Further Evidence for the Structure of the Subtilisin Propeptide and for Its Interactions with Mature Subtilisin*

(Received for publication, September 25, 1995, and in revised form, November 26, 1995)

Zhixiang Hu, Khadije Haghjoo, and Frank J.ordan†
From the Department of Chemistry, Rutgers, the State University of New Jersey, Newark, New Jersey 07102

Evidence is presented for some secondary structure, very likely α-helical, of the propeptide of subtilisin E in aqueous salt solution, as well as for strong intermolecular interactions between the propeptide and the mature sequence both in the processed and unprocessed states (i.e. in prosubtilisin). Prosubtilisin is shown to exist as a dimer according to size exclusion high performance liquid chromatography under non-denaturing conditions; that dimer may be on the autoprocessing pathway. According to such a model, the prosequence of one prosubtilisin molecule is the template for the refolding of the mature sequence of the second, and, in turn, the hydrolytic process is intermolecular as well. Support for such an intermolecular folding model also includes potent slow binding inhibition of subtilisin by the propeptide, specific proteolysis of the propeptide by subtilisin, and evidence for intermolecular processing under a variety of conditions.

Subtilisin (EC 3.4.21.62), a bacterial alkaline serine protease cannot undergo refolding by itself, once it is denatured (1). The yield of spontaneous refolding was less than 0.1% when denatured subtilisin at a concentration of 0.1 mg/ml was diluted into high salt buffer, and most of the protein precipitated due to aggregation. Renaturation of subtilisin BPN9 in the absence of its propeptide (2) did result at very low protein concentration (<1 μg/ml) (3). Subtilisin is synthesized in Bacillus subtilis as a prepropeptide; the prosequence of 29 amino acid residues is essential for secretion and is hydrolyzed by a signal peptidase (4), and the prosequence of 77 amino acids is required for proper folding of the mature subtilisin (5, 6) and is autoprocessed hydrolytically by active, mature subtilisin.

In Escherichia coli (5, 7), prosubtilisin could be expressed as inclusion bodies, that when solubilized in 6.0 M guanidinium HCl undergo refolding and autoprocessing, once dialyzed against renaturing buffer (6, 8). The propeptide-assisted refolding to active enzyme was observed in trans by exogenously added prosubtilisin active-center mutant (Asp32→Asn; the active center triad of subtilisin is comprised of Asp32, His64, and Ser221) or synthetic propeptides (9–15). In proproteins, the information required to attain the native tertiary structure of the mature sequence is encoded in the linear amino acid sequence encompassing the entire prosequence. Accordingly, prosubtilisin undergoes structural and functional refolding spontaneously in a matter of seconds, just as other single chain globular proteins do (16, 43).

Whether autoprocessing takes place by an inter- or intramolecular pathway is still in dispute (6, 17, 18). Since the N terminus of subtilisin is 26 Å from the active site (19), in trans (18, 20), rather than in cis (6) processing would appear energetically less costly.

Subtilisin is an ideal and unique representative of a large group of proteases from different classes (e.g. α-lytic protease, papain, cathepsin B, carboxypeptidase Y, and pepsin) whose prosequence is essential for the production of enzymatically active protein but not for maintaining its enzymatic activity.

We present novel evidence pertinent to the prosequence-assisted folding of subtilisin. Several results favor the intermolecular autoprocessing/folding pathway, while we do not rule out a parallel intramolecular pathway.

EXPERIMENTAL PROCEDURES

Materials

Guanidine HCl was purchased from ICN; subtilisin Carlsberg and phenylmethanesulfonyl fluoride (PMSF)2 were purchased from Sigma; urea was from Fisher; and succinyl-L-Ala-L-Ala-L-Pro-L-Phe-p-nitroanilide (s-AAPF-pNA) was from Bachem Bioscience.

Methods

Protein Assay—The propeptides were weighed and the A0.1% (absorbance of a 0.1 mg/ml solution) of E-pro and BPN′-pro at 275 nm were determined to be the same value of 0.496 in water compared to 0.67 in 6.0 M guanidinium HCl. The measured extinction coefficients are 4280 M–1 cm–1 for E-pro (20, 8627) and 4250 M–1 cm–1 for the BPN′-pro (M, 8586). Concentrations of subtilisins were estimated either by weight or determined spectrophotometrically. The A0.1% values at 280 nm are 1.17, 1.20, and 0.96 for subtilisins BPN′, E, and Carlsberg, respectively (21, 40).

