Sulfur isotopes as biosignatures for Mars and Europa exploration

A. Moreras-Martí1*, M. Fox-Powell2, C. R. Cousins1, M. C. Macey2 and A. L. Zerke1
1 School of Earth and Environmental Sciences, University of St Andrews, Bute Building, North Street, St Andrews KY16 9AL, UK
2 Astrobiology OU, Open University, Walton Hall, Milton Keynes MK7 6AA, UK
* Correspondence: amms48@st-andrews.ac.uk

Abstract: Sulfur (S) isotopes are used to trace metabolic pathways associated with biological S-cycling in past and present environments on Earth. These pathways (sulfate reduction, sulfur disproportionation and sulfide oxidation) can produce unique S isotope signals that provide insight into biogeochemical S-cycling. The S cycle is also relevant for extraterrestrial processes and environments. On early Mars, sulfur existed in different redox states and was involved in a large range of surface processes (e.g. volcanic, atmospheric, hydrothermal and aqueous brines). Sulfur compounds have also been detected on Europa’s icy moon surface, with the S cycle implicated in Europa’s surface and ocean geochemistry. Given the well-established utility of S isotopes in providing a record for past life on Earth, S isotopes are a valuable tool for identifying biosignatures on Mars and Europa. Here, we review S isotopes as a biosignature, in light of two recent advances in understanding the S cycle in both Mars and Europa: (1) the measurements of $\delta^{34}S$ in situ at Gale Crater and quadruple S isotopes (QSI) in Martian meteorites; (2) the identification of a likely exogenous origin of sulfur on Europa’s surface. We discuss important considerations for unravelling QSI biosignatures in Martian environments, considering high- and low-sulfur environments, atmospheric mass-independent fractionation of sulfur isotopes (S-MIF) signals and metabolic energy-limited niches. For Europa, we describe the potential for S isotopes to probe biogeochemistry, and identify key knowledge gaps to be addressed to unlock S isotopic tools for future life detection efforts. The resulting picture demonstrates how S isotopes will be a valuable tool for Mars sample return, and how future missions can focus on the search for environments where QSI signatures of microbial S-cycling processes have a greater chance of being preserved. For Europa, the first step will be to account for the S isotope composition of the various S pools, to recognize or rule out non-biologically mediated S isotope values, with a focus on experimental examination of potential S isotope signatures from exogenous sulfur sources.

Thematic collection: This article is part of the Sulfur in the Earth system collection available at: https://www.lyellcollection.org/cc/sulfur-in-the-earth-system

Received 25 October 2021; revised 23 May 2022; accepted 26 May 2022

Sulfur (S) is abundant in the Solar System, and speciates into geochemically extensive reservoirs on Earth, Mars and the Jovian moons Europa, Io, Ganymede and Calisto (Carlson et al. 1999; King et al. 2004; Jessup et al. 2007; King and McLennan 2010). Sulfur is a widely utilized source of energy for chemotrophic microbial metabolisms, owing to its range of redox states. These redox states allow microorganisms to perform (1) dissimilatory microbial sulfate reduction (MSR), (2) microbial sulfur disproportionation of intermediate S compounds (MSD) and (3) oxidation of sulfide and reduced sulfur species (SO) (Fig. 1). Each of these metabolic processes produces a characteristic, but not unique, change in the S isotope values of the associated compounds within the reaction. When these values are preserved in the rock record they can provide evidence for past biological activity. Here, we review S isotope biosignatures within the context of S-rich environments on Mars and Europa, and consider how to distinguish S isotope biosignatures from abiotic signatures concurrently preserved in geological deposits. We identify knowledge gaps to be addressed to interpret future isotopic measurements of sulfur phases from these and similar planetary environments, and evaluate the feasibility of interpreting in situ measurements versus samples from return missions.

S isotope biosignatures on Earth

Sulfur (S) has four stable isotopes, with masses 32, 33, 34 and 36, and is one of the most abundant elements on Earth. The ^{34}S isotope composition of sulfur species is presented using the standard delta (δ) notation, expressed in permil (%):

$$\delta^{34}S = \left[\frac{R_{\text{SAMPLE}}}{R_{\text{VCDT}}} - 1 \right] \times 1000$$

where $3x$ is 32, 33, 34 or 36, and $R_{\text{SAMPLE}}/R_{\text{VCDT}}$ is the isotopic ratio of a sample ($^{34}S/^{32}S$) relative to the standard, VCDT. Sulfur isotopes are influenced by biological and abiotic processes, and can be preserved in the rock record (e.g. Canfield 2001a, and references therein; Havig et al. 2011, 2017; Johnston 2011; Fike et al. 2015). Effects on S isotopes produced by microbial processes, notably MSR and oxidative sulfur (re)cycling, have been used to reconstruct the evolution of S-based metabolisms and trace the oxygenation of Earth’s surface through time (Canfield and Teske 1996; Scott et al. 2008; Luo et al. 2016). The largest S isotope fractionation effects are generally produced by MSR, although oxidative recycling of sulfur species can increase these fractionations further (e.g. Canfield 2001a, b).

Enzymatic reactions performed by S-utilizing microorganisms control the S isotope composition of S-bearing biomolecules produced during assimilatory processes (e.g. cysteine and methionine), and inorganic S compounds produced during dissimilatory processes (e.g. sulfate and sulfide). Enzymes perform reactions that happen at faster rates than if they were carried out abiotically by lowering the activation energy. The products (P) of these enzymatic reactions are typically depleted in the heavier S isotopes relative to the reactants (R), with the magnitude of the differences in isotopic
compositions between the reactant and the product the result of the isotopic discrimination that happens during the multistep enzymatic reaction (Chambers et al. 1975; Fry et al. 1985; Canfield and Thamdrup 1994; Canfield 2001a; Brunner and Bernasconi 2005). We express the magnitude of this discrimination, also called a ‘isotope effect’, as

\[\Delta^{34} \varepsilon_{R,P} = (\alpha_{R,P} - 1) \times 1000 \]

where \(\alpha_{R,P} = (\delta^{34}S_P + 1000)/(\delta^{34}S_R + 1000) \) can help to identify the specific enzymatic reaction mechanisms responsible (Canfield and Teske 1996; Shen and Buick 2004; Johnston 2005; Philippot et al. 2007; Leavitt et al. 2013). Where the S isotope values of both products and reactants can be measured, isotope effects between these species can provide evidence for biological activity (biosignatures) and clues to the biogeochemical S cycle during the time of their formation (Fike et al. 2015, and references therein). MSR and MSD in particular produce H\(_2\)S depleted in \(\delta^{34}S \), captured as pyrite and Fe-monosulfides with distinctively negative \(\delta^{34}S \) values (e.g. Habicht and Canfield 2001; Fry and Grotzinger 2008; Johnston et al. 2008). (Re)oxidation of H\(_2\)S generally produces much smaller fractionations in \(\delta^{34}S \), but can further alter the minor S isotope composition (\(^{13}S \) and \(^{33}S \)) of these S compounds (e.g. Zerkle et al. 2009, 2016). Thus, the S isotope values of sedimentary pyrite and sulfate minerals can preserve evidence for these S-cycling metabolisms in past environments.

Fig. 1. Schematic representation of S redox transformations and resulting fractionations in \(\delta^{34}S \) by biotic and abiotic process. Fractionations are expressed as \(\Delta^{34} \varepsilon_{R,P} \), where R is reactant and P is product. Green lines reflect microbial S-cycling processes, including microbial sulfate reduction (MSR; Canfield et al. 2010; Sim et al. 2011a), microbial sulfur disproportionation (MSD; Canfield and Thamdrup 1996) and sulfur oxidation (SO; Zerkle et al. 2016; Pellerin et al. 2019). For SO, fractionations are summarized for the range of S oxidation pathways between reduced sulfur species (redS) and oxidized sulfur species (oxS). MSD can utilize a number of intermediate sulfur species (S\(\delta \), SO\(_4^{2-} \) or SO\(_3^{2-} \)) to produce both sulfate and sulfide (e.g. Frederiksen and Finster 2003). Dashed brown lines reflect abiotic S-cycling processes, including abiotic sulfur oxidation (Fry et al. 1988; Eldridge and Farquhar 2018; Eldridge et al. 2021) and thermochemical sulfate reduction (TSR), which happens at temperatures between 80 and 200°C (Machel et al. 1995). The dashed purple line represents the range of \(\Delta^{34} \varepsilon_{R,P} \) measured at Gale Crater (Franz et al. 2017).
Microbial sulfate reduction (MSR)

Organisms that perform microbial sulfate reduction (MSR) are taxonomically and metabolically diverse, encompassing both archaea and bacteria capable of heterotrophy and/or autotrophy under anaerobic conditions (Castro et al. 2000; Plugge et al. 2011; Anantharaman et al. 2018). MSR in pure and enrichment cultures can produce S isotope fractionations larger than ~65% between reactant SO₄²⁻ and product H₂S (Canfield et al. 2010; Sim et al. 2011a). Sulfur isotope fractionations produced during MSR are influenced by several environmental parameters, such as SO₄²⁻, Fe and NH₄⁺ concentrations, type and abundance of electron donors, and temperature (Fig. 2) (e.g. Detmers et al. 2001; Hoek et al. 2006; Sim et al. 2011b, 2012; Sim 2012).

