Determining Singularities Using Row Sequences of Padé-orthogonal Approximants

N. Bosuwan*, G. López Lagomasino† and E.B. Saff‡

May 7, 2014

Abstract

Starting from the orthogonal polynomial expansion of a function F corresponding to a finite positive Borel measure with infinite compact support, we study the asymptotic behavior of certain associated rational functions (Padé-orthogonal approximants). We obtain both direct and inverse results relating the convergence of the poles of the approximants and the singularities of F. Thereby, we obtain analogues of the theorems of E. Fabry, R. de Montessus de Ballore, V.I. Buslaev, and S.P. Suetin.

Keywords

Padé approximants, orthogonal polynomials, Fabry’s theorem, Montessus de Ballore’s theorem

2000 MSC.

Primary 30E10, 41A27; Secondary 41A21.

1 Introduction

Let E be an infinite compact subset of the complex plane \mathbb{C} such that $\mathbb{C} \setminus E$ is simply connected. There exists a unique exterior conformal representation Φ from $\mathbb{C} \setminus E$ onto

*Results of this article constitute a part of this author’s Ph.D. dissertation under the mentorship of E.B. Saff at Vanderbilt University.

†The research of this author was supported by Ministerio de Economía y Competitividad under grant MTM2012-36372-C03-01.

‡The research of this author was supported, in part, by the U.S. National Science Foundation under grants DMS-0808093 and DMS-1109266.
\(\{ w : |w| \leq 1 \} \) satisfying \(\Phi(\infty) = \infty \) and \(\Phi'(\infty) > 0 \). We assume that \(E \) is such that the inverse function \(\Psi = \Phi^{-1} \) can be extended continuously to \(\{ w : |w| < 1 \} \) (the closure of a bounded Jordan region and a finite interval satisfy the above conditions). Unless otherwise stated, \(E \) will be as described above.

Let \(\mu \) be a finite positive Borel measure with infinite support \(\text{supp}(\mu) \) contained in \(E \). We write \(\mu \in M(E) \) and define the associated inner product,

\[
\langle g, h \rangle_\mu := \int g(\zeta)\overline{h(\zeta)}d\mu(\zeta), \quad g, h \in L^2(\mu).
\]

Let \(p_n(z) := \kappa_n z^n + \cdots, \quad \kappa_n > 0, \ n = 0, 1, \ldots, \) be the orthonormal polynomial of degree \(n \) with respect to \(\mu \) having positive leading coefficient; that is, \(\langle p_n, p_m \rangle_\mu = \delta_{n,m} \). Denote by \(H(E) \) the space of all functions holomorphic in some neighborhood of \(E \).

Definition 1. Let \(F \in H(E), \mu \in M(E), \) and a pair of nonnegative integers \((n, m)\) be given. A rational function \([n/m]_F := P^\mu_{n,m}/Q^\mu_{n,m} \) is called an \((n, m)\) Padé-orthogonal approximant of \(F \) with respect to \(\mu \) if \(P^\mu_{n,m} \) and \(Q^\mu_{n,m} \) are polynomials satisfying

\[
\deg(P^\mu_{n,m}) \leq n, \quad \deg(Q^\mu_{n,m}) \leq m, \quad Q^\mu_{n,m} \not\equiv 0, \tag{1}
\]

\[
\langle Q^\mu_{n,m}F - P^\mu_{n,m}, p_j \rangle_\mu = 0, \quad \text{for } j = 0, 1, \ldots, n + m. \tag{2}
\]

Since \(Q^\mu_{n,m} \not\equiv 0 \), we normalize it to have leading coefficient equal to 1.

When \(E = \{ z \in \mathbb{C} : |z| \leq 1 \} \) and \(d\mu = d\theta/2\pi \) on the boundary of \(E \), then \(p_n(z) = z^n \) and the Padé-orthogonal approximants reduce to the classical Padé approximants. In this case, we write \(P_{n,m}, Q_{n,m} \) and \([n/m]_F \), respectively.

The study of the convergence properties of row sequences of Padé approximants (when \(m \) is fixed and \(n \to \infty \)) has a long history beginning with the classical results of J. Hadamard [11], R. de Montessus de Ballore [12], and E. Fabry [5]. These results have attracted considerable attention motivating different extensions and generalizations to other approximation schemes using rational functions in which the degree of the denominator remains bounded as \(n \to \infty \) (see, for example, [2], [4], [7], [9], [10], [11], [13], [19], [20], [21], [22]). For the case of measures supported on the real line and the unit circle, some results in this direction are contained in [2], [3], [18], and [19]. However, up to the present there are no results of this nature for measures supported on general compact subsets \(E \) of the complex plane. The object of this paper is to fill this gap.

The general theory covers direct and inverse type results. In direct results one starts with a function for which the analytic properties and location of singularities in a certain domain is known, and using this information one draws conclusions about the asymptotic behavior of the approximants and their poles. In the inverse direction, the information is
given in terms of the asymptotic behavior of the poles of the approximating functions from which the analyticity and location of the singularities of the function must be deduced. We give results in both directions.

For any $\rho > 1$, set

$$\Gamma_\rho := \{ z \in \mathbb{C} : |\Phi(z)| = \rho \}, \quad \text{and} \quad \gamma_\rho := \{ w \in \mathbb{C} : |w| = \rho \}.$$

Denote by D_ρ the bounded connected component of the complement of Γ_ρ and by $\mathbb{B}(a, \rho)$ the open disk centered at $a \in \mathbb{C}$ of radius ρ. We call Γ_ρ and D_ρ a level curve and a canonical domain (with respect to E), respectively. We denote by $\rho_0(F)$ the index $\rho > 1$ of the largest canonical domain D_ρ to which F can be extended as a holomorphic function, and by $\rho_m(F)$ the index ρ of the largest canonical domain D_ρ to which F can be extended as a meromorphic function with at most m poles (counting multiplicities).

Let $\mu \in \mathcal{M}(E)$ be such that

$$\lim_{n \to \infty} |p_n(z)|^{1/n} = |\Phi(z)|,$$

uniformly inside $\mathbb{C} \setminus E$. Such measures are called regular (cf. [17]). Here and in what follows, the phrase “uniformly inside a domain” means “uniformly on each compact subset of the domain”. The Fourier coefficient of F with respect to p_n is given by

$$F_n := \langle F, p_n \rangle_\mu = \int F(z)p_n(z)d\mu(z).$$

As for Taylor series (see, for example, [17] Theorem 6.6.1), it is easy to show that

$$\rho_0(F) = \left(\limsup_{n \to \infty} |F_n|^{1/n} \right)^{-1}.$$

Additionally, the series $\sum_{n=0}^{\infty} F_n p_n(z)$ converges to $F(z)$ uniformly inside $D_{\rho_0(F)}$ and diverges pointwise for all $z \in \mathbb{C} \setminus D_{\rho_0(F)}$. Therefore, if (3) holds, then

$$Q_{n,m}^\mu(z)F(z) - P_{n,m}^\mu(z) = \sum_{k=n+m+1}^{\infty} \langle Q_{n,m}^\mu F, p_k \rangle_\mu p_k(z)$$

for all $z \in D_{\rho_0(F)}$ and $P_{n,m}^\mu = \sum_{k=0}^{n} \langle Q_{n,m}^\mu F, p_k \rangle_\mu p_k$ is uniquely determined by $Q_{n,m}^\mu$.

In contrast with classical Padé approximants, the rational function $[n/m]_F^\mu$ may not be unique as the following example shows.

Example 1. Let $E = [-1, 1]$, $d\mu = dx/\sqrt{1-x^2}$ and

$$F(x) = \frac{37}{x-3} + \sum_{k=0}^{4} c_k p_k(x),$$

3
where the \(p_k \) are normalized Chebychev polynomials, and

\[
c_0 := 37, \quad c_1 := 6(-271\sqrt{\pi} + 192\sqrt{2\pi}), \quad c_2 := -\sqrt{2} + 315\sqrt{\pi} - 222\sqrt{2\pi},
\]

\[
c_3 := 3513\sqrt{\pi} - 2484\sqrt{2\pi}, \quad c_4 := \sqrt{2} + 10674\sqrt{\pi} - 7548\sqrt{2\pi}.
\]

Using the program Mathematica it is easy to check that both \(Q_{1,2}^\mu(x) := x \), and \(Q_{1,2}^\mu(x) = (x - 3)^2 \) satisfy \(\langle Q_{1,2}^\mu F, p_k \rangle_\mu = 0, k = 2, 3 \). These denominators \(Q_{1,2}^\mu \) give us

\[
[1/2]^\mu_F(x) = \frac{4756\sqrt{\pi} - 3363\sqrt{2\pi} - 36\sqrt{2\pi}x + 144x}{4\sqrt{\pi}x},
\]

and

\[
[1/2]^\mu_F(x) = \frac{1404 - 28536\sqrt{\pi} + 19827\sqrt{2\pi} - 864x + 90364\sqrt{\pi}x - 63681\sqrt{2\pi}x}{4\sqrt{\pi}(x - 3)^2},
\]

respectively, which are clearly distinct.

It is easy to see, however, that the condition

\[
\Delta_{n,m}(F, \mu) := \begin{vmatrix} \langle F, p_{n+1} \rangle_\mu & \langle zF, p_{n+1} \rangle_\mu & \cdots & \langle z^{m-1}F, p_{n+1} \rangle_\mu \\ \vdots & \vdots & \ddots & \vdots \\ \langle F, p_{n+m} \rangle_\mu & \langle zF, p_{n+m} \rangle_\mu & \cdots & \langle z^{m-1}F, p_{n+m} \rangle_\mu \end{vmatrix} \neq 0 \tag{5}
\]

and the condition that every solution of (1)-(2) has deg \(Q_{n,m}^\mu = m \) are equivalent. In turn, they imply the uniqueness of \([n/m]^\mu_F \).

An outline of the paper is as follows. In Section 2, we state our main results and comment on their connection with classical and recent developments of the theory. Theorem 1 is a direct result whereas Theorems 2-6 are of inverse type. Section 3 is devoted to the proof of Theorem 1. Theorems 2-6 are proved in Section 4.

