Adaptation of gut microbiome and host metabolic systems to lignocellulosic degradation in bamboo rats

Kangpeng Xiao 1,2, Xianghui Liang 3, Haoran Lu 3, Xiaobing Li 1, Zhipeng Zhang 4, Xingbang Lu 1, Hai Wang 1, Yafei Meng 1, Ayan Roy 4, Wen Luo 1, Xuejuan Shen 1,5, David M. Irwin 6,7 and Yongyi Shen 1,2,5,8

INTRODUCTION
Lignocellulose, as the most abundant biomass component on earth, composed of cellulose, hemicellulose and lignin, is hydrophobic and difficult to enzymatically degrade [1]. Bamboo is a low-nutrition food with about 70–80% of its composition being lignocellulosic components [2, 3]. In general, mammals lack enzymes that breakdown complex lignocellulosic carbohydrates [4, 5], and heavily rely on the complementary action of the lignocellulose-degrading enzyme repertoire of their microbial symbionts [6, 7]. Bamboo rats and giant pandas are two famous specificity bamboo-eating animals and the understanding of their adaptations and mechanisms for digesting lignocellulose-based diet evokes enormous interest.

The giant panda retains a typical carnivore digestive system and the adaptation of their gut microbiome to a specialized bamboo diet has been widely studied [2, 8–11]. Several studies have documented, through metagenomic analyses, the ability of the gut microbiome of giant pandas to digest cellulose and hemicellulose [12–15]. It has been reported that the abundance of microbial genes in the gut of giant pandas contributing to lignocellulose degradation is lower than that of ruminants and other herbivores [16, 17], and is affected by diet, habitat environment (captive or wild) and seasonal factors (e.g., climate and food availability) [3, 13, 18, 19]. Gut microbial composition differs between captive and wild giant panda populations, and the gut microbes of wild giant pandas seem to be more capable of lignocellulose digestion [13, 20, 21]. In contrast, only a limited number of studies have focused on the bamboo rats. Research has shown that an endoglucanase with cellulase activity was identified from a bacterium strain in the gut of the bamboo rat [22], and rich CAZy families have been detected in the cecum microbiome that might contribute to the degradation of bamboo fibers [23].

Few studies have systematically characterized the lignocellulose utilization from an integrated view of both the host and gut microbiome, with most mainly focusing on the microbiome originating from stool. Stool and gut samples present different microbial communities in both membership and diversity, and the proportions of aerobic genera are elevated in stool samples [24]. The fact that most microbes involved in lignocellulose degradation are anaerobic [25], generates the need for metagenomic analyses of gut instead of stool samples. Furthermore, a single metagenomic analysis does not completely reveal the gene

Bamboo rats (Rhizomys pruinosus) are among the few mammals that lives on a bamboo-based diet which is mainly composed of lignocellulose. However, the mechanisms of adaptation of their gut microbiome and metabolic systems in the degradation of lignocellulose are largely unknown. Here, we conducted a multi-omics analysis on bamboo rats to investigate the interaction between their gut microbiomes and metabolic systems in the pre- and post-weaning periods, and observed significant relationships between dietary types, gut microbiome, serum metabolome and host gene expression. For comparison, published gut microbial data from the famous bamboo-eating giant panda (Ailuropoda melanoleuca) were also used for analysis. We found that the adaptation of the gut microbiome of the bamboo rat to a lignocellulose diet is related to a member switch in the order Bacteroidales from family Bacteroidaceae to family Muribaculaceae, while for the famous bamboo-eating giant panda, several aerobes and facultative anaerobes increase after weaning. The conversion of bacteria with an increased relative abundance in bamboo rats after weaning enriched diverse carbohydrate-active enzymes (CAZymes) associated with lignocellulose degradation and functionally enhanced the biosynthesis of amino acids and B vitamins. Meanwhile, the circulating concentration of short-chain fatty acids (SCFAs) derived metabolites and the metabolic capacity of linoleic acid in the host were significantly elevated. Our findings suggest that fatty acid metabolism, including linoleic acid and SCFAs, are the main energy sources for bamboo rats in response to the low-nutrient bamboo diet.

The ISME Journal (2022) 16:1980–1992; https://doi.org/10.1038/s41396-022-01247-2
products of the gut microbes and their impact on host health [26]. This necessitates multi-omics techniques that enable the efficient characterization of dynamic changes and functional activities of both the gut microbiome and the host [27, 28]. Bamboo rats serve as an excellent model to study the utilization of lignocellulose due to their specialized bamboo-eating dietary characteristics. Here, we explored the degradation of recalcitrant lignocellulosic materials by complementary and synergistic cooperation between the host and their gut microbiome. We performed a study, which involved stages from the unweaned period to the specific bamboo-eating period in bamboo rats, and integrated multi-omics measurements including microbiomes from several gut segments, serum metabolome, and the host transcriptome to identify lignocellulose digestion mechanisms. In addition, similarities and differences in the gut microbiome response to dietary switches in bamboo rats and giant pandas were compared.