Variations in SO₄²⁻ concentration play a major role in the S isotope fractionations produced during MSR, with larger S isotope effects generally associated with higher SO₄²⁻ concentrations (Habicht and Canfield 1997). Moreover, S isotope fractionations during MSR have been shown to be dependent on strain-specific physiological parameters, such as affinity for SO₄²⁻ and electron donors (Bradley et al. 2016). MSR tends to produce larger S isotope fractionations when growing heterotrophically using organic electron donors than when growing autotrophically with H₂ (Fig. 2: 6–44‰, Sim et al. 2011b). In addition, when MSR is limited by low concentrations of electron donors, the S isotope fractionations produced are generally larger (Chambers et al. 1975; Hoek et al. 2006; Sim et al. 2011b).

Concentrations of nutrients such as Fe and NH₄⁺ can also indirectly control the extent of S isotope fractionation during MSR, through their influence on metabolic rates (Sim et al. 2012). Cell-specific sulfate reduction rates (csSRR, generally expressed as moles of SO₄²⁻ reduced/cell/time) respond to environmental parameters such as SO₄²⁻ concentration and source of electron donors, and the largest S isotope fractionations are generally produced at the lowest csSRR (Kaplan and Rittenberg 1964; Chambers et al. 1975; Habicht and Canfield 1997). Similarly, nutrient limitation can reduce overall growth rates, causing a decrease in csSRR and subsequently larger S isotope fractionations (Fig. 2; Sim et al. 2011b). This response is similar to that seen for organic carbon limitation, as they are both critical in controlling the proportional supply of electrons to the MSR pathway (Sim 2012).

Temperature influences metabolic rates, which can affect S isotope fractionation effects, as described above (Canfield et al. 2006; Hoek et al. 2006). Temperature responses seem to be variable for different microbial strains, with larger S isotope fractionations generally shown for sub-optimal temperatures with correspondingly low csSRR, and smaller fractionations for optimal temperatures with correspondingly higher csSRR (Fig. 2; Canfield et al. 2006). It is not known if pH directly affects S isotope fractionations during MSR. Indirectly, pH and O₂ concentrations determine aqueous speciation, and therefore Fe and SO₄²⁻ solubility, which can each affect S isotope fractionations as described above. This mechanism was recently suggested to be important in controlling S isotope fractionations observed in Icelandic hydrothermal systems spanning different pH and Fe concentrations (Moreras-Martí et al. 2021a).

More generally, the combined metabolic energy limitation within an environment can have an impact on S isotope fractionations through changing csSRR. A general decrease in microbial metabolic rates has been observed in environments with limited electron donors, termed energy-limited or low-energy environments (Hoehler and Jørgensen 2013; Bowles et al. 2014; Jørgensen and Marshall 2016; Wenk et al. 2018). These metabolic energy-limited niches are widespread on Earth, and include the subsurface of intertidal mudflats, coastal environments, continental shelves, deep-sea sediments and euxinic water columns. Organisms that inhabit these environments have adapted to use electron carriers with modest negative reduction potentials, requiring less energy to grow (Wenk et al. 2018). The large S isotope fractionations associated with metabolic energy-limited niches have also been observed in cold hypersaline habitats (Moreras-Martí et al. 2021b).

Sulfur oxidation (SO)

Sulfur oxidation (SO) has a broad taxonomic distribution, being present in members of archaeal and bacterial phyla (Ghosh and Dam

Fig. 2. Main environmental controls on S isotope fractionation during MSR, modified from Fike et al. (2009) with updated parameters. Arrows indicate the magnitude of the fractionation effect (larger or smaller) for the indicated parameter. Parameters denoted with an asterisk (*) demonstrate strain-specific behaviour, including SO₄²⁻ concentrations, temperature and cell-specific sulfate reduction rates (csSRR). Based on measured changes in S isotope fractionation effects at differing SO₄²⁻ concentrations (Canfield 2001a, b; Habicht et al. 2002; Bradley et al. 2016), substrate effects (Hoek et al. 2006; Sim et al. 2011b, 2012), temperature (Canfield et al. 2006; Hoek et al. 2006), increasing csSRR (Chambers et al. 1975; Habicht and Canfield 1997; Sim et al. 2011b; Sim 2012), Fe and NH₄⁺ limitation (Sim et al. 2012) and metabolic energy limitation (Wenk et al. 2018).
2009). Organisms that perform SO vary in terms of oxygen tolerance (facultative anaerobes or obligate aerobes) and strategies for carbon and energy acquisition (photoautotrophic, chemautotrophic or chemoheterotrophic) (Sorokin 2003; Ghosh and Dam 2009). Oxidative S-cycling proceeds via a variety of biological pathways in the environment, along with the abiotic pathways described below. The chemolithotrophic oxidation of reduced H2S or S0 can be coupled to the reduction of O2 or NO3− for energy gain (Friedrich et al. 2001) (Fig. 1). Sulfur isotopic fractionations produced during chemolithotrophic SO are smaller than MSR and highly variable, ranging from −6 to +12‰ between H2S and SO42− or S0 (Fry et al. 1988; Zerkle et al. 2016; Pellerin et al. 2019). The environmental parameters affecting S isotope fractionations during chemolithotrophic SO appear to be related to electron donor and acceptor availability, with larger fractionations linked to lower H2S/O2 ratios (Zerkle et al. 2016).

Anoxygenic phototrophy can oxidize reduced S compounds. In addition to MSR and SO, some S-cycling microorganisms are capable of sulfur disproportionation reactions (MSD) (Bak and Pfennig 1987). MSD can utilize a number of intermediate sulfur species (S0, SO32− or S2O32−) to produce both sulfate and sulfide (e.g. Frederiksen and Finster 2003). The disproportionation of S2O32− or S0 is performed anaerobically, assimilating carbon from CO2 or acetate (Widdel and Pfennig 1977). For S0 disproportionation to be thermodynamically feasible in an environment, sulfide concentrations must be less than 1 mM (Thamdrup et al. 1993). Moderate S isotope fractionations are associated with MSD, related to the recycling of reduced S components during metabolic processes (reviewed by Canfield 2001a). Fractionations up to −34‰ have been measured on H2S and SO42− during S0 disproportionation (disproportionation of S0 to H2S and SO42−) by pure cultures at the cellular level (Habicht 1997).

Microbial sulfur disproportionation (MSD)

In addition to MSR and SO, some S-cycling microorganisms are capable of sulfur disproportionation reactions (MSD) (Bak and Pfennig 1987). MSD can utilize a number of intermediate sulfur species (S0, SO32− or S2O32−) to produce both sulfate and sulfide (e.g. Frederiksen and Finster 2003). The disproportionation of S2O32− or S0 is performed anaerobically, assimilating carbon from CO2 or acetate (Widdel and Pfennig 1977). For S0 disproportionation to be thermodynamically feasible in an environment, sulfide concentrations must be less than 1 mM (Thamdrup et al. 1993). Moderate S isotope fractionations are associated with MSD, related to the recycling of reduced S components during metabolic processes (reviewed by Canfield 2001a). Fractionations up to −34‰ have been measured on H2S and SO42− during S0 disproportionation (disproportionation of S0 to H2S and SO42−) by pure cultures at the cellular level (Habicht 1997).

Minor S isotope biosignatures: Δ33S and Δ36S biosignatures

Minor S isotopes (33S and 36S), expressed as Δ33S = δ33S − [(34Rsample/34RCDT)0.515 − 1] and Δ36S = δ36S − [(34Rsample/34RCDT)1.90 − 1], have further contributed to our understanding of S-cycling processes on the early Earth (Farquhar et al. 2000a, b; Farquhar and Wing 2003). Following this notation, the exponents 0.515 (33S) and 1.90 (36S) represent reference values that approximate mass-dependent fractionations during thermodynamic equilibrium isotope exchange at low temperature (Hulston and Thode 1965; Farquhar and Wing 2003; Johnston et al. 2007). Deviations from these reference values occur in biological systems owing to a linear dependence of isotope ratios during redistribution of mass at the cellular or ecosystem level (e.g. via mixing or Rayleigh processes), which deviate from the predicted exponential relationship (Farquhar et al. 2003, 2007a; Johnston 2005; Johnston et al. 2007). These deviations result in small magnitude anomalies in Δ33S and Δ36S, termed mass conservation effects, that can be preserved in rocks and sediments alongside δ34S (e.g. Johnston et al. 2008).

