Research Article
Black Currant (Ribes nigrum L.) and Bilberry (Vaccinium myrtillus L.) Fruit Juices Inhibit Adhesion of Asaia spp.

Hubert Antolak, Agata Czyzowska, and Dorota Kregiel
Institute of Fermentation Technology and Microbiology, Lodz University of Technology, Wolczanska 171/173, 90-924 Lodz, Poland

Correspondence should be addressed to Hubert Antolak; hubert.antolak@gmail.com

Received 5 July 2016; Accepted 25 August 2016

1. Introduction
Nowadays, consumers are increasingly interested in their health and expect the foods, besides possessing the sensory attractiveness, to have health-promoting effects. Numerous studies indicate that a diet rich in berries and their preserves positively affects human health. Regular consumption of fruits may delay ageing processes and reduce the risk of various illnesses, such as cancer, cardiovascular and lung diseases, rheumatoid arthritis, Alzheimer’s dementia, or Parkinsonism [1–3]. Fruit berries were identified as sources of phenolic compounds like gallic and ellagic acid with potential cancer chemopreventive activity. The different bioactive phenolic compounds, including flavonoids (flavonols and flavanols), tannins (proanthocyanidins, ellagitannins, and gallotannins), stilbenoids, and phenolic acids, have received considerable interest in bearing possible relations to human health [1]. Besides health-promoting properties, polyphenols may also act as antimicrobials and antiadhesive agents in wide range of pathogens [4]. It was documented that berry extracts or juices showed strong activity against Gram negative bacteria [5, 6]. In the past decade, cranberry extracts were attracting ever-growing attention of microbiologists. It was noted that cranberry polyphenol fraction inhibits growth and adhesion of urinary tract pathogens (Escherichia coli, Proteus vulgaris), Helicobacter pylori, and bacterial etiological factors of oral diseases (Streptococcus spp., Propionibacterium spp., and Fusobacterium spp.) [7–12].

Lately, numerous reports detailed various spoilage microorganisms in soft drinks, for example, acetic acid bacteria belonging to the genus Asaia [13–15]. The growth of these microorganisms causes significant changes in both microbiological and organoleptic qualities. Asaia spp. cells are able to grow in soft drinks supplemented with different preservatives (benzoate, sorbate, and dimethyl dicarbonate) [15]. What is more, these bacteria show strong adhesive abilities on food-contact technical materials. The biofilm formed by Asaia species on solid surfaces of a production line can be a source of secondary contamination of final products [16].
The initial, key step leading to biofilm formation is bacterial adhesion to the surface. This is the complex process, influenced by various physical and chemical properties of microbial cells, media, and abiotic surfaces. Among these factors, modification of media could be changed in order to prevent biofouling in soft drinks technology. New antimicrobial strategy is the use of berry juices to inhibit or reduce bacterial adhesion. The application of native and low-priced fruits with additional potential as health-promoting agents is especially interesting. Therefore, the aim of our study was to investigate antibacterial and antiadhesion activities of juices from bilberries and black currants against *Asaia* spp. cells.

2. Materials and Methods

2.1. Plant Material. The black currant (*R. nigrum* L.) and bilberry (*V. myrtillus* L.) fruits were freshly harvested from the local orchard and forests around Lodz (central Poland). The fruits were washed with sterile water, lightly air-dried, and frozen at −20°C for one month. The fresh juice was squeezed out from defrosted fruits using extractor MES3000 (Bosch, Poland). Cloudy juice was clarified using Whatman qualitative paper-filter and then by 0.45 μm filtration (Filter-Bio). Immediately after preparation, the clear juice was added to the culture media to the final concentration of 10% (v/v).

2.2. Bacterial Strains and Culture Media. The study used the six bacterial strains: *Asaia bogorensis* ISD1 (GenBank KP234014), *A. bogorensis* ISD2 (GenBank KP234015), *A. bogorensis* FFMW (GenBank KC756841), *A. lannensis* IFMW (GenBank KP234011), *A. lannensis* IFCW (GenBank KP234012), and *A. lannensis* FMW1 (GenBank HQ917850) isolated from spoiled flavored mineral water and isotonic drinks. These strains were identified using morphological, physiological, and genetic methods described by Kregiel and coworkers [13, 17]. The obtained nucleotide sequences of 16S rRNA were deposited in GenBank (National Centre of Biotechnology Information) and the bacterial strains were deposited in the Pure Culture Collection of Industrial Microorganisms LOCK 105 at the Institute of Fermentation Technology and Microbiology, Technical University of Lodz (Poland).

The adhesion was investigated in liquid culture media: the rich GC medium (M1) (0.3% (w/v) peptone, 0.3% (w/v) yeast extract) and the minimal medium (M2) (0.3% (NH₄)₂PO₄ (w/v), 0.3% KH₂PO₄ (w/v), 0.3% MgSO₄ × 7H₂O (w/v), and 0.05% (w/v) yeast extract). In both media, both media, carbohydrates, glucose, fructose, and sucrose (2% w/v), were used as a carbon source. The sterile media (20 cm³) were poured aseptically into 25 cm³ Erlenmeyer flasks covered with a textile cloth in order to ensure aerobic conditions. Sterile carriers were placed vertically in a liquid culture medium in such a way that half of the carrier was immersed in the medium, and the other part was above the liquid.

2.3. Carriers. The bacterial adhesion was carried out to the polystyrene (PS) (Coveris Rigid Poland, Skierniewice) and polyethylene terephthalate (PET) (Coveris Rigid Poland, Skierniewice) slides measuring 76 × 26 mm. These materials are certified by Polish National Institute of Public Health and approved for contact with food. The white glass slides (G) (Knittel Glass, Germany) were used as the reference material. Carriers were sterilized in a two-step process. First, the carriers were kept in the 70% ethanol solution for 3 hours. Subsequently, they were placed in a laminar chamber and subjected to UV irradiation for 2 hours.