2 Main results

We will make the following assumptions on the asymptotic behavior of the sequence of orthonormal polynomials with respect to a given measure \(\mu \in M(E) \). We write \(\mu \in \mathcal{R}(E) \) when the corresponding sequence of orthonormal polynomials has ratio asymptotics; that is,

\[
\lim_{n \to \infty} \frac{p_n(z)}{p_{n+1}(z)} = \frac{1}{\Phi(z)} \tag{6}
\]

We say that Szegő or strong asymptotics takes place, and write \(\mu \in \mathcal{S}(E) \), if

\[
\lim_{n \to \infty} \frac{p_n(z)}{c_n \Phi^n(z)} = S(z) \quad \text{and} \quad \lim_{n \to \infty} \frac{c_n}{c_{n+1}} = 1, \tag{7}
\]
The first limit in (7) and the one in (6) are assumed to hold uniformly inside $\mathbb{C} \setminus E$, the c_n's are are positive constants, and $S(z)$ is some holomorphic and non-vanishing function on $\mathbb{C} \setminus E$. Obviously, $(7) \Rightarrow (6) \Rightarrow (3)$.

Our first result is the direct type

Theorem 1. Suppose $F \in \mathcal{H}(E)$ has poles of total multiplicity exactly m in $D_{\rho_m(F)}$ at the (not necessarily distinct) points $\lambda_1, \ldots, \lambda_m$ and let $\mu \in \mathcal{R}(E)$. Then, $[n/m]_{F}^{\mu}$ is uniquely determined for all sufficiently large n and the sequence converges uniformly to F inside $D_{\rho_m(F)} \setminus \{\lambda_1, \ldots, \lambda_m\}$ as $n \to \infty$. Moreover, for any compact subset K of $D_{\rho_m(F)} \setminus \{\lambda_1, \ldots, \lambda_m\}$,

$$
\limsup_{n \to \infty} \|F - [n/m]_{F}^{\mu}\|_{K}^{1/n} \leq \frac{\max\{|\Phi(z)| : z \in K\}}{\rho_m(F)},
$$

where $\| \cdot \|_K$ denotes the sup-norm on K and if $K \subset E$, then $\max\{|\Phi(z)| : z \in K\}$ is replaced by 1. Additionally,

$$
\limsup_{n \to \infty} \|Q_{n,m}^{\mu} - Q_m\|^{1/n} \leq \frac{\max\{|\Phi(\lambda_j)| : j = 1, \ldots, m\}}{\rho_m(F)} < 1,
$$

where $\| \cdot \|$ denotes (for example) the coefficient norm in the space of polynomials of degree m and $Q_m(z) = \prod_{k=1}^{m}(z - \lambda_k)$.

Remark. When $K = E$, the rate of convergence in (8) cannot be improved; that is,

$$
\limsup_{n \to \infty} \|F - [n/m]_{F}^{\mu}\|_{E}^{1/n} = \limsup_{n \to \infty} \sigma_{n,m}^{1/n} = \frac{1}{\rho_m(F)},
$$

where

$$
\sigma_{n,m} := \inf_{r} \|F - r\|_{E},
$$

and the infimum is taken over the class of all rational functions of type (n, m)

$$
r(z) = \frac{a_n z^n + a_{n-1} z^{n-1} + \cdots + a_0}{b_m z^m + b_{m-1} z^{m-1} + \cdots + b_0}.
$$

We refer the reader to [7, 13] for more information on the second equality in (10).

In the context of classical Padé approximation, Theorem 1 is known as the Montessus de Ballore theorem (see [12]). In [18, Theorem 1], S.P. Suetin proves an analogous result for measures supported on a bounded interval of the real line and states without proof that a similar theorem may be obtained for measures supported on a continuum of the complex plane whose sequence of orthonormal polynomials and their associated second type functions have strong asymptotic behavior. The assumptions of our Theorem 1 are substantially weaker.

In the inverse direction we have the following.
Theorem 2. Let \(F \in \mathcal{H}(E) \) and \(\mu \in \mathcal{S}(E) \). If
\[
\lim_{n \to \infty} \frac{F_n}{F_{n+1}} = \tau,
\]
then \(\Psi(\tau) \) is a singularity of \(F \) and \(\rho_0(F) = |\tau| \).

For expansions in Taylor series and classical Padé approximation this result reduces to Fabry’s theorem (see [5]).

If \(E = \mathbb{B} \), where \(\mathbb{B} = B(0, 1) \), and the measure \(\mu \) supported on \(\mathbb{T} \), the unit circle, satisfies the Szegő condition
\[
\int_0^{2\pi} \log w(\theta) d\theta > -\infty,
\]
(11)
(where \(d\mu(\theta) = w(\theta)d\theta/2\pi + d\mu_s(\theta) \) is the Radon-Nikodym decomposition of \(\mu \)), it is well known that the orthonormal polynomials \(\phi_n(z) = \kappa_n z^n + \cdots \) with respect to \(\mu \) satisfy the Szegő asymptotics (7) (with \(c_n = 1 \)). In particular, this allows us to use Theorem 2 to locate the first singularity of the reciprocal of the interior Szegő function
\[
S_{\text{int}}(z) := \exp \left(\frac{1}{4\pi} \int_0^{2\pi} \log w(\theta) \frac{e^{i\theta} + z}{e^{i\theta} - z} d\theta \right), \quad z \in \mathbb{B},
\]
in terms of the Verblunsky (or Schur) coefficients \(\alpha_n \) (\(\alpha_n := -\Phi_n(0) \)). It is well-known that the Szegő condition (11) also implies that
\[
\lim_{n \to \infty} \kappa_n = \kappa := \exp \left\{ -\frac{1}{4\pi} \int_0^{2\pi} \log w(\theta) d\theta \right\},
\]
and
\[
\frac{1}{S_{\text{int}}(z)} = \frac{1}{\kappa} \sum_{k=0}^{\infty} \varphi_k(0) \varphi_k(z)
\]
uniformly inside \(\mathbb{B} \) (see [6, p. 19-20]). By Theorem 2 we immediately obtain the following.

Corollary 1. Let \(\mu \) satisfy (11) and assume that \(1/S_{\text{int}} \in \mathcal{H}(\mathbb{B}) \). Suppose that
\[
\lim_{n \to \infty} \frac{\alpha_n}{\alpha_{n+1}} = \lambda.
\]
Then \(\lambda \) is a singularity of \(1/S_{\text{int}} \) and \(1/S_{\text{int}} \) is holomorphic in \(\mathbb{B}(0, |\lambda|) \).

This result complements [1] Theorem 2 where, under stronger assumptions, it is shown that \(\lambda \) is a simple pole and \(1/S_{\text{int}} \) has no other singularity in a neighborhood of \(\mathbb{B}(0, |\lambda|) \). Using the definition of \(Q_{n,1}^\mu \) it is easy to verify that whenever \(F_{n+1} \neq 0 \), we have
\[
Q_{n,1}^\mu(z) = z - \frac{\langle z F, p_{n+1} \rangle_\mu}{F_{n+1}}.
\]
The next result enables one to locate the first singularity of \(F \) using the zeros of \(Q_{n,1}^\mu \).
Theorem 3. Let $F \in \mathcal{H}(E)$ and $\mu \in \mathcal{S}(E)$. If
\[
\lim_{n \to \infty} \frac{\langle zF, p_n \rangle \mu}{F_n} = \lambda,
\]
then λ is a singularity of F and $\rho_0(F) = |\Phi(\lambda)|$.

The proofs of Theorems 2 and 3 are reduced to Fabry’s theorem by using the following result.

Theorem 4. Let $F \in \mathcal{H}(E)$ and $\mu \in \mathcal{S}(E)$. Define $f(w) := F(\Psi(w))$ and denote the Laurent series of f about 0 by $\sum_{k=\infty}^{\infty} f_k w^k$. Then, the following limits are equivalent:

(a) $\lim_{n \to \infty} F_n/F_{n+1} = \tau$,
(b) $\lim_{n \to \infty} \langle zF, p_n \rangle \mu/F_n = \lambda$,
(c) $\lim_{n \to \infty} f_n/f_{n+1} = \tau$,

where τ and λ are finite and related by the formula $\Phi(\lambda) = \tau$.

Theorem 3 admits the following extension to general row sequences.

Theorem 5. Let $F \in \mathcal{H}(E)$ and $\mu \in \mathcal{S}(E)$. If for all n sufficiently large, $[n/m]_{F}^{\mu}$ has precisely m finite poles $\lambda_{n,1}, \ldots, \lambda_{n,m}$, and

$\lim_{n \to \infty} \lambda_{n,j} = \lambda_j, \quad j = 1, 2, \ldots, m,$

($\lambda_1, \ldots, \lambda_m$ are not necessarily distinct), then

(i) F is holomorphic in $D_{\rho_{\text{min}}}$ where $\rho_{\text{min}} := \min_{1 \leq j \leq m} |\Phi(\lambda_j)|$;
(ii) $\rho_{m-1}(F) = \max_{1 \leq j \leq m} |\Phi(\lambda_j)|$;
(iii) $\lambda_1, \ldots, \lambda_m$ are singularities of F; those lying in $D_{\rho_{m-1}(F)}$ are poles (counting multiplicities), and F has no other poles in $D_{\rho_{m-1}(F)}$.

For classical Padé approximants, this theorem was proved by S.P. Suetin in [21] (see also [20]). In [2, Theorem 1], V.I. Buslaev provides an analogue for measures supported on a bounded interval of the real line. Buslaev reduces the proof of his result to Suetin’s statement through an extension of Poincaré’s theorem on difference equations (see Lemmas 2-3 below). We will follow this approach by proving

Theorem 6. Let $F \in \mathcal{H}(E)$ and $\mu \in \mathcal{S}(E)$. Define $f(w) := F(\Psi(w))$ and denote the Laurent series of f about 0 by $\sum_{k=\infty}^{\infty} f_k w^k$ and the regular part of f by $\hat{f}(w) := \sum_{k=0}^{\infty} f_k w^k$. For each fixed $m \geq 1$, the following conditions are equivalent:

(a) The poles of $[n/m]_{F}^{\mu}$ have finite limits τ_1, \ldots, τ_m, as $n \to \infty$.
(b) The poles of $[n/m]_{F}^{\mu}$ have finite limits $\lambda_1, \ldots, \lambda_m$, as $n \to \infty$.

Under appropriate enumeration of the sub-indices, the values λ_j and τ_j, $j = 1, \ldots, m$, are related by the formula $\Phi(\lambda_j) = \tau_j$ for all $j = 1, \ldots, m$.

7
3 Proof of Theorem 1

The second type functions $s_n(z)$ defined by

$$s_n(z) := \int \frac{p_n(\zeta)}{z - \zeta} d\mu(\zeta), \quad z \in \mathbb{C} \setminus \text{supp}(\mu),$$

play a major role in the proofs that follow.

