Problem-Space Evasion Attacks in the Android OS: a Survey

Harel Berger*, Dr. Amit Dvir

Ariel Cyber Innovation Center, Computer Science Department, Ariel University, 65 Ramat HaGolan street, Ariel, Israel

Dr. Chen Hajaj

Ariel Cyber Innovation Center, Data Science and Artificial Intelligence Research Center, Industrial Engineering and Management Department, Ariel University, 65 Ramat HaGolan street, Ariel, Israel

Abstract

Android is the most popular OS worldwide. Therefore, it is a target for various kinds of malware. As a countermeasure, the security community works day and night to develop appropriate Android malware detection systems, with ML-based or DL-based systems considered as some of the most common types. Against these detection systems, intelligent adversaries develop a wide set of evasion attacks, in which an attacker slightly modifies a malware sample to evade its target detection system. In this survey, we address problem-space evasion attacks in the Android OS, where attackers manipulate actual APKs, rather than their extracted feature vector. We aim to explore these kind of attacks, frequently overlooked by the research community due to a lack of knowledge of the Android domain, or due to focusing on general mathematical evasion attacks - i.e., feature-space evasion attacks. We discuss the different aspects of problem-space evasion attacks, using a new taxonomy, which focuses on key ingredients of each problem-space attack, such as the attacker model, the attacker’s mode of operation, and the functionality assessment of post-attack applications.

*Corresponding author

Email addresses: harel.berger@msmail.ariel.ac.il (Harel Berger), amitdv@ariel.ac.il (Dr. Amit Dvir), chenha@ariel.ac.il (Dr. Chen Hajaj)
1. Introduction

In March 2022, the Deep Instinct Threat Research published the 2022 Cyber Threat Landscape Report [1]. This report describes an increase of 125% in threat types and novel evasion techniques compared to 2021. The authors also stated that bad actors in the cyber world invest in the development of anti-AI and adversarial attacks and integrate these methods into their larger evasion strategy. In evasion attacks or techniques, one refers to a set of manipulations an attacker runs on a malicious sample, to evade detection by a target detection system. These manipulations are called evasion attacks. Evasion attacks are devised in two ways: theoretical and physical. The theoretical way is referred to as a feature-space evasion attack, and the physical one is commonly referred to as a problem-space evasion attack. The targets of these attacks, detection machines that are ML-based or DL-based, do not analyze APKs or PEs, or any other type of malware. Instead, these detection systems require a mapping of the malware sample to numerical/textual feature vectors. In feature-space evasion attacks, an attacker manipulates the feature vector using various algorithms. Feature-space attacks are general because they utilize the representation of a sample and not the actual sample. On the other hand, problem-space evasion attacks use different manipulations on the actual sample. Problem-space evasion attacks are more complex to implement compared to feature-space evasion attacks, as they require a clear understanding of the subject domain [2, 3, 4, 5, 6].

One of the popular environments for evasion attacks is the Android OS. As a consequence, an impressive amount of detection systems were devised in recent years for both malware and evasion attacks, as reported in [7, 8, 9, 10, 11, 12, 13]. Most Android malware detection systems take one of three courses: static analysis, behavioral analysis, or dynamic analysis. Static analysis detection systems explore specific content from the files of the application, like permission
requests or the sequences of API calls (e.g., [14][15]). Other detection machines explore the execution of the application (e.g., [16][17]). Behavioral analysis inspects CPU usage, the number of in-going and out-going network packets, etc. (e.g., [18][19]). Hybrid machines fuse several approaches to detect malware (e.g., [20][21]). Evasion attacks, and more specifically, problem-space evasion attacks, try to evade detection by these detection systems. Each attack targets different kinds of detection systems.

The core contributions of this survey are threefold. First, we explore influential research and tools of problem-space evasion attacks against Android malware detection systems in recent years, between 2012 and 2022. Various surveys were conducted on problem-space evasion attacks, e.g. [22][23][24][25][26][27][28][29][30][31][32][33][34]. However, some of these surveys are general and therefore do not focus on a specific domain of evasion attacks [23][27][28][30][32][33]. Other surveys analyze domains other than Android OS, such as adversarial network examples, Windows PEs, Natural Language Processing, and images [22][24][25][26][29]. Several surveys focused on evasion attacks on the Android OS domain, for example [35][31][34]. While Bhushal and Rastogi [35] presented work on the nature of feature-space and problem-space attacks, they only explored one problem-space evasion attack. Also, [31][34] surveys suggest a different taxonomy, which focuses on the evasion techniques, while our survey analyzes different aspects that have increased in recent years; For example, the importance of functional evaluation [2] and the orientation of different problem-space attacks. Second, exploring problem-space attacks is vital to test the realistic assumptions of feature-space evasion attacks. For example, Berger et al. [36] showed that feature-space attacks in the Android domain do not serve as proxies for problem-space evasion attacks. In other words, feature-space attacks do not depict reality accurately. Therefore, problem-space attacks are great candidates to test the validity of feature-space attacks, as they are constructed through realistic changes to the application. Acknowledging different problem-space attacks is important as a way of testing existing and new evasion attacks for every domain, specifically for the Android OS domain.
Finally, we present a new taxonomy of problem-space attacks using the attacker model, orientation, functionality assessment, and types of manipulation on the application. Note that every evasion attack presented in previous work is included in our survey as well. In total, this survey is presented for the community to aid future research in problem-space evasion attacks, and complete the assessment of evasion attacks on the Android OS domain.

The remainder of this paper is organized as follows: First, the background on APKs and feature types of ML-based Android malware detection systems are described in Section 2. Then, our taxonomy of problem-space evasion attacks is presented in Section 3. Next, a full discussion on insights from the explored works is given in Section 4. The paper is concluded in Section 5 with suggestions for future research.

2. Background

This section presents the background of our survey. First, the APK structure in a nutshell in Section 2.1. Next, the types of ML-based Android malware detection systems in Section 2.2. These machines are targets of problem-space evasion attacks. Therefore, since this survey explores evasion attacks, it is important to clarify the categories of targets of these attacks.

2.1. APK File

The Android PacKage (APK) is the file format used by the Android application markets. APK is a compressed file containing the following files: manifest, classes.dex, layout files, res, and assets. The manifest file contains information that is essential for the APK, including the required user permissions. Another vital component of the APK is the binary code, classes.dex, which can be converted to several reverse engineering languages (e.g., Smali). Graphic resources are ordered on each page of the application using the layout files. Additional files which are not code files, like pictures or voice recordings, reside in res and assets directories. A more detailed explanation can be found in [37]. In this survey, we focus on the manifest file and the code files.
2.2. Feature types of ML-Based Android Malware Detection

Several ML-based approaches were suggested to detect Android malware, which can be categorized into three main approaches. The first approach enumerates static information from the application, such as API calls or permission requests. This approach is termed static analysis [14, 15, 38, 39, 40, 41, 42, 43, 44]. One of the most well-known Android malware detection systems using static analysis is Drebin [14, 39, 40, 41], which gathers different types of information as features - permission requests, software/hardware components, intents, suspicious/restricted API calls, used permissions in the app’s run, and URL addresses. Another famous detection machine that follows static analysis is MaMaDroid [15, 42], which builds a control flow graph from the series of API calls from the code files (without any running of the application) and maps the transitions between the API calls. The second approach captures running of system calls while running the application. This approach is called dynamic analysis [45, 46, 47, 48, 49, 50]. One of the famous works in this field is EnDroid [46], which analyzes system-level call traces and malicious application-level behaviors. Deep4MalDroid [48] is another detection machine that uses dynamic analysis to create system call graphs. The third approach analyzes the behavior of the application using CPU or battery usage, network packets sent and received, and other parameters that describe the behavior of the application. This approach is termed behavioral analysis [18, 51, 52, 53, 54]. Andromaly [18], one of the well-known detection machines that analyze applications via behavioral analysis, explores network communication traffic patterns. A similar approach was presented in [52]. These detection systems enumerate the RTT values, the number of packages that were sent and received, etc. A hybrid approach combines multiple types of features from different systems [17, 55, 56, 57, 58]. A famous hybrid Android malware detection system was suggested by Martín et al. [55]. This system utilizes static and dynamic analysis of Android applications. In particular, the transitions between states of execution and of API calls are explored by this system. Marvin [57], another well-known hybrid Android malware detection system, focuses on permissions, certificates, etc. In addition,
a dynamic analysis of several is processed, including phone activities like data
leakages and network communication. This survey explores attacks against the
three main approaches: static, dynamic, and behavioral.

