Neuronal GPCR OCTR-1 regulates innate immunity by controlling protein synthesis in Caenorhabditis elegans

Yiyong Liu, Durai Sellegounder & Jingru Sun

Upon pathogen infection, microbial killing pathways and cellular stress pathways are rapidly activated by the host innate immune system. These pathways must be tightly regulated because insufficient or excessive immune responses have deleterious consequences. Increasing evidence indicates that the nervous system regulates the immune system to confer coordinated protection to the host. However, the precise mechanisms of neural-immune communication remain unclear. Previously we have demonstrated that OCTR-1, a neuronal G protein-coupled receptor, functions in the sensory neurons ASH and ASI to suppress innate immune responses in non-neural tissues against Pseudomonas aeruginosa in Caenorhabditis elegans. In the current study, by using a mass spectrometry-based quantitative proteomics approach, we discovered that OCTR-1 regulates innate immunity by suppressing translation and the unfolded protein response (UPR) pathways at the protein level. Functional assays revealed that OCTR-1 inhibits specific protein synthesis factors such as ribosomal protein RPS-1 and translation initiation factor EIF-3 to reduce infection-triggered protein synthesis and UPR. Translational inhibition by chemicals abolishes the OCTR-1-controlled innate immune responses, indicating that activation of the OCTR-1 pathway is dependent on translation upregulation such as that induced by pathogen infection. Because OCTR-1 downregulates protein translation activities, the OCTR-1 pathway could function to suppress excessive responses to infection or to restore protein homeostasis after infection.

The nematode Caenorhabditis elegans is a powerful model system for infection studies in the context of a whole animal. More than 40 microbes have been shown to be pathogenic to C. elegans, including bacteria, fungi and viruses, some of which are also human pathogens. Unlike vertebrates or many other invertebrate species, C. elegans does not have an adaptive immune system; it relies on innate immunity and avoidance behavior to defend itself against microbial attacks. Upon pathogen infection, the nematode can mount protective responses by triggering evolutionarily conserved signaling cascades. These cascades include the mitogen-activated protein kinase (MAPK) pathways, the DAF-2/insulin-like receptor pathway, the DBL-1 pathway (homologous to the mammalian TGF-β cascade), the unfolded protein response (UPR), and programmed cell death. Activation of these signaling pathways induces expression of defensive genes. The most common differentially expressed protein families in C. elegans during pathogenesis include C-type lectins, lysozymes, lipases and antimicrobial peptides. These molecules are regarded as markers of immune responses because they are positively regulated in various organisms exposed to a broad range of pathogens. They are believed to be the immune effectors that act directly to fight off infection, although only a few markers have been demonstrated to have such activities.

Upon pathogen infection, cellular stress pathways and microbial killing pathways are rapidly activated by the host innate immune system. These pathways must be tightly regulated as insufficient immune responses exacerbate infection, whereas excessive immune responses lead to prolonged inflammation, tissue damage and death. For example, in C. elegans, loss of the XBP-1-dependent UPR in the presence of pathogens leads to disruption of morphology of the endoplasmic reticulum (ER) and larval lethality, while under physiological conditions results in constitutive ER stress. Hyperstimulation of the p38 MAPK pathway is also toxic to C. elegans. In humans, dysregulated innate immune responses have been linked to a myriad of human health concerns such...
as sepsis, autoimmune disease and chronic inflammatory disease. Increasing evidence indicates that the nervous system regulates the immune system to confer coordinated protection to the host\(^{11-13}\). Recent studies on neuronal G protein-coupled receptors (GPCRs) highlight the roles of specific neurons in the regulation of immune responses\(^{14-19}\). \textit{Caenorhabditis elegans} (\textit{C. elegans}) is a nematode with a simple nervous system, and is extensively studied as a model for research into nervous system function\(^{20,22,23}\). It is currently unknown how the immuno-modulatory signals are relayed from ASH/ASI neurons to the non-neuronal tissues. The above studies investigated transcriptional regulatory mechanisms underlying neural regulation of innate immunity; however, it remains unclear how such regulation operates at the protein level.

Although one might expect a direct correspondence between mRNA transcripts and protein expression\(^{20}\), recent studies have shown that the mRNA-protein correlation can be low. Transcriptomic and proteomic studies under similar conditions often reported that only a small overlap exists between differentially regulated genes and proteins\(^{12-15}\). There are several reasons for this discordance. First, technological biases lead to a much lower proteome coverage than transcriptome coverage\(^{27,28}\). The most widely used technologies for transcriptomic profiling are DNA microarray and RNA sequencing. Mass spectrometry techniques are used for proteomic profiling. Technical resolution at the proteome level is much more constrained, resulting in identification of only those proteins with high difference in abundance. Second, physical properties of transcripts influence translation. For example, transcripts with weak Shine-Dalgarno (SD) sequences are translated less efficiently\(^{29,30}\). Third, codon bias affects the mRNA-protein correlation\(^{31,32}\). Fourth, ribosome-density, the number of ribosome in transcriptional unit, has a major influence on efficiency of translation\(^{33-35}\). Finally, the correlation between half-lives of mRNAs and proteins is low\(^{36}\). For example, post-translational modifications significantly influence the stability of proteins. While RNA can serve as direct biological effectors, proteins are the effectors of most biological functions. Genome-wide analysis at the protein level is, therefore, a more direct reflection of gene expression.

Since the first use of the \textit{P. aeruginosa}-\textit{C. elegans} model for pathogenesis research in 1999\(^{37,38}\), a number of transcriptomic studies have been carried out to investigate the nematode's innate immunity\(^{39-42}\). In the current work, we examine how \textit{C. elegans} responds to \textit{P. aeruginosa} infection and how the nervous system regulates those responses at the protein level.

Results

\textit{P. aeruginosa} infection induces proteome changes in \textit{C. elegans}. To investigate how \textit{C. elegans} responds to \textit{P. aeruginosa} infection at the protein level, we compared the proteomes of infected wild-type N2 worms to those of uninfected controls using a label-free quantitative proteomics approach. A schematic diagram of this approach is depicted in Fig. 1. Five biological replicates of each experimental group were individually analyzed with high resolution nano-HPLC tandem mass spectrometry. Protein identification and quantification were done using Thermo Scientific Proteome Discoverer software. In total, 4,413 proteins were identified and quantified with high resolution nano-HPLC tandem mass spectrometry. Protein identification and quantification were done using Thermo Scientific Proteome Discoverer software. In total, 4,413 proteins were identified and quantified, among which 1,312 proteins were identified with high confidence (1% false discovery rate, FDR). The levels of these 1,312 proteins were statistically compared between experimental groups using TIGR Multiexperiment Viewer (MeV). The proteomics data are available via ProteomeXchange with identifier PXD004173.

Compared with the proteins identified in the uninfected wild-type worms, 53 proteins were significantly upregulated at least 1.5-fold in the \textit{P. aeruginosa}-infected wild-type worms (Table 1). Twenty-three of these proteins were only detected in the infected samples, indicating that their abundance was below the detection limit in the uninfected worms. We performed gene ontology (GO) enrichment analyses to identify significantly enriched biological processes using the web-based program Gorilla (http://cbl-gorilla.cs.technion.ac.il/\(^{43}\)). Analysis of the 53 upregulated proteins against a background of 1,312 proteins (the total number of proteins identified with high confidence) revealed 15 enriched biological processes, 14 of which involve the nematode's responses to infection or other external stimuli (Table 2). For example, the most significantly enriched GO term is “innate immune response” (FDR = 8.7E-09, enriched 9.28-fold); and the highest enriched GO term is “defense response to Gram-negative bacterium” (FDR = 7.08E-05, enriched 12.85-fold) (Table 2). As \textit{P. aeruginosa} is a Gram-negative bacterium and known to trigger innate immune responses in \textit{P. aeruginosa}, indicating that OCTR-1 functions in ASHs and ASIs to suppress innate immunity\(^{17,18}\). The proteins upregulated by \textit{P. aeruginosa} infection belong to a number of functional groups, as shown in Table 1. These include markers of immunity, such as CUB-like proteins, C-type lectins, lysozymes, proteins containing SHK toxin domain, and glutathione s-transferases (GSTs). Immune markers are a set of genes/proteins that are positively regulated in various organisms in response to a wide range of pathogens; they are believed to be the immune effectors that enhance the host's ability to fight off pathogens\(^{12,13,45}\). Many immune markers were discovered by transcription studies. Our finding that marker genes are also induced at the protein level suggests that these genes are biologically functional during immune response. When compared with three whole-genome transcription studies in the literature\(^{38-41}\), which used microarray to detect differentially expressed genes in \textit{C. elegans} upon \textit{P. aeruginosa} infection, nine out of the 12 marker proteins that were upregulated in our proteomics study are also induced at the transcript level (Table 1). Table 1 also shows the upregulation of a group of 13 proteins that have proteolysis, hydrolysis or oxidoreductase activities, which might reflect increased metabolism in the nematode and the need for extra energy whilst fighting off an infection. About half of these proteins overlap with
the induced transcripts revealed in the microarray studies. Despite the fact that 70% of the 53 upregulated proteins have no match in the transcriptomic data (Table 1), the two types of studies showed good agreement on the enrichment of innate immune proteins and enzymes involved in macromolecule metabolism.

