Reduced qKZ equation and genuine qKZ equation

Alexander V Razumov

Institute for High Energy Physics, NRC ‘Kurchatov Institute’, 142281 Protvino, Moscow region, Russia

E-mail: Alexander.Razumov@ihep.ru

Received 21 April 2020, revised 9 July 2020
Accepted for publication 24 July 2020
Published 10 September 2020

Abstract

The work is devoted to the study of quantum integrable systems associated with quantum loop algebras. The recently obtained equation for the zero temperature inhomogeneous reduced density operator is analyzed. It is demonstrated that any solution of the corresponding qKZ equation generates a solution to this equation.

Keywords: density operator, quantum Knizhnik–Zamolodchikov equation, quantum loop algebras

(Some figures may appear in colour only in the online journal)

1. Introduction

In the paper [1] a difference-type functional equation for the zero temperature inhomogeneous reduced density operator of a quantum integrable spin chain, called the reduced quantum Knizhnik–Zamolodchikov (qKZ) equation, was derived. The reduced density operator is an operator that allows one to find the expectation values for the local observables that are non-trivial on a segment of finite length. The method based on the notion of a quantum group introduced by Drinfeld [2] and Jimbo [3] was used. In fact, the quantum integrable systems related to a special class of quantum groups, called the quantum loop algebras, were considered. A quantum loop algebra $U_q(L(g))$ is defined for an arbitrary finite dimensional complex simple Lie algebra g, and any representation of $U_q(L(g))$ can be used to define a quantum integrable system.

The quantum group approach to the investigation of quantum integrable systems is based on the notion of the universal R-matrix being an element of the tensor product of two copies of the quantum loop algebra. The integrability objects are constructed by choosing representations for the factors of that tensor product. The properties of the integrability objects follow from
the properties of the corresponding quantum loop algebra and its representations. A gentle introduction to integrability objects and their basic properties can be found in the papers [4, 5].

For the first time the quantum group approach was consistently used for constructing integrability objects and proving their properties by Bazhanov, Lukyanov and Zamolodchikov [6–8]. They studied the quantum version of the KdV theory. Earlier and then the method proved to be efficient for studying other quantum integrable models. The integrability objects, such as R-operators, monodromy operators and L-operators were constructed [9–17]. The respective sets of functional relations were found and proved [14, 18–21].

The name used for the equation derived in the paper [1] is explained by the fact, see the book by Jimbo and Miwa [22], that in the case of the quantum loop algebra $U_q(\hat{\mathcal{L}}(\mathfrak{sl}_2))$ the matrix elements of the inhomogeneous reduced density operator are directly related to the matrix elements of an appropriate product of vertex operators between certain representations of the quantum group $U_q(\hat{\mathcal{L}}(\mathfrak{sl}_2))$, which satisfy the qKZ equation [23]. Thus, in this case any solution of the qKZ equation gives a solution of the reduced qKZ equation. In this paper, which can be considered as a continuation of [1], we show that this is so for the case of an integrable system associated with an arbitrary quantum loop algebra.

The plan of the paper is as follows. In section 2 we define quantum loop algebras, discuss the construction of R-operators and present the graphical depiction of their properties. The notion of the inhomogeneous reduced density operator is introduced in section 3. The connection of the equations for the reduced inhomogeneous density operators with qKZ equations is derived in section 4. First, the case of the integrable systems related to the almost self-dual representations is discussed, and then the general case is considered. In the appendix A we give the necessary information on the qKZ equations.

We actively use the graphical approach developed in the paper [24]. This approach has already proved to be useful in deriving the reduced qKZ equation and has confirmed its capabilities in our consideration.

2. Preliminaries on integrability objects

2.1. Quantum loop algebras

Let \mathfrak{g} be a finite dimensional complex simple Lie algebra of rank l [25, 26], \mathfrak{h} a Cartan subalgebra of \mathfrak{g}, and Δ the root system of \mathfrak{g} relative to \mathfrak{h}. Fix a system of simple roots α_i, $i \in [1 \ldots l]$. It is known that the corresponding coroots h_i form a basis of \mathfrak{h}. Recall that the Cartan matrix $A = (a_{ij})_{i,j \in [1 \ldots l]}$ of \mathfrak{g}, where

$$a_{ij} = \langle \alpha_j, h_i \rangle,$$

is symmetrizable. It means that there exists a diagonal matrix $D = \text{diag}(d_1, \ldots, d_l)$, where d_i are positive integers, such that the matrix DA is symmetric. Such a matrix D is defined up to a nonzero scalar factor. We fix the normalization of D assuming that the integers d_i are relatively prime. Following Kac, we denote by $\mathcal{L}(\mathfrak{g})$ the loop algebra of \mathfrak{g} and by $\hat{\mathcal{L}}(\mathfrak{g})$ its standard central extension. It is natural to denote by \mathfrak{h} the arising extension of \mathfrak{h}. For details see the monograph by Kac [27] and, in the form adopted for our purposes, the paper [24].

Let \hbar be a complex number such that $q = \exp(\hbar)$ is not a root of unity. We set

$$q^\nu = \exp(\nu \hbar)$$

for any $\nu \in \mathbb{C}$. It is common to define the q-deformation of a number $\nu \in \mathbb{C}$ as

$$q^\nu \equiv \frac{q^\nu - q^{-\nu}}{q - q^{-1}}.$$
The quantum loop algebra $U_q(L(g))$ is a unital associative \mathbb{C}-algebra generated by the elements $e_i, f_i, i \in \{0, \ldots, l\}$, and $q^x, x \in \hat{h}$, subjected to the corresponding defining relations, see, for example, the paper [24]. The quantum loop algebra $U_q(L(g))$ is a Hopf algebra with the comultiplication Δ, antipode S, and counit ε. There are several conventions for introducing the Hopf structure. Here we follow the book [22].

Let $\Pi : a \otimes b \in U_q(L(g)) \otimes U_q(L(g)) \mapsto b \otimes a \in U_q(L(g)) \otimes U_q(L(g))$ be the linear operator permuting the factors of the tensor product. It can be shown that there exists a unique element $R \in U_q(L(g)) \otimes U_q(L(g))$ connecting the comultiplication Δ' with the opposite comultiplication $\Delta = \Pi \circ \Delta$ in the sense that

$$\Delta'(a) = R \Delta(a) R^{-1}$$

for any $a \in U_q(L(g))$. The element R is called the universal R-matrix1.

2.2. R-operators and unitarity relation

We introduce spectral parameters in the following way. Consider an arbitrary \mathbb{Z}-grading of the quantum loop algebra $U_q(L(g))$. We have

$$U_q(L(g)) = \bigoplus_{m \in \mathbb{Z}} U_q(L(g))_m, \quad U_q(L(g))_m U_q(L(g))_n \subset U_q(L(g))_{m+n},$$

so that any element $a \in U_q(L(g))$ can be uniquely represented as

$$a = \sum_{m \in \mathbb{Z}} a_m, \quad a_m \in U_q(L(g))_m.$$

Given $\zeta \in \mathbb{C}^\times$, we define the grading automorphism Γ_ζ by the equation

$$\Gamma_\zeta(a) = \sum_{m \in \mathbb{Z}} \zeta^m a_m.$$

Now, for any representation ϕ of $U_q(L(g))$ we define the corresponding family ϕ_ζ of representations as

$$\phi_\zeta = \phi \circ \Gamma_\zeta.$$

If V is the $U_q(L(g))$-module corresponding to the representation ϕ, we denote by V_ζ the $U_q(L(g))$-module corresponding to the representation ϕ_ζ.

In the present paper we endow $U_q(L(g))$ with a \mathbb{Z}-grading determined by

$$\varphi^s \in U_q(L(g))_s, \quad e_i \in U_q(L(g))_{s_i}, \quad f_i \in U_q(L(g))_{-s_i},$$

where s_i are arbitrary integers. We denote

$$s = \sum_{i=0}^{l} a_i s_i,$$

where a_i are the Kac labels of the Dynkin diagram associated with the extended Cartan matrix of g.

1In fact, for a quantum loop algebra defined as a complex algebra, the universal R-matrix exists only in some restricted sense, see, for example, the paper [28], and the corresponding discussion in the paper [24] for the case of $U_q(L(sl_{l+1}))$.

