k-Colorability of P_3-free Graphs

C. Hoàng* J. Sawada† X. Shu‡

Abstract

A polynomial time algorithm that determines for a fixed integer k whether or not a P_3-free graph can be
k-colored is presented in this paper. If such a coloring exists, the algorithm will produce a valid k-coloring.

Keywords: P_3-free, graph coloring, dominating clique

1 Introduction

Graph coloring is among the most important and applicable graph problems. The k-colorability problem is the
question of whether or not the vertices of a graph can be colored with one of k colors so that no two adjacent
vertices are assigned the same color. In general, the k-colorability problem is NP-complete [13]. Even for
planar graphs with no vertex degree exceeding 4, the problem is NP-complete [6]. However, for other classes
of graphs, like perfect graphs [10], the problem is polynomial-time solvable. For the following special class of
perfect graphs, there are efficient polynomial time algorithms for finding optimal colorings: chordal graphs [7],
weakly chordal graphs [11], and comparability graphs [5]. For more information on perfect graphs, see [1], [3],
and [9].

Another interesting class of graphs are those that are P_t-free, that is, graphs with no chordless paths v_1, v_2, \ldots, v_t
of length $t-1$. If $t = 3$ or $t = 4$, then there exists efficient algorithms to answer the k-colorability question
(see [3]). However, for $t = 5, 6, \text{or } 7$, the complexity of the problem is unknown: for $t \geq 8$ the problem is
NP-complete [16]. To handle the unknown cases, a natural first step is to consider what happens if the value of k
is fixed. Taking this parameterization into account, a snapshot of the known complexities for the k-colorability
problem of P_t-free graphs is given in Table 1 (under columns 5 and 6, α is the exponent given by matrix mul-
tiplication that currently satisfies $2 < \alpha < 2.376$ [4]). From this chart we can see that there is a polynomial
algorithm for the 3-colorability of P_6-free graphs [15].

In this paper we focus on P_5-free graphs. Notice that when $k = 3$, the colorability question for P_5-free graphs
can be answered in polynomial time (see [16]). For $k = 4$ partial results were obtained in [12] when a P_5-free
graph has a dominating K_4. The main result of this paper is the development of a polynomial time algorithm
that will determine whether or not a P_5-free graph is k-colorable for a fixed integer k. If such a coloring exists,
Table 1: Known complexities for k-colorability of P_t-free graphs

$k \setminus t$	3	4	5	6	7	8	\ldots	12	\ldots
3	$O(m)$	$O(m)$	$O(n^a)$	$O(mn^a)$	$?$	$?$	$?$	$?$	\ldots
4	$O(m)$	$O(m)$	$?$	$?$	$?$	$?$	NP_c	NP_c	\ldots
5	$O(m)$	$O(m)$	$?$	NP_c	NP_c	NP_c	NP_c	NP_c	\ldots
6	$O(m)$	$O(m)$	$?$	NP_c	NP_c	NP_c	NP_c	NP_c	\ldots
7	$O(m)$	$O(m)$	$?$	NP_c	NP_c	NP_c	NP_c	NP_c	\ldots
\ldots	\ldots	\ldots	\ldots	\ldots	\ldots	\ldots	\ldots	\ldots	\ldots

then the algorithm will yield a valid k-coloring. We note that if k is part of the input, then the problem is NP-complete [14]. We also note the algorithm in [8] that colours a $(P_5, \overline{P_5})$-free graph G with $\chi(G)^2$ colours, where $\chi(G)$ is the chromatic number of G.

The remainder of the paper is presented as follows. In Section 2 we present relevant definitions, concepts, and notations. Then in Section 3, we present our recursive polynomial time algorithm that answers the k-colorability question for P_5-free graphs.

2 Background and Definitions

In this section we provide the necessary background and definitions used in the rest of the paper. For starters, we assume that $G = (V, E)$ is a simple undirected graph where $|V| = n$ and $|E| = m$. If A is a subset of V, then we let $G(A)$ denote the subgraph of G induced by A.

