Advancing data analysis for reflectivity measurements of holographic nanocomposite gratings

Jürgen Klepp, Christian Pruner, Yasuo Tomita, Peter Geltenbort, Joachim Kohlbrecher and Martin Fally

1 Faculty of Physics, University of Vienna, Boltzmanngasse 5, A-1090 Vienna, Austria
2 Department of Materials Science and Physics, University of Salzburg, Hellbrunnerstrasse 34, A-5020 Salzburg, Austria
3 Department of Engineering Science, University of Electro-Communications, 1-5-1 Chofugaoka, Chofu, Tokyo 182-8585, Japan
4 Institut Laue-Langevin, 71 avenue des Martyrs, 38000 Grenoble, France
5 Laboratory for neutron scattering, Paul Scherrer Institut, 5232 Villigen PSI, Switzerland

E-mail: *juergen.klepp@univie.ac.at

Abstract. We discuss the analysis of neutron rocking curves measured with holographic nanoparticle-polymer composite gratings with SANS instruments and at very-cold neutron beamlines. In particular, the effects of broad incident wavelength-distributions and of nonuniformity of the refractive-index profile along the grating depth are assessed.

1. Introduction

Photosensitive materials in combination with holographic techniques can be used to produce diffraction gratings for neutron-optics. One-dimensional sinusoidal holograms recorded in such materials exhibit a periodic light- and neutron-refractive-index pattern arising from a light-induced density modulation. They work as diffraction gratings. The recorded refractive-index pattern is described by $n(x) = n_0 + \Delta n_1 \cos(2\pi x / \Lambda)$, where n_0, Δn_1 and Λ are the mean refractive index, the refractive-index modulation amplitude and the grating period, respectively. $\Delta n_1 = \lambda^2 b_c \Delta \rho / 2\pi$ for neutrons, with the scattering-length density modulation amplitude $b_c \Delta \rho$. Examples for such materials already tested with neutrons are deuterated (poly)methylmethacrylate [1, 2, 3, 4, 5], holographic polymer-dispersed liquid crystals [6, 7] and nanoparticle-polymer composites (NPCs, see [8, 9, 10, 11] and Fig. 1).

A decisive advantage of holographic NPC gratings is their versatility due to the range of possible choices of nanoparticle composition, thereby selecting the most suitable value of the coherent scattering length/absorption cross section for a specific application. For instance, magnetic or absorptive terms could be added to the periodic optical potential by incorporating ferromagnetic/superparamagnetic [12] nanoparticles or Gd-based nanoparticles, respectively. Magnetic-grating-structures could be used as polarizing beam splitters for retrofitting small-angle neutron scattering (SANS) instruments. Absorption gratings with small Λ could find applications in very-cold neutron (VCN) interferometry [13]. Recently investigated material types [14, 15] exhibited an increase in reflectivity of about 40% as compared to earlier experiments.
Figure 1. A transmission electron microscope image of the cross section of a plane-wave grating recorded in a ZrO$_2$ NPC sample at grating spacing of 0.6 µm. Note that the darker portions in the image correspond to ZrO$_2$ nanoparticle rich regions, indicating holographic assembly of nanoparticles in the formed polymer [9, 10].

Figure 2. (a) Sketch of the experimental setup. (b) Our model of the asymmetric wavelength distribution of PF2VCN.

Measured reflectivity curves (‘rocking curves’, i.e., neutron reflectivity vs. angle of incidence) of NPC gratings are usually fitted using the theoretical models by Kogelnik [16] or the equivalent dynamical diffraction theory (DDT) [17, 18]. For gratings with grating-strength decaying exponentially along the direction of the grating thickness, Uchida’s approach [19] is applied. For similarities and differences between the approaches, see Refs. [20, 21, 22, 23], for instance.

