Sequential Synthesis and Methylation of Phosphatidylethanolamine Promote Lipid Droplet Biosynthesis and Stability in Tissue Culture and in Vivo*

Received for publication, February 24, 2011, and in revised form, March 21, 2011
Published, JBC Papers in Press, March 22, 2011, DOI 10.1074/jbc.M111.234534

Gerd Hörl1,2, Andrea Wagner1,3, Laura K. Cole6, Roland Malli4, Helga Reicher1, Petra Kotzbeck1, Harald Kofeler1, Gerald Höfler**, Sasa Frank4, Juliane G. Bogner-Strauss3, Wolfgang Sattler1, Dennis E. Vance5, and Ernst Steyerer6

From the 1Department of Molecular Biology and Biochemistry, Center for Molecular and Cell Biology of Lipids and Department of Biochemistry, University of Alberta, Edmonton, Alberta T6G 2Z5, Canada, the 2Institute of Molecular Biosciences, University of Graz, A-8010 Graz, Austria, the 3Center for Medical Research, Medical University of Graz, A-8010 Graz, Austria, the 4Department of Pathology, Medical University of Graz, A-8010 Graz, Austria, and the 6Institute for Genomics and Bioinformatics, Graz University of Technology, A-8010 Graz, Austria

Triacylglycerols are stored in eukaryotic cells within lipid droplets (LD). The LD core is enveloped by a phospholipid monolayer with phosphatidylcholine (PC), the major phospholipid, and phosphatidylethanolamine (PE), a minor component. We demonstrate that the onset of LD formation is characterized by a change in cellular PC, PE, and phosphatidylserine (PS). With induction of differentiation of 3T3-L1 fibroblasts into adipocytes, the cellular PC/PE ratio decreased concomitant with LD formation, with the most pronounced decline between confluence and day 5. The mRNA for PS synthase-1 (forms PS from PC) and PS decarboxylase (forms PE from PS) increased after fluency and day 5. Activity and protein of PE N-methyltransferase (PEMT), which produces PC by methylation of PE, are absent in 3T3-L1 fibroblasts but were induced at day 5. High fat challenge induced PEMT expression in mouse adipose tissue. PE, produced via PS decarboxylase, was the preferred substrate for methylation to PC. A PEMT–GFP fusion protein decorated the periphery of LD. PEMT knockdown in 3T3-L1 adipocytes correlated with increased basal triacylglycerol hydrolysis. Pemt−/− mice developed desensitization against adenosine-mediated inhibition of basal hydrolysis in adipose tissue, and adipocyte hypotrophy was observed in Pemt−/− animals on a high fat diet. Knock-out of PEMT in adipose tissue down-regulated PS synthase-1 mRNA, suggesting coordination between PE supply and converging pathways during LD biosynthesis. We conclude that two consecutive processes not previously related to LD biogenesis, (i) PE production via PS and (ii) PE conversion via PEMT, are implicated in LD formation and stability.

Cytosolic neutral lipid droplets (LD)7 within eukaryotic cells represent intracellular storage compartments for triacylglycerols (TG) and cholesteryl esters to bridge alimentary or metabolic gaps (1). Adipocytes are the body’s primary depots for efficient TG storage. Upon defined stimulation of adipocytes (2), fatty acids are released from TG droplets to supply energy or to provide essential components for the synthesis of biological membranes. Given these important functions, LD of all cell types are considered as dynamic organelles that represent fundamental components of intracellular lipid homeostasis (3).

It is generally accepted that LD originate from the cytosolic leaflet of the endoplasmic reticulum (ER), contain a core of neutral lipids, and are surrounded by a phospholipid (PL) monolayer (4, 5). The finding that cytosolic LD in adipocytes contain at their periphery minor amounts of ER proteins such as BiP (6) and calnexin might reflect their site of origin in the ER. The primary LD proteins are so-called cage proteins, which not only stabilize LD but also protect their neutral lipid cores from unregulated degradation (7). Several other proteins contributing to the regulation of intracellular vesicle trafficking or targeting (3), and components of the intermediate filament protein machinery, have also been shown to be associated with intracellular LD (8, 9).

Despite recent advances in our understanding of the LD protein shell and how newly formed TG enters LD (10), our knowledge of the nature and architecture of the LD monolayer lags far behind. Although PC is the most abundant cellular PL, PE exhibits, among all PL, the highest relative increase during fat cell differentiation (11), suggesting a specific function for PE

*This work was supported by Austrian Science Funds P-15.358 (to E.S.), F3007 SFBPOTOK (to W.S.), F3002-805 SFBPOTOK (to G.H.), and P-19473 (to S.F.), Austrian Heart Foundation Project 01/08 (to E.S.), Franz-Lanyar Foundation (Graz, Austria) Grants P-308 (to G. Hörl) and P-323 (to E.S.), Austrian Ministry for Science and Research GEN-AU Project GOLDDI (to J.G. B.-S.), and the Canadian Institutes of Health Research (to D.E.V.).

††1,2

‡‡1,3

§§4

1 Both authors contributed equally to this work.

2 Present address: Dept. of Physical Chemistry, Center for Physiological Medicine, Medical University of Graz, A-8010 Graz, Austria.

3 Present address: Dept. of Blood Group Serology and Transfusion Medicine, Medical University of Graz, A-8010 Graz, Austria.

4 Recipient of studentship awards from the Alberta Heritage Foundation for Medical Research.

5 Scientist of the Alberta Heritage Foundation for Medical Research.

6 To whom correspondence should be addressed: Dept. of Molecular Biology and Biochemistry, Center for Molecular Medicine, Medical University of Graz, Harrachgasse 21, A-8010 Graz, Austria. Fax: 43-316-380-9615; E-mail: ernst.steyrer@medunigraz.at.

7 The abbreviations used are: LD, lipid droplet; ADA, adenosine deaminase; CT, CTP:phosphocholine cytidylyltransferase; EGFP, enhanced GFP; ER, endoplasmic reticulum; MAM, mitochondria-associated membrane; PC, phosphatidylcholine; PE, phosphatidylethanolamine; PEMT, phosphatidylethanolamine-N-methyltransferase; PIA, (R/S)-N-(1,2-phenylisopropyl)adenosine; PL, phospholipid; PS, phosphatidylserine; TG, triacylglycerol; VAT, white adipose tissue; BAT, brown adipose tissue; fw, forward; rev, reverse; qPCR, quantitative PCR; PSD, phosphatidylserine decarboxylase.
Phosphatidylethanolamine and Lipid Droplet Biogenesis

Phosphatidylethanolamine (PE) and phosphatidic acid (PA) are the predominant constituents of lyso-PC and PC in LDs. A direct or indirect role for PE and PA in LD biogenesis has no precedent in the current literature. The presence of specific PL such as PE and phosphatidic acid in biological membranes may be a prerequisite for induction of local membrane curvature of the ER. Given this potentially important structural function of PE during LD biogenesis, we reasoned that PE represents a primary component for the biogenesis and growth of intracellular LD in murine adipocytes.

