Influence of the Composition of the Hybrid Filler on the Atomic Oxygen Erosion Resistance of Polyimide Nanocomposites

Olga Serenko 1,*, Ulyana Andropova 1,2, Nadezhda Tebeneva 2, Mihail Buzin 1, Egor Afanasyev 1, Aleksander Tarasenkov 2, Sergey Bukalov 1, Larisa Leites 1, Rinat Aysin 1, Lev Novikov 3, Vladimir Chernik 3, Ekaterina Voronina 3 and Aziz Muzafarov 1

1 A.N. Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences, 28 Vavilova St., GSP-1, V-334, Moscow 119991, Russia; hrh_uly@mail.ru (U.A.); buzin@ineos.ac.ru (M.B.); nambrot@yandex.ru (E.A.); buklei@ineos.ac.ru (S.B.); raman@ineos.ac.ru (L.L.); aysin@ineos.ac.ru (R.A.); aziz@ineos.ac.ru (A.M.)
2 N.S. Enikolopov Institute of Synthetic Polymeric Materials of Russian Academy of Sciences, 70 Profsoyuznaya St., Moscow 117393, Russia; tebeneva@mail.ru (N.T.); antarr@bk.ru (A.T.)
3 D.V. Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University, 119991 Moscow, Russia; novikov@sinp.msu.ru (L.N.); vlachernik@yandex.ru (V.C.); voroninaen@nsrd.sinp.msu.ru (E.V.)
* Correspondence: oserenko@yandex.ru

Received: 26 June 2020; Accepted: 16 July 2020; Published: date

Figure S1. Chemical structure of polyimide. Polymer with $M_w=10.7 \times 10^5$ was synthesized by one-step high-temperature polycondensation of the relevant monomers in m-cresol. A reduced viscosity of 0.97 dL/g was measured for the polymer solution in N-methyl-2-pyrrolidone at 25 °C.
Figure S2. Structural formulas of precursors.

Table S1. Compositions of films based on PI.

Sample	Precursor Concentration [wt.%]	Precursor Solution Weight [g]	Filler Content [wt.%]	Filler Content [mmol/g]**
PI-Al	3	0.062	1.6	0.065
MDES	14	0.323	8.0	0.341
PI-Fe	3	0.063	1.7	0.06
MDES	14	0.329	8.1	0.313
PI-Cr	3	0.073	2.3	0.066
MDES	14	0.384	10.7	0.346
PI-Zr	3	0.063	1.8	0.046
MDES	14	0.324	10.0	0.285
PI-Hf	3	0.060	1.8	0.039
MDES	14	0.325	10.7	0.249
PI-Nb	3	0.067	1.8	0.040
MDES	14	0.352	8.3	0.210

*The 5 wt.% precursor solution in chloroform was added to 0.10 g PI solution in 4 ml of chloroform with stirring in an argon stream. **mmol of filler per gram of PI.

Preparation of filled films

A precursor solution in chloroform was added to 0.10 g PI solution in 4 ml of chloroform with stirring in an argon stream. The detailed formulations are listed in Table S1. The precursor concentration was 3 and 14 wt%. The resulting solution was poured into a teflon form and dried at room temperature for 3 days. Afterwards, the polymer film was heat treated in a drying oven with a gradual increase in temperature from 50 to 200 °C for 6 hours.

The thickness of the obtained films was 110-120 μm. The filler contents, according to calculations carried out under the assumption of 100% conversion of the ethoxy groups, are presented in Table S1.
For analyses of filled films, the polymer film and the film of 100% precursor, obtained under identical conditions, served as samples for comparison.

AO Beam Exposures

The facility consists of an evacuated vessel in which a plasma accelerator is placed. The vessel has a specimen holder and beam diagnostic equipment. Using vacuum pumping by cryogenic pumps with a rate of 5 m3/s, the vessel maintains a pressure of (0.5-2)×10$^{-2}$ Pa with a plasma-supporting gas-oxygen requirements of 0.5 L Pa/s. The beam components are atoms, molecules and oxygen ions with a predominance of atomic ions. The power flux density absorbed by the specimen was 15 mW/cm2, which approximately corresponds to the heating of the specimen by solar radiation in space.

Film samples 20×20 mm in size were used. The specimens were degassed beforehand and held for 24 hours at a temperature of 20 °C in a vacuum of 10$^{-4}$ Pa.

Specimens were irradiated by an oxygen plasma beam from a plasma accelerator, simulating low-earth orbit conditions. To ensure the same exposure, the analysed specimens and the reference specimen were mounted on a rotating disk, placed normally to the plasma flow. The specimens’ masses were measured outside the evacuated vessel on an analytical microbalance HR-202i (AND, Japan) with a scale multiplier of 10$^{-5}$ g, before and after each irradiation cycle with plasma flow.

In the experiment, the effective fluence method was used to determine the intensity of AO exposure [1]. The equivalent AO fluence, F (O atoms cm$^{-2}$), was determined by the change in weight of a reference sample (Kapton H polyimide film, DuPont) with an erosion yield of $E_K = 3 \times 10^{-24}$ cm3/atom:

$$F = \frac{\Delta m_K}{S \rho_K E_K}$$

where Δm_K is the reference sample weight loss (g) during AO exposure, S is the exposed surface area (cm2) and ρ_K is the density of the reference sample (1.42 g/cm3). The effective AK flux density in polyimide equivalents was (3-4)×1016 atom/cm2s.

The erosion yield coefficient (E_y, cm3 atom$^{-1}$) of research samples is defined as the volume loss caused by one AO attack, calculated by Eq. (2)

$$E_y = \frac{\Delta m}{S \rho F}$$

where Δm is the sample weight loss (g) during AO exposure, S is the exposed surface area (cm2), and ρ is the density of sample (1.38 g/cm3).

\[M \left[\text{OSi(CH}_3\text{)(OC}_2\text{H}_5)\right]_n \xrightarrow{\text{atmospheric \ moisture}} \text{-C}_2\text{H}_5\text{OH} \rightarrow M \left[\text{OSi(CH}_3\text{)(OH)}\right]_n \]

(a)

\[mM \left[\text{OSi(CH}_3\text{)(OH)}\right]_n \xrightarrow{-\text{H}_2\text{O}} \left(M \left[\text{OSi(CH}_3\text{-O)}\right]_n \right)_m \]

(b)

Figure S3. Assumed scheme of metalloalkoxysiloxane hydrolysis (a) and condensation (b), where M= Al, Fe, Zr, Hf, Nb and n=3-5.
Figure S4. IR spectra of the films (on KBr plates) in the region 800-1800 cm\(^{-1}\): the PI – 14 wt.% Cr-MDES (1), the PI (2) and the difference spectrum (3), proving the presence of Cr-MDES in the composite (a broad band 900-1150 cm\(^{-1}\) in the difference spectrum).
Figure S5. The proposed scheme of the reaction the amine group of the precursor with the imide group of the matrix polymer.

Reference

1. ASTM E. 2089-00. Standard practices for ground laboratory atomic oxygen interaction evaluation of materials for space applications, Annual book of ASTM standards, 2000.

© 2020 by the authors. Submitted for possible open access publication under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).