Abstract

Background

The algal flora of the western group of the Azores archipelago (Islands of Flores and Corvo) has attracted the interest of many researchers on numerous past occasions (such
as Drouet 1866, Trelease 1897, Gain 1914, Schmidt 1929, Schmidt 1931, Azevedo et al. 1990, Fralick and Hehre 1990, Neto and Azevedo 1990, Neto and Baldwin 1990, Neto 1996, Neto 1997, Neto 1999, Tittley and Neto 1996, Tittley and Neto 2000, Tittley and Neto 2005, Tittley and Neto 2006, Azevedo 1998, Azevedo 1999, Tittley et al. 1998, Dionísio et al. 2008, Neto et al. 2008). Despite this interest, the macroalgal flora of the Islands cannot be described as well-known with the published information reflecting limited collections performed in short-term visits by scientists. To overcome this, a thorough investigation, encompassing collections and presence data recording, has been undertaken for both the littoral and sublittoral regions, down to a depth of approximately 40 m, covering a relatively large area on both Islands (approximately 143 km² for Flores and 17 km² for Corvo).

This paper lists the resultant taxonomic records and provides information on species ecology and occurrence around both these Islands, thereby improving the knowledge of the Azorean macroalgal flora at both local and regional scales.

New information

For the Island of Flores, a total of 1687 specimens (including some taxa identified only to genus level) belonging to 196 taxa of macroalgae are registered, comprising 120 Rhodophyta, 35 Chlorophyta and 41 Ochrophyta (Phaeophyceae). Of these taxa, 128 were identified to species level (80 Rhodophyta, 22 Chlorophyta and 26 Ochrophyta), encompassing 37 new records for the Island (20 Rhodophyta, 6 Chlorophyta and 11 Ochrophyta); two Macaronesian endemics (*Laurencia viridis* Gil-Rodríguez & Haroun and *Millerella tinerfensis* (Seoane-Camba) S.M.Boo & J.M.Rico); six introduced (the Rhodophyta *Asparagopsis armata* Harvey, *Neoizziella divaricata* (C.K.Tseng) S.-M.Lin, S.-Y.Yang & Huisman and *Symphyocladia marchantioides* (Harvey) Falkenberg; the Chlorophyta *Codium fragile* subsp. *fragile* (Suringar) Hariot; and the Ochrophyta *Hydroclathrus tilesii* (Endlicher) Santianez & M.J.Wynne and *Papenfussiella kuromo* (Yendo) Inagaki); and 14 species of uncertain status (10 Rhodophyta, two Chlorophyta and two Ochrophyta).

For the Island of Corvo, a total of 390 specimens distributed in 56 taxa of macroalgae are registered, comprising 30 Rhodophyta, nine Chlorophyta and 17 Ochrophyta (Phaeophyceae). Whilst a number of taxa were identified only to the genus level, 43 were identified to species level (22 Rhodophyta, eight Chlorophyta and 13 Ochrophyta), comprising 22 new records for the Island (nine Rhodophyta, four Chlorophyta and nine Ochrophyta), two introduced species (the Rhodophyta *Asparagopsis armata* and the Chlorophyta *Codium fragile* subsp. *fragile* and seven species of uncertain status (five Rhodophyta and two Ochrophyta).

Keywords

Macroalgae, Azores, Corvo Island, Flores Island, new records, endemism, native, uncertain, introduced, occurrence data.
Introduction

The Azorean algal flora, considered cosmopolitan, with species shared with Macaronesia, North Africa, the Mediterranean Sea, Atlantic Europe and America (Tittley 2003, Tittley and Neto 2006, Wallenstein et al. 2009), is relatively rich when compared to that of other remote oceanic Islands (Neto et al. 2005, Tittley and Neto 2005, Wallenstein et al. 2009). Around 400 species of marine macroalgae have, to date, been recorded for the isolated mid-Atlantic Azores archipelago (Freitas et al. 2019). These authors, based on extensive analysis encompassing data on brachyurans, polychaetes, gastropods, echinoderms, coastal fishes and macroalgae, suggested that the Azores should be a biogeographical entity of its own and proposed a redefinition of the Lusitanian biogeographical province, in which they recognised four ecoregions: the South European Atlantic Shelf, the Saharan Upwelling, the Azores ecoregion and a new ecoregion herein named Webbnesia, which comprises the archipelagos of Madeira, Selvagens and the Canary Islands. In their paper comparing the Azorean algal flora to that of the new Webbnesia region, they reported that the Canary Islands, with 689 species of marine macroalgae, are by far the most diverse archipelago, followed by the Azores (405), Madeira (396) and Cabo Verde (333). The Selvagens are the least diverse one (295 species). It is worth mentioning that the published information reflects data from only a few of the nine Azorean Islands, since not all of them have been adequately investigated. In the Azores archipelago, São Miguel is by far the Island with the largest amount of research dedicated to the study of its algal flora. The total number of algal species is, at the moment, 260, a number that is likely to increase due to ongoing research by authors of the present paper. Most of the remaining Islands have received less attention. To overcome this and improve the understanding of the archipelago’s macroalgal flora, research has been conducted over the past three decades on all the Islands. Data on the Islands of Pico, Graciosa and Terceira is already available on the recently-published papers (Neto et al. 2020a, Neto et al. 2020b, Neto et al. 2020c). Table 1 summarises the currently-available information.

Phylum	Santa Maria	São Miguel	Terceira	Graciosa	São Jorge	Pico	Faial	Flores	Corvo
Rhodophyta	68	168	73	126	35	142	59	59	13
Chlorophyta	20	39	24	31	17	41	16	16	2
Ochrophyta	28	53	16	38	10	42	8	16	4
Total	116	260	113	195	62	225	83	91	19

To provide a better understanding of the archipelago's seaweed flora, a long term research programme of study has been undertaken, mainly by local investigators into the marine macroalgae flora on several of the less studied Azorean Islands. The present paper presents both physical and occurrence data and information gathered from surveys
undertaken on Flores and Corvo Islands mainly by the Island Aquatic Research Group of the Azorean Biodiversity Centre of the University of the Azores (Link: https://ce3c.ciencias.ulisboa.pt/sub-team/island-aquatic-ecology), the BIOISLE, Biodiversity and Islands Research Group of CIBIO- Açores at the University of the Azores (Link: https://cibio.up.pt/research-groups-1/details/bioisle) and the OKEANOS Centre of the University of the Azores (Link: http://www.okeanos.uac.pt). In these surveys, particular attention was given to the small filamentous and thin sheet-like species that are often short-lived and fast-growing and usually very difficult to identify in the wild, without the aid of a microscope and specialised literature in the laboratory.

The present paper aims to provide a valuable marine biological tool for research on systematics, diversity and conservation, biological monitoring, climate change and ecology for academics, students, government, private organisations and the general public.

General description

Purpose: In this paper, we present taxonomic records of macroalgae recorded from the Islands of Flores and Corvo and provide general information on their occurrence and distribution. By doing this, we are contributing to address several biodiversity shortfalls (see Cardoso et al. 2011, Hortal et al. 2015), namely, the need to catalogue the Azorean macroalgae (Linnean shortfall) and improve the current information on their local and regional geographic distribution (Wallacean shortfall), as well as on species abundance and dynamics in space (Prestonian shortfall).

Project description

Title: Marine algal flora of Flores and Corvo Islands, Azores.

Personnel: Collections were made and occurrence data recorded over several years (1989 - 2018). Main collectors were Ana Cristina Costa, Ana I Neto, Andrea Z. Botelho, Carolina Arruda, Cláudia Hipólito, Cristiana Figueiredo, David Milla-Figueras, Heather Baldwin, Inês Neto, Joana Michael, José M. N. Azevedo, Ian Tittley, Manuela I. Parente, Marco Henrique, Maria Ana Dionísio, Maria Ventura, Nuno Vaz Álvaro, Patrícia Madeira, Pedro Cerqueira, Raul Neto, Rita Grilo, Rita Norberto, Robert Fletcher, Sandra Monteiro and William Farnham.

Preliminary in situ identifications were carried out by: Ana Cristina Costa, Ana I Neto, Andrea Z. Botelho, David Milla-Figueras, Heather Baldwin, Ian Tittley, Manuela I. Parente, Maria Ventura, Rita Grilo, Robert Fletcher and William Farnham.

Ana I. Neto, Andrea Z. Botelho, David Milla-Figueras, Ian Tittley, Manuela I. Parente, Robert Fletcher and William Farnham were responsible for the final species identification.
Voucher specimen management was mainly undertaken by Afonso Prestes, Ana I. Neto, Andrea Z. Botelho, David Milla-Figueras, Eunice Nogueira, Manuela I. Parente, Natália Cabral and Roberto Resendes.

Study area description: The Azores archipelago (38°43′49″N, 27°19′10″W, Fig. 1), comprising nine Islands and several islets, is spread over 500 km, in a WNW direction. The Islands emerged from what is called the Azores Plateau and are located above an active triple junction between three of the world's largest tectonic plates (the North American Plate, the Eurasian Plate and the African Plate, Hildenbrand et al. 2018). Flores and Corvo (in black in Fig. 1), the westernmost Islands of the archipelago, are located in the North American Plate, whereas the remaining Islands are located around the boundary that divides the Eurasian and African Plates (Hildenbrand et al. 2018).