Experimental studies have shown that each of the biological S metabolisms discussed above produce characteristic minor isotope patterns, resulting from the individual steps controlling the sulfur flowing through the metabolic pathways (Fig. 3; Zerkle et al. 2016). MSR in pure cultures has been observed to produce 33S values between 0.5077 and 0.5125, MSD produces higher 33S values ranging from 0.5145 to 0.5187 (Johnston 2005; Johnston et al. 2007) and chemolithotrophic SO produces 33S values ranging from 0.513 to 0.515 (Pellerin et al. 2015, 2019; Zerkle et al. 2016). These differences in the minor isotopes can help to decipher complex environmental isotope records, where MSR, MSD and SO can co-occur, producing δ36S values that overlap. For example, biological variations have been shown to produce distinctive Δ33S values in both hydrothermal and hypersaline Mars analogue environments, even when δ36S values are small or indistinguishable (Moreras-Marti et al. 2021b).

Cultures/experiments:
- MSD (Johnston et al., 2005a)
- MSR (Sim et al., 2011b)
- phototrophic SO- H2S to S0 (Zerkle et al., 2009)
- phototrophic SO- S0 to SO42− (Zerkle et al., 2009)

Natural systems:
- MSR - euxinic lake (Canfield et al., 2010)
- MSR + MSD - euxinic lake (Zerkle et al., 2010)
- MSR + MSD hypersaline system (Moreras Marti et al., 2021b)
- complex S cycling- hydrothermal system (Moreras Marti et al., 2021b)
- chemotrophic SO - cave system (Zerkle et al., 2018)

Fig. 3. δ34S v. Δ33S systematics for H2S and S0 produced by different sulfur cycling metabolisms. MSD pure cultures from Johnston (2005); MSR from Sim et al. (2011b) and phototrophic SO from Zerkle et al. (2009). Natural systems: MSR from euxinic lake from Canfield et al. (2010); MSR + MSD also from euxinic lake from Zerkle et al. (2010).
Abiotic fractionation of S isotopes

Abiotic processes act alongside biology to cycle sulfur in natural systems. Therefore, to use S isotopes as a biosignature for S-cycling metabolisms in extra-terrestrial environments, it is important to examine any abiotic processes that could modify or mask the biogenic S isotopes available. Sulfate can be reduced abiotically by thermochemical sulfate reduction (TSR), requiring high temperatures (80–200°C) and organic matter. TSR produces δ34S fractions of up to −20‰ between reactant sulfate and product sulfide (Machel et al. 1995). Sulfide can also be oxidized abiotically by reacting with Fe (III) or Mn (IV), or by rapid reaction with molecular oxygen, producing mean fractionations in δ34S of −5.5‰ between H2S and intermediate S products (Fry et al. 1988; Eldridge and Farquhar 2018; Eldridge et al. 2021). Small pH-dependent equilibrium isotope fractionations have also been measured between aqueous and gaseous H2S, with a fractionation of −1‰ at pH < 6 and +2‰ at pH 8 (Sim et al. 2019). Theoretical calculations predict that abiotic equilibrium isotope effects in δ34S–δ32S between sulfur-bearing species can be as large as 58‰. These types of effects are rarely seen at Earth’s surface but have been hypothesized to contribute to the δ34S values measured at Gale Crater (Franz et al. 2017).

Abiotic S-cycling processes generally produce negligible changes in minor S isotopes (e.g. Johnston 2011; Eldridge and Farquhar 2018; Eldridge et al. 2021). Two exceptions are TSR, which can induce large ∆34S values up to +13‰ via magnetic isotope effects (Oduro et al. 2011), and mass-independent fractionation of sulfur isotopes (S-MIF) that occurs via gas-phase reactions during atmospheric sulfur photochemistry. S-MIF signatures are commonly observed in sulfide and sulfate minerals in sedimentary rocks older than 2.4 Ga, and are attributed to the interaction of ultraviolet (UV) photons with SO2 and other sulfur gases in the absence of an ozone layer (e.g. Farquhar et al. 2002b). Biomass burning has also been shown to impart small-magnitude S-MIF, with ∆34S values as low as −0.19‰ observed in combustion experiments and associated aerosols (Lee et al. 2002; Shaheen et al. 2014; Lin et al. 2018); however, organic sulfur was very unlikely to have been extensive on early Mars. S-MIF signatures are also associated with large stratospheric eruptions (e.g. Crick et al. 2021) and volatilization of massive amounts of sulfur during the end-Cretaceous meteorite impact (Junium et al. 2022), and have previously been measured in Martian meteorites (e.g. Franz et al. 2014). We explore the implications for these abiotic fractionation mechanisms in altering S isotope biosignatures below.

Sulfur isotope biosignatures on Mars

Sulfur cycling on Mars

Sulfur is one of the most abundant elements on the Martian surface (Baird et al. 1976; King and McLennan 2010; Franz et al. 2019a). The main sulfur oxidation states found on Mars are: S2− (pyrrhotite, FeS2), S2+ (e.g. pyrite, FeS2), S6+ (SO4, S8), S3+ (SO3(g), SO3−, SO3− bisulfite), S4+ (SO4, SO2− sulfate, SO2− sulfone), S2− (S2) (Franz et al. 2019a, and references therein), with S6+ likely to be dominant (King and McLennan 2010). Reduced sulfur is found in primary igneous phases from Martian meteorites, but also in the Martian sediments at Gale Crater (McAdam et al. 2014, 2020; Franz et al. 2017; Wong et al. 2020). In meteorites, the reduced S is mainly in the form of sulfides, including some reduced Fe-S minerals (e.g. pyrite and pyrrhotite) (Meyer 2012, and references therein). High concentrations of sulfur on the Martian surface are evident through observations and measurements of high SO2 concentrations in the Martian soil, including 5.12 wt% at Gale Crater (Berger et al. 2016) and 6.16 wt% in average Martian soil (Taylor and McLennan 2009; Berger et al. 2016). This abundance of surface sulfur species on Mars ultimately derives from an S-rich mantle. Measurements of Martian meteorites suggest the presence of high sulfur concentrations in the Martian interior, with average concentrations of 6 wt% SO2 found in shergottites, which are Martian basaltic meteorites (Meyer 2012). The prolific volcanism that extended from the Noachian to Hesperian led to significant amounts of outgassing to the surface (Fig. 4) (Haley et al. 2007; Righter et al. 2009; King and McLennan 2010). The outgassing involved a large injection of sulfur gases (H2S and SO2) into the atmosphere (Settle 1979; Tian et al. 2010; Gaillard et al. 2013). Mass-independent fractionation of S isotopes (S-MIF) from SO2 and H2S measured in Martian meteorites suggests that atmospheric photochemistry was a key influence on the early Martian S cycle (Farquhar et al. 2000a; Franz et al. 2014). Volcanic H2S released into the atmosphere would have photo-oxidized to SO2, where SO2 was then either precipitated or further photo-dissociated, further deposited on the Martian surface with a distinctive S-MIF signal (Franz et al. 2014). It is still unknown how S-MIF signals on the Martian surface were affected by environmental factors, or if they have regional or local variations, providing a target for future analysis. Both hydrothermal circulation and meteorite impacts into S-rich sediments could have provided an active geochemical cycle that could have subsequently homogenized the S-MIF signal on the Martian surface (Fig. 4). The delivery of dust into the atmosphere could have also played a role in homogenizing S-MIF between the atmospheric sulfur species and surface sulfates (Farquhar et al. 2000a).

The Sample Analysis at Mars (SAM) instrument on board the Curiosity rover detected SO2, H2S, OCS and CS2 at Gale Crater. The SO2 is probably thermally derived from Fe sulfates, Ca sulfites, oxidation of sulfate (e.g. pyrite or pyrrhotite) (McAdam et al. 2014), or from Mg sulfates (Sutter et al. 2017; McAdam et al. 2020). The OCS and CS2 are probably a product of a reaction involving reduced sulfur and some C source (McAdam et al. 2014; Wong et al. 2020). Sulfide minerals at Gale Crater have been hypothesized to be the product of hydrothermalism and groundwater transport (Franz et al. 2017; Wong et al. 2020).