RESULTS
Comparative profiling of gut microbial patterns in bamboo rats and giant pandas
We grouped samples according to the dietary stage of the bamboo rats and giant pandas (Fig. 1a, b; Tables S1 and S2) and compared their gut microbial compositions and associated functional profiles. Clusters of gut microbiome were observed to be closer in the unweaned giant pandas and bamboo rats based on Bray–Curtis dissimilarities at the OTU level, whereas huge differences were evident after these animals started consuming bamboo-based diets (Fig. 1c). Linear discriminant analysis (LDA) effect size (LEfSe) was employed to assess the microbiome attributes that differed significantly by dietary status. Our analysis revealed that the family Bacteroidaceae and genus Bacteroides were enriched in the milk diet stage of both the bamboo rat and the giant panda (Kruskall–Wallis test, \(p < 0.05 \), LDA > 3.5) (Fig. S1a, b; Table S3). After switching to the lignocellulosic diet, microbial families including Muribaculaceae, Lachnospiraceae, Ruminococcaceae, and Desulfovibrionaceae were enriched in the gut of the bamboo rats, whereas the phylum Proteobacteria, and the families Streptococcaceae and Clostridiaceae were observed to be significantly elevated in the gut of the giant pandas (Fig. S1a, b; Table S3). Notably, the gut microbiomes of captive and wild pandas were quite different at the OTU, CAZyme, KO, and COG levels (PERMANOVA, \(p < 0.05 \)) (Fig. 1c, d, Fig S1c, d), and the microbial compositions and CAZy family profiles of wild pandas appeared closer to those of the weaned bamboo rats (Fig. 1c, d).

Adaptation of the gut microbiome to dietary switch in bamboo rats
The within-sample diversities based at the OTU and gene levels were calculated for the duodenum, cecum, and colon of the bamboo rats. In general, OTU and gene diversities of the gut microbiome in the S2 stage were higher than in the S1 stage (Fig. 2a and Table S4). The OTU diversity in the hindgut was lower than that of the foregut, but gene diversity in the hindgut was higher than that of the foregut (Fig. 2a and Table S4). PCoA plots based on Bray–Curtis dissimilarities at the OTU (c) and CAZy family level (d) showed that the gut microbiomes of bamboo rats were more similar within the same dietary stage, whereas the gut microbiomes of giant pandas were more variable across different dietary stages.
$R^2 = 0.08, p < 0.05$), CAZymes (PERMANOVA, $R^2 = 0.08, p < 0.05$), KOs (PERMANOVA, $R^2 = 0.12, p < 0.05$), and COGs (PERMANOVA, $R^2 = 0.17, p < 0.05$) also showed clearly different clusters between the S1 and S2 stage samples (Fig. S2). Our findings indicate that substantial changes in gut microbial composition and function occur after diet conversion.

Next, co-occurrence networks were established to estimate microbial co-existence in the different dietary stages. According to the topology of these networks, Desulfovibrioaceae-centered microbial communities in the S1 stage were noted to be replaced by a stronger inner-connected microbial community containing Lachnospiraceae, Ruminococcaceae, and Muribaculaceae in the S2 stage (Fig. 2c). In addition, the order Bacteroidales was found to be predominant in both the stages. Notably, Bacteroidaceae, which were dominant in the S1 stage (average relative abundance: 31.6%), were largely replaced by uncultured Muribaculaceae in the S2 stage (average relative abundance: 38.2%) (Fig. 2d). This bacterial switch in the order Bacteroidales was significantly affected by dietary types (MaAsLin2, FDR $p < 0.05$) (Fig. 2e).

Synergetic actions of multiple CAZY families are necessary for bacteria to perform lignocellulose degradation. Changes in the relative abundance of CAZY families that were significantly affected by multiple factors, including intestinal segment, age, and dietary type are displayed in Fig. 3a and Table S5 (MaAsLin2, 2022).
Overall, the relative abundance of CAZymes in the hindgut (colon and cecum) was higher than in the foregut and produced two different patterns consistent with dietary stage (Fig. 3a). We then focused on the CAZymes which were up-regulated in the S2 stage. These enzymes mainly originate from Muribaculaceae, Lachnospiraceae, Clostridiaceae, and Bacteroidaceae, which indicated the rich carbohydrate enzymatic functions of these microbes. Among these microbes, Muribaculum gordoncarteris, Lachnospiraceae bacterium GAM79, Roseburia intestinalis, Duncaniella dubosii, and Flintibacter sp were five representative species with high abundance (Fig. 3b). According to the structure of lignocellulose, we identified CAZymes involved in all steps of lignocellulose degradation in the gut microbiome of the bamboo rats (Fig. 3c), and these enzymes were significantly elevated in the S2 stage (MaAsLin2, FDR $p < 0.05$) (Table S5). For example, some peroxidases and laccases, including AA4 and AA10, required for lignin degradation and release of cellulose and hemicellulose, were increased in the S2 stage (Fig. 3a and c). Some redox enzymes and carbohydrate esterases including CE2, CE3, CE4, CE6, and CE12, necessary for lignocellulose degradation were also enriched in the S2 stage (Fig. 3a and c). Moreover, the endoglucanases (i.e., GH5, GH9, GH10, GH53, GH81, GH85), endo-hemicellulases (i.e., GH39), and β-glucosidases (i.e., GH128), which contribute to cellulose and...
hemicellulose degradation, were noted to be enriched in the S2 stage (Fig. 3a and c).

In addition, we also found functional changes in vitamin and amino acid synthesis in the gut microbiome of bamboo rats that accompanied the food conversion. Biosynthesis of vitamin B family (VB1, VB2, B3, VB7, and B9) and amino acids (including arginine, BCAAs and AAAs) were enhanced, while retinol and vitamin B6 metabolism were decreased in the S2 stage (Wilcoxon rank sum test, \(p < 0.05 \)) (Fig. S3).

Serum metabolite patterns at the different dietary stages

A total of 2530 metabolites (1431 and 1099 metabolites for positive and negative polarity mode, respectively) were detected as blood circulating metabolites from the 24 bamboo rats. Partial least-squares discriminant analysis (PLS-DA) was used to reduce the dimensionality of the high-dimensional metabolome data. The score plot showed a clear separation between each group (Fig. 4a). Accordingly, we compared the differences in metabolites between the groups in the two dietary stages (Fig. 4b). Overall, 91 shared differential metabolites (SDMs), including S2 for positive mode and 39 for negative mode, were identified between the two dietary stages (VIP > 1.0, FC > 2.0 or FC < 0.5, \(p \) value < 0.05) (Fig. 4b).

