A Fatal Fungal Infection: Cryptococcus gattii (VGI) Meningitis in Texas

Marisa C. Nielsen,1 Joshua M. Peterson,1 Billie Shine,1 J. Patrik Hornak,2 Aimalohi Esechie,3 Sandeep Bhatt,3 Kinjal Desai,3 Alok Dabi,3 Michelle M. Felicella,3 and Ping Ren1,*

1Department of Pathology, University of Texas Medical Branch, Galveston, Texas, USA, 2Department of Internal Medicine-Infectious Diseases, University of Texas Medical Branch, Galveston, Texas, USA, and 3Department of Neurology, University of Texas Medical Branch, Galveston, Texas, USA

Cryptococcus gattii is an underrecognized cause of meningitis, especially in nonendemic regions. This report details C.gattii disease progression from admission to autopsy in an otherwise healthy 40-year-old male in Texas. It brings awareness to an often unsuspected organism that can cause severe infection requiring early recognition and treatment in immunocompetent individuals.

Keywords. cryptococcoma; Cryptococcus gattii; meningitis; VGI.

CASE PRESENTATION

A 40-year-old male presented to the hospital with new-onset uncontrolled seizures. He was unresponsive when emergency medical services arrived and was consequently intubated, sedated, and brought to our institution’s emergency department (ED). He was initially diagnosed with status epilepticus, treated with anticonvulsants, and admitted to the neurological critical care unit.

The patient had no significant past medical history. He lived and worked in swimming pool maintenance in Hardin County, Texas, and had not traveled outside of the state. Five months before admission, he experienced progressively worsening migraines refractory to pharmacologic therapy. These were accompanied by nausea, vomiting, intermittent neck stiffness, and decreased appetite with a 30-pound unintentional weight loss. Eight days before admission, he presented to an outside hospital complaining of severe headaches, photophobia, and neck and back pain. He sustained a 10-minute episode of slurred speech, tremors, drooling, and left facial droop. After imaging returned negative, the symptoms were attributed to migraine headache and he was discharged home.

During the workup in our ED, noncontrast computed tomography (CT) imaging of his head and spine was unremarkable. Laboratory evaluation revealed an elevated white blood cell (WBC) count (12.9 × 10^9/L; range, 4.5 to 11.0 × 10^9/L). An electroencephalogram showed moderate to severe diffuse slowing only partially explained by sedative medication. Lumbar puncture (LP) demonstrated mildly elevated opening pressure at 30 cmH₂O (range, 6–25 cmH₂O), low glucose (<20 mg/dL; range, 50–80 mg/dL), elevated protein (230 mg/dL; range, 15–60 mg/dL), and 39 WBCs/dL with the following differential: 63% segmented neutrophils (range, 0%–7%), 26% lymphocytes (range, 28%–96%), 10% macrophages (range, 16%–56%), 1% eosinophils (range, 0%–1%). Vancomycin and piperacillin-tazobactam were administered empirically.

Gram stain (Figure 1A) and India Ink stain (for educational and capsule visualization purposes only) (Figure 1B) of the cerebrospinal fluid (CSF) demonstrated encapsulated, variably sized yeast cells suggestive of Cryptococcus species. The BioFire FilmArray Meningitis/Encephalitis Panel (Salt Lake City, UT) performed on the CSF specimen was positive for Cryptococcus neoforms/Cryptococcus gattii. CrAg LFA (IMMY, Norman, OK) cryptococcal antigen (Ag) tests were positive on both CSF and serum, and titers were determined by Enzyme Immuno Assays with 1:122 and 1:95, respectively (ARUP Laboratories, Salt Lake City, UT). Empiric antibiotics were promptly exchanged with intravenous amphotericin B (4 mg/kg per day) and flucytosine (100 mg/kg per day) on hospital day (HD) 1. Cerebrospinal fluid cultures grew C gattii (Figure 1C), which was identified by matrix-assisted laser desorption ionization time-of-flight mass spectrometry with 99% confidence (bioMérieux, Inc., Hazelwood, MO). The isolate produced the characteristic blue color on l-canaivanine, glycine, 2-bromothymol blue (CGB) agar, which corroborated C gattii identification (Figure 1D). Multilocus sequence typing at 8 unlinked genomic loci (ITS, CAP59, GEFI, LAC1, PLB1, RPB2, SOD1, TEFI) revealed that the genotype was VGI (Supplementary Figure 1).

The patient remained unresponsive after withdrawal of sedatives and was noted to have worsening fevers, shivering, and neck stiffness. Thoracic CT identified a focus of left lung consolidation and bronchoalveolar lavage was performed. Infectious diseases consultants recommended the continuation...
of antifungal therapy, serial LP, and a thorough evaluation of the patient’s immune status. The LP was repeated 4 more times, each with opening pressures of >55 cmH₂O with persistently elevated protein, decreased glucose, and elevated leukocyte counts. Despite an extensive workup, there was no evidence of immunocompromised state demonstrated by the following: (1) the negative human immunodeficiency virus (HIV) 1/2 Ag-antibody (Ab), hepatitis A/B/C panel, QuantiFERON-TB Gold, alpha-1-antitrypsin, antimitochondrial Ab, and antinuclear Ab assays; (2) immunoglobulin (Ig) panel with normal IgA and only mildly decreased IgG and IgM; (3) normal CD4/CD8 ratio with mildly decreased absolute lymphocyte count and absence of lymphoproliferation or leukemia; and (4) normal CSF angiotensin-converting enzyme. Although reduced absolute CD4 (164 cells/µL; range, