Use of medicinal plants for headache, and their potential implication in medication-overuse headache: Evidence from a population-based study in Nepal

Elise Øien Sørnes1, Ajay Risal2,3, Kedar Manandhar2,3,†, Hallie Thomas1, Timothy J Steiner1,4 and Mattias Linde1

Abstract

Background: In Nepal, traditional treatment using medicinal plants is popular. Whereas medication-overuse headache is, by definition, caused by excessive use of acute headache medication, we hypothesized that medicinal plants, being pharmacologically active, were as likely a cause.

Methods: We used data from a cross-sectional, nationwide population-based study, which enquired into headache and use of medicinal plants and allopathic medications. We searched the literature for pharmacodynamic actions of the medicinal plants.

Results: Of 2100 participants, 1794 (85.4%) reported headache in the preceding year; 161 (7.7%) reported headache on ≥15 days/month, of whom 28 (17.4%) had used medicinal plants and 117 (72.7%) allopathic medication(s). Of 46 with probable medication-overuse headache, 87.0% (40/46) were using allopathic medication(s) and 13.0% (6/46) medicinal plants, a ratio of 6.7:1, higher than the overall ratio among those with headache of 4.9:1 (912/185). Of 60 plant species identified, 49 were pharmacodynamically active on the central nervous system, with various effects of likely relevance in medication-overuse headache causation.

Conclusions: MPs are potentially a cause of medication-overuse headache, and not to be seen as innocent in this regard. Numbers presumptively affected in Nepal are low but not negligible. This pioneering project provides a starting point for further research to provide needed guidance on use of medicinal plants for headache.

Keywords
Herbal medications, pharmacodynamic activity, overuse, South-East Asia region, Global Campaign against Headache

Background

It has been assumed that medication-overuse headache (MOH) is less of a problem in highly rural poor countries because of the lack of access to pharmaceuticals (1). However, in a large epidemiological study in Nepal, the prevalence of probable MOH (pMOH, defined as the association of headache on ≥15 days/month with overuse of acute medication) was higher than reported in Europe (2,3).

In such countries, there is often strong reliance on alternative and complementary practitioners, and the use of plants for medicinal purposes is common (4,5). If these medicinal plants (MPs) have properties that

1Department of Neuromedicine and Movement Science, NTNU Norwegian University of Science and Technology, Trondheim, Norway
2Dhulikhel Hospital, Kathmandu University Hospital, Dhulikhel, Kavre, Nepal
3Kathmandu University School of Medical Sciences, Dhulikhel, Kavre, Nepal
4Division of Brain Sciences, Imperial College London, London, UK
†Deceased 15 April 2019

Corresponding author: Elise Øien Sørnes, Department of Neuromedicine and Movement Science, NTNU Norwegian University of Science and Technology, Edvard Griegs Gate, Trondheim, Norway.
Email: elise.oien.sornes@gmail.com
make them active against acute headache, might their overuse also generate MOH? Studies to answer this are lacking, but the question is of interest also in the Western world, where the use of MPs is increasing (6), with a widespread belief that they are “harmless remedies without side effects” (7). At the same time, MOH is the type of headache associated with the highest cost per person in Europe (8).

In a pioneering project, we used data from a large population-based survey from Nepal to test the hypothesis: “Medicinal plants, being pharmacologically active, are as likely as other medications to cause MOH”. Our public-health objectives were:

- to establish the proportion of Nepalese adults using MPs against headache
- to assess the associations of such usage with demographic factors and disease attributes (symptom burden)
- to identify the MPs used
- to make a systematic listing of their pharmacological effects on the CNS
- to ascertain whether and to what extent they might be implicated in MOH causation

Methods

Design of the epidemiological study

This methodology has been described in detail previously (9). In summary, in a cross-sectional, population-based survey, trained health workers visited 2210 households selected randomly from 15 representative districts out of 75 in Nepal (2,9,10). One adult was randomly selected from each household, with 2100 agreeing to participate in a structured interview. The participation proportion was >99% (2). All data were collected during May 2013.

Instruments

The structured Headache-Attributed Restriction, Disability, Social Handicap and Impaired Participation (HARDSHIP) questionnaire was culturally adapted and translated into Nepali (9). HARDSHIP included demographic factors (age, gender, household consumption and altitude and urbanicity of dwelling) as well as indices of symptom burden (headache frequency, duration and intensity) and use of allopathic medication(s). Queries concerning MPs were added (2): Participants were asked whether they had used any herbal therapies specifically to relieve headache (not taken regularly to prevent headache), their names, if so, and on how many days they had been used during the preceding month.

Diagnosis

We specifically identified participants who reported headache on ≥15 days/month, and, among these, any who were using medications and/or MPs for acute headache. We diagnosed overuse in those who reported: a) Use on ≥15 days/month of either one type of MP or simple analgesics only; or b) use on ≥10 days/month of (i) more than one type of MP; (ii) any other acute medication (such as opioids, ergots or triptans); (iii) a combination of analgesics in different classes or of analgesics with other medications; or (iv) a combination of MPs and analgesics (2).

Migraine or tension-type headache (TTH) were diagnosed according to ICHD-3 beta criteria (11) in those with headache on <15 days/month. Further information on the methodology has been published elsewhere (2).

Plant identification

Two Nepalese botanists living in Norway were consulted to correct any local plant names that were misspelled in the data and to identify the genus and species of each plant from its local name(s) and description. Synonyms were searched for at www.efloras.org (12).

Literature search

We searched Micromedex and PubMed for reports of any pharmacological effects of the MPs on the CNS. Each plant’s botanical name was used as a search term, with the Medical Subject Heading (MeSH) term “central nervous system” added in the PubMed search. When there were fewer than three matches with the additional search term, only the plant name was used. In cases where we only had the plant-genus, “species” was added as a third search term in cases where there were >150 matches. We also looked for the plants in the encyclopaedia Plants and people of Nepal (13). When the plant names identified by the botanists gave no or few (<3) results, synonyms were searched for. We also looked for potential information sources in the reference lists of relevant articles.

We separated the potential effects of the plants on the CNS into (a) antioxidative effects, (b) anti-inflammatory or immunological effects (anti-inflammatory, pro-inflammatory, immunosuppressive, immunomodulatory effects, or influences on nitric oxide/inducible nitric oxide synthase), (c) effects on receptors, transmitters or synapses in the CNS, (d) effects on vasculature (constrictor or dilator), and (e) other effects.
Data management and statistical analyses

The outcome variables “use of medicinal plant” and “use of allopathic medications” during the preceding month for treatment of headache were categorized as “yes” or “no” and presented as numbers and percentages. Users of both MPs and allopathic medications were included in both categories. Proportions of participants using MPs or allopathic medications, with 95% confidence intervals (CIs), were estimated for any headache, migraine and headache on ≥15 days/month. The independent variable “age” was categorized into five groups (18–25, 26–35, 36–45, 46–55 and 56–65 years). Household consumption per year in United States dollars (USD) (at the time of study: 1 USD ≈ 100 Nepalese rupees) was used as an indicator of participants’ economic status, and categorized into three groups: Poorest (<950 USD/year), poor (950–1200 USD/year), and intermediate and above (>1200 USD/year). This gave the best split in numbers, while taking some account of Nepal’s absolute poverty line (nationally, USD 225 for an individual in 2013, but varying between locations; in Kathmandu, it was USD471 (14)). Our measure of consumption was based on households rather than individuals, and therefore set at a higher level. Dwelling was categorized as urban or rural, and altitude as low (<1000 m) or high (≥1000 m).

The symptom burden of headache was measured by frequency (headache days/month [d/m]), attack duration (hours) and headache intensity. While the first two of these were collected as continuous data, we categorized them so as to yield the best split in numbers between the categories. Thus frequency was categorized into four groups for any headache (<1, 1–2, 3–14 and ≥15 d/m), three for migraine (<1, 1–2 and 3–14 d/m) and two for headache on ≥15 d/m (15–20 and > 20 d/m). Duration was categorized into three groups: For any headache and migraine as <4, 4–12 and > 12 hours, and for headache on ≥15 d/m as <48, 48–144 and > 144 hours. We calculated proportion of time in ictal state (pTIS; %) from frequency and mean headache duration, and categorized it, again to give the best split in numbers, into four groups (<1, 1–3, 3.1–10 and >10%) for any headache and migraine, and three groups (<60, 60–80 and >80%) for headache on ≥15 days/month. Intensity was categorized as “not bad”, “quite bad” and “very bad” (equating to “mild”, “moderate” and “severe”).

We used bivariate and multivariate logistic regression analyses (with odds ratios [OR] and adjusted odds ratios [AOR], each with 95% CIs) to investigate the associations of plant or medication use on the one hand, in all headache, migraine and headache on ≥15 days/month, and demographic variables and indices of headache burden on the other. These variables were entered as covariates in the multivariate logistic regression analyses, although, for frequency and duration, pTIS was excluded, and, for pTIS, frequency and duration were excluded.

In view of the number of analyses, we considered p < 0.02 to be statistically significant. Two-tailed p-values were calculated. All data were analysed with SPSS 21.0 software (IBM Corp., Armonk, NY, USA).

Results

Participants

A total of 2100 adults aged 18–65 years were included in the nationwide study; their sociodemographic characteristics have been presented previously (206). Here we analyze data of 1794 participants (85.4%) who reported headache during the preceding year. Their mean age was 36.1 ± 12.6 years, and male/female ratio was 1:1.6.

Use and overuse of medicinal plants and allopathic medications

Of these 1794 participants, 185 (10.3%) also reported use of MP(s) for headache at least once in the preceding month, while 912 (50.8%) had used allopathic medication(s) during the preceding month and using MP(s), 40 (34.2%) met our criteria for overuse. Of the 28 with headache on ≥15 days/month and using MP(s), six (21.4%) met our criteria for overuse. Of the 28 with headache on ≥15 days/month and using MP(s), six (21.4%) met our criteria for overuse. Three of these also reported use of allopathic medication(s), one on 15 days/month and therefore meeting our criteria for overuse of these also.

Plant identification

From the 73 local plant names reported, the botanists were able to identify or partially identify 45 plants (61.6%) and unable to identify 28. Of the 45, five were identified only by their genera, three were given only probable identities, and one was only partly identified (Herbal products Vicks). The identities of two others – “banphool” and “ketaki” –
Table 1. Use of medicinal plants and allopathic medication at least once in the preceding month among participants with any headache according to demographic factors and symptom burden (N = 1794).

