RECENT ADVANCES IN PHARMACOTHERAPY OF ALZHEIMER’S DISEASE

ARVIND NARWAT¹, VIVEK SHARMA², SUNEEL KUMAR³, SEEMA RANI⁴

¹Demonstrator, Department of Pharmacology, B. P. S. Government Medical College For Women, Khanpur Kalan, Sonipat Haryana, ²Department of Pharmacology, Pandit Bhagwat Dayal Sharma Post Graduate Institute of Medical Sciences, Rohtak, Haryana, ³Department of Pharmacology, Pandit Bhagwat Dayal Sharma Post Graduate Institute of Medical Sciences, Rohtak, Haryana, ⁴Department of Pharmacology, B. P. S. Government Medical College For Women, Khanpur Kalan, Sonipat Haryana

Email: drsuneelrohilla@gmail.com

Received: 06 Aug 2021, Revised and Accepted: 10 Oct 2021

ABSTRACT

The management of Alzheimer’s disease (AD) has been a long-standing challenge and area of interest. Advances in knowledge of the pathogenesis of disease and an increase in disease burden have prompted investigation into innovative therapeutics over the last two decades. Current approved therapies are symptomatic treatments having some effect on cognitive function. Therapies that target β-amyloid (Aβ) have been the focus of efforts to develop a disease modification treatment for AD but these approaches have failed to show any clinical benefit so far. Beyond the ‘Aβ hypothesis’, there are a number of newer approaches to treat AD. This short review will summarize approved drug therapies, recent clinical trials and new approaches for the treatment of AD.

Keywords: Alzheimer’s disease (AD), β-amyloid (Aβ), Tau proteins, Recent advance

INTRODUCTION

Alzheimer’s disease (AD) is a critical neurodegenerative illness characterized by the gradual development of forgetfulness, progressing to disturbances in language, dyscalculia/acalculia, visuospatial disorientation, ideational and ideomotor apraxia, akinesia, and mutism. Epidemiological data show that the occurrence of AD increases with age and doubles every 5 years after 65 years of age.[2-3] There were about 26.6 million cases of AD in the world in 2006 and it is predictable that the worldwide dominance of AD will grow fourfold to 106.8 million by the year 2050. Classical pathological hallmarks are senile plaques, comprised principally of amyloid-b (Ab), and neurofibrillary tangles which consist of phosphorylated tau as shown in fig. 1 and 2.

Fig. 1: Microtubules transport nutrition and other molecules

Fig. 2: Microtubules transport nutrition and other molecules. Tau-proteins act as “ties” that stabilize the structure of the microtubules. In AD, tau proteins become tangled, un-stabilizing the structure of the microtubule.
These two hallmark lesions are the basis for standard neuropathological criteria for AD, including the Consortium to Establish a Registry for Alzheimer’s disease (CERAD), National Institute on Aging-Reagan, and Braak criteria. [5-6] The proposed pathogenic mechanisms for AD generally comprise the basis for current attempts at therapeutic intervention. These include loss of cholinergic function (cholinergic replacement therapy and neurotropins), oxidative stress (antioxidant therapy), the amyloid cascade (Ab vaccine, band-secretase effectors, statins), inflammatory mediators (NSAIDs), steroid hormone deficiencies (hormone replacement therapy), excitotoxicity (memantine), and the role of dietary factors (low saturated fat diets, moderate alcohol intake) as shown in table 1.

Table 1: Showing current treatment of Alzheimer disease based on pathogenic mechanism

Pathogenic mechanism	Treatment
Cholinergic deficiency	Cholinesterase inhibitors:
	1st generation: Tacrine
	2nd generation: Donepezil, Galantamine, Rivastigmine (patch), NGF gene delivery, Butyrylcholinesterases
Oxidative stress	Alpha-tocopherol, Seleagine
Amyloid cascade	Statins, Secretase effectors
Inflammation	NSAIDs
Excitotoxicity	Memantine
Other	Mediterranean diet

Why is there need for new drug?? Because current treatment

- Do not address underlying pathology of AD
- Positive benefits are relatively short term
- No treatment to reverse, stop or slow neurodegenerative process
- None of the drugs have disease modifying effects that can halt the progression of disease and stop cognitive decline

