Bifunctional Europium Doped SrTiO3 Ceramics with Energy Storage and Photoluminescence

Bingjie Zhong
Southwest University of Science and Technology

Chengyang Zuo
Southwest University of Science and Technology

Chao Yang
Southwest University of Science and Technology

Shilin Yang
Southwest University of Science and Technology

Yun Li
Southwest University of Science and Technology

Hongtao Yu
Southwest University of Science and Technology

Xianhua Wei (✉ weixianhua@swust.edu.cn)
Southwest University of Science and Technology https://orcid.org/0000-0002-9585-4898

Research Article

Keywords: energy storage, photoluminescence, SrTiO3 ceramics, europium doping, bifunctional

Posted Date: July 15th, 2021

DOI: https://doi.org/10.21203/rs.3.rs-703463/v1

License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License

Version of Record: A version of this preprint was published at Journal of Alloys and Compounds on January 1st, 2022. See the published version at https://doi.org/10.1016/j.jallcom.2021.163556.
Bifunctional europium doped SrTiO$_3$ ceramics with energy storage and photoluminescence

Bingjie Zhong, Chengyang Zuo, Chao Yang, Shilin Yang, Yun Li, Hongtao Yu,

Xianhua Wei*

State Key Laboratory of Environment-friendly Energy Materials, Southwest University of Science and Technology, Mianyang 621010, P. R. China

* Corresponding author

Xianhua Wei, Email: weixianhua@swust.edu.cn
Abstract: Rare-earth ion Eu$^{3+}$ was doped into SrTiO$_3$ ceramic to improve its dielectric energy storage properties and act as luminescence centres. Typically, SrTiO$_3$ ceramics doped with 0.2% Eu$^{3+}$ exhibit high breakdown strength up to 354 kV/cm and a relatively high recoverable energy density of 2.13 J/cm3. Compared to those of the undoped sample, the doped ceramic breakdown strength and recoverable energy density are enhanced by about 22% and 58%, respectively. The doping effect can be explained by the inhibition of the long-range movement of carriers. Moreover, the europium doped SrTiO$_3$ ceramic capacitor exhibits an excellent power density of 37 MW/cm3 in an ultrafast discharge time of 25 nanoseconds at 200 kV/cm. Meanwhile, the Eu$^{3+}$ doped sample exhibits obvious red photoluminescence. The bifunctional ceramics offer an excellent prospect for energy storage and optical applications.

Keywords: energy storage, photoluminescence, SrTiO$_3$ ceramics, europium doping, bifunctional.
1. Introduction

Multifunctional materials are becoming a demand with the rapid development of electronic, optoelectronic, and energy devices [1-3]. SrTiO$_3$, as an incipient ferroelectric, has always been an essential electronic ceramic material due to its versatile properties, e.g., magnetic, luminescent, and dielectric characteristics via ion doping [4-6]. Recently, it has received increasing attention in the field of energy storage because it possesses a relatively high dielectric constant (ε_r), low dielectric loss, and moderate dielectric breakdown strength (E_b) [7-9]. Increasing the energy density (W) of dielectric capacitors is a major challenge as it is significantly inferior to other energy storage devices such as supercapacitors and batteries. Theoretically there are two methods to increase the W of SrTiO$_3$ ceramic capacitors: by increasing its ε_r or E_b, according to $W = \frac{1}{2} \varepsilon_0 \varepsilon_r E_b^2$, where ε_0 is the dielectric constant of vacuum. Although colossal permittivity up to thousands was obtained in some doped SrTiO$_3$ systems, their breakdown strengths are unclear [10-13]. Therefore, increasing E_b is a more effective strategy. Zhu et al. It is found that adding an appropriate amount of Bi$^{3+}$ can enhance the polarity, reduce the sintering temperature and reduce the grain size, thereby obtaining a higher E_b [14]. Pu et al. introduced Zr$^{4+}$ into Ca$_{0.5}$Sr$_{0.5}$TiO$_3$ ceramics to suppress grain growth, and the barrier effect at grain boundaries is enhanced by annealing in oxygen. Finally, a high E_b of 440 kV/cm was obtained [15]. Pan prepared SrTi$_{0.985}$($\text{Zn}_{1/3}\text{Nb}_{2/3}$)$_{0.015}O_3$-xwt%ZnNb$_2O_6$ ceramics through synergy manipulation and obtained a high E_b of 422 kV/cm and an energy storage density of 2.35 J/cm3 [16]. In particular, Dy-doped SrTiO$_3$ obtains a high recoverable energy
density of 4.00 J/cm³ and an extremely high breakdown strength of 510 kV/cm through oxygen treatment and increasing the resistance of crystal grains and grain boundaries [17]. Such doping effect could also be valid in other rare-earth elements doped SrTiO₃, which needs further investigation.