Lemma 1. If $\mu \in \mathcal{R}(E)$, then

$$\lim_{n \to \infty} p_n(z)s_n(z) = \frac{\Phi'(z)}{\Phi(z)},$$

uniformly inside $\mathbb{C} \setminus E$. Consequently, for any compact set $K \subset \mathbb{C} \setminus E$, there exists n_0 such that $s_n(z) \neq 0$ for all $z \in K$ and $n \geq n_0$.

Proof. From orthogonality, we get

$$p_n(z)s_n(z) = \int \frac{|p_n(\zeta)|^2}{z - \zeta} d\mu(\zeta), \quad z \notin \text{supp}(\mu).$$

Since p_n is of norm 1 in $L_2(\mu)$, the sequence $(\int \frac{|p_n(\zeta)|^2}{z - \zeta} d\mu(\zeta))_{n \geq 0}$ forms a normal family in $\mathbb{C} \setminus E$. Consequently, the limit stated follows from pointwise convergence in a neighborhood of infinity. Now, for all z sufficiently large, since $\mu \in \mathcal{R}(E)$ from [15, Theorem 1.8] it follows that

$$\lim_{n \to \infty} \int \frac{|p_n(\zeta)|^2}{z - \zeta} d\mu(\zeta) = \lim_{n \to \infty} \frac{1}{2\pi} \int_T \frac{\Phi'(\zeta)}{\Phi(\zeta)}(z - \zeta) d\zeta = \Phi'(z).$$

Since the function on the right-hand side never vanishes in $\mathbb{C} \setminus E$, the rest of the statements follow at once.

Proof of Theorem 7 For $l = 0, 1, \ldots$, from (6) it follows that

$$\lim_{n \to \infty} \frac{p_n(z)}{p_{n+l}(z)} = \frac{1}{\Phi(z)^l}, \quad l = 0, 1, \ldots$$

\footnote{We note that in [15, Theorem 1.8] it is assumed that E is a compact set bounded by a Jordan curve. However, as pointed out to us by the author, the result remains valid if E verifies the conditions imposed in this paper.}
and by (12) and Lemma 1

\[
\lim_{n \to \infty} \frac{s_{n+1}(z)}{s_n(z)} = \lim_{n \to \infty} \frac{p_n(z)}{p_{n+1}(z)} = \frac{1}{\Phi(z)} \frac{\Phi'(z)/\Phi(z)}{\Phi'(z)/\Phi(z)} = \frac{1}{\Phi(z)},
\]

(13)

uniformly inside \(C \ \backslash \ E \). From (12) and (13) we obtain that

\[
\lim_{n \to \infty} |p_n(z)|^{1/n} = |\Phi(z)|, \quad \text{and} \quad \lim_{n \to \infty} |s_n(z)|^{1/n} = \frac{1}{|\Phi(z)|},
\]

(14)

uniformly inside \(C \ \backslash \ E \).

By the definition of Padé-orthogonal approximant and the first relation in (14), we have

\[
Q_{n,m}^\mu(z)F(z) - P_{n,m}^\mu(z) = \sum_{k=n+m+1}^\infty a_{k,n} p_k(z), \quad z \in D_{\rho_0(F)}.
\]

(15)

Using Cauchy’s integral formula and Fubini’s theorem, we obtain, for \(k \geq n+1 \)

\[
a_{k,n} := \langle Q_{n,m}^\mu F, p_k \rangle_\mu = \int_{\Gamma_F} \frac{Q_{n,m}^\mu(t)F(t)}{t-z} p_k(z) d\mu(z)
\]

\[
= \frac{1}{2\pi i} \int_{\Gamma_F} Q_{n,m}^\mu(t)F(t) \int \frac{p_k(z)}{t-z} d\mu(z) dt = \frac{1}{2\pi i} \int_{\Gamma_F} Q_{n,m}^\mu(t)F(t)s_k(t) dt,
\]

where \(1 < \rho_1 < \rho_0(F) \). Let \(\{\alpha_1, \ldots, \alpha_{\gamma}\} \) be the set of distinct poles of \(F \) in \(D_{\rho_m(F)} \) and \(m_k \) the multiplicity of \(\alpha_k \) so that

\[
Q(z) := \prod_{j=1}^{m} (z - \lambda_j) = \prod_{k=1}^{\gamma} (z - \alpha_k)^{m_k}, \quad m := \sum_{k=1}^{\gamma} m_k.
\]

Multiplying (15) by \(Q \) and expanding \(Q Q_{n,m}^\mu F - Q P_{n,m}^\mu \in H(D_{\rho_m(F)}) \) in terms of the orthonormal system \(\{p_{\nu}\}_{\nu=0}^{\infty} \), we obtain that for \(z \in D_{\rho_m(F)} \),

\[
Q(z)Q_{n,m}^\mu(z)F(z) - Q(z)P_{n,m}^\mu(z) = \sum_{k=n+m+1}^\infty a_{k,n} Q(z)p_k(z) = \sum_{\nu=0}^\infty b_{\nu,n} p_{\nu}(z),
\]

(17)

where

\[
b_{\nu,n} := \sum_{k=n+m+1}^\infty a_{k,n} \langle Qp_k, p_{\nu} \rangle_\mu, \quad \nu = 0, 1, \ldots
\]

First of all, we will estimate \(|a_{k,n}| \) in terms of \(|\tau_{k,n}| \), where

\[
\tau_{k,n} := \frac{1}{2\pi i} \int_{\Gamma_{\rho_2}} Q_{n,m}^\mu(t)F(t)s_k(t) dt, \quad \rho_{m-1}(F) < \rho_2 < \rho_m(F), \quad k = 0, 1, \ldots
\]

(18)
Since $\rho_2 > \rho_1$ the integral in (18) allows a better upper bound than the last integral in (16). For each $k \geq 0$, the function $Q_{n,m}^\mu F s_k$ is meromorphic on $D_{\rho_2} \setminus D_{\rho_1} = \{ z \in \mathbb{C} : \rho_1 \leq |\Phi(z)| \leq \rho_2 \}$ and has poles at $\alpha_1, \ldots, \alpha_\gamma$ with multiplicities at most m_1, \ldots, m_γ, respectively. Applying Cauchy’s residue theorem we obtain

$$
\frac{1}{2\pi i} \int_{\Gamma_{\rho_2}} Q_{n,m}^\mu (t) F(t) s_k(t) dt - \frac{1}{2\pi i} \int_{\Gamma_{\rho_1}} Q_{n,m}^\mu (t) F(t) s_k(t) dt = \sum_{j=1}^{\gamma} \text{res}(Q_{n,m}^\mu F s_k, \alpha_j),
$$

for $k \geq 0$. The limit formula for the residue gives

$$
\text{res}(Q_{n,m}^\mu F s_k, \alpha_j) = \frac{1}{(m_j - 1)!} \lim_{z \to \alpha_j} \left((z - \alpha_j)^{m_j} Q_{n,m}^\mu (z) F(z) s_k(z) \right)^{(m_j - 1)}.
$$

Since $s_n(z) \neq 0$ for all sufficiently large n and $z \in \mathbb{C} \setminus E$ (see Lemma 1), Leibniz’ formula allows us to write

$$
\left((z - \alpha_j)^{m_j} Q_{n,m}^\mu (z) F(z) s_k(z) \right)^{(m_j - 1)} = \left((z - \alpha_j)^{m_j} Q_{n,m}^\mu (z) F(z) s_n(z) \frac{s_k(z)}{s_n(z)} \right)^{(m_j - 1)}
$$

$$
= \sum_{p=0}^{m_j - 1} \binom{m_j - 1}{p} \left((z - \alpha_j)^{m_j} Q_{n,m}^\mu (z) F(z) s_n(z) \right)^{(m_j - 1 - p)} \left(\frac{s_k(z)}{s_n(z)} \right)^{(p)}.
$$

For $j = 1, \ldots, \gamma$ and $p = 0, \ldots, m_j - 1$, set

$$
\beta_n(j, p) := \frac{1}{(m_j - 1)!} \left(\binom{m_j - 1}{p} \right) \lim_{z \to \alpha_j} \left((z - \alpha_j)^{m_j} Q_{n,m}^\mu (z) F(z) s_n(z) \right)^{(m_j - 1 - p)},
$$

(notice that the $\beta_n(j, p)$ do not depend on k). So, we can rewrite (19) as

$$
a_{k,n} = \tau_{k,n} - \sum_{j=1}^{\gamma} \sum_{p=0}^{m_j - 1} \beta_n(j, p) \left(\frac{s_k}{s_n} \right)^{(p)} (\alpha_j), \quad n \geq n_0 \quad \text{and} \quad k = 0, 1, \ldots.
$$

Since $a_{k,n} = 0$, for $k = n + 1, n + 2, \ldots, n + m$, it follows from (21) that

$$
\sum_{j=1}^{\gamma} \sum_{p=0}^{m_j - 1} \beta_n(j, p) \left(\frac{s_k}{s_n} \right)^{(p)} (\alpha_j) = \tau_{k,n}, \quad k = n + 1, \ldots, n + m.
$$

We view (22) as a system of m equations on the m unknowns $\beta_n(j, p)$. If we show that

$$
\Lambda_n := \begin{vmatrix}
\left(\frac{s_n+1}{s_n} \right) (\alpha_j) & \left(\frac{s_n+1}{s_n} \right)' (\alpha_j) & \cdots & \left(\frac{s_n+1}{s_n} \right)^{(m_j-1)} (\alpha_j) \\
\left(\frac{s_n+2}{s_n} \right) (\alpha_j) & \left(\frac{s_n+2}{s_n} \right)' (\alpha_j) & \cdots & \left(\frac{s_n+2}{s_n} \right)^{(m_j-1)} (\alpha_j) \\
\vdots & \vdots & \ddots & \vdots \\
\left(\frac{s_n+m}{s_n} \right) (\alpha_j) & \left(\frac{s_n+m}{s_n} \right)' (\alpha_j) & \cdots & \left(\frac{s_n+m}{s_n} \right)^{(m_j-1)} (\alpha_j) \\
\end{vmatrix} \neq 0
$$

(23)
(this expression represents the determinant of order m in which the indicated group of columns is written out successively for $j = 1, \ldots, \gamma$), then we can express $\beta_n(j, p)$ in terms of $(s_k/s_n)^{(p)}(\alpha_j)$ and $\tau_{k,n}$, for $k = n + 1, \ldots, n + m$. In fact,

$$
\lim_{n \to \infty} \Lambda_n = \Lambda := \begin{vmatrix}
R(\alpha_j) & R'(\alpha_j) & \cdots & R^{(m_j-1)}(\alpha_j) \\
R^2(\alpha_j) & (R^2)'(\alpha_j) & \cdots & (R^2)^{(m_j-1)}(\alpha_j) \\
\vdots & \vdots & \ddots & \vdots \\
R^m(\alpha_j) & (R^m)'(\alpha_j) & \cdots & (R^m)^{(m_j-1)}(\alpha_j)
\end{vmatrix}_{j=1, \ldots, \gamma}
= \prod_{j=1}^\gamma (m_j - 1)!!(-\Phi'(\alpha_j))^{m_j(m_j-1)/2} \Phi(\alpha_j)^{-m_j^2} \prod_{1 \leq i < j \leq \gamma} \left(\frac{1}{\Phi(\alpha_j)} - \frac{1}{\Phi(\alpha_i)}\right)^{m_j m_j},
$$

where $R(z) = 1/\Phi(z)$ and $n!! = 0!! \cdots n!!$ (use, for example, [16, Theorem 1] for the last equality). Hence, $\Lambda \neq 0$ and, for all sufficiently large n, $|\Lambda_n| \geq c_1 > 0$ where the number c_1 does not depend on n (from now on, we will denote some constants that do not depend on n by c_2, c_3, \ldots and we will consider only n large enough so that $|\Lambda_n| \geq c_1 > 0$).

