Investigation of Helicobacter pylori infection among symptomatic children in Hangzhou from 2007 to 2014: A retrospective study with 12796 cases

Xiaoli Shu, Mingfang Ping, Guofeng Yin, Mizu Jiang

1 Gastrointestinal Laboratory, the Children’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
2 Department of pediatrics, Second Affiliated Hospital of Jiaxing University, Jiaxing, China

Corresponding Author: Mizu Jiang
Email address: jiangmizu@zju.edu.cn

Background and Aim. The infection of Helicobacter pylori (H. pylori) is acquired in childhood and the prevalence vary greatly in different countries and regions. The study aimed to investigate the characteristics of H. pylori infection among children with gastrointestinal symptoms in Hangzhou, a representative city of eastern China.

Methods. A systematic surveillance of H. pylori infection according to the 13C-urea breath test was conducted from January 2007 to December 2014 in the Children’s hospital, Zhejiang University School of Medicine. The demographic information and main symptoms of every subject were recorded.

Results. A total of 12796 subjects were recruited and 18.6% children evaluated as H. pylori positive. The annual positive rates decreased from 2007 to 2014 (X²=20.461, p<0.01). The positive rates were 14.8%, 20.2% and 25.8% in 3-6, 7-11 and 12-17 years age group respectively, which increased with age (X²=116.002, p<0.01). And it was significantly higher in boys than girls (X²=15.090, p<0.01). Multivariate logistic regression identified possible risk factors for H. pylori infection. Age, gender, gastrointestinal symptoms and history of H. pylori infected family member were all significantly associated with H. pylori infection (all p<0.05).

Conclusions. H. pylori infection rates in children with gastrointestinal symptoms were lower than most of those reported in mainland China. Further studies are required to determine the prevalence in the general population. Comprehensively understanding of the characteristics and the possible risk factors of H. pylori infection will be helpful to its management strategies in children in China.
Investigation of Helicobacter pylori infection among symptomatic children in Hangzhou from 2007 to 2014: A retrospective study with 12796 cases

Xiaoli Shu¹, Mingfang Ping¹ ², Guofeng Yin¹, Mizu Jiang¹

¹ Gastrointestinal Laboratory, the Children’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
² Department of pediatrics, Second Affiliated Hospital of Jiaxing University, Jiaxing, China

Corresponding author: Mizu Jiang, E-mail: mizu@zju.edu.cn

Abstract

Background and Aim. The infection of Helicobacter pylori (H. pylori) is acquired in childhood and the prevalence vary greatly in different countries and regions. The study aimed to investigate the characteristics of H. pylori infection among children with gastrointestinal symptoms in Hangzhou, a representative city of eastern China.

Methods. A systematic surveillance of H. pylori infection according to the ¹³C-urea breath test was conducted from January 2007 to December 2014 in the Children’s hospital, Zhejiang University School of Medicine. The demographic information and main symptoms of every subject were recorded.

Results. A total of 12796 subjects were recruited and 18.6% children evaluated as H. pylori positive. The annual positive rates decreased from 2007 to 2014 (χ² =20.461, p<0.01). The positive rates were 14.8%, 20.2% and 25.8% in 3-6, 7-11 and 12-17 years age group respectively, which increased with age (χ² =116.002, p<0.01). And it was significantly higher in boys than
girls ($\chi^2 = 15.090$, $p<0.01$). Multivariate logistic regression identified possible risk factors for

H. pylori infection. Age, gender, gastrointestinal symptoms and history of H. pylori infected

family member were all significantly associated with H. pylori infection (all $p<0.05$).

Conclusions. H. pylori infection rates in children with gastrointestinal symptoms were lower

than most of those reported in mainland China. Further studies are required to determine the

prevalence in the general population. Comprehensively understanding of the characteristics and

the possible risk factors of H. pylori infection will be helpful to its management strategies in

children in China.
Introduction

Helicobacter pylori (H. pylori) is a Gram-negative, microaerophilic bacterium which selectively colonizes in the human stomach mucosa. The prevalence of H. pylori infection is about 50% of the world’s population and gastric cancer related to H. pylori infection is the fourth most common cancer and the second leading cause of cancer-related death worldwide (Atherton & Blaser 2009). In general, the prevalence in less developed or developing countries is higher than that in developed countries (Fock & Ang 2010). The infection rates are reported varying from 15.5% to 93.6% in developed and developing countries, respectively (Eusebi et al. 2014; Mentis et al. 2015; Tonkic et al. 2012).

