Article

Selection of Tomato and Cucumber Accessions for Waterlogging Sensitivity through Morpho-Physiological Assessment at an Early Vegetative Stage

Anna Kołton 1,*, Kinga Kęska 2 and Małgorzata Czernicka 2

1 Department of Botany, Physiology and Plant Protection, Faculty of Biotechnology and Horticulture, University of Agriculture in Krakow, al. 29 Listopada 54, 31-425 Krakow, Poland
2 Department of Plant Biology and Biotechnology, Faculty of Biotechnology and Horticulture, University of Agriculture in Krakow, al. 29 Listopada 54, 31-425 Krakow, Poland; kinga.keska@urk.edu.pl (K.K.); malgorzata.czernicka@urk.edu.pl (M.C.)

Received: 24 August 2020; Accepted: 27 September 2020; Published: 1 October 2020

Abstract: Waterlogging anomalies have recently increased, causing a reduction in yield and the loss of billions of dollars. Plant selection for increased tolerance to stress factors requires parameters with high sensitivity, as well as fast and inexpensive measurements. The aim of this study was to select tomato and cucumber accessions that reveal sensitivity and tolerance to waterlogging stress at an early vegetative stage. The selection of effective criteria for assessing plants was also an important issue. A total of 19 cucumber (including four highly homozygous) and 16 tomato accessions were evaluated, and plants with three true leaves were examined. The root zone of stressed plants was waterlogged for 7 days in a deep container. Morphological and physiological characteristics were obtained after 7 days of treatment and used for cluster analysis for discrimination of tolerant and sensitive accessions. Significant decreases in \(F_\text{v}/F_\text{m} \), \(F_\text{v}/F_\text{m} \), Area, PI ABS, \(E_\text{T}/\text{ABS} \), and \(E_\text{T}/\text{TR}_0 \) parameters, as well as increases in \(D_\text{I}/\text{RC} \), were observed in sensitive accessions, with no changes in tolerant plants. The OJIP test parameters (\(F_\text{v}/F_\text{m} \), PI ABS, \(D_\text{I}/\text{RC} \), and Area) were more sensitive in selecting for waterlogging stress than \(F_\text{v}/F_\text{m} \). The present research can be used in breeding programs. Selected accessions will support a detailed explanation of the physiological differences in response to waterlogging stress in tomato and cucumber plants.

Keywords: submergence; OJIP test; selection criteria; hypoxia; tolerance

1. Introduction

As a result of climate change, waterlogging events have increased, causing billions of dollars’ worth of crop losses [1–3]. The yield loss caused by waterlogging may vary between 15% and 80%, depending on the species (cotton, maize, wheat, rice, and soybean); soil type; and the duration of stress [4,5]. A reduction in the yield of vegetables due to flooding stress has also been observed, in tomato (Solanum lycopersicum L.) by 40% and sweet potato (Ipomea batatas L. Poir) up to 56% [6]. Understanding the morphological, physiological, and molecular mechanisms that underlie waterlogging (WL) tolerance presents a challenge to research. The establishment of selection criteria for WL-tolerant genotypes and breeding of WL-tolerant cultivars are critical for the expansion of cultivation, particularly in areas with frequent and high rainfall. An ideal WL-tolerant cultivar should not only survive waterlogging, but also rapidly recover to the control level [4].

In agricultural soils, waterlogging often occurs because of heavy rainfall, but can also be due to inadequate soil drainage. Taking into account the height of the water surface produced, flooding could be classified as waterlogging when it covers only the roots, or as submergence when water...
completely covers the plant [7]. The saturation of soil with water reduces gas exchange with the atmosphere, causing the oxygen concentration to decrease rapidly and leading to O₂ deficiency (hypoxia) or O₂ absence (anoxia). Oxygen diffuses about 10,000 times slower in water than in the air, and this restricts aerobic respiration by the roots [8]. Limited oxygen availability for plants often occurs in hydroponic cultivation in environments without appropriate aeration [9] and also is induced by improper irrigation [10].

Plants growing in waterlogged soils can tolerate oxygen deficiency by shifting from aerobic to anaerobic respiration, although the latter is less efficient for ATP production. Moreover, this process produces harmful metabolic products that could cause plant death, i.e., acetaldehyde or lactic acid [11,12]. Most crops are WL-sensitive; however, the extent of damage depends on the species, the stage of development, and the climatic conditions, as well as on the duration of exposure to stress [1]. Tomato (Solanum lycopersicum L.) and cucumber (Cucumis sativus L.) are classified as sensitive to root hypoxia [13–18], although differences amongst genotypes regarding their tolerance to this stress have been reported [19–21]. The variability of responses to root hypoxia among genotypes suggests that different strategies have evolved to deal with the stress. Tolerance to waterlogging mostly depends on the ability to develop specialized structures, allowing aeration of the tissues, which includes the formation of aerenchyma, adventitious roots, stem hypertrophic lenticels, and stem cracks [22–25]. Waterlogging stress induces senescence, resulting in leaf chlorosis, necrosis, and leaf loss [26]. The root system is strongly affected, as evidenced by the reduction in wheat (Triticum aestivum L.) root biomass [27]. Under waterlogging conditions, physiological disturbances are induced in plants, such as stomata closure and reductions in transpiration and photosynthetic rates, leaf water potential and transport of carbohydrates, reduced absorption of nutrients, and hormonal changes [28–30].

High sensitivity parameters are used for the selection of plants with increased tolerance to a stress factor. These also need to be fast and inexpensive because analysis of huge plant populations is required. Visual symptoms (visual assessment) parameters related to agronomic characteristics, such as yield or growth, molecular markers, and physiological parameters, are used to assess plant tolerance to stress factors [31–34]. As early as 1983, researchers used chlorophyll fluorescence to assess the effect of stress on the photosynthetic apparatus of plants, with the authors of the study suggesting their usefulness in plant breeding [35]. Since then, chlorophyll fluorescence has been used in many studies to assess the effect of stress (including waterlogging stress) on green parts of plants, and these have confirmed the usefulness of this method (for example [36–38]). Therefore, in our research, we have applied growth parameters as well as chlorophyll fluorescence parameters for the evaluation of plant tolerance to waterlogging stress.

Plenty of studies have demonstrated that plants at the seedling stage were consistently used for, among others, screening genotypes that displayed tolerance to variety of stresses, such as flooding in barley (Hordeum vulgare L.) [37] and hypoxia in cotton (Gossypium hirsutum L.) [39]. In the case of the tomato, plants at the seedling stage were used for the selection of plants tolerant to chilling [40], heat [41], and salinity [42,43], whereas cucumber seedlings, according to the literature, were subjected to submergence in order to select ones tolerant and sensitive to a lack of oxygen [44]. As Zou [34] reported, plants of Brassica napus L. that reveal tolerance to waterlogging at the seedling stage can demonstrate the same tolerance at later developmental stages, and moreover, assessment of tolerance at the seedling stage can be more efficient.

The aim of this study was to evaluate height, weight, leaf number, and chlorophyll fluorescence parameters of tomato and cucumber accessions and their responses to waterlogging stress at an early vegetative stage. Our research could be useful in indicating accessions that may be exploited as potential parental lines in breeding programs to develop waterlogging-tolerant cultivars. Moreover, an important issue is indicating effective selection criteria for the assessment of plant waterlogging stress tolerance. The hypothesis of this study was that accessions differ with tolerance to waterlogging stress. Furthermore, their morphological and physiological characteristics can be used for discrimination of
the tolerance of tomato and cucumber plants to waterlogging stress at the seedling stage, with cluster analysis being useful for the indication of more tolerant and sensitive accessions. The presented results have the potential to be further used by breeders and scientists for developing cultivars with improved hypoxia tolerance and increased yield production under waterlogging stress.

