Diagnosis and combating COVID-19 using wearable Oura smart ring with deep learning methods

M. Poongodi\(^1\) · Mounir Hamdi\(^2\) · Mohit Malviya\(^3\) · Ashutosh Sharma\(^4\) · Gaurav Dhiman\(^5\) · S. Vimal\(^5\)

Received: 4 November 2020 / Accepted: 16 February 2021
© Springer-Verlag London Ltd., part of Springer Nature 2021

Abstract

Since the coronavirus (COVID-19) outbreak keeps on spreading all through the world, scientists have been crafting varied technologies mainly focusing on AI for an approach to acknowledge the difficulties of the epidemic. In this current worldwide emergency, the clinical business is searching for new advancements to screen and combat COVID-19 contamination. Strategies used by artificial intelligence can stretch screen the spread of the infection, distinguish highly infected patients, and be compelling in supervising the illness continuously. The artificial intelligence anticipation can further be used for passing dangers by sufficiently dissecting information from past sufferers. International patient support with recommendations for population testing, medical care, notification, and infection control can help fight this deadly virus. We proposed the hybrid deep learning method to diagnose COVID-19. The layered approach is used here to measure the symptom level of the patients and to analyze the patient image data whether he/she is positive with COVID-19. This work utilizes smart AI techniques to predict and diagnose the coronavirus rapidly by the Oura smart ring within 24 h. In the laboratory, a coronavirus rapid test is prepared with the help of a deep learning model using the RNN and CNN algorithms to diagnose the coronavirus rapidly and accurately. The result shows the value 0 or 1. The result 1 indicates the person is affected with coronavirus and the result 0 indicates the person is not affected with coronavirus. X-Ray and CT image classifications are considered here so that the threshold value is utilized for identifying an individual’s health condition from the initial stage to a severe stage. Threshold value 0.5 is used to identify coronavirus initial stage condition and 1 is used to identify the coronavirus severe condition of the patient. The proposed methods are utilized for four weighting parameters to reduce both false positive and false negative image classification results for rapid and accurate diagnosis of COVID-19.

Keywords Machine learning · Image acquisition · COVID-19 · Diagnosis · Drug · Artificial intelligence

1 Introduction

The quickly advancing COVID-19 infection epidemic has drastically altered everybody’s life everywhere in the world.
March of about 250,000 confirmed cases along with 10,000 deaths, the speed of the outbreak and the impact in terms of life lost in such a short time are unprecedented [3]. The non-attendance of powerful and general remedial specialists and much absence provided by the antibody to create resistance in opposition to coronavirus have been developing various populace defence outbreaks [4]. Because of this quick emergency, monstrous abrasion frisson has influenced different areas, for example, the travel industry, medical and healthcare services, logistics, and transport-based supply chains as well as the retail sector [5–16] (https://covid.barabasilab.com). These fields are staggering under financial pressures and risks for employees to open again in the new normal [17, 18].

The United States polymerase chain reaction (PCR) testing is the trusted source which is primarily used for COVID-19 diagnostic testing. In 2002, the same type of test was used to detect SARS virus. The reverse transcription PCR (RT-PCR) technique is used to collect larger samples for viral comparison. Finally, the RT-PCR technique comparison result found two genes in the SARS-CoV-2 genome. The test result shows if both genes are found the result is positive, if only one gene is found then the result is inconclusive, if neither of the genes is found then the result is negative. Finally, the doctor ordered a chest CT scan which also helped diagnose COVID-19 or if clearly shows a lung infected with the virus. As a result, the CT scan identified virus infection in 98% of patients, but RT-PCR test detected it only 71% of the time correctly. The RT-PCR test can take a day or longer to get the results. The Food and Drug Administration (FDA) ratified point-of-care (POC) testing devices produce test results within 45 min [19]. Recently, the COVID-19 Diagnostic Resource Centre started an online training course for Ministry of Health officials, laboratory professionals, clinicians, and anyone involved in laboratory testing and diagnosis for COVID-19 [20].