Medicinal plants	Ethnobotany in the Nepal Himalaya.	Allopathic medication									
Variable	N	n (%)	OR (95% CI)	p	AOR* (95% CI)	p	N	OR (95% CI)	p	AOR* (95% CI)	p
Yes	1794	185 (10.3)	–	–	–	–	912 (50.8)	–	–	–	–
Age (in years)											
18–25	426	28 (6.6)	Reference	–	Reference	–	205 (48.1)	Reference	–	Reference	–
26–35	581	58 (10.0)	1.6 (0.9–2.5)	0.057	1.6 (0.9–2.6)	0.055	307 (52.8)	1.2 (0.9–1.6)	0.14	1.2 (0.9–1.6)	0.20
36–45	358	46 (12.8)	2.1 (1.3–3.4)	0.003	2.0 (1.2–3.6)	0.006	173 (48.3)	1.0 (0.8–1.3)	0.96	0.9 (0.7–1.3)	0.58
46–55	258	30 (11.6)	1.9 (1.1–3.2)	0.023	1.6 (0.9–2.9)	0.078	138 (53.5)	1.2 (0.9–1.7)	0.17	1.2 (0.8–1.7)	0.34
56–65	171	23 (13.5)	2.2 (1.2–3.9)	0.008	1.9 (1.1–3.5)	0.037	89 (52.0)	1.2 (0.8–1.7)	0.34	1.0 (0.7–1.4)	0.91
Gender											
Male	689	82 (11.9)	Reference	–	Reference	–	306 (44.4)	Reference	–	Reference	–
Female	1105	103 (9.3)	0.8 (0.6–1.1)	0.081	0.8 (0.6–1.1)	0.11	606 (54.8)	1.5 (1.31.8)	<0.001	1.3 (1.1–1.6)	0.014
Household consumption (USD/year)											
<950	686	76 (11.1)	1.1 (0.8–1.5)	0.60	0.9 (0.6–1.3)	0.67	355 (51.7)	1.1 (0.9–1.3)	0.65	1.0 (0.8–1.3)	0.97
>950	387	51 (13.2)	1.9 (1.1–3.2)	0.002	2.0 (1.3–3.0)	0.002	278 (71.8)	5.0 (3.3–6.6)	<0.001	4.3 (3.5–9.9)	<0.001
Duration (in hours)											
Urban	686	36 (5.2)	Reference	–	Reference	–	299 (43.6)	Reference	–	Reference	–
Rural	1108	149 (13.4)	2.8 (1.9–4.1)	<0.001	2.6 (1.8–3.9)	<0.001	613 (55.3)	1.6 (1.3–1.9)	<0.001	1.7 (1.4–2.1)	<0.001
Household altitude											
<1000 m	845	63 (7.5)	Reference	–	Reference	–	393 (46.5)	Reference	–	Reference	–
>1000 m	949	122 (12.9)	1.8 (1.3–2.5)	<0.001	1.5 (1.1–2.2)	0.015	519 (54.7)	1.4 (1.2–1.7)	0.001	1.1 (0.9–1.4)	0.34
Headache burden indices											
Frequency (days/month)											
<4	590	43 (7.3)	Reference	–	Reference	–	183 (31.0)	Reference	–	Reference	–
4–12	466	47 (10.1)	1.4 (0.9–2.2)	0.11	1.2 (0.7–2.1)	0.50	227 (48.7)	2.1 (1.6–2.7)	<0.001	1.6 (1.2–2.1)	0.001
>12	738	95 (12.9)	1.9 (1.3–2.7)	<0.001	2.2 (0.9–5.4)	0.080	502 (68.0)	4.7 (3.7–6.0)	<0.001	2.5 (1.8–3.4)	<0.001
Intensity											
Not bad	373	32 (8.6)	Reference	–	Reference	–	130 (34.9)	Reference	–	Reference	–
Quite bad	901	83 (9.2)	1.1 (0.7–1.7)	0.72	0.9 (0.6–1.4)	0.68	451 (50.1)	1.9 (1.5–2.4)	<0.001	1.3 (1.1–1.7)	0.047
Very bad	520	70 (13.5)	1.7 (1.1–2.6)	0.025	1.1 (0.7–1.8)	0.76	331 (63.7)	3.3 (2.5–4.3)	<0.001	1.7 (1.3–2.4)	0.001
Proportion (%) of time in ictal state											
<1	785	58 (7.4)	Reference	–	Reference	–	264 (33.6)	Reference	–	Reference	–
1–3	217	29 (12.3)	1.8 (1.1–2.9)	0.022	1.8 (1.1–3.0)	0.021	118 (53.9)	2.3 (1.7–3.1)	<0.001	2.2 (1.6–3.0)	<0.001
3–10	403	49 (12.2)	1.7 (1.2–2.6)	0.007	1.7 (1.1–2.7)	0.013	252 (62.5)	3.3 (2.6–4.2)	<0.001	3.0 (2.3–3.9)	<0.001
>10	387	51 (13.2)	1.9 (1.1–3.2)	0.002	2.0 (1.3–3.0)	0.002	278 (71.8)	5.0 (3.3–6.6)	<0.001	4.3 (3.5–9.9)	<0.001

AOR: adjusted odds ratio; OR: odds ratio; CI: confidence interval. N = total number within subsample; n = number within subsample responding positively.

*Adjusted for age, gender, household consumption, dwelling, altitude, headache frequency (F), attack duration (D), intensity and proportion of time in ictal state (pTIS) (for F and D, pTIS was excluded; for pTIS, F and D were excluded). p-values are two-tailed, and emboldened when significant (<0.02).

Four of the local plant names were applied to mixtures of different species, two were identified with more than one probable botanical name, two were used for more than one species and two for the same species as two others. Zandu balm was an exception, since this was found to contain both exact species and a mix of different species in a genus. Taken together, there were 60 species (four of them uncertain because of uncertain identifications by the botanists and six without definite confirmation by the botanists) and five genera identified from the 47 local plant names.
We reviewed 191 publications or encyclopaedias in the literature search. Of the 60 species, 49 were identified pharmacodynamically. Of the five genera, only two were identified pharmacodynamically since there were few studies on the genera as a whole. We found only one randomized controlled trial (RCT) relevant to use for headache, which was of low quality. No meta-analyses were found. The remainder of the studies found were animal, in vitro, or case studies (Table 4).

Of the 60 species, 37 (61.7%) were shown in the literature to have antioxidative effects, 27 (45.0%) to have anti-inflammatory or immunosuppressive effects, and 23 (38.3%) to have effects on receptors, transmitters or synapses in the CNS (Table 4). Of the five genera, two were shown to have anti-inflammatory or immunosuppressive effects and one to have effects on receptors, transmitters or

Table 2. Use of medicinal plants and allopathic medication at least once in the preceding month among participants with migraine according to demographic factors and symptom burden (n = 728).

Variable	Medicinal plants	Allopathic medication
	Bivariate analyses	Multivariate analyses
	OR (95% CI) p	OR (95% CI) p
	AOR* (95% CI) p	AOR* (95% CI) p
	n (%)	n (%)
	Bivariate analyses	Multivariate analyses
	OR (95% CI) p	OR (95% CI) p
	AOR* (95% CI) p	AOR* (95% CI) p
	n (%)	n (%)
Yes (in years)		
18–25	153 (5.9)	Reference
		Reference
		OR (95% CI) p
		p
18–25		
26–35	241 (12.0)	2.2 (1.1–4.8)
	0.048	p
36–45	158 (13.9)	2.6 (1.2–5.8)
	0.021	p
18–25		
36–45		
46–55	101 (15.8)	3.0 (1.3–7.1)
	0.012	p
46–55		
56–65	75 (12.0)	2.1 (0.8–5.7)
	0.11	p
Gender		
Male	249 (14.1)	Reference
		Reference
		OR (95% CI) p
		p
Female	479 (10.4)	0.7 (0.5–1.1)
	0.15	p
Household consumption (USD/year)		
<950	277 (11.6)	Reference
		Reference
>950	162 (12.3)	1.1 (0.6–2.0)
	0.63	p
Dwelling		
Urban	261 (5.0)	Reference
		Reference
		OR (95% CI) p
		p
Rural	467 (15.4)	3.5 (1.9–6.4)
	<0.001	p
Household altitude		
<1000 m	287 (21.3)	Reference
		Reference
>1000 m	441 (14.5)	2.2 (1.3–3.6)
	0.004	p
Headache burden indices		
Frequency (days/month)		
<1	235 (9.8)	Reference
		Reference
		OR (95% CI) p
		p
1–2	226 (13.7)	1.5 (0.8–2.6)
	0.19	p
1–2		
3–14	267 (12.1)	1.2 (0.7–2.1)
	0.51	p
3–14		
Duration (in hours)		
<4	148 (8.1)	Reference
		Reference
		OR (95% CI) p
		p
4–12	225 (11.6)	1.5 (0.7–3.0)
	0.28	p
4–12		
>12	355 (13.2)	1.7 (0.9–3.4)
	0.11	p
>12		
Intensity		
Not bad	60 (4.7)	Reference
		Reference
		OR (95% CI) p
		p
Quite bad	354 (11.3)	1.8 (0.6–5.2)
	0.29	p
Very bad	314 (13.1)	2.1 (0.7–6.1)
	0.17	p
Proportion (%) of time in ictal state		
<1	263 (9.1)	Reference
		Reference
		OR (95% CI) p
		p
1–3	83 (13.3)	1.5 (0.7–3.3)
	0.28	p
3.1–10	248 (14.5)	1.7 (1.0–2.9)
	0.061	p
>10	134 (10.4)	1.2 (0.6–2.3)
	0.67	p
AOR: adjusted odds ratio; OR: odds ratio; CI: confidence interval. N = total number within subsample; n = number within subsample responding positively.		
*Adjusted for age, gender, household consumption, dwelling, altitude, headache frequency (F), attack duration (D), intensity and proportion of time in ictal state (pTIS) (for F and D, pTIS was excluded; for pTIS, F and D were excluded). P-values are two-tailed, and emboldened when significant (<0.02).

Literature search

We reviewed 191 publications or encyclopaedias in the literature search. Of the 60 species, 49 were identified pharmacodynamically. Of the five genera, only two were identified pharmacodynamically since there were few studies on the genera as a whole. We found only one randomized controlled trial (RCT) relevant to use for headache, which was of low quality. No meta-analyses were found. The remainder of the studies found were animal, in vitro, or case studies (Table 4).
Synapses in the CNS (Table 4). Fifteen species (25.0%) were mentioned in the literature as used against headache (Table 4). Serious adverse events (SAEs) affecting the CNS or resulting in death were reported for seven species (coma, loss of consciousness, seizures, paralyses, death) (Table 4). In addition, *Allium sativum* L. (garlic) has been shown to have anticoagulant properties resulting in bleeding (18). Respiratory and cardiac arrest have also been reported after ingestion of *Azadirachta indica* A. Juss (18), as has disseminated intravascular coagulopathy after ingestion of *Syzygium aromaticum* (L) Merrill & Perry (199).

Systemic bioavailability is implied by these pharmacodynamic properties. This is a key issue. We did not collect data on routes of administration to avoid overloading the already-long enquiry. While the literature indicates that many preparations of these MPs would be applied topically, others are taken orally and some are prepared for inhalation. Table 4 lists only the routes of administration potentially relevant to MOH causation.

Associations according to headache type

Any headache. We found somewhat greater use of allopathic medications (AOR 1.3), but not of MPs, among

Table 3. Use of medicinal plants and allopathic medication at least once in the preceding month among participants with headache on ≥ 15 days/month according to demographic factors and symptom burden ($n = 161$).

