A PUZZLING MILLISECOND PULSAR COMPANION IN NGC 6266

G. Cocozza, F. R. Ferraro, A. Possenti, G. Beccari, B. Lanzoni, S. Ransom, R. T. Rood, and N. D’Amico

Received 2008 March 15; accepted 2008 April 21; published 2008 May 9

ABSTRACT

We report on the optical identification of the companion to the eclipsing millisecond pulsar PSR J1701−3006B in the globular cluster NGC 6266. A relatively bright star with an anomalous red color and an optical variability (∼0.2 mag) that nicely correlates with the orbital period of the pulsar (∼0.144 days) has been found nearly coincident with the pulsar nominal position. This star is also found to lie within the error box position of an X-ray source detected by Chandra observations, thus supporting the hypothesis that some interaction is occurring between the pulsar wind and the gas streaming off the companion. Although the shape of the optical light curve is suggestive of a tidally deformed star which has nearly completely filled its Roche lobe, the luminosity (∼1.9 L⊙) and the surface temperature (∼6000 K) of the star, deduced from the observed magnitude and colors, would imply a stellar radius significantly larger than the Roche lobe radius. Possible explanations for this apparent inconsistency are discussed.

Subject headings: binaries: close --- globular clusters: individual (NGC 6266) --- pulsars: individual (PSR J1701−3006B) --- stars: evolution

1. INTRODUCTION

NGC 6266 (M62) is one of the most massive and brightest (Mv = −9.19; Harris 1996) Galactic globular clusters (GCs), and is also characterized by high values of the central density (log ρ0 ∼ 5.47, with ρ0 in units of M⊙ pc−3; Beccari et al. 2006). It displays a King-model density profile with an extended core (∼19′′) and a modest value of the concentration parameter (c = 1.5; Beccari et al. 2006).

Six binary millisecond pulsars (MSPs) have been discovered in M62 (D’Amico et al. 2001; Jacoby et al. 2002; Possenti et al. 2003, hereafter P03) and it ranks fifth of the GCs in wealth of MSPs, after Terzan 5, 47 Tucanae, M15, and M22. P03 presented phase-connected timing solutions, yielding precise celestial coordinates, for three of the MSPs in NGC 6266. One of them, PSR J1701−3006B (hereafter PSR 6266B) displays partial or total eclipses of the radio signal at 1.4 GHz near its superior conjunction (in the convection adopted throughout this Letter, this corresponds to orbital phase φ = 0.25), clearly due to gas streaming off the companion. The pulsar orbit is circular, with a projected semimajor axis of only ∼0.11 R⊙. P03 suggested two options for explaining the behavior of the PSR 6266B system. The first option is that the pulsar companion is a non-degenerate bloated star, whose mass loss is sustained by ablation of its loosely bound surface layers by the relativistic wind emitted by the pulsar. In this case, PSR 6266B may resemble PSRs B1957+20 (Fruchter et al. 1990) and J2051−0827 (Stappers et al. 2001): the optical light curve of their companion star presents a maximum when the side of the companion facing the pulsar points toward the observer (i.e., at the pulsar inferior conjunction: φ = 0.75). This is a clear signature of the irradiation of the companion surface by the pulsar flux. The second option has the pulsar companion as a tidally deformed star overflowing its Roche lobe due to the internal nuclear evolution. In this case, the system may be more like PSR J1740−5340 (D’Amico et al. 2001; Ferraro et al. 2001), where irradiation effects are negligible (Orosz & van Kerkwijk 2003) and the optical light curve of the companion is dominated by ellipsoidal variations (Ferraro et al. 2001); i.e., it shows two maxima at quadratures (φ = 0.0 and 0.5). We present the optical identification of the companion to PSR 6266B, based on high-quality phase-resolved photometry obtained with the Hubble Space Telescope (HST), and X-ray emission detected with Chandra.