Definition 1 A set of vertices A is said to dominate another set B, if every vertex in B is adjacent to at least one vertex in A.

The following structural result about P_5-free graphs is from Bacsó and Tuza [2]:

Theorem 1 Every connected P_5-free graph has either a dominating clique or a dominating P_3.

Definition 2 Given a graph G, an integer k and for each vertex v, a list $l(v)$ of k colors, the k-list coloring problem asks whether or not there is a coloring of the vertices of G such that each vertex receives a color from its list.

Definition 3 The restricted k-list coloring problem is the k-list coloring problem in which the lists $l(v)$ of colors are subsets of $\{1, 2, \ldots, k\}$.

Our general approach is to take an instance of a specific coloring problem Φ for a given graph and replace it with a polynomial number of instances $\phi_1, \phi_2, \phi_3, \ldots$ such that the answer to Φ is “yes” if and only if there is some instance ϕ_k that also answers “yes”.
For example, consider a graph with a dominating vertex \(u \) where each vertex has color list \(\{1, 2, 3, 4, 5\} \). This listing corresponds to our initial instance \(\Phi \). Now, by considering different ways to color \(u \), the following four instances will be equivalent to \(\Phi \):

\[
\begin{align*}
\phi_1: & \quad u = 1 \text{ and the remaining vertices have color lists } \{2, 3, 4, 5\}, \\
\phi_2: & \quad u = 2 \text{ and the remaining vertices have color lists } \{1, 3, 4, 5\}, \\
\phi_3: & \quad u = 3 \text{ and the remaining vertices have color lists } \{1, 2, 4, 5\}, \\
\phi_4: & \quad u = \{4, 5\} \text{ and the remaining vertices have color lists } \{1, 2, 3, 4, 5\}.
\end{align*}
\]

In general, if we recursively apply such an approach we would end up with an exponential number of equivalent coloring instances to \(\Phi \).

3 The Algorithm

Let \(G \) be a connected \(P_5 \)-free graph. This section describes a polynomial time algorithm that decides whether or not \(G \) is \(k \)-colorable. Our strategy is as follows. First, we find a dominating set \(D \) of \(G \) which is a clique with at most \(k \) vertices or a \(P_3 \). There are only a finite number of ways to colour the vertices of \(D \) with \(k \) colours. For each of these colourings of \(D \), we recursively check if it can be extended to a colouring of \(G \). Each of these subproblems can be expressed by a restricted list colouring problem. We now describe the algorithm in detail.

The algorithm is outlined in 3 steps. Step 2 requires some extra structural analysis and is presented in more detail in the following subsection.

1. Identify and color a maximal dominating clique or a \(P_3 \) if no such clique exists (Theorem 1). This partitions the vertices into fixed sets indexed by available colors. For example, if a \(P_5 \)-free graph has a
dominating K_3 (and no dominating K_4) colored with $\{1, 2, 3\}$ and $k = 4$, then the fixed sets would be given by: $S_{124}, S_{134}, S_{234}, S_{14}, S_{24}, S_{34}$. For an illustration, see Figure 1. Note that all the vertices in S_{124} are adjacent to the vertex colored 3 and thus have color lists $\{1, 2, 4\}$. This gives rise to our original restricted list-coloring instance Φ. Although the illustration in Figure 1 does not show it, it is possible for there to be edges between any two fixed sets.

2. Two vertices are dependent if there is an edge between them and the intersection of their color lists is non-empty. In this step, we remove all dependencies between each pair of fixed sets. This process, detailed in the following subsection, will create a polynomial number of coloring instances $\{\phi_1, \phi_2, \phi_3, \ldots\}$ equivalent to Φ.

3. For each instance ϕ_i from Step 2 the dependencies between each pair of fixed sets has been removed which means that the vertices within each fixed set can be colored independently. Thus, for each instance ϕ_i we recursively see if each fixed set can be colored with the corresponding restricted color lists (the base case is when the color lists are a single color). If one such instance provides a valid k-coloring then return the coloring. Otherwise, the graph is not k-colorable.

