DOUBLE-GRADED QUANTUM SUPERPLANE

ANDREW JAMES BRUCE

Mathematics Research Unit, University of Luxembourg
Maison du Nombre, 6 avenue de la Fonte, L-4364 Esch-sur-Alzette, Luxembourg

STEVEN DUPLIJ

Center for Information Technology (ZIV), Universität Münster, D-48149 Münster, Deutschland

Abstract. A \(\mathbb{Z}_2 \times \mathbb{Z}_2 \)-graded generalisation of the quantum superplane is proposed and studied. We construct a bicovariant calculus on what we shall refer to as the double-graded quantum superplane. The commutation rules between the coordinates, their differentials and partial derivatives are explicitly given. Furthermore, we show that an extended version of the double-graded quantum superplane admits a natural Hopf \(\mathbb{Z}_2^2 \)-algebra structure.

Contents

1. Introduction 2
2. Preliminaries 3
 2.1. Hopf \(\mathbb{Z}_2^2 \)-algebras 3
 2.2. Bicovariant differential calculus 5
3. The double-graded quantum superplane \(\mathbb{R}_q(1|1) \) 6
 3.1. The double-graded quantum superplane 6
 3.2. The \(\mathbb{Z}_2^2 \)-bialgebra structure on the double-graded quantum superplane 7
 3.3. The extended double-graded quantum superplane and its Hopf algebra 10
 3.4. A bicovariant differential calculus 14
4. Concluding remarks 15
References 15

E-mail addresses: andrewjamesbruce@gmail.com, douplii@uni-muenster.de
Date: October 20, 2019.
2010 Mathematics Subject Classification. 16W55, 46L87, 58A50, 81R60.
1. Introduction

Noncommutative geometry has been playing an ever-increasing role in mathematics and physics over the past few decades (see for example [13, 21, 30]). At the scale at which quantum effects of the gravitational field are dominant, it is expected that space-time will depart from its classical smooth Riemannian structure. Upon rather general arguments, space-time is expected to be some kind of noncommutative geometry. Unfortunately, nature has so far provided few hints as to what one should expect from these generalised geometries. The fundamental objects at play here are associative algebras and differential calculi over them. Woronowicz [42] initiated the study of quantum groups and their differential calculi as the basic objects in noncommutative geometry. This approach stresses that the properties of the quantum group are key to constructing differential calculi. A different approach follows Manin’s philosophy (see [29]) that differential forms on noncommutative spaces are defined in terms of their noncommutative or quantum coordinates and the properties of quantum groups acting upon these spaces. Wess and Zumino [41] used the approach of Manin to define a covariant differential calculus on the quantum hyperplane. The first description of Manin’s quantum plane as a Hopf algebra is by Tahri [36]. For quantisations of various superspaces and their corresponding differential calculi see [10, 11, 23, 32, 35]. Nontrivial actions of quantized universal enveloping algebras on the quantum plane were considered in [22]. We remark that quantum groups (Hopf algebras), due to their tight relation with the Yang–Baxter equation, are important in conformal field theory, statistical mechanics, integrable systems, etc. Indeed, quantum groups, as a particular class of Hopf algebras, originated in the work of Drinfel’d and Jimbo (see [19]) on quantum inverse scattering. Today it is realised that many combinatorial aspects of physics have neat formulations in terms of Hopf algebras [20].

Inspired by the recently developed locally ringed space approach to \mathbb{Z}_2^n-manifolds (see [6, 7, 8, 14, 15]), we examine quantum \mathbb{Z}_2^n-planes, or as we prefer to call them, double-graded quantum superplanes. Such noncommutative geometries are the simplest examples of noncommutative \mathbb{Z}_2^n-spaces ($n \geq 2$). Much like supermanifolds, \mathbb{Z}_2^n-manifolds offer a ‘halfway house’ on one’s passage from classical geometry to noncommutative geometry. Quantising superspaces and similar offers a deeper picture here as well as very workable examples of noncommutative geometries. Indeed, ‘non-anticommuting superspaces’ have long been studied in physics because various background fields in string theory lead to noncommutative deformation of superspace. For example, R-R field backgrounds lead to $\theta - \theta$ deformations and gravitino backgrounds lead to $x - \theta$ deformations (see [16, 34]). It is probably fair to say that the mathematics literature on ‘noncommutative superspaces’ is not so developed (the reader may consult [17] for an overview).

In section 2 we define Hopf \mathbb{Z}_2^2-algebras and bicovariant differential calculi on them. There are no truly new results in this section. Indeed, the earliest reference we are aware of to the notion of a G-graded (here G is an abelian group) or coloured Hopf algebra is [31 Definition 10.5.11].

Moving on to section 3 we present the double-graded quantum superplane $\mathbb{R}_q(1|1, 1, 1) =: \mathbb{R}_q(1|1)$ as a quantisation of the \mathbb{Z}_2^2-plane with a single parameter, which we denote as q. We explore the \mathbb{Z}_2^2-bialgebra structure on such ‘spaces’. The Hopf \mathbb{Z}_2^2-algebra structure on an extended version is also given. We explicitly construct a bicovariant differential calculus on $\mathbb{R}_q(1|1)$. Moreover, we deduce all the required commutation relations between the generators of the algebra, their differentials and their partial derivatives. The
resulting structures closely resemble two copies of Manin’s quantum superplane \(\mathbb{R}_q(1|1) \) \cite{Manin}, but with subtle interesting differences due to our underlying \(\mathbb{Z}_2^2 \)-grading. This needs to be kept in mind in order to understand the appearance of various signs in the commutation relations, as well as when dealing with the tensor product – we will always use the \(\mathbb{Z}_2^2 \)-graded tensor product. We end in section \(4 \) with a few concluding remarks.

We draw the readers attention to the fact that Scheunert proved a theorem reducing “coloured” Lie algebras to either Lie algebras or Lie superalgebras \cite{Scheunert}. Similarly, Neklyudova proved an analogue of this theorem for \(\mathbb{Z}_2^2 \)-graded, graded-commutative, associative algebras \cite{Neklyudova}. Neither of these theorems rules out the study of \(\mathbb{Z}_2^n \)-manifolds does not reduce to the study of supermanifolds. Moreover, in this paper, we study a particular \(\mathbb{Z}_2^n \)-graded, associative algebra that is not graded-commutative. Neklyudova’s theorem does not directly apply here.

Conventions and Notation: We work over the field \(\mathbb{C} \) and we set \(\mathbb{Z}_2^n := \mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_2 \) (n-times). In particular, \(\mathbb{Z}_2^2 := \mathbb{Z}_2 \times \mathbb{Z}_2 \). We fix the order of elements in \(\mathbb{Z}_2^2 \) lexicographically, i.e.,

\[
\mathbb{Z}_2^2 = \{(0, 0), (0, 1), (1, 0), (1, 1)\}.
\]

Note that other choices of ordering have appeared in the literature. We will denote elements of \(\mathbb{Z}_2^2 \) by \(\gamma_i \), understanding that \(i = 0, 1, 2, 3 \) using the above fixed ordering. The abelian group \(\mathbb{Z}_2^2 \) comes with a canonical scalar product that we will denote as \(\langle\cdot, \cdot\rangle \). In particular, setting \(\gamma_i = (a, b) \) and \(\gamma_j = (a', b') \), we have \(\langle \gamma_i, \gamma_j \rangle = aa' + bb' \). The generalisation to \(\mathbb{Z}_2^n \) (\(n > 2 \)) is clear.

