patients who are included in the current analysis had surgery of the primary tumors and of affected lymph nodes.

Medical treatment with somatostatin analogues is state of the art in stage IV patients (14, 15). However the surgical treatment of liver metastases is still an ongoing matter of debate (16, 17). Debulking liver surgery may be indicated to reduce serotonin-producing tumor mass in patients who are symptomatic because of hormone excess leading to diarrhea with electrolyte deficiency, flushing, sweating, palpitations or Hedinger's syndrome. In current guidelines detailed information is published on systemic therapy (16). However recommendations for surgery in asymptomatic or minimally symptomatic patients with liver metastasis are lacking (18, 19). Recently a benefit of surgery of liver metastasis of neuroendocrine neoplasia of the pancreas was shown in regard to overall survival, however there is little data on siNENs (20). Moreover, patients with siNENs early demonstrate multiple (in the majority small) bilobar liver metastases and curative surgery is rarely possible (17).

In the current patient cohort patients verified with liver metastasis have a similar 1- and 5-year overall survival compared to patients with surgically treated regionalized disease (primary tumor removed and lymph node metastases dissected). This may be explained by the slow growth of liver lesions and the good interaction of generalized medical treatment and/or liver-targeted therapies (16, 21, 22). The estimation of the mean overall survival of patients without liver metastases (176.3±30.3 months) compared to patients with liver metastases (98.1±8.1) shows a clear trend in favor of patients with surgically regionalized disease, however statistical significance was not reached (p=0.051). Comparing the 10-year overall survival of M0 (52.8±8.7%) and M1 patients (33.2±6.1%) statistical significance was documented. Interpretation of the results have to be done with caution because the low numbers of patients (17 patients at risk in each group) is a severe limitation of the study. Interestingly, the analysis showed that patients with liver metastases hardly ever survived for 20 years compared to 31.0% of patients without liver metastases.

The sub-analysis comparing overall survival of “surveillance” and “surgery” of liver-metastasis showed a statistically significant impact in favor of surgery (no surgery: 88.1±8.3 months vs. surgery: 130.7±18.5 months; p=0.04). Interestingly the short-term overall survival of up to 5-years shows equal results between the two groups (no surgery: 68.8±6.4% vs. surgery: 73.9±10.2%). This finding underlines the importance of long-term treatment options in patients with siNENs; because of their very slow growth differences between therapeutic approaches may not be seen before 10-years of follow-up (no surgery:
24.3±6.6% vs. surgery: 60.5±12%). In almost the same manner the conclusion has to be drawn with caution because of a very low number of patients in the 10 year follow up (no surgery: 9, surgery: 6).

Concerning the extent of liver surgery no differences in survival were seen between patients with resection of “up to one” or “more liver segments”. This may be explained by the extent of liver-disease at the time of surgery which is in the majority of patients more extended than documented by preoperative functional staging. The long term survival of the patients analyzed after 10-years is in concordance with literature (9).

Conclusions

SiNENs are slow growing tumors, even in patients with liver metastases the overall survival is very good and not significantly worse compared to patients without liver metastases. However, those patients who received surgery for liver metastases have a better outcome compared to patients whose liver metastases are not removed surgically. This result needs to be interpreted with caution because only patients who are fit for surgery and have metastases that can be sensibly treated by surgery did receive this treatment. Therefore, feasibility to perform surgery on liver metastases in patients with siNENs should be considered especially in patients symptomatic due to high tumor burden and serotonin hypersecretion to reduce hormone activity.

Methods

One hundred and twenty-three patients with siNENs of the of the jejunum (n=22 [17.9%]) or ileum (n=101 [82.1%]) were treated at the Division of Surgery, Medical University of Vienna within 50 years (1965 and 2016). Seventy one were male (57.7%) and 52 (42.3%) were female (ratio: male:female = 1.37:1); the mean age was 62 (range: 36 - 87 years).

Clinical and therapeutic details were documented for all patients. All histological specimens were revised and reclassified by one pathologist, including immune-histochemical analysis of the Ki-67 proliferation index. The grading (G1-G3) was performed according to the current guidelines (23).

