This is a repository copy of *Synthesis and in-situ ion irradiation of A-site deficient zirconate perovskite ceramics.*

White Rose Research Online URL for this paper:
http://eprints.whiterose.ac.uk/165187/

Version: Published Version

Article:
Lawson, S.M., Greaves, G., Blackburn, L.R. orcid.org/0000-0002-5889-2035 et al. (3 more authors) (2020) Synthesis and in-situ ion irradiation of A-site deficient zirconate perovskite ceramics. *Journal of Materials Chemistry A.* ISSN 2050-7488

https://doi.org/10.1039/D0TA05255H

Reuse
This article is distributed under the terms of the Creative Commons Attribution (CC BY) licence. This licence allows you to distribute, remix, tweak, and build upon the work, even commercially, as long as you credit the authors for the original work. More information and the full terms of the licence here:
https://creativecommons.org/licenses/

Takedown
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.
Synthesis and in situ ion irradiation of A-site deficient zirconate perovskite ceramics†

Sebastian M. Lawson, Graeme Greaves, Lewis R. Blackburn, Rachel Chapman, Neil C. Hyatt and Claire L. Corkhill

The influence of A-site vacancies on zirconate perovskite structured ceramics of formula A$_{1-x}$La$_{2x/3}$ZrO$_3$ ($A=Ca$, Sr, Ba) has been investigated using 400 keV Kr$^+$ in situ ion irradiation in a TEM with varied temperature from 100 K to 673 K. The solubility limit of La within the Ba$_{1-x}$La$_{2x/3}$ZrO$_3$ system was 5.33 mll% ($x=0.08$) using a solid-state synthesis route, with space group symmetry of Pm$ar{3}$m for $x \leq 0.08$. The Ca$_{0.9}$La$_{0.067}$ZrO$_3$ and Sr$_{0.9}$La$_{0.067}$ZrO$_3$ samples were found to synthesise single-phase with the Pcmn and Pbmn symmetries of their respective end member structures. The addition of 6.67 mll% La ($x=0.1$) in CaZrO$_3$ and SrZrO$_3$ was found to decrease the critical temperature of amorphisation, T_c, in comparison with the undoped structures. A similar decrease was found for the 5.33 mll% La doped BaZrO$_3$ structure. Namely, values were observed for doped samples of \approx 404 K, \approx 520 K and \approx 621 K ($A= Sr$, Ca, Ba respectively), compared to \approx 440 K, \approx 623 K and \approx 675 K for SrZrO$_3$, CaZrO$_3$ and BaZrO$_3$, respectively. This follows similar behaviour to that observed in titanate systems at low dopant levels, and these findings have been discussed in relation to both the presence of cation vacancies in the doped samples and the presence of the La cation. Void formation, growth and induced morphology changes have also been characterised, onset by ion irradiation.

1. Introduction

Perovskite structured materials have been widely investigated for various material applications, including as fuel cells, dielectric resonators, photovoltaics, light emitting diodes, lasers, next generation nuclear fuels and as high-temperature superconducting magnets. Another potential application is in the immobilisation of nuclear waste streams as a host ceramic matrix. The namesake perovskite CaTiO$_3$ has been widely studied as a direct immobilisation matrix, including as a constituent of the SYNROC study, while it is a commonly observed secondary actinide bearing phase when targeting zirconolite structured systems.

In the context of nuclear waste disposal, waste immobilisation matrices will be required to operate with a service lifetime on geological timescales ($\approx 10^8$ years) due to the long half-lives of the isotopes in question. Over such timescales, doping a ceramic structure like perovskite with actinides, i.e. U, Pu, Am, will impart significant radiation damage to the crystalline matrix from alpha-decay processes. Key to ceramic performance in this context will be the damage required to amorphise the crystalline structure, a consequence of which could be increased leaching rates in contact with ground water should a disposal canister fail. In this context, previous studies of radiation damage in perovskites have focused on the titanate series, while niobates and tantalates have also received attention. Zirconate systems, namely CaZrO$_3$, SrZrO$_3$ and BaZrO$_3$, have received little attention, although the response of CaZrO$_3$ to swift heavy ions has been previously investigated. The focus of the present study, therefore, is investigation of radiation damage effects within these zirconate systems using in situ ion irradiation techniques. Such techniques are frequently employed to calculate amorphisation doses over accelerated timescales.

Perovskite structured materials take the base structural formula ABO$_3$ and an array of elemental combinations have been synthesised and characterised. The aristotype perovskite structure is exhibited by SrTiO$_3$ in a cubic Pm$ar{3}$m arrangement, with Sr cations located at the unit cell corners, a body centred Ti cation and face-centred corner sharing O atoms, forming corner sharing TiO$_6$ octahedra throughout the structure. While SrTiO$_3$ exhibits the ideal ratio of A/B site cation radii (as governed by the Goldschmidt tolerance factor), distorted structures can form when this ratio changes through the tilting of BO$_6$ octahedra and, for example, anti-parallel A-site cation displacement. Within this study, the CaZrO$_3$, SrZrO$_3$ and BaZrO$_3$ compositions have been investigated, and these structures are shown graphically in Fig. 1. CaZrO$_3$ presents at room temperature in the...
A further consequence of doping the perovskite ABO$_3$ structure is the likely induction of cation vacancy defects. Perovskite structures have been reported to exhibit a remarkable tolerance for such cation deficiency, and this has been hypothesised in a disposal context through doping experiments with La and Gd. When considering the multivalent nature of these isotopes suitable for ceramic immobilisation, understanding the effects of cation deficiency on radiation effects is of key interest. Titanate compositions investigated in this regard include the A-site deficient Sr$_{1-x}$La$_{3x/3}$TiO$_3$ (ref. 62) and Ca$_{1-x}$La$_{2x/3}$TiO$_3$ (ref. 63 and 64) systems. A-site cation vacancies are produced within these systems whereby a cation vacancy is induced for every two dopant La cations. In both of these systems, in situ ion irradiation in a transmission electron microscope (TEM) has shown a reduction in the critical temperature of amorphisation, T_c, in the 0.1 ≤ x ≤ 0.4 region. This value is defined as the temperature at which the damage rate equals the rate of recovery from damage, for a specific irradiation condition. A lower T_c value can therefore be interpreted as a sample having recovery characteristics that require less thermal energy to suppress amorphisation under irradiation. While this could be linked to a possible higher displacement energy for La, for x ≤ 0.5 T_c was found to increase with respect to each end member, producing the opposite trend at higher La contents. It has been hypothesised that the increased A-site vacancy content in these systems increases recovery rates through increased defect migration and the increased likelihood for recombination events on the perovskite A-site. Therefore, as well as studying the end-member zirconate systems, this paper presents work to investigate whether such effects translate to zirconate perovskite systems in the context of nuclear waste disposal. To this purpose, samples of Ca$_{0.9}$La$_{0.06}$ZrO$_3$, Sr$_{0.9}$La$_{0.06}$ZrO$_3$ and Ba$_{0.92}$La$_{0.08}$ZrO$_3$ were also synthesised and investigated using in situ ion irradiation. Synthesis and irradiation of a Ba$_{0.9}$La$_{0.06}$ZrO$_3$ sample was intended, however, a study to find the solubility limit of La within BaZrO$_3$ determined this sample would not synthesise, as is presented within this paper.

2. Experimental

2.1 Sample synthesis

Compositions of A$_{1-x}$La$_{2x/3}$ZrO$_3$ (A = Ca, Sr; x = 0 and 0.1) and Ba$_{1-x}$La$_{2x/3}$ZrO$_3$ (x = 0, 0.02, 0.04, 0.06, 0.08 and 0.1) were synthesised via a solid-state route. The additional Ba$_{0.92}$La$_{0.08}$ZrO$_3$ samples were synthesised in order to find the solubility limit of La in this system. Stoichiometric quantities of CaCO$_3$, SrCO$_3$, BaCO$_3$, ZrO$_2$ (all 99.9%; Sigma-Aldrich), each dried at 180 °C, and La$_2$O$_3$ (99.9%; Sigma-Aldrich), dried at 800 °C, were weighed to stoichiometric amounts and milled in isopropanol using a planetary ball mill with silicon nitride milling media for 15 minutes at 400 rpm. After milling to homogeneity, powders were dried at 80 °C, sieved (212 μm; steel) and uniaxially pressed into 10 mm pellets to produce green bodies. Samples were then fired in zirconia Crucibles at 1450 °C for 48 hours in air, re-ground using an agate pestle and mortar and re-sieved to produce fine, reacted powders.