3. Taxonomy Characteristics and Table

This section defines characteristics for the taxonomy of problem-space evasion
attacks that are presented in Table 1. A graphic presentation of our
taxonomy can be found in Fig. 1. Each of the following characteristics is de-
scribed by its column name in the table. The explanation of each characteristic
includes a set of appropriate values that were used in the table (if applicable).

- **Targeted machines**: The name of the targeted machine/s (Targets) and the analysis type of this machine (Tar. type) - Static (S), Dynamic (D), or Behavioral (H).

- **Attacker model (At. Mod.)**: The attacker model depicts the knowledge that the attacker has of the target detection machine. The options for the attacker models are White-box (W), Black-box (Bl), Gray-box (G) and Zero-knowledge (Z). Some studies used multiple attacker models (Mu) to test different types of attackers, with various capabilities.

- **Orientation of the attack (Orient.)**: Some of the work in this field was implemented through exploration of the application, generating perturba-
tions, and examination of their effects on the target systems (P). Other

1The idea of this survey is to explore the quality of works on problem-space evasion at-
tacks and the gaps that are still there in this type of research. Therefore, works that did not
include an evaluation of target classifiers, such as Obfuscapk [59] were eliminated from this
survey. Such attacks and attack tools have not been proven to be efficient against any target.
Also, works that discuss an attack but do not clearly describe an algorithm/process of the
evasion attack were excluded as well (e.g., [60, 61]). Finally, works exploring existing ma-
 nipulated benchmarks or obfuscation methods that were implemented in original applications
from known datasets [62, 63] were left out, as this survey follows evasion attacks on existing
malware, not sophisticated malware datasets.
works utilize general feature-space attacks or other mathematical abstractions and implement changes to the app according to the results of these abstractions (F). A similar split was suggested by Park et al. [30], into two groups - gradient-driven or problem-driven. However, some of the works mentioned in our survey utilize other types of mathematical abstractions than the use of the gradient or even feature-space attacks. Therefore, we split the work into pure problem-space attacks or mathematically oriented attacks.

- **Datasets:** The benign (DS-Ben) and malicious (DS-Mal) datasets that were used in each study.

- **Manipulated component (Man. comp.):** The concrete part of the app that was manipulated in the attack. Specifically, the optional parts are the manifest file (M), or the code files (S) - in their binary version or with their conversion to the Smali language - or both of these parts (B).

- **Modification type (Mod. type):** Changing a malicious app to evade classification can be done using one of the following: insertion of content (I), removal of content (R) or alteration of content (A). An example of the differences between the options takes the form of a permission request of SEND_SMS. The attacker can add this request to an app (I), remove it (R), or change the occurrence of it in an app to READ_SMS or simply SMS (A).

- **Detection decrease (Det. dec.):** The success of the attack against the targeted detection system. In other words, the decrease in detection rate between the original applications and the manipulated counterparts.

- **Mitigation techniques (Mit.):** Some of the studies suggested or implemented a proof-of-concept mitigation technique for the attack (PoC). Other studies described mitigation techniques in theory, without any implementation or evaluation (T). Other studies did not suggest any defense against the attacks described in the study (N).
• **Patent safeguard (Pat.):** Some attacks utilize obfuscation techniques to evade classification of malicious applications as malicious. These techniques can be used by innovative developers of an application to hide their patents from unknown entities that want to analyze and copy them. This survey suggests which problem-space attacks can be referred to as a safeguard to patents as well, aside from finding weak spots in detection machines. The options of this characteristic are True (V), Partial (Pa) or False (X).

• **Functionality assessment (Func.):** As problem-space evasion attacks manipulate actual APKs, the modifications they carry out may harm the functionality of the application. It is important to test the functionality of a sample from the manipulated data to ensure that the attack does not create a non-operational app. The options of this characteristic are no functionality test (N), installation & run process only (IR), and running commands (C).

• **Year:** The year of publication, between 2012-2022.
Name	Year	Orient.	Targets	Fun. Orient.	Mod. type	At. mod.	Det. Dec.	Mit. Det.	Pat. Tar. type	Pat. Year	At.	Mod. comp.	
Pierazzi et al. [64]	2020	DS-Ben	Android [53]	B	F	IR	Drebin [14]	SecSVM [39]	Drebin [14]	Androzoo [65]	100	T	S
Crystal Ball paper [63]	2021	DS-Mal	Android [53]	M	A	P	C	Drebin [14]	SecSVM [39]	FM [40], DNN [41]	W	Mu	
Berger et al. [2]	2020	DS-Ben	Android [53]	S	M	P	C	Drebin [14]	VT [62]				
Android-HIV [68]	2021	DS-Mal	Android [53]	S	I	F	N	Drebin [14]	MaMaDroid [15]	Mu	Mu		
SecSVM paper [39]	2017	DS-Ben	Android [53]	S	A	F	N	Drebin [14]	Contagio [72]				
MaMaDroid-2.0 [42]	2022	DS-Mal	Android [53]	S	A	P	C	Drebin [14]					

Table 1: Our taxonomy of problem-space evasion attacks in Android OS
Table 1: Our taxonomy of problem-space evasion attacks in Android OS

Name	Man. comp.	Mod. type	Orient.	Fun.	Targets	At. mod.	Det. Dec.	Mit.	Pat.	Pat. type	DS-Ben	DS-Mal	Year
DroidChameleon [73]	B	A	P	N	AVs from VT [67]	Z	100	T	Pa	S		Google-play market [74]	2013
ADAM [75]	S	A	P	N	AVs from VT [67]	Z	73+	T	Pa	S		Antiy [76], Contagio [72]	2012
MRV [77]	S	I	F	N	AppContext [78], Drebin [14]	Bl	60	PoC	X	S		Genome [79], Contagio [72], VirusShare [70], Drebin [14], Google-play market [74]	2017
Pomilla et al. [80]	B	A	P	N	AVs from VT [67]	Z	60+	N	Pa	S		Antiy [76], Contagio [72], Drebin [14], Andro-total	2016
Canfora et al. [81]	B	M,I	P	N	VT [67]	Z	100	N	Pa	S		Drebin [14]	2015
Table 1: Our taxonomy of problem-space evasion attacks in Android OS

