Optimal Layout Plan of Stands at the Macao Food Festival via Minimizing the Electrostatic Potential Energy with the Effective Charge as Popularity of Stands

Ka Ian Im, In Kio Choi, Pak Kio Lei, Hou Fai Chan, U In Ian and Wei Shan Lee∗

Pui Ching Middle School Macau, No.7, Avenida de Horta e Costa, Macau, China

ARTICLE INFO

Keywords:
Optimization and Control
Macao Food Festival
Simulated Annealing and Metropolis Algorithm(SAMA)
Coulomb Electrostatic Potential Energy

ABSTRACT

We proposed a mathematical model for designing the layout diagram of stand locations at the Macao Food Festival. The optimal layout diagram may be defined in such a way that, while requiring the distance between every pair of stands should not be too far away from each other, the crowd control is well managed so that people may patronize stands more effectively. More popular stands may have larger patronage, resulting in higher pedestrian flow nearby. Therefore, to avoid customers from packing shoulder to shoulder around more popular stands, we may treat every stand as a charged particle carrying an effective charge: the more popular a stand is, the higher the effective charge it carries. Under this assumption, the problem is then converted to the minimization problem of Coulomb electrostatic potential energy on a specific configuration of charge locations, with which the global minimum may be found by the Simulated Annealing and Metropolis Algorithm. Electrostatic energy density is interpreted as density of customers, while electric field the reversed crowd flow. Therefore, at a certain location we are able to predict the customer density by calculating the energy density and the net crowd flow with electric field lines. We also concluded that even though the required computation time to obtain a configuration of stand locations with the energy value close to the global minimum with a tolerable difference may be irrelevant to the randomly generated initial configuration of stand locations, setting up an appropriate initial configuration could be one of the key issues to find out the actual global minimum.

1. Introduction

Macau is a special administrative region of China and it was once a colony of the Portuguese Empire. Under the mixing of Portuguese and Chinese culture, Macau has become a diversified city that preserves both cultural heritage like traditional food, historic buildings, etc. This unique cultural background attracts a large number of tourists and it led tourism to become one of the important economic income of Macau. Therefore, different types of traditional festival celebrations and national events are held. Known as the capital of gastronomy, Macao has a wide variety of cuisines and retains the local cultural flavor, Coexisting and blending with China and the West, so to meet the taste buds of tourists around the enjoyment. Macau was named as a Creative City of Gastronomy by UNESCO in 2017 because of its 400-year culinary heritage[1].

It is noted that local festivals are widely used as tourism promoters and boost regional economies[2]. Also, the local festival scene does fit the pattern of local sustainable economic development activities better than other scenes[3]. Because of the uniqueness of cuisine has become one of the important factors to attract tourists to Macau, some annual national events such as Macau Grand Prix and Macau Food Festival are held each November[4]. Macau Food Festival which locates Sai Van Lake Square is one of the annual events that contains various culinary delights from Asia and Europe[5]. This landmark event gathers local and international chefs and key stakeholders from the sector from across Asia and Europe is a fine example of Macao’s expertise in hosting large-scale gastronomy-related events[6].

Owing to the fact that the local cuisine is an important part of the travel experience[7], Macau Food Festival takes food as an attraction to attract tourists to come specially to taste food and experience food culture[8]. Su[9] showed that the foreign tourists who flock to Macau’s food festival prove that the government has come to see it as a tourist attraction.

∗Corresponding author: Wei Shan Lee
wslee@p.uiching.edu.mo (W.S. Lee)
ORCID(s): 0000-0003-4801-0817 (W.S. Lee)
Since the utilization efficiency of regional tourism industry elements can be improved by a rational spatial organization of the tourism industry [10], various places are using optimal layout trying to optimize the facilities, such as proposing a macro layout planning method to better serve self-driving tour travelers [11], or layout optimization of tourist toilets [12]. It can even be used to solve problems like using mathematical optimization to determine the optimal layout of a dining room during the era of COVID-19 [13], within the intended span of a metro station, address the layout planning of a public bicycle system [14] or even improve the damping effect of the MR damper [15].

However, no article to date has been done on optimal stands locations for the Macau Food Festival. Therefore, the purpose of this study was to optimize the booth layout of the Macau food Festival, with which 140 booths were allocated among 200 possible locations, by approaching through minimizing Coulomb electrostatic potential energy while treating the stand popularity as the effective charge (EffQ), which was acquired by questionnaire survey and data analysis, where we classified booths into more popular ones with higher values of EffQ and less popular ones with lower EffQs.

2. Methods

Suppose there are N possible locations for the stands at the Macao food festival heritage labeled as $[0, 1, 2, \ldots, N-1]$, and there are N possible stands, where $N < N$. Also, let Q_i denote the effective charge (EffQ) of stand i. We then imagined a set of charged particles dispersing around in the 2-dimensional space. At the food festival, customers desire to patronize those more popular stands, equivalently referring to the highest charged particles. If the popular stands are located very near at the festival, it would be much easier for customers to get huddled together and also less convenient for customers to shop. To avoid crowding, our first idea was that it would be preferable to separate popular stands from one another as far as possible; nonetheless, it would cause inconvenience for customers to patronize popular stands. Keeping these in mind, we have to find out a layout plan whose stands are not too far away from one another while preventing most of the popular stands from locating close to one another. To the best of our imagination, this situation resembles that of the minimum energy of a system of two-dimensional electric charges. In other words, we would like to find out the locations for every charged particle (stand) such that the overall Coulomb electrostatic potential energy would be minimized. This is to say, we would like to find out the configuration of locations $\{r_i, \forall i\}$, such that the overall electric potential energy

$$E(\{r_i, \forall i\}) = \sum_{i \neq j} \frac{Q_i Q_j}{|r_i - r_j|}$$

is minimized. We then tried to calculate the global minimum via the simulated annealing and Metropolis algorithm (SAMA) [16].

The idea of the algorithm may be summarized as follows. While the probability for the system with energy E_i is described by the Boltzmann distribution with $\beta = 1/\tau = 1/k_B T$, k_B being the Boltzmann constant:

$$P(E_i) \propto e^{-\beta E_i}.$$

we arbitrarily generate an initial configuration of locations of our stands, then calculate the initial value of the quantity E_i in Eq.(1). Then, we generate another trial configuration of locations of stands by randomly picking up two locations of stands to swap, calculating again the quantity after the change in Eq.(1), say E_j. If the new quantity is smaller than the old one, we accept the swap. However, if the new quantity is larger than the old one, we may still try to accept the new configuration by introducing the Metropolis Algorithm with the following criteria [17], [18]:

$$P(\beta) E_j = \begin{cases}
1 & \text{ if } E_j \leq E_i; \\
 e^{-\beta (E_j - E_i)} & \text{ if } E_j > E_i.
\end{cases}$$

In practice, we generated a random number $z \in [0, 1]$, then if z satisfies
Optimal Layout Plan via minimizing Electrostatic Energy

\[T_{\text{max}} \quad T_{\text{min}} \quad \tau = k_b T \]

Table 1
Parameters used in SAMA.

we accept the swap; otherwise we reject the swap and go back to the previous configuration of stand locations. Throughout our study we have chosen values of the maximum temperature \(T_{\text{max}} \), minimum temperature \(T_{\text{min}} \), and \(\tau = k_b T \) as listed in Table 1. It is interesting to indicate that Karabin and Stuart[19] demonstrated that one may improve the efficiency of classical SAMA by allowing the temperature-varying \(k_b(T) \).

Figure 1 indicates the map of the event. It shows the locations of all the 140 booths that were designated in the year 2020, together with 60 more empty locations we deliberately chose to allow possibilities for the stands to select. Each booth has a different ID number on it. Remade and redrawn were made on the original map acquired from the official Facebook account of Macau Food festival,[20] and stands were divided into eight types[21]. The red dot in Figure 1 represents the origin of the coordinate so we could get the coordinates of the booths in Table 2. In addition, the arrows stand for the entrance of the event.

In order to determine the value of \(Q_t \) of a stand in Eq.(1), we conducted a questionnaire survey. The first idea was that it would be better off if we may ask respondents to evaluate all 140 stands. However, it is not practical because it is time consuming for a person to answer. Therefore, we divided the questionnaire into eight parts. Besides a questionnaire of all types of stands, which we called Grand questionnaire as shown in Table 3, for every type of stands, we also made a questionnaire of the subcategory consisting of all stands for that particular type. The respondents may choose to answer either all of the eight questionnaires or only one of them. The popularity of every stand in the particular subcategory was denoted as average (together with the standard deviation) in the following tables: Chinese restaurant zone (Table 4), European delicacies zone(Table 5), Dessert zone(Table 6), Asia delicacies zone(Table 7), Local delicacies zone (Table 8), Sponsor and other(Table 9), and Game booth(Table 10). Notice that the Type Sponsor and Type Other were grouped together in the survey and results were listed together in Table 9. Afterward, the effective charge \(Q_t \) of each stand was obtained by multiplying the value of the type in the grand questionnaire with the value of that particular stand in the subcategory.

The error propagation was also considered. Suppose that there are two mean values \(\bar{x} \) and \(\bar{y} \) from the grand questionnaire and one of the subcategories, with the standard deviation of mean \(\sigma_{\bar{x}} \) and \(\sigma_{\bar{y}} \), respectively. The \(Q_t \) of the stand may then be understood as \(Q_t = \bar{x} \cdot \bar{y} = \bar{x} \cdot \bar{y} \), and the standard deviation of mean for \(\bar{x} \bar{y} \) is[22]

\[
\sigma_{\bar{x}\bar{y}} = \sqrt{\left(\frac{\sigma_{\bar{x}}}{\bar{x}}\right)^2 + \left(\frac{\sigma_{\bar{y}}}{\bar{y}}\right)^2} \times \bar{x}\bar{y}.
\]

After acquiring all the \(Q_t \)s, we normalized them with

\[
Q'_t = \frac{Q - \overline{Q}}{\sigma},
\]

where \(\overline{Q} \) is the mean of the effective charge and \(\sigma \) is the standard deviation for \(Q \). By doing so, the \(Q_t \)s have properties that mean \(\overline{Q}' = 0 \) and variance is equal to 1[23]. As a result, the normalized effective charges \(Q'_t \) of all stands were listed in Table 11.
Figure 1: Locations of 140 stands at the Macau Food Festival and 60 other empty locations. Details for the stands numbers and coordinates were listed in Table 2.