2.2 X-ray diffraction

X-ray diffraction (XRD) was undertaken using a Panalytical X’pert$^\text{®}$ powder diffractometer, operating at 45 mV, 40 mA with Cu K$_\alpha$ ($\lambda = 1.5418$ Å). The scan range was 10° to 90° with a step size of 0.02° and step time of 0.2 s. A 1/4° divergent slit was employed with 0.02 rad Soller slits. Powders were backloaded into sample holders with the rear surface of packed powders exposed to the X-ray beam, minimising preferential orientation. All data were calibrated using an external NIST 640e line position standard (ESI Fig. 1†). Lattice parameter refinement was...
undertaken using the Bruker TOPAS software package, with all
errors reported as calculated by the refinement process. Such
errors were likely underestimated due to the use of a laboratory-
based X-ray source and this should be noted when referring to
the lattice parameters.

2.3 Transmission Electron microscopy

TEM analysis was undertaken using a JEOL F200, operating at
200 keV, with images and electron diffraction patterns captured
using a Gatan OneView. Electron energy loss spectroscopy
(EELS) was undertaken using a Gatan Image Filter (GIF)
Quantum SE. Samples were prepared for TEM via the powdered
“crushed grain” route, with powder ground in isopropanol and
pipetted onto a carbon holey lined Cu TEM grid.

2.4 In situ ion irradiation

In situ ion irradiation was undertaken at the University of
Huddersfield’s MIAMI (Microscopes and Ion Accelerators for
Materials Investigations) facility. The MIAMI-2 system was uti-

The ion beam setup employed was 400 keV Kr ions with a
flux of 2 ± 0.2 × 10^12 ions per cm^2. Kr ions was employed for
comparative purposes with the studies of Smith et al. and
Whittle et al. Nuclear/electron stopping powers and ratios for
each composition were estimated using the SRIM Monte Carlo
code. The “Ion Distribution and Quick Calculation of Damage”
option was used with an average displacement energy of 50 eV set for each constituent element. Values calculated
using SRIM are summarised in Table 1, including the deter-
minal theoretical densities of the powders used in the cal-
culations and a ratio of electron to nuclear stopping powers
(ENSP). Graphical SRIM curves are presented in ESI Fig. 2. Under these conditions, stopping mechanisms were dominated
by the nuclear component in all cases. Considering a TEM grain
thickness of <100 nm, it was a requirement to induce

Table 1 SRIM parameters and stopping powers

Sample	Density (g cm^-3)	(dE/dx)_n (eV nm^-1)	(dE/dx)_e (eV nm^-1)	ENSP
CaZrO_3	4.62	1702	453.0	0.2662
Ca_0.5La_0.5ZrO_3	4.73	1696	456.9	0.2694
SrZrO_3	5.45	1736	472.2	0.2824
Sr_0.5La_0.5ZrO_3	5.47	1719	488.1	0.2839
BaZrO_3	6.23	1703	514.5	0.3021
Ba_0.5La_0.5ZrO_3	6.16	1691	510.4	0.3018

Density (g cm^-3), energy loss to nuclear stopping (dE/dx)_n (eV nm^-1), energy loss to electronic stopping (dE/dx)_e (eV nm^-1) and electronic to
nuclear stopping power ratio ENSP.
The frequent underestimation of E_a has been reported using eqn (1) when compared to defect migration energies reported in oxides. Therefore, as for other studies, the relationship developed by Weber27 was employed to determine both the thermal and irradiation assisted activation energies for recovery from damage, as outlined in eqn (2).

\[
E_a = T_e \left[k_b \ln \left(\frac{F_{0x}}{\phi} \right) \right]
\]

where ϕ is the ion flux and v the effective jump frequency. Values for irradiation-assisted (10^{12} s$^{-1}$) and thermal (10^9 s$^{-1}$) jump frequency were used based on previously reported estimations to allow for calculation of E_a values for both thermal (E_{th}) and irradiation assisted (E_{irr})$^{17-8,6,4,3,76}$.

3. Results and discussion

3.1 Sample synthesis

Initially, samples of target compositions CaZrO$_3$, Ca$_{0.9}$La$_{0.067}$ZrO$_3$, SrZrO$_3$, Sr$_{0.9}$La$_{0.067}$ZrO$_3$, BaZrO$_3$ and Ba$_{0.9}$La$_{0.067}$ZrO$_3$ were synthesised. XRD patterns of the Ca$_{1-x}$La$_{2x/3}$ZrO$_3$, Sr$_{1-x}$La$_{2x/3}$ZrO$_3$ and Ba$_{1-x}$La$_{2x/3}$ZrO$_3$ ($x = 0$ and 0.1) samples are presented in Fig. 3a–c, respectively. Magnifications of the highest intensity perovskite reflections are included; (121) in $Pmnn$, (112) in $Pbnm$ and (110) in the ideal cubic $Pm\bar{3}m$. For the Ca$_{1-x}$La$_{2x/3}$ZrO$_3$ and Sr$_{1-x}$La$_{2x/3}$ZrO$_3$ systems, no additional peaks were identified other than those related to their end member counterparts, confirming the parent structure was maintained by the doped samples, i.e. $Pcnn$ for CaZrO$_3$ and Ca$_{0.9}$La$_{0.067}$ZrO$_3$; $Pbnm$ for SrZrO$_3$ and Sr$_{0.9}$La$_{0.067}$ZrO$_3$. La incorporation into the structures was confirmed through lattice parameter contraction/expansion, as can be observed through the shifts of diffraction peaks to lower 2θ values (higher d-spacing) for Ca$_{0.9}$La$_{0.067}$ZrO$_3$, and higher 2θ values (lower d-spacing) for Sr$_{0.9}$La$_{0.067}$ZrO$_3$. These shifts are readily observable in the magnified regions in Fig. 3a and b, and lattice parameters for all samples are reported in Table 2 with fitting errors. The expansion in lattice parameters for Ca$_{0.9}$La$_{0.067}$ZrO$_3$ was due to the smaller ionic radius of La (1.16 Å) when replacing Ca (1.12 Å) in 8-fold coordination, while Sr$_{0.9}$La$_{0.067}$ZrO$_3$ lattice parameters contract due to the larger Sr (1.26 Å) that is replaced, again in 8-fold coordination.

While lattice contraction was observed in the Ba$_{0.9}$La$_{0.067}$ZrO$_3$ sample as compared to BaZrO$_3$, a secondary phase of the pyrochlore-structured La$_2$Zr$_2$O$_7$ was detected (see Fig. 3c). This suggested the solubility of La within the Ba$_{1-x}$La$_{2x/3}$ZrO$_3$ system was below $x = 0.1$ for this synthesis route. This was likely due to the large difference in size between Ba (1.61 Å) and La (1.36 Å) in the A-site 12-fold coordination state in $Pm\bar{3}m$. The Goldschmidt tolerance factor,28 t, has been extensively used to predict the chemical compositions that will form as perovskites, however,

Image captions:

Fig. 2 SAED patterns of a SrZrO$_3$ grain taken at intervals during irradiation to determine the critical fluence for amorphisation, F_c, at room temperature. Fluences are (a) 0F_c, (b) 0.35F_c, (c) 0.8F_c, (d) F_c. (a) is indexed to the [211] direction in $Pbnm$.

Fig. 3 XRD patterns of as labelled (a) CaZrO$_3$ and Ca$_{0.9}$La$_{0.067}$ZrO$_3$ (b) SrZrO$_3$ and Sr$_{0.9}$La$_{0.067}$ZrO$_3$ and (c) BaZrO$_3$ and Ba$_{0.9}$La$_{0.067}$ZrO$_3$. A magnification of the most intense reflection is presented alongside the full patterns. Patterns are normalised to the most intense reflection. Patterns are indexed to structure information from ICSD database codes 97 474 (CaZrO$_3$), 173 398 (SrZrO$_3$) and 90 049 (BaZrO$_3$).
to our knowledge no tolerance factor exists that can accurately predict the effects of A-site vacancies on the likelihood of perovskite formation. Considering an average cation radius based on either a fully occupied La site (i.e. $\text{Ba}_0.9\text{La}_{0.1}\text{ZrO}_3$) or the correct ratio (ignoring the presence of vacancies, as suggested by Ganguly et al.70) reduces t below the ideal BaZrO_3 value of $t = 1$, but is still in the regime for perovskite formation. As Whittle et al.84 report, vacancy defects can occupy more space than a fully-occupied cation lattice site, which is contrary to both these calculations. Without a tolerance factor that truly incorporates a specific vacancy-type defect, such calculations can never be considered accurate. Even so, the incorporation of a quantity of La within the target $\text{Ba}_{0.9}\text{La}_{0.1}\text{ZrO}_3$ formula was confirmed by the peak shift observed in Fig. 3c, confirming lattice expansion due to ionic substitution.

Samples of composition $x = 0.02, 0.04, 0.06$ and 0.08 were produced to identify the La solubility limit in $\text{Ba}_{1-x}\text{La}_{x}\text{ZrO}_3$.