The primary tumors were classified G1 in 94/123 (76.4%) or low G2 (Ki-67 ≤ 5%) in 29/123 (23.6%). No G3 tumors were verified. Multifocality was seen in 40/123 (32.5%) patients.

In 81/117 (69.2%) liver metastasis were documented. The distribution of the proliferation index was equal and therefore comparable between patients with and without liver metastases.

The detailed staging of the patients is summarized in table1.

Follow-up was performed at the outpatient clinic of the department of surgery following the current ENETS recommendations (24).
Statistics

Loss of long-term follow-up was documented in 6/123 (4.9%) patients. These patients were excluded from survival analysis (table 2).

Additional adjuvant medical treatment (e.g. somatostatin-analogues, mTOR-inhibitors, RTK-inhibitors, liver-targeted therapies) was discussed in multidisciplinary tumor board meetings and (if feasible) recommended during follow-up and was performed uniformly in patients of all groups according to progress regarding RECIST criteria or contemporary criteria of the respective era the patient was treated in. Therefore, additional treatment after surgery may be regarded the same for all patients and is therefore not discussed in detail.

The survival rates were estimated by Kaplan-Meier analysis for patients with and without liver metastasis and according to the type of treatment of liver metastases (surgical vs. surveillance). The three patients with liver metastasis who had received a liver transplant were not included in the statistical calculations.

In a sub-analysis the patients with small liver resections (≤1 segment, group 2a, 15 patients) were merged into one cohort with patients with liver resections of more than one segment (>1 segment, group 2b, 7 patients). Details of the subgroups are presented in table 3.

Survival rates of groups were compared using log-rank tests for the overall survival and using the χ^2-test for comparison of survival at year 1, 5, 10 and 20. Statistical significance was considered with a $p<0.05$.

All calculations were done with SPSS Statistics 26.0 and Microsoft Excel 16 for Windows.

List Of Abbreviations

5-HT Serotonin
ENETS European neuroendocrine tumor society
Ki-67 Kiel - 67
mTOR Mechanistic target of rapamycin
NEN Neuroendocrine neoplasia
NET Neuroendocrine tumor
RTK Receptor tyrosine kinase
siNEN small intestinal neuroendocrine neoplasia

Declarations

Conflict of Interest: The authors declare that they have no conflict of interest.

Ethics approval and consent to participate: All procedures performed in this study involving human material were in accordance with the ethical standards of the institutional research committee and with
the 1964 Helsinki declaration and its later amendments or comparable ethical standards. Informed consent was obtained from all individual participants included in the study.

Consent for publication: Consent for publication was obtained from all participants.

Availability of data and material: All data and material analyzed in this study is available.

Competing interests: The authors declare that they have no conflict of interest.

Funding: This study was not funded by a third party.

Authors’ contributions: All authors contributed substantially to this manuscript.

Acknowledgements: Special thanks to the technicians and keepers of the archives at our institution.

References

1. Niederle MB, Hackl M, Kaserer K, Niederle B. Gastroenteropancreatic neuroendocrine tumours: the current incidence and staging based on the WHO and European Neuroendocrine Tumour Society classification: an analysis based on prospectively collected parameters. Endocr Relat Cancer. 2010;17(4):909-18.

2. Selberherr A, Niederle MB, Niederle B. Surgical Treatment of Small Intestinal Neuroendocrine Tumors G1/G2. Visc Med. 2017;33(5):340-3.

3. Lawrence B, Gustafsson BI, Chan A, Svejda B, Kidd M, Modlin IM. The epidemiology of gastroenteropancreatic neuroendocrine tumors. Endocrinology and metabolism clinics of North America. 2011;40(1):1-18, vii.

4. Yao JC, Hassan M, Phan A, Dagohoy C, Leary C, Mares JE, et al. One hundred years after “carcinoid”: epidemiology of and prognostic factors for neuroendocrine tumors in 35,825 cases in the United States. Journal of clinical oncology: official journal of the American Society of Clinical Oncology. 2008;26(18):3063-72.

