Mind the Gap: Polishing Pseudo Labels for Accurate Semi-Supervised Object Detection

Lei Zhang\(^1\)\(^*,\) Yuxuan Sun\(^1\)\(^*,\) Wei Wei\(^1,2\)\(^†\)

\(^1\) School of Computer Science, Northwestern Polytechnical University, China
\(^2\) Research & Development Institute of Northwestern Polytechnical University in Shenzhen, China
\{nwpuanglei,weiwinwu\}@nwpu.edu.cn, sunyuxuan@mail.nwpu.edu.cn

Abstract

Exploiting pseudo labels (e.g., categories and bounding boxes) of unannotated objects produced by a teacher detector have underpinned much of recent progress in semi-supervised object detection (SSOD). However, due to the limited generalization capacity of the teacher detector caused by the scarce annotations, the produced pseudo labels often deviate from ground truth, especially those with relatively low classification confidences, thus limiting the generalization performance of SSOD. To mitigate this problem, we propose a dual pseudo-label polishing framework for SSOD. Instead of directly exploiting the pseudo labels produced by the teacher detector, we take the first attempt at reducing their deviation from ground truth using dual polishing learning, where two differently structured polishing networks are elaborately developed and trained using synthesized paired pseudo labels and the corresponding ground truth for categories and bounding boxes on the given annotated objects, respectively. By doing this, both polishing networks can infer more accurate pseudo labels for unannotated objects through sufficiently exploiting their context knowledge based on the initially produced pseudo labels, and thus improve the generalization performance of SSOD. Moreover, such a scheme can be seamlessly plugged into the existing SSOD framework for joint end-to-end learning. In addition, we propose to disentangle the polished pseudo categories and bounding boxes of unannotated objects for separate category classification and bounding box regression in SSOD, which enables introducing more unannotated objects during model training and thus further improves the performance. Experiments on both PASCAL VOC and MS-COCO benchmarks demonstrate the superiority of the proposed method over existing state-of-the-art baselines. The code can be found at https://github.com/snowdusky/DualPolishLearning.

1 Introduction

Deep neural networks (DNNs) have achieved impressive progress in object detection, when being supervely trained with a large amount of annotated objects. However, it is often infeasible to collect such sufficient annotated objects in real applications, since the manual annotation is expensive and time-consuming. As a result, increasing efforts (Zhou et al. 2021; Tang et al. 2021; Liu et al. 2021; Xu et al. 2021) commence investigating semi-supervised object detection (SSOD), which aims to achieve good generalization performance using only a few annotated objects together with extensive unannotated objects. Since DNNs with a few annotated objects are prone to be over-fitting, the key for SSOD is how to exploit the beneficial knowledge from extensive unannotated objects to regularize the supervised training of DNNs. To achieve this goal, a promising solution is the pseudo labeling technique (Zoph et al. 2020) which aims at introducing unannotated objects with pseudo labels produced by a teacher detector to augment the scarce annotated objects for model training. Till now, many pseudo labeling based SSOD methods (Sohn et al. 2020b; Zhou et al. 2021; Tang et al. 2021; Liu et al. 2021; Xu et al. 2021) have been proposed, which mainly focus on constructing various semi-supervised learning framework to exploit the pseudo...
labels of unannotated objects produced by the teacher detector for better generalization performance. Although these methods have achieved obvious progress in SSOD, due to the limited generalization capacity of the teacher detector caused by the scarce annotated objects, the pseudo labels produced for unannotated objects often deviate from ground truth, especially those with relatively low classification confidence, as shown in Fig. 1. To mitigate the negative effect of inaccurate pseudo labels on SSOD, most existing methods resort to only selecting a limited amount of unannotated objects with extremely high classification confidences (e.g., >0.9), and thus fail to sufficiently exploit the beneficial knowledge in extensive unannotated objects as well as achieve pleasing generalization performance. Few attention has been paid to directly reduce the deviation between pseudo labels and ground truth and introduce more unannotated objects with high-quality pseudo labels for SSOD.

To fill this gap, we propose a dual pseudo-label polishing framework, which aims at learning to reduce the deviation between the pseudo labels produced by a teacher detector and the ground truth for unannotated objects to improve the generalization performance of SSOD. To achieve this goal, we first elaborately develop two differently structured polishing networks to separately polish the pseudo labels of categories and bounding boxes for unannotated objects. In particular, a multiple ROI features aggregation module is developed to embed the context knowledge of unannotated objects for pseudo bounding boxes polishing. Then, based on the given annotated objects, we employ a Gaussian random sampling strategy to synthesize paired pseudo labels and the corresponding ground truth, and utilize them to supervely train both polishing networks. By doing this, both polishing networks can learn to infer more accurate pseudo labels for unannotated objects and thus improve the generalization performance of SSOD. Moreover, such a dual polishing learning scheme can be seamlessly plugged into the existing SSOD framework (Xu et al. 2021) for joint end-to-end learning. In addition, we propose to disentangle the polished pseudo categories and bounding boxes of unannotated objects in SSOD, i.e., the polished pseudo category or bounding box for a given unannotated object is separately utilized for category classification or bounding box regression training in SSOD. This enables introducing more unannotated objects for SSOD and further improves the generalization performance. Experiments on both PASCAL VOC and MS-COCO benchmarks demonstrate the effectiveness of the proposed method in coping with SSOD.