Assay of Subtilisin Activity and Inhibition Studies—Subtilisin activity was assayed spectrophotometrically by monitoring the release of p-nitroaniline due to enzymatic hydrolysis of succinyl-L-Ala-L-Ala-L-Pro-L-Phe-p-nitroanilide (s-AAPF-pNA) was used for kinetic data collection, and the slope of the linear region of the absorbance versus time curve was used as the initial velocity. The steady state kinetic constants Km, Vmax, and Km were always determined simultaneously using the same enzyme solutions at the same time on the COBAS-Bio at 25 °C.

Cloning of Propeptide of Subtilisin E—By changing the GCG (coding

2 The abbreviations used are: PMSF, phenylmethanesulfonyl fluoride; prosubtilisin-S49C, the Ser49→Cys mutant of prosubtilisin E; (prosubtilisin-S49C)p, the disulfide-linked dimer of the Ser49→Cys mutant of prosubtilisin E; prosubtilisin-S221A, the Ser221→Ala mutation at the active center of prosubtilisin E; prosubtilisin-S221C, the Ser221→Cys mutation at the active center of prosubtilisin E; APCS, the autoprocessing-competent state of prosubtilisin; PAGE, polyacrylamide gel electrophoresis; E-pro and BPN′-pro, 1 to 78 N-terminal extensions of the corresponding proteases; subtilisin-PMS, active mature subtilisin covalently inhibited at Ser221 by phenylmethanesulfonyl fluoride; s-AAPF-pNA, succinyl-L-Ala-L-Ala-L-Pro-L-Phe-p-nitroanilide; HSQC, heteronuclear single quantum coherence.
Aalaa at the start of the mature subtilisin coding region to a stop codon TGA, a consequence gene was created from the prosubtilisin gene. At the same time, a BamHI site after the stop codon was also created by site-directed mutagenesis. The gene was subsequently cloned into pET11a's ATG cloning site using Ndel and BamHI restriction endonucleases to give pET11a-pro.

Protein Expression and Purification—Subtilisin BPN' and subtilisin E were purified from culture supernatants of a protease-defective B. subtilis strain DB104 (23) harboring pG588 (generously provided by Dr. Charles Saunders of Procter & Gamble) or pKWZ (24), respectively, according to the previously described protocols (7). BL21 (DE3) carrying Dr. Charles Saunders of Procter & Gamble) or pKWZ (24), respectively, strain DB104 (23) harboring pPG588 (generously provided by

serum albumin (67 kDa), and aldolase (158 kDa). The void volume chromatography is lower (higher MWapp) than that of active subtilisin.

RESULTS AND DISCUSSION

Structure of Propeptide per se

While the sequences of propeptides E (E-pro) and BPN' (BPN'-pro) are predicted to have a high propensity to form α helix (61–66%), β sheet (approximately 13–16%), and “turn” (6.5–10%) according to various algorithms (26, 41, 42), they exhibit no α helical structure in pure water. According to CD spectra, E-pro acquires α helical content with added MeOH (Fig. 1). The high ionic strength required for the refolding of prosubtilisin enhances the α and β footprint region (more negative ellipticity around 220 nm). More α helix content is induced by 0.5 M phosphate than by 20% MeOH. The propeptides have no tertiary structure according to their near-UV CD spectra (identical in 8.0 M urea or in refolding buffer of 0.5 M phosphate, data not shown) and hydrodynamic volume (see below). The retention time of the propeptides on gel filtration chromatography is lower (higher MWapp) than that of active subtilisin.

A number of NMR studies were conducted on uniformly 15N-enriched propeptide. That there is some structure in the propeptide was already evident from a one-dimensional spectrum in D2O, that indicates dispersion of the 2 His C2H reso-
nances (data not shown, there are only 2 His in the propeptide). A two-dimensional NOESY experiment in 0.2 M phosphate, pH 7.0, shows the presence of at least 15 cross-peaks in the amide NH-CαH region at 600 MHz (Fig. 2). This is strongly suggestive of helical secondary structure. Next, a three-dimensional NOESY-HSQC experiment was performed (Fig. 3) providing evidence for NH-NH, NH-CαH, NH-CβH interactions. The chemical shifts of the CαH interactions in the NOESY experiments are all upfield from water, again providing evidence for the presence of some helical secondary structure (typical chemical shifts of CαH in β sheets would be expected downfield from the water resonance).

Third, a series of experiments were performed to test how many NH resonances may be involved in stronger hydrogen bonds, that would be indicative of secondary structure. First, the spectrum of a 2 mM solution of the E-pro in 0.2 M phosphate, pH 7.0 at 10 °C was recorded, then it was rerecorded at 20, 30, 40, and 50 °C in the two-dimensional HSQC mode. Next, the temperature of the sample was returned to 10 °C to test the reversibility of the unfolding reaction (Fig. 4). Finally, the solution was made 6 M in guanidine hydrochloride, and the experiment was repeated at 10 °C. While all of the NMR results presented are still qualitative (total assignment and structure determination will require 15N, 13C double labeling to achieve sufficient dispersion of signals under all conditions), they inform us of very significant changes both with increasing temperature and with addition of guanidine hydrochloride, changes that lead to similar conclusions.