The Islands of Flores and Corvo are sub-aerial domains of a large volcanic formation, mostly submarine, implanted on an oceanic crust and aged between 9.0 and 10.0 million years (Ma). Each of these Islands has unique geomorphological characteristics: Flores (39°31′27″N, -31°15′31″W, Fig. 2), of approximately 141 km², is composed of two units, the central massif located in the central plain and the coastal periphery; Corvo, its neighbour (39°43′37″N, -31°7′44″W, Fig. 3), of approximately 17 km², is a crater of a major Plinian eruption and the smallest Island of the Azores archipelago (Azevedo 1999). The climate, as in the remaining Islands, is characterised by regular and abundant rainfall, high levels of...
relative humidity and persistent winds, mainly during the winter and autumn seasons (Morton et al. 1998). Fog is common and almost permanent at the higher elevations.

Marine action is responsible for the predominance of erosive morphologies in the coastal areas of both Islands, examples of which on Flores (Neto et al. 2008) are: the valleys associated with fluvial erosion (Vales das Lajes and da Fazenda); the coastal or back cliffs (Fajãzinha - Ponta da Fajã); the large marine abrasion platforms (Fajãzinha - Fajã Grande); and the coastal platforms associated with landslides and collapses (Ponta da Fajã).

Owing to the lack of a continental shelf that characterises most volcanic Islands, coastal extension is restricted and deep waters occur within a few kilometres offshore. The tidal
range is small (< 2 m, Hidrogrográfico 1981) and coasts are subjected to swell and surge for most of the year.

The Islands’ coastline, approximately 72.209 km long on Flores and 19.045 km long on Corvo, is predominantly rocky, subject to strong maritime erosion and presents an irregular slope with extensive and high cliffs cut by waterfalls and streams, alternating with a complex system of bays, rocky beaches and natural terraces (Azevedo 1999). The bottom is mostly made up of irregular rocky bedrock, containing, in some places, pockets of sediment of coarse sand and gravel, alternating with places covered by blocks that rest on either the rocky bed or the sediment. Submerged or semi-submerged caves, arches and tunnels of small amplitude and reduced length are common. As depth increases, the slope decreases, although the bottom is still rocky and uneven. This feature is interrupted by valleys and other structures of smooth to rough relief. The sediment floor in the deepest areas is stable, generally composed of medium and/or coarse sand. From this floor arise small islets with normally vertical walls and low irregular crowns, marked by ridges and valleys (Neto et al. 2008). Along the coastline and islets, natural sheltered habitats (arches and semi-submerged caves, tide pools) create favourable conditions for the growth of juveniles and adults of coastal fish. The constant recycling of nutrients caused by the wave-exposed coasts of these Islands, provides suitable conditions for the occurrence of considerable diversity and abundance of macroinvertebrates and pelagic and benthic fish (Neto et al. 2008). At the foot of the cliffs, the rocky intertidal zone is, as elsewhere in the Azores, dominated by algal communities that form mosaic and/or horizontal bands relative to tide level and are made up of multispecific algal turfs (growth forms of either diminutive algae or diminutive forms of larger species) that carpet the rocks. In the intertidal, a distinct zonation pattern is evident. The higher zone, dominated by invertebrates (littorinids and chthamalid barnacles, Fig. 4), gives rise below to a mid-shore zone covered by algal turfs that create a dense, compact mat 20-30 mm in thickness, Fig. 5). The turf can be monospecific (of either Caulacanthus ustulatus (Turner) Kützing, Centrceras clavulatum (C. Agardh) Montagne or Gymnogongrus) or multispecific and composed by soft algae (e.g. Centrceras clavulatum, Ceramium and Chondracanthus) usually growing as epiphytes over articulate calcareous forms (e.g. Ellisolandia and Jania). The low-shore zone is mainly dominated by calcareous crusts (first/basal strata), covered by corticated macrophytes, for example, Ellisolandia elongata (J.Ellis & Solander) K.R.Hind & G.W.Saunders (Fig. 6) and Pterocladiella capillacea (S.G.Gmelin) Santelices & Hommersand (Fig. 7) and, in more exposed locations, Tenarea tortuosa (Esper) Me Lemoine (Neto et al. 2008). Seasonally and mainly in spring and summer, the introduced red alga Asparagopsis armata occurs often abundantly at this lower intertidal level. Important features and habitats at this shore level are rock pools, occurring in different shapes and sizes and often recreating a shallow subtidal habitat, which contains a rich diversity of marine life. A few shores consist of irregularly rounded boulders or cobbles between which coarse sand or gravel may be retained. Sandy shores are rare (Neto, pers. observ.). The rocky bottoms in the submerged zone are covered by more frondose macrophytes, such as Pterocladiella capillacea, Halopteris filicina (Grateloup) Kützing, Dictyota spp. or Zonaria tournefortii (J.V.Lamouroux) Montagne (Fig. 8). At this level, the edible barnacles Megabalanus azoricus (Pilsbry, 1916) and/or the limpets Patella aspera
Röding, 1798 are concentrated in the first few metres, while the slipper lobsters *Scyllarides latus* (Latreille, 1803) or the spiny lobsters *Palinurus elephas* (Fabricius, 1787) are found at greater depths. Several species of fish, such as the blue wrasse *Symphodus caeruleus* (Azevedo, 1999) or the ornate wrasse *Thalassoma pavo* (Linnaeus, 1758), are particularly frequent in shallow rocky areas, whereas other fish take shelter in crevices during the day, such as the morays, *Muraena helena* Linnaeus, 1758 or the forkbeards *Phycis phycis* (Linnaeus, 1766). Still other species roam amongst rocky reefs, such as the parrotfish *Sparisoma cretense* (Linnaeus, 1758), the salemas *Sarpa salpa* (Linnaeus, 1758) and the white sea bream *Diplodus sargus* (Linnaeus, 1758). In the numerous sea caves around Flores and Corvo, the dusky grouper *Epinephelus marginatus* (Lowe, 1834) occurs with an unknown frequency in most of the other Islands (Neto et al. 2008).
In 2007, both Flores and Corvo Islands were recognised by UNESCO as a Biosphere Reserve and thus integrated into the programme “The Man and the Biosphere”. The programme focuses on the ecological, social and economic dimensions of biodiversity loss and uses the World Network of Biosphere Reserves as a vehicle for knowledge sharing, research and monitoring, education and training and participatory decision-making with local communities. The proposed area for the Biosphere Reserve includes the entire emerged land area of the Islands and a surrounding marine zone, covering a total area of 58,619 hectares in Flores and 25,853 hectares in Corvo and incorporating an important diversity of habitats of regional, national and international importance, which includes, for example, areas integrated in the Natura 2000 Network. The inclusion of a vast marine area promotes explicitly, along with conservation, an integrated management practice between terrestrial, coastal and marine environments (Neto et al. 2008).

Figure 6. The calcareous frondose alga *Ellisolandia elongata* at the low intertidal level (by the Island Aquatic Ecology Subgroup of cE3c-ABG).

Figure 7. The red agarophyte *Pterocladiella capillacea*, a common species at the low intertidal level (by the Island Aquatic Ecology Subgroup of cE3c-ABG).
Design description: The algae referred to in this paper were collected during field surveys from both the littoral and sublittoral regions down to approximately 40 m on the Islands of Flores and Corvo. Each sampling location was visited several times. On each occasion, a careful and extensive survey was undertaken to provide good coverage of the area. Both presence recording and physical collections were made by walking over the shores or by SCUBA diving. The specimens collected were taken to the laboratory for identification and preservation and the resulting vouchers were deposited in the AZB Herbarium Ruy Telles Palhinha and the Molecular Systematics Laboratory at the Faculty of Sciences and Technology of the University of the Azores.

Funding: This study was mainly financed by the following projects/scientific expeditions:

- **Projects:**
 - IASTFC- “Impact Assessment Study for the construction of the Transport Infrastructures of the Islands of Flores and Corvo, Azores - natural environment”, funded by the Azores Regional Government - Regional Secretariat for Tourism and Environment / Regional Environment Directorate, 1990;
 - LFFC- “Littoral flora of the islands of Flores and Corvo: Inventory, ecology and biogeographic affinities”, Government of the Azores - Regional Secretariat for Tourism and Environment / Regional Environment Directorate (GRA-SRTA / DRA), 1995-1999;
 - Project Flores- Biosphere - “Application of Flores Island to a Biosphere Reserve”. Government of the Azores - Regional Secretariat for the Environment and the Sea (GRA-SRAM). 2007-2008;
 - Project MOST - “Application of a model of sustainable tourism to areas of Natura 2000 network in the Azores” (PTDC / AAC-AMB / 104714/2008). Foundation for Science and Technology and the Government of the Azores.
Marine algal flora of Flores and Corvo Islands, Azores

Acores - Regional Secretariat for the Sea, Science and Technology, Regional Directorate for Sea Affairs (GRA / SRMCT-DRAM), 2010 - 2013;
◦ Project PIMA – “Elaboration of the implementation program of the Marine Strategy Framework Directive - Marine Invasion Program in the Azores” (3 /DRAM /2015). Government of the Azores - Regional Secretariat for the Sea, Science and Technology, Regional Directorate for Sea Affairs (GRA / SRMCT-DRAM), 2015;
◦ Project BALA – “Elaboration of the implementation program of the marine strategy framework directive - biodiversity of the coastal environments of the Azores” (2 /DRAM /2015). Government of the Azores - Regional Secretariat for the Sea, Science and Technology, Regional Directorate for Sea Affairs (GRA / SRMCT-DRAM), 2015;
◦ Project “ACORES-01-0145-FEDER-000072 - AZORES BIOPORTAL – PORBIOTA. Operational Programme Azores 2020 (85% ERDF and 15% regional funds);
• Scientific Expeditions and campaigns:
◦ “FLORES/89”, organised by the Biology Department of the University of the Azores, Flores Island, Azores, July 1989;
◦ “Earthwatch FLORES/95”, a joint organisation of the Marine Biology Section of the Biology Department of the University of the Azores and the Natural History Museum (London), co-funded by the Earthwatch International and developed under the project LFFC, July – August 1995;
◦ “FLORES & CORVO/99”, developed under the project LFFC, July 1999;
◦ “FLORES & CORVO/2007”, XIII Scientific Expedition of the Biology Department of the University of the Azores, Islands of Flores and Corvo, July 2007;
◦ “MOST”, under the project MOST, 2011-2013;
◦ “PIMA/BALA”, under the projects PIMA and BALA, 2015;
• Other funds:
◦ Portuguese National Funds, through FCT– Fundação para a Ciência e a Tecnologia, within the projects UID/BIA/00329/2013, 2015-2019, UID/BIA/00329/2020-2023 and UID/BIA/50027/2019 and POCI-01-0145-FEDER-006821;
◦ ERDF funds through the Operational Programme for Competitiveness Factors – COMPETE;
◦ Portuguese Regional Funds, through DRCT - Regional Directorate for Science and Technology, within several projects, 2019 and 2020 and SRMCT / DRAM - Regional Secretariat for the Sea, Science and Technology, Regional Directorate for Sea Affairs;
◦ CIRN/DB/UAc (Research Centre for Natural Resources, Universidade dos Açores, Departamento de Biologia);
◦ CIIMAR (Interdisciplinary Centre of Marine and Environmental Research, Porto, Portugal).
Sampling methods