5. Niederle MB, Niederle B. Diagnosis and treatment of gastroenteropancreatic neuroendocrine tumors: current data on a prospectively collected, retrospectively analyzed clinical multicenter investigation. Oncologist. 2011;16(5):602-13.

6. Riihimaki M, Hemminki A, Sundquist K, Sundquist J, Hemminki K. The epidemiology of metastases in neuroendocrine tumors. Int J Cancer. 2016;139(12):2679-86.

7. Jann H, Roll S, Couvelard A, Hentic O, Pavel M, Muller-Nordhorn J, et al. Neuroendocrine tumors of midgut and hindgut origin: tumor-node-metastasis classification determines clinical outcome. Cancer. 2011;117(15):3332-41.

8. Sham JG, Ejaz A, Gage MM, Bagante F, Reames BN, Maithel S, et al. The Impact of Extent of Liver Resection Among Patients with Neuroendocrine Liver Metastasis: an International Multi-institutional Study. J Gastrointest Surg. 2019;23(3):484-91.
9. Manguso N, Nissen N, Hendifar A, Harit A, Mirocha J, Friedman M, et al. Prognostic factors influencing survival in small bowel neuroendocrine tumor with liver metastases. J Surg Oncol. 2019;120(6):926-31.

10. Niederle B, Pape UF, Costa F, Gross D, Kelestimur F, Knigge U, et al. ENETS Consensus Guidelines Update for Neuroendocrine Neoplasms of the Jejunum and Ileum. Neuroendocrinology. 2016;103(2):125-38.

11. Tsilimigras DI, Ntanasis-Stathopoulos I, Kostakis ID, Moris D, Schizas D, Cloyd JM, et al. Is Resection of Primary Midgut Neuroendocrine Tumors in Patients with Unresectable Metastatic Liver Disease Justified? A Systematic Review and Meta-Analysis. J Gastrointest Surg. 2019;23(5):1044-54.

12. Habbe N, Fendrich V, Heverhagen A, Ramaswamy A, Bartsch DK. Outcome of surgery for ileoejunal neuroendocrine tumors. Surg Today. 2013;43(10):1168-74.

13. Capurso G, Rinzivillo M, Bettini R, Boninsegna L, Delle Fave G, Falconi M. Systematic review of resection of primary midgut carcinoid tumour in patients with unresectable liver metastases. Br J Surg. 2012;99(11):1480-6.

14. Caplin ME, Pavel M, Cwikla JB, Phan AT, Raderer M, Sedlackova E, et al. Anti-tumour effects of lanreotide for pancreatic and intestinal neuroendocrine tumours: the CLARINET open-label extension study. Endocr Relat Cancer. 2016;23(3):191-9.

15. Caplin ME, Pavel M, Cwikla JB, Phan AT, Raderer M, Sedlackova E, et al. Lanreotide in metastatic enteropancreatic neuroendocrine tumors. N Engl J Med. 2014;371(3):224-33.

16. Pavel M, O’Toole D, Costa F, Capdevila J, Gross D, Kianmanesh R, et al. ENETS Consensus Guidelines Update for the Management of Distant Metastatic Disease of Intestinal, Pancreatic, Bronchial Neuroendocrine Neoplasms (NEN) and NEN of Unknown Primary Site. Neuroendocrinology. 2016;103(2):172-85.

17. Pavel M, Baudin E, Couvelard A, Krenning E, Oberg K, Steinmuller T, et al. ENETS Consensus Guidelines for the management of patients with liver and other distant metastases from neuroendocrine neoplasms of foregut, midgut, hindgut, and unknown primary. Neuroendocrinology. 2012;95(2):157-76.

18. Deguelte S, Perrier M, Hammoutene C, Cadiot G, Kianmanesh R. Surgery and Perioperative Management in Small Intestinal Neuroendocrine Tumors. J Clin Med. 2020;9(7).

19. Moris D, Ntanasis-Stathopoulos I, Tsilimigras DI, Vagios S, Karamitros A, Karaolanis G, et al. Update on Surgical Management of Small Bowel Neuroendocrine Tumors. Anticancer Res. 2018;38(3):1267-78.

