Cell Reports

Regulation of translation by methylation multiplicity of 18S rRNA

Graphical Abstract

Highlights
- Two conserved adenosines in the 18S rRNA can be modified as either m^6^A or m^6^A
- m^6^A levels increase under sulfur starvation in yeast and mammalian cell lines
- m^6^A-bearing ribosomes translate distinctly from m^6^A-bearing ribosomes
- Loss of methylation impairs translation fidelity and ribosome pausing/stalling

Authors
Kuanqing Liu, Daniel A. Santos, Jeffrey A. Hussmann, Yun Wang, Benjamin M. Sutter, Jonathan S. Weissman, Benjamin P. Tu

Correspondence
benjamin.tu@utsouthwestern.edu

In brief
Ribosome heterogeneity has become increasingly evident. Liu et al. report an example in the form of rRNA methylation. They show two conserved adenosines in the 18S rRNA are modified with varying numbers of methyl groups. Differentially methylated ribosomes translate differently, suggesting methylation multiplicity as a mechanism to regulate translation.
Regulation of translation by methylation multiplicity of 18S rRNA

Kuanqing Liu,1 Daniel A. Santos,2 Jeffrey A. Hussmann,2,3 Yun Wang,1 Benjamin M. Sutter,1 Jonathan S. Weissman,2,4,5 and Benjamin P. Tu1,6,∗

1Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX, USA
2Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA, USA
3Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA, USA
4Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA, USA
5Present address: Whitehead Institute for Biomedical Research, Massachusetts Institute of Technology, Cambridge, MA, USA
6Lead contact
*Correspondence: benjamin.tu@utsouthwestern.edu

https://doi.org/10.1016/j.celrep.2021.108825

SUMMARY

6-methyladenosine (m6A) is a conserved ribonucleoside modification that regulates many facets of RNA metabolism. Using quantitative mass spectrometry, we find that the universally conserved tandem adenosines at the 3′ end of 18S rRNA, thought to be constitutively di-methylated (m6A2), are also mono-methylated (m6A). Although present at substoichiometric amounts, m6A at these positions increases significantly in response to sulfur starvation in yeast cells and mammalian cell lines. Combining yeast genetics and ribosome profiling, we provide evidence to suggest that m6A-bearing ribosomes carry out translation distinctly from m6A-bearing ribosomes, featuring a striking specificity for sulfur metabolism genes. Our work thus reveals methylation multiplicity as a mechanism to regulate translation.

INTRODUCTION

RNA, despite its simple composition, is ornamented with more than 150 distinct modifications (Boccaletto et al., 2018). Curiously, ~40% of them involve methylation (https://iimcb.genesiilo.pl/modomics/), an alkylation reaction that covalently adds a methyl group to a ribonucleoside. Methylation is an energetically expensive process, requiring an energy input equivalent to the hydrolysis of ~13 ATP molecules (Atkinson, 1977). From an evolutionary perspective, this implies that methylation likely confers functional importance. However, except for a few well-characterized examples, many RNA methylation events remain functionally enigmatic (Motorin and Helm, 2011).

Of all methylated ribonucleosides, only a handful have been conserved across all three domains of life (Motorin and Helm, 2011), two prime examples of which are mono-methylated N6-methyladenosine (m6A) and di-methylated N6-methyladenosine (m6A2). Despite their structural resemblance (one versus two methyl groups at the N6 position of the adenine ring), m6A and m6A2 are distinct modifications with respect to their spatial distribution and synthesis. The m6A modification was initially discovered in mammalian mRNA (Desrosiers et al., 1974) and subsequently in other RNA species, including rRNA, tRNA, and small nuclear RNA (snRNA) (Yue et al., 2015). In accordance with its promiscuous residencies, several m6A methyltransferases targeting different RNA substrates have been identified and characterized (Bokar et al., 1994, 1997; Clancy et al., 2002; Liu et al., 2014; Ma et al., 2019; Pendleton et al., 2017; van Tran et al., 2019), which enabled the functional interrogation of m6A. At the molecular level, m6A is known to regulate many facets of RNA metabolism, such as mRNA stability and translation efficiency (TE) (Wang et al., 2014, 2015; Zhou et al., 2015), microRNA (miRNA) processing and maturation (Aiarcón et al., 2015a, 2015b), RNA-protein interaction (Liu et al., 2015), and phase separation (Ries et al., 2019). At the cellular level, m6A has been implicated in pluripotency (Geula et al., 2015), heat shock response (Zhou et al., 2015), viral infection (Gokhale et al., 2016; Kennedy et al., 2016), and development (Clancy et al., 2002; Zhao et al., 2017). These findings reinforce the notion that addition of a simple methyl group can profoundly affect RNA metabolism and cellular physiology.

In contrast to m6A, m6A2 has an extremely confined distribution. With a few exceptions, it is found universally at two adjacent adenosines (A1781 and A1782 in Saccharomyces cerevisiae) near the 3′ end of the small subunit (SSU) rRNA (Rife, 2009; Van Knippenberg et al., 1984). This region forms a highly conserved hairpin loop (helix 45), and the tandem m6A2 modifications reside at the apex of this loop, which situates them close to the ribosome decoding site (DCS) (Sharma and Lafontaine, 2015). Despite their remarkable conservation and occupation of a structurally important position within the ribosome, the functional importance of these tandem m6A2 modifications remains incompletely understood.

Here, we report our serendipitous discovery that the m6A methyltransferase Dim1p is capable of modifying the conserved tandem adenosines with a single methyl group (i.e., m6A). Although present at low stoichiometry, m6A increases significantly during sulfur starvation in yeast cells and mammalian
Figure 1. \(m^\#A \) is a bona fide modification located at A1781 and/or A1782 of 18S rRNA

(A) Detection of \(m^\#A \) in total RNA from vegetatively growing haploid \(S. \) cerevisiae.

(B) \(m^\#A \) is detected in 18S rRNA of vegetatively growing haploid \(S. \) cerevisiae (strain: CEN.PK).

(C) \(m^\#A \) is located in the last 22 nucleotides of 18S rRNA. \(\text{ac}^\#C \), \(N^4 \)-acetylcytidine; \(m^\#A, N^6, N^\#6 \)-dimethyladenosine. See Data S1 for other regions of 18S rRNA surveyed using the MBN protection assay.
cell lines. Ribosome profiling experiments further indicate that m^6^A-bearing ribosomes carry out translation distinctively from m^1^A-bearing ribosomes, featuring a striking specificity for sulfur metabolism genes. Our work thus suggests that methylation multiplicity of these tandem adenosines functions as a mechanism to regulate translation.

RESULTS

Identification of m^6^A as a bona fide modification at A1781/A1782 in yeast 18S rRNA

Contrary to its prevalence in mammalian cells (Yue et al., 2015), m^6^A in budding yeast cells is present only in mRNA from sporing diploid cells (Agarwala et al., 2012; Bodi et al., 2010; Clancy et al., 2002). Accordingly, one might expect little m^6^A in the sporing-deficient haploid cells. Surprisingly, using quantitative liquid chromatography coupled to tandem mass spectrometry, we could readily detect m^6^A in total RNA isolated from haploid cells grown in a synthetic defined (SD) medium (Figures 1A and S1A). Consistent with previous studies (Agarwala et al., 2012; Bodi et al., 2010; Clancy et al., 2002), poly(A)^+ RNA was essentially devoid of m^6^A (Figure S1B), except in sporing diploid cells (Figure S1C). Subsequent RNA fractionation revealed the presence of m^6^A in 18S rRNA (Figures 1B and S1D), 25S rRNA (Figure S1E), and small RNA (Figure S1F). However, m^6^A from the latter two sources is likely derived from m^8^A (Figure S1E), and small RNA (Figure S1F). Therefore, only m^6^A detected in 18S rRNA appears to be a bona fide modification. m^6^A is a substoichiometric modification, with ~4% of 18S rRNA on average harboring one m^6^A in haploid yeast cells grown in SD medium.

To precisely map m^6^A in 18S rRNA, we performed a mung bean nuclease (MBN) protection assay (Figure S2A). As validation, we isolated a fragment of yeast 18S rRNA corresponding to the region from 601 to 660 and detected the expected 22-nt protected fragment (Figure 1C). We next scanned the entire 18S rRNA and found that m^6^A was located within the last 22 nucleotides (nt) (Figure 1C; Data S1). Using a DNA oligo that only partially protects this 22-nt region (Figure 1C), we pinpointed m^6^A to A1781 and/or A1782 of 18S rRNA (Figure 1D). However, due to technical difficulties, we could not further distinguish between these two positions. Nevertheless, an ^15^N-tracing experiment showed that m^6^A in 18S rRNA was derived from cultured yeast, not from contamination during sample preparation (Figure S2C). Altogether, these results indicate that m^6^A is a bona fide modification that maps to A1781 and/or A1782 of 18S rRNA, a site also known to accommodate the conserved tandem m^6^A modifications.

The co-occupation of m^6^A and m^5^A prompted us to speculate that the m^6^A methyltransferase Dim1p (Lafontaine et al., 1994) might also be responsible for installing m^6^A. To test this hypothesis, we created a mutant Dim1p by changing the glutamic acid at 85 (E85) to alanine, which reportedly abolishes its methyltransferase activity (Pulcheria et al., 2009). As expected, we found little m^6^A in 18S rRNA from the E85A mutant, but surprisingly, we could still detect m^6^A, albeit at slightly reduced amounts (Figure S2D). In the structure of the Dim1 homolog from Methanocaldococcus jannaschii, the glutamic acid at 59 (equivalent to E85 in S. cerevisiae Dim1p) is within hydrogen-bonding distance to the substrate S-adenosyl-L-methionine (SAM) (Figure S2E) (O’Farrell et al., 2010). Substitution of glutamic acid with alanine might destabilize, but might not eliminate, SAM binding. By contrast, swapping glutamic acid with a bulkier residue might be more effective at disrupting SAM binding through physical hindrance. Indeed, changing the glutamic acid to tryptophan resulted in complete loss of m^5^A and m^6^A (Figure 1E), confirming that Dim1p is responsible for both modifications. Furthermore, a highly conservative change of glutamic acid to glutamine inactivated Dim1p, because no m^6^A or m^5^A was detected in 18S rRNA of the E85Q mutant (Figure 1E).

m^6^A levels increase specifically and significantly in response to sulfur starvation

The unexpected presence of m^6^A in yeast 18S rRNA raises the question of its biological significance. To this end, we first tested whether m^6^A levels might change according to growth conditions. Deprivation of carbon, nitrogen, or phosphate had little impact on m^6^A levels (Figure 2A). By contrast, sulfate starvation caused a significant increase of m^6^A (Figure 2A), without eliciting apparent changes in amounts of other methylated nucleosides in 18S rRNA (Figure S3A). These observations indicate that m^6^A levels respond specifically to sulfate availability, a notion that is reinforced by the periodic changes of m^6^A in response to sulfate fluctuations (Figure 2B). A stable isotope-tracing experiment further demonstrated that under sulfate starvation, most m^6^A was derived from de novo synthesis (Figure 2C), whereas only a minority of m^6^A was newly synthesized (Figure S3B). Moreover, this starvation response is not specific for sulfate, because deprivation of methionine or SAM, two reduced sulfur sources, also increased m^6^A levels (Figures 2D and 2E). Supplying cells with S-adenosyl-L-homocysteine (SAH), a product formed following transfer of the methyl group from SAM, was sufficient to increase m^6^A levels even in the presence of sulfate (Figure 2F). Without a sulfur source, the impact of SAH on m^6^A levels was even more pronounced (Figure 2G).

Lastly, using the MBN protection assay, we found that HeLa, HEK293T, and 3T3 cells cultured with methionine contained very low levels of m^6^A, only slightly above our detection limit, compared with yeast cells (Figure S3C). By contrast, methionine starvation led to a significant

(D) m^6^A is located at A1781 and/or A1782 of 18S rRNA. The peak area of m^6^A was first normalized to that of m^1^A, and the m^6^A/m^1^A ratio was then normalized to the fragment protected by oKL204. Mean ± SD (n = 7 biological replicates). The p value was calculated using unpaired two-tailed Student’s t-test, assuming equal variances.

(E) m^6^A methyltransferase Dim1p is responsible for the m^6^A modification in yeast 18S rRNA. p > 0.05 (n.s.).

CPS, counts per second.

