급성허혈뇌졸중에서 혈관내재개통치료 진료지침 개정

홍근식 고상배 유경호 장철규 박서규 김병문 장철훈 배희준 허지회 오창완 이병철 김범태 김범수 정진성 윤병우 나정호

인제대학교 의과대학 신경과학과, 서울대학교 의과대학 신경과학과, 한림대학교 의과대학 신경과학과, 서울대학교 의과대학 분당병원 영상의과학과, 순천향대학교 의과대학 신경외과과학과, 연세대학교 의과대학 영상의과학과, 영남대학교 의과대학 신경외과과학과, 서울대학교 의과대학 신경과학과, 한림대학교 의과대학 신경과학과, 가톨릭대학교 의과대학 영상의과학과, 성균관대학교 의과대학 신경과학과, 인하대학교 의과대학 신경과학과

Update of the Korean Clinical Practice Guidelines for Endovascular Recanalization Therapy in Patients with Acute Ischemic Stroke

Keun-Sik Hong, MD, Sang-Bae Ko, MD a, Kyung-Ho Yu, MD b, Cheolkyu Jung, MD c, Sukh Que Park, MD d, Byung Moon Kim, MD e, Chul-Hoon Chang, MD e, Hee-Joon Bae, MD e, Ji Hoe Heo, MD e, Chang Wan Oh, MD e, Byung-Chul Lee, MD e, Bum-Tae Kim, MD e, Bum-soo Kim, MD e, Chin-Sang Chung, MD e, Byung-Woo Yoon, MD e, Joung-Ho Rha, MD

Department of Neurology, Inje University Ilsan Paik Hospital, Goyang, Korea
Department of Neurology, Seoul National University College of Medicine, Seoul, Korea a
Department of Neurology, Hallym University College of Medicine, Anyang, Korea b
Department of Radiology, Seoul National University Bundang Hospital, Seongnam, Korea c
Department of Neursurgery, Soonchunhyang University Seoul Hospital, Soonchunhyang University, Seoul, Korea d
Department of Radiology, Yonsei University College of Medicine, Seoul, Korea e
Department of Neurosurgery, Yeungnam University School of Medicine, Daeegu, Korea
Department of Neurology, Seoul National University Bundang Hospital, Seongnam, Korea
Department of Neurology, Yonsei University College of Medicine, Seoul, Korea
Department of Neurosurgery, Seoul National University Bundang Hospital, Seongnam, Korea
Department of Neurology, Yonsei University College of Medicine, Bucheon Hospital, Bucheon, Korea
Department of Radiology, Seoul St.Mary’s Hospital, The Catholic University of Korea, Seoul, Korea
Department of Neursurgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
Department of Neurology, Inha University College of Medicine, Incheon, Korea

Received June 16, 2016 Revised July 21, 2016 Accepted July 21, 2016

Address for correspondence: Joung-Ho Rha, MD
Department of Neurology, Inha University Hospital, Inha University College of Medicine, 27 Inhang-ro, Jung-gu, Incheon 22332, Korea
Tel: +82-32-890-3668 Fax: +82-32-890-3864 E-mail: jhrha@inha.ac.kr

이 진료지침은 Journal of Stroke (2016년, 18권 1호, 102-113)에 영문으로 게재된 진료지침의 한글판으로 연관 분야에 종사하는 독자들에게 진료지침의 내용을 한글로 전달하기 위한 목적으로 Journal of Stroke와 대한신경과학회지 편집위원회 승인을 받아 영문판 2차 출판한 것임. 독자의 이해를 돕기 위해 영문판 진료지침을 그대로 번역하기 보다는 영문판 진료지침과 진료지침 애플리케이션(brainstrokeapp: android와 IOS version으로 제공됨)의 내용을 종합하여 일부 내용을 보강하였고 부분적으로 내용의 배열을 변경하였으나, 권고사항이나 주요 내용의 변경은 없음을 밝혀둔다. 본 진료지침을 인용할 때는 1차 출판된 영문판 진료지침(Update of the Korean Clinical Practice Guidelines for Endovascular Recanalization Therapy in Patients with Acute Ischemic Stroke. J Stroke. 2016 Jan;18(1):102-13.)을 인용하여야 한다.
Patients with severe stroke due to acute large cerebral artery occlusion are likely to be severely disabled or die if reperfusion is not achieved in a timely manner. Intravenous tissue plasminogen activator (IV-TPA) administered within 4.5 hours after stroke onset was previously the only proven therapy, but IV-TPA alone does not sufficiently improve the outcome of patients with acute large artery occlusion. With the introduction of the advanced endovascular therapy that enables faster and more successful recanalization, recent randomized trials consecutively and consistently demonstrated the benefit of adding endovascular recanalization therapy (ERT) to IV-TPA. Accordingly, to update the recommendations, we assembled members of a writing committee appointed by the Korean Stroke Society, the Korean Society of Interventional Neuroradiology, and the Society of Korean Endovascular Neurosurgeons. The writing committee revised recommendations based on a review of the accumulated evidence, and a formal consensus was achieved by convening a panel of 34 experts from the participating academic societies. The current guideline provides evidence-based recommendations for ERT in patients with acute large cerebral artery occlusion regarding patient selection, treatment modalities, neuroimaging evaluation, and system organization.

J Korean Neurol Assoc 34(4):297-311, 2016

Key Words: Guidelines, Acute ischemic stroke, Large cerebral artery occlusion, Thrombolysis, Reperfusion, Endovascular recanalization therapy
급성허혈뇌졸중에서 혈관내재개통치료 진료지침 개정

용할 수 있다. (근거수준 III, 권고수준 B)-근거수준 및 권고수준 개정

4. 정맥내혈전용해술이 가능하면 우선 시행하고, 반응이 없는 경우 추가적으로 동맥내혈전용해술을 시도할 수 있다. (근거수준 III, 권고수준 B)-추가

5. 물리적 혈전용해술은 8시간 이내에 발생한 주요 동맥폐색 허혈뇌졸중 환자에서 시행할 수 있다. 기구 선택은 stent retriever 질을 우선 고려할 수 있으며, 환자의 상태에 따라 시행자가 결정할 수 있다. (근거수준 Ib, 권고수준 A)-추가

진료지침 집필진 조직

대한뇌졸중학회의 임상진료지침 위원회는 대한뇌졸중학회, 대한신경중재치료학회, 그리고 대한뇌혈관내수술학회에서 추천 받은 전문가들로 진료지침 집필진을 구성하였다.

근거논문 검색 및 분석

진료지침 개정을 위한 근거들을 고찰하고 정리하기 위해 1998년 1월부터 2015년 5월까지 PubMed와 EMBASE에 발표된 문헌들을 검색하여(검색어: [ischemic stroke] and [intra-arterial and thrombolysis or thrombectomy] with restriction to humans and clinical trials) 체계적 문헌고찰을 시행하였다. 그 외에 선정된 논문들의 참고문헌과 집필진들의 검토를 통해 제외된 문헌들이 있는지 확인하였다. 두 명의 집필진(고상배, 홍근식)이 초록과 전문을 검토하여 기준에 부합되는 문헌을 선정하였다. 선정기준은 1) 무작위배정 임상시험, 2) 치료군에서 ERT 시행, 3) 대조군은 IV-TPA를 포함한 당시대 표준치료 시행, 그리고 4) 90일 또는 연구기간 종료 시 수정 Rankin 척도(modified Rankin Scale, mRS)가 보고된 경우에는 제외하였다. 문헌검색과 검토를 통해 15개 논문을 선정하였고, 총 2,899명 환자(ERT군 1,575명; 대조군 1,324명) 자료를 분석하였다. 각 논문의 질은 Cochrane 그룹에서 권고하는 비뚤림위험(threshold of bias) 5개 항목을 평가하였다.16 두 명의 집필진(고상배, 홍근식)이 자료를 추출하고 결과를 서로 비교하였고, 이전에 있는 경우 다른 두 명의 집필진(유경호, 나정호)과 상의 후 합의를 이행하였다. 추출된 자료를 바탕으로 다양한 임상결과에 대한 ERT 효과의 통합 추정값(pooled estimate)을 산출하여, 자체한 방법론과 결과를 별도의 메타분석 논문으로 발표하였다.17 추가적으로 해외 주요 학회에서 발표한 진료지침을 검토하였고,18-20 2015년 5월 이후 추가적으로 발표된 미국 뇌졸중학회의 진료지침도 검토하여 필요한 내용을 본 진료지침에 반영하였다.21

근거수준과 권고수준

본 진료지침에서 사용한 근거수준과 권고수준 결정방식은 이전 진료지침과 동일성을 유지하기 위해 1993년에 발표된 US Agency for Health Care Policy and Research (현재는 Agency for Healthcare Research and Quality [AHRQ]) 방식을 따랐다(Table 1).22

| Table 1. Level of evidence and grade of recommendation |
|----------------|--|
| LOE | GOR |
| LOE | GPP |
| Ia | Evidence obtained from meta-analysis of randomized controlled trials |
| Ib | Evidence obtained from at least one randomized controlled trial |
| Ia | Evidence obtained from at least one well-designed controlled study without randomization |
| Iib | Evidence obtained from at least one other type of well-designed quasi-experimental study |
| III | Evidence obtained from well-designed non-experimental descriptive studies, such as comparative studies, correlation studies and case studies |
| IV | Evidence obtained from expert committee reports or opinions and/or clinical experiences of respected authorities |
| A (LOE Ia, Ib) | Required-at least one randomized controlled trial as part of the body of literature of overall good quality and consistency addressing specific recommendation |
| B (LOE Ia, Iib, III) | Required-availability of well conducted clinical studies but no randomized clinical trials on the topic of recommendation |
| C (LOE IV) | Required-evidence obtained from expert committee reports or opinions and/or clinical experiences of respected authorities. This grade indicates absence clinical of directly applicable studies of good quality |
| GPP | Recommended best practice based on the clinical experience of the guideline development group |

LOE; level of evidence, GOR; grade of recommendation, GPP; good practice points.