OCTR-1 regulates innate immune responses at the protein level. Previously we have shown that neuronally expressed OCTR-1 suppresses P. aeruginosa-triggered innate immune responses in C. elegans by down-regulating gene expression in the UPR pathways and the p38 MAPK pathway. These studies were performed at the transcript level. To investigate how OCTR-1 regulates innate immunity at the level of protein expression, we examined the proteomic changes of octr-1(ok371) worms relative to wild-type worms exposed to P. aeruginosa. As shown in Table S2, infection upregulated 113 proteins in the mutant worms. Twenty-three of these are immunity marker proteins, which almost doubles the number of the immune proteins induced in the wild-type worms (Table 3 versus Table 1). The result is consistent with an inhibitory role of OCTR-1 in innate immunity. Strikingly, all 12 immune proteins induced in wild-type worms are upregulated in octr-1(ok371) worms, illustrating the high-degree reproducibility of our proteomics method. Besides the immune proteins, we also observed significant induction of proteins in the UPR pathway in octr-1(ok371) worms (Table 3), demonstrating that OCTR-1 inhibits the UPR at the protein level. This correlates well with our previous genome microarray study that showed OCTR-1 suppresses the UPR at the transcript level. Knockdown of a number of UPR genes individually (abu-1, -7, -8, -12, -13, xbp-1, or Y41C4A.11) by RNA interference (RNAi) partially or fully rescued the mutant phenotype of octr-1(ok371) worms, i.e. decreased the immunity of the mutants to the wild-type level. Taken together, these results suggest that elevated UPR activity contributes to the enhanced immunity of octr-1 mutant worms.
Functional Group	Protein	Gene ID	Fold Change	p-Value	Overlap with published microarray data*		
CUB-like domain	DOD-24	c32h11.12	only in the infected	x	x		
	F55G11.2	f55g11.2	10.1	7.58E-03	x	x	x
	F55G11.4	f55g11.4	only in the infected	x	x	x	
	C32H11.4	c32h11.4	only in the infected	x	x	x	
	DOD-17	k10d11.1	only in the infected	x			
	C17H12.8	c17h12.8	only in the infected	x	x		
C-type lectin	CLEC-63	f35c5.6	3.4	1.11E-04	x		
	CLEC-66	f35c5.9	only in the infected	x	x		
Lysozyme	LYS-2	y22f5a.5	only in the infected	x			
	LMP-1	c03h11.12	only in the infected	x			
ShK toxin domain	C14C6.5	c14c6.5	only in the infected	x	x		
GST	GST-38	f35e8.8	only in the infected	x	x		
Proteolysis/hydrolysis	ASP-14	k1p2.3	3.4	5.97E-04	x	x	
	M60.2	m60.2	only in the infected	x			
	BRE-1	c53b4.7	2.3	1.18E-03	x	x	
	HEX-1	t14f9.3	only in the infected	x	x		
	CAT-4	f32g8.6	only in the infected	x	x		
	B0222.5	b0222.5	only in the infected	x	x		
oxidoreductases	F20D6.11	f20d6.11	only in the infected	x			
	VNA	r04b5.5	1.8	5.72E-03	x	x	
	C55A6.4	c55a6.4	only in the infected	x	x		
	GLRX-5	y49a10.2	3.3	4.56E-03	x	x	
	F33C11.3	f33c11.3	5.1	2.63E-03	x	x	
	DAF-22	y57a10c.6	1.9	7.01E-03	x	x	
	MAOC-1	e04f6.3	2.0	2.93E-03	x	x	
Heat shock protein	Y55F3BR.6	y55f3br.6	2.0	2.25E-03	x	x	
	DNJ-19	t05c3.5	3.1	2.28E-03	x	x	
Development	NASP-2	c50b6.2	2.5	6.75E-03	x	x	
	Y71F9AL.9	y71f9al.9	2.3	5.39E-03	x	x	
	CPG-2	b0280.5	2.1	6.37E-03	x	x	
	MLC-4	c56g7.1	2.2	2.14E-03	x	x	
	VPS-32.1	c56c10.3	2.7	4.38E-03	x	x	
	T23D8.3	t23d8.3	only in the infected	x	x		
	RMD-1	t05g5.7	only in the infected	x	x		
	SEC-24.2	zc518.2	2.1	6.44E-03	x	x	
	MRPL-34	c25a1.13	only in the infected	x	x		
Others or unknown	D5C-4	k02d7.4	1.8	9.23E-03	x	x	
	CEY-4	y39b1c.3	1.7	4.01E-04	x	x	
	ZC247.1	zc247.1	1.7	4.37E-03	x	x	
	PQN-59	r119.4	1.7	6.29E-03	x	x	
	PUD-2.1	f35e11.1	2.6	4.85E-05	x	x	
	Y44A6D.2	y44a6d.2	1.8	1.59E-03	x	x	
	Y69A2AR.18	y69a2ar.18	1.7	8.28E-03	x	x	
	YDAC-1	r05g6.7	1.8	9.23E-03	x	x	
	CLEC-209	f56a4.2	only in the infected	x	x		
	C15C7.5	c15c7.5	4.3	5.37E-04	x	x	
	W05H9.1	w05h9.1	2.1	3.93E-03	x	x	
	GLB-1	zk637.13	3.0	5.27E-03	x	x	
	ZK418.9	zk418.9	1.8	4.27E-03	x	x	
	LPD-8	r10k10.1	2.1	1.34E-03	x	x	
	SNA-1	w02j12.6	only in the infected	x	x		
	IRG-3	f35e10.4	only in the infected	x	x		
	LBP-4	zk742.5	2.1	8.12E-03	x	x	

*Only in the infected: the protein was only detected in the infected animals, not in the uninfected animals.

Table 1. P. aeruginosa-induced proteins in wild-type N2 animals.
Interestingly, we observed significant induction of a number of proteins with functions in transcription, sulfur amino acid biosynthesis and translation in the mutant worms (Table 3). In contrast, abundance of these proteins in the wild-type worms did not change upon infection (Table 1). We attribute the induction of these proteins in the mutants to the lack of OCTR-1. Therefore, in addition to the UPR, OCTR-1 also potentially regulates transcription, sulfur amino acid biosynthesis and translation in response to *P. aeruginosa* infection. Surprisingly, the abundance of the transcripts of these proteins remained unchanged in *octr-1(ok371)* relative to wild-type worms in our previous whole-genome microarray study conducted under the same infection conditions\(^5\), suggesting that induction of these proteins occurs at the post-transcriptional level. Because enhanced transcription, sulfur amino acid biosynthesis and translation likely promote protein synthesis, it is reasonable to speculate that higher protein synthesis activity is responsible for the upregulation of many proteins in *octr-1(ok371)* worms, which in turn triggers strong UPR in the mutants.

