Transcriptome analysis of activated charcoal-induced growth promotion of wheat seedlings in tissue culture

Fu-shuang Dong¹, Meng-yu Lv¹, Jia-ping Wang², Xue-ping Shi³, Xin-xia Liang¹, Yong-wei Liu¹, Fan Yang¹, He Zhao¹, Jian-Fang Chai¹ and Shuo Zhou¹*

Abstract

Background: Activated charcoal (AC) is highly adsorbent and is often used to promote seedling growth in plant tissue culture; however, the underlying molecular mechanism remains unclear. In this study, root and leaf tissues of 10-day-old seedlings grown via immature embryo culture in the presence or absence of AC in the culture medium were subjected to global transcriptome analysis by RNA sequencing to provide insights into the effects of AC on seedling growth.

Results: In total, we identified 18,555 differentially expressed genes (DEGs). Of these, 11,182 were detected in the roots and 7,373 in the leaves. In seedlings grown in the presence of AC, 9,460 DEGs were upregulated and 7,483 DEGs were downregulated in the presence of AC as compared to the control. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis revealed 254 DEG-enriched pathways, 226 of which were common between roots and leaves. Further analysis of the major metabolic pathways revealed that AC stimulated the expression of nine genes in the phenylpropanoid biosynthesis pathway, including PLA, CYP73A, COMT, CYP84A, and 4CL, the protein products of which promote cell differentiation and seedling growth. Further, AC upregulated genes involved in plant hormone signaling related to stress resistance and disease resistance, including EIN3, BZR1, JAR1, JAZ, and PR1, and downregulated genes related to plant growth inhibition, including BKI1, ARR-B, DELLA, and ABF.

Conclusions: Growth medium containing AC promotes seedling growth by increasing the expression of certain genes in the phenylpropanoid biosynthesis pathway, which are related to cell differentiation and seedling growth, as well as genes involved in plant hormone signaling, which is related to resistance.

Keywords: RNA sequencing, Wheat, Immature embryo culture, Phenylpropanoid biosynthesis, Plant hormone signaling
secreted by explants during culture, as well as beneficial substances available in culture media, such as growth regulators, vitamin B6, folic acid, and nicotinic acid [2]. There are many reports on its effects such as anti-browning, improvement of primary culture survival rates, promotion of bud proliferation and seedling growth in the dark, and promotion of rooting [3–7]. However, the mechanism of action of AC in promoting plant growth has been rarely reported.

In recent years, high-throughput sequencing technologies have been widely used in plant research, and their efficiency has dramatically improved [8–11]. In this study, gene expression in 10-day-old wheat seedlings cultured in the presence or absence of AC was compared through transcriptome sequencing. With this study, we aimed to lay a foundation for further study of the mechanisms by which AC promotes the development of immature wheat embryos. Genes that promote wheat growth were thoroughly analyzed to provide a theoretical basis for breeding high-yield wheat varieties.

Results
Effect of AC on physiological and biochemical indices of wheat seedlings
Briefly, we grew seedlings from scutella in base medium (N6 supplemented with 0.02 mg/L NAA and 0.05 mg/L 6-BA) or NAC (base medium supplemented with 4 g/L AC) in vitro, and seedlings were collected after 5 and/or 10 days for physiological and biochemical analyses as described below in the Methods section. The leaf area was not determined in 5-day-old seedlings, as the leaves are not unfolded at this stage. For 5- as well as 10-day-old seedlings, the growth rate was significantly higher ($P < 0.05$) on NAC than on base medium (Figs. 1 and 2). The results of biochemical analyses of 10-day-old seedlings revealed that NAC promoted root activity and significantly increased the soluble protein content in wheat seedlings compared to N6 medium, whereas the total phenol and soluble sugar contents were lower than on N6 medium (Fig. 3) ($P < 0.05$).

RNA sequencing analysis of seedlings grown on N6 and NAC
Two biological replicates were set up for each treatment. For each treatment, 10 roots and 10 leaves from 10-day-old seedlings were collected separately and used to prepare cDNA libraries. The sequencing results showed that the correlation between the biological replicates was high, indicating that the sequencing data were repeatable and reliable (Fig. 4). After joining overlapping reads and removing low-quality sequences from the raw reads, high-quality, clean reads of $Q > 20$ were retained: 255,820,114 reads for the leaf samples and 283,192,836 reads for the root samples. In total, 461,062,200 filtered clean reads were compared to wheat reference genomes using
Fig. 2 Comparison of growth indices for 5- and 10-day-old seedlings grown on NAC or N6. Data are shown separately for leaves and roots.

