Abstract

We prove that the number γ_N of the zeros of a two-parameter simple random walk in its first $N \times N$ time steps is almost surely equal to $N^{1+o(1)}$ as $N \to \infty$. This is in contrast with our earlier joint effort with Z. Shi [4]; that work shows that the number of zero crossings in the first $N \times N$ time steps is $N^{(3/2)+o(1)}$ as $N \to \infty$. We prove also that the number of zeros on the diagonal in the first N time steps is $((2\pi)^{-1/2} + o(1)) \log N$ almost surely.

Keywords: Random walks, local time, random fields.

AMS 2000 subject classification: Primary: 60G50; Secondary: 60G60, 60F15.

1 Introduction

Let $\{X_{i,j}\}_{i,j=1}^\infty$ denote i.i.d. random variables, taking the values ± 1 with respective probabilities $1/2$, and consider the two-parameter random walk $S := \{S(n, m)\}_{n, m \geq 1}$ defined by

$$S(n, m) := \sum_{i=1}^n \sum_{j=1}^m X_{i,j} \quad \text{for } n, m \geq 1. \tag{1.1}$$

A lattice point (i, j) is said to be a vertical crossing for the random walk S if $S(i, j)S(i, j + 1) \leq 0$. Let $Z(N)$ denote the total number of vertical crossings in the box $[1, N]^2 \cap \mathbb{Z}^2$. A few years ago, together with Zhan Shi [4] we proved that with probability one,

$$Z(N) = N^{(3/2)+o(1)} \quad \text{as } N \to \infty. \tag{1.2}$$

We used this result to describe an efficient method for plotting the zero set of the two-parameter walk S; this was in turn motivated by our desire to find good simulations of the level sets of the Brownian sheet.

*Research supported in part by NSF grant DMS-0704024.
The goal of the present paper is to describe the rather different asymptotic behavior of two other “contour-plotting algorithms.” Namely, we consider the total number of zeros in $[1, N]^2 \cap \mathbb{Z}^2$:

$$\gamma_N := \sum_{(i,j) \in [0,N]^2} 1_{\{ S(i,j) = 0 \}}, \quad (1.3)$$

together with the total number of on-diagonal zeros in $[1, 2N]^2 \cap \mathbb{Z}^2$:

$$\delta_N := \sum_{i=1}^N 1_{\{ S(2i,2i) = 0 \}}. \quad (1.4)$$

The main results are listed next.

Theorem 1.1. With probability one,

$$\gamma_N = N^{1+o(1)} \quad \text{as} \quad N \to \infty. \quad (1.5)$$

Theorem 1.2. With probability one,

$$\lim_{N \to \infty} \frac{\delta_N \log N}{N} = \frac{1}{(2\pi)^{1/2}}, \quad (1.6)$$

where “log” denotes the natural logarithm.

The theorems are proved in reverse order of difficulty, and in successive sections.

2 Proof of Theorem 1.2

Throughout, we need ordinary random-walk estimates. Therefore, we use the following notation: Let $\{\xi_i\}_{i=1}^\infty$ be i.i.d. random variables, taking the values ± 1 with respective probabilities $1/2$, and consider the one-parameter random walk $W := \{W_n\}_{n=1}^\infty$ defined by

$$W_n := \xi_1 + \cdots + \xi_n. \quad (2.1)$$

We begin by proving a simpler result.

Lemma 2.1. As $N \to \infty$\footnote{We always write $a_N = O(1)$ to mean that $\sup_N |a_N| < \infty$. Note the absolute values.}

$$\mathbb{E} \delta_N = \frac{1}{(2\pi)^{1/2}} \log N + O(1). \quad (2.2)$$

Before we prove this, we recall some facts about simple random walks.

We are interested in the function,

$$p(n) := P\{ W_{2n} = 0 \}. \quad (2.3)$$
First of all, we have the following, which is a consequence of the inversion formula for Fourier transforms:

\[p(n) = \frac{1}{2\pi} \int_{-\pi}^{\pi} |\cos(t)|^{2n} \, dt. \] \hspace{1cm} (2.4)

Therefore, according to Wallis’ formula \[1\text{, eq. 6.1.49, p. 258}\], as \(n \to \infty \),

\[p(n) = \frac{1}{(\pi n)^{1/2}} \left[1 - \frac{1}{8n} + \frac{1}{128n^2} - \cdots \right], \] \hspace{1cm} (2.5)

in the sense of formal power series.\(^2\)

Next, we present a “difference estimate.”

