On integral graphs obtained by dual Seidel switching

Sergey Goryainova,b,c, Vladislav Kabanovb, Elena V. Konstantinovad,e, Honghai Lif, Da Zhaoa

aShanghai Jiao Tong University, 800 Dongchuan RD. Minhang District Shanghai 200240, China
bKrasovskii Institute of Mathematics and Mechanics, S. Kovalevskaja st. 16 Yekaterinburg 620990, Russia
cChelyabinsk State University, Brat’ev Kashirinyh st. 129 Chelyabinsk 454021, Russia
dSobolev Institute of Mathematics, Ak. Koptyug av. 4, Novosibirsk 630090, Russia
eNovosibirsk State University, Pirogova str. 2, Novosibirsk, 630090, Russia
fJiangxi Normal University, Nanchang, Jiangxi 330022, China

Abstract

In this paper we apply dual Seidel switching to the Star graphs and to the Odd graphs, which gives two infinite families of integral graphs. In particular, we obtain three new 4-regular integral connected graphs.

Keywords: integral graph; 4-regular graph; dual Seidel switching; Star graph; Odd graph

2010 MSC: 05C25, 05E10, 05E15

1. Introduction

A graph is integral if all eigenvalues of its adjacency matrix are integers \cite{2, 14}. The spectrum of a graph is the multiset of eigenvalues with their multiplicities, and we use $\sigma(\Gamma)$ to denote the spectrum of a graph Γ. In this paper we deal with regular integral graphs. Some constructions of non-regular integral graphs can be found in \cite{13, 14}.

It was proved by D. Cvetković \cite{6} in 1975 that the set of connected regular integral graphs of any fixed degree is finite. Classification of 3-regular integral connected graphs was given in 1976 by F. C. Bussemaker, D. Cvetković \cite{4} and A. J. Schwenk \cite{14}. There are only 13 cubic integral connected graphs.

There is no complete classification of 4-regular integral connected graphs. In what follows, we briefly observe known results on their classification.

Email addresses: 44g@mail.ru (Sergey Goryainov), vvk@imm.uran.ru (Vladislav Kabanov), e_konsta@math.nsc.ru (Elena V. Konstantinova), lhh@mail.ustc.edu.cn (Honghai Li), jasonzd@sjtu.edu.cn (Da Zhao)

Preprint submitted to Arxiv July 25, 2019
In 1998, D. Cvetković, S. Simić, and D. Stevanović [5] found 1888 possible spectra of 4-regular bipartite integral graphs, more than 500 of which do not exist as it was shown in [13]. They also published a list of 65 known 4-
regular connected integral graphs. All 24 connected 4-regular integral graphs that do not contain ±3 in the spectrum were determined by D. Stevanović [11] in 2003. In the same paper the possible values for the number n of vertices in 4-regular integral graphs were given as $8 \leq n \leq 1260$, except for 5 identified spectra. In 2007, the upper bound for n was improved [17] so that now we have $8 \leq n \leq 560$, and the number of possible spectra of connected 4-regular integral graphs was decreased down to 828. Moreover, all 828 feasible spectra of connected 4-regular integral graphs, and all 47 connected 4-regular integral graphs with up to 24 vertices were listed. The largest of these 828 spectra has 560 vertices, and actually there are only 12 spectra with more than 360 vertices.

Let us note that the number of possible spectra of connected 4-regular non-
bipartite integral graphs is at most 424. This follows from the fact that if G is a connected non-bipartite 4-regular integral graph, then a direct product of a non-
bipartite graph G and K_2 is a connected bipartite 4-regular integral graph [1]. The spectra of 14 non-bipartite connected 4-regular integral graphs found by decomposing the known 47 bipartite connected 4-regular integral graphs are given in [17].

