Natural and artificial atoms for quantum computation

Iulia Buluta1, Sahel Ashhab1,2 and Franco Nori1,2

1 Advanced Science Institute, RIKEN, Wako-shi, Saitama, 351-0198, Japan
2 Department of Physics, The University of Michigan, Ann Arbor, MI 48109-1040, USA

E-mail: fnori@riken.jp

Received 26 October 2010, in final form 13 June 2011
Published 19 September 2011
Online at stacks.iop.org/RoPP/74/104401

Abstract
Remarkable progress towards realizing quantum computation has been achieved using natural and artificial atoms as qubits. This paper presents a brief overview of the current status of different types of qubits. On the one hand, natural atoms (such as neutral atoms and ions) have long coherence times, and could be stored in large arrays, providing ideal ‘quantum memories’. On the other hand, artificial atoms (such as superconducting circuits or semiconductor quantum dots) have the advantage of custom-designed features and could be used as ‘quantum processing units’. Natural and artificial atoms can be coupled with each other and can also be interfaced with photons for long-distance communications. Hybrid devices made of natural/artificial atoms and photons may provide the next-generation design for quantum computers.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

The experimental realization of quantum computation (QC) has been a challenge for more than a decade. While a fully operational quantum computer that could factorize thousand-digit numbers is still a distant goal, with the new technologies for the coherent manipulation of atoms, photons and electrons, nowadays applications like quantum cryptography and quantum communication are already commercially available. Since potential QC implementations come in many shapes and sizes, it is difficult to quantify the overall progress in the field of QC. In order to assess the current state of the art in QC, a comparison between the various approaches is needed. However, because these approaches are very different (in terms of the underlying physical processes, experimental techniques, and how well the physical system is understood), we should be careful not to compare apples with oranges. We would rather like to compare apples with apples, or in our case, atoms with atoms. Therefore, in this paper we consider natural and artificial atoms for implementing QC.

Among the most successful and rapidly developing ways of realizing QC are those using natural atoms (such as neutral atoms [1] or ions [2]) and artificial atoms (such as superconducting circuits [3, 4] or spins in solids [5]). Contrasting natural and artificial atoms would help in highlighting their strengths. For the sake of comprehensiveness, other QC approaches (i.e. with nuclear spins in molecules [6, 7] or in phosphorus impurities in silicon [8, 9], photons [10, 11] and so on) are also briefly covered here. A complementary overview on qubits can be found in [12].
Although there are many exciting theoretical proposals, we will focus more on what has already been experimentally demonstrated and less on what could eventually be achieved in each system. We should stress from the beginning that our purpose is not to show that a certain system is better than others, but to review the current experimental state of the art in QC. One should also keep in mind that some approaches are more recent than others, some benefit from technologies that have been developed before, while others had to develop their own new technologies on the way, and, most importantly, each approach has to deal with specific issues whose difficulty cannot be compared.

By considering natural and artificial atoms and their potential for implementing QC, we hope to gain a broader perspective of the current status of QC. Moreover, this approach may also provide a glimpse into the future of QC. However, we would rather not attempt to make any prediction regarding what system would be the best for realizing a quantum computer. Ten or 20 years from now such speculation might sound as amusing as the prediction made in [20, 22, 25]. The effective spin–spin interaction between two atoms in a double-well potential was used to demonstrate a two-qubit SWAP gate [20]. Furthermore, with polar molecules [17] or Rydberg atoms [27, 28, 36] dipole–dipole interactions could be exploited for realizing two-qubit gates. Very recently, a CNOT gate [33], post-selective entanglement of two atoms [37] using Rydberg blockade interactions and on-demand entanglement [38] have been demonstrated.

The prospect of producing many-qubit entangled states together with the possibility of single-site addressing and measurement makes neutral atoms promising for the quantum simulation of condensed-matter physics [16, 23] as well as measurement-based QC [39].

3. Ions

While neutral atoms interact weakly among themselves, ions, being charged, interact rather strongly via Coulomb repulsion. This facilitates the implementation of two-qubit gates without compromising the long coherence times [40–64]. Also, thanks to their charge, the motion and position of the ions can be well controlled. Ions can be trapped by electrical (or magnetic) fields, laser-cooled and manipulated with high precision [2]. Quantum information can be encoded either in the internal (hyperfine or Zeeman sublevels, or the ground and excited states of an optical transition), or in the motional states (the collective motion of the ions). While the internal states exhibit very long coherence times (hyperfine transitions > 20 s [50] and optical transitions > 1 s) the motional states have typical lifetimes of < 100 ms. As in the case of neutral atoms, the initialization of the qubits can be done by optical pumping and laser cooling, and they can be measured with very high accuracy [59, 62] via laser-induced fluorescence. Scaling the current experiments to large numbers of ions is theoretically possible, but technically challenging. The proposed approaches to scalability include ion shuttling, two-dimensional ion arrays, photon interconnections, long equally-spaced strings, and two-dimensional Coulomb crystals (see [57] and box 2(c) and (d) and table A2).

Using the collective motion of the ions as data bus, high-fidelity one-, two- [53, 56] and even three-qubit [60] gates have been experimentally demonstrated. Entangled (Greenberger–Horne–Zeilinger (GHZ) and W) states of up to 14 qubits have been realized [51, 52, 64]. Two-qubit gates can also be implemented using bichromatic excitation fields that produce coherent two-qubit transitions [42, 56] or by
Box 1. Natural and artificial atoms.

Natural atoms	Artificial atoms	
Atoms and ions	Quantum dots	Josephson junctions
$E = 0$![Diagram](image1.png)	![Diagram](image2.png)
$E \neq 0$![Diagram](image3.png)	![Diagram](image4.png)

Both natural and artificial atoms exhibit discrete energy levels, which are modified in the presence of external fields ($E \neq 0$). The applied external fields drive coherent quantum oscillations between the specific energy levels which can be used to encode the qubit states. Artificial atoms can be engineered to have certain transition frequencies while in natural atoms these are fixed.

4. Superconducting circuits

Superconducting circuits [65–100] are typically μm-scale circuits operated at mK temperatures. Although macroscopic, they can still exhibit quantum behavior, which can be harnessed for QC [3, 4, 102, 103]. Superconducting circuits are RLC circuits that also include nonlinear elements, called Josephson junctions. Thanks to superconductivity, the resistance vanishes ($R = 0$), eliminating the most serious source of dissipation and noise. Now, the LC circuit is a harmonic oscillator. The problem with harmonic oscillators is that they have an infinite number of equally spaced energy levels and therefore it is not possible to target only the lowest two energy levels. By introducing nonlinearity through the Josephson junction, the energy-level separation becomes nonuniform, and the lowest two levels can be used to encode the qubit [3, 4] (see also box 1). Quantum information can be encoded in different ways: in the number of superconducting electrons on a small island (charge qubit), in the direction of a current around a loop (flux qubit), or in oscillatory states of the circuit (phase qubit). These qubits can be controlled by microwaves, voltages, magnetic fields, and currents as well as measured with high accuracy [84] using integrated on-chip instruments. The characteristics of the qubits can be designed and many qubits could be coupled in arrays. Therefore, superconducting qubits are flexible and promise the realization of QC on a chip (see box 2(e) and (f) and table A4).

Superconducting qubits have coherence times that can reach tens of μs (see e.g. [98]), the coupling between qubits can be made strong and can be turned on and off electronically [74, 81]. In addition to direct coupling strategies, superconducting circuits can be coupled via ‘cavities’ [80, 83], which are actually electrical resonators (and the ‘photons’ are actually electron-density oscillations). This setup is promising for the study of circuit cavity quantum electrodynamics (circuit QED) [3, 4, 47, 72, 86].

With superconducting circuits one can now realize simple algorithms [88], and generate entangled states of three qubits [90–92] and arbitrary photon states in a resonator [104]. Other recent advances include the performance of quantum non-demolition measurements [79], the realization of multi-level quantum systems [99, 105], the violation of Bell’s inequality [87, 95], and the coupling of a mechanical resonator to a superconducting qubit [94].

