Draft genome sequence data of T-5 like Salmonella bacteriophage ФSP3 with demonstrated therapeutic potential

K.S. Sritha, Jeena Augustine, Sarita G. Bhat*

Department of Biotechnology, Cochin University of Science and Technology, Cochin, 682022, Kerala, India

Article history:
Received 17 December 2018
Received in revised form 16 September 2019
Accepted 26 September 2019
Available online 4 October 2019

Keywords:
Genome
Bacteriophage
Biocontrol agent
Salmonella

Abstract
This data article describes the complete draft genome sequence of Salmonella specific bacteriophage ФSP3 isolated from chicken intestinal contents. The ФSP3 genome was sequenced by paired end runs using Illumina HiSeq 2500 with 100X coverage. Phylogenetic analysis using major capsid gene and genome wide comparison were performed to understand bacteriophage evolutionary relationship. Genome sequence of bacteriophage ФSP3 was deposited in GenBank under the accession number MG387042.

© 2019 Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Data

Bacteriophage ФSP3 was isolated from chicken intestinal contents obtained from retail market in Cochin (10.060256 N; 76.321881E) as a therapeutic agent against Salmonella [1]. The physicochemical characteristics of the bacteriophage were studied in detail [1]. The phage significantly reduced bacteria applied on chicken cuts, especially at refrigerated conditions, making it an ideal candidate for storage applications [2]. A consortium of phages including ФSP3 also increased the longevity of C. elegans infected with Salmonella [3], indicating its ability to control infections.

* Corresponding author.
E-mail address: sgbhat@cusat.ac.in (S.G. Bhat).

https://doi.org/10.1016/j.dib.2019.104606
2352-3409/© 2019 Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
The transmission electron micrograph of FS3P showed a bacteriophage with a hexagonal head (53.77 ± 0.38 nm) and a distinguishable long non-contractile tail (123.66 ± 0.32 nm), which are typical morphological features of family Siphoviridae, Fig. 1a [4]. The draft genome sequence of FS3P genome had a size of 109,106 bp with 39.5% GC content. Many short overlapping regions between adjoining genes were frequently detected. There were 166 predicted ORFs in the genome of which 57 ORFs were with assigned functions (S1). 55 genes were transcribed in rightward direction (strand +) while 111 genes on the leftward direction (strand -). 16 tRNA encoding genes were identified. No gene related to phage lysogeny was detected, confirming the lytic nature of the phage. Moreover, the absence of genes encoding virulence and allergy inducing genes makes FS3P highly innocuous for application. Single gene analysis using major capsid gene (ORF 149) was used to determine bacteriophage evolutionary relationship. It was observed that FS3P clustered together with the T5 like phages (Fig. 1b). Another approach to understand the relationship is via whole genome comparison with related phages. This approach revealed that FS3P was 97% similar to Salmonella phage SPC35.

The genome map of FS3P is displayed in Fig. 2. Genome annotation analysis showed that FS3P genome is functionally organized into modules containing gene clusters involved in different functions viz genes required for inactivation of host genome as well as transfer of DNA, genes involved in nucleotide metabolism, lytic processes, packing and morphogenesis cluster. The DNA end structures can be predicted from the terminase amino acid sequence as the enzymes that generate the virion DNA ends are quite diverse. These different types of ends reflect differing DNA replication. Accordingly, the amino acid sequence of large terminase genes can be used to predict the packing strategy of phages [5,6]. The large terminase gene with 1316 bp (ORF 156) of phage FS3P clustered with phages having known DNA termini and packing mechanisms. Phage FS3P terminase gene clustered with that of T5 which shows that they have complex concatemeric packing mechanisms (Fig. 3) Moreover, the blast alignment with Salmonella phage SPC35 showed presence of long terminal repeats with a size of around 9000 bp.

2. Experimental design, materials, and methods

The phage morphology was determined by transmission electron microscopy (Model JOEL JEM-100X).
Phage DNA was extracted as per Sambrook et al. [7], and purity was determined in terms of 260/280 and 260/230 ratios. Phage genome was sequenced by shot gun method using Illumina HiSeq 2500 with...
Fig. 1. a) Transmission electron micrograph image of phage ϕSP3 stained with 1% uranyl acetate (bar represents 60nm). b) Phylogenetic tree based on major capsid gene of selected bacteriophages. The gene sequences are compared using the ClustalW program, and the phylogenetic tree was generated using the neighbour-joining method and 1000 bootstrap replicates.