OCTR-1 modulates protein synthesis in response to *P. aeruginosa* infection. Dunbar et al. showed that translation of green fluorescent protein (GFP) was blocked in the intestine of *C. elegans* during *P. aeruginosa* infection through the use of transgene *hsp-16.2::GFP* as a reporter for translation activity\(^6\). To investigate if OCTR-1 plays a direct role in modulating protein synthesis, we used a similar transgenic GFP reporter *Phsp-4::GFP(zcls4)*. The *C. elegans* *hsp-4* gene encodes a homologue of mammalian BiP/GRP-78; and intestinal expression of the transgene *Phsp-4::GFP(zcls4)* has been used as an indicator of the XBP-1-dependent UPR\(^18^-^19,*^ which reflects protein accumulation and demand on protein folding in the endoplasmic reticulum. Previously we have demonstrated that upon *P. aeruginosa* infection, *octr-1(ok371);Phsp-4::GFP(zcls4)* animals exhibited significantly higher levels of GFP expression than *Phsp-4::GFP(zcls4)* animals (Fig. 2 in Sun et al.\(^18*)\). It is unclear whether the elevated GFP expression was due to upregulation of transcription or increased translation or both. To find out the cause of this phenomenon, we performed qRT-PCR to compare the levels of GFP mRNA in *Phsp-4::GFP(zcls4)* and *octr-1(ok371);Phsp-4::GFP(zcls4)* animals exposed to *P. aeruginosa*. As shown in Fig. 2, the levels of GFP mRNA were not significantly different between the two strains, indicating that the elevated GFP expression in the *octr-1* mutants was due to upregulation of translation, not transcription. Hence, OCTR-1 modulates protein synthesis in response to *P. aeruginosa* infection.

Protein synthesis factors are involved in the OCTR-1-dependent immunity. Eight ribosomal proteins (RPs) were upregulated by *P. aeruginosa* in *octr-1(ok371)* animals relative to wild-type animals, including RPS-1, RPS-11, MRPL-12, RPL-13, RPL-18, RPS-10, RPS-28, and K07C5.4 (Table 3). Recent studies revealed the multifunctional roles of RPs ranging from protein synthesis to apoptosis\(^46^-^47,*^ Identification of these upregulated RPs raises an important question: do RPs play any roles in innate immunity? To answer this question, we knocked down the expression of the above RPs individually by RNAi in both wild-type and *octr-1(ok371)* animals, then measured the nematode’s survival against *P. aeruginosa* infection, as well as their lifespan on a standard food source *E. coli* OP50. This approach allows us to determine gene contribution to immunity independently of possible functions important for development or lifespan. The RNAi experiment demonstrated that silencing the RPs in many cases led to delay in development or even to maternal sterility (Table S3). The results are in agreement with the previous studies in zebrafish that showed knockdown of many individual RPs causes cell death.

Table 2. GO term (biological process) enrichment analysis of *P. aeruginosa*-induced proteins in wild-type N2 animals.

GO term (biological process)	P-value*	FDR q-value*	Enrichment (N, B, n, b)*
GO:0002376 immune system process	1.25E-11	2.63E-08	9.28 (1098, 36, 46, 14)
GO:0006955 immune response	1.25E-11	1.32E-08	9.28 (1098, 36, 46, 14)
GO:0045087 innate immune response	1.25E-11	8.77E-09	9.28 (1098, 36, 46, 14)
GO:0006952 defense response	7.98E-11	4.19E-08	7.46 (1098, 48, 46, 15)
GO:0006950 response to stress	7.15E-08	3.00E-05	3.91 (1098, 110, 46, 18)
GO:0050829 defense response to Gram-negative bacterium	2.03E-07	7.08E-05	12.85 (1098, 13, 46, 7)
GO:0050896 response to stimulus	2.27E-07	6.79E-05	3.64 (1098, 118, 46, 18)
GO:0043207 response to external biotic stimulus	1.23E-06	3.22E-04	10.44 (1098, 16, 46, 7)
GO:0098542 defense response to other organism	1.23E-06	2.86E-04	10.44 (1098, 16, 46, 7)
GO:0042742 defense response to bacterium	1.23E-06	2.57E-04	10.44 (1098, 16, 46, 7)
GO:0009617 response to bacterium	1.23E-06	2.34E-04	10.44 (1098, 16, 46, 7)
GO:0009607 response to biotic stimulus	1.23E-06	2.15E-04	10.44 (1098, 16, 46, 7)
GO:0051707 response to other organism	1.23E-06	1.98E-04	10.44 (1098, 16, 46, 7)
GO:0009605 response to external stimulus	3.87E-05	5.80E-03	6.68 (1098, 25, 46, 7)
GO:0051704 multi-organism process	4.65E-04	6.50E-02	3.91 (1098, 59, 46, 9)

*P-value is the enrichment p-value computed according to the mHG model (Eden et al. 2007 PLoS Comp Bio 3(3):e39). FDR q-value is the correction of the above p-value for multiple testing using the Benjamini and Hochberg method (Benjamini and Hochberg 1995 J R Statist Soc B 57(1):289–300). Enrichment (N, B, n, b) is defined as follows: N - is the total number of proteins, B - is the total number of proteins associated with a specific GO term, n - is the number of proteins in the target set, b - is the number of proteins in the intersection. Enrichment = (b/n)/(B/N).
Biological Functions

Innate immune response

Protein	Gene ID	Description	Fold Change	p-Value
DOD-24	c32h11.12	CUB-like domain	infected only	
F55G11.2	f55g11.2	CUB-like domain	infected only	
C32H11.4	f35c5.9	C-type lectin	infected only	
DOD-17	k10d11.1	CUB-like domain	infected only	
CLEC-67	f56d6.2	C-type lectin	infected only	
CLEC-66	f55c5.6	C-type lectin	3.5	6.05E-03
SKP-1	f44c5.6	ShK toxin domain	infected only	
GST-38	f35e8.8	glutathione S-transferase	infected only	
GST-5	r03d7.6	glutathione S-transferase	9.5	6.98E-03
METR-1	r03d7.1	probable methionine synthase	infected only	
C01G10.9	c01g10.9	methylthioribose-1-phosphate isomerase	infected only	
F35E12.6	f35e12.6	involved in innate immune response	infected only	
IRG-3	f5e10.4	infection response protein	infected only	
SKR-3	f44c5.6	skp1 related (ubiquitin ligase complex component)	2.3	6.32E-03
DFR-1.1	b0432.2	glutathione-independent glyoxalase DFR-1.1	1.8	2.25E-03
METR-1	r03d7.1	probable methionine synthase	infected only	
C01G10.9	c01g10.9	methylthioribose-1-phosphate isomerase	infected only	
F35E12.6	f35e12.6	involved in innate immune response	infected only	
IRG-3	f5e10.4	infection response protein	infected only	
SKR-3	f44c5.6	skp1 related (ubiquitin ligase complex component)	2.3	6.32E-03
DFR-1.1	b0432.2	glutathione-independent glyoxalase DFR-1.1	1.8	2.25E-03
METR-1	r03d7.1	probable methionine synthase	infected only	
C01G10.9	c01g10.9	methylthioribose-1-phosphate isomerase	infected only	
F35E12.6	f35e12.6	involved in innate immune response	infected only	
IRG-3	f5e10.4	infection response protein	infected only	
SKR-3	f44c5.6	skp1 related (ubiquitin ligase complex component)	2.3	6.32E-03
DFR-1.1	b0432.2	glutathione-independent glyoxalase DFR-1.1	1.8	2.25E-03
METR-1	r03d7.1	probable methionine synthase	infected only	

Sulfur amino acid biosynthesis

Protein	Gene ID	Description	Fold Change	p-Value
METR-1	r03d7.1	probable methionine synthase	infected only	

Translation/protein synthesis

Protein	Gene ID	Description	Fold Change	p-Value
RPL-18	y45f10d.12	60S ribosomal protein L18	2.1	5.23E-03
RPS-10	d1076.7	ribosomal protein, small subunit	2.1	5.22E-03
RPL-13	c32e8.2	60S ribosomal protein L13	2.0	7.94E-03
RPS-11	f40j11.1	ribosomal protein, small subunit	1.7	7.59E-03
RPS-1	f56j3.5	40S ribosomal protein S3a	1.6	8.48E-03
RPS-28	y41h4b.5	40S ribosomal protein S28	1.4	9.56E-03

Proteolysis/hydrolysis

Protein	Gene ID	Description	Fold Change	p-Value
METR-1	r03d7.1	probable methionine synthase	infected only	

ER/UPR

Protein	Gene ID	Description	Fold Change	p-Value
Y41C4A.11	y41c4a.11	involved in ER UPR	4.3	1.84E-03
C14B9.2	c14b9.2	probable protein disulfide-isomerase A4	2.3	1.52E-03
HSP-4	f43c2.8	heat shock protein	2.2	2.00E-03
PDI-1	c14b1.1	protein disulfide isomerase	1.6	8.26E-03

Continued
Table 3. *P. aeruginosa*-induced proteins in *octr-1(ok371)* animals. †Infected only: the protein was only detected in the infected animals, not in the uninfected animals.