SrTiO₃ has been regarded as a potential host of phosphor due to its good chemical stability. Therefore, rare-earth elements have been doped into SrTiO₃ to investigate the luminescent properties, including Pr, Eu, Yb and Er [4, 18-20]. In this regard, the doping of rare-earth ions could improve energy storage properties and meanwhile endow luminescent properties to SrTiO₃. In addition, it has been reported that proper doping of Eu³⁺ can suppress grain growth due to its relatively low diffusion coefficient, which may help improve the dielectric strength of the matrix [4, 21]. Nevertheless, so far Eu³⁺ doping effect of dielectric storage performance of SrTiO₃ has not been reported. Therefore, we chose Eu³⁺ to study its influence on the energy storage and luminescence properties of SrTiO₃ in this work.

2. Experimental procedure

According to the chemical formula Sr₁-3x/2EuₓTiO₃ (x = 0%, 0.1%, 0.2%, 0.3%, 0.4%), weigh the powders of SrCO₃ (99.95%), TiO₂ (99.99%) and Eu₂O₃ (99.99%) and then put them in ethanol Middle ball milling for 8 hours. The dried slurry is pre-sintered at 1200°C for 4 hours. The coarse powders obtained in the pre-sintering process were ground again and then pressed into a circle 10 mm in diameter and 0.5 mm thick by adding 5 wt% PVA binder. These disc samples were kept at 650 °C for 3
hours to remove the PVA binder and calcined in an air atmosphere at 1400 °C for 3 hours to obtain sintered samples. Finally, the pellets were polished to about 0.2 mm in thickness, then an Ag electrode with a diameter of 2 mm was coated by screen printing method for electrical measurement.

Determine the phase composition and crystal structure by X-ray diffraction (XRD, X Pert pro) at room temperature. The microstructure of each sample surface was characterised by a scanning electron microscope (SEM, Ultra55). In addition, a precision impedance analyser (Agilent 4294A) was used to measure dielectric properties and impedance spectra. Use the LCR meter (TH2816A) to measure the temperature-dependent dielectric characteristics at a frequency of 1 kHz. Finally, for energy storage property evaluation, the polarisation-electric field (P-E) curves were measured by a ferroelectric analyser (TF Analyzer 3000), and the breakdown strength was measured by RK2671AM. Use the charge and discharge device (CFD-003) to measure the under-damped and over-damped waveforms to calculate the energy release characteristics of the sample. Use Jasco F-4500 spectrometer to test photoluminescence (PL) and photoluminescence excitation (PLE) spectra at room temperature.

3. Results and discussion

SrTiO$_3$ (PDF#35-0734) with perovskite structure is confirmed as the only phase in all the $\text{Sr}_{1-3x/2}\text{Eu}_x\text{TiO}_3$ ceramics, and no impurity phase is detected from the XRD results (not shown here). Fig. 1(a) displays the SEM images of the $\text{Sr}_{1-3x/2}\text{Eu}_x\text{TiO}_3$ ceramics with various doping contents. Fewer pores were observed on the surface micrograph of $\text{Sr}_{1-3x/2}\text{Eu}_x\text{TiO}_3$ ceramics, indicating the dense microstructure. From the
distributions of grain sizes in the insets of Fig. 1(a), the average grain sizes of Sr$_{1-3x/2}$Eu$_x$TiO$_3$ ceramics are respectively about 0.85 μm, 1.05 μm, 0.82 μm, 1.08 μm and 0.83 μm for $x = 0$, 0.1%, 0.2%, 0.3%, and 0.4%. All samples have a small grain size that beneficial to increase the grain boundary layer width, reduce the mean electric field for the grain boundary layer, and ultimately improve dielectric strength [16]. Furthermore, it is confirmed that all the Sr$_{1-3x/2}$Eu$_x$TiO$_3$ ceramic elements were uniformly distributed by the element mapping analysis of Fig. 1 (b). This shows the high chemical uniformity of this system. Small grain size and high chemical uniformity favour high dielectric strength [22, 23].

