Minimization torque ripple for SRM based on flux linkage partition in DB-DTFC

Qianni Li¹, Aide Xu¹,*, Chaoyi Shang², and Lepeng Huang²

¹College of Information and Science Technology, Dalian Maritime University, 116026 Dalian, China
²College of Electrical Engineering of Ships, Dalian Maritime University, 116026 Dalian, China

Abstract. This paper proposes a novel deadbeat torque and flux control (DB-DTFC) to reduce torque ripple for switched reluctance motor (SRM). DB-DTFC combines the advantages of direct torque control (DTC) and space-vector modulation (SVM). DB-DTFC leads current vector control into DTC in order to find the equation between torque and current through deadbeat prediction theory i.e. a beat reaches a given point. In addition, the deadbeat calculation module here is similar to that of permanent magnet synchronous motor. Based on dq0 reference frame of SRM, the most suitable dq0 axis current of next moment corresponding to different torque errors is calculated and predicted. According to the calculated dq0 axis current, the optimal space voltage vectors can be selected to reduce torque ripple. In order to verify the effectiveness and correctness of the proposed scheme, DB-DTFC is verified and compared with the DTC-SVM by simulation.

1 Introduction

As a new type of reluctance motor, switched reluctance motor (SRM) has attracted much attention because of its outstanding advantages, such as simple and robust structure, wide speed range, good reliability and high efficiency [1]. However, double salient structure and the principle of minimum reluctance lead to SRM’s nonlinear strong coupling characteristic. This characteristic is an important reason for large noise and torque ripple of SRM [2].

Traditional current chopper control and angle control can not make speed regulation and torque ripple reduction compatible perfectly, then space-vector modulation (SVM) and direct torque control (DTC) are proposed. With the development of DTC, many DTC-based control method has been explored. [3] proposes direct instantaneous torque control (DITC) based on double hysteresis control. [4] proposed the direct torque and predictive flux control method based on model prediction of SRM.

Current vector control (CVC) is an important part of vector control. The traditional CVC is only closed loop control of stator current in the dq coordinate system without torque closed loop. When the idea of CVC is introduced into DTC, the relationship between torque and current can be found. Deadbeat direct torque flux control (DB-DTFC) of induction machine (IM) [5] is proposed. DB-DTFC not only has the advantages of DTC and SVM, but also can calculate the dq axis current through torque error, so as to the selection of optimal voltage vectors. Because of these advantages, DB-DTFC has been applied interior permanent magnet synchronous machine (IPMSM) [6] and synchronous reluctance motor [7].

Since the promotion of DB-DTFC, many scholars have made contributions on improving DB-DTFC for IPMSM. In [8] deadbeat direct current control is proposed to reduce computation load of DB-DTFC. Although there is no torque closed loop in this method, the author use the idea of maximum torque per ampermpe to combine the torque and current. [9] proposes the loss minimization DB-DTFC from the point of loss and proved the validity of the method. Based on DTC-SVM, reference [10] proposes an optimal deadbeat control method which combined adjacent voltage vectors with optimal voltage vectors. Although DB-DTFC is widely used and developed in other motors, the application of DB-DTFC in SRM has been greatly limited. The reasons of the restriction are uncertain torque expression and the absence of rotor flux linkage.

According to [11], the mathematical model of dq0 coordinate system makes it possible for DB-DTFC to be applied on SRM. [12] proposes a new current vector control method based on the dq0 coordinate system and emphasizes the effect of zero-phase current on the torque control. Another vector control about speed-sensorless SRM drive is also proposed based on the dq0 coordinate system [13].

Since DB-DTFC have both advantages of DTC and SVM, this paper proposes a novel DB-DTFC of SRM based on dq0 coordinate system and deadbeat prediction theory. The dq0 coordinate system is established to find the equation between dq0 axis current and torque. As for the deadbeat prediction, it is used to find the optimal current and voltage under different torque errors. Due to

* Corresponding author: aidexu@dlmu.edu.cn

© The Authors, published by EDP Sciences. This is an open access article distributed under the terms of the Creative Commons Attribution License 4.0 (http://creativecommons.org/licenses/by/4.0/).
the difference between SRM and IPMSM, DB-DTFC of
SRM is different from that of IPMSM, especially in the
case of zero phase current optimization. The proposed
method uses torque flux decoupling control and finds the
optimal dq0 axis current. DB-DTFC is verified the
validity and correctness by simulation. It is also
compared with DTC-SVM for the performance of torque
ripple under different conditions.