Sulfur-rich habitats on early Mars

The presence of sulfur species and suitable electron donors and acceptors, including organic C (Eigenbrode et al. 2018), NO3− (Stern et al. 2015), H2 (Feldman et al. 2004b), Fe2+ and Fe3+ (Bain et al. 1993; Morris et al. 2008), on Mars raises the question of whether a sulfur-biochemical cycle has ever been viable. Both SO and MSR have been proposed as feasible metabolisms under Martian chemical conditions, based on the chemistry of the Martian regolith (Nixon et al. 2013), Mars simulation experiments (Denson et al. 2009; Oliver et al. 2022), Gibbs free energy calculations (Macey et al. 2020; Ramkisson et al. 2021) and their detection in a range of Mars analogue environments (Perreauil et al. 2007; Lay et al. 2013; Pontefract et al. 2017; Cousins et al. 2018; Singh et al. 2019; Macey et al. 2020; Moreras-Martí et al. 2021a, b). The widespread presence of sulfur species would have created several potentially habitable S-rich environments on the Martian surface with different sulfur species available for S metabolic reactions. Two systems of particular relevance are (1) hydrothermal systems accumulating reduced and oxidized species delivered directly from volcanism and (2) evaporative systems accumulating oxidized species from both volcanism and atmospheric deposition. These two types of environments were widespread on early Mars and could have supported a Martian biogeochemical S cycle in a habitat space conducive to biology with regard to other factors (e.g. water activity and availability of other bio-essential elements). These are discussed below.
During the Noachian–Hesperian transition, large amounts of heat were released through endogenic volcanic activity, directly linked to the formation of localized hydrothermal systems (Gulick 1998; Abramov and Kring 2005; Osinski et al. 2013). Exogenic impacts also formed hydrothermal systems within the impact craters themselves (Rathbun and Squyres 2002; Abramov and Kring 2005; Schwenzer et al. 2012). Evidence for hydrothermal systems can be found both on the surface (e.g. Rathbun and Squyres 2002; Ojha et al. 2021) and within the subsurface (Ehmann et al. 2011). One example is the relict surficial hydrothermal system at Home Plate (Columbia Hills, Gusev Crater), explored by the MER-A Spirit rover (Squyres et al. 2008). Here, opaline silica associated with volcanic material indicates past hydrothermal activity (Ruff et al. 2007, 2020; Ruff and Farmer 2016a, b). The nearby Columbia Hills have sulfur-rich soils attributed to fumarolic activity of Home Plate (Squyres et al. 2008). A contrasting example of Martian hydrothermal activity can be found in the Eridania Basin, where the presence of both chloride evaporites and hydrothermal alteration mineral assemblages point towards the existence of a seafloor hydrothermal system (Michalski et al. 2017). Endogenic Martian hydrothermalism has also been linked to glacial surface deposits, such as Arsia Mons (Scanlon and Head 2014) and Sisyphi Montes (Ackiss et al. 2018).

Mineralogical evidence for evaporitic brines on Mars has been found in many regions, including evaporite outcrops in Valles Marineris, Terra Meridiani, Margaritifer Sinus, Gusev Crater, Meridiani Planum and North Polar regions (Squyres et al. 2004; Gendrin et al. 2005; Langevin et al. 2005), and observations of salt minerals in the equatorial and mid-latitudes (Feldman et al. 2004a; Karunatillake et al. 2014). Evaporites on Mars are commonly associated with Hesperian-aged terrain, a period between c. 3.5 and 3.0 Ga (Hurowitz and McLennan 2007). Sulfates (Mg, Fe and Ca) represent a major component of Martian evaporites, both in outcrops (Bibring et al. 2006) and in the globally distributed dust (Yen et al. 2017). Furthermore, Ca-sulfate deposits are a diagenetic alteration feature identified at both Gale Crater (Schwenzer et al. 2016) and Endeavour crater (Arvidson et al. 2016). These data imply a global aqueous chemistry at the time dominated by varying ratios of Mg$^{2+}$/Fe$^{2+}$/SO$_4^{2-}$/Cl$^-$ present in evaporite-forming brines, where local variations allowed (H)CO$_3$ to accumulate. At a neutral to alkaline pH, the presence of aqueous (H)CO$_3$ would probably have removed Fe$^{2+}$, Mg$^{2+}$ and Ca$^{2+}$ during evaporation. Therefore, the widespread presence of Mg-, Fe- and Ca-sulfate minerals indicates acidic sulfate-enriched brines.

Current and future prospects for the detection of S isotope biosignatures on Mars

To test the utility of S isotope biosignatures, we consider S isotope values measured on Mars’s surface and in Martian meteorites (Franz et al. 2014, 2017; Chela-Flores 2019), within the context of S isotope measurements from terrestrial Martian analogue environments. We show that biogenicity is difficult to assess from major S isotopes alone and propose an important role for minor S isotopes in future life-seeking missions.

The S isotope values of sulfide and sulfate minerals have been measured from shergottite and nakhlite Martian meteorites (Fig. 5) (Farquhar et al. 2000a, 2007b; Franz et al. 2014, 2019b), with shergottite meteorites providing the closest available representation of Mars’s mantle composition (Franz et al. 2019b). The δ34S values of both types of meteorites vary from −3.34 to +0.7‰ for sulfides, and from −4.98 to +12.8‰ for sulfates (±0.15‰ for all δ34S values). In contrast, a significant in situ discovery from the SAM instrument on board the Curiosity rover has been the identification of a large variability in the S isotope compositions measured in the sediments from Gale Crater (Franz et al. 2017). The first δ34S values measured at Gale Crater from mudstones show a large δ34S range of sulfides and sulfates, from −47 ± 14 to +28 ± 7‰. These large S isotope variations are proposed to have resulted from equilibrium fractionation between sulfate and sulfide within an impact-driven hydrothermal system, with related atmospheric processing of sulfur gases during warm periods (Franz et al. 2017). These variations are
larger than the $\delta^{34}S$ values seen in S-phases from Martian meteorites and overlap with variations produced on Earth by microbial sulfur metabolisms. Sulfur isotope fractionations ($^{34}S_{\text{CRS-SO}_4}$) in Mars analogue hydrothermal environments have been observed to be small, from -9.1 to -3.7% between water sulfate and CRS (chromium reducible sulfur: pyrite and elemental S) from sediments (Szydkiewicz et al. 2012; Cousins et al. 2018; Moreras-Martí et al. 2021b). Conversely, hypersaline Mars analogue environments that support both MSR and MSD have larger ^{34}S values for Gale Crater range from -47 ± 14 to $-28 \pm 7\%$ (Franz et al. 2017). AVS (acid volatile sulfur): H_2S, HS^- and other polysulfides; CRS (chromium reducible sulfur): pyrite and elemental S.

Minor S isotope data from both types of Mars-analogue sites show small-scale $\Delta^{33}S$ and $\Delta^{36}S$ variations consistent with mass conservation effects that occurred during biological sulfur transformations. Inclusion of the minor S isotope values reveals that complex biological S-cycling, consisting of MSR and further oxidative recycling of sulfur species, is occurring in both environments. Particularly in hydrothermal environments with small variations in $\delta^{34}S$, it is only when the minor S isotope values are included that biological and abiotic hydrothermal processes can be decoupled (Moreras-Martí et al. 2021b). This decoupling is of importance when searching for biosignatures within a highly active abiotic S cycle. Likewise, these values form a small range in comparison with Martian meteorites, which instead show large $\Delta^{33}S$ values consistent with an atmospheric S-MIF signal (-1.25 ± 0.01 to $0.260 \pm 0.008\%$ for sulfates, and $-0.538 \pm 0.093\%$ for sulfides, and a smaller range of $\Delta^{36}S$ values (-0.67 to $2.4\% \pm 1.4\%$ for sulfates, and -0.24 ± 0.2 to $2.6 \pm 1.6\%$ for sulfides) (Farquhar et al. 2000a, 2007b; Franz et al. 2014, 2019b). One observation from these meteorites is the coexistence of large $\Delta^{33}S$ anomalies with near-zero $\Delta^{36}S$ values, which implies that Martian S-MIF formed by different pathways than those that operated on the early Earth, as

![Fig. 5](a) $\Delta^{36}S$ v. $\Delta^{33}S$ for S-rich hypersaline (‘LH’), and Icelandic hydrothermal (Kerlingarfjöll and Kverkfjöll) environments (data from Moreras-Martí et al. 2021b), and Martian meteorites (from Farquhar et al. 2000a, 2007b; Franz et al. 2014, 2019b). (b) Expansion of (a). (c) $\delta^{34}S$ v. $\Delta^{33}S$ for hypersaline (LH), Icelandic hydrothermal (Kerlingarfjöll and Kverkfjöll), compared with microbial S-cycling from Figure 3, and Martian meteorites. $\delta^{34}S$ values for Gale Crater range from -47 ± 14 to $-28 \pm 7\%$ (Franz et al. 2017). AVS (acid volatile sulfur): H_2S, HS^- and other polysulfides; CRS (chromium reducible sulfur): pyrite and elemental S.
Archean S-MIF values show a distinctive covariation between $\Delta^{33}\text{S}$ and $\Delta^{36}\text{S}$ (Farquhar et al. 2000b; Franz et al. 2014).