2. Preliminaries

2.1. Hopf \(\mathbb{Z}_2^2 \)-algebras.

Standard references for Hopf algebras and their application in noncommutative geometry include \cite{Drinfeld,etingof,Fomin,Manin}. The notion of “coloured Hopf algebras” is not well-known but has appeared in the literature over the years, see for example \cite{Brown,etingof,Fomin,manin,moeller}. Rather than define quite general structures, we will work with the specific example of coloured Hopf algebras that have an underlying \(\mathbb{Z}_2^2 \)-graded structure. The generalisation to \(\mathbb{Z}_2^n \)-graded structure can be made verbatim only making minimal changes.

Definition 2.1.1. A Hopf \(\mathbb{Z}_2^2 \)-algebra is a Hopf algebra in the category of \(\mathbb{Z}_2^2 \)-graded vector spaces.

While the above definition is complete, we will spell-out the structure of a Hopf \(\mathbb{Z}_2^2 \)-algebra piece-by-piece for clarity. Note that the tensor product of \(\mathbb{Z}_2^2 \)-algebras is the \(\mathbb{Z}_2^2 \)-graded tensor product, i.e.,

\[
(a \otimes b)(c \otimes d) = (-1)^{(\deg(b),\deg(c))} ac \otimes bd.
\]

Definition 2.1.2. A \(\mathbb{Z}_2^2 \)-algebra is a triple \((\mathcal{A}, \mu, \eta) \), where \(\mathcal{A} = \bigoplus_{\gamma_i \in \mathbb{Z}_2^2} \mathcal{A}_{\gamma_i} \) is a \(\mathbb{Z}_2^2 \)-graded vector space, \(\mu : \mathcal{A} \otimes_{\mathbb{C}} \mathcal{A} \to \mathcal{A} \) (multiplication) and \(\eta : \mathbb{C} \to \mathcal{A} \) (unit) are two (grading preserving) \(\mathbb{Z}_2^2 \)-graded space morphisms that satisfy

\[
\mu \circ (\mu \otimes \text{Id}_A) = \mu \circ (\text{Id}_A \otimes \mu) \quad \text{(Associativity)} \tag{2.1.1}
\]

\[
\mu \circ \eta \otimes \text{Id}_A = \mu \circ \text{Id}_A \circ \eta \quad \text{(Unity)} \tag{2.1.2}
\]
A map \(\phi : A \rightarrow B \) is a \(\mathbb{Z}_2^2 \)-algebra morphism if it is a (grading preserving) \(\mathbb{Z}_2^2 \)-graded space morphism that satisfies
\[
\phi \circ \mu_A = \mu_B \circ \phi \otimes \phi, \quad \text{and} \quad \phi \circ \eta_A = \eta_B. \tag{2.1.3}
\]

Definition 2.1.3. A \(\mathbb{Z}_2^2 \)-coalgebra is a triple \((C, \Delta, \epsilon) \), where \(C \) is a \(\mathbb{Z}_2^2 \)-graded vector space, \(\Delta : C \rightarrow C \otimes C \) (coproduct) and \(\epsilon : C \rightarrow \mathbb{C} \) (counit) are two (grading preserving) \(\mathbb{Z}_2^2 \)-graded space morphisms that satisfy
\[
\begin{align*}
(\Delta \otimes \text{Id}_C) \circ \Delta &= (\text{Id}_C \otimes \Delta) \circ \Delta \quad \text{(Coassociativity)} \tag{2.1.4} \\
(\epsilon \otimes \text{Id}_C) \circ \Delta &= (\text{Id}_C \otimes \epsilon) \circ \Delta = \text{Id}_C \quad \text{(Counity)} \tag{2.1.5}
\end{align*}
\]
where we have used the natural isomorphisms \(C \otimes C \cong C \cong C \otimes C \) in the last equality of counity condition. A map \(\phi : C \rightarrow C \) is a \(\mathbb{Z}_2^2 \)-coalgebra morphism if it is a (grading preserving) \(\mathbb{Z}_2^2 \)-graded space morphism that satisfies
\[
\phi \otimes \phi \circ \Delta_C = \Delta_D \circ \phi, \quad \text{and} \quad \epsilon_D \circ \phi = \epsilon_C. \tag{2.1.6}
\]

Definition 2.1.4. A \(\mathbb{Z}_2^2 \)-bialgebra is a tuple \((A, \mu, \eta, \Delta, \epsilon) \) where \((A, \mu, \eta) \) is a \(\mathbb{Z}_2^2 \)-algebra and \((A, \Delta, \epsilon) \) is a \(\mathbb{Z}_2^2 \)-coalgebra such that the following equivalent compatibility conditions hold
\[
\begin{align*}
(1) \quad & \Delta : A \rightarrow A \otimes A \text{ and } \epsilon : A \rightarrow \mathbb{C} \text{ are } \mathbb{Z}_2^2 \text{-algebras morphisms}, \\
(2) \quad & \mu : A \times A \rightarrow A \text{ and } \eta : \mathbb{C} \rightarrow A \text{ are } \mathbb{Z}_2^2 \text{-coalgebra morphisms}.
\end{align*}
\]

A morphism of \(\mathbb{Z}_2^2 \)-bialgebras is a (grading preserving) \(\mathbb{Z}_2^2 \)-graded space morphism that is both a morphism of \(\mathbb{Z}_2^2 \)-algebras and \(\mathbb{Z}_2^2 \)-coalgebras.

Proposition 2.1.5. Let \((A, \mu, \eta, \Delta, \epsilon) \) be a \(\mathbb{Z}_2^2 \)-bialgebra with unit element \(\eta(1) = 1 \). Then \(\epsilon(A_{\gamma_i}) = 0 \) for all \(1 \leq i \leq 3 \), and \(\epsilon(1) = 1 \).

Proof. As \(\epsilon : A \rightarrow \mathbb{C} \) is a grading preserving map it is clear that \(\epsilon(A_{\gamma_i}) = 0 \) with the exception of \(i = 0 \), i.e., \(\epsilon(A_{(0,0)}) \) cannot be zero as \(\epsilon \) is required to be a morphism of (unital) algebras, thus the unit in \(A \) must be sent to the unit in \(\mathbb{C} \), i.e., the number 1. \(\square \)

Definition 2.1.6. Let \(A \) be a \(\mathbb{Z}_2^2 \)-bialgebra. Then \(a \in A_{(0,0)} \) is said to be a group-like element if \(\Delta(a) = a \otimes a \). An element \(b \in A \) is said to be a primitive element if \(\Delta(b) = b \otimes 1 + 1 \otimes b \).

Proposition 2.1.7. The set of primitive elements of a \(\mathbb{Z}_2^2 \)-bialgebra form a \(\mathbb{Z}_2^2 \)-Lie algebra under the \(\mathbb{Z}_2^2 \)-graded commutator.

