Highly active and stable CH4 oxidation by substitution of Ce4+ by two Pd2+ ions in CeO2(111)

Citation for published version (APA):
Su, Y., Liu, J., Filot, I. A. W., Zhang, L., & Hensen, E. J. M. (2018). Highly active and stable CH4 oxidation by substitution of Ce4+ by two Pd2+ ions in CeO2(111). ACS Catalysis, 8(7), 6552-6559. https://doi.org/10.1021/acscatal.8b01477

Document license:
CC BY-NC-ND

DOI:
10.1021/acscatal.8b01477

Document status and date:
Published: 06/07/2018

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:
• A submitted manuscript is the version of the article upon submission and before peer-review. There can be important differences between the submitted version and the official published version of record. People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher’s website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page numbers.

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.
• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 11. May. 2021
Highly Active and Stable CH₄ Oxidation by Substitution of Ce⁴⁺ by Two Pd²⁺ Ions in CeO₂(111)

Ya-Qiong Su, Jin-Xun Liu, Ivo A. W. Filot, Long Zhang, and Emiel J. M. Hensen*

Laboratory of Inorganic Materials Chemistry, Schuit Institute of Catalysis, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands

ABSTRACT: Methane (CH₄) combustion is an increasingly important reaction for environmental protection, for which Pd/CeO₂ has emerged as the preferred catalyst. There is a lack of understanding of the nature of the active site in these catalysts. Here, we use density functional theory to understand the role of doping of Pd in the ceria surface for generating sites highly active toward the C–H bonds in CH₄. Specifically, we demonstrate that two Pd²⁺ ions can substitute one Ce⁴⁺ ion, resulting in a very stable structure containing a highly coordinated unsaturated Pd cation that can strongly adsorb CH₄ and dissociate the first C–H bond with a low energy barrier. An important aspect of the high activity of the stabilized isolated Pd cation is its ability to form a strong σ-complex with CH₄, which leads to effective activation of CH₄.

We show that also other transition metals like Pt, Rh, and Ni can give rise to similar structures. Structurally, we demonstrate that two Pd²⁺ ions in CeO₂(111) can substitute one Ce⁴⁺ ion, resulting in a very stable structure containing a highly coordinated unsaturated Pd cation that can strongly adsorb CH₄ and dissociate the first C–H bond with a low energy barrier. An important aspect of the high activity of the stabilized isolated Pd cation is its ability to form a strong σ-complex with CH₄, which leads to effective activation of CH₄.

In automotive three-way catalysis, Pd is already extensively used to catalyze hydrocarbon oxidation. High Pd loading in the current generation of preferred Pd/CeO₂ catalysts poses a cost-relevant challenge, requiring a deeper understanding of the nature of the active sites. In automotive three-way catalysis, Pd is already extensively used to catalyze hydrocarbon oxidation. High Pd loading in the current generation of preferred Pd/CeO₂ catalysts poses a cost-relevant challenge, requiring a deeper understanding of the nature of the active sites.

INTRODUCTION

Methane (CH₄) is a significant greenhouse gas with a global warming potential ca. 20 times higher than that of CO₂. Accordingly, it is desirable to develop technologies to remove residual CH₄ present from the exhaust of increasingly popular natural gas engines. The challenge is to develop highly active catalysts that can operate at the relatively low temperatures of the exhaust gas. The high Pd loading in the current generation of preferred Pd/ CeO₂ catalysts poses a cost-relevant challenge, requiring a deeper understanding of the nature of the active sites. In automotive three-way catalysis, Pd is already extensively used to catalyze hydrocarbon oxidation. High Pd loading in the current generation of preferred Pd/ CeO₂ catalysts poses a cost-relevant challenge, requiring a deeper understanding of the nature of the active sites. In automotive three-way catalysis, Pd is already extensively used to catalyze hydrocarbon oxidation. High Pd loading in the current generation of preferred Pd/ CeO₂ catalysts poses a cost-relevant challenge, requiring a deeper understanding of the nature of the active sites. In automotive three-way catalysis, Pd is already extensively used to catalyze hydrocarbon oxidation. High Pd loading in the current generation of preferred Pd/ CeO₂ catalysts poses a cost-relevant challenge, requiring a deeper understanding of the nature of the active sites.

Several studies mention the importance of bulk PdO for high CH₄ combustion activity. Computational studies support this by showing that the (101) surface termination of PdO contains under-coordinated Pd atoms able to form a strong σ-adsorption complex with CH₄. Conventionally, CH₄ dissociation on metal surfaces relies on high CH₄ translational energies to enhance the sticking probability. In the context of low-temperature CH₄ activation, a Langmuir–Hinshelwood mechanism for CH₄ combustion is preferred. A recent study of Weaver and co-workers also showed that CH₄ adsorbs strongly on under-coordinated Ir atoms in the IrO₂(110) surface, resulting in low-temperature C–H bond activation.