Study extent: This study covers a relatively large area, of approximately 143 km² on Flores and 17 km² on Corvo, covering littoral and sublittoral levels down to approximately 40 m around the Islands (Tables 2, 3, Figs 2, 3).

Table 2.
Information and location of the sampling sites on Flores Island.

Location No	Location ID	Municipality	Locality	Latitude / Longitude	Littoral zone			
1	FLO_bris	Baixa Rasa do Ilhéu		39.495215; -31.274644	Subtidal			
2	FLO_L_FGem	Lajes	Fajã Grande	Entre-marés	39.453485; -31.267758	Intertidal		
3	FLO_L_FGprb	Lajes	Fajã Grande	Porto de Recreio	Baía	39.460831; -31.261651	Subtidal	
4	FLO_L_FGprem	Lajes	Fajã Grande	Porto de Recreio	Entre-marés	39.459356; -31.261244	Intertidal	
5	FLO_L_FGpvb	Lajes	Faja Grande	Porto Velho	Baía	39.456795; -31.268607	Subtidal	
6	FLO_L_FGpvb	Lajes	Faja Grande	Porto Velho	Baía	39.458818; -31.264851	Intertidal	
7	FLO_L_FGpve	Lajes	Fajã Grande	Porto Velho	Enseada	39.459471; -31.264743	Subtidal	
8	FLO_L_FGpve	Lajes	Faja Grande	Porto Velho	Entre-marés	39.458818; -31.264851	Intertidal	
9	FLO_L_Ls	Lajes	Lajedo		39.392978; -31.259311	Subtidal		
10	FLO_L_Lnt	Lajes	Lajedo	Nascente termal		39.393021; -31.258356	Intertidal	
11	FLO_L_Lapem	Lajes	Lajes	Atrás do Porto	Entre-marés	39.377324; -31.169366	Intertidal	
12	FLO_L_Laps	Lajes	Lajes	Atrás do Porto	Subtidal	39.372111; -31.17103	Subtidal	
13	FLO_L_Lem	Lajes	Lajes	Entre-marés		39.376978; -31.171336	Intertidal	
Location No	Location ID	Municipality	Locality	Latitude / Longitude	Littoral zone			
-------------	------------	-------------------	--	--------------------------	---------------			
14	FLO_L_Flvs	Lajes	Lajes	Fajã de Lopo Vaz	39,372801; -31,208518	Subtidal		
15	FLO_L_Fpls	Lajes	Lajes	Fazenda	Porto da Lomba	39,399797; -31,150731	Subtidal	
16	FLO_L_Ms	Lajes	Lajes	Mosteiro	39,413261; -31,260714	Subtidal		
17	FLO_L_Lp	Lajes	Lajes	Porto	39,379015; -31,167686	Subtidal		
18	FLO_SC_CAb	Santa Cruz	Cedros	Alagoa	Baía	39,474441; -31,144853	Subtidal	
19	FLO_SC_CAem	Santa Cruz	Cedros	Alagoa	Entre-marés	39,474473; -31,148271	Intertidal	
20	FLO_SC_PDapem	Santa Cruz	Ponta Delgada	Atrás do Porto	Entre-marés	39,519728; -31,206613	Intertidal	
21	FLO_SC_PDaps	Santa Cruz	Ponta Delgada	Atrás do Porto	Entre-marés	39,519568; -31,206579	Subtidal	
22	FLO_SC_PDpem	Santa Cruz	Ponta Delgada	Porto	Entre-marés	39,519473; -31,208125	Intertidal	
23	FLO_SC_PDpes	Santa Cruz	Ponta Delgada	Porto	Este	39,519017; -31,206235	Subtidal	
24	FLO_SC_PDpos	Santa Cruz	Ponta Delgada	Porto	Oeste	39,520223; -31,205269	Subtidal	
25	FLO_SC_PDFAs	Santa Cruz	Farol de Albernaz	39,520461; -31,238744	Subtidal			
26	FLO_SC_SCaps	Santa Cruz	Santa Cruz	Atrás do porto		39,452411; -31,125155	Subtidal	
27	FLO_SC_SCapvem	Santa Cruz	Santa Cruz	Atrás do porto velho		39,454593; -31,124608	Intertidal	
28	FLO_SC_SCapvem	Santa Cruz	Santa Cruz	Atrás do porto velho	Entre-marés	39,454593; -31,124608	Intertidal	
29	FLO_SC_Scbvs	Santa Cruz	Santa Cruz	Baixa vermelha	39,46859; -31,135821	Subtidal		
30	FLO_SC_SCbpds	Santa Cruz	Santa Cruz	Baixas de Ponta Delgada	39,526318; -31,206453	Subtidal		
Location No	Location ID	Municipality	Locality	Latitude / Longitude	Littoral zone			
-------------	----------------	--------------	--------------------------------	----------------------	---------------			
31	FLO_SC_SCfs	Santa Cruz	Santa Cruz	Fazenda	39.469496; -31.139423	Subtidal		
32	FLO_SC_SCiars	Santa Cruz	Santa Cruz	Ilhêu de Álvaro Rodrigues	39.488436; -31.148651	Subtidal		
33	FLO_SC_SCigs	Santa Cruz	Santa Cruz	Ilhêu do Garajau	39.48444; -31.145556	Subtidal		
34	FLO_SC_SCias	Santa Cruz	Santa Cruz	Ilhêu dos Abrões	39.504518; -31.187712	Subtidal		
35	FLO_SC_SCifs	Santa Cruz	Santa Cruz	Ilhêu Francisco	39.523814; -31.214148	Subtidal		
36	FLO_SC_SCimvs	Santa Cruz	Santa Cruz	Ilhêu Maria Vaz	39.505833; -31.245	Subtidal		
37	FLO_SC_Scipas	Santa Cruz	Santa Cruz	Ilhêu Pão de Açúcar	39.500367; -31.170582	Subtidal		
38	FLO_SC_SCpiem	Santa Cruz	Santa Cruz	Piscinas	Entre-marés	39.458842; -31.124608	Intertidal	
39	FLO_SC_SCpcs	Santa Cruz	Santa Cruz	Ponta da Caveira	39.424187; -31.145587	Subtidal		
40	FLO_SC_Spis	Santa Cruz	Santa Cruz	Ponta do lhêu	39.509661; -31.19527	Subtidal		
41	FLO_SC_SCpros	Santa Cruz	Santa Cruz	Ponta Ruiva	Oeste	39.495572; -31.152406	Subtidal	
42	FLO_SC_Spbbd	Santa Cruz	Santa Cruz	Porto da Baleia	Baía	Deep	39.463387; -31.127258	Subtidal
43	FLO_SC_Spbbs1	Santa Cruz	Santa Cruz	Porto da Baleia	Baía	Shallow 1	39.463035; -31.128021	Subtidal
44	FLO_SC_Spbbs2	Santa Cruz	Santa Cruz	Porto da Baleia	Baía	Shallow 2	39.463731; -31.12752	Subtidal
45	FLO_SC_Spbbb	Santa Cruz	Santa Cruz	Porto da Baleia	Bóia flutuante	39.463035; -31.128021	Bóia	
46	FLO_SC_Spbem1	Santa Cruz	Santa Cruz	Porto da Baleia	Entre-marés 1	39.463518; -31.128256	Intertidal	
47	FLO_SC_Spbem2	Santa Cruz	Santa Cruz	Porto da Baleia	Entre-marés 2	39.463686; -31.128523	Intertidal	
Location No	Location ID	Municipality	Locality	Latitude / Longitude	Littoral zone			
------------	-------------	--------------	----------	----------------------	--------------			
48	FLO_SC_SCpvs	Santa Cruz	Santa Cruz	39.454305; -31.12449	Subtidal			
1	COR_VC_VCaaem	Vila do Corvo	Vila do Corvo	39.670289; -31.115366	Intertidal			
2	COR_VC_VCms	Vila do Corvo	Vila do Corvo	39.668742; -31.120615	Subtidal			
3	COR_VC_VCps	Vila do Corvo	Vila do Corvo	39.669127; -31.113446	Subtidal			
4	COR_VC_VCps	Vila do Corvo	Vila do Corvo	39.669127; -31.113446	Subtidal			
5	COR_VC_VCpas	Vila do Corvo	Vila do Corvo	39.672838; -31.123437	Subtidal			
6	COR_VC_VCpem	Vila do Corvo	Vila do Corvo	39.671968; -31.110846	Intertidal			
7	COR_VC_VCps	Vila do Corvo	Vila do Corvo	39.672729; -31.109214	Subtidal			
8	COR_VC_VCpbem	Vila do Corvo	Vila do Corvo	39.669523; -31.112739	Intertidal			
9	COR_VC_VCpbs	Vila do Corvo	Vila do Corvo	39.668229; -31.112482	Subtidal			

Sampling description: Intertidal collections were made during low tide by walking over the shores. Subtidal collections were made by SCUBA diving around the area. Sampling involved specimen collecting and species presence recording. For the former, at each location, samples were obtained by scraping from the surface one or two specimens of all the observed species and then placing them into labelled bags (Fig. 9). Species recording data was gathered by registering all species present in the sampled locations visited (Fig. 10).

