Random Kondo alloys

S. Burdin \(^1\) and P. Fulde \(^1\)

\(^1\) Max-Planck-Institut für Physik komplexer Systeme,
Nöthnitzer Strasse 38, 01187 Dresden, Germany

Abstract

The interplay between the Kondo effect and disorder is studied. This is done by applying a matrix coherent potential approximation (CPA) and treating the Kondo interaction on a mean-field level. The resulting equations are shown to agree with those derived by the dynamical mean-field method (DMFT). By applying the formalism to a Bethe tree structure with infinite coordination the effect of diagonal and off-diagonal disorder are studied. Special attention is paid to the behavior of the Kondo- and the Fermi liquid temperature as function of disorder and concentration of the Kondo ions. The non monotonous dependence of these quantities is discussed.

I. INTRODUCTION

The Kondo effect is one of the most investigated phenomena in solid-state physics. Part of the reason is that it can not be treated perturbationally since it is a strong coupling effect. Therefore it requires special theoretical tools to deal with it. Kondo physics occurs when strongly correlated electrons like \(4f\) electrons in \(Ce^{3+}\) or holes in \(Yb^{3+}\) are weakly hybridizing with the conduction electrons of their surroundings. This results in low-energy excitations which in the case of concentrated systems may result in heavy quasiparticles. For recent reviews of the field we refer to Refs. \([1,2,3]\). A realistic starting point for Kondo systems is the Anderson impurity or Anderson lattice model. Due to the hybridization mentioned above it involves spin as well as charge degrees of freedom. Often the charge degrees of freedom are less interesting and are therefore eliminated by a Schrieffer-Wolf transformation \([4]\). The result is an antiferromagnetic interaction between the spins of the conduction electrons and the strongly correlated localised, e.g., \(4f\) electrons. This leads to the Kondo Hamiltonian.

Competing with the Kondo effect is the Ruderman-Kittel-Kasuya-Yoshida (RKKY) interaction. While the Kondo effect leads to the formation of a singlet between the spins of the \(4f\) and conduction electrons, the RKKY interaction lowers the energy of a system of local spins interacting with each other via conduction electrons. Therefore if the latter is more important than the former, the local spins will remain uncompensated and eventually order and not participate in the singlet formation.

The aim of the present investigation is to study the effect of disorder on Kondo physics \([5,6,7,8,9,10,11]\). It has been suggested in several works that disorder leads to non-Fermi-liquid behavior (NFL) at low temperatures. For example, it has been shown in Refs. \([5,6,7]\) that a distribution of Kondo temperatures \(T_K\) can result from local disorder, the NFL features being related to the presence of very-low-\(T_K\) spins which remain unquenched at any finite temperature. Another possible scenario attributes the NFL behavior to the proximity to a quantum critical point resulting from disordered RKKY interactions \([8,9,10]\). More recently, it has been suggested that a NFL behavior can occur between the local Fermi-liquid (FL) and coherent heavy FL phases characterizing respectively a diluted and a dense Kondo alloy \([11]\).

We assume that we are in a regime where the Kondo effect is more important than the RKKY interaction so that the latter may be neglected. Instead we concentrate on the singlet formation energy and on how it can be expressed in terms of the Kondo temperature \(T_K\) and of the temperature \(T_{FL}\) at which the different low energy excitations form coherent quasiparticles. In particular we study how \(T_K\) and \(T_{FL}\) behave as functions of conduction electron band filling \(n_c\), local spin concentration \(x\) and disorder.

II. MODEL HAMILTONIAN AND METHODS OF SOLUTIONS

We consider the Kondo alloy model (KAM) with the Hamiltonian

\[
H = \sum_{ij} t_{ij} c_i^\dagger c_j + \sum_{i \in A} \sum_{\sigma, \sigma'} S_i^{\sigma\sigma'} c_i^{\dagger \sigma} c_i^{\sigma'},
\]

where the first term describes nearest-neighbor hopping of conduction electrons on a lattice with sites occupied randomly by atoms of kind \(A\) and \(B\). The corresponding concentrations are \(c_A = x\) and \(c_B = 1 - x\). The hopping
matrix elements have three different values, i.e.,

\[
t_{ij} = \gamma_{ij} \begin{cases}
 t_A & \text{if } i, j \in A \\
 t_B & \text{if } i, j \in B \\
 t_{AB} & \text{otherwise}
\end{cases}
\] (2)

Here \(\gamma_{ij}\) is the structure factor of the underlying periodic lattice with Fourier transform \(\gamma_k \equiv \sum_{ij} \gamma_{ij} \exp i k \cdot (R_i - R_j)\). The second term in Eq. (1) describes the Kondo interaction between the conduction electron spin and local spin operators \(S_i\), the latter being attached to atoms of type \(A\) only.

We shall treat the Kondo alloy model defined by Eq. (1) by applying a number of approximations. A rather simple one is that we assume a random distribution of sites \(A\) and \(B\). As regards the Kondo interaction we shall consider two different ways of treating the randomness. They are similar to each other but based on different physical pictures.

One approach is a generalisation of a CPA matrix approach originally introduced in Refs [12-13]. The Kondo interaction is treated here within a mean-field approximation. The second approach is a matrix generalisation of the dynamical mean field theory (DMFT) which is exact in the limit of infinite dimensions [14-15]. Averaging over the randomness is done here without simplifying the Kondo interaction. A mean-field approximation can be introduced before or after the DMFT approximation and leads to the same set of self-consistent equations as obtained in the first, i.e., the generalised CPA approach.

The analytical expressions obtained from these two approaches are applicable to any lattice structure. The numerical results presented below apply the DMFT to a Bethe lattice instead of a regular one. The Kondo interaction is treated in this case within the mean-field approximation.

III. THE MATRIX-CPA METHOD

A. Mean-field treatment of the Kondo interaction

We begin with a mean-field approximation for the Kondo interaction. Following the standard theory [16-17-18-19-20], the spin operators are written in the fermionic representation \(S_i^{\sigma\sigma'} = f_i^\dagger f_{i\sigma'} - \delta_{\sigma\sigma'} / 2\), with the constraint \(\sum_{\sigma} f_{i\sigma} f_{i\sigma} = 1\). The Hamiltonian Eq. (1) becomes therefore

\[
H = \sum_{ij\sigma} t_{ij} c_i^\dagger c_j + \frac{J_K}{2} \sum_{i} \sum_{\sigma\sigma'} f_i^\dagger f_{i\sigma} c_i^\dagger c_{i\sigma'} c_{i\sigma}
\] (3)

The systems we want to describe here involve physical spins \(1/2\) with a \(SU(2)\) symmetry. The mean-field approach as introduced in Refs [16-17] is in case an approximation which becomes exact in the limit of \(SU(N \to \infty)\) symmetry [15-16-20]. The Hamiltonian is

\[
H = \sum_{ij\sigma} t_{ij} c_i^\dagger c_j + r \sum_{\sigma} \sum_{i \in A} \left(c_i^\dagger f_{i\sigma} + f_{i\sigma}^\dagger c_i \right) - \mu \sum_{\sigma} \sum_{i} \left(c_i^\dagger c_{i\sigma} - \frac{n_{c\sigma}}{2} \right) - \lambda \sum_{\sigma} \sum_{i \in A} \left(f_i^\dagger f_{i\sigma} - \frac{1}{2} \right)
\] (4)

where \(n_{c}\) is the average number of conduction electrons per site \(i\) while \(\mu\) denotes the chemical potential. In the following, we discard the spin index \(\sigma\) since in mean-field approximation the contributions to \(H\) of the different spin components decouple [16-17-18-19-20]. The Kondo interaction is approximated by an effective hybridization \(r = J_K \langle f_i^c \rangle \rangle\) between the conduction electrons and the fermionic operators, where the \(\langle \cdots \rangle\) denotes the thermal average with respect to the Hamiltonian (4) for random configurations of sites \(A\) and \(B\), and \([\cdots]\) denotes the average with respect to these configurations. Note that the same form of the Hamiltonian is obtained by starting from an Anderson lattice instead of a Kondo lattice, and treating it within the mean-field slave boson approximation [18-19-20]. We have started here from the Kondo Hamiltonian because we are interested in the case of near integer valency of the impurity, i.e., the \(f\) electron count is supposed to be very close to one. The above mean-field approximation leads to an \(f\)-like band. It models the low-energy excitations which result from the Kondo interaction or alternatively Anderson Hamiltonian. The conditions \(\sum_{\sigma} f_{i\sigma}^\dagger f_{i\sigma} = 1\) are taken into account by Lagrange parameters \(\lambda\). We set all of them equal to \(\lambda\) which implies that the above conditions are satisfied on average only. Thus small local fluctuations in the \(f\) electron count are possible here in the Anderson model.