- **a** Fresh seedling weight (leaves plus roots).
- **b** Dry weight.
- **c** First-leaf area for 10-day-old seedlings.
- **d** Leaf length.
- **e** Root length.
- **f** Root number.

*P < 0.05, **P < 0.01, t-test

Fig. 3 Comparison of biochemical indices for 10-day-old seedlings grown on NAC or N6. Data are shown separately for leaves and roots.

- **a** Soluble protein content.
- **b** Total phenol content.
- **c** Root dehydrogenase activity.
- **d** Soluble carbohydrate content in the seedlings (mg/g FW).

*P < 0.05, **P < 0.01, t-test
Tophat2. In total, 452,832,933 reads (85.6%) were mapped to gene regions, 97.7% (442,365,747) of which were mapped to exon regions.

To validate the RNA sequencing data, 15 DEGs were randomly selected and assessed by quantitative reverse-transcription PCR (qRT-PCR). Gene expression was determined relative to a control (seedlings grown on N6), which was set as 1.0. The qRT-PCR results showed that the relative expressions of four root genes and three leaf genes were lower in seedlings grown on NAC than those of the seedlings grown in the control. Three root genes and five leaf genes were expressed at significantly higher levels in seedlings grown on NAC than in the control. Three root genes and five leaf genes were expressed at significantly higher levels in seedlings grown on NAC than in the control (Fig. 5). Correlation between differential gene expression levels in RNA-seq and qRT-PCR was analyzed after log2 transformation. The Pearson correlation coefficient was 0.992, which indicated significant correlation at the 0.01 level. Linear correlation analysis showed that the coefficient of correlation between RNA-seq and qRT-PCR data was 0.643, the R² value was 0.860, which is higher than 0.85 (Fig. 6), indicating that RNA-seq and qRT-PCR data were consistent.

Kyoto encyclopedia of genes and genomes (KEGG) enrichment analysis of DEGs
In total, 18,555 DEGs were identified using DESeq (version 1.18.0), including 1182 DEGs in the roots and 7373 DEGs in the leaves, and 1612 DEGs in common between the roots and leaves. Among the DEGs, 9460 were upregulated in seedlings grown on NAC compared to N6 medium, and 7483 were downregulated (Fig. 7). To identify the functional pathways the DEGs are involved in, we used KEGG pathway analysis, including 254 KEGG functional pathways. In total, 226 KEGG pathways were commonly differentially regulated by AC in the roots as well as leaves. Among these, “metabolic pathways” (105, 39.10%) represented the largest group, followed by “organismal systems” (58, 25.66%), “environmental information processing” (24, 10.62%), “genetic information processing” (21, 9.29%), and “cellular processes” (18, 7.96%). P < 0.05 was considered as a threshold for screening. Further, 37 KEGG pathways were enriched for AC-regulated genes in the roots, and 30 KEGG pathways in the leaves (Fig. 8). In the roots, the three most gene-enriched pathways were “phenylpropanoid biosynthesis”, “starch and sucrose metabolism”, and “biosynthesis of amino acids”. In the leaves, the three most enriched pathways were “plant hormone signal transduction”, “phenylpropanoid biosynthesis”, and “glyoxylate and dicarboxylate metabolism”. By comparison, we found that “phenylpropanoid biosynthesis”, “plant hormone signal transduction”, “starch and sucrose metabolism”, “biosynthesis of amino acids”, and other metabolic pathways were the main gene-enriched pathways in wheat seedlings (Fig. 9). We analyzed three major metabolic pathways, i.e., “phenylpropanoid biosynthesis”, “plant hormone signal transduction”, and “starch and sucrose metabolism” in more detail. In these pathways, there were 29
DEGs between the NAC and N6 groups. Twenty-one of these genes were upregulated, including genes related to cell differentiation, seedling growth, and enhanced stress and disease resistance (e.g., PLA, HCT, ZIM, and JAC), and eight of them were downregulated, and were mainly related to the inhibition of plant growth (e.g., BKII, ARR-B, DELLA, and ABF) (Table 1).

