LFG-DOT: a Probabilistic, Constraint-Based Model for Machine Translation

Andy Way
School of Computer Applications, Dublin City University, Dublin 9, Ireland.

Abstract

We develop novel models for Machine Translation (MT) based on Data-Oriented Parsing (DOP: Bod, 1995; 1998) allied to the syntactic representations of Lexical Functional Grammar (LFG: Kaplan & Bresnan, 1982).

Introduction

It is accepted that the main paradigmatic approaches to MT—transfer, interlingua, and statistical—do not at present produce the quality of translation required. There have, however, been a number of attempts at combining elements of these different approaches in an attempt to increase overall translation performance (cf. Carbonnel et al., 1992; Grishman & Kosaka, 1992). Our efforts to bring about a better solution to the problems of MT can be viewed in this new hybrid spirit.

DOP has produced interesting results for a range of NLP problems. DOP language models consider past experiences of language to be significant in both perception and production. DOP prefers performance models over competence grammars: models based on large collections of previously occurring fragments of language are preferred to abstract grammar rules. New language fragments are handled with respect to existing fragments from the corpus, which are combined using statistical techniques to determine the most probable analysis for the new fragment.

DOP Translation Models

DOP has been used already as a basis for MT—Data-Oriented Translation (DOT: Poutsma, 1998). DOP models typically use surface PS-trees as the chosen representation for strings. The DOT translation model relates tree-fragments between two (or more) languages with an accompanying probability, linking source-target translations at all possible nodes in accordance with the principle of Compositionality of Meaning. Once the most likely parse of the source language sentence has been produced, the tree structure of the target is assembled, from which the string is (trivially) derived. Nevertheless, there are usually many different derivations for the source sentence, so many different translations may be available. As is the case when DOP is used monolingually, Poutsma shows that the most probable translation can be computed using Monte-Carlo disambiguation.

DOT is an interesting model, but it is not guaranteed to produce the correct translation when this is non-compositional and considerably less probable than the default, compositional alternative. An example is commit suicide \leftrightarrow se suicider, where John commits suicide is wrongly translated by DOT as *John comte le suicide. DOT's adherence to left-most substitution in the target given a priori left-most substitution in
the source is too strictly linked to the linear order of words. As soon as this deviates to any significant degree between languages, DOT has a significant bias in favour of the incorrect translation (assuming the corpus to be representative). Another example is the like \(\rightarrow\) plaire case, where the arguments need to be 'switched' between English and French. Even if the correct, non-compositional translation is achievable, DOT derives other wrong alternatives with higher probabilities. In such cases, the correct translation will be dismissed unless all possible translations are inspected manually.

This is not at all surprising: being based on STSG, DOT is necessarily limited to those contextual dependencies actually occurring in the corpus, a reflection of surface phenomena only. It is well known that models based solely on CFGs are insufficiently powerful to deal with all natural language problems. In this regard, DOP models have been augmented (van den Berg et al., 1994; Tugwell 1995) to deal with richer representations, but such models have remained context-free.

LFG, however, is known to be beyond context-free. It can capture and provide representations of linguistic phenomena other than those occurring at surface structure. Given this, the functional structures of LFG have been harnessed to the techniques of DOP to create a new model, LFG-DOP (Bod & Kaplan, 1998). LFG-DOP permits (via the Discard operator) the relaxation of certain constraints on LFG representations, thereby creating generalised fragments against which new input can be compared, and the best analysis constructed.

LFG-DOP Translation Models

We propose that LFG-DOP has the potential to be used as the basis for an innovative MT model, LFG-DOT. We have designed two LFG-DOT models:

1. a simple, linear model which builds a target f-structure from a source c-structure and f-structure, the mapping between them \(\phi\), and the \(\tau\)-equations. This model leaves the task of generating the target string from the target f-structure to the standard LFG generation algorithms (e.g. Wedekind, 1988);

2. a more complex model, containing explicit links between both surface constituents and f-structure units in both languages, unlike the previous model which relates the languages just at the level of f-structure (via \(\tau\)).

Probability models have been constructed for both translation models, and small experiments have been performed for particular cases of 'hard' translation problems. Being able to link exactly those source-target elements which are translations of each other using LFG's \(\tau\)-equations, LFG-DOT overcomes some of the problems specific to the DOT system. For example, the LFG-MT solution to the like \(\rightarrow\) plaire case is (1):

\[
\begin{align*}
\text{like:} \\
(\tau \uparrow \text{PRED FN}) &= \text{plaire} \\
\tau(\uparrow \text{OBJ}) &= (\tau \uparrow \text{OBJ}) \\
\tau(\uparrow \text{OBL}) &= (\tau \uparrow \text{OBL})
\end{align*}
\]

That is, the subject of like is translated as the oblique argument of plaire, while the object of like is translated as the subject of plaire. The solution to the *commit suicide* \(\rightarrow\) *se suicider* problem is (2):
commit:
$(\tau \uparrow \text{PRED FN}) = \text{se suicider}$
$\tau(\uparrow \text{SUBJ}) = (\tau \uparrow \text{SUBJ})$
$(\uparrow \text{OBJ PRED}) = \text{suicide}$

Where the PRED value of the OBJ of commit is constrained ($=c$) to suicide, then the collocational units 'commit + suicide' are translated as a whole to se suicider. DOP's statistical model gives a 'level of correctness' figure to alternative translations. This is useful in cases like these where the default translation in LFG-MT (and in many other systems) cannot be suppressed when the specific translation is required. We have conducted small experiments which show that for a treebank constructed from 10 sentences, despite 7 instances of commit \rightarrow commits suicide compared to just one commits suicide \rightarrow se suicide example, the correct translation Marie commits suicide \rightarrow Marie se suicide is preferred by both LFG-DOT models over the wrong, compositional alternative by a factor of between 3 and 6 times, depending on which LFG-DOT definition of competition set is selected.