Name	Mod. comp. type	Fun. Orient. type	Mod. Pat. Det.	Pat. At. Mit. Dec.	Targets At. Dec.	At. Det. mod. type	Targets	Year
Aydogan et al. [82]	A	P	N	AVs from VT [67]	AVs from VT [67]	S	Z	2015
Wang et al. [83]	B	F	I	AVs from VT [67]	(LGBM, SVM and RF, DNN)	N	Mu	2022
Cara et al. [84]	S	I	F	N	(MLP)	F	C	2020
Abaid et al. [85]	S	I	R	N	Drebin-DNN [41]	S	S	2017
Li et al. [86]	S	R	L	IR	Drebin-DNN [41]	S	S	2021

Notes: DS-Ben: Detection Space Benign, DS-Mal: Detection Space Malicious.
Table 1: Our taxonomy of problem-space evasion attacks in Android OS

Name	Man. comp.	Mod. type	Orient.	Fun.	Targets	At. mod.	Det. Dec.	Mit.	Pat.	Tar. type	DS-Ben	DS-Mal	Year
Mairoca et al. 90	B	A	P	N	AVs from VT 67	Z	50+	T	Pa	S	-	Genome 79, Contagio 72	2015
Pandora 91	B	A	P	N	AVs from VT 67	Z	85	N	Pa	S	-	Mobile Sandbox dataset 92	2013
Evade-Droid 93	S	I	F	IR	Drebin 14, SecSVM 39, MaMaDroid 15, ADE-MA 41	Bl	81	T	X	S	Androzoo 65	Androzoo 65	2022
Chen et al. 94	B	I	F	N	DroidAPIminer 38, Drebin 14, Stormdroid 95, and MaMaDroid 15	W	80	N	X	S	Google-play market 74	Genome 79, Drebin 14, Contagio 72, Pwnzen 96	2019
Table 1: Our taxonomy of problem-space evasion attacks in Android OS

Name	Man. comp.	Mod. type	Orient.	Fun.	Targets	At. mod.	Det. Dec.	Mit.	Pat.	Tar. type	DS-Ben	DS-Mal	Year
Vidas et al. [97]	S	A	P	C	Andrubis [98], SandDroid [99], Foresafe [100], Copperdroid [101], AMAT [102], Mobile Sandbox [92], Bouncer [103]	Z	–	T	X	D/H	-	-	2014
Dadidroid paper [104]	S	A	P	N	MaMaDroid [15], Dadidroid [104]	Z	77	PoC	Pa	S	Marvin [57], OldBenign [15], NewBenign [15], ObDataII [57], Packed-Apps [105]	Marvin [57], Drebin [14], ObDataII [106], ObDataII [57], Packed-Apps [105]	2019
Name	Man. comp.	Mod. type	Orient.	Fun.	Targets	At. mod.	Det. Dec.	Mit.	Pat.	Tar. type	DS-Ben	DS-Mal	Year
----------------------	------------	-----------	---------	------	--------------------------	----------	-----------	------	------	-----------	----------------	----------------	------
Hammad et al. [107]	B	A	P	C	AVs from VT [67]	Z	100	N	P	S	Androzoo [65]	Genome [79],	2018
											Google-play market [74]	Contagio [72],	
											AndroTotal [108],	Drebin [14],	
											VirusShare [70]		
Faruki et al. [109]	B	M.I	P	N	VT [67]	Z	100	N	Pa	S	Google-play market [74]	Contagio [72],	2014
											Genome [79],	VirusShare [70]	
Table 1: Our taxonomy of problem-space evasion attacks in Android OS

Name	Man. comp.	Mod. type	Orient.	Fun.	Targets	At. mod.	Det. Dec.	Mit.	Pat.	Tar. type	DS-Ben	DS-Mal	Year
Mystique	B	A	F	N	Drebin [14], Adagio [111], Allix et al. [112], RevealDroid [106],	Z	100	T	Pa	S			2016
					ScanDroid [113], FlowDroid [114], DroidSafe [115], ICCTA [116],								
					TaintDroid [117], VT [67]								
Mystique-	B	A	F	C	Droidbox [119], Drozer [120], Taintdroid [117]	Z	80	N	X	D/H			2017
S													
Name	Man. comp.	Mod. type	Orient.	Fun.	Targets	At. mod.	Det. Dec.	Mit.	Pat.	Tar. type	DS-Ben	DS-Mal	Year
---------------------	------------	-----------	---------	------	---	----------	-----------	------	------	-----------	--------	--------	------
Divide-&-Conquer [121]	S	A	P	C	Andrubis [98], BitDefender [122], ForeSafe [100], Joe Sandbox Mobile [123], Mobile Sandbox [92], SandDroid [99], TraceDroid [124], Trend Micro [125]	Z	–	T	X	D/H	-	-	2014
Grosse et al. [126]	M	I	F	N	Drebin-DNN [41]	Bl	69	PoC	X	S	Drebin [14]	Drebin [14]	2017
IagoDroid paper [127]	S	I	F	N	RevealDroid [106]	Mu	97	PoC	X	S	Drebin [14]	Drebin [14]	2018
Table 1: Our taxonomy of problem-space evasion attacks in Android OS

Name	Man. comp.	Mod. type	Orient.	Fun.	Targets	At. mod.	Det. Dec.	Mit.	Pat.	Tar. type	DS-Ben	DS-Mal	Year
Petsas et al. [128]	S	A	P	C	DroidBox [119], DroidScope [129], TaintDroid [117], Andrubis [98], SandDroid [99], ApkScan [130], VisualThreat [131], Tracedroid [124], CopperDroid [101], Apk Analyzer [132], ForeSafe [100], Mobile Sandbox [92]	Z	–	T	X	D/H	-	Contagio [72]	2014
UAP [133]	S	I	F	N	Drebin [14]	W	100	N	X	S	Drebin [14]	Drebin [14]	2022
4. Discussion

Table 1 describes our taxonomy on problem-space evasion attacks in the Android OS domain. This section describes the insights gained by viewing this table. Some of these insights describe correlations between different aspects, like modification types and attack orientation (Section 4.1), the attacker models and the types of attacks (Section 4.2), or the patent safeguard and the orientation of the attack (Section 4.3). Other insights are the result of the distribution of other aspects, such as the types of targeted machines (Section 4.4), the functionality assessments in the surveyed papers (Section 4.5), the manipulated component (Section 4.6), years of publication (Section 4.7), and the datasets (Section 4.8).

4.1. Modification Types and Attack Orientation

Most of the attacks, and specifically the mathematical-oriented ones, only insert lines into the code. This is a precaution for these types of attacks, as they do not integrate knowledge on the effects of the types of change on the functionality of the application. However, some of the cases show that these additions are too predictable and, therefore, may be mitigated easily. For example, Android-HIV [68] adds no-ops against the MaMaDroid detection machine [15]. Enumeration of no-ops can be done automatically. Consequently, this attack can be mitigated efficiently, as suggested by [42]. An exception is found in the rewiring attack from HRAT [85], which modifies the flow of caller and callee functions inside an application to evade the same detection machine, Ma-MaDroid. On the other hand, most of the pure problem-space attacks modify the application. This mostly exemplifies the main idea that we mentioned earlier, problem-space evasion attacks that are based on mathematical abstractions are too general and therefore create a smaller threat to the security community than pure problem-space attacks.

4.2. Attacker Models and Types of Attacks

Attacker models seem to be correlative to the types of attacks in general – attacks that follow the zero-knowledge model mostly do not correlate to
mathematical-oriented problem-space attacks. Attacks that manipulate the app systematically based on its structure and content, even if they target a specific set of features to evade, do not require additional knowledge (e.g., [42, 121]). A more general approach, such as mathematical analysis of the feature set, requires more knowledge in practice to run the attack, such as the attack of Pierazzi et al. [64] which elevated the perfect knowledge/White-box attacker model.