Proof. As the coproduct is a linear map, it is sufficient to consider homogeneous primitive elements and show that they are closed under the \(\mathbb{Z}_2^2 \)-graded commutator. A direct calculation shows that
\[
\Delta([a, b]) = \Delta(ab - (-1)^{\deg(a) \cdot \deg(b)} ba)
\]
\[
= (a \otimes 1 + 1 \otimes a)(b \otimes 1 + 1 \otimes b) - (-1)^{\deg(a) \cdot \deg(b)} (b \otimes 1 + 1 \otimes b)(a \otimes 1 + 1 \otimes a)
\]
\[
= ab \otimes 1 + a \otimes b + (-1)^{\deg(a) \cdot \deg(b)} b \otimes a + 1 \otimes ab
\]
\[
- (-1)^{\deg(a) \cdot \deg(b)} (ba \otimes 1 + b \otimes a + (-1)^{\deg(a) \cdot \deg(b)} a \otimes b + 1 \otimes ba)
\]
\[
= [a, b] \otimes 1 + 1 \otimes [a, b]. \tag{2.1.7}
\]
Thus, the set of primitive elements is closed under the \(\mathbb{Z}_2^2 \)-graded commutator. \(\square \)
Definition 2.1.8. A Hopf \(\mathbb{Z}_2^2 \)-algebra is a \(\mathbb{Z}_2^2 \)-bialgebra admitting an antipode, that is a \(\mathbb{Z}_2^2 \)-algebra antihomomorphism \(S : \mathcal{A} \rightarrow \mathcal{A} \), such that \(S(ab) = (-1)^{(\deg(a), \deg(b))}S(b)S(a) \), that satisfies
\[
\mu \circ (S \otimes \text{Id}_\mathcal{A}) \circ \Delta = \mu \circ (\text{Id}_\mathcal{A} \otimes S) \circ \Delta = \eta \circ \epsilon.
\]
A Hopf \(\mathbb{Z}_2^2 \)-algebra is thus a tuple \((\mathcal{A}, \mu, \eta, \Delta, \epsilon, S) \).

In practice and were no confusion can arise, we will denote a Hopf \(\mathbb{Z}_2^2 \)-algebra \((\mathcal{A}, \mu, \eta, \Delta, \epsilon, S) \) simply as \(\mathcal{A} \), understanding all required structure maps as being implied.

Let us denote the interchange map as \(\sigma : \mathcal{A} \otimes \mathcal{A} \rightarrow \mathcal{A} \otimes \mathcal{A} \), which is defined as
\[
\sigma(a \otimes b) = (-1)^{(\deg(a), \deg(b))} b \otimes a.
\]

Definition 2.1.9. A Hopf \(\mathbb{Z}_2^2 \)-algebra \(\mathcal{A} \) is said to be commutative if it is \(\mathbb{Z}_2^2 \)-commutative as an algebra, i.e., \(\mu \circ \sigma = \mu \). Similarly, a Hopf \(\mathbb{Z}_2^2 \)-algebra is said to be cocommutative if it is \(\mathbb{Z}_2^2 \)-cocommutative as a coalgebra, i.e. \(\sigma \circ \Delta = \Delta \).

Definition 2.1.10. A Hopf \(\mathbb{Z}_2^2 \)-algebra \(\mathcal{A} \) is said to be involutive if the antipode satisfies \(S^2 = \text{Id}_\mathcal{A} \).

2.2. Bicovariant differential calculus. In the following we will use the canonical embedding \(\mathbb{Z}_2^2 \hookrightarrow \mathbb{Z}_2^2 \) given by \((a_1, a_2) \mapsto (0, a_1, a_2) \), in order to consider any \(\mathbb{Z}_2^2 \)-algebra as a \(\mathbb{Z}_2^2 \)-algebra.

Definition 2.2.1. Let \(\mathcal{A} \) be a Hopf \(\mathbb{Z}_2^2 \)-algebra and let \(\Omega^p(\mathcal{A}) \) be the \(\mathcal{A} \)-bimodule of \(p \)-forms. A first-order differential calculus on \(\mathcal{A} \) is the \(\mathbb{Z}_2^2 \)-graded algebra \(\Omega(\mathcal{A}) = \oplus_{p=0}^{\infty} \Omega^p(\mathcal{A}) \) such that \(\Omega_{(0,0)}(\mathcal{A}) = \Omega^0(\mathcal{A}) \cong \mathcal{A} \), and \(\Omega_{(p,q)}(\mathcal{A}) = \Omega^p(\mathcal{A}) \), together with a linear map, the de Rham differential, \(d : \Omega^p(\mathcal{A}) \rightarrow \Omega^{p+1}(\mathcal{A}) \) of \(\mathbb{Z}_2^2 \)-degree \((1,0,0)\) that satisfies
\[
\begin{align*}
(1) & \quad d^2 = 0, \text{ and}, \\
(2) & \quad d(\alpha \beta) = (d\alpha)\beta + (-1)^p \alpha d\beta,
\end{align*}
\]
where \(\alpha \in \Omega^p(\mathcal{A}) \) and \(\beta \in \Omega(\mathcal{A}) \).

Remark 2.2.2. The notion of a first-order differential calculi on a quantum groups can be traced back to Woronowicz [42]. Furthermore, note that the above definition with regards to the grading is very similar to the conventions of Deligne [18] for differential forms on supermanifolds. That is, we use the homological degree and the \(\mathbb{Z}_2^2 \)-degree to form a \(\mathbb{Z}_2^3 \)-degree on the differential calculus.

Definition 2.2.3. Let \(\mathcal{A} \) be a Hopf \(\mathbb{Z}_2^2 \)-algebra and let \((\Omega(\mathcal{A}), d) \) be a differential calculus over \(\mathcal{A} \). Then \((\Omega(\mathcal{A}), d) \) is said to be
\[
\begin{align*}
(i) & \quad \text{left-covariant} \quad \text{if there exists a linear map} \quad \Delta_L : \Omega(\mathcal{A}) \rightarrow \mathcal{A} \otimes \Omega(\mathcal{A}), \text{ called a left coaction}, \\
& \quad \text{such that} \\
& \quad \Delta_L(ab) = \Delta(a)(\text{Id}_\mathcal{A} \otimes d)\Delta(b),
\end{align*}
\]
for all \(a, b \in \mathcal{A} \).

\[
\begin{align*}
(ii) & \quad \text{right-covariant} \quad \text{if there exists a linear map} \quad \Delta_R : \Omega(\mathcal{A}) \rightarrow \Omega(\mathcal{A}) \otimes \mathcal{A}, \text{ called a right coaction}, \\
& \quad \text{such that} \\
& \quad \Delta_R(ab) = \Delta(a)(d \otimes \text{Id}_\mathcal{A})\Delta(b),
\end{align*}
\]
for all \(a, b \in \mathcal{A} \).

Furthermore, a left-covariant and right-covariant differential calculus \((\Omega(\mathcal{A}), d)\) is said to be bicovariant when
\[
(\Delta_L \otimes \text{Id}_\mathcal{A}) \circ \Delta_R = (\text{Id}_\mathcal{A} \otimes \Delta_R) \circ \Delta_L.
\]
The bicovariance condition can be restated as the following conditions:

\[
\Delta_L(a \, da + db \, b) = \Delta(a) \Delta_L(da) + \Delta_L(db) \Delta(b),
\]
\[
\Delta_R(a \, da + db \, b) = \Delta(a) \Delta_R(da) + \Delta_R(db) \Delta(b).
\] (2.2.1)

Remark 2.2.4. It is clear that we do not actually need a Hopf algebra structure to define left-covariance or right-covariance, but rather just the structure of a bialgebra. That is, the antipode plays no rôle here.

