Life Cycle Cost Estimation of Large Freight Cars Based on BP Neural Network Integration

Hu Wen, Yin Dongyang, Chen XiaoChuan*

College of Mechanical Engineering, Donghua University, Shanghai, China, 201620

*Corresponding author’s e-mail: xcchen@dhu.edu.cn

Abstract. With the continuous growth of China's economy, the demand for large freight cars is increasing day by day. Therefore, it is necessary to estimate the total life cycle cost of large freight cars. Design for cost (DFC) is a method to reduce the LCC-Life Cycle Cost from the perspective of Design. From the perspective of DFC, the design features of large freight cars are mainly obtained through analysis, such as wheelbase, rated load, torque and other parameters, and LCC is estimated based on BP neural network integration.

1. Introduction
The large freight cars market in the automotive industry has a distinct periodicity. After two rounds of rapid development in 2010 and 2017, various practical problems put forward higher requirements for the large freight cars manufacturing enterprises. It is the general trend of the truck manufacturing industry to transform the product manufacturing mode characterized by product as carrier and life cycle management and service. LCC-Life Cycle Cost refers to the sum of research, design and development costs, production costs, usage and guarantee costs and final abandonment costs spent in the whole life cycle of a product from its inception through demonstration, research, design, development, production, use to final scrap[1]. Life cycle cost management has been widely used in manufacturing industry and even in automobile industry. It is precisely because there are many parts of manufacturing cost in automobile industry, such as design cost, manufacturing cost, sales cost, use cost and recycling scrap cost. Because of the large amount of data involved, using LCC to simulate and analyze it can strengthen cost management and reduce enterprise costs.

2. Selection of LCC Estimation Method for Large Freight Cars
DFC (Design For Cost) is a key parameter to reduce the cost as much as possible under the influence of various factors in the whole life cycle, such as product research and manufacturing process, use, maintenance and scrap recycling, to meet the basic requirements of users. It also provides a tool for designers to evaluate costs[2].

According to the actual situation, we chose the method of BP neural network integration to estimate LCC. BP(back propagation) neural network is the most widely used neural network at present. It has arbitrary complex pattern classification ability and excellent multi-dimensional function mapping ability. Essentially, BP algorithm takes the square of network error as the objective function and uses gradient descent method to calculate the minimum value of the objective function. BP neural network integration is based on the prediction of multiple neural networks. Taking the average value as the prediction result, it can effectively reduce the error.

This paper mainly studies the design stage of the concept of large truck, at which time we can...
determine: Rear axle allowable load, the length, width and height of large truck, wheelbase, torque, rated load, etc. In this paper, based on DFC theory and practice, the design features extracted are: Rear axle allowable load, body length, rated load, displacement, torque, maximum output power, wheelbase.

3. Examples of LCC Estimation and Performance Prediction for Large Freight Cars

3.1. Data collection
Most cost estimation methods need to use historical data, so LCC information of products must be accumulated. Reasonable use of network technology, mining network resources, has become a new way to collect LCC data. The data in this paper are mainly collected from the truck home and other websites.

\[
\text{LCC} = \text{Car purchase cost} + \text{Use cost} + \text{Maintenance cost}
\]

The data are arranged in the following table Unit: 10thou. Yuan

Manufacturer’s Guidance Price	Car purchase cost	Use cost	Maintenance cost	LCC	
FAW Jiefang J6L Quality Benefit Edition	17.8	18.85	210.461	3	232.311
Dongfeng Commercial Vehicle Tianjin Zhongka	15.5	16.41	172.401	3	191.811
Dongfeng Liuqi Xinchenglong M3 Card	13.6	14.4	141.921	3	159.321
Dongfeng Liuqi Chenglong H5	17.7	18.74	157.16	3	178.9
Jianghual Gelfa K5L Middle Card	18.88	19.99	88.595	3	111.585
Qingdao Jiefanglong V Overvalue Edition	12.2	12.92	96.062	3	111.982
Fukuda Omarco 5 Series Kazakhstan	14.85	15.72	80.718	3	99.438
Xugong Hanfeng G7 Composite Edition	33.7	35.68	205.99	3	244.67
Dongfeng Dolica D9	16.5	17.47	119.052	3	139.522
Fukuda Rivo Q5 170	13.9	14.72	80.75	3	98.47
Jianghual Gelfa A5 Middle Card	15.08	15.97	80.79	3	99.76
Liberation Lin VH	13	13.76	103.646	3	120.406
Jianghual Junling V9L	16.68	17.66	119.057	3	139.717
Shaanxi Auto Heavy Cadelong L3000	18.71	19.81	127.38	3	150.19
Fukuda Aoling CTX	13	13.76	111.364	3	128.124
China Heavy Truck HOWO	17	18	111.439	3	132.439
Qingling Isuzu 700P Series Central Card	19.84	21	133.638	3	157.638
Jianghual Shuailing W570 Central Card	19	20.12	111.297	3	134.417
Jianghual Gelfa K3L Central Card	13.58	14.38	96.03	3	113.41
Dongfeng Dolica D12 Zhongka	17.6	18.64	119.151	3	140.791
Emancipation J6F Reloaded Edition	13.98	14.8	95.362	3	113.162
China Heavy Truck HOWO General	12.9	13.65	95.344	3	111.994
Dongfeng 2018 Dolica D8	12.58	13.32	95.526	3	111.846
Fukuda Omarco S3 Series	13.1	13.87	95.362	3	112.232
Dongfeng Dolica D6 Heavy Duty Mountain Edition	11.18	11.84	87.742	3	102.582
Dongfeng Commercial Vehicle Tianlong Heavy Truck	28.79	30.48	166.07	3	199.55