Let V_1, V_2 be two $U_q(L(g))$-modules, φ_1, φ_2 the corresponding representations of $U_q(L(g))$. We define the R-operator $R_{V_1|V_2}(\zeta_1|\zeta_2)$ by the equation

$$\rho_{V_1|V_2}(\zeta_1|\zeta_2) R_{V_1|V_2}(\zeta_1|\zeta_2) = (\varphi_1 \otimes \varphi_2)(R),$$

where ζ_1 and ζ_2 are two spectral parameters, and $\rho_{V_1|V_2}(\zeta_1|\zeta_2)$ is a scalar normalization factor. We choose the normalization factor so that

$$\rho_{V_1|V_2}(\zeta_1|\zeta_2) = \rho_{V_1|V_2}(\zeta_1|\zeta_2)$$

for any $\nu \in \mathbb{C}^\times$. In this case

$$R_{V_1|V_2}(\zeta_1|\zeta_2) = R_{V_1|V_2}(\zeta_1|\zeta_2),$$

see the paper [5]. This means that $R_{V_1|V_2}(\zeta_1|\zeta_2)$ depends only on the combination

$$\zeta_{12} = \zeta_1 \zeta_2^{-1},$$

and one can use R-operators depending on only one spectral parameter. Below we always use the above choice of the normalization, however, for our purposes it is more convenient to consider R-operators as depending on two spectral parameters.

For the matrix entries of the operators $R_{V_1|V_2}(\zeta_1|\zeta_2)$ and $R_{V_1|V_2}(\zeta_1|\zeta_2)^{-1}$ with respect to some bases of V_1 and V_2 we use the depiction given in figures 1 and 2.

Let $U_q(L(g))$-modules V_1 and V_2 be such that the $U_q(L(g)) \otimes U_q(L(g))$-module $V_{1\otimes 2}$ is simple for general values of the spectral parameters ζ_1 and ζ_2. In this case the following unitarity relation

$$\tilde{R}_{V_1|V_2}(\zeta_1|\zeta_2) \tilde{R}_{V_2|V_1}(\zeta_2|\zeta_1) = C_{V_1|V_2} \zeta_1 \zeta_2^{-1} \text{id}_{V_2 \otimes V_1},$$

where $C_{V_1|V_2}$ is some scalar function, is valid. Here and below we use the notation

$$\tilde{R}_{V_1|V_2}(\zeta_1|\zeta_2) = P_{V_1|V_2} R_{V_1|V_2}(\zeta_1|\zeta_2)$$

with $P_{V_1|V_2}$ being the permutation operator on the corresponding tensor product.

It is convenient to use two different graphical forms of the unitarity relation given in figures 3 and 4.

2 In the present paper we consider only finite dimensional highest weight $U_q(L(g))$-modules, see for definition the papers [29, 30].
2.3. Crossing relations

For any $U_q(L(g))$-module V there are two dual modules usually denoted by V^* and *V. As vector spaces both modules coincide with the dual space V^*. The representation corresponding to the module V^* is defined by the equation

$$\varphi^*(a) = \varphi(S(a))^t,$$ \hspace{1cm} (2.1)

and corresponding to the module *V by the equation

$$^{*}\varphi = \varphi(S^{-1}(a))^t.$$

The modules V^* and *V are isomorphic and we use only the first one. For this module we use the dotted variant of the line used for the module V.

By a crossing relation we mean any relation connecting an R-operator $R_{V_1|V_2}(\xi_1|\xi_2)$ with an R-operator for which one of the modules V_1 and V_2, or both of them, is replaced by a dual module, or consequences of such relations. The simplest crossing relations are depicted in figures 5–7. Here and below fat dots mean the following change of the line type. The line corresponding to a module becomes the line corresponding to the dual module and vice versa, with the appropriate change of the direction.

\[\text{Figure 2. The matrix entries of the inverse R-operator.}\]

\[\text{Figure 3. The first form of the unitarity relation.}\]

\[\text{Figure 4. The second form of the unitarity relation.}\]

\[\text{3In the case of an infinite dimensional module V one uses the restricted dual space, see, for example, the paper [24].}\]
The double dual representation $V^*\pi$ is isomorphic to V_π up to a redefinition of the spectral parameter. To be more concrete, we introduce the following element

$$x = -\sum_{i,j=1}^l (2d_i - (\theta|\theta)h\cdot s_i/s) b_{ij} h_j$$

of \hbar, see the paper [24]. Here $b_{ij}, i, j \in [1 \ldots l]$, are the matrix elements of the matrix B inverse to the Cartan matrix A of g, θ the highest root of g, h^\cdot the dual Coxeter number of g, and $(\cdot|\cdot)$ denotes the invariant nondegenerate symmetric bilinear form on \hbar normalized by the equation

$$(\alpha_i|\alpha_i) = 2d_i.$$

Now one can demonstrate that

$$\varphi^*_{\pi}(a) = \varphi(q^a) \varphi_{q^{-\pi}}(a) \varphi(q^{-a}).$$
for any $a \in U_q(L(g))$. Here and afterwards we use the notation

$$\varepsilon = (\theta | \theta) h^* / s. \quad (2.2)$$

We denote

$$X_V = \varphi(q^*)$$

and introduce for the matrix entries of X_V and its inverse the graphical depiction given in figures 8 and 9. The relation of the operators X_V and $(X_V)^{-1}$ with the operators X_V and $(X_V)^{-1}$ is described by figures 10 and 11.

The above described isomorphism leads to the crossing relations given in figures 12 and 13. Combining these relations we come to the crossing relation depicted in figure 14. Now, using the crossing relation given in figure 7, we obtain the invariance relation represented by figure 15. In fact, this relation follows from the fact that q^* is a group-like element of $U_q(L(g))$, see, for example, the paper [24].

More crossing relations and the corresponding proofs can be found in the review paper [24].

2.4. Normalization

Let V_1 and V_2 be $U_q(L(g))$-modules, such that the module $V_{1|z_1} \otimes V_{2|z_2}$ is simple for general values of the spectral parameters z_1 and z_2. One can choose the normalization factor $\rho_{V_{1|z_1}}(z_1|z_2)$ so that the matrix elements of $R_{V_1|V_2}(z_1|z_2)$ are rational functions of the spectral parameters, and $R_{V_1|V_2}(z_1|z_2)$ satisfies the unitarity relation

$$\tilde{R}_{V_1|V_2}(z_1|z_2) R_{V_2|V_1}(z_2|z_1) = \text{id}_{V_2 \otimes V_1}, \quad (2.3)$$

see [31, propositions 9.5.3 and 9.5.5]. Denote this normalization factor as $\rho_{V_1|V_2}^0(z_1|z_2)$ and the corresponding R-operator as $R_{V_1|V_2}^0(z_1|z_2)$. The normalization in question is defined by the relation

$$R_{V_1|V_2}^0(z_1|z_2) (v_1^{(1)} \otimes v_2^{(2)}) = v_1^{(1)} \otimes v_2^{(2)}, \quad (2.4)$$

\[\]
\[\begin{array}{c}
\langle \cdot \cdot \cdot \cdot \cdot \cdot \rangle = \langle \cdot \cdot \cdot \cdot \cdot \rangle \\
(X_{\nu^*})^{-1} = (X_{\nu})^f
\end{array} \]

Figure 11. The crossing relation for the inverse operator \(X_{\nu^*} \).

\[
D_{V_1|V_2}(\xi_1|\xi_2) = \rho_{V_1|V_2}(q^{-\xi_1}|\xi_2) \rho_{V_1|V_2}^*(\xi_1|\xi_2)
\]

Figure 12. The first modified crossing relation.

\[
D_{V_1|V_2}(\xi_1|\xi_2) = \rho_{V_1|V_2}(q^{-\xi_1}|\xi_2) \rho_{V_1|V_2}^*(\xi_1|\xi_2)
\]

Figure 13. The second modified crossing relation.

\[
D_{V_1|V_2}(\xi_1|\xi_2) = \rho_{V_1|V_2}(q^{-\xi_1}|\xi_2) \rho_{V_1|V_2}^*(\xi_1|\xi_2)
\]

Figure 14. A combination of two modified crossing relations.

where \(v_0^{(1)} \) and \(v_0^{(2)} \) are the highest weight vectors of the modules \(V_1 \) and \(V_2 \).

