Low dose Cold Atmospheric Plasma induces membrane oxidation, stimulates endocytosis and enhances uptake of nanomaterials in Glioblastoma multiforme cells

Zhonglei He1,2,3, Kangze Liu1,2,3*, Laurence Scally1*, Eline Manaloto1,2, Sebnem Gunes1,2, Sing Wei Ng1,3, Marcus Maher2, Brijesh Tiwari4, Hugh J Byrne2, Paula Bourke1,3,5, Furong Tian1,2,3, Patrick J Cullen1,6, and James F Curtin1,2,3

1BioPlasma Research Group, School of Food Science and Environmental Health, Technological University Dublin, Dublin, Ireland; 2Nanolab, FOCAS Research Institute, Technological University Dublin, Dublin, Ireland; and 3Environmental, Sustainability and Health Research Institutes, Technological University Dublin, Dublin, Ireland; 4Department of Food Biosciences, Teagasc Food Research Centre, Ashtown, Dublin, Ireland; 5School of Biological Sciences, IGFS, Queens University Belfast, United Kingdom; 6School of Chemical and Biomolecular Engineering, University of Sydney, Australia

*These authors contributed equally to this work.

Corresponding author

Correspondence to James Curtin (james.curtin@tudublin.ie).

Key words: Lipid peroxidation, Free radicals, Cold atmospheric plasma, Membrane repair, Oxidative burst, Endocytosis, Glioblastoma multiforme, Nanotherapy, Combination therapy
Abstract

Cold atmospheric plasma (CAP) has demonstrated synergistic cytotoxic effects with nanoparticles, especially promoting the uptake and accumulation of nanoparticles inside cells. However, the mechanisms driving the effects need to be explored. In this study, we investigate the enhanced uptake of theranostic nanomaterials by CAP. Numerical modelling of the uptake of gold nanoparticle into U373MG Glioblastoma multiforme (GBM) cells predicts that CAP may introduce a new uptake route. We demonstrate that cell membrane repair pathways play the main role in this stimulated new uptake route, following non-toxic doses of dielectric barrier discharge CAP (30 s, 75 kV). CAP treatment induces cellular membrane damage, mainly via lipid peroxidation as a result of reactive oxygen species (ROS) generation. Membranes rich in peroxidated lipids are then trafficked into cells via membrane repairing endocytosis. We confirm that the enhanced uptake of nanomaterials is clathrin-dependent using chemical inhibitors and silencing of gene expression. Therefore, CAP-stimulated membrane repair increases endocytosis and accelerates the uptake of gold nanoparticles into U373MG cells after CAP treatment. Our data demonstrate the utility of CAP to model membrane oxidative damage in cells and characterise a previously unreported mechanism of membrane repair to trigger nanomaterial uptake which will be useful for developing more efficient deliveries of nanoparticles and pharmaceuticals into cancer cells for tumour therapy and diagnosis. This mechanism of RONS-induced endocytosis will also be of relevance to other cancer therapies that induce an increase in extracellular RONS.
Introduction

Cold atmospheric plasma (CAP) is increasingly studied for applications across the food industry, medicine, energy storage and for driving catalytic reactions. Technological developments and preclinical studies have led to CAP testing in a growing number of clinical trials for cancer treatment\(^1\)\(^-\)\(^2\). Research is ongoing to explore the combination of CAP with other cancer therapies, including nanotechnology-based, radio- and chemo-therapy\(^3\)\()-\(^5\).

Gold nanoparticles (AuNPs) are considered to be weakly or non-toxic to human cells and highly effective for delivery through the blood brain barrier, especially for ~20 nm diameter AuNPs\(^6\)\(^-\)\(^8\). Meanwhile, AuNPs are known to be readily manufactured and designed for targeting delivery of various compounds into cells. Therefore, they have emerged as a promising reagent, combined with CAP, for anti-cancer therapy in recent studies\(^4\)\(^,\)\(^9\)\()-\(^10\). In our previous study, we explored the potential of a combination treatment of CAP with gold nanoparticles, which showed promising synergistic cytotoxicity to U373MG Glioblastoma multiforme (GBM) cells\(^11\). The accelerated uptake and accumulation of AuNPs in U373MG cells induced by CAP can enhance the efficiency of pharmaceuticals delivery for tumour treatment and diagnosis.

In general, the citrate-capped cationic AuNPs may absorb serum proteins onto their surface in cell culture medium and thereby stimulate receptor-mediated endocytosis pathways, including clathrin-mediated, caveolae-mediated and clathrin/caveolae independent endocytosis\(^8\). Without special surface functionalisation, AuNPs enter cells and are trapped in vesicles\(^8\)\(^,\)\(^12\)\)-\(^13\) or enter the nucleus, depending on their size/shape\(^14\)\()-\(^15\). It has also been demonstrated that clathrin-mediated endocytosis is the specific mechanism of normal AuNPs cellular uptake\(^16\). Meanwhile, AuNPs with functionalised surface chemistries/ligands can directly penetrate the membrane and enter the cytoplasm\(^17\). However, the detailed mechanism whereby CAP and AuNPs have synergistic biological effects on cancer cells and the uptake of AuNPs affected by CAP needs to be further explored.

CAP generates a unique physical and chemical environment, including generating short- and long-lived reactive nitrogen species (RNS, e.g. excited N\(_3\), N\(_2\)\(^+\), ONOO\(^-\) and NO\(^+\), etc.) and reactive oxygen species (ROS, e.g. \(^*\)OH, O, \(^*\)O\(_2\) and O\(_3\), etc.), photons as well as heat, pressure gradients, charged particles, and electrostatic and electromagnetic fields, many of which are known to induce biological effects\(^18\)\()-\(^20\). Parallels to this can be found in phagocytes of the immune system. Enzymatic production of reactive oxygen and nitrogen species (RONS) along with various hypohalous acids, especially hypochlorites, play a significant role in respiratory bursts, also known as oxidative bursts, which are used in the clearance of tumour cells by phagocytic immune cells including neutrophils, macrophages and monocytes\(^21\). Anti-cancer cytotoxicity induced by respiratory bursts has been shown to induce spontaneous regression in mouse tumour models\(^22\)\()-\(^24\). ROS has emerged as a double-edged sword to cancer cells. Evidence shows that higher levels of ROS are generated in cancer cells by comparison with normal cells, which is attributed to the higher metabolic activities and more rapid proliferation.
of transformed cells25. Hence, the cellular antioxidant system works under a heavier load to protect tumour cells from oxidative stress, suggesting it may be possible to selectively overload and eliminate them with locally induced ROS production26.

Reactive species can induce a free radical chain reaction in the membrane lipids, known as lipid peroxidation/oxidation, which leads to oxidative degradation of the lipids and therefore a disruption of the membrane function and induced injury and disorder to cells. The peroxidated lipid products can induce further propagation of the free radical reactions27. It has been shown that several ROS and RNS generated by CAP as well as natural biological processes can induce cell injuries via lipid peroxidation28. For example, as an oxidant prominent in air pollution, O\textsubscript{3} has been proven to be responsible for the lipid peroxidation damage in lung cells29–31. Hydroxyl radicals (•OH) react with various cellular components, including membrane lipid32. Superoxide (•O\textsubscript{2}-) can form peroxynitrite (ONOO-), which is able to initiate lipid peroxidation, after reacting with nitric oxide (NO)32. RNS, such as NO\textsubscript{2} and ONOOH, also interact with lipids to form nitrated lipids, which have been demonstrated to play roles in vascular and inflammatory cellular signalling pathways28.

The following study of CAP-accelerated AuNPs uptake was carried out using a high voltage dielectric barrier discharge (DBD) contained reactor which has been previously described and characterised11. U373MG cells were treated with a low dose of CAP treatment previously demonstrated to be non-lethal, at a voltage output of 75 kV for 30 s33. Numerical modelling of the uptake of AuNPs, indicates that the CAP treatment stimulated a new uptake route, which can be clathrin-mediated membrane repairing rapid endocytosis according to experimentally observed behaviour. RONS generation by CAP is characterised using H\textsubscript{2}DCFDA, optical emission spectroscopy and quantitative colorimetric titration methods. We provide evidence, using the TBARS assay and a C11-BODIPY lipid peroxidation sensor, that CAP generated RONS induce lipid peroxidation, membrane damage and thereby activate the membrane repairation via rapid endocytosis. We employ various clathrin and caveolin specific inhibitors and clathrin silencing to further determine that the CAP-induced endocytosis of AuNP and membrane damage response is clathrin-dependent.
Results

Numerical modelling of the uptake of AuNPs by GBM cells

Figure 1. Modelling uptake of AuNPs. Numerical modelling of experimental data from our previous study11 (shown with open circles) was carried out for AuNP uptake (blue solid line), AuNP uptake quenched by incubation of the cells with NaN\textsubscript{3} (orange solid line), AuNP uptake on application of low dose CAP (yellow solid line).

The accumulation of AuNPs inside U373MG cells was monitored using atomic absorption spectroscopy and the dose response curve of AuNPs with or without CAP treatment has been presented in previous study11. We further analysed the data according to a simulated uptake model to better understand the possible mechanism of CAP-stimulated AuNP uptake. The uptake of nanoparticles by cell populations \textit{in vitro} has previously been modelled according to a phenomenological rate equation approach34–36, and the approach can be extended to further investigate the role of CAP in AuNP uptake by U373MG Glioma Cells.

