Statistical Thermodynamic Analysis for Isothermal Hydrogenation Performances of Mg$_{2-y}$Pr$_y$Ni$_4$ Intermetallics ($y = 0.6, 0.8, 1.0$)

Nobumitsu Shojoji1,2

1LNEG, Laboratório Nacional de Energia e Geologia (National Laboratory for Energy and Geology)
2LEN, Laboratório de Energia (Laboratory for Energy), Estrada do Pão do Lumiar, 22, 1649-038, Lisboa, Portugal

Abstract Isothermal hydrogenation performances of intermetallic Mg$_{2-y}$Pr$_y$Ni$_4$ alloys with $y = 0.6, 0.8$ and 1.0 reported by Terasita et al. were analyzed on the basis of statistical thermodynamics under a simplifying a priori assumption of constant nearest neighbour H-H interaction E(H-H) in a given phase at arbitrary T aiming at characterizing basic aspects of state of H atoms in the interstitial sites in H-storage alloy. To fulfill this a priori assumption, number θ of available interstitial sites per metal atom was chosen by preliminary search attempt at the onset of the statistical thermodynamic analysis. Primary H solution in Mg$_{2-y}$Pr$_y$Ni$_4$ was analyzed by the model with $\theta = 0.15$. The chosen θ value 0.15 for the model analysis was close to be 1/6 ($=0.167$) which was half of 1/3 (=$[\text{Mg} + \text{Pr}] / \text{Mg} + \text{Pr} + \text{Ni}$) implying that about half of the (Mg + Pr)-related interstitial sites were provided as the available sites for occupation by H atoms in the primary H solution of Mg$_{2-y}$Pr$_y$Ni$_4$. On the other hand, hypostoichiometric M$_4$H$_y$ type hydride of Mg$_{2-y}$Pr$_y$Ni$_4$ was analyzed by the model with $\theta = 0.75$ and $\theta' = 0.333$ where θ' refers to the lower limiting composition of the phase. This model yielded situation with E(H-H) = 0 for any Mg$_{2-y}$Pr$_y$Ni$_4$ examined. Chosen value of θ' = 0.333 appeared to imply that the filling of Ni-related interstitial sites by H atoms started after preferential full occupation of the (Mg + Pr)-related interstitial sites by H atoms in the two-phase equilibrium range at invariable p(H$_2$) plateau during H-charging.

Keywords (Mg,Pr)$_2$Ni$_4$ intermetallics, Hydrogenation, Non-Stoichiometry, Interstitial Solid Solution, Statistical Thermodynamics

1. Introduction

Hydrogen (H) storage alloys are of strategic importance towards development of H-based energy systems with zero-CO$_2$ emission. In this context, many researchers have been investing efforts to discover adequate alloy composition to allow high H-storage capacity with favorable absorption/desorption performances.

In a recent publication, Terasita et al.[1] reported isothermal hydrogenation performances of ternary intermetallic compounds Mg$_{2-y}$Pr$_y$Ni$_4$ ($0.6 \leq y \leq 1.4$) that is considered as one of candidate H-storage alloys. In their publication, pressure-temperature-composition (PTC) relationships on H-charging/discharging cycle is presented as isotherms on P-C coordinate ($\log (p$(H$_2$)) vs. x = H/M; M = Mg$_{2-y}$Pr$_y$Ni$_4$; p(H$_2$); partial pressure of H$_2$ gas) for alloys with $y = 0.6, 0.8$ and 1.0 that maintained crystalline lattice structures during H-charging/discharging cycle (cf. Table 2 in Ref.[1]). For the Mg$_{2-y}$Pr$_y$Ni$_4$ alloys with $y = 1.2$ and 1.4, amorphization progressed during H-charging and hence alloys with these compositions had to be disregarded as reversible H-storage alloy, as such, P(C) isotherm for the alloys with $y = 1.2$ and 1.4 was not reported in Ref.[1]. In metal-hydrogen (M-H) systems, hysteretic performance is a commonplace rather than exception in H-adsorption/desorption cycle. In simplifying model for hysteresis of M-H system, hysteresis is presented for plateaus levels of p(H$_2$) representing transition between primary solid solution phase of H in M and higher hydride phase designating the equilibrium H$_2$ gas pressure p(H$_2$)$_{eq}$ for the hydride formation during ascending p(H$_2$) and the equilibrium H$_2$ gas pressure p(H$_2$)$_{eq}$ for dissociation of the hydride during descending p(H$_2$) where p(H$_2$)$_{eq}$ p(H$_2$)$_{eq}$[2]. In such simplifying model for hysteresis of M-H system, P(C) isotherm in single-phase region on H-charging and that on H-discharging are considered to be comparable to one another assuming reversible nature of the H-adsorption/desorption processes in single-phase regions (e.g., Fig. 1 and Fig. A1 in Ref.[2]).

Nevertheless, all the P(C) isotherms reported for the Mg$_{2-y}$Pr$_y$Ni$_4$ alloys with $y = 0.6, 0.8$ and 1.0 by Terasita et
al.[1] show clearly the hysteretic performance in the single-phase regions as well as in the two-phase region yielding plateaus for distinguishable p(H₂)[5] and p(H₂)[6]. Thus, in the present work, PTC relationships reported for the single-phase regions of the Mg₂Pr₃Ni₄ alloys with y = 0.6, 0.8 and 1.0 by Terashita et al.[1] were analyzed by statistical thermodynamics for the absorption process and for the desorption process separately for respective isotherms aiming at identifying the possible causes leading to hysteretic performance for H dissolution in the Mg₂Pr₃Ni₄ alloy lattice. Basic principles for statistical thermodynamic analysis are provided in a classical textbook authored by Fowler and Guggenheim[3] and desired thermodynamic parameter values of the calculation might be retrieved from NIST-JANAF Thermochemical Tables[4]. In statistical thermodynamic approach, PTC relationships in single-phase region are analyzed to derive atomistic interaction parameter values in a given phase while range of composition where two phases are co-existing (i.e., plateau p(H₂) regime in isothermal plot of PC relationship) cannot be handled by statistical thermodynamics unlike by conventional thermodynamics.

Statistical thermodynamic analyses were made for extensive range of MH₃ and MZₓH₄ under standardized a priori assumption of constant nearest neighbor (n.n.) H-H interaction energy E(H-H) within a phase at respective temperature T where M might be pure metal or substitutional alloy of type AₓBᵧ and Z refers to another interstitial element besides H[5-23]. At the onset of the statistical thermodynamic analysis, number θ of interstitial sites available for occupation by H atoms per M atom is chosen to fulfill the a priori assumption of constant E(H-H) within a phase by trial-and-error plotting of A(x,T) = RT ln |p(H₂)ⁿ/²(θ - x)/x| against x at an arbitrary T to find θ value yielding linear A(x,T) vs. x relationship in which slope of the plot refers to E(H-H) as explained in some detail later in Chapter 2.