In 2015, M. Minchenko and I. M. Wanless [12] investigated 4-regular integral
Cayley graphs. It was shown that up to isomorphism, there are 32 connected 4-regular integral Cayley graphs (17 of them are bipartite) and 27 connected 4-regular integral arc-transitive graphs (16 of them are bipartite, and 16 of them are Cayley graphs). Complete catalogues of these graphs are available by users.monash.edu.au/~iwanless/data/graphs/IntegralGraphs.html.

In this paper we apply dual Seidel switching [9] to the Star graphs and to the Odd graphs, which gives two infinite families of integral graphs. In particular, we obtain three new 4-regular integral connected graphs.

2. Preliminaries

2.1. Dual Seidel switching

For any simple graph Γ with adjacency matrix $A(\Gamma)$ and an order 2 automorphism φ of Γ interchanging only non-adjacent vertices, we have

$$PA(\Gamma)P^T = A(\Gamma),$$

where P is the permutation matrix corresponding to the automorphism φ. It is easy to verify that $PA(\Gamma)$ is a symmetric (0,1)-matrix with zero diagonal and thus can be viewed as an adjacency matrix of some simple graph. The resulting graph is said to be obtained from Γ by dual Seidel switching induced by φ ([9] and [8, Theorem 3.1]). Note further that $(PA(\Gamma))^2 = (A(\Gamma))^2$. In particular, if Γ is integral, then a graph obtained from Γ by the dual Seidel switching is integral as well.
2.2. Cayley graphs

Let G be a group and S be an inverse-closed identity-free subset in G. We define the left Cayley graph $\text{Cay}_L(G, S)$ (resp. right Cayley graph $\text{Cay}_R(G, S)$) whose vertices are the elements of the group G and with two vertices x, y being adjacent whenever $y^{-1}x \in S$ (resp. $xy^{-1} \in S$) holds. For an element $\pi \in G$, let φ^ℓ_π and φ^r_π denote the left and the right shifts by the element π. Let $L_G = \{ \varphi^\ell_\pi \mid \pi \in G \}$ and $R_G = \{ \varphi^r_\pi \mid \pi \in G \}$ be the groups of left and right shifts G, respectively.

Lemma 1. The following statements hold.
(1) L_G is a group of automorphisms of $\text{Cay}_L(G, S)$;
(2) R_G is a group of automorphisms of $\text{Cay}_R(G, S)$;
(3) For an element $\pi \in G$, the mapping φ^r_π is an automorphism of $\text{Cay}_L(G, S)$ if and only if $\pi S\pi^{-1} = S$ holds;
(4) For an element $\pi \in G$, the mapping φ^ℓ_π is an automorphism of $\text{Cay}_R(G, S)$ if and only if $\pi S\pi^{-1} = S$ holds.

Proof. (1) For any vertices $x, y \in G$ and element $\pi \in G$, we have
\[
\varphi^\ell_\pi(x) \sim_L \varphi^\ell_\pi(y) \Leftrightarrow \exists s \in S \ \varphi^\ell_\pi(y)^{-1}\varphi^\ell_\pi(x) = s \Leftrightarrow \\
\exists s \in S \ (\pi y)^{-1}\pi x = s \Leftrightarrow \exists s \in S \ y^{-1}x = s \Leftrightarrow x \sim_L y
\]
(2) Similar to item (1).
(3) For any vertices $x, y \in G$ and element $\pi \in G$, we have
\[
\varphi^r_\pi(x) \sim_L \varphi^r_\pi(y) \Leftrightarrow \exists s \in S \ \varphi^r_\pi(y)^{-1}\varphi^r_\pi(x) = s \Leftrightarrow \\
\exists s \in S \ (y\pi)^{-1}\pi x = s \Leftrightarrow \exists s \in S \ y^{-1}x = s \Leftrightarrow x \sim_L y
\]
(4) Similar to item (3). □

Lemma 2. For elements $\pi_{\ell}, \pi_r \in G$, the following statements hold.
(1) $\varphi_{\pi_{\ell}, \pi_r}$ is the composition of φ^ℓ_π and φ^r_π.
(2) $\varphi_{\pi_{\ell}, \pi_r}$ is an automorphism of $\text{Cay}_L(G, S)$ if and only if $\pi_r S\pi_{\ell}^{-1} = S$ holds.
(3) $\varphi_{\pi_{\ell}, \pi_r}$ is an automorphism of $\text{Cay}_R(G, S)$ if and only if $\pi_{\ell} S\pi_r^{-1} = S$ holds.

