Rider Optimization Algorithm implemented on the AVR Control System using MATLAB with FOPID

N B Mohamadwasel

Computer Techniques Engineering Dept./Al-Esraa University College/Baghdad-Iraq. noraldenbasil@gmail.com

Abstract. Considering the higher flexibility in tuning procedure and better control movement of the fractional-order proportional integral derivative (FOPID) controller over the traditional proportional integral derivative (PID) controller, this paper explores its application in the automatic voltage regulator system. FOPID contains five tuning boundaries when it appeared differently concerning three in the standard PID controller. The additional tuning handles in FOPID give extended control versatility and careful control action, in any case, their thought makes the tuning system progressively erratic and monotonous. Thusly, the knowledge of the Artificial Intelligent (AI) strategy called Rider Optimization Algorithm (ROA) is utilized to get a perfect mix of FOPID gains which further incited the perfect transient response and improved adequacy of the considered AVR system. To favor the introduction pervasiveness of the proposed approach its relating structure's dynamic response is differentiated and that of the other striking AI-based philosophies researched in progressing composing. Besides, the quality examination of the proposed AVR structure is finished by evaluating its pole/zero and bode maps. Finally, the intensity of the proposed overhauled AVR system against the structure's boundary assortment is evaluated by moving the time constants of all the four pieces of AVR: amplifier, exciter, generator, and sensor) from - 50 to +50% self-governing.

1. Introduction

One of the central endeavors of an electric power system is to keep up a consistent and steady size of the adaptable voltage. The assortment in the elegant voltage can hurt the related electrical machines or may spoil their presentation. Additionally, the dynamic and the responsive power stream, and in this manner the power adversity similarly depends upon the degree of the voltage. Thusly, a little deviation in voltage can cause a broadly colossal assortment in the open power stream. If the deviation is more than beyond what many would consider possible (±5% of assessed voltage), it may cause a monster power hardship which in this way realizes the loss of the economy. To evade the communicated issues, the adaptable voltage is kept up reliable using different strategies at the age, transmission, and assignment periods of the power structure. This investigation work focuses just on the rule of the structure's voltage at the age side which is usually rehearsed by using an Automatic Voltage Regulator (AVR) in ordinary facilitated generator-based power systems. An AVR is used to thusly control the voltage level of a synchronous generator under each working condition. A general structure of the voltage control of a planned generator using an AVR as showed up in Fig. 1. As showed up in Fig. 1, the controller creates a bumble signal by differentiating the generator's yield terminal voltage and the reference
voltage. According to the bumble signal, the field excitation of the alternator is moved to keep up the consistent terminal voltage of the alternator consequently. Because of the high inductance of the generator's field winding and endless weight switchings, it is essentially hard to achieve the perfect movement of the AVR system. By and large, the customary PID controller is used to redesign the dynamic execution and adequacy of AVR as a result of its capacity, direct control, and straightforward utilization [1]. Regardless, when appeared differently concerning the FOPID, the PID controller has inferior execution and tuning versatility [2]. Since the FOPID contains two extra controlling handles lambda and Mu when stood out from the normal PID controller, as such it allows the customer to settle on continuously better control movement. Notwithstanding the referenced inclinations and better execution of FOPID over its customary accomplice, its tuning methodology is about progressively awesome what's increasing, monotonous due to two additional tuning boundaries. It is basic to observe that, a perfect mix of these boundaries (KP; KI; KD; lambda and Mu) ensures stable action.