2. Materials and Methods

2.1. Plant Materials and Cultivation

Seeds of 19 cucumber and 16 tomato accessions were provided by Polish breeding companies, i.e., KHiNO Polan, PlantiCo, and Spójnia HiNO (Table 1). Seeds were sown in 40-cell multi-pots; each cell had volume of 0.23 dm3. Cells were fulfilled with peat substrate Klasmann KTS-2 (Germany). According to the manufacturer, the peat substrate contained, as follows (in mg dm$^{-3}$): 250–500 N, 170–230 P$_2$O$_5$, 320–500 K$_2$O, and 80–120 Mg. The salinity and pH were 2.0 g dm$^{-3}$ and 5.5–6.5, respectively. Seeds were cultivated in a greenhouse and, after germination, were lit with supplementary radiation (High-Pressure Sodium HPS lamps) to prolong the day length to 16 h. Minimum photosynthetic photon flux density (PPFD) on plant level during the day was 80 ± 20 µmol m$^{-2}$ s$^{-1}$ (when only radiation from HPS lamps reached the plants). The ambient temperature during tomato cultivation was 25.1 ± 4.8 °C in the day, and 22.3 ± 6.0 °C in the night. During cucumber cultivation, the daily average temperature was 27.6 ± 6.1 °C, and the night temperature was 24.1 ± 7.1 °C.

Table 1. Description of plant material used in the study.

Cucumis sativus L.	Solanum lycopersicum L.	Origin		
Accession	Breeding Status	Accession	Breeding Status	Origin
GROT	F1 cultivar	POL 1/15	F1 cultivar	KHiNO Polan, PL
MARKUS	Hyacarpic	POL 2/15	Breeding line BC	
TYTUS	F1 cultivar	POL 3/15	Breeding line	
B1F1	Hyacarpic	POL 4/15	Breeding line	
B2F1	Double haploid line	POL 5/15	Breeding line	
DH1	Double haploid line	POL 6/15	Breeding line	
DH2	Double haploid line	POL 7/15	Breeding line BC	
DH3	Double haploid line	POL 8/15	Breeding line	
DH4	Double haploid line	PZ 115	Cultivar	
	Double haploid line	PZ 215	Cultivar	
		PZ 315	F1 cultivar	
		PZ 415	Cultivar	
		PZ 515	F1 cultivar	PlantiCo, PL
		PZ 615	Cultivar	
		PZ 715	Cultivar	
		PZ 815	Cultivar	
		NOE1	F1 cultivar	Spójnia HiNO
		NOE2	F1 cultivar	
		NOE3	F1 cultivar	
		NOE4	F1 cultivar	
		NOE5	F1 cultivar	

2.2. Stress Treatment

Tomato and cucumber seedlings, at the 3–4 fully expanded mature leaf stage, were divided into 2 equal groups: the Control and Stress groups. Before stress treatment, the percent volumetric
water content (VWC) was measured using a Delta-T Devices SM150 soil moisture sensor kit (Delta-T Devices Ltd., Cambridge, United Kingdom) and plants were watered to obtain a soil moisture level up to 30%. The root zone of tomato and cucumber plants from the Stress group were waterlogged for 7 days (Figure 1) in a deep tray containing water. Plants from the Control group were watered as needed. The oxygen level in the air and in the water were monitored during the experiment by a Dissolved Oxygen (DO) Meter (HI 2040-02 edge, Hanna instruments, Woonsocket, RI, USA). The oxygen concentration in the water reached a value of 2.6 mg dm$^{-3}$ (air saturation = 29.2%, temperature = 20 °C) and that level was maintained to the end of the stress treatment, whereas in the air the oxygen concentration was 9.20 mg dm$^{-3}$.

![Figure 1. Scheme presenting the parameters measured during the experiment.](image)

2.3. Growth Analysis

Before the waterlogging treatment, we labelled 20 random plants from the Control (C) and Stress groups (S) for further analysis. At the 0 time-point and after 7 days of waterlogging, we determined the numbers of leaves on Control and Stress plants. After 7 days of treatment, the following parameters were measured: plant height (only shoots) (cm), measured with a ruler, and stem weight (with leaves) (g), determined by a laboratory scale (Ohaus, Parsippany, NJ, USA) (Figure 1). Plant height and weight were presented as a percentage ratio (%), assuming Control values as 100%.

2.4. Chlorophyll a Fluorescence Analysis

Chlorophyll a fluorescence was measured on the third leaf from the top of the plant, after 30 min dark adaptation with a special clip. The analyses were made after treatment with 3500 µmol m$^{-2}$ s$^{-1}$ light intensity. In the case of each accession, we performed the measurements on 8 plants from the Control or Stress groups. Chlorophyll a fluorescence was measured using a HandyPea portable fluorometer (Hansatech, King’s Lynn, UK). The fast phase of the fluorescence transient was denoted as OJIP, where the letters indicate characteristic points on the fluorescence induction curve: O is for origin (first measured minimal level), J and I are intermediates, and P is the maximum level of fluorescence curve. For simplicity, the analysis of OJIP fluorescence transient was called the JIP-test [45]. Some of the JIP-test parameters were calculated with formulas from Stirbet and Govindjee [45] and Stirbet et al. [46], as follows: F_0 (minimum chlorophyll a fluorescence), F_m (maximum chlorophyll a fluorescence after dark adaptation), F_v (maximum variable fluorescence), F_v/F_0 (ratio of the photochemical and non-photochemical processes in photosystem II (PSII)), the maximum efficiency of the photochemical processes of PSII, F_v/F_m (the maximum quantum yield of PSII photochemistry), T_{f/f_0} (time to reach the maximum chlorophyll fluorescence), Area (area above the OJIP transient and Fm line), F_m/F_0 (the stable parameter in healthy leaves, value between 4–5), PI ABS (performance index on an absorption basis),
ABS/RC (absorbed photon flux per PSII reaction center (RC) or apparent antenna size of an active PSII), TR$_0$/RC (maximum trapped exciton flux per active PSII), ET$_0$/RC (the flux of electrons transferred from the primary electron acceptor (QA) per active PSII reaction center), DI$_0$/RC (the flux of energy dissipated in processes other than trapping per active PSII reaction center), ET$_0$/ABS (quantum yield of electron transport from QA), and ET$_0$/TR$_0$ (efficiency with which a PSII trapped electron is transferred from QA).

2.5. Statistical Analysis

Euclidean distances were computed using Ward’s method between samples from Control and Stress groups of each tomato and cucumber accession. Prior to analysis, we standardized the data. Ward’s method was applied and observations with high values of measured features were clustered together and the same rule was applied with low values of parameter observations. After cluster analysis was performed, we created a dendrogram with a marked cut-off point dividing the analyzed objects into distinct clusters. The cut-off point was set at a clear clustering point and is marked with a colored line in the graph. Differences between clusters and between Control and Stress groups were determined using Student’s t-test. The level of significance was established as $p < 0.05$. All data analyses were made using STATISTICA 13 (TIBCO Software Inc. (2017) from Statistica (data analysis software system, version 13. http://statistica.io)).

3. Results

The presented results compared the response of 15 cucumber and 16 tomato accessions to waterlogging stress. For clear presentation, we divided the results into two subsections. Additional analyses were made with four homozygous accessions of cucumber and are presented in the Supplementary Materials Section.

3.1. Cucumber

Cluster analysis based on all tested parameters and 30 treatments (15 cucumber accessions each as Control and Stress) were classified into two discrete groups with an Euclidean distance of 20 (Figure 2). Nine treatments were included in cluster 1 and 21 others were included in cluster 2.