See also Figures S1 and S2 and Data S1.
Figure 2. Sulfur starvation increases m^6A levels in 18S rRNA in yeast cells and mammalian cell lines
(A) m^6A levels in 18S rRNA increase specifically under sulfate starvation. com, complete medium; –C, carbon starvation; –N, nitrogen starvation; –P, phosphate starvation; –S, sulfate starvation. Mean ± SD (n = 3 biological replicates).
(B) Changes in m^6A levels in response to sulfate availability. Mean ± SD (n = 2–3 biological replicates).
(C) Increased m^6A under sulfate starvation is synthesized de novo. Cells were fully labeled in [15N] SD and starved in [14N] sulfur-free medium + 50 mg L^-1 adenine ([14N]–S + A) for 2 h. Peak areas of [U-14N] and [U-15N] ac4C were combined to normalize the differentially labeled m^6A. Normalized abundance was further divided by that of preswitch samples. Mean ± SD (n = 3 biological replicates).
(D and E) Starvation of methionine (D) and SAM (E) increases m^6A levels in 18S rRNA. Mean ± SD (n = 3 biological replicates). Methionine (D) and SAM (E) were supplemented at 1 and 0.5 mM, respectively. Data for –S + SAM in (E) were also used in (G).
(F) SAH increases m^6A levels in 18S rRNA. Mean ± SD (n = 2 biological replicates).
(G) SAH enhances the impact of SAM starvation on increasing m^6A levels in 18S rRNA. SAM and SAH were used at 0.5 mM. Mean ± SD (n = 3 biological replicates).
(H) Methionine starvation increases m^6A levels at the 3' end of mammalian 18S rRNA. MBN protection assay was performed to specifically examine m^6A in the last 37 nucleotides of mammalian 18S rRNA. Top panels are representative chromatograms, and bottom panels are quantification results. Mean ± SD (n = 3–7 biological replicates). Chromatograms were normalized to the peak area of ac4C to allow comparison between samples. The peak area of m^6A was first normalized to that of ac4C and to samples with methionine.

Ordinary one-way analysis of variance (ANOVA) and Dunnett’s multiple comparison test with a single pooled variance were performed to calculate the p values for (A) and (B), and unpaired two-tailed Student’s t test, assuming equal variances, was used for (D)–(H). p > 0.05 (n.s.), *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001.

See also Figure S3.
A. Dim1p homologs and 18(16)S rDNA sequences:

- H. sapiens: KVVACELBPRLTAGGTGAAACC
- M. musculus: KVVACELBPRLTAGGTGAAACC
- G. cuniculus: KVIACEIBPRLTAGGTGAAACC
- G. gallus: KVIACELBPRLTAGGTGAAACC
- C. elegans: TVIACESIPRMTCAGGTGAAACC
- S. cerevisiae: NVVAVEEMPRTAGGTGAAACC
- S. pombe: KVIAVEEMPRTAGGTGAAACC
- C. reinhardtii: KVIAVELBPRLTAGGTGAAACC
- A. thaliana: EVIAGEBSRAMTACGGAACCC
- P. patens: KVVAVEEMPRTAGGTGAAACC
- D. discoideum: KVIAVEIDPRTAGGTGAAACC
- T. thermophila: KVIAVIEBPRTRTGAGGAACC
- S. acidocaldarius: IIAIEBDVSLTACGGAACCC
- C. subterraneum: KYYAVREDPILTACGGAAACG
- H. volcanii: RVTVEOQRTTAGGGAAATCC
- M. jannaschii: KVYVEILDKSLTACGGGAAAC
- T. kodakarensis: KVYAIEKCBRTATACGGGAAACC
- B. subtilis: KVVAFEBIQRLTATCGGAAACG
- E. coli: QLTVIELDRDLTACGGGAAACC

B. Relative abundance of m^A in amino acid 85 of Dim1p:

- E: 6.0
- D: 4.0
- G: 2.0
- A: 1.0
- V: 0.8
- L: 0.6
- I: 0.4
- M: 0.2
- W: 0.1
- F: 0.0
- S: 0.0
- T: 0.0
- C: 0.0
- Y: 0.0
- Q: 0.0
- K: 0.0
- R: 0.0

C. Relative intensity of m^A over time (min):

- 15 min: WT: 2.5; E85D: 3.0; D87E: 2.2; E85D-D87E: 2.0
- 17 min: WT: 1.5; E85D: 1.0; D87E: 1.2; E85D-D87E: 1.0

D. Relative abundance of m^A under sulfate conditions:

- + sulfate: WT: 5.0; E85D: 3.0; D87E: 2.0; E85D-D87E: 1.0
- - sulfate (2h): WT: 1.0; E85D: 1.0; D87E: 1.0; E85D-D87E: 1.0

E. Relative fitness to WT (mean ± s.d.):

- E85D: 0.977 ± 0.006
- D87E: 0.966 ± 0.011
- E85Q: 0.877 ± 0.005

F. Relative abundance of RNA, monosome, and polysome under sulfate conditions:

- + sulfate: m^A
- - sulfate (2h): m^A

(legend on next page)
increase of m\(^6\)A in all three cell lines (Figure 2H), suggesting that both yeast and mammalian cells sense sulfur starvation to increase m\(^6\)A in their 18S rRNA. These observations also imply that m\(^6\)A might be functionally important under sulfur starvation.

m\(^6\)A and m\(^5\)A in 18S rRNA are not functionally equivalent

Investigating the functional role of m\(^6\)A necessitates a mutant Dim1p that ideally installs only m\(^5\)A, but not m\(^6\)A. Sequence alignment from 20 phylogenetically diverse species revealed two universally conserved residues, E85 and D87, in Dim1 homologs, as well as the GAA triplet in SSU rDNA (18S rDNA or 16S rDNA), in which the two adenosines are modified as m\(^6\)A or m\(^5\)A (Figure 3A). Inspired by the E85A mutant (Figure S2D), we sought to systematically mutate the glutamic acid to encompass all possible changes at the 85 position. Substitution with small amino acids, e.g., glycine and serine, eliminated m\(^6\)A but largely spared m\(^5\)A (Figure 3B). By contrast, replacement with bulky amino acids inactivated Dim1p (Figure 3B). Surprisingly, a conservative change of glutamic acid to aspartic acid led to an approximately nine-fold increase of m\(^5\)A and a commensurate decrease of m\(^6\)A (Figures 3C–3D). A reciprocal change at the 87 position (D87E) resulted in even more pronounced elevation of m\(^6\)A (Figures 3C and 3D). Simultaneous introduction of the E85D and D87E substitutions appeared to convert Dim1p into a mono-methyltransferase (Figures 3C and 3D). None of these mutants were able to boost m\(^5\)A levels in response to sulfate starvation (Figure S3D). Collectively, these observations suggest that the E85 and D87 residues of Dim1p are critical for determining methylation multiplicity at A1781/A1782 of 18S rRNA and for relaying a deficiency in sulfur availability to an increase in m\(^5\)A levels.

Although our search for an m\(^5\)A-only Dim1p was unsuccessful, we found the E85D and D87E mutants useful for inferring the functions of m\(^6\)A at A1781/A1782. The remarkable conservation of E85 and D87 in Dim1 homologs suggests that these two residues are so crucial that few changes were tolerated during evolution. Consistent with this idea, mutating these two residues, even in the form of conservative changes such as E85D and D87E, invariably reduced cellular fitness (Figure 3E). Because the abundance of Dim1p was not obviously affected by these mutations (Figure S3E), one likely explanation for the preservation of E85 and D87 is to maintain high stoichiometry of m\(^5\)A and to relay sulfur availability to m\(^5\)A levels. This interpretation would further imply that m\(^6\)A and m\(^5\)A at A1781/A1782 may not be functionally equivalent.

Regulation of translation by m\(^6\)A in 18S rRNA

Given the proximity of m\(^6\)A and m\(^5\)A to the ribosome peptidyl site (P site) (Figure S4A) (Hussain et al., 2014; Tesina et al., 2019) and the DGS (Sharma and Lafontaine, 2015), we speculated that the number of methyl groups might affect translation differentially. To test this hypothesis, we first verified that m\(^5\)A-bearing ribosomes are translation competent (Figures 3F and S4B). Next, we performed polysome profiling to qualitatively examine translation under methionine-replete and methionine-starvation conditions. Three strains were compared: wild type (WT) (~3% m\(^6\)A with methionine and ~10% m\(^6\)A without methionine), the D87E mutant (~80% m\(^5\)A irrespective of methionine availability), and the E85Q mutant (no detectable m\(^6\)A or m\(^5\)A under either condition). With methionine, the D87E mutant was highly similar to WT, whereas the E85Q mutant accumulated higher levels of the large subunit (LSU) (Figure S5A), a manifestation of defective SSU biogenesis. Consistently, the E85Q mutant accumulated slightly less SSU (Figure S5B) and showed mild defects in rRNA processing (Figures S6A and S6B). Dim1p is reportedly required for early pre-rRNA processing at A1 and A2, and its depletion reduces 2OS and 27SA pre-rRNA but increases 33/32S and 22S pre-rRNA (Lafontaine et al., 1995). Although the E85Q mutant bore resemblance to Dim1p depletion in rRNA processing, it accumulated rather than decreased 20S pre-rRNA (Figure S6B). This observation would argue against the notion that the E85Q mutation impairs cleavage at A1 and/or A2, because inhibition at either site or both is expected to severely reduce the 20S pre-rRNA. Moreover, it illustrates the challenges in uncoupling the methyltransferase activity of Dim1p from its rRNA processing functions (see Discussion). Nevertheless, without methionine, all three strains exhibited reduced polysomes and concomitant increase of monosomes (Figure S5A), indicative of global repression of translation under methionine starvation. Lastly, both yeast and mammalian cells appeared to restrict ribosome biogenesis when methionine is deficient (Figures S6C and S6D), consistent with a previous report (Wejksnora and Haber, 1974).

We next performed ribosome profiling (Ingolia et al., 2009) to quantitatively examine translation in the three strains under methionine-replete and methionine-starvation conditions.

Figure 3. m\(^6\)A and m\(^5\)A in 18S rRNA are not functionally equivalent

(A) Partial sequence alignment of Dim1 homologs and 18S (16S) rDNA. Highlighted are E85 and D87 of *S. cerevisiae* Dim1p and the two adenosines modified as m\(^6\)A or m\(^5\)A.

(B) E85 is a key determinant of the catalytic activity and methylation multiplicity of Dim1p. Data were acquired from the MBN protection assay using oKL204. Peak areas were normalized to that of ac\(^6\)C. Chromatograms of E (WT), W (E85W), Q (E85Q), and A (E85A) were also presented in Figures 1E and S2D.

(C) E85D and D87E mutations alter the methylation multiplicity of Dim1p. Chromatograms from the MBN protection assay using oKL204 were normalized to the peak area of ac\(^6\)C to allow comparison between samples.

(D) Quantification of m\(^6\)A and m\(^5\)A in 18S rRNA from dim1 mutants. Mean ± SD (n = 3–7 biological replicates). The p values were calculated using ordinary one-way ANOVA and Dunnett’s multiple comparison test with a single pooled variance. Data were also used for plotting Figure S3D (prestarvation).

(E) Dim1p E85D, D87E, and E85Q mutants have lower fitness than WT. Mean ± SD (n = 4–6 biological replicates). The p values were calculated using one-sample Student’s t test.

(F) m\(^5\)A-bearing ribosomes participate in active translation. The peak area of m\(^6\)A was normalized to that of ac\(^6\)C. Mean ± SD (n = 5–6 biological replicates). **p < 0.01, ***p < 0.001, ****p < 0.0001.

See also Figures S3, S4, and S6.
(Figure S7A). Because of its known artifacts (Geraschenko and Gladyshev, 2014; Hussmann et al., 2015; Santos et al., 2019), the translation inhibitor cycloheximide was excluded during sample harvest. Nevertheless, ribosome footprints were enriched in 28- to 29-mers as anticipated (Figure S7B), and excellent reproducibility was observed across ribosome profiling and RNA sequencing (RNA-seq) samples (Figure S7C). At the transcript level, the D87E mutant and WT were indistinguishable, irrespective of methionine availability (Figure S7D; Table S1). By contrast, the transcriptome of the E85Q mutant showed clear differences compared with WT in a methionine-dependent fashion (Figure S7D; Table S1). With methionine, 42 genes were significantly altered in the E85Q mutant (9 upregulated genes and 33 downregulated genes). The downregulated group includes several amino acid metabolism genes (e.g., MET13, MET17, STR3, and ARG1), as well as two SSU genes RPS9A and RPS22B (Figures S7D–S7F; Table S1). Although the rps9A_J and rps22B_J mutants resemble the E85Q mutant in polysome profiles (Figures S7G and S7H), loss of either gene did not lead to the rRNA processing defects observed in the E85Q mutant (Figure S7I). This observation would argue against their low expression as the reason for the defective rRNA processing in the E85Q mutant, although it may still contribute to the under-accumulation of SSU. Nevertheless, without methionine, the transcriptome-wide differences were more prominent between the E85Q mutant and the WT, with 402 genes showing significant changes (Figure S7D). Interestingly, ~54% (120/224) of the upregulated genes in the E85Q mutant encode the ribosome SSU and LSU (Table S1).