In summary, this study mainly contributes in four aspects:

1. We propose a dual pseudo-label polishing framework, which, to the best of our knowledge, takes the first attempt at learning to reduce the deviation between the pseudo labels and ground truth of unannotated objects in SSOD.

2. We develop two different structured polishing networks and a dual polishing learning scheme, which enables data-driven learning to separately increase the accuracy of pseudo categories and bounding boxes of unannotated objects in an end-to-end SSOD framework.

3. We propose to disentangle the polished pseudo categories and bounding boxes of unannotated objects to introduce more unannotated objects for SSOD.

4. We demonstrate new state-of-the-art SSOD performance on both PASCAL VOC and MS-COCO benchmarks.

2 Related Work

2.1 Semi-supervised Learning

Semi-supervised learning (SSL) aims to utilize extensive unannotated data to mitigate the over-fitting problem caused by training complicated model using scarce annotated data. Most existing SSL methods are proposed for image classification tasks, which can be roughly categorized into two groups, including consistency constrained methods (Berthelot et al. 2019b; Miyato et al. 2018; Xie et al. 2020a; Sajjadi, Javannard, and Tasdizen 2016; Tarvainen and Valpola 2017; Berthelot et al. 2019a) and pseudo-labeling based methods (Lee et al. 2013; Xie et al. 2020b; Zhai et al. 2019; Bachman, Alsharif, and Precup 2014; Arazo et al. 2020; Iscen et al. 2019). The consistency constrained methods utilize a smoothness assumption and encourage the model prediction invariant on differently augmented views of the same image. For example, Xie et al. (Xie et al. 2020a) demonstrate that data-augmentation schemes, e.g., CutOut (DeVries and Taylor 2017), RandAugment (Cubuk et al. 2020), can be enormously helpful as strong augmentation for SSL. Pseudo-labeling based methods turn to generate high-quality pseudo-labels for unannotated data using the model pre-trained on a few annotated data and retrain the model on both annotated data and unannotated data with pseudo labels. Recently, Sohn et. al (Sohn et al. 2020a) propose to integrate both ideas mentioned above and consequently lead to obvious performance improvement. In a specific, it firstly generates pseudo labels on weakly-augmented unlabeled data using high-confidence predictions and then utilizes them to supervise the training on strongly-augmented version of the same image. Although the proposed method follows the pseudo-labeling idea, it mainly focuses on reducing the bias between pseudo labels and the ground truth for better SSOD.

2.2 Semi-supervised Object Detection

Object detection (Ren et al. 2015; Lin et al. 2017b,a; Redmon and Farhadi 2018; Zhang et al. 2020) is a fundamental task in computer vision domain. Similar as semi-supervised image classification, SSOD aims to relieve the over-fitting problem caused by scarce object annotation using extensive unannotated objects. Till now, increasing effort, especially these pseudo labeling based methods (Sohn et al. 2020b; Zhou et al. 2021; Tang et al. 2021; Liu et al. 2021; Xu et al. 2021), have been made in SSOD. For example, inspired by the seminal SSL work (Sohn et al. 2020b) that introduces a weak-strong data augmentation scheme for SSL in classification, some works (Zhou et al. 2021; Tang et al. 2021; Liu et al. 2021; Xu et al. 2021) integrate such a scheme with a mean teacher strategy (Tarvainen and Valpola 2017) and establish a strong baseline for SSOD. Liu et al. (Liu et al. 2021) turn to utilize some data augmentation schemes, e.g., MixUp (Zhang et al. 2018) and Mosaic (Bochkovskiy,
In this section, we first illustrate the proposed dual pseudo-label polishing framework. Then, we introduce two differently structured polishing networks and the dual polishing learning scheme, followed by the strategy of disentangling pseudo labels for SSOD.

3.1 Dual Pseudo-Label Polishing Framework

As shown in Fig 2, the proposed dual pseudo-label polishing framework consists of three key modules, including a student detector that predicts the detection results on the test image, a teacher detector that produces the pseudo labels for the unannotated objects, and two developed polishing networks, i.e., a pseudo category polishing network and a pseudo bounding-box polishing network, that refine the produced pseudo labels through data-drivenly learning to reduce their deviation from ground truth using a dual polishing learning scheme.

