Nitrogen superfractionation in dense cloud cores

S. D. Rodgers and S. B. Charnley
Space Science & Astrobiology Division, MS 245-3, NASA Ames Research Center, Moffett Field, CA 94035, USA

13 February 2008

ABSTRACT

We report new calculations of interstellar ^{15}N fractionation. Previously, we have shown that large enhancements of $^{15}\text{N}/^{14}\text{N}$ can occur in cold, dense gas where CO is frozen out, but that the existence of an NH + N channel in the dissociative recombination of N_2H^+ severely curtails the fractionation. In the light of recent experimental evidence that this channel is in fact negligible, we have reassessed the ^{15}N chemistry in dense cloud cores. We consider the effects of temperatures below 10 K, and of the presence of large amounts of atomic nitrogen. We also show how the temporal evolution of gas-phase isotope ratios is preserved as spatial heterogeneity in ammonia ice mantles, as monolayers deposited at different times have different isotopic compositions. We demonstrate that the upper layers of this ice may have $^{15}\text{N}/^{14}\text{N}$ ratios an order of magnitude larger than the underlying elemental value. Converting our ratios to δ-values, we obtain $\delta^{15}\text{N} > 3,000$‰ in the uppermost layer, with values as high as 10,000‰ in some models. We suggest that this material is the precursor to the ^{15}N ‘hotspots’ recently discovered in meteorites and IDPs.

Key words: astrochemistry – molecular processes – ISM: molecules – meteors, meteoroids

1 INTRODUCTION

Laboratory analyses of primitive solar system materials, such as meteorites, interplanetary dust particles (IDPs), and cometary dust particles returned by the Stardust mission, show anomalous fractionation in the heavy isotopes of numerous elements relative to that expected from the cosmic or solar system values (Clayton & Nittler 2004; Lodders & Amari 2005; Alexander et al. 2007; McKeegan et al. 2006). In the case of hydrogen and nitrogen, the large D/H and $^{15}\text{N}/^{14}\text{N}$ ratios observed in some phases have been attributed to the survival of D- and ^{15}N-enriched material from the interstellar medium (ISM; Alexander et al. 1998; Messenger 2000). For deuterium, the observed ratios are consistent with models and observations of the ISM, where low-temperature ion-molecule reactions lead to enhanced D/H ratios in both gas- and solid-phase species (e.g. Millar, Bennett & Herbst 1989; Charnley, Tielens & Rodgers 1997.) However, there is little observational data on nitrogen isotope ratios in the ISM, and models of the ^{15}N fractionation in typical dense clouds predict modest enhancements of ~ 25 per cent (Terzieva & Herbst 2000). In comparison, the largest ^{15}N enhancements detected in meteorites – in so-called ‘hotspots’ – have $^{15}\text{N}/^{14}\text{N}$ enhancements of more than a factor of four relative to the Earth (i.e. $\delta^{15}\text{N} > 3000$‰; Busemann et al. 2006). Values of $\delta^{15}\text{N} > 1000$‰ have also been found in hotspots in IDPs and Stardust samples (Floss et al. 2004, 2006; McKeegan et al. 2006).

In an earlier paper we demonstrated that significantly increased ^{15}N fractionation can occur when CO is depleted onto dust grains (Charnley & Rodgers 2002 [Paper I]). The key fractionation reactions are:

$$ ^{15}\text{N} + ^{14}\text{N}_2\text{H}^+ \rightleftharpoons ^{14}\text{N} + ^{15}\text{N}^{14}\text{NH}^+ + \Delta E_1 $$ (1)

$$ ^{15}\text{N} + ^{14}\text{N}_2\text{H}^+ \rightleftharpoons ^{14}\text{N} + ^{14}\text{N}^{15}\text{NH}^+ + \Delta E_2 $$ (2)