J Korean Neurol Assoc Volume 34 No. 4, 2016 299
Table 2. Characteristics and results of 15 RCTs and 2 meta-analyses testing ERT in acute ischemic stroke

Trial	PROACT	PROACT II	Keris et al¹⁵	Ducrocq et al¹⁸	Macleod et al¹⁶	MELT
Publication year	1998	1999	2001	2005	2005	2007
Participants (n)	40	180	45	27	16	114
Age (year)	67.6	64.0	61.8	58.7	63.9	67.1
Female (%)	52.5	41.1	40.0	25.9	37.5	35.1
Baseline NIHSS (active/control)	17/19	17/17	25/26	NA	23/18	14/14
Time window (hr)	6.0	6.0	6.0	6.0	6.0	24.0
LAO confirmation (%)	100	100	100	NA	100	100
ICA/M1 occlusion (%)	2.5/25.2	NA/61.7	6.7/20.0	7.4/40.7	BA or VA	occlusion
Onset to randomization/grain puncture/first reperfusion (min)	NA/276/330	290/NA/318	NA/NA/229	NA/NA/324	NA/NA/710	197/NA/227
Active arm	IA pro-UK	IA pro-UK	TPA (IA+IV)	IA UK	IA UK	IA UK
Control arm	placebo	placebo	none	IV UK	none	none
IV-TPA (active/control), (%)	0.0	0.0	100.0	0.0	0.0	0.0
ERT performed in active arm (%)	100.0	89.3	100.0	100.0	100.0	98.2
Stent-Retriever in active arm (%)	0.0	0.0	0.0	0.0	0.0	0.0
mTICI 2b-3 in active arm (%)	NA	NA	NA	31	NA	53.0
Outcome assessment (days)	90	90	30	90	180	90
mRS 0-2: active vs. control (%)	NA	39.7 vs. 25.4	NA	46.2 vs. 28.6	50.0 vs. 12.5	49.1 vs. 38.6
OR (95% CI) or p value	NA	p<0.04	NA	p=0.6	7.14 (0.70, 50.0), 1.54 (0.73, 3.23), 0.345	p=0.345
mRS 0-1: active vs. control (%)	30.8 vs. 21.4	26.4 vs. 16.9	NA	NA	37.5 vs. 0.0	42.1 vs. 22.8, 2.46 (1.09, 5.54), p=0.045
OR (95% CI) or p value	2p=0.72	p=0.16	NA	NA	NA	NA
Shift analysis, OR (95% CI) or p value	NA	NA	NA	NA	NA	NA
Mortality: active vs. control (%)	26.9 vs. 42.9	24.8 vs. 27.1	16.7 vs. 48.5	23.1 vs. 28.6	50.0 vs. 50.0	5.3 vs. 3.5
OR (95% CI) or p value	2p=0.48	p=0.80	NA	p=0.9	50.0 vs. 50.0	p=1.00
mRS 5-6: active vs. control (%)	NA	33.9 vs. 33.9	NA	NA	50.0 vs. 62.5	21.1 vs. 22.8
OR (95% CI) or p value	NA	NA	NA	NA	NA	NA
SICH: active vs. control (%)	15.4 vs. 7.1	10.2 vs. 1.9	0.0 vs. 3.0	15.4 vs. 0.0	0.0 vs. 0.0	8.8 vs. 1.8
OR (95% CI) or p value	2p=0.64	p=0.06	NA	p=0.4	NA	p=0.206

근거

1. 2012년 12월 이전의 근거 (Table 2)

PROACT는 첫 2상 ERT 임상시험으로, 중대뇌동맥 M1 또는

(Supplementary Table 1). 1차 Delphi round에서 18개 권고안에 대한 합의가 이루어졌다. 합의에 도달하지 못한 2개 권고안의 동의율은 각각 68%와 71%였고, 수정된 권고안에 대한 2차 Delphi round에서 동의율은 각각 100%와 96%였다(Supplementary Table 2).

집필진은 합의된 권고안으로 진료지침 최종 원고를 작성하여, 참여한 학회의 승인을 얻어 Journal of Stroke에 출판하였다.15

근거

1998년 이후 시행된 15개 임상시험과 메타분석을 Table 2에 정리하였다.

1. 2012년 12월 이전의 근거(Table 2)

PROACT는 첫 2상 ERT 임상시험으로, 중대뇌동맥 M1 또는
급성혈관내재개통치료 진료지침 개정

Table 2. Characteristics and results of 15 RCTs and 2 meta-analyses testing ERT in acute ischemic stroke—continued

Trial	SYNTHESIS pilot	SYNTHESIS-Expansion	MR RESCUE	IMS III	MR CLEAN	ESCAPE
Publication year	2010	2013	2013	2013	2015	2015
Participants (n)	54	362	118	656	500	315
Age (year)	62.4	66.5	65.5	68.7	65.7	71.5
Female (%)	22.2	42.3	51.7	48.2	41.6	52.4
Baseline NIHSS (active/control)	17/16	13/13	17.4/17.7	17/16	17/18	16/17
Time window (hr)	3.0	4.5	8.0	5.0	6.0	7.1
LAO confirmation (%)	NA	NA	100.0	43.0	100.0	100.0
ICA/M1 occlusion (%)	NA/NA	NA/NA	16.9/66.1	22.1/41.1	27.6/63.8	26.7/68.6
Onset to randomization/groin puncture/first reperfusion (min)	125/NA/195	146/NA/225	330/381/NA	146/208/244	200/260/NA	170/185/241
Active arm	ERT only	ERT only	ERT with standard care	ERT with IV-TPA	ERT with standard care	ERT with standard care
Control arm	IV-TPA	IV-TPA	standard care	IV-TPA	standard care	standard care
IV-TPA (active/control), (%)	0/96.6	0/98.3	43.8/29.6	100/100	87.1/90.6	72.7/78.7
ERT performed in active arm, (%)	76.0	91.2	95.3	77.0	83.7	91.5
Stent-Retriever in active arm, (%)	4.0	12.7	0.0	0.9	81.5	78.8
mTICI 2b-3 in active arm, (%)	NA	NA	25.0	41.0	58.7	72.4
Outcome assessment (days)	90	90	90	90	90	90
mRS 0-2: active vs. control (%)	56.0/31.0	42.0/46.4	18.8 vs. 20.4	42.7 vs. 40.2	32.6 vs. 19.1	53.0 vs. 29.3
OR (95% CI) or p value	NA	32.6 vs. 19.1	11.6 vs. 6.0	2.07 (1.07, 4.02)	35.4 vs. 17.7	1.7 (1.3, 2.2), p=0.001
mRS 0-1: active vs. control (%)	48.0/27.6	30.4/34.8	14.1 vs. 13.0	29.4 vs. 27.1	32.6 vs. 19.1	53.0 vs. 29.3
OR (95% CI) or p value	2.0 (0.9, 11.4)	0.71 (0.44, 1.14)	NA	11.6 vs. 6.0	2.07 (1.07, 4.02)	35.4 vs. 17.7
Shift analysis, OR (95% CI) or p value	NA	NA	p=0.99	p=0.25	1.67 (1.21, 2.30)	3.1 (2.0, 4.7), p=0.001
Mortality: active vs. control (%)	24.0/17.2	14.4 vs. 9.9	18.8 vs. 24.1	20.0 vs. 22.4	32.6 vs. 19.1	1.7 (1.3, 2.2), p=0.001
OR (95% CI) or p value	No difference, p=0.22	No difference, p=0.52	No difference, p value not provided	No difference, p value not provided	0.5 (0.3, 0.8), p=0.04	
mRS 5-6: active vs. control (%)	24.0/17.2	19.9 vs. 17.1	42.2 vs. 35.2	24.8 vs. 29.4	27.0 vs. 34.1	17.1 vs. 31.3
OR (95% CI) or p value	NA	NA	NA	NA	NA	NA
SICH: active vs. control (%)	8.0/13.8	5.5 vs. 5.5	4.7 vs. 3.7	6.2 vs. 5.9	7.7 vs. 6.4	3.6 vs. 2.7
OR (95% CI) or p value	0.5 (0.1, 3.3), p=0.675	No difference, p value not provided	No difference, p value not provided	No difference, p value not provided	1.2 (0.3 to 4.6)	No-significant