2.4. Adhesion Analysis. Studies on the *Asaia* spp. attachment and biofilm formation were carried out in two stages. The first stage involved the selection of a culture medium, a carbon source, and an abiotic material where bacteria demonstrated the strongest adhesion abilities. In the second stage, we checked the effect of fruit juices on the growth and adhesion abilities of *Asaia* spp. For this purpose, the culture medium containing selected carbon source, with proper carrier, was supplemented with 10% (v/v) of black currant or bilberry juice.

At the beginning of the experiments culture media were inoculated with standardized bacterial suspensions, to obtain cell concentration 10⁻²×10⁻³ CFU/cm². The adhesion ability of the bacterial strains was evaluated according to the method described by Kregiel (2013) [16]. For luminometric tests, the carriers were removed from the culture media, washed with sterile distilled water, and swabbed with pens for ATP sampling (Merck). Measurements were made in relative light units (RLU) using a HY-LITE® 2 luminometer (Merck). The plate count method was used in order to determine the number of cells attached to the carrier and planktonic cells in the culture medium. The carrier plate was removed from the culture medium, rinsed with sterile distilled water, and swabbed using sterile swabs for surface testing. The bacterial suspensions were vortexed with 0.1% (v/v) Tween 80 and transferred onto GC agar medium supplemented with 0.7% CaCO₃ (w/v), and after incubation at 25°C for 92 h the colonies were counted. The number of colony forming units (CFU) per cm² (of liquid media) or per cm² (of carriers) was calculated. On the basis of the results, the relative adhesion coefficient A (%) was calculated using formula A (%) = (N_p/N_a)×100%, where N_a is the number of attached cells to a carrier and N_p is the number of planktonic cells in the culture medium.

2.5. Chemical Constituent’s Analysis. The organic acids and carbohydrates profiles of the tested fruit juices were determined using high performance liquid chromatography (HPLC), according to the method described by Gutarowska and Czyżowska (2009) [18]. In addition, the polyphenolic compounds were also characterized using HPLC-DAD method with a diode array detector (Finnigan Surveyor-PDA Plus detector) and a ChromQuest 5.0 chromatography software (Thermo Fisher Scientific Inc., Waltham, MA, USA) as well as using liquid chromatography mass spectrometry (LC-MS; LTQ Velos MS, Thermo Fisher Scientific) following the method described by Antolak et al. (2015) [19].

2.6. Statistics. Means were calculated from the data obtained from three independent experiments, and the standard
3. Results and Discussion

3.1. Bacterial Adhesion. To determine the level of bacterial adhesion, two main analytical methods, namely, plate count and luminometry, were used. The evaluation of *Asaia* spp. adhesion to glass, polystyrene, and polyethylene terephthalate surfaces was carried out in rich M₁ and minimal M₂ medium. The influence of the carbon source for bacterial adhesion was tested in culture media supplemented with glucose, fructose, or sucrose as an only carbon source. The results of adhesion studies, expressed as relative adhesion coefficient \(A(\%) \) for medium M₁ and medium M₂, are presented in Figures 1 and 2, respectively. The biofilm formation of *Asaia* strains significantly increased in culture media supplemented with sucrose \((p < 0.05)\) in comparison to media containing glucose or fructose. It was noted that the minimal M₂ medium was a more favorable environment for the *Asaia* spp. adhesion and biofilm formation compared to the rich M₁ medium. The results for adhesion in M₂ medium, with reference to those obtained for the adhesion in M₁ medium, were significantly higher \((p < 0.05)\). The average value of \(A(\%) \) for cells adhesion in M₂ medium with sucrose was 1.72 ± 0.26%, while for the same medium but with fructose and glucose the results were slightly lower and equalled 1.10 ± 0.23% \((p = 0.00001)\) and 0.80 ± 0.19% \((p = 0.00004)\), respectively. The highest value of \(A(\%) \) was noted for *A. lannensis* IFCW strain on PET surface, which was 4.54 ± 0.37%. Figures 3 and 4 present the luminometry results (RLU/cm²) obtained for bacterial adhesion in M₁ and M₂ media, respectively. The obtained results confirmed that the more favorable environment for biofilm formation is the minimal medium M₂ with sucrose. Average value of the RLU for rich M₁ medium with sucrose \((1784 ± 257 \text{ RLU/cm}^2)\) was statistically lower \((p = 0.001)\) in comparison to minimal medium M₂ with the same carbohydrate \((3923 ± 447 \text{ RLU/cm}^2)\).

Additionally, to assess the differences between the adhesion abilities of all bacterial strains to all tested carriers in all culture media containing different carbon sources, the mean deviations (SD) were calculated. The mean values of the adhesion results were compared using one-way repeated measures analysis of variance with Tukey test (ANOVA; OriginPro 8.1, OriginLab Corp., Northampton, MA). Statistical significance was set at the conventional level of 5% \((p < 0.05)\).
values and standard deviations calculated from obtained results of A (%) (Table 1) and the RLU/cm2 (Table 2) were calculated. It was noted that the adhesion and biofilm formation processes were strain-dependent. A. lannensis strains showed slightly stronger adhesion in culture media containing sucrose. The mean A (%) values for A. lannensis strains adhesion to PET surface in culture media with sucrose were $1.23 \pm 0.61\%$ (M_1) and $3.24 \pm 1.05\%$ (M_2) while for the A. bogorensis strains $1.12 \pm 0.36\%$ ($p = 0.05$) and $2.36 \pm 0.74\%$ ($p = 0.02$) were noted, respectively.

A. lannensis and A. bogorensis were characterized by stronger adhesion properties to plastic materials in comparison to the glass surface. The average values of the relative adhesion coefficient obtained for the carriers in minimal medium M_2 with sucrose were $0.45 \pm 0.05\%$ (G), $1.90 \pm 0.23\%$ (PS), and $2.80 \pm 0.21\%$ (PET), while for rich M_1 medium $1.18 \pm 0.71\%$, $1.82 \pm 1.01\%$, and $1.17 \pm 0.23\%$ were noted, respectively. Performed ANOVA test showed that the results are statistically different. Obtained p values, in comparison to glass, for the M_1 medium were 0.02 (PS) and 0.01 (PET), while the results for M_2 medium were less than 0.01 for both PS and PET. The results of RLU measurement also showed that slightly better surface for biofilm formation in M_2 medium with sucrose is PET.

