Recent advances in central cardiovascular control: sex, ROS, gas and inflammation [version 1; referees: 2 approved]

Pauline M. Smith, Alastair V. Ferguson
Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, K7L3N6, Canada

Abstract
The central nervous system (CNS) in concert with the heart and vasculature is essential to maintaining cardiovascular (CV) homeostasis. In recent years, our understanding of CNS control of blood pressure regulation (and dysregulation leading to hypertension) has evolved substantially to include (i) the actions of signaling molecules that are not classically viewed as CV signaling molecules, some of which exert effects at CNS targets in a non-traditional manner, and (ii) CNS locations not traditionally viewed as central autonomic cardiovascular centers. This review summarizes recent work implicating immune signals and reproductive hormones, as well as gasotransmitters and reactive oxygen species in the pathogenesis of hypertension at traditional CV control centers. Additionally, recent work implicating non-conventional CNS structures in CV regulation is discussed.

This article is included in the F1000 Faculty Reviews channel.

Corresponding author: Alastair V. Ferguson (avf@queensu.ca)

How to cite this article: Smith PM and Ferguson AV. Recent advances in central cardiovascular control: sex, ROS, gas and inflammation [version 1; referees: 2 approved] F1000Research 2016, 5(F1000 Faculty Rev):420 (doi: 10.12688/f1000research.7987.1)

Copyright: © 2016 Smith PM and Ferguson AV. This is an open access article distributed under the terms of the Creative Commons Attribution Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Grant information: This work was supported by a grant from the Canadian Institutes for Health Research.

Competing interests: The authors declare that they have no competing interests.

First published: 31 Mar 2016, 5(F1000 Faculty Rev):420 (doi: 10.12688/f1000research.7987.1)
Introduction
According to the World Health Organization (WHO), cardiovascular (CV) disease accounts for approximately 17 million deaths a year worldwide, of which more than half (9.4 million) are attributable to complications of hypertension. In 2008, a staggering 40% of adults over the age of 25 had been diagnosed with hypertension.

The central nervous system (CNS) is essential to maintaining CV homeostasis. Traditional central autonomic CV control centers include the nucleus tractus solitarius (NTS), the rostral ventral lateral medulla (RVLM), and the caudal ventral lateral medulla in the brainstem; the parabrachial nucleus in the pons; and the paraventricular nucleus (PVN) in the hypothalamus. In addition, the area postrema (AP) in the hindbrain, and the organum vasculosum of the lamina terminalis (OVLT) and subfornical organ (SFO) in the forebrain, are sensory circumventricular organs (CVOs) characterized by the presence of a wide variety of receptors and the lack of the normal blood-brain barrier, which have also been implicated in central CV regulation. The renin-angiotensin aldosterone system (RAAS) has also been extensively implicated as a critical signaling system, components of which play central roles both as circulating hormones and as CNS neurotransmitters in the regulation of blood pressure (BP). There is growing evidence that the development and progression of hypertension involves dysregulation of the sympathetic nervous system (SNS) (SNS over-activity) (for review, see 4–6) and activation of the RAAS.

Over the past 20 years, our understanding of CNS control of BP regulation (and dysregulation leading to hypertension) has evolved substantially. This review will summarize some of these paradigm shifts, focussing primarily on signaling molecules that either (i) are not classically viewed as CV signaling molecules (i.e. immune signals and reproductive hormones) or (ii) exert effects at CNS targets in a non-traditional manner, acting via membrane receptor-independent signaling mechanisms (i.e. gasotransmitters and reactive oxygen species [ROS]), all of which have been shown to have profound effects on the central control of BP. CNS structures, not conventionally thought of as CV control centers but that more recently have been shown to influence CV regulation, are also discussed.

Inflammation and immune regulators as modulators of cardiovascular regulation and contributors to hypertension
Although it had been speculated decades ago that there was a relationship between the immune system and hypertension, the demonstration of systemic markers of inflammation in patients with essential hypertension in the early 2000s was a catalyst for renewed interest in the relationship between hypertension and the immune system. Emerging evidence suggests that both the innate and acquired immune systems are activated in hypertension, as inflammations in the kidney, vasculature (arteries), and CNS have all been shown to be involved in the pathogenesis of hypertension.

As an immediate first-line defence mechanism to infections or tissue injury, the innate immune system initiates a generalized inflammatory response involving dendritic cells, macrophages, natural killer (NK) T cells, and Toll-like receptors (TLRs), all of which have been shown to be activated in hypertension.

Dendritic cell activation has been shown to promote hypertension by stimulating T-cell proliferation which infiltrates both the kidney and arterial walls. Similarly, macrophage infiltration of the kidney and arteries has been documented in experimental models of hypertension, and a decrease in macrophage infiltration is associated with an improvement of hypertension in these models of hypertension. Recently, NK T-cell activation and TLRs (TLR4, in particular) have been suggested to play a role in hypertension-related inflammation.