Fig. 2 shows the frequency dependence and temperature dependence of the dielectric properties of Sr$_{1-3x/2}$Eu$_x$TiO$_3$ ceramics. Both the permittivity and dielectric loss decrease with increasing frequency, which could be related to the existence of the defect charges. At low frequency, they would contribute to the dielectric polarisation but cannot respond at high frequency. The dielectric loss of the ceramics except the 0.1% doped samples is very low, particularly below 0.01 at a high frequency above 10 kHz. This is beneficial to practical applications for dielectric energy storage. The dielectric permittivity decreases with increasing temperature from -100 to 200 °C, as shown in Fig. 2(b). Interestingly, the dielectric loss is kept stable at the range of 0 °C ~ 100 °C. Relaxation peaks are observed at about -14 °C in the inset of Fig. 2(b) ascribed to the first ionisation of oxygen vacancies ($V_0 \Leftrightarrow V_0 + e'$) [24]. The loss increases noticeably as the measuring temperature exceeds 150 °C, which can be explained by ionic conduction at high temperatures.
With the purpose of assessing the energy storage characteristics of
\(\text{Sr}_{1-3x} \text{Eu}_x \text{TiO}_3 \) ceramic samples, the \(P-E \) loops of all samples under critical electric
field and 10 Hz frequency measurement are described in Fig. 3 (a). All samples show
good dielectric breakdown characteristics since their average sizes are small, as
shown in Fig. 1(a). The ceramic of \(x = 0.2\% \) possesses the highest critical breakdown
field strength of 354 kV/cm. Compared with pure \(\text{SrTiO}_3 \) (290 kV/cm), the
breakdown field is enhanced by 22%. The \(W \) can be computed to be respectively 1.65
\(\text{J/cm}^3 \), 1.81 \(\text{J/cm}^3 \), 3.28 \(\text{J/cm}^3 \), 2.55 \(\text{J/cm}^3 \), and 2.61 \(\text{J/cm}^3 \) for the ceramics with \(x = 0,
0.1\%, 0.2\%, 0.3\%, \) and \(0.4\% \), according to \(W = \int_0^{P_{\text{max}}} Edp \). The recoverable energy
density \((W_{\text{rec}}) \) should be corrected by \(W_{\text{rec}} = \int_{P_r}^{P_{\text{max}}} Edp \), and the energy efficiency \((\eta) \)
is equal to the proportion of \(W_{\text{rec}} \) and \(W \) [25, 26]. Due to its highest breakdown
strength, the highest \(W \) and \(W_{\text{rec}} \) are also achieved in the ceramic of \(x = 0.2 \). Compared
with that of the undoped sample, the \(W_{\text{rec}} \) increases by 58% to 2.13 \(\text{J/cm}^3 \) after 0.2%
Eu doping. The \(\eta \) of the ceramics for \(x = 0, 0.1\%, 0.2\%, 0.3\%, 0.4\% \) is respectively
81.82\%, 73.48\%, 64.94\%, 72.16\%, and 71.26\%. Fig. 3 (b) shows the Weibull
distribution of the breakdown electric field for all samples. Compared with that of
\(\text{pure SrTiO}_3 \), the breakdown strength of Eu modified \(\text{SrTiO}_3 \) ceramics is improved
significantly and shows a more stability distribution, which can be judged from the
sloped and intercept of Weibull plots. Moreover, the \(P-E \) curves show relatively
stability in the frequency range of 1 Hz ~ 600 Hz and the measuring temperature
range of 30°C to 150 °C, as shown in Fig. 3(c) and Fig. 3(d). For example, the \(W_{\text{rec}} \) of
\(\text{Sr}_{1-3x} \text{Eu}_x \text{TiO}_3 \) with a doping concentration of 0.2% lies between 0.191 \(\text{J/cm}^3 \) to 0.197
J/cm³ under a 115 kV/cm electric field and different frequencies.