There is no first-principle-based justification for validity of the a priori assumption of constancy of E(H-H) within a phase at arbitrary T on the statistical thermodynamic modeling. In fact, in some earlier statistical thermodynamic analyses made for interstitial non-stoichiometric compounds MX₃ by other authors, θ was assumed arbitrarily on the basis of crystal lattice structure consideration and, when slope change of A(x,T) vs. x plot with composition x was detected, it was accepted as the inherent variation of E(X-X) with respect to composition x. Normally, E(X-X) tended to become less attractive on going from dilute range of X to higher X concentration range in the same phase MX₃ wherein such evaluation and this trend was appreciated as the consequence of rising elastic strain in the lattice with increasing x in the same phase. However, noting the reality that phase change even between liquid and solid is involved with enthalpy difference of up to mere 20 kJ·mol⁻¹(e.g., Ref.[4] and Fig. 1 in Ref.[24]), it would be more natural and straightforward to accept that change in E(X-X) of non-stoichiometric interstitial compound with x at a given T would end up with phase transformation rather than being maintained in a specified crystal lattice structure. Further, set of statistical thermodynamic interaction parameter values estimated on the basis of the simplifying a priori assumption of constant E(H-H) for extensive range of metals and alloys appear to be self-consistent among themselves[5-24]. Thus, in this work, PC isotherms reported for the Mg₂Pr₃Ni₄ alloys with y = 0.6, 0.8 and 1.0 by Terashita et al.[1] are analyzed on the basis of statistical thermodynamics with the a priori assumption of constant E(H-H) within a phase at arbitrary T.

2. Statistical Thermodynamic Analysis

Noting the reality that the statistical thermodynamic analysis procedure is not so widely known as the conventional thermodynamic analysis procedure among materials researchers, essence of the statistical thermodynamic analysis procedure is reviewed briefly in the following.

In the statistical thermodynamics, partition function PF for condensed phase (either solid or liquid) under consideration is composed taking into account pairwise nearest neighbor atomic interactions i-j between the constituents, i and j. Then, chemical potential μ(i) of the constituent element i in the condensed phase is derived through partial differentiation of PF with respect to the number nᵢ of the constituent element i. Subsequently, μ(i) in the condensed phase is put equal to μ(i) in the gas phase.

The expression for μ(X) of ideal diatomic gas X₂ is readily made available in the classical textbook authored by Fowler and Guggenheim[3]. The detailed derivation procedure of μ(X) in the condensed phase MX₃ might be referred to elsewhere[7,11]. Anyway, the statistical thermodynamic equilibrium condition is eventually reduced to the following Eq.(1) for the purpose of analyzing H solution under consideration[5-23]

\[A(x,T) = RT \ln \left| \frac{\rho(H_2)}{[(\alpha^2\rho H_2)^{3/2}h^5]} \right| \cdot \frac{Q}{\Delta E^c \theta H} \] (2)

\[K = g \cdot \frac{[\Delta(H_2)] - 2 \cdot RTC(T)}{Q - RT \ln \theta H} \] (3)

\[C(T) = -(1/2) \ln \left(\frac{[\Delta(H_2)]^{3/2}h^5}{h^5} \right) \left(\frac{(T^2/\theta H)(1 + \Theta H/3T)}{\Theta H/4T + (1/2) \ln [1 - \exp(-\Theta H/T)]} \right) \] (4)

where values for the dissociation energy D(H₂) (kJ·mol⁻¹) of H₂ molecule per mole, characteristic temperature Θ H (K) for rotation of H₂ molecule and characteristic temperature Θ (K) for vibration of H₂ molecule might be taken from available thermodynamic table[4]. Definitions of symbols used throughout the text are listed in the APPENDIX.

To start the statistical thermodynamic analysis using Eq.(1), the value for the parameter θ must be chosen adequately to yield linear A(T) vs. x isotherms. This is to fulfill
the a priori assumption of constant $E(H-H)$ over a range of homogeneity composition x at a given T for MH$_x$.

3. General Features of the PC Isotherms for H Solutions in Mg$_{2-y}$Pr$_y$Ni$_4$Alloy Lattice ($y = 0.6, 0.8$ and 1.0)

To carry out statistical thermodynamic analysis for the MH$_x$ lattice, it was desirable to convert the graphically presented PC isotherms for the Mg$_{2-y}$Pr$_y$Ni$_4$ alloys by Terashita et al.[1] into numerical tables as summarized in Tables 1 (for $y = 0.6$), 2 (for $y = 0.8$) and 3 (for $y = 1$). The data were read from magnified PC isotherms presented in Ref.[1] as Figs. 3-5 by cutting the mesh of x ($= H/M$) with interval 0.025 to read $p(H_2)$ value while finer mesh interval 0.0125 was taken partially for primary H solution range in MgPrNi$_4$ to acquire sufficient number of data points for the analysis. With this procedure, introduction of certain extent of error in reading the experimental data presented in graphical form is inevitable but, as $p(H_2)$ enters in the calculation formula of Eq.(1) in form of $\log[p(H_2)]^{1/2}$, the error margin introduced by the graphical data reading into the calculation results must remain relatively small being held in acceptable level.

Table 1. Isothermal PC relationships for Mg$_{2-y}$Pr$_y$Ni$_4$ alloy with $y = 0.6$, charging and on H-discharging read from Fig. 3 in the publication by Terashita et al.[1]. The $p(H_2)$ values are indicated with bold letters where there was no distinction between the H-charging process and the H-discharging process. Shaded data were not used for the analysis.

$x = H/M$	$p(H_2)$ (atm)					
	323 K	313 K	293 K			
	absorption	desorption	absorption	desorption	absorption	desorption
0.010	0.30	0.30	------	------	------	------
0.025	0.90	0.90	0.21	------	0.10	------
0.050	1.8	1.8	0.95	0.36	0.45	------
0.075	3.0	2.2	1.7	1.0	0.75	------
0.100	3.8	2.8	1.9	1.3	0.90	0.22
0.125	4.5	3.3	2.2	1.8	1.1	0.31
0.150	5.2	3.9	2.9	2.0	1.2	0.55
0.175	5.5	4.0	3.5	2.4	------	0.65
0.450	7.5	6.5	------	------	------	------
0.475	8.5	7.5	------	------	------	------
0.500	12	12	4.2	------	------	------
0.525	19	19	5.2	3.2	1.9	------
0.550	29	29	7.5	4.8	2.4	1.2
0.575	51	51	12	6.8	3.6	1.9
0.600	------	------	22	12	6.0	3.2
0.625	------	------	55	40	13	7.0
0.650	------	------	------	------	30	20

$M = Mg_1Pr_{0.8}Ni_4$

Table 2. Isothermal PC relationships for Mg$_{2-y}$Pr$_y$Ni$_4$ alloy with $y = 0.8$, on charging and on H-discharging read from Fig. 4 in the publication by Terashita et al.[1]. Shaded data were not used for the analysis with $\theta = 0.15$.