In this paper we consider the case when each of the modules \(V_1 \) and \(V_2 \) coincides either with a fixed module \(V \) or with the dual module \(V^* \). Hence, we have four \(R \)-operators, and relate all normalization factors to \(\rho_{V_1|V}(\xi_1|\xi_2) \) in the following way

\[
\rho_{V_1|V}(\xi_1|\xi_2) = \rho_{V_1|V}(\xi_1|\xi_2)^{-1}, \quad \rho_{V^*|V}(\xi_1|\xi_2) = \rho_{V|V^*}(\xi_1|\xi_2)^{-1},
\]

\[
\rho_{V^*|V}(\xi_1|\xi_2) = \rho_{V|V^*}(\xi_1|\xi_2).
\]

We denote the corresponding \(R \)-operators as \(R_{V_1|V}(\xi_1|\xi_2) \), \(R_{V^*|V}(\xi_1|\xi_2) \) and \(R_{V|V^*}(\xi_1|\xi_2) \). These \(R \)-operators satisfy the unitarity relations of the form (2.3), see the paper [1]. Moreover, the factors \(D_{V_1|V_2}(\xi_1|\xi_2) \) entering the crossing relations represented by figures 5–7 and 14 with \(V_1 = V_2 = V \) become equal to 1.
The general normalization factor of $R_{V|V}(\zeta_1|\zeta_2)$ leading to the unitarity relation (2.3) for $V_1 = V_2 = V$ is
\begin{equation}
\rho_{V|V}(\zeta_1|\zeta_2) = \kappa_{V|V}(\zeta_1|\zeta_2) \rho_{0|V}(\zeta_1|\zeta_2),
\end{equation}
where the function $\kappa_{V|V}(\zeta_1|\zeta_2)$ satisfies the equation
\begin{equation}
\kappa_{V|V}(\zeta_1|\zeta_2) \kappa_{V|V}(\zeta_2|\zeta_1) = 1.
\end{equation}
This function is fixed below. Using this general normalization factor, we adjust the normalizations factors of the R-operators under consideration to have
\begin{align*}
\rho_{V^*|V}(\zeta_1|\zeta_2) &= \rho_{V|V}(\zeta_1|\zeta_2)^{-1}, \\
\rho_{V|V^*}(\zeta_1|\zeta_2) &= \rho_{V|V}(\zeta_1|\zeta_2)^{-1}, \\
\rho_{V^*|V^*}(\zeta_1|\zeta_2) &= \rho_{V|V}(\zeta_1|\zeta_2).
\end{align*}
Here the factors $D_{V|V}(\zeta_1|\zeta_2)$ entering the crossing relations represented by figures 5–7 and 14 with $V_1 = V_2 = V$, remain equal to 1.

The described above normalization was used in the derivation of the reduced qKZ equation [1]. In addition, it was assumed there that the module V is such that the initial condition $R_{0|V}(1|1) = c_V P_{V|V}$ is valid for some nonzero scalar c_V. In this paper, we also use this assumption. In fact, as a consequence of the relation (2.3), c_V must be equal to 1 or -1. Possibly changing the sign of $R_{0|V}(\zeta_1|\zeta_2)$, we make c_V equal to 1 without destroying the form of the unitarity and crossing relations. In order to preserve the initial condition in the general case, we assume that the function $\kappa_{V|V}(\zeta_1|\zeta_2)$ satisfies the additional requirement
\begin{equation}
\kappa_{V|V}(1|1) = 1.
\end{equation}

3. Density operator

3.1. Inhomogeneous density operator

The density operator Ψ of a quantum statistical system in equilibrium with a reservoir at the absolute temperature T is given by the equation
\begin{equation}
\Psi = \frac{1}{Z} e^{-\beta H}, \quad \beta = \frac{1}{k_B T},
\end{equation}
where k_B is the Boltzmann constant, H the Hamiltonian, and Z the partition function of the system defined as
\begin{equation}
Z = \text{tr } e^{-\beta H}.
\end{equation}
The expectation value of an arbitrary observable F is

$$\langle F \rangle = \frac{1}{Z} \text{tr}(F e^{-\beta H}).$$

In particular, in this way one obtains correlators and correlation functions of the system.

In the present paper we consider the integrable spin chains associated with quantum loop groups $U_q(L(g))$. As usual, the investigation of the problem starts with a spin chain of finite length L. The thermodynamic limit would be obtained when $L \to \infty$. However, the existence of a sensible limit over L is doubtful. Therefore, we proceed to the density operator which allows to find expectation values only for local observables which are nontrivial only on a segment of a finite length n. We call this density operator the reduced density operator and denote it by Ψ_n.

The reduced density operator acts on the state space $V^\otimes n$, where V is some $U_q(L(g))$-module. To find equations satisfied by Ψ_n one considers the inhomogeneous reduced density operator. To this end one introduces spectral parameters ζ_1, \ldots, ζ_n and treat the ith factor of $V^\otimes n$ as the module V_{ζ_i}. Now the reduced density operator depends on the spectral parameters and we denote it as $\Psi_n(\zeta_1, \ldots, \zeta_n)$ and use the graphical image given in figure 16. For details we refer to the paper [1]. It is convenient to define an auxiliary reduced density operators acting on the space $V^\otimes n$ where one of the factors is replaced by the dual module V^*. We denote such reduced density operator as $\Psi_n(\zeta_1, \ldots, \zeta_i^*, \ldots, \zeta_n)$, having in mind that ζ_i^* is actually ζ_i but associated with the dual module. The graphical image of $\Psi_n(\zeta_1, \ldots, \zeta_i^*, \ldots, \zeta_n)$ can be seen in figure 17.
Figure 18. The matrix entries of the twisting operator A^τ_V.

Figure 19. The matrix entries of the twisting operator $A^\tau_{V^*}$.

We introduce also some twisting. In the case of $U_q(L(sl_2))$, twisting is introduced to construct the fermionic operators [32, 33]. In general case a construction of the fermionic operators is not known yet. However, we introduce twisting for possible future needs. In the framework of the quantum group approach twisting is defined by a choice of a group-like element of the quantum loop algebra. We choose for this goal the following element

$$a = q^{\sum_{i=1}^l \gamma_i h_i}$$

where γ_i are arbitrary complex numbers. We denote

$$A^\tau_V = \phi(a), \quad A^\tau_{V^*} = \phi^*(a)$$

and use for the matrix elements of the operators A^τ_V and $A^\tau_{V^*}$ the depiction given in figures 18 and 19. By construction, we have

$$\left(A^\tau_V \otimes A^\tau_{V^*} \right) R_{V_1|V_2}(\zeta_1|\zeta_2) = R_{V_1|V_2}(\zeta_1|\zeta_2) (A^\tau_{V_1} \otimes A^\tau_{V_2}), \quad (3.1)$$

where each of V_1 and V_2 is either V or V^* [24].

3.2. Reduced qKZ equation

It is shown in the paper [1] that the zero-temperature limit of the operator $\Psi_n(\zeta_1, \ldots, \zeta_n)$ satisfies some difference equation. In fact, it is convenient to represent it as a system of two equations. The graphical image of the first equation is given in figure 20. Here and below we give graphical images for the case $n = 3$, which is enough to understand the case of arbitrary n. For the definition of the function $\phi(\zeta)$ we refer to the paper [1]. It is worth to note that in the case where $\tau_i = 0$ for any $i \in [1 \ldots l]$ we have $\phi(\zeta) = 1$. The graphical image of the second equation is given in figure 21. For the definition of the function $\phi^*(\zeta)$ we again refer to the paper [1]. Here as before in the case where $\tau_i = 0$ for any $i \in [1 \ldots l]$ we have $\phi^*(\zeta) = 1$. The graphical image of the final equation can be obtained by combining the graphical equations given in figures 20 and 21, see figure 22. We call this equation the reduced qKZ equation. This is due to the fact, see the book by Jimbo and Miwa [22], that in the case of $U_q(L(sl_2))$ the matrix elements of the inhomogeneous reduced density operator are directly related to the matrix elements of an appropriate product of vertex operators between certain representations.
of the quantum group $U_q(\hat{\mathfrak{sl}}_2)$, which satisfy qKZ equation [23]. Thus, in this case any solution of the qKZ equation gives a solution of the reduced qKZ equation. Below we show that this is so in the general case as well.

To conclude this section, we note that the density operator by construction satisfies the relations

$$\hat{R}(\xi, \eta) \Psi_n(\zeta_1, \ldots, \zeta_i, \zeta_{i+1}, \ldots, \zeta_n) = \Psi_n(\zeta_1, \ldots, \zeta_i+1, \ldots, \zeta_n) \hat{R}(\xi, \eta)$$

for each $i \in [1 \ldots n-1]$. We consider these relations as a part of the reduced qKZ equation.
4. Reduced qKZ equation as reduction of qKZ equation

4.1. Almost self-dual representations

Let ϕ be a representation of $U_q(\mathcal{L}(g))$ and V the corresponding $U_q(\mathcal{L}(g))$-module. Assume that

$$\phi^*_v(a) = O_v \phi^{\phi_v(a)} O_v^{-1},$$

for some $O_v \in \text{Aut}(V)$ and $\delta \in \mathbb{C}$. It means that the dual representation ϕ^*_v is isomorphic to the representation ϕ_v up to a redefinition of the spectral parameter. In this case we say that we deal with an almost self-dual representation. Here the graphical equation given in figure 20 can be made a closed equation.

