Supporting Information

New citrinin derivatives from the deep-sea-derived fungus
Cladosporium sp. SCSIO z015

Muhammad Amina,b, Xiao-Yong Zhang,a Xin-Ya Xu,a Shu-Hua Qia,*

aCAS Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou, 510301, Guangdong, China

bUniversity of Chinese Academy of Sciences, Beijing, 100049, China

\textbf{ABSTRACT}

During the course of our search for novel bioactive compounds from marine fungi, four new citrinin derivatives, cladosporins A-D (1-4) were isolated from a culture broth of the deep-sea-derived fungus \textit{Cladosporium} sp. SCSIO z015. Their complete structural assignments were elucidated by the extensive spectroscopic investigation. The absolute configurations of 1-3 were established by quantum chemical calculations of the electronic circular dichroism (ECD) spectra. Compounds 1-4 showed weak toxicity towards brine shrimp nauplii with \textit{LC}_{50} values of 72.0, 81.7, 49.9 and 81.4 \textmu M, respectively. And 4 also showed significant antioxidant activity against \textalpha,\textalpha-diphenyl-picrylhydrazyl (DPPH) radicals with an \textit{IC}_{50} value of 16.4 \textmu M.

\textbf{Keywords}: Deep-sea-derived fungus, \textit{Cladosporium} sp. SCSIO z015, citrinin derivative, toxicity, antioxidant

To whom correspondence should be addressed. Tel: (86) 020-89022112. Email: shuhuaqi@scsio.ac.cn.
List of Supporting Information

Figure S1 The 1H NMR spectrum of 1 in DMSO-d6 ...
Figure S2 The 13C NMR spectrum of 1 in DMSO-d6 ...
Figure S3 The DEPT135 spectrum of 1 in DMSO-d6 ...
Figure S4 The HSQC spectrum of 1 in DMSO-d6 ...
Figure S5 The HMBC spectrum of 1 in DMSO-d6 ...
Figure S6 The 1H-1H NOESY spectrum of 1 in DMSO-d6 ..
Figure S7 The HRESIMS spectrum of 1 ..
Figure S8 The IR spectrum of 1 ...
Figure S9 The UV spectrum of 1 ...
Figure S10 The 1H NMR spectrum of 2 in DMSO-d6 ..
Figure S11 The 13C NMR spectrum of 2 in DMSO-d6 ...
Figure S12 The DEPT135 spectrum of 2 in DMSO-d6 ...
Figure S13 The HSQC spectrum of 2 in DMSO-d6 ...
Figure S14 The HMBC spectrum of 2 in M DMSO-d6 ..
Figure S15 The 'H-'H NOESY spectrum of 2 in DMSO-d6 ..
Figure S16 The HRESIMS spectrum of 2 ..
Figure S17 The IR spectrum of 2..
Figure S18 The UV spectrum of 2 ..
Figure S19 The 1H NMR spectrum of 3 in DMSO-d6 ...
Figure S20 The 13C NMR spectrum of 3 in DMSO-d6 ...
Figure S21 The DEPT135 spectrum of 3 in DMSO-d6 ...
Figure S22 The HSQC spectrum of 3 in DMSO-d6 ...
Figure S23 The HMBC spectrum of 3 in DMSO-d6 ...
Figure S24 The 'H-'H NOESY spectrum of 3 in DMSO-d6 ..
Figure S25 The HRESIMS spectrum of 3 ..
Figure S26 The IR spectrum of 3 ...
Figure S27 The UV spectrum of 3 ..
Figure S28 The 'H NMR spectrum of 4 in DMSO-d6 ...
Figure S29 The 13C NMR spectrum of 4 in DMSO-d6 ...
Figure S30 The DEPT135 spectrum of 4 in DMSO-d6 ...
Figure S31 The HSQC spectrum of 4 in DMSO-d6 ...
Figure S32 The HMBC spectrum of 4 in DMSO-d6 ...
Figure S33 The 'H-'H NOESY spectrum of 4 in DMSO-d6 ..
Figure S34 The HRESIMS spectrum of 4 ..
Figure S35 The IR spectrum of 4 ...
Figure S36 The UV spectrum of 4 ..
Figure S37. The key HMBC correlations of 1, 3, and 4 ..
Figure S38 The key NEOSY correlations of 1, 2 and 3 ..

Figure S39. Comparison between calculated and experimental ECD spectra of compounds 1-3 in MeOH

Table S1. The NMR spectroscopic data for compounds 1-4 (DMSO-d6, δ in ppm, J in Hz)

Experimental section
Figure S1. 1H NMR spectrum of compound 1 in DMSO-d$_6$

![1H NMR spectrum of compound 1 in DMSO-d$_6$]

Figure S2. 13C NMR spectrum of compound 1 in DMSO-d$_6$

![13C NMR spectrum of compound 1 in DMSO-d$_6$]
Figure S3. DEPT-135 spectrum of compound 1 in DMSO-d$_6$

Figure S4. HSQC spectrum of compound 1 in DMSO-d$_6$
Figure S5. HMBC spectrum of compound 1 in DMSO-d6