We report that several previously unrecognized PL remodeling events occur during LD formation.

EXPERIMENTAL PROCEDURES

Animals—Male *Pemt*+/+ and *Pemt*−/− mice (25) (8–16 weeks old) were fed *ad libitum* either regular rodent chow or a high fat diet containing 30.2% crude fat (SSNIF® Spezialitäten GmbH, Germany, EF R/M, E15116) for 3 weeks; adipose tissue from 45- to 50-week-old animals was used for lipolysis assays. Tissues were harvested, rinsed with ice-cold phosphate-buffered saline (PBS), and either flash-frozen in liquid nitrogen until used for protein, immunoblot, and RNA analyses or used immediately for lipolysis assays.

Cell Culture and Isolation of Lipid Droplets—3T3-L1 cells were cultured and differentiated as described previously (6). Accumulated neutral lipids were analyzed by direct *in vivo* staining of neutral lipids with Nile Red and fluorescence microscopy. In addition, OP9 mouse stromal cells (kindly provided by Dr. Toru Nakano, Osaka University) were differentiated using insulin-oleate albumin complex (27). For isolation of LD, 3T3-L1 adipocytes at different days of differentiation were scraped into 1 ml of cold water, and the lysate was layered on a 0.25 m Tris, pH 7.4, 25 mM KCl, 5 mM MgCl₂ as described previously (6).

Precursor-Product Experiments and Quantitation of Labeled PL—The following radioabeled precursors were used: [1,2,3-14C]ethanolamine hydrochloride (E-2388; Sigma) (55 mCi/mmole); i-[G-3H]serine (NET248; PerkinElmer Life Sciences) (24.6 Ci/mmole); and [1,1-14C]dimethyl ethanolamine (ARC1626; American Radiolaabeled Chemicals) (51 mCi/mmole). For 56- to 58-week-old animals, 5 μCi of 14C label (2 Ci/mM) of 14C label (2 Ci/mM) was used. Cells were incubated at 37 °C with radioabeled precursor for 24 h, washed with phosphate-buffered saline, and incubated at 37 °C for an additional 12 or 24 h. Cells cultured on 56-cm² dishes were scraped into 1 ml of distilled water, and three dishes were pooled for isolation of lipid droplets. Lipids from cells cultured on 6- or 24-well plates were directly extracted using hexane/isopropyl alcohol (see below).

Lipid Extraction and TLC Separation of Phospholipids—Lipids from cells on 6-well trays were extracted using two consecutive extractions (30 min each) with 0.5 ml of hexane/isopropyl alcohol (3:2; v/v). Lipids from LD or pellet membrane fractions were extracted as described previously (28). The amount of TG was measured with the Triglyceride FS® kit (DiaSys, Germany), and PC was quantified with Phospholipids FS® kit (DiaSys, Germany). For quantification of phospholipids of OP9 cells, the lipid fractions were dried, solubilized in chloroform/methanol (2:1; v/v), and spotted onto Silica Gel 60 plastic sheets (20 × 20 cm) (Merck). Lipid classes were separated with methanol acetate/isopropyl alcohol/chloroform/methanol/potassium chloride (0.25% in H₂O) (25:25:10:9; v/v) as mobile phase. TLC plates were sprinkled with a primuline (206865, Sigma) aerosol spray...
Phosphatidylethanolamine and Lipid Droplet Biogenesis

(28), and lipids were visualized with a UV lamp (366 nm) and scraped for quantification by gas chromatography.

Gas Chromatographic Quantitation of Phospholipids—Fatty acid composition of individual PL of OP9 cells was performed by gas chromatography. Bands corresponding to individual PL were scraped from thin layer chromatography plates under argon and subjected to direct, in situ trans-esterification with BF$_3$/MeOH in the presence of the thin layer adsorbent (29). Pentadecanoic acid (10 µg in toluene) was added as internal standard, and trans-esterification was performed in the presence of 1 ml of toluene and 1 ml of BF$_3$/MeOH (20%) at 110 °C for 60 min. Excess BF$_3$ was eliminated by the addition of 2 ml of water, and fatty acid methyl esters were extracted into 200 µl of hexane. Two µl of organic phase were analyzed by gas-liquid chromatography on a CP-FFAP CB column (25 m, 0.32 mm inner diameter) with a Hewlett Packard (HP) 5890 or Thermo Scientific Trace GC ultra gas chromatograph equipped with a flame ionization detector and a split/splitless injector. Helium was used as carrier gas; the split ratio was ~10:1. The initial temperature (150 °C) increased to 215 °C at 2.5 °C/min with a hold at 215 °C for 10 min, and the temperature was then increased to 230 °C at 10 °C/min with a hold at this temperature for 12.5 min. Detector temperature was 300 °C, and the injector temperature was 300 °C. Concentrations of fatty acids were calculated by comparison of peak areas with internal standard (30).

HPLC and Mass Spectrometry—Dried lipid extracts from 3T3-L1 cells were resuspended in 100 µl of CHCl$_3$/MeOH (1:1, v/v) containing PC 12:0/13:0, PC 17:0/20:4, PC 17:0/14:1, PE 12:0/13:0, PE 17:0/20:4, PE 17:0/14:1, phosphatidylinositol 12:0/13:0, phosphatidylinositol 17:0/20:4, phosphatidylinositol 21:0/22:6, PS 21:0/22:6, PS 17:0/20:4, and PS 17:0/14:1 at 100 pmol each as internal standards. Chromatographic separation of lipids was performed by an Accela HPLC (Thermo Scientific) on a Thermo Hypersil GOLD C18, 100 × 1 mm, 1.9-µm column. Solvent A was an aqueous solution of 1% ammonium acetate and 0.1% formic acid, and solvent B was acetonitrile/2-propanol (5:2, v/v) supplemented with 1% ammonium acetate and 0.1% formic acid, respectively. The gradient was run from 35 to 70% solvent B for 4 min and then to 100% B for an additional 16 min with a subsequent hold at 100% for 10 min. The flow rate was 250 µl/min. PL species were determined by a TSQ Quantum Ultra (Thermo Scientific) triple quadrupole instrument in positive and negative ESI mode. The spray voltage was set to 2000 V (−5000 V) and capillary voltage to 35 V (−35 V). PC, PE, and PS species were detected in positive ionization by precursor ion scan on m/z 184 at 35 eV, neutral loss scan at M$_r$ 141 at 25 eV, and neutral loss scan on M$_r$ 185 at 25 eV, respectively, as described previously (31). Molar values were converted to PL mass values using 1-palmitoyl-2-oleoyl-sn-2-glycero-3-phosphocholine (M$_r$ 761.0 for PC), 1-palmitoyl-2-oleoyl-sn-2-glycero-3-phosphoethanolamine (M$_r$ 718.0 for PE), and 1-palmitoyl-2-oleoyl-sn-2-glycero-3-phospho-L-serine (M$_r$ 784.0 for PS) as conversion factors.

