Enhanced Expression of Trib3 during the Development of Myelin Breakdown in dmy Myelin Mutant Rats

Yukako Shimotsu ma, Miyuu Tanaka, Takeshi Izawa, Jyoji Yamate, Mitsuru Kuwamura*

Laboratory of Veterinary Pathology, Osaka Prefecture University, Izumisano City, Osaka, Japan

* kuwamura@vet.osakafu-u.ac.jp

Abstract

The demyelination (dmy) rat exhibits hind limb ataxia and severe myelin breakdown in the central nervous system. The causative gene of dmy rats is the MRS2 magnesium transporter gene. Tribbles homolog 3 (Trib3) is a pseudokinase molecule that modifies certain signal pathways, and its expression is increased in response to various stresses. Here we sought to clarify the mechanism of myelin breakdown by focusing Trib3, which is remarkably up-regulated in dmy rats. The expression of Trib3 mRNA was significantly increased at 4, 5, 6, 7 and 8 weeks of age in the dmy rats, prior to the prominent myelin breakdown between 7 and 10 weeks of age. The expression level of Trib3 was increased concurrently with the progression of the clinical and pathological conditions in the dmy rats. Double immunofluorescence demonstrated that TRIB3 was mainly expressed in neurons and oligodendrocytes and localized in the Golgi apparatus. Our findings indicate that Trib3 may be associated with the pathogenic mechanism of dmy rats.

Introduction

Myelin mutants are extremely useful as tools for clarifying the complex process of myelination, the maintenance of myelin, and myelin diseases. Many myelin mutants have been established, including the jimpy (jp) mouse [1] which has X-linked mutations affecting the proteolipid-protein gene; the myelin-deficient (md) rat [2]; the shiverer (shi) mouse [3]; the Long Evans Shaker (les) rat [4], which has a genetic mutation in myelin basic protein and the taiep rat [5], which has a microtubule abnormality.

The demyelination (dmy) rat is a unique spontaneous myelin mutation that exhibits severe myelin breakdown with a late onset of clinical signs [6]. The causative autosomal recessive mutation has been identified at the MRS2 magnesium transporter (Mrs2) gene, which encodes an essential component of the major Mg^{2+} influx system in mitochondria; Mrs2 gene is expressed mainly in neurons [7]. The dmy rat is characterized by severe myelin destruction throughout the white matter of the central nervous system (CNS) during the late stage of myelination, and the distribution progresses rapidly [8]. Hypertrophic oligodendrocytes were frequently observed in the ventral funiculus of the spinal cord of dmy rats, and the cytoplasm was
intensely stained with mitochondrial markers [9]. These findings indicate that the *Mrs2* gene plays a prominent role in the development and maintenance of myelin. However, the detailed pathogenesis including the relationship between mitochondrial dysfunction and myelin disorder remains uncertain.

Tribbles homolog 3 (*Trib3*) has been reported as a pseudokinase with scaffold-like regulatory functions related to inflammation and certain signaling. *Trib3* expression is increased in response to various stresses, such as nutritional deficiencies [10, 11], endoplasmic reticulum stress [12–15], hypoxia [16] and oxidant stress [17]. *Trib3* has also been reported to be an important regulatory protein involved in signal pathways; for example, the inhibition of mitosis [18], the inhibition of insulin signaling by binding directly to Akt [19], the modulation of mitogen-activated protein kinase activity [20] and more. However, there are few reports describing the function of *Trib3* in the CNS [21, 22]. To address the detailed pathomechanism of myelin destruction in *dmy* rats, we performed a microarray analysis using spinal cord samples and observed a remarkably up-regulated expression of *Trib3* gene. The purpose of this study is to shed light on the mechanism of myelin destruction in the *dmy* rat by focusing on the expression of *Trib3*.

Materials and Methods

Animals

The *dmy* rats were supplied by the National BioResource Project—Rat, Kyoto University (Kyoto, Japan). The rats were maintained at the Education and Research Center for Experimental Animal Science at Osaka Prefecture University. We mated heterozygous (*dmy/+) females with heterozygous (*dmy/+) males and obtained the affected (*dmy/dmy*) and control (+/+ or *dmy/+*) rats. We examined these rats at 4, 5, 6, 7 and 8 weeks of age.