The differences between cluster 1 and 2 are presented in Table 2. Cluster 1 consisted of groups with favorable values of determined parameters, in contrast to cluster 2, where groups with less favorable values were clustered. Interestingly, the mean value of two parameters (increase in leaf number and Tfm) were similar in both clusters. Other parameters were significantly different between clusters. A significant decrease in growth, Fm, Fv, Fv/F$_0$, Fv/Fm, Area, Fm/F$_0$, PI ABS, ET$_0$/RC, ET$_0$/ABS, and ET$_0$/TR$_0$ parameters were observed in cluster 2 as compared to cluster 1. As well as an increase in weight, we also observed increases in F$_0$, ABS/RC, TR$_0$/RC, and DI$_0$/RC.
Agronomy 2020, 10, x FOR PEER REVIEW 5 of 19

active PSII reaction center), DI0/RC (the flux of energy dissipated in processes other than trapping per active PSII reaction center), ET0/ABS (quantum yield of electron transport from QA), and ET0/TR0 (efficiency with which a PSII trapped electron is transferred from QA).

2.5. Statistical Analysis
Euclidean distances were computed using Ward’s method between samples from Control and Stress groups of each tomato and cucumber accession. Prior to analysis, we standardized the data. Ward’s method was applied and observations with high values of measured features were clustered together and the same rule was applied with low values of parameter observations. After cluster analysis was performed, we created a dendrogram with a marked cut-off point dividing the analyzed objects into distinct clusters. The cut-off point was set at a clear clustering point and is marked with a colored line in the graph. Differences between clusters and between Control and Stress groups were determined using Student’s t-test. The level of significance was established as p < 0.05. All data analyses were made using STATISTICA 13 (TIBCO Software Inc. (2017) from Statistica (data analysis software system, version 13. http://statistica.io)).

3. Results
The presented results compared the response of 15 cucumber and 16 tomato accessions to waterlogging stress. For clear presentation, we divided the results into two subsections. Additional analyses were made with four homozygous accessions of cucumber and a presented in the Supplementary Materials section.

3.1. Cucumber
Cluster analysis based on all tested parameters and 30 treatments (15 cucumber accessions each as Control and Stress) were classified into two discrete groups with an Euclidean distance of 20 (Figure 2). Nine treatments were included in cluster 1 and 21 others were included in cluster 2.

Table 2. Mean value of each parameter determined for both clusters (cucumber plants). Bold p-values indicate statistically significant differences between cluster 1 and cluster 2, estimated with Student’s t-test and p < 0.05.

Parameter	Cluster 1	Cluster 2	p-Value
% weight change	97	103	0.0000
% height change	93	88	0.0136
Relative leaf number	1.11	1.05	0.1955
F0	444	464	0.0000
Fm	2496	2397	0.0000
Fv	2052	1932	0.0000
Fv/F0	4.65	4.22	0.0000
Fv/Fm	0.82	0.80	0.0000
Tfm	172	171	0.8759
Area	27,039	22,302	0.0000
Fm/F0	5.65	5.22	0.0000
PI ABS	1.11	0.79	0.0000
ABS/RC	3.29	3.54	0.0000
TR0/RC	2.71	2.84	0.0000
ET0/RC	1.15	1.07	0.0000
Dl0/RC	0.59	0.70	0.0000
ET0/ABS	0.35	0.31	0.0000
ET0/TR0	0.43	0.38	0.0000

On the basis of Figures 2 and 3, we assigned accessions GM-50 and G404 of both Control and Stress groups in cluster 1, which were close to each other. This meant that their parameters did not change under stress conditions, and thus these accessions could have been considered as tolerant to hypoxia stress. To select one of these, we conducted a comparison of morphological and physiological parameters in Control and Stress groups, followed by statistical analysis (t-test, p < 0.05) (Table 3). As a result, in GM-50, two morphological parameters were changed between control and stressed

Figure 2. Results of cluster analysis for cucumber accessions using the Euclidean distance on the basis of morphological and physiological traits (Ward’s hierarchical algorithm); green line indicates the cut-off point.

Table 2. Mean value of each parameter determined for both clusters (cucumber plants). Bold p-values indicate statistically significant differences between cluster 1 and cluster 2, estimated with Student’s t-test and p < 0.05.

Parameter	Cluster 1	Cluster 2	p-Value
% weight change	97	103	0.0000
% height change	93	88	0.0136
Relative leaf number	1.11	1.05	0.1955
F0	444	464	0.0000
Fm	2496	2397	0.0000
Fv	2052	1932	0.0000
Fv/F0	4.65	4.22	0.0000
Fv/Fm	0.82	0.80	0.0000
Tfm	172	171	0.8759
Area	27,039	22,302	0.0000
Fm/F0	5.65	5.22	0.0000
PI ABS	1.11	0.79	0.0000
ABS/RC	3.29	3.54	0.0000
TR0/RC	2.71	2.84	0.0000
ET0/RC	1.15	1.07	0.0000
Dl0/RC	0.59	0.70	0.0000
ET0/ABS	0.35	0.31	0.0000
ET0/TR0	0.43	0.38	0.0000
conditions (the decrease of weight change and height change in stress treatment was observed), whereas in G404, four parameters were statistically disparate (the decrease of weight change, height change, and leaf number, as well as increase of Tfm in stress-treated plants were noticed). According to that analysis, we selected plants from cucumber accession GM-50 as they were more tolerant to oxygen deprivation in the root zone.

Figure 3. Euclidean distance between Control and Stress groups of each cucumber accession. White bars indicate accessions from control and stress treatments that were classified into cluster 1; light grey bars indicate accessions from control and stress treatments that were classified into different clusters; black bars indicate accessions from control and stress treatments that were classified into cluster 2.

Table 3. Mean value of each parameter determined in two cucumber accessions considered as more tolerant to waterlogging. Bold p-values indicate statistically significant differences between Control and Stress plants of each accession separately estimated with Student’s t-test and p < 0.05.

Parameter	GM-50 Control	GM-50 Stress	p-Value	G404 Control	G404 Stress	p-Value
% weight change	100	85	0.0000	100	93	0.0244
% height change	100	67	0.0000	100	65	0.0000
Relative leaf number	1.05	1.33	0.1529	1.30	0.78	0.0010
F0	423	439	0.0907	437	464	0.0696
Fm	2484	2569	0.1993	2453	2521	0.2838
Fv	2060	2130	0.2541	2016	2057	0.5182
Fv/Fm	4.88	4.85	0.8237	4.66	4.46	0.3244
Tfm	176	179	0.7788	164	186	0.0351
Area	29,868	29,264	0.6359	27,051	26,648	0.7991
Fm/F0	5.88	5.85	0.8226	5.66	5.46	0.3243
PI ABS	1.13	1.21	0.3860	1.26	1.10	0.2351
ABS/RC	3.40	3.31	0.2075	3.24	3.37	0.2383
TR0/RC	2.82	2.74	0.1317	2.66	2.74	0.2851
ET0/RC	1.23	1.21	0.5859	1.20	1.21	0.7823
DIL/RC	0.58	0.57	0.6829	0.58	0.63	0.2378
ET0/ABS	0.36	0.37	0.8337	0.37	0.36	0.4029
ET0/TR0	0.44	0.44	0.8227	0.45	0.44	0.4775
The selection of sensitive cucumber accession was based on the analysis of distances between accessions and their Control and Stress groups presented in Figures 2 and 3. Accessions GMG-30 and TYTUS were selected as hypothetically sensitive accessions since their Control groups were assigned to cluster 1, whereas the Stress groups were assigned to cluster 2, indicating dissimilarity in parameter values. TYTUS was chosen as a sensitive cucumber accession due to the number of changed parameters between control and stress conditions, i.e., 13, whereas in GMG-30, only four appeared to be different (Table 4).