3. Results and Discussions

Figure 2 illustrated the initial locations of stands which was generated randomly at the very first. The color bar at the right-hand side indicated the normalized effective charge Q_I mentioned in Eq. (6) with brighter color indicating higher Q_I. As the figure showed, most of the atoms (stands) were focused on the area of the y-axis 14 to 18, and the x-axis 15.0 to 22.5. As we could see around the two-column booths at $x = 20.0$, the stands were quite close to each other. In spite of this, there was also a diffuse community: dispersing in the area of the x-axis from 7.5 to 15.0, and the y-axis 8 to 18. In addition, some booths formed an arch shape at the right-side of the diagram. The initial energy calculated by Eq. (1) was 477.55282. The complete list of stand locations were given in Table 12.

After randomly generating the above initial configuration of locations, we implemented the SAMA algorithm to try to find out the optimal value of energy by randomly picking up two locations to swap. In order to find out lower energy with some configuration of space, we allocated 60 more locations besides the original 140 ones which were already occupied by the stands. Under this circumstance, there were three possible cases when we randomly chose two locations to swap. The first case was that two of the locations were occupied by one booth each, therefore there was no problem for us to swap between them. Secondly, it could also be possible that only one of the two locations we picked up was occupied with a booth while the other was empty. In this case, we could still swap the two locations by...
At the beginning of algorithm, 140 stands were randomly deployed among 200 possible locations. 60 more empty locations were also allowed to be selected for swapping. Carefully identifying the empty location. One more possibility that should be avoided was that we may also picked up two originally empty locations, which did not make any sense to swap between them.

Figure 3 illustrated energy vs. iteration, which may be divided into eight periods along Iteration axis, with the interval of roughly 46 thousand iterations each. The first period started from the initial energy around 440. In the process of running the SAMA, it dropped very quickly from the initial value down to ~ 200 within less than 2000 iterations, whereas it took 46 thousand more iterations to reduce energy down to around ~ 299 with some shapes of serration, with the layout shown in Fig 4a. As we discussed earlier, this configuration may not be the global minimum. Therefore after 46 thousand iterations we randomly set up another initial configuration and started over the algorithm again, as shown in Fig 4b.

In the second period within Iteration 46 thousand to 92 thousand, energy dropped from 520 to ~ 294 (see also Fig 4b and Fig 4c) before we set up another initial condition as in Fig 4d. Similar patterns occurred in the following consecutive five periods, as indicated through Fig 4d to Fig 4n. However, since SAMA was purportedly designed to continue running until it found out an energy lower than ~ 300, it did not succeed until in the eighth period. We may see that even if figures at the left-hand sides of Fig 4 were all very close to ~ 300, for the SAMA to reach the optimal (or even more importantly, the global) minimum, it could be crucial for the system to start at the appropriate initial configuration, as indicated in Fig 4n. Snapshots in Fig 4 were taken from the animation videos[24] of stands locations in company with the aforementioned featuring iterations in Figure 3.
Optimal Layout Plan via minimizing Electrostatic Energy

![Energy vs Iteration](image)

Figure 3: Energy vs. Iteration in the algorithm. The whole process may be roughly divided into eight periods along the Iteration (with the gap of 46 iterations), each starting up with a randomly generating initial configuration of stand locations, reducing down to energy around -299. The algorithm was set up to stop when it found an energy lower than -300.

In addition, we also plotted the energy gradient (zoomed in between range ±15) vs. iterations in Figure 5. Inset was the energy gradient for the whole range in the vertical axis. Envelopes formed by the curves in every period were almost very similar. This may demonstrate that the initial configuration of the system may be irrelevant for the algorithm to search for a configuration with tolerable energy difference to the desired optimal energy value.

With the computer specs of Intel Core i7-4500U CPU @ 1.80 GHz 2.39 GHz and RAM 8GB, 64-bit operating system and x64-based processor, it took as about 5 hours to minimize energy from the initial 477.55282 to the optimal -300.00073. Codes may be accessed in Ref.[25]. Figure 6 showed the optional locations of stands. Compared with the initial locations of stands in Fig.2, it had a significant difference. Generally speaking, the stands were well organized in the optimal layout as expected. Then, stands in Fig.6 were divided mainly into two parts apparently, mostly in the area of the x-axis 15.0 to 22.5, and the y-axis 14 to 18. One was that most of the stands were located on the upper right half the diagram, while lower left half part was composed of very few stands aligned with two columns, together with some sporadic booths surrounding around the Square holding the event. One interesting feature was that there were 2 parallel columns of stands, located along $x = 20.0$ and the other skew one along near $y = 12$, alternately consisting of booths with the higher Q' and the lower ones. This interesting arrangement demonstrated that it may be a good idea to allocate together popular booths with less popular ones. On the other hand, very few of the stands were dispersed in the area from x-axis 7.5 to 15.0, and the y-axis 10 to 18. This layout may accomplish our goal of allocating stands as close as possible while minimizing the overall electrostatic potential energy. The complete list of stand locations were given in Table 13.

Electrostatic theorem was further brought upon with real-world applications once we interpret that the electrostatic energy density is the density of customers, while the electric field line points to the reversed net crowd flow at the particular location. Fig. 7 showed the electric field vectors[26] of the optimal layout plan within 1000×1000 grid.
Vectors indicated the reversed net crowd flows, with directions toward high Q^f while outward away from the lower Q^f. Moreover, Fig. 8 showed the logarithmic energy density, which was the prediction of customer density at the Festival. By calculating the energy density and electric field line, we may be able to predict the customer density and net movement, making it possible to enhance customer service at the festival.
Figure 5: Energy gradient vs. Iteration. Notice that the shapes of envelopes within the several periods were also similar, which probably means that computation time required to search for the configuration with an acceptable energy value is not dependent on the initial configuration of our system. (Inset) The overview of energy gradient vs. Iteration. Shark peaks indicated the reset of initial conditions of booth locations.

Figure 6: Optimal locations of stands, together with values of Q' as various colors indicated at the color bar.
Electric Field Vectors

Figure 7: Electric field vectors for the system of booths with Q_f, which could help us predict the net crowd flow at a specific location.

Energy Density

Figure 8: Logarithmic energy density of the optimal layout, from which the customer density was able to predict.
4. Conclusions

We successfully built up a mathematical model to calculate the optimal layout plan for stands at the Macau Food Festival while treating the popularity of stands as the Effective Charges. The popularity of every stand was acquired by implementing questionnaire surveys. Stands were purportedly treated as charged particles carrying some effective charge with the concept of more popular stands carrying higher EffQs. Also, to avoid customers from gathering together around popular stands, as well as the requirements that stands should not be too far away from one another, it is convincing that the optimal layout plan could be justified by searching for the global minimum of Coulomb energy for a certain configuration of stand locations. The above reasoning may serve as a guideline for future similar applications of this method. Since the landmark annual event Macau Food Festival enhances the local economy effectively and attracts a large number of tourists, our model may help prevent customers from congregating around more popular stands effectively.

Our SAMA accomplished the purpose and reduced the initial energy from 477,55282 to ~300,00073 about 5 hours (computer specs: Intel Core i7-4500U CPU @ 1.80 GHz 2.39 GHz and RAM 8GB, 64-bit operating system and x64-based processor). Moreover, we also proposed the optimal locations for booths in Figure 6, with detailed coordinates listed in Table 13. Besides, electrostatic energy density is interpreted as density of customers, and electric field is the reversed crowd flow. Therefore, our model could be used to predict the density of customers and net crowd flow at any specific locations at the event, making it possible to assist a better tourist experience.

The effect of initial configuration of stands on the search of optimal energy value was further investigated by resetting the system several times until the desired energy value was found. We may observe that it could be significant for the system to be initialized with a proper configuration for SAMA to attain a global minimum, whereas computation time was irrelevant to the initial configuration if one only requested an approximate configuration energy close enough to the global minimum.

All in all, it is our pleasure that the model may be executed in future events to providing an optimization of the booth layout, stimulating consumption and boost economic development for Macau.

5. Acknowledgment

We thank Pui Ching Middle School in Macau PRC for the kindness to support this research project.

References

[1] https://en.unesco.org/creative-cities/events/macao-launches-its-macanese-cuisine-database
[2] Felsenstein, D., and Fleischer, A. (2003). Local Festivals and Tourism Promotion: The Role of Public Assistance and Visitor Expenditure. Journal of Travel Research, 41(4), 385–392.
[3] Diane O’Sullivan and Marion J. Jackson (2010) Festival Tourism: A Contributor to Sustainable Local Economic Development?, Journal of Sustainable Tourism, Vol. 10, 325-342. https://doi.org/10.1080/09669580208667171
[4] https://industry.macaotourism.gov.mo/en/presroom/index.php?page_id=172&id=3415
[5] https://mt.macaotourism.gov.mo/2021/11/macao-food-festival-presents-local-gastronomic-specialties/
[6] https://en.unesco.org/creative-cities/macao
[7] Sengel, T., and Karagöz, A. (2015). Tourists’ Approach to Local Food. Procedia - Social and Behavioral Sciences, 195, 429–437.
[8] Wang Xin, Macau Gourmet Tourism Development Review and Gourmet Festival Customer Satisfaction Survey. (2011). STUDIES ON HONG KONG AND MACAO, (1), 20–32.
[9] Su, W. X. (2009). Constructing a Model of Food Festival Visitor Behavior. Su WX(Doctoral thesis, Ph. D. Division of hospitality management and education, Department of human development and family studies, National Taiwan Normal University)https://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0021-1610201315171770
[10] Hao, J. L., Liu, H. L., Chen, J., & Sun, F. K. (2020). Study on City-Level Optimization of Tourism Industry Spatial Organization Nodes and Organization Mode for Tourist Destinations. Complexity, 2020(2807817), 13. https://doi.org/10.1155/2020/2807817
[11] Zhang, X. Q., Wang, gang , Luo, Y., & Tian, B. (2020). Macro-Layout Planning of Tourism Highway Camp Service Facilities: Taking Jilin Province as an Example. CICTP 2020: Advanced Transportation Technologies and Development-Enhancing Connectionshttps://doi.org/10.1061/9780784482933.194
[12] Han L, Cheng Y , Cui Z, Xi G (2021) Optimal layout of tourist toilets using resilience theory: An empirical study on Dunhua City in ethnic region of China. PLOS ONE 16(5): e0251696. https://doi.org/10.1371/journal.pone.0251696
[13] Claudio Contardo and Luciano Costa, On the optimal layout of a dining room in the era of COVID-19 using mathematical optimization. arXiv:2108.04233[cs.OH]https://arxiv.org/abs/2108.04233
[14] Chen , J. X., Chen, X. W., Jiang, H., Zhu , sen Lai , Li, X. W., & Li, Z. B. (2015). Determining the Optimal Layout Design for Public Bicycle System within the Attractive Scope of a Metro Station. Mathematical Problems in Engineering, 2015(456013), 8.https://doi.org/10.1155/2015/456013

Ka lan Im et. al.: Preprint submitted to Elsevier
Optimal Layout Plan via minimizing Electrostatic Energy

[15] Hu, S. P., Su, C., Yan, M. J., Yang, Y., Bai, J. W., & Cao, E. H. (2021). Study on the Semiactive Control and Optimal Layout of a Hydropower House Based on Magnetorheological Dampers. Mathematical Problems in Engineering, 2021(6667446), 17. https://doi.org/10.1155/2021/6667446

[16] S. Kirkpatrick, C. D. Gelatt Jr., and M. P. Vecchi, "Optimization by Simulated Annealing", Science, Vol. 220, pp. 671-680.

