Aged garlic extract therapy for sickle cell anemia patients
Junichiro Takasu 1, Rolando Uykimpang 1, Maria Alenor Sunga 1, Harunobu Amagase 2 and Yutaka Niihara *1

Address: 1Department of Medicine, Harbor-UCLA Medical Center, UCLA School of Medicine, Torrance, CA and 2Wakunaga of America Co., Ltd., Mission Viejo, CA
E-mail: Junichiro Takasu - jtakasu@rei.edu; Rolando Uykimpang - yniihara@rei.edu; Maria Sunga - yniihara@rei.edu; Harunobu Amagase - yniihara@rei.edu; Yutaka Niihara* - yniihara@rei.edu
*Corresponding author

Abstract

Background: Sickle cell anemia is one of the most prevalent hereditary disorders with prominent morbidity and mortality. With this disorder oxidative, phenomena play a significant role in its pathophysiology. One of the garlic (Allium sativum L.) formulations, aged garlic extract (AGE), has been reported to exert an anti-oxidant effect in vitro, we have evaluated the anti-oxidant effect of AGE on sickle red blood cells (RBC).

Methods: Five patients (two men and three women, mean age 40 ± 15 years, range 24–58 years) with sickle cell anemia participated in the study. AGE was administered at a dose of 5 ml a day. Whole blood samples were obtained at baseline and at 4 weeks for primarily Heinz body analysis.

Results: The data were consistent with our hypothesis. In all patients, the number of Heinz bodies decreased over the 4 week period (58.9 ± 20.0% at baseline to 29.8 ± 15.3% at follow-up, p = 0.03).

Conclusions: These data suggest that there is a significant anti-oxidant activity of AGE on sickle RBC. AGE may be further evaluated as a potential therapeutic agent to ameliorate complications of sickle cell anemia.

Background

Sickle cell disease is one of the most prevalent hereditary disorders with prominent morbidity and mortality. While the disease may affect various ethnic groups such as people of Hispanic and Middle Eastern descent, it affects those of African descent the most. Clinical manifestations of sickle cell disease are largely due to a hemolytic process leading to severe anemia and vasoocclusion resulting in pain and organ damage. In the pathophysiology of sickle cell disease, increased oxidant susceptibility of sickle red blood cells (RBC) has been demonstrated to play a major role [7,12,23,26,36,37,39].

Recent investigations have brought forth ample data that support significant anti-oxidant activity of garlic (Allium sativum L.) [2,11,15,18,40]. Among various preparations of garlic supplements, aged garlic extract (AGE) in particular has been associated with anti-oxidant activities in sound scientific experiments [2,14–20,38]. Therefore, based on these data, we have examined the potential role of AGE as an anti-oxidant in sickle cell disease.
Methods

Aged garlic extract

Aged garlic extract (AGE, Kyolic), kindly provided by Wakunaga of America (Mission Viejo, CA), is formulated by soaking sliced raw garlic in 15–20% aqueous ethanol for up to 20 months at room temperature. The extract is then filtered and concentrated under reduced pressure at low temperature. The content of water-soluble compounds is relatively high, whereas that of oil-soluble compounds is low. The AGE used in this trial contained 305 g/l of extracted solids; S-allyl cysteine, the most abundant water-soluble organosulfur compound in AGE, was present at a concentration of 1.47 g/l.

Study population

The participants were those individuals with the established diagnosis of sickle cell anemia (hemoglobin SS) by hemoglobin electrophoresis and who were 18 years of age or older. The exclusion criteria were any significant medical conditions other than sickle cell disease, including diabetes mellitus, renal failure or heart failure, pregnancy, and history of treatment with any antisickling agents within 12 months of initiation of this study. This project was approved by Internal Review Board of Harbor-UCLA Research and Education Institute. All the participants are volunteers and signed appropriate consent form after careful explanation and review of the protocol.

Administration of aged garlic extract

After obtaining consent, each patient was seen at baseline for interview, physical examination, and baseline blood tests. Urine pregnancy test was also performed for each woman of childbearing age. Participants were instructed to self-administer liquid AGE at a dose of 5 ml twice daily.

At 4 weeks, the patients were reevaluated with a brief physical examination and interview. Also, whole blood samples were drawn for evaluations including the Heinz body test.

Biochemical and physiological parameters

RBC count, hemoglobin

Coulter counter was used for determination of RBC counts and hemoglobin levels.

Heinz body count

Heinz bodies were evaluated utilizing a standard method using crystal violet solution [4,13,35]. The number of RBC containing five or more Heinz bodies was counted in 100 RBC and expressed as a percentage.

Statistical analysis

All values are reported as mean ± SD. The paired t-test was used to evaluate the differences of variables between baseline and follow-up data. All tests of significance were 2 tailed, and significance was defined at p < 0.05.

Results

Five patients (two men and three women, mean age 40 ± 15 years, range 24–58 years) were entered into the study. Table 1 summarizes the hematological data, RBC glutamine content, and the results of the Heinz body analysis at baseline and after 4 weeks of administration of AGE. (Figure 1) There were no significant changes in RBC count, hemoglobin level, hematocrit or reticulocyte count. However, the average Heinz body count decreased from 58.9 to 29.8 percent (P < .03). In all patients, the average Heinz body count decreased significantly at 4 weeks compared to the baseline.

