A descriptive report of the selenium distribution in tissues from pigs with mulberry heart disease (MHD)

Marianne Oropeza-Moe¹*, Michaela Falk², Marie Vollset³, Helene Wisløff⁴, Aksel Bernhoft⁴, Tore Framstad⁵ and Brit Salbu³

Abstract

Background: Mulberry Heart Disease (MHD) is a condition affecting mainly young pigs in excellent body condition. Feed efficient pigs showing high average daily gains are more likely to be affected. MHD has been described as a challenge in Norwegian pig production over the last decade despite abundant supplies of vitamin E and selenium (Se) close to the upper limits set by the EU. From 2015 to 2017, samples from documented MHD field cases were collected and compared with controls regarding post mortem findings and Se concentrations in numerous internal and external organs were determined in order to characterize the Se distribution, and to identify any differences between MHD cases and controls.

Case presentation: Eight MHD cases from commercial farms and a pet pig producer located in the South West and East of Norway, and three control animals originating from these farms were included in this study. MHD cases and controls were weaned pigs with an average bodyweight (BW) of 17 kg (range 9 to 46 kg BW), with the exception of one pet piglet (Mangalica, 6 kg BW) that had only received sow milk. Selenium was determined in samples from the cardiovascular, digestive, immune, endocrine, integumentary, muscular, respiratory and urinary systems using inductively coupled plasma mass spectrometry (QQQ ICP-MS). All pigs with MHD suffered sudden deaths. Control animals were euthanized without being bled prior to necropsy and sampling. Significantly different mean Se concentrations between MHD cases and controls were found in cardiac samples as well as almost all skeletal muscles (P < 0.05). Based on the samples from ten different muscles (except the cardiac samples), mean Se concentrations in MHD cases were 0.34 (0.01) mg/kg DM compared with 0.65 (0.02) mg/kg DM in control pigs (P < 0.0001). In cardiac samples, mean Se concentrations from MHD cases were 0.87 (0.02) mg/kg DM vs. 1.12 (0.04) mg/kg DM (P < 0.0001). Additionally, significantly lower Se concentrations compared with controls were found in the liver as well as the caecum, duodenum, gastric ventricle, jejunum, kidney, skin and thymus samples.

Conclusions: Based on the present work, the current common practice regarding tissue analyses in MHD cases could be refined to include other organs than liver and heart. The evident differences in mean Se concentrations in 9 out of 10 samples from the muscular system, could make such samples relevant for complementary measurements of Se concentrations to help confirm the MHD diagnosis. We find it interesting that although our limited number of sampled pigs are different in terms of genetics, size and feeding regimes, the variation of Se concentrations in a given organ was low between MHD cases. Since this report includes a limited number of MHD cases and controls, our results should be corroborated by a controlled, larger study.

Keywords: Mulberry heart disease, Skeletal muscle, Liver, Cardiac, Muscular, Gastrointestinal, Selenium, Distribution
Background
Selenium (Se) deficiency involved in fatal cardiomyopathy is well known in pigs [1–3]. Se deficiency probably causes uncompensated oxidative stress leading to cellular damage, often resulting in death [3]. The importance of Se and selenoproteins in muscle tissue physiology is well documented. Studies have shown that the gene expression, plasma and tissue concentrations of selenoproteins W and selenoprotein P as well as glutathione peroxidase activity, are higher in Se-supplemented than Se-deficient animals [4–8].

Mulberry heart disease (MHD) is a peracute to acute condition, appearing mainly in pigs of two to four months of age. It has, however, been observed in pigs as young as three weeks. Typically pigs in excellent body condition are found dead. The principal gross lesions in pigs succumbing to MHD are straw-colored fluid in the pleural cavity, transudate with fibrin in the pericardium and edematous lungs. The myocardium appears mottled due to transmural hemorrhage and pale necrotic areas. Oxidative stress causes oxidative modifications of myofilament proteins like actin, titin and myosin and can thereby impair the contractility of myocytes [9]. The above mentioned alterations in myocytes combined with macroscopic and microscopic lesions of MHD cases strongly suggest ventricular dysrhythmia followed by acute heart failure. The diagnosis of MHD can be confirmed when the following microscopic heart lesions are observed: In acute cases interstitial hemorrhage is the main lesion, whereas in less acute cases degeneration and necrosis of myofibers, sometimes with mineralization, are observed. [10].