Impedance spectra are generally employed to explain the origin of circuit components. Fig. 4 (a) is a complex impedance plot of the Sr₃₋ₓₓ/2EuₓTiO₃ ceramics measured at 380 °C. Two semicircles are observed in complex impedance plot of x = 0, 0.1%, 0.2% ceramics while these in x = 0.3%, 0.4% ceramics are hardly to be distinguished, as shown in the inset of Fig. 4(a). It was apparent to all that low-frequency arcs represent the dielectric response of grain boundaries, and high-frequency arcs represent the dielectric response of grain. Since the resistance can be estimated by the position of the Z''_{max} peak ($R = 2Z''_{\text{max}}$), in Fig. 4(b), it can be concluded that grain boundary resistance (R_{gb}) is much greater than grain resistance (R_g) in both doped and undoped samples. The greater the difference between the grain resistance and the grain boundary resistance, the easier it is to form charge accumulation and the lower the E_b. Therefore, $x = 0.2\%$ shows good insulation properties. Fig. 4(c) shows the frequency dependence of conductivity for Sr₃₋ₓₓ/2EuₓTiO₃ ceramics. Low-frequency conductivity is related to the free diffusion of carriers [15]. It can be seen from the figure that the conductivity of all Eu³⁺ doped samples at low frequencies is lower than that of pure SrTiO₃, indicating that an appropriate amount of Eu³⁺ plays an important role in preventing long-range movement of carriers and reducing carrier jumping. Fig. 4(d) shows the activation energies of grain and grain boundaries at x = 0.2%. According to the equation of the Arrhenius equation [17]:

$$\sigma = \sigma_0 \exp\left(-\frac{E_a}{k_BT}\right)$$

(3)
Where σ is the conductivity value, σ_0 the constant, k_B the Boltzmann constant and E_a the activation energy of the charge carrier transport. As shown in Fig. 4(d), the E_g of $x = 0$ and 0.2% are 0.856 eV and 0.998 eV respectively, and the E_{gb} are 0.141 eV and 0.326 eV respectively. It can be seen that the ceramic with $x = 0.2\%$ have higher grain activation energy and grain boundary activation energy. It reveals that Eu doping effectively suppresses the long-range movement of carriers, and as a result, the breakdown strength increases.

Energy storage materials need to have high power density, energy density, and fast charge and discharge rates. Therefore, the actual charging and discharging performance can be evaluated by over-damping and under-damping RC circuits. Fig. 5(a) shows under-damped discharge waveforms in various electric fields (40 kV/cm ~ 200 kV/cm) at room temperature. $x = 0.2\%$ ceramic in a short 25 ns reaches the maximum current value of 73 A, demonstrating the pulse characteristics of the dielectric ceramic. Fig. 5(b) depicts the increase in peak current (I_{max}), power density (P_D), and current density (C_D) as the electric field increases [15].

$$\begin{align*}
P_D &= E \cdot I_{max} / 2S \\
C_D &= I_{max} / S
\end{align*}$$

where S is the electrode area, I_{max}, C_D and P_D reach 72.7 A, 370.3 A/cm2 and 37.0 MW/cm3 at 200 kV/cm, respectively. The data shows that $x = 0.2\%$ ceramic is of great significance to the research of pulsed systems. Fig. 5(c) shows the under-damped discharging curves measured at different temperatures for $x = 0.2\%$ ceramic. With the temperature from 20 °C to 120 °C, I_{max}, C_D and P_D decrease from 44.0 A, 224.2 A/cm2,
13.5 MW/cm3 to 36.5 A, 186.0 A/cm2, 11.2 MW/cm3, as shown in Fig. 5(d).