It is now accepted that H. pylori infection is acquired in childhood (Rowland et al. 2006), and H. pylori generally persists for the life of the host in the absence of antibiotic therapy (Pacifico et al. 2010). The incidence and prevalence rates of childhood infection with H. pylori also vary greatly worldwide. Within developed nations, prevalence rates of H. pylori infection among children have been shown to range from 6.5% to 65% (Roma & Miele 2015; Tonkic et al. 2012). Now in European and North America, the epidemiology of H. pylori infection in children has changed in recent decades with low incidence rates, which resulting in prevalence lower than 10% in children and adolescents (Kindermann & Lopes 2009). However, there were few reports in developing counties. There has been a decrease in the H. pylori infection rate in the general Chinese population in recent years but it also remained high in some areas among both children and adults after fifteen years (Ding et al. 2015; Zhang et al. 2009a).

China is regarded as one of the largest developing country inhabited by more than one-fifth of the world’s population although there has been rapid growth in economy in the past decade. The very
limited data showed that the prevalence rate of H. *pylori* infection in Chinese children ranged from 6.8% in three cities of China to 72.3% in northwest China with large regional variations (Ding et al. 2015; Zhang et al. 2009b). Hangzhou, the capital city of Zhejiang Province, which had made quick improvements in industrialization and socioeconomic conditions since the 1980s, is a representative city of eastern China. But few studies have assessed the prevalence of H. *pylori* infection in this area. The lack of these data in our pediatric population has hampered the better understanding of the disease burden in our society and the healthcare planning for resources allocation to tackle H. *pylori*-associated diseases which are usually encountered in adulthood. The aim of this study was to estimate the prevalence of H. *pylori* infection among children in Hangzhou, China from 2007 to 2014 and evaluate the characteristics of H. *pylori* infection in children.
Methods

Study population

Subjects aged from three to 18 years old who were referred for the detection of H. *pylori* infection using 13C-urea breath test (13C-UBT) were recruited at the Children’s hospital, Zhejiang University School of Medicine from January 1, 2007 to December 31, 2014. The main symptoms of every subject, besides a history of H. *pylori* infected family member were recorded, including abdominal pain, anorexia, nausea/vomiting, abdominal distension, hiccup, constipation, halitosis, diarrhea and failure to thrive/weight loss. All children should have been fasting more than 6hrs, and had not used bismuth salts, proton-pump inhibitors (PPIs), or any antibiotics (amoxicillin, tetracycline, metronidazole, clarithromycin, azithromycin, or other) within one month before the 13C-UBT (Koletzko et al. 2011). The major exclusion criteria included: age younger than three or older than 18, children with incomplete patient data, patients who previously diagnosed as H. *pylori* infection and received treatment for H. *pylori* infection even with drug withdrawal 4 weeks prior to the 13C-UBT.

Detection of H. *pylori* infection

H. *pylori* infection was established by the 13C-UBT kit, Helikit (Isodiagnostika Inc., Edmonton, AB, Canada) according to standard protocols. Briefly, after a minimum fasting period of 6hrs, a baseline exhaled breath sample was obtained using a collection bag. The children then drank 75ml of a citrus-flavoured liquid preparation (75mg of 13C-labelled urea). Thirty minutes later, another breath exhaled sample was stored in collection bag. Breath samples were stored at room temperature and then analyzed by an isotope selective nondispersive infrared spectrometer, namely by ISOMAX 2000 (Isodiagnostika Inc., Edmonton, AB, Canada). The test was defined as
When delta over baseline (DOB) value calculated after thirty minutes was 3.5 δ‰ more (Mauro et al. 2006).

Statistics

Descriptive statistics such as median and interquartile range of age, percentages were calculated for demographic data and results were analyzed by chi-square test. The distribution of H. pylori infection rate by year was analyzed by Linear-by-Linear association. Multivariate logistic regression analysis was used to control for the potential confounding variables associated with H. pylori infection. Results of logistic regression were expressed as odds ratios (OR) with 95% confidence intervals (CI). Statistical analysis was performed using SPSS version 19.0 (SPSS Inc, USA) and P value was calculated. Two tailed P<0.05 was considered statistically significant.