The possible symptoms for COVID-19 viruses are as shown in Fig. 1. The common symptoms for COVID-19 are fever, fatigue, aching muscles, shortness of breath, and dry cough along with less typical symptoms of headache, diarrhea, phlegm build-up, and hemoptysis. The person having all the above symptoms then is a person affected with COVID-19 virus. The virus gets into human lungs and it affects lung functionality with the impact increasing up to 14 days.

2 Literature review

A survey was conducted in 2015 about using technologies to combat COVID-19, wherein the convolution neural network (CNN) based on dynamicity was created to anticipate Zika infection influence using artificial intelligence. Carnegie Mellon University presently uses a similar calculation to be re-prepared on new information based on coronavirus in order to forecast its spread. The GLEAMviz epidemiological model created by the Institute for the Future of Humanity at Oxford University gives the expectation about coronavirus spreading. Metabiota, a San Francisco organization, created an Epidemic tracker to follow the infection spread dependent on expectations [21]. The Robert Koch Institute in Berlin used an epidemiological SIR model with the end goal of control measures by isolations, lockdowns, governments, and physical distance support. Finally, Robert Koch Institute’s used an extended SIR model to analyze that the containment is successful in reducing the coronavirus slowly [21].

The coronavirus-infected people sometimes do not realize their symptoms for up to 5 days. In that situation, the virus can easily spread to new people, without realizing their symptoms. Wearable organization Oura Health collaborated with the cooperation of Rezai and his group to manufacture a different intelligent-based ring which consists mainly around different sensors, including infrared LEDs, an accelerometer, gyroscope, and three temperature sensors as shown in Fig. 2. The Oura ring can continually register various rest-taken schedules, action-based types and its degree, the ecosystem temperature, and pulse fluctuation in the body. Finally, Rezai says this smart ring AI model predicts the people infected within 24 h whether they have COVID-19 symptoms or not [23].

Andrew Ng’s startup Landing AI has developed a social distance detector to detect whether the people walking around the road street maintain a 6-feet distance from one person to another person or not [24, 25]. The result is showed on the video screen with the colors red and green. The red color indicates the people do not maintain the 6-feet social distance, so the probability of spreading the virus from one person to
3 Smart AI techniques for diagnosis of COVID-19

Smart AI techniques can diagnose COVID-19 viruses quickly and accurately. Along these lines, this brilliant AI procedure could protect millions of people, limit the infection of COVID-19 illness, and can create precise information such that it can be used to predict different AI-type structures. The UN Global Pulse collaborated with different scientists using smart AI techniques, and the result shows that smart AI techniques provide accurate results compared to humans and also diagnose the coronavirus faster and cheaper than standard COVID-19 tests. The outputs based on X-beams and computerized tomography (CT) contribute a significant function in diagnosing coronavirus [27]. The chest X-ray image data are applied to varied ML-based techniques for analyzing the infection spread by the coronavirus. The smart AI procedure called COVID-19 Net was utilized by checking beams of chest X-ray pictures for recognizing the different cases based on the lungs such that it mainly focuses on coronavirus. Analysis of CT scans was critically attempted by the specialists from the Renmin University of Wuhan, China, who distributed an AI structure based on deep learning technique and provided better execution contrast with radiologist which controls the epidemic, enhance prognosis, with disconnection from the people and medical-based remedies. Another specialist from the Dutch University of Delft built a prototype using AI called CAD4COVID to diagnose COVID from X-rays [21]. The CAD4COVID AI software that tries coronavirus suspects on chest X-ray images. So, based upon this survey result, the doctors can take either CT scan or X-ray from a coronavirus-infected person with direct contact of high risk. In future, COVID-19 diagnosis by an AI doctor plays an important role [21].

A clinical information investigation organization named LinkingMed stated, “Pneumonia should be a more typical issue pertaining to COVID-19 as based on the oncology based information stage principles.” The AI-based CT scan model investigated CT images and provided precision of nearly 92% with a retraction pace rounding around 97% with some sample informational-based collection. The AI model distinguishes the scores as well as measures regarding different numeral, capacity and hypothesis. The AI-based multisensory innovation consequently identifies people’s illness based on fever symptoms along with perceiving the concerned faces and screening the development. At last, it detects if a face mask is being used by all the involved individuals [28].

