Greenhouse Gas Flux and Crop Productivity after 10 Years of Reduced and No Tillage in a Wheat-Maize Cropping System

Shenzhong Tian¹, Yu Wang², Tangyuan Ning¹*, Hongxiang Zhao¹, Bingwen Wang¹, Na Li¹, Zengjia Li¹, Shuyun Chi³*

¹State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, Shandong Agricultural University, Taian, Shandong, China, ²Shandong Rice Research Institute, Jinan, Shandong, China, ³College of Mechanical and Electronic Engineering, Shandong Agricultural University, Taian, Shandong, China

Abstract

Appropriate tillage plays an important role in mitigating the emissions of greenhouse gases (GHG) in regions with higher crop yields, but the emission situations of some reduced tillage systems such as subsoiling, harrow tillage and rotary tillage are not comprehensively studied. The objective of this study was to evaluate the emission characteristics of GHG (CH₄ and N₂O) under four reduced tillage systems from October 2007 to August 2009 based on a 10-yr tillage experiment in the North China Plain, which included no-tillage (NT) and three reduced tillage systems of subsoil tillage (ST), harrow tillage (HT) and rotary tillage (RT), with the conventional tillage (CT) as the control. The soil under the five tillage systems was an absorption sink for CH₄ and an emission source for N₂O. The soil temperature positive impacted on the CH₄ absorption by the soils of different tillage systems, while a significant negative correlation was observed between the absorption and soil moisture. The main driving factor for increased N₂O emission was not the soil temperature but the soil moisture and the content of nitrate. In the two rotation cycle of wheat-maize system (10/2007–10/2008 and 10/2008–10/2009), averaged cumulative uptake fluxes of CH₄ under CT, ST, HT, RT and NT systems were approximately 1.67, 1.72, 1.63, 1.77 and 1.17 t ha⁻¹ year⁻¹, respectively, and meanwhile, approximately 4.43, 4.38, 4.47, 4.61 and 4.61 t ha⁻¹ year⁻¹ of N₂O were emitted from soil of these systems, respectively. Moreover, they also gained 33.73, 34.63, 32.62, 34.56 and 27.54 t ha⁻¹ yields during two crop-rotation periods, respectively. Based on these comparisons, the rotary tillage and subsoiling mitigated the emissions of CH₄ and N₂O as well as improving crop productivity of a wheat-maize cropping system.

Introduction

Methane (CH₄) and nitrous oxide (N₂O) play a key role in global climate change [1]. The global warming potential of these gases are respectively 25 and 298 times that of carbon dioxide (CO₂) [2]; thus, the release of these gases is a crucial contributory factor to increasing loads of greenhouse gases (GHG). According to estimations of the IPCC [3], the fluxes of CH₄ and N₂O from agricultural sources account for 50% and 80% of the total emission of these gases, respectively. There have been many studies on CO₂ emission in different ecosystems [4–6]; however, emissions of CH₄ and N₂O emission have been researched incompletely, especially in agricultural ecosystems [7,8].

In general, appropriate soil tilling may reduce GHG emissions because the emissions from soil are strongly affected by tilling, results that have been found by many studies [8–10], most of which, have reported the emissions of CH₄ and N₂O under conventional tillage (CT) and no-tillage (NT) systems in different sites [5,9]. However, the both generally revealed two extremes in maintenance the soil organic carbon stock and crop productivity, agricultural environment protection, the results in these aspects showed the regional character and sometimes they did not suit for agricultural sustainable development [8,9,11]. In which case, some reduced tillage systems such as subsoiling (ST), harrow tillage (HT) and rotary tillage (RT) have been introduced [11], and sometimes they as more important tillage practices combination with no tillage were used in rotation-tillage systems, which changed some soil environment factors and crop yield [12]. Although these reduced systems were frequently used and developed rapidly due to they are not only advantageous to improve crop yield but also increase the utilization efficiency of soil, water and fertilizer [13,14], the emissions of CH₄ and N₂O under these systems were remain unclear.

The production, consumption and transport of CH₄ and N₂O in soil are strongly influenced by some soil factors. Many studies demonstrated that CH₄ uptake by soil is correlated with soil temperature [15,16] and the N₂O emission. The conditions of soil moisture and N concentration were also shown as two major driving factors of the emission of N₂O: the emission generally...
peaked during N fertilizer application and irrigation [17,18]. However, the effects of those factors on the emissions of CH$_4$ and N$_2$O under different tillage systems in the North China Plain are still not fully understood among available results.