The HSQC spectra readily enabled us to distinguish at least 63 of 76 backbone cross-peaks at 10 °C. As the temperature is increased, one can detect differential exchange of the NHs. At 50 °C, we observe at least 15–16 cross-peaks that we believe are pertinent to the hydrogens involved in secondary structure, while those resonances that represent NHs hydrogen-bonded to water have melted. We also note that the behavior is reversible, since the HSQC spectrum of the sample that was cooled back to 10 °C from 50 °C was essentially superimposable on the one prior to heating. When this sample at 10 °C is made 6 M in the guanidine hydrochloride denaturant, we retain more than 50 of the backbone and 3 of the 4 side chain resonances.

All of the resonances that are still resolved in guanidine hydrochloride appear to be shifted downfield, perhaps experiencing the positive charge of the denaturant at such high concentrations surrounds the protein at close range. The 4 side chain NHs are at Asn (−33), Gln (−38), Gln (−40), and Gln (−62), and give rise to two resonances each, separated by 0.6–0.9 ppm. The numbering of the propeptide extends from −1 to −78, with the tyrosine adjacent to the N-terminal residue of the mature sequence being numbered −1. On addition of guanidine hydrochloride, some of the side chains disappear, while there is a new NH resonance visible at 8.75 ppm, appropriate for the NH at an Asn (27) in the denatured state. Also, on heating the sample to 50 °C, there are still two side chain NHs visible, suggesting that two of the four are involved in hydrogen bonds. Given the distribution of these side chains, we conclude that the helical segment is located somewhere in the N-terminal region of the propeptide, more specifically between residues −33 and −62. That there is a structural change on addition of

![Fig. 2. Two-dimensional NOESY spectrum of uniformly 15N-labeled BPN-pro. Solution is 2 mM peptide in 0.2 M phosphate, pH 7.0, recorded on a Varian UNITY PLUS 600-MHz instrument.](http://www.jbc.org/Downloaded from http://www.jbc.org/)

Interactions of the Subtilisin Propeptide 3377
guanidine hydrochloride is also evident from the wider range of chemical shifts of the backbone NHs in the absence than in the presence of the denaturant, as well as from the clearly different appearance of the two HSQC spectra (Table I). We conclude that in refolding buffer the propeptide likely exists in an extended form, with essentially no tertiary, but with a significant amount of helical secondary structure. Because of the coincidence of the number of NH-CαH NOE cross-peaks and the number of resonances that survive to 50°C, we tentatively suggest that as many as 14–16 backbone NHs may be involved in the helical structure, along with two of the four amidated side chains (Asn and Gln). The fact that less than 20% of the amino acids participate in the helix probably accounts for the weak CD signals. The presence of any secondary structure on the propeptide had gone undetected in other studies. For example, Bryan and co-workers reported (28) that there is secondary structure induced in the propeptide only on binding to the mature protein. In the subtilisin-bound form, there is found α-helical structure in the N-terminal region of the propeptide, as deduced here for the free propeptide.

Evidence for Intermolecular Interactions of Pro- and Mature Sequences

Size Exclusion HPLC—Formation of a strong subtilisin-propeptide complex could be demonstrated directly by HPLC on a TSK 3000 size exclusion column. The MW_\text{app} of prosubtilisin, subtilisin, propeptides, and the propeptide-subtilisin complex were estimated as 130,000, 12,000, 34,000, and 22,000, respectively (Fig. 5). The MW_\text{app} of the propeptide is 10,000 (molecular weight of the complex – molecular weight of subtilisin or 22,000 – 12,000) upon binding to the mature enzyme, compared with 34,000 before binding. Since active subtilisin hydrolyzes the propeptide (see below), it was inhibited with phenylmethanesulfonyl fluoride (PMSF) prior to being mixed with propeptides. The PMS group covalently attached to Ser221 did not affect the shape of the enzyme (not shown), nor did it affect complex formation, as the complexes formed between subtilisin-PMS and E-pro and subtilisin-S221C and E-pro have similar retention times (14.55 min, Fig. 5). Even though the propeptide (pI 5 10.1) is positively charged while the mature enzyme (pI 5 6.8) is weakly negatively charged, the complex is not stabilized purely by electrostatic interactions, since it is stable when 0.5 M phosphate is used as eluent. Mutations in the hydrophobic region of the prosequence decrease, while the Lys→Glu mutation does not affect the stability of the complex (29). As the S221C mutation abolishes subtilisin’s protease activity, the propeptide remains intact after autoprocessing.