However, the activity of PdO alone is not sufficient to explain the Pd-CeO₂ synergy observed for CH₄ activation. Carbene et al. showed that PdO species at the Pd–ceria interface account for the high CH₄ combustion activity, while PdO reduction into metallic Pd at T > 850 °C is causing deactivation. Trovarelli and co-workers proposed that highly dispersed Pd, specifically Pd in a PdO₄ square-planar coordination environment, is the most likely active site for CH₄ oxidation. Lu and co-workers showed that removal of PdO nanoparticles from a PdO/Ceₙ-PdO₂ catalyst significantly improves CH₄ oxidation, emphasizing the important role of a solid solution of Pd in CeO₂. The relevance of such solid solutions in ceria-based catalysis is increasingly recognized. Recent literature also suggests that solid ceria solutions of Pt, Pd, Ni, and Rh may be crucial to explain CH₄ combustion at low temperature. Usually, doping of transition metals in ceria is modeled by replacing a surface cerium atom by a transition metal atom. For Pd-doped CeO₂(111), we recently considered a conventional octahedral configuration as well as a novel and more stable square-planar configuration for CH₄ oxidation.
predicted CH$_4$ dissociation rates on these models were lower than on PdO(101) due to weak CH$_4$ adsorption.6,27 Earlier, Janik and co-workers considered models in which more than one Pd atom are embedded in the ceria lattice and which can lead to facile CH$_4$ activation in combination with PdO clusters.26,31 We emphasize that these models including the thermodynamically stable (111)-3Pd2+ configuration cannot explain the experimentally observed high CH$_4$ oxidation activity of Pd-CeO$_2$ solid solutions. Janik and co-workers proposed that the Pd2+ \rightleftharpoons Pd4+ transitions contribute to the high activity of Pd-CeO$_2$ solid solution.26,31 However, structures containing Pd4+ (e.g., (111)-1Pd4+/2Pd2+) are thermodynamically unstable under reaction conditions. Thermodynamically stable models will only contain Pd2+,27 in agreement with experimental XPS and XRD data on Pd-CeO$_2$ solid solution.32–34

An important corollary of previous data for single-Pd-atom modified CeO$_2$ surfaces is that CH$_4$ bonding is extremely weak, i.e., only physical adsorption occurs.6,27 Accordingly, adsorbed CH$_4$ is not effectively activated by Pd2+ in these configurations. As a result, the computed energy barriers for CH$_4$ dissociation are higher than 0.9 eV and the dissociative adsorption of CH$_4$ is endothermic.27 Thus, from a computational point of view models considered hitherto cannot explain the high catalytic activity of transition metal doped CeO$_2$.24–27,35,36 In the present work, we show for the first time that one Ce ion is substituted by two Pd ions, resulting in a very thermodynamically stable configuration which is not only sinter-stable but also very reactive toward the C–H bonds in CH$_4$. One of the Pd ions is 3-fold coordinated by lattice O atoms, while the other is 4-fold coordinated by lattice O atoms. The coordinative unsaturation of this Pd atom results in strong CH$_4$ chemisorption and activation. We will demonstrate the broader applicability of this concept by computing stability and reactivity of other transition-metal-doped CeO$_2$ surfaces. These insights are in good agreement with available experimental data.

COMPUTATIONAL DETAILS

Density Functional Theory (DFT) Calculations. We carried out spin-polarized calculations within the DFT framework as implemented in the Vienna Ab initio Simulation Package (VASP).36 The ion–electron interactions were represented by the projector-augmented wave (PAW) method37 and the electron exchange-correlation by the generalized gradient approximation (GGA) with the Perdew–Burke–Ernzerhof (PBE) exchange-correlation functional.38 The Kohn–Sham valence states were expanded in a plane-wave basis set with a cutoff energy of 400 eV. The Ce(5s,5p,6s,6p,5d), O(2s,2p), Pd(4d5s), and C(2s,2p) electrons were treated as valence states. We have used the DFT+U approach, in which U is a Hubbard-like term describing the on-site Coulombic interactions.39 This approach improves the description of localized states in ceria, where standard LDA and GGA functionals fail. For Ce, a value of $U=4.5$ eV was adopted, which was calculated self-consistently by Fabris et al.40 using the linear response approach of Cococcioni and de Gironcoli41 and which is within the 3.0–6.0 eV range that provides localization of the electrons left upon oxygen removal from ceria.42 For the calculations of TM-doped CeO$_2$(111) (TM = transition metal = Pd, Pt, Ni, Rh, Cu and Zn), we used a periodic slab with a (4 × 4) supercell in which one of the surface Ce atoms was substituted by one TM atom. The CeO$_2$(111) slab model is three Ce–O–Ce layers thick and the vacuum gap was set to 15 Å. The atoms in the bottom layer were frozen to their bulk position and only the top two Ce–O–Ce layers were allowed to relax. The bulk lattice constant (5.49 Å) as previously calculated using the PBE+U ($U = 4.5$ eV) functional was used.43 For the Brillouin zone integration, a Monkhorst–Pack 1 × 1 × 1 mesh was used. To examine the influence of the size of the Monkhorst–Pack grid, we computed the CH$_4$ adsorption energy on a Pd$_1$/Pd-dop-II model at Monkhorst–Pack 1 × 1 × 1 and 2 × 2 × 2 meshes. Both the absolute and CH$_4$ adsorption energies are the same for both mesh sizes. Accordingly, we computed all energies in the Γ-point. The climbing image nudged-elastic band (CI-NEB) algorithm44,45 was used to identify the transition states for the CH$_4$ activation and dissociation on selected models.