$x = H/M$	$p(H_2)$ (atm)					
	353 K	333 K	313 K			
	absorption	desorption	absorption	desorption	absorption	desorption
0.075	1.9	------	0.75	0.33	------	0.10
0.100	3.5	1.8	1.8	0.80	------	0.30
0.125	5.6	2.7	2.7	1.3	------	0.48
0.150	7.5	3.9	3.9	1.7	------	0.65
0.175	------	4.8	4.8	2.1	------	0.80
0.550	12	------	4.9	3.0	3.2	------
0.575	17	7.5	7.5	3.8	4.8	1.6
0.600	29	14	14	7.0	6.8	2.6
0.625	48	35	25	14	12	4.5
0.650	------	------	36	27	19	10
0.675	------	------	80	75	29	20
0.700	------	------	------	------	52	45

$M = Mg_1Pr_{0.8}Ni_4$
Table 3. Isothermal PC relationships for Mg$_{2-3x}$Pr$_y$Ni$_4$ alloy with $x = 1.0$ on H-charging and on H-discharging read from Fig. 5 in the publication by Terashita et al.$^{[1]}$ Shaded data were not used for the analysis with $θ = 0.15$

$x = H/M$	$ρ(H_2)$ (atm)						
	373 K	353 K	323 K				
absorption	desorption	absorption	desorption	absorption	desorption		
0.050	0.85	-----	0.40	-----	-----	-----	
0.075	1.9	-----	0.82	-----	0.28	-----	
0.0875	2.7	0.8	1.3	0.45	0.40	-----	
0.100	3.2	1.2	1.8	0.60	0.60	-----	
0.1125	4.0	1.6	2.4	0.90	0.85	-----	
0.125	6.0	2.4	3.2	1.2	1.1	-----	
0.150	7.0	3.3	3.5	1.8	-----	-----	
0.175	7.8	-----	-----	-----	2.0	-----	
0.600	-----	-----	-----	6.2	-----	1.7	0.68
0.625	11	5.8	8.0	4.5	2.2	0.85	
0.650	18	11	15	10	4.0	2.2	
0.675	33	28	32	28	18	16	

$M = Mg_{2-3x}Pr_yNi_4$

Although Terashita et al.$^{[1]}$ carried out the isothermal hydrogenation experiments for the Mg$_{2-3x}$Pr$_y$Ni$_4$ alloys with $y = 1.2$ and 1.4 as well, they did not report PC isotherms for the alloys with these compositions because of amorphization of the alloy lattice during the H-charging process and, as the consequence, reversible cyclic H-charging/discharging was not possible.

Following features are noticeable regarding isothermal hydrogenation performances for the Mg$_{2-3x}$Pr$_y$Ni$_4$ alloys with $y = 0.6$, 0.8 and 1.0 in Tables 1 - 3:

i) primary solid solubility of H into these M lattices extended up to $x = 0.2$,

ii) hydride phase is with the composition range extending between $x = 0.5$ and $x = 0.75$,

iii) PC isotherms showed hysteretic performances on H-charging and on H-discharging as well as for two-phase region ($ρ(H_2)^x < ρ(H_2)^y$).

Although not analyzed in the present work, Terashita et al.$^{[1]}$ reported PC isotherms for the Mg$_{2-3x}$Pr$_y$Ni$_4$ alloys with $y = 1.0$ at $T = 298$ K and 273 K (Fig. 6 in Ref.$^{[1]}$) demonstrating presence of even higher hydride phase with x around 1 (mono-hydride MH) besides the hydride phase with the composition range extending between $x = 0.5$ and $x = 0.75$ (hypo-stoichiometric M_xH_y).

Noting these features of the isothermal hydrogenation performances of the Mg$_{2-3x}$Pr$_y$Ni$_4$ alloys with $y = 0.6$, 0.8 and 1.0, following statistical thermodynamic analysis shall be made individually for the primary solid solubility range up to $x = 0.2$ and for the M_xH_y-type hydride phase with composition range between $x = 0.5$ and $x = 0.75$ distinguishing the absorption isotherm and the desorption isotherm.

4. Analysis for Primary H Solution in Mg$_{2-3x}$Pr$_y$Ni$_4$Lattice ($x < 0.2$; $y = 0.6$, 0.8 and 1.0)

To commence statistical thermodynamic analysis process, adequate value for $θ$ must be chosen first of all. A trial-and-error test for evaluating A vs. x relationships defined by Eq.(1) was done using sets of data for Mg$_{1.4}$Pr$_{0.6}$Ni$_4$ at $T = 323$ K in the range of $x < 0.2$ listed in Table 1. This set of data showed the smallest extent of hysteresis between the H absorption and the H desorption processes.

![Figure 1.](image)

Figure 1. A vs. x relationships estimated for isothermal PC data at $T = 323$ K for primary H solution in Mg$_{2-3x}$Pr$_y$Ni$_4$ alloy lattice on H-absorption and on H-desorption (Table 1) with different choices of $θ$ parameter value. Best-fit linear relationships were calculated using all the data points plotted herein.

Search for $θ$ yielding linear A vs. x isothermal relationship was started from $θ = 0.25$ noting that the reported PC isotherms in Fig. 3 in Ref.$^{[1]}$ reached a plateau at around $x = 0.2$.

As shown in Fig. 1, slope referring to \(E(H-H) \) varied with \(x \) with the choice of \(\theta = 0.25 \) and 0.20 implying that such value of \(\theta \) could not be accepted for the analysis. However, when \(\theta \) was taken to be 0.15, linear \(A \) vs. \(x \) relationship was established for both the absorption and for the desorption. By least-mean-squares liner fitting procedure, expression for \(A \) vs. \(x \) relationship for \(Mg_{1.4}Pr_{0.6}Ni_4 \) at \(T = 323 \) K for absorption and that for desorption, respectively, are determined to be

\[
A(Mg_{1.4}Pr_{0.6}Ni_4; x, 323 \text{ K}; \text{abs.}; \theta = 0.15) = 6.060 - 63.884x \text{(kJ·mol}^{-1}\text{)}
\]

(6)

\[
A(Mg_{1.4}Pr_{0.6}Ni_4; x, 323 \text{ K}; \text{des.}; \theta = 0.15) = 6.086 - 68.442x \text{(kJ·mol}^{-1}\text{)}
\]

(7)

As might be understood from the above attempt for determining \(\theta \) value for the primary \(H \) solution the \(Mg_{1.4}Pr_{0.6}Ni_4 \) lattice, \(\theta \) for the absorption process and \(\theta \) for the desorption process were equally 0.15 and \(E(H-H) \) on the desorption and that on the absorption were comparable to one another showing only slight difference between them. \(E(H-H) \) in the desorption process (Eq. (7)) was slightly more attractive than that in the absorption process (Eq. (6)). This order of \(E(H-H) \) on the absorption and on the desorption at a given \(T \) appears rational suggesting that \(n \cdot H \) interaction was more attractive in the \(M \) lattice during \(H \)-discharging than in the \(M \) lattice during \(H \)-charging not being in contradiction to the fact that \(p(H_2)^2 > p(H_2) \).