In the proposed framework, we follow (Xu et al. 2021) to randomly initialize both the teacher and student detectors except the pre-trained feature extraction backbone. Then, the student detector is optimized on both the annotated objects (e.g., included in the labeled images) and the unannotated objects (e.g., included in the unlabeled images) with pseudo labels produced by the teacher detector, while the teacher detector is continuously updated by the weights of the student detector using the exponential moving average (EMA) strategy (Tarvainen and Valpola 2017). At the same time, two polishing networks are trained by a dual polishing learning scheme conducted on the labeled images with annotated objects. The details for both polishing networks and the dual polishing learning scheme will be given in the following subsections. Similar as (Xu et al. 2021), the proposed framework can be trained in an end-to-end manner, and the overall training loss can be formulated as

\[\mathcal{L} = \mathcal{L}_s + \lambda_u \mathcal{L}_u + \mathcal{L}_p, \]

(1)

3.2 Pseudo Category Polishing Network

Considering that the deviation between the pseudo categories (e.g., coded in one-hot encoding scheme) and the corresponding ground truth is determined by the generalization performance of the teacher detector and has a continuous solution space, it is difficult to explicitly model such deviation using a regression model. To sidestep this problem, we propose to establish a pseudo category polishing network and employ it to re-predict the categories of the unannotated objects based on the pseudo bounding boxes produced by the teacher detector. Following this idea, we develop a...
In other words, the context knowledge will be covered by some bounding boxes close to the pseudo one. Following this idea, we propose to augment the pseudo bounding boxes to utilize the context knowledge around the unannotated objects. Although the pseudo bounding boxes often show uncertainty, they have located the rough position of the unannotated objects, which can be utilized as clues to exploit the context knowledge. In particular, without the this idea, we establish the pseudo bounding-box polishing network and pseudo category polishing network to appropriately mitigate the deviation between the pseudo bounding box and the ground truth for the considered unannotated objects, as shown in Figure 3(b). Different from the bounding box regression head in detector, the polishing network can exploit the context knowledge to refine the pseudo bounding boxes produced by the teacher detector, and thus improves the accuracy of the pseudo bounding boxes for SSOD, as shown in Figure 1.

3.4 Dual Polishing Learning

To appropriately reduce the deviation between pseudo labels produced by the teacher detector and the corresponding ground truth for unannotated objects, a promising way is to data-drivenly train both polishing networks developed in above. The key for this lies in collecting sufficient training pairs each of which consists of the pseudo labels and ground truth for unannotated objects and utilize them to train these two polishing networks in a supervised manner. Apparently, this is infeasible in the SSOD setting. Considering that only the scarce annotated objects have ground truth labels in SSOD, we present a Gaussian random sampling strategy to synthesize paired pseudo labels and ground truth using the annotated objects with their labels.

Specifically, for the i-th annotated object with ground truth label $g_i = \{c_i, x_{ui}, x_{di}\}$ where c_i denotes the category label, while x_{ui} and x_{di} separately denote the upper-left and the lower-right coordination vectors of the bounding box, we synthesize the pseudo labels produced by the teacher detector through randomly sampling a large amount of pseudo bounding boxes, e.g., $\{x_{ui}^p, x_{di}^p\}$ denotes the j-th sampled bounding box, which can be formulated as

$$
\begin{align*}
x_{ui}^p &= x_{ui} + \theta \times (s_i \odot t_{ui}^j); \\
x_{di}^p &= x_{di} + \theta \times (s_i \odot t_{di}^j); \\
\text{s.t.} \quad &t_{ui}^j, t_{di}^j \sim \mathcal{N}(0, I)
\end{align*}
$$

where s_i denotes the size vector (i.e., width and height) of the bounding box $\{x_{ui}, x_{di}\}$, t_{ui}^j and t_{di}^j are two vectors randomly sampled from a Gaussian distribution. \odot denotes the element-wise multiplication. θ is a pre-defined scaling factor which can be utilized to control the sample range of the bounding boxes. Benefiting from the random sampling, these bounding boxes can provide a robust approximation to the output of the teacher detector regardless of its generalization performance. Then, we establish two separate supervised learning schemes for both pseudo category polishing network and pseudo bounding-box polishing network using these sampled boxes, namely pseudo category polishing learning and pseudo bounding-box polishing learning. Due to their similar structures, we term these two learning schemes together as dual polishing learning in this study.

3.3 Pseudo Bounding-Box Polishing Network

Many previous literature (Song, Liu, and Wang 2020) has proved that exploiting the context knowledge around objects is beneficial to accurately locate their bounding box. Inspired by this, we establish the pseudo bounding-box polishing network to appropriately mitigate the deviation between the pseudo bounding boxes produced by the teacher detector and the ground truth through sufficiently exploiting the context knowledge of the unannotated objects. Apparently, the key lies on sufficiently exploiting the context knowledge around the unannotated objects. Although the pseudo bounding boxes often show uncertainty, they have located the rough position of the unannotated objects, which can be utilized as clues to exploit the context knowledge. In other words, the context knowledge will be covered by some bounding boxes close to the pseudo one. Following this idea, we propose to augment the pseudo bounding boxes using shift and scaling schemes. In particular, without the loss of generality, we shift each pseudo bounding box along the four diagonal directions with a fixed distance, e.g., $\gamma \times d$ where d denotes the diagonal length of the pseudo bounding box. In addition, we also enlarge the area of each pseudo bounding box using two fixed factors as $(1 + 2 \times t \times \gamma)$ with $t \in \{1, 2\}$. By doing these, we can augment each pseudo bounding box with 6 more context-related bounding boxes, as shown in Figure 3(b). Then, we concatenate the ROI features extracted within each of them and utilize a four-layer network to predict the deviation between the pseudo bounding box and the ground truth for the considered unannotated objects, as shown in Figure 3(b). Different from the bounding box regression head in detector, the polishing network can exploit the context knowledge to refine the pseudo bounding boxes produced by the teacher detector, and thus improves the accuracy of the pseudo bounding boxes for SSOD, as shown in Figure 1.