For the comparison of *Trib3* expression in myelin lesions, we also examined two other myelin mutant rats, myelin vacuolation (*mv*) and vacuole formation (*VF*) rats. The *mv* rat is a spontaneous tremor mutant with a null mutation in the attractin gene; these rats show hypomyelination and vacuole formation in the myelin throughout the CNS from the early stage of myelination [23]. The *VF* rat shows tremor behavior (especially in the caudal body) from the age of approx. 10 days. The peak of tremor is observed around 4 weeks of age, and then, tremor behavior gradually improves [24]. Hypomyelination and abnormal vacuoles around the axons in *VF* rats were observed mainly in the white matter of the spinal cord, and the vacuoles were gradually reduced [24]. The *VF* rat has a mutation in *Dopey1* gene, which is likely to be involved in the traffic of myelin proteins [25]. We mated heterozygous (*mv/+*, *vf/+*) females with heterozygous (*mv/+* or *vf/+*) males and obtained the affected (non/ *mv*, *vf/+) and control (+/+ or *mv/+*, *vf/+*) rats. As soon as the rats were weaned, we carried out genotyping by using the Amp-FTA method as described [26]. In the present study, we examined the affected homozygous and wild type control rats of *mv* and *VF* mutants at 4 and 6 weeks of age and at 4, 10, 20 weeks of age, respectively.

All of the rats were maintained in a room with controlled temperature and a 12-hr light-dark cycle. Food and water were provided *ad libitum*. This study was carried out in strict accordance with the recommendations in the Guidelines for Animal Experimentation of Osaka Prefecture University. The protocol was approved by the Animal Experimentation Committee of Osaka Prefecture University (Permit nos. 25–68 and 27–54). All rats used in this study were deeply anesthetized with isoflurane and exsanguinated from abdominal aorta, and all efforts were made to minimize suffering.
Microarray analysis

For the microarray analysis, 6-week-old control and homozygous rats of each mutant were deeply anesthetized and exsanguinated from the abdominal aorta. Total RNA was isolated from the cervical spinal cord with the SV Total RNA isolation system (Promega, Madison, WI, USA). The quality of the RNA was checked with Lab Chips (Agilent technologies, Santa Clara, CA) on an Agilent 2100 Bioanalyzer (Agilent Technologies) and NanoDrop spectrophotometer ND-1000 (nanoDrop Technologies, Wilmington, DE). The RNA was then prepared and hybridized to the rat Genome 230 2.0 Array (Affymetrix, Santa Clara, CA) by Bio Matrix Research, Inc. (Nagareyama, Japan.), following the protocols provided by Affymetrix. The data analysis was done using Gene-Spring GX software [26].

Real-time RT-PCR

Cervical spinal cords from dmy homozygous and control rats at 4, 5, 6, 7 and 8 weeks of age were dissected into the ventral funiculus, dorsal funiculus and gray matter. The mv and control rats at 4 and 6 weeks old and VF and control rats at 4, 10 and 20 weeks old were also necropsied, and the cervical spinal cords were dissected into the white and gray matter. Total RNA was isolated with the SV Total RNA isolation system (Promega) according to the manufacturer’s instructions. A real-time PCR was performed with SYBR Green Real-time PCR Master Mix (Toyobo, Osaka, Japan) with the following setting: 40 cycles of amplification, 95˚C for 5 s, 60˚C for 30 s. The data were normalized to β-actin mRNA using the following primer pairs: Trib3 forward 5’-TCATCTTGCGACCTCA-3’ and reverse 5’-GTCCAGTCATCACAGGCATC-3’; β-actin forward 5’-TAAAGACCTCTACACAC-3’ and reverse 5’-CTCC TGCTTGCTGATCCACAT-3’. The relative expression levels were calculated using the comparative Ct (threshold cycle) method.