The rate of uptake of AuNPs into a cell can be described by the equation:

\[
dN_{\text{AuNP}}/dt = (D - N_{\text{AuNP}}) * (1 + k_{\text{doub}}) * (N_1 * R_1 + N_2 * R_2 + N_3 * R_3)
\]

where \(N_{\text{AuNP}}\) is the number of internalised gold nanoparticles, \(D\) is the initial dose of AuNPs, \((D - N_{\text{AuNP}})\) allows for the depletion of the applied AuNP dose, and \(k_{\text{doub}}\) is the doubling time of the cells. \(N_1/R_1\), \(N_2/R_2\) and \(N_3/R_3\) allow for three different principle uptake pathways, with
respective limiting capacities of N and rates R. The first two terms describe independent active and passive uptake mechanisms, respectively, with limiting cellular capacities $N_1(0) = N_{1\text{max}}$ and $N_2(0) = N_{2\text{max}}$, such that:

$$\frac{dN_1}{dt} = -N_1(D - N_{\text{AuNP}})R_1$$ \hspace{1cm} (2)$$

$$\frac{dN_2}{dt} = -N_2(D - N_{\text{AuNP}})R_2$$ \hspace{1cm} (3)$$

Figure 1 (solid blue line) shows the simulated uptake of AuNPs, normalised to the maximum uptake observed for AuNP + CAP, for the case of $R_1 = 3 \times 10^{-3} \text{hr}^{-1}$, $R_2 = 2.5 \times 10^{-5} \text{hr}^{-1}$, $R_3 = 0$, which faithfully reproduces the experimentally observed behaviour. Quenching of the active uptake of AuNPs by NaN$_3$ is best simulated by addition of a further term in equation 2, such that

$$\frac{dN_3}{dt} = -N_1(D - N_{\text{AuNP}})R_1 - N_1 \cdot \text{NaN}_3 \cdot R_4$$ \hspace{1cm} (4)$$

where NaN$_3$ is the effective dose of sodium azide, and R_4 allows for the rapid depletion of the active uptake pathway. The experimentally observed uptake was well simulated (solid orange line) by a value of $R_4 = 3 \times 10^{-5} \text{hr}^{-1}$, keeping all other rates as before.

In simulating the increased uptake of AuNPs upon CAP treatment, it was noted that the enhancement of a single pathway described by equations (2-4) by CAP treatment, by increasing a single uptake rate, did not faithfully reproduce the experimentally observed behaviour, as the uptakes were limited by the parameters $N_{1\text{max}}$ and $N_{2\text{max}}$. Rather, faithful reproduction of the observed behaviour required the introduction of independent uptake mechanisms for untreated and CAP treated AuNP uptake, an observation which was critical to the interpretation of the effects of CAP treatment on the cells. Such a pathway can be represented by:

$$\frac{dN_3}{dt} = -N_3(D - N_{\text{AuNP}})R_3$$ \hspace{1cm} (5)$$

such that $N_3(0) = N_{3\text{max}}$. Upon the application of CAP, the enhanced uptake was well fitted (solid yellow line) by $R_3 = 2.5 \times 10^{-4} \text{hr}^{-1}$, keeping all other rates as before.

The modelling process therefore indicates that CAP treatment increases the capacity of the U373MG cells to uptake AuNPs by introducing a new uptake channel. The modelling parameters employed are detailed in Table 1. Note that the parameters relating to the limiting cell uptake, $N_{n\text{max}}$, were determined by the definition of the dose as 100 mg/mL. Furthermore, the process was one of simulation, rather than a mathematical fitting, so the parameters should be considered within ~10% confidence.

Table 1. The modelling parameters employed in Figure 1.

	$N_{1\text{max}}$	$N_{2\text{max}}$	$N_{3\text{max}}$	NaN_3	$R_1 \text{hr}^{-1}$	$R_2 \text{hr}^{-1}$	$R_3 \text{hr}^{-1}$	$R_4 \text{hr}^{-1}$
AuNP	75	150	400	8500	3×10^{-3}	2.5×10^{-5}	0	0
AuNP + NaN$_3$	75	150	400	8500	3×10^{-3}	2.5×10^{-5}	0	3×10^{-5}
AuNP + CAP	75	150	400	8500	3×10^{-3}	2.5×10^{-5}	2.5×10^{-4}	0
Reactive species generated by CAP treatment.

To further identify the possible uptake pathways affected by CAP treatment and the pathways implicated by the numerical modelling of our data, ROS generation of 30 s, 75 kV CAP treatment was first investigated. Using optical emission spectroscopy (OES) and Gastec gas detector tubes, several reactive species were measured. These included N₂, N₂⁺, ‘OH, and O₂. OES emission intensities from the N₂ second positive system (SPS) were measured at 315, 337, 357, and 377 nm, the N₂⁺ first negative system (FNS) at 391 nm, and ‘OH at 310 nm were measured every 7.5 s during 30 s CAP treatment, with the first point taken just when the CAP was ignited. The data demonstrated a relatively constant ROS and RNS production throughout the 30 s treatment (Figure 2a).

The electron energy distribution function (EEDF) of the plasma was also determined. As seen in Supplementary Figure S1, the EEDF remained close to a ratio of 7 during CAP treatment, which indicated that the electron energies were distributed more so on the lower end of the energy scale (11 - 12 eV) than the higher energy levels (18.8 eV). The low variability of the EEDF indicated that the electric field was stable, and that the formation of the reactive species was in a steady state manner. Using Gastec ozone detector tubes, the concentrations of generated O₃ in the extracted gas were measured post-discharge of CAP treatment (Figure 2b), revealing significantly increasing levels of O₃ recorded over the discharge time, which became saturated at the maximum labelled value of O₃ detection tube after 15 s. The high level of ozone generation may give explanation why no detectable or low emission of NO, O, NO₂ (NO₂, NO₃, N₂O₂, N₂O₃, and N₂O₄), “OH and N₂⁺” measured in air using OES(As seen in Supplementary Discussion).

Having confirmed RONS generation in plasma, the concentration of hydrogen peroxide (H₂O₂), nitrite (NO₂⁻) and nitrate (NO₃⁻) in culture media was next measured. As seen in Figure 2c, the RONS generated in CAP-treated phenol red-free medium are presented after normalising to the values of untreated medium. By direct comparison previous results³⁸, CAP treatment of culture media for 30 s generated very low amounts of H₂O₂ (~20 µM), NO₂⁻ (~5 µM), and NO₃⁻ (~30 µM). These concentrations are at least 15-fold and 200-fold lower than the IC₅₀ values we measured previously for U373MG cells (315 µM, >1200 µM and >600 µM respectively) and therefore are essentially non-toxic³⁹.

To further investigate CAP induced ROS generation in U373MG cells, H₂DCFDA, a cell permeable ROS fluorescence sensor, was preloaded into cells before CAP treatment for 0.5 h. After CAP treatment, cells were collected and the fluorescence of H₂DCFDA was measured using flow cytometry. As seen in Figure 2d, CAP treatment induced increased intracellular H₂DCFDA fluorescence, compared to the untreated group. The mean fluorescence was observed to significantly increase by 4-5 fold above untreated controls (Supplementary Figure S1).
CAP treatment induces lipid peroxidation.

ROS induces lipid peroxidation of the cell membrane40,41. The TBARS assay detects the peroxidised lipid by-product, Malondialdehyde (MDA), as an indicator of the level of lipid peroxidation. After 30 s of CAP treatment, U373MG cells were incubated for 24 hours. The level of the lipid peroxidation indicator malondialdehyde (MDA) was significantly higher in CAP treated cells compared with the control group (Figure 2e), which demonstrated a high level of lipid peroxidation induced by CAP treatment in U373MG cells.

In our previous study, U373MG cells showed a high resistance to CAP-induced cytotoxicity compared with Hela cells. The IC50 of CAP treatment (75 kV) was determined to be 74.26 s (95% confidence range of 47.24–116.8 s) for U373MG cells33. We have previously determined that 60 s CAP treatment induces rapid permeabilisation of U373MG cell membranes42. Figure 2f demonstrated no significant increase of PI uptake following 30 s CAP treatment compared to the control, which indicated that the permeability of the cell membrane to PI, an indicator of
membrane integrity, was not significantly affected by 30 s CAP treatment and CAP-induce lipid peroxidation. This is in agreement with our previous findings, where 30 s CAP treatment induces very low, non-significant levels of toxicity in U373MG cells 48 hours post treatment (18.52%, SEM=5.41%)11.

CAP induced lipid peroxidation was further analysed and visualised using the lipid peroxidation fluorescent sensor C11-BODIPY (581/591) with flow cytometry and confocal microscopy. BODIPY fatty acid is a lipophilic fluorescent dye which contains a polyunsaturated butadienyl portion that can be oxidised, leading to a shift of the emission peak from around 590 nm (Orange) to around 510 nm (Green). It has been demonstrated that C11-BODIPY reacts with various ROS and RNS and shows constant shifting of the emission peak43. As seen in Figure 3a, the confocal imaging showed that there was a significantly stronger green fluorescence emission in CAP-treated cells compared to the untreated cells. Furthermore, C11-BODIPY can be used as tracers of lipid trafficking, especially trafficking of oxidised membrane in this case. Confocal images demonstrated green fluorescent vesicle-like structures which could be oxidised lipid membrane fragments within endosomes or lysosomes (Figure 3a). To determine the level of lipid peroxidation, more than 60 cells were analysed using ImageJ software for each group. The data showed a significant increase (~2 fold) of green fluorescent intensity in the CAP-treated group (Figure 3b) and the orange fluorescent intensity, which presented that the non-oxidised C11-BODIPY decreased for the CAP-treated group compared to the control group (Supplementary Figure S2). Furthermore, the fluorescence levels of C11-BODIPY in the two groups were confirmed with flow cytometry. As seen in Figure 3c, 30s CAP-treated cells showed a significantly increased signal in channel FL1-A, thereby affirming a significant increase in lipid peroxidation induced by CAP treatment (30 s, 75 kV). To calculate integrated density from strongly fluorescent vesicle-like areas only, confocal images were converted to 8-bit form, then inverted and adjusted with same threshold using ImageJ. The integrated density of those highlighted areas was then measured and analysed. As seen in Supplementary Figure S5, the total integrated density of CAP-treated group was significantly higher than untreated control (~3 fold, ****p<0.0001). Furthermore, due to the limitation of fluorescence channels, the LysoTracker™ Deep Red, which is highly selective for acidic organelles, was used to determine the location of oxidised form of C11-BODIPY together with oxidised membrane fragments. Supplementary Figure S3 showed the co-staining of oxidised C11-BODIPY (green) and LysoTracker™ Deep Red (red). The white arrows pointed out examples of vesicle-like structure stained with C11-BODIPY which was co-localised with acidic organelles (such as lysosomes, late endosomes, etc.) as seen in Supplementary Figure S3, middle& right.
Tracking AuNPs in endosomes and lysosomes and effects of CAP treatment on endocytosis of AuNPs.