The graphical depiction of the matrix entries of the operators O_v and O_v^{-1} is given in figures 23 and 24. Using these operators, we can find some relations between R-operators. Below we need two such relations depicted in figures 25 and 26. Starting from the equation presented in figure 12 and using the equation given by figure 25, we come to the equation depicted in figure 27, where $\omega = \varepsilon + \delta$. Here we introduce the operator

$$\tilde{X}_v = O_v X_v$$

and use for it and its inverse the graphical representation given in figures 28 and 29. In the same way, using figures 26 and 13, we come to the equation in figure 30. The combination of the equations represented by figures 27 and 30 leads to the invariance relation which can be seen in figure 31.

We use the normalization (2.5), where $\rho_{V,W}^0(\zeta_1|\zeta_2)$ is determined by the condition (2.4). As the function $\kappa_{V,V}(\zeta_1|\zeta_2)$ we take a solution of the difference equation

$$\rho_{V,V}^0(q^{-\omega} \zeta_1|\zeta_2)^{-1} \rho_{V,V}^0(\zeta_1|\zeta_2)^{-1} \kappa_{V,V}^0(q^{-\omega} \zeta_1|\zeta_2)^{-1} \kappa_{V,V}^0(\zeta_1|\zeta_2)^{-1} = d_{V,V}. \quad (4.1)$$
Figure 23. The matrix entries of the operator O_V.

\[
 \begin{array}{c}
 i \\
 \langle O_V \rangle_{ij} \\
 j \\
 q^d \zeta
\end{array}
\]

Figure 24. The matrix entries of the inverse operator O_V^{-1}.

\[
 \begin{array}{c}
 i \\
 \langle O_V^{-1} \rangle_{ij} \\
 j \\
 q^d \zeta
\end{array}
\]

Figure 25. The relation between the operators $R_{V|V}^{-1}$ and $R_{V|V}$.

\[
\begin{array}{c}
 \zeta_1 \\
 \zeta_2
\end{array}
\]

\[
\begin{array}{c}
 \zeta_2 \quad \zeta_1
\end{array}
\]

\[
D_{V|V}(\zeta_1|\zeta_2) = \rho_{V|V}(\zeta_1|\zeta_2)\rho_{V|V}(q^d \zeta_1|\zeta_2)^{-1}
\]

Figure 26. The relation between the operators $R_{V|V}$ and $R_{V|V}$.

\[
\begin{array}{c}
 \zeta_1 \\
 \zeta_2
\end{array}
\]

\[
\begin{array}{c}
 \zeta_2 \quad \zeta_1
\end{array}
\]

\[
D_{V|V*}(\zeta_1|\zeta_2) = \rho_{V|V*}(\zeta_1|\zeta_2)^{-1}\rho_{V|V}(\zeta_1|q^d \zeta_2)
\]

for some complex constant $d_{V|V}$. In this case the coefficients $D_{V|V}(\zeta_1|\zeta_2)$ entering the crossing relations given in figures 27 and 30 turn into $d_{V|V}$ and $d_{V|V}^{-1}$ respectively. We also assume that the conditions (2.6) and (2.7) are satisfied.

As an example we consider the quantum loop algebra $U_q(\mathcal{L}(\mathfrak{sl}_2))$ and its m-dimensional irreducible representation $\varphi^m = \varphi^{(m/2,-m/2)}$ generated by the Jimbo’s homomorphism from the
Figure 27. The current form of the first modified crossing relation.

\[
\zeta_1 \xleftarrow{\omega_i^1} \theta_{ij} \xrightarrow{\omega_i^2} \zeta_2 = D_{\nu \nu} (\zeta_1 | \zeta_2) \zeta_1
\]

\[
D_{\nu \nu} (\zeta_1 | \zeta_2) = \rho_{\nu \nu} (q^{-\omega_i^1} \zeta_2) \rho_{\nu \nu} (\zeta_1 | \zeta_2)^{-1}
\]

Figure 28. The definition of the operator \(\tilde{X}_\nu \).

\[
\zeta \xleftarrow{i} j \xrightarrow{q^\omega \zeta} = q^\omega \zeta \xleftarrow{i} \theta_{ij} \xrightarrow{\omega_i^2} q^\omega \zeta
\]

\[
(\tilde{X}_\nu)_{ij} = (O^\nu X_{\nu})_{ij}
\]

Figure 29. The definition of the inverse operator \(\tilde{X}_\nu^{-1} \).

\[
\zeta \xleftarrow{i} j \xrightarrow{q^\omega \zeta} = \zeta \xleftarrow{i} \theta_{ij} \xrightarrow{\omega_i^2} q^\omega \zeta
\]

\[
(\tilde{X}_\nu^{-1})_{ij} = (X_{\nu}^{-1} (O^\nu)^{-1})_{ij}
\]

Figure 30. The current form of the second modified crossing relation.

\[
\zeta_1 \xleftarrow{\omega_i^1} \theta_{ij} \xrightarrow{\omega_i^2} \zeta_2 = D_{\nu \nu} (\zeta_1 | \zeta_2) \zeta_1
\]

\[
D_{\nu \nu} (\zeta_1 | \zeta_2) = \rho_{\nu \nu} (q^{-\omega_i^1} \zeta_2) \rho_{\nu \nu} (\zeta_1 | \zeta_2)^{-1}
\]

representation \(\pi^{(m/2,-m/2)} \) of \(U_q(\mathfrak{gl}_2) \), see the paper [24]. For this representation we have

\[
\varphi^{(n)}_{\zeta} (q^{\nu h_j}) = \sum_{i=1}^{m+1} q^{-\nu (m-2i+2)} E_{ij}, \quad \varphi^{(n)}_{\zeta} (q^{\nu h_i}) = \sum_{i=1}^{m+1} q^{\nu (m-2i+2)} E_{ji},
\]

\[
\varphi^{(n)}_{\zeta} (e_0) = \zeta^0 \sum_{i=1}^{m} E_{i+1,i}, \quad \varphi^{(n)}_{\zeta} (e_1) = \zeta^1 \sum_{i=1}^{m} \{ i \} [m - i + 1] E_{i+1,i},
\]

\[
\varphi^{(n)}_{\zeta} (f_0) = \zeta^{-m} \sum_{i=1}^{m} \{ i \} [m - i + 1] E_{i,i+1}, \quad \varphi^{(n)}_{\zeta} (f_1) = \zeta^{-1} \sum_{i=1}^{m} E_{i+1,i}.
\]
into equation (4.1), we see that this equation is satisfied if

Here and below we denote by E_{ij}, $i, j = 1, \ldots, m + 1$, the usual unit matrices. Using the definition of the dual representation (2.1) and the equations (2.2), we have

we obtain

One can demonstrate that

where

Thus, in the case of the representation ϕ_{ζ}^{m} we have $\delta = -2/s$. Since in this case $\varepsilon = 4/s$, see (2.2), we have $\omega = 2/s$.

One can demonstrate that

see the paper [36]. It follows that

Inserting

into equation (4.1), we see that this equation is satisfied if

$\rho_{\gamma|\mu}\nu = (1)^{\lambda}$.
Notice that in the case of an even \(m = 2k \) we have a rational expression

\[
\kappa_{V,2^{m-2}2}(|\zeta_1,|\zeta_2) = (|\zeta_1|^{2k}) \prod_{i=1}^{k} \frac{1 - q^{4i-2}\zeta_{12}^i}{1 - q^{4i-2}\zeta_{12}^i}.
\]

The \(R \)-operators with the obtained normalization appear in commutation relations of vertex operators [36].

By studying the paper [1], we conclude that the appearance of the operators \(X_V \) and \(X_V^{-1} \) in the equation given by figure 20 is due to the fact that on the last step of its derivation one of the lines becomes going in the wrong direction. To reverse this line, one uses the crossing relations presented in figures 5 and 6. This leads to appearance of the dual module and an auxiliary reduced density operator. In the case under consideration we can use for this goal the crossing relations given in figures 27 and 30 and come to a closed equation which is given in figure 32.

Redraw the obtained equation as is given in figure 33. Now it is natural to introduce the object \(\bar{\Psi}_n(\zeta_1, \ldots, \zeta_n) \) defined by figure 34. Then the equation in figure 33 takes the form of the equation in figure 35. Using the invariance relation represented by figure 31, we move the leftmost white triangle to the right and come to the equation depicted by figure 36. Finally, with the help of the crossing relation given in figure 27 we move the leftmost grayed triangle to the right and obtain the graphical equation presented in figure 37, where the modified twisting operator \(A_V^\tau \) is described by figure 38.