XRD patterns of the $\text{Ba}_{1-x}\text{La}_{x}\text{ZrO}_3$ system for $x = 0, 0.02, 0.04, 0.06, 0.08$ and 0.1 are presented in Fig. 4a, with magnifications of the $2\theta = 2\theta \leq 32^\circ$ range in Fig. 4b and the (110) reflection in Fig. 4c. A magnification of the $2\theta = 2\theta \leq 32^\circ$ range in which the (222) pyrochlore $\text{La}_2\text{Zr}_2\text{O}_7$ reflection was observed is presented in Fig. 4b. For $x \leq 0.08$, no such reflection was observed, confirming the solubility limit of La in the region $0.08 \leq x \leq 0.1$. For $x \leq 0.08$ the $Pm\overline{3}m$ structure was present, confirming the single-phase nature of these samples. A shift to higher 2θ values was observed incrementally with increasing La content (Fig. 4c) until $x = 0.1$, with calculated lattice parameters and unit cell volumes reported in Table 2. A linear decrease in unit cell volume was observed for the $\text{Ba}_{1-x}\text{La}_{2x/3}\text{ZrO}_3$ system until the solubility limit was reached at $x = 0.1$. The contraction and expansion of the unit cells of the $\text{Sr}_{1-x}\text{La}_{2x/3}\text{ZrO}_3$ and $\text{Ca}_{1-x}\text{La}_{2x/3}\text{ZrO}_3$ systems was also observed, as is reported in Table 2.

Bisen et al.81 report that the solubility of La within the $\text{Ba}_{1-x}\text{La}_{2x/3}\text{ZrO}_3$ ($x = 0, 0.02, 0.04, 0.06, 0.08, 0.1$) solid-solution extends to $x = 0.1$. They also report an extreme lattice

Table 2: Calculated lattice parameters of the $\text{Ca}_{1-x}\text{La}_{2x/3}\text{ZrO}_3$, $\text{Sr}_{1-x}\text{La}_{2x/3}\text{ZrO}_3$ and $\text{Ba}_{1-x}\text{La}_{2x/3}\text{ZrO}_3$ systemsa

Sample	a (Å)	b (Å)	c (Å)	V (Å3)	R_{wp} (%)	R_{exp} (%)
$Pm\overline{3}n$ ($a\ a\ c$)						
CaZrO_3	5.58781	8.0123	5.75817	257.800	6.03	2.94
$\text{Ca}_{0.9}\text{La}_{0.1}\text{ZrO}_3$	5.60273	8.02863	5.76078	259.133	6.04	3.00
$Pbnm$ ($a\ a\ c$)						
SrZrO_3	5.79669	5.82136	8.2092	277.016	8.21	5.46
$\text{Sr}_{0.9}\text{La}_{0.1}\text{ZrO}_3$	5.7955	5.8186	8.2081	276.791	7.71	5.60
$Pm\overline{3}m$ ($a\ a\ \alpha$)						
BaZrO_3	4.19109	—	—	73.6177	9.99	6.32
$\text{Ba}_{0.99}\text{La}_{0.01}\text{ZrO}_3$	4.19012	—	—	73.5665	7.54	5.55
$\text{Ba}_{0.99}\text{La}_{0.02}\text{ZrO}_3$	4.18963	—	—	73.4546	7.74	5.67
$\text{Ba}_{0.99}\text{La}_{0.04}\text{ZrO}_3$	4.18603	—	—	73.3513	6.31	4.31
$\text{Ba}_{0.99}\text{La}_{0.05}\text{ZrO}_3$	4.18421	—	—	73.2558	6.85	4.46

a Lattice parameters a, b and c (Å), unit cell volume V (Å3) and refinement errors R_{wp} and R_{exp} (%).
contraction (6.04%, equivalent to 0.25 Å), which was not observed in our analysis. It is unlikely that such contraction could be induced by cation substitution, and if the lattice parameter reduction is taken as reported for $x = 0 \to 0.02 \to 0.04 \to 0.06 \to 0.08 \to 0.1$, the associated reduction in the cubic axis presented for the Ca$_{0.9}$La$_{0.067}$ZrO$_3$ indexed to $Pcmm$, (b) Sr$_{0.9}$La$_{0.067}$ZrO$_3$ indexed to $Pbnm$ and (c) Ba$_{0.9}$La$_{0.053}$ZrO$_3$ indexed to $Pm\bar{3}m$.

Electron diffraction was further used to confirm the space group symmetry of each doped composition, with SAED patterns taken with the electron beam orientated down the [001] zone axis for (a) Ca$_{0.9}$La$_{0.067}$ZrO$_3$ indexed to $Pcmm$, (b) Sr$_{0.9}$La$_{0.067}$ZrO$_3$ indexed to $Pbnm$ and (c) Ba$_{0.9}$La$_{0.053}$ZrO$_3$ indexed to $Pm\bar{3}m$.

3.2 In situ ion irradiation

Values of critical amorphisation fluences for all samples are presented in Fig. 6a, with fits from the nonlinear least-squares refinements using eqn (1) also presented. Included within Fig. 6a are values for SrZrO$_3$ at 473 K, and BaZrO$_3$ at 673 K, at which amorphisation was not achieved, presented as grey data points. These values lie above the calculated T_c curves for the respective samples, suggesting these irradiations took place at temperatures that prevented amorphisation. Values for F_{th}, T_c and E_{th} calculated using eqn (1), and E_{th} and E_{irr} values, calculated using eqn (2), are reported in Table 3. Calculated values for T_c are also shown graphically in Fig. 6b.

Firstly, the end member compositions have T_c values with the trend of SrZrO$_3$ (440 K) < CaZrO$_3$ (623 K) < BaZrO$_3$ (675 K). This is similar to the titanate compositions of CaTiO$_3$, SrTiO$_3$ and BaTiO$_3$ reported by Meldrum et al. which showed a T_c relationship of SrTiO$_3$ (425 K) < CaTiO$_3$ (440 K) < BaTiO$_3$ (550 K). In all instances, the T_c values for the zirconate end members calculated in this study were appreciably higher than their A-site titanate equivalents. While Meldrum et al. employed a 1 MeV Kr$^+$ ion beam as opposed to the 400 keV Kr$^+$ beam utilised in the present study, a significant difference in T_c under the two different conditions would not be expected considering the SRIM calculations discussed previously, although the temperature specific F_c values may be altered. Most comparisons within the present study are with those using 800 keV to 1 MeV Kr$^+$ ion beams, and while a significant difference in calculated T_c values is not expected, the difference in the ion beam used should be noted. This includes the studies of A-site deficient systems previously reported.

The relationship between titanates and zirconates differs from those in the pyrochlore system, in which zirconates such as La$_2$Zr$_2$O$_7$ and Gd$_2$Zr$_2$O$_7$ show a remarkable tolerance for radiation damage compared to their titanate counterparts. These relationships are governed by anti-site defect formation energies and phase transitions to the defect fluorite...
structure,35,46 processes that are not replicated within perovskites. The calculated T_c values suggest the specific A-site cation plays a larger role than structure within perovskite systems. For the titanate systems, T_c values take the structural trend $Pm\bar{3}m < Pbnm < Ia/mcm$, while for the zirconates the trend is $Pbnm = Pcm < Pm\bar{3}m$, showing no relationship with relative symmetry, tolerance factor60 or A/B site radii ratio. A recent study by Meena \textit{et al.}87 suggests a relative increase in the ionic-nature of bonding for $\text{SrTiO}_3 > \text{BaTiO}_3 > \text{CaTiO}_3$, which does not follow the T_c trends observed. With regard to displacement energy, E_d, a variety of values through both experimental and theoretical routes have been determined, but no conclusive values can be assigned to these systems. While values have been determined for CaZrO_3, the authors noted the reported cation values were appreciably lower than previously measured oxide samples,88 preventing comparison between titanate and zirconate systems. It is thus hypothesised that the flexible nature of the Ti$^{(iv)}/$Ti$^{(v)}$ B-site, in comparison with the highly-refractory Zr$^{(iv)}$, may promote defect mobility and an increased tolerance for oxygen displacements at higher temperatures. This could take the form of $\text{ATi}_1-x\text{Zr}_x\text{O}_3$ phases being induced during irradiation, whereas zirconium reduction is far less likely, and the resultant oxygen deficiency is harder to accommodate. This may also be the case for the as produced pristine materials, as has been observed for $(\text{Ba}, \text{Sr}, \text{Ca})\text{TiO}_3$ perovskites.89