Discussion

AC stimulates phenylpropane metabolism

The phenylpropane metabolic pathway is of high physiological significance in plants, as it directly and indirectly generates all substances in the phenylpropane skeleton. Nine classes of genes were upregulated in seedlings grown in the presence of AC in the medium, including PAL, CYP73A, COMT, CYP84A, and 4CL. The phenylalanine ammonia-lyase (PAL) gene family was actively expressed. PAL catalyzes the nonoxidative deamination of L-phenylalanine to form trans-cinnamic acid and ammonium ion [13]. The conversion of the amino acid phenylalanine to trans-cinnamic acid is the entry step for the channeling of carbon from primary metabolism into phenylpropanoid secondary metabolism in plants. The phenylpropane pathway can produce intermediate products such as trans-cinnamic acid, coumaric acid, ferulic acid, and sinapic acid. These intermediate products can be further metabolized into lignin, flavonoids, and other secondary metabolites.
products can be converted into coumarin, chlorogenic acid, and trans-coumaric coenzyme A ester, which can be further converted into secondary metabolites such as lignin, flavonoids, isoflavones, alkaloids, and benzoate glycosides. These products play vital roles in plant growth and development, and the contents of these substances are closely related to PAL activity, which is of great importance in plant physiology [14, 15]. One of the physiological roles of PAL is to promote cell differentiation and plant growth [16]. This study revealed that addition of AC to the growth medium can accelerate seedling growth, at least in part, by promoting PAL expression.

AC affects plant hormone signal transduction

Using KEGG enrichment analysis, 169 DEGs were mapped to plant hormone signal transduction pathways, which represented the second largest group among the mapped functional pathways. Ninety-six DEGs mapped to this pathway were upregulated, and 73 DEGs were downregulated in the NAC compared to the N6 group. Addition of AC to the seedling culture medium increased the expression of *EIN3*, *BZR1*, *JAR1*, *JAZ*, and *PR1*. These genes are known to be involved in plant hormone signal transduction pathways, which directly or indirectly play an important role in regulating stress resistance or disease resistance [17–21]. For example, PR1 is a water-soluble protein that is produced by plants in response to infection by pathogens or stimulation by biotic factors. Its main functions include attacking pathogens, degrading cell wall macromolecules, degrading pathogen toxins, and binding viral coat protein to plant receptor molecules [22]. Inversely, the expression of genes involved in the regulation of plant growth inhibition (*BKI1*, *ARR-B*, *DELLA*, and *ABF*) was reduced (Table 1). For example, DELLA proteins are transcription factors that negatively regulate gibberellin signaling [23]. Our study showed that the addition of AC to the culture medium stimulated the expression of plant hormone signaling-related genes involved in resistance in wheat seedlings.

Conclusions

AC can significantly promote wheat seedling growth, and this study revealed it likely did so, at least in part, by promoting the expression of certain genes in the phenylpropanoid biosynthesis pathway related to cell differentiation and seedling growth and that of hormone signal...
transduction-related genes involved in resistance. Our transcriptome data provide new insights into gene expression influenced by AC. AC stimulated gene expression related to phenylpropanoid biosynthesis to promote cell differentiation and seedling growth as well as gene expression related to stress and disease resistance, and suppressed the expression of growth-inhibiting genes through the regulation of plant hormone signaling. Results of this study preliminarily show that AC can significantly promote the molecular mechanisms underlying wheat seedling growth, which will be helpful for further studies on wheat growth.

Methods

Plant materials and growth conditions

Winter wheat Liangxing 99 (Triticum aestivum) from Dezhou liangxing seed research institute, a popular cultivar cultivated in the Huang-huai winter wheat region of China, was used. In May 2016, a young ear at 15 days post blooming was adopted in the field. The middle part of young spikes of wheat was peeled, sterilized with 1.5% NaClO for 15 min, and rinsed thoroughly with distilled water. Then, immature embryos were peeled off and the scutella were inoculated downward in base medium (N6 supplemented with 0.02 mg/L NAA and 0.05 mg/L 6-BA) or NAC (base medium supplemented with 4 g/L AC). Ten biological replicates were prepared for each group, with 10 immature embryos in each replicate. Ten 5-day-old and 10 10-day-old seedlings were taken to determine dry weight, leaf and root fresh weights, leaf length, leaf number, first-leaf area, root length, and root number. Biochemical indices related to growth were measured in 10-day-old seedlings. Root activity was determined by naphthylamine TCC colorimetry [24]. Soluble sugars were determined by anthrone colorimetry [25], soluble protein content was determined by Coomassie bright blue G-250 staining [26], and total phenol was determined by the tannin method [27]. Trait differences were analyzed by statistical analysis using SPSS 18.0 software (IBM, USA).

From 40 10-day-cultured seedlings grown on N6 and NAC media, roots and leaves were collected separately. Each sample comprised 20 independent leaves or 20 independent roots; two biological replicates were paired for each sample, immediately frozen in liquid nitrogen, and stored at −80°C.