Future prospects for the detection of Martian S isotope biosignatures: unravelling abiotic from biotic QSI signatures in Martian materials

As described above, the addition of minor S isotopes ($\Delta^{33}\text{S}$ and $\Delta^{36}\text{S}$, QSI) can provide a third and fourth dimension for interpreting $\delta^{34}\text{S}$ values in natural systems. QSI can help to remove ambiguity between abiotic and biotic S-cycling processes, given that mass conservation effects are distinguishable from abiologically produced QSI values (e.g. Ono 2008). In this section we consider the abiotic processes that could contribute to QSI values in Martian systems, and prospects for unravelling these from microbial S isotope signals.

Theoretical calculations predict that equilibrium isotope effects in ^{33}S–^{32}S between sulfur-bearing species can be as large as 58% (Farquhar and Wing 2003; Johnston et al. 2007; Ono et al. 2007). The large range in $\delta^{34}\text{S}$ values at Gale Crater (from -47 to $+28\%$) has been interpreted to reflect a combination of equilibrium isotope effects and atmospheric processing of S-bearing gases that were incorporated into minerals (Franz et al. 2017). Future QSI analyses could help to distinguish between these scenarios, as changes in $\Delta^{34}\text{S}$ values associated with equilibrium fractionations (between -0.02 and 0.03%) are small in comparison with $\Delta^{34}\text{S}$ effects produced during biological transformations ($>0.05\%$), providing a diagnostic biosignature (Johnston 2011). TSR can also contribute to QSI values, particularly in hydrothermal systems; however, TSR requires the interaction of sulfate with organic matter, which does not seem to be prevalent for the majority of Martian history.

Mass-independent fractionation of sulfur isotopes (S-MIF) during atmospheric photochemistry provides the most challenging abiotic signal to untangle from biological QSI values. Martian meteorites (sulfide and sulfate) show a larger range of $\Delta^{34}\text{S}$ (from -1.25 to 0.260%) and $\Delta^{36}\text{S}$ values (from -0.67 to 2.6%), interpreted to reflect S-MIF (Fig. 5a and b). $\Delta^{34}\text{S}$ values from Martian meteorites are outside the range of values produced during mass conservation effects and mass-dependent processes. Variations in $\Delta^{34}\text{S}$ are considered insignificant for Mars owing to the relatively large uncertainties in the measurements, thus these values appear to show a lack of covariation between $\Delta^{34}\text{S}$ and $\Delta^{36}\text{S}$ (Farquhar et al. 2000b; Franz et al. 2014). Sulfur species processed by biology form coherent mass fractionation arrays in $\Delta^{34}\text{S}/\Delta^{36}\text{S}$ (Farquhar et al. 2000a). For example, biologically influenced samples from Lost Hammer and the Icelandic hydrothermal pools show co-variation in $\Delta^{34}\text{S}$ and $\Delta^{36}\text{S}$, with $\Delta^{34}\text{S}/\Delta^{36}\text{S}$ slopes between -5.6 and -7.5, consistent with mass-dependent processes (Fig. 5). The $\Delta^{34}\text{S}/\Delta^{36}\text{S}$ relationship could therefore provide a powerful tool to help distinguish mass-dependent fractionations from S-MIF. Notably, if large atmospheric S-MIF signals are globally distributed at the Martian surface, these could effectively mask small mass-dependent microbial S isotope signals, unless $\Delta^{34}\text{S}/\Delta^{36}\text{S}$ slopes are discernible. In addition, even if S-MIF is globally distributed at the Martian surface, microbial S-cycling can dilute the S-MIF signal by mixing sulfur reservoirs in the environment, leading to characteristic mixing trends (Ono 2008). This process has already been observed in late Archean rocks, revealing trends that reflect that S-MIF signals were overprinted by S-cycling microorganisms (Ono et al. 2003; Zerkle et al. 2021). To understand mixing processes and resulting dilution effects, the QSI composition of the different sulfur reservoirs would need to be characterized (e.g. volcanic SO$_2$, S$_2$ and H$_2$SO$_4$ aerosols, SO$_3^{2-}$, minerals, sedimentary Fe$_3$S$_2$, etc), and considered within the depositional setting of the system (e.g. closed- v. open-system processes).

We suggest four considerations for unravelling biogenic v. abiotic QSI values from sedimentary sulfur species preserved on Mars. First, S isotope signals indicative of biological S-cycling would be more clearly detected in systems largely free of contamination by atmospheric S-MIF signatures. Second, if an S-MIF signal was globally widespread on Mars, microbial mixing of sulfur could dilute the S-MIF signal and produce characteristic mixing arrays (Ono 2008). Third, $\Delta^{34}\text{S}/\Delta^{32}\text{S}$ slopes could be useful in distinguishing between S-MIF and mass-dependent S isotope fractionations. Lastly, S-cycling microorganisms inhabiting extreme environments that exert physiochemical stressors to life are more likely to produce larger S isotope fractionations (see Fig. 2) that can be distinguished from non-MIF-forming abiotic processes. Like any biosignature, QSI can only be used together with other life-detection approaches. Carbon isotope analysis of organic matter (OM), for example, pairs well with S isotopes, in addition to characterization of the organic molecules present (Hays et al. 2017). This combination can further constrain the type of environments that are most likely to preserve microbial biosignatures.

Environmental targets for the preservation of QSI biosignatures

Given the four considerations outlined above, we propose that high-sulfur environments, such as relic hydrothermal systems, impact craters and subsurface brines, would have provided the ideal setting for S-cycling organisms to interact directly with mantle-derived sulfur reservoirs, such as volcanic or hydrothermally sourced sulfur (Fig. 6). For example, sulfur delivered directly from inputs of volcanic sources could have had c. 0% S isotope values, reflecting a high contribution of mantle-derived sulfur and a small S-MIF contribution (Labidi and Cartigny 2016). Further, where high-S environments with large mantle input had a physical barrier to the surface, such as in subglacial hydrothermal environments and deep crustal hydrothermal systems, they would also have had a smaller S-MIF contribution (Fig. 6). The Martian meteorites bearing an S-MIF signal represent only a subset of all surface and subsurface processes from the S cycle on Mars, thus it is reasonable to assume that relatively small fluxes of atmospheric S-MIF could have been mixed with sulfur reservoirs dominated by mantle sulfur sources. Conversely, environments with a relatively low flux of mantle-derived S, such as non-hydrothermal, non-sulfatic lacustrine, flood and groundwater environments, would have been more susceptible to overprinting by deposition of S-MIF-bearing atmospheric sulfur. In addition, hydrothermal and volcanic systems would provide excess electron donors and acceptors, whereas settings such as brines would be energy-limited niches, which could promote larger S isotope fractionations. For settings such as lacustrine habitats and flood plains, it is likely that the subsurface sediments presented energy limitation compared with hydrothermal systems, like the Jezero palaeolake; however the palaeochemistry of this lacustrine habitat is yet to be determined (Fig. 6). We therefore suggest that the subsurface of lakes and floodplains could be systems to prioritize when searching for QSI biosignatures, with the likely challenge of having to unravel these biosignatures from S-MIF signals.

QSI analysis on returned samples

Currently, there are limitations with the analytical technique for measuring the four masses of S isotopes with a lander spacecraft. The process to analyse bulk QSI is intricate and requires a fluorination step, vacuum line to purify samples, gas chromatograph and mass spectrometer to allow simultaneous measurement of the four sulfur isotopic abundances. Alternatively, with secondary ion mass spectrometry (SIMS), a complex sample preparation process is required involving sample polishing, grinding and gold coating, followed by analysis in an ion probe. Spacecraft measurements also involve larger errors owing to the inability to control for measurement conditions; for example, $\delta^{34}\text{S}$ measurements at Gale Crater involve errors larger than $\pm 4\%$ as and high as $\pm 14\%$ (Franz et al. 2014).
S isotope biosignatures as Mars and Europa

HIGH S ENVIRONMENTS
- subsurface brines
- impact crater hydrothermal
- subaerial hydrothermal
- subglacial hydrothermal

LOW S ENVIRONMENTS
- lacustrine
- flood plains

Fig. 6. Summary figure with the different environmental factors affecting QSI biosignature preservation in high-sulfur environments and low-sulfur environments on Early Mars. Scenarios consider metabolic energy-unlimited vs. metabolic energy-limited subsurface niches. High-sulfur environments feature a significant mantle sulfur signal in volcanically driven systems; low-sulfur environments show the opposite. This scenario is hypothesized on a past Martian atmosphere with continuing S-MIF processes, resulting in high S-MIF signals present in environments with direct atmospheric access. Subsurface or subglacial environments present low S-MIF signal owing to their partial disconnection from the surface.

et al. 2017). Considerable engineering efforts are needed to develop faster and smaller versions of these processes for inclusion in a future spacecraft payload. Mars sample return efforts circumvent this issue by allowing laboratory QSI measurements. Laboratory analysis of QSI through fluorination and vacuum and mass spectrometer requires only between 0.3 and 0.5 mg of Ag₂S. The SAM instrument analysed for S isotopes around 0.45 to 0.135 mg, of which 1% in wt (0.45–1.35 mg) of the samples comprised pyrrhotite and possible pyrite in the JK sample (Franz et al. 2017). QSI measurements are also possible via grain-scale SIMS analysis, which can be conducted on 6–10 μm spots of sulfate or barite grains (e.g. Grema et al. 2022).