The adaptive immune system responds to specific antigens and involves antigen presentation, lymphocyte activation, and antibody production. T cells have been shown to play a role in angiotensin II (ANG II)-induced hypertension whereas endogenously produced ANG II increases T-cell activation. Pro-inflammatory T-cell activation and the subsequent release of pro-inflammatory cytokines are associated with hypertension whereas inhibition or genetic ablation of the B7/CD28 T cell costimulatory pathway has been shown to prevent experimental hypertension. RAG-1−/− mice and SCID mice, which lack both T and B cells, exhibited a blunted hypertensive response to ANG II infusion, a response that returned when T cells were transferred into RAG-1−/− mice. T cell-produced cytokines (such as tumor necrosis factor alpha, or TNFα) and many of the interleukins (such as IL-6) have been shown to play a role in hypertension. TNFα antagonism or genetic knockout of IL-6 has been shown to blunt ANG II-induced hypertension. The presence of agonist antibodies to ANG II receptors has been identified in a number of conditions that are characterized by elevated BP, such as preeclampsia, refractory hypertension, and malignant hypertension.

Many studies have suggested that arterial inflammation within specific CNS locations is involved in the pathogenesis of hypertension. A role for inflammation in the NTS, a pivotal region for regulating arterial pressure baroreceptor reflex sensitivity, has been suggested in the development of hypertension, as studies have shown not only leukocyte accumulation within the NTS but also changes in gene expression of a variety of inflammatory molecules and neurotrophic factors in the NTS of spontaneously hypertensive rats (SHRs).

In addition, many of the cytokines, released as a consequence of immune system activation, have been shown to directly influence cardiovascular control centers in the CNS. Microinjection of IL-6 into the NTS attenuates baroreceptor function and leads to speculation that abnormal gene expression of IL-6 in the NTS may be associated with hypertension. Augmentation of IL-1β, IL-6, or TNF-α expression and increased ROS observed in the RVLM following chronic intraperitoneal lipopolysaccharide administration have been suggested to be contributing factors to neurogenic hypertension induced by systemic inflammation.

Early studies identified the anteroventral third ventricle (AV3V), a broad-based region located along the wall of the third ventricle which includes the OVLT, as a critical CNS structure in the pathogenesis of hypertension. A more recent study not only confirmed that lesions of the AV3V region attenuate ANG II-induced hypertension but also implicated immune system involvement as AV3V lesions eliminated circulating T-cell activation and...
vascular infiltration normally observed in response to ANG II administration. IL-1β has been shown to influence the excitability of SFO neurons, and recent studies have demonstrated that microinjection of IL-1β (and of TNFα) into SFO increases BP and renal sympathetic nerve activity (SNA).

The PVN, a hypothalamic autonomic control center with well-documented roles in CV regulation, has been implicated as a CNS structure in which immune signals may act to cause hypertension. Chronic ANG II infusion causes the expression of pro-inflammatory cytokines and markers of oxidative stress in the PVN, effects blocked by central administration of TNFα blocker. Angiotensin-converting enzyme 2 (ACE2) overexpression in the PVN has also been shown to attenuate both ANG II-induced hypertension and expression of the pro-inflammatory cytokines TNFα, IL-1β, and IL-6 in the PVN. Blockade of nuclear factor-kappa-B (NFκB), a prominent transcription factor that governs inflammatory responses, in the PVN of rats resulted in decreased BP, pro-inflammatory cytokines, and ROS, as well as upregulation of key protective anti-hypertensive RAAS components, suggesting an important role for NFκB in PVN in the hypertensive response. Finally, rats fed a high-salt diet demonstrated increased expression of IL-1β and decreased expression of the anti-inflammatory cytokine IL-10, in the PVN. These expression levels were augmented by stimulation of ROS production within the PVN.

Reproductive hormones and cardiovascular regulation

The interest in the role of sex hormones in hypertension has been driven by a number of observations regarding sexual dimorphism in BP regulation in humans and animals. Epidemiological findings that prior to menopause the prevalence of essential hypertension is lower in women than in men of the same age and that young women have lower resting SNA than men, differences that disappear after menopause, suggest that estradiol is important in BP regulation and, in fact, may protect against hypertension. Findings that estradiol administration attenuates increases in BP normally exhibited by intact males and ovariectomized females, and prevents development of hypertension in experimental models of hypertension, suggest a role for estradiol in the regulation of BP.

Studies in humans and animals suggest that exogenous testosterone may also play a crucial role in BP regulation. In humans, low testosterone levels have been correlated with higher BP, whereas testosterone replacement has been shown to cause significant reductions in BP, suggesting a role for testosterone in BP regulation. Moreover, in experimental models of hypertension high BP develops more rapidly and becomes more severe in the male than in the female, effects which were shown to be androgen-dependent. Further support for a role of testosterone in the etiology of hypertension is derived from studies showing that castration prevents the development of hypertension in SHR rats.

Evidence for a role for central actions of estradiol on BP regulation is derived from a variety of sources. Firstly, many of the CNS sites with well-documented roles in CV regulation have been shown to possess estrogen receptors (ERα and ERβ). Moreover, intracerebroventricular (icv) administration of estradiol in ovariectomized mice and in male mice attenuated the increase in BP normally elicited by ANG II. In rats, aldosterone/salt-induced hypertension is exhibited by intact males and ovariectomized females, effects attenuated by activation of central ER receptors. Central ER blockers or icv injections of small interfering RNA-ERα (siRNA-ERα) or siRNA-ERβ, on the other hand, augmented aldosterone-induced hypertension in intact females.