The quantities \(\mu, \lambda, r\) are determined by self-consistency conditions. For that purpose local Green’s functions are introduced. They are different for magnetic sites \(A\), nonmagnetic sites \(B\) and for \(f\) as well as conduction electrons. The \(G_{ij}^{\sigma}(\tau - \tau') = -\langle T_{\tau} f_i(\tau) f_j^\dagger(\tau') \rangle\), \(G_{ij}^{c}(\tau - \tau') = -\langle T_{\tau} f_i(\tau)c_j^\dagger(\tau') \rangle\), and \(G_{ij}^{c}(\tau - \tau') = -\langle T_{\tau} c_i(\tau)c_j^\dagger(\tau') \rangle\) are finite
temperature Green’s functions defined for imaginary time τ, where T_τ denotes the imaginary-time chronological ordering. We also define the averaged local Green’s functions:

$$ G_A^{ff} = \frac{1}{x} \sum_{i \in A} G_{ii}^{ff}, \quad G_A^{fc} = \frac{1}{x} \sum_{i \in A} G_{ii}^{fc}, \quad G_B^{cc} = \frac{1}{1 - x} \sum_{i \in B} G_{ii}^{cc}. $$

The chemical potential μ, the Lagrange multiplier λ, and the effective hybridization r are determined by the self-consistent saddle point equations:

$$ -r/J_K = \frac{1}{x} \sum_{i \in A} \langle \hat{f}_i \hat{c}_i^\dagger \rangle = G_A^{fc}(\tau = 0^-), $$

$$ 1/2 = \frac{1}{x} \sum_{i \in A} \langle \hat{f}_i^\dagger \hat{f}_i \rangle = G_A^{ff}(\tau = 0^-), $$

$$ n_c/2 = \sum_i \langle \hat{c}_i^\dagger \hat{c}_i \rangle = G_A^{cc}(\tau = 0^-), $$

with $G^{cc} \equiv \sum_i G_{ii}^{cc} = xG_A^{cc} + (1 - x)G_B^{cc}$.

B. Configuration averages

For the determination of the Green’s function of the conduction electrons we choose a generalization of the Coherent Potential Approximation (CPA) to a matrix form as introduced in Refs [12-13]. Within that approximation, the system can be viewed as a medium with three interacting fermionic bands: two bands corresponding to conduction electrons on sites A or B, and a third one representing the excitations of the strongly correlated f–electrons. Therefore the dynamics related to the spins of the A sites is described in a simplified form, i.e., in the form of f–electrons with a dispersive band. The 3×3 Green’s function matrix is of the following form:

$$ \tilde{G}_{ij} = \begin{pmatrix}
\hat{x}_i \hat{x}_j G_{ij}^{ff} & \hat{x}_i \hat{y}_j G_{ij}^{fc} & \hat{x}_i \hat{x}_j G_{ij}^{cc} \\
\hat{y}_i \hat{x}_j G_{ij}^{ff} & \hat{y}_i \hat{y}_j G_{ij}^{fc} & \hat{y}_i \hat{x}_j G_{ij}^{cc} \\
\hat{y}_i \hat{y}_j G_{ij}^{ff} & \hat{y}_i \hat{y}_j G_{ij}^{fc} & \hat{y}_i \hat{y}_j G_{ij}^{cc}
\end{pmatrix}, $$

where $\hat{x}_i = 1 - \hat{y}_i$ are projection operators, which are unity (zero) if site i is occupied by an A (B) atom. Averaging the local Green’s function matrix with respect to different configurations of randomly distributed types of atoms we find:

$$ \left[\tilde{G}_{ij} \right] = \begin{pmatrix}
xG_A^{ff} & xG_A^{fc} & 0 \\
xG_A^{fc} & xG_A^{cc} & 0 \\
0 & 0 & (1 - x)G_B^{cc}
\end{pmatrix}. $$

In this expression, the vanishing of the mixed $A - B$ matrix elements follows directly from $\hat{x}_i \hat{y}_i = 0$, which ensures that a given site is either of kind A or B. Averaging over the different configurations of A and B sites restores lattice translation symmetry. Therefore we define:

$$ \tilde{G}_k \equiv \sum_{ij} e^{-ik \cdot (\mathbf{R}_i - \mathbf{R}_j)} \left[\tilde{G}_{ij} \right] $$

Within the single component CPA, the system is approximated by an effective medium, characterised by a local, i.e., \mathbf{k}–independent, but frequency dependent self-energy [21][22][23][24][25]. The latter is determined self-consistently by requiring that the scattering matrix of the atoms A and B within this effective medium vanishes on average. The matrix form of the CPA introduced in Refs [12-13] generalises the scalar procedure to an effective medium with two bands of conduction electrons. Here we generalise the 2×2 matrix form of the CPA to a 3×3 one. The averaged Green’s function matrix characterising the effective medium is given by the relation:

$$ \left(\tilde{G}(i\omega_n) \right)^{-1}_{ij} = i\omega_n \tilde{\Sigma}_{ij} - \tilde{\Sigma}(i\omega_n) \delta_{ij} - \tilde{\mathbf{W}} \gamma_{ij}, $$

where $i\omega_n \equiv i\pi T(2n + 1)$ denotes the fermionic Matsubara frequencies. In the following we leave out the n index. Invoking the reciprocal space Green’s function matrix defined by Eq. (12), the relation (13) becomes:

$$ \tilde{G}^{-1}_k(i\omega) = i\omega \tilde{\mathbf{I}} - \tilde{\Sigma}(i\omega) - \tilde{\mathbf{W}} \gamma_k. $$
Here \mathbf{I} is a 3×3 unit matrix, \mathbf{W} is the transfer matrix,

$$\mathbf{W} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & t_A & t_{AB} \\ 0 & t_{AB} & t_B \end{pmatrix}, \quad (15)$$

and $\mathbf{\Sigma}$ is a local self-energy matrix,

$$\mathbf{\Sigma}(i\omega) \equiv \begin{pmatrix} \Sigma_A(i\omega) & \sigma_1(i\omega) & \sigma_2(i\omega) \\ \sigma_1(i\omega) & \sigma_2(i\omega) & \Sigma_B(i\omega) \end{pmatrix}. \quad (16)$$

which is determined by the set of self-consistent equations (see appendix A):

$$\begin{pmatrix} \tilde{G}_n(i\omega) \\ \tilde{G}_f(i\omega) \\ \tilde{G}_c(i\omega) \end{pmatrix} = \begin{pmatrix} xG_{ff}^{j}(i\omega) & xG_{fc}^{j}(i\omega) & 0 \\ xG_{cf}^{j}(i\omega) & xG_{cc}^{j}(i\omega) & 0 \\ 0 & 0 & (1-x)G_{cc}^{ff}(i\omega) \end{pmatrix} = \sum_k \mathbf{G}_k(i\omega), \quad (17)$$

$$\Sigma_A(i\omega) = -\left(\frac{\lambda}{\mu} \right) - \frac{(1-x)}{x} \left(\frac{G_{A}^{ff}(i\omega) \quad G_{A}^{fc}(i\omega)}{G_{A}^{cf}(i\omega) \quad G_{A}^{cc}(i\omega)} \right)^{-1}, \quad (18)$$

$$\Sigma_B(i\omega) = -\mu - \frac{x}{(1-x)G_{cc}^{ff}(i\omega)}. \quad (19)$$

The self-energies σ_1 and σ_2 are determined by requiring that the mixed $A-B$ elements of the local Green’s function matrix in Eq. (17) vanish for the same reason as in Eq. (10). We find that

$$\sigma_1(i\omega) = 0, \quad (20)$$

which reflects the fact that there is no direct interaction between $f-$fermions and the $B-$electronic band, describing the electrons on nonmagnetic sites. We find also an explicit expression for σ_2, i.e.,

$$\sigma_2(i\omega) = -t_{AB} \frac{1 - 2x + x(i\omega + \mu - r^2/(i\omega + \lambda))G_{A}^{cc}(i\omega) - (1-x)(i\omega + \mu)G_{B}^{cc}(i\omega)}{xt_{A}G_{A}^{cc}(i\omega) - (1-x)t_{B}G_{B}^{cc}(i\omega)}, \quad (21)$$

which results from the direct hopping of conduction electrons between A and B sites.

A complete solution of the initial Kondo alloy system is obtained by solving simultaneously the mean-field Eqs. (7, 8, 9) together with the matrix Eq. (17). Thereby the $K-$dependent average Green’s function matrix is determined by the relation Eq. (14), with the lattice structure factor γ_k and the local self-energy matrix $\mathbf{\Sigma}$. The latter is determined by the self-consistent CPA Eqs. (10, 13, 19).

C. Kondo temperature

We define the Kondo temperature T_K as the temperature at which the effective hybridization r (obtained from Eqs. (7, 8, 9)) vanishes. We find

$$2/J_K = \int d\epsilon \rho_A^0(\epsilon + \mu_0)tanh[(\epsilon/2T_K)/\epsilon], \quad (22)$$

where ρ_A^0 and μ_0 are respectively the local electronic density of states (DOS) on a magnetic site, and the chemical potential of a random $A-B$ alloy without Kondo interaction. An explicit expression for T_K has been derived in Ref. [26] in the weak-coupling regime $J_K << t_A, t_B, t_{AB}$:

$$T_K = D e^{-1/(J_K \rho_A^0(E_F))} \sqrt{1 - (E_F/D)^2} F_K(n_c), \quad (23)$$

$$F_K(n_c) = \exp \left(\int_{(D+E_F)}^{D-E_F} \frac{d\omega \rho_A^0(E_F + \omega) - \rho_A^0(E_F)}{2\rho_A^0(E_F)} \right), \quad (24)$$

where D is the half-bandwidth of the non-interacting local DOS $\rho_A^0(\omega)$.