Applying Cramer's rule to (22), we have

$$
\beta_n(j, p) = \frac{\Lambda_n(j, p)}{\Lambda_n} = \frac{1}{\Lambda_n} \sum_{s=1}^{m} \tau_{n+s,n} C_n(s, q),
$$

(24)

where $\Lambda_n(j, p)$ is the determinant obtained from Λ_n by replacing the column with index $q = (\sum_{i=0}^{j-1} m_i) + p + 1$ (where $m_0 := 0$) with the column $[\tau_{n+1,n} \cdots \tau_{n+m,n}]^T$ and $C_n(s, q)$ is the determinant of the $(s, q)^{th}$ cofactor matrix of $\Lambda_n(j, p)$. Substituting $\beta_n(j, p)$ in (21) with the expression in (24), we obtain

$$
a_{k,n} = \tau_{k,n} - \frac{1}{\Lambda_n} \sum_{j=1}^{\gamma} \sum_{p=0}^{m_j-1} \sum_{s=1}^{m} \tau_{n+s,n} C_n(s, q) \left(\frac{s_k}{s_n}\right)^{(p)}(\alpha_j), \quad k \geq n + m + 1.
$$

(25)

Let $\delta > 0$ and $\epsilon > 0$ be sufficiently small so that $\rho_0(F) - 2\delta > 1$,

$$
\{z \in \mathbb{C} : |z - \alpha_j| = \epsilon\} \subset \{z \in \mathbb{C} : |\Phi(z)| \geq \rho_0(F) - \delta\},
$$

and

$$
\left(\frac{s_k}{s_n}\right)^{(p)}(\alpha_j) = \frac{p!}{2\pi i} \int_{|z - \alpha_j| = \epsilon} \frac{s_k(z)}{s_n(z)(z - \alpha_j)^{p+1}} dz, \quad k = 0, 1, \ldots, \quad p = 0, \ldots, m_j - 1.
$$

(26)

Applying (13) and (26), we can easily check that

$$
\left|\left(\frac{s_k}{s_n}\right)^{(p)}(\alpha_j)\right| \leq c_2, \quad p = 0, \ldots, m_j - 1, \quad j = 1, \ldots, \gamma, \quad k = n + 1, \ldots, n + m,
$$

(27)
for \(n \geq n_1 \), and
\[
\left| \left(\frac{s_k}{s_n} \right)^{(p)} (\alpha_j) \right| \leq \frac{c_3}{(\rho_0(F) - 2\delta)^{k-n}}, \quad p = 0, \ldots, m_j - 1, \quad j = 1, \ldots, \gamma, \quad k \geq n + m + 1,
\]
for \(n \geq n_2 \). The inequality (27) implies that
\[
|C_n(s, q)| \leq (m - 1)! c_2^{m-1} = c_4, \quad s, q = 1, \ldots, m.
\]
for \(n \geq n_3 \). Combining (25), (27), (28), (29), and \(|\Lambda_n| \geq c_1 > 0 \), we see that for \(n \geq n_4 \)
\[
|a_{k,n}| \leq |\tau_{k,n}| + \frac{mc_4c_3}{c_1} (\rho_0(F) - 2\delta)^k \sum_{s=1}^{m} |\tau_{n+s,n}|,
\]
\[
\leq |\tau_{k,n}| + \frac{c_5}{(\rho_0(F) - 2\delta)^{k-n}} \sum_{s=1}^{m} |\tau_{n+s,n}|, \quad k \geq n + m + 1. \tag{30}
\]

Now, we estimate \(|b_{\nu,n}| \) in terms of \(|\tau_{k,n}| \). By the Cauchy-Schwarz inequality and the orthonormality of \(p_\nu \), we have
\[
|\langle Qp_k, p_\nu \rangle_\mu|^2 \leq \langle Qp_k, Qp_k \rangle_\mu |p_\nu, p_\nu \rangle_\mu = \max_{z \in E} |Q(z)|^2 = c_6, \quad k, \nu = 0, 1, \ldots. \tag{31}
\]
By (30), (31), and the fact that \(\sum_{k=n+m+1}^{\infty} (\rho_0(F) - 2\delta)^{n-k} < \infty \), we obtain, for \(n \) sufficiently large and for all \(\nu \geq 0 \),
\[
|b_{\nu,n}| \leq \sum_{k=n+m+1}^{\infty} |a_{k,n}| |\langle Qp_k, p_\nu \rangle| \leq \sum_{k=n+m+1}^{\infty} |a_{k,n}|
\]
\[
\leq \sqrt{c_6} \left(\sum_{k=n+m+1}^{\infty} |\tau_{k,n}| + c_5 \sum_{k=n+m+1}^{\infty} \frac{1}{(\rho_0(F) - 2\delta)^{k-n}} \sum_{s=1}^{m} |\tau_{n+s,n}| \right)
\]
\[
\leq c_7 \sum_{k=n+1}^{\infty} |\tau_{k,n}|. \tag{32}
\]
Let \(K \) be a compact subset of \(D_{\rho_m(F)} \) and \(\sigma > 1 \) be such that \(K \subset \overline{D_\sigma} \subset D_{\rho_m(F)} \). Choose \(\delta > 0 \) sufficiently small so that
\[
\rho_2 := \rho_m(F) - \delta > \rho_{m-1}(F), \quad \rho_0(F) - 2\delta > 1, \quad \text{and} \quad \frac{\sigma + \delta}{\rho_2 - \delta} < 1. \tag{33}
\]
We write (17) in the form
\[
|Q(z)Q_{n,m}^\mu(z)F(z) - Q(z)P_{n,m}^\mu(z)| \leq \sum_{\nu=0}^{n+m} |b_{\nu,n}||p_\nu(z)| + \sum_{\nu=n+m+1}^{\infty} |b_{\nu,n}||p_\nu(z)|. \tag{34}
\]
Define
\[A_1^n(z) := \sum_{n=0}^{n+m} |b_{k,n}||p_\nu(z)| \quad \text{and} \quad A_2^n(z) := \sum_{n=m+1}^\infty |b_{k,n}||p_\nu(z)|, \]
and let \(Q_{n,m}^\mu(z) := \prod_{j=1}^{m_n} (z - \lambda_{n,j}) \). Then (34) implies
\[|F(z) - P_{n,m}^\mu(z)| \leq A_1^n(z) + A_2^n(z), \]
for all \(z \in \hat{D}_\sigma := \overline{D}_\sigma \setminus (\cup_{n=0}^{m_n} \{\lambda_{n,1}, \ldots, \lambda_{n,m_n}\} \cup \{\lambda_1, \ldots, \lambda_m\}) \).

Let us bound \(A_1^n(z) \) from above. We will first estimate \(|\tau_{k,n}/Q_{n,m}^\mu(z)| \) for \(z \in \hat{D}_\sigma \) and for \(k \geq n + 1 \). By definition of \(\tau_{k,n} \),
\[\frac{\tau_{k,n}}{Q_{n,m}^\mu(z)} = \frac{1}{2\pi i} \int_{\Gamma_{\rho_2}} s_k(t) F(t) \frac{Q_{n,m}^\mu(t)}{Q_{n,m}^\mu(z)} dt, \quad k \geq n + 1. \tag{35} \]

For \(n \) sufficiently large,
\[|s_k(t)| \leq \frac{c_8}{(\rho_2 - \delta)^k}, \quad k \geq n + 1. \]

Define
\[Q_{n,m,\rho_2}^\mu(t) = \prod_{\lambda_{n,j} \in D_{\rho_2}} (t - \lambda_{n,j}). \]

It is easy to see that
\[\left| \frac{t - \zeta}{z - \zeta} \right| \leq c_9, \]
for all \(t \in \Gamma_{\rho_2}, z \in \hat{D}_\sigma \), and \(\zeta \in \mathbb{C} \setminus D_{\rho_2} \) (according to (33), \(\rho_2 > \sigma \)). Then,
\[\left| \frac{Q_{n,m}^\mu(t)}{Q_{n,m}^\mu(z)} \right| \leq c_9^m \left| \frac{Q_{n,m,\rho_2}^\mu(t)}{Q_{n,m,\rho_2}^\mu(z)} \right| \leq \frac{c_{10}}{|Q_{n,m,\rho_2}^\mu(z)|}, \quad z \in \hat{D}_\sigma, \quad t \in \Gamma_{\rho_2}. \tag{36} \]

By (35), we obtain
\[\left| \frac{\tau_{k,n}}{Q_{n,m}^\mu(z)} \right| \leq \frac{c_{11}}{|Q_{n,m,\rho_2}^\mu(z)|} \frac{1}{(\rho_2 - \delta)^k}, \quad z \in \hat{D}_\sigma, \quad k \geq n + 1, \quad n \geq n_5, \]
which implies
\[\left| \frac{b_{\nu,n}}{Q_{n,m}^\mu(z)} \right| \leq \frac{c_{12}}{|Q_{n,m,\rho_2}^\mu(z)|} \frac{1}{(\rho_2 - \delta)^n}, \quad z \in \hat{D}_\sigma, \quad n \geq n_6. \tag{37} \]

