Filamentous growth is a microbial differentiation response that involves the concerted action of multiple signaling pathways. In budding yeast, one pathway that regulates filamentous growth is a Cdc42p-dependent mitogen-activated protein kinase (MAPK) pathway. Several transmembrane (TM) proteins regulate the filamentous growth pathway, including the signaling mucin Msh2p, the tetraspan osmosensor Sho1p, and an adaptor Opy2p. The TM proteins were compared to identify common and unique features. Msh2p, Sho1p, and Opy2p associated by coimmunoprecipitation analysis but showed predominantly different localization patterns. The different localization patterns of the proteins resulted in part from different rates of turnover from the plasma membrane (PM). In particular, Msh2p (and Opy2p) were turned over rapidly compared to Sho1p. Msh2p signaled from the PM, and its turnover was a rate-limiting step in MAPK signaling. Genetic analysis identified unique phenotypes of cells over-expressing the TM proteins. Therefore, each TM regulator of the filamentous growth pathway has its own regulatory pattern and specific function in regulating filamentous growth. This specialization may be important for fine-tuning and potentially diversifying the filamentation response.

Many fungal species undergo a growth response called filamentous growth, also referred to as invasive or pseudohyphal growth (1, 2). In some fungal pathogens, filamentous growth is required for virulence (3, 4). For example, Candida albicans is an opportunistic human pathogen that invades host tissues in the hyphal form (5). The budding yeast, Saccharomyces cerevisiae, differentiates from the yeast form to the filamentous form when environmental nutrients are limiting (6). Cells undergoing filamentous growth are composed of branched filaments of elongated and connected cells. This phenotype results from the reorganization of cell polarity, a delay in the G2 phase of the cell cycle, and changes in the expression of cell-surface adhesion molecules (7–9).

Filamentous growth in yeast involves the concerted effort of multiple signal transduction pathways (10). Among the pathways that control filamentous growth are the RAS/cyclic AMP/protein kinase A pathway (11, 12), the target of rapamycin pathway (13), and a Cdc42p-dependent mitogen-activated protein kinase (MAPK) pathway, commonly referred to as the filamentous growth pathway (14, 15). The polarity establishment Rho (Ras homology) GTPase Cdc42p is a global regulator of cell polarity and signaling (16, 17) that regulates the filamentous growth pathway (18, 19). Cdc42p and its major activator, the guanine nucleotide exchange factor (GEF) Cdc24p are regulated in the filamentous growth pathway by the scaffold-type adaptor Bem4p (20). The active, GTP-bound conformation of Cdc42p associates with the p21-activated kinase (PAK) Ste20p (18, 19) to activate a canonical MAPK cascade (Ste11p-Ste7p-Kss1p [21]) that culminates in the phosphorylation/activation of transcription factors (Ste12p and Tec1p; including two newly identified factors Msalp and Msas2p [22, 23]) which induce target genes that function to produce the filamentous cell type (24, 25).

Three transmembrane (TM) proteins regulate the filamentous growth pathway (Msh2p, Sho1p, and Opy2p). Msh2p and Opy2p are type I TM proteins, whereas Sho1p has four TM domains. Msh2p is a member of the signaling mucin family of proteins (26, 27). Proteolytic processing in the glycosylated extracellular domain of Msh2p results in the release of an inhibitory glycodomain. This posttranslational modification is required for activation of the filamentous growth pathway (28). Underglycosylation of Msh2p’s extracellular domain leads to elevated proteolytic processing by a mechanism that involves the unfolded protein response (29).

Sho1p also regulates the filamentous growth pathway (30, 31). Sho1p associates with Msh2p (30) and the GEF for Cdc42p, Cdc24p (28, 32). Opy2p also regulates the filamentous growth pathway (33–35). Opy2p interacts with an adaptor protein, called Ste50p, whose main function is to regulate the MAPKKK Ste11p (33, 34, 36–38). It is generally thought that Opy2p regulates the plasma membrane (PM) recruitment of Ste11p, thereby facilitating its activation by upstream regulators.

Many of the proteins that regulate the filamentous growth pathway also regulate other MAPK pathways in the same cell. For example, Msh2p (39, 40), Sho1p (41–44), and Opy2p (45, 46) also regulate the Ste11p branch of the high-osmolarity glycerol response (HOG) MAPK pathway. The HOG pathway is an osmo-
sensing pathway that is composed of a Ste1p branch and a Shl1p-
Skp1p branch, which converge on the MAPKK Pbs2p and MAPK
Hog1p. Although it generally unclear how the same sensors
regulate different pathways, it has been shown that a second sig-
nalizing mucin, Hkr1p, regulates the HOG pathway (39) but not the
filamentous growth pathway (47). Thus, it may be that the two
signalizing mucins primarily regulate different MAPK pathways.
In a recent study, the interactions between the TM regulators of
the HOG pathway were explored. Sho1p was found to function as an
osmosensor by dynamically associating with Ste50p and with
Hkr1p and Opy2p (44). Sho1p can oligomerize (48). Saito and
coworkers showed that Sho1p forms oligomers of the dimers-of-
trimers architecture. Osmolarity induces changes in this architec-
ture, which leads to changes in Sho1p’s interaction with Ste50p
which in cells lacking an
expression was used to
confirm results and was measured by spotting equal amounts of cells onto
expression constructs were obtained from an ordered collection obtained

sensing pathway that is composed of a Ste1p branch and a Shl1p-
Skp1p branch, which converge on the MAPKK Pbs2p and MAPK
Hog1p. Although it generally unclear how the same sensors
regulate different pathways, it has been shown that a second sig-
nalizing mucin, Hkr1p, regulates the HOG pathway (39) but not the
filamentous growth pathway (47). Thus, it may be that the two
signalizing mucins primarily regulate different MAPK pathways.
In a recent study, the interactions between the TM regulators of
the HOG pathway were explored. Sho1p was found to function as an
osmosensor by dynamically associating with Ste50p and with
Hkr1p and Opy2p (44). Sho1p can oligomerize (48). Saito and
coworkers showed that Sho1p forms oligomers of the dimers-of-
trimers architecture. Osmolarity induces changes in this architec-
ture, which leads to changes in Sho1p’s interaction with Ste50p
which in cells lacking an
expression was used to
confirm results and was measured by spotting equal amounts of cells onto
expression constructs were obtained from an ordered collection obtained

sensing pathway that is composed of a Ste1p branch and a Shl1p-
Skp1p branch, which converge on the MAPKK Pbs2p and MAPK
Hog1p. Although it generally unclear how the same sensors
regulate different pathways, it has been shown that a second sig-
nalizing mucin, Hkr1p, regulates the HOG pathway (39) but not the
filamentous growth pathway (47). Thus, it may be that the two
signalizing mucins primarily regulate different MAPK pathways.
In a recent study, the interactions between the TM regulators of
the HOG pathway were explored. Sho1p was found to function as an
osmosensor by dynamically associating with Ste50p and with
Hkr1p and Opy2p (44). Sho1p can oligomerize (48). Saito and
coworkers showed that Sho1p forms oligomers of the dimers-of-
trimers architecture. Osmolarity induces changes in this architec-
ture, which leads to changes in Sho1p’s interaction with Ste50p
which in cells lacking an
expression was used to
confirm results and was measured by spotting equal amounts of cells onto
expression constructs were obtained from an ordered collection obtained

C (PKC) (49, 50) and HOG pathways (46) in yeast and the epider-
mal growth factor receptor pathway in humans (51, 52), are regu-
lated by multiple TM proteins. We examine here several regula-
tory and functional aspects of the proteins. We show that each
protein has a unique cellular localization pattern and a unique rate
of turnover. In addition, each protein has a unique phenotype
when overexpressed. We suggest that the unique regulatory fea-
tures that control each protein are important for proper activation
of the filamentous growth pathway.

Materials and Methods

Microbiological techniques. Yeast and bacterial strains were manipu-
lated by standard methods (53, 54). Yeast strains were grown in YEP
media supplemented with 2% glucose (GLU [D]) or 2% galactose (GAL).
All experiments were carried out at 30°C unless otherwise indicated. The
mating-specific reporter FUS1 was also used (55), which in cells lacking an
intact mating pathway (ste1Δ), exhibits Msb2p- and filamentous growth/
pathway-dependent expression (30). FUS1-HIS3 expression was used to
confirm results and was measured by spotting equal amounts of cells onto
synthetic medium lacking histidine. The single cell invasive growth assay
and the plate-washing assay (14) were performed to evaluate filament-
ous growth.