Variable	Medicinal plants	Allopathic medication										
	Bivariate analyses	Multivariate analyses	Bivariate analyses	Multivariate analyses								
	N	n (%)	OR (95% CI)	p	AOR* (95% CI)	p	N	n (%)	OR (95% CI)	p	AOR* (95% CI)	p
Yes	161	28 (17.4)	–	–	–	–	117	(72.7)	–	–	–	–
Age (in years)												
18–25	29	3 (10.3)	Reference	–	Reference	–	17	(58.6)	Reference	–	Reference	–
26–35	51	10 (19.6)	2.1 (0.5–8.4)	0.29	2.4 (0.6–10.6)	0.23	38	(75.5)	2.1 (0.8–5.4)	0.14	1.5 (0.5–4.6)	0.47
36–45	34	9 (26.5)	3.1 (0.8–12.9)	0.12	2.6 (0.6–12.0)	0.21	24	(70.6)	1.7 (0.6–4.8)	0.32	1.4 (0.4–4.5)	0.58
46–55	29	5 (17.2)	1.8 (0.4–8.3)	0.45	2.4 (0.5–12.6)	0.29	22	(75.9)	2.2 (0.7–6.8)	0.17	1.6 (0.5–5.6)	0.47
56–65	18	1 (5.6)	0.5 (0.1–5.3)	0.57	0.6 (0.1–6.7)	0.67	16	(88.9)	5.6 (1.1–29.3)	0.039	7.8 (1.2–50.6)	0.029

Gender | | | | | | | | | | | | |
| Male | 44 | 10 (22.7) | Reference | – | Reference | – | 26 | (59.1) | Reference | – | Reference | – |
| Female | 117 | 18 (15.4) | 0.6 (0.3–1.5) | 0.28 | 0.5 (0.2–1.6) | 0.25 | 91 | (77.8) | 2.4 (1.2–5.1) | 0.019 | 1.8 (0.7–4.7) | 0.21 |

Household consumption (USD/year) | | | | | | | | | | | | |
| <950 | 59 | 10 (16.9) | Reference | – | Reference | – | 41 | (69.5) | Reference | – | Reference | – |
| ≥950 | 59 | 13 (22.0) | 1.4 (0.9–3.2) | 0.11 | 1.2 (0.7–2.1) | 0.50 | 41 | (69.5) | 0.5 (0.2–1.6) | 0.25 | 1.2 (0.5–2.9) | 0.75 |

Dwelling | | | | | | | | | | | | |
| Urban | 54 | 5 (9.3) | Reference | – | Reference | – | 42 | (77.8) | Reference | – | Reference | – |
| Rural | 107 | 23 (21.5) | 2.7 (0.9–7.5) | 0.060 | 2.1 (0.7–6.5) | 0.20 | 75 | (70.1) | 0.7 (0.3–1.4) | 0.18 | 0.7 (0.3–1.7) | 0.39 |

Household altitude | | | | | | | | | | | | |
| <1000 | 69 | 12 (17.4) | Reference | – | Reference | – | 50 | (72.5) | Reference | – | Reference | – |
| ≥1000 | 92 | 16 (17.4) | 1.0 (0.4–2.3) | 1.0 | 0.9 (0.3–2.2) | 0.74 | 67 | (72.8) | 1.1 (0.5–2.1) | 0.30 | 1.2 (0.5–2.6) | 0.72 |

Headache burden indices | | | | | | | | | | | | |
Frequency (days/month)												
15–20	99	24 (24.2)	Reference	–	Reference	–	73	(73.7)	Reference	–	Reference	–
>20	62	4 (6.5)	0.2 (0.1–0.7)	0.007	0.4 (0.1–1.6)	0.18	44	(71.0)	0.9 (0.4–1.8)	0.70	0.2 (0.1–0.7)	0.010

Duration (in hours) | | | | | | | | | | | | |
| <48 | 56 | 9 (16.1) | Reference | – | Reference | – | 31 | (55.4) | Reference | – | Reference | – |
| 48–144 | 50 | 15 (30.0) | 2.2 (0.9–5.7) | 0.091 | 2.6 (0.9–7.5) | 0.089 | 40 | (80.0) | 3.2 (1.4–7.7) | 0.008 | 2.6 (1.0–6.9) | 0.053 |

Intensity | | | | | | | | | | | | |
| Not bad/quite bad | 62 | 9 (14.5) | Reference | – | Reference | – | 41 | (66.1) | Reference | – | Reference | – |
| Very bad | 99 | 19 (19.2) | 1.4 (0.6–3.3) | 0.45 | 1.5 (0.6–4.0) | 0.43 | 76 | (76.8) | 1.7 (0.8–3.4) | 0.14 | 1.3 (0.6–3.1) | 0.49 |

Proportion (%) of time in ictal state | | | | | | | | | | | | |
<60	64	14 (21.9)	Reference	–	Reference	–	46	(71.9)	Reference	–	Reference	–
$60–80$	45	11 (24.4)	1.2 (0.5–2.8)	0.75	1.3 (0.5–3.4)	0.61	30	(66.7)	0.8 (0.3–1.8)	0.56	0.7 (0.3–1.7)	0.68
>80	52	3 (5.8)	0.2 (0.1–0.8)	0.023	0.2 (0.1–0.9)	0.041	41	(78.8)	1.5 (0.6–3.5)	0.39	0.8 (0.3–2.2)	0.71

AOR: adjusted odds ratio; OR: odds ratio; CI: confidence interval. $N = $ total number within subsample; $n = $ number within subsample responding positively.

*Adjusted for age, gender, household consumption, dwelling, altitude, headache frequency (F), attack duration (D), intensity and proportion of time in ictal state (pTIS) (for F and D, pTIS was excluded; for pTIS, F and D were excluded). p-values are two-tailed, and emboldened when significant (<0.02).
Formulation	Used for headache (source and level of evidence (15))	Assumed pharmacodynamic mechanisms on CNS	Reported adverse events on CNS (serious: SAEs [including death]; non-serious: NSAEs)
Abelmoschus moschatus Medik* (component of Navaratna oil)	Topical (13) No data	Antioxidative (16)	SAEs: Death (18–20); coma (18,19); seizures (18) NSAEs: Fever, reduced mental status (18)
Abrus precatorius L. (Rato gerdji)	Oral/topical (13) (Level V) (15)	Immunostimulating (17); receptors (17)	
Aconitum ferox Wall. Ex. Ser. (Bikma herbal)	Oral/topical (13,18,21) No data	Other (18,22–26); Receptors (27,28)	SAEs: Death, paralysis (18); muscular fasciculations, tonic-clonic seizures (18,25) NSAEs: Paresthesias, pain, severe headache, restlessness, apprehension, confusion, incoordination, miosis, mydriasis, diplopia, blurred vision, yellow-green vision (18)
Acorus calamus L. (Bojo)	Oral/parenteral/topical (13,18) (Level V) (18)	Other (29,30)	SAEs: None reported (18) NSAEs: None reported (18)
Allium sativum L*** (Garlic)	Oral/topical (13,18) (Level V) (31)	Antioxidative (18,32–35); anti-inflammatory (36–38); receptors (33,35); other (31,39); antiapoptotic (35,36)	SAEs: None reported on CNS (18) NSAEs: Headache, fatigue, vertigo (18)
Allium wallichii Kunth**** (Garlic)	Oral (13) No data	Antioxidative (40)	No data
Aloe vera L. Burm. f. (Aloe vera herbal)	Oral/topical (13,18,41) No data	Antioxidative (42–45); anti-inflammatory (18,43,46); other (42,47)	SAEs: none reported (18,41) NSAEs: none reported (18,41)
Artemisia indica Willd. (Titepati leaves)	Oral/topical (13) (Level V) (48)	Antioxidative (49); immunostimulating (50); receptors (51)	No data
Azadirachta indica A. Juss. (Neem leaves)	Oral/topical (13,18) (Level V) (13)	Antioxidative (52); anti-inflammatory (53,54); receptors (55); antiapoptotic (52,53)	SAEs: Death, Reye-like syndrome, altered consciousness, seizures, decreased responsiveness (18) NSAEs: Lethargy (18)
Brassica napus L. (Mustard paste)	No data No data	No data	No data
Calotropis gigantea L. Dryand (Aank)	Inhaled/oral/topical (13) No data	Receptors (56)	No data
Centella asiatica L. Urb. (Gortapre)	Oral/parenteral/topical (13,18) (Level V) (13)	Antioxidative (57–61); anti-inflammatory (18,62); receptors (63–66); antiapoptotic (62)	No data

(continued)
Table 4. Continued.

Formulation	Used for headache (source and level of evidence (15))	Assumed pharmacodynamic mechanisms on CNS	Reported adverse events on CNS (serious: SAEs [including death]; non-serious: NSAEs)	
Cheilanthes albomarginata C.B. Clarke (Rani sini herbal)	Oral/topical (13)	No data	Antioxidative (67); anti-inflammatory (67)	No data
Colebrookea oppositifolia Sm. (Dursur)	Intranasal/oral/parenteral/topical (13)	(Level V) (13)	Receptors (68)	No data
Curcuma longa L. (Turmeric herbal)	Oral/Parenteral (18)	No data	Antioxidative (18,69–72); anti-inflammatory (18,69–71,73–77); receptors (78–81); other (69,82–85); vascular (77)	SAEs: None reported (18,41,86) NSAEs: None reported (5,41,86)
Curcuma zedoaria (Christm.) Roscoe* (component of Navaratna oil)	No data	No data	Antioxidative (87)	No data
Cymbopogon pendulus (Nees ex Steud.) W. Watson (Lemon grass)	No data	No data	No data	No data
Cyperus rotundus L.* (component of Navaratna oil)	Oral (13)	No data	Antioxidative (88,89); anti-inflammatory (89,90); receptors (91,92); other (93); antiapoptotic (89)	No data
Eclipta prostrata L.* (component of Navaratna oil)	Oral/topical (13)	No data	Antioxidative (94); receptors (94); other (95)	No data
Elettaria cardamomum L. (Aalainch)	Oral (18,41)	No data	Antioxidative (18,96); anti-inflammatory (97,98); other (99)	SAEs: None reported (18) NSAEs: None reported (18)
Eucalyptus globulus Labill.* (component of Zandu balm, from "Herbal products Vick")	Oral/parenteral/topical (18,41)	No data	Antioxidative (18); anti-inflammatory (18); receptors (100)	SAEs: Loss of consciousness, hypoventilation, convulsions (101,102) NSAEs: Ataxia, CNS depression (101)
Gaultheria fragrantissima Wall.* (component of Zandu balm, from "Herbal products Vick")	Topical (48)	(Level V) (48)	Antioxidative (103,104)	No data
Helianthus annuus L. (Sunflower)	No data	No data	Antioxidative (105); anti-inflammatory (105)	No data
Hibiscus rosa-sinensis L.* (component of Navaratna oil)	Oral/topical (13)	No data	Antioxidative (106); receptors (107)	No data
Hordeum vulgare L.* (Jamara)	Oral/topical (18)	No data	Antioxidative (18); other (108)	SAEs: None reported (18) NSAEs: None reported (18)
Inula cappa (Buch.-Ham. ex D.Don) DC. (Dwareko jaro)	Oral/topical (13)	(Level V) (2)	Anti-inflammatory (109,110)	No data
Lilium polyphyllum D. Don* (component of Navaratna oil)	No data	No data	No data	No data
Lygodium japonicum (Thumb.) Sw.** (Pinase)	Topical (13)	No data	Anti-inflammatory (111)	No data
Lysimachia alternifolia Wall.** (Pinase)	Inhaled (13)	No data	No data	No data

(continued)
Table 4. Continued.