Fig. 2. Genome map of bacteriophage ϕSP3 (DNA plotter).
Paired end runs with 100X Coverage. The whole genome sequences were assembled using IVA [8] and SEQuel for correcting errors [9]. Genes were predicted using GeneMarkS [10]. Predicted ORFs were annotated with BLASTX, Uniprot, NCBI Conserved Domain Database (CDD). DNA Plotter was used to construct phage genome map [11] and tRNA gene prediction by tRNAscan-SE [12]. Phylogenetic tree depicting the evolutionary relationship of Salmonella bacteriophage was generated based on terminase gene and major capsid gene by neighbour-joining method [13] using MEGA 7.0 software [14].

Acknowledgments

The authors acknowledge the financial support of KSCSTE through the project F.No. 009/SRSHS/2012/CSTE to Sarita G Bhat.

Conflict of Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi.org/10.1016/j.dib.2019.104606.

References

[1] J. Augustine, S.G. Bhat, Physicochemical characterization of a T5-like Salmonella phage [Phi] SP-3, J. Microbiol. Biotechnol. Food Sci. 4 (2014) pp102–pp107, https://doi.org/10.15414/jmbfs.2014.4.2.102-107.
[2] J. Augustine, S.G. Bhat, Bio control of Salmonella Enteritidis in spiked chicken cuts by lytic bacteriophages φSP-1 and φSP-3, J. Basic Microbiol. 55 (2015) 500–503.
[3] J. Augustine, M.V. Gopalakrishnan, S.G. Bhat, Application of 
ΦSP-1 and ΦSP-3 as a therapeutic strategy against Salmonella
Enteritidis infection using Caenorhabditis elegans as model organism, FEMS Microbiol. Lett. 356 (2014) pp113—pp117.

[4] M. Krupovic, B.E. Dutilh, E.M. Adriaenssens, J. Wittmann, E.K. Vogensen, M.B. Sullivan, J. Rumnieks, D. Prangishvili, R.
Lavigne, A.M. Kropinski, J. Klumpp, Taxonomy of prokaryotic viruses: update from the ICTV bacterial and archaeal viruses
subcommittee, Arch. Virol. 161 (2016) pp1095—pp1099.

[5] S.R. Casjens, E.B. Gilcrease, D.A. Winn-Stapley, P. Schicklmaier, H. Schmierer, M.L. Pedulla, R.W. Hendrix, The generalized
transducing Salmonella bacteriophage ES18: complete genome sequence and DNA packaging strategy, J. Bacteriol. 187
(2005) 1091—1104.

[6] S.R. Casjens, E.B. Gilcrease, Determining DNA packaging strategy by analysis of the termini of the chromosomes in tailed-
bacteriophage virions, Bacteriophages Methods Protocols Vol. 2 Molec. Appl. Aspect. (2009) 91—111.

[7] J. Sambrook, E. Fritsch, I. Maniatis, Molecular Cloning — A Laboratory Manual, second ed., Cold Spring Harbor Laboratory,
Cold Spring Harbor, 2000.

[8] M. Hunt, A. Gall, S.H. Ong, J. Brener, B. Ferns, P. Goulder, E. Nastouli, J.A. Keane, P. Kellam, T.D. Otto, IVA: accurate de novo
assembly of RNA virus genomes, Bioinformatics 31 (2015) 2374—2376.

[9] R. Ronen, C. Boucher, H. Chitsaz, P. Pevzner, SEQuel: improving the accuracy of genome assemblies, Bioinformatics 12
(2012) i188—i196.

[10] J. Besemer, A. Lomsadze, M. Borodovsky, GeneMarkS: a self-training method for prediction of gene starts in microbial
genomes. Implications for finding sequence motifs in regulatory regions, Nucleic Acids Res. 29 (2001) 2607—2618.

[11] T. Carver, N. Thomson, A. Bleasby, M. Berriman, J. Parkhill, DNAPlotter: circular and linear interactive genome visualization,
Bioinformatics 25 (2009) 119—120.

[12] T.M. Lowe, S.R. Eddy, tRNAscan-SE: a program for improved detection of transfer RNA genes in genomic sequence, Nucleic
Acids Res. 25 (1997) 955—964.

[13] N. Saitou, M. Nei, The neighbor-joining method: a new method for reconstructing phylogenetic trees, Mol. Biol. Evol. 4
(1987) 406—425.

[14] S. Kumar, G. Stecher, K. Tamura, MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets, Mol. Biol.
Evol. 33 (2016) 1870—1874.