Reconsideration of feasibility of Hall amplifier

Abhimanyu Kumar

Electrical and Instrumentation Engineering Department, Thapar Institute of Engineering and Technology, Patiala–147004, Punjab, India. Email: akumar2307@outlook.com

Om Prakash Pandey

School of Physics and Material Sciences, Thapar Institute of Engineering and Technology, Patiala–147004, Punjab, India. Email: oppandeys@thapar.edu

December 2, 2020

Abstract

In 1955, it was first suggested that Hall effect can be employed for amplification purposes by using semiconductor material with very high mobility. While this idea was limited at that time, yet it was not entirely discarded expecting eventual progress. We revisit this idea and discuss it in the light of current literature. This manuscript kindles this 65 year old amazing idea and views it with modern understanding, which will aid in realizing Hall amplifiers.

Ross and Thompson [1], in 1955, suggested to design amplifiers employing the Hall effect principle. Their idea relied on using a material with high mobility in the Hall device which might be able to amplify input signal at the expense of applied magnetic field. While this paper appears as the top result when searched with the keyword “Hall amplifier”, interestingly, it has no more than 18 citations since its inception. In fact, there seems to be no scholarly work being done in this direction.

In the same year, Prof. Barlow [2] indicated that their idea was amazing but the literature then (and in fact even today) was (is) limited to accomplish the task. For a given input in volts, the Hall device produces output in millivolts or lower. This makes it suitable for sensor applications and measurement devices [3], but obviously not for amplification. In view of this, it is easy to understand why the idea of Hall amplifier was never valued.
Since 1950s, the industry has undergone major changes. We have witnessed the semiconductor revolution which not only caused the extinction of vacuum tubes and several other primitive devices, but has also led to the miniaturization of circuits and development of efficient control apparatus. Several advances have been made in materials employed for Hall devices. Two-dimensional (2D) materials like graphene \[4,6\] have gained popularity for sensing applications. Table 1 summarizes the Hall sensitivity \(H_c\) values for various materials.

Table 1: Hall sensitivity values for different materials

Material	\(H_c\) (\(\Omega/T\))
InAs	370
InSb	370
Graphene	800
Graphene	1200
Graphene	2093
Graphene	2745
MoS\(_2\)/h-BN	2996

Transition metal chalcogenides and dichalcogenides are also studied [14]. Materials like Al\(_{0.26}\)Ga\(_{0.80}\)N/GaN [15] and Au/MoSe\(_2\)/Au structure [16] with sensitivities 113 \(\Omega/T\) and 118.5 \(\Omega/T\) are currently emerging in this area. As reported in the table above, higher Hall sensitivity will produce high Hall voltage.

In addition to appropriate choice of material, it is also required to ensure that Hall material has small thickness. Devices based on semiconductors in their 2D forms offer nano-scale thickness and consume low power. A promising solution would be a material with thin conduction layer and high surface mobility, which are the main requirements for a high magnetic sensitivity [13]. With the advent of micro-Hall sensors, this requirement of small dimensions is conveniently satisfied.

Even with huge strides made in the field of material science, we know that the requirement of high mobility is not enough for development of Hall amplifiers. One might now think of increasing the magnetic field, but this would require tens of Tesla to even get the output voltage equal to the input. In reality, the output gets saturated at such high magnetism because the linearity range is usually in the order of tens of milli-Tesla. Therefore, in addition to high Hall sensitivity, a low series resistance is necessary. For most materials, the series resistance is of the order of kilo-Ohms which limits their usefulness to sensor applications only [16]. We have identified two approaches to this problem.

One approach is to mount several Hall sensors together such that their input ports are in parallel while output ports are in series, as depicted in Figure 1. The parallel connection on the input side reduces the series resistance, infact it becomes \(R_s/n\), where \(R_s\) is the series resistance of one Hall element and \(n\) is the number of Hall elements. The series connection at output port increases the net Hall voltage given by \(V_H = nE_H\), where \(E_H\) is the Hall voltage of one Hall element. In case micro-Hall sensors are employed then one can mount hundreds
of them on just a unit square-centimeter area. Using a NbFeB permanent magnet (which produces up to 32 mT field) or an electromagnet (for a controllable amplification) to apply magnetic field perpendicular to the sensor plane, one can achieve the desired purpose.

Figure 1: Plate composing of several Hall elements

The second, perhaps more simple, approach is to use negative resistance elements such as tunnel diode [17–19] or Gunn diode [20–22] such that the net series resistance can be decreased. From our experience, we prefer tunnel diodes, majorly due to easiness to use as well as their longevity (as reported in [23]). The amplification can probably be better controlled by changing the net series resistance. The decision to use a particular approach is left to the users and the requirement of their specific application.

For design engineers or experimental physicists, the implementation now is not a difficult task. We believe, in future, the Hall amplifiers will turn into a technology which will be able to compete with the currently available amplifiers.

References

[1] I. M. Ross, N. A. C. Thompson, An amplifier based on the hall effect, Nature 175 (4455) (1955) 518–518. doi:10.1038/175518b0

[2] H. M. Barlow, An amplifier based on the hall effect, Nature 175 (4466) (1955) 1004–1004. doi:10.1038/1751004d0

[3] E. Ramsden, Hall-effect sensors: theory and application, Elsevier, 2011.