2 Principle of DB-DTFC scheme

2.1 Mathematical model of static coordinate

According to Kirchoff’s Law of Voltage, the k-phase
voltage equation of SRM is:

\[u_k = R_k i_k + \frac{d\psi_k}{dt} \]

Expression (1) can also be written in matrix form as

\[\begin{bmatrix} u_a \\ u_b \\ u_c \end{bmatrix} = \begin{bmatrix} R & 0 & 0 \\ 0 & R & 0 \\ 0 & 0 & R \end{bmatrix} \begin{bmatrix} i_a \\ i_b \\ i_c \end{bmatrix} + \begin{bmatrix} L_{ab} & L_{ac} & L_{bc} \\ L_{ba} & L_{bc} & L_{ca} \\ L_{cb} & L_{ca} & L_{ab} \end{bmatrix} \begin{bmatrix} \frac{d\psi_a}{dt} \\ \frac{d\psi_b}{dt} \\ \frac{d\psi_c}{dt} \end{bmatrix} \]

where \(R \) is the stator resistance; \(i_a, i_b, i_c \) are the
phase currents of A, B, C phase, respectively; \(L_{ab}, L_{ac}, L_{bc} \) are self-inductance of the corresponding phase; \(P \) is
differential operator.

Among the matrix neglecting the mutual inductance, the self-inductance part is expressed as:

\[L_k(\theta_k) = L_{de} + L_{ac} \cos(2\theta_k - (k-1)\frac{2\pi}{N}) \]

where \(L_{de} \) and \(L_{ac} \) are DC self-inductance and DC
self-inductance amplitude, respectively; \(\theta_k \) is rotor
position angle and \(N \) is phase number, \(k=1,2,...,N \).

The instantaneous torque expression of SRM can be
defined as:

\[T_e = \frac{P}{2}(i_a \frac{\partial L_{ab}}{\partial \theta} + i_b \frac{\partial L_{bc}}{\partial \theta} + i_c \frac{\partial L_{ca}}{\partial \theta}) \]

where \(T_e \) is the instantaneous torque; \(P \) is
magnetic pole number.

2.2 Mathematical model of rotating coordinate

According to literature [11], “rotor flux” generated by the
DC current, when DC current is applied to each
rotating coordinate system is established by rotating the “rotor flux”. In the synchronous rotating
coordinate, current can be expressed as:

\[\begin{bmatrix} i_a \\ i_b \\ i_c \end{bmatrix} = \begin{bmatrix} \cos 2\theta & \cos(2\theta - \frac{2\pi}{3}) & \cos(2\theta + \frac{2\pi}{3}) \\ \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{3}} \end{bmatrix} \begin{bmatrix} \frac{\partial L_{de}}{\partial \theta} \\ \frac{\partial L_{ac}}{\partial \theta} \end{bmatrix} \]

where \(\theta \) is the electrical angle; \(i_a \) and \(i_b \) are the q-axis and d-axis components of \(i_a, i_b \) and \(i_c \) zero-phase current.

Both substituting (3), (5) into (2) and ignoring
asynchronous components can get the new matrix:

\[\begin{bmatrix} u_a \\ u_b \\ u_c \end{bmatrix} = R \begin{bmatrix} i_a \\ i_b \\ i_c \end{bmatrix} + \begin{bmatrix} L_{de} & 0 & 0 \\ 0 & L_{ac} & 0 \\ 0 & 0 & L_{ac} \end{bmatrix} \begin{bmatrix} \frac{d\psi_a}{dt} \\ \frac{d\psi_b}{dt} \\ \frac{d\psi_c}{dt} \end{bmatrix} \]

2.3 Derivation of deadbeat control algorithms

Considering (4) as the torque expression in deadbeat
control, when the speed in constant, \(\frac{\partial L_{de}}{\partial \theta} \) and \(\frac{\partial L_{ac}}{\partial \theta} \) are determined by motor parameters. They
can be regarded as constants. Therefore when the
sampling time is small enough, only the three-phase
current needs to be adjusted to control the torque
increase and decrease.

Substituting (5) into (4), \(i_a, i_b \) and \(i_c \) can be
replaced by \(i_a, i_b \) and \(i_c \) to achieve the same control
effect of torque as three-phase stator current. According
to the decoupling control of DB-DTFC based on IPMSM
[6], flux and torque can be decoupled into two
independent systems. Torque is affected both \(i_a \) and \(i_c \)
[12], flux is only controlled by \(i_b \).

