A generating polynomial for the pretzel knot

Franck Ramaharo
Département de Mathématiques et Informatique
Université d’Antananarivo
101 Antananarivo, Madagascar
franck.ramaharo@gmail.com

June 11, 2018

Abstract

We collect statistics which consist of the coefficients in the expansion of the generating polynomials that count the Kauffman states associated with certain classes of pretzel knots having \(n \) tangles, of \(r \) half-twists respectively.

Keywords: generating polynomial, shadow diagram, Kauffman state.

1 Introduction

The generating polynomial for the shadow diagram of the knot \(K \) provides a refinement of counting the corresponding Kauffman states [1]. By state is meant the diagram obtained by splitting each vertex representing the initial diagram crossings, i.e., each \(\bigotimes \) to \(\bigotimes \), and repasting the edges as either \(\bigotimes \) or \(\bigotimes \). The generating polynomial for the knot \(K \) is then defined as the summation which is taken over all its states, namely

\[
K(x) = \sum_S x^{|S|},
\]

with \(|S| \) denoting the number of Jordan curves in the state diagram \(S \). For instance, the generating polynomial for the Hopf link is \(L(x) = 2x^2 + 2x \) (see Figure 1).

If \(K \) and \(K' \) are two arbitrary diagrams, and \(\bigodot \) denotes the unknot diagram, then we have the following properties and notations [2]:

(i) \(\bigodot(x) = x \);
(ii) \((\bigodot \uplus \bigodot \uplus \cdots \uplus \bigodot) (x) := (\bigodot \bigodot \cdots \bigodot) (x) = x^n \);
(iii) \((K \uplus \bigodot) (x) = xK(x) \);
Figure 1: The states of the Hopf link.

(iv) \((K \sqcup K')(x) = K(x).K'(x)\);

(v) \((K \# \bigcirc)(x) = K(x)\);

(vi) \(K_n(x) := (K \# K \# \cdots \# K) (x) = x \left(x^{-1} K(x)\right)^n\), with \(K_0 = \bigcirc\);

(vii) \((K \# K')(x) = x^{-1} K(x).K'(x)\),

where \# and \(\sqcup\) are respectively the connected sum and the disjoint union. Moreover, if we let \(\overline{K}\) denote the closure of \(K\), i.e., the connected sum with itself, then there exist two polynomials \(\alpha, \beta \in \mathbb{N}[x]\) such that

\[
\overline{K}(x) = x^2 \alpha(x) + x \beta(x), \quad \text{with} \quad K(x) = x^2 \beta(x) + x \alpha(x). \quad (2)
\]

With the notation and property in (vi) we obtain \(\overline{K}_0(x) = (\bigcirc \bigcirc)(x) = x^2\) and

\[
\overline{K}_n(x) = \alpha(x) \overline{K}_{n-1}(x) + \beta(x) K_{n-1}(x) = (\alpha(x) + x \beta(x))^n + (x^2 - 1) \alpha(x)^n. \quad (3)
\]

We can interpret (2) as follows: given the closure \(\begin{array}{c} K \end{array}\) of a knot diagram \(\begin{array}{c} K \end{array}\), its state diagrams can be divided into two subsets that are respectively counted by \(x^2 \alpha(x)\) and \(x \beta(x)\) as represented in Figure 2.

Figure 2: The two subsets of states associated with the closure of a knot.

(a) States counted by \(x^2 \alpha(x)\).

(b) States counted by \(x \beta(x)\).

In this note, we shall take advantage of these properties and establish the generating polynomial for a particular class of the pretzel knots.
2 Pretzel knot

A pretzel knot $P_{n,r} := P(r, r, \ldots, r)$ [4] is a knot composed of n pairs of strands twisted r times and attached along the tops and bottoms as in Figure 3(a).

Figure 3: The shadow diagram for the pretzel knot and the corresponding connected sums for constructing it.