Biological Functions	Protein	Gene ID	Description	Fold Change	p-Value
Transcription	RPB-9	y97c10a.5	RNA polymerase II (B) subunit	2.5	6.86E-03
	CEV-4	y39a1c.3	C. elegans Y-box	2.0	1.05E-04
	CEY-2	j46j12.2	C. elegans Y-box	1.7	3.55E-03
	CPG-2	b0280.5	chondroitin proteoglycan	infected	
	C29E4.12	c29e4.12	ortholog of human C7orf55	infected	
	Y18D10A.9	y18d10a.9	ortholog of human CIAO1	infected	
	T23D8.3	t23d8.3	ortholog of human and yeast LT1V1	infected	
Development/reproduction	K07H8.10	k07h8.10	predicted to have neclenic acid and nucleotide binding activity	8.2	1.56E-05
	F55B11.2	f55b11.2	development	4.4	9.81E-03
	DNC-2	c28h8.12	dynactin complex component	3.2	3.30E-03
	F32A11.3	f32a11.3	involved in reproduction	3.2	9.82E-03
	Y71F9AL.9	y71f9al.9	ortholog of human SPATS2L and SPATS2	2.1	4.21E-04
	DPY-30	z8616.3	dosage compensation protein	2.0	4.34E-03
	PRX-19	f54f2.8	Peroxisome assembly factor	1.9	9.17E-03
	MRPS-28	y43f8c.8	Mitochondrial ribosomal Protein	1.8	1.63E-03
	C44E4.4	e44e4.4	ortholog of human Sjogren syndrome atigen B	1.6	7.28E-03
	F20D6.11	f20d6.11	putative FAD-binding oxidoreductase	infected	
Cell redox homeostasis	F29C4.2	f29c4.2	ortholog of human cytochrome c oxidase subunit Vic	infected	
	Y47G6A.21	y47g6a.21	predicted to have oxidoreductase activity	2.8	1.91E-03
	F45H10.3	f45h10.3	predicted to have NADH dehydrogenase (ubiquinone) activity	2.6	7.79E-03
	PRDX-6	y38c1aa.11	preoxiredoxin 6	1.7	6.03E-03
	KIN-10	t01g9.6	protein kinase	infected	
Protein Kinase	CAT-4	f32g8.6	GTP cyclohydrolase 1	infected	
	MMC-1	t01g9.6	methylmalonyl-CoA mutase homolog	5.4	4.87E-03
compound metabolic process	C36A4.4	c36a4.4	probable UDP-N-acetylglucosamine pyrophosphorylase	2.7	4.17E-03
	C39D10.7	c39d10.7	involved in chitin metabolic process	2.0	6.91E-03
	ZK1307.7	zk1307.7	ortholog of human protein kinase C. sublame 80K-H	1.8	8.37E-03
	CTS-1	t20g5.2	citrate synthase	1.7	4.81E-03
	DPFYD-1	c25f6.3	dihydropyrimidine dehydrogenase	1.7	5.14E-03

or defective development⁵¹,⁵². As components of ribosome, the expression of RPs is tightly regulated to provide the appropriate ratio between RPs and rRNAs as well as among RPs. Thus, perturbation of ribosome biogenesis results in ribosomal stress, which can trigger p53-dependent cell cycle arrest and apoptosis⁵³–⁵⁵. Nonetheless, we observed that RNAi of *rps-1* did not alter the development (Table S3) or lifespan of *C. elegans* (Figure S1), but *rps-1* did not alter the development (Table S3) or lifespan of *C. elegans* (Figure S1), and strongly enhanced susceptibility to *P. aeruginosa* in *octr-1* mutant animals and also exerted a subtle effect on the susceptibility of wild-type animals (Fig. 3A). The result indicates that this RP plays a role in innate immunity of *C. elegans*, which adds value to the extraribosomal functions of RPs.

Besides the above RPs, two more proteins (RUVB-1 and EIF-3.J) involved in protein synthesis were upregulated in *octr-1(ok371)* animals compared to wild-type animals upon *P. aeruginosa* infection (Table 3 versus Table 1). RUVB-1 is an AAA+ ATPase orthologous to the RUVE1 family of ATPases and functions as a component of the Target of Rapamycin (TOR) signaling pathway that enables robust protein synthesis⁵⁶. EIF-3.J is an orthologue of the j-subunit of human translation initiation factor EIF3 that participates in nearly all steps of translation initiation⁵⁷. While RNAi of *ruvb-1* caused developmental delay (Table S3), knockdown of *eif-3.j* increased pathogen susceptibility in *octr-1* mutants, whereas the same knockdown had no effects in wild-type animals (Fig. 3B). This result indicates that EIF-3.J is important for the OCTR-1-controlled immunity.

Protein synthesis factors RPS-1 and EIF-3.J contribute to the elevated UPR in infected *octr-1(ok371)* animals. Because both RPS-1 and EIF-3.J have important roles in protein translation, lack of either protein is expected to reduce protein synthesis. This would also lower the elevated UPR in *octr-1(ok371)* animals exposed to *P. aeruginosa*. To test this prediction, we took advantage of the established correlation between intes-
expression of the same transgene Phsp-4::GFP(zcls4) also reflects OCTR-1-dependent protein synthesis (Section 3 in Results), the contribution of RPS-1 and EIF-3.J in UPR can be attributed to their protein synthesis activity.

Translational inhibition by chemicals abolishes the OCTR-1-controlled innate immune responses. Translational inhibition is a very common pathogenic attack strategy; consequently, response to such inhibition is a conserved form of host defense. However, how this response is regulated in the host remains largely unknown. Because OCTR-1 downregulates protein synthesis activities, the OCTR-1 pathway could function to suppress excessive responses to translational inhibition or to restore protein homeostasis after infection. To test this possibility, we treated wild-type and octr-1(ok371) animals with translation inhibitors G418 and Hygromycin B. These chemicals have been used to mimic P. aeruginosa-mediated host translational suppression in C. elegans. We evaluated the effects of such inhibition by assessing: 1) expression levels of the same transgene Phsp-4::GFP(zcls4) also reflects OCTR-1-dependent protein synthesis (Section 3 in Results), the contribution of RPS-1 and EIF-3.J in UPR can be attributed to their protein synthesis activity.

Translational inhibition by chemicals abolishes the OCTR-1-controlled innate immune responses. Translational inhibition is a very common pathogenic attack strategy; consequently, response to such inhibition is a conserved form of host defense. However, how this response is regulated in the host remains largely unknown. Because OCTR-1 downregulates protein synthesis activities, the OCTR-1 pathway could function to suppress excessive responses to translational inhibition or to restore protein homeostasis after infection. To test this possibility, we treated wild-type and octr-1(ok371) animals with translation inhibitors G418 and Hygromycin B. These chemicals have been used to mimic P. aeruginosa-mediated host translational suppression in C. elegans. We evaluated the effects of such inhibition by assessing: 1) expression levels of the OCTR-1-dependent immune genes; and 2) animal survival against the inhibition. Previously, we have shown that OCTR-1 suppresses innate immunity by downregulating the expression of non-canonical UPR abu (activated in blocked unfolded protein response) genes17. Here we examined the expression of seven abu genes by qRT-PCR, including abu-1, abu-7, abu-8, abu-12, abu-13, abu-14 and abu-15. As shown in Fig. 5A, B, G418 or Hygromycin B itself had various effects on the expression of abu genes in wild-type animals. Specifically, G418 downregulates abu-7, abu-12, abu-13 and abu-14 and upregulates abu-15, while Hygromycin B downregulates abu-1 and upregulates abu-12, abu-13 and abu-14. It is unclear why these translational inhibitors differentially regulate the abu genes. Nonetheless, a comparison of gene expression levels between G418-treated wild-type and octr-1(ok371) animals showed that abu-1, abu-7, abu-8, and abu-15 were significantly downregulated in the octr-1 mutants (Fig. 5A). Similarly, a comparison of gene expression levels between Hygromycin B-treated wild-type and octr-1(ok371) animals showed that abu-1, abu-8, abu-12, abu-13, and abu-14 were significantly downregulated in the octr-1 mutants (Fig. 5B). Interestingly, none of the abu genes increased expression in the inhibitor-treated
octr-1(ok371) animals compared to wild-type animals with or without treatments (Fig. 5A,B). These results indicate that activation of the OCTR-1-controlled innate immune responses (i.e. upregulation of abu genes in octr-1 mutants relative to wild-type animals) is dependent on active translation. Despite lack of the OCTR-1-controlled immune responses, octr-1(ok371) animals are more resistant than wild-type animals to G418 or Hygromycin B treatment, although the chemical treatments shortened the survival time of both strains (Fig. 5C). It is likely that the higher protein translation activities in the mutants offset some of the inhibitory effects of the chemicals, thus allowing their longer survival than the wild-type strains. These results suggest that protein translation is important for the OCTR-1-controlled innate immunity.