Ethical considerations

The study was approved by Institutional Review Board and Institutional Ethics Committees of the Children’s hospital, Zhejiang University School of Medicine (2016-IRBAL-078).
Results

Demographic data

A total of 12796 subjects were enrolled in this study and there were 6880 boys and 5916 girls, yielding a male-to-female ratio of 1.16:1. All children were divided into three age groups, including 3-6 (pre-school age), 7-11 (school age) and 12-17 (adolescent) years age group. The gender distribution was consistent in different age groups. The median and interquartile range of age of all children were 7.50 (5.75-10.08) years, while boys were 7.50 (5.67-10.08) years and girls were 7.58 (5.83-10.08) years.

H. pylori infection rate

Overall, 18.6% (2382/12796) children were H. pylori positive according to the DOB value of 13C-UBT (Table 1). The annual positive rates decreased from 2007 to 2014 ($\chi^2 = 20.461$, $p<0.01$) (Figure. 1). And the infection rate decreased in the latest four-year period 2011-2014, compared to the former four-year period 2007-2010 ($\chi^2 = 25.798$, $p<0.01$) (Figure 2). The positive rates of H. pylori was 14.8% (800/5408) in 3-6 years age group, 20.2% (1179/5829) in 7-11 years age group, and 25.8% (403/1559) in 12-17 years age group, which increased with age and were statistically significant ($\chi^2 = 116.002$, $p<0.001$) (Table 1). Furthermore, the positive rates were higher in boys (19.9%, 1366/6880) than girls (17.2%, 1016/5916), and the difference was also statistically significant ($\chi^2 = 15.090$, $p<0.001$)(Table 1).
The main gastrointestinal symptoms of children undergoing 13C-UBT are abdominal pain, anorexia, nausea/vomiting, abdominal distension, hiccup, constipation, halitosis, diarrhea and failure to thrive/weight loss. There were 80.7% children (10330/12796) with at least one gastrointestinal symptom in the prior months. The positive rate of H. pylori infection in children with these symptoms was 18.9% (1950/10330), demonstrating no significant difference compared to 19.3% (2466/12796) children without gastrointestinal symptoms (17.5%, 432/2466) ($\chi^2 = 2.426, p=0.119$) (Table 1).

There were 1169 children had a history of H. pylori infected family member, and the H. pylori infection rate was higher than those without a familial history (20.8% versus 18.4%, $\chi^2 = 4.005, p<0.05$) (Table 1).

Possible risk factors associated with H. pylori infection

Table 2 shows the results from the multivariate logistic regression performed to assess risk factors for H. pylori infection. Age, gender, gastrointestinal symptoms and history of H. pylori infected family member were found together to be significantly associated with H. pylori infection (all $p<0.05$). Specifically, children in 7-11 years age group and in 12-17 years age group were 1.474 and 2.031 times as likely to be H. pylori infected as children in 3-6 years age group (95% CI=1.335-1.627 and 95% CI=1.772-2.328 respectively, all $p<0.001$). Boys were 1.209 times as likely to be H. pylori infected as girls (95% CI=1.104-1.323, $p<0.001$) and children with a history of H. pylori infected family member were 1.289 times compared to those without the familial history. Furthermore, gastrointestinal symptom was also one of risk factors for H. pylori infection.
infection, as it was 1.141 times in children with gastrointestinal symptoms compared to children
without them (95% CI=1.009-1.289, p<0.05).
Discussions