Microkinetic Model. The dissociation of CH$_4$ from a molecularly adsorbed precursor state was described by the following kinetic scheme35,46

\[\text{CH}_4 + \frac{k_{ads}}{k_{des}} \rightleftharpoons \text{CH}_4^* \]

\[\text{CH}_4^* + [\text{O}] \rightleftharpoons \text{CH}_3^* + \text{H} + [\text{O}] \]

Here, [O] is a lattice oxygen atom neighboring a Pd atom. To compute the reaction rate of CH$_4$ dissociation, we follow a Langmuir–Hinshelwood type kinetic model,37 in which we assume that the C–H bond dissociation step is slower than the adsorption/desorption steps of CH$_4$ (i.e., adsorption of CH$_4$ is quasi-equilibrated). CH$_4$ dissociation is usually considered to be irreversible. The equilibrium constant K for molecular CH$_4$ adsorption is given by

\[K = \frac{k_{ads}}{k_{des}} = \frac{\theta_{\text{CH}_4}}{\theta_{P\text{CH}_4}} \]

(1)

in which k_{ads} and k_{des} are the adsorption and desorption rate constants, P_{CH_4} is the methane partial pressure and θ_{CH_4} and θ_{P} are the coverage with CH$_4$ and the fraction of empty sites, respectively. The site balance leads to the following expression for the coverage of molecularly adsorbed CH$_4$

\[\theta_{\text{CH}_4} = \frac{K P_{\text{CH}_4}}{1 + K P_{\text{CH}_4}} \]

(2)

The equilibrium constant can be written as

\[K = e^{-\Delta G(T,P)/k_B T} = e^{-[E_{ads} - \mu(T,P)]/k_B T} \]

(3)

where $\Delta G(T,P)$, E_{ads} and $\mu(T,P)$ are the Gibbs free energy change due to molecular CH$_4$ adsorption, the DFT-computed adsorption energy of molecularly adsorbed CH$_4$ and the chemical potential of gaseous CH$_4$ at the temperature T and pressure P, respectively. The chemical potential of methane was given as below

\[\mu(T, P) = \mu(T, P^0) + RT \ln \left(\frac{P_{\text{CH}_4}}{P^0} \right) \]

\[= [H(T, P^0) - H(0K, P^0)] - T[S(T, P^0) - S(0K, P^0)] \]

\[+ RT \ln \left(\frac{P_{\text{CH}_4}}{P^0} \right) \]

(4)
CH₄ adsorption is however weak on these Pd-doped surfaces, CeO₂(111) surface (Pd 1/CeO₂(111) in Figure 1a) as should also consider atomically dispersed Pd atoms on the magnitude lower than experimentally observed rates. Given activation barrier for C–H bond dissociation in adsorbed CH₄ according to

$$k = \frac{k_BT}{h}$$

in which the rate constant k_r is computed from the computed activation barrier for C–H bond dissociation in adsorbed CH₄ according to

$$k_r = \frac{k_BT}{h}$$

RESULTS AND DISCUSSION

Focusing first on Pd, its substitution for Ce in the CeO₂ surface is energetically favorable and lowers the energy to remove an oxygen surface atom, which creates an oxygen vacancy (V_{O}). While most theoretical studies assume an octahedral Pd coordination arising from the Pd for Ce substitution (retaining the initial octahedral coordination of Ce₄⁺ in the surface), we demonstrated that a stable structure exists with nearly the same energy in which Pd adopts a square-planar configuration. This structure is much more active in CO oxidation than the octahedral structure. The conventional octahedral (Pd-dop-I) and the alternative square-planar (Pd-dop-II) models for Pd-doped CeO₂ are shown in Figure 1a.

![Image](https://example.com/image1.png)

Figure 1. (a) Optimized configurations of Pd atoms dispersed on CeO₂(111). (color code: white = Ce; gray = O; red = O neighboring Pd; cyan = Pd); (b) chemical potential μ of Pd atoms dispersed on CeO₂(111) (dashed lines) and Pd NPs on CeO₂(111) as a function of the nanoparticle radius R (full line). The chemical potential of bulk Pd is set to zero: $\mu_{\text{bulk}} = 0$.

The rate for CH₄ dissociation can then be written as

$$r = k_BT$$

where P^{0} is the standard atmospheric pressure, and the enthalpy H and entropy S of methane were obtained from standard thermodynamic tables.

Table 1. Ionic Radii of Various Metal Ions

Metal	Ce⁺⁺	Ce⁺⁺⁺	Ni⁺⁺	Ni⁺⁺⁺	Pd⁺⁺	Pd⁺⁺⁺	Pt⁺⁺	Pt⁺⁺⁺	Rh⁺⁺	Rh⁺⁺⁺	Cu⁺⁺	Cu⁺⁺⁺	Zn⁺⁺⁺
R (Å)	1.04	0.97	0.69	0.48	0.64	0.63	0.80	0.62	0.72	0.615	0.46	0.62	0.74

possibility to replace a Ce⁺⁺ ion by two Pd⁺⁺ ions. Table 1 also shows that other transition metals can lead to similar structure and this topic will be discussed below. For the Pd case, one of the Pd atoms is coordinated by four lattice O atoms, while the other one is coordinated by three O atoms. We emphasize that this structure is very different from earlier proposed doping models. The unusual aspect of the novel model is...
that, unlike earlier models, it contains a stable three-coordinated Pd ion, which we expect to strongly adsorb CH4. Therefore, we explored in the following the adsorption and activation of CH4 on the Pd1/Pd-dop-II structure.

