Large transport critical currents in dense Fe- and Ni-clad MgB$_2$ superconducting tapes

HongLi Suo, Concetta Beneduce, Marc Dhallé, Nicolas Musolino, Jean-Yves Genoud, and René Flükiger.

Département de Physique de la Matière Condensée, Université de Genève, 24 Quai Ernest-Ansermet, CH-1211 Genève 4, Switzerland

We report on the preparation of dense monofilamentary MgB$_2$/Ni and MgB$_2$/Fe tapes with high critical current densities. In annealed MgB$_2$/Ni tapes, we obtained transport critical current densities as high as 2.3×10^5 A/cm2 at 4.2 K and 1.5 T, and for MgB$_2$/Fe tapes 10^4 A/cm2 at 4.2 K and 6.5 T. To the best of our knowledge, these are the highest transport j_c values at 4.2 K reported for MgB$_2$ based tapes so far. An extrapolation to zero field of the MgB$_2$/Fe data gives a critical current value of ~ 1 MA/cm2, corresponding to an critical current value well above 1000 A. The high j_c values obtained after annealing are a consequence of sintering densification and grain reconnection. Fe does not react with MgB$_2$ and is thus an excellent sheath material candidate for tapes with self-field j_c values at 4.2 K in excess of 1 MA/cm2.
The recent discovery of superconductivity in MgB$_2$ at 39 K1 has spurred a considerable volume of fundamental and applied research. High transport critical current densities (j_c) have been reported both in MgB$_2$ bulk samples$^2, 3, 4$ and in thin films$^5, 6$. Due to its relatively high transition temperature, weak-link free grain boundaries7 and low cost, this material is interesting for different applications, such as superconducting tapes. Canfield et al.8 were the first to report on MgB$_2$ wires with inductive self-field j_c values of 10^5 A/cm2 at 4.2 K. Several research groups have reported on MgB$_2$ wires or tapes using the Powder-In-Plate (PIT) method, either with$^9, 10, 11$ or without$^{12, 13}$ heat treatment after deformation, with transport j_c values at 4.2 K and in zero external field in the range of 10^4-10^5 A/cm2. Different sheath materials have been used. Toughness and chemical compatibility with MgB$_2$ are reported to be crucial for fabricating long MgB$_2$ tapes with high critical currents$^{10, 12}$. In this work, we report on high j_c PIT tapes using Ni and Fe sheaths. We compare microstructure, superconducting transition and j_c between the as-rolled and the recrystallized tapes, and find a significant improvement of the j_c values after heat treatment.

The MgB$_2$ tapes were fabricated by sealing commercial 98% pure MgB$_2$ powder (Alfa-Aesar) into Ni or Fe tubes under an inert Ar atmosphere. The Ni tubes had an outer diameter (OD) of 12.7 mm and an inner diameter (ID) of 7 mm, while the Fe tubes had OD = 8 mm, ID = 5 mm. Both ends of the tubes were sealed with lead pieces. After drawing to a diameter of 2 mm, the wires were cold-rolled to a thickness of 230 μm for MgB$_2$/Ni and 375 μm for MgB$_2$/Fe. The superconductor filling factors were 20% for the MgB$_2$/Ni tapes and 28% for the MgB$_2$/Fe tapes. Fig. 1.a and b show scanning electron microscopy (SEM) micrographs of polished cross-sections of the as-rolled tapes, indicating a tightly packed powder with grain size of 0.5-2 μm, markedly smaller than the initial grain size due to deformation-induced grain refinement. These tapes were annealed for 0.5 h in a pure Ar atmosphere at 950°C and 980°C for the MgB$_2$/Fe and MgB$_2$/Ni tapes respectively. Mass losses were less than 0.2%. Recrystallization and sintering strongly improved the intergranular connectivity, yielding denser
filaments as can be seen in Fig. 1.c and d. We estimated the filament density after annealing to be close to the theoretical density of 2.62 g/cm3. Sintering caused the core to shrink and the filling factors to decrease from 28% to 26% in the MgB$_2$/Fe. The filling factor in MgB$_2$/Ni tapes showed an even stronger decrease from 20% to 14%, due to the formation of a \sim15µm thick reaction layer consisting of Mg$_2$Ni between the sheath and the filament (Fig. 1.e). This reaction consumes some of the Mg and thus increases the porosity. No reaction was found in the MgB$_2$/Fe tape (Fig. 1.f), and X-ray measurements of its crushed core revealed \sim5% of MgO as the only impurity phase.

Figure 2 shows A.C. and D.C. susceptibility data for the MgB$_2$ cores before and after annealing, and for the starting powder. As-rolled and annealed tapes showed an onset of the superconducting transition at lower temperature (around 37 K) than the starting powder (38 K). This lowering of T_c may be explained by deformation induced stresses, which are not completely released after annealing, as confirmed by X-ray pattern refinement. Note that in-situ measurements of the pressure dependence of T_c have also revealed a decrease of T_c upon compressive strain (0.8 - 2 K/GPa$^{15, 16}$, being only partially recovered when the pressure is released17. Moreover, the deformation dramatically affects the grain connectivity as shown by the marked weak link behavior of the as-rolled tapes, indicated by a dissipative peak in χ'', and confirmed by SQUID magnetometry18. After annealing the connectivity is recovered and the tapes present a unique and sharp superconducting transition.