M2 폐색 40명 환자를 대상으로 6시간 이내에 동맥으로 6 mg recombinant prourokinase (pro-UK) 투여군(26명)과 위약투여군(14명)을 비교하였다. Pro-UK군에서 부분적 또는 완전한 혈관재개통률이 높았으며(57.7% vs. 14.3%, p=0.017), 증상성뇌출혈은 유의하게 증가하지 않았다(15.4% vs. 7.1%, p=0.64). ProACT에 이어 첫 3상 임상시험인 PROACT II는 6시간 이내 치료를 시작할 수 있는 중대뇌동맥폐색 180명 환자를 대상으로 pro-UK 9 mg 치료군(121명)과 위약군(59명)을 비교하였다. PROACT와 PROACT II연구에서는 카테터를 이용한 기계적혈전파괴를 허용하지 않았다. Pro-UK군에서 치료 2시간 후 혈관재개통률이 높았고(66% vs. 18%, p=0.001), 일차결과변수인 90일 mRS 0-2점 분율도 높았으나(40% vs. 25%, p=0.04), 이차결과변수인 mRS 0-1점 분율은 차이가 없었다(26% vs. 17%, p=0.16). 치료 24시간 이내 증상성뇌출혈은 pro-UK군에서 증가하는 경향을 보였지만(10% vs. 2%, p=0.06), 90일 사망률은 비슷하였으며(25% vs. 27%, p=0.80). 그러나 미국 심약청이 허가를 위한 추가적인 임상시험을 요구하여 개발이 중단되었다.4 PROACT II 이후 2001년에서 2007년 사이에 ERT군과 혈전용해술 비치료군을 비교한 소규모 또는 조기 중단된 임상시험들이 있었다.25-27 그 중 Middle cerebral artery Embolism Local fibrinolytic
Table 2. Characteristics and results of 15 RCTs and 2 meta-analyses testing ERT in acute ischemic stroke-continued

Trial	EXTEND-IA	SWIFT PRIME	REVASCAT	Meta-analysis Lee et al\(^1\)	Meta-analysis Hong et al\(^3\)
Publication year	2015	2015	2015	2010	2015
Participants (n)	70	196	206	395 (5 RCTs)	2899 (15 RCTs)
Age (year)	69.4	65.6	66.5	NA	NA
Female (%)	51.0	49.0	47.1	NA	NA
Baseline NIHSS (active/control)	17/13	17/17	17/17	NA	NA
Time window (hr)	6.0	6.0	8.0	NA	NA
LAO confirmation (%)	100.0	100.0	100.0	NA	NA
ICA/M1 occlusion (%)	31.4/54.3	16.3/68.4	26.2/63.6	NA	NA
Onset to randomization/groin puncture/first reperfusion (min)	169/210/NA	185/224/252	225/269/355	NA	NA
Active arm	ERT with IV-TPA	ERT with IV-TPA	ERT with standard care	ERT	ERT
Control arm	IV-TPA	IV-TPA	standard care	No thrombolysis	IV-TPA or no IV-TPA
IV-TPA (active/control) (%)	100/100	100/100	68.0/77.0	NA	NA
ERT performed in active arm (%)	85.7	88.8	95.1	NA	NA
Stent-retriever in active arm (%)	77.1	88.8	95.1	NA	NA
mTICI 2b-3 in active arm (%)	86.2	88.0	65.7	NA	NA
Outcome assessment (days)	90	90	90	90, 180, or 365	30, 60, or 90
mRS 0-2: active vs. control (%)	71.4 vs. 40.0	60.2 vs. 35.5	43.7 vs. 28.2	42.9 vs. 28.1	43.3 vs. 31.9
OR (95% CI) or p value	4.2 (1.4, 12, p=0.01)	1.70 (2.3, 2.33, p=0.001)	2.1 (1.1, 4.0, p=0.05)	2.05 (1.33, 3.14, p=0.001)	1.79 (1.34, 2.40, p=0.0001)
mRS 0-1: active vs. control (%)	51.4 vs. 28.6	42.9 vs. 19.4	24.3 vs. 12.6	24.3 (1.31, 3.51, p=0.003)	1.81 (1.34, 2.44, p=0.0001)
OR (95% CI) or p value	2.4 (0.87, 6.6, p=0.09)	NA	2.14 (1.31, 3.51)	NA	NA
Shift analysis, OR (95% CI) or p value	2.0 (1.2, 3.8, p=0.006)	2.63 (1.57, 4.40, p=0.001)	1.7 (1.05, 2.8, p=0.001)	NA	NA
Mortality: active vs. control (%)	8.6 vs. 20.0	9.2 vs. 12.4	18.4 vs. 15.5	20.5 vs. 24.0	17.6 vs. 19.4
OR (95% CI) or p value	0.45 (0.1, 2.1, p=0.31)	0.74 (0.33, 1.68, p=0.50)	1.2 (0.6, 2.2, p=0.6)	0.83 (0.48, 1.39, p=0.46)	0.87 (0.71, 1.05, p=0.1508)
mRS 5-6: active vs. control (%)	8.6 vs. 31.4	12.2 vs. 24.7	30.1 vs. 35.9	NA	24.3 vs. 29.2
OR (95% CI) or p value	NA	NA	NA	0.77 (0.61, 0.97, p=0.0246)	NA
SICH: active vs. control (%)	0.0 vs. 5.7	0.0 vs. 3.1	1.9 vs. 1.9	8.9 vs. 2.3	5.8 vs. 4.6
OR (95% CI) or p value	Absolute difference:	0.0 vs. 7.3	1.9 vs. 1.9	8.9 vs. 2.3	5.8 vs. 4.6

RCTs: randomized clinical trials, IMS: interventional management of stroke, MR RESCUE: mechanical retrieval and recanalization of stroke clots using embolectomy, SYNTHESIS-Expansion: in the synthesis, a randomized controlled trial on intra-arterial versus intravenous thrombolysis in acute ischemic stroke, MR CLEAN: multicenter randomized clinical trial of endovascular treatment for acute ischemic stroke in the Netherlands, ESCAPE: endovascular treatment for small core and anterior circulation proximal occlusion with emphasis on minimizing CT to recanalization times, EXTEND-IA: extending the time for thrombolysis in emergency neurological deficits-intra-arterial, SWIFT PRIME: solitaire with the intention for thrombectomy as primary endovascular treatment trial, REVASCAT: recanalization with the solitaire FR device versus best medical therapy in the treatment of acute stroke due to anterior circulation large vessel occlusion presenting within eight hours of symptom onset.
mRS 0-2점분율(2.05 [1.33 to 3.14]; p=0.001)과 mRS 0-1점분율(2.14 [1.31 to 3.51]; p=0.003)을 증가시키는 효과가 있었고, 미미한 신경계재해(NIHSS 0-1점)만 남은 분율과 비 aras정수 양호군 (90-100점 또는 95-100점) 분율을 증가시키는 효과도 있었다.

ERT는 혈전유출치료를 하지 않는 경우에 비해 중신성뇌졸중 출혈 위험을 증가시켰지만(2.87 [1.21-6.83]; p=0.02) 사망률을 증가시키지는 않았다(0.83 [0.48-1.39]; p=0.46). 3

2001년 기계적혈전제거술(mechanical thrombectomy) 효과를 향상시킬 수 있는 MERCI 기구가 개발되어, 2004년 처음으로 급성혈관내증층 환자에서 혈관재개통 목적으로 사용할 수 있는 기구로 미국 식약청의 승인을 받았다. 적절한 단일군대한기관임상시험에서 IV-TPA 투여 급성과 급성대뇌동맥폐색으로 인한 중증뇌화혈증 141명 환자를 대상으로 8시간 이내 MERCI 기구로 치료한 결과, 혈관재개통률은 48%였다. 그러나 대상환자의 증후점가는 높았다는 점을 감안하면도 90% mRS 0-2점 분율은 22.6%로 낮았고, 사망률은 43.5%로 매우 높았다. 26 Multi-MERCI (Mechanical Embolus Removal in Cerebral Ischemia)는 80% 환자를 개선한 MERCI 기구로 치료한 추가적 연구였으며, IV-TPA 급성과 IV-TPA 투여 후에도 큰뇌동맥폐색에 있는 164명 환자를 8시간 이내에 치료하였다. 개선된 MERCI 기구 결과로 보고된 혈관재개통률이 57.3%로 증가하였으며, 동맥 TPA를 투여한 경우 69.5%였다. 그러나 전체적으로 90일 mRS 0-2점 분율은 36%로, 그리고 사망률은 34%로 반복성혈관손상의 결과가 아니었다. 29

동맥류 코일시술에 사용하던 스텐트를 이용하여 혈전을 제거한 증례를 보고한 이후 30 stent retriever 혈전제거기술이 본격적으로 연구되기 시작하였다.

Solitaire with the Intention for Thrombectomy (SWIFT) 임상시험은 113명 환자를 대상으로 Solitaire 기구와 MERCI 기구를 비교하였는데 Solitaire를 사용한 경우가 중등도뇌졸중을 동반하지 않는 TIMI 2-3 혈관재개통률이 높았고(61% vs. 24%; OR 4.87 [2.4-11.10]), 비열평균(p<0.001, 우열평균(p<0.001), 90일 신경학적 약호상태(mRS 0-2점, 체중증 mRS로 회복, 또는 NIHSS 10점 이상 개선) 분율도 높았으며(58% vs. 33%, OR 2.78 [1.25-6.22], 비열평균(p<0.001, 우열평균(p=0.02), 사망률도 낮았(17% vs. 38%, OR 0.34 [0.14-0.81], 비열평균(p=0.0001, 우열평균(p=0.02)) 31

TREVO2 임상시험은 SWIFT 연구결과와 비슷한 178명 환자를 대상으로 다른 종류의 stent retriever인 Trevo 기구를 이용하여 MERCI 기구와 비교하였다. 기사가 보도된 경우가 TIMI 2-3 혈관재개통률이 높았고(86% vs. 24%; OR 4.22 [2.01-8.86], 비열평균 및 우열평균(p=0.0001), 90일 mRS 0-2점 분율도 높았으며(40% vs. 22%; OR 2.39 [1.16-4.95], p=0.013), 사망률은 차이가 없었다(33% vs. 24%; OR 1.61 [0.83-3.13], p=0.1845) 32

