CIRCULANT q-BUTSON HADAMARD MATRICES

TREVOR HYDE AND JOSEPH KRAISLER

ABSTRACT. If \(q = p^n \) is a prime power, then a \(d \)-dimensional \(q \)-Butson Hadamard matrix \(H \) is a \(d \times d \) matrix with all entries \(q \)th roots of unity such that \(HH^* = dI_d \). We use algebraic number theory to prove a strong constraint on the dimension of a circulant \(q \)-Butson Hadamard matrix when \(d = p^m \) and then explicitly construct a family of examples in all possible dimensions. These results relate to the long-standing circulant Hadamard matrix conjecture in combinatorics.

1. INTRODUCTION

For a prime power \(q = p^n \), a \(q \)-Butson Hadamard matrix (\(q \)-BH) of dimension \(d \) is a \(d \times d \) matrix \(H \) with all entries \(q \)th roots of unity such that

\[
HH^* = dI_d,
\]

where \(H^* \) is the conjugate transpose of \(H \). A \(d \times d \) matrix \(H \) is said to be circulant if

\[
H_{ij} = f(i - j)
\]

for some function \(f \) defined modulo \(d \). In this paper we investigate circulant \(q \)-BH matrices of dimension \(d = p^m \).

Theorem 1. If \(q = p^n \) is a prime power and \(d = p^m \), then there exists a \(d \times d \) circulant \(q \)-Butson Hadamard matrix if and only if \(m \leq 2n \), with one exception when \((m, n, p) = (1, 1, 2)\).

Our analysis of circulant \(q \)-BH matrices led us to the useful notion of fibrous functions.

Definition 2. Let \(d \geq 0 \) and \(q = p^n \) be a prime power,

1. If \(X \) is a finite set, we say a function \(g : X \to \mathbb{Z}/(q) \) is fibrous if the cardinality of the fiber \(|g^{-1}(b)|\) depends only on \(b \mod p^{n-1} \).
2. We say a function \(f : \mathbb{Z}/(d) \to \mathbb{Z}/(q) \) is \(\delta \)-fibrous if for each \(k \not\equiv 0 \mod d \) the function \(\delta_k(x) = f(x + k) - f(x) \) is fibrous.

When \(q = d = p \) are both prime, \(\delta \)-fibrous functions coincide with the concept of planar functions, which arise in the study of finite projective planes \([2]\) and have applications in cryptography \([6]\). Circulant \(q \)-BH matrices of dimension \(d \) are equivalent to \(\delta \)-fibrous functions \(f : \mathbb{Z}/(d) \to \mathbb{Z}/(q) \).

Theorem 3. Let \(q = p^n \) be a prime power and \(\zeta \) a primitive \(q \)th root of unity. There is a correspondence between \(d \times d \) circulant \(q \)-Butson Hadamard matrices \(H \) and \(\delta \)-fibrous functions \(f : \mathbb{Z}/(d) \to \mathbb{Z}/(q) \) given by

\[
(H_{ij}) = (\zeta^{f(i-j)}).
\]

We restate our main result in the language of \(\delta \)-fibrous functions.

Date: March 14th, 2017.
Corollary 4. If \(q = p^n \) is a prime power, then there exist \(\delta \)-fibrous functions \(f : \mathbb{Z}/(p^m) \to \mathbb{Z}/(q) \) if and only if \(m \leq 2n \) with one exception when \((m, n, p) = (1, 1, 2) \).

It would be interesting to know if \(\delta \)-fibrous functions have applications to finite geometry or cryptography.

When \(q = 2 \), \(q \)-BH matrices are called Hadamard matrices. Hadamard matrices are usually defined as \(d \times d \) matrices \(H \) with all entries \(\pm 1 \) such that \(HH^* = dI_d \). Buston Hadamard matrices were introduced in [1] as a generalization of Hadamard matrices.

Circulant Hadamard matrices arise in the theory of difference sets, combinatorial designs, and synthetic geometry [7, Chap. 9]. There are arithmetic constraints on the possible dimension of a circulant Hadamard matrix. When the dimension \(d = 2^m \) is a power of two we have:

Theorem 5 (Turyn [9]). If \(d = 2^m \) is the dimension of a circulant Hadamard matrix, then \(m = 0 \) or \(m = 2 \).