We next calculated TE (see STAR methods) to quantitatively examine translation in the three yeast strains. With methionine, 10 genes showed significantly altered TE in the E85Q mutant compared with WT (higher TE: GST9, FIG2, STR3, and YBR191W-A; lower TE: CHA1, FIT2, FIT3, KDX1, MAL31, and YER188C) (Figure 4A; Table S2). In the D87E mutant, we identified 16 significantly changed genes (lower TE: AGP3, FIT2, FIT3, GRX8, JLP1, MET2, MET3, MET28, MET32, MMP1, OPT1, PDC6, SOAT, SULT, SUL2, and YCT1) (Figure 4A; Table S2). Remarkably, 12 genes (underlined) are involved in sulfur metabolism, and none of them were significantly changed in the E85Q mutant (Figures 4A–4C; Table S2). This observation suggests that m6A at A1781/3A modifications reside close to the DCS, we speculated that loss of methylation might render ribosomes less sticky at cysteine codons despite limited cysteinyl-tRNA. Perhaps the unmethylated ribosomes are intrinsically prone to errors and could decode cysteine codons using their near-cognate aminoacyl-tRNAs, whose availability is unlikely to be limited by methionine starvation (Figure S8B). To test this hypothesis, we used a luciferase reporter (Figure 5D) (Salas-Marco and Bedwell, 2005) in which a histidine codon (CAC) critical for Firefly luciferase activity is mutated to an arginine encoded by its near-cognate codon CGC. This change severely reduces Firefly luciferase activity, which can be restored if the CGC codon is decoded by histidinyl-tRNA_{GUG}. With this reporter, we found that the E85Q mutant exhibited significantly higher decoding errors than WT and the D87E mutant (Figure 5E), similar to the previously reported BS5A mutant (Ghalei et al., 2017). As an important control, we found that disruption of RPS22B or RPS9A did not increase decoding errors (Figure 5F).

The E85Q mutant that lacks methylation at A1781/1782 fails to pause/stall at cysteine codons under methionine starvation

Lastly, we observed that methionine starvation led to strong pausing/stalling at cysteine codons within the ribosome aminoacyl site (A site) in WT and the D87E mutant, which strikingly was absent from the E85Q mutant that lacks both m6A and m5A (Figures 5A and 5B). Surprisingly, no pausing at the methionine codon was observed in any of the three strains. Methionine starvation is expected to lower many sulfurous metabolites, including cysteine, which may result in lower cysteinyl-tRNA amounts to cause ribosome pausing/stalling at cysteine codons. Indeed, many sulfurous metabolites plummeted under methionine starvation, but surprisingly, the E85Q mutant was able to maintain higher levels of cysteine, homocysteine, cystathionine, reduced glutathione (GSH), and oxidized glutathione (GSSG) (Figure 5C). Other amino acids were not necessarily increased in the E85Q mutant, suggesting that the higher levels of sulfurous metabolites are not simply due to its slower growth rate (Figures 3E, S8A, and S8B). Nevertheless, although the slightly increased cysteine amounts (~60%) might increase cysteinyl-tRNA to alleviate pausing/stalling, the E85Q mutant still exhibited a substantial reduction of cysteine under methionine starvation (Figure 5C), which led us to consider additional explanations for its lack of pausing/stalling at cysteine codons.

Given that the tandem m5A modifications reside close to the DCS, we speculated that loss of methylation might render ribosomes less sticky at cysteine codons despite limited cysteinyl-tRNA. Perhaps the unmethylated ribosomes are intrinsically prone to errors and could decode cysteine codons using their near-cognate aminoacyl-tRNAs, whose availability is unlikely to be limited by methionine starvation (Figure S8B). To test this hypothesis, we used a luciferase reporter (Figure 5D) (Salas-Marco and Bedwell, 2005) in which a histidine codon (CAC) critical for Firefly luciferase activity is mutated to an arginine encoded by its near-cognate codon CGC. This change severely reduces Firefly luciferase activity, which can be restored if the CGC codon is decoded by histidinyl-tRNA_{GUG}. With this reporter, we found that the E85Q mutant exhibited significantly higher decoding errors than WT and the D87E mutant (Figure 5E), similar to the previously reported BS5A mutant (Ghalei et al., 2017). As an important control, we found that disruption of RPS22B or RPS9A did not increase decoding errors (Figure 5F). Moreover, we deleted the TSR3 gene, which encodes the aminocarboxypropyl transferase for the N¹-methyl-N²-aminocarboxypropyl pseudouridine (m₁acp₃) modification in yeast 18S rRNA (Meyer et al., 2016). Its deletion causes rRNA processing defects (Li et al., 2009) reminiscent of those observed in the E85Q mutant (Figure S8C). The tsr3Δ mutant showed similar decoding fidelity compared with WT cells (Figure 5G). Collectively, these results suggest that the increased decoding errors in the E85Q mutant likely stem from the absence of methylation at A1781/A1782,
Figure 4. Translational regulation of sulfur metabolism genes via methylation multiplicity
(A) Change of translation efficiency (TE) under methionine-replete and methionine-starvation conditions. A 10% false discovery rate (FDR) (−log10(Padj) ≥ 1) and 2-fold change of TE (log2(TE fold change) ≥ 1 or log2(TE fold change) ≤ −1) are considered significant, and genes with significantly changed TE are highlighted in black.
(B) Representative tracks of ribosome footprint (RFP) and mRNA for JLP1, YCT1, MET3, and RPN10. Two biological replicates for each genotype are shown, and tracks are comparable only within each RFP or RNA group.
(C) Simplified schematic of yeast sulfur metabolism. Highlighted are proteins whose transcripts are translated with significantly lower TE in the D87E mutant under methionine-replete conditions.
(D) Impact of methionine starvation on TE and mRNA levels of sulfur metabolism genes listed in (C). The p values were calculated using two-sided Mann-Whitney test. ****p < 0.0001.
See also Figures S5–S7 and Tables S1, S2, and S3.
rather than rRNA processing defects. Loss of methylation at these tandem adenosines may facilitate decoding of cysteine codons at the cost of translation fidelity to alleviate pausing/stalling under methionine starvation. This interpretation might also explain the attenuated pausing/stalling at CCG (proline) and CGA (arginine) codons in the E85Q mutant (Figure 5A), because both are rare codons without their cognate tRNAs (Fuller et al., 2010).

DISCUSSION

Methylation multiplicity as a mechanism to diversify ribosomes to regulate translation

Ribosomes have long been perceived as a homogeneous population. However, it has become evident that they may exist as a group of heterogeneous entities, with respect to not only their protein subunit composition but also modifications of these subunits and rRNA (Brygazov et al., 2013; Dinman, 2016; Genuith and Barna, 2018). Here, we present another example of ribosome heterogeneity in the form of rRNA methylation via methylation multiplicity. The presence of m^6^A at the conserved tandem adenosines in 18S rRNA, together with m^6^A^2^C, increases the complexity of the SSU. By conducting a comprehensive mutagenesis analysis, we were able to increase m^6^A levels in bulk by introducing an E85D or D87E mutation to Dim1p (Figures 3B–D). Such conservative changes by a single methylene group (-CH_2-) minimize perturbations that could be inadvertently introduced to the cell. Analyses of polysome and ribosome subunit profiles (Figures S5A and S5B), rRNA processing (Figure S6B), the transcriptome (Figure S7D), intracellular metabolites (Figures 5C and S6B), and 18S rRNA modifications (Figure S8D) indicate that the D87E mutant is virtually indistinguishable from WT. Still, this mutant bearing more m^6^A in its ribosomes carries out translation distinctly compared with WT cells, featuring a striking specificity for sulfur metabolism genes and a peculiar dependency on sulfur availability (Figures 4A–4C). It is unclear how this specificity is determined, although all of these genes are heavily induced at the transcriptional level by methionine starvation (Figure 4D; Table S3). Perhaps a cis-regulatory element is embedded in their transcripts to confer the specificity, as reported previously (Xue et al., 2015). However, ongoing bioinformatic investigation has yet to identify promising candidates. In addition, trans-acting factors (e.g., RNA-binding proteins) might assist in determining the specificity (Leppel et al., 2018).

With respect to the sulfur dependency, two outstanding questions remain. The first concerns how sulfur metabolism transcripts are translated with higher TE in the D87E mutant under methionine starvation (Figure 4D), when global translation is repressed (Figure S5A). One possible explanation is that m^6^A-bearing SSU might function more efficiently using non-canonical translation pathways, e.g., internal ribosome entry site (IRES)-mediated translation, which is known to operate under stress conditions (Gilbert et al., 2007; Holcik and Sonenberg, 2005; Spriggs et al., 2008). Under methionine-replete conditions, m^6^A-bearing SSU might be inefficient at translating sulfur metabolism transcripts using the canonical cap-dependent pathway, perhaps because of the presence of IRES in their 5’ untranslated regions. Under methionine starvation, cap-dependent translation may be inhibited because of methionine scarcity. m^6^A-bearing SSU, perhaps with assistance from IRES trans-acting factors (King et al., 2010; Komar and Hatzoglou, 2011), might be able to efficiently recognize IRES within these sulfur metabolism transcripts to support their translation during methionine starvation.

The second question concerns the dependency of the TE differences between the WT and the D87E mutant on methionine availability (Figure 4A). Because translation of these sulfur metabolism transcripts is seemingly reliant on methionine deprivation in the D87E mutant (Figure 4D), we speculate that they might be translated predominantly by m^6^A-bearing ribosomes in WT under methionine starvation. A single yeast cell is estimated to contain ~200,000 ribosomes (von der Haar, 2008; Warner, 1999), and a stoichiometry of ~10% would equal ~20,000 m^6^A-bearing ribosomes in methionine-starved WT cells. If the yeast transcriptome comprises ~60,000 mRNA molecules (Zenklusen et al., 2006), there should be sufficient m^6^A-bearing ribosomes for these sulfur metabolism transcripts.

Functional importance of the tandem m^6^A modifications

Modified ribonucleosides are prevalent in rRNAs. Because many of them reside in structurally important positions within the ribosome (Sloan et al., 2017), it is perhaps not surprising that rRNA modifications have been shown to play key roles in maintaining translation efficiency and translation accuracy (Baudin-Baillieu et al., 2009; Jack et al., 2011; King et al., 2003; Lafontaine et al., 1998; Liang et al., 2009; Ma et al., 2019; Schosserer et al., 2015). rRNA modifications can also be selectively impactful, because some appear to regulate translation of only a subset of mRNAs, such as rRNA pseudouridylation (Bellodi et al., 2010a, 2010b, 2010c).
Among all known rRNA modifications, the tandem m6A modifications are remarkably conserved; they are found almost universally at the 3′ end of SSU rRNA (Rife, 2009; Van Knippenberg et al., 1984), which situates them close to the ribosome P site (Figure S4A) and the DCS (Sharma and Lafontaine, 2015). Despite their conservation and occupation of a structurally important location, the functional importance of the tandem m6A modifications remains incompletely understood. One obstacle is that Dim1p (and its homologs) is a dual-function protein required for both m6A methylation and rRNA processing (Connolly et al., 2008; Lafontaine et al., 1995; Zorbas et al., 2015), and a dim1 mutant that completely uncouples these two functions has hitherto been elusive (see Limitations of study). A previous study showed that cellular extract from a dim1-2 mutant was incompetent at translating reporter genes (Lafontaine et al., 1998). Although some defects may result from the loss of m6A, effects of impaired rRNA processing in the dim1-2 mutant have not been excluded. In our work, some changes in the E85Q mutant in the ribosome profiling and RNA-seq experiments (Figures 4A and S7D), as well as the growth assays (Figures 3E and S8A), may stem from rRNA processing defects. However, we have performed important controls to rule out defects in SSU biogenesis and rRNA processing as an explanation for the increased decoding errors in the E85Q mutant (Figures 5F and 5G). In closing, the tandem m6A modifications are important for ensuring translational fidelity and possibly for pausing/stalling at cysteine codons under methionine starvation. Nonetheless, these and other phenotypes of the E85Q mutant, such as changes in transcript levels or translational efficiency, could be secondary and compensatory because of defects in rRNA processing and/or SSU biogenesis.

STAR METHODS

Detailed methods are provided in the online version of this paper and include the following:

- **KEY RESOURCES TABLE**
- **RESOURCE AVAILABILITY**
 - Lead contact
 - Materials availability
 - Data and code availability
- **EXPERIMENTAL MODEL AND SUBJECT DETAILS**
 - Yeast strains and growth conditions
 - Mammalian cell lines and growth conditions
- **METHOD DETAILS**
 - Total RNA isolation
 - RNA fractionation
 - Estimation of stoichiometry of m6A in yeast 18S rRNA
 - Mung bean nuclease (MBN) protection assay
 - LC-MS/MS detection of nucleosides
 - LC-MS/MS detection of metabolites
 - Competition assay
 - Dual-liciferase assay
 - Polysome profiling
 - Western blot
 - Northern blot
 - Ribosome profiling
 - Sequencing data analysis
 - Metacodon analysis
- **QUANTIFICATION AND STATISTICAL ANALYSIS**

SUPPLEMENTAL INFORMATION

Supplemental Information can be found online at https://doi.org/10.1016/j.celrep.2021.108825.

ACKNOWLEDGMENTS

We thank Dr. David Bedwell from University of Alabama at Birmingham for the generous gifts of pDB722 and pBB888. We also thank Dr. Juan Manuel

The following references appear in the supplemental information: Calvo et al. (1999); Guelen et al. (2002); Keeling et al. (2004); Miller et al. (2013); Taoka et al. (2016); Voth et al. (2001).