The results suggest that prosubtilisin itself may exist as a dimer or a multimer. Had the prosubtilisin formed a compact, highly ordered structure, it should have similar hydrodynamic volume to that found for the subtilisin-propeptide intermolecular complex, clearly not the case. The refolded prosubtilisin-S221A has an apparent molecular weight of 130,000, much higher than that of E-pro (34,000) or of the subtilisin-propeptide complex (22,000) (Fig. 5). Refolding of prosubtilisin-S221A...
is confirmed by far-UV and near-UV CD (7). Therefore, refolded prosubtilisin-S221A must exist as a multimer. Since each prosubtilisin-S221A has a ligand (propeptide) and a binding site, it could form a linear polymer, while the interaction of prosubtilisin-S221A with mature subtilisin (PMSF-inhibited) would only lead to a dimer:

\[
\text{(Prosubtilisin-S221A)}_x \rightarrow \text{subtilisin-PMS}
\]

When subtilisin-PMS was added to refolded prosubtilisin-S221A, the retention time of the complex increased (MW-app decreased; Fig. 6, top), as expected. When subtilisin-PMS is in excess, Equation 2 is shifted to the right, irrespective of whether \((\text{prosubtilisin-S221A})_x\) is a dimer or a multimer. Addition of excess subtilisin-PMS shifted the MW-app from 130,000 to 120,000, only 10,000 lower than that of \((\text{prosubtilisin-S221A})_x\). The magnitude of the shift (10 kDa) is equal to the MW-app of the mature enzyme-propeptide complex minus the MW-app of mature enzyme (Fig. 5). We conclude that the refolded prosubtilisin-S221A is a dimer bridged by the prosequences. When active enzyme was added to refolded prosubtilisin-S221A, no dimer could be seen due to intermolecular processing of prosubtilisin-S221A (Fig. 6, bottom). However, the transient presence of the subtilisin-S221A-propeptide complex as an intermediate was evident at 14.5-min elution time. Thus the active enzyme cleaved the propeptide from prosubtilisin-S221A on initial complexation. Subsequently, the propeptide could bind to the mature subtilisin-S221A produced from prosubtilisin-S221A.

Interaction of Propeptide and Mature Subtilisin

Preliminary NMR Results—Using the 15N-enriched propeptide, one-dimensional HSQC experiments were performed on the propeptide in the absence (Fig. 7, right-hand panel) and in the presence of subtilisin BPN\(^*\)-PMS (Fig. 7, left-hand panel). Only the amide region is shown with resonances that represent protons attached to 15N of the propeptide. First, the fact that the propeptide is now bound is evident from the change in linewidths of the corresponding resonances (approximately 3 times larger in the complex). Second, there is more dispersion in the left-hand spectrum, in spite of the very much larger molecular weight in the complex (36,000 versus 8,500) and broader lines. Since in the propeptide there was evidence found for some helical character, we conclude that there is an additional structure being induced in the propeptide upon binding, although the nature of the induced structure is not evident at this level of analysis. In accord with these observations, the x-ray structure of the subtilisin-propeptide complex on a subtilisin BPN\(^*\) variant from which the Ca(II) binding loop had been excised (28) showed a cooled to 10°C, then made 6 M in guanidine hydrochloride. These spectra were recorded at 500 MHz on a Varian Unity Plus spectrometer. Acquisition time = 0.386 s, number of points = 2048, J\(_{NH}\) = 92, d\(_1\) = 1.0 s, and number of transients = 4.

TABLE I

Cross-peaks observed in the HSQC experiments on the propeptide

Condition	Number of backbone cross-peaks	Number of side chain cross-peaks
10 °C	63	4
50 °C	15–16	2
Cooled to 10 °C, then 6 M guanidinium hydrochloride added	>50	3

* It is to be noted that there are two peaks for each side chain, since the chemical shifts of the two protons on the side chain amide differ by more than 0.6 ppm.
considerable amount of secondary structure induced in the propeptide on complexation. Propeptide as a Specific Substrate of Subtilisin—Subtilisin is secreted when cells are being starved, no propeptide is found in the culture media or in the membrane of *B. subtilis* when subtilisin is secreted. The propeptide is found to be a substrate for subtilisin according to SDS-PAGE of propeptide-subtilisin mixtures. With a molar ratio of [BPN9-pro]/subtilisin E of 6:1, the BPN9-pro is completely digested in 10 min (Fig. 8A), and, even with a molar ratio as high as 3:1, the digestion is clear. Subtilisin E digests its own E-pro much faster than it digests the BPN9-pro: after 2 h, the E-pro band became very faint (Fig. 9, lane 7), while the BPN9-pro band was still prominent (Fig. 9, lane 15). In the presence of excess bovine serum albumin, the propeptide was selectively digested while bovine serum albumin remained intact (data not shown).