2. OBSERVATIONS AND DATA ANALYSIS

HST observations.—The photometric data presented here consist of a set of high-resolution images obtained on 2004 August 1 by using the Advanced Camera for Survey (ACS), on board the HST; and retrieved from the ESO/ST-ECF Science Archive. The data comprise three R-band exposures (2 × 340 s and 1 × 30 s exposures), two B-band exposures (of 120 and 340 s), and four Hα-band exposures (of 340, 1050, 1125, 1095 s). The three longest exposures in Hα are the combination of three subexposures. An additional set of Wide Field Planetary Camera 2 (WFPC2, proposal 10845, PI: Ferraro) data has been secured through the Hα filter with the specific aim of testing the possible variability of the companion: ten 1200 s exposures were taken between 2007 May 2 and May 5. In order to best resolve stars in the most crowded regions, the Planetary Camera (with a resolution of 0.046 pixel−1) of the WFPC2 was pointed at the cluster center. The photometric analysis of the ACS data set has been carried out using the ACS module

1 Based on observations with the NASA/ESA HST, obtained at the Space Telescope Science Institute, which is operated by AURA, Inc., under NASA contract NAS5-26555.
2 Dipartimento di Astronomia, Università di Bologna, via Ranzani 1, I-40127 Bologna, Italy.
3 INAF Osservatorio Astronomico di Bologna, via Ranzani 1, I-40127 Bologna, Italy.
4 INAF Osservatorio Astronomico di Cagliari, Loc. Poggio dei Pini, Strada 54, I-09012 Capoterra, Italy.
5 National Astronomy Observatory, 520 Edgemont Road, Charlottesville, VA 22903.
6 Astronomy Department, University of Virginia, P.O. Box 400325, Charlottesville, VA 22904.
7 Dipartimento di Fisica, Università di Cagliari, Cittadella Universitaria, I-09042 Monserrato, Italy.
8 Everywhere in this paper, we refer to the data at http://www.physics.mcmaster.ca/Globular.html.
9 See http://www.naic.edu/~pitreiro/GCpsr.html for a catalog of MSPs in GCs with relative references.
10 Only nine exposures have been used in the analysis since one was made useless by a cosmic-ray passage.
of the DOLPHOT package (Dolphin 2000) using the FLT.fits data sets for the photometry and the drizzled images as references for the geometric distortion correction. We set the photometry parameters as recommended in the DOLPHOT manual, obtaining a final catalog of B, R, and Hα magnitudes, calibrated according to Sirianni et al. (2005). The final catalog is reported to an absolute astrometric system by cross-correlating the stars in common with the data set of Beccari et al. (2006), which has been astrometrized by using the standard stars from the new Guide Star Catalog II lying in the considered field of view (FoV). At the end of the procedure, the rms residuals were of the order of $0.5''$ both in right ascension and declination; we assume this value as representative of the astrometric accuracy.

In order to carefully search for any variability from the MSP companion, we reanalyzed the Hα images in a small area around the nominal position of PSR 6266B by using ROMAFOT (Buonanno et al. 1983). This package has been specifically developed to perform accurate photometry in crowded fields, and it also allows a visual inspection of the quality of the PSF-fitting procedure. In particular, we extracted 50 × 50 pixel2 ($\sim 2.5'' \times 2.5''$) subimages from the 10 original Hα ACS frames, each centered on the nominal position of PSR 6266B. In order to optimize the detection of faint objects, we performed the search procedure on the median image. Then, we adopted the resulting mask with the star positions to the individual subimages and performed the PSF-fitting procedure separately on each of them. We adopted the same strategy for the analysis of the nine WFPC2 Hα images, after the careful alignment with the previously astrometrized ACS frames. The resulting instrumental magnitudes were transformed to a common system, and we compiled a final catalog with coordinates and magnitudes for all the stars identified in the considered 19 subimages. The photometric calibration of the instrumental magnitudes and the absolute celestial coordinates were determined by using all the stars in common with the overall ACS catalog, calibrated and astrometrized as discussed above.