Further to these findings, estradiol has been shown to act via ERα or ERβ (or both) at specific brain regions in both males and females to influence sympathetic outflow and baroreflex function. The AP and SFO predominantly express ERα and estradiol has been shown to decrease the activity of AP and SFO neurons, inhibits ANG II activation of AP and SFO neurons, whereas genetic knockdown of ERα in the SFO enhances ANG II-induced hypertension in female mice.

Estrogen actions at ERβ in PVN inhibit hypertensive effects of glutamate activation. In the RVLM, estradiol actions at ERβ receptors have been shown to cause decreases in BP in normotensive rats and to attenuate aldosterone-induced increases in SNA and BP, whereas ERβ knockdown in RVLM or PVN results in the augmentation of aldosterone-induced increases in SNA and BP, effects that are not seen in intact females.

Relaxin, a member of the insulin family best known for its role in pregnancy, has also been shown to influence BP. Early studies revealed that chronic intravenous (iv) administration of relaxin elicits a decrease in BP in SHRs. Relaxin binding sites and relaxin receptors have been shown to be widely distributed throughout the brain, including the SFO, NTS, and PVN, suggesting that relaxin may be involved in the central control of BP. Hypertensive effects of central administration of relaxin into the dorsal third ventricle are totally abolished by lesions of the SFO, identifying this CVO as one central target mediating these cardiovascular effects. A recent study demonstrating that acute microinjection of relaxin-2 into the PVN increased sympathetic outflow and BP in SHR, whereas chronic PVN administration caused a profound increase in BP in normotensive rats, supports the conclusion that there are multiple central targets for this reproductive hormone/neurotransmitter. Moreover, this same study revealed that neutralization of endogenous relaxin reduced BP in SHR but had no significant effect in WKY, suggesting a role for relaxin in the pathogenesis of hypertension.

Another reproductive peptide that warrants further investigation into its potential contribution to the pathogenesis of hypertension is prolactin, a hormone best known for its involvement in lactation and reproduction. Very few studies have investigated the role of prolactin in the central control of CV regulation despite epidemiological evidence suggesting correlations between circulating prolactin levels and increased BP. Plasma prolactin has been shown to be elevated in patients with essential hypertension and preeclampsia. Furthermore, higher plasma prolactin levels have been shown to be associated with increased risk of hypertension in menopausal and post-menopausal women and in preeclampsia. Prolactin receptors are widely distributed throughout the body.
and brain81, mRNA for the prolactin receptor has been reported in the PVN81,82, and we have identified the presence of the prolactin receptor at levels similar to the AT1 receptor in the SFO83. However, to our knowledge, studies investigating the CV consequences of central administration of prolactin (icv or microinjection into discrete brain nuclei) on BP, or the effects of prolactin on neuronal excitability in central CV control centers, are lacking.

Gasotransmitters and cardiovascular regulation: hydrogen sulfide

Gasotransmitters are endogenously produced membrane permeable gas molecules which act at specific, targeted cells via membrane receptor-independent signaling mechanisms to exert well-defined physiological effects. The action(s) of nitric oxide (NO) and carbon monoxide (CO) at peripheral tissues and in the CNS to influence cardiovascular regulation are well documented84,85. More recently, a third gasotransmitter, hydrogen sulfide (H\textsubscript{2}S), an environmental air pollutant with well-known deleterious health effects, has been identified and suggested to play a role in the pathogenesis of hypertension. H\textsubscript{2}S is endogenously produced from catalysis of L-cysteine by using four enzymes: cystathionine \(\beta\)-synthase (CBS), cystathionine \(\gamma\)-lyase (CSE), or 3-mercaptopyruvate sulfurtransferase (3MST) in tandem with cysteine aminotransferase (CAT). CBS is highly expressed in the CNS where it produces H\textsubscript{2}S from L-cysteine86, whereas CSE is the predominant enzyme expressed in the myocardium and vasculature smooth muscle cells87. Though predominantly found in the mitochondria where they work in tandem to produce H\textsubscript{2}S, 3MST and CAT are also expressed in the brain and vascular endothelium88. In addition, H\textsubscript{2}S can be produced in red blood cells by the conversion of polysulfides which are obtained from dietary sources89.

Evidence for a role of H\textsubscript{2}S in the pathogenesis of hypertension is suggested by the observation that plasma H\textsubscript{2}S concentrations are lower in patients with grade 2 or grade 3 hypertension, portal hypertension, and pulmonary hypertension90-92 and in preeclampsia where plasma H\textsubscript{2}S levels and placental CBS mRNA expression are decreased93,94.

H\textsubscript{2}S has been shown to be endogenously produced in peripheral vascular tissues and has been demonstrated to be a potent vasodilator, causing vasorelaxation in mesenteric arteries95, aortic rings96-97, the ductus arteriosus98, and pulmonary arteries99 via actions on vascular smooth muscle cells. Unlike its gasotransmitter counterparts, NO and CO, vascular smooth muscle relaxation occurs independently of cGMP pathway activation. Activations of Ca2+-activated potassium channels (BKCa)100, ATP-sensitive potassium channels (K\textsubscript{ATP})100, Kv7 voltage-gated potassium channels97, and cytochrome P-450 2C (Cyp2C)100 have all been implicated as mechanisms of the H\textsubscript{2}S vasorelaxation.