[4] A. H. C. Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov, A. K. Geim, The electronic properties of graphene, Reviews of modern physics 81 (1) (2009) 109.

[5] F. Schwierz, Graphene transistors, Nature Nanotechnology 5 (7) (2010) 487.
[6] K. S. Novoselov, V. I. Fal’ko, L. Colombo, P. R. Gellert, M. G. Schwab, K. Kim, A roadmap for graphene, Nature 490 (7419) (2012) 192–200.

[7] M. Behet, J. D. Boeck, G. Borghs, P. Mijlemans, High-performance InAs quantum well Hall sensors on germanium substrates, Electronics Letters 34 (1998) 2273–2274. doi:10.1049/el_19981540

[8] A. Sandhu, H. Sanbonsugi, I. Shibasaki, M. Abe, H. Handa, High sensitivity InSb ultra-thin film micro-Hall sensors for bioscreening applications, Japanese Journal of Applied Physics 43. doi:10.1143/JJAP.43.L868

[9] H. Xu, L. Huang, Z. Zhang, B. Chen, H. Zhong, L.-M. Peng, Flicker noise and magnetic resolution of graphene Hall sensors at low frequency, Applied Physics Letters 103 (11) (2013) 112405. doi:10.1063/1.4821270

[10] R. Shi, H. Xu, B. Chen, Z. Zhang, L.-M. Peng, Scalable fabrication of graphene devices through photolithography, Applied Physics Letters 102 (11) (2013) 113102. doi:10.1063/1.4795332

[11] L. Huang, Z. Zhang, B. Chen, X. Ma, H. Zhong, L.-M. Peng, Ultra-sensitive graphene Hall elements, Applied Physics Letters 104 (18) (2013) 183106. doi:10.1063/1.4875597

[12] B. Chen, L. Huang, X. Ma, L. Dong, Z. Zhang, L.-M. Peng, Exploration of sensitivity limit for graphene magnetic sensors, Carbon 94 (2015) 585–589. doi:10.1016/j.carbon.2015.07.040

[13] M.-K. Joo, J. Kim, G. Lee, H. Kim, Y. H. Lee, D. Suh, Feasibility of ultra-sensitive 2D layered Hall elements, 2D Materials 4 (2) (2017) 021029. doi:10.1088/2053-1583/aa735d

[14] H.-Y. Park, S. R. Dugasani, D.-H. Kang, G. Yoo, J. Kim, B. Gnapareddy, J. Jeon, M. Kim, Y. J. Song, S. Lee, J. Heo, Y. J. Jeon, S. H. Park, J.-H. Park, M-DNA/transition metal dichalcogenide hybrid structure-based biofet sensor with ultra-high sensitivity, Scientific reports 6 (2016) 35733.

[15] T. P. White, S. Shetty, M. E. Ware, H. A. Mantooth, G. J. Salamo, AlGan/Gan micro-Hall effect devices for simultaneous current and temperature measurements from line currents, IEEE Sensors Journal 18 (7) (2018) 2944–2951. doi:10.1109/jsen.2018.2794264

[16] A. Abderrahmane, J. M. Oh, N. H. Kim, P. J. Ko, A. Sandhu, Micro-Hall sensors based on two-dimensional molybdenum diselenide, Journal of nanoscience and nanotechnology 19(7) (2019) 4330–4332. doi:10.1166/jnn.2019.16266

[17] C. T. Van Degrift, D. P. Love, Modeling of tunnel diode oscillators, Review of Scientific Instruments 52 (5) (1981) 712–723. doi:10.1063/1.1136656
[18] P. Bedrossian, D. M. Chen, K. Mortensen, J. A. Golovchenko, Demonstration of the tunnel-diode effect on an atomic scale, Nature 342 (6247) (1989) 258–260. doi:10.1038/342258a0

[19] R. N. Mantegna, B. Spagnolo, Stochastic resonance in a tunnel diode, Physical Review E 49 (3) (1994) R1792–R1795. doi:10.1103/physreve.49.R1792

[20] H.-C. Huang, L. A. MacKenzie, A gunn diode operated in the hybrid mode, Proceedings of the IEEE 56 (7) (1968) 1232–1233. doi:10.1109/PROC.1968.6537

[21] A. Förster, M. Lepsa, D. Freundt, J. Stock, S. Montanari, Hot electron injector gunn diode for advanced driver assistance systems, Appl. Phys. A 87 (2007) 545–558. doi:10.1007/s00339-007-3872-5

[22] A. Khalid, G. M. Dunn, R. F. Macpherson, S. Thoms, D. Macintyre, C. Li, M. J. Steer, V. Papageorgiou, I. G. Thayne, M. Kuball, C. H. Oxley, M. Montes Bajo, A. Stephen, J. Glover, D. R. S. Cumming, Terahertz oscillations in an $n_{0.53}p_{0.47}$ as submicron planar gunn diode, Journal of Applied Physics 115 (11) (2014) 114502. doi:10.1063/1.4868705

[23] L. Esaki, Y. Arakawa, M. Kitamura, Esaki diode is still a radio star, hals a century on, Nature 464 (31). doi:10.1038/464031b