No Evidence of Geographical Structure of Salicinoid Chemotypes within Populus Tremula
Keefover-Ring, Ken; Ahnlund, Maria; Abreu, Ilka Nacif; Jansson, Stefan; Moritz, Thomas; Albrectsen, Benedicte Riber

Published in:
P L o S One

DOI:
10.1371/journal.pone.0107189

Publication date:
2014

Document Version
Publisher's PDF, also known as Version of record

Citation for published version (APA):
Keefover-Ring, K., Ahnlund, M., Abreu, I. N., Jansson, S., Moritz, T., & Albrectsen, B. R. (2014). No Evidence of Geographical Structure of Salicinoid Chemotypes within Populus Tremula. DOI: 10.1371/journal.pone.0107189
Introduction

Salicinoids, also known as phenolic glycosides [1] or salicylates [2], are dominant bioactive natural products in the Salicaceae (Populus and Salix) [3]. Salicinoid diversity ranges from simple structures like salicin to higher order compounds, such as cinnamoylsalicortin (Fig. 1). The relationship between herbivores and salicinoids has mostly involved studies of a few dominant compounds that repel generalist insect defoliators [3–6] and salicinoids has mostly involved studies of a few dominant compounds that repel generalist insect defoliators [3–6] and salicinoids has mostly involved studies of a few dominant compounds that repel generalist insect defoliators [3–6] and salicinoids has mostly involved studies of a few dominant compounds that repel generalist insect defoliators [3–6] and salicinoids has mostly involved studies of a few dominant compounds that repel generalist insect defoliators [3–6] and salicinoids has mostly involved studies of a few dominant compounds that repel generalist insect defoliators [3–6] and salicinoids has mostly involved studies of a few dominant compounds that repel generalist insect defoliators [3–6] and salicinoids has mostly involved studies of a few dominant compounds that repel generalist insect defoliators [3–6] and salicinoids has mostly involved studies of a few dominant compounds that repel generalist insect defoliators [3–6] and salicinoids has mostly involved studies of a few dominant compounds that repel generalist insect defoliators [3–6] and salicinoids has mostly involved studies of a few dominant compounds that repel generalist insect defoliators [3–6] and salicinoids has mostly involved studies of a few dominant compounds that repel generalist insect defoliators [3–6] and salicinoids has mostly involved studies of a few dominant compounds that repel generalist insect defoliators [3–6] and salicinoids has mostly involved studies of a few dominant compounds that repel generalist insect defoliators [3–6] and salicinoids has mostly involved studies of a few dominant compounds that repel generalist insect defoliators [3–6] and salicinoids has mostly involved studies of a few dominant compounds that repel generalist insect defoliators [3–6] and salicinoids has mostly involved studies of a few dominant compounds that repel generalist insect defoliators [3–6] and salicinoids has mostly involved studies of a few dominant compounds that repel generalist insect defoliators [3–6] and salicinoids has mostly involved studies of a few dominant compounds that repel generalist insect defoliators [3–6] and salicinoids has mostly involved studies of a few dominant compounds that repel generalist insect defoliators [3–6] and salicinoids has mostly involved studies of a few dominant compounds that repel generalist insect defoliators [3–6] and salicinoids has most...
P. tremula also contained complex salicinoids like 2\(^9\)-cinnamoylsalicortin, previously only reported for Salix sericea [34], and 2\(^{-}\)acetylsalicin and 2\(^{-}\)acetylsalicortin, also found in S. pentandra [35]. Abreu et al. [29] showed that concentrations of some of these novel salicinoids in P. tremula matched levels in other salicaceous systems that share the same compounds and predicted a minimum of three chemical phenotypes (hereafter chemotypes) of Swedish aspen [29,36].

Historically, screening work of salicinoids used only qualitative methods, such as thin-layer chromatography [27,37,38], as opposed to liquid chromatography-mass spectrometry (LC-MS) techniques presently used for identification and quantification [2,29,33,39]. In addition, species specific profiles have often been based on analyses of a limited number of individuals (e.g., [27,37,38]). At the population level, surveying only a few individuals increases the risk of underestimating natural product diversity and abundance. In salicaceous species, hidden salicinoids could thus potentially be a source of reported ambiguous associations found between phytochemistry and biotic stress agents [11–13].

With aspen’s highly diverse salicinoid assemblage [29], the large genetic diversity in Sweden [40], and its complex associated arthropod communities [41], a careful chemical mapping of a larger population of P. tremula is warranted. This study presents an exhaustive identification of salicinoid diversity in 319 individual Populus tremula trees replicating 102 genotypes from the Swedish Aspen (SwAsp) collection and evaluates the frequency and distribution of the chemotypes across the landscape. To assess the expression in individual trees, salicinoid profiles of the same genotype were also compared across extreme environments.

Materials and Methods

Salicinoid standards

Salicortin, tremuloidin, and HCH-salicortin standards were supplied by Prof. R. L. Lindroth and salicyloylsalicin by Prof. S. D. Mansfield. Salicin and tremulacin standards were purchased from Sigma-Aldrich (St. Louis, MO, USA), and 2\(^{-}\)(E)-, 2\(^{-}\)(Z)-cinnamoylsalicortin, and tremulacin were isolated from P. tremula [39].

Figure 1. Structural relationship of 19 salicinoids found in the foliage of Populus tremula from the SwAsp collection grouped similar to the loading plot (Fig. 2b). 1 = new compounds for P. tremula, 2 = compounds with two isomers present but the conformation of the cinnamoyl group double bond is ambiguous. 3 = 2\(^{-}\)(E)- and 2\(^{-}\)(Z)-cinnamoylsalicortin.

doi:10.1371/journal.pone.0107189.g001
Plant material
Two sets of samples were used for this study, consisting of about ten haphazardly chosen, fully expanded leaves from each of 319 individuals of 102 *P. tremula* genotypes from two different environments, belonging to the Swedish Aspen (SwAsp) collection [29,36,41]. SwAsp consists of aspen trees from a range of latitudes (56–67° N) throughout Sweden, collected as roots in 2003 and propagated as genotype replicates. The first greenhouse sample set included leaves from 98 genotypes with 1–2 individuals per genotype that had been growing in standard greenhouse conditions on the Umeå University campus in Umeå, Sweden, since 2005. In 2007, leaves were picked from the greenhouse trees, flash-frozen in liquid nitrogen, and stored at −80°C until chemical analysis (see [29] for details). The second field set, collected in the summer of 2010, consisted of foliage from 41 genotypes from the outdoor SwAsp garden at Savar (~20 km NW of Umeå), 37 of which were also represented in the greenhouse population. These trees had been planted in 2004 and at the time of sampling had reached an average height of 220 cm (ranging from 65–405 cm) and every genotype was present in the field in replicates of 2–8. Leaves were harvested and immediately placed in separate glassine envelopes, frozen in liquid nitrogen while in the field, brought to a −80°C freezer, lyophilized in a pre-chilled chamber, and then stored at −20°C until chemical analysis. Replicate individuals of all genotypes currently grow in two common gardens (Ekebo 55.9° N, 13.1° E and Savar 63.4° N, 20.6° E; see also [36] or [41] for location details of original populations). In addition, most of the genotypes are kept in tissue culture at Umeå Plant Science Centre in Umeå, Sweden, and can be propagated upon request.

Chemical analysis
Samples were analyzed using ultra high performance liquid chromatography (UHPLC) with UV and electro-spray ionization time-of-flight mass spectrometry (ESI-TOF/MS) detectors, using the same instrumental conditions as Abreu et al. [29]. Sample preparation differed slightly for the two sample sets, using fresh weight material for the greenhouse and lyophilized foliage for the field samples. Frozen greenhouse leaf material was ground in liquid nitrogen using a mortar and pestle. For the 2010 field samples, we ground the lyophilized leaves on a Retsch (Verder Group, Haan, Germany) ball mill, placing crushed foliage into 20 ml plastic vials along with two 12.5 mm carbide balls and shaking them at 60 Hz for 1 minute. For both sample sets, 10.00±1.00 mg powder was extracted in 1 ml of cold (4°C) methanol: chloroform: water (v:v:v), containing deuterated salicylic acid as an internal standard [29]. After centrifugation in a chilled centrifuge, 200 μl of the extract supernatant from greenhouse samples and 100 μl from the field samples was dried in a speedvac. Just before analysis, the dried greenhouse samples were reconstituted with 20 μl of methanol and 20 μl of a 0.1% v/v aqueous formic acid solution and 25 μl of each for the field samples. Differences in the initial amounts of sample dried and every genotype was present in the field in replicates of 2–8. For both sample sets, we ground the lyophilized leaves on a Retsch (Verder Group, Haan, Germany) ball mill, placing crushed foliage into 20 ml plastic vials along with two 12.5 mm carbide balls and shaking them at 60 Hz for 1 minute. For both sample sets, 10.00±1.00 mg powder was extracted in 1 ml of cold (4°C) methanol: chloroform: water (v:v:v), containing deuterated salicylic acid as an internal standard [29]. After centrifugation in a chilled centrifuge, 200 μl of the extract supernatant from greenhouse samples and 100 μl from the field samples was dried in a speedvac. Just before analysis, the dried greenhouse samples were reconstituted with 20 μl of methanol and 20 μl of a 0.1% v/v aqueous formic acid solution and 25 μl of each for the field samples. Differences in the initial amounts of sample dried and every genotype was present in the field in replicates of 2–8. For both sample sets, 10.00±1.00 mg powder was extracted in 1 ml of cold (4°C) methanol: chloroform: water (v:v:v), containing deuterated salicylic acid as an internal standard [29]. After centrifugation in a chilled centrifuge, 200 μl of the extract supernatant from greenhouse samples and 100 μl from the field samples was dried in a speedvac. Just before analysis, the dried greenhouse samples were reconstituted with 20 μl of methanol and 20 μl of a 0.1% v/v aqueous formic acid solution and 25 μl of each for the field samples. Differences in the initial amounts of sample dried and every genotype was present in the field in replicates of 2–8. For all statistical analyses, we used percentages derived from the normalized peak areas of the 19 salicinoids. To further statistically examine the differences between compound profiles, SAS software version 9.1 [44] was used to perform a two-factor multivariate analysis of variance (MANOVA; PROC GLM function with the MANOVA statement) using the same data as above, with sample set (greenhouse or field grown trees) and chemotype (four chemotypes) as factors. Significant MANOVA tests were followed up with ANOVAs for individual compounds.

Statistical analyses
Salicinoid chemotypes were identified using principal component analysis (PCA; SIMCA-P v. 12.0 [43]). Due to differences in sampling environment, we used percentages derived from the normalized peak areas of the 19 salicinoids. To further statistically examine the differences between compound profiles, SAS software version 9.1 [44] was used to perform a two-factor multivariate analysis of variance (MANOVA; PROC GLM function with the MANOVA statement) using the same data as above, with sample set (greenhouse or field grown trees) and chemotype (four chemotypes) as factors. Significant MANOVA tests were followed up with ANOVAs for individual compounds.

Amounts of the most common and abundant salicinoids (salicortin and tremulacin) from the field samples were correlated (PROC CORR) separately for trees either low (TL chemotypes) or high in 2′-cinnamoylsalicortin (CN chemotypes), followed by Fisher’s Z to determine if the two correlation coefficients differed.

To compute salicinoid clonal repeatability (H², broad-sense heritability), we used the R statistical package as described by Robinson et al. [44,45]. Clonal repeatability was calculated the greenhouse and the field samples separately, and for the combined population, when they occurred in replicate of two or more. For all statistical analyses we insured that variables met assumptions of normality, applying transformations where necessary.

Results
New salicinoids from *P. tremula*
In addition to the ten salicinoids described from *P. tremula* by Abreu et al. [29], we found nine new compounds after searching the TOF/MS chromatograms of greenhouse and field foliage.
samples for 55 known and theoretical ions (Fig. 1, Material S1). The new salicinoids included five molecules similar to existing P. tremula compounds but with an additional HCH (hydroxycyclohexen-on-onyl) moiety, including HCH-salicortin, HCH-tremulacin, lasiandrin (HCH-2'-acetylsalicortin), and two isomers tentatively identified as HCH-cinnamoylsalicin and acetylcinnamoylsalicortin. In addition, we found the newly described 2'-Z-, 2'-E-cinnamoylsalicortin isomers [29,39] and two salicinoid isomer pairs tentatively identified as cinamoylsalidrin and acetylcinnamoylsalicortin. Considering the structure of many other salicinoids [3,39], the additional acetyl and HCH groups are most likely attached to C-6 of glucose and the new isomer pairs probably contain 2'-Z- and 2'-E-cinnamoylsalicin groups, respectively. The UV profiles of the new compounds showed typical salicinoid spectra (Table 1, Fig S1a page 9-11 in Material S1). As with these other studies, all new salicinoids with a cinamoyl moiety had higher second maxima (274–279 nm) compared to those without this functional group (270–274 nm).

The MS/MS spectra of the new P. tremula salicinoids produced predictable fragments due to similar disassociation mechanisms (Figure S1b page 9-11 in Material S1). The spectra of all compounds with an additional HCH group [HCH-salicortin, and HCH-tremulacin, lasiandrin (HCH-2'-acetylsalicortin), and HCH-cinnamoylsalicortin] had a single dominant fragment due to the loss of the HCH group (neutral loss of 138) from either the core salicyl group or from the glucose. For all compounds, the m/z 271 of this remaining fragment corresponded to their respective deprotonated salicortin ion as the second most abundant ion (relative abundance: 42.3). Lastly, fragmentation of cinnamoylsalicin with a formate adduct yielded the deprotonated compound as the primary fragment.

Chemotypes and compound relationships

All samples contained the signature set of salicinoids in aspen (salicortin, tremulacin, salicin, and tremuloidin) [1,3,27], and in agreement with Abreu et al. [29] a subset of the samples also included novel salicinoids. The salicinoid profiles of SwAsp are presented by genotype and environment in Material S2. PCA analysis separated SwAsp trees into four distinct chemotype groups on the basis of 19 salicinoids with 31.2% of the variation explained by PC1 and 18.4% by PC2 (49.6% cumulative; Fig. 2). These chemotypes were mainly defined by the presence of high amounts of salicinoids with either cinamoyl moieties (CN, 53% of all genotypes), 2'-acetyl moieties (AC, 8%), both of these moieties (CN-AC, 2%), or very low amounts of either (37%; Fig. 2a). The other HCH salicinoids also had relatively abundant fragments due to this breakage pattern. In addition, the spectra of all compounds contained a m/z 405 ion; a secondary fragment resulting from a combination of a loss of an HCH group combined with the cleavage of any moiety present at C-2' of the sugar. A single ion dominated the MS/MS spectra of acetylcinnamoylsalicortin, resulting from the loss of the cinamoyl group. Subsequent loss of the acetyl moiety led to the appearance of a deprotonated salicortin ion as the second most abundant ion (m/z 423). Lastly, fragmentation of cinnamoylsalicin with a formate adduct yielded the deprotonated compound as the primary fragment.

Table 1. UV maxima, theoretical and experimental exact masses, molecular formulas, and main high-resolution MS/MS fragments of the new salicinoids from *Populus tremula*.

Compound	λ max	m/z [M-H]-	LTQ Orbitrap	MS/MS fragments (relative intensity)*
HCH-salicortin	218, 271	561.1614	561.1611	C21H23O13 423 (100), 477 (58.3), 405 (40.0), 299 (13.9), 437 (9.7), 339 (7.3), 293 (6.2), 231 (5.5)
HCH-tremulacin	221, 272	665.1876	665.1859	C24H28O14 527 (100), 509 (33.6), 543 (28.6), 405 (14.4), 581 (8.4), 403 (2.8), 389 (1.5), 553 (1.0)
Cinnamoylsalicin	218, 279Z, 219, 279C	415.1398	415.1385	C22H23O8 415 (100), 414 (9.9), 399 (39.9), 414 (10.2), 285 (6.6), 509 (6.5), 252 (6.4), 515 (6.4)
Acetylcinnamoylsalicortin	220, 274Z, 218, 278C	595.1821	595.1793	C21H25O12 447 (100), 423 (15.9), 567 (5.2), 213 (4.3), 285 (4.1), 267 (4.0), 471 (3.5), 341 (2.9)
HCH-cinnamoylsalicortin	222, 277Z, 219, 277C	691.2032	691.2023	C22H27O14 553 (100), 535 (28.7), 543 (19.5), 405 (10.2), 484 (6.6), 509 (6.5), 252 (6.4), 515 (6.4)
Lasiandrin	219, 270	603.1719	603.1722	C22H27O14 465 (100), 447 (22.4), 519 (8.5), 561 (5.8), 543 (4.5), 405 (3.6), 341 (3.0), 423 (2.1)

See Fig. S1a in Material S1 for MS/MS spectra.

a = MS/MS performed on deprotonated isomer 2 of cinamoyl compounds, except for cinnamoylsalidrin, which used the formate adduct [M+FA-H] (experimental mass m/z 461.1433) of isomer 2; b = isomer 1, c = isomer 2 by UHPLC retention times.

doi:10.1371/journal.pone.0107189.t001
salicinoid profile of the last “tremuloides-like” (TL) chemotype resembles that of \textit{P. tremuloides} \cite{46}. Most of the AC chemotype trees had very low levels of cinnamoyl-containing salicinoids, however, five individuals from two genotypes had relatively high levels of compounds with both of these moieties, resulting in the separate chemotype designated CN-AC (Fig. 2a). While trees from particular chemotypes generally grouped together in greenhouse and field grown trees, the PCA showed some divergence between the two environments. This was especially evident for individuals from the CN and CN-AC chemotypes and less so for AC and TL trees (Fig. 2a).

The loading scatter plot of the 19 salicinoids from \textit{P. tremula} showed that most compounds grouped according to specific chemical moieties (Fig. 2b). The first component (PC1) separated compounds with a cinnamoyl side chain \cite{29,30} and the cinnamoylsalicortin and the cinnamoylsalicortin, and HCH-cinnamoylsalicortin isomers) from compounds with a benzoyl group (tremulacin, tremuloidin, acetyltremulacin, and HCH-tremulacin). The second component (PC2) separated compounds with an \textit{9'-acetyl}, (\textit{2'-acetyllicortin}, \textit{2'-acetyltremulacin}, and lasiandrin) from those with an additional HCH group (HCH-salicortin, HCH-tremulacin, and HCH-cinnamoylsalicortin).

Chemotype and environment differences, main salicinoid correlations, and tree origin

The two-factor MANOVA test showed that salicinoid profile differed for both environment \cite{(Wilks' \(\lambda = 0.32, F_{19, 292} = 32.3, P<0.001 \))}, chemotype \cite{(Wilks' \(\lambda = 0.001, F_{57, 871} = 154.5, P<0.001 \))}, and their interaction \cite{(Wilks' \(\lambda = 0.09, F_{57, 871} = 18.5, P<0.001 \))} (Fig. 3). Individual ANOVA results showed that all salicinoids differed with chemotype, and all compounds, except salicin, \textit{2'-acetylsalicortin}, \textit{2'-acetyltremulacin}, and lasiandrin also differed between environments (Fig. 3; Table 2). In general, greenhouse grown trees contained more salicortin, tremuloidin, acetyltremulacin, and \textit{2'-acetylsalicortin}, \textit{2'-acetyltremulacin}, and HCH-tremulacin, and field trees contained more tremulacin. For isomer 2 of HCH-cinnamoylsalicortin, and \textit{2'-acetylsalicortin}, also differed between environment (Fig. 3; Table 2). In general, greenhouse grown trees contained more salicortin, tremuloidin, acetyltremulacin, and \textit{2'-acetylsalicortin}, \textit{2'-acetyltremulacin}, and HCH-tremulacin, and field trees contained more tremulacin. For isomer 2 of HCH-cinnamoylsalicortin, and \textit{2'-acetylsalicortin}, also differed between environment (Fig. 3; Table 2). In general, greenhouse grown trees contained more salicortin, tremuloidin, acetyltremulacin, and \textit{2'-acetylsalicortin}, \textit{2'-acetyltremulacin}, and HCH-tremulacin, and field trees contained more tremulacin. For isomer 2 of HCH-cinnamoylsalicortin, and \textit{2'-acetylsalicortin}, also differed between environment (Fig. 3; Table 2).

Correlations between the amounts of tremulacin and salicortin in field grown individuals with either TLS chemotypes; \(r = 0.37, P<0.001, N = 49 \) or high (CN chemotypes; \(r = 0.93, P<0.001, N = 83 \)) levels of \textit{2'-cinnamoylsalicortin} showed strong positive relationships in both cases (Fig. 4). The patterns were, however, notably different with CN trees containing considerably less tremulacin with increasing amounts of salicortin (Fisher’s \(Z = 1.71, P<0.005 \)). The relative amounts of these two salicinoids varied with chemotype from an approximately even relationship of 1 tremulacin:1 salicortin (in mg g\(^{-1}\)) in TLS chemotypes to a 1:4 relationship in the CN chemotype.

Tress belonging to the CN and TL chemotypes occurred at sites throughout Sweden (Fig. 5) and their distribution did not follow a simple geographic or clinal pattern. The genotypes containing \textit{2'-acetyl compounds} (AC and CN-AC) originated from central and southern Sweden.

Clonal repeatability of salicinoids

Overall, clonal repeatabilities (\(H^2 \); broad-sense heritability) for salicinoids in this study were high with the greenhouse population showing slightly higher values compared to field grown trees (Table 3). The most notable examples that contributed to this trend were salicortin, tremuloidin, and the isomer pairs of cinnamoylsalicortin and acetylcinnamoylsalicortin. Both acetyltremulacin and lasiandrin had substantially lower clonal repeatabilities in the greenhouse environment than in the field. In addition, all salicinoids with higher clonal repeatabilities in the field contained two HCH moieties.

Discussion

Salicinoid survey of \textit{P. tremula}

On the basis of literature studies (i.e., \cite{3}), previous salicinoid analyses \cite{29,39}, and theoretical structures, we identified a total of 19 potentially bioactive salicinoid compounds from \textit{P. tremula}, adding nine new structures to those already described by Abreu et al. \cite{29}.

Many of these salicinoids are dominant or characteristic for other species in the Salicaceae \cite{3}. The acetylated compounds \textit{2'-acetyllicortin}, \textit{2'-acetyltremulacin}, lasiandrin, and acetyltremulacin co-occur in \textit{Salix pentandra} and \textit{S. lasiandra} \cite{35,47,48}. HCH-salicortin (salicortin derivative or disalcortin \cite{49}) and HCH-tremulacin both occur in \textit{S. myrsinifolia} \cite{2,49}. HCH-salicortin was also isolated from \textit{P. fremontii} and its F1 hybrids with \textit{P. angustifolia} \cite{30}, and studies with \textit{S. sericea} found \textit{2'-acetylsalicortin} \cite{31}.

Frequencies and distribution of key compounds in SwAsp

Salicinoid profiles readily divided SwAsp genotypes into four chemotypes, based upon the presence or absence of specific moieties. The \textit{2'-cinnamoylsalicortin} moiety defined the most abundant chemotype with 53 percent representation in SwAsp. In general, the capability to synthesize cinnamoyl salicinoids appears to be mostly either present or absent in a genotype and thus accounts for the strongest division of the population. The ability to add acetyl moieties appeared less channelled compared to the cinnamoyl addition, but curiously acetylcinnamoylsalicortin had somewhat higher clonal repeatabilities in the less stable field environment (Table 3). Across SwAsp chemotypes we found salicortin, tremulacin, \textit{2'-acetylsalicortin}, and the \textit{2'-cinnamoylsalicortins} as the dominant salicinoids and when present they usually occurred in relatively high amounts.

The distribution of SwAsp chemotypes throughout Sweden did not resemble the clinal structure reported for phenological traits \cite{36}, or the north-south clustering that characterizes inducible defense genes \cite{50}. The two most abundant chemotype groups (CN and TL) were evenly distributed among collection sites, whereas the AC and CN-AC chemotypes mainly originated from the central and southern part of the country. After the last ice age, many plants and animals invaded Sweden from both the north east and the south west and later united in central Sweden (along Limes Norrländicus) where they either formed hybrid zones or distinct subpopulations \cite{51}. Although the postglacial invasion of aspen in Sweden had weak effects on the genetic differentiation of neutral markers \cite{52}, it could have had local effects on adaptive traits \cite{40}. Introggression of defense associated genes naturally occurs in hybrid zones \cite{53,54}, and hybrid zones and admixture populations may also promote novel genotypes \cite{30,32,33,53,54}. Evidence of salicinoid inheritance from hybrid zones includes additive inheritance of HCH-salicortin by F1 hybrids of \textit{P. tremula}.

PLOS ONE | www.plosone.org 5 October 2014 | Volume 9 | Issue 10 | e107189

Salicinoids in \textit{Populus tremula}
fremontii and *P. angustifolia* from the *P. fremontii* parent [30]. Similarly, additive inheritance was found in a *P. tremula-alba* hybrid zone for HCH-salicortin and 2′-acetylsalicortin, whereas HCH-tremulacin was transgressive at higher concentrations [33]. The geographical distribution of the AC and CN-AC SwAsp chemotypes in central and southern Sweden could consequently mirror fitness properties, recent evolution, or introgression.
Elusive salicinoid biosynthesis

Tsai et al. [16] proposed salicin as the substrate for salicinoid biosynthesis, but studies using labeled compounds could not confirm this suggestion [21] and the biosynthetic route of salicinoids remains poorly understood [15,16,21,22]. Confirming the work by Abreu et al. [29], we found strong correlations between amounts of 2'-9-acetylsalicin and 2'-9-acetylsalicortin, as well as associations between cinnamoyl-containing salicinoids. The dynamics of salicinoid pools thus appear to depend on the presence or absence of characteristic chemotype moieties and the relative abundance of common salicinoids vary between chemotypes. For example, the concentration of tremulacin is generally lower in CN chemotype individuals compared to the TL chemotype (Fig. 4). This may reflect competition for salicortin as a substrate for addition of either a cinnamoyl or benzoyl group for synthesis of 2'-cinnamoylsalicortin or tremulacin, respectively.

Table 2. F and P values from the two-factor ANOVA comparing percentages of individual leaf extract salicinoids from Populus tremula trees of four chemotypes (CN, AC, CN-AC, and TL), grown in two environments (greenhouse and field), and their interaction (E*Ct).

Compound	Environment	Chemotype	E*Ct
	df = 1	df = 3	df = 3
Salicortin			
17.0	< 0.001	90.1	< 0.001
Tremulacin			
60.5	< 0.001	436.8	< 0.001
Salicin			
0.4	0.508	10.0	< 0.001
Tremuloidin			
22.6	< 0.001	71.8	< 0.001
HCH-salicortin			
10.9	0.001	22.6	< 0.001
HCH-tremulacin			
25.8	< 0.001	67.2	< 0.001
Salicyloylsalicin			
26.9	< 0.001	14.8	< 0.001
Acetyltremulacin			
22.0	< 0.001	35.2	< 0.001
2'-Z-Cinnamoylsalicortin			
4.9	0.028	28.5	< 0.001
2'-E-Cinnamoylsalicortin			
0.2	0.645	456.4	< 0.001
Cinnamoylsalicin (I1)			
17.4	< 0.001	282.1	< 0.001
Cinnamoylsalicin (I2)			
178.2	< 0.001	317.2	< 0.001
Acetylcinnamoylsalicin (I1)			
14.9	0.000	21.3	< 0.001
Acetylcinnamoylsalicin (I2)			
17.4	0.001	38.7	< 0.001
HCH-cinnamoylsalicin (I1)			
7.6	0.006	607.4	< 0.001
HCH-cinnamoylsalicin (I2)			
3.2	0.073	855.5	< 0.001
2'-Acetylsalicortin			
17.0	< 0.001	90.1	< 0.001
2'-Acetylsalicin			
2.4	0.126	123.5	< 0.001
Lasiandrin			
18.8	< 0.001	27.2	< 0.001

/I1 and I2 indicate isomers 1 and 2, respectively, designated by UHPLC retention times. See Figure 3 for corresponding data.

doi:10.1371/journal.pone.0107189.t002

Figure 3. Percentages (± SE) of 19 salicinoids from greenhouse (solid bars) and field (open bars) grown Populus tremula trees from the SwAsp collection of the four identified chemotypes, CN (2'-cinnamoyl), AC (2'-acetyl), CN-AC (2'-cinnamoyl/2'-acetyl), and TL (tremuloides-like). I1 and I2 = isomer 1 and 2, respectively, based upon UHPLC retention times.

doi:10.1371/journal.pone.0107189.g003
The composite structure of the salicinoids could further suggest that relatively few enzymes are involved in their biosynthesis. Keeling and Bohlmann [26] and Degenhardt et al. [25] have demonstrated how a few key genes that are differently but consistently expressed result in unique terpenoid profiles in individual conifers, creating high terpenoid diversity at the population level. Although at a lower diversity, the salicinoids of SwAsp may be biosynthesized according to a similar strategy. Association studies relate specific traits to genetic patterns [55], and could potentially be a promising way to get insight into the salicinoid biosynthesis. Thus, rather than relating single compounds to gene sequences, association studies may benefit from grouping the compounds on the basis of presence and absence of specific salicinoid moieties (see also [54]).

Salicinoid profile stability and implications for chemical ecology

Salicinoid composition of individual trees across environments with very different growth histories showed overall high heritabilities, confirming that both salicinoid quality (composition) and quantity (abundance) is likely to be highly channeled in aspen, and thus relatively stable in different environments [29,56]. Interestingly, we found that the most represented group in SwAsp, the CN chemotype, also showed the largest plasticity of salicinoids in response to environmental differences. This suggests an elevated level of plasticity in cinnamoyl-containing salicinoid expression and a potential fitness advantage. Salicinoid toxicity to herbivores has been attributed to the HCH moiety, even at low concentrations [3,14,57]. Most of the newly described salicinoids in this study contain one or two HCH groups, and the high heritability of the HCH containing compounds in field samples supports that they may be emphasized in more challenging environments. Lindroth et al. [14] found that tremulacin greatly reduced herbivore survival and performance and suggested that the benzoyl group synergizes the toxic effect of the HCH group. Similarly, the cinnamoyl and acetyl groups may also synergize the effects of the HCH moiety on relevant molecules (2'-cinnamoylsalicortin and 2'-acetylsalicortin).

Given the apparent stability of salicinoid profiles in P. tremula and the clearly defined chemotypes, the SwAsp collection represents an ideal system for the study of chemical-ecological interactions. With almost the entire collection in tissue culture, and with the present robust salicinoid profiling (Material S2), we can propagate our chemotypes to specifically test properties of resistance and tolerance to various kinds of associated herbivores and fungi [13,45]. In conclusion, we observed a striking division of aspen into four chemotypes, some of which co-occur across latitudes. These chemotypes differ in the dominant moieties and future studies are needed to explore their relative bioactivity, especially including the new dominant compounds (2'-cinnamoylsalicortins and 2'-acetylsalicortin) that are poorly studied. We
further suggest that ecological studies, both locally and across latitudes, must take *P. tremula*’s salicinoid diversity into account.

Supporting Information

Material S1 Salicinoid identification: Exact masses of 55 salicinoid compounds (Table S1), Literature references (List S1), UV spectra of nine new salicinoids found in the *P. tremula* foliage (Fig. S1a), and high-resolution MS/MS (Fig. S1b). (DOCX)

Material S2 Average percentages of 19 salicinoids from 85 clones of different *Populus tremula* clones (Clone), grown in two different environments (Evir: GH = greenhouse, Savar = field) and mg g⁻¹ for field trees. Chemo = chemotype: CN = 2' - cinnamoyl, AC = 2'-acetyl, CN-AC = 2'-cinnamoyl/2'-acetyl, and TL = tremuloides-like. Salicinoids: 1 = salicortin, 2 = tremulacin, 3 = salicin, 4 = tremuloidin, 5 = HCH-salicortin, 6 = HCH-tremulacin, 7 = salicyloylsalicin, 8 = 6'-acetyl-tremulacin, 9 = 2'-Z-cinnamoylsalicortin, 10 = 2'-E-cinnamoylsalicortin, 11 = cinnamoylsalicin I, 12 = cinnamoylsalicin II, 13 = acetylcinnamoylsalicortin I, 14 = acetylcinnamoylsalicortin II, 15 = HCH-cinnamoylsalicortin I, 16 = HCH-cinnamoylsalicortin II, 17 = 2'-acetylsalicin, 18 = 2'-acetylsalicin, 19 = lasiandirin (HCH-2'-acetylsalicin). I₁ and I₂ are isomers 1 and 2, respectively. (DOCX)

Acknowledgments

We thank the Carl Trygger Foundation for Scientific Research, the Swedish Foundation for Strategic Research, and the Swedish Research Foundation for funding. The staff of the Swedish Metabolomics Center (www.swedishmetabolomicscentre.se) was instrumental in the completion of chemical analyses for this project.

Author Contributions

Conceived and designed the experiments: BA IA KKR. Performed the experiments: IA KKR MA BA. Analyzed the data: KKR MA IA. Contributed reagents/materials/analysis tools: BA TM SJ. Wrote the paper: BA KKR SJ MA IA TM.

References

1. Lindroth RL, Hsia MTS, Sribner JM (1987) Characterization of phenolic glycosides from quaking aspen. Biochem Syst Ecol 15: 677–680.
2. Haikio E, Makkonen M, Jukunen-Tiitto R, Sitte J, Freivald V, et al. (2009) Performance and secondary chemistry of two hybrid aspen (*Populus tremula* L. x *Populus tremuloides* Michx.) clones in long-term elevated ozone exposure. J Chem Ecol 35: 664–678.
3. Roedler GA, Gershenson J, Unsicker SB (2011) Phenolic glycosides of the Salicaceae and their role as anti-herbivore defenses. Phytochemistry 72: 1497–1509.
4. Fritz RS, Hochwender CG, Leskiwicz DA, Bothwell S, Orians CM (2001) Seedling herbivory by slugs in a willow hybrid system: developmental changes in damage, chemical defense, and plant performance. Oecologia 129: 87–97.
5. Albrechtsen BR, Gutierrez L, Fritz RS, Fritz RD, Orians CM (2007) Does the differential seedling mortality caused by slugs alter the foliar traits and subsequent susceptibility of hybrid willows to a generalist herbivore? Ecol Entomol 32: 211–220.
6. Costabel CP, Lindroth RL (2010) The impact of genomics on advances in herbivore defense and secondary metabolin in *Populus*. In: S J, R B, A G, editors. Genetics and Genomics of *Populus*: Springer Verlag, pp 279–305.
7. Bailey JK, Schweitzer JA, Rehill BJ, Inschick DJ, Whitham TG, et al. (2007) Rapid shifts in the chemical composition of aspen forests: An introduced herbivore as an agent of natural selection. Biol Invasions 9: 715–722.

Table 3. Clonal repeatabilities (H²) of 19 salicinoids from 85 clones of *Populus tremula* from greenhouse (GH), field, and combined (All) populations. I₁ and I₂ indicate isomers 1 and 2, designated by UHPLC retention times.

Compound	GH	Field	All
Salicortin	0.87	0.70	0.67
Tremulacin	0.98	0.98	0.92
Salicin	0.46	0.45	0.29
Tremuloidin	0.81	0.59	0.60
HCH-salicortin	0.86	0.91	0.76
HCH-tremulacin	0.85	0.96	0.80
Salicyloylsalicin	0.90	0.84	0.69
Acetyltyremulacin	0.95	0.90	0.83
2'-Z-Cinnamoylsalicortin	0.98	0.96	0.96
2'-E-Cinnamoylsalicortin	0.99	0.98	0.98
Cinnamoylsalicin (I₁)	0.79	0.41	0.54
Cinnamoylsalicin (I₂)	0.94	0.74	0.57
Acetylcinnamoylsalicortin (I₁)	0.88	0.77	0.51
Acetylcinnamoylsalicortin (I₂)	0.92	0.75	0.54
HCH-cinnamoylsalicortin (I₁)	0.88	0.87	0.70
HCH-cinnamoylsalicortin (I₂)	0.86	0.91	0.83
2'-Acetylsalicin	0.99	0.99	0.98
2'-Acetylsalicin	0.96	0.95	0.92
Lasiandirin	0.76	0.89	0.73

DOI:10.1371/journal.pone.0107189.t003
11. Orians CM, Huang CH, Wild A, Dorfman KA, Zee P, et al. (1997) Willow hybridization differentially affects preference and performance of herbivorous beetles. Environ Exp Bot 38: 283–294.

12. Hjälmås, N., Noren I, Wernström A, Ericson L, Roiminen H, et al. (2007) Variable responses of natural enemies to Salix triandra phenotypes with different secondary chemistry. Ökolog 116: 751–758.

13. Albrechtsen BR, Witzell J, Robinson KM, Wulff S, Luquez VMC, et al. (2010) Large scale geographic clines of parasite damage to Populus tremula L. Ecolography 33: 483–493.

14. Lindroth RL, Sibbald JM, Hsia MTS (1986) Differential responses of tiger beetles, C. scutellaris, and C. notata to secondary metabolites in Populus. J Chem Ecol 12: 519–527.

15. Chen F, Liu CJ, Tschaplinski TJ, Zhao N (2009) Genomics of secondary metabolism in Populus: interactions with biotic and abiotic environments. CRC Crit Rev Plant Sci 28: 375–392.

16. Tsi C, Hardig SA, Tschaplinski TJ, Liang YM (2006) Genome-wide analysis of the structural genes regulating defense phenylpropanoid metabolism in Populus. New Phytol 172: 47–62.

17. Keefover-Ring K, Carlsson M, Albrechtsen BR (2014) 2’-(Z)-Cinnamoylsalicorcinol: A novel salicinoid isolated from Populus tremula. Phytochem Lett 7: 212–216.

18. de Carvalho D, Ingvarsson PK, Joseph J, Suter L, Sedivy C, et al. (2010) Admixture facilitates adaptation from standing variation in the European aspen (Populus tremula L.,) a widespread forest tree. Mol Ecol 19: 1638–1650.

19. Robinson KM, Ingvarsson PK, Jansson S, Albrechtsen BR (2012) Genetic variation in functional traits influences arthropod community composition in aspen (Populus tremula L.). PLoS One 7: e37679.

20. Jansson S, Albrechtsen BR, Togelberg R, Rouvi M, Heska S (2003) Salicylate and biomass yield, and leaf phenolics of dark-leaved willow (Salix myrsinifolia Salisb.) clones under different cultivation methods after the second cultivation cycle. Ind Crops Prod 29: 261–268.

21. Hewitt GM (1999) Post-glacial re-colonization of European biota. Biol J Linnean Soc 68: 87–112.

22. R Development Core Team (2013) R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing.

23. Lindroth RL, Hsia MTS, Sibbald JM (1987) Seasonal patterns in the phytochemistry of three Populus species. Biochem Syst Ecol 15: 681–686.

24. Reichardt PB, Merken HM, Clausen TP, Wu JJ (1992) Phenolic glycosides from Salix lasioandra. J Nat Prod 55: 970–973.

25. Ruuhola T, Jalkunanen-Tutio R, Vainiotalo P (2003) In vitro degradation of willow salicylates. J Chem Ecol 29: 1083–1097.

26. de Carvalho D, Ingvarsson PK, Joseph J, Suter L, Sedivy C, et al. (2010) Admixture facilitates adaptation from standing variation in the European aspen (Populus tremula L.), a widespread forest tree. Mol Ecol 19: 1638–1650.

27. Robinson KM, Ingvarsson PK, Jansson S, Albrechtsen BR (2012) Genetic variation in functional traits influences arthropod community composition in aspen (Populus tremula L.). PLoS One 7: e37679.

28. Albrechtsen BR, Witzell J, Robinson KM, Wulff S, Luquez VMC, et al. (2010) Large scale geographic clines of parasite damage to Populus tremula L. Ecolography 33: 483–493.

29. Lindroth RL, Sibbald JM, Hsia MTS (1986) Differential responses of tiger beetles, C. scutellaris, and C. notata to secondary metabolites in Populus. J Chem Ecol 12: 519–527.

30. Keefover-Ring K, Carlsson M, Albrechtsen BR (2014) 2’-(Z)-Cinnamoylsalicorcinol: A novel salicinoid isolated from Populus tremula. Phytochem Lett 7: 212–216.

31. Hewitt GM (1999) Post-glacial re-colonization of European biota. Biol J Linnean Soc 68: 87–112.

32. R Development Core Team (2013) R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing.

33. Lindroth RL, Hsia MTS, Sibbald JM (1987) Seasonal patterns in the phytochemistry of three Populus species. Biochem Syst Ecol 15: 681–686.

34. Reichardt PB, Merken HM, Clausen TP, Wu JJ (1992) Phenolic glycosides from Salix lasioandra. J Nat Prod 55: 970–973.

35. Ruuhola T, Jalkunanen-Tutio R, Vainiotalo P (2003) In vitro degradation of willow salicylates. J Chem Ecol 29: 1083–1097.

36. Jansson S, Albrechtsen BR, Togelberg R, Rouvi M, Heska S (2003) Salicylate and biomass yield, and leaf phenolics of dark-leaved willow (Salix myrsinifolia Salisb.) clones under different cultivation methods after the second cultivation cycle. Ind Crops Prod 29: 261–268.

37. Hewitt GM (1999) Post-glacial re-colonization of European biota. Biol J Linnean Soc 68: 87–112.

38. R Development Core Team (2013) R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing.

39. Lindroth RL, Hsia MTS, Sibbald JM (1987) Seasonal patterns in the phytochemistry of three Populus species. Biochem Syst Ecol 15: 681–686.

40. Reichardt PB, Merken HM, Clausen TP, Wu JJ (1992) Phenolic glycosides from Salix lasioandra. J Nat Prod 55: 970–973.