Chandra observations.—NGC 6266 was observed for 63 ks on 2002 May with the Chandra Advanced CCD Imaging Spectrometer (ACIS). The ACIS-S3 chip was pointed at the cluster center, its FoV ($8' \times 8'$) entirely covering the half-mass radius (1.23; Harris 1996). The data were reduced using the CIAO software (ver. 3.3.0), reprocessing the level 1 event files; the task acis_run_hotpix was used to generate a new badpixel file. Then we applied the corrections for pixel randomization, good time intervals, and grades. Our analysis includes only photons with ASCA grades of 0, 2, 3, 4, and 6. About 1.5 ks of observations were not considered in the analysis because of the high background level. We searched for discrete sources in our level 2 event file using wavdetect (Freeman et al. 2002), performing the source detection separately on the 0.2–1, 1–2, 2–8, and 0.2–8 keV bands. The detection threshold was set to 10^{-5}, and the source detection was performed increasing the sequence of wavelets from 1 to 16 by factors of $\sqrt{2}$. More than 110 sources were detected in the 0.2–8 keV band in the entire chip. The astrometry of all the detected sources was corrected by using the Aspect Calculator provided by the Chandra X-Ray Center. Then we searched for possible optical counterparts both in our HST images and catalog. About five bright stars and two faint and extended objects (likely background galaxies) were found to coincide with the X-ray sources well outside the half-mass radius, where the stellar density is relatively low. We therefore used these optical counterparts for extending the astrometric solution of HST to the Chandra sources, thus obtaining the same accuracy in the absolute astrometry for both the optical and the X-ray sources.

3. RESULTS

Figure 1 shows the $3'' \times 3''$ WFPC2 Hα map centered on the PSR 6266B nominal position (marked with a cross), as derived from timing (see P03). An accurate photometric analysis has been carried out for all the ~ 30 stars found in our catalog within a distance of $1.5''$ from the PSR 6266B position. This correspond to 3 times the 1 σ uncertainty ($0.5''$) in the absolute astrometry of the HST data. In particular, we have extracted 19 individual images from our data set (10 exposures with ACS and 9 with WFPC2) and compared the resulting magnitudes for each object in order to search for variability and estimate the typical photometric uncertainties at different magnitude levels. Only one source in the catalog (hereafter named COM 6266B; marked with a small circle in Fig. 1) showed Hα variability (ΔHα = 0.2 mag) significantly larger than the typical rms magnitude fluctuations of stars of similar luminosity (ΔHα = 0.02 mag in ACS data, and δHα ~ 0.04 mag in WFPC2 data). Its celestial coordinates are $\alpha = 17^h01^m12.690^s$ and $\delta = -30^\circ 06' 48.61''$ (J2000.0), whereas the mean apparent magnitudes are $B = 20.58$, $V = 19.48$, $R = 19.02$, $H_\alpha = 18.65$ (V is from Beccari et al. 2006). It is located at $0.5''$ from PSR 6266B just at the edge of its positional error circle.

Figure 2 reports the (R, Hα $- R$) and (R, B $- R$) color-magnitude diagrams (CMDs) for all the stars detected in the $20'' \times 20''$ box centered on the PSR 6266B nominal position. COM 6266B is marked with a large filled triangle in both the CMDs. As is apparent from the figure, the star has almost the same luminosity as the cluster turnover, but it shows an anomalous red color which locates it out of the main sequence. The
photometric properties imply that it is not a degenerate star and
that it has a moderate Hα excess, indicating the presence of
ionized gas surrounding the system. These findings are con-
sistent with the irregularities seen in the radio signal of PSR
6266B and support the scenario that COM 6266B is a mass-
losing star.

In order to firmly assess the physical connection between
COM 6266B and the binary pulsar PSR 6266B, we have ac-
curately investigated the timescale of the optical variability
(in the 0–1 day range). The Hα time series (19 points) was processed
using the GRATIS χ² fitting routine, a code developed at the
Bologna Astronomical Observatory in order to study the peri-
dodicity of variable stars (see, e.g., Clementini et al. 2000).