RNA Silencing—siRNA (Qiagen, Germany) for PEMT (NM 013003.1) (32) was cloned in the vector pCI (Promega). PEMT cDNA (87 bp upstream of start codon plus 684-bp coding region, lacking the stop codon) was amplified by PCR using primers introducing EcoRI (5’-GGCGCGTCTCTGATGACTTCCTA) and CTB (primer assay QT00111433) were normalized to mouse GAPDH (primer assay QT00162540), PSD (primer assay QT00162071), and CTB (primer assay QT00111433) were normalized to mouse GAPDH (primer assay QT01658692) and expressed as relative ratio (ΔΔCT). All samples were assayed in duplicate, and average values were used for quantification.

PMT-EGFP—Full-length rat PMT cDNA (NCBI Reference Sequence NM_013003.1) (32) was cloned in the vector pCI (Promega). PMT cDNA (87 bp upstream of start codon plus 684-bp coding region, lacking the stop codon) was amplified by PCR using primers introducing EcoRI (5’-GGCGCGTCTCTGATGACTTCCTA) and Ncol (5’-GATGGCATGCGTCTCTTGGTGCTGC-3’) sites at the 5’ and 3’ ends, respectively. PCR was performed with a thermal cycler (Mastercycler...
gradient; Eppendorf) at an annealing temperature of 68 °C (20 s), denaturation at 94 °C (10 s), and elongation at 72 °C (40 s) for 25 cycles. The PEMT fragment was cloned into vector pRES2-DsRed2 (Clontech) together with an EGFP cDNA fragment. EGFP was excised from vector pEGFP-1 (Clontech) and replaced DsRed2 at NcoI and NotI sites. In the final construct, the fusion site of the peptide was serine (last amino acid of PEMT)-alanine-methionine (first amino acid of EGFP). Transient transfections of 3T3-L1 and OP9 cells, grown on glass coverslips in 6-well plates, using Metafectene (Biontex) were performed according to the manufacturer's protocol. In brief, 3 μg of plasmid-DNA and 5 μl of Metafectene transfection reagent (Biontex, Germany), diluted with 50 μl of serum-free cell medium each, were incubated at room temperature for 20 min. 10–20 μl of the mixture were added directly to the cell culture medium 1 h after a routine medium change. After 6 h of incubation with the plasmid-Metafectene complex, the medium was changed again. Fluorescence microscopy was performed 18–24 h post-transfections.

PEMT and Protein Assays—Protein content was determined with the Coomassie Blue protein protocol from Bio-Rad with bovine serum albumin as a standard or the BCA reagent (Pierce). PEMT assays were performed as described previously (33) using phosphatidylmonomethylethanolamine as a substrate (Avanti Polar Lipids).

Immunoblotting—Epididymal fat pads and liver were sonicated, and indicated amounts of protein were separated by electrophoresis on a 10–12.5% SDS-PAGE. Proteins were transferred to Immobilon PVDF (Millipore) membranes and probed with either rabbit anti-rat PEMT (32), rabbit anti-bovine protein-disulfide isomerase (SPA-890, StressGen), or guinea pig anti-perilipin antibody (PROGEN, Germany). Secondary antibodies were goat anti-rabbit or rabbit anti-guinea pig IgG, conjugated to horseradish peroxidase. Immunoreactive bands were visualized by enhanced chemiluminescence (GE Healthcare) (6).

Fluorescence Microscopy—Using a customized array confocal laser scanning fluorescence microscope, transiently transfected cells were alternatively illuminated at 488 and 514 nm with a 150-milliwatt argon laser (34) to excite PEMT-EGFP and Nile Red, respectively. Emission was detected at 535 nm for PEMT-EGFP and at 570 nm for Nile Red (535/30 and 570/30, respectively). For three-dimensional reconstruction, images were taken every 100 nm with a ×100 objective (a Plan-Fluar ×100/1.45 oil objective from Zeiss Microsystems, Germany) alternately for PEMT-EGFP and Nile Red starting at the bottom of the cell as described previously (34).

Lipolysis Assays and Quantification of Nonesterified Fatty Acids—Wild type and Pemt−/− mice (chow diet) were sacrificed and tissue samples surgically excised from visceral white adipose tissue (WAT) using three visceral fat samples from each of six animals of each genotype. Fat pads (~2–3 mg) were washed several times with phosphate-buffered saline and incubated in Dulbecco's modified Eagle's medium (Invitrogen) containing 2% defatted BSA (Sigma) (35) either in the presence or absence of 1 μM PIA ([(R)-PIA, N6-[(2-phenylisopropyl)adenosine] (Sigma) or 0.5 units/ml adenosine deaminase (ADA) (Calbiochem) at 37 °C for 180 min. Aliquots of the medium were taken at several time points and analyzed for fatty acid content using commercial kits (NEFA C, Wako Chemicals, Germany). After 180 min, fat pads were transferred into fresh medium containing 1 μM isoproterenol (Sigma) and either 1 μM PIA or 0.5 units of ADA and incubated for another 60 min at 37 °C. Thereafter, aliquots of the medium were removed and analyzed for fatty acid content. Fat pads were delipidated in chloroform/methanol/acetic acid (66:33:1; v/v) for 1 h, and lysed in 0.3 N NaOH containing 0.1% SDS. Protein measurements were performed using the BCA reagent (Pierce). Values were normalized to protein content of the corresponding tissue piece (36). In 3T3-L1 cells, lipolysis was measured 72 h after transfection with siRNA.

Fat Cell Morphometry and Statistical Analyses—Visceral fat pads of Pemt+/+ and Pemt−/− mice (n = 4) that had been fed either a high fat diet or a chow diet were fixed in 4% buffered formaldehyde and embedded in paraffin. Hematoxylin- and eosin-stained sections (4 μm thick) were scanned using ScanScope XT/Aperio ImageScope software (Aperio). At least four different locations of visceral fat were identified using low magnification of the scanned slides. ImageJ software (37) was used to measure cell size at ×400 magnification. At least 500 fat cells were measured manually from each slide in duplicate. The following number of cells was measured: Pemt+/+ /chow, 1243; Pemt−/−/chow, 2506; Pemt+/+ /high fat, 2624; Pemt−/−/high fat, 2238. Statistical analysis was performed using SPSS software, and a Kruskal–Wallis test was used to compare fat cell size distribution among experimental groups.