Therefore, the aim of the present study was to quantify the emissions of CH$_4$ and N$_2$O under no tillage and three reduced tillage systems in the wheat-maize cropping system and to analyze the correlations between the two gas emissions and the soil temperature, moisture and nitrate content. The crop productivity of the wheat-maize cropping system during two crop-rotation periods was also analyzed.

Materials and Methods

Ethics Statement

This experiment was established in a long-term tillage and residue-management experiment site of Shandong Agricultural University. The farming operations of this experiment were similar to the rural farmers’ operations and did not involve endangered or protected species; the operations were approved by the State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology and National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, Shandong Agricultural University.

Experimental Site

The study site was located at Tai’an (Northern China, 36°09’N, 117°09’E), which has the typical characteristics of the North China Plain. The average annual precipitation is 697 mm, and the average annual temperature is 13.0°C, with the minimum (−2.6°C) and maximum (26.4°C) monthly temperatures in January and July, respectively. The annual frost-free period is approximately 170–196 d in duration, and the annual sunlight time is 2627.1 hours. The soil is a loam with 40% sand, 44% silt, 16% clay. The characteristics of the surface soil (0–20 cm) were measured as follows: pH 6.8; soil bulk density 1.43g cm$^{-3}$; soil organic matter 1.36%; soil total nitrogen 0.13%; and soil total phosphorous 0.13%. The meteorological data during the experiment is shown in Figure 1.

Experimental Design

The study based on a 10-year tillage experiment, began in 2002, included no tillage (NT) and three reduced tillage systems involving subsoiling (ST), harrow tillage (HT), rotary tillage (RT), with the conventional tillage (CT) as the control. The treatments were arranged in a randomized block design with three replications. Each plot was 35 m long and 4 m wide.

The experimental site was cropped with a rotation of winter wheat (*Triticum aestivum* Linn.) and maize (*Zea mays* L.). Winter wheat (Jimai-22) was sown at a rate of 90 kg ha$^{-1}$, on 12 October 2007 and 15 October 2008, and was harvested 6 June 2008 and 10 June 2009. The basal fertilizer was added before sowing and contained with 225 kg N ha$^{-1}$, 150 kg P$_2$O$_5$ ha$^{-1}$ and 105 kg K$_2$O ha$^{-1}$, and 100 kg N ha$^{-1}$ was used as topdressing at the jointing stage with 160 mm of irrigation water. The maize was sown on 20 June 2008 and 22 June 2009, which included 66600 plants ha$^{-1}$ and was harvested 8 October 2008 and 10 October 2009. For the maize, 120 kg N ha$^{-1}$, 120 kg P$_2$O$_5$ ha$^{-1}$ and 100 kg K$_2$O ha$^{-1}$ were used as a basal fertilizer, and 120 kg N ha$^{-1}$ was used as topdressing at the jointing stage.

When the wheat and maize were harvested, the amount of residue returned to each plot at an equal level according to the crop biomass and water content of residue, in order to ensure their amount and C content of the residue among treatment had no significant difference. The residue equal quality returned to the field, then pulverized using a residue chopper and mixed with the soil in the tillage operations. The operations of tillage and residue-management are shown in Table 1.

Gas Sampling and Analysis

The emission measurements of CH$_4$ and N$_2$O for each treatment were conducted using the static-chamber method [19]. According to some studies, there is optimal gas-sample collection duration in a day during which the sample can show the mean gas flux of the day [20–22]. Our previous study have showed that the ratios of the CH$_4$ flux between 9 a.m. and 10 a.m. and N$_2$O flux between 9 a.m. and 12 p.m. to the daily mean flux, respectively, converged 1 by the correction coefficient and regression analysis [23]. So, the CH$_4$ and N$_2$O were collected between 9 a.m. and 10 a.m. and between 9 a.m. and 12 p.m. respectively from October 2007 to August 2009 at approximately 1-month intervals [12,23]. Both
CH$_4$ and N$_2$O were sampled at 5 minutes, 20 minutes and 35 minutes using a needle tube. The diurnal variations of CH$_4$ and N$_2$O in this study were collected from 2nd to 4th of May at 2-hour interval in 2009. All gases samples were collected at same time in order to avoid the order difference of sampling time. The atmospheric temperature, the temperature in the static chamber, the soil surface temperature and the soil temperature at a depth of 5 cm were determined simultaneously.