A bolus iv injection of H\textsubscript{2}S elicited an immediate depressor response in normotensive rats100 whereas chronic intraperitoneal administration of H\textsubscript{2}S decreases BP in hypertensive rats100-101. These findings, along with the fact that mice lacking CSE exhibit hypertension and reduced endothelium-dependent vasorelaxation102, provide evidence of a direct role for H\textsubscript{2}S in BP regulation.

A role for H\textsubscript{2}S in the central control of BP stems from studies demonstrating that icv administration of H\textsubscript{2}S has been shown to dose-dependently decrease BP, effects which are followed by potent long-lasting hypertension actions attributed to modulation of H\textsubscript{2}S on K\textsubscript{ATP} channels and \(\alpha\) adrenergic stimulation, respectively103. Furthermore, microinjection of H\textsubscript{2}S into discrete brain nuclei known for their involvement in CV regulation has also been shown to affect BP. H\textsubscript{2}S administration into the RVLM elicits decreases in BP, effects again mediated by K\textsubscript{ATP} channels104, whereas similar microinjections into the PVN105 and SFO106,107 have been shown to dose-dependently increase BP. Moreover, H\textsubscript{2}S has been shown to influence the excitability of neurons in the NTS108, PVN109, and SFO106, CNS areas involved in CV regulation.

Reactive oxygen species and cardiovascular control

When produced at appropriate concentrations, ROS have been implicated in the regulation of many critical physiological processes, including cell signaling, maintenance of appropriate vascular tone, inflammation, and immune responses. ROS overproduction, on the other hand, is a feature common to a number of pathological conditions, including hypertension.

A role for ROS in hypertension is suggested in humans as a positive correlation between BP and biomarkers of oxidative stress in patients with essential hypertension has been reported110,111. Furthermore, mice lacking nicotinamide adenine dinucleotide phosphate (NADPH) oxidases, key enzymes in the production of ROS, are protected against experimental hypertension112,113, whereas overexpression potentiates ANG II-induced hypertension114.

ROS production in specific CNS cardiovascular control centers, including both brain stem (NTS, RVLM) and hypothalamic (PVN) nuclei, and within the CVOs (SFO) has been shown to play a role in neurogenic hypertension115-118. Superoxide dismutase (SOD), an enzyme that metabolizes superoxide, overexpression in the brain abolished the hypertensive response normally observed in response to icv ANG II administration119, whereas specific SOD3 deletion in the SFO increased baseline BP and potentiated ANG II-induced increases in BP120. Interestingly, this same study showed that ROS in the SFO leads to infiltration by activated lymphocytes in the peripheral vasculature120, linking oxidative stress in the CNS with immune activation in the periphery, which in concert would serve to intensify hypertension.

A high-salt diet increases NADPH oxidase (NOX-2 and NOX-4) expression in the PVN, whereas microinjection of amino-triazole (ATZ), a catalase inhibitor which increases ROS, into the PVN augments renovascular hypertension as well as increasing BP in normal rats121.

A role for ‘other’ central nervous system structures in the central control of blood pressure

This review has focused on actions of non-traditional CV signaling molecules at CNS structures with well-documented roles in CV regulation. Another emerging area that warrants mention is the role of CNS regions not classically viewed as CV control centers that have been suggested to play a role in the pathogenesis of
hypertension, secondarily or as a co-morbidity to other disease states. For example, the explosion of obesity research further to the discovery of leptin in the 1990s has highlighted the involvement of a number of CNS autonomic control centers not typically viewed as CV control centers, such as the arcuate nucleus and the anterior hypothalamus, in the pathogenesis of hypertension as a consequence of direct actions of metabolic signals in these areas (for review, see 122,123). Furthermore, many metabolic signals associated with obesity have been demonstrated to influence BP regulation via actions at the ‘classical’ CNS CV control centers. Further study of the actions of traditional CV signals (such as ANG II) within these non-traditional CV CNS centers may elucidate previously unknown roles of these regions in normal CV regulation.

Conclusions

In this brief review, we have highlighted some emerging new perspectives which over the past 20 years contributed new and important information to the evolution of our understanding of CNS mechanisms involved in central CV control. The areas we have chosen to discuss are far from an exhaustive list of what is new and interesting, but do emphasize that this is a continually developing area of research with an inherent complexity associated with the requirement for integration of diverse autonomic systems. This points us in the direction of understanding that we perhaps should not expect to consider either single brain areas or single signalling molecules as “cardiovascular” at the expense of also describing their roles in other systems. Such conclusions point us to the broader perspective that all of these brain areas, signaling molecules, and autonomic systems contribute to the complex homeostatic regulation which maintains our “milieu interior” in a state of optimal health.

Competing interests

The authors declare that they have no competing interests.

Grant information

This work was supported by a grant from the Canadian Institutes for health Research.