In comparison to crystal neutron optics it should be noted that NPC gratings are usually designed to work as relatively thin (in an optical sense [24]) diffraction gratings: In some cases, more than two diffraction spots can be visible for a given angle of incidence, so that the two-beam approximation is not applicable. In that case, the so-called rigorous coupled-wave analysis (RCWA) [20, 25, 26], that accounts for an arbitrary number of, even overlapping, peaks must be adopted for data analysis. Furthermore, the Pendellösungs length of NPC gratings can be of the order of 1 mm, so that the oscillatory structure of rocking curves is observable with realistic beam collimation. As a consequence, and most importantly, it is possible to beat the usual limit of about 50% that is imposed on the reflectivity of thick crystals in Laue (transmission) geometry by the mere fact that measured rocking curves are usually smeared out over a vast number of reflectivity oscillations [17]. In contrast, NPC gratings can in principle reach mirror-like reflectivity and even exhibit full Pendellösung oscillations as a function of angle of incidence θ, neutron wavelength λ, scattering length density modulation amplitude $b_c \Delta \rho$ or grating thickness d [27, 28, 29, 30, 31]. DDT predicts that—due to the particular superposition state within a periodic structure—the neutron intensity oscillates between reflected and transmitted beams.
Figure 3. Theoretical rocking curves calculated using DDT (dashed lines) and convolutions of DDT with a slit function (determined by the collimation) and the wavelength distribution shown in Fig. 2, for various tilt angles (a) – (f).

(Pendellösung interference). It has been shown that NPC gratings can be used as 50:50 beam splitters [32, 33], mirrors [34] or three-port beam splitters (30:30:30) [35] for cold- and very-cold neutrons (VCN). Furthermore, in the course of the experiments described in the above references, it has been asserted that the grating properties and quality have not changed substantially for many years, with the NPC gratings stored under ambient conditions.

In the present paper, some issues arising in the data analysis of reflectivity measurements with NPC gratings, related to the above facts, are discussed.

2. A typical experiment

In Fig. 2 (a), a schematic of the experimental setup used at the VCN beam position of the ILL (PF2VCN) is shown: We use a collimated beam with divergence limited both horizontally and vertically to about 10^{-3} rad. The collimation allows to observe the side maxima of the rocking curves at reasonable flux. The wavelength spectrum of the incident beam is very broad and asymmetric at PF2VCN, as shown in Fig. 2 (b) (for a measured VCN spectrum see, for instance, [13]). The cut-off at shorter wavelengths is due to reflection from a neutron (super)mirror used to redirect the incident beam, while the large width is due to the spectrum originating from the vertical and curved guide that feeds the ultra-cold neutron turbine [36]. Of course, further shaping of the incident spectrum is possible, but making use of the entire incident flux is preferable. Since, according to the Bragg equation \(\lambda = 2\Lambda \sin \theta_B \) and due to gravity, longer \(\lambda \) means larger Bragg angles \(\theta_B(\lambda) \) and lower impact positions on the detector (for given sample-detector distance), respectively. The longer \(\lambda \), the further away from the 0\(^{th}\) diffraction order spot (both horizontally and vertically) do diffracted neutrons hit a subsequent 2D detector at a particular distance from the grating. Consequently, we can discriminate the (mean) wavelengths on the 2D detector (pixel-size \(\approx 2 \times 2 \text{ mm}^2 \)) at about 2 m sample-detector distance by analyzing each pixel line in the diffraction spots on the detector separately to exploit the full wavelength-distribution of the VCN beam at PF2 at once (wavelength-multiplexing). Note that the sample-detector distance is usually insufficient to obtain narrower wavelength spectra for
individual pixel lines, as compared to the width of the incident spectrum. However, the \textit{mean} wavelength is increasing from the top to the bottom pixel line. We found that the intensity loss to absorption/incoherent scattering by an NPC grating is about 20\%. To compare this with time-of-flight for PF2VCN in a similar configuration (2 m distance and spectrum ranging from 3 \text{nm} to 6 \text{nm} with good collimation, say), one suffers at least 80\% loss due to the chopper alone. Of course, the wavelength resolution is much better for time-of-flight.