3.4 Dual Polishing Learning

To appropriately reduce the deviation between pseudo labels produced by the teacher detector and the corresponding ground truth for unannotated objects, a promising way is to data-drivenly train both polishing networks developed in above. The key for this lies in collecting sufficient training pairs each of which consists of the pseudo labels and ground truth for unannotated objects and utilize them to train these two polishing networks in a supervised manner. Apparently, this is infeasible in the SSOD setting. Considering that only the scarce annotated objects have ground truth labels in SSOD, we present a Gaussian random sampling strategy to synthesize paired pseudo labels and ground truth using the annotated objects with their labels.

Specifically, for the i-th annotated object with ground truth label $g_i = \{c_i, x_{ui}, x_{di}\}$ where c_i denotes the category label, while x_{ui} and x_{di} separately denote the upper-left and the lower-right coordination vectors of the bounding box, we synthesize the pseudo labels produced by the teacher detector through randomly sampling a large amount of pseudo bounding boxes, e.g., $\{x_{ui}^p, x_{di}^p\}$ denotes the j-th sampled bounding box, which can be formulated as

$$
\begin{align*}
x_{ui}^p &= x_{ui} + \theta \times (s_i \odot t_{ui}^j); \\
x_{di}^p &= x_{di} + \theta \times (s_i \odot t_{di}^j); \\
\text{s.t.} \quad &t_{ui}^j, t_{di}^j \sim \mathcal{N}(0, I)
\end{align*}
$$

where s_i denotes the size vector (i.e., width and height) of the bounding box $\{x_{ui}, x_{di}\}$, t_{ui}^j and t_{di}^j are two vectors randomly sampled from a Gaussian distribution. \odot denotes the element-wise multiplication. θ is a pre-defined scaling factor which can be utilized to control the sample range of the bounding boxes. Benefiting from the random sampling, these bounding boxes can provide a robust approximation to the output of the teacher detector regardless of its generalization performance. Then, we establish two separate supervised learning schemes for both pseudo category polishing network and pseudo bounding-box polishing network using these sampled boxes, namely pseudo category polishing learning and pseudo bounding-box polishing learning. Due to their similar structures, we term these two learning schemes together as dual polishing learning in this study.

Pseudo Category Polishing Learning

As mentioned in Section 3.2, the pseudo category polishing network aims to re-predict the category of the unannotated object based on the bounding box produced by the teacher detector. To this end, we introduce a small θ_{cls}, termed θ_{cls}, to sample N_{cls} bounding boxes for each annotated object, then select these overlapped with the ground truth by a large enough
IOU (e.g., \(> \tau_{\text{pos}} \)) as the input of the pseudo category polishing network and encourage the network to predict their categories. We term these bounding boxes as positive samples for the ground truth category. On the other hand, we introduce a large \(\theta \), termed \(\theta_{\text{cls}} \), to sample \(N_{\text{cls}} \) bounding boxes and select those overlapped with the ground truth by a small IOU (e.g., \(< \tau_{\text{pos}} \)) as the negative samples for the ground truth category. To increase the diversity of negative samples, we also introduce the proposal bounding boxes that are produced by the RPN module in the teacher detector and overlapped with the ground truth by a small IOU (e.g., \(< \tau_{\text{pos}} \)) as negative samples. With all these positive and negative samples, the pseudo category polishing network can be trained in a conventional supervised classification manner.

Pseudo Bounding-Box Polishing Learning In order to empower the pseudo bounding-box polishing network to refine the pseudo bounding boxes produced by the teacher detector, we set \(\theta \) to a specific value, termed \(\theta_{\text{reg}} \), and sample \(N_{\text{reg}} \) bounding boxes for each annotated object as the input of the polishing network and encourage the network to regress the ground truth bounding boxes. By doing this, we can train the pseudo bounding-box polishing network in a conventional supervised regression manner.

Discussion on Bias in Labeled Subset An important issue is how to guarantee well generalization ability (i.e., smaller bias) for object detector with scarce annotated images. For this purpose, a target much simpler than the object detection task is defined in this study first, which is obtained by reducing the deviation between the ground truth and the pseudo labels produced by the teacher model. Then, through sufficiently and randomly simulations for the output from the teacher model, the simulated deviation can be abundant and diverse enough, which thus impedes both polishing networks from biasing towards the labeled subset. A comparison regarding to the distribution between the simulated deviation and the real deviation is given in Section 4.5.