Parameter	GMG-30 Control	GMG-30 Stress	p-Value	TYTUS Control	TYTUS Stress	p-Value
% weight change	100	100	0.5298	100	99	0.8431
% height change	100	72	0.0000	100	62	0.0000
Relative leaf number	0.86	1.23	0.0838	1.52	1.05	0.0082
F₀	413	456	0.0605	450	469	0.1380
Fm	2441	2405	0.6090	2527	2371	0.0049
Fv	2029	1949	0.3058	2077	1902	0.0023
Fv/F₀	4.93	4.42	0.0550	4.63	4.10	0.0057
Fv/Fm	0.83	0.81	0.0820	0.82	0.80	0.0035
Fm	173	159	0.2001	172	179	0.4821
Area	26,474	24,396	0.1341	27,277	22,771	0.0044
Fm/F₀	5.93	5.42	0.0549	5.63	5.10	0.0057
PI ABS	1.30	0.99	0.0357	1.04	1.25	0.0323
ABS/RC	3.24	3.51	0.0599	3.28	3.41	0.0802
TR₀/RC	2.69	2.82	0.1082	2.69	2.73	0.4889
ET₀/RC	1.21	1.17	0.1676	1.11	0.97	0.0139
DL₀/RC	0.55	0.69	0.0734	0.58	0.68	0.0052
ET₀/ABS	0.38	0.34	0.0247	0.34	0.29	0.0161
ET₀/TR₀	0.45	0.42	0.0286	0.42	0.36	0.0200

The parameters of both the more tolerant (GM-50) and more sensitive (TYTUS) accessions are presented in Figure 4. Control parameters were set as 1 and the parameters of Stress-treated plants were expressed as a percentage of Control. On the presented radar graph, it is easy to notice differences in the response of both genotypes to the given stress.

In the case of cucumber accessions provided by the Polish breeding company, we carried out additional experiments with highly homozygous plants (see the Supplementary Materials Section). Homozygous lines of cucumber plants were classified into two groups according to cluster analysis (Figure S1). Five treatments were included in cluster 1, and three others into cluster two. Cluster 1 consisted of groups with better values of determined parameters, in contrast to cluster 2, where groups with worse values were clustered. Differences between cluster 1 and 2 are presented in Table S1; according to Figures S1 and S2, DH2 and DH1 accessions were classified as more tolerant. As a result, DH2 was chosen as a more tolerant form for further investigation. The selection of accessions sensitive to hypoxia stress was based on the assumption that Control and Stress will be in separate clusters. The most sensitive accession was DH4, because the Control plants were included in Cluster 1 and the Stress plants in Cluster 2. This indicated a significant deterioration of parameters after stress treatment.
3.2. Tomato

The Figure 5 illustrates the relationship among tomato accessions on the basis of differences in morphological and physiological parameters. It was observed that tomato plants were grouped into two main clusters with an Euclidean distance of 25 (Figure 5). In cluster one, we included 13 treatments, whereas 19 were included for cluster two.

![Figure 4. Radar charts comparing 18 traits estimated in Control and Stress plants of two cucumber accessions, GM-50 and TYTUS. Parameters from the Control group were set as 1 and parameters of the Stress-treated plants were expressed in relation to the Control. Asterisks indicate significant differences between Control and Stress according to Student’s t-test and p < 0.05, calculated separately for each parameter.](image)

![Figure 5. Results of cluster analysis for tomato accessions using the Euclidean distance on the basis of morphological and physiological traits (Ward’s hierarchical algorithm); green line indicates the cut-off point.](image)

The differences between cluster 1 and 2 are presented in Table 5. Cluster 1 consisted of groups with favorable values of determined parameters, in contrast to cluster 2, where groups with worse values...
were included. It can be observed that physiological parameters had the main impact on distance calculations, whereas morphological parameters did not influence the hierarchical process.

Table 5. Mean value of each parameter determined for both clusters (tomato plants). Bold p-values indicate statistically significant differences between cluster 1 and cluster 2, estimated with Student’s t-test and p < 0.05.

Parameter	Cluster 1	Cluster 2	p-Value
% weight change.	102	102	0.798161
% height change	94	84	0.493144
Relative leaf number	1.15	1.00	0.557965
F₀	452	511	0.000249
Fm	2374	2260	0.002449
Fv	1922	1749	0.000067
Fv/F₀	4.28	3.61	0.000000
Fv/Fm	0.81	0.77	0.000074
Tfiltr	188	209	0.015459
Area	19,702	16,086	0.000004
Fm/F₀	5.25	4.46	0.000001
PI ABS	1.00	0.65	0.000000
ABS/RC	3.23	3.85	0.000323
TK₀/RC	2.60	2.88	0.000195
ET₀/RC	1.07	0.99	0.015152
DL₀/RC	0.62	0.98	0.001677
ET₀/ABS	0.33	0.27	0.000000
ET₀/TR₀	0.41	0.35	0.000000

Cluster 1 mostly consisted of plants from Control groups of tomato accessions, revealing favorable values of tested parameters, whereas Stress groups were mostly assigned to Cluster 2. However, in Cluster 1, there were control and stress-treated plants from the three accessions (PZ 715, POL 8/15, and POL 7/15); this meant that waterlogging stress did not have negative impact on changes in the parameters. According to this, accessions PZ 715, POL 8/15, and POL 7/15 were considered as more tolerant to oxygen deprivation. Going further in the classification, we conducted a comparison of parameters between Control and Stress groups in the accessions selected above (Table 6). Statistical analysis indicated that in POL 8/15, eight parameters changed under waterlogging stress, whereas in POL 7/15, only two of all estimated parameters were unstable. Therefore, accession POL 7/15 was selected as the most tolerant tomato accession to waterlogging.

When searching for more sensitive accessions, we chose those included in both clusters and with a large Euclidean distance. The Euclidean distance matrix depicts the Control and Stress groups of the PZ 215 accession that were furthest apart and, as a result, were selected as more sensitive (Figure 6). Moreover, we selected PZ 115 Control and Stress groups with large distance. Both selected accessions are compared in Table 7. Controls of both presented accessions were included in cluster 1 and those under Stress treatment in cluster 2. However, more parameters were changed after stress treatment in the case of PZ 215. Figure 6 demonstrates elements of the Euclidean distance matrix of tested accessions and confirms POL 7/15 and PZ 215 as accessions with an opposite response to oxygen deprivation.
Table 6. Mean value of each parameter determined in three tomato accessions considered as more tolerant to waterlogging. Bold *p*-values indicate statistically significant differences between Control and Stress plants of each accession separately estimated with Student’s *t*-test and *p* < 0.05.

Parameter	POL 7/15 Control	POL 7/15 Stress	POL 8/15 Control	POL 8/15 Stress	POL 715 Control	POL 715 Stress	PZ 715 Control	PZ 715 Stress	p-Value
% weight change	100	117	100	103	100	105	0.0005	0.6168	0.0282
% height change	100	70	100	72	100	81	0.0239	0.0255	0.0537
Relative leaf number	1.10	1.05	0.8010	0.95	1.00	0.7699	1.00	0.68	0.0671
F0	441	447	429	453	439	496	0.2131	0.0002	
Fm	2259	2317	2416	2324	2292	2468	0.1287	0.0413	
Fv	1818	1869	1987	1871	1853	1972	0.0507	0.1355	
Fv/F0	4.17	4.20	4.65	4.22	4.22	3.99	0.0411	0.1858	
Fv/Fm	0.80	0.81	0.82	0.80	0.81	0.80	0.0417	0.1699	
Tfm	178	191	187	213	177	196	0.1696	0.3126	
Area	19,874	20,181	20,194	17,879	19,530	19,283	0.0592	0.8493	
Fm/F0	5.17	5.20	5.65	5.22	5.22	4.99	0.0411	0.1862	
PI ABS	1.13	0.95	0.3583	1.32	0.94	0.90	0.0108	0.3596	
ABS/RC	3.15	3.18	0.8164	2.97	3.37	3.49	0.0003	0.1196	
TR0/RC	2.51	2.56	0.3718	2.44	2.71	2.82	0.0002	0.0495	
ET0/RC	1.04	1.05	0.8469	1.08	1.11	1.19	0.4794	0.0013	
DL0/RC	0.65	0.62	0.6056	0.53	0.66	0.67	0.0035	0.9076	
ET0/ABS	0.34	0.33	0.7765	0.36	0.33	0.32	0.0726	0.1381	
ET0/TR0	0.42	0.41	0.7011	0.44	0.41	0.40	0.1028	0.1901	

Figure 6. Euclidean distance between Control and Stress groups of each tomato accession. White bars indicate accessions from control and stress treatments that were classified into cluster 1; light grey bars indicate accessions from control and stress treatments that were classified into different clusters; black bars indicate accessions from control and stress treatments that were classified into cluster 2.
Table 7. Mean value of each parameter determined in two tomato accessions considered as more sensitive to waterlogging. Bold p-values indicate statistically significant differences between Control and Stress plants of each accession separately estimated with Student’s t-test and p < 0.05.