RNA isolation and cDNA library construction and sequencing

Total RNA was isolated using a TRIzol total RNA extraction kit (Invitrogen, USA), which yielded ~ 10 μg of total RNA per sample. RNA quality was examined by 0.8% agarose gel electrophoresis and spectrophotometry. High-quality RNA with 28S:18S > 1.5 and a 260/280 absorbance ratio of 1.8–2.2 was used for library construction and sequencing. Illumina HiSeq library construction was performed according to the manufacturer’s instructions (Illumina, USA). Magnetic beads with poly-T oligos attached were used to purify mRNA from total RNA. mRNA was broken into 200–300 bp fragments using ion interruption. Using mRNA as the template, 6-base random primers and reverse transcriptase were used to synthesize the first cDNA chain, which was used as a template for the synthesis of the second chain of cDNA, where the base T was replaced with the base U. After library construction, library fragments were enriched by PCR amplification and selected according to a fragment size of 300–400 bp. The library was quality-
Pathway	Gene ID	Fold change (NAC/NG)	Expression in NAC	Description
Phenylpropanoid biosynthesis	TRIAE_CS42_1BS_TGACv1_049914_	47.15	up	(PAL) phenylalanine ammonia-lyase
	AA0164150			
	TRIAE_CS42_1DS_TGACv1_080107_	12.22	up	(PAL) phenylalanine ammonia-lyase
	AA0239320			
	TRIAE_CS42_1BS_TGACv1_049965_	10.79	up	(PAL) phenylalanine ammonia-lyase
	AA0164870			
	TRIAE_CS42_2AL_TGACv1_096113_	10.21	up	(PAL) phenylalanine ammonia-lyase
	AA0317230			
	TRIAE_CS42_6DL_TGACv1_527273_	8.24	up	(PAL) phenylalanine ammonia-lyase
	AA1701630			
	TRIAE_CS42_1AS_TGACv1_019041_	7.14	up	(PAL) phenylalanine ammonia-lyase
	AA0058710			
	TRIAE_CS42_3AL_TGACv1_194598_	9.78	up	(CYP73A) trans-cinnamate 4-monoxygenase
	AA0636520			
	TRIAE_CS42_3B_TGACv1_220699_	6.61	up	(CYP73A) trans-cinnamate 4-monoxygenase
	AA0715850			
	TRIAE_CS42_2BS_TGACv1_148390_	6.15	up	(CYP73A) trans-cinnamate 4-monoxygenase
	AA0492590			
	TRIAE_CS42_5AL_TGACv1_378388_	5.77	up	(CYP73A) trans-cinnamate 4-monoxygenase
	AA1253080			
	TRIAE_CS42_3DS_TGACv1_271628_	5.50	up	(CYP73A) trans-cinnamate 4-monoxygenase
	AA0904230			
	TRIAE_CS42_6DS_TGACv1_543204_	4.28	up	(COMT) caffeic acid 3-O-methyltransferase
	AA1737020			
	TRIAE_CS42_6BS_TGACv1_514476_	2.19	up	(COMT) caffeic acid 3-O-methyltransferase
	AA1660340			
	TRIAE_CS42_2BL_TGACv1_132718_	7.96	up	(CYP84A, F5H) ferulate-5-hydroxylase
	AA0439360			
	TRIAE_CS42_2AS_TGACv1_113803_	6.15	up	(4CL) 4-coumarate—CoA ligase
	AA0360840			
	TRIAE_CS42_6BL_TGACv1_502904_	5.14	up	(4CL) 4-coumarate—CoA ligase
	AA1626620			
	TRIAE_CS42_7BS_TGACv1_591841_	8.26	up	(HCT) shikimate O-hydroxy-cinnamoyltransferase
	AA1923250			
	TRIAE_CS42_2DS_TGACv1_178855_	5.80	up	(HCT) shikimate O-hydroxy-cinnamoyltransferase
	AA0601830			
	TRIAE_CS42_7AS_TGACv1_569782_	5.73	up	(HCT) shikimate O-hydroxy-cinnamoyltransferase
	AA1824070			
	TRIAE_CS42_3AL_TGACv1_194329_	2.42	up	(CYP98A, C3’H) 5-O-(4-coumaroyl)-D-quinate 3’-monooxygenase
	AA0631150			
	TRIAE_CS42_2BS_TGACv1_592306_	3.59	up	caffeoyl-CoA O-methyltransferase
	AA1935390			
	TRIAE_CS42_7DS_TGACv1_621454_	4.05	up	caffeoyl-CoA O-methyltransferase
	AA2016210			
	TRIAE_CS42_5DL_TGACv1_436308_	6.25	up	(CCR) cinnamoyl-CoA reductase
	AA1459900			
	TRIAE_CS42_5BL_TGACv1_406204_	5.56	up	(CCR) cinnamoyl-CoA reductase
	AA1342180			
	TRIAE_CS42_5AL_TGACv1_375041_	5.15	up	(CCR) cinnamoyl-CoA reductase
	AA1214580			
Plant hormone signal transduction	TRIAE_CS42_4BL_TGACv1_321177_	2.09	up	(ARR-A1) two-component response regulator
	AA1056660			ARR-A family
Table 1 Three pathways and major related genes differentially expressed in wheat seedlings grown on medium containing CA, as indicated by KEGG enrichment analysis (Continued)