Applying (14) and the maximum modulus principle, we have
\[|p_\nu(z)| \leq c_{13}(\sigma + \delta)^\nu, \quad z \in \overline{D}_\sigma, \quad \nu \geq 0. \tag{38} \]
Using (37) and (38), we obtain that
\[A^1_n(z) = \frac{1}{|Q(z)|} \sum_{\nu=0}^{n+m} |b_{\nu,n}| |p_\nu(z)| \leq \frac{(n+m+c_1|\sigma+\delta|)^{n+m}}{|Q(z)|Q_{n,m,\rho_2}(z)(\rho_2-\delta)^n}, \quad z \in \hat{D}_\sigma. \]

Choose \(\theta > 0 \) such that \((\sigma+\delta)/(\rho_2-\delta) < \theta < 1\). Then, for \(n \) sufficiently large,
\[A^1_n(z) \leq \frac{c_{14}\theta^n}{|Q(z)|Q_{n,m,\rho_2}(z)}, \quad z \in \hat{D}_\sigma. \tag{39} \]

Next, we bound \(A^2_n(z) \). Since \(\deg(QP_{n,m}^\mu) \leq n+m \), by a computation similar to (16), we obtain
\[b_{\nu,n} = \langle QP_{n,m}^\mu F, p_\nu \rangle_\mu = \frac{1}{2\pi i} \int_{\Gamma_{\rho_2}} Q(t)Q_{n,m}^\mu(t)F(t)s_\nu(t)dt, \quad \nu \geq n+m+1. \tag{40} \]

As before, from (14) and (40), we have
\[\frac{|b_{\nu,n}|}{|Q(z)Q_{n,m}^\mu(z)|} \leq \frac{c_{15}}{|Q(z)Q_{n,m,\rho_2}(z)|(\rho_2-\delta)^\nu}, \quad z \in \hat{D}_\sigma, \quad \nu \geq n+m+1, \tag{41} \]
for \(n \geq n_7 \). Using (38) and (41), for \(n \) sufficiently large, we obtain
\[A^2_n(z) \leq \frac{c_{16}(\sigma+\delta)^n}{|Q(z)Q_{n,m,\rho_2}(z)|(\rho_1-\delta)^n} < \frac{c_{17}\theta^n}{|Q(z)Q_{n,m,\rho_2}(z)|}, \quad z \in \hat{D}_\sigma. \tag{42} \]

Combining (39) and (42), for \(n \) sufficiently large, we have
\[\left| F(z) - \frac{P_{n,m}^\mu(z)}{Q_{n,m}(z)} \right| \leq \frac{c_{18}\theta^n}{|Q(z)Q_{n,m,\rho_2}(z)|}, \quad z \in \hat{D}_\sigma. \tag{43} \]

Let \(T_n(z) := Q(z)Q_{n,m,\rho_2}(z) \). Then, \(T_n(z) \) is a monic polynomial of degree at most \(2m \). Let \(\varepsilon > 0 \). Clearly,
\[e_n := \left\{ z \in \hat{D}_\sigma : \left| F(z) - \frac{P_{n,m}^\mu(z)}{Q_{n,m}(z)} \right| \geq \varepsilon \right\} \subset \left\{ z \in \hat{D}_\sigma : |Q(z)Q_{n,m,\rho_2}(z)| \leq \frac{c_{18}\theta^n}{\varepsilon} \right\} =: E_n. \]

The logarithmic capacity is a monotonic set function and satisfies
\[\text{cap} \{ z \in \mathbb{C} : |z^n + a_{n-1}z^{n-1} + \ldots + a_0| \leq \rho^n \} = \rho, \quad \rho > 0. \]

Hence, we find that for \(n \) sufficiently large
\[\text{cap} e_n \leq \text{cap} E_n \leq \left(\frac{1}{\varepsilon}c_{18}\theta^n \right)^{1/\deg T_n} \leq \left(\frac{1}{\varepsilon}c_{18}\theta^n \right)^{1/2m} \leq c_{19}\theta^{n/2m}. \]
This means that \(\text{cap}\{ z \in \mathbb{D}_\sigma \colon \left| F(z) - \frac{P_{n,m}^\mu(z)}{Q_{n,m}^\mu(z)} \right| \geq \varepsilon \} = \text{cap} e_n \to 0 \), as \(n \to \infty \). This proves that \([n/m]^\mu_F\) converges in capacity to \(F \) on each compact subset of \(D_\rho (F) \), as \(n \to \infty \). On the other hand, the number of poles of \([n/m]^\mu_F\) in \(D_\rho (F) \) does not exceed \(m \). Applying [7, Lemma 1] it follows that \([n/m]^\mu_F\) converges to \(F \) uniformly inside \(D_\rho (F) \setminus \{ \lambda_1, \ldots, \lambda_m \} \), as \(n \to \infty \). In addition, we get that each pole of \([n/m]^\mu_F\) attracts as many zeros of \(Q_{n,m}^\mu \) as its order. Therefore, \(\text{deg} Q_{n,m}^\mu = m \) for all sufficiently large \(n \) which in turn implies that \([n/m]^\mu_F\) is uniquely determined for such \(n \). We have obtained (33) and (35) except for the rate of convergence exhibited in those relations.

To prove (36), let \(K \) be a compact subset of \(D_\rho (F) \setminus \{ \lambda_1, \ldots, \lambda_m \} \). Take \(\sigma \) to be the smallest positive number \(\geq 1 \) such that \(K \subset D_\sigma \subset D_\rho (F) \), and choose an arbitrarily small number \(\delta > 0 \) such that \(\rho_2 \) satisfies (33). Note that what we proved above implies that

\[
\max_{z \in D_\rho (F)} |Q_{n,m}^\mu(z)| \leq c_{20}.
\]

From (44), for \(n \geq n_8 \),

\[
|b_{\nu,n}| = \left| \frac{1}{2\pi i} \int_{\Gamma_{\rho_2}} Q(t) Q_{n,m}^\mu(t) F(t) s_\nu(t) dt \right| \leq \frac{c_{21}}{(\rho_2 - \delta)^\nu} \quad \nu \geq n + m + 1,
\]

\[
|\tau_{k,n}| = \left| \frac{1}{2\pi i} \int_{\Gamma_{\rho_2}} Q_{n,m}^\mu(t) F(t) s_k(t) dt \right| \leq \frac{c_{22}}{(\rho_2 - \delta)^k} \quad k \geq n + 1.
\]

Then, by (32) and (44), for \(n \geq n_9 \),

\[
|b_{\nu,n}| \leq c_7 \sum_{k=n+1}^{\infty} |\tau_{k,n}| \leq \frac{c_{23}}{(\rho_2 - \delta)^n}, \quad 0 \leq \nu \leq n + m.
\]

Using (33), we can prove that for \(z \in K \) and for \(n \geq n_{10} \),

\[
|Q(z) Q_{n,m}^\mu(z) F(z) - Q(z) P_{n,m}^\mu(z)| \leq \sum_{\nu=0}^{\infty} |b_{\nu,n}| |p_\nu(z)| \leq c_{24} \left(\frac{\sigma + \delta}{\rho_2 - \delta} + \delta \right)^n. \quad (45)
\]

Consequently, for \(n \geq n_{10} \) we have

\[
\left| F(z) - \frac{P_{n,m}^\mu(z)}{Q_{n,m}^\mu(z)} \right| \leq \frac{c_{25}}{|Q(z) Q_{n,m}^\mu(z)|} \left(\frac{\sigma + \delta}{\rho_2 - \delta} + \delta \right)^n, \quad z \in K.
\]

Since for \(n \) sufficiently large, the zeros of \(Q_{n,m}^\mu(z) \) are distant from \(K \), it follows that

\[
\limsup_{n \to \infty} \| F - [n/m]^\mu_F \|_K^{1/n} \leq \left(\frac{\sigma + \delta}{\rho_2 - \delta} \right) + \delta.
\]
Letting $\delta \to 0^+$ and $\rho_2 \to \rho_m(F)$, we obtain (8).

Finally, we prove (9). We first need to show that for $k = 1, \ldots, \gamma$,

$$\limsup_{n \to \infty} \|(Q_{n,m}^\mu)^{(j)}(\alpha_k)\|^{1/n} \leq \frac{||\Phi(\alpha_k)||}{\rho_m(F)}, \quad j = 0, \ldots, m_k - 1. \quad (46)$$

Let $\varepsilon > 0$ be sufficiently small so that $\overline{B}(\alpha_k, \varepsilon) \subset D_{\rho_m(F)}$ for all $k = 1, \ldots, \gamma$ and the disks $\overline{B}(\alpha_k, \varepsilon)$, $k = 1, \ldots, \gamma$, are pairwise disjoint. As a consequence of (45), we have

$$\limsup_{n \to \infty} \|(z - \alpha_k)^{m_k} FQ_{n,m}^\mu - (z - \alpha_k)^{m_k} P_{n,m}^\mu \|^{1/n} \leq \frac{||\Phi||_{B(\alpha_k, \varepsilon)}}{\rho_m(F)}, \quad (47)$$

so by Cauchy’s integral formula for the derivative, we obtain

$$\limsup_{n \to \infty} \|(z - \alpha_k)^{m_k} FQ_{n,m}^\mu - (z - \alpha_k)^{m_k} P_{n,m}^\mu \|^{1/n} \leq \frac{||\Phi||_{B(\alpha_k, \varepsilon)}}{\rho_m(F)}, \quad (48)$$

for all $j \geq 0$. Since $\varepsilon > 0$ can be taken arbitrarily small, this implies that

$$\limsup_{n \to \infty} |L_k Q_{n,m}^\mu(\alpha_k)|^{1/n} \leq \frac{||\Phi(\alpha_k)||}{\rho_m(F)},$$

where $L_k := \lim_{z \to \alpha_k} (z - \alpha_k)^{m_k} F(z) \neq 0$ (because F has a pole of order m_k at α_k). Therefore,

$$\limsup_{n \to \infty} |Q_{n,m}^\mu(\alpha_k)|^{1/n} \leq \frac{||\Phi(\alpha_k)||}{\rho_m(F)}.$$

Proceeding by induction, let $r \leq m_k - 1$ and assume that

$$\limsup_{n \to \infty} \|(Q_{n,m}^\mu)^{(j)}(\alpha_k)\|^{1/n} \leq \frac{||\Phi(\alpha_k)||}{\rho_m(F)}, \quad j = 0, \ldots, r - 1. \quad (49)$$

Let us show that the above inequality also holds for $j = r$. Using (48), since $r < m_k$, we obtain

$$\limsup_{n \to \infty} \|(z - \alpha_k)^{m_k} FQ_{n,m}^\mu \|^{1/n} \leq \frac{||\Phi(\alpha_k)||}{\rho_m(F)} \quad (50)$$

By the Leibniz formula, we have

$$[(z - \alpha_k)^{m_k} FQ_{n,m}^\mu]^{(r)}(\alpha_k) = \sum_{l=0}^{r} \binom{r}{l} [(z - \alpha_k)^{m_k} F]^{(l)}(\alpha_k) (Q_{n,m}^\mu)^{(r-l)}(\alpha_k).$$

Therefore, by (49), (50), and the fact that $L_k \neq 0$, it follows that

$$\limsup_{n \to \infty} |(Q_{n,m}^\mu)^{(r)}(\alpha_k)|^{1/n} \leq \frac{||\Phi(\alpha_k)||}{\rho_m(F)}$$
which completes the induction and the proof of (46).