The Perseverance rover landed in Jezero crater in February 2021 to study Jezero’s ancient lake system and to drill and store geological sample cores for future return to Earth. Perseverance has been studying the crater floor units, Mazza and Séítah formations, basal units of the lake identified as igneous in origin and affected by aqueous alteration (Gupta et al. 2022; Mangold et al. 2022; Sun et al. 2022). Hydrated Ca- and Mg-sulfates suggest contact with briny waters (Meslin et al. 2022). Perseverance has already taken core samples from these crater floor units, and will sample the delta units (Mangold et al. 2022). These samples will eventually be recovered and returned to Earth (Muirhead et al. 2020). We argue the importance of performing QSI analysis on these returned samples as a tool to characterize the local S-cycling in Jezero’s palaeolake, in addition to contributing to deciphering the wider S cycle on Mars. For example, analysing QSI on S minerals in the crater floor units can identify S-MIF process captured here, together with the extent of its incorporation into magmatic materials. Where the deltaic environment has captured sedimentary sulfide and sulfate, either transported or formed in situ, QSI measurements can inform about their origin, or any putative biological S-cycling involved. There is a need for QSI studies on Jezero palaeolake analogues on Earth to better understand the microbial signals in such settings. This analysis is important not only for QSI but also to improve understanding of the general processes constraining the preservation of biosignatures in Jezero-like environments with deltaic mudstones, authigenic or detrital clay minerals, hydrated silica and magnesium carbonates (Bosak et al. 2021).

Sulfur isotope biosignatures on Europa

It is likely that oceans of liquid water exist beneath the icy surfaces of several moons of the gas giant planets, including Europa, Ganymede and Callisto (Jupiter), Enceladus and Titan (Saturn), and potentially elsewhere, including dwarf planets Ceres and Pluto, and Neptune’s moon Triton (Nimmo and Pappalardo 2016). Although both Enceladus and Europa have received significant attention as potential habitats for life, owing in large part to the likelihood of hydrothermal water–rock interaction maintaining redox disequilibrium in their oceans, only at Europa have S compounds been detected.

Potential sulfur cycling on Europa

Europa’s ocean chemistry is currently not well constrained. Models for Europa’s formation and differentiation into silicate core, ocean and ice shell have predicted that sulfate should be one of the dominant ions in the ocean (Kargel et al. 2000; Fanale et al. 2001; Zolotov and Shock 2001). Sulfate is a major detected component of Europa’s surface, which displays extensive evidence for resurfacing (Figueredo and Greeley 2004; Leonard et al. 2018). However, other theoretical approaches have argued that the oxidation of accreted sulfides may not have occurred if rates of H₂ escape were low enough to maintain reducing conditions (McKinnon and Zolensky 2003). Furthermore, it is possible that most (if not all) S on Europa’s surface is exogenous; mapping of sulfate spectral signatures shows that their distribution is centred at the apex of Europa’s trailing hemisphere (Carlson et al. 2005; Brown and Hand 2013; Ligier et al. 2016), closely matching the intense flux of exogenic sulfur ions deposited on Europa from the high-energy plasma environment within Jupiter’s magnetic field (Hendrix et al. 2011). Experimental work has shown that sulfate anions are generated via S ion implantation into ice (Strazzulla 2011), and by radiolysis and thermal processing of water ice in the presence of S (Carlson et al. 2002; Loeffler and Hudson 2010), all conditions that are met on Europa’s trailing hemisphere.

By contrast, spectra from the leading hemisphere, which experiences a far lower flux of S ions (Hendrix et al. 2011), can be satisfactorily explained without contribution from sulfates (Brown and Hand 2013; Ligier et al. 2016; Trumbo et al. 2019). Instead, leading hemisphere non-icy materials appear to be dominated by Na and Mg (and possibly K) chlorides, which must originate from water–rock interaction in the interior. Lack of endogenous sulfates on Europa’s surface need not rule out a sulfate-rich ocean, as sulfate-rich fluids can evolve towards a chloride-dominated endmember during freezing (Zolotov and Shock 2001; Vance et al. 2019). However, this explanation assumes an as-yet unknown mechanism within Europa’s ice shell that efficiently...
returns precipitated sulfates to the ocean, preventing them from being expressed at the surface.

Regardless, it is reasonable to expect a moderate level of bioavailable S in the ocean (Fig. 7). Europa’s ice surface is thought to be less than 100 myr old, and in many regions significantly younger than this (Figueroa and Greeley 2004). Resurfacing via exhumation and burial of subsurface materials has probably resulted in the delivery of radiolysis products, including sulfates, to the ocean over these timescales (Hand et al. 2007; Greenberg 2010). Resurfacing also serves to expose fresh, unirradiated ice, ensuring the continued radiolytic production of oxidants. Estimates of the flux of oxidized S into the ocean through this route suggest that a minimum of 2×10^9 moles of SO$_4^{2-}$ per year could be transferred into the ocean (Hand et al. 2007), with other estimates suggesting that rates of total oxidant flux (including SO$_4^{2-}$ as well as H$_2$O$_2$, O$_2$ and other minor compounds) could be as high as 3×10^{11} moles a$^{-1}$ (Greenberg 2010). Hydrothermal water–rock interaction predicted to occur at Europa’s core–ocean boundary can supply the ocean with reductants such as H$_2$ at rates of between c. 10^8 and c. 10^{10} mol a$^{-1}$ (Vance et al. 2016), which, when coupled with exogenous SO$_4^{2-}$, can serve as electron donors for MSR. The delivery through the ice of other oxidants such as H$_2$O$_2$ and molecular oxygen (Hand et al. 2007) can provide further electron acceptors for microbial sulfide oxidation (Fig. 7).

Because the ultimate source of S ions in Jupiter’s magnetic field is Europa’s neighbouring moon Io, a plausible biogeochemical S cycle on Europa therefore encompasses reductants and oxidants sourced from two separate planetary bodies (Fig. 7), a significant contrast to S cycles on Earth and Mars. The existence of endogenous salts such as Na- and Mg-chlorides on Europa’s leading hemisphere, which must originate from water–rock interactions in the subsurface, demonstrates that ice shell overturn transports oceanic material upwards as well as downwards. Products of biological metabolisms, such as reduced or oxidized S pools, may therefore be incorporated into surface-accessible materials.

Future prospects for the detection of S isotope biosignatures on Europa

Upcoming missions such as the Europa Clipper and the proposed Europa Lander will have the capability to make isotopic measurements (at least δ^{34}S) to interrogate surficial S compounds for evidence of biological processes. In the latter case, this will occur by directly sampling the surface (Hand et al. 2017), and in the former case by encountering eruptive plumes or micrometeoroid impact ejecta during fly-bys (Postberg et al. 2011). Recognizing or ruling out biologically mediated isotopic signals in these materials requires accounting for the S isotope composition of the various pools of S both on and within Europa and their potential for diluting or overprinting biological processes, as discussed for Mars.

Sulfur on Europa’s surface could originate from three reservoirs: (1) S compounds that have been recently delivered exogenously; (2) exogenous S compounds that were delivered to the ocean via ice shell overturn, processed by (bio)geochemical cycling, and

![Fig. 7. Schematic representation of the potential S cycle on Europa profile, from the rock interior to the surface, with delivery of exogenous SO$_2$ particles from Io. Figure modified from Hand et al. 2017.](image-url)
subsequently returned to the surface; or (3) S compounds that are
endogenous to Europa (i.e. sourced from the silicate core) (Fig. 7).
Scenarios (1) and (2) represent an exotic case for which new
knowledge will be required. Specifically, two distinct processes
potentially capable of imparting isotopic fractionations should be
accounted for: ionization of neutral molecules at Io and radiolytic or
thermal production of oxidized S compounds on Europa’s surface.
Sulfur ions impacting Europa’s surface originate as neutral S
molecules (e.g. SO2, SO) ejected from Io by volcanic activity, which
are then ionized by high-energy electrons in Jupiter’s
magnetosphere within tens of hours after ejection (Yoshioka et al.
2017). The production efficiency of S ions (including S+, S2+ and
S3+ as well as O+) differs markedly, with S2+ at least two orders of
magnitude more abundant in Io’s plasma ‘torus’ (Smyth and
Marconi 2003; Yoshioka et al. 2017). Ionization of SO2 by electrons
has been demonstrated experimentally (Fletcher et al. 2013), but
new experiments are required to measure isotopic distribution across
ionic products. In addition, theoretical predictions and new
experiments are required to understand S isotope fractionations
during the production of oxidized S compounds on Europa’s
surface. A review of ice-hosted thermal and radiolytic conversion of
S compounds has been given by Mifsud et al. (2021). The radiolytic
and thermally induced chemistry on Europa’s surface can cycle S
through a range of species, including SO2−, SO2, HSO−, S2O52−,
elemental S, S polymers and even H2S (Carlson et al. 2002; Loeffler
and Hudson 2010; Loeffler et al. 2011; Katůnová et al. 2017). If
these compounds are delivered to the ocean via ice shell overturn,
they could each participate in different biogeochemical processes
including MSR, MSD and sulfide oxidation, with different
implications for the likely bioavailability of S in the ocean. This includes (a)
understanding the S isotope signatures of space-based
processing and (b) establishing the relative contributions of
exogenous and endogenous S to the European ocean environment.