Quality control: Each sampled taxon was identified by trained taxonomists and involved morphological and anatomical observations of whole specimens by eye and/or of
histological preparations under microscopes to determine the main diagnostic features of each species, as described in literature.

Step description: Specimens were sorted and studied in the laboratory, following standard procedures used in macroalgae identification.

Species identification was usually based on a combination of morphological, anatomical and reproductive features. For small and simple thalli, this required observing the entire thallus with the unaided eye and/or using dissecting and compound microscopes. For larger and more complex algae, investigation of the thallus anatomy required histological procedures (longitudinal and transverse sections) or squashed preparations of mucilaginous thalli, sometimes after staining, to observe vegetative and reproductive structures and other diagnostic features.

The mixed nature of the Azorean algal flora with components from several geographical regions cause difficulties in species identification. Floras and keys for the North Atlantic, Tropical Atlantic and Western Mediterranean were used (e.g. Schmidt 1931, Taylor 1967, Taylor 1978, Levrin 1974, Dixon and Irvine 1977, Lawson and John 1982, Irvine 1983, Gayral and Cosson 1986, Fletcher 1987, Afonso-Carrillo and Sansón 1989, Burrows 1991, Boudouresque et al. 1992, Cabioc’h et al. 1992, Maggs and Hommersand 1993, Irvine and Chamberlain 1994, Brodie et al. 2007, Llorèns et al. 2012, Rodríguez-Prieto et al. 2013).

For more critical and taxonomically-difficult taxa, specimens were taken to the Natural History Museum (London) for comparison with collections there.

A reference collection was made for all collected specimens by assigning them a herbarium code number and depositing them at the AZB Herbarium Ruy Telhes Palhinha and the Molecular Systematics Laboratory, University of Azores. Depending on the species and on planned further research, different types of collections were made, namely (i) liquid
collections using 5% buffered formaldehyde seawater and then replacing it by the fixing agent Kew (Bridsen and Forman 1999); (ii) dried collections, either by pressing the algae (most species) as described by Gayral and Cosson (1986) or by letting them air dry (calcareous species); and (iii) silica gel collections for molecular studies.

Nomenclatural and taxonomic status used here follow Algaebase (Guiry and Guiry 2020). The database was organised on FileMaker Pro.

Figure 10. doi

Quantitative recording of the presence and coverage of macroalgal species at the subtidal rocky habitat (by the Island Aquatic Ecology Subgroup of cE3c-ABG).

Geographic coverage

Description: Flores Island Description: Azores, Portugal (approximately 39°31'27"N, -31°15'31"W);

Coordinates: 39.524201 and 39.37521 Latitude; -31.258622 and -31.124496 Longitude.

Corvo Island Description: Azores, Portugal (approximately 39°43'37"N, -31°7'44"W).

Coordinates: 39.726829 and 39.669576 Latitude; -31.12899 and -31.082546 Longitude.

Taxonomic coverage

Description: All macroalgae were identified to genus or species level. For Flores, a total of 196 taxa were identified belonging to 24 orders and 54 families, distributed in the phyla Rhodophyta (14 orders and 33 families), Chlorophyta (three orders and nine families) and Ochrophyta (seven orders and 12 families). For Corvo, a total of 56 taxa were identified belonging to 16 orders and 29 families, distributed in the phyla Rhodophyta (seven orders
and 16 families), Chlorophyta (three orders and four families) and Ochrophyta (six orders and nine families).

Temporal coverage

Notes: The sampling was performed on several occasions between 1989 and 2018.

Collection data

Collection name: AZB | Marine macroalgae collection of Flores and Corvo Islands (Azores)-Expedition Flores/89; AZB | Marine macroalgae collection of Flores and Corvo Islands (Azores)-Expedition Earthwatch Flores/95; AZB | Marine macroalgae collection of Flores and Corvo Islands (Azores)-Expedition Flores & Corvo/99; Marine macroalgae collection of Flores and Corvo Islands (Azores)-Expedition Flores & Corvo/2007; AZB | Marine macroalgae collection of Flores and Corvo Islands (Azores)-Occasional sampling; AZB | Marine macroalgae collection of Flores and Corvo Islands (Azores)-Occasional sampling; Marine macroalgae occurrence of Flores and Corvo Islands (Azores)-Expedition Flores & Corvo/99; Marine macroalgae occurrence of Flores and Corvo Islands (Azores)-Project MOST; Marine macroalgae occurrence of Flores and Corvo Islands (Azores)-Campaign PIMA/BALA; Marine macroalgae occurrence of Flores and Corvo Islands (Azores)-Occasional sampling.

Collection identifier: 33967202-6b10-4182-99d2-621d594572cc; cd4c8ddd-49f7-4318-9b3d-c78aaec53c2d; 93772fb0-339a-4081-b742-a101ca66c019; a7ca4500-9608-44eb-9269-528a40264071; 1a7a0a41-5a5c-460c-815d-0c3503a5a2ea; cfc9d276-6d4e-4cc3-8f40-be9c3e5ba6e9; 434097ea-bac3-49ac-9f5a-3aa9b6c10503; db4e55cc-1401-4b1c-9343-fc2a3e27e473; 29ca7edc-3911-4c59-9722-c9aba69ca506; 153bd328-1e16-4e9e-8dc8-56994c25fb31.

Parent collection identifier: AZB Herbarium Ruy Telles Palhinha, Faculty of Sciences and Technology of the University of the Azores; AZB Herbarium Ruy Telles Palhinha, Faculty of Sciences and Technology of the University of the Azores; AZB Herbarium Ruy Telles Palhinha, Faculty of Sciences and Technology of the University of the Azores; Expedition Flores & Corvo/2007 Macroalgae collection, Faculty of Sciences and Technology of the University of the Azores; AZB Herbarium Ruy Telles Palhinha, Faculty of Sciences and Technology of the University of the Azores; AZB Herbarium Ruy Telles Palhinha, Faculty of Sciences and Technology of the University of the Azores; Not applicable; Not applicable; Not applicable; Not applicable.

Specimen preservation method: All specimens were preserved as follows: air dry, dried and pressed; liquid (formalin; fixing agent Kew), silica.

Curatorial unit: AZB Herbarium Ruy Telles Palhinha, Faculty of Sciences and Technology of the University of the Azores.
Usage licence

Usage licence: Creative Commons Public Domain Waiver (CC-Zero)

Data resources

Data package title: Marine algal flora of Flores and Corvo Islands, Azores
Resource link: http://ipt.gbif.pt/ipt/resource?r=flores-corvo_seaweed_flora
Alternative identifiers: http://ipt.gbif.pt/ipt/resource?r=flores-corvo_seaweed_flora

Number of data sets: 1

Data set name: Marine algal flora of Flores and Corvo Islands, Azores

Character set: UTF-8

Download URL: http://ipt.gbif.pt/ipt/archive.do?r=flores-corvo_seaweed_flora

Data format: Darwin Core Archive

Data format version: 1.3

Description: This data paper presents physical and occurrence data from macroalgal surveys undertaken on Flores and Corvo Islands between 1989 and 2018 (Neto et al. 2020d). The dataset submitted to GBIF is structured as a sample event dataset, with two tables: event (as core) and occurrences. The data in this sampling event resource have been published as a Darwin Core Archive (DwCA), which is a standardised format for sharing biodiversity data as a set of one or more data tables. The core data table contains 90 records (eventID). The extension data table has 2077 occurrences. An extension record supplies extra information about a core record. The number of records in each extension data table is illustrated in the IPT link. This IPT archives the data and thus serves as the data repository. The data and resource metadata are available for downloading in the downloads section.

Column label	Column description
eventID	Identifier of the event, unique for the dataset
country	Country of the sampling site
countryCode	Code of the country where the event occurred
stateProvince	Name of the region
island	Name of the island
municipality	Name of the municipality
locality	Name of the locality
Field	Description
-------------------------------	---
locationID	Identifier of the location
decimalLatitude	The geographic latitude of the sampling site
decimalLongitude	The geographic longitude of the sampling site
geodeticDatum	The spatial reference system upon which the geographic coordinates are based
coordinateUncertaintyInMetres	The horizontal distance (in metres) from the given decimalLatitude and
	decimalLongitude describing the smallest circle containing the whole of the
	Location
eventDate	Time interval when the event occurred
year	The year of the event
samplingProtocol	Sampling method used during an event
locationRemarks	Zonation level
minimumDepthInMeters	The minimum depth in metres where the specimen was found
maximumDepthInMeters	The maximum depth in metres where the specimen was found
eventRemarks	Notes about the event
occurrenceID	Identifier of the record, coded as a global unique identifier
institutionID	The identifier for the institution having custody of the object or information referred to in the record
institutionCode	The acronym of the institution having custody of the object or information referred to in the record
collectionID	An identifier of the collection to which the record belongs
collectionCode	The name of the collection from which the record was derived
datasetName	The name identifying the dataset from which the record was derived
eventID	Identifier of the event, unique for the dataset
kingdom	Kingdom name
phylum	Phylum name
class	Class name
order	Order name
family	Family name
genus	Genus name
specificEpithet	The name of the first or species epithet of the scientificName
infraspecificEpithet	The name of the lowest or terminal infraspecific epithet of the scientificName, excluding any rank designation
acceptedNameUsage	The specimen accepted name, with authorship
Additional information

This paper accommodates the 1687 specimens of macroalgae recorded from Flores Island in 196 taxa comprising 128 confirmed species and 68 taxa identified only to generic level. The confirmed species (Tables 4, 5) include 80 Rhodophyta, 22 Chlorophyta and 26 Ochrophyta (Phaeophyceae). Of these, 37 species are newly recorded for the Island (20 Rhodophyta, six Chlorophyta and 11 Ochrophyta). Most species are native, including the two Macaronesian endemics (*Laurencia viridis* and *Millerella tinerfensis*). Six species are introductions to the algal flora (*Asparagopsis armata*, *Neoizziella divaricata* and *Symphyocladia marchantioides*; the Chlorophyta *Codium fragile* subsp. *fragile*; and the Ochrophyta *Hydroclathrus tilesii* and *Papenfussiella kuromo*). Fourteen species are uncertain in status (10 Rhodophyta, two Chlorophyta and two Ochrophyta).

