Two-radii theorem for solutions of some mean value equations

O.D. Trofymenko

Abstract. A description of solutions of some integral equations has been obtained. A two-radii theorem is obtained as well.

1 Introduction

Characterization of solutions for differential equations in terms of various integral mean values has been studied by many authors (see [1] - [9] and references in these papers).

The classes of functions on subsets of the compact plane that satisfy the conditions of the next type is studied in this work

\[
\sum_{n=s}^{m-1} \frac{r^{2n+2}}{2(n-s)!(n+1)!} \left(\frac{\partial}{\partial z} \right)^{n-s} \left(\frac{\partial}{\partial \bar{z}} \right)^n f(z) = \frac{1}{2\pi} \int \int f(\zeta)(\zeta - z)^s d\xi d\eta, \quad (1)
\]

where \(m \in \mathbb{N} \) and \(s \in 0, \ldots, m - 1 \) are fixed. Also \(r \) is fixed or belongs to the set of two elements.

We point out that this equation holds for \(m \)-analytic functions (see [10]). Function from \(C^{2m-2-s} \) in some domain, that satisfies (1) with all possible \(z \) and \(r \) is of great interest.

The main results of this work are as follow.

1) The description of all smooth solutions for (1) in a disk with radius \(R > r \) with one fixed \(r \) is obtained (see Theorem 1 below);
2) The two-radii theorem is obtained. It turn out that this theorem characterizes class of solution for equation

\[
\left(\frac{\partial}{\partial z} \right)^{m-s} \left(\frac{\partial}{\partial \bar{z}} \right)^m f = 0
\]

in terms of equation (1) (see Theorem 2).

Note that the case \(s \geq m \) that corresponds to the zero integral mean value in the right hand side of (1), has been studied in the works of L.Zalcman and V.V.Volchkov (see [3], [11] - [12]). The first results that deal with the mean value theorem for polyanalytic functions, are contained in [13] - [14].

2000 Mathematics Subject Classification: 30A50.
Keywords: mean value theorem, spherical means, two-radii theorem.
2 Main results

Let J_ν be the Bessel function of the first kind with index ν. For $\rho \geq 0, \lambda \in \mathbb{C}, k \in \mathbb{Z}$, let

$$\Phi_{\lambda, \eta, k}(\rho) = \left(\frac{d}{dz} \right)^n (J_k(z\rho)) |_{z=\lambda}.$$

Let also

$$g_r(z) = \frac{J_{s+1}(rz)}{(zr)^{s+1}} - \sum_{n=0}^{m-1} \frac{(zr)^{2(n-s)}(-1)^{n-s}}{(n+1)!(n-s)!2^{n-s+1}},$$

and $Z(g_r) = \{ z \in \mathbb{C} : g_r(z) = 0 \}$,

$Z_r = Z(g_r) \setminus \{ \{ z \in \mathbb{C} : \text{Re} \ z > 0 \} \cup \{ z \in \mathbb{C} : \text{Im} \ z \geq 0, \text{Re} \ z = 0 \} \}$. For $\lambda \in Z_r$ by the symbol n_λ we denote the multiplicity of zero λ of the entire function g_r.

Let $D_R = \{ z \in \mathbb{C} : |z| < R \}$. To any function $f \in C(D_R)$ there corresponds Fourier series

$$f(z) \sim \sum_{k=-\infty}^{\infty} f_k(\rho) e^{ik\rho},$$

where

$$f_k(\rho) = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(\rho e^{it}) e^{-ikt} dt$$

and $0 \leq \rho < R$.

The next result gives a description for all solutions (1) in a class $C^\infty(D_R)$ with one fixed $r < R$.

Theorem 1. Let $r > 0, m \in \mathbb{N}$ and $s \in 0, ..., m - 1$ are fixed. Let also $R > r$ and a function f belongs to $C^\infty(D_R)$. Then the next statements are equivalent.

1) With $|z| < R - r$ equality (1) holds.