Strains and plasmids. Yeast strains are described in Table 1. Overex-
pression constructs were obtained from an ordered collection obtained

Table 1 Yeast strains used in the study

Strain	Genotype	Source or reference
PC338	MATa ste4 FUS1-lacZ FUS1-HIS3 ura3-52	30
PC339	MATa ste4 FUS1-lacZ FUS1-HIS3 ura3-52 ste1::KIURA3	30
PC622	MATa ste4 FUS1-lacZ FUS1-HIS3 ura3-52 PGAL-SHO1::KanMX6	30
PC948	MATa ste4 FUS1-lacZ FUS1-HIS3 ura3-52 msb2::KanMX6	30
PC965	MATa ste4 FUS1-lacZ FUS1-HIS3 ura3-52 msb2::KanMX6 sho1::KIURA3	30
PC1083	MATa ste4 FUS1-lacZ FUS1-HIS3 ura3-52 MSB2-HA PGAL-MSB2::KanMX6	30
PC1508	MATa ste4 FUS1-lacZ FUS1-HIS3 ura3-52 PGAL-ALY1::KanMX6	30
PC1531	MATa ste4 FUS1-lacZ FUS1-HIS3 ura3-52 snf8::HYG	30
PC1549	MATa ste4 FUS1-lacZ FUS1-HIS3 ura3-52 SHO1-YFP::KanMX6	30
PC1658	NY13 MATa ura3-52	120
PC1664	NY412 MATa ura3-52 sec3-2	120
PC1702	MATa ste4 FUS1-lacZ FUS1-HIS3 ura3-52 SHO1- HA::KanMX6	30
PC2084	MATa ste4 FUS1-lacZ FUS1-HIS3 ura3-52 MSB2-MYC::KanMX6	This study
PC2094	MATa ste4 FUS1-lacZ FUS1-HIS3 ura3-52 MSB2-GFP::KanMX6	30
PC2680	MATa ste4 FUS1-lacZ FUS1-HIS3 ura3-52	This study
PC2622	MATa ste4 FUS1-lacZ FUS1-HIS3 ura3-52 snf8::HYG	91
PC3691	MATa ste4 FUS1-lacZ FUS1-HIS3 ura3-52 MSB2-HA rim101::NAT	This study
PC3752	MATa ste4 FUS1-lacZ FUS1-HIS3 ura3-52 opy2::KIURA3	35
PC4848	MATa ste4 FUS1-lacZ FUS1-HIS3 ura3-52 pGAL-OPY2::KanMX6	35
PC5596	MATa ste4 FUS1-lacZ FUS1-HIS3 ura3-52 pGAL-OPY2::mCHERRY::KanMX6	This study
PC5710	MATa ste4 FUS1-lacZ FUS1-HIS3 ura3-52 MSB2 mCHERRY1::KanMX6	This study
PC5822	MATa ste4 FUS1-lacZ FUS1-HIS3 ura3-52 vps27::KIURA3	91
PC5924	MATa ste4 FUS1-lacZ FUS1-HIS3 ura3-52 rim101-531::KIURA3	This study
PC5828	MATa ste4 FUS1-lacZ FUS1-HIS3 ura3-52 rim101-531::KIURA3 snf8::HYG	This study
PC5831	MATa ste4 FUS1-lacZ FUS1-HIS3 ura3-52 vps35::KIURA3	91
PC5836	MATa ste4 FUS1-lacZ FUS1-HIS3 ura3-52 MSB2-GFP at 1222 residues deleting 1223-1306::KanMX6	This study
PC5838	MATa ste4 FUS1-lacZ FUS1-HIS3 ura3-52 MSB2-GFP at 1238 residues deleting 1239-1306::KanMX6	This study
PC5850	MATa ste4 FUS1-lacZ FUS1-HIS3 ura3-52 MSB2-HA at 500 residues K1223R K1239R K1245R-GFP::KanMX6::KlURA3	29
PC5983	MATa ste4 FUS1-lacZ FUS1-HIS3 ura3-52 msb2::KanMX6 opy2::NAT	This study
PC5984	MATa ste4 FUS1-lacZ FUS1-HIS3 ura3-52 snf8::HYG opy2::NAT	This study
PC6016	MATa can1Δ::Ste2p-pr-SPHIS5 lys1Δ::Ste2p-pr-LEU2 his3::hisG len2Δ0 ura3Δ0	121
PC6319	MATa ste4 FUS1-lacZ FUS1-HIS3 ura3-52 msb2::KIURA3 opy2::NAT sho1::HYG	This study

* All strains are in the S1278b background unless otherwise indicated.
* KlURA3 refers to the Kluyveromyces lactis URA3 cassette. * W303 background.
* S1278b ordered deletion collection control strain MATa can1Δ::Ste2p-pr-SPHIS5 lys1Δ::Ste2p-pr-LEU2 his3::hisG len2Δ0 ura3Δ0. Mutants from C. Boone S1278b MATa deletion collection were used in the study.
from Open Biosystems (57). Gene disruptions and GAL1 promoter fusions were made by PCR-based methods (58, 59) using plasmids provided by John Pringle (Stanford University). Some disruptions were created by the use of antibiotic resistant markers on cassettes HYG and NAT (60). Internal epitope fusions were created as described previously (61) using plasmids containing the 3×MYC and 3×HA epitopes. Integrations were confirmed by PCR analysis and phenotype.

Plasmid pRS316-SHO1-GFP (PC1601) was provided by Alan Davidson (University of Toronto) (62). Plasmid pGAL-SHO1-DIGITIPPp:: KanMX6 was created by homologous recombination of the pGAL promoter into a strain containing pSHO1-1416p::GFP, also provided by the Davidson lab. Plasmid pGAL-SHO1-DIGITIPPp::KanMX6::NAT was created by homologous recombination of the NAT cassette in a strain harboring pGAL-SHO1-1416p::GFP::KanMX6. pRS316 SHO1-DIGITIPP p::KanMX6, pRS316 SHO1-DIGITIPP p::HA::KanMX6, and pRS316 SHO1-DIGITIPP p::S220F::HA::KanMX6 were made by homologous recombination-mediated replacement of the green fluorescent protein (GFP) epitope with the hemagglutinin (HA) epitope. pFLARE (fluorescent lipid-associated reporter) was provided by the Emr lab and contains the PH domain of PLC-β. pFLARE was used as a control to detect PI(4,5)P2 at the PM (63).

ALY1 was identified in a genetic screen using an inducible plasmid library (AYES library [64]) Plasmids were transformed into a wild-type strain (PC538), and >10,000 colonies were examined by replica plating from S-GAL-URA medium to S-GAL-URA-HIS medium to identify those that failed to express the FUS1-HIS3 reporter and did not grow. The ALY1 gene was identified by DNA sequencing, and its phenotype was confirmed by construction of pGAL-ALY1 in the genome.

Protein localization. Cyan fluorescent protein (CFP) and yellow fluorescent protein (YFP) variants of green fluorescent protein (GFP) were obtained from the yeast resource center (http://depts.washington.edu/yeastcrcl), and fusion proteins were created by homologous recombination as described previously (65). Experiments that involved the hydrophilic dye FM4-64 were performed as described previously (66). Cells were grown to saturation in selective medium to maintain plasmids harboring fusion proteins. Cells were harvested by centrifugation and resuspended in YEPD medium for 4.5 h. FM4-64 was added to cells, and after 0.5 h of incubation at 30°C, cells were harvested, washed three times in water, and visualized by fluorescence microscopy at ×100.

Protein turnover. Analysis of protein turnover was determined in two ways. A pGAL-promoter shutoff experiment was performed as described previously (29). Cells were grown in YEP-GAL media for 4 h and transferred to YEPD media for the indicated time points. For the cycloheximide chase experiments cells were grown in YEP-GAL media for 4.5 h and treated with 25 μg of cycloheximide/ml for the indicated time points.