Many species were only sporadically recorded on Flores, but 19 were commonly found around the Island and occurred quite abundantly in some locations, namely: the Rhodophyta *Acrosorium ciliolatum* (Harvey) Kylin, *Asparagopsis armata*, A. *taxiformis* (Dellile) Trevisan, *Platoma cyclocolpum* (Montagne) F.Schmitz, *Plocamium cartilagineum* (Linnaeus) P.S.Dixon, *Pterocladiella capillacea* and *Sphaerococcus coronopifolius* Stackhouse; the Chlorophyta *Anadyomene stellata* (Wulfen) C.Agardh, *Cladophora prolifera* (Roth) Kützing, *Codium adhaerens* C.Agardh, *Microdictyon umbilicatum* (Velley) Zanardinian *Ulva rigida* C.Agardh; and the Ochrophyta *Cladostephus spongiosus* (Hudson) C.Agardh, *Colpomenia sinuosa* (Mertens ex Roth) Derbès & Solier in Castagne,
Table 4.
Macroalgal species recorded from Flores Island, with information on relative abundance, origin and status.

Phylum	Species (Accepted Name)	Number of records	Establishment Means	Occurrence Remarks	
Chlorophyta	*Anadyomene stellata* (Wulfen) C.Agardh	13	Uncertain		
Chlorophyta	*Bryopsis cupressina* J.V.Lamouroux	2	Native	New record	
Chlorophyta	*Bryopsis hypnoides* J.V.Lamouroux	4	Native		
Chlorophyta	*Bryopsis pennata* J.V.Lamouroux	1	Native		
Chlorophyta	*Bryopsis plumosa* (Hudson) C. Agardh	3	Native		
Chlorophyta	*Chaetomorpha aerea* (Dillwyn) Kützing	1	Native		
Chlorophyta	*Cladophora albida* (Nees) Kützing	3	Native		
Chlorophyta	*Cladophora coelothrix* Kützing	6	Native		
Chlorophyta	*Cladophora hutchinsiae* (Dillwyn) Kützing	2	Native	New record	
Chlorophyta	*Cladophora lehmanniana* (Lindenberg) Kützing	5	Native	New record	
Chlorophyta	*Cladophora prolifera* (Roth) Kützing	20	Native		
Chlorophyta	*Cladophoropsis membranacea* (Hofman Bang ex C.Agardh) Bærgesen	1	Uncertain		
Chlorophyta	*Codium adhaerens* C.Agardh	18	Native		
Chlorophyta	*Codium decorticatum* (Woodward) M.A.Howe	3	Native	New record	
Chlorophyta	*Codium fragile* subsp. *fragile* (Suringar) Hariot	5	Introduced	New record	
Chlorophyta	*Derbesia marina* (Lyngbye) Solier	1	Native		
Chlorophyta	*Lychaete pellucida* (Hudson) M.J.Wynne	4	Native	New record	
Chlorophyta	*Microdictyon umbilicatum* (Velley) Zanardini	31	Native		
Chlorophyta	*Ulva clathrata* (Roth) C.Agardh	3	Native		
Chlorophyta	*Ulva intestinalis* Linnaeus	8	Native		
Chlorophyta	*Ulva rigida* C.Agardh	10	Native		
Chlorophyta	*Valonia utricularis* (Roth) C.Agardh	3	Native		
Ochrophyta	*Ascothystum nodosum* (Linnaeus) Le Jolis	7	Native		
Ochrophyta	*Carpomitra costata* (Stackhouse) Batters	2	Native		
Ochrophyta	*Cladostephus spongiosus* (Hudson) C.Agardh	23	Native		
Phylum	Species (Accepted Name)	Number of records	Establishment Means	Occurrence	Remarks
---------	--	-------------------	---------------------	------------	--------------------------------
Ochrophyta	*Colpomenia sinuosa* (Mertens ex Roth) Derbès & Solier	61	Native		
Ochrophyta	*Cutleria multifida* (Turner) Greville	4	Uncertain		
Ochrophyta	*Cutleria multifida* (Turner) Grevill, phase *Aglaozonia parvula* (Greville) Zanardini	2	Uncertain	New record	
Ochrophyta	*Cystoseira foeniculacea* (Linnaeus) Greville	4	Native		
Ochrophyta	*Cystoseira humilis* Schousboe ex Kützing	1	Native		
Ochrophyta	*Dictyopteris polypondiioides* (A.P.De Candolle) J.V.Lamouroux	2	Native	New record	
Ochrophyta	*Dictyota barbarysiana* J.V.Lamouroux	4	Native		
Ochrophyta	*Dictyota cyanoloma* Tronholm, De Clerck, A.Gómez-Garreta & Rull Lluch	1	Native	New record	
Ochrophyta	*Dictyota dichotoma* (Hudson) J.V.Lamouroux	3	Native		
Ochrophyta	*Halopteris filicina* (Gratetloup) Kützing	54	Native		
Ochrophyta	*Halopteris scoparia* (Linnaeus) Sauvageau	61	Native		
Ochrophyta	*Hydroclathrus tilesii* (Endlicher) Sántañez & M.J.Wynne	1	Introduced	New record	
Ochrophyta	*Leathesia marina* (Lyngbye) Decaisne	6	Uncertain		
Ochrophyta	*Lobophora variegata* (J.V.Lamouroux) Womersley ex E.C.Oliveira	11	Native	New record	
Ochrophyta	*Myrionema strangulans* Greville	1	Native		
Ochrophyta	*Padina pavenica* (Linnaeus) Thivy	85	Native		
Ochrophyta	*Papenfussiella kuroma* (Yendo) Inagaki	1	Introduced	New record	
Ochrophyta	*Petrospongium berkeleyi* (Greville) Nägeli ex Kützing	1	Native	New record	
Ochrophyta	*Sargassum furcatum* Kützing	5	Native	New record	
Ochrophyta	*Sargassum vulgare* C.Agardh, nom. illeg.	5	Native		
Ochrophyta	*Sphacecalaria cirosa* (Roth) C.Agardh	1	Native	New record	
Ochrophyta	*Taonia atomaria* (Woodward) J.Agardh	6	Native	New record	
Ochrophyta	*Zanardinia typus* (Nardo) P.C.Silva	15	Native	New record	
Ochrophyta	*Zonaria tournefortii* (J.V.Lamouroux) Montagne	96	Native		
Rhodophya	*Acrosorium ciliolatum* (Harvey) Kylin	35	Native		
Rhodophya	*Amphiroa beavoensis* J.V.Lamouroux	1	Native		
Rhodophya	*Amphiroa rigida* J.V.Lamouroux	5	Native		
Rhodophya	*Asparagopsis armata* Harvey	58	Introduced		
Phylum	Species (Accepted Name)	Number of records	Establishment Means	Occurrence	Remarks
------------	--	-------------------	---------------------	------------	-----------------
Rhodophya	Asparagopsis armata Harvey, phase	6	Introduced		
	Falkenbergia rufolanosa (Harvey) F.Schmit				
Rhodophya	Asparagopsis taxiformis (Delile) Trevisan	38	Native		
Rhodophya	Bornetia secundiflora (J.Agardh) Thuret	2	Native		
Rhodophya	Botryocladia botryoides (Wulffen) Feldmann	8	Native		New record
Rhodophya	Callithamnion corymbosum (J.E.Smith) Lyngbye	3	Native		
Rhodophya	Callithamnion granulatum (Ducluzeau) C.Agardh	2	Native		New record
Rhodophya	Caulacanthus ustulatus (Turner) Kützing	2	Uncertain		
Rhodophya	Centroceras clavulatum (C.Agardh) Montagne	14	Native		
Rhodophya	Ceramium ciliatum (J.Ellis) Ducluzeau	2	Native		
Rhodophya	Ceramium cimbricum H.E.Petersen	3	Native		