In order to test the actual pulsed discharge energy density, an over-damped circuit is established with a load resistance of 205.5Ω. Fig. 6 (a) is the over-damped discharge curves of $x = 0.2\%$ ceramic under different electric fields. In practical applications, high energy density capacitors require fast discharge times [27]. The ceramic with $x=0.2\%$ reaches a peak current of 19 A in a short time of about 15 ns. The discharge energy density can be calculated as [28]:

$$W = R \int i^2(t)dt/V$$

Among them, R, I, t and V are load resistance, current, time and sample volume, respectively. Fig. 6(b) and the inset of Fig. 6(a) show that the maximum W_d value reached at 200 kV/cm is 0.56 J/cm3. $\tau_{0.9}$ is defined as the time to release 90% of the stored energy. All $\tau_{0.9}$ are about 56 ns in various electric fields, which means the ceramic has a fast discharge capacity. Fig. 6(c)-(d) illustrates the relationship between the overdamped discharge characteristics of ceramics $x = 0.2\%$ and temperature. As the temperature increases, I_{max} decreases from 11.7 A to 11.1 A, and W_d decreases from 0.2 J/cm3 to 0.14 J/cm3.

The existence of abundant energy levels in rare-earth ions arising from their outer electronic configurations can be utilized in the luminescence field. Fig. 7 shows the luminescent properties for the Sr$_{1-3x/2}$Eu$_x$TiO$_3$ ceramics. As shown in the excitation spectral in Fig. 7(a), the peak between 350-450 may be related to the f-f transition of Eu$^{3+}$ [4, 29]. In the emission spectrum of Fig. 7(b), two emission peaks at the positions of 590 nm and 615 nm are attributed to Eu$^{3+}$ ion transitions of $^5D_0\rightarrow^7F_1$ and
$^{5}D_{0} \rightarrow ^{7}F_{2}$, respectively [4]. As the Eu$^{3+}$ doping concentration increases, the PL intensity increases and then decreases after reaching the maximum value at $x = 0.3\%$. Therefore, Eu$^{3+}$ doped SrTiO$_{3}$ ceramics exhibit excellent dielectric energy properties and possess obvious red photoluminescence. Such multifunctional ceramics would enhance the flexibility in integrated electronic, optoelectronic, and energy devices.

4. Conclusion

In this work, europium ions were doped into SrTiO$_{3}$ ceramics to study the effects of doping on crystal structure, morphology, dielectric properties, dielectric breakdown, energy storage and luminescence properties. It is found that 0.2% doped SrTiO$_{3}$ ceramics show the maximum breakdown strength of 354 kV/cm and the maximum recoverable energy density of 2.13 J/cm3. At 200 kV/cm, the peak current, current density, power density, and discharge energy density reached 72.7 A, 370.3 A/cm2, 37.0 MW/cm3 and 0.56 J/cm3, respectively. The discharge energy reached 90% of the final value of the discharge curve is approximately 56 ns. Through impedance spectroscopy analysis, the incorporation of europium ions can inhibit the long-range movement of carriers. Moreover, a strong luminous intensity was observed in the 590 nm and 615 nm bands. Therefore, dual-functional ceramic materials with dielectric energy storage and light-emitting properties are expected to be used in multifunctional devices.
Acknowledgment

This work was supported by the National Natural Science Foundation of China (51772252), the Sichuan Science and Technology Program (2020JDRC0062), and the Project of State Key Laboratory of Environment-Friendly Energy Materials, Southwest University of Science and Technology (19FKSY09, 20FKSY14).
References

[1] T.H. Chung, K.W. Kwok, Low-temperature-sintered Pr-doped 0.93(Bi$_{0.5}$Na$_{0.5}$)TiO$_3$-0.07BaTiO$_3$ multifunctional ceramics with Li$_2$CO$_3$ sintering aid, J. Alloy. Compd. 737 (2018) 317-322, https://doi.org/10.1016/j.jallcom.2017.11.355.

[2] M. Lun, W. Wang, Z. Xing, Z. Wan, W. Wu, H. Song, Y. Wang, W. Li, B. Chu, Q. He, Luminescence and electrical properties of Eu-modified Bi$_{0.5}$Na$_{0.5}$TiO$_3$ multifunctional ceramics, J. Am. Ceram. Soc. 102 (2019) 5243-5252, https://doi.org/10.1111/jace.16394.