We then assessed the correlations between these SDMs and the dietary patterns to explore potential biomarkers at the different stages. In this study, the SDMs conformed to correlation analysis (Spearman \(r > 0.7, \) FDR \(p < 0.05 \)), and ROC curve estimation (AUC > 0.9) were selected as the potential biomarkers for the specific dietary stages (Table S6). Metabolites that were potential drug components or hormones were excluded. Finally, 27 and 12 potential biomarkers were identified in the S1 and S2 stages (Fig. 4c). For example, 12(13)-DIHOME, the terminal product of linoleic acid metabolism, was observed to robustly correlate with bamboo-based diet (Spearman \(r = 0.87, \) FDR \(p < 0.0001 \)). We classified these metabolites according to their database annotation status (KEGG, HMDB, and LIPID MAPS database) and the attributes of their metabolic derivatives. Specifically, some bile acid derived metabolites (glycochenodeoxycholic acid, \(\beta \)-hydroxycholic acid, sulfoglyco-chenodeoxycholic acid, and taurohyodeoxycholic acid), and amino acid derived metabolites (roseotoxin S, DL-\(\alpha \)-aminocaprylic acid, saccharopine, \(\alpha \)-glutamyl-4-hydroxyproline, and \(\varepsilon \)-(\(\alpha \)-glutamyl)-lysine)), were abundant in the S1 stage (Fig. 4c, d). On the other hand, some glucose derived molecules such as \(\alpha \)-cresol glucuronide, 5\'-O-\(\beta \)-glucosylpyridoxine, 17\'-estradiol-3-glucuronide, and estriol 16\'-estradiol-3-glucuronide were significantly elevated in the S2 stage (VIP > 1.0, FC > 2.0 or FC < 0.5, \(p \) value < 0.05) (Fig. 4c and e).

Increased fatty acid metabolism during the lignocellulosic diet period

In order to further explore the mechanisms of host response to diet switch, we attained transcriptomes from 36 samples from 3 tissues (liver, duodenum and colon) across 4 ages (15d, 30d, 45d, and 80d). These tissues are known to be critical for metabolic performance and nutrition utilization. About 92.2% of transcripts represented the available vertebrata conserved orthologs, which indicates that the transcriptomes were well assembled and relatively complete (Fig. S4). Differentially expressed genes (DEGs) were identified in the liver, duodenum, and colon of the bamboo rats across the 4 ages. KEGG pathway and GO enrichment analyses were performed for the DEGs in each pair groups (Figs. 5a, S5). Concretely, pathways related to carbohydrate digestion and absorption (hydrolase activity acting on glycosyl bonds) were enriched in the duodenum in the S2 stage (FDR \(p < 0.05 \)) (Figs. 5a, S5). Moreover, nutrients absorbed by the intestine at the two dietary stages were different. For example, pathways related to the digestion and absorption of proteins, minerals and fats were enriched in the S1 stage, while pathways related to metabolism and absorption of vitamins and carbohydrates were abundant in the S2 stage (FDR \(p < 0.05 \)) (Fig. 5a).

Diverse KEGG pathways such as linoleic acid metabolism, arachidonic acid metabolism, retinol metabolism, and glucuronogenesis were enriched in the S2 stage (FDR \(p < 0.05 \)) (Fig. 5a). Linoleic acid metabolism was also observed to be the most enriched KEGG pathway, based on serum metabolites, which strongly correlates to the bamboo-based diet (Spearman \(r > 0.6 \)) (Fig. 5b). Arachidonic acid, a product of linoleic acid metabolism, had an elevated level in the S2 stage (Fig. 5c). However, only linoleic acid correlated strongly to bamboo-based diet (Spearman \(r = 0.65 \)) (Fig. 5c). In the liver, cytochrome P450 family members CYP2C, CYP2J, CYP2E1, and CYP3A4 showed significant upregulation in the S2 stage, which facilitate efficient conversion of linoleic acid to the end product 12,13-DIHOME (Fig. 5d). Our results revealed that the source and end products of linoleic acid metabolism were significantly elevated in the S2 stage, which might be associated with adaptation of the bamboo rats to lignocellulosic diet.

The associations of gut microbiome and serum metabolome

We next explored the associations of gut microbiome and serum metabolome in bamboo rats that might facilitate lignocellulose utilization. We assessed the effect of duodenum, cecum and colon microbiomes on the serum metabolome, using the Mantel test (Fig. 6a). Overall, the microbiomes of the hindgut (cecum and colon) were more tightly coupled with serum metabolome than the foregut (duodenum) (Fig. 6a). For example, the correlations between the duodenum CAZymes profile and serum metabolome were weak with an extremely low effect size (Mantel test, \(r = 0.05, \) \(p > 0.05 \); \(r = 0.04, \) \(p > 0.05 \) for positive and negative metabolome modes, respectively), while only the colon microbiome, both in taxonomy profile and function profile, was significantly associated with serum metabolites (Mantel test, \(p < 0.05 \)) (Fig. 6a). This indicates that colon microbial metabolism and associated products contributed most to the serum metabolome.

