BCOV RINGS ON ELLIPTIC CURVES AND ETA FUNCTION

SO OKADA

Abstract. Associated Legendre functions of the first kind give a family of BCOV rings on elliptic curves. We prove that the family is parametrized by \(q \)-exponents of the eta function \(\eta(q^{24}) \). Our method involves a classification of rational solutions of a Riccati equation under some constraints.

1. Introduction

In this paper, we parametrize a family of BCOV rings on elliptic curves by the eta function. As such, this paper can be seen as a step forward on understanding meromorphic ambiguity on BCOV theory [BCOV] by a modular form.

BCOV rings [Hos] have been introduced to study BCOV holomorphic anomaly equations of Bershadsky, Cecotti, Ooguri and Vafa [BCOV]. BCOV theory has gained much interest in mathematics and physics [YamYau, Ali, AliLan, KanZho].

A major challenge of BCOV theory is meromorphic ambiguity to compute Gromov-Witten potentials. For this, let us take \(\Gamma = \langle \left(\begin{array}{cc} 1 & 0 \\ -1 & 1 \end{array} \right), \left(\begin{array}{cc} 1 & 1 \\ 0 & 1 \end{array} \right) \rangle \subset \text{SL}_2(\mathbb{Z}) \) and recall a finitely-generated \(\Gamma \)-invariant BCOV ring \(\mathcal{R}^\Gamma_{BCOV} \) on elliptic curves. This ring is fundamental in BCOV rings. To define each \(\mathcal{R}^\Gamma_{BCOV} \), we need to choose \(r(x) \in \mathbb{C}(x) \) that solves the following Riccati equation. This choice corresponds to the meromorphic ambiguity of the BCOV theory. For \(x \in \mathbb{P}^1, \lambda \in \mathbb{Q} \), and the Griffith-Yukawa coupling \(C_x = \frac{1}{1-432x} \), there is the Riccati equation:

\[
(1.1) \quad r'(x) + C_x r^2(x) - 60 = \lambda C_x.
\]

For Legendre associated functions of the first and second kinds \(P^\beta_\alpha(x) \) and \(Q^\beta_\alpha(x) \) and \(C \in \mathbb{P}^1 \), Equation (1.1) admits the general solution:

\[
r(x, \lambda, C) = \frac{1}{12} \left(5 + 4320x + (-5 + 12\sqrt{\lambda}) \frac{CP^2\sqrt{\lambda}(-1 + 864x) + Q^2\sqrt{\lambda}(-1 + 864x)}{CP^2\sqrt{\lambda}(-1 + 864x) + Q^2\sqrt{\lambda}(-1 + 864x)} \right).
\]

By taking \(C \to \infty \), set

\[
r(x, \lambda) = \frac{1}{12} \left(-5 + 4320x + (-5 + 12\sqrt{\lambda}) \frac{P^2\sqrt{\lambda}(-1 + 864x)}{P^2\sqrt{\lambda}(-1 + 864x)} \right).
\]

Let \(R_\infty \) be the family of \(\mathcal{R}^\Gamma_{BCOV} \) for all \(r(x, \lambda) \in \mathbb{C}(x) \). Let \(\chi(n) \) be the Dirichlet character of mod 12 such that \(\chi(\pm 1) = 1 \) and \(\chi(\pm 5) = -1 \). We prove the following.

Theorem 1.1. The family \(R_\infty \) of finitely-generated \(\Gamma \)-invariant BCOV rings on elliptic curves is parametrized by the \(q \)-exponents of the eta function \(\eta(q^{24}) = \sum_{n=1}^{\infty} \chi(n) q^{n^2} = q - q^{25} - q^{49} + q^{121} + q^{169} + \cdots \). Namely, \(r(x, \lambda) \in \mathbb{C}(x) \) if and only if \(144\lambda = 1, 25, 49, 121, 169, \cdots \), squares of numbers prime to 6.
2. Proofs

To study when \(r(x, \lambda) \in \mathbb{C}(x) \), let us first consider \(r(x, \lambda) \) at a fixed singularity of Equation 1.1.