Formulation	Used for headache (source and level of evidence (15))	Assumed pharmacodynamic mechanisms on CNS	Reported adverse events on CNS (serious: SAEs [including death]; non-serious: NSAEs)
Mentha arvensis L* (component of Navaratna oil)	Intranasal/oral/topical (18,41)	Antioxidative (112,113); anti-inflammatory (113,114); receptors (113,115,116); other (114)	SAEs: None reported (41) NSAES: None reported (41)
Mentha spicata L. (Menthol oil)	Oral (13)	Oxidative (110)	No data
Micromeria biflora (Buch.-Ham. Ex. D. Don) Benth,** (Pinase)	Inhaled/oral/topical (13)	No data	No data
Myrica esculenta Buch.-Ham. Ex. D. Don (Kafal ko bokra)	Oral/topical (13,18)	Antioxidative (117); anti-inflammatory (118)	No data
(Neo)picrorhiza scrophulariiflora (Pennel) D.Y. Hong (Kurki)	Oral/topical (13)	No data	No data
Nyctanthes arbor-tristis L. (Parijaat leaves)	Oral/topical (13)	Antioxidative (119); immunostimulating (120–122); anti-inflammatory (123); other (124)	No data
Ocimum tenuiflorum L. (Tulsi leaves/Kapoor*, ingredient in Banphool oil [translation not approved by botanists])	Oral/topical (13,48)	Antioxidative (125); anti-inflammatory (18); receptors (126–129)	No data
Ophiocordyceps sinensis (Berk.) G.H. Sung, J.M. Sung, Hywel-Jones & Spatafora (mushroom) (Yarsagumba)	No data	Antioxidative (130,131); anti-inflammatory (132); immunostimulating (132); other (132)	No data
Parmelia perlata (Huds.) Ach. (component of Navaratna oil)	No data	No data	No data
Phyllanthus emblica L* (component of Navaratna oil/Aamla, which is also a component of Banphool oil, and in monotherapy)	Oral (13)	Antioxidative (133–137); anti-inflammatory (135–137); receptors (138); other (135,137,138)	No data
Plumbago zeylanica L. (Chitum)	Oral/topical (13)	Anti-inflammatory (139,140); receptors (141)	No data
Rubus ellipticus Sm. (Ainselu root)	Oral/topical (13,18)	Antioxidative (142,143)	No data
Sweertia angustifolia Buch.-Ham. Ex D. Don** (Chiraito)	Oral (13)	Antioxidative (145); anti-inflammatory (146,147)	SAEs: None reported (144) NSAES: No data
Sweertia chirayita Buch.-Ham. ex D. Don** (Chiraito)	Oral/topical (13), (Level V) (144)	Antioxidative (145); anti-inflammatory (146,147)	SAEs: None reported (144) NSAES: No data
Syzygium nervosum A Cunn, ex DC. (Kyamuna ko munto)	No data	Antioxidative (148)	No data
Terminalia chebula Retz. (Harro)	Oral/topical (13)	Antioxidative (149,150); other (150)	No data
Formulation	Used for headache (source and level of evidence (15))	Assumed pharmacodynamic mechanisms on CNS	Reported adverse events on CNS (serious: SAEs [including death]; non-serious: NSAEs)
-----------------------------------	--	--	--
Triticum aestivum L. * (Jamara)	Topical (18)	Receptors (151)	SAEs: No data NSAEs: Transformation of episodic into daily headache (152)
Vitex negundo L. * (Simali)	Inhaled/oral/topical (13)	Antioxidative (153,154); anti-inflammatory (154,155); receptors (155)	No data
Zanthoxylum armatum DC. * (Timur)	Oral/topical (13)	Antioxidative (156,157); anti-inflammatory (158,159)	No data
Zea mays L. * (Jamara)	No data	Antioxidative, antiapoptotic (160)	No data
Zingiber officinale Roscoe * (Ginger)	Oral/topical (13,41)	Antioxidative (162,163); anti-inflammatory (162,164–168); receptors (169–171); other (172)	SAEs: None on CNS (161) (RCT) NSAEs: None on CNS (161) (RCT)
Genera with uncertain translations			
Ageratum sp. *(Bherapate herbal)*	No data		
Cotoneaster sp. *(Ghareko jaro or Ghare herbal)*	No data		
Hedyotis sp. *(Nimaniko jadhibuti)*	No data		
Mentha sp. L. * (component of Zandu balm from “Herbal products Vick”/Satva Pudina*; component of Banphool oil [translation not approved by botanists]*)	No data		
Piper sp. *(Pepper)*	No data	Anti-inflammatory (173); receptors (173)	SAEs: Coma (18) NSAEs: Ataxia, confusion, vertigo, CNS depression (18)
Species with uncertain translations			
Asparagus racemosus Willd.*** *(Satawari [participants called it Sartawa]*)	Oral (13,18)	Antioxidative (175,176); receptors (176–179)	SAEs: None reported (18) NSAEs: None reported (18)
Ipomoea carnea Jacq. *(Ajamari jhar [participants called it Ajawane]*)	Topical (13)	Antioxidative (180); anti-inflammatory (180); other (180)	No data.
Justicia adhatoda L. *(Asurako or Asuro)*	Oral/topical (13)		
Paris polyphylla Sm.*** *(Satuwa [participants called it Sartawa]*)	Oral/topical (13)		
Translations not approved by the botanists			
Convolvulus pluricaulis Choisy* *(181) (component of Banphool oil (182))	No data	Anti-inflammatory (183,184); receptors (185,186); other (184,187–190)	No data
Nardostachys grandiflora D.C.* *(181) (component of Banphool oil (182))	No data		No data

(continued)
females than males (Table 1). There were no clear associations with age or household consumption.

Higher proportions of participants with any headache used MPs (AOR 2.6) and allopathic medications (AOR 1.7) in rural areas than urban (Table 1). Associations with high altitude, apparent in bivariate analysis, lost significance in multivariate analysis.

Increasing headache frequency (from 1 to \(\leq 15 \) days/month) was clearly associated with increasingly probable use of allopathic medication(s) (from 32.4% to 72.7%, a factor of 2.2; AOR 1.8–2.3), but, for MPs, this was so only for frequency \(\geq 15 \) days/month (from 7.3% to 17.4%, a factor of 2.4; AOR 2.0; Table 1). Long-duration (AOR 2.5) and severe headache (AOR 1.7) were each associated with increased use of allopathic medication(s), but not (in multivariate analyses) of MPs (Table 1). Participants with pTIS \(\geq 1% \) were more likely to have used allopathic medication(s) (AOR 2.2–4.4); a similar trend for MPs became clearly significant only when pTIS exceeded 3% (AOR 1.7–2.0; Table 1).

Migraine. There were no clear associations with age, gender or household consumption.

A higher proportion of participants with migraine used MPs (AOR 3.4) in rural areas than urban, but for allopathic medications this association just lost significance in multivariate analysis (AOR 1.5; \(p = 0.021; \) Table 2). Associations with high altitude, apparent in bivariate analysis, once more lost significance in multivariate analysis. High frequency (AOR 3.2) and pTIS \(\geq 1% \) were associated with more probable use of allopathic medications (AOR 2.2–4.4) but not of MPs (Table 2).

Headache on \(\geq 15 \) days/month. Only one association was clear: Less use of allopathic medication(s) (AOR 0.2) in very high-frequency headache (\(> 20 \) days/month) (Table 3). A similar trend for MPs (AOR 0.2) did not survive multivariate analysis. A trend away from use of MPs (AOR 0.2) with very high pTIS (\(> 80\% \)) was discernible but did not meet our significance threshold (\(p > 0.02; \) Table 3).

Are medicinal plants as likely as other medications to be associated with headache on \(\geq 15 \) days/month? As noted earlier, of 912 participants with headache and using allopathic medication(s), 117 (12.8%) reported headache on \(\geq 15 \) days/month, 40 of these (34.2%) meeting our criteria for overuse; of 185 using MP(s), 28 (15.1%) reported headache on \(\geq 15 \) days/month, six (21.4%) meeting our criteria for overuse. The difference between these proportions was not significant (\(p = 0.259 \) [chi-squared]). Of the 46 with headache on \(\geq 15 \) days/month and overuse, 87.0% (40/46) were using allopathic medication(s) and 13.0% (6/46) were using MPs (Table 2).

Table 4. Continued.

Formulation	Used for headache (level of evidence (15))	Assumed pharmacodynamic mechanisms on CNS	Reported adverse events on CNS (serious: SAEs [including death]; non-serious: NSAEs)
Pandanus fascicularis Lam. (181) (Ketaki (191))	No data	Antiinflammatory (192)	No data
Santalum album L. (181) (component of Banphool oil (182))	No data	Other (193)	SAEs: CNS depression, seizures, coma (18) NSAEs: None reported (18)
Syzzygium aromaticum L. Merrill & Perry (component of Banphool oil (182))	Oral/topical (18)	Antioxidative (194,195); anti-inflammatory (18); receptors (196); other (197,198)	SAEs: Coma, seizures (199) NSAEs: Slight CNS depression (200)
Terminalia bellirica (Gaertn.) Roxb. (181) (Barro (181), component of Banphool oil (182))	No data	Antioxidative (201,202); anti-inflammatory (203,204); receptors (205)	No data

NSAEs: non-serious adverse events; RCT: randomised controlled trial; SAEs: serious adverse events.

*Not in monotherapy.

**Two or more different species have same local name.

More than one possible botanical name.
using MP(s), a ratio of 6.7:1, somewhat higher than the overall usage ratio of 4.9:1 (912/185) (again not significant: \(p = 0.262 \)).

Discussion

The study found that a considerable minority (10.3%) of people with headache in Nepal had used MPs as treatment for it during the preceding month, although a much higher proportion (50.8%) had used allopathic medication(s). As might be expected, use of each was more likely (MPs: 17.4%; allopathic medication(s) 72.7%) among those with headache on \(\geq 15 \) days/month. Among those with migraine in particular, use of MPs was positively associated with both rural (AOR 3.4) and high-altitude (AOR 1.9) dwelling.

Use of MPs for headache is therefore common, although less so than use of allopathic medications. Use of MPs is especially common among those with headache on \(\geq 15 \) days/month, again less so than allopathic medications. Both MPs and allopathic medications were overused, according to our definitions, in association with headache on \(\geq 15 \) days/month.

However, answers to the questions of whether MPs might be implicated in MOH causation, raised by our fifth objective, and, if so, whether they are as likely to cause MOH as allopathic medications, raised in our starting hypothesis, depend on evidence not only of use, overuse and association but also of a potential causal mechanism. We note, before further consideration of these, that diagnosis of MOH is presumptive, even with allopathic medications: the diagnostic criteria of ICHD-3 beta for practical reasons omit evidence of causation, relying on “Not better accounted for by another ICHD-3 diagnosis” (11). In epidemiology, this last criterion cannot be reliably applied, hence the term “probable MOH”.

With this caveat, we address these questions.

Of 60 plant species identified, 49 were pharmacodynamically active on the CNS, with effects (on CNS receptors, and anti-inflammatory and antioxidative actions) likely to be relevant in MOH causation. This is a revelation of some importance, since 8.8% of all adults aged 18–65 years in Nepal (10.3% of the 85.4% with headache) apparently use MPs for headache (although only 25.0% of these plants have been recognized in the literature as treatments used for headache, and, in a study of traditional use of MPs in Western Nepal, headache was not listed as an indication for any of the plants (207)).

The probably multiple mechanisms of MOH causation are still unclear. Every known drug used in acute headache treatment, with a range of pharmacological actions, can cause MOH when overused (208,209). The MPs used for headache by our study participants are highly pharmacologically active, many with actions similar to those of conventional medications for headache: *Inter alia*, anti-inflammatory, serotonergic and opioidergic properties, also seen in headache medications such as aspirin, NSAIDs, triptans and opioids. While we cannot (and do not) conclude that MPs are an actual cause of MOH, these findings are such that MPs, wherever they are used and overused, must be included among its potential causes.

It is worth observing that, while only six participants using MPs had headache on \(\geq 15 \) days/month and fulfilled our criteria for overuse, there is no accepted definition of overuse of MPs. We placed MPs on equal terms with other acute headache medication (2), so that use of MPs of a single type on \(\geq 15 \) days/month or of more than one type on \(\geq 10 \) days/month was deemed to be overuse. This said, our search of the literature indicated that many of the plants used for headache had multiple, independent pharmacological actions. This made it likely that each consisted of different active substances, and more logical, therefore, to use \(\geq 10 \) days/month as the overuse threshold regardless of how many types were consumed, increasing the number diagnosed as MP-overusers. However, we considered the conservative definition a better test of our hypothesis.

Use of MPs for headache escalated with headache frequency at the same rate as use of allopathic medication(s), more than doubling as frequency increased from 1 to \(\geq 15 \) days/month. As, probably, the most influential driver of medication overuse, increasing headache frequency appears to operate similarly on MPs and allopathic medications. However, people in ictal state for most of the time (pTIS > 80%) had, apparently, given up on MPs. This was not seen with allopathic medications. It is easy to speculate that people in this near-end state, with headache almost all of their time, find (or believe they find) greater benefit from allopathic medications, so that many switch allegiance. Since there was no sign of reduced use of MPs as pTIS increased up to 80%, there is no support for the alternative explanation—that risk of developing more frequent headache is higher in those who use allopathic medication(s) than in those using MPs. There are no other studies on MPs and headache to throw light on this question.