[3] X. Qiao, A. Sheng, D. Wu, F. Zhang, B. Chen, P. Liang, J. Wang, X. Chao, Z. Yang, A novel multifunctional ceramic with photoluminescence and outstanding energy storage properties, Chem. Eng. J. 408 (2021) 127368, https://doi.org/10.1016/j.cej.2020.127368.

[4] C. Jiang, L. Fang, M. Shen, F. Zheng, X. Wu, Effects of Eu substituting positions and concentrations on luminescent, dielectric, and magnetic properties of SrTiO$_3$ ceramics, Appl. Phys. Lett. 94 (2009) 071110, https://doi.org/10.1063/1.3082097.

[5] J. Qi, M. Cao, Y. Chen, Z. He, C. Tao, H. Hao, Z. Yao, H. Liu, Cerium doped strontium titanate with stable high permittivity and low dielectric loss, J. Alloy. Compd. 772 (2019) 1105-1112, https://doi.org/10.1016/j.jallcom.2018.09.061.

[6] W. Pan, M. Cao, J. Qi, H. Hao, Z. Yao, Z. Yu, H. Liu, Defect structure and dielectric behavior in SrTi$_{1-x}$(Zn$_{1/3}$Nb$_{2/3}$)$_x$O$_3$ ceramics, J. Alloy. Compd. 784 (2019) 1303-1310, https://doi.org/10.1016/j.jallcom.2019.01.156.

[7] Y.B. Wang, W.J. Jie, C. Yang, X.H. Wei, J.H. Hao, Colossal permittivity materials as superior dielectrics for diverse applications, Adv. Funct. Mater. 29 (2019) 1808118, https://doi.org/10.1002/adfm.201808118.
[8] G. Wang, Z. Lu, Y. Li, L. Li, H. Ji, A. Feteira, D. Zhou, D. Wang, S. Zhang, I.M. Reaney, Electroceramics for High-Energy Density Capacitors: Current Status and Future Perspectives, Chem. Rev. (2021), https://doi.org/10.1021/acs.chemrev.0c01264.

[9] L. Yang, X. Kong, F. Li, H. Hao, Z. Cheng, H. Liu, J. Li, S. Zhang, Perovskite lead-free dielectrics for energy storage applications, Prog. Mater. Sci. 102 (2019) 72-108, https://doi.org/10.1016/j.pmatsci.2018.12.005.

[10] N. Wang, M. Cao, Z. He, C. Diao, Q. Zhang, Y. Zhang, J. Dai, F. Zeng, H. Hao, Z. Yao, H. Liu, Structural and dielectric behavior of giant permittivity SrNbₓTi₁₋ₓO₃ ceramics sintered in nitrogen atmosphere, Ceram. Int. 42 (2016) 13593-13600, https://doi.org/10.1016/j.ceramint.2016.05.153.

[11] B. Zhong, Z. Long, C. Yang, Y. Li, X. Wei, Colossal dielectric permittivity in co-doping SrTiO₃ ceramics by Nb and Mg, Ceram. Int. 46 (2020) 20565-20569, https://doi.org/10.1016/j.ceramint.2020.05.174.

[12] Z. Shen, Q. Hu, Y. Li, Z. Wang, W. Luo, Y. Hong, Z. Xie, R. Liao, Structure and Dielectric Properties of Re₀.₀₂Sr₀.₉₇TiO₃ (Re= La, Sm, Gd, Er) Ceramics for High-Voltage Capacitor Applications, J. Am. Ceram. Soc. 96 (2013) 2551-2555, https://doi.org/10.1111/jace.12364.

[13] X. Guo, Y. Pu, W. Wang, L. Zhang, J. Ji, R. Shi, Y. Shi, M. Yang, J. Li, High insulation resistivity and ultralow dielectric loss in La-doped SrTiO₃ colossal permittivity ceramics through defect chemistry optimization, ACS Sustain. Chem. Eng. 7 (2019) 13041-13052, https://doi.org/10.1021/acssuschemeng.9b02143.