The similar results for $Asaia$ spp. adhesion were obtained by Kregiel (2013) and Kregiel et al. (2014), where, after incubation, the adhesion to plastic materials was several times higher in comparison to the glass surface [16, 17].

Of course, there are different techniques that can be used in the analysis of the microbial adhesion to abiotic surfaces, but neither method is perfect. The plate count technique in particular allows determining culturable microorganisms, while luminometric methods enable estimating total biological material on the abiotic surfaces. This approach is based on bacterial ATP quantification and can be used to evaluate not only the total number of adhering cells, but all biomass: bacteria that are able and unable to grow, extracellular polymeric substances, or adhered organic material from culture media. Thus, comparing the results of the relative coefficient A (%) and RLU/cm2, the values obtained by these two methods showed differences.

The type of material, its roughness, and hydrophobicity significantly affect bacterial attachment and biofilm development. The plastic materials used in our study were characterized by low surface energy (PET 44 mN/m at 20°C, PS
Table 1: Adhesion of the *Asaia* spp. strains reported as relative coefficient \(A(\%) \) in \(M_1 \) and \(M_2 \) media with carbohydrates as a carbon source. The mean values of the adhesion results were compared using one-way repeated measures ANOVA with Tukey test. Two results of \(p \) values were obtained: \(p_1 \) – \(p \) value obtained by the comparison of the \(A(\%) \) results within a species to the results for \(M_1 \) with glucose and glass; \(p_2 \) – \(p \) value obtained by the comparison of the \(A(\%) \) between *Asaia bogorensis* and *Asaia lannensis*. Statistical significance was set at the conventional level of 5\% \((p < 0.05)\).

Species	A. bogorensis	A. lannensis											
	Glucose	Fructose	Sucrose	Carbon source	Glucose	Fructose	Sucrose						
	\(M_1 \)	\(M_2 \)	\(M_1 \)	\(M_2 \)	\(M_1 \)	\(M_2 \)	\(M_1 \)	\(M_2 \)					
Surface													
G	\(1.05 \pm 0.63 \)	\(0.20 \pm 0.05 \)	\(0.60 \pm 0.42 \)	\(0.64 \pm 0.33 \)	\(0.76 \pm 0.42 \)	\(0.66 \pm 0.41 \)	\(0.24 \pm 0.28 \)	\(0.19 \pm 0.16 \)	\(0.09 \pm 0.03 \)	\(0.56 \pm 0.41 \)	\(1.60 \pm 1.03 \)	\(0.25 \pm 0.16 \)	
	\(p_1 = 0.11 \)	\(p_2 = 0.04 \)	\(p_1 = 0.02 \)	\(p_2 = 0.14 \)	\(p_1 = 0.01 \)	\(p_2 = 0.04 \)	\(p_1 = 0.09 \)	\(p_2 = 0.11 \)	\(p_1 = 0.15 \)	\(p_2 = 0.04 \)	\(p_1 = 0.14 \)	\(p_2 = 0.04 \)	\(p_1 = 0.23 \)
	\(p_1 = 0.11 \)	\(p_2 = 0.04 \)	\(p_1 = 0.02 \)	\(p_2 = 0.14 \)	\(p_1 = 0.01 \)	\(p_2 = 0.04 \)	\(p_1 = 0.09 \)	\(p_2 = 0.11 \)	\(p_1 = 0.15 \)	\(p_2 = 0.04 \)	\(p_1 = 0.14 \)	\(p_2 = 0.04 \)	\(p_1 = 0.23 \)
PS	\(0.44 \pm 0.27 \)	\(0.86 \pm 0.89 \)	\(2.06 \pm 1.25 \)	\(0.31 \pm 0.12 \)	\(1.11 \pm 0.38 \)	\(1.48 \pm 1.08 \)	\(0.42 \pm 0.33 \)	\(0.70 \pm 0.50 \)	\(0.39 \pm 0.50 \)	\(0.65 \pm 0.41 \)	\(2.52 \pm 1.57 \)	\(2.31 \pm 1.05 \)	
	\(p_1 = 0.04 \)	\(p_2 = 0.11 \)	\(p_1 = 0.19 \)	\(p_2 = 0.25 \)	\(p_1 = 0.05 \)	\(p_2 = 0.09 \)	\(p_1 = 0.11 \)	\(p_2 = 0.11 \)	\(p_1 = 0.16 \)	\(p_2 = 0.09 \)	\(p_1 = 0.14 \)	\(p_2 = 0.12 \)	\(p_1 = 0.08 \)
	\(p_1 = 0.04 \)	\(p_2 = 0.11 \)	\(p_1 = 0.19 \)	\(p_2 = 0.25 \)	\(p_1 = 0.05 \)	\(p_2 = 0.09 \)	\(p_1 = 0.11 \)	\(p_2 = 0.11 \)	\(p_1 = 0.16 \)	\(p_2 = 0.09 \)	\(p_1 = 0.14 \)	\(p_2 = 0.04 \)	\(p_1 = 0.23 \)
PET	\(0.59 \pm 0.51 \)	\(0.67 \pm 0.30 \)	\(0.36 \pm 0.16 \)	\(2.73 \pm 0.27 \)	\(1.12 \pm 0.36 \)	\(2.36 \pm 0.74 \)	\(0.33 \pm 0.28 \)	\(2.20 \pm 1.58 \)	\(0.92 \pm 0.84 \)	\(1.72 \pm 0.56 \)	\(1.23 \pm 0.61 \)	\(3.24 \pm 1.05 \)	
	\(p_1 = 0.13 \)	\(p_2 = 0.02 \)	\(p_1 = 0.08 \)	\(p_2 = 0.02 \)	\(p_1 = 0.04 \)	\(p_2 = 0.05 \)	\(p_1 = 0.01 \)	\(p_2 = 0.02 \)	\(p_1 = 0.20 \)	\(p_2 = 0.17 \)	\(p_1 = 0.03 \)	\(p_2 = 0.08 \)	\(p_1 = 0.03 \)
	\(p_1 = 0.13 \)	\(p_2 = 0.02 \)	\(p_1 = 0.08 \)	\(p_2 = 0.02 \)	\(p_1 = 0.04 \)	\(p_2 = 0.05 \)	\(p_1 = 0.01 \)	\(p_2 = 0.02 \)	\(p_1 = 0.20 \)	\(p_2 = 0.17 \)	\(p_1 = 0.03 \)	\(p_2 = 0.08 \)	\(p_1 = 0.03 \)
Table 2: Adhesion of the *Asaia* spp. strains, reported in RLU/cm², in M₁ and M₂ media with carbohydrates as a carbon source. The mean values of the adhesion results were compared using one-way repeated measures ANOVA with Tukey test. Two results of *p* values were obtained: *p₁* – *p* value obtained by the comparison of the RLU/cm² results within a species to the results for M₁ with glucose and glass; *p₂* – *p* value obtained by the comparison of the RLU/cm² between *Asaia bogorensis* and *Asaia lannensis*. Statistical significance was set at the conventional level of 5% (*p* < 0.05).