The samples were measured using a Shimadzu GC-2010 gas chromatograph. CH$_4$ was measured using a flame ionization detector with a stainless-steel chromatography column packed with a 5A molecular sieve (2 m long); the carrier gas was N$_2$. The temperatures of the column, injector and detector were 80°C, 100°C and 200°C, respectively. The total flow of the carrier gas was 30 ml min$^{-1}$, the H$_2$ flow was 40 ml min$^{-1}$, and the airflow was 400 ml min$^{-1}$. N$_2$O was measured using an electron-capture detector with a Porapak-Q chromatography column (4 m long); the carrier gas was also N$_2$. The temperatures of the column, injector and detector were 45°C, 100°C and 300°C, respectively. The total flow of the carrier gas was 40 ml min$^{-1}$, and the tailblowing flow was 40 ml min$^{-1}$. The gas fluctuations were calculated based on the gas-concentration change over time per unit area.

The emission fluxes of CH$_4$ and N$_2$O were calculated using the following formula [19]:

$$ F = \frac{60 H M P}{8.314(273 + T)} \frac{d c}{d t} $$

where F is the gas emission flux or uptake flux (μg m$^{-2}$ hour$^{-1}$), 60 is the conversion coefficient of minutes and hours, H is the height of the static chamber (m), M is the molar mass of gas (g mol$^{-1}$), P is the atmospheric pressure (Pa), 8.314 is the ideal gas constant (J mol$^{-1}$ K$^{-1}$), T is the average temperature in the static chamber (°C), and dc/dt is the slope of the line of the gas-concentration change over time.

The cumulative fluxes of CH$_4$ and N$_2$O were calculated by summing the products of the daily mean flux of two neighboring observations multiplying the days [6,24], the calculation formula as follows:

$$ F_{\text{cumulative}} = \sum \left[\frac{(F_i + F_{i+1})}{2} \times d \right] $$

where, $F_{\text{cumulative}}$ is the cumulative flux of CH$_4$ or N$_2$O (t ha$^{-1}$ year$^{-1}$); F_i is the daily flux of observation i (t ha$^{-1}$ d$^{-1}$); F_{i+1} is the daily flux of observation $i+1$ (t ha$^{-1}$ d$^{-1}$); d is the days; F_{avg} is the mean flux of CH$_4$ or N$_2$O which able to represent daily mean flux of CH$_4$ or N$_2$O according to the correction coefficient and regression analysis between the gas flux in observation duration and the daily total fluxes in diurnal variation.

Table 1. The residue-management and tillage systems in the experimental plots.

Item	CT	ST	HT	RT	NT
Wheat-residue	11.02	11.02	11.02	11.02	11.02
Retention rate (t ha$^{-1}$)	51.27	51.27	51.27	51.27	51.27
Maize-residue	10.05	10.05	10.05	10.05	10.05
Residue-C (g kg$^{-1}$)	52.15	52.15	52.15	52.15	52.15
Tillage	Depth (cm)	25–35	40–45	12–15	10–15
Machine	moldboard	vibrating subsoil shovel	disc harrow	rototiller	

doi:10.1371/journal.pone.0073450.t001

Soil Sampling and Analysis

The meteorological data during the experiment (10/2007–10/2009) were by the agricultural meteorological station approximately 500 m from the experiment field. We measured soil temperature at a depth of 5 cm and the soil moisture in the 0–20 cm soil layers using a WET Sensor (WET brand, made in the UK). Soil samples (0–10 cm, 10–20 cm and 20–30 cm) were collected at five random positions of each plot and air dried to a constant weight, triturated and passed through a 2 mm sieve after thorough incorporation; they were then used to determine NO$_3$ N using the UV colorimetric method [25].

Crop Yield

Winter wheat and maize were harvested at maturity, and the both harvest area was 9 m2 in the central area of each plot to exclude edge effects. After air-drying, the grains were separated from the plants and oven-dried at 65°C for 48 h, and the dry weight was determined.

Statistical Analyses

The data were mapped using Sigma Plot 10.0, and all of the statistical analyses were performed using SPSS statistical software (SPSS Inc., Chicago, IL). The standard deviation (S.D.) and least significant difference (LSD) were calculated to compare the treatment means.

Results

Seasonal Variation of CH$_4$ Uptake

The soil acted an absorption sink for CH$_4$ in all tillage systems, which significantly varied by different soil tillage (Figure 2). The CH$_4$ flux during the sampling period (10/2007~10/2009) ranged from 6.31 to 41.36 µg m$^{-2}$ h$^{-1}$ under CT, from 4.03 to 33.45 µg
m$^{-2}$ h$^{-1}$ under ST, from 5.30 to 35.21 µg m$^{-2}$ h$^{-1}$ under HT, from 6.78 to 32.54 µg m$^{-2}$ h$^{-1}$ under RT, and from 1.10 to 26.21 µg m$^{-2}$ h$^{-1}$ under NT. Moreover, the fluxes tended to respond to the change of atmospheric temperature during the sampling time (Figure 2), with higher uptake fluxes in the summer and lower in the winter in the different tillage systems.

Seasonal Variation of N$_2$O Emission

The emitting of N$_2$O from the soil was observed under the different treatments (Figure 3), but the differences were small among the treatments in the same sampling time. However, the peak N$_2$O emission coincided with the irrigation and fertilization periods, which had the highest emission fluxes of all of the periods ($P<0.01$), and the flux did not accord with the trend of atmospheric temperature. Meanwhile, the flux in all of the samples of N$_2$O ranged from 14.07 to 130.39 µg m$^{-2}$ h$^{-1}$ under CT, from 14.20 to 126.43 µg m$^{-2}$ h$^{-1}$ under ST, from 12.68 to 134.93 µg m$^{-2}$ h$^{-1}$ under HT, from 10.81 to 126.42 µg m$^{-2}$ h$^{-1}$ under RT, and from 13.04 to 128.29 µg m$^{-2}$ h$^{-1}$ under NT.

Diurnal Variations of CH$_4$ and N$_2$O Under CT and NT

The diurnal flux variations of CH$_4$ uptake and N$_2$O emission significantly differed between the CT and NT treatments (Figure 4). In both of the treatments, the CH$_4$ uptake exhibited the lowest and highest fluxes at 6 a.m. and 2 p.m., respectively, but the lowest and highest values of CH$_4$ absorption were 12.99 and 23.77 µg m$^{-2}$ h$^{-1}$, respectively, under CT and 12.23 and 23.03 µg m$^{-2}$ h$^{-1}$, respectively, under NT (Figure 4a). The emission troughs and peaks of N$_2$O under CT and NT were observed at 4 a.m. and 4 p.m., respectively, with flux values of 16.90 and 41.89 µg m$^{-2}$ h$^{-1}$ under CT and 13.57 and 34.38 µg m$^{-2}$ h$^{-1}$ under NT, respectively (Figure 4b).

Cumulative Emissions of CH$_4$ and N$_2$O

The cumulative fluxes of CH$_4$ and N$_2$O under the different tillage systems in the two rotation cycle of wheat-maize systems were shown in Table 2. The highest cumulative uptake flux of CH$_4$ presented in the RT treatment with 1.85 t ha$^{-1}$ year$^{-1}$ in the first rotation cycle of wheat-maize system (10/2007–10/2008), which was higher 8.3%, 13.7%, 22.5% and 60.9% than CT, ST, HT and NT treatments, respectively. But in the second rotation cycle (10/2008–10/2009), the highest one was the ST treatment. The order of total cumulative uptake fluxes of CH$_4$ under five tillage systems in two years was RT>ST>CT>HT>NT. The cumulative emission flux of N$_2$O ranged from 4.18 to 4.63 t ha$^{-1}$ year$^{-1}$ in the first year and from 4.15 to 4.67 t ha$^{-1}$ year$^{-1}$ in the second year, the total cumulative emission flux of N$_2$O ordered of NT>HT>CT>ST>RT, the flux under NT was only higher 7.2% than that of under RT.