Statistical Analyses—Experiments were performed at least three times, and values are expressed as mean ± S.D. Statistical significance was determined by Student's unpaired t test (two-tailed). Group differences were considered significant for p < 0.05 (*); p < 0.01 (**); p < 0.001 (***)

RESULTS

Phospholipid Pattern Changes Profoundly at the Onset of Adipocyte Differentiation—An earlier study (11) demonstrated that among the different PL classes, 32P label was preferentially incorporated into PC and PE during differentiation of 3T3-L1 cells. Because the significance of this finding was unclear, we determined whether or not the amounts of PC, PE, and PS change during adipocyte differentiation. We quantified the amounts of these PL in two well established adipogenic cell lines, 3T3-L1 (Fig. 1, A–D) and OP9 (Fig. 1, E and F). In 3T3-L1 cells, the absolute amounts of the three PL, PC, PE, and PS, as well as that of protein progressively increased over 2 weeks of differentiation (Fig. 1A). The most pronounced change in PL profile was observed between day 0 (confluence) and day 5. Within this time frame, PC increased from 21.4 ± 0.5 to 89.5 ± 2.4 (p < 0.001), PE from 3.3 ± 0.5 to 27.3 (p < 0.001), and PS from 2.6 to 6.2 μg/dish (p < 0.01). When normalized on the cell protein content, no significant changes were observed in the PS fraction (18.3 ± 3.2 μg/mg protein at confluency and 19.1 ± 1.3 at day 13) (Fig. 1B). In contrast, the normalized PC content increased from 153.3 ± 3.4 μg/mg protein at confluency to 238.7 ± 6.5 at day 5, and the raise in the normalized PE value at onset of differentiation was even more pronounced (23.3 ± 3.6
versus 72.9 ± 5.2 µg/mg protein). Virtually no changes in the normalized PC values were observed between day 5 and day 13, although that of PE still increased to reach a plateau at day 9 (at 103.4 ± 11.7 versus 111.7 ± 5.0 at day 13). In the time frame between confluency and day 5, the relative proportion of PE (Fig. 1C) increased from 12.0 (day 0) to 22.2% of the total cellular PL mass (day 5), although that of PC decreased from 78.7 to 72.7% and that of PS from 9.4 to 5.0%. In later stages of differentiation (days 9 and 13), the relative PS proportion remained essentially unchanged, although that of PC slightly decreased to 68.1 (day 9) and 65.8% (day 13). Remarkably, these changes in PL abundance at onset of adipocyte differentiation caused a profound reduction of the PC/PE molar ratio (Fig. 1D) from 6.18 ± 0.58 (confluent cells) to 3.08 ± 0.21 at day 5. This PC/PE ratio further declined via 2.37 ± 0.27 at day 9 to 2.12 ± 0.10 at day 13. In OP9 cells, the PC/PE ratio (2.75 ± 0.05 at confluency) was lower than in 3T3-L1 cells, but it also declined at onset of differentiation (day 1) (1.91 ± 0.05) (Fig. 1F). Incorporation of [3H]serine into PS increased between confluency (16.7 ±
LD Monolayer, Compared with Cellular Membranes, Contains PC Preferentially Derived via PS—Considering that PEMT may be associated with LD or localized in their close proximity, we next determined if PC, derived via PS and PE, was enriched in LD compared with cell membranes (Fig. 2D). 3T3-L1 cells were incubated with [3H]serine for 24 h at day 6, and LD were isolated. At this stage, LD are already microscopically visible. The majority of label was present in both LD-localized (54.8 ± 9.2) and membrane-localized PS (51.1 ± 5.6%). Incorporation of [3H]serine into sphingomyelin and lyso-PE was <5% of total incorporation and was not significantly different between LD and membranes (data not shown). In LD, the proportion of incorporated [3H]serine into PC was significantly higher (22.3 ± 3.2%) than in the membrane fraction (15.4 ± 0.0%) (p < 0.01), indicating that [3H]serine-derived PC was preferentially incorporated into LD compared with cell membranes. Taken together, these findings suggest that PE methylation occurs in proximity to sites of LD formation in adipocytes and allows potential interaction with PS-derived PE.

High Fat Challenge Induces PEMT Expression in Adipose Tissue—Recent results have demonstrated that PEMT expression in 3T3-L1 adipocytes gradually increases in a time-dependent manner during adipocyte differentiation, starting at day 5 and reaching a maximum at day 7 (40). Consistent with these findings, Fig. 3, A and B, demonstrates that PEMT protein and activity are undetectable until approximately day 4 and reach a plateau in mature adipocytes (day 6/7). To investigate whether this finding from cultured cells reflects the in vivo situation, we determined if PEMT is expressed in WAT of mature control mice. Immunoblotting experiments (32) demonstrated that

![Diagram](image-url)
PEMT protein is expressed in mouse WAT (Fig. 3C) at ~20% of the level in mouse liver. Expression of PEMT was further examined in another murine adipogenic cell line, OP9, as well as in human WAT. PEMT mRNA expression increased in OP9 cells at day 3 of adipocyte differentiation (Fig. 3D) at which time OP9 cells have differentiated into mature adipocytes with similar TG accumulation as in 3T3-L1 adipocytes at day 9. Notably, a faint amplicon representing PEMT expression was also observed in human WAT. Because the PEMT expression profile in differentiating adipocytes indicated an induction of enzyme expression during TG accumulation, we tested this possibility in vivo in mice fed a high fat diet for 3 weeks. Expression of PEMT mRNA was substantially increased in WAT under these conditions (Fig. 3E). The correlation of intracellular TG deposition with PEMT expression raised the possibility that PEMT is directly or indirectly involved in LD biogenesis.

PEMT-EGFP Localizes with ER and the Periphery of LD—Because our results suggested that PE and its modifying enzyme, PEMT, might have a functional role during the biogenesis of intracellular LD, we studied the intracellular distribution of PEMT in differentiating adipocytes. An expression plasmid was constructed that contained PEMT cDNA fused to EGFP to allow visualization of the protein by fluorescence microscopy. 3T3-L1 cells were transfected with plasmid at day 7 (Fig. 4, A and B) and OP9 cells at day 2 of differentiation (Fig. 4, C and D). LD were visualized by Nile Red staining 48 h after transfection. Weak PEMT-EGFP staining was detected in the plasma membranes of transfected cells. However, most PEMT-EGFP fluorescence localized to intracellular membranes that most likely represented ER and MAM regions (41). Remarkably, PEMT-EGFP fluorescence was abundant at the periphery of LD of 3T3-L1 adipocytes (Fig. 4, A, B, and E) and OP9 cells (Fig. 4, C and D). A three-dimensional reconstruction of 3T3-L1 adipocytes...
Phosphatidylethanolamine and Lipid Droplet Biogenesis

FIGURE 5. Absence or attenuation of PEMT activity increases basal lipolysis in cultured adipocytes and in vivo. 3T3-L1 adipocytes (A–C and E) (day 5 or 6 of differentiation) were transfected with either siRNA specific for PEMT (siPEMT) or control siRNA (siCon.) as indicated under “Experimental Procedures.” Cells were analyzed 72 h later. A, PEMT cDNA level was normalized to GAPDH, with control siRNA set at 1.0 (n = 3). B, quantitation of release of unesterified fatty acids (FA) from siPEMT cells into cell medium compared with cells transfected with control siRNA set at 100% (n = 3). C, fatty acid release from mouse visceral adipose tissue under nonstimulated lipolysis conditions. Lipolysis assay using fat pads of wild type (WT) and Pemt KO/ADA mice was performed as indicated under “Experimental Procedures” for 180 min without further compounds (--) or in the presence of PIA or ADA, and fatty acids released into the medium were quantitated. Data are derived from six WT and six Pemt KO/ADA mice; p < 0.001. E, perilipin A immunoblot. 3T3-L1 cells were transfected with PEMT siRNA or control RNA at day 8 and harvested at day 11, and lipid droplets were isolated. 100 μg of proteins per lane were resolved on a 10% SDS-PAGE, and proteins were transferred to Immobilon PVDF membranes and immunoblotted with perilipin antibody. Immunoreactive bands were visualized by enhanced chemiluminescence. Protein extracts from preadipocytes (PA) and from WAT of wild type (WT) and Perilipin A−/− (Plin−/) animals were loaded as positive and negative controls, respectively. P., cell pellet fraction.

Absence of PEMT Activity Increases Basal Lipolysis in 3T3-L1 Adipocytes—To investigate the biological significance of PEMT activity for PL synthesis in adipocytes, we investigated the stability of LD when PEMT expression and activity (data not shown) were attenuated. 3T3-L1 cells (day 8 of differentiation) were transfected with PEMT siRNA or control siRNA via electroporation. qPCR analysis demonstrated that PEMT expression was reduced by ~90% (p < 0.001) in 3T3-L1 adipocytes transfected with PEMT siRNA compared with control siRNA (Fig. 5A). PEMT siRNA was without effect on expression of PS decarboxylase (data not shown). Strikingly, the level of TG in 3T3-L1 adipocytes was significantly diminished by ~33% (p < 0.05) by attenuation of PEMT expression (Fig. 5B). The PC content was slightly, but not significantly, reduced. Concomitantly, PEMT RNAi caused a 2-fold higher release of fatty acids from adipocytes (p < 0.01), indicative of increased basal (non-stimulated) lipolysis (Fig. 5C). To test whether PEMT deficiency causes a comparable phenotype in vivo, we performed a similar experiment with WAT from Pemt−/− mice and Pemt+/+ littermates. Under nonstimulated conditions, release of fatty acids from fat pads after 180 min was similar in WT and Pemt−/− animals (Fig. 5D). Notably, addition of PIA, an adenosine A1 receptor agonist (44), significantly (p < 0.05) confined fatty acid release from WAT in WT but not in Pemt−/− mice. However, whereas reduction of adenosine concentrations by ADA caused an ~3-fold increase in lipolysis in fat pads of WT animals (in the absence of isoproterenol), no response was seen in Pemt−/− mice. The difference in fatty acid release between the two genotypes under unstimulated/ADA conditions was statistically highly significant (p < 0.001). When fat pads were transferred to media where lipolysis was stimulated (each containing isoproterenol ≥ PIA or ADA), no significant differences were observed between both genotypes (WT/−, 516 ± 193; WT/PIA, 584 ± 164; WT/ADA, 699 ± 217; KO/−, 556 ± 248; KO/PIA, 565 ± 198; KO/ADA, 621 ± 162 nmol of fatty acids/mg of protein). Taken together, our data indicate that PEMT deficiency enhances basal lipolytic activity (in the presence of PIA) in mouse WAT moderately and in cultured 3T3-L1 adipocytes by ~2-fold, suggesting a role for PEMT in stabilizing adipocyte LD. We reasoned that the association of the LD monolayer with perilipin A, the major LD protein con-
Phosphatidylethanolamine and Lipid Droplet Biogenesis

FIGURE 6. PEMT-KO-mice are resistant to high fat-induced fat cell hypertrophy. A, analysis of fat cell size in visceral fat from Pemt−/− mice (KO) and Pemt+/+ (WT) mice fed a high fat diet (HF) for 3 weeks compared with visceral fat from mice fed a normal chow diet (four mice per subgroup) was performed as described under “Experimental Procedures.” The Kruskal-Wallis test was used to compare fat cell size distribution among experimental groups. Results are presented as box plots with values for medians; the 25th and 75th percentiles (perc.) are indicated. B, representative pictures of adipose tissue sections from Pemt−/− mice (KO) and Pemt+/+ (WT) mice fed chow or the high fat diet. Bar, 25 μm.

Pemt−/− mice were in a similar range (340–390 μm²) for all experimental conditions except for adipose tissue from Pemt+/+ mice fed the high fat diet (~812 μm²). In the 75th percentile, fat cells from both Pemt−/− and Pemt+/+ mice fed the high fat diet (~1000 μm²) were significantly larger than from mice of both genotypes fed the chow diet (~750 μm²). The difference in fat cell size between Pemt−/− and Pemt+/+ mice fed the high fat diet was also statistically significant (p < 0.001). Thus, PEMT-deficient mice are resistant to high fat diet-induced hypertrophy of adipocytes in WAT. A similar protection against obesity was observed in Pemt−/− mice fed a high fat diet for 10 weeks (46).

FIGURE 7. Regulatory loop between PE-synthesizing and -converting enzymes. RNA was isolated from 3T3-L1 cells at days 0, 5, and 9 (A) and from mouse liver and BAT (B) and analyzed by RT-PCR and additionally by qPCR. Values derived from qPCR represent means ± S.D. (n = 4). Numbers below the amplicons indicate ΔΔCT values. B, lanes 1 and 2, Pemt+/+; lanes 3 and 4, Pemt−/− mice (all mice were 5 days old). PSS1, phosphatidylserine synthase-1; PSS2, phosphatidylerine synthase-2; CTβ, CTP-phosphocholine cytidylyltransferase β.

Regulatory Loop between PE-synthesizing and PE-converting Enzymes—Because LD stability was reduced in both the white adipose tissue of Pemt−/− mice and in 3T3-L1 adipocytes with attenuated PEMT expression, we investigated a potential cross-talk between PE-converting (i.e. PEMT-mediated) and PE-producing (i.e. PS synthase-1 and PS decarboxylase-mediated) processes. First, expressions of PEMT, PS synthase-1, PS synthase-2, and PS decarboxylase were determined during differentiation of 3T3-L1 preadipocytes to adipocytes (Fig. 7A). In line with a recent report (40), PEMT mRNA levels increased markedly between days 5 and 9 of 3T3-L1 differentiation, whereas the signal was virtually absent from undifferentiated cells (day 0). Expression of PS synthase-1 mRNA, which produces PS by exchange of choline in PC for serine (47), was
unchanged at day 5 and was moderately higher at day 9. The mRNA encoding PS synthase-2, which produces PS by exchange of ethanolamine of PE for serine (48), was increased at day 9. Notably, however, PS decarboxylase mRNA increased at day 5. The expression of the mRNA encoding CTP:phosphocholine cytidylyltransferase β (CTB), an enzyme of the CDP-choline pathway, was moderately increased during 3T3-L1 differentiation until day 9.

Given the critical role that PEMT appears to play in LD stability, we assessed mRNA levels of these PS-metabolizing enzymes in liver and adipose tissue of 5-day-old Permt+/+ and Permt−/− mice (before weaning the mice consume high fat milk) (Fig. 7B). Because WAT is virtually absent in pups of this age, brown adipose tissue (BAT) was examined. The level of PS decarboxylase mRNA was similar in Permt+/+ and Permt−/− mice (1.2-fold higher level in liver of Permt−/− mice compared with Permt+/+ mice, and 0.8-fold lower level in BAT). However, PS synthase-1 mRNA expression was significantly reduced by PEMT deficiency in both the liver (50%) and BAT (55%). PS synthase-2 mRNA levels in the liver were only slightly (20%) lower in Permt−/− mice compared with Permt+/+ mice but were 55% lower in BAT. Together, these results suggest a regulatory loop between PE-consuming and -synthesizing processes during LD formation in adipose tissue.

DISCUSSION

Fat cells constitute the major cell type of adipose tissue and represent under physiological conditions 10–20% of total body mass in human. LD contain both surface proteins and lipids. The best characterized proteins of the LD shell are perilipin, adipose differentiation-related protein, and tail-interacting protein of 47 kilodaltons (TIP47), the so-called PAT family members (7, 49–51).

Comparatively little is known about the nature of the LD monolayer, and only sparse information is available regarding the biological significance of specific monolayer PL subspecies. PE is the second most abundant PL in the LD fraction of adipocytes (12). PE is a conical lipid and is therefore compatible with induction of membrane curvatures (16). In mammals, the conversion of PE to PC is catalyzed by PEMT (18). Previous studies have shown that PEMT-derived PC represent quite distinct molecular PL subspecies (52); they contain preferentially polyunsaturated fatty acids in the sn-2 position. Recently, PEMT expression in differentiated adipocytes has been demonstrated (40).

To define, whether changes in the PL pattern of aminophospholipid occur during the differentiation process of adipocyte cell lines, we quantitated the masses of glycerol-PL of fat cells at different stages of differentiation. A highly significant and profound decrease in the PC/PE ratios at the start of differentiation not only of 3T3-L1 cells, but also of OP9 cells, indicated constitutive changes of PC, PE, and PS. The early phase of differentiation of 3T3-L1 adipocytes was also characterized by a relative decrease in PC, whereas the total cellular PE content increased in absolute and relative terms, indicative of very active PL remodeling events during this phase. Although we observed in 3T3-L1 cells a gradual decrease in the PC/PE ratio during the course of differentiation, an intermediate peak at day 3 emerged in OP9 cells, indicating that the differentiation modes of the two cell line are not identical. To our knowledge, such a shift in the overall cellular PL pattern as a function of the metabolic state of mammalian cells has no precedent in the current literature.

Aiming to explore the pathways responsible to meet this dramatic demand for PE at the start of adipogenesis, we used radioactive headgroup precursors to trace their incorporation into the corresponding PL. Our results demonstrate that an ethanolamine precursor was readily incorporated into PE, but not further converted into PC. The low ability of fat cells to process significant amounts of labeled ethanolamine indicates metabolic inaccessibility of PE, produced via the Kennedy pathway. Hence, the decarboxylation of PS in mitochondrial membranes (53) might play a role for providing PE during the onset of LD biogenesis. Data from this study support this hypothesis. Using a serine precursor for PL synthesis in 3T3-L1 cells, the label was detected in PS, PE, PC, and sphingomyelin. Labeled PC (produced via PS and PE) increased at day 0 to day 2, most likely at the expense of PE, the amount of which decreased during this period. Label incorporation into PS increased ~2-fold from day 0 to day 7. At day 7, the amount of labeled PC was only half that of day 2, indicating that conversion of newly produced (serine-derived) PE was attenuated, presumably because of competition with the intracellular pool of unlabeled PE at this stage of differentiation (see Fig. 1). This might explain why intracellular levels of labeled PE (derived from PS) also remained high at day 7. Although the possibility exists that serine incorporation into PL reflects headgroup as well as serine-derived fatty acids, addition of this precursor during onset of LD growth in 3T3 adipocytes demonstrated a broad spectrum of PL interconversions.

The combined view of our data with the [14C]serine precursor indicated the following: (i) PE was produced from PS by the mitochondrial PSD reaction; (ii) the conversion of PE to PC via PEMT occurred subsequently, and (iii) this methylation process is essentially restricted to PE produced by the PSD pathway in mitochondria. The serine-derived PL pattern indicated that production of PC from PS-derived PE was significantly higher in the LD monolayer than in the cell pellet fraction.

Our finding that PEMT activity emerges around day 4/5 in 3T3-L1 adipocytes is in agreement with recent data on expression of PEMT in these cells (40). We have further established that an increase in PEMT mRNA expression during differentiation was not only observed in 3T3-L1 (40) but also in murine OP9 adipocytes. In addition, the PEMT mRNA signal was also visible in tissue samples from mouse and human WAT, which indicates that PEMT is expressed in differentiating/differentiated fat cells. That PEMT expression increases in WAT samples of mice on a high fat diet in comparison with those on a chow diet is striking and points toward a specific requirement of PEMT during LD growth and processing.

PEMT is an integral membrane protein localized in the PL bilayer of ER or MAM (54, 55) and represents a marker protein for MAM (32). This topology makes it unlikely to integrate into monolayered structures. However, mechanisms of how such proteins may become otherwise integrated into either a hairpin-monomer shell during LD birth (56) or in egg cup-like
structures (57) have been proposed recently. Remarkably, previous studies have demonstrated that PEMT protein was abundant in a LD fraction isolated from rat liver cells, indicating strong association of ER/MAM preparations with LD (58). It is important to note that also caveolin, a membrane protein, has previously been identified as a LD-associated protein (3, 59).

Caveolin

Adipocytes form only small LD, and the LD monolayer contains less PS and lyso-PL (60). Our experiments using PEMT-EGFP fluorescence microscopy and three-dimensional reconstruction clearly visualized abundance of PEMT either directly on, or in close vicinity to LD, and at sites representing ER/MAM regions. Taken together, our data indicated the presence of PEMT in intracellular membranes, presumably at membrane contact sites (43, 61) closely adjoining or wrapping the LD monolayer. In the absence of PEMT from mouse adipose tissue, the PSS1 pathways is attenuated. CT, CTP:phosphocholine cytidylyltransferase; DAG, diacylglycerol; EA, ethanolamine; ET, CTP:phosphoethanolamine cytidylyltransferase; SS1, phosphatidylserine synthase-1.

Because of the presumed role of PEMT for LD growth and processing, we investigated potential effects on LD stability, when PEMT activity was attenuated in 3T3-L1 adipocytes or completely absent from fat cells of PEMT-KO mice. In differentiated adipocytes, in which PEMT expression was down-regulated by ~90%, the TG value decreased significantly by about one-third, and the overall PC content dropped moderately. This is most likely due to (i) defective synthesis of PC from PE via methylation and (ii) consumption of residual PC by the PSS1 reaction to generate PS. Therefore, attenuation of PE conversion had significant impact on LD processing.

Adipocytes express adenosine A1 receptors (62) that effectively suppress adenylyl cyclase, thereby inhibiting catecholamine-mediated triglyceride hydrolysis (63). Previous results suggested that adenosine-receptor agonists (such as PIA) effectively reduce the levels of both plasma triglycerides and unesterified fatty acids when infused into rats (63). Our results emphasize that 3T3-L1 adipocytes with a down-regulated PEMT gene exhibit considerably increased basal lipolysis, and fat pads from Pemt^{−/−} mice show a moderate increase in basal lipolysis in comparison with those of WT animals. Intriguingly, relief of the adenosine-mediated lipolysis block-

FIGURE 8. Proposed interconnection between PE synthesis and conversion (PL interconversion triad) during LD biosynthesis. PE represent conically shaped PL molecules and are required for initiation of membrane curvatures in LD sprouts from the outer ER monolayer during early adipogenesis. Compartmentalization of PE produced via the CDP-ethanolamine pathway (i.e. ER resident) results in unavailability of PE for further conversion by the enzyme PEMT during LD biosynthesis. Rather, PE is preferentially produced via PS at onset of differentiation (1, PE synthesis phase; upper panel). This PSS1-mediated reaction requires serine and ER resident PC as substrates. PS is then translocated to mitochondria, where it is decarboxylated by PSD, resulting in PE. This concerted action of PSS1/PSD shifts PE into the MAM/LD compartment, which allows subsequent methylation by PEMT (2, PE conversion phase; lower panel). The resulting serine-derived PC is finally a component of the LD monolayer. In the absence of PEMT from mouse adipose tissue, the PSS1 pathways is attenuated. CT, CTP:phosphocholine cytidylyltransferase; DAG, diacylglycerol; EA, ethanolamine; ET, CTP:phosphoethanolamine cytidylyltransferase; SS1, phosphatidylserine synthase-1.
ade was significantly attenuated in fat pads of Pemt−/− in comparison with WT mice, when adenosine was removed by ADA (64). One possible interpretation is that PEMT knock-out animals developed desensitization (tolerance) against adenosine signaling, and therefore relief of the adenosine-mediated lipolysis blockade by adenosine-degrading compounds (63) was ineffective. However, characterization of details of this mechanism is ongoing and beyond the scope of this study.

Previous studies have demonstrated that perilipin A restricts the access of intracellular lipases to the LD, thereby suppressing the rate of basal lipolysis under adipogenic conditions (65). Our finding of increased basal lipolysis under PEMT knockdown conditions, which correlates with decreased perilipin A association with LD, is in line with reports on the phenotype of perilipin null mice (66, 67). These animals have greatly diminished WAT stores and show constitutive basal lipolysis in adipocytes. In summary, our observations point toward a pivotal role of PEMT in maintaining a “stable” LD phenotype.

Reasoning that the absence of PEMT might cause a WAT phenotype, PEMT-KO mice and WT littermates were fed either normal chow or a high fat diet for 3 weeks. The results from this experiment demonstrated that PEMT-KO mice are resistant to high fat diet-induced fat cell hypertrophy. Their fat cell diameters remained significantly smaller than those of WT animals developed desensitization (tolerance) against adenosine signaling, and therefore relief of the adenosine-mediated lipolysis blockade by adenosine-degrading compounds (63) was ineffective. However, characterization of details of this mechanism is ongoing and beyond the scope of this study.

Previous studies have demonstrated that perilipin A restricts the access of intracellular lipases to the LD, thereby suppressing the rate of basal lipolysis under adipogenic conditions (65). Our finding of increased basal lipolysis under PEMT knockdown conditions, which correlates with decreased perilipin A association with LD, is in line with reports on the phenotype of perilipin null mice (66, 67). These animals have greatly diminished WAT stores and show constitutive basal lipolysis in adipocytes. In summary, our observations point toward a pivotal role of PEMT in maintaining a “stable” LD phenotype.

Reasoning that the absence of PEMT might cause a WAT phenotype, PEMT-KO mice and WT littermates were fed either normal chow or a high fat diet for 3 weeks. The results from this experiment demonstrated that PEMT-KO mice are resistant to high fat diet-induced fat cell hypertrophy. Their fat cell diameters remained significantly smaller than those of WT animals developed desensitization (tolerance) against adenosine signaling, and therefore relief of the adenosine-mediated lipolysis blockade by adenosine-degrading compounds (63) was ineffective. However, characterization of details of this mechanism is ongoing and beyond the scope of this study.

Previous studies have demonstrated that perilipin A restricts the access of intracellular lipases to the LD, thereby suppressing the rate of basal lipolysis under adipogenic conditions (65). Our finding of increased basal lipolysis under PEMT knockdown conditions, which correlates with decreased perilipin A association with LD, is in line with reports on the phenotype of perilipin null mice (66, 67). These animals have greatly diminished WAT stores and show constitutive basal lipolysis in adipocytes. In summary, our observations point toward a pivotal role of PEMT in maintaining a “stable” LD phenotype.
Phosphatidylethanolamine and Lipid Droplet Biogenesis

(1997) Proc. Natl. Acad. Sci. U.S.A. 94, 12880–12885

26. Schrader, M. (2001) J. Histochem. Cytochem. 49, 1421–1429

27. Wolins, N. E., Quaynor, B. K., Skinner, J. R., Tzekov, A., Park, C., Choi, K., and Bickel, P. E. (2006) J. Lipid Res. 47, 450–460

28. Bligh, E. G., and Dyer, W. J. (1959) Can. J. Biochem. Physiol. 37, 911–917

29. Sattler, W., Reicher, H., Ramos, P., Panzenboeck, U., Hayn, M., Esterbauer, H., Male, E., and Kostner, G. M. (1996) Lipids 31, 1302–1310