Species	A. bogorensis	Glucose	Fructose	Sucrose	A. lannensis	Glucose	Fructose	Sucrose																													
	M₁	M₂	M₁	M₂	M₁	M₂	M₁	M₂	M₁	M₂	M₁	M₂	M₁	M₂	M₁	M₂	M₁	M₂	M₁	M₂	M₁	M₂	M₁	M₂	M₁	M₂	M₁	M₂	M₁	M₂							
Surface																																					
G	3701 ± 2821	3086 ± 2000	1632 ± 428	504 ± 393	817 ± 894	2000 ± 432	1504 ± 871	2251 ± 1690	1269 ± 1259	376 ± 131	1937 ± 364	3463 ± 3539	3223 ± 4227	1487 ± 788	4252 ± 1591	2433 ± 776	5590 ± 3757	3800 ± 2673	4033 ± 1434	4217 ± 5786	5053 ± 3501	0.17	0.12	0.18	0.12	0.16	0.16	0.07	0.01	0.13	0.13	0.01	0.21				
	p₁ = 0.12	*p₁* = 0.01	*p₁* = 0.09	*p₁* = 0.13	*p₁* = 0.22	*p₁* = 0.12	*p₁* = 0.12	*p₂* = 0.08	*p₁* = 0.16	*p₁* = 0.16	*p₁* = 0.07	*p₁* = 0.13	*p₁* = 0.13	*p₁* = 0.13	*p₁* = 0.13	*p₂* = 0.01	*p₂* = 0.09	*p₂* = 0.13	*p₂* = 0.13	*p₂* = 0.08																	
PS	3700 ± 3375	1937 ± 364	340 ± 187	2830 ± 932	308 ± 186	5600 ± 2412	597 ± 259	1783 ± 249	440 ± 71	4640 ± 3503	4120 ± 5289	4633 ± 4082	3223 ± 4227	1487 ± 788	4252 ± 1591	2433 ± 776	5590 ± 3757	3800 ± 2673	4033 ± 1434	4217 ± 5786	5053 ± 3501	0.13	0.05	0.05	0.04	0.17	0.07	0.05	0.13	0.13	0.13	0.04					
	p₁ = 0.22	*p₁* = 0.13	*p₁* = 0.19	*p₁* = 0.05	*p₁* = 0.17	*p₁* = 0.06	*p₁* = 0.07	*p₁* = 0.05	*p₁* = 0.08	*p₁* = 0.13	*p₁* = 0.30	*p₁* = 0.19	0.13	0.13	0.13	0.13	0.13	0.13	0.13	0.13	0.04																
PET	6247 ± 5177	3463 ± 3539	3223 ± 4227	1487 ± 788	817 ± 130	4252 ± 1591	2433 ± 776	5590 ± 3757	3800 ± 2673	4033 ± 1434	4217 ± 5786	5053 ± 3501	*p₂* = 0.22	*p₂* = 0.23	*p₂* = 0.28	*p₂* = 0.17	*p₂* = 0.04	*p₂* = 0.11	*p₂* = 0.15	*p₂* = 0.04	*p₂* = 0.32	*p₂* = 0.13	*p₂* = 0.16	*p₂* = 0.01	*p₂* = 0.16	*p₂* = 0.01	*p₂* = 0.40	*p₂* = 0.05									
	p₁ = 0.22	*p₁* = 0.02	*p₁* = 0.16	*p₁* = 0.01	*p₁* = 0.40	*p₁* = 0.05	*p₁* = 0.16	*p₁* = 0.02	*p₂* = 0.16	*p₂* = 0.16	*p₂* = 0.01	*p₂* = 0.01	0.13	0.13	0.13	0.13	0.13	0.13	0.13	0.13	0.04	0.22	0.01	0.16	0.01	0.40	0.05										
40 mN/m at 20°C) in comparison to hydrophilic glass surface (70 mN/m at 20°C) [17, 20]. What is more, studies confirmed that bacterial adhesion is influenced by many physiochemical properties of the environment, the availability and type of carbon source, and type of surface and microorganism abilities [21]. These parameters also determine the cell adhesion in industrial conditions. For example, Mørret and Langsrud (2004) reported that food-processing environmental factors, including sugars and nutrients, had significant impacts on Listeria monocytogenes adhesion and biofilm formation [22]. Therefore, for the next stage of research, involving effect of berries juices on the growth and adhesion of Asaia spp., we choose rich M₁ medium with glucose and minimal M₂ medium with sucrose, respectively.