IV. DMFT EQUATIONS

The matrix form of the CPA introduced in Refs. 12,13 was generalized to the KAM 1 after an appropriate mean-field approximation was made for the Kondo interaction. It allowed for keeping the dynamical aspects of the A sites with their attached spins by means of introducing an additional f–like band of excitations. It supplemented the two bands resulting from the conduction electrons of the A and B sites. In the following we develop for the KAM a matrix DMFT computational scheme which can be formulated without a mean-field approximation for the Kondo interaction. Note that our approach is different from the dynamical cluster approximation introduced in Ref. 27 since the latter concerns diagonal disorder only.

A. DMFT matrix formalism for a binary alloy

The Kondo-alloy Hamiltonian Eq. (1) can be written as

$$H = \sum_{ij\sigma} \gamma_{ij} P_i^\dagger WP_j c_{i\sigma} c_{j\sigma} + \frac{J_K}{2} \sum_i \hat{x}_i \sum_{\sigma\sigma'} S_{i\sigma\sigma'} c_{i\sigma} c_{i\sigma'},$$

where we introduced the transfer matrix

$$W = \begin{pmatrix} t_A & t_{AB} \\ t_{AB} & t_B \end{pmatrix},$$

and the projection operators

$$P_i = \begin{pmatrix} \hat{x}_i \\ \hat{y}_i \end{pmatrix},$$

with their conjugates

$$P_i^\dagger = (\hat{x}_i, \hat{y}_i),$$

where $\hat{x}_i \equiv 1 - \hat{y}_i$ is unity if i is an A site and zero otherwise. Here, we have implicitly mapped the initial KAM, characterised by a single disordered conduction band, into a two-band effective model. Thereby each site of the underlying periodic lattice acts like being occupied simultaneously by atoms of A and B type. As before, the initial physical Hilbert space corresponding to a single kind of atom per site is recovered by introducing projection operators. They guarantee that a site acts either as an A or B atom. Here, we follow the DMFT formalism 14,15, which is exact in the limit of a large coordination number z. Considering that the energy of the system is an extensive quantity, this limit requires a rescaling of the hopping energies $t_{ij} = \gamma_{ij} P_i^\dagger WP_j = \tilde{t}_{ij}/\sqrt{z}$, where \tilde{t}_{ij} remains finite (i.e., independent of z) when $z \to \infty$. From the lattice Hamiltonian Eq. (25) we obtain a local effective action for site 0

$$S(\hat{x}_0) = -\sum_\sigma \int_0^\beta d\tau \int_0^\beta d\tau' c_{0\sigma}(\tau) P_0^\dagger K(\tau - \tau') P_0 c_{0\sigma}(\tau') - \hat{x}_0 \frac{J_K}{2} \sum_{\sigma\sigma'} \int_0^\beta d\tau S^{\sigma\sigma'}(\tau) c_{0\sigma}(\tau) c_{0\sigma'}(\tau).$$

Here, the kernel K is a 2×2 matrix, which is a dynamical generalization of the Weiss field usually introduced for a static mean-field approximation. The projection operators P_0 and P_0^\dagger select the diagonal matrix element K_A (respectively K_B) of K depending on whether site 0 is occupied by an A or B atom. The resulting local effective action $S(\hat{x}_0)$ remains a scalar quantity, which can have two values, i.e., $S(\hat{x}_0 = 1) = S_A$ and $S(\hat{x}_0 = 0) = S_B$. This is a key quantity in the DMFT procedure. It provides a relevant simplification since the local electronic and magnetic Green’s functions characterizing the lattice Hamiltonian 14 can now be computed from $S(\hat{x}_0)$, which invokes local degrees of freedom only. Next, we determine the self-consistent relations allowing to express the kernel K as a function of the local Green’s functions. Following the standard DMFT formalism, we find

$$K(i\omega) = (i\omega + \mu) I - \sum_{ij} \gamma_{ij} \gamma_{0j} W \left[P_i P_j^\dagger G_{ij}^{(0)}(i\omega) \right] W.$$

Here $G_{ij}^{(0)}$ is the cavity Green’s function, corresponding to the lattice Hamiltonian 25, but with site 0 excluded. In order to establish a self-consistent relation for the kernel, we perform an infinite order perturbation expansion of
Green’s functions in terms of the hopping elements $\gamma_{ij} P_i WP_j$. Following the DMFT scheme [14-15], the Green’s function G_{ij} for a given distribution of sites A and B is expressed as a sum of all possible paths $i \rightarrow i_1 \rightarrow i_2 \cdots i_p \rightarrow j$ connecting site i to site j through the sequence of structure factors γ_{ii}, $\gamma_{i_1 i_2}$, etc. In the limit of large z we may exclude returning paths since their contribution is of order $1/z^{n+1}$ when n is the number of returns. Thus, each path is factorised in terms of local dressed irreducible scalar propagators Π_{ii} which contain information about the local interactions:

$$ G_{ij} = \sum_{\text{paths}} \Pi_{ii} \gamma_{ii} P_i WP_i \Pi_{ii} \gamma_{ii} WP_i \Pi_{ii} \gamma_{ii} WP_i \cdots \Pi_{ii} \gamma_{ii} WP_i \Pi_{jj} . $$

(31)

For the sake of simplicity we have dropped the explicit time dependencies. We will show below that, after averaging over the randomness, these local propagators can be related to a local self-energy. The large-z expansion Eq. (31) is a scalar relation, similar to the one obtained in the usual DMFT approach. The only difference arises from the scalar hopping elements $t_{ij} = P_i WP_j \gamma_{ij}$, which here are random. In the following we cast this relation into a 2×2 matrix form, with a periodic effective hopping matrix $W \gamma_{ij}$ between nearest neighbors. We define

$$ G_{ij} = \sum_{\text{paths}} [\Pi_{ii} \gamma_{ii} WP_i \Pi_{ii} \gamma_{ii} WP_i \Pi_{ii} \gamma_{ii} WP_i \cdots \Pi_{ii} \gamma_{ii} WP_i \Pi_{jj}] . $$

(34)

In the large-z limit, we consider only direct paths connecting sites i and j. We assume now that the occupation of a given site by an A or B atom is purely random and does not depend on the configurations of the neighboring sites. Therefore, in Eq. (34), each irreducible propagator matrix Π_{ii} can thus be averaged separately, and we find

$$ G_{ij} = \sum_{\text{paths}} [\Pi_{ii} \gamma_{ii} WP_i \Pi_{ii} \gamma_{ii} WP_i \Pi_{ii} \gamma_{ii} WP_i \cdots \Pi_{ii} \gamma_{ii} WP_i \Pi_{jj}] . $$

(35)

where $\Pi_0 \equiv [\Pi_{ii}]$. The matrix relation Eq. (35) between the average Green’s functions, the averaged local dressed propagator, and the hopping elements is formally identical to a scalar expansion obtained for a regular periodic system within the standard DMFT formalism [14-15]. We introduce the averaged local Green’s function

$$ G_{\text{loc}} = [G_{ii}] = \left(\begin{array}{cc} xG_A & 0 \\ 0 & (1-x)G_B \end{array} \right) , $$

(36)

where G_A and G_B are the local Green’s functions corresponding to an A site (respectively B site), once averages over all the other sites configurations have been taken. Using Eq. (36), the relation between the cavity and full Green’s function reads

$$ [P_i P_j]^{G(0)}_{ij} = [G_{ij}] - [G_{ii}] [G_{\text{loc}}^{-1}] [G_{ij}] . $$

(37)

Averaging over a random distribution of sites A and B restores the translation symmetry of the underlying lattice. The averaged Green’s function matrices are thus periodic in space, and we can define their Fourier transforms

$$ G_k \equiv \sum_{ij} e^{-ik \cdot (R_i - R_j)} [G_{ij}] . $$

(38)

From Eq. (38), we find that the Green’s functions are characterised by a local 2×2 self-energy matrix Σ

$$ G_k^{-1}(i\omega) = (i\omega + \mu) I - \Sigma(i\omega) - W \gamma_k , $$

(39)
where \(\Sigma \) is related to the averaged local propagator by the matrix identity \(\Pi^{-1}_0(i\omega) = (i\omega + \mu)I - \Sigma(i\omega) \). The matrix elements of \(\Sigma \) can be expressed in terms of the local average Green’s function matrix \(G_{\text{loc}} \) by taking the inverse of

\[
G_{\text{loc}}(i\omega) = \sum_k G_k(i\omega) .
\]

(40)

Finally, using the relation \(\eqref{37} \) for the cavity Green’s function, together with the expression \(\eqref{50} \) for the kernel, we find

\[
K(i\omega) = \Sigma(i\omega) + G_{\text{loc}}^{-1}(i\omega) .
\]

(41)

Equations \(\eqref{39} \) provide a self-consistent relation between the matrix kernel \(K \) and the averaged local Green’s function matrix \(G_{\text{loc}} \):

\[
G_{\text{loc}}(i\omega) = \sum_k \left((i\omega + \mu)I - K(i\omega) + G_{\text{loc}}^{-1}(i\omega) - W\gamma_k \right)^{-1} .
\]

(42)

In turn, the local Green’s functions \(G_A \) and \(G_B \) invoked in the definition \(\eqref{36} \) of \(G_{\text{loc}} \) can be computed for a given kernel \(K \), by considering the cases \(\hat{x}_0 = 0 \) and \(\hat{x}_0 = 1 \) in the local effective action Eq. \(\eqref{25} \). Since the effective action \(S_B \) on sites \(B \) is quadratic in terms of electronic operators, we obtain an explicit expression for \(G_B \):

\[
G_B(i\omega) = K_B^{-1}(i\omega) .
\]

(43)

The local Green’s functions \(G_A \) is obtained from the local effective action on an \(A \) atom:

\[
S_A = -\sum_{\sigma} \int_0^\beta d\tau \int_0^\beta d\tau' c_{\sigma 0}^\dagger(\tau)K_A(\tau - \tau')c_{\sigma 0}(\tau') - \frac{J_K}{2} \sum_{\sigma\sigma'} \int_0^\beta d\tau S^{\sigma\sigma'}(\tau)c_{\sigma 0}^\dagger(\tau)c_{\sigma 0}(\tau) .
\]

(44)

Apart from the self-consistent relation \(\eqref{12} \), which can be treated using analytic (and eventually numerical) simple calculations, the main difficulty consists in computing \(G_A \) from the local effective action \(\eqref{14} \). Even if the initial difficulty of studying a lattice model has been consequently reduced into a single site effective model, this issue remains a many body problem. The Kondo interaction part has to be considered using a numerical scheme or appropriate analytical approximations.