Let \(\{q_{k,s}\}_{k=1,\ldots,\gamma, s=0,\ldots,m_k-1}\) be a system of polynomials such that \(\deg q_{k,s} \leq m - 1\) for all \(k, s\) and
\[
q^{(i)}_{k,s}(\alpha_j) = \delta_{j,i} \delta_{i,s}, \quad 1 \leq j \leq \gamma, \quad 0 \leq i \leq m_j - 1.
\]
It is not difficult to check that \(q_{k,s}\) exist (using for example [16, Theorem 1]). Then,
\[
Q^\mu_{n,m}(z) = \sum_{k=1}^{\gamma} \sum_{s=0}^{m_k-1} (Q^\mu_{n,m})^{(s)}(\alpha_k) q_{k,s}(z) + Q_m(z).
\]
This formula combined with (46) imply
\[
\limsup_{n \to \infty} \|Q^\mu_{n,m} - Q_m\|^{1/n} \leq \frac{\max_{k=1,\ldots,\gamma} |\Phi(\alpha_k)|}{\rho_m(F)}.
\]

4 Proofs of inverse type results

We begin stating two lemmas due to V.I. Buslaev (see [2, Theorems 5-6]). These results constitute the basic tools for proving our inverse type results. We make use of the following notation. Let \(f(w) = \sum_{k=-\infty}^{\infty} f_k w^k\) be a Laurent series. We denote the regular part of \(f(w)\) by \(\hat{f}(w) = \sum_{k=0}^{\infty} f_k w^k\). If \(\hat{f}(w)\) is holomorphic at 0, we denote by \(R_m(\hat{f})\) the radius of the largest disk centered at the origin to which \(\hat{f}(w)\) can be extended as a meromorphic function with at most \(m\) poles (counting multiplicities). Define the annulus
\[
T_{\delta,m}(f) := \{w \in \mathbb{C} : e^{-\delta} R_0(\hat{f}) \leq |w| \leq e^\delta R_{m-1}(\hat{f})\},
\]
where \(m \in \mathbb{N}\) and \(\delta \geq 0\). We will use \([\cdot]_n\) to denote the coefficient of \(w^n\) in the Laurent series expansion around 0 of the function in the square brackets. Set
\[
U := \mathbb{C} \setminus \overline{E}.
\]

Lemma 2 (Buslaev [2]). Let \(m \in \mathbb{N}, \delta > 0,\) and let \(f(w) = \sum_{n=-\infty}^{\infty} f_n w^n\) be a Laurent series such that
\[
0 < R_0(\hat{f}) \leq R_{m-1}(\hat{f}) < \infty, \quad \text{and} \quad \lim_{n \to \infty} |f_n|^{1/n} \leq R_0(\hat{f}).
\]
Assume further that
\[
\lim_{n \to \infty} [f_{\alpha_n \eta_n,j}]_n R_{m-1}(\hat{f}) e^{\delta n} = 0, \quad j = 0, \ldots, m - 1, \quad (51)
\]
where the functions $\alpha_n, \eta_{n,j} \in H(T_{\delta,m}(f))$ have the limits

$$
\alpha(w) := \lim_{n \to \infty} \alpha_n(w) \neq 0, \quad \eta_j(w) := \lim_{n \to \infty} \eta_{n,j}(w) = \eta^j(w), \quad j = 0, \ldots, m - 1,
$$

uniformly in $T_{\delta,m}(f)$, $\eta(w)$ is a univalent function in $T_{\delta,m}(f)$, and $\alpha(w)$ has at most m zeros in the annulus $T_{0,m}(f)$. Then the function $\alpha(w)$ has precisely m zeros τ_1, \ldots, τ_m in $T_{0,m}(f)$ and $\lim_{n \to \infty} \tau_{n,j} = \tau_j$, where the $\tau_{n,j}, j = 1, \ldots, m$, are poles of the classical approximants $[n/m]_f(w)$. Moreover, for any functions $K_{n,1}, \ldots, K_{n,m}, L_{n,1}, \ldots, L_{n,m} \in H(T_{\nu,m}(f)), \nu > 0$, that converge to $K_1, \ldots, K_m, L_1, \ldots, L_m$ uniformly on $T_{\nu,m}(f)$,

$$
\lim_{n \to \infty} \frac{\det([fK_{n,i}L_{n,j}]_{i,j=1,\ldots,m})_{i,j=1,\ldots,m}}{\det(f_{n-i-j})_{i,j=0,\ldots,m-1} \det(L_{r,s})_{s,r=1,\ldots,m}} = \frac{\det(K_r(\tau_s))_{s,r=1,\ldots,m}}{W^2(\tau_1, \ldots, \tau_m)}, \quad (52)
$$

where $W(\tau_1, \ldots, \tau_m) = \det(\tau_{s,r}^{-1})_{s,r=1,\ldots,m}$ is the Vandermonde determinant of the numbers τ_1, \ldots, τ_m (for multiple zeros the right-hand side of (52) is defined by continuity). In particular, for any $k_1, \ldots, k_m, q_1, \ldots, q_m \in \mathbb{Z}$, the limits

$$
\lim_{n \to \infty} \frac{\det(f_{n-k_i-q_j})_{i,j=1,\ldots,m}}{\det(f_{n-i-j})_{i,j=0,\ldots,m-1}} = \frac{\det(\tau_{s,r}^{-1})_{s,r=1,\ldots,m}}{W^2(\tau_1, \ldots, \tau_m)},
$$

exist.

The assumptions $R_{m-1}(\hat{f}) < \infty$ and (51) in Lemma 2 can be replaced by the following: the functions $\alpha_n(w)$ and $w^{-j} \eta_{n,j}(w)$ are holomorphic in the set $\overline{\mathbb{C}} \setminus B(0, e^{-\delta} R_{0}(\hat{f}))$, and

$$
[f \alpha_n \eta_{n,j}]_n = 0, \quad j = 0, \ldots, m - 1, \quad n \geq n_0.
$$

Hence, we also have

Lemma 3 (Buslaev [2]). Let $m \in \mathbb{N}, \sigma > 1$, and $f(w) = \sum_{n=-\infty}^{\infty} f_n w^n$ be a holomorphic function in the annulus $\{ 1 < |w| < \sigma \}$. Assume further that

$$
[f \alpha_n \eta_{n,j}]_n = 0, \quad j = 0, \ldots, m - 1, \quad n \geq n_0, \quad (53)
$$

hold, where $\alpha_n(w)$ and $w^{-j} \eta_{n,j}(w)$ are holomorphic functions in U, the limits

$$
\alpha(w) := \lim_{n \to \infty} \alpha_n(w) \neq 0, \quad \eta_j(w) := \lim_{n \to \infty} \eta_{n,j}(w) = \eta^j(w), \quad j = 0, \ldots, m - 1,
$$

exist uniformly inside $U \setminus \{ \infty \}$, the function $\alpha(w)$ has at most m zeros in $U \setminus \{ \infty \}$, and $\eta(w)$ is a univalent function in U such that $\eta(\infty) = \infty$. Then, only one of the following assertions takes place:

(i) $\hat{f}(w)$ is a rational function with at most $m - 1$ poles;
(ii) \(\alpha(w) \) has precisely \(m \) zeros \(\tau_1, \ldots, \tau_m \) in \(U \setminus \{ \infty \} \), these zeros are singularities of \(f(w) \), with an appropriate ordering \(|\tau_1| = R_0(\hat{f}), \ldots, |\tau_m| = R_{m-1}(\hat{f}) \), and the limits \(\lim_{n \to \infty} \tau_n, j = \tau_j \) exist, where the \(\tau_n, j, j = 1, \ldots, m \), are the poles of the classical Padé approximants \(\frac{n}{m} \hat{f}(w) \).

Define

\[
h_n(w) := c_n w^{n+1} s_n(\Psi(w))\Psi'(w).
\]

Lemma 4. Let \(F \in \mathcal{H}(E) \). Define \(f(w) := F(\Psi(w)) \). The functions \(h_n(w) \) are holomorphic in \(U \), \(F_n = [f h_n]_n/c_n \) and \((z F, p_n)_{\mu} = [\Psi f h_n]_n/c_n \). If \(\mu \in \mathcal{S}(E) \), then the sequence \(h_n(w) \) converges to some non-vanishing function \(h(w) \) uniformly inside \(U \).

Proof. Clearly, \(h_n(w) \) is holomorphic in \(U \). Let \(\epsilon > 0 \) be a small number so that \(\Gamma_{1+\epsilon} \) is in the domain of holomorphy of \(F(z) \). By Fubini’s theorem and Cauchy’s integral formula, we have

\[
F_n = \int F(z) p_n(z) d\mu(z) = \int \left(\frac{1}{2\pi i} \int_{\Gamma_{1+\epsilon}} \frac{F(\zeta)}{\zeta - z} \frac{d\mu(z)}{p_n(z)} \right) d\zeta
\]

\[
= \frac{1}{2\pi i} \int_{\Gamma_{1+\epsilon}} F(\zeta) \int_{\Gamma_{1+\epsilon}} \frac{p_n(z)}{\zeta - z} d\mu(z) \frac{d\zeta}{z} = \frac{1}{2\pi i} \int_{\Gamma_{1+\epsilon}} F(\zeta) s_n(\zeta) d\zeta
\]

\[
= \frac{1}{2\pi i} \int_{\gamma_{1+\epsilon}} f(w) s_n(\Psi(w)) \Psi'(w) d\omega = \frac{1}{c_n} \int_{\gamma_{1+\epsilon}} \frac{f(w) h_n(w)}{w^{n+1}} d\omega = \frac{1}{c_n} [fh_n]_n.
\]

The other formula is obtained similarly.