Proof. (1) It follows from the definitions.
(2) It follows from Lemma 1(3).
(3) It follows from Lemma 1(4). □
2.3. Odd graphs

For a positive integer \(m \), the Odd graph, denoted by \(O_{m+1} \), on a \((2m+1)\)-set \(X \) is the graph whose vertex set is the set of \(m \)-subsets of \(X \), where two \(m \)-sets are adjacent if and only if they are disjoint. It is easy to see that every permutation of \(X \) induces an automorphism of \(O_{m+1} \). The following lemma gives the complete information about the spectrum and the automorphism group of the graph \(O_{m+1} \).

Lemma 3 ([3], Proposition 9.1.7). The following statements hold.

1. The eigenvalues of \(O_{m+1} \) are \((-1)^i(m+1-i)\) with multiplicity \(\binom{2m+1}{i} - \binom{2m+1}{i-1} \), where \(i \) runs over \(\{0, 1, \ldots, m\} \);
2. The automorphism group of \(O_{m+1} \) consists of the automorphisms induced by the permutations of \(X \).

3. Dual Seidel switching and Star graphs

Let \(n \) be a positive integer, \(n \geq 3 \). Consider the symmetric group \(G = \text{Sym}_n \) and put \(S = \{(1i) \mid i \in \{2, \ldots, n\}\} \). The left Star graph (resp. right Star graph) is the Cayley graph \(\text{Cay}_L(\text{Sym}_n, S) \) (resp. \(\text{Cay}_R(\text{Sym}_n, S) \)).

Lemma 4. For an element \(\pi \in G \), the equality \(\pi S \pi^{-1} = S \) holds if and only if \(\pi \) is an element from \(\text{Stab}_G(1) \), where \(\text{Stab}_G(1) \) is the stabilizer of 1 in \(G \).

Proof. Let \(\pi \) be a permutation from \(\text{Stab}_G(1) \), which means that \(\pi(1) = 1 \). Note that, for any \(i \in \{2, \ldots, n\} \), we have \(\pi(1i)\pi^{-1} = (1j) \), where \(j = \pi(i) \). Thus, \(\pi S \pi^{-1} = S \) for all \(\pi \in \text{Stab}_G(1) \).

Let \(\pi \) be a permutation that does not belong to \(\text{Stab}_G(1) \) and let \(i \) be an element from \(\{2, \ldots, n\} \) such that \(\pi^{-1}(1) \neq i \). Then the permutation \(\pi(1i)\pi^{-1} \) does stabilize 1 and thus does not belong to \(S \), which means that \(\pi S \pi^{-1} \neq S \). \(\square \)

Lemma 5. For \(\pi_\ell, \pi_r \in \text{Sym}_n \), if \(\pi_\ell, \pi_r \) satisfies

1. \(\pi_\ell, \pi_r \) are of order 2;
2. \(\pi_\ell, \pi_r \) have different parity;
3. \(\pi_r S \pi_r^{-1} = S \);
4. \(\pi_\ell \) is not conjugate to any element in \(\pi_r S \),

then \(\varphi_{\pi_\ell, \pi_r} \) is an order 2 automorphism of the left Star graph \(\text{Cay}_L(\text{Sym}_n, S) \) interchanging only non-adjacent vertices from different parts in bipartition of \(\text{Cay}_L(\text{Sym}_n, S) \).