New targets and compounds for treatment of Alzheimer disease are shown in table 2:

Table 2: Showing new targets and compounds [7-10]

Compound	Target/Treatment	Current phase
ANI-1792	Vaccine-active immunization	Interrupted at phase I (severe side effects such as meningoencephalitis)
CAD-106	Vaccine-active immunization	Phase I (ongoing)
Bapineuzumab	Beta-amyloid monoclonal antibody	Phase III (ongoing)
Solanezumab	Beta-amyloid monoclonal antibody	Phase III (ongoing)
Ponezumab	Beta-amyloid monoclonal antibody	Interrupted at phase II (no efficacy)
Gantenerumab	Beta-amyloid monoclonal antibody	Phase I (ongoing)
Crenezumab	Beta-amyloid monoclonal antibody	Phase I (ongoing)
Semagacestat	Gamma-secretase inhibitor	Interrupted at phase III (no efficacy and risk for skin cancer)
Avagacestat	Gamma-secretase inhibitor	Phase II (ongoing)
GRL-834	Beta-secretase inhibitor	Ongoing
TAK-070	Beta-secretase inhibitor	Ongoing
CHF-5074	Non-steroid anti-inflammatory agent	Ongoing
DAPT	Prototypal Gamma-secretase inhibitor	Ongoing
Curcumin	Anti-amyloid aggregator	Ongoing

Kinase inhibitors

The first class of tau inhibitors which helps in targeting tau phosphorylation and reduces tau phosphorylation by decreasing the activity of kinase enzyme. Interaction between glycogen synthase kinase 3 beta (GSK3β) and protein phosphatase 2 (PP2A) augments tau hyper phosphorylation and NFT generation. Lithium, valproate, NP-031112 (NP-12) and epothilone D (BMS-241027) decreases tau phosphorylation and prevent reversed features of tauopathy [15, 16].

ββ-Secretase (BACE1) inhibitor

Beta-site APP-cleaving enzyme 1 (BACE1) is a protease responsible for cleavage of APP, resulting in generation of assembly of neurotoxic irregular Abβ. Nuclear peroxisome proliferator activated receptor gamma (PPARγ) functions as a transcription factor which regulates gene expression promotes microglia-mediated Abβ endocytosis. Also it reduces inflammation response and causes decreased cytokine excretion. Thiazolidinedione can induce PPARγ to inhibit ββ-secretase and stimulate ubiquitination to worsen amyloid burden. It has been also reported that PPARγ agonist i.e. thiazolidinedione derivatives like rosiglitazone and pioglitazone worsens AD neuropathology by reducing insulin sensitivity which helps in Abβ proteolysis [17].

Anticholinergic therapy

Anticholinergic therapy includes administration of cholinesterase inhibitors to treat the cholinergic deficit associated with AD. The
drugs include tacrine (COGNEX), donepezil (ARICEPT), rivastigmine (EXELON), and galantamine (REMINYL) [18].

Immunotherapy

In the attempt to avoid adverse T cell mediated immune response, many vaccination modalities under current investigation are directed towards the humoral response. Nasal immunization of an AD mouse model with AdPSEDI-(Ab1e 6) demonstrated a predominantly IgG1 response and reduced Ab load in the brain. Transcutaneous immunization has also been studied in mice with aggregated Ab1e42 plus the adjuvant cholera toxin. This animal study showed significant decreases in cerebral Ab1e40, 42 levels in the setting of increased circulating levels of Ab1e40, 42 without the side effects of brain T cell infiltration or microhemorrhage [19].

Clioquinol

Metal chelation using clioquinol has been reported in apilots study with 36 patients with AD to reduce the rate ofcognitive loss in a double-blind, placebo-controlled, phase 2 clinical trial Clioquinol’s effect in this preliminary study is due to its ability to chelate zinc and copperassociated with amyloid plaques. The mobilization andremoval of brain amyloid is believed to be basis of its therapeutic effect. It was reported that clioquinol can reduce zinc accumulation in neuritic plaques and inhibit the amyloidogenic pathway in APP/PS1 transgenic mouse brain [20].