[17] Rubin H. Landau, Manuel J. Páez, and Cristian C. Bordeianu, Computational Physics, 2015 WILEY_VCH, Page 414.

[18] Werner Krauth, Statistical Mechanics: Algorithms and Computation, Oxford University Press 2006, pp. 20-21, ISBN 978-0-19-851536-4.

[19] Maria Karabin and Steven J. Stuart, "Simulated Annealing with Adaptive Cooling Rates." J. Chem. Phys. 153, 114103 (2020); https://doi.org/10.1063/5.0018725

[20] https://www.facebook.com/macaufoodfestival/photos/3524628674247428

[21] Data extracted from various website:
https://www.facebook.com/macaufoodfestival/photos/3524628420914120
https://www.facebook.com/macaufoodfestival/photos/3524628704247425
https://www.facebook.com/macaufoodfestival/photos/3524628597580769
https://www.facebook.com/macaufoodfestival/photos/3524628547580774
https://www.facebook.com/macaufoodfestival/photos/3524628437580785

[22] https://en.wikipedia.org/wiki/Propagation_of_uncertainty

[23] Dimitri P. Bertsekas and John N. Tsitsiklis, Introduction to Probability, 2nd Ed., Athena Scientific, P. 156.

[24] The whole animation may be found via https://github.com/weishanlee/macauFoodFestival/blob/main/animation.mp4

[25] The code may be obtained via https://github.com/weishanlee/macauFoodFestival

[26] Visualizing a vector field with Matplotlib. https://scipython.com/blog/visualizing-a-vector-field-with-matplotlib/
Appendix A Names, Coordinates and ID numbers of Stands

Table 2: Names, Coordinates and ID numbers of Stands. Number J1 to J60 were 60 empty locations that we chose by our own discretion in order to find out lower value of energy configuration.

standID	number	type	name	x	y
1	A1	chinese restaurant zone	shanghai 456 restaurant	25.9754	16.6909
2	A2	chinese restaurant zone	metró pole	26.0947	16.106
3	A3	chinese restaurant zone	wong long frutos do mar casa de pasto	26.0947	15.535
4	A4	chinese restaurant zone	estabelecimento de comidas teng hou	26.0125	14.9698
5	A5	chinese restaurant zone	li jing xuan restaurante	25.8371	14.4576
6	A6	chinese restaurant zone	restaurante beautiful world	25.5923	13.9432
7	A7	chinese restaurant zone	estabelecimento de comidas tai long fong	25.3305	13.4876
8	A8	chinese restaurant zone	the plaza restaurant	24.9698	12.9823
9	A9	chinese restaurant zone	cafe rose garden	24.6543	12.6152
10	A10	chinese restaurant zone	estabelecimento de comidas seng cheong	24.2989	12.246
11	A11	chinese restaurant zone	estabelecimento de comidas fu loi mei sek	23.9314	11.9047
12	A12	chinese restaurant zone	estabelecimento de comidas tam kah barbatana	23.5566	11.6261
13	A13	chinese restaurant zone	estabelecimento de comidas soi lou weng fan tim	23.145	11.3575
14	A14	chinese restaurant zone	chan heng	22.7573	11.1755
15	A15	chinese restaurant zone	fok lam seng	22.3373	10.9144
16	A16	chinese restaurant zone	estabelecimento de comidas teng seng chuen yue	21.9011	10.7276
17	A17	chinese restaurant zone	vaca gorda	21.4973	10.5685
18	B1	european delicacies zone	estabelecimento de comidas pan one	20.9878	15.1472
19	B2	european delicacies zone	estabelecimento de comidas portuguesa porto	21.4644	17.337
20	B3	european delicacies zone	a cozinha mariana	21.4644	16.8913
21	B4	european delicacies zone	estabelecimento de codas cafe de novo tomato	21.4644	16.4748
22	B5	european delicacies zone	estabelecimento de codas san man fa	21.4644	16.025
23	B6	european delicacies zone	la gondola	21.4644	14.6932
24	B7	european delicacies zone	estabelecimento de codas "tain hao hui"	21.4644	17.7542
25	B8	european delicacies zone	estabelecimento de codas nova facção notari italia cozinha	20.9878	15.6011
26	B9	european delicacies zone	restaurante amigo cozinhibros	21.4644	15.6011
27	B10	european delicacies zone	estabelecimento de codas fragts grill	21.4644	15.1472
28	B11	european delicacies zone	cakez café	20.9878	17.7542
29	C1	dessert zone	KIKA GELATO	19.1208	9.9518
30	C2	dessert zone	MACAU SPIRT	18.7347	10.0897
31	C3	dessert zone	leit aria i son	18.352	10.2201
32	C4	dessert zone	Antique Macau	17.9413	10.3888
33	C5	dessert zone	CC MOCHI	17.5603	10.5548
ID	Zone	Name	Latitude	Longitude	
----	------	------	----------	-----------	
73	D17	asia delicicas zone	EST ABELICEMTO DE COMDAS SHISU TSUKI	11.8389	9.5682
74	D18	asia delicicas zone	EST ABELICEMTO DE COMDAS COZNAH JAPONESA HOKKAIDO	12.1908	9.0432
75	D19	asia delicicas zone	BARI UMA RAMEN	9.6459	9.596
76	D20	asia delicicas zone	EST ABELICEMTO DE COMDAS NAGANO CUIDADOS	12.5612	8.59
77	D21	asia delicicas zone	EDO JAPANESE RESTAURANT	9.2312	9.9481
78	D22	asia delicicas zone	EST ABELICEMTO DE COMDAS NAN TEI	8.8488	10.2894
79	D23	asia delicicas zone	COMDAS RAMEN KOU-JI	8.4402	10.6889
80	D24	asia delicicas zone	CAFE LITTLE TOKYO	8.0617	11.0869
81	D25	asia delicicas zone	CAFE POLI	23.1007	13.2808
82	E1	local delicicas zone	ESTABELEOMENTO DE COMIDAS OUARTO IRMÃO	19.7282	13.958
83	E2	local delicicas zone	ESTABELEOMENTO DE COMIDAS CHUI KUN	19.4127	13.958
84	E3	local delicicas zone	DUMP LING TOWN	17.8843	13.958
85	E4	local delicicas zone	ESTABELEOMENTO DE COMIDAS IENG FAT CHA CHAN TENG	17.5358	13.958
86	E5	local delicicas zone	ESTABELEOMENTO DE COMIDAS ZEN CUISINE	17.1881	13.958
87	E6	local delicicas zone	ESTABELEOMENTO DE COMIDAS LEI U MUN	16.8396	13.958
88	E7	local delicicas zone	ESTABELEOMENTO DE COMIDAS TONG WU	16.4911	13.958
89	E8	local delicicas zone	ESTABELEOMENTO DE COMIDAS A CHANG	16.1433	13.958
90	E9	local delicicas zone	ESTABELEOMENTO DE COMIDAS YI YAN TANG	19.8669	16.8995
91	E10	local delicicas zone	ESTABELEOMENTO DE COMIDAS IMPLACA BEL SPICY	19.8669	16.5771
92	E11	local delicicas zone	ESTABELEOMENTO DE COMIDAS OAYA	19.8669	16.2548
93	E12	local delicicas zone	ESTABELEOMENTO DE COMIDAS POU TIN IAO MEI IAO CHOU	20.9878	17.3065
94	E13	local delicicas zone	ESTABELEOMENTO DE COMIDAS HEY HEY	20.9878	16.8771
95	E14	local delicicas zone	ESTABELEOMENTO DE COMIDAS NO.5 FRENCH CUISINE	20.9878	16.4648
96	E15	local delicicas zone	ESTABELEOMENTO DE COMIDAS SUN JICK	20.9878	16.025
97	E16	local delicicas zone	ESTABELEOMENTO DE COMIDAS HAP SENG	20.1918	16.2548
98	E17	local delicicas zone	COZNAH ASIATICA TREASURE LAKE	20.1918	16.5771
99	E18	local delicicas zone	A COZINHA DO DCM	20.1918	16.8995
100	E19	local delicicas zone	ESTABELEOMENTO DE COMIDAS KAM JOI MA	20.1918	14.6431
101	E20	local delicicas zone	TIMES COMDASE SOPA	20.1918	14.9655
102	E21	local delicicas zone	ESTABELEOMENTO DE COMIDAS HOI ON	20.1918	15.2878
103	E22	local delicicas zone	ESTABELEOMENTO DE COMIDAS KAN TO POU	20.1918	15.6101
104	E23	local delicicas zone	ESTABELEOMENTO DE COMIDAS LI LAI KA FEI MEI SHE	20.1918	15.9325
105	E24	local delicicas zone	ESTABELEOMENTO DE COMIDASOI SIM SUM	19.8669	14.6431
106	E25	local delicicas zone	ACUELA PANELA QUENTE	19.8669	14.9655
107	E26	local delicicas zone	ESTABELEOMENTO DE COMIDAS PR. I NCIFE KA FE MEI SEX	19.8669	15.2878
108	E27	local delicicas zone	WICKED SNOW	19.8669	15.6101
109	E28	local delicicas zone	ESTABELEOMENTO DE OOMIOAS MS	19.8669	15.9325
110	E29	local delicicas zone	ESTABELEOMENTO DE COMIDAS WU LOU CHA LIO NEI SEX	17.167	18.0361
111	E30	local delicicas zone	ANTIGO MACAL TRADICIONL	16.8607	17.8911
---	---	---	---	---	---
112	E31	local delicas zone	ESTABELECENTO DE COMIDAS GATOS DE SABOR HUN YUET	16.5382	17.7468
113	E32	local delicas zone	ESTABELECENTO DE COMIDAS COZINHA DA ARTE	16.2584	17.5999
114	E33	local delicas zone	ESTABELECENTO DE COMIDAS MEU BISTRO	15.9371	17.4291
115	E34	local delicas zone	ESTABELECENTO DE COMIDAS CHENGDU HOT POT	20.3578	13.958
116	E35	local delicas zone	ESTABELECENTO DE COMIDAS YONG TAI NEI SN	15.7948	13.958
117	E36	local delicas zone	VEGETARIAN DE GONGDEMEN	20.0418	13.958
118	G1	sponsor	PASTEKAIRIA YENG KEE	24.3496	16.0042
119	G2	sponsor	PASTEKAIRIA YENG KEE	24.3496	15.5331
120	G3	sponsor	SOCIEDADE DE JOGOS DE MACAU, S.A.	24.3496	14.1196
121	G5	sponsor	BANK OF CHINA MACAU BRANCH	23.1007	14.6681
122	G6	sponsor	MACAU PASS S.A.	22.6744	14.6681
123	G7	sponsor	MACAU INDUSTRIAL LIMITED	20.3929	13.5369
124	G8	sponsor	MACAU INDUSTRIAL LIMITED	20.1811	13.1701
125	G9	sponsor	COMPANHADECHAMACAUALLN LMTADA	9.6923	15.2651
126	H1	game booth	PERFECT SHOT	13.3303	16.7161
127	H2	game booth	STABD STILL	12.7954	16.2812
128	H3	game booth	TREASURE BUCKETS	12.3299	15.9027
129	H4	game booth	GOURMENT PARA DISE	11.8661	15.5257
130	H5	game booth	ROLLER BALL	11.4005	15.1472
131	H6	game booth	ROTARY ANIMAL PARK	8.834	12.7724
132	H7	game booth	HOPPING FROG	9.3585	14.0929
133	H8	game booth	SLAMBUDUNK	8.747	14.7145
134	H9	game booth	FISH CATCHER	8.3909	15.7023
135	H10	game booth	COINING AROUND	8.0627	16.3472
136	H11	game booth	SANDY SKEE BALL	8.7306	17.643
137	I6	other	BEER&SANCK	20.9878	14.6932
138	I7	other	BEER&SANCK	8.2676	11.98
139	I10	other	POPCORN&COTTON CANDY	19.7954	10.6412
140	I11	other	POPCORN&COTTON CANDY	23.8712	16.7128
141	J1			15.8448	14.5245
142	J2			15.8448	14.9642
143	J3			15.8448	15.4039
144	J4			15.8448	15.8436
145	J5			15.8448	16.2833
146	J6			15.8448	16.723
147	J7			16.2933	14.5245
148	J8			16.2933	14.9642
149	J9			16.2933	15.4039
150	J10			16.2933	15.8436
Optimal Layout Plan via minimizing Electrostatic Energy