In Fig. 2 (a), one notes that the grating is not mounted in straightforward transmission geometry (also called Laue geometry), but is tilted about the grating vector by the angle \(\zeta \). We use such tilt to overcome thickness limitations of NPC gratings or to fine-tune the effective thickness in order to reach a particular reflectivity [33].

In the following section, peculiarities in data analysis that arise due to the VCN incident spectrum are discussed.

3. Appearance of shifted peaks
\(\pm 1^{\text{st}} \) diffraction order peaks of rocking curves calculated using DDT for a particular NPC grating (parameters: \(d = 100 \mu \text{m}, b, \Delta b = 4.8 \mu \text{m}^{-2}, \Lambda = 500 \text{nm} \)) at different tilt angles \(\zeta \) are shown by the dashed lines in Figs. 3 (a)–(f). The solid, vertical lines are the respective positions of \(\pm \theta_B \), which do not depend on \(\zeta \). The calculations are carried out for \(\lambda = 3 \text{nm} \), which is also the mean wavelength of the spectrum shown in Fig. 2 (b). The solid curves are the \(\pm 1^{\text{st}} \) diffraction order peaks of rocking curves calculated numerically by a convolution of the DDT curves with a slit function (according to the divergence of \(\approx 1 \text{ mrad} \) in our experiments) and the assumed wavelength distribution as shown in Fig. 2 (b). Taking a closer look at the peak positions \(\pm \theta_P \) of the solid curves, one observes slight deviations from \(\pm \theta_B \) depending on \(\zeta \). While for \(\zeta = 0^\circ \) [Fig. 3 (a)] the peak positions \(\pm \theta_P \) are larger than \(\pm \theta_B \), the former decrease with increasing \(\zeta \) until \(\pm \theta_P = \pm \theta_B \) at \(\zeta \approx 59^\circ \) [Fig. 3 (c)], only to be shifted further towards \(\theta = 0^\circ \) for higher \(\zeta \).

For \(\zeta = 70^\circ \) [Fig. 3 (f)], one can see that the solid curves become also quite asymmetric.

Though surprising at first sight, it is clear that the shift of \(\theta_P \) stems from incoherent superposition of the rocking curves measured ‘at once’ with a wide and asymmetric incident wavelength spectrum: \(\Delta n_1 \) is proportional to \(\lambda^2 \), so the reflectivity is much higher at longer wavelengths. Furthermore, curves for longer \(\lambda \) exhibit larger diffraction angles. Fig. 4 (a) shows deviations \(\Delta \theta_P = \theta_P - \theta_B \) (calculated) from the DDT peak-position \(\theta_B \) as a function of \(\zeta \) for several different incident wavelength spectra that all exhibit the same mean wavelength of \(\lambda_{\text{mean}} = 3 \text{nm} \). The horizontal, dashed line is the DDT prediction for a perfectly collimated,
monochromatic incident beam. The filled red circles represent the results for the PF2VCN model-spectrum of Fig. 2 (b) with a width of $\Delta \lambda = 3.2$ nm. The filled green squares represent data computed assuming a very sharp wavelength cut-off, for which λ_{max} (the wavelength of highest flux) is at the left border of the distribution. The filled, blue upside-down triangles assume a distribution symmetrical around λ_{mean} with the same large $\Delta \lambda$ as above, which—due to its symmetry—can be characterized by $\Delta \lambda / \lambda \approx 1.07$. The latter data set is also shown in Fig. 4 (b), together with data extracted from simulations assuming symmetrical distributions with decreasing values of $\Delta \lambda / \lambda$. In particular, further data are shown for $\Delta \lambda / \lambda = 0.5$ (filled yellow circles), $\Delta \lambda / \lambda = 0.25$ (empty triangles) and $\Delta \lambda / \lambda = 0.1$ (filled orange squares).