4.3. Patent Safeguard and Attack Orientation

Some of the attacks that we surveyed can be fully/partly used, as well as safeguard information or patents of the creator of the apps. Other attacks change parts of the application to evade detection, but cannot be considered as methods of patent safeguard. It is interesting to see that there is a correlation between this parameter and the orientation of the attack. Eighty-six percent of the attacks that were marked to be potentials for patent safeguard are pure problem-space evasion attacks, and only 14% of the patent safeguard potentials are mathematical-oriented problem-space evasion attacks. On the other side, 74% of the attacks that have no potential to aid app developers are of mathematical-oriented origin, and only 16% of these attacks are pure problem-space attacks.

4.4. Target Machine Types

Most of the problem-space evasion attacks that we surveyed are against static analysis detection machines. These targets are easier to explore by viewing their specific content from the app and trying to conceal it, as presented by the attacks against SecSVM and Drebin [39] or the Pandora framework [91]. Obfuscation of several API calls to seem like other API calls requires some code lines. On the other hand, changing an application to evade dynamic analysis detection systems, that follows the system calls, or behavioral feature of behavioral analysis detection systems requires full expertise of the Android OS and its functionalities, like the works of Petsas et al. [128] or Vidas et al. [97]. Therefore, most of the works cover attacks only against static analysis types of detection systems.
4.5. Functionality Assessment

Most attacks do not include functionality evaluation. As explored in [2] – functionality assessment is critical to demonstrate, as the common belief that the manipulations that are carried out do not damage the functionality of the app is not enough in practice. Most of the mathematical-oriented and some of the pure problem-space attacks do not test their manipulated apps due to this mentioned common belief. The extent of functionality assessment is not defined and may not be defined at all – as some will say that X apps are enough, and others will say that at least $Y \geq X$ apps should be investigated. However, some apps should be investigated. Moreover, a functionality test should include not only installing and running the app but carrying out some automatic clicks and touches on the screen, e.g. MonkeyRunner [134], DroidBot [135], GroddDroid [136], CuckooDroid [137] or other tools. Some of these tools cover more ground, as they can be used as dynamic analysis tools for Android apps. However, as they run automatic operations on Android samples, they create a suitable environment for the functionality assessment as well. A standardization of functionality assessment is advised, to create an agreed platform in the community. This environment should be maintained constantly, to create a long-lasting tool to test application functionality2.

4.6. Manipulated Component

Most attacks target code files or both code files and the manifest file. There are not many attacks that focus on the manifest file only, as it is a small environment for attacks. However, some works that solely target the manifest file show that manipulation of this file is no less effective [66, 126].

2One of these tools, CuckooDroid [137], was tested by us and found to be non-functional. We contacted the author of the tool and several colleagues regarding the operation of CuckooDroid, but it seems it is outdated.
Figure 2: Distribution of problem-space evasion attacks on Android OS domain between 2012-2022. No color is needed.

4.7. Publication Years

In this survey, we explored publications on the topics of problem-space evasion attacks in the Android OS domain between the years 2012 and 2022. As can be seen in Table 1 and also in Fig. 2, every couple of years there is a small surge in publications in this area. The years 2014, 2017, and 2021 indicate more popularity of problem-space attacks in the Android OS domain.

4.8. Datasets

Different datasets were used to generate evasion attacks. To evaluate the success rates of these attacks, benign data is used as well. Figs. 3-4 depict the distributions of datasets among the surveyed works. The most popular benign dataset in these works is Androzoo/GooglePlay market. Androzoo is a framework for downloading many applications from different years, and of different categories - both benign and malicious applications. As Androzoo is

3These two sources are considered together, as some studies take apps from both, and as Androdzoo includes an ability to download apps from GooglePlay.
updated constantly, no guarantee is given that each work in our survey that uses it as its source for benign apps chooses the same applications as the other works that do so unless each work publishes its hash values of each benign app (which does not happen in reality). The most popular malicious dataset in these works is Drebin [14]. Although the Drebin dataset is outdated, since it was gathered between 2010 and 2012, it has still been used in recent years. So far, no agreed dataset, benign or malicious, has been announced in the community. Throughout the years, several attempts to create a benchmark dataset for evaluations of Android malware detection were originated (i.e. [138 139 140]). However, they did not succeed, as proved in this survey and also in other surveys (e.g.,[31]). Consequently, a benchmark dataset of Android benign & malicious apps is still needed.

Figure 3: Benign datasets utilization in works on problem-space evasion attacks. **No color is needed.**
Figure 4: Malicious datasets utilization in works on problem-space evasion attacks. No color is needed.
5. Conclusion and New Directions

This survey explored problem-space evasion attacks on Android OS between the years 2012 and 2022 from a bird’s-eye view. The main idea of our survey was to find out the missing or incomplete information in past research in this field. Therefore, our survey explored parameters that other surveys put aside, such as the orientation of the attack (pure or mathematical oriented), the functionality assessment of the attack, the modification type, and the manipulated component inside the app. These parameters shed light on some interesting insights that skulk in the shadows, such as the correlations between attacker models and types of attack or the connections between modification types and attack orientation. The explored insights can be considered as pointers for the following future directions of research:

1. **Generation of new problem-space evasion attacks whose orientation is mathematical abstraction:** This survey found out that most of the mathematical oriented problem-space attacks utilize addition or removal of content, not actual alteration of the data. New research should investigate this aspect and try to find new attacks that follow this path. Of course, these attacks should be tested as to whether they create functional applications. Also, the strong connection of these attacks to the White-box, Gray-box, and Black-box attacker models leads to an interesting debate on whether new mathematical oriented problem-space evasion attacks can be generated using a zero-knowledge attacker model.

2. **Generation of new problem-space evasion attacks that target behavioral, dynamic, and hybrid detection machines:** This direction aims to find new problem-space attacks to tackle detection machines that are not from the static analysis type. Most of the problem-space attacks that were surveyed targeted detection systems from the static analysis type. Researchers are urged to devise new attacks against the other types of detection systems - dynamic analysis, behavioral analysis, and hybrid.

3. **Functionality assessment of problem-space attacks:** This survey found that
most of the problem-space evasion attacks do not validate the functionality of the manipulated applications. Future research both on existing problem-space attacks and new ones should include functionality assessment. Also, standardization of this assessment should be discussed and agreed upon in the community.

4. Manipulated component inside the app: This survey found that most of the problem-space evasion attacks target the code of the application (binary or Smali code files), and not other files like the manifest file. New studies should investigate the impact of significant modification of the manifest file, as was suggested by [66, 126].

5. Dataset sparsity: As too many studies used different datasets for their evaluation, no benchmark dataset was found in this survey. The community is advised to gather an agreed on dataset for the evaluation of new problem-space attacks and also for the new generation of Android malware detection systems.

Acknowledgments

This work was supported by the Ariel Cyber Innovation Center in conjunction with the Israel National Cyber Directorate of the Prime Minister’s Office.

References

[1] DarkReading, 2022 threat landscape report, https://www.darkreading.com/endpoint/deep-instinct-2022-threat-landscape-report-finds-125-increase-in-threat-types-and-novel-evasion-techniques (2022).