As mentioned, the difficult part is reducing the dependencies between each pair of fixed sets (Step 2).

3.1 Removing the Dependencies Between Two Fixed Sets

Let S_{list} denote a fixed set of vertices with color list given by list. We partition each such fixed set into dynamic sets P_i that each represents a unique subset of the colors in list. For example: $S_{123} = P_{123} \cup P_{12} \cup P_{13} \cup P_{23} \cup P_1 \cup P_2 \cup P_3$. Initially, $S_{123} = P_{123}$ and the remaining sets in the partition are empty. However, as we start removing dependencies, these sets will dynamically change. For example, if a vertex w is initially in P_1 and one of its neighbors gets colored 2, then w will be removed from P_1 and added to P_2.

Recall that our goal is to remove the dependencies between two fixed sets S_p and S_q. To do this, we remove the dependencies between each pair (P, Q) where P is a dynamic subset of S_p and Q is a dynamic subset of S_q. Let $\text{col}(P)$ and $\text{col}(Q)$ denote the color lists for the vertices in P and Q respectively. By visiting these pairs in order from largest to smallest with respect to $|\text{col}(P)|$ and then $|\text{col}(Q)|$, we ensure that we only need to consider each pair once. Applying this approach, the crux of the reduction process is to remove the dependencies between a pair (P, Q) by creating at most a polynomial number of equivalent colorings.

Now, observe that there exists a vertex v from the dominating set found in Step 1 of the algorithm that dominates every vertex in one set, but is not adjacent to any vertex in the other. This is because P and Q are subsets of different fixed sets. WLOG assume that v dominates Q. Now, consider the (connected) components of $G(P)$ and $G(Q)$. If a component Z in $G(P)$ is not adjacent to any vertex in Q then the vertices in Z have no dependencies with Q. The same applies for such components in Q. Since these components have no dependencies, we focus on the induced subgraph $H = G(P \cup Q \cup \{v\})$ with these components removed. This graph is illustrated in Figure 2 where the small rectangles represent the components in $G(P)$ and $G(Q)$ respectively. It is easy to observe that H is connected (if not, then there are components H_1, H_2 of H, each of which contains a vertex in P and a vertex in Q; it follows there are edges (a, b) of H_1 and (c, d) of H_2 such that a, b, v, d, c induce a P_5).

Theorem 2 Let H be a connected P_5-free graph partitioned into three sets P, Q and $\{v\}$ where v is adjacent to every vertex in Q but not adjacent to any vertex in P. Then there exists at most one component in $G(P)$
Figure 2: Illustration of the graph H from two dynamic sets

that contains two vertices a and b such that a is adjacent to some component $Y_1 \in G(Q)$ but not adjacent to another component $Y_2 \in G(Q)$ while b is adjacent to Y_2 but not Y_1.

PROOF: The proof is by contradiction. Suppose that there are two unique components $X_1, X_2 \in G(P)$ with $a, b \in X_1$ and $c, d \in X_2$ and components $Y_1 \neq Y_2$ and $Y_3 \neq Y_4$ from $G(Q)$ such that:

- a is adjacent to Y_1 but not adjacent to Y_2,
- b is adjacent to Y_2 but not adjacent to Y_1,
- c is adjacent to Y_3 but not adjacent to Y_4,
- d is adjacent to Y_4 but not adjacent to Y_3.

Let y_i denote an arbitrary vertex from the component Y_i. Since H is P_5-free, there must be edges (a, b) and (c, d), otherwise a, y_1, v, y_2, b and c, y_3, v, y_4, d would be P_5s. An illustration of these vertices and components is given in Figure 3 - the solid lines.