REFERENCES

Agrawal, S.D., Blitzblau, H.G., Hochwagen, A., and Fink, G.R. (2012). RNA methylation by the MII complex regulates a cell fate decision in yeast. PLoS Genet. 8, e1002732.

Alarcon, C.R., Goodarzi, H., Lee, H., Liu, X., Tavazoie, S., and Tavazoie, S.F. (2015a). HNRNPCAB1 is a mediator of m(6)A-dependent nuclear RNA processing events. Cell 162, 1299–1308.

Alarcon, C.R., Lee, H., Goodarzi, H., Halberg, N., and Tavazoie, S.F. (2015b). N(6)-methyladenosine marks primary microRNAs for processing. Nature 519, 482–485.

Andersen, T.E., Porse, B.T., and Kirpekar, F. (2004). A novel partial modification at G2501 in Escherichia coli 23S ribosomal RNA. RNA 10, 907–915.

Atkinson, D. (1977). Cellular energy metabolism and its regulation (Academic Press), p. 75.

Basu, A., Das, P., Chaudhuri, S., Beilacqua, E., Andrews, J., Barik, S., Hatzoglou, M., Komar, A.A., and Mazumder, B. (2011). Requirement of RNA methylation for 80S ribosome assembly on a cohort of cellular internal ribosome entry sites. Mol. Cell. Biol. 31, 4482–4499.

Baudin-Baillieu, A., Fabret, C., Liang, X.H., Piekna-Przybylska, D., Fournier, M.J., and Rouset, J.P. (2009). Nucleotide modifications in three functionally important regions of the Saccharomyces cerevisiae ribosome affect translation accuracy. Nucleic Acids Res. 37, 7665–7677.

Bellodi, C., Kompar, N., and Ruggero, D. (2010a). Deregelation of oncogene-induced senescence and p53 translational control in X-linked dyskeratosis congenita. EMBO J. 29, 1865–1876.

Bellodi, C., Krasnykh, O., Haynes, N., Theodoropoulou, M., Peng, G., Montanaro, L., and Ruggero, D. (2010b). Loss of function of the tumor suppressor DKC1 perturbs p27 translation control and contributes to pituitary tumorigenesis. Cancer Res. 70, 6026–6035.

Boccaletto, P., Machnicka, M.A., Purta, E., Platkowski, P., Baginski, B., Wiricki, T.K., de Crécy-Lagard, V., Ross, R., Limbach, P.A., Kotter, A., et al. (2018). MODOMICS: a database of RNA modification pathways. 2017 update. Nucleic Acids Res. 46 (D1), D303–D307.

Bodi, Z., Button, J.D., Grierson, D., and Fray, R.G. (2010). Yeast targets for mRNA methylation. Nucleic Acids Res. 38, 5327–5335.

Bokar, J.A., Rath-Shambaugh, M.E., Ludwiczak, R., Narayan, P., and Rottman, F. (1994). Characterization and partial purification of mRNA N6-adenosine methyltransferase from HeLa cell nuclei. Internal mRNA methylation requires a multisubunit complex. J. Biol. Chem. 269, 17697–17704.

Bokar, J.A., Shambaugh, M.E., Polayes, D., Matera, A.G., and Rottman, F.M. (1997). Purification and cDNA cloning of the AdoMet-binding subunit of the human mRNA (N6-adenosine)-methyltransferase. RNA 3, 1233–1247.

Brar, G.A., Yassour, M., Friedman, N., Regev, A., Ingolia, N.T., and Weissman, J.S. (2012). High-resolution view of the yeast meiotic program revealed by ribosome profiling. Science 335, 552–557.

Bygazov, K., Vesper, O., and Moll, I. (2013). Ribosome heterogeneity: another level of complexity in bacterial translation regulation. Curr. Opin. Microbiol. 16, 133–139.

Calvo, O., Cuesta, R., Anderson, J., Gutierrez, N., Garcia-Barrio, M.T., Hinnebusch, A.G., and Tamase, M. (1999). GCD14p, a repressor of GCN4 translation, cooperates with Gcd10p and Lhp1p in the maturation of initiator methionyl-tRNA in Saccharomyces cerevisiae. Mol. Cell. Biol. 19, 4167–4181.

Castrillo, J.J., Hayes, A., Mohammed, S., Gaskell, S.J., and Oliver, S.G. (2003). An optimized protocol for metabolome analysis in yeast using direct infusion electrospray mass spectrometry. Phytochemistry 62, 929–937.

Clancy, M.J., Shambaugh, M.E., Timpte, C.S., and Bokar, J.A. (2002). Induction of sporulation in Saccharomyces cerevisiae leads to the formation of N(6)-methyladenosine in mRNA: a potential mechanism for the activity of the IME4 gene. Nucleic Acids Res. 30, 4509–4518.

Connolly, K., Rife, J.P., and Culver, G. (2008). Mechanistic insight into the ribosome biogenesis functions of the ancient protein KsgA. Mol. Microbiol. 70, 1062–1075.

Desrosiers, R., Friderici, K., and Rottman, F. (1974). Identification of methylated nucleosides in messenger RNA from Novikoff hepatoma cells. Proc. Natl. Acad. Sci. USA 71, 3971–3975.

Dinnman, J.D. (2016). Pathways to specialized ribosomes: the Brussels lecture. J. Mol. Biol. 428 (10 Pt B), 2186–2194.

Dunn, J.G., and Weissman, J.S. (2016). Plastid: nucleotide-resolution analysis of next-generation sequencing and genomics data. BMC Genomics 17, 958.

Engel, J.D. (1975). Mechanism of the Dimroth rearrangement in adenosine. Biochem. Biophys. Res. Commun. 64, 581–586.

Erales, J., Marchand, V., Panthu, B., Gillot, S., Belin, S., Ghayad, S.E., Garcia, M., Laforêtres, F., Marcel, V., Baudin-Baillieu, A., et al. (2017). Evidence for rRNA 2‘-O-methylation plasticity: Control of intrinsic translational capabilities of human ribosomes. Proc. Natl. Acad. Sci. USA 114, 12934–12939.

Gennuth, N.R., and Barna, M. (2018). The discovery of ribosome heterogeneity and its implications for gene regulation and organismal life. Mol. Cell 71, 364–374.

Gerashchenko, M.V., and Gladyshev, V.N. (2014). Translation inhibitors cause abnormalities in ribosome profiling experiments. Nucleic Acids Res. 42, e134.

Geula, S., Moschitch-Moshkovitz, S., Dominissini, D., Mansour, A.A., Kol, N., Salmon-Divon, M., Hershkovitz, V., Peer, E., Mor, N., Manor, Y.S., et al. (2015). m(6)A mRNA methylation facilitates resolution of naïve pluripotency to differentiation. Science 347, 1002–1006.

Ghalei, H., Trepreau, J., Collins, J.C., Bhaskaran, H., Strunk, B.S., and Karbaker, Z., Button, J.D., Grierson, D., and Fray, R.G. (2010). Yeast targets for mRNA methylation. Nucleic Acids Res. 38, 5327–5335.

Gibson, D.G., Young, L., Chuang, R.Y., Venter, J.C., Hutchinson, C.A., 3rd, and Smith, H.O. (2009). Enzymatic assembly of DNA molecules up to several hundred kilobases. Nat. Methods 6, 343–345.
Gilbert, W.V., Zhou, K., Butler, T.K., and Doudna, J.A. (2007). Cap-independent translation is required for starvation-induced differentiation in yeast. Science 317, 1224–1227.

Gokhale, N.S., McIntyre, A.B.R., McFadden, M.J., Roder, A.E., Kennedy, E.M., Gandara, J.A., Hobcraft, S.E., Quicke, K.M., Vazquez, C., Willer, J., et al. (2016). N2-methyadenosine in Flaviviridae viral RNA genomes regulates infection. Cell Host Microbe 20, 654–665.

Gonzalez, B., Francois, J., and Renaud, M. (1997). A rapid and reliable method for metabolite extraction in yeast using boiling buffered ethanol. Yeast 13, 1347–1355.

Gueldeker, U., Heinisch, J., Koehler, G.J., and Tollervey, D. (1995). The 18S rRNA dimethylase Dim1p: a quality control mechanism in ribosome synthesis? Mol. Cell. Biol. 15, 2360–2370.

Lafontaine, D.L., Preiss, T., and Tollervey, D. (1998). Yeast 18S RNA dimethylation Dim1p: a quality control mechanism in ribosome synthesis? Mol. Cell. Biol. 18, 2360–2370.

Laxman, S., Sutter, B.M., Wu, X., Kumar, S., Guo, X., Trudgian, D.C., Mirzaei, H., and Tu, B.P. (2013). Sulfur amino acids regulate translational capacity and metabolic homeostasis through modulation of rRNA titillation. Cell 154, 416–429.

Leppek, K., Das, R., and Barna, M. (2018). Functional 5' UTR mRNA structures in eukaryotic translation regulation and how to find them. Nat. Rev. Mol. Cell Biol. 19, 158–174.

Li, Z., Lee, I., Moradi, E., Hung, N.J., Johnson, A.W., and Marcotte, E.M. (2009). Rational extension of the ribosome biogenesis pathway using network-guided genetics. PLoS Biol. 7, e1000213.

Liang, X.H., Liu, Q., and Fournier, M.J. (2009). Loss of rRNA modifications in the decoding center of the ribosome impairs translation and strongly delays pre-rRNA processing. RNA 15, 1716–1728.

Liberman, N., O’Brown, Z.K., Earl, A.S., Bouillas, K., Gerashchenko, M.V., Wang, S.Y., Fritsche, C., Fady, P.E., Dong, A., Gladyshev, V.N., and Greer, E.L. (2020). N5-adenosine methylation of ribosomal RNA affects lipid oxidation and stress resistance. Sci. Adv. 6, eaaz4370.

Liu, N., Parisien, M., Dai, Q., Zheng, G., He, C., and Pan, T. (2013). Probing N2-methyadenosine RNA modification status at single nucleotide resolution in mRNA and long noncoding RNA. RNA 19, 1852–1866.

Liu, J., Yue, Y., Han, D., Wang, X., Fu, Y., Zhang, L., Jia, G., Yu, M., Lu, Z., Deng, X., et al. (2014). A METTL3-METTL14 complex mediates mammalian nuclear RNA N2-adenosine methylation. Nat. Chem. Biol. 10, 93–95.

Liu, N., Dai, Q., Zheng, G., He, C., Parisien, M., and Pan, T. (2015). N5-adenosine-dependent RNA structural switches regulate RNA-protein interactions. Nature 518, 586–590.

Longtine, M.S., McKenzie, A., 3rd, Demarini, D.J., Shah, N.G., Wach, A., Brachat, A., Philppsen, P., and Pringle, J.R. (1998). Additional modules for versatile and economical PCR-based gene deletion and modification in Saccharomyces cerevisiae. Yeast 14, 953–961.

Love, M.I., Huber, W., and Anders, S. (2014). Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 550.

Ma, H., Wang, X., Cai, J., Dai, Q., Natchiar, S.K., Lv, R., Chen, K., Lu, Z., Chen, H., Shi, Y.G., et al. (2019). N6-Methyadenosine methyltransferase ZCCHC4 mediates ribosomal RNA methylation. Nat. Chem. Biol. 15, 88–94.

Macon, J.B., and Wolfenden, R. (1968). 1-Methyladenosine. Dimroth rearrangement and irreversible reduction. Biochemistry 7, 3453–3458.

Marcel, V., Ghayad, S.E., Belin, S., Therios, G., Morel, A.P., Solano-González, E., Vennrell, J.A., Hacot, S., Mertani, H.C., Albaret, M.A., et al. (2013). p53 acts as a safeguard of translational control by regulating fibrillarin and rRNA methylation in cancer. Cancer Cell 24, 318–330.

Masek, T., Vášářek, L., and Pospíšek, M. (2011). Polysome analysis and RNA purification from sucrose gradients. Methods Mol. Biol. 703, 293–309.

McGlinchey, N.J., and Ingolia, N.T. (2017). Transcriptome-wide measurement of translation by ribosome profiling. Methods 126, 112–129.

Meyer, B., Wurm, J.P., Sharma, S., Immer, C., Pogoryelov, D., Köttler, P., Lafontaine, D.L., Wöhnert, J., and Entian, K.D. (2016). Ribosome biogenesis factor Tsr5 is the aminocarboxypropyl transferase responsible for 18S rRNA hypermodification in yeast and humans. Nucleic Acids Res. 44, 4304–4316.

Mikkelsen, M.D., Buron, L.D., Salomonsen, B., Olsen, C.E., Hansen, B.G., Mortensen, U.H., and Haaker, B.A. (2012). Microbial production of indolylglycosinate through engineering of a multi-gene pathway in a versatile yeast expression platform. Metab. Eng. 14, 104–111.

Miller, A.W., Befort, C., Kerr, E.O., and Dunham, M.J. (2013). Design and use of multiplexed chemostat arrays. J. Vis. Exp. 72, e50262.

Motorn, Y., and Helm, M. (2011). RNA nucleotide methylation. Wiley Interdiscip. Rev. RNA 2, 611–631.

