SIMULATION OF MAGNETOELASTIC DEFORMATION OF A PLATE IN AN ALTERNATING MAGNETIC FIELD

Abstract: A conductive flexible annular plate under the influence of a time-varying mechanical force and a time-varying external electric current, taking into account anisotropic electrical conductivity, is mathematically simulated in the article. The effect of an external magnetic field on the stress state of an annular plate is studied.

Key words: plate, magnetic field, magnetoelasticity.

Language: English

Citation: Indiaminov, R. Sh., & Abdullaev, A. (2022). Simulation of magnetoelastic deformation of a plate in an alternating magnetic field. *ISJ Theoretical & Applied Science, 01 (105), 751-755*.

Soi: https://s-o-i.org/1.1/TAS-01-105-55 **Doi:** https://dx.doi.org/10.15863/TAS.2022.01.105.55

Scopus ASCC: 2200.

Introduction

Solid electrical materials can have different structures - crystalline, amorphous, and composite. Crystals are characterized by strict repetition of identical spatial cells and periodicity of the electrostatic field. Crystals are an example of purity and order in the world of atoms; they differ in the shape of spatial lattices and have different types of symmetry. Single crystals have anisotropy; their reactions to electrical, magnetic, light, mechanical and other influences depend on the direction of these influences relative to the crystallographic planes and axes of the crystal.

Single crystals are distinguished by a more perfect structure, they are the most studied ones, the physical phenomena occurring in them are easily calculated; they provide greater reliability and identity of the parameters of semiconductor devices. In magnetic semiconductors, the processes of generation of charge carriers and the passage of electric current depend on the direction and value of the magnetic field induction.

Metallic magnetic materials conduct electricity. In alternating fields, eddy currents arise in them, which increase with increasing frequency, therefore, the frequency range of their use is limited to direct current devices, as well as industrial and audio frequency currents.

Microminiaturization of electronic devices is a powerful stimulus for the development of nanotechnology, and microelectronics is turning into nanoelectronics before our very eyes.

In recent decades, considerable attention in the literature has been paid to the study of the process of deformation of electrically conductive bodies placed in an external alternating magnetic field under the influence of non-stationary force, thermal and electromagnetic loads [1,2,3,4,5,6,7,8,9,10,11,12,13, 14,15,16,17,18,19,20,21].

Interest in research in this area is associated with the importance of quantitative studying and evaluating the observed effects of the relationship of non-stationary mechanical, thermal and electromagnetic processes and their practical application in various
fields of modern technology in the development of new technologies, in the field of nanotechnology and microelectronics, and in modern measuring systems, etc.

I. BASIC MAGNETOElastic EQUATIONS OF A FLEXIBLE CONDUCTIVE ANNULAR PLATE.

Based on the magnetoelectricity relations of a thin shell [3] and using the nonlinear elasticity relations, as well as Ohm's law and Maxwell's equations, the basic equations of a conductive annular plate can be obtained as follows:

The magnetoelectric equations have the following form:

\[
\frac{\partial (\kappa N_\theta)}{\partial t} + r(F_e + \rho F^*_e) = r \rho \frac{\partial^2 u}{\partial t^2};
\]

\[
\frac{\partial (\kappa Q_s)}{\partial r} + r(F_e + \rho F^*_e) = r \rho \frac{\partial^2 w}{\partial t^2};
\]

\[
\frac{\partial (M_s)}{\partial r} - M_\theta - r Q_s - r N_r \theta_t = 0.
\]

Equations of electrodynamics:

\[
- \frac{\partial B_s}{\partial t} = \frac{1}{r} \frac{\partial (r E_s)}{\partial r};
\]

\[
\sigma_2 \left[E_s + 0.5 \frac{\partial w}{\partial t} (B^*_s + B^-_s) - \frac{\partial u}{\partial t} B_s \right] = \frac{\partial H_s}{\partial t} + H^*_s - H^-_s;
\]

\[
\frac{\partial H_s}{\partial t} + H^*_s - H^-_s = 0.
\]

Expressions for deformations:

\[
\varepsilon_s = \frac{\partial u}{\partial r} + \frac{1}{2} \theta^*_s; \quad \varepsilon_\theta = \frac{u}{r};
\]

\[
\chi_s = \frac{\partial \theta_s}{\partial r}; \quad \chi_\theta = \frac{1}{r} \theta_\theta.
\]

where \(\theta_\theta = \frac{\partial w}{\partial r} \) is the angle of rotation of the normal;