Rhodophya	Ceramium derbesii Solier ex Kützing	2	Native		
Rhodophya	Ceramium echionotum J.Agardh	1	Native		New record
Rhodophya	Ceramium gaditanum (Clemente) Cremades	2	Uncertain		
Rhodophya	Ceramium virgatum Roth	3	Native		
Rhodophya	Ceratodictyon intricatum (C.Agardh) R.E.Norris	2	Native		
Rhodophya	Ceratodictyon scoparium (Montagne & Millardet) R.E.Norris	1	Uncertain		New record
Rhodophya	Chondracanthus acicularis (Roth) Fredericq	11	Native		
Rhodophya	Chondracanthus teedei (Mertens ex Roth) Kützing	1	Native		New record
Rhodophya	Chondria dasypylla (Woodward) C.Agardh	6	Uncertain		
Rhodophya	Corallina ferreyrae E.Y.Dawson, Acleto & Foldvik	1	Native		New record
Rhodophya	Corallina officinalis Linnaeus	18	Native		
Rhodophya	Cruoria pellita (Lyngbye) Fries	1	Native		
Rhodophya	Cryptopleura ramosa (Hudson) L.Newton	2	Native		New record
Rhodophya	Ellisolandia elongata (J.Ellis & Solander) K.R.Hind & G.W.Saunders	3	Native		
Rhodophya	Erythrocris montagnei (Derbès & Solier) P.C.Silva	2	Native		New record
Rhodophya	Gelidium corneum (Hudson) J.V.Lamouroux	10	Native		
Phylum	Species (Accepted Name)	Number of records	Establishment Means	OccurrenceRemarks	
------------	--	-------------------	---------------------	-------------------	
Rhodophya	Gelidium microdon Kützing	4	Native		
Rhodophya	Gelidium pusillum (Stackhouse) Le Jolis	12	Native		
Rhodophya	Gelidium spinosum (S.G.Gmelin) P.C.Silva	11	Native		
Rhodophya	Gigartina pistillata (S.G.Gmelin) Stackhouse	1	Native		
Rhodophya	Gracilariopsis longissima (S.G.Gmelin) Steentoft, L.M.Irvine & Farnham	2	Native		
Rhodophya	Grateloupiella filicina (J.V.Lamouroux)	10	Native		
Rhodophya	Griffithsia corallinoides (Linnaeus) Trevisan	1	Uncertain		
Rhodophya	Griffithsia devoniensis Harvey	1	Native	New record	
Rhodophya	Gymnogongrus crenulatus (Turner) J.Agardh	14	Native		
Rhodophya	Gymnogongrus griffithsiae (Turner) C.Martius	3	Native		
Rhodophya	Gymnophyllum elegans (Schousboe ex C.Agardh) J.Agardh	2	Native		
Rhodophya	Halurus flosculosus (J.Ellis) Maggs & Hommersand	1	Native		
Rhodophya	Hypnea musciformis (Wulfen) J.V.Lamouroux	19	Uncertain		
Rhodophya	Hypoglossum hypoglossoides (Stackhouse) Collins & Hervey	9	Native	New record	
Rhodophya	Jania capillacea Harvey	1	Native	New record	
Rhodophya	Jania crassa J.V.Lamouroux	2	Native	New record	
Rhodophya	Jania longifurca Zanardini	8	Uncertain		
Rhodophya	Jania rubens (Linnaeus) J.V.Lamouroux	6	Native		
Rhodophya	Jania virgata (Zanardini) Montagne	13	Uncertain		
Rhodophya	Kallymenia reniformis (Turner) J.G.Agardh	1	Native		
Rhodophya	Laurencia obtusa (Huds.) J.V.Lamouroux	8	Native		
Rhodophya	Laurencia viridis Gil-Rodríguez & Haroun	3	Macaronesian endemic	New record	
Rhodophya	Laurencia maritzae (Gil-Rodríguez, Senties, Díaz-Larrea, Cassano & M.T.Fuji) Gil-Rodríguez, Senties, Díaz-Larrea, Cassano & M.T.Fuji	4	Native	New record	
Rhodophya	Leptosiphonia fibrillosa (Agardh) A.M.Savoie & G.W.Saunders	1	Native		
Rhodophya	Lomentaria articulata (Hudson) Lyngbye	12	Native		
Rhodophya	Mesophyllum expansum (Philippi) Cabioch & M.L.Mendoza	1	Native	New record	
Phylum	Species (Accepted Name)	Number of records	Establishment Means	OccurrenceRemarks	
--------	-------------------------	-------------------	---------------------	-------------------	
Rhodophya	*Millerella tinerfensis* (Seoane-Camba) S.M.Boo & J.M.Rico	3	Macaronesian endemism		
Rhodophya	*Nemalion elminthoides* (Velley) Batters	5	Native		
Rhodophya	*Neoziziaella divaricata* (C.K.Tseng) S.-M.Lin, S.-Y.Yang & Huisman	5	Introduced	New record	
Rhodophya	*Osmundea hybrida* (A.P.de Candolle) K.W.Nam	4	Native		
Rhodophya	*Osmundea pinnatifida* (Hudson) Stackhouse	10	Native		
Rhodophya	*Peyssonnelia squamaria* (S.G.Gmelin) Decaisne ex J.Agardh	6	Native		
Rhodophya	*Phyllophora crispa* (Hudson) P.S.Dixon	3	Native		
Rhodophya	*Pliatoma cyclocolpum* (Montagne) F.Schmitz	42	Native	New record	
Rhodophya	*Plocamium cartilagineum* (Linnaeus) P.S.Dixon	23	Native		
Rhodophya	*Polysiphonia opaca* (C.Agardh) Moris & De Notaris	2	Native		
Rhodophya	*Polysiphonia stricta* (Mertens ex Dillwyn) Greville	1	Native		
Rhodophya	*Pterocladiella capillacea* (S.G.Gmelin) Santelices & Hommersand	42	Native		
Rhodophya	*Rhodymenia holmesii* Ardissone	14	Native		
Rhodophya	*Schimmelmanna schousboei* (J.Agardh) J.Agardh	1	Native		
Rhodophya	*Schizymenia apoda* (J.Agardh) J.Agardh	1	Native	New record	
Rhodophya	*Schottera nicaeensis* (J.V.Lamouroux ex Duby) Guiry & Hollenberg	2	Uncertain		
Rhodophya	*Sphaerococcus coronopifolius* Stackhouse	20	Native		
Rhodophya	*Spyridia filamentosata* (Wulfen) Harvey	3	Native		
Rhodophya	*Stenogramma interruptum* (C.Agardh) Montagne	1	Native		
Rhodophya	*Symphyocladia marchantioides* (Harvey) Falkenberg	1	Introduced		
Rhodophya	*Taenioma nanum* (Kützing) Papenfuss	1	Native	New record	
Rhodophya	*Tenarea tortuosa* (Esper) Me.Lemoine	1	Native		
Rhodophya	*Vertebrata fruticulosa* (Wulfen) Kuntze	2	Native		
Rhodophya	*Vertebrata fucoides* (Hudson) Kuntze	2	Uncertain		
Rhodophya	*Vertebrata thuyoides* (Harvey) Kuntze	1	Native	New record	
For the Island of Corvo, this paper accommodates the 390 specimens of macroalgae recorded in 56 taxa comprising 43 confirmed species and 13 taxa identified only to genus level. The confirmed species (Tables 6, 7) include 22 Rhodophyta, eight Chlorophyta and 13 Ochrophyta (Phaeophyceae). Of these, 22 species are newly recorded to the Island (nine Rhodophyta, four Chlorophyta and nine Ochrophyta). Most species are native, two represent introductions to the algal flora of the Azores (the Rhodophyta *Asparagopsis armata* and the Chlorophyta *Codium fragile* subsp. *fragile*) and seven have an uncertain status (five Rhodophyta and two Ochrophyta).