Lemma 2.2. For all integers \(n \geq 1 \),

\[0 \leq p(n) - p(n + 1) = O(n^{-3/2}). \] \hspace{1cm} (2.6)

Proof. Because \(0 \leq \cos^2 t \leq 1 \), (2.4) implies that \(p(n) \geq p(n + 1) \). The remainder follows from (2.5) and a few lines of computations. \(\square \)

Proof of Lemma 2.2. Because \(S(2i, 2i) \) has the same distribution as \(W_{4i^2} \), it follows that \(E\delta_N = \sum_{1 \leq i \leq N} p(2i^2) \). The result follows readily from this and (2.5). \(\square \)

Next, we bound the variance of \(\delta_N \).

Proposition 2.3. As \(N \to \infty \),

\[\text{Var} \delta_N = \frac{1}{(2\pi)^{1/2}} \log N + O(1). \] \hspace{1cm} (2.7)

Proof. Evidently,

\[E[\delta_N^2] = E\delta_N + 2 \sum_{1 \leq i < j \leq N} P(i, j), \] \hspace{1cm} (2.8)

where

\[P(i, j) := P\{S(2i, 2i) = 0, S(2j, 2j) = 0\}, \] \hspace{1cm} (2.9)

for \(1 \leq i < j < \infty \). But \(S(2j, 2j) = S(2i, 2i) + W_{i,j} \), where \(W_{i,j} \) is a sum of \(4(j^2 - i^2) \)-many i.i.d. Rademacher variables, and is independent of \(S(2i, 2i) \). Therefore,

\[P(i, j) = p(2i^2)p(2j^2 - i^2)). \] \hspace{1cm} (2.10)

According to Lemma 2.2, \(P(i, j) \geq p(2i^2)p(2j^2) \). Therefore, by (2.8),

\[E[\delta_N^2] \geq E\delta_N + 2 \sum_{1 \leq i < j \leq N} p(2i^2)p(2j^2) \]

\[= E\delta_N + (E\delta_N)^2 - \sum_{1 \leq i \leq N} p^2(2i^2). \] \hspace{1cm} (2.11)

\(^2\)Suppose \(a_1, a_2, \ldots \) are non-negative series which \(a_1(n) \leq a_2(n) \leq \cdots \). Then please recall that “\(p(n) = a_1(n) - a_2(n) + a_3(n) - \cdots \)” is short-hand for “\(a_1(n) - a_2(n) \leq p(n) \leq a_1(n) - a_2(n) + a_3(n) \)” etc.

3
Thanks to (2.5), the final sum is $O(1)$. Therefore, Lemma 2.1 implies that

$$\text{Var} \delta_N \geq \frac{1}{(2\pi)^{1/2}} \log N + O(1).$$

(2.12)

In order to bound the converse bound, we use Lemma 2.2 to find that

$$p \left(2(j^2 - i^2)\right) - p(2j^2) = \sum_{2(j^2 - i^2) \leq \ell < 2j^2} [p(\ell) - p(\ell + 1)]$$

$$\leq c \sum_{2(j^2 - i^2) \leq \ell < 2j^2} \frac{1}{\ell^{1/2}},$$

(2.13)

where c is positive and finite, and does not depend on (i,j). From this we can deduce that

$$p \left(2(j^2 - i^2)\right) - p(2j^2) \leq c' \frac{i^2}{(j^2 - i^2)^{3/2}}$$

$$\leq c'' \frac{i^2}{j^3(j - i)^{3/2}},$$

(2.14)

where c' and c'' are positive and finite, and do not depend on (i,j). Thus, we can find a positive and finite constant c''' such that for all $n \geq 1$,

$$\sum_{1 \leq i < j \leq N} p(2i^2) [p \left(2(j^2 - i^2)\right) - p(2j^2)] \leq c''' \sum_{1 \leq i < j \leq N} \frac{i}{j^3(j - i)^{3/2}}.$$

(2.15)

We split the sum according to whether or not $j < 2i$. First, we note that

$$\sum_{1 \leq i < j < \infty} \frac{i}{j^3(j - i)^{3/2}} \leq \sum_{1 \leq i < \infty} \frac{1}{i} \sum_{i < j < \infty} \frac{1}{(j - i)^{3/2}} < \infty.$$

(2.16)

Next, we note that

$$\sum_{1 \leq i < 2i < j < \infty} \frac{i}{j^3(j - i)^{3/2}} \leq 2^{3/2} \sum_{1 \leq i < 2i} \sum_{j < \infty} \frac{i}{j^{9/2}} < \infty.$$

(2.17)

This and (2.15) together prove that

$$\sum_{1 \leq i < j \leq N} P(i,j) \leq \sum_{1 \leq i < j \leq N} p(2i^2)p(2j^2) + O(1)$$

$$= (E\delta_N)^2 - \sum_{1 \leq i \leq N} p^2(2i^2) + O(1)$$

(2.18)

$$= (E\delta_N)^2 + O(1).$$

See (2.3). This and (2.8) together imply that the variance of δ_N is at most $O(1) + E\delta_N$. Apply Lemma (2.1) and (2.12), in conjunction, to finish the proof. □
Proof of Theorem 1.2. Thanks to Proposition 2.3 and the Chebyshev inequality, we can write the following: For all \(\epsilon > 0 \),

\[
P \{ |\delta_N - E\delta_N| \geq \epsilon \log N \} = O \left(\frac{1}{\log N} \right).
\]