Lemma 2.1. If \(r(x, \lambda) \in \mathbb{C}(x) \), then \(144\lambda = 1, 25, 49, 121, 169, \cdots \).

Proof. At \(x = \infty \), unless \(\frac{1}{6} - 2\sqrt{\lambda} \in \mathbb{Z}_{\leq 0} \), the Laurent expansion of \(r(x, \lambda) \) is

\[
72x - \frac{6 \cdot 2^\frac{3}{2} \cdot \sqrt{\pi} \cdot \Gamma\left(\frac{5}{6} - 2\sqrt{\lambda}\right)}{\Gamma(\frac{1}{3}) \cdot \Gamma(\frac{1}{3} - 2\sqrt{\lambda})} x^\frac{1}{2} + O\left(\frac{1}{x}\right)
\]

Since \(r(x, \lambda) \in \mathbb{C}(x) \), \(\frac{1}{6} - 2\sqrt{\lambda} \in \mathbb{Z}_{\leq 0} \). \(\square \)

For \(n, m \in \mathbb{R} \), let us study \(f(n, m, x) = \frac{P_{m+1}^n(x)}{P_m^n(x)} \) when \(m \) increases.

Lemma 2.2. If \(n \neq m \), we have

\[
x - f(n, m+1, x) = \frac{(n + m + 1)(1 - x^2)}{(n - m + 1)f(n, m, x) - (n + m + 1)x}
\]

Proof. Recall the three-term recurrences [DLMF] 14.10.1,14.10.2:

(1.1) \((1 - x^2)^\frac{1}{2} P_{n+2}^m(x) + 2(m + 1)x P_{n+1}^m(x) = -(n - m)(n + m + 1)(1 - x^2)^\frac{1}{2} P_n^m(x) \),

(2.2) \((1 - x^2)^\frac{1}{2} P_{n+1}^{m+1}(x) - (n + m + 1) P_n^m(x) = -(n + m + 1)x P^n_m(x) \).

By Equation 2.2, put

(2.3) \((1 - x^2)^\frac{1}{2} P_{n+2}^m(x) - (n - m) P_{n+1}^{m+1}(x) + (n + m + 2)x P_{n}^{m+1}(x) = 0 \).

Let \(F(n, m, x) = (n-m+1)f(x)-(n+m+1)x \). Then, by \(P_{n+1}^m(x) = P_n^m(x)f(n, m, x) \) and Equation 2.2

(2.4) \(P_{n+1}^{m+1}(x) = (1 - x^2)^{-\frac{1}{2}} P_n^m(x) F(n, m, x) \).

By Equations 2.3 and 2.4

(2.5) \((1 - x^2)^\frac{1}{2} P_{n+2}^m(x) - (n - m) P_{n+1}^{m+1}(x) = -(n + m + 2)x(1 - x^2)^{-\frac{1}{2}} P_n^m(x) F(n, m, x) \)

Thus, subtracting Equation 2.1 from Equation 2.5 gives

\[
-2(m + 1)x P_{n+1}^m(x) - (n - m) P_{n+1}^{m+1}(x) = P_n^m(x)(-n + m + 2)x(1 - x^2)^{-\frac{1}{2}} F(n, m, x) + (n - m)(n + m + 1)(1 - x^2)^{-\frac{1}{2}}
\]

Thus,

\[
-2(m + 1)x - (n - m) \frac{P_{n+1}^{m+1}(x)}{P_{n+1}^m(x)} = -2(m + 1)x - (n - m)f(n, m + 1, x) = \frac{P_n^m(x)}{P_{n+1}^m(x)} (-(n + m + 2)x(1 - x^2)^{-\frac{1}{2}} F(n, m, x) + (n - m)(n + m + 1)(1 - x^2)^{-\frac{1}{2}})
\]
Again, by Equation 2.4,

\[-2(m+1)x - (n-m)f(n,m+1,x) = \]
\[P_m^m(x)(-n + m + 2)x(1 - x^2)^{-\frac{1}{2}} F(n,m,x) + (n-m)(n+m+1)(1-x^2) = \]
\[(x^2-1)^{-\frac{1}{2}} P_n^m(x)F(n,m,x) = \]
\[-(n+m+2)x F(n,m,x) + (n-m)(n+m+1)(1-x^2) = \]
\[F(n,m,x) = \]
\[-(n+m+2)x + \frac{(n-m)(n+m+1)(1-x^2)}{F(n,m,x)}. \]