3.5 SSOD with Disentangled Pseudo Labels

With the proposed dual polishing learning scheme, we can obtain more accurate pseudo labels for SSOD. To introduce more unannotated objects for SSOD and further enhance the performance, we propose to disentangle the polished pseudo categories and bounding boxes of unannotated objects for SSOD, i.e., the polished pseudo category or bounding box for a given unannotated object is separately utilized for category classification or bounding-box regression training in SSOD. Specifically, given the prediction results (i.e., pseudo labels) of the teacher detector, we first pre-define a threshold \(\eta \) and select those unannotated objects with a classification confidence higher than \(\eta \) as the candidate unannotated objects for dual pseudo-label polishing learning. Then, all unannotated objects with refined pseudo category labels along with a classification confidence higher than a predefined threshold \(\tau_{\text{cls}} \) will be augmented with those annotated objects for category classification training in SSOD. For bounding boxes regression training, all candidate unannotated objects with refined bounding boxes will be augmented with those annotated objects for SSOD.

Method	Remark	\(AP_{50} \)	\(AP_{50:95} \)
Supervised (Ours)		76.70	43.00
STAC (Sohn et al. 2020b)	arxiv 2020	77.45	44.64
Unbiased Teacher (Liu et al. 2021)	ICLR 2021	77.37	48.09
Instant-Teaching (Zhou et al. 2021)	CVPR 2021	78.30	48.70
Instant-Teaching’ (Zhou et al. 2021)	CVPR 2021	79.20	50.00
Humble Teacher (Tang et al. 2021)	CVPR 2021	80.94	53.04
Ours		**84.90**	**55.50**

4 Experiments

4.1 Datasets

Following previous works (Sohn et al. 2020b; Zhou et al. 2021), we evaluate the proposed method on two commonly utilized SSOD benchmark’s including PASCAL VOC (Everingham et al. 2010) and MS-COCO (Lin et al. 2014).

PASCAL VOC: We employ images from the training-validation set trainval in PASCAL VOC07 as the labeled data, while images from the training-validation set trainval in PASCAL VOC12 as the unlabeled data. trainval in PASCAL VOC07 contains 5,011 images and the trainval in PASCAL VOC12 contains about 11,540 images. In this way, the ratio of labeled data to the unlabeled one is roughly 1:2. For performance evaluation, we adopt the test set test in PASCAL VOC07 and report the commonly utilized mAP metrics (Zhou et al. 2021; Xu et al. 2021), i.e., \(AP_{50} \) and \(AP_{50:95} \) over 20 classes.

MS-COCO: Similar as (Sohn et al. 2020b; Zhou et al. 2021), we separately randomly select 1%, 5% and 10% images from the COCO training set train2017 as the labeled data while the remaining are used as unlabeled data to evaluate the SSOD performance under different amounts of labeled data. The training set totally contains 118K images. For test, we evaluate the proposed method on the COCO validation set val2017 which consists of 5K images. On this dataset, we take the mAP metric \(AP_{50:95} \) (Zhou et al. 2021; Xu et al. 2021) for SSOD performance evaluation.

4.2 Comparison Methods

In the following experiments, we compare the proposed method with a supervised baseline and five other state-of-the-art SSOD methods, including STAC (Sohn et al. 2020b), Unbiased Teacher (Liu et al. 2021), Instant-Teaching (Zhou et al. 2021), Humble Teacher (Tang et al. 2021) and Soft Teacher (Xu et al. 2021). Among them, STAC (Sohn et al. 2020b) provides a seminal framework for SSOD. Unbiased Teacher (Liu et al. 2021) jointly trains a student and a gradually progressing teacher in a mutually-beneficial manner. Humble Teacher (Tang et al. 2021) employs the EMA strategy to update the teacher detector from the student one online. Instant-Teaching (Zhou et al. 2021) and Soft Teacher (Xu et al. 2021) investigate end-to-end SSOD frameworks. In this study, the proposed method also adopts the end-to-end SSOD framework but mainly focuses on reducing the deviation between pseudo labels and ground truth using dual polishing learning. For fair comparison, we ex-
strate that the proposed method is still superior over other methods with clear margins in all cases, especially when the dataset. Nevertheless, the proposed method surpasses other methods in most cases. Compared with the supervised base-

4.3 Implementation Details

We implement the proposed dual pseudo-label polishing framework based on the end-to-end SSOD framework (Xu et al. 2021) with removing the soft teacher and box jitter schemes. Following (Liu et al. 2021; Xu et al. 2021), we employ the Faster R-CNN (Ren et al. 2015) with FPN (Lin et al. 2017a) as the teacher and student detectors, where the ResNet-50 (He et al. 2016) with initialized weights pre-trained on ImageNet (Deng et al. 2009) is utilized as the feature representation backbone. The hyper-parameters in detectors are determined according to the MMDetection toolbox (Chen et al. 2019). Due to limited space, the SSOD training details as well as the hyper-parameters (e.g., \(\theta_{cls}, N_{cls}, \theta_{cls_m}, N_{cls_m}, \tau_{pos} \), etc.) setting for the proposed method are given in the supplementary material.