Now, if $Y_2 = Y_3$, then there exists a $P_5 = a, b, y_2, c, d$. Thus, Y_2 and Y_3 must be unique components, and Y_1, Y_4 must be different as well for the same reason. Similarly $Y_2 \neq Y_4$. Now since b, y_2, v, y_3, c cannot be a P_5, either b is adjacent to Y_3 or c must be adjacent to Y_2. WLOG, suppose the latter. Now a, b, y_2, v, y_4 implies that either a or b is adjacent to Y_4. If the latter, then a, b, y_1, d, c would be a P_5 which implies that a must be adjacent to Y_4 anyway. Thus, we end up with a $P_5 = a, y_1, v, y_2, c$ which is a contradiction to the graph being P_5-free.

From Theorem 2, there is at most one component X in $G(P)$ that contains two vertices a and b such that a is adjacent to some component $Y_1 \in G(Q)$ but not adjacent to another component $Y_2 \in G(Q)$ while b is adjacent to Y_2 but not Y_1. If such a component exists, then we can remove the vertices in X from P by applying the following general method for removing a component C from a dynamic set D.

\[\]
Figure 3: Illustration for proof of Theorem 2

Remove Component

Since C is P_5-free, it has a dominating clique or P_3 (Theorem 1). If this dominating set D can be colored with the list $\text{col}(D)$, we consider all such colorings (otherwise we report there is no valid coloring for the given instance). For each case the coloring will remove all vertices in the component from D to other dynamic sets represented by smaller subsets of available colors. Observe that since k is fixed, the number of such colorings is constant.

If there are still dependencies between P and Q, then we make the following claim (observing that the graph H dynamically changes as P and Q change):

Claim 1 There exists a vertex $x \in P$ that is adjacent to all components in $H(Q)$. Moreover, x dominates all components of $H(Q)$ except at most one.

Proof: Let $x \in P$ be adjacent to a maximal number of components in $H(Q)$. If x is not adjacent to all components, then there must exist another vertex $x' \in P$ and components $Y_1, Y_2 \in Q$ such that x is adjacent to Y_1 but not Y_2 and x' is adjacent to Y_2 but not Y_1. This implies that there is a $P_5 = x, y_1, v, y_2, x'$ where $y_1 \in Y_1$ and $y_2 \in Y_2$ unless x and x' are adjacent. However by Theorem 2, they cannot belong to the same component in $H(Q)$ since such a component would already have been removed - a contradiction.

Now, suppose that there are two components Y_1 and Y_2 in $H(Q)$ that x does not dominate. Then there exists edges $(y_1, y'_1) \in Y_1$ and $(y_2, y'_2) \in Y_2$ such that x is adjacent to y_1 and y_2, but not y'_1 nor y'_2. This however, implies the $P_5 = y'_1, y_1, x, y_2, y'_2$ - a contradiction. □

Now we identify such an x outlined in this claim and create equivalent new coloring instances by assigning x with each color from $\text{col}(P) \cap \text{col}(Q)$ and then with the list $\text{col}(P) - \text{col}(Q)$. If x is assigned a color from $\text{col}(P) \cap \text{col}(Q)$, then all but at most one component will be removed from $H(Q)$. If one component remains, then we can remove it from Q by applying Remove Component. In the latter case, where x is assigned the color list $\text{col}(P) - \text{col}(Q)$, x will be removed from P. If there are still dependencies between P and Q, we repeat this step by finding another vertex x. In the worst case we have to repeat this step at most $|P|$ times. Therefore, the process for removing the dependencies between two dynamic sets creates at most $O(n)$ new equivalent coloring instances.
Since there are a constant number of pairs of dynamic sets for each pair of fixed sets, and since there are constant number of pairs of fixed sets, this proves the following theorem:

Theorem 3 The restricted k-list coloring problem for P_5-free graphs, for a fixed integer k, can be solved in polynomial time.

Corollary 1 Determining whether or not a P_5-free graph can be colored with k-colors, for a fixed integer k, can be decided in polynomial time.

We will now analyze the algorithm in more detail to provide a rough estimate of its complexity.