References

1. World Health Organization: Causes of Death 2008. Reference Source
2. Lim SS, Vos T, Flaxman AD, et al: A comparative risk assessment of burden of disease and injury attributable to 67 risk factors and risk factor clusters in 21 regions, 1990-2010: a systematic analysis for the Global Burden of Disease Study 2010. Lancet 2012; 380(9859): 2243–60. PubMed Abstract | Publisher Full Text | Free Full Text
3. World Health Organization: Global status report on noncommunicable diseases 2011.
4. DiBona GF: Sympathetic nervous system and hypertension. Hypertension. 2013; 61(3): 556–60. PubMed Abstract | Publisher Full Text
5. Guyenet PG: The sympathetic control of blood pressure. Nat Rev Neurosci. 2006; 7(5): 335–46. PubMed Abstract | Publisher Full Text
6. Parati G, Eiser M: The human sympathetic nervous system: its relevance in hypertension and heart failure. Eur Heart J. 2012; 33(9): 1058–66. PubMed Abstract | Publisher Full Text
7. Leenen FH: Actions of circulating angiotensin II and aldosterone in the brain contributing to hypertension. Am J Hypertens. 2014; 27(8): 1024–32. PubMed Abstract | Publisher Full Text
8. Moon JY: Recent Update of Renin-angiotensin-aldosterone System in the Pathogenesis of Hypertension. Electrolyte Blood Press. 2013; 11(2): 41–5. PubMed Abstract | Publisher Full Text | Free Full Text
9. White FN, Grolikan A: Autoimmune Factors Associated With Infarction Of The Kidney. Nephron. 1964; 1(2): 93–102. PubMed Abstract | Publisher Full Text
10. Choe CU, Lee RT, Riba N, et al: Blood pressure and inflammation in apparently healthy men. Hypertension. 2001; 38(3): 399–403. PubMed Abstract | Publisher Full Text
11. Engström G, Janzon L, Berglund G, et al: Blood pressure increase and incidence of hypertension in relation to inflammation-sensitive plasma proteins. Arterioscler Thromb Vasc Biol. 2002; 22(12): 2054–8. PubMed Abstract | Publisher Full Text
12. Vinh A, Chen W, Blinder Y, et al: Inhibition and genetic ablation of the B7/CD28 T-cell costimulation axis prevents experimental hypertension. Circulation 2010; 122(4): 2529–37. PubMed Abstract | Publisher Full Text | Free Full Text | F1000 Recommendation
13. Xiao L, Kiroa A, Wu J, et al: Renal Denervation Prevents Immune Cell Activation and Renal Inflammation in Angiotensin II-Hypertensive Mice. Circ Res. 2015; 117(6): 547–57. PubMed Abstract | Publisher Full Text | Free Full Text | F1000 Recommendation
14. Boesen EI, Williams DL, Pollock JS, et al: Immunosuppression with mycophenolate mofetil attenuates the development of hypertension and albuminuria in deoxycorticosterone acetate-salt hypertensive rats. Clin Exp Pharmacol Physiol. 2010; 37(10): 1016–22. PubMed Abstract | Publisher Full Text | Free Full Text
15. Muller DN, Shagdarsuren E, Park JK, et al: Immunosuppressive treatment protects against angiotensin II-induced renal damage. Am J Pathol. 2002; 161(5): 1679–93. PubMed Abstract | Publisher Full Text | Free Full Text
16. Rodriguez-Iiturbe B, Pons H, Quiroz Y, et al: Mycophenolate mofetil prevents salt-sensitive hypertension resulting from angiotensin II exposure. Kidney Int. 2001; 59(6): 2232–39. PubMed Abstract | Publisher Full Text
17. Rodriguez-Iiturbe B, Quiroz Y, Nava M, et al: Reduction of renal immune cell infiltration results in blood pressure control in genetically hypertensive rats. Am J Physiol Renal Physiol. 2002; 282(2): F191–201. PubMed Abstract | Publisher Full Text
18. Bomfim GF, Dos Santos RA, Oliveira MA, et al: Toll-like receptor 4 contributes to blood pressure regulation and vascular contraction in spontaneously hypertensive rats. Clin Sci (Lond). 2015; 128(11): 535–43. PubMed Abstract | Publisher Full Text | Free Full Text | F1000 Recommendation
19. Sollinger D, Eiller R, Lorenz S, et al: Damage-associated molecular pattern activated Toll-like receptor 4 signalling modulates blood pressure in L-NNAME-induced hypertension. Cardiovasc Res. 2014; 101(3): 464–72. PubMed Abstract | Publisher Full Text | Free Full Text
20. Guzik TJ, Hoch NE, Brown KA, et al: Role of the T cell in the genesis of angiotensin II induced hypertension and vascular dysfunction. J Exp Med. 2007; 204(10): 2449–60. PubMed Abstract | Publisher Full Text | Free Full Text | F1000 Recommendation
21. Hoch NE, Guzik TJ, Chen W, et al: Regulation of T-cell function by endogenously produced angiotensin II. Am J Physiol Regul Integr Comp Physiol. 2009; 296(2): R208–16. PubMed Abstract | Publisher Full Text | Free Full Text
22. Bautista LE, Vera LM, Arenas IA, et al: Independent association between inflammatory markers (C-reactive protein, interleukin-6, and TNF-alpha) and essential hypertension. J Hum Hypertens. 2005; 19(2): 149–54. PubMed Abstract | Publisher Full Text
23. Madhur MS, Lob HE, McCann LA, et al: Interleukin 17 promotes angiotensin
hypertrophy by modulating cytokines and attenuating oxidative stress. Taxol.