Seasonal Variations of the Soil Temperature, Moisture and NO$_3$–N

A significant difference of the soil temperature at 5 cm depth was measured in the different periods. The changes under the different tillage systems were related to the atmospheric temperature (Figure 5a). The averaged soil temperature in all of the periods under RT was higher than under the other tillage methods. The soil moisture of the 0–20 cm layer varied among the different treatments and was related to precipitation or irrigation (Figure 5b). The averaged moisture level of the 0–20 cm layer was highest in the NT treatment. Similarly, higher nitrate contents

![Figure 2. The seasonal characteristics of CH$_4$ flux under the different tillage systems.](https://example.com)

Figure 2. The seasonal characteristics of CH$_4$ flux under the different tillage systems. i and iii were the periods of wheat growth in 2007–2008 and 2008–2009, respectively; ii and iv were the periods of maize growth in 2008 and 2009, respectively. The arrows indicate the time of tilling, and the dotted lines distinguish the different periods of crop growth. The data are means ± SD (n = 3).

doi:10.1371/journal.pone.0073450.g002
were measured under the HT, NT, RT and ST treatments (Figure 5c); the levels in the NT, RT and ST treatments were higher than in the CT treatment by 4.21%, 2.42% and 1.40%, respectively.

Regression Analysis between CH4, N2O and Soil Factors

The absorption of CH4 by the soil in different tillage systems was strongly affected by the soil temperature and soil moisture, and the uptake flux showed a positive correlation with the soil temperature ($R^2 = 0.44$, $P < 0.01$; Figure 6a), and a negative correlation was observed with the soil moisture ($R^2 = 0.36$, $P < 0.01$; Figure 6b).

The N2O emission flux and soil temperature were not significantly correlated in this study. However, the N2O emission flux was significantly related to the soil moisture ($R^2 = 0.63$, $P < 0.01$; Figure 7a) and the content of nitrate ($R^2 = 0.50$, $P < 0.01$; Figure 7b), which promoted the N2O emission.

Crop Yields

The crop productivity of the wheat-maize rotation in the two years differed among the tillage systems (Table 3). The highest total productivity in two crop-rotation periods were measured in the ST treatment, with 34.63 t ha$^{-1}$, which was higher 2%, 6.2%, 0.2% and 25.7% than in the CT, HT, RT and NT treatment. The NT system showed the lowest productivity, only producing 27.54 t ha$^{-1}$ yield in two crop-rotation periods.

Discussion

Effects of Soil Factors on CH4 Uptake and N2O Emission

In general, the emissions of CH4 and N2O in different seasons are affected by the soil temperature [26,27]. In this study, the CH4 uptake and N2O emission were lower in winter and higher in summer (Figures 2 and 3) and significantly related with the change of the soil temperature (Figures 2 and 6a). Similar results have been indicated in previous studies [28,29]. However, the CH4 uptake flux usually decreased with the irrigation (Figures 3 and 6b). Many studies reported that soil moisture was a limiting factor for CH4 absorption by the soil [16,30], leading to reduced rates of gas and O2 diffusion [17].

Sometimes, the seasonal characteristics of N2O emission exhibit varied trends in different sites, generally affected by temperature, N fertilization or irrigation in a significant linear relationship [27,31], and higher NO3-N concentrations in wet soils promote the activity of nitrification and denitrification [18]. The higher moisture of the soil in this study promoted N2O emission (Figures 5b and 7a), and the emission also increased with N fertilizer application (Figures 5c and 7b). In addition, there was no significant correlation between the N2O emission and soil temperature in the seasonal variation in this study, similar results also found by other studies [32].

Tillage Effect on CH4 Uptake and N2O Emission

The fluxes of CH4 uptake and N2O emission were related to some soil factors (Figures 6 and 7), and these related soil factors general varied by the different tillage systems (Figure 5), because the changed soil structure and microflora by tillage would further
drive emissions of the \(N_2O \) and \(CH_4 \) from soil \[8,15\]. For example, a soil with better permeability was a larger absorption sink of \(CH_4 \) \[5\]. In this study, the highest uptake flux of \(CH_4 \) was observed in the RT treatment (Table 2), which also contained the highest averaged soil temperature (Figure 5a). The regression analysis showed that there was a significant positive correlation between \(CH_4 \) uptake and soil temperature (Figure 6a). In contrast, under the five tillage systems used in this study, the lowest flux of \(CH_4 \) uptake was observed under NT (Figure 2), which was consistent with many previous studies \[13,14\]. The highest moisture and the lowest temperature conditions were also found in the soil of the NT treatment (Figures 5a and 5b). Some previous studies have indicated that the excessive wet condition of soil generally led to compaction of the soil surface without tillage, which blocked \(CH_4 \) from entering into soil for oxidation in dryland farming systems \[32–35\]. However, others opposite results also indicated that NT could increase \(CH_4 \) oxidation because the reduced disturbance of soil could increase the activity of methane-oxidizing bacteria \[36,37\], while disturbance may negatively affect \(CH_4 \) uptake by the soil \[38\], but sometimes this effect from disturbance is small and can largely be ignored \[9,38\]. Because the variations of these factors are important driving factors for soil microflora and also responded sensitive by the changed soil structure by tillage.