Propeptide as a Potent Slow Binding Inhibitor of Active Subtilisin—Several propeptides have been shown to potently inhibit their mature enzymes (11, 12, 16, 29–32). Here we report experimental results with recombinant propeptides and subtilisin BPN9 and Carlsberg. Elsewhere, we recently reported inhibition data with propeptide mutants (29). Above, it was demonstrated that the propeptides are excellent substrates of the active subtilisins, especially of subtilisin E. Therefore, studies with subtilisin E were difficult to interpret. Fig. 10 shows a typical progress curve for release of p-nitroanilide from s-AAPF-pNA by subtilisins BPN9 and E in the presence of BPN9-pro. Similar results were seen for E-pro and with subtilisin Carlsberg.

The hyperbolic progress curves for release of the p-nitroani-
The single-step mechanism is supported by the progress curves, such as in Fig. 10, that show \(n_0 \) to be independent of \([I] \) for fixed concentrations of substrate for both subtilisins BPN' and Carlsberg (data not shown). Single-step inhibition was also reported for the inhibition of cathepsin B by its propeptide (32).

Under these conditions, \(n_0/V_{max} @ ~ S/# ~ K_m ~ 1 @ ~ S/# ~ K_m ~ 1 \) (Eq. 6)

At a constant substrate concentration \([S] \), integration of Equation 4 leads to Equation 7 for the increase of absorbance due to the appearance of the product chromophore,

\[
A = v_o t + (v_o - v_n) / [1 - \exp(-kt)]/k + A_0 \quad \text{(Eq. 7)}
\]

where \(A \) and \(A_0 \) are the absorbance of the hydrolytic product at time \(t \) and at time zero. Hence, \(v_n \) and \(k \) could be obtained from a nonlinear least squares fit of the progress curves (A versus t) resulting from reactions in which the propeptide and substrate were preincubated and the reaction was initiated by the addition of enzyme for the condition \([I]/[E] > 10\) (Ref 33; typical values were \([S]_0 = 0.3 \text{ mM}, [\text{Enz}] = 5 \text{ nM}, \text{[pro-BPN'-PMS]} = 250 \text{ nM}, K_m = 0.5 \text{ mM}, K_i = 10^{-9} \text{ M})

The progress curves for the reactions in which the propeptide and the enzyme were preincubated and then the reaction was initiated by addition of substrate also confirmed the slow binding mechanism, but these gave less reliable data due to digestion of propeptide by the enzyme during the preincubation.

For the single-step mechanism, the \(K_i \) can be extracted by a nonlinear least squares fit of a set of \(n_0/V_{ns} \) versus \([I]\) to the competitive inhibition equation:

\[
\frac{n_0}{V_{ns}} = \frac{K_m(1 + [I]K_i) + [S]}{K_m + [S]} \quad \text{(Eq. 8)}
\]

The constants \(k_1 \) and \(k_2 \) can be calculated from: \(k_2 = k_2 v_o/V_{ns} \) and \(K_i = k_2/k_1 \).

The concentration dependence of the \(K_i \) values in Table II is due to the depletion of the propeptide during the kinetic experiments. The competitive inhibition constants displayed by E-pro and BPN'-pro toward subtilisins BPN' and Carlsberg are comparable to that afforded by Streptomyces subtilisin inhibitor, which is one of the strongest subtilisin inhibitors reported to date. Streptomyces subtilisin inhibitor is also shown to be slow and tight-binding (data not shown). The \(K_i \) values determined kinetically are more than an order of magnitude smaller than those determined spectroscopically (28). However, E-pro is a very weak inhibitor of subtilisin E with \(K_i = 2 \times 10^{-5} \text{ M} \) which is comparable to the inhibition provided by bovine serum albumin \((5 \times 10^{-5} \text{ M})\). Since no steady state could be obtained due to the digestion of propeptides by subtilisin E, no attempt was made to calculate the exact \(K_i \).

Additional Evidence for Intermolecular Processing of Prosubtilisin—Subtilisin could not be completely denatured even in \(10 \) \text{ M urea} (35). In our hands, the activity remaining in \(8.0 \) \text{ M urea} would autolyze the partially denatured enzyme according to SDS-PAGE. Autoprocessing and subsequent autolysis of prosubtilisin in aqueous urea is expected, providing that prosubtilisin undergoes spontaneous refolding. The high ionic strength, required for the refolding and autoprocessing of prosubtilisin, can be substituted for by \(1.0 \) \text{ M urea} (data not shown). Autoprocessing also proceeds in SDS. A prosubtilisin
sample prepared for SDS-PAGE (in 2% SDS) showed the presence of the mature subtilisin band when stored overnight at 4 °C (results not shown). Apparently, under these conditions, prosubtilisin is in equilibrium with the folded form in the various denaturants, and the presence of the folded form leads to autoprocessing.