Title	Year	Volume	Pages	doi	full_text	abstract	recommendation
Takagishi M, Waki H, Bhuiyan ME,	2010;	55(2):	521–52.				
Crowley SD, Song Y, Lin EE, et al.	2010;	298(4):	R1089–97.				
Sirimulle S, Cardinale JP, Francis J:	2010;	298(4):	566–74.				
Lee DL, Shungavel M, Laboia H, et al.	2010;	298(4):	566–74.				
Sriramula S, Cardinale JP, Francis J:	2010;	298(4):	566–74.				
Crowley SD, Song Y, Lin EE, et al.	2010;	298(4):	566–74.				
Cardinale JP, Francis J:	2010;	298(4):	566–74.				
Sirimulle S, Cardinale JP, Francis J:	2010;	298(4):	566–74.				
Lee DL, Shungavel M, Laboia H, et al.	2010;	298(4):	566–74.				
Sriramula S, Cardinale JP, Francis J:	2010;	298(4):	566–74.				
Lee DL, Shungavel M, Laboia H, et al.	2010;	298(4):	566–74.				
Sriramula S, Cardinale JP, Francis J:	2010;	298(4):	566–74.				
Lee DL, Shungavel M, Laboia H, et al.	2010;	298(4):	566–74.				
Sriramula S, Cardinale JP, Francis J:	2010;	298(4):	566–74.				
Lee DL, Shungavel M, Laboia H, et al.	2010;	298(4):	566–74.				
Sriramula S, Cardinale JP, Francis J:	2010;	298(4):	566–74.				
Lee DL, Shungavel M, Laboia H, et al.	2010;	298(4):	566–74.				
Sriramula S, Cardinale JP, Francis J:	2010;	298(4):	566–74.				
Lee DL, Shungavel M, Laboia H, et al.	2010;	298(4):	566–74.				
Sriramula S, Cardinale JP, Francis J:	2010;	298(4):	566–74.				
Lee DL, Shungavel M, Laboia H, et al.	2010;	298(4):	566–74.				
Sriramula S, Cardinale JP, Francis J:	2010;	298(4):	566–74.				
Lee DL, Shungavel M, Laboia H, et al.	2010;	298(4):	566–74.				
Sriramula S, Cardinale JP, Francis J:	2010;	298(4):	566–74.				
Lee DL, Shungavel M, Laboia H, et al.	2010;	298(4):	566–74.				
Sriramula S, Cardinale JP, Francis J:	2010;	298(4):	566–74.				
Lee DL, Shungavel M, Laboia H, et al.	2010;	298(4):	566–74.				
65. Li Z, Hay M: 17-beta-estradiol modulation of area postrema potassium currents. J Neurophysiol. 2000; 84(3): 1385–91.
Published Abstract

66. Cinello B, Roder S: 17b-Estradiol alters the response of subformical organ neurons that project to supraoptic nucleus to plasma angiotensin II and hypernatremia. Brain Res. 2011; 1526: 64–64.
Published Abstract | Publisher Full Text

67. Pamidimukkala J, Hay M: 17 beta-Estradiol inhibits Ang II activation of area postrema neurons. Am J Physiol Heart Circ Physiol. 2003; 286(4): H1515–20.
Published Abstract | Publisher Full Text

68. Xue B, Zhang Z, Betz TG, et al.: Genetic knockdown of estrogen receptor-alpha in the subparfornical organ augments Ang II-induced hypertension in female mice. Am J Physiol-Regul Integr Comp Physiol. 2015; 308(6): R507–16.
Published Abstract | Publisher Full Text | Free Full Text | F1000 Recommendation

69. Gingerich S, Krukoff TL: The role of nitric oxide in cardiovascular signal transduction pathways and phenotypes observed in PRL receptor knockout mice. Endocr Rev. 1998; 19(3): 225–68.
Published Abstract | Publisher Full Text | Free Full Text

70. Shiho CD: Activation of estrogen receptor beta-dependent nitric oxide signaling mediates the hypertrophic effects of estrogen in the rostral ventromedial nucleus of anesthetized rats. J Biomed Sci. 2009; 16: 60.
Published Abstract | Publisher Full Text | Free Full Text

71. St-Louis J, Massicotte G: Chronic decrease of blood pressure by rat relaxin in spontaneously hypertensive rats. Life Sci. 1985; 37(14): 1351–7.
Published Abstract | Publisher Full Text

72. Ma S, Shen P, Burzyn TC, et al.: Comparative localization of leucine-rich repeat-containing G-protein-coupled receptors (RFKFP1) mRNA and [33P]–relaxin binding sites in rat brain: restricted somatic co-expression a clue to relaxin action? Molecular Endocrinology. 2006; 20(1): 329–44.
Published Abstract | Publisher Full Text | F1000 Recommendation

73. Munford AD, Parry LJ, Summerville AJ: Lesion of the subformical organ affects the haemodynamic response to centrally administered relaxin in anesthetized rats. J Endocrinol. 1989; 122(3): 747–55.
Published Abstract

74. Sun NL, Xi Y, Yang SN, et al.: [Plasma hydrogen sulfide and homocysteine levels in hypertensive patients with different blood pressure levels and complications]. Zhonghua Xin Xue Guan Bing Za Zhi. 2007; 35(12): 1146–8.
Published Abstract

75. Li L, Whiteman M, Guan YY, et al.: Hydrogen sulfide mediates the vasoactivity of garlic. Proc Natl Acad Sci U S A. 2007; 104(4): 1797–82.
Published Abstract | Publisher Full Text | Free Full Text | F1000 Recommendation