If F_r denotes the r-foil as pictured in Figure 3(b), then we have $P_{n,r} := (F_r)_n$. For the convenience, we set $F_0 = \bigcirc$ and $(F_r)_0 = \bigcirc$ so that $(F_0)_0 = \bigcirc$ and $(F_0)_n = \bigcirc\bigcirc\bigcirc\cdots\bigcirc$ for $n \geq 1$. Figure 4 displays some pretzel knots for small values of n and r.

3 Generating polynomial

We begin with the generating polynomial for the closure of the r-foil (see Figure 3(b)) which yields the r-twist loop (see Figure 4(e)).

Lemma 1 ([2]). The generating polynomials for the r-twist loop and the r-foil knot are respectively given by

$$T_r(x) = x(x + 1)^r$$

and

$$F_r(x) = \overline{T_r(x)} = (x + 1)^r + x^2 - 1.$$ \hspace{1cm} (6)

We shall deduce the two polynomials α_r, β_r associated with closure of the r-foil with the help of formula (5).

Lemma 2. The following expression holds for $\overline{T_r(x)}$

$$\overline{T_r(x)} = x^2\alpha_r(x) + x\beta_r(x),$$

where $\alpha_r(x) := \frac{(x + 1)^r - 1}{x}$ and $\beta_r(x) = 1$. \hspace{1cm} (7)
Figure 4: For some values of \(n \) and \(r \) we have: (a) a disjoint union of \(n \) unknots \((r = 0, n \geq 1)\); (b) an \(n \)-foil \((r = 1)\); (b) an \(n \)-chain link \((r = 2)\); (c) an \(n \)-sinnet of square knotting \((r = 3)\); (e) an \(r \)-twist loop \((n = 1)\) and (f) a \(2r \)-foil \((n = 2)\).

Proof. First, note that \(\overline{F_r} = (\overline{F_r})_1 = P_{1,r} = T_r \). Among the states of the \(r \)-twist loop, there is exactly one which is made up of one component as shown in Figure 5. Hence \(\beta_r(x) = 1 \). Then by (5), we get

\[
T_r(x) = x^2 \left(\frac{(x+1)^r - 1}{x} \right) + x.
\]

In fact if we let \(\alpha_r(x) = \frac{(x+1)^r - 1}{x} \), then the expansion of \(x^2 \alpha_r(x) \), namely

\[
x^2 \alpha_r(x) = x \left(x(x+1)^0 + x(x+1)^1 + x(x+1)^2 + \cdots + x(x+1)^{r-1} \right)
= (\bigcirc \cup \bigcirc) (x) + (\bigcirc \cup \bigcirc \bigcirc) (x) + (\bigcirc \cup \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc) (x) + \cdots + (\bigcirc \cup \bigcirc \bigcirc) (x),
\]

counts as expected the states which might result to that in Figure 5(a).

Proposition 3. The generating polynomial for the Pretzel knot \(P_{n,r} \) is given by

\[
P_{n,r}(x) = (\alpha_r(x) + x)^n + (x^2 - 1) \alpha_r(x)^n.
\]

Proof. We write

\[
P_{n,r}(x) = \overline{(F_r)}_n(x) = \alpha_r(x)P_{n-1,r}(x) + (F_r)_{n-1}(x).
\]

and we conclude by (4).
Remark 4. Since \((F_r)_n(x) = x(\alpha_r(x) + x)^n\), and for some values of \(r\), we obtain the generating polynomials for the following knots [2]:

- \((F_1)_n = x(x + 1)^n\), \(n\)-twist loop [3, A097805, A007318];
- \((F_2)_n = x(2x + 2)^n\), \(n\)-link [3, A038208];
- \((F_3)_n = x(x^2 + 4x + 3)\), \(n\)-overhand knot [3, A299989].

4 Results

In this section, we retrieve some of our previous results (case \(r = 1, 2, 3\)) [2] which confirm that the generating polynomial agrees with the construction in section 2.