[14] X. Zhu, P. Shi, R. Kang, S. Li, Z. Wang, W. Qiao, X. Zhang, L. He, Q. Liu, X. Lou, Enhanced energy storage density of Sr₀.₇BiₓTiO₃ lead-free relaxor ceramics via A-site defect and grain
size tuning, Chem. Eng. J. 420 (2021) 129808, https://doi.org/10.1016/j.cej.2021.129808.

[15] Y. Pu, W. Wang, X. Guo, R. Shi, M. Yang, J. Li, Enhancing the energy storage properties of Ca$_{0.5}$Sr$_{0.5}$TiO$_3$-based lead-free linear dielectric ceramics with excellent stability through regulating grain boundary defects, J. Mater. Chem. C 7 (2019) 14384-14393, https://doi.org/10.1039/C9TC04738G.

[16] W. Pan, M. Cao, A. Jan, H. Hao, Z. Yao, H. Liu, High breakdown strength and energy storage performance in (Nb, Zn) modified SrTiO$_3$ ceramics via synergy manipulation, J. Mater. Chem. C 8 (2020) 2019-2027, https://doi.org/10.1039/C9TC06256D.

[17] X. Guo, Y. Pu, W. Wang, J. Ji, J. Li, R. Shi, M. Yang, Ultrahigh energy storage performance and fast charge-discharge capability in Dy-modified SrTiO$_3$ linear ceramics with high optical transmissivity by defect and interface engineering, Ceram. Int. 46 (2020) 21719-21727, https://doi.org/10.1016/j.ceramint.2020.05.280.

[18] T. Kyômen, R. Sakamoto, N. Sakamoto, S. Kunugi, M. Itoh, Photoluminescence properties of Pr-doped (Ca, Sr, Ba) TiO$_3$, Chem. Mater. 17 (2005) 3200-3204, https://doi.org/10.1021/cm0403715.

[19] H. Guo, N. Dong, M. Yin, W. Zhang, L. Lou, S. Xia, Green and red upconversion luminescence in Er$^{3+}$-doped and Er$^{3+}$/Yb$^{3+}$-codoped SrTiO$_3$ ultrafine powders, J. Alloy. Compd. 415 (2006) 280-283, https://doi.org/10.1016/j.jallcom.2005.08.008.

[20] H. Guo, Y. Qiao, J. Zheng, L. Zhao, Upconversion luminescence of SrTiO$_3$: Er$^{3+}$ ultrafine powders produced by 785 nm laser, Chinese J. Chem. Phys. 21 (2008) 233, https://doi.org/10.1088/1674-0068/21/03/233-238.

[21] Z. Wang, W. Li, R. Chu, J. Hao, Z. Xu, G. Li, Strong photoluminescence and high
piezoelectric properties of Eu-doped (Ba$_{0.99}$Ca$_{0.01}$)(Ti$_{0.98}$Zr$_{0.02}$)O$_3$ ceramics, Journal of Materials Science: Materials in Electronics, 28 (2017) 16561-16569, https://doi.org/10.1007/s10854-017-7569-z.

[22] P. Zhao, B. Tang, F. Si, C. Yang, H. Li, S. Zhang, Novel Ca doped Sr$_{0.7}$Bi$_{0.2}$TiO$_3$ lead-free relaxor ferroelectrics with high energy density and efficiency [J]. J. Eur. Ceram. Soc. 40 (2020) 1938-1946, https://doi.org/10.1016/j.jeurceramsoc.2020.01.006.

[23] M. Zhou, R. Liang, Z. Zhou, X. Dong, Novel BaTiO$_3$-based lead-free ceramic capacitors featuring high energy storage density, high power density, and excellent stability, J. Mater. Chem. C 6 (2018) 8528-8537, https://doi.org/10.1039/C8TC03003K.

[24] C. Ang, Z. Yu, L.E. Cross, Oxygen-vacancy-related low-frequency dielectric relaxation and electrical conduction in Bi: SrTiO$_3$, Phys. Rev. B 62 (2000) 228-236, https://doi.org/10.1103/PhysRevB.62.228.

