The extended atmospheres of Mira variables probed by VLTI, VLBA, and APEX

M. Wittkowski1, D. A. Boboltz2, C. de Breuck1, M. Gray3, E. Humphreys1, M. Ireland4, I. Karovicova1, K. Ohnaka5, A. E. Ruiz-Velasco1,6, M. Scholz7,4, P. Whitelock8,9, and A. Zijlstra3

1ESO, Karl-Schwarzschild-Str. 2, 85748 Garching bei München, Germany
2US Naval Observatory, 3450 Massachusetts Avenue, NW, Washington, DC 20392-5420, USA
3Jodrell Bank Centre for Astrophysics, School of Physics and Astronomy, University of Manchester, Manchester M13 9PL, UK
4Sydney Institute for Astronomy, School of Physics, University of Sydney, Sydney, NSW 2006, Australia
5Max-Planck-Institut für Radioastronomie, Auf dem Hügel 69, 53121 Bonn, Germany
6Departamento de Astronomía, Universidad de Guanajuato, Apartado Postal 144, 36000 Guanajuato, Mexico
7Zentrum für Astronomie (ZAH), Institut für Theoretische Astrophysik, Albert Ueberle-Str. 2, 69120 Heidelberg, Germany
8South African Astronomical Observatory, PO Box 9, 7935 Observatory, South Africa
9University of Cape Town, 7701 Rondebosch, South Africa

Abstract. We present an overview on our project to study the extended atmospheres and dust formation zones of Mira stars using coordinated observations with the Very Large Telescope Interferometer (VLTI), the Very Long Baseline Array (VLBA), and the Atacama Pathfinder Experiment (APEX). The data are interpreted using an approach of combining recent dynamic model atmospheres with a radiative transfer model of the dust shell, and combining the resulting model structure with a maser propagation model.

1. Introduction and project outline

Mass-loss becomes increasingly important toward the tip of the AGB evolution. While the mass-loss process during the AGB phase is the most important driver for the further stellar evolution toward the PN phase, the details of the mass-loss process and its connection to the structure of the extended atmospheres and the stellar pulsation are not well understood and are currently a matter of debate.
Here, we present an overview on our established project of coordinated interferometric observations at infrared and radio wavelengths. Our goal is to establish the radial structure and kinematics of the stellar atmosphere and the circumstellar environment to understand better the mass-loss process and its connection to stellar pulsation. We also aim at tracing asymmetric structures from small to large distances in order to constrain shaping processes during the AGB evolution, which may lead to the observed diversity of shapes of planetary nebulae. We use two of the highest resolution interferometers in the world, the Very Large Telescope Interferometer (VLTI) and the Very Long Baseline Array (VLBA) to study AGB stars and their circumstellar envelopes from near-infrared to radio wavelengths. For some sources, we have included near-infrared broad-band photometry obtained at the South African Astronomical Observatory (SAAO) in order to derive effective temperature values. We have started to use the Atacama Pathfinder Experiment (APEX) to investigate the line strengths and variability of high frequency SiO maser emission.

2. Observations

Our pilot study included coordinated observations of the Mira variable S Ori including VINCI K-band measurements at the VLTI and SiO maser measurements at the VLBA (Boboltz & Wittkowski 2005). For the Mira variables S Ori, GX Mon, RR Aql and the supergiant AH Sco, we obtained long-term mid-infrared interferometry covering several pulsation cycles using the MIDI instrument at the VLTI coordinated with VLBA SiO (42.9 GHz and 43.1 GHz transitions) observations (Wittkowski et al. 2007; Karovicova et al, these proceedings). For the Mira variables R Cnc and X Hya, we coordinated near-infrared interferometry (VLTI/AMBER), mid-infrared interferometry (VLTI/MIDI), VLBA/SiO maser observations, VLBA/H$_2$O maser, and near-infrared photometry at the SAAO (work in progress). Most recently, measurements of the $v = 1$ and $v = 2 J = 7 - 6$ SiO maser transitions toward our program stars were obtained at two epochs using APEX (work in progress).

3. Modeling

The P and M model series by Ireland et al. (2004a/b) were chosen as the currently best available option to describe dust-free Mira star atmospheres. Wittkowski et al. (2007) have added an ad-hoc radiative transfer model to these model series to describe the dust shell as observed with the mid-infrared interferometric instrument MIDI using the radiative transfer code mcsim_mpi by Ohnaka et al. (2007). Gray et al. (2009) have combined these hydrodynamic atmosphere plus dust shell models with a maser propagation code in order to describe the SiO maser observations. Most recently, we have also used new dynamic atmosphere series (CODEX series) by Ireland et al. (2008), which use the opacity sampling method, and are available for additional stellar parameters compared to the P/M series.