3.2. Chromatographic Analysis of Juices. The carbohydrate profiles of the fruit extracts indicated that the main sugars were glucose and fructose. In the bilberry juice, fructose concentration was 1.94 g/100 mL, while glucose equaled 0.76 g/100 mL. Respectively, for the black currant juice, the values were 0.60 g/100 mL and 0.54 g/100 mL. According to the literature, in the majority of native fruit juices, the content of saccharides is limited only to glucose, fructose, and sucrose. The variability of determined saccharide contents in fruit juices from berries stemmed from differences in variety, stage of ripeness, and climatic conditions [23].

The polyphenolic profiles in fruit juices were determined using HPLC method and the results are presented in Figures 5 and 6. We noted good separation of thirteen anthocyanins in the bilberry juice while for the black currant juice we detected six defined compounds. In the bilberry juice, delphinidin (Dp), cyanidin (Cy), petunidin (Pet), peonidin (Pn), and malvidin (Mal) with galactoside (Gal), glucoside (Glu), and arabinoside (Ara) forms were detected. The results obtained for black currant juice indicate that the material is a source of delphinidin-3-glucoside, delphinidin-3-rutinoside, cyanidin-3-glucoside, and cyanidin-3-rutinoside as well as petunidin-3-glucoside and petunidin-3-rutinoside. The individual anthocyanin contents were determined according to the linear calibration curve (correlation coefficient = 0.989) and expressed as µg of cyanidin-3-glucoside per one mL. The highest concentration of these compounds in the Vaccinium
Figure 4: The adhesion (RLU/cm²) of *A. bogorensis* (ISD1, ISD2, and FFMW) and *A. lannensis* (IFMW, IFCW, and FMW1) strains in M₂ medium with glucose (a), fructose (b), and sucrose (c) to PET (black bars), PS (grey bars), and G (white bars).

Figure 5: Anthocyanins profile in the *Ribes nigrum* juice. *Ribes myrtillus* juice was noted for petunidin-3-glucoside (2.48 μg/mL) and malvidin-3-glucoside (2.41 μg/mL), cyanidin-3-glucoside (1.83 μg/mL), and delphinidin-3-glucoside (1.78 μg/mL). The major anthocyanins in the *Ribes nigrum* juice were delphinidin-3-rutinoside (2.04 μg/mL) and cyanidin-3-rutinoside (1.99 μg/mL). The presence of anthocyanins was also confirmed by LC-MS (Table 3). Twenty-two compounds were detected: seven common for both juices, twelve designated only for bilberry, and three for black currant juice. Besides anthocyanins (delphinidin, cyanidin, petunidin, and malvidin derivatives), phenolic acids (chlorogenic and neochlorogenic) as well as flavonols (quercetin-3-glucoside, quercetin-3-rutinoside) and flavanols (procyanidin B2 and procyanidin type A2) were detected. Numerous studies have reported the composition of phenolic acids, anthocyanins, and flavonols in *Ribes nigrum* [24–26] and *Vaccinium myrtillus* fruits [27–30]. The bilberry fruits are a rich source of delphinidin, cyanidin, petunidin, peonidin, malvidin, and their derivatives. The anthocyanin concentration of bilberry juices ranged from 1610 to 5963 mg/L, with the mean of 3087 mg/L [30].
Table 3: Bioactive compounds in bilberry and black currant juices.

RT (min)	\(\lambda_{\text{max}} \) (nm)	[M – H]	Fragment ions	Compound	V. myrtillus	R. nigrum
8.48	244, 323	353	191, 179	Neochlorogenic acid	+	+
9.06	244, 330	355	191	Chlorogenic acid	–	+
9.62	223, 280	463	301	Delphinidin-3-galactoside	+	–
9.73	246, 330	355	179, 163	Caffeoyl hexose	+	+
11.01	522	341	179	Dicaffeic acid	–	+
11.65	223, 522	463	301	Delphinidin-3-glucoside	+	–
13.47	280, 520	447	285	Cyanidin-3-glucoside	+	+
15.60	280, 521	477	315	Petunidin-3-galactoside	+	+
15.63	236, 279	577	407	Procyanidin B2	–	+
15.93	236, 280	575	377, 395, 449	Procyanidin A2	+	–
16.04	272, 520	477	315	Petunidin-3-glucoside	+	–
20.78	260, 352	479	317	Myricetin-3-galactoside	–	+
20.84	254, 354	461	301	Quercetin-3-glucoside	+	+
21.20	276, 527	491	329	Malvidin-3-galactoside	+	+
21.47	233, 279	866	577, 451	B-type procyanidin trimer	+	–
25.34	233, 280	863	573, 411	A type procyanidin trimer	+	–
26.45	230, 278	1152	861, 577	A type procyanidin tetramer	+	–
28.59	261, 352	479	317	Myricetin-3-glucoside	+	–
28.68	233, 279	489	285	Cyanidin-6-acetyl-3-glucoside	+	–
30.34	281, 521	505	301	Delphinidin-6-acetyl-3-glucoside	+	–
33.71	258, 354	609	301	Quercetin-3-rutinoside	+	–

Figure 6: Anthocyanins profile in the *Vaccinium myrtillus* juice.