Elasticity ratio:

\[
N_r = \frac{e_r h}{1 - v_r v_\theta} (\varepsilon_r + v_r \varepsilon_\theta);
\]

\[
N_\theta = \frac{e_\theta h}{1 - v_r v_\theta} (\varepsilon_\theta + v_\theta \varepsilon_r);
\]

\[
M_s = \frac{e_s h^3}{12(1 - v_r v_\theta)} (\chi_s + v_\theta \chi_\theta);
\]

\[
M_\theta = \frac{e_\theta h^3}{12(1 - v_r v_\theta)} (\chi_\theta + v_r \chi_s).
\]

In equations (1)–(4) the following parameters are accepted: \(v_r, v_\theta \) – Poisson’s ratios; \(e_r, e_\theta \) – Young’s modulus; \(u, w \) – displacements; \(N_r, N_\theta \) – tangential forces; \(M_s, M_\theta \) – bending moments; \(Q_e \) –

generalized cutting force; \(\chi_s, \chi_\theta \) – the main curvatures of the middle surface of the plate; \(N_r, N_\theta \) – known values of the tangential components of magnetic induction on the surfaces of the plate.

The expressions for the Lorentz force have the form:

\[
\rho F^*_e = \sigma_r h \left[E_s B_s - \frac{\partial u}{\partial t} B^2_s + 0.5 \frac{\partial w}{\partial t} (B^*_s + B^-_s) B_s \right];
\]

\[
\rho F^*_e = -\sigma_\theta h \left[0.5 E_\theta (B^*_s + B^-_s) - 0.25 \frac{\partial w}{\partial t} (B^*_s + B^-_s)^2 - \frac{1}{12} \frac{\partial w}{\partial t} (B^*_s + B^-_s)^2 - 0.5 \frac{\partial u}{\partial t} (B^*_s + B^-_s) B_s \right].
\]

II. METHODS FOR SOLVING A COUPLED PROBLEM.

The developed methods for the numerical solution of coupled problems of magnetoelectricity of orthotropic plates with orthotropic electrical conductivity are based on the consistent application of the Newmark finite difference scheme, the linearization method and discrete orthogonalization [2-6,9].

III. ANALYSIS OF ELECTROMAGNETIC EFFECTS.

Consider the nonlinear behavior of an annular boron aluminum plate of variable thickness, changing in the meridional direction according to the following law: \(h = 5 \times 10^{-4} (1 - r^2 / r_0)^m \). We assume that the plate is under the influence of mechanical force \(P_v = 5 \times 10^3 \omega \sin \omega t N / m^3 \), external electric current \(J_{ext} = 3 \times 10^7 \sin \omega t A / m^2 \), and external magnetic field \(B_{ext} = 0.1 T \), and that the plate is elastic orthotropic and has a finite orthotropic electrical conductivity \(\sigma (\sigma_1, \sigma_2, \sigma_3) \). Let the problem of magnetolectrostatics for the unperturbed state be solved, that is, the magnetic induction vectors of the initial state for the outer and inner regions are known.

We assume that the external electric current in the unperturbed state is uniformly distributed over the plate, i.e. the external current density does not depend on the coordinates. In this case, the plate is subjected to a combined loading consisting of the Lorentz ponderomotive force and mechanical force.

Let us study the effect of an external magnetic field on the stress state of an annular plate.

The boundary conditions are:

\[s = r_0 = 0; u = 0, \quad w = 0, \theta_t = 0, B_s = 0.5 \sin \omega t; \]

\[s = r_N = 0.009 m: N_\theta = 0, Q_e = -100, M_s = 0, E_s = 0. \]

The initial conditions are

\[\bar{N}(s, t) \big|_{t=0} = 0, \quad \bar{u}(s, t) \big|_{t=0} = 0, \quad \bar{w}(s, t) \big|_{t=0} = 0 \]