Proof. For all vertices \(x \in \text{Sym}_n \), by condition (2), the vertices \(x \) and \(\pi_\ell x \pi_r \) belong to different parts in bipartition of \(\text{Cay}_L(\text{Sym}_n, S) \). In view of Lemma 2(2), it suffices to show that \(x \) and \(\pi_\ell x \pi_r \) are non-adjacent in \(\text{Cay}_L(\text{Sym}_n, S) \). Suppose there exists a vertex \(x \) such that \(x \) and \(\pi_\ell x \pi_r \) are adjacent, which means that \(\pi_r x^{-1} \pi_\ell x = (1i) \) for some \(i \in \{2, \ldots, n\} \). Thus we have \(x^{-1} \pi_\ell x = \pi_r(1i) \), a contradiction with condition (4). \(\square \)
Corollary 1. For a positive integer $n \geq 5$, $\varphi(2\,4), (2\,3)(4\,5)$ is an order 2 automorphism of the left Star graph $\text{Cay}_L(\text{Sym}_n, S)$ interchanging only non-adjacent vertices.

Proof. It suffices to show that, for all $x \in \text{Sym}_n$ and $i \in \{2, \ldots, n\}$, that $x^{-1}(2\,4)x \neq (2\,3)(4\,5)(1\,i)$. Note that, $(2\,3)(4\,5)(1\,i)$ is either a product of a transposition and a cycle of length 3 (the case $2 \leq i \leq 5$) or a product of three disjoint transpositions (the case $i \geq 6$). Since the conjugation preserves the cyclic structure of a permutation, we are completed. □

Lemma 6 ([11],Theorem 6.2.24). Let G be a graph of order n with adjacency matrix A. The following are equivalent:

1. A is irreducible;
2. $(I + A)^{n-1}$ is positive;
3. G is connected.

Theorem 1. Let φ be an automorphism of left Star graph $\text{Cay}_L(\text{Sym}_n, S)$ satisfying the four conditions in Lemma 5. Then the graph obtained from $\text{Cay}_L(\text{Sym}_n, S)$ by dual Seidel switching induced by φ consists of two isomorphic connected components.

Proof. We denote by A the adjacency matrix of $\text{Cay}_L(\text{Sym}_n, S)$. Since $\text{Cay}_L(\text{Sym}_n, S)$ is bipartite, its adjacency matrix A has the following form

$$A = \begin{pmatrix} 0 & B \\ B^T & 0 \end{pmatrix},$$

where B is the reduced adjacency matrix of $\text{Cay}_L(\text{Sym}_n, S)$ with rows indexed by odd permutations of Sym_n and columns indexed by even permutations of Sym_n. Let P denote the permutation matrix corresponding to automorphism φ of $\text{Cay}_L(\text{Sym}_n, S)$. Note that φ only interchanges nonadjacent vertices from different parts of bipartition of $\text{Cay}_L(\text{Sym}_n, S)$. Then we may suppose that $\varphi = (1i_1)(2i_2)\cdots(ai_a)$, where $a = \frac{n}{2}$ and \{i_1, i_2, \ldots, i_a\} = \{a+1, a+2, \ldots, 2a\}.

Let Q denote the permutation matrix of order a corresponding to the following a-permutation

$$\begin{pmatrix} 1 & 2 & \cdots & a \\ i_1-a & i_2-a & \cdots & i_a-a \end{pmatrix}.$$

Then

$$P = \begin{pmatrix} 0 & Q^T \\ Q & 0 \end{pmatrix}.$$

Since $PAP = A$, we have $B^T = QBQ$ and then

$$PA = \begin{pmatrix} Q^TB^T & 0 \\ 0 & QB \end{pmatrix} = \begin{pmatrix} BQ & 0 \\ 0 & QB \end{pmatrix}.$$