A membrane repair mechanism has been described for cells\(^{44,45}\). Through rapid endocytosis, cells can quickly remove damaged regions of membranes from the cell surface. These impaired membranes can be trafficked into endosomes and finally to lysosomes. In our case, the rapid endocytosis may contribute to the increased uptake of AuNPs or other compounds into cells following CAP treatment.

Figure 3. C11-BODIPY (581/591) staining shows lipid peroxidation and membrane trafficking inside the cell to lysosomes. (a) Confocal imaging of C11-BODIPY loaded cells; Orange, reduced form of C11-BODIPY; Green, oxidised form of C11-BODIPY. (b) The fluorescent integrated density of oxidised BODIPY was quantified using ImageJ. The statistical significance was assessed by one-way ANOVA with Tukey’s multiple comparison post-test (*\(P<0.05\), **\(P<0.01\), ***\(P<0.001\), ****\(P<0.0001\)), \(n\geq50\), see Supplementary Table S1 for original data. (c) Fluorescence level of intracellular oxidised BODIPY was measured via Flow cytometry, left curve (green, untreated cells), right curve (red, CAP-treated cells).
To test this hypothesis, CellLight™ Early Endosomes-RFP, BacMam 2.0 and CellLight™ Late Endosomes-RFP, BacMam 2.0 were used to further determine whether the route of uptake of AuNPs after CAP treatment was associated with endocytosis. Rab5a and Rab7a chimeras tagged with RFP were transfected and expressed inside cells. After overnight incubation, Rab5a-RFP and Rab7a-RFP were used to specifically track early endosomes and late endosomes, respectively. In Supplementary Figure S6, the white arrows identify examples of co-localisation of AuNPs (red) with either early (left) or late (right) endosomes (orange). Lysosomes (green) were also counterstained. We have previously demonstrated that AuNPs accumulate in lysosomes 24 hours after 30 s, 75 kV CAP treatment using confocal imaging and 3D-image construction. We demonstrate here that AuNPs enter U373MG cells mainly through endocytosis, which can be identified first in early and late endosomes after CAP treatment and eventually accumulate in lysosomes (Supplementary Figure S6).

To monitor the immediate rate of change of endocytosis after CAP treatment, U373MG cells were treated with CAP for 30 s, 75 kV, then incubated with transferrin conjugated with Alexa Fluor™ 546, which is used as an early endosome marker, for 5 min, then fixed with 4% PFA. Transferrin specifically binds to the Transferrin receptor on the cell membrane to deliver Fe³⁺ atoms via receptor-mediated endocytosis. Iron-carrying transferrin then releases iron in the acidic environment of lysosome and will be recycled to the cell membrane. Therefore, early endosomes, including recycling endosomal pathways, were marked with red fluorescence within the confocal image (Figure 4a). As seen from the imaging, within 5 mins after CAP treatment, the number of transferrin-containing endosomes was greater compared to the control group. To statistically analyse the increase of endosomes induced by CAP treatment, more than 50 cells in each group were analysed using the ImageJ software. Quantification of transferrin uptake confirmed a significant increase of endosomes 5 min after CAP treatment (Figure 4b, p<0.0001).

Endocytosis is typically subdivided into four types, including clathrin-mediated endocytosis (CME), caveolae-mediated endocytosis, macropinocytosis and phagocytosis. As seen in Table 2, Pitstop, chlorpromazine (CPZ), Methyl-β-cyclodextrin (MβCD), filipin, genistein and amiloride are specific inhibitors suppress certain types of endocytosis and were used in this study to delineate the specific endocytic pathway activated by CAP.

Table 2. Inhibitors used to inhibit endocytosis in this research

Agent	Effect	Targeting endocytosis
Pitstop	Small molecular that target and disfunction clathrin.⁵⁷	Clathrin-mediated endocytosis
CPZ	Inhibits Rho GTPase.⁵⁸	Clathrin-mediated endocytosis
MβCD	Extracts cholesterol from membrane.⁴⁷	CME, caveolae and micropinocytosis
Filipin	Interacts with cholesterol.⁴⁷	A few caveolae and cholesterol-dependent
Genistein	Inhibitor of few tyrosine kinases59	Caveolar pinching
----------	--	------------------
Amiloride	Lowers the submembraneous pH and blocks Rac1 and Cdc42 signalling60	Micropinocytosis

U373MG cells were pre-incubated with inhibitors as indicated in the Methods section, then treated with CAP at 75 kV for 30 s. After treatment, cells were then incubated with fresh culture medium containing 100 μg/ml AuNPs for 24 hours or stained with transferrin-conjugated with Alexa Fluor™ 546 for 5 minutes then fixed before observing under a confocal microscope. To further quantify the fluorescence intensities of AuNPs and transferrin, more than 50 cells for each group were analysed using the ImageJ software (Supplementary Table S3 for original data). More transferrin-labelled endosomes (Figure 4c) and more AuNP (Figure 4d) were evident after CAP treatment of cells. Clathrin-inhibitors and MβCD-induced cholesterol depletion decreased the number of transferrin labelled endosomes and AuNP-uptake following CAP treatment (Figure 4c, d). Conversely, caveolae-specific inhibitors did not lead to any significant inhibition of Transferrin or AuNP endocytosis in cells after CAP treatment (Supplementary Figure S4). Macropinocytosis can simultaneously and non-specifically uptake all substances, including AuNPs and transferrin, in the fluid phase area of the cellular invagination of membrane97. As seen in Supplementary Figure S4, the accumulation of AuNPs and fluorescence level of transferrin were simultaneously decreased in amiloride-inhibited groups with or without CAP treatment and there remained a significant difference between CAP-treated and untreated groups.
To further confirm that clathrin-mediated endocytosis played the main role in CAP-accelerated cellular uptake, MISSION® Endoribonuclease-prepared siRNA (esiRNA) against human Clathrin heavy chain 1 (CLTC) was used to disrupting endocytosis mediated by clathrin coated pit formation. Cells were preincubated with MISSION® esiRNA (human CLTC) and MISSION® siRNA transfection reagent for 24 h, then treated with CAP for 0-30 s at 75 kV, as indicated in Figure 5, and then incubated with 100 μg/ml AuNPs in medium for 3 h and observed by confocal microscopy. As seen in Figure 5a-d, a significant decrease in AuNPs was observed in clathrin-silenced cells compared to the control groups. Following CAP treatment, we did not observe any increase in AuNP uptake in clathrin-silenced cells. To further quantify the uptake of AuNPs affected by clathrin-silencing and CAP treatment, more than 60 cells in each group were analysed using ImageJ software (Supplementary Table S4 for original data). Figure 5e represents this data and demonstrates that clathrin silencing inhibited more than 50% of the baseline AuNP uptake; moreover, no increase of AuNP uptake was measured.
following CAP treatment in the clathrin-silenced group. Together, this confirms that clathrin-mediated endocytosis played an important role in AuNP uptake, and accelerated endocytosis following CAP treatment was clathrin dependent.

![Image](https://via.placeholder.com/150)

Figure 5. Clathrin silencing inhibits AuNPs uptake and CAP-induced endocytosis.

a-d CAP-untreated cells without silencing, CAP-treated cells without silencing, CAP-untreated cells with silencing of clathrin heavy chain, CAP-treated cells with silencing of clathrin heavy chain. AuNPs are present as red fluorescence inside cells. **(e)** After incubation with esiRNA targeting expressing of clathrin heavy chain, U373MG cells were treated CAP for 0, 30 s at 75 kV and then loaded with 100 μg/ml AuNPs for 3 h before observing under confocal microscope, the fluorescence level was quantified using ImageJ. The statistical significance was assessed by one-way ANOVA with Tukey’s multiple comparison post-test (*P<0.05, **P<0.01, ***P<0.001, ****p<0.0001), n≥50.

Discussion

The cytoplasmic membrane separates and protects the cellular interior from the exterior environment and provides specific and efficient exchange channels for the remaining intercellular balance and cell viability. Therefore, the integrity of the membrane is vital for all cells. Mammalian cells have developed efficient membrane repair mechanisms that can recover and reseal an injured cytoplasm membrane quickly to retain cell viability. Although investigations of the precise membrane repairing mechanisms have been limited, four possible mechanisms, including patch, tension reduction and more recently exocytosis/endocytosis and budding repair mechanisms were recently proposed. The study of cytoplasmic membrane repair usually employs bacterial pore-forming toxins, such as Streptolysin O, to create mechanical injuries on membranes. Meanwhile, lipid peroxidation is a complex process that damages cellular membrane structure and function, which is
believed to link to numerous human diseases and aging, including Alzheimer diseases, dementia, Huntington, Parkinson, and traumatic injuries, under presence of oxidative stress. Many studies have shown that lipid peroxidation have various significant effects to cellular membranes, such as increase of membrane permeability, alteration of the lipid order and membrane fluidity and activity change of membrane proteins. However, there remains a paucity of literature identifying mechanisms of lipid peroxidation-related membrane damage repair, and the mechanisms of oxidised membrane repair remain unknown.

CAP is known to generate reactive species and thereby cause lipid peroxidation of cells. In this research, we explored CAP-induced lipid peroxidation using low dose DBD CAP treatment and studied the possible mechanisms of accelerated cellular uptake of AuNPs following CAP-induced oxidative membrane damage.