Nowadays, every smartphone has sensor technologies like camera sensor, inertial sensor, microphone sensor, and temperature fingerprint sensor to capture data from COVID-19 patients. The captured data is processed through machine learning algorithms such as CNN and recurrent neural network (RNN). The CNN algorithm is used for image recognition and the output of each layer is applied to input of the next layer with the help of RNN algorithm. Finally, these two algorithms combine to produce the patient’s COVID-19 result as positive or negative [29].

The neural networks combine two deep learning algorithms such as “RestNet-50” and “UNet++.” The RestNet50 is used for image recognition and the purpose of UNet++ is processing the chest CT scans. The Chinese Academy of Sciences in Beijing built a COVID-19 symptomatic as well as a pre-indicative investigation by crafting out a completely programmed framework based on deep learning algorithms to limit the annotation work produced by the radiologists on computerized tomography scans [30]. The researchers designed a decision-based computer mechanism for anticipating coronavirus infection accurately from various patients based
upon the decision point [31]. Numerous strategies were made from the deep learning techniques to fight and combat COVID-19 utilizing computed tomography pictures data [32]. Moreover, an AI-equipped diagnostic assistant was innovated by Shanghai Yitu Network Technology Organization apace with Shanghai Public Health Clinical Center which uses some analytical and ranking-based smart techniques and utilizes CT scan around the chest for around 2–3 s to detect coronavirus infection via programmed discernment alongside quantifiable assessment [33] (Table 1).

Generally, doctors spend more time to answer the basic question from COVID-19–infected patients. In this situation, chatbots are helpful for the doctors to screen and diagnose the patient’s condition [35].

The hybrid deep learning methods are used to diagnose COVID-19 as shown in Fig. 4. The diagram consists of five layers. They are input layer, configuration layer, prediction and processing layer, testing layer, and result layer.

Input layer The input layer is responsible of reading the preprocessing image data from the dataset. Also, it is used to read cough, temperature, and blood sample data from the patients. The X-ray and CT scans are utilized for preprocessing the lung images. Cropping and resizing the lung images are prepared through preprocessing steps. The lung images are taken from medical devices like CT scan and X-ray having letters, crafts, and medical symbols, and the lung medical images also taken from different sources with different sizes. Because of these problems, preprocessing is important for image processing. Here, the information picture size is changed to a width × stature × channel number such that the actual dimension will be 224 × 224 × 3. At last, the trimmed information picture should not comprise much compositions. Figure 3 produces the same pictures which appeared while testing.

Configuration layer It is responsible for reading intervals, image size, buffer size, resolution, etc. The camera sensor was used to read X-ray and CT scan data. The microphone sensor is used to measure the cough voice samples and a laser-based sensor is used to predict blood count measures. Further reading and configuration data are considered for the symptoms of deep learning algorithm process.

Prediction and processing layer The prediction layer is quite pivotal and used to measure the symptom level of the patients and the processing layer is used to analyze the patient image

S.No	Data	Modality	Results
1	The patient’s RNA samples are collected from a throat swab and a specific enzyme is added to turn the RNA into two-stranded DNA	RT-PCR	If the patient’s both DNA results are positive, then the person is affected with COVID-19. The result ranges vary from 60–70% to 95–97%
2	Sputum sample	Molecular point-of-care	Automated type of test results produced within 30 min for CT-Based COVID-19 diagnosis results are better than those RT-PCR can offer (80–90%). But those of RT-PCR are on the low side of 60–70%. The problem with CT scan is the radiology person has to clean the scanners in between patients with a high risk of COVID-19
3	Chest image	CT	X-Ray results are insensitive compared to those with CT scan. But compared to CT scan, X-ray machines are easier to clean
4	Chest image	X-Ray	The ultrasound CT scan result is better than the X-ray image. But ultrasound requires closer contact between the physician and the patient which may increase contamination risks for the staff
5	Chest image	Ultrasound CT	This technique takes more time to diagnose COVID-19 results compared to other methods
6	Chest image	PET-CT	AI-based CT assessment using deep learning principles to detect COVID-19 on chest CT scans. Gozes et al. report a sensitivity of 98.2%, but an impressive specificity of 92.2% for their deep learning-based thoracic CT algorithm. But the problem is some persons are infected with pneumonia with COVID-19. Alibaba used segmentation and quantification of lung infection regions to differentiate COVID-19–based pneumonia and other pneumonia cases with an accuracy of 96%
7	Chest image	CT	
data whether he/she has COVID-19 or not. RNN and CNN are utilized for the majority of the calculation for our mentioned model. Prediction and process layer internal processes to diagnose COVID-19 are shown in Fig. 5. The CT scan and X-ray image input are fed into a convolutional neural network process. The input image is processed and produced with classification output with different threshold values. The RNN is a type of network governed by billions of artificial neurons such that it uses the algorithm which allows varied types of inputs when the previous step output comes up in the structure. The RNN process is continued throughout the process of convolutional neural network algorithms. A CNN is a deep learning algorithm which takes input images and assigns weight and biases to various objects in the image to differentiate one from the another. The center capacity of this layer is to recover the highlights from the dataset and to keep up the connection based on spaces between pixels. The features are retrieved from a bunch of sixteen channels and each of the development depends on size which is less than or equal to 5*5. The CNN calculates dot product function which learns the convolved features which are the same size of the input image during training process and convolved images.

Fig. 4 Proposed deep learning methods for diagnosing COVID-19

Fig. 5 Prediction and process layer internal process for diagnosing COVID-19
convolved images are trained to normalize the image data which reduces the training process and stabilizes the learning process. After normalization, the convolved features are replaced with negative pixel values by 0. Moreover, the mechanism gets applied to extricate prevailing aspects from the training model. It is finished with a pooling layer. Pooling comes in two different ways, average and maximum pooling. Here, pooling constructed on the maximum basis is utilized on the grounds as maximum surveying execution is superior to average pooling. The most extreme parameters are extracted back by selecting the covered image such that the channel utilizes the pooling on maximum attainment. This max pooling value is connected to all the activation functions of the fully connected layer. The responsibility of a fully connected mechanism is to order the characteristics based on the convolved nature from varied sets of the image-based dataset into various classification.

Testing layer The testing layer is used to test the different classes of data retrieved from the prediction and processing layer. The major functionality of this layer is used to detect if the coronavirus condition is normal, average, or severe.

Result layer The CNN model gets completed with this layer that produces output value 0 or 1. The value 1 indicates COVID-19 positive and the value 0 indicates COVID-19 negative.

3.1 Materials and methods

Datasets Gathering of the dataset is made from various initiators used for this work which includes 106 chest X-ray images acquired from 75 COVID-19 confirmed patients, and 1200 chest X-ray images are diagnosed as non-COVID-19 from 1002 patients [36]. Similarly, 112 CT images are acquired from 80 COVID-19 confirmed patients, and 1354 CT images are diagnosed as non-COVID-19 from 1094 patients. Furthermore, the COVID-19 and pneumonia datasets are available in the Github repository [36]. The screening performance is evaluated by the sensitivity, specificity, and accuracy. The accuracy gives the total number of positive and negative results correctly identified, and sensitivity and specificity give the proportion of positive and negative results correctly identified.

4 Results and discussion

The data are spotted twice and the experiment conducted for evaluation. The first X-ray image split contains 50 images of COVID-19 patients and 700 images for pneumonia patients. The second split contains 56 images for COVID-19 patients and 600 images for pneumonia patients. Similarly, the CT scan first split contains 60 images for COVID-19 patients and 800 images for pneumonia patients. The CT scan second split contains 52 images for COVID-19 patients and 554 images for pneumonia patients. The average performance of two splits is considered the final performance.

The performance of COVID-19 is diagnosed by setting different threshold values from 0 to 1. The result layer indicates the value 0 becomes COVID-19 negative and value 1 becomes COVID-19 positive. Initially, the threshold value 0.5 is fixed for all the patient diagnosis. The final decision is based upon the following equation:

$$\text{COVID-19} \quad \text{if} \quad 0.5 \geq T$$

$$\text{Diagnosis} = \text{Non-COVID-19} \quad \text{if} \quad 0.5 < T$$

(1)

where, T is the threshold that controls the trade-off between sensitivity and specificity.

The following formulas are used to measure the accuracy, sensitivity, and specificity [37].

$$\text{Accuracy} = \frac{\text{True Positive (TP)} + \text{True Negative (TN)}}{\text{Total number of tested images}}$$

(2)

Where, true negative and positive based parameters are the numbers which were truly identified COVID-19 and non-COVID-19 patients.

$$\text{Sensitivity} = \frac{\text{TP}}{\text{TP + False Negative (FN)}}$$

(3)

Where, FN is a false negative classification which is incorrectly classified as non-COVID-19 for CT scan and X-ray images.

$$\text{Specificity} = \frac{\text{TN}}{\text{TN + False Positive (FP)}}$$

(4)

Where, FP is a false positive classification used for CT scan and X-ray images which get misclassified as COVID-19. So, this idea of the proposed method aims to reduce both false negative and false positive classification results. The following Eqs. 5 and 6 utilize some weighting factors to minimize both false positive and false negative results. Furthermore, COVID-19 diagnosis for CT scan and X-ray images has its basis parameter value with weighting coefficient values:

$W(\text{CT}), W(\text{C}), W(\text{B}), W(\text{T}) \quad \text{or} \quad W(\text{X}), W(\text{C}), W(\text{B}), W(\text{T})$.

Where,

$W(\text{CT})$ Coefficient weight of computed tomography image classification result
W(X) Coefficient weight of computed tomography image classification result
W(C) Coefficient weight of cough sample result
W(B) Coefficient weight of blood sample count result
W(T) Coefficient weight of body temperature result

So, the COVID-19 result is assessed accurately based upon the above parameter values. The COVID-19 CT diagnosis is assessed by the following equation:

\[
\text{COVID19 CT Diagnosis} = W_1 \cdot \text{CT} + W_2 \cdot C + W_3 \cdot B + W_4 \cdot T
\]

where \(W_1 + W_2 + W_3 + W_4 = 1\). If the computed diagnosis value is greater than its relative threshold (e.g., 0.5), then the patient result is assumed to be positive, otherwise it is negative. Likewise, X-ray diagnosis is assessed by the following equation:

\[
\text{COVID19 XRay Diagnosis} = W_1 \cdot \text{CT} + W_2 \cdot C + W_3 \cdot B + W_4 \cdot T
\]

Tables 2 and 3 show the computerized tomography scan as well as X-ray image-based classification results for coronavirus detection using RNN and CNN algorithms. The CT scan result performs better compared to the X-ray result. The threshold value from 0.5 to 1 gives the different classification results from initial stage to final stage of COVID-19.

The X-ray and CT scan image COVID-19 detection accuracy (%) versus threshold as shown in Figs. 6 and 7.

5 Smart AI techniques for combating COVID-19

To find disease surveillance, the BlueDot Company uses NLP and ML algorithms for speculating out various new hotspots and to inform the health officials and government through their healthcare reports [28]. The predictive algorithms use the aviation data available for predicting the risk that some hubs may face due to either arrival or departure of infected patients. The Canada-based Stallion company uses NLP algorithm to build a virtual healthcare assistant (ChatBots) that can provide reliable information related to coronavirus, answer the questions related to coronavirus, regularly monitor and check the symptoms of COVID-19 infected patients, and finally advise the patients to take rest at their home or whether they need to take hospital screening. The intelligent drones and robots play an important role in combating COVID-19. The drones are used to monitor whether the individuals are using face masks or not, broadcast the precaution information about COVID-19 to the public, and disinfect public spaces.

Catering-industry centered Pudu Technology utilizes robots for food and medication delivery for COVID-19–infected patients in 40 hospitals. The robots are likewise used for cleaning of room and refinement of seclusion areas. Different organizations such as DeepMind, AlphaFold System, and Google’s AI use various smart AI strategies and make advancements for the immunizations prevailing through coronavirus and produce antibodies for the upcoming issues [28].

The structure of coronavirus proteins is predicted by Google’s DeepMind which is useful for researchers to rapidly develop new drugs [21]. AI helps diagnose the coronavirus, doubt clearing, deliver services, and assist drug discovery to tackle during outbreak [38]. The AI can help fight against COVID-19 through population screening; AI-powered smartphone apps monitor individual health and spread of virus [39].