Immunohistochemistry

Lumbar spinal cords from 7-week-old dmy and control rats were removed and frozen at −80˚C. Ten-μm frozen sections were cut using a cryostat. After drying, the sections were fixed in diethyl ether at 4˚C for 10 min. The tissues were then rinsed in phosphate-buffered saline (PBS) and treated with 10% normal goat serum in PBS for 30 min. The sections were then incubated with mouse anti-TRIB3 antibody (clone 1H2) (1:100; Sigma-Aldrich, St. Louis, MO) at 4˚C overnight. For the detection of Golgi apparatus, dmy and control rats were perfused transcardially with 4% paraformaldehyde (PFA) in 0.1 M phosphate buffer (PB; pH 7.4). Tissue samples from lumbar spinal cords were routinely processed and embedded in paraffin. Four-μm sections were dewaxed, pretreated in a microwave with citrate buffer (pH 6.0, 10 mM) for 20 min, and incubated in 5% skim milk for 30 min. The sections were then incubated overnight at 4˚C with anti-Golgi 58K mouse monoclonal antibody (1:1000; Sigma-Aldrich). After incubation with the primary antibody, the sections were treated with 0.3% hydrogen peroxide/0.065% sodium azide in PBS to quench endogenous peroxidase activity. The sections were then treated with a peroxidase-conjugated anti-mouse IgG antibody (Histofine Simplestain MAX PO; Nichirei, Tokyo) for 60 min. Signals were visualized with a 3, 3’-diaminobenzidine (DAB) substrate kit (Nichirei).

For the immunofluorescence analysis, sections were rinsed in PBS containing 0.3% Triton X-100 (Sigma-Aldrich), and then treated with 10% normal goat serum in PBS for 30 min. The sections were then incubated with mouse anti-TRIB3 antibody at 4˚C overnight and treated with the Alexa Fluor 488-labeled secondary antibody against mouse IgG (1:1000; Invitrogen, Carlsbad, CA) for 45 min and coverslipped by mounting medium with DAPI (Vector...
Laboratories, Burlingame, CA). Signals were detected with a confocal imaging system C1Si (Nikon, Tokyo).

For double immunofluorescence, sections were incubated with the combination of the following antibodies: polyclonal rabbit anti-GFAP for astrocytes (1:1000; Dako, Glostrup, Denmark), polyclonal rabbit anti-Olig2 for oligodendrocytes (1:1000; Immuno-Biological Laboratories, Gunma, Japan), monoclonal mouse anti-CD11b for microglia (1:200; AbD Serotec, Oxford, UK), polyclonal rabbit anti-SATB2 for neurons (1:500; Abcam, Cambridge, UK) and polyclonal rabbit anti-GM130 for Golgi apparatus (C-terminal) (1:2000; Sigma-Aldrich) antibodies. The sections were then incubated with secondary antibodies conjugated with Alexa 488 or 568 (Invitrogen) for 45 min, and coverslipped with DAPI mounting medium (Vector Laboratories). Signals were detected with a confocal imaging system (C1Si; Nikon).

Statistical analysis
The data are presented as means ± standard deviation. The statistical analysis was performed using Tukey-Kramer tests. A \(p \)-value < 0.05 was considered significant.

Results
Trib3 mRNA expression was significantly increased in the *dmy* rats but not in the other myelin mutant rats

The microarray analysis revealed a 6.2-fold higher expression of *Trib3* in the *dmy* rats compared to the control rats (Gene Expression Omnibus, accession no. GSE88855). We next investigated the *Trib3* mRNA expression in more detail by the real-time PCR analysis. The expression of *Trib3* mRNA in the *dmy* rat was significantly increased in all areas of the spinal cord (i.e. the ventral funiculus, dorsal funiculus and gray matter) at all time points examined (4, 5, 6, 7 and 8 weeks); the expression in the ventral funiculus was the most prominent (Fig 1). We also observed that the increased expression became conspicuous with age in the ventral funiculus and gray matter. For the comparison of *Trib3* expression in the myelin lesions of the other myelin mutants, we also conducted a real-time PCR analysis in the *mv* and VF rats using samples from the white and gray matter of the spinal cord. The expression level of *Trib3* of the *dmy* rats was approx. 12-fold higher in the white matter compared to that in the controls at 4 and 6 weeks of age, and approx. 8-fold higher in the gray matter at 6 weeks of age (Fig 2). In the white matter of the VF rats at 4 weeks of age, a significant increase in the expression level of *Trib3* was seen; however, it was not as remarkable as that of the *dmy* rats (Fig 2A). No significant differences in the relative expression levels of *Trib3* were detected in the gray matter between the *mv* and VF rats (Fig 2B).

Distribution and subcellular localization of TRIB3 in the *dmy* rat

To identify the localization of TRIB3 in the spinal cord of the *dmy* rats, we conducted immunohistochemistry for TRIB3 in 7-week-old rats. The cytoplasm of the neurons and glial cells in the white matter were positively stained for TRIB3 in a dot-like pattern (Fig 3). To identify the TRIB3-positive cells in the *dmy* rats, we performed double immunofluorescence using specific markers for neurons, oligodendrocytes, microglial cells and astrocytes. TRIB3 was coexpressed with neurons and some of the oligodendrocytes, but not with microglial cells or astrocytes (Fig 4). We investigated the subcellular localization of TRIB3 by double immunofluorescence. It revealed the co-localization of TRIB3 and Golgi apparatus in neurons and oligodendrocytes (Fig 5). The immunohistochemistry for the Golgi apparatus marker revealed that immunoreactivity was elevated in the ventral funiculus of the *dmy* rats at 6–8 weeks of age (Fig 6).
Fig 1. Real-time PCR for *Trib3*. Expression of *Trib3* gene in the ventral funiculus in the *dmy* rats (A), gray matter (B) and dorsal funiculus (C) of the cervical spinal cords from the control (+/+ and *dmy/*+) and the *dmy* (*dmy/dmy*) rats. The data are presented as the mean ratio of target to reference gene. β-actin is used as an internal control. In the *dmy* rats, expression levels of *Trib3* mRNA is significantly increased in all areas at 4, 5, 6, 7 and 8 weeks of age. *, *p* < 0.05, **, *p* < 0.01, Tukey-Kramer test (*n* = 3 in each group).

doi:10.1371/journal.pone.0168250.g001
Discussion

Using a microarray analysis and real-time PCR, we observed the enhanced expression of Trib3 mRNA in the dmy rats but not in the mv or VF rats. Elevated expression of Trib3 in the dmy rats was observed especially in the ventral funiculus and gray matter. Particularly pronounced myelin lesions are observed in the ventral and lateral parts of the spinal cord in dmy rats at

Fig 2. Real-time PCR for Trib3 (VF, mv and dmy rats). Relative expression of Trib3 in the white matter (A) and the gray matter (B) of the cervical spinal cords from the dmy, mv and VF rats by the real-time PCR. The data are presented as the mean ratio against expression in the control rats. Although expression levels of Trib3 mRNA is significantly increased in the dmy rats, no significant differences are seen in the VF and mv rats. *, p <0.05, **, p <0.01, Tukey-Kramer test (n = 3 in VF and dmy rats, n = 2 in mv rats.).

doi:10.1371/journal.pone.0168250.g002
7–10 weeks of age [8]. In agreement with a previous study’s finding that myelin lesions in *dmy* rats deteriorate with advancing age [8], we observed in the present study that the expression level of *Trib3* gradually increased from 4 to 8 weeks of age. Although no remarkable histopathological myelin-related lesions were found in the *dmy* rats up to 6 weeks old [8], in the present study we observed an increased level of *Trib3* expression in the 4–5 week-old rats, suggesting that *Trib3* may play some roles in the mechanism of myelin destruction in *dmy* rats from an early period.