(6) New experiments are required to measure S isotope
distribution across products of ionization of S neutrals in
Io’s plasma torus and radiolytic of implanted S compounds
on Europa’s surface.

(7) Measuring δ34S on Europa could be feasible on a lander or
fly-by mission. Furthermore, measuring δ34S will help
untangle the S cycle on Europa, and ultimately differentiate
the different S pools.

Acknowledgements C. Cousins and A. Zerkle thank the Leverhulme
Trust and the UK Space Agency/STFC for funding this work.

Author contributions AM-M: conceptualization (lead), project admin-
istration (lead), visualization (lead), writing – original draft (lead), writing –
review & editing (lead); MF-P: conceptualization (equal), writing – original draft (equal),
writing – review & editing (equal); CRC: funding acquisition (lead),
writing – review & editing (supporting); MCM: writing – original draft
(supporting); ALZ: conceptualization (supporting), funding acquisition (equal),
writing – original draft (supporting), writing – review & editing (supporting)

Funding This work was funded by the Leverhulme Trust (RPG-2019-353)
and UK Space Agency (ST/P000127/1).

Competing interests The authors declare that they have no known
competing financial interests or personal relationships that could have appeared
to influence the work reported in this paper.

Data availability Data sharing is not applicable to this article as no
datasets were generated or analysed during the current study.

Scientific editing by Rosalie Tostevin

References Abramov, O. and Kring, D.A. 2005. Impact-induced hydrothermal activity on
early Mars. Journal of Geophysical Research: Planets, 110, https://doi.org/10.1029/2005JE002453
Ackiss, S., Horgan, B., Seelos, F., Farrand, W. and Wray, J. 2018. Mineralogic
evidence for subglacial volcanism in the Sisyphi Montes region of Mars.
Icarus, 311, 357–370, https://doi.org/10.1016/j.icarus.2018.03.026
Anantharaman, K., Hausmann, B. et al. 2018. Expanded diversity of microbial
groups that shape the dissimilatory sulfur cycle. ISME Journal, 12,
1715–1728, https://doi.org/10.1038/s41396-018-0075-0
Arvidson, R.E., Squyres, S.W. et al. 2016. High concentrations of manganese and
sulfur in deposits on Murray Ridge, Endeavour Crater, Mars. American
Mineralogist, 101, 1389–1405, https://doi.org/10.2138/am-2016-5599

Conclusions

(1) Sulfur isotope measurements represent a powerful tool with
which to probe both abiotic and putative biological processes
on Mars and Europa. QSI has the potential to
delineate these processes on Mars by taking into account
the four considerations suggested in ‘Current and future
prospects for the detection of S isotope biosignatures on
Mars’.

(2) Analysis of these measurements needs to be conducted
within the context of sulfur reservoir inputs and outputs,
many of which are still unconstrained, especially for
Europa.

(3) On Mars, there is an apparent trade-off between
environments most energetically favourable for S-based
microbial metabolisms and those that are more likely
to capture detectable S isotope biosignatures through exerting
environmental stressors. This has implications for future
landing site selection and mission targeting.

(4) QSI analysis on future returned samples from Jezero Crater
may play a significant role in deciphering the local, and
wider, Martian S cycle.

(5) For Europa, significant knowledge gaps currently exist,
which hamper the utility of S isotopes as an effective
biosignature for S-cycling microorganisms, despite the
likely bioavailability of S in the ocean. This includes (a)
understanding the S isotope signatures of space-based
processing and (b) establishing the relative contributions of
exogenous and endogenous S to the European ocean environment.
S isotopes as biosignatures for Mars and Europa

13

Hulston, J.R. and Thode, H.G. 1965. Variations in the S\(^{33}\), S\(^{34}\), and S\(^{35}\) contents of meteorites and their relation to chemical and nuclear effects. Journal of Geophysical Research, 70, 3475–3484, https://doi.org/10.1029/1975JD000475.

Huronza, J.A. and McMullen, S.M. 2007. A ~3.5 Ga record of water-limited, acidic weathering conditions on Mars. Earth and Planetary Science Letters, 260, 432–443, https://doi.org/10.1016/j.epsl.2007.05.043.

Jaffé, K.L., Spencer, J. and Kral, J.J. 2007. Sulfur isotope fractionation on Io. Icarus, 192, 24–40, https://doi.org/10.1016/j.icarus.2007.06.025.

Jia, X., Kivelson, M.G., Khurana, K.K. and Kurth, W.S. 2018. Evidence of a plume from Europa to Galileo magnetic and plasma wave signatures. Nature Astronomy, 2, 459–464, https://doi.org/10.1038/s41550-018-0450-x.

Johnston, D.T. 2005. Multiple sulfur isotope fractionations in biological systems: a case study with sulfur reducers and sulfur disproportionators. American Journal of Science, 305, 645–660, https://doi.org/10.2475/ajs.305.5.645.

Johnston, D.T. 2011. Multiple sulfur isotopes and the evolution of Earth’s sulfate cycle. Earth-Science Reviews, 106, 161–183, https://doi.org/10.1016/j.earscirev.2011.02.003.

Johnston, D.T., Farquhar, J. and Canfield, D.E. 2007. Sulfur isotope insights into microbial sulfate reduction: when microbes meet models. Geochimica et Cosmochimica Acta, 71, 3929–3947, https://doi.org/10.1016/j.gca.2007.05.008.

Johnston, D.T., Farquhar, J., Summons, R.E., Shen, Y., Kaufman, A.J., Masterson, A.L. and Canfield, D.E. 2008. Sulfur isotope biogeochemistry of the Proterozoic McArthur Basin. Geochimica et Cosmochimica Acta, 72, 4278–4290, https://doi.org/10.1016/j.gca.2008.06.004.

Jørgensen, B.B. 1990. The sulfur cycle in marine sediments: role of thiosulfate. Limnology and Oceanography, 35, 1329–1342, https://doi.org/10.4319/lo.1990.35.5.1329.

Jørgensen, B.B. and Marshall, I.P.G. 2016. Slow microbial life in the seabed. Annual Review of Marine Science, 8, 311–332, https://doi.org/10.1146/annurev-marine-011814-015535.

Junin, C.K., Zerkle, A.L., Wits, J.D., Ivany, L.C., Yancey, T.E., Liu, C. and Claire, M.W. 2022. Massive perturbations to atmospheric sulfur in the aftermath of the Chicxulub impact. Proceedings of the National Academy of Sciences of the USA, 119, e211994119, https://doi.org/10.1073/pnas.2119194119.

Kargel, J.S., Kaye, J.Z. et al. 2000. Europa’s crust and ocean: composition, and the prospects for life. Icarus, 148, 226–265, https://doi.org/10.1006/icar.2000.6471.

Karunatilake, S., Wray, J.J. et al. 2014. Sulfates hydrating bulk soil in the Martian low and middle latitudes. Geophysical Research Letters, 41, 7987–7996, https://doi.org/10.1002/2014GL061136.

Kargel, J.S. and McLennan, S.M. 2010. Sulfur on Mars. Meteoritics and Planetary Science, 45, 1036–1059, https://doi.org/10.1111/j.1945-5100.2010.01170.x.

Kargel, J.S., Kaye, J.Z. et al. 2015. Exploration of sulfur on Mars. Elements, 10, 107–112, https://doi.org/10.2113/gselements.10.2.107.

Kargel, J.S., Kaye, J.Z. et al. 2016. Sulfur isotope fractionation during bacterial sulfate reduction in organic-rich sediments. Geochimica et Cosmochimica Acta, 210, 685–702, https://doi.org/10.1016/j.gca.2016.02.005.

Kargel, J.S., Lewis, D.K. et al. 2017. Sulfur isotope fractionation during bacterial sulfate reduction in organic-rich sediments. Geochimica et Cosmochimica Acta, 210, 685–702, https://doi.org/10.1016/j.gca.2016.02.005.