Note that $Q^T(QB)Q = BQ$, namely QB and BQ are permutation similar.
Let H denote the graph obtained from $\text{Cay}_L(Sym_n, S)$, with Alt_n as vertex set and two vertices being adjacent whenever they have common neighbor in $\text{Cay}_L(Sym_n, S)$. Clearly H is connected and let A_1 denote the adjacency matrix of H, A_1 is irreducible and then $(I + A_1)^{n!/2-1} > 0$. Note that $B^T B \geq I + A_1$. Thus $(QB)^{n!/2-1} = (B^T B)^{n!/2-1} \geq (I + A_1)^{n!/2-1} > 0$. So QB must be irreducible. Therefore the graph (with PA as its adjacency matrix) obtained by applying dual Seidel switching on $\text{Cay}_L(Sym_n, S)$ has two isomorphic connected components. □

4. Dual Seidel switching and Odd graphs

In this section, we apply dual Seidel switching to the Odd graphs and construct an infinite family of integral graphs. In particular, we construct two new 4-regular integral graphs.

For a positive integer t, put $\tau_t := (1 2) \ldots (2t - 1 2t)$.

Lemma 7. Given a positive integer m, $m \geq 2$, the following statements hold.
(1) For any $t \in \{1, \ldots, m - 1\}$, the permutation τ_t induces an involution φ_t of O_{m+1} that interchanges only non-adjacent vertices;
(2) The permutation τ_m induces an involution φ_m of O_{m+1} that interchanges adjacent vertices as well as non-adjacent vertices.

Proof. (1) The image of any vertex $Y_1 = \{s_1, s_2, \ldots, s_m\}$ under the involution φ_t is the vertex $Y_2 = \{\tau_t(s_1), \tau_t(s_2), \ldots, \tau_t(s_m)\}$. If they are adjacent, then the two m-subsets are disjoint. We must have $\tau_t(s_i) \not\in Y_1$ for every $1 \leq i \leq m$. So no element of Y_1 is fixed by τ_t and s_i, s_j cannot be in the same 2-cycle of τ_t for $1 \leq i \neq j \leq m$. This forces $t \geq m$. Contradiction.

(2) The involution φ_m interchanges the vertices $\{1, 3, \ldots, 2m - 1\}$ and $\{2, 4, \ldots, 2m\}$, which are adjacent. □

It follows from Lemma 4(1) that the smallest eigenvalue of O_{m+1} is $-m$ with multiplicity $2m$, and O_{m+1} has no eigenvalue m.

For any positive integers i, j, $1 \leq i, j \leq 2m + 1, i \neq j$, let us introduce a partition the vertex set of O_{m+1} into $V_{i,j}, V_{i,j}', V_{i,j}''$, where

- $V_{i,j} := \{m$-subsets of X that contain both i and $j\}$,
- $V_{i,j}'' := \{m$-subsets of X that contain i and do not contain $j\}$,
- $V_{i,j} := \{m$-subsets of X that do not contain i and contain $j\}$,
- $V_{i,j}'' := \{m$-subsets of X that do not contain i or $j\}$,

and define a function $f_{i,j} := V(O_{m+1}) \rightarrow \mathbb{R}$ by the following rule: for any $Y \in V(O_{m+1})$,

$$f_{i,j}(Y) := \begin{cases} 1, & Y \in V_{i,j}'; \\ -1, & Y \in V_{i,j}''; \\ 0, & Y \in V_{i,j} \cup V_{i,j}''. \end{cases}$$
For any vertex subset \(W \subseteq V \), we denote by \(1_W \) the characteristic function of \(W \), namely
\[
1_W(v) = \begin{cases}
1, & \text{if } v \in W; \\
0, & \text{otherwise}.
\end{cases}
\]

One can see that we have \(f_{i,j} = 1_{V_i} - 1_{V_{i,j}} \).

Lemma 8. For any integers \(m, i, j \), where \(m \geq 2 \) and \(1 \leq i, j \leq m, i \neq j \), the following statements hold.

