Constraining globular cluster formation through studies of young massive clusters – II. A single stellar population young massive cluster in NGC 34

I. Cabrera-Ziri,1⋆ N. Bastian,1 B. Davies,1 G. Magris,2 G. Bruzual3 and F. Schweizer4

1Astrophysics Research Institute, Liverpool John Moores University, 146 Brownlow Hill, Liverpool L3 5RF, UK
2Centro de Investigaciones de Astronomía, AP 264, Mérida 5101-A, Venezuela
3Centro de Radioastronomía y Astrofísica, CRYA, UNAM, Campus Morelia, A.P. 3-72, C.P. 58089 Michoacán, Mexico
4Carnegie Observatories, 813 Santa Barbara Street, Pasadena, CA 91101, USA

Accepted 2014 April 15. Received 2014 April 2; in original form 2014 February 28

ABSTRACT
Currently there are two competing scenarios to explain the origin of the stellar population in globular clusters (GCs). The main difference between them is whether or not multiple events of star formation took place within GCs. In this paper, we present the star formation history (SFH) of Cluster 1, a massive young cluster in NGC 34 (≈ 10^7 M⊙). We use DynBaS (Dynamical Basis Selection), a spectrum fitting algorithm, to retrieve the SFH and find that Cluster 1 is consistent with a single stellar population of solar metallicity with an age of 100 ± 30 Myr and a mass of 1.9 ± 0.4 × 10^7 M⊙. These results are in conflict with the expectations/predictions of the scenarios that invoke extended or multiple episodes within 30–100 Myr of the initial star formation burst in young massive clusters.

Key words: globular clusters; general – galaxies: star clusters; general – galaxies: star clusters: individual: NGC 34 Cluster 1.

1 INTRODUCTION
The classical notion of globular clusters (GCs) being simple stellar populations (SSPs) has been challenged by the presence of chemical anomalies and multiple sequences in the colour–magnitude diagrams (CMD) of GCs. The chemical anomalies are present only in light elements (namely C, N, O, Na and Al; e.g. Carretta et al. 2009) and are generally found only within GCs and not in the field population (e.g. Martell et al. 2011). To date, only a handful of clusters have been found with significant Fe spreads among their stellar populations (e.g. ω Centauri, Terzan 5, M52, M22 and NGC 1851; e.g. Mucciarelli 2014 and references therein). Additionally, significant spreads in He abundance within GCs have been proposed to explain multiple main sequences and turn-offs, as well as the shape of the horizontal branch, in CMD of some GCs (e.g. Milone et al. 2012).

Most models that attempt to explain the chemical anomalies and CMD morphology observed in GCs assume that these features are the product of multiple generations of stars. The basic idea is that a second generation of stars is created from the chemically processed ejecta of some very precise kinds of stars from the first generation (polluter stars). Stars that have been suggested to be polluters include: asymptotic giant branch (AGB) stars (e.g. D’ercole et al. 2008), fast rotating massive stars (also known as spin stars; e.g. Decressin et al. 2009) and massive stars in interacting binary systems (de Mink et al. 2009).

All these multiple-population scenarios do well reproducing many of the observed anomalies mentioned before, and they predict that star clusters forming today should undergo a second generation of star formation. If spin stars or massive interacting binaries are the source of the enriched material, then the second generation is expected to form within ~10 Myr of the first generation. Alternatively, if AGB stars are the source, a difference of 30–200 Myr between the first and second generation is expected (e.g. Conroy & Spergel 2011). However, these models require that a large fraction (90–95%) of the first generation of stars needs to be lost from the cluster in order to explain the fraction of first and second generation stars, which appears to be at odds with observations of the Fornax, WLM and IKN dwarf galaxies (Larsen, Strader & Brodie 2012; Larsen et al. 2014). Recently, an alternative scenario has been proposed that does not invoke multiple star formation events within massive clusters. In this scenario, Bastian et al. (2013a) suggest that the chemically enriched material is ejected by spin stars or high-mass interacting binaries, and is accreted on to circumstellar discs of pre-main-sequence low-mass stars of the same generation.