Parameter	PZ 115 Control	PZ 115 Stress	p-Value	PZ 215 Control	PZ 215 Stress	p-Value
% weight change	100	109	0.0160	100	109	0.0332
% height change	100	211	0.0001	100	11	0.0000
Relative leafnumber	0.00	0.20	0.0527	0.53	0.16	0.0160
F0	454	491	0.1741	456	677	0.0069
Fm	2502	2274	0.0065	2371	2211	0.0645
Fv	2048	1783	0.0051	1915	1534	0.0053
Fv/F0	4.54	3.80	0.0149	4.22	2.82	0.0014
Fv/Fm	0.82	0.78	0.0328	0.81	0.68	0.0034
TIm	210	259	0.0775	183	244	0.0000
Area	19.309	15.832	0.0864	20.171	13.332	0.0010
Fm/F0	5.54	4.80	0.0149	5.22	3.82	0.0014
PI ABS	1.10	0.73	0.0201	0.97	0.43	0.0008
ABS/RC	3.46	3.89	0.0448	3.20	5.13	0.0009
TR0/RC	2.82	3.00	0.0866	2.58	3.22	0.0000
ET0/RC	1.21	1.15	0.0975	1.04	0.97	0.3251
DL0/RC	0.64	0.89	0.0445	0.62	1.91	0.0051
ET0/ABS	0.36	0.31	0.0313	0.33	0.23	0.0019
ET0/TR0	0.43	0.39	0.0466	0.41	0.31	0.0036

As a summary, the radar charts were created for POL 7/15 and PZ 215 tomato accessions, defined as more tolerant and more sensitive, respectively (Figure 7). The radar charts strongly highlighted the differences in response to waterlogging stress in selected tomato accessions. There were statistically significant differences in the weight and height of plants between the Control and Stress groups in POL 7/15, and thus only morphological parameters changed. In case of PZ 215, only 2 of 18 parameters were stable: Fm and ET0/RC (Table 7 and Figure 7).

Figure 7. Radar charts comparing 18 traits estimated in Control and Stress plants of two tomato accessions POL 7/15 and PZ 215. Parameters from the Control group were set as 1 and parameters of Stress-treated plants were expressed in relation to Control. Asterisks indicate significant differences between Control and Stress plants according to Student’s t-test and p < 0.05, calculated separately for each parameter.

4. Discussion

The reaction of tomato or cucumber accessions to waterlogging stress is diversified. As we have shown, accessions can be grouped for those whose parameters significantly worsen after stress and
those that do not show a significant deterioration in functioning. In the presented research, we focused on the response of the aerial part to stress present within the root system. During hypoxia of the root system, signals to the aboveground part—often found in optimal oxygen conditions—are transmitted within the plant body [47–49]. The signal that moves from the root to the aboveground part during hypoxia stress changes the functioning of the shoots. The most important process in the aboveground part of plants is photosynthesis, which generates energy and carbohydrates. Stress conditions affect photosynthesis (see the review in [50]). Chloroplasts, key organelles for photosynthesis, are highly sensitive to many stress factors. The photosynthesis process can be disrupted due to decreases in pigment content, changes in electron transport, or disorders in the activities of enzymes related to CO₂ fixation. Moreover, limitations in gas diffusion (CO₂ and water) can be observed due to stomata closure. Therefore, it is reasonable to study the intensity of photosynthesis or chlorophyll a fluorescence during stresses involving the root system, such as hypoxia, salinity, or others that interfere in the functioning of the plant. For example, decreases in net photosynthesis as well as a decline in maximal photochemical efficiency of PSII after hypoxia have been observed in sensitive accessions of cotton [39], while in tolerant forms, the changes were not observed. The JIP-test, widely discussed since 1995, is a non-destructive method to analyze the photosynthetic apparatus [53], allowing for the detection of stress effects before the visible signs are noticed [52]. Thus, in our research, we chose parameters related to plant growth and chlorophyll a fluorescence in the leaves.

After performing statistical analysis, we divided the studied waterlogged and control accessions into clusters. In both species, significant decreases in Fm, Fv, Fv/F₀, Fv/Fm, Area, Fm/F₀, PI ABS, ET₀/RC, ET₀/ABS, and ET₀/TR₀ parameters were observed in cluster 2 as compared to cluster 1. In addition, increases in DI₀/RC was observed. According to this information, we conclude that in cluster 1, plants had parameters with more favorable values, and in cluster 2, plants had worse parameters (Table 2, Table 5, and Table S1). The decrease in Fm or Fv/Fm is connected with a lower ability of PSII to reduce the QA primary acceptor [54]. Furthermore, the decrease in Fv/F₀ during stress could be an indicator of lower efficiency of photochemical processes in PSII [55]. The Area parameter represents the pool size of electron acceptors in PSII, with this pool size being lower during reductions in electron transport in submergence stress [54]. The lower value of ET₀/RC is also indicator of disturbances in electron transport from QA to other acceptors. Panda et al. [54] state that both the donor and the acceptor side of PSI were damaged because of submergence. The PI ABS index includes information about the probability that the chlorophyll a molecule functions as a reactive center in PSII, the efficiency of transfer of the absorbed energy to the reduction of QA, and the probability that an electron moves further than QA. It is a very sensitive parameter that decreases during stress conditions [51]. When the photochemistry of photosynthesis is disrupted by stress factors, the dissipation of absorbed energy increases [56], and this can be observed as increase in the DI₀/RC value.

Considering the results of the cluster analysis, we chose a more tolerant and more sensitive accession in both species. The parameters of more tolerant accessions did not deteriorate after appropriate stress, and the Control and Stress group of such plants were in cluster 1. In the case of more sensitive accessions, the parameters significantly deteriorated, and the Control group was in cluster 1 and the Stress-treated group in cluster 2. The changes in OJIP test parameters after submergence stress were more pronounced in sensitive rice (Oryza sativa L.) cultivars than in tolerant ones [54]. Similarly, in our experiments, more significant differences, indicating the deterioration of the photosynthetic apparatus, between Stress and Control plants could be observed in the case of sensitive accessions compared with that in more tolerant accessions (Figures 4 and 7). For example, the Fv/F₀, Fv/Fm, Area, Fm/F₀, PI ABS, and DI₀/RC parameters remained at the same level after stress treatment in the case of more tolerant accessions, but changed in sensitive accessions after...
stress. Increases in DI$_0$/RC in more sensitive accessions of both species indicated that some of the absorbed energy was dissipated and not used in the photochemistry of photosynthesis. In the case of more tolerant plants, DI$_0$/RC was stable. In agreement with our observation of more sensitive samples, we observed increases in DI$_0$/RC parameter in cucumber plants after hypoxia stress [56]. The decrease in Fv/Fm was noted in more sensitive tomato and cucumber plants in our experiments. In agreement with our results, a decrease in Fv/Fm after waterlogging was also observed in rice [54,57], cucumber [56,58], tomato [59,60], wild tomato (Solanum habrochaites S.Knapp & D.M.Spooner) [61], Arabidopsis (Arabidopsis thaliana L.) [62], cotton [39], and pepper (Capsicum annuum L.) plants [63].