4.4 Performance on Two Benchmarks

In this part, we compare the proposed method with several state-of-the-art (SOTA) methods on the PASCAL VOC and MS-COCO benchmarks for SSOD. The numerical results can be found in Table 1 and Table 2. As can be seen, on the PASCAL VOC dataset, the proposed method surpasses other methods in most cases. Compared with the supervised baseline, the proposed method improves the \(AP_{50} \) and \(AP_{50:95} \) by 5% and 9.4%, respectively. Even compared with the recently SOTA Humble Teacher (Tang et al. 2021), the proposed method improves the \(AP_{50} \) by 1.6%. Moreover, it has shown that scale jitter (Xu et al. 2021) is beneficial to improve the generalization performance of SSOD. Inspired by this, we also implement a variant of the proposed method by introducing scale jitter for data augmentation. As can be seen, with such a strategy, the performance of the proposed method can be further improved.

On COCO dataset, we report the result of all methods under three different SSOD settings, e.g., with 1%, 5%, 10% labeled images. As can be seen, the SSOD tasks on this dataset is more challenging than that on the PASCAL VOC dataset. Nevertheless, the proposed method surpasses other methods with clear margins in all cases, especially when the labeled images is few, e.g. 1% labeled images. This demonstrate that the proposed method is still superior over other methods even with more challenging SSOD tasks.

Table 2: Numerical results on MS-COCO dataset with different amounts of labeled images.

Method	Remark	1%	5%	10%
STAC (Sohn et al. 2020b)	arxiv 2020	13.97±0.35	24.38±0.12	28.64±0.21
Unbiased Teacher (Liu et al. 2021)	ICLR 2021	20.75±0.12	28.27±0.11	31.50±0.10
Instant-Teaching (Zhou et al. 2021)	CVPR 2021	16.00±0.20	25.50±0.05	29.45±0.15
Instant-Teaching* (Zhou et al. 2021)	CVPR 2021	18.05±0.15	26.75±0.05	30.40±0.05
Humble Teacher (Tang et al. 2021)	CVPR 2021	16.96±0.38	27.70±0.15	31.61±0.28
Soft Teacher (Xu et al. 2021)	ICCV 2021	20.46±0.39	30.74±0.08	34.04±0.14
Ours		23.55±0.25	32.10±0.15	35.30±0.15

4.5 Ablation Study

In this part, we conduct experiments on the PASCAL VOC dataset to demonstrate the effectiveness of the proposed dual polishing learning scheme. The loss utilized for bounding box regression and the strategy of disentangling pseudo labels, as well as analyse the sensitivity of some key hyper-parameters.

Effects of Dual Polishing Learning The key of the proposed method lies on the dual polishing learning which consists of a pseudo category polishing learning scheme and a pseudo bounding-box polishing learning scheme. Thus, it is necessary to conduct ablation study to demonstrate the effectiveness of each one. To this end, we report the detection performance (e.g., \(AP_{50} \) and \(AP_{50:95} \)) of the proposed method with other three variants in Table 3, which remove the pseudo category polishing learning scheme, the pseudo bounding-box polishing learning scheme or both of them, re-

(a) (b) (c)

Figure 4: Visualization result of unannotated objects with polished pseudo labels. Subfigure (a) and (b) illustrate the unannotated objects with pseudo categories (e.g., classification confidence > 0.9) produced by the teacher detector and polished by the proposed dual polishing learning scheme. (c) illustrate the bounding boxes produced by the teacher detector (e.g., blue box) and polished by the proposed scheme (e.g., red box). As can be seen, the proposed scheme can introduce more unannotated objects with high-quality pseudo labels for SSOD. Best view in color.

Table 3: Effect of the proposed dual polishing learning on PASCAL VOC dataset.

Bounding-box Polishing	Category Polishing	\(AP_{50} \)	\(AP_{50:95} \)
\(\times \)	\(\times \)	80.00	48.70
\(\checkmark \)	\(\times \)	82.20	52.10
\(\times \)	\(\checkmark \)	82.40	51.40
\(\checkmark \)	\(\checkmark \)	82.50	52.40
respectively. As can be seen, when removing either the polishing learning scheme, the detection performance of the proposed method declines. When both of them are removed, the proposed method degenerates to its end-to-end SSOD baseline and the performance declines the most. The effectiveness of the dual polishing learning scheme can be also clarified by the result illustrated in Figure 1, where we can find the accuracy of the pseudo labels can be obviously improved after polishing. This can be further clarified by the visualization results in Figure 4. All these results demonstrate that the proposed dual polishing learning is effective for SSOD, especially when coping with challenging dataset.

Table 4: Comparison of the simulated distributions.

	IOU ≥ 0.5	IOU < 0.5
real	mu=0.82, std=0.11	mu=0.17, std=0.17
simulated	mu=0.75, std=0.12	mu=0.07, std=0.14

(b) Bounding boxes (distribution of position deviation)

x1	y1	x2	y2					
real	mu	std	mu	std	mu	std		
	-0.0016	0.1996	-0.0011	0.1992	0.0017	0.1996	0.0011	0.1995
simulated								

Comparison of the Distributions To illustrate the effectiveness of simulated deviation, we experimentally compute the distributions of simulated and real deviations for comparison on COCO dataset (10%), as shown in Table 4. As can be seen, the simulated deviation can well approximate the real ones. More analysis can be found in supplementary material.

Table 5: Different loss functions for the polishing network and the effect of disentangling pseudo labels.