The double immunofluorescence demonstrated that TRIB3 was expressed mainly in neurons and oligodendrocytes in the *dmy* rats. An up-regulated expression of TRIB3 may be related to a potential degeneration of neurons and/or oligodendrocytes in these rats. *Mrs2*, a causative gene for *dmy* rats encodes a component of the Mg$^{2+}$ influx system in mitochondria, and in our analysis this gene was expressed mainly in neurons. No apparent alteration was found in neurons of the *dmy* rats, and the detailed mechanism underlying how dysfunction in mitochondria leads to the destruction of myelin remains unclear. *Trib3* is induced in multiple cellular models of Parkinson’s disease (PD) and the dopaminergic neurons of human PD patients, and it is thus considered a potential mediator of neuronal death and degeneration in PD [27]. Oligodendrocytes are known to be a target of the autoimmune attack in demyelinating diseases such as multiple sclerosis (MS) and experimental autoimmune encephalomyelitis, an animal model of MS [28]. Moreover, oligodendrocytes in culture are more sensitive to oxidative stress exerted by H$_2$O$_2$ compared to astrocytes and microglial cells [29]. In the present study’s microarray analysis, the expression levels of heme oxygenase-1 (HO-1) and NAD(P)H dehydrogenase, antioxidant enzymes, were increased in the *dmy* rats. This is consistent with previous studies’ findings that HO-1 was predominantly induced in oligodendrocytes during the early stage of demyelination in the *dmy* rat but not in the *mv* rat, and it suggests that oxidative stress is likely involved in the pathogenesis of demyelination in the *dmy* rat [30].

Our immunohistochemistry for Golgi 58K has demonstrated that immunoreactivity for the Golgi apparatus was elevated in the ventral funiculus in the *dmy* rats between 6 and 8 weeks of age. Our double immunofluorescence also demonstrated that TRIB3 is localized in the Golgi

Fig 3. Immunohistochemistry for TRIB3 in the *dmy* rat. The immunohistochemistry for TRIB3 in the lumbar spinal cords from *dmy* rats at 7-week-old. Cytoplasm of neurons and glial cells are stained with TRIB3 in the gray (A) and white matter (B) of the *dmy* rats. Bars: 20 μm.

doi:10.1371/journal.pone.0168250.g003
Fig 4. Double immunofluorescence for SATB2, Olig2, GFAP, CD11b and TRIB3. The double immunohistochemistry for SATB2 (A-C), Olig2 (D-F), GFAP (G-I), CD11b (J-L) and TRIB3 in the lumbar spinal cords from the dmy rats at 7-week-old. SATB2-positive neurons and Olig2-positive oligodendrocytes are positive for TRIB3, although GFAP-positive astrocytes and CD11b-positive microglial cells are not positive for TRIB3. Bars: A-F, J-L; 20 μm, G-I; 50 μm.

doi:10.1371/journal.pone.0168250.g004
Oxidative stress enhances C/EBP homologous protein (CHOP), a marker of endoplasmic reticulum (ER) stress, and increases the binding of CHOP to the Trib3 promoter in murine diabetic kidneys [31]. The overexpression of Trib3 is thus likely to be promoted by oxidative stress, and ER stress may be a possible reason for the myelin destruction in the dmy rat.

Several studies have shown that oxidative stress and ER stress induce the apoptosis of oligodendrocytes and suppress remyelination in demyelinating lesions in MS [29, 32–34]. Trib3 is considered to be a target of CHOP/ATF4 and works as a sensor for ER stress-induced apoptosis [14]. If the ER stress is transient and mild, the induced Trib3 blocks the CHOP and ATF4 function via a negative feedback mechanism and represses apoptosis. However, when the ER stress is potent and prolonged, excess Trib3 will be produced and lead to apoptosis by dephosphorylating Akt and inducing the translocation of Bax to mitochondria, which accelerates programmed cell death. Trib3 is also involved in apoptosis via Caspase 3 (CASP3) [35]. Caspases play a central role in the execution-phase of apoptosis, and Trib3 prevents the activation of CASP3 by the nuclear translocation of proCASP3. However, in conditions of prolonged stress, Trib3 is cleaved by CASP3 and could be a trigger for the further activation of caspases and induce apoptosis. This indicates that Trib3 functions as a molecular switch between the cell survival and apoptotic pathways under stressful conditions. Aime et al. considered that an elevated expression of Trib3 may enhance the proapoptotic activities and be related to the promotion of neuronal death in PD and its models [27]. Using a TUNEL assay and electron microscopy, we did not observe any apparent increased apoptosis in the spinal cord of the dmy rats at 7 weeks of age. However, dmy rats exhibit severe myelin destruction throughout the

