Inositol 1,4,5-trisphosphate receptors in cardiomyocyte physiology and disease

Kateryna Demydenko†, Samaneh Ekhteraei-Tousi and H. Llewelyn Roderick

Laboratory of Experimental Cardiology, Department of Cardiovascular Sciences, KU Leuven, Leuven, Belgium

HLR, 0000-0001-7065-3523

The contraction of cardiac muscle underlying the pumping action of the heart is mediated by the process of excitation-contraction coupling (ECC). While triggered by Ca^{2+} entry across the sarcolemma during the action potential, it is the release of Ca^{2+} from the sarcoplasmic reticulum (SR) intracellular Ca^{2+} store via ryanodine receptors (RyRs) that plays the major role in induction of contraction. Ca^{2+} also acts as a key intracellular messenger regulating transcription underlying hypertrophic growth. Although Ca^{2+} release via RyRs is by far the greatest contributor to the generation of Ca^{2+} transients in the cardiomyocyte, Ca^{2+} is also released from the SR via inositol 1,4,5-trisphosphate (InsP3) receptors (InsP3Rs). This InsP3-induced Ca^{2+} release modifies Ca^{2+} transients during ECC, participates in directing Ca^{2+} to the mitochondria, and stimulates the transcription of genes underlying hypertrophic growth. Central to these specific actions of InsP3Rs is their localization to responsible signalling microdomains, the dyad, the SR-mitochondrial interface and the nucleus. In this review, the various roles of InsP3R in cardiac (patho)physiology and the mechanisms by which InsP3 signalling selectively influences the different cardiomyocyte cell processes in which it is involved will be presented.

This article is part of the theme issue ‘The cardiomyocyte: new revelations on the interplay between architecture and function in growth, health, and disease’.

1. Ca^{2+} and the heart

Ca^{2+} is a pleiotropic intracellular messenger controlling key aspects of cardiac biology [1]. Of particular importance is its role in the physiology of the cardiomyocyte, where global increases in its intracellular concentration couple electrical depolarization of the sarcolemma during excitation-contraction coupling (ECC) with contraction [2,3]. Supporting this role in ECC and other cell processes, Ca^{2+} is taken up into the mitochondria to stimulate metabolism, generate ATP required for contraction and mediate Ca^{2+} clearance from the cytosol during relaxation. Ca^{2+} transients underlying contraction are acutely tuned to the cardiovascular needs of the organism, being augmented in amplitude and kinetics under periods of increased sympathetic drive, such as during the fight-or-flight response. Further, and consistent with this role in coupling cardiac output with haemodynamic requirements, via stimulation of gene expression, alterations in Ca^{2+} induce hypertrophic growth of the heart required for sustained increases in demand. Such hypertrophic growth occurs during developmental growth, pregnancy and during disease processes such as in response to cardiac damage following an infarct. When dysregulated, Ca^{2+} is involved in cardiomyocyte cell death processes and importantly in cardiac pathologies including in mediating arrhythmic activity and in the reduction in cardiac output during heart failure. The diversity of these functions of Ca^{2+} in the cardiomyocyte suggests the requirement for complex mechanisms for Ca^{2+} signal modulation to ensure discrete encoding of its involved cell processes.

© 2022 The Authors. Published by the Royal Society under the terms of the Creative Commons Attribution License http://creativecommons.org/licenses/by/4.0/, which permits unrestricted use, provided the original author and source are credited.
2. Inositol 1,4,5-trisphosphate signalling in the heart

During ECC, the cell-wide increase in [Ca2+], required for induction of contraction is generated by the Ca2+-dependent activation of ryanodine receptors (RyR) Ca2+ release channels located on the sarcoplasmic reticulum (SR) intracellular Ca2+ store by Ca2+ entering the cell through sarcolemmal L-type voltage-gated Ca2+ channels (LTCC) [3,4]. During this process of Ca2+-induced Ca2+ release (CICR), Ca2+ release from the SR dominates over Ca2+ entry by approximately 10 : 1 and is thus primarily responsible for cardiomyocyte contraction. In addition to RyRs, cardiomyocytes also express inositol 1,4,5-trisphosphate receptors (InsP\textsubscript{3}R) Ca2+ release channels that are also located on the SR Ca2+ store. While RyRs play a central role in the generation of Ca2+ signals underlying ECC, the contribution of Ca2+ release from InsP\textsubscript{3}R to cardiomyocyte physiology is not so clear. In contrast to RyRs, which are activated and inhibited by Ca2+ [5], InsP\textsubscript{3}Rs require both InsP\textsubscript{3} and Ca2+ for full activation [6–8]. As in other cell types, InsP\textsubscript{3} is generated in cardiomyocytes via phospholipase C (PLC)-mediated hydrolysis of phosphatidyl inositol 4,5-bisphosphate (PtdIns4P,5P\textsubscript{2}). The mechanism of PLC activation is dependent on the isoform involved. PLC\textsubscript{β} isoforms are activated by G\textsubscript{α}\textsubscript{q} following engagement of G-protein coupled receptors (GPCR), PLC\textsubscript{γ} by recruitment to receptor tyrosine kinases (RTK) and PLC\textsubscript{ε} by Rho, Ras and Rap pathways activated downstream of GPCR and RTK (figure 1a). Cardiomyocytes express a number of GPCRs that respond to an array of locally produced or circulating neurohormones and peptides including α1-adrenoceptors, angiotensin (AT), endothelin and purinergic receptors liganded by catecholamines (norepinephrine and epinephrine or synthetic α1-AR ligand phenylephrine), angiotensin II (Ang II), endothelin-1 (ET-1) and ATP, respectively [10]. These ligands and their receptors are engaged during both physiology and pathophysiology where they play roles in stress adaptation and tissue remodeling. Despite expression of these receptors in cardiomyocytes, levels of InsP\textsubscript{3} produced following their engagement is by comparison with other cell types, relatively low [11]. The effects of receptor engagement may also be lasting owing to continued activity subsequent to receptor endocytosis [12,13]. Growth factor receptors such as the insulin-like growth factor 1 receptor (IGFR) (from the family of tyrosine kinase receptors) via activation of GPCRs docked to a pertussis toxin-sensitive heterotetrameric G\textsubscript{i} protein, also stimulate the generation of InsP\textsubscript{3} upon their engagement [14]. Nuclear anchored PLC\textsubscript{ε} activated downstream of Ras-MAPK and cAMP signalling produces InsP\textsubscript{3} locally [15]. Significantly, PLC\textsubscript{ε} may be activated by G\textsubscript{12,13}-dependent Rho, cAMP-Epac and Ras pathways engaged downstream of ET\textsubscript{α} receptors, β-adrenoceptors and IGFR1, respectively.

Expression of all three InsP\textsubscript{3}R isoforms is reported in cardiomyocytes. The type 2 InsP\textsubscript{3}R (InsP\textsubscript{3}R2) is however most prevalent, albeit at varying levels with an approximately sixfold greater abundance in atria than in the ventricles [16,17]. The type 1 InsP\textsubscript{3}R (InsP\textsubscript{3}R1) is most abundant in the fetal heart, although both type 1 and 3 InsP\textsubscript{3}R have also been detected in the adult. In line with these previous reports, our interrogation of the cardiomyocyte compartment (identified by their transcriptomes) in a published dataset of single nucleus RNA-sequencing data from different regions of the human heart also show predominance of InsP\textsubscript{3}R2 in cardiomyocytes from all heart regions (figure 1c–d) [9]. Expression of InsP\textsubscript{3}R1 is also detected in the heart, especially in the atria albeit at a substantially lower level than InsP\textsubscript{3}R2, while InsP\textsubscript{3}R3 is almost absent. The biophysical properties of InsP\textsubscript{3}R2 make it most appropriate for its function in cardiomyocytes. It exhibits the greatest InsP\textsubscript{3} sensitivity of the three isoforms (InsP\textsubscript{3}R2 > InsP\textsubscript{3}R1 > InsP\textsubscript{3}R3) and thus can be activated by the low InsP\textsubscript{3} concentrations (10–30 nM) produced following neurohormonal stimulation in cardiomyocytes [11,18]. In contrast to the clear role of RyRs in generating Ca2+ signals during ECC, the function of InsP\textsubscript{3}Rs in cardiomyocytes is not as defined and is less consistent between studies. This is perhaps not surprising considering the lower level of InsP\textsubscript{3}R expression and the less obvious contribution of Ca2+ release via these receptors to Ca2+ handling [16,19]. These observations raise the question whether InsP\textsubscript{3}Rs are required for normal cardiomyocyte function in the adult or whether their existence is simply a vestige of an earlier developmental stage. Indeed, Ca2+ release via InsP\textsubscript{3}R underlies the first heart beat [20–22] and InsP\textsubscript{3}Rs are more highly expressed during early development than in the adult [23]. Moreover, InsP\textsubscript{3}Rs are required for compaction of the myocardium and valve formation during development [24,25]. Further, the lack of an overt heart phenotype in InsP\textsubscript{3}R2 knockout adult mice would suggest that InsP\textsubscript{3}Rs are not required for the normal physiological function of cardiomyocytes during adulthood [26]. By contrast, in contexts of greater InsP\textsubscript{3}R2 expression such as in the atria or in the diseased ventricle, where InsP\textsubscript{3}R expression is heightened, a clearer picture of InsP\textsubscript{3}R biology is emerging. For example, InsP\textsubscript{3}R2 knockout protects against ET-1-induced arrhythmias in atrial cardiomyocytes and improves cardiac function in ischemic heart disease respectively [26,27]. Supporting the additional role of InsP\textsubscript{3}R2 in regulation of cardiac hypertrophy, transgenic mice engineered to selectively overexpress InsP\textsubscript{3}R2 in cardiomyocytes develop mild hypertrophy and exhibit increased arrhythmias [28,29]. Despite some reports showing a minor or no involvement of InsP\textsubscript{3}Rs in the actions of neurohormonal stimuli, the weight of evidence would indicate that InsP\textsubscript{3}Rs contribute to intracellular signalling evoked by neurohormonal stimulation of cardiomyocytes [26,30–32]. Moreover, through localization to subcellular compartments and responsiveness to InsP\textsubscript{3} generated in cardiomyocytes, InsP\textsubscript{3}-induced Ca2+ release (ICR) is now established as a unique signal involved in the regulation of diverse cell functions including ECC, metabolism and gene expression. How InsP\textsubscript{3} signalling contributes to, and selectively influences various cell processes in cardiomyocytes is discussed in the following sections.

3. Inositol 1,4,5-trisphosphate in excitation-contraction coupling

By mediating Ca2+ release from the SR, a role for InsP\textsubscript{3}Rs in ECC can be explained [16]. The contribution of Ca2+ release via this mechanism to ECC is however inconsistent between studies, ranging from no effect to altered dynamics of Ca2+ transients and increased propensity of spontaneous Ca2+ release events [28,31,33–35]. These divergent effects may be
ascribed to differences in expression, intracellular localization and activity of InsP3Rs associated with the heart region, animal model and developmental stage. Indeed, in immature [20–22], atrial [32,35–38] and diseased adult ventricular cardiomyocytes [31,39,40] where InsP3R expression is greatest, an influence of InsP3Rs on ECC is consistently observed. Early studies revealed a much greater InsP3R abundance and hence an effect of InsP3-generating stimuli on the contractility of atrial preparations than upon ventricular counterparts [16,36]. To influence ECC, the location of InsP3Rs is important. In both atrial and ventricular cardiomyocytes, InsP3Rs substantially co-locate with junctional RyRs [33,41]. InsP3Rs are thus observed in a striated pattern along the Z-lines coinciding with RyRs. In ventricular cardiomyocytes, owing to the presence of the t-tubules (TTs), InsP3Rs are thus located in specialized structures termed dyads [33,42,43]. In atrial

Figure 1. InsP3R expression in the heart. (a) InsP3 is generated by activated phospholipase C (PLC) following the engagement of G-protein coupled receptors (GPCRs) liganded by either angiotensin II (Ang II; angiotensin receptor, AT1), endothelin-1 (ET-1; endothelin receptor, ET receptors), adenosine triphosphate (ATP; purinergic receptors, P2Y), the catecholamines (CA; α and β-adrenoreceptors, α-AR and β-AR) epinephrine (Epi) and norepinephrine (NE) and insulin-like growth factor 1 (IGF-1; IGF-1 receptor, IGF-1R). After diffusion into the cytosol or the nucleus, InsP3 binds to each subunit within the InsP3R tetramer leading to channel opening and release of Ca2+ from intracellular Ca2+ storage sites. (b) InsP3R2 localization relative to RyR2 (top) and t-tubules (bottom). InsP3Rs are stained in green, RyRs are stained in purple and the t-tubules (Caveolin (Cav3)/NCX) are in grey. A 4× zoom of the white square is shown. (c) Log normalized expression of the genes encoding the three inositol 1,4,5-trisphosphate receptors (ITPR1-3) and the gene encoding the type 2 RyR (RYR2) in the cardiomyocyte single nucleus RNA-Seq from each of the four heart chambers. (d) (i) Uniform Manifold Approximation and Projection for dimension reduction (UMAP) embedding of the cardiomyocytes from the four heart chambers including 14 772 nuclei from left atrium (LA), 41 699 nuclei from left ventricle (LV), 8711 nuclei from right atrium (RA) and 30 915 nuclei from right ventricle (RV). These data are from a recent publication by Litviňuková et al. [9], which included transcriptomes of cardiomyocyte nuclei harvested from 14 individuals from two main sources (Harvard Medical School and Wellcome Sanger Institute) and that were processed using Chromium Controller (10× Genomics). Dots representing the nuclei within the UMAP are removed and lines encompassing the nuclei per heart chamber are retained to illustrate the distribution of the nuclei from each heart region relative to other regions in the UMAP. (ii) Distribution of the ITPR/RyR2 expressing cardiomyocytes across the separated heart regions (colour intensity is binned according to the maximum log normalized value of RyR2 expression).
interaction between IICR and ECC in atrial and ventricular cardiomyocytes

Figure 2. Mechanisms of InsP$_3$-mediated regulation of ECC in atrial and ventricular cardiomyocytes. Atria: GPCRs activated by ET-1 or Ang II produce InsP$_3$, which stimulates Ca$^{2+}$ release via InsP$_3$ receptors type 1 or 2 (InsP$_3$R1/2). This InsP$_3$ mediated Ca$^{2+}$ release in turn acts either via priming of proximal RyRs for Ca$^{2+}$ release or via activation of Ca$^{2+}$-sensitive adenyl cyclases (AC1 or AC8) and activation of PKA by cAMP, which then phosphorylates RyRs, modulates Ca$^{2+}$ transients and hence strength of contraction. Ventricle: Ca$^{2+}$ release via InsP$_3$R facilitates RyR opening and enhances their recruitment during ECC [1]. However, the enhanced activity of RyRs leads also to enhanced SR Ca$^{2+}$ leak [2], which reduces the Ca$^{2+}$ load in the SR and can lead to activation of NCX. If the SR Ca$^{2+}$ leak is of sufficient magnitude, via NCX, it can trigger substantial Na$^+$ influx into the cell leading to membrane depolarization manifest as a delayed after-depolarisation (DAD) and potentially AP generation [3]. AC, adenylyl cyclase; Ang II, angiotensin II; AT$_P$, adenosine-5'-triphosphate; cAMP, cyclic adenosine monophosphate, Cav1.2, subunit of voltage-gated L-type calcium channel; DAD, delayed after-depolarizations; ET-1, endothelin 1; GPCR, G protein-coupled receptor; IP$_3$, inositol 1,4,5-trisphosphate; IP$_3$R1/2, inositol trisphosphate receptor type 1/2; NCX, sodium-calcium exchanger; PKA, protein kinase A; RyR2, ryanodine receptor type 2; SERCA, sarco-endoplasmic reticulum Ca$_2+$/ATPase; SR, sarcoplasmic reticulum. (Online version in colour.)

cells, while co-located with RyRs along the Z-lines, InsP$_3$R$_2$s are also enriched at sub-sarcolemmal regions, where they co-localise with RyRs [16,41,44].

(a) Atria
Both type 1 and 2, InsP$_3$R$_2$s are expressed in atrial cardiomyocytes [16,45,46]. In these cells, irrespective of species analysed, InsP$_3$R activation results in increased Ca$^{2+}$ mobilization from the SR [36–38,47]. Specifically, InsP$_3$R activation leads to an increased amplitude of Ca$^{2+}$ transients in the sub-sarcolemmal region and in regions distal to the periphery, thereby augmenting the magnitude of cell-wide Ca$^{2+}$ transient [41,48,49] (figure 2, atria). In addition to effects on the electrically-evoked Ca$^{2+}$ transient during ECC, activation of InsP$_3$ signalling contributes to an increase in the incidence of extra-systolic Ca$^{2+}$ elevations and spontaneous contractions in atrial cardiomyocytes exposed to ET-1 and Ang II [36,41,48]. Supporting the involvement of InsP$_3$R$_2$ in these pro-arrhythmic effects of GPCR ligands, spontaneous Ca$^{2+}$ elevations are absent in atrial cardiomyocytes from InsP$_3$R$_2$ knock-out mice [26]. Underlying and likely contributing to these arrhythmic events induced by GPCR agonists or InsP$_3$ is a substantial increase in occurrence of Ca$^{2+}$ sparks [16,36,37,41,48]. As a consequence of this increased Ca$^{2+}$ spark frequency, diastolic Ca$^{2+}$ levels have also been reported in atrial cardiomyocytes under conditions of GPCR or InsP$_3$ stimulation. The aforementioned effects are particularly pronounced in atrial cardiomyocytes from hypertrophic hearts, in which InsP$_3$R expression is greater [45,46,48,50]. The greater InsP$_3$R abundance may have dual consequences however. While initially, increased InsP$_3$R activity enhances atrial contractility to augment their capacity to propel blood into the ventricle, the constitutive activation of InsP$_3$R$_2$s is deleterious. Specifically, through more frequent spontaneous Ca$^{2+}$ releases and/or greater SR Ca$^{2+}$ leak, constitutive activation of InsP$_3$R$_2$s leads to a reduction in SR load with associated suppression of Ca$^{2+}$ transients as well as to an augmentation of inward Na$^+$/Ca$^{2+}$ exchanger (NCX) current and membrane depolarization, that if of sufficient magnitude can trigger delayed after-depolarization or action potentials (APs) [48]. This increased abundance and activity of InsP$_3$R$_2$s in pathology potentially combines with RyRs sensitized by hyperactive Ca$^{2+}$/calmodulin-dependent protein kinase II (CaMCKII) and protein kinase A (PKA) to create a perfect storm of dysregulated Ca$^{2+}$ release that generates cell-wide and tissue arrhythmia [51].

Increasing evidence supports the notion that Ca$^{2+}$ release via InsP$_3$R$_2$s shapes global Ca$^{2+}$ transients and thereby atrial cardiomyocyte contractility via functional crosstalk with RyRs, whereby SR Ca$^{2+}$ flux via InsP$_3$R$_2$s primes proximal RyR$_2$s for Ca$^{2+}$ release [36,40]. Support for this mechanism comes from experiments, where IICR is monitored under conditions of RyR inhibition and from the use of advanced imaging methodologies. A recent study from the Egger group imaged facilitation of RyR opening by a preceding Ca$^{2+}$ puff (elementary Ca$^{2+}$ release events through InsP$_3$R$_2$s) [40]. Unlike for RyR-mediated Ca$^{2+}$ sparks, the direct detection of events solely arising from InsP$_3$R$_2$s is experimentally challenging owing to their smaller magnitude and a lower probability of occurrence. Moreover, conditions under which expression of InsP$_3$R$_2$s is elevated maybe required [33,36,40]. The reports of an absence of discrete events in the presence of RyR inhibition but enhancement of RyR-mediated Ca$^{2+}$ sparks has led to the coining of the term ‘eventless Ca$^{2+}$ release via InsP$_3$R$_2$s’ [37]. This form of Ca$^{2+}$ release from the SR is uncovered under conditions of RyR and NCX inhibition preventing Ca$^{2+}$ extrusion from the cell, thereby allowing Ca$^{2+}$...
released via InsP$_3$Rs to accumulate in the cytosol [52]. The eventless Ca$^{2+}$ release via InsP$_3$Rs is proposed to recruit neighbouring RyR clusters through increased [Ca$^{2+}$], in their vicinity. Besides functional interactions with RyR, IICR has recently been reported to regulate atrial Ca$^{2+}$ transients through a mechanism involving activation of the Ca$^{2+}$ stimulated adenyl cyclases, AC1 and AC8 [44] (figure 2, atria). As for coupling to RyRs, IICR engagement of AC is possible owing to the proximity of the involved proteins, whereby InsP$_3$Rs are co-localized with AC8 and are in the vicinity of AC1 in the sub-sarcolemmal region. At this location, IICR activation of AC8 or AC1 and consequent generation of cAMP leads to activation of PKA, which in turn affects Ca$^{2+}$ handling.

(b) Ventricle

In line with their lower expression in cardiomyocytes of this heart region, the influence of InsP$_3$R on ECC in the healthy ventricle is substantially less than in the atria [34,35]. Despite this low expression however, InsP$_3$Rs elicit a surprisingly potent effect on ECC [28,31,33]. Probably owing to this lower expression, reported effects on ECC are not consistent (table 1). Subsequent analysis of Ca$^{2+}$ dynamics in cardiomyocytes exposed to InsP$_3$, either introduced through cell permeabilization, via a patch pipette or using a cell permeant form of InsP$_3$—revealed complex effects on Ca$^{2+}$ handling [33,35,42,48] (figure 2, ventricle). These include increased amplitude of electrically-evoked Ca$^{2+}$ transient, greater propensity of ectopic Ca$^{2+}$ elevations and increased frequency of Ca$^{2+}$ sparks. Notably, the magnitude of the increase in Ca$^{2+}$ transient amplitude elicited by InsP$_3$ is not substantial, ranging between a 1.2 and 1.5-fold increase [33,48]. As in atrial cardiomyocytes, Go$_q$-coupled GPCR engagement by ET-1, Ang II or catecholamines represents the physiological mechanism by which InsP$_3$ levels are elevated in ventricular cardiomyocytes. Although these agonists often induce an increase in systolic Ca$^{2+}$ transient amplitude as well as a positive inotropic response, the contribution of InsP$_3$ signalling to the action of theseGPCRs is often variable or not conclusively established. Indeed, InsP$_3$-mediated Ca$^{2+}$ signals are reported to contribute to the inotropic effects of ET-1 in the rabbit [35], but not in the rat [33,34]. Elsewhere, both in human and mouse cardiomyocytes, activation of the GPCR/InsP$_3$/InsP$_3$R axis causes enhancement of pacing-evoked Ca$^{2+}$ transients and cell contraction [31]. In these aforementioned studies, however, the contribution of InsP$_3$Rs to the effects of GPCR activation is not fully established, particularly in humans. Such species discrepancies are likely due to the differences in ET, AT or a1-adrenoceptor density and downstream activated signalling pathways. Variability between the effects of agonists may also arise owing to their limited capacity to acutely elevate InsP$_3$ levels and thus an effect on Ca$^{2+}$ handling is only observed after prolonged exposure to the GPCR agonist.

IICR subsequent to GPCR stimulation is reported to modulate Ca$^{2+}$ signalling during ECC either by directly mediating Ca$^{2+}$ release from the SR or through increasing diastolic [Ca$^{2+}$], thereby facilitating SR Ca$^{2+}$ release through RyRs [33,35]. By tracking Ca$^{2+}$ responses at individual dyads with a genetically-encoded Ca$^{2+}$ indicator targeted to these sites, we recently demonstrated in paced rat ventricular cardiomyocytes that IICR underlies an increased recruitment of dyads and enhanced SR Ca$^{2+}$ flux at them following ET-1 stimulation [42]. While this effect can be beneficial contributing to acceleration of the Ca$^{2+}$ transient and robust contraction [42], the sensitization of RyRs by IICR can increase the propensity for spontaneous Ca$^{2+}$ releases and the potential for arrhythmogenic Ca$^{2+}$ signals. Indeed, the most consistent effects of IICR observed in ventricular cardiomyocytes across species, including in humans, are induction of arrhythmogenic Ca$^{2+}$ release [30,31,33,60–62] and increased occurrence of Ca$^{2+}$ sparks [28,33,35]. Furthermore, eventless InsP$_3$-R-dependent Ca$^{2+}$ release that reduces SR Ca$^{2+}$ content (via contribution to SR leak) during ET-1 stimulation is also described in ventricular cardiomyocytes of mice [28]. This InsP$_3$-dependent reduction in SR Ca$^{2+}$ content likely results in diminished contraction but is also proposed to protect against arrhythmias [28].

InsP$_3$R2 expression is often elevated in ventricular cardiomyocytes of hearts undergoing hypertrophic remodeling or that are in heart failure subsequent to pathological stressors, such as those associated with myocardial infarction or pressure overload [31,45,48,63–66]. The increase in InsP$_3$R2 expression parallels that of the re-activated fetal gene programme that is associated with and used as an index of hypertrophic remodeling. Indeed, InsP$_3$R2 expression is higher in neonatal hearts and is downregulated with adult maturation [22]. During disease, this increase in InsP$_3$R expression has been shown to be mediated by the transcription factor NFATc1 [67] and via post-transcriptional regulation by the hypertrophy-associated microRNAs (miRNA) (e.g. miR-133 regulation of InsP$_3$R2 and miRNA-26a of InsP$_3$R1 in ventricular and atrial cardiomyocytes respectively) [46,64]. Exacerbating the effect of increased InsP$_3$R expression in disease and contributing to an increased function, circulating and local levels of neurohormones and expression of their cardiomyocyte cognate receptors are also upregulated with pathology. As a consequence, the impact of InsP$_3$Rs on ECC becomes more important during disease [31,64,65]. Particular effects observed include increased amplitude of systolic Ca$^{2+}$ transients, elevated diastolic Ca$^{2+}$ levels, more frequent arrhythmic events, remodeling of resting membrane potential and prolonged duration of the AP [31,33,65]. Notably, the sufficiency of increased InsP$_3$R expression for these effects is demonstrated by the augmented Ca$^{2+}$ release and arrhythmogenic activity observed in InsP$_3$R2 overexpressing transgenic mice [28,29]. Augmented InsP$_3$ signalling and its generation of elevated diastolic Ca$^{2+}$ levels is also proposed to contribute to the rhythm disturbances and conduction defects in Chagas disease patients (a disease caused by the parasite Trypanosoma cruzi endemic to Latin American countries) [68]. While it is not clear whether InsP$_3$R expression is altered in cardiomyocytes from these patients, levels of InsP$_3$ are elevated. Inappropriate InsP$_3$R signalling leading to Ca$^{2+}$ elevations that do not track the AP-stimulated electrical depolarization of the cardiomyocyte is not in itself sufficient to induce arrhythmias or alter cardiac function. For these ectopic Ca$^{2+}$ elevations to have a wider pro-arrhythmic effect, the Ca$^{2+}$ signal must induce a cellular depolarization sufficient to generate an AP that propagates to neighbouring cells. In this regard, interaction between IICR and NCX has been described in which the increase in intracellular Ca$^{2+}$ generated following InsP$_3$R engagement leads to enhanced forward mode NCX activity, thereby augmenting Na$^+$ entry into the cell and a slow membrane depolarization that increases the propensity for arrhythmic events [31]. Further supporting this notion,
Table 1. Differential effect of InsP$_3$ signalling on cardiomyocyte contractility and Ca$^{2+}$ handling. (Ang II, angiotensin II; ATP, adenosine triphosphate; CaT, Ca$^{2+}$ transient; CMs, cardiomyocytes; ET-1, endothelin-1; IP$_3$, inositol 1,4,5-trisphosphate; NRVMs, neonatal rat ventricular cardiomyocytes; PE, phenylephrine; SHR, spontaneously hypertensive rat; SR, sarcoplasmic reticulum; WKY, Wistar-Kyoto strain of rat.)

species	cell type	agonist	observations	reference
rat	NRVMs	PE	↑ frequency of spontaneous CaT in cytosol	[53]
		IP$_3$	↑ Ca$^{2+}$ spark frequency in cytosol/nucleus	
			↑ number of Ca$^{2+}$ waves in nucleus	
mouse	ventricular CMs	Ang II	↑ CaT	[54]
mouse	ventricular CMs	ET-1	↑ CaT	[55]
human (healthy and	ventricular CMs		↑ contractility	[31]
failing)			↑ CaT	
			↑ frequency of extra-systolic Ca$^{2+}$ elevations	
		ATP	↑ after-contractions during resting period	
		ET-1	↑ rare spontaneous/sustained Ca$^{2+}$ elevations	
			↓ resting membrane potential	
			↑ duration of the action potential	
			↑ frequency of early after-depolarization	
mouse	ventricular CMs	ET-1	↑ contractility	
		ATP	↑ CaT	
		Ang II	↑ diastolic [Ca$^{2+}$]$_i$	
		PE	↑ after-contractions and prolonged contractures	
			↑ extra-systolic and sustained Ca$^{2+}$ elevations	
			↓ resting membrane potential	
			↑ duration of the action potential	
			↑ frequency of early after-depolarization	
rat (WKY and SHR)	ventricular CMs	IP$_3$ ester	↑ contractility	[33]
		ET-1	↑ CaT	
			↑ frequency of extra-systolic Ca$^{2+}$ elevations	
			↑ rate of rise of CaT	
			↑ diastolic [Ca$^{2+}$]$_i$	
			↑ frequency of Ca$^{2+}$ sparks in the cytosol	
rat	ventricular CMs	ET-1	↑ CaT	[30]
		IP$_3$ ester	↑ frequency of extra-systolic Ca$^{2+}$ elevations	
rat	ventricular CMs	ET-1	↓ contractility (2 min post-stimulation)	[34]
			↑ contractility (20 min post-stimulation)	
			↑ rate of contraction (20 min post-stimulation)	
			↑ CaT (amplitude; rate of rise) (20 min post-stimulation)	
rabbit	ventricular CMs	IP$_3$	↑ Ca$^{2+}$ leak in the presence of ruthenium red	[52]
rabbit	ventricular CMs	IP$_3$	↑ frequency of Ca$^{2+}$ sparks (immediately observed)	[35]
		ET-1	↓ CaT (2 min post-stimulation)	
			↑ CaT (15 min post-stimulation)	
mouse (healthy and	ventricular CMs	Ang II	↑ diastolic [Ca$^{2+}$]$_i$	[56]
failing)			↑ CaT	
mouse (IP$_3$	ventricular CMs	ET-1	wild-type;	[28]
overexpression)			↑ CaT	
			↑ SR Ca$^{2+}$ load	
			↑ probability of Ca$^{2+}$ wave occurrence	
			IP$_3$-overexpression;	
			↓ probability of Ca$^{2+}$ wave occurrence sustained SR Ca$^{2+}$ leak	

(Continued.)
species	cell type	agonist	observations	reference
dog (atrial fibrillation)	atrial CMs	ATP	↑ CaT	[50]
rat	atrial CMs	ET-1	↓ contractility (4 min post-stimulation)	[49]
		IP3 ester	↑ CaT as from 8 min post-stimulation)	
rabbit	atrial CMs	ET-1	↑ CaT	[32]
dog (atrial fibrillation)	atrial CMs	ET-1	↑ CaT in nucleus of diseased animals	[46]
rat	atrial CMs	IP3	↑ diastolic [Ca2+]i	
mouse	atrial CMs	ET-1	↑ diastolic [Ca2+]i	[57]
cat	atrial CMs	ET-1	↑ diastolic [Ca2+]i	
cat	atrial/ventricular CMs	IP3	↑ frequency of Ca2+ sparks observed	
cat	atrial CMs	IP3	↑ diastolic [Ca2+]i	[58]
cat	atrial CMs	adenophostin	↑ frequency of Ca2+ sparks	
cat	atrial CMs	PE	↑ L-type Ca2+ current	[59]
rabbit	atrial CMs	caged-IP3	↑ CaT	[38]
		IP3 ester	↑ diastolic [Ca2+]i	
			⇔ frequency or properties of Ca2+ sparks	

(Continued.)
InsP$_3$Rs are reported to localize proximally to NCX-enriched domains in the sarcolemma [69].

The almost complete absence or presence of fewer and smaller elementary Ca$^{2+}$ release events in cardiomyocytes in which RyRs are inhibited with tetracaine supports the limited activity of InsP$_3$Rs as well as their lower capacity to generate Ca$^{2+}$ signals [28,33,35]. Furthermore, Ca$^{2+}$ release via RyRs was necessary for the full activation of InsP$_3$Rs [40]. Since InsP$_3$R-mediated elementary events (Ca$^{2+}$ puffs) arise from clusters of two or more InsP$_3$R channels [70], the poorly detectable nature of IICR could suggest that InsP$_3$Rs are not appropriately organized in clusters and are diffusely spread across the SR. This however does not appear to be the case. The suppression of the effects of InsP$_3$R activation by inhibition of RyRs has led to the proposal of a mechanism whereby Ca$^{2+}$ release via InsP$_3$Rs facilitates RyR opening and enhances their recruitment to generate Ca$^{2+}$ sparks [28,33,35,42]. Further supporting this conclusion, Ca$^{2+}$ puffs that contribute to increased frequency of Ca$^{2+}$ sparks or that trigger RyR opening have been reported [33,40]. The augmentation of RyR-mediated sparks by IICR would require InsP$_3$Rs to lie immediately adjacent to RyR clusters [33]. Supporting this hypothesis, we recently demonstrated the presence of approximately 30% and approximately 50% fraction of InsP$_3$Rs in the dyad and overlapping with RyRs, respectively, thereby enabling Ca$^{2+}$ signals through InsP$_3$R to influence Ca$^{2+}$ release via RyR clusters [42]. At the dyads, Ca$^{2+}$ release via InsP$_3$Rs facilitated RyR activation. This action of IICR is likely mediated in two ways - either by direct activation (by CICR) of immediately adjacent RyRs or through increasing dyadic Ca$^{2+}$ thereby bringing RyR in this microdomain closer to threshold for activation, which could then be exploited by stochastically opening RyRs to fully engage the cluster and/or to prevent its detrimental shutdown. In disease, this enhanced IICR-RyR crosstalk may serve to rescue the diminished coupling between LTCC and RyRs and the disrupted Ca$^{2+}$ release due to TT atrophy.

How InsP$_3$Rs are targeted to the dyadic region is not fully resolved but the loss of targeting in Ankyrin-deficient mice would suggest that this protein may be involved [69]. The observed selective increase in dyadic InsP$_3$Rs relative to nuclear InsP$_3$Rs would also suggest that targeting of these two InsP$_3$Rs populations is independently regulated [33]. Alternatively, nuclear InsP$_3$R expression is invariable and maintained at this location via a separate anchoring protein. InsP$_3$Rs were also suggested to lie on regions of the SR devoid of RyRs, perhaps akin to the rogue RyRs proposed to contribute to sparkless leak [71]. This population of InsP$_3$Rs has been proposed to elicit its effect via regulation of NCX and/or membrane potential [31].

4. Inositol 1,4,5-trisphosphate receptors and nuclear Ca$^{2+}$ regulation

In both atrial and ventricular cardiomyocytes, InsP$_3$ signaling potently affects nuclear Ca$^{2+}$ levels [32,33]. Indeed, increases in the amplitude and rate of rise as well as a prolongation of the decay phase of the Ca$^{2+}$ transient is reported in response to stimulation with GPCR agonists or cell-permeant forms of InsP$_3$ [32,39,72]. In the absence of Ca$^{2+}$ transients, InsP$_3$ promotes nuclear-localized Ca$^{2+}$ elevations, manifested as increased frequency of nuclear and perinuclear Ca$^{2+}$ sparks [39,53]. An elevation in basal

species (healthy and failing)	cell type	agonist	observations	reference
rabbit	atrial/ventricular CMs	Ang II	↑ diastolic [Ca$^{2+}$]$\text{}_i$	[48]
			↓ CaT	
			↓ SR Ca$^{2+}$ load	
			↑ diastolic [Ca$^{2+}$]$\text{}_i$	
			↑ CaT	
		caged-IP$_3$	↑ frequency of Ca$^{2+}$ puffs in healthy and failing CMs	
		tetracaine + IP$_3$	↑ frequency of Ca$^{2+}$ sparks	[37]
			↑ SR Ca$^{2+}$ leak	
		caged-IP$_3$	↑ frequency of Ca$^{2+}$ sparks	[40]
mouse	atrial CMs	ET-1	↑ frequency of Ca$^{2+}$ sparks	[37]
			↑ SR Ca$^{2+}$ leak	
		caged-IP$_3$	↑ frequency of Ca$^{2+}$ sparks	
mouse (IP$_3$ overexpression)	atrial CMs	ET-1	↑ frequency of Ca$^{2+}$ sparks	[40]
		PE	↑ occurrence of Ca$^{2+}$ waves	
levels of nuclear Ca^{2+} also contributes to increased Ca^{2+}-dependent gene expression underlying cardiomyocyte hypertrophy [56].

The relatively potent effect of InsP3 on Ca^{2+} changes in the nuclear region is likely owing to the greater enrichment of InsP3Rs in this region. The nucleus is bounded by the nuclear envelope that serves to separate the genome from the processes in bulk cytosol. The nuclear envelope is densely populated with nuclear pores that permeate entry of proteins less than 30 kDa, ATP and ions including Ca^{2+} to the nucleus. Owing to these properties, the nuclear envelope is not generally considered a barrier to Ca^{2+}. As a consequence, cardiomyocyte nuclei are flooded with Ca^{2+} during every Ca^{2+} transient. The nuclear envelope is contiguous with the SR that together form the Ca^{2+} storage compartment of the cardiomyocyte [73]. Furthermore, the nuclear envelope forms invaginations (termed the nucleoplastic reticulum) that penetrates deep into the nucleoplasm and function as a Ca^{2+} store capable of releasing and removing Ca^{2+} owing to Ca^{2+} release channels and sarco-endoplasmic reticulum Ca^{2+}-ATPase (SERCA) pumps that are localized to it, respectively [56,74]. Owing to these properties of the nuclear envelope, nuclear Ca^{2+} signals are subject to regulation by both cytoplasmic Ca^{2+} and local Ca^{2+} signals originating from RyRs and InsP3Rs [75,76].

Functional and structural evidence indicate that InsP3Rs can mediate the generation of nuclear Ca^{2+} signals independently of the Ca^{2+} transients arising owing to ECC [58]. The subcellular localization of InsP3R is a crucial determinant of the generation of highly localized Ca^{2+} signals that modulate the activity of Ca^{2+}-dependent transcription factors and regulators, which govern the expression of genes underlying hypertrophic remodelling [39,53,57,77,78] (figure 3). While InsP3 was considered a highly diffusible messenger, recent data suggests otherwise, thus raising the importance of the site of InsP3 generation with its target receptor [79]. In this regard, GPCRs are found to reside on the nuclear membrane and on TTs that penetrate the cytosol close to the nuclear envelope [80–82]. Additionally, InsP3 produced downstream of GPCRs located on the plasma membrane can also diffuse to the nucleus and activate InsP3Rs [11].

InsP3Rs are located on both the inner and outer membrane of the nuclear envelope, as well as in the perinuclear region and on the nucleoplastic reticulum [38,56,83]. While the expression of InsP3Rs on the inner membrane of the nuclear envelope has been debated for some time, the presence of functional InsP3Rs facing towards the nucleoplasm is now widely accepted. Indeed, using an elegant approach in which a fluorescent immobile Ca^{2+} buffer was entrapped

Figure 3. InsP3-mediated signalling in regulation of gene expression and mitochondrial function. (a) Nuclear and cytosolic Ca^{2+} increases generated by Ca^{2+} release from InsP3Rs regulate gene expression underlying cardiomyocyte hypertrophic remodelling. Ca^{2+} release from InsP3Rs binds to calmodulin (CaM), which then activates CaM-dependent kinase II (CaMKII) and calcineurin (CaN). Activated CaMKII phosphorylates the nuclear factor of activated T-cells (NFAT) promoting its nuclear translocation and hypertrophic gene transcription. Ang II, angiotensin II; CaM, calmodulin; CaMKII, Ca^{2+}/calmodulin-activated CaM-dependent kinase II; Cav1.2, α1C, subunit of voltage-gated L-type calcium channel; CaN - calcineurin; ET-1, endothelin-1; HDAC, histone deacetylase; IGF1R, insulin-like growth factor 1 receptor; IP_3, inositol 1,4,5-trisphosphate; IP_3/R, inositol trisphosphate receptor type 2; MEF2, myocyte enhancer factor-2; NFAT, nuclear factor of activated T-cells, RyR2, ryanodine receptor type 2. (b) Mitochondrial Ca^{2+} uptake sites are closely localized to Ca^{2+} release sites at the junctional SR forming ‘hotspots’ with the help of tethers MFN and FUNDC1. Ca^{2+} released from the SR via RyRs is taken up via the voltage-gated anion channel (VDAC) associated with the mitochondrial Ca^{2+} uniporter (MCU) (1). In mitochondria, Ca^{2+} controls ATP production and apoptosis. Ca^{2+} is extruded from the mitochondria through Na^{+}/Li^{+}/Ca^{2+} exchanger (NCXL) and Ca^{2+}/H^{+} exchanger (mHCX). Upon stimulation of G_{α_q} by ET-1, Ang II or NE, InsP3 activates Ca^{2+} release from the SR leading to its uptake into the mitochondrial matrix through either VDAC (2) or mRyR1 (4). While Ca^{2+} transfer via VDAC—GRPT5—InsP3R results in induction of cell apoptosis (2), when taken up through mRyR1 it is associated with increased ATP production (4). To counterbalance InsP3-mediated mitochondrial Ca^{2+} overload during cellular stress, NOX4 augments the level of active phosphorylated AKT, which in turn phosphorylates and suppresses InsP3Rs thereby inhibiting Ca^{2+} flux from RyRs and InsP3Rs [75,76].
in the nucleoplasm or in the cytosol, Zima et al. demonstrated InsP$_3$-dependent Ca$^{2+}$ release into the nucleoplasm [58]. Further supporting this finding, electron microscopy studies show InsP$_3$Rs localized to the inner leaflet of the nuclear envelope [56]. InsP$_3$Rs on the outer surface of the nuclear envelope release Ca$^{2+}$ into the cytosol that through diffusion may enter the nucleus via nuclear pores [53]. Owing to the lower buffering capacity of the nucleus, diffusion is anisotropic resulting in a greater influence of this Ca$^{2+}$ release on free Ca$^{2+}$ levels in the nucleus than in the cytosol [75,84]. Together, these data clearly support the capacity for InsP$_3$R activation to induce alterations in nuclear Ca$^{2+}$ signalling.

Nucleoplasmic Ca$^{2+}$ homeostasis is altered in cardiac hypertrophy and failure and is thus considered to be associated with the underlying transcriptional changes. During disease, nuclear volume is increased and the density of nuclear invaginations decreased contributing to elevated nuclear [Ca$^{2+}$] at diastole and slower kinetics of nuclear Ca$^{2+}$ transients [46,56]. These effects may in part be owing to the lower surface to volume ratio of the nucleoplasmic reticulum to nucleoplasm, which would reduce the effectiveness of Ca$^{2+}$ clearance mechanisms. Changes in the expression levels of perinuclear InsP$_3$Rs, RyRs, SERCA and proteins of the nuclear pore complex are also reported, thereby influencing nuclear Ca$^{2+}$ dynamics [56]. Significantly, upregulation of InsP$_3$Rs (particularly type 1 and 2) appears to be central to the aforementioned changes in nuclear Ca$^{2+}$ handling and subsequent transcriptional regulation [46,54,56,85,86].

5. Inositol 1,4,5-trisphosphate receptors in transcriptional regulation during cardiac remodelling

Increases in InsP$_3$R expression, as well as the activity of mechanisms responsible for InsP$_3$ generation, are observed in hypertrophy, heart failure and atrial fibrillation.

In addition to influencing ECC, IICR also has a signalling function in the heart, which is involved in stimulating hypertrophic remodelling of cardiomyocytes. The significance of this mechanism is further reinforced by the observation that expression of InsP$_3$R and associated Ca$^{2+}$ fluxes are upregulated in different animal models of cardiac hypertrophy and in human heart failure. Indeed, in human and animal models of heart failure and atrial fibrillation (AF), the increased expression of InsP$_3$R2 (heart failure) and InsP$_3$R1 (AF) in the nuclear/perinuclear regions was observed and associated elevated nuclear resting Ca$^{2+}$ levels has been assumed to enhance activity of transcriptional factors that regulate pro-hypertrophic gene expression [46,56]. Given its dominant expression in both atria and the ventricle and the effects observed in gain and loss of function studies, a role for the InsP$_3$R2 in promoting hypertrophic remodelling is supported [29,39,50,56,64]. While less reported, a role in hypertrophy induction for all three InsP$_3$R isoforms in hypertrophic remodelling has been proposed [17]. For instance, InsP$_3$R1 is involved in driving atrial remodeling during AF [46]. Interestingly, overexpression of the InsP$_3$R2 in the heart was shown to be sufficient for inducing cardiac hypertrophy in transgenic mice that can be further exacerbated by isoproterenol infusion (β-adrenergic stimulation) and exercise stimulation [29]. The activation of nuclear InsP$_3$-induced Ca$^{2+}$ signalling followed by induction of hypertrophy is also well-established in vitro in response to autocrine/paracrine neuroendocrine factors (ET-1, Ang II, catecholamines and ATR) acting via Go$_q'/11$ and IGF-1 induced Go$_q$/PLC-InsP$_3$ signalling [39,77,81,87]. While gating of the tetrameric InsP$_3$R requires binding of InsP$_3$ and Ca$^{2+}$ [7], the further responsiveness of this channel is regulated by post-transcriptional modifications and via association with regulatory proteins [43,88,89], which may also determine, as in the case for the K-Ras associated protein, whether the receptor is susceptible or licensed for activation [90]. In cardiomyocytes, neuronal calcium sensor-1 associates with InsP$_3$Rs enhancing Ca$^{2+}$ release, leading to the triggering of cardiac hypertrophy through release of both CaMKII and calcineurin (CaN) pathways [91]. Chromogranin B, which is a Ca$^{2+}$ binding protein forming a complex with InsP$_3$R, is also detected in cardiomyocytes, where its expression is upregulated during Ang II-induced hypertrophy [92]. Upon Ca$^{2+}$ binding chromogranin B modifies the magnitude and velocity of IICR and promotes fetal gene expression via the transcription factor nuclear factor xB [92]. InsP$_3$R2 gating can also be negatively regulated by CaMKII-mediated phosphorylation, thereby providing a feedback mechanism for InsP$_3$R activation [43].

While many studies show a key role of nuclear InsP$_3$R in inducing hypertrophy, the contribution of cytosolically-located InsP$_3$Rs to this process remains to be fully resolved. Ca$^{2+}$ signals promote gene expression changes required for hypertrophy via modulation of both nuclear and cytosolic Ca$^{2+}$ which lead to the activation of Ca$^{2+}$-dependent transcriptional regulatory pathways, including the CaN/nuclear factor of activated T cells (NFAT) and CaMKII/histone deacetylase 4 and 5 (HDAC)/myocyte enhance factor 2 (MEF2) signalling pathway [39,46,77,87]. Although these pathways can be engaged by global changes in Ca$^{2+}$, this mechanism would not allow the cell to discriminate between changes in Ca$^{2+}$ involved in contraction, which are enhanced during periods of stress. To ensure only appropriate activation of hypertrophic gene expression, a number of mechanisms have been proposed that allow selective encoding of hypertrophy. These include, alterations in the frequency, amplitude, duration (the duty cycle) and location of the Ca$^{2+}$ signal. By modifying Ca$^{2+}$ transients associated with ECC and by having the capacity to influence nuclear Ca$^{2+}$ in a selective manner, IICR may contribute to regulation of transcription in several ways, which may be required in toto for the maximal effects to be manifest. In support of a mechanism involving the generation of spatially localized and regulated nuclear Ca$^{2+}$ signalling microdomains independent of cytosolic Ca$^{2+}$ release, nuclear-specific expression of either Ca$^{2+}$-buffering proteins or InsP$_3$ chelators abrogate hypertrophic remodelling in isolated cardiomyocytes [39,72]. Further, enhancement of the magnitude of global Ca$^{2+}$ signals is not sufficient to induce hypertrophy [14,39,46,72,77]. Using a computational modelling approach, Hunt et al. proposed that InsP$_3$R activation in the cytosol drives NFAT nuclear translocation via modulation of the global Ca$^{2+}$ transient in a way that extends the time when Ca$^{2+}$ levels are above the threshold required for NFAT activation [93]. Active CaN dephosphorylates and complexes with NFAT in the cytosol, although cardiomyocytes also express CaN in the nucleus [54]. The CaN-NFAT complex then translocates to the nucleus [94,95]. Elevated nuclear Ca$^{2+}$ levels subsequently maintain
6. Role of inositol 1,4,5-trisphosphate receptors in the regulation of mitochondrial Ca\(^{2+}\)

ECC has a high energetic cost consuming the largest part of ATP produced in cardiomyocytes [3]. The ATP required for cardiac contraction is primarily generated by oxidative phosphorylation in the mitochondrion [102,103]. While fatty acids are the major substrate for ATP generation by cardiomyocytes, other sources of energy (e.g. glucose, ketones, amino acids) are also used when available [104]. These alternate sources are particularly used in the ageing or failing heart to compensate for the metabolic insufficiency and loss of ATP generation owing to mitochondrial dysfunction [105,106]. In engaging these alternate energy sources, Ca\(^{2+}\) signalling from InsP\(_3\)Rs mediates increased cellular glucose uptake in response to insulin stimulation through GLUT4 translocation and fusion with the sarcolemma [107].

Mitochondria accumulate Ca\(^{2+}\) via the voltage-dependent anion channel (VDAC) on the outer mitochondrial membrane [108] and the mitochondrial unipporter located on the inner mitochondrial membrane in a Ca\(^{2+}\)-regulated manner [109]. Increased mitochondrial Ca\(^{2+}\) in turn stimulates Ca\(^{2+}\)-dependent dehydrogenases involved in oxidative phosphorylation [110,111] (figure 3b(1)). Through this mechanism, intracellular Ca\(^{2+}\) levels are coupled with mitochondrial metabolism. For example, under conditions of increased cytosolic Ca\(^{2+}\) fluxes (exercise, \(\beta\)-adrenergic stimulation), mitochondrial Ca\(^{2+}\) accumulation is enhanced, thereby boosting ATP production to provide for the increased demands of ATP consuming pumps [112]. Under pathological conditions, over-accumulation of Ca\(^{2+}\) within mitochondria leads to activation of programmed cell death pathways and increased oxidative stress [113]. Ca\(^{2+}\) overload brings about this effect through activating the mitochondrial chaperone cyclophilin D (CypD) that induces opening of permeability transition pore (mPTP) [114]. Mitochondrial Ca\(^{2+}\) uptake also contributes to shaping cytosolic Ca\(^{2+}\) dynamics [115,116].

Ca\(^{2+}\) uptake by mitochondria occurs at membrane contact sites known as mitochondrial-associated membranes (MAMs) [117]. In line with other cell types and tissues, SR-mitochondrial Ca\(^{2+}\) flux involving InsP\(_3\)Rs at MAMs is supported and regulated by association with the VDAC1 and the mitochondrial stress 70 protein (chaperone 75 kDa glucose-regulated protein; GRP75) in a macromolecular complex [114,118] (figure 3b(2)). In this context, the InsP\(_3\)R1 is invoked and together with VDAC1 are the channels involved in Ca\(^{2+}\) transfer between SR and mitochondria respectively, while GRP75 links both channels through binding to their cytosolically facing regions. The importance of this pathway in the induction of mitochondrial permeability during stress is underlined by the increased interaction between CypD and the InsP\(_3\)R-GRP75-VDAC1 complex under conditions of greater mitochondrial Ca\(^{2+}\) content [114]. In line with the widely reported involvement of InsP\(_3\)Rs in endoplasmic reticulum (ER)-mitochondrial signalling and cell death induction, augmented InsP\(_3\)-mediated Ca\(^{2+}\) fluxes to the mitochondria also have a pro-apoptotic effect in ischaemia-reperfusion (IR) injury [119,120]. During IR injury, this increase in InsP\(_3\)R-mitochondria transfer is brought about by glycogen synthase kinase 3\(\beta\) (GSK3\(\beta\)) mediated phosphorylation of InsP\(_3\)R1 [120]. Linking stress and mitochondrial Ca\(^{2+}\) homeostasis and metabolism, mitochondrial Epac1 complex interacts with and promotes InsP\(_3\)R-GRP75-VDAC1 complex formation under IR conditions, leading to mitochondrial Ca\(^{2+}\) overload and opening of the mPTP [121]. First described in a cancer cell context [122–124], phosphorylation of InsP\(_3\)Rs by the protein kinase Akt has also been shown to suppress ER-mitochondrial Ca\(^{2+}\) transfer and cell death in the heart. Following IR injury, the abundance of Nox4 at MAMs is increased where it, through generation of reactive oxygen species activates Akt, which in turn phosphorylates and inhibits InsP\(_3\)Rs [119] (figure 3b(3)). Whether and in what context anti-apoptotic members of the Bcl-2 family of proteins interact with and suppress Ca\(^{2+}\) transfer via InsP\(_3\)Rs to the mitochondria in cardiomyocytes, as they do in other cell types, remains to be fully explored [125]. By contrast, Seidlmyer et al. reported that Ca\(^{2+}\) released from the SR via InsP\(_3\)Rs, activated
downstream of ET-1 stimulation, is taken up by mitochondria via mitochondrial type 1 RyR (mRyR1) resulting in increased ATP generation in both quiescent and electrically stimulated cells (figure 3b(4)) [126].

Potentially contributing to the diverging effects of InsP3 signalling on mitochondrial function in the heart is the presence of different mitochondrial populations that have distinct roles in cardiac physiology. Particularly, interfibrillar mitochondria, which provide ATP for contraction, subsarcolemmal mitochondria, which provide ATP for active transport processes across the sarcolemma, and perinuclear mitochondria, which generate ATP necessary for nuclear processes [127]. Remarkably, Ca2+-uptake by interfibrillar and perinuclear mitochondria following InsP3-mediated Ca2+-release is twice that taken up by subsarcolemmal mitochondria [127].

Further influencing local Ca2+-delivery to the mitochondria are electron dense physical linkages called tethers. In cardiomyocytes, these tethers comprise either mitofusin 2 (MFN2) [127] or FUN14 domain-containing protein 1 (FUND1) [128]. Ablation of either MFN2 or FUND1 was shown to disrupt the association between mitochondria and ER/SR, impair Ca2+ uptake into mitochondria and consequently suppress mitochondrial respiration and apoptosis. While both MFN2 and FUND1 regulate InsP3R-mitochondria crosstalk by maintaining the integrity of MAMs, FUND1 was also shown to directly interact with InsP3R2 and regulate its stability [128]. Remarkably, FUND1 expression is reduced in hearts from patients with dilated cardiomyopathy and in mice with acute myocardial infarction [128].

7. Inositol 1,4,5-trisphosphate receptors in cardiac rhythm and conduction

In addition to their role in contractile atrial and ventricular cardiomyocytes, InsP3Rs are also functionally expressed in sino-atrial node (SAN) and Purkinje cells. In these cell types, InsP3R activation contributes to rhythm regulation and AP propagation, which given the influence of these cells on contraction of the myocardium has significant consequences for cardiac function. In SAN and Purkinje cells, InsP3Rs are relatively more abundant than in atrial and ventricular cardiomyocytes. As shown for atrial and ventricular cardiomyocytes, InsP3R activation in both of these cell types is amplified by Ca2+ release via RyRs leading to more substantial consequences for cellular Ca2+ signalling [129,130]. In SAN cells, spontaneous SR Ca2+ release events underlie a Ca2+ clock involved in pacemaker activity [131]. By stimulating the activity of the electrogenic NCX and membrane potential, this intracellular Ca2+ clock interacts with a membrane clock centred on the funny current (If) conveyed by hyperpolarization-activated cyclic nucleotide-gated (HCN) channels [131,132]. Ca2+ release via InsP3R2 increases the frequency of the spontaneous SR Ca2+ release events and Ca2+ waves, which by stimulating NCX activity, accelerates membrane depolarization resulting in the threshold for AP generation being more rapidly reached [129,133]. This potent effect of IICR is lost in mice deficient in InsP3R2 and under conditions of InsP3R inhibition [133]. Further, experiments in knockout mice revealed that augmentation of spontaneous Ca2+ wave frequency (the Ca2+ clock) by IICR was independent of NCX, thereby demonstrating the importance of IICR in heart rhythm regulation [129]. Through this mechanism IICR contributes to the actions of α-adrenergic, as well as other relevant GPCR agonists [44,129,133]. In addition to this mechanism for regulation of pacemaker activity by IICR, a more recent study from Terrar and colleagues proposed a mechanism whereby IICR elicits its effects via cAMP generated through stimulation of proximally located Ca2+-sensitive adenylyl cyclases (AC1 and 8) [44]. The cAMP generated acts in turn either directly on HCN channels that underlie the funny current (If), or via PKA and its modulation of the Ca2+ handling machinery [44]. The localization of InsP3Rs to sub-sarcolemmal regions of the SR in the vicinity of sarcolemmal HCN channels makes this mechanism possible [129,133]. In contrast to the mouse studies of Ju et al. and Kapoor et al., baseline pacemaking activity was not influenced by loss of IICR in the murine atrial preparations used by Capel et al. The reason for this discrepancy is not clear but could be owing to preparation (cells versus tissue), or the species studied. In Purkinje cells in which the InsP3R1 is predominant [130,134], InsP3R activation is proposed to contribute to the generation of pathological arrhythmias [135]. This mechanism has been reported in Purkinje cells that survive in the infarcted heart [135]. In these cells, through engagement of RyRs, Ca2+ release via InsP3Rs leads to the generation of Ca2+ waves emanating from the nuclear and sub-sarcolemmal regions of the cell where InsP3R expression is enriched [130]. Through engaging NCX, these Ca2+ waves may then give rise to triggered activity [136].