5. Spins in solids

Coherent control and measurement of single spins in solids [9, 58, 106–132] is now possible, and this allows using electron spins in semiconductor quantum dots [116], or electron spins together with nuclear spins in nitrogen-vacancy (NV) color centers in diamond [115] for QC purposes (see box 2(g) and (h))
Quantum bits can be constructed using a variety of different possible building blocks, of various sizes and properties. As a result, each technology has its unique advantages and challenges.

(a), (b) Hundreds of thousands of neutral atoms can be trapped and cooled at the minima of an optical lattice—the periodic potential created by interfering counter-propagating laser beams. The long-lived internal energy levels of neutral atoms are
used to encode quantum information. Neutral atom qubits can be manipulated with laser radiation and observed via their laser-induced fluorescence. The typical separation between lattice sites is $<1 \mu m$, which makes individual addressing challenging. Neutral atoms interact weakly with the environment, which protects them from decoherence. There are several mechanisms for entangling neutral atoms: through state-dependent displacement of the lattice, that results in a highly entangled many-qubit state created in a single operation; through exchange interactions; or via the interaction between two atoms in a double-well potential. Neutral atoms in optical lattices are ideal systems for quantum simulation. (a) illustrates the idea of trapping neutral atoms in periodic optical potentials; one neutral atom qubit is trapped at each lattice site; (b) shows one possible mechanism for creating multi-particle entanglement starting with two atoms in different spin states, trapped in each lattice site.

(c), (d) Ions trapped in electromagnetic fields have been used to encode and manipulate quantum information. The internal energy levels representing the qubit basis states are long-lived and can be easily excited with laser radiation. The typical distance between trapped ions is $5 \mu m$ or more which facilitates addressing and readout of individual ions. High-efficiency readout is achieved by monitoring the laser-induced fluorescence. Ions in the same potential have a common center-of-mass vibrational mode that can be used as data bus to realize entangling operations. Many-particle entanglement and high-fidelity two-qubit gates have already been demonstrated in experiments. (c) shows a linear trap, while (d) a planar trap. These recently developed micrometer-scale ion traps (d) provide flexibility in manipulating the positions of the ions in two and three dimensions. Nowadays the main focus is on scaling these experiments to large numbers of ions. This can be achieved by moving the ions in the trapping potentials around in complex microstructures, trapping single ions at specific locations in custom-designed lattice geometries created in arrays of microtraps, or by entangling the ions with flying qubits (photons).

(e), (f) Superconducting qubits are micrometer-sized electric circuits based on Josephson junctions. A superconducting qubit (e) can be manipulated using the applied electric voltage V and magnetic flux Φ. Similarly, the qubit can be read out through the small electric or magnetic signal that it produces. Additional circuit elements, called couplers, can be used to provide tunable interactions between the qubits, as shown in (f), allowing the creation of entanglement and the performance of two-qubit gates. Decoherence times have improved from the nanosecond to the microsecond scale over the past decade and are expected to improve further in the future.

(g), (h) Spins in solids arise in a number of distinct realizations. The collective spin state of two electrons trapped in a sub-micrometer-scale semiconductor-based double quantum dot structure can be used as a qubit, as shown in (g). In the traditional approach, magnetic fields are used to manipulate the qubit, but recent techniques using electric fields and exploiting the exchange and spin–orbit interactions have been developed as well. The qubit is read out by monitoring its response to an applied electric signal. NV centers in diamond, shown in (h), also provide alternative spin qubits. The spin of one electron in the NV chemical bond can be manipulated and read out using magnetic fields and optical-frequency electromagnetic fields. These qubits have long coherence times, on the millisecond timescale. It would be highly desirable to controllably place multiple qubits in an ordered arrangement in the diamond crystal and couple them to each other, such that entanglement and two-qubit gates would be achieved.
control of up to 12 qubits has also been realized [140]. However, this approach to QC proved difficult to scale up to tens or hundreds of qubits, so NMR techniques are now being applied for the control of nuclear spins in semiconductors. One direction is solid-state NMR [138], but NMR is also merging with electron spin resonance (ESR) methods, so it also becomes relevant for NV centers in diamond and for phosphorus in silicon QC.

6. Comparing natural and artificial atoms

The main characteristics of natural and artificial atoms are displayed in tables 1 and 2. In table 1 T_1 (relaxation time) is the average time that the system takes for its excited state to decay to the ground state; T_2 (decoherence or dephasing time) represents the average time over which the qubit energy-level difference does not vary. We denote by Q_1 (quality factor) the number of one-qubit quantum gates that can be realized within the time T_2, and by Q_2 (quality factor) the number of two-qubit quantum gates that can be realized within the time T_2. For implementing QC we are mainly interested in the following aspects: controllability, scalability and interfaceability. The latter will also be discussed in the following section.

The qubit energy-level splittings are comparable for natural and artificial atoms—microwave frequencies (for ions and superconducting circuits) and optical frequencies (for neutral atoms, ions and some semiconductor quantum dots). Box 1 displays schematically the potential energies and discrete energy levels for natural and artificial atoms in the absence ($E = 0$) and in the presence ($E \neq 0$) of an external field. While natural atoms are usually driven using optical or microwave radiation, artificial atoms like superconducting circuits can be driven by currents and voltages, magnetic fields, as well as microwave photons. Optically driven artificial atoms, such as some semiconductor quantum dots, have also been demonstrated. Artificial atoms can be engineered to have a large dipole moment or particular transition frequencies. Depending on the intended application this tunability may prove quite useful.

In natural atoms, motional states can also be exploited for encoding the qubits or as data bus. The motional frequency can be controlled, but the cooling of these modes is usually necessary if they are to be used for QC purposes. For artificial atoms, resonators can play a similar role to the motional modes. The frequency of these resonators can also be controlled, and they can be cooled much like atoms. For instance, the temperature of superconducting circuits can be decreased using cooling techniques inspired from atomic physics, such as sideband or Sisyphus cooling [142, 143]. Natural atoms have many energy levels which can be used to encode information. Levels that are well protected against decoherence (i.e. magnetic-field-independent hyperfine transitions [144]) could be used for memory qubits, while fast transitions could be used for implementing two-qubit gates. Furthermore, realizing qubits in natural atoms is straightforward.

Unlike natural atoms of the same species, which are indistinguishable, no two artificial atoms will be perfectly alike. With the latest advances in microfabrication, artificial atoms can be made with increasing accuracy and uniformity. However, this is an extra challenge. While natural atoms are readily available and one only needs to trap them by means of optical or electrical fields and then cool them to low temperatures, artificial atoms have to be carefully designed and fabricated. Furthermore, atom and ion trapping technologies have been in use for quite a while, but for artificial atoms the techniques are more recent.

Artificial atoms can be produced in large numbers and ‘wired’ together on a chip. Therefore, extending current experiments to large numbers of artificial atoms should, in principle, not be a problem. Neutral atoms can be loaded by thousands or millions in optical lattices; however, individual addressing has not yet been fully demonstrated [29]. Meanwhile, in the case of ions, although several proposals are available, scaling to large numbers is a challenge. Natural atoms are not wired so they can form almost any 2D or 3D configuration; however, for artificial atoms the wiring itself may impose some geometric limitations. Neutral atom and trapped ion qubits can also be moved around easily. This flexibility may prove advantageous for certain applications.

Both natural and artificial atoms can be coupled with photons via cavity QED [3, 4, 86], which could provide a means of realizing large-scale QC and long-distance quantum communication (see also [145]). The physics of cavity QED is the same regardless of the nature of the atom or cavity, but, for artificial atoms (e.g. circuit QED) the coupling strength is several orders of magnitude larger than for natural atoms [3, 4, 86]. Several exciting experiments demonstrating the coupling between cavities and natural or artificial atoms have been performed (see, for instance, [80, 83, 146–148] and the review in [103]).