To identify co-variation between the gut microbes and serum metabolites, we used an integrative approach to analyze the colon microbiome (based on the OTU level) and serum metabolome (Fig. 6b). Microbes closely related to host metabolites reflected two categories: (a) the Muribaculaceae family, which was predominant in the S2 stage, and (b) a group of co-occurring microbes (i.e., families Lachnospiraceae and Ruminococcaceae) with abundant metabolic functions (Fig. 6b). As expected, short-chain fatty acid (SCFA)-derived metabolites, including butyryl acylate and butanoate-derived molecules, displayed strong significant positive correlation with the second group of co-occurring microbes (\(p > 0.6 \)). Biomarkers of bamboo-based diet (Fig. 4c), namely 5-amino-6-(D-ribitylamino) uracil, margaric acid, and \(\alpha \)-cresol glucuronide, were positively correlated with serum metabolites (Mantel test, \(r < 0.05 \)) (Fig. 6a). Notably, some polysaturated fatty acids (linoleic acid and arachidonic acid) had weak correlations with the gut microbes (\(p < 0.6 \)) indicating that they were mainly derived from food and lacked a microbial origin.

DISCUSSION

Multi-omics covering stages from milk diet to bamboo diet revealed that the bamboo rat is well adapted to lignocellulosic-based food. The cooperation between their gut microbiomes and their own metabolic systems is displayed in Fig. 7.

The high-fiber bamboo diet after weaning increased the diversity and richness of the gut microbiome in bamboo rats (Fig. 2a), which is consistent with similar observations in humans [29], mice [30], swine [31], and ruminants [32]. Moreover, the level of serum 2-Hydroxyhippuric acid, a predictor of gut microbiome \(\alpha \)-diversity [33], was found to be increased in our study (Fig. 4c). This signifies the powerful ability of fiber in shaping
the gut microbiome. We found that the phyla Bacteroidetes and Firmicutes were predominant in the gut of bamboo rats, which have been reported to substantially contribute to the taxonomic and metabolic variations in the gut microbiome of humans and ruminants [34, 35]. Notably, we observed a major switch in the order Bacteroidales from family Bacteroidaceae to family Muribaculaceae, after the consumption of bamboo-based food (Fig. 2d). Recent studies have shown that Muribaculaceae are functionally...
distinct from their neighboring families and are versatile degraders of complex carbohydrates [36, 37]. We detected that Muribaculum gordoncarteri, Duncaniella dubosii, Duncaniella sp. C9, and Sodaliphilus pleomorphus, representing the Muribaculaceae family, harbor diverse functional CAZymes involved in lignocellulose degradation (Fig.3b). Although the ruminant gut microbiome can digest recalcitrant lignocellulose, the order Bacteroidales has not been reported to be enriched with members from the Muribaculaceae family [35], and seem to lack cellulosome to degrade the complex plant polysaccharides [38]. Our findings suggest that the mechanisms for lignocellulose degradation by gut microbiome in ruminants and non-ruminants are different. Our data revealed that the colon microbiome in bamboo rats contributed the most to serum metabolome composition (Fig.6a). Lignin breakdown is the first step of lignocellulose degradation by gut microbiome with concomitant release of cellulose and hemicellulose [39]. The enrichment of Enterocloster bolteae and other bacterial species, which harbor ligninolytic enzymes such as AA4 and AA10 in the bamboo-eating period mainly contributed to lignin breakdown in the bamboo rats (Fig. 3b, c). Multiple CAZy families with oxidative, hydrolytic and non-hydrolytic activities identified in Muribaculum gordoncarteri, Lachnospiraceae bacterium GAM79, Roseburia intestinalis, Blautia producta, Duncaniella dubosii, and Bacteroides thetaiotaomicron typically act on cellulose and hemicellulose metabolism in the gut of post-weaning bamboo rats (Fig. 3b, c). These findings indicate that the gut microbiome of bamboo rats is functionally adapted to the utilization of complex lignocelluloses. These bacterial members formed a strong inner-connected microbial community with richness in metabolic and fermentative functions (Fig. 2c). As a result, the levels of acetate- and butyrate-derived metabolites in the blood were significantly increased in the S2 stage (Figs. 4c and 6b). Meanwhile, metagenomic analysis revealed that the biosynthesis of vitamin B family (VB1, VB2, VB3, VB7, and VB9) and amino acids...
(BCAAs, AAAs and arginine) was significantly enhanced (Fig. S3). The level of 5-Amino-6-ribitylamino uracil, the intermediate in VB2 (riboflavin) biosynthesis, was correspondingly significantly elevated in the blood (Fig.4c). We noticed that the gut microbes provide a variety of metabolites for the host, including volatile SCFAs, vitamins and essential amino acids during lignocellulose utilization (Fig.7). The relative abundance of retinol and VB6 metabolism in the gut microbiome was reduced (Fig. S3), while transcriptome showed that the retinol metabolism pathway was significantly enriched in the gut and liver of bamboo rats in the bamboo-eating period (Fig. 5a). Previous studies reported that VB6 biosynthesis by gut microbes appear to be negatively correlated with the relative abundance of butyrate producers such as Blautia and Roseburia [40, 41], which is consistent with our findings. In contrast, bamboo-based food is rich in β-carotene [42], which can be processed into retinoic acid by intestinal epithelial cells for further metabolism or storage [43]. Retinol, available from the conversion of carotene present in bamboos, might already meet the needs of the bamboo rat host, thus, limiting the requirement for retinol biosynthesis by gut microbiome.