O’Farrell, H.C., Musayev, F.N., Scarsdale, J.N., and Rife, J.P. (2010). Binding of adenosine-based ligands to the MjDim1 rRNA methyltransferase: implications for reaction mechanism and drug design. Biochemistry 49, 2697–2704.
STAR★METHODS

KEY RESOURCES TABLE

REAGENT or RESOURCE	SOURCE	IDENTIFIER
Antibodies		
Mouse monoclonal anti-FLAG antibody	Sigma	Cat#F1804
Rabbit polyclonal anti-G6pdh antibody	Sigma	Cat#A9521
Rabbit polyclonal anti-Rpn10 antibody	Abcam	Cat#ab98843
Chemicals, peptides, and recombinant proteins		
Nuclease P1 from *Penicillium citrinum*	Sigma	Cat#N8630
Phusion® High-Fidelity DNA Polymerase	New England Biolabs	Cat#M0530S
DpnI	New England Biolabs	Cat#R0176S
RNase A	Lucigen	Cat#MRNA092
Phosphodiesterase I from *Crotalus atrox*	Sigma	Cat#P4506
Alkaline phosphatase calf intestinal	New England Biolabs	Cat#M0290
Mung bean nuclease	New England Biolabs	Cat#M0250L
Critical commercial assays		
RPMI-1640	GIBCO	Cat#A14517-01
DMEM	GIBCO	Cat#21013-024
Fetal bovine serum	Sigma	Cat#F6178
Yeast nitrogen base without amino acids	BD Difco	Cat#BD233520
complete EDTA-free protease inhibitor cocktail tablets	Roche	Cat#11873580001
Chemiluminescent nucleic acid detection module kit	Thermo Fisher	Cat#89880
D-Tube Dialyzer Mini (MWCO 6-8 kDa)	EMD Millipore	Cat#71-504-3
Dual-Luciferase® Reporter assay system	Promega	Cat#E1910
NucleoSpin® gel and PCR clean-up kit	Takara	Cat#740609
PureLink miRNA isolation kit	Invitrogen	Cat#K157001
NuPAGE 4-12% polyacrylamide Bis-Tris Gels	Invitrogen	Cat#WG1403BX10
Ribo-Zero Gold for yeast	Illumina	Cat#MRZY1306
Dynabeads mRNA purification kit	Invitrogen	Cat#61006
Deposited data		
Raw and analyzed data	This paper	GEO: GSE142528
Experimental models: cell lines		
HeLa	ATCC	Cat#CCL-2
Lenti-X 293T	Takara	Cat#632180
3T3	ATCC	Cat#CRL-1658
Experimental models: organisms/strains		
CEN.PK MATa	van Dijken et al., 2000	NA
CEN.PK MATa/α	van Dijken et al., 2000	NA
S288C MATa	ATCC	Cat#204508
W303 MATa	Korolev et al., 2012	NA
A full list of yeast mutant strains is provided in Table S4	NA	NA
Oligonucleotides		
A full list of oligos is provided in Table S4	NA	NA
Recombinant DNA		
A full list of plasmids is provided in Table S4	NA	NA

(Continued on next page)
RESOURCE AVAILABILITY

Lead contact
Further information and requests for resources and reagents should be directed to and will be fulfilled by the Lead Contact, Benjamin Tu (benjamin.tu@utsouthwestern.edu).

Materials availability
Reagents are available upon request from the Lead Contact.

Data and code availability
All sequencing data have been deposited in Gene Expression Omnibus with the accession number GEO: GSE142528.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Yeast strains and growth conditions
Prototrophic CEN.PK Saccharomyces cerevisiae (van Dijken et al., 2000) was used for strain construction (Table S4), using the lithium acetate based transformation protocol (Longtine et al., 1998). Unless otherwise stated, yeast strains were grown in SD medium containing 20 g L⁻¹ glucose and 6.7 g L⁻¹ yeast nitrogen base without amino acids (BD Difco) at 30 °C and 300 rpm. For nutrient starvation experiments, medium formulas are listed in Table S5. Plasmids were constructed using the Gibson assembly protocol (Gibson et al., 2009) and site directed mutagenesis was performed using Phusion HF polymerase (NEB) with primers bearing the desired mutations (Table S4), followed by DpnI (NEB) digestion and subsequent transformation into E. coli DH5α. All the plasmids were verified by DNA sequencing.

Mammalian cell lines and growth conditions
All cell lines (HeLa, HEK293T, and 3T3, see Key resources table for details) were cultured in a Heracell humidified incubator (Thermo-fisher, HERAcell 150i) at 37 °C with 5% CO₂. HeLa cells were maintained in RPMI-1640 (GIBCO A14517-01), and 3T3 and HEK293T cells in DMEM (GIBCO 21013-024). Both media were supplemented with the required amino acids and 5% fetal bovine serum (Sigma F6178). When confluency reached ~80%, cells were washed with PBS twice and subsequently cultured in either RPMI-1640 (GIBCO A14517-01) or DMEM (GIBCO 21013-024) with or without methionine. After six hours, cells were harvested and total RNA was isolated using the TRizol reagent (Invitrogen, Thermo Fisher), as described below.

METHOD DETAILS

Total RNA isolation
Yeast cell pellet stored at −80 °C was thawed on ice and washed with ice-cold sterile water once. TES (10 mM Tris–HCl pH 7.5, 10 mM EDTA pH 8.0, and 0.5% SDS) was added to resuspend the cell pellet followed by addition of an equal volume of acidic phenol (pH 4.3). Cells were lysed using acid-washed glass beads on a bead beater (two cycles of one-minute beating followed by one-minute cooling on ice). Cell debris and glass beads were removed by centrifugation. The aqueous phase was transferred into a clean centrifuge tube and extracted with an equal volume of acidic phenol, followed by a third extraction with chloroform to remove the residual phenol. RNA was ethanol precipitated, washed with 70% ethanol, and dried before finally being dissolved in nuclease-free water. Purified RNA was examined electrophoretically and quantified spectrophotometrically.

Mammalian RNA was isolated using the TRizol reagent (Invitrogen, Thermo Fisher). Briefly, 2 mL TRizol was dispensed into 15-cm dish and cell suspension was collected by pipetting. Cell pellet was either stored at −80 °C or processed immediately. To 1 mL TRizol cell suspension, 200 μL chloroform was added. The mixture was vortexed vigorously and centrifuged. The aqueous phase was transferred to a clean centrifuge tube with 600 μL isopropanol and precipitated on ice. RNA was pelleted by centrifugation and washed with 70% ethanol once to remove salts. RNA was then resuspended in nuclease-free water and digested with DNase I to remove
This assay was performed as described previously (Andersen et al., 2004; Peifer et al., 2013; Sharma et al., 2013) with some modifications. A total of 4 µL of RNA was purified using the PureLink miRNA isolation kit (Invitrogen) and polyA+ RNA was isolated using the Dynabeads mRNA isolation kit (Invitrogen) following the manufacturers’ instructions. To isolate 18S and 25S rRNA, we mixed total RNA with an equal volume of 8 M urea, 60% v/v, buffered with 10 mM Tricine to pH 7.4 and heated at 80°C for three hours before 7 M acidic buffer (0.1 M sodium acetate, 20 mM ZnCl₂, pH 7.8) was added, followed by the addition of 5 µg RNase A and 5 µg RNase P1 (Sigma). Digestion was carried out at 37°C for four hours before 7 M of basic buffer (0.3 M sodium acetate, pH 7.8) was added. The digestion mixture was further treated with 10 U alkaline phosphatase (calf intestine, NEB) and 5 U 8 mg ml⁻¹ snake venom phosphodiesterase I (Sigma) overnight to maximize digestion and dephosphorylation efficiency. The digested samples were separated on a Synergi Fusion-RP column (4 µm particle size, 80 Å pore size, 150 mm × 2 mm, Phenomenex) using a Shimadzu high performance liquid chromatography (HPLC) machine and simultaneously detected under positive mode by a triple quadrupole mass spectrometer (3200 QTRAP, ABSCIEX). The total run time was 25 minutes at a flow rate of 0.5 mL min⁻¹, with 5 mM ammonium acetate (pH 5.5) in water as solvent A and 5 mM ammonium acetate in methanol as solvent B. The following gradient elution was performed: 0.01 min, 0% B, 4 min, 0% B, 5 min, 0.2% B, 6 min, 1% B, 7 min, 3% B, 8 min, 5% B, 14 min, 25% B, 16 min, 50% B, 18 min, 100% B, 22 min, 100% B, 23 min, 0% B, 25 min, 0% B. Ribonucleosides were quantified using the Analyst software package 1.6.2 or 1.6.3 by calculating the total peak area. For each experiment, authentic standards were injected and analyzed alongside samples.

DNA. DNase I was subsequently removed using phenol (pH 4.3):chloroform (1:1) extraction and RNA was recovered by ethanol precipitated. RNA was washed once with 70% ethanol and resuspended in nuclease-free water.

RNA fractionation

Small RNA was purified using the PureLink miRNA isolation kit (Invitrogen) and polyA⁺ RNA was isolated using the Dynabeads mRNA isolation kit (Invitrogen) following the manufacturers’ instructions. To isolate 18S and 25S rRNA, we mixed total RNA with an equal volume of 2 × RNA loading solution (95% formamide, 0.02% SDS, 0.02% bromophenol blue, and 1 mM EDTA pH 8.0) and denatured RNA samples at 75°C for five minutes followed by rapid chilling on ice. Denatured RNA was loaded onto a 1.3% TAE low melting agarose gel. The 18S and 25S rRNA were visualized by ethidium bromide staining, excised using a clean scalpel, and purified using the NucleoSpin Gel and PCR clean-up kit (Takara) following the manufacturer’s instructions.

Estimation of stoichiometry of m⁶A in yeast 18S rRNA

We used HeLa 18S rRNA as the standard, since it is modified with a single m⁶A at A1832 to ~98% (Liu et al., 2013). Yeast and HeLa 18S rRNA were digested and ribonucleosides were quantified as described below. The abundance of m⁶A was normalized to each of the four ribonucleosides (A, G, C, and U). These ratios were further corrected to account for the differences in the abundance of each ribonucleoside between yeast and HeLa cells. The stoichiometry of m⁶A in yeast 18S rRNA was then estimated by comparing the normalized m⁶A (e.g., m⁶A/A) between yeast and HeLa cells. Normalization by each of the four ribonucleosides gave similar results, averaging between 4%–5% of m⁶A per 18S rRNA.

Mung bean nuclease (MBN) protection assay

This assay was performed as described previously (Andersen et al., 2004; Peifer et al., 2013; Sharma et al., 2013) with some modifications. A total of ~1000 pmole DNA oligo was mixed with 200 µg total RNA. After ethanol precipitation and wash, the nucleic acid mixture was resuspended in 40 µL 1× hybridization buffer (40 mM PIPES pH 6.4, 400 mM NaCl, 1 mM EDTA, and 20% formamide) and heated at 85°C for ten minutes followed by incubation at 35°C for three hours. The hybridization mixture was then mixed with 497 µL nuclease-free water, 60 µL 10× RNA digestion buffer (100 mM Tris-HCl pH 7.5, 3 M sodium acetate pH 5.2, 50 mM EDTA pH 8.0), and 3 µL 5 mg ml⁻¹ RNase A (Epicenter), and incubated at 37°C for one hour. The digestion mixture was then extracted with an equal volume of acidic phenol (pH 4.3):chloroform (1:1) and ethanol precipitated. The nucleic acid pellet was washed, resuspended in 100 µL 1× MBN buffer (30 mM NaCl, 50 mM sodium acetate, 1 mM ZnSO₄, pH 5.0) supplemented with 4.5 µL 10 U µl⁻¹ MBN (NEB), and incubated at 30°C for one hour. The digestion mixture was then extracted with an equal volume of acidic phenol (pH 4.3):chloroform (1:1) and ethanol precipitated. The precipitated nucleic acid was loaded onto a 15% polyacrylamide gel and the RNA:DNA hybrid was visualized by ethidium bromide staining and excised using a clean scalpel. The gel slice was transferred to a clean microcentrifuge tube, crushed, and soaked in 200 µL elution buffer containing 300 mM sodium acetate (pH 5.3), 1 mM EDTA (pH 8.0), and 0.1% SDS. The eluted RNA:DNA fragment was ethanol precipitated, washed, and resuspended in nuclease-free water. Alternatively, the RNA:DNA hybrid was extracted using D-Tube Dialyzer Mini (MWCO 6-8 kDa) (EMD Millipore) by electroelution following the manufacturer’s instructions.

LC-MS/MS detection of metabolites

The extraction protocol comprised two sequential steps: quenching and extraction, as described in Castrillo et al. (2003) and Gonzalez et al. (1997), respectively. To quench cells, one volume of cell culture was mixed with three volumes of methanol-water solution (60% v/v, buffered with 10 mM Tricine to pH 7.4) kept at −40°C. Quenched cells were centrifuged and resuspended in extraction buffer containing ethanol-water solution (75% v/v, 0.1% formic acid to minimize oxidation of thiols) and heated at 80°C for three
minutes. Cell extraction was immediately chilled on ice and subsequently centrifuged at maximum speed at 0°C to remove cell debris. The supernatant was vacuum dried and stored at –80°C until analysis.