As seen in Figure 1, the uptake and accumulation of AuNPs into U373MG cells has been modelled for further investigation. To faithfully reproduce the experimentally observed results, a new independent uptake rate was added in the model (equation 5). This numerical model indicates that CAP treatment may introduce a new uptake route, which has now been determined as an independent membrane repairing, clathrin-mediated, endocytosis pathway.

As seen in Figure 2, we observed a relatively high level of reactive species generated in air during CAP treatment as detected by OES and O₃ measurement. Several reactive species, such as •OH, ONOO⁻ and O₃, etc., generated in DBD CAP can induce lipid peroxidation in U373MG cells. Although there is no detectable emission of NO⁺, O, NOₓ and low intensities of •OH and N₂+, which may due to interaction with relatively high quantities of O₃, Figure 2a, indicates that there are high intensities of excited nitrogen molecules which can induce the generation of nitrated or peroxidised lipid. For example, it has been demonstrated that the reaction of excited N₂ with H₂ and H₂O molecules can lead to the formation of H and •OH products, respectively, which can induce lipid peroxidation. Furthermore, as seen in Figure 2b, the significant increase of O₃ levels during low dose cold plasma treatment shows the ability to peroxidise membrane lipids. The generated RONS in the CAP-treated culture medium, including hydrogen peroxide, nitrite and nitrate, were also quantitatively measured (As seen in Figure 2c). By comparison with our previous study, after the same low does CAP treatment (30 s, 75 kV), the levels of generated H₂O₂, NO₂⁻, and NO₃⁻ in culture medium are relatively low cytotoxic to U373MG cells, but still are able to induce lipid peroxidation.

From another perspective, the CAP treated group also showed significantly greater H₂DCFDA fluorescence levels compared to the control group (Figure 2d), which confirmed the CAP-induced generation of reactive oxygen species inside cells. H₂DCFDA is a cell permeant reagent which is fluorescent in its oxidised form, after interacting with hydroxyl, peroxy and other reactive oxygen species. It has been widely reported that there are several by-products generated during lipid peroxidation, which can be used for specific markers, including malondialdehyde (MDA), 4-hydroxynonenal (HNE), 4-oxo-2-nonenal (ONE), and acrolein.
The TBARS assay has been widely applied in food and biomedical research for detecting lipid peroxidation, as it can precisely and specifically measure the cellular level of MDA52. Figure 2e directly confirmed the CAP-induced lipid peroxidation, as a significant increase of MDA after CAP treatment appeared compared to the control group.

It has been shown that CAP treatment can alter membrane structures, which may be partly due to the reactive species-caused lipid peroxidation42,51,53,54. However, the cell membrane remains PI impermeable after exposing to 75 kV CAP for 30 s, which demonstrates that the oxidised membrane may remain mechanically intact and the U373MG cells retain viability after a low dose of CAP treatment (30 s, 75 kV) (Figure 2f), which aligns with the results indicating low concentration of RONS in the CAP-treated medium (Figure 2c). As seen in Figure 3, there was a significant increase in the green fluorescence level of C11-BODIPY observed, which demonstrated that CAP treatment (30 s, 75 kV) induced significant peroxidation of BODIPY fatty acid, leading to a shift of the emission peak. There was also a significant increase of the vesicle structure marked by oxidised green C11-BODIPY tracked inside the U373MG cells, which may be the peroxidised membrane trafficked inside cells via endosomes (Figure 3a). The increase of endosomes was also confirmed using transferrin conjugated with Alexa Fluor™ 546. As seen in Figure 4a, b, the number of transferrin-marked endosomes within cells was significantly increased just 5 min after CAP treatment (30 s, 75 kV).

Therefore, we propose that low dose CAP treatment can cause non-lethal cytoplasmic membrane damage which triggers a rapid membrane repair system. The increased endocytosis induced by membrane repair then accelerates the uptake of AuNPs into U373MG cells.

To further elaborate on this hypothesis, the uptake of AuNPs into cells was tracked using CellLight™ Early Endosomes-RFP, BacMam 2.0, CellLight™ Late Endosomes-RFP, BacMam 2.0, and LysoTracker™ Green DND-26. In Supplementary Figure S6, after incubation for 3 hours, the white arrows show examples of AuNPs located in the early/late endosomes and lysosomes. Our previous work demonstrated that AuNPs accumulate in lysosomes, with significantly more accumulation in the case of CAP-treated cells, after 24 h incubation using confocal imaging and 3D-image construction11. Supplementary Figure S6 demonstrates the co-localisation of AuNPs with early and late endosome respectively, which shows a tendency of AuNPs uptake to enter the periphery region of the cells through endocytosis, then gather at the central zone of the cells via endosome trafficking into lysosomes. Therefore, it further confirms that U373MG cells mainly accumulate AuNPs into lysosomes via uptake into early then late endosomes after CAP treatment (30 s, 75 kV).

Various endocytosis inhibitors, AuNPs tracking and transferrin staining were used to determine the specific endocytosis pathways activated by CAP treatment. Transferrin is an essential iron-binding protein that facilitate iron-uptake in cells via transferrin receptor and Clathrin-mediated endocytosis. Figure 4c shows that the formation of transferrin-trafficking endosomes was inhibited in both groups with 0 and 30 s CAP treatment, after exposure to
specific/non-specific clathrin inhibitors, including pitstop, CPZ and MβCD. CAP treatment no longer enhanced endocytosis when clathrin was inhibited. Tracking the accumulation of AuNPs after 24 hours incubation demonstrates the long-term effects retained post CAP treatment and various inhibitors (Figure 4d), which suggests similarly that CAP treatment can specifically activate clathrin-mediated endocytosis to enhance cellular uptake of AuNPs. Clathrin silencing combining CAP treatment further confirmed that the CAP-triggered endocytosis for membrane repairing is clathrin dependent (Figure 5).

In summary, we report that the enhanced uptake of AuNPs induced by CAP can be as a result of ROS-caused lipid peroxidation, leading to rapid cytoplasmic membrane repair via clathrin-dependent endocytosis. This contributes to our understanding of the cellular effects induced by CAP, especially membrane damage and endocytosis activation, which can be employed for efficient uptake of nanomaterials and pharmaceuticals into cells when combining CAP with cancer therapies. This mechanism of RONS-induced endocytosis will also be of relevance to researchers optimizing other cancer therapies that induce an increase in extracellular RONS.

Methods

Cell Culture and Gold Nanoparticle Treatment. U373MG-CD14, human brain glioblastoma cancer cells (Obtained from Dr Michael Carty, Trinity College Dublin) were cultured in DMEM-high glucose medium (Merck) supplemented with 10% FBS (Merck) and maintained in a 37 °C incubator within a humidified 5% (v/v) CO₂ atmosphere. Gold nanoparticles were synthesised by trisodium citrate reduction of auric acid. 20nm sphere citrate-capped AuNPs were used to treat cells whose properties were determined in a previous study11. The gold colloid was concentrated to 2500 μg/ml then diluted in culture medium to 100 μg/ml which is non-toxic to U373MG cells. The culture medium containing 100 μg/ml AuNPs was then used to treat cells as indicated in the relevant figures.

CAP Configuration and Treatment. The current research uses an experimental atmospheric dielectric barrier discharge (DBD) plasma reactor, which has been described and characterised in detail33,55. All U373MG cells were treated within containers, which were placed in between two electrodes, at a voltage level of 75 kV for 30 s. Prior to CAP treatment, the culture medium was removed, and fresh culture medium was added into the cell culture container at 5% of the well working volume to prevent drying during treatment. Afterwards, fresh culture medium containing 100 μg/ml AuNPs or inhibitors as indicated was added to reach the well final working volume and incubated with cells at 37 °C for the indicated time.

H₂DCFDA Assay and Optical Emission Spectroscopy (OES) and Ozone measurement. H₂DCFDA (Thermo Fisher Scientific) was used to detect ROS induced by CAP treatment. U373MG cells were seeded into the TC dish 35 standard (35x10mm, Sarstedt) at a density of 2×10⁵ cells/ml and incubated overnight to allow adherence. After washing twice with PBS,
cells were incubated with 25 μM H$_2$DCFDA in serum-free medium for 30 min at 37 °C. Cells were then washed with PBS twice, culture medium once and then treated with CAP at 75 kV for 30s. The fluorescence of H$_2$DCFDA was then measured using flow cytometry.

Optical emission spectroscopy was carried out using an Edmund Optics CCD spectrometer with a spectral resolution of between 0.6 nm to 1.8 nm. The spectra were measured using BWSpec™ software with a spectral range between 200 and 850 nm and were acquired every 7.5 s with an integration time of 1500 ms. Total relative intensity of each emission line was calculated using the integral of the area under each peak.

Measurement of hydrogen peroxide, nitrite and nitrate concentrations. The concentrations of hydrogen peroxide, nitrite and nitrate were quantitatively measured in CAP-treated culture medium without phenol red. Concentrations of hydrogen peroxide, nitrite and nitrate were determined employing the TiSO$_4$ assay, Griess reagent and 2,6-dimethylphenol (DMP) assay, respectively. The quantitative methods have been described in detail elsewhere. For the treatment of culture medium, 150 μl of non-phenol red culture medium with or without 100 μg/ml AuNPs were treated with CAP at 75kV for 30 s in 35 mm dishes containing 80% confluent cells, then collected for measurement. To eliminate the effect of the culture medium on photometrical measurements, the results of CAP-treated groups were standardised with untreated culture medium.