2) For any $k \in \mathbb{Z}$ on $[0, R)$ the next equality holds

$$f_k(\rho) = \sum_{0 \leq p \leq s-1 \ p + k \geq 0} a_{k,p} \rho^{2p+k} + \sum_{p=0}^{m-s-1} b_{k,p} \rho^{2p+s+|k|+s} + \sum_{\lambda \in Z_r} \sum_{\eta=0}^{n_\lambda-1} c_{\lambda, \eta, k} \Phi_{\lambda, \eta, k}(\rho),$$

where $a_{k,p} \in \mathbb{C}, b_{k,p} \in \mathbb{C}, c_{\lambda, \eta, k} \in \mathbb{C}$ and

$$c_{\lambda, \eta, k} = O(|\lambda|^{-\alpha})$$

as $\lambda \to \infty$ for any fixed $\alpha > 0$.

Note that analogues of the Theorem 1 for other equations related to ball mean values, were obtained by V.V. Volchkov for the first time (see [5] - [6] and the references in these papers).

Then let $Z(r_1, r_2) = Z_{r_1} \cap Z_{r_2}$.

We formulate now the local two-radii theorem for equation (1).

Theorem 2. Let $r_1, r_2 > 0, m \in \mathbb{N}$ and $s \in 0, ..., m - 1$ are fixed. Then:

1) if $R > r_1 + r_2$, $Z(r_1, r_2) = \emptyset$, $f \in C^{2n-2-s}(D_R)$ and with $|z| < R - r$ holds (1), then $f \in C^\infty(D_R)$ and satisfies (2);

2) if $\max\{r_1, r_2\} < R < r_1 + r_2$ and $Z(r_1, r_2) \neq \emptyset$, then there is $f \in C^\infty(D_R)$, that satisfies (1) with $|z| < R - r$ and does not satisfy (2).

As regards other two-radii theorems see papers [1] - [9] and references in these papers.
3 Auxiliary Statements

In this section we will obtain some auxiliary statements, that are necessary for the proof of main results. First of all, we note that the function \(g_r \) is an even entire function of exponential type, that grows as a polynomial on the real axis (see, for example, [15], § 29). This together with the Hadamard theorem implies that the set \(Z_r \) is infinite.

Lemma 1. Let \(\lambda \in Z_r \) and \(|\lambda| > 4/r \). Then

\[
|\text{Im}\lambda| \leq c_1 \ln(1 + |\lambda|),
\]

where constant \(c_1 \) is not depended on \(\lambda \).

Moreover, for all \(\lambda \) with sufficiently large absolute value

\[
|g'_r(\lambda)| > \frac{c_2}{|\lambda|},
\]

where \(c_2 \) is not depended on \(\lambda \). In addition, all zeros of the \(g_r \) with sufficiently large absolute value are simple.

Proof. From the condition \(g_r(\lambda) = 0 \) and asymptotic expansion for \(J_{s+1}(\lambda r) \) as \(\lambda \to \infty \) (see [15], § 29) we have

\[
\sqrt{\frac{2}{\pi \lambda r}} \left(\cos(\lambda r - \frac{\pi s}{2} - \frac{3\pi}{4}) - \frac{4(s^2 + 2s + 1) - 1}{8\lambda r} \sin(\lambda r - \frac{\pi s}{2} - \frac{3\pi}{4}) \right) + O \left((\lambda r)^{-2} e^{\text{Im}(\lambda r)} \right) = (\lambda r)^{s+1} \sum_{n=s}^{m-1} \frac{(\lambda r)^{2n-2s}(-1)^{n-s-1}}{(2n+2)(n-s)!n!2^{2n-s}}.
\]

Hence, using \(\lambda \in Z_r \), we obtain

\[
\frac{e^{i(\lambda r - \frac{\pi s}{2} - \frac{\pi}{4})}}{2i} + O \left(\frac{e^{\text{Im}(\lambda r)}}{\lambda r} \right) = \sqrt{\frac{\pi \lambda r}{2}} \sum_{n=s}^{m-1} \frac{(\lambda r)^{2n-s+1}(-1)^{n-s-1}}{(2n+2)(n-s)!n!2^{2n-s}}.
\]