For the La-doped trends, similar variations as with doped titanate perovskites are observed. For instance, a decrease in T_c between CaTiO_3 and $\text{Ca}_{1.5}\text{La}_{0.5}\text{ZrO}_3$ is reported of ≈ 140 K,93 while a drop of ≈ 100 K is reported here for the counterpart zirconates. Similarly, a reduction in T_c of ≈ 90 K is reported between SrTiO_3 and $\text{Sr}_{0.85}\text{La}_{0.15}\text{TiO}_3$ (ref. 62) and a decrease of ≈ 40 K within the zirconate counterparts is found in the present investigation (note that the titanate contains 3.33 mol\% greater La content than within our study). In direct comparison, the titanates exhibit a lower T_c for both Ca and Sr based end members, with $\text{Ca}_{0.9}\text{La}_{0.1}\text{ZrO}_3 (<300$ K) > $\text{Ca}_{0.8}\text{La}_{0.2}\text{ZrO}_3$ (520 K) and $\text{Sr}_{0.9}\text{La}_{0.1}\text{ZrO}_3$ (308 K) > $\text{Sr}_{0.8}\text{La}_{0.2}\text{ZrO}_3$ (402 K). No structural changes were induced between the parent and doped samples in any of these cases. It is possible that La has an intrinsically higher E_d than each parent A-site constituent. Considering the observations reported regarding the $\text{Sr}_{1-x}\text{La}_{x}\text{TiO}_3$ and $\text{Ca}_{1-x}\text{La}_{2x}\text{TiO}_3$ systems, in which La doping of $x > 0.4$ samples increased T_c with regard to the parent end member, it seems unlikely that an increased A-site displacement energy is the sole cause of the trends observed in these zirconates. Values for La within $\text{La}_2\text{Zr}_2\text{O}_7$ are reported to be similar to Ba, Sr and Ca in perovskite systems, namely $E_d = 65 \pm 20$ eV,90,91 providing further evidence against such a conclusion. As is reported in Table 3, the activation energies for both thermal and irradiation assisted recovery are reduced for all doped samples with relation to their respective end member counterparts. This does suggest that increased defect migration and ionic diffusion may be the cause of the reduction in T_c for doped samples, however direct measurement of such characteristics would be required to prove this hypothesis.

Several studies on the effects of doping and sintering characteristics on perovskite systems have been reported, and the resultant consequences on cation and oxygen deficiency.91-96 Within studies of $\text{Sr}_{1-x}\text{La}_{2x}\text{TiO}_3$ and $\text{Ca}_{1-x}\text{La}_{2x}\text{TiO}_3$,62,63 samples were sintered at 1573 K in air, while the bulk ion irradiation study showing increased room temperature resistance to amorphisation for $0.2 \leq x \leq 0.4$ used pellets sintered at 1673 K.44 Oxygen loss has been shown to rapidly increase with sintering temperature in the A-site deficient $\text{Sr}_{0.85}\text{La}_{0.15}\text{TiO}_3$ system, even at temperatures of 1473 K in flowing O_2.97 This has the consequence of causing significant reductions in the activation energy, E_a, for bulk ionic conductivity, which can be readily linked to the concentration and mobility of oxygen vacancies within the system. Akin \textit{et al.}98 report a reduction in E_a from 0.97 eV for SrTiO_3 sintered at 1723 K in O_2 to 0.16 eV for $\text{Sr}_{0.85}\text{La}_{0.15}\text{TiO}_3$ sintered under the same conditions. This decreased energy requirement for oxygen vacancy mobility may lead to increased recovery rates, particularly at elevated temperatures, that lead to reductions in T_c. This does not take into consideration sintering temperatures. E_a values of 1.64 eV and 1.79 eV are reported in $\text{Sr}_{0.85}\text{La}_{0.15}\text{TiO}_3$ sintered at 1473 K under O_2 and N_2, respectively, and values of 0.16 eV at 1723 K in O_2. They report the same sample sintered at 1723 K in N_2 as being too conductive to measure even at 10 K, suggesting an even lower E_a value for this sintering condition. It may be that such effects regarding sintering atmosphere and temperature translate to radiation damage kinetics, but it should be noted the effects of sintering temperature are not as dramatic in SrTiO_3. While these are feasible explanations, such mechanisms have not been tested in the present study and it is not possible to transfer this theory to the zirconates studied here,

Table 3: Fitting parameters for calculation of critical temperatures of amorphisation, T_c a

Sample	F_{00} ($\times 10^{14}$ ions per cm2)	T_c (K)	E_a (eV)	E_{00} (eV)	E_{irr} (eV)
SrZrO_3	6.4 (7)	440 (18)	0.05 (1)	1.01 (4)	1.27 (4)
$\text{Sr}_{0.9}\text{La}_{0.06}\text{ZrO}_3$	7.2 (3)	404 (3)	0.042 (4)	0.926 (8)	1.167 (8)
CaZrO_3	5.8 (9)	625 (11)	0.060 (8)	1.42 (3)	1.79 (3)
$\text{Ca}_{0.8}\text{La}_{0.06}\text{ZrO}_3$	6.2 (8)	520 (8)	0.041 (5)	1.19 (2)	1.50 (2)
BaZrO_3	4.1 (6)	675 (12)	0.053 (9)	1.52 (3)	1.92 (3)
$\text{Ba}_{0.92}\text{La}_{0.08}\text{ZrO}_3$	4.7 (7)	561 (25)	0.042 (9)	1.27 (6)	1.60 (6)

a Critical amorphisation fluence at 0 K F_{00} ($\times 10^{14}$ ions per cm2), critical temperature of amorphisation, T_c (K), activation energy E_a (eV), activation energy for thermally assisted recovery E_{00} (eV) and activation energy for irradiation assisted recovery E_{irr} (eV).
other than through empirical observations of the similarities in T_c. Based on the T_c observations made, it is proposed that a similar mechanism leads to the reductions in T_c for doped samples, i.e. less oxygen deficiency within a zirconate system as compared to a titanate. Studying bulk pellets of A-site deficient samples sintered under various temperatures and atmospheres may elucidate this behaviour, and studies are now taking place in this regard.

Fig. 7 presents under-focus (≈500 nm) BFTEM micrographs of an irradiated grain of the Ca$_{0.9}$La$_{0.067}$ZrO$_3$ sample at 473 K (Fig. 7a–d) and 100 K (Fig. 7e–h). At a fluence of 0.3 of the critical fluence for amorphisation (0.3F_c; Fig. 7b) at 473 K, a high density of light circular contrast regions was observed. With increased fluence to 0.8F_c (Fig. 7c), these circular regions grew in size whilst decreasing in areal density, suggesting a migration and agglomeration of these features. On first observation, it could be argued this was the result of Kr bubble formation, with the elevated temperature promoting Kr migration and agglomeration into bubbles. Forming Kr bubbles in ceramic oxide samples normally requires the implantation of on the order of 10^{15} to 10^{16} ions per cm2, and considering the <5% Kr retention (as predicted by SRIM) under these conditions it is unlikely this contrast was the result of Kr bubbles. Furthermore, previously observed bubble sizes in ceramic oxide systems are on the order of ≈2 nm, even at these elevated temperatures. Therefore, it is likely these areas are void-type defects, i.e. a high concentration of irradiation induced vacancies, with the elevated temperatures allowing for void growth and agglomeration. It can be qualitatively observed that at 0.8F_c (Fig. 7c), larger voids were present and in higher density than at the amorphisation fluence, F_c (Fig. 7d). This process was likely driven by void migration and growth toward the grain edges, with the voids annihilating at the surfaces that act as a defect sink. While these observations evidence the microstructural build-up of defects under irradiation, such defects do not appear to have significantly affected the increased recovery rates onset by increased thermal energy, with an amorphisation fluence of $F_c = 7.3 \pm 0.8 \times 10^{15}$ ions per cm2 for this sample at 473 K.

The morphology of the grain was also observed to change, with the grain edges smoothing with increasing fluence compared to the irregularly shaped pristine grain. This may have been due to material sputtering, however grain swelling has been reported in various ceramics under ion irradiation, and it may be that a combination of irradiation and temperature induced migration induced a “flow” of material that induced such a change in morphology. In contrast, at 100 K, no void formation was observed at any fluence (Fig. 7e–h), in a similar manner to void formation in steels that requires elevated temperatures. Indeed, it may be that the increased recovery rates at 473 K were required to induce a significant density of vacancy defects to allow for the formation of observable voids, or that at 100 K there is insignificant defect mobility to allow for the required agglomeration. Similarly, changes in grain morphology at this temperature were severely reduced, however this may have resulted from either reduced temperature preventing “flow” or reduced sputtering at a lower fluence. Such effects were not observed at room temperature or below in any samples, confirming this was a thermally driven process.