Pathway	Gene ID	Fold change (NAC/N6)	Expression in NAC	Description
TRIAE_CS42_3B_TGACv1_221378_ AA0738750	20.04	up	(PYL) abscisic acid receptor PYR/PYL family	
TRIAE_CS42_7DL_TGACv1_602538_ AA1959790	2.44	up	(EBF1_2) EIN6-binding F-box protein	
TRIAE_CS42_6BS_TGACv1_514535_ AA1661150	2.40	up	(EBF1_2) EIN3-binding F-box protein	
TRIAE_CS42_3DL_TGACv1_251912_ AA0885890	3.87	up	(EIN3) ethylene-insensitive protein 3	
TRIAE_CS42_2DS_TGACv1_178626_ AA0598480	2.61	up	(BZR1_2) brassinosteroid resistant ½	
TRIAE_CS42_1BL_TGACv1_030488_ AA0092220	5.34	up	(JAR1_4_6) jasmonic acid-amino synthetase	
TRIAE_CS42_4BL_TGACv1_320580_ AA1043710	6.24	up	(JAZ) jasmonate ZIM domain-containing protein	
TRIAE_CS42_5BL_TGACv1_405157_ AA1321310	24.45	up	(PR1) pathogenesis-related protein 1	
TRIAE_CS42_7DS_TGACv1_625472_ AA2065280	8.73	up	(PR1) pathogenesis-related protein 1	
TRIAE_CS42_3B_TGACv1_221831_ AA0750870	0.32	down	(AHP) histidine-containing phosphotransfer protein	
TRIAE_CS42_7AS_TGACv1_569714_ AA1822400	0.31	down	(ARR-B) two-component response regulator ARR-B family	
TRIAE_CS42_7AS_TGACv1_569714_ AA1822400	0.31	down	(DELLA) DELLA protein	
TRIAE_CS42_3AL_TGACv1_197036_ AA0664480	0.19	down	(ABF) ABA responsive element binding factor	
TRIAE_CS42_5BL_TGACv1_404247_ AA1292100	0.22	down	(BKI1) BRI1 kinase inhibitor 1	
TRIAE_CS42_3DL_TGACv1_250531_ AA0889810	0.48	down	(NPR1) regulatory protein NPR1	
Starch and sucrose metabolism	TRIAE_CS42_2AS_TGACv1_114089_ AA0363940	10.52	up	(otsB) trehalose 7-phosphate phosphatase
TRIAE_CS42_2DS_TGACv1_178535_ AA0597240	4.84	up	(otsB) trehalose 8-phosphate phosphatase	
TRIAE_CS42_1AL_TGACv1_003899_ AA0051890	2.29	up	(TREH, treA, treF) alpha, alpha-trehalase	
TRIAE_CS42_1DL_TGACv1_061138_ AA0186610	2.03	up	(TREH, treA, treF) alpha, alpha-trehalase	
TRIAE_CS42_3DL_TGACv1_249164_ AA0840030	2.79	up	(sck1) fructokinase	
TRIAE_CS42_2DS_TGACv1_624145_ AA2059200	Inf	up	(glgA) starch synthase	
TRIAE_CS42_4DS_TGACv1_361541_ AA1169860	0.31	down	sucrose-phosphate synthase	
TRIAE_CS42_6DL_TGACv1_526359_ AA1680390	0.08	down	(AMY, amyA, malS) alpha-amylase	
TRIAE_CS42_2DL_TGACv1_158310_ AA0515330	0.43	down	(GBE1, glgB) 1,5-alpha-glucan branching enzyme	
assessed using an Agilent 2100 Bioanalyzer (Agilent, USA). The library was sequenced using the Illumina HiSeq sequencing platform, using paired-end sequencing to generate raw reads (Shanghai Personal Biotechnology Co., Ltd., China).