As for the operating conditions, natural atoms can be coherently manipulated only in an ultrahigh vacuum at very low temperatures (μK for neutral atoms and mK for ions). Artificial atoms are also operated at low temperatures (mK in the case of superconducting circuits or a few K for semiconductor quantum dots), but there are some candidates for room-temperature qubits, including very long coherence times for NV centers in diamond (note that their T_1 is temperature dependent).

7. Photons

Photons can also make good qubits and they can carry quantum information over long distances hardly being affected by noise or decoherence. The qubit states can be encoded, for example, in the polarization of a single photon, and one-qubit gates can be easily realized with optical elements [11, 149]. Unfortunately optical QC has a serious drawback: the difficulty in implementing two-qubit gates. Realizing the nonlinearity required for entangling two qubits is challenging, so alternatives such as the teleportation of nondeterministic quantum gates have been investigated [149]. While this approach is still impractical due to the large amount of required resources, another solution may be found in measurement-based QC.
Table 1. Comparison between natural and artificial atoms.

	Natural atoms	Artificial atoms		
	Neutral atoms	Trapped ions	Supercond. circuits	Spins in solids
Energy gap	GHz (hyperfine), 10^{14} Hz (optical)	GHz (hyperfine), 10^{13} Hz (optical)	1–10 GHz	GHz, 10^{13} Hz
Photon	Optical, MW	Optical, MW	MW	Optical, MW, infrared
Dimension	~2 Å	~2 Å	~μm	~nm
Distance between qubits	<1 μm	~5 μm	~μm	~10 nm\(^a\), ~100 nm\(^b\)
Operating temperature	nK–μK	μK–mK	~μK	mK–300 K
Qubit interactions	Collisions, exchange	Coulomb	Capacitive, inductive	Coulomb, exchange, dipolar
Cooling	Doppler, Sisyphus, evaporative	Doppler, sideband	Cryogenic	Cryogenic
Cavity	Optical, MW	Optical, vib. modes	Transmission line, LC circuit	Optical, MW

\(^a\) Distance between qubits for NV centers.
\(^b\) Typical distances between quantum dots.

Table 2. Comparison between natural and artificial atoms in view of implementing QC.

Hereafter, MW stands for microwaves and SC for superconducting.

	Natural atoms	Artificial atoms		
	Neutral atoms	Trapped ions	Supercond. circuits	Spins in solids
# entangled qubits	2\(^a\)	14	3 (4\(^b\))	1 (3\(^c\))
One-qubit gates fidelity	99%	99%	99%	99% (>99\(^c\))
Two-qubit gates fidelity	~64%	99.3%	>90%	90%
Entangled states	Bell	Bell, GHZ, W, cat	Bell, GHZ\(^d\)	GHZ\(^e\)
Measurement efficiency	99.9%	99.9%	>95%	99%
\(T_1\)	~s	~100 ms\(^f\)	10 μs	~1 s\(^g\)
\(T_2\)	~40 ms	1000 s\(^h\)	20 μs	200 μs\(^i\)
\(Q_1\)	~10^4	~10^{13}	~10^3	~10^3–10^4
\(Q_2\)	~4 \times 10^4	2 \times 10^3–2 \times 10^3	>100	tbd
Interfaceable with	Photons, SC circuits	Photons, SC circuits	Photons, atoms, ions	Photons

\(^a\) Large entangled states can also be realized with collisional gates.
\(^b\) Entanglement of the ground state of four qubits.
\(^c\) NV centers in diamond.
\(^d\) Only generated for one and two resonators and not for many qubits.
\(^e\) NV centers in diamond.
\(^f\) \(T_1\) for the vibrational modes.
\(^g\) \(T_1\) for the internal hyperfine states.
\(^h\) Of the order of ms for NV centers at room temperature and of the order of minutes at 1 K; of the order of seconds for P : Si;
\(^i\) In optical clocks \(T_1, T_2 > 10\) min has been observed.
Table 3. Interfacing different types of qubits for future scalability or realizing long-range quantum communication. The asterisk denotes the cases that have been experimentally realized and the dash means that, to the best of our knowledge, no proposal exists yet.

	Atoms	Ions	Cavity	Spins	SC
Atoms	✓	✓	✓	—	✓
Ions	✓	✓	✓	—	✓
Cavity	✓	✓	✓	✓	✓
Spins	—	—	✓	—	✓
SC	✓	✓	✓	✓	✓

For the moment photons may not be practical as memory or computation qubits, but they are certainly the best ‘flying qubits’. Recent advances in quantum communication and, in particular, quantum key distribution are reviewed in [10].

8. Hybrids

Exploiting the advantages of both natural and artificial atoms in hybrid systems provides exciting prospects for realizing QC. For instance, ions [150, 151] and atoms [152, 153] interfaced with superconducting circuits are now being investigated. As recent results point out neutral atoms and ions could also be interfaced with each other [154, 155]. While cavity QED with atoms and ions has been studied for some time now [86, 145], solid-state cavity QED is more recent [80, 83, 86, 148]. For natural atoms strong coupling has been demonstrated [146, 147]. As mentioned before, in circuit QED the coupling strength is many orders of magnitude larger than in cavity QED, which is very promising for the study of quantum optics on a chip. As shown in table 3, all systems discussed in the previous sections can be coupled with other systems. It is interesting to note that superconducting circuits can be coupled with different types of natural atoms, spins in solids [156–158] and with photons.

Natural atoms, with their long decoherence times, are envisaged by many as quantum memories [159], while the tunable artificial atoms may be used for the ‘quantum processing unit’. Both natural and artificial atoms may be coupled with photons via a cavity. Note that a necessary requirement is for the coupling timescale to be shorter than the decoherence time. Such cavities could be used as input/output interfaces and for long-distance communication. Perhaps the first functional quantum computer will be a complex hybrid system made of natural atoms, artificial atoms, and photons. Such a hybrid device is represented schematically in figure 1. Several types of hybrids are discussed in [160].

9. Prospects

In both natural and artificial atoms, almost all the basic requirements for realizing QC [161] have been demonstrated (i.e. (i) a scalable system with well-characterized qubits; (ii) initialization of the qubits; (iii) reasonably long decoherence times; (iv) a universal set of quantum gates; (v) measurement of the qubits). Tables 1–6 and figure 2 provide a brief snapshot of the current progress and experimental status for several types of qubits.

The current challenges are to attain increased controllability (and minimize decoherence) and scale the existing systems to tens and hundreds of qubits and many-gate operations. At this stage, new milestones, such as the creation of many-particle entangled states, the implementation of small quantum algorithms, and other applications (e.g. quantum simulation), and the realization of quantum communication by interfacing the qubits with photons, are being targeted.

‘Quantum supercomputers’ for factorizing large numbers are still a distant goal. The first generation of practical quantum computers may be either specialized devices for scientific applications like quantum simulations [162], or integrated in complex quantum networks [145]. As the very positive results...
Table 5. Progress in the implementation of superconducting qubits quantum gates.

Year	Operation	Qubits	Mechanism	Ref.
2003	CNOT gate	2	Direct coupling; gate relies on zz component	[71]
2003	Entangled energy levels	2	Direct xy coupling	[70]
2005	iSWAP; Entanglement	2	Direct xy coupling	[73]
2006	iSWAP; Entanglement	2	Direct xy coupling	[76]
2006	Entangled energy levels	4	Direct coupling	[75]
2006–7	Controllable coupling	2	Coupling mediated by additional circuit element	[74, 78]
2007	CNOT gate	2	Direct coupling; gate relies on zz component	[82]
2007	iSWAP	2	xy coupling to cavity; gate mediated by cavity	[83]
2007	iSWAP	2	xy coupling mediated by cavity	[80]
2007	iSWAP	2	Coupling mediated by additional circuit element; gate relies on xy coupling	[81]
2009	CPhase	2	zz coupling mediated by auxilliary energy levels	[88]
2010	Entanglement	3	xy coupling	[90]
2010	Entanglement	3	zz coupling mediated by auxilliary energy levels	[91]
2011	3-qubit gate	3	Coupling mediated by auxilliary energy levels	[97]

Table 6. Progress in the number of qubits and fidelities for different operations on trapped ions. CZ stands for the Cirac–Zoller scheme [163], and MS for the Mølmer–Sørensen scheme [164].