[2] H. Berger, C. Hajaj, A. Dvir, Evasion is not enough: A case study of android malware, in: International Symposium on Cyber Security Cryptography and Machine Learning, Springer, 2020, pp. 167–174.
[3] N. Šrndic, P. Laskov, Practical evasion of a learning-based classifier: A case study, in: IEEE Symposium on Security and Privacy, 2014, pp. 197–211.

[4] W. Xu, Y. Qi, D. Evans, Automatically evading classifiers: A case study on PDF malware classifiers, in: Network and Distributed System Security Symposium, 2016.

[5] L. Tong, B. Li, C. Hajaj, C. Xiao, N. Zhang, Y. Vorobeychik, Improving robustness of ML classifiers against realizable evasion attacks using conserved features, in: 28th USENIX Security Symposium (USENIX Security 19), 2019, pp. 285–302.

[6] C. Hajaj, N. Hason, A. Dvir, Less is more: Robust and novel features for malicious domain detection, Electronics 11 (6) (2022) 969.

[7] S. Arshad, M. A. Shah, A. Khan, M. Ahmed, Android malware detection & protection: a survey, International Journal of Advanced Computer Science and Applications 7 (2) (2016) 463–475.

[8] M. Odusami, O. Abayomi-Alli, S. Misra, O. Shobayo, R. Damasevicius, R. Maskeliunas, Android malware detection: A survey, in: International conference on applied informatics, Springer, 2018, pp. 255–266.

[9] J. Qiu, J. Zhang, W. Luo, L. Pan, S. Nepal, Y. Xiang, A survey of android malware detection with deep neural models, ACM Computing Surveys (CSUR) 53 (6) (2020) 1–36.

[10] Y. Pan, X. Ge, C. Fang, Y. Fan, A systematic literature review of android malware detection using static analysis, IEEE Access 8 (2020) 116363–116379.

[11] V. Kouliaridis, G. Kambourakis, A comprehensive survey on machine learning techniques for android malware detection, Information 12 (5) (2021) 185.
[12] M. A. Omer, S. Zeebaree, M. Sadeeq, B. W. Salim, S. Mohsin, Z. N. Rashid, L. M. Haji, Efficiency of malware detection in android system: A survey, Asian Journal of Research in Computer Science (2021) 59–69.

[13] M. E. Z. N. Kambar, A. Esmaeilzadeh, Y. Kim, K. Taghva, A survey on mobile malware detection methods using machine learning, in: 2022 IEEE 12th Annual Computing and Communication Workshop and Conference (CCWC), IEEE, 2022, pp. 0215–0221.

[14] D. Arp, M. Spreitzenbarth, M. Hubner, H. Gascon, K. Rieck, C. Siemens, Drebin: Effective and explainable detection of android malware in your pocket., in: Ndss, Vol. 14, 2014, pp. 23–26.

[15] L. Onwuzurike, E. Mariconti, P. Andriotis, E. D. Cristofaro, G. Ross, G. Stringhini, Mamadroid: Detecting android malware by building markov chains of behavioral models (extended version), ACM Transactions on Privacy and Security (TOPS) 22 (2) (2019) 1–34.

[16] M. Y. Wong, D. Lie, Intellidroid: a targeted input generator for the dynamic analysis of android malware., in: NDSS, Vol. 16, 2016, pp. 21–24.

[17] Z. Yuan, Y. Lu, Z. Wang, Y. Xue, Droid-sec: deep learning in android malware detection, in: Proceedings of the 2014 ACM conference on SIGCOMM, 2014, pp. 371–372.

[18] A. Shabtai, U. Kanonov, Y. Elovici, C. Glezer, Y. Weiss, “andromaly”: a behavioral malware detection framework for android devices, Journal of Intelligent Information Systems 38 (1) (2012) 161–190.

[19] I. Burguera, U. Zurutuza, S. Nadjm-Tehrani, Crowidroid: behavior-based malware detection system for android, in: Proceedings of the 1st ACM workshop on Security and privacy in smartphones and mobile devices, 2011, pp. 15–26.

[20] F. Martinelli, F. Mercaldo, A. Saracino, Bridemaid: An hybrid tool for accurate detection of android malware, in: Proceedings of the 2017 ACM
on Asia conference on computer and communications security, 2017, pp. 899–901.

[21] T. Lu, Y. Du, L. Ouyang, Q. Chen, X. Wang, Android malware detection based on a hybrid deep learning model, Security and Communication Networks 2020 (2020).

[22] O. Ibitoye, R. Abou-Khamis, A. Matrawy, M. O. Shafiq, The threat of adversarial attacks on machine learning in network security—a survey, arXiv preprint arXiv:1911.02621 (2019).

[23] D. Li, Q. Li, Y. Ye, S. Xu, Arms race in adversarial malware detection: A survey, ACM Computing Surveys (CSUR) 55 (1) (2021) 1–35.

[24] X. Ling, L. Wu, J. Zhang, Z. Qu, W. Deng, X. Chen, C. Wu, S. Ji, T. Luo, J. Wu, et al., Adversarial attacks against windows pe malware detection: A survey of the state-of-the-art, arXiv preprint arXiv:2112.12310 (2021).

[25] X. Yuan, P. He, Q. Zhu, X. Li, Adversarial examples: Attacks and defenses for deep learning, IEEE transactions on neural networks and learning systems 30 (9) (2019) 2805–2824.

[26] A. Chakraborty, M. Alam, V. Dey, A. Chattopadhyay, D. Mukhopadhyay, Adversarial attacks and defences: A survey, arXiv preprint arXiv:1810.00069 (2018).

[27] G. Li, P. Zhu, J. Li, Z. Yang, N. Cao, Z. Chen, Security matters: A survey on adversarial machine learning, arXiv preprint arXiv:1810.07339 (2018).

[28] Q. Liu, P. Li, W. Zhao, W. Cai, S. Yu, V. C. Leung, A survey on security threats and defensive techniques of machine learning: A data driven view, IEEE access 6 (2018) 12103–12117.

[29] W. E. Zhang, Q. Z. Sheng, A. Alhazmi, C. Li, Adversarial attacks on deep-learning models in natural language processing: A survey, ACM Transactions on Intelligent Systems and Technology (TIST) 11 (3) (2020) 1–41.
[30] D. Park, B. Yener, A survey on practical adversarial examples for malware classifiers, in: Reversing and Offensive-oriented Trends Symposium, 2020, pp. 23–35.

[31] W. F. Elsersy, A. Feizollah, N. B. Anuar, The rise of obfuscated android malware and impacts on detection methods, PeerJ Computer Science 8 (2022) e907.

[32] F. L. de Mello, A survey on machine learning adversarial attacks, Journal of Information Security and Cryptography (Enigma) 7 (1) (2020) 1–7.

[33] N. Pitropakis, E. Panaousis, T. Giannetsos, E. Anastasiadis, G. Loukas, A taxonomy and survey of attacks against machine learning, Computer Science Review 34 (2019) 100199.

[34] S. Selvaganapathy, S. Sadasivam, V. Ravi, A review on android malware: Attacks, countermeasures and challenges ahead, Journal of Cyber Security and Mobility (2021) 177–230.

[35] D. Bhusal, N. Rastogi, Adversarial patterns: Building robust android malware classifiers, arXiv preprint arXiv:2203.02121 (2022).

[36] H. Berger, A. Dvir, C. Hajaj, R. Ronen, Do you think you can hold me? the real challenge of problem-space evasion attacks, arXiv preprint arXiv:2205.04293 (2022).

[37] A. Developers, Understand the apk structure, https://developer.android.com/topic/performance/reduce-apk-size#apk-structure (2022).