Immunological techniques. Immunoblots were performed as described previously (28). Proteins were separated by SDS-PAGE on 10% gels (Bio-Rad, Hercules, CA) and transferred to nitrocellulose membranes (Protran BA85; VWR International, Inc., Bridgeport, NJ). Membranes were incubated in blocking buffer (5% nonfat dry milk, 10 mM Tris-Cl [pH 8.0], 150 mM NaCl, 0.05% Tween 20) for 1 h at 25°C. ECL-Plus immunoblots were used to detect secondary antibodies (Amersham Biosciences, Piscataway, NJ). Nitrocellulose membranes were incubated for 18 h at 4°C in blocking buffer containing a mouse monoclonal antibody against HA (12CA5; Roche Diagnostics), clones 7.1 and 13.1, catalog no. 1181446001 and anti-MYC antibodies (Delta Biolabs, catalog no. DB098). To assess the interaction between Sho1p and Opy2p, wild-type (PC538) and Sho1p-HA (PC1702) strains expressing pOpy2p-GFP were grown for 16 h in SD-URA and subcultured in YE PD medium for 6 h. Cell lysates were immunoprecipitated with polyclonal HA antibodies and examined by immunoblot analysis with anti-HA monoclonal antibodies and anti-GFP monoclonal antibodies described above. Cells grown to mid-log phase in YE PD were frozen as cell pellets at −80°C. For each co-IP, the cells were thawed in 1× phosphate-buffered saline (PBS) and immunoprecipitation buffer (50 mM Tris [pH 8.0], 1 mM EDTA, 50 mM NaCl, 3% NP-40, 1 mM phenylmethylsulfonyl fluoride, 1× protease inhibitor cocktail [Roche, catalog no. 1183617001]), lysed using Fast Prep (FP120; Thermo Electronic Incorporation) three times for 32 s each time at a speed of 6.5 ms, and centrifuged at 13,000 rpm for 10 min. The cell lysate was pre-clear with protein G-beads (Thermo Scientific, catalog no. 20398) for 30 min at 4°C by end-over-end rotation. Precleared lysates were centrifuged at 13,000 rpm for 10 min. The supernatants were incubated with antibodies for 2 h at 4°C. Washed protein G-beads were added, followed by incubation for 2.5 h at 4°C by end-over-end rotation. The beads were washed four times with 1 ml of immunoprecipitation buffer. Then, 2× SDS-PAGE buffer containing 2% β-mercaptoethanol was added, and the extracts were boiled with intermittent vortexing. Proteins were separated by SDS-PAGE for immunoblot analysis.

Protein localization and microscopy. The localization of Msb2p was examined using plasmids pGFP-Msb2p and pH-A-Msb2p-GFP. For other experiments, a strain containing a genomic copy of Opy2p-mCherry and pMsb2p-GFP was used. Strains with genomic copies of Msb2p-mCherry and Opy2p-mCherry under the control of their native promoters harboring a pSho1p-GFP were used for colocalization studies. To assess the interdependence of localization patterns, wild type, msb2ΔΔ sho1ΔΔ, msb2ΔΔ opy2ΔΔ, and sho1ΔΔ opy2ΔΔ cells expressing pOpy2p-GFP, pSho1p-GFP and pHA-Msb2p-GFP were examined. Wild-type cells were used as a reference strain. Wild-type and sec3-2 cells harboring pSho1p-GFP and pOpy2p-GFP were examined by fluorescence microscopy. For localization experiments the sec3-2 mutant, cells were grown in SD-URA for 16 h at 30°C, shifted to 37°C for 4 h, and examined on a stage heated to 37°C.

Differential interference contrast and fluorescence microscopy using rhodamine, fluorescein isothiocyanate, YFP, and GFP filter sets were performed using an Axiosplan 2 fluorescence microscope (Zeiss) with a Plan-Neofluar X100/1.4 (oil) objective (NA 0.17). Digital images were obtained with the AxioCam MRm camera (Zeiss). Axiosvision 4.4 software (Zeiss) was used for image acquisition and analysis and for rendering 3D Z-stack images. Images were further analyzed in Adobe Photoshop, where adjustments of brightness and contrast were made.

RESULTS

Msb2p, Sho1p, and Opy2p interact and regulate the filamentous growth pathway. Three TM proteins (Msb2p, Sho1p, and Opy2p) regulate the filamentous growth pathway (Fig. 1A). Msb2p has previously been shown to interact with Sho1p (30). In addition, the processed form of Msb2p, called Msb2pP, and Sho1p associate (28, 39). The interaction between Msb2p and Sho1p is required to induce a downstream signal (39). Opy2p also regulates the filamentous growth pathway (33, 34, 36, 38, 69), but whether Opy2p associates with Msb2p or Sho1p has not been examined in the context of the filamentous growth pathway. Opy2p is glycosylated and migrates as multiple bands by SDS-PAGE analysis (34). Co-IP analysis showed that Opy2p-GFP, which migrates at 65 kDa and at 75 and 100 kDa, interacted with Msb2p-p-Myc (Fig. 1B, left panel). Msb2p-p-Myc migrates at 45 kDa and as a larger form at ~75 kDa.
Op2p-GFP also associated with Sho1p-HA (Fig. 1B, right panel). Thus, Msb2p, Sho1p, and Opy2p associate with each other.

To assess the roles the TM proteins play in regulating the filamentous growth pathway, double and triple mutant combinations were tested. The activity of the filamentous growth pathway was assessed by phosphorylation of the MAPK Kss1p (P~Kss1p).

We compared the msb2Δ, sho1Δ, and opy2Δ single mutants, the msb2Δ sho1Δ, sho1Δ opy2Δ, and msb2Δ opy2Δ double mutants, and the msb2Δ sho1Δ opy2Δ triple mutant. Strains were grown in the nonpreferred carbon source galactose, which activates the filamentous growth pathway (56). As previously reported (30, 35), each single mutant showed a defect in P~Kss1p levels (Fig. 1C). The msb2Δ and sho1Δ mutants showed a less severe defect than the opy2Δ mutant. The msb2Δ sho1Δ double mutant showed a more severe defect than either single mutant. Other double-mutant combinations and the msb2Δ sho1Δ opy2Δ triple mutant showed a full reduction in P~Kss1p levels. Similar results were observed by the plate-washing assay that measures invasive growth (Fig. 1D). These results indicate that Msb2p and Sho1p together contribute to Opy2p-dependent activation of the filamentous growth pathway. This idea is consistent with the prevailing view from our lab (70) and supports the interpretation of Msb2p and Sho1p function in the HOG pathway (39).

Msb2p, Sho1p, and Opy2p have different localization patterns. The fact that Msb2p, Sho1p, and Opy2p interact suggests that the proteins may be coregulated. The localization patterns of the three proteins were compared. The localization patterns of Msb2p, Sho1p, and Opy2p have been examined. Each protein is localized at the PM (28, 30, 37, 39, 41, 42). However, differences in the localization patterns of the proteins have also been reported. For example, Sho1p is mainly found in buds (41, 42, 47), whereas Msb2p is mainly found in the vacuole (28, 29). To better address this question, colocalization experiments were performed.
Fusions to the proteins were functional based on P−Kss1p analysis (Fig. 2A). Colocalization experiments showed that Msb2p-mCherry was mainly present in the vacuole (Fig. 2B), whereas Sho1p-GFP was mainly at the PM and membranes surrounding internal compartments. Opy2p-mCherry and Msb2p-GFP colocalized in the vacuole. However, Opy2p-mCherry was also detected at the PM. The localization of Msb2p and Opy2p in the lumen of the vacuole, and Sho1p, which can also be seen in the vacuole to various degrees, probably represents build up of the cleaved form of GFP (see Fig. S1 in the supplemental material). Therefore, Msb2p, Sho1p, and Opy2p show overlapping and non-overlapping localization patterns.

Proteins that interact in a complex can influence the localization and stability of other members of the complex. The interdependency of TM regulators of the filamentous growth pathway was examined. Msb2p-GFP was not mislocalized in the sho1A opy2A double mutant (Fig. 2C). Sho1p-GFP was not mislocalized in the msb2A opy2A double mutant, and Opy2p-GFP was not mislocalized in the msb2A sho1A double mutant. Therefore, the localization patterns of the TM regulators do not show interdependency. Steady-state protein levels were also compared. Immunoblot analysis showed that the level of Sho1p-GFP (in mid-log-phase cells) was not reduced in cells lacking Msb2p and Opy2p (Fig. 2D). However, the level of Msb2p-GFP was reduced in cells lacking Sho1p and Opy2p. This might be due to positive feedback, because expression of the MSB2 gene is regulated by the filamentous growth pathway, specifically by the transcription factor Ste12p (30). In line with this possibility, the level of Msb2p-GFP, but not Sho1p-GFP or Opy2p-GFP, was reduced in cells lacking the transcription factor Ste12p (Fig. 2D). The level of Opy2p-GFP was not reduced in cells lacking Sho1p and Msb2p. In fact, a minor increase in Opy2p levels was seen in some mutants, but this phenotype was not explored further. Therefore, although the TM regulators of the filamentous growth pathway associate, each
protein has a unique localization pattern that is independent of the other TM regulators of the pathway.