CH4 adsorption and dissociation are the crucial steps in the CH4 combustion process.2555 The adsorption energy of CH4 on the Pd1/Pd-dop-II model is −0.59 eV, which is slightly higher than the value of −0.47 eV computed for the PdO(101) surface. CH4 adsorbs only weakly on Pd-dop-II. The adsorption energy of −0.15 eV is nearly similar to the adsorption energy on the stoichiometric CeO2 surface.27 From this difference, we infer that the presence of a coordinated unsaturated Pd2+ ion leads to stronger adsorption. Figure 3a shows the initial adsorption structure of CH4 as well as the transition and final states for its dissociation into CH2 and H, resulting in Pd-CH3 and OH fragments. The potential energy surfaces for CH4 adsorption and dissociation of CH4 on this and other models are depicted in Figure 3b. The activation barrier for CH4 dissociation on Pd1/Pd-dop-II is 0.60 eV. The adsorption energies of CH4 on most other models are significantly lower than for Pd1/Pd-dop-II with comparable or higher barriers (e.g., 0.64 eV for PdO(101) and 0.70 eV for Pd1/CeO2(111)). The exception is Pd-dop-II, on which CH4 can be activated with an energy barrier of only 0.27 eV. As discussed before, the low barrier is due to the high activity of the surface O radical.27 The Pd-dop-II structure is however not stable, and the reactive O atom is spontaneously removed to form the thermodynamically much more stable Pd-dop−II-V0 structure. The activation energy of CH4 dissociation on this stable surface is 0.99 eV.27

In order to compare C–H bond dissociation for the different surface models, we considered a Langmuir–Hinshelwood kinetic scheme in which gaseous CH4 is quasi-equilibrated with adsorbed CH4 followed by the slow C–H bond dissociation step, resulting in Pd-CH3 (CH3+) and O−H (H+) species.23 This kinetic model together with the computed DFT-energetics predicts that CH4 dissociation proceeds with the highest rate on Pd1/Pd-dop-II and then decreases in the order Pd-dop-II > PdO(101) > Pd(211) > Pd-dop-II-V0 (Figure 3c). Although the activation barrier for the C–H bond dissociation on Pd-dop-II is the lowest among the models investigated, the weak adsorption of CH4 results in a very low CH4 coverage and, henceforth, a low overall reaction rate. The thermodynamically preferred structure Pd-dop-II-V0 has the lowest overall reaction rate.

We compare these data to the work of Janik’s group on Pd/CeO2 for CH4 activation, who studied doping of ceria with multiple Pd atoms.26,31 Considering only Pd-doping of ceria, a higher activity than PdO(101) is only predicted for their (111)-1Pd4+/2Pd2+ structure.26 However, according to their ab initio phase diagram this structure is not stable under relevant reaction conditions, while the most stable (111)-3Pd2+ structure exhibits a more than 2 orders of magnitude lower activity than PdO(101).31 Thus, we can rule out these earlier models. Instead, we compared in more detail the (electronic) structure of CH4 adsorbed on Pd1/Pd-dop-II and PdO(101). In both surfaces, the Pd cation is 3-fold coordinated (Figure 4). Charge analysis shows that CH4 adsorption on Pd1/Pd-dop-II leads to an increase of the Pd cation charge, while the reverse holds for the Pd cation in PdO(101) (Table S3). The latter is in line with an earlier computational study.11 Electron density difference plots before and after CH4 adsorption on the two surfaces in Figure 4 show that there is a redistribution of electron density between CH4 and the surface. Moreover, there is clear evidence for the formation of a σ-complex on Pd1/Pd-dop-II. A density-of-state analysis indicates that 4d-electrons

Figure 3. (a) Initial, transition, and final states of CH4 dissociation by the Pd1/Pd-dop-II structure; (b) energy profiles of CH4 adsorption and dissociation by various Pd-containing models; (c) computed CH4 dissociation rates (T = 300−1000 K, PCH4 = 0.1 atm).
from the Pd surface cation in Pd1/Pd-dop-II effectively overlap with the t_2 frontier molecular orbitals of CH$_4$ and henceforth strengthen the adsorption of CH$_4$ (Figure S8). This type of interaction is absent in the CH$_4$ adsorption complex with PdO(101). Figure 4 also shows that the local coordination environment around CH$_4$ adsorbed on Pd$_1$/Pd-dop-II is more favorable for the formation of an O$^-$H bond during C–H bond cleavage. Notably, the C–H bond that will finally dissociate is elongated more in the CH$_4$ adsorption complex with Pd$_1$/Pd-dop-II (1.13 Å) than in the corresponding complex with PdO(101) (1.09 Å). This result is important as it shows that a Pd cation at the interface with Pd-doped CeO$_2$ can strongly adsorb and activate CH$_4$.

We investigated the feasibility of complete CH$_4$ oxidation on the Pd$_1$/Pd-dop-II model. Figure 5 shows the potential energy diagram for the complete catalytic cycle. After CH$_4$ dissociation, the resulting CH$_3^*$ species can be further dehydrogenated to Pd-CH$_2$ (CH$_2^*$) species and another O–H species (Int2 \rightarrow Int3). This process is endothermic by 0.55 eV and requires overcoming an activation barrier of 1.05 eV. The CH$_2$ species on the 3-fold Pd atom will migrate to a neighboring lattice O atom to form a CH$_3$O species ($\Delta E = -1.79$ eV) with a barrier of only 0.48 eV. Next, an O$_2$ molecule will adsorb on the 3-fold Pd atom (Int4 \rightarrow Int5, $E_{	ext{ad}} = -0.86$ eV). The reaction then further proceeds via a sequence of facile H-transfer steps on the surface forming OOH species that are involved in C–H bond dissociation and H$_2$O formation. The third C–H bond dissociation step in CH$_3$O is highly exothermic ($\Delta E = -3.09$ eV). After H$_2$O desorption (Int7 \rightarrow Int8), rotation of OCHO occurs, enabling further O$_2$ adsorption (Int9 \rightarrow Int10), C–H bond cleavage and formation of CO$_2$. CO$_2$ desorption costs 0.52 eV, leaving one oxygen vacancy (Int11 \rightarrow Int12). Dissociation of OOH heals this vacancy (Int12 \rightarrow Int13), while the other OH fragment reacts with the remaining H atom to form another H$_2$O molecule (Int13 \rightarrow Int14). H$_2$O desorption ($\Delta E = +1.55$ eV) completes the catalytic cycle.