6 Future medicine and healthcare for COVID-19

Microsoft and Allen Institute for AI speeding up vaccine research which aims to access the COVID-19 Open Research Dataset (CORD-19) resources for scientists...
freely. Barabasi Lab is looking for new drug development to fight against novel coronavirus using machine learning and network science technologies [40]. The experimental lab has a list of drugs to be tested in a human cell as shown in Fig. 8.

AI alone is not the solution for COVID-19 because AI professionals can aid in developing algorithms to predict and diagnose COVID-19 disease. Without implementing AI, we are not able to tackle the next epidemic. So, in future, AI automation plays an important role in healthcare. Figure 8 shows in the future healthcare will be treated with the help of AI robotics like receptionist and administrative support robot, nurse robot, body scanning robot, data-based clinical judgment robot, AI-assisted surgery, and managing medical records. The AI professional doctors monitors the robot’s activity for giving treatment to the patient and another AI professional to monitor the health condition of the patient [40] (Fig. 9).

7 Conclusion

This work utilizes smart AI techniques to predict and diagnose coronavirus rapidly. The Oura smart ring is used to predict coronavirus symptoms rapidly, within 24 h. In the laboratory, a coronavirus rapid test is prepared with the help of a deep learning model using RNN and CNN algorithms to diagnose coronavirus rapidly and accurately. The result shows the value 0 or 1. The result 1 indicates the person is affected with coronavirus and the result 0 indicates the person is not affected with coronavirus. Here, the threshold value is utilized for X-ray or computerized tomography image-based classification which identifies various patient conditions from initial stage to severe stage. Threshold value 0.5 is used to identify coronavirus initial stage condition and 1 is used to identify the coronavirus severe condition of the patient. The proposed methods were utilized for four weighting parameters to reduce both false positive and false negative image classification results for diagnosis of COVID-19 rapidly and accurately.

Threshold	True positive (COVID-19)	False positive (non-COVID-19)	True negative (COVID-19)	False negative (non-COVID-19)	Total number of tested images	Sensitivity (%)	Specificity (%)	Accuracy (%)
0.5	88	24	1320	34	1466	72.13	98.21	96.04
0.6	91	21	1325	29	1471	75.83	98.43	98.08
0.7	96	16	1330	24	1475	80.00	98.13	97.27
0.8	100	12	1338	16	1480	86.20	99.11	98.09
0.9	104	8	1342	12	1484	89.64	99.30	98.63
1	108	4	1348	6	1488	94.73	99.70	99.31

![X-Ray image COVID-19 detection accuracy (%) with respect to threshold](image)

Fig. 6 X-Ray image COVID-19 detection accuracy (%) with respect to threshold.

This work utilizes smart AI techniques to predict and diagnose coronavirus rapidly. The Oura smart ring is used to predict coronavirus symptoms rapidly, within 24 h. In the laboratory, a coronavirus rapid test is prepared with the help of a deep learning model using RNN and CNN algorithms to diagnose coronavirus rapidly and accurately. The result shows the value 0 or 1. The result 1 indicates the person is affected with coronavirus and the result 0 indicates the person is not affected with coronavirus. Here, the threshold value is utilized for X-ray or computerized tomography image-based classification which identifies various patient conditions from initial stage to severe stage. Threshold value 0.5 is used to identify coronavirus initial stage condition and 1 is used to identify the coronavirus severe condition of the patient. The proposed methods were utilized for four weighting parameters to reduce both false positive and false negative image classification results for diagnosis of COVID-19 rapidly and accurately.
Fig. 7 CT scan image COVID-19 detection accuracy (%) with respect to threshold

Fig. 8 Structure of disease
(https://twitter.com/SpirosMargaris)
Fig. 9 Healthcare framework

[41]