Msb2p, Sho1p, and Opy2p have different rates of turnover from the PM. The different localization patterns of the TM proteins may result from differences in turnover from the PM. The turnover of Sho1p, Msb2p, and Opy2p was assessed by two methods. In one approach, functional GFP-tagged versions of the proteins were expressed under the control of the galactose-inducible GAL1 promoter, and protein levels were examined at times after promoter shut off, by shifting cells to glucose-rich medium. This experiment showed that Msb2p-GFP was rapidly turned over, a finding consistent with a previous report (29) (Fig. 3A, top panel). The turnover of another Msb2p fusion protein (Msb2p-MYC) showed an equivalent turnover rate (see Fig. S2A in the supplemental material). In comparison, Sho1p was turned over more slowly (Fig. 3A, middle panel). Opy2p was turned over at an intermediate rate (Fig. 3A, bottom panel). The actual turnover rates might be different than indicated because they do not account for

![FIG 3 Turnover of the Msb2p, Sho1p, and Opy2p proteins. (A) Proteins driven by the pGAL1 promoter were examined at the indicated time points after shift to YEPD medium. Pgk1p, loading control for total protein levels. (B) Determination of GFP fluorescence (%) of Msb2p-GFP, Sho1p-GFP, and Opy2p-GFP at the plasma membrane by pGAL1 promoter shut off at the indicated time points. (C) Determination of protein levels of Msb2p-GFP, Sho1p-GFP, and Opy2p-GFP in YEP-GAL media after treatment with cycloheximide for the indicated time points. (D) Phosphorylated Kss1p levels in YEP-GAL media after treatment with cycloheximide for the indicated time points.](https://ec.asm.org)
the translation, trafficking, and PM delivery that occurs after promoter shutoff. To take this into account, the protein synthesis inhibitor cycloheximide (71) was also used to measure protein stability. Cycloheximide-chase experiments gave similar results (Fig. 3C). Based on the cycloheximide experiment, the half-life of Msb2p was <30 min, while that for Opy2p was ~30 min, and that for Sho1p was >100 min.

The different turnover rates of the TM proteins might account for their different localization patterns (Fig. 2B). To test this possibility, protein localization at the PM was assessed by fluorescence microscopy following promoter shutoff. Msb2p-GFP was cleared from the PM slightly faster than Opy2p-GFP (Fig. 3B). Both proteins were cleared from the PM more rapidly than Sho1p. Thus, the different turnover rates of the proteins from the PM can explain to some degree their different localization patterns.

The turnover of Msb2p might be impacted by endocytosis of the protein from the PM. The turnover of Msb2p was delayed in end5Δ and end7Δ mutants, based on immunoblot data (see Fig. S2B in the supplemental material) and localization of Msb2p-GFP in these mutants (see Fig. S2C in the supplemental material). The turnover of Msb2p was not severely impacted in the sla1Δ mutant, which regulates turnover of Wsc1p by its NFXPD motif (72). Msb2p, Sho1p, and Opy2p do not have an NFXPD motif; thus, their endocytosis occurs by a different mechanism.

The turnover of Msb2p from the PM might be a rate-limiting step in the attenuation of MAPK signaling. As shown above, Msb2p is turned over more rapidly than Sho1p or Opy2p. Moreover, a version of Msb2p with mutations in its turnover domain, Msb2p3KR, shows elevated MAPK activity (see Fig. S2E in the supplemental material) (29). Msb2p3KR was more stable than wild-type Msb2p after cycloheximide treatment (see Fig. S2D in the supplemental material). Likewise, a version of Msb2p lacking the turnover domain showed PM localization (29) (see Fig. S2E, 1-1222, in the supplemental material). Another way to test this possibility is to assess the activity of the filamentous growth pathway after treatment with cycloheximide. The activity of the filamentous growth pathway was reduced within 30 min of treatment with cycloheximide (Fig. 3D), which corresponded to the turn-over rate of Msb2p (Fig. 3C). In comparison, the level of the Kss1p protein itself was not reduced. Multiple proteins regulate the filamentous growth pathway (Cdc24p, Cdc42p, Bem4p, Ste20p, Ste11p, Ste50p, Ste7p, Ste12p, and Tec1p). Turnover of any one of these proteins might be rate limiting, and we have not explored this possibility further. However, from the perspective of the TM proteins, turnover of Msb2p may be the rate-limiting step in attenuation of the filamentous growth pathway.

Differential turnover of Msb2p, Opy2p, and Sho1p by ESCRT (endosomal sorting complex required for transport).

Many receptors are internalized by endocytosis and delivered by vesicular trafficking to the lysosome/vacuole, where they are degraded by proteases (73–75). In yeast, the vacuolar protease Pep4p functions to degrade proteins that are delivered to the vacuole (76). In the pep4Δ mutant, the levels of Msb2p-GFP, Opy2p-GFP, and Sho1p-GFP were present at elevated levels (see Fig. S1 in the supplemental material). Therefore, the proteins are delivered to and turned over in the vacuole.

Proteins are delivered to the vacuole for turnover in the late endosome. The ESCRT complex is responsible for delivery of proteins from the endosome to the vacuole (77, 78). In ESCRT mutants, proteins destined for the vacuole/lysosome accumulate in the late endosome, also referred to as the multivesicular body (MVB [79, 80]). As expected from previous work (29), Msb2p-GFP accumulated in the MVB in ESCRT mutants, including the snf8Δ mutant (see Fig. S3A in the supplemental material) and other ESCRT mutants (see Fig. S3B). Opy2p showed a similar pattern (see Fig. S3A in the supplemental material). By comparison, Sho1p did not localize to the MVB (see Fig. S3A). To better resolve these patterns, cells were stained with the lipophilic dye FM4-64 (81). Msb2p-GFP and FM4-64 showed colocalization in the MVB in the snf8Δ mutant (Fig. 4A), whereas Sho1p-GFP localized to the PM. In fact, in the snf8Δ mutant, Sho1p-GFP could be detected in some cells (<5%) at multiple sites (Fig. 4A, arrows). Therefore, based on the localization data, Msb2p and Sho1p are delivered to the vacuole in different ways.

The turnover of some receptors is facilitated by ligand binding (82–86). A pool of inactive Sho1p may reside at the PM that, when activated, leads to elevated turnover. To test this possibility, a hyperactive allele of Sho1p, Sho1pP120L (28, 39), was examined. Sho1pP120L localized to internal compartments (Fig. 4, A and C). Steady-state Sho1pP120L protein levels were lower than wild-type Sho1p (Fig. 4B). We had previously reported that a version of Sho1p lacking its SH3 domain was localized to the PM (47) (Fig. 4C). However, cycloheximide experiments showed that Sho1pP120L protein was turned over at the same rate as that of the wild type (see Fig. S3C in the supplemental material). Thus, Sho1pP120L may be sequestered in an internal compartment rather than turned over at an elevated level. We also found that wild-type Sho1p-GFP showed an altered banding during growth in galactose (see Fig. S4 in the supplemental material), a stimulus that activates the filamentous growth pathway (35). Because Sho1p showed this pattern in an msb2Δ opy2Δ mutant (see Fig. S4 in the supplemental material), it may be an Msb2p and Opy2p-independent modification.

Msb2p shows normal filamentous growth pathway activity in ESCRT mutants. Some receptors that are turned over from the PM continue to signal from endosomes (87). Addressing this question for Msb2p is complicated because mutants in the ESCRT pathway (ESCRT-I, -II, and -III complexes) also impair the roles of Rim101 and ESCRT in impacting the filamentous growth pathway (88). This connection between ESCRT and Rim101 extends to other fungal species (Fig. 5A) (89, 90). To dissect the different roles of Rim101 and ESCRT in impacting the filamentous growth pathway, mutants were examined that were compromised for Rim101 (rim101Δ), ESCRT (vps27Δ), or both (snf8Δ). The plate-washing assay showed that the rim101Δ and snf8Δ mutants were defective for invasive growth, whereas the vps27Δ mutant was not (Fig. 5B, washed). This indicates that the Rim101 pathway (but not ESCRT) impacts the activity of the filamentous growth pathway. Likewise, the snf8Δ and rim101Δ mutants (but not the vps27Δ mutant) were defective for MAPK signaling based on the activity of the FUS1-HIS3 growth reporter (Fig. 5B, SD-HIS), which in YC1278b ste4aΔ strains provides a readout of the filamentous growth pathway (91). Msb2p-GFP localized to the MVB in the vps27Δ and snf8Δ mutants but not the rim101Δ or ste4Δ mutants (Fig. 5C). Therefore, trapping Msb2p in the MVB in ESCRT mutants does not impact MAPK signaling. The vps27A mutant showed a minor defect in invasive growth by the plate-washing assay and a morphological defect by the single cell assay, which may reflect a minor role for ESCRT in regulating the filamentous growth response.