Barik et al. [57] examined the reaction of tolerant and susceptible varieties of rice to submergence and observed that the latter exhibited a greater reduction in Fv/Fm parameters in comparison to tolerant varieties. Similarly, in an experiment with cotton, the Fv/Fm parameter was stable in tolerant varieties and significantly decreased in sensitive varieties under hypoxia [39]. In the case of sorghum after waterlogging stress, the changes in Fv/Fm parameters were not significant, despite the observation of a substantial decrease in the Fv/F$_0$ parameter [64]. In the present experiment, the decrease in Fv/Fm in more sensitive tomato genotypes was about 16%, and for the Fv/F$_0$ parameter, this was about 33% after stress treatment; in sensitive cucumber genotypes, these figures were 2.4% and 11.5%, respectively. This suggests that Fv/F$_0$ is a more sensitive parameter than Fv/Fm, consistent with the findings of Tsimilli-Michael [51]. However, the parameter Fv/Fm is more often described in the literature. Kalaji et al. [52] observed that PI ABS is the most sensitive parameter to different stress conditions. A decrease in this parameter was observed under waterlogging stress in terms of rice [54], cucumber [56], or tomato [59]. In the present experiments, the decrease in PI ABS in the case of sensitive tomato plants was about 56%, and for cucumber plants this was about 28% after stress treatment. This parameter did not change in more tolerant accessions after waterlogging stress. Our observations confirm the high sensitivity and usefulness of this parameter in plant selection to waterlogging stress.

Many studies have presented results of plant morphological observations after waterlogging stress; however, sometimes inconsistent information can be found. Decreases in plant height were observed after waterlogging in cucumber [56] and field bean (Vicia faba L. minor) [65]. Six cotton varieties, sensitive and tolerant to hypoxia stress, were tested by Pan et al. [39], and an inhibition in plant growth was observed in more sensitive varieties. However, plant height in stressed tolerant cotton was similar to untreated plants. In the terms of fresh mass of plants, we observed a decrease in terms of cucumber [38], barley [38], and pepper [63] after stress treatment, but no changes were observed by He et al. [56] in cucumber fresh weight after hypoxia. In our results, some accessions indicated an increase in morphological parameters, whereas others decreased. It is worth mentioning that both selected accessions of cucumber and tomato (tolerant and sensitive) demonstrated a decrease in plant height after stress treatment. The appearance of selected accessions is presented in Figure S3. The inhibition of growth does not seem to be correlated with the activity of PSII.

Using physiological parameters and cluster analysis, Barik and co-workers [57] classified seven rice cultivars into two clusters. Cluster one included submergence-tolerant rice varieties whereas susceptible varieties were included in cluster two. These data indicated the usefulness of cluster analysis in stress tolerance classification. Moreover, in our experiment, cluster analysis helped in classification, although the procedure was slightly different. Cluster analysis can be used in stress tolerance plant classification, as also demonstrated by Cao et al. [40], wherein the authors used cluster analysis to divide tomato genotypes into those that are more or less tolerant to chilling stress.

As part of our cooperation with Polish breeders, we also conducted a sensitivity assessment of homozygous cucumber lines for waterlogging stress and selected more tolerant and more sensitive lines (see the Supplementary Materials Section). Selected cucumber homozygous lines can be used for basic research on stress resistance or for breeding new varieties adapted to new breeding programs. The results can be of use not only to Polish breeders, but also to international breeders. According to previous information, choosing more tolerant accessions maintained better PSII activity.
Two tools were used in the present work: chlorophyll a fluorescence was applied as the main tool to assess the state of the photosynthetic apparatus of stress-treated plants and statistical analysis was used to select sensitive and tolerant accessions on the basis of the obtained empirical data. The selected objects will be used for further analysis related to understanding the mechanisms of the stress response to hypoxia in tomato and cucumber plants. In future research, we plan to evaluate the effect of waterlogging of selected tomato and cucumber plants on the photosynthetic rate, chlorophyll and carotenoid accumulation, and other parameters related to the functioning of leaves. We will also investigate if there are differences between selected accessions in terms of yield quality and quantity during stress.

5. Conclusions

Chlorophyll a fluorescence can be used for the selection of plant accessions sensitive to waterlogging stress.

Not all parameters of the OJIP test seem to have the same sensitivity; F_{v}/F_{0}, PI ABS, as well as D_{t0}/R_{C} or Area appear to be better in selecting sensitivity to waterlogging stress than F_{v}/F_{m}.

From the tested accessions, we selected GM-50, POL 7/15, and DH2 as more tolerant, whereas TYTUS, PZ 215, and DH4 were determined to be more sensitive for waterlogging stress.

Supplementary Materials: The following are available online at http://www.mdpi.com/2073-4395/10/10/1490/s1, Figure S1: Results of cluster analysis for cucumber homozygous lines using the Euclidean distance on the basis of morphological and physiological traits (Ward’s hierarchical algorithm); green line indicates the cut-off point. Table S1: The mean values of parameters determined for each cluster and statistical comparison between clusters estimated in cucumber homozygous lines (bold p-values mean statistically significant differences between cluster 1 and cluster 2). Figure S2: Euclidean distance between Control and Stress groups of each cucumber homozygous lines. White bars indicate accessions from control and stress treatments that were classified into cluster 1; light grey bars indicate accessions from Control and Stress treatments that were classified into different clusters; black bars indicate accessions from Control and Stress treatments that were classified into cluster 2. Figure S3: Accessions GM-50, POL 7/15, and DH2 selected as more tolerant, and TYTUS, PZ 215, and DH4 determined to be more sensitive for waterlogging stress. C: Control plants, S: Stress-treated plants.

Author Contributions: Conceptualization, A.K. and M.C.; methodology, A.K.; formal analysis, A.K. and K.K.; investigation, A.K., M.C., and K.K.; data curation, A.K. and K.K.; writing—original draft preparation, A.K., M.C., and K.K.; writing—review and editing, A.K., M.C., and K.K.; visualization, A.K., K.K., and M.C.; funding acquisition, M.C. All authors have read and agreed to the published version of the manuscript.

Funding: This research was supported by the Polish Ministry of Agriculture and Rural Development (no. HORhn-801-PB-12/15, 2015–2020) and by the Ministry of Science and Higher Education of Poland (SUB/2020–050012-D011).

Acknowledgments: The authors would like to thank Urszula Pieniążek for excellent technical assistance. Explicit thanks are addressed to Polish seed and breeding companies, i.e., KHiNO Polan, Plantico, and Spójnia HiNO for providing the breeding stocks for analysis.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Bailey-Serres, J.; Lee, S.C.; Brinton, E. Waterproofing crops: Effective flooding survival strategies. Plant Physiol. 2012, 160, 1698–1709. [CrossRef] [PubMed]
2. Pachauri, R.K.; Meyer, L.A. (Eds.) Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; IPCC: Geneva, Switzerland, 2014; 151p, Available online: https://www.ipcc.ch/site/assets/uploads/2018/05/SYR_AR5_FINAL_full_wcover.pdf (accessed on 20 August 2020).
3. FAO. The Future of Food and Agriculture—Trends and Challenges. Rome, Italy. 2017. Available online: http://www.fao.org/3/a-i6583e.pdf (accessed on 20 August 2020).
4. Patel, P.K.; Singh, A.K.; Yadav, D.; Hemantaranjan, A.; Tripathi, N. Flooding: Abiotic constraint limiting vegetable productivity. Adv. Plants Agric. Res. 2014, 1, 96–103.
5. Kaur, G.; Singh, G.; Motavalli, P.P.; Nelson, K.A.; Orlowski, J.M.; Golden, B.R. Impacts and management strategies for crop production in waterlogged or flooded soils: A review. *Agron. J.* 2020, 112, 1475–1501. [CrossRef]

6. Rao, R.; Li, Y. Management of flooding effects on growth of vegetable and selected field crops. *HortTechnology* 2003, 13, 610–616. [CrossRef]