그 외 연구들과는 8시간 이내 환자를 Penumbra aspiration 기구를 이용하여 81.5-87%의 높은 혈관재개통률을 보고하였으나 대조군과 비교한 연구는 없었다. 33,34 BASICS(Basilar Artery International Cooperation Study)는 급성 기저동맥폐색 환자 중 혈관재개통률 183개, IV-TPA 치료군 121명, 그리고 ERT 치료군 288명에 대한 예후를 비교한 관찰연구였는데, 347명 중증뇌화혈증환자에서는 혈관재개통에 비하여 IV-TPA(adjusted RR 0.88, 0.76-1.01)와 ERT (adjusted RR 0.94, 0.86-1.02)가 매우 높았던 예후인 mRS 4-6점 분율을 감소시키는 경향을 보였으나, IV-TPA와 ERT를 비교하였을 때에는 차이가 없었다(adjusted RR 1.06, 0.91-1.22). 35

2. 2012년 12월 이후의 근거(Table 2)

ERT는 혈관재개통율을 증가시킬 수 있으나 치료를 시작하는데 시간이 걸린다. 따라서 IV-TPA 투여를 시작한 후 ERT를 실시하는 데 죽에 치료를 시작하면서 혈관재개통율을 높이기 위한 연구들이 진행되었다. 2004년에서 2012년 사이에 IV-TPA 치료를 위주로 하는 표준치료와 ERT를 비교한 3종의 주요 3성 임상시험인 Interventional Management of Stroke (IMS) III, Mechanical Retrieval and Recanalization of Stroke Clots Using Embolectomy (MR RESCUE), 그리고 In the Synthesis: A Randomized Controlled Trial on Intra-Arterial Versus Intravenous Thrombolysis in Acute Ischemic Stroke (SYNTHESIS-Expansion)이 진행되었으나 모두 ERT 효과를 증명하는데 실패하였다. 48

대표적 임상시험인 IMS III는 2001년과 2006년 사이에 수행되었던 IMS I/II 연구결과를 바탕으로 계획되었다. 36,37 IMS III는 3시간 이내 내원한 중등도 이상 신경계재해(NIHSS 10점 이상 또는 CT 혈관조영술에서 중대뇌동맥 M1, 내경동맥, 또는 기저동맥폐색)를 가진 656명 환자를 대상으로 ERT군(IV-TPA와 ERT 병합치료)과 IV-TPA 단독치료군을 비교하였다. 임상결과변수인 90일 mRS 0-2점 분율이 ERT군 40.8%, IV-TPA군 38.7% (absolute risk reduction, 1.5% [-6.1 to 9.1])로 차이가 없었다. 38

NIHSS 중증도, 연령, 페세부위, 그리고 치료시작 시간 등 사전에 계획한 아집단 분석(subgroup analysis)에서도 두 치료 차이가 없었다. 중증뇌졸중(6.2% vs. 5.9%, p=0.83)과 사망률(19.1% vs. 21.6%, p=0.52) 차이가 없었다. 39 MR RESCUE는 MR기로 확산관류불일치(perfusion-diffusion mismatch)를 평가하여 허혈반응영(penumbra)이 있는 환자를 선

J Korean Neurol Assoc Volume 34 No. 4, 2016 303
벌하여 MERCI 기구를 이용한 ERT를 표준치료에 추가하여 예후를 향상시킬 수 있는지 평가하기 위한 연구였다. 중앙발생 8시간 이내 급성 큰뇌동맥폐색이 있고 중증도 이상 신경매개를 보이는 환자를 뇌허혈반영영이 있는 환자와 없는 환자로 나누어 표준치료와 ERT를 추가한 치료를 비교하였다. 제318명의 환자 중 44명 (37%) 환자는 IV-TPA 치료를 받았다. 기대와 달리 뇌허혈반영영 존재 유무에 상관 없이 MERCI 기구를 이용한 ERT는 표준치료에 비해 환자의 예후를 개선시키지 못했고, 증상성뇌출혈과 사망률도 차이가 없었다.8

SYNTHESIS-Expansion은 SYNTHESIS-pilot 연구에서 치료 시기에 늦어도 ERT 단독치료가 IV-TPA에 비해 증상성뇌출혈을 증가 시키지 않으면서 예후를 개선시킬 수 있는지 평가하기 위한 연구였다.4-9 치료시작이 늦어도도 정상 범위가 있고 중등도 이상 신경계장애를 보이는 환자 671명을 무작위로 2군으로 나누어 표준치료에 ERT를 추가한 치료를 비교하였다. IV-TPA는 30분간 환자는 IV-TPA 치료를 받았고, ERT군은 기구를 사용하여 ERT 치료를 시행했다. ERT군으로 배정된 환자는 IV-TPA 치료를 하지 않았기 때문에 치료 시작 시간이 1시간 늦었다. 일차결과변수인 90일 mRS 0-1점 분포가 2군에 차이가 없었다.

SYNTHESIS-pilot 연구결과와 달리 통계학적 유의성이 없었고, 실패한 SYNTHESIS-pilot 연구 결과에서는 증상성뇌출혈이 IV-TPA 치료를 시행한 경우에도 치료시작이 늦어도도 ERT 치료는 표준치료에 비해 유의하게 개선된 것으로 나타났다.5

대한신경과학회지 제34권 제4호, 2016
다. ERT군에서 90일 mRS 분포와(2.0 [1.2-3.8]; \(p < 0.006 \)) mRS 0-2점 분율(71% vs. 40%; 4.2 [1.4-12]; \(p < 0.01 \))도 유의하게 향상되었다. 증상뇌출혈(0% vs. 5.7%; \(p = 0.49 \))과 사망률(6.6% vs. 20.0%; 0.45 [0.1-1.2]; \(p = 0.31 \))이 ERT군에서 낮았으나 환자가 적어서 통계적인 유의성을 얻었다. EXTEND-IA는 다른 연구에 비해 예후가 가장 좋았는데, 이는 ERT의 효과가 아주 좋을 환자를 제한적으로 선별하였기 때문이고, 70이상의 적은 수를 모집하고 도 ERT 효과를 증명할 수 있었다. 그러나 너무 제한된 기준으로 환자를 선별하기 때문에 실제 임상진료에서의 적용성은 제한적이어서 통계적인 유의성을 얻지 못하였다. 20.0%; 0.45 [0.1-2.1]; \(p = 0.31 \).

Endovascular Treatment Trial (SWIFT PRIME)로 대상환자를 선별하는 경우 치료효과가 있을 환자들이 많아 예후가 가장 좋았는데 \(p < 0.001 \), number needed-to-treat \((NNT) = 9 \), mRS 0-1점 분율(1.81 [1.34, 2.44]; \(p < 0.001; \ NNT = 11 \)), 양호한 신경학적 회복 분율(3.11 [2.14, 4.53]; \(p < 0.001; \ NNT = 6 \)), 양호한 일상생활 수행능력 (activity of daily living, ADL) 분율(2.24 [1.78, 2.82]; \(p < 0.001; \ NNT = 5 \)) 그리고 혈관의 부분 또는 완전개통률 \((ERT \)군에서 90일 mRS 0-2점 분율(2.77 [1.2-6.5]; \(p = 0.0003; \ NNT = 3 \)의 효과가 증명되었다. 증상뇌출혈 발생률(1.83, 1.69; \(p = 0.8656 \))과 90일째 사망률(0.87 [0.71, 1.05]; \(p = 0.1508; \ NNT = 55 \)은 차이가 없었다. 그러나 중증 장애가 남거나 사망하는 mRS 5-6점 분율은 ERT군에서 유의하게 감소하였다(0.77 [0.61, 0.97]; \(p = 0.0246; \ NNT = 21 \)).

1) 1998년 이후 ERT와 표준치료를 비교한 임상시험(Table 2)

1998년부터 15개 임상시험(ERT군 1,575명, 표준치료군 1,324명)이 시행되었는데, 6개 임상시험에서는 비혈전용해술
(24-27, 39) 그리고 9개 임상시험은 IV-TPA(29.6-100%)를
표준치료로 사용하였다. 메타분석결과, 표준치료군에 비해 ERT군에서 mRS 0-2점 분율(2.63 [1.55-4.54]; \(p = 0.0001; \ NNT = 5 \), mRS 0-1점 분율(2.49 [1.85, 3.36]; \(p = 0.0001; \ NNT = 7 \), 양호한 신경학적 회복 분율(3.62 [2.26, 5.78]; \(p < 0.0001; \ NNT = 4 \), 양호한 일상생활 수행능력 분율(2.53 [1.83, 3.52]; \(p < 0.0001; \ NNT = 5 \), 그리고 혈관의 부분 또는 완전개통률
(5.68 [3.09, 10.45]; \(p < 0.0001; \ NNT = 3 \)이 증가하였다. 증상뇌출혈은 양 군에서 차이가 없었다(1.08 [0.61, 1.88]; \(p = 0.7983 \).