If \(\mu \in \mathcal{S}(E) \) then \(\mu \in \mathcal{R}(E) \) and using Lemma 3 we have

\[
h(w) := \lim_{n \to \infty} h_n(w) = \lim_{n \to \infty} c_n w^{n+1} s_n(\Psi(w))\Psi'(w)
\]

\[
= w\Psi'(w) \lim_{n \to \infty} \frac{c_n w^n}{p_n(\Psi(w))} \lim_{n \to \infty} p_n(\Psi(w)) s_n(\Psi(w)) = \frac{1}{S(\Psi(w))},
\]

uniformly inside \(U \). \(\square \)

Proof of Theorem 4 Using Lemma 3 for \(m = 1 \), we will prove that \((a) \) or \((b) \) imply \((c) \). Let

\[
\tau_n := \frac{F_n}{F_{n+1}}, \quad \lambda_n := \frac{(z F, p_n)_{\mu}}{F_n}.
\]

Set \(\eta_{n,0}(w) \equiv 1, w \in U \), and define

\[
\alpha_{n,1}(w) := \frac{c_n}{c_{n+1}} \frac{\tau_n h_{n+1}(w)}{w} - h_n(w), \quad \alpha_{n,2}(w) := \frac{h_{n+1}(w)(\lambda_{n+1} - \Psi(w))}{w}, \quad w \in U.
\]
The functions $\alpha_{n,1}(w)$ and $\alpha_{n,2}(w)$ are holomorphic in U. By Lemma 4 for $\varepsilon > 0$ sufficiently small so that $f(w)$ is holomorphic in a neighborhood of $\gamma_{1+\varepsilon}$,

$$
[f \alpha_{n,1}]_n = \frac{c_n}{c_{n+1}} \frac{\tau_n}{2\pi i} \int_{\gamma_{1+\varepsilon}} f(w) h_{n+1}(w) \frac{dw}{w^{n+2}} - \frac{1}{2\pi i} \int_{\gamma_{1+\varepsilon}} f(w) h_n(w) \frac{dw}{w^{n+1}}
$$

$$
= \frac{c_n}{c_{n+1}} \frac{F_n}{F_{n+1}} [f h_{n+1}]_{n+1} - [f h_n]_n = 0
$$

and

$$
[f \alpha_{n,2}]_n = \frac{\lambda_{n+1}}{2\pi i} \int_{\gamma_{1+\varepsilon}} f(w) h_{n+1}(w) \frac{dw}{w^{n+2}} - \frac{1}{2\pi i} \int_{\gamma_{1+\varepsilon}} \Psi(w) f(w) h_{n+1}(w) \frac{dw}{w^{n+2}}
$$

$$
= \frac{c_{n+1}}{c_n} \frac{\langle z F, p_{n+1} \rangle_{\mu}}{F_{n+1}} [f h_{n+1}]_{n+1} - [\Psi f h_{n+1}]_{n+1} = 0.
$$

If (a) holds, then

$$
\alpha_1(w) := \lim_{n \to \infty} \alpha_{n,1}(w) = h(w) \left(\frac{\tau}{w} - 1 \right), \quad \text{uniformly inside } U,
$$

and if (b) holds, then

$$
\alpha_2(w) := \lim_{n \to \infty} \alpha_{n,2}(w) = \frac{h(w)(\lambda - \Psi(w))}{w}, \quad \text{uniformly inside } U.
$$

Since $h(w)$ is never zero on U, each function $\alpha_j(w)$, $j = 1, 2$, has at most one zero in U (which is τ). By Lemma 4 $\alpha_1(\infty) = -h(\infty) \neq 0$ and $\alpha_2(\infty) = -\text{cap}(E) h(\infty) \neq 0$. Moreover, if $f_n = 0$ for $n \geq n_0$, then $F_n = [fh_n]_n = 0$ (recall that $h_n(w)$ is analytic at ∞). Therefore, by (ii) in Lemma 3, $|\tau| > 1$ and $\lim_{n \to \infty} f_n/f_{n+1} = \tau$.

Now, using Lemma 2 for $m = 1$, we prove that (c) implies (a) and (b). Assume that $\lim_{n \to \infty} f_n/f_{n+1} = \tau$. Set $\eta_{n,0}(w) \equiv 1$,

$$
\tau_n := \frac{f_n}{f_{n+1}}, \quad \text{and} \quad \alpha_n(w) := \frac{\tau_n}{w} - 1, \quad z \in U.
$$

Therefore,

$$
[f \alpha_n]_n = \tau_n f_{n+1} - f_n = 0,
$$

$$
\alpha(w) := \lim_{n \to \infty} \alpha_n(w) = \frac{\tau}{w} - 1, \quad \text{uniformly inside } U,
$$

$\alpha(\infty) = -1$, and $\alpha(w)$ has at most one zero in U. Applying (52) in Lemma 2 if we select $K_{n,1}(w) = h_n(w)$ and $L_{n,1}(w) = 1$, we have

$$
\lim_{n \to \infty} \frac{[fh_n]_n}{f_n} = h(\tau),
$$

20
and if we select \(K_{n,1}(w) = \Psi(w)h_n(w) \) and \(L_{n,1}(w) = 1 \), we have
\[
\lim_{n \to \infty} \frac{[f_n]_n}{f_n} = \Psi(\tau)h(\tau).
\]
Since \(h(w) \) vanishes nowhere in the domain \(U \),
\[
\lim_{n \to \infty} \frac{F_n}{F_{n+1}} = \lim_{n \to \infty} \frac{c_{n+1} [f_n]_n}{c_n [f_{n+1}]_{n+1}} = \lim_{n \to \infty} \frac{c_{n+1} [f_n]_n}{c_n} \frac{f_n}{f_{n+1}} \frac{f_{n+1}}{[f_{n+1}]_{n+1}} = \tau,
\]
and
\[
\lim_{n \to \infty} \frac{\langle zF, p_n \rangle \mu}{F_n} = \lim_{n \to \infty} \frac{c_n [f_n]_n}{c_n [f_{n+1}]_n} = \lim_{n \to \infty} \frac{[f_n]_n}{f_n} = \Psi(\tau) = \lambda.
\]
The proof is complete.

Proof of Theorem. First of all, we prove that \((b)\) implies \((a)\) using Lemma 3. We assume that the zeros of \(Q^\mu_{n,m}(z) \) have limits \(\lambda_1, \ldots, \lambda_m \), as \(n \to \infty \). For \(w \in U \), we define
\[
\alpha_n(w) := w^{-m} h(w) Q^\mu_{n,m}(\Psi(w)),
\]
\[
\eta_{n,j}(w) := \frac{c_{n+m-j} w^{n+m+1} s_{n+m-j}(\Psi(w)) \Psi'(w)}{h(w)}, \quad j = 0, \ldots, m - 1.
\]
The functions \(\alpha_n(w) \) and \(w^{-j} \eta_{n,j}(w) = h_{n+m-j}(w)/h(w), \) \(j = 1, \ldots, m-1 \), are holomorphic in \(U \), and
\[
\alpha(w) := \lim_{n \to \infty} \alpha_n(w) = w^{-m} h(w) \prod_{j=1}^m (\Psi(w) - \lambda_j),
\]
\[
\eta_j(w) := \lim_{n \to \infty} \eta_{n,j}(w) = w^j, \quad j = 0, 1, \ldots, m-1,
\]
uniformly inside \(U \setminus \{\infty\} \). Since \(h(w) \) is never zero in \(U \), \(\alpha(w) \) has at most \(m \) zeros in \(U \setminus \{\infty\} \). By Cauchy’s integral formula, Fubini’s theorem, and the definition of \(Q^\mu_{n,m} \), we have, for \(\epsilon > 0 \) sufficiently small so that \(F(z) \) is analytic on \(D_{1+\epsilon} \), and for \(j = 0, \ldots, m-1 \),
\[
[f \alpha_n \eta_{n,j}]_n = \frac{c_n}{2\pi i} \int_{\Gamma_{1+\epsilon}} F(\Psi(w)) Q^\mu_{n,m}(\Psi(w)) s_{n+m-j}(\Psi(w)) \Psi'(w) dw
\]
\[
= \frac{c_n}{2\pi i} \int_{\Gamma_{1+\epsilon}} F(t) Q^\mu_{n,m}(t) s_{n+m-j}(t) dt = \frac{c_n}{2\pi i} \int_{\Gamma_{1+\epsilon}} F(t) Q^\mu_{n,m}(t) \frac{p_{n+m-j}(z)}{t - z} d\mu(z) dt
\]
\[
= c_n \int_{\Gamma_{1+\epsilon}} \frac{1}{2\pi i} \int_{\Gamma_{1+\epsilon}} F(t) Q^\mu_{n,m}(t) dt p_{n+m-j}(z) d\mu(z) = \int F(z) Q^\mu_{n,m}(z) p_{n+m-j}(z) d\mu(z) = 0.
\]
Therefore, the assumptions of Lemma 3 are satisfied. If the regular part of \(f(w) \) is a rational function with at most \(m - 1 \) poles, then \(F(z) \) is a rational function with at most
$m - 1$ poles which implies that $\Delta_{n,m}(F, \mu) = 0$ for n sufficiently large. This is impossible, because $\deg(Q_{n,m}^\mu) = m$, for n sufficiently large. Therefore, by Lemma $\ref{lem:alpha}$, $\alpha(w)$ has precisely m zeros τ_1, \ldots, τ_m in $U \setminus \{\infty\}$ and the limits of the poles of the classical Padé approximants $[n/m] f(w)$ are τ_1, \ldots, τ_m, as $n \to \infty$.

Now, we prove that (a) implies (b) using Lemma $\ref{lem:alphahat}$. Assume that the poles of $[n/m] f(w)$ have limits τ_1, \ldots, τ_m, as $n \to \infty$. We assume further that $Q_{n,m}(w)$ is monic.

Define, for $w \in U$,
\[\tilde{\alpha}_n(w) := w^{-m} Q_{n,m}(w), \]
\[\tilde{\eta}_{\nu,\nu}(w) := w^\nu, \quad \nu = 0, \ldots, m - 1. \]

Then,
\[\tilde{\alpha}(w) := \lim_{n \to \infty} \tilde{\alpha}_n(z) = w^{-m} \prod_{j=1}^{m} (w - \tau_j), \]
\[\tilde{\eta}_\nu(w) = w^\nu, \quad \nu = 0, \ldots, m - 1, \]
uniformly inside $U \setminus \{\infty\}$. By the definition of $Q_{n,m}(z)$, it follows that, for $\epsilon > 0$ sufficiently small so that $f(w)$ is holomorphic on $\gamma_{1+\epsilon}$ and for n sufficiently large,
\[[f \tilde{\alpha}_n \tilde{\eta}_{\nu}]_n = [f \tilde{\alpha} \tilde{\eta}_{\nu}]_n = \frac{1}{2\pi i} \int_{\gamma_{1+\epsilon}} \frac{f(w) Q_{n,m}(w)}{w^{\nu+n+1}} dw = 0, \quad \nu = 0, \ldots, m - 1. \]

We can easily check the rest of the conditions required in Lemma $\ref{lem:alphahat}$ for $\tilde{\alpha}(w)$ and $\tilde{\eta}_{\nu}(w)$, so we can apply the equality (52) in Lemma $\ref{lem:alphahat}$.