The transcriptome and metabolome analyses revealed that the host linoleic acid metabolism was significantly enhanced in the S2 stage (Fig. 5). Although some bacterial genera like Propionibacterium, Lactobacillus, and Bifidobacterium have shown promising abilities to produce conjugated linoleic acids [44, 45], the level of linoleic acid in the serum of bamboo rats was found not to be closely related with gut microbiome, but rather to robustly correlate with specific bamboo dietary type (Spearman r = 0.65) (Fig. 5c). The plants of the Poacea family, including bamboos, possess linoleic acid or linoleic acid-derived compounds (i.e., linoleic-CoA, linoleic acid ethyl ester and linoleoyl chloride) and margaric acid [46, 47]. This could explain the elevated serum concentrations of linoleic acid and margaric acid in bamboo rats during the bamboo-eating period. Similar trends were observed in bamboo-eating giant pandas where the concentrations of metabolites related to the linoleic acid metabolism predominate in the serum [48]. The above indicates that the intake and utilization of fatty acids like linoleic acid and margaric acid might be one of the adaptive mechanisms of animals to respond to low-nutrient bamboo food (Fig. 7).

It is generally believed that increased intake of linoleic acid is associated with overweight and obesity in humans [49]. However, the body fat rate of bamboo rat with enhanced linoleic acid metabolism during the bamboo eating period is low [50]. The serum metabolite 12,13-diHOME, a terminal product of linoleic acid metabolism [51], was found to be significantly increased in concentration in the S2 stage and identified as an important biomarker of bamboo diet in our study (Fig. 4c). It has been reported that the level of 12,13-diHOME is negatively correlated with the body-mass index (BMI) and insulin sensitivity, which could stimulate fat consumption and reduce blood triglyceride levels [52]. We also noticed that Bacteroides thetaiotaomicron, previously reported to reduce fat accumulation by altering the levels of serum metabolites [53], was one of the main bacterial species involved in lignocellulose utilization in the bamboo rats.
from food) and volatile SCFAs (i.e., butyrate and acetate produced by the gut microbes) could be the main energy sources in bamboo rats. Meanwhile, circulating concentrations of some metabolites such as 12(13)-DiHOME, 2-Hydroxyhippuric acid and glucose derived metabolites with lignocellulose degradation and increased the production of glucose, amino acids, B vitamins (VB1, VB2, VB3, VB7 and VB9), and SCFAs (Fig. 3b). Moreover, in the bamboo-eating period, the circulating concentrations of glucose-derived metabolites were significantly elevated (Fig. 4e), which might be attributed to increased gluconeogenesis in the liver (Fig. 5a). Therefore, bamboo rats, which feed on high lignocellulose diet, might reduce lipid accumulation by increasing lipolysis and induce gluconeogenesis to maintain glucose levels in the blood. Our observations are consistent with similar findings in ruminant sheep [54]. In addition, volatile SCFAs (especially butyrate) produced by gut microbes, provide 60–70% of the energy needed by the colon, muscle and brain cells in the hosts [55, 56]. Overall, our data indicate that in the process of feeding on low-nutrition bamboo diet, fatty acids (i.e., linoleic acid and margaric acid) available from food and volatile SCFAs produced by the gut microbes (i.e., butyrate, acetate) could be the main energy sources in bamboo rats (Fig. 7).

We compared the gut microbiome adaptation and mechanisms of lignocellulose degradation in bamboo rats and giant pandas, as both are bamboo specialists. The phyla Bacteroidetes was enriched in the gut of both bamboo rats and giant pandas before weaning; however, aerobes and facultative anaerobes like Proteobacteria and Streptococcaceae were found to be elevated in the gut of giant pandas after weaning (Fig. S1), along with a decrease in the diversity or richness of gut microbiome [10, 13]. Our analysis and previous studies provide evidence that the gut microbes of giant pandas, especially wild pandas, have the ability to metabolize lignocellulose (Fig. 1c, d) [20, 21]. However, the digestion and utilization rate of bamboo fiber in the gut of giant pandas is low [57]. Research has shown that the source of energy for giant pandas may be protein, hemicellulose, or intracellular nutrients [2, 3, 58]; however, the role of fatty acids has been unexplored. In response to the bamboo diet, the genes of giant panda involved in the digestion and utilization of bamboo fatty acids experience adaptive convergence [2], and linoleic acid related metabolites are enriched in their serum [48]. Combined with the results achieved in bamboo rats, we infer that the pattern of using fatty acids (i.e., linoleic acid and margaric acid) from food could be another major source of energy for giant pandas.

In conclusion, we systematically explored the utilization of lignocellulose in bamboo rats for the first time, using a multi-omics approach with data from gut digesta, blood, and tissue samples throughout their different dietary periods. Our study reveals that the diversity of Bacteroidetes involved in the utilization of lignocellulose in bamboo rats is different from ruminants and giant pandas. We comprehensively characterized the bacterial species and functional genes associated with lignocellulose degradation in the intestine of bamboo rats, and highlighted the importance of fatty acid metabolism (i.e., linoleic acid from food and SCFAs from gut microbiome) on a low-nutrient bamboo diet. Further assays such as the isolation of functional bacteria and in vitro or in vivo tests are needed to draw causality relationships. Our study not only provides novel insight into the complex mechanisms for lignocellulose digestion in the non-ruminant bamboo rats, but also provides data to support the future bio-utilization of lignocellulose involving specific bacteria.

Fig. 7 Putative cooperate mechanisms of bamboo rat and gut microbiome in response to the low-nutrient bamboo diet. In the bamboo-eating stage, the dominant gut microbiota were switched from Bacteroidaceae to Muribaculaceae, which enriched diverse CAZymes associated with lignocellulose degradation and increased the production of glucose, amino acids, B vitamins (VB1, VB2, VB3, VB7 and VB9), and SCFAs. Meanwhile, circulating concentrations of some metabolites such as 12(13)-DiHOME, 2-Hydroxyhippuric acid and glucose derived metabolites were elevated, and associated metabolic function were enhanced in liver. The metabolism of fatty acids (i.e., linoleic acid and margaric acid from food) and volatile SCFAs (i.e., butyrate and acetate produced by the gut microbes) could be the main energy sources in bamboo rats.