ERT군에서 90일 사망률이 유의하게 감소하지는 않았으나(0.78 [0.54, 1.12]; \(p = 0.1770; \ NNT = 29 \), mRS 5-6점 분율은 유의하게

3) ERT 임상시험요약 및 메타분석\(^\dagger\)

2) Stent-retriever ERT와 IV-TPA를 비교한 임상시험(Table 2)

5개 stent-retriever 임상시험(ERT군 633명, IV-TPA군 645명)에서 90일 mRS 0-2점 분율은 ERT군에서는 32.6%에서 71.4%였으며, IV-TPA군에서는 19.1%에서 40%였다. 11 임상시험에 따라 90일 mRS 0-2점에 대한 NNT는 3-7명이었으며, mRS 분포를 1점 이상 개선시키기 위한 NNT는 1.67-3.1명이었다. 증상뇌출혈 발생률은 ERT군에서는 7.7%, IV-TPA군에서는 19.6-4.6%였으며, 모든 임상시험에서 ERT군에서 증상뇌출혈 발생이 유의하게 증가하지 않았다. ESCAPE에서는 ERT군의 90일 사망률이 유의하게 낮았지만, 12 다른 4개 임상시험에서는 ERT군의 사망률이 낮지 만 통계적 유의성은 없었다. 11-13

5개 stent-retriever 임상시험을 메타분석하여 17, IV-TPA군에 비해 ERT군에서 mRS 0-2점 분율(pooled OR [95% CI]; 2.39 [1.88, 3.04]; \(p < 0.0001; \ NNT = 5 \), mRS 0-1점 분율(2.49 [1.85, 3.36]; \(p < 0.0001; \ NNT = 7 \), 양호한 신경학적 회복 분율(3.62 [2.26, 5.78]; \(p < 0.0001; \ NNT = 4 \), 양호한 일상생활 수행능력 분율(2.53 [1.83, 3.52]; \(p < 0.0001; \ NNT = 5 \), 그리고 혈관의 부분 또는 완전개통률
(5.68 [3.09, 10.45]; \(p < 0.0001; \ NNT = 3 \)이 증가하였다. 증상뇌출혈은 양 군에서 차이가 없었다(1.08 [0.61, 1.88]; \(p = 0.7983 \).

ERT군에서 90일 사망률이 유의하게 감소하지는 않았으나(0.78 [0.54, 1.12]; \(p = 0.1770; \ NNT = 29 \), mRS 5-6점 분율은 유의하게

J Korean Neurol Assoc Volume 34 No. 4, 2016 305
혈관조영술이 가능하므로 MR CLEAN, EXTEND-IA, 인 습적 혈관조영술을 시행하여 큰뇌동맥폐색을 확인하는 것이 바람의 시작 시간은 최소 3시간에서 18 최대 24시간이었으며, 8개 임상시험은 6시간 이내, 9, 10, 11, 12, 25, 27, 28 특히 stent-retriever 임상시험 중 MR CLEAN, EXTEND-IA, 그리고 SWIFT PRIME은 증상발생 6시간 이내 환자를 대상으로 하였다. 9, 11 REVASCAT과 ESCAPE는 각각 8시간과 12시간이 기준이었으나, REVASCAT의 90.3%, ESCAPE의 84.6%는 6시간 이내 환자들이었다. 10, 11 Stent-retriever 임상시험에서 증상발생부터 평균 4.5시간 만에 혈관조영술을 시작하였고, 첫 재개통 시도는 6시간 이내에 이루어졌다.

2) 경색중심부, 뇌혈관유, 질환환영자
비교영상 CT는 가장 널리 사용할 수 있는 검사로 출혈성중증 가능성이 ERT를 하였을 때 반응이 없거나 증상성혈관폐색 발생 위험이 높은 조기 혈관폐색이 경행위한 환자를 배제할 수 있다. ESCAPE, SWIFT PRIME, 그리고 REVASCAT에서는 CT검사에서 ASPECTS 6-10점을 경색중심부가 작은 경우로 정하였다. 9, 11 MR CLEAN은 ASPECTS로 대상환자를 선별하는 않았지만 ASPECTS 0-4 점 환자는 5.6%에 불과하였다. 9 EXTEND-IA는 판류 CT를 이용하여 정상에 비해 30% 미만으로 혈류가 떨어진 영역이 70 mL 이하인 환자를, 11 그리고 SWIFT PRIME는 81% 안정을 판류 CT를 이용하여 경색중심부 크기가 50 mL 이하인 환자를 선별하였다. 결손환자 중 환자가 희생 가능한 뇌혈관폐색이 더 넓어서 재관류가 되는 경우 임상적으로도 호전될 가능성이 더 높고 증상성 뇌혈관폐색이 경행위한 환자가 높은 것으로 알려져 있다. ESCAPE는 다음기시 CT 혈관조영술을 이용하여 결손환을 평가하고, 결손으로 중대뇌동맥 폐색 50% 이상에 혈류가 공급되는 환자를 선별하였다. 9, 10, 11

3) 비침습적 혈관조영술로 큰뇌동맥폐색 확인
중증 뇌내증환자들을 큰뇌동맥폐색이 있을 가능성이 높지만, 3시간 이내 내원한 NIHSS 9점 이상 환자 19.3%에서는 큰뇌동맥폐색이 없었다. 40 최근에는 대부분 병원에서 응급상황에서 CT 또는 MR 혈관조영술이 가능하여, 증상성뇌동맥폐색 환자는 응급으로 비침습 혈관조영술을 시행하여 큰뇌동맥폐색을 확인하는 것이 바람직하다. IMS III에서는 전체 환자 656명 중 무작위배정 전에 47% 인 306명 환자에서만 CT 또는 MR 혈관조영술을 시행하였고, 42%인 282명 환자에서 큰뇌동맥폐색을 확인하였다. 결과적으로 ERT군 환자 중 18.4%인 80명 환자에서는 ERT 시술을 들어갔을 때 큰뇌동맥폐색이 관찰되지 않았다. 4 IMS III 환자 중 무작위 배정 전 CT 혈관조영술로 큰뇌동맥폐색을 확인하였던 220명 환자만 분석해 보면, IV-TPA군에서 ERT군에서 24시간 후 CT 혈관조영술에서 높은 혈관재개통률을 보였고, 90일 mRS 분포가 개선되는 경향을 보였다. 41 반면에 5개 stent-retriever 입상시험 모 두에서는 무작위배정 전에 CT 또는 MR 혈관조영술로 큰뇌동맥폐색을 확인하였는데, 16.6-31.4% 환자에서 경동맥폐색이 그리고 54.3-68.6% 환자는 중대뇌동맥 M1 폐색이 있었다. 따라서, 중증급성뇌졸중 환자에서는 치료방안을 결정하기 위하여 큰뇌동맥폐색을 확인하기 위한 비침습적 혈관조영술이 필요하다.

4) ERT 방법
첫 3시간 임상시험이었던 PROACT II는 pro-UK 동맥내부여 효과를 확인하기 위해 연구가가 서서와 대조군으로 혈관폐색을 파괴하는 것을 허용하지 않았다. 4 이후 혈관폐색을 향상시키기 위한 방법들이 발전하여, 초기에는 micro-guide wire를 이용한 혈관파괴를 하다가 MERCI 기구가 개발되었고, 이후 Penumbra aspiration 기구, 그리고 stent-retriever를 이용한 혈관폐색을 발전시켰다. 11, 12 두 3일 억지락 중에서 MERCI 기구가 비해 stent-retriever를 사용할 경우에는 혈관폐색율이 더 높았고, 결과가 더 좋았다. 11, 12 IV-TPA에 비해 ERT 단독치료 효과를 입증하는데 실패하였던 SYNTHESIS Expansion의 경우, ERT군의 66% 환자를 동맥 TPA 투여와 micro-guide wire를 이용한 기계적혈전파괴로 치료하였고, 13.9% 환자에서만 stent-retriever를 사용하였다. 7 IMS III도 ERT군 환자의 1.5%에서만 stent-retriever를 사용하였고, 47.9%는 동맥 TPA 투여 및 micro-guide wire를 이용한 기계적 혈전파괴, 28.4%는 MERCII 기구, 그리고 16.2%는 Penumbra aspiration 기구로 치료하였다. IMS III에서는 ERT군의 치료 후 mTICI 2b-3 재관류율이 41% 정도로 높지 않았다. 4 반면에, stent-retriever 임상시험에서는 ERT군의 치료 후 mTICI 2b-3 재관류율이 58.7%에서 88.0%로 향상되었다. 따라서, 현재로서는 ERT 방법으로 stent-retriever가 가장 추천된다.

5) ERT 환자에서 IV-TPA 투여
4.5시간 내 IV-TPA 투여는 급성 큰뇌동맥폐색 환자에서 효과가 판명적이긴 하지만, 입증된 치료법이다. Stent-retriever 임상시험에서 ERT군(68.0% to 100%) 11, 12와 대조군(77.0% to 100%) 11, 12 2 대 부분 환자에서 IV-TPA가 투여되었다. Stent-retriever 임상시험에
서 ERT군과 대조군에서 증상성뇌졸중 발생에 차이가 없었으며, IV-TPA가 증상성뇌졸중 발생에 줄 수 있음이 가능성이 있다. 그러나 큰뇌동맥폐색 환자의 일부에서는 IV-TPA군으로도 혈관재개통이 이루어지지 않으며, IV-TPA가 ERT의 혈관재개통 효과를 상승시킬 수 있으며, 예후목표 혈류를 개선시킬 수 있다. 이에 따라 ERT의 효과를 증명하지 못했던 SYSTHESIS-Expansion ERT군에서 IV-TPA를 사용하지 않았다. 따라서 ERT 대상환자에서 적응증이 되는 경우 IV-TPA를 사용하지 않을 근거가 없다.

