Non-integrability of the Kepler and the two body problem on the Heisenberg group

Andrzej J. Maciejewski
Janusz Gil Institute of Astronomy, University of Zielona Góra,
Licealna 9, PL-65–417 Zielona Góra, Poland

Tomasz Stachowiak
Independent scholar

Abstract

The analog of the Kepler system defined on the Heisenberg group introduced in [9] is integrable on the zero level of the Hamiltonian. We show that in all other cases the system is not Liouville integrable due to the lack of additional meromorphic first integrals. We prove that the analog of the two body problem on the Heisenberg group is not integrable in the Liouville sense.

1 Introduction

The idea of studying the Kepler problem, or the problem of \(n \) bodies, in a non-Euclidean space has a long history, but in almost all cases such generalisations were performed in spaces of constant curvature. For a very detailed and critical recent overview of this subject we refer to the nice article [3].

In [9] the authors considered the question of generalization of the Kepler problem and its resulting mechanics, based on first principles. The idea was to formulate an analog of the classical problem in spaces which are homogeneous, isotropic and admit dilations. The last requirement is very restrictive because among homogeneous...
Riemannian manifolds only Euclidean ones admit dilations. The simplest non-Euclidean metric space satisfying all the required properties is the Heisenberg group of special upper-triangular matrices

\[
\begin{pmatrix}
1 & x_1 & x_3 \\
0 & 1 & x_2 \\
0 & 0 & 1
\end{pmatrix}, \quad x_i \in \mathbb{R}. \tag{1}
\]

An isomorphic representation is obtained by taking new coordinates

\[
x_1 = x, \quad x_2 = y, \quad x_3 = z + \frac{1}{2}x_1x_2, \tag{2}
\]

in which the group action is

\[
(x_1, y_1, z_1) \cdot (x_2, y_2, z_2) = (x_1 + x_2, y_1 + y_2, z_1 + z_2 + \frac{1}{2}(x_1y_2 - x_2y_1)). \tag{3}
\]

This manifold carries a maximally non-integrable distribution spanned by the vector fields

\[
X_1 = \partial_x - \frac{1}{2}y \partial_z, \quad X_2 = \partial_y + \frac{1}{2}x \partial_z, \tag{4}
\]

and which define the sub-Riemannian structure. Furthermore, there exists a sub-elliptic Laplacian \(\Delta := X_1^2 + X_2^2 \) for which the fundamental solution to the Poisson equation \(\Delta U = \rho \) is known [6]. This makes the analogy complete because one can construct the kinetic energy with the sub-Riemannian metric, and take the potential as the point-source solution \(U \); the Hamiltonian of such Kepler–Heisenberg system is then

\[
H = \frac{1}{2} \left(p_x - \frac{1}{2} y p_z \right)^2 + \frac{1}{2} \left(p_y + \frac{1}{2} x p_z \right)^2 - \frac{\kappa}{\rho}, \quad \rho := \sqrt{(x^2 + y^2)^2 + \frac{1}{16} z^2}, \tag{5}
\]

where \(\kappa \) is a non-zero real parameter. The properties of this system have been analysed in [9, 12], where it was shown that is has an invariant submanifold given by \(z = 0, p_z = 0, p_\theta = x p_y - y p_x = 0 \) on which all trajectories are straight lines. More importantly, it was also demonstrated that all periodic solutions must lie on the zero-energy level and that the whole system is Liouville integrable there. This happens because of the quantity \(J = x p_x + y p_y + 2z p_z \), for which \(\dot{J} = 2H \), and on the level \(H = 0 \), it is the third integral of motion next to \(H \) and \(p_\theta \), with which it commutes.

We complete the above findings by proving that for all the other values of energy, the system is not integrable. Our considerations are based on the Morales-Ramis theorem [10] which gives the following necessary conditions for the integrability.
\textbf{Theorem 1.} If a Hamiltonian system is Liouville integrable, with meromorphic first integrals, then the identity component of the differential Galois group of variational equations along any non-constant solution is Abelian.

Two remarks are in order before we jump to application. One is the “fine print” of the above theorem: if the variational equation is not Fuchsian, then only rational first integrals can be treated. This will turn out to be the case here, due to the choice of the particular solution.

Secondly, because the Hamiltonian (5) itself is not meromorphic, thanks to algebraic potential

\[V = -\frac{\kappa}{\sqrt{(x^2 + y^2)^2 + \frac{1}{16}z^2}}, \]

a slight modification is in order. The theorem also holds for a general Poisson system [1] so the question is whether we can find a meromorphic Hamiltonian and a Poisson bracket which reproduces the original problem.

The construction below is a modification of that given in [8], where the reader will find more details and proofs. Let us consider an \(n \) degrees of freedom Hamiltonian system with canonical coordinates \(q, p \in \mathbb{C}^n \), with algebraic Hamiltonian \(H(q, p) \) such that \(H(q, p) = K(q, p, u) \) where \(u \) is algebraic over \(\mathbb{C}(q) \) with minimal polynomial \(P(u) \in \mathbb{C}(q)[u] \), and \(K(q, p, u) \in \mathbb{C}(q, p, u) \) is a rational function of its arguments \(x = (q, p, u) \in \mathbb{C}^{2n+1} \). We introduce the following system

\[\dot{x} = J(x)\nabla_x K(x) \]

where \(J(x) \) is \((2n + 1) \times (2n + 1) \) matrix of the form

\[J(x) := \begin{bmatrix} 0 & \mathbb{I}_n & 0 & 0 \\ -\mathbb{I}_n & 0 & \frac{1}{\partial_u P} \nabla_q P \\ 0 & -\frac{1}{\partial_u P} \nabla_q P & 0 \end{bmatrix} \]

It defines the Poisson bracket

\[\{f, g\}(x) := (\nabla_x f(x))^T J(x) \nabla_x g(x), \]

where \(f \) and \(g \) are smooth function. The rank of matrix \(J(x) \) is \(2n \) and the only Casimir function of the bracket is \(P(u) \).

\textbf{Lemma 1.} If \((q(t), p(t), u(t)) \) is a solution of equations (7) with \(P(u(t)) = 0 \), then \((q(t), p(t)) \) is a solution of Hamilton’s equations

\[\dot{q} = \nabla_q H(q, p), \quad \dot{p} = -\nabla_p H(q, p). \]
We omit the proof, as it is rather direct, and ask the interested reader to follow the explanation and steps given in section 2 in [8]. This lemma gives us what is needed, that is we reproduce the original system as a Hamiltonian one with respect to degenerated Poisson structure defined by rational matrix $J(x)$, and with rational Hamiltonian function $K(x)$.

The above general considerations justify the meromorphic assumptions of the Morales-Ramis theory, but of course for practical purposes the calculations can be performed in the original coordinates.

When applying Theorem 1 the main difficulty is connected with determination of properties of differential Galois group of variational equations. If they can be reduced to a second order equation, then we can use the decisive Kovacic algorithm [7]. Sometimes it is possible to show that the considered variational equations contain as a subsystem an equation for which the differential Galois group is known, e.g., hypergeometric equation and its confluent form. Here we give a very useful example which we will apply later.

Theorem 2 (H. P. Rehm, 1979). Assume that complex parameters $\alpha \neq 0$, β, and γ of the parabolic cylinder equation

$$w''(z) - (\alpha^2 z^2 + 2\alpha\beta z + \gamma)w(z) = 0$$

are such that $(\beta^2 - \gamma)/\alpha$ is not an odd integer. Then its differential Galois group is $\text{SL}(2, \mathbb{C})$.

This theorem was proved in [11] and later in [5] it was proved in another way with the help of the Kovacic algorithm.

Now we are ready to formulate the following theorem.

Theorem 3. Let us consider the system given by the Hamiltonian function

$$H = \frac{1}{2} \left(p_x - \frac{1}{2} y p_z \right)^2 + \frac{1}{2} \left(p_y + \frac{1}{2} x p_z \right)^2 + V(x, y, z),$$

where $V(x, y, z) = W(z, \rho)$, and $W(z, \rho) \in \mathbb{C}(z, \rho)$ is a rational function with

$$\rho = \sqrt{(x^2 + y^2)^2 + \frac{1}{16} z^2}.$$

If there exists a nonzero $c \in \mathbb{C}$ such that

$$2a := \frac{\partial V}{\partial z}(0, 0, c) \neq 0,$$

then the system is not integrable in the Liouville sense with first integrals which are rational functions of $(x, y, z, \rho, p_x, p_y, p_z)$.

4
Proof. The Hamilton’s equations generated by (12) have the particular solution
\[
\varphi(t) = [x(t), p_x(t), y(t), p_y(t), z(t), p_z(t)] = [0, 0, 0, c, -2at],
\]
(14)
where \(a \neq 0\) is defined by (12). The system linearized along this solution reads
\[
\eta = \begin{bmatrix}
0 & 1 & at & 0 & 0 \\
-a^2 t^2 & 0 & 0 & at & 0 \\
-at & 0 & 0 & 1 & 0 \\
0 & -2at & -a^2 t^2 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & C
\end{bmatrix}
\eta,
\]
(15)
where the variations of \([x, p_x, y, p_y, z, p_z]\) are \([\eta_1, \eta_2, \eta_3, \eta_4, \eta_5, \eta_6]\), respectively, and explicit form of \(C\) is irrelevant for further considerations.

Note that \(\varphi(t)\) is constant in the configuration space but not in the phase space, and that the solvable subsystem for \(\eta_5\) and \(\eta_6\) separates completely. It is sufficient to consider only the remaining components which form the so-called normal variational equations. It is easy to show that if the system is integrable then the identity component of the normal variational equations is Abelian. Now the problem is that for four dimensional systems (or equations of order four) there is no decisive algorithm which allow the determine their differential Galois group. Sometimes a higher dimensional system splits into systems of lower dimensions or contains as a subsystem of lower dimension. In such case we say that the system is reducible and the problem is reduced to a simpler one.

Some simplification can be achieved by reverse-engineering the solution described below in Remark 1, but there is a more systematic approach: to check for factorization. This can be done algorithmically, and we include the general outline in Appendix A. In order to obtain a particularly simple splitting of the variational equation, we modified the resulting transformation slightly, and performed the following non-canonical change of variables
\[
q_1 = x + iy, \quad h_1 = p_x + ip_y + \frac{i}{2} p_z (x + iy),
\]
\[
q_2 = x - iy, \quad h_1 = p_x - ip_y - \frac{i}{2} p_z (x - iy),
\]
\[
q_3 = z, \quad h_3 = p_z.
\]
(16)
In new variables equations of motion read
\[\dot{q}_1 = h_1, \quad \dot{h}_1 = i h_1 h_3 - \frac{i}{2} q_1 \left[\frac{\partial W}{\partial z}(q_3, \chi) + \frac{q_3 - 64i q_1 q_2}{16 \chi} \frac{\partial W}{\partial \rho}(q_3, \chi) \right], \]
\[\dot{q}_2 = h_2, \quad \dot{h}_2 = -i h_2 h_3 + \frac{i}{2} q_1 \left[\frac{\partial W}{\partial z}(q_3, \chi) + \frac{q_3 + 64i q_1 q_2}{16 \chi} \frac{\partial W}{\partial \rho}(q_3, \chi) \right], \]
\[\dot{q}_3 = \frac{i}{4} (q_1 h_2 - q_2 h_1), \quad \dot{h}_3 = -\frac{\partial W}{\partial z}(q_3, \chi) - \frac{q_3}{16 \chi} \frac{\partial W}{\partial \rho}(q_3, \chi), \]
where \(\chi = \frac{1}{4} \sqrt{16q_1^2 4^2 + q_3^2} \). The considered particular solution of these equations is
\[\varphi(t) = [q_1(t), h_1(t), q_2(t), h_2(t), q_3(t), h_3(t)] = [0, 0, 0, 0, c, -2at], \]
where non-zero \(a \) is guaranteed by (13). Now the variational equations have the form
\[\dot{\eta} = A \eta, \quad A := \begin{bmatrix} A_1 & 0 \\ 0 & A_2 \\ 0 & 0 & A_3 \end{bmatrix} \]
where
\[A_1 := \begin{bmatrix} 0 & 1 \\ -ia & -2iat \end{bmatrix}, \quad A_2 = A_1^*, \quad A_3 := \begin{bmatrix} 0 & 0 \\ 0 & C \\ 0 & 0 \end{bmatrix}. \]
(19)
(20)

The subsystem corresponding to variables \((\eta_1, \eta_2)\) reads
\[\dot{\eta}_1 = \eta_2, \quad \dot{\eta}_2 = -ia \eta_1 - 2iat \eta_2 \]
(21)

We rewrite it as a second order equation
\[\eta_1'' + 2iat \eta_1' + i a \eta_1 = 0. \]
(22)

Making the following change of dependent variable
\[\eta_1(t) = w(t) e^{-iat^2/2} \]
(23)
we obtain the reduced form of equation (22)
\[w''(t) + a^2 t^2 w(t) = 0 \]
(24)

The transformation (23) does not change the identity component of the differential Galois group of the equation. Now, equation (24) is a particular case of parabolic cylinder equation (11) with \(\alpha^2 = -a^2 \) and \(\beta = \gamma = 0 \), so, by Theorem 2, its differential Galois group is \(\text{SL}(2, \mathbb{C}) \). As \(\text{SL}(2, \mathbb{C}) \) is connected its identity component is the whole group. So, it is not Abelian, and, by Theorem 1, the system is not integrable. \(\square \)
Condition (13) expressed by function $W(z, \rho)$ reads
\[
2a := \frac{\partial W}{\partial z}(c, |c|/4) + \frac{1}{4} \frac{\partial W}{\partial \rho}(c, |c|/4) \neq 0.
\] (25)

Thus if $W(z, \rho)$ depends only on ρ, that is W is a non-constant rational function of ρ, then condition (25) is satisfied. Since for the Kepler potential $W(z, \rho) = -\kappa/\rho$, the above theorem proves in particular:

Corollary 1. The Kepler–Heisenberg problem, as formulated by Montgomery and Shanbrom in [9], is not integrable in the Liouville sense with rational first integrals.

