Cultivating Online: Question Routing in a Question and Answering Community for Agriculture

1st Xiaoxue Shen
China Agricultural University
college of Information and Electrical Engineering
Beijing, China
xiaoxueshen@cau.edu.cn

2nd Liyang Gu
China Agricultural University
college of Information and Electrical Engineering
Beijing, China
guliyang@cau.edu.cn

3rd Adele Lu Jia
China Agricultural University
college of Information and Electrical Engineering
Beijing, China
ljia@cau.edu.cn

Abstract—Community-based Question and Answering (CQA) platforms are nowadays enlightening over a billion people with crowdsourced knowledge. A key design issue in CQA platforms is how to find the potential answerers and to provide the askers timely and suitable answers, i.e., the so-called question routing problem. State-of-art approaches often rely on extracting topics from the question texts. In this work, we analyze the question routing problem in a CQA system named Farm-Doctor that is exclusive for agricultural knowledge. The major challenge is that its questions contain limited textual information.

To this end, we conduct an extensive measurement and obtain the whole knowledge repository of Farm-Doctor that consists of over 690 thousand questions and over 3 million answers. To remedy the text deficiency, we model Farm-Doctor as a heterogeneous information network that incorporates rich side information and based on network representation learning models we accurately recommend for each question the users that are highly likely to answer it. With an average income of fewer than 6 dollars a day, over 300 thousand farmers in China seek online in Farm-Doctor for agricultural advices. Our method helps these less eloquent farmers with their cultivation and hopefully provides a way to improve their lives.

Index Terms—question and answering, question routing, network representation learning

I. INTRODUCTION

Community-based Question and Answering (CQA) systems have become popular knowledge sharing platforms where users get answers for the questions they raised. They have received great attention both in industry and in academia [1], [2]. One of the most important goals of CQA systems is to provide an asker with a suitable answer in the shortest possible time, i.e., the so-called question routing problem. In contrast to previous works [2]–[4] that focus on general CQA websites such as Quora and Yahoo! Answers, in this work, we analyze the question routing problem in a CQA platform named Farm-Doctor that is exclusive for agricultural knowledge.

In China, over 300 thousand rural resident, although with limited income (on average less than 6 dollars a day), managed to connect to the internet and seek online in Farm-Doctor for agricultural knowledge. Accurate question routing will provide timely advices for their cultivation and potentially improve their lives. However, question routing in Farm-Doctor faces a major challenge, i.e., the limited textual information problem. In general CQA platforms, most questions are described in natural languages and question routing is often performed through extracting topics from the rich textual information [2], [3]. In contrast, users in Farm-Doctor raise their questions mostly through pictures, along with simple questions like which is the problem? and what should I do? Due to the lack of textual information, topic models that are widely used in CQA platforms are not applicable to the case of Farm-Doctor. On the other hand, although image recognition has received great attention and success both in industry and in academia, efficient tools on identifying crop diseases and even crops are still missing. As a consequence, it is difficult to infer the topics from the questions (texts or images) alone. To solve this problem, in this work we incorporate rich side information and model CQA platforms as a heterogeneous information network (HIN), and based on network representation learning (NRL) models, we conduct, to the best of our knowledge, the first analysis of the question routing problem without using textual information.

Our analysis of Farm-Doctor mainly consists of three parts:

1. Measuring Farm-Doctor. In this work, we have obtained the whole knowledge base of Farm-Doctor. Our dataset covers all the 697,695 questions raised before April 21st, 2018, along with the information on the associated 3,179,333 answers, 438 crops and 305,359 users. The information we obtained include not only the basic question characteristics but also user activities such as who raised/answered which question at what time, which crop is tagged in which question and is interested to which user. The dataset is publicly available through requests to the first author.

2. Characterizing question and answer dynamics. We first provide an analysis on the scale and the characteristics of the question repository in Farm-Doctor. We examine the number of answers received by each question and the timeliness of the answers. We find that questions in Farm-Doctor normally attract a few answers shortly after they are raised, but as time passes by they no longer receive any attention. Then, we analyze the user activities in terms of the number questions they raised and answered. We find a highly skewed activity

3. Analyzing question routing problem. To this end, we conduct an extensive measurement and obtain the whole knowledge repository of Farm-Doctor that consists of over 690 thousand questions and over 3 million answers. To remedy the text deficiency, we model Farm-Doctor as a heterogeneous information network that incorporates rich side information and based on network representation learning models we accurately recommend suitable answerers for each question. With an average income of fewer than 6 dollars a day, over 300 thousand farmers in China seek online in Farm-Doctor for agricultural advices. Our method helps these less eloquent farmers with their cultivation and hopefully provides a way to improve their lives.

1Extension of this work is currently under review and details will be updated soon.
level of the users, with a small number of users raising and answering a large number of questions. These results all indicate the need of a proper question routing method in Farm-Doctor, so that questions will get more answers and hopefully that less active users will be encouraged to answer the questions personalized recommended to them.

Question routing. To tackle the limited textual information problem in Farm-Doctor, we build a HIN model based on a variety of relationships and we adopt heterogeneous NRL models to learn the low-dimensional embeddings of the questions, the users, and the crops. Taking the learned representations as input features, we build machine-learned classifiers to recommend timely and accurately, for the newly posted questions, the potential users that most likely will answer the questions.

The main contributions of this work are as follows:

- We obtain the whole knowledge repository of Farm-Doctor (until April 2018) that contains information of 305,359 users, 697,695 questions, and 3,179,333 answers (Section 2). Our dataset is publicly available upon request to the first author.
- We analyze the basic characteristics of the question repository and the user activities in Farm-Doctor (Section 3).
- We propose a heterogeneous graph model that incorporates a variety of relationships among users, questions and crops. Based on this model, we adopt NRL methods to, for each question, accurately predict the potential answerers (Section 4).

REFERENCES

[1] Z. Chen, C. Zhang, Z. Zhao, and D. Cai, “Question retrieval for community-based question answering via heterogeneous network integration learning,” 2016.

[2] L. Yang, M. Qiu, S. Gottipati, F. Zhu, J. Jiang, H. Sun, and Z. Chen, “Cqaran: jointly model topics and expertise in community question answering,” in *ACM International Conference on Conference on Information and Knowledge Management*, 2013, pp. 99–108.

[3] B. Li and I. King, “Routing questions to appropriate answerers in community question answering services,” in *ACM International Conference on Information and Knowledge Management*, 2010, pp. 1585–1588.

[4] B. Li, I. King, and M. R. Lyu, “Question routing in community question answering: putting category in its place,” in *ACM International Conference on Information and Knowledge Management*, 2011, pp. 2041–2044.