A CHARACTERIZATION OF WHITNEY FORMS

JÓZEF DODZIUK

Abstract. We give a characterization of Whitney forms on an n-simplex σ and prove that for every real valued simplicial k-cochain c on σ, the form Wc is the unique differential k-form φ on σ with affine coefficients that pulls back to a constant form of degree k on every k-face τ of σ and satisfies $\int_\tau \varphi = \langle c, \tau \rangle$.

1. Introduction

Whitney forms have been extraordinarily useful in several areas of mathematics: algebraic topology [8], [6]; global analysis and spectral geometry [4], [3]; numerical electromagnetism [1], [2]; vibrations of thin plates [7]. Their definition in Whitney’s book [9, p. 140] appears somewhat mysterious. Attempts to gain a better insight into the definition have continued up to now. For example, the recent paper of Lohi and Kettunen [5] contains three different equivalent definitions. In this note we give a conceptual, easily stated characterization of Whitney forms.

On a triangulated differentiable manifold M of n dimensions with a triangulation $h : K \to M$, cf. [9, p. 124], the Whitney form Wc corresponding to the cochain $C^k(K)$ is a family ω_σ of smooth k-forms, satisfying certain compatibility conditions, on each closed n-simplex σ. Namely, if τ is a common face of two top dimensional faces σ_1 and σ_2, than the pull-backs to τ of ω_{σ_1} and ω_{σ_2} coincide. Thus to describe the Whitney form Wc it suffices to give a description of $Wc|_\sigma = \omega_\sigma$ for every simplex σ of top dimension. Note that the homeomorphism h defines an affine structure on σ and the induced affine structures on common faces of two n-simplexes agree. Thus the concept of an affine function on a simplex is well-defined and so is a notion of a “constant” form of degree k on a k-simplex.

From now on we work on a fixed n-simplex σ. Our characterization of Wc is stated precisely in the Theorem below. It asserts that Wc restricted to σ is the unique k-form on σ with affine coefficients and constant pull-backs to k-faces whose integrals over k-faces τ are prescribed by the values $\langle c, \tau \rangle$ of c on τ.

2. Proof of the Theorem

A simplex $\tau = [p_0, p_1, \ldots, p_k]$ of k dimensions is a convex hull of $k + 1$ points in general position in \mathbb{R}^n. In particular, every simplex is closed. We will consider a fixed n-simplex σ together with all its k-faces τ with $0 \leq k \leq n$. Thus a point $q \in \sigma$
is a convex linear combination

\[q = m_0p_0 + m_1p_1 + \ldots + m_np_n \]

\[m_i \geq 0 \quad \text{for} \quad i = 0, 1, \ldots, n \]

\[m_0 + m_1 + \ldots + m_n = 1 \]

and the barycentric coordinate functions \(v_i(q) \) are defined by

\[v_i(q) = m_i. \]

We observe that, if \(q = (x^1, x^2, \ldots, x^d) \) the barycentric coordinates are affine functions of \(x^1, x^2, \ldots, x^d \) i.e. are of the form \(a_1x^1 + a_2x^2 + \ldots + a_nx^n + b \). We regard all simplices as oriented with the orientation determined by the order of vertices with the usual convention that \(-\tau \) is \(\tau \) with the opposite orientation and that under a permutation of vertices the orientation changes by the sign of the permutation. A cochain \(c \) of degree \(k \) is then defined as a formal linear combination with real coefficients the \(\tau \)-faces of \(k \)-faces \(\tau \) of \(\sigma \) and we denote by \(C^k(\sigma) = C^k \) the space of all such cochains. If \(c = \sum \tau a_\tau \tau \) we will write \(a_\tau = \langle c, \tau \rangle \). Finally, we will denote by \(\Lambda^k(\sigma) = \Lambda^k \) the space of all smooth exterior differential forms of degree \(k \) on the simplex \(\sigma \). With this notation, one defines the Whitney mapping

\[W : C^k \to \Lambda^k \]

for all \(k = 0, 1, \ldots, n \), cf. [9] or [3] for a detailed discussion. We will call forms in the image of \(W \) the Whitney forms. It follows immediately from the definition that the Whitney forms when expressed in terms of the coordinates of \(\mathbb{R}^n \) have affine coefficients. We abuse the language and say that a form \(\eta \in \Lambda^k(\tau) \) is constant if it is a constant multiple of the Euclidean volume element on \(\tau \). After these preliminaries we state our theorem.

Theorem. Let \(\sigma \) be a simplex of \(n \) dimensions and \(c \) a cochain of degree \(k \) on \(\sigma \). We is the unique \(k \)-form \(\omega \) on \(\sigma \) satisfying the following conditions.

1. \(\omega \) has affine coefficients.
2. The pull-back \(\iota_\tau \omega \) is constant for every \(k \)-dimensional face \(\tau \) of \(\sigma \), where \(\iota_\tau : \tau \hookrightarrow \sigma \) denotes the inclusion map.
3. \(\int_\tau \omega = \langle c, \tau \rangle \) for every \(k \)-face \(\tau \) of \(\sigma \).