Similarly, the HT treatment, which had the highest emission of \(N_2O \) from the soil because the content of NO\(_3\)-N was the highest compared with the other treatments (Figures 5c and 7b). The emission flux of \(N_2O \) usually peaked after the stage of N-fertilizer application or irrigation \[10\], and the highest flux was observed in reduced systems (HT treatment). In some cases, there was a risk of increasing the emission of \(N_2O \) under NT or reduced tillage \[9\]. These methods mostly produced decreased \(N_2O \) emission relative to that reported by many previous studies \[39,40\] because little \(N_2O \) was generally produced with a better mixture of soil and residue, and the predominant form of nitrogen was NO\(_3\)-N or NH\(_4\)-N \[14\].

Tillage Effect on Crop Yield

Little information was reported on reduced tillage systems effect on crop yields. Sometimes, subsoiling was regarded an effective method to increase wheat production \[41–43\]. In this study, the highest crop productivity of two rotation periods was shown under the ST and RT systems (Table 3). However, the NT system in this study had the lowest crop total yield, and a similar trend were reported by other studies \[5,10\]. However, the yields under NT showed dissimilar results in different sites, in which generally reported with the NT increase crop yields compared to conventional tillage \[44,45\]. Furthermore, relative to other tillage systems, no-tillage grain yields and profits are often dramatically lower during the first few years of adoption. In fact, no tillage have not been widely applied in the world or at least China, because there are actual or perceived problems in crop grown using the

Table 2. The cumulative emissions of \(CH_4 \) and \(N_2O \) under the different tillage systems.

Item	Cumulative flux (t ha\(^{-1}\) year\(^{-1}\))				
	CT	ST	HT	RT	NT
The first rotation cycle of wheat-maize system (10/2007–10/2008)					
Cumulative uptake flux of \(CH_4 \)	1.71b	1.63c	1.51d	1.85a	1.15e
Cumulative emission flux of \(N_2O \)	4.18d	4.30c	4.37c	4.45b	4.64a
The second rotation cycle of wheat-maize system (10/2008–10/2009)					
Cumulative uptake flux of \(CH_4 \)	1.63d	1.81a	1.74b	1.67c	1.20e
Cumulative emission flux of \(N_2O \)	4.67a	4.46c	4.57b	4.15d	4.57b
The total cumulative flux in the two years					
\(CH_4 \)	3.34	3.43	3.25	3.53	2.34
\(N_2O \)	8.85	8.76	8.94	8.60	9.22

Different small letters in the same line indicate \(P<0.05 \). \(n=3 \).

\(\text{doi:10.1371/journal.pone.0073450.t002} \)
Figure 5. The seasonal variations of the soil temperature at a depth of 5 cm (a), soil moisture at 0–20 cm (b), and soil NO$_3^-$N content at 0–20 cm (c) under the different tillage systems. The data are means ± SD (n = 3).

doi:10.1371/journal.pone.0073450.g005
NT, it may have limited adoption by growers. Some specific problems include lower early-season soil temperatures, reduced seed germination and emergence, below-optimal plant populations, poorer weed control, delayed plant development and maturity, increased grain moisture content, and lower grain yield potential [46–51]. Yet no tillage system effects on yield are highly dependent upon soil type, drainage, climate/latitude, and crop rotation [52].

Figure 6. The regression analysis of the CH₄ flux and soil temperature at 5-cm depth (a, n = 105) and soil moisture of the 0–20 cm layer (b, n = 105).

doi:10.1371/journal.pone.0073450.g006

Figure 7. The regression analysis of the N₂O flux and soil moisture of the 0–20 cm layer (a, n = 105) and the soil NO₃⁻N of the 0–20 cm layer (b, n = 105).

doi:10.1371/journal.pone.0073450.g007
The fluxes of CH$_4$ and N$_2$O were significantly affected by no-tillage and reduced tillage systems, which also impacted soil factors, such as the soil temperature, moisture and nitrate content. These factors were related with the changes of CH$_4$ and N$_2$O emissions of CH$_4$ and N$_2$O, and also gain a high level of crop productivity in the wheat-maize cropping rotation system. Sometimes, the both also as an important rotation tillage systems was applied in this region, in particular the subsoiling. The results also provide information on optional tillage in rotation tillage systems for mitigating GHG emissions and improving crop yield.