Likewise, the proper transient reaction of the considered FOPID based AVR framework. Likewise, if the referenced boundaries are not suitably-picked, the structure may watch a tremendous overshoot and settling time. In the most negative situation, it may drag the system into the flimsy area of its action. In this manner, the most ideal decision of the FOPID boundaries is a noteworthy issue that ought to be thought of while gathering its focal points else it may self-destruct the dynamic response and unaltering quality of the mistreated framework. With the progression in the field of fragile computational improvement systems, the perfect arrangement of the FOPID based AVR structure has been focused by a couple of examiners around the world. They have utilized a couple of present-day metaheuristic methods to achieve a progressed ground-breaking response and robustness using the perfect game plan of FOPID boundaries. Among such systems, the PSO is viewed as most extensively applied on account of its clear improvement instrument and basic utilization [3,4]. Regardless, as a result of defenselessness in PSO's boundary assurance, getting into the local least and low mixing rate in the iterative technique, the PSO has lost its substance in settling the progressed and complex improvement issues [5–7]. There are relatively few other prominent computations like fake honey bee settlement (ABC) [8], history-based advancement (BBO)[9], grasshopper enhancement calculation (GOA) [10] and salp swarm streamlining calculation (SSA) [13] have been used to get the perfect interesting response of AVR framework. In any case, all the referenced examination works have utilized the customary PID controllers which finally result in a hazardous response as affirmed by the consequences of the recurring pattern investigate work. Consequently, an AI-based perfect controller for the AVR framework is as yet getting took a gander at for the researchers in the back and forth movement look at zone. Subsequently, this assessment work evaluates and differentiates all the referenced examinations and the proposed ROA-FOPID based AVR structure to affirm the suitability of the proposed AVR plan. The proposed ROA based FOPID tuning technique has been found better than the referenced examination works in procuring the perfect estimations of FOPID boundaries and along these lines achieves the best exceptional response and trustworthiness among the analyzed AVR frameworks. This examination attempts to structure a solid and perfect AVR for the standard composed generator-based power system in a perfect world to direct the structure's voltage and to

![Figure 1. Structure of the AVR system](image)
overhaul its quality and force. The referenced targets are cultivated by utilizing a perfect course of action of FOPID boundaries got by using one of the savviest and present-day metaheuristic headway systems called the Rider improvement count. The fact of the matter is to redesign the transient response, quality, and relentlessness of the mulled over the structure. For the dynamic response appraisal, the rate overshoot (%Mp), settling time (ts), top time (tp) and rise time (tr) are taken as the key execution pointers. A comparative examination of the current assessment with two or three them starting late conveyed examinations have been made dependent on the recently referenced boundaries. The quality and energy extents of the proposed AVR setup are surveyed to show its reasonability in giving a fiery and stable movement of the structure under assortments in the different boundaries of the mulled over the framework. The close to the examination of the assessment results shows that the ROA performs better than its adversary headway procedures in finding the best FOPID boundaries for the AVR framework. The stray pieces of the fragmentary solicitation subordinate and its application in the FOPID controller have been discussed in Section 2. Section 3 is dedicated to the logical foundation of the AVR system. In Section 4 the stray pieces and the improving features of the proposed estimation close by its execution in the present smoothing out the issue are discussed in detail. In Section 5, the enumerating of chosen health work (FF) nearby its resistance is given. Results are detailly presented and assessed in Section 6 while Section 7 gives the completion of the force investigation work.

2. Background of fractional order derivatives and its application in fractional order PID controller

The beginning of the fragmentary examination is recorded back in September 1695 when Leibniz delineated the auxiliary of the optional solicitation [14]. Starting now and into the foreseeable future, a couple of mathematicians like Riemann, Letnikov, Grunwald, and Liouville have researched the usage of the partial differential conditions broadly [15]. A part of the huge wonders in acoustics, electromagnetics, electrochemistry, material science, and viscoelasticity is detailly explained by partial differential conditions [16,41,42]. Most starting late, the fragmentary differential conditions have been applied to offer the best responses for unequivocal issues in different fields of science. Barely any enormous application in this setting consolidates; examination of the directions for safe and tumor cells in immunogenetic tumor model [17], the structure of an epidemiological model for PC contaminations [18], showing off the convective extended adjusts [19], exhibiting the insecure movement of a gooey fluid [20], exhibiting the movement of a fluid through porous media [21] and hardly any settled logical arrangement issues can be found in [22–28]. The current examination researches another huge use of the partial differential conditions identified with an automated thinking based headway method to structure a perfect controller for the rule of the voltage in a conventional concurrent generator.