Fig 5. Double immunofluorescence for GM130 and TRIB3. The double immunohistochemistry for GM130 and TRIB3 in the gray matter (A–C) and white matter (D–F) of the lumbar spinal cords from the dmy rats at 7-week-old. There are many GM130/TRIB3 double positive cells in the gray matter (A–C) and white matter (D–F) of the dmy rats. Bars: 20 μm (A–C), 50 μm (D–F).

doi:10.1371/journal.pone.0168250.g005
Fig 6. Immunohistochemistry for Golgi 58K. The immunohistochemistry for Golgi 58K in the lumbar spinal cords from the dmy rats at 4, 6, 7 and 8 weeks of age. The immunoreactivity for the Golgi apparatus is elevated in the ventral funiculus of the dmy rats at 6–8 weeks of age. Bars: 20 μm.

doi:10.1371/journal.pone.0168250.g006
white matter of the CNS during the late stage of myelination, and it might thus be difficult to
detect apoptotic cells. Further research is needed to understand the precise role of increased
Trib3 expression in the dmy rat.

Acknowledgments
We are thankful to the National BioResource Project-Rat (http://www.anim.med.kyoto-u.ac.
jp/NBR/) in Japan for providing rat mutant strains. This work was supported by Grant-in-Aid
for Scientific Research from Japan Society for Promotion of Science (JSPS; no.23380180 and
15H04595).

Author Contributions
Conceptualization: MK.
Data curation: YS MT MK.
Formal analysis: YS MT MK.
Funding acquisition: MK.
Investigation: MT YS TI JY.
Methodology: YS MT MK.
Project administration: MK.
Resources: MT YS.
Supervision: MK.
Validation: YS MT MK.
Visualization: YS MK.
Writing – original draft: MK YS.
Writing – review & editing: MT TI JY.

References
1. Nave KA, Bloom FE, Milner RJ (1987) A single nucleotide difference in the gene for myelin proteolipid
protein defines the jimpy mutation in mouse. J Neurochem 49:1873–1877 PMID: 2445921
2. Simons R, Riordan J (1990) Single base substitution in codon 74 of the MD rat myelin proteolipid protein
gene. Ann N Y Acad Sci 605:146–154 PMID: 1702593
3. Kimura M, Inoko H, Katsuki M, Ando A, Sato T, Hirose T et al. (1985) Molecular genetic analysis of mye-
lin-deficient mice: shiverer mutant mice show deletion in gene(s) coding for myelin basic protein. J Neuro-
rochem 44:692–696 PMID: 2579195
4. O’Connor LT, Goetz BD, Kwiecien JM, Delaney KH, Fletch AL, Duncan ID (1999) Insertion of a retro-
transposon in Mbp disrupts mRNA splicing and myelination in a new mutant rat. J Neurosci 19:3404–
3413 PMID: 10212300
5. Duncan ID, Lunn KF, Holmgren B, Urba-Holmgen R, Brignolo-Holmes L (1992) The taiep rat: a myelin
mutant with an associated oligodendrocyte microtubular defect. J Neurocytol 21:870–884 PMID:
1469463
6. Kuramoto T, Sotelo C, Yokoi N, Serikawa T, Gonalons Sintes E, Canto Martorell J, et al. (1996) A rat
mutation producing demyelination (dmy) maps to chromosome 17. Mamm Genome 7:890–894 PMID:
8995759
7. Kuramoto T, Kuwamura M, Tokuda S, Izawa T, Nakane Y, Kitada K, et al. (2011) A mutation in the gene
encoding mitochondrial Mg2+ channel MRS2 results in demyelination in the rat. PLoS Genet 7:
e1001262 doi: 10.1371/journal.pgen.1001262 PMID: 21253565
8. Kuwamura M, Kanegai D, Yamate J, Kotani T, et al. (2004) Immunohistochemical and morphometrical studies on myelin breakdown in the demyelination (dmy) mutant rat. Brain Res 1022:110–116 doi: 10.1016/j.brainres.2004.07.007 PMID: 15353220