Additionally, it has been suggested that the observed extended main-sequence turn-offs (eMSTO) and ‘dual red clumps’ observed in intermediate-age (1–2 Gyr) Small and Large Magellanic Cloud (LMC) clusters may be the product of extended (200–500 Myr) star formation events (e.g. Mackey & Broby Nielsen 2007; Goudfrooij et al. 2009, 2011a,b; Milone et al. 2009; Rubele et al. 2013). Some studies propose a common evolution of these
intermediate-age clusters with GCs (e.g. Conroy & Spergel 2011). On the other hand, there are some claims for the opposite, for example Mucciarelli et al. (2008) indicated that the eMSTO of intermediate-age clusters were not related to the multiple stellar populations seen in GCs, due to the lack of abundance spreads between the stars of the younger clusters. Alternatively, different mechanisms have been put forward to explain such anomalies in intermediate-age clusters e.g. stellar rotation (e.g. Bastian & de Mink 2009; Yang et al. 2013) or interacting binaries (e.g. Yang et al. 2011).

Bastian et al. (2013a) argue that if such extended (or multiple) star formation events took place in these intermediate-age clusters and GCs, it would be expected that younger (<500 Myr) massive clusters should be currently forming stars. To test this, Bastian & Silva-Villa (2013) studied the CMD of two young (180–280 Myr) massive (∼10^5 M⊙) clusters in the LMC and assessed an upper limit of 35 Myr for the possible age spread in these clusters. Also Bastian et al. (2013b) presented a catalogue containing more than 100 young (10–1000 Myr) massive (10^7–10^8 M⊙) clusters where they do not find evidence of any ongoing star formation within the clusters, and concluded that any extended star formation within clusters lasting for hundreds of Myr is ruled out at high significance (unless strong stellar initial mass function – IMF – variations are invoked). Their study was sensitive to ∼2 per cent of the current cluster mass being formed today. If such extended (200–500 Myr) star formation events were common, the authors estimate that roughly 50 per cent of their sample should have shown evidence for ongoing star formation.

In this work, we approach the problems of the origin of multiple populations in GCs and eMSTO/‘dual red clumps’ detected in intermediate-age clusters by analysing the integrated spectrum of a young massive star cluster, looking for evidence for multiple events of star formation within this cluster. The cluster we choose for this initial study is young (∼150 Myr), is found in the wet-merger galaxy NGC 34 and does not show any evidence for ongoing star formation, based on the lack of optical emission lines in its spectrum (e.g., Schweizer & Seitzer 2007; Bastian et al. 2013b). This young GC (Cluster 1, hereafter) has an estimated mass of about 15–20 × 10^5 M⊙ (Schweizer & Seitzer 2007), which is three to four times more massive than that of ω Centauri, the most massive GC in the Galaxy. The fact that Cluster 1 is so massive and young makes it rather suitable to probe both families of formation scenarios, given that it can easily retain the ejecta of the polluter stars of the first generation, and we should be able to find evidence of a second generation of stars if a secondary burst has already taken place in the cluster.

The paper is organized as follows. In Section 2, we present the optical spectrum of Cluster 1, and in Section 3 we introduce the fitting method and models used in the star formation history (SFH) analysis. The degeneracies and uncertainties in the fits are discussed in Section 4, and we discuss our results and present our conclusions in Sections 5 and 6, respectively.

2 DATA

We analyse the integrated spectrum of one of the most massive clusters in NGC 34 (Mrk 938), Cluster 1. The spectrum was obtained by Schweizer & Seitzer (2007, hereafter SS07) with the Low Dispersion Survey Spectrograph (LDSS-2) of the Baade 6.5 m telescope at Las Campanas. This spectrum has a spectral resolution of ∼ 5.3 Å at 5000 Å, and a wavelength coverage of about 3700–6850 Å (see SS07 for more details regarding instrument settings and reduction).