Lipid peroxidation. Thiobarbituric acid reactive substances (TBARS) assay was used to measure the lipid peroxidation induced by CAP in U373MG cells. MDA was measured and normalized to total protein. Thiobarbituric acid (TBA), trichloroacetic acid, MDA were purchased from Merck. U373MG cells were seeded into TC Dish 150 (Standard, 150x20 mm, Sarstedt) at a density of 1×105 cells/ml and incubated until confluence. Then the cells were treated with CAP for 30 s at 75 kV. After treatment, cells were further incubated for 24 h, and collected by trypsinisation, centrifuged (100 g for 5 min), and homogenized by sonication. 100 μl homogenate was mixed with 200 μl ice cold 10% trichloroacetic acid and incubated on ice for 15 min to precipitate protein, then centrifuged (2200 g for 15 min at 4 °C). 200 μl of each supernatant was then mixed with 200 μl 0.67% (w/v) TBA and incubate at 100 °C for 10 min. The samples were measured at 532 nm for MDA after cooling. The level of MDA was compared to a standard curve of 0-100 μM MDA, and normalized to total protein, which was measured in cell homogenates using the Bradford assay.

Lipid peroxidation sensor, C11-BODIPY (581/591) (Thermo Fisher Scientific) was used for in-situ detection and localization of the lipid peroxidation induced by CAP treatment. Oxidation of this lipophilic fluorophore results in a change of the fluorescence emission peak from ~590 nm to ~510 nm. 1mM stock solution was prepared in DMSO and cells were incubated in fresh culture medium containing 5 μM of the probe at 37 °C for 30 min in advance. Then the cells
were washed with PBS twice and culture medium once. Afterwards, cells were treated with CAP for 30 s at 75 kV, incubated for 30 min, and observed using a Zeiss LSM 510 confocal laser scanning microscope as described later. The following excitation and emission settings were used: Excitation wavelength 1: 488 nm, emission filter 1: 500-560; Excitation wavelength 2: 568 nm, emission filter 2: 560-620.

Flow cytometry. U373MG cells were seeded into a TC dish 35 standard (35x10 mm, Sarstedt) at a density of 2×10⁵ cells/ml and incubated overnight to allow a proper adherence. Cells were then loaded with C11-BODIPY and washed as described above (Lipid peroxidation). After treating with CAP, cells were incubated with fresh medium for 0.5 h at 37 °C before collecting.

BD Accuri™ C6 Plus flow cytometry (BD Bioscience) was used to detect and track fluorescence of the lipid peroxidation sensor. To prepare aliquots, all floating and attaching cells were collected by trypsinisation and then washed twice with PBS. All liquids, including medium, PBS and trypsin-cell suspension, were collected into one tube, then centrifuged at 100g for 5 min. 2 ml of fresh PBS was used to resuspend the cell tablet for assessment by flow cytometry. For the measurement, a 488 nm laser was used for excitation, and 10,000 gated events were collected. Green fluorescence (oxidised dye) and red fluorescence (non-oxidised dye) was measured using an FL1 standard filter (533/30 nm) and FL2 standard filter (585/40 nm), respectively.

For Propidium iodide (PI) staining, U373MG cells were seeded into TC Dish 35 at a density of 2×10⁵ cells/ml and incubated overnight to allow adherence. Cells were then exposed to CAP 75kV for 30s. Afterwards, cells were incubated at 37 °C for 30 minutes, and collected by trypsinisation, resuspended into 1ml PBS. Resuspended cells were stained with 1µg/ml PI for 5 minutes. The fluorescence of PI was then measured using BD Accuri™ C6 Plus flow cytometry at FL2 (585/40nm) standard filter.

Inhibitor Studies.

To inhibit various endocytic pathways, cells were pre-incubated with Pitstop (12.5 μM, 5 min) chlorpromazine (10 μg/ml, 10 min), filipin (5 μg/ml, 30 min), genistein (200 μM, 30 min), amiloride (50 μM, 30 min) and methyl-β-cyclodextrin (10 mM, 30 min) in culture medium for the time indicated, at 37 °C. After inhibiting treatment, the culture medium was removed during CAP treatment (75 kV, 30 s), prewarmed fresh culture medium containing 100 μg/ml AuNPs was then added immediately to the dishes and incubated for 3 h before observing using a Zeiss LSM 510 confocal laser scanning microscope.

Transferrin conjugated with Alexa Fluor™ 546 was used to determine the change of early endosomes induced by CAP combining various endocytosis inhibitors. After the inhibiting and CAP treatments indicated above, the cells were incubated in prewarmed fresh medium for 3 h, then incubated with 25 μg/ml transferrin in medium for 5 min. Afterwards, cells were fixed with 4% PFA and then observed using confocal microscopy. The details of the confocal microscope are described in following section.
Clathrin Silencing. MISSION® esiRNA (human CLTC) and MISSION® siRNA transfection reagents were purchase from Merck. 50,000 U373MG cells were seeded into each 35 mm glass-bottom dishes (Greiner Bio-One) and incubated overnight. 1.2 ul esiRNA stock was mixed with 20 ul of transfection reagent in 400 μl serum-free medium and incubated for 15 minutes at room temperature. In glass-bottom dishes, previous medium was replaced with 1 ml of prewarmed fresh medium with serum. The siRNA/transfection reagent solution was then added onto the cells and homogenized to final volume of 1.2 ml. Afterwards, U373MG cells were incubated at 37 °C for 24 h and then incubated with fresh medium containing 100 μg/ml AuNPs for 3 h before observing using confocal microscopy.

Endocytosis Tracking and Cell Imaging. Early endosomes, late endosomes, lysosomes were demonstrated using the CellLight™ Early Endosomes-RFP, BacMam 2.0, the CellLight™ Late Endosomes-RFP, BacMam 2.0 and the LysoTracker™ Green DND-26, respectively (Thermo Fisher Scientific). 35 mm glass-bottom dishes (Greiner Bio-One) were used as containers for confocal imaging. Cells were seeded at a density of 1x10^5 cells/ml and incubated for 16 h. For early and late endosome marker, 2 μl of BacMan 2.0 reagent per 10,000 cells was added in fresh medium and incubated with cells at 37 °C for 16 h. Then the cells were treated with CAP for 30s and incubated with fresh medium containing 0-100 μg/ml AuNPs for 3 or 24 h at 37 °C as indicated. Afterward, the samples were observed using a Zeiss LSM 510 confocal laser scanning microscope. For lysosome tracking, cells were seeded for 16 h, treated with CAP for 30s, then incubated with AuNPs for 3 or 24 h. Afterward, cells were washed twice with PBS and incubated with medium containing 50 nM LysoTracker for 5 min at 37 °C. Cells were then washed once with PBS loaded with phenol red (Merck) and observed using a Zeiss LSM 510 confocal laser scanning microscope. The corresponding filter settings were as follows. AuNPs, excitation wavelength: 633 nm, reflection filter: 649-799 nm; Transferrin conjugated with Alexa Fluor™ 546, excitation wavelength: 568 nm, emission filter: 580-630 nm; CellLight™ Early Endosomes-RFP, BacMam 2.0, excitation wavelength: 568 nm, emission filter: 580-630 nm; CellLight™ Late Endosomes-RFP, BacMam 2.0, excitation wavelength: 568 nm, emission filter: 580-630 nm; LysoTracker™ Green DND-26, excitation wavelength: 488 nm, emission filter: 505-530 nm. Plan-Apochromat 63x/1.4 Oil Ph3 was used as objective for all samples. To analyse the fluorescent intensity, around 50 cells were randomly imaged for each treatment condition, then those images was analysed using the ImageJ and Prism 6 (GraphPad Software).

Statistical Analysis. At least triplicate independent tests were carried out for each data point, unless indicated otherwise. Error bars of all figures are presented using the standard error of the mean (S.E.M). Prism 6 (GraphPad Software) was used to carry out curve fitting and statistical analysis. Two-tailed P values were used and the Alpha for all experiments is 0.05. The significance between data points was verified using one-way ANOVA and two-way ANOVA with Tukey’s multiple comparison post-test, as indicated in figures (*P<0.05, **P<0.01, ***P<0.001, ****p<0.0001).
References

1. Guerrero-Preston, R. et al. Cold atmospheric plasma treatment selectively targets head and neck squamous cell carcinoma cells. *Int. J. Mol. Med.* **34**, 941–946 (2014).

2. Fridman, G. et al. Applied plasma medicine. *Plasma Processes and Polymers* **5**, 503–533 (2008).

3. He, Z. et al. Combination Strategies for Targeted Delivery of Nanoparticles for Cancer Therapy. in *Applications of Targeted Nano Drugs and Delivery Systems* 191–219 (2019). doi:10.1016/B978-0-12-814029-1.00008-9

4. Kim, G. C. et al. Air plasma coupled with antibody-conjugated nanoparticles: a new weapon against cancer. *J. Phys. D. Appl. Phys.* **42**, 032005 (2008).

5. Collet, G. et al. Plasma jet-induced tissue oxygenation: Potentialities for new therapeutic strategies. *Plasma Sources Sci. Technol.* (2014). doi:10.1088/0963-0252/23/1/012005

6. Pan, Y. et al. Size-dependent cytotoxicity of gold nanoparticles. *Small* **3**, 1941–1949 (2007).

7. Connor, E. E., Mwamuka, J., Gole, A., Murphy, C. J. & Wyatt, M. D. Gold nanoparticles are taken up by human cells but do not cause acute cytotoxicity. *Small* **1**, 325–327 (2005).

8. Alkilany, A. M. & Murphy, C. J. Toxicity and cellular uptake of gold nanoparticles: What we have learned so far? *J. Nanoparticle Res.* **12**, 2313–2333 (2010).

9. Zhu, W. et al. Synergistic Effect of Cold Atmospheric Plasma and Drug Loaded Core-shell Nanoparticles on Inhibiting Breast Cancer Cell Growth. *Sci. Rep.* **6**, 21974 (2016).

10. Irani, S., Shahmirani, Z., Atyabi, S. M. & Mirpoor, S. Induction of growth arrest in colorectal cancer cells by cold plasma and gold nanoparticles. *Arch. Med. Sci.* **11**, 1286–1295 (2015).