Autoprocessing could not be inhibited by PMSF, a serine protease inhibitor. Apparently, the propeptide can successfully compete with PMSF for the active center of the refolded protein. Alternatively, the active center is assembled by using the propeptide as a template, then autoprocessing of the propeptide takes place by an active center with its full catalytic power recruited, to the exclusion of PMSF.

Autoprocessing of the prosubtilisin-S49C mutant was found to take place even in saturated urea at 4 °C (approximately 6.0 M at this temperature). However, the intermolecular disulfide bond engineered into the (prosubtilisin-S49C)2 dimer inhibited autoprocessing so that the refolded dimer is trapped as an intermediate in an autoprocessing-competent state (APCS). APCS is ready to be processed upon reduction (7). After mixing the prosubtilisin-S49C monomer with the (prosubtilisin-S49C)2 dimer (1:10 mole ratio) in saturating urea at 4 °C, the propeptide band became intense with time (not shown) indicating the ongoing, slow intermolecular processing.

Nomature monomer ordimer could be detected by SDS-PAGE as they were autolyzed at such high concentrations of urea. The APCS itself has no protease activity. Near-UV CD spectra did show that the APCS has tertiary structure, but less than that of refolded prosubtilisin-S221A or of mature subtilisin (7). The APCS could not undergo intramolecular autoprocessing, since this would have led to the formation of mature (subtilisin-S49C)2 dimer. The disulfide bond should have had little effect on the autoprocessing, since Cys 49 is on the surface, far from the active site and the N terminus of subtilisin. If theprosubtilisin dimer is the intermediate prior to autoprocessing...
as we believe to be the case for prosubtilisin-S221A, the APCS represents an unproductive dimer. That is, the secondary structures are completely formed, the active sites could not be properly aligned with the propeptides due to the restriction imposed by the disulfide hinge, and the propeptides of other dimers could not get near enough to be used as a template for refolding. When the disulfide bond is formed, the mature portion of prosubtilisin-S49C could undergo reorganization and a cooperative interaction with the propeptide of another prosubtilisin-S49C, then refolding and autoprocessing would ensue.

The APCS may resemble that prosubtilisin-S221A folding intermediate detected in 1 M guanidinium HCl (14), given that both possess well-defined secondary and tertiary structures. The MW_app of 32,000 reported for prosubtilisin-S221A (14) is not consistent with MW_app expected for a dimer. The discrepancy may be due to the high ionic strength (0.5 M (NH₄)₂SO₄ plus 0.05 M phosphate).

The prosequence can guide the refolding of denatured enzyme without it being covalently bonded to the N terminus of the mature subtilisin. In the early report, we noted that exogenously added active site mutant prosubtilisin-D32N could re-fold the denatured mature subtilisin in trans (9), but we hadn’t yet recognized the inhibitory and substrate-like behavior of the propeptide vis à vis the mature enzyme. No enzymatic activity should have been recovered in such in trans refolding experiments, had intermolecular processing of the propeptide been precluded (5, 15). The refolded enzyme should have been completely inhibited, had the propeptide been cleaved from prosubtilisin-D32N, but not digested subsequently. The long incubation times required for regain of even partial activity hinted at these complexities (36).

CONCLUSIONS

Based on the combined evidence we conclude the following.