Next, set
\[\hat{Q}_{n,m}(z) := \begin{vmatrix} c_{n+1}(F, p_{n+1})_\mu & c_{n+1}(zF, p_{n+1})_\mu & \cdots & c_{n+1}(z^{m}F, p_{n+1})_\mu \\ \vdots & \vdots & \ddots & \vdots \\ c_{n+m}(F, p_{n+m})_\mu & c_{n+m}(zF, p_{n+m})_\mu & \cdots & c_{n+m}(z^{m}F, p_{n+m})_\mu \\ 1 & z & \cdots & z^{m} \end{vmatrix}. \tag{54} \]

Note that the polynomials $\hat{Q}_{n,m}(z)$ satisfy
\[\langle \hat{Q}_{n,m}(F, p_\nu)_\mu \rangle = 0, \quad \nu = n + 1, \ldots, n + m, \tag{55} \]
and if we show that $\Delta_{n,m}(F, \mu) \neq 0$ (the coefficient of $\hat{Q}_{n,m}(z)/\prod_{j=1}^{m} c_{n+j}$), which will be verified at the end of this proof, then $Q_{n,m}^\mu(z)$ is unique and
\[Q_{n,m}^\mu(z) = \frac{\hat{Q}_{n,m}(z)}{\Delta_{n,m}(F, \mu) \prod_{j=1}^{m} c_{n+j}}. \]
Using Cauchy’s integral formula and Fubini’s theorem, for \(\varepsilon > 0 \) sufficiently small so that \(F(z) \) is holomorphic on \(D_{1+\varepsilon} \), for \(j = 1, \ldots, m+1 \), and \(\nu = 1, \ldots, m \), we have

\[
c_{n+m}(\zeta^{j-1} F, p_{n+\nu}) = c_{n+m} \int \frac{1}{2\pi i} \int_{\Gamma_{1+\varepsilon}} \frac{\zeta^{j-1} F(\zeta)}{\zeta - z} d\zeta \, d\mu(z)
\]

\[
= \frac{c_{n+m}}{2\pi i} \int_{\Gamma_{1+\varepsilon}} \frac{\zeta^{j-1} F(\zeta)}{\zeta - z} d\mu(z) \, d\zeta = \frac{c_{n+m}}{2\pi i} \int_{\Gamma_{1+\varepsilon}} \frac{\zeta^{j-1} F(\zeta) s_{n+\nu}(\zeta)}{\zeta - z} d\zeta
\]

Computing the determinant in (54) expanding along the last row and applying the previous formula, we obtain

\[
\tilde{Q}_{n,m}(z) = \sum_{k=0}^{m} (-1)^{m+k} z^k \det([f_{K_{n,t} L_{n,r}}]_{t=1,\ldots,m, r=1,\ldots,k+2,\ldots,m+1})
\]

where

\[
K_{n,t}(w) := w^{-t} h_{n,t}(w), \quad t = 1, \ldots, m,
\]

\[
L_{n,r}(w) := \Psi^{-1}(w), \quad r = 1, \ldots, m+1.
\]

Moreover, all the functions \(K_{n,t}(w) \) and \(L_{n,r}(w) \), are holomorphic in \(U \setminus \{\infty\} \), and

\[
K_{t}(w) := \lim_{n \to \infty} K_{n,t}(w) = w^{-t} h(w), \quad t = 1, \ldots, m,
\]

\[
L_{r}(w) := \Psi^{-1}(w), \quad r = 1, \ldots, m+1,
\]

uniformly inside \(U \setminus \{\infty\} \). By Lemma 2 and (56), we have that \(\tau_1, \ldots, \tau_m \in U \) and

\[
\lim_{n \to \infty} \frac{\det(f_{n-i-j})_{i,j=0,1,\ldots,m-1}}{\det(f_{n-i-j})_{i,j=0,1,\ldots,m-1}} = \sum_{k=0}^{m} (-1)^{m+k} z^k \det([K_{r}(\tau_t)]_{t=1,\ldots,m} \det([L_{r}(\tau_t)]_{t=1,\ldots,m, r=1,\ldots,k+2,\ldots,m+1})
\]

\[
= \frac{\det(K_{r}(\tau_t))_{r,t=1,2,\ldots,m}}{W^2(\tau_1, \tau_2, \ldots, \tau_m)} = \frac{1}{W^2(\tau_1, \tau_2, \ldots, \tau_m)} \begin{vmatrix} 1 & \Psi(\tau_1) & \cdots & \Psi^{m}(\tau_1) \\ \vdots & \vdots & \ddots & \vdots \\ 1 & \Psi(\tau_m) & \cdots & \Psi^{m}(\tau_m) \\ 1 & z & \cdots & z^m \end{vmatrix}
\]

\[
= (-1)^{(m)(m-1)/2} \prod_{i=1}^{m} h(\tau_i) \prod_{1 \leq i < j \leq m} \left(\frac{\Psi(\tau_j) - \Psi(\tau_i)}{\tau_j - \tau_i} \right) z^m + \ldots,
\]
where $W(\tau_1, \tau_2, \ldots, \tau_m) = \det(\tau_t^{r-1})_{t,r=1,\ldots,m}$ is the Vandermonde determinant of the numbers τ_1, \ldots, τ_m. Since the degree of the polynomial in the last expression is m, the degree of $Q_n(z)$ is m for all n sufficiently large. This implies that $\Delta_n, m(F, \mu) \neq 0$ and $Q_n^m(z) = \tilde{Q}_n(z)/\prod_{j=1}^m c_{n+j}$. Moreover, the zeros of the polynomial in the second last equality are $\lambda_1, \ldots, \lambda_m$, so the zeros of $\tilde{Q}_n(z)$ (and $Q_n^m(z)$) converge to $\lambda_1, \ldots, \lambda_m$, as $n \to \infty$. \hfill \Box

5 Acknowledgement

The first author would like to thank Brian Simanek for very useful discussions and references.

References

[1] D. Barrios Rolanía, G. López Lagomasino, and E.B. Saff, Asymptotics of orthogonal polynomials inside the unit circle and Szegő-Padé approximants, J. Comp. Appl. Math., 133 (2001), 171-181.

[2] V.I. Buslaev, An analogue of Fabry's theorem for generalized Padé approximants, Mat. Sb., 200 (2009), 39-106.

[3] J. Cacoq and G. López Lagomasino, Convergence of row sequences of simultaneous Fourier-Padé approximation, Jaen J. Approx. 4 (2012), 10120.

[4] J. Cacoq, B. de la Calle Ysern, and G. López Lagomasino, Direct and inverse results on row sequences of Hermite-Padé approximants, Constr. Approx. (2013) published on-line DOI: 10.1007/s00365-013-9188-0

[5] E. Fabry, Sur les points singuliers d'une fonction données par son développement de Taylor, Ann. École Norm. Sup. Paris, 13 (1896), 367-399.

[6] L.Ya. Geronimus, Orthogonal Polynomials, Consultants Bureau, New York, 1961.

[7] A.A. Gonchar, On the convergence of generalized Padé approximants for meromorphic functions, Math. USSR Sb., 27 (1975), 503-514.

[8] A.A. Gonchar, Poles of rows of the Padé table and meromorphic continuation of functions, Sb. Math., 43 (1981), 527-546.

[9] P.R. Graves-Morris and E.B. Saff, A de Montessus theorem for vector-valued rational interpolants, in: P.R. Graves-Morris, E.B. Saff and R.S. Varga, Eds., Rational Approximation and Interpolation, Lecture Notes in Math. 1105, Springer, Berlin, (1984), 227-242.
[10] M.H. Gutknecht and E.B. Saff, A de Montessus type theorem for CF approximation, J. Comput. Appl. Math., 16 (1986), 251-254.

[11] J. Hadamard, Essai sur l’étude des fonctions données par leur développement de Taylor, J. Math., 8 (1892), 101-186.

[12] R. de Montessus de Ballore, Sur les fractions continues algébrique, Bull. Soc. Math. France, 30 (1902), 28-36.

[13] E.B. Saff, Regions of meromorphy determined by the degree of best rational approximation, Proc. Amer. Math. Soc., 29 (1971), 30-38.

[14] E.B. Saff, An extension of Montessus de Ballore’s theorem on the convergence of interpolating rational functions, J. Approx. Theory, 6 (1972), 63-67.

[15] B. Simanek, Ratio Asymptotics, Hessenberg matrices, and weak asymptotic measures, submitted.

[16] G. Sobczyk, Generalized Vandermonde determinants and applications, Aportaciones Matematicas, Serie Comunicaciones, 30 (2002), 203-213.

[17] H. Stahl and V. Totik, General Orthogonal Polynomials, Vol. 43, Cambridge University Press, 1992.

[18] S.P. Suetin, On the convergence of rational approximations to polynomial expansions in domains of meromorphy of a given function, Math USSR Sb., 34 (1978), 367-381.

[19] S.P. Suetin, On de Montessus de Ballore’s theorem for nonlinear Padé approximants of orthogonal expansions and Faber series, Soviet Math. Dokl., 22 (1980), 274-277.

[20] S.P. Suetin, On poles of the mth row of a Padé table, Sb. Math. 48 (1984), 493-497.

[21] S.P. Suetin, On an inverse problem for the mth row of the Padé table, Sb. Math. 52 (1985), 231–244.

[22] S.P. Suetin, Padé approximants and efficient analytic continuation of power series, Usp. Mat. Nauk, 57 (2002), 45-142.

Nattapong Bosuwan, Edward B. Saff
Center for Constructive Approximation
Department of Mathematics
Vanderbilt University
1326 Stevenson Center
37240 Nashville, TN, USA
email: nattapong.bosuwan@vanderbilt.edu, edward.b.saff@vanderbilt.edu
G. López Lagomasino
Departamento de Matemáticas
Universidad Carlos III de Madrid
c/ Avda. de la Universidad, 30
28911, Leganés, Spain
email: lago@math.uc3m.es