Set \(n_k := \exp(q^k) \) for an arbitrary but fixed \(q > 1 \), and apply the Borel–Cantelli lemma to deduce that

\[
\lim_{k \to \infty} \frac{\delta_{nk}}{\log n_k} = \frac{1}{(2\pi)^{1/2}}.
\]

Let \(m \to \infty \) and find \(k = k(m) \) such that \(n_k \leq m < n_{k+1} \). Evidently, \(\delta_{nk} \leq \delta_m \leq \delta_{nk+1} \). Also, \(\log n_k \leq \log n_{k+1} = (q + o(1)) \log n_k \). Therefore, a.s.,

\[
\lim sup_{m \to \infty} \frac{\delta_m}{\log m} \leq \lim sup_{k \to \infty} \frac{\delta_{nk+1}}{\log n_k} = \frac{q}{(2\pi)^{1/2}}.
\]

Similarly, a.s.,

\[
\lim inf_{m \to \infty} \frac{\delta_m}{\log m} \geq \lim inf_{k \to \infty} \frac{\delta_{nk}}{\log n_k+1} \geq \frac{1}{q(2\pi)^{1/2}}.
\]

Let \(q \downarrow 1 \) to finish.

3 Proof of Theorem 1.1

We begin by proving the easier half of Theorem 1.1; namely, we first prove that with probability one, \(\gamma_N \leq N^{1+o(1)} \).

Proof of Theorem 1.1: First Half. We apply (2.5) to deduce that as \(N \to \infty \),

\[
E\gamma_N = \sum_{i=1}^{N} \sum_{j=1}^{N} P\{ S(i,j) = 0 \} = \sum_{i=1}^{N} \sum_{j=1}^{N} p(ij/2) \leq \text{const} \cdot \left(\sum_{i=1}^{N} i^{-1/2} \right)^2,
\]

and this is \(\leq \text{const} \cdot N \). By Markov’s inequality,

\[
P\{ \gamma_N \geq N^{1+\epsilon} \} \leq \text{const} \cdot N^{-\epsilon},
\]

where the implied constant is independent of \(\epsilon > 0 \) and \(N \geq 1 \). Replace \(N \) by \(2^k \) and apply the Borel–Cantelli lemma to deduce that with probability one, \(\gamma_{2^k} < 2^{(1+\epsilon)} \) for all \(k \) sufficiently large. If \(2^k \leq N \leq 2^{k+1} \) is sufficiently large [how large might be random], then a.s.,

\[
\gamma_N \leq \gamma_{2^k+1} < 2^{(k+1)(1+\epsilon)} \leq 2^{k(1+2\epsilon)} \leq N^{1+2\epsilon}.
\]

Since \(\epsilon > 0 \) is arbitrary, this proves half of the theorem.
The proof of the converse half is more delicate, and requires some preliminary estimates.

For all $i \geq 1$ define

$$\rho_1(i) := \min \{ j \geq 1 : S(i, j)S(i, j + 1) \leq 0 \},$$
$$\rho_2(i) := \min \{ j \geq \rho_1(i) : S(i, j)S(i, j + 1) \leq 0 \},$$
$$\vdots$$
$$\rho_\ell(i) := \min \{ j \geq \rho_{\ell-1}(i) : S(i, j)S(i, j + 1) \leq 0 \}, \ldots .$$

These are the successive times of “vertical upcrossings over time-level i.” For all integers $i \geq 1$ and all real numbers $t \geq 1$, let us consider

$$f(i; t) := \max \{ k \geq 1 : \rho_k(i) \leq t \} .$$

Then, it should be clear that

$$\sum_{i=1}^{N} f(i; N) = Z(N) .$$

where $Z(N)$ denotes the total number of vertical upcrossings in $[1, N]^2$; see the introduction.

Lemma 3.1. With probability one, if N is large enough, then

$$\max_{1 \leq i \leq N} f(i; N) \leq N^{1/2+o(1)} .$$

Remark 3.2. It is possible to improve the “\leq” to an equality. In fact, one can prove that $f(1; N) = N^{1/2+o(1)}$ a.s., using the results of Borodin [2]; for further related results see [3]. We will not prove this more general assertion, as we shall not need it in the sequel.

Proof. Choose and fix two integers $N \geq 1$ and $i \in \{1, \ldots, N\}$.

We plan to apply estimates from the proof of Proposition 4.2 of [4], whose $\zeta_i(0, N)$ is the present $f(i; N)$.