4. Conclusions

Solid-solutions of single-phase Ca$_{0.9}$La$_{0.067}$ZrO$_3$ and Sr$_{0.9-}$La$_{0.067}$ZrO$_3$ were produced, and the solubility limit of La in BaZrO$_3$, through the compositional formula Ba$_{1-x}$La$_{2x/3}$ZrO$_3$, was found at $x = 0.08$. Each of these samples maintained their parent end member structure, namely $Pcnm$, $Pbnm$ and $Pm3m$ for CaZrO$_3$, SrZrO$_3$ and BaZrO$_3$, respectively. Values of the critical temperature of amorphisation, T_c, were calculated of ≈440 K, ≈623 K and ≈675 K for SrZrO$_3$, CaZrO$_3$ and BaZrO$_3$, respectively, compared to ≈404 K, ≈520 K and ≈621 K for the La doped counterparts (Ba$_{0.8}$La$_{0.05}$ZrO$_3$ for the Ba sample). The response of the materials to ion irradiation were
rationalised by linking to studies regarding ionic conductivity within doped perovskite titanates, and in particular oxygen vacancy mobility within such systems. Void formation, migration and agglomeration at elevated temperatures was observed, including changes in grain morphology, mechanisms that were not observed below room temperature.

Conflicts of interest

There are no conflicts of interest to declare.

Acknowledgements

SML, RC and CLC would like to acknowledge EPSRC for funding under grant number EP/N017374/1. GG would like to acknowledge funding under grant number EP/M028283/1. This research utilised the HADES/MIDAS facility at the University of Sheffield established with financial support from EPSRC and BEIS, under grant EP/T011424/1. We wish to acknowledge the Henry Royce Institute for Advanced Materials, funded through EPSRC grants EP/R00661X/1, EP/EP2470/X1 and EP/P025285/1, for JEOL JEM-F200 access at Royce@Sheffield.

Notes and references

1 A. J. Jacobson, Materials for Solid Oxide Fuel Cells, *Chem. Mater.*, 2010, 22(3), 660–674, DOI: 10.1007/978-3-87688152-12.

2 R. Pornprasertsuk, V. Kosasang, K. Somroop, M. Horprathum, P. Limnonthakul, P. Chindaudom and S. Jinawath, Proton Conductivity of Y-Doped BaZrO$_3$-La$_{2/3}$TiO$_3$ System, *J. Solid State Chem.*, 2015, 213, 419–427, DOI: 10.1016/j.jssc.2014.12.014.

3 V. Vashook, L. Vasylechko, M. Knapp, H. Ullmann and U. Guth, A-Site Deficient Perovskite-Type Compounds in the Ternary CaTiO$_3$-LaCrO$_3$-La$_{2/3}$TiO$_3$ System, *J. Alloys Compd.*, 2006, 419, 1439–1442, DOI: 10.1016/j.jallcom.2005.09.063.

4 V. Vashook, L. Vasylechko, M. Knapp, H. Ullmann and U. Guth, Lanthanum Doped Calcium Titanates: Synthesis, Crystal Structure, Thermal Expansion and Transport Properties, *J. Alloys Compd.*, 2003, 354, 13–23, DOI: 10.1016/S0925-8388(02)01345-2.

5 F. A. Jena, A. Kulkarni and T. Miyasaka, Halide Perovskite Photovoltaics: Background, Status, and Future Prospects, *Chem. Rev.*, 2019, 119, 3036–3103, DOI: 10.1021/acs.chemrev.8b00539.

6 I.-S. Kim, W.-H. Jung, Y. Inaguma, T. Nakamure and M. Itoh, Dielectric Properties of A-Site Deficient Perovskite Ca$_{1-x}$La$_{2x}$TiO$_3$ Using STEM/EELS, *Inorg. Chem.*, 2016, 55, 9937–9948, DOI: 10.1021/acs.inorgchem.6b02087.

7 A. K. Jena, A. Jostons and S. E. Kesson, The Synroc Strategy for HLW Management, *Mineral. Mag.*, 1993, 58A, 458–459, DOI: 10.1180/minmag.1993.58a.1.238.

8 A. A. Gapud, N. T. Greenwood, J. A. Alexander, A. Khan, K. J. Leonard, T. Ayug, F. A. List, M. W. Rupich and Y. Zhang, Irradiation Response of Commercial, High-Tc Superconducting Tapes: Electromagnetic Transport Properties, *J. Nucl. Mater.*, 2015, 462, 108–113, DOI: 10.1016/j.jnucmat.2015.03.047.

9 H. Fu, Review of Lead-Free Halide Perovskites as Light-Absorbers for Photovoltaic Applications: From Materials to Solar Cells, *Sol. Energy Mater. Sol. Cells.*, 2019, 193, 107–132, DOI: 10.1016/j.solmat.2018.12.038.

10 S.-R. Bae, Q. V. Le and S.-Y. Kim, Recent Advances toward High Efficiency Halide Perovskite Light Emitting Diodes: Review and Perspective, *Small Methods*, 2018, 2(1700419), 24–43, DOI: 10.31613/ceramist.2018.21.103.

11 M. M. Stylianakis, T. Maksudov, A. Panagiotopoulos, G. Kakavelakis and K. Petridis, Inorganic and Hybrid Perovskite Based Laser Devices: A Review, *Materials*, 2019, 12(859), 1–28, DOI: 10.3390/ma12060859.

12 IAEA, Viability of Inert Matrix Fuel in Reducing Plutonium Amounts in Reactors, Vienna, 2006.

13 A. Jostons and S. E. Kesson, The Synroc Strategy for HLW Management, *Mineral. Mag.*, 1993, 58A, 458–459, DOI: 10.1180/minmag.1993.58a.1.238.

14 J. P. Evans, K. A. Boult, E. L. Paige and J. A. C. Marples, Superconducting Tapes: Electromagnetic Transport Effects in High Temperature Superconductors by Atom Probe Tomography, *Microsc. Microanal.*, 2017, 23(2), 414–424, DOI: 10.1017/S1431927616012757.

15 R. Biswal, D. Behera, D. Kanjilal, S. Saxey, S. Speller, C. R. M. Groenovor, M. Danaie, M. P. Woody, P. D. Edmondson and P. A. J. Bagot, Nanoscale Stoichiometric Analysis of a High-Temperature Superconductor by Atom Probe Tomography, *Microsc. Microanal.*, 2017, 23(2), 414–424, DOI: 10.1017/S1431927616012757.

16 J. C. Barbour, E. L. Venturini, D. S. Ginley and J. F. Kwak, Irradiation Effects in High Temperature Superconductors, *Nucl. Instrum. Methods Phys. Res., Sect. B*, 1992, 65, 351–358, DOI: 10.1016/0168-583X(92)86000-6.

17 A. A. Gapud, N. T. Greenwood, J. A. Alexander, A. Khan, K. J. Leonard, T. Ayug, F. A. List, M. W. Rupich and Y. Zhang, Irradiation Response of Commercial, High-Tc Superconducting Tapes: Electromagnetic Transport Properties, *J. Nucl. Mater.*, 2015, 462, 108–113, DOI: 10.1016/j.jnucmat.2015.03.047.

18 A. J. Jacobson, Materials for Solid Oxide Fuel Cells, *Chem. Mater.*, 2010, 22(3), 660–674, DOI: 10.1007/978-3-87688152-12.

19 J. P. Evans, K. A. Boult, E. L. Paige and J. A. C. Marples, The Preparation of Fully Active Synroc and Its Radiation Stability - Progress Report, Harwell, UK, 1986.

20 J. L. Woolfrey, D. J. Reeve and K. D. Cassidy, Accelerated Irradiation Testing of SYNROC and Its Constituent...
Minerals Using Fast Neutrons, *J. Nucl. Mater.*, 1982, **108/109**, 739–747.

22. K. Reeve and J. Woolfrey, Accelerated Irradiation Testing of Synroc Using Fast Neutrons - First Results on Barium Hollandite, Perovskite and Synroc B, *J. Aust. Ceram. Soc.*, 1980, **16**(1), 10–15.

23. M. J. Hambley, S. Dumbill, E. R. Maddrell and S. C. R., Characterisation of 20-Year-Old Pu 238-Doped Synroc C, *MRS Proceedings*, 2008, 373, DOI: 10.1557/PROC-1107-373.

24. A. E. Ringwood, V. M. Oversby, S. E. Kesson, W. Sinclair, N. Ware, W. Hibberson and A. Major, Immobilization of High-Level Nuclear Reactor Wastes in SYNROC: A Current Appraisal, *Nucl. Chem. Waste Manage.*, 1981, 2(4), 287–305, DOI: 10.1016/0191-815X(81)90055-3.

25. E. R. Vance, G. R. Lumpkin, M. L. Carter, D. J. Cassidy, C. J. Ball, R. A. Day and B. D. Begg, Incorporation of Uranium in Zirconolite (CaZrTi2O7), *J. Am. Ceram. Soc.*, 2004, **85**(7), 1853–1859, DOI: 10.1111/j.1151-2916.2002.tb00364.x.