Inspecting the difference in scaling of the $y-$axes in Figs. 4 (a) and (b), one can infer that the exact form (the asymmetry, in this case) plays a minor role in the shifts of θ_P as compared to the actual width of the incident wavelength distribution.

If the incident mean wavelength is to be estimated only from peak positions and the Bragg condition, the shifts account for errors of up to 10%. With respect to our experimental method (wavelength-multiplexing by line-by-line analysis of diffraction spots) proposed above, it is clear that one cannot obtain a consistent estimation of the mean wavelength incident at a particular pixel line or other parameters aimed at, without taking the above findings into consideration.

Note that even for $\Delta \lambda / \lambda = 0.1$, as is the case of widths of typical SANS incident wavelength-spectra, there is some deviation in θ_P to be expected [Fig. 4 (b)]. However, it would be only of the order of 10^{-3} mrad or—translated to wavelengths—10^{-2} Å. Note also that the actual maximum tilt angle we have reached in experiments so far is about 80°. The behavior of θ_P in the range $70^\circ \leq \zeta < 90^\circ$ exhibits interesting resonance-like features, which will be discussed elsewhere.

4. Rocking curve shape-imperfection due to attenuation of the grating-strength along the sample depth

As already mentioned, in Ref. [35] an NPC grating was used as three-port beam splitter for neutrons at a wavelength $\lambda = 1.7$ nm. Grating parameters deduced were mainly due to an estimation at the Bragg angles, applying a two-beam coupling model [16]. This model, however, is only a rough approximation for two reasons: (i) standard two beam-coupling theories must fail as at least the consideration of three beams is vital to assess the situation, (ii) the side minima of the rocking curve are obviously lifted from the zero line.

To tackle problem (i) it would be sufficient to apply the RCWA [25, 26] by fitting it to the data. As discussed in the previous section, (ii) might be caused by a convolution of the wavelength distribution with the rocking curve. While this is important for diffraction measurements using the broad spectrum of PF2VCN, the situation is different for the rather narrow wavelength distribution at the SANS I instrument of PSI ($\Delta \lambda / \lambda \approx 0.1$), where the measurements shown in [35] were performed.

Another well known effect that might lead to (ii), is a nonuniformity of the grating strength along the sample depth [19] like, e.g., attenuation of the grating modulation-amplitude along the grating depth. The tedious task of including such a behavior into the RCWA was performed in Ref. [37] by dividing the hologram in a large number of layers along the sample depth, each of them treated by the RCWA and considering the boundary conditions between subsequent layers. We choose a more pragmatic approach. By inspecting the data shown in Fig. 5 we note that only five diffraction orders ($\pm 2, \pm 1, 0$) are observed. Therefore, we set up a five-wave coupling theory allowing for a profile of the coupling parameters along the sample depth and solve a set of coupled first-order ordinary differential equations. Second-order derivatives are disregarded (slowly-varying amplitude approximation) as the refractive-index modulation is moderate and reflection of neutrons at the surfaces can be neglected ($n_0 \approx 1$). This procedure gives rise to an ambiguity for the choice of boundary conditions [23, 38, 39, 40, 41]. Here, we opt for the
Figure 5. (a) Rocking curve for an NPC three-port beam splitter (ζ ≈ 56°). The inset shows a sum of the detector counts for all measured angular positions. (b) Geometrical configuration of a x − z-planar diffraction grating. \(\vec{G} = G(1, 0, 0) = 2\pi/\Lambda(1, 0, 0), \vec{N} = (0, 0, 1) \). (c) Ewald sphere at Bragg incidence for +1st order (not to scale), Floquet-condition.