Proof. We first observe that without any loss of generality we can assume that \(\sigma \) is the standard simplex in \(\mathbb{R}^n \) i.e. is given by

\[\sigma = \left\{ (x^1, x^2, \ldots, x^n) \in \mathbb{R}^n \mid x^i \geq 0 \quad \text{for} \quad i = 1, 2, \ldots, n; \quad \sum_{i=0}^n x^i \leq 1 \right\}. \]

Thus \(\sigma = [0, e_1, e_2, \ldots, e_n] \) where \(e_i \) is the point on the \(i \)-th coordinate axis with \(x^i = 1 \). The barycentric coordinate functions restricted to \(\sigma \) are then given by

\[v_0 = 1 - (x^1 + x^2 + \ldots + x^n) \quad \text{and} \quad v_i = x^i \quad \text{for} \quad i = 1, 2, \ldots, n. \]

We first do a quick dimension count that makes the theorem plausible. The dimension of the space of \(k \)-forms with affine coefficients on \(\sigma \) is \(\binom{n}{k}(n+1) \). Requiring that \(\iota_\tau \omega \) is constant on a \(k \)-simplex \(\tau \) imposes \(k \) conditions and the number of \(k \)-faces of an \(n \)-simplex is \(\binom{n+1}{k+1} \). Thus, the dimension of the space of \(k \)-forms

satisfying (1) and (2) above ought to be
\[
\binom{n}{k}(n + 1) - \binom{n + 1}{k + 1}k = \binom{n + 1}{k + 1}.
\]
This last integer is the number of \(k\)-faces of \(\sigma\), i.e. the dimension of the space \(C^k(\sigma)\) of \(k\)-cochains.

It is instructive to consider the simplest cases \(k = 0\) and \(k = n\) of the theorem. A 0-cochain is a sum \(c = \sum a_i p_i\) and
\[
Wc = a_0 v_0 + a_1 v_1 + \ldots + a_n v_n
\]
\[
= a_0 \left(1 - \sum_{i=1}^{n} x_i^j \right) + \sum_{i=1}^{n} a_i x_i^j
\]
\[
= a_0 + \sum_{i=1}^{n} (a_i - a_0)x_i^j
\]
is the unique affine function \(f\) taking prescribed values \(f(p_i) = \int_{p_i} f = \langle c, p_i \rangle\), where the integration of a form of degree 0 over a vertex is just the evaluation.

If \(k = n\), \(\sigma\) is the only face of dimension \(n\) so every cochain is a multiple of \(\sigma^*\). For \(c = \sigma^*\), we have
\[
Wc = W\sigma^*
\]
\[
= \left(n! \sum_{j=0}^{n} (-1)^j v_j \wedge \ldots \wedge \hat{v_j} \wedge \ldots \wedge v_n \right)
\]
\[
= n!dx^1 \wedge \ldots \wedge dx^n
\]
where we used the explicit expressions of the barycentric coordinates (1) in terms of the coordinates \(x^1, \ldots, x^n\) and the hat over a factor means that the factor is omitted. Since the volume of the standard \(n\)-simplex in \(\mathbb{R}^n\) is equal to \(1/n!\), \(\int_\sigma W(\sigma^*) = \langle \sigma^*, \sigma \rangle = 1\), \(W\sigma^*\) is the unique constant form with prescribed integral equal to one.

We now consider the case when \(1 \leq k \leq n - 1\). We will write \(\Lambda^k_c\) for the space of \(k\)-forms on \(\sigma\) with affine coefficients and with constant pull-backs to \(k\)-faces of \(\sigma\). It is obvious from the definition of \(Wc\) and from (1) that \(Wc\) has affine coefficients on \(\sigma\) for every \(c \in C^k(\sigma)\). Similarly, since \(i^*_c W(c)\) is a form of maximal degree on \(\tau\), the calculation above, with \(k\) replacing \(n\), shows that \(i^*_c W(c)\) is constant on \(\tau\) for every \(k\)-face \(\tau\) of \(\sigma\). It follows that \(WC^k \subset \Lambda^k_c\). Now let \(\varphi \in \Lambda^k_c\). We use the restriction of the de Rham map \(R: \Lambda^k(\sigma) \rightarrow C^k(\sigma)\),
\[
\langle R\varphi, \tau \rangle = \int_\tau \varphi,
\]
to \(\Lambda^k_c\) and consider the difference \(\eta = \varphi - WR\varphi\). Clearly, \(\eta \in \Lambda^k_c\). Moreover basic properties of the Whitney mapping (cf. [9, 3]) imply that \(R\eta = R\varphi - WR\varphi = R\varphi - R\varphi = 0\), i.e. \(\eta\) integrates to zero on every \(k\)-face of \(\sigma\). Since the pull-back \(i^*\eta\) is constant on every such face \(\tau\), \(i^*\eta\) vanishes identically on every \(k\)-face \(\tau\). Thus to show that \(\varphi = WR\varphi\) (which would prove our theorem) it suffices to show that every form \(\eta \in \Lambda^k_c\), whose pull-backs to all \(k\)-faces vanish, is itself identically zero on \(\sigma\). Let \(\eta\) be such a form. We express it in the standard coordinates of \(\mathbb{R}^n\) as follows.
\[
\eta = \sum_I (b_I + a_{I,1}x^1 + \ldots + a_{I,n}x^n)dx^I
\]
Here I is a multi-index $I = (i_1 < i_2 < \ldots < i_k)$, $1 \leq i_j \leq n$ for every j and $dx^I = dx^{i_1} \wedge dx^{i_2} \wedge \ldots \wedge dx^{i_k}$. We will abuse the notation at times and think of I as a set. Fix a multi-index J and consider the coordinate plane of the variables $x^{i_1}, x^{i_2}, \ldots, x^{i_k}$.