Tremendous advancement within molecular biology and genomics over the last decades, e.g. the sequencing of the porcine genome [11], has facilitated development and improvement of sophisticated research methods and technology. The added value of DNA information to breeding over the last decades, e.g. the sequencing of the porcine genome [11], has facilitated development and improvement of sophisticated research methods and technology. The added value of DNA information to breeding improvement of sophisticated research methods and technology. The added value of DNA information to breeding improvement of sophisticated research methods and technology. The added value of DNA information to breeding improvement of sophisticated research methods and technology.
compared to Se levels in samples from the three control pigs. The lung was sampled from the right or left side, the spleen, thymus, thyroid gland, skeletal muscles, and kidney were obtained from the center of the organ. Both parathyroid glands were collected. Samples from the gastrointestinal tract were isolated from the proximal section of each intestinal region. From the liver, tissue was sampled from the lobe adjacent to the gallbladder. The splenic lobe of the pancreas was sampled. Additionally, a transmural sample from the center of the right and left free ventricular wall. Diaphragmatic and myocardial hemorrhages, swollen cardiac myofibers with loss of cross striations, and hypereosinophilic myofibers with pyknotic nuclei.

Samples of different tissues were collected at the same localization from each animal, both MHD cases and controls. Approximately 50 mg of tissue for ICP-MS analysis were placed in 1.8 mL cryotubes (Nunc Cryotube™, Sigma-Aldrich, Leirdal, Norway) and stored at −20 °C until ICP-MS analysis. From the cardiac muscle, transmural samples were obtained from the center of the right and left free ventricular wall. Additionally, a transmural sample from the center of the septum was obtained. The gastric ventricle was further examined from any of the specimens. Microbiologic examination was conducted on selected tissues from all animals. Specimens were inoculated on sheep blood agar for 48 h at 37 °C and 5% CO₂. No bacterial growth was identified from any of the specimens tested.

A total of five to eight samples per tissue were analyzed for their total Se concentration (MHD cases) and compared to Se levels in samples from the three control pigs. The concentrations of Se in collected organs were determined using inductively coupled plasma mass spectrometry (Agilent 8800 QQQ ICP-MS, Japan) at the Norwegian University of Life Sciences (NMBU/MINA). The organs were weighed, freeze-dried, transferred to acid cleaned Teflon tubes, and then weighed once more. The samples were added 2 ml water, 60 ng 74Se (enriched to 99.9%) as internal standard and 1.5 mL conc HNO₃ (ultrapure quality). The samples, CRM and blanks were digested in an UltraClave and/or UltraWave from Milestone at 260 °C for about 20 min. After digestion, all samples were diluted to 15 ml prior to measurements [22]. Bovine Liver 1577c served as CRM. Limit of detection (LOD) and limit of quantification (LOQ) were calculated, 3 and 10 times respectively the standard deviation of the method blanks. In the present work LOD 0.005 mg Se/kg, LOQ 0.016 mg Se/kg.

Microbiologic examination was conducted on selected tissues from all animals. Specimens were inoculated on sheep blood agar for 48 h at 37 °C and 5% CO₂. No bacterial growth was identified from any of the specimens tested.

All data were exported to Excel (Microsoft Corporation, Redmond, Washington) and then imported into JMP® Pro 14.0.0 (SAS Institute Inc., Cary, NC 2751, USA) for statistical analyses. Normality of data was tested by the Shapiro-Wilk test and homogeneity of variance. Differences between groups were analyzed by 1-way analysis of variance with concentrations of Se as the dependent variable and the animals’ status (MHD or control) as the independent variable. The farm, feed, sex and age were used as covariates. The p-level was set to 0.05. Potential outliers were
assessed graphically and model diagnostics were performed.