In the case of *R. nigrum* the average content of anthocyanin amounts to 3500 mg/L [31]. In relation to these data, black currant juice used in our study was characterized by much lower content of anthocyanins than bilberry juice, both qualitatively and quantitatively. The variations in anthocyanin profiles may be determined by genotype features of the plants and climatic conditions [28]. Despite the significant differences in the content of polyphenol compounds, juices of black currants and blueberries are rich sources of bioactive compounds that can be used as a remedy in many illnesses. It is well known that these compounds have beneficial effects in preventing cardiovascular and neurological diseases [32, 33] and possess anticancer [34, 35], anti-inflammatory [36, 37], neuroprotective [38], and antidiabetic [39] activities. The antibacterial activities of various fruit extracts on common potential pathogens including antibiotic-resistant strains were also documented [40]. Research suggests that cranberry (*Vaccinium macrocarpon*) juice, in particular, helps in maintaining the health of the urinary tract [41]. The profile of cranberry juice, being rich in A type proanthocyanidins (PACs) in contrast to the B-type PACs, presents in most other fruits [42]. PACs are colorless oligomers and polymers of flavan-3-ols that show special antiaggregation abilities [43]. The antibacterial activity of cranberry A type proanthocyanidin was demonstrated in vitro on uropathogenic P-fimbriated *Escherichia coli* [44] and other pathogenic bacteria [7, 9]. What is interesting is that our results of LC-MS showed that
bilberry juice is a source of proanthocyanidins type A and procyanidin type 2. Despite the limited literature concerning the data demonstrating the presence of type A proanthocyanidins in cranberry, some research suggests that they may also be present in wild berries. Schmidt et al. (2004) suggest that high molecular weight oligomeric proanthocyanidins from wild Vaccinium angustifolium exhibit strong antiproliferation activity against human prostate and mouse liver cancer cell lines [45]. Characterization of proanthocyanidins in wild blackberries was also carried out in the work of Cuevas-Rodríguez et al. (2010) [46]. Generally, the highest contents of all types of proanthocyanidins were determined in blackthorns, chokeberries, saskatoon berries, blueberries, cranberries, and lingonberries [46–52]. Moreover, it was shown that the proanthocyanidins can also be present in the bilberry fruits, chemical composition of which may be similar to that of cranberry fruit [53].

3.3. Growth. Due to the higher A (%) results and quite high RLU values, for the next stage of this study, based on the effect of fruit juices on the growth and adhesion of Asiaa spp., we chose M1 medium with glucose for growth analysis and M2 medium with sucrose with PET carriers for adhesion investigation.

The growth in M1 medium without fruit juices varied depending on the strain with mean value of 7.02 ± 2.41 × 10^6 CFU/cm^3 (Figure 7). After 14-day incubation, the best growth was noted for A. bogorensis ISD2 (1.08 ± 0.23 × 10^10 CFU/cm^3) and A. bogorensis ISD1 (9.97 ± 1.45 × 10^9 CFU/cm^3) while the lowest number of the bacteria was detected for A. lannensis FMW1 (2.67 ± 1.70 × 10^9 CFU/cm^3). The addition of R. nigrum and V. myrtillus juices caused a slight reduction in the number of viable bacterial cells. The average count in M1 medium with 10% (v/v) bilberry juice and black currant juice was 2.60 ± 1.35 × 10^9 CFU/cm^3 and 4.37 ± 2.85 × 10^9 CFU/cm^3, respectively. The obtained results suggested that A. bogorensis showed higher sensitivity to fruit juices than A. lannensis strains.

According to the literature, polyphenols from various fruit demonstrate antibacterial activities, especially against pathogenic strains: P. aeruginosa, Staph. aureus, E. coli, L. monocytogenes, and Salmonella spp. Polyphenols are able to suppress a number of microbial virulence factors, such as reduction of host ligands adhesion, inhibition of biofilm formation, and neutralization of bacterial toxins, and show synergism with antibiotics [54]. The activity of phenolic compounds includes interaction with microbial enzymes that are responsible for the cell growth or have direct influence on microbial metabolism by inhibition of oxidative phosphorylation [55]. In addition, the cells of Gram negative bacteria are surrounded by an outer membrane, which acts as barrier protecting against many external agents [56]. The permeability of this membrane is regulated by hydrophilic channels which generally exclude the entry of hydrophobic substances to the bacterial cell. However, some agents, including essential oils and terpenoids and other phenolic compounds, affect membrane barriers, which stimulate the penetration of bioactive agents in bacterial cells [57]. It was found that berries extracts clearly caused higher permeability of Salmonella spp. membranes, cell penetration, and reaction with cellular proteins [58]. According to Nohynek et al. (2006), the activity of polyphenolic compounds from berry fruits may be the result of multiple mechanisms and synergies due to the presence of various bioactive compounds [56]. In Puupponen-Pimiä et al. (2001) study, extracts from blueberry and black currant fruits were checked against pathogenic Gram negative and Gram positive bacteria [5]. It was shown that anthocyanins (pelargonidin, cyanidin) as well flavonols (myricetin) showed inhibitory effect against Gram negative cells of E. coli and Salmonella spp. Phenolic extracts containing tannins and their derivatives showed strong antibacterial effect against Staph. aureus, H. pylori, C. perfringens, B. cereus, Klebsiella spp., and Proteus spp. [56, 58]. However, the knowledge about the effect of fruit phenolics on food spoilage bacteria is still limited.

3.4. Biofouling. It is well known that luminometric measurements in an environment of fruit juices that are rich in polyphenols may carry a margin of error. Luminometry is based on the reaction of enzymatic oxidation of luciferin to oxyluciferin and the presence of antioxidants can influence the final results. It has been documented that polyphenols present in green tea can inhibit the enzymatic activities [59]. Therefore, in the light of that fact, we used two different methods to assess the adhesion of cells to PET surface: luminometry and plate count technique.

The effect of the bilberry and black currant juices on the adhesion properties of Asiaa spp. was performed during cultivation in M2 medium with PET carriers. Results, expressed as adhesion relative coefficient A (%) and RLU/cm^2, were presented in Figures 8(a) and 8(b), respectively. The coefficient A (%) calculated for the sixth day of incubation with 10% (v/v) juice showed significant decrease in the adhesion and biofilm
formation (Figure 8(a)). This parameter for cell adhesion with bilberry juice ranged from 0.19 ± 0.11% to 0.94 ± 0.59%, while for black currant juice the values were 0.01 ± 0.009% to 4.85 ± 0.41%. The results were 4 ± 11 times lower in comparison to the control sample without V. myrtillus juice. Luminometric results (RLU/cm²) also confirmed significant reduction of adhesion (Figure 8(b)). There were statistically significant differences between the control samples and cultures with fruit juices (p < 0.05). Additionally, the differences were noted for antiadhesive activities of tested juices. The values ranged from 1460 ± 102 RLU/cm² to 9800 ± 520 RLU/cm² (Av = 4252 ± 2748 RLU/cm²) for the control sample and for adhesion in the presence of V. myrtillus and R. nigrum from 14 ± 5 RLU/cm² to 160 ± 34 RLU/cm² (Av = 70 ± 58 RLU/cm²) and from 600 ± 54 RLU/cm² to 1900 ± 187 RLU/cm², respectively (Av = 1218 ± 474 RLU/cm²). Thus, bilberry juice inhibited biofouling of all tested Asaia spp. bacteria, while in the presence of black currant juice we noted the antiadhesive effect for A. bogorensis strains in particular.