Other associations were, perhaps, of limited interest. Considerably higher proportions of participants with migraine used MPs in rural areas than urban (AOR 3.5), a finding that was not unexpected, and a reflection, probably, of urban/rural cultural difference driven, in part, by less-easy access in rural areas to health care. Association with high altitude lost significance in multivariate analysis because rural dwelling was itself strongly associated with higher altitude.
There were limitations in this study. First, even though there were 2100 participants overall, the sample size of those reporting headache on ≥15 days per month was only 161. This resulted in lower than ideal statistical power. A second limitation lay in language and plant identification. Since no data collected in the original survey related the local names of the MPs to the ethnicity of those using them, it was impossible for the botanists to identify all of them with their botanical names (more than 120 languages are spoken as mother tongue in Nepal (210)). In addition, no data had been collected on dosages or routes of administration, as already noted, or on whether the MPs were gathered by the participants themselves, prescribed by health workers or dispensed by traditional healers. Although this was information relevant to our public-health objectives, the original survey had deferred its collection to future studies (if warranted) to avoid overloading an already lengthy enquiry.

A third factor, also limiting but outside our control, was the lack of guiding evidence in the literature. Only one relevant RCT was found in the search for side effects and use against headache, and this was of low quality. It was impossible to establish whether the MPs are actually beneficial in acute headache. Additionally, there were no studies on the pharmacological effects on the CNS for a large proportion of the MPs, which left uncertainties about their possible actions.

Despite these limitations, a participation proportion of 99.6% in the original survey excluded participation bias (2), and the methodology for collecting the data was thoroughly considered (211). These were considerable strengths. This is the first large nationwide study to investigate the use of MPs for headache in Nepal. We assume it will be the starting point for multiple endeavours: Further studies on overuse of plants with pharmacological properties among people with headache disorders; RCTs on MPs used for headache to establish their effects, if any; basic research on the mechanisms that lead to MOH to test our hypothesis more decisively, and provision of guidance on the use and misuse of MPs for headache.

Conclusion

MPs are used as symptomatic treatments for headache by almost 9% of the Nepalese population aged 18–65 years, 15% of whom report headache on ≥15 days/month. Many of these MPs have pharmacodynamic properties similar to those implicated in MOH causation by allopathic medication overuse. On this accumulation of evidence, MPs, whenever used, should be considered at least a potential cause of MOH, perhaps no less than allopathic medications, although this is unproven. The six presumptive cases we identified in Nepal, in a sample of 2100 (0.3%), are, in public-health terms, a small but not negligible proportion. Given a global context in which herbal remedies are becoming increasingly popular, this evidence attaches considerable importance to further research on MOH in relation to MPs. This study provides a starting point, where none existed before.

Public health relevance

- Medicinal plants must be included among the potential causes of MOH.
- In Nepal, where use of medicinal plants is culturally entrenched, presumptive evidence suggests a small but nonetheless measurable impact at population level.
- In developed countries, where MOH is the headache with the highest cost per person, the use of medicinal plants is widely believed to be harmless, and increasing.
- For these reasons, further research and guidance on use of MPs for headache are needed.

Abbreviations

AE: adverse events; AOR: adjusted odds ratio; CI: confidence interval; CNS: central nervous system; D: duration; F: headache frequency (headache days); HARDSHIP: Headache-Attributed Restriction, Disability, Social Handicap and Impaired Participation; IRC-KUSMS: Institutional Review Committee of Kathmandu University School of Medical Sciences; MeSH: Medical Subject Heading; MOH: medication-overuse headache; MP: medicinal plant; NSAEs: non-serious adverse events; OR: odds ratio; pMOH: probable MOH; pTIS: proportion of time in ictal state; RCT: randomized controlled trial; SAEs: serious adverse events; TTH: tension-type headache; USD: United States dollar.

Acknowledgements

This study was conducted in collaboration with the Global Campaign against Headache, led by the non-governmental organization Lifting The Burden in official relations with the World Health Organization and with Dhulikhel Hospital and Kathmandu University Hospital, Nepal.
We are grateful to Jan Ove Rein, Senior Research Librarian, Sindre Andre Pedersen, Senior Research Librarian and Katrine Arons, Head Librarian (all at The Medicine and Health Library, NTNU) for their practical assistance and help with the literature search, as well as the botanists, Kamal Prasad Acharya and Dilli Prasad Rijal (UiT – The Arctic University of Norway), for their great assistance in identifying plants from their local names, and for valuable advice.

Author contributions

All authors were involved in conception and design of this study. KM, AR, ML and TJS were responsible for data acquisition in the original population-based study. EOS planned and conducted the literature search and established the pharmacological properties of medicinal plants reportedly used by participants. KM and HIT performed the analyses. All authors contributed to interpretation of the data. EOS drafted the manuscript and TJS contributed to its revision. All authors reviewed it critically for intellectual content and all, other than KM, approved the final version of the manuscript.

Declaration of conflicting interests

The authors declared the following potential conflicts of interest with respect to the research, authorship, and/or publication of this article: TJS is a Director and Trustee of Lifting The Burden. The authors declare no other competing interests.

Funding

The authors disclosed receipt of the following financial support for the research, authorship, and publication of this article: This project was financially supported by Samarbeidsorganet, the Liaison Committee between the Central Norway Regional Health Authority and the Norwegian University of Science and Technology (NTNU) (grant no. 653010-46060911).

Availability of data and materials

The datasets used and analysed during this study are held securely at The Norwegian University of Science and Technology. They are still undergoing analyses. Once these are completed, the datasets will be available from the corresponding author for academic purposes.

Ethics and approvals

The study protocol was approved by the Regional Committee for Health and Research Ethics in Central Norway, the Nepal Health Research Council and the Institutional Review Committee of Kathmandu University School of Medical Sciences, Dhusitkel Hospital (IRC-KUSMS). Consents were taken according to requirements of IRC-KUSMS (2,10).

ORCID iD

Elise Øien Sørnes https://orcid.org/0000-0003-0803-5745

References

1. Jones JM. Headaches beyond the roads. Headache 2010; 50: 1219–1220.
2. Manandhar K, Risal A, Steiner TJ, et al. The prevalence of primary headache disorders in Nepal: A nationwide population-based study. J Headache Pain 2015; 16: 95.
3. Stovner LJ and Andre C. Prevalence of headache in Europe: A review for the Eurolight project. J Headache Pain 2010; 11: 289–299.
4. Sharma UR, Malla KJ and Uprety RK. Conservation and management efforts of medicinal and aromatic plants in Nepal. Banko Janakari 2017; 14; 3–11.
5. Kunwar RM and Bussmann RW. Ethnobotany in the Nepal Himalaya. J Ethnobiol Ethnomed 2008; 4: 24.
6. Ekor M. The growing use of herbal medicines: issues relating to adverse reactions and challenges in monitoring safety. Front Pharmacol 2014; 4: 177.
7. Furst R and Zundorf I. Evidence-based phytotherapy in Europe: Where do we stand? Planta Med 2015; 81: 962–967.
8. Linde M, Gustavsson A, Stovner LJ, et al. The cost of headache disorders in Europe: The Eurolight project. Eur J Neurol 2012; 19: 703–711.
9. Manandhar K, Risal A, Steiner TJ, et al. Estimating the prevalence and burden of major disorders of the brain in Nepal: Methodology of a nationwide population-based study. J Headache Pain 2014; 15: 52.
10. Linde M, Edvinsson L, Manandhar K, et al. Migraine associated with altitude: Results from a population-based study in Nepal. Eur J Neurol 2017; 24: 1055–1061.
11. Headache Classification Committee of the International Headache Society. The International Classification of Headache Disorders, 3rd edition (beta version). Cephalalgia 2013; 33: 629–808.
12. Press JR, Shrestha KK and Sutton DA. Annotated checklist of the flowering plants of Nepal, http://www.efloras.org/flora_page.aspx?flora_id=110 (accessed 3 April 2018).
13. Manandhar NP and Manandhar S. Plants and people of Nepal. Portland, OR: Timber Press, 2002, pp.1–599.
14. Pokharel T. Poverty in Nepal: Characteristics and challenges. J Poverty Invest Dev 2015; 11.
15. Centre for Evidence-Based Medicine. Oxford Centre for Evidence-based Medicine – levels of evidence (March 2009), https://www.cebm.net/2009/06/oxford-centre-evidence-based-medicine-levels-evidence-march-2009/ (2009, accessed 10 June 2018).
16. Guo MZ, Bhakshu LM, Ahmad F, et al. Evaluation of Abelmoschus moschatus extracts for antioxidant, free radical scavenging, antimicrobial and anti proliferative activities using in vitro assays. BMC Complement Altern Med 2011; 11: 64.
17. Bhasker AS, Sant B, Yadav P, et al. Plant toxin abrin induced oxidative stress mediated neurodegenerative changes in mice. Neurotoxicology 2014; 44: 194–203.
18. Truven Health Analytics. Micromedex® 2.0, (electronic version), http://www.micromedexsolutions.com/ (2018, accessed 22 February 2018).
19. Sahni V, Agarwal SK, Singh NP, et al. Acute demyelinating encephalitis after jequirity pea ingestion (Abrus precatorius). Clin Toxicol (Phila) 2007; 45: 77–79.

20. Dickens KJ, Bradberry SM, Rice P, et al. Aconin poisoning. Toxicol Rev 2003; 22: 137–142.

21. Chan TY. Aconitum alkaloid poisoning related to the culinary uses of aconite roots. Toxins 2014; 6: 2605–2611.

22. Fu M, Wu M, Qiao Y, et al. Toxicological mechanisms of Aconitum alkaloids. Die Pharmazie 2006; 61: 735–741.

23. Nyirimigabo E, Xu Y, Li Y, et al. A review on phytochemistry, pharmacology and toxicology studies of Aconitum. J Pharm Pharmacol 2015; 67: 1–19.

24. Yamanaka H, Doi A, Ishibashi H, et al. Aconitum rhizome extract on the neuromodulatory system in microglia. Direct stimulating Dynorphin A expression in spinal dorsal horn of rats. J Invest Surg 2015; 28: 127–134.

25. Ameri A. The effects of garlic extract on spreading depression: in vitro and in vivo investigations. Nutr Neurosci 2017; 20: 127–134.

26. Li TF, Fan H and Wang YX. Aconitum-derived Bulleyaconitine A exhibits antihypersensitivity through direct stimulating Dynorphin A expression in spinal microglia. J Pain 2016; 17: 530–548.

27. Zhao XY, Wang Y, Li Y, et al. Songorine, a diterpenoid alkaloid of the genus Aconitum, is a novel GABA(A) receptor antagonist in rat brain. Neurosci Lett 2003; 337: 33–36.

28. Li TF, Fan H and Wang YX. Aconitum-derived Bulleyaconitine A exhibits antihypersensitivity through direct stimulating Dynorphin A expression in spinal microglia. J Pain 2016; 17: 530–548.

29. Reddy S, Rao G, Shetty B, et al. Effects of Acorus calamus rhizome extract on the neuromodulatory system in restraint stress male rats. Turkish Neurosurg 2015; 25: 425–431.

30. Hazra R, Ray K and Guha D. Inhibitory role of Acorus calamus in ferric chloride-induced epileptogenesis in rat. Hum Experim Toxicol 2007; 26: 947–953.

31. Marschollek C, Karimzadeh F, Jafarian M, et al. Effects of garlic extract on spreading depression: In vitro and in vivo investigations. Nutr Neurosci 2017; 20: 127–134.

32. Pintana H, Sripetchwandee J, Supakul L, et al. Garlic extract attenuates brain mitochondrial dysfunction and cognitive deficit in obese-insulin resistant rats. Appl Physiol Nutr Metab 2014; 39: 1373–1379.