Claim 2 Removing dependencies between two fixed sets produces $O(n^{2(2^k-1)})$ subproblems.

Proof. As mentioned earlier, removing dependencies between two dynamic sets produces $O(n)$ subproblems. Each fixed set contains at most $O(2(k-1))$ dynamic sets. Thus, between two fixed sets, there are $O(2^{2(k-1)})$ pairs of dynamic sets to consider. The claim now follows.

There are $O(2^k)$ fixed sets. So there are $O(2^{2k})$ pairs of fixed sets. Thus, removing dependencies between all pairs of fixed sets produces $O(n^{2^{2(k-1)}2^{2k}}) = O(n^{2^{2k-2}})$ subproblems, in each of these subproblems at most $k-1$ colors are used.

Let $T(k)$ be the number of subproblems produced by the algorithm with k being the number of available colors. Then $T(k) = n^{2^{2k-2}}T(k-1)$ with $T(1) = 1$. An easy proof by induction shows $T(k) \leq (n^{2^{2k-2}})^k = n^{k2^{2k-2}}$. Thus, the complexity of the algorithm in Theorem 3 is $O(n^{k2^{2k-2}})$.

References

[1] Jorge L. Ramirez Alfonsin and Bruce A. Reed, *Perfect Graphs*, John Wiley & Sons, LTD, 2001.

[2] G. Bacsó and Z. Tuza, Dominating cliques in P_5-free graphs, Period. Math. Hungar. Vol. 21 No. 4 (1990) 303-308.

[3] C. Berge and V. Chvátal (eds.), *Topics on perfect graphs*, North-Holland, Amsterdam, 1984.

[4] D. Coppersmith and S. Winograd, Matrix multiplication via arithmetic progressions. Journal of Symbolic Computation, Vol. 9 No. 3(1990) 251-280.

[5] S. Even, A. Pnueli and A. Lempel, Permutation graphs and transitive graphs, J. Assoc. Comput. Mach. 19(1972) 400-410.

[6] M. R. Garey, D. S. Johnson and L. Stockmeyer, Some simplified NP-complete problems, Theo. Comput. Sci. 1 (1976) 237-267.

[7] F. Gavril, Algorithms for minimum coloring, maximum clique, minimum coloring by cliques, and maximum independent set of a chordal graph, SIAM J. Comput. 1 (1972) 180-187.
[8] V. Giakoumakis and I. Rusu, Weighted parameters in \((P_6,\overline{P}_5)\)-free graphs, Discrete Applied Math. 80 (1997) 255-261.

[9] M. C. Golumbic, *Algorithmic graph theory and perfect graphs*, Academic Press, New York, 1980.

[10] M. Grötschel, L. Lovász and A. Schrijver, The ellipsoid method and its consequences in combinatorial optimization, Combinatorica 1, (1981) 169-197.

[11] R. Hayward, C. T. Hoàn and F. Maffray, Optimizing weakly triangulated graphs, Graphs and Combinatorics 5 (1989) 339-349.

[12] C. T. Hoàn, J. Sawada and Z. Wang, Colorability of \(P_5\)-free graphs, manuscript, 2005.

[13] R. M. Karp, Reducibility among combinatorial problems. In: R. E. Miller and J. W. Thatcher (eds), *Complexity of Computer Computations*, Plenum Press, New York, (1972) 85-103.

[14] D. Kral, J. Kratochvil, Z. Tuza and G. J. Woeginger, Complexity of coloring graphs without forbidden induced subgraphs, in: WG 2001, LNCS 2204, (2001) 254-262.

[15] B. Randerath and I. Schiermeyer, *3-Colorability \(\in P\) for \(P_6\)-free graphs*, Discrete Applied Mathematics, Vol. 136 No. 2-3 (2004) 299-313.

[16] J. Sgall and G.J. Woeginger, The complexity of coloring graphs without long induced paths, Acta Cybernet. Vol. 15 No. 1 (2001) 107-117.