Turyn’s proof uses algebraic number theory, more specifically the fact that 2 is totally ramified in the \(2^n \)th cyclotomic extension \(\mathbb{Q}(\zeta_{2^n})/\mathbb{Q} \); an elementary exposition may be found in Stanley [8]. Conjecturally this accounts for all circulant Hadamard matrices [7].

Conjecture 6. There are no \(d \)-dimensional circulant Hadamard matrices for \(d > 4 \).

Circulant \(q \)-Butson Hadamard matrices provide a natural context within which to consider circulant Hadamard matrices. A better understanding of the former could lead to new insights on the latter. For example, our proof of Theorem [1] shows that the two possible dimensions for a circulant Hadamard matrix given by Turyn’s theorem belong to larger family of circulant \(q \)-BH matrices with the omission of \(d = 2 \) being a degenerate exception. Circulant \(q \)-BH matrices have been studied in some specific dimensions [3], but overall seem poorly understood. We leave the existence of \(q \)-BH matrices when the dimension \(d \) is not a power of \(p \) for future work.

Acknowledgements. The authors thank Padraig Cathain for pointers to the literature, in particular for bringing the work of de Launey [4] to our attention. We also thank Jeff Lagarias for helpful feedback on an earlier draft.

2. Main Results

We always let \(q = p^n \) denote a prime power. First recall the definitions of \(q \)-Butson Hadamard and circulant matrices.

Definition 7. A \(d \)-dimensional \(q \)-Butson Hadamard matrix \(H \) (\(q \)-BH) is a \(d \times d \) matrix all of whose entries are \(q \)th roots of unity satisfying

\[
HH^* = dI_d,
\]

where \(H^* \) is the conjugate transpose of \(H \).

A \(d \)-dimensional circulant matrix \(C \) is a \(d \times d \) matrix with coefficients in a ring \(R \) such that

\[
C_{ij} = f(i - j)
\]

for some function \(f : \mathbb{Z}/(d) \to R \).

Example 8. Hadamard matrices are the special case of \(q \)-BH matrices with \(q = 2 \). The \(q \)-Fourier matrix \((\zeta^{ij})\) where \(\zeta \) is a primitive \(q \)th root of unity is an example of a \(q \)-BH matrix (which may
also be interpreted as the character table of the cyclic group \(\mathbb{Z}/(q) \). When \(q = 3 \) and \(\omega \) is a primitive 3rd root of unity this is the matrix:

\[
\begin{pmatrix}
1 & 1 & 1 \\
1 & \omega & \omega^2 \\
1 & \omega^2 & \omega^4
\end{pmatrix}
\]

This example is not a \textit{circulant} 3-BH matrix. The following is a circulant 3-BH matrix:

\[
\begin{pmatrix}
1 & \omega & \omega^2 \\
\omega & 1 & \omega \\
\omega^2 & \omega & 1
\end{pmatrix}
\]

The remainder of the paper is divided into two sections: first we prove constraints on the dimension \(d \) of a circulant \(q \)-BH matrix when \(d \) is a power of \(p \); next we introduce the concept of \(\delta \)-fibrous functions and construct examples of circulant \(q \)-BH matrices in all possible dimensions.

Constraints on dimension. Theorem 9 uses the ramification of the prime \(p \) in the \(q \)th cyclotomic extension \(\mathbb{Q}(\zeta)/\mathbb{Q} \) to deduce strong constraints on the dimension of a \(q \)-BH matrix.

Theorem 9. If \(q = p^n \) is a prime power and \(H \) is a circulant \(q \)-Butson Hadamard matrix of dimension \(d = p^{m+n} \), then \(m \leq n \).

Note that our indexing of \(m \) has changed from the introduction; this choice was made to improve notation in our proof. We use this indexing for the rest of the paper.

Proof of Theorem 9. Suppose \(H = (a_{i-j}) \) is a circulant \(q \)-Butson Hadamard matrix of dimension \(d = p^{m+n} \). From \(H \) being \(q \)-BH of dimension \(d \) we have

\(HH^* = dI_d \),

hence \(\det(H) = \pm d^{d/2} \) and each eigenvalue \(\alpha \) of \(H \) has absolute value \(|\alpha| = \sqrt{d} = p^{(m+n)/2} \).