RNA-sequencing data analysis

Raw reads were filtered before data analysis; high-quality reads with Q > 20 were retained for subsequent analysis. Reference genome data were collected from the Ensembl database (http://www.ensembl.org/). The reference genome index was created using Bowtie2 software [28]. The reads were filtered by Tophat2 (http://tophat.cbcb.umd.edu/) and compared to the reference index The read count for each gene was determined using HTSeq0.6.1p2 (https://github.com/genepattern/HTSeq.Count) as the original gene expression level. Expression levels were normalized using reads per kilo bases per million reads (RPKM), with RPKM values > 1 considered as the gene expression standard [29]. Differential gene expression was determined using DESeq, and genes with a more than a two-fold change in expression (log2 fold change > 1) and P < 0.05 were considered as DEGs [30]. KEGG pathway analysis was used to analyze the metabolic pathways and signaling pathways the DEGs were primarily involved in.

RT-qPCR analysis

To validate the DEGs identified by RNA sequencing, 15 candidate DEGs were randomly selected for RT-qPCR analysis. The gene names and primer information are listed in Table 2. The wheat housekeeping gene, TaRP15, was used as an internal control for normalization [31]. Three biological replicates were paired for each sample. cDNA was transcribed from 1 µg RNA using a PrimeScript™ RT reagent Kit with gDNA Eraser (TakaRa, Japan). qPCRs were run using a SYBR Premix Ex Taq kit (TakaRa) in an ABI ViiATM7 instrument (Applied Biosystems, USA). The 2^{ΔΔCT} method was used to quantify relative target gene expression [32].

Abbreviations

AC: Activated charcoal; DEGS: Differentially expressed genes; KEGG: Kyoto Encyclopedia of Genes and Genomes; NAC: Base medium with 4 g/L AC; PAL: Phenylalanine ammonia-lyase; qRT-PCR: Quantitative real-time polymerase chain reaction; 4CL: 4-Coumarate--CoA ligase gene; ARR-B: Two-component response regulator ARR-B family gene; BKI1: BRI1 kinase inhibitor 1 gene; BZR1: Brassinosteroid resistant 1/2 gene; COMT: Caffeic acid 3-O- methyltransferase gene; CYP73A: Trans-cinnamate 4-monooxygenase gene; EIN3: Ethylene-insensitive protein 3 gene; JAR1: Jasmonic acid-amino synthetase gene; JAZ: Jasmonate ZIM domain-containing protein gene; N6: N6 base medium (supplemented with 0.02 mg/L NAA, 0.05 mg/L 6-BA); PLA: Phenylalanine ammonia-lyase gene; PRI: Pathogenesis-related protein 1 gene.

Acknowledgments

Not applicable.

Authors’ contributions

SZ and FSD designed the experiments and wrote the manuscript. MYL, FSD, and JPW conducted the immature embryo culture and tissue sampling. XPS, YWL, and FY performed RNA extraction and qRT-PCR. FSD, HZ, and JFC analyzed the data. All authors read and approved the final manuscript.

Funding

This work was supported by the National Key Research and Development Program of China (2016YFD0101802), the Key Research and Development Program of Hebei (19226322D), and the Innovation Project of Hebei Academy of Agriculture and Forestry Sciences (2019-4-1A-4).

