Bronchial leiomyoma in a chemical warfare victim—a causative agent or an incidental finding: A case report

Samad Behesthirouy a, Farzad Kakaei b, Ramin Azhough b, Ashraf Fakhrjou c

a Thoracic Surgery, Tabriz University of Medical Sciences, Tabriz, Iran
b Surgery, Tabriz University of Medical Sciences, Tabriz, Iran
c Pathology, Tabriz University of Medical Sciences, Tabriz, Iran

A B S T R A C T

INTRODUCTION: Bronchial leiomyoma is one of the rarest benign tumors of the lower respiratory system, compromising less than 2% of reported benign pulmonary tumors. Chemical warfare is a known cause of chronic pulmonary diseases in soldiers who survives the chemical wars. Most of these patients are chronically under treatment by respiratory drugs and acute exacerbations of their symptoms prompt for investigations for diagnosis of a new complication in these patients.

PRESENTATION OF CASE: In this case report we present a 43 y/o male chemical warfare victim who was under treatment for his respiratory disease for near 20 years but at last bronchial leiomyoma was diagnosed as the cause of exacerbation of his symptoms. He was undergone right thoracotomy and sleeve resection of left main bronchus. Severe adhesions plus lymphadenitis in the mediastinum might be due to the effects of prior inflammatory process.

DISCUSSION: Because of rarity of this tumor, bronchial leiomyoma in this patient may be the result of previous exposure to nitrogen mustard but the exact relationship remained to be confirmed.

CONCLUSION: Although the association between chemical warfare and lung neoplasias has not been well understood, it is the first time that a bronchial leiomyoma is reported in a nitrogen mustard survivor.

© 2012 Surgical Associates Ltd. Published by Elsevier Ltd. Open access under CC BY-NC-ND licence.

1. Introduction

Bronchial tumors are often overlooked as the cause of mild respiratory symptoms until they reach an advanced stage, especially in patients with long-term asthma or other chronic obstructive pulmonary diseases. Most of these tumors are malignant (mostly squamous cell carcinoma and adenoid cystic carcinoma) and benign tumors only account for 5–10% of the resected cases.1 The origin of these tumors may be mesenchymal, epithelial or any of the submucosal cells. Among these, bronchial leiomyoma which is thought to arise from smooth muscles of the submucosa is the rarest type and only accounts for 2% of these neoplasms.2 Because of the rarity of these tumors their epidemiology is not fully understood but in most reports they are most common before the fourth decade of life with a male preponderance in children.3 Many treatment options are available for these tumors according to their location, size and presentation such as laser or argon beam ablation, sleeve resection, pulmonary lobectomy or pneumonectomy. In this case report we present a 43 y/o male victim of Iran–Iraq war who was finally diagnosed to have an endobronchial leiomyoma as the cause of acute exacerbation of his chronic symptoms.

2. Case report

In autumn 2011, a 43 y/o male was referred to thoracic surgery ward of Imam Reza Hospital, Tabriz University of medical sciences, Tabriz, Iran. He was chronically under treatment by bronchodilators because of his chronic obstructive respiratory symptoms and exertion dyspnea which were documented that were due to exposure to chemical weapons (Sulfur mustard) during the Iran–Iraq war in 1986. After his initial 6 months treatment for skin and respiratory complications of his injuries, during this 23 years period he received several short courses of systemic and/or oral antibiotics in combination with corticosteroids and bronchodilators mostly local salbutamol and ipratropium hydrobromide sprays. He also was undergone several times of bronchosity which revealed diffuse inflammatory changes without any major stenosis in the large airways. His skin disease only included skin dryness, hyperpigmentation and minor signs of contact dermatitis which treated periodically only by local emollients. His respiratory symptoms were exacerbated periodically due to upper respiratory bacterial or viral infections during this period especially in falls and winters, but his disease symptoms were stable without any need for hospital admission during the last 10 years. His smoking history included
at least 10 cigarettes/day for more than 20 years but his abstinence history was at least 6 months.