After Komlós, Major, and Tusnády [5], we can—after a possible enlargement of the underlying probability space—find three finite and positive constants c_1, c_2, c_3 and construct a standard Brownian motion $w := \{w(t)\}_{t \geq 0}$ such that for all $z > 0$,

$$\max_{1 \leq i \leq N} \mathbb{P} \{|S(i, j) - w(ij)| > c_1 \log(ij) + z\} \leq c_2 e^{-c_3 z} .$$

The Brownian motion w depends on the fixed constant i, but we are interested only in its law, which is of course independent of i. In addition, the constants c_1, c_2, c_3 are universal.

Fix $\epsilon \in (0, 1/2)$ and $\delta \in (0, \epsilon/2)$, and consider the event

$$\mathcal{E}_N := \left\{ \max_{1 \leq i \leq N} |S(i, j) - w(ij)| \leq N^{\delta} \right\} .$$

6
[We are suppressing the dependence of \mathcal{E}_N on i, as i is fixed.] By (3.8), we can find a constant c_4—independent of N and i—such that

$$P(\mathcal{E}_N) \geq 1 - c_4 N^{-4}. \tag{3.10}$$

Let $S(i, 0) := 0$ for all i. Then, almost surely on \mathcal{E}_N, we have

$$\sum_{j=0}^{N-1} \mathbf{1}_{\{S(i,j) \geq 0, S(i,j+1) \leq 0\}} \leq \sum_{j=0}^{N-1} \mathbf{1}_{\{w(ij) \geq -N^\delta, w(i(j+1)) \leq N^\delta\}} \tag{3.11}$$

$$\leq \sum_{j=0}^{N-1} \mathbf{1}_{\{w(ij) \geq 0, w(i(j+1)) \leq 0\}} + 2 \sup_{a \in \mathbb{R}} \sum_{j=0}^{N} \mathbf{1}_{\{a \leq w(ij) \leq a + N^\delta\}}.$$

This is equation (6.6) of [4]. Now we use eq. (1.13) of Borodin [2] to couple w with another Brownian motion $B := \{B(t)\}_{t \geq 0}$ such that

$$P \left\{ \left| \sum_{j=0}^{N-1} \mathbf{1}_{\{w(ij) \geq 0, w(i(j+1)) \leq 0\}} - \mu(N/i)^{1/2} L_1^0(B) \right| \geq c_5 N^{1/4} \log N \right\} \leq (c_5 N)^{-4}, \tag{3.12}$$

where $\mu := \mathbb{E}(\{B^+(1)\})$, $c_5 \in (0, 1)$ does not depend on (i, N), and $L_1^0(B) := \lim_{\eta \to 0} (2\eta)^{-1} \int_0^1 \mathbf{1}_{\{|B(s)| \leq \eta\}} ds$ denotes the local time of B at time 1 at space value 0. See also the derivation of [4] eq. (6.10)] for some detailed technical comments.

It is well known that $P\{L_1^0(B) \geq \lambda\} \leq 2e^{-\lambda^2/2}$ for all $\lambda > 0$ [7]. In particular, $P\{L_1^0(B) \geq N^\delta\} \leq 2 \exp(-N^\delta/2)$. Since $\delta < 1/4$, this, (3.10), and (3.12) together imply that

$$P \left\{ \sum_{j=0}^{N-1} \mathbf{1}_{\{w(ij) \geq 0, w(i(j+1)) \leq 0\}} \geq \frac{N^{(1/2)+\delta}}{\sqrt{i^{1/2}}} \right\} \leq c_6 N^{-4}, \tag{3.13}$$

where $c_6 \in (1, \infty)$ is independent of N and i. On the other hand, eq. (6.20) of [4] tells us that we can find a constant $c_7 \in (1, \infty)$—independent of N and i—such that

$$P \left\{ \sum_{a \in \mathbb{R}} \sum_{j=0}^{N} \mathbf{1}_{\{a \leq w(ij) \leq a + N^\delta\}} \geq \frac{N^{(1/2)+\delta}}{\sqrt{i^{1/2}}} \right\} \leq c_7 N^{-4} + 2 \exp\left(-N^{2\delta}\right). \tag{3.14}$$

Since $i \geq 1$ and $\delta < 1/4 < 1/2$, this implies that

$$P \left\{ \sum_{a \in \mathbb{R}} \sum_{j=0}^{N} \mathbf{1}_{\{a \leq w(ij) \leq a + N^\delta\}} \geq N^{(1/2)+\delta} \right\} \leq c_7 N^{-4} + 2 \exp\left(-N^{2\delta}\right). \tag{3.15}$$