3. The double-graded quantum superplane \(\mathbb{R}_q(1|1)\)

3.1. The double-graded quantum superplane. Consider the algebra of polynomials with \(\mathbb{Z}^2\)-graded generators

\[
\left(\underbrace{x}_{(0,0)}, \underbrace{\xi}_{(0,1)}, \underbrace{\theta}_{(1,0)}, \underbrace{z}_{(1,1)}\right),
\] (3.1.1)

subject to the relations:

\[
x \xi - q \, \xi \, x = 0, \quad (3.1.2a) \quad x \theta - q \, \theta \, x = 0, \quad (3.1.2b)
\]
\[
xz - z \, x = 0, \quad (3.1.2c) \quad \xi^2 = 0, \quad (3.1.2d)
\]
\[
\theta^2 = 0, \quad (3.1.2e) \quad \xi \theta - \theta \xi = 0, \quad (3.1.2f)
\]
\[
\xi z + q^{-1} z \xi = 0, \quad (3.1.2g) \quad \theta z + q^{-1} z \theta = 0, \quad (3.1.2h)
\]

where \(q \in \mathbb{C}^\ast\) and is not a root of unity. Note that setting \(q = 1\) reduces the relations to \(\mathbb{Z}^2\)-commutativity (see for example [14]).

Definition 3.1.1. The \(\mathbb{Z}^2\)-graded, associative, unital algebra

\[
\mathcal{A}_q(x, \xi, \theta, z) := \mathbb{C}[x, \xi, \theta, z]/J,
\]

where \(J\) is the ideal generated by the relations (3.1.2a) to (3.1.2h) is the algebra of polynomials on the double-graded quantum superplane \(\mathbb{R}_q(1|1)\).

The relations (3.1.2a) to (3.1.2h) should, of course, be compared with the relations that define Manin’s superplane \(\mathbb{R}_q(1|2)\) (see [29]). Manin considers the generators \(\{x', \xi', \theta'\}\) of \(\mathbb{Z}_2\)-degree 0, 1 and 1, respectively, all subject to the following relations:

\[
x' \xi' - q \, \xi' \, x' = 0, \quad (3.1.3a)
\]
\[
x' \theta' - q \, \theta' \, x' = 0, \quad (3.1.3b)
\]
\[
\xi' \theta' + q^{-1} \theta' \xi' = 0, \quad (3.1.3c)
\]
\[
\xi'^2 = 0, \quad (3.1.3d)
\]
\[
\theta'^2 = 0. \quad (3.1.3e)
\]

In particular, notice that (3.1.2d) and (3.1.2e) show that \(\xi\) and \(\theta\) are nilpotent, but (3.1.2f) means that they mutually commute rather than anticommute – this is, neglecting the factor of \(q^{-1}\), the opposite of (3.1.3c). That is, they are ‘self-fermions’ but are ‘relative-bosons’. Moreover, \(z\) is not nilpotent, however it satisfies a twisted anticommutation relation with both \(\xi\) and \(\theta\), see (3.1.2g) and (3.1.2h), and compare with (3.1.3c). Thus, \(z\) is a ‘self-boson’ but is a ‘relative-fermion’ with respect to \(\xi\) and \(\theta\). The language here is borrowed from the theory of Green–Volkov parastatistics (see [26, 39]). Many of the
following constructions and mathematical results will closely parallel than of Manin's superplane, but with subtle sign differences due to the novel \(\mathbb{Z}_2 \)-grading we employ.

For brevity, we will set \(A_q := \mathcal{A}_q(x, \xi, \theta, z) \). Let \(A_{q,k} (k \in \mathbb{N}) \) be the homogeneous component of \(\mathcal{A}_q \) spanned by monomials of the form

\[
x^m \xi^\alpha \theta^\beta z^n,
\]

i.e., we use a PBW-like basis, where \(m + \alpha + \beta + n = k \). Note that \(m, n \in \mathbb{N} \), while due to the nilpotent nature of \(\xi \) and \(\theta \), \(\alpha, \beta \in \{0, 1\} \).

3.2. The \(\mathbb{Z}_2^2 \)-bialgebra structure on the double-graded quantum superplane. As well as a \(\mathbb{Z}_2^2 \)-algebra structure, we naturally have a \(\mathbb{Z}_2^2 \)-bialgebra structure on the double-graded quantum superplane.

Proposition 3.2.1. The following coproduct and counit provide \(\mathcal{A}_q(x, \xi, \theta, z) \) with the structure of a \(\mathbb{Z}_2^2 \)-bialgebra (see Definition 2.1.3 and Proposition 2.1.5):

\[
\Delta(x) = x \otimes x, \tag{3.2.1}
\]

\[
\Delta(\xi) = x \otimes \xi + \xi \otimes x, \tag{3.2.2}
\]

\[
\Delta(\theta) = x \otimes \theta + \theta \otimes x, \tag{3.2.3}
\]

\[
\Delta(z) = x \otimes z + z \otimes x, \tag{3.2.4}
\]

\[
\epsilon(x) = 1, \tag{3.2.5}
\]

\[
\epsilon(\xi) = \epsilon(\theta) = \epsilon(z) = 0. \tag{3.2.6}
\]

Proof. We need to show that the above defined coproduct and counit do indeed define a \(\mathbb{Z}_2^2 \)-coalgebra (see Definition 2.1.3). It is sufficient to check these condition on each generator separately. First, we check the counit condition:

(i) \((\epsilon \otimes \text{Id})\Delta(x) = \epsilon(x) \otimes x = 1 \otimes x \simeq x, \)

\((\text{Id} \otimes \epsilon)\Delta(x) = x \otimes \epsilon(x) = x \otimes 1 \simeq x. \)

(ii) \((\epsilon \otimes \text{Id})\Delta(\xi) = \epsilon(x) \otimes \xi = 1 \otimes \xi \simeq \xi, \)

\((\text{Id} \otimes \epsilon)\Delta(\xi) = \xi \otimes \epsilon(x) = \xi \otimes 1 \simeq \xi. \)

(iii) The same calculation as in part (ii) shows that the counit condition holds for \(\theta \) and \(z \).

Secondly, we check the coassociativity:

(iv) \((\Delta \otimes \text{Id})\Delta(x) = x \otimes x \otimes x, \)

\((\text{Id} \otimes \Delta)\Delta(x) = x \otimes x \otimes x. \)

(v) \((\Delta \otimes \text{Id})\Delta(\xi) = (\Delta \otimes \text{Id})(x \otimes \xi + \xi \otimes x) = x \otimes x \otimes \xi + x \otimes \xi \otimes x + \xi \otimes x \otimes x, \)

\((\text{Id} \otimes \Delta)\Delta(\xi) = (\text{Id} \otimes \Delta)(x \otimes \xi + \xi \otimes x) = x \otimes x \otimes \xi + x \otimes \xi \otimes x + \xi \otimes x \otimes x. \)

(vi) The same calculation as in part (v) shows that the coassociativity condition holds for \(\theta \) and \(z \).

Note that we have a cocommutative \(\mathbb{Z}_2^2 \)-coalgebra (see Definition 2.1.9).