Remark 1. It is worth noticing that the general solution of equation (22) is
\[
\eta_1(t) = \sqrt{2} e^{-iat^2/2} \left[C_1 J_{\frac{1}{4}}(at^2) + C_2 Y_{\frac{1}{4}}(at^2) \right],
\] (26)
where $J_a(z)$ and $Y_a(z)$ are Bessel functions of the first and second type, respectively; C_1 and C_2 are arbitrary complex constants. At this point it becomes clear that the Galois group cannot be solvable, because the Bessel functions are Liouvillian only when their order is half an odd integer [7].

2 Two-body problem

Having dealt with the original generalisation of the Kepler problem proposed in [9], a natural question arises about the two-body problem. In the classical Kepler problem, there is no fundamental difference between one and two bodies: the latter still leads to the Kepler problem for a single body of reduced mass, revolving around the center of mass. We thus ask ourselves, if similar result can be achieved here.

For two point masses m_1 and m_2, whose positions are group elements $g_k = (x_k, y_k, z_k)$ we will take the Hamiltonian to be
\[
H = \frac{1}{2m_1} \left((p_{x_1} - \frac{1}{2} y_1 p_{z_1})^2 + (p_{y_1} + \frac{1}{2} x_1 p_{z_1})^2 \right) +
\frac{1}{2m_2} \left((p_{x_2} - \frac{1}{2} y_2 p_{z_2})^2 + (p_{y_2} + \frac{1}{2} x_2 p_{z_2})^2 \right) + V(\rho(g_1^{-1} \cdot g_2)),
\] (27)
where the potential is specified by
\[
V(\rho) = -\frac{\kappa m_1 m_2}{\rho}, \quad \rho(g) = \sqrt{(x^2 + y^2)^2 + \frac{1}{16} z^2}.
\] (28)
We note that the following first integrals are “known”:

\[
I_1 = p_{x_1} + \frac{1}{2} y_1 p_{z_1} + p_{x_2} + \frac{1}{2} y_2 p_{z_2}, \\
I_2 = p_{y_1} - \frac{1}{2} x_1 p_{z_1} + p_{y_2} - \frac{1}{2} x_2 p_{z_2}, \\
I_3 = p_{z_1} + p_{z_2} = (I_1, I_2), \\
I_4 = y_1 p_{x_1} - x_1 p_{y_1} + y_2 p_{x_2} - x_2 p_{y_2},
\]

(29)

and they satisfy

\[
\{I_1, I_4\} = I_2, \quad \{I_2, I_4\} = -I_1.
\]

(30)

Additionally, as for the Kepler–Heisenberg problem,

\[
J = x_1 p_{x_1} + y_1 p_{y_1} + 2z_1 p_{z_1} + x_2 p_{x_2} + y_2 p_{y_2} + 2z_2 p_{z_2},
\]

(31)

is such that \(J = 2H \). That is, we have 5 first integrals, although they do not all commute, and on the zero-energy level \(J \) becomes the sixth integral. The question, as before, is whether there exist enough (here: six) commuting integrals.

Now, we make linear canonical transformation

\[
\begin{align*}
 u_1 &= \frac{1}{\sqrt{2}}(y_1 - ix_1), \quad p_{u_1} = \frac{1}{\sqrt{2}}(p_{y_1} + ip_{x_1}), \\
 v_1 &= \frac{1}{\sqrt{2}}(y_1 + ix_1), \quad p_{v_1} = \frac{1}{\sqrt{2}}(p_{y_1} - ip_{x_1}), \\
 w_1 &= z_1 + z_2, \quad p_{w_1} = \frac{1}{2}(p_{z_1} + p_{z_2}), \\
 u_2 &= \frac{1}{\sqrt{2}}(y_2 - ix_2), \quad p_{u_2} = \frac{1}{\sqrt{2}}(p_{y_2} + ip_{x_2}), \\
 v_2 &= \frac{1}{\sqrt{2}}(y_2 + ix_2), \quad p_{v_2} = \frac{1}{\sqrt{2}}(p_{y_2} - ip_{x_2}), \\
 w_2 &= z_1 - z_2, \quad p_{w_2} = \frac{1}{2}(p_{z_1} - p_{z_2}).
\end{align*}
\]

(32)

In new variables the Hamiltonian reads

\[
H = \frac{((p_{w_1} + p_{w_2})u_1 - 2ip_{v_1})((p_{w_1} + p_{w_2})v_1 + 2ip_{u_1})}{4m_1} + \frac{((p_{w_1} - p_{w_2})u_2 - 2ip_{v_2})((p_{w_1} - p_{w_2})v_2 + 2ip_{u_2})}{4m_2} - \frac{\kappa m_1 m_2}{\rho_{12}},
\]

(33)

where

\[
\rho_{12} = \sqrt{4(u_1 - u_2)^2(v_1 - v_2)^2 - \frac{1}{64}(v_1 u_2 - v_2 u_1 + 2i w_2)^2}.
\]

(34)
The particular solution is almost as before
\[
p_{w_1} = p_{w_1}(0), \quad p_{w_2} = -4at, \quad a = \frac{m_1 m_2 \kappa}{w_2 |w_2|}, \quad w_2 = w_2(0), \quad w_1 = w_1(0),
\]
and all other phase variables equal to zero.