![Figure 2](image)

Figure 2. \(A \) vs. \(x \) relationships estimated for isothermal \(PC \) data at \(T = 353 \) K for primary \(H \) solution in \(MgPrNi_4 \) alloy lattice on \(H \)-absorption and on \(H \)-desorption (Table 3) with different choices of \(\theta \) parameter value. Best-fit linear relationships were calculated excluding the data points at \(x = 0.05 \).

Similar attempt of search for \(\theta \) parameter value was made for primary \(H \) solution in \(MgPrNi_4 \) lattice using \(PC \) isotherm at \(T = 353 \) K. As plotted in Fig. 2, \(\theta = 0.15 \) appears to be the adequate choice for the \(\theta \) value like for \(H \) solution in \(Mg_{1.4}Pr_{0.6}Ni_4 \) to yield linear \(A \) vs. \(x \) relationships

\[
A(MgPrNi_4; x, 353 \text{ K}; \text{abs.}; \theta = 0.15) = 4.026 - 54.306x \text{(kJ·mol}^{-1}\text{)}
\]

(8)

\[
A(MgPrNi_4; x, 353 \text{ K}; \text{des.}; \theta = 0.15) = 4.026 - 54.306x \text{(kJ·mol}^{-1}\text{)}
\]

(9)

Like for the \(Mg_{1.4}Pr_{0.6}Ni_4 \) lattice, \(E(H-H) \) during \(H \)-discharging (Eq.(9)) was more attractive than that during \(H \)-charging (Eq.(8)) for the \(MgPrNi_4 \).

It is somewhat surprising to know that \(\theta = 0.15 \) appeared to be valid for analysis of primary \(H \) solution in \(MgPrNi_4 \) as well as that for \(Mg_{1.4}Pr_{0.6}Ni_4 \) noting that, in the earlier statistical thermodynamic analyses for \(A_1B_2X_4 \) type non-stoichiometric interstitial solutions[9-12,16,19,20,22], \(\theta \) varied with \(y \). As such, in the present cases for \(H \) solutions in \(Mg_{1.4}Pr_{0.6}Ni_4 \) and \(MgPrNi_4 \), \(\theta = 0.15 \) was evaluated to yield equally the linear \(A \) vs. \(x \) relationships for \(y = 0.6 \) and 1.0. Thus, the analysis for the primary \(H \) solution in \(Mg_{1.4}Pr_{0.6}Ni_4 \) was decided to be done also with \(\theta = 0.15 \). Reason for why \(\theta \) for primary \(H \) solution in \(Mg_{2.3}Pr_{0.7}Ni_4 \) alloys with \(y = 0.6, 0.8 \) and 1.0 held constant with \(y \) is not clear. The reason for this might be speculated with reference to the outer shell electronic configurations of elemental states of Mg, Pr and Ni which are \(2p^63S^2, 4f^55p^66s^2 \) and \(3p^64d^84s^2 \), respectively, where incompletely filled electron shell, \(4f \) in Pr and \(3d \) in Ni, are presented with **bold** letters to distinguish from completely filled outermost p and s electron shells. That is, Mg and Pr distributed over the same metal sub-lattice positions on account of similarity of the outermost electron shells although with scarcely populated \(4f \) shell of Pr. On the other hand, Ni distributed over the other group of metal sub-lattice positions on account of existence of nearly filled \(3d \) shell. The above cited electron configurations for Mg, Pr and Ni are the electron configurations in the elemental state and hence they must be certainly modified in the \(Mg_{2.3}Pr_{0.7}Ni_4 \) intermetallic alloy lattice. Thus, reason for why the \(\theta \) parameter value for the analysis of the primary \(H \) solution in \(Mg_{2.3}Pr_{0.7}Ni_4 \) alloys with varying \(y \) in the range between 0.6 and 1.0 was estimated to hold constant at 0.15 must be elucidated somehow by further investigation.

Table 4 summarizes the thus-evaluated \(A \) vs. \(x \) relationships for primary \(H \) solutions in \(Mg_{2.3}Pr_{0.7}Ni_4 \) alloys with \(y = 0.6, 0.8 \) and 1.0 under assumption of \(\theta = 0.15 \). The analysis was made for absorption and for desorption separately for \(H \) solutions in \(Mg_{2.3}Pr_{0.7}Ni_4 \) alloys at respective \(T \). The \(A \) vs. \(x \) relationships given in parentheses in Table 4 were derived with mere two data points and thence they are not used for the further analysis in evaluating \(K \) vs. \(T \) relationship. The \(A \) vs. \(x \) relationship was not evaluated for the \(H \)-charging in \(Mg_{1.2}Pr_{0.8}Ni_4 \) at \(T = 313 \) K and for \(H \) desorption in \(MgPrNi_4 \) at \(T = 323 \) K on account of unavailability of the \(PTC \) data.

Corresponding graphical presentations of \(A \) vs. \(x \) relationships are given in Figs. 3-5. Looking at Table 4, it was judged that \(A(x,T;\theta = 0.15) \) vs. \(x \) relationships acquired during the \(H \)-discharging process for the primary \(H \) solutions in any examined \(Mg_{2.3}Pr_{0.7}Ni_4 \) were insufficient for further analysis to evaluate the \(K \) vs. \(T \) relationships. Thus, further analysis for the primary \(H \) solution in \(Mg_{2.3}Pr_{0.7}Ni_4 \) was done for the \(H \)-charging data for \(y = 0.6 \) and \(y = 1.0 \) alone but not for \(y = 0.8 \).
Table 4. Calculated A as a function of x at given T for primary H solution in Mg$_{1.4}$Pr$_{0.6}$Ni$_4$ lattice with $y = 0.6, 0.8$ and 1.0 for absorption and desorption processes of H reported by Terashita et al.\cite{1}

T (K)	$D(H)/2 - RTC(T)$ (kJ/mol)	Mg$_{1.4}$Pr$_{0.6}$Ni$_4$	Mg$_{1.2}$Pr$_{0.8}$Ni$_4$	MgPrNi$_4$
373	535.829	6.072 - 65.365x		
	des.	4.020 - 60.354x		
353	517.429		5.792 - 62.749x	4.026 - 54.306x
	des.		(7.205 - 83.772x)	3.985 - 66.885x
333	499.029		3.837 - 53.656x	
	des.		2.498 - 51.161x	
323	489.829	6.000 - 63.884x		2.053 - 48.037x
	des.	6.086 - 68.442x		
313	480.629	5.299 - 65.431x		
	des.	(3.204 - 29.082x)		
293	462.229	3.946 - 60.116x		
	des.	(3.725 - 72.581x)		

Figure 3. A vs. x relationships estimated for isothermal PC data at different T for primary H solution in Mg$_{1.4}$Pr$_{0.6}$Ni$_4$ alloy lattice on H-absorption and H-desorption (Table 1) with $\theta = 0.15$. Best-fit linear relationship at $T = 323$ K on H-absorption was calculated using the all data points plotted herein whereas best-fit linear relationships at $T = 313$ K and 293 K on H-absorption were calculated excluding the data points at $x < 0.05$.