An SSP young massive cluster in NGC 34

We note that the spectrograph used (LDSS-2) does not have an atmospheric dispersion corrector and the targets were observed with a non-parallactic slit at airmasses of ca 1.1–1.2 (in order to include two clusters at a time for each slit placing). Therefore, differential refraction might have led to wavelength-dependent light losses and the wrong continuum shape.

Since the continuum of the spectrum may not be representative of the actual flux levels, the only SFH diagnostics of the spectrum that we can use are the line-to-continuum ratios of absorption features. Therefore, we normalized the continuum for our SED fitting. To obtain the continuum, we ran a median filter of 100 å width over the cluster spectrum, masking 2000 km s^{-1} around the core of each Balmer line. For the blue end of the spectrum (wavelengths on the blue side of He), the pseudo-continuum was not properly reproduced with the median filter, and a handcrafted continuum was used over this wavelength range in order to improve the continuum fit.

We tested that our results are not affected by the exact choice of the continuum normalization method (see also Section 4).

Once the (pseudo)continuum was found for the cluster spectral energy distribution (SED), we divided the observed spectrum by the continuum to produce the normalized spectrum employed in our analysis and shown in Fig. 1.

3 DynBaS FITTING

We make use of DynBaS, a Dynamical Basis Selection spectral fitting algorithm originally developed to recover the SFH of galaxies (Magris et al., in preparation). Most SED fitting algorithms, e.g. MOPED, VESPA, STECMAP, STARLIGHT, ULYSS (Heavens, Jimenez & Lahav 2000; Cid Fernandes et al. 2005; Ocvirk et al. 2006; Tojeiro et al. 2007; Koleva et al. 2009), use a fixed spectral basis to fit all target spectra. Instead, in DynBaS¹ for each target spectrum a different and dynamically selected basis of N model spectra is used to obtain an optimal fit to the target spectrum. In practice, we fit the target spectrum using all possible combinations of N model spectra and store the resulting χ^2 for each solution. The DynBaSND solution is then the one with the minimum χ^2, subject to the condition that the weight ai assigned to the i-th spectrum in the basis obeys ai ≥ 0 for i = 1, . . ., N. As argued by Magris et al. (in preparation), DynBaSND for N = 2 and 3 provides excellent fits to the target spectra, and the residuals of the recovered physical parameters for the target galaxies are less biased than for fixed-age, rigid basis methods.

These features make DynBaS a suitable tool to analyse the integrated spectra of young clusters since their SFHs are expected to comprise just a few star formation bursts of short length (e.g. Gratton, Carretta & Bragaglia 2012). This gains an edge for the study of these clusters over conventional fixed basis SED fitting codes, since the latter may introduce a great number of artificial components (i.e. ages) to the fit while exploring the vast parameter space that is the set of ages of current stellar population synthesis models. For example, Cid Fernandes & González-Delgado (2010) and Dias et al. (2010) found unphysical solutions for the multipopulation fits to young and old stellar clusters, e.g. age differences of the order of 10 Gyr within clusters. On the other hand, DynBaS will adapt to each target spectrum’s peculiarities, fitting it with the best linear combination of N components from the whole set.

¹ DynBaSND denotes that a basis of N spectra is used in the fits.
of ages available in the models, reducing the number of artificial components and simplifying the analysis.

3.1 Star formation history

We used Bruzual & Charlot (2003, hereafter BC03) stellar population models for the SED fitting, assuming a Chabrier (2003) IMF, computed using ‘Padova 1994’ evolutionary tracks (Alongi et al. 1993; Bressan et al. 1993; Fagotto et al. 1994a,b; Girardi et al. 1996) and the stellar library STELIB (Borgne et al. 2003). We normalized the continuum for each SSP comprised in the models, using again a median filter with the same width and mask that we used for the observed spectrum, but on the blue end we fit a cubic spline for the pseudo-continuum between the Balmer lines. Finally, we divided each SED by its respective continuum.