beta-value method (see e.g. [38]), i.e., \(|\vec{k}_0| = |\vec{k}_{\pm 1}| = |\vec{k}_{\pm 2}| = 2\pi/\lambda := \beta \). The system of ODEs is solved numerically to fit it to the experimentally determined reflectivity. We refine the description of the refractive index modulation in our gratings (see Sec. 1) by allowing for an arbitrary profile along the sample depth \(z \) [see Fig. 5 (b)]:

\[
n(x, z) = 1 + \Delta n_1(z) \cos(Gx) + \Delta n_2(z) \cos(2Gx) + \ldots
\]

Here, \(\Delta n_i(z) \) are the depth-dependent Fourier-components of the refractive index, \(G = 2\pi/\Lambda \) is the modulus of the grating vector (spatial frequency). Neutrons are assumed to travel only in the \(x − z \) plane. The wave equation (deduced from the time-independent Schrödinger equation) reads:

\[
\left(\nabla^2 + k^2 \right) \psi(x, z) = 0, \tag{2}
\]

where \(k = \beta n(x, z) \) and \(\psi(x, z) \) is the wave function. For the latter we use a coupled-wave ansatz

\[
\psi(x, z) = \sum_j S_j(z) e^{-ik_j \cdot \vec{x}},
\]

where \(S_j(z) \) are the diffraction amplitudes to be determined. The Floquet condition requires that

\[
\vec{k}_j = \vec{k}_0 + jG - \delta q_j \vec{N}, \tag{3}
\]

with the (scalar) mismatch parameter

\[
\delta q_j = \beta \left[\cos \theta - \sqrt{1 - (\sin \theta + jG/\beta)^2} \right]. \tag{4}
\]

Here, \(\theta \) denotes the angle between the sample surface normal \(\vec{N} \) and the wavevector \(\vec{k}_0 \) of the incident beam. Inserting Eqs. (1), (3) and (4) into the wave equation (2), disregarding the second order derivatives and sorting the terms according to their propagation directions yields the coupled differential equations to be solved for the \(S_j(z) \) with the boundary conditions \(S_0(z = 0) = 1 \) and \(S_j(z = 0) = 0 \ \forall j \neq 0 \):

\[
2ik_j \cdot \vec{x} S_j(z)’ = \beta^2 \left[\Delta n_1(z) \left(S_{j+1}(z)e^{i(\delta q_{j+1}-\delta q_j)z} + S_{j-1}(z)e^{i(\delta q_{j-1}-\delta q_j)z} \right) \right.
\]
\[
+ \Delta n_2(z) \left(S_{j+2}(z)e^{i(\delta q_{j+2}-\delta q_j)z} + S_{j-2}(z)e^{i(\delta q_{j-2}-\delta q_j)z} \right) \left],
\]
Table 1. Summary of fitting results.

	$\zeta \approx 55^\circ$	$\zeta \approx 0^\circ$
λ	(1.72 ± 0.03) nm	(1.65 ± 0.05) nm
Δn_0^1	(5.05 ± 0.10) × 10$^{-6}$	(5.18 ± 0.15) × 10$^{-6}$
Δn_0^2	(9.4 ± 0.6) × 10$^{-7}$	(1.12 ± 0.05) × 10$^{-6}$
d	(186 ± 1) µm	(99 ± 1) µm
L	(109 ± 2) µm	(65 ± 1) µm
$\langle b_c \Delta \rho_1 \rangle$	(5.1 ± 0.2)/µm2	(6.2 ± 0.4)/µm2
$\langle b_c \Delta \rho_2 \rangle$	(0.96 ± 0.07)/µm2	(1.3 ± 0.1)/µm2

where we use the abbreviation $S_j(z)' = \partial S_j(z)/\partial z$. The j-th order reflectivity R_j is given by $R_j = k_j z/k_0 z |S_j(z = d)|^2$.