26. R. W. Cheary and A. A. Coelho, A Site Occupancy Analysis of Zirconolite CaZr4Ti3O12, *Phys. Chem. Miner.*, 1997, **24**, 447–454.

27. A. A. Coelho, R. W. Cheary and K. L. Smith, Analysis and Structural Determination of Nd-Substituted Zirconolite-4M, *J. Solid State Chem.*, 1997, **129**(2), 346–359, DOI: 10.1006/jssc.1996.7263.

28. D. J. Bailey, S. M. Lawson, S. K. Sun, M. C. Stennett, T. Lee, B. Ravel, C. L. Corkhill, J. Heo and N. C. Hyatt, A New Approach to the Immobilisation of Technetium and Transuranics: Co-Disposition in a Zirconolite Ceramic Matrix, *J. Nucl. Mater.*, 2019, **528**, 151885, DOI: 10.1016/j.jnucmat.2019.151885.

29. S. K. Sun, M. C. Stennett, C. L. Corkhill and N. C. Hyatt, Reactive Spark Plasma Synthesis of CaZr4Ti3O12 Zirconolite Ceramics for Plutonium Disposition, *J. Nucl. Mater.*, 2018, **500**, 11–14, DOI: 10.1016/j.jnucmat.2017.12.021.

30. J. Squire, E. R. Maddrell, N. C. Hyatt and M. C. Stennett, Influence of Lubricants and Attrition Milling Parameters on the Quality of Zirconolite Ceramics, Consolidated by Hot Isostatic Pressing, for Immobilization of Plutonium, *Int. J. Appl. Ceram. Technol.*, 2015, **12**(S2), E92–E104, DOI: 10.1111/j.ijac.12239.

31. C. Davoisne, M. C. Stennett, N. C. Hyatt, N. Peng, C. Jeynes and W. E. Lee, Krypton Irradiation Damage in Nd-Doped Zirconolite and Perovskite, *J. Nucl. Mater.*, 2011, **415**(1), 67–73, DOI: 10.1016/j.jnucmat.2011.05.043.

32. H. Mitamura, S. Matsumoto, T. Miyazaki, T. J. White, K. Nukaga, Y. Yoshiba, T. Sagawa, S. Tashiro, D. M. Levins and A. Kikuchi, Self-Irradiation Damage of a Curium-Doped Titanate Ceramic Containing Sodium-Rich High-Level Nuclear Waste, *J. Am. Ceram. Soc.*, 1990, **73**(11), 3433–3441, DOI: 10.1111/j.1551-2916.1990.tb06472.x.

33. H. Mitamura, S. Matsumoto, T. Tsuboi, E. R. Vance, B. D. Begg and K. P. Hart, Alpha-Decay Damage of Cm-Doped Perovskite, *MRS Proceedings*, 1995, **353**, 1405–1412, DOI: 10.1557/PROC-353-1405.

34. M. D. Strachan, R. D. Scheele, J. P. Icenhower, E. C. Buck, A. E. Kozelisky, R. L. Sell, R. J. Elovich and W. C. Buckmiller, Radiation Damage Effects in Candidate Ceramics for Plutonium Immobilization, *Final Report*, 2004.

35. K. Trachenko, M. Pruneda, E. Artacho and M. Dove, Radiation Damage Effects in the Perovskite CaTiO3 and Resistance of Materials to Amorphization, *Phys. Rev. B: Condens. Matter Mater. Phys.*, 2004, **70**(13), 134112, DOI: 10.1103/PhysRevB.70.134112.

36. K. L. Smith, N. J. Zaluzec and G. R. Lumpkin, In Situ Studies of Ion Irradiated Zirconolite, Pyrochlore and Perovskite, *J. Nucl. Mater.*, 1997, **250**(1), 36–52, DOI: 10.1016/S0022-7315(97)00237-7.

37. K. R. Whittle, G. R. Lumpkin, M. G. Blackford, R. D. Aughterson, K. L. Smith and N. J. Zaluzec, Ion-Beam Irradiation of Lanthanum Compounds in the Systems La3O2Al2O3 and La2O3TiO3, *J. Solid State Chem.*, 2010, **183**(10), 2416–2420, DOI: 10.1016/j.jssc.2010.07.033.

38. G. R. Lumpkin, M. Coella, K. L. Smith, R. H. Mitchell and A. O. Larsen, Chemical Composition, Geochemical Alteration, and Radiation Damage Effects in Natural Perovskite, MRS Proceedings, 1998, **506**, 207–214.

39. B. S. Thomas, N. a. Marks and B. D. Begg, Developing Pair Potential for Simulating Radiation Damage in Complex Oxides, Nucl. Instrum. Methods Phys. Res., Sect. B, 2005, **228**(1–4), 288–292, DOI: 10.1016/j.nimb.2004.10.058.

40. J. Rankin, L. W. Hobbs, L. A. Boatner and C. W. White, An In Situ Annealing Study of Lead Implanted Single Crystal Calcium Titanate, Nucl. Instrum. Methods Phys. Res., Sect. B, 1988, **32**(1–4), 28–31, DOI: 10.1016/0168-583X(88)90174-7.

41. M. J. Zhuo, L. Yan, E. G. Fu, Y. Q. Wang, a. Misra, M. Nastasi, B. P. Uberuaga and Q. X. Jia, Phase Transformations and Defect Clusters in Single Crystal SrTiO3 Irradiated at Different Temperatures, J. Nucl. Mater., 2013, **442**(1–3), 143–147, DOI: 10.1016/j.jnucmat.2013.08.046.

42. W. J. Weber, R. C. Ewing, C. R. A. Catlow, T. Diaz de la Rubia, L. W. Hobbs, C. Kinoshita, H. Matzke, A. T. Motta, M. Nastasi, E. K. H. Salje, E. R. Vance and S. J. Zinkle, Radiation Effects in Crystalline Ceramics for the Immobilization of High-Level Nuclear Waste and Plutonium, J. Mater. Res., 1998, **13**(6), 1434–1448.

43. C. Sabathier, J. Chaumont and J. C. Krupa, Dose Rate and Temperature Effects in Radiation Disorder Creation in SrTiO3, Nucl. Instrum. Methods Phys. Res., Sect. B, 2002, **196**(3–4), 308–314, DOI: 10.1016/S0168-583X(02)01332-0.

44. S. Thevuthasan, W. Jiang, V. Shutthanandan and W. J. Weber, Accumulation of Ion Beam Induced Disorder in Strontium Titanate, *Nucl. Instrum. Methods Phys. Res., Sect. B*, 2003, **206**, 162–165, DOI: 10.1016/S0168-583X(03)00710-9.

45. W. Sinclair and A. E. Ringwood, Alpha-Recoil Damage in Natural Zirconolite and Perovskite, *Geochim. J.*, 1981, **15**, 229–243.

46. J. Won, L. J. Vernon, A. Karakuscu, R. M. Dickerson, M. Cologna, R. Raj, Y. Wang, S. J. Yoo, S.-H. Lee, A. Misra...
and B. P. Uberuaga, The Role of Non-Stoichiometric Defects in Radiation Damage Evolution of SrTiO$_3$, *J. Mater. Chem. A*, 2013, 1(32), 9235, DOI: 10.1039/c3ta11046j.

47 C. J. Ball, R. G. Blake, D. J. Cassidy and J. L. Wolffrey, Neutron Irradiations Effects in Perovskite (CaTiO$_3$), *J. Nucl. Mater.*, 1988, 151, 151–161, DOI: 10.1016/0022-3115(88)90067-0.

48 A. Meldrum, L. A. Boatner, W. J. Weber and R. C. Ewing, Amorphization and Recrystallization of the ABO$_3$ Oxides, *J. Nucl. Mater.*, 2002, **300**, 242–254, DOI: 10.1016/S0022-3115(01)01333-4.

49 M. Lang, F. Zhang, W. Li, D. Severin, M. Bender, S. Klaumüner, C. Trautmann and R. C. Ewing, Swift Heavy Ion-Induced Amorphization of CaZrO$_3$ Perovskite, *Nucl. Instrum. Methods Phys. Res., Sect. B*, 2012, **286**, 271–276, DOI: 10.1016/j.nimb.2011.12.028.

50 V. M. Goldschmidt, Die Gesetze Der Kristallochemie, *Naturwissenschaften*, 1926, **14**, 477–485, DOI: 10.1007/BF01507527.

51 A. M. Glazer, The Classification of Tilted Octahedra in Perovskites, *Acta Crystallogr.*, Sect. B: Struct. *Crystallogr. Cryst. Chem.*, 1972, **28**(11), 3384–3392, DOI: 10.1107/S0567740872007976.