where the exothermicities are $\Delta E_1 = 27.7$ K and $\Delta E_2 = 36.1$ K (Terzieva & Herbst 2000). These preferentially drive ^{15}N into molecular nitrogen, at the expense of atomic N⁰ which becomes isotopically light. In a standard dark cloud model the degree of fractionation is limited by chemical reactions which cycle nitrogen between atomic and molecular form (see Fig. 1). However, if CO is frozen out as ice, OH is unavailable, this cycle is broken, and much larger ^{15}N-enhancements are possible. In this scenario, degradation of the (^{15}N-enriched) N₂ by He⁺ is essentially a one-way process. The N⁰ atoms released by this reaction remain in the gas, whereas the N⁺ ions react rapidly with H₂ in a sequence of reactions to form ammonium (Fig. 1). The NH₃⁺ ions then recombine with electrons, producing NH₂ and NH₁, which subsequently freeze out on the dust grains. If the solid-phase NH₂ radicals are hydrogenated to NH₃, as expected from models of grain surface chemistry (Brown & Charnley 1990), the end result is a large abundance of isotopically heavy ammonia ice. At late times in this model, when N⁰/N₂ > 1, the efficiency of reactions (1) and (2) are greatly increased, leading to much larger gas-phase $^{15}\text{N}/^{14}\text{N}$
ratios than in the standard dense cloud chemistry. Ultimately, we found that the ammonia ice is enhanced in 15N by a factor of 1.8.

This model could account for the presence of high bulk δ^{15}N values in IDPs (Messenger 2000), and was also able to account for the non-detection of 15N in comets. Some additional processing was indicated to incorporate the 15N-enriched ammonia into the carbonaceous matter, and secondary energetic processing to add 15NH$_2$ side-groups to polycyclic aromatic hydrocarbon (PAH) molecules was suggested. Recent meteorite studies have confirmed that most of the 15N enrichment in IDPs is carried by amine side-groups on aromatic moieties (Keller et al. 2004). However, the model was unable to reproduce the largest δ^{15}N values seen in the hotspots. Moreover, the experimental determination by Geppert et al. (2004) that recombination of N$_2$H$^+$ preferentially breaks the N≡N bond, producing N0 and NH, acts to suppress the maximum fractionation (Rodgers & Charnley 2004 [Paper II]).

In this paper, we are motivated to revisit our previous models as a result of several recent discoveries. Firstly, the experimental results of Geppert et al. (2004) have been challenged by Molek et al. (2007), who demonstrated that recombination of N$_2$H$^+$ leads predominantly to N$_2$ + H, as indicated in previous work (Adams et al. 1991). The new results indicate that rupture of the N$_2$ bond occurs rarely, if at all, with an upper limit for the NH + N0 branching ratio of 5 per cent. Secondly, observations of several pre-stellar cores have revealed that they have temperatures below 10 K in their central, densest regions, as expected from physical models (Evans et al. 2001; Zucconi, Walmsley & Galli 2001). For example, Crapsi et al. (2007) derived $T = 5.5$ K in L1544, and Pagani et al. (2007) found $T = 7$ K in L134N. Due to the small zero-point energy changes associated with 15N fractionation, reactions (1) and (2) are extremely sensitive to temperature, and these lower temperatures may be expected to yield larger 15N/14N ratios.

Thirdly, observations of N$_2$H$^+$ in dark clouds imply N$_2$ abundances of a few $\times 10^{-9}$ (Womack, Ziurys & Wyckoff 1992; Maret, Bergin & Lada 2006). This is significantly less than the galactic elemental nitrogen abundance and Maret et al. proposed that the ‘missing’ nitrogen was in atomic form. Although the chemical model of Maret et al. assumed the Geppert et al. (2004) branching ratios for N$_2$H$^+$ recombination, models assuming the ‘old’ branching ratio also predict N$^0 >$ N$_2$ at early times (e.g. Pineau des Forêts, Roueff & Flower 1990). This is because N \rightarrow N$_2$ conversion occurs via neutral-neutral reactions, and the time-scale for this process, t_{N_2}, is larger than the dynamical free-fall time, t_{ff}. In contrast, CO is formed fairly rapidly by ion-molecule chemistry, on a time-scale t_{CO}, where $t_{CO} < t_{ff} < t_{N_2}$. Therefore, we would expect young clouds to have high CO abundances but relatively small N$_2$/N ratios. This is consistent with the view that molecular clouds and pre-stellar cores form rapidly, on a time-scale of order a few times the free-fall time (Ballesteros-Paredes et al. 2007). Dynamical-chemical models of collapsing clouds show that N \rightarrow N$_2$ conversion is never efficient over t_{ff} (Brown, Charnley & Millar 1988). As discussed above, a large N0/N$_2$ ratio is necessary to produce substantial 15N-fractionation, so if the nitrogen in dense clouds is in fact mainly atomic rather than molecular, this will have important consequences for the 15N/14N ratios.