For the fits we used the entire range of ages contained in the models, ranging from 10^5 to 2×10^{10} yr. The fits were performed between 3815 and 5500 Å, comprising the region most sensitive to age in the optical spectra (Schweizer & Seitzer 1998), including most Balmer lines and some important metal indices (e.g. Fe5015, Fe5270, Fe5335 and Mgb) for metallicity estimation. For the fits we masked the Ca ii K line, since it might be contaminated by interstellar absorption within NGC 34 (SS07).

The cluster velocity dispersion was treated as a free parameter during the fits, as a means of emulating the true dispersion and as a correction factor to downgrade the resolution of the models to match the resolution of the data.

We estimated the S/N of the Cluster 1 spectrum to be 48 between 5000 and 5800 Å, and we assumed it to be constant over the entire spectrum. Since we did not have a proper error spectrum for the fits, we used the observed flux divided by the S/N of our data as the error spectrum. Because the error spectrum is not real, the χ^2_{ν} are not genuine either but they are comparable between different solutions that used the same error spectrum.

The χ^2_{ν} obtained in our DynBaS1D fit was 1.27. For comparison reasons, we lowered the S/N estimated before dividing it by the value of our χ^2_{ν} ($\sqrt{\chi^2_{\nu}}$), and then we calculated a new error spectrum for this value. This resulted in a value of $\chi^2_{\nu} = 1$ for our DynBaS1D solution using the new error spectrum and made χ^2_{ν} values from the grids in Section 4 easier to compare with DynBaS results.

Fig. 1 shows the DynBaS1D, DynBaS2D and DynBaS3D fits to our Cluster 1 SED. DynBaS1D yields an age of 100 Myr. For DynBaS2D, we find ages of 130 Myr (quite similar to the DynBaS1D solution) and 2 Gyr, corresponding to 93 and 7 per cent of the total mass of the cluster, respectively. Finally, the three-component fit DynBaS3D yields ages of 55 Myr, 130 Myr and 2 Gyr for stellar populations containing <0.01, 93 and 7 per cent of the cluster mass, respectively.

As can be seen in the residuals plotted at the bottom of Fig. 1, the differences between the three fits are very small, and in principle each is as valid as the others. However, we can rule out the multiple-population solutions (DynBaS2D and DynBaS3D) given the lack of physical meaning of the results. For example, we note that ‘very old’ (>1 Gyr) populations in these clusters are not expected to exist, and it would imply that a low-mass cluster existed for more than a Gyr before a second generation formed within the cluster, with ~13 times the mass of the initial population.

In Section 4, we will place more constraints on the multiple-population solutions and estimate the uncertainties in our age determination.

3.2 Metallicity and mass

In a previous work, SS07 estimated that Cluster 1 has an age of 150 ± 20 Myr and solar metallicity through the analysis of Lick line indices. Here we made various fits assuming metallicities of $Z = 0.4$, 1 and $2.5 Z\odot$ ($[Z] = -0.4$, 0 and 0.4) for the models, and we found that the best fits to spectra (specifically, the 5100–5400 Å
region which hosts a number of important metallicity indicators, including Mgb, Fe5270, Fe5335; González 1993) were with the Z_\odot templates (values reported in Section 3.1). Given this result, we restrict ourselves to the Z_\odot models for the rest of the analysis.