3. A mathematical model for the AVR control system

This region presents the display for the exchange capacity of the complete AVR framework in the space of recurrence. To encourage the numerical showing process the AVR framework, its huge sections, for instance, exciter, speaker, sensor, and generator are treated as immediate devices. The trade work models for these contraptions are addressed by a period steady and addition, as depicted in Equations from Eqs (3)– (4) [3].

The transfer function for Amplifier

$$G_A(S) = \frac{K_A}{1+ST_A}$$

(1)

The transfer function for Exciter

$$G_E(S) = \frac{K_E}{1+ST_E}$$

(2)

The transfer function for Generator

$$G_G(S) = \frac{K_G}{1+ST_G}$$

(3)

The transfer function for sensor

$$G_S(S) = \frac{K_S}{1+ST_S}$$

(4)
Where K_A, K_E, K_G, and K_S address the augmentations for the amplifier, exciter, generator, sensor independently while T_A, T_E, T_G, and T_S are the individual constants of time for comparable contraptions. The cutoff points for the estimations of the parameters are depicted in Table 1.

Parameter Name	Values
K_A Amplifier gain	10
K_E Exciter gain	1
K_G Generator gain	1
K_S Sensor gain	1
T_A Amplifier time constant	0.1
T_E Exciter time constant	0.4
T_G Generator time constant	1
T_S Sensor time constant	0.01

The transfer function model for the FOPID controller is represented by

$$G_{FOPID} = K_p s^{-\lambda} + K_0 s^\mu$$

(5)

By joining all exchange work models of individual segments in the AVR Control system, the total exchange work model can be shaped and is appeared in Fig. 2.

Figure 2. Transfer function model of the AVR system[4]
4. Methodologies

The ROA considers a few rider social events, who travel to a regular objective area for changing into the champ of the race, to portray its idea. The measure of parties considered is four, where the measure of riders in every social event is picked equivalently from undeniably the quantity of riders. The four get-togethers of riders are sidestepped rider, darling, overtaker, and assailant. Each get-together follows various systems to appear at the target[5][6]. For sure, even in any case the riders follow a predefined technique, the focal parts to appear at the objective are the correct riding of the vehicle by genuine treatment of the planning, fixing, resuscitating administrator, and brake[7]. For each time second, the riders change their conditions toward the objective by modifying these boundaries and follow the predefined methodology dependent on the current achievement rate, which is, then again, contrasting with the division between the situation of the riders and the objective[8][9]. The crucial rider is depicted as dependent upon the achievement rate at the current second. This methodology is proceeded, until the riders go into off time[10], which is the best time given for the riders to appear at the objective. After the off time, the rider, who is the essential rider, is named as the victor of the riding race[11]. By following this story thought, another progress estimation is being made, as delineated in Figure 4.

5. Results and simulations

The key point of view of using ROA in the AVR system is to get the best mix FOPID controller gets that achieve the perfect incredible response of the AVR structure. To accomplish the referenced task, the minimization of the estimation of FF has been finished by using ROA. The get together direct of the proposed method is depicted graphically in Fig. 6. It is exceptionally obvious from Fig. 6 that the size of the FF drops with the extending cycle number. Since the ITAE addresses the FF, its minimization system ensures the development of the perfect district. It is basic to observe that, for a smoothing out strategy the intermixing rate and the last constrained or supported estimation of the FF are two of the huge boundaries that ought to be thought of while evaluating its introduction. The past sum gives direct information about the speed of the get together while the last sum picks the idea of the plan accomplished by that count [7]. It will in
general be seen from Fig. 6 that the proposed improvement procedure achieves a not too bad plan
with a suitable blend rate and course of action quality. The proposed figuring has adequately
obtained the constrained worth for instance 0.006937 in just 38 patterns of the reenactment run
which shows its fruitful working framework. To break down the show of the proposed smoothing
out procedure, its blend quality is differentiated and that of the as of late used counts and is
presented in plain structure in Table 2, Table 3, Table 4 and Table 5. Since in any detached
improvement technique the idea of the course of action is given need over the gathering speed,
consequently, Table 2 just outlines the information about the past sum. It is beneficial to allude to
here that all the referred to investigate works in Table 2 consider the minimization of the
characterized FF. Subsequently, humbler the estimation of the FF, the more essential it would be
the course of action quality. It is obvious from Table 2 and Fig. 5, that the proposed upgrade
method outmaneuvers its opponent counts in getting an insignificant estimation of the FF and
hereafter gives the perfect interesting response to the thought about the framework.