7
Now we combine (3.11), (3.13), and (3.15) to deduce the following:

\[
\sum_{N=1}^{\infty} P \left(\max_{1 \leq i \leq N} \sum_{j=0}^{N-1} 1 \{ S(i,j) \geq 0, S(i,j+1) \leq 0 \} \geq 2N^{(1/2)+\delta} ; \mathcal{E}_N \right)
\leq \sum_{N=1}^{\infty} \sum_{i=1}^{N} P \left(\sum_{j=0}^{N-1} 1 \{ S(i,j) \geq 0, S(i,j+1) \leq 0 \} \geq 2N^{(1/2)+\delta} ; \mathcal{E}_N \right)
\leq \sum_{N=1}^{\infty} \left(c_6 N^{-3} + c_7 N^{-3} + 2N \exp(-N^{2\delta}) \right)
< \infty.
\]

(3.16)

This and (3.10), in turn, together imply that

\[
\sum_{N=1}^{\infty} P \left\{ \max_{1 \leq i \leq N} \sum_{j=0}^{N-1} 1 \{ S(i,j) \geq 0, S(i,j+1) \leq 0 \} \geq 2N^{(1/2)+\delta} \right\} < \infty.
\]

(3.17)

Since \(-S\) is another simple walk on \(\mathbb{Z}\), it follows that

\[
\sum_{N=1}^{\infty} P \left\{ \max_{1 \leq i \leq N} f(i;N) \geq 2N^{(1/2)+\delta} \right\} < \infty.
\]

(3.18)

The lemma follows the Borel–Cantelli lemma, because \(\epsilon\), and hence \(\delta\), can be made arbitrarily small. \(\blacksquare\)
Consider the following random set of times:
\[
H_N(\alpha, \beta) := \{ 1 \leq i \leq N^{1-\alpha} : f(i; N) > N^{(1/2)-\beta} \}.
\] (3.19)

Lemma 3.3. Choose and fix three positive constants \(\alpha, \beta, \epsilon\) such that \(\beta > (\alpha/2) + \epsilon\). Then, the following happens a.s.: For all but a finite number of values of \(N\),
\[
|H_N(\alpha, \beta)| \geq N^{1-(3\alpha/2)-2\epsilon},
\] (3.20)
where \(|\cdots|\) denotes cardinality.

Proof. We apply (1.2), via (3.6) and Lemma 3.1, to see that with probability one, the following holds for all but a finite number of values of \(N\):
\[
N^{3(1-\alpha)/2-\epsilon} = \sum_{1 \leq i \leq N^{1-\alpha}} f(i; N^{1-\alpha}) \\
\leq \sum_{1 \leq i \leq N^{1-\alpha}} f(i; N) \\
= \sum_{i \in H_N(\alpha, \beta)} f(i; N) + \sum_{1 \leq i \leq N^{1-\alpha} : f(i, N) \leq N^{(1/2)-\beta}} f(i; N) \\
\leq |H_N(\alpha, \beta)| \cdot N^{(1/2)+\epsilon} + N^{1-\alpha+(1/2)-\beta}.
\] (3.21)

The lemma follows because \(\beta > (\alpha/2) + \epsilon\). \(\square\)

Define
\[
U(i; \ell) := 1_{\{S(i, \rho(\ell))S(i, 1+\rho(\ell)) = 0\}}.
\] (3.22)

The following is a key estimate in our proof of Theorem 1.1.

Proposition 3.4. There exists a finite constant \(c > 0\) such that for all integers \(i, M \geq 1\),
\[
P \left\{ \sum_{\ell=1}^{M} U(i; \ell) \leq \frac{cM}{i^{1/2}} \right\} \leq \exp \left(-\frac{cM}{4i^{1/2}} \right).
\] (3.23)

Our proof of Proposition 3.4 begins with an estimate for the simple walk.

Lemma 3.5. There exists a constant \(K\) such that for all \(n \geq 1\) and positive even integers \(x \leq 2n\),
\[
P \left(W_{2n} = x \mid W_{2n} \geq x \right) \geq \frac{K}{n^{1/2}}.
\] (3.24)

Proof. Let \(P_n(x)\) denote the conditional probability in the statement of the lemma. Define the stopping times \(\nu(x) := \min\{j \geq 1 : W_{2j} = x\}\), and write
\[
P_n(x) = \sum_{j=x/2}^{n} \frac{P \left(W_{2n} = x \mid \nu(x) = 2j \right) \cdot P \{ \nu(x) = 2j \}}{P \{ W_{2n} \geq x \}}.
\] (3.25)
We first recall (2.3), and then apply the strong markov property to obtain
\[P(W_{2n} = x \mid \nu(x) = 2j) = p(n - j) \]. Thanks to (2.5), we can find two constants
\(K_1 \) and \(K_2 \) such that
\[p(n - j) \geq K_1 (n - j)^{-1/2} \geq K_1 n^{-1/2} \] if \(n - j \geq K_2 \). On
the other hand, if \(n - j < K_2 \), then
\[p(n - j) \geq K_3 \geq K_3 n^{-1/2} \]. Consequently,
\[P_n(x) \geq \frac{K_4}{n^{1/2} \cdot \sum_{j=x/2}^{n} P\{\nu(x) = 2j\}} \cdot \sum_{j=x/2}^{n} P\{\nu(x) = 2j\} \] (3.26)
and this last quantity is at least \(K_4 n^{-1/2} \) since
\(\{\nu(x) \leq 2n\} \supseteq \{W_{2n} \geq x\} \).