MATERIALS AND METHODS

Animals and specimen collection

All protocols and studies involving animals were conducted in accordance with the guiding principles of the Animal Care and Use Committee of South China Agriculture University (permit number 2021g007). All bamboo rats were purchased from an artificial breeding farm in Guangxi province, China. The captive breeding of this animal was legal before the COVID-19 outbreak, while it is now banned. We defined the pre-weaning period as being the S1 stage (age < 40d), while the post-weaning period before adulthood was the S2 stage (Table S1). Sampling from bamboo rats was conducted on March 28th–29th, 2019. Tissue, blood and intestinal contents were sampled from 24 bamboo rats (6 animals each at the ages of 15d, 30d, 45d, and 80d). For adult bamboo rats (age > 1 year), we only collected fecal samples (Table 1).

Data from captive and wild giant pandas, which cover different dietary periods, including 230 16S rRNA gene sequencing datasets (accession no. PRJNA5242453 and PRJNA358755) [10, 20] and 88 shotgun metagenomic sequencing datasets (accession no. PRJEB24780, PRJCA000366, and PRJNA356809) [3, 17, 20], were downloaded from the Sequence Read Archive (SRA) database (Table S2).

16S rRNA gene data analysis

Barcode and primer sequences were removed from the raw reads using Cutadapt (v1.18) [59]. OTU clustering were performed by usearch (v11, -cluster_otus) [60]. Non-redundant reads were compared with the reference Gold database to remove chimera sequence (usearch, -uchime2_ref). The
filter of sequences that were not assigned to bacteria, OTU estimation and taxonomy annotation were achieved by alignment against the SILVA database (v132) through the QIME platform [61]. RDP classifier with 97% sequence identity was used for taxonomic classification.

In the joint analysis of bamboo rats and giant pandas, total OTU counts were rarefied to 5000 per sample due to the magnitude difference in raw counts among the samples. In other cases, the dataset were rarefied to same OTU counts according to sample with the lowest count tags. Shannon indices were estimated for within-sample microbial diversity analysis. Beta diversity was evaluated using principal coordinates analysis. Shannon indices were estimated for within-sample microbial diversity and the number of mapped reads and the length of the gene. The species and function profile were calculated by summing the relative abundance of genes belonging to each category per sample. Overall differences in the metabolites of different intestinal segments of different species were determined if VIP > 1, FC > 2.0 or FC < 0.5 and p value < 0.05. Correlation analysis based on Spearman correlation coefficient (r) was performed against the gene expression data and the serum metabolome.

Quantification of genes and construction of species and function profiles

Sequenced-based abundance profiling was performed as previously described [86]. For the calculation of relative gene abundance, the high-quality reads from each sample were aligned against the gene catalog by BWA-MEM with the criteria of alignment length ≥50 bp and identity >95%. Copy number of each gene in one sample was defined as the quotient of the number of mapped reads and the length of the gene. The species and function profile were calculated by summing the relative abundance of genes belonging to each category per sample. Overall differences in the metabolites of different intestinal segments of different species were determined if VIP > 1, FC > 2.0 or FC < 0.5 and p value < 0.05. Correlation analysis based on Spearman correlation coefficient (r) was performed against the gene expression data and the serum metabolome.

Estimation of microbiome association with serum metabolome

Mantel tests were used to quantify the covariation between different measurement types [90]. Bray–Curtis dissimilarity matrices from the OTU and CAZymes profiles, and the Euclidean distance matrix from the serum metabolite profile were obtained based on the corresponding normalized matrix. The pairwise matrices were then compared using the mantel function implemented the R package vegan [66]. The excellent predictive performance was evaluated by calculating the area under the ROC curve (AUC) > 0.9 [89].
circumvent spurious associations, the optimum number of components and variables was determined with 50 × 5-fold cross-validation. The similarity values between pair of variables were calculated by the network

Differential stages of bamboo rat and giant panda were identified using LDA score > 3.5 and the absolute value of Spearman correlation between gut microbiome and serum metabolites were analyzed with the permutational multivariate analysis of variances (PERMANOVA) method based on 9999 random permutations. Wilcoxon rank sum tests were performed to assess the differences in the alpha diversity and functional profiles of the gut microbiomes. Pattern heterogeneity analysis with a threshold criterion of Spearman r ≥ 0.6 and FDR p < 0.05 was used for estimating the metabolites associated with dietary stages. Mantel test with 9999 random permutations were used to assess the contribution of the microbiome of different parts of the gut to the serum metabolome, two measures of similarity were considered correlated if the p value < 0.05 and the absolute value of mantel statistical r indicates the degree of covariation. The p values in the multiple comparisons were adjusted by the Benjamini–Hochberg false discovery rate (FDR) method.

DATA AVAILABILITY

Shotgun metagenomic sequences and 16S rRNA gene amplicon sequences generated in this study were deposited to the NCBI SRA database under the BioProject accession no. PRJNA774076. The RNA sequencing data are available from SRA BioProject PRJNA774077. The metabolomics data are available in the MetaboLights data repository (www.ebi.ac.uk/metabolights) with accession no. MTBLS4161.

REFERENCES

1. Leadbeater DR, Oates NC, Bennett JP, Li Y, Dowie AL, Taylor JD, et al. Mechanistic strategies of microbially regulated lignocellulosic degradation: a comparison of current and future technology. Nat Biotechnol. 2018;36:359–66.

2. Hu Y, Wu Q, Ma S, Ma T, Shan L, Wang X, et al. Comparative genomics reveals convergent evolution between the bamboo-eating giant and red pandas. Proc Natl Acad Sci USA. 2017;114:1081–6.