Discussion

Recent studies [1,7,8,12,23,26–28,36,37,39] have shown that oxidative phenomena plays a significant role in the pathophysiology of sickle cell disease. The oxidant stress may contribute to the sickling process with formation of “dense cells”; the development of vasoocclusion; and shortened RBC survival [7,12,23,26,36,37,39]. The oxidant damage in sickle RBC is most likely a consequence of the inherent instability of hemoglobin S[1,28], which results in a concomitant increase in free radical generation [12] in association with impaired antioxidant defense [7,8,26,27]. With sustained intracellular production of oxygen free radicals, the three-dimensional structure of hemoglobin is affected sufficiently to lower its solubility. These factors lead to formation of Heinz bodies that are aggregates of insoluble hemochromes [6].

The Heinz bodies, which adhere to the RBC membrane [6], may themselves cause significant damage to the membrane. In any case, assessment of Heinz bodies is a useful gauge in evaluating susceptibility of RBC to the oxidant stress [26,39]. In the study presented here, the data are
preliminary in nature. However, AGE therapy was associated with decrease in Heinz bodies in sickle RBC in each patient. The data were consistent with our hypothesis and confirm the previous reports that demonstrated anti-oxidant activities of AGE [2, 14–20, 38].

In regard to hematological parameters, AGE had no significant effect on RBC count, hemoglobin level and hematocrit. There are reports [5, 21, 24, 25, 29, 31] that have confirmed the previous reports that demonstrated anti-oxidant effect of AGE. With these data, further testing is warranted for confirmation of the efficacy of this relatively harmless agent in the management of sickle cell disease.

Acknowledgements
Contract grant sponsor: NJH/NHLBI;
Contract grant number: 5R29HL58640-01

References
1. Asakura T, Onishi T, Friedman S, Schwartz E: Abnormal precipitation of oxyhemoglobin S by mechanical shaking. Proc Natl Acad Sci U S A 1974, 71:1594-8
2. Balasenthi S, Arivazhagan S, Nagini S: Garlic enhances circulatory antioxidants during 7, 12-dimethylbenz[a]anthracene-induced hamster buccal pouch carcinogenesis. J Ethnopharmacol 2000, 72:429-33
3. Ballas SK, Smith ED: Red blood cell changes during the evolution of the sickle cell painful crisis. Blood 1992, 79:2154-63
4. Beutler E., Dern RJ, Alving AS: The hemolytic effect of primaquine: VI. An in vitro test for sensitivity of erythrocytes to primaquine. J Lab Clin Med 1955, 45:40
5. Bigin E, Abrams M, Eacon Y: Effect of garlic extract on red blood cells. J Food Protection 1984, 47(2):100-1
6. Borges A, Desforges JF: Studies of heinz body formation. Acta Haematol 1967, 37:1-10
7. Chiu D, Lubin B: Abnormal vitamin E and glutathione peroxidase levels in sickle cell anemia: evidence for increased susceptibility to lipid peroxidation in vivo. J Lab Clin Med 1979, 94:542-8
8. Das SK, Nair RC: Superoxide dismutase, glutathione peroxidase, catalase and lipid peroxidation of normal and sickled erythrocytes. Br J Haematol 1980, 44:87-92
9. Freeman F, Kodera Y: Garlic chemistry: Stability of S-(2-propenyl)-2-propene-1-sulfinothioate (allicin) in blood, solvents, and simulated physiological fluids. J Agric. Food Chem. 1995, 43:2332-38
10. Glader BE, Nathan DG: Cation permeability alterations during sickling: relationship to cation composition and cellular hydration of irreversibly sickled cells. Blood 1978, 51:983-9
11. Grudzinski IP, Frankiewicz-Jozko A, Bany J: Diallyl sulfide – a flavour component from garlic (Allium sativum) attenuates lipid peroxidation in mice infected with Trichinella spiralis. Phytotherapy 2001, 8:174-7
12. Hebbel RP, Eaton JW, Balasingam M, Steinberg MH: Spontaneous oxygen radical generation by sickle erythrocytes. J Clin Invest 1982, 70:1253-9

Table 1: Comparison between baseline and follow-up

	Baseline	Follow-up	p
RBC 10^6	3.64 ± 1.51	3.48 ± 1.24	0.25
HBG g/l	98.8 ± 34.6	95.4 ± 29.5	0.21
HCT %	29.7 ± 11.0	28.3 ± 9.6	0.20
RET %	6.7 ± 2.8	6.7 ± 2.6	0.59
Hexokinase µmol/min/10^10RBC	0.88 ± 0.83	1.57 ± 1.60	0.18
GSH µg/10^10RBC	409 ± 147	455 ± 42	0.54
NAD ratio %	48.7 ± 12.0	40.8 ± 11.9	0.25
Heinz Body %	58.9 ± 20.0	29.8 ± 15.3	0.03

RBC, Red Blood Cell; HGB, Hemoglobin; HCT, Hematocrit; RET, Reticulocyte; GSH, Reduced Glutathione; NAD, Nicotinamide Adenine Dinucleotide
(page number not for citation purposes)