Transport critical currents were measured on 45 mm long tapes pieces in a He bath at 4.2 K. The voltage contacts were 10 mm apart, and the voltage criterion used was 1 µV/cm. The magnetic field was parallel to the tapes surface and perpendicular to the current direction. The field dependence of j_c in the MgB$_2$/Ni and MgB$_2$/Fe tapes, both before and after the annealing, is shown in figure 3. For comparison, the transport j_c for a hot forged bulk MgB$_2$ sample4 is also shown. Lack of thermal stabilization causes sample quenching above a given current density in most samples. The current, at
which quenching occurs, was considerably higher for the MgB$_2$/Ni tapes than for the MgB$_2$/Fe tapes, presumably due to the smaller core thickness: the amount of heat generated in a bulk dissipation process is proportional to the core volume, whereas the cooling efficiency is proportional to the core surface. To fully exploit the potential of this material, it will be essential to use thinner cores or multi-filamentary tapes13,19.

The as-rolled MgB$_2$/Ni tape had a self-field transport j_c values of 6.3×10^4 A/cm2 at 4.2K. In a field of 2 T, its j_c value was \sim 30% higher than for the as-rolled Fe-sheathed tapes. As reported by Grasso et al.12, we found an inverse correlation between the filling factor and j_c,20 partially explaining the difference in j_c values for the as-rolled tapes. Although the sheath material and the filling factor are important parameters to obtain good j_c values for as-rolled tapes, we only expect significant improvements of j_c in heat treated samples.

During annealing the core material recrystallized and sintered, thus strongly improving connectivity. This lead to a significant enhancement of the transport j_c values, which increased by more than a factor of 10, reaching 2.3×10^5 A/cm2 in 1.5 T for MgB$_2$/Ni ($I_c = 300$ A) and $\sim 10^4$ A/cm2 in 6.5 T for MgB$_2$/Fe. To the best of our knowledge, these values represent the highest transport j_c so far obtained in tapes of this compound at 4.2 K. Comparison with the high-pressure sintered bulk sample, whose transport j_c is essentially equal to the intragranular j_c^4, shows that also in our annealed tapes j_c is only marginally affected by connectivity issues. Additional inductive measurements revealed that the temperature dependence of j_c in the annealed tapes was very similar to that of the bulk sample20. The different transport j_c values in the annealed MgB$_2$/Ni and MgB$_2$/Fe tapes were mainly due to chemical reasons. The reaction between Ni and MgB$_2$ disturbed the stoichiometry of the core, increased the porosity, and lowered the transport j_c. Extrapolating the field dependence of transport j_c in Fe-sheathed tapes yielded self-field values as high as 1 MA/cm2. The same high value of j_c was obtained from inductive measurements performed in a vibrating sample magnetometry20. Such a high j_c corresponds
to critical current well above 1000A, which can be only measured once the thermal stability issue is resolved by using, for example, thinner filaments.

In conclusion, we prepared highly dense superconducting MgB$_2$ tapes with large transport j$_c$ using Ni and Fe sheaths. Annealing increased core density and sharpened the superconducting transition thus raising j$_c$ by more than a factor of ~ 10. Annealed MgB$_2$/Ni tapes yielded j$_c$ values up to 2.3×10^5 A/cm2 at 4.2 K in a magnetic field of 1.5 T. The j$_c$ values in MgB$_2$/Fe tapes were higher, up to 10^4 A/cm2 at 4.2 K and 6.5 T, the estimated self-field value of j$_c$ at 4.2 K being close to 10^6 A/cm2. The high hardness and chemical compatibility of Fe make it a suitable sheath material for fabricating long-length MgB$_2$ tapes with a realistic potential for high-current applications.

We thank Pierre Toulemonde, Enrico Giannini, and Eric Walker for useful discussions, XiaoDong Su for helping in the PIT tapes preparation, and Robert Janiec for his help with the transport measurements.
Figure captions

Figure 1: SEM microstructures of the MgB$_2$ tapes: (a) MgB$_2$ core in the as-rolled MgB$_2$/Ni tape; (b) MgB$_2$ core in the as-rolled MgB$_2$/Fe tape; (c) MgB$_2$/Ni core after annealing; (d) MgB$_2$/Fe core after annealing; (e) reaction layer in annealed MgB$_2$/Ni tape; (f) annealed MgB$_2$/Fe tape, showing no reaction layer.

Figure 2: A.C. susceptibility (0.1 Oe, 8 KHz) and D.C. SQUID susceptibility (20 Oe) as a function of temperature for both as-rolled and annealed MgB$_2$ tapes. [(1): MgB$_2$/Fe annealed; (2): MgB$_2$/Ni annealed; (3) MgB$_2$/Fe as-rolled; (4): MgB$_2$/Ni as-rolled; (5) starting powder].