3. Wang L, Xu Q, Kong F, Yang Y, Wu D, Mishra S, et al. Exploring the goat rumen microbial consortium derived from termite gut: enrichment, lignocellulose degradation and community dynamics. Biotechnol Biofuels. 2018;11:284.

4. Rowland I, Gibson G, Heinken A, Scott K, Swann J, Theile I, et al. Gut microbiota functions: metabolism of nutrients and other food components. Eur J Nutr. 2018;57:1–24.

5. Mars RAT, Yang Y, Ward T, Houtti M, Priya S, Lekatz HR, et al. Longitudinal multi-omics reveals subset-specific mechanisms underlying irritable bowel syndrome. Cell 2020;182:1460–1477.e17.

6. Zhou W, Sailani MR, Contrepois K, Zhou Y, Ahdai S, Leopold SR, et al. Longitudinal multi-omics of host-microbe dynamics in prediabetes. Nature 2019;569:663–71.

7. Tap J, Furet JP, Bensadara M, Philippe C, Roth H, Rabot S, et al. Gut microbiota richness promotes its stability upon increased dietary fibre intake in healthy adults. Environ Microbiol. 2015;17:4954–64.

8. Li X, Guo J, Ji K, Zhang P. Bamboo shoot fiber prevents obesity in mice by modulating the gut microbiota. Sci Rep. 2016;6:32953.

9. Wang X, Tsai T, Deng F, Wei X, Chai J, Knopp J, et al. Longitudinal investigation of the swine gut microbiome from birth to market reveals stage and growth performance associated bacteria. Microbiology 2019;170:9.

10. Wang L, Xu Q, Kong F, Yang Y, Wu D, Mishra S, et al. Exploring the goat rumen microbiome from seven days to two years. PLoS ONE. 2016;11:e0154354.

11. Wranicki T, Rappaport N, Earls JC, Magis AT, Manor O, Lovejoy J, et al. Blood metabolome predicts gut microbiome α-diversity in humans. Nat Biotechnol. 2019;37:1217–28.

12. Consortium THMP. Structure, function and diversity of the healthy human microbiome. Nature 2012;486:207–14.

13. Xie F, Jin W, Si H, Yuan Y, Yao T, Liu J, et al. An integrated gene catalog and over 10,000 metagenome-assembled genomes from the gastrointestinal microbiome of ruminants. Microbiome 2021;9:137.

14. Lagkouvardos I, Lesker TR, Hitch TCA, Galvez EJC, Smith N, Neuhauß K, et al. Sequence and cultivation study of Muribaculaceae reveals novel species, host preference, and functional potential of this yet undescribed family. Microbiome 2019;7:28.

15. Lagkouvardos I, Pukall R, Abt B, Foesel BU, Meier-Kolthoff JP, Kumar N, et al. The mouse intestinal bacterial collection (mIBC) provides host-specific insight into cultured diversity and functional potential of the gut microbiota. Nat Microbiol. 2016;1:1613.

16. Gharechahi J, Yahidi MF, Bahrami M, Han JL, Ding XZ, Salekdeh GH. Metagenomic analysis reveals a dynamic microbiome with diversified adaptive functions to utilize high lignocellulosic forages in the cattle rumen. ISME J. 2021;15:1108–20.

17. Calusinska M, Marynowska M, Bertucci M, Untereiner B, Klimek D, Goux X, et al. Integrative omics analysis of the termite gut system adaptation to Miscanthus diet identifies lignocellulose degradation enzymes. Commun Biol. 2020;3:275.

18. Finkm R, Ruiz A, Lanza F, Haange SB, Oberbach A, Till H, et al. Microbiota from the distal guts of lean and obese adolescents exhibit partial functional
57. Yao R, Yang Z, Zhang Z, Hu T, Chen H, Huang F, et al. Are the gut microbial communities in neonates at high risk for asthma different from those in healthy infants? Microbiome 2017;5(1):4.

58. Liu R, Hong J, Xu X, Feng Q, Zhang D, Gu Y, et al. Gut microbiome and serum metabolome alterations in obesity and after weight-loss intervention. Nat Med. 2017;23:631–637.

59. Martin M. Cutadapt removes adapter sequences from high-throughput sequencing data. Bioinformatics 2011;27:2094–2096.

60. Edgar RC. Search and clustering orders of magnitude faster than BLAST. Bioinformatics 2009;25:1758–1760.

61. Levani S, Stammes KA, Lin DL, Panzer AR, Fukui E, McCauley K, et al. Elevated faecal 12,13-diHOME concentration in neonates at high risk for asthma is associated with lower lung function and increased airway reactivity. Proc Natl Acad Sci U S A 2019;116:3236–3241.

62. Martin M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBO J. 2011;30:1142–1145.

63. Segata N, Izard J, Waldron L, Gevers D, Miropolsky L, Garrett WS, et al. Metagenome-wide association study. PLoS Comput Biol. 2011;7(3):1001481.

64. Qin J, Li Y, Cai Z, Wang J, Zheng X, Telesforow L, et al. A metagenome-wide association study reveals markers for drug resistance and metabolic variability. Nat Biotechnol 2017;35:85–91.

65. Qin J, Li Y, Cai Z, Wang J, Zheng X, Telesforow L, et al. A metagenome-wide association study reveals markers for drug resistance and metabolic variability. Nat Biotechnol 2017;35:85–91.

66. Qin J, Li Y, Cai Z, Wang J, Zheng X, Telesforow L, et al. A metagenome-wide association study reveals markers for drug resistance and metabolic variability. Nat Biotechnol 2017;35:85–91.