Table 2 Primers used for qRT-PCR

Gene ID	Forward (5′→3′)	Reverse (5′→3′)
TaRP15	GCACACGTCGCTTGGACAGAAG	GCCCTCAAGCTCACAAGATAAG
TRIA_C542_2DL_TGACv1_159322_AA0536590	CCCCCGGAGACCTAGGATGGA	CCCCCGGAGACCTAGGATGGA
TRIA_C542_2DS_TGACv1_622571_AA2042030	GCGCCACGGCGTGGAGCGAGTA	GCGCCACGGCGTGGAGCGAGTA
TRIA_C542_1DL_TGACv1_062003_AA207290	TGGTCCCATCGGGGTATCGTCTCT	TGGTCCCATCGGGGTATCGTCTCT
TRIA_C542_4AS_TGACv1_307691_AA1022770	ATACGGGTTCATATCCTTACCG	ATACGGGTTCATATCCTTACCG
TRIA_C542_2AL_TGACv1_096957_AA322250	AGGTGAAACACGCCAAGGGT	AGGTGAAACACGCCAAGGGT
TRIA_C542_2AS_TGACv1_114776_AA346930	GGGTGGAGACTTACGATGGGA	GGGTGGAGACTTACGATGGGA
TRIA_C542_4BL_TGACv1_320441_AA1039150	CCAACCGCTGCAGGAACT	CCAACCGCTGCAGGAACT
TRIA_C542_2DL_TGACv1_061642_AA200700	AAGGCCTGGATAGTGCTGACAG	AAGGCCTGGATAGTGCTGACAG
TRIA_C542_5AS_TGACv1_374196_AA1193340	TGGACTCTCCTGATCATGGCAG	TGGACTCTCCTGATCATGGCAG
TRIA_C542_4DL_TGACv1_344866_AA1150230	CCCCCGAATCTCTTCTCC	CCCCCGAATCTCTTCTCC
TRIA_C542_1BL_TGACv1_0321704_AA1193340	TTCCTACGGTGGAGGTCTC	TTCCTACGGTGGAGGTCTC
TRIA_C542_6DL_TGACv1_436333_AA1460060	GTGACCTGGAGACGAGATGGTA	GTGACCTGGAGACGAGATGGTA
TRIA_C542_U_TGACv1_642434_AA2117550	TGAGCCACCGGAGGCAACCC	TGAGCCACCGGAGGCAACCC
TRIA_C542_2AS_TGACv1_112552_AA340650	ATGAGGCAATGAGGAGAACCA	ATGAGGCAATGAGGAGAACCA
Availability of data and materials
Supplementary data to this article can be found online at https://www.ncbi.nlm.nih.gov/sra/PRJN556084.

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Author details
1 Institute of Genetics and Physiology, Hebei Academy of Agriculture and Forestry Sciences, Plant Genetic Transformation Center of Hebei Province, Shijiazhuang 050000, China. 2 Institute of Millet Crops, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang 050000, China. 3 The Semi-Arid Agriculture Engineering & Technology Research Center of P.R. China, Shijiazhuang 050000, China.