To further examine this question, the C-terminal domain of
Rim101p was deleted, which leads to a constitutively active version of the protein (92). RIM101-531 partially rescued the invasive growth (Fig. 5D, washed) and MAPK signaling defects of the snf8Δ mutant (Fig. 5D, SD-HIS). Furthermore, the RIM101-531 snf8Δ double mutant showed Msh2p in the MVB (Fig. 5C). The single cell assay showed that RIM101-531 was hyperfilamentous and bypassed the filamentation defects of the snf8Δ mutant (Fig. 5E). The major conclusion drawn from these experiments is that the signal-
FIG 5 Dissecting the roles of ESCRT and Rim101 in regulating the filamentous growth pathway. (A) Rim101 and ESCRT pathways. Overlapping proteins are shown in yellow, Rim101 pathway-specific components are shown in red, and ESCRT-specific proteins are shown in green. (B) On the left, plate-washing assay of the wild type, rim101Δ/H9004, snf8Δ/H9004, vps27Δ/H9004, and ste12Δ/H9004 mutants on YEPD media. The plates were incubated for 48 h, photographed, washed in a stream of water, and photographed again. On the right, the MAPK activity was assessed by the FUS1-HIS3 growth reporter. Wild-type cells and the mutants were spotted on SD+AA and SD-His media. (C) Localization of Msb2p-GFP in wild-type cells and the indicated mutants. Cells were grown on YEPD media for 24 h. Cells were resuspended in water and evaluated by fluorescence microscopy at ×100. Bar, 5 μm. (D) Wild-type, rim101Δ, snf8Δ, RIM101-531, RIM101-531 snf8Δ, and ste12Δ cells were evaluated by a plate-washing assay and growth reporter assays as described in panel B. (E) Single-cell invasive growth assay. Cells were incubated for 24 h on S-GLU media. Representative cells are shown. Bar, 5 μm.
ing defect seen in the snf8Δ mutant is due to a defect in the Rim101 pathway and not the ESCRT pathway.

Analysis of Msb2p function in trafficking mutants is consistent with its MAPK function at the PM. Previous results indicated that Msb2p signals from the PM (29). To test whether Msb2p is delivered to the PM for its subsequent delivery to the vacuole, a mutant defective in PM delivery of proteins was examined. Immunoblot analysis of Msb2p in the sec3-2 mutant, which is defective for exocytosis (93), showed stabilization of the protein to the same levels as seen in the pep4Δ mutant (Fig. 6B). This result indicates that Msb2p must be delivered to the PM in order to be internalized and turned over in the vacuole.

We also found that cells overproducing ALY1, a member of the arrestin-related trafficking adaptor (ART) family of protein trafficking adaptors (94), showed mislocalization of Msb2p that corresponded to reduced activity of the filamentous growth pathway. ALY1 was identified in a genetic screen for genes that when overexpressed dampened the FUS1-HIS3 growth reporter in cells lacking an intact mating pathway (ste4Δ). ALY1 was identified, along with RCK2, which regulates the HOG pathway (95, 96) and which has been described in terms of its role in regulating the filamentous growth pathway (47). Cells overproducing ALY1 showed mislocalization of Msb2p to the vacuolar membrane (Fig. 6E). The localization of Msb2p to the PM requires PI (4)P (70). Overexpression of ALY1 did not impact the localization of a PI(4,5)P2 PM marker (pFLARE, fluorescent lipid-associated reporter, PH domain of PLC-β; see Fig. S5 in the supplemental material). As a result, Msb2p (and Opy2p) were stabilized, because they were not delivered to the vacuolar lumen (Fig. 6D and see Fig. S5 in the supplemental material). In these cells, the filamentous growth pathway was attenuated (Fig. 6B), and cells failed to undergo invasive growth (Fig. 6C). These results support the idea that Msb2p is delivered to the PM to activate the MAPK pathway. This conclusion is consistent with the idea that a version of Msb2p that

FIG 6 Localization of Msb2p affects protein degradation and MAPK activity. (A) Immunoblot showing Msb2p-GFP and GFP levels in a pep4Δ mutant and sec3-2 mutant at nonpermissive temperature. (B) FUS1-HIS3 reporter assay of wild-type cells transformed with pGAL-ALY1. (C) Plate washing assay of wild-type cells transformed with pGAL-ALY1 on S-GAL-URA media. (D) Immunoblot against GFP in Msb2p-GFP, Sho1p-GFP, and Opy2-GFP strains with or without pGAL-ALY1. Cells were grown in YEP-GAL media. (E) Localization of pMSB2-GFP in a GAL-ALY1 strain. Bar, 5 μm.
cannot be internalized from the PM shows elevated MAPK activity (29). Accordingly, mistargeting of Msb2p to the vacuolar membrane results in reduced MAPK activity.

We also tested whether the Msb2p, Sho1p, or Opy2p showed altered signaling in retromer mutants. Retromer is a trimeric complex (Vps26p, Vps29p, and Vps36p) that recycles certain PM proteins to the Golgi compartment, from where they can be trafficked back to the PM (97, 98). In the vps26Δ mutant, MAPK activity was not impacted based on P—Kss1p levels (see Fig. S6A in the supplemental material), and the ste4 FUS1-HIS3 reporter (see Fig. S6B in the supplemental material). The localization of the proteins was normal (see Fig. S6C in the supplemental material). However, the vps26Δ and vps35Δ mutants did show a reduction in filamentous growth by the single cell assay (see Fig. S6D in the supplemental material), and a minor reduction in invasive growth by the plate-washing assay (see Fig. S6B in the supplemental material), which may indicate a minor role for the proteins in regulating the MAPK pathway or a role for the proteins in regulating filamentous growth outside the MAPK pathway, since many proteins and pathways regulate the response (99).

Functional differences between TM regulators were identified by genetic analysis. We also tested whether Msb2p, Sho1p, and Opy2p have different functions in regulating aspects of the filamentation response. Overexpression of MSB2 was previously shown to cause hyper-invasive growth (30, 91). This turned out to be an MSB2-specific phenotype, as overexpression of SHO1 and OPY2 did not induce hyperinvasive growth (Fig. 7A). Overexpression of SHO1 induces hyperpolarized growth (28). This was a SHO1-specific phenotype, since overexpression of MSB2 or OPY2

![Diagram](https://example.com/diagram.png)

FIG 7 Differences in the filamentous growth output by the three PM proteins. (A) Plate washing assay and ste4 FUS1-HIS3 reporter assay for strains are shown. Equal amounts of cells were spotted. (B) Single-cell invasive growth assay of the indicated strains. Upper panel, microscopic images of the indicated strains in YEP-GAL; lower panel, single-cell invasive growth assay of the indicated strains. Representative cells are shown. Bar, 5 μm. (C) Phosphorylated Kss1p levels in the indicated strains grown in YEP-GAL media.
did not cause hyperpolarized growth (Fig. 7B, arrows). Overexpression of **OPY2** dampens the mating pathway reporter **FUS1** (35, 38). This was an Opy2p-specific phenotype because overexpression of **MSB2** or **SHO1** did not attenuate **FUS1-HIS3** expression (Fig. 7A, right panels). The filamentous growth pathway activity was measured in cells overexpressing the three TM proteins. Overexpression of Msb2p induced phosphorylation of Kss1p, whereas overexpression of **SHO1** had relatively little effect (Fig. 7C). Overexpression of Opy2p caused a decrease in F~Kss1p levels, suggesting that Opy2p might have a yet unexplored role in attenuating the filamentous growth pathway (Fig. 7C). Based on these tests, Msb2p, Sho1p, and Opy2p may have pathway-specific roles in regulating filamentous growth.

DISCUSSION

Many signaling pathways are regulated by multiple TM proteins that work together in some manner to produce a downstream signal. Here, we investigated the functional roles of TM proteins that regulate the filamentous growth pathway. We show that Msb2p, Sho1p, and Opy2p associate by co-IP analysis. This interaction may facilitate the interaction between cytosolic regulators of the filamentous growth pathway. Msb2p associates with versions of Cdc42p that mimic the GTP-bound (active) conformation of the GTPase (30). Cdc42p is also anchored to the PM by the lipid modification geranylgeranylation (100, 101). Sho1p associates with the MAPKKK Ste11p and the adaptor Ste50p. This has been explicitly shown for the HOG pathway (44, 102, 103) and likely occurs in the filamentous growth pathway as well. Opy2p also interacts with Ste50p (33, 36, 37, 104). Thus, the association between Msb2p, Sho1p, and Opy2p may facilitate interactions between Cdc42p-PAK and its substrate for the filamentation pathway, the MAPKKK Ste11p.