The present study assessed the 13C-UBT in the pre-treatment phase to evaluate current \textit{H. pylori} infection in children with gastrointestinal symptoms. The prevalence was higher than in developed countries but lower than in some developing countries (Tonkic et al. 2012). It was higher than it reported in three cities (Beijing, Guangzhou and Chengdu) of mainland China, Hong Kong and Taiwan among asymptomatic children or school children, but lower than most of mainland China (Table 3). These could be due to cohort selection, detection method and the geographic area difference which may also reflect the personal and environmental hygiene. Subjects in our study enrolled from patients most of that had gastrointestinal symptoms and were suggested to detect the \textit{H. pylori} infection, so the incidence rate would be more or less higher than asymptomatic or general population. Currently, there are many diagnostic tools to detect \textit{H. pylori} infection, with non-invasive methods being considered as the most desirable for use especially in children. The 13C-UBT has been reported to have excellent sensitivity and specificity for the noninvasive identification of \textit{H. pylori} infection in children and it is recommended for situations when endoscopy is not available or necessary (Guarner et al. 2010; Redéen et al. 2011). 13C-UBT has superiority over serologic methods by its high reliability and the ability to differentiate present from past infection (Bourke et al. 2005). The geographic distribution of \textit{H. pylori} infection is correlated with the geographic distribution of gastric cancer. Muping County in Shandong Province, Wuwei County in Gansu Province and Jiangsu Province are all the area with high risk of gastric cancer (Shi et al. 2008; Zhang et al. 2009a; Zhang et al. 2009b). That may be associated with the high prevalence of \textit{H. pylori} infection in this area. Although there is apparent variation in the prevalence of \textit{H. pylori} infection between developing
and developed countries in children, it is reported all around the world that the prevalence was
associated with age (Tkachenko et al. 2007; Zhang et al. 2009a). In our study, the prevalence of
H. *pylori* infection was also shown to increase with age. Pre-school age children had a lower
significant prevalence than school age and adolescent. The increase in H. *pylori* prevalence with
age is thought to represent the improvements in socioeconomic conditions and sanitary standards
through the generations. In Russia, the prevalence of H. *pylori* infection reduced markedly within
a 10-year period (from 1995 to 2005) due to the improvements in standards of living (Tkachenko
et al. 2007). With the development of economic growth in China within decades, the
environmental and hygienic conditions were dramatically improved, due to which the prevalence
of H. *pylori* infection is decreasing in China (Nagy et al. 2016). In consistent with it, the annual
positive rates decreased during eight-year period (from 2007 to 2014) in our study (Figure 1).
The age-dependent manner of H. *pylori* positive rate in children may also reflect the inverse
relation to the socioeconomic status, sanitation and living conditions in China (Zhang et al.
2009a). The increase of prevalence might be the effect of accumulation because that the
acquisition rates were higher than the loss rates (Ozen et al. 2006). With the growing of age,
expanding range of activity, collective living and meal in high school lead to the increase of
exposure to H. *pylori* infection and opportunities to cross infection (Zhang & Li 2012). But it
needs to be further investigated.

It was reported that the male predominance of H. *pylori* infection in adults was a global and
homogeneous phenomenon, but such predominance was not apparent in children (de Martel &
Parsonnet 2006; Tkachenko et al. 2007). But our data showed a higher prevalence in boys than
girls and in different years age group (Table 2). It is consistent with the study in Brazil that male
gender was one of the risk factors for the acquisition and maintenance of the \textit{H. pylori} infection (Queiroz et al. 2012). The prevalence of \textit{H. pylori} infection in a community is related to three factors: the incidence rate of infection, the rate of infection loss (either spontaneous eradication or curative treatment) and the relative survival of those with and without infection. Differential incidence, differential antibiotic exposure or differential protective immunity between genders, which lead to greater loss of infection (or seroreversion) in girls or adults women than in men, may explain the different results observed between children and adult studies (de Martel & Parsonnet 2006). On the other hand, it may be explained that boys are naturally more active and have poor personal hygiene than girls as the prevalence of \textit{H. pylori} infection is inversely related to sanitation condition. But the role of gender as a risk factor for \textit{H. pylori} infection is still debated.

Abdominal complaints such as pain, anorexia, nausea/vomiting, or other dyspeptic symptoms are nonspecific and can be caused by different organic disease within and outside the digestive tract. The European Pediatric Task Force concluded in their guidelines on management of \textit{H. pylori} infection that, in children, \textit{H. pylori} infection is not related to gastrointestinal symptoms (Drumm et al. 2000). Studies comparing the prevalence among symptomatic and asymptomatic children show different results on the relationship between gastrointestinal symptoms and the prevalence of \textit{H. pylori} infection (Daugule et al. 2007; Dore et al. 2012). A meta-analysis reported recently that children with upper abdominal pain or epigastric pain were at two- to three fold higher risk for \textit{H. pylori} infection than children without these symptoms but it could not been confirmed in children seen in primary care (Spee et al. 2010). According to multivariate logistic regression analysis, our study showed that gastrointestinal symptom and a history of \textit{H. pylori} infected
family member were also the significant risk factors for \(H. \text{pylori}\) infection. Similarly, other studies showed that upper GIT symptoms (RAP, anorexia, nausea), family history of peptic disease, and nausea/vomiting were significantly associated with \(H. \text{pylori}\) infection (Dore et al. 2012; Habib et al. 2014). However, there are many other possible risk factors associated with \(H. \text{pylori}\) infection identified in most of the published studies, including socioeconomic indicators, family income, household crowding, number of children sharing the same room, parents' education and sharing a bed with children (Ertem 2013). Our results were limited because of cohort selection and the lack of data in these matters, and the determinants of \(H. \text{pylori}\) infection should be investigated by further studies.