Thirdly, we check that the algebra and coalgebra structure are compatible. We do this by showing that the coproduct is an algebra morphism (see Definition 2.1.3). This requires direct calculations:
(vii) \[
\Delta(x)\Delta(\xi) = (x \otimes x)(x \otimes \xi + \xi \otimes x) \\
= x^2 \otimes x\xi + x\xi \otimes x^2 \\
= q(x^2 \otimes \xi x + \xi x \otimes x^2) \\
= q(x \otimes \xi + \xi \otimes x)(x \otimes x) \\
= q\Delta(\xi)\Delta(x).
\]

(viii) An identical calculation to part (vii) upon replacing \(\xi\) with \(\theta\) shows that
\[
\Delta(x)\Delta(\theta) = q\Delta(\theta)\Delta(x).
\]

(ix) \[
\Delta(x)\Delta(z) = (x \otimes x)(x \otimes z + z \otimes x) \\
= x^2 \otimes xz + xz \otimes x^2 \\
= x^2 \otimes zx + zx \otimes x^2 \\
= (x \otimes z + z \otimes x)(x \otimes x) \\
= \Delta(z)\Delta(x).
\]

(x) \(\Delta(\xi)\Delta(\xi) = 0\) is obviously satisfied. Direct calculation show this to be consistent.
\[
\Delta(\xi)\Delta(\xi) = (x \otimes \xi + \xi \otimes x)(x \otimes \xi + \xi \otimes x) \\
= -x\xi \otimes \xi x + \xi x \otimes x\xi \\
= -qq^{-1}\xi x \otimes x\xi + \xi x \otimes x\xi = 0.
\]

(xi) \(\Delta(\theta)\Delta(\theta) = 0\) follows in the same way as in part (x).

(xii) \[
\Delta(\xi)\Delta(\theta) = (x \otimes \xi + \xi \otimes x)(x \otimes \theta + \theta \otimes x) \\
= x^2 \otimes \xi\theta + x\theta \otimes \xi x + \xi x \otimes x\theta + \xi\theta \otimes x^2 \\
= x^2 \otimes \theta\xi + \theta x \otimes x\xi + x\xi \otimes \theta x + \theta\xi \otimes x^2 \\
= (x \otimes \theta + \theta \otimes x)(x \otimes \xi + \xi \otimes x) \\
= \Delta(\theta)\Delta(\xi).
\]

(xiii) \[
\Delta(\xi)\Delta(z) = (x \otimes \xi + \xi \otimes x)(x \otimes z + z \otimes x) \\
= x^2 \otimes \xi z - xz \otimes \xi x + \xi x \otimes xz + \xi z \otimes x^2 \\
= -q^{-1}(x^2 \otimes z\xi + z\xi \otimes x + x\xi \otimes z\xi + z\xi \otimes x^2) \\
= -q^{-1}(x \otimes z + z \otimes x)(x \otimes \xi + \xi \otimes x) \\
= -q^{-1}\Delta(z)\Delta(\xi).
\]
The identical calculation to part (viii) upon replacing ξ with θ shows that
\[\Delta(\theta)\Delta(z) = -q^{-1}\Delta(z)\Delta(\theta). \] (3.2.7)

This completes the proof. \(\Box\)

3.3. The extended double-graded quantum superplane and its Hopf algebra.

In order to build a \mathbb{Z}_2^2-Hopf algebra structure (see Definition 2.1.8), we now extend the algebra of polynomials on the double-graded quantum superplane to include the formal inverse of x, which we denote as x^{-1}, i.e., $xx^{-1} = x^{-1}x = 1$. Clearly, the \mathbb{Z}_2^2-degree of x^{-1} is $(0,0)$. It is easy to deduce the following commutation rules:

\[x^{-1}\xi - q^{-1}\xi x^{-1} = 0, \] (3.3.1a)
\[x^{-1}\theta - q^{-1}\theta x^{-1} = 0, \] (3.3.1b)
\[x^{-1}z - zx^{-1} = 0. \] (3.3.1c)

Definition 3.3.1. The \mathbb{Z}_2^2-graded, associative, unital algebra
\[A_q(x, x^{-1}, \xi, \theta, z) := \mathbb{C}[x, x^{-1}, \xi, \theta, z]/\mathcal{J}, \]
where \mathcal{J} is the ideal generated by the relations (3.1.2a) to (3.1.2h) and (3.3.1a) to (3.3.1c) is the algebra of polynomials on the extended double-graded quantum superplane $\mathcal{R}_q(1\mid 1)$.

As the coproduct should be an algebra morphism we deduce that $\Delta(x^{-1}) = \Delta(x)^{-1}$. Thus,
\[\Delta(x^{-1}) = x^{-1} \otimes x^{-1}. \] (3.3.2)

Similarly, as the counit should be an algebra morphism we have that
\[\epsilon(x^{-1}) = 1. \] (3.3.3)

It is clear that upon appending x^{-1} to the \mathbb{Z}_2^2-bialgebra $A_q(x, \xi, \theta, z)$ that we obtain another \mathbb{Z}_2^2-bialgebra. The counit and coassociativity are obvious and the compatibility condition between the algebra and coalgebra follows from the proof of Proposition 3.2.1 upon $x \mapsto x^{-1}$ and $q \mapsto q^{-1}$.

Theorem 3.3.2. The \mathbb{Z}_2^2-bialgebra $A_q(x, x^{-1}, \xi, \theta, z)$ can be made into a (cocommutative and involutive) \mathbb{Z}_2^2-Hopf algebra by defining an antipode in the following way:

\[S(x) = x^{-1}, \] (3.3.4a)
\[S(x^{-1}) = x, \] (3.3.4b)
\[S(\xi) = -x^{-1}\xi x^{-1}, \] (3.3.4c)
\[S(\theta) = -x^{-1}\theta x^{-1}, \] (3.3.4d)
\[S(z) = -x^{-1}zx^{-1}. \] (3.3.4e)

Proof. We need to check that the antipode satisfies the condition specified in Definition 2.1.8. It suffices to check this on each generator separately.

(i) $\mu(S \otimes \text{Id})\Delta(x) = \mu(x^{-1} \otimes x) = 1 = \mu(x \otimes x^{-1}) = \mu(\text{Id} \otimes S)\Delta(x)$.

(ii) $\mu(S \otimes \text{Id})\Delta(\xi) = \mu(S(x) \otimes \xi + S(\xi) \otimes x) = \mu(x^{-1} \otimes \xi - x^{-1}\xi x^{-1} \otimes x) = 0.$
\[\mu(\text{Id} \otimes S)\Delta(\xi) = \mu(x \otimes S(\xi) + \xi \otimes S(x)) = \mu(x \otimes (-x^{-1}\xi x^{-1}) + \xi \otimes x^{-1}) = 0. \]
(iii) An identical calculation to part (ii) shows that the required condition also holds for \(\theta \) and \(z \).

It is clear that the coproduct is cocommutative and a simple calculation shows that \(S^2 = \text{Id} \) (see Definition 2.1.9 and Definition 2.1.10). \(\square \)

3.4. A bicovariant differential calculus. We build the differential calculus (see Definition 2.2.1) on the double-graded quantum superplane \(\mathbb{R}_q(1|1) \) (see Remark 2.2.4) using the following basis of one-forms

\[
\left(\frac{dx}{(1,0,0)}, \frac{d\xi}{(1,0,1)}, \frac{d\theta}{(1,1,0)}, \frac{dz}{(1,1,1)} \right) \tag{3.4.1}
\]

The left-coaction and the right-coaction are using Definition 2.2.3 as

\[
\Delta_L(dx) = x \otimes dx, \tag{3.4.2a}
\]
\[
\Delta_L(d\xi) = x \otimes d\xi + \xi \otimes dx, \tag{3.4.2b}
\]
\[
\Delta_L(d\theta) = x \otimes d\theta + \theta \otimes dx, \tag{3.4.2c}
\]
\[
\Delta_L(dz) = x \otimes dz + z \otimes dx, \tag{3.4.2d}
\]

and

\[
\Delta_R(dx) = dx \otimes x, \tag{3.4.3a}
\]
\[
\Delta_R(d\xi) = dx \otimes \xi + d\xi \otimes x, \tag{3.4.3b}
\]
\[
\Delta_R(d\theta) = dx \otimes \theta + d\theta \otimes x, \tag{3.4.3c}
\]
\[
\Delta_R(dz) = dx \otimes z + dz \otimes x. \tag{3.4.3d}
\]

Proposition 3.4.1. The differential calculus on the double-graded quantum superplane \(\mathbb{R}_q(1|1) \), as defined above, is a bicovariant differential calculus.