Linear variations of the variables \((u_1, p_{v_1}, u_2, p_{v_2}, v_1, p_{u_1}, v_2, p_{u_2}, w_1, w_2, p_{w_1}, p_{w_2})\) we denote by \(\xi = (\xi_1, \ldots, \xi_{12})\). Then the variational equations read
\[
\dot{\xi} = A \xi, \quad A = \begin{bmatrix} A_1 & 0 & 0 \\ 0 & A_2 & 0 \\ 0 & 0 & A_3 \end{bmatrix},
\]
where
\[
A_1 = \begin{bmatrix} \tau - \tau_0 & 1 & 0 & 0 \\ (\tau - \tau_0)^2 & -1 & 0 \\ 0 & 0 & -\mu(\tau + \tau_0) & \mu \\ 1 & 0 & \mu(\tau + \tau_0)^2 & -\mu(\tau + \tau_0) \end{bmatrix}, \quad A_3 = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 4i/w_2 & 0 \end{bmatrix},
\]
and
\[
A_2 = \begin{bmatrix} \tau_0 - \tau & 1 & 0 & 0 \\ (\tau_0 - \tau)^2 & \tau_0 - \tau & 1 & 0 \\ 0 & 0 & \mu(\tau + \tau_0) & \mu \\ -1 & 0 & \mu(\tau + \tau_0)^2 & \mu(\tau + \tau_0) \end{bmatrix}.
\]
To obtain the above form we use the following rescalings
\[
t = m_1 \tau, \quad a = \frac{i}{2m_1}, \quad \mu = \frac{m_1}{m_2}, \quad p_{w_1} = 4a m_1 \tau_0.
\]

Theorem 4. If \(\mu \neq -1\) then the two body problem on the Heisenberg group is not integrable in the Liouville sense.

Proof. If the system generated by (27) is integrable then by Theorem 1, the identity component of differential Galois group of variational equations (36) is Abelian. It implies that the same property has the differential Galois group of subsystems of (36) which have the form \(\dot{\eta} = A_i \eta, \eta \in \mathbb{C}^4\), for \(i = 1, 2, 3\). We consider the first of them. It has particular solution
\[
\eta(\tau) = (1, \tau_0 - \tau, 1, \tau_0 + \tau).
\]
Using the d’Alambert method, see [14], we can reduce the dimension of the system by one. But assuming that \(\tau_0 = 0 \) we achieve more. Namely, linear transformation \(\eta \rightarrow Q \eta \) with \(Q = Q(\tau) \) given by

\[
Q = \begin{bmatrix}
1 & 0 & 0 & 0 \\
-\tau & 1 & 0 & 0 \\
1 & 2\tau & -1 & 0 \\
\tau & -1 - 2\tau^2 & \tau & -\frac{1}{\mu}
\end{bmatrix}, \quad (41)
\]

bring it to the form \(\dot{\eta} = \tilde{A}_1 \eta \) where

\[
\tilde{A}_1 = Q^{-1} (A_1 Q - \frac{d}{d\tau} Q) = \begin{bmatrix}
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & p_2 & p_1 & 1 \\
0 & 0 & 0 & 0
\end{bmatrix}, \quad p_1 = 2(1 - \mu)\tau, \quad p_2 = 3 + \mu + 4\mu\tau^2. \quad (42)
\]

Thus the transformed system has block-triangular structure which is quite simple: the first coordinate does not enter, while the fourth is constant. In other words, to obtain a particular solution, it is enough to choose the subsystem corresponding to the second and third components:

\[
\eta_2'(\tau) = \eta_3(\tau), \quad \eta_3'(\tau) = p_2(\tau)\eta_2(\tau) + p_1(\tau)\eta_3(\tau). \quad (43)
\]

As a single equation it reads

\[
\eta_2'' = 2(1 - \mu)\tau\eta_2' + (3 + \mu + 4\mu\tau^2)\eta_2, \quad (44)
\]

which after change \(\eta_2 = \exp[(1 - \mu)\tau^2/2]\eta(\tau) \) reads

\[
w''(\tau) - (1 + \mu) [2 + (1 + \mu)\tau^2] w(\tau) = 0 \quad (45)
\]

It is, again, the parabolic cylinder equation (11) with parameters

\[
\alpha^2 = (1 + \mu)^2, \quad \beta = 0 \quad \gamma = 2(1 + \mu).
\]

Let us assume that \(\mu \neq -1 \). Then \(\alpha \neq 0 \) and

\[
\frac{\beta^2 - \gamma}{\alpha} = -2\text{sgn}(1 + \mu)
\]

is not an odd integer. Hence, by Theorem 2 the differential Galois group of equation (45) is \(\text{SL}(2, \mathbb{C}) \). This ends the proof. \(\Box \)
The case \(\mu = -1 \) is difficult to study. Considering variational equations with \(\tau_0 = 0 \) we do not obtain any obstacles for integrability. Moreover, taking non-zero \(\tau_0 \) we are unable to reduce the problem to study a second order differential equation. Nevertheless we are able to show the following.