9. Kuwamura M, Inumaki K, Tanaka M, Shirai M, Izawa T, Yamate J, et al. (2011) Oligodendroglial pathology in the development of myelin breakdown in the dmy mutant rat. Brain Res 1389:161–168 doi: 10.1016/j.brainres.2011.03.009 PMID: 21396920

10. Schwarzer R, Dames S, Tonderra D, Klippel A, Kaufmann J (2006) TRB3 is a PI 3-kinase dependent indicator for nutrient starvation. Cell Signal 18:899–909 doi: 10.1016/j.cellsig.2005.08.002 PMID: 16129579

11. Yacoub Wasef S, Robinson K, Berkaw M, Buse M (2006) Glucose, dexamethasone, and the unfolded protein response regulate TRB3 mRNA expression in 3T3-L1 adipocytes and L6 myotubes. Am J Physiol Endocrinol Metab 291:E1247–1280 doi: 10.1152/ajpendo.00117.2006 PMID: 16835403

12. Park S, Hwang I, Shong M, Kwon O (2003) Identification of genes in thyrocytes regulated by unfolded protein response by using disulfide bond reducing agent of dithiothreitol. J Endocrinol Invest 26:132–137

13. Corcoran CA, Luo X, He Q, Jiang C, Huang Y, Sheikh MS (2005) Genotoxic and Endoplasmic Reticulum Stresses Differentially Regulate TRB3 Expression. Cancer Biology & Therapy 4:1063–1067

14. Ohoka N, Yoshii S, Hatton T, Onozaki K, Hayashi H (2005) TRB3, a novel ER stress-inducible gene, is induced via ATF4–CHOP pathway and is involved in cell death EMBO J.23:12413–1255 doi: 10.1038/sj.emboj.7605996 PMID: 15775988

15. Örd D, Örd T (2005) Characterization of human NIPK (TRB3, SKIP3) gene activation in stressful conditions. Biochem Biophys Res Commun 330:210–218 doi: 10.1016/j.bbrc.2005.02.149 PMID: 15781252

16. Bowers AJ, Scully S, Boylan JF (2003) SKIP3, a novel Drosophila tribbles ortholog, is overexpressed in human tumors and is regulated by hypoxia. Oncogene 8:22:2823–2835 doi: 10.1038/sj.onc.1206367 PMID: 12743605

17. Lange P, Chavez J, Pinto J, Coppola G, Sun C, Townes T, et al. (2008) ATF4 is an oxidative stress-inducible, prodeath transcription factor in neurons in vitro and in vivo. J Exp Med 12:205:1227–1242 doi: 10.1084/jem.20071460 PMID: 18458112

18. Grosshans J & Wieschaus E (2000) A genetic link between morphogenesis and cell division during formation of the ventral furrow in Drosophila. Cell 101:523–531 PMID: 10850494

19. Du K, Herzig S, Kulkarni RN & Montminy M (2003) TRB3: a tribbles homolog that inhibits Akt ⁄PKB activation by insulin in liver. Science 300:1574–1577 doi: 10.1126/science.1079817 PMID: 12791994

20. Kiss-Toth E, Bagstaff SM, Sung HY, Jozsa V, Dempsey C, Caunt JC, et al. (2004) Human tribbles, a protein family controlling mitogen-activated protein kinase cascades. J Biol Chem 279:42703–42708 doi: 10.1074/jbc.M407732200 PMID: 15299019

21. Mayumi-Matsuda K, Kojima S, Suzuki H, Sakata T (1999) Identification of a novel kinase-like gene induced during neuronal cell death. Biochem Biophys Res Commun 258:260–266 doi: 10.1006/bbrc.1999.0576 PMID: 10329375