Proof. We directly check the bicovariance condition

\[
(\Delta_L \otimes \text{Id}) \circ \Delta_R = (\text{Id} \otimes \Delta_R) \circ \Delta_L,
\]

via explicit calculation. It is sufficient to check this on each generator of the one-forms.

(i) Consider \(dx \):

\[
(\Delta_L \otimes \text{Id})\Delta_R(dx) = (\Delta_L \otimes \text{Id})(dx \otimes x) = x \otimes dx \otimes x,
\]
\[
(\text{Id} \otimes \Delta_R)\Delta_L(dx) = (\text{Id} \otimes \Delta_R)(x \otimes dx) = x \otimes dx \otimes x.
\]

(ii) Next consider \(d\xi \):

\[
(\Delta_L \otimes \text{Id})\Delta_R(d\xi) = (\Delta_L \otimes \text{Id})(dx \otimes \xi + d\xi \otimes x) = x \otimes dx \otimes \xi + x \otimes d\xi \otimes x + \xi \otimes dx \otimes x,
\]
\[
(\text{Id} \otimes \Delta_R)\Delta_L(d\xi) = (\text{Id} \otimes \Delta_R)(x \otimes d\xi + \xi \otimes dx) = x \otimes dx \otimes \xi + x \otimes d\xi \otimes x + \xi \otimes dx \otimes x.
\]

(iii) The calculations for \(d\theta, dz \) are almost identical to that of part (ii) and so we omit them. \(\square \)
We now proceed to find a consistent set of commutation rules on this differential calculi.
By taking the de Rham derivative of the commutation rules for \((x, \xi, \theta, z)\) we arrive at the following.

Lemma 3.4.2. Any commutation rules between the coordinates/generators and their differentials must satisfy the following:

\[
\begin{align*}
(x \, d\xi - q \, d\xi \, x) - q(x \, d\xi - q^{-1} \, dx \, \xi) &= 0, \quad \text{(3.4.4a)} \\
(x \, d\theta - q \, d\theta \, x) - q(\theta \, dx - q^{-1} \, dx \, \theta) &= 0, \quad \text{(3.4.4b)} \\
(x \, dz - dz \, x) - (z \, dx - dx \, z) &= 0, \quad \text{(3.4.4c)} \\
(\xi \, d\theta - d\theta \, \xi) - (\theta \, d\xi - d\xi \, \theta) &= 0, \quad \text{(3.4.4d)} \\
(\xi \, dz + q^{-1} \, dz \, \xi) + q^{-1}(z \, d\xi + q \, d\xi \, z) &= 0, \quad \text{(3.4.4e)} \\
(\theta \, dz + q^{-1} \, dz \, \theta) + q^{-1}(z \, d\theta + q \, d\theta \, z) &= 0. \quad \text{(3.4.4f)}
\end{align*}
\]

Theorem 3.4.3. A set of valid commutation rules (in the sense of Lemma 3.4.2 and is consistent with the bi-covariance) that is linear in \((x, \xi, \theta, z)\) is the following:

\[
\begin{align*}
x \, dx &= dx \, x, \quad \text{(3.4.5a)} & \quad x \, d\xi &= q \, d\xi \, x, \quad \text{(3.4.5b)} \\
x \, d\theta &= q \, d\theta \, x, \quad \text{(3.4.5c)} & \quad x \, dz &= dz \, x, \quad \text{(3.4.5d)} \\
\xi \, dx &= q^{-1} \, dx \, \xi, \quad \text{(3.4.5e)} & \quad \xi \, d\xi &= -d\xi \, \xi, \quad \text{(3.4.5f)} \\
\xi \, d\theta &= d\theta \, \xi, \quad \text{(3.4.5g)} & \quad \xi \, dz &= -q^{-1} \, dz \, \xi, \quad \text{(3.4.5h)} \\
\theta \, dx &= q^{-1} \, dx \, \theta, \quad \text{(3.4.5i)} & \quad \theta \, d\xi &= d\xi \, \theta, \quad \text{(3.4.5j)} \\
\theta \, d\theta &= -d\theta \, \theta, \quad \text{(3.4.5k)} & \quad \theta \, dz &= -q^{-1} \, dz \, \theta, \quad \text{(3.4.5l)} \\
z \, dx &= dx \, z, \quad \text{(3.4.5m)} & \quad z \, d\xi &= -q \, d\xi \, z, \quad \text{(3.4.5n)} \\
z \, d\theta &= -q \, d\theta \, z, \quad \text{(3.4.5o)} & \quad z \, dz &= dz \, z \quad \text{(3.4.5p)}.
\end{align*}
\]

Proof. It is a simple observation that the above relations satisfy the conditions of Lemma 3.4.2. It remains to check that these relations are consistent with the bicovariance (see Proposition 3.4.1). This is a series of direct computations. For instance, consider the commutation rule (3.4.5b).

\[
\begin{align*}
\Delta_L(x \, d\xi - q \, d\xi \, x) &= \Delta(x)\Delta_L(d\xi) - q \, \Delta_L(d)\Delta(x) \\
&= (x \otimes x)(x \otimes d\xi + \xi \otimes dx) - q \, (x \otimes d\xi + \xi \otimes dx)(x \otimes x) \\
&= x^2 \otimes xd\xi + x\xi \otimes xdx - q \, x^2 \otimes d\xi \otimes dx - q \, \xi x \otimes dx \\
&= 0.
\end{align*}
\]

Thus, (3.4.5b) respects the left-covariance.

\[
\begin{align*}
\Delta_R(x \, d\xi - q \, d\xi \, x) &= \Delta(x)\Delta_R(d\xi) - q \, \Delta_R(d)\Delta(x) \\
&= (x \otimes x)(dx \otimes \xi + d\xi \otimes x) - q \, (dx \otimes \xi + d\xi \otimes x)(x \otimes x) \\
&= xdx \otimes x\xi + x\xi \otimes x^2 - q \, dx x \otimes \xi x - q \, d\xi \otimes x^2 \\
&= 0.
\end{align*}
\]
And so we observe that (3.4.5b) also respects the right-covariance and so bicovariance is established. All the other commutation relations can be shown to respect the bicovariance via almost identical calculation and so we omit details. □

In order to construct higher order differential forms we need to deduce the commutation rules between the differentials. This easily achieved by applying the de Rham differential to Theorem 3.4.3.

Theorem 3.4.4. The (non-trivial) commutation rules between the differentials are:

\[
\begin{align*}
 dx \, d\xi &= -q \, d\xi \, dx, \\
 dx \, d\theta &= -q \, d\theta \, dx, \\
 dx \, dz &= -dz \, dx, \\
 d\xi \, d\theta &= -d\theta \, d\xi, \\
 d\xi \, dz &= q^{-1} \, dz \, d\xi, \\
 d\theta \, dz &= q^{-1} \, dz \, d\theta.
\end{align*}
\] (3.4.6)

Moreover, \((dx)^2 = (dz)^2 = 0\).