Ka Ian Im et. al.: Preprint submitted to Elsevier

Page 17 of 37
J	X	Y
190	15.4676	6.7009
191	15.4676	7.1406
192	15.4676	7.5803
193	15.4676	8.02
194	15.4676	8.4597
195	15.9132	6.2612
196	15.9132	6.7009
197	15.9132	7.1406
198	15.9132	7.5803
199	15.9132	8.02
200	15.9132	8.4597

End of Table 2
Appendix B Grand questionnaire

Time stamp	Type	Chinese restaurant zone	European delicacies zone	Dessert zone	Asia delicacies zone	Local delicacies zone	Game booth	Sponsor and Other
2021/11/5 am 10:58:33	9	7	10	9	8	8	6	
2021/11/5 am 10:59:29	4	3	8	6	7	9	8	
2021/11/5 am 11:00:00	7	8	9	7	9	7	7	
2021/11/5 am 11:01:45	9	4	10	7	4	10	8	
2021/11/5 am 11:06:10	10	9	9	9	8	3	5	
2021/11/8 am 8:28:54	10	5	9	9	3	3	3	
2021/11/8 am 8:54:37	5	8	8	9	7	4	4	
2021/11/8 pm 12:28:14	1	7	9	8	6	5	5	
2021/11/8 pm 2:25:51	8	7	7	6	9	6	7	
2021/11/8 pm 3:35:05	7	8	10	7	8	8	7	
2021/11/8 pm 6:03:14	5	7	6	6	6	2	2	
2021/11/17 am 11:18:02	9	8	7	8	7	9	3	
2021/11/17 am 11:30:59	5	8	8	6	7	5	6	
2021/11/17 pm 11:53:06	10	10	8	8	10	5	5	
2021/11/18 am 5:00:23	9	5	7	8	9	6	7	
2021/11/18 am 8:46:09	10	5	5	10	10	9	7	
2021/11/18 pm 11:01:20	8	6	7	8	9	5	7	
2021/11/18 pm 12:32:19	9	9	9	9	2	7	5	
2021/11/18 pm 11:50:20	10	10	10	10	10	10	10	
2021/11/19 am 1:46:52	3	7	7	7	7	5	5	
2021/11/19 am 8:48:43	10	8	8	8	8	6	6	
2021/11/19 am 9:01:30	9	9	7	7	5	6	6	
2021/11/26 am 9:02:39	10	10	10	10	10	10	10	
2021/11/26 am 9:03:46	5	8	8	8	9	2	10	
2021/11/26 am 9:04:47	5	5	5	5	5	5	5	
2021/11/26 am 9:06:50	8	8	8	8	8	8	8	
2021/11/26 am 9:07:09	4	5	8	4	5	5	6	
2021/11/26 am 9:07:51	8	6	9	7	5	10	9	
2021/11/26 am 9:10:15	4	8	10	8	6	1	3	
2021/11/26 am 9:11:17	4	8	8	8	9	10	10	
2021/11/26 pm 2:14:52	7	10	10	8	10	10	9	
2021/11/26 pm 2:18:52	3	4	7	8	9	1	5	
2021/11/26 pm 2:18:54	8	7	8	8	7	9	9	
2021/11/26 pm 2:19:15	7	8	7	9	9	5	3	
2021/11/26 pm 2:19:21	1	5	10	5	7	1	5	
2021/11/26 pm 2:19:45	1	1	2	4	6	1	6	
2021/11/26 pm 2:20:22	6	9	10	9	7	10	10	
2021/11/26 pm 2:20:24	8	6	5	8	7	1	2	
2021/11/26 pm 2:20:33	7	7	10	9	8	10	10	
2021/11/26 pm 2:21:19	8	7	10	5	10	6	6	
2021/11/26 pm 2:21:46	7	8	10	8	8	3	8	
2021/11/26 pm 2:22:07	5	8	9	8	7	5	6	
2021/11/26 pm 2:23:20	1	1	1	1	1	1	1	
2021/11/26 pm 2:25:46	4	6	10	5	7	8	5	
2021/11/26 pm 10:30:53	8	8	8	8	7	7	7	
2021/11/26 pm 11:28:12	5	5	9	7	6	10	7	

Table 3: Grand questionnaire.
Appendix C Chinese restaurant zone

Time stamp	StandID
2021/11/3 pm 7:47:26	6
2021/11/5 am 11:02:20	10
2021/11/5 am 11:02:46	9
2021/11/5 am 11:05:48	7
2021/11/5 am 11:06:42	5
2021/11/5 am 11:09:39	2
2021/11/17 pm 11:22:45	7
2021/11/18 am 5:11:04	8
2021/11/18 am 11:11:25	8
2021/11/19 am 8:58:56	9
2021/11/26 am 9:08:45	10
2021/11/26 am 9:09:11	8
2021/11/26 am 9:14:40	8
2021/11/26 am 9:15:36	7
2021/11/26 am 9:15:46	7
2021/11/26 am 9:17:10	7
2021/11/26 am 9:21:07	7
2021/11/26 am 9:21:19	10
2021/11/26 pm 2:26:39	7
2021/11/26 pm 2:27:08	4
2021/11/26 pm 2:27:32	9
2021/11/26 pm 2:28:18	6
2021/11/26 pm 2:29:48	6
2021/11/26 pm 2:30:30	1
2021/11/26 pm 2:31:21	8
2021/11/26 pm 2:32:31	7
2021/11/26 pm 2:33:07	10
2021/11/26 pm 2:33:53	3
2021/11/26 pm 2:34:08	10
2021/11/26 pm 2:36:01	3
2021/11/26 pm 10:36:08	8
2021/11/26 pm 11:31:26	3

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17
average	6.875	6.594	6.813	6.906	6.531	6.125	6.688	7.125	6.594	6.281	6.063	6.906	6.438	6.719	6.250	6.594	6.813
standard deviation of mean	0.435	0.416	0.461	0.432	0.428	0.513	0.436	0.487	0.475	0.504	0.464	0.470	0.498	0.476	0.477	0.510	0.450