The mass was estimated in the standard way, through a comparison between the observed cluster luminosity (corrected for distance and extinction) and predictions of SSP models for the corresponding age (which assume a metallicity and stellar IMF). We adopt the photometry of SS07 ($V = 19.38$), an extinction of $A_V = 0.1$ and a distance of 85.2 Mpc, to derive an absolute V-band magnitude of $M_V = -15.36$ for this cluster. Comparing this to predictions from the BC03 models for solar metallicity, and an age of 100 Myr [adopting a Chabrier (2003) IMF], we estimate the mass of Cluster 1 to be $1.9 \times 10^7 M_\odot$. An uncertainty of 10 per cent on the distance leads to an uncertainty of 20 per cent on the estimated mass. Uncertainties related to adopting specific SSP models are also at the 20–30 per cent level.

4 DEGENERACIES AND UNCERTAINTIES

To assess possible degeneracies in our results (i.e. if other combinations of multiple populations reproduce the Cluster 1 SED equally well as our best solution), we performed theoretical experiments over grids of synthetic multiple-population clusters.

The grids were made up of synthetic cluster spectra for two events of star formation. These spectra were built using the same BC03 models we used for our DynBaS fits. Each grid consisted of synthetic clusters with the same older population (Pop. I from here on) and different younger populations (Pop. II). The masses of Pop. II could take values ranging from 10 to 90 per cent of the mass of Pop. I, and for the second population we allowed ages between 1 and 100 Myr distributed almost uniformly in log space. For Pop. I we used a wide extent of ages with very small time steps between them, creating a finely sampled parameter space (namely 140, 200, 290, 400, 510, 570, 720, 810 and 900 Myr).

We then applied to each synthetic cluster SED a Gaussian filter with the same velocity dispersion that DynBaS had recovered in the Z_\odot fit. Then for each element (synthetic two-population cluster) of every grid, we fitted the spectrum of Cluster 1 by minimizing the χ^2 between them using a standard least-squares algorithm. The values of χ^2 were computed using the same error spectrum we used to normalize the χ^2 in the previous section.

Fig. 2 presents the results of fitting Cluster 1 to three representative grids. In the figure, we colour coded the solutions as a function of their χ^2. We found that for fits with $\chi^2 > 1.1$, it is possible to distinguish by eye that the spectral fits are poor (i.e. fail to reproduce the depths/profiles of the Balmer lines). The contours denote constant values of χ^2. Note how the areas with small values of χ^2 rapidly shrink when we increase the age of Pop. I (areas enclosed by dark blue contours get smaller with older massive population). For grids with Pop. I values older than 200 Myr, we can easily rule out the solutions at high significance.

We know that solutions with Pop. II ages younger than 10 Myr are not possible on account of the lack of emission lines produced by ionized gas. Such line emission can be detected down to limits of ~ 2 per cent of the Pop. I mass (Bastian et al. 2013b). Hence, we can reject all solutions with these ages. As Fig. 2 shows, the ‘good fits’ are only for massive and older Pop. II ages (Pop. II \simeq Pop I) or very young Pop. I and with small mass ratios ($M_2 \ll M_1$) when we increase the age of the main population Pop. I.

We also carried out an additional experiment with a grid containing a Pop. I of 100 Myr (massive), but for this grid we allowed the Pop. II (less massive) ages to reach \sim300 Myr (i.e. to exceed the age of Pop. I), with the results shown in Fig. 3. In this figure, we can see a tendency where the best solution (fits) is the 100 Myr SSP (row with Pop. II log (yr) = 8.0) with the quality of the fits (hence the likelihood of the solutions) gradually degrading in the direction of old massive Pop. II, or young and less massive ones. With a main population of 100 Myr, the spectrum does not change significantly when adding a small amount of mass in a secondary population with older/younger ages, or a large amount of mass with an age close to 100 Myr. From Figs 2 and 3, we can see that there are regions of parameter space where a second generation could be hidden. By looking at other young massive clusters with ages between 12 and 500 Myr, we should be able to sample all of these regions and remove any degeneracies. This will be carried out in a future work (Cabrera-Ziri et al., in preparation).

We emphasize that while experimenting with different ways to define the continuum in our data and models, defining different wavelength ranges for the fits and assuming different S/N for the data, we always found that one-population solutions performed better than multiple-population solutions. Almost all of these solutions lie within 10 per cent of the reported age (100 Myr). We found the...