In the torque control, considering \(i_a \) and \(i_c \) as two
different variables and considering torque as a constant,
one quadratic equation about \(i_a \) and torque can be
obtained, the other quadratic equation about \(i_c \) and
torque can also be obtained.

For the first quadratic equation about \(i_a \) and torque,
the smaller value \(i^*_a(\theta) \) can be acquired by adopting the
quadratic formula. \(i^*_a(\theta) \) can be expressed as:

\[i^*_a(\theta) = \frac{E_1}{D_1} \left[\begin{array}{c} 6 \sin^2 2\theta + 8 \cos^2 \left(\frac{\theta}{3} \right) + 2 \theta \\
8 \sin 2\theta + 8 \cos^2 \left(\frac{\theta}{3} \right) + 8 \sin 2\theta \\
8 \sin^2 \theta + 8 \cos^2 \left(\frac{\theta}{3} \right) + 8 \sin 2\theta
\end{array} \right] \]

\[D_1 = 4 \sin^2 2\theta + 4 \cos^2 \left(\frac{\theta}{3} \right) + 4 \theta \sin \left(\frac{\theta}{3} \right) + 2 \theta \]

\[E_1 = 2i_a(\sin 4\theta + 4 \theta \cos \left(\frac{\theta}{3} \right) - \cos \left(\frac{\theta}{3} \right) + 2 \theta) \]

where \(a = \frac{\partial L_{de}}{\partial \theta}, \ b = \frac{\partial L_{de}}{\partial \theta} \) and \(c = \frac{\partial L_{ac}}{\partial \theta} \); \(T_e \) is
replaced by \(\Delta T_e \) for reflecting the change of torque and
\(\Delta T_e = \frac{1}{2} \left[T_e - T_e(k) \right] \). \(a = \frac{\partial L_{de}}{\partial \theta}, \ b = \frac{\partial L_{de}}{\partial \theta} \) and \(c = \frac{\partial L_{ac}}{\partial \theta} \).
As for the other quadratic equation about i_0 and torque, the method of solving the minimum value $\zeta(t)$ is similar to that of $\zeta(t)$, $\zeta(t)$ can be expressed as:

$$i_0^* = \frac{E_1}{D_2}$$ \hspace{1cm} \text{(8)}$$

The two factors i_0 and i_0 affecting the torque need to be set to $i_0(k)=i_0(t)$, $i_0(k)=i_0(t)$ and make sure that the values of the next moment are the smallest current values.

Due to the short sampling time, current can be discretized. In the discrete time, substituting $i_0(t)$ and $i_0(t)$ into (6), q-axis voltage $u_0(t)$ for torque control can be obtained as:

$$u_0^*(k)=Ri_0^*(k)+Li_0^*(k)+2a_i(Lu_i(k)+I_{dc}^2)$$ \hspace{1cm} \text{(9)}$$

As for the flux control, i_q controls flux directly and d-axis voltage $u_0(t)$ for flux can also be obtained from:

$$\psi_q^*(k+1)=\psi_q^*(k)+Li_0^*(k)T_s$$ \hspace{1cm} \text{(10)}$$

In order to simplify the calculation, the motor model is oriented in the direction of stator and the flux linkage coincides with the d-axis, so as to make ψ_{q0} equal to zero. Then discretizing the flux linkage can get the flux control expression about d-axis voltage $u_0^*(k)$ to make the next moment flux reach the given value.

$$u_0^*(k)=Ri_0^*(k)+Li_0^*(k)T_s$$ \hspace{1cm} \text{(11)}$$

$u_0^*(k)$ and $u_0^*(k)$ are the set of optimal voltage vectors for the kth-control cycle. They satisfy the given conditions for flux and torque. In this way, the DTC torque flux hysteresis loop can be replaced and the deadbeat regulation of the switched reluctance motor can be achieved successfully.

2.4 Space-vector modulation

$u_0^*(k)$ and $u_0^*(k)$ can be transformed into $u_0(k)$ and $u_0(k)$ by inverse rotation coordinate system which can be directly used in space-vector control module. Based on voltage vector principle of SRM, the basic voltage vectors of different sectors are redefined.