Stent-retriever 임상시험 중 REVASCAT는 IV-TPA로 30분 후에도 지속적으로 혈관이 막혀 있는 환자를 선정하였지만, ESCAPE, EXTEND-IA, 그리고 SWIFT PRIME는 IV-TPA의 효과를 가리지 않고 IV-TPA를 투여하는 경우 ERT 시술을 진행하였었다. MR CLEAN의 경우는 IV-TPA 반응을 기다린 후 ERT를 실시하였지만 지속적으로 관찰하지 않고 있었다. ERT 치료를 빨리 시작하기 위해서는 대부분 환자에서 IV-TPA에 대한 반응여부를 기다리지 않고 ERT를 시행하는 것이 더 바람직한 것으로 판단된다. ERT와 IV-TPA 모두 증상성뇌졸중을 중도시킬 수 있으므로, 일부에서는 ERT를 시행하는 경우 지연류 IV-TPA를 사용하기도 한다. IMS III도 처음에는 ERT군에서 IV-TPA를 용량을 줄인 0.6 mg/kg를 사용하였지만, 종종에 프로토콜을 개정하여 표준용량인 0.9 mg/kg 근처로 변경하였다. 모든 stent-retriever 임상시험에서는 ERT군과 대조군 모두 IV-TPA를 표준용량인 0.9 mg/kg를 투여하였고, ERT 치료시 기다리지 않고 ERT 시행하는 환자에서도 IV-TPA를 표준용량인 0.9 mg/kg를 사용하는 것이 바람직한 것들이다.

6) 의식하진정(conscious sedation)과 전산마취(general anesthesia)

ERT 대상이 되는 중증 혈관재개통 환자는 협조가 안되고 심하 게 동요하는 경우가 흔하며, 이로 인하여 ERT 시술 중 협증이 발생할 위험이 증가할 수 있다. 이런 이유로 병원에 따라서는 의식 하진정과 전산마취를 실시하기도 한다. 그러나 전산마취는 ERT 치료시기를 지연시킬 수 있으며, 지속적으로 발생하던 혈관대응성 적약물이 해어질 수 있고, 신경학적 상태를 평가할 수 없는 단점이 있다. 9개 연구에서 메타분석에서 전산마취를 하는 경우 사망률(pooled OR [95% CI], 2.59 [1.87, 3.58])과 호흡기 협증 증후군(2.09 [1.36, 3.23])이 증가하였고, 좋은 예후로 회복되는 환자율은 감소하였다(0.43 [0.35, 0.53]). 증증도가 심한 환자일수록 전산마취를 더 많이 사용하였을 가능성이 있으며, 그 이유로는 ERT 시술 후 일래동맥 저혈압이 발생한 경우 ERT 시술이 중단됨으로써 혈관대응성 적약물이 해어질 수 있으며, 신경학적 상태를 평가할 수 없는 단점이 있다. 따라서 ERT 시술시에는 ERT의 치료를 중단하기 전에 전산마취를 한다. 이는 ERT 기간 동안 혈관대응성이 없는 경우에만 적용한다.

7) 위관순 순환게로 환자에서 ERT

위관순 순환게로 환자에서 ERT는 적절한 시기 혈관개통이 이루어질지 않으면 중증 장애가 남거나 사망할 가능성이 매우 높다. 5개 stent-retriever 임상시험은 적절한 시간 내 혈관개통이 이루어질 경우 ERT의 효과가 사라지는 결과를 보였다. 따라서 가능하면 전산마취를 시행하는 것이 권장된다.

8) 조직체계 및 절차

ERT는 급성혈관제로 치료 중 가장 복잡하고 많은 자원이 필요하며, 모든 병원에서 시행이 가능한 치료방법이 아니다. 따라서 지역별로 ERT를 이상이 복잡할 수도 있는 포괄적뇌졸중센터(comprehensive stroke centers)를 설치하여, 주요한 병원과 연계시 스펙을 이루는 것이 바람직한 것이다. ERT를 시행하는 병원은 다학회선을 구성하여 ERT 대한환자의 평가, 치료방침 결정, 그리고 ERT 시술 모든 과정이 체계적으로 이루어질 수 있도록 임상진료경로(critical pathway)를 확립하는 것이 필요하다.

IV-TPA와 마찬가지로 ERT도 시간이 중요하다. IMS III에서 연구의 사후분석에서 ERT는 IV-TPA보다 12.5%를 높은 경우, IV-TPA 6개 임상시험에서 5.0%~19.3%의 환자가 위관순 순환게로 환자에서 45개 간접연구의 메타분석에서 ERT를 받은 환자들의 경우, ERT의 예후는 IV-TPA의 예후보다 0.48 [0.42, 0.55]가 낮았다.
Table 3. Summary of updated recommendations

Recommendations	Ref.
혈관내 재개통치료 (endovascular recanalization therapy, ERT)	9, 13, 17
1. 급성앞순환큰동맥(내경동맥, 중대동맥 M1 및 M2)폐색으로 인한 중증 허혈뇌졸중 환자에서 예후를 개선시키기 위해 6시간 이내 혈관내 재개통치료 (endovascular recanalization therapy: ERT)를 권고한다 (근거수준 Ia, 권장수준 A). In patients with major ischemic stroke due to an acute large artery occlusion in the anterior circulation (internal carotid artery, M1, and possibly large M2 branch) within 6 hours, endovascular recanalization therapy (ERT) is recommended to improve clinical outcomes (LOE Ia, GOR A).	
2. 저혈압의 조절유도요법 및 혈관내 재개통치료 (IV-TPA) 치료 대상환자는 ERT 시행 전 IV-TPA 투여를 권고한다 (근거수준 Ia, 권장수준 A). IV-TPA가 ERT를 지연시키지 않아야 하므로, IV-TPA에 대한 반응을 기다리지 말고 투여하면 동시에 ERT를 진행할 것을 권고한다. In eligible patients for intravenous tissue plasminogen activator (IV-TPA), administration of IV-TPA is recommended before the initiation of ERT (LOE Ia, GOR A). Since IV-TPA should not significantly delay ERT, it is recommended to simultaneously proceed ERT during IV-TPA treatment without waiting for clinical response to IV-TPA.	
3. 급성앞순환큰동맥폐색으로 인한 중증 허혈뇌졸중 환자에 IV-TPA 치료가 가능한 경우, 6시간 이내 ERT를 우선적인 치료로 권고한다 (근거수준 IIa, 권장수준 B). In patients who are contraindicated for IV-TPA, ERT is recommended as a first-line therapy in patients with major ischemic stroke due to an acute large artery occlusion in the anterior circulation within 6 hours (LOE Ia, GOR B).	
4. 휘순환큰동맥(마비대동맥, 후대동맥 P1, 최추동맥)폐색으로 인한 중증 허혈뇌졸중 환자에서 6시간 이내 ERT를 고려할 수 있다 (근거수준 III, 권장수준 B). In patients with major ischemic stroke due to acute large artery occlusion in the posterior circulation (basilar artery, P1, and vertebral artery) within 6 hours, ERT can be considered (LOE III, GOR B).	
5. 앞순환이나 휘순환 큰 동맥폐색 후 6시간이 지난 환자에서는 다중기법영상을 이용하여 예상되는 이득과 안전성을 평가한 후 좋은 예후를 기대할 수 있는 환자에서 ERT를 고려할 수 있다. 이용 가능한 장비와 검사법을 고려하여 각 병원마다 신청준거를 규정하는 것이 권장된다 (근거수준 IV, 권장수준 C). For patients with acute large artery occlusion in the anterior or posterior circulation presenting after 6 hours, ERT can be considered for patients having favorable multimodal imaging profiles regarding expected benefit and safety. Each center is encouraged to define own selection criteria (LOE IV, GOR C).	
6. 일반 ERT 적용중이 되며, 가능한 빌리 시도하여야 한다 (근거수준 IIa, 권장수준 B). If indicated, ERT should be initiated as fast as possible (LOE IIa, GOR B).	
7. ERT 방법으로 스텐트 혈전제거술을 우선적으로 권한다 (근거수준 Ia, 권장수준 A). Stent-retriever thrombectomy is recommended as a first-line ERT (LOE Ia, GOR A).	
8. 스텐트 혈전제거술로 재개통이 어렵지 않으면 다른 ERT 방법을 고려할 수 있다 (근거수준 III, 권장수준 C). If recanalization is not achieved with stent-retriever thrombectomy, the addition of other ERT modalities can be considered after taking into account the expected efficacy and safety (LOE III, GOR C).	
9. 약관 및 병원의 경험에 따라 기술적 요건을 고려하여 다른 방법의 기계적 혈전제거술이나 혈전흡입술을 우선적으로 고려할 수 있다 (근거수준 IV, 권장수준 C). Other mechanical thrombectomy or thrombus aspiration devices may be considered as a first-line modality at the discretion of responsible interventionists after taking into account technical aspects (LOE IV, GOR C).	
10. ERT 중 진신마취보다는 의식하전정을 권한다. 그러나 환자상태와 병원의 경험이 결정하는 것도 고려한다 (근거수준 III, 권장수준 C). During ERT, conscious sedation is generally preferred to general anesthesia. However, the decision should be made after consideration of patient's condition and center's experience (LOE III, GOR B).	