22. Lorente M, Carracedo A, Torres S, Natali F, Egia A, Hernández-Tiedra S, et al. (2009) Amphiregulin is a factor for resistance of glioma cells to cannabinoid-induced apoptosis. Glia 57:1374–1385 doi: 10.1002/glia.20855 PMID: 19229996

23. Kuwamura M, Maeda M, Kuramoto T, Kitada K, Kanegai D, Yamate J, et al. (2002) The myelin vacuolation (mv) rat with a null mutation in the attractin gene. Lab Invest 82:1279–1286 PMID: 12379762

24. Nakane Y, Adachi T, Voigt B, Yamasaki K, Kaji S, Inui T, et al. (2002) A novel mutation ofv causing abnormal vacuoles in the central nervous system maps on rat chromosome 8. Proc. Natl. Acad. Sci. USA 99:20521–20526 doi: 10.1073/pnas.022234499 PMID: 12012723

25. Tanaka M, Izawa T, Yamate J, Franklin RJ, Kuramoto T, Serikawa T, et al. (2014) The VF rat with abnormal myelinogenesis has a mutation in Dopey1. J. Glia 62(9):1530–1542

26. Tokuda S, Kuramoto T, Serikawa T (2004) PCR-based genotyping of the rat Atm (mv) mutation. Exp. Anim. 53:73–76 PMID: 14993747

27. Aime P, Sun X, Zareen N, Rao A, Berman Z, Volpicelli-Daley L, et al. (2015) Trib3 Is Elevated in Parkinson’s Disease and Mediates Death in Parkinson’s Disease Models. J Neurosci 35(30):10731–10749 doi: 10.1523/JNEUROSCI.0614-15.2015 PMID: 26224857

28. McGuire C, Volkaert T, Wolke U, Sze M, Rycke R, Waisman A, et al. (2010) Oligodendrocyte-specific FADD deletion protects mice from autoimmune-mediated demyelination. J Immunol 185:7646–7653 doi: 10.4049/jimmunol.1000930 PMID: 21068410

29. Stahnke T, Stadelmann C, Netzel A, Brück W, Richter-Landsberg C (2007) Differential upregulation of heme oxygenase-1 (HSP32) in gial cells after oxidative stress and in demyelinating disorders. J Mol Neurosci 32:25–37 PMID: 17873285
30. Izawa T, Yamate J, Franklin RJ, Kuwamura M (2010) Abnormal iron accumulation is involved in the pathogenesis of the demyelinating dmy rat but not in the hypomyelinating mv rat. Brain Res 1349: 105–114 doi: 10.1016/j.brainres.2010.06.030 PMID: 20599839

31. Morse E, Schroth J, You Y, Pizzo D, Okada S, Ramachandrarao S, et al. (2010) TRB3 is stimulated in diabetic kidneys, regulated by the ER stress marker CHOP, and is a suppressor of podocyte MCP-1. Am J Physiol Renal Physiol 299:F965–972 doi: 10.1152/ajprenal.00236.2010 PMID: 20660016

32. Franklin R (2002) Why does remyelination fail in multiple sclerosis? Nat Rev Neurosci. 3:705–714. doi: 10.1038/nrn917 PMID: 12209119

33. Bruck W, Kuhlmann T, Stadelmann C (2003) Remyelination in multiple sclerosis. J Neurol Sci 206:181–185 PMID: 12559508

34. Lin W, Harding HP, Ron D, Popko B (2005) Endoplasmic reticulum stress modulates the response of myelinating oligodendrocytes to the immune cytokine interferon-gamma. J Cell Biol 169:603–612 doi: 10.1083/jcb.200502086 PMID: 15911877

35. Shimizu K, Takahama S, Endo Y, Sawai K (2012) Stress-Inducible caspase substrate TRB3 promotes nuclear translocation of procaspase-3. PLoS One 7:e42721 doi: 10.1371/journal.pone.0042721 PMID: 22912727