20. Yuan CH, Wang J, Xiu DR, Tao M, Ma ZL, Jiang B, et al. Meta-analysis of Liver Resection Versus Nonsurgical Treatments for Pancreatic Neuroendocrine Tumors with Liver Metastases. Ann Surg Oncol. 2016;23(1):244-9.

21. Hicks RJ, Kweekkeboom DJ, Krenning E, Bodei L, Grozinsky-Glasberg S, Arnold R, et al. ENETS Consensus Guidelines for the Standards of Care in Neuroendocrine Neoplasia: Peptide Receptor
Radionuclide Therapy with Radiolabeled Somatostatin Analogues. Neuroendocrinology. 2017;105(3):295-309.

22. Pavel M, Valle JW, Eriksson B, Rinke A, Caplin M, Chen J, et al. ENETS Consensus Guidelines for the Standards of Care in Neuroendocrine Neoplasms: Systemic Therapy - Biotherapy and Novel Targeted Agents. Neuroendocrinology. 2017;105(3):266-80.

23. Klimstra DS, La Rosa S, Rindi G. Classification of neuroendocrine neoplasms of the digestive system. International Agency for Research on Cancer Lyon. 2019.

24. Knigge U, Capdevila J, Bartsch DK, Baudin E, Falkerby J, Kianmanesh R, et al. ENETS Consensus Recommendations for the Standards of Care in Neuroendocrine Neoplasms: Follow-Up and Documentation. Neuroendocrinology. 2017;105(3):310-9.

Tables

Table 1. Demographics. *6 patients were lost of long-term follow-up. ** Excluded from survival analysis

	Total n=123 / 117*
Gender	
Male	71 (57.7%)
Female	52 (42.3%)
Localization	
Jejunum	22 (17.9%)
Ileum	101 (82.1%)
Grading	
G1	94 (76.4%)
G2	29 (23.6%)
Primary tumors	
Solitary	83 (67.5%)
Multiple	40 (32.5%)
Age (range)	62 (36; 87)
Stage I-III A	
N0, M0	35/117* (29.9%)
Stage III B	
N1, M0	1/117* (0.9%)
Stage IV	
N0/N1/M1	81/117* (69.2%)
No liver surgery (surveillance -Group 1)	53/81 (65.4%)
Liver resection ≤1 segment (Group 2a)	17/81 (21.0%)
Liver resection >1 segment (Group 2b)	8/81 (9.9%)
Liver transplantation	3/81 (3.7%)**
Table 2: Overall 1-, 5-, 10- and 20-year survival; [patients at risk]

Metastasis	Estimated cumulative survival (Kaplan Meier)			
	1-year	5-year	10-year	20-year
M0				
n=36/117 (30.8%)	89.0±5.2% [32]	68.4±7.9% [22]	52.8±8.7% [17]	31.0±10.0% [5]
M1				
n=81/117 (69.2%)	89.5±3.3% [76]	69.5±5.4% [46]	33.2±6.1% [17]	3.6±3.4% [1]

Table 3: Overall 1-, 5-, 10- and 20-year survival regarding treatment of liver metastases; [patients at risk]; *only one patient remained free of liver-metastases during follow-up

Treatment	Estimated cumulative survival (Kaplan Meier)				
	1-year survival	5-year survival	10-year survival	20-year survival	
Group 1					
Surveillance	n=52	86.5±4.4% [49]	68.8±6.4% [33]	24.3±6.6% [9]	3.4±3.2 [1]
Group 2					
Surgery	n=22	96.0±3.9% [21]	73.9±10.2% [11]	60.5±12% [6]	0
Subgroup 2a					
Minor liver surgery (≤1 segment)	n=15	94.1±5.7% [14]	76.7±12.2% [6]	63.9±15.5% [3]	0
Subgroup 2b					
Major liver surgery (>1 segment)	n=7	100% [7*]	71.4±17.1% [5]	57.1±18.7% [3]	0