![Figure 2](https://example.com/figure2.png)

Figure 2. Results of fitting the normalized spectrum of Cluster 1 with each element of three representative grids of synthetic cluster spectra. The Pop. I ages are (from left to right) 140, 200 and 290 Myr. The vertical axis represents the age of the secondary (less massive) population, while the horizontal axis denotes the mass ratio between the first (older and more massive) and second population. Note that the χ^2 range changes for every panel; hence, the colour coding does not represent the same values in different panels. For $\chi^2 > 1.1$, we can spot the differences by eye between the synthetic clusters and the data, so these solutions are immediately excluded.
Our results do not support any GC formation scenarios that involve multiple generations of stars separated by $\gtrsim 30\,\text{Myr}$ in age. However, it is still possible that a secondary burst might happen in the future (i.e. with an age difference between the first and second generation of stars that is greater than 100 Myr). To improve our understanding of how GCs form, further spectroscopic studies of young massive clusters covering a wide range of ages are needed.

In a separate paper, Cabrera-Ziri et al. (in preparation) determine the SFH of six young ($12\text{--}500\,\text{Myr}$) massive ($\gtrsim 10^7\,\text{M}_\odot$) clusters from an ongoing spectroscopic survey.

These results are consistent with the findings of Bastian & Silva-Villa (2013), who do not find any large age spreads in young massive LMC clusters, and they also disagree with GC formation scenarios that predict extended SFHs (e.g. Conroy & Spergel 2011).

Finally, we conclude that DynBaS capabilities (i.e. SED fitting of just a few ages) are ideal for the study of the integrated spectra of young clusters, given that they reduce significantly the amounts of non-genuine components (i.e. ages) compared to traditional SED fitting algorithms, consequently simplifying the analysis of the results.

ACKNOWLEDGEMENTS

GB acknowledges support from the National Autonomous University of México, through grant IB102212-RR182212. NB is partially funded by a Royal Society University Research Fellowship. We thank the Aspen Center for Physics and the NSF grant no. 1066293 for hospitality during the conception of this project.

REFERENCES

Alongi M., Bertelli G., Bressan A., Chiosi C., Fagotto F., Greggio L., Nasi E., 1993, A&AS, 97, 851
Bastian N., de Mink S. E., 2009, MNRAS, 398, L11
Bastian N., Silva-Villa E., 2013, MNRAS, 431, L122
Bastian N., Lamers H. J. G. L. M., Mink S. E. D., Longmore S. N., Goodwin S. P., Gieles M., 2013a, MNRAS, 436, 2398
Bastian N., Cabrera-Ziri I., Davies B., Larsen S. S., 2013b, MNRAS, 436, 2852
Borgne J.-F. L. et al., 2003, A&A, 402, 433
Bressan A., Fagotto F., Bertelli G., Chiosi C., 1993, A&AS, 100, 647
Bruzual G., Charlot S., 2003, MNRAS, 344, 1000 (BC03)
Carretta E. et al., 2009, A&A, 505, 117
Chabrier G., 2003, PASP, 115, 763
Cid Fernandes R., González-Delgado R. M., 2010, MNRAS, 403, 780
Cid Fernandes R., Mateus A., Sodré L., Stasińska G., Gomes J. M., 2005, MNRAS, 358, 363
Conroy C., Spergel D. N., 2011, ApJ, 726, 36
D’ercole A., Vesperini E., D’antonio F., McMillan S. L. W., Recchi S., 2008, MNRAS, 391, 825
de Mink S. E., Pols O. R., Langer N., Izzard R. G., 2009, A&A, 507, L1
Decressin T., Charbonnel C., Siess L., Siess L., Paczynski B., Meynet G., Georgy C., 2009, A&A, 505, 727
Dias B., Coelho P., Barbey B., Kjerba L., Diardi T., 2010, A&A, 520, 85
Fagotto F., Bressan A., Bertelli G., Chiosi C., 1994a, A&AS, 104, 365
Fagotto F., Bressan A., Bertelli G., Chiosi C., 1994b, A&AS, 105, 29
Girardi L., Bressan A., Chiosi C., Bertelli G., Nasi E., 1996, A&AS, 117, 113
González J. J., 1993, PhD thesis, Univ. California
Goudfrooij P., Puzia T. H., Kozhurina-Platais V., Chandar R., 2009, ApJ, 137, 4988
Goudfrooij P., Puzia T. H., Kozhurina-Platais V., Chandar R., 2011a, ApJ, 737, 3
Goudfrooij P., Puzia T. H., Chandar R., Kozhurina-Platais V., 2011b, ApJ, 737, 4