Proof. Direct computation gives the mixed commutation rules and so we omit details. The nilpotency of \(dx\) and \(dz\) directly follows as, for example, \(d(x \, dx) = dx \, dx\), but then using the fact that \(x\) and \(dx\) strictly commute \(d(x \, dx) = d(dx \, x) = -dx \, dx\). Exactly the same reasoning establishes that \(dz\) is also nilpotent. □

Remark 3.4.5. Unsurprisingly, just as for supermanifolds and \(\mathbb{Z}_2^n\)-manifolds, there are no top-forms on \(\mathbb{R}_q^{1|1}\) due to the fact that \(d\xi\) and \(d\theta\) are not nilpotent. To see this one has to observe that, for instance, \(\xi\) and \(d\xi\) strictly anticommute. This extra minus sign does not allow us to conclude that \(d\xi\) is nilpotent.

We now deduce the commutation relations between the partial derivatives \(\{\partial_x, \partial_\xi, \partial_\theta, \partial_z\}\) and the generators/coordinates on the double-graded quantum superplane. This is done by careful examination of the de Rham differential, which is of the form

\[
d = dx \partial_x + d\xi \partial_\xi + d\theta \partial_\theta + dz \partial_z. \tag{3.4.7}
\]
Theorem 3.4.6. The commutation rules between partial derivatives and the coordinates are:
\[
\begin{align*}
\partial_x x &= 1 + x \partial_x, & (3.4.8a) \\
\partial_\theta x &= q x \partial_\theta, & (3.4.8c) \\
\partial_x \xi &= q^{-1} \xi \partial_x, & (3.4.8e) \\
\partial_\theta \xi &= \xi \partial_\theta, & (3.4.8g) \\
\partial_x \theta &= q^{-1} \theta \partial_x, & (3.4.8i) \\
\partial_\theta \theta &= 1 - \theta \partial_\theta, & (3.4.8k) \\
\partial_x z &= z \partial_x, & (3.4.8m) \\
\partial_\theta z &= -q z \partial_\theta, & (3.4.8o)
\end{align*}
\]

Proof. Consider \(xf\), where \(f \in A_q\) is arbitrary. Directly from the definition of the de Rham differential, the fact that it satisfies the Leibniz rule and the commutation rules of Theorem 3.4.4 see that
\[
d(xf) = dx \partial_x(f(xf)) + d\xi \partial_\xi(f(xf)) + d\theta \partial_\theta(f(xf)) + dz \partial_z(f(xf))
\]
\[
= df + x(dx \partial_x f + d\xi \partial_\xi f + d\theta \partial_\theta f + dz \partial_z f)
\]
\[
= df + dx x \partial_x f + d\xi qx \partial_\xi f + d\theta qx \partial_\theta f + dz x \partial_z f.
\]

Equating the terms in the differentials produces the first block of identities, i.e., (3.4.8a) to (3.4.8d). Via an almost identical calculations by considering \(\xi f\) one obtains (3.4.8e) to (3.4.8h). Similarly, by considering \(\theta f\) one obtains (3.4.8i) to (3.4.8l) and \(zf\) one obtains (3.4.8m) to (3.4.8p). \(\square\)

Definition 3.4.7. The \(A_q\)-module of first-order differential operators on the double-graded quantum superplane, which we denote as \(D^1(A_q)\), is the \(A_q\)-bimodule generated by the partial derivatives \(\{\partial_x, \partial_\xi, \partial_\theta, \partial_z\}\), subject to the relations (3.4.8a) to (3.4.8p).

Proposition 3.4.8. The commutation rules between the partial derivatives are:
\[
\begin{align*}
\partial_x \partial_\xi &= q \partial_\xi \partial_x, & (3.4.9a) \\
\partial_x \partial_z &= \partial_\xi \partial_z, & (3.4.9c) \\
\partial_\xi \partial_z &= -q^{-1} \partial_\xi \partial_\xi, & (3.4.9e) \\
\partial_\xi \partial_\xi &= 0, & (3.4.9g)
\end{align*}
\]

Proof. The proof is obtained by comparing the action of the partial derivatives on the PBW basis (3.1.4). For instance,
\[
\partial_x \partial_\xi(x^m \xi^a \theta^b z^m) = mq^m(x^{m-1} \theta^b z^m),
\]
where we have assumed that \(\alpha = 1\). On the other hand,
\[
\partial_\xi \partial_x(x^m \xi^a \theta^b z^m) = mq^{m-1}(x^{m-1} \theta^b z^m).
\]
Comparing the two produces (3.4.9a). One obtains (3.4.9b) to (3.4.9f) in a similar way and so we omit details. The nilpotent nature of ξ and θ directly imply (3.4.9g) and (3.4.9h).

\begin{proposition}
The commutation rules between the partial derivatives are differentials are:
\begin{align*}
\partial_x d x &= d x \partial_x, \quad (3.4.10a) & \partial_x d \xi &= q^{-1} d \xi \partial_x, \quad (3.4.10b) \\
\partial_x d \theta &= q^{-1} d \theta \partial_x, \quad (3.4.10c) & \partial_x d z &= dz \partial_x, \quad (3.4.10d) \\
\partial_{\xi} d x &= q d x \partial_{\xi}, \quad (3.4.10e) & \partial_{\xi} d \xi &= -d \xi \partial_{\xi}, \quad (3.4.10f) \\
\partial_{\xi} d \theta &= d \theta \partial_{\xi}, \quad (3.4.10g) & \partial_{\xi} d z &= -q d \partial_{\xi}, \quad (3.4.10h) \\
\partial_{\theta} d x &= q d x \partial_{\theta}, \quad (3.4.10i) & \partial_{\theta} d \theta &= -d \theta \partial_{\theta}, \quad (3.4.10j) \\
\partial_{\theta} d \xi &= d \xi \partial_{\theta}, \quad (3.4.10k) & \partial_{\theta} d z &= -q d \partial_{\theta}, \quad (3.4.10l) \\
\partial_z d x &= d x \partial_z, \quad (3.4.10m) & \partial_z d \xi &= -q^{-1} d \xi \partial_z, \quad (3.4.10n) \\
\partial_z d \theta &= -q^{-1} d \theta \partial_z, \quad (3.4.10o) & \partial_z d z &= dz \partial_z. \quad (3.4.10p)
\end{align*}

\end{proposition}

\begin{proof}
The above relations are found by using $\partial_a (x^b d x^c) = \delta_{ab}^c d x^c$, where we have set $x^a := (x, \xi, \theta, z)$, and applying this to (3.4.5a) to (3.4.5p). For instance,
\[\partial_x (x^a d \xi) = d \xi = q \partial_x (d \xi x), \]
where we have used (3.4.5b). For consistency this implies that
\[\partial_x d \xi = q^{-1} d \partial_x, \]
i.e., (3.4.10b) is established. All the other relations follow from similar considerations and so we omit details. \qed
\end{proof}

4. Concluding remarks

In this paper, we defined a \mathbb{Z}_2^n-graded generalisation of Manin’s quantum superplane and presented a bicovariant differential calculi rather explicitly. In this respect, we have a concrete example of a noncommutative differential \mathbb{Z}_2^n-geometry. To our knowledge, the double-graded quantum superplane is the first such example to be defined and studied. We must remark that there has been some renewed interest in \mathbb{Z}_2^n-gradings in physics, see for example [1, 2, 3, 9, 37, 38]. It is not clear if these ‘higher gradings’ play a fundamental rôle in physics in the same way as \mathbb{Z}_2-gradings do. However, the results of the aforementioned papers suggest that systems that are \mathbb{Z}_2^n-graded are not as uncommon as one might initially think. Thus, we believe, that further work on noncommutative \mathbb{Z}_2^n-geometry is warranted and that further links with physics will be uncovered. Indeed, we have only scratched the surface in this paper and have focused on mathematical questions.
References

[1] N. Aizawa, P. S. Isaac, and J. Segar, $\mathbb{Z}_2 \times \mathbb{Z}_2$ generalizations of $\mathcal{N} = 1$ superconformal Galilei algebras and their representations, J. Math. Phys. 60 (2019), 023507, 11.