Loss	disentanglement	AP_{50}	AP_{50:95}
ℓ₁ Loss	✓	82.10	51.80
GIoU Loss	×	82.30	52.20
GIoU Loss	✓	82.50	52.40

As can be seen, disentangling the polished pseudo labels can improve the detection performance, since it will introduce more unannotated objects for SSOD.

Table 6: Effect of different hyperparameters

(a) Effect of θ_{reg}

θ_{reg}	mean IoU	AP_{50}	AP_{50:95}
0.15	0.6387±0.0012	82.20	52.30
0.2	0.5525±0.0015	82.50	52.40
0.25	0.4795±0.0016	82.50	52.10

(b) Effect of γ

γ	AP_{50}	AP_{50:95}
0.02	82.40	51.70
0.06	82.50	52.40
0.14	82.30	52.20

(c) Effect of η

η	AP_{50}	AP_{50:95}
0.3	82.40	52.30
0.5	82.50	52.40
0.7	82.30	52.00

Analysis of Hyper-Parameter Sensitivity The proposed method involves some key hyper-parameters, including the scaling parameter θ in Eq. (2), the distance parameter γ in pseudo bounding-box polishing network, and the initial classification confidence threshold η. To demonstrate the effect of these hyper-parameters, we test the proposed method with different settings of each of these hyper-parameters on the PASCAL VOC dataset, as shown in Table 6. More analysis details can be found in supplementary material.

5 Conclusions

In this study, we propose a dual pseudo-label polishing framework which mainly focuses on learning to improve the quality of the pseudo labels, viz., reducing the deviation between pseudo labels and ground truth, for accurate SSOD. Specifically, we first elaborately develop two differently structured polishing networks which aim to refine the pseudo categories and bounding boxes produced by a teacher detector. In particular, the pseudo bounding-box polishing network takes a multiple ROI feature fusion scheme to exploit the context of unannotated objects for pseudo bounding boxes refinement. Then, we present a dual polishing scheme where a Gaussian random strategy is utilized to synthesize paired pseudo labels and the corresponding ground truth for supervisedly training both polishing networks, respectively. By doing this, the polishing networks can obviously improve the quality of the pseudo labels for unannotated objects, and thus improve the performance of SSOD. Moreover, such a scheme can be seamlessly plugged into the existing SSOD framework for joint end-to-end learning. In addition, we propose to disentangle the polished pseudo categories and bounding boxes of unannotated objects for SSOD, which enables introducing more different unannotated objects for further performance enhancement. Experiments on both PASCAL VOC and MS-COCO benchmarks demonstrate the efficacy of the proposed method in coping with SSOD, especially those challenging tasks.
Acknowledgments

This work was supported in part by the National Natural Science Foundation of China under Grant 62071387, Grand 62101454, and Grant U19B2037; in part by the Shenzhen Fundamental Research Program under Grant JCYJ20190806160210899; in part by the Fundamental Research Funds for the Central Universities.

References

Arazo, E.; Ortego, D.; Albert, P.; O’Connor, N. E.; and McGuinness, K. 2020. Pseudo-labeling and confirmation bias in deep semi-supervised learning. In 2020 International Joint Conference on Neural Networks (IJCNN), 1–8. IEEE.

Bachman, P.; Alsharif, O.; and Precup, D. 2014. Learning with pseudo-ensembles. Advances in neural information processing systems, 27.

Berthelot, D.; Carlini, N.; Cubuk, E. D.; Kurakin, A.; Sohn, K.; Zhang, H.; and Raffel, C. 2019a. Remixmatch: Semi-supervised learning with distribution matching and augmentation anchoring. In International Conference on Learning Representations (ICLR).

Berthelot, D.; Carlini, N.; Goodfellow, I.; Papernot, N.; Oliver, A.; and Raffel, C. A. 2019b. Mixmatch: A holistic approach to semi-supervised learning. Advances in Neural Information Processing Systems, 32.

Bochkovskiy, A.; Wang, C.-Y.; and Liao, H.-Y. M. 2020. Yolov4: Optimal speed and accuracy of object detection. arXiv preprint arXiv:2004.10934.

Chen, K.; Wang, J.; Pang, J.; Cao, Y.; Xiong, Y.; Li, X.; Sun, S.; Feng, W.; Liu, Z.; Xu, J.; et al. 2019. MMDetection: Open mmlab detection toolbox and benchmark. arXiv preprint arXiv:1906.07155.

Cubuk, E. D.; Zoph, B.; Shlens, J.; and Le, Q. V. 2020. RandAugment: Practical automated data augmentation with a reduced search space. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, 702–703.

Deng, J.; Dong, W.; Socher, R.; Li, L.-J.; Li, K.; and Fei-Fei, L. 2009. Imagenet: A large-scale hierarchical image database. In 2009 IEEE conference on computer vision and pattern recognition, 248–255. Ieee.

DeVries, T.; and Taylor, G. W. 2017. Improved regularization of convolutional neural networks with cutout. arXiv preprint arXiv:1708.04552.