One month before admission his symptoms exacerbated again and his physician treated him by oral azithromycin and acetaminophen plus bromhexine as a mucolytic. He had no hemoptysis and his cough was not productive. Because of high fever (39.2 °C) a chest X-ray obtained which revealed diffuse haziness in both lung fields which was not different from his previous graphs except for focal infiltration in left inferior lobe plus mild bronchial deviation and elevation of the left diaphragm (Fig. 1). Skin PPD test was negative and sputum culture and microscopic smear was positive for Gram positive cocci. Systemic ceftriaxone was started with a diagnosis of pneumonia and at the same time a chest computed tomography (CT) scan was obtained. A distinct mass was revealed in the left main stem bronchus plus lingular lobe atelectasis and hyperinflation of the other lung field especially in the right side (Figs. 2 and 3). Many calcified lymph nodes were seen in both hilar areas which were attributed to his previous inflammatory conditions due to chronic sequel of chemical warfare injuries. He was admitted in hospital and a flexible bronchoscopy was done for obtaining tissue diagnosis. His condition was better at this time but the cough and chest pain still remained. A soft tissue mass with smooth border was seen plus thick secretions which culture is positive for streptococcus pneumonia. Biopsy was done which was not diagnostic because the specimen only contained respiratory mucosa with signs of chronic inflammation.

A rigid bronchoscopy performed for better evaluation of the anatomic location of the tumor and obtaining a larger tissue fragment for pathologic evaluation. The site of the tumor was 10 mm distal to the carina and the main bronchus was normal distal the tumor with normal margins of the lobar bronchi. Pathologic sections showed fragments of chronically inflamed respiratory mucosal tissue plus proliferation of spindle cells in whorl pattern in the submucosal area. No atypia, mitosis or necrosis was seen (Fig. 4). Immunohistochemical staining for S100, desmin and actin confirmed that the spindle cell part of this tumor was actually a leiomyoma (Fig. 5).
symptoms of asthma, but if they grow enough the obstructive condition may result in atelectasis and pulmonary infection as in our case. Some cases may be associated with chronic cough and hemoptysis that prompt the physician for obtaining a chest X-ray or performing a flexible or rigid bronchoscopy. Specimen which is obtained by flexible bronchoscopy usually is not enough for definite diagnosis. Rigid bronchoscopy will be greatly helpful for locating the exact site of the tumor and obtaining a larger specimen. We should have a definite histologic diagnosis for planning a limited resection rather than a more radical resection of the lung. These lesions may be difficult to differentiate from fibromas, neurofibromas, or neurilemmomas with ordinary hematoxylin and eosin stains and Immunohistochemical assays are necessary for confirming the diagnosis especially when we want to perform a limited resection or use minimally invasive techniques such as laser ablation or electrocautery for their treatment.

Smoking, asbestos, chromium, arsenic, cadmium, silica, nickel, welding fumes, diesel exhausts, polycyclic aromatic hydrocarbons (PAHs), and ionizing radiation exposure by radon are among the known risk factor for squamous cell carcinoma of the tracheobronchial tree but there is no confirmed association between these risk factors and other type of bronchial tumors including leiomyoma. Also, association between chemical warfare and lung cancer was not well understood but many reports in the literature have confirmed that sulfur mustard may decreased the age at which people were at risk of developing lung cancer and also increase the rate of lung cancer in the victims.

In the acute phase, sulfur mustard which is an alkyllating agent, may be rapidly results in bronchiolitis obliterans or “mustard lung” but the chronic effects of this type of chemical warfare poisoning in the victims remained to be depicted. Only a few seconds of exposure to this relatively odorless gas is enough for developing the symptoms. Tissue damage will be microscopically evident after 16 h. Full body blistering and degloving and severe respiratory symptoms due to alveolar damage will be a devastating complication in non-decontaminated soldiers. If left untreated most of the victims will die due to multiorgan failure. Chronic respiratory symptoms such as asthma, bronchiectasis, bronchitis, bronchiolitis, sinusitis, and bronchial stenosis are among the common symptoms in the survivors. Chronic complications are due to the adverse effect of this agent on immunoregulatory pathways and also mutations in important oncogenes or tumor suppressor genes such as p53 or KRAS with a known increase in lung cancer risk. Unfortunately, long term epidemiological studies are required for confirming the association of this type of poisoning with lung cancer. Now near 85000 Iranian veterans with well-documented exposures to mustard gas are under investigation for confirming the long term carcinogenicity of this agent. Lung, nasopharynx, thyroid gastrointestinal and skin cancers and also different types of leukemia are among the malignancies which were reported in these cohort but urogenital cancers was not increased in these patients. Deaths from respiratory cancer occurred in 2.5% of those American veterans who exposed to sulfur mustard in World War I. In the study of Japanese factory workers, respiratory tract tumors accounted for 58% of all reported malignant tumors (16% of all deaths).