In all MHD cases, the diagnosis was confirmed by typical macroscopic lesions and histopathological findings. All MHD cases had straw-colored transudate in the pleural and pericardial cavity, often with fibrin strands (Fig. 1). Additionally, pulmonary edema as well as pale and reddened areas of the myocardium due to subepicardial (Fig. 2) and myocardial hemorrhages (Fig. 3) were found. Microscopically, interstitial hemorrhage was observed along with swollen cardiac myofibers that had lost cross striations (Fig. 4). Some histological sections also showed microthrombi, degenerative and necrotic areas with local mineralization.

No lesions were found in skeletal muscles or liver tissues, except MHD case no. 8, also showing macro- and microscopic lesions compatible with Hepatosis dietetica.

Based on all ten skeletal muscular samples, mean Se concentrations in MHD cases were 0.34 (0.01) mg/kg compared with 0.65 (0.02) mg/kg in control pigs ($P < 0.0001$). Samples from the cardiovascular system showed significantly lower mean Se concentrations in all sampled areas of MHD cases compared with control pigs. Greater difference in mean Se concentrations was observed in the left ventricular wall of the heart; 0.84 (0.15) mg/kg vs. 1.13 (0.12) mg/kg ($P = 0.0070$, Table 3).

If combining the results from the three cardiac samples, the mean Se concentration in MHD cases was 0.87 (0.02) mg/kg as opposed to 1.12 (0.04) mg/kg ($P < 0.0001$) in the cardiac samples from controls.

Within the digestive system, lower average Se concentrations were found in samples from the MHD cases’ gastric ventricle, duodenum, jejunum and caecum. In the liver samples, mean Se concentrations of MHD cases were 1.29 (0.20) mg/kg vs 1.77 mg/kg (0.40) in controls.

Table 2: Feed composition

%	Farm 1*	Farm 2	Farm 3	Farm 4	Farm 5	Farm 6			
	MHD1	C1	MHD2/ MHD3	C2/ C3	MHD4	MHD5	MHD6	MHD7	MHD8
Fishmeal LT-94	7.00	7.00	5.00	16.80	10.00	43.13	22.60	27.71	
Barley	35.48	32.16	10.00	8.00	6.00	4.00	14.20	1.60	
Soybean cake flour	13.28	13.21	11.00	8.00	6.00	8.00	8.00	8.00	
Soybean meal	0.38	0.60	1.40	1.00	0.50	1.00	0.50	1.00	
Soybean oil	5.00	6.00	50.24	45.71	10.00	49.89	15.00	15.00	
Wheat	8.00	8.00	8.00	8.00	8.00	8.00	8.00	8.00	
Oats	25.00	30.00	1.70	3.00	9.50	15.00	15.00	15.00	
Pea starch	5.00	3.00	3.00	5.00	5.00	5.00	5.00	5.00	
Limestone	1.27	1.29	1.27	1.29	1.27	1.29	1.27	1.29	
Animal fat	2.00	4.03	3.20	2.10	3.00	3.00	3.00	3.00	
Field beans	5.00	2.00	0.70	0.50	2.00	1.00	2.00	2.00	
Molasses sugar cane	2.30	2.30	2.30	2.30	2.30	2.30	2.30	2.30	
Sunflower cake	2.00	2.00	2.00	2.00	2.00	2.00	2.00	2.00	
Corn gluten	10.00	10.00	10.00	10.00	10.00	10.00	10.00	10.00	
Corn grits	0.20	0.20	0.20	0.20	0.20	0.20	0.20	0.20	
Milkromin Pig a	0.08	0.08	0.08	0.08	0.08	0.08	0.08	0.08	
Vitamin ADKB b	0.39	0.39	0.39	0.39	0.39	0.39	0.39	0.39	
mg/ kg	175.00	175.00	175.00	175.00	175.00	175.00	175.00	175.00	

*Additives containing the following per kilogram of diet:

a Fe 96 mg; Cu 20.8 mg; Mn 48 mg; Zn 96 mg; I 0.48 mg
b Vitamin A 5700 IU; Vitamin D 1200 IU; Vitamin E 100 mg; Vitamin K 3.72 mg; Vitamin B1 2.4 mg; Vitamin B2 4.5 mg; Vitamin B5 12.0 mg; Vitamin B6 7.2 mg; Folic acid 1.8 mg; Biotin 0.24 mg

*At Farm 1, the feed was supplemented with whey, accounting for 25% of the total energy.
(P = 0.020). No differences between MHD cases and controls were found in samples from the adrenal glands, claws, colon, ileum, lungs, lymph nodes, pancreas, parathyroid gland, spleen or thyroid gland.