Discussion
We have examined the proteomic changes in C. elegans upon P. aeruginosa infection using a label free quantitative proteomics approach. Fifty-three proteins were significantly upregulated in the infected wild-type worms relative to the uninfected controls. The data are in good agreement with the previously published transcriptomic studies39–41 on the enrichment of innate immune proteins and enzymes involved in macromolecule metabolism (Table 1). However, about 70% of the 53 proteins have no match in the transcriptomic data, including a set of nine proteins with known functions in development and a number of proteins with unknown functions (Table 1). Whether these proteins play any roles in immunity or pathogenesis warrants further investigation.

Previously we have demonstrated that OCTR-1 functions in ASH and ASI neurons to suppress transcription of non-canonical UPR genes of the pqn/abu family17,18. In the current proteomics study, we have identified ten PQN proteins, including PQN-22, PQN-24, PQN-27, PQN-32, PQN-41, PQN-51, PQN-52, PQN-59, PQN-74 and PQN-87. Surprisingly, none of these proteins have known functions in the non-canonical UPR pathway17,62. Many abu and pqn genes that were found significantly upregulated in our previous genome microarray study17 have not been identified at the protein level in the current proteomics study. This discrepancy is most likely caused by the different technologies used in the two studies. The C. elegans GeneChip (Affymetrix, Santa Clara, CA) was used in the genome microarray study, which examines the expression of 22,500 transcripts, while label-free quantitative nano-HPLC tandem mass spectrometry was used in the proteomics study, which only identified 4,413 proteins with 1,312 proteins identified with high confidence. Technical resolution at the proteome level is much more constrained than that at the transcriptome level, leading to a much lower proteome coverage than transcriptome coverage and identification of only those proteins with high difference in abundance63.

Consistent with our genome microarray study17, here we show that OCTR-1 inhibits translation and the UPR at the protein level. Our RNAi experiments and functional assays support the following conclusions: 1) OCTR-1 inhibits expression of specific protein synthesis factors, such as ribosomal protein RPS-1 and translation initiation

Figure 4. Knockdown of rps-1 or eif-3.j by RNAi reduces the XBP-1-dependent UPR in octr-1 mutant animals. (A) Images of octr-1(ok371);Phsp-4::GFP(zcls4) animals. Animals were grown on double-stranded RNA for vector control or dsRNA for rps-1 or eif-3.j, and young adult animals were exposed to P. aeruginosa PA14. Animals that best represent the fluorescence level of the population were shown. (B) GFP quantification of octr-1(ok371);Phsp-4::GFP(zcls4) animals exposed to P. aeruginosa PA14. Binary mean intensity of the region of interest (ROI) that corresponds to an entire animal was measured by Image J software. n = 10–20 animals, error bars represent SEM. A two-sample t test was performed to compare the fluorescence intensity between populations. rps-1 RNAi versus control RNAi: p = 6.1 × 10^-10; eif-3.j RNAi versus control RNAi: p = 4.8 × 10^-7. p values < 0.05 are considered significant. Significant knockdown of rps-1 or eif-3.j expression by RNAi was confirmed by qRT-PCR (p < 0.001, Figure S3).
independent experiments.

graphs correspond to mean ± SEM. t-tests were performed between N2 + G418 and octr-1 + G418. *indicates significant difference. (A) qRT-PCR of abu-1, abu-7, abu-8, abu-12, abu-13, abu-14, and abu-15 expression in wild-type animals with or without exposure to G418 in and octr-1(ok371) animals exposed to G418. n = 3; bar graphs correspond to mean ± SEM. t-tests were performed between N2 + G418 and octr-1 + G418. *indicates significant difference. (B) qRT-PCR of abu-1, abu-7, abu-8, abu-12, abu-13, abu-14, and abu-15 expression in wild-type animals with or without exposure to Hygromycin B and in octr-1(ok371) animals exposed to Hygromycin B. n = 3; bar graphs correspond to mean ± SEM. t-tests were performed between N2 + G418 and octr-1 + G418. *indicates significant difference. (C) Wild-type and octr-1(ok371) animals were exposed to NGM/E. coli OP50 (control) or NGM/E. coli OP50 containing G418 or Hygromycin B, and scored for survival over time. WT + No inhibitor versus octr-1(ok371)+ No inhibitor: p = 0.7521; WT + G418 versus octr-1(ok371) + G418: p < 0.0001; WT + Hygromycin B versus octr-1(ok371) + Hygromycin B: p < 0.0001. Shown is a representative assay of two independent experiments. n = 45 young adult animals per strain. p values < 0.05 are considered significant.

Figure 5. Translational inhibition abolishes the OCTR-1-controlled innate immune responses.

(A) qRT-PCR of abu-1, abu-7, abu-8, abu-12, abu-13, abu-14, and abu-15 expression in wild-type animals with or without exposure to G418 and in octr-1(ok371) animals exposed to G418. n = 3; bar graphs correspond to mean ± SEM. t-tests were performed between N2 + G418 and octr-1 + G418. *indicates significant difference. (B) qRT-PCR of abu-1, abu-7, abu-8, abu-12, abu-13, abu-14, and abu-15 expression in wild-type animals with or without exposure to Hygromycin B and in octr-1(ok371) animals exposed to Hygromycin B. n = 3; bar graphs correspond to mean ± SEM. t-tests were performed between N2 + G418 and octr-1 + G418. *indicates significant difference. (C) Wild-type and octr-1(ok371) animals were exposed to NGM/E. coli OP50 (control) or NGM/E. coli OP50 containing G418 or Hygromycin B, and scored for survival over time. WT + No inhibitor versus octr-1(ok371)+ No inhibitor: p = 0.7521; WT + G418 versus octr-1(ok371) + G418: p < 0.0001; WT + Hygromycin B versus octr-1(ok371) + Hygromycin B: p < 0.0001. Shown is a representative assay of two independent experiments. n = 45 young adult animals per strain. p values < 0.05 are considered significant.

factor EIF-3J, which reduces infection-triggered protein synthesis and UPR; 2) upregulation of UPR proteins and elevated UPR in octr-1(ok371) animals contribute to their enhanced immunity; 3) RPS-1 and EIF-3J contribute to the elevated UPR in infected octr-1(ok371) animals; and 4) activation of the OCTR-controlled immune response is dependent on active translation. The contributions of the upregulated protein synthesis activities to the enhanced immunity of infected octr-1(ok371) animals are two-fold: 1) higher protein synthesis activities lead to production of more immune proteins, which enhance the nematode’s ability to fight off invading pathogens; and 2) increased protein production results in elevated UPR, which in turn improves the animal immunity. As translational inhibition is a very common pathogenic attack strategy and OCTR-1 has homology in various species including humans, the OCTR-1-dependent pathway may be a conserved signaling pathway that the nervous system uses to control protein homeostasis during host immune defense.

Materials and Methods

C. elegans and bacterial strains. The following C. elegans strains were cultured under standard conditions and fed E. coli OP5044. Wild-type worms were C. elegans Bristol N2, Octr-1(ok371) and Phsp-4::gfp (zcs4) strains were obtained from the Caenorhabditis elegans Genetics Center (University of Minnesota, Minneapolis, MN). The mutant octr-1(ok371);Phsp-4::GFP(zcs4) was constructed using standard genetic techniques18. E. coli strain OP50 and P. aeruginosa strain PA1449 were grown in Luria-Bertani (LB) broth at 37 °C.