7. Sasidharan, R.; Bailey-Serres, J.; Ashikari, M.; Atwell, B.J.; Colmer, T.D.; Fagerstedt, K.; Fukao, T.; Geigenberger, P.; Hebelstrup, K.H.; Hill, R.D.; et al. Community recommendations on terminology and procedures used in flooding and low oxygen stress research. *New Phytol.* 2017, 214, 1403–1407. [CrossRef]

8. Bailey-Serres, J.; Voesenek, L.A.C.J. Flooding stress: Acclimations and genetic diversity. *Annu. Rev. Plant Biol.* 2008, 59, 313–339. [CrossRef]

9. Que, F.; Wang, G.; Feng, K.; Xu, Z.S.; Wang, F.; Xiong, A.S. Hypoxia enhances lignification and a... [CrossRef] [PubMed]

10. Bansal, R.; Srivastava, J.P. Effect of waterlogging on photosynthetic and biochemical parameters in pigeonpea. *Russ. J. Plant Physiol.* 2015, 62, 322–327. [CrossRef]

11. Braun, K.P.; Cody, R.B., Jr.; Jones, D.R.; Peterson, C.M. A structural assignment for a stable acetaldehyde-lysine adduct. *J. Biol. Chem.* 1995, 270, 11263–11266. [CrossRef]

12. An, Y.; Qi, L.; Wang, L. ALA pretreatment improves waterlogging tolerance of fig plants. *PLoS ONE* 2016, 11, e0147202. [CrossRef] [PubMed]

13. Ahsan, N.; Lee, D.G.; Lee, S.H.; Lee, K.W.; Bahk, J.D.; Lee, B.H. A proteomic screen and identification of waterlogging regulated proteins in tomato roots. *Plant Soil* 2007, 295, 37–51. [CrossRef]

14. Li, J.; Sun, J.; Yang, Y.; Guo, S.; Glick, B.R. Identification of hypoxic-responsive proteins in cucumber roots using a proteomic approach. *Plant Physiol. Biochem.* 2012, 51, 74–80. [CrossRef] [PubMed]

15. Xu, X.; Wang, H.; Qi, X.; Xu, Q.; Chen, X. Waterlogging-induced increase in fermentation and related gene expression in the root of cucumber (*Cucumis sativus*). *Sci. Hortic.* 2014, 179, 388–395.

16. He, L.; Li, B.; Lu, X.; Yuan, L.; Yang, Y.; Yuan, Y.; Du, J.; Guo, S. The effect of exogenous calcium on mitochondria, respiratory metabolism enzymes and ion transport in cucumber roots under hypoxia. *Sci. Rep.* 2015, 5, 11391. [CrossRef] [PubMed]

17. Xu, X.; Ji, J.; Ma, X.; Xu, Q.; Qi, X.; Chen, X. Comparative proteomic analysis provides insight into the key proteins involved in cucumber (*Cucumis sativus* L.) Adventitious root emergence under waterlogging stress. *Front. Plant Sci.* 2016, 7, 1515. [CrossRef]

18. Hou, Y.; Jiang, F.; Zheng, X.; Wu, Z. Identification and analysis of oxygen responsive microRNAs in the root of wild tomato (*S. habrochaites*). *BMC Plant Biol.* 2019, 19, 100. [CrossRef]

19. Kuo, C.G.; Chen, B.W. Physiological responses of tomato cultivars to flooding. *J. Am. Soc. Hort. Sci.* 1980, 105, 751–755.

20. Ezin, V.; Pena, R.D.L.; Ahanchede, A. Flooding tolerance of tomato genotypes during vegetative and reproductive stages. *Braz. J. Plant Physiol.* 2010, 22, 131–142. [CrossRef]

21. Safavi-Rizi, V.; Herde, M.; Stöhr, C. RNA-Seq reveals novel genes and pathways associated with hypoxia duration and tolerance in tomato root. *Sci. Rep.* 2020, 10, 1692. [CrossRef]

22. Justin, S.H.F.W.; Armstrong, W. The anatomical characteristics of roots and plant response to soil flooding. *New Phytol.* 1987, 106, 465–495. [CrossRef]

23. Jackson, M.B. Plant survival in wet environments: Resilience and escape mediated by shoot systems. In *Wetlands: Functioning, Biodiversity, Conservation and Restoration*. *Ecological Studies (Analysis and Synthesis)*; Bobbink, R., Beltman, B., Verhoeven, J.T.A., Whigham, D.F., Eds.; Springer: Berlin/Heidelberg, Germany, 2006; Volume 191, pp. 16–36.

24. Voesenek, L.A.C.J.; Colmer, T.D.; Pierik, R.; Millenaar, F.F.; Peeters, A.J.M. How plants cope with complete submergence. *New Phytol.* 2006, 170, 213–226. [CrossRef] [PubMed]

25. Shimamura, S.; Yamamoto, R.; Nakamura, T.; Shimada, S.; Komatsu, S. Stem hypertrophic lenticels and secondary aerenchyma enable oxygen transport to roots of soybean in flooded soil. *Ann. Bot.* 2010, 106, 277–284. [CrossRef] [PubMed]

26. Zeng, F.; Shabala, L.; Zhou, M.; Zhang, G.; Shabala, S. Barley responses to combined waterlogging and salinity stress: Separating effects of oxygen deprivation and elemental toxicity. *Front. Plant Sci.* 2013, 4, 313. [CrossRef] [PubMed]
27. Herzog, M.; Striker, G.G.; Colmer, T.D.; Pedersen, O. Mechanisms of waterlogging tolerance in wheat—a review of root and shoot physiology. Plant Cell Environ. 2016, 39, 1068–1086. [CrossRef]

28. Irfan, M.; Hayat, S.; Hayat, Q.; Afroz, S.; Ahmad, A. Physiological and biochemical changes in plants under waterlogging. Protoplasma 2010, 241, 3–17. [CrossRef]

29. Stoddard, F.L.; Balko, C.; Erskine, W.; Khan, H.R.; Link, W.; Sarker, A. Screening techniques and sources of resistance to abiotic stresses in cool-season food legumes. Euphytica 2006, 147, 167–186. [CrossRef]

30. Zhou, M. Improvement of plant waterlogging tolerance. In Waterlogging Signalling and Tolerance in Plants; Mancuso, S., Shabala, S., Eds.; Springer: Berlin/Heidelberg, Germany, 2010; pp. 267–285.

31. Zhou, M. Accurate phenotyping reveals better QTL for waterlogging tolerance in barley. Plant Breed. 2011, 130, 203–208. [CrossRef]

32. Zhou, M. Growth and physiological responses of six barley genotypes to waterlogging and subsequent recovery. Aust. J. Agric. Res. 2004, 55, 895–906. [CrossRef]

33. Zhou, M. Accurate phenotyping reveals better QTL for waterlogging tolerance in barley. Plant Breed. 2011, 130, 203–208. [CrossRef]

34. Smillie, R.M.; Hetherington, S.E. Stress tolerance and stress-induced injury in crop plants measured by chlorophyll fluorescence in vivo: Chilling, freezing, ice cover, heat, and high light. Plant Physiol. 1983, 72, 1043–1050. [CrossRef] [PubMed]

35. Pang, J.Y.; Zhou, M.H.; Mendham, N.J.; Shabala, S. Growth and physiological responses of six barley genotypes to waterlogging and subsequent recovery. Aust. J. Agric. Res. 2004, 55, 895–906. [CrossRef]

36. Smethurst, C.F.; Shabala, S. Screening methods for waterlogging tolerance in lucerne: Comparative analysis of waterlogging effects on chlorophyll fluorescence, photosynthesis, biomass and chlorophyll content. Funct. Plant Biol. 2003, 30, 335–343. [CrossRef] [PubMed]

37. Pang, J.Y.; Zhou, M.H.; Mendham, N.J.; Shabala, S. Growth and physiological responses of six barley genotypes to waterlogging and subsequent recovery. Aust. J. Agric. Res. 2004, 55, 895–906. [CrossRef]