8. Concluding remarks and future challenges

The diversity of functions that Ca2+ controls in the cardiomyocyte raises a significant problem for its ability to concurrently and specifically regulate them. Key to the overlapping and non-overlapping functions of InsP3 signalling in the heart is the localization of InsP3Rs to cellular Ca2+ microdomains coupled with the involved effectors — the dyad with RyRs, the nucleus with associated transcription factors and their regulators, and at MAMs with mitochondria and the Ca2+ uptake machinery. The capacity for cardiomyocytes to function in the absence of InsP3Rs despite their involvement in multiple cardiomyocyte functions is not clear. Compensation for InsP3R2 by upregulation of other InsP3R isoforms is one possibility. This potential redundancy is however overcome by use of genetically encoded inhibitors of InsP3, such as the InsP3 5-phosphatase or a high affinity version of the ligand binding domain of InsP3R1 (InsP3 sponge) [137], which has the added advantage that it may be targeted to subcellular domains of interest. Both the InsP3 sponge and the InsP3 5-phosphatase have been applied to analysis of hypertrophic signalling, and in the case of the InsP3 sponge, proven to be effective in *in vivo* studies [29,39]. Whether cardiomyocytes tolerate long-term expression of these constructs necessary to test the lifelong role of InsP3 signalling, including through cardiac development has not however been determined. To allow acute analysis of the role of InsP3Rs in cardiomyocyte physiology without the cell culture required for adenoviral-mediated expression of InsP3 probes or interfering RNAs or for transgenesis, improved drugs that target the InsP3R are required. For inhibition of InsP3Rs, a toolbox including Heparin [138], Xestospongins B, C and D [139], derived...
from the marine sponge Xestospongia exigua and 2-aminothoxydiphenyl borate (2-APB) is relied upon [140,141]. While heparin is an effective antagonist of the InsP₃R [138], it is not cell permeant and has effects on RyRs, GPCR coupling and the InsP₃ 3-kinase [142]. Xestospongin and 2-APB are however cell permeant and can thus be employed in intact cells and tissues. However, these agents have several drawbacks, which should be considered when interpreting studies in which they are used. Xestospongin C for example, in addition to its reported antagonism of the InsP₃R, equally suppresses SERCA pump activity leading to Ca²⁺ store depletion [142]. This effect of Xestospongin can lead to a misinterpretation of data showing a loss of the Ca²⁺ mobilizing activity of InsP₃ or of an InsP₃ generating agonist in experiments in which it is applied. Specifically, ICR may be lost owing to store depletion rather than InsP₃R inhibition. Xestospongin B was reported to elicit a more selective effect on InsP₃R without the off target effects on SERCA [139]. Xestospongin D also lacks effects on SERCA but sensitises Ca²⁺ release via RyR [143]. In a more recent study, in experiments designed to directly examine ICR release [138], no inhibitory effect of Xestospongin C or Xestospongin D on InsP₃R was detected, thereby further supporting an indirect mechanism of action for these agents on ICR. Of the InsP₃R inhibitors used in cardiomyocytes, 2-APB is most reliable and widely used. Like the aforementioned inhibitors, off target effects of 2-APB on store-operated Ca²⁺ entry, mitochondria and SERCA pumps have however been reported. Careful titration of 2-APB in cardiomyocytes, showed that when applied at a low concentration of ~2 µM, selective inhibition of InsP₃R is achieved with no effects on Ca²⁺ transients or SR store loading detected [30,33,144]. Caffeine also inhibits InsP₃Rs but owing to its potent activation of RyRs has limited use in cardiomyocytes [138]. As a complement to experiments involving InsP₃R inhibition, InsP₃R may also be activated pharmacologically. To these ends, cell permeant forms of InsP₃ or caged derivatives are employed in intact cells and InsP₃ salts and caged derivatives introduced via patch pipettes [33,36,37]. The oxidizing agent thimerosol has also been used in cardiomyocytes to induce InsP₃R activation [31]. While this mercury based agent may sensitize InsP₃Rs, it has multiple other targets including induction of Zn release from cellular stores [145]. The issues raised above highlight the need for future development and application of improved InsP₃R probes such as those involving modified versions of InsP₃ [146] or of the carbon ring on which it is based [147]. These new tools should be used together with advanced imaging approaches to selectively interrogate the localization and function of InsP₃Rs. Development of strategies to selectively modulate InsP₃Rs in distinct cellular microdomains and to relocalize InsP₃Rs to different cellular microdomains to selectively influence discrete functions may also prove of use — for example to prevent arrhythmogenic Ca²⁺ signals. Moreover, application of these approaches in large preclinical models of cardiac disease as well as in human cardiomyocytes is necessary to fill our gap in knowledge regarding the role of InsP₃R signalling in human pathology.

Ethics. Data presented are extracted from a previous publication. As that publication used human samples, ethical permission was required and is quoted in the original publication.

Data accessibility. We have analysed previously published data. The data are freely available in the previous publication.

Authors’ contributions. K.D.: conceptualization, visualization, writing—original draft, writing—review and editing; S.E.-T.: investigation, visualization, writing—review and editing; H.L.R.: conceptualization, funding acquisition, project administration, resources, supervision, visualization, writing—original draft, writing—review and editing.

All authors gave final approval for publication and agreed to be held accountable for the work performed therein.

Conflict of interest declaration. We declare we have no competing interests.

Funding. Research in the HLR laboratory related to this work is supported by grants from the FWO (Flemish Research Foundation; project grant no. G08861N and Odysseus project no. 90663) and KULeuven (iBOF-21-12 to H.L.R. and PhD funding to K.D.).

Acknowledgements. We wish to thank members of the Laboratory of Experimental Cardiology and Profs J. Goldhaber and G. Bultynck for discussion. We also thank Guillaume Gilbert for assistance with figures.

References

1. Bertridge MJ, Boonman MD, Roderick HL. 2003 Calcium signalling: dynamics, homestais and remodelling. Nat. Rev. Mol. Cell Biol. 4, 517–529. (doi:10.1038/nrm1151)
2. Gilbert G, Demydenko K, Dries E, Puertas RD, Jin X, Sipido K, Roderick HL. 2020 Calcium signaling in cardiomyocyte function. Cold Spring Harb. Perspect. Biol. 12, a035428. (doi:10.1101/cshperspect.a035428)
3. Bers DM. 2002 Cardiac excitation-contraction coupling. Nature 415, 198–205. (doi:10.1038/415198a)
4. Roderick HL, Bertridge MJ, Boonman MD. 2003 Calcium-induced calcium release. Curr. Biol. 13, R425. (doi:10.1016/S0960-9822(03)00358-0)
5. Ching LL, Williams AJ, Sitaspezan R. 2000 Evidence for Ca²⁺ activation and inactivation sites on the luminal side of the cardiac ryanodine receptor complex. Circ. Res. 87, 201–206. (doi:10.1161/01.RES.87.3.201)
6. AlSayyad KY, Wang L, Chandrasekhar R, Wagner II LE, Van Petegem F, Yule DI. 2016 Defining the stoichiometry of inositol 1,4,5-trisphosphate binding required to initiate Ca²⁺ release. Sci. Signal. 9, ra35. (doi:10.1126/scisignal.aad6281)
7. Taylor CW, Konieczny Y. 2016 IP₃ receptors: take binding required to initiate Ca2+ release. J. Biol. Chem. 281, 608–616. (doi:10.1074/jbc.M509645200)
8. Paknejad N, Hite RK. 2018 Structural basis for the regulation of inositol trisphosphate receptors by Ca²⁺ and IP₃. Nat. Struct. Mol. Biol. 25, 660–668. (doi:10.1038/s41594-018-0089-6)
9. Litvinukova M et al. 2020 Cells of the adult human heart. Nature 588, 466–472. (doi:10.1038/s41586-020-2797-4)
10. Wong J, Gueri C, Rockman HA. 2018 G-protein-coupled receptors in heart disease. Circ. Res. 123, 716–735. (doi:10.1161/CIRCRESAHA.118.311403)
11. Remus TP, Zima AI, Bossuyt J, Bare DJ, Martin JL, Blatter LA, Bers DM, Mignery GA. 2006 Biosensors to measure inositol 1,4,5-trisphosphate concentration in living cells with spatiotemporal resolution. J. Biol. Chem. 281, 608–616. (doi:10.1074/jbc.M509645200)
12. Hílal-Dandan R, Villegas S, Gonzalez A, Brunton LL. 1997 The quasi-inversible nature of endothelin binding and g protein-linked signaling in cardiac myocytes. J. Pharmacol. Exp. Ther. 281, 267–273.
13. Archer CR, Robinson EL, Drawnel FM, Roderick HL. 2017 Endothelin-1 promotes hypertrophic remodelling of cardiac myocytes by activating sustained signalling and transcription downstream of endothelin type A receptors. Cell. Signal. 36, 240–254. (doi:10.1016/j.cellsig.2017.04.010)
25. Yang F et al. 2020 Inositol 1,4,5-trisphosphate receptors are essential for fetal-maternal connection and embryo viability. PLoS Genet. 16, e1008739. (doi:10.1371/journal.pgen.1008739)

26. Li X, Zima AV, Sheikh F, Blatter LA, Chen J. 2005 Endothelin-1–induced arrhythmogenic Ca^{2+} signaling is abolished in atrial myocytes of inositol 1,4,5-trisphosphate (IP{$_3$})–receptor type 2–deficient mice. Circ. Res. 96, 1274–1281. (doi:10.1161/01.RES.0000172556.05576-c)

27. Cooley N et al. 2013 No contribution of IP$_3$-R(2) to disease phenotype in models of dilated cardiomyopathy or pressure overload hypertrophy. Circ. Heart Fail. 6, 318–325. (doi:10.1161/CIRCHEARTFAILURE.112.972158)

28. Bianchi I and Salvador J. 2008 Obstruction of ventricular Ca^{2+}-dependent arrhythmogenicity by inositol 1,4,5-trisphosphate-triggered sarcoplasmic reticulum Ca^{2+} release. J. Physiol. 596, 4323–4340. (doi:10.1113/jphysiol.2007.137709)

29. Nakayama H et al. 2010 The IP$_3$ receptor regulates cardiac hypertrophy in response to select stimuli. Circ. Res. 107, 659–666. (doi:10.1161/CIRCRESAHA.110.220038)

30. Proven A, Roderick HL, Conway SJ, Berridge MJ. 2006 Inositol 1,4,5-trisphosphate supports the arrhythmogenic action of endothelin-1 on ventricular cardiac myocytes. J. Cell Sci. 119, 3363–3375. (doi:10.1242/jcs.03073)

31. Signore S et al. 2013 Inositol 1, 4, 5-trisphosphate receptors and human left ventricular myocytes. Circulation 128, 1286–1297. (doi:10.1161/CIRCULATIONAHA.113.002764)

32. Kokskämper J, Seidlmayer L, Walther S, Kockskämper J, Pieske B. 2008 Endothelin-1 enhances nuclear Ca^{2+} transients in atrial myocytes through Ins(1,4,5)P$_3$-dependant Ca^{2+} release from perinuclear Ca^{2+} stores. J. Cell Sci. 121, 186–195. (doi:10.1242/jcs.01386)

33. Harzheim O, Movassagh M, Foo RS-Y, Ritter O, Horton JK, Capper SJ, Bootman MD. 2006 Inositol 1,4,5-trisphosphate receptor: interaction and modulation by calcium/calmodulin-dependent protein kinase II. J. Biol. Chem. 280, 15912–15920. (doi:10.1074/jbc.M414222000)

34. Capel RA, Bouse SJ, Morris HL, Rajasundaram S, Ayagama T, Zaccolo M, Burton R-AB, Terrar DA. 2005 IP$_3$-mediated Ca^{2+} release regulates atrial Ca^{2+} transients and pacemaker function by stimulation of adenyl cyclase. Am. J. Physiol. Heart Circ. Physiol. 320, H95–107. (doi:10.1152/ajpheart.00380.2020)