[38] Y. Aafer, W. Du, H. Yin, Droidapiminer: Mining api-level features for robust malware detection in android, in: International Conference on Security and Privacy in Communication Systems, Springer, 2013, pp. 86–103.

[39] A. Demontis, M. Melis, B. Biggio, D. Maiorca, D. Arp, K. Rieck, I. Corona, G. Giacinto, F. Roli, Yes, machine learning can be more se-
cure! a case study on android malware detection, IEEE Transactions on Dependable and Secure Computing (2017).

[40] C. Li, K. Mills, D. Niu, R. Zhu, H. Zhang, H. Kinawi, Android malware detection based on factorization machine, IEEE Access 7 (2019) 184008–184019.

[41] D. Li, Q. Li, Adversarial deep ensemble: Evasion attacks and defenses for malware detection, IEEE Transactions on Information Forensics and Security 15 (2020) 3886–3900.

[42] H. Berger, C. Hajaj, E. Mariconti, A. Dvir, Mamadroid2. 0—the holes of control flow graphs, arXiv preprint arXiv:2202.13922 (2022).

[43] H. Fereidooni, M. Conti, D. Yao, A. Sperduti, Anastasia: Android malware detection using static analysis of applications, in: 2016 8th IFIP international conference on new technologies, mobility and security (NTMS), IEEE, 2016, pp. 1–5.

[44] F. Ou, J. Xu, S3feature: A static sensitive subgraph-based feature for android malware detection, Computers & Security 112 (2022) 102513.

[45] T. Bhatia, R. Kaushal, Malware detection in android based on dynamic analysis, in: 2017 International Conference on Cyber Security And Protection Of Digital Services (Cyber Security), IEEE, 2017, pp. 1–6.

[46] P. Feng, J. Ma, C. Sun, X. Xu, Y. Ma, A novel dynamic android malware detection system with ensemble learning, IEEE Access 6 (2018) 30996–31011.

[47] M. K. Alzaylaee, S. Y. Yerima, S. Sezer, Dl-droid: Deep learning based android malware detection using real devices, Computers & Security 89 (2020) 101663.

[48] S. Hou, A. Saas, L. Chen, Y. Ye, Deep4maldroid: A deep learning framework for android malware detection based on linux kernel system call
graphs, in: 2016 IEEE/WIC/ACM International Conference on Web Intelligence Workshops (WIW), IEEE, 2016, pp. 104–111.

[49] Z. Yuan, Y. Lu, Y. Xue, Droiddetector: android malware characterization and detection using deep learning, Tsinghua Science and Technology 21 (1) (2016) 114–123.

[50] M. K. Alzaylaee, S. Y. Yerima, S. Sezer, Emulator vs real phone: Android malware detection using machine learning, in: Proceedings of the 3rd ACM on International Workshop on Security and Privacy Analytics, 2017, pp. 65–72.

[51] A. Shabtai, U. Kanonov, Y. Elovici, Intrusion detection for mobile devices using the knowledge-based, temporal abstraction method, Journal of Systems and Software 83 (8) (2010) 1524–1537.

[52] A. Shabtai, L. Tenenboim-Chekina, D. Mimran, L. Rokach, B. Shapira, Y. Elovici, Mobile malware detection through analysis of deviations in application network behavior, Computers & Security 43 (2014) 1–18.

[53] A. Saracino, D. Sgandurra, G. Dini, F. Martinelli, Madam: Effective and efficient behavior-based android malware detection and prevention, IEEE Transactions on Dependable and Secure Computing 15 (1) (2016) 83–97.

[54] X. Wang, C. Li, Android malware detection through machine learning on kernel task structures, Neurocomputing 435 (2021) 126–150.

[55] A. Martin, R. Lara-Cabrera, D. Camacho, Android malware detection through hybrid features fusion and ensemble classifiers: The andropytool framework and the omnidroid dataset, Information Fusion 52 (2019) 128–142.

[56] H. Wang, Y. Guo, Z. Tang, G. Bai, X. Chen, Reevaluating android permission gaps with static and dynamic analysis, in: 2015 IEEE Global Communications Conference (GLOBECOM), IEEE, 2015, pp. 1–6.
[57] M. Lindorfer, M. Neugschwandtner, C. Platzer, Marvin: Efficient and comprehensive mobile app classification through static and dynamic analysis, in: 2015 IEEE 39th Annual Computer Software and Applications Conference, Vol. 2, IEEE, 2015, pp. 422–433.

[58] C. Ding, N. Luktarhan, B. Lu, W. Zhang, A hybrid analysis-based approach to android malware family classification, Entropy 23 (8) (2021) 1009.

[59] S. Aonzo, G. C. Georgiu, L. Verderame, A. Merlo, Obfuscapk: An open-source black-box obfuscation tool for android apps, SoftwareX 11 (2020) 100403.

[60] J. Crussell, C. Gibler, H. Chen, Andarwin: Scalable detection of android application clones based on semantics, IEEE Transactions on Mobile Computing 14 (10) (2014) 2007–2019.

[61] K. Khanmohammadi, A. Hamou-Lhadj, Hydroid: A hybrid approach for generating api call traces from obfuscated android applications for mobile security, in: 2017 IEEE International Conference on Software Quality, Reliability and Security (QRS), IEEE, 2017, pp. 168–175.

[62] H. Cai, N. Meng, B. Ryder, D. Yao, Droidcat: Effective android malware detection and categorization via app-level profiling, IEEE Transactions on Information Forensics and Security 14 (6) (2018) 1455–1470.

[63] G. Suarez-Tangil, S. K. Dash, M. Ahmadi, J. Kinder, G. Giacinto, L. Cavallaro, Droidsieve: Fast and accurate classification of obfuscated android malware, in: Proceedings of the Seventh ACM on Conference on Data and Application Security and Privacy, 2017, pp. 309–320.

[64] F. Pierazzi, F. Pendlebury, J. Cortellazzi, L. Cavallaro, Intriguing properties of adversarial ml attacks in the problem space, in: 2020 IEEE symposium on security and privacy (SP), IEEE, 2020, pp. 1332–1349.
[65] K. Allix, T. F. Bissyande, J. Klein, Y. Le Traon, Androzoo: Collecting millions of android apps for the research community, in: 2016 IEEE/ACM 13th Working Conference on Mining Software Repositories (MSR), IEEE, 2016, pp. 468–471.

[66] H. Berger, C. Hajaj, E. Mariconti, A. Dvir, Crystal ball: From innovative attacks to attack effectiveness classifier, IEEE Access 10 (2021) 1317–1333.

[67] V. Total, Virustotal-free online virus, malware and url scanner, Online: https://www.virustotal.com/en (2012).

[68] X. Chen, C. Li, D. Wang, S. Wen, J. Zhang, S. Nepal, Y. Xiang, K. Ren, Android hiv: A study of repackaging malware for evading machine-learning detection, IEEE Transactions on Information Forensics and Security 15 (2019) 987–1001.

[69] N. Viennot, E. Garcia, J. Nieh, A measurement study of google play, in: The 2014 ACM international conference on Measurement and modeling of computer systems, 2014, pp. 221–233.

[70] C. Forensics, Virusshare malware dataset, https://virusshare.com (2022).

[71] APKPure, Apkpure: Android market place, https://apkpure.com/ (2022).

[72] M. Parkour, Contagio mobile, http://contagionmidump.blogspot.com (2022).