Once a self-consistent solution is obtained for \(K \) and \(G_{\text{loc}} \), the \(k \)-dependent correlation functions for the conduction electrons can be obtained using Eqs. \(\eqref{39} \) \(\eqref{41} \). Here, we describe the system with two bands of conduction electrons \(A \) and \(B \), whose correlations are characterised by the \(2 \times 2 \) matrix \(G_k \). Invoking the identity \(\hat{x}_i \hat{x}_j + \hat{y}_i \hat{y}_j = 1 \), the physical single band average Green’s functions \([G_{ij}] \) can be obtained by adding the four matrix elements of \([G_{ij}] \). As a consequence, the \(k \)-dependent average correlation function for the physical single band of conduction electrons is also obtained by adding the four matrix elements of \(G_k \).

B. Equivalence of the CPA and the DMFT

The equivalence of the dynamical CPA and the DMFT was previously proven by Kakehashi on general grounds \(\eqref{28} \). As discussed before by applying a \(3 \times 3 \) matrix CPA approach we were able to describe the important dynamical aspects of the spins of the \(A \) sites. Therefore it is reassuring that we can demonstrate the equivalence of the \(3 \times 3 \) matrix CPA approach with corresponding DMFT equations, when we integrate over the \(f \)-electron degrees of freedom in the CPA approach and make a mean-field approximation within the DMFT approach.

1. Expression of the CPA equations using a \(2 \times 2 \) matrix formalism

For a demonstration of the equivalence of the two methods we start from a modified version of Eqs. \(\eqref{16} \) \(\eqref{19} \). It is easy to show that after some algebraic modifications the following relations can be derived from these equations:

\[
G_A^{ff}(i\omega) = \frac{1}{i\omega + \lambda} + \frac{r^2}{(i\omega + \lambda)^2} G_A^{cc}(i\omega) ,
\]

(45)

\[
G_A^{fc}(i\omega) = \frac{-r}{i\omega + \lambda} G_A^{cf}(i\omega) .
\]

(46)
The self-consistent CPA Eqs. [10] [17] [18] [19] can be cast into the form

\[
x G_A^{cc}(i\omega) = \sum_k \frac{1}{\Delta_k(i\omega)} \left(i\omega + \mu - \Sigma_B^{CPA}(i\omega) - t_B\gamma_k \right), \tag{47}
\]

\[
(1-x)G_B^{cc}(i\omega) = \sum_k \frac{1}{\Delta_k(i\omega)} \left(i\omega + \mu - \Sigma_K(i\omega) - \Sigma_A^{CPA}(i\omega) - t_A\gamma_k \right), \tag{48}
\]

where

\[
\Delta_k(i\omega) = \left(i\omega + \mu - \Sigma_K(i\omega) - \Sigma_A^{CPA}(i\omega) - t_A\gamma_k \right) \left(i\omega + \mu - \Sigma_B^{CPA}(i\omega) - t_B\gamma_k \right) - (\sigma_2(i\omega) - t_{AB}\gamma_k)^2, \tag{49}
\]

\[
\sigma_2(i\omega) = -t_{AB} \frac{1 - 2x + x(i\omega + \mu - \Sigma_K(i\omega))G_A(i\omega) - (1-x)(i\omega + \mu)G_B(i\omega)}{xt_A G_A(i\omega) - (1-x)t_B G_B(i\omega)}. \tag{50}
\]

Here we have set

\[
\Sigma_A^{CPA}(i\omega) = -\frac{1-x}{x} \frac{1}{G_A^{cc}(i\omega)}, \tag{51}
\]

\[
\Sigma_B^{CPA}(i\omega) = -\frac{x}{1-x} \frac{1}{G_B^{cc}(i\omega)}. \tag{52}
\]

We have also introduced the definition

\[
\Sigma_K(i\omega) = \gamma^2 \frac{1}{i\omega + \lambda}. \tag{53}
\]

A complete resolution of the model is obtained by the following self-consistent scheme:

(i) Calculate \(G_A^{cc} \) and \(G_B^{cc} \) from Eqs. [17] [18] [51] [52] [53], as function of the mean-field parameters \(r, \lambda \) and \(\mu \).

(ii) Calculate \(G_A^{cc} \) and \(G_B^{cc} \) by using Eqs. [45] [46].

(iii) Optimise the parameters \(r, \lambda \) and \(\mu \) so as to satisfy the mean-field Eqs. [7] [8] [9].

2. **DMFT and mean-field approximation for the Kondo term**

A complete resolution of the matrix DMFT self-consistent relations requires an impurity solver, in order to compute the local electronic Green’s functions \(G_A \) related to the local effective action \(S_A \) given by Eq. [44]. In order to demonstrate the formal equivalence between the matrix-DMFT and the matrix-CPA approaches, we use the mean-field approximation for the impurity solver. Before, we define the local self-energy due to the Kondo interaction on sites \(A \):

\[
\Sigma_K(i\omega) = K_A(i\omega) - G_A^{-1}(i\omega) \tag{54}
\]

Since there is no local interaction on sites \(B \), we have \(G_B(i\omega) = K_B^{-1}(i\omega) \). The relation [41] can be expressed as

\[
\Sigma(i\omega) = \begin{pmatrix}
\Sigma_K(i\omega) + \Sigma_A^{CPA}(i\omega) & \Sigma_{AB}(i\omega) \\
\Sigma_{AB}(i\omega) & \Sigma_B^{CPA}(i\omega)
\end{pmatrix}
\]

with

\[
\Sigma_A^{CPA}(i\omega) = ((1-x)/x)G_A^{-1}(i\omega) \tag{56}
\]

\[
\Sigma_B^{CPA}(i\omega) = (x/(1-x))G_B^{-1}(i\omega) \tag{57}
\]

These expressions are identical to Eqs. [51] [52] obtained within the matrix-CPA approach. Here, as within the CPA approach, the off-diagonal self-energy \(K_{AB} \) (denoted before \(\sigma_2 \)) is determined by requiring the vanishing of the off-diagonal elements of \(G_{loc} \) in Eq. [56]. In analogy to Eq. [21], we find

\[
K_{AB}(i\omega) = \sigma_2(i\omega) = -t_{AB} \frac{1 - 2x + x(i\omega + \mu - \Sigma_K(i\omega))G_A(i\omega) - (1-x)(i\omega + \mu)G_B(i\omega)}{xt_A G_A(i\omega) - (1-x)t_B G_B(i\omega)}. \tag{58}
\]
Combining Eq. (55) with the self-consistent relations Eqs. (56, 69, 10) we find
\[xG_A(i\omega) = \sum_k \frac{1}{\Delta_k(i\omega)} \left(i\omega + \mu - \Sigma_B^{CPA}(i\omega) - t_B\gamma_k \right), \]
\[(1-x)G_B(i\omega) = \sum_k \frac{1}{\Delta_k(i\omega)} \left(i\omega + \mu - \Sigma_K(i\omega) - \Sigma_A^{CPA}(i\omega) - t_A\gamma_k \right), \]
with
\[\Delta_k(i\omega) = \left(i\omega - \mu - \Sigma_K(i\omega) - \Sigma_A^{CPA}(i\omega) - t_A\gamma_k \right) \left(i\omega - \mu - \Sigma_B^{CPA}(i\omega) - t_B\gamma_k \right) - (-\sigma_2(i\omega) - t_{AB}\gamma_k)^2, \]
which are formally equivalent to the relations Eqs. (17, 20, 29) obtained from the matrix form of the CPA approach.

The matrix-DMFT approach developed here is performed without any approximation concerning the local Kondo interaction. An impurity solver is required in order to calculate the local Green’s functions from the local effective case, the self-consistent equations are much simpler, and the general physical properties of the system are preserved.

C. Bethe lattice with infinite coordination

The DMFT formalism described in the previous section is exact in the limit of an infinite coordination number \(z \). It can be applied to any underlying periodic lattice, which has to be defined by its structure factor \(\gamma_k \). In order to study numerically the Kondo Alloy Model defined by the Hamiltonian Eq. (11), it appears as very convenient to consider a Bethe lattice. For a similar approach applied to ferromagnetic semiconductors see Ref [29]. In this specific section, the self-consistent equations are much simpler, and the general physical properties of the system are preserved.