4. Results

The pilot study on the Mira variable S Ori (Boboltz & Wittkowski 2005) revealed that the SiO maser ring radii lie at 2.0 R$_{cont}$ (43.1 GHz transition) and 1.9 R$_{cont}$ (42.8 GHz
Extended atmospheres of Mira variables

S Ori, near visual minimum

R/R_Phot

2.3
2.2
2.1
2.0
1.9
1.8

1

Thick-thin molecular atmosphere

Al_2O_3 dust shell

~10 km/s

R_Phot

4.2
2.0

R_Phot _42.8/43.1

8.0
3.9

mas

4.2/9.27 9.7

4.8
2.3

AU

S Ori, post visual maximum

R/R_Phot

2.3
2.2
2.1
2.0
1.9
1.8

1

Thick-thin molecular atmosphere

Al_2O_3 dust shell

~10 km/s

R_Phot

4.8
2.3

R_in

8.9/10.2

11.0

5.3

AU

Figure 1. Sketch of the radial structure of S Ori’s circumstellar envelope at (left) near-minimum and (right) post-maximum visual phase from Wittkowski et al. (2007). Shown are the locations of the continuum photosphere (dark gray), the at N-band optically thick molecular atmosphere (medium dark gray), the at N-band optically thin molecular atmosphere (light gray), the Al_2O_3 dust shell (dashed arcs), and the 42.8 GHz/43.1 GHz SiO maser spots (circles/triangles).

transition) at phase 0.7. The stellar diameter was estimated by measuring the uniform disk diameter and correcting it for the continuum diameter using dynamic model atmospheres as described in Sect. 3. This result is free of the usual uncertainty inherent in comparing observations widely spaced in phase and/or using directly uniform disk diameters which may be contaminated by extended molecular layers. Fedele et al. (2005) estimated in an analogous way SiO maser ring radii of 1.9 R_cont and 1.8 R_cont, respectively, for the Mira variable R Leo at phase 0.1.

Mid-infrared interferometric data of S Ori were taken concurrently with additional three epochs of VLBA observations of the same SiO maser transitions (Wittkowski et al. 2007). The modeling of the MIDI data resulted in phase-dependent continuum photospheric angular diameters. The dust shell could best be modeled with Al_2O_3 grains alone located close to the stellar photosphere with inner radii between 1.8 and 2.4 photospheric radii. Mean SiO maser ring radii were found to lie between about 1.9 and 2.4 stellar continuum radii. The maser spots marked the region of the molecular atmospheric layers shortly outward of the steepest decrease of the mid-infrared model intensity profile. These results suggested that the SiO maser shells are co-located with the Al_2O_3 dust shell near minimum visual phase. Their kinematics showed that there appeared a velocity gradient at all epochs, with masers toward the blue- and red-shifted ends of the spectrum lying closer to the center of the distribution than masers at intermediate velocities. This phenomenon was interpreted as a radial gas expansion with a velocity of about 10 km/sec. Fig. 1 shows a sketch of the radial structure of S Ori’s circumstellar environment as derived from this study. A similar – but longer – study of the Mira variable RR Aql, which shows a silicate dust chemistry, is presented by Karovicova et al. in these proceedings.
The combination of the dynamic model atmospheres plus dust shell model with the maser propagation model by Gray et al. (2009) showed that modeled SiO masers formed in rings with radii consistent with those found in the VLBA observations described above and in earlier models. This agreement required the adoption of a radio photosphere of radius about twice that of the near-infrared continuum photosphere in agreement with observations. Maser rings, a shock, and the $8.1 \mu m$ radius, dominated by optically thick water layers, appeared to be closely related. The maser ring variability and number of spots may not be consistent with observations, which may be explained by re-setting masers in the model at each phase.

Near-infrared spectro-interferometric observations of AGB stars using the AMBER instrument were first obtained by Wittkowski et al. (2008). These observations covering 29 spectral channels between $1.29 \mu m$ and $2.32 \mu m$ exhibited significant variations as a function of spectral channel that could only be explained by a variation of the apparent angular size with wavelength. This ‘bumpy’ visibility curve was interpreted as a signature of molecular layers lying above the continuum-forming photosphere, at near-infrared wavelengths mostly CO and H$_2$O. The variation of visibility and corresponding diameter values resemble well the predictions by dynamic model atmospheres that naturally include these atmospheric molecular layers. Similar bumpy visibility curves were subsequently also seen for the red supergiant VX Sgr (Chiavassa et al. 2010), the semi-regular AGB star RS Cap (Marti-Vidal et al., in preparation), and three OH/IR stars (Ruiz Velasco et al., these proceedings), indicating that close molecular layers may be a common phenomenon of cool evolved stars.