30. Karim, M., Jackson, P., and Jackowski, S. (2003) Biochim. Biophys. Acta 1633, 1–12

31. Brügger, B., Erben, G., Sandhoff, R., and Lehmann, W. D. (1997) Proc. Natl. Acad. Sci. U.S.A. 94, 2339–2344

32. Cui, Z., Vance, J. E., Chen, M. H., Voelker, D. R., and Vance, D. E. (1993) J. Biol. Chem. 268, 16655–16663

33. Ridgway, N. D., and Vance, D. E. (1992) Methods Enzymol. 209, 366–374

34. Trenker, M., Malli, R., Fertschai, I., Levak-Frank, S., and Graier, W. F. (2006) Science 312, 98–100

35. Zimmermann, R., Strauss, J. G., Haemmerle, G., Schoiswohl, G., Birner-Gruenberger, R., Riederer, M., Lass, A., Neuberger, G., Eisenaber, F., Hermetter, A., and Zechner, R. (2004) Science 306, 1383–1386

36. Haemmerle, G., Lass, A., Zimmermann, R., Gorkiewicz, G., Meyer, C., Rozman, J., Heldmaier, G., Maier, R., Theuissl, C., Eder, S., Kratky, D., Wagner, E. F., Klingenspor, M., Hoefler, G., and Zechner, R. (2006) Science 312, 734–737

37. Rasband, W. S. (1997–2011) ImageJ, National Institutes of Health, Bethesda, MD

38. Voelker, D. R. (1989) Proc. Natl. Acad. Sci. U.S.A. 86, 9921–9925

39. Voelker, D. R. (1989) J. Biol. Chem. 264, 8019–8025

40. Cole, L. K., and Vance, D. E. (2010) J. Biol. Chem. 285, 11880–11891

41. Vance, J. E. (1990) J. Biol. Chem. 265, 7248–7256

42. Scow, R. O., and Blanchette-Mackie, E. J. (1991) Brain Res. Bull. 27, 487–491

43. Kornmann, B., and Walter, P. (2010) J. Cell Sci. 123, 1389–1393

44. Viswanadha, S., and Londos, C. (2006) J. Lipid Res. 47, 1859–1864

45. Tansey, J. T., Huml, A. M., Vogt, R., Davis, K. E., Jones, J. M., Fraser, K. A., Brasaeelm, D. L., Kimmel, A. R., and Londos, C. (2005) J. Biol. Chem. 278, 8401–8406

46. Jacobs, R. L., Zhao, Y., Koonen, D. P., Sletten, T., Su, B., Lingrell, S., Cao, G., Peake, D. A., Kuo, M. S., Proctor, S. D., Kennedy, B. P., Dyck, J. R., and Vance, D. E. (2010) J. Biol. Chem. 285, 22403–22413

47. Ariketh, D., Nelson, R., and Vance, J. E. (2008) J. Biol. Chem. 283, 12888–12897

48. Steenbergen, R., Nanowski, T. S., Nelson, R., Young, S. G., and Vance, J. E. (2006) Biochim. Biophys. Acta 1761, 313–323

49. Tansey, J. T., Sztalryd, C., Hlavin, E. M., Kimmel, A. R., and Londos, C. (2004) JLBMB Life 56, 379–385

50. Wolins, N. E., Brasaeelm, D. L., and Bickel, P. E. (2006) FEBS Lett. 580, 5484–5491

51. Chang, B. H., and Chan, L. (2007) Am. J. Physiol. Gastrointest. Liver Physiol. 292, G1465–G1468

52. Delong, C. I., Shen, Y. J., Thomas, M. J., and Cui, Z. (1999) J. Biol. Chem. 274, 29683–29688

53. Vance, J. E. (2008) J. Lipid Res. 49, 1377–1387

54. Shields, D. J., Altarejos, J. Y., Wang, X., Agellon, L. B., and Vance, D. E. (2003) J. Biol. Chem. 278, 35826–35836

55. Shields, D. J., Lehner, R., Agellon, L. B., and Vance, D. E. (2003) J. Biol. Chem. 278, 2956–2962

56. Fujimoto, T., Ohsaki, Y., Cheng, J., Suzuki, M., and Shinohara, Y. (2008) Histochem. Cell Biol. 130, 263–279

57. Robenek, H., Hofnagel, O., Buers, I., Robenek, M. J., TROYER, D., and SEVERS, N. J. (2006) J. Cell Sci. 119, 4215–4224

58. Lehner, R., Cui, Z., and Vance, D. E. (1999) Biochem. J. 338, 761–768

59. Ast, O., Ortegren, U., Gustavsson, J., Nystrom, F. H., and Sträffors, P. (2005) J. Biol. Chem. 280, 5–8

60. Blouin, C. M., Le Lay, S., Eberl, A., Kofeler, H. C., Guerrera, I. C., Klein, C., Le Liepvre, X., Lasnier, F., Bourron, O., Gautier, J. F., Ferré, P., Hajd Duc, E., and Dugail, I. (2010) J. Lipid Res. 51, 945–956

61. Levine, T. (2004) Trends Cell Biol. 14, 483–490

62. Barglum, J. D., Vassaux, G., Richelsen, B., Gaillard, D., Darimont, C., Alihaud, G., and Négre, R. (1996) Mol. Cell. Endocrinol. 117, 17–25

63. Hoffman, B. B., Chang, H., Dall’Aglio, E., and Reaven, G. M. (1986) J. Clin. Invest. 78, 185–190

64. Ciruela, F., Albergaria, C., Soriano, A., Cuffi, L., Carbonell, L., Sánchez, S., Gandía, J., and Fernández-Dueñas, V. (2010) Biochim. Biophys. Acta 1798, 9–20

65. Brasaeelm, D. L., Rubin, B., Harten, I. A., Gruia-Gray, J., Kimmel, A. R., and Londos, C. (2000) J. Biol. Chem. 275, 38486–38493

66. Martinez-Botas, J., Anderson, J. B., Tessier, D., Lapillonne, A., Chang, B. H., Quast, M. J., Gorenstein, D., Chen, K. H., and Chan, L. (2000) Nat. Genet. 26, 474–479

67. Tansey, J. T., Sztalryd, C., Gruia-Gray, J., Roush, D. L., Zee, J. V., Gavrilo, O., Reitman, M. L., Deng, C. X., Li, C., Kimmel, A. R., and Londos, C. (2001) Proc. Natl. Acad. Sci. U.S.A. 98, 6494–6499

68. Kast, H. R., Nguyen, C. M., Anisfeld, A. M., Ericsson, J., and Edwards, P. A. (2001) J. Lipid Res. 42, 1266–1272

69. Guo, Y., Walther, T. C., Rao, M., Stuurman, N., Goshima, G., Terayama, K., Wong, J. S., Vale, R. D., Walter, P., and Farese, R. V. (2008) Nature 453, 657–661