Finally, in our earlier work we only calculated the bulk isotope ratios in the ammonia ice. In reality, the grain mantles will have an ‘onion-ring’-like structure consisting of sequentially accreted monolayers. Thus, temporal variations in the gas-phase 15N/14N ratios will be preserved as spatial gradients in the ices, with each layer recording the gas-phase ratio at the time it was accreted. In particular, the late-accreting, uppermost layers will be the most highly fractionated. As it is these layers which are likely to experience the largest degree of subsequent processing, it is necessary to distinguish between the bulk isotope ratios in the ice as a whole, and those in specific monolayers.

2 Model

We utilize the same chemical model as in our previous work (Papers I & II). The 15N-fractionation chemistry is based on Terzieva & Herbst (2000); a list of the reactions and the rate coefficients we have adopted appeared in Paper II. We consider a high density core ($n_{H_2} = 5 \times 10^6$ cm$^{-3}$) with temperatures of 5, 7, and 10 K, and a cosmic ray ionization rate of 5×10^{-17} s$^{-1}$. The elemental 15N/14N ratio in each model is generally assumed to be 1/400, although the effects of using other values were also investigated. A key parameter is the branching ratio for the dissociative recombination of N$_2$H$^+$:

$$N_2H^+ + e \rightarrow N_2 + H \quad (1 - f)$$

$$\rightarrow NH + N \quad (f)$$

We considered values for $f = 0.0, 0.02,$ and 0.05, based on the experimental results of Molek et al. (2007). We use elemental abundances for C, O, and N of 140, 290, and 80 parts per million respectively, relative to hydrogen (Savage & Sembach 1996), and assume complete depletion of metals. All the carbon is initially in the form of CO, and the remaining oxygen is atomic.
As before, we assume that CO freezes out onto grains with a sticking coefficient of unity, whereas N and N$_2$ remain in the gas. The reason for this selective depletion of CO versus N$_2$ is controversial, as laboratory experiments reveal that the two species have similar binding energies (Öberg et al. 2005). Nevertheless, observations of pre-stellar cores show ample evidence for the presence of N$_2$-rich, CO-poor regions toward the centers of these objects (Bergin & Tafalla 2007). Due to their low polarizabilities, atoms should have the lowest binding energies for physisorption to icy dust grains. Reaction with an H atom forms a simple hydride that can stick more effectively due to hydrogen bonding with the substrate. Thus, we assume that O atoms are hydrogenated on the grains to form water ice. Conversely, recent laboratory experiments indicate a very low efficiency for the reaction of N with H on ice surfaces (T Hiraoka, private communication), which supports our assumption that N atoms do not stick.

We have adapted our model to track the 15N/14N ratios as successive monolayers (ML) of ammonia ice are accreted. A ‘typical’ interstellar grain of size 0.1μm has $\sim 10^6$ surface sites, and an abundance relative to hydrogen of $\sim 10^{-12}$. Hence, one ML corresponds to a total solid phase abundance of 10^{-6}, and our elemental N abundance corresponds to a maximum of 80 ML of ice, assuming that all the nitrogen freezes out as NH$_3$ (or NH$_2$). In fact, a large fraction of the nitrogen remains in the gas phase in the form of N0, and we typically find that we form ~ 30 ML of ammonia ice.

3 RESULTS

We began by investigating the importance of the branching ratio, f, in the recombination of N$_2$H$^+$. We found only very small differences in the results of models with f equal to 5, 2, and 0 per cent, and conclude that, as long as $f \leq 0.05$, the presence of channel 4 does not significantly affect the 15N chemistry. We then varied the elemental nitrogen isotope ratio, using values for 14N/15N of 800, 400, and 100. In every case, the 15N enhancements are identical, relative to the underlying ratio. Henceforth, we discuss models with $f = 0.02$ and 14N/15N = 400.