One can try to construct a solution to this equation directly as it was done in the paper [34] for the case of the representation of \(U_q(\mathfrak{sl}_2) \) generated from the representation \(\pi^{(1/2, -1/2)} \) of \(U_q(\mathfrak{gl}_2) \) by the Jimbo’s homomorphism [35], see also the paper [24] for the relevant definitions. Another way is as follows. Let \(N = 2n \), and \(\Phi_W \) be the mapping described in the appendix A, for the case where \(W_i = V \) for all \(i \in [1 \ldots N] \). Consider the ansatz

\[
\bar{\Psi}_n(\zeta_1, \ldots, \zeta_n) = \Phi_W(\zeta_1, \ldots, \zeta_n, q^\alpha \zeta_\alpha, \ldots, q^\alpha \zeta_1).
\]
where we treat Ψ_n as a mapping from \mathbb{C}^n to $\mathcal{W} = V^\otimes n \otimes V^\otimes n$, see figure 39. Now the graphical equation in figure 37 can be represented as the equation given in figure 40. We come to the following analytical equation
\[
\Phi_W(\zeta_1, \ldots, q^\omega \zeta_n, q^{2\omega} \zeta_n, \ldots, q^{\omega} \zeta_1) = R_{V|V}^{(n+1, n+2)}(q^{n+1} \zeta_{n-1} | q^{2n} \zeta_n) \ldots R_{V|V}^{(2n, 2n)}(q^{2n} \zeta_1 | q^{2n} \zeta_n) P_\lambda \Delta(1)(\zeta_n),
\]
\[
\times R_{V|V}^{(1, 2)}(\zeta_1 | \zeta_n) \ldots R_{V|V}^{(n+1, n)}(\zeta_{n-1} | \zeta_n) \Phi_V(\zeta_1, \ldots, \zeta_n, q^\omega \zeta_n, \ldots, q^{n-\omega} \zeta_1),
\]
where
\[
\Delta(\zeta) = d_{V|V}^{n-1} \phi^{\zeta}(\zeta) (\tilde{X}^{-1} \tilde{X}A_V^\zeta), \quad (4.2)
\]
and P_λ is the left shift of the tensor product, see the appendix A. Using the representation
Figure 35. The reduced qKZ equation for $\tilde{\Psi}_n$.

Figure 36. A transformation of the reduced qKZ equation for $\tilde{\Psi}_n$.

(A.15) and equations (A.16), one can transform this equation to the form

$$
\Phi_{\lambda W}(\zeta_1, \ldots, q^\omega \zeta_n, q^{2\omega} \zeta_n, \ldots, q^{\rho} \zeta_1) = R_{W/V}^{(\alpha+2, \alpha+1)}(q^\omega \zeta_{n-1}|q^{2\omega} \zeta_n) \cdots R_{W/V}^{(2\alpha+1, \alpha+1)}(q^\omega \zeta_1|q^{2\omega} \zeta_n) P^{(\alpha+2, \alpha+1)}
$$

$$
\times \Delta^{(\alpha)}(\zeta_0) R_{W/V}^{(1, \alpha)}(\zeta_1|\zeta_n) \cdots R_{W/V}^{(\alpha+2, \alpha)}(\zeta_{n-1}|\zeta_n)
$$

$$
\times \Phi_{\lambda W}(\zeta_1, \ldots, \zeta_n, q^\omega \zeta_n, \ldots, q^{\rho} \zeta_1).
$$

Note that in the case under consideration $sW = W$ for any $s \in S_N$ and the mappings Φ_{sW} differ only by a permutation of arguments. There is only one independent mapping $\Delta_\alpha(\zeta)$ and only one independent equation (A.13). It is evident that equation (4.3) is equivalent to the
Figure 37. The final form of the reduced qKZ equation for $\tilde{\Psi}_n$.

\[q^{2\omega} \zeta \xleftarrow{\Delta_n} q^{2\omega} \zeta \xleftarrow{\Lambda_W} q^{2\omega} \zeta \]

\[\tilde{A}_V = (\tilde{X}_V^{-1})^* \tilde{X}_V \tilde{A}_V \]

Figure 38. The definition of the modified twisting operator \tilde{A}_V.

Figure 39. Interpretation of the object $\tilde{\Psi}_n$ in terms of the vector Φ_W.

Equation
\[\tilde{R}_{V|V}^{(n,n+1)}(q^{i_1} \zeta_1, q^{i_2} \zeta_2, q^{i_3} \zeta_3) \Phi_W(\zeta_1, \ldots, q^{2\omega} \zeta_n, \ldots, q^{2\omega} \zeta_1) = \Lambda_W(\zeta_1, \ldots, q^{\omega} \zeta_n, \ldots, q^{\omega} \zeta_1) \Phi_W(\zeta_1, \ldots, q^{\omega} \zeta_n, \ldots, q^{\omega} \zeta_1), \tag{4.4} \]

where the mapping Λ_W is defined by equation (A.14) with $p = q^{2\omega}$ and the mapping Δ_n coinciding with the mapping Δ given by equation (4.2). Assume that Φ_W satisfies the qKZ equation (A.13) for $i = n$ and with the same p and Δ_n. In this case (4.4) turns exactly into this qKZ equation. Note that we include equalities (A.9) into the definition of the qKZ equation. It worth to remark that we have only one relation of type (A.10). Equation (3.1) and the invariance relation given in figure 31 guaranty its validity.
Figure 40. The reduced qKZ equation for the vector Φ_W.

Summing up, we conclude that if the mapping Φ_W satisfies the qKZ equation

$$\Phi_W(\eta_1, \ldots, q^{2a} \eta_h, \ldots, \eta_{2n}) = R^{(n, n+1)}(\eta_{h+1} | q^{2a} \eta_h) \cdots R^{(2n-1, 2n)}(\eta_{2n} | q^{2a} \eta_h) P_{\lambda} \Delta^{(1)}(\eta_h) \times R^{(1, 2)}(\eta_1 | \eta_h) \cdots R^{(n-1, n)}(\eta_{n-1} | \eta_h) \Phi_W(\eta_1, \ldots, \eta_n, \ldots, \eta_{2n})$$

with Δ defined by equation (4.2), then the mapping $\Psi_n(\zeta_1, \ldots, \zeta_n)$ determined by the equation

$$\Psi_n(\zeta_1, \ldots, \zeta_n) = \sum_{k_1, \ldots, k_n} \Phi_W(\zeta_1, \ldots, \zeta_n, q^{\alpha} \zeta_{a}, \ldots, q^{-\alpha} \zeta_1)^{1 \cdots k_n} \tilde{X}_{k_1, k_2} \cdots \tilde{X}_{k_n, k_1}$$

satisfies the reduced qKZ equation depicted in figure 32. Using the invariance relation given in figure 31, one can easily demonstrate that equations (3.2) are also satisfied.

4.2. General case

In the general case we again use the normalization (2.5), where $V_1 = V_2 = V$ and the normalization factor $\rho^0_{V | V}(\zeta_1 | \zeta_2)$ is determined by the condition (2.4). As the function $\kappa_{V | V}(\zeta_1 | \zeta_2)$ we take a solution to the difference equation

$$\rho^0_{V | V}(q^{\alpha} \zeta_1 | \zeta_2)^{-1} \rho^0_{V | V}(\zeta_1 | \zeta_2) \kappa_{V | V}(q^{-\alpha} \zeta_1 | \zeta_2)^{-1} \kappa_{V | V}(\zeta_1 | \zeta_2) = d_{V | V}$$

for some complex constant $d_{V | V}$. In this case the coefficients $D_{V | V}(\zeta_1 | \zeta_2)$ entering the crossing relations represented by figures 12 and 13 becomes equal to $d_{V | V}$ and $d^*_{V | V}$ respectively. Certainly, we again assume that the conditions (2.6) and (2.7) are satisfied.

As an example consider the case of $U_q(\mathcal{L}(sl_l+1))$. In this case $\epsilon = 2(l + 1)/s$. Assume that $V = C^{l+1}$ and φ is the representation of $U_q(\mathcal{L}(sl_l+1))$ generated from the first fundamental
representation of $U_q(g_{l+1})$ by the Jimbo’s homomorphism \cite{35}. The normalization factor $\rho_0^{0}(\zeta_1|\zeta_2)$ defined by condition \eqref{2.4} has the form

$$
\rho_0^{0}(\zeta_1|\zeta_2) = q^{-l(l+1)} \exp(F_{l+1}(q^{-l}\zeta_{12}) - F_{l+1}(q\zeta_{12})),$$

where the function $F_m(\zeta)$ is given by the equation

$$
F_m(\zeta) = \sum_{n=1}^{\infty} \frac{1}{[m]_{q^n}} \zeta^n_n,
$$

see the paper \cite{24}. One can demonstrate that

$$
\rho_0^{0}(\zeta_1|\zeta_2) = q^{-l(l+1)}(q^{2\zeta_{12}}; q^{2l+1})\infty (q^{2l+1}; q^{2l+1})\infty,
$$

and obtain

$$
\rho_0^{0}(q^{-2l+1}/\zeta_1|\zeta_2) \rho_0^{0}(\zeta_1|\zeta_2) = \frac{1 - q^{-2} \zeta_{12}^2}{1 - \zeta_{12}^2} \frac{1 - q^{-2l+1} \zeta_{12}^2}{1 - \zeta_{12}^2}.
$$

Inserting

$$
\kappa_{V|V}(\zeta_1|\zeta_2) = (q^{2\zeta_{12}}; q^{2l+1})\infty (q^{2l+1}; q^{2l+1})\infty
$$

into equation \eqref{4.5}, we see that this equation is satisfied if $d_{V|V} = 1$. It is worth to note that the R-operators defined with such a choice of $\kappa_{V|V}(\zeta_1|\zeta_2)$ enter commutation relations for quantum vertex operators, see, for example, the paper \cite{37}, where the most general supersymmetric case is considered.