Table 5.
Summary of the macroalgal flora of Flores Island, with information on the species origins and status.

Phylum	Order	Family	Specimens	Total taxa	Total species	Native	Introduced	Uncertain	Macaronesian endemism	New record
Rhodophyta	14	33	789	120	80	65	3	10	2	20
Chlorophyta	3	9	216	35	22	19	1	2	6	
Ochrophyta	7	12	682	41	26	22	2	2	11	
Total	24	54	1687	196	128	106	6	14	2	37

Table 6.
Macroalgal species recorded from Corvo Island, with information on relative abundance, origin and status.

Phylum	Species (Accepted Name)	Number of records	Establishment Means	Occurrence	Remarks
Chlorophyta	Chaetomorpha linum (O.F.Müller) Kützing	1	Native		
Chlorophyta	Cladophora coelothrix Kützing	1	Native		
Chlorophyta	Cladophora hutchinsiae (Dillwyn) Kützing	1	Native		New record
Chlorophyta	Cladophora laetevirens (Dillwyn) Kützing	1	Uncertain		
Chlorophyta	Cladophora prolifera (Roth) Kützing	2	Native		
Chlorophyta	Codium fragile subsp. fragile (Suringar) Hariot	2	Introduced		
Chlorophyta	Microdictyon umbilicatum (Velley) Zanardini	29	Native	New record	
Chlorophyta	Valonia utricularis (Roth) C.Agardh	1	Native	New record	
Ochrophyta	Carpomitra costata (Stackhouse) Batters	1	Native	New record	
Ochrophyta	Cladostephus spongiosus (Hudson) C.Agardh	1	Native	New record	
Phylum	Species (Accepted Name)	Number of records	Establishment Means	Occurrence Remarks	
--------------	--	-------------------	---------------------	--------------------	
Ochrophyta	*Colpomenia sinuosa* (Mertens ex Roth) Derbès & Solier	18	Native		
Ochrophyta	*Cutleria multifida* (Turner) Greville	3	Uncertain	New record	
Ochrophyta	*Dictyopteris polypodioides* (A.P.De Candolle) J.V.Lamouroux	3	Native	New record	
Ochrophyta	*Halopteris filicina* (Grateloup) Kützing	31	Native		
Ochrophyta	*Halopteris scoparia* (Linnaeus) Sauvageau	15	Native		
Ochrophyta	*Leathesia marina* (Lyngbye) Decaisne	1	Uncertain	New record	
Ochrophyta	*Lobophora variegata* (J.V.Lamouroux) Womersley ex E.C.Oliveira	8	Native	New record	
Ochrophyta	*Padina pavonica* (Linnaeus) Thivy	32	Native		
Ochrophyta	*Sargassum furcatum* Kützing	2	Native	New record	
Ochrophyta	*Taonia atomaria* (Woodward) J.Agardh	5	Native	New record	
Ochrophyta	*Zonaria tournefortii* (J.V.Lamouroux) Montagne	33	Native		
Rhodophyta	*Acrosorium ciliolatum* (Harvey) Kylin	28	Native	New record	
Rhodophyta	*Asparagopsis armata* Harvey	23	Introduced		
Rhodophyta	*Asparagopsis armata* Harvey, phase *Falkenbergia rufolanosa* (Harvey) F.Schmitz	1	Introduced		
Rhodophyta	*Asparagopsis taxiformis* (Dellile) Trevisan	13	Native	New record	
Rhodophyta	*Carradoriella denudata* (Dillwyn) A.M.Savoie & G.W.Saunders	1	Uncertain		
Rhodophyta	*Caulacanthus ustulatus* (Mertens ex Turner) Kützing	1	Uncertain	New record	
Rhodophyta	*Chondracanthus acicularis* (Roth) Fredericq	2	Native		
Rhodophyta	*Chondria capillaris* (Hudson) M.J.Wynne	1	Native		
Rhodophyta	*Corallina officinalis* Linnaeus	3	Native		
Rhodophyta	*Erythrodermis trailii* (Holmes ex Batters) Guiry & Garbary	1	Uncertain		
Rhodophyta	*Gelidium pusillum* (Stackhouse) Le Jolis	2	Native		
Rhodophyta	*Gigartina pustillata* (S.G.Gmelin) Stackhouse	1	Native		
Rhodophyta	*Gymnogongrus crenulatus* (Turner) J.Agardh	1	Native	New record	
Rhodophyta	*Gymnogongrus griffithsiae* (Turner) C.Martius	5	Native	New record	
Phylum	Species (Accepted Name)	Number of records	Establishment Means	OccurrenceRemarks	
--------	---	-------------------	---------------------	-------------------	
Rhodophyta	Jania virgata (Zanardini) Montagne	8	Uncertain	New record	
Rhodophyta	Nemalion elminthoides (Velley) Batters	1	Native		
Rhodophyta	Osmundea pinnatifida (Hudson) Stackhouse	2	Native		
Rhodophyta	Plocamium cartilagineum (Linnaeus) P.S.Dixon	4	Native	New record	
Rhodophyta	Pterocladiella capillacea (S.G.Gmelin) Santelices & Hommersand	6	Native		
Rhodophyta	Schottera nicaeensis (J.V.Lamouroux ex Duby) Guiry & Hollenberg	1	Uncertain		
Rhodophyta	Sphaerococcus coronopifolius Stackhouse	3	Native	New record	
Rhodophyta	Spyridia filamentosa (Wulfen) Harvey	2	Native	New record	
Rhodophyta	Vertebra fruticulosa (Wulfen) Kuntze	1	Native		

Table 7. Summary of the macroalgal flora of Corvo Island, with information on the species origins and status.

Phylum	Order	Family	Specimens Number	Total taxa	Total species	Native	Introduced	Uncertain	New record
Rhodophyta	7	16	136	30	22	16	1	5	9
Chlorophyta	3	4	42	9	8	7	1	0	4
Ochrophyta	6	9	212	17	13	11	0	2	9
Total	16	29	390	56	43	34	2	7	22

Nine species were commonly found, some abundantly in some locations, namely: the Rhodophyta Acrosorium ciliolatum, Asparagopsis armata, A. taxiformis; the Chlorophyta Microdictyon umbilicatum; and the Ochrophyta Colpomenia sinuosa, Halopteris filicina, H. scoparia, Padina pavonica and Zonaria tournefortii.

A mismatch regarding the GBIF backbone taxonomy of some of the macroalgae species names was identified as detailed in Suppl. material 1.

Acknowledgements

This paper is the result of several projects, expeditions and campaigns (see Funding above) and is supported by the project “ACORES-01-0145-FEDER-000072” as part of the Operational Programme Azores 2020 (85% ERDF and 15% regional funds). We are grateful to the Municipalities of Lajes and Santa Cruz das Flores, the Ecoteca of Flores, the
Basic and Secondary School of Santa Cruz das Flores and the Flores Forestry Services for their logistic support during the Expeditions and Campaigns. Thanks are due to the many Campaign teams for their critical involvement in this project (the international Earthwatch team, Carolina Arruda, Cláudia Hipólito, Cristiana Figueiredo, Heather Baldwin, Inês Neto, Isabel Pinto, Joana Micael, Marco Henrique, Maria Ana Dionísio, Maria Ventura, Nuno Vaz Álvaro, Patrícia Madeira, Pedro Alves, Pedro Cerqueira, Rita Grilo, Rita Norberto, Rui Santos and Sandra Monteiro). Manuela I. Parente was supported by a Postdoc grant (SFRH/BPD/34246/2006) awarded by Fundação para a Ciência e a Tecnologia (FCT). Afonso Prestes was supported by a PhD grant (M3.1.a/F/083/2015) awarded by Fundo Regional da Ciência e Tecnologia (FRCT). WF was awarded grants from the British Council and Earthwatch.

Author contributions

• AIN: Conceptualization; Methodology; Research (field and laboratory work); Resources; Data Curation; Formal analysis and interpretation; Paper writing
• MIP: Research (field and laboratory work); Data Curation; Formal analysis and interpretation; Paper writing
• IT: Methodology; Research (field work and laboratory work); Data Curation; Paper writing
• RF: Methodology; Research (field work and laboratory work); Data Curation
• WF: Methodology; Research (field work and laboratory work); Data Curation
• ACC: Research (field and laboratory work); Resources; Data Curation
• AZB: Research (field and laboratory work); Data Curation
• SM: Research (field and laboratory work); Data Curation
• RR: Resources; Data Curation
• PA: Resources
• ACLP: Investigation (laboratory work); Resources; Paper writing
• NVA: Research (field work); Maps elaboration
• DM-F: Research (field and laboratory work); Data Curation
• RMAN: Data Curation; Formal analysis and interpretation; Paper writing
• JMNA: Research (field work and laboratory work); Formal analysis and interpretation; Paper writing
• IM: Data Curation; Formal analysis and interpretation; Paper writing

References

• Afonso-Carrillo J, Sansón M (1989) Clave Ilustrada para la Determinación de los Macrófitos Marinas Bentónicos de las Islas Canarias. [Illustrated key for the determination of the Benthic Marine Macrophytes of the Canary Islands]. Departamento de Biología Vegetal (Botânica), Universidad de La Laguna, La Laguna, 55 pp.
• Azevedo JM, Neto AI, Costa AC (1990) Estudo de impacte ambiental sobre o meio marinho das infraestruturas de transporte das ilhas das Flores e Corvo. Departamento de Biologia, Universidade dos Açores.

• Azevedo JM (1998) Depósitos vulcanoclasticos submarinos: caso de estudo da ilha das Flores, Açores. Provas de Aptidão Científica e Pedagógica. Departamento de Ciências da Terra, Faculdade de Ciências e Tecnologia da Universidade de Coimbra, Coimbra, 198 pp.

• Azevedo JM (1999) Geologia e Hidrogeologia da Ilha das Flores (Açores, Portugal). Tese de doutoramento. Departamento de Ciências da Terra. Faculdade de Ciências e Tecnologia. Universidade de Coimbra, Coimbra, 403 pp.

• Boudouresque C-F, Meinesz A, Verlaque M (1992) Méditrranée. In: Boudouresque C-F, et al. (Ed.) Guide des Algues des Mers d'Europe. Delachaux et Niestlé, Paris, 138-231 pp.

• Bridsen D, Forman L (Eds) (1999) The Herbarium Handbook. Third Edition. Kew: The Board of Trustees of the Royal Botanic Gardens, Kew, xii + 334 pp. [ISBN 1-900347-43-1]

• Brodie J, Maggs C, John DM (Eds) (2007) The green seaweeds of Britain and Ireland. British Phycological Society, Dunmurry, Northern Ireland, xii + 242 pp.

• Burrows EM (1991) Seaweeds of the British Isles. Vol. 2. Chlorophyta. Natural History Museum, London, xii + 238 pp.

• Cabioc'h J, Floc'h J-Y, Le Toquin A (1992) Manche et Atlantique. In: Boudouresque C-F, et al. (Ed.) Guide des Algues des Mers d'Europe. Delachaux et Niestlé, Paris, 30-136 pp.

• Cardoso P, Erwin T, Borges PV, New T (2011) The seven impediments in invertebrate conservation and how to overcome them. Biological Conservation 144 (11): 2647-2655. https://doi.org/10.1016/j.biocon.2011.07.024

• Dionisio MA, Micael J, Parente M, Norberto R, Cunha A, Brum J, Cunha L, Lopes C, Monteiro S, Palmero A, Costa AC (2008) Contributo para o conhecimento da biodiversidade marinha da ilha das Flores. XIII Expedição Científica do Departamento de Biologia FLORES E CORVO 2007. Relatórios e Comunicações do Departamento de Biologia, 35: 65-84.

• Dixon SP, Irvine LM (1977) Seaweeds of the British Isles. Vol. I Rhodophyta. Part 1 Introduction, Nemaliiales, Gigartinales. British Museum (Natural History), London, xi + 252 pp.

• Drouet H (1866) Catalogue de la flore des iles Açores précédé de l'itinéraire d'un voyage dans cet Archipel. Mémoires de la Société Académique de l'Aube 30: 81-233.