Medium resolution ($R \sim 1500$) visibility functions of the Mira variable R Cnc obtained within the project discussed here confirm the conclusion that Mira variables show wavelength-dependent angular diameters when observed with spectro-interferometric techniques. In particular, the CO band-heads are nicely visible with the AMBER medium resolution mode. The data are well consistent with predictions by dynamic model atmospheres of the P/M as well as CODEX series, where the latter provides a better agreement, in particular for the CO band-heads. R Cnc shows closure phase values that are significantly different from 0° and 180°, thus indicate a significant deviation from point symmetry. The interpretation of the closure phase measurements is work in progress. They might indicate a complex non-spherical stratification of the extended atmosphere, and may reveal whether observed asymmetries are located near the photosphere or in the outer molecular layers. The measured angular diameter values together with the SAAO photometry results in phase-dependent effective temperature values that are roughly consistent with the effective temperature of the best-fitting model atmospheres of the series.

Our recent APEX observations of the $v = 1$ and $v = 2 J = 7 - 6$ SiO maser transition of AGB stars showed a variability of the maser intensity that is stronger than for the centimeter SiO maser transitions. Also, different ratios between the $v=1$ and $v=2$ transitions were detected for different sources and phases, where even only one of the two transitions may be present. The combination of dynamic atmosphere and maser propagation models by Gray et al. (2009) showed the $v = 1$ transition but not the $v = 2$ transition. Earlier such models (Humphreys et al. 2002) showed both transitions; these had stronger shocks and higher post-shock temperatures compared to the more recent models. It is also known that infrared line overlap of SiO and H$_2$O can deeply effect the pumping of some SiO maser transitions and lead to anomalous maser intensities (e.g. Bujarrabal et al. 1996)
Figure 2. APEX/SHFI observations of the $J = 7 - 6, v = 1$ (left) and $v = 2$ (right) SiO maser transitions of R Hya at one epoch. R Hya shows only the $v = 2$ transition at this phase. Other sources showed both transitions (e.g. R Leo), and others showed $v = 1$ but not $v = 2$ (e.g. o Cet).

5. Summary

We have observed a sample of AGB stars using near-infrared, mid-infrared, and radio interferometry. Near-infrared spectro-interferometry has shown to be a powerful tool to study the complex atmosphere of AGB stars including atmospheric molecular layers, most importantly H$_2$O and CO. These observations are well consistent with predictions by recent dynamic model atmospheres. Near-infrared closure phase measurements indicate a complex non-spherical stratification of the atmosphere. The addition of near-infrared photometry allows us to determine phase-dependent effective temperature values. Mid-infrared interferometry constrains dust shell parameters including Al$_2$O$_3$ dust with inner boundary radii of about 2 photospheric radii and silicate dust with inner boundary radii of about 4 photospheric radii. SiO maser transitions observed with the VLBA (42.8 GHz and 43.1 GHz) lie in the extended atmosphere seen by near-infrared and mid-infrared interferometry, and may be co-located with Al$_2$O$_3$ dust. Their kinematics indicate motion such as outflow. The observed location relative to the stellar photosphere is consistent with predictions of combined hydrodynamic models and maser propagation models. APEX millimeter observations indicate high-frequency SiO masers that are located probably very close to the photosphere, and that show strong variability. We plan to add millimeter interferometry to this study using the Atacama Large Millimeter Array (ALMA) in order to obtain maps of high-frequency SiO masers.

References

Boboltz, D. A., & Wittkowski, M. 2005, ApJ, 618, 953
Bujarrabal, V., Alcolea, J., Sanchez Contreras, C., & Colomer, F. 1996, A&A, 314, 883
Chiavassa, A., Lacour, S., Millour, F., et al. 2010, A&A, 511, 51
Fedele, D., Wittkowski, M., Paresce, F., et al. 2005, A&A, 431, 1019
Gray, M. D., Wittkowski, M., Scholz, M., et al. 2009, MNRAS, 394, 51
Humphreys, E. M. L., Gray, M. D., Yates, J. A., et al. 2002, A&A, 386, 256
Ireland, M. J., Scholz, M., & Wood, P. R. 2004a, MNRAS, 352, 318
Ireland, M. J., Scholz, M., Tuthill, P. G., & Wood, P. R. 2004b, MNRAS, 355, 444
Ireland, M. J., Scholz, M., & Wood, P. R. 2008, MNRAS, 391, 1994
Ohnaka, K., Driebe, T., Weigelt, G., & Wittkowski, M. 2007, A&A, 466, 1099
Wittkowski, M., Boboltz, D. A., Ohnaka, K., et al. 2007, A&A, 470, 191
Wittkowski, M., Boboltz, D. A., Driebe, T., et al. 2008, A&A, 479, L21