11. He, Z. et al. Cold Atmospheric Plasma Induces ATP-Dependent Endocytosis of Nanoparticles and Synergistic U373MG Cancer Cell Death. *Sci. Rep.* (2018). doi:10.1038/s41598-018-23262-0

12. Freese, C. et al. Uptake and cytotoxicity of citrate-coated gold nanospheres: Comparative studies on human endothelial and epithelial cells. *Part. Fibre Toxicol.* (2012). doi:10.1186/1743-8977-9-23

13. Chithrani, B. D., Ghazani, A. A. & Chan, W. C. W. Determining the size and shape dependence of gold nanoparticle uptake into mammalian cells. *Nano Lett.* **6**, 662–668 (2006).

14. Tsoli, M., Kuhn, H., Brandau, W., Esche, H. & Schmid, G. Cellular Uptake and Toxicity of Au\textsubscript{55} Clusters. *Small* (2005). doi:10.1002/smll.200500104
15. Ryan, J. A. et al. Cellular uptake of gold nanoparticles passivated with BSA-SV40 large T antigen conjugates. *Anal. Chem.* (2007). doi:10.1021/ac0715524

16. Chithrani, B. D. & Chan, W. C. Elucidating the mechanism of cellular uptake and removal of protein-coated gold nanoparticles of different sizes and shapes. *TL - 7. Nano Lett.* 7, 1542–1550 (2007).

17. Verma, A. et al. Surface-structure-regulated cell-membrane penetration by monolayer-protected nanoparticles. *Nat. Mater.* 7, 588–595 (2008).

18. Babington, P. et al. Use of cold atmospheric plasma in the treatment of cancer. *Biointerphases* 10, 029403 (2015).

19. Stoffels, E., Kieft, I. E. & Sladek, R. E. J. Superficial treatment of mammalian cells using plasma needle. *J. Phys. D. Appl. Phys.* 36, 2908–2913 (2003).

20. Kong, M. G., Keidar, M. & Ostrikov, K. Plasmas meet nanoparticles—where synergies can advance the frontier of medicine. *J. Phys. D. Appl. Phys.* 44, 174018 (2011).

21. Reuter, S., Gupta, S. C., Chaturvedi, M. M. & Aggarwal, B. B. Oxidative stress, inflammation, and cancer: How are they linked? *Free Radic. Biol. Med.* 49, 1603–1616 (2010).

22. Hicks, A. M. et al. Effector mechanisms of the anti-cancer immune responses of macrophages in SR/CR mice. *Cancer Immun.* 6, (2006).

23. Zivkovic, M. et al. Oxidative burst of neutrophils against melanoma B16-F10. *Cancer Lett.* 246, 100–108 (2007).

24. Chao, C. C. et al. Priming effect of morphine on the production of tumor necrosis factor-α by microglia: Implications in respiratory burst activity and human immunodeficiency virus-1 expression. *J. Pharmacol. Exp. Ther.* (1994).

25. Schumacker, P. T. Reactive oxygen species in cancer cells: Live by the sword, die by the sword. *Cancer Cell* (2006). doi:10.1016/j.ccr.2006.08.015

26. Trachootham, D., Alexandre, J. & Huang, P. Targeting cancer cells by ROS-mediated mechanisms: a radical therapeutic approach? *Nat. Rev. Drug Discov.* 8, 579–591 (2009).

27. Halliwell, B., Evans, P. J., Kaur, H. & Chirico, S. Drug derived radicals: Mediators of the side effects of anti-inflammatory drugs? *Ann. Rheum. Dis.* 51, 1261–1263 (1992).

28. Leopold, J. A. & Loscalzo, J. Oxidative risk for atherothrombotic cardiovascular disease. *Free Radical Biology and Medicine* (2009). doi:10.1016/j.freeradbiomed.2009.09.009

29. Long, N. C. et al. Ozone causes lipid peroxidation but little antioxidant depletion in exercising and nonexercising hamsters. *J. Appl. Physiol.* (2017). doi:10.1152/jappl.2001.91.4.1694

30. Kelly, F. J., Mudway, I., Krishna, M. T. & Holgate, S. T. The free radical basis of air pollution: focus on ozone. *Respiratory Medicine* (1995). doi:10.1016/0954-
31. Chen, C., Arjomandi, M., Balmes, J., Tager, I. & Holland, N. Effects of chronic and acute ozone exposure on lipid peroxidation and antioxidant capacity in healthy young adults. *Environ. Health Perspect.* (2007). doi:10.1289/ehp.10294

32. Adibhatla, R. M. & Hatcher, J. F. Phospholipase A2, reactive oxygen species, and lipid peroxidation in CNS pathologies. *BMB Rep.* (2011). doi:10.5483/bmbrep.2008.41.8.560

33. Conway, G. E. *et al.* Non-thermal atmospheric plasma induces ROS-independent cell death in U373MG glioma cells and augments the cytotoxicity of temozolomide. *Br. J. Cancer* **114**, 435–443 (2016).

34. Byrne, H. J. & Maher, M. A. Numerically modelling time and dose dependent cytotoxicity. *Comput. Toxicol.* (2019). doi:10.1016/j.comtox.2019.100090

35. Souto, G. D. *et al.* Evaluation of cytotoxicity profile and intracellular localisation of doxorubicin-loaded chitosan nanoparticles. *Anal. Bioanal. Chem.* (2016). doi:10.1007/s00216-016-9641-6

36. Maher, M. A., Naha, P. C., Mukherjee, S. P. & Byrne, H. J. Numerical simulations of in vitro nanoparticle toxicity - the case of poly(amido amine) dendrimers. *Toxicol. Vitr.* (2014). doi:10.1016/j.tiv.2014.07.014

37. Schmidt-Bleker, A., Winter, J., Bösel, A., Reuter, S. & Weltmann, K.-D. On the plasma chemistry of a cold atmospheric argon plasma jet with shielding gas device. *Plasma Sources Sci. Technol.* **25**, 015005 (2016).

38. Tsoukou, E., Bourke, P. & Boehm, D. Understanding the Differences Between Antimicrobial and Cytotoxic Properties of Plasma Activated Liquids. *Plasma Med.* **8**, 299–320 (2018).

39. Lu, P., Boehm, D., Bourke, P. & Cullen, P. J. Achieving reactive species specificity within plasma-activated water through selective generation using air spark and glow discharges. *Plasma Process. Polym.* **14**, 1–9 (2017).

40. Leutner, S., Eckert, A. & Müller, W. E. ROS generation, lipid peroxidation and antioxidant enzyme activities in the aging brain. *J. Neural Transm.* (2001). doi:10.1007/s007020170015

41. Schuessel, K. *et al.* Aging sensitizes toward ROS formation and lipid peroxidation in PS1M146L transgenic mice. *Free Radic. Biol. Med.* (2006). doi:10.1016/j.freeradbiomed.2005.10.041

42. Conway, G. E. *et al.* Cold Atmospheric Plasma induces accumulation of lysosomes and caspase-independent cell death in U373MG glioblastoma multiforme cells. *Sci. Rep.* **9**, (2019).

43. Drummen, G. P. C., Gadella, B. M., Post, J. A. & Brouwers, J. F. Mass spectrometric
characterization of the oxidation of the fluorescent lipid peroxidation reporter molecule C11-BODIPY 581/591. *Free Radic. Biol. Med.* (2004). doi:10.1016/j.freeradbiomed.2004.03.014

44. Idone, V., Tam, C. & Andrews, N. W. Two-way traffic on the road to plasma membrane repair. *Trends in Cell Biology* (2008). doi:10.1016/j.tcb.2008.09.001

45. Andrews, N. W. & Corrotte, M. Plasma membrane repair. *Curr. Biol.* 28, R392–R397 (2018).

46. Dolman, N. J., Kilgore, J. A. & Davidson, M. W. A review of reagents for fluorescence microscopy of cellular compartments and structures, part I: BacMam labeling and reagents for vesicular structures. *Curr. Protoc. Cytom.* (2013). doi:10.1002/0471142956.cy1230s65

47. Iversen, T. G., Skotland, T. & Sandvig, K. Endocytosis and intracellular transport of nanoparticles: Present knowledge and need for future studies. *Nano Today* 6, 176–185 (2011).

48. Stockwell, B. R. *et al.* Ferroptosis: A Regulated Cell Death Nexus Linking Metabolism, Redox Biology, and Disease. *Cell* (2017). doi:10.1016/j.cell.2017.09.021

49. Feng, H. & Stockwell, B. R. Unsolved mysteries: How does lipid peroxidation cause ferroptosis? *PLoS Biol.* (2018). doi:10.1371/journal.pbio.2006203

50. Pelevkin, A., Physics, A. S.-J. of P. D. A. & 2018, undefined. Reactions of electronically excited molecular nitrogen with H2 and H2O molecules: theoretical study. iopscience.iop.org

51. Adibhatla, R. M. & Hatcher, J. F. Lipid Oxidation and Peroxidation in CNS Health and Disease: From Molecular Mechanisms to Therapeutic Opportunities. *Antioxid. Redox Signal.* (2009). doi:10.1089/ars.2009.2668

52. Joshi, S. G. *et al.* Nonthermal dielectric-barrier discharge plasma-induced inactivation involves oxidative DNA damage and membrane lipid peroxidation in Escherichia coli. *Antimicrob. Agents Chemother.* 55, 1053–1062 (2011).

53. Recek, N. *et al.* Effect of cold plasma on glial cell morphology studied by atomic force microscopy. *PLoS One* 10, 1–14 (2015).

54. Cheng, X. *et al.* Synergistic effect of gold nanoparticles and cold plasma on glioblastoma cancer therapy. *J. Phys. D. Appl. Phys.* 47, 335402 (2014).