Conclusions

Table 3. The crop productivity in the different tillage systems.

Wheat-maize cropping-rotation system	Crop yield (t ha$^{-1}$)				
	CT	ST	HT	RT	NT
The first rotation cycle					
Wheat (10/2007–06/2008)	5.90 d	6.18 c	6.58 a	6.35 b	4.65 e
Maize (06/2008–10/2008)	12.19 a	10.98 b	10.10 c	9.92 d	8.83 e
The second rotation cycle					
Wheat (10/2008–06/2009)	5.85 c	6.90 a	6.17 b	6.06 b	4.95 d
Maize yield (06/2009–10/2009)	10.03 c	10.58 b	9.76 d	12.23 a	9.11 e
Total productivity	33.95 b	34.63 a	32.62 c	34.56 a	27.54 d

Different small letters in the same line indicate P<0.05, n = 3.

doi:10.1371/journal.pone.0073450.t003

Author Contributions

Conceived and designed the experiments: ST TN ZL SC. Performed the experiments: ST YW HZ BW NL. Analyzed the data: ST TN. Contributed reagents/materials/analysis tools: ST. Wrote the paper: ST TN.

References

1. Forster P, Ramaswamy V, Artaxo P, Berntsen T, Betts R, et al. (2007) Changes in atmospheric constituents and in radiative forcing. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, et al., ed. Climate Change 2007: The Physical science basis. Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, United Kingdom and New York, USA.

2. Bouwman AF (1990) Exchange of greenhouse gases between terrestrial ecosystems and the atmosphere. In: Bouwman AF, ed. Soils and the Greenhouse Effect. Wiley, Chichester, 61–127.

3. IPCC (2007) Climate change 2007: The physical science basis. Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, United Kingdom and New York, USA.

4. Paustian K, Andren O, Janzen HH, Lal R, Smith P, et al. (1997) Agricultural soil as a C sink to offset CO$_2$ emissions. Soil Use Manage 13: 230–244.

5. Dong YH, Ouyang Z (2005) Effects of organic manures on CO$_2$ and CH$_4$ fluxes of farmland. Chin J Appl Ecol 16: 1303–1307.

6. Chatskikh D, Olesen JE (2007) Soil tillage enhanced CO$_2$ and N$_2$O emissions from temperate soils: effective of land use and the chemical form of nitrogen fertilizer. Climatic Change 30: 539–546.

7. Willison TW, Webster CP, Goulding KWT, Powelson DS (1995) Methane oxidation in temperate soils: effective of land use and the chemical form of nitrogen fertilizer. Chemosphere 30: 539–546.

8. Lee J, Six J, King AP, Van Kessel C, Rolston DE (2006) Tillage and field scale controls on greenhouse gas emissions. J Environ Qual 35: 714–725.

9. Six J, Ogle SM, Breitj CA, Conant RT, Mosier AR, et al. (2004) The potential to mitigate global warming with no-tillage management is only realized when practiced in the long term. Glob Change Biol 10: 155–160.

10. Bhataa A, Samal S, Jain N, Pathak H, Kumar R, et al. (2010) Mitigating nitrous oxide emission from soil under conventional and no-tillage in wheat using nitrification inhibitors. Agr Ecosystem Environ 136: 247–253.

11. Zhang HL, Gao WS, Chen F, Zhu WS (2005) Prospects and present situation of conservation tillage. J Chin Agr Uni 10: 16–20.