[73] V. Rastogi, Y. Chen, X. Jiang, Droidchameleon: evaluating android anti-malware against transformation attacks, in: Proceedings of the 8th ACM SIGSAC symposium on Information, computer and communications security, 2013, pp. 329–334.

[74] Google, Googleplay market, https://play.google.com/ (2022).
[75] M. Zheng, P. P. Lee, J. Lui, Adam: an automatic and extensible platform to stress test android anti-virus systems, in: International conference on detection of intrusions and malware, and vulnerability assessment, Springer, 2012, pp. 82–101.

[76] Antiy, Antiy, http://www.antiy.net (2012).

[77] W. Yang, D. Kong, T. Xie, C. A. Gunter, Malware detection in adversarial settings: Exploiting feature evolutions and confusions in android apps, in: Proceedings of the 33rd Annual Computer Security Applications Conference, 2017, pp. 288–302.

[78] W. Yang, X. Xiao, B. Andow, S. Li, T. Xie, W. Enck, Appcontext: Differentiating malicious and benign mobile app behaviors using context, in: 2015 IEEE/ACM 37th IEEE International Conference on Software Engineering, Vol. 1, IEEE, 2015, pp. 303–313.

[79] Y. Zhou, X. Jiang, Dissecting android malware: Characterization and evolution, in: 2012 IEEE symposium on security and privacy, IEEE, 2012, pp. 95–109.

[80] M. Pomilia, A study on obfuscation techniques for android malware, Sapienza University of Rome (2016) 81.

[81] G. Canfora, A. Di Sorbo, F. Mercaldo, C. A. Visaggio, Obfuscation techniques against signature-based detection: a case study, in: 2015 Mobile systems technologies workshop (MST), IEEE, 2015, pp. 21–26.

[82] E. Aydogan, S. Sen, Automatic generation of mobile malwares using genetic programming, in: European conference on the applications of evolutionary computation, Springer, 2015, pp. 745–756.

[83] W. Wang, R. Sun, T. Dong, S. Li, M. Xue, G. Tyson, H. Zhu, Exposing weaknesses of malware detectors with explainability-guided evasion attacks, CoRR abs/2111.10085 (2021). arXiv:2111.10085

URL https://arxiv.org/abs/2111.10085
[84] F. Cara, M. Scalas, G. Giacinto, D. Maiorca, On the feasibility of adversarial sample creation using the android system api, Information 11 (9) (2020) 433.

[85] K. Zhao, H. Zhou, Y. Zhu, X. Zhan, K. Zhou, J. Li, L. Yu, W. Yuan, X. Luo, Structural attack against graph based android malware detection, in: Proceedings of the 2021 ACM SIGSAC Conference on Computer and Communications Security, 2021, pp. 3218–3235.

[86] Y. Wu, X. Li, D. Zou, W. Yang, X. Zhang, H. Jin, Malscan: Fast market-wide mobile malware scanning by social-network centrality analysis, in: 2019 34th IEEE/ACM International Conference on Automated Software Engineering (ASE), IEEE, 2019, pp. 139–150.

[87] X. Zhang, Y. Zhang, M. Zhong, D. Ding, Y. Cao, Y. Zhang, M. Zhang, M. Yang, Enhancing state-of-the-art classifiers with api semantics to detect evolved android malware, in: Proceedings of the 2020 ACM SIGSAC conference on computer and communications security, 2020, pp. 757–770.

[88] Z. Abaid, M. A. Kaafar, S. Jha, Quantifying the impact of adversarial evasion attacks on machine learning based android malware classifiers, in: 2017 IEEE 16th international symposium on network computing and applications (NCA), IEEE, 2017, pp. 1–10.

[89] D. Li, Q. Li, Y. Ye, S. Xu, A framework for enhancing deep neural networks against adversarial malware, IEEE Transactions on Network Science and Engineering 8 (1) (2021) 736–750.

[90] D. Maiorca, D. Ariu, I. Corona, M. Aresu, G. Giacinto, Stealth attacks: An extended insight into the obfuscation effects on android malware, Computers & Security 51 (2015) 16–31.

[91] M. Protsenko, T. Müller, Pandora applies non-deterministic obfuscation randomly to android, in: 2013 8th International conference on malicious
and unwanted software:” The Americas” (MALWARE), IEEE, 2013, pp. 59–67.

[92] M. Spreitzenbarth, F. Freiling, F. Echtler, T. Schreck, J. Hoffmann, Mobile-sandbox: having a deeper look into android applications, in: Proceedings of the 28th annual ACM symposium on applied computing, 2013, pp. 1808–1815.

[93] H. Bostani, V. Moonsamy, Evadedroid: A practical evasion attack on machine learning for black-box android malware detection, arXiv preprint arXiv:2110.03301 (2021).

[94] S. Chen, M. Xue, L. Fan, L. Ma, Y. Liu, L. Xu, How can we craft large-scale android malware? an automated poisoning attack, in: 2019 IEEE 1st international workshop on artificial intelligence for mobile (AI4Mobile), IEEE, 2019, pp. 21–24.

[95] S. Chen, M. Xue, Z. Tang, L. Xu, H. Zhu, Stormdroid: A streamlining machine learning-based system for detecting android malware, in: Proceedings of the 11th ACM on Asia Conference on Computer and Communications Security, 2016, pp. 377–388.

[96] Pwnzen, Pwnzen, http://www.pwnzen.com/ (2022).

[97] T. Vidas, N. Christin, Evading android runtime analysis via sandbox detection, in: Proceedings of the 9th ACM symposium on Information, computer and communications security, 2014, pp. 447–458.

[98] M. Lindorfer, M. Neugschwandtner, L. Weichselbaum, Y. Fratantonio, V. Van Der Veen, C. Platzer, Andrubis–1,000,000 apps later: A view on current android malware behaviors, in: 2014 third international workshop on building analysis datasets and gathering experience returns for security (BADGERS), IEEE, 2014, pp. 3–17.

[99] B. A. Debelo, W. Pak, Y.-J. Choi, Sandroid: Simplistic permission based android malware detection and classification, in: 2013 9th International
Wireless Communications and Mobile Computing Conference (IWCMC), 2013.

[100] Tracxn, Foresafe, https://tracxn.com/d/companies/foresafe.com (2011).

[101] K. Tam, A. Fattori, S. Khan, L. Cavallaro, Copperdroid: Automatic reconstruction of android malware behaviors, in: NDSS Symposium 2015, 2015, pp. 1–15.

[102] AMAT, Amat: Android malware analysis toolkit, http://sourceforge.net/projects/amatlinux/ (2012).

[103] H. Lockheimer, Android and security, http://googlemobile.blogspot.com/2012/ (2012).

[104] M. Ikram, P. Beaume, M. A. Kâafar, Dadidroid: An obfuscation resilient tool for detecting android malware via weighted directed call graph modelling, arXiv preprint arXiv:1905.09136 (2019).

[105] S. Dong, M. Li, W. Diao, X. Liu, J. Liu, Z. Li, F. Xu, K. Chen, X. Wang, K. Zhang, Understanding android obfuscation techniques: A large-scale investigation in the wild, in: International conference on security and privacy in communication systems, Springer, 2018, pp. 172–192.

[106] J. Garcia, M. Hammad, B. Pedrood, A. Bagheri-Khaligh, S. Malek, Obfuscation-resilient, efficient, and accurate detection and family identification of android malware, Department of Computer Science, George Mason University, Tech. Rep 202 (2015).