Figure 4. A vs. x relationships estimated for isothermal PC data at different T for primary H solution in Mg$_{1.2}$Pr$_{0.8}$Ni$_4$ alloy lattice on H-absorption and H-desorption (Table 2) with $\theta = 0.15$. Best-fit linear relationships at $T = 353$ K and 333 K on H-absorption were calculated using the all data points plotted herein.

Figure 5. A vs. x relationships estimated for isothermal PC data at different T for primary H solution in MgPrNi$_4$ alloy lattice on H-absorption and H-desorption (Table 3) with $\theta = 0.15$. Best-fit linear relationships at $T = 373$ K and 353 K on H-absorption were calculated excluding the data points at $x < 0.05$.

Figure 6. K vs. T relationships estimated for primary H solutions in Mg$_{1.4}$Pr$_{0.6}$Ni$_4$ and MgPrNi$_4$ alloy lattices on H-absorption with $\theta = 0.15$.

From these estimation results, K vs. T relationships were determined as exhibited in Fig. 6 and, as such, values of Q and $R \ln f_H$ are evaluated to be

\[
Q(\text{Mg}_{1.4}\text{Pr}_{0.6}\text{Ni}_4) = -208.753 \text{ (kJ·mol}^{-1}\text{)} \tag{10}
\]

\[
R \ln f_H(\text{Mg}_{1.4}\text{Pr}_{0.6}\text{Ni}_4) = +852 \text{ (J·K}^{-1} \cdot \text{mol}^{-1}) \tag{11}
\]

\[
Q(\text{MgPrNi}_4) = -216.321 \text{ (kJ·mol}^{-1}\text{)} \tag{12}
\]

\[
R \ln f_H(\text{MgPrNi}_4) = +841 \text{ (J·K}^{-1} \cdot \text{mol}^{-1}) \tag{13}
\]
As such, Q value was ca. -210 kJ mol$^{-1}$ and R in f_{H} was around $+850$ J K$^{-1}$ mol$^{-1}$ for either $\text{Mg}_{1.4} \text{Pr}_{0.6} \text{Ni}_{4}$ or MgPrNi_{4}. Thus, although values of Q and R in f_{H} for $\text{Mg}_{1.2} \text{Pr}_{0.8} \text{Ni}_{4}$ were not estimated on account of scarcity of data points, they must be comparable to those estimated for $\text{Mg}_{1.4} \text{Pr}_{0.6} \text{Ni}_{4}$ and MgPrNi_{4} (i.e., $Q \approx -210$ kJ mol$^{-1}$ and R in $f_{H} \approx +850$ J K$^{-1}$ mol$^{-1}$).

The virtual constancy of values of Q and R in f_{H} for the primary H solutions in $\text{Mg}_{2.3} \text{Pr}_{0.7} \text{Ni}_{4}$ with respect to y in the range of y between 0.6 and 1.0 does not seem to be incompatible with the constancy of the chosen value of θ to be 0.15 for these alloy lattices with varying y in the range between 0.6 and 1.0.

5. **Analysis for Hypo-stoichiometric M_{4}H_{3} Type Hydride of $\text{Mg}_{2.3} \text{Pr}_{0.7} \text{Ni}_{4}$ ($0.45 < x < 0.75; y = 0.6, 0.8$ and 1.0)**

Search of θ for analysis of hypo-stoichiometric M_{4}H_{3} type hydride of $\text{Mg}_{2.3} \text{Pr}_{0.7} \text{Ni}_{4}$ ($0.45 < x < 0.75; y = 0.6, 0.8$ and 1.0) was done in the same fashion as that for the primary H solutions described above in Chapter 4. For this, the analysis was done for the P-isotherms for H-absorption and H-desorption at $T = 323$ K for $\text{Mg}_{1.4} \text{Pr}_{0.6} \text{Ni}_{4}$ and at $T = 353$ K for MgPrNi_{4}.

As plotted in Fig. 7, A vs. x relationships for these isotherms were calculated with $\theta = 0.75$ and with $\theta = 1.0$ for the sake of comparison. It looks that the data point for $x = 0.45$ for $\text{Mg}_{1.4} \text{Pr}_{0.6} \text{Ni}_{4}$ at $T = 323$ K was out of content. Thence, it was discarded for evaluation of the A vs. x relationships for $\text{Mg}_{1.4} \text{Pr}_{0.6} \text{Ni}_{4}$.

At either choice of $\theta = 0.75$ or 1.0, linear A vs. x relationships were drawn for the H solutions in hypo-stoichiometric M_{4}H_{3} type hydride of $\text{Mg}_{2.3} \text{Pr}_{0.7} \text{Ni}_{4}$ yielding positive $E(H-H)$ (repulsive $n.n.$ H-H interaction) in contrast to negative $E(H-H)$ for the primary H solutions in $\text{Mg}_{2.3} \text{Pr}_{0.7} \text{Ni}_{4}$ (Figs. 1 and 2). Thus, it was felt difficult to decide which θ value had to be chosen for further analysis. Noting that MH type mono-hydride phase would exist at least at $T = 273$ K and at $T = 298$ K for MgPrNi_{4} (Fig. 6 in Ref. 11) to which $\theta = 1.0$ might be assigned for the analysis, we decided to undertake analysis for the M_{4}H_{3} type hypo-stoichiometric hydride of $\text{Mg}_{2.3} \text{Pr}_{0.7} \text{Ni}_{4}$ with the choice of $\theta = 0.75$.

Figure 8 plots the calculated A vs. x relationships for M_{4}H_{3} type hypo-stoichiometric hydrides of $\text{Mg}_{2.3} \text{Pr}_{0.7} \text{Ni}_{4}$ at $y = 0.6, 0.8$ and 1.0 with the choice of $\theta = 0.75$. In most cases, $E(H-H)$ appears to be positive (repulsive) while $E(H-H)$ for $\text{Mg}_{1.2} \text{Pr}_{0.8} \text{Ni}_{4}$ at $T = 313$ K was estimated to be slightly negative (attractive).

