For the past 20 years, composite allotransplantation has become increasingly popular due to the experience and success gained from multiple worldwide hand and face allotransplantations.

The Lyon team has gained significant experience; despite this, some surgical setbacks after allotransplantation can be difficult to avoid. We present a case of hand allotransplantation salvaged by an ultrathin pedicled groin flap.

CASE

This case report describes a right-handed 27-year-old patient who suffered a bilateral upper limb amputation at the distal quarter of both forearms after an explosion from an artisanal bomb at 16 years of age.

After his injury, the patient was declared unable to work, and his Disabilities of Arm Shoulder and Hand score was 44 of 100 for both upper limbs. He requested a bilateral hand transplantation to restore and reach the highest level of social integration.

A multidisciplinary evaluation conducted by the allotransplantation team from the University of Lyon failed to show any medical and psychological contraindication for surgery.

A bilateral forearm/hand allotransplantation was performed on July 11, 2009 (Fig. 1). Unfortunately, on postoperative day 11, the patient developed grade 1 bilateral allotransplantation acute rejection.

A Doppler ultrasonography showed a right radial artery thrombosis at the elbow and a left proximal ulnar artery thrombosis. Despite this, both allotransplants remained vascularized.

Five days later, acute ischemia of the left allotransplantation developed after the loss of blood flow in both ulnar and radial arteries.

A humeroradial venous bypass was performed urgently. Postoperatively, a compressive hematoma occurred that caused a second ischemic event in the left allotransplantation. Surgery was urgently performed to evacuate the hematoma and restore proper blood flow to the upper extremity.

A third-degree burn developed over the dorsum of the left hand after the urgent bypass surgery. Eight days later, excision of the burn eschar led to exposure of the extensor tendons with the loss of the peritendon (Fig. 2).

A third-degree burn developed over the dorsum of the left hand after the urgent bypass surgery. Eight days later, excision of the burn eschar led to exposure of the extensor tendons with the loss of the peritendon (Fig. 2).

The initial attempt at covering the exposed extensor tendons with artificial dermis failed; finally, a decision was made to perform a left pedicled groin flap.

A bilateral forearm/hand allotransplantation was performed on July 11, 2009 (Fig. 1). Unfortunately, on postoperative day 11, the patient developed grade 1 bilateral allotransplantation acute rejection.

A Doppler ultrasonography showed a right radial artery thrombosis at the elbow and a left proximal ulnar artery thrombosis. Despite this, both allotransplants remained vascularized.

Five days later, acute ischemia of the left allotransplantation developed after the loss of blood flow in both ulnar and radial arteries.

A humeroradial venous bypass was performed urgently. Postoperatively, a compressive hematoma occurred that caused a second ischemic event in the left allotransplantation. Surgery was urgently performed to evacuate the hematoma and restore proper blood flow to the upper extremity.

A third-degree burn developed over the dorsum of the left hand after the urgent bypass surgery. Eight days later, excision of the burn eschar led to exposure of the extensor tendons with the loss of the peritendon (Fig. 2).

The initial attempt at covering the exposed extensor tendons with artificial dermis failed; finally, a decision was made to perform a left pedicled groin flap.

An ultrathin flap was dissected under the operative microscope to preserve the maximal amount of perforator arteries from the superficial circumflex iliac artery and enhance vascularity.

Three weeks later, the section of the pedicle was performed after a positive pedicle clamp test. No postoperative complications occurred. Stable and thin coverage over the left hand dorsum was obtained, and aggressive postoperative rehabilitation was instituted right after the flap.

Disclosure: The authors have no financial interest to declare in relation to the content of this article. The Article Processing Charge was paid for by for by the authors.
procedure. To further improve function and appearance, a debulking procedure was performed 2 years later (Fig. 3).

At present, the left allotransplant mobility is not limited by the flap, and the cosmetic result is good (See video, Supplemental Digital Content 1, which displays a preoperative aspect on the left and at 2 years post operation on the right, http://links.lww.com/PRSGO/A229). The donor-site morbidity is very low.

DISCUSSION

The important experience of the Lyon surgical team for hand allotransplantation\(^1\) combined with strict patient selection criteria has contributed to the absence of surgical failures.