Here and throughout, let \(F(i; \ell) \) denote the \(\sigma \)-algebra generated by the ran-
memonic variables \(\{\rho_i(j)\}_{j=1}^{\ell} \) and \(\{S(i, m)\}_{m=1}^{\rho_i(\ell)} \) [interpreted in the usual way, since
\(\rho_i(\ell) \) is a stopping time for the infinite-dimensional walk \(i \mapsto S(i, \bullet) \)]. Then we
have the following.

Lemma 3.6. For all \(i, \ell \geq 1, \)
\[P(S(i, 1 + \rho_i(i)) = 0 \mid F(i; \ell)) \geq \frac{K}{i^{1/2}}, \] (3.27)
where \(K \) was defined in Lemma 3.5.

Proof. Let \(\xi := -S(i, \rho_i(i)) \), for simplicity. According to the definition of the
\(\rho_i(i) \)'s,
\[S(i, 1 + \rho_i(i)) \geq 0 \] almost surely on \(\{\xi > 0\} \). (3.28)
Consequently,
\[\Delta_{i,\ell} := S(i, 1 + \rho_i(i)) - S(i, \rho_i(i)) \geq \xi \] almost surely on \(\{\xi > 0\} \). (3.29)
Clearly, the strong markov property of the infinite dimensional random walk
\(i \mapsto S(i, \bullet) \) implies that with probability one,
\[P(S(i, 1 + \rho_i(i)) = 0 \mid F(i; \ell)) = P(\Delta_{i,\ell} = \xi \mid F(i; \ell)) \]
\[\geq P(\Delta_{i,\ell} = \xi \mid \Delta_{i,\ell} \geq \xi) \mathbf{1}_{\{\xi > 0\}}. \] (3.30)
Therefore, we can apply Lemma 3.5 together with to deduce that (3.27) holds
a.s. on \(\{\xi > 0\} \). Similar reasoning shows that the very same bound holds also
a.s. on \(\{\xi < 0\} \). \(\square \)

We are ready to derive Proposition 3.4.

Proof of Proposition 3.4. We recall the following form of Bernstein’s inequal-
ity, as found, for example, in [5, Lemma 3.9]: Suppose \(J_1, \ldots, J_n \) are random
variables, on a common probability space, that take values zero and one only.
If there exists a nonrandom \(\eta > 0 \) such that \(E(J_{k+1} | J_1, \ldots, J_k) \geq \eta \) for all \(k = 1, \ldots, n-1 \). Then, that for all \(\lambda \in (0, \eta) \),
\[
P \left\{ \sum_{i=1}^{n} J_i \leq \lambda n \right\} \leq \exp \left(-\frac{n(\eta - \lambda)^2}{2\eta} \right). \tag{3.31}
\]

We apply the preceding with \(J_\ell := U(i; \ell) \); Lemma 3.6 tells us that we can use (3.31) with \(\eta := K i^{-1/2} \) and \(\lambda := \eta/2 \) to deduce the Proposition with \(c := K/2 \).

Lemma 3.7. Choose and fix two constants \(a, b > 0 \) such that \(1 > a > 2b \). Then with probability one,
\[
\min_{1 \leq i \leq N^{1-a}} \sum_{1 \leq \ell \leq N^{1/a}} U(i; \ell) \geq c N^{(a/2) - b}, \tag{3.32}
\]
for all \(N \) sufficiently large, where \(c \) is the constant in Proposition 3.4.

Proof. Proposition 3.4 tells us that
\[
P \left\{ \min_{1 \leq i \leq N^{1-a}} \sum_{1 \leq \ell \leq N^{1/a}} U(i; \ell) \leq c N^{(a/2) - b} \right\}
\leq P \left\{ \sum_{1 \leq \ell \leq N^{(1/2) - b}} U(i; \ell) \leq \frac{c N^{(1/2) - b}}{2^{1/2}} \right\} \quad \text{for some } 1 \leq i \leq N^{1-a}
\leq \sum_{1 \leq i \leq N^{1-a}} \exp \left(-\frac{c N^{(1/2) - b}}{4^{1/2}} \right)
\leq N^{1-a} \exp \left(-\frac{c N^{(a/2) - b}}{4} \right). \tag{3.33}
\]
An application of the Borel–Cantelli lemma finishes the proof.

We are ready to complete the proof of our first theorem.