35. Saxe P, Zhang J, Leemann L, Monrad M, Hescheler J, Fleischmann BK. 2007 Intracellular Ca^{2+} oscillations, a potential pacemaking mechanism in early embryonic heart cells. J. Gen. Physiol. 130, 133–144. (doi:10.1085/jgp.200609753)

36. Tashfeen A, Conway SJ, Bootman MD, Roderick HL. 2006 The IP$_3$ receptor regulates Ca^{2+} dependent SR-Ca^{2+} release affecting atrial Ca^{2+} sparks. J. Physiol. 591, 2103–2111. (doi:10.1113/jphysiol.2012.247288)

37. Hohendanner F, Walther S, Berridge MJ. 2015 Cytosolic and nuclear calcium signaling in atrial myocytes: IP$_3$-mediated calcium release and the role of mitochondria. Channels (Austin) 9, 129–138. (doi:10.1080/19336950.2015.1040966)

38. Higazi DR et al. 2009 Endothelin-1-stimulated InsP$_3$-induced Ca^{2+} release is a nexus for hypertrophic signaling in cardiac myocytes. Mol. Cell Cardiol. 33, 472–482. (doi:10.1016/j.molcel.2009.02.005)

39. Wullschleger B, Blanche J, Egger M. 2007 Functional local crosstalk of inositol 1, 4, 5-trisphosphate receptor- and ryanodine receptor-dependent Ca^{2+} release in atrial cardiomyocytes. Cardiovasc. Res. 133, 542–552. (doi:10.1093/cvr/cvov20)

40. Mackenzie L, Bootman MD, Berridge MJ, Lipp P. 2001 Predicted recruitment of calcium release sites underlies excitation-contraction coupling in rat atrial myocytes. J. Physiol. 530, 417–429. (doi:10.1113/jphysiol.2001.041779)

41. Mackenzie L, Bootman MD, Berridge MJ, Lipp P. 2001 Predicted recruitment of calcium release sites underlies excitation-contraction coupling in rat atrial myocytes. J. Physiol. 530, 417–429. (doi:10.1113/jphysiol.2001.041779)

42. Qi X-Y et al. 2021 Ca^{2+} release via InsP$_3$Rs enhances RyR recycling during Ca^{2+} transients by increasing dyadic [Ca^{2+}]$_{i}$ in cardiomyocytes. J. Cell Sci. 134, jcs258671. (doi:10.1242/jcs.258671)

43. Bare DJ, Kellman CS, Liang M, Bers DM, Mignery GA. 2005 Cardiac type 2 insitol 1,4,5-trisphosphate receptor: interaction and modulation by calcium/calmodulin-dependent protein kinase II. J. Biol. Chem. 280, 15912–15920. (doi:10.1074/jbc.M414222000)

44. Yamasaki N, Nakashima N, Tsuchiya K, Ueyama T, Yamano M, Kobayashi S, Hamano K, Matsuzaki M. 2001 Up-regulation of inositol 1,4,5-trisphosphate receptor expression in atrial tissue in patients with chronic atrial fibrillation. J. Am. Coll. Cardiol. 37, 1111–1119. (doi:10.1016/S0735-1097(01)04414-5)

45. Qi Y-X et al. 2021 Inositol triphosphate receptors and nuclear calcium in atrial fibrillation. Circ. Res. 128, 619–635. (doi:10.1161/CIRCRESAHA.120.317768)

46. Mackenzie L, Bootman MD, Laine M, Berridge MJ, Holmes A, Li W-H, Lipp P. 2002 The role of inositol 1,4,5-trisphosphate receptors 1 and 2 in rabbit ventricular myocytes. J. Gen. Physiol. 119, 1146–7793. (doi:10.1016/j.yjmcc.2017.09.006)

47. Hohendanner F, Walther S, Berridge MJ. 2015 Cytosolic and nuclear calcium signaling in atrial myocytes: IP$_3$-mediated calcium release and the role of mitochondria. Channels (Austin) 9, 129–138. (doi:10.1080/19336950.2015.1040966)

48. Hohendanner F, Walther S, Berridge MJ. 2015 Cytosolic and nuclear calcium signaling in atrial myocytes: IP$_3$-mediated calcium release and the role of mitochondria. Channels (Austin) 9, 129–138. (doi:10.1080/19336950.2015.1040966)
releasing calcium from sarcoplasmic reticulum in cardiac myocytes. Circ. Res. 69, 1632–1639. (doi:10.1161/01.RES.69.6.1632)
62. Amirthakul F, Turnbull L, Du JX, Graham RM, Woodcock EA. 2008 Heightened α1A-adrenergic receptor activity suppresses ischaemia/reperfusion-induced Ins(1,4,5)P3 generation in the mouse heart: a comparison with ischaemic preconditioning. Clin. Sci. (Lond.) 116, 157–164. (doi:10.1042/CS20070110)
63. Go LD, Moschella MC, Watras J, Handa KK, Fyfe BS, Marks AR. 1995 Differential regulation of two types of intracellular calcium release channels during endothelial cell death. J. Biol. Chem. 270, 269–276. (doi:10.1074/jbc.270.05.004)
64. Ljubojevic S, Nijig E, Ullrich ND, Gutiérrez D, Kyrychenko S, Niggli E, Ullrich ND, Gutierrez D, Kyrychenko S, et al. Niggli E, Ullrich ND, Gutierrez D, Kyrychenko S, et al. 2014 Early remodeling of nuclear Ca2+ stores and inositol 1,4,5-trisphosphate receptor (InsP3R) expression during cardiac hypertrophy. J. Mol. Med. (Berl). 122, 157–167. (doi:10.1113/jphysiol.2014.140731)
65. Chen M, Xu D, Wu AZ, Kranias E, Lin S-F, Chen P-S, Jacobsen AN, Du XJ, Dart AM, Woodcock EA. 2006 Local InsP3-dependent perinuclear Ca2+ signaling in myocyte excitation–transcription coupling. Proc. Natl. Acad. Sci. (U.S.A.) 103, 7505–7510. (doi:10.1073/pnas.0508507103)
66. Jacobsen AN, Du XJ, Dart AM, Woodcock EA. 1997 Ins(1,4,5)P3, and arrhythmicogenic responses during myocardial reperfusion: evidence for receptor specificity. Am. J. Physiol. 273, H1119–H1125. (doi:10.1152/ajpheart.1997.273.3.H1119)
67. Sankar N, Pieter P, Mignery GA. 2014 Calcineurin-mediated nuclear Ca2+ cycling in cardiomyocytes. J. Mol. Cell. Cardiol. 63, 165–174. (doi:10.1016/j.yjmcc.2007.04.017)
68. Liubovitz S et al. 2018 Early remodeling of perinuclear Ca2+ stores and nuclear Ca2+ signaling during the development of hypertrophy and heart failure. Circulation 130, 244–255. (doi:10.1161/CIRCULATIONAHA.118.035827)
69. Luo D, Gao J, Lan X, Wang G, Wei S, Xiao R, Han Q. 2006 Role of Ins(1,4,5)P3 receptors in α1-adrenergic receptor-induced cardiomyocyte hypertrophy. Acta Pharmacol. Sin. 27, 895–900. (doi:10.1111/j.1745-725X.2006.00382.x)
70. Ljubojevic S et al. 2018 Ryanodine receptor dispersion disrupts Ca2+ release in failing cardiac myocytes. J. Biol. Chem. 102, 1826–1836. (doi:10.1074/jbc.M117.709469)
71. Kolstad TR et al. 2018 Ryndone receptor dispersion disrupts Ca2+ release in failing cardiac myocytes. Elife 7, e39247. (doi:10.7554/elife.39247)
72. Arantes LAM et al. 2012 Nuclear inositol 1,4,5-trisphosphate is a necessary and conserved signal for the induction of both pathological and physiological cardiomyocyte hypertrophy. J. Mol. Cell. Cardiol. 53, 475–486. (doi:10.1016/j.yjmcc.2012.06.017)
73. Wu X, Bers DM. 2006 Sarcoplasmic reticulum and nuclear envelope are highly interconnected Ca2+ store throughout cardiac myocyte. Circ. Res. 99, 283–291. (doi:10.1161/01.RES.0000233386.027082.72)
74. Hechevarria W, Leite MF, Guerra MT, Zigfell WR, Nathanson MH. 2003 Regulation of calcium signals in the nucleus by a nucleosaccharide retinol. Nat. Cell Biol. 5, 440–446. (doi:10.1038/ncb890)
75. Lipp P, Thomas D, Berridge MJ, Bootman MD. 1997 Nuclear calcium signalling by individual cyttoplasmic calcium puffs. EMBO J. 16, 7166–7173. (doi:10.1093/emboj/16.23.7166)
76. Bootman MD, Fearmley C, Smyrniou I, McDonald F, Roderick HL. 2009 An update on nuclear calcium signalling. J. Cell Sci. 122, 2337–2350. (doi:10.1242/jcs.028100)
77. Wu X et al. 2006 Local InsP3-dependent perinuclear Ca2+ signaling in myocyte excitation–transcription coupling. Circ. Res. 116, 675–682. (doi:10.1161/JC27374)
78. Molkentin JD. 2006 Dichotomy of Ca2+ in the heart: contraction versus intracellular signaling. J. Clin. Invest. 116, 623–626. (doi:10.1172/JCI27824)
79. Thilliaippan NB, Chakroborty P, Hasan G, Taylor CW. 2019 IP3R receptors and Ca2+ entry. Biochem. Biophys. Acta Mol. Cell Res. 1866, 1092–1100. (doi:10.1016/j.bbamcr.2018.11.007)
80. Bers DM. 2013 Membrane receptor neighborhoods: snuggling up to the nucleus. Circ. Res. 112, 224–226. (doi:10.1161/CIRCRESAHA.112.300494)
81. Ibarra C et al. 2013 Local control of nuclear calcium signaling by perinuclear microdomains of sarcolemmal insulin-like growth factor 1 receptors. Circ. Res. 112, 236–245. (doi:10.1161/CIRCRESAHA.112.273839)
82. Tadevosyan A, Maguy A, Villeneuve LR, Babin J, Bonnafy A, Allen BG, Nattel S. 2010 Nuclear-delimited angiotensin receptor-mediated signaling regulates cardiomyocyte gene expression. J. Biol. Chem. 285, 23338–23345. (doi:10.1074/jbc.M110.121749)
83. Escobar M, Cardenas C, Colavita K, Petrenko NB, Franzini-Armstrong C. 2011 Structural evidence for perinuclear cardiac microdomains in cardiac myocytes. J. Mol. Cell. Cardiol. 50, 451–459. (doi:10.1016/j.yjmcc.2010.11.021)
84. Ljubojevic S, Walther S, Asgarzade M, Sedej S, Pieske B, Kocksakämper J. 2011 In situ calibration of nucleosaccharide versus cytoplasmic Ca2+ concentration in adult cardiomyocytes. Biophys. J. 100, 2356–2366. (doi:10.1016/j.bpj.2011.03.060)
85. Tanaz E et al. 2012 Heart failure induces significant changes in nuclear pore complex of human cardiomyocytes. PLoS ONE 7, e48957. (doi:10.1371/journal.pone.0048957)
86. Plaścik J, Preisi S, Nokonova V, Pluteanu F, Hein L, Kocksakämper J. 2016 Enhanced nucleosaccharide Ca2+ signaling in ventricular myocytes from young hypertensive rats. J. Mol. Cell. Cardiol. 101, 58–68. (doi:10.1016/j.yjmcc.2016.11.001)
87. Rinne A, Blatter LA. 2010 Activation of NFATc1 is directly mediated by IP3 in adult cardiac myocytes. Am. J. Physiol. Heart Circ. Physiol. 299, H1701–H1707. (doi:10.1152/ajpheart.00470.2010)
88. Nakao S, Wakabayashi S, Nakamura TY. 2015 Stimulus-dependent regulation of nuclear Ca^{2+} signaling in cardiomyocytes: a role of neuronal calcium sensor-1. PLoS ONE 10, e0125050. (doi: 10.1371/journal.pone.0125050)