1. The partition of the vertex set of \(O_{m+1} \) into \(V_{i,j}, V_{i,j}^c, V_{i,j}^+ \) is equitable with quotient matrix
\[
\begin{pmatrix}
0 & 0 & 0 & m+1 \\
0 & m & 1 & 0 \\
m-1 & 1 & 1 & 0
\end{pmatrix};
\]
2. The function \(f_{i,j} \) is an \(-m\)-eigenfunction of \(O_{m+1} \).

Proof. (1) Straightforward; (2) It follows from item (1). \(\square \)

Lemma 9. Eigenfunctions \(f_{1,2m+1}, f_{2,2m+1}, \ldots, f_{2m,2m+1} \) form a basis of the \(-m\)-eigenspace of \(O_{m+1} \).

Proof. We regard the eigenfunctions as vectors in the space \(\mathbb{R}^{V(O_{m+1})} \). Let us consider the Gram matrix of these vectors. Since
\[
\langle f_{i,2m+1}, f_{i,2m+1} \rangle = \langle 1_{V_{i,2m+1}} - 1_{V_{i,2m+1}}, 1_{V_{i,2m+1}} - 1_{V_{i,2m+1}} \rangle = |V_{i,2m+1}| + |V_{i,2m+1}| = 2^{2m-1}
\]
for \(i = 1, 2, \ldots, 2m \) and
\[
\langle f_{i,2m+1}, f_{j,2m+1} \rangle = \langle 1_{V_{i,2m+1}} - 1_{V_{i,2m+1}}, 1_{V_{j,2m+1}} - 1_{V_{j,2m+1}} \rangle = |V_{i,2m+1} \cap V_{j,2m+1}| + |V_{i,2m+1} \cap V_{j,2m+1}|
\]
\[
= \binom{2m-2}{m-2} + \binom{2m-2}{m-1}
= \binom{2m-1}{m-1}
\]
for \(1 \leq i \neq j \leq 2m \). Therefore the Gram matrix \(G = \binom{2m-1}{m-1}(J + I) \), where \(J \) is the all-one matrix. So \(G \) is non-singular. Hence the \(2m \) eigenfunctions \(f_{1,2m+1}, f_{2,2m+1}, \ldots, f_{2m,2m+1} \) are linearly independent. By Lemma 3(1), they form a basis of the \(-m\)-eigenspace of \(O_{m+1} \). \(\square \)

Given positive integers \(m \geq 2 \) and \(1 \leq t \leq m-1 \), we denote by \(O'_{m+1} \) the graph obtained from \(O_{m+1} \) by dual Seidel switching w.r.t. the involution \(\varphi_t \) of \(O_{m+1} \) induced by the permutation \(\tau_t \).
Theorem 2. Let m be a positive integer, $m \geq 2$. Then the following statements hold.

1. For any integer t, $1 \leq t \leq m - 1$, the graph O_{m+1}^t has eigenvalue m with multiplicity t.
2. The $m - 1$ graphs O_{m+1}^t ($1 \leq t \leq m - 1$) are integral and pairwise non-isomorphic.

Proof. (1) For real square matrix A, the spectrum of A^2 is determined by the spectrum of A by squaring the eigenvalues and summing up the multiplicity of opposite numbers. Since φ_t is an involution, the adjacency matrices of O_{m+1} and O_{m+1}^t share the same square. We will show (1) by determining the $-m$-eigenspace and m-eigenspace of O_{m+1}^t. Note that m is not an eigenvalue of O_{m+1} and the multiplicity of $-m$ of O_{m+1} is $2m$. We study the action of φ_t on the eigenfunctions in Lemma 9. One can see that $\varphi_t V_{i,j} = V_{\tau_i(i), \tau_i(j)}$ (and similarly for $V_{\tau_i(i), \tau_i(j)}$ and $V_{\tau_i(j), \tau_i(i)}$). So we have $\varphi_t f_{i,2m+1} = f_{\tau_i(i),2m+1}$ for $1 \leq t \leq m - 1$. Let A be the adjacency matrix of O_{m+1} and B the adjacency matrix of O_{m+1}^t. They are related by $B = PA$ where $P = PT$ is the permutation matrix of the involution φ_t. For $1 \leq i \leq t$, we have $B(f_{2i-1,2m+1} - f_{2i,2m+1}) = PA(f_{2i-1,2m+1} - f_{2i,2m+1}) = -mP(f_{2i-1,2m+1} - f_{2i,2m+1}) = m(f_{2i-1,2m+1} - f_{2i,2m+1})$. For $t < i$, we have $B f_{i,2m+1} = -m f_{i,2m+1}$. We've constructed t eigenfunctions of the eigenvalue m and $(2m - t)$ eigenfunctions of the eigenvalue $-m$ for the graph O_{m+1}^t. It is clear that these eigenfunctions are all linearly independent. Since $t + (2m - t) = 2m$, the m-eigenspace and $-m$-eigenspace of O_{m+1}^t are determined.