Let τ_J denote the k-face of σ contained in that plane. By assumption $\iota^*_J \eta$ is identically zero. The variables x_t for $t \notin J$ vanish in this plane so that

$$\iota^*_J \eta = \sum_{t \in J} (a_{J,t} x^t + b_J) dx^J \equiv 0.$$

Since J was arbitrary, $b_J = 0$ and $a_{J,t} = 0$ for all J and all $t \in J$. It follows that we can rewrite (2) on σ as follows.

$$\eta = \sum_I \sum_{j \in I} a_{I,j} x^j dx^I.$$

Again, fix the multi-index L, an integer $m \notin L$, $1 \leq m \leq n - 1$, and the simplex $\tau = [e_m, e_{l_1}, \ldots, e_{l_k}]$. τ is a k-simplex in the $(k+1)$-plane P with coordinates $x^m, x^{l_1}, \ldots, x^{l_k}$ as in the figure below. Recall that on τ, x^{l_1}, \ldots, x^{l_k} can be taken as local coordinates since

$$x^m = 1 - (x^{l_1} + \ldots + x^{l_k})$$

Moreover

$$dx^m = -(dx^{l_1} + \ldots + dx^{l_k})$$

We express the pull-back $\iota^*_J \eta$ in terms these coordinates using (5) and (6). Observe

that if $I \cup \{j\} \neq L \cup \{m\}$ one of the indices in $I \cup \{j\}$ is not in $L \cup \{m\}$. The corresponding variable is identically zero on the plane P so that the summand $a_{I,j} x^j dx^I$ vanishes on P and is therefore equal to zero when pulled back to τ. Therefore

$$\iota^*_J \eta = \sum_{I \cup \{j\} \neq L \cup \{m\}} a_{I,j} x^j dx^I.$$

Now consider the summand with $I = L$ and $j = m$. The coefficient of dx^L in this term is

$$a_{L,m} x^m + a_{L,l_1} x^{l_1} + \ldots + a_{L,l_k} x^{l_k}$$

and we use (5) to eliminate x^m.

Thus, on τ, the coefficient in question can be written as

$$a_{L,m} - a_{L,m} \sum_{s=1}^k x^{l_s} + a_{L,l_1} x^{l_1} + \ldots + a_{L,l_k} x^{l_k}.$$
Remaining terms in the sum (7) have \(j \neq m \). It follows that, for those terms, \(x^j \) is one of \(x^1, \ldots, x^k \) and \(x^m \) enters only into the differential monomial \(dx^j \) from which it can be eliminated using (6). It follows that
\[
\iota_\gamma^* \eta = (a_{L,m} + \text{linear terms}) \, dx^j.
\]
Since \(\iota_\gamma^* \eta \) is assumed to be identically zero, \(a_{L,m} = 0 \). \(L \) was fixed but arbitrary so that \(\eta \equiv 0 \).

\[\Box\]

References

[1] A. Bossavit. A uniform rationale for Whitney forms on various supporting shapes. Math. Comput. Simulation, 80(8):1567–1577, 2010.
[2] Alain Bossavit. Computational electromagnetism. Electromagnetism. Academic Press, Inc., San Diego, CA, 1998. Variational formulations, complementarity, edge elements.
[3] Jozef Dodziuk. Finite-difference approach to the Hodge theory of harmonic forms. Amer. J. Math., 98(1):79–104, 1976.
[4] Jozef Dodziuk. de Rham-Hodge theory for \(L^2 \)-cohomology of infinite coverings. Topology, 16(2):157–165, 1977.
[5] Jonni Lohi and Lauri Kettunen. Whitney forms and their extensions. J. Comput. Appl. Math., 393:Paper No. 113520, 19, 2021.
[6] Wolfgang Lück. \(L^2 \)-invariants: theory and applications to geometry and \(K \)-theory, volume 44 of Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics [Results in Mathematics and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics]. Springer-Verlag, Berlin, 2002.
[7] Santiago R. Simanca. The (small) vibrations of thin plates. Nonlinearity, 32(4):1175–1205, 2019.
[8] Dennis Sullivan. Cartan-de Rham homotopy theory. In Colloque “Analyse et Topologie” en l’Honneur de Henri Cartan (Orsay, 1974), pages 227–254. Astérisque, No. 32–33. 1976.
[9] Hassler Whitney. Geometric integration theory. Princeton University Press, Princeton, N. J., 1957.

Ph.D. Program in Mathematics, CUNY Graduate Center
Email address: jdodziuk@gmail.com