Perhaps unexpectedly, the TM regulators have different localization patterns. The different localization patterns can be explained in two ways. First, each protein has a unique pattern. For example, Sho1p is typically found in large cells at the mother-bud neck, whereas Msb2p or Opy2p are not. Second, the proteins have different rates of turnover from the PM (Fig. 8). Msb2p is turned over rapidly from the PM, which attenuates the filamentous growth pathway. Opy2p is turned over at an intermediate rate, whereas Sho1p is turned over at a low rate. In general, the turnover of yeast proteins from the PM requires the ubiquitin ligase Rsp5p (105). Different adaptors, or (arrestin) ARTs, regulate the turnover of different PM proteins (94). Possibly, different ART combinations may regulate the differential turnover of TM proteins that regulate the filamentous growth pathway.

The fact that Msb2p, Sho1p, and Opy2p do not predominantly colocalize at the PM indicates that transient interactions may be sufficient for MAPK signaling. One possibility is that Sho1p forms a stable cortical mark at the PM to which Msb2p and Opy2p transiently associate. Given that Msb2p, Sho1p, and Opy2p have been implicated in HOG pathway signaling and therefore respond to a variety of stimuli, it will be interesting to determine whether different trafficking/turnover mechanisms for the proteins lead to pathway-specific outputs. Msb2p, Sho1p, and Opy2p proteins have orthologs in other fungal species, including filamentous fungi that can be pathogenic (106–111). Thus, the regulatory mechanisms described here may apply to these PM sensors in other fungal species.

The filamentous growth pathway is similar in some respects to the PKC pathway. Multiple TM proteins regulate the PKC pathway, including Wsc1p/Sgl1p, Wsc2p, Wsc3p, and Mid2p (112). Wsc1p is a single transmembrane domain cell wall sensor that when marked with GFP does not yield a heavy vacuolar signal (72). The Wsc1p protein localizes to the PM dependent on the ESCRT pathway recycling it (72). This recycling is dependent on Sla1p. In comparison, neither Msb2p nor Opy1p require Sla1p, and these proteins do not have NPF/EXD endocytosis signals similar to those of Wsc1p. Thus, one can envision a possibility where each TM regulator possesses its own localization pattern and mode of turnover. Dissecting regulatory features of differential turnover of TM proteins will be important to understand the overall regulation of signaling pathways.

Many proteins accumulate in the MVB in ESCRT mutants. These include Notch (73), Smoothened, the receptor for Hedgehog (113), epidermal growth factor receptor (114, 115), and CXCR4 (115). Few proteins accumulate at the cell cortex in ESCRT mutants (116, 117). It is noteworthy that Msb2p accumulates at the MVB in ESCRT mutants, whereas Sho1p accumulates at the PM. This might be explained, in part, because Sho1p is in an inactive state. When activated, the localization of Sho1p is more dynamic, and the protein can be found in internal compartments. Some receptors can signal from endosomes after they have been turned over from the PM. Epidermal growth factor receptor can
signal from endosomes, in early ESCRT mutants (114). In Drosophila mutants lacking the ESCRT component Vps25p, Notch accumulates in the endosome and induces signaling from that site (118). Intracellular G-protein coupled receptor (GPCR) signaling has been documented in several studies that show internalized GPCRs sustain MAPK signaling (119). We show, by disentangling regulation by the RIM101 and ESCRT pathways, that Msb2p does not show enhanced signaling from endosomes. Thus, Msb2p signaling is attenuated by a mechanism that requires other factors than the ESCRT pathway.

ACKNOWLEDGMENTS

We thank Nadia Vadea, Ummi Abdulla, and Trinity Bernier-Natchway for help with experiments. We thank Scott Emr, John Pringle, Charlie Boone, Alan Davidson, and Hiten Madhani for reagents.

P.I.C. is supported by a grant from the U.S. Public Health Service (GM098629).

REFERENCES

1. Wendland J. 2001. Comparison of morphogenetic networks of filamentous fungi and yeast. Fungal Genet Biol 34:63–82. http://dx.doi.org/10.1006/fgbi.2001.1290.

2. Whitney M, Bachwitz C. 2007. Morphogenesis in Candida albicans. Annu Rev Microbiol 61:529–553. http://dx.doi.org/10.1146/annurev.micro.61.080706.093341.

3. Lo HJ, Kohler JR, DiDomenico B, Loebenberg D, Cacciapuoti A, Fink GR. 1997. Nonfilamentous C. albicans mutants are avirulent. Cell 90:939–949. http://dx.doi.org/10.1016/S0092-8674(00)80358-X.

4. Lengeler KB, Davison RC, Harashima T, Shen WC, Wolfe KH, Cullen PJ. 2015. Cdc42p-interacting protein bem4p regulates the filamentous-growth mitogen-activated protein kinase pathway. Mol Cell Biol 35:417–436. http://dx.doi.org/10.1128/MCB.00350-14.

5. Madhani HD, Styles CA, Fink GR. 1997. MAP kinases with distinct inhibitory functions impart signaling specificity during yeast differentiation. Cell 91:673–684. http://dx.doi.org/10.1016/S0092-8674(00)80454-7.

6. Madhani HD, Fink GR. 1997. Combinatorial control required for the specificity of yeast MAPK signaling. Science 275:1314–1317. http://dx.doi.org/10.1126/science.275.5304.1314.

7. van der Felden J, Weisser S, Bruckner S, Lenz P, Mosch HU. 2014. The transcription factors Tec1 and Ste12 interact with coregulators Msal1 and Msal2 to activate adhesion and multicellular development. Mol Cell Biol 34:2283–2293. http://dx.doi.org/10.1128/MCB.01599-13.

8. Rupprecht S, Emmers E, Lo HJ, Madhani H, Fink G. 1999. MAP kinase and cAMP filamentation signaling pathways converge on the unusually large promoter of the yeast FLO11 gene. EMBO J 18:1257–1269. http://dx.doi.org/10.1002/1092-028X(19990701)18:13<1257::AID-EMBOJ1257>3.0.CO;2-1.

9. Carraway KL, Ramsauer VP, Haq B, Carothers Carraway CA. 2003. Cell signaling through membrane mucins. Bioessays 25:66–71. http://dx.doi.org/10.1002/bies.10201.

10. Singh PK, Hollingsworth MA. 2006. Cell surface-associated mucins in signal transduction. Trends Cell Biol 16:467–476. http://dx.doi.org/10.1016/j.tcb.2006.07.006.

11. Vadea N, Dionne H, Akiagbogor DS, Nickerson SR, Krysan DJ, Cullen PJ. 2008. Cleavage of the signaling mucin Msb2 by the aspartyl protease Yps1 is required for MAPK activation in yeast. J Cell Biol 181:1073–1081. http://dx.doi.org/10.1083/jcb.200704079.

12. Adhikari N, Vadea N, Chow J, Caccamise LM, Chavel CA, Li B, Bowitch A, Stefan CJ, Cullen PJ. 2015. Role of the unfolded protein response in regulating the mucin-dependent filamentous growth MAPK pathway. Mol Cell Biol 35:1414–1432. http://dx.doi.org/10.1128/MCB.01501-14.

13. Cullen PJ, Sabbagh W, Jr, Graham E, Irick MM, van Olden KE, Neal C, Delrow J, Bardwell L, Sprague GF, Jr. 2004. A signaling mucin at the head of the Cdc42- and MAPK-dependent filamentous growth pathway in yeast. Genes Dev 18:1695–1708. http://dx.doi.org/10.1101/gad.121813.04.

14. O’Rourke SM, Herskowitz I. 1998. The Hog1 MAPK prevents cross talk between the HOG and pheromone response MAPK pathways in Saccharomyces cerevisiae. Genes Dev 12:2874–2886. http://dx.doi.org/10.1101/gad.12.18.2874.

15. Shimada Y, Wiget P, Gulli MP, Bi E, Peter M. 2004. The nucleotide exchange factor Cdc24p may be regulated by auto-inhibition. EMBO J 23:1051–1062. http://dx.doi.org/10.1038/sj.emboj.7600124.

16. Yamamoto K, Tatebayashi K, Tanaka K, Saito H. 2010. Dynamic control of yeast MAPK kinase network by induced association and dissociation between the Ste50 scaffold and the Opy2 membrane anchor. Mol Cell 40:87–98. http://dx.doi.org/10.1016/j.molcel.2010.09.011.

17. Yang HY, Tatebayashi K, Yamamoto K, Saito H. 2009. Glycosylation defects activate filamentous growth Kss1 MAPK and inhibit osmoregu-
latory Hog1 MAPK. EMBO J 28:1380–1391. http://dx.doi.org/10.1038/embr.2009.104.

