signal on T2-weighted images, and are enhanced with contrast medium at MRI. However, MRI revealed the mass to be isointense on T1 and T2 in our case. Although imaging scan can help diagnose neurofibromas, the definite diagnosis can be obtained with a pathologic examination. Our case showed that parts of the tumor cells were positive for CD99, Ki-67, anti-smooth muscle antibody, B-cell lymphoma-2, and CD34. On the other hand, a small osteoma was detected, located below the lesion during the operation in our patient. It may be caused by the lesion eroding the frontal sinus wall.

Generally speaking, the management of neurofibromas is dependent on symptoms and signs. For the small ones, symptoms and signs may not require any intervention. Surgical excision is considered when there is pain, progressive neurologic deterioration, compression of adjacent tissues with loss of functions, and suspected malignant degeneration. Complete resection is considered to be the mainstay of treatment of neurofibromas because they are usually not encapsulated and might have an extensive infiltration. For the NF-1 associated with malignant transformation, the primary treatment is surgical removal, and radiotherapy can improve local disease control and delay recurrence. In addition, it is moderately sensitive to chemotherapy.

In summary, we report a rare case of solitary neurofibroma arising from the frontal sinus in a woman. Therefore, when a mass had arisen from the frontal sinus, solitary neurofibroma should be considered. Surgical resection of the lesion was performed with excellent prognosis. Postoperative recurrence is usually rare.

REFERENCES

1. Hajdu SI. Peripheral nerve sheath tumors. Histogenesis, classification, and prognosis. Cancer 1993;72:3549–3552
2. Kimura M, Kamata Y, Matsumoto K, et al. Electron microscopical study on the tumor of von Recklinghausen’s neurofibromatosis. Acta Pathol Jpn 1974;24:79–91
3. Hillstrom RP, Zarbo RJ, Jacobs JR. Nerve sheath tumors of the paranasal sinuses: electron microscopy and histopathologic diagnosis. Otolaryngol Head Neck Surg 1990;102:257–263
4. Sharma SB, Hong P. Solitary neurofibroma of the frontal sinus. Acta Radiol 2003;44:181–183
5. Das Gupta TK, Bresfield RD, Strong EW, et al. Benign solitary Schwannomas (neurilemmas). Cancer 1969;24:355–366
6. Majoie CB, Hulsmans FJ, Castelijns JA, et al. Primary nerve-sheath tumours of the trigeminal nerve: clinical and MRI findings. Neuroradiology 1999;41:100–108
7. Gottfried ON, Viskochil DH, Fults DW, et al. Molecular, genetic, and cellular pathogenesis of neurofibromas and surgical implications. Neurosurgery 2006;58:1–16
8. Ferner RE, Gutmann DH. International consensus statement on malignant peripheral nerve sheath tumors in neurofibromatosis. Cancer Res 2002;62:1573–1577
9. Ferner RE, O’Doherty MJ. Neurofibroma and schwannoma. Curr Opin Oncol 2002;15:679–684
10. Yi-Ping Zhan, PhD, Xin-Guang Yu, PhD* © 2014 Mutaz B. Habal, MD

Papillary Meningioma With Vital Abnormal Vessels

Hai-Bo Zhang, PhD,* Yi-Ping Zhan, PhD,† Xin-Guang Yu, PhD*

Abstract: Papillary meningioma is an uncommon meningioma subtype of World Health Organization grade III. It could show some radiologic profiles pointing to malignant behavior, such as a cystic change, a heterogeneous enhancement, and an ill-defined border. However, to date, the radiologic profile described in this article has not been reported in previous literatures, and it is just the characteristic being considered as the major cause for patients’ death. A 16-year-old adolescent boy with a 6-month history of headache was admitted to our department on June 28, 2012. Magnetic resonance imaging showed a giant well-defined mass in the left temporal region, with a severe flow void on T2-weighted image and an abundant striplike enhancement on T1-weighted contrast-enhanced scan. In view of its middle cranial fossa location (one predilection site for meningioma), meningioma was suspected preoperatively. A regular left frontotemporal craniotomy was performed. Unexpectedly, extreme hemorrhage happened intraoperatively, and it was difficult to stop the bleeding. After identification of no hemorrhage in the operative cavity through intraoperative magnetic resonance imaging, the operation was finished, with an overall blood loss of 15,000 mL. The patient died of brain stem dysfunction the second day after the operation.

Key Words: Papillary meningioma, flow void

Papillary meningioma (PM) is one rare subtype that is included in the World Health Organization grade III meningioma. To date, fewer than 200 cases of PM have been published in the English-language literatures. Many factors (including the extent of resection, the presence of some positive histopathologic index, and adjuvant therapy, etc) had been reported to be significantly related to postoperative outcome,1,2 but no literature demonstrated the influence of vessel voids on survival. Hereby, we present a rare case of PM with hazardous abnormal vessels manifesting marked signal voids on magnetic resonance imaging (MRI) observation. Meanwhile, we discussed some key points from this case.