(2) It follows directly from (1). □

The following theorem determines the spectrum of the integral graphs found in Theorem 2.

Theorem 3. The spectrum of O_{m+1}^t is determined as follows. The eigenvalue $(-1)^{i+1}(m + 1 - i)$ is of multiplicity nf_i and the eigenvalue $(-1)^i(m + 1 - i)$ is of multiplicity $(2m + 1) - (2m + 1) - nf_i$ where

$$nf_i = \frac{1}{2}(\# \{ i \text{ - subsets not fixed by } \tau_i \} - \# \{ (i - 1) \text{ - subsets not fixed by } \tau_i \}).$$

Proof. Let V_A be the collection of m-subsets that contain A. Let W_i be the subspace spanned by characteristic function 1_{V_A} where A runs over all i-subsets (in fact they are a basis of W_i). We have $W_{i-1} \subset W_i$. The $(-1)^i(m + 1 - i)$-eigenspace of O_{m+1} is in fact $U_i := W_i \cap W_{i-1}^\perp$. Note that $v = \begin{pmatrix} m + 1 \nabla i \\ m - 1 \nabla i \end{pmatrix}$ gives a decomposition $\mathbb{R}^\binom{m}{i} = F \oplus N$, where $\varphi_f f = f$ for every $f \in F$ and $\varphi_n n = -n$ for every $n \in N$. Let $F_i = U_i \cap F$ and $N_i = U_i \cap N$. Then N_i is the $(-1)^{i+1}(m + 1 - i)$-eigenspace of O_{m+1} and F_i is the $(-1)^{i}(m + 1 - i)$-eigenspace of O_{m+1}^t. To determine the dimension of N_i, we consider $WN_i = W_i \cap N$. We have $N_i = WN_i \cap U_i$ and $WN_i = N_0 \oplus N_1 \oplus \cdots \oplus N_i$. So $\dim N_i = \dim WN_i - \dim WN_{i-1}$. Note that $\dim WN_i$ can be directly computed by considering the action of φ_t on the basis of W_i. □
5. Concluding remarks

In this paper, we applied dual Seidel switching to the Star graphs and to the Odd graphs, which gives two infinite families of integral graphs. In particular, Theorem 1 gives a new 4-regular graph with spectrum \{-3^7, -2^{13}, -1^3, 0^{15}, 1^1, 2^{15}, 3^5, 4^1\} and Theorem 2 gives two new 4-regular graphs with spectra \{-3^5, -2^{4}, -1^9, 1^5, 2^{10}, 3^1, 4^1\} and \{-3^4, -2^6, -1^8, 1^6, 2^8, 3^2, 4^1\}.

Note that Theorem 2 exhaust all involutions of the Odd graphs that interchange only non-adjacent vertices, while Theorem 1 gives an example of such an involution of the Star graph. We are wondering if the dual Seidel switching can be fruitfully applied to other known 4-regular graphs.