Proof of Theorem 1.1, Second Half. Let us begin by choosing and fixing a small constant \(\epsilon \in (0, 1/2) \). Next, we choose and fix two more constants \(a \) and \(b \) such that
\[
b \in (0, 1/2) \quad \text{and} \quad a \in (2b, 1). \tag{3.34}
\]
Finally, we choose and fix yet two more constants \(\epsilon \) and \(\alpha \) such that
\[
\alpha \in (a, 1), \quad \beta \in \left(\frac{\alpha}{2} + \epsilon, b \right), \quad \text{and} \quad \frac{3\alpha}{2} - \frac{\alpha}{2} + b \leq \epsilon. \tag{3.35}
\]
It is possible to verify that we can pick such \(a, b, \alpha, \text{and} \beta \), regardless of how small \(\epsilon \) is.
Because $\alpha \in (a, 1)$,

$$
\bigcap_{1 \leq i \leq N^{1-a}} \left\{ \sum_{1 \leq \ell \leq N^{(1/2)-b}} U(i; \ell) > cN^{(a/2)-b} \right\} \subseteq \left\{ \sum_{i \in \mathcal{H}_N(\alpha, \beta)} \sum_{1 \leq \ell \leq N^{(1/2)-b}} U(i; \ell) \geq cN^{(a/2)-b} |\mathcal{H}_N(\alpha, \beta)| \right\}. \tag{3.36}
$$

According to Lemma 3.3 and since $\beta > (\alpha/2) + \epsilon$, $|\mathcal{H}_N(\alpha, \beta)|$ is at least $N^{1-(3\alpha/2)-2\epsilon}$, for all N large. The preceding and Lemma 3.7 together imply that with probability one, for all N sufficiently large.

$$
\sum_{i \in \mathcal{H}_N(\alpha, \beta)} \sum_{1 \leq \ell \leq N^{(1/2)-b}} U(i; \ell) \geq cN^{1-(3\alpha/2)+(a/2)-b-2\epsilon}, \tag{3.37}
$$

for all N sufficiently large. Consequently, the following holds almost surely: For all but a finite number of values of N,

$$
\gamma_N = \sum_{i=1}^{N} \sum_{\ell=1}^{f(i,N)} U(i; \ell) \geq \sum_{i \in \mathcal{H}_N(\alpha, \beta)} \sum_{1 \leq \ell \leq N^{(1/2)-b}} U(i; \ell). \tag{3.38}
$$

Since $\beta < b$ (3.37) implies that with probability one, the following holds for all but finitely-many values of N:

$$
\gamma_N \geq cN^{1-(3\alpha/2)+(a/2)-b-2\epsilon}, \tag{3.39}
$$

which is $\geq cN^{1-2\epsilon}$, thanks to the last condition of (3.35). Since ϵ is arbitrary, this completes our proof. \hfill \Box

4 Questions on the distribution of zeros

We conclude this paper by asking a few open questions:

1. Let us call a point $(i, j) \in \mathbb{Z}_2^2$ even if ij is even. Define Q_N to be the largest square in $[0, N]^2$ such that $S(i,j) = 0$ for every even point (i, j) in Q_N. What is the asymptotic size of the cardinality of $Q_N \cap \mathbb{Z}^2$, as $N \to \infty$ along even integers? The following shows that this is a subtle question: One can similarly define \tilde{Q}_N to be the largest square in $[0, N]^2$—with one vertex equal to (N, N)—such that $S(i,j) = 0$ for all even $(i, j) \in \tilde{Q}_N$. [Of course, N has to be even in this case.] In the present case, we estimate the size of \tilde{Q}_N by first observing that if N is even, then

$$
P \{S(N,N) = S(N+2, N+2) = 0\} = P \{S(N,N) = 0\} \cdot P \{S(N+2, N+2) - S(N,N) = 0\} \tag{4.1}
$$

$$
= (\text{const} + o(1))N^{-3/2} \quad \text{as } N \to \infty \text{ along evens.}
$$
Since the preceding defines a summable sequence, the Borel–Cantelli lemma tells us that \(\# \tilde{Q}_N \leq 1 \) for all sufficiently-large even integers \(N \).

2. Consider the number \(D_N := \sum_{i=1}^{N} 1_{\{S(i,N-\bar{)}=0\}} \) of “anti-diagonal” zeros. It it the case that with probability one,

\[
0 < \limsup_{N \to \infty} \frac{\log D_N}{\log \log N} < \infty \tag{4.2}
\]

At present, we can prove that \(D_N \leq (\log N)^{1+o(1)} \).