Now, we transform the graphical equation in figure \ref{22} to the form which can be seen in figure \ref{41}. It is worth noting that here we use the relation described by figure \ref{10}. It is natural to introduce the object $Ψ_n(\zeta_1, \ldots, \zeta_n)$ now defined by figure \ref{42}. The equation in figure \ref{41} takes the form presented by figure \ref{43}. Using the invariance relation given in figure \ref{15}, we move the leftmost upper white triangle to the right and then the leftmost lower white triangle also to the right. The resulting equation is represented by figure \ref{44}, where the modified twisting operators are considered by figures \ref{45} and \ref{46}.

As in the case of an almost self-dual representation considered in the previous section, one can generate solutions of the reduced qKZ equation from the solutions of the corresponding usual qKZ equation. Let $N = 2n$ and W be the tensor product (A.4), where $W_i = V$ for $i \in \{1 \ldots n\}$, $W_i = V^*$ for $i \in \{n + 1 \ldots 2n\}$, and $Ψ_W$ a mapping from C^{2n} to W. Consider the ansatz

$$
Ψ_n(\zeta_1, \ldots, \zeta_n) = Ψ_W(\zeta_1, \ldots, \zeta_n, q\zeta_1, \ldots, q^l \zeta_1)
$$

where $Ψ_n$ is considered as a mapping from C^n to $W = V^{\otimes n} \otimes V^{*\otimes n}$, see figure \ref{47}. Now the graphical equation given in figure \ref{44} can be represented as the graphical equation depicted in figure \ref{48}. The analytical form of this equation is

$$
Φ_W(\zeta_1, \ldots, \zeta_n, q\zeta_1, \ldots, q^l \zeta_1)$$

$$\quad = \bar{R}^{(n+1, n+2)}(q\zeta_{n+1}, q^2 \zeta_{n+1}, \ldots, q^l \zeta_{n+1}) \bar{R}^{(l+1, l)}(q \zeta_1, q^2 \zeta_1) \bar{R}^{(n+1, n+2)}(q \zeta_{n+1}, q^2 \zeta_{n+1}, \ldots, q^l \zeta_{n+1})
$$

$$\quad \times \bar{R}^{(n+1, n+2)}(\zeta_{n+1}, \zeta_{n+1}, \ldots, \zeta_{n+1}) \bar{R}^{(l+1, l)}(q \zeta_1, q^2 \zeta_1) \bar{R}^{(n+1, n+2)}(q \zeta_{n+1}, q^2 \zeta_{n+1}, \ldots, q^l \zeta_{n+1}).$$
Figure 41. A redrawn form of the reduced qKZ equation (general case).

Figure 42. The definition of the object $\tilde{\Psi}_n$ (general case).

\[\Delta(\zeta) = \phi_{\zeta}^V(\zeta)X_VA_V, \quad \Delta^*(\zeta) = \phi_{\zeta}^V(\zeta)X_{\zeta}A_{\zeta}. \] (4.7)

Using the representation (A.15) and equation (A.16), one can transform this equation to the form
\[\Phi_W(\zeta_1, \ldots, \zeta_{n-1}, q^2 \zeta_n, q^2 \zeta_{n-1}, \ldots, q^2 \zeta_n) \]
\[= R_{\nu|1}^{(n+2, n+1)}(q^2 \zeta_{n-1} | q^2 \zeta_n) \ldots R_{\nu|1}^{(2n, n+1)}(q^2 \zeta_1 | q^2 \zeta_n) P^{(n, n+1)} \]
\[\times \Delta^{(n)}(q^2 \zeta_n) R_{\nu|V}^{(1, n)}(\zeta_1 | q^2 \zeta_n) \ldots R_{\nu|V}^{(n-1, n)}(\zeta_{n-1} | q^2 \zeta_n) \]
\[q^2 \zeta \leftrightarrow \zeta \leftrightarrow \zeta = q^2 \zeta \leftrightarrow \zeta \leftrightarrow \zeta \]

\[\Lambda_{\mathcal{V}} = X_{\mathcal{V}} \Lambda_{\mathcal{V}} \]

Figure 45. The definition of the modified twisting operator \(\Lambda_{\mathcal{V}} \) (general case).

\[q^2 \zeta \leftrightarrow \cdots \leftrightarrow \zeta = q^2 \zeta \leftrightarrow \cdots \leftrightarrow \zeta \]

\[\Lambda_{\mathcal{V}^*} = X_{\mathcal{V}^*} \Lambda_{\mathcal{V}^*} \]

Figure 46. The definition of the modified twisting operator \(\Lambda_{\mathcal{V}^*} \) (general case).

\[
\begin{array}{c}
\overline{\Psi}(\zeta_1, \zeta_2, \zeta_3) \\
q^2 \zeta_3 \quad q^2 \zeta_2 \quad q^2 \zeta_1
\end{array} =
\begin{array}{c}
\Phi(\zeta_1, \zeta_2, \zeta_3, q^2 \zeta_3, q^2 \zeta_2, q^2 \zeta_1) \\
\zeta_3 \quad \zeta_2 \quad \zeta_1
\end{array}
\]

Figure 47. Interpretation of the object \(\overline{\Psi} \) in terms of the vector \(\Phi \) (general case).

\[
\times R_{\mathcal{V}^*|\mathcal{V}}^{(n+2,n+1)}(q^2 \zeta_n|q^2 \zeta_n) \cdots R_{\mathcal{V}^*|\mathcal{V}}^{(2n,n+1)}(q^2 \zeta_1|q^2 \zeta_1) \Delta^{(0)}(\zeta_{n+1}) \\
\times R_{\mathcal{V}^*|\mathcal{V}}^{(1,n)}(\zeta_1|\zeta_n) \cdots R_{\mathcal{V}^*|\mathcal{V}}^{(n-1,n)}(\zeta_{n-1}|\zeta_n) \\
\times \Phi_{\mathcal{V}^*}(\zeta_1, \ldots, \zeta_{n-1}, \zeta_n, q^2 \zeta_n, q^2 \zeta_{n-1}, \ldots, q^2 \zeta_1).
\]

(4.8)

Inserting in the middle of the right hand side of equation (4.6) the identity

\[
\overline{\Psi}(\zeta_1, \ldots, q^2 \zeta_n, q^2 \zeta_n, \ldots, q^2 \zeta_1) \Lambda_{\mathcal{V}^*|\mathcal{V}}(\zeta_1, \ldots, q^2 \zeta_n, q^2 \zeta_n, \ldots, q^2 \zeta_1) = \Delta^{(0)}(\zeta_{n+1}),
\]

we come to the equation

\[
\Phi_{\mathcal{V}^*}(\zeta_1, \ldots, q^2 \zeta_n, q^2 \zeta_n, \ldots, q^2 \zeta_1) \Lambda_{\mathcal{V}_n+1}(\zeta_1, \ldots, q^2 \zeta_n, q^2 \zeta_n, \ldots, q^2 \zeta_1)
\]

\[
\times \Lambda_{\mathcal{V}^*}(\zeta_1, \ldots, q^2 \zeta_n, q^2 \zeta_n, \ldots, q^2 \zeta_1) \Phi_{\mathcal{V}^*}(\zeta_1, \ldots, q^2 \zeta_n, q^2 \zeta_n, \ldots, q^2 \zeta_1),
\]