Table 4: Chinese restaurant zone.
Appendix D European delicacies zone

Time stamp	StandID	18	19	20	21	22	23	24	25	26	27	28
2021/11/5 am 10:59:06	8	10	5	10	10	4	9	7	10	7	10	8
2021/11/5 am 11:01:03	7	8	7	8	7	5	6	5	6	6	6	6
2021/11/5 am 11:01:39	8	5	7	5	4	8	7	5	4	8	9	9
2021/11/5 am 11:02:21	8	3	3	7	4	5	9	10	4	6	8	8
2021/11/5 am 11:08:33	9	10	5	3	3	3	9	9	4	10	3	3
2021/11/8 am 8:29:15	8	3	5	7	4	3	9	7	7	9	9	6
2021/11/8 pm 12:29:31	7	7	6	6	6	7	7	7	6	8	8	6
2021/11/17 pm 11:18:28	6	6	8	7	6	4	7	7	7	9	9	9
2021/11/17 pm 11:56:41	7	7	4	4	4	7	5	8	5	8	8	6
2021/11/18 am 5:01:48	7	9	6	6	6	6	7	8	7	8	8	8
2021/11/18 am 8:48:10	10	6	3	6	7	6	10	7	6	7	10	6
2021/11/18 am 11:02:37	6	7	6	8	8	8	9	8	7	8	8	8
2021/11/19 am 8:50:03	6	8	5	6	5	7	7	8	8	8	8	6
2021/11/19 am 9:02:11	7	8	7	7	6	7	7	7	7	7	7	7
2021/11/26 am 9:03:10	10	10	10	10	10	10	10	10	10	10	10	10
2021/11/26 am 9:05:10	5	5	5	5	5	5	5	5	5	5	5	5
2021/11/26 am 9:07:40	5	5	5	5	5	5	5	5	5	5	5	5
2021/11/26 am 9:08:11	5	6	7	8	7	6	5	9	7	8	6	8
2021/11/26 am 9:09:07	10	10	10	10	10	10	10	10	10	10	10	10
2021/11/26 am 9:10:44	9	6	7	6	5	9	10	8	4	8	6	8
2021/11/26 am 9:12:04	8	5	7	4	5	7	8	8	6	8	8	6
2021/11/26 am 9:13:15	9	7	6	6	7	8	10	8	7	10	6	6
2021/11/26 pm 2:19:39	8	7	8	7	7	8	9	8	7	9	6	6
2021/11/26 pm 2:19:54	8	7	5	6	4	6	8	4	4	5	10	10
2021/11/26 pm 2:20:05	8	8	6	7	8	5	4	8	8	9	4	4
2021/11/26 pm 2:20:06	5	4	5	7	4	6	6	7	6	7	6	6
2021/11/26 pm 2:20:43	9	9	8	6	8	10	6	9	8	7	9	9
2021/11/26 pm 2:21:09	9	9	10	8	9	10	8	8	8	7	6	6
2021/11/26 pm 2:21:42	5	5	5	5	5	5	7	3	3	3	5	3
2021/11/26 pm 2:21:50	10	5	2	5	1	3	6	9	3	4	7	9
2021/11/26 pm 2:22:56	6	4	7	5	3	5	9	7	7	7	5	5
2021/11/26 pm 2:23:10	8	8	8	8	8	8	9	9	9	9	9	9
2021/11/26 pm 2:23:34	10	6	5	6	5	5	10	10	8	10	7	10
2021/11/26 pm 2:24:11	1	1	1	1	1	1	1	1	1	1	1	1
2021/11/26 pm 2:27:59	6	2	2	2	2	3	1	2	2	5	3	3
2021/11/26 pm 10:31:40	8	8	8	8	8	8	8	8	8	8	8	8
2021/11/26 pm 11:28:41	7	7	7	9	7	7	8	8	6	6	5	5

| average | 7.459 | 6.514 | 6.000 | 6.378 | 5.892 | 6.595 | 7.027 | 7.324 | 6.270 | 7.514 | 6.595 |
| standard deviation | 0.307 | 0.373 | 0.355 | 0.336 | 0.387 | 0.350 | 0.415 | 0.351 | 0.359 | 0.328 | 0.360 |

Table 5: European delicacies zone.
Appendix E Dessert zone

StandID	29	30	31	32	33	34	35	36	37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54	55	56	
2021/11/5 am 11:00:03	9	10	9	10	9	10	9	10	9	9	10	9	10	2	2	3	3	3	3	3	3	3	3	3	3	3	3	3	3
2021/11/5 am 11:02:51	10	11	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10
2021/11/5 am 11:04:55	9	10	9	10	9	10	9	10	9	9	10	9	10	2	2	3	3	3	3	3	3	3	3	3	3	3	3	3	3
2021/11/5 pm 2:21:51	9	10	9	10	9	10	9	10	9	9	10	9	10	2	2	3	3	3	3	3	3	3	3	3	3	3	3	3	3
2021/11/5 pm 2:22:20	9	10	9	10	9	10	9	10	9	9	10	9	10	2	2	3	3	3	3	3	3	3	3	3	3	3	3	3	3
2021/11/5 pm 2:23:01	9	10	9	10	9	10	9	10	9	9	10	9	10	2	2	3	3	3	3	3	3	3	3	3	3	3	3	3	3
2021/11/5 pm 2:24:21	9	10	9	10	9	10	9	10	9	9	10	9	10	2	2	3	3	3	3	3	3	3	3	3	3	3	3	3	3
2021/11/5 pm 2:25:18	9	10	9	10	9	10	9	10	9	9	10	9	10	2	2	3	3	3	3	3	3	3	3	3	3	3	3	3	3
2021/11/5 pm 2:25:41	9	10	9	10	9	10	9	10	9	9	10	9	10	2	2	3	3	3	3	3	3	3	3	3	3	3	3	3	3
2021/11/5 pm 2:26:02	9	10	9	10	9	10	9	10	9	9	10	9	10	2	2	3	3	3	3	3	3	3	3	3	3	3	3	3	3
2021/11/5 pm 2:30:24	9	10	9	10	9	10	9	10	9	9	10	9	10	2	2	3	3	3	3	3	3	3	3	3	3	3	3	3	3
2021/11/5 pm 3:03:08	9	10	9	10	9	10	9	10	9	9	10	9	10	2	2	3	3	3	3	3	3	3	3	3	3	3	3	3	3
2021/11/5 pm 3:29:34	9	10	9	10	9	10	9	10	9	9	10	9	10	2	2	3	3	3	3	3	3	3	3	3	3	3	3	3	3

| average | 7.906 | 7.406 | 7.906 | 7.406 |
| standard deviation of mean | 0.377 | 0.426 | 0.408 |

Table 6: Dessert zone.
Appendix F Asia delicicas zone

Time stamp	StandID
2021/11/3 pm 7:48:33	7 6 9 9 6 5 5 4 4 4 4 4 4 8 6 4 6 6 6 5 4 4 4 5 4 6 6 4 6
2021/11/5 am 11:01:56	10 8 9 10 9 8 10 7 10 10 7 10 9 7 9 9 8 7 8 10 8 10 7 10 6 10
2021/11/5 am 11:05:17	9 9 7 7 7 6 7 7 5 6 5 7 9 10 9 8 8 7 8 7 6 8 8 6 7
2021/11/5 am 11:06:21	5 4 7 6 3 8 5 8 4 8 4 4 7 5 6 8 10 10 4 6 8 7 9 9 9
2021/11/5 am 11:08:39	9 3 2 5 3 8 9 2 9 4 9 10 10 2 9 4 10 4 2 2 10 2 1 1 10
2021/11/8 pm 12:33:43	5 5 7 6 7 6 7 7 7 7 8 6 9 9 9 9 9 8 9 9 9 9 9 8 9 8 9 8
2021/11/7 pm 11:21:58	6 6 5 6 6 6 5 8 7 8 7 6 6 4 6 6 7 7 7 6 6 7 6 6 4
2021/11/8 am 5:09:52	7 7 8 9 9 3 7 7 8 8 8 8 9 7 7 7 7 6 8 7 7 8 7 8 7 7
2021/11/8 am 11:10:08	7 8 8 7 6 6 6 6 7 7 8 9 9 8 7 7 8 8 8 8 8 8 7 7
2021/11/9 am 11:37:48	6 6 6 7 7 6 5 5 5 5 5 5 6 5 5 5 5 6 5 5 5 5 6 6 6 6 6
2021/11/9 am 9:00:47	8 8 8 7 7 7 7 6
2021/11/26 am 9:07:27	10 10
2021/11/26 am 9:06:46	7 6 6 7 7 5 6 7 7 7 7 6 6 8 7 7 7 6 7 7 6 9 8 8 8 7 7
2021/11/26 am 9:13:57	10 8 9 9 9 7 4 5 6 6 4 6 10 7 10 10 7 10 7 9 7 9 8 9 9 5 8 6 8
2021/11/26 am 9:15:09	6 8 5 5 2 1 5 3 10 8 4 3 6 10 9 6 10 6 5 10 10 7 7
2021/11/26 am 9:15:11	10 10 7 8 5 5 5 7 8 5 5 7 9 9 7 8 9 7 8 6 8 8 9 8 9 8 8
2021/11/26 am 9:16:32	7 6 8 6 8 6 8 5 8 7 8 7 8 6 6 9 7 6 9 9 7 8 8 8 8
2021/11/26 am 9:20:27	6 5 6 5 4 8 7 9 10 7 9 6 9 10 9 8 10 10 9 8 10 9 8 6
2021/11/26 am 9:20:55	10 10
2021/11/26 pm 2:21:42	6 2 7 2 8 8 2 8 2 8 2 8 8 8 7 8 2 8 2 8 9 10 8 8 7 8 5 6
2021/11/26 pm 2:25:57	9 9 9 8 7 7 6 6 8 9 8 8 10 10 9 9 8 9 7 8 9 7 8 8 7 8 4
2021/11/26 pm 2:26:20	5 3 8 7 5 8 7 2 5 6 4 3 5 7 8 4 5 5 4 7 4 7 6 2 4
2021/11/26 pm 2:26:46	8 7 9 8 7 9 9 8 7 8 9 8 8 10 10 7 8 9 8 9 7 8 9 7 8 8 8
2021/11/26 pm 2:27:31	9 9 9 9 9 9 9 8 9 8 9 9 8 8 8 9 9 9 10 9 9 9 9 8 9 8
2021/11/26 pm 2:28:49	9 8 7 7 5 6 7 8 9 7 6 7 8 10 8 8 8 9 8 9 9 8 9 9 8 9 8
2021/11/26 pm 2:29:11	1 1
2021/11/26 pm 2:30:38	9 8 9 7 10 7 9 8 8 9 7 10 9 9 8 9 7 10 8 8 7 10 9 8 9 8
2021/11/26 pm 2:30:51	5 2 4 4 3 2 4 3 4 4 5 2 2 4 2 2 2 2 2 2 2 2 2 2 2
2021/11/26 pm 2:31:28	10 10 10 10 8 8 9 8 10 10 9 9 1 10 10 10 10 10 10 10 10 10 10 10
2021/11/26 pm 2:31:53	10 10 9 9 8 8 8 8 10 9 10 10 10 10 10 10 10 10 10 10 10 9 8
2021/11/26 pm 2:32:30	1 4 4 1 1 3 10 5 8 2 5 4 1 10 10 10 3 7 7 7 10 8 3 2 2
2021/11/26 pm 2:35:14	3 3 3 3 2 3 4 1 2 6 1 5 7 8 5 6 7 8 5 8 6 7 6 6 5
2021/11/26 pm 10:35:34	8 8 8 8 8 8 8 8 8 8 8 8 8 8 9 9 8 8 8 8 8 8 8 8 8
2021/11/26 pm 11:31:06	5 5 5 5 5 5 5 5 5 5 5 5 3 7 8 5 5 5 5 5 5 5 5 5 5