4.1. Experimental data and fitting

Rocking curves were measured for two tilt angles ($\zeta \approx 0^\circ, 55^\circ$). As explained in Sec. 2, longer wavelength neutrons hit the detector at lower positions and larger Bragg angles. However, it can be seen from Fig. 5 (inset) that the rather narrow wavelength distribution of SANS I is negligible: the longish diffraction spots are almost vertical and parallel. Therefore, we evaluated the angular dependence of the reflectivity by summing up all the counts of each diffraction spot in contrast to the line-by-line analysis. Next, we assume the functional dependence of the refractive-index depth-profile to be exponential with a decay length L such that $\Delta n_j(z) = \Delta n_0^0 e^{-z/L}$. This is a quite obvious choice as usually light absorption and—as in our case—linear light scattering processes lead to the exponential attenuation of the interference-fringe amplitude along the z-direction during recording [42, 43]. However, our model is not restricted to this particular choice. The profile can be of arbitrary form since the mean Fourier components (proportional to the mean values $\langle b_c \Delta \rho_j \rangle$) relate to the Fourier components Δn_0^j simply by averaging over d (integration along sample depth, Eq. (5) in Ref. [33]).

Using the numerical solutions to Eqs. (5) for five waves ($\pm 2, \pm 1, 0$ diffraction orders), a fit to the rocking curves at two tilt angles ($\zeta \approx 0^\circ, 55^\circ$) yielded the parameters in Tab. 1. Note that the modulation parameters Δn_0^1 and the wavelengths for the two tilt angles are perfectly consistent and the thicknesses are simply related by $d = d(\zeta = 0)/\cos \zeta$. Similar reasoning applies to the decay lengths L [33]. Further, for VCN measurements we have to consider that the coherent scattering-length density modulation amplitudes $b_c \Delta \rho_j$ for the j-th Fourier coefficient are related to the refractive-index modulation amplitudes Δn_j via $b_c \Delta \rho_j = 2\pi/(\lambda^2) \Delta n_j$ and are, thus, wavelength dependent.

The mean wavelength for the measurements at PF2VCN was about 3.6 nm. A sum of counts in detector images at all angles of incidence is shown in the inset of Fig. 6. The skewed diffraction spots in the inset indicate the rather wide wavelength distribution, similar to our model distribution in Fig. 2(b). In this case, it is mandatory to apply the line-by-line analysis. We employ the same model as in the previous (SANS I) case, using the same values for d and L as obtained from the previous evaluation (Tab. 1). The results obtained for two different horizontal detector lines, i.e., two different mean wavelengths, are shown in Fig. 6.

As expected, the fit to the data becomes worse as the wavelength increases. We attribute this observation to the fact that we did not consider the wavelength spectrum and the beam divergence. A more detailed study on these features is under way.
Figure 6. Rocking curves for two different pixel-lines. (a) $\lambda = (3.73 \pm 0.07)$ nm (fit result) and (b) $\lambda = (5.0 \pm 0.1)$ nm (fit result). The inset shows the sum of 2D-detector counts for all measured angles of incidence.

References

[1] Rupp R A, Hehmann J, Matull R and Ibel K 1990 Phys. Rev. Lett. 64 301–302
URL http://link.aps.org/doi/10.1103/PhysRevLett.64.301

[2] Havermeier F, Lyuksyutov S F, Rupp R A, Eckerlebe H, Staron P and Vollbrandt J 1998 Phys. Rev. Lett. 80(15) 3272–3275
URL http://link.aps.org/doi/10.1103/PhysRevLett.80.3272

[3] Schellhorn U, Rupp R A, Breer S and May R P 1997 Physica B: Condensed Matter 234 236 1068 – 1070 proceedings of the First European Conference on Neutron Scattering
URL http://www.sciencedirect.com/science/article/pii/S092145269700015X

[4] Pruner C, Fally M, Rupp R A, May R P and Vollbrandt J 2006 Nucl. Instrum. Methods A 560 598 – 605
URL http://www.sciencedirect.com/science/article/pii/S0168900205026811

[5] Fally M 2002 Appl. Phys. B 75 405
URL http://dx.doi.org/10.1007/s00340-002-1035-0