Figure S6. 1H-1H NOESY spectrum of compound 1 in DMSO-d6
Figure S7. HRESIMS spectrum of compound 1

Figure S8. IR spectrum of compound 1
Figure S9. UV spectrum of compound 1

	283.00	0.328
2	207.40	2.269

Figure S10. 1H NMR spectrum of compound 2 in DMSO-d6
Figure S11. 13C NMR spectrum of compound 2 in DMSO-d6

Figure S12. DEPT-135 spectrum of compound 2 in DMSO-d6
Figure S13. HSQC spectrum of compound 2 in DMSO-d6

Figure S14. HMBC spectrum of compound 2 in DMSO-d6
Figure S15. 1H-1H NOESY spectrum of compound 2 in DMSO-d6

Figure S16. HRESIMS spectrum of compound 2
Figure S17. IR spectrum of compound 2

![IR Spectrum Image]

Figure S18. UV spectrum of compound 2

	285.80	0.768
1		
2	214.20	3.089
Figure S19. 1H NMR spectrum of compound 3 in DMSO-d6

Figure S20. 13C NMR spectrum of compound 3 in DMSO-d6
Figure S21. DEPT-135 spectrum of compound 3 in DMSO-d6

Figure S22. HSQC spectrum of compound 3 in DMSO-d6
Figure S23. HMBC spectrum of compound 3 in DMSO-d6

Figure S24. 1H-1H NOESY spectrum of compound 3 in DMSO-d6
Figure S25. HRESIMS spectrum of compound 3

Figure S26. IR spectrum of compound 3
Figure S27. UV spectrum of compound 3

	321.00	0.182
2	286.60	1.370
3	223.80	3.626

Figure S28. 1H NMR spectrum of compound 4 in DMSO-d6
Figure S29. 13C NMR spectrum of compound 4 in DMSO-d6

Figure S30. DEPT-135 spectrum of compound 4 in DMSO-d6
Figure S31. HSQC spectrum of compound 4 in DMSO-d6

Figure S32. HMBC spectrum of compound 4 in DMSO-d6
Figure S33. 1H–1H NOESY spectrum of compound 4 in DMSO-d$_6$.

Figure S34. HRESIMS spectrum of compound 4.
Figure S35. IR spectrum of compound 4.

Figure S36. UV spectrum of compound 4.

1 362.80 0.385
2 284.40 2.042
3 210.20 2.519
Figure S37. The key HMBC correlations of 1, 3, and 4

![HMBC correlations](image)

Figure S38. The key NEOSY correlations of 1, 2, and 3

![NEOSY correlations](image)

Figure S39. Comparison between calculated and experimental ECD spectra of compounds 1-3 in MeOH.

![ECD spectra comparison](image)

- For 1: \(\sigma = 0.3 \text{ eV} \) \shift = -1nm
- For 2: \(\sigma = 0.25 \text{ eV} \) \shift = -5nm
Table S1. The NMR spectroscopic data for compounds 1-4 (DMSO-d_6, δ in ppm, J in Hz)

No	Compounds	Chemical Shifts
1	1	5.58, s 57.5, CH 5.61, s 60.1, CH 4.79, dd (4.1, 8.8) 67.3, CH
2		113.5, C
3	4.14, q (6.7) 74.0, CH 3.80, q (6.2) 74.7, CH 3.54, dq (4.4, 4.5) 77.9, CH	
4	2.67, q (6.8) 33.3, CH 2.69, q (6.6) 35.1, CH 2.72, dq (4.8, 4.5) 36.6, CH	
5	112.3, C 112.6, C 112.4, C	
6	156.0, C 156.4, C 155.9, C 6.41, s 104.6, CH	
7	6.33, s 100.0, CH 6.32, s 99.8, CH 6.41, s 100.1, CH 2.95, dq (6.1, 6.2) 42.1, CH	
8	151.4, C 151.5, C 146.6, C 3.72, dq (6.9, 6.7) 69.3, CH	
9	103.6, C 106.0, C 118.3, C 1.02, d (6.2) 20.4, CH$_3$	
10	136.7, C 137.6, C 138.0, C 1.07, d (6.9) 16.2, CH$_3$	
11	1.30, d (6.8) 18.9, CH$_3$ 1.21, d (6.2) 19.9, CH$_3$ 1.29, d (4.4) 20.6, CH$_3$ 2.01, s 9.5, CH$_3$	
12	1.07, d (6.9) 20.3, CH$_3$ 1.15, d (6.8) 19.2, CH$_3$ 1.12, d (4.8) 18.6, CH$_3$	
13	1.95, s 9.5, CH$_3$ 1.95 (s, 3H) 10.8, CH$_3$ 2.04, s 11.7, CH$_3$	
14	120.0, C 118.5, C 2.70, dd (10.8, 8.8) 2.94, dd (10.8, 4.1) 36.1, CH$_2$	
	COO-	166.8, C
	OH-3	12.01, s
	OH-5	10.46, s
	OH-6	9.33, s 9.35, s 9.65, s
	OH-8	9.76, s 9.75, s 4.50, br s
	H-12	10.10, s
Experimental section