35. Karunanithi S, Cullen PJ. 2012. The filamentous growth MAPK pathway responds to glucose starvation through the Mgl1/2 transcriptional repressors in Saccharomyces cerevisiae. Genetics 192:869–887. http://dx.doi.org/10.1038/sj.gene.65034519.

36. Ekiel I, Sules T, Jansen G, Kowalk M, Miningius O, Cheng J, Harcus P, Obrig TG, Culp WJ, McKeehan WL, Hardesty B. 2005. Yeast two-hybrid analysis of the yeast proteome with a movable ORF collection. Genes Dev 20:6351–6353. http://dx.doi.org/10.1101/gad.1375706.

37. Wu C, Jansen G, Zhang J, Thomas DY, Whiteway M. 2006. Adaptor protein Ste5p links the Ste11p MEKK to the Hog1 pathway through plasma membrane association. Genes Dev 20:734–746. http://dx.doi.org/10.1101/gad.1375706.

38. Cappell SD, Dohlman HG. 2011. Selective regulation of MAP kinase signaling by an endomembrane phosphatidylinositol 4-kinase. J Biol Chem 286:14852–14860. http://dx.doi.org/10.1074/jbc.M110.195073.

39. Tatebayashi K, Tanaka K, Yang HY, Yamamoto K, Matsuhashi Y, Tomida T, Imai M, Saito H. 2007. Transmembrane mucins Hkr1 and Mss2 are putative osmosensors in the SHO1 branch of yeast Hog1 pathway. EMBO J 26:3521–3533. http://dx.doi.org/10.1038/sj.emboj.7601796.

40. O’Rourke SM, Hershkowitz I. 2002. A third osmosensing branch in Saccharomyces cerevisiae requires the Mss2 protein and functions in parallel with the Sho1 branch. Mol Cell Biol 22:4739–4749. http://dx.doi.org/10.1128/MCB.22.13.4739-4749.2002.

41. Raitt DC, Posas F, Saito H. 2000. Yeast Cdc42 GTPase and Ste20 PAK-like kinase regulate Sho1-dependent activation of the Hog1 MAPK pathway. EMBO J 19:4623–4631. http://dx.doi.org/10.1093/emboj/19.17.4623.

42. Reiser V, Salah SM, Ammerger G. 2000. Polarized localization of yeast Pbs2 depends on osmostress, the membrane protein Sho1 and Cdc42. Nat Cell Biol 2:620–627. http://dx.doi.org/10.1038/35023568.

43. Maeda T, Takekawa M, Saito H. 1995. Activation of yeast PBS2 MAPKK by MAPKKKs or by binding of an SH3-containing osmosensor. Science 269:554–558. http://dx.doi.org/10.1126/science.7624781.

44. Tatebayashi K, Yamamoto K, Nagoya M, Takayama T, Nishimura A, Saito H. 2009. Binding the atypical RA domain of Sho1 to the Hog1 MAPK responds to glucose starvation through the Mig1/2 transcriptional repressor. Curr Biol 19:2816–2826. http://dx.doi.org/10.1016/S0076-6879(09)01305-X.

45. McLaughlin DE, Cygler M, Whiteway M, Wu C. 2005. Protein-protein interaction affinity plays a crucial role in controlling the Sho1p-mediated signal transduction pathway in yeast. Mol Cell 14:831–843. http://dx.doi.org/10.1016/j.molcel.2005.04.024.

46. Stefan CJ, Audhya A, Emr SD. 2002. The yeast synaptojanin-like protein Seckin controls the cell cycle upon dissociation of phosphatidylinositol (4,5)bisphosphate. Mol Biol Cell 13:542–557. http://dx.doi.org/10.1091/mbc.01-10-0476.

47. Ramer SW, Elledge SJ, Davis RW. 1992. Dominant genetics using a yeast genomic library under the control of a strong inducible promoter. Proc Natl Acad Sci U S A 89:11589–11593. http://dx.doi.org/10.1073/pnas.89.23.11589.

48. Wach A, Brachot A, Alberti-Segui C, Rebischung C, Philippson P. 1997. Heterologous HIS3 marker and GFP reporter modules for PCR-targeting in Saccharomyces cerevisiae. Yeast 13:1065–1073. http://dx.doi.org/10.1002/(SICI)1097-0061(19970915)14:11<1065::AID-YEAST>3.0.CO;2-K.

49. Schneider BL, Seufert W, Steiner B, Yang QH, Foucher AB. 1995. Use of polymerase chain reaction epistasis tagging for protein tagging in Saccharomyces cerevisiae. Yeast 11:1265–1274. http://dx.doi.org/10.1002/yea.320111306.

50. Marles JA, Dahesh S, Haynes J, Andrews BJ, Davidson AR. 2004. Protein-protein interaction affinity plays a crucial role in controlling the Sho1p-mediated signal transduction pathway in yeast. Mol Cell 14:831–843. http://dx.doi.org/10.1016/j.molcel.2005.04.024.

51. Adhikari H, Cullen PJ. 2014. Metabolic starvation induces AMPK- and Ire1p-dependent activation of the p38-type HOG MAPK pathway. PLoS Genet 10:e1004734. http://dx.doi.org/10.1371/journal.pgen.1004734.

52. Kempton HA, Sprague GF, Jr. 2013. Fus3 and five interacting proteins prevent premature recovery from pheromone arrest in the budding yeast Saccharomyces cerevisiae. Yeast 30:1750–1763. http://dx.doi.org/10.1002/yea.2826.

53. Karunanithi S, Cullen PJ. 2012. The filamentous growth MAPK pathway responds to glucose starvation through the Mgl1/2 transcriptional repressors in Saccharomyces cerevisiae. Genetics 192:869–887. http://dx.doi.org/10.10334/gene.1424661.

54. Adhikari H, Cullen PJ. 2015. Role of phosphatidylinositol phosphate signaling in the regulation of the filamentous growth MAPK pathway. Eukaryot Cell 14:247–240. http://dx.doi.org/10.1128/EC.00013-15.

55. Obrig TG, Culpepper LA. 1997. The mechanism by which cycloheximide and related glutarimide antibiotics inhibit peptide synthesis on reticulocyte ribosomes. J Biol Chem 262:174–181. http://dx.doi.org/10.1074/jbc.262.1.174.

56. Piao HL, Machado IM, Payne GS. 2007. NPFXD-mediated endocytosis is required for polarity and function of a yeast cell wall stress sensor. Mol Biol Cell 18:57–65. http://dx.doi.org/10.1091/mbc.E06-08-0584.

57. Wegner CS, Rodahl LM, Stennark H. 2011. ESCRT proteins and cell signaling. Traffic 12:1291–1297. http://dx.doi.org/10.1111/j.1600-0854.2011.01210.x.

58. MacGurn JA, Hsu PC, Emr SD. 2012. Ubiquitin and membrane protein turnover: from cradle to grave. Annu Rev Biochem 81:231–259. http://dx.doi.org/10.1146/annurev-biochem-060210-093619.
91. Chavel CA, Caccamise LM, Li B, Cullen PJ.

88. Joazeiro CA, Wing SS, Huang H, Leverson JD, Hunter T, Liu YC.

76. Ammerer G, Hunter CP, Rothman JH, Saari GC, Valls LA, Stevens TH. 1986. PEP4 gene of Saccharomyces cerevisiae encodes protease A, a vacuolar enzyme required for processing of vacuolar precursors. Mol Cell Biol 6:2490–2499.

Hurley JH, Emr SD. 2006. The ESCRT complexes: structure and mechanism of a membrane-trafficking network. Annu Rev Biophys Biomol Struct 35:277–298. http://dx.doi.org/10.1146/annurev.biophys.35.040405.102126.

73. Teis D, Saksena S, Emr SD. 2009. SnapShot: the ESCRT machinery. Cell 137: 182–182 e181. http://dx.doi.org/10.1016/j.cell.2009.03.027.

Russell MR, Nickerson DP, Odorizzi G. 2004. Deletions of endocytic components protect yeast cells from proteotoxic stress. eLife 1:e00269. http://dx.doi.org/10.1091/mbc.E04-10-0051.

Sakena S, Sun J, Chu T, Emr SD. 2007. ESCRTing proteins in the endocytic pathway. Trends Biochem Sci 32:561–573. http://dx.doi.org/10.1016/j.tibs.2007.09.010.

Vida TA, Emr SD. 1995. A new vital stain for visualizing vacuolar membrane dynamics and endocytosis in yeast. J Cell Biol 128:779–792. http://dx.doi.org/10.1083/jcb.128.5.779.