89. Roderick HL, Bootman MD. 2003 Bi-directional signalling from the InsP_{3} receptor: regulation by calcium and accessory factors. Biochem. Soc. Trans. 31, 950–953. (doi:10.1042/BST0310950)

90. Thillaiappan NB, Smith BA, Ataka-Adaji P, Taylor CW. 2021 KRAP tethers IP3 receptors to actin and licenses them to evoke cytosolic Ca^{2+} signals. Nat. Commun. 12, 4514. (doi:10.1038/s41467-021-24739-9)

91. Nakamura TY, Jeromin A, Mikoshiba K, Wakabayashi S. 2011 Neuronal calcium sensor-1 promotes immature heart function and hypertrophy by enhancing Ca^{2+} signals. Circ. Res. 109, 512–523. (doi:10.1161/CIRCRESAHA.111.248864)

92. Heinrich FM, Zhang K, Estrada M, Huang Y, Giordano Fj, Ehrlich BE. 2008 Chromogranin B regulates calcium signaling, nuclear factor κB activity, and brain natriuretic peptide production in cardiomyocytes. Circ. Res. 102, 1230–1238. (doi:10.1161/CIRCRESAHA.107.166033)

93. Hunt H, Bass G, Soeller C, Llewelyn HL, Bootman MD. 2003 Bi-directional activation of heart mitochondrial oxidative phosphorylation: rapid kinetics of mVOD2, NADH, and light scattering. J. Biol. Chem. 276, 2586–2599. (doi:10.1074/jbc.M00292300)

94. Zhu J, McKeon F. 1999 NF-AT activation requires Ca^{2+} dependent gene expression through two coincident pathways. Proc. Natl Acad. Sci. USA 109, 12 986–12 991. (doi:10.1073/PNAS.1210718109)

95. Csordas G, Weaver D, Hajnicky C. 2018 Endoplasic reticulum-mitochondrial contact-eygo: structure and signaling functions. Trends Cell Biol. 28, 523–540. (doi:10.1016/j.tcb.2018.02.009)

96. Lu F et al. 2010 Calcium-sensing receptors regulate cardiomyocyte Ca^{2+} signaling via the saracoplasmic reticulum-mitochondrial interface during hypoxia/reoxygenation. J. Biomed. Sci. 17, 50. (doi:10.1186/1340-2594-17-17)

97. Beretta M et al. 2020 Nox4 regulates InsP_{3} receptor-dependent Ca^{2+} release into mitochondria to promote cell survival. EMBO J. 39, e103530. (doi:10.15222/embj.2019103530)

98. Gomez L et al. 2016 The SR/ER-mitochondria calcium crosstalk is regulated by GSK3β during reperfusion injury. Cell Death Differ. 23, 313–322. (doi:10.1038/cdd.2015.101)

99. Fazal et al. 2017 Multifunctional mitochondrial Epac1 controls myocardial cell death. Circ. Res. 120, 645–657. (doi:10.1161/CIRCRESAHA.116.309859)

100. Khan MT, Wagner L, Yule DI, Bhanumathy C, Joseph SK. 2006 Akt kinase phosphorylation of inositol 1,4,5-trisphosphate receptors by protein kinase B/Akt regulates ER Ca^{2+} release and apoptosis. Cell Death Differ. 3, e304. (doi:10.1038/CDDIS.2012.45)

101. Szabo T et al. 2008 Phosphorylation of inositol 1,4,5-trisphosphate receptors by protein kinase B/Akt inhibits Ca^{2+} release and apoptosis. Proc. Natl Acad. Sci. USA 105, 2427–2432. (doi:10.1073/PNAS.0711324105)

102. Luncke J, Kaaks A, Bezprozvanny I, Farys JY, Kerkhofs M, Bultynck G. 2021 Balancing ER-mitochondrial Ca^{2+} fluxes in health and disease. Trends Cell Biol. 31, 598–612. (doi:10.1016/j.tcb.2021.02.003)

103. Seidlmayer LK et al. 2016 Inositol 1,4,5-trisphosphate-mediated saracoplasmic reticulum–mitochondrial crosstalk influences adenosine triphosphate production via mitochondrial Ca^{2+} uptake through the mitochondrial ryanodine receptor in cardiomyocytes. Cardiovasc. Res. 112, 491–501. (doi:10.1093/cvr/cvw185)

104. Seidlmayer LK et al. 2019 Mitofusin 2 is essential for IP_{3}-mediated SR/mitochondria metabolic feedback. Front. Physiol. 10, 733. (doi:10.3389/fphys.2019.00733)

105. Wu S, Lu Q, Wang Q, Ding Y, Ma Z, Mao X, Huang K, Xie Z, Zou M-H. 2017 Binding of FUN14 domain containing 1 with inositol 1,4,5-trisphosphate receptor in mitochondria-associated endoplasmic
reticulum membranes maintains mitochondrial dynamics and function in hearts in vivo. Circulation 136, 2248–2266. (doi:10.1161/CIRCULATIONAHA.117.032353)

129. Kapoor N, Tran A, Kang J, Zhang R, Philpston RD, Goldhaber JL. 2015 Regulation of calcium clock-mediated pacemaking by inositol-1,4,5-trisphosphate receptors in mouse sinoatrial nodal cells. J. Physiol. 593, 2649–2663. (doi:10.1113/JP270082)

130. Hirose M, Stuyvers B, Dun W, ter Keurs H, Boyden PA. 2008 Wide long lasting perinuclear Ca2+ release events generated by an interaction betweenryanodine and IP3 receptors in canine Purkinje cells. J. Cell Biol. 177, 8106–8113. (doi:10.1074/jbc.M108337200)

131. Yaniv Y, Lakatta EG, Maltsev VA. 2015 From two 2004 2APB- and JTV519(K201)-sensitive micro Ca2+ sparks and waves in canine Purkinje cells: a triple layered system of Ca2+ activation. Circ. Res. 97, 35–43. (doi:10.1161/01.RES.0000173375.26489.FE)

132. Uchiyama T, Yoshikawa F, Hishida A, Furutichi T, Mikoshiba K. 2002 A novel recombinant hyperaffinity inositol 1,4,5-trisphosphate (IP3) absorbing traps IP3, resulting in specific inhibition of IP3-mediated calcium signaling. J. Biol. Chem. 277, 8106–8113. (doi:10.1074/jbc.M108337200)

133. Tsutsui K, 134. Saleem H, Tovey SC, Molinski TF, Taylor CW. 2014 Interactions of antagonists with subtypes of inositol 1,4,5-trisphosphate (IP3) receptors. Br. J. Pharmacol. 171, 3298–3312. (doi:10.1111/BPH.12685/SUPPINFO)

135. Maruyama T, Kanaji T, Nakade S, Kanno T, Jaimovich E, Mattei C, Liberona JL, Cardenas C, Ta TA, Feng W, Molinski TF, Pessah IN. 2006 Hydroxylated xestospongins block inositol-1,4,5-trisphosphate-induced calcium release and sensitize Ca2+-induced Ca2+ release mediated by ryanodine receptors. Mol. Pharmacol. 69, 532–538. (doi:10.1124/M1.0.0000191252)

136. Stuyvers BD, Dun W, Matkovich S, Sorrentino V, Boyden PA, Ter Keurs HEDJ. 2005 Ca2+ sparks and waves in canine Purkinje cells: a triple layered system of Ca2+ activation. Circ. Res. 97, 35–43. (doi:10.1161/01.RES.0000173375.26489.FE)

137. Bultynck G, Sienaert I, Parys JB, Callewaert G, De Smedt H, Erneux C, Sorrentino V, Missiaen L. 2011 Distribution and function of inositol trisphosphate receptors in mouse sinoatrial nodal pacemaker cells. Sci. Signal. 5, eaap7608. (doi:10.1126/SCISIGNAL.AAP7608)

138.Hora H, Hebel S, Engelhardt G, Rink L. 2009 Zinc ions cause the thimerosal-induced signal of fluorescent calcium probes in lymphocytes. Cell Calcium 45, 185–191. (doi:10.1016/J.CECA.2008.09.003)

139. Jaimovich E, Mattei C, Liberman JL, Cardenas C, Estrada M, Barbier J, Deblust C, Laurent D, Molgo J. 2005 Xestospongin B, a competitive inhibitor of IP3-mediated Ca2+ signalling in cultured rat myotubes, isolated myonuclei, and neuroblastoma (NG108-15) cells. FEBS Lett. 577, 2051–2057. (doi:10.1016/J.FEBSLET.2005.02.053)

140. Coronado J, Roda A, Sanchis J, Roldan A, Espinosa R, Benitez M, Holgado S, Robles L, Gil P, Zorzano A. 2015 2-aminoethoxydiphenyl borate (2-APB) antagonises inositol 1,4,5-trisphosphate-induced calcium release, inhibits calcium pumps and has a use-dependent and slowly reversible action on store-operated calcium entry channels. Cell Calcium 54, 97–108. (doi:10.1016/S0042-4160(03)00026-5)

141. Bello D, Aslam T, Bultynck G, Slavkin AMZ, Roderick HL, Bootman MD, Conway SJ, Holmes AB, Bootman MD, Berridge MJ, Seo JT, Roderick HL. 2003 2-aminoethoxydiphenyl borate (2-APB) antagonises inositol 1,4,5-trisphosphate-induced calcium release, inhibits calcium pumps and has a use-dependent and slowly reversible action on store-operated calcium entry channels. Cell Calcium 34, 97–108. (doi:10.1016/S0042-4160(03)00026-5)

142. De Smet P, Parys JB, Callewaert G, Weidema AF, Hill CW, Boens N, Dehaen W, Missiaen L. 2020 Both d- and l-glucose ions cause the thimerosal-induced signal of fluorescent calcium probes in lymphocytes. Cell Calcium 45, 185–191. (doi:10.1016/J.CECA.2008.09.003)

143. Ta TA, Feng W, Molinski TF, Pessah IN. 2006 Hydroxylated xestospongins block inositol-1,4,5-trisphosphate-induced Ca2+ release and sensitize Ca2+-induced Ca2+ release mediated by ryanodine receptors. Mol. Pharmacol. 69, 532–538. (doi:10.1124/M1.0.0000191252)

144. Peppiatt CM, Collins TJ, Mackenzie L, Conway SJ, Holmes AB, Bootman MD, Berridge MJ, Seo JT, Roderick HL. 2003 2-aminoethoxydiphenyl borate (2-APB) antagonises inositol 1,4,5-trisphosphate-induced calcium release, inhibits calcium pumps and has a use-dependent and slowly reversible action on store-operated calcium entry channels. Cell Calcium 34, 97–108. (doi:10.1016/S0042-4160(03)00026-5)

145. Haase H, Hebel S, Engelhardt G, Rink L. 2009 Zinc ions cause the thimerosal-induced signal of fluorescent calcium probes in lymphocytes. Cell Calcium 45, 185–191. (doi:10.1016/J.CECA.2008.09.003)

146. Bello D, Aslam T, Bultynck G, Slavkin AMZ, Roderick HL, Bootman MD, Conway SJ. 2007 Synthesis and biological action of novel 4-position-modified derivatives of D-myo-inositol 1,4,5-trisphosphate. J. Org. Chem. 72, 5647–5659. (doi:10.1021/JO070611A)

147. Shipston ML, Riley AM, Rossi AM, Breatley CA, Taylor CW, Potter BVL. 2020 Both d- and L-glucose polyphosphates mimic d-myo-inositol 1,4,5-trisphosphate: new synthetic agonists and partial agonists at the Ins(1,4,5)P3 receptor. J. Med. Chem. 63, 5442–5457. (doi:10.1021/ACS.JMEDCHEM.0C00215)