Figure 5. Proposed ROA on FOPID tuning for AVR system[6]
Figure 6. JOA convergence curve

Table 2. The Overall Convergence quality comparison with AVR Tuning

Parameters	DE-PID [8]	PSO-PID [8]	ABC-PID [8]	GOA-PID [9]	BBO-PID [11]	SSA–POPID [13]	JOA–POPID [43]	ROA–POPID [Proposed]
Minimized value of FF	2.235×10^-2	7.172×10^-3	1.803×10^-2	6.332×10^-3	7.773×10^-3	4.195×10^-2	5.825×10^-3	1.75×10^-3

Table 3. The Overall Comparison in PID Parameters for AVR System

Parameters	DE-PID [8]	PSO-PID [8]	ABC-PID [8]	GOA-PID [9]	BBO-PID [11]	SSA–POPID [13]	JOA–POPID [43]	ROA–POPID [Proposed]
K_P	1.9499	1.7774	1.6524	1.3825	1.2464	1.9982	2.5982	2.5963
K_I	0.4430	0.3827	0.4083	1.4608	0.5893	1.1706	1.1687	1.2161
K_D	0.3427	0.3184	0.3654	0.5462	0.4596	0.5749	0.5809	0.5060
λ	-	-	-	-	-	-	-	1.1395
μ	-	-	-	-	-	-	-	1.1656

Table 4. Comparison of transient response

Parameters	DE-PID [8]	PSO-PID [8]	ABC-PID [8]	GOA-PID [9]	BBO-PID [11]	JOA–POPID [43]	ROA–POPID [Proposed]
Peak Value	1.3285	1.3006	1.2501	1.2053	1.1552	1.130	1.119
%Mp	32.8537	30.0634	25.0071	20.5306	15.5187	13.2	12.4
Tr	0.1516	0.1610	0.1557	0.1300	0.1485	0.0827	0.0737
Tp	0.3655	0.3824	0.3676	0.2862	0.3165	0.1750	0.1458
Ts	2.6495	3.3994	3.0939	0.9706	1.4457	0.453	0.9572

Table 5 Phase margin; delay margin; bandwidth comparison among implemented AVR systems

Optimization Method	Phase Margin(deg)	Delay Margin(s)	Bandwidth
DE-PID[8]	58.4	0.092	12.80
PSO-PID[8]	62.2	0.103	12.182
ABC-PID[8]	69.4	0.111	12.879
GOA-PID[9]	73.4	0.095	15.958
BBO-PID[11]	81.6	0.122	14.284
5.1 Transient response analysis

This segment gives nitty gritty data about the transient reaction assessment of the proposed ROA based AVR control system. After embeddings the got enhanced increases of the FOPID controller accomplished toward the finish of the reproduction:

\[KP = 2.5963, \quad KI = 1.2161, \quad KD = 0.5060, \quad \lambda = 1.1475 \text{ and } \mu = 1.2131. \]

To survey the transient reaction of the examined system, it is empowered with a unit step input signal. The comparing reaction has appeared in Fig. 7.

![Figure 7. Step response for AVR system with ROA-FOPID](image)

In the current assessment, the transient response examination is done dependent on four of the most critical transient response appraisal pointers for instance rise time, settling time, top time, and overshoot. The climb time is portrayed as the time required for the caution sign to reach from 10% to 89% of its reliable state regard while the settling time is described as the time required for the caution sign to go to the 3% of the steady-state regard. To include the advantages of the proposed ROA based FOPID tuning technique, the acquired results are differentiated and several remarkable smoothing out figurings amassed in continuous composition. The outcomes are graphically portrayed in Fig. 8. Fig. 8 gives quick and dirty information about the aftereffects of the present and the past examination works did in the referenced locale of exploration. A point by point examination nearby a comparative examination of the significant number of strategies for the perfect AVR arrangement has been made on-reason of apex regard, rate overshoot, rise time, settling time and zenith time and the got results are outlined in Table3.
Figure 8. Comparison of proposed ROA on AVR system with implemented Previous methods