One study reported 8% squamous metaplasia in those who were evaluated for diagnosing the cause of hemoptysis. Some studies reported increase in the rate of benign tumors in animal studies such as benign neoplasms of the forestomach (squamous papilloma) but researches in this field are rare and inconclusive. We do not find any reported association between this type of injury and benign tumors such as bronchial leiomyoma in the literature and this may be the first time that such lesion is reported in a sulfur mustard victim. Future studies are needed to better evaluate the effect of this agent on developing benign neoplasias in human.
Conflict of interest statement

None.

Funding

None.

Ethical approval

Obtained.

Author contributions

All authors contributed.

References

1. Kim YK, Kim H, Lee KS, Han J, Yi CA, Kim J, et al. Airway leiomyoma: imaging findings and histopathologic comparisons in 13 patients. American Journal of Roentgenology 2007; 189(2):393–9.
2. Kim KH, Suh JS, Han WS. Leiomyoma of the bronchus treated by endoscopic resection. Annals of Thoracic Surgery 1993;56(5): 1164–6.
3. Dmello D, Javed A, Espiritu J, Matuschak GM. Endobronchial leiomyoma—case report and literature review. Journal of Bronchial Intervention and Pulmonology 2009;16:49–51.
4. Grillo HC, Mathisen DJ. Primary tracheal tumours: treatment and results. The Annals of Thoracic Surgery 1996;48:69–77.
5. Percinel S, Heper A, Savall I B, Ceyhan K, Enön S, Güngör A. Bronchial leiomyoma with presumptive diagnosis of lung carcinoma: a case report and review of the literature. Turkish Respiratory Journal 2008;9(1):41–5.
6. Fell CD, Tremblay A, Michaud CG, Urbanski SJ. Electrocauterization of an endobronchial leiomyoma. Journal of Bronchology 2005;12(3):181–3.
7. Gonzalez M, Vignaud JM, Clement-Duchene C, Luc A, Wild P, Bertrand O, et al. Smoking, occupational risk factors, and bronchial tumor location: a possible impact for lung cancer computed tomography scan screening. Journal of Thoracic Oncology 2012;7(January(1)):128–36.
8. Doo M, Hattori N, Yokoyama A, Onari Y, Kanehara M, Masuda K, et al. Effect of mustard gas exposure on incidence of lung cancer: a longitudinal study. American Journal of Epidemiology 2011;173(6):659–66, 15 March [Epub 18 February 2011].
9. Ghanie M, Harandi AA. Lung carcinogenicity of sulfur mustard. Clinical Lung Cancer 2010;11(January(1)):13–7.
10. Hosseini-khalili A, Haines DD, Modirian E, Soroush M, Khateri S, Joshi R, et al. Mustard gas exposure and carcinogenesis of lung. Mutation Research 2009;678(August (1)):1–6. Epub 24 June 2009.
11. Rowell M, Kehe K, Balszuweit F, Thiermann H. The chronic effects of sulfur mustard exposure. Toxicology 2009;263(1):9–11, 1 September [Epub 30 May 2009].
12. United Nations Security Council. Report of Specialists appointed by the Secretary General to investigate allegations by the Islamic Republic of Iran concerning the use of chemical weapons. New York, NY: United Nations Security Council Publication; 1986. S/16433/1986.
13. Takeshima Y, Inai K, Bennett WP, Metcalf RA, Welsh JA, Yonehara S, et al. P53 mutations in lung cancers from Japanese mustard gas workers. Carcinogenesis 1994;15(10):2075–9.
14. Agency for Toxic Substances and Disease Registry (ATSDR). Toxicological profile for sulfur mustard (Update). Atlanta, GA: U.S. Department of Health and Human Services, Public Health Service.; 2003, http://www.atsdr.cdc.gov/toxprofiles/tp49.pdf.
15. Ghanie M, Eshraghi M, Jalali AR, Aslani J. Evaluation of latent hemoptysis in Sulfur Mustard injured patients. Environmental Toxicology and Pharmacology 2006;22(September (2)):128–30.