Figure 3. Results of fitting the normalized spectrum of Cluster 1 with each element of the 100 Myr extended grid. This grid shows that the solutions are consistent with the DynBaSID results (i.e. an SSP of $\sim 100\,\text{Myr}$).

6 CONCLUSIONS

By fitting the normalized spectrum of Cluster 1 in NGC 34 with model SSP spectra, we have determined an age of $100\pm 30\,\text{Myr}$ for the cluster and estimated a mass of $1.9 \pm 0.4 \times 10^7\,\text{M}_\odot$, based on published photometry and SSP models for this age. We do not find evidence for multiple star formation episodes, and we can confidently rule out the presence of a second generation of stars for ages outside the range from 70 to 130 Myr with mass ratios between the second and first generation greater than 0.1. These results are consistent with GC formation scenarios where multiple generations of stars are separated by $< 30\,\text{Myr}$ in age (e.g. de Mink et al. 2009; Decressin et al. 2009) or scenarios that do not involve multiple star-forming events (Bastian et al. 2013a).
Gratton R. G., Carretta E., Bragaglia A., 2012, A&AR, 20, 50
Heavens A. F., Jimenez R., Lahav O., 2000, MNRAS, 317, 965
Koleva M., Prugniel P., Bouchard A., Wu Y., 2009, A&A, 501, 1269
Larsen S. S., Strader J., Brodie J. P., 2012, A&A, 544, L14
Larsen S. S., Brodie J. P., Forbes D. A., Strader J., 2014, A&A, preprint (arXiv:1404.1916)
Mackey A. D., Broby Nielsen P., 2007, MNRAS, 379, 151
Martell S. L., Smolinski J. P., Beers T. C., Grebel E. K., 2011, A&A, 534, 136
Milone A. P., Bedin L. R., Piotto G., Anderson J., 2009, A&A, 497, 755
Milone A. P., Marino A. F., Piotto G., Bedin L. R., Anderson J., Aparicio A., Cassisi S., Rich R. M., 2012, ApJ, 745, 27
Mucciarelli A., 2014, preprint (arXiv:1401.4323)
Mucciarelli A., Carretta E., Origlia L., Ferraro F. R., 2008, AJ, 136, 375
Ocvirk P., Pichon C., Lançon A., Thiebaut E., 2006, MNRAS, 365, 46
Rubele S., Girardi L., Kozhurina-Platais V., Kerber L., Goudfrooij P., Bressan A., Marigo P., 2013, MNRAS, 430, 2774
Schweizer F., Seitzer P., 1998, AJ, 116, 2206
Schweizer F., Seitzer P., 2007, AJ, 133, 2132 (SS07)
Tojeiro R., Heavens A. F., Jimenez R., Panter B., 2007, MNRAS, 381, 1252
Yang W., Meng X., Bi S., Tian Z., Li T., Liu K., 2011, ApJ, 731, L37
Yang W., Bi S., Meng X., Liu Z., 2013, ApJ, 776, 112

This paper has been typeset from a \TeX/\LaTeX file prepared by the author.