52 W. D. Macedo, A. E. Souza, G. T. A. Santos, S. R. Teixeira and E. Longo, Microwave-Assisted Hydrothermal Synthesis Followed by Heat Treatment: A New Route to Obtain CaZrO$_3$, *Ceram. Int.*, 2018, **44**, 953–958, DOI: 10.1016/j.ceramint.2017.10.028.

53 V. P. Dravid, C. M. Sung, M. R. Notis and C. E. Lyman, Crystal Symmetry and Coherent Twin Structure of Calcium Zirconate, *Acta Crystallogr.*, Sect. B: Struct. *Crystallogr. Cryst. Chem.*, 1989, **45**(3), 218–227, DOI: 10.1107/S0108768189000856.

54 C. J. Howard, K. S. Knight, B. J. Kennedy and E. H. Kisi, Structural Phase Transitions in Strontium Zirconate Revisited, *J. Phys.: Condens. Matter*, 2000, **12**(45), 677–683, DOI: 10.1088/0953-8984/12/45/101.

55 D. de Ligny and P. Richet, High-Temperature Heat Capacity and Thermal Expansion of and Perovskites, *Phys. Rev. B: Condens. Mater Mater. Phys.*, 1996, **53**(6), 3013–3022, DOI: 10.1103/PhysRevB.53.3013.

56 B. J. Kennedy, C. J. Howard and B. C. Chakoumakos, High-Temperature Phase Transitions in SrZrO$_3$, *Phys. Solid State*, 1999, **59**(6), 4023–4027.

57 S. Hasegawa, T. Sugimoto and T. Hashimoto, Investigation of Structural Phase Transition Behavior of SrZrO$_3$ by Thermal Analyses and High-Temperature X-Ray Diffraction, *Solid State Ionics*, 2010, **181**, 1091–1097, DOI: 10.1016/j.ssi.2010.06.035.

58 I. Ahmed, S. G. Eriksson, E. Ahlberg, S. C. Knee, M. Karlsson, A. Matic, D. Engberg and L. Börjesson, Proton Conductivity and Low Temperature Structure of In-Doped BaZrO$_3$, *Solid State Ionics*, 2006, **177**(26–32 SPEC. ISS.), 2357–2362, DOI: 10.1016/j.ssi.2006.05.030.

59 S. Parida, S. K. Rout, L. S. Cavalcante, E. Sinha, M. S. Li, V. Subramanian, N. Gupta, V. R. Gupta, J. A. Varela and E. Longo, Structural Refinement, Optical and Microwave Dielectric Properties of BaZrO$_3$, *Ceram. Int.*, 2012, **38**(3), 2129–2138, DOI: 10.1016/j.ceramint.2011.10.054.

60 D. Han, K. Shinoda, S. Sato, M. Majima and T. Uda, Correlation between Electroconductive and Structural Properties of Proton Conductive Acceptor-Doped Barium Zirconate, *J. Mater. Chem. A*, 2015, **3**(3), 1243–1250, DOI: 10.1039/c4ta05701e.

61 E. R. Vance, J. V. Hanna and J. H. Hadley, Cation Vacancies in Perovskites Doped with La and Gd, *Adv. Appl. Ceram.*, 2012, **111**(1), 94–98, DOI: 10.1179/1743676111Y.0000000037.

62 K. L. Smith, G. R. Lumpkin, M. G. Blackford, M. Colella and N. Zaluzec, J. In Situ Radiation Damage Studies of La$_{1-x}$Sr$_x$TiO$_3$ Perovskites, *J. Appl. Phys.*, 2008, **103**(8), 083531, DOI: 10.1063/1.2901183.

63 K. R. Whittle, M. de los Reyes, R. D. Aughterson, M. G. Blackford, K. L. Smith, P. Baldo, E. P. Ryan, N. J. Zaluzec and G. R. Lumpkin, In-Situ Irradiation of Ca$_{1-x}$La$_{2/3x}$TiO$_3$ Defect Perovskites: The Role of Vacancies in Recovery, *Materialia*, 2018, 3, 186–191, DOI: 10.1016/j.matlet.2018.08.016.

64 S. M. Lawson, N. C. Hyatt, K. R. Whittle and A. S. Gandy, Resistance to Amorphisation in Ca$_{1-x}$La$_{2/3x}$TiO$_3$ Perovskites – a Bulk Ion-Irradiation Study, *Acta Mater.*, 2019, **180**, 180–188, DOI: 10.1016/j.actamat.2019.09.006.

65 G. Greaves, A. H. Mir, R. W. Harrison, M. A. Tunes, S. E. Donnelly and J. A. Hinks, New Microscope and Ion Accelerators for Materials Investigations (MIAMI-2) System at the University of Huddersfield, *Nucl. Instrum. Methods Phys. Res., Sect. A*, 2019, **931**, 37–43, DOI: 10.1016/j.nima.2019.03.074.

66 J. F. Ziegler, M. D. Ziegler and J. P. Biersack, SRIM - The Stopping and Range of Ions in Matter, *Nucl. Instrum. Methods Phys. Res., Sect. B*, 2010, **268**(11–12), 1818–1823, DOI: 10.1016/j.nimb.2010.02.091.

67 G. R. Lumpkin, M. G. Blackford, K. L. Smith, K. R. Whittle, N. J. Zaluzec, E. a. Ryan and P. Baldo, Ion Irradiation of the TiO$_2$ Polymorphs and Cassiterite, *Am. Mineral.*, 2009, **95**(1), 192–195, DOI: 10.2138/am.2010.3329.

68 J. Lian, J. Chen, L. Wang, R. Ewing, J. Farmer, L. Boatner and K. Helean, Radiation-Induced Amorphization of Rare-Earth Titanate Pyrochlores, *Phys. Rev. B: Condens. Mater Mater. Phys.*, 2003, **68**(13), 134107, DOI: 10.1103/PhysRevB.68.134107.

69 J. Lian, L. Wang, G. R. Lumpkin and R. C. Ewing, Heavy Ion Irradiation of Brannerite-Type Ceramics, *Mater. Res. Soc. Symp.*, 2001, **650**, R3.17.1–R3.17.6, DOI: 10.1557/proc-650-r3.17.

70 J. Lian, J. M. Zhang, V. Pointeau, F. X. Zhang, M. Lang, F. Y. Lu, C. Poinsrot and R. C. Ewing, Response of Synthetic Cofinite to Energetic Ion Beam Irradiation, *J. Nucl. Mater.*, 2009, **393**(3), 481–486, DOI: 10.1016/j.nuclmat.2009.07.005.

71 J. Zhang, F. Zhang, M. Lang, F. Lu, J. Lian and R. C. Ewing, Ion-Irradiation-Induced Structural Transitions in Orthorhombic Ln$_3$TiO$_5$, *Acta Mater.*, 2013, **61**(11), 4191–4199, DOI: 10.1016/j.actamat.2013.03.045.
J. Zhou, T. Yao, J. Lian, Y. Shen, Z. Dong and F. Lu, Acta Mater., 2016, 110, 175-184, DOI: 10.1016/j.actamat.2016.03.025.

J. Zhou, T. Yao, J. Lian, Y. Shen, Z. Dong and F. Lu, Radiation-Induced Amorphization of Ce-Doped Mg$_2$Y$_4$(SiO$_4$)$_2$O$_2$ Silicate Apatite, Nucl. Instrum. Methods Phys. Res., Sect. B, 2016, 379, 102-106, DOI: 10.1016/j.nimb.2016.04.008.

J. Zhou, T. Yao, D. Cao, J. Lian and F. Lu, In-Situ TEM Study of Radiation-Induced Amorphization and Recrystallization of Hydroxyapatite, J. Nucl. Mater., 2018, 512, 307-313, DOI: 10.1016/j.jnucmat.2018.10.018.

T. Yao, F. Lu, H. Zhang, B. Gong, W. Ji, L. Zuo and J. Lian, Radiation-Induced Amorphization of Langasite La$_5$Ga$_8$SiO$_{14}$, J. Nucl. Mater., 2018, 500, 50-55, DOI: 10.1016/j.jnucmat.2017.12.023.

R. D. Aughterson, G. R. Lumpkin, M. de los Reyes, B. Gault, P. Baldo, E. Ryan, K. R. Whittle, K. L. Smith and J. M. Cairney, The Influence of Crystal Structure on Ion-Irradiation Tolerance in the Sm$_x$(Yb,2-x)TiO$_5$ Series, J. Nucl. Mater., 2016, 471, 17-24, DOI: 10.1016/j.jnucmat.2015.12.036.

W. Weber, Models and Mechanisms of Irradiation-Induced Amorphization in Ceramics, Nucl. Instrum. Methods Phys. Res., Sect. B, 2000, 166-167, 98-106, DOI: 10.1016/S0168-583X(99)00643-6.