[6] Fally M, Drenešek-Olenik I, Ellabban M A, Pranzas K P and Vollbrandt J 2006 Phys. Rev. Lett. 97 167803
URL http://link.aps.org/doi/10.1103/PhysRevLett.97.167803

[7] Fally M, Bichler M, Ellabban M A, Drenešek-Olenik I, Pruner C, Eckerlebe H and Pranzas K P 2009 J. Opt. A: Pure Appl. Opt. 11 024019
URL http://stacks.iop.org/1464-4258/11/i=2/a=024019

[8] Suzuki N, Tomita Y and Kojima T 2002 Appl. Phys. Lett. 81 4121
URL http://scitation.aip.org/content/aip/journal/apl/81/22/10.1063/1.1525391

[9] Tomita Y, Suzuki N and Chikama K 2005 Opt. Lett. 30 839
URL http://ol.osa.org/abstract.cfm?URI=ol-30-8-839

[10] Chikama K, Mastubara K, Oyama S and Tomita Y 2008 Journal of Applied Physics 103
URL http://scitation.aip.org/content/aip/journal/jap/103/11/10.1063/1.2938849

[11] Tomita Y, Hata E, Momose K, Takayama S, Liu X, Chikama K, Klepp J, Pruner C and Fally M 2016 Journal of Modern Optics 63 S1–S31
URL http://dx.doi.org/10.1080/09500340.2016.1143534

[12] Klepp J, Drenešek-Olenik I, Gyergyek S, Pruner C, Rupp R A and Fally M 2012 J. Phys.: Conf. Ser. 340 012031
URL http://stacks.iop.org/1742-6596/340/i=1/a=012031

[13] Klepp J, Pruner C, Tomita Y, Geltenbort P, Drenešek-Olenik I, Gyergyek S, Kohlbrecher J and Fally M 2012 Materials 5 2788–2815
URL http://www.mdpi.com/1996-1944/5/12/2788

[14] Fujii R, Guo J, Klepp J, Pruner C, Fally M and Tomita Y 2014 Opt. Lett. 39 3453–3456
URL http://ol.osa.org/abstract.cfm?URI=ol-39-12-3453

[15] Guo J, Fujii R, Ono T, Klepp J, Pruner C, Fally M and Tomita Y 2014 Opt. Lett. 39 6743–6746
URL http://ol.osa.org/abstract.cfm?URI=ol-39-23-6743
[16] Kogelnik H 1969 Bell System Technical Journal 48 2909–2947 ISSN 1538-7305 URL http://dx.doi.org/10.1002/j.1538-7305.1969.tb01198.x

[17] Sears V F 1989 Neutron Optics (Oxford, UK: Oxford University Press)

[18] Rauch H and Werner S A 2015 Neutron Interferometry (Oxford, UK: Oxford University Press)

[19] Uchida N 1973 J. Opt. Soc. Am. 63 280–287 URL http://www.osapublishing.org/abstract.cfm?URI=josa-63-3-280

[20] Gaylord T and Moharam M 1982 Applied Physics B 28 1–14 ISSN 0946-2171 URL http://dx.doi.org/10.1007/BF00693885

[21] Klepp J, Pruner C, Ellabban M A, Tomita Y, Lemmel H, Rauch H and Fally M 2011 Nucl. Instrum. Methods A 634 S59–S62 URL http://www.sciencedirect.com/science/article/pii/S0168900210015779

[22] Fally M, Klepp J and Tomita Y 2012 Appl. Phys. B 108 89–96 ISSN 0946-2171 URL http://dx.doi.org/10.1007/s00340-012-5090-x

[23] Prijatelj M, Klepp J, Tomita Y, Geltenbort P and Fally M 2013 Phys. Rev. A 87(6) 063810

[24] Gaylord T K and Moharam M G 1981 Appl. Opt. 20 3271–3273

[25] Moharam M G and Gaylord T K 1981 J. Opt. Soc. Am. 71 811–818 URL http://www.osapublishing.org/abstract.cfm?URI=josa-71-7-811