1. Case \(r = 0\).

(a) Generating polynomial:

\[
P_{n,0}(x) = \begin{cases}
x^2 & \text{if } n = 0;
x^n & \text{if } n \geq 1.
\end{cases}
\]

(b) Coefficients table: [3, A010054, A023531, A073424 \((n \geq 1, \text{all read as triangle})\)]

\(n \setminus k\)	0	1	2	3	4	5	6	7
0	0	0	1					
1		1						
2		0	1					
3		0	0	1				
4		0	0	0	1			
5		0	0	0	0	1		
6		0	0	0	0	0	1	
7		0	0	0	0	0	0	1

Table 1: Values of \(p_0(n,k)\) for \(0 \leq n \leq 8\) and \(0 \leq k \leq 8\).
2. Case $r = 1$.

(a) Generating polynomial:

$$P_{n,1}(x) = (x + 1)^n + x^2 - 1.$$

(b) Coefficients table: $[2, 3, \text{A007318} \ (3 \leq k \leq n)]$

$n \ \backslash \ k$	0	1	2	3	4	5	6	7	8	9	10
0	0	0	1								
1	0	1	1								
2	0	2	2								
3	0	3	4	1							
4	0	4	7	4	1						
5	0	5	11	10	5	1					
6	0	6	16	20	15	6	1				
7	0	7	22	35	21	7	1				
8	0	8	29	56	28	8	1				
9	0	9	37	84	70	36	9	1			
10	0	10	46	120	210	252	210	120	45	10	1

Table 2: Values of $p_1(n, k)$ for $0 \leq n \leq 10$ and $0 \leq k \leq 10$.

3. Case $r = 2$.

(a) Generating polynomial:

$$P_{n,2}(x) = (2x + 2)^n + (x^2 - 1) (x + 2)^n.$$

(b) Coefficients table: $[3, \text{A300184}]$

$n \ \backslash \ k$	0	1	2	3	4	5	6	7	8	9	10	11	
0	0	0	1										
1	0	1	1	2	1								
2	0	4	7	4	1								
3	0	12	26	19	6	1							
4	0	32	88	88	39	8	1						
5	0	80	272	360	1230	71	10	1					
6	0	192	784	1312	1140	532	123	12	1				
7	0	448	2144	4368	4872	3164	1162	211	14	1			
8	0	1024	5632	13568	18592	15680	8176	2480	367	16	1		
9	0	2304	14336	39936	65088	67872	46368	20304	5262	655	18	1	

Table 3: Values of $p_2(n, k)$ for $0 \leq n \leq 9$ and $0 \leq k \leq 11$.

6
4. Case $r = 3$.

(a) Generating polynomial:

$$P_{n,3}(x) = (x^2 + 4x + 3)^n + (x^2 - 1) (x^2 + 3x + 3)^n.$$

(b) Coefficients table: [2, Table 14]

$n \setminus k$	0	1	2	3	4	5	6	7	8	9	10	11	12
0	0	0	1										
1	0	1	3	3	1								
2	0	6	16	20	15	6	1						
3	0	27	90	136	129	84	36	9	1				
4	0	108	459	876	1021	832	501	220	66	12	1		
5	0	405	2133	5085	7350	7321	5420	3103	1375	455	105	15	1

Table 4: Values of $p_3(n,k)$ for $0 \leq n \leq 5$ and $0 \leq k \leq 12$.

5. Case $r = n$.

(a) Generating polynomial:

$$P_{n,n}(x) = \left(\frac{(x+1)^n - 1}{x} + x\right)^n + (x^2 - 1) \left(\frac{(x+1)^n - 1}{x}\right)^n.$$

(b) Coefficients table:

$n \setminus k$	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14
0	0	0	1												
1	0	1	1												
2	0	4	7	4	1										
3	0	27	90	136	129	84	36	9	1						
4	0	256	1504	4336	8273	11744	13036	11488	8014	4368	1820	560	120	16	1

Table 5: Values of $p_n(n,k)$ for $0 \leq n \leq 4$ and $0 \leq k \leq 14$.