33. Mukherjee D and Banerjee S. Learning and memory promoting effects of crude garlic extract. Indian J Experim Biol 2013; 51: 1094–1100.

34. Brunetti L, Menghini L, Orlando G, et al. Antioxidant effects of garlic in young and aged rat brain in vitro. J Med Food 2009; 12: 1166–1169.

35. Liu SG, Ren PY, Wang GY, et al. Allicin protects spinal cord neurons from glutamate-induced oxidative stress through regulating the heat shock protein 70/inducible nitric oxide synthase pathway. Food Funct 2015; 6: 321–330.

36. Zhang B, Li F, Zhao W, et al. Protective effects of alliin against ischemic stroke in a rat model of middle cerebral artery occlusion. Mol Med Rep 2015; 12: 3734–3738.

37. Nillett N, Pannangrong W, Welbat JU, et al. Neuroprotective effects of aged garlic extract on cognitive dysfunction and neuroinflammation induced by beta-amyloid in rats. Nutrients 2017; 9: 24.

38. Yun HM, Ban JO, Park KR, et al. Pharmacol Ther 2014; 142: 183–195.

39. Thorajak P, Pannangrong W, Welbat JU, et al. Effects of aged garlic extract on cholinergic, glutamatergic and GABAergic systems with regard to cognitive impairment in Abeta-induced rats. Nutrients 2017; 9: 686.

40. Bhandari J, Muhammad B, Thapa P, et al. Study of phytochemical, anti-microbial, anti-oxidant, and anti-cancer properties of Allium wallichii. BMC Compl Alt Med 2017; 17: 102.

41. Blumenthal MB and Werner R. The complete German Commission E monographs. 1st ed. Austin, TX: American Botanical Council Integrative Medicine Communications, 1998, pp.1–685.

42. Rathor N, Arora T, Manocha S, et al. Anticonvulsant activity of Aloe vera leaf extract in acute and chronic models of epilepsy in mice. J Pharm Pharmacol 2014; 66: 477–485.

43. Yuksel Y, Guven M, Kaymaz B, et al. Effects of Aloe vera on spinal cord ischemia-reperfusion injury of rats. J Invest Surg 2016; 29: 389–398.

44. Lee KY, Weintraub ST and Yu BP. Isolation and identification of a phenolic antioxidant from Aloe barbadensis. Free Radiol Biol Med 2000; 28: 261–265.

45. Wang Y, Cao L and Du G. Protective effects of Aloe vera extract on mitochondria of neuronal cells and rat brain. Zhongguo Zhong Yao Za Zhi 2010; 35: 364–368.

46. Mirshafiey A, Aghily B, Namaki S, et al. Therapeutic approach by Aloe vera in experimental model of multiple sclerosis. Immunopharmacol Immunotoxicol 2010; 32: 410–415.

47. Halder S, Mehta AK and Medrattka PK. Aloe vera improves memory and reduces depression in mice. Nutr Neurosci 2013; 16: 250–254.

48. The World Conservation Union (IUCN). National register of medicinal plants, https://portals.iucn.org/library/sites/library/files/documents/2000-058.pdf (2000, accessed 11 February 2020).

49. Rashid S, Rather MA, Shah WA, et al. Chemical composition, antimicrobial, cytotoxic and antioxidant activities of the essential oil of Artemisia indica Willd. Food Chem 2013; 138: 693–700.

50. Ruwali P, Ambwani TK and Gautam P. In vitro immunomodulatory potential of Artemisia indica Willd. in chicken lymphocytes. Vet World 2018; 11: 80–87.

51. Khan I, Kari M, Ahmad W, et al. GABA-A receptor modulation and anticonvulsant, anxiolytic, and antidepressant activities of constituents from Artemisia indica Linn. Evid-based Compl Alt Med 2016; 2016: 121393.

52. Vaibhav K, Shrivastava P, Khan A, et al. Azadirachta indica mitigates behavioral impairments, oxidative damage, histological alterations and apoptosis in focal...
cerebral ischemia-reperfusion model of rats. Neuronal Sci 2013; 34: 1321–1330.

53. Bedri S, Khalil EA, Khalid SA, et al. Azadirachta indica ethanolic extract protects neurons from apoptosis and mitigates brain swelling in experimental cerebral malaria. Malar J 2013; 12: 298.

54. Yanpallewar S, Rai S, Kumar M, et al. Neuroprotective effect of Azadirachta indica on cerebral post-ischemic reperfusion and hypoperfusion in rats. Life Sci 2005; 76: 1325–1338.

55. Pillai NR, Santhakumari G and Laping J. Some pharmacological actions of ‘nimbidin’ – a bitter principle of Azadirachta indica-a juss (neem). Anc Sci Life 1984; 4: 88–95.

56. Argal A and Pathak AK. CNS activity of Calotropis gigantea roots. J Ethnopharmacol 2006; 106: 142–145.

57. Doknark S, Mingmalairak S, Vattanajun A, et al. Study of ameliorating effects of ethanolic extract of Centella asiatica on learning and memory deficit in animal models. J Med Assoc Thailand 2014; 97: S68–S76.

58. Gray NE, Sampath H, Zweig JA, et al. Centella asiatica attenuates amyloid-beta-induced oxidative stress and mitochondrial dysfunction. J Alzheimer’s Dis 2015; 45: 933–946.

59. Dhanasekaran M, Holcomb LA, Hitt AR, et al. Neuroprotective effects of aqueous extracts of Azadirachta indica in a mouse model of stroke. J Neurochem 2011; 117: 171–178.

60. Ramanathan M, Sivakumar S, Anandivayakumar PR, et al. Neuroprotective evaluation of standardized extract of Centella asiatica in monosodium glutamate treated rats. Indian J Expim Biol 2007; 45: 425–431.

61. Gray NE, Harris CJ, Quinn JF, et al. Centella asiatica modulates antioxidant and mitochondrial pathways and improves cognitive function in mice. J Ethnopharmacol 2016; 180: 78–86.

62. Song D, Jiang X, Liu Y, et al. Asiaticoside attenuates cell growth inhibition and apoptosis induced by Abeta1–42 via inhibiting the TLR4/NF-kappaB signaling pathway in human brain microvascular endothelial cells. Front Pharmacol 2018; 9: 28.

63. Chatterjee TK, Chakraborty A, Pathak M, et al. Effects of plant extract Centella asiatica (Linn.) on cold restraint stress ulcer in rats. Indian J Expim Biol 1992; 30: 889–891.

64. Nasir MN, Abdullah J, Habash M, et al. Inhibitory effect of Asiatic acid on acetylcholinesterase, excitatory post synaptic potential and locomotor activity. Phytomedicine 2012; 19: 311–316.

65. Visweswari G, Prasad KS, Chetan PS, et al. Evaluation of the anticonvulsant effect of Centella asiatica (gotu kola) in pentyleneetrazol-induced seizures with respect to cholinergic neurotransmission. Epilepsy Behav 2010; 17: 332–335.

66. Awad R, Levac D, Cybulsk P, et al. Effects of traditionally used anxiolytic botanicals on enzymes of the gamma-aminobutyric acid (GABA) system. Can J Physiol Pharmacol 2007; 85: 933–942.

67. Lamichhane R, Kim SG, Poudel A, et al. Evaluation of in vitro and in vivo biological activities of Cheilanthes albomarginata Clarke. BMC Complement Altern Med 2014; 14: 342.

68. Viswanatha GL, Venkataranagav MV and Prasad NBL. Ameliorative potential of Colebrookea oppositifolia methanolic root extract against experimental models of epilepsy: Possible role of GABA mediated mechanism. Biomed Pharmacother 2017; 90: 455–465.

69. Mythri RB and Bharath MM. Curcumin: A potential neuroprotective agent in Parkinson’s disease. Curr Pharmaceut Des 2012; 18: 91–99.

70. Yu S, Wang X, He X, et al. Curcumin exerts anti-inflammatory and antioxidative properties in 1-methyl-4-phenylpyridinium ion (MPP(+))-stimulated mesencephalic astrocytes by interference with TLR4 and downstream signaling pathway. Cell Stress Chap 2016; 21: 697–705.

71. Wang XS, Zhang ZR, Zhang MM, et al. Neuroprotective properties of curcumin in toxin-base animal models of Parkinson’s disease: A systematic experiment literatures review. BMC Complement Altern Med 2017; 17: 412.

72. Mu JW and Guo RY. Dose-dependent effect of Curcuma longa for the treatment of Parkinson’s disease. Experim Ther Med 2017; 13: 1799–1805.

73. Ammon HPT and Wahl MA. Pharmacology of Curcuma longa. Planta Medica 1991; 57: 1–7.

74. Witkin JM and Li X. Curcumin, an active constituent of the ancient medicinal herb Curcuma longa L.: Some uses and the establishment and biological basis of medical efficacy. CNS Neurol Dis Drug Targets 2013; 12: 487–497.

75. Xie L, Li XK, Funeshima-Fuji N, et al. Amelioration of experimental autoimmune encephalomyelitis by curcumin treatment through inhibition of IL-17 production. Int Immunopharmacol 2009; 9: 575–581.

76. Yu SY, Gao R, Zhang L, et al. Curcumin ameliorates ethanol-induced memory deficits and enhanced brain nitric oxide synthase activity in mice. Prog Neuro-Psychopharmacol Biol Psych 2013; 44: 210–216.

77. Jiang J, Wang W, Sun YJ, et al. Neuroprotective effect of curcumin on focal cerebral ischemic rats by preventing blood-brain barrier damage. Eur J Pharmacol 2007; 561: 54–62.

78. Pyrazowski J, Piechal A, Blecharz-Klin K, et al. The influence of the long-term administration of Curcuma longa extract on learning and spatial memory as well as the concentration of brain neurotransmitters and level of plasma corticosterone in aged rats. Pharmacol Biochem Behav 2010; 95: 351–358.

79. Yu ZF, Kong LD and Chen Y. Antidepressant activity of aqueous extracts of Curcuma longa in mice. J Ethnopharmacol 2002; 83: 161–165.

80. Zhao X, Wang C, Zhang JF, et al. Chronic curcumin treatment normalizes depression-like behaviors in mice with mononeuropathy: Involvement of supraspinal serotoninergic system and GABAA receptor. Psychopharmacology 2014; 231: 2171–2187.
96. Verma SK, Jain V and Katewa SS. Blood pressure lowering, fibrinolysis enhancing and antioxidant activities of cardamom (Elettaria cardamomum). Indian J Biochem Biophys 2009; 46: 503–506.

97. Majdalawieh AF and Carr RI. In vitro investigation of the potential immunomodulatory and anticancer activities of black pepper (Piper nigrum) and cardamom (Elettaria cardamomum). J Med Food 2010; 13: 371–381.

98. Daoudi A, Arrab L and Abdel-Sattar E. Screening of immunomodulatory activity of total and protein extracts of some Moroccan medicinal plants. Toxicol Ind Health 2013; 29: 245–253.

99. Masoumi-Ardakani Y, Mahmoudvand H, Mirzaei A, et al. The effect of Elettaria cardamomum extract on anxiety-like behavior in a rat model of post-traumatic stress disorder. Biomed Pharmacother 2017; 87: 489–495.

100. Girish C, Raj V, Arya J, et al. Evidence for the involvement of the monoaminergic system, but not the opioid system in the antidepressant-like activity of ellagic acid in mice. Eur J Pharmacol 2012; 682: 118–125.

101. Tibballs J. Clinical effects and management of eucalyptus oil ingestion in infants and young children. Med J Australia 1995; 163: 177–180.

102. Patel S and Wiggins J. Eucalyptus oil poisoning. Arch Dis Child 1980; 55: 405–406.

103. Pandey BP, Thapa R and Upreti A. Chemical composition, antioxidant and antibacterial activities of essential oil and methanol extract of Artemisia vulgaris and Gaultheria fragrantissima collected from Nepal. Asian Pacific J Trop Med 2017; 10: 952–959.