Overall, the reaction pathway for complete CH$_4$ oxidation for the novel Pd$_1$/Pd-dop-II model appears to be feasible. Weaver and co-workers reported that the formation of the CH$_2$ intermediate is the most difficult step ($E_a = 1.44$ eV) for CH$_4$ oxidation on PdO(101). The highest barrier for our model is significantly lower ($E_a = 1.05$ eV). Taking into account entropy, we computed that the rate of this C–H bond activation step at 623 K is still 2 orders of magnitude higher than the overall process of adsorption and dissociation of CH$_4$. The reaction energy diagram also emphasizes the influence of competitive adsorption of O$_2$ and H$_2$O. This will shift the operating window of this catalyst to a temperature regime where vacant Pd sites are available. We can compare the O$_2$ and H$_2$O adsorption energies of, respectively, −0.82 and −1.55 eV to those for PdO(101), i.e. −1.58 and −1.01 eV, respectively. Thus, while O$_2$ inhibition is alleviated in our model with respect to PdO(101), competition with H$_2$O is
more prominent. Based on the gas phase entropy of H2O, we can predict that the free energy of H2O desorption is lower than the highest barrier at around 500 K. The occurrence of these competitive effects has been experimentally demonstrated by Weaver and co-workers in a TPD study for PdO(101).56 The systematic study for PdO(101) by Bossche and Gronbeck showed that CH4 oxidation is inhibited by molecular H2O adsorbed on under-coordinated Pd sites at low temperature.57 Summarizing, Pd1/Pd-dop-II provides a model on which CH4 can be activated in a facile manner and a complete reaction cycle leading to CO2 and H2O is possible.

Encouraged by these insights, we also investigated the effect of modification of CeO2 with Ni, Pt, Rh, Cu, and Zn, because the former three give rise to active CH4 combustion catalysts in solid solutions,17,29,30 while the latter two are expected to be low active catalysts. The substitution of all of these transition metals in the CeO2(111) surface is favorable against the bulk of the corresponding transition metal (Table 2). Except for Pt, these transition metals adopt the same square-planar configuration as Pd (Figure S11).27 The most stable configuration for Pt is the octahedral one, which is likely related to the larger size of Pt in comparison with the other substituents (Table S2). Placement of another like transition metal atom on the doped site is also exothermic, showing the generality of the stabilization of transition metal atoms on doped CeO2. Next, we investigated CH4 adsorption on these structures. The adsorption energy is highest on Pt/T/Pt-dop and decreases in the order Pt/T/Pt-dop > Pd/T/Pd-dop > Rh/T/Rh-dop > Ni/T/Ni-dop ≈ Cu/T/Cu-dop > Zn/T/Zn-dop. The electron density difference plots for CH4 adsorbed on Pt/T/Pt-dop and Zn/T/Zn-dop in Figure S13 show an effective σ-complex formation for the Pt case similar to Pd, while it is absent for Zn. The activation barrier for C=H bond dissociation follows roughly the reverse trend with Zn/T/Zn-dop having the highest activation barrier and Pt/T/Pt-dop the lowest.

Using the kinetic model for CH4 adsorption and dissociation, we found that the computed rates decreases in the order Pt/T/Pt-dop ≫ Pd/T/Pd-dop > Rh/T/Rh-dop > Ni/T/Ni-dop > Cu/T/Cu-dop > Zn/T/Zn-dop in Figure 6a. At a temperature of 623 K and a CH4 pressure of 0.1 atm, the dissociation rate is higher for the Pt-doped structure than the Pd-doped one. Figure 6b emphasizes the strong correlation between the activation barrier and the distance between the surface and CH4 in the adsorbed state. The decreasing activity at high temperature is because the free energy for desorption is higher than the activation barrier for CH4 dissociation. The free energy change for CH4 adsorption is given by ΔEads = TΔSads in which ΔEads and TΔSads represent the enthalpy and entropy contributions. The activation free energy barrier is roughly equal to the activation barrier, as the entropy change during CH4 dissociation starting from the σ-complex is negligible in comparison with the entropy change during adsorption or desorption. The predicted high activity computed for Pt/T/Pt-dop-II provides a good explanation for the experimentally reported high activity of a Ce1−xPtxO2−σ solid solution.28,57 In a similar manner, Ni- and Rh-promoted CeO2 catalysts have also been noted for their promising activity in CH4 combustion.

CONCLUSIONS

We investigated a novel structure of a solid solution of Pd in CeO2 with the purpose of explaining the high activity of Pd-CeO2 solid solutions toward CH4 activation. We show that two Pd2+ ions can substitute one Ce4+ ion in the stable CeO2(111) surface, resulting in a structure that is stable under oxidative conditions. CH4 will strongly adsorb as a σ-complex on the Pd, while it is absent for Zn. The activation barrier for C=H bond dissociation shows a strong correlation between the activation barrier and the distance between the surface and CH4 in the adsorbed state. The decreasing activity at high temperature is because the free energy for desorption is higher than the activation barrier for CH4 dissociation. The free energy change for CH4 adsorption is given by ΔEads = TΔSads in which ΔEads and TΔSads represent the enthalpy and entropy contributions. The activation free energy barrier is roughly equal to the activation barrier, as the entropy change during CH4 dissociation starting from the σ-complex is negligible in comparison with the entropy change during adsorption or desorption. The predicted high activity computed for Pt/T/Pt-dop-II provides a good explanation for the experimentally reported high activity of a Ce1−xPtxO2−σ solid solution.28,57 In a similar manner, Ni- and Rh-promoted CeO2 catalysts have also been noted for their promising activity in CH4 combustion.