[25] L. Zhang, Y. Pu, M. Chen, T. Wei, X. Peng, Novel Na$_{0.5}$Bi$_{0.5}$Ti$_{0.5}$O$_3$ based, lead-free energy storage ceramics with high power and energy density and excellent high-temperature stability, Chem. Eng. J. 383 (2020) 123154, https://doi.org/10.1016/j.cej.2019.123154.

[26] Y. Lin, D. Li, M. Zhang, H. Yang, (Na$_{0.5}$Bi$_{0.5}$)$_{0.7}$Sr$_{0.3}$TiO$_3$ modified by Bi(Mg$_{2/3}$Nb$_{1/3}$)O$_3$ ceramics with high energy-storage properties and an ultrafast discharge rate, J. Mater. Chem. C 8 (2020) 2258-2264, https://doi.org/10.1039/C9TC06218A.

[27] W. B. Li, D. Zhou, R. Xu, D. W. Wang, J. Z. Su, L. X. Pang, W. F. Liu, G. H. Chen, Novel barium titanate based capacitors with high energy density and fast discharge performance, J. Mater. Chem. A. 5 (2017) 19607-19612, https://doi.org/10.1039/C7TA05392D.

[28] P. Zhao, B. Tang, Z. Fang, F. Si, C. Yang, G. Liu, S. Zhang, Structure, dielectric and relaxor
properties of $\text{Sr}_{0.7}\text{Bi}_{0.2}\text{TiO}_3\text{K}_{0.5}\text{Bi}_{0.5}\text{TiO}_3$ lead-free ceramics for energy storage applications, J. Materiomics 7 (2021) 195-207, https://doi.org/10.1016/j.jmat.2020.07.009.

[29] R. Schmechel, M. Kennedy, H. Von Seggern, H. Winkler, M. Kolbe, Luminescence properties of nanocrystalline $\text{Y}_2\text{O}_3\text{: Eu}^{3+}$ in different host materials, J. Appl. Phys. 89 (2001) 1679-1686, https://doi.org/10.1063/1.1333033.
Figure captions

Fig.1: (a) SEM images of Sr$_{1-3x/2}$Eu$_x$TiO$_3$ samples with different doping concentrations. (b) Elemental mappings of the sample with 0.2% doping concentration.

Fig.2: Frequency (a) and temperature (b) dependence of the permittivity and dielectric loss for Sr$_{1-3x/2}$Eu$_x$TiO$_3$ ceramics.

Fig.3: (a) The P-E loops of Sr$_{1-3x/2}$Eu$_x$TiO$_3$ ceramics. (b) Weibull distribution of the breakdown electric field. The P-E loops of $x = 0.2\%$ ceramic samples under 10Hz (c) at different frequencies and (d) at different temperatures.

Fig.4: (a) Image of the complex impedance and (b) the resistance value of the Sr$_{1-3x/2}$Eu$_x$TiO$_3$ ($x = 0, 0.2\%$) ceramics at 380 ° C. (C) Frequency dependence of the electrical conductivity of the Sr$_{1-3x/2}$Eu$_x$TiO$_3$ ceramics. (d) Activation energy of grains and activation energy of grain boundaries when $x = 0, 0.2\%$.

Fig.5: (a) Underdamped discharge waveforms and (b) I_{max}, C_D, and P_D, at different electric fields and room temperature, for $x = 0.2\%$ ceramic. (c) Underdamped discharge waveforms and (d) I_{max}, C_D, and P_D, at different temperatures and 120 kV/cm, for $x = 0.2\%$ ceramic.

Fig.6: (a) Overdamped discharge current curves and (b) time dependence of W_d, for $x = 0.2\%$ ceramics at different electric fields and room temperature. (c) Overdamped discharge current curves and (d) time dependence of W_d, at different temperatures and 120 kV/cm, for $x = 0.2\%$ ceramic.

Fig.7: PLE (a) and PL (b) spectra of Eu-doped SrTiO$_3$ sample. Monitor at 590 nm to measure the excitation spectrum, and monitor at 395 nm to measure the emission spectrum.
Fig. 2
Fig. 5
Fig. 7