C. elegans survival assay. C. elegans wild-type worms and mutants were maintained as hermaphrodites at 20 °C and fed with E. coli OP50 on modified nematode growth medium (NGM) agar plates (0.35% instead of 0.25% peptone) as described44. The bacterial lawn used for C. elegans killing assays were prepared by placing a 25 μl drop of an overnight culture of the bacterial strains on modified NGM agar plates (3.5 cm diameter Petri plates). Plates were incubated at 37 °C for 16 hr. Plates were cooled down at room temperature for at least 1 hr before seeding with synchronized worms. The survival assays were performed at 25 °C and live worms were transferred daily to fresh plates. Worms were scored at the times indicated and were considered dead when they failed to respond to touch.

C. elegans infection and collection. Synchronized wild-type and octr-1(ok371) worms grown to L4 larval stage were infected with P. aeruginosa at 25 °C for 4 hr, as we described previously17. Infected worms and uninfected controls (on E. coli OP50) were collected and washed 5 times with M9 buffer in the presence of protease inhibitors (Protease Arrest, G-Biosciences, St. Louis, MO) to remove surface bound bacteria. In the last wash, after centrifugation and removal of the supernatant, each worm pellet was immediately frozen in liquid nitrogen.
Five biological replicates of infected and uninfected worms were collected. The frozen worm samples were submitted to the Tissue Imaging and Proteomics Laboratory at Washington State University (Pullman, WA) for mass spectrometry-based quantitative proteomics analyses.

Protein sample preparation. The worm pellet was ground into fine powder using a single 2.8 mm i.d. steel ball with a TissueLyser II (Qiagen, Valencia, CA) at a frequency of 30 Hz for 30 sec, followed by the addition of 100 μl extraction solvent of PBS buffer, pH 7.5, with protease inhibitor and vortexing. Supernatants were collected after centrifugation at 16,000 × g (10 min, 4°C). Protein was then quantified with a Qubit Protein Assay Kit (Life Technologies, Carlsbad, CA) in compliance with the manufacturer’s protocol. Disulfide bonds were reduced using 100 mM dithiothreitol (DTT) at a ratio of 1:10 DTT/sample volume and incubated at 50°C for 45 min. Cysteine bonds were then alkylated with 200 mM iodoacetamide at the same volume ratio for 20 min at room temperature. Finally, protein was digested with trypsin (G-Biosciences, St. Louis, MO) at a 1:50 ratio of trypsin/protein, and incubated at 37°C for 12 hr.

High resolution nano-HPLC tandem mass spectrometry analysis. The peptide samples were subjected to Thermo Scientific Orbitrap Fusion Tribrid with an Easy-nLC 1000 ultra-high pressure LC on a Thermo Scientific PepMap 100 C18 column (2 μm, 50 μm × 15 cm). The peptides were separated over 115 min gradient eluted at 400 nL/min with 0.1% formic acid (FA) in water (solvent A) and 0.1% FA in acetonitrile (solvent B) (5–30% B in 85 min, followed by 30–50% B over 10 min and 50–97% B over 10 min). The run was completed by holding a 97% B for 10 min. MS1 data was acquired on an Orbitrap Fusion mass spectrometry using a full scan method according to the following parameters: scan range 400–1500 m/z, Orbitrap resolution 120,000; AGC target 400,000; and maximum injection time of 50 ms. MS2 data were collected using the following parameters: rapid scan rate, HCD collision energy 35%, 1.6 m/z isolation window, AGC 2,000 and maximum injection time of 50 ms. MS2 precursors were selected for a 3 s cycle. The precursors with an assigned monoisotopic m/z and a charge state of 2–7 were interrogated. The precursors were filtered using a 60 s dynamic exclusion window. MS/MS spectra were searched using Thermo Scientific Proteome Discoverer software version 2.0 with SEQUEST® against uniprot Caenorhabditis elegans database (TaxID = 6239). Precursor and fragment mass tolerances were set to 10 ppm and 0.8 Da respectively and allowing up to two missed cleavages. The static modification used was carbamidomethylation (C). The high confidence level filter with false discovery rate (FDR) of 1% was applied to the peptides. Protein relative quantitation was achieved by extracting peptide areas with the Proteome Discoverer 2.0 (Thermo Scientific, San Jose, CA) and 3 unique peptides per protein were used for the protein quantitation analysis. The mass spectrometry proteomics data have been deposited to the ProteomeXchange Consortium via the PRIDE® partner repository with the dataset identifier PXD004173.

RNA interference. RNA interference was conducted by feeding *C. elegans* with *E. coli* strain HT115(DE3) expressing double-stranded RNA (dsRNA) that is homologous to the target gene of interest. Briefly, *E. coli* with the appropriate vectors was grown in LB broth containing ampicillin (100 μg/ml) at 37°C overnight, and plated onto NGM plates containing 100 μg/ml ampicillin and 3 mM isopropyl-β-D-thiogalactoside (IPTG). RNAi-expressing bacteria were allowed to grow overnight at 37°C. L2 or L3 larval worms were placed on RNAi or vector control plates for 2 days at 20°C until nematodes became gravid. Gravid adults were then transferred to fresh RNAi-expressing bacterial lawns and allowed to lay eggs for 1 hr at 25°C to synchronize a second-generation RNAi population. The gravid adults were removed and eggs were allowed to develop to 20°C to reach young adult stage for subsequent assays. Clone identity was confirmed by sequencing. unc-22 RNAi was included as a positive control in all experiments to account for RNAi efficiency.

Fluorescence imaging. Gravid adult *P. aeruginosa* PA14 or *E. coli* OP50 at 37°C overnight, and 100 μg/ml ampicillin and 3 mM isopropyl-β-D-thiogalactoside (IPTG). RNAi-expressing bacteria were allowed to grow overnight at 37°C. L2 or L3 larval worms were placed on RNAi or vector control plates for 2 days at 20°C until nematodes became gravid. Gravid adults were then transferred to fresh RNAi-expressing bacterial lawns and allowed to lay eggs for 1 hr at 25°C to synchronize a second-generation RNAi population. The gravid adults were removed and eggs were allowed to develop to 20°C to reach young adult stage for subsequent assays. Clone identity was confirmed by sequencing. unc-22 RNAi was included as a positive control in all experiments to account for RNAi efficiency.

Translation inhibitor treatment. Three thousand one hundred twenty five μl of 50 mg/ml G418 (Roche, New York, NY) or 750 μl of 50 mg/ml Hygromycin B (Mediatech, Inc. Manassas, VA) was added to 250 ml NGM medium, respectively, to make corresponding G418 or Hygromycin B plates using 6 cm Petri dishes. 100 ml overnight *E. coli* OP50 cell culture was centrifuged at 4000 rpm for 10 min. Concentrated *E. coli* OP50 was seeded on the above translational inhibitor plates. Synchronized wild-type and *oct-1*(ok371) worms at young adult stage were transferred to NGM plates containing *E. coli* OP50 with or without translation inhibitor for survival assays and scored over time. The survival assays were performed at 25°C and live worms were transferred daily to fresh plates. Worms were scored at the times indicated and were considered dead when they failed to respond to touch.

RNA isolation. Gravid adult wild-type and *oct-1*(ok371) worms were transferred to NGM plates seeded with *E. coli* OP50 for 1 hr at 25°C to lay eggs. Gravid adults were removed from NGM plates and the eggs were allowed to hatch at 20°C. Young adult worms were then exposed to NGM plates containing *E. coli* OP50 with or without translation inhibitor at 20°C for 4 hr. After 4 hr, worms were collected and washed with M9 buffer, and RNA was extracted using QiAzoL lysis reagent and purified with RNeasy Plus Universal Kit (Qiagen, Valencia, CA).

Quantitative real-time PCR (qRT-PCR). Total RNA was obtained as described above and subjected to reverse transcription as suggested by High Capacity cDNA Reverse Transcription Kit (Applied Biosystems,
Foster City, CA). Quantitative PCR was conducted on StepOnePlus Real-Time PCR system using Power SYBR Green PCR Master Mix in a 96-well plate format (Applied Biosystems). Fifty nanograms of cDNA were used for real-time PCR. Twenty-five microliter reactions were set-up and performed as outlined by the manufacturer (Applied Biosystems). Relative fold-changes for transcripts were calculated using the comparative \(\Delta \Delta^{C_{T}} \) method and normalized to pan-actin (act-1, -3, -4). Cycle thresholds of amplification were determined by StepOne Software v2.3 (Applied Biosystems). All samples were run in triplicate. Primer sequences are available on request.

