Supplementary information

Aichi virus 3C protease modulates LC3- and SQSTM1/p62-involved antiviral response

Ming-Hsiang Kung, You-Sheng Lin, Tsung-Hsien Chang

Table S1. Primer sequences for AiV viral gene cloning.

Target	Primer sequences (5’ to 3’)	Cloning site
AiV-L	F CCGCCGAATTCA ATG GCTGCAACACGGGTTCGTA	EcoR I
	R CCCGGGATCC TCA TTGCCCCGTGAAGGTGGTGA	BamH I
AiV-VP0	F CCGCCGAATTCA ATG GGAACCTCGGTCAACAAA	EcoR I
	R CCCGGGATCC TCA CTGTTGGGCGAGGTAG	BamH I
AiV-VP3	F CGATAGATCTG ATG CACTGGAAGACTCGCACC	Bgl II
	R CCCGGGATCC TCA CTGGGAAGTGAGGGCAG	BamH I
AiV-VP1	F CCGCCGAATTCA ATG ACCCTCCACCAAGACCCCTC	EcoR I
	R CCCGGGATCC TCA CTAGGTTGGGCGAGCTG	BamH I
AiV-2A	F CCGCCGAATTCA ATG GTCCACTGGGCCATCC	EcoR I
	R ATCCCTCTAGA TCA CTGTCCGCTGATGCTGG	Xba I
AiV-2B	F CGATAGATCTG ATG GGCCTCCCTCAACCTCT	Bgl II
	R CCCGGGATCC TCA TTGGAGTTCAAGGGTGCCC	BamH I
AiV-2C	F CCGCCGAATTCA ATG GGGCTCAAAAGACCTACAC	EcoR I
	R CCCGGGATCC TCA CTGGCAGTGTAGGAGGA	BamH I
AiV-3A	F CCGCCGAATTCA ATG GGTAAACCGGGTCTCG	EcoR I
	R CCCGGGATCC TCA TTGGGGTTCGCCGTCG	BamH I
AiV-3B	F CCGCCGAATTCA ATG GCTGCTACTCTGCTATC	EcoR I
	R CCCGGGATCC TCA TTGGCGCTGAGTGCGC	BamH I
AiV-3C	F CCGCCGAATTCA ATG GGAATTCCTCCCAGCTG	EcoR I
	R CCCGGGATCC TCA TTGGCTGGGTGGTGGGAAAT	BamH I
AiV-3D	F CCGCCGAATTCA ATG TCTTCTATGTCCCACTG	EcoR I
	R CCCGGGATCC TCA GCCAGCCACGGATGTGAG	BamH I
AiV-3C H42D	TACCTTCTGGTCCCACGGACCTCCGTGAAACCCCA	Site-directed mutagenesis
AiV-3C C143S	CGACCTTCGAGGTCTGTCGGGATCCCCCGCTTGT	Site-directed mutagenesis

F: forward primer; R: reverse primer

Bold letter: Insert other nucleotides for transcription start site

Below line: Insert restriction enzyme sequences for gene cloning
Table S2. Primer sequences for qPCR.

Viral gene	Primer sequences (5’ to 3’)
Human IFNα1	F CTCGCGCTTTGGCTTTACTG R GCCCAGAGGAGCAGCTTGACT
Human IFNβ	F TGA GCA GTG TGC ACC TGA AA R GCT TGA AGC AAT TGT CCC GT
Human RIG-I	F GCA GAG GCC GGC ATG AC R TGT AGG TAG GGT CCA GGG TCT TC
Human MDA5	F TGC TTC TCT AAG TGG GCA GC R TTT TCA CCC TGG CCC TGA AG
Human TBK1	F GGA GAC CCG GCT GGT ATA A R TGA ACA TCC ACT GGA AGG
Human IRF3	F GAC CTT CCA TCG TAG GCC G R AAT CCT CCT GCT GTG CAT CC
Human IRF7	F AGC TGT GCT GGC GAG AAG R TGG AGT CCA GCA TGT GTG TG
Human IKKε	F AAG AGC CGG GAT CAG GTA CA R CAT CTT GTC CAA ACA GCA CTG AA
Human ISG15	F GGT GGA CAA ATG CGA CGA A R ATG CTG GTG GAG GCC CTT A
Human IFIT3	F GCT GAA GGA GAG CAG TTT GTT GA R AGG ACA TCT GTT TGGCAA GGA
Human Viperin	F CAA GGA AGA ATG TGA GCA AGA GTA GA R TGA TAT GGT GAC ATG GCT TCA CT
Human MyD88	F GAG CTG GCG GGC ATC AC R TCG AAA CGC TCA GGC AIA TG
Human Trim5α	F GCC TGG AAC TCC TGA CAC AAC R CAT GGA CTT CTT GTG GTT TGC A
Human Trim25	F CGA GGT GGA ACT GAA CCA CA R GTG GAT TTT GTG GTG GAC GC
Human LC3	F GGC GCT TAC AGC TCA ATG C R ACC ATG CTG TGT CCG TTC AC
Human p62	F CCA TGT CCT ACG TGA AGG ATG A R CCG CGG GCA CTC TTT TT
Human TNFα	F TGC TCC TCA CCC ACA CCA T R GGA GGT TGA CCT TGG TCT GGT A
Human IL-6	F GCT GCA GGC ACA GAA CCA R GCT GGG CAG AAT GAG ATG AG
Human IL-8	F CTG GCC GTG GCT CTC TTT R CTT GGC AAA ACT GCA CCT TCA
Human CXCL10	F CCT GCA AGC CAA TTT GTG CCA R TGC ATC GAT TTT GCT CCC CT
Human GAPDH	F CAA CTG GTC GTG GAC AAC CAT R GCA CGG ACA CTC ACA ATG TTC

F: forward primer; R: reverse primer
Figure S1. Evaluation of regulation effect of Atg conjugation system in RLR pathway. (A) Luciferase reporter assay of IFNβ, NFκB, AP-1 and ISRE in A549 cells (1×10^5) with overexpression of Atg5, Atg7, Atg12 and mAtg16L1 expression vectors or polyI:C stimulation for 24 h. (B) Immunoblotting assay of RLR signaling, LC3 and p62 protein levels in A549 cells with Atg5, or mAtg16L1. GFP-p62 and V5-MAVS were the positive control.
Figure S2

Figure S2. Analysis of RLR signaling in LC3- and p62-knockdown cells. (A and B)
Immunoblotting assay of RLR signal proteins in shCtrl, shLC3 or shp62 A549 cells with polyI:C stimulation.
Figure S3

Figure S3. AiV attenuates polyI:C-promoted RLR response. (A) A549 cells were cotransfected with IFNβ-Luc reporter and pRL-TK for 24 h, and then infected by AiV (MOI = 1). Cells were then stimulated with polyI:C for 24 h and dual luciferase assay was performed. (B) Mock- or AiV-infected A549 cells were stimulated with polyI:C, cell lysates were subjected to immunoblotting with the indicated antibody. (C) IFNβ-Luc reporter, pRL-TK and RIG-I expression vector (300, 600, 1200 ng) were transfected into A549 cells for 24 h, which were then infected by AiV (MOI 1). Dual luciferase assay was performed at 24 h after infection. Data are mean±SD from three independent tests. RIG-I expression and AiV VP1 expression are shown in panel (D). (E) A549 cells were cotransfected with RIG-I expression vector (1200 ng) and AiV 3C vector (300, 600, 1200 ng). Post-transfection 24 h, cell extracts underwent immunoblotting analysis.