Theorem 5. If \(\mu = -1 \) then the two body problem on the Heisenberg group is not integrable in the Liouville sense.

Proof. As in the previous proof we consider subsystem of variational equations (36) corresponding to the matrix \(A_1 \) but now we fix \(\mu = -1 \) and \(\tau_0 = 1 \). Then, using particular solution (40) we reduce it dimension to 3. But now to achieve this we make linear transformation \(\eta \to Q\tilde{\eta} \) with \(Q = Q(\tau) \) given by

\[
Q = \begin{bmatrix}
1 & 0 & 0 & 0 \\
\tau - 1 & 1 & 0 & 0 \\
-1 & 0 & -1 & 0 \\
\tau + 1 & -1 & \tau + 1 & 1
\end{bmatrix},
\]

(46)

We get \(\tilde{\eta} = \tilde{A}_1 \eta \) where

\[
\tilde{A}_1 = Q^{-1}(A_1Q - \frac{d}{d\tau}Q) = \begin{bmatrix}
2(\tau - 1) & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
4 & -2 & 2(\tau + 1) & 1 \\
0 & 0 & 0 & 0
\end{bmatrix}.
\]

(47)

Assuming that \(\eta_4 = 0 \) we consider system of first three equations

\[
\begin{bmatrix}
\eta'_1 \\
\eta'_2 \\
\eta'_3
\end{bmatrix} = \begin{bmatrix}
2(\tau - 1) & 1 & 0 \\
0 & 0 & 1 \\
4 & -2 & 2(\tau + 1)
\end{bmatrix} \begin{bmatrix}
\eta_1 \\
\eta_2 \\
\eta_3
\end{bmatrix}
\]

(48)

It is important to notice that the only singularity of this system is \(\tau = \infty \), so all its solution are holomorphic on the whole complex plane. We prove that it does not have any Liouvillian solution and thus its differential Galois group is not solvable.

To apply conditions formulated in [15], we rewrite system (48) as the third order equation

\[
\eta''_2 - 4\tau \eta''_2 + 4(\tau^2 - 1)\eta'_2 - 4\tau \eta_1 = 0,
\]

(49)

and then we substitute \(\eta_2 = v(\tau) \exp[2\tau^2/3] \). As the result we obtain equation

\[
\frac{4}{3} \tau^2 v' + \frac{4}{27} \tau(4\tau^2 - 63)v = 0.
\]

(50)

whose differential Galois group is a subgroup of \(\text{SL}(3, \mathbb{C}) \). According [15] if this equation has a Liouvillian solution then there are three possibilities:
1. it has a solution whose logarithmic derivative v'/v is rational, or
2. it has three linearly independent solutions whose logarithmic derivative v'/v are algebraic of order 3, or
3. all its solutions are algebraic.

If none of the above cases occur then the equation has no Liouvillian solution. Unfortunately, a direct application of the ‘Necessary conditions for case 1’ given on p. 9 in [15] shows that these conditions are fulfilled. In order to exclude this case we have to use the full algorithm for checking if the equation admits an exponential solution, or just use a computer algebra system to check it. We use the Maple algebra system function exp_sol applied to equation (50), and it does not give any exponential solution.

The equation is not Fuchsian – with one irregular singular point at infinity. This is why the third case is excluded.

According to ‘Necessary conditions for case 2’ given on p. 12 in [15], if this case occurs then the third symmetric power of equation (50) has a solution of the form

$$v = P(\tau) \prod_{i=1}^{s} (\tau - \tau_i)^{\alpha_i}$$ \hspace{1cm} (51)

where $P(\tau)$ is a polynomial, τ_i is a singular point, and α_i is an exponent at this point. Moreover α_i is a half integer for $i = 1, \ldots, s$. Calculations, with the help of Maple, show that the third symmetric power of equation (50) is an equation of order 10 which has 15 regular singular points $\tau_i \in \mathbb{C}$. They are roots of the following polynomial

$$S(\tau) := \tau (3456 \tau^{14} - 271680 \tau^{12} + 8200960 \tau^{10} - 119918560 \tau^{8} + 854800080 \tau^{6} - 2391850656 \tau^{4} + 71751150 \tau^{2} - 229734225).$$ \hspace{1cm} (52)