Resveratrol

Resveratrol, a red wine polyphenol, is known to protect against cardiovascular diseases and cancers, as well as to promote anti-aging effects in numerous organisms. Some recent studies on red wine bioactive compounds suggest that resveratrol modulates multiple mechanisms of AD pathology. It has been recently suggested that resveratrol can be effective in slowing down AD development. As reported in many biochemical studies, resveratrol seems to exert its neuroprotective role through inhibition of Aβ aggregation, by scavenging oxidants and exerting anti-inflammatory activities [21].

Nicotine

Nicotine is a cholinergic agonist that acts both postsynaptically and pre-synaptically to release acetylcholine which is an alkaloid derived from the leaves of tobacco plants (Nicotianatabacum and Nicotianarumusica). Nicotinic receptor densities are further attenuated in age associated neurodegenerative disorders in the elderly, such as AD. Numerous investigations, both in vivo and in vitro, indicate that nicotine can enhance neurone survival in response to a range of neurotoxic insults [22].

CONCLUSION

The pathogenesis of AD is a complex process involving both genetic and environmental factors; therefore development of effective disease-modifying drugs is proving to be a difficult task. Herein, we have made an effort to review recent trends in AD. The current therapies for patients with AD may ease symptoms by providing temporary improvement and reducing the rate of cognitive decline. It is hoped that all these lines of ongoing research, should lead to a deeper understanding of the progressions that happen in the brain of Alzheimer patient to permit us to preclude efficiently their incidence. Thus, we conclude that these categories of drugs discussed in this review can be potentially targeted for research and development for the treatment of AD.

ACKNOWLEDGEMENT

Dr. Vivek Sharma, Dr. Suneel

FUNDING

None

AUTHORS CONTRIBUTIONS

All the authors have contributed equally.