Thus, the lemma holds. \(\Box\)

Proof. We confirm the converse of Lemma 2.1. Since \(f\left(-\frac{1}{144}, \frac{1}{144}, x\right) = x, r(x, \frac{1}{144}) = -\frac{1}{17} + 72x \in \mathbb{C}(x) \). Thus, by Lemma 2.2 \(r(x, \frac{1}{144}) \in \mathbb{C}(x) \) for \(i = 1, 13, \ldots \). If \(\lambda = \frac{5^2}{144} \), since \(-5 + 12\sqrt{\lambda} = 0, r(x, \lambda) = -\frac{5}{12} + 360x \in \mathbb{C}(x) \). For \(\lambda = \frac{3^2}{144} \) of \(i = 11, 17, 23, \ldots \), \(f\left(-\frac{1}{144}, \frac{1}{144}, x\right) = \frac{1}{x} \) implies \(r(x, \lambda) \in \mathbb{C}(x) \) by Lemma 2.2. Thus, the assertion holds.

Remark 2.3. By Lemma 2.1, we do not have to assume \(\lambda \in \mathbb{Q} \) to define \(R_{BCOV}^i \) for \(r(x, \lambda) \). By the proof of the theorem and Lemma 2.2, we observe that \(r(x, \lambda) \in \mathbb{C}(x) \) implies \(r(x, \lambda) \in \mathbb{Q}(x) \). Lemma 2.2 holds for associated Legendre functions of the second kind. But, \(r(x, \frac{1}{144}, C) \notin \mathbb{C}(x) \) unless \(C \to \infty \), since the Laurent expansion of \(r(x, \frac{1}{144}, C) \) at \(x = \infty \) is \(72x + \frac{4(-2)^{\frac{1}{2}}(144-72x)\pi}{\sqrt{3\pi(2Ci+\pi)}} + O\left(\frac{1}{x}\right) \).

Acknowledgments

The author would like to thank Professors S. Hosono and Y. Ohyama for their helpful communications.

References

[Ali] M. Alim, *Polynomial Rings and Topological Strings*, String-Math 2013, 197–207, Proc. Sympos. Pure Math., 88, Amer. Math. Soc., Providence, RI, 2014.

[AliLan] M. Alim and J. D. Lange, *Polynomial Structure of the (Open) Topological String Partition Function*, J. High Energy Phys. 2007, no. 10, 045, 13 pp.

[BCOV] M. Bershadsky, S. Cecotti, H. Ooguri, and C. Vafa, *Holomorphic Anomalies in Topological Field Theories*, Nuclear Phys. B 405 (1993), no. 2-3, 279–304.

[DLMF] NIST Digital Library of Mathematical Functions. http://dlmf.nist.gov/, Release 1.0.10 of 2015-08-07. Online companion to [OLBC10].

[Hos] S. Hosono, *BCOV ring and holomorphic anomaly equation*, New developments in algebraic geometry, integrable systems and mirror symmetry (RIMS, Kyoto, 2008), 79–110, Adv. Stud. Pure Math., 59, Math. Soc. Japan, Tokyo, 2010.

[KanZho] A. Kanazawa and J. Zhou, *Lectures on BCOV holomorphic anomaly equations*, Calabi-Yau Varieties: Arithmetic, Geometry and Physics Volume 34 of the series Fields Institute Monographs pp 445–473.

[YamYau] S Yamaguchi and S. T. Yau, *Topological string partition functions as polynomials*, J. High Energy Phys. 2004, no. 7, 047, 20 pp.

National Institute of Technology, Oyama College. Tochigi, Japan 323-0806

E-mail address: okada@oyama-ct.ac.jp