Discussion and conclusions

The sampled pigs in this report constitute a heterogeneous group since multiple genetic lines fed different feed and pigs with differing bodyweight are represented. These are factors potentially influencing the pigs’ susceptibility to oxidative stress and MHD. We find it interesting that although our limited number of sampled pigs are different in terms of genetics, size and feeding regimes, the variation of Se concentrations in a given organ is low between MHD cases.

The results from this study provide information about the Se distribution both in internal and external organs in MHD cases and designates muscle tissue as particularly interesting regarding the diagnostic approach. Most reports describing pigs with MHD refer to vitamin E and Se concentrations in liver samples [10, 18–20, 23]. Although biodilution cannot be excluded (difference in weight and age), our results did render significant differences in liver Se concentrations between MHD cases and control animals. Mean liver concentrations of MHD cases (dry basis) in this study were 1.29 mg/kg (0.20). A liver concentration of 1.2 mg Se/kg (dry basis) was suggested by Lindberg and Siren as normal [24]. Other studies have stated that MHD cases apparently show Se liver concentrations within what is considered the normal range [10, 19]. Thus, the questions arise if the Se concentrations in liver samples from healthy, high-yielding pigs of today should actually be higher, if other samples should be collected and analyzed, and if genetic differences between breeds could affect the actual Se requirements. A recent study has shed light on the micronutrient-genetic relationships and showed that genetic background can affect the intake of minerals [25]. Typically MHD cases are pigs growing rapidly. This feature combined with possible individual disparities regarding feed intake and efficiency may contribute to a disruption in proper mineral intake and cause certain individuals within a group of pigs to succumb to MHD.

Most previous reports on MHD also include Se concentrations in myocardial samples, which is reasonable since pathological findings are found invariably in the myocardium of MHD cases. Here, a significant difference was found between MHD samples and controls...
with respect to the samples isolated from the septum ($P < 0.01$), left ($P < 0.01$) and right ventricle ($P < 0.05$) of the myocardium. This is not in accordance with previous studies, reporting no difference between MHD cases and controls in terms of Se concentrations in cardiac samples [18, 26]. In a recent publication the authors stated that different muscle tissues have distinct intrinsic mitochondrial respiratory functions, which likely influences the efficiency of oxidative phosphorylation and could potentially alter reactive oxygen species (ROS) production [27]. The cardiac muscle with its high metabolic demand is rich in mitochondria, accounting for approximately 35% of the cardiac tissue volume. Skeletal muscles exhibit approximately half of the mitochondrial density found in the cardiac muscle. Since mitochondria are the most important cellular source of ROS [28], this may contribute to the cardiac muscle susceptibility to ROS-induced oxidative injury if a pig is deficient in antioxidant factors. A rodent Se deficiency and repletion model showed a distinct distribution of selenoenzymes,

Table 3: Se concentrations in different organ samples from cases of Mulberry Heart Disease (MHD) and controls (mg/kg dry weight)