At each of these points $\alpha_i \in \{0, 1, 2, 3, 4, 5, 6, 7, 8, 10\}$. The infinity is an irregular singular point with only one exponent $\alpha_\infty = 2$. From the above facts it follows that if a solution of the form (51) exists then it is a polynomial, but then there must be an exponent at infinity which is equal to minus the degree of this polynomial. As there is no such exponent the second case does not occur. To conclude, equation (50) does not admit any Liouvillian solution, so the identity component of its differential Galois group is not Abelian.
3 Concluding Remarks

Our main goal was to answer Montgomery’s question about integrability of the (simple) Kepler problem on the Heisenberg group. The answer turned out to be negative, but several generalisations became immediately apparent. First, the potential had a specific radial/axial symmetry, and a whole general class of such potentials could be included; second, and more important, the two-body problem could be formulated in a natural way. We thus extended the analysis, and managed to show, that with reasonable assumptions those extensions were also non-integrable.

We note that potentials not satisfying the condition (13) can be found, such as
\[V = z^2(x^2 + y^2)^2 = z^2(\rho^2 - z^2/16), \quad \text{or} \quad V = (x^2 + y^2)^2 R(z, \rho) \] (53)
where \(R(z, \rho) \) is not divisible by \((x^2 + y^2)^2\). Integrability of these potentials remains an open question. One possible way of investigation of these cases is the application of a variant of the direct method. However, we were unable to find any integrals which were polynomials of low degree in momenta. It remains an open question whether our result can be extended to a wider functional class of first integrals, but each case requires a completely different set of methods than those used here, and as such is a subject for separate investigation.

Declaration
Conflict of Interest: The authors declare that they have no conflict of interest.

Appendix A The factorization algorithm

We outline the reduction of the variational system (15), following the notation of [16].

Take the nontrivial block of the VE, with \(a = 1 \) (specific \(z_0 \) in the particular solution), which is
\[
\dot{\eta} = \begin{bmatrix}
0 & 1 & 2t & 0 \\
-4t^2 & 0 & 0 & 2t \\
-2t & 0 & 0 & 1 \\
0 & -2t & -4t^2 & 0
\end{bmatrix} \eta, \tag{54}
\]
and construct the associated system, which is its second external power, i.e., the differential equation for an antisymmetric matrix \(W \), which reads
\[
W = AW - W^T A^T, \tag{55}
\]
where A is the coefficient matrix in (54). The matrix W has 6 components, so we are effectively dealing with a six-dimensional linear system

$$
\dot{Y} = \begin{bmatrix}
0 & 0 & 2t & -2t & 0 & 0 \\
0 & 0 & 1 & 1 & 0 & 0 \\
-2t & -4t^2 & 0 & 0 & 1 & 2t \\
2t & -4t^2 & 0 & 0 & 1 & 2t \\
0 & 0 & -4t^2 & -4t^2 & 0 & 0 \\
0 & 0 & -2t & 2t & 0 & 0 \\
\end{bmatrix} Y.
$$

(56)

The next task in the algorithm is to find an exponential solution Y. In the above matrix, the third and fourth rows (and columns), can be combined to eliminate some of the t^2 terms, and a simple basis permutation gives the similarity transform to the following block diagonal form

$$
\begin{bmatrix}
A_1 & 0 \\
0 & A_2 \\
\end{bmatrix}, \quad A_1 = t \begin{bmatrix}
0 & -2 & 0 \\
4 & 0 & -4 \\
0 & 2 & 0 \\
\end{bmatrix}, \quad A_2 = \begin{bmatrix}
0 & t^2 & 0 \\
-8 & 0 & t^2 \\
0 & -8 & 0 \\
\end{bmatrix}.
$$

(57)

The first block can be solved with the exponential factor $\exp(\pm 2it^2)$, and, surprisingly, we recover two solutions of the associated system in one step. They read:

$$
Y_1 = \exp(2it^2)[-1,0,-i,i,0,1]^T, \\
Y_2 = \exp(-2it^2)[-1,0,i,-i,0,1]^T.
$$

(58)

We next check the Plücker condition $z_{03}z_{12} - z_{02}z_{13} + z_{23}z_{01} = 0$, taking for each solution $Y_k = [z_{01}, z_{02}, z_{03}, z_{12}, z_{13}, z_{23}]$. In our case, it is trivially satisfied for each Y_k, and that means that the respective operators

$$
M_\Psi = \begin{bmatrix}
z_{12} & -z_{02} & z_{01} & 0 \\
z_{13} & -z_{03} & 0 & z_{01} \\
z_{23} & 0 & -z_{03} & z_{02} \\
0 & z_{23} & -z_{13} & z_{12} \\
\end{bmatrix}
$$

(59)

have non-trivial kernels spanned by some $\{e_i\}$ – these need to be combined, and possibly completed, to form the new basis. Each kernel is two dimensional here, so we get e_1 and e_2 from Y_1, and e_3 and e_4 from Y_2, which can be collected as columns in the full basis

$$
Q = \begin{bmatrix}
0 & -i & 0 & i \\
-i & 0 & i & 0 \\
0 & 1 & 0 & 1 \\
1 & 0 & 1 & 0 \\
\end{bmatrix}, \quad \det(Q) = -4.
$$

(60)
Making the transformation, turns the VE into the block-diagonal form

\[
Q^{-1} A Q = \begin{bmatrix}
2it & -4t^2 & 0 & 0 \\
1 & 2it & 0 & 0 \\
0 & 0 & -2it & -4t^2 \\
0 & 0 & 1 & -2it
\end{bmatrix}.
\] (61)

That the form is not merely block-triangular is thanks to the previous step yielding, by chance, enough of the \(e_i \).