Statistical Analysis. For the proteomics study, protein levels between experimental groups were statistically compared using TIGR Multiexperiment Viewer v4.9 (Mev, http://www.tm4.org/mev.html). The relative quantities of the proteins were compiled as tab-delimited text files and input into MeV v4.9. t-tests were performed between experimental groups with 5 replicates in each group. The program generates 2 text files with significantly different proteins and non-significantly different proteins in separate files along with P-values of each comparison. P-values < 0.05 are considered significant. For the *C. elegans* survival assays, animal survival was plotted as a non-linear regression curve using the PRISM (version 6, GraphPad Software, Inc. La Jolla, CA) computer program. Survival curves were considered different than the appropriate control indicated in the main text when P-values were < 0.05. Prism uses the product limit or Kaplan-Meier method to calculate survival fractions and the logrank test (equivalent to the Mantel-Haenszel test) to compare survival curves. A two-sample t test for independent samples was used to analyze qRT-PCR results; P-values < 0.05 are considered significant. All the experiments were repeated at least 3 times, unless otherwise indicated.

Availability of data and material. The mass spectrometry proteomics data of “N2 versus ocr-1 shotgun proteomics nano MS/MS” have been deposited to the ProteomeXchange Consortium via the PRIDE partner repository (https://www.ebi.ac.uk/pride/archive/) with the dataset identifier PXD004173.