Year	Operation	Mechanism	Qubits	Fidelity	Ref.
1998	Entanglement	CZ	2	70%	[40]
2000	Entanglement	MS	2	83%	[42]
			4	57%	
2003	CNOT gate	CZ	2	71.3%	[43]
2003	Entanglement	Geometric	2	97%	[45]
2005	Entanglement	CZ	4	>76%	[52]
			5	>60%	
			6	>50%	
2005	Entanglement	CZ	4	85%	[51]
			5	76%	
			6	79%	
			7	76%	
			8	72%	
2006	CNOT gate	CZ	2	92.6%	[53]
2008	Entanglement	MS	2	99.3%	[56]
2009	Toffoli gate	CZ	3	74%	[60]
2010	Entanglement	MS	10	62.9%	[64]
			12	39.6%	
			14	46.3%	

Figure 2. An example of the progress that has been achieved for superconducting circuits in the last decade. The decoherence time kept increasing, and the current trend promises decoherence times of the order of ms in the next couple of years. Visibility also increased and now it is larger than 95%. The black squares show T_1 and the red dots T_2.

Appendix. Tables summarizing the main characteristics of different systems in view of realizing quantum computation

In the following tables, T_1 (relaxation time) is defined as the average time that the system takes for its excited state to decay to the ground state; T_2 (decoherence time) represents the average time over which the qubit energy-level difference does not vary; Q_1 (quality factor) represents the number of one-qubit quantum gates that can be realized within the time T_2; Q_2 (quality factor) represents the number of two-qubit quantum gates that can be realized within the time T_2. The following abbreviation is used: tbd for ‘to be demonstrated’

Acknowledgments

We thank R Blatt, P Grangier, L Kouwenhoven, C Marcus, A Morello, W Oliver, T Porto, M Saffman, D Wineland and A Yacoby for useful comments on the manuscript.

FN acknowledges partial support from the Laboratory of Physical Sciences (LPS), National Security Agency (NSA), Army Research Office (ARO), Defense Advanced Research Projects Agency (DARPA), Air Force Office of Scientific Research (AFOSR), National Science Foundation (NSF) grant No 0726909, JSPS-RFBR contract No 09-02-92114, Grant-in-Aid for Scientific Research (S), MEXT Kakenhi on Quantum Cybernetics and the Funding Program for Innovative R&D on Science and Technology (FIRST).
Table A1. Neutral atoms.

Neutral atoms	**Qubits**	Internal states (ground hyperfine states); motional states (trapping potential eigenstates)
Scalability		Demonstrated in optical lattices; possible in arrays of cavities, atom chips
Initialization		Both internal (optical pumping) and motional (laser cooling) states
Long coherence time		Several seconds [15, 19, 30]
Universal quantum gates	One-, two-qubit gates (several proposals)	
Measurement		Fluorescence: ‘quantum jump’ technique

Fabrication

- **Material**: Trapped neutral atoms: Rb, Li, K, Cs, etc
- **Well-controlled fabrication**: Yes
- **Flexible geometry**: Yes (especially in optical lattices)
- **Distance between qubits**: A few hundred nm to a few µm [1]

Operation

- **Qubits demonstrated**: \(>10^6\) (stored), 2 (entangled)
- **Superposition/Entangled states**: Yes/Yes
- **One-qubit gates (Fidelity)**: Yes (99.98%)
- **Two-qubit gates (Fidelity)**: Yes (SWAP > 64% [20]); CNOT (73% [33])

Readout

- **Readout (Fidelity)**: Laser-induced fluorescence (99.9%)
- **Single-qubit readout possible**: Yes

Manipulation

- **Controls**: Optical fields, microwave
- **Types of operations**: One-, two-qubit gates, entanglement
- **Individual addressing**: tbd [24, 29, 31, 32, 35]

Decoherence

- **Decoherence sources**: Photon scattering, heating, stray fields, laser fluctuations
- **T\(_1\)**: \(\sim s\)
- **T\(_2\)**: \(\sim 40\) ms
- **\(Q_1\)**: \(\sim 10^4\)
- **\(Q_2\)**: \(\sim 40,000\)

Table A2. Trapped ions.

Trapped ions	**Qubits**	Internal states (hyperfine or Zeeman sublevels, optical); motional states (collective oscillations)
Scalability		Ion shuttling, arrays, photon interconnections, long strings
Initialization		Both internal (optical pumping) and motional (laser cooling) states
Long coherence time	Internal: hyperfine > 20 s, optical > 1 s; motional: \(\sim 100\) ms	
Universal quantum gates	One-, two-, three-qubit gates	
Measurement		Fluorescence: ‘quantum jump’ technique

Fabrication

- **Material**: Atomic ions: Ca\(^+\), Be\(^+\), Ba\(^+\), Mg\(^+\), etc
- **Well-controlled fabrication**: Yes
- **Flexible geometry**: Yes
- **Distance between qubits**: A few µm to tens of µm

Operation

- **Qubits demonstrated**: \(10^3\) to \(10^5\) (stored), 14 (entangled) [64]
- **Superposition/entangled states**: Yes/Yes (2–14 ions, fidelities 99.3%–46%) [64]
- **One-qubit gates (fidelity)**: Yes (99%)
- **Two-qubit gates (fidelity)**: Yes (CNOT > 99.3% [56]; Toffoli 71.3% [60]; gate time 1.5 ms)

Readout

- **Readout (fidelity)**: Laser-induced fluorescence (99.9%)
- **Single-qubit readout possible**: Yes

Manipulation

- **Controls**: Optical, microwave, electric/magnetic fields
- **Types of operations**: One-, two-, three-qubit gates, entanglement
- **Individual addressing**: Yes

Decoherence

- **Decoherence sources**: Heating, spontaneous emission, laser, magnetic field fluctuations
- **T\(_1\)**: a few minutes (hyperfine), 1 s (optical), 100 ms (motional)
- **T\(_2\)**: 15 s
- **\(Q_1\)**: \(\sim 10^{13}\) (single-qubit gate 50 ps) [63]
- **\(Q_2\)**: \(\sim 20,000\) (MS gate 50 \(\mu\)s) [56]; \(\sim 200\) (CZ gate 500 \(\mu\)s) [53]
Table A3. Nuclear spins manipulated by NMR.

NMR	
Qubits	Nuclear spin
Scalability	Not available in liquid-state NMR; possible for solid-state NMR
Initialization	Demonstrated
Long coherence time	>1 s
Universal quantum gates	One-, two-, three-qubit gates
Measurement	Single-qubit measurement not available
Fabrication	
Material	Organic molecules (alanine, chloroform, cytosine)
Flexible geometry	No
Distance between qubits	~Å
Operation	
Qubits demonstrated	7, 12 (entangled) liquid-state [140]; >100 (correlated) solid state
Superposition/entangled states	Yes/yes
One-qubit gates (fidelity)	Yes (>-98%)
Two-qubit gates (fidelity)	Yes (>98% CNOT and SWAP)
Operation temperature	Room temperature
Readout	
Readout (fidelity)	Voltage in neighboring coil induced by precessing spins, 99.9%
Single-qubit readout possible	No
Manipulation	
Controls	RF pulses
Types of operations	One-, two-, three-qubit gates
Individual addressing	No
Decoherence	
Decoherence sources	Coupling errors
T_1	>1 s (liquid state); >1 min (solid state)
T_2	~1 s (liquid state); >1 s (solid state)
Q_1	100 (gate time 10 ms)
Q_2	>100 (gate time 10–50 ns)

Table A4. Superconducting circuits.