The parameters of the plate and the material are:
\[n_0 = 0.005 m; \ r_0 = 0.009 m; \ h = 5 \times 10^{-4} (1 - \gamma \ r^2/n_0)m; \ \gamma = 0.7, \]
\[\sigma_1 = 0.454 \times 10^3 (\Omega \times m)^3; \ \sigma_2 = 0.200 \times 10^3 (\Omega \times m)^3, \ \nu_v = 0.262; \]
\[\nu_\sigma = 0.320; \ \epsilon_0 = 22.9 \times 10^6 N/m^2; \ \epsilon_\phi = 10.7 \times 10^6 N/m^2; \]
\[\omega = 314.16 \sec^{-1}; P = 5 \times 10^3 \sin o \tau H / \mu; \ P = 0; \]
\[\tau = 1 \times 10^{-2} \sec; \ \mu = 1.256 \times 10^{-6} H / \mu, \ \rho = 2600 kg/m^3; \]
\[J_{ext} = 3 \times 10^3 \sin o \tau A/m^2; \ B_0^* = 0.5 \tau \]
\[B_{\omega} = 0.5 \sin o \tau; \Delta t = 1 \times 10^{-3} \sec; 0 \leq t \leq 1 \times 10^{-2} \sec. \]

The solution to the problem is determined over time interval \(\tau = 10^{-2} \sec \), the integration step over time is taken as \(\Delta t = 1 \times 10^{-3} \sec \) at one hundred points of integration over the length of the shell. The maximum values are obtained at time step \(t = 5 \times 10^{-3} \sec \). Fig. 1 shows graphs of the change in time of the normal component of the Lorentz force \(F_r^\perp (t) \) for three values of magnetic induction. Graphs 1+3 correspond to magnetic induction 1. \(B_{\omega0} = 0.1 \); 2. \(B_{\omega0} = 0.2 \); 3. \(B_{\omega0} = 0.5 \), respectively.

![Figure 1. Graphs of changes in time of the normal component of the Lorentz force \(F_r^\perp (t) \) for the values of the normal component of external magnetic induction.](image)

Analyzing the numerical results obtained, it can be seen that with an increase in the values of the normal component of external magnetic induction, the Lorentz force increases.

It was found that with an increase in the value of external magnetic induction, the stresses on the outer surface of the plate change depending on the change in the direction of the Lorentz ponderomotive force and the interaction with the mechanical load.

IV. CONCLUSION.

The article deals with the coupled problem of magnetoelasticity for a flexible orthotropic conductive annular plate taking into account the anisotropy of the conductive properties. A solution was obtained for the nonlinear problem of magnetoelasticity of an annular plate taking into account anisotropic electrical conductivity.

The analysis of the results obtained allows us to evaluate the influence of the normal components of magnetic induction on the stress state of a flexible orthotropic annular plate. Based on the results presented, the magnetoelastic nonlinear problem for a conductive annular plate must be considered in a coupled form.
Impact Factor:

Journal	Impact Factor
ISRA (India)	6.317
ISI (Dubai, UAE)	1.582
GIF (Australia)	0.564
JIF	1.500
SIS (USA)	0.912
PIIHH (Russia)	3.939
ESJ (KZ)	9.035
ICI (India)	4.260
SJIF (Morocco)	7.184
OAJO (USA)	0.350

References:

1. Ambartsumyan, G.E. Bagdasaryan, & Belubekyan, M.V. (1977). Magnetoelectricity of Thin Shells and Plates [in Russian]. Moscow: Nauka.
2. Grigorenko, Y. M., & Mol'chenko, L. V. (2010). Fundamentals of the Theory of Plates and Shells with Elements of Magnetoelectricity (Textbook) (IPTs). Google Scholar
3. Mol'chenko, L. V., Loos, I. I., & Indiaminov, R. S. (2008). “Determining the stress state of flexible orthotropic shells of revolution in magnetic field,” Int. Appl. Mech. 44, 882–891. https://doi.org/10.1007/s10778-008-0102-6, Google Scholar
4. Indiaminov, R. (2008). “On the absence of the tangential projection of the lorentz force on the asymmetrical stressed state of current-carrying conic shells,” Int. Jour. Comp. Techn. 13, 65–77. Google Scholar
5. Mol'chenko, L. V., Loos, I. I., & Indiaminov, R. S. (2009). “Stress–strain state of flexible ring plates of variable stiffness in a magnetic field,” Int. Appl. Mech. 45, 1236–1242. https://doi.org/10.1007/s10778-010-0264-x, Google Scholar
6. Mol'chenko, L. V., & Loos, I. I. (2013). “The stress state of a flexible orthotropic spherical shell subject to external current and mechanical force in a magnetic field,” Int. Appl. Mech. 49, 528–533. https://doi.org/10.1007/s10778-013-0587-5, Google Scholar
7. Mol'chenko, L. V., Loos, I. I., & Fedorchenko, L. M. (2016). “Deformation of a flexible orthotropic spherical shell of variable stiffness in a magnetic field,” Int. Appl. Mech 52, 56–61. https://doi.org/10.1007/s10778-016-0732-z, Google Scholar
8. Bian, Y. H., & Zhao, H. T. (2016). “Analysis of thermal-plastic-elastic stresses and strains in a thin current-carrying cylindrical shell,” Int. Appl. Mech., 52, No. 4, 437–448 MathSciNet Article Google Scholar
9. Indiaminov, R. S. (2015). “Magnetoelectric deformation of a current-carrying orthotropic conical shell with an orthotropy of conductive properties,” Bulletin of the University of Kiev 5, 81–86. Google Scholar
10. Indiaminov, R., Akbaev, U., & Dustmuradov, A. (2016). “Nonlinear deformation of flexible orthotropic shells of variable thickness in the non stationary magnetic field,” International Journal of Engineering Innovation & Research 5, 234–238. Google Scholar
11. Indiaminov, R., Butaev, R., & Mavlanov, S. (2018). “Research of deformation of the current carrying orthotropic shells in nonlinear statement,” ISJ Theoretical, Applied Science 09(65), 25–30. doi.org/10.15863/TAS. https://doi.org/10.15863/TAS.2018.09.65.5
12. Indiaminov, R. S., & Butaev, R. (2020). “Stress–strain state of current-carrying shells in a magnetic field,” ISJ Theoretical & Applied Science, 05(85), 489–492, dx.doi.org/10.15863/TAS. https://doi.org/10.15863/TAS.2020.05.85.90
13. Indiaminov, R., Hotamov, A., & Akhmedov, F. (2017). “Magnetoelectric deformation of the current carrying shells with the orthotropy of conductive properties,” International Journal of Engineering Innovation & Research, 5, 344–350. Google Scholar
14. Indiaminov, R., & Rustamov, S. (2019). “Axisymmetric magnetoelectric shells deformation with account for anisotropy of conductive properties,” ISJ Theoretical & Applied Science, 11(79), 554–559, doi.org/10.15863/TAS.2018.11.79.115, Google Scholar
15. Indiaminov, R. S., Narkulov, A. S., & Zarpullaev, U. K. (2020). “Mathematical modeling of magnetoelectric vibrations of a rod in a magnetic field,” ISJ Theoretical & Applied Science, 03(83), 327–332, 10.15863/TAS. https://doi.org/10.15863/TAS.2020.03.83.60, Google Scholar
16. Indiaminov, R., Khalijigov, S., & Narkulov, A. S. (2020). “Nonlinear vibrations of a current-carrying anisotropic cylindrical shell in a magnetic field,” ISJ Theoretical & Applied Science 01(81), 205–211, 10.15863/TAS. https://doi.org/10.15863/TAS.2020.01.81.38, Google Scholar
17. Indiaminov, R. S., & Butaev, R. (2020). “Nonlinear integro-differential equations of bending of physically nonlinear viscoelastic plates,” IOP Publishing. Conf. Series: Materials Science and Engineering, 7, https://doi.org/10.1088/1757-899X/869/5/052048, Google Scholar
18. Indiaminov, R., Narkulov, A., & Butaev, R. (2021). “Magnetoelectric strain of flexible shells in nonlinear statement,” AIP Conference Proceedings, 2365, 02 0002. https://doi.org/10.1063/5.0056840
19. Indiaminov, R., Butaev, R., & Narkulov, A. (2021). “Nonlinear deformation of a current
Impact Factor:

Journal	Impact Factor
ISRA (India)	6.317
ISI (Dubai, UAE)	1.582
GIF (Australia)	0.564
JIF	1.500
SIS (USA)	0.912
PIIH (Russia)	3.939
ESJI (KZ)	9.035
SJIF (Morocco)	7.184
ICV (Poland)	6.630
PIF (India)	1.940
IBI (India)	4.260
OAJI (USA)	0.350

Indiaminov, R., Butaev, R., & Narkulov, A. (2021). “Nonlinear deformation of a current shell in a magnetic field”, AIP Conference Proceedings, 2021, 2365, 02 0001. https://doi.org/10.1063/5.0056840

Indiaminov, R., & Yusupov, N. (2021). “Mathematical Modeling of Magnetoelastic Vibrations of Current Conducive Shells in the Non Stationary Magnetic Field,” 2021 International Conference on Information Science and Communications Technologies (ICISCT), pp. 1-4, doi: 10.1109/ICISCT52966.2021.9670308.