Denote by \(p_1(\lambda r) \) the polynomial from the right hand side of this equation. Then we have the following

\[
e^{i(\lambda r - \frac{\pi s}{2} - \frac{\pi}{4})} = 2ip_1(\lambda r) + O \left(\frac{2i e^{\text{Im}(\lambda r)}}{\lambda r} \right).
\]

Let us estimate

\[
|\text{Im}(\lambda r)| \leq |2ip_1(\lambda r)| + \left| \frac{2i e^{\text{Im}(\lambda r)}}{\lambda r} \right| \leq |2ip_1(\lambda r)| + \frac{|i e^{\text{Im}(\lambda r)}|}{2}.
\]

Now one has

\[
|\text{Im}(\lambda r)| \leq 4|p_1(\lambda r)|
\]

and inequality (7) is proved. Inequality (8) can be proved in a similar way, by using [15], formula (6.3). \(\square \)
Lemma 2. Let $\lambda \in \mathbb{C}$, $f(z) = e^{i\lambda(z \cos \alpha + y \sin \alpha)}$, $r > 0$. Then for $z \in \mathbb{C}$ we have

$$\int \int f(\zeta)(\zeta - z)^s d\zeta d\eta - \sum_{n=s}^{m-1} \frac{2\pi r^{2n+2}}{2(n-s)!(n+1)!} \left(\frac{\partial}{\partial z} \right)^{n-s} \left(\frac{\partial}{\partial \bar{z}} \right)^n f(z) =$$

$$= 2\pi g_r(\lambda)e^{ias} i^{s+2} T^{s+2} \frac{1}{\lambda} e^{i\lambda(z \cos \alpha + y \sin \alpha)}$$

Proof. We substitute the function $e^{i\lambda(z \cos \alpha + y \sin \alpha)}$ to the right hand side of equation (1). First, we have

$$\int \int f(w + z)w^s dudv = \int \int e^{i\lambda((x+u) \cos \alpha + (y+v) \sin \alpha)} w^s dudv =$$

$$= e^{i\lambda(z \cos \alpha + y \sin \alpha)} \pi \int_{-\pi}^{\pi} \int_{0}^{r} \rho e^{i\varphi} e^{i\lambda \rho \cos(\varphi - \alpha)} \rho d\rho d\varphi.$$

Let make the substitution $t = \varphi - \alpha$. Then

$$e^{i\lambda(z \cos \alpha + y \sin \alpha)} e^{ias} \pi \int_{-\pi}^{\pi} \int_{0}^{r} \rho^{s+1} e^{i\lambda \rho \cos t} dt d\rho =$$

$$= e^{i\lambda(z \cos \alpha + y \sin \alpha)} e^{ias} \times$$

$$\times \int_{0}^{r} \rho^{s+1} (-1) \int_{-\pi}^{\pi} e^{-i(t+\frac{\pi}{2})} e^{\frac{s}{2} \rho} e^{i\lambda \rho \sin \left(\frac{\pi}{2} + t\right)} d\left(\frac{\pi}{2} + t\right) d\rho.$$

Continuing consideration, we obtain

$$e^{i\lambda(z \cos \alpha + y \sin \alpha)} e^{ias} \pi \int_{-\pi}^{\pi} \int_{0}^{r} \rho^{s+1} e^{i\lambda \rho \cos t} dt d\rho =$$

$$= e^{i\lambda(z \cos \alpha + y \sin \alpha)} e^{ias} \frac{1}{i} 2\pi (-1) \int_{0}^{r} \rho^{s+1} J_s(\lambda \rho) d\rho.$$

Now from the properties of the Bessel function $J_s(z)$ we deduce the next

$$e^{i\lambda(z \cos \alpha + y \sin \alpha)} e^{ias} \frac{1}{i} 2\pi (-1) \int_{0}^{r} (\lambda \rho)^{s+1} J_s(\lambda \rho) d(\lambda \rho) =$$

$$= e^{i\lambda(z \cos \alpha + y \sin \alpha)} e^{ias} \left(\frac{-2\pi}{\lambda}\right)^{s+1} J_{s+1}(\lambda).$$