Table 7: Asia delicicas zone.
Appendix G Local delicicas zone

Optimal Layout Plan via minimizing Electrostatic Energy

Table 8: Local delicicas zone.
Appendix H
Sponsor and other

Time stamp	StandID 118	StandID 119	StandID 120	StandID 121	StandID 122	StandID 123	StandID 124	StandID 125	StandID 137	StandID 138	StandID 139	StandID 140		
2021/11/3 pm 7:49:23	3	4	3	4	7	5	6	6	5	8	8			
2021/11/5 am 11:01:25	10	8	8	7	9	7	10	8	9	9	7	9		
2021/11/5 am 11:04:33	7	8	3	4	4	4	5	4	5	5	7	7		
2021/11/5 am 11:05:40	6	4	7	3	8	4	6	7	4	5	7	6		
2021/11/5 am 11:07:21	3	7	9	1	1	3	3	1	8	8	9	10		
2021/11/5 am 11:07:36	3	7	6	4	7	3	9	6	7	4	2	7		
2021/11/17 pm 11:21:17	3	3	2	6	4	4	4	4	7	7	7	6	5	
2021/11/18 am 5:08:16	10	10	8	8	8	8	8	7	7	7	7	8	8	
2021/11/18 am 11:08:41	7	7	5	5	5	4	4	7	7	8	6	6		
2021/11/19 am 8:56:10	10	10	4	5	6	6	6	6	6	6	6	5	5	
2021/11/26 am 9:08:11	7	7	7	7	5	6	8	6	6	6	7	9		
2021/11/26 am 9:12:24	9	9	8	8	8	5	5	6	6	6	10	10	8	7
2021/11/26 am 9:14:09	1	4	1	1	1	1	1	1	10	10	10	7	9	
2021/11/26 am 9:14:17	7	7	3	3	3	3	5	3	7	7	10	10		
2021/11/26 am 9:15:52	5	5	8	7	8	8	8	7	8	7	7	8		
2021/11/26 am 9:18:53	5	3	1	1	1	1	1	1	10	10	10	10	10	10
2021/11/26 am 9:19:44	10	10	10	10	10	10	10	10	10	10	10	9	9	
2021/11/26 pm 2:22:00	9	3	9	2	2	8	2	10	3	8	9	2		
2021/11/26 pm 2:24:40	8	8	6	7	5	6	6	6	6	2	2	3	3	
2021/11/26 pm 2:25:09	9	9	8	7	8	7	8	9	9	8	8			
2021/11/26 pm 2:25:28	6	4	9	7	6	5	1	1	1	1	1	6	5	
2021/11/26 pm 2:26:38	9	9	9	8	8	8	8	8	6	6	10	10		
2021/11/26 pm 2:27:20	7	7	1	3	4	5	6	4	1	1	7	7		
2021/11/26 pm 2:28:05	1	1	1	1	1	1	1	1	1	1	1	1		
2021/11/26 pm 2:29:04	5	5	5	10	6	5	6	5	1	1	1	1		
2021/11/26 pm 2:29:38	1	1	1	5	4	5	6	8	1	1	1	1		
2021/11/26 pm 2:29:58	10	10	1	1	1	1	1	1	1	1	1	1		
2021/11/26 pm 2:30:00	10	10	10	10	10	10	10	10	10	10	10	10		
2021/11/26 pm 2:31:12	7	7	6	6	6	6	6	6	6	6	6	10	10	
2021/11/26 pm 2:33:31	1	1	1	10	1	1	1	1	1	1	1	1	1	
2021/11/26 pm 10:34:48	8	8	8	8	8	8	8	8	8	8	9	9		
2021/11/26 pm 11:30:34	5	5	5	5	5	5	5	5	5	5	6	8	5	

Table 9: Sponsor (stand ID: 118-125) and other (stand ID: 137-140).
Appendix I Game booth

Time stamp	StandID	126	127	128	129	130	131	132	133	134	135	136
2021/11/3 pm 7:45:29	7	5	6	4	4	6	8	9	6	4	7	
2021/11/5 am 10:53:36	9	4	7	5	8	7	6	10	8	6	7	
2021/11/5 am 10:59:25	10	9	9	7	7	9	7	10	9	8	7	
2021/11/5 am 11:01:41	7	6	8	8	9	9	10	9	9	9	7	
2021/11/5 am 11:03:29	10	3	3	9	9	10	10	3	9	5	2	
2021/11/5 am 11:10:18	3	2	4	10	2	3	3	3	2	3	2	
2021/11/8 pm 12:38:14	8	6	7	8	6	7	8	8	7	6		
2021/11/8 pm 2:25:14	7	7	5	5	8	4	8	10	7	4	4	
2021/11/17 pm 11:18:53	6	7	8	7	8	7	8	6	7	6	8	
2021/11/17 pm 11:58:12	4	4	7	8	8	8	10	8	8			
2021/11/18 am 5:03:37	7	8	8	8	9	9	9	9	8	7		
2021/11/18 am 8:46:41	4	4	8	9	9	8	10	6	6	10		
2021/11/18 am 11:03:32	7	6	5	6	5	5	4	5	4	4	4	
2021/11/19 am 8:50:52	5	5	5	5	5	5	5	5	5	5	5	
2021/11/19 am 9:02:51	5	5	5	5	5	5	5	5	5	5	5	
2021/11/26 am 9:03:43	10	10	10	10	10	10	10	10	10	10	10	
2021/11/26 am 9:05:36	5	5	5	5	5	5	5	5	5	5	5	
2021/11/26 am 9:06:39	5	6	6	8	8	7	6	10	3	8	5	
2021/11/26 am 9:11:07	7	6	7	7	6	6	5	7	6	7		
2021/11/26 am 9:12:03	9	8	8	8	10	9	8	8	9	8	9	
2021/11/26 am 9:12:55	4	4	6	7	9	9	7	8	10	9	9	
2021/11/26 am 9:13:33	1	1	1	1	1	1	1	1	1	1	1	
2021/11/26 pm 2:20:21	7	3	5	4	5	4	4	4	6	5	6	
2021/11/26 pm 2:20:37	8	7	9	10	9	7	8	9	7	8	8	
2021/11/26 pm 2:20:47	10	5	10	9	10	10	10	10	4	6	10	
2021/11/26 pm 2:20:59	5	4	3	6	4	4	5	6	4	2	4	
2021/11/26 pm 2:20:59	10	10	10	10	10	10	10	10	10	10	10	
2021/11/26 pm 2:21:49	10	9	9	9	10	8	10	9	9	9		
2021/11/26 pm 2:22:45	10	7	10	7	10	4	6	10	2	4	10	
2021/11/26 pm 2:23:36	6	3	5	4	6	5	8	10	6	7	6	
2021/11/26 pm 2:24:22	5	5	5	5	5	5	6	5	5	5	5	
2021/11/26 pm 2:24:30	1	1	1	1	1	1	1	1	1	1	1	
2021/11/26 pm 2:24:45	1	1	1	1	1	1	1	1	1	1	1	
2021/11/26 pm 2:25:46	3	7	6	4	8	5	4	9	4	6	3	
2021/11/26 pm 2:29:10	6	5	8	7	10	3	1	8	7	6		
2021/11/26 pm 10:32:07	8	8	8	9	9	9	9	9	8	8		
2021/11/26 pm 11:28:57	10	10	10	10	10	10	10	10	10	10	10	

| | average | 6.368 | 5.500 | 6.342 | 6.605 | 6.789 | 6.526 | 6.158 | 7.263 | 6.39 | 5.974 | 6.189 |
| | standard deviation of mean | 0.452 | 0.402 | 0.420 | 0.429 | 0.434 | 0.439 | 0.461 | 0.508 | 0.457 | 0.411 | 0.453 |

Table 10: Game booth.
Appendix J Normalized effective charges Q^I of stands

Table 11: The normalized effective charges Q^I of stands were obtained as follows. First, we calculated \overline{x} and σ_x, referring to the mean of the popularity of the sub-categorial stand, and the standard deviation of mean for the particular stand, respectively. Second, we also calculated \overline{y} and σ_y, respectively referring to the mean of the popularity from the grand questionnaire for a specific type of stands, and the standard deviation of mean for that particular type of stands. Third, we calculated the final mean of each stand by calculating $\overline{xy} = \overline{x} \overline{y}$, together with the error propagation σ_{xy} described in Eq.(5). Finally we also calculated Q^Is by Eq.(6) at the last column, which were the effective charges of stands in our algorithm.