In conclusion, the strength of our study was that it evaluated a large number of children in a long period in Hangzhou, a representative city of eastern China. The prevalence of \(H. \text{pylori}\) infection using \(^{13}\text{C}-\text{UBT}\) increased with age in children and boys were apt to be \(H. \text{pylori}\) positive compared with girls. The founding suggests that primary infection in childhood is usual and the effect of accumulation might be responsible for the increase of prevalence with age. Besides age and male predominance, gastrointestinal symptom and a history of \(H. \text{pylori}\) infected family member were also the possible risk factors for \(H. \text{pylori}\) infection. In children with history of \(H. \text{pylori}\) infected family member, testing for \(H. \text{pylori}\) may be considered especially when they are symptomatic. These observations could substantially change \(H. \text{pylori}\) management strategies in children in China.
Acknowledgements

We sincerely thank the children and their parents for providing the information to take part in this study. We also thank Lejing Yang and Qian Shu for typewriting the data and thank Kewen Jiang, Weifen Zhu and Xi Chen for suggestions on article editing.
References

Atherton JC, and Blaser MJ. 2009. Coadaptation of Helicobacter pylori and humans: ancient history, modern implications. *J Clin Invest* 119:2475-2487. 38605 [pii] 10.1172/JCI38605

Bourke B, Ceponis P, Chiba N, Czinn S, Ferraro R, Fischbach L, Gold B, Hyunh H, Jacobson K, Jones NL, Koletzko S, Lebel S, Moayyedi P, Ridell R, Sherman P, van Zanten S, Beck I, Best L, Boland M, Bursey F, Chaun H, Cooper G, Craig B, Creuzenet C, Critch J, Govender K, Hassall E, Kaplan A, Keelan M, Noad G, Robertson M, Smith L, Stein M, Taylor D, Walters T, Persaud R, Whitaker S, and Woodland R. 2005. Canadian Helicobacter Study Group Consensus Conference: Update on the approach to Helicobacter pylori infection in children and adolescents--an evidence-based evaluation. *Can J Gastroenterol* 19:399-408.

Daugule I, Rumba I, Alksnis J, and Ejderhamn J. 2007. Helicobacter pylori infection among children with gastrointestinal symptoms: a high prevalence of infection among patients with reflux oesophagitis. *Acta Paediatr* 96:1047-1049. 10.1111/j.1651-2227.2007.00329.x

Ding Z, Zhao S, Gong S, Li Z, Mao M, Xu X, and Zhou L. 2015. Prevalence and risk factors of Helicobacter pylori infection in asymptomatic Chinese children: a prospective, cross-sectional, population-based study. *Aliment Pharmacol Ther* 42:1019-1026. 10.1111/apt.13364

Dore MP, Fanciulli G, Tomasi PA, Realdi G, Delitala G, Graham DY, and Malaty HM. 2012. Gastrointestinal symptoms and Helicobacter pylori infection in school-age children residing in Porto Torres, Sardinia, Italy. *Helicobacter* 17:369-373. 10.1111/j.1523-5378.2012.00955.x

Drumm B, Koletzko S, and Oderda G. 2000. Helicobacter pylori infection in children: a consensus statement. European Paediatric Task Force on Helicobacter pylori. *J Pediatr Gastroenterol Nutr* 30:207-213.

Ertem D. 2013. Clinical practice: Helicobacter pylori infection in childhood. *Eur J Pediatr* 172:1427-1434. 10.1007/s00431-012-1823-4

Eusebi LH, Zagari RM, and Bazzoli F. 2014. Epidemiology of Helicobacter pylori infection. *Helicobacter* 19 Suppl 1:1-5. 10.1111/hel.12165

Fock KM, and Ang TL. 2010. Epidemiology of Helicobacter pylori infection and gastric cancer in Asia. *J Gastroenterol Hepatol* 25:479-486. JGH6188 [pii] 10.1111/j.1440-1746.2009.06188.x