76. Wang K, Han J, Xiao L, et al.: Role of hydrogen sulfide in portal hypertension and esophagogastric junction vascular disease. World J Gastroenterol. 2014; 20(4): 1079–87.
Published Abstract | Publisher Full Text | Free Full Text

77. Holwerda KM, Bos EM, Rajakumar A, et al.: Hydrogen sulfide producing enzymes in pregnancy and preeclampsia. Placenta. 2012; 33(6): 518–21.
Published Abstract | Publisher Full Text | Free Full Text

78. Wang K, Ahmad S, Cai M, et al.: Dysregulation of hydrogen sulfide producing enzyme cystathionine γ-lyase contributes to maternal hypertension and placental abnormalities in preeclampsia. Circulation. 2013; 127(25): 2514–22.
Published Abstract | Publisher Full Text | Free Full Text

79. d’Emmanuelli di Villa Bianca R, Sorrentino R, Coletta C, et al.: Hydrogen sulfide-induced dual vascular effect involves arachidonic acid cascade in rat mesenteric arterial bed. J Pharmacol Exp Ther. 2011; 337(1): 59–64.
Published Abstract | Publisher Full Text

80. Baragatti B, Ciofini E, Sodini D, et al.: Hydrogen sulfide in the mouse ductus arteriosus: a naturally occurring relaxant with potential EDHF function. J Am Physiol Heart Circ Physiol. 2010; 304(7): H297–34.
Published Abstract | Publisher Full Text

81. Martelli A, Testai L, Breschi MC, et al.: Vasorelaxation by hydrogen sulphide involves activation of K,þ potassium channels. Pharmacol Res. 2013; 70(1): 27–34.
Published Abstract | Publisher Full Text

82. Aryanarathnam P, Loubani M, Morice AH: Hydrogen sulphide vasodilates human pulmonary arteries: a possible role in pulmonary hypertension? Microvasc Res. 2013; 90: 135–7.
Published Abstract | Publisher Full Text

83. Jackson-Weaver O, Osmond JM, Riddle MA, et al.: Putative biomarkers predicting risk of pulmonary hypertension in congenital heart disease: the role of homocysteine and hydrogen sulfide. Chin Med J (Engl). 2014; 127(5): 893–9.
Published Abstract

84. Wang C, Han J, Xiao L, et al.: Role of hydrogen sulfide in portal hypertension and esophagogastric junction vascular disease. World J Gastroenterol. 2014; 20(4): 1079–87.
Published Abstract | Publisher Full Text | Free Full Text | F1000 Recommendation

85. Baragatti B, Ciofini E, Sodini D, et al.: Hydrogen sulfide in the mouse ductus arteriosus: a naturally occurring relaxant with potential EDHF function. J Am Physiol Heart Circ Physiol. 2010; 304(7): H297–34.
Published Abstract | Publisher Full Text

86. Martelli A, Testai L, Breschi MC, et al.: Vasorelaxation by hydrogen sulphide involves activation of K,þ potassium channels. Pharmacol Res. 2013; 70(1): 27–34.
Published Abstract | Publisher Full Text

87. Hosseini R, Matsuki K, Kimura H: The possible role of hydrogen sulfide as an endogenous smooth muscle relaxant in synergy with nitric oxide. Biochem Biophys Res Commun. 1997; 237(3): 527–31.
Published Abstract | Publisher Full Text

88. Ahmad FU, Sattar MA, Rathore HA, et al.: Exogenous hydrogen sulfide reduces blood pressure and prevents the progression of diabetic nephropathy in spontaneously hypertensive rats. Ren Fail. 2012; 34(2): 203–10.
Published Abstract | Publisher Full Text

89. Ahmad FU, Sattar MA, Rathore HA, et al.: Hydrogen sulfide and tempol treatments improve the blood pressure and renal excretory responses in spontaneously hypertensive rats. Ren Fail. 2014; 36(4): 598–605.
Published Abstract | Publisher Full Text

90. Yan H, Du J, Tang C: The possible role of hydrogen sulfide on the pathogenesis of spontaneous hypertension in rats. Biochem Biophys Res Commun. 2004; 318(1): 22–7.
Published Abstract | Publisher Full Text

91. Li L, Whiteman M, Guan YY, et al.: Characterization of a novel, water-soluble hydrogen sulfide-releasing molecule (GYY4137): new insights into the biology of hydrogen sulfide. Circulation. 2008; 117(18): 2351–60.
Published Abstract | Publisher Full Text

92. Yang G, Wu L, Jiang B, et al.: H,S as a physiologic vasorelaxant: hypertension in mice with deletion of cystathionine gamma-lyase. Science. 2008; 322(5901): 587–90.
Published Abstract | Publisher Full Text | Free Full Text | F1000 Recommendation

93. Ren YS, Wu SY, Wang XJ, et al.: Multiple hemodynamic effects of endogenous hydrogen sulfide on central nervous system in rats. Chin Med J (Engl). 2011; 124(21): 3468–75.
Published Abstract | Publisher Full Text

94. Guo Q, Jin S, Wang XL, et al.: Hydrogen sulfide in the rostral ventromedial medulla inhibits sympathetic vasomotor tone through ATP-sensitive K⁺ channels. J Pharmacol Exp Ther. 2011; 338(2): 458–65.
Published Abstract | Publisher Full Text