• Fletcher RL (1987) Seaweeds of the British Isles. Vol. III. Fucophyceae (Phaeophyceae). Part 1. British Museum (Natural History), London, x + 359 pp.

• Fralick RA, Hehre EJ (1990) Observations on the marine algal flora of the Azores II. An annotated checklist of the Chlorophyta of the Azores. Arquiplago (Life and Earth Sciences) 8: 11-17.

• Freitas R, Romeiras M, Silva L, Cordeiro R, Madeira P, González JA, Wirtz P, Falcón JM, Brito A, Floeter SR, Afonso P, Porteiro F, Viera-Rodríguez MA, Neto AI, Haroun R, Farinhão JNM, Rebelo AC, Baptista L, Melo CS, Martínez A, Núñez J, Berning B, Johnson ME, Ávila SP (2019) Restructuring of the Macaronesia biogeographic unit: A marine multi-taxon biogeographical approach. Scientific Reports 9 (15792). https://doi.org/10.1038/s41598-019-51786-6
• Gain L (1914) Algues provenantdes campagnes de l'Hirondelle II (1911-1912). Bulletin de l'Institut Oceanographique, Monaco 279: 1-23.
• Gayral P, Cosson J (1986) Connaitre et reconnaître les algues marines. Ouest France, 220 pp.
• Guiry MD, Guiry GM (2020) AlgaeBase. World-wide electronic publication, National University of Ireland, Galway. https://www.algaebase.org. Accessed on: 2020-10-26.
• Hidrogrográfico I (1981) Roteiro do Arquipélago dos Aores. PUB (N) -lli-128-SN, Lisboa.
• Hildenbrand A, Marques FO, Catalão J (2018) Large-scale mass wasting on small volcanic islands revealed by the study of Flores Island (Acores). Scientific Reports 8: 13898. https://doi.org/10.1038/s41598-018-32253-0
• Hortal J, de Bello F, Diniz-Filho JA, Lewinsohn TM, Lobo JM, Ladle RJ (2015) Seven shortfalls that beset large-scale knowledge of biodiversity. Annual Review of Ecology, Evolution, and Systematics 46: 523-549. https://doi.org/10.1146/annurev-ecolsys-112414-054400
• Irvine LM (1983) Seaweeds of the British Isles. Vol. I. Rhodophyta. Part 2 A. Cryptonemiales (sensu stricto), Palmariales, Rhodymeniales. British Museum (Natural History), London, xii + 115 pp.
• Irvine LM, Chamberlain YM (1994) Seaweeds of the British Isles. Vol. 1. Rhodophyta. Part 2B. Corallinales, Hildenbrandiales. Natural History Museum, London, vii + 276 pp.
• Lawson GW, John DM (1982) The marine algae and coastal environment of Tropical West Africa. Beihefte zur Nova Hedwigia, J. Cramer, Vaduz, 455 pp.
• Leving T (1974) The marine algae of the archipelago of Madeira. Boletim do Museu Municipal do Funchal 28: 5-111. URL: http://publications.cm-funchal.pt/ljspui/handle/100/1231
• Lloréns JLP, Cabrero IH, Lacida RB, González GP, Murillo FGB, Oñate JJV (2012) Flora marina del litoral gaditano. Biologia, ecologia, usos y guía de identificacion. mCN Monografías de Ciencias de la Naturaleza. Servicio de Publicaciones de la Universidad de Cadiz, Cadiz, 368 pp.
• Maggs CA, Hommersand MH (1993) Seaweeds of the British Isles. Vol. 1. Rhodophyta. Part 3A. Ceramiales. Natural History Museum, London, xv + 444 pp.
• Morton B, Britton JC, Martins AMF (1998) Coastal Ecology of the Azores. Sociedade Afonso Chaves, Ponta Delgada, 249 pp.
• Neto AL, Azevedo JMM (1990) Contribuição para o estudo dos padrões de zonação litoral da Ilha das Flores. FLORES/89 – Relatório Preliminar. Relatórios e Comunicações do Departamento de Biologia 18: 89-102. URL: http://hdl.handle.net/10400.3/860
• Neto AL, Baldwin HP (1990) Algas marinhas do litoral das ilhas do Corvo e Flores. FLORES/89 – Relatório Preliminar. Relatórios e Comunicações do Departamento de Biologia 18: 103-111. URL: http://hdl.handle.net/10400.3/863
• Neto AL (1996) Flora litoral das ilhas das Flores e Corvo: Inventário, ecologia e afinidades biogeográficas. I. Departamento de Biologia, Universidade dos Açores, 9 pp.
• Neto AL (1997) Flora litoral das ilhas das Flores e Corvo: Inventário, ecologia e afinidades biogeográficas. II. Departamento de Biologia, Universidade dos Açores, 5 pp.
• Neto AL (1999) Flora litoral das ilhas das Flores e Corvo: Inventário, ecologia e afinidades biogeográficas. III. Departamento de Biologia, Universidade dos Açores, 23 pp.
• Neto AI, Tittley I, Raposeiro P (2005) Flora Marinha do Litoral dos Açores. [Rocky Shore Marine Flora of the Azores]. Secretaria Regional do Ambiente e do Mar, Açores, 156 pp. URL: http://hdl.handle.net/10400.3/1677 [ISBN 972 99884 0 4]

• Neto AI, Azevedo JMN, Madruga L, Terra MR, Álvaro NV, Azevedo JMM (2008) Candidatura da Ilha das Flores a Reserva da Biosfera. Gaiaware - Consultoria em Ambiente e Energia, Lda. & Secretaria Regional do Ambiente e do Mar, Governo dos Açores, vii + 233pp.

• Neto AI, Prestes AC, Álvaro NV, Resendes R, Neto RM, Moreu I (2020a) Marine algal (seaweed) flora of Terceira Island, Azores. Biodiversity Data Journal 8: e57462. https://doi.org/10.3897/BDJ.8.e57462

• Neto AI, Prestes AC, Álvaro NV, Resendes R, Neto RM, Tittley I, Moreu I (2020b) Marine algal flora, of Pico Island, Azores. Biodiversity Data Journal 8: e57461. https://doi.org/10.3897/BDJ.8.e57461

• Neto AI, Parente MI, Botelho AZ, Prestes AC, Resendes R, Afonso P, Álvaro NV, Millafigueras D, Neto RM, Tittley I, Moreu I (2020c) Marine algal flora of Graciosa Island, Azores. Biodiversity Data Journal 8: e57201. https://doi.org/10.3897/BDJ.8.e57201

• Neto AI, Parente MI, Tittley I, Fletcher RL, Farnham WF, Costa AC, Botelho AZ, Monteiro S, Resendes R, Afonso P, Prestes ACL, Álvaro NV, Millafigueras D, Neto RMA, Azevedo JMN, Moreu I (2020d) Marine algal flora of Flores and Corvo Islands, Azores. 1.4. Universidade dos Açores. Dataset/Samplingevent. Release date: 2020-11-15. URL: http://ipt.gbif.pt/ipt/resource?r=flores-corvo_seaweed_flora&v=1.4

• Rodríguez-Prieto C, Ballesteros E, Boisset F, Afonso-Carrillo J (2013) Guía de las macroalgas y fanerógamas marinas del Mediterráneo Occidental. Ed. Omega, S.A., Barcelona, 656 pp.

• Schmidt OC (1929) Beitrage zur Kenntnis der Meeresalgen der Azoren. I. Hedwigia 69: 95-11.

• Schmidt OC (1931) Die marine vegetation der Azoren in ihren Grundzügen dargestellt. Bibliotheca Botanica 24 (102): 1-116, 10 Tafl.

• Taylor WR (1967) Marine algae of the northeastern coasts of North America. The University of Michigan Press, viii + 509 pp.

• Taylor WR (1978) Marine algae of the eastern tropical and subtropical coasts of the Americas. The University of Michigan Press, xxi + 870 pp.

• Tittley I, Neto AI (1996) Marine algae of the Island of Flores, Azores: Floristics and ecology. II Simpósio Fauna e Flora das Ilhas Atlânticas, Abstract Book, Las Palmas, 12-16/02. Gran Canaria URL: http://hdl.handle.net/10400.3/1768

• Tittley I, Neto AI, Farnham WF (1998) Marine algae of the Island of Flores, Azores: Ecology and floristics. Boletim do Museu Municipal do Funchal, Sup 5: 463-479. URL: http://hdl.handle.net/10400.3/1688

• Tittley I, Neto AI (2000) A provisional classification of algal characterized rocky shore biotopes in the Azores. Hydrobiologia 440: 19-25. https://doi.org/10.1023/A:1004172321900

• Tittley I (2003) Seaweed diversity in the North Atlantic Ocean. Arquipelago Life and Marine Sciences 19A: 13-25.

• Tittley I, Neto AI (2005) The marine algal (Seaweed) flora of the Azores: additions and amendments. Botanica Marina 48: 248-255. https://doi.org/10.1515/BOT.2005.030

• Tittley I, Neto AI (2006) The marine algal flora of the Azores: Island isolation or Atlantic stepping stones? Occasional papers of the Irish Biogeographical Society 9: 40-55.
Supplementary material

Suppl. material 1: DP-FLOR+COR-id_15074_normalized.csv[1]

Authors: Ana I Neto
Data type: Macroalgae taxonomic mismatching
Brief description: GBIF does not have the more actualised nomenclature for some of the macroalgae species names. Therefore, the matching tools of its platform were applied to the species list, as required by Pensoft's data auditor, to identify the problematic taxonomic situations. The resulting file (DP-FLOR+COR-id_15074_normalized.csv) is included here, since the names will not be immediately updated in the GBIF Taxonomic Backbone. A request was already sent to GBIF helpdesk to solve this situation.

Download file (35.03 kb)