1. General experimental procedures

UV spectra were obtained using a Shimadzu UV-2600 spectrophotometer. IR spectra were recorded on a Shimadzu IR Affinity-1 Fourier transform infrared spectrophotometer. Optical rotations were measured using an Anton Paar MCP 500 polimeter. NMR spectra were recorded on a Bruker AV-500MHz or AVANCE III HD 700 MHz NMR spectrometer with TMS as an internal standard. HRESIMS spectra were obtained on a Bruker MaXis quadrupole-time-of-flight spectrometer. Preparative HPLC was operated using HPLC Shimadzu SPD-M20A equipped with gradient pump LC-20AT at room temperature on a Shimadzu LC-20AT pump with a Shimadzu SPD-M20A Photodiode Array Detector using a YMC-Pack ODS-A column (250*20 mm, 5 μm). Column chromatography (CC) was performed on Silica gel (200-300 mesh, Qingdao Marine Chemical), the unstable fractions were isolated using Sephadex LH-20 (GE Healthcare) and ODS (40-63 μm, YMC, Japan).

2. Antioxidant assay

DPPH % radical and scavenging activity

The DPPH free radical is reduced to corresponding hydrazine when it reacts with hydrogen donors. The DPPH radical is purple in color. It is a discoloration assay, which is evaluated by the addition of the antioxidant to DPPH solution and a decrease in absorbance was measured at 515 nm.

Stock solution

2, 2-diphenyl 1-picrylhydrazyl (0.1 mM) 2.7 mg of DPPH was dissolved in 50 mL methanol. Test compounds and L-ascorbic acid (positive control) were dissolved in DMSO (1mg/mL). The negative control contained only DMSO and the blank contained methanol instead of the DPPH solution.

Procedure

The assay was carried out in a 96 well microtitre plate. To 190 μL of DPPH solution, 10 μL of each test sample or the standard solution was added to wells of a microtitre plate. The final concentration of the test samples and standard (positive control) were 100, 50, 25, 12.5, 6.25, 3.12 and 1.56 μg/mL respectively. The plates were incubated at 37 °C for 30 min in the dark.
The absorbance was measured at 515 nm on a Tecan Genios microplate reader. The experiment was conducted in four replicates. Percent of radical scavenging activity was calculated using the following formula:17-18

$$\text{% Radical scavenging activity} = \left(1 - \frac{\text{absorbance of sample} - \text{blank}}{\text{control}} \right) \times 100$$

3. Brine shrimp bioassay

Brine shrimp (Artemia salina) eggs (Aquatic Lifeline, Inc., Utah, USA) were sprinkled into a shallow dish filled with seawater and incubated at 28-30 °C. The larvae (nauplii) hatched within 48 hrs. The assay was carried out in 96-well plates. A 10 µL of each tested compounds 1-5 and positive control toosendanin dissolved in DMSO were added to 190 µL seawater containing 20-30 nauplii. The final concentrations were 100, 50, 25, 12.5 and 6.25 µg/mL, respectively. Three replicates in each were done. After 24 hours of incubation at 28-30°C, the dead and total numbers of nauplii in each vial were counted under the microscope.19 The mortality rate was calculated by the following formula:

$$\text{Mortality rate} (\%) = \left(\frac{(T - C)}{(1 - C)} \right) \times 100$$

Where T is the mortality rate of the treatment and C is the mortality rate of the negative control. The data were analyzed by Data Processing System (DPS) software to find LC\textsubscript{50}.

4. Data Analysis

All the experiments were done in triplicates. Replicates were expressed as mean ± Standard Deviations and statistical analysis was subjected to one-factor analysis of variance performed with the Data Processing System (DPS) software. Values were expressed as α 95% confidence interval.

5. Computational methods

Conformational searches were performed by employing a systematic procedure implemented in Spartan’14 software package using Molecular Merck force field (MMFF) (Wavefunction Inc., Irvine, CA, 2013). DFT/TDDFT calculations were conducted with the Guassian09 program (Gaussian, Inc., Pittsburgh PA, 2011). The MMFF conformations were reoptimized to afford low-energy conformers within a 10 kcal/mol energy window, using density functional theory (DFT) calculation at the B3LYP/6-31G (d) level using the Guassians09.
Vibrational frequency calculations were run at the same level to estimate their relative thermal free energies (ΔG) at 298.15K. A series of single-point energy calculations for the conformers above were performed at the M06-2X/def2-TZVP level, supposing methanol as the solvent with the polarizable continuum model (PCM). The DFT optimized conformers with the Boltzmann distribution over 1% was then subjected to TDDFT calculations using the functional PBE1PBE and basis set 6-311G (d). ECD spectra were generated using the program SpecDis by applying a Gaussian band shape with 0.2-0.35 eV exponential half-width from dipole-length dipolar and rotational strength. The spectra of the conformers were combined using Boltzmann weighing, with the lowest-energy conformation. The calculated spectra were shifted by -1 nm for 1, -5 nm for 2, and -6 nm for 3 to facilitate comparison to experimental data.