신경영상검사 (neuroimaging evaluation)

| 1. 척원장뇌졸중이나 다른 뇌졸중 이외의 원인을 배제하기 위해 비조영장강 CT나 MRI 시행하여야 한다 (GPP). Contraindicated CT or MRI should be conducted to exclude hemorrhagic stroke or other non-stroke etiologies (GPP). |
| 2. 중증 허혈뇌졸중 환자에서 급성 큰 동맥폐색을 확인하기 위해 비조영혈관조영술 (CT 및 MR 혈관조영술)을 권한다 (GPP). Non-invasive vascular imaging (CT angiography or MR angiography) is recommended to confirm acute large artery occlusion for patients with major ischemic stroke (GPP). |
| 3. 비조영혈관조영술이 불가능한 환자에서는, 허혈뇌졸중 또는 비조영장강 CT의 혈관신호 등이 ERT 결정에 도움이 될 수 있다 (GPP). For patients who are not able to perform non-invasive vascular imaging, stroke severity or clot sign on noncontrast CT can guide decision for ERT (GPP). |
| 4. 결핵성의 경우 허혈뇌졸중의 정확도를 평가하는 신경영상검사를 이용하여 ERT 대상환자를 선별할 수 있다 (GPP). For selecting patients, neuroimaging evaluation for extensive early ischemic injury can guide decision for ERT (GPP). |
| 5. ERT 효과가 있는 환자들은 선별하기 위해, 최신 진산기법으로 경관환, 혈침중심 (ischemic core) 크기, 또는 관류-확산분석법을 이용한 ERT의 기준으로서 진단이어야 한다 (GPP). Advanced multimodal imaging to assess collaterals, extent of ischemic core, or perfusion-diffusion mismatch can be considered to identify patients who are likely to benefit from ERT (GPP). However, the multimodal imaging should not significantly delay ERT. |
급성허혈뇌졸중에서 혈관내재개통치료 진료지침 개정

Table 3. Summary of updated recommendations—continued
조직 체계 (system organization)

1. ERT 시행이 가능한 병원은 ERT가 빨리 이루어지도록 주임상경로 및 문서화된 프로토콜을 조직하고 정착할 것을 권고한다 (GPP).
 For centers capable of providing ERT, the organization and implementation of critical pathway and formal protocol is recommended to accelerate the delivery of ERT (GPP).

2. ERT 시행에 필요한 충분한 전문인력이 부족한 병원은 대상환자를 ERT 가능한 병원으로 이송할 수 있는 계획안을 마련할 것을 권고한다. IV-TPA 대상환자의 경우, 이송 전에 IV-TPA 투여를 시작하는 것이 권장된다 (GPP).
 For centers which are not adequately staffed for ERT, it is encouraged to have a referral plan to a center capable of ERT for patients eligible for ERT. If indicated, initiating IV-TPA before referral is encouraged (GPP).

3. 각 병원은 초기 평가, ERT 시행유무 결정과 시술을 담당할 다학제 (multidisciplinary) ERT 팀의 기준을 자체적으로 규정할 것을 권장한다 (GPP).
 Each center is encouraged to define own criteria for the multidisciplinary ERT team that is responsible for initial evaluation, decision making, and ERT procedure (GPP).

4. ERT 질 평가 및 개선을 위해, 각 병원은 방문-신경영상 (door-to neuroimaging) 또는 방문-혈관조영술개시 (door-to-groin puncture) 같은 핵심시간지표를 추적관찰하고 평가할 것을 권장한다 (GPP).
 To assess and improve the quality of ERT, each center is encouraged to monitor key time metrics of door-to-neuroimaging and door-to-groin puncture (GPP).

5. ERT 후에 기능적 예후, 재개통율, 합병증율 등을 평가하는 것을 권장한다 (GPP).
 It is encouraged to assess functional outcome, recanalization rate, and complication rate after ERT (GPP).

REFERENCES

1. Tissue plasminogen activator for acute ischemic stroke. The National Institute of Neurological Disorders and Stroke rt-PA Stroke Study Group. N Engl J Med 1995;333:1581-1587.
2. Hacke W, Kaste M, Bluhmki E, Brozman M, Davalos A, Guidetti D, et al. Thrombolysis with alteplase 3 to 4.5 hours after acute ischemic stroke. N Engl J Med 2008;359:1317-1329.
3. Emberson J, Lees KR, Lyden P, Blackwell L, Albers G, Bluhmki E, et al. Effect of treatment delay, age, and stroke severity on the effects of intravenous thrombolysis with alteplase for acute ischaemic stroke: a meta-analysis of individual patient data from randomised trials. Lancet 2014;384:1929-1935.
4. Furlan A, Higashida R, Wechsler L, Gent M, Rowley H, Kase C, et al. Intra-arterial prourokinase for acute ischemic stroke. The PROACT II study: a randomized controlled trial. Prolyse in Acute Cerebral Thromboembolism. JAMA 1999;282:1317-1329.
5. Lee M, Hong KS, Saver JL. Efficacy of intra-arterial fibrinolysis for acute ischemic stroke: meta-analysis of randomized controlled trials. Stroke 2010;41:932-937.

는 분율은 80% 이상, 120분 이내 혈관조영술 시작하는 분율은 75% 이상, 그리고 혈관조영술 시작에서 첫 혈관재개통 시도까지 45분 이내 시행하는 분율은 50% 이상 유지할 것을 권고하고 있다. 따라서 각 병원들은 혈관시간지표를 평가하고 개선하기 위한 노력 을 하는 것이 권장된다.

임상시험에서 증명된 ERT 효과는 선정 및 제외기준에 합당한 환자를 선별하여 경험 많은 병원에서 치료한 결과이다. 따라서 임상적 진료환경에서도 임상시험에서 보고한 ERT 효과가 그대로 나타날지는 확실하지 않다. 따라서 실제 임상진료에서도 ERT의 안전성과 효과가 있는지 확인하기 위해서는 각 병원별로, 더 바람직하게는 다기관 등록연구를 통하여 ERT 치료를 받은 환자들의 예후와 합병증을 평가하는 것이 필요하다.

5. ERT 대상환자 예측

우리나라에서는 매년 75,000명의 허혈뇌졸중 환자가 새로 발생할 것으로 예측된다. 국내 다기관 대규모 연구에 의하면 2008-2013년 사이에 전체 허혈뇌졸중 환자의 4.6%가 ERT 치료를 받았다. 미국의 경우 2012년에 허혈뇌졸중 환자의 2%가 ERT 치료를 받았으며 보수적으로 예측하여 우리나라에서도 2-3% 환자가 ERT 치료를 받는 것으로 가장 가정할 수 있다. 미국의 경우 45분 이내에 ERT 치료를 받는 환자들의 예후가 각기 다른 결과를 보였고, 이는 ERT 예후에 중요한 요소로, ERT는 중증혈관내재통 환자에게 큰 도움을 줄 수 있는 강력한 효과를 가진 치료이며, 효과적으로 ERT를 시행하기 위해서는 대상 환자 선별과 치료과정이 체계적으로 이루어져야 한다. 따라서 이러한 이론적 및 임상적인 근거가 있어야 할 수 있는 기준을 만드는 것이 필요하다.
6. Broderick JP, Palecek YY, Demchuk AM, Yeatts SD, Khatri P, Hill MD, et al. Endovascular therapy after intravenous t-PA versus t-PA alone for stroke. N Engl J Med 2013;368:893-903.

7. Ciccone A, Valvassori I, Nichelatti M, Sgoifo A, Pozzio M, Sterzi R, et al. Endovascular treatment for acute ischemic stroke. N Engl J Med 2013;368:904-913.

8. Kidwell CS, Jahan R, Gornbein J, Alger JR, Nenov V, Ajani Z, et al. A trial of imaging selection and endovascular treatment for ischemic stroke. N Engl J Med 2013;368:914-923.

9. Berkhemer OA, Fransen PS, Beumer D, van den Berg LA, Lingsma HF, Yoo AJ, et al. A randomized trial of intraarterial treatment for acute ischemic stroke. N Engl J Med 2015;372:11-20.

10. Goyal M, Demchuk AM, Menon BK, Eesa M, Rempel JL, Thornton J, et al. Randomized assessment of rapid endovascular treatment of ischemic stroke. N Engl J Med 2015;372:1019-1030.

11. Campbell BC, Mitchell PJ, Kleinig TJ, Dewey HM, Churilov L, Yassi N, et al. Endovascular therapy for ischemic stroke with perfusion-imaging selection. N Engl J Med 2015;372:1009-1018.

12. Saver JL, Goyal M, Bonafe A, Diener HC, Levy EI, Pereira VM, et al. Stent-Retriever Thrombectomy after Intravenous t-PA vs. t-PA Alone in Stroke. N Engl J Med 2015;372:2285-2295.

13. Jovin TG, Chamorro A, Cobo E, de Miquel MA, Molina CA, Rovira A, et al. Thrombectomy within 8 hours after symptom onset in ischemic stroke. N Engl J Med 2015;372:2296-2306.

14. Cho KH, Ko SB, Kim DH, Park HK, Cho AH, Hong KS, et al. Focused Update of Korean clinical practice guidelines for the thrombolytic in acute stroke management. Korean J Stroke 2012;14:95-105.

15. Hong KS, Ko SB, Yu KH, Jung C, Park SQ, Kim BM, et al. Update of the Korean clinical practice guidelines for endovascular recanalization therapy in patients with acute ischemic stroke. J Stroke 2016;18:102-113.

16. Higgins JPT, Green S. Cochrane Handbook for Systematic Reviews of Interventions. West Sussex, UK: Cochrane Collaboration and John Wiley & Sons Ltd, 2008.

17. Hong KS, Ko SB, Lee JS, Yu KH, Rha JH. Endovascular recanalization therapy in acute ischemic stroke: updated meta-analysis of randomized controlled trials. J Stroke 2015;17:268-281.

18. Jauch EC, Saver JL, Adams HP Jr, Bruno A, Conners JJ, Demaerschalk BM, et al. Guidelines for the early management of patients with acute ischemic stroke: a guideline for healthcare professionals from the American Heart Association/American Stroke Association. Stroke 2013;44:870-947.