Table 2. Insertion Energy of the First TM Atom into One Lattice Ce Position Atom (E_{ads-TM1}) and the Second TM Atom (E_{ads-TM2}) with Respect to Corresponding TM Bulk Atoms

TM1/TM-dop-II	Ni	Pd	Pt	Cu	Rh	Zn
E_{ads} (TM1, eV)	-4.79	-3.62	-4.04	-4.20	-4.24	-4.79
E_{ads} (TM2, eV)	-2.03	-1.66	-0.61	-1.22	-1.21	-3.65
E_{ads} (CH4, eV)	-0.42	-0.59	-0.81	-0.41	-0.46	-0.17
E_a (eV)	0.62	0.60	0.49	0.75	0.52	1.10
ΔE (eV)	-0.42	-0.49	-0.77	-0.70	-0.55	0.52
r (molecules-site$^{-1}$-s$^{-1}$)	1.41×10^{10}	5.57×10^{10}	3.30×10^{10}	9.42×10^{10}	2.12×10^{10}	1.04×10^{10}

aAdsorption energy E_{ads}, activation energy E_a, reaction energy ΔE of CH4 dehydrogenation, and the rate of CH4 dissociation by TM1/TM-dop-II. $P_{CH_4} = 0.1$ atm, and $T = 623$ K.

Figure 6. (a) Computed CH$_4$ dissociation rates for various TM1/TM-dop-II structures as a function of temperature with $P_{CH_4} = 0.1$ atm and (b) relation between CH$_4$ dissociation barrier and the distance between the reactive TM atom and the H atom of the activated C=H bond in CH$_4$ in the adsorbed state.
COORDINATELY unsaturated transition metal. We expect that this insight opens up new possibilities to rationally design active and stable catalysts of surface doped oxides.

ASSOCIATED CONTENT

Supporting Information

The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acscatal.8b01477.

(1) Chemical potential calculations; (2) ab initio thermodynamic analysis, additional structural information, electron density difference analysis, and simulated STM; and (3) complete catalytic cycle of CH₄ oxidation and the configurations of relevant intermediates (PDF)

AUTHOR INFORMATION

Corresponding Author

E-mail: e.j.m.hensen@tue.nl

ORCID

Jin-Xun Liu: 0000-0002-7499-4197

Ivo A. W. Filot: 0000-0003-1403-8379

Emiel J. M. Hensen: 0000-0002-9754-2417

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

The authors acknowledge financial support for the research from The Netherlands Organization for Scientific Research (NWO) through a Vici grant and Nuffic funding. Access to supercomputing facilities was provided by NWO.

REFERENCES

(1) Cargnello, M.; Jaén, J. D.; Garrido, J. H.; Bakhmutsky, K.; Montini, T.; Gámez, J. C.; Gorte, R.; Fornasiero, P. Exceptional Activity for Methane Combustion over Modular Pd@CeO₂ Subunits on Functionalyzed Al₂O₃. *Science* 2012, 337, 713–717.

(2) Taifan, W.; Baltrusaitis, J. CH₄ Conversion to Value Added Products: Potential, Limitations and Extensions of a Single Step Heterogeneous Catalysis. *Appl. Catal., B* 2016, 198, 525–547.

(3) Colussi, S.; Gayen, A.; Farnesi Camellone, M.; Boaro, M.; Llorca, J.; Fabris, S.; Trovarelli, A. Nanofaceted Pd O Sites in Pd_Ce Surface Superstructures: Enhanced Activity in Catalytic Combustion of Methane. *Angew. Chem., Int. Ed.* 2009, 48, 8481–8484.

(4) Gélins, P.; Primet, M. Complete Oxidation of Methane at Low Temperature over Noble Metal Based Catalysts: a Review. *Appl. Catal., B* 2002, 39, 1–37.

(5) Hu, Z.; Li, B.; Sun, X.; Metiu, H. Chemistry of Doped Oxides: the Activation of Surface Oxygen and the Chemical Compensation Effect. *J. Phys. Chem. C* 2011, 115, 3065–3074.

(6) Shin, T. H.; Ida, S.; Ishihara, T. Doped CeO₂-LaFeO₃ Composite Oxide as An Active Anode for Direct Hydrocarbon-type Solid Oxide Fuel Cells. *J. Am. Chem. Soc.* 2011, 133, 19399–19407.

(7) Meng, L.; Lin, J. J.; Pu, Z. Y.; Luo, L.-F.; Jia, A.-P.; Huang, W. X.; Luo, M. F.; Lu, J. Q. Identification of Active Sites for CO and CH₄ Oxidation over PdO/Ce₁₋ₓPdxO₂–δ Catalysts. *Appl. Catal., B* 2012, 119, 117–122.

(8) Colussi, S.; Trovarelli, A.; Vesselli, E.; Baraldi, A.; Comelli, G.; Groppi, G.; Llorca, J. Structure and Morphology of Pd/Al₂O₃ and Pd/ CeO₂/Al₂O₃ Combustion Catalysts in Pd–PdO Transformation Hysteresis. *Appl. Catal., A* 2010, 390, 1–10.

(9) Hoffmann, M.; Kreft, S.; Georgi, G.; Fulda, G.; Pohl, M.-M.; Seeburg, D.; Berger-Karin, C.; Kondratenko, E. V.; Wohlrab, S. Improved Catalytic Methane Combustion of Pd/CeO₂ Catalysts via Porous Glass Integration. *Appl. Catal., B* 2015, 179, 313–320.