(4.9)

where the mappings \(\Lambda_{\mathcal{V}^*} \) and \(\Lambda_{\mathcal{V},n+1} \) are defined by equation (A.14) with \(p = q^2 \) and the mappings \(\Delta_n \) and \(\Delta_{n+1} \) coincide with the mappings \(\Delta \) and \(\Delta^* \) determined by equation (4.7). Note that in the case under consideration, there are only two independent mappings \(\Delta \) related to \(V \) and \(V^* \). Respectively, there are also only two independent equations (A.13). It is clear that if \(\Phi_{\mathcal{V}^*} \) satisfies the independent qKZ equations (A.13) for \(i = n \) and \(i = n+1 \), it satisfies equation (4.9), and, that is equivalent, equations (4.6) or (4.8). Now we have four independent relations of type (A.10). Their validity follows from equation (3.1) and the invariance relation given in figure 15.
Summing up, we conclude that if the mapping Φ_W satisfies the qKZ equations

$$\Phi_W(\eta_1, \ldots, q^\varepsilon \eta_n, \ldots, \eta_{2n})$$

$$= R_{v=1}^{(n,n+1)}(\eta_{n+1}|q^{-\varepsilon} \eta_n) \cdots R_{v=1}^{(2n-1,2n)}(\zeta_{2n}|q^{-\varepsilon} \eta_n) P_\lambda(\Delta(\eta_n))$$

$$\times R_{v=1}^{(1,2)}(\eta_1|\eta_n) \cdots R_{v=1}^{(n-1,n)}(\eta_{n-1}|\eta_n) \Phi_W(\eta_1, \ldots, \eta_{n-1}, \eta_n)$$

and

$$\Phi_W(\eta_1, \ldots, q^\varepsilon \eta_{n+1}, \ldots, \eta_{2n})$$

$$= \tilde{R}_{v=1}^{(n,n+1)}(\eta_{n+2}|q^{-\varepsilon} \eta_{n+1}) \cdots \tilde{R}_{v=1}^{(2n-1,2n)}(\zeta_{2n}|q^{-\varepsilon} \eta_{n+1}) P_\lambda(\Delta^*(\eta_n))$$

$$\times \tilde{R}_{v=1}^{(1,2)}(\eta_1|\eta_{n+1}) \cdots \tilde{R}_{v=1}^{(n,n+1)}(\eta_n|\eta_{n+1}) \Phi_W(\eta_1, \ldots, \eta_{n+1}, \ldots, \eta_{2n})$$

with Δ and Δ^* defined by equation (4.7), then the mapping $\Psi_n(\zeta_1, \ldots, \zeta_n)$ determined by the equation

$$\Psi_n(\zeta_1, \ldots, \zeta_n)^{(1-\varepsilon) j_1 \cdots j_n}$$
satisfies the reduced qKZ equation depicted in figure 22. Using the invariance relation given in figure 15, one can easily demonstrate that equations (3.2) are also satisfied.

5. Conclusions

In the paper [1], in continuation of the previous works [38–41], a difference-type functional equation for the zero temperature inhomogeneous reduced density operator of a quantum integrable vertex model related to an arbitrary complex simple Lie algebra was derived. By analogy with the simplest case of the quantum loop algebra $U_q(L(st_2))$, this equation was called the reduced qKZ equation. However, for the general case, the real relationship with the qKZ equation remained unclear. This question was analyzed in the present paper.

There are two different cases. The first situation arises when the representation used to formulate the integrable system under consideration is almost self-dual. By this we mean that the dual representation is isomorphic to the initial representation up to a redefinition of the spectral parameter. In the second situation we deal with a general representation. It was demonstrated that in both cases a solution of the corresponding qKZ equation generate a solution to the reduced qKZ equation.

We believe that the results obtained in the present paper will serve as an additional incentive for the study of the qKZ equation and discovering new methods to find its solutions.

Acknowledgments

This work was supported in part by the RFBR Grant # 20-51-12005. The author would like to thank the Max Planck Institute for Mathematics in Bonn, where this work was started, for the hospitality extended to him during his stay there in February–May 2019. He thanks Andreas Klümper and Khazret Nirov, in collaboration with whom the reduced qKZ equations were previously obtained, for useful discussions.

Appendix A. Quantum Knizhnik–Zamolodchikov equation

We define the symmetric group S_N on N elements as the set of all mappings of the set \{1, 2, ..., N\} onto itself. It is useful to interpret the elements of S_N as permutations in the following way. Let us have N different objects occupying N consecutive positions. We interpret $s \in S_N$ as the permutation at which the object occupying the ith position goes to the $s(i)$th position. For example, the cyclic left shift of the objects is identified with $\lambda \in S_N$ for which

$$\lambda(1) = N, \quad \lambda(i) = i - 1, \quad i = 2, \ldots, N.$$

The group S_N can be described as the group with generators σ_i, $i \in [1 \ldots N - 1]$, and relations

$$\sigma_i^2 = 1, \quad 1 \leq i \leq N - 1, \quad (A.1)$$

$$(\sigma_i \sigma_j)^2 = 1, \quad 1 \leq i < j \leq N - 1, \quad j - i > 1, \quad (A.2)$$

$$(\sigma_i \sigma_{i+1})^3 = 1, \quad 1 \leq i < N - 1, \quad (A.3)$$

see, for example, the book [42]. Here σ_i is the permutation which swaps the objects at the ith and $(i + 1)$th positions.
Let \(W_1, \ldots, W_N \) be finite dimensional vector spaces. Consider the tensor product
\[
\mathcal{W} = W_1 \otimes \cdots \otimes W_N. \tag{A.4}
\]
Given \(s \in S_N \), apply the corresponding permutation to the factors of \(\mathcal{W} \) and denote the result as \(s\mathcal{W} \). In accordance with the identification of the elements of \(S_N \) with permutations described above, we have
\[
s\mathcal{W} = (s\mathcal{W})_1 \otimes \cdots \otimes (s\mathcal{W})_N = W_{s^{-1}(1)} \otimes \cdots \otimes W_{s^{-1}(N)}.
\]
For any \(s, t \in S_N \) we define a linear mapping \(P_s : t\mathcal{W} \to s\mathcal{W} \) as follows
\[
P_s(v_1 \otimes \cdots \otimes v_N) = v_{s^{-1}(1)} \otimes \cdots \otimes v_{s^{-1}(N)},
\]
where \(v_i \in (t\mathcal{W})_i \) for all \(i \in [1 \ldots N] \). It is clear that
\[
P_{s_1} P_{s_2} = P_{s_1 s_2}
\]
for any \(s_1, s_2 \in S_N \). We use the notation
\[
P_{(i, i+1)} = P_{\sigma_i}.
\]

Let \(W_1, \ldots, W_N \) be \(U_q(\mathcal{L}(g)) \)-modules. We assume that for any distinct \(i, j \in [1 \ldots N] \) the corresponding \(R \)-operators satisfy the unitarity relation of the form
\[
\tilde{R}_{W_i W_j} |\eta_i \rangle \langle \eta_j| \tilde{R}_{W_j W_i} |\eta_j \rangle \langle \eta_i| = \text{id}_{W_i \otimes W_j}, \tag{A.5}
\]
where \(\eta_i \) and \(\eta_j \) are the spectral parameters associated with the modules \(W_i \) and \(W_j \) respectively. Certainly, the Yang–Baxter equation
\[
\tilde{R}_{W_i W_j} |\eta_i \rangle \langle \eta_j| \tilde{R}_{W_j W_k} |\eta_j \rangle \langle \eta_k| \tilde{R}_{W_k W_i} |\eta_k \rangle \langle \eta_i| = \text{id}_{W_i \otimes W_j \otimes W_k} \tag{A.6}
\]
is also satisfied on \(W_i \otimes W_j \otimes W_k \) for any distinct \(i, j, k \in [1 \ldots N] \).

By construction, \(\mathcal{W} \) is an \(\bigotimes_{i=1}^N U_q(\mathcal{L}(g)) \)-module. Let \(\Phi_{\mathcal{W}} \) be a mapping from \(\bigotimes_{i=1}^N U_q(\mathcal{L}(g)) \) to \(\mathcal{W} \). Given \(s \in S_N \), construct a mapping \(\Phi_s\mathcal{W} \) from \(\mathbb{C}^N \) to \(s\mathcal{W} \) in the following way. Represent \(s \) as
\[
s = \sigma_{i_m} \ldots \sigma_{i_1}, \tag{A.7}
\]
and denote
\[
s_0 = e, \quad s_k = \sigma_{i_k} \ldots \sigma_{i_1}, \quad 1 \leq k \leq m,
\]
so that \(s_m = s \). Assume that
\[
\Phi_{s_0}\mathcal{W}(\eta_1, \ldots, \eta_N) = \Phi_{\mathcal{W}}(\eta_1, \ldots, \eta_N) \tag{A.8}
\]
and define \(\Phi_{s_k}\mathcal{W} : \mathbb{C}^N \to s_k\mathcal{W} \) for \(k \in [1 \ldots m] \) by the recurrence relation...
It follows from the defining relations (A.1)–(A.3), the unitarity relations (A.5) and the Yang–Baxter equations (A.6) that \(\Phi_{\mathcal{G}V} = \Phi_{\mathcal{G}V} \) does not depend on the choice of the representation (A.7). It is clear that

\[
\tilde{R}^{(i)}_{(i)}(\tau_{i-1} \cdots \tau_{i+1}) (\eta_{i-1} \cdots \eta_{i+1}) \\
\times \Phi_{\mathcal{G}V}(\eta_{i-1} \cdots \eta_{i+1}) = \Phi_{\mathcal{G}V}(\eta_{i-1} \cdots \eta_{i+1}) (A.9)
\]

for any \(s \in S_N \) and \(i \in [1 \ldots N-1] \).