On the other hand, since \(H = (a_{i-j}) \) is circulant, it has eigenvalues

\[
\alpha_k = \sum_{j<d} a_j \zeta^j.
\]

for \(\zeta \) a primitive \(d \)th root of unity with corresponding eigenvector

\[
u_k = (1, \zeta^k, \zeta^{2k}, \ldots, \zeta^{(d-1)k}).\]

These observations combine to give two ways of computing \(\det(H) \).

\[
\prod_k \alpha_k = \det(H) = \pm p^{(m+n)d/2}.
\]

The identity (2) is the essential interaction between the circulant and \(q \)-BH conditions on \(H \). The prime \(p \) is totally ramified in \(\mathbb{Q}(\zeta) \), hence there is a unique prime ideal \(p \subseteq \mathbb{Z}[\zeta] \) over \((p) \subseteq \mathbb{Z} \).

Since all \(\alpha_k \in \mathbb{Z}[\zeta] \), it follows from (2) that \((\alpha_k) = p^{v_k} \) as ideals of \(\mathbb{Z}[\zeta] \) for some \(v_k \geq 0 \) and for each \(k \). So either \(\alpha_0/\alpha_1 \) or \(\alpha_1/\alpha_0 \) is an element of \(\mathbb{Z}[\zeta] \). Say \(\alpha_0/\alpha_1 \) is the integral quotient. We noted \(|\alpha_k| = p^{(m+n)/2} \) for each \(k \), hence \(|\alpha_0/\alpha_1| = 1 \). The only integral elements of \(\mathbb{Z}[\zeta] \) with absolute value 1 are roots of unity, hence \(\alpha_0/\alpha_1 = \pm \zeta^r \) for some \(r \geq 0 \), hence

\[
\alpha_0 = \pm \zeta^r \alpha_1.
\]
By (1) we have
\[\alpha_0 = \sum_{j<d} a_j \quad \alpha_1 = \sum_{j<d} a_j \zeta^j. \]
Each \(j < d \) has a unique expression as \(j = j_0 + j_1 p^m \) where \(j_0 < p^m \) and \(j_1 < p^n \). Let \(\omega = \zeta^{p^m} \) be a primitive \(q \)th root of unity. Then
\[\zeta^j = \zeta^{j_0 + j_1 p^m} = \omega^{j_1} \zeta^{j_0}. \]
Writing \(\alpha_1 \) in the linear basis \(\{ 1, \zeta, \zeta^2, \ldots, \zeta^{p^n - 1} \} \) of \(\mathbb{Q}(\zeta)/\mathbb{Q}(\omega) \) we have
\[\alpha_1 = \sum_{j<d} a_j \zeta^j = \sum_{j'<p^n} b_{j'} \zeta^{j'}, \]
where \(b_{j'} \) is a sum of \(p^n \) complex numbers each with absolute value 1. Now (3) says \(\alpha_0 = \pm \omega^{j_0} \zeta^{-j_1} \alpha_1 \) for some \(j_0 \) and \(j_1 \), thus
\[\sum_{j<d} a_j = \alpha_0 = \pm \omega^{j_0} \zeta^{-j_1} \alpha_1 = \sum_{j'<p^n} \pm \omega^{j_0} b_{j'} \zeta^{j'-j_1}. \]
Comparing coefficients we conclude that
\[\alpha_0 = \pm \omega^{j_0} b_{j_1}, \]
which is to say that \(\alpha_0 \) is the sum of \(p^n \) complex numbers each with absolute value 1, hence \(|\alpha_0| \leq p^n \). On the other hand we have \(|\alpha_0| = p^{(m+n)/2} \). Thus \(m + n \leq 2n \implies 0 \leq m \leq n \) as desired.

Remark. The main impediment to extending this result from \(q = p^n \) to a general integer \(q \) is that we no longer have the total ramification of the primes dividing the determinant of \(H \). It may be possible to get some constraint in certain cases from a closer analysis of the eigenvalues \(\alpha_k \) and ramification, but we do not pursue this.

\(\delta \)-Fibrous functions and construction of circulant \(q \)-BH matrices. Recall the notion of fibrous functions from the introduction:

Definition 10. Let \(d \geq 0 \) and \(q = p^n \) be a prime power,

1. If \(X \) is a finite set, we say \(g : X \to \mathbb{Z}/(q) \) is fibrous if the cardinality of the fibers \(|g^{-1}(b)| \) depends only on \(b \) mod \(p^n - 1 \).
2. We say a function \(f : \mathbb{Z}/(d) \to \mathbb{Z}/(q) \) is \(\delta \)-fibrous if for each \(k \not\equiv 0 \mod d \) the function \(x \mapsto f(x + k) - f(x) \) is fibrous.