StandID	Mean(\overline{x})	SD of mean(σ_x)	Mean(\overline{y}) from Grand Questionnaire	sd of mean(σ_y) from Grand Questionnaire	Final mean (\overline{xy})	Final sd of mean(σ_{xy})	Q^I
1	6.875	2.459	6.543	0.403	44.983	16.328	-0.443
2	6.594	2.354	6.543	0.403	43.143	15.627	-0.696
3	6.813	2.608	6.543	0.403	44.574	17.285	-0.499
4	6.906	2.441	6.543	0.403	45.188	16.212	-0.415
5	6.531	2.423	6.543	0.403	42.734	16.069	-0.752
6	6.125	2.904	6.543	0.403	40.076	19.163	-1.117
7	6.688	2.468	6.543	0.403	43.756	16.374	-0.611
8	7.125	2.756	6.543	0.403	46.619	18.261	-0.218
9	6.594	2.686	6.543	0.403	43.143	17.777	-0.696
10	6.281	2.854	6.543	0.403	41.098	18.843	-0.976
11	6.063	2.627	6.543	0.403	39.667	17.359	-1.173
12	6.906	2.656	6.543	0.403	45.188	17.601	-0.415
13	6.438	2.816	6.543	0.403	42.121	18.609	-0.836
14	6.719	2.691	6.543	0.403	43.961	17.814	-0.583
15	6.250	2.700	6.543	0.403	40.894	17.845	-1.005
16	6.594	2.883	6.543	0.403	43.143	19.052	-0.696
17	6.813	2.546	6.543	0.403	44.574	16.880	-0.499
18	7.459	1.865	6.870	0.313	51.243	13.022	0.417
19	6.514	2.268	6.870	0.313	44.745	15.716	-0.476
20	6.000	2.160	6.870	0.313	41.217	14.959	-0.960
21	6.378	2.046	6.870	0.313	43.817	14.197	-0.603
22	5.892	2.354	6.870	0.313	40.475	16.279	-1.062
23	6.595	2.127	6.870	0.313	45.302	14.759	-0.399
24	7.027	2.522	6.870	0.313	48.273	17.464	0.009
25	7.324	2.135	6.870	0.313	50.315	14.846	0.289
26	6.270	2.181	6.870	0.313	43.074	15.113	-0.705
27	7.514	1.995	6.870	0.313	51.615	13.904	0.468
28	6.595	2.192	6.870	0.313	45.302	15.197	-0.399
29	7.906	2.131	8.043	0.298	63.594	17.298	2.113
30	7.406	2.408	8.043	0.298	59.572	19.492	1.560
31	7.688	2.306	8.043	0.298	61.834	18.691	1.871
32	7.438	2.341	8.043	0.298	59.823	18.959	1.595
33	7.313	2.620	8.043	0.298	58.818	21.190	1.457
34	7.031	2.621	8.043	0.298	56.556	21.186	1.146
35	7.344	2.350	8.043	0.298	59.069	19.030	1.491
36	7.875	2.324	8.043	0.298	63.342	18.844	2.078
37	7.813	2.361	8.043	0.298	62.840	19.137	2.009
38	7.219	2.406	8.043	0.298	58.064	19.473	1.353
39	7.438	2.327	8.043	0.298	59.823	18.849	1.595
40	7.531	2.475	8.043	0.298	60.577	20.038	1.698
41	6.844	2.516	8.043	0.298	55.048	20.339	0.939
Optimal Layout Plan via minimizing Electrostatic Energy

42	7.156	2.157	8.043	0.298	57.561	17.480	1.284
43	7.063	2.514	8.043	0.298	56.807	20.328	1.181
44	6.719	2.543	8.043	0.298	54.042	20.552	0.801
45	7.094	2.441	8.043	0.298	57.058	19.748	1.215
46	6.688	2.729	8.043	0.298	53.791	22.041	0.766
47	6.250	2.640	8.043	0.298	50.272	21.314	0.283
48	6.906	2.532	8.043	0.298	55.550	20.469	1.008
49	6.531	2.627	8.043	0.298	52.534	21.221	0.594
50	6.906	2.656	8.043	0.298	55.550	21.464	1.008
51	7.000	2.423	8.043	0.298	56.304	19.601	1.112
52	7.000	2.333	8.043	0.298	52.981	18.449	0.655
53	6.250	2.364	7.413	0.263	48.403	19.496	0.027
54	6.888	2.401	7.413	0.263	48.839	17.883	0.086
55	6.471	2.269	7.413	0.263	46.877	16.978	-0.183
56	6.647	2.214	7.413	0.263	49.275	16.506	0.146
57	6.971	2.801	7.413	0.263	51.673	20.847	0.476
58	6.735	2.533	7.413	0.263	56.688	18.886	1.164
59	7.294	2.042	7.413	0.263	57.778	15.273	1.314
60	7.000	2.449	7.413	0.263	51.891	18.251	0.506
61	7.353	2.411	7.413	0.263	54.508	17.974	0.865
62	7.529	2.326	7.413	0.263	55.816	17.353	1.045
63	6.794	2.355	7.413	0.263	50.365	16.398	0.296
64	6.559	2.284	7.413	0.263	53.636	17.036	0.745
65	7.324	2.543	7.413	0.263	54.290	19.323	-0.033
66	6.471	2.596	7.413	0.263	47.967	18.951	0.835
67	6.735	2.453	7.413	0.263	49.292	19.323	0.236
68	6.811	2.106	7.348	0.280	50.045	15.592	0.252
69	6.703	2.471	7.348	0.280	49.250	18.250	0.143
70	6.919	1.862	7.348	0.280	50.839	13.815	0.361
71	6.405	2.153	7.348	0.280	47.066	15.923	-0.157
72	6.108	2.145	7.348	0.280	44.881	15.850	-0.457
73	6.568	2.089	7.348	0.280	48.257	18.458	0.007
74	6.405	2.266	7.348	0.280	47.066	16.750	-0.157
75	6.811	2.209	7.348	0.280	50.045	16.343	0.252
76	7.027	2.267	7.348	0.280	51.633	16.772	0.470
77	6.946	2.697	7.348	0.280	51.038	19.914	0.388
78	7.216	2.800	7.348	0.280	53.024	20.674	0.661
79	6.541	2.501	7.348	0.280	48.059	18.468	-0.021
80	7.189	1.984	7.348	0.280	52.825	14.715	0.634

Ka Ian Im et. al.: Preprint submitted to Elsevier

Page 28 of 37
Appendix K Coordinates of stands for the initial layout plan

Table 12: Coordinates of stands for the initial layout plan. Integer -1 in Columns StandID and Charge actually means that there is NO stand at that particular location.
Optimal Layout Plan via minimizing Electrostatic Energy

standID	X	Y	charge
0	25.9754	16.6909	-0.444
1	26.0947	16.106	-0.698
2	26.0947	15.535	-0.501
3	26.0125	14.9698	-0.416
-1	25.8371	14.4576	-1.000
4	25.5923	13.9432	-0.754
5	25.3305	13.4876	-1.121
-1	24.9698	12.9823	-1.000
6	24.6543	12.6152	-0.613
7	24.2989	12.246	-0.219
8	23.9314	11.9047	-0.698
9	23.5566	11.6261	-0.980
10	23.145	11.3575	-1.177
11	22.7573	11.1175	-0.416
12	22.3373	10.9144	-0.839
13	21.9011	10.7276	-0.585
14	21.4973	10.5685	-1.008
15	20.9878	15.1472	-0.698
16	21.4644	17.337	-0.501
17	21.4644	16.8913	0.418
18	21.4644	16.4748	-0.477
19	21.4644	16.025	-0.964
20	21.4644	14.6932	-0.605
21	21.4644	17.7542	-1.066
-1	20.9878	15.6011	-1.000
22	21.4644	15.6011	-0.401
-1	21.4644	15.1472	-1.000
23	20.9878	17.7542	0.009
24	19.1208	9.9518	0.290
-1	18.7347	10.0897	-1.000
25	18.352	10.2201	-0.708
-1	17.9413	10.3888	-1.000
26	17.5603	10.5548	0.469
27	17.2588	12.0906	-0.401
-1	17.6326	12.0083	-1.000
28	18.3973	11.9947	2.120
29	18.8584	12.1399	1.566
30	19.2352	12.3266	1.878
-1	19.5499	12.5703	-1.000
31	19.8645	12.8386	1.601
32	21.014	11.177	1.462
-1	21.2979	11.2969	-1.000
33	21.5722	11.4127	1.150
34	21.8561	11.5326	1.497
-1	22.2441	11.6842	-1.000
35	22.5247	11.8116	2.086
36	22.7959	11.9347	2.016
37	20.8896	11.4672	1.358
38	21.1736	11.5871	1.601
39	21.4479	11.7029	1.705
40	21.7318	11.8229	0.942
---	---	---	---
41	22.1121	11.971	1.289
42	22.3927	12.0984	1.185
43	22.6639	12.2215	0.804
44	22.9445	12.349	1.220
45	23.0765	12.0621	0.769
46	24.342	14.5907	0.284
-1	24.342	15.0619	-1.000
47	23.1007	13.7432	1.012
-1	23.1007	14.2057	-1.000
-1	24.7698	14.1196	-1.000
48	24.7698	14.5907	0.596
49	24.7698	15.0619	1.012
-1	24.7698	15.533	-1.000
50	24.7698	16.0042	1.116
-1	22.6744	13.2808	-1.000
-1	22.6744	13.7432	-1.000
-1	22.6744	14.2057	-1.000
51	10.7923	11.6393	2.120
52	11.0054	11.1048	0.838
53	11.2746	10.5714	1.323
54	11.5312	10.0583	1.358
-1	11.8389	9.5682	-1.000
55	12.1908	9.0432	1.185
-1	9.6459	9.596	-1.000
56	12.5612	8.59	0.658
-1	9.2312	9.9481	-1.000
57	8.8488	10.2894	0.027
58	8.4402	10.6889	0.537
59	8.0617	11.0869	0.087
60	23.1007	13.2808	-0.364
61	19.7282	13.958	-0.184
62	19.4127	13.958	0.057
63	17.8843	13.958	-0.244
-1	17.5358	13.958	-1.000
-1	17.1881	13.958	-1.000
64	16.8396	13.958	0.507
65	16.4911	13.958	0.297
66	16.1433	13.958	0.237
67	19.8669	16.8995	0.147
68	19.8669	16.5771	0.477
69	19.8669	16.2548	1.169
70	20.9878	17.3065	1.319
71	20.9878	16.8771	0.507
72	20.9878	16.4648	0.868
73	20.9878	16.025	1.048
74	20.1918	16.2548	0.297
75	20.1918	16.5771	0.808
-1	20.1918	16.8995	-1.000
76	20.1918	14.6431	1.078
-1	20.1918	14.9655	-1.000
77	20.1918	15.2878	0.748
78	20.1918	15.6101	0.838
-1	20.1918	15.9325	-1.000
Optimal Layout Plan via minimizing Electrostatic Energy