[26] Moharam M G, Gaylord T K, Grann E B and Pommet D A 1995 J. Opt. Soc. Am. A 12 1068–1076

[27] Sippel D, Kleinstueck K and Schulze G 1965 Physics Letters 14 174 – 175 ISSN 0031-9163 URL http://www.sciencedirect.com/science/article/pii/0031916365905706

[28] Shull C G 1968 Phys. Rev. Lett. 21(23) 1585–1589 URL http://link.aps.org/doi/10.1103/PhysRevLett.21.1585

[29] Shull C G 1973 Journal of Applied Crystallography 6 257–266 ISSN 1600-5767 URL http://dx.doi.org/10.1107/S0021889873008654

[30] Somenkov V A, Shilstein S S, Belova N E and Utenisov K 1978 Solid State Commun. 25 593–595 URL http://www.sciencedirect.com/science/article/pii/0038109878914977

[31] Klepp J, Pruner C, Tomita Y, Geltenbort P and Fally M 2016 In preparation

[32] Klepp J, Pruner C, Tomita Y, Nakamura T, Pruner C, Ellabban M A, Rupp R A, Bichler M, Drevenšek-Olenik I, Kohlbrecher J, Eckerlebe H, Lemmel H and Rauch H 2010 Phys. Rev. Lett. 105 123904 URL http://link.aps.org/doi/10.1103/PhysRevLett.105.123904

[33] Klepp J, Pruner C, Tomita Y, Plonka-Spehr C, Geltenbort P, Ivanov S, Manzin G, Andersen K H, Kohlbrecher J, Ellabban M A and Fally M 2011 Phys. Rev. A 84 013621 URL http://link.aps.org/doi/10.1103/PhysRevA.84.013621

[34] Klepp J, Pruner C, Tomita Y, Mitsube K, Geltenbort P and Fally M 2012 Appl. Phys. Lett. 100 214104 URL http://scitation.aip.org/content/aip/journal/apl/100/21/10.1063/1.4720511

[35] Klepp J, Tomita Y, Pruner C, Kohlbrecher J and Fally M 2012 Appl. Phys. Lett. 101 154104 URL http://scitation.aip.org/content/aip/journal/apl/101/15/10.1063/1.4758686

[36] Steyerl A, Nagel H, Schreiber F X, Steinhauser K A, Gähler R, Gläser W, Ageron P, Astruc J, Drexel W, Gervais G and Mampe W 1986 Phys. Lett. A 116 347 – 352 URL http://www.sciencedirect.com/science/article/pii/0375960186905876

[37] Neipp C, Sheridan J, Gallego S, Ortuño M, Márquez A, Pascual I and Beléndez A 2004 Optics Communications 235 311 – 322 ISSN 0030-4018 URL http://www.sciencedirect.com/science/article/pii/S0030401804001075

[38] Sheridan J 1992 Journal of Modern Optics 39 1709–1718 URL http://www.tandfonline.com/doi/abs/10.1080/713823578

[39] Kong J A 1977 J. Opt. Soc. Am. 67 825–829 URL http://www.osapublishing.org/abstract.cfm?URI=josa-67-6-825

[40] Yeh P 1993 Introduction to Photorefractive Nonlinear Optics Wiley Series in Pure and Applied Optics (New York: Wiley)

[41] Russell P 1981 Physics Reports 71 209 – 312 URL http://www.sciencedirect.com/science/article/pii/0370157381901964

[42] Suzuki N and Tomita Y 2004 Appl. Opt. 43 2125 URL http://ao.osa.org/abstract.cfm?URI=ao-43-10-2125

[43] Suzuki N and Tomita Y 2007 Appl. Opt. 46 6809–6814 URL http://ao.osa.org/abstract.cfm?URI=ao-46-27-6809