The original data and LCC (Life Cycle Cost) calculation data of various types of trucks collected in this paper. There are 26 groups of experimental data, which can be divided into two categories: 1) training data of trucks, 2) inspection data of trucks.
BP neural network integration method is used to train data. From the table, it can be seen that the average error is more than 20%, and the error is large. Therefore, BP neural network integration method is used to train data.

Table 2. Training data for trucks

Model	Wheelbase (mm)	Body length (m)	Rated load (t)	displacement (L)	Maximum output power (KW)	torque (N·m)	Rear axle allowable load (kg)	LCC
FAW Jiefang JL Quality Benefit Edition	5300	8.5	9.9	5.7	165	720	1150	232.31
Dongfeng Commercial Vehicle Tianjin Zhongka	5000	9	9.9	4.752	132	700	1150	191.811
Dongfeng Lishui Xinshenglou M3 Card	5100	9	9.9	4.73	136	700	1150	159.321
Dongfeng Lishui Chenglong H5	5100	9	9.9	8.67	162	860	1150	178.9
Jianghuai Gelfa KSL Middle Card	5000	9	9.82	8.67	162	860	1150	111.585
Qingdao Jiefanglong V Overvalue Edition	5250	8.995	9.52	3.8	121	560	10400	111.982
Fukuda Omarco 5 Series Kazakhstan	4700	8.645	7.995	3.76	125	592	9390	99.438
Xiaotong Hanfeng G7 Composite Edition	6500	9.84	15.37	9.726	257	1600	18000	244.67
Dongfeng Dolica D9	5200	8.999	9.95	5.9	132	700	11000	139.522
Fukuda Rivo Q5 170	5700	8.988	9.95	3.76	125	600	10185	98.47
Jianghuai Gelfa A5 Middle Card	5000	9	9.8	4.088	115	520	10000	99.76
Liberation Lin VH	4700	8.51	9.855	4.088	115	520	10400	120.406
Jianghuai Junling V9L	5000	9	9.955	4.748	140	740	11500	139.717
Shaanxi Auto Heavy Cadelong L3000	5000	8.995	9.99	6.75	162	850	11000	150.19
Fukuda Aoling CTX	3360	5.995	1.495	3.76	105	440	2695	128.124
China Heavy Truck HOWO	5600	9.995	9.99	4.58	151	830	11500	132.439
Qingling Isuzu 700P Series Central Card	5200	8.955	4.69	5.193	141	510	6345	157.638
Jianghuai Shuailing W570 Central Card	5700	9.995	9.1	4.5	132	700	9995	134.417
Jianghuai Gelfa K3L Central Card	5000	9	9.8	3.767	118	550	10000	113.41
Dongfeng Dolica D12 Zhongka	7160	11.995	8.9	5.9	140	720	11495	140.791

Table 3. Inspection data of trucks

Model	Wheelbase (mm)	Body length (m)	Rated load (t)	displacement (L)	Maximum output power (KW)	torque (N·m)	Rear axle allowable load (kg)	LCC
Emancipation Jiefang Reloaded Edition	3300	5.998	1.495	3.8	121	560	2645	113.162
China Heavy Truck HOWO General	3280	5.995	1.56	3.92	125	600	2550	111.994
Dongfeng 2018 Dolica D8	4700	8.38	9.245	3.856	125	600	8435	111.846
Fukuda Omarco S3 Series	3360	5.995	1.495	3.76	105	450	2495	112.232
Dongfeng Dolica D6 Heavy Duty Mountain Edition	3800	5.995	1.495	3.767	103	450	2700	102.582
Tianlong Heavy Truck	7050	11.99	14.09	6.7	198	970	10000	199.55

The input of BP neural network is 7 features (rear axle allowable load, body length, rated load, displacement, torque, maximum output power, wheelbase), and the output is LCC.