-1	19.8669	14.6431	-1.000
-1	19.8669	14.9655	-1.000
79	19.8669	15.2878	-0.033
80	19.8669	15.6101	0.237
81	19.8669	15.9325	0.253
82	17.167	18.0361	0.143
83	16.8607	17.8911	0.362
84	16.5382	17.7468	-0.158
85	16.2584	17.599	-0.459
86	15.937	17.4291	0.007
87	20.3587	13.958	-0.158
88	15.7948	13.958	0.253
89	20.0418	13.958	0.472
90	24.3496	16.0042	0.390
-1	24.3496	15.5331	-1.000
-1	24.3496	14.1196	-1.000
91	23.1007	14.6681	0.663
92	22.6744	14.6681	-0.021
93	20.3929	13.5369	0.636
94	20.1811	13.1701	0.527
95	9.6923	15.2651	-0.021
96	13.3303	16.7161	0.007
-1	12.7954	16.2812	-1.000
97	12.3299	15.9027	0.061
-1	11.8661	15.5257	-1.000
98	11.4005	15.1472	0.089
-1	8.834	12.7724	-1.000
99	9.3585	14.0929	0.171
100	8.747	14.7145	-0.240
-1	8.3909	15.7023	-1.000
-1	8.0627	16.3472	-1.000
-1	7.8306	17.643	-1.000
101	20.9878	14.6932	-0.267
102	8.2676	11.98	-0.267
103	19.7954	10.6412	-0.596
-1	23.8712	16.7128	-1.000
104	15.8448	14.5245	0.226
105	15.8448	14.9642	-0.075
106	15.8448	15.4039	-0.075
107	15.8448	15.8436	0.417
108	15.8448	16.2833	0.308
-1	15.8448	16.723	-1.000
109	16.2933	14.5245	-0.158
110	16.2933	14.9642	-0.158
-1	16.2933	15.4039	-1.000
-1	16.2933	15.8436	-1.000
111	16.2933	16.2833	0.007
112	16.2933	16.723	0.171
113	16.7421	14.5245	0.116
114	16.7421	14.9642	-0.048
115	16.7421	15.4039	0.007
-1	16.7421	15.8436	-1.000
116	16.7421	16.2833	-0.185
Appendix L Coordinates of stands for the optimal layout plan

Table 13: Coordinates of stands for the optimal layout plan. Integer -1 in Columns StandID and Charge actually means that there is NO stand at that particular location.

standID	X	Y	charge
-1	25.9754	16.6909	-1
-1	26.0947	15.535	0.009
-1	26.0947	16.106	-1
23	26.0947	15.535	0.009
Optimal Layout Plan via minimizing Electrostatic Energy

Index	X-Position	Y-Position	Electrostatic Energy
86	26.0125	14.9698	0.007
-1	25.8371	14.4576	-1
-1	25.5923	13.9432	-1
99	25.3305	13.4876	0.171
-1	24.9698	12.9823	-1
-1	24.6543	12.6152	-1
-1	24.2989	12.246	-1
-1	23.9314	11.9047	-1
108	23.5666	11.6261	0.308
-1	23.145	11.3575	-1
111	22.7573	11.1175	0.007
-1	22.3373	10.9144	-1
-1	21.9011	10.7276	-1
-1	21.4973	10.5685	-1
-1	20.9878	15.1472	-1
46	21.4644	17.337	0.284
85	21.4644	16.8913	-0.459
17	21.4644	16.4748	0.418
0	21.4644	16.025	-0.444
-1	21.4644	14.6932	-1
84	21.4644	17.7542	-0.158
-1	20.9878	15.6011	-1
65	21.4644	15.6011	0.297
-1	21.4644	15.1472	-1
88	20.9878	17.7542	0.253
-1	19.1208	9.9518	-1
-1	18.7347	10.0897	-1
-1	18.352	10.2201	-1
-1	17.9413	10.3888	-1
-1	17.5603	10.5548	-1
24	17.2588	12.0906	0.290
13	17.6326	12.0083	-0.585
48	17.9323	11.9947	0.596
87	18.8584	12.1399	-0.158
92	19.2352	12.3266	-0.021
66	19.5499	12.5703	0.237
-1	19.8645	12.8386	-1
54	21.014	11.177	1.358
126	21.2979	11.2969	-2.129
51	21.5722	11.4127	2.120
119	21.8561	11.5326	-1.936
30	22.2441	11.6842	1.878
121	22.5247	11.8116	-2.207
35	22.7959	11.9347	2.086
127	20.8896	11.4672	-1.438
36	21.1736	11.5871	2.016
124	21.4479	11.7029	-1.990
38	21.7318	11.8229	1.601
123	22.1121	11.971	-1.963
28	22.3927	12.0984	2.120
122	22.6639	12.2215	-2.125
53	22.9445	12.349	1.323
131	23.0765	12.0621	-1.589
Optimal Layout Plan via minimizing Electrostatic Energy

67	24.342	14.5907	0.147
-1	24.342	15.0619	-1
-1	23.1007	13.7432	-1
-1	23.1007	14.2057	-1
-1	24.7698	14.1196	-1
110	24.7698	14.5907	-0.158
-1	24.7698	15.0619	-1
105	24.7698	15.533	-0.075
57	24.7698	16.0042	0.027
98	22.6744	13.2808	0.089
-1	22.6744	13.7432	-1
-1	22.6744	14.2057	-1
97	10.7923	11.6393	0.061
-1	11.0054	11.1048	-1
-1	11.2746	10.5714	-1
-1	11.5312	10.0583	-1
95	11.8389	9.5682	-0.021
-1	12.1908	9.0432	-1
106	9.6459	9.596	-0.075
-1	12.5612	8.59	-1
-1	9.2312	9.9481	-1
-1	8.8488	10.2894	-1
81	8.4402	10.6889	0.253
61	8.0617	11.0869	-0.184
-1	23.1007	13.2808	-1
118	19.7282	13.958	-1.205
77	19.4127	13.958	0.748
11	17.8843	13.958	-0.416
49	17.5358	13.958	1.012
133	17.1881	13.958	-1.395
44	16.8396	13.958	1.220
128	16.4911	13.958	-1.222
76	16.1433	13.958	1.078
117	19.8669	16.8995	-1.178
37	19.8669	16.5771	1.358
125	19.8669	16.2548	-1.416
27	20.9878	17.3065	-0.401
64	20.9878	16.8771	0.507
3	20.9878	16.4648	-0.416
104	20.9878	16.025	0.226
29	20.1918	16.2548	1.566
136	20.1918	16.5771	-1.693
70	20.1918	16.8995	1.319
10	20.1918	14.6431	-1.177
32	20.1918	14.9655	1.462
137	20.1918	15.2878	-1.611
31	20.1918	15.6101	1.601
120	20.1918	15.9325	-1.963
55	19.8669	14.6431	1.185
135	19.8669	14.9655	-1.589
34	19.8669	15.2878	1.497
134	19.8669	15.6101	-1.740
39	19.8669	15.9325	1.705
Number	x-coordinate	y-coordinate	Energy
--------	--------------	--------------	--------
26	17.167	18.0361	0.469
139	16.8607	17.8911	-1.070
41	16.5382	17.7468	1.289
130	16.2584	17.599	-1.287
43	15.937	17.4291	0.804
1	20.3587	13.958	-0.698
16	15.7948	13.958	-0.501
33	20.0418	13.958	1.150
-1	24.3496	16.0042	-1
-1	24.3496	15.5331	-1
59	24.3496	14.1196	0.087
-1	23.1007	14.6681	-1
-1	22.6744	14.6681	-1
82	20.3929	13.5369	0.143
-1	20.1811	13.1701	-1
-1	9.6923	15.2651	-1
-1	13.3303	16.7161	-1
-1	12.7954	16.2812	-1
-1	12.3299	15.9027	-1
115	11.8661	15.5257	0.007
-1	11.4005	15.1472	-1
114	8.834	12.7724	-0.048
-1	9.3585	14.0929	-1
-1	8.747	14.7145	-1
-1	8.3909	15.7023	-1
-1	8.0627	16.3472	-1
96	7.8306	17.643	0.007
112	20.9878	14.6932	0.171
-1	8.2676	11.98	-1
-1	19.7954	10.6412	-1
-1	23.8712	16.7128	-1
63	15.8448	14.5245	-0.244
94	15.8448	14.9642	0.527
103	15.8448	15.4039	-0.596
90	15.8448	15.8436	0.390
116	15.8448	16.2833	-0.185
100	15.8448	16.723	-0.240
89	16.2933	14.5245	0.472
12	16.2933	14.9642	-0.839
47	16.2933	15.4039	1.012
9	16.2933	15.8436	-0.980
45	16.2933	16.2833	0.769
101	16.2933	16.723	-0.267
2	16.7421	14.5245	-0.501
52	16.7421	14.9642	0.838
129	16.7421	15.4039	-1.071
40	16.7421	15.8436	0.942
8	16.7421	16.2833	-0.698
113	16.7421	16.723	0.116
93	17.191	14.5245	0.636
138	17.191	14.9642	-1.016
42	17.191	15.4039	1.185
14	17.191	15.8436	-1.008
Optimal Layout Plan via minimizing Electrostatic Energy

Number	X-Coordinate	Y-Coordinate	Electrostatic Energy
75	17.191	16.2833	0.808
102	17.191	16.723	-0.267
20	17.6395	14.5245	-0.605
50	17.6395	14.9642	1.116
5	17.6395	15.4039	-1.121
73	17.6395	15.8436	1.048
15	17.6395	16.2833	-0.698
68	17.6395	16.723	0.477
71	18.0842	14.5245	0.507
4	18.0842	14.9642	-0.754
69	18.0842	15.4039	1.169
21	18.0842	15.8436	-1.066
56	18.0842	16.2833	0.658
22	18.0842	16.723	-0.401
25	18.529	14.5245	-0.708
91	18.529	14.9642	0.663
19	18.529	15.4039	-0.964
72	18.529	15.8436	0.868
6	18.529	16.2833	-0.613
107	18.529	16.723	0.417
83	18.9746	14.5245	0.362
18	18.9746	14.9642	-0.477
78	18.9746	15.4039	0.838
132	18.9746	15.8436	-0.682
58	18.9746	16.2833	0.537
7	18.9746	16.723	-0.219
-1	15.4676	6.2612	-1
-1	15.4676	6.7009	-1
-1	15.4676	7.1406	-1
74	15.4676	7.5803	0.297
109	15.4676	8.02	-0.158
79	15.4676	8.4597	-0.033
-1	15.9132	6.2612	-1
62	15.9132	6.7009	0.057
-1	15.9132	7.1406	-1
60	15.9132	7.5803	-0.364
80	15.9132	8.02	0.237
-1	15.9132	8.4597	-1