104. Cong F, Joshi KR, Devkota HP, et al. Dhasingreoside: A new flavonoid from the stems and leaves of Gaultheria fragrantissima. Nat Prod Res 2015; 29: 1442–1448.

105. Guo S, Ge Y and Na Jom K. A review of phytochemical, pharmacological, and medicinal uses of the stem of Artemisia vulgaris L. Chem Cent J 2017; 11: 95.

106. Nade VS, Dwivedi S, Kawale LA, et al. Effect of Hibiscus rosa sinensis on reserpine-induced neurobehavioral and biochemical alterations in rats. Indian J Exp Biol 2009; 47: 559–563.

107. Begum Z and Younus I. Hibiscus rosa sinensis mediate anxiolytic effect via modulation of ionotropic GABA-A receptors; possible mechanism of action. Metab Brain Dis 2018; 33: 823–827.

108. Pichiah PB, Cho SH, Han SK, et al. Fermented barley supplementation modulates the expression of hypothalamic genes and reduces energy intake and weight gain in rats. J Med Food 2016; 19: 418–426.

109. Wu J, Tang C, Yao S, et al. Anti-inflammatory inositol derivatives from the whole plant of Inula cappa. J Nat Prod 2015; 78: 2322–2338.

110. Kalola J, Shah R, Patel A, et al. Anti-inflammatory and immunomodulatory activities of Inula cappa roots (Compositae). J Complement Integr Med 2017. DOI: 10.1177/1477550X16670900. xml.
111. Cho YC, Kim BR, Le HTT, et al. Anti-inflammatory effects on murine macrophages of ethanol extracts of *Lycium japonicum* spores via inhibition of NF-kappaB and p38. *Mol Med Rep* 2017; 16: 4362–4370.

112. Lin KH, Yang YY, Yang CM, et al. Antioxidant activity of herbaceous plant extracts protect against hydrogen peroxide-induced DNA damage in human lymphocytes. *BMC Res Notes* 2013; 6: 490.

113. Tian W, Akanda MR, Islam A, et al. The anti-stress effect of *Mentha arvensis* in immobilized rats. *Int J Mol Sci* 2018; 19: 355.

114. Verma SM, Arora H and Dubey R. Anti-inflammatory and sedative – hypnotic activity of the methanolic extract of the leaves of *Mentha arvensis*. *Anc Sci Life* 2003; 23: 95–99.

115. Oinonen PP, Jokela JK, Hatakka AI, et al. Linarin, a selective acetylcholinesterase inhibitor from *Mentha arvensis*. *Fitoterapia* 2006; 77: 429–434.

116. Feng X, Wang X, Liu Y, et al. Linarin inhibits the acetylcholinesterase activity *in vitro* and *ex vivo*. *Iran J Pharm Res* 2015; 14: 949–954.

117. Rawat S, Jugran A, Giri L, et al. Assessment of antioxidant properties in fruits of *Myrica esculenta*: A popular wild edible species in Indian Himalayan region. *Evid-Based Complement Alt Med* 2011; 2011: 512787.

118. Agnihotri S, Wakode S and Ali M. Essential oil of *Myrica esculenta* Buch. Ham.: Composition, antimicrobial and topical anti-inflammatory activities. *Nat Prod Res* 2012; 26: 2266–2269.

119. Michael JS, Kalirajan A, Padmalatha C, et al. *In vitro* antioxidant evaluation and total phenolics of methanolic leaf extracts of *Nyctanthes arbor-tristis* L. *Chinese J Nat Med* 2013; 11: 484–487.

120. Agrawal J and Pal A. *Nyctanthes arbor-tristis* Linn – a critical ethnopharmacological review. *J Ethnopharmacol* 2013; 146: 645–658.

121. Puri A, Saxena R, Saxena RP, et al. Immunostimulant activity of *Nyctanthes arbor-tristis* L. *J Ethnopharmacol* 1994; 42: 31–37.

122. Bharshiv CK, Garg SK and Bhatia AK. Immunomodulatory activity of aqueous extract of *Nyctanthes arbor-tristis* flowers with particular reference to splenocytes proliferation and cytokines induction. *Indian J Pharmaco* 2016; 48: 412–417.

123. Kakotii BB, Pradhan P, Borah S, et al. Analgesic and anti-inflammatory activities of the methanolic stem bark extract of *Nyctanthes arbor-tristis* linn. *BioMed Res Int* 2013; 2013: 826295.

124. Saxena RS, Gupta B and Lata S. Tranquilizing, antihistaminic and purgative activity of *Nyctanthes arbor-tristis* leaf extract. *J Ethnopharmacol* 2002; 81: 321–325.

125. Balanahru S and Nagarajan B. Intervention of Adriamycin induced free radical damage. *Biochem Int* 1992; 28: 735–744.

126. Archana R and Namasivayam A. Effect of *Ocimum sanctum* on noise induced changes in neuropeh functions. *J Ethnopharmacol* 2000; 73: 81–85.

127. Sakina MR, Dandiyia PC, Hamdard ME, et al. Preliminary psychopharmacological evaluation of *Ocimum sanctum* leaf extract. *J Ethnopharmacol* 1990; 28: 143–150.

128. Sembulingam K, Sembulingam P and Namasivayam A. Effect of *Ocimum sanctum* linn on the changes in central cholinergic system induced by acute noise stress. *J Ethnopharmacol* 2005; 96: 477–482.

129. Jothie Richard E, Illuri R, Bethapudi B, et al. Anti-stress activity of *Ocimum sanctum*: Possible effects on hypothalamic-pituitary-adrenal axis. *Phytother Res* 2016; 30: 805–814.

130. Pal M, Bhardwaj A, Manickam M, et al. Protective efficacy of the caterpillar mushroom, *Ophiocordyceps sinensis* (Ascomycetes), from India in neuronal hippocampal cells against hypoxia. *Int J Med Mushrooms* 2015; 17: 829–840.

131. Zhu JS, Halpern GM and Jones K. The scientific rediscovery of an ancient Chinese herbal medicine: *Cordyceps sinensis* part I. *J Altern Complement Med* 1998; 4: 289–303.

132. Zhu JS, Halpern GM and Jones K. The scientific rediscovery of a precious ancient Chinese herbal regimen: *Cordyceps sinensis*: Part II. *J Altern Complement Med* 1998; 4: 429–457.

133. D’Souza JJ, D’Souza P P, Fazal F, et al. Anti-diabetic effects of the Indian indigenous fruit *Emblica officinalis* Gaertn: Active constituents and modes of action. *Food Funct* 2014; 5: 635–644.

134. Yang B and Liu P. Composition and biological activities of hydrolyzable tannins of fruits of *Phyllanthus emblica*. *J Agric Food Chem* 2014; 62: 529–541.

135. Variya BC, Bakrania AK and Patel SS. *Emblica officinalis* (Amla): A review for its phytochemistry, ethnomedicinal uses and medicinal potentials with respect to molecular mechanisms. *Pharmacol Res* 2016; 111: 180–200.

136. Golechha M, Sarangal V, Ojha S, et al. Anti-inflammatory effect of *Emblica officinalis* in rodent models of acute and chronic inflammation: Involvement of possible mechanisms. *Int J Inflamm* 2014; 2014: 178408.

137. Golechha M, Bhatia J, Ojha S, et al. Hydroalcoholic extract of *Emblica officinalis* protects against kainic acid-induced status epilepticus in rats: Evidence for an antioxidant, anti-inflammatory, and neuroprotective intervention. *Pharm Biol* 2011; 49: 1128–1136.

138. Vasudevan M and Parle M. Memory enhancing activity of Anwala churna (*Emblica officinalis* Gaertn.): An Ayurvedic preparation. *Physiol Behav* 2007; 91: 46–54.

139. Zhang K, Ge Z, Da Y, et al. Plumbagin suppresses dendritic cell functions and alleviates experimental autoimmune encephalomyelitis. *J Neuroimmunol* 2014; 273: 42–52.

140. Jia Y, Jing J, Bai Y, et al. Amelioration of experimental autoimmune encephalomyelitis by plumbagin through down-regulation of JAK-STAT and NF-kappaB signaling pathways. *PloS ONE* 2011; 6: e27006.

141. Bopaiah CP and Pradhan N. Central nervous system stimulatory action from the root extract of *Plumbago zeylanica* in rats. *Phytother Res* 2001; 15: 153–156.
142. George BP, Parimelazhagan T, Kumar YT, et al. Antitumor and wound healing properties of Rubus ellipticus Smith. *J Acupunct Merid Studies* 2015; 8: 134–141.

143. Sharma US and Kumar A. In vitro antioxidant activity of Rubus ellipticus fruits. *J Adv Pharm Technol Res* 2011; 2: 47–50.

144. Kumar V and Van Staden J. A review of Swertia chirayita (Gentianaceae) as a traditional medicinal plant. *Front Pharmacol* 2015; 6: 308.

145. Li J, Zhao YL, Huang HY, et al. Phytochemistry and pharmacological activities of the genus Swertia (Gentianaceae): A review. *Am J Chinese Med* 2017; 45: 667–736.

146. Banerjee S, Sur TK, Mandal S, et al. Assessment of the anti-inflammatory effects of Swertia chirayata in acute and chronic experimental models in male albino rats *Indian J Pharmacol* 2000; 32: 21–24.

147. Das CS, Bhadra S, Roy S, et al. Analgesic and anti-inflammatory activities of ethanolic root extract of Swertia chirayita (Gentianaceae). *Jordan J Biol Sci* 2012; 5: 31–36.

148. Sukprasansap M, Chanvorachote P and Tencomnao T. Anti-inflammatory effects of corn silk maysin via inhibition of H$_2$O$_2$-induced apoptotic cell death in SK-N-MC cells. *Life Sci* 2014; 109: 57–64.

149. Khan A, Nazar H, Sabir SM, et al. Antioxidant activity and inhibitory effect of some commonly used medicinal plants against lipid per-oxidation in mice brain. *African J Trad Complement Alt Med* 2014; 11: 83–90.

150. Park JH, Joo HS, Yoo KY, et al. Extract from *Terminalia chebula* seeds protect against experimental ischemic neuronal damage via maintaining SODs and BDNF levels. *Neurochem Res* 2011; 36: 2043–2050.

151. Huebner FR, Lieberman KW, Rubino RP, et al. Demonstration of high opioid-like activity in isolated peptides from wheat gluten hydrolysates. *Peptides* 1984; 5: 1139–1147.

152. Pascual J and Leno C. A woman with daily headaches. *J Headache Pain* 2005; 6: 91–92.

153. Ummaheswari M, Asokkumar K, Ummageswari N, et al. Protective effect of the leaves of *Vitex negundo* against ethanol-induced cerebral oxidative stress in rats. *Tanzania J Health Res* 2012; 14: 21–28.

154. Zheng CJ, Li HQ, Ren SC, et al. Phytochemical and pharmacological profile of *Vitex negundo*. *Phytother Res* 2015; 29: 633–647.

155. Chan EWC, Wong SK and Chan HT. Castacin from *Vitex* species: A short review on its antiarthritis and anti-inflammatory properties. *J Integrat Med* 2018; 16: 147–152.

156. Wazir A, Mehjabeen, Jahan N, et al. Antibacterial, antifungal and antioxidant activities of some medicinal plants. *Pak J Pharm Sci* 2014; 27: 2145–2152.

157. Ahmed S and Shakeel F. Voltammetric determination of antioxidant character in *Berberis lydiaum* Royel, *Zanthoxylum armatum* and *Morus nigra* Linn plants. *Pak J Pharm Sci* 2012; 25: 501–507.