Received: 18 August 2019 Accepted: 25 June 2020
Published online: 06 July 2020

References
1. Thomas TD. The role of activated charcoal in plant tissue culture. Biotechnol Adv. 2008;26(6):618–31.
2. Fridborg G, Eriksson T. Effects of activated charcoal on growth and morphogenesis in cell cultures. Physiol Plant. 1975;34(4):306–8.
3. Pan MJ, Van Staden J. The use of charcoal in in vitro culture of plants. Acta Horticulturae. 2001;544:31–7.
4. Mojarabi M, Nasr SMH, Jalilvand H, Kooch Y. Effect of activated charcoal, culture media and plant growth regulators on in vitro germination and development of elite dura oil palm (Elaeis guineensis Jacq) zygotic embryos. PCMBM. 2019;20:314–23.
5. Koene FM, Amano E, Ribas LLF. Asymptotic seed germination and in vitro seedling development of Acantharea proliera (Orchidaceae). S Afr J Bot. 2019;121:83–91.
6. Chutipajit S, Supjarirukul T. Application of activated charcoal and nanocarbon to callus induction and plant regeneration in aromatic rice (Oryza sativa L.). Chem Spec Bioavailab. 2018;30(1):1–8.
7. Mogarabi M, Nasr SMH, Jalilvand H, Kooch Y. Effect of activated charcoal, growth supplements and storage on removing dormancy, germination indices and vigour of Ash (Fraxinus excelsior L.). Ann Biol Res. 2011;2(5):203.
8. Iqubal MA, Sharma P, Jasrotia RS, Jaswal S, Kaur A, Sarna M, Angadi UB, Sheoran S, Singh R, Singh GP, Rai A. RNAseq analysis reveals drought-responsive molecular pathways with candidate genes and putative molecular markers in root tissue of wheat. Sci Rep. 2019;9(1):1–18.
9. Li C, Zhang W, Yuan M, Jiang L, Sun B, Zhang D, Shao Y, Liu A, Liu X, Ma J. Transcriptome analysis of osmotic-responsive genes in ABA-dependent and independent pathways in wheat (Triticum aestivum L.) roots. PeerJ. 2019;7:e6519.
10. Han L, Li JL, Jin M, Su YH. Transcriptome analysis of Arabidopsis seedlings responses to high concentrations of glucose. Genet Mol Res. 2015;14(2):4784–801.
11. Zhao JL, Pan JS, Guan Y, Nie JT, Yang JJ, Qu ML, He HL, Cai R. Transcriptome analysis in Cucumis sativus identifies genes involved in multicellular trichome development. Genomics. 2015;105(5–6):296–303.
12. Hyun MW, Yun YH, Kim JY, Kim SH. Fungal and plant phenylalanine ammonia-lyase. Mycobiology. 2011;39(4):257–65.
13. Cui JD, Qiu QJ, Fan XW, Jia SR, Tan ZL. Biotechnological production and applications of microbial phenylalanine ammonia lyase: a recent review. Crit Rev Biotechnol. 2014;34(3):258–68.
14. Minami E, Ozeki Y, Matsuoka M, Koizuka N, Tanaka Y. Structure and some characterization of the gene for phenylalanine ammonia-lyase from rice plants. Eur J Biochem. 1989;185(1):19–25.
15. Liu F, Xie L, Yao Z, Zhou Y, Zhou W, Wang J, Sun Y, Gong C, Caragana korshanskii phenylalanine ammonia-lyase is up-regulated in the phenylpropanoid biosynthesis pathway in response to drought stress. Biotechnol Biotechnological Equip. 2019;33(1):842–54.
16. Hong YY, Sun KJ, Hwan KS, Sk W. Cloning and expression analysis of phenylalanine ammonia-lyase gene in the mycelium and fruit body of the edible mushroom Flammulina velutipes. Mycobiology. 2015;43(3):327–32.
17. Konishi M, Yanagisawa S. Ethylene signaling in Arabidopsis involves feedback regulation via the elaborate control of EBF2 expression by EAR3. Plant J. 2008;55(5):821–31.
18. Oh E, Zhu JY, Wang ZY. Interaction between BZR1 and PIF4 integrates brassinosteroid and environmental responses. Nat Cell Biol. 2012;14(8):802.
19. Suzu WP, Staswick PE. The role of JAR1 in jasmonoyl-L-isoleucine production during Arabidopsis wound response. Planta. 2008;227(6):1221–32.
20. Major R, Yoshida Y, Campos ML, Kapali G, Xin XF, Sugimoto K, et al. Regulation of growth–defense balance by the JASMONATE ZIM-DOMAIN (JAZ)-MYC transcriptional module. New Phytol. 2017;215(4):1533–47.
21. Hong JK, Hwang BK. Induction of enhanced disease resistance and oxidative stress tolerance by overexpression of pepper basic PR-1 gene in Arabidopsis. Physiol Plant. 2005;124(2):267–77.
22. Mitsuhashi I, Iwai T, Ueo S, Yanagawa Y, Kawanishi H, Hirose S, et al. Characteristic expression of twelve rice PR family genes in response to pathogen infection, wounding, and defense-related signal compounds (121/180). Mol Gen Genomics. 2002;279(4):415–27.
23. Djkovic-Petrovic T, Witt M, Voesenek LACJ, Fiers R. DELLA protein function in growth responses to canopy signals. Plant J. 2007;51(1):117–26.
24. Pawar RK, Shivani S, Singh KC, Sharma RK. HPTLC method for the determination of plumbagin from Plumbago zeylanica Linn. (root). Int J Pharm Pharm Sci. 2010;121:219–23.
25. Xiao-Xu LI, Jia-Zheng LI. Determination of the content of soluble sugar in sweet corn with optimized Anthrone colorimetric method. Storage Process. 2013;29:32–39.
26. Blakesley RW, Bozei JA. A new staining technique for proteins in polyacrylamide gels using Coomassie brilliant blue G250. Anal Biochem. 1977;82(2):580–2.
27. Scalbert A. Quantitative methods for the estimation of tannins in plant tissues. In: Hemingway RW, Laks PE, editors. Plant polyphenols. Basic Life Sci. vol. 59. 1992. p. 259–80.
28. Langmead B, Salzberg SL. Fast gapped-read alignment with bowtie 2. Nat Methods. 2012;9(4):357–9.
29. Wagner GP, Kin X, Lynch VJ. Measurement of mRNA abundance using RNA-Seq data: RPKM measure is inconsistent among samples. Theory Biosci. 2012;131(4):281–5.
30. Anders S, Huber W. Differential expression of RNA-Seq data at the gene level–the DESeq package. Heidelberg: European Molecular Biology Laboratory (EMBL); 2012.
31. Xue GP, Sadat S, Drenth J, McIntyre CL. The heat shock factor family from Arabidopsis thaliana: heat shock transcription factor (Hsf) gene expression during development and in response to heat and other major abiotic stresses and their role in regulation of heat shock protein genes. J Exp Bot. 2013;65(2):539–57.
32. Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2–ΔΔC(T) method. Methods. 2001;25:402–8.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.