[107] M. Hammad, J. Garcia, S. Malek, A large-scale empirical study on the effects of code obfuscations on android apps and anti-malware products, in: Proceedings of the 40th International Conference on Software Engineering, 2018, pp. 421–431.

[108] F. Maggi, A. Valdi, S. Zanero, Andrototal: A flexible, scalable toolbox and service for testing mobile malware detectors, in: Proceedings of the
Third ACM workshop on Security and privacy in smartphones & mobile devices, 2013, pp. 49–54.

[109] P. Faruki, A. Bharmal, V. Laxmi, M. S. Gaur, M. Conti, M. Rajarajan, Evaluation of android anti-malware techniques against dalvik bytecode obfuscation, in: 2014 IEEE 13th International Conference on Trust, Security and Privacy in Computing and Communications, IEEE, 2014, pp. 414–421.

[110] G. Meng, Y. Xue, C. Mahinthan, A. Narayanan, Y. Liu, J. Zhang, T. Chen, Mystique: Evolving android malware for auditing anti-malware tools, in: Proceedings of the 11th ACM on Asia conference on computer and communications security, 2016, pp. 365–376.

[111] H. Gascon, F. Yamaguchi, D. Arp, K. Rieck, Structural detection of android malware using embedded call graphs, in: Proceedings of the 2013 ACM workshop on Artificial intelligence and security, 2013, pp. 45–54.

[112] K. Allix, T. F. D. A. Bissyande, J. Klein, Y. Le Traon, Machine learning-based malware detection for android applications: History matters!, Tech. rep., University of Luxembourg, SnT (2014).

[113] A. P. Fuchs, A. Chaudhuri, J. S. Foster, Checking interation-based declassification policies for android using symbolic execution, Tech. rep., Technical report (2009).

[114] S. Arzt, S. Rasthofer, C. Fritz, E. Bodden, A. Bartel, J. Klein, Y. Le Traon, D. Octeau, P. McDaniel, Flowdroid: Precise context, flow, field, object-sensitive and lifecycle-aware taint analysis for android apps, Acm Sigplan Notices 49 (6) (2014) 259–269.

[115] M. I. Gordon, D. Kim, J. H. Perkins, L. Gilham, N. Nguyen, M. C. Rinard, Information flow analysis of android applications in droidsafe., in: NDSS, Vol. 15, 2015, p. 110.
[116] L. Li, A. Bartel, T. F. Bissyandé, J. Klein, Y. Le Traon, S. Arzt, S. Rasthofer, E. Bodden, D. Octeau, P. McDaniel, Iccta: Detecting inter-component privacy leaks in android apps, in: 2015 IEEE/ACM 37th IEEE International Conference on Software Engineering, Vol. 1, IEEE, 2015, pp. 280–291.

[117] W. Enck, P. Gilbert, S. Han, V. Tendulkar, B.-G. Chun, L. P. Cox, J. Jung, P. McDaniel, A. N. Sheth, Taintdroid: an information-flow tracking system for realtime privacy monitoring on smartphones, ACM Transactions on Computer Systems (TOCS) 32 (2) (2014) 1–29.

[118] Y. Xue, G. Meng, Y. Liu, T. H. Tan, H. Chen, J. Sun, J. Zhang, Auditing anti-malware tools by evolving android malware and dynamic loading technique, IEEE Transactions on Information Forensics and Security 12 (7) (2017) 1529–1544.

[119] P. Lantz, A. Desnos, K. Yang, Droidbox: An android application sandbox for dynamic analysis, GitHub: San Francisco, CA, USA (2011).

[120] F.-S. Labs, Drozer, https://labs.mwrinfosecurity.com/tools/drozer/ (2022).

[121] D. Maier, T. Müller, M. Protsenko, Divide-and-conquer: Why android malware cannot be stopped, in: 2014 Ninth International Conference on Availability, Reliability and Security, IEEE, 2014, pp. 30–39.

[122] C. Pavel, et al., Bitdefender®, the award-winning provider of innovative antivirus solutions, Romanian Distribution Committee Magazine 4 (1) (2013) 20–24.

[123] J. Security, Joesandboxmobile, https://www.joesecurity.org/joe-sandbox-mobile (2022).

[124] TraceDroid, Tracedroid, http://tracedroid.few.vu.nl/ (2014).
[125] T. Micro, Trend micro av, https://www.trendmicro.com/en_us/forHome/products/antivirus-plus.html (2022).

[126] K. Grosse, N. Papernot, P. Manoharan, M. Backes, P. McDaniel, Adversarial examples for malware detection, in: European symposium on research in computer security, Springer, 2017, pp. 62–79.

[127] A. Calleja, A. Martín, H. D. Menéndez, J. Tapiador, D. Clark, Picking on the family: Disrupting android malware triage by forcing misclassification, Expert Systems with Applications 95 (2018) 113–126.

[128] T. Petsas, G. Voyatzis, E. Athanasopoulos, M. Polychronakis, S. Ioannidis, Rage against the virtual machine: hindering dynamic analysis of android malware, in: Proceedings of the seventh european workshop on system security, 2014, pp. 1–6.

[129] L. K. Yan, H. Yin, {DroidScope}: Seamlessly reconstructing the {OS} and dalvik semantic views for dynamic android malware analysis, in: 21st USENIX security symposium (USENIX security 12), 2012, pp. 569–584.

[130] Apkscan, Apkscan, http://apkscan.nviso.be/ (2014).

[131] V. Threat, Visual threat, http://www.visualthreat.com/ (2014).

[132] Apk-analyzer, Apk-analyzer, http://www.apk-analyzer.net/ (2014).

[133] R. L. Castro, L. Muñoz-González, F. Pendlebury, G. D. Rodosek, F. Pierazzi, L. Cavallaro, Universal adversarial perturbations for malware, CoRR abs/2102.06747 (2021). arXiv:2102.06747.
URL https://arxiv.org/abs/2102.06747

[134] A. Developers, Monkeyrunner, https://developer.android.com/studio/test/monkeyrunner (2014).

[135] Y. Li, Z. Yang, Y. Guo, X. Chen, Droidbot: a lightweight ui-guided test input generator for android, in: 2017 IEEE/ACM 39th International Con-
ference on Software Engineering Companion (ICSE-C), IEEE, 2017, pp. 23–26.

[136] A. Abraham, R. Andriatsimandefitra, A. Brunelat, J.-F. Lalande, V. V. T. Tong, Groddroid: a gorilla for triggering malicious behaviors, in: 2015 10th international conference on malicious and unwanted software (MALWARE), IEEE, 2015, pp. 119–127.

[137] I. Revivo, Cuckoodroid, https://cuckoo-droid.readthedocs.io/en/latest/ (2015).

[138] A. H. Lashkari, A. F. A. Kadir, L. Taheri, A. A. Ghorbani, Toward developing a systematic approach to generate benchmark android malware datasets and classification, in: 2018 International Carnahan Conference on Security Technology (ICCST), IEEE, 2018, pp. 1–7.

[139] P. Liu, L. Li, Y. Zhao, X. Sun, J. Grundy, Androzooopen: Collecting large-scale open source android apps for the research community, in: Proceedings of the 17th International Conference on Mining Software Repositories, 2020, pp. 548–552.

[140] H. Wang, J. Si, H. Li, Y. Guo, Rmvdroid: towards a reliable android malware dataset with app metadata, in: 2019 IEEE/ACM 16th International Conference on Mining Software Repositories (MSR), IEEE, 2019, pp. 404–408.