Figure 9. K vs. T relationships estimated for hypo-stoichiometric M_{4}H_{3} alloy lattice with $M = \text{Mg}_{0.7} \text{Pr}_{0.6} \text{Ni}_{4}$, $\text{Mg}_{1.2} \text{Pr}_{0.9} \text{Ni}_{4}$, and MgPrNi_{4} with $\theta = 0.75$.
The data set for the M₄H₅ type hypo-stoichiometric hydrides of Mg₂₋₃Pr₅Ni₄ listed in Table 5 appeared to be lacking regularity. Graphical presentation of K-T relationships for M₄H₅ type hypo-stoichiometric hydrides of Mg₂₋₃Pr₅Ni₄ in Fig. 9 also does not seem to show any regularity with respect to variation of y. Hence, reconsideration for the statistical modelling for the M₄H₅ type hypo-stoichiometric hydride of Mg₂₋₃Pr₅Ni₄ was felt desirable.

When comparing values of Q and R ln f₁ for Mg₁₋₃Pr₀.₆Ni₄ between the primary H solution and the M₄H₅ type hypo-stoichiometric hydride (Table 5), Q was more negative (i.e. E(H-M) was more attractive) in the M₄H₅ than in the primary H solution and R ln f₁ was positive in both the primary H solution and the M₄H₅ hydride. Table 6 reproduces the statistical thermodynamic analysis results for LnCo₅₄ₓ reported earlier in Ref.[16]. The analysis for LnCo₅₄ₓ was done using modified basic formula as below in place of Eq.(1)

\[A(x,T) = RT \ln [\frac{[p(H₂)]^{1/2}(θ - x)(θ - 0')}{g + βx E(H-H)}] \]

where 0 represents the number of interstitial sites per M atom available for occupation of H atoms referring to the upper composition limit of the phase while 0' represents the number of interstitial sites per M atom available for occupation of H atoms referring to the lower composition limit of the phase[9, 12, 16].

Table 5. Estimated values for the statistical thermodynamic parameters, Q (kJ mol⁻¹) and R ln f₁ (J K⁻¹ mol⁻¹), for primary solid solution MH₄ with 0 = 0.15 and for hypo-stoichiometric hydride MH₅ with 0 = 0.75 using the PTC data reported for absorption process for M = MgₓPrₓNi₄ by Terashita et al.[1]

M	T (K)	primary solid solution MH₄ (θ = 0.15)	hypo-stoichiometric hydride MH₅ (θ = 0.75)
Mg₁₋₃Pr₀.₆Ni₄	293-323	-208.753	+852
Mg₁₋₃Pr₀.₆Ni₄	313-353	-----	-183.232
MgPrNi₄	323-373	-216.321	+841

Table 6. Values of statistical thermodynamic parameters, Q and R ln f₁, estimated for LnCo₅₄ₓ type intermetallic hydride (reproduced from Table 5 in Ref.[16]).

LnCo₅₄ₓ	x	θ	0'	Q (kJ mol⁻¹)	R ln f₁ (J K⁻¹ mol⁻¹)
DyCo₅₄ₓ	1.1-0.75	1.05	0.725	-230.4	-70.2
ErCo₅₄ₓ	1.1-0.75	1.05	0.775	-266.5	-174.4
DyCo₅₄ₓ	0.5-0.25	0.475	0.25	-215.2	+22.3
ErCo₅₄ₓ	0.5-0.25	0.475	0.275	-212.8	+16.6

θ: number of interstitial sites per M atom available for occupation of H atoms referring to the upper composition limit of the phase,
θ': number of interstitial sites per M atom available for occupation of H atoms referring to the lower composition limit of the phase.

The data set for the M₄H₅ type hypo-stoichiometric hydrides of Mg₂₋₃Pr₅Ni₄ listed in Table 5 appeared to be lacking regularity. Graphical presentation of K-T relationships for M₄H₅ type hypo-stoichiometric hydrides of Mg₂₋₃Pr₅Ni₄ in Fig. 9 also does not seem to show any realistic regularity with respect to variation of y. Hence, reconsideration for the statistical modelling for the M₄H₅ type hypo-stoichiometric hydride of Mg₂₋₃Pr₅Ni₄ was felt desirable.

When comparing values of Q and R ln f₁ for Mg₁₋₃Pr₀.₆Ni₄ between the primary H solution and the M₄H₅ type hypo-stoichiometric hydride (Table 5), Q was more negative (i.e. E(H-M) was more attractive) in the M₄H₅ than in the primary H solution and R ln f₁ was positive in both the primary H solution and the M₄H₅ hydride. Table 6 reproduces the statistical thermodynamic analysis results for LnCo₅₄ₓ reported earlier in Ref.[16]. The analysis for LnCo₅₄ₓ was done using modified basic formula as below in place of Eq.(1)

\[A(x,T) = RT \ln [\frac{[p(H₂)]^{1/2}(θ - x)(θ - 0')}{g + βx E(H-H)}] \]

where 0 represents the number of interstitial sites per M atom available for occupation of H atoms referring to the upper composition limit of the phase while 0' represents the number of interstitial sites per M atom available for occupation of H atoms referring to the lower composition limit of the phase[9, 12, 16].

One of remarkable aspects noticeable in Table 6 is that R ln f₁ for LnCo₅₄ₓ in the higher hydride phase (0.75 < x < 1.1) was negative while that in the lower hydride phase (0.25 < x < 0.5) was positive. This was interpreted as suggesting drastic modification of electronic surroundings around H atom from the former to the latter. It might be that, in the higher hydride phase with x > 0.75, filling of Ln-related sites ([Ln]/[Ln + Co] = 1/4) might have proceeded with Co-related sites ([Co]/[Ln + Co] = 3/4) being fully occupied preferentially during isothermal increase of ρ(H₂) judging from the values of θ and θ' chosen for the model(θ = 1.05 and θ' = 0.75 ± 0.025; Table 6) whereas, in the lower hydride phase of LnCo₂ₓ, partial (probably, in regular fashion) filling of the Co-related sites with H atoms have been in progress (θ ≈ 0.5 and θ' = 0.25).

Remembering composition procedures for the modified statistical model for the H solutions in LnCo₅₄ₓ intermetallic lattice by specifying θ' referring to the lower limiting H solubility of the phase besides referring to the higher limiting H solubility of the phase[9,12,16], introduction of θ' parameter for the statistical model for the M₄H₅ type hypo-stoichiometric hydride of Mg₂₋₃Pr₅Ni₄ besides θ = 0.75 was sought.

Noting that lattice parameter of the Mg₂₋₃Pr₅Ni₄ Laves phase increased linearly with the composition y following the Vegard’s rule (Fig. 2 in Ref.[1]), Mg and Pr substituted one type of metal sub-lattice positions randomly while Ni occupied another type of metal sub-lattice positions. Ratio of [Mg + Pr]/[Mg + Pr + Ni] in the Mg₂₋₃Pr₅Ni₄latticke was 1/3 (= 0.333). Thus, modified model calculation was attempted with the choice of θ = 0.75 and θ' = 0.333.