Applying the DMFT formalism described in the previous section to a Bethe lattice, we obtain a local effective action for the two kind of sites
\[S_A = -\sum_{\sigma} \int_0^\beta d\tau \int_0^\beta d\tau' e^{i(\sigma)}(\tau)\mathcal{K}_A(\tau - \tau')c_{A\sigma}(\tau') - \frac{J}{2} \sum_{\sigma,\sigma'} \int_0^\beta d\tau S^{\sigma\sigma'}(\tau)e^{i(\sigma)}(\tau)c_{A\sigma}(\tau'), \]
\[S_B = -\sum_{\sigma} \int_0^\beta d\tau \int_0^\beta d\tau' e^{i(\sigma)}(\tau)\mathcal{K}_B(\tau - \tau')c_{B\sigma}(\tau'). \]
They are formaly equivalent to the compact expression Eq. (20). The main simplification obtained by considering a Bethe lattice rests on the fact that the cavity Green’s functions involved in Eq. (30) can now be replaced by local full Green’s functions. This procedure is exact in the limit of a large coordination number \(z \). The Bethe lattice self-consistent relations for the Kernels \(\mathcal{K}_A \) and \(\mathcal{K}_B \) are thus
\[\mathcal{K}_A(i\omega) = i\omega + \mu - x t_A^2 G_{cc}^c(i\omega) - (1-x) t_{AB}^2 G_{cc}^c(i\omega) \]
\[\mathcal{K}_B(i\omega) = i\omega + \mu - x t_A^2 G_{cc}^c(i\omega) - (1-x) t_{AB}^2 G_{cc}^c(i\omega), \]
where, in the large \(z \) limit, the nearest-neighbor hoppings have been rescaled: \(t_A \equiv \bar{t}_A / \sqrt{z} \), with similar definitions for \(t_B \) and \(t_{AB} \). We then apply the mean-field approximation, described in the first section, as an impurity solver for the local effective action \(S_A \) of an \(A \) site. Within mean-field approximation, the effective actions Eqs. (62, 63) are quadratic and the local Green’s functions can in turn be expressed explicitly as functions of the kernels \(\mathcal{K}_A \) and \(\mathcal{K}_B \)
\[\left(\begin{array}{c} G_A^{ff}(i\omega) \\ G_A^{ff}(i\omega) \\ \end{array} \right) = \left(\begin{array}{cc} i\omega + \lambda & r \\ r & \mathcal{K}_A(i\omega) \end{array} \right)^{-1}, \]
\[G_B^{cc}(i\omega) = \mathcal{K}_B^{-1}(i\omega). \]
Together with Eqs. (64, 65) and with the mean-field equations Eqs. (7, 8, 9) we have a complete set of self-consistent relations for the local Green’s functions and the effective parameters \(r, \lambda \) and \(\mu \).
V. APPLICATIONS OF THE FORMALISM

A. Off-diagonal randomness: non-magnetic random alloy

1. Formalism

In this section we consider off-diagonal randomness, i.e., hopping matrix elements. The model is defined by the Hamiltonian Eq. (1) without the Kondo interaction. This is a standard situation for the CPA and we discuss this case here only because we want to combine it later with the Kondo problem. We know that the CPA misses certain localization effects. Their importance in connexion with Kondo effect has been discussed in Ref. [11]. Since the spin components are decoupled, the system corresponds to a random tight-binding model of conduction electrons, identical to the one considered in Refs. [12,13]. Thus $G_{ij}(\tau - \tau') \equiv -\langle T_{\tau} c_i^\dagger(\tau) c_j(\tau') \rangle$ is the electron Green’s function defined for imaginary time. Since here we do not consider the Kondo interaction, the self-consistent equation for the averaged spectral weight of unity, and

$$\frac{\rho_A(\omega)}{\rho_B(\omega)} = \frac{x \rho_A(\omega)}{(1-x) \rho_B(\omega)}$$

Here G_A and G_B are the local Green’s functions G_{ii} on a site i of kind A (or B respectively), obtained by averaging over all the other site configurations A or B. For the sake of simplicity, we drop the chemical potential μ. This convention implies that the Fermi level energy is zero when the electron band is half-filled.

We define the local density of electronic states (DOS) associated with G_A and G_B

$$\rho_{A/B}(\omega) = -(1/\pi) \text{Im} G_{A/B}(\omega + i0^+)$$

and the averaged local DOS

$$\rho(\omega) = x \rho_A(\omega) + (1-x) \rho_B(\omega)$$

Here, within CPA or DMFT, all the local DOS’s of A sites are the same while a more accurate treatment would also show a spread there. It can be obtained by randomizing the distribution of the hopping matrix elements t_{AB} and t_{AB}. This could be done within the present DMFT formalism. By construction, ρ_A, ρ_B, and ρ have each a total spectral weight of unity, and A (B) atoms contribute with a weight x ($1-x$) to the averaged DOS ρ.

We didn’t find a general analytic solution for this set of equations, so that a numerical evaluation is required. Nevertheless, a dimensionless ratio emerges from these expressions

$$\alpha = t_{AB}/\sqrt{t_{AB}}$$

which compares the energy characterising the hopping of electrons between sites A and B with the hopping energies within an A and a B sublattice. Intuitively, if $\alpha > 1$, the electronic levels of lowest energy will be dominated by hopping between $A - B$ neighboring sites. In the opposite case of $\alpha < 1$, hopping within pure A or pure B sublattices dominates.
2. Numerical results: local density of states (DOS)

Choosing a Bethe tree structure as underlying lattice (this corresponds to a semi-elliptic DOS for the pure A or pure B system), we have computed $\rho_A(\omega)$ and $\rho_B(\omega)$ numerically for different values of the hopping elements. For the purpose of simplification, we present here some numerical results obtained for $t_A = t_B = t$ only. In the following, all energies are expressed in units of $\tilde{t} \equiv t\sqrt{z}$, where z is the coordination number of the lattice, and different values of $\alpha = t_{AB}/t$ are considered.

Figure 1 depicts the effect of off-diagonal randomness on the local DOS’s ρ_A, ρ_B, and ρ. The plots presented here are obtained for a concentration $x = 20\%$ of atoms of kind A. Qualitatively similar behavior is found for different concentrations. For $\alpha = 1$ ($t_{AB} = t_A = t_B$), our numerical results recover the semi-elliptic DOS corresponding to a regular tight-binding model. In the regime $\alpha < 1$, the DOS remains semi-elliptic like, with a rescaled bandwidth (see also FIG. 2 (b)). In the regime $\alpha > 1$, the DOS ρ_A corresponding to the minority atoms splits into two satellites peaks, centered around the energy $\pm t_{AB}$, while the DOS ρ_B corresponding to the majority atoms shows both a two satellites peak structure and a coherent peak around $\omega = 0$. The latter is reminiscent of the semi-elliptic one obtained in the absence of disorder ($\alpha = 1$). As a consequence, the averaged local DOS ρ is also characterized by a central peak and two satellites.

Integrating the local DOS, we define the average densities of electrons on sites A and B in the Fermi sea, as function of the Fermi energy E_F

$$n_{A/B} = c_A/B \int_{-\infty}^{E_F} d\omega \rho_{A/B}(\omega),$$

(77)

where $c_A = x$ and $c_B = 1 - x$. We analyse in FIG. 2 the microscopical origin of the satellites and central peak in the averaged DOS for large values of α. It appears that the two satellite peaks correspond to electronic excitations which are equally distributed over A and B sites, while the central peak is due to excitations of electrons on the majority B sites. Our interpretation is the following: when $\alpha > 1$, the electronic states with the lowest energy are obtained by forming $A - B$ bonds. The deepest levels of the Fermi sea thus correspond to electronic wave functions localized on clusters formed by alternating A and B atoms. In the following, we call the latter ”AB clusters”. We interprete the two satellite peaks as bonding and anti-bonding electronic states formed in these AB clusters. In the large z limit, each A atom can be associated with a neighboring atom B. Choosing the latter to point into the same (arbitrary) “direction” garantees that the so formed AB clusters contain exactly the same number of A and B atoms. As a consequence, the statistical weight of the AB clusters is $2x$, which is twice the concentration of the minority atoms A. Whether a given B site belongs to an AB cluster or to the embedding surface is left open. Nevertheless, the satellite peaks characterizing the DOS for $\alpha >> 1$ have precisely the statistical weight $2x$, which is equally distributed over A and B atoms (see FIG. 2 and FIG. 3 (a)). The remaining B atoms constitute hypersurfaces embedding the AB clusters. Considering that the dimension of the system is proportional to z, the embedding surfaces provide in the large z limit a contribution to the DOS (central peak) which is qualitatively similar to the one obtained for $\alpha = 1$ (i.e., semi-elliptic here). The spectral weight of the latter is $1 - 2x$. Gaps in the local DOS, with two satellites and a central peak appear only above a critical value of α. This is seen in FIG. 1.
FIG. 2: (a-b-c) Average local DOS $\rho(\omega) = x\rho_A(\omega) + (1-x)\rho_B(\omega)$ (top). (d-e-f) Filling of states on A sites (dotted line), B sites (dashed line), and both A and B sites (solid line), as a function of the Fermi level energy. Numerical results for $\alpha = 10$. The energy is in units of $\tilde{t} = t_A\sqrt{x} = t_B\sqrt{1-x}$. The concentration x of A atoms is equal to 0.01 ((a) and (d)), 0.2 ((b) and (e)), and 0.4 ((c) and (f)). The curves corresponding to $x = 0.6; 0.8; 0.99$ can be deduced by inverting A and B.

\begin{align*}
\rho &= x\rho_A + (1-x)\rho_B \\
\rho_A &= t_A\sqrt{x} \\
\rho_B &= t_B\sqrt{1-x}
\end{align*}

FIG. 3: Schematic plot of (a) the average local density of states of the conduction electrons $\rho = x\rho_A + (1-x)\rho_B$ in the limit $\alpha = t_{AB}/\sqrt{t_A t_B} >> 1$, (b) the local densities of states of the conduction electrons ρ_A (on a site A) and ρ_B (on a site B) in the limit $\alpha = t_{AB}/\sqrt{t_A t_B} << 1$. The concentration of atoms A is assumed to be $x < 1/2$.