For each \(i = 1, \ldots, N \) we choose a mapping \(\Delta_i : \mathbb{C} \to \text{Aut}(W_i) \) such that

\[
(\Delta_1(\eta_1) \otimes \Delta_k(\eta_k)) R_{W_i/W_i}(\eta_i/|\eta_i) = R_{W_i/W_i}(\eta_i/|\eta_i)(\Delta_1(\eta_1) \otimes \Delta_k(\eta_k)) (A.10)
\]

for all distinct \(j \) and \(k \). This equation is used to prove the consistency of the quantum qKZ equations [23]. In fact, the authors of the paper [23] use the operators which do not depend on spectral parameters. However, the qKZ equations are consistent in our more general case as well.

Fix \(i \in [1 \ldots N] \) and assume that

\[
\Phi_{W_i \cdots \otimes W_i \cdots \otimes W_i \cdots \otimes W_i}(\eta_1, \ldots, \eta_i, \ldots, \eta_N, p_{\eta_1}) = P_{\lambda} \Delta^{(i)}(\eta_i) \Phi_{W_i \cdots \otimes W_i \cdots \otimes W_i \cdots \otimes W_i}(\eta_1, \eta_i, \ldots, \eta_i, \ldots, \eta_N) (A.11)
\]

for some complex parameter \(p \). It follows from this equation that

\[
\Phi_{W_i \cdots \otimes W_i \cdots \otimes W_i \cdots \otimes W_i}(\eta_1, \ldots, \eta_i, \ldots, \eta_N, p_{\eta_1}) = P_{\lambda} \Delta^{(i)}(\eta_i) \Phi_{W_i \cdots \otimes W_i \cdots \otimes W_i \cdots \otimes W_i}(\eta_1, \eta_i, \ldots, \eta_i, \ldots, \eta_N) (A.12)
\]

for any \(s \in S_N \) such that \(s(i) = i \).

Now, using equation (A.9), move the module \(W_i \) in the tensor product (A.4) to the first position. This gives the equation

\[
\Phi_{W_i \cdots \otimes W_i \cdots \otimes W_i}(\eta_1, \eta_i, \ldots, \eta_i, \ldots, \eta_N) = \tilde{R}^{(1, i)}_{W_i}(\eta_1 | \eta_i) \cdots \tilde{R}^{(i-1, i)}_{W_{i-1}/W_i}(\eta_{i-1} | \eta_i) \\
\times \Phi_{W_i \cdots \otimes W_i \cdots \otimes W_i}(\eta_1, \eta_i, \ldots, \eta_i, \ldots, \eta_N).
\]

Further, use (A.11) to jump to the last position and, using again (A.9), return \(W_i \) to its initial position. This leads to the equation

\[
\Phi_{W_i \cdots \otimes W_i \cdots \otimes W_i}(\eta_1, \ldots, p_{\eta_1}, \ldots, \eta_N) = \tilde{R}^{(i, i+1)}_{W_{i+1}}(\eta_{i+1} | p_{\eta_1}) \cdots \tilde{R}^{(N-1, N)}_{W_{N-1}/W_i}(\eta_N | p_{\eta_1}) \\
\times \Phi_{W_i \cdots \otimes W_i \cdots \otimes W_i}(\eta_1, \ldots, \eta_i, \ldots, \eta_N, p_{\eta_1}).
\]
All this results in the equation

\[\Phi_{\mathcal{W}}(\eta_1, \ldots, \eta_N) = \Lambda_{\mathcal{W}}(\eta_1, \ldots, \eta_N) \Phi_{\mathcal{W}}(\eta_1, \ldots, \eta_1, \ldots, \eta_N) \]

(A.13)

where the mapping \(\Lambda_{\mathcal{W}} : (\mathbb{C}^\times)^N \rightarrow \text{Aut}(\mathcal{W}) \) is defined as

\[
\Lambda_{\mathcal{W}}(\eta_1, \ldots, \eta_N) = R^{(1,1)}_{W_{i+1}|W_i}(\eta_{i+1}|p_1 \eta_i) \cdots R^{(N-1,N)}_{W_{N}|W_1}(\eta_N|p_N \eta_1)
\]

\[
\times \ P_{\Lambda}(\eta_1) R^{(1,2)}_{W_{1}|W_2}(\eta_1|\eta_2) \cdots R^{(i-1,i)}_{W_{i+1}|W_i}(\eta_{i+1}|\eta_i) \ .
\]

(A.14)

Using the representation

\[P_\Lambda = P_{s_{N-1}} \cdots P_{s_1} P_{s_{N-1}} \cdots P_{s_1} = P^{(N-1,N)} \cdots P^{(1,1)} P^{(1,2)} \cdots P^{(1,2)} \]

(A.15)

and the equations

\[P_{\Lambda} \Delta^{(i,j)}(\eta_i) = \Delta^{(i,j)}(\eta_i) P_s, \quad P_{\Lambda} R^{(i,j)}_{W_{i}|W_j}(\eta_i|\eta_j) = R^{(i,j)}(\eta_i|\eta_j) P_s, \]

(A.16)

we rewrite the definition of \(\Lambda_{\mathcal{W}} \) in the form

\[
\Lambda_{\mathcal{W}}(\eta_1, \ldots, \eta_N) = R^{(1+1,1)}_{W_{i+1}|W_i}(\eta_{i+1}|p_{i+1} \eta_i) \cdots R^{(N,1)}_{W_{N}|W_1}(\eta_N|p_N \eta_1)
\]

\[
\times \ \Delta^{(i,j)}(\eta_i) R^{(i,1)}_{W_{i+1}|W_i}(\eta_{i+1}|\eta_i) \cdots R^{(i-1,i)}_{W_{i+1}|W_i}(\eta_{i+1}|\eta_i) .
\]

It is evident that this equation implies equation (A.11). When \(i \) runs through the whole interval \([1 \ldots N]\) we obtain a system of difference equations whose consistency is guaranteed by the relations (A.10). This is the system that we call the qKZ equation. Together with (A.9) this is the system equivalent to the original system derived by Frenkel and Reshetikhin [23]. It is useful to realize that one can also consider the equivalent system for the mappings \(\Phi_{\mathcal{W}} \)

consisting of equations (A.12) and (A.9).

ORCID iDs

Alexander V Razumov © https://orcid.org/0000-0001-5848-2573

References

[1] Klümper A, Nirov K S and Razumov A V 2019 Reduced qKZ equation: general case J. Phys. A: Math. Theor. 53 015202
[2] Drinfeld VG 1986–1987 Quantum groups Proc. of the Int. Congress of Mathematicians vol 1 ed A E Gleason (Providence, RI: American Mathematical Society) pp 798–820
[3] Jimbo M 1985 A \(q \)-difference analogue of U(g) and the Yang–Baxter equation Lett. Math. Phys. 10 63–9
[4] Boos H, Göhmann F, Klümper A, Nirov K S and Razumov A V 2013 Universal integrability objects Theor. Math. Phys. 174 21–39
[5] Boos H, Göhmann F, Klümper A, Nirov K S and Razumov A V 2014 Universal R-matrix and functional relations Rev. Math. Phys. 26 1430005
[6] Bazhanov V V, Lukyanov S L and Zamolodchikov A B 1996 Integrable structure of conformal field theory, quantum Kadiev theory and thermodynamic Bethe ansatz Commun. Math. Phys. 177 381–98
[7] Bazhanov V V, Lukyanov S L and Zamolodchikov A B 1997 Integrable structure of conformal field theory II. Q-operator and DDV equation Commun. Math. Phys. 190 247–78
[38] Aufgebauer B 2011 Berechnung der Korrelationsfunktionen des Heisenberg-Modells bei endlicher temperatur mittels funktionalgleichungen PhD Thesis Bergische Universität Wuppertal
[39] Aufgebauer B and Klümper A 2012 Finite temperature correlation functions from discrete functional equations J. Phys. A: Math. Theor. 45 345203
[40] Boos H, Hutsalyuk A and Nirov K S 2018 On the calculation of the correlation functions of the sl_3-model by means of the reduced qKZ equation J. Phys. A: Math. Theor. 51 445202
[41] Ribeiro G A P and Klümper A 2019 Correlation functions of the integrable SU(n) spin chain J. Stat. Mech. 013103
[42] Humphreys J F 1996 A Course in Group Theory (Oxford: Oxford University Press)