Then we substitute this function to the left hand side of our equation.

$$2\pi \sum_{n=s}^{m-1} \frac{r^{2n+2}}{(2n+2)(n-s)!n!} \left(\frac{\partial}{\partial z} \right)^{n-s} \left(\frac{\partial}{\partial \bar{z}} \right)^n \left(e^{i\lambda(z \cos \alpha + y \sin \alpha)} \right) =$$
Proof. The proof follows from the Lemma 2 and [5, formula (1.5.29)].

The statement was proved in [10]. In our case the proof is carried out by the same lines.

\[z \text{ satisfies (1) for all } k \] \[\text{and only if for all } k \]

The same statement is true for the function \(\Phi \).

\[\text{Lemma 4. Let } f \in C^{2m-s}(D_R) \text{ satisfies (2) if and only if for all } k \in \mathbb{Z} \] \[\text{and all } \rho \in [0, R) \text{ the next equality is true} \]

\[f_k(\rho) = \sum_{0 \leq p \leq s-1} a_{k,p} \rho^{2p+k} + \sum_{p=0}^{m-s-1} b_{k,p} \rho^{2p+s+k}, \] \[\text{(9)} \]

where \(a_{k,p} \in \mathbb{C} \) and \(b_{k,p} \in \mathbb{C} \).

\[\text{Proof. In the case where } b_{k,p} = 0 \text{ and equality } (\partial f) = 0 \text{ is considered instead of a similar statement was proved in [10]. In our case the proof is carried out by the same lines.} \]

\[\text{Lemma 4. Let } f \in C^{\infty}(D_R) \text{ satisfies (1) with fixed } r < R \text{ and all } z \in D_{R-r}. \]

\[\text{Let } f = 0 \text{ in } D_r. \text{ Then } f \equiv 0. \]

\[\text{Proof. The statement of Lemma 4 is a special case Theorem 1 from [16].} \]

4 PROOF OF THEOREM 1

Sufficiency. First, let \(f \in C^{\infty}(D_R) \) and equality (5) holds on \([0, R)\) for any \(k \in \mathbb{Z} \) with the coefficients, that satisfy (6). From Lemma 2 and Corollary 1 we see, that function \(f_k(\rho) e^{ik\phi} \) satisfies (1) with \(|z| < R - r \). Because of the arbitrariness of \(k \in \mathbb{Z} \) this together with (3), (4) implies (see, for example, [5, Section 1.5.2] that the function \(f \) also satisfies (1) with \(|z| < R - r \). Hence, implication 2) \(\rightarrow \) 1) is proved.

Now we prove the reverse statement.

Let \(E'_z(\mathbb{C}) \) denote the space of radial compactly supported distributions on \(\mathbb{C} \). Let \(f \in C^{\infty}(D_R) \) and assume that equality (1) holds for \(|z| < R - r \). From [5, statement 1.5.6] the functions \(F_k(z) = f_k(\rho) e^{ik\phi} \) satisfy this condition as well. Using the Paley-Wiener theorem for the spherical transform (see [5, Section 3.2.1 and Theorem 1.6.5]), we define the distribution \(T \in E'_z(\mathbb{C}) \) with support in \(\overline{D}_r \) by the following formula

\[\tilde{T}(z) = g_r(z), z \in \mathbb{C}. \]
A calculation shows that equality (1) holds for the function F_k with $|z| < R - r$. This is equivalent to the following convolution equation

$$F_k \ast \left(\frac{\partial}{\partial z} \right)^{m-s} \left(\frac{\partial}{\partial z} \right)^m T = 0$$

in \mathbb{D}_{R-r}.

We solve this equation by using Lemma 1 - 4. Then we have (see [5, Section 3.2.4]) statement 2).

Hence the theorem.