Kargel, J.S. and Kaye, J.Z. et al. 2018. Sulfur isotope fractionation during bacterial sulfate reduction in organic-rich sediments. Geochimica et Cosmochimica Acta, 210, 685–702, https://doi.org/10.1016/j.gca.2016.02.005.
S isotopes as biosignatures for Mars and Europa

Sim, M.S., Ono, S., Donovan, K., Templer, S.P. and Bosak, T. 2011. Effects of electron donors on the fractionation of sulfur isotopes by a marine Desulfovibrio sp. Geochimica et Cosmochimica Acta, 75, 4244–4259, https://doi.org/10.1016/j.gca.2011.05.021

Sim, M.S., Ono, S. and Bosak, T. 2012. Effects of iron and nitrogen limitation on sulfur isotope fractionation during microbial sulfate reduction. Applied and Environmental Microbiology, 78, 8368–8376, https://doi.org/10.1128/AEM.01842-12

Sim, M.S., Sessions, A.L., Orphan, V.J. and Adkins, J.F. 2019. Precise determination of equilibrium sulfur isotope effects during volatilization and deprotonation of dissolved H₂S. Geochimica et Cosmochimica Acta, 248, 242–251, https://doi.org/10.1016/j.gca.2019.01.016

Singh, T., Kashiragatar, P.R. et al. 2019. Implications of microbial thiosulfate utilization in red clay sediments of the central Indian basin: The Martian analogy. Geochimica, Geophysics, Geosystems, 20, 708–729, https://doi.org/10.1029/2018GC007640

Smyth, W.H. and Marconi, M.L. 2003. Nature of the iogenic plasma source in the aqueous environment at Meridiani Planum, Mars. Journal of Geophysical Research: Planets, 108, 2487–2510, https://doi.org/10.1029/2002JE002128

Sorokin, D.Y. 2003. Oxidation of inorganic sulfur compounds by obligately organotrophic bacteria. Microbiology, 72, 641–653, https://doi.org/10.1023/B:MICI.0000083633.24128.e5

Sparks, W.B., Schmidt, B.E., McGrath, M.A., Hand, K.P., Spencer, J.R., Cracraft, M. and Deustua, S.E. 2017. Active Cryovolcanism on Europa? Astrophysical Journal Letters, 839, L18, https://doi.org/10.3847/2041-8213/aa67f8

Squyres, S.W., Grotzinger, J.P. et al. 2004. In situ evidence for an ancient aqueous environment at Meridians Planum, Mars. Science, 306, 1709–1714, https://doi.org/10.1126/science.1104559

Squyres, S.W., Arvidson, R.E. et al. 2008. Detection of silica-rich deposits on Mars. Science, 320, 1063–1067, https://doi.org/10.1126/science.1155429

Stern, J.C., Sutter, B. et al. 2015. Evidence for indigenous nitrogen in sedimentary and aeolian deposits from the Curiosity rover investigations at Gale crater, Mars. Proceedings of the National Academy of Sciences of the USA, 112, 4245–4250, https://doi.org/10.1073/pnas.1420932112

Strazulla, G. 2011. Cosmic ion bombardment of the icy moons of Jupiter. Nuclear Instruments and Methods in Physics Research, Section B, 269, 842–851, https://doi.org/10.1016/J.NIMB.2010.11.093

Sun, V.Z., Hand, K.P. et al. 2022. Exploring the Jezero crater floor: overview of results from the Mars 2020 Perseverance Rover’s first science campaign. LPI Contributions, 2678, 1798, https://ui.adsabs.harvard.edu/abs/2022LPI....2678.1798S

Sutter, B., McAdam, A.C. et al. 2017. Evolved gas analyses of sedimentary rocks and eolian sediment in Gale Crater, Mars: results of the Curiosity rover’s sample analysis at Mars instrument from Yellowknife Bay to the Namib Dune. Journal of Geophysical Research: Planets, 122, 2574–2609, https://doi.org/10.1002/2016JE005225

Szyackiewicz, A., Johnson, A.P. and Pratt, L.M. 2012. Sulfur species and biosignatures in Sulphur Springs, Valles Caldera, New Mexico – implications for Mars astrobiology. Earth and Planetary Science Letters, 321–322, 1–13, https://doi.org/10.1016/j.epsl.2011.12.015

Taylor, S.R. and McLennan, S. 2009. Planetary Crusts: Their Composition, Origin and Evolution. Cambridge University Press, Cambridge.

Thamdrup, B., Finster, K., Hansen, J.W. and Bak, F. 1993. Bacterial disproportionation of elemental sulfur coupled to chemical reduction of iron or manganese. Applied and Environmental Microbiology, 59, 101–108, https://doi.org/10.1128/aem.59.1.101-108.1993

Tian, F., Claire, M.W. et al. 2010. Photochemical and climate consequences of sulfur outgassing on early Mars. Earth and Planetary Science Letters, 295, 412–418, https://doi.org/10.1016/j.epsl.2010.04.016

Troelsen, H. and Jørgensen, B.B. 1982. Seasonal dynamics of elemental sulfur in two coastal sediments. Estuarine, Coastal and Shelf Science, 15, 255–266, https://doi.org/10.1016/0272-7714(82)90062-2

Trumbo, S.K., Brown, M.E. and Hand, K.P. 2019. Sodium chloride on the surface of Europa. Science Advances, 5, eaaw7123, https://doi.org/10.1126/sciadv.aaw7123

Vance, S.D., Hand, K.P. and Pappalardo, R.T. 2016. Geophysical controls of chemical disequilibrium in Europa. Geophysical Research Letters, 43, 4871–4879, https://doi.org/10.1002/2016GL068547

Vance, S.D., Barge, L.M., Cardoso, S.S.S and Cartwright, J.H.E. 2019. Self-assembling ice membranes on Europa: brine properties, field examples, and possible energetic systems in icy ocean worlds. Astrobiology, 19, 685–695, https://doi.org/10.1089/ast.2018.1826

Wenk, C.B., Wing, B.A. and Halevy, I. 2018. Electron carriers in microbial sulfate reduction inferred from experimental and environmental sulfur isotope fractionations. ISME Journal, 12, 495–507, https://doi.org/10.1038/ismej.2017.185

Widdel, F. and Pfennig, N. 1977. A new anaerobic, sporling, acetate-oxidizing, sulfate-reducing bacterium, Desulfitomaculum (emend.) acetoxidans. Archives of Microbiology, 122, 119–122. Detection of reduced sulfur on Vera Rubin ridge by quadratic discriminant analysis of volatiles observed during evolved gas analysis. Journal of Geophysical Research: Planets, 125, e2019JE006304, https://doi.org/10.1029/2019JE006304

Yen, A.S., Ming, D.W. et al. 2017. Multiple stages of aqueous alteration along fractures in mudstone and sandstone strata in Gale Crater, Mars. Earth and Planetary Science Letters, 471, 186–198, https://doi.org/10.1016/j.epsl.2017.04.033

Yoshiioka, K., Tsuchiya, F. et al. 2017. Radial variation of sulfur and oxygen ions in the Io plasma torus as deduced from remote observations by Hisaki. Journal of Geophysical Research: Space Physics, 122, 2999–3012, https://doi.org/10.1002/2016JA023691

Zerkle, A.L., Farquhar, J., Johnston, D.T., Cox, R.P. and Canfield, D.E. 2009. Fractionation of multiple sulfur isotopes during phototrophic oxidation of sulfide and elemental sulfur by a green sulfur bacterium. Geochimica et Cosmochimica Acta, 73, 291–306, https://doi.org/10.1016/j.gca.2008.10.027

Zerkle, A.L., Kamysnysh, A., Kump, L.R., Farquhar, J., Odaro, H. and Arthur, M.A. 2010. Sulfur cycling in a stratified euxinic lake with moderately high sulfate: constraints from quadruple S isotopes. Geochimica et Cosmochimica Acta, 74, 4953–4970, https://doi.org/10.1016/j.gca.2010.06.015

Zerkle, A.L., Jones, D.S., Farquhar, J. and Macalady, J.L. 2016. Sulfur isotope values in the sulfidic Frasassi cave system, central Italy: a case study of a chemolithotrophic S-based ecosystem. Geochimica et Cosmochimica Acta, 173, 373–386, https://doi.org/10.1016/j.gca.2015.10.028

Zerkle, A.L., Claire, M.W., Di Rocco, T., Grassineau, N.V., Nisbet, E.G., Sun, R. and Yin, R. 2021. Sulfur and mercury MIF suggest volcanic contributions to Earth’s atmosphere at 2.7 Ga. Geochemical Perspectives Letters, 18, 48–52, https://doi.org/10.1128/geochel.2124

Zolotov, M.Y. and Shock, E.L. 2001. Composition and stability of salts on the surface of Europa and their oceanic origin. Journal of Geophysical Research: Planets, 106, 32815–32827, https://doi.org/10.1029/2000JE001413