Organ system	Organ samples	MHD	Control	P-value	
	Mean Se (mg/kg)	n	Mean Se (mg/kg)	n	
Cardiovascular system					
Myocardium, left ventricle	0.84 (0.15)	8	1.13 (0.12)	3	0.0070
Myocardium, right ventricle	0.92 (0.04)	5	1.11 (0.15)	3	0.032
Myocardium, septum	0.88 (0.04)	6	1.16 (0.06)	3	0.0059
Digestive system					
Caecum	0.63 (0.11)	8	0.87 (0.18)	3	0.020
Colon	0.77 (0.19)	8	1.04 (0.23)	3	ns
Duodenum	0.78 (0.15)	7	1.20 (0.10)	3	0.0020
Gastric ventricle	0.64 (0.13)	6	0.93 (0.08)	3	0.0090
Ileum	0.86 (0.11)	8	1.04 (0.20)	3	ns
Jejunum	0.90 (0.14)	8	1.27 (0.15)	3	0.0040
Liver	1.29 (0.20)	8	1.77 (0.40)	3	0.020
Pancreas	1.01 (0.28)	7	1.18 (0.57)	3	ns
Immune and endocrine system					
Ln ileocolici	1.07 (0.42)	8	1.43 (0.16)	3	ns
Ln poplitei	0.78 (0.27)	8	0.70 (0.13)	3	ns
Parathyroid gland	0.88 (0.33)	5	0.80 (0.16)	3	ns
Spleen	1.18 (0.17)	5	1.33 (0.06)	3	ns
Thymus	0.97 (0.06)	8	1.16 (0.15)	3	0.012
Thyroid gland	0.64 (0.13)	7	0.79 (0.12)	3	ns
Adrenal gland	1.20 (0.08)	5	1.20 (0.10)	3	ns
Integumentary					
Claw	0.41 (0.12)	5	0.66 (0.25)	3	ns
Skin	0.14 (0.02)	7	0.25 (0.07)	3	0.0041
Muscular system					
Diaphragm	0.39 (0.10)	6	0.62 (0.11)	3	0.020
M. biceps brachii	0.35 (0.09)	8	0.64 (0.17)	3	0.0040
M. extensor carpi radialis	0.34 (0.07)	8	0.66 (0.19)	3	0.0020
M. extensor digitorum longus	0.33 (0.07)	8	0.65 (0.17)	3	0.0010
M. longissimus dorsi lumbalis	0.35 (0.05)	5	0.62 (0.24)	3	0.042
M. longissimus dorsi thoracis	0.43 (0.23)	8	0.66 (0.25)	3	ns
M. psoas major	0.34 (0.08)	8	0.67 (0.21)	3	0.0028
M. quadriceps femoris	0.33 (0.08)	7	0.68 (0.22)	3	0.0040
M. semimembranosus	0.32 (0.08)	8	0.64 (0.18)	3	0.0018
M. semitendinosus	0.28 (0.05)	8	0.62 (0.20)	3	0.0011
Respiratory system					
Lung	0.96 (0.23)	8	1.23 (0.06)	3	ns
Urinary system					
Kidney	4.93 (0.57)	7	6.23 (1.07)	3	0.030

Se concentrations in internal and external samples from MHD and control pigs. Results are based on dry weight analyses.
suggesting that the heart may be the organ most sensitive to oxidative stress [29]. The fact that all MHD cases showed macroscopic and microscopic lesions in cardiac samples but not in skeletal muscles may support this theory. Within the cardiac muscle, some areas may be of particular importance for sampling, like the papillary muscles. They are located in both ventricles of the heart and it has been shown that papillary muscles are prone to fibrosis upon oxidative stress insults [30]. A more standardized approach for sampling of the cardiac muscle of MHD cases may contribute to less interindividual variability regarding Se concentrations.

In industrialized pork production, feed costs account for approximately 60 to 70% of the total production costs [16, 17, 31, 32]. Since higher economic outputs of pork production can be achieved by improved feed efficiency, selection for high lean growth rate and reduced backfat, commercial pig lines have been systematically bred over decades to improve these traits [15, 33, 34]. Norsvin is a breeding company owned by Norwegian pig producers with a research department at the Norwegian University of Life Sciences (NMBU). The breeding program pursued by Norsvin has e.g. led to a reduction in necessary feed per kg of weight gain and increased average daily gain (ADG) in weaned pigs and grower-finishers over the last ten years [35, 36]. In 2007, Norwegian conventional weaned pigs (typically DLYL, LLLL or YYLL) between approximately 10 and 30 kg live weight (LW) showed ADG of 489 g vs. 582 g in 2017. Grower-finishers between approximately 30 kg and 115 kg LW showed an ADG of 955 g in 2007 vs. 1018 g in 2017 (Table 4). During the same time period (2007 to 2017), the amount of feed per unit gain was reduced in both weaned pigs (1.81 to 1.71) and grower-finishers (2.74 to 2.68). The lean meat percentage in finisher pigs rose from 56.5 to 59.8%. Typically, Norwegian pig feed is added between 0.35 and 0.40 mg Se/FU, both for weaned and grower-finisher pigs (until recently the dominating Se source has been inorganic sodium selenite). This means that during the last decade, there has been a reduction in available Se. This is due to the reduced amount of necessary feed per unit weight gain and the concurrent increase in body protein deposition, possibly contributing to the occurrence of MHD.