3.2. Realization of BP Neural Network Model

Through the above data, using BP neural network training data, the following results are obtained. From the table, it can be seen that the average error is more than 20%, and the error is large. Therefore, BP neural network integration method is used to train data.

Table 4. BP Neural Network Error Value Unit: 10thou. Yuan

Prediction object	LCC calculated value	BP Neural Network Estimation Results	
		predicted value	relative error (%)
22	113.162	139.9855129	23.70407
23	111.994	121.2240413	8.24155
24	111.846	72.86613703	-34.851492
3.3. Realization of BP Neural Network Integrated Model

Traditional BP neural network training algorithm converges slowly, so LM (Levenberg-Marquardt) method[3][4] is used for training. Because of the small amount of data, the LM algorithm converges quickly and can get better prediction value.

The concrete steps to realize the prediction model are as follows:

The input data matrix and output matrix are normalized and the BP neural network is established.

The maximum number of training cycles is 500, the learning rate of the network is 0.05, and the target error is 10^{-3}.

After setting the parameters, start training the network.

3.4 Results Based on BP Neural Network Integration

Each prediction object is forecasted by several neural networks. There are six groups in total. Then the average value is taken as the forecasting value. After calculation, we get six groups of forecasting values:

Prediction object	Neural Network Integrated Data	Unit: 10thou. Yuan		
	predicted value 1	predicted value 2	predicted value 3	Average Prediction Value
22	127.2084612	120.3933645	128.1107769	125.2375342
23	117.0885958	104.8221655	128.1103638	116.6730783
24	92.86678102	96.91360021	109.0782192	99.61953348
25	128.0072917	125.5464948	128.1099158	127.221341
26	123.5907999	115.5460032	91.70963341	110.2821445
27	191.1358088	240.9233882	232.1212417	221.3934796

Using predicted values and LCC calculations, the relative errors of six sets of data are calculated. Finally, the average relative errors are calculated, as shown in the table below.

Prediction object	LCC calculated value	BP Neural Network Estimation Results	relative error (%)
		predicted value	relative error (%)
22	113.162	125.2375342	10.671
23	111.994	116.6730783	4.172
24	111.846	99.61953348	-10.932
25	112.232	127.221341	13.355
26	102.582	110.2821445	7.506
27	199.55	221.3934796	10.946

Average relative error (%) 9.597

In the process of estimating cost data, due to the changing needs of different stages, the information of products is constantly enriched, the information obtained in the conceptual design stage is not complete, and the accuracy of cost estimation is generally between 30% and 50%. When the design information is further enriched and the historical cost data similar to the current design can be used, the accuracy of estimating can generally reach 15%~30%[5]; The error of this paper is basically controlled in this range, and it is an effective estimation method.

As shown in figure 1, the correlation coefficient R of regression line is 0.98882, approximate to 1. It
shows that the deviation between the output value and the target value of BP neural network is very small, and it is an effective prediction method.

![Training sample output regression line](image)

Fig 1. Training sample output regression line

4. Conclusions
In this paper, the life cycle cost of large freight cars is estimated by BP neural network. Before estimating, a large amount of data was collected, including different types of trucks and manufacturers. Data were collected not only through the Internet, but also through telephone contact. A large amount of data collection ensured the accuracy and practicability of LCC estimates. After data collection, MATLAB neural network is used for training. Relatively speaking, the more training times, the more accurate the results will be. After the training is completed, the collected data are compared with the training results, and the errors are observed. The use of LCC technology in large freight cars and the comprehensive evaluation of the purchase and use of large freight cars are conducive to improving product performance, RAMS (reliability, availability, maintainability and safety) requirements, while reducing the later use cost.

References
[1] Zhang Peng, Zhang Honglian. Research on Cost Estimation Method in Cost-Oriented Design [J]. Journal of Luoyang Institute of Technology (Natural Science Edition), 2005, 15 (1): 64-66.
[2] Chen Xiaochuan. Theory and Application of Cost-Oriented Design (DFC) [M]. Jilin People's Publishing House. 2017:62-89.
[3] Perrone M P, Cooper L N. When networks disagree: Ensemble method for neural networks[C]. In: Mammone R J ed. Artificial Neural Networks for Speech and Vision, New York: Chapman & Hall, 1993. 126-142
[4] Cong Shuang. Neural Network Theory and Application Oriented to MATLAB Toolbox (2nd Edition) [M]. Hefei: China University of Science and Technology Press, 2003.
[5] R. C. Creese, L. T. Moore. Cost modeling for concurrent engineering, Cost Engineering, 32(6), 23-27(1990).