67. Bastian M, Heymann S, Jacomy M. Gephi: an open source software for exploring and manipulating networks. ICWSM. 2009;3:361–362.

68. Chen S, Zhou Y, Chen Y, Gu J. fastp: an ultra-fast all-in-one FASTQ preprocessor. Bioinformatics 2018;34:i884–i890.

69. Haas BJ, Papanicolaou A, Yassour M, Grabherr M, Blood PD, Bowden J, et al. De novo transcriptome sequence reconstruction from RNA-seq using the Trinity platform for reference generation and analysis. Nat Protoc. 2013;8:1494–1512.

70. Langmead B, Salzberg SL. Fast gapped-read alignment with Bowtie 2. Nat Methods. 2012;9:357–359.

71. Davidson NM, Oshlack A. Corset: enabling differential gene expression analysis for de novo assembled transcripts. Genome Biol. 2014;15:410.

72. Yanai I, Benjamin H, Shoresh N, Chalfia-Casp V, Shklar M, Ofir R, et al. Genome-wide midrange transcription profiles reveal expression level relationships in human tissue specification. Bioinformatics 2005;21:650–659.

73. Waterhouse RM, Seppey M, Simão FA, Manni M, Ioannidis P, Klioutchnikov G, et al. BUSCO applications from quality assessments to gene prediction and phylogenomics. Mol Biol Evol. 2018;35:543–558.

74. Bryant DM, Johnson K, DiTommaso T, Tickle T, Couger MB, Payzin-Dogru D, et al. A tissue-mapped axolotl de novo transcriptome enables identification of limb regeneration factors. Cell Rep. 2017;18:762–776.

75. Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014;15:550.

76. Li H, Durbin R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 2009;25:1758–1760.

77. Li D, Liu CM, Luo R, Sadakane K, Lamm T. MEGAHIT: an ultra-fast single-node solution for large and complex metagenomics assembly via succinct de Bruijn graph. Bioinformatics 2015;31:1674–1680.

78. Fu L, Niu B, Zhu Z, Wu S, Li W. CD-HIT: accelerated for clustering the next-generation sequencing data. Bioinformatics 2012;28:3150–3152.

79. Grishchuk W, Stoye J. Taxonomic classification of metagenomic shotgun sequences with CARMA3. Nucleic Acids Res. 2011;39:e91.

80. Huang P, Zhang Y, Xiao K, Jiang F, Wang H, Tang D, et al. The chicken gut microbiota confers host resistance to obesity by metabolizing dietary polyunsaturated fatty acids. Nat Commun. 2019;10:4007.

81. Kanehisa M, Goto S, Sato Y, Furumichi M, Tanabe M. KEGG for integration and interpretation of large-scale molecular data sets. Nucleic Acids Res. 2012;40:D109–D114.

82. Haas BJ, Papanicolaou A, Yassour M, Grabherr M, Bowden J, et al. De novo transcriptome sequence reconstruction from RNA-seq using the Trinity platform for reference generation and analysis. Nat Protoc. 2013;8:1494–1512.

83. Lombard V, Golaconda Ramulu H, Drula E, Coutinho PM, Henrissat B. The carbohydrate-active enzymes database (CAZy) in 2013. Nucleic Acids Res. 2014;42:D490–D495.

84. Martin M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBO J. 2011;30:1142–1145.

85. Edgar RC. Search and clustering orders of magnitude faster than BLAST. Bioinformatics 2010;26:2460–2461.

86. Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK, et al. QIIME allows analysis of high-throughput community sequencing data. Nat Methods 2010;7:335–336.

87. Mallick H, Rahnavard A, McVier LJ, Ma S, Zhang Y, Nguyen LH, et al. Multivariable association discovery in population-scale meta-omics studies. PLoS Comput Biol. 2021;17:e1009442.

88. Segata N, Izard J, Waldron L, Gevers D, Miropolsky L, Garrett W, et al. Metagenomic biomarker discovery and explanation. Genome Biol. 2011;12:R60.

89. Xu F, Xia Y, Guo F, Wang Z, Zhang T. Taxonomic relatedness shapes bacterial community in activated sludge of globally distributed wastewater treatment plants. Environ Microbiol. 2014;16:2421–2432.

90. Ciardì G, Nepusz T. The igraph software package for complex network research. Inter J Comp Syst. 2006;19:51–59.

91. Dixon P. VEGAN, a package of R functions for community ecology. J Veg Sci. 2003;14:527–530.

ACKNOWLEDGEMENTS

This work was supported by the Guangdong Major Project of Basic and Applied Basic Research (20200303010007), Laboratory of Lingnan Modern Agriculture Project (NT2021007), the National Natural Science Foundation of China (31822056), the Guangdong Science and Technology Innovation Leading Talent Project (2019TX050998), the 111 Project (D20008), the Department of Education of Guangdong Province.
Guangdong Province (2019KZDXM004 and 2019KCXTD001) and the Third Batch of Zhaoqing Xijiang Innovation Team Project.

AUTHOR CONTRIBUTIONS
YS conceived, designed, and supervised the study. KX, XLiang, XLu, ZZ, HW, and YM analyzed the data. KX, WL, and XS collected the samples. KX wrote the draft of paper. HL reviewed the statistical analysis. YS, XL, AR, and DMI commented on and revised the drafts of the paper. All authors read and approved the final draft of the paper.

COMPETING INTERESTS
The authors declare no competing interests.

ADDITIONAL INFORMATION
Supplementary information The online version contains supplementary material available at https://doi.org/10.1038/s41396-022-01247-2.

Correspondence and requests for materials should be addressed to Yongyi Shen.

Reprints and permission information is available at http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.