158. Nooreen Z, Kumar A, Bawankule DU, et al. New chemical constituents from the fruits of *Zanthoxylum armatum* and its in vitro anti-inflammatory profile. *Nat Prod Res* 2017: 1–8.

159. Guo T, Deng YX, Xie H, et al. Antinociceptive and anti-inflammatory activities of ethyl acetate fraction from *Zanthoxylum armatum* in mice. *Fitoterapia* 2011; 82: 347–351.

160. Choi DJ, Kim SL, Choi JW, et al. Neuroprotective effects of corn silk maysin via inhibition of H$_2$O$_2$-induced apoptotic cell death in SK-N-MC cells. *Life Sci* 2014; 109: 57–64.

161. Maghbooli M, Golipour F, Moghimi Esfandabadi A, et al. Comparison between the efficacy of ginger and sumatriptan in the ablative treatment of the common migraine. *Phytother Res* 2014; 28: 412–415.

162. Semwal RB, Semwal DK, Combrinck S, et al. Gingerols and shogaols: Important nutraceutical principles from ginger. *Phytochemistry* 2015; 117: 554–568.

163. Otunola GA, Oloyede OB, Oladiji AT, et al. Selected spices and their combination modulate hypercholesterolemia-induced oxidative stress in experimental rats. *Biol Res* 2014; 47: 5.

164. Ho SC, Chang KS and Lin CC. Anti-neuroinflammatory capacity of fresh ginger is attributed mainly to 10-gingerol. *Food Chem* 2013; 141: 3183–3191.

165. Deng XY, Xue JS, Li HY, et al. Geraniol produces antidepressant-like effects in a chronic unpredictable mild stress mice model. *Physiol Behav* 2015; 152: 264–271.

166. Grzanna R, Panh P, Polotsky A, et al. Ginger extract inhibits beta-amyloid peptide-induced cytokine and chemokine expression in cultured THP-1 monocytes. *J Alt Complement Med* 2004; 10: 1009–1013.

167. Jafarzadeh A, Arabi Z, Ahangar-Parvin R, et al. Ginger extract modulates the expression of chemokines CCL20 and CCL22 and their receptors (CCR6 and CCR4) in the central nervous system of mice with experimental autoimmune encephalomyelitis. *Drug Res* 2017; 67: 632–639.

168. Park G, Kim HG, Ju MS, et al. 6-Shogaol, an active compound of ginger, protects dopaminergic neurons in Parkinson’s disease models via anti-neuroinflammation. *Acta Pharmacol Sinica* 2013; 34: 1131–1139.

169. Lim S, Moon M, Oh H, et al. Ginger improves cognitive function via NGF-induced ERK/CREB activation in the hippocampus of the mouse. *J Nutr Biochem* 2014; 25: 1058–1065.

170. Qian QH, Yue W, Chen WH, et al. Effect of gingerol on substance P and NK1 receptor expression in a vomiting model of mink. *Chinese Med J* 2010; 123: 478–484.

171. Gauthier ML, Beaudry F and Vachon P. Intrathecal [6]-gingerol administration alleviates peripherally induced neuropathic pain in male Sprague-Dawley rats. *Phytother Res* 2013; 27: 1251–1254.

172. Oboh G, Ademiluyi AO and Akinyemi AJ. Inhibition of acetylcholinesterase activities and some pro-oxidant induced lipid peroxidation in rat brain by two varieties
of ginger (Zingiber officinale). *Experim Toxicol Pathol* 2012; 64: 315–319.

173. Xue J, Li H, Deng X, et al. L-Mentholone confers antidepressant-like effects in an unpredictable chronic mild stress mouse model via NLRP3 inflammasome-mediated inflammatory cytokines and central neurotransmitters. *Pharmacol Biochem Behav* 2015; 134: 42–48.

174. Chuchawankul S, Khorana N and Poovorawan Y. Piperine inhibits cytokine production by human peripheral blood mononuclear cells. *Genet Mol Res* 2012; 11: 617–627.

175. Ahmad MP, Hussain A, Siddiqui HH, et al. Effect of methanolic extract of *Asparagus racemosus* Willd. on lipopolysaccharide induced-oxidative stress in rats. *Pakistan J Pharmaceut Sci* 2015; 28: 509–513.

176. Singh GK, Garabadu D, Muruganandam AV, et al. Antidepressant activity of *Asparagus racemosus* in rodent models. *Pharmacol Biochem Behav* 2009; 91: 283–290.

177. Krishnamurthy S, Garabadu D and Reddy NR. *Asparagus racemosus* modulates the hypothalamic-pituitary-adrenal axis and brain monoaminergic systems in rats. *Nutr Neurosci* 2013; 16: 255–261.

178. Meena J, Ojha R, Muruganandam AV, et al. *Asparagus racemosus* competitively inhibits in vitro the acetylcholine and monoamine metabolizing enzymes. *Neurosci Lett* 2011; 503: 6–9.

179. Ojha R, Sahu AN, Muruganandam AV, et al. *Asparagus racemosus* enhances memory and protects against amnesia in rodent models. *Brain Cognit* 2010; 74: 1–9.

180. Fatima N, Rahman MM, Khan MA, et al. A review on *Ipomoea carnea* Choisy. Pharmacology, toxicology and phytochemistry. *J Complem Integr Med* 2014; 11: 55–62.

181. Press JR, Shrestha KK and Sutton DA. Annotated checklist of the flowering plants of Nepal http://www.efloras.org/flora_page.aspx?flora_id=110 (accessed 3 April 2018).

182. Baba Ramdev Health Products. Banphool Oil, http://www.ramdevproducts.com/banphool-oil.htm (2018, April 2018).

183. Malik J, Karan M and Vasisht K. Nootropic, anxiolytic and CNS-depressant studies on different plant sources of Shankhpushpi. *Pharm Biol* 2011; 49: 1234–1242.

184. Malik J, Choudhary S and Kumar P. Protective effect of *Convolvulus pluricaulis* standardized extract and its fractions against 3-nitropipionic acid-induced neurotoxicity in rats. *Pharm Biol* 2015; 53: 1448–1457.

185. Ojha R, Sahu AN, Muruganandam AV, et al. Antidepressant activity of *Asparagus racemosus* attenuates scopolamine-induced increased tau and amyloid precursor protein (AbetaPP) expression in rat brain. *Indian J Pharmacol* 2012; 44: 593–598.

186. Malik J, Karan M and Vasisht K. Nootropic, anxiolytic and CNS-depressant studies on different plant sources of Shankhpushpi. *Pharm Biol* 2011; 49: 1234–1242.

187. Bihaqi SW, Sharma M, Singh AP, et al. Neuroprotective role of *Convolvulus pluricaulis* on aluminium induced neurotoxicity in rat brain. *J Ethnopharmacol* 2009; 124: 409–415.

188. Malik J, Choudhary S and Kumar P. Protective effect of *Convolvulus pluricaulis* standardized extract and its fractions against 3-nitropipionic acid-induced neurotoxicity in rats. *Pharm Biol* 2015; 53: 1448–1457.

189. Malik J, Karan M and Vasisht K. Nootropic, anxiolytic and CNS-depressant studies on different plant sources of Shankhpushpi. *Pharm Biol* 2011; 49: 1234–1242.

190. Bihaqi SW, Sharma M, Singh AP, et al. Neuroprotective role of *Convolvulus pluricaulis* on aluminium induced neurotoxicity in rat brain. *J Ethnopharmacol* 2009; 124: 409–415.

191. Flowers of India. Kewda, http://www.flowersofindia.net/catalog/slides/Kewda.html (2018, accessed 28 May 2018).

192. Rajeswari J, Kesavan K and Jayakar B. Phytochemical and pharmacological evaluation of prop roots of *Pandanus fascicularis* Lam. *Asian Pac J Trop Med* 2011; 4: 649–653.

193. Okugawa H, Ueda R, Matsumoto K, et al. Effect of alpha-santalol and beta-santalol from sandalwood on the central nervous system in mice. *Phytomedicine* 1995; 2: 119–126.

194. d’Avila Farias M, Oliveira PS, Dutra FS, et al. Eugenol derivatives as potential anti-oxidants: Is phenolic hydroxyl necessary to obtain an effect? *J Pharm Pharmacol* 2014; 66: 733–746.

195. Halder S, Mehta AK, Kar R, et al. Clove oil reverses learning and memory deficits in scopolamine-treated mice. *Planta Med* 2011; 77: 830–834.

196. Arjdmand A, Fathollahi Y, Sayyah M, et al. Eugenol depresses synaptic transmission but does not prevent the induction of long-term potentiation in the CA1 region of rat hippocampal slices. *Phytomedicine* 2006; 13: 146–151.

197. Liu BB, Luo L, Liu XL, et al. Essential oil of *Syzygium aromaticum* reverses the deficits of stress-induced behaviors and hippocampal p-ERK/p-CREB brain-derived neurotrophic factor expression. *Planta Med* 2015; 81: 185–192.

198. Jeon SJ, Kim E, Lee JS, et al. Maslinic acid ameliorates NMDA receptor blockade-induced schizophrenia-like behaviors in mice. *Neuropharmacology* 2017; 126: 168–178.

199. Hartnoll G, Moore D and Douek D. Near fatal ingestion of oil of cloves. *Arch Dis Child* 1993; 69: 392–393.

200. Lane BW, Ellenhorn MJ, Hulbert TV, et al. Clove oil ingestion in an infant. *Hum Exp Toxicol* 1991; 10: 291–294.

201. Soubir T. Antioxidant activities of some local bangladeshis fruits (Artocarpus heterophyllus, Annona squamosa, Terminalia bellirica, Syzygium samarangense, Averrhoa carambola and Olea europaea). *Sheng Wu Gong Cheng Xue Bao* 2007; 23: 257–261.

202. Chalise JP, Acharya K, Gurung N, et al. Antioxidant activity and polyphenol content in edible wild fruits from Nepal. *Int J Food Sci Nutr* 2010; 61: 425–432.
203. Tanaka M, Kishimoto Y, Saita E, et al. *Terminalia bel-\lirica* extract inhibits low-density lipoprotein oxidation and macrophage inflammatory response in vitro. *Antioxidants* 2016; 5: 20.

204. Jayesh K, Helen LR, Vysakh A, et al. Ethyl acetate fraction of *Terminalia bellirica* (Gaertn.) Roxb. fruits inhibits proinflammatory mediators via down regulating nuclear factor-kappaB in LPS stimulated Raw 264.7 cells. *Biomed Pharmacother* 2017; 95: 1654–1660.

205. Dhingra D and Valecha R. Evaluation of antidepressant-like activity of aqueous and ethanolic extracts of *Terminalia bellirica* Roxb. fruits in mice. *Indian J Exp Biol* 2007; 45: 610–616.

206. Manandhar K, Risal A, Linde M, et al. The burden of headache disorders in Nepal: Estimates from a population-based survey. *J Headache Pain* 2015; 17: 3.

207. Kunwar RM, Mahat L, Acharya RP, et al. Medicinal plants, traditional medicine, markets and management in far-west Nepal. *J Ethnobiol Ethnomed* 2013; 9: 24.

208. Kristoffersen ES and Lundqvist C. Medication-overuse headache: A review. *J Pain Res* 2014; 7: 367–378.

209. Diener HC, Dodick D, Evers S, et al. Pathophysiology, prevention, and treatment of medication overuse headache. *Lancet Neurol* 2019; 18: 891–902.

210. Nepalese Ministry of Health and Population. *Nepal population report 2011*. Kathmandu: Government of Nepal, 2011, pp.1–186.

211. Risal A, Manandhar K, Steiner TJ, et al. Estimating prevalence and burden of major disorders of the brain in Nepal: Cultural, geographic, logistic and philosophical issues of methodology. *J Headache Pain* 2014; 15: 51.