Superconducting circuits	
Qubits	Flux, phase states, charge; also hybrids
Scalability	High potential for scalability
Initialization	Demonstrated for all types of qubits
Long coherence time	~ 10 μs
Universal quantum gates	One-, two-qubit gates
Measurement	Individual measurement possible
Fabrication	
Material	Josephson junctions (Al–Al, O, –Al, Nb–Al, O, Nb)
Flexible geometry	Yes
Distance between qubits	~μm
Operation	
Qubits demonstrated	128 (fabricated) [93], 3 (entangled)
Superposition/entangled states	Yes/yes
One-qubit gates (fidelity)	Yes (99%)
Two-qubit gates (fidelity)	Yes (>90%)
Operation temperature	mK
Readout	
Readout (fidelity)	SET, SQUID (>95%) [84], cavity frequency shift [72]
Single-qubit readout possible	Yes
Manipulation	
Controls	Microwave pulses, voltages, currents
Types of operations	One-, two-, three-qubit gates, entanglement
Individual addressing	Yes
Decoherence	
Decoherence sources	Electric and magnetic noise, 1/f noise
T_1	0.2 ms [101]
T_2	25 μs [98]
Q_1	~10⁵
Q_2	>100 (gate time 10–50 ns) [88]
Table A5. Spins in solids. Here, QDs stand for quantum dots, NV centers for nitrogen-vacancy centers in diamond and P : Si for phosphorous on silicon.

Spins in solids	Qubits	Scalability	Initialization	Long coherence time	Universal quantum gates	Measurement	Fabrication	Material	Well-controlled fabrication	Flexible geometry	Distance between qubits	Operation	Qubits demonstrated	Superposition	One-qubit gates (fidelity)	Two-qubit gates (fidelity)	Operation temperature	Readout	Single-qubit readout possible	Manipulation	Controls	Types of operations	Individual addressing	Decoherence	Decoherence sources	decoherence times	decoherence times
					One-qubit gates		GaAs, InGaAs (QDs), NV centers, P : Si	Yes	Yes	Yes	100–300 nm (QDs); ~10 nm (NV centers)	1 (QDs), 3 (NV centers)	Yes	Yes	Yes (> 73% QDs [113]); > 99% NV centers [130])	Yes (90% NV centers [109])	From mK to a few K (QDs); room temperature (NV centers)	Electrical, optical (90–92%)	RF, optical pulses, electrical	One-qubit gates (> 73% gate time 25 ns)	Yes	Co-tunneling, charge noise, coupling with nuclear spins	T_1 > 1 s (QDs) [120]; > 5 ms (NV centers) [124]; 6 s [133] (P : Si); 100 s [134] (P : Si)	T_2 ~ 200 μs [129, 128]; ~ 1.8 ms (NV centers) [125]; ~ 60 ms [107] (P : Si); 2 s [9] (P : Si)	Q_1: ~ 106 (gate time 180 ps); ~ 108 (gate time 30 ps) [121]; > 109 (gate time ~ 1 ns)	Q_2: tbd	

References

Due to space limitations we list a small subset of recent, relevant papers, mostly experimental results. The very few theory papers cited here introduce parameters used in the experimental papers cited, and also in the tables (e.g. as in table 6). For more references on the theoretical aspects, please refer to the various more specialized reviews listed below.

[1] Bloch I 2008 Quantum coherence and entanglement with ultracold atoms in optical lattices Nature 453 1016–22
[2] Blatt R and Wineland D J 2008 Entangled states of trapped atomic ions Nature 453 1008–15
[3] Clarke J and Wilhelm F K 2008 Superconducting quantum bits Nature 453 1031–42
[4] You J Q and Nori F 2005 Superconducting circuits and quantum information Phys. Today 58 42–7
[5] Gisin N and Thew R 2007 Quantum communication Nature Photon. 1 165–71
[10] Kok P, Munro W J, Nemoto K, Ralph T C, Dowling J P and Milburn G J 2007 Linear optical quantum computing with photonic qubits Rev. Mod. Phys. 79 135
[11] Mandel O, Greiner M, Widera A, Rom T, Hänsch T W and Bloch I 2003 Controlled collisions for multi–particle entanglement of optically trapped atoms Nature 425 937–40
[13] Treutlein P, Hänsch T W, Hommelhoff P, Steinmetz T and Reichel J 2004 Neutral atom quantum register Phys. Rev. Lett. 93 150501
[15] Jaksh D and Zoller P 2005 The cold atom Hubbard toolbox Ann. Phys. 315 52–79
[16] Micheli A, Brennen G K and Zoller P 2006 A toolbox for lattice–spin models with polar molecules Nature Phys. 2 341–7
[18] Miroshnychenko Y, Alt W, Dotsenko I, Forster L, Khudaverdyan M, Rauschenbeutel A and Meschede D 2004 Neutral atom quantum register Phys. Rev. Lett. 92 203005
[19] Yavuz D D, Kulatunga P B, Urban E, Johnson T A, Proite N, Henage T, Walker T G and Saffman M 2006 Fast ground state manipulation of neutral atoms in microscopic optical traps Phys. Rev. Lett. 96 063001
[20] Anderlini M, Brown B L, Lee P J and Sebby-Strabley J, Phillips W D and Porto J V 2007 Controlled exchange interaction between pairs of neutral atoms in an optical lattice Nature 448 452–6

[21] Beugnon J et al 2007 Two-dimensional transport and transfer of a single atomic qubit in optical tweezers Nature Phys. 3 696–9

[22] Hayes D, Julienne P S and Deutsch I H 2007 Quantum logic via the exchange blockade in ultracold collisions Phys. Rev. Lett. 98 070501

[23] Lewenstein M, Sanpera A, Ahufinger V, Damski B, Sen(De) A and Sen U 2007 Ultracold atomic gases in optical lattices: mimicking condensed matter physics and beyond Adv. Phys. 56 243–379

[24] Nelson K D, Li X and Weiss D S 2007 Imaging single atoms in a three-dimensional array Nature Phys. 3 556–60

[25] Trotzky S, Cheinet P, Folling S, Feld M, Schnorrberger U, Lewenstein M, Sanpera A, Ahufinger V, Damski B, Saffman M, Walker T G and Mølmer K 2010 Quantum beyond optical lattices: mimicking condensed matter physics and Rosenbusch P 2010 Spin self-rephasing and very high-fidelity geometric two ion-qubit phase gate Nature Phys. 7 68–71

[26] Gaetan A, Miroshnychenko Y, Wilk T, Chotia A, Viteau M, Beugnon J, Würtz P, Langen T, Gericke T, Koglbauer A and Otto H 2009 Observation of collective excitation of two individual atoms in the Rydberg blockade regime Nature Phys. 5 115–8

[27] Saffman M, Walker T G and Mølmer K 2010 Quantum information with Rydberg atoms Rev. Mod. Phys. 82 2313

[28] Urban E, Johnson T A, Henage T, Isenhower L, Yavuz D D, Walker T G and Saffman M 2009 Observation of Rydberg blockade between two atoms Nature Phys. 5 110–4

[29] Würtz P, Langen T, Gericke T, Koglbauer A and Otto H 2009 Experimental demonstration of single-site addressability in a two-dimensional optical lattice Phys. Rev. Lett. 103 080404

[30] Deutsch C, Ramirez-Martinez F, Lacroute C, Reinhard F, Schneider T, Fuchs J N, Plechon F, Laloe F, Reichel J and Rosenbusch P 2010 Spin self-rephasing and very long coherence times in a trapped atomic ensemble Phys. Rev. Lett. 105 020401

[31] Fuhrmanek A, Bourgain R, Sortais Y R P and Browaeys A 2011 Free-space lossless state detection of a single trapped atom Phys. Rev. Lett. 106 133003