![Fig. 1 Basic space voltage vectors of SVM](image)

According to volt-second balance principle, if the voltage vector is calculated and needed in the first sector, $u_0(k)$ and $u_0(k)$ can be expressed as:

$$\begin{align*}
U_\alpha &= T_s \frac{U_s}{T_s} \cos \frac{\pi}{6} + T_s \frac{U_s}{T_s} \cos \frac{\pi}{2} \\
U_\beta &= T_s \frac{U_s}{T_s} \sin \frac{\pi}{6} - T_s \frac{U_s}{T_s} \sin \frac{\pi}{2}
\end{align*}$$ \hspace{1cm} \text{(12)}$$

Since the unique three-phase asymmetric bridge power converter of SRM, the maximum amplitude of SRM space voltage vector is $\sqrt{3}U_s/2$ and $|\psi_0|=|U_s|=\sqrt{3}U_s/2$. Among them, U_{dc} is the bus voltage.

The time of different sector vectors can be calculated as table.1.

| Tab. 1 Voltage working time under different sectors |
|---|---|---|---|---|---|
| Secto | 0 | 1 | 2 | 3 | 4 |
| T_1 | $T_0=T_1$ | $T_2=T_1$ | $T_3=T_1$ | $T_4=T_1$ | $T_5=T_1$ |
| T_2 | $T_1=T_2$ | $T_2=T_1$ | $T_3=T_1$ | $T_4=T_1$ | $T_5=T_1$ |
| T_3 | $T_1=T_3$ | $T_2=T_1$ | $T_3=T_1$ | $T_4=T_1$ | $T_5=T_1$ |
| T_0 | $T_1=T_0$ | $T_2=T_1$ | $T_3=T_1$ | $T_4=T_1$ | $T_5=T_1$ |
| T_s | $T_0=T_s$ | $T_1=T_s$ | $T_2=T_s$ | $T_3=T_s$ | $T_4=T_s$ |

where T_s, T_s, and T_s can be expressed as:

$$T_s = \frac{4T_sU_s}{3U_{dc}}$$ \hspace{1cm} \text{(13)}$$

If $T_s+T_s\geq T_s$, there will need time saturation processing, T_s and T_s need to be redefined as:

$$T_s = \frac{T_s}{T_s+T_s}, \quad T_s = \frac{T_s}{T_s+T_s}$$ \hspace{1cm} \text{(14)}$$

3 Principle of DB-DTFC scheme

3.1 Structure of DB-DTFC scheme
On the basis of control rate of DB-DTFC, $u'_q(k)$ and $u'_d(k)$ are selected. And then $u_q(k)$ and $u_d(k)$ which are transformed from $u'_q(k)$ and $u'_d(k)$ can be input into the SVM module. SVM can synthesize the new voltage vectors by judging the basic voltage vectors selected by $u_q(k)$, $u_d(k)$ and calculating the action time of the basic voltage vectors. In addition, the sector judgement module in SVM is similar to that of DTC. The control signal corresponding to the new voltage vectors synthesized by SVM drives the motor.

Fig. 3. Control block diagram of DB-DTFC

Fig. 4. The control rate of DB-DTFC

Fig. 5. Control block of SVM

3.1 Analysis of simulation results

The simulation results of proposed DB-DTFC and DTC-SVM will be analyzed and compared in this part. Relying on Matlab/simulink the simulation can be established based on the three-phase 12/8-pole SRM, and the rated voltage is 520V.

In order to assess the effect of different algorithms. The torque error T_{RC} can be defined as follow:

$$T_{RC} = T_{e_{\text{max}}} - T_{e_{\text{min}}}$$

$T_{e_{\text{max}}}$ and $T_{e_{\text{min}}}$ are the maximum and minimum values of torque respectively. Fig. 6 is the waveform of 600rpm with 10N·m load torque, the optimization of T_{RC} is not obvious as that of Fig. 7 and Fig. 8 with high speed loading.

Fig. 6. $\omega=650\text{rpm, } T_L=10\text{N·m} (a)\text{DTC-SVM (b) proposed DB-DTFC}$

Fig. 7. $\omega=800\text{rpm, } T_L=20\text{N·m} (a)\text{DTC-SVM (b) proposed DB-DTFC}$

Fig. 8. $\omega=1200\text{rpm, } T_L=15\text{N·m} (a)\text{DTC-SVM (b) proposed DB-DTFC}$

Tab. 2 Torque ripple error comparison

Index	DTC-SVM	DB-DTFC
650rpm, 10N·m	1.65	0.81
800rpm, 20N·m	2.15	1.36
1200rpm, 15N·m	1.85	1.05

From the torque waveform, the two method both have good control to the torque. But the more excellent control performance of DB-DTFC can be seen than that of DTC. The torque ripple becomes smaller than that of DTC-SVM. Table 2 is a numerical comparison of torque ripple error about DTC and DB-DTFC. From table 2, the value of torque ripple error can be acquired in detail. Under different conditions, the torque ripple of
DB-DTFC decreases by 0.8 N·m compared with DTC-SVM.