CLINICAL REPORT

A 16-year-old adolescent boy who had a 6-month history of headache was referred to our department on June 28, 2012. No special neurologic dysfunction was found on physical examination. Computed tomographic scan showed a high-density mass of the left temporal region with some ductlike shadow inside (Fig. 1A). Magnetic resonance images revealed marked signal voids intratumorally and 2 contrast-enhancing sequence (Fig. 1B) as well as markedly striplike enhancement on contrast-enhancing sequence (Fig. 1C). Extra-axial neoplasm, with the most possibility of meningioma, was considered preoperatively because of the same enhancement level of tentorium cereblli margin nearby the tumor base. After the preoperative
preparation was finished, a left frontotemporal craniotomy was performed. Because of severe compression by the tumor, it was difficult to open the Sylvian fissure for cerebrospinal fluid release; thus, partial temporal tissue was resected for tumor exposure. In the gross observation, the tumor presented with meatlike appearance, containing a lot of sinusoidal structures, a few large supply arteries, and venous drainages inside (Fig. 2). It was hard to stop the bleeding using both electric coagulation and gelatin sponge hemostatic gauze. Initial frozen-section analysis was presumed to be a high-grade glioma. The first intraoperative MRI (iMRI) scan showed resection of 80% of the tumor and the amount of hematocoele in the operative cavity (Fig. 3A). In view of the frozen-section analysis and the close location of the remnant to the brain stem, the intended extent of resection was achieved and the priority of our task lied in stopping the persistent angiostaxis. Intraoperative observation found that the blood supply originated from breaches of the cerebral middle/posterior artery, middle meningeal artery, and anterior choroidal artery. Although a laborious operation, the volume of blood loss still reached to the level of approximately 1500 mL/h, so the left cerebral middle artery and several pieces of large venous drainages lateral to the midbrain were cut off at last (Fig. 2), with a total blood loss of 15,000 mL. Then, mechanical ventilation and pressor agent were constantly used to maintain respiration and blood pressure postoperatively. Unfortunately, the patient died of brain stem dysfunction on the second day after the operation.

Subsequent histopathologic examination (Figs. 4A, B) revealed sheets of cells arranged in a perivascular pseudopapillary pattern with a central fibrovascular core, and the tumor cells in the papillary area displayed abundant eosinophilic cytoplasm and vesicular nuclei. Occasionally, psammoma bodies were mixed with such papillary structure in some places. Immunohistochemical staining of tumor cells were diffuse positive for epithelial membrane antigen and vimentin but negative for progesterone receptor and glial fibrillary acidic protein. Histopathologic examination, in addition to immunohistochemical staining, established the diagnosis of PM.

DISCUSSION

Papillary meningioma is a special meningioma subtype with a predilection for male patients and younger group. It shows an aggressive growth pattern, a more likelihood of recurrence, and an extracranial metastasis compared with its benign and even malignant counterparts.
an external cause (compression from swelling temporal lobe) and an internal cause (brain stem edema, ischemia) resulted in the brain stem dysfunction and respiration/circulation failure.

Meningioma cell can secrete many proangiogenic factors, such as vascular endothelial growth factor. Histologic characteristics (perivascular location of tumor cell) contribute to a higher concentration of proangiogenic factors around the blood vessels than do other meningioma subtypes, therefore, more vessel proliferation. Such theory is also seemingly applicable to hemangiopericytoma, which has the similar histologic characteristic and the propensity for flow void.

In conclusion, flow voids of the skull base tumor, especially those in the vicinity of the brain stem, should be kept in mind carefully because of their possibility of crosstalk with brain stem circulation.