6. Case $k = 1$: $p_r(n,1) = nr^{n-1}$, $r \geq 1$ [3, A104002 ($1 \leq r \leq n$)], see Table 6.

7. Case $k = 2$: $p_r(n,2) = \binom{n}{2} r^{n-2} \left(2 \binom{r}{2} + 1\right) + r^n$, $r \geq 1$, see Table 7.

We observe the following formulas:

- First column in Table 7 is 1, 0, 1 followed by 0, 0, 0, ... [3, A154272];
| $n \setminus r$ | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
|-----------------|---|---|---|---|---|---|---|---|---|---|
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
| 2 | 0 | 2 | 4 | 6 | 8 | 10 | 12 | 14 | 16 | 18 |
| 3 | 0 | 3 | 12 | 27 | 48 | 75 | 108 | 147 | 192 | 243 |
| 4 | 0 | 4 | 32 | 108 | 256 | 500 | 864 | 1372 | 2048 | 2916 |
| 5 | 0 | 5 | 80 | 405 | 1280 | 3125 | 6480 | 12005 | 20480 | 32805 |
| 6 | 0 | 6 | 192 | 1458 | 6144 | 18750 | 46656 | 100842 | 196608 | 354294 |
| 7 | 0 | 7 | 448 | 5103 | 28672 | 109375 | 326592 | 823543 | 1835008 | 3720087 |
| 8 | 0 | 8 | 1024 | 17496 | 131072 | 625000 | 2239488 | 6588344 | 16777216 | 38263752 |

Table 6: Values of $p_r(n, 1)$ for $0 \leq n \leq 8$ and $0 \leq r \leq 9$.

$n \setminus r$	0	1	2	3	4	5	6	7	8
0	1	1	1	1	1	1	1	1	1
1	0	1	2	3	4	5	6	7	8
2	1	2	7	16	29	46	67	92	121
3	0	4	26	90	220	440	774	1246	1880
4	0	7	88	459	1504	3775	7992	15043	25984
5	0	11	272	2133	9344	229375	47436	164297	324608
6	0	16	784	9234	54016	212500	649296	1666294	3764224
7	0	22	2144	37908	295936	1456250	5342112	16000264	41320448
8	0	29	5632	149445	1556480	9578125	42177024	147414197	435159040
9	0	37	14336	570807	7929856	61015625	322486272	1315198171	4437573632

Table 7: Values of $p_r(n, 2)$ for $0 \leq n \leq 9$ and $0 \leq r \leq 8$.

- $p_1(n, 2) = \binom{n}{2} + 1$ [3, A152947];
- $p_0(2, 0) = 0$, $p_1(2, 1) = 2$, $p_2(2, 2) = 7$ and $p_n(2, n) = \binom{2n}{n}$ [3, A000984];
- $p_2(n, 2) = (3n^2 - 3n + 8)2^{n-3}$ [3, A300451];
- $p_2(n, n) = 2(n(n - 1) + 2^n - 1$ [3, A295077];
- $p_3(n, 2n - 1) = \binom{3n}{3}$ [3, A006566];
- $p_3(n, 2n) = \binom{3n}{2}$ [3, A062741];
- $p_0(0, 1) = 0$ and $p_n(n, 1) = n^n$ [3, A000312];
• \(p_n(2, 2) = 2n^2 - n + 1 \) [3, A130883];

• \(p_n(n, n^2 - n + 1) = n^2 \) [3, A000290];

• \(p_0(0, 0) = p_1(1, 0) = 0, p_2(2, 2) = 7 \) and \(p_n(n, n^2 - n) = \binom{n^2}{2} \) [3, A083374];

• \(p_n(n, n^2 - n - 1) = \binom{n^2}{3} \) [3, A178208].

References

[1] Louis H. Kauffman, State models and the Jones polynomial, *Topology* 26 (1987), 95–107.

[2] Franck Ramaharo, Statistics on some classes of knot shadows, arXiv preprint, https://arxiv.org/abs/1802.07701, 2018.

[3] Neil J. A. Sloane, *The On-Line Encyclopedia of Integer Sequences*, published electronically at http://oeis.org, 2018.

[4] Alexander Stoimenow, Everywhere equivalent 2-component links, *Symmetry* 7 (2015), 365–375.

2010 Mathematics Subject Classifications: 05A19; 57M25.