Samples were analyzed using reversed-phase HPLC coupled to tandem mass spectrometry as described previously (Tu et al., 2007). Metabolites were separated on a Synergi Fusion-RP column (4 μm particle size, 80 Å pore size, 150 mm × 2 mm, Phenomenex) using a Shimadzu HPLC machine and simultaneously detected by a triple quadrupole mass spectrometer (3200 QTRAP, AB SCIEX). The total run time was 22 minutes at a flow rate of 0.5 mL min⁻¹, with 0.1% (v/v) formic acid in water as solvent A and 0.1% (v/v) formic acid in methanol as solvent B. The following gradient elution was performed: 0.01 min, 0% B, 4 min, 0% B, 11 min, 50% B, 13 min, 100% B, 18 min, 0% B, 22 min, 0% B. Metabolites were detected by multiple reaction monitoring (MRM) with transitions listed in Table S6. Metabolites were quantified using the Analyst software package 1.6.2 or 1.6.3 by calculating total peak area.

Competition assay

Competition between various strains was performed as described previously (Sankar et al., 2016), with some modifications. To distinguish between dim1 and WT, the *E. coli lacZ* gene controlled by the TEF1 promoter and CYC1 terminator was inserted into an intergenic region between NCA3 and ASFT1. This site was selected according to Mikkelsen et al. (2012), who reported that a similar integration in this region supports robust lacZ expression and does not noticeably impact growth. To control for the impact of lacZ expression on fitness, the lacZ cassette was integrated into both dim1 mutants and WT. For example, for competition between WT and the E85Q mutant, two experiments (a and b) were performed in parallel with the following combinations: WT- lacZ versus E85Q and WT versus E85Q- lacZ. Cells were first acclimated in complete medium and then grown in fresh complete medium to log phase. To start the competition, two competitors were mixed at a ratio of 1:1, with each having an initial OD600 ~0.01. Cells were grown to saturation (~7-8 doublings) and were diluted into fresh complete medium in 1:200 after approximately 24 hours. This was then repeated for a minimum of four times and the first round of competition was typically excluded for fitness calculation as cells were just beginning to adapt to the new environment. Nevertheless, cells were plated onto synthetic defined agar plates (6.7 g L⁻¹ yeast nitrogen base without amino acids (BD Difco), 0.79 g L⁻¹ CSM (Sunrise Science), 20 g L⁻¹ glucose, and 20 g L⁻¹ agar), supplemented with 80 μg mL⁻¹ 5-bromo-4-chloro-3-indolyl-β-D-galactopyranoside (X-gal) and BU salts (26.1 mM Na₂HPO₄ and 25 mM NaH₂PO₄, pH 7.0). Blue (competitor expressing lacZ) and white colonies were counted in duplicate to minimize counting errors.

Fitness was calculated relative to WT using the following equations:

\[
\begin{align*}
\tilde{f}_a &= \frac{T_{\text{dim1-lacZ}}^i}{T_{\text{DIM1}}^i}
\end{align*}
\]

\[
\begin{align*}
\tilde{f}_b &= \frac{T_{\text{dim1}}^i}{T_{\text{DIM1-lacZ}}^i}
\end{align*}
\]

\[
\begin{align*}
\tilde{f}_a &= \frac{1}{n} \sum_{i=1}^{n} \tilde{f}_a^i
\end{align*}
\]

\[
\begin{align*}
\tilde{f}_b &= \frac{1}{n} \sum_{i=1}^{n} \tilde{f}_b^i
\end{align*}
\]

\[
\begin{align*}
\tilde{f} &= \sqrt{\tilde{f}_a \times \tilde{f}_b}
\end{align*}
\]

where \(\tilde{f}_a \) and \(\tilde{f}_b \) are the relative fitness of dim1-lacZ to WT and dim1 to WT-lacZ in the ith round of competition, respectively; \(T_{\text{genotype}}^i \) is the number of doublings of a particular strain during a 24-hour competition and \(i \) is the ith round of competition; \(\tilde{f}_a \) and \(\tilde{f}_b \) are the arithmetic mean fitness of dim1-lacZ to WT and dim1 to WT-lacZ, respectively, \(\tilde{f} \) is the geometric mean fitness of dim1 relative to WT, which was reported in Figure 3E.

Dual-luciferase assay

The dual-luciferase assay was performed as described previously (Ghalei et al., 2017; Salas-Marco and Bedwell, 2005), using the Dual Luciferase Reporter Assay System (Promega) with some modifications. When cells reached log phase, one mL of culture was collected by centrifugation and cell pellets were snap frozen in liquid nitrogen and stored at –80°C until analysis. Cell pellets were first thawed on ice and washed once with ice-cold water to remove the residual medium. Cells were then lysed in 100 μL passive
lysis buffer at room temperature for one minute and 10 µL was added to 30 µL Luciferase Assay Reagent II to measure Firefly luciferase activity, followed by the addition of 30 µL Stop & Glow Reagent to measure Renilla luciferase activity. Luminescence was recorded for ten seconds in a 96-well flat-bottom black polystyrene plate (COSTAR) on a Synergy 2 plate reader (BioTek) at room temperature and reported in relative luminescence units (RLU). Background-subtracted Firefly luciferase activity was subsequently normalized to background-subtracted Renilla luciferase activity.

Polysome profiling

Samples for polysome profiling were prepared as described with some modifications (Mašek et al., 2011). When cells were ready, cycloheximide (dissolved in 100% ethanol) was added to a final concentration of 0.1 mg mL⁻¹ and frozen ice at ~20°C (2 g per 10 mL culture) was added to rapidly chill cells. After further incubation on ice for five minutes, cells were centrifuged at 4°C, snap frozen in liquid nitrogen, and stored at ~80°C until processing. Frozen cell pellets were thawed on ice and washed twice in polysome extraction buffer (PEB) (20 mM Tris-HCl pH 7.5, 140 mM KCl, 5 mM MgCl₂, 0.1 mg mL⁻¹ cycloheximide, 1% Triton X-100, and 0.5 mM DTT). Cells were subsequently lysed in PEB with glass beads on a bead beater following three rounds of beating (30 s beating and two-minute cooling on ice). Cell debris was removed by centrifugation at 8000 × g for five minutes at 4°C and supernatant was collected and measured spectrophotometrically at 260 nm. A 10%-50% (w/v) sucrose gradient was prepared using BIOCOMP Gradient Station (Bioline) in 20 mM Tris-HCl pH 7.5, 140 mM KCl, 5 mM MgCl₂, 0.1 mg mL⁻¹ cycloheximide, and 0.5 mM DTT. Approximately one A[260] unit of cell lysates was carefully loaded onto the top of the sucrose gradient and centrifuged at 41,000 × g for two hours at 4°C. Polysome profiles were recorded using BIOCOMP Gradient Station by measuring absorbance at 260 nm.

Western blot

Samples for western blot were quenched in 10% trichloroacetic acid (TCA) for ten minutes on ice and then stored at −80°C until analysis. Cell pellets were washed once in cold acetic acid to remove the residual TCA, before bead-beating in urea lysis buffer containing 6 M urea, 1% SDS, 50 mM Tris-HCl (pH 7.5), 5 mM EDTA, 1 mM DTT, 1 mM PMSF, 10 μM leupeptin, 5 mM pepstatin A, and 1 x protease inhibitor cocktail (Roche). Lysates were heated for five minutes at 75°C and then centrifuged at maximum speed for five minutes. Protein concentration was estimated using the bicinchoninic acid assay (Thermo Fisher Scientific) and equal amounts of proteins were separated by electrophoresis using 4%-12% NuPAGE gels. Proteins were then transferred to a nitrocellulose membrane and blotted with the corresponding antibodies. Blocking was performed in 5% dry milk/TBST, while antibody incubation was in −Flag 1:20,000 (Sigma A9521).

Northern blot

Northern blot was performed as described previously (Josefesen and Nielsen, 2011; Tafforeau et al., 2013), with minor modifications. Briefly, total RNA of equal amounts was separated on a 1.2% denaturing formaldehyde agarose gel and transferred to a nylon membrane (Hybond-N+, GE healthcare). RNA was crosslinked to the membrane using a UV-cross linker (Stratagene) and stained with 1% dry milk/TBST. Antibodies were used at the following dilutions: −Flag 1:3,000 (Sigma F1804), −Rpn10p 1:40,000 (Abcam ab98843), −G6pdh 1:20,000 (Sigma A9521).

Ribosome profiling

Yeast cells were grown in sulfate free (see formula in Table S5) + 1 mM methionine (SMF) to saturation and diluted into 20 mL SMF with a starting OD₆₀₀ 0.1. Cells were grown to log phase and diluted into 320 mL SMF with a starting OD₆₀₀ 0.005. When OD₆₀₀ reached ~0.5-0.6, cells were harvested according to Santos et al. (2019). Briefly, 200 mL pre-starvation culture was transferred into a pre-warmed (30°C) vacuum filtration apparatus and cells were collected onto a 0.45 μm cellulose nitrate membrane filter (Whatman). Before the medium was completely drained, cell pellet was rapidly scraped using a clean metal spatula and transferred into liquid nitrogen. The remaining culture was spun down at 4000 × g for one minute and washed once with an equal volume pre-warmed (30°C) SF medium once. Washed cells were resuspended in an equal volume pre-warmed (30°C) SF. After two hours, cells were collected exactly as described above and cell pellets were stored at −80°C until analysis.

Frozen cell pellets were cryogenically pulverized on a SPEX 6870 Freezer/Mill for one minute at 15 cycles per minute and frozen droplets of lysis buffer (20 mM Tris-HCl pH 8.0, 140 mM KCl, 5 mM MgCl₂, 1 mM dithiothreitol, 100 μg mL⁻¹ cycloheximide, 1% Triton X-100, and 0.025 U uL⁻¹ Turbo DNase) were added. The cell lysate was thawed, and cell debris was removed by two sequential centrifugation steps at 4°C: first at 3000 × g for five minutes and then at 20,000 × g for ten minutes.

Libraries for ribosome profiling and RNA-seq were constructed essentially as described by McGlinchey and Ingolia (2017). Briefly, ribosome-protected RNA fragments ranging from ~15-34 nt were isolated after RNase I digestion and denaturing PAGE separation.
Cloning linkers with 3’ barcode sequences were ligated to RNA footprints and samples of unique barcodes were pooled together post-ligation whenever possible. rRNA was depleted sequentially using Ribo-Zero Gold for Yeast (Illumina) and biotinylated anti-sense oligos against rRNA species that co-migrate with ribosome footprints as described by Brar et al. (2012). For RNA-seq, RNA was extracted from the clarified lysates using TRIzol (Invitrogen) and rRNA was depleted using Ribo-Zero Gold for Yeast (Illumina). The processed RNA was then used to generate TruSeq Stranded libraries (Illumina) following the manufacturer’s recommendations. Libraries of ribosome profiling and RNA-seq were sequenced on an Illumina HiSeq 4000 in single read 50-base mode. Each set of matched ribosome profiling and RNA-seq data are derived from a single biological sample (two biological replicates in total for each strain under each condition).

Sequencing data analysis

FASTX-clipper and -barcode splitter (http://hannonlab.cshl.edu/fastx_toolkit/) were used to remove the linker sequences and demultiplex ribosome profiling data, respectively. Unique molecular identifiers and sample barcodes were subsequently removed using a custom Python script. Reads corresponding to rRNAs and tRNAs were excluded using Bowtie v1.1.2 (http://bowtie-bio.sourceforge.net/) and the remaining reads were aligned to *Saccharomyces cerevisiae* genome using tophat v2.1.1 (https://ccb.jhu.edu/software/tophat/). We then used the plastid cs program (Dunn and Weissman, 2016) to calculate counts per gene and normalized counts per gene (in reads per kilobase per million mapped reads, or RPKM), with counts assigned to the ribosome P-site determined by the plastid psite program. Genome regions that could not be uniquely mapped from a 26-base read with two mismatches were identified by the plastid crossmap program, which, together with the first 30 and last five codons of each coding sequence (CDS), were excluded from count assignments and RPKM calculations. RNA-seq data were analyzed similarly. However, because of the TruSeq Stranded chemistry, the reads had to be reverse-complemented prior to plastid analysis, and counts were assigned to the 5’-most aligned base. We used the plastid make wiggle program to generate Wiggle files from genome alignments for subsequent data visualization in the IGV browser (http://software.broadinstitute.org/software/igv/). For visualization purposes, Wiggle counts were assigned to the ribosome P-site for ribosome profiling, or equally apportioned across reads for RNA-seq. Dubious ORFs listed in the *Saccharomyces* Genome Database (SGD, https://www.yeastgenome.org/) were not considered for analysis.

Translation efficiency (TE) is defined as the ratio of normalized ribosome footprint counts to normalized mRNA counts. TE and mRNA fold changes and adjusted p values were calculated from raw counts with DESeq2 (Love et al., 2014). TE changes were calculated using the design formula $\log_{2}(\text{sample + sample:assay})$, where the sample interaction term denotes the growth condition and genotype (e.g., SFM_E85Q) and the assay interaction term specifies whether counts are derived from RNA-seq or ribosome profiling. mRNA changes were calculated from RNA-seq counts using the design formula $\log_{2}(\text{sample})$.