Figure 9. Bode Diagram of ROA Based on AVR

Figure 10. Pole Zero for ROA Based on AVR
Figure 11. Amplifier gain change from -50 to 50%

Figure 12. Exciter gain change from -50 to 50%

Figure 13. Generator gain change from -50 to 50%
6. Conclusions

In this examination, for without a doubt the first run through recorded as a hard copy, one of the most clever AI strategies called ROA has been proposed for the structure of a perfect AVR system. The ROA is a self-versatile figuring with a moved association capacity. The information on the ROA was abused to get the best blend of FOPID boundaries by restricting a period organizing bumble health work. To display the nearness of the introduced structure on-reason of solidarity and transient response, a relative examination was made with no under 7 particular progression computations (DE, PSO, ABC, BBO, GOA, SSA, and JOA) used in the latest top tier composing. From the entertainment results, it is considered that to be far as Mp%, ts, tr, and tp values, the ROA based tuning of the controller offers ideal transient direct over the referenced analyzed systems. Besides, the thought about examinations revealed that the proposed ROA based AVR controller gives the most sensible structure that isn't by and large impacted by a change in the system boundaries and consequently winds up being solid against the system boundary varieties. Inferable from the astonishing consequences of the stream study, the proposed technique can be connected for different power structure applications like power system change, modified age control, and speed rule of various electric motors identified with the latest automated thinking based delicate computational-methodology.

7. References

[1] K.H. Ang, G. Chong, Y. Li, PID control system analysis, design, and technology, IEEE Trans. Control Syst. Technol. 13 (4) (2005) 559–576.
[2] N. Lachhab, F. Svaricek, F. Wobbe, H. Rabba, Fractional order PID controller (FOPID)-toolbox, in: 2013 European control conference (ECC), IEEE, 2013, pp. 3694–3699.
[3] X. Li, Y. Wang, N. Li, M. Han, Y. Tang, F. Liu, Optimal fractional order PID controller design for automatic voltage regulator system based on reference model using particle swarm optimization, Int. J. Mach. Learn. Cybern. 8 (5) (2017) 1595–1605.
[4] H. Ramezanian, S. Balochian, A. Zare, Design of optimal fractional-order PID controllers using particle swarm optimization algorithm for automatic voltage regulator (AVR) system, J. Control, Autom. Electrical Syst. 24 (5) (2013) 601–611.
[5] M. Li, W. Du, F. Nian, An adaptive particle swarm optimization algorithm based on directed weighted complex network, Math. Prob. Eng. 2014 (2014).
[6] T.A. Jumani, M.W. Mustafa, M.M. Rasid, N.H. Mirjat, M.H. Baloch, S. Salisu, Optimal power flow controller for grid connected microgrids using grasshopper optimization algorithm, Electronics 8 (1) (2019) 111.

[7] T.A. Jumani, M.W. Mustafa, M.M. Rasid, N.H. Mirjat, Z.H. Leghari, M.S. Saeed, Optimal voltage and frequency control of an islanded microgrid using grasshopper optimization algorithm, Energies 11 (11) (2018) 3191.

[8] H. Gozde, M.C. Taplamacioglu, Comparative performance analysis of artificial bee colony algorithm for automatic voltage regulator (AVR) system, J. Franklin Inst. 348 (8) (2011) 1927–1946.

[9] U. Güvenc, A.H. Isik, T. Yiğit, I. Akkaya, Performance analysis of bioinspired optimization for automatic voltage regulator system, Turkish J. Electric. Eng. Comput. Sci. 24 (3) (2016) 1150–1162.

[10] B. Hekimoglu, S. Ekinci, Grasshopper optimization algorithm for automatic voltage regulator system, in: 2018 5th International Conference on Electrical and Electronic Engineering (ICEEE), IEEE, 2018, pp. 152–156.

[11] B. Sharma, S. Kumar, C. Cattani, D. Baleanu, Nonlinear dynamics of Cattaneo-Christov heat flux model for third-grade power-law fluid, J. Comput. Nonlinear Dyn. 15 (1) (2020).