References

1. “World Health Organization Q&A on coronaviruses (COVID-19)”
 https://www.who.int/news-room/q-a-detail/q-a-coronaviruses,
 Accessed in April, 2020
2. “Role of frontline workers in prevention and management of corona
 virus”, https://www.mohfw.gov.in/pdf/PreventionandManagemen
 tofCOVID19FLWEnglish.pdf, 2020
3. “WHO – coronavirus disease (COVID-19) pandemic”, https://www
 .who.int/emergencies/diseases/novel-coronavirus-2019,
 Accessed in April, 2020
4. “Modes of transmission of virus causing COVID-19: implications
 for IPC precaution recommendations”, https://www.who.int/news
 /room/commentaries/detail/modes-of-transmission-of-virus-caus
 ing-covid-19-implications-for-ipc-precaution-
 recommendations, Accessed in March, 2020
5. Dhiman G, Kumar V (2018) Emperor penguin optimizer: a bio-inspired
 algorithm for engineering problems. Knowl-Based Syst 159:20–50
6. Dhiman G, Kumar V (2018) Multi-objective spotted hyena opti-
 mizer: a multi-objective optimization algorithm for engineering
 problems. Knowl-Based Syst 175:175–197
7. Dhiman G, Kumar V (2019) Seagull optimization algorithm: theory
 and its applications for large scale industrial engineering prob-
 lems. Knowl-Based Syst 165:169–196
8. Dhiman G, Kaur A (2019) StoA: a bio-inspired based optimization
 algorithm for industrial engineering problems. Eng Appl Artif Intell
 82:16–174
9. Singh S, Awasthi LK, Sangal AL, Dhiman G (2020) Tunicate
 Swarm Algorithm: a new bio-inspired based metaheuristic para-
 digm for global optimization. Eng Appl Artif Intell 90:103541
10. Dhiman G (2020) MOSHEPO: a hybrid multi-objective approach
 to solve economic load dispatch and micro grid problems. Appl
 Intell 50(1):119–137
11. Dhiman G (2019) “ESA: a hybrid bio-inspired metaheuristic opti-
 mization approach for engineering problems.” Eng Comput 1-31.
12. Dhiman G, Garg M, Nagar A, Kumar V, Dehghani M (2020) “A
 novel algorithm for global optimization: rat swarm optimizer.” J
 Ambient Intell Humaniz Comput 1-26.
13. Dhiman G, Singh KK, Slowik A, Chang V, Yildiz AR, Kaur A, Garg M
 (2020) “EMoSOA: a new evolutionary multi-objective seagull op-
 timization algorithm for global optimization.” Int J Mach Learn Cyb
 ern 1-26
14. Dhiman G, Singh KK, Soni M, Nagar A, Dehghani M, Slowik A,
 Kaur A, Sharma A, Houssen EH, Cengiz K (2020) “MOSOA: a new
 multi-objective seagull optimization algorithm.” Expert Syst
 Appl 144150
15. Kaur H, Rai A, Bhatia SS, Dhiman G (2020) MOEPO: a novel
 multi-objective emperor penguin optimizer for global optimization:
 special application in ranking of cloud service providers. Eng Appl
 Artif Intell 96:104008
16. Dhiman G, Oliva D, Kaur A, Singh KK, Vimal S, Sharma A,
 Cengiz K “BEPO: a novel binary emperor penguin optimizer for
 automatic feature selection.” Knowledge-Based Systems 211:1
 06/560
17. “What is COVID-19 and how is it spread?”. https://www.gavi.org/
 vaccineswork/what-is-covid-19-and-how-does-it-spread, Accessed
 in March, 2020
18. “COVID-19 transmission guidebook: chances of coronavirus
 spreading through tears low”, https://economictimes.indiatimes.
 com/magazines/panache/covid-19-transmission-guidebook-
 chances-of-coronavirus-spreading-through-tears-low/articleshow/
 74827681.cms?from=mdr, Accessed in March, 2020
19. “What to know about COVID-19 diagnosis”, https://www.
 healthline.com/health/coronavirus-diagnosis#whats-involved,
 Accessed in March, 2020
20. “COVID-19 diagnostics resource centre”, https://www.finddx.
 org/covid-19/, Accessed in 2020
21. SameerObeidat, “How artificial intelligence is helping fight the
 COVID-19 pandemic”, https://www.entrepreneur.com/article/
 348368, Accessed in March, 2020
22. Cohen JP, Morrison P, Dao L (2020) “Image data collection,” arXiv