Furthermore, LFG-DOT promises to improve upon the correspondence-based LFG-MT model (Kaplan et al. 1989), particularly where robustness is concerned, as LFG-DOP's Discard function enables both unseen and ill-formed input to be dealt with. For example, Bod & Kaplan (1998) show that given a treebank for the sentences People walked and John fell, probability models can be constructed where for the 'unseen' sentences John walked and People fell, the unmarked interpretation is less likely than the two specific interpretations, and of these the intuitively correct ones are selected for each corresponding verb.

Problems and Future Work

The major problem with any models based on LFG-DOT is the explosion of fragments caused by Discard. Allowing Discard to operate in the unconstrained manner of Bod & Kaplan's (1998) model results in an exponential number of fragments in which the non-Discard fragments are overwhelmed, resulting in the probabilities of derivations via Root and Frontier being vastly outnumbered by the 'ungrammatical' alternatives. While there is a large increase in the number of fragments produced via Discard in LFG-DOT models, compared to the monolingual LFG-DOP corpora from which they are derived, the explosion of fragments is nowhere near as severe. Notwithstanding this, we propose to restrict the scope of the Discard operator by creating two different bags of fragments: the well-formed ones (derived via Root and Frontier) and the Discard ones. Using Good-Turing (cf. Bod, 2000), we can allocate a fixed, small probability mass to the fragments generated by Discard to ensure that the derivations using the 'good' non-Discard fragments will still be favoured.

Using different LFG-DOP probability models (in terms of which LFG grammaticality checks are enforced, and at which points in the translation process) results in different probabilities with respect to the corpus, but does not result in different rankings of alternative candidate translations. A potential problem, however, is that LFG-DOT models, like DOT models, show a tendency to exclude many potentially useful fragments owing to the strictness of Poutsma's (1998) definition of linked fragments. This may result in translations which are theoretically describable not being achievable in practice. Only experimentation on a much wider scale will confirm this.

Given the small corpora from which our findings were derived, any results must be treated with some equivocation. Given the (relative) scarcity of some of the linguistic
examples cited previously, and the subject of the tests thereon, we regret that it is nigh impossible to derive ‘representative’ corpora for the examples in hand. The absence of large-scale LFG-DOP corpora currently prohibits these models from being tested more widely. Nevertheless, recent work on automatic construction of the LFG-DOP corpora (Van Genabith et al., 1999; Sadler et al., 2000) needed for further experimentation using these techniques seems promising in this regard.

References

Van den Berg M., Bod R. & Scha R. (1994). A Corpus-Based Approach to Semantic Interpretation. In 9th Amsterdam Colloquium.

Bod R. (1995). Enriching Linguistics with Statistics: Performance Models of Natural Language. PhD thesis, University of Amsterdam.

Bod R. (1998). Beyond Grammar: An Experience-Based Theory of Language. Stanford, California: CSLI Publications.

Bod, R. (2000). An Empirical Evaluation of LFG-DOP. In Proceedings of the 19th International Conference on Computational Linguistics (to appear).

Bod, R. & Kaplan R. (1998). A Probabilistic Corpus-Driven Model for Lexical-Functional Analysis. In Proceedings of the 17th International Conference on Computational Linguistics & 9th Conference of the Association for Computational Linguistics, p. 145-151.

Carbonell J., Mitamura T. & Nyberg 3rd E. (1992). The KANT Perspective: A Critique of Pure Transfer (and Pure Interlingua, Pure Statistics,...). In 4th International Conference on Theoretical and Methodological Issues in Machine Translation, p. 225-235.

Grishman R. & Kosaka M. (1992). Combining Rationalist and Empiricist Approaches to MT. In 4th International Conference on Theoretical and Methodological Issues in Machine Translation, p. 263-274.

Kaplan R. & Bresnan J. (1982). Lexical Functional Grammar: A Formal System for Grammatical for Grammatical Representation, In The Mental Representation of Grammatical Relations, chapter 4. MIT Press.

Poutsma A. (1998). Data-Oriented Translation. In Ninth Conference of Computational Linguistics In the Netherlands.

R.Kaplan, Netter K., Wedekind J. & Zaenen A. (1989). Translation by Structural Correspondences. In Fourth Conference of the European Chapter of the Association for Computational Linguistics, p. 272-281.

Sadler L., Van Genabith J. & Way A. (2000). Automatic f-structure annotation of CFGs extracted from treeshank resources. In Proceedings of LFG-2000 (to appear).

Tugwell D. (1995). A State-Transition grammar for Data-Oriented Parsing. In Seventh European Conference on Computational Linguistics, p. 272-277.

Van Genabith J., Way A. & Sadler L. (1999). Semi-Automatic Generation of F-Structures from Treebanks. In Proceedings of LFG-99.

Wedekind J. (1958). Generation as structure driven derivation. In 18th International Conference on Computational Linguistics, p. 732-737.