References

1. Sun, J., Aballay, A. & Singh, V. Cellular responses to infections in *Caenorhabditis elegans*. *Encyclopedia of Cell Biology* 2, 845–852 (2015).
2. Engelmann, I. & Pujol, N. Innate immunity in *C. elegans*. *Advances in experimental medicine and biology* 708, 105–121 (2010).
3. Ermolova, M. A. & Schumacher, B. Insights from the worm: the *C. elegans* model for innate immunity. *Seminars in immunology* 26, 303–309, doi: 10.1016/j.smim.2014.04.005 (2014).
4. Pukkila-Worley, R. & Ausubel, F. M. Immune defense mechanisms in the *Caenorhabditis elegans* intestinal epithelium. *Current opinion in immunology* 24, 3–9, doi: 10.1016/j.coi.2011.10.004 (2012).
5. Ebewax, J. J. Signaling in the immune response. *Wormbook: the online review of *C. elegans* biology*, 1–12, doi: 10.1895/wormbook.1.83.1 (2006).
6. Simonsen, K. T., Gallego, S. F., Faergeman, N. J. & Kallipolitis, B. H. Strength in numbers: “Omics” studies of *C. elegans* innate immunity. *Virulence* 3, 477–484, doi: 10.4161/viru.21906 (2012).
7. Kato, Y. et al. abf-1 and abf-2, ASABF-type antimicrobial peptide genes in *Caenorhabditis elegans*. *The Biochemical journal* 361, 221–230 (2002).
8. Banyai, L. & Patthy, L. Amoeboeapore homologs of *Caenorhabditis elegans*. *Biochimica et biophysica acta* 1429, 259–264 (1998).
9. Ido, H. et al. A *Caenorhabditis elegans* glycolipid-binding galectin functions in host defense against bacterial infection. *The Journal of biological chemistry* 284, 26493–26501, doi: 10.1074/jbc.M109.038257 (2009).
10. Richardson, C. E., Kossistra, T. & Kim, D. H. An essential role for XBP-1 in host protection against immune activation in *C. elegans*. *Nature* 463, 1092–1095, doi: 10.1038/nature08762 (2010).
11. Richardson, C. E., Kinkel, S. & Kim, D. H. Physiological IRE-1-XBP-1 and PEK-1 signaling in *Caenorhabditis elegans* larval development and immunity. *PLoS genetics* 7, e1002391, doi: 10.1371/journal.pgen.1002391 (2011).
12. Cheesman, H. K. et al. Aberrant Activation of p38 MAP Kinase-Dependent Inmate Immune Responses Is Toxic to *Caenorhabditis elegans* strains. *G3 (Bethesda)* 6, 541–549, doi: 10.1534/g3.115.026560 (2016).
13. Steinman, L. Elaborate interactions between the immune and nervous systems. *Nature immunology* 5, 575–581, doi: 10.1038/ni1078 (2004).
14. Sternberg, E. M. Neural regulation of innate immunity: a coordinate nonspecific host response to pathogens. *Nature reviews. Immunology* 6, 318–328, doi: 10.1038/nri1810 (2006).
15. Zhang, X. & Zhang, Y. Neuronal-Immune communication in *Caenorhabditis elegans*. *Cell host & microbe* 5, 425–429, doi: 10.1016/j.chom.2009.05.003 (2009).
16. Styer, K. L. et al. Innate immunity in *Caenorhabditis elegans* is regulated by neurons expressing NPR-1/GPCR. *Science* 322, 460–464, doi: 10.1126/science.1163673 (2008).
17. Sun, J., Singh, V., Kajino-Sakamoto, R. & Aballay, A. Neuronal GPCR controls innate immunity by regulating noncanonical unfolded protein response genes. *Science* 332, 729–732, doi: 10.1126/science.1203411 (2011).
18. Sun, J., Liu, Y. & Aballay, A. Organismal regulation of XBP-1-mediated unfolded protein response during development and immune activation. *EMBO reports* 13, 855–860, doi: 10.1038/embr.2012.100 (2012).
19. Nakad, R. et al. Contrasting invertebrate immune defense behaviors caused by a single gene, the *Caenorhabditis elegans* neuropeptide receptor gene npr-1. *BMC genomics* 17, 280, doi: 10.1186/s12864-016-2603-8 (2016).
20. Crick, F. Central dogma of molecular biology. *Nature* 227, 561–563 (1970).
21. Irazoqui, J. E. et al. Distinct pathogenesis and host responses during infection of *C. elegans* by *P. aeruginosa* and *S. aureus*. *PLoS pathogens* 6, e1000982, doi: 10.1371/journal.ppat.1000982 (2010).
22. Bogaerts, A., Beets, I., Temmerman, L., Schoofs, L. & Verleyen, P. Proteome changes of *Caenorhabditis elegans* upon a Staphylococcus aureus infection. *Biol Direct* 5, 11, doi: 10.1186/1745-6150-5-11 (2010).
23. Ghazalpour, A. et al. Comparative analysis of proteome and transcriptome variation in mouse. *PLoS genetics* 7, e1001393, doi: 10.1371/journal.pgen.1001393 (2011).
24. Vogel, C. & Marcotte, É. M. Insights into the regulation of protein abundance from proteomic and transcriptomic analyses. *Nature reviews. Genetics* 13, 227–232, doi: 10.1038/nr3185 (2012).
25. Gygi, S. P., Rochon, Y., Franzia, B. R. & Aebersold, R. Correlation between protein and mRNA abundance in yeast. *Molecular and cellular biology* 19, 1720–1730 (1999).
26. Chen, G. et al. Discordant protein and mRNA expression in lung adenocarcinomas. *Mol Cell Proteomics* 1, 304–313 (2002).
27. Yang, W. et al. Overlapping and unique signatures in the proteomic and transcriptomic responses of the nematode Caenorhabditis elegans toward pathogenic Bacillus thuringiensis. Developmental and comparative immunology 51, 1–9, doi: 10.1016/j.dci.2015.02.010 (2015).
28. Lovric, J. Introducing Proteomics: From Concepts to Sample Separation, Mass Spectrometry and Data Analysis. (Wiley, 2011).
29. Shire, J. & Dalgaro, L. Determinant of cistron specificity in bacterial ribosomes. Nature 254, 34–38 (1975).
30. Shire, J. & Dalgaro, L. The 3′-terminal sequence of Escherichia coli 16S ribosomal RNA: complementarity to nonsense triplets and ribosome binding sites. Proceedings of the National Academy of Sciences of the United States of America 71, 1342–1346 (1974).
31. Gustafsson, C., Govindarajan, S. & Minshull, J. Codon bias and heterologous protein expression. Trends Biotechnol 22, 346–353, doi: 10.1016/j.tibtech.2004.04.006 (2004).
32. Lithwick, G. & Margalit, H. Hierarchy of sequence-dependent features associated with prokaryotic translation. Genome research 13, 2665–2673, doi: 10.1101/gr.1485203 (2003).
33. Eldad, N. & Arava, Y. A ribosomal density-mapping procedure to explore ribosome positions along translating mRNAs. Methods in molecular biology 419, 231–242, doi: 10.1007/978-1-59745-033-1_16 (2008).
34. Ingolia, N. T., Ghaemmaghami, S., Newman, J. R. & Weissman, J. S. Genome-wide analysis in vivo of translation with nucleotide resolution using ribosome profiling. Science 324, 218–223, doi: 10.1126/science.1168978 (2009).
35. Greenbaum, D., Colangelo, C., Williams, K. & Gerstein, M. Comparing protein abundance and mRNA expression levels on a genomic scale. Genome biology 4, 117, doi: 10.1186/gb-2003-4-9.117 (2003).
36. Schwanhauser, B. et al. Global quantification of mammalian gene expression control. Nature 473, 337–342, doi: 10.1038/nature10098 (2011).
37. Mahajan-Miklos, S., Tan, M. W., Rahme, L. G. & Ausubel, F. M. Ribosomal proteins as unrevealed caretakers for cellular stress and genomic instability. Mol Cell 96, 47–56 (1999).
38. McEwan, D. L., Kirienko, N. V. & Ausubel, F. M. Host translational inhibition by Pseudomonas aeruginosa Exotoxin A Triggers an immune response in Caenorhabditis elegans. PLoS pathogens 4, e1000175, doi: 10.1371/journal.ppat.1000175 (2008).
39. Block, D. H. et al. The Developmental Intestinal Regulator ELT-2 Controls p38-Dependent Immune Responses in Adult C. elegans. PLoS genetics 11, e1005265, doi: 10.1371/journal.pgen.1005265 (2015).
40. Evans, E. A., Kawli, T. & Tan, M. W. Pseudomonas aeruginosa suppresses host immunity by activating the DAF-2 insulin-like signaling pathway in Caenorhabditis elegans. PLoS pathogens 4, e1000175, doi: 10.1371/journal.ppat.1000175 (2008).
41. Danilova, N., Sakamoto, K. M. & Lin, S. Ribosomal protein S19 deficiency in zebrafish leads to developmental abnormalities and defective erythropoiesis through activation of p53 protein family. PloS one 7, e419, doi: 10.1371/journal.pone.0000037 (2006).
42. Uechi, T. Ribosomal protein L11 negatively regulates oncoprotein MDM2 and mediates a p53-dependent ribosomal-stress checkpoint pathway. Molecular and cellular biology 23, 8902–8912 (2003).
43. Daher, W. et al. Ribosomal proteins and human diseases: pathogenesis, molecular mechanisms, and therapeutic implications. Med Res Rev 35, 225–285, doi: 10.1002/med.21527 (2015).
44. Kim, T. H., Leslie, P. & Zhang, Y. Ribosomal proteins as unrevealed caretakers for cellular stress and genomic instability. Oncotarget 5, 860–871, doi: 10.18632/oncotarget.1784 (2014).
45. Warner, J. R. & McIntosh, K. B. How common are extraribosomal functions of ribosomal proteins? Mol Cell 34, 3–11, doi: 10.1016/j.molcel.2009.03.006 (2009).
46. Uchi, T. et al. Ribosomal protein gene knockdown causes developmental defects in zebrafish. PloS one 1, e37, doi: 10.1371/journal.pone.0000037 (2006).
47. Uchi, T. et al. Ribosomal protein gene knockdown causes developmental defects in zebrafish. PloS one 1, e37, doi: 10.1371/journal.pone.0000037 (2006).
48. Danilova, N., Sakamoto, K. M. & Lin, S. Ribosomal protein S19 deficiency in zebrafish leads to developmental abnormalities and defective erythropoiesis through activation of p53 family protein. Blood 112, 5228–5237, doi: 10.1182/blood-2008-01-132290 (2008).
49. Lohrum, M. A., Ludwig, R. L., Kubbhat, M. H., Hanlon, M. & Vousden, K. H. Regulation of HDI2 activity by the ribosomal protein L11. Cancer Cell 3, 577–587 (2003).
50. Zhang, Y. et al. Ribosomal protein L11 negatively regulates oncoprotein MDM2 and mediates a p53-dependent ribosomal-stress checkpoint pathway. Molecular and cellular biology 23, 8902–8912 (2003).
51. Dai, M. S. et al. Ribosomal protein L23 activates p53 by inhibiting MDM2 function in response to ribosomal perturbation but not to translation inhibition. Molecular and cellular biology 24, 7654–7668, doi: 10.1128/MCB.24.17.7654-7668.2004 (2004).
52. Duro, L. & Mango, S. E. Genetic suppressors of Caenorhabditis elegans pha-4/FoxA identify the predicted AAA helicase rvalB/1/RuvB. Genetics 177, 819–833, doi: 10.1534/genetics.107.076653 (2007).
53. Jackson, R. J., Hellen, C. U. & Pestova, T. V. The mechanism of eukaryotic translation initiation and principles of its regulation. Nature reviews. Molecular cell biology 11, 113–127, doi: 10.1038/nrm2388 (2010).
54. McEwan, D. L., Kirienko, N. V. & Ausubel, F. M. Host translational inhibition by Pseudomonas aeruginosa Exotoxin A Triggers an immune response in Caenorhabditis elegans. Cell host & microbe 11, 364–374, doi: 10.1016/j.chom.2012.02.007 (2012).
55. Mello, J. A. & Ravkun, G. Inactivation of conserved C. elegans genes engages pathogen- and xenobiotic-associated defenses. Cell 149, 452–466, doi: 10.1016/j.cell.2012.02.050 (2012).
56. Younger, J. S., Stinebring, W. R. & Taube, S. E. Influence of inhibitors of protein synthesis on interferon formation in mice. Virology 27, 541–550 (1965).
57. Fontana, M. E. et al. Secreted bacterial effectors that inhibit host protein synthesis are critical for induction of the innate immune response to virulent Legionella pneumophila. PLoS pathogens 7, e1001289, doi: 10.1371/journal.ppat.1001289 (2011).
58. Urano, F. et al. A survival pathway for Caenorhabditis elegans with a blocked unfolded protein response. The Journal of cell biology 158, 639–646, doi: 10.1083/jcb.200203086 (2002).
59. Haider, S. & Pal, R. Integrated analysis of transcriptomic and proteomic data. Curr Genomics 14, 91–110, doi: 10.2174/1389202113410200013 (2013).
60. Breimer, S. The genetics of Caenorhabditis elegans. Genetics 77, 71–94 (1974).
61. Vizzaino, J. A. et al. 2016 update of the PRIDE database and its related tools. Nucleic acids research 44, D447–D456, doi: 10.1093/nar/gkv1145 (2016).
66. Fraser, A. G. et al. Functional genomic analysis of C. elegans chromosome I by systematic RNA interference. Nature 408, 325–330, doi: 10.1038/35042517 (2000).
67. Timmons, L. & Fire, A. Specific interference by ingested dsRNA. Nature 395, 854, doi: 10.1038/27579 (1998).

Acknowledgements
We thank Jennifer Watts, Alejandro Aballay, Robert Schoborg, and Eva Szentirmai for critical reading of the manuscript. We thank the staff at the Tissue Imaging and Proteomics Lab, WSU for assistance with proteomics data analysis and thank Jeong Jin Park for submitting the proteomics data to PRIDE. Some nematode strains were provided by the Caenorhabditis Genetics Center, which is funded by NIH Office of Research Infrastructure Programs (P40 OD010440). This work was supported by the Department of Biomedical Sciences, Elson S. Floyd College of Medicine, WSU-Spokane and the WSU New Faculty Seed Grant to J. S.

Author Contributions
Y.L., D.S., and J.S. designed and performed the experiments. Y.L., D.S., and J.S. analyzed the data. Y.L. and J.S. wrote the manuscript. All authors read and approved the final manuscript.

Additional Information
Supplementary information accompanies this paper at http://www.nature.com/srep

Competing financial interests: The authors declare no competing financial interests.

How to cite this article: Liu, Y. et al. Neuronal GPCR OCTR-1 regulates innate immunity by controlling protein synthesis in Caenorhabditis elegans. Sci. Rep. 6, 36832; doi: 10.1038/srep36832 (2016).

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

© The Author(s) 2016