Everingham, M.; Van Gool, L.; Williams, C. K.; Winn, J.; and Zisserman, A. 2010. The pascal visual object classes (voc) challenge. International journal of computer vision (IJCV), 88(2): 303–338.

He, K.; Zhang, X.; Ren, S.; and Sun, J. 2016. Deep residual learning for image recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition, 770–778.

Iscen, A.; Tolias, G.; Avrithis, Y.; and Chum, O. 2019. Label propagation for deep semi-supervised learning. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 5070–5079.

Lee, D.-H.; et al. 2013. Pseudo-label: The simple and efficient semi-supervised learning method for deep neural networks. In Workshop on challenges in representation learning, ICML, volume 3, 896.

Lin, T.-Y.; Dollar, P.; Girshick, R.; He, K.; Hariharan, B.; and Belongie, S. 2017a. Feature Pyramid Networks for Object Detection. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

Lin, T.-Y.; Goyal, P.; Girshick, R.; He, K.; and Dollar, P. 2017b. Focal Loss for Dense Object Detection. In Proceedings of the IEEE International Conference on Computer Vision (ICCV).

Lin, T.-Y.; Maire, M.; Belongie, S.; Hays, J.; Perona, P.; Ramanan, D.; Dollár, P.; and Zitnick, C. L. 2014. Microsoft coco: Common objects in context. In European conference on computer vision (ECCV), 740–755. Springer.

Liu, Y.-C.; Ma, C.-Y.; He, Z.; Kuo, C.-W.; Chen, K.; Zhang, P.; Wu, B.; Kira, Z.; and Vajda, P. 2021. Unbiased Teacher for Semi-Supervised Object Detection. In International Conference on Learning Representations.

Miyato, T.; Maeda, S.-i.; Koyama, M.; and Ishii, S. 2018. Virtual adversarial training: a regularization method for supervised and semi-supervised learning. IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI), 41(8): 1979–1993.

Redmon, J.; and Farhadi, A. 2018. Yolov3: An incremental improvement. arXiv preprint arXiv:1804.02767.

Ren, S.; He, K.; Girshick, R.; and Sun, J. 2015. Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks. In Cortes, C.; Lawrence, N.; Lee, D.; Sugiyama, M.; and Garnett, R., eds., Advances in Neural Information Processing Systems, volume 28. Curran Associates, Inc.

Rezatofighi, H.; Tsoi, N.; Gwak, J.; Sadeghian, A.; Reid, I.; and Savarese, S. 2019. Generalized Intersection Over Union: A Metric and a Loss for Bounding Box Regression. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

Sajjadi, M.; Javanmardi, M.; and Tasdizen, T. 2016. Regularization with stochastic transformations and perturbations for deep semi-supervised learning. Advances in neural information processing systems, 29.

Sohn, K.; Berthelot, D.; Carlini, N.; Zhang, Z.; Zhang, H.; Raffel, C. A.; Cubuk, E. D.; Kurakin, A.; and Li, C.-L. 2020a. Fixmatch: Simplifying semi-supervised learning with consistency and confidence. Advances in Neural Information Processing Systems, 33: 596–608.

Sohn, K.; Zhang, Z.; Li, C.-L.; Zhang, H.; Lee, C.-Y.; and Pfister, T. 2020b. A Simple Semi-Supervised Learning Framework for Object Detection. arXiv preprint arXiv:2005.04757.

Song, G.; Liu, Y.; and Wang, X. 2020. Revisiting the sibling head in object detector. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 11563–11572.
Tang, Y.; Chen, W.; Luo, Y.; and Zhang, Y. 2021. Humble teachers teach better students for semi-supervised object detection. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 3132–3141.

Tarvainen, A.; and Valpola, H. 2017. Mean teachers are better role models: Weight-averaged consistency targets improve semi-supervised deep learning results. Advances in neural information processing systems, 30.

Xie, Q.; Dai, Z.; Hovy, E.; Luong, T.; and Le, Q. 2020a. Unsupervised data augmentation for consistency training. In Proceedings of the IEEE/CVF International Conference on Computer Vision, 3060–3069.

Zhai, X.; Oliver, A.; Kolesnikov, A.; and Beyer, L. 2019. S4l: Self-supervised semi-supervised learning. In Proceedings of the IEEE/CVF International Conference on Computer Vision, 1476–1485.

Zhang, H.; Cisse, M.; Dauphin, Y. N.; and Lopez-Paz, D. 2018. mixup: Beyond Empirical Risk Minimization. In International Conference on Learning Representations.

Zhang, S.; Chi, C.; Yao, Y.; Lei, Z.; and Li, S. Z. 2020. Bridging the gap between anchor-based and anchor-free detection via adaptive training sample selection. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 9759–9768.

Zhou, Q.; Yu, C.; Wang, Z.; Qian, Q.; and Li, H. 2021. Instant-teaching: An end-to-end semi-supervised object detection framework. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 4081–4090.

Zoph, B.; Ghiasi, G.; Lin, T.-Y.; Cui, Y.; Liu, H.; Cubuk, E. D.; and Le, Q. 2020. Rethinking pre-training and self-training. Advances in neural information processing systems, 33: 3833–3845.