4 Conclusion

To solve the problem of switched SRM torque ripple, DB-DTFC is proposed based on $dq0$ coordinate system. DB-DTFC is based on DTC-SVM and introduces current vector into the control system. But the flux and torque control of DB-DTFC is different from DTC-SVM. Especially, decoupling flux and torque and adopting $dq0$ axis currents control respectively. Using i_q, i_0 control the torque and using i_d controls the flux. The flux control is similar to DB-DTFC based on IPMSM. But the zero phase current is taken into account in the torque control. DB-DTFC is compared with DTC-SVM by simulation on the stable state. The better performance of DB-DTFC is reflected in the torque ripple values. The simulation results can also verify the validity and feasibility of DB-DTFC.

This work is supported by: Special Innovation Projects for the Double-First Class Construction under grant no.CXXM2019SS005, Dalian Science Technology Innovation Fund Project under grant no.2018J12GX039 and National Natural Science Foundation of China under grant no.51407021.

References

1. A. Xu, C. Shang, J. Chen, J. Zhu and L. Han, A New Control Method Based on DTC and MPC to Reduce Torque Ripple in SRM. IEEE Access, 7, 68584-68593 (2019).
2. I. Husain, Minimization of torque ripple in SRM drives. IEEE Trans on Industrial Electronics, 49, 28-39 (2002).
3. R. B. Inderka, R. W. A. A. De Doncker, DITC-direct instantaneous torque control of switched reluctance drives. IEEE Trans on Industry Applications, 39, 1046-1051 (2003).
4. C. Shang, A. Xu, L. Huang and J. Chen, Flux linkage optimization for direct torque control of switched reluctance motor based on model predictive control. IEEJ Trans on Electrical and Electronic Engineering, vol. 14, 105-111 (2019).
5. B. H. Kenny and R. D. Lorenz, "Stator- and rotor-flux-based deadbeat direct torque control of induction machines. IEEE Trans on Industry Applications, 39, 1093-1101 (2003).
6. J. S. Lee, C. Choi, J. Seok and R. D. Lorenz, Deadbeat-Direct Torque and Flux Control of Interior Permanent Magnet Synchronous Machines With Discrete Time Stator Current and Stator Flux Linkage Observer. IEEE Trans on Industry Applications, 47, 1749-1758 (2011).
7. M. Saur, D. E. Gaona Erazo, J. Zdravkovic, B. Lehner, D. Gerling and R. D. Lorenz, Minimizing Torque Ripple of Highly Saturated Salient Pole Synchronous Machines by Applying DB-DTFC. IEEE Trans on Industry Applications, 53, 3643-3651 (2017).
8. R. S. Dastjerdi, M. A. Abbasian, H. Saghaﬁ and M. H. Vafaie, Performance Improvement of Permanent-Magnet Synchronous Motor Using a New Deadbeat-Direct Current Controller. IEEE Trans on Power Electronics, 34, 3530-3543 (2019).
9. W. Xu and R. D. Lorenz, Dynamic Loss Minimization Using Improved Deadbeat-Direct Torque and Flux Control for Interior Permanent-Magnet Synchronous Machines. IEEE Trans on Industry Applications, 50, 1053-1065 (2014).
10. M. H. Vafaie, B. M. Dehkordi, P. Moallem and A. Kiyomarsi, Improving the Steady-State and Transient-State Performances of PMSM Through an Advanced Deadbeat Direct Torque and Flux Control System. IEEE Trans on Power Electronics, 32, 2964-2975 (2017).
11. N. Nakao and K. Akatsu, Vector control specialized for switched reluctance motor drives. ICEM, 943-949 (2014).
12. S. Kuai, H. Zhang, X. Xia and K. Li, Unipolar sinusoidal excited switched reluctance motor control based on voltage space vector. IET Electric Power Applications, 13, 670-675 (2019).
13. Y. A. Khan and V. Verma, Novel speed estimation technique for vector-controlled switched reluctance motor drive. IET Electric Power Applications, 13, 1193-1203 (2019)