3.1 Temperature dependence

Figure 2 shows the abundances of the three main repositories of nitrogen – gaseous N0 and N$_2$, and solid NH$_3$ – as a function of time, assuming that all of the nitrogen is initially present as N$_2$. The overall nitrogen chemistry is the same at 10 K and 7 K, but the time-scale \sim Myr. At late times just over half of the total nitrogen is in the gas phase as atoms, and just under half has frozen out as ammonia ice. At 5 K, however, very little ice is formed, due to the endo-ergicity of the reaction

$$N^+ + H_2 \rightarrow NH^+ + H \tag{5}$$

We have assumed an activation energy barrier of 85 K for this reaction, based on the value in the UMIST reaction rate database (Woodall et al. 2007). At 5 K, the reaction becomes so slow that radiative recombination becomes the dominant loss route for N$^+$ ions, and only small amounts of gas-phase NH$_2$ and NH$_3$ are produced. In effect, the barrier for reaction 5 sets a limit on the nitrogen chemistry in that, as the temperature drops, it eventually becomes too cold to produce ammonia. In extremely cold cores the chemistry simply transforms the initial gas-phase N$_2$ into gas-phase N0. In the following, we therefore look at the fractionation in 7 K and 10 K gas.

$$^{15}\text{N}^+ + ^{14}\text{N}_2 \rightleftharpoons ^{14}\text{N}^+ + ^{15}\text{N}^{14}\text{N} + \Delta E_3 \tag{6}$$

where $\Delta E_3 = 28.3$ K (Terzieva & Herbst 2000). This reaction shuffles 15N back into N$_2$, reducing the 15N-fractionation in N$^+$ and thus ammonia. At late times, this effect is still suppressing the N$^+$ fractionation relative to N$_2$, but the enormous 15N-enhancements in N$_2$ ensures that N$^+$ and NH$_3$ are more fractionated than at 10 K. In terms of the bulk 15N/14N ratio in the ammonia ice, both the 10 K and 7 K models predict similar enhancements of ≈ 1.8. However, as discussed earlier, the time evolution of the isotope ratios will be preserved in the layered structure of the ices. Even though the overall icy 15N/14N ratios are the same in both models, ammonia ices which accreted at 7 K will have a more heterogeneous structure, with the innermost layers depleted in 15N, but with the top layers enhanced by factors ~ 10.

3.2 The initial N/N$_2$ ratio

Significant fractionation in N$_2$ can only occur when N$_2$ is not the dominant nitrogen carrier. In the models discussed so far, this occurs at late times when most of the N$_2$ has been broken down by He$^+$ attack, on time-scales \sim Myr. However, if a substantial fraction of the nitrogen is initially atomic, enhanced 15N/14N ratios can be produced on much shorter time-scales. The N0/N$_2$ ratio at $t = 0$ depends on the dynamical and chemical history of the cloud before the formation of the dense pre-stellar core, and can be taken as a free parameter in our model. To investigate the importance of this factor, we have considered three additional models, where the initial fraction of N in molecular form is taken to be 0.6, 0.1, and 0. The latter case, where all of the nitrogen is initially atomic, is not particularly realistic, but was used to constrain the amount of N$_2$ that can be synthesized from N0 in the limited time available be-
fore CO etc. freeze out. We find that this produces only very small \(N_2 \) abundances, \(\approx 2 \) per cent of the total nitrogen. This means that the available pool of \(N_2 \) – roughly half of which will end up as ammonia ice – is essentially equal to the \(N_2 \) abundance at \(t = 0 \).

Figure 3b and 3c shows the isotope chemistry when a large fraction of the original nitrogen is atomic. Qualitatively, the gas-phase \(N_2 \) and \(\text{NH}_3 \) fractionation is similar to that in fig. 3a, except that the peak \(^{15}N/^{14}N \) ratios occur much earlier as the initial \(N_2 \) abundance is reduced. As before, we find that the upper layers of the ice should be enhanced in \(^{15}N \) by an order of magnitude. In terms of the overall bulk isotope ratio in the ice, it is clear that much larger values result, with \((^{15}\text{NH}_3/^{14}\text{NH}_3)_{\text{ice}} = 7 \) when only ten per cent of the initial nitrogen is molecular. This is due to the fact that less ammonia ice is formed overall, so the highly-fractionated upper layers account for a greater proportion of the total ice. We find roughly the same peak ratios regardless of the initial \(N_2/^{14}N \) ratio, but in models with more \(N_2 \) the bulk fractionation is diluted by the large number of monolayers which accrete at early times with essentially normal (or even reduced in the 7 K model) \(^{15}N/^{14}N \) ratios.