(10) Martín, N. M.; Van den Bossche, M.; Hellman, A.; Grönbek, H.; Hakanoglou, C.; Gustafson, J.; Blomberg, S.; Johansson, N.; Liu, Z.; Axnanda, S.; et al. Intrinsic Ligand Effect Governing the Catalytic Activity of Pd Oxide Thin Films. *ACS Catal.* 2014, 4, 3330–3334.

(11) Hellman, A.; Resta, A.; Martin, N.; Gustafson, J.; Trinchero, A.; Carlsson, P.-A.; Balmes, O.; Felici, R.; van Rijn, R.; Frenken, J.; et al. The Active Phase of Palladium During Methane Oxidation. *J. Phys. Chem. Lett.* 2012, 3, 678–682.

(12) Weaver, J. F. Surface Chemistry of Late Transition Metal Oxides. *Chem. Rev.* 2013, 113, 4164–4121.

(13) Weng, X.; Ren, H.; Chen, M.; Wan, H. Effect of Surface Oxygen on the Activation of Methane on Palladium and Platinum Surfaces. *ACS Catal.* 2014, 4, 2598–2604.

(14) Zheng, T.; He, J.; Zhao, Y.; Xia, W.; He, J. Precious Metal-Support Interaction in Automotive Exhaust Catalysts. *J. Rare Earths* 2014, 32, 97–107.

(15) Jen, H.-W.; Graham, G.; Chun, W.; McCabe, R.; Cui, J. P.; Deutsch, S.; Touret, O. Characterization of Model Automotive Exhaust Catalysts: Pd on Ceria and Ceria–Zirconia Supports. *Catal. Today* 1999, 50, 309–328.

(16) Yao, H.; Yao, Y. Y. Ceria in Automotive Exhaust Catalysts: I. Oxygen Storage. *J. Catal.* 1984, 86, 254–265.

(17) Zhu, T.; Zhang, S.; Shan, J. J.; Nguyen, L.; Zhan, S.; Gu, X.; Tao, F. In Situ Surface Chemistries and Catalytic Performances of Ceria Doped with Palladium, Platinum, and Rhodium in Methane Partial Oxidation for the Production of Syngas. *ACS Catal.* 2013, 3, 2627–2639.

(18) Spezzati, G.; Su, Y. Q.; Hofmann, J. P.; Benavidez, A. D.; Delariva, A. T.; McCabe, J.; Dayte, A. K.; Hensen, E. J. M. Atomically dispersed Pd-O species on CeO₂(111) as highly active sites for low-temperature CO oxidation. *ACS Catal.* 2017, 7, 6887–6891.

(19) Bossche, M. V. d.; Grönbek, H. Methane Oxidation over PdO(101) Revealed by First-Principles Kinetic Modeling. *J. Am. Chem. Soc.* 2015, 137, 12035–12044.

(20) Kinnunen, N. M.; Hirvi, J. T.; Suvanto, M.; Pakkanen, T. A. Role of the Interface Between Pd and PdO in Methane Dissociation. *J. Phys. Chem. C* 2011, 115, 19197–19202.

(21) Antony, A.; Asthagiri, A.; Weaver, J. F. Pathways and Kinetics of Methane and Ethane C–H Bond Cleavage on PdO(101). *J. Chem. Phys.* 2013, 139, 104702.

(22) Chin, Y. H.; Buda, C.; Neurock, M.; Iglesia, E. Consequences of Metal–Oxide Interconversion for C–H Bond Activation During CH₄ Reactions on Pd Catalysts. *J. Am. Chem. Soc.* 2013, 135, 15425–15442.

(23) Liang, Z.; Li, T.; Kim, M.; Asthagiri, A.; Weaver, J. F. Low-Temperature Activation of Methane on the IrO₃(110) Surface. *Science* 2017, 356, 299–303.

(24) Mayernick, A. D.; Janik, M. J. Methane oxidation on Pd–Ceria: A DFT Study of the Mechanism over PdₓCe₁₋ₓO₂–δ, Pd, and PdO. *J. Catal.* 2011, 278, 16–25.

(25) Mayernick, A. D.; Janik, M. J. Methane Activation and Oxygen Vacancy Formation over CeO₂ and ZrₓPd₁₋ₓCeO₂ Surfaces. *J. Phys. Chem. C* 2008, 112, 14955–14964.

(26) Sentile, T. P.; van Duijn, A. C.; Janik, M. J. Role of Site Stability in Methane Activation on PdₓCe₁₋ₓO₂ Surfaces. *ACS Catal.* 2015, 5, 6187–6199.

(27) Su, Y. Q.; Filot, I. A. W.; Liu, J. X.; Hensen, E. J. M. Stable Pd-doped Ceria Structures for CH₄ Activation and CO Oxidation. *ACS Catal.* 2018, 8, 75–80.

(28) Jin, J.; Li, C.; Tsang, C. W.; Xu, B.; Liang, C. Catalytic Combustion of Methane over Pt–Ce Oxides under Scarce Oxygen Condition. *Ind. Eng. Chem. Res.* 2016, 55, 2293–2301.