 2003.11597, vol. 6
23. Andrew Ng, “Machine learning could check if you’re social dis-
 tancing properly at work”, https://www.technologyreview.com/
 2020/03/24/950356/coronavirus-neural-network-can-help-spot-
 covid-19-in-chest-x-ray-pneumonia/, (Accessed: 17th April 2020)
24. Ahmed I, Din S, Jeon G, Piccialli F (2020) Exploring deep learning
 models for overhead view multiple object detection. IEEE Int
 Comput 117:256
25. Hussain S, Keung J, Akhunzada A, Ahmad A, Khan AA, Cusano S,
 Piccialli F, Jeon G (2018) Implications of deep learning for the
 automation of design patterns organization. J Parallel Distrib
 Comput 117:256–266
26. “How a smart ring may help detect early COVID-19 symptoms”,
 https://www.cnet.com/news/how-a-smart-ring-may-detect-early-
 covid-19-symptoms/, (Accessed: 1st April 2020)
27. Dhiman G, Kumar V (2017) Spotted hyena optimizer: a novel bio-inspired based metaheuristic technique for engineering applications. Adv Eng Softw 114:48–70
28. Maghdid HS, KayhanZrarGhafoor, SafaaSadiq A, Curran K, KhaledRabie, A novel AI-enabled framework to diagnose coronavirus COVID-19 using smartphone embedded sensors: design study, https://arxiv.org/abs/2003.07434, Accessed in 2020
29. “AI runs smack up against a big data problem in COVID-19 diagnosis”, https://www.zdnet.com/article/ai-runs-smack-up-against-a-big-data-problem-in-covid-19-diagnosis/, Accessed in April, 2020
30. “Experimental AI tool predicts which COVID-19 patients develop respiratory disease”, https://www.sciencedaily.com/releases/2020/03/200330152135.htm, Accessed in March, 2020
31. ThanhThi Nguyen, “Artificial intelligence in the battle against coronavirus (COVID-19): a survey and future research directions”, Published in April, 2020
32. “YITU launches AI powered intelligent evaluation system of chest CT for COVID-19”, https://www.itnonline.com/content/yitu-launches%C2%A0ai-powered-intelligent-evaluation-system-chest-ct-covid-19, (Accessed: 31st March 2020)
33. Ory six, “Diagnosing COVID-19 using AI based medical image analyses”, https://www.quantib.com/blog/diagnosing-covid-19-using-ai-based-medical-image-analyses, (Accessed: 20th March 2020)
34. “How to fight COVID-19 with machine learning”, https://www.datarevenue.com/en-blog/machine-learning-covid-19, (Accessed: 2020)
35. DAN ROBITZSKI, “The smart ring uses AI to spot Covid-19 — before symptoms begin”, https://futurism.com/neoscope/smart-ring-ai-spot-covid-19-before-symptoms-begin, (Accessed: 11th April 2020)
36. Maghdid HS, Asaad AT, KayhanZrarGhafoor, Ali SafaaSadiq, Muhammad Khurram Khan (2020) “Diagnosing COVID-19 pneumonia from X-ray and CT images using deep learning and transfer learning algorithms,” https://arxiv.org/abs/2004.00038
37. Vivek Kumar, “Combating COVID-19 with the help of AI, analytics and automation”, https://www.analyticsinsight.net/combating-covid-19-help-ai-analytics-automation/, (Accessed: 9th April 2020).
38. Georgios Petropoulos, “Artificial intelligence in the fight against COVID-19”, https://www.bruegel.org/2020/03/artificial-intelligence-in-the-fight-against-covid-19/, (Accessed: 23rd March 2020).
39. “The (Sober) state of artificial intelligence in the fight against COVID-19”, https://www.bruegel.org/2020/03/artificial-intelligence-in-the-fight-against-covid-19/, (Accessed: 14th April 2020).
40. Kang S, Paul A, Jeon G (2017) Reduction of mixed noise from wearable sensors in human-motion estimation. Comput Electr Eng 61:287–296
41. WimNaude, “Artificial intelligence against COVID-19: an early review”, https://towardsdatascience.com/artificial-intelligence-against-covid-19-an-early-review-92a8360edaba, Accessed in April, 2020

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.