[32] Gibbons M J, Hamley C D, Shih C-Y and Chapman M S 2011 Nondestructive fluorescent state detection of single neutral atom qubits Phys. Rev. Lett. 106 133002

[33] Isenhower L, Urban E, Zhang X L, Gill A T, Henage T, Johnson T A, Walker T G and Saffman M 2010 Demonstration of a neutral atom controlled-NOT quantum gate Phys. Rev. Lett. 104 010503

[34] Olmschenk S, Chiecireau R, Nelson K D and Porto J V 2010 Randomized benchmarking of atomic qubits in an optical lattice New J. Phys. 12 113007

[35] Sherson J F, Weitenberg C, Endres M, Cheneau M, Bloch I and Kuhn S 2010 Single-atom-resolved fluorescence imaging of an atomic Mott insulator Nature 467 68

[36] Weiner H, Muller M, Zoller P, Lesanovsky I and Buchler H P 2010 A Rydberg quantum simulator Nature Phys. 6 382

[37] Wilk T, Gaetan A, Evelin C, Wollers J, Miroshnychenko Y, Grangier P and Browaeys A 2010 Entanglement of two individual neutral atoms using Rydberg blockade Phys. Rev. Lett. 104 010502

[38] Zhang X L, Isenhower L, Gill A T, Walker T G and Saffman M 2010 Deterministic entanglement of two neutral atoms via Rydberg blockade Phys. Rev. A 82 030306

[39] Kay A, Pachos J K and Adams C S 2006 Graph-state preparation and quantum computation with global addressing of optical lattices Phys. Rev. A 73 022310

[40] Turchette Q A, Wood C S, King B E, Myatt C J, Leibfried D, Itano W M, Monroe C and Wineland D J 1998 Deterministic entanglement of two trapped ions Phys. Rev. Lett. 81 3631

[41] Cirac J I and Zoller P 2000 A scalable quantum computer with ions in an array of microtraps Nature 404 579–81

[42] Sackett C A et al 2000 Experimental entanglement of four particles Nature 404 256–9

[43] Schmidt-Kaler F, Häffner H, Riebe M, Gulde S, Lancaster G P T, Deuschle T, Becher C, Roos C F, Eschner J and Blatt R 2003 Realization of the Cirac–Zoller controlled-NOT quantum gate Nature 422 408

[44] Gulde S, Riebe M, Lancaster G P T, Becher C, Eschner J, Häffner H, Chuang I L, Blatt R and Schmidt-Kaler F 2003 Implementation of the Deutsch–Jozsa algorithm on an ion-trap quantum computer Nature 421 48–50

[45] Leibfried D et al 2003 Experimental demonstration of a robust, high-fidelity geometric two ion-quantum phase gate Nature 422 412

[46] Barrett M D et al 2004 Deterministic quantum teleportation of atomic qubits Nature 429 737–9

[47] Chiaverini J et al 2004 Realization of quantum error correction with ions Nature Phys. 1 151

[48] Riebe M et al 2004 Deterministic quantum teleportation with atoms Nature 429 734–7

[49] Chiaverini J et al 2005 Implementation of the semiclassical quantum Fourier transform in a scalable system Science 308 997–1002

[50] Häffner H et al 2005 Scalable multiparticle entanglement of trapped ions Nature 438 643–6

[51] Häffner H et al 2005 Robust entanglement Appl. Phys. B 81 151

[52] Leibfried D et al 2005 Creation of a six-atom Schrödinger cat state Nature 438 639–42

[53] Riebe M, Kim K, Schindler P, Monz T, Schmidt P O, Korber T K, Hansel W, Häffner H, Roos C F and Blatt R 2006 Process tomography of ion trap quantum gates Phys. Rev. Lett. 97 220407

[54] Stick D, Hensinger W K, Olmschenk S, Madsen M J, Schwab K and Monroe C 2006 Ion trap in a semiconductor chip Nature Phys. 2 36–9

[55] Moehring D L, Mølmer K 2006 Process tomography of ion trap quantum gates Phys. Rev. Lett. 96 040403

[56] Kielpinski D 2008 Ion-trap quantum information processing: experimental status Front. Phys. China 3 365–81

[57] Haneke D, Home J P, Jost J D, Amini J M, Leibfried D and Wineland D J 2010 Realization of a programmable two-qubit quantum processor Nature Phys. 6 13–6

[58] Myerson A H, Szwer D J, Webster S C, Allcock D T C, Curtis M J, Irmen G, Sherman J A, Stacey D N, Steane A M and Lucas D M 2008 High-fidelity readout of trapped-ion qubits Phys. Rev. Lett. 100 200502

[59] Monz T, Kim K, Hansel W, Riebe M, Villar A S, Schindler P, Chwalla M, Hennrich M and Blatt R 2009 Realization of the quantum Toffoli gate with trapped ions Phys. Rev. Lett. 102 040501

[60] Monz T et al 2009 Realization of universal ion trap quantum computation with decoherence free qubits Phys. Rev. Lett. 103 200503

[61] Burrell A H, Szwer D J, Webster S C and Lucas D M 2010 Scalable simultaneous multi-qubit readout with 99.99% single-shot fidelity Phys. Rev. A 81 040302

[62] Campbell W C, Mizrahi J, Quraishi Q, Senko C, Hayes D, Hucul D, Matsukevich D N, Mauz P and Monroe C 2010 Randomized benchmarking of atomic qubits in an optical lattice New J. Phys. 12 113007
Ultrafast gates for single atomic qubits Phys. Rev. Lett. 105 090502

[64] Monz T, Schindler P, Barreiro J T, Chwalla M, Nigg D, Coish W A, Harlander M, Haensel W, Henrich M and Blatt R 2011 14-qubit entanglement: creation and coherence Phys. Rev. Lett. 106 130506

[65] Nakamura Y, Pashkin Y A and Tsai J S 1999 Coherent control of macroscopic quantum states in a single-Cooper-pair box Nature 398 786

[66] Nakamura Y, Pashkin Yu A, Yamamoto T and Tsai J S 2002 Charge echo in a Cooper-pair box Phys. Rev. Lett. 88 047901

[67] Martinis J M, Nam S, Aumentado and Urbina C 2002 Rabi oscillations in a large Josephson-junction qubit Phys. Rev. Lett. 89 117001

[68] Vion D, Aassime A, Cottet A, Joyez P, Pothier H, Urbina C, Esteve D and Devoret M H 2002 Manipulating the quantum state of an electrical circuit Science 296 886

[69] Chiorescu I, Nakamura Y, Harbola C J P M and Mooij J E 2003 Coherent quantum dynamics of a superconducting qubit Phys. Rev. Lett. 91 107901

[70] Berkley A J, Xu H, Ramos R C, Gubrud M A, Strauch F W, Johnson P P, Anderson D, Dragt A J, Lobb C J and Wellstood F C 2003 Entangled macroscopic quantum states in two superconducting qubits Science 300 1548

[71] Yamamoto T, Pashkin Y A, Astafiev O, Nakamura Y and Tsai J S 2003 Demonstration of conditional gate operation using superconducting charge qubits Nature 425 941

[72] Wallraff A, Schuster D I, Blais A, Frunzio L, Huang R S, Majer J, Kumar S, Girvin S M and Schoelkopf R J 2004 Strong coupling of a single photon to a superconducting qubit using circuit quantum electrodynamics Nature 431 162

[73] McDermott R, Simmonds R W, Steffen M, Cooper K B, Cicak K, Osborn K D, Oh S, Pappas D P and Martinis J M 2005 Simultaneous state measurement of coupled Josephson phase qubits Science 307 1299

[74] Hime T, Reichardt P A, Plourde B L T, Robertson T L, Wu C-E, Ustinov A V and Clarke J 2006 Solid-state qubits with current-controlled coupling Science 314 1427–9

[75] Grajcar M et al 2006 Four-qubit device with mixed couplings Phys. Rev. Lett. 96 047006