3. The preceding complements the following, which is not very hard to prove:

\[
\liminf_{N \to \infty} D_N = 0 \quad \text{almost surely} \tag{4.3}
\]

Here is the proof: According to the local central limit theorem, and after a line or two of computation, \(\lim_{N \to \infty} \mathbb{E}(D_{2N}) = (\pi/8)^{1/2} \). Therefore, by Fatou’s lemma, \(\liminf_{N \to \infty} D_{2N} \leq (\pi/8)^{1/2} < 1 \) with positive probability, whence almost surely by the Kolmogorov zero-one law [applied to the sequence-valued random walk \(\{S(i,\bullet)\}_{i \geq 1} \): (4.3) follows because \(D_N \) is integer valued. We end by proposing a final question related to (4.3): Let \(\{S(s,t)\}_{s,t \geq 0} \) denote two-parameter Brownian sheet; that is, \(S \) is a centered gaussian process with continuous sample functions, and \(\mathbb{E}[S(s,t)S(u,v)] = \min(s,u) \min(t,v) \) for all \(s,t,u,v \geq 0 \).

Define “anti-diagonal local times,”

\[
D_t := \lim_{\epsilon \to 0} \frac{1}{2\epsilon} \int_0^t 1_{\{|S(s,t-s)| \leq \epsilon\}} \, ds \quad \text{for } t > 0. \tag{4.4}
\]

(a) Does \(\{D_t\}_{t > 0} \) exist? Is it continuous?

(b) Is it true that \(Z := \{ t > 0 : D_t = 0 \} \) is almost surely nonempty? That is, does the continuum-limit analogue of (4.3) hold? If \(Z \) is nonempty, then what is its Hausdorff dimension?

4. For all \(\epsilon \in (0,1) \) and integers \(N \geq 1 \) define

\[
E(\epsilon, N) := \{(i,j) \in [\epsilon N,N]^2 : S(i,j) = 0\}. \tag{4.5}
\]

It is not hard to verify that if \(\epsilon \in (0,1) \) is fixed, then \(E(\epsilon, N) = \emptyset \) for infinitely-many \(N \geq 1 \). This is because there exists \(p \in (0,1) \) independent of \(N \)—such that for all \(N \) sufficiently large,

\[
P \left\{ \max_{\epsilon N \leq i,j \leq N} |S(i,j) - S(\epsilon N, N)| \leq N \right\} > p. \tag{4.6}
\]

Is there a good way to characterize which positive sequences \(\{\epsilon_k\}_{k=1}^\infty \), with \(\lim_{k \to \infty} \epsilon_k = 0 \), have the property that \(E(\epsilon_N, N) \neq \emptyset \) eventually?
5. Let γ'_N denote the number of points $(i, j) \in [0, N]^2$ such that $S(i, j) = 1$. What can be said about $\gamma_N - \gamma'_N$?

6. A point (i, j) is a twin zero if it is even and there exists $(a, b) \in \mathbb{Z}_+^2$ such that: (i) $0 < |i - a| + |j - b| \leq 100$ [say]; and (ii) $S(a, b) = 0$. Let $d(\epsilon, N)$ denote the number of twin zeros that lie in the following domain:

$$D(\epsilon, N) := \{(i, j) \in \mathbb{Z}_+^2 : \epsilon i < j < i/\epsilon, 1 < i < N\}.$$
(4.7)

Is it true that $\lim_{N \to \infty} d(\epsilon, N) = \infty$ a.s. for all $\epsilon \in (0, 1)$?

Acknowledgements. This project have benefitted from several enlightening conversations with Professor Zhan Shi, whom we thank gratefully.

References

[1] Abramowitz, Milton and Irene A. Stegun (1972). *Handbook of Mathematical Functions*, ninth edition, Dover Publishing, New York.

[2] Borodin, A. N. (1986). On the character of convergence to Brownian local time, II, *Probab. Th. Rel. Fields* **72**, 251–277.

[3] Csörgő, M. and P. Révész, (1985). On strong invariance for local time of partial sums, *Stoch. Proc. Appl.* **20**(1), 59–84.

[4] Khoshnevisan, Davar, Pál Révész, and Zhan Shi (2005). Level crossings of a two-parameter random walk, *Stoch. Proc. Appl.* **115**, 359–380.

[5] Khoshnevisan, Davar, Pál Révész, and Zhan Shi (2004). On the explosion of the local times along lines of Brownian sheet, *Ann. de l’Instit. Henri Poincaré: Probab. et Statist.* **40**, 1–24.

[6] Komlós, J., P. Major, and G. Tusnády (1975). An approximation of partial sums of independent RV’s and the sample DF. I, *Z. Wahrsch. verw. Geb.* **32**, 111–131.

[7] Lacey, Michael T. (1990). Limit laws for local times of the Brownian sheet, *Probab. Th. Rel. Fields* **86**(1), 63–85.

Davar Khoshnevisan. Department of Mathematics, University of Utah, 144 S 1500 E, Salt Lake City, UT 84112-0090, United States
davar@math.utah.edu

Pál Révész. Institut für Statistik und Wahrscheinlichkeitstheorie, Technische Universität Wien, Wiedner Hauptstrasse 8-10/107 Vienna, Austria
reveszp@renyi.hu