Guarner J, Kalach N, Elitsur Y, and Koletzko S. 2010. Helicobacter pylori diagnostic tests in children: review of the literature from 1999 to 2009. *Eur J Pediatr* 169:15-25. 10.1007/s00431-009-1033-x

Habib HS, Hegazi MA, Murad HA, Amir EM, Halawa TF, and El-Deek BS. 2014. Unique features and risk factors of Helicobacter pylori infection at the main children's intermediate school in Rabigh, Saudi Arabia. *Indian J Gastroenterol* 33:375-382. 10.1007/s12664-014-0463-1

Kindermann A, and Lopes Al. 2009. Helicobacter pylori infection in pediatrics. *Helicobacter* 14 Suppl 1:52-57. 10.1111/j.1523-5378.2009.00700.x

Koletzko S, Jones NL, Goodman KJ, Gold B, Rowland M, Cadranel S, Chong S, Colletti RB, Casswall T, Elitsur Y, Guarner J, Kalach N, Madrazo A, Megraud F, and Oderda G. 2011. Evidence-based guidelines from ESPGHAN and NASPGHAN for Helicobacter pylori infection in children. *J Pediatr Gastroenterol Nutr* 53:230-243. 10.1097/MPG.0b013e3182227e90

Mauro M, Radovic V, Zhou P, Wolfe M, Kamath M, Bercik P, Croitoru K, and Armstrong D. 2006. 13C urea breath
test for (Helicobacter pylori): determination of the optimal cut-off point in a Canadian community population. *Can J Gastroenterol* 20:770-774.

Mentis A, Lehours P, and Mégraud F. 2015. Epidemiology and Diagnosis of Helicobacter pylori infection. *Helicobacter* 20 Suppl 1:1-7. 10.1111/hel.12250

Nagy P, Johansson S, and Molloy-Bland M. 2016. Systematic review of time trends in the prevalence of Helicobacter pylori infection in China and the USA. *Gut Pathog* 8:8. 10.1186/s13099-016-0091-7

Ozen A, Ertem D, and Pehlivanoglu E. 2006. Natural history and symptomatology of Helicobacter pylori in childhood and factors determining the epidemiology of infection. *J Pediatr Gastroenterol Nutr* 42:398-404. 10.1097/01.mpg.0000215307.48169.7b

Redéen S, Petersson F, Törnkrantz E, Levander H, Mårdh E, and Borch K. 2011. Reliability of Diagnostic Tests for Helicobacter pylori Infection. *Gastroenterol Res Pract* 2011:940650. 10.1155/2011/940650

Rowland M, Daly L, Vaughan M, Higgins A, Bourke B, and Drumm B. 2006. Age-specific incidence of Helicobacter pylori. *Gastroenterology* 130:65-72; quiz 211. S0016-5085(05)02264-X [pii]

Shi R, Xu S, Zhang H, Ding Y, Sun G, Huang X, Chen X, Li X, Yan Z, and Zhang G. 2008. Prevalence and risk factors for Helicobacter pylori infection in Chinese populations. *Helicobacter* 13:157-165. 10.1111/j.1523-5378.2008.00586.x

Spee LA, Madderom MB, Pijpers M, van Leeuwen Y, and Berger MY. 2010. Association between helicobacter pylori and gastrointestinal symptoms in children. *Pediatrics* 125:e651-669. peds.2010-0941 [pii]

Tkachenko MA, Zhannat NZ, Erman LV, Blashenkova EL, Isachenko SV, Isachenko OB, Graham DY, and Malaty HM. 2007. Dramatic changes in the prevalence of Helicobacter pylori infection during childhood: a 10-year follow-up study in Russia. *J Pediatr Gastroenterol Nutr* 45:428-432. 10.1097/MPG.0b013e318064589f

Tonkic A, Tonkic M, Lehours P, and Mégraud F. 2012. Epidemiology and diagnosis of Helicobacter pylori infection. *Helicobacter* 17 Suppl 1:1-8. 10.1111/j.1523-5378.2012.00975.x

Zhang DH, Zhou LY, Lin SR, Ding SG, Huang YH, Gu F, Zhang L, Li Y, Cui RL, Meng LM, Yan XE, and Zhang J. 2009a. Recent changes in the prevalence of Helicobacter pylori infection among children and adults in high- or low-incidence regions of gastric cancer in China. *Chin Med J (Engl)* 122:1759-1763.