[2] N. Aizawa, Z. Kuznetsova, H. Tanaka, and F. Toppan, $\mathbb{Z}_2 \times \mathbb{Z}_2$-graded Lie symmetries of the Lévy-Leblond equations, Prog. Theor. Exp. Phys. 123A01 (2016), 26.

[3] N. Andruskiewitsch, I. Angiono, and D. Bagio, Examples of pointed color Hopf algebras, J. Algebra 402 (2014), 1350098, 28.

[4] J. Bernstein, D. Leites, V. Molotkov, and V. Shander, Seminars of Supersymmetries. Vol. 1. Algebra and calculus, MCCME, Moscow, 2013 (In Russian, the English version is available for perusal).

[5] A. Bruce, E. Ibarguengoytia, and N. Poncin, The Schwarz-Voronov embedding of \mathbb{Z}_n^2-manifolds, arXiv:1906.09834.

[6] A. Bruce and N. Poncin, Functional analytic issues in \mathbb{Z}_n^2-geometry, Rev. Un. Mat. Argentina (in press).

[7] A. Bruce and N. Poncin, Products in the category of \mathbb{Z}_n^2-manifolds, J. Nonlinear Math. Phys. 26 (2019), 420–453.

[8] J. de Boer, P. A. Grassi, and P. van Nieuwenhuizen, Non-commutative superspace from string theory, Physics Letters B 574 (2003), 98–104.

[9] A. de Goursac, Noncommutative supergeometry and quantum supergroups, Journal of Physics: Conference Series 597 (2015), 012028.

[10] P. Deligne and D. S. Freed, Sign manifesto, in Quantum fields and strings: a course for mathematicians, Vol. 1, 2 (Princeton, NJ, 1996/1997), Amer. Math. Soc., Providence, RI, 1999, pp. 357–363.

[11] V. G. Drinfel’d, Quantum groups, in Proceedings of the International Congress of Mathematicians, Vol. 1, 2 (Berkeley, Calif., 1986) Amer. Math. Soc., Providence, RI, 1987, pp. 798–820.

[12] G. H. E. Duchamp, P. Blasiak, A. Horzela, K. A. Penson, and A. I. Solomon, Hopf Algebras in General and in Combinatorial Physics: a practical introduction, arXiv:0802.0249.

[13] S. Duplij, W. Siegel, and J. Bagger, eds., Concise Encyclopaedia of Supersymmetry And Noncommutative Structures In Mathematics And Physics, Kluwer Academic Publishers, Dordrecht-Boston-London, 2004 (Second printing, Springer Science and Business Media, Berlin-New York-Heidelberg, 2005).

[14] S. Duplij and S. Sinel’shchikov, Classification of $U_q(sl_2)$-module algebra structures on the quantum plane, J. Math. Physics, Analysis, Geometry 6 (2010), 21–46.

[15] M. El Falaki and E. H. Tahri, Quantum supergroup structure of $(1+1)$-dimensional quantum super-plane, its dual and its differential calculus, J. Phys. A 34 (2001), 3403–3412.

[16] J. Feldvoss, Representations of Lie colour algebras, Adv. Math. 157 (2001), 95–137.
[25] J. M. Gracia-Bondía, J. C. Várilly, and H. Figueroa, *Elements of noncommutative geometry*, Birkhäuser Advanced Texts: Basler Lehrbücher. [Birkhäuser Advanced Texts: Basel Textbooks], Birkhäuser Boston, Inc., Boston, MA, 2001.

[26] H. S. Green, *A generalized method of field quantization*, Phys. Rev. 90 (1953), 270–273.

[27] B. Hurle and A. Makhlouf, *Color Lie bialgebras: big bracket, cohomology and deformations*, in Geometric and harmonic analysis on homogeneous spaces and applications, Vol. 207 of *Springer Proc. Math. Stat.*., Springer, Cham, 2017, pp. 69–115.

[28] J. Madore, *An introduction to noncommutative differential geometry and its physical applications*, Vol. 257 of *London Mathematical Society Lecture Note Series*, Second edition, Cambridge University Press, Cambridge, 1999.

[29] Y. I. Manin, *Multiparametric quantum deformation of the general linear supergroup*, Comm. Math. Phys. 123 (1989), 163–175.

[30] Y. I. Manin, *Topics in noncommutative geometry*, M. B. Porter Lectures, Princeton University Press, Princeton, NJ, 1991.

[31] S. Montgomery, *Hopf algebras and their actions on rings*, Vol. 82 of *CBMS Regional Conference Series in Mathematics*, Published for the Conference Board of the Mathematical Sciences, Washington, DC; by the American Mathematical Society, Providence, RI, 1993.

[32] M. Özkavşar, *A two-parameter quantum (2 + 1)-superspace and its deformed derivation algebra as Hopf superalgebra*, Adv. Appl. Clifford Algebr. 23 (2013), 741–756.

[33] M. Scheunert, *Generalized Lie algebras*, J. Math. Phys. 20 (1979), 712–720.

[34] N. Seiberg, *Noncommutative superspace, N = 1/2 supersymmetry, field theory and string theory*, J. High Energy Phys.

[35] S. K. Soni, *Differential calculus on the quantum superplane*, J. Phys. A 24 (1991), 619–624.

[36] E. H. Tahri, *Quantum group structure on the quantum plane*, J. Math. Phys. 39 (1998), 2983–2992.

[37] V. N. Tolstoy, *Once more on parastatistics*, Phys. Part. Nuclei Lett. 11 (2014), 933–937.

[38] V. N. Tolstoy, *Super-de Sitter and alternative super-Poincaré symmetries*, in *Lie Theory and Its Application in Physics*, V. Dobrev, ed., Springer, Tokyo, 2014, pp. 357–367.

[39] D. V. Volkov, *On the quantization of half-integer spin fields*, Soviet Physics. JETP 9 (1959), 1107–1111.

[40] Y.-H. Wang, *On graded global dimension of color Hopf algebras*, J. Gen. Lie Theory Appl. 5 (2011), Art. ID G110101, 6.

[41] J. Wess and B. Zumino, *Covariant differential calculus on the quantum hyperplane*, Nuclear Phys. B Proc. Suppl. 18B (1990), 302–312 (1991) (Recent advances in field theory (Annecy-le-Vieux, 1990)).

[42] S. L. Woronowicz, *Differential calculus on compact matrix pseudogroups (quantum groups)*, Comm. Math. Phys. 122 (1989), 125–170.