Following the procedure fully described in Ferraro et al. (2001),
the most significant (99% confidence interval) periodicity was
found at a period of 0.1446 ± 0.0015 days, consistent, within
the uncertainties, with the orbital period of PSR 6266B derived
from timing Pp = 0.1445454303(6) days, where the figure in
parentheses is the uncertainty, at 99% confidence level, on the
last quoted digit; P03). Given that, we have folded the 19 mag
values, by using Pp and the reference epoch of the PSR 6266B
radio ephemeris Tp = 52047.258199(2); P03). The results are
shown in Figure 3. As apparent, the ACS and the WFPC2 data
(obtained about 3 years later) agree with each other, drawing
a well-defined light curve with two distinct maxima at about
φ = 0.0 and φ = 0.5. This fact, as well as the phases and the
amplitudes of the minima, confirms that the optical modulation
is associated with the pulsar binary motion and strongly suggests

that COM 6266B is a deformed star overflowing its Roche lobe
(see § 1).

Additional properties of this system can be derived from the
analysis of the Chandra data. We found an X-ray source located
at only ~0.4° from COM 6266B and at 0.3° from the nominal
radio position of PSR 6266B. The derived coordinates of the X-
ray source are α = 17°01′12.700″ and δ = −30°06′49.08″
(J2000.0), and the 1σ uncertainty area on its position is encircled
in Figure 1 (dashed line). Given the number of sources (50)
detected within the half-mass radius of NGC 6266, the proba-
bility of a chance superposition of a X-ray source within 0.3°
from the radio position of PSR 6266B is 7 × 10⁻⁴, strongly
supporting the association of the detected source with the PSR
6266B system. (The background subtracted) photon counts are
18.3 ± 5.3 (soft: 0.2–1 keV), 23.7 ± 6.0 (medium: 1–2 keV),
and 9.8 ± 3.4 (hard: 2–8 keV), implying HR1 = 1.3 and HR2 = 0.4
(where HR1 = medium/soft counts and HR2 = hard/medium
counts). Hence the source is harder than the typical MSP
population observed in GCs (e.g., Grindlay et al. 2002) and the HR1,
HR2 values resemble those of a source in which the pulsar wind
shocks the material released from the companion (see, e.g.,
the cases of PSR J1740–5340 in NGC 6397 and PSR
J0024–7204W in 47 Tuc; Grindlay et al. 2002 and Bogdanov
et al. 2005, respectively). Even if the small number of photons
prevents a detailed spectral analysis, for an absorption column
density N_H = 2.2 × 10¹⁵ cm⁻² (Pooley et al. 2003), the counts
in each band and the HR1 and HR2 values are consistent with
a power-law model having a photon index ≈2.5 and a total
unabsorbed flux F_x ≈ 10⁻¹² ergs cm⁻² s⁻¹ in the 0.2–8 keV band,
translating (for a distance of 6.6 kpc; Beccari et al. 2006) into
a X-ray luminosity of L_x ≈ 6 × 10¹¹ ergs s⁻¹.

12 Note that COM 6266B has a close companion located at only 4 pixels
(∼0.19″) west in the ACS map (see Fig. 1). This object turns out to be a
normal sub-giant-branch star, slightly brighter (∼0.5 mag in B, R, and Hα)
than COM 6266B and not displaying any evidence of variability. Although
very close to each other, the two stars are clearly separable in the high-
resolution ACS and WFPC2 images and we have verified that the photometric
analysis of COM 6266B is not affected by the presence of this close star.

13 The significance level has been obtained from the reduced χ² of the Fourier
time series fit (at different modulation periods) to the Hα data (see, for example,
Fig. 2 of Ferraro et al. 2001).
4. DISCUSSION

Many observed features of COM 6266B (namely, its anomalous red color, the Hα excess, the shape of the light curve, the X-ray emission from the binary) are suggestive of a tidally deformed star which is experiencing heavy mass loss, similar to the system found in NGC 6397 by Ferraro et al. (2001). On the other hand, other photometric properties of the source do not fit this picture, as described below.