- **Regime $\alpha < 1$**
 In the limit $\alpha \to 0$, the two subsystems A and B decouple, and the averaged local DOS ρ_A and ρ_B can be deduced from the DOS of a pure system by rescaling the energy as $t_A\sqrt{x}$ and $t_B\sqrt{1-x}$ respectively (see FIG. 3 (b)). As a consequence, when $t_A = t_B$, electrons with the lowest energy occupy predominantly majority atoms. When the density of conduction electrons is sufficiently large, the Fermi level moves into a region where electrons occupy both A and B sites. For that reason, the regime $\alpha < 1$ is qualitatively not very different from the regime $\alpha = 1$, except in the limit of a low density of conduction electrons.

B. Diagonal randomness: Kondo alloy

We consider next the transition between a diluted and a dense Kondo system. The model is defined by the KAM Eq. (1), with a periodic hopping element for the conduction electrons $t \equiv t_A = t_B = t_{AB}$. The limit $x \to 0$ corresponds to a single impurity Kondo model (SIKM), while $x = 1$ describes a Kondo lattice model (KLM). These models have been extensively studied [3] by using various approximations. When we consider a paramagnetic ground state, two energy scales are required [30,31,32] in order to describe the low temperature physical properties: T_K characterizes...
the onset of the Kondo effect, and T_{FL} characterizes the formation of a coherent Fermi liquid ground state.

On one side, the exact solution of the SIKM, based on the Bethe Ansatz [33,34] proves that these two scales are identical in the dilute limit $x \rightarrow 0$. The low temperature physical properties of the SIKM are thus universal (i.e., independent from the lattice structure, electronic filling and Kondo coupling) as soon as all the energy scales are rescaled by T_K.

On the other side, for the KLM these two energy scales are different. In earlier works it had been suggested that for small conduction electron densities T_{FL} is strongly reduced, i.e., to $T_{FL} \rightarrow T_K/t$ because of conduction electron "exhaustion" when singlet states form [35,36,37]. However this has turned out not to be the case and T_{FL} provides a reasonable estimate of T_K [37,20].

The KAM which is studied here allows for describing the crossover between the dilute regime (with $T_{FL}/T_K = 1$) and the dense regime (with T_{FL}/T_K depending on the electronic filling). From the static local magnetic susceptibility at zero temperature $\chi_{loc}(T = 0) \equiv \lim_{T \rightarrow 0} T^{1/2} \int_0^1 d\tau \langle S(\tau) \cdot S(0) \rangle$, we define an energy scale $T_0 \equiv 1/4\chi_{loc}(T = 0)$, which provides a reasonable estimate of T_{FL}.

FIG. (4) depicts the evolution of the ratio T_0/T_K for different values of the electronic filling n_c. It starts from $T_0/T_K = 1$ in the dilute limit $x \rightarrow 0$, as expected for the SIKM. With decreasing filling n_c this ratio is lower in the dense limit $x = 1$ corresponding to the KLM. This shows clearly that the crossover between the dense and the dilute regimes occurs when the concentration x of Kondo impurities is equal to the electronic filling n_c. Note that similar results have been obtained recently by Kaul and Vojta for a 20×20 sites square lattice (compare FIG. (4) with FIG. (2) of Ref. [11]).

![FIG. 4: Ratio between $T_0 = 1/4\chi_{loc}(T = 0)$ and T_K as a function of the Kondo impurity concentration x. The different curves correspond to different electronic fillings: from top to bottom, $n_c = 1; 0.8; 0.6; 0.4; 0.2$. The solid lines are guide for the eyes. The curves have been computed for hopping matrix elements $t \equiv t_A = t_B = t_{AB}$ and $J_K/t\sqrt{2} = 1.5$.](image)

The above feature can also be observed from the spectral function ρ_A, i.e., the local electronic DOS of a Kondo impurity. This is illustrated in FIG. (5) for an electronic filling of $n_c = 0.6$. Above the Kondo temperature, ρ_A has the same semi-elliptic shape as in the absence of a localized spin. When $T \approx T_K$ a Kondo resonance develops at the Fermi level. Neither the quantitative value of T_K nor the shape of the resonance depend on the concentration x. This suggests that the onset of the Kondo effect at T_K is not a collective coherent effect, but results from incoherent scattering of conduction electrons by the magnetic impurities. When the temperature is decreased far below the Kondo temperature, a collective coherent screening takes place, which is accompanied by the onset of the Fermi liquid regime. For $T << T_K$ the local DOS of A sites depends on the concentration and shows in the dilute regime $x \rightarrow 0$ the standard Kondo resonance, while a gap occurs in the dense regime $x \approx 1$. We are aware that the presence of a Kondo gap is an artefact of the mean-field approximation which we have introduced. Numerical studies of the KLM without this approximation show however, that a pseudo-gap will form [38]. Similarly to what we obtained for the ratio T_0/T_K, we find that the crossover between the dilute regime (without gap), and the dense regime (with a gap) occurs for $x = n_c$. FIG. (5) depicts this behavior for an electronic filling $n_c = 0.6$. Similar results are obtained for $n_c = 0.2; 0.4; 0.8$.

Even without the exhaustion argument, it appears that the crossover between a dilute and a dense Kondo system occurs when the concentration x of Kondo impurities is equal to the electronic filling n_c. We expect this result to apply
also to the Anderson model, which still contains the charge degrees of freedom associated with the spins S_i of the A sites. This explains why the single impurity models, characterized by a unique low temperature scale $T_F \approx T_K$ are still able to describe the low temperature properties of alloys with a significant concentration of magnetic impurities, here A sites. As a consequence, in the experimental literature, the Kondo temperature of Kondo-like alloys is frequently estimated from different physical quantities, with no distinction being made between the quantities characterizing the Fermi liquid regime and those characterizing the onset of the Kondo effect. Nevertheless, two different energy scales, T_F and T_K, have been measured experimentally and analysed for several rare earth alloys. For example, some very promising experimental results dedicated to an analysis of the crossover between diluted and dense impurity systems can be found in Ref. [39] (alloy $Y_{1-x}Lu_xAl_3$), in Ref. [40] ($Ce_{1-x}La_xIr_2Ge_2$), or in Ref. [41] ($CeNiSi_2$).

C. Combined effects of randomness

In this section we consider the KAM Eq. (1) with randomness of the electronic hopping matrix elements t_{ij} and of Kondo alloying effects. We study the effect of alloying, described respectively by the parameters x and n_c, and of randomness, characterized by the parameter α defined by Eq. (76). For the sake of clarity we discuss here only the behavior of the two low temperature energy scales introduced in the previous section: the Kondo temperature T_K, characterizing the onset of incoherent singlet formation, and T_F, characterizing the onset of a coherent Fermi-liquid state. A good estimate of the latter can be obtained from the static local magnetic susceptibility at $T = 0$ by the relation $T_F \approx T_0 = 1/4\chi_{loc}(T = 0)$.

1. Kondo temperature

Next we study the effect of the concentration x on the Kondo temperature by considering various values of randomness α and electronic filling n_c. The main variations we observe for T_K result from the effects of randomness on the non interacting local DOS ρ_A, which are analysed in Section V A.

Figure 6 shows the dependence of the Kondo temperature with respect to x. Without randomness (i.e., for $\alpha = 1$), the Kondo temperature does not depend on x (see FIG. 6(b)). This reflects the fact that T_K characterizes incoherent scattering of the conduction electrons on the spins S_i. Due to the exponential dependence of T_K on $\rho_A(E_F)$ (see Eq. (23)), with possible gap opening (in the regime $\alpha > 1$) or bandwidth renormalisation (in the regime $\alpha < 1$), T_K can be strongly reduced in certain regimes of concentrations x as soon as $\alpha \neq 1$.