19. Sacks D, Black CM, Cognard C, Connors JJ, 3rd, Frei D, Gupta R, et al. MUltisociety consensus quality improvement guidelines for intraarterial catheter-directed treatment of acute ischemic stroke, from the American Society of Neuroradiology, Canadian Interventional Radiology Association, Cardiovascular and Interventional Radiological Society of Europe, Society for Cardiovascular Angiography and Interventions, Society of Interventional Radiology, Society of NeuroInterventional Surgery, European Society of Minimally Invasive Neurological Therapy, and Society of Vascular and Interventional Neurology. AJNR Am J Neuroradiol 2013;34:E0.

20. Consensus statement on mechanical thrombectomy in acute ischemic stroke-ESO-Karolinska Stroke Update 2014 in collaboration with ESMINIT and ESNR ESO-Karolinska Stroke Update Conference 2014. http://2014.strokeupdate.org/consensus-statement-mechanical-thrombectomyacute-ischemic-stroke. Accessed June 19, 2015.

21. Powers WJ, Derdeyn CP, Biller J, Coffey CS, Hob BL, Jauch EC, et al. 2015 American Heart Association/American Stroke Association Focused Update of the 2013 Guidelines for the Early Management of Patients With Acute Ischemic Stroke Regarding Endovascular Treatment: A Guideline for Healthcare Professionals From the American Heart Association/American Stroke Association. Stroke 2015;46:3020-3035.

22. United States Department of Health and Human Services. Agency for Health Care Policy and Research. Acute pain management: operative or medical procedures and trauma. Rockville, MD: AHCPR, 1993:107. (Clinical practice guideline No 1, AHCPR publication No 92-0023.).

23. Brook RH, Chassin MR, Fink A, Solomon DH, Kosecoff J, Park RE. A method for the detailed assessment of the appropriateness of medical technologies. Int J Technol Assess Health Care 1986;2:53-63.

24. del Zoppo GJ, Hagihashi RT, Furlan AJ, Pessin MS, Rowley HA, Gent M. PROACT: a phase II randomized trial of recombinant pro-urokinase by direct arterial delivery in acute middle cerebral artery stroke. PROACT Investigators. Prolyse in acute cerebral thrombembolism. Stroke 1998;29:4-11.

25. Keris V, Rudnicka S, Vorona V, Enina G, Tilgale B, Fricbergs J. Combined intraarterial/intravenous thrombolysis for acute ischemic stroke. AJNR Am J Neuroradiol 2001;22:352-358.

26. Macleod MR, Davis SM, Mitchell PJ, Gerraty RP, Fitt G, Hankey GJ, et al. Results of a multicentre, randomised controlled trial of intra-arterial urokinase in the treatment of acute posterior circulation ischaemic stroke. Cerebrovasc Dis 2005;20:12-17.

27. Ogawa A, Mori E, Minematsu K, Taki W, Takahashi A, Nemoto S, et al. Randomized trial of intraarterial infusion of urokinase within 6 hours of middle cerebral artery stroke: the middle cerebral artery embolism local fibrinolytic intervention trial (MELT) Japan. Stroke 2007;38:2633-2639.

28. Smith WS, Sung G, Starkman S, Saver JL, Kidwell CS, Gobin YP, et al. Safety and efficacy of mechanical embolectomy in acute ischemic stroke: results of the MERCI trial. Stroke 2005;36:1432-1438.

29. Smith WS, Sung G, Saver J, Budzik R, Duckwiler G, Liebeskind DS, et al. Mechanical thrombectomy for acute ischemic stroke: final results of the Multi MERCI trial. Stroke 2008;39:1205-1212.

30. Castano C, Serena J, Davalos A. Use of the New Solitaire (TM) AB Device for Mechanical Thrombectomy when Merci Clot Retriever Has Failed to Remove the Clot. A Case Report. Interv Neuroradiol 2009;15:209-214.

31. Saver JL, Jahan R, Levy EI, Jovin TG, Baxter B, Nogueira RG, et al. Solitaire flow restoration device versus the Merci Retriever in patients with acute ischaemic stroke (SWIFT): a randomised, parallel-group, non-inferiority trial. Lancet 2012;380:1241-1249.

32. Nogueira RG, Lutsep HL, Gupta R, Jovin TG, Albers GW, Walker GA, et al. Trevo versus Merci retrievers for thrombectomy revascularisation of large vessel occlusions in acute ischemic stroke (TREVO 2): a randomised trial. Lancet 2012;380:1231-1240.

33. The penumbra pivotal stroke trial: safety and effectiveness of a new generation of mechanical devices for clot removal in intracranial large vessel occlusive disease. Stroke 2009;40:2761-2768.

34. Tarr R, Hsu D, Kulcsar Z, Bonvin C, Rufenacht D, Alkke K, et al. The POST trial: initial post-market experience of the Penumbra system: revascularization of large vessel occlusion in acute ischemic stroke in the United States and Europe. J Neurointerv Surg 2010;2:341-344.
sion in the Basilar Artery International Cooperation Study (BASICS): a prospective registry study. *Lancet Neurol* 2009;8:724-730.

36. Combined intravenous and intra-arterial recanalization for acute ischemic stroke: the Interventional Management of Stroke Study. *Stroke* 2004;35:904-911.

37. The Interventional Management of Stroke (IMS) II Study. *Stroke* 2007;38:2127-2135.

38. Ciccone A, Valvassori L, Ponzi M, Ballabio E, Gasparotti R, Sessa M, et al. Intra-arterial or intravenous thrombolysis for acute ischemic stroke? The SYNTHESIS pilot trial. *J Neurointerv Surg* 2010;2:74-79.

39. Ducrocq X, Bracard S, Taillardier L, Anxionnat R, Lacour JC, Guillemín F, et al. Comparison of intravenous and intra-arterial ur- okinase thrombolysis for acute ischaemic stroke. *J Neuroradiol* 2005;32:26-32.

40. Heldner MR, Zubler C, Mattle HP, Schrøth G, Weck A, Mono ML, et al. National Institutes of Health Stroke Scale Score and Vessel Occlusion in 2152 Patients with acute ischemic stroke. *Stroke* 2013;44:1153-1157.

41. Demchuk AM, Goyal M, Yeatts SD, Carrozzella J, Foster LD, Qazi E, et al. Recanalization and clinical outcome of occlusion sites at baseline CT angiography in the interventional management of stroke III trial. *Radiology* 2014;273:202-210.

42. Brinjikji W, Murad MH, Rabinstein AA, Cloft HJ, Lanzino G, Kallmes DF. Conscious sedation versus general anesthesia during endovascular acute ischemic stroke treatment: a systematic review and meta-analysis. *AJNR Am J Neuroradiol* 2015;36:525-529.

43. Abou-Chebl A, Lin R, Hussain MS, Jovin TG, Levy EI, Liebeskind DS, et al. Conscious sedation versus general anesthesia during endovascular therapy for acute anterior circulation stroke: preliminary results from a retrospective, multicenter study. *Stroke* 2010;41:1175-1179.

44. Juma MA, Zhang F, Ruíz-Ares G, Gelzinis T, Malik AM, Aleu A, et al. Comparison of safety and clinical and radiographic outcomes in endovascular acute stroke therapy for proximal middle cerebral artery occlusion with intubation and general anesthesia versus the non-intubated state. *Stroke* 2010;41:1180-1184.

45. van den Berg LA, Koelman DL, Berkhemer OA, Roosendaal AD, Fransen PS, Beumer D, et al. Type of anesthesia and differences in clinical outcome after intra-arterial treatment for ischemic stroke. *Stroke* 2015;46:1257-1262.

46. Berkhemer OA, van den Berg LA, Fransen PSS, Beumer D, Lingsma HF, van Zwam WH, et al. Impact of general anesthesia on treatment effect in the MR CLEAN trial: a post hoc analysis. International stroke conference 2015. Nashville, USA.

47. Kumar G, Shahripour RB, Alexandrov AV. Recanalization of acute basilar artery occlusion improves outcomes: a meta-analysis. *J Neurointervent Surg* 2014.

48. Khatri P, Yeatts SD, Mazighi M, Broderick JP, Liebeskind DS, Demchuk AM, et al. Time to angiographic reperfusion and clinical outcome after acute ischaemic stroke: an analysis of data from the Interventional Management of Stroke (IMS III) phase 3 trial. *Lancet Neurol* 2014;13:567-574.

49. Sheth SA, Jahan R, Gralla J, Pereira VM, Nogueira RG, Levy EI, et al. Time to endovascular reperfusion and degree of disability in acute stroke. *Ann Neurol* 2015;78:584-593.

50. Hong KS, Bang OY, Kang DW, Yu KH, Bae HJ, Lee JS, et al. Stroke Statistics in Korea: Part I. Epidemiology and risk factors: A report from the Korean Stroke Society and Clinical Research Center for Stroke. *J Stroke* 2013;15:2-20.

51. Kim BI, Park JM, Kang K, Lee SJ, Ko Y, Kim JG, et al. Case characteristics, hyperacute treatment, and outcome information from the clinical research center for stroke-fifth division registry in South Korea. *J Stroke* 2015;17:38-53.

52. Menon BK, Saver JL, Goyal M, Nogueira R, Prabhakaran S, Liang L, et al. Trends in endovascular therapy and clinical outcomes within the nationwide get with the guidelines-stroke registry. *Stroke* 2015;46:989-995.