(29) Liu, Z.; Grinert, D. C.; Lustemb erg, P. G.; Nguyen-Phan, T. D.; Zhou, Y.; Luo, S.; Waluyo, I.; Crumlin, E. J.; Stachiola, D. J.; Zhou, J.; et al. Dry Reforming of Methane on a Highly-Active NiCeO₂ Catalyst: Effects of Metal-Support Interactions on C–H Bond Breaking. *Angew. Chem., Int. Ed.* 2016, 55, 7455–7459.
(30) Tang, W.; Hu, Z.; Wang, M.; Stucky, G. D.; Metiu, H.; McFarland, E. W. Methane Complete and Partial Oxidation Catalyzed by Pt-doped CeO$_2$. J. Catal. 2010, 273, 125–137.

(31) Sentle, T. P.; van Duin, A. C.; Janik, M. J. Methane Activation at the Pd/CeO$_2$ Interface. ACS Catal. 2017, 7, 327–332.

(32) Hiley, C. I.; Fisher, J. M.; Thompsett, D.; Kasthian, R. J.; Sloan, J.; Walton, R. J. Incorporation of Square-Planar Pd$^{2+}$ in Fluorite CeO$_2$: Hydrothermal Preparation, Local Structure, Redox Properties and Stability. J. Mater. Chem. A 2015, 3, 13072–13079.

(33) Gulyaev, R.; Kardash, T. Y.; Malykhin, S.; Stonkus, O.; Ivanova, A.; Boroinin, A. The Local Structure of Pd$_x$Ce$_{1-x}$O$_{2.5−x}$ Solid Solutions. Phys. Chem. Chem. Phys. 2014, 16, 13523–13539.

(34) Netzel, A.; Figueroa, A.; Lykhach, Y.; Skála, T.; Vorokhta, M.; Tsud, N.; Mehl, S.; Sevcikova, K.; Prince, K. C.; Neyman, K. M.; et al. Atomically Dispersed Pd, Ni, and Pt Species in Ceria-Based Catalysts: Principal Differences in Stability and Reactivity. J. Phys. Chem. C 2016, 120, 9852–9862.

(35) Krch, M. D.; Mayernick, A. D.; Janik, M. J. Periodic Trends of Oxygen Vacancy Formation and C–H Bond Activation over Transition Metal-doped CeO$_2$ Surfaces. J. Catal. 2012, 293, 103–115.

(36) Kresse, G.; Hafner, J. Ab Initio Molecular-Dynamics Simulation of the Liquid-Metal–Amorphous-Semiconductor Transition in Germanium. Phys. Rev. B: Condens. Matter Mater. Phys. 1994, 49, 14251.

(37) Blöchl, P. E. Projector Augmented-Wave Method. Phys. Rev. B: Condens. Matter Mater. Phys. 1994, 50, 7184–7186.

(38) Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized Gradient Approximation Made Simple. Phys. Rev. Lett. 1996, 77, 3865.

(39) Dudarev, S.; Botton, G.; Savrasov, S.; Humphreys, C.; Sutton, A. Electron-Energy-Loss Spectra and the Structural Stability of Nickel Oxide: An LSDA+ U Study. Phys. Rev. B: Condens. Matter Mater. Phys. 1998, 57, 1505.

(40) Fabris, S.; de Gironcoli, S.; Baroni, S.; Vicario, G.; Balducci, G. Reply to “Comment on ‘Taming Multiple Valency with Density Functionals: A Case Study of Defective Ceria’. Phys. Rev. B: Condens. Matter Mater. Phys. 2005, 72, 237102.

(41) Cococcioni, M.; De Gironcoli, S. Linear Response Approach to the Calculation of the Effective Interaction Parameters in the LDA+ U Method. Phys. Rev. B: Condens. Matter Mater. Phys. 2005, 71, 035105.

(42) Castleton, C.; Kullgren, J.; Hermansson, K. Tuning LDA+U for Electron Localization and Structure at Oxygen Vacancies in Ceria. J. Chem. Phys. 2007, 127, 244704–2447040.

(43) Da Silva, J. L.; Ganduglia-Pirovano, M. V.; Sauer, J.; Bayer, V.; Kresse, G. Hybrid Functionals Applied to Rare-Earth Oxides: The Example of Ceria. Phys. Rev. B: Condens. Matter Mater. Phys. 2007, 75, 045121.

(44) Henkelman, G.; Jonsson, H. Improved Tangent Estimate in the Nudged Elastic Band Method for Finding Minimum Energy Paths and Saddle Points. J. Chem. Phys. 2000, 113, 9978–9985.

(45) Sheppard, D.; Terrell, R.; Henkelman, G. Optimization Methods for Finding Minimum Energy Paths. J. Chem. Phys. 2008, 128, 134106.

(46) Weaver, J. F.; Carlsson, A. F.; Madix, R. J. The Adsorption and Reaction of Low Molecular Weight Alkanes on Metallic Single Crystal Surfaces. Surf. Sci. Rep. 2003, 50, 107–199.

(47) Liu, J. X.; Xu, H. Y.; Sun, D. P.; Zhang, B. Y.; Li, W. X. Crystallographic Dependence of CO Activation on Cobalt Catalysts: HCP versus FCC. J. Am. Chem. Soc. 2013, 135, 16284–16287.

(48) Stull, D. R.; Prophet, H. JANAF Thermochemical Tables; National Standard Reference Data System: Washington, DC, 1971.

(49) Su, Y. Q.; Liu, J. X.; Filot, I. A. W.; Hensen, E. J. M. Theoretical Study of Ripening Mechanisms of Pd Clusters on Ceria. Chem. Mater. 2017, 29, 9456–9462.

(50) Liu, J. C.; Wang, Y. G.; Li, J. Toward Rational Design of Oxide-Supported Single-Atom Catalysts: Atomic Dispersion of Gold on Ceria. J. Am. Chem. Soc. 2017, 139, 6190–6199.