Several authors have considered the theory of resource allocation in lean and feed efficient pigs, which is built on the assumption that different biological processes require different nutritional resources [37–40]. The systematic selection for leaner pigs over decades may have led to a trade-off towards growth in situations where nutritional resources are scarce. Processes involving e.g. the immune and antioxidative status of the animal can thereby be weakened and result in pigs more susceptible to oxidative assaults. Our results showing significantly lower Se concentrations in samples from the thymus of MHD cases may strengthen this theory.

Table 4 Development of Norwegian pig production results from 2007 to 2017

Production trait	Age group	Year	2007	2017
Average daily weight gain (g/ day)	Weaned pigs	489	582	
	Grower-finisher pigs	955	1018	
Feed units per kg gain (FU/ kg)	Weaned pigs	1.81	1.71	
	Grower-finisher pigs	2.74	2.68	
Lean meat percentage (%)	Grower-finisher pigs	56.50	59.80	

The numbers origin from the annual Ingris report, an online tool available for both Norwegian breeding (nucleus and multiplier) herds as well as piglet producing and finisher units. In 2007, 35% of sow farms and 31% of finisher farms were represented in the Ingris annual report. In 2017, 54% of sow farms and 12.3% of finisher farms were represented. In the Norwegian pig production system, weaned pigs are between approximately 10 kg LW and 30 kg LW. Grower-finishers are between approximately 30 kg LW and 115 kg LW.
The MHD cases showed significantly lower mean Se concentrations in the samples from the gastric ventricle \((P < 0.01)\), the duodenum \((P < 0.005)\), jejunum \((P < 0.005)\) and caecum \((P < 0.05)\). These findings may partly be explained by the absorption pattern of Se in the intestinal tract. In swine, more Se is absorbed in the last part of the small intestine, cecum and colon than in the stomach and proximal parts of the small intestine \([41]\). Oxidative stress is a major cause of gastrointestinal (GI) damage \([42]\) and robust immunologic mechanisms are required to protect the mucosal surface. The Se dependent glutathione peroxidase GSHPx-GI appears to be the major glutathione-dependent peroxidase in the GI tract and this molecule could play a major role in protecting mammals from the toxicity of ingested lipid hydperoxides \([43, 44]\). Se dependent glutathione peroxidase is expressed at lower concentrations when the organism enters Se deficiency \([45]\). A possible explanation to our Se measurements in the proximal parts of the GI tract may therefore be a lower absorption of Se in proximal intestinal segments combined with lower expression of GSHPx-GI in MHD cases than controls. Less difference in Se levels between MHD cases and controls were found in caecum and colon. Significantly lower mean Se concentrations in skin \((P < 0.005)\) and kidney \((P < 0.05)\) samples from MHD cases were found, probably due to lowered selenoprotein expression during Se deficiency \([46, 47]\).

No vitamin E analyses were included in this study due to budget limitations. Previous results have indicated that pigs with MHD have lower tissue alphatocopherol concentrations than the control pigs \([26]\), and therefore its role in the pathogenesis of MHD needs further elucidation \([2]\). The trace elements calcium, copper, zinc, magnesium, iron would have been interesting to add to the analyses, since it has previously been described that Se deficiency can alter the distribution of other minerals \([48, 49]\).

In other animals, like cattle, the Se requirements are differentiated according to muscularity \([50]\). The question whether lean, feed efficient pigs have higher Se requirements than slower growing pigs with a lower lean meat percentage is indeed worthwhile pursuing. In conclusion, this study shows discrepancies in tissue Se concentrations between MHD cases and controls. As mentioned initially, the common practice regarding collection of samples from MHD cases in the field could be extended to include samples from the diaphragm or skeletal muscles for Se analysis, since these organ samples are easy accessible during field necropsy. Although the variation in Se concentrations of a given organ between MHD cases of different genetic origin and age was low, this report includes a limited number of pigs. Therefore our results should be affirmed by a larger randomized controlled trial.

Abbreviations

(ICP-MS: Inductively coupled plasma mass spectrometry; DM: Dry matter; GSHPx-GI: Intestinal form of glutathione peroxidase; HE: Hematoxylin and eosin; MHD: Mulberry Heart Disease; Q: Quadrupoles; Se: Selenium; Te: Tellurium)

Acknowledgements

We wish to thank the farmers for submitting MHD cases and control animals. Determination of Se is performed at NMBU/MINA and we will thank Susanne Birkeland for technical support. Part of the work is also supported by the Research Council of Norway through its Centres of Excellence funding scheme, project number 223268/F50.

Authors’ contributions

MOM, MF, BS, HW, AB and TF planned the study. MF, MOM and HW carried out necropsies and sample isolation. MV and BS were responsible for the selenium analyses. MOM drafted the manuscript. All authors read, commented on, and approved the final manuscript.

Funding

This study was supported by the Norwegian Levy on Agricultural Products (FFL), the Agricultural Agreement Research Fund of Norway (JA) and the Centre of Excellence (CoE) Centre of Environmental Radiology, funding scheme (Project No. 223268/F50), NMBU - MINA/CERAD, Ås, Norway.

Availability of data and materials

The data generated during the current case report are kept and stored by the corresponding author. The data are available from the corresponding author on reasonable request.

Ethics approval

No ethics approval was necessary since this case report describes diagnostic approaches and sampling procedures conducted by the veterinary pathologists during their search for the cause of sudden deaths in the pigs of the case herd.

Consent for publication

The farmers gave their consent to publish the results from the analyses of samples originating from their pigs.

Competing interests

The authors declare that they have no competing interests.

Author details

1. Department of Production Animal Clinical Sciences, Norwegian University of Life Sciences, 3328 Sandnes, Norway. 2. Norwegian Veterinary Institute, 3328 Sandnes, Norway. 3. Faculty of Environmental Sciences and Nature Resource Management (MINA)/CERAD CoE, Norwegian University of Life Sciences, 1430 Ås, Norway. 4. Norwegian Veterinary Institute, 0106 Oslo, Norway. 5. Department of Production Animal Clinical Sciences, Norwegian University of Life Sciences, 0454 Oslo, Norway.

Received: 4 March 2019 Accepted: 14 June 2019
Published online: 01 September 2019

References

1. Lingaa F, Brun E, Færsøe A. Estimates of heritability for selenium and glutathione peroxidase levels in pigs. J Anim Breed Genet. 1990;108:48–53.
2. Grant Maxie M, Robinson WF. In: Anim PD, editor. Mulberry heart disease of swine. 6th ed. London, UK: Elsevier; 2016. p. 39–41.
3. Loydachan AT. Mulberry heart disease. Dis swine. 10th ed. West Sussex, UK: Wiley-Blackwell Publishing Ltd, 2012. p. 192–3.
4. Falk M, Bernhoff A, Framstad T, Salbu B, Wildaff H, Kortner TM, et al. Effects of dietary sodium selenite and organic selenium sources on immune and inflammatory responses and selenium deposition in growing pigs. J Trace Elem Med Biol. 2018;50:257–36.
5. Rederstorff M, Kro1 A, Lescure A. Understanding the importance of selenium and selenoproteins in muscle function. Cell Mol Life Sci. 2006;63:52–9.
6. Whanger PD, Vendelac SD, Beistle MA. Trace Elem Man Anim TEM8. Gendorf, Germany: Verlag Media Touristik; 1993. p. 119–26.
7. Jeong D, Kim TS, Chung YW, Lee BJ, Kim Y. Selenoprotein W is a glutathione-dependent antioxidant in vivo. FEBS Lett. 2002;517:225–8.

8. Yang JG, Hill KE, Burk RF. Dietary selenium intake controls rat plasma selenoprotein P concentration. J Nutr. 1989;119:1010–2.

9. Beckendorf L, Linke WA. Emerging importance of oxidative stress in regulating strained muscle elasticity. J Muscle Res Cell Motil. 2015;36:25–36.

10. Pallarés FJ, Yaeger MJ, Janke BH, Fernández G, Halbur PG. Vitamin E and selenium concentrations in livers of pigs diagnosed with mulberry heart disease. J Vet Diagn Investig Off Publ Am Assoc Vet Lab Diagn Inc. 2002;14:412–4.

11. Archibald AL, Bolund L, Churcher C, Fredholm M, Groenen MAM, Harlizius B, et al. Pig genome sequence—analysis and publication strategy. BMC Genomics. 2010;11:438.

12. Wilga S, Broekhuizen M, Gaustad AH, Djuvijestein N, Grindflek E. Groundbreaking research for maximum genetic progress. Topigs Norsvin Annua Mag. 2016;58:61.

13. Cameron ND, Curran MK. Selection for components of efficient lean growth rate in pigs. Genet and phenotypic parameter estimates and correlated responses in performance test trials with ad-libitum feeding. Anim Sci. 1994;59:281–91.

14. Kerr JC, Cameron ND. Reproductive performance of pigs selected for components of efficient lean growth. Anim Sci. 1995;60:281–90.

15. Lonergan SM, Huff-Lonergan E, Rowe LJ, Küsters DL, Jungst SB. Selection for lean growth efficiency in Duroc pigs influences pork quality. J Anim Sci. 2001;79:2075–85.

16. Martenssen KH, Olsen D, Ødegård J, Meuwissen T. Economic values for lean meat and fat efficiency in Norwegian landscape nucleus pig population. Act Agric Scand Sect — Anim Sci. 2016;66:145–51.

17. Patience JF, Rossoni-Serão MC, Gutiérrez NA. A review of feed efficiency in swine: biology and application. J Anim Sci Biotechnol. 2015;6:33.

18. Shen H, Thomas PR, Enslow SM, Kim W-L, Loyanchak AT, Halbur PG, et al. Dietary selenium levels affect Selenoprotein expression and support the regulation-related genes in broiler hearts induced by selenium deficiency. J Biol Chem. 1993;268:2571–8.

19. Wright PL, Bell MC. Comparative metabolism of selenium and tellurium in sheep and swine. Am J Phys. 1966;221:16–10.

20. Suzuki H, Matsuzuki J, Hibi T, Ghelin and oxidative stress in gastrointestinal tract. J Clin Biochem Nutr. 2011;48:122–5.

21. Chu FF, Eseworthy RS. The expression of an intestinal form of glutathione peroxidase (GSHPx-GI) in rat intestinal epithelium. Arch Biochem Biophys. 1995;323:288–94.

22. Chu FF, Doroshow JH, Eseworthy RS. Expression, characterization, and tissue distribution of a new cellular selenium-dependent glutathione peroxidase, GSHPx-GI. J Biol Chem. 1993;268:2571–6.

23. Burkh RF. Molecular biology of selenium with implications for its metabolism. FASEB J Off Publ Fed Am Soc Exp Biol. 1991;5:2274–9.

24. Tsuji PA, Carlson BA, Anderson CB, Selfried HE, Hatfield DL, Howard MT. Dietary selenium levels affect Selenoprotein expression and support the interferon-γ and IL-6 immune response pathways in mice. Nutrients. 2015;7:6529–49.

25. Malinowski M, Kehr S, Finney L, Vögts S, Carlson BA, Seravalli J, et al. High-resolution imaging of selenium in kidneys: a localized selenium Pool associated with glutathione peroxidase S. Antioxid Redox Signal. 2012;16:185–92.

26. Chareonpong-Kawamoto N, Yasumoto K. Selenium deficiency as a cause of overload of iron and unbalanced distribution of other minerals. Biosci Biotechnol Biochem. 1995;59:302–6.

27. Zhang Z, Liu M, Guan Z, Yang J, Liu Z, Xu S. Disbalance of calcium regulation-related genes in broiler hearts induced by selenium deficiency. Avian Pathol J WPA. 2017;46:265–71.

28. Mehdi Y, Dufraisse I. Selenium in cattle: a review. Molecules. 2016;21.

Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.