3.3 Isotope ratios in individual monolayers

We have calculated the \(^{15}N/^{14}N \) in successive ML as they accrete from the gas. For comparison with laboratory measurements, we have converted the isotopic ratios into \(\delta \)-values relative to the terrestrial \(^{15}N/^{14}N \) ratio. In order to do this, we need to know the original \(^{15}N/^{14}N \) ratio in the material from which the protosolar nebula (PSN) was formed. We assume a value of \((^{15}N/^{14}N)_{\text{PSN}} = 0.0025\), which is implied by three independent measurements: Jupiter’s atmosphere, high-temperature nebular condensates, and the solar wind (Fouchet et al. 2004; Meibom et al. 2007; Kaltenbach, Bamert & Hilchenbach 2007.)

Figure 3. Time evolution of the \(^{15}N/^{14}N \) enhancement ratios in key species at \(T = 10 \) K (solid lines) and \(T = 7 \) K (dashed lines). The initial fraction of nitrogen in molecular form is 100%, 63%, and 10% in panels (a), (b), and (c) respectively.

In models with lower temperatures, larger \(^{15}N/^{14}N \) ratios are produced in gas-phase in \(N_2 \). However, the barrier for the reaction of \(N^+ \) ions with \(H_2 \) sets a lower limit on the temperature at which ammonia can be produced efficiently. Assuming the ‘standard’ rate coefficient for this reaction we find that very little ammonia ice is generated for \(T < 7 \) K. We have also looked at the effects of a substantial \(N_2/^{14}N \) ratio at \(t = 0 \). We find that, because roughly half of the initial \(N_2 \) ends up in the form of \(\text{NH}_3 \) and \(\text{NH}_2 \), reduced molecular nitrogen abundances yield less ammonia ice in total. Smaller \(N_2/^{14}N \) ratios do not significantly affect the peak gas-phase fractionation ratios, but because the highly-fractionated ammonia formed at late times represents a greater proportion of the total ice, we find that the bulk ice \(^{15}N/^{14}N \) ratio can be greatly increased.

Following the \(^{15}N/^{14}N \) ratios in individual monolayers as they accrete sequentially from the gas, we have shown that gas-phase temporal variations in isotopic ratios are preserved as spatial gradients in the layered ammonia ice. The uppermost layers which accrete at late times have the largest \(^{15}N \)-enrichments, up to an order of magnitude with respect to the elemental \(^{15}N/^{14}N \) ratio. Converting to \(\delta \)-values to compare with laboratory determinations of the isotope ratios in primitive solar system materials, we derive peak values of \(\delta^{15}N > 3000 \% \) in gas at 10 K, and values as large as \(\delta^{15}N \approx 10000 \% \) in models with lower temperatures and smaller \(^{15}N/^{14}N \) ratios. This is more than sufficient to account for the largest measured ratios, and demonstrates that interstellar gas-phase chemistry is likely the ultimate source of cometary and meteoritic \(^{15}N \) anomalies.

4 CONCLUSIONS

We have revisited our earlier work on \(^{15}N \) fractionation based on recent experimental and observation results. Using the branching ratios for \(N_2 H^+ \) dissociative recombination derived by Molek et al. (2007), we effectively recover the results of our earlier work in dense, CO-depleted gas at 10 K (Paper I.) We have investigated the effects of varying the temperature, and show that at lower temperatures, larger \(^{15}N/^{14}N \) ratios are produced in gas-phase in \(N_2 \). However, the barrier for the reaction of \(N^+ \) ions with \(H_2 \) sets a lower limit on the temperature at which ammonia can be produced efficiently. Assuming the ‘standard’ rate coefficient for this reaction we find that very little ammonia ice is generated for \(T < 7 \) K. We have also looked at the effects of a substantial \(N_2/^{14}N \) ratio at \(t = 0 \). We find that, because roughly half of the initial \(N_2 \) ends up in the form of \(\text{NH}_3 \) and \(\text{NH}_2 \), reduced molecular nitrogen abundances yield less ammonia ice in total. Smaller \(N_2/^{14}N \) ratios do not significantly affect the peak gas-phase fractionation ratios, but because the highly-fractionated ammonia formed at late times represents a greater proportion of the total ice, we find that the bulk ice \(^{15}N/^{14}N \) ratio can be greatly increased.

This work was supported by NASA’s Origins of Solar Systems Pro-
Figure 4. $\delta^{15}N$ values in different monolayers, for $T = 10$ K and $T = 7$ K. Labels refer to the fraction of nitrogen initially assumed to be molecular.

gram through NASA Ames cooperative agreement NNX07AO86A with the SETI Institute, and by the NASA Goddard Center for Astrobiology.