- Regime $\alpha < 1$

A decrease of α does not really change the value of T_K, except in the dilute regime $x << 1$, where T_K is strongly reduced (see FIG. 6(a)). The reason is that when x and α are small, the effective bandwidth of the local electronic

\[x=0.01 \quad x=0.6 \quad x=0.99 \]

\[0 \quad 1 \quad 0 \quad 2 \]

\[\rho_A(\omega) \quad \rho_A(\omega) \quad \rho_A(\omega) \]

FIG. 5: Local electronic DOS on a magnetic site for an electronic filling $n_c = 0.6$. Kondo impurity concentrations $x = 0.01$ (diluted), $x = n_c = 0.6$ (intermediate) and $x = 0.99$ (dense). The energy unit is $\tilde{t} \equiv t_A\sqrt{z} = t_B\sqrt{z} = t_{AB}\sqrt{z}$ and $J_K/\tilde{t} = 1.5$. (a) Temperature $T > T_K$. (b) Temperature $T \approx T_K$. (c) Temperature $T = T_K/300$.
FIG. 6: Kondo temperature T_K as a function of concentration x of A sites. Electronic filling is $n_c = 0.4$. Kondo coupling is $J_K = 1.5$. The energy scale is $\tilde{t} \equiv t_A \sqrt{z} = t_B \sqrt{z}$. (a) $\alpha = 0$. (b) $\alpha = 1$. (c) $\alpha = 2$. (d) $\alpha = 3$.

DOS on A sites is strongly reduced (see FIG. 3 (b)). Therefore the conduction electrons will fill the states at the non-magnetic B sites and $\rho_A(E_F)$ is reduced.

- **Regime $\alpha > 1$**

When α increases, two critical concentrations x_{c1} and x_{c2} occur. They define three regimes (see FIG. 6 (c) and (d), and FIG. 7). This is a consequence of the complex structure of the local DOS discussed in Section [VA] with a central and two satellite peaks (see FIG. 3 (a)).

For $x > x_{c2}$, the Kondo or A sites are in the majority. The Fermi level is in the central peak of the DOS, which precisely corresponds to electronic excitations on A sites. When x decreases from 1 to x_{c2}, the DOS is modified such that the Fermi level approaches the band edge of the central peak. As a consequence, T_K decreases and can even vanish for $x = x_{c2}$ if α is large enough.

For $x_{c1} < x < x_{c2}$, the Fermi level is positioned in a satellite peak, corresponding to electronic excitations on both magnetic and non-magnetic sites. T_K is finite but reduced compared to its value at $x = 1$. For $x < x_{c1}$, the Fermi level is in the central peak, but the latter corresponds now to excitations on the non-magnetic B sites which here are in the majority. As a consequence, ρ_A and T_K are strongly reduced in this regime and can even vanish if α is large enough.

Relations between x_{c1}, x_{c2} and the electronic filling n_c can be obtained from the observation that the spectral weight of the satellite peaks is proportional to the concentration of the minority A or B sites. We thus find

\begin{align}
 x_{c1} &= n_c/2 \\
 x_{c2} &= 1 - n_c/2 .
\end{align}

These relations correspond to the critical values $x_{c1} = 0.2$ and $x_{c2} = 0.8$ obtained numerically for $n_c = 0.4$ (see FIGS. 3 (c) and (d)). They are also verified by numerical results for other electronic fillings.

- **Regime $\alpha < 1$**

The cross-over separating the dense and dilute regime is well localized at $x = n_c$ and $\alpha = 1$, and smoothed when α decreases (compare FIG. 3 (a) and (b)). At low concentrations, numerical calculations are less accurate. This is related to the strong decrease of T_K when $x \to 0$ (see FIG. 3 (a)). For this reason, we are not able to provide reasonable results concerning T_0/T_K for $x < 0.1$.

In the following we discuss the ratio between T_{FL} and T_K. The effect of varying the electronic filling was discussed in Section [VB] for $\alpha = 1$. Figure 8(b) reproduces for convenience the plot of T_0/T_K as a function of x corresponding to $\alpha = 1$ and $n_c = 0.4$ shown in FIG. 4. The other plots of FIG. 8 depict the effect of varying α with the electronic filling kept fixed. We obtained similar results with other values of n_c. For the sake of clarity, we show here only the numerical results which we obtained for $n_c = 0.4$.

- **Regime $\alpha < 1$**

The cross-over separating the dense and dilute regime is well localized at $x = n_c$ and $\alpha = 1$, and smoothed when α decreases (compare FIG. 3 (a) and (b)). At low concentrations, numerical calculations are less accurate. This is related to the strong decrease of T_K when $x \to 0$ (see FIG. 3 (a)). For this reason, we are not able to provide reasonable results concerning T_0/T_K for $x < 0.1$.
FIG. 7: Schematic plot of the Kondo temperature T_K as a function of concentration x of A sites for strong $A-B$ electronic hopping ($\alpha = t_{AB}/\sqrt{t_A t_B} >> 1$). Three regimes are recognized, separated by the concentrations x_{c1} and x_{c2}.

FIG. 8: Ratio of $T_0 \equiv 1/4\chi_{loc}(T = 0) \approx T_{FL}$ and the Kondo temperature T_K as a function of the concentration x of A sites. Electronic filling: $n_c = 0.4$. Kondo coupling: $J_K = 1.5$. The energy scale is $\tilde{t} \equiv t_A\sqrt{z} = t_B\sqrt{z}$. (a) $\alpha = 0$. (b) $\alpha = 1$. (c) $\alpha = 2$. (d) $\alpha = 3$.

- **Regime $\alpha > 1$**

When α increases, two different effects occur: the crossover between the dense and dilute regime becomes more pronounced around $x = n_c$ (see FIGS. 8 (c) and (d)) and some "anomalies" occur at the critical concentrations x_{c1} and x_{c2} (see Eqs. (79)). When x is approaching any of these critical values, the ratio T_{FL}/T_K becomes small (see $x = x_{c1} = 0.2$ and $x = x_{c2} = 0.8$ on FIG. 8 (d)). Similar results were obtained for other values of n_c (0.2; 0.4; 0.6; 0.8).

The general shape of the curve T_{FL}/T_K in the regime $\alpha > 1$ is depicted by FIG. 9. When $T_{FL}/T_K \approx 1$, the physical properties of the system are characterized by two universal temperature regimes: for $T > T_K$, the thermodynamic and transport properties are those of a light Fermi liquid (due to the conduction electrons), and the magnetic properties are characteristic of free moments (for example, the magnetic susceptibility follows a Curie law). For $T < T_{FL}$, the physical properties correspond to an heavy Fermi liquid.

When $T_{FL}/T_K << 1$, an intermediate regime occurs, corresponding to $T_{FL} < T < T_K$, for which the temperature dependence of the physical properties might have non-Fermi-liquid or spin-liquid behavior.

Note that the peak at $x = 0.8$ in FIG. 8 (d) (and more generally at $x = x_{c2}$ on FIG. 9) has been explained in Ref. [42] to which we refer.
The aim of this investigation has been to develop a description of Kondo alloys, i.e., of systems with randomly placed Kondo ions of concentration x. The values of x were ranging from close to $x = 0$ (diluted Kondo impurities) to $x = 1$ (Kondo lattice). Different hopping matrix elements were assumed depending on whether the initial and final sites were Kondo sites or nonmagnetic sites. By expressing the spin of a Kondo site in terms of fermionic operators and by making a mean-field approximation we derived a Hamiltonian which has in addition to the conduction band a narrow f band describing the low energy excitations of the system. The disorder of the system was treated by a (dynamical) coherent potential approximation (CPA) and by a dynamical mean-field theory (DMFT) approach. It was reconfirmed for the special system considered here that both approaches yield identical equations. For a practical application of the formalism a Bethe tree structure was chosen for convenience. It corresponds to working with a semi-elliptic density of states. Various quantities were calculated as function of the ratio $\alpha = t_{AB}/\sqrt{t_A t_B}$, i.e., of different degrees of off-diagonal disorder and of Kondo ion concentration x. Among them were the local density of states for the Kondo sites (A atoms) and for the nonmagnetic sites (B atoms). The averaged local densities of states depend strongly on the degree of disorder and on concentration x. Of special interest was the case of diagonal randomness only. In that case $t_A = t_B = t_{AB}$ and $\alpha = 1$. The ratio between the Fermi liquid temperature and the Kondo temperature was investigated as function of x, i.e., ranging from the impurity to the Kondo lattice limit. This ratio was shown to be of relevance for a number of experiments. Finally, a detailed study was presented for the case of a combined diagonal and off-diagonal disorder. In particular the behavior of the Kondo temperature as function of x was studied in detail. The same holds true for the ratio of Fermi liquid to Kondo temperature. The latter can have a strong monotonic behavior as function of x with peaks at different values of x. They depend on the particular filling of the conduction band as well as on the parameter α. Depending on the ratio T_{FL}/T_K we have obtained universal temperature regimes where the system has either properties of a liquid with light fermions and quasi-free local moments or of a liquid with heavy quasiparticles. There is also a temperature regime possible with non-Fermi liquid behavior. A still open question is under which conditions Luttinger’s theorem is inapplicable and how one can calculate in that case the volume enclosed by the Fermi surface. As is well known that volume does not include the electrons which form localized moments when we are in the regime of a light Fermi liquid. But they must be included when we are in the regime of heavy quasiparticles. Although the present investigation sheds some new light on Kondo alloys and their properties there are important issues remaining for the future.