By assuming the reddening \(E(B-V) \sim 0.47 \) and the distance quoted by Beccari et al. (2006), and adopting \([\text{Fe/H}] = -1.1\) and an age of 12 Gyr for NGC 6266, we have determined the physical parameters of COM 6266B from the comparison of its position on the CMDs (Fig. 2) with the isochrones of Pietrinferni et al. (2004). The resulting effective temperature, bolometric luminosity, and radius of this star are \(T_{\text{eff}} \sim 6000 \pm 500 \) K, \(L_{\text{bol}} \sim 1.9 \pm 0.2 L_{\odot} \), and \(R \sim 1.2 \pm 0.2 R_{\odot} \), respectively, where the quoted uncertainties are conservative estimates, essentially due to the uncertainties in the distance modulus \((\pm 0.15 \text{ mag}) \) and in the reddening \((\pm 0.05 \text{ mag}) \). If the luminosity variations shown in Figure 3 are mainly due to tidal deformations of the companion star, the stellar radius \(R \) is expected to be of the order of the Roche lobe radius \(R_L \). The latter can be estimated from the mass function and the projected semimajor axis of PSR 6266B (derived from pulsar timing; P03), provided that a pulsar mass \(M_{psr} \) and an orbital inclination \(i \) are assumed. As already discussed in P03, the presence of radio eclipses indicates that \(i \) is not small. Conservatively taking \(i \sim 20^\circ \) and assuming \(M_{psr} = 1.4 M_{\odot} \), the companion star is expected to span a mass interval ranging from 0.125 \(M_{\odot} \) \((i = 90^\circ) \) to 0.41 \(M_{\odot} \) \((i = 20^\circ) \),13 corresponding to \(R_L \sim 0.26 R_{\odot} \) and 0.40 \(R_{\odot} \), respectively. The value of \(R_L \) is only slightly affected by the choice of \(M_{psr} \), being, for instance, \(R_L \leq 0.45 R_{\odot} \) for \(0.7 M_{\odot} \leq M_{psr} \leq 3.0 M_{\odot} \) (a safely large neutron star mass range; see, e.g., Freire et al. 2008). Note that in order to match the estimated \(R_L \) with the observed \(R \) it should be \(i \sim 3^\circ \) for \(M_{psr} = 1.4 M_{\odot} \), thus implying an unreliable companion mass of \(\sim 6 M_{\odot} \). In summary, for all plausible binary parameters, it turns out that the observed stellar radius of COM 6266B is significantly larger \((R \geq 3 R_L) \) than the expected Roche lobe radius of the companion to PSR 6266B; i.e., COM 6266B appears \(\geq 10 \) times brighter than the expected luminosity of any pulsar companion having an effective temperature \(T_e \sim 6000 \) K.

Under the hypothesis that COM 6266B is the companion to PSR 6266B, what is the origin of this remarkable discrepancy? A number of possibilities are examined below.

1. The binary system could not belong to the cluster. In this case the adopted distance would be inappropriate and the value of the radius deduced from the luminosity would be largely overestimated. On the other hand, the celestial position of PSR 6266B is at less than \(2^\circ \) from the cluster center, and the pulsar shows a negative value of the spin period derivative, as expected if PSR 6266B lies in the cluster potential well.

2. The optical luminosity of COM 6266B could be dominated by strong nonthermal processes, possibly triggered by the pulsar spin-down power \(L_{\text{sd}} \leq 10 L_{\odot} \) (see P03). Also in this case the value of the stellar radius deduced from the observed luminosity could be significantly overestimated. However, at the orbital separation of \(1.4 R_{\odot} \), the energy captured by a Roche-lobe-filling companion would be of the order of \(L \sim 0.1-0.2 L_{\odot} \), which is too low to explain the observed value. Moreover, it is hard to explain how a large nonthermal component may generate a light curve with maxima that fall at orbital phases nicely consistent with those expected for light curves modulated by ellipsoidal variations.