REFERENCES

Adams N. G. et al., 1991, J Chem. Phys., 94, 4852
Alexander C. M. O’D., Russell S. S., Arden J. W., Ash R. D., Grady M. M., Pillinger C. T., 1998, Meteoritics & Planet. Sci., 33, 603
Alexander C. M. O’D., Boss A. P., Keller L. P., Nuth J. A., Weinberger A., 2007, in Reipurth B. et al., eds., Protostars and Planets V. U. Arizona Press, Tucson, p. 801
Ballesteros-Paredes J., Klessen R. S., Mac Low M.-M., Vazquez-Semadeni E., 2007, in Reipurth B. et al., eds., Protostars and Planets V. U. Arizona Press, Tucson, p. 63
Bergin E. A., Tafalla M., 2007, ARA&A, 45, 339
Brown P.D., Charnley S.B., Millar T.J., 1988, MNRAS, 231, 409
Brown P.D., Charnley S.B., 1990, MNRAS, 244, 432
Busemann H., Young A. F., Alexander C. M. O'D., Hoppe P., Mukhopadhyay S., Nittler L. R., 2006, Sci., 312, 727
Charnley S.B., Rodgers S.D., 1997, 482, L203
Clayton D. D., Nittler L. R., 2004, ARA&A, 42, 39
Crapsi A., Caselli P., Walmsley M. C., Tafalla M., 2007, A&A, 470, 221
De Bièvre P., Valkiers S., Peiser H. S., Taylor P. D. P., Hansen P., 1996, Metrologia, 33, 447
Evans N. J. II, Rawlings J. M. C., Shirley Y. L., Mundy L. G., 2001, ApJ, 557, 193
Floss C., Stadermann F. J., Bradley J. P., Dai Z. R., Bajt S., Graham G., 2004, Sci., 303, 1355
Floss C., Stadermann F. J., Bradley J. P., Dai Z. R., Bajt S., Graham G., Lea A. S., 2006, Geo. Cosmo. Acta, 70, 2371
Fouchet T., Irwin P. G. J., Parrish P., Calcutt S. B., Taylor F. W., Nixon C. A., Owen T., 2004, Icarus, 172, 50
Freysinger W., Khan F.A., Armentrout P.B., Tosi P., Dmitriev O., Bassi D., 1994, J. Chem. Phys., 101, 3688
Geppert W. D. et al., 2004, ApJ, 609, 459
Kaltenbach R., Bamert K., Hilchenbach M., 2007, Space Sci. Rev., in press
Keller L. P., Messenger S., Flynn G. J., Clemett S., Wirick S., Jacobsen C., 2004, Geo. Cosmo. Acta, 68, 2577
Lodders K., Amari S., 2005, Chemie der Erde, 65, 93
Maret S., Bergin E.A., Lada C., 2006, Nature, 442, 425
McKeegan K. D. et al., 2006, Sci., 314, 1724
Meibom A., Krot A. N., Robert F., Mostefaouï S., Russell S. S., Petaev M. I., Gounelle M., 2007, ApJ, 656, L33
Messenger S., 2000, Nature, 404, 968
Millar T. J., Bennett A., Herbst E., 1989, ApJ, 340, 906
Möller C.D., McLain J.L., Poteva V., Adams N.G., 2007, J. Phys. Chem. A, 111, 6760
Öberg K. I., van Broekhuizen F., Fraser H. J., Bisschop S. E., van Dishoeck E. F., Schlemmer S., 2005, ApJ, 621, L33
Pagani L., Bacmann A., Cabrit S., Vastel C., 2007, A&A, 467, 179
Pineau des Forêts G., Roueff E., Flower D. R., 1990, MNRAS, 244, 668
Rodgers S. D., Charnley S. B., 2004, MNRAS, 352, 600 (Paper II)
Savage B. D., Sembach K. R., 1996, ARA&A, 34, 279
Terzieva R., Herbst E., 2000, MNRAS, 317, 563
Womack M., Zúñiga L. M., Wyckoff S., 1992, ApJ, 393, 188
Woodall J., Agúndez M., Markwick-Kemper A. J., Millar T. J., 2007, A&A, 466, 1197
Zucconi A., Walmsley C. M., Galli D., 2001, A&A, 376, 650