[76] Steffen M, Ansmann M, Bialczak R C, Katz N, Lucero E, McDermott R, Neeley M, Weig E M, Cleland A N and Martinis J M 2006 Measurement of the entanglement of two superconducting qubits via state tomography Science 313 1423–5

[77] Yoshihara F, Harrabi K, Niskanen A O, Nakamura Y and Tsai J S 2006 Coherence of flux qubits due to 1/f flux noise Phys. Rev. Lett. 97 167001

[78] Harris R et al 2007 Sign- and magnitude-tunable coupler for superconducting flux qubits Phys. Rev. Lett. 98 177001

[79] Lupascu A, Saito S, Picot T, Harms C J P M and Mooij J E 2007 Quantum non-demolition measurement of a superconducting two-level system Nature 449 443–7

[80] Major J et al 2007 Coupling superconducting qubits via a cavity bus Nature 449 443–7

[81] Niskanen A O, Harrabi K, Yoshihara F, Nakamura Y, Lloyd S and Tsai J S 2007 Quantum coherent tunable coupling of superconducting qubits Science 316 723–6

[82] Plantenberg J H, de Groot P C, Harms C J P M and Mooij J E 2007 Demonstration of controlled-NOT quantum gates on a pair of superconducting quantum bits Nature 447 836

[83] Sillanpää M A, Park J I and Simmonds R W 2007 Coherent quantum state transfer and transfer between two phase qubits via a resonant cavity Nature 449 438–42

[84] Picot T, Lupascu A, Saito S, Harms C J P M and Mooij J E 2008 Role of relaxation in the quantum measurement of a superconducting qubit using a nonlinear oscillator Phys. Rev. B 78 132508

[85] Schreier J A et al 2009 Suppressing charge noise decoherence in superconducting charge qubits Phys. Rev. B 77 180502

[86] Schoelkopf R J and Girvin S M 2008 Wiring up quantum systems Nature 451 664–9

[87] Ansmann M et al 2009 Violation of Bell’s inequality in Josephson phase qubits Nature 461 504

[88] DiCarlo L et al 2009 Demonstration of two-qubit algorithms with a superconducting quantum processor Nature 460 240–4

[89] Manucharyan V E, Koch J, Glazman L I and Devoret M H 2009 Fluxonium: single Cooper-pair circuit free of charge offsets Science 326 113

[90] Neeley M et al 2010 Generation of three-qubit entangled states using superconducting phase qubits Nature 467 570

[91] DiCarlo L, Reed M D, Sun L, Johnson B R, Chow J M, Gambetta J M, Frunzio L, Girvin S M, Devoret M H and Schoelkopf R J 2010 Preparation and measurement of three-qubit entanglement in a superconducting circuit Nature 467 574

[92] Sun G, Wen X, Mao B, Chen J, Yu Y, Wu P and Han S 2010 Tunable quantum beam splitters for coherent manipulation of a solid-state tripartite qubit system Nature Commun. 1 51

[93] Harris R et al 2010 Experimental investigation of an eight-qubit unit cell in a superconducting optimization processor Phys. Rev. B 82 024511

[94] O’Connell A D et al 2010 Quantum ground state and single-photon control of a mechanical resonator Nature 464 697

[95] Palacios-Laloy A, Mallet F, Nguyen F, Bertet P, Vion D, Estève D and Korotkov A N 2010 Experimental violation of a Bell’s inequality in time with weak measurement Nature Phys. 6 442–7

[96] Steffen M, Kumar S, DiVincenzo D P, Rozen J R, Keefe G A, Rothwell M B and Ketchen M B 2010 High coherence hybrid superconducting qubit Phys. Rev. Lett. 105 100502

[97] Mariantoni M 2011 private communication

[98] Bylander J, Gustavsson S, Yan F, Yoshihara F, Harrabi K, Fitch G, Cory D G, Nakamura Y, Tsai J S and Oliver W D 2011 Noise spectroscopy through dynamical decoupling with a superconducting flux qubit Nature Phys. 7 565–70

[99] Neeley M et al 2009 Emulation of a quantum spin with a superconducting phase qubit Science 325 722–5

[100] Tyryshkin A M et al 2011 Electron spin coherence exceeding seconds in high purity silicon arXiv:1105.3772

[101] Kim Z, Suri B, Zaretskey V, Novikov S, Osborn K D, Mizel A, Wellstood F C and Palmer B S 2011 Decoupling a Cooper-pair box to enhance the lifetime to 0.2 ms Phys. Rev. Lett. 106 120501

[102] Makhlkin Y, Schoen G and Shirman A 2001 Quantum-state engineering with Josephson-junction devices Rev. Mod. Phys. 73 357

[103] You J Q and Nori F 2011 Atomic physics and quantum optics using superconducting circuits Nature 474 589

[104] Hofheinz M et al 2009 Synthesizing arbitrary quantum states in a superconducting resonator Nature 459 546–9

[105] Nori F 2009 Quantum football Science 325 689

[106] Loss D and DiVincenzo D P 1998 Quantum computation with quantum dots Phys. Rev. A 57 120–6

[107] Tyryshkin A M, Lyon S A, Astashkin A V and Raitisimring A M 2003 Electron spin relaxation times of phosphorous donors in silicon Phys. Rev. B 68 193207

[108] Jelezko F, Gaebel T, Popa I, Gruber A and Wrachtrup J 2004 Observation of coherent oscillations in a single electron spin Phys. Rev. Lett. 92 076401
[109] Jelezko F, Gaebel T, Popa I, Domhan M, Gruber A and Wrachtrup J 2004 Observation of coherent oscillation of a single nuclear spin and realization of a two-qubit conditional quantum gate Phys. Rev. Lett. 93 130501

[110] Petta J R, Johnson A C, Taylor J M, Laird E A, Yacoby A, Lukin M D, Marcus C M, Hanson M P and Gossard A C 2005 Coherent manipulation of coupled electron spins in semiconductor quantum dots Science 309 2180–4

[111] Childress L, Gurudev Dutt M V, Taylor J M, Zibrov A S, Jelezko F, Wrachtrup J, Hemmer P R and Lukin M D 2006 Coherent dynamics of coupled electron and nuclear spin qubits in diamond Science 314 285–9

[112] Hanson R, Mendoza F M, Epstein R J and Awschalom D D 2006 Polarization and readout of coupled single spins in diamond Phys. Rev. Lett. 97 087601

[113] Koppens F H L, Buizert C, Tielrooij K J, Vink I T, Nowack K C, Meunier T, Kouwenhoven L P and Vandersypen L M K 2006 Driven coherent oscillations of a single electron spin in a quantum dot Nature 442 766–71

[114] Steffen A R, Boehme C, Huebl H, Stutzmann M, Lips K and Brandt M S 2006 Electrical detection of coherent 31p spin quantum states Nature Phys. 2 835–8

[115] Gurudev Dutt M V, Childress L, Jiang L, Togan E, Maze J, Jelezko F, Zibrov A S, Hemmer P R and Lukin M D 2007 Quantum register based on individual electronic and nuclear spin qubits in diamond Science 316 1312–6

[116] Hanson R, Kouwenhoven L P, Petta J R, Tarucha S and Vandersypen L M K 2007 Spins in few-electron quantum dots Rev. Mod. Phys. 79 1217

[117] Mikkelsen M H, Berezovsky J, Coldren L A, Stoltz N G and Awschalom D D 2007 Optically detected coherent spin dynamics of a single electron in a quantum dot Nature Phys. 3 770–3

[118] Nowack K C, Koppens F H L, Nazarov Y V and Vandersypen L M K 2007 Coherent control of a single electron spin with electronic fields Science 318 1430–3

[119] Xu X, Sun B, Berman P R, Steel D G, Bracker A S, Gammon D and Sham L J 2007 Coherent optical spectroscopy of a strongly driven quantum dot Science 317 929–32

[120] Amasha S, MacLean K, Radu I P, Zumuhlu D M, Kastner M A, Hanson M P and Gossard A C 2008 Electrical control of spin relaxation in a quantum dot Phys. Rev. Lett. 100 046803