3. COM 6266B could be the blend of two low-luminosity stars: one star would be the optically variable companion to PSR 6266B and the other one a nonvariable star in the foreground (background). While stellar blends are not uncommon in the highly crowded GC cores, this possibility only partially alleviates the problem. In fact, by assuming that COM 6266B is the blend of two stars of equal mean Hα magnitude (i.e., Hα = 19.35), the observed ellipsoidal modulation could only be produced if the pulsar companion varies by \(\Delta H\alpha \sim 0.35 \) mag, which is a rather extreme value for variabilities induced by tidal distortions. Moreover, even in this case, the star would have a radius \(R \geq 1.7 R_L \). Matching \(R \) with \(R_L \) would require that COM 6266B be, e.g., the blend of a nonvariable star with Hα = 18.7 and a star with mean magnitude Hα = 21 varying by \(\Delta H\alpha > 3 \) mag. We note that similar considerations would apply also if PSR 6266B were a triple system.

In conclusion, while option 3 seems to be a quite unlikely ad hoc scenario, options 1 and 2 will be finally addressed as soon as spectroscopic data are available for the system. This will allow us to investigate the nature (thermal or not thermal) of the optical emission and the association of the source with the cluster (via the determination of the radial velocity), hence shedding some light on the nature of this puzzling object.

This research was supported by the Agenzia Spaziale Italiana (ASI I/088/06/0), PRIN-INAF2006, and the Ministero dell’Istruzione, dell’Università e della Ricerca, and it is part of the Progetti Strategici di Ateneo 2006 granted by the University of Bologna. A. P. and N. D. A. also acknowledge financial support from PRIN-MIUR2005. We thank the referee for the careful reading of the manuscript.

REFERENCES

Beccari, G., Ferraro, F. R., Possenti, A., Valenti, E., Origlia, L., & Rood, R. T. 2006, AJ, 131, 2551
Bogdanov, S., Grindlay, J. E., & van den Berg, M. 2005, ApJ, 630, 1029
Buonomo, R., Buscema, G., Corsi, C. E, Ferraro, I., & Iannicola, G. 1983, A&A, 126, 278
Clementini, G., et al. 2000, AJ, 120, 2054
D’Amico, N., Lyne, A. G., Manchester, R. N., Possenti, A., & Camilo, F. 2001, ApJ, 548, L171
Dolphin, A. E. 2000, PASP, 112, 1383
Ferraro, F. R., Possenti, A., D’Amico, N., & Sabbi, E. 2001, ApJ, 561, L93
Freeman, P. E., Kashyap, V., Rosner, R., & Lamb, D. Q. 2002, ApJS, 138, 185
Freire, P. C. C., Wolszczan, A., van den Berg, M., & Hessels, J. W. T. 2008, ApJ, in press
Fruchter, A. S., et al. 1990, ApJ, 351, 642
Grindlay, J. E., Camilo, F., Heinke, C. O., Edmonds, P. D., Cohn, H., & Lugger, P. 2002, ApJ, 581, 470
Harris, W. E. 1996, AJ, 112, 1487
Jacoby, B. A., Chandler, A. M., Backer, D. C., Anderson, S. B., & Kulkarni, S. R. 2003, IAU Circ., 7783, 1
Jacoby, B. A., Chandler, A. M., Backer, D. C., Anderson, S. B., & Kulkarni, S. R. 2003, IAU Circ., 7783, 1
Lugger, P. 2002, ApJ, 581, 470
Harris, W. E. 1996, AJ, 112, 1487
Jacoby, B. A., Chandler, A. M., Backer, D. C., Anderson, S. B., & Kulkarni, S. R. 2003, IAU Circ., 7783, 1
Orosz, J. A., & van Kerkwijk, M. H. 2003, A&A, 397, 237
Pietrinferni, A., Cassisi, S., Salaris, M., & Castelli, F. 2004, ApJ, 612, 168
Pooley, D., et al. 2003, ApJ, 591, L131
Possenti, A., D’Amico, N., Manchester, R. N., Camilo, F., Lyne, A. G., Sarkissian, J., & Cornogiu, A. 2003, ApJ, 599, 475 (P03)
Sirianni, M., et al. 2005, PASP, 117, 1049
Stappers, B. W., van Kerkwijk, M. H., Bell, J. F., & Kulkarni, S. R. 2001, ApJ, 548, L183