1) The refolded form of prosubtilisin is in equilibrium with the unfolded state leading to autoprocessing even in saturated urea at 4°C; prosubtilisin-S49C₂ dimer could be processed intermolecularly by active monomer in such a solution. 2) Propeptides are both substrates and strong, slow-binding inhibitors of subtilisins BPN’ and Carlsberg. Their K_i values are in the range 1.0 × 10⁻⁹ M without correcting for the depletion of propeptides due to proteolysis. 3) Propeptides form strong complexes with PMS-modified or active center mutant subtilisins. Such complexes are stable at high ionic strength (0.5 M (NH₄)₂SO₄ plus 0.1 M phosphate at pH 7.0). The propeptides gain additional secondary structure (over and above the helical secondary structure reported here) when they bind to the mature enzymes according to X-ray and far-UV CD spectra (28, 37, 38), as well as the preliminary NMR results presented here. Their well defined tertiary structure is evident as the hydrodynamic volume is reduced dramatically concomitant with unfolding (Fig. 5). 4) Prosobtilisin-S221A exists as a dimer according to size exclusion HPLC. Formation of a tight prosubtilisin dimer is also supported by the observation that chymotrypsin inhibitor 2 (CI2) with a K_i of 2.9 × 10⁻¹² M to subtilisin BPN’ could not bind to the refolded prosobtilisin-S221A (14). However, CI2 could compete with propeptide (K_i ~ 1.0 × 10⁻⁹ M) favorably for the mature subtilisin. Consequently, there is evidence for an intermolecular pathway for both the refolding and autoprocessing of prosubtilisin. The intermolecular processing, while in agreement with experiments in vivo (18) and in trans refolding in vitro (9), is in conflict with some in vitro findings (6, 15, 28). We propose that the proregion acts as an intermolecular refolding template (Scheme 1). Initially, the unfolded prosobtilisin folds into a “molten globule”-like structure. Next, the catalytic machinery and substrate binding sub-sites are formed using the proregion of another prosobtilisin molecule as template and the dimer is generated as an intermediate. Finally, the propeptide is cleaved from the mature sequence and is subsequently digested. This digestion is advantageous for two reasons, it removes the potent inhibitor and it inhibits the unfolding reaction that may also be assisted by the propeptide, if it acts as catalyst. Hence, the propeptide can be considered as a “single-turnover” catalyst. Recently, several other examples of the intervention of protein dimers in cellular processes were emphasized (39).

Finally, we wish to speculate on the issue of inter-versus intramolecular processing. Given that one is typically dealing with Avogadro’s numbers of molecules in a reaction flask, it is difficult to unequivocally differentiate intrans- from intermolecular processing. We believe that perhaps both are feasible, the case for intermolecular processing via the various examples presented here, and presented earlier by other groups, makes the case for this option quite convincing. Because of the very tight binding between the various species, the usual tests, such as concentration dependence of the phenomenon, cannot unequivocally differentiate between the two pathways. On the other hand, perhaps very early on, when there is only a very low concentration of prosobtilisin molecules and there are essentially no enzymatically active mature molecules around, intramolecular processing, or adventitious processing by a different protease, may be a necessity. As more active mature molecules are produced, the intermolecular pathway should take precedent. This would lead to a lag-phase in the autoprocessing, as is indeed observed in the development of activity that results from the folding cascade potentiated by the reduction of the prosobtilisin-S49C₂ disulfide-linked dimer (16).

Acknowledgments—We are grateful to George Gray at Varian Associates, Palo Alto CA, Sue Pochapski at Bruker Instruments, Billerica, MA, and Carlos Rios at the Center for Advanced Biotechnology and Medicine at Piscataway, NJ, for help with the NMR experiments, as well as to Yuyun Li in the Biochemistry Department at the University of Medicine and Dentistry of New Jersey, R. W. Johnson Medical School, Piscataway, NJ for constructing pH71a:BPN’-pro.

