INVESTIGATION OF SOLVENT SUBLATION OF COBALT IONS FROM WATER SOLUTIONS

1. Introduction

Existing technologies for the purification of waste water from heavy metal ions are imperfect. This necessitates the search and implementation of alternative methods aimed at the complete purification of wastewater from pollutants of various nature. To achieve a more complete purification of wastewater from heavy metal ions, it is proposed to apply the solvent sublation method, which has several advantages compared with other known flotation methods [1, 2]. The uniqueness of this process is the method of extracting sublate substances (sublate) by concentrating it in the layer of organic liquid – extractant – on the surface of the aqueous phase [3–5]. Sublate is capable of either forming a suspension (in suspension) or dissolved in the organic phase [6, 7]. Equilibrium in this process is established at the interface of the aqueous-organic phase. The amount of collected sublate in the organic layer does not depend on its volume, since equilibrium is not established in the entire system. The passage of sublate into the organic layer from the phase boundary is a process due to the movement of a stream of gas bubbles. This is not a spontaneous distribution process, which is associated with the relative solubility of sublate in two phases. Despite all the advantages of solvent sublation, to date, this method of purification has not received wide industrial application. However, there are numerous experimental results of studies of the regularities and optimal parameters of this process, which substantiate the expediency of the expanded use of solvent sublation [8, 9]. Therefore, an experimental study of the nature of the effect on the extraction efficiency of the following parameters is relevant: the nature of the extractant, the pH of the medium, the duration of solvent sublation, the value of the molar ratio of surfactants (surface-active substances): Metal, gas consumption, temperature of the aqueous phase. Thus, the object of research is solvent sublation in the cobalt- sodium dodecyl sulphate system. And the aim of research is studying the solvent sublation, as a method of purifying waste water from heavy metals by the example of cobalt (II) ions.

2. Methods of research

To study the solvent sublation process, a cylindrical glass column with a diameter of 35 mm was used. Air was supplied by a compressor to the bottom of the column, flow was controlled by a rotameter. Air dispersion was carried out through a Schott filter. The concentration of cobalt ions in model solutions was 20 mg/dm³. The volume of the solution is 200 cm³, the volume of the extractant (isoamyl alcohol) is 10 cm³. The solvent sublation process was carried out to establish a constant residual concentration of cobalt ions, which was determined by the photometric method on a Portlab 501 single beam scanning spectrophotometer (United Kingdom) [10]. The pH adjustment was carried out with solutions of NaOH and HCl with a concentration...
of 0.1 mol/dm3 (pH of aqueous solutions was measured using a pH-meter pH-150MI (Russia)). The efficiency of the solvent sublation process was evaluated by the extraction degree of cobalt ions.

3. Research results and discussion

Fig. 1 shows the dependence of the extraction degree of Co$^{2+}$ ions on the molar ratio of Co$^{2+}$:surfactant.

According to the results (Fig. 1), in the range of molar ratios of Co$^{2+}$:surfactant from 1:0.5 to 1:1.5, the degree of cobalt extraction is not enough. This is due to the fact that this amount of surfactant is not enough to fully bind cobalt to sublate. When using sodium dodecyl sulfate, the highest extraction degree of cobalt ions is 84.46 % with a ratio of Co$^{2+}$:surfactant = 1:2. Further, there is a decrease in the efficiency of solvent sublation, because with an increase in the amount of surfactant in solution (Co$^{2+}$:surfactant = 1:2.5 and so on) in the aqueous phase, an excess amount of surfactant anions appears.

The dependence of the Co$^{2+}$ extraction degree on the pH of the solution. Hydrogen index is corrected in the range of 3–11 (Fig. 2).

![Fig. 1. Dependence of cobalt (II) ions extraction degree on the surfactant: cobalt molar ratio](image1)

![Fig. 2. Dependence of cobalt (II) ions extraction degree on pH](image2)

Fig. 1. Dependence of cobalt (II) ions extraction degree on the surfactant: cobalt molar ratio

Fig. 2. Dependence of cobalt (II) ions extraction degree on pH

Air consumption is an important factor during the solvent sublation process (Fig. 4).

![Fig. 3. Dependence of cobalt (II) ions extraction degree on the duration of the process at a different molar ratio](image3)

![Fig. 4. Dependence of cobalt (II) ions extraction degree from the air consumption](image4)

Fig. 3. Dependence of cobalt (II) ions extraction degree on the duration of the process at a different molar ratio

Fig. 4. Dependence of cobalt (II) ions extraction degree from the air consumption

The extraction of cobalt ions is only 72.4 % with air consumption in the range of 25–35 cm3/min, since this number of air bubbles is not enough to completely transfer pollutants into the organic phase. The highest degree of extraction of cobalt ions is observed at an air consumption of 45 cm3/min. At large values, there is a slight decrease in the extraction degree. This is due to the fact that with an increase in the rate of movement of air bubbles, a partial violation of the integrity of the organic layer occurs and, as a result, part of the sublate returns to the aqueous phase.

Fig. 5 shows the dependences of the Co$^{2+}$ ions extraction degree on the temperature of the aqueous phase. Studies were conducted in the range of 10–40 °C. Solvent sublation parameters: process duration – 20 min, molar ratio of Co$^{2+}$:surfactant – 1:2, pH 10.

![Fig. 5. Dependence of cobalt (II) ions extraction degree on the temperature of the aqueous phase](image5)

Fig. 5. Dependence of cobalt (II) ions extraction degree on the temperature of the aqueous phase

It is better to extract Co$^{2+}$ at pH 10. At this pH cobalt sublate is in the form of a neutral hydroxide molecule, which is hydrophobized by surfactant.

Fig. 3 shows the dependence of the Co$^{2+}$ extraction degree on the duration of the solvent sublation process with a different Co$^{2+}$:surfactant molar ratio. The process was carried out for 25 minutes. Sampling for analysis was performed every 5 minutes.

The rational process duration was 20 minutes. The increase in the solvent sublation duration is almost no effect on the Co$^{2+}$ extraction degree.

The process takes place in the adsorption mechanism and, accordingly, with increasing temperature there is
a decrease in the efficiency of the process, explains the decrease in the extraction degree of cobalt. Fig. 6 shows the graphical dependences of the natural logarithm of the cobalt ion concentration on the solvent sublation duration. This is the first order of reaction, because the graphical dependence is straightforward.

![Graph showing the dependence of the natural logarithm of the concentration of cobalt ions on the solvent sublation duration at various temperatures.](image)

Fig. 6. Dependence of the natural logarithm of the concentration of cobalt ions on the solvent sublation duration at various temperatures.

To calculate the reaction rate constant, the formula (for the first order reaction) is used:

\[
k = \frac{1}{\tau} \ln \frac{C_0}{C_t},
\]

where \(\tau \) – solvent sublation duration; \(C_0 \) and \(C_t \) – the initial and current concentrations of cobalt ions.

The results of the calculations of the constant are given in Table 1.

Temperature, K	Reaction rate constant, k (min⁻¹)
293	0.096
298	0.090
303	0.065

The first order of the process and the value of the process rate constant indicate the course of solvent sublation in the stationary diffusion mode, when the limiting stage is the diffusion of particles extracted from the surface of gas bubbles [11].

4. Conclusions

The extraction of cobalt ions with a concentration of 20 mg/dm³ from aqueous solutions in the cobalt – sodium dodecyl sulphate system by solvent sublation is studied. Based on experimental studies, the optimal process conditions are obtained: the volume of extractant (isoamyl alcohol) – 10 cm³, the ratio of cobalt ions in the surfactant – 1:2, pH 10, air consumption – 45 cm³/min, the process duration – 20 min, phase temperature – 20 °C. Under these conditions, the extraction degree of cobalt ions is about 85 %.

The solvent sublation process of cobalt ions is described by a kinetic equation of the first order, the velocity constants are calculated. The proposed method of solvent sublation purification can be an alternative and innovative method of wastewater purification before discharge into reservoirs or in the case of their return to the circulating water supply.

References

1. Lu Y., Zhu X. Solvent Sublation: Theory and Application // Separation and Purification Methods. 2001. Vol. 30, Issue 2. P. 157–189. doi: http://doi.org/10.1081/smm-100108158
2. Bi P., Dong H., Dong J. The recent progress of solvent sublation // Journal of Chromatography A. 2010. Vol. 1217, Issue 16. P. 2716–2725. doi: http://doi.org/10.1016/j.jchroma.2009.11.020
3. Teoretychni zasady ta praktychne zastosuvannia flooteckstrakti: otailad // Astrelin I. M., Obushenko T. I., Tolstopalova N. M., Tarhonska O. O. // Voda i vodochnyi tekhnolohii. 2013. Issue 3. P. 3–23.
4. Studies on Solvent Sublation of Trace Heavy Metals by Continuous Flow System as Ternary Complexes of 1,10-Phenanthroline and Thiocyanate Ion / Kim Y., Shin J., Choi Y., Lee W. // Bulletin of the Korean Chemical Society. 2003. Vol. 24, Issue 12. P. 1775–1780. doi: http://doi.org/10.5012/bkcs.2003.24.12.1773
5. Study of a mathematical model of metal ion complexes in solvent sublation / Lu Y. J., Lin J. H., Xiong Y., Zhu X. H. // Journal of Colloid and Interface Science. 2003. Vol. 263, Issue 1. P. 261–269. doi: http://doi.org/10.1016/s0021-9797(03)00192-9
6. Determination of zinc and lead in water samples by solvent sublation using ion pairing of metal-naphthoate complexes and tetra-n-butylammonium ion / Kim Y., Choi Y., Lee W., Lee Y. // Bulletin of the Korean Chemical Society. 2001. Issue 22. P. 821–826.
7. Solvent sublation trace noble metals by formation of metal complexes with 2-mercaptobenzothiazole / Kim Y., Shin J., Lee W., Lee Y. // Bulletin of the Korean Chemical Society. 2001. Issue 22. P. 19–24.
8. Porlova O. V., Sazonova V. F. Flotocextraktsionnoe izvlechenie soedinenii lantana iz razbavlennyh vodnyh rastvorov // Visnik ONU. 2012. Vol. 17, Issue 1 (41). P. 52–57.
9. Wastewater Treatment from Toxic Metals by Flotoextraction / Obushenko T. I., Astrelin I. M., Tolstopalova N. M., Varbanets M. A., Kondratenko T. A. // Journal of Water Chemistry and Technology. 2008. Vol. 30, Issue 4. P. 241–245. doi: http://doi.org/10.3103/s1063435x08040073
10. Analitichyku khimiia pyrydnoho seredovyshecha: textbook / Nabivanets B. Y., Sukhan V. V., Kalabina L. V. Kyiv: Lybid, 1996. 304 p.
11. Lobacheva O. L., Chirkst D. E., Zhvegava N. V. Solvent sublation of yttrium ions from dilute aqueous solutions by use of sodium dodecyl sulfate // Russian Journal of Applied Chemistry. 2012. Vol. 85, Issue 8. P. 1153–1156. doi: http://doi.org/10.1134/s1070427212080022

Obushenko Tetiana, Senior Lecturer, Department of Inorganic Substances, Water Purification and General Chemical Technology, National Technical University of Ukraine «Igor Sikorsky Kyiv Polytechnic Institute», Ukraine, e-mail: tio1963@gmail.com, ORCID: http://orcid.org/0000-0003-0731-0370

Tolstopalova Natalia, PhD, Associate Professor, Department of Inorganic Substances, Water Purification and General Chemical Technology, National Technical University of Ukraine «Igor Sikorsky Kyiv Polytechnic Institute», Ukraine, e-mail: tio1963@gmail.com, ORCID: http://orcid.org/0000-0002-7240-5344

Baranuk Nadiya, Department of Inorganic Substances, Water Purification and General Chemical Technology, National Technical University of Ukraine «Igor Sikorsky Kyiv Polytechnic Institute», Ukraine, e-mail: kisilid@gmail.com, ORCID: http://orcid.org/0000-0002-2288-1377