The use of fruit juice not only brings antiadhesive effects, but also has other health benefits. The prohealth action of berry juices has been known in folk medicine. However, antiadhesive properties of fruit juices were documented scientifically mainly for cranberry (Vaccinium macrocarpon) [17, 41, 54]. The effect of blueberry constituents on the adhesion of Staph. mutans was also documented [60]. The recent studies are related to the effect of cranberry juice on the growth and adhesion abilities of bacteria Asaia spp. It was documented that, in the presence of cranberry juice, the attachment of A. bogorensis cells to plastic surfaces was significantly lower [19]. However, the mechanisms by which cranberry extracts are effective as antiadhesive agent have not been fully established yet. It is believed that there are two main compounds involved in the inhibition of bacterial attachment: fructose blocking bacterial type 1 fimbriae and proanthocyanidins which bind with type P fimbriae, preventing cells adhesion [41, 61]. The chromatographic analysis of the polyphenols in V. macrocarpon confirmed the presence of type A proanthocyanidin [19, 62]. Thus, we can assume that type A proanthocyanidins present in berries may show an antiadhesive effect to Asaia spp. cells.

4. Conclusions

The results presented in this study suggest that bilberry and black currant juices show high antiadhesive and antibacterial activity against food-spoiled bacteria belonging to the genus Asaia. Particularly V. myrtillus juice characterized by a higher content of polyphenols including A type proanthocyanidin showed strong antiadhesive and bacteriostatic properties. The high content of bioactive compounds with proven health-promoting properties makes them a valuable supplement of soft drinks, as well as interesting alternative to artificial additives to keep the microbial stability of final products.

Competing Interests

The authors declare that there are no competing interests regarding the publication of this paper.

Acknowledgments

This work was financially supported by the National Science Centre, Poland, Project no. 2015/17/N/NZ9/03635.
References

[1] N. P. Seeram, "Berry fruits for cancer prevention: current status and future prospects," Journal of Agricultural and Food Chemistry, vol. 56, no. 3, pp. 630–635, 2008.

[2] A. Szajdek and E. J. Borowska, "Bioactive compounds and health-promoting properties of berry fruits: a review," Plant Foods for Human Nutrition, vol. 63, no. 4, pp. 147–156, 2008.

[3] S. Subash, M. M. Essa, S. Al-Adawi, M. A. Memon, T. Maniwasagam, and M. Akbar, "Neuroprotective effects of berry fruits on neurodegenerative diseases," Neural Regeneration Research, vol. 9, no. 16, pp. 1557–1566, 2014.

[4] O. Paredes-López, M. L. Cervantes-Ceja, M. Vigna-Pérez, and S. Calléjou, J.-F. Sylvain, and M. Lacroix, "Antimicrobial properties of fractions from cranberry products on the growth of Listeria monocytogenes: biofilm formation and persistence in food-processing environments," Biofils, vol. 1, no. 2, pp. 107–121, 2004.

[5] Z. Targoski and A. Stój, "Zafalżowania żywności metody ich wykrywania," Żywność: Nauka, Technologia, Jakość, vol. 4, pp. 30–40, 2005 (Polish).

[6] D. A. Vattem, Y.-T. Lin, R. G. Labbe, and K. Shetty, "Antimicrobial activity against select food-borne pathogens by phenolic antioxidants enriched in cranberry pomace by solid-state bioprocessing using the food grade fungus Rhizopus oligosporus," Process Biochemistry, vol. 39, no. 12, pp. 1939–1946, 2004.

[7] A. Cisowska, D. Wojnicz, and A. B. Hendrich, "Anthocyanins as antimicrobial agents of natural plant origin," Natural Product Communications, vol. 6, no. 1, pp. 149–156, 2011.

[8] H. Shmuely, O. Burger, I. Neeman et al., "Susceptibility of Helicobacter pylori isolates to the antiadhesion activity of a high-molecular-weight constituent of cranberry," Diagnostic Microbiology and Infectious Disease, vol. 50, no. 4, pp. 231–235, 2004.

[9] M. J. Anttonen and R. O. Karjalainen, "High-performance liquid chromatography analysis of black currant (Ribes nigrum L.) Fruit phenolics grown either conventionally or organically," Journal of Agricultural and Food Chemistry, vol. 54, no. 20, pp. 7530–7538, 2006.

[10] G. J. McDougall, S. Gordon, R. Brennan, and D. Stewart, "Anthocyanin-flavanol condensation products from black currant (Ribes nigrum L.)," Journal of Agricultural and Food Chemistry, vol. 53, no. 20, pp. 7878–7885, 2005.

[11] K. R. Määttä-Riihinen, M. P. Kähkönen, A. R. Törnroos, and I. M. Heinonen, "Catechins and procyanidins in bilberries (Vaccinium myrtillus L.) and blueberries (Vaccinium corymbosum L.)," Journal of Agricultural and Food Chemistry, vol. 56, no. 1, pp. 190–196, 2008.

[12] A. K. Lätti, K. R. Riihinen, and P. S. Kainulainen, "Analysis of anthocyanin variation in wild populations of bilberry (Vaccinium myrtillus L.) in Finland," Journal of Agricultural and Food Chemistry, vol. 53, no. 22, pp. 8485–8491, 2005.
[31] B. B. Mikkelsen and L. Poll, “Decomposition and transformation of aroma compounds and anthocyanins during black currant (Ribes nigrum L.) juice processing,” *Journal of Food Science*, vol. 67, no. 9, pp. 3447–3455, 2002.