38. Zhao, B.; Zhang, J.; Dong, S.; Liu, P.; Zhao, B. Effects of waterlogging on leaf mesophyll cell ultrastructure and photosynthetic characteristics of maize. PLoS ONE 2016, 11, e0161424. [CrossRef]

39. Pan, R.; Jiang, W.; Wang, Q.; Xu, L.; Shabala, S.; Zhang, W.Y. Differential response of growth and photosynthesis in diverse cotton genotypes under hypoxia stress. Photosynthetica 2019, 57, 772–779. [CrossRef]

40. Cao, X.; Jiang, X.; Wang, X.; Zang, Y.; Wu, Z. Comprehensive evaluation and screening for chilling-tolerance in tomato lines at the seedling stage. Euphytica 2015, 205, 569–584. [CrossRef]

41. Zhou, R.; Yu, X.; Kjær, K.H.; Rosenqvist, E.; Ottosen, C.O.; Wu, Z. Screening and validation of tomato genotypes under heat stress using Fv/Fm to reveal the physiological mechanism of heat tolerance. Environ. Exp. Bot. 2015, 118, 1–11. [CrossRef]

42. Dasgan, H.Y.; Aktaş, H.; Abak, K.; Cakmak, I. Determination of screening techniques of salinity tolerance in tomatoes and investigation of genotype responses. Plant Sci. 2002, 163, 695–703. [CrossRef]

43. Raza, M.A.; Saeed, A.; Munir, H.; Ziaf, K.; Shakeel, A.; Saeed, N.; Munawar, A.; Rehman, F. Screening of tomato genotypes for salinity tolerance based on early growth attributes and leaf inorganic osmolytes. Arch. Agron. Soil Sci. 2017, 63, 501–512. [CrossRef]

44. Qi, X.; Chen, R.; Xu, Q.; Chen, X. Preliminary analysis of cucumber submergence tolerance at seedling stage. China Veg. 2011, 4, 7.

45. Stirbet, A.; Govindjee. On the relation between the Kautsky effect (chlorophyll a fluorescence induction) and photosystem II: Basics and applications of the OJIP fluorescence transient. J. Photochem. Photobiol. B Biol. 2011, 104, 236–257. [CrossRef] [PubMed]

46. Stirbet, A.; Lazár, D.; Kromdijk, J.; Govindjee. Chlorophyll a fluorescence induction: Can just a one-second measurement be used to quantify abiotic stress responses? Photosynthetica 2018, 56, 86–104. [CrossRef]

47. Jackson, M.B. Long-distance signalling from roots to shoots assessed: The flooding story. J. Exp. Bot. 2002, 53, 175–181. [CrossRef] [PubMed]

48. Dat, J.F.; Capelli, N.; Folzer, H.; Bourgeade, P.; Badot, P.M. Sensing and signalling during plant flooding. Plant Physiol. Biochem. 2004, 42, 273–282. [CrossRef]

49. Sasidharan, R.; Hartman, S.; Liu, Z.; Martopawiro, S.; Sajeev, N.; van Veen, H.; Yeung, E.; Voesenek, L.A. Signal dynamics and interactions during flooding stress. Plant Physiol. 2018, 176, 1106–1117. [CrossRef]
50. Ashraf, M.H.P.C.; Harris, P.J. Photosynthesis under stressful environments: An overview. Photosynthetica 2013, 51, 163–190. [CrossRef]
51. Tsimilli-Michael, M. Revisiting JIP-test: An educative review on concepts, assumptions, approximations, definitions and terminology. Photosynthetica 2019, 58, 275–292. [CrossRef]
52. Kalaji, H.M.; Rastogi, A.; Živčák, M.; Brestic, M.; Daszkowska-Golec, A.; Šitko, K.; Alsharafa, K.Y.; Lotfi, R.; Stypiński, P.; Samborska, I.A.; et al. Prompt chlorophyll fluorescence as a tool for crop phenotyping: An example of barley landraces exposed to various abiotic stress factors. Photosynthetica 2018, 56, 953–961. [CrossRef]
53. Maxwell, K.; Johnson, G.N. Chlorophyll fluorescence—A practical guide. J. Exp. Bot. 2000, 51, 659–668. [CrossRef]
54. Panda, D.; Rao, D.N.; Sharma, S.G.; Strasser, R.J.; Sarkar, R.K. Submergence effects on rice genotypes during seedling stage: Probing of submergence driven changes of photosystem 2 by chlorophyll a fluorescence induction OJIP transients. Photosynthetica 2006, 44, 69–75. [CrossRef]
55. Roháček, K. Chlorophyll fluorescence parameters: The definitions, photosynthetic meaning, and mutual relationships. Photosynthetica 2002, 40, 13–29. [CrossRef]
56. He, L.; Yu, L.; Li, B.; Du, N.; Guo, S. The effect of exogenous calcium on cucumber fruit quality, photosynthesis, chlorophyll fluorescence, and fast chlorophyll fluorescence during the fruiting period under hypoxic stress. BMC Plant Biol. 2018, 18, 180. [CrossRef] [PubMed]
57. Barik, J.; Panda, D.; Mohanty, S.K.; Lenka, S.K. Leaf photosynthesis and antioxidant response in selected traditional rice landraces of Jeypore tract of Odisha, India to submergence. Physiol. Mol. Biol. Plants 2019, 25, 847–863. [CrossRef] [PubMed]
58. Ma, Y.H.; Guo, S.R. 24-epibrassinolide improves cucumber photosynthesis under hypoxia by increasing CO₂ assimilation and photosystem II efficiency. Photosynthetica 2014, 52, 96–104. [CrossRef]
59. Hüther, C.M.; Martinazzo, E.G.; Rombaldi, C.V.; Bacarin, M.A. Effects of flooding stress in ‘Micro-Tom’ tomato plants transformed with different levels of mitochondrial sHSP23.6. Braz. J. Biol. 2017, 77, 43–51. [CrossRef]
60. Mauro, R.P.; Agnello, M.; Distefano, M.; Sabatino, L.; Primo, A.S.B.; Leonardi, C.; Giuffrida, F. Chlorophyll fluorescence, photosynthesis and growth of tomato plants as affected by long-term oxygen root zone deprivation and grafting. Agronomy 2020, 10, 137. [CrossRef]
61. Lin, H.H.; Lin, K.H.; Syu, J.Y.; Tang, S.Y.; Lo, H.F. Physiological and proteomic analysis in two wild tomato lines under waterlogging and high temperature stress. J. Plant Biochem. Biotechnol. 2016, 25, 87–96. [CrossRef]
62. Xu, L.; Pan, R.; Shabala, L.; Shabala, S.; Zhang, W.Y. Temperature influences waterlogging stress-induced damage in Arabidopsis through the regulation of photosynthesis and hypoxia-related genes. Plant Growth Regul. 2019, 89, 143–152. [CrossRef]
63. Yang, B.Z.; Liu, Z.B.; Zhou, S.D.; Ou, L.J.; Dai, X.Z.; Ma, Y.Q.; Zhang, Z.Q.; Chen, W.C.; Li, X.F.; Liang, C.L.; et al. Exogenous Ca²⁺ alleviates waterlogging-caused damages to pepper. Photosynthetica 2016, 54, 620–629. [CrossRef]
64. Zhang, F.; Zhu, K.; Wang, Y.Q.; Zhang, Z.P.; Lu, F.; Yu, H.Q.; Zou, J.Q. Changes in photosynthetic and chlorophyll fluorescence characteristics of sorghum under drought and waterlogging stress. Photosynthetica 2019, 57, 1156–1164. [CrossRef]
65. Pociecha, E.; Kościelnia, J.; Filek, W. Effects of root flooding and stage of development on the growth and photosynthesis of field bean (Vicia faba L. minor). Acta Physiol. Plant. 2008, 30, 529–535. [CrossRef]