Acknowledgment

Sergey Goryainov, Elena Konstantinova and Honghai Li thank TGMRC (Three Gorges Mathematical Research Center) of China Three Gorges University in Yichang, Hubei, China, for supporting the visits of the authors to work on this research project in April 2019.

References

[1] K. Balińska, D. Cvetković, Z. Radosavljević, S. Simić, and D. Stevanović, A survey on integral graphs, Univ. Beograd. Publ. Elektrotehn. Fak. Ser. Mat., 13 (2002) 42–65.

[2] A. E. Brouwer, W. H. Haemers, Spectra of Graphs, Springer, New York, 2012.

[3] A. E. Brouwer, A. M. Cohen, and A. Neumaier, Distance-Regular Graphs, Springer-Verlag, Berlin (1989).

[4] F. C. Bussemaker, D. Cvetković, There are exactly 13 connected cubic integral graphs, Univ. Beograd. Publ. Elektrotehn. Fak. Ser. Mat. Fiz. 544/576 (1976) 43–48.

[5] D. Cvetković, S. Simić, and D. Stevanović, 4-regular integral graphs, Univ. Beograd. Publ. Elektrotehn. Fak. Ser. Mat. Fiz., 9 (1998) 89–102.

[6] D. Cvetković, Cubic integral graphs, Univ. Beograd. Publ. Fak. Ser. Mat. Fiz., 498/541 (1975) 107–113.

[7] M. Doob, Seidel switching and cospectral graphs with four distinct eigenvalues, Annals of the New York Academy of Sciences 319 (2006) 164–168.

[8] M. Erickson, S. Fernando, W.H. Haemers, D. Hardy, J. Hemmeter, Deza graphs: A generalization of strongly regular graphs J. Comb. Des., 7, no. 6, 359–405 (1999).
[9] W. H. Haemers, Dual Seidel switching, Papers dedicated to J. J. Seidel, P. J. de Doelder, J. de Graaf, and J. H. van Lint (Editors), *EUT Report 84-WSK-03*, Eindhoven University of Technology, The Netherlands, 1984, pp. 183–190.

[10] F. Harary, A. J. Schwenk, Which graphs have integral spectra? *Graphs and Combinatorics*, 390 (1974) 45–51.

[11] R. A. Horn and C. R. Johnson, Matrix Analysis, Cambridge U. P., 1985.

[12] M. Minchenko, I. M. Wanless, Quartic integral Cayley graphs, *Ars Mathematica Contemporanea*, 8 (2015) 381–408.

[13] A. Mohammadian, B. Tayfeh-Rezaie, Some constructions of integral graphs, *Linear and Multilinear Algebra*, 59 (2011) 1269–1279.

[14] A. J. Schwenk, Exactly thirteen connected cubic graphs have integral spectra, in: *Theory and Applications of Graphs, Proceedings of the International Conference Western Michigan University (Y. Alavi, D.R. Lick eds.), Kalamazoo, Michigan May 11-15, 1976*, Lecture Notes in Mathematics, 642 (1978) 516–533.

[15] D. Stevanović, Nonexistence of some 4-regular integral graphs, *Univ. Beograd. Publ. Elektrotehn. Fak. Ser. Mat.* 10 (1999) 81–86.

[16] D. Stevanović, 4-regular integral graphs avoiding ±3 in the spectrum, *Univ. Beograd. Publ. Elektrotehn. Fak. Ser. Mat.* 14 (2003) 99–110.

[17] D. Stevanović, N. M. M. de Abreu, M. A. A. de Freitas and R. Del-Vecchio, Walks and regular integral graphs, *Linear Algebra Appl.* 423 (2007) 119–135.

[18] J. J. Seidel, Strongly regular graphs of L_2-type and of triangular type, *Proc. Con. Nederl. Akad. Wetensch. Ser. A*, 70 (1967) 188–196.

[19] L. Wang, C. Hoede, Constructing fifteen infinite classes of nonregular bipartite integral graphs, *Electron. J. Combin.*, 15 (2008) Research Paper #8.