55. Moiseev, T. *et al.* Post-discharge gas composition of a large-gap DBD in humid air by UV-Vis absorption spectroscopy. *Plasma Sources Sci. Technol.* (2014). doi:10.1088/0963-0252/23/6/065033

56. Begum, A., Laroussi, M. & Pervez, M. R. Atmospheric pressure He-air plasma jet: Breakdown process and propagation phenomenon. *AIP Adv.* (2013). doi:10.1063/1.4811464
57. Robertson, M. J. et al. Synthesis of the Pitstop family of clathrin inhibitors. Nat. Protoc. (2014). doi:10.1038/nprot.2014.106

58. Wang, L. H., Rothberg, K. G. & Anderson, R. G. W. Mis-assembly of clathrin lattices on endosomes reveals a regulatory switch for coated pit formation. J. Cell Biol. 123, 1107–1117 (1993).

59. L., P., D., P. & A., H. Local Actin Polymerization and Dynamin Recruitment in SV40-Induced Internalization of Caveolae. Science (80-.). 296, 535–539 (2002).

60. Koivusalo, M. et al. Amiloride inhibits macropinocytosis by lowering submembranous pH and preventing Rac1 and Cdc42 signaling (Journal of Cell Biology (2010) 188, (547-563)). Journal of Cell Biology 189, 385 (2010).

Acknowledgements

This work is supported by TU DUBLIN Fiosraigh Research Scholarship programme (Z.H., E.M., K.L., L.S., S.G., M.M.), Science Foundation Ireland Grant Numbers 14/IA/2626 (P.B., H.B., P.C. and J.C.) and 16/BBSRC/3391.

Author Contributions

Z.H., F.T., P.C. and J.C. conceived the project and designed the experiments. Z.H., H.B., E.M., K.L., L.S., S.G., S.W.N. and M.M. performed the experiments, collected and analysed the data. Z.H., F.T., B.T., P.C, P.B, H.B. and J.C. co-wrote the paper. All authors discussed the results and reviewed the manuscript.

Competing Interests

The authors declare no competing interests.
Supplementary Materials

Supplementary Figure S1. (a) Electro energy distribution function (EEDF) of CAP; Fluorescence level of intracellular oxidised H₂DCFDA was measured via Flow cytometry, two replicas (b, c) and the analysed average of mean FL1-A value (d).

Supplementary Figure S2. The fluorescent integrated density of non-oxidised BODIPY was quantified using ImageJ. The statistical significance was assessed by one-way ANOVA with Tukey’s multiple comparison post-test (*P<0.05, **P<0.01, ***P<0.001, ****P<0.0001), n≥50, see Supplementary Table S1 for original data.
Supplementary Figure S3. The U373MG cells were loaded with C11-BODIPY (green), then co-stained with LysoTracker™ Deep Red (red) after CAP treatment (30 s, 75 kV) and observed under confocal microscope, three images are presented in the figure. White arrows point out examples of co-localisation between oxidised C11-BODIPY and lysosomes.

Supplementary Figure S4. After incubation with various inhibitors as indicated, U373MG cells were treated CAP for 0, 30 s at 75 kV and then loaded with transferrin for 5 min or 100 μg/ml AuNPs for 3 h respectively before observing under confocal microscope, then the fluorescence integrated densities were quantified using ImageJ. The statistical significance was assessed by one-way ANOVA with Tukey’s multiple comparison post-test (*P<0.05, **P<0.01, ***P<0.001, ****p<0.0001), n≥50.
Supplementary Figure S5. Oxidized C11-BODIPY emission was measured with same threshold to highlight vesicle-like condensed area. (a) Sample of CAP treated cells; (b) Sample of untreated cells; (c) With same threshold, the fluorescence integrated densities were quantified using ImageJ. The statistical significance was assessed by unpaired T-test. (*P<0.05, **P<0.01, ***P<0.001, ****p<0.0001), n≥50.

Supplementary Discussion:

The intensity of O₃ production may explain why there was no detectable emission of NO, O, NOₓ, and low intensities of •OH and N₂⁺ in Figure 2a, as the free electrons were likely quenched before reaching higher energetic states by the interaction and formation of O₃. Reaction mechanisms (1-4) can further explain how the formation of NO, NOₓ, and O was hindered. In these reactions, M is a third body atom or molecule that, in this case, may be N₂⁺ or O₂.

\[
\begin{align*}
0 + O_2 + M^* & \rightarrow O_3 + M \quad (1) \\
M^* + NO & \rightarrow M + N + O \quad (2) \\
0 + H_2O & \rightarrow 2 \cdot OH \quad (3) \\
2N + M & \rightarrow N_2 + M \quad (4)
\end{align*}
\]
Supplementary Figure S6. Uptake and subcellular localization of AuNPs observed by confocal microscopy. After CAP treatment (0, 30 s), U373MG cells were incubated with 100 μg/ml AuNPs for 3 h. Early, late endosomes and lysosomes were stained using CellLight™ Early/Late Endosomes-RFP (Marked as orange channel in images) and LysoTracker™ Green DND-26, respectively. The far-red emission of AuNPs (Red) was excited using 633 nm laser.
Supplementary Table S1.

Integrated Density of BODIPY	Control	CAP 30s.	Control. Oxidized (Figure 3b)	CAP 30s. Oxidized
825441	764257	232430	417629	
998949	760580	310618	342874	
1060462	665879	327636	426428	
859260	1089862	179182	477016	
530275	765581	307326	426428	
829556	360915	176954	448261	
665668	551518	499637	293395	
1278050	264406	510195	325466	
2038367	596517	356545	273752	
936308	760052	292490	373363	
1259645	322197	407417	167146	
1573896	866259	281113	394278	
1019896	499450	227051	302926	
963641	296252	181733	211856	
862036	846493	189916	454239	
812204	881387	248568	374375	
1113481	861837	300329	373363	
748271	778087	273441	505987	
1165023	524382	211868	293939	
764072	867958	282522	388750	
1232175	508610	317893	597744	
1007005	595270	161873	295272	
982070	610424	156628	306654	
1320705	445595	458994	390399	
946150	143636	399135	89896	
1342500	708723	462811	741382	
653886	888079	196388	524934	
499775	373856	190853	306468	
875556	1477152	153302	390161	
1037540	653049	163432	651081	
906223	1078557	142877	187065	
1097569	675892	206789	906811	
1207059	402444	37404	312273	
718964	1083730	109317	617780	
559771	930197	236604	468648	
475472	898191	142135	296259	
747381	331716	270552	389688	
805512	532198	82436	195602	
707968	817839	84652	506283	
840742	414685	168778	451699	
777642	749632	364207	303635	
1022745	879071	100734	431292	
1228769	1084756	114519	701205	
2064986	412708	49002	444981	
697882	884861	273032	223130	
1203465	566726	58729	423576	
775782	667011	160249	569403	
1182171	895365	184585	660069	
812884	497905	198073	227918	
940440	603690	154684	478087	
555395	684168	441372	254274	
1327438	371186	274210	362961	
718766	502118	245082	398478	
642920	415450	228162	325251	
1050097	1489285	437520	346672	
Supplementary Table S2.

Untreated	CAP30s
110807	57027
66999	112562
125539	86679
25907	97764
18663	210017
36431	151799
55003	82789
58136	180386
108838	219322
203364	120825
38237	109507
106023	181812
153065	232475
46973	103867
231021	165690
126260	189547
58261	145942
53516	216243
28616	175271
169818	79758
119425	197285
69952	173238
24623	207385
126382	137586
109035	103140
251395	55164
90739	287846
76501	49045
76803	75313
71061	76832
70167	89317
71700	116572
29972	81825
28606	205643
87132	134411
33269	101051
Supplementary Table S3

Untreated	CAP30s	Pitstop	Pitstop+CAP	CPZ	CPZ+CAP
108598	295322	64736	100433	38802	56788
43443	108782	38572	31750	24310	83128
77433	251156	47517	76352	39598	45220
94477	84583	25591	100240	294486	19690
86584	65841	35782	71304	68324	13416
98793	91549	39735	28401	51158	9444
102070	163102	100772	44936	53180	16446
129770	156221	40368	22378	72708	29576
112724	81989	30864	12836	68844	5404
60643	207294	74733	17119	131656	7596
70525	80463	76017	26816	72856	4568
110091	86986	75272	97123	62814	21856
139093	145578	91199	43380	119252	2280
98220	63260	29856	83012	26884	7814
133442	69745	115762	17713	51452	129394
143649	110816	105188	49522	28458	117634
75022	123363	43457	54983	71198	30926
123196	134115	50026	18278	74608	77612
70338	228112	7877	59622	26936	68470
55592	140503	69660	29797	3384	88596
71972	121850	99571	77787	7454	30684
168227	158303	62211	74743	34034	75958
93020	121401	89301	78765	19250	95484
129316	70365	98921	47823	15276	103746
110653	146501	86540	32383	49392	9158
88591	129369	84316	42288	15354	4520
122648	82011	80932	52147	19722	25244
75639	98961	76763	42159	51914	17308
131539	112977	188739	101745	54704	50974
157044	76354	30436	28371	41096	16284
---------	-------	-------	-------	-------	-------
163738	94709	46748	63526	36212	5584
78295	51942	34317	91475	23016	19136
111987	177314	59776	41096	19956	7634
125506	94675	35976	56949	17996	30856
125495	129185	57772	69132	31342	84574
120301	127507	56559	99148	19040	30892
105738	90869	90776	41119	56680	9672
48458	119518	32429	59855	24088	12082
68317	113258	58616	47787	42838	37932
36999	247984	18765	73103	18410	4872
72117	277862	67164	27352	9752	61354
89229	184301	72684	37608	22664	29434
45164	167793	38795	41806	21144	36554
77146	317787	49816	72871	63528	27876
88215	213580	12847	87006	15258	69646
91529	72160	56799	66654	18400	59842
80253	60324	26547	49931	64260	23916
63880	97864	15265	46675	20094	14374
120907	156754	56795	29802	18770	79040
86245	125687	23657	64467	27556	61076
			12833	17776	14866
			28102	69252	85876
			38183	19000	15354
			29502	34386	8102
			37891	8592	38704
			61498	11670	34414
			51505	37184	78286
			35668	8968	16564
			24266	21180	71468
			51119	90982	10220
			22680	19342	19342
			42116	16544	16544
			7278	9582	9582
			6646	77040	77040
			59824	30404	30404
			8114	54566	54566
			19838	48010	48010
			7918	16944	16944
			6710	7116	7116
			34934	7930	7930
			67322	8512	8512
			5804	8342	8342
			26376	33834	33834
			2612	17928	17928
			20240	9364	9364
			22084	53872	53872
			38896	26456	26456
			15434	43858	43858
Integrated Density of Transferrin