[121] Berezovsky J, Mikkelsen M H, Stoltz N G, Coldren L A and Awschalom D D 2008 Picosecond coherent optical manipulation of a single electron spin in a quantum dot Science 320 529–32

[122] Chirolli L and Burkard G 2008 Decoherence in solid state qubits Adv. Phys. 57 225

[123] Gerardot B D, Brunner D, Dalgarno P A, Ohberg P, Seidl S, Kroner M, Karrai K, Stoltz N G, Petroff P M and Warburton R J 2008 Optical pumping of a single hole spin in a quantum dot Nature 451 441–4

[124] Neumann P, Mizuochi N, Rempp F, Hemmer P, Watanabe H, Yamazaki S, Jacques V, Gaebel T, Jelezko F and Wrachtrup J 2008 Multiparticle entanglement among single spins in diamond Science 320 1326–9

[125] Balasubramanian G et al 2009 Ultralong spin coherence time in isotopically engineered diamond Nature Mater. 8 383–7

[126] Barthel C, Reilly D J, Marcus C M, Hanson M P and Gossard A C 2009 Rapid single-shot measurement of a singlet-triplet qubit Phys. Rev. Lett. 103 160503

[127] Foletti S, Bluhm H, Mahalu D, Umansky V and Yacoby A 2009 Universal quantum control of two-electron spin quantum bits using dynamic nuclear polarization Nature Phys. 5 903

[128] Barthel C, Medford J, Marcus C M, Hanson M P and Gossard A C 2010 Interlaced dynamical decoupling and coherent operation of a singlet-triplet qubit Phys. Rev. Lett. 105 266808

[129] Bluhm H, Foletti S, Mahalu D, Umansky V and Yacoby A 2010 Enhancing the coherence of a spin qubit by operating it as a feedback loop that controls its nuclear spin bath Phys. Rev. Lett. 105 216803

[130] de Lange G, Wang Z, H, Ristik D, Dobrovitski V V and Hanson R 2010 Universal dynamical decopling of a single solid-state spin from a spin bath Science 330 60

[131] Nadaj-Perge S, Frolov S M, Bakkers E P A M and Kouwenhoven L P 2010 Spin-orbit qubit in a semiconductor nanowire Nature 468 1084

[132] Bluhm H, Foletti S, Neder I, Rudner M, Mahalu D, Umansky V and Yacoby A 2011 Dephasing time of GaAs electron-spin qubits coupled to a nuclear bath exceeding 200 μs Nature Phys. 7 109

[133] Morello A et al 2010 Single-shot readout of an electron spin in silicon Nature 467 687

[134] McCombe D R, Van Tol J, Morley G W and Boehme C 2010 Electronic spin storage in an electronically readable nuclear spin memory with a lifetime >100 seconds Science 330 1652–6

[135] Witzel W M, Carroll M S, Morello A, Cywinski L and Das Sarma S 2010 Electron spin decoherence in isotope-enriched silicon Phys. Rev. Lett. 105 187602

[136] Simmons C B et al 2011 Tunable spin loading and \(T_1 \) of a silicon spin qubit measured by single-shot readout Phys. Rev. Lett. 106 156804

[137] Simmons S, Brown R M, Riemann H, Abrosimov N V, Becker P, Pohl H J, Thewalt M L W, Itoh K M and Morton J J L 2011 Entanglement in a solid-state spin ensemble Nature 470 69–72

[138] Suter D and Mahesh T S 2008 Spins as qubits: quantum information processing by nuclear magnetic resonance J. Chem. Phys. 128 052206

[139] Peng X, Liao Z, Xu N, Qin G, Zhou X, Suter D and Du J 2008 Quantum adiabatic algorithm for factorization and its experimental implementation Phys. Rev. Lett. 101 220405

[140] Negrevergne C, Mahesh T S, Ryan C A, Ditty M, Cyr-Racine F, Power W, Boulant N, Havel T, Cory D G and Laflamme R 2006 Benchmarking quantum control methods on a 12-qubit system Phys. Rev. Lett. 96 170501

[141] Vandersypen L M K, Steffen M, Breyta G, Yannoni C S, Sherwood M H and Chuang I L 2001 Experimental realization of Shor’s quantum factoring algorithm using nuclear magnetic resonance Nature 414 883–7

[142] Grajcar M, van der Ploeg S H W, Izmalkov A, Il’ichev E, Meyer-H-G, Fedorov A, Shnirman A and Schon G 2008 Sisyphus cooling and amplification by a superconducting qubit Nature Phys. 4 612–6

[143] Nori F 2008 Atomic physics with a circuit Nature Phys. 4 589

[144] Langer C et al 2005 Long-lived qubit memory using atomic ions Phys. Rev. Lett. 95 060502

[145] Kimble H J 2008 The quantum internet Nature 453 1023–30

[146] Colombe Y, Steinmetz T, Dubois G, Linke F, Hunger D and Reichel J 2007 Strong atom–field coupling for Bose–Einstein condensates in an optical cavity on a chip Nature 450 272–6

[147] Herskind P F, Dantan A, Marler J P, Albert M and Drewsen M 2009 Realization of collective strong coupling with ion Coulomb crystals in an optical cavity Nature Phys. 5 494–8

[148] Englund D, Faraoon A, Fushman I, Stoltz N, Petroff P and Vuckovic J 2007 Controlling cavity reflectivity with a single quantum dot Nature 450 857–61
[149] O’Brien J L 2007 Optical quantum computing Science 318 1567–70
[150] Tian L, Rabl P, Blatt R and Zoller P 2004 Interfacing quantum-optical and solid-state qubits Phys. Rev. Lett. 92 247902
[151] Tian L, Blatt R and Zoller P 2005 Scalable ion trap quantum computing without moving ions Eur. Phys. J. D 32 201–8
[152] Verdú J, Zoubi H, Koller Ch, Majer J, Ritsch H and Schmiedmayer J 2009 Strong magnetic coupling of an ultracold gas to a superconducting waveguide cavity Phys. Rev. Lett. 103 043603
[153] Petrosyan D, Bensky G, Kurizki G, Mazets I, Majer J and Schmiedmayer J 2009 Reversible state transfer between superconducting qubits and atomic ensembles Phys. Rev. A 79 043404
[154] Zipkes C, Palzer S, Sias C and Kohl M 2010 A trapped single ion inside a Bose–Einstein condensate Nature 464 388
[155] Doerk H, Idziaszek Z and Calarco T 2010 Atom–ion quantum gate Phys. Rev. A 81 012708
[156] Kubo Y et al 2010 Strong coupling of a spin ensemble to a superconducting resonator Phys. Rev. Lett. 105 140502
[157] Schuster D I et al 2010 High-cooperativity coupling of electron-spin ensembles to superconducting cavities Phys. Rev. Lett. 105 140501
[158] Wu H, George R E, Wesenberg J H, Molmer K, Schuster D I, Schoelkopf R J, Itoh K M, Arllavan A, Morton J J L and Briggs G A D 2010 Storage of multiple coherent microwave excitations in an electron spin ensemble Phys. Rev. Lett. 105 140503
[159] Simon C et al 2010 Quantum memories. A review based on the European integrated project “Qubit Applications (QAP)” Eur. Phys. J. D 58 1
[160] Wallquist M, Hammerer K, Rabl P, Lukin M and Zoller P 2009 Hybrid quantum devices and quantum engineering Phys. Scr. T137 014001
[161] DiVincenzo D P 1995 Quantum computation Science 270 255–61
[162] Buluta I M and Nori F 2009 Quantum simulators Science 326 108–11
[163] Cirac J I and Zoller P 1995 Quantum computations with cold trapped ions Phys. Rev. Lett. 74 4091
[164] Mølmer K and Sørensen A 1999 Multiparticle entanglement of hot trapped ions Phys. Rev. Lett. 82 1835