[32] T. C. Wallace, “Anthocyanins in cardiovascular disease,” *Advances in Nutrition*, vol. 2, no. 1, pp. 1–7, 2011.

[33] S. de Pascual-Teresa, “Molecular mechanisms involved in the cardiovascular and neuroprotective effects of anthocyanins,” *Archives of Biochemistry and Biophysics*, vol. 559, pp. 68–74, 2014.

[34] F. Aquil, A. Gupta, R. Munagala et al., “Antioxidant and anti-proliferative activities of anthocyanin/ellagitannin-enriched extracts from Syzygium cumini L. (Jamun, the Indian Blackberry),” *Nutrition and Cancer*, vol. 64, no. 3, pp. 428–438, 2012.

[35] T.-C. Tsai, H.-P. Huang, Y.-C. Chang, and C.-J. Wang, “Isolation of bioactive constituents from *Vaccinium myrtillus* fruit and cell cultures,” *Plant Science*, vol. 131, no. 1, pp. 95–103, 1998.

[36] O. Burger, E. Weiss, N. Sharon, and I. Ofek, “Inhibition of Helicobacter pylori adhesion to human gastric mucus by a high-molecular-weight constituent of cranberry juice,” *Critical Reviews in Food Science and Nutrition*, vol. 42, no. 3, pp. 279–284, 2002.

[37] A. Scalbert, “Antimicrobial properties of tannins,” *Phytochemistry*, vol. 30, no. 12, pp. 3875–3883, 1991.

[38] L. J. Nohynek, H.-L. Alakomi, M. P. Kähkönen et al., “Berry phenolics: antimicrobial properties and mechanisms of action against severe human pathogens,” *Nutrition and Cancer*, vol. 54, no. 1, pp. 18–32, 2006.

[39] K. R. Määtä-Riihinen, A. Kamal-Eldin, P. H. Mattila, A. M. González-Paramás, and R. Törrönen, “Distribution and contents of phenolic compounds in eighteen scandinavian berry species,” *Journal of Agricultural and Food Chemistry*, vol. 52, no. 14, pp. 4477–4486, 2004.

[40] X. Wu, L. Gu, R. L. Prior, and S. McKay, “Characterization of anthocyanins and proanthocyanidins in some cultivars of *Ribes*, *Aronia*, and *Sambucus* and their antioxidant capacity,” *Journal of Agricultural and Food Chemistry*, vol. 52, no. 26, pp. 7846–7856, 2004.

[41] B. Buendia, M. I. Gil, J. A. Tudela et al., “HPLC-MS analysis of proanthocyanidin oligomers and other phenolics in 15 strawberry cultivars,” *Journal of Agricultural and Food Chemistry*, vol. 58, no. 7, pp. 3916–3926, 2010.

[42] B. L. White, L. R. Howard, and R. L. Prior, “Release of bound procyanidins from cranberry pomace by alkaline hydrolysis,” *Journal of Agricultural and Food Chemistry*, vol. 58, no. 13, pp. 7572–7579, 2010.

[43] L. R. Howard, C. Castrodale, C. Brownmiller, and A. Mauro-moustakos, “Jam processing and storage effects on blueberry polyphenolics and antioxidant capacity,” *Journal of Agricultural and Food Chemistry*, vol. 58, no. 7, pp. 4022–4029, 2010.

[44] D. L. Madhavi, J. Bomser, M. A. L. Smith, and K. Singletary, “Isolation of bioactive constituents from *Vaccinium myrtillus* (bilberry) fruits and cell cultures,” *Plant Science*, vol. 131, no. 1, pp. 95–103, 1998.

[45] O. Burger, E. Weiss, N. Sharon, M. Tabak, I. Neeman, and I. Ofek, “Inhibition of Helicobacter pylori adhesion to human gastric mucus by a high-molecular-weight constituent of cranberry juice,” *Critical Reviews in Food Science and Nutrition*, vol. 42, no. 3, pp. 279–284, 2002.

[46] S. de Pascual-Teresa, “Molecular mechanisms involved in the quantification of proanthocyanidins using 4-dimethylaminocinnamaldehyde (DMAC) assay,” *Journal of Agricultural and Food Chemistry*, vol. 64, no. 6, pp. 2190–2199, 2016.

[47] B. M. Schmidt, A. B. Howell, B. McEniry et al., “Effective separation of potent anti-proliferation and anti-adhesion components from wild blueberry (Vaccinium angustifolium Ait.) fruits,” *Journal of Agricultural and Food Chemistry*, vol. 52, no. 21, pp. 6433–6442, 2004.

[48] E. O. Cuevas-Rodríguez, G. G. Yousef, P. A. García-Saucedo, J. López-Medina, O. Paredes-López, and M. A. Lila, “Characterization of anthocyanins and proanthocyanidins in wild and domesticated mexican blackberries (*Rubus* spp.),” *Journal of Agricultural and Food Chemistry*, vol. 58, no. 12, pp. 7458–7464, 2010.

[49] L. W. Gu, M. A. Kelm, J. F. Hammerstone et al., “Screening of foods containing proanthocyanidins and their structural characterization using LC-MS/MS and thiolytic degradation,” *Journal of Agricultural and Food Chemistry*, vol. 51, no. 25, pp. 7513–7521, 2003.
[61] D. Nicolosi, G. Tempera, C. Genovese, and P. M. Furneri, "Anti-adhesion activity of A2-type proanthocyanidins (a cranberry major component) on uropathogenic *E. coli* and *P. mirabilis* strains," *Antibiotics*, vol. 3, no. 2, pp. 143–154, 2014.

[62] C. G. Krueger, J. D. Reed, R. P. Feliciano, and A. B. Howell, "Quantifying and characterizing proanthocyanidins in cranberries in relation to urinary tract health," *Analytical and Bioanalytical Chemistry*, vol. 405, no. 13, pp. 4385–4395, 2013.