REFERENCES

1. Ikai, A. (1976) Biochim. Biophys. Acta 445, 382-193
2. Matsubara, M., Kurimoto, E., Kojima, S., Miura, K. & Sakai, T. (1993) Chem.
3. Hayashi, T., Matsubara, M., Kurimoto, E., Nohara, D. & Sakai, T. (1993) Chem. Pharm. Bull. (Tokyo) 41, 2063–2065
4. Inouye, M. & Halegoua, S. (1980) CRC Crit. Rev. Biochem. 7, 339–371
5. Ikemura, H., Takagi, H. & Inouye, M. (1987) J. Biol. Chem. 262, 7859–7864
6. Ikemura, H. & Inouye, M. (1988) J. Biol. Chem. 263, 12959–12963
7. Hu, Z., Zhu, X., Jordan, F. & Inouye, M. (1994) Biochemistry 33, 562–569
8. Ohta, Y. & Inouye, M. (1990) Mol. Microbiol. 4, 275–304
9. Zhu, X., Ohta, Y., Jordan, F. & Inouye, M. (1989) Nature 339, 483–484
10. Cash, P. W., Zhu, X., Ohta, Y., Tsao, J., Lackland, H., Mateos-Nevado, M. D., Inouye, M., Stein, S., Jordan, F. & Tous, G. I. (1989) Pept. Res. 2, 292–296
11. Ohta, Y., Hojo, H., Aimoto, S., Kobayashi, T., Zhu, X., Jordan, F. & Inouye, M. (1991) Mol. Microbiol. 5, 1507–1510
12. Zhu, X., Ohta, Y., Cash, P., Tous, G., Stein, S., Inouye, M. & Jordan, F. (1992) Biochemistry 31, 34–47
13. Inouye, M. (1992) Enzyme (Basel) 45, 314–321
14. Eder, J., Rheinnecker, M. & Fersht, A. R. (1993) J. Mol. Biol. 233, 293–304
15. Wolters, J. (1990) Role of the Propeptide in the Refolding of Subtilisin. Ph.D. thesis, Graduate Faculty, Rutgers University, Newark
16. Eder, J., Rheinnecker, M. & Fersht, A. R. (1993) Biochemistry 32, 18–26
17. Wells, J. A., Ferrari, D., Henner, D. J., Estell, D. A., & Jordan, F. (1983) Nucleic Acids Res. 11, 7911–7925
18. Powers, S., Adams, R. M. & Wells, J. A. (1986) Proc. Natl. Acad. Sci. U. S. A. 83, 3096–3100
19. Bott, R., Ulltch, M., Kossiakoff, A., Graycar, T., Katz, B. & Power, S. (1988) J. Biol. Chem. 263, 7895–7906
20. Eghelli, P. & Frold, J. I. (1992) Mol. Microbiol. 6, 1115–1119
21. Ottosen, M. & Swendsen, I. (1970) Methods Enzymol. 19, 199–215
22. Strongin, A. Y., Izotova, L. S., Abramov, Z. T., Gorodetsky, D. I., Ermakova, L. M., Baratova, L. A., Belyanova, L. P. & Stepanov, V. M. (1978) J. Bacteriol. 133, 1401–1411
23. Kawamura, F. & Doi, R. H. (1984) J. Bacteriol. 160, 442–444
24. Park, S.-S., Wong, S.-L., Wang, L.-F. & Doi, R. H. (1989) J. Bacteriol. 171, 2657–2665
25. Sambrook, J., Fitch, E. F. & Maniatis, T. (1989) Molecular Cloning: A Laboratory Manual, 2nd Ed., p. A.3, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY
26. Chou, P. Y. (1989) in Prediction of Protein Structure and the Principles of Protein Conformation (Fasman, G. D., ed) pp. 549–586, Plenum Press, New York
27. Widrich, K. (1986) NMR of Proteins and Nucleic Acids, p. 17, Wiley Interscience, New York
28. Bryan, P., Wang, L., Hoskins, J., Ruvinkov, S., Strausberg, S., Alexander, P., Almqvist, G., Gilliland, G. & Gallagher, T. (1995) Biochemistry 34, 10310–10318
29. Li, Y., Zhu, X., Jordan, F. & Inouye, M. (1995) J. Biol. Chem. 270, 25127–25132
30. Baker, D., Sohl, J. L. & Agard, D. A. (1992) Proteins Struct. Funct. Genet. 12, 339–344
31. Wolters, J. R. & Sorensen, P. (1991) Proc. Natl. Acad. Sci. U. S. A. 88, 9330–9334
32. Fox, T., de Miguel, E., Mort, J. S. & Storer, A. C. (1992) Biochemistry 31, 201–203
33. Cha, S. (1975) Biochim. Biophys. Acta 325, 407–412
34. Zhu, Xueli (1990) Roles of the Propeptide in the Refolding of Subtilisin: A Novel Pathway for Protein Folding. Ph.D. dissertation, Graduate Faculty, Rutgers University, Newark
35. Straussberg, S., Alexander, P., Wang, L., Schwarz, F. & Bryan, P. (1993) Biochemistry 32, 8112–8119
36. Shinde, U., Li, Y., Chatterjee, S. & Inouye, M. (1993) Proc. Natl. Acad. Sci. U. S. A. 90, 6924–6928
37. Eder, J., Rheinnecker, M. & Fersht, A. R. (1993) J. Biol. Chem. 268, 1233–1233
38. Chou, P. Y. & Fasman, G. D. (1978) Adv. Enzymol. Relat. Areas Mol. Biol. 47, 45–148
39. Garnier, J., Osguthorpe, D. J. & Robson, B. (1978) J. Mol. Biol. 120, 97–120
40. Jordan, F., Hu, Z. & Haghjoo, K. (1995) Intramolecular Chaperones and Protein Folding (Shinde, U., and Inouye, M., eds) pp. 113–144, R. G. Landes Co., Austin, TX
Further Evidence for the Structure of the Subtilisin Propeptide and for Its Interactions with Mature Subtilisin

Zhixiang Hu, Khadijeh Haghjoo and Frank Jordan

J. Biol. Chem. 1996, 271:3375-3384.
doi: 10.1074/jbc.271.7.3375

Access the most updated version of this article at http://www.jbc.org/content/271/7/3375.citation

Alerts:
- When this article is cited
- When a correction for this article is posted

Click here to choose from all of JBC's e-mail alerts

This article cites 0 references, 0 of which can be accessed free at http://www.jbc.org/content/271/7/3375.citation.full.html#ref-list-1