Figure 3: Field dependence of the transport j_c values at $T = 4.2$ K in both as-rolled and annealed MgB$_2$ tapes. For comparison, the transport j_c curve of a dense hot forged bulk sample is shown4.

Fig. 1
Fig. 2
Tapes

\[J_c \propto H \]

Fig. 3
References

1. J. Nagamatsu, N. Nakagawa, T. Muranka, Y. Zenitanim, and J. Akimitsu, Nature, 410, 63 (2001).
2. M. Kambara, N.H. Babu, E.S. Sadki, J.R. Cooper, H. Minami, D.A. Cardwell, A.M. Campbell, and I.H. Inoue, Supercond. Sci. Technol. 14, L5 (2001).
3. Y. Takano, H. Takeya, H. Fujii, H. Kumakura, T. Hatano, and K. Togano, Appl. Phys. Lett. 78, 2914 (2001).
4. M. Dhallé, P. Toulemonde, C. Beneduce, N. Musolino, M. Decroux, and R. Flükiger, accepted for publication in Physica C, cond-mat/0104395
5. C.B. Eom, M.K. Lee, J.H. Choi, L. Belenky, X. Song, L.D. Cooley, M.T. Naus, S. Patnaik, J. Jiang, M. Rikel, A. Polyanskii, A. Gurevich, X.Y. Cai, S.D. Bu, S.E. Babcock, E.E. Hellstrom, D.C. Larbalestier, N. Rogado, K.A. Regan, M.A. Hayward, T. He, J.S. Slusky, K. Inumaru, M.K. Haas, and R.J. Cava, Nature 411, 558 (2001).
6. M. Paranthaman, C. Cantoni, H. Y. Zhai, H. M. Christen, T. Aytug, S. Sathyamurthy, E. D. Specht, J. R. Thompson, D. H. Lowndes, H. R. Kerchner, and D. K. Christen, Appl. Phys. Lett. 78, 3669 (2001)
7. D.C. Larbalestier, L. D. Cooley, M. O. Rikel, A. A. Polyanskii, J. Jiang, S. Patnaik, X. Y. Cai, D.M. Feldmann, A. Gurevich, A. A. Squitieri, M. T. Naus, C. B. Eom, E. E. Hellstrom, R. J. Cava, K. A. Regan, N. Rogado, M. A. Hayward, T. He, J. S. Slusky, P. Khalifah, K. Inumaru, and M. Haas, Nature, 410, 186 (2001).
8. P.C. Canfield, D.K. Finnemore, S.L. Budko, J.E. Ostenson, G. Lapertot, C.E. Cunningham, and C. Petrovic, Phys. Rev. Lett. 86, 2423 (2001).
9. B. A. Glowacki, M. Majoros, M. Vickers, J. E. Evetts, Y. Shi, and I. Mcdougall, Supercond. Sci. Technol. 14, 193 (2001).
10. S. Jin, H. Mavoori, C. Bower, and R. B. van Dover, Nature 411, 563 (2001).

11. S. Soltanian, X.L. Wang, I. Kusevic, E. Babic, A.H. Li, H.K. Liu, E.W. Collings, and S.X. Dou, cond-mat/0105152 (unpublished).

12. G. Grasso, A. Malagoli, C. Ferdeghini, S. Roncallo, V. Braccini, M. R. Cimberle, and A. S. Siri, cond-mat/0103563 (unpublished).

13. H. Kumakura, A. Matsumoto, H. Fujii, and K. Togano, cond-mat/0106002 (unpublished).

14. M.E. Jones and R.E. Marsh, J. Amer. Chem. Soc. 76, 1434 (1954).

15. M. Monteverde, M. Núñez-Regueiro, N. Rogado, K.A. Regan, M.A. Hayward, T. He, S.M. Loureiro, and R.J. Cava, Science 292, 75 (2001).

16. V.G. Tissen, M.V. Nefedova, N.N. Kolesnikov and M.P. Kulakov, cond-mat/0105475 (unpublished).

17. S.I. Schlachter, W.H. Fietz, K. Grube, and W. Goldacker, presented at SCENET workshop on High-current Superconductors for Practical Applications, Alpbach, Austria, June 8-10, 2001.

18. We note that the annealed MgB$_2$/Fe tape showed a small paramagnetic Meissner effect. The same behavior was also measured in Nb samples with strong pinning, P. Kostíc, A.P. Paulikas, U. Welp, V. R. Todt, C. Gu, U. Geiser, J. M. Williams, K.D. Carlson, and R.A. Klemm, Phys. Rev. B 53, 791 (1996).

19. C.F. Liu, S.J. Du, G. Yan, Y. Feng, X. Wu, J.R. Wang, X.H. Liu, P.X. Zhang, X.Z. Lu, L. Zhou, L.Z. Cao, K.Q. Ruan, C.Y. Wang, X.G. Li, G.E. Zhou, and Y.H. Zhang, cond-mat/0106061 (unpublished).

20. C. Beneduce, H.L. Suo, M. Dhallé, N. Musolino, and R. Flükiger, to be published.