W. J. Weber, R. C. Ewing and L.-M. Wang, The Radiation-Induced Crystalline-to-Amorphous Transition in Zircon, J. Mater. Res., 2011, 9(03), 688-698, DOI: 10.1557/jmr.1994.0688.

M. Ganguly, S. K. Rout, W. S. Woo, C. W. Ahn and I. W. Kim, Characterization of A-Site Deficient Samarium Doped Barium Titanate, Phys. B, 2013, 411, 26-34, DOI: 10.1016/j.physb.2012.11.006.

T. A. Whittle, W. R. Brant, J. R. Hester, Q. Gu and S. Schmid, Tailoring Phase Transition Temperatures in Perovskites: Via A Site Vacancy Generation, Dalton Trans., 2017, 46(22), 7253-7260, DOI: 10.1039/c7dt00352h.

A. Bisen, A. Satapathy, S. Parida, E. Sinha, S. K. Rout and M. Kar, Structural, Optical Band Gap, Microwave Dielectric Properties and Dielectric Resonant Antenna Studies of Ba[1-x]La[2x/3]ZrO$_3$ (0 ≤ x ≤ 0.1) Ceramics, J. Alloys Compd., 2014, 615, 1006-1012, DOI: 10.1016/j.jallcom.2014.07.007.

R. G. Lumpkin, M. Pruneda, S. Rios, K. L. Smith, K. Trachenko, K. R. Whittle and N. J. Zaluzec, Nature of the Chemical Bond and Prediction of Radiation Tolerance in Pyrochlore and Defect Fluorite Compounds, J. Solid State Chem., 2007, 180(4), 1512-1518, DOI: 10.1016/j.jssc.2007.01.028.

M. Lang, F. X. Zhang, R. C. Ewing, J. Lian, C. Trautmann and Z. Wang, Structural Modifications of Gd$_2$Zr$_2$Ti$_2$O$_{17}$ Pyrochlore Induced by Swift Heavy Ions: Disordering and Amorphization, J. Mater. Res., 2009, 24(04), 1322–1334, DOI: 10.1557/jmr.2009.0151.

J. Lian, X. Zu, K. Kutty, J. Chen, L. Wang and R. Ewing, Ion-Irradiated Amorphization of La$_2$Zr$_2$O$_7$ Pyrochlore, Phys. Rev. B: Condens. Matter Mater. Phys., 2002, 66(5), 054108, DOI: 10.1103/PhysRevB.66.054108.

G. R. Lumpkin, K. L. Smith, M. G. Blackford, K. R. Whittle, E. J. Harvey, S. a. T. Redfern and N. J. Zaluzec, Ion Irradiation of Ternary Pyrochlore Oxides, Chem. Mater., 2009, 21(13), 2746-2754, DOI: 10.1021/cm9003917.

J. Lian, R. C. Ewing, L. M. Wang and K. B. Helean, Ion-Beam Irradiation of Gd$_2$Sn$_2$O$_7$ and Gd$_2$Hf$_2$O$_7$ Pyrochlore: Bond-Type Effect, J. Mater. Res., 2004, 19(05), 1575–1580, DOI: 10.1557/JMR.2004.0178.

S. K. Meena, A. Dashora, N. L. Heda and B. L. Ahuja, Compton Spectroscopy and Electronic Structure Study for Tetragonal Barium Titanate, Radiat. Phys. Chem., 2019, 158, 46–52, DOI: 10.1016/j.radphyschem.2019.01.007.

K. L. Smith, M. Colella, R. Cooper and E. R. Vance, Measured Displacement Energies of Oxygen Ions in Titanates and Zirconates, J. Nucl. Mater., 2003, 321(1), 19–28, DOI: 10.1016/S0002-2113(03)00197-1.

R. Moos and K. H. Hardtl, Defect Chemistry of Donor-Doped and Undoped Strontium Titanate Ceramics between 1000° and 1400°C, J. Am. Ceram. Soc., 2005, 88(10), 2549-2562, DOI: 10.1111/j.1151-2916.1997.tb03157.x.

A. Chartier, C. Meis, J. P. Crocombette, L. R. Corrales and W. J. Weber, Atomicistic Modeling of Displacement Cascades in La$_2$Zr$_2$O$_7$ Pyrochlore, Phys. Rev. B: Condens. Matter Mater. Phys., 2003, 67(1), 1–13, DOI: 10.1103/PhysRevB.67.174102.

B. S. Thomas, N. a. Marks and B. D. Begg, Defects and Threshold Displacement Energies in SrTiO$_3$ Perovskite Using Atomicistic Computer Simulations, Nucl. Instrum. Methods Phys. Res., Sect. B, 2007, 254(2), 211–218, DOI: 10.1016/j.nimb.2006.11.069.

K. L. Smith and N. J. Zaluzec, The Displacement Energies of Cations in Perovskite (CaTiO$_3$), J. Nucl. Mater., 2005, 336(2-3), 261–266, DOI: 10.1016/j.jnucmat.2004.09.021.

A. C. Iyasara, W. L. Schmidt, R. Boston, D. C. Sinclair and I. M. Reaney, La and Sm Co-Doped SrTiO$_3$ Thermoelectric Ceramics, Mater. Today: Proc., 2017, 4(12), 12360–12367, DOI: 10.1016/j.matpr.2017.10.004.

C. L. Freeman, J. A. Dawson, H. R. Chen, L. Ben, J. H. Harding, F. D. Morrison, D. C. Sinclair and A. R. West, Energetics of Donor-Doping, Metal Vacancies, and Oxygen-Loss in A-Site Rare-Earth-Doped BaTiO$_3$, Adv. Funct. Mater., 2013, 23(31), 3925–3928, DOI: 10.1002/adfm.201203147.

J. A. Dawson, X. Li, C. L. Freeman, J. H. Harding and D. C. Sinclair, The Application of a New Potential Model to the Rare-Earth Doping of SrTiO$_3$ and CaTiO$_3$, J. Mater. Chem. C, 2013, 1(8), 1574–1582, DOI: 10.1039/c2tc00475e.

Z. Lu, H. Zhang, W. Lei, D. C. Sinclair and I. M. Reaney, High-Figure-of-Merit Thermoelectric La-Doped A-Site-
Deficient SrTiO$_3$ Ceramics, Chem. Mater., 2016, 28(3), 925–935, DOI: 10.1021/acs.chemmater.5b04616.

97 I. Akin, M. Li, Z. Lu and D. C. Sinclair, Oxygen-Loss in A-Site Deficient Sr$_{0.85}$La$_{0.1}$TiO$_3$ Perovskite, RSC Adv., 2014, 1–6, DOI: 10.1039/c4ra04199b.

98 C. A. Taylor, M. K. Patel, J. A. Aguiar, Y. Zhang, M. L. Crespillo, J. Wen, H. Xue, Y. Wang and W. J. Weber, Combined Effects of Radiation Damage and He Accumulation on Bubble Nucleation in Gd$_2$Ti$_2$O$_7$, J. Nucl. Mater., 2016, 479, 542–547, DOI: 10.1016/j.jnucmat.2016.07.043.

99 C. A. Taylor, M. K. Patel, J. A. Aguiar, Y. Zhang, M. L. Crespillo, J. Wen, H. Xue, Y. Wang and W. J. Weber, Bubble Formation and Lattice Parameter Changes Resulting from He Irradiation of Defect-Fluorite Gd$_2$Zr$_2$O$_7$, Acta Mater., 2016, 115, 115–122, DOI: 10.1016/j.actamat.2016.05.045.

100 N. Sasajima, T. Matsui, S. Furuno, K. Hojou and H. Otsu, Damage Accumulation in Al$_2$O$_3$ during H$^{2+}$ or He$^+$ Ion Irradiation, Nucl. Instrum. Methods Phys. Res., Sect. B, 1999, 148(1–4), 745–751, DOI: 10.1016/S0168-583X(98)00810-6.

101 M. A. van Huis, A. van Veen, F. Labohm, A. V. Fedorov, H. Schut, B. J. Kooi and J. T. M. De Hosson, Formation, Growth and Dissociation of He Bubbles in Al$_2$O$_3$, Nucl. Instrum. Methods Phys. Res., Sect. B, 2004, 216, 149–155, DOI: 10.1016/j.nimb.2003.11.071.

102 N. C. Hyatt, C. L. Corkhill, M. C. Stennett, R. J. Hand, L. J. Gardner and C. L. Thorpe, The HADES Facility for High Activity Decommissioning Engineering & Science: Part of the UK National Nuclear User Facility, IOP Conf. Ser.: Mater. Sci. Eng., 2020, 818, 012022, DOI: 10.1088/1757-899X/818/1/012022.