5 PROOF OF THEOREM 2

Let $R > r_1 + r_2$, $Z(r_1, r_2) = \emptyset$, $f \in C^{2m-2-s}(\mathbb{D}_R)$ and assume that equality (1) holds for $|z| < R - r$. Let us prove that f satisfies (2) in \mathbb{D}_R.

Without loss of the generality, we can suppose that $f \in C^\infty(\mathbb{D}_R)$ (the general case can be reduced to this one by the standard smoothing, see [5, Section 1.3.3]).

By Theorem 1, for any $k \in \mathbb{Z}$ and $\rho \in [0, R)$ the next equality holds

$$f_k(\rho) e^{ik\varphi} = \sum_{0 \leq p \leq s-1} a_{k,p} \rho^{2p+k} e^{ik\varphi} + \sum_{p=0}^{m-s-1} b_{k,p} \rho^{2p+s+k+1} e^{ik\varphi} +$$

$$+ \sum_{\lambda \in Z_{r_1}} \sum_{\eta = 0}^{n-1} c_{\lambda,\eta,k} \Phi_{\lambda,\eta,k}(\rho) e^{ik\varphi},$$

(10)

where $a_{k,p}, b_{k,p} \in \mathbb{C}$ and the constants $c_{\lambda,\eta,k}$ satisfy (6).

From this condition it follows that the series in (10) converges in the space $C^\infty(\mathbb{D}_R)$ (see [5, Lemma 3.2.7]).

Let

$$F_k(z) = \left(\frac{\partial}{\partial z} \right)^{m-s} \left(\frac{\partial}{\partial z} \right)^m (f_k(\rho) e^{ik\varphi}) =$$

$$= \sum_{\lambda \in Z_{r_1}} \sum_{\eta = 0}^{n-1} c_{\lambda,\eta,k} \left(\frac{\partial}{\partial z} \right)^{m-s} \left(\frac{\partial}{\partial z} \right)^m \Phi_{\lambda,\eta,k}(\rho) e^{ik\varphi}.$$

(11)

In view of (11) we see that $F_k \ast T_1 = 0$ in \mathbb{D}_{R-r_1}, where the distribution $T_1 \in \mathcal{E}_r'(\mathbb{C})$ with support in $\overline{\mathbb{D}_{r_1}}$ is determined by the equality $\widetilde{T_1}(z) = g_{r_1}(z)$ (see [5, Theorem 1.6.5]).

Similarly, using Theorem 1 for $r = r_2$, we conclude that $F_k \ast T_2 = 0$ in \mathbb{D}_{R-r_2}, where $T_2 \in \mathcal{E}_r'(\mathbb{C})$ with support in $\overline{\mathbb{D}_{r_2}}$ is determined by the equality $\widetilde{T_2}(z) = g_{r_2}(z)$.

If $Z(r_1, r_2) = \emptyset$ then from [5, Theorem 3.4.1] we conclude that $F_k = 0$.

Then it follows from (11) that the function $f_k(\rho) e^{ik\varphi}$ satisfies (2) for all $k \in \mathbb{Z}$. It means that (see [5, proof of the Lemma 2.1.4]) f satisfies (2). Thus the first statement of Theorem 2 is proved.

We now establish the second statement.

If there is $\lambda \in Z(r_1, r_2)$ then the function $f(z) = \Phi_{\lambda,0,0}(|z|)$ does not satisfy (2). In addition, it satisfies (1) for all $z \in \mathbb{C}$ and $r = r_1, r_2$ (see Corollary 1). Then we henceforth assume that $Z(r_1, r_2) = \emptyset$.

Suppose that $T_1, T_2 \in \mathcal{E}_r'(\mathbb{C})$ are defined as above. If $R < r_1 + r_2$, in view of [5, Theorem 3.4.9] we conclude, that there is a nonzero radial function $f \in C^\infty(\mathbb{D}_R)$. It satisfies the conditions
Applying [5, Theorem 3.2.3] we infer that for \(r = r_1, r_2 \) the following equality holds

\[
f(z) = \sum_{\lambda \in \mathbb{Z}} \sum_{\eta = 0}^{n_\lambda - 1} c_{\lambda, \eta}(r) \Phi_{\lambda, \eta, 0}(|z|),
\]

where \(z \in \mathbb{D}_R \) and the constants \(c_{\lambda, \eta}(r) \) satisfy (5). Moreover, these constants are not all equal to zero.