[12] S. Ekinci, B. Hekimoglu, Improved kidney-inspired algorithm approach for tuning of PID controller in AVR system, IEEE Access 7 (2019) 39935–39947.

[13] I.A. Khan, A.S. Alghamdi, T.A. Jumani, A. Alamgir, A.B. Awan, A. Khidrani, Salp swarm optimization algorithm-based fractional order PID controller for dynamic response and stability enhancement of an automatic voltage regulator system, Electronics 8 (12) (2019) 1472.

[14] K. Oldham, J. Spanier, The Fractional Calculus Theory and Applications of Differentiation and Integration to Arbitrary Order, Elsevier, 1974.

[15] K.S. Miller, B. Ross, An Introduction to the Fractional Calculus and Fractional Differential Equations, Wiley, 1993.

[16] I. Podlubny, Fractional Differential Equations: An Introduction to Fractional Derivatives, Fractional Differential Equations, to Methods of their Solution and Some of their Applications, Elsevier, 1998.

[17] B. Ghanbari, S. Kumar, R. Kumar, A study of behaviour for immune and tumor cells in immunogenetic tumour model with non-singular fractional derivative, Chaos, Solitons Fractals 133 (2020) 109619.

[18] J. Singh, D. Kumar, Z. Hammouch, A. Atangana, A fractional epidemiological model for computer viruses pertaining to a new fractional derivative, Appl. Math. Comput. 316 (2018) 504–515.

[19] D. Kumar, J. Singh, D. Baleanu, A fractional model of convective radial fins with temperature-dependent thermal conductivity, Rom. Rep. Phys 69 (1) (2017) 103.

[20] D. Kumar, J. Singh, S. Kumar, A fractional model of Navier-Stokes equation arising in unsteady flow of a viscous fluid, J. Assoc. Arab Univ. Basic Appl. Sci. 17 (1) (2015) 14–19.

[21] A. Choudhary, D. Kumar, J. Singh, A fractional model of fluid flow through porous media with mean capillary pressure, J. Assoc. Arab Univ. Basic Appl. Sci. 21 (2016) 59–63.

[22] S. Kumar, K. S. Nisar, R. Kumar, C. Cattani, and B. Samet, A new Rabotnov fractional-exponential function-based fractional derivative for diffusion equation under external force, Math. Methods Appl. Sci.
[23] M. Jleli, S. Kumar, R. Kumar, B. Samet, Analytical approach for time fractional wave equations in the sense of Yang-AbdelAty-Cattani via the homotopy perturbation transform method, Alexandria Eng. J. (2019).

[24] E.F.D. Goufo, S. Kumar, S. Mugisha, Similarities in a fifth order evolution equation with and with no singular kernel, Chaos, Solitons Fractals 130 (2020) 109467.

[25] B. Sharma, S. Kumar, C. Cattani, D. Baleanu, Nonlinear dynamics of Cattaneo-Christov heat flux model for third-grade power-law fluid, J. Comput. Nonlinear Dyn. 15 (1) (2020).

[26] S. Kumar, A. Kumar, S. Momani, M. Aldhaifallah, K.S. Nisar, Numerical solutions of nonlinear fractional model arising in the appearance of the stripe patterns in two-dimensional systems, Adv. Diff. Eq. 2019 (1) (2019) 413.

[27] A. El-Ajou, M.a.N. Oqielat, Z. Al-Zhour, S. Kumar, S. Momani, “Solitary solutions for time-fractional nonlinear dispersive PDEs in the sense of conformable fractional derivative, Chaos: An Interdisciplinary J. Nonlinear Sci. 29 (9) (2019) 093102.

[28] S. Kumar, A. Kumar, S. Abbas, M. Al Qurashi, D. Baleanu, A modified analytical approach with existence and uniqueness for fractional Cauchy reaction–diffusion equations, Adv. Diff. Eq. 2020 (1) (2020) 1–18.

[29] I. Podlubny, Fractional-order systems and PI/sup/lambda// D/sup/lambda// -controllers, IEEE Trans. Autom. Control 44 (1) (1999) 208–214.