However, viewing the complexity of such a procedure, the absence of complication is almost impossible. This case report illustrates this with 2 episodes of ischemia, leading to the development of a full-thickness skin necrosis of the allotransplant.

The burn injury of the left hand dorsum was probably related to prolonged contact with the ice during transportation. The microvascular lesions created during the first procedure were probably revealed by the ischemia secondary to a radial and ulnar thrombosis.

The depth of the burn injury did not allow us to cover the soft tissue loss by a skin graft. The use of artificial dermis for the initial dorsal hand coverage failed and led us to consider using a flap.

A homolateral locoregional flap was not possible, and given the vascular status of the allotransplantation, a free flap was deemed too high risk.

For all these reasons, a viable reconstruction with a pedicled groin flap was selected.

Described for the first time by McGregor\(^2\) in 1972, one of the major shortcomings of the groin flap is the thickness. In order not to impede the range of motion and therapy postoperatively, flap thickness has to remain limited.

For these reasons, flap elevation was performed under microscope magnification as described by Kimura and Saitoh\(^3\) in 2006 referring to the work by Acland\(^4\) in 1979 and Murakami et al\(^5\) in 1996.

The objective was to optimize the subdermal vascularization of the groin flap by conserving as many perforating vessels from the circumflex iliac artery as possible. Because of the operative microscope, the dissection was more precise and allowed the surgeon to keep the maximum of perforat-
ing vessels intact by the “worm-eating defatting” technique described by Kimura and Saitoh and Kimura et al.6

The thickness of the ultrathin groin flap was well comparable with the thin skin of the hand dorsum, particularly in the metacarpophalangeal region.7–10 There were no postoperative healing problems of the flap because of the reliability of the subdermal vascularization.

We have not found any reports of flap reconstruction for composite allotransplant in the literature. This case report is a meeting of 2 microsurgical evolutions: on one hand, composite allotransplantation and on the other, microsurgical debulking during flap elevation.

CONCLUSIONS
This case report has described the salvage of a composite hand allotransplant with a traditional flap. Technical refinements in microsurgery and knowledge of vascular anatomy have allowed optimization of the groin flap reliability and applications.

To our knowledge, this is the first case report describing the salvage of composite allotransplant using a pedicled groin flap.

Ali Mojallal, MD, PhD
Plastic, Reconstructive and Aesthetic Department
University of Lyon Claude Bernard 1
Croix-Rousse Hospital
Hospices Civils de Lyon
103, Grande rue de la Croix-Rousse, 69004 Lyon, France

PATIENT CONSENT
The patient provided written consent for the use of his image.

REFERENCES
1. Gazarian A, Abrahamyan DO, Petruzzo P, et al. [Hand allografts: experience from Lyon team]. Ann Chir Plast Esthet. 2007;52:424–435.
2. McGregor IA, Jackson IT. The groin flap. Br J Plast Surg. 1972;25:3–16.
3. Kimura N, Saitoh M. Free microdissected thin groin flap design with an extended vascular pedicle. Plast Reconstr Surg. 2006;117:986–992.
4. Acland RD. The free iliac flap: a lateral modification of the free groin flap. Plast Reconstr Surg. 1979;64:30–36.
5. Murakami R, Fujii T, Itoh T, et al. Versatility of the thin groin flap. Microsurgery 1996;17:41–47.
6. Kimura N, Saitoh M, Hasumi T, et al. Clinical application and refinement of the microdissected groin flap transfer operation. J Plast Reconstr Aesthet Surg. 2009;62:1510–1516.
7. Taglialetela Scafati S, Lalinde Carrasco E. Microsurgically thinned groin flap for partial scrotal reconstruction. Br J Plast Reconstr Surg. 2011;65:690–691.
8. Saint-Cyr M, Wong C. The split pedicle groin flap: new refinement in groin flap application and technique for combined thumb and dorsal hand defects. Plast Reconstr Surg. 2012;129:396e–397e.
9. Hsu WM, Chao WN, Yang C, et al. Evolution of the free groin flap: the superficial circumflex iliac artery perforator flap. Plast Reconstr Surg. 2007;119:1491–1498.
10. Koshima I, Nanba Y, Tsutsui T, et al. Superficial circumflex iliac artery perforator flap for reconstruction of limb defects. Plast Reconstr Surg. 2004;113:233–240.