Page 7 of 9
108. Gan XB, Liu TY, Xiong XQ, et al.: Hydrogen sulfide in paraventricular nucleus enhances sympathetic activity and cardiac sympathetic afferent reflex in chronic heart failure rats. *PLoS One.* 2012; 7(11): e50102. PubMed Abstract | Publisher Full Text | Free Full Text

109. Kulesa M, Smith PM, Ferguson AV: Hydrogen sulfide regulates cardiovascular function by influencing the excitability of subfornical organ neurons. *PLoS One.* 2014; 9(8): e105772. PubMed Abstract | Publisher Full Text | Free Full Text

110. Malik R, Ferguson AV: Hydrogen sulfide depolarizes neurons in the nucleus of the solitary tract of the rat. *Brain Res.* 2016; 1633: 1–9. PubMed Abstract | Publisher Full Text

111. Khademullah CS, Ferguson AV: Depolarizing actions of hydrogen sulfide on hypothalamic paraventricular nucleus neurons. *PLoS One.* 2013; 8(5): e64495. PubMed Abstract | Publisher Full Text | Free Full Text

112. Rodrigo R, Libuy M, Feliú F, et al.: Oxidative stress-related biomarkers in essential hypertension and ischemia-reperfusion myocardial damage. *DisMarkers.* 2013; 35(6): 773–90. PubMed Abstract | Publisher Full Text | Free Full Text

113. Rodrigo R, Prat H, Passalacqua W, et al.: Relationship between oxidative stress and essential hypertension. *Hypertens Res.* 2007; 30(12): 1159–67. PubMed Abstract | Publisher Full Text

114. Cowley AW Jr, Yang C, Zheleznova NN, et al.: Evidence of the Importance of Nox4 in Production of Hypertension in Dahl Salt-Sensitive Rats. *Hypertension.* 2016; 67(2): 440–50. PubMed Abstract | Publisher Full Text | Free Full Text | F1000 Recommendation

115. Dikalova A, Clempus R, Lassègue B, et al.: Nox1 overexpression potentiates angiotensin II-induced hypertension and vascular smooth muscle hypertrophy in transgenic mice. *Circulation.* 2005; 112(17): 2668–76. PubMed Abstract | Publisher Full Text

116. Braga VA, Colombari E, JVida MG: Angiotensin II-derived reactive oxygen species underpinning the processing of the cardiovascular reflexes in the medulla oblongata. *Neurosci Bull.* 2011; 27(4): 269–74. PubMed Abstract | Publisher Full Text

117. Braga VA, Medeiros IA, Ribeiro TP, et al.: Angiotensin-II-derived reactive oxygen species along the SFO-PVN-RVLM pathway: implications in neurogenic hypertension. *Braz J Med Biol Res.* 2011; 44(8): 871–6. PubMed Abstract | Publisher Full Text

118. Kishi T, Hirooka Y, Kimura Y, et al.: Increased reactive oxygen species in stroke-prone spontaneously hypertensive rats. *Circulation.* 2004; 109(19): 2357–62. PubMed Abstract | Publisher Full Text | Free Full Text | F1000 Recommendation

119. Zimmerman MC, Lazartigues E, Lang JA, et al.: Superoxide mediates the actions of angiotensin II in the central nervous system. *Circ Res.* 2002; 91(11): 1038–45. PubMed Abstract | Publisher Full Text

120. Lob HE, Marvar PJ, Guzik TJ, et al.: Induction of hypertension and peripheral inflammation by reduction of extracellular superoxide dismutase in the central nervous system. *Hypertension.* 2010; 55(2): 277–83, 6p following 283. PubMed Abstract | Publisher Full Text | Free Full Text | F1000 Recommendation

121. Halaas JL, Gajiwala KS, Maffei M, et al.: Weight-reducing effects of the plasma protein encoded by the obese gene. *Science.* 1995; 269(5223): 543–6. PubMed Abstract | Publisher Full Text

122. Carmichael CY, Wainford RD: Hypothalamic signaling mechanisms in hypertension. *Curr Hypertens Rep.* 2015; 17(2): 39. PubMed Abstract | Publisher Full Text | Free Full Text

123. Stump M, Mukohda M, Hu C, et al.: PPARγ Regulation in Hypertension and Metabolic Syndrome. *Curr Hypertens Rep.* 2015; 17(12): 89. PubMed Abstract | Publisher Full Text
Open Peer Review

Current Referee Status: ✓ ✓

Editorial Note on the Review Process

F1000 Faculty Reviews are commissioned from members of the prestigious F1000 Faculty and are edited as a service to readers. In order to make these reviews as comprehensive and accessible as possible, the referees provide input before publication and only the final, revised version is published. The referees who approved the final version are listed with their names and affiliations but without their reports on earlier versions (any comments will already have been addressed in the published version).

The referees who approved this article are:

Version 1

1 **John Ciriello**, Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada

Competing Interests: No competing interests were disclosed.

2 **Leo Renaud**, Neuroscience Program, Ottawa Hospital Research Institute and Department of Medicine, University of Ottawa, Ottawa, Ontario, Canada

Competing Interests: No competing interests were disclosed.