CONFLICT OF INTERESTS

Declared none

REFERENCES

1. Selkoe DJ. Alzheimer’s disease: genes, proteins, and therapy. Phys Rev. 2001;81(2):741-66. doi: 10.1152/physrev.2001.81.2.741, PMID 11274343.
2. Querfurth HW, LaFerla FM. Alzheimer’s disease. N Engl J Med. 2010;362(4):329-44. doi: 10.1056/NEJMra0909142, PMID 20107219.
3. Mayeux R. Clinical practice. Early Alzheimer’s disease. N Engl J Med. 2010;362(23):2194-201. doi: 10.1056/NEJMcp1001236, PMID 20558370.
4. Brookmeyer R, Johnson E, Ziegler Graham K, Arrighi HM. Forecasting the global burden of Alzheimer’s disease. Alzheimers Dement. 2007;3(3):186-91. doi: 10.1016/j.jalz.2007.04.031, PMID 19595452.
5. Braak H, Braak E. Neuropathological staging of Alzheimer-related changes. Acta Neuropathol. 1991;82(4):239-59. doi: 10.1007/BF00308809.
6. Hyman BT, Trojanowski JQ. Editorial on consensus recommendations for the postmortem diagnosis of Alzheimer disease from the National Institute on Aging and the Reagan Institute Working Group on diagnostic criteria for the assessment of Alzheimer disease. J Neuropathol Exp Neurol. 1997;56(10):1095-7. doi: 10.1097/00005072-199710000-00002.
7. Aprahamian I, Stella F, Forlenza O. New treatment strategies for Alzheimer’s disease: is there a hope? Indian J Med Res. 2013;138(4):449-60. PMID 24434253.
8. Bolognesi ML, Bartolini M, Tarozzi A, Morroni F, Lizi F, Milelli A, Minarini A, Rosini M, Hrella P, ANDRISANO V, Melchiorre C. Multitargeted drugs discovery: balancing anti-amyloid and anti-cholinesterase capacity in a single chemical entity. Biorg Med Chem Lett. 2011;21(9):2655-8. doi: 10.1016/j.bmcl.2010.12.093, PMID 21236667.
9. Nagaraja Prasad S, Jagadeesh K, Vedavathi H, Shreenivas P. Alzheimer disease: therapeutic targets and recent developments in treatment. Sch Acad J Pharm. 2015;4:222-5.
10. Wiessner C, Wiederhold KH, Tusso ATC, Frey P, Danner S, Jacobson LH, JENNINGS GT, Luord R, ORTMANN R, REICHWALD J, Zurini M, Mir A, Bachmann MF, STAUfENBIEL M. The second-generation active Aβ immunotherapy CAD106 reduces amyloid accumulation in APP transgenic mouse while minimizing potential side effects. J Neurosci. 2011;31(25):9323-31. doi: 10.1523/JNEUROSCI.0203-11.2011, PMID 21945602.
11. Salomone S, Caraci F, Leggio GM, Fedotova J, Dragó F. New pharmacological strategies for treatment of Alzheimer’s disease: focus on disease modifying drugs. Br J Clin Pharmacol. 2012;73(4):504-17. doi: 10.1111/j.1365-2125.2011.04134.x, PMID 22053455.
12. Panza F, Frisardi V, Imbimbo BP, Seripa D, Paris F, Santamato A. Anti-β-amyloid immunotherapy for Alzheimer’s disease: focus. Colomb Med (Calif). 2016;47(4):203–12. PMID: 28293044.
13. Zhao B, Yu M, Neitzel M, Marugg J, Jagodzinski J, Lee M, Hu K, Schenk D, Yednock T, Basi G. Identification of γ-secretase inhibitor potency determinants on presenilin. J Biol Chem. 2008;283(5):2927-38. doi: 10.1074/jbc.M708880200, PMID 18032377.
14. Tariot P, SABBagh M, Flitman S, Reyes P, Taber L, Seely L, P1-254. A safety, tolerability and pharmacokinetic study of dimebon in patients with Alzheimer’s disease already receiving donepezil. Alzheimers Dem. 2009;5(4,Part 8):251. doi: 10.1016/j.jalz.2009.04.026.
15. Jia Q, Deng Y, Qing H. Potential therapeutic strategies for Alzheimer’s disease targeting or beyond β-amyloid: insights from clinical trials. Biomed Res Int. 2014;2014:837157. doi: 10.1155/2014/837157, PMID 25316360.
16. Sereno L, Coma M, Rodriguez M, Sanchez-Ferrer P, Sanchez MB, Ich G, Aguilo JM, Perez M, Avila J, Guardia Lagartua C, Clarimon J, Lleo A, Gomez-Isla T. A novel GSK-3beta inhibitor reduces Alzheimer’s pathology and rescues neuronal loss in vivo. Neurobiol Dis. 2009;35(3):359-67. doi: 10.1016/j.nbd.2009.05.025, PMID 19523516.
17. Craft S. The role of metabolic disorders in Alzheimer disease and vascular dementia: two roads converged. Arch Neurol. 22
18. Nordberg A, Darreh-Shori T, Svenson A, Guan Z. AChE and BuChE activities in CSF of mild AD patients following 12 mo of rivastigmine treatment. J Neurol Sci. 2001;187:0144.

19. Nikolic WV, Bai Y, Obregon D, Hou H, Mori T, Zeng J, Ehrhart J, Shytle RD, Giunta B, Morgan D, Town T, Tan J. Transcutaneous beta-amyloid immunization reduces cerebral beta-amyloid deposits without T cell infiltration and microhemorrhage. Proc Natl Acad Sci USA. 2007;104(7):2507-12. doi: 10.1073/pnas.0609377104, PMID 17264212.

20. Wang T, Wang CY, Shan ZY, Teng WP, Wang ZY. Clioquinol reduces zinc accumulation in neuritic plaques and inhibits the amyloidogenic pathway in AβPP/PS1 transgenic mouse brain. J Alzheimers Dis. 2012;29(3):549-59. doi: 10.3233/JAD-2011-111874, PMID 22269164.

21. Huang TC, Lu KT, Wo YY, Wu YJ, Yang YL. Resveratrol protects rats from Aβ-induced neurotoxicity by the reduction of iNOS expression and lipid peroxidation. Plos One. 2011;6(12):e29102. doi: 10.1371/journal.pone.0029102, PMID 22220203.

22. Graham AJ, Martin Ruiz CM, Teaktong T, Ray MA, Court JA. Human brain nicotinic receptors, their distribution and participation in neuropsychiatric disorders. Curr Drug Targets CNS Neurol Disord. 2002;1(4):387-97. doi: 10.2174/1568007023339283, PMID 12769611.