Zhang LH, Zhou YN, Zhang ZY, Zhang FH, Li GZ, Li Q, Wu ZQ, Ren BL, Zou SJ, and Wang JX. 2009b. [Epidemiological study on status of Helicobacter pylori in children and teenagers in Wuwei city, Gansu province]. *Zhonghua Yi Xue Za Zhi* 89:2682-2685.

Zhang Y, and Li JX. 2012. [Investigation of current infection with Helicobacter pylori in children with gastrointestinal symptoms]. *Zhongguo Gang Dai Er Ke Za Zhi* 14:675-677. 1008-8830(2012)09-0675-03 [pii]
Table 1 (on next page)

Table 1 Demographic characteristics of the 12796 subjects
	\(H. pylori- \)	\(H. pylori\)-negative	Total	\(P \) value
Age groups (years)				
3-6	800 (14.8)	4608 (85.2)	5408	<0.001
7-11	1179 (20.2)	4650 (79.8)	5829	
12-17	403 (25.8)	1156 (74.2)	1559	
Gender				
Female	1016 (17.2)	4900 (82.8)	5916	<0.001
Male	1366 (19.9)	5514 (80.1)	6880	
Gastrointestinal				
symptoms	432 (17.5)	2034 (82.5)	2466	0.119
No	1950 (18.9)	8380 (81.1)	10330	
Yes				
History of \(H. pylori \) infected family member				
No	2139 (18.4)	9488 (81.6)	11627	0.045
Yes	243 (20.8)	926 (79.2)	1169	
Total	2382 (18.6)	10414 (81.4)	12796	-

2 Data expressed as number (%).
Table 2 Logistic regression analysis for possible risk factors associated with *H. pylori* infection
Variables	OR (95%CI)	P value
Age groups (years)		
3-6	-	
7-11	1.474 (1.335-1.627)	<0.001
12-17	2.031 (1.772-2.328)	<0.001
Gender		
Female	-	
Male	1.209 (1.104-1.323)	<0.001
Gastrointestinal symptoms		
No	-	
Yes	1.141 (1.009-1.289)	0.035
History of H. pylori infected family member		
No	-	
Yes	1.289 (1.100-1.511)	0.002

Note: OR, odds ratio; CI, confidence interval.
Table 3 Comparison of prevalence of H. pylori infection among children in China
Table 3 Comparison of prevalence of H. pylori infection among children in China

Authors	Recruitment	Area	Year	Age (year)	Method	No.	Prevalence (%)

Study	Type of Study	Geographic Region	Age Group	Method	N	Prevalence
Ding et al. (Ding et al. 2015)	Asymptomatic children	Beijing	Newborn 1-12m	HpSA	330	0.6
Tam et al. (Tam et al. 2008)	School children	Hong Kong	6-8	UBT	300	9.3
Lin et al. (Lin et al. 2007)	School children	Taiwan	9-12	Serology	1625	11.0
Zhang et al. (Zhang et al. 2009a)	School children	Muping, Shandong	8-9	HpSA	122	26.2
Cheng et al. (Cheng et al. 2009)	Population-based cohort	Guangzhou	3-5	Serology	180	19.4
Shi et al. (Shi et al. 2008)	Population-based cohort	Beijing	2-10	UBT	19	57.8
Zhang et al. (Zhang et al. 2009b)	Population-based cohort	Wuwei, Gansu	3-5	Histology/ RUT/ UBT/ Serology	99	68.7
Zhang et al. (Zhang & Li 2012)	Gastrointestinal symptoms	Dongguan, Guangdong	10-20	UBT	159	75.5
Wu et al. (Wu et al. 2008)	Gastrointestinal symptoms	Zunyi	10-20	UBT	2645	40.0
Our study	Gastrointestinal symptoms	Hangzhou, Zhejiang	7-11	UBT	5829	20.2

Note: HpSA, H. pylori stool antigen test; UBT, urea breath test; RUT, rapid urease test; m, months.
Figure 1

Figure 1 The distribution of H. pylori infection rate by year from 2007 to 2014

The bars represent the number of enrolled subjects each year. H. pylori negative and positive subjects are white and black respectively. The line chart represent the positive rates of H. pylori infection each year.
Figure 2

Figure 2 The H. pylori infection rates between two four-year period, 2007-2010 and 2011-2014

The percentages on top of the bars represent the total H. pylori infection rates in four-year periods. **p<0.01.