Stefan CJ, Blumer KJ. 1994. The third cytoplasmic loop of a yeast G-protein-coupled receptor controls pathway activation, ligand discrimination, and receptor internalization. Mol Cell Biol 14:3339–3349.

Haugh JM, Meyer T. 2002. Active EGF receptors have limited access to PtdIns(4,5)P2 in endosomes: implications for phospholipase C and P3-kinase signaling. J Cell Sci 115:303–310.

Joo EJ, Chun J, Ha YW, Ko HJ, Xu MY, Kim YS. 2015. Novel roles of ginsenoside Rg3 in apoptosis through downregulation of epidermal growth factor receptor. Chem-Biol Interact 233:25–34. http://dx.doi.org/10.1016/j.ceb.2016.03.016.

Joazeiro CA, Wing SS, Huang H, Leverson JD, Hunter T, Liu YC. 2006. The ESCRT complexes: structure and mechanism of a membrane-trafficking network. Annu Rev Biophys Biomol Struct 35:277–298. http://dx.doi.org/10.1146/annurev.biophys.35.040405.102126.

Lee MJ, Dohlman HG. 2008. Coagulation of G protein signaling by cell-surface receptors and an intracellular exchange factor. Curr Biol 18:211–215. http://dx.doi.org/10.1016/j.cub.2008.01.007.

Chavel CA, Dionne HM, Birkarya B, Joshi C, Cullen PJ. 2010. Multiple signals converge on a differentiation MAPK pathway. PLoS Genet 6:e1000883. http://dx.doi.org/10.1371/journal.pgen.1000883.

94. Sarode N, Miracle B, Peng X, Ryan O, Reynolds TB. 2014. Global regulation of vacuolar membrane proteins in the opportunistic yeast Candida lusitaniae. Fungal Genet Biol 73:81–92. http://dx.doi.org/10.1016/j.fgb.2012.11.001.

97. Seaman JM, McCAffrey JM, Emr SD. 1998. A membrane coat complex essential for endosome-to-Golgi retrograde transport in yeast. J Cell Biol 142:665–681. http://dx.doi.org/10.1083/jcb.142.3.665.

Cullen PJ, Sprague GF, Jr. 2012. The regulation of filamentous growth in yeast. Genetics 190:23–49. http://dx.doi.org/10.1534/genetics.111.132745.

Ohya Y, Qudota H, Anraku Y, Pringle JR, Botstein D. 1993. Suppression of yeast geranylgeranyl transferase I defect by alternative prenylation of two target GTPases, Rho1p and Cdc42p. Mol Cell Biol 4:1017–1025. http://dx.doi.org/10.1091/mbc.4.4.1017.

Mack D, Nishimura K, Dennehey BK, Arbogast T, Parkinson J, Toh-e A, Pringle JR, Bender A, Matsu Y. 1996. Identification of the bud emergence gene BEM4 and its interactions with rho-type GTPases in Saccharomyces cerevisiae. Mol Cell Biol 16:4387–4395.

Zarrinpar A, Bhattacharya RP, Nittler MP, Lim WA. 2004. Shol and Pbs2 act as casoclaffin linking components in the yeast high osmolality MAP kinase pathway. Mol Cell 14:825–832. http://dx.doi.org/10.1016/j.jbc.2004.04.011.

Tatebayashi K, Yamamoto K, Tanaka T, Tomida T, Maruoka T, Kasukawa E, Saito H. 2006. Adaptor functions of Cdc42, Ste50, and Shol in the yeast osmoregulatory HOG MAPK pathway. EMBO J 25: 3033–3044. http://dx.doi.org/10.1038/sj.emboj.7601192.

Truckes DM, Bloomkatje JE, Thorner J. 2006. The RA domain of Ste50 adaptor protein is required for delivery of Ste11 to the plasma membrane in the filamentous growth signaling pathway of the yeast Saccharomyces cerevisiae. Mol Cell Biol 26:912–928. http://dx.doi.org/10.1128/MCB.26.3.912-928.2006.

Katzmann DJ, Sarkar S, Chu T, Audhya A, Emr SD. 2004. Multivesicular body sorting: ubiquitin ligase Rsp5 is required for the modification and sorting of carboxypeptidase D. Mol Cell Biol 24:468–480.

Swidergall M, van Willick L, Ernst JF. 2015. Signaling domains of mucin Mal2 in Candida albicans. Eukaryot Cell 14:359–370. http://dx.doi.org/10.1128/EC.00264-14.

Herrero de Dios C, Roman E, Diez C, Alonso-Monge R, Pla J. 2013. The transmembrane protein Opv2 mediates activation of the Cek1 MAP kinase pathway in Candida albicans. Fungal Genet Biol 50:21–32. http://dx.doi.org/10.1016/j.fgb.2012.11.001.

Roman E, Cottier F, Ernst JF, Pla J. 2009. Mal2 signaling mucin controls activation of Cek1 mitogen-activated protein kinase in Candida albicans. Eukaryot Cell 8:1235–1249. http://dx.doi.org/10.1128/EC.00811-09.

Boisnard S, Ruprich-Robert G, Florent M, Da Silva B, Chapeland-Leclere F, Papon N. 2008. Role of Sho1p adaptor in the pseudohyphal development, drug sensitivity, osmotolerance, and oxidant stress adaptation in the opportunistic yeast Candida lusitaniae. Yeast 25:849–859. http://dx.doi.org/10.1002/yea.1636.

Perez-Nadale E, Di Pietro A. 2014. The transmembrane protein Shol cooperates with the mucin Mal2 to regulate invasive growth and plant infection in Fusarium oxysporum. Mol Plant Pathol 16:593–603. http://dx.doi.org/10.1111/ppp.12217.

Levin DE. 2011. Regulation of cell wall biogenesis in Saccharomyces cerevisiae: the cell wall integrity signaling pathway. Genetics 189:1145–1175. http://dx.doi.org/10.1534/genetics.111.128264.

Yang X, Mao F, Lv X, Zhang Z, Fu L, Lu Y, Wu Z, Zhou Z, Zhang Y, Zhao Y. 2013. Drosophila Vps36 regulates Smo trafficking in Hedgehog signaling. J Cell Sci 126:4239–4238. http://dx.doi.org/10.1242/jcs.126003.

Bache KG, Stuffers M, Malerod L, Slagsvold T, Raiborg C, Lechardeur D, Walchli S, Lukacs GL, Brech A, Stenmark H. 2006. The ESCRT-III subunit hVps24 is required for degradation but not silencing of the epidermal growth factor receptor. Mol Cell Biol 17:2513–2523. http://dx.doi.org/10.1128/mcb.105-0919.

Malerod L, Stuffers S, Brech A, Stenmark H. 2007. Vps22/EAP30 in...
ESCRT-II mediates endosomal sorting of growth factor and chemokine receptors destined for lysosomal degradation. Traffic 8:1617–1629.

116. Jekely G, North P. 2003. Hrs mediates downregulation of multiple signaling receptors in Drosophila. EMBO Rep 4:1163–1168. http://dx.doi.org/10.1038/sj.embor.740019.

117. Teis D, Saksea S, Judson BL, Emr SD. 2010. ESCRT-II coordinates the assembly of ESCRT-III filaments for cargo sorting and multivesicular body vesicle formation. EMBO J 29:871–883. http://dx.doi.org/10.1038/emboj.2009.408.

118. Vaccari T, Bilder D. 2005. The Drosophila tumor suppressor vps25 prevents nonautonomous overproliferation by regulating notch trafficking. Dev Cell 9:687–698. http://dx.doi.org/10.1016/j.devcel.2003.09.019.

119. Calebiro D, Nikolaev VO, Persani L, Lohse MJ. 2010. Signaling by internalized G-protein-coupled receptors. Trends Pharmacol Sci 31:221–228. http://dx.doi.org/10.1016/j.tips.2010.02.002.

120. Finger FP, Novick P. 2000. Synthetic interactions of the post-Golgi s mutations of Saccharomyces cerevisiae. Genetics 156:943–951.

121. Ryan O, Shapiro RS, Kurat CF, Mayhew D, Barryshnikova A, Chin B, Lin ZY, Cox MJ, Vizeacoumar F, Cheung D, Bahr S, Tsui K, Tebbji F, Sellam A, Istel F, Schwarzmuller T, Reynolds TB, Kuchler K, Gifford DK, Whiteway M, Giaever G, Nislow C, Costanzo M, Gingras AC, Mitra RD, Andrews B, Fink GR, Cowen LE, Boone C. 2012. Global gene deletion analysis exploring yeast filamentous growth. Science 337:1353–1356. http://dx.doi.org/10.1126/science.1224339.