12. Tian SZ, Ning TY, Zhao HX, Wang BW, Li N, et al. (2012) Response of CH$_4$ and N$_2$O emissions of CH$_4$ and N$_2$O from double cropping paddy field. Transac CSASE 36: 202–219.
30. Von Fischer JC, Butters G, Duchateau PC, Thelwell RJ, Siller R (2009) In situ measures of methanotroph activity in upland soils: A reaction-diffusion model and field observation of water stress, J Geophys Res 114:G01015.
31. Cui RY, Chen ZZ, Chen SQ (2001) Progress in research on soil respiration of grasslands. Acta Ecologica Sinica 21: 315–325.
32. Koppinen HT, Holto L, Martikainen PJ (2004) Nitrous oxide emissions from agricultural soils at low temperatures: a laboratory microcosm study. Soil Biol Biochem 36: 757–766.
33. Omonode RA, Vyn TJ, Smith DR, Hegymegi P, Ga’l A (2007) Soil carbon dioxide and methane fluxes from long-term tillage systems in continuous corn and corn–soybean rotations. Soil Till Res 95: 182–195.
34. Ahmad S, Li C, Dai G, Zhan M, Wang J, et al. (2009) Greenhouse gas emission from direct seeding paddy field under different rice tillage systems in central China. Soil Till Res 106: 54–61.
35. Li DM, Liu MQ, Cheng YH, Wang D, Qin JT, et al. (2011) Methane emissions from double-rice cropping system under conventional and no tillage in southeast China. Soil Till Res 113: 77–81.
36. Smith P, Goulding KWT, Smith KA, Powelson DS, Smith JU, et al. (2001) Enhancing the carbon sink in European agricultural soils: including trace gas fluxes in estimates of carbon mitigation potential. Nut Cycl Agroecosyst 60: 237–252.
37. Hutsch BW (1998) Tillage and land use effects on methane oxidation rates and their vertical profiles in soil. Biol Fert Soils 27: 294–292.
38. Robertson GP, Paul EA, Harwood RR (2000) Greenhouse gases in intensive agriculture: Contributions of individual gases to the radiative forcing of the atmosphere. Science 289: 1922–1925.
39. Krasavulou A, Mouiri AR, Doran JW (1998) Fluxes of carbon dioxide, nitrous oxide, and methane in grass sod and winter wheat-fallow tillage management. J Environ Qual 27: 1094–1104.
40. Lal R (2004) Soil carbon sequestration impacts on global climate change and food security. Science 304: 1623–1627.
41. He J, Li HW, Gao HW (2006) Subsoiling effect and economic benefit under conservation tillage mode in Northern China. Transact CSAE 22: 62–67.
42. Gong XJ, Qian CR, Yu Y, Zhao Y, Jiang YB, et al. (2009) Effects of Subsoiling and No-tillage on Soil Physical Characteristics and Corn Yield. J Maize Sci 17: 134–137.
43. Huang M, Wu JZ, Li YJ, Yao YQ, Zhang CJ, et al. (2009) Effects of different tillage management on production and yield of winter wheat in dryland. Transact CSAE 25: 50–54.
44. He J, Li HW, Rasaily RG, Wang QJ, Cai GH, et al. (2011) Soil properties and crop yields after 11 years of no tillage farming in wheat–maize cropping system in North China Plain. Soil Till Res 113: 48–54.
45. He J, Wang QJ, Li HW, Liu LJ, Gao HW (2009) Effect of alternative tillage and residue cover on yield and water use efficiency in annual double cropping system in North China Plain. Soil Till Res 104: 198–205.
46. Mock JJ, Erbach DC (1977) Influence of conservation-tillage environments on growth and productivity of corn. Agron J 69: 337–340.
47. Kovar JL, Barber SA, Kladivko EJ, Griffith DR (1992) Characterization of soil temperature, water content, and maize root distribution in two tillage systems. Soil Till Res 24: 11–27.
48. Lalal MG, Carrier FR, Oplinger ES (1993) Tillage and crop rotation affect corn, soybean, and winter wheat yields. J Prod Agr 6: 207–213.
49. Swan JB, Higgs RL, Bailey TB, Wollenhaupt NC, Paulson WH, et al. (1994) Surface residue and in-row treatment effects on long-term no-tillage continuous corn. Agron J 86: 711–719.
50. Fortin MC, Pierce FJ (1999) Developmental and growth effects of crop residues on corn. Agron J 82: 710–715.
51. Fortin MC (1993) Soil temperature, soil water, and no-till corn development following in-row residue removal. Agron J 85: 571–576.
52. Boomsma CR, Santini JB, West TD, Brewer JC, McIntyre LM, et al. (2010) Maize grain yield responses to plant height variability resulting from crop rotation and tillage system in a long-term experiment. Soil Till Res 106: 227–240.