Acknowledgments

We would like to thank N.B. Perkins for stimulating discussions during the early phase of this work. We thank M. Vojta for comments which helped us to improve the manuscript. We thank M. Capone, K. Kikoin, M. Laad and C. Lacroix for fruitful discussions.
APPENDIX A: CPA EQUATIONS

1. Starting definitions

Considering the mean-field Kondo Alloy Model defined by the effective Hamiltonian Eq. (11), we define the Green’s function, transfer integral, and local propagator matrices, as

\[
\begin{align*}
\tilde{G}_{ij} &= \begin{pmatrix}
\hat{x}_i \hat{x}_j G_{ij}^{ff} & \hat{x}_i \hat{y}_j G_{ij}^{fc} & \hat{y}_i \hat{x}_j G_{ij}^{cf} & \hat{y}_i \hat{y}_j G_{ij}^{cc}
\end{pmatrix}, \\
\widetilde{W} &= \begin{pmatrix}
0 & 0 & 0 \\
0 & t_A & t_{AB} \\
0 & t_{AB} & t_B
\end{pmatrix}, \quad (A1)
\end{align*}
\]

The projection operator \(\hat{x}_i = 1 - \hat{y}_i\) is unity if \(i\) refers to site \(A\), and zero otherwise.

2. Equation of motion

The equations of motion derived from the Hamiltonian Eq. (11) for the scalar Green’s functions \(G_{ij}^{ff}, G_{ij}^{fc}\), and \(G_{ij}^{cc}\), can be cast into the following matrix form:

\[
\begin{align*}
\tilde{G}_{ij}(i\omega) = \tilde{\Pi}_i(i\omega) \delta_{ij} + \tilde{\Pi}_i(i\omega) \tilde{W} \gamma_{ij} \tilde{\Pi}_j(i\omega) + \sum_l \tilde{\Pi}_i(i\omega) \tilde{W} \gamma_{il} \tilde{\Pi}_l(i\omega) \tilde{W} \gamma_{lj} \tilde{\Pi}_j(i\omega) + \cdots
\end{align*}
\]

We assume that the Green’s function and local propagator matrices can be inverted. This hypothesis can be satisfied by introducing a non zero parameter \(\delta\) such that \(\hat{x}_i = 1 - \delta\) (or \(\hat{x}_i = \delta\)) if \(i\) is a site \(A\) (respectively a site \(B\)). The limit \(\delta = 0\) is taken at the end of the calculations. Eq. (A3) can then be expressed as

\[
\begin{align*}
\left(\tilde{G}^{-1}\right)_{ij}(i\omega) = \tilde{\Pi}_i^{-1}(i\omega) \delta_{ij} - \tilde{W} \gamma_{ij}.
\end{align*}
\]

3. Local self-energy approximation

Generalising the CPA procedure of Ref. (1213), we assume that the averaged Green’s function matrix is characterised by a local \(3 \times 3\) self-energy matrix \(\overline{\Sigma}\),

\[
\begin{align*}
\left(\overline{G}(i\omega)\right)^{-1} = i\omega \overline{I} \delta_{ij} - \overline{\Sigma}(i\omega) \delta_{ij} - \tilde{W} \gamma_{ij},
\end{align*}
\]

where \(\overline{I}\) is the \(3 \times 3\) identity matrix. Averaging over a random distribution of sites \(A\) and \(B\) restores the translation symmetry of the underlying lattice. The averaged matrix Green’s function is periodic in space, and its Fourier transform is

\[
\begin{align*}
\overline{G}_k &= \sum_{ij} e^{-ik.(R_i-R_j)} \left[\tilde{G}_{ij}\right].
\end{align*}
\]

Equation (A3) can then be expressed as

\[
\begin{align*}
\overline{G}_k^{-1}(i\omega) = i\omega \overline{I} - \overline{\Sigma}(i\omega) - \tilde{W} \gamma_k.
\end{align*}
\]

Next we establish a complete set of self-consistent equations for the Green’s function and the self-energy, whose matrix-elements are parametrised as follow

\[
\begin{align*}
\overline{\Sigma}(i\omega) = \begin{pmatrix}
\Sigma_A(i\omega) & \sigma_1(i\omega) & \sigma_2(i\omega) \\
\sigma_1(i\omega) & \Sigma_B(i\omega) & \Sigma_{AB}(i\omega) \\
\sigma_2(i\omega) & \Sigma_{AB}(i\omega) & \Sigma_{BB}(i\omega)
\end{pmatrix} = \begin{pmatrix}
\Sigma_A^{ff}(i\omega) & \Sigma_A^{fc}(i\omega) & \sigma_1(i\omega) \\
\Sigma_A^{cf}(i\omega) & \Sigma_A^{cc}(i\omega) & \sigma_2(i\omega) \\
\sigma_1(i\omega) & \sigma_2(i\omega) & \Sigma_{BB}(i\omega)
\end{pmatrix}.
\end{align*}
\]
4. Off-diagonal blocks of $\tilde{\Sigma}$: no double $A-B$ occupancy

A first set of relations is obtained by expressing the local averaged Green’s function in terms of their $k-$dependent counterparts.

$$
\begin{pmatrix}
\tilde{G}_{00}(i\omega)
\end{pmatrix} = \begin{pmatrix}
xG_{A}^{ff}(i\omega) & xG_{A}^{ce}(i\omega) \\
xG_{A}^{ce}(i\omega) & 0 \\
0 & 0 \\
0 & (1-x)G_{B}^{cc}(i\omega)
\end{pmatrix} = \sum_{k} \tilde{G}_{k}(i\omega).
$$

(A9)

Here \tilde{G}_{k} is of the form of Eq. (A7). Even if our approach artificially introduces two conducting bands A and B, the vanishing of the off-diagonal mixed $A-B$ matrix elements in (\tilde{G}_{00}), prevents a double association of A and B atoms to the same site. The two corresponding equations determine the self-energy off-diagonal blocks σ_{1} and σ_{2}.

5. Diagonal blocks of $\tilde{\Sigma}$: scattering of the effective medium

Self-consistent relations for Σ_{A} and Σ_{B} are obtained by requiring that the scattering of electrons of the effective medium by a given site vanishes on average. For a given random configuration of the alloy, and using Eqs. (A4, A5), the Green’s function \tilde{G}, is related to its average by

$$
\begin{pmatrix}
\tilde{G}^{-1}
\end{pmatrix}_{ij} = \begin{pmatrix}
\tilde{G}
\end{pmatrix}^{-1}_{ij} - \tilde{v}_{i} \delta_{ij},
$$

(A10)

where

$$
\tilde{v}_{i}(i\omega) = i\omega \tilde{\Pi}_{i}^{-1}(i\omega) - \tilde{\Sigma}(i\omega)
$$

(A11)

The single-site scattering $T-$matrix on site i is given by

$$
\begin{pmatrix}
\tilde{\tau}_{i}
\end{pmatrix} = \begin{pmatrix}
\tilde{I} - \tilde{v}_{i} \begin{pmatrix}
\tilde{G}
\end{pmatrix}_{ii}
\end{pmatrix}^{-1} \tilde{v}_{i}
$$

(A12)

$$
= \begin{pmatrix}
\tilde{v}_{i}^{-1} - \begin{pmatrix}
\tilde{G}
\end{pmatrix}_{ii}
\end{pmatrix}^{-1}
$$

(A13)

As mentioned above, the required matrix-inversions can be performed by introducing a non-zero parameter δ such that \tilde{v}_{i} is equal to $1 - \delta$ (site A) or δ (site B). We now consider the limit $\delta = 0$ and we express the scattering matrix $\tilde{\tau}_{A}$ and $\tilde{\tau}_{B}$ on a site A (respectively B). We find

$$
\begin{pmatrix}
\tilde{\tau}_{A}
\end{pmatrix} = \begin{pmatrix}
(v_{A}^{-1} - xG_{A})^{-1} & 0 \\
0 & 0 \\
0 & -(1-x)G_{B}^{cc}^{-1}
\end{pmatrix},
$$

(A14)

and

$$
\begin{pmatrix}
\tilde{\tau}_{B}
\end{pmatrix} = \begin{pmatrix}
-(xG_{A})^{-1} & 0 \\
0 & 0 \\
0 & (v_{B}^{-1} - (1-x)G_{B}^{cc})^{-1}
\end{pmatrix},
$$

(A15)

with

$$
v_{A}(i\omega) = -\begin{pmatrix}
\lambda & r \\
r & \mu
\end{pmatrix} - \Sigma_{A}(i\omega),
$$

(A16)

$$
G_{A}(i\omega) = \begin{pmatrix}
G_{A}^{ff}(i\omega) & G_{A}^{ge}(i\omega) \\
G_{A}^{ef}(i\omega) & G_{A}^{ee}(i\omega)
\end{pmatrix},
$$

(A17)

$$
v_{B}(i\omega) = -\mu - \Sigma_{B}(i\omega).
$$

(A18)
We obtain the CPA equations for Σ_A and Σ_B by setting $[\tilde{\tau}_i] = x\tilde{\tau}_A + (1-x)\tilde{\tau}_B = 0$. The result is

\[
\Sigma_A(i\omega) = -\left(\frac{\lambda}{r} - \frac{1-x}{x}G_A^{-1}(i\omega)\right),
\]

\[
\Sigma_B(i\omega) = -\mu - \frac{x}{(1-x)G^c_B(i\omega)}.
\]

(A19)