Metacodon analysis

Ribosome profiling data were processed to produce mean relative enrichment values for each codon as described in Hussmann et al. (2015). Briefly, footprint sequencing reads were trimmed of adaptor sequence, aligned to the yeast genome and spliced transcriptome with TopHat2 (Kim et al., 2013), and assigned to the codon positioned in the A-site of the footprint as in Ingolia et al. (2009). For each gene, the raw counts of uniquely mapped footprints with their A-site over each codon were normalized by dividing by the average count for all codons in that gene to produce a relative enrichment value for each codon. The mean relative enrichment for each codon type was then calculated by averaging the relative enrichment value at every occurrence of that codon type located at least 90 codons away from the start or stop codon of its gene. To reduce noise, genes with less than 0.1 mean footprints per codon were excluded from averaging.

QUANTIFICATION AND STATISTICAL ANALYSIS

All statistical analyses were performed in GraphPad Prism (versions 6, 7, 8, and 9), with details provided in the corresponding figure legends, such as statistical tests employed, values and definition of n, and definition of center and dispersion. No methods were used to determine whether the data met assumptions of the statistical approach.
Supplemental information

Regulation of translation

by methylation multiplicity of 18S rRNA

Kuanqing Liu, Daniel A. Santos, Jeffrey A. Hussmann, Yun Wang, Benjamin M. Sutter, Jonathan S. Weissman, and Benjamin P. Tu
Figure S1. Detection of m^A in 18S rRNA from vegetatively growing haploid yeast cells. Related to Figure 1.

(A) Standard curves for m^A, m^6A, and ac^C. (B) m^A is not detected in polyA^+ RNA from vegetatively growing haploid yeast (CEN.PK). (C) m^A levels in polyA^+ RNA increase during sporulation. KL139 (CEN.PK diploid) was induced to sporulate as described exactly by Agarwala et al. (Agarwala et al. 2012). Samples were collected, immediately (0 h), three (3 h), and six hours (6 h) after cells were resuspended in sporulation medium (0.3% potassium acetate). Total RNA was isolated as described in STAR METHODS and polyA^+ RNA was purified from total RNA using the Dynabeads mRNA kit (Invitrogen). Approximately 1 μg polyA^+ RNA was digested and analyzed by LC-MS/MS. Each chromatogram was normalized by the abundance of adenosine to allow for comparison between time points. Scale bar = 5 μm. (D) m^A is detected in 18S rRNA isolated from vegetatively growing haploid yeast cells (strains: S288C and W303). m^A detected in 25S (E) and small RNA (F) is likely derived from m^A via Dimroth rearrangement. OE: overexpression. m^A and m^6A can be detected by the same MRM transition (282/150), but are eluted at different times. Each chromatogram was normalized by the abundance of adenosine to allow for comparison between different conditions. The essential tRNA m^A methyltransferase Gcd14p becomes dispensable when the initiator methionyl tRNA gene IMT4 is overexpressed (Calvo O, et al. 1999).
Figure S2. Validation of m^6A in yeast 18S rRNA. Related to Figure 1.

(A) Schematic of the mung bean nuclease (MBN) protection assay. (B) Detection of the expected 2'-O-methyladenosine(A_m) at 619 in 18S rRNA. oKL169 is not complimentary to any yeast RNA and thus did not yield a RNA/DNA hybrid after digestion by RNase A and MBN. (C) m^6A and m^6A are derived from growing yeast cells, not from contamination during sample processing. WT cells were grown from a single colony in [U-^{15}N] SD (1.7 g L^{-1} yeast nitrogen base without ammonium sulfate and amino acids (BD Difco), 2% glucose, and 5 g L^{-1} (NH_4)_2SO_4 (ISOTEC). Cells were diluted in the same medium with a starting OD_600~0.01 and grown to saturation. Cells were then diluted in the same medium with a starting OD_600~0.1 and grown to log phase before harvest. Total RNA was isolated and the 3' fragment of 18S rRNA was isolated using the MBN protection assay with oKL204 and analyzed by LC-MS/MS. (D) The Dim1p (E85A) mutant is still able to synthesize m^6A, but not m^6A. (E) Active site of Methanocaldococcus jannaschii Dim1p. The structure was adapted from PDB#3GRY (O'Farrell et al. 2010) and prepared using Pymol (https://pymol.org). The number in parentheses corresponds to the position in S. cerevisiae Dim1p.
Figure S3. Examination of rRNA modifications in yeast and mammalian cell lines. Related to Figures 2 and 3.

(A) Sulfate starvation does not result in obvious changes in other methylated nucleosides in 18S rRNA. Cells were grown in complete medium to log phase and starved in sulfur free medium (-S) for 2 h. Total RNA was isolated and 18S rRNA was purified, digested, and analyzed by LC-MS/MS. Peak area of each modified nucleoside was first normalized to that of ac C and to that of complete medium. Mean ± s.d. (n = 14 biological replicates). (B) Synthesis of m^6A under sulfate starvation. Cells were grown from a single colony in [^{15}N] SD (1.7 g L^-1 yeast nitrogen base without amino acids and ammonium sulfate (BD Difco), 5 g L^-1 (^{15}NH_4)_2SO_4 (ISOTEC), and 2% glucose) to saturation and the next day cells were diluted into fresh [^{15}N] SD with a starting OD_600 ~0.01. Cells were allowed to grow to saturation again, diluted to [^{15}N] SD with a starting OD_600 ~0.1, and then were grown to log phase. Cells were shifted to pre-warmed [^{15}N] sulfur free (-S) medium supplemented with 50 mg L^-1 adenine (A) and were collected before and 2 h after the switch. Peak areas of [U-{^{14}N}] and [U-{^{15}N}] labeled ac C for each condition were summed and used to normalize differentially labeled m^6A. Normalized abundance was further divided by that of [^{15}N] SD samples. Mean ± s.d. (n =3 biological replicates). (C) In the presence of sulfur, yeast cells bear more m^6A in the last 37 nucleotides of 18S rRNA than mammalian cell lines. Total RNA was isolated and the 3' end of 18S rRNA was isolated using oKL204 by the MBN protection assay, digested, and analyzed by LC-MS/MS. Chromatograms were normalized by the peak area of m^6A to allow for comparison between samples. (D) Changes in modified nucleosides in 18S rRNA of dim1 mutants under sulfate starvation. Cells were grown in complete medium and shifted to sulfur free medium (-S) for 2 h. Cells were collected and 18S rRNA was isolated, digested, and analyzed by LC-MS/MS as described in STAR METHODS. Peak area of modified nucleosides was first normalized to that of ac C, and to WT grown in complete medium. Mean ± s.d. (n = 3-7 biological replicates). (E) Abundance of Dim1p is not discernibly impacted by the E85D, E85Q, or D87E mutations.
Figure S4. m^6A-bearing ribosomes engage in active translation. Related to Figure 3.

(A) m^6A/m^6A resides close to the ribosome P-site. Structures of initiation and elongation complexes were adapted from PDB#3J81 (Hussain et al. 2014) and PDB#6Q8Y (Tesina et al. 2019), respectively, and prepared using Pymol (https://pymol.org). tRNA (P) and tRNA (E) occupy the P- and E-sites of the ribosome, respectively.

(B) 20S rRNA is absent from polysome fractions under sulfate-replete and -starvation conditions. Cells were grown in complete medium to log phase and starved of sulfate for two hours. Samples were collected for polysome profiling as described in STAR METHODS. Sucrose fractions were extracted with an equal volume of phenol (pH 4.3)/chloroform and nucleic acids were precipitated with an equal volume of isopropanol. Northern blot was performed as described in STAR METHODS.
Figure S5. Analysis of ribosome biogenesis in dim1 mutants. Related to Figure 4. (A) Polysome profiling. SSU: small subunit (40S); LSU: large subunit (60S). Cells were grown in SFM and starved of methionine in SF for 2 h. Samples were collected for polysome profiling as described in STAR METHODS. (B) Ribosome subunit profiling. Cells were grown in SFM and collected without cycloheximide (CHX), and were lysed in the absence of magnesium to separate the two subunits.
Figure S6. Analysis of rRNA processing in yeast and human cell lines. Related to Figure 4.
(A) Simplified schematic of rRNA processing in yeast. Only relevant processing intermediates and cleavage sites were shown. Probes used for Northern blot were also indicated. The 22S pre-rRNA is thought to arise from cleavage at A3 of the 33S pre-rRNA, observed when Dim1p is depleted (Lafontaine et al., 1995). (B) The E85Q mutation, but not the D87E mutation causes rRNA processing defects. (C) Examination of rRNA processing in WT yeast cells grown with methionine and without methionine (2 h) using Northern blot. (D) Examination of rRNA processing in mammalian cell lines grown with and without methionine (6 h) using Northern blot.
Figure S7. Controls for ribosome profiling (RP) experiments. Related to Figures 4 and 5.

(A) Schematic of ribosome profiling experiment. Cells were grown in SFM and starved of methionine in SF for 2 h. Samples were collected by rapid filtration followed by immersion in liquid nitrogen. See STAR METHODS for details. (B) Size distribution of ribosome-protected RNA fragments. One replicate is shown for each strain. (C) RP and RNA-seq data are highly reproducible between replicates. WT is shown as an example. (D) Impact of dim1 mutations on the transcriptome under methionine-replete and -starvation conditions. Shown are relative mRNA changes compared to WT. A 10% false discovery rate ($-\log_2(P_{adj}) \geq 1$) and 2-fold change were considered significant (highlighted in black). (E) Transcripts of RPS22B/snR44 and RPS9A are lower in the E85Q mutant. Shown are RNA-seq tracks under methionine-replete conditions (two replicates for each genotype). (F) Rps22Bp and Rps9Ap are lower in the E85Q mutant. Cells were grown in SFM and collected for Western blot as described in STAR METHODS. The rps22B/snR44Δ mutant (G) and rps9AΔ mutant (H) exhibit defects in SSU biogenesis. Cells were grown in SFM and collected for polysome profiling as described in STAR METHODS. (I) Examination of rRNA processing in rps9AΔ and rps22B/snR44Δ using Northern blot. Cells were grown in SFM and collected for Northern blot as described in STAR METHODS.
Figure S8. Characterization of dim1 mutants. Related to Figures 3 and 5.

(A) The E85Q mutant grows slightly more slowly under nutrient-replete condition. Cells were grown in SFM medium to log phase and washed with sterile water. Cells were adjusted to a final OD of 0.5 and serially diluted in water, before being plated onto an SD agar plate.

(B) Levels of amino acids in dim1 mutants under methionine-replete and -starvation conditions. Mean ± s.d. (n = 2 biological replicates).

(C) Examination of rRNA processing in tsr3Δ mutant using Northern blot. Cells were grown in SFM and collected for Northern blot as described in STAR METHODS.

(D) Changes in modified nucleosides in 18S rRNA. Cells were grown in SFM and shifted to SF for 2 h. 18S rRNA was isolated, digested, and analyzed by LC-MS/MS as described in STAR METHODS. Peak area of modified nucleosides was first normalized to that of adenosine and to WT with methionine. mA and mA from the E85Q mutant were at background levels and thus not shown. Mean ± s.d. (n = 2 biological replicates).
Data S1. Chromatograms of MBN protection assay targeting mA (A), Gm (B), acC (C), Am (D), mA (E), mG (F), and U (G). Related to Figure 1. All the modified nucleosides were detected in the expected regions of 18S rRNA according to Taoka et al. (2016). It should be noted that the Am modification at 541 was not detected in oKL213-protected region (541..600), but in oKL212-protected region (481..540) and oKL281-protected region (540..579). This discrepancy is likely due to the imprecise trimming of the corresponding RNA/DNA ends in MBN protection assay.
Table S4. Strains, plasmids, antibodies, and primers. Related to START METHODS.