REFERENCES

1. Wang XQ, Chen H, Zhao L, et al. Intracranial papillary meningioma: a clinicopathologic study of 30 cases at a single institution. Neurosurgery 2013;73:777–790
2. Wang DJ, Zheng MZ, Gong Y, et al. Papillary meningioma: clinical and histopathological observations. Int J Clin Exp Pathol 2013;6:878–888
3. Choi JA, Lee KH, Jun WS, et al. Osseous metastasis from renal cell carcinoma: “flow-void” sign at MR imaging. Radiology 2003;228:629–634
4. Liu Z, Wang C, Wang H, et al. Clinical characteristics and treatment outcomes of meningioma cell. J Magn Reson Imaging 2014;36:308–310
5. Prabhu K, Daniel RT, Chacko G, et al. Optic nerve haemangioblastoma mimicking a planum sphenoidale meningioma. Br J Neurosurg. 2009;23:561–563
6. Asari S, Makabe T, Katayama S, et al. Assessment of the pathological grade of astrocytic gliomas using an MRI score. Neuroradiology 1994;36:308–310
7. Okamoto K, Ito I, Furusawa T, et al. Intratumoral flow void in pituitary adenomas. AJR Am J Roentgenol 1996;167:1070–1071
8. Kato H, Kanematsu M, Mizuta K, et al. “Flow-void” sign at MR imaging; a rare finding of extracranial head and neck schwannomas. J Magn Reson Imaging 2010;31:703–705
9. Liu Z, Wang C, Wang H, et al. Clinical characteristics and treatment of angiomatous meningiomas: a report of 27 cases. Int J Clin Exp Pathol 2013;6:695–702
10. Preussner M, Hassler M, Birmel P, et al. Microvascularization and expression of VEGF and its receptors in recurring meningiomas: pathobiological data in favor of anti-angiogenic therapy approaches. Clin Neuropathol 2012;31:352–360

Titanium Screw Entered Into Maxillary Sinus: A Rare Incident During Rigid Fixation of the Porous Polyethylene Implant in Enophthalmos Correction

Xi Fu, MD,* JianFeng Liu, MD,* Chong Zou, MD,* Lu Rui, MD,† Lai Gui, MD, BMD*

Abstract: Screw fixation is used for accurate augmentation by porous polyethylene implant in traumatic enophthalmos correction to avoid complications such as migration and protrusion. We report an incident of titanium screw entered into the maxillary sinus during enophthalmos correction with porous polyethylene implant. Such incident could be avoided by standard manipulation. We here present the rare case and offer proposals for the screw fixation of porous polyethylene implant during traumatic enophthalmos correction.

Key Words: Traumatic enophthalmos, porous polyethylene implant, titanium screw

Orbital zygomatic fracture without treatment or with inappropriate immediate reduction often results in enophthalmos, dystopia, and malar deformity. Enophthalmos correction is always considered as important and difficult in the treatment of postorbital zygomatic fracture deformity. Orbital wall reconstruction and/or orbital zygomatic fracture reduction are used to correct traumatic enophthalmos in our department. We use porous polyethylene implant in most cases. In severe enophthalmos, which needs multiple layers of porous polyethylene implantation, we use screw fixation for accurate augmentation and to avoid complication such as migration and protrusion. Screw fixation is a basic manipulation for craniofacial surgeons. However, we need to further standardize the manipulation to minimize the complication. Here, we report an incident of titanium screw entered into the maxillary sinus during enophthalmos correction with porous polyethylene implant and offer proposals for the rigid fixation of porous polyethylene implant.

CLINICAL REPORT

A 38-year-old man who underwent orbital zygomatic fracture 2 years ago with inappropriate immediate reduction was arranged for enophthalmos correction by porous polyethylene implantation and orbital zygomatic fracture reduction. Individually customized multiple layers of porous polyethylene implant were designed according to the preoperative three-dimensional computerized tomography and intraoperative adjustment. During the fixation of the porous polyethylene implant, the screw accidentally entered the maxillary sinus through the orbital inferior wall. Luckily, the screw was found by thorough and meticulous search. The patient was satisfied with the outcome (Fig. 1).

DISCUSSION

Orbital zygomatic fracture without treatment or with inappropriate immediate reduction is frequently seen in the clinic. Enophthalmos is common in postorbital zygomatic fracture deformity. It is caused by enlarged orbital volume, intraorbital tissue displacement and atrophy, and scar formation.1–3 Orbital reconstruction aimed to correct enophthalmos can be performed by autogenous bone or alloplastic material. Because of the long-term absorption of the autogenous bone onlay implantation, we use porous polyethylene implant designed according to the preoperative three-dimensional computerized tomography and intraoperative adjustment in most

From the *Department of Craniofacial Surgery, Plastic Surgery Hospital, Chinese Academy of Medical Science, Peking Union Medical College; and †State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Science, Peking Union Medical College. Received December 18, 2013. Accepted for publication January 17, 2014.

Address correspondence and reprint requests to Lai Gui, MD, BMD, Department of Craniofacial Surgery, Plastic Surgery Hospital, Chinese Academy of Medical Science, Peking Union Medical College, No. 33, Ba-Da-Chu Road, Shi Jing Shan District, Beijing, 100144, China; E-mail: laiguaplastic@tom.com

These 2 authors contributed equally to this work and should be considered co-first authors (JianFeng Liu and Xi Fu).

The authors report no conflicts of interest.

ISSN: 1049-2275
DOI: 10.1097/SCS.0000000000000799

1546 © 2014 Mutaz B. Habal, MD

Copyright © 2014 Mutaz B. Habal, MD. Unauthorized reproduction of this article is prohibited.