[30] V. Mukherjee, S. Ghoshal, Intelligent particle swarm optimized fuzzy PID controller for AVR system, Electr. Power Syst. Res. 77 (12) (2007) 1689–1698.

[31] R. Rao, Jaya: A simple and new optimization algorithm for solving constrained and unconstrained optimization problems, Int. J. Ind. Eng. Comput. 7 (1) (2016) 19–34.

[32] S. Mishra, P.K. Ray, Power quality improvement using photovoltaic fed DSTATCOM based on JAYA optimization, IEEE Trans. Sustainable Energy 7 (4) (2016) 1672–1680.

[33] C. Huang, L. Wang, R.S.-C. Yeung, Z. Zhang, H.S.-H. Chung, A. Bensoussan, A prediction model-guided Jaya algorithm for the PV system maximum power point tracking, IEEE Trans. Sustainable Energy 9 (1) (2017) 45–55.

[34] W. Warid, H. Hizam, N. Mariun, N. Abdul-Wahab, Optimal power flow using the Jaya algorithm, Energies 9 (9) (2016) 678.

[35] K. Yu, J. Liang, B. Qu, X. Chen, H. Wang, Parameters identification of photovoltaic models using an improved JAYA optimization algorithm, Energy Convers. Manage. 150 (2017) 742–753.

[36] O. Samuel, N. Javaid, S. Aslam, M.H. Rahim, JAYA optimization based energy management controller for smart grid: JAYA optimization based energy management controller, in: 2018 International Conference on Computing, Mathematics and Engineering Technologies (iCoMET), IEEE, 2018, pp. 1–8.

[37] T.A. Jumani, M. Mustafa, M.M. Rasid, W. Anjum, S. Ayub, Salp swarm optimization algorithm-based controller for dynamic response and power quality enhancement of an islanded microgrid, Processes 7 (11) (2019) 840.

[38] T.A. Jumani, M.W. Mustafa, M.M. Rasid, Z.A. Memon, Dynamic response enhancement of grid-tied ac microgrid using salp swarm optimization algorithm, Int. Trans. Electrical Energy Syst. (2019).

[39] M.A. Sahib, A novel optimal PID plus second order derivative controller for AVR system, Eng. Sci. Technol., Int. J. 18 (2) (2015) 194–206.

[40] P.K. Mohanty, B.K. Sahu, S. Panda, Tuning and assessment of proportional–integral–derivative controller for an automatic voltage regulator system employing local unimodal sampling algorithm, Electr. Power Compon. Syst. 42 (9) (2014) 959–969.
[41] N.A. Shah, I. Khan, Heat transfer analysis in a second grade fluid over and oscillating vertical plate using fractional Caputo-Fabrizio derivatives, Eur. Phys. J. C 76 (2016) 362.

[42] N.A. Sheikh, D.L.C. Ching, I. Khan, D. Kumar, K.S. Nisar, A new model of fractional Casson fluid based on generalized Fick’s and Fourier’s laws together with heat and mass transfer, Alexandria Eng. J., in press.

[43] T. A. Jumani et al., “Jaya optimization algorithm for transient response and stability enhancement of a fractional-order PID based automatic voltage regulator system,” Alexandria Eng. J., vol. 12, no. 5, pp. 1–12, 2020.

[44] Y. R. Mohammed, N. Basil, O. Bayat, and A. Hamid, “A New Novel Optimization Techniques Implemented on the AVR Control System using MATLAB-SIMULINK,” Int. J. Adv. Sci. Technol., vol. 29, no. 5, pp. 4515–4521, 2020.

[45] M. M. Abdulwahid, M. S. Al-Hakeem, M. F. Mosleh, and R. A. Abd-Alhameed, “Investigation and optimization method for wireless AP deployment based indoor network,” MS&E, vol. 745, no. 1, p. 12031, 2020.

[46] Shareef O A, Abdulwahid M M, Mosleh M F and Abd-Alhameed R A 2019 The optimum location for access point deployment based on RSS for indoor communication International Conference on Modelling and Simulation (UKsim2019) 20 p 2.1.