Table 6. Estimated values of A(x,T; θ = 0.75, θ' = 0.333) using Eq.(14) for hypo-stoichiometric Ln₄H₅ type hydride of MgₓPr₆Ni₄ and calculated values of g by simple arithmetic averaging of A' values under assumption of E(H-H) = 0

x	A(x,T; θ = 0.75, θ' = 0.333) for MgₓPr₆Ni₄(kJ mol⁻¹)					
0.45	5.234					
0.475	4.649					
0.50	4.240					
0.525	4.380					
0.55	4.303					
0.575	4.409					
0.60	4.499					
0.625	4.303					
0.65	4.240					
g(kJ mol⁻¹)	4.566	4.506	2.634	1.946	0.996	0.234

Table 7. Estimated values of A(x,T; θ = 0.75, θ' = 0.333) using Eq.(14) for hypo-stoichiometric M₄H₅ type hydride of MgₓPr₆Ni₄ and calculated values of g by simple arithmetic averaging of A' values under assumption of E(H-H) = 0

x	A(x,T; θ = 0.75, θ' = 0.333) for MgₓPr₆Ni₄(kJ mol⁻¹)					
0.45	5.234					
0.475	4.649					
0.50	4.240					
0.525	4.380					
0.55	4.303					
0.575	4.409					
0.60	4.499					
0.625	4.303					
0.65	4.240					
g(kJ mol⁻¹)	4.566	4.506	2.634	1.946	0.996	0.234
The model calculation results made for the non-stoichiometric M_4H_3 type hydride of $Mg_{1.4}Pr_{1.6}Ni_4$ with $\theta = 0.75$ and $\theta' = 0.333$ are summarized in Table 7. It looked that, with this modified model with $\theta = 0.75$ and $\theta' = 0.333$, slope of A' vs. x at any given T became practically 0 (i.e., $E(H-H) = 0$). At the bottom row in Table 7, averaged values of A' at given T were listed as the values of g defined in Eq.(2). The values of g calculated in the similar fashion for $Mg_{2.0}Pr_{1.0}Ni_4$ at $y = 0.8$ and 1.0 as well as at $y = 0.6$ are summarized in Table 8 together with K values. At the bottom of Table 8, calculated K vs. T relationships are given separately for the H-absorption process and for the H-desorption process.

As seen in Table 8, the modified model with $\theta = 0.75$ and $\theta' = 0.333$ appeared to yield K vs. T relationships showing certain regularity with respect to variation of y in $Mg_{2.0}Pr_{1.0}Ni_4$. Graphical presentation of the drawn K vs. T relationships on the basis of this model (Fig. 10) also seem to be in better order than that drawn on the basis of a simplifying model with $\theta = 0.75$ presented in Fig. 9.

Following trends are noticeable for the M_4H_3 type hypo-stoichiometric hydrides of $Mg_{2.0}Pr_{1.0}Ni_4$ in Table 8.

i) Q value tended to become more negative (that is, increasing extent of stabilization of H atoms in the $Mg_{2.0}Pr_{1.0}Ni_4$ lattice) with the increasing y suggesting positive contribution of Pr alloying to substitute Mg towards stabilization of H in the $Mg_{2.0}Pr_{1.0}Ni_4$ lattice.

ii) For $Mg_{2.0}Pr_{1.0}Ni_4$ with a given y, Q value for the H-discharging process was slightly more negative than that for the H-charging process.

The latter feature appears rational and acceptable noting that, on H-absorption process, H atoms are desired to be forcibly inserted into certain interstitial sites while, on H-desorption process, H atoms in certain interstitial sites have to be pulled out of the site.

6. Concluding Remarks

Isothermal hydrogenation performances of $Mg_{2.0}Pr_{1.0}Ni_4$ alloys with $y = 0.6, 0.2$ and 1.0 reported by Terashita et al.[11] were analyzed on the basis of statistical thermodynamics under an a priori assumption of constant $E(H-H)$ in a given phase at arbitrary T.

Primary H solution in $Mg_{2.0}Pr_{1.0}Ni_4$ was analyzed by the model with $\theta = 0.15$ to yield $Q = -210$ kJ·mol$^{-1}$ and $R ln \beta_i = +850$ J·K$^{-1}$·mol$^{-1}$. The chosen θ value 0.15 for the model was close to 1/6 ($=0.167$) which was half of 1/3 (=Mg + Pr)/(Mg + Pr + Ni) implying that about half of the (Mg + Pr)-related interstitial sites were provided as the available sites for occupation by H atoms in the primary H solution of $Mg_{2.0}Pr_{1.0}Ni_4$.

On the other hand, hypo-stoichiometric M_4H_3 type hydride of $Mg_{2.0}Pr_{1.0}Ni_4$ was analyzed by the model with $\theta = 0.75$ and $\theta' = 0.333$. This model yielded situation with $E(H-H) = 0$. Chosen value of $\theta' = 0.333$ appeared to imply that the filling of Ni-related interstitial sites by H atoms started after preliminary full occupation of the (Mg + Pr)-related interstitial sites by H atoms in the two-phase equilibrium range at invariable $p(H_2)$ plateau during H-charging.

Table 8. Calculated values of g and K for the hypo-stoichiometric M_4H_3 type hydrides of $Mg_{1.4}Pr_{0.6}Ni_4$ with $y = 0.6, 0.8$ and 1.0 for absorption and desorption processes of H reported by Terashita et al.[1] according to a modified statistical model with the choice of $\theta = 0.75$ and $\theta' = 0.333$ that led to $E(H-H) = 0$.

T (K)	$D(H_2)/2 \cdot RT(T)$ (kJ/mol)	g (kJ/mol)	K (kJ/mol)	
373	535.829	$Mg_{1.4}Pr_{0.6}Ni_4$	$Mg_{1.2}Pr_{0.6}Ni_4$	$Mg_{1.0}Pr_{0.6}Ni_4$
	des.			
353	517.429			
	des.			
333	499.029			
	des.			
323	489.829			
	des.			
313	480.629			
	des.			
293	462.229			
	des.			
$K(T)$				
	abs.			
	des.			