MβCD	MβCD+CAP	Filipin	Filipin +CAP	Genistein	Genistein +CAP	Amiloride	Amiloride +CAP	
131419	66932	97900	163871	101792	133841	196235	124569	
124614	93007	129504	187302	133971	118480	138704	135077	
69503	97275	110897	280194	65462	127431	29079	51297	
75277	46598	90356	105230	147728	283770	72203	88474	
76750	77640	104776	76422	187365	103548	45995	114594	
18178	92103	73574	85766	68864	51402	72146	47209	
81444	24984	159303	113291	72395	88474	47209	47209	
88041	95210	124298	90004	101640	94243	163106	144728	
57794	98855	108271	232008	96453	33070	144728	99006	
51151	89031	72235	76414	174993	104571	31934	49935	
76552	75078	33351	137916	271282	93475	244560	114787	
86342	85701	30163	116268	221595	142366	56665	163106	
40633	59098	62316	77831	83503	113373	48094	163106	
97243	91913	65030	77608	145251	90370	30674	99006	
36007	93666	109848	134224	99669	83792	97877	104122	
79613	93835	95871	82976	72559	161527	99403	145760	
79863	73324	106984	164104	202898	247658	60424	131902	
115776	69286	157208	74697	51052	82664	76203	117916	
47129	35314	109433	78977	58917	65763	37386	43884	
36055	46718	27594	83753	112259	87005	81334	139639	
87390	83701	79618	146374	140919	179148	29538	137618	
62452	56757	89721	152046	163308	75257	65159	73523	
93547	68512	194085	135891	67768	260961	79248	115470	
74815	43701	36909	127681	69400	94462	34570	38530	
65652	38500	50967	92144	52293	252478	101412	214459	
90255	46948	159055	91692	74286	71411	40862	55017	
71303	102306	165479	64158	119649	159244	30034	72765	
50020	90653	48369	143926	121836	167913	78864	82769	
76361	105447	39814	83297	157275	103238	21499	145664	
61373	48421	82143	93936	100709	117632	87521	103887	
72042	14139	117174	100813	268448	56085	32872	96235	
Untreated	CAP 30s	Pitstop	Pitstop+CAP	CPZ	CPZ+CAP			
-----------	---------	---------	-------------	-------	---------			
5516	22261	6083	3792	7990	8366			
3581	12306	4177	6099	1863	1957			
27847	10762	1746	2099	1486	8966			
15965	3480	3011	1812	1434	6266			
2647	10667	4032	1975	5801	1452			
3198	4966	4808	6106	4778	3468			
6305	8758	3805	2532	7212	2421			
5788	20948	7747	1728	5556	2566			
3919	8903	7417	3160	5631	3101			
17942	10360	1322	3273	4089	4259			
4457	17401	2229	2863	2949	2871			
18099	50518	4509	4671	4297	3558			
5395	21642	5231	5348	2607	3562			
10992	9222	2962	2937	5111	7809			
16843	11587	2971	4733	2967	7133			
7621	14788	2567	3325	8772	4191			
17892	13311	6843	5923	5787	3747			
21501	20808	1608	7813	5110	8074			
2455	12197	10176	2810	3289	5436			
8796	8593	6170	2574	2880	3060			
11688	10932	1970	9692	7444	2601			
3500	15539	3286	2373	9698	3402			
13317	20754	8646	4150	3923	3123			
4841	8846	2766	8823	5399	2857			
2679	4831	1331	4191	2188	5444			
17626	16624	5692	1857	5285	6896			
1669	10846	4185	3482	4443	3207			
8186	16627	5613	4884	4856	4577			
9202	19013	6779	10185	3336	3296			
9836	18567	5571	4395	7300	3899			
8877	12700	3958	2648	2034	3728			
Integrated Density of AuNPs	Filipin	Filipin +CAP	Genistein	Genistein +CAP	MβCD	MβCD+CAP	Amiloride	Amiloride+CAP
-----------------------------	---------	-------------	-----------	---------------	------	---------	----------	--------------
14925	45932	7861	8525	10364	5563	4919	12384	
13177	6400	3124	8659	3826	6903	6343	8314	
6253	6224	7004	17234	5294	2748	8187	5489	
4841	21801	8737	11437	8912	3850	3139	4808	
17947	15017	12423	6792	14276	17048	5059	13403	
4950	6373	6463	11330	9686	4090	1863	8839	
------	----------	----------	----------	----------	----------	----------		
5319	9478	6621	12569	8051	8453	4450		
11753	17365	9855	29753	8871	4153	2650		
8816	10640	9297	5810	5919	5268	2781		
3601	12295	15754	9558	4132	5229	13092		
4623	5898	2416	10012	29822	13267	1360		
14331	6364	8974	12247	9759	8702	1107		
3477	26822	26687	4487	12254	6550	2166		
10509	18101	13251	11413	10175	8515	3635		
6237	15876	3005	24979	4763	9959	5746		
7240	13389	3677	26444	20656	8809	12468		
7500	33586	1610	20449	5935	4552	7872		
3569	10446	21888	11668	8371	3501	2171		
3443	12871	16131	9829	11152	7595	4149		
17505	6565	17298	22269	4376	10268	13666		
11009	10467	10002	7997	12687	6862	4572		
14142	5683	20026	21671	7365	5081	9826		
12541	14049	4944	4504	5930	12182	8787		
10120	17180	8411	10937	17596	7779	5460		
6846	7140	17666	14563	8740	6003	14653		
7556	13706	7391	14822	15900	5778	16330		
8475	14675	9217	19264	4593	18306	7051		
15018	18780	14439	39774	2451	13608	28750		
24729	9029	10800	12115	3554	17698	12822		
6180	9180	10289	9980	3791	2271	7980		
8662	7303	4240	10558	13315	8238	2636		
16450	17269	5030	10707	5436	6113	4535		
9587	5057	5329	7643	10356	3952	4568		
11228	14892	4067	18347	1700	8427	2574		
11317	11273	27835	10790	5436	5052	2969		
5662	3751	21257	9966	3554	11620	2219		
16028	6097	5817	10412	2462	6685	3242		
9972	7096	5579	11849	15179	5245	2159		
9829	14357	19417	11330	6384	5810	5537		
13112	5305	1497	7456	6338	20414	7951		
14690	4870	5149	10368	10377	4421	19438		
14599	6517	6111	8107	4391	9412	9825		
3840	6081	9586	12417	9562	11953	5042		
8961	10141	8745	16088	5431	8533			
7528	14356	9156	18577	2471	24524			
5024	10728	14895	25898	34529				
10471	4837	10299	16529					
4401	12326	10661	9265					
9953	11511	3269	13413					
8079	3960	7929						
20982	6973	9668						
9719	11519	10979						
6663	6567							
16067	3955							
9929								
26445								
13543								
13793								
12121								
13008								
7982								

Supplementary Table S4.

Integrated Density of AuNPs						
	37					
CAP30s Control	CAP 0s	CAP 0s	CAP 30s			
----------------	--------	--------	---------			
540329	172547	71657	81386			
317286	431535	52885	26174			
366683	78334	50113	83853			
118864	227289	98205	62198			
389856	182028	58882	113274			
260748	95261	213664	176140			
255370	67797	32246	90214			
143714	155367	84077	155663			
254835	143994	18060	167904			
241522	409060	130518	52593			
173393	91173	82556	22219			
437882	98606	20741	19181			
301708	372871	42321	16830			
283998	42174	50000	36912			
529897	192966	22797	11897			
132739	43429	32307	67489			
325045	171486	111229	22481			
256487	155863	165385	45392			
225093	218957	243576	12669			
459960	332020	115717	14759			
242832	163495	32769	59857			
102314	178575	134059	29691			
274004	43099	91085	36894			
319820	116779	96918	46448			
144878	33679	42816	24724			
313094	281964	92220	41174			
215681	474462	163157	12320			
426863	78871	107430	42693			
169499	25139	78092	54199			
449778	157231	44965	26720			
207286	25451	46103	68806			
600642	105195	99071	50186			
191247	124412	169342	18736			
175692	128267	80229	16030			
167735	312896	36048	55855			
195195	129867	76657	106951			
195351	127963	117916	17979			
131726	352128	22666	39283			
328548	257630	66817	17452			
212497	116701	53062	34551			
453971	134485	35270	10871			
318022	113204	33485	43176			
335974	203686	37665	6543			
135597	81301	39651	20391			
226104	258075	18179	9906			
136796	117997	56467	43154			
168061	189202	26238	33298			
530325	354143	16544	6978			
310895	179360	42583	10131			
156015	248087	10222	7391			
118700	104282	19974	18762			
122974	189066	53493	56664			
133195	84785	27174	8288			
267536	141462	21953	72528			
200762	345977	148609	24130			
299249	77114	73347	13301			
94514	47361	62139	18333			
293151	43665	54334	20520			
176776	9389	4625	17705			
	270307		6653		38519	
----	--------	----	------	----	-------	----
31190	46708		28687			
257884	50733		15938			
155736	49224					
345060	17503					
43585	15541					
81386	3876					
23622						
75993						
65180						
568575						
318601						
174400						
52373						
23718						
59279						
38939						
75419						
98606						
24077						
75776						
41710						
22592						
70125						
45832						
98998						
114681						
126842						
72896						
161663						