From this equality and Corollary 1 one deduces that \(f \) satisfies (1) for \(|z| < R - r, r = r_1, r_2 \). Suppose now that \(f \) satisfies (2).

Then \(f(z) = \sum_{0 \leq p \leq s - 1} a_p |z|^{2p} + \sum_{p=0}^{m-s-1} b_p |z|^{2p+2s} \) in \(\mathbb{D}_R \) and the convolutions \(f \ast T_1 \) and \(f \ast T_2 \) are polynomials. This means that \(f \ast T_1 = f \ast T_2 = 0 \) in \(\mathbb{C} \).

Since \(Z(r_1, r_2) = \emptyset \), from [5, Theorem 3.4.1] we infer that \(f = 0 \). This contradicts by the definition of \(f \).

Therefore, the function \(f \) satisfies all the requirements of the second statement of Theorem 2.

REFERENCES

1. L.Zalcman. A bibliographic survey of the Pompeiu problem, in: B.Fuglede et al. (ads.) // Approximation by Solutions of Partial Differential Equations, Kluwer Academic Publishers: Dordrecht. – 1992. – pp.185-194.
2. L.Zalcman. Supplementary bibliography to A bibliographic survey of the Pompeiu problem // Radon Transforms and Tomography, Contemp. Math., 278 – 2001. – p.69-74.
3. L.Zalcman. Mean values and differential equations // Israel J. Math., 14 – 1973. – pp.339-352.
4. L.Zalcman. Offbeat integral geometry // Amer. Math. Monthly, 87, 3 – 1980. – pp.161-175.
5. Volchkov V.V. Integral Geometry and Convolution Equation. Dordrecht-Boston-London: Kluwer Academic Publishers, 2003. 454p.
6. Volchkov V.V., Volchkov Vit.V. Harmonic Analysis of Mean Periodic Functions on Symmetric spaces and the Heisenberg Group. Series: Springer Monographs in Mathematics, 2009. – 671 p.
7. C.A.Berenstein and D.C.Struppa. Complex analysis and convolution equations, in 'Several Complex Variables, V', (G.M.Henkin, Ed.) // Encyclopedia of Math. Sciences, 54 – 1993. – pp.1-108.
8. I.Netuka and J.Vesely. Mean value property and harmonic functions // Classical and Modern Potential Theory and Applications, Kluwer Acad. Publ. – 1994. – pp.359-398.
9. J.Delsarte. Lectures on Topics in Mean Periodic Functions and the Two-Radius Theorem. Tata Institute: Bombay. – 1961.
10. Trofymenko O.D. Generalization of the mean value theorem for polyanalytic functions in the case of a circle and a disk // Bulletin of Donetsk University – 1, 2009. – pp.28-32 (in Ukrainian).
11. L.Zalcman. Analyticity and the Pompeiu problem // Arch. Rat. Anal. Mech., 47 – 1972. – pp.237-254.
12. Volchkov V.V. New mean value theorems for polyanalytic functions // Mat. Zametki, 56, 3 – 1994. – pp.20-28.
13. Maxwell O.Reade. A theorem of Fedoroff // Duke Math.J, 18. – 1951. – pp.105-109.
14. T.Ramsey and Y.Weit. Mean values and classes of harmonic functions // Math. Proc. Camb. Dhil. Soc., 96, 1984. – pp.501-505.
15. Korenev B.G. Introduction to the theory of Bessel functions. M.: Nauka, 1971. - 288 p.
16. Trofymenko O.D. Uniqueness theorem for solutions of some mean value equations // Donetsk: Transactions of the Institute of Applied Mathematics and Mechanics, 24, 2012. – pp.234-242.

Faculty of Mathematics and Information Technology, Donetsk National University
Donetsk, Ukraine, Universitetskaya 24, 83001
odtrofimenko@gmail.com