![Figure 10](image_url)
APPENDIX / List of Symbols

\(A(x,T) = RT \ln \left\{ \frac{[p(H_2)]^{1/2} (1-x)/x}{(1-x)/x} \right\} \) (kJ·mol\(^{-1}\)); calculated from experimentally determined values of \(p(H_2) \), \(T \) and \(x \) for specified value of \(\theta \) using Eq.(1)

\(C(T) \): defined by eqn.(3) to represent contributions of translational, rotational and vibrational motions of \(H_2 \) molecule

\(D(H_2) \): dissociation energy of \(H_2 \) molecule per mole (kJ·mol\(^{-1}\))

\(E \): lattice energy (kJ·mol\(^{-1}\))

\(E(i-j) \): nearest neighbor pair-wise interaction energy between \(i \) and \(j \) atoms in \(MH_x \) lattice

\(f_0(T) \): partition function of \(H \) in \(MH_x \) lattice at temperature \(T \)

\(g \): parameter determined as the intercept of the \(A(T) \) vs. \(x \) plot at \(x = 0 \) using Eq.(1)

\(g(v) \): distribution function as a function of vibrational frequency \(v \) of H atom in \(MH_x \) lattice

\(h \): Planck constant

\(k \): Boltzmann constant

\(K \): parameter calculated from \(g \) using Eq.(2)

\(m_H \): mass of H atom

\(n_H \): number of H atoms in the \(MH_x \) lattice

\(n_M \): number of M atoms in \(MH_x \) lattice

\(p(H_2) \): partial pressure of ideal \(H_2 \) gas molecule (atm)

\(P-T-C \): pressure-temperature-composition

\(Q \): degree of stabilization of H atom in \(MH_x \) lattice with reference to isolated H atom in vacuum

\(R \): universal gas constant (\(= 0.0823145 \text{kJ·mol}^{-1} \cdot \text{K}^{-1} \))

\(T \): absolute temperature (K)

\(x \): atom fraction of H against M in \(MH_x \)

\(\beta \): geometrical factor determined from crystal structure consideration

\(\theta \): number of available interstitial sites for occupation by H atom per metal atom in \(MH_x \)

\(\theta_i \): characteristic temperature for rotation of \(H_2 \) molecule (\(= 85.4 \text{K} \))

\(\theta_v \): characteristic temperature for vibration of \(H_2 \) molecule (\(= 6100 \text{K} \))

\(\mu(H)^0 \): chemical potential of H atom in the condensed phase \(MH_x \)

\(\mu(H)^0 \): chemical potential of H atom in the ideal diatomic \(H_2 \) gas molecule

\(\nu \): vibrational frequency of \(H \) atom in \(MH_x \) lattice

\(\rho \): nuclear spin weight (\(= 2 \) for H while 3 for D)

\(\nu_0 \): statistical weight of tightly bound electrons around H in \(MH_x \) lattice

\(\nu_0^s \): statistical weight of electrons in \(H_2 \) molecule in normal state (\(= 1 \))

REFERENCES

[1] N. Terashita, K. Sakai, S. Tsunokake, Y. Nakamura and E. Akiba: Mater. Trans., 53 (2012) 513-517.DOI: 10.2320/ matertrans.M2011334."Hydrogenation properties of ternary intermetallic compounds \(M \text{G}_{x/2}\text{Pr}_x\text{Ni}_x \)."

[2] T. B. Flanagan and J. D. Clewley: J. Less-Common Met., 83 (1982) 127-141."Hysteresis in metal hydrides".

[3] R.H. Fowler and E.A. Guggenheim: Statistical Thermodynamics, Cambridge University Press (1949).

[4] M.W. Chase, Jr. (Ed.): NIST-JANAF Thermochemical Tables, Fourth Edition, J. Phys. Chem. Ref. Data, Monograph No. 9, Amer. Chem. Soc. and Amer. Inst. Physs., 1998.

[5] N. Shohoji: J. Less-Common Met., 90 (1983) 515-516."Comments on 'Hysteresis in metal hydrides'".

[6] N. Shohoji: J. Less-Common Met., 90 (1983) L27-L29."On the construction of a statistical model for primary solid solutions of hydrogen in the group Va transition metals (vanadium, niobium and tantalum)".

[7] N. Shohoji: Phys. Stat. Sol. (b), 118 (1983) 811-822."Statistical thermodynamic approach to some hyperstoichiometric dihydrides of lanthanides (La, Ce, Pr, Nd, Sm) and actinides (Np, Pu, Am)".

[8] N. Shohoji: Phys. Stat. Sol. (b), 119 (1983) K87-K90."Statistical thermodynamics of hydrogen solution in some lanthanides".

[9] N. Shohoji: J. Less-Common Met., 102 (1984) 53-65."Statistical thermodynamics of metal-hydrogen systems".

[10] N. Shohoji: Mater. Lett., 3 (1985) 206-208."Statistical model for the hydrogen solution in bcc Nb,\(_2\),M\(_x\) alloys (M = Al, Cu, Sn, Ni, Pd)".

[11] N. Shohoji: Z. Metallkd., 76 (1985) 192-197."Statistical thermodynamics of the very dilute interstitial solid solutions".

[12] N. Shohoji: J. Less-Common Met., 114 (1985) 249-256."The application of statistical thermodynamics to interstitial solid solutions".

[13] N. Shohoji: J. Nucl. Mater., 127 (1985) 88-96."Statistical thermodynamic study of the ternary compounds ThX\(_2\)H\(_x\) (X = C, Ni; y > 1; x < 2);".

[14] N. Shohoji: J. Mater. Sci. Lett., 5 (1986) 522-524."Interaction between hydrogen atoms in metals".

[15] N. Shohoji: J. Mater. Sci., 21 (1986) 2147-2152."Comparative study of solubilities of hydrogen, nitrogen and carbon in \(\gamma \)-iron".

[16] N. Shohoji: Surface Coatings Technol., 28 (1986) 365-382."Statistical thermodynamic aspects of hydrogen in metals".

[17] N. Shohoji and T. Marcelo: J. Mater. Sci. Lett., 6 (1987) 1251-1253."Tetragonality in crystal lattice of zirconium dihydride".

[18] M. C. Monteiro Dias and N. Shohoji: J. Mater. Sci., 27 (1992) 5154-5158."Stability of hydrogen and nitrogen in group Va metals (Cr, Mo, W) and iron-group metals (Fe, Co, Ni) evaluated by statistical thermodynamics".

[19] M. C. Monteiro Dias and N. Shohoji: Mater. Chem. Phys., 39 (1995) 193-199."Atomic configuration in hexagon-
al-close-packed TiC$_x$H$_4$ phase estimated by statistical thermodynamics”.

[20] N. Shohoji: Mater. Trans., JIM, 42 (2001) 2225-2231. “Statistical thermodynamics as a tool for evaluating atom clustering around interstitial atom”.

[21] N. Shohoji: Thin Solid Films, 518 (2010) 7167-7173.DOI: 10.1016/j.tsf.2010.06.052. “Hydrogen absorption in epitaxial bcc V (001) thin films analysed by statistical thermodynamics”.

[22] N. Shohoji: Internat. J. Mater. Eng. Technol., 7 (2012) 33-54. “Suppressed hydrogen solubility in body centred cubic Va-group metal (Nb and Ta) by alloying with W or Ru analysed on the basis of statistical thermodynamics”.

[23] N. Shohoji: Mater. Trans., 53 (2012) 1273-1277.DOI: 10.2320/matertrans.M2012071. “Statistical thermodynamic analysis for hydrogen absorption behaviour in a four monolayers (4 ML) thick bcc vanadium (110) superlattice being in contact with molybdenum layer”.

[24] N. Shohoji: Mater. Chem. Phys., 17 (1987) 391-398. “Estimation of carbon-metal interaction in the carbides of d-transition metals”.