Note that \(Q \) works regardless of the value of \(a \), so it can immediately be lifted to a linear canonical transformation in the original variables:

\[
u = \frac{1}{\sqrt{2}}(y - ix), \quad p_v = \frac{1}{\sqrt{2}}(p_y + ip_x),
\]

\[
v = \frac{1}{\sqrt{2}}(y + ix), \quad p_v = \frac{1}{\sqrt{2}}(p_y - ip_x),
\] (62)

after which the Hamiltonian becomes

\[
H = \left(\frac{1}{2}u p_z - ip_v \right) \left(\frac{1}{2}v p_z + ip_u \right) - \frac{4\alpha}{\sqrt{64u^2 v^2 + z^2}}.
\] (63)

The VE along our particular solution are block-diagonal in the variables \([u, p_v, v, p_u]\), but we note that they are quadratic in time, as in (61). This can be further simplified, by adding non-linear terms in the transformation of the original variables, as is done in the main text in (16) leading to linear VE in (20).

Acknowledgement

This work has been supported by grants No. DEC-2011/02/A/ST1/00208 and DEC-2013/09/B/ST1/04130 of National Science Centre of Poland.

References

[1] Arnold, Vladimir I., Kozlov, Valery V. and Neishtadt, Anatoly I. Mathematical Aspects of Classical and Celestial Mechanics, EMS, Springer, 2006.

[2] Ayoul, Michaël and Nguyen Tien Zung. Galoisian obstructions to non-Hamiltonian integrability Comptes Rendus Mathematique, 348(23), 1323–1326, 2010.
[3] Borisov, Alexey V., Ivan S. Mamaev and Ivan A. Bizyaev. The spatial problem of 2 bodies on a sphere. Reduction and stochasticity. Regular and Chaotic Dynamics, 21,556–580, 2016.

[4] Combot, Thierry A note on algebraic potentials and Morales-Ramis theory. Celestial Mech. Dynam. Astronom., 115(4):397–404, 2013.

[5] Duval, Anne, and Michèle Loday-Richaud. Kovacic’s algorithm and its application to some families of special functions. Applicable Algebra in Engineering, Communication and Computing. 3(3), pp. 211-246. 1992.

[6] G. B. Folland “A Fundamental Solution for a Subelliptic Operator”, Bull. Am. Math. Soc. 79, 373–376 (1973).

[7] Kovacic, J.J., “An algorithm for solving second order linear homogeneous differential equations”, Journal of Symbolic Computation 2, 3–43, 1986.

[8] Maciejewski, J. Andrzej, and Maria Przybylska. Integrability of Hamiltonian systems with algebraic potentials. Phys. Lett. A, 380(1-2),76–82, 2016.

[9] Montgomery, R. and Shanbrom C., “Keplerian motion on the Heisenberg group and elsewhere,” Geometric Mechanis: The Legacy of Jerry Marsden. Fields Institute Communications Series, 2015.

[10] Morales-Ruiz, Juan J., and Jean Pierre Ramis. Galoisian obstructions to integrability of Hamiltonian systems. I. Methods Appl. Anal., 8(1):33–95, 2001.

[11] Rehm, H. P. Galois groups and elementary solutions of some linear differential equations. Journal für die reine und angewandte Mathematik, 307–308, pp. 1-7, 1979.

[12] Shanbrom, C. “Periodic orbits in the Kepler-Heisenberg problem,” Journal of Geometric Mechanics, Vol. 6, No. 2, pp. 261–278, 2014.

[13] van der Put, Marius, and Michael F. Singer. Galois Theory of Linear Differential Equations. Vol. 328. Grundlehren Der Mathematischen Wissenschaften. Berlin, Heidelberg: Springer Berlin Heidelberg. 2003.

[14] Walter, Wolfgang. Ordinary differential equations, Springer-Verlag, New York, 1998.
[15] Singer, Michael F., Ulmer, Felix, Necessary conditions for liouvillian solutions of (third order) linear differential equations, *Applicable Algebra in Engineering, Communication and Computing*, vol. 6, pp. 1–22, 1995.

[16] Compoint, E. and J.A. Weil „Absolute reducibility of differential operators and Galois groups” *Journal of Algebra*, 275, pp. 77—105 (2004).