Strains

Name	Genotype	References
WT°	MATα CEN.PK	(van Dijken et al., 2000)
KL139	MATα/a CEN.PK	(van Dijken et al., 2000)
S288C	MATα/SUC2 mal meI gal2 CUP1 fioI flo8-1 hap1	ATCC®204508
W303	MATα bud4Δ::Bud4(S288C) can1-100	(Korolev et al., 2012)
WT°	MATα ho:: kanMX6-DIM1 dim1:: hygMX6	This work
E85Q	MATα ho:: kanMX6-DIM1-E85Q dim1:: hygMX6	This work
E85D	MATα ho:: kanMX6-DIM1-E85D dim1:: hygMX6	This work
D87E	MATα ho:: kanMX6-DIM1-D87E dim1:: hygMX6	This work
E85D D87E	MATα ho:: kanMX6-DIM1-E85D-D87E dim1:: hygMX6	This work
E85A	MATα ho:: kanMX6-DIM1-E85A dim1:: hygMX6	This work
E85W	MATα ho:: kanMX6-DIM1-E85W dim1:: hygMX6	This work
E85F	MATα ho:: kanMX6-DIM1-E85F dim1:: hygMX6	This work
E85Y	MATα ho:: kanMX6-DIM1-E85Y dim1:: hygMX6	This work
E85G	MATα ho:: kanMX6-DIM1-E85G dim1:: hygMX6	This work
E85V	MATα ho:: kanMX6-DIM1-E85V dim1:: hygMX6	This work
E85I	MATα ho:: kanMX6-DIM1-E85I dim1:: hygMX6	This work
E85L	MATα ho:: kanMX6-DIM1-E85L dim1:: hygMX6	This work
E85S	MATα ho:: kanMX6-DIM1-E85S dim1:: hygMX6	This work
E85T	MATα ho:: kanMX6-DIM1-E85T dim1:: hygMX6	This work
E85N	MATα ho:: kanMX6-DIM1-E85N dim1:: hygMX6	This work
E85K	MATα ho:: kanMX6-DIM1-E85K dim1:: hygMX6	This work
E85R	MATα ho:: kanMX6-DIM1-E85R dim1:: hygMX6	This work
E85P	MATα ho:: kanMX6-DIM1-E85P dim1:: hygMX6	This work
E85M	MATα ho:: kanMX6-DIM1-E85M dim1:: hygMX6	This work
E85H	MATα ho:: kanMX6-DIM1-E85H dim1:: hygMX6	This work
sam1Δ sam2Δ	MATα sam1::kanMX6 sam2::hygMX6	This work
WT-lacZ	MATα ho:: kanMX6-DIM1 dim1:: hygMX6 x2::Ptef1-Ec lacZ-Tcyc1-natMX6	This work
E85D-lacZ	MATα ho:: kanMX6-DIM1-E85D dim1:: hygMX6 x2::Ptef1-Ec lacZ-Tcyc1-natMX6	This work
D87E-lacZ	MATα ho:: kanMX6-DIM1-D87E dim1:: hygMX6 x2::Ptef1-Ec lacZ-Tcyc1-natMX6	This work
WT-FLAG	MATα ho:: kanMX6-DIM1-FLAG dim1:: hygMX6	This work
E85D-FLAG	MATα ho:: kanMX6-DIM1-E85D-FLAG dim1:: hygMX6	This work
D87E-FLAG	MATα ho:: kanMX6-DIM1-D87E-FLAG dim1:: hygMX6	This work
E85Q-FLAG	MATα ho:: kanMX6-DIM1-E85Q-FLAG dim1:: hygMX6	This work
gcl1Δ4 IMT4 OE	MATα gcl1Δ4::hygMX2 micron IMT4-kanMX6	This work
rnp8A ybr141cΔ	MATα rnp8A::kanMX6 ybr141c::hygMX6	This work
WT rps22B-3xFLAG	MATα ho:: kanMX6-DIM1 dim1:: hygMX6 rps22B::3xFLAG-natMX6	This work
E85Q rps22B-3xFLAG	MATα ho:: kanMX6-DIM1-E85Q dim1:: hygMX6 rps22B::3xFLAG-natMX6	This work
WT rps9A-3xFLAG	MATα ho:: kanMX6-DIM1 dim1:: hygMX6 rps9A::3xFLAG-natMX6	This work
E85Q rps9A-3xFLAG	MATα ho:: kanMX6-DIM1-E85Q dim1:: hygMX6 rps9A::3xFLAG-natMX6	This work
rps22B4 pKL23 (H245R)	MATα ho:: kanMX6-DIM1 dim1:: hygMX6 rps22B::natMX6 ura3:: Sh ble pKL23	This work
rps22B4 pKL24 (control)	MATα ho:: kanMX6-DIM1 dim1:: hygMX6 rps22B::natMX6 ura3:: Sh ble pKL24	This work
rps9A4 pKL23 (H245R)	MATα ho:: kanMX6-DIM1 dim1:: hygMX6 rps9A::natMX6 ura3:: Sh ble pKL23	This work
rps9A4 pKL24 (control)	MATα ho:: kanMX6-DIM1 dim1:: hygMX6 rps9A::natMX6 ura3:: Sh ble pKL24	This work
WT pKL23 (H245R)	MATα ho:: kanMX6-DIM1 dim1:: hygMX6 ura3:: natMX6 pKL23	This work
E85Q pKL23 (H245R)	MATα ho:: kanMX6-DIM1-E85Q dim1:: hygMX6 ura3:: natMX6 pKL23	This work
D87E pKL23 (H245R)	MATα ho:: kanMX6-DIM1-D87E dim1:: hygMX6 ura3:: natMX6 pKL23	This work
WT pKL24 (control)	MATα ho:: kanMX6-DIM1 dim1:: hygMX6 ura3:: natMX6 pKL24	This work
E85Q pKL24 (control)	MATα ho:: kanMX6-DIM1-E85Q dim1:: hygMX6 ura3:: natMX6 pKL24	This work
D87E pKL24 (control)	MATα ho:: kanMX6-DIM1-D87E dim1:: hygMX6 ura3:: natMX6 pKL24	This work
tsr3Δ pKL23 (H245R)	MATα ho:: kanMX6-DIM1 dim1:: hygMX6 tsr3::natMX6 ura3:: Sh ble pKL23	This work
tsr3Δ pKL24 (control)	MATα ho:: kanMX6-DIM1 dim1:: hygMX6 tsr3::natMX6 ura3:: Sh ble pKL24	This work

Plasmids

Name	Description	References
pFA6a-aphMX6	To replace a gene of interest with the aphMX6 gene	(Longtine et al., 1998)
pFA6a-kanMX6	To replace a gene of interest with the kanMX6 gene	(Longtine et al., 1998)
pFA6a-natMX6
To replace a gene of interest with the *natMX6* gene
(Longtine et al., 1998)
pUG66
To replace a gene of interest with the *Sh ble* gene
(Gueldener et al., 2002)
HO-kanMX6-HO
Control (aka. pDB722 or pKL24)
Control Dual-Luciferase reporter
(Keeling et al., 2004)
H425R (aka. pDBB86 or pKL23)
Dual-Luciferase reporter for miscoding
(Salas-Marco and Bedwell, 2005)

2 micron IMT4-kanMX6
To express IMT4 with its 5′ (~500 bp) and 3′ (~300 bp) UTRs on a 2 micron plasmid
This work

Antibodies

Name	Description	Cat. #
α-FLAG	To detect the FLAG epitope	Sigma F1804
α-G6pdh	To detect G6pdh	Sigma A9521
α-Rpn10	To detect Rpn10p	Abcam ab98843

Primers

Name	Sequence (5′ to 3′)	Note
oKL169	ATCCCCGGGTTATTAATTGAGCGCGCCAGCATGTGTTACGAGCTCCTCTGCTC	1.60kb
oKL203	AGACATGCGATGTTAATCTTGGAGCAACGATATGACTACTGCGGAGTAGCACAAGCATA	1.60kb
oKL205	ATATAAAGCATGTTAATTGAGCGCGCCAGCATGTGTTACGAGCTCCTCTGCTC	1.60kb
oKL206	TTTAAAGCATGTTAATTGAGCGCGCCAGCATGTGTTACGAGCTCCTCTGCTC	1.60kb
oKL207	AGAGTCCCGAAGACTTATTTTATCTAATAAATACATCTTCTCCGAAAGGGTGGACAGAAT	1.60kb
oKL208	TTGGAGCAGCAGACTTATTTTATTCTAATAAATACATCTTCTCCGAAAGGGTGGACAGAAT	1.60kb
oKL209	TCTACCGTGAAGCTTGTAGGCGGCTACTCCTTTCGAAAGGGTGGACAGAAT	1.60kb
oKL210	GGTTACCGTGAAGCTTGTAGGCGGCTACTCCTTTCGAAAGGGTGGACAGAAT	1.60kb
oKL211	GGTTACCGTGAAGCTTGTAGGCGGCTACTCCTTTCGAAAGGGTGGACAGAAT	1.60kb
oKL212	GGTTACCGTGAAGCTTGTAGGCGGCTACTCCTTTCGAAAGGGTGGACAGAAT	1.60kb
oKL213	GGTTACCGTGAAGCTTGTAGGCGGCTACTCCTTTCGAAAGGGTGGACAGAAT	1.60kb
oKL214	GGTTACCGTGAAGCTTGTAGGCGGCTACTCCTTTCGAAAGGGTGGACAGAAT	1.60kb
oKL215	GGTTACCGTGAAGCTTGTAGGCGGCTACTCCTTTCGAAAGGGTGGACAGAAT	1.60kb
oKL216	GGTTACCGTGAAGCTTGTAGGCGGCTACTCCTTTCGAAAGGGTGGACAGAAT	1.60kb
oKL217	GGTTACCGTGAAGCTTGTAGGCGGCTACTCCTTTCGAAAGGGTGGACAGAAT	1.60kb
oKL218	GGTTACCGTGAAGCTTGTAGGCGGCTACTCCTTTCGAAAGGGTGGACAGAAT	1.60kb
oKL219	GGTTACCGTGAAGCTTGTAGGCGGCTACTCCTTTCGAAAGGGTGGACAGAAT	1.60kb
oKL220	GGTTACCGTGAAGCTTGTAGGCGGCTACTCCTTTCGAAAGGGTGGACAGAAT	1.60kb
oKL221	GGTTACCGTGAAGCTTGTAGGCGGCTACTCCTTTCGAAAGGGTGGACAGAAT	1.60kb
oKL222	GGTTACCGTGAAGCTTGTAGGCGGCTACTCCTTTCGAAAGGGTGGACAGAAT	1.60kb
oKL223	GGTTACCGTGAAGCTTGTAGGCGGCTACTCCTTTCGAAAGGGTGGACAGAAT	1.60kb
Sequence (5' to 3')

Name	Sequence (5' to 3')	Target region
a	[bn]TACTTAGAAGCAGCAT	yeast 18S rRNA
This strain was used throughout this work except when mutant dim1 strains were investigated.

This strain was used only for comparison with mutant dim1 strains.

The x2 site is the integration site for the E. coli lacZ gene on chromosome X, between NCA3 and ASF1, precisely encompassing from 605 to 646 nucleotides upstream of the NCA3 start codon. It was previously examined by Mikkelsen et al., who reported that ectopic expression at this site did not cause growth defects (Mikkelsen et al., 2012).

Numbers correspond to nucleotide positions in yeast 18S rRNA.

The mutated codon is underlined in the forward primer. (f): forward primer; (r): reverse primer
Table S5. Medium formula*. Related to STAR METHODS.

	complete	-C	-N	-P	-S (sulfur free)
CaCl$_2$•2H$_2$O	0.1	0.1	0.1	0.1	0.1
NaCl	0.1	0.1	0.1	0.1	0.1
MgCl$_2$•6H$_2$O	0.412	0.412	0.412	0.412	0.412
(NH$_4$)$_2$SO$_4$	5	5	0	5	0
Na$_2$SO$_4$	0	0	5.4	0	0
NH$_4$Cl	0	0	0	4.05	
KH$_2$PO$_4$	1	1	1	0	1
KCl	0	0	0	0.55	0
boric acid					0.5
CuCl$_2$•2H$_2$O					0.0273
KI					0.1
FeCl$_3$•6H$_2$O					0.2
MnCl$_2$•4H$_2$O					0.4684
Na$_2$MoO$_4$•2H$_2$O					0.2
ZnCl$_2$•H$_2$O					0.1895
metals (mg L$^{-1}$)					
biotin					0.002
calcium pantothenate					0.4
folic acid					0.002
inositol					2
niacin					0.4
4-aminobenzoic acid					0.2
pyridoxine HCl					0.4
riboflavin					0.2
thiamine-HCl					0.4

*aFormula is based on Miller et al. (Miller et al., 2013) with sulfate ions replaced by chloride ions.
Table S6. MRM transitions for nucleosides and metabolites. Related to STAR METHODS.

Compounds	Q1	Q3	[U-15N]-Q1	[U-15N]-Q3
\(N^6\)-methyladenosine (m\(6\)A)	282	150	287	155
\(N^3\)-acetylcytidine (ac\(3\)C)	286	154	289	157
\(N^6, N^6\)-dimethyladenosine (m\(6\)\(2\)A)	296	164	301	169
\(N^1\)-methyladenosine (m\(1\)A)	282	150		
2'-O-methyladenosine (Am)	282	136		
2'-O-methylguanosine (Gm)	298	152		
2'-O-methyluridine (Um)	259	113		
\(N^2\)-methylguanosine (m\(2\)G)	298	166		
adenosine	268	136		
cytidine	244	112		
uridine	245	113		
guanosine	284	152		
cysteine	122	59		
methionine	150	104		
homocysteine	136	90		
cystathionine	223	134		
SAM	399	250		
SAH	385	136		
GSH	308	179		
GSSG	613	355		
proline	116	70		
arginine	175	116		
histidine	156	110		
serine	106	60		
threonine/homoserine	120	74		
isoleucine	132	69		
(iso)leucine	132	86		
valine	118	55		
tryptophan	205	188		
phenylalanine	166	103		
tyrosine	182	136		