Lemma 11. Let \(p \) be a prime and \(\zeta \) a primitive \(p^n \)th root of unity.

1. If \(\sum_{k<p^n} b_k \zeta^k = 0 \) with \(b_k \in \mathbb{Q} \), then \(b_k \) depends only on \(k \) mod \(p^n - 1 \).
2. If \(X \) is a finite set and \(g : X \to \mathbb{Z}/(p^n) \) is a function, then \(g \) is fibrous iff
\[\sum_{x \in X} \zeta^{g(x)} = 0. \]

Proof. (1) Suppose \(\sum_{k<p^n} b_k \zeta^k = 0 \) for some \(b_k \in \mathbb{Q} \). Then \(r(x) = \sum_{k<p^n} b_k x^k \in \mathbb{Q}[x] \) is a polynomial with degree \(< p^n \) such that \(r(\zeta) = 0 \). So there is some \(s(x) \in \mathbb{Q}[x] \) such that \(r(x) = s(x) \Phi_{p^n}(x) \) where
\[\Phi_{p^n}(x) = \sum_{j<p} x^{jp^{n-1}} \]
is the \(p^n \)th cyclotomic polynomial—the minimal polynomial of \(\zeta \) over \(\mathbb{Q} \). Since \(\deg \Phi_{p^n}(x) = p^n - p^{n-1} \), it follows that \(\deg s(x) < p^{n-1} \). Let
\[
s(x) = \sum_{i < p^{n-1}} a_i x^i
\]
for some \(a_i \in \mathbb{Q} \). Expanding \(s(x)\Phi_{p^n}(x) \) we have
\[
r(x) = s(x)\Phi_{p^n}(x) = \sum_{i < p^{n-1}} a_i x^{i+jp^{n-1}}.
\]
Comparing coefficients yields
\[
b_k = b_{i+jp^{n-1}} = a_i,
\]
which is to say, \(b_k \) depends only \(i \equiv k \mod p^{n-1} \).

(2) Suppose \(g \) is fibrous. For each \(i < p^{n-1}, \) let \(a_i = |g^{-1}(i)| \). Then
\[
\sum_{x \in X} \zeta^{g(x)} = \sum_{i < p^{n-1}} \sum_{j < p} a_i \zeta^{i+jp^{n-1}} = \Phi_{p^n}(\zeta) \sum_{i < p^{n-1}} a_i \zeta^i = 0.
\]
Conversely, for each \(k < p^n \) let \(c_k = |g^{-1}(k)| \). Then
\[
0 = \sum_{x \in X} \zeta^{g(x)} = \sum_{k < p^n} c_k \zeta^k,
\]
and (1) implies \(c_k \) depends only on \(k \mod p^{n-1} \). Hence \(g \) is fibrous.

Theorem \[12\] establishes the equivalence between \(q \)-BH matrices of dimension \(d \) and \(\delta \)-fibrous functions \(f : \mathbb{Z}/(d) \to \mathbb{Z}/(q) \).

Theorem 12. Let \(q = p^n \) be a prime power. There is a correspondence between circulant \(q \)-Butson Hadamard matrices \(H \) of dimension \(d \) and \(\delta \)-fibrous functions \(f : \mathbb{Z}/(d) \to \mathbb{Z}/(q) \) given by
\[
(H_{i,j}) = (\zeta^{f(i-j)})
\]
Proof. Suppose \(f \) is \(\delta \)-fibrous. Define the matrix \(H = (H_{ij}) \) by \(H_{ij} = \zeta^{f(i-j)} \), where \(\zeta \) is a primitive \(q \)th root of unity. \(H \) is plainly circulant and has all entries \(\zeta \) roots of unity. It remains to show that \(HH^* = dI_d \), which is to say that the inner product \(r_{j,j+k} \) of column \(j \) and column \(j+k \) is 0 for each \(j \) and each \(k \neq 0 \mod d \). For each \(k \neq 0 \mod d \) the function \(\delta_k(x) = f(x+k) - f(x) \) is fibrous. Then we compute
\[
r_{j,j+k} = \sum_{i < d} \zeta^{f(i-j+k) - f(i-j)} = \sum_{i < d} \zeta^{\delta_k(i-j)} = 0,
\]
where the last equality follows from Lemma \[11\](2).

Conversely, suppose \(H = (H_{i,j}) \) is a circulant \(q \)-Butson Hadamard matrix. Then \(H_{i,j} = \zeta^{f(i-j)} \) for some function \(f : \mathbb{Z}/(d) \to \mathbb{Z}/(q) \). Since \(HH^* = dI_d \) we have for each \(k \neq 0 \mod d \),
\[
0 = r_{j,j+k} = \sum_{i < d} \zeta^{f(i-j+k)-f(i-j)}.
\]
Lemma \[11\](2) then implies \(\delta_k(x) = f(x+k) - f(x) \) is fibrous. Therefore \(f \) is \(\delta \)-fibrous.

Lemma \[13\] checks that affine functions are fibrous. We use this in our proof of Theorem \[14\]
Lemma 13. If \(q = p^n \) is a prime power, then for all \(a \neq 0 \mod q \) and arbitrary \(b \), the function \(f(x) = ax + b \) is fibrous.

Proof. Since \(a \neq 0 \mod q \),

\[
\sum_{j<q} \zeta^{f(j)} = \sum_{j<q} \zeta^{aj+b} = \zeta^b \sum_{j<q} (\zeta^a)^j = 0.
\]

Thus, by Lemma 11(2) we conclude that \(f \) is fibrous. \(\square \)

Theorem 14. If \(q = p^n \) is a prime power, then there exists a circulant \(q \)-Butson Hadamard matrix of dimension \(d = p^{m+n} = p^m q \) for each \(m \leq n \) unless \((m, n, p) = (0, 1, 2) \).

Our construction in the proof of Theorem 14 misses the family \((m, n, p) = (0, n, 2) \) for each \(n \geq 1 \). Lemma 15 records a quick observation that circumvents this issue for \(n > 1 \), as our construction does give circulant \(2^{n-1} \)-BH matrices of dimension \(2^n \).

Lemma 15. If \(q = p^n \) is a prime power and there exists a circulant \(q \)-BH matrix of dimension \(d \), then there exists a circulant \(p^k q \)-BH matrix of dimension \(d \) for all \(k \geq 0 \).

Proof. Every \(q \)th root of unity is also a \(p^k q \)th root of unity, hence we may view a circulant \(q \)-BH matrix \(H \) of dimension \(d \) as a circulant \(p^k q \)-BH for all \(k \geq 0 \). \(\square \)

Proof of Theorem 14. Our strategy is to first construct a sequence of functions

\[
\delta_k: \mathbb{Z}/(p^m) \times \mathbb{Z}/(q) \to \mathbb{Z}/(q)
\]

which are fibrous for each \(k < p^m \). If \(i: \mathbb{Z}/(p^m) \times \mathbb{Z}/(q) \to \mathbb{Z}/(p^mq) \) is the bijection

\[
i(x, y) = x + p^m y,
\]

we define \(f: \mathbb{Z}/(p^mq) \to \mathbb{Z}/(q) \) such that \(f(z + k) - f(z) = \delta_k(x, y) \) when \(z = i(x, y) \). Hence \(f \) is \(\delta \)-fibrous and Theorem 14 implies the existence of a corresponding circulant \(q \)-BH matrix of dimension \(p^m q \).

Now for each \(k \geq 0 \) define \(\delta_k \) by

\[
\delta_k(x, y) = ky + \sum_{j < k} S_j(x), \tag{4}
\]

where

\[
S_j(x) = \sum_{i < j} \chi(x + i), \quad \chi(x) = \begin{cases} 1 & x \equiv -1 \mod p^m, \\ 0 & \text{otherwise.} \end{cases}
\]

Observe that \(S_j(x) \) counts the integers in the interval \([x, x+j)\) congruent to \(-1 \mod p^m\) (which only depends on \(x \mod p^m \)). Any interval of length \(p^m j_1 \) contains precisely \(j_1 \) integers congruent to \(-1 \mod p^m \). For each \(j < p^mq \), write \(j = j_0 + p^m j_1 \) with \(j_0 < p^m \) and \(j_1 < q \), then

\[
S_j(x) = \sum_{i < j_0 + p^m j_1} \chi(x + i) = \sum_{i < j_0} \chi(x + i) + j_1 = S_{j_0}(x) + j_1. \tag{5}
\]

We show that \(\delta_k \) is fibrous when \(k < p^mq \). If \(k \not\equiv 0 \mod q \), then for each \(x = x_0 \) the function \(\delta_k(x_0, y) \) is affine hence fibrous by Lemma 14. So \(\delta_k(x, y) \) is fibrous. Now suppose \(k = k'q \) for some \(k' < p^m \). Using (5) we reduce (4) to

\[
\delta_k(x, y) = \sum_{j < k'q} S_j(x) = \sum_{j_0 + p^m j_1 < k'q} S_{j_0}(x) + j_1 = \ell \sum_{j_0 < p^m} S_{j_0}(x) + p^m \binom{\ell}{2}, \tag{6}
\]

which is fibrous for \(\ell < p^m \).
where \(k'q = p^m(k'p^{n-m}) = p^m\ell \). Here we use our assumption \(m \leq n \). The definition of \(\chi \) implies

\[
S_{j_0}(x) = \begin{cases}
 0 & j_0 < p^m - x \\
 1 & j_0 \geq p^m - x,
\end{cases}
\implies \sum_{j_0 < p^m} S_{j_0}(x) = x,
\]
whence \(\delta_k(x, y) = \ell x + p^m(\ell) \). Since \(k' < p^m \) it follows that \(\ell = k'p^{n-m} < p^n = q \), so \(\delta_k(x, y) \) is affine hence fibrous by Lemma 13.

Define \(f : \mathbb{Z}/(p^m q) \to \mathbb{Z}/(q) \) by \(f(k) = \delta_k(0, 0) \). For this to be well-defined, it suffices to check that \(\delta_{k+p^m q}(x, y) = \delta_k(x, y) \) with arbitrary \(k \). By (4),

\[
\delta_{k+p^m q}(x, y) = (k + p^m q)y + \sum_{j < k+p^m q} S_j(x)
= ky + \sum_{j < k} S_j(x) + \sum_{j < p^m q} S_{j+k}(x)
= \delta_k(x, y) + \sum_{j < p^m q} S_{j+k}(x).
\]

The argument leading to (6) gives

\[
\sum_{j < p^m q} S_{j+k}(x) = q x + p^m(\ell) = p^m(\ell).
\]

Finally, \(p^m(\ell) \equiv 0 \mod q \) unless \((m, n, p) = (0, n, 2) \). Lemma 15 implies that constructing an example for \((1, n-1, 2) \) implies the existence of example for \((0, n, 2) \), hence we proceed under the assumption that either \(p \neq 2 \) or \(p = 2 \) and \(m > 0 \). The case \((m, n, p) = (0, 1, 2) \) is an exception as one can check explicitly that there are no 2-dimensional Hadamard matrices. Hence it follows that \(f \) is well-defined. Let \(i : \mathbb{Z}/(p^m) \times \mathbb{Z}/(q) \to \mathbb{Z}/(p^m q) \) be the bijection \(i(x, y) = x + p^m y \). To finish the construction we suppose \(z = i(x, y) \), show

\[
f(z + k) - f(z) = \delta_k(x, y),
\]
and then our proof that \(\delta_k \) is fibrous for all \(k < p^m q \) implies \(f \) is \(\delta \)-fibrous. Theorem 12 translates this into the existence of a circulant \(q \)-BH matrix of dimension \(p^{m+n} \). Now,

\[
f(z + k) - f(z) = \delta_{z+k}(0, 0) - \delta_z(0, 0) = \sum_{z \leq j < z+k} S_j(0) = \sum_{j-z < k} \sum_{i-z < j-z} \chi(i)
= \sum_{j' < k} \sum_{i' < j'} \chi(x + i') = \sum_{j' < k} S_{j'}(x) = \delta_k(x, y).
\]

Remark. Padraig Cathain brought the work of de Launey [4] to our attention after reading an initial draft. There one finds a construction of circulant \(q \)-Butson Hadamard matrices of dimension \(q^2 \) for all prime powers \(q \) which appears to be closely related to our construction in Theorem 14.
Example 16. We provide two low dimensional examples to illustrate our construction. First we have an 8 dimensional circulant 4-BH matrix.

$$\begin{pmatrix}
1 & -1 & i & 1 & 1 & 1 & i & -1 \\
-1 & 1 & -1 & i & 1 & 1 & 1 & i \\
i & -1 & 1 & -1 & i & 1 & 1 & i \\
1 & i & -1 & 1 & -1 & i & 1 & i \\
1 & 1 & i & -1 & 1 & -1 & i & i \\
i & 1 & 1 & i & -1 & 1 & 1 & i \\
-1 & i & 1 & 1 & 1 & i & -1 & 1 \\
\end{pmatrix}$$

Let ω be a primitive 3rd root of unity. The following is a 9 dimensional circulant 3-BH matrix.

$$\begin{pmatrix}
1 & \omega^2 & \omega & 1 & 1 & 1 & \omega & \omega^2 \\
\omega^2 & 1 & \omega^2 & \omega & 1 & 1 & 1 & \omega \\
\omega & \omega^2 & 1 & \omega^2 & \omega & 1 & 1 & 1 \\
1 & \omega & \omega^2 & 1 & \omega^2 & \omega & 1 & 1 \\
1 & 1 & \omega & \omega^2 & 1 & \omega^2 & \omega & 1 \\
1 & 1 & 1 & \omega & \omega^2 & 1 & \omega^2 & \omega \\
\omega & 1 & 1 & 1 & \omega & \omega^2 & 1 & \omega^2 \\
\omega^2 & \omega & 1 & 1 & 1 & \omega & \omega^2 & 1 \\
\end{pmatrix}$$

Corollary 17 is an immediate consequence of our main results by Theorem 12.

Corollary 17. If $q = p^n$ is a prime power and $d = p^{m+n}$, then there exists a $δ$-fibrous function $f : \mathbb{Z}/(p^{m+n}) \to \mathbb{Z}/(q)$ iff $m \leq n$, with the one exception of $(m, n, p) = (0, 1, 2)$.

Closing remarks. Our analysis focused entirely on the existence of circulant p^n-BH matrices with dimension d a power of p. The number theoretic method of Theorem 9 cannot be immediately adapted to the case where d is not a power of p, although as we noted earlier, it may be possible to get some constraint with a closer analysis of the eigenvalues of a circulant matrix and the ramification over the primes dividing d in the dth cyclotomic extension $\mathbb{Q}(\zeta)/\mathbb{Q}$.

The family of examples constructed in Theorem 14 was found empirically. It would be interesting to know if the construction extends to any dimensions which are not powers of p.

REFERENCES

[1] Butson, A.T. “Generalized Hadamard matrices.” Proc. Amer. Math. Soc., 13 (1962), pp. 894-898.
[2] Dembowski, Peter, and Thedore G. Ostrom. “Planes of order n with collineation groups of order n^2.” Mathematische Zeitschrift 103.3 (1968): 239-258.
[3] Hiranandani, Gaurush, and Jean-Marc Schlenker. “Small circulant complex Hadamard matrices of Butson type.” European Journal of Combinatorics 51 (2016): 306-314.
[4] de Launey, Warwick. “Circulant GH(p^2; \mathbb{Z}_p) exist for all primes p.” Graphs Combin. 8, no. 4, (1992): 317-321.
[5] Leung, Ka Hin, and Bernhard Schmidt. “New restrictions on possible orders of circulant Hadamard matrices.” Designs, Codes and Cryptography 64.1 (2012): 143-151.
[6] Nyberg, Kaisa, and Lars Ramkilde Knudsen. “Provable security against differential cryptanalysis.” Annual International Cryptology Conference. Springer Berlin Heidelberg, 1992.
[7] Rysier, Herbert John. “Combinatorial mathematics.” Vol. 14. Washington, DC: Mathematical Association of America, 1963.
[8] Stanley, Richard P. “Algebraic combinatorics.” Springer 20 (2013): 22.
[9] Turyn, Richard. “Character sums and difference sets.” Pacific Journal of Mathematics 15.1 (1965): 319-346.
DEPT. OF MATHEMATICS, UNIVERSITY OF MICHIGAN, ANN ARBOR, MI 48109-1043,
E-mail address: tghyde@umich.edu

DEPT. OF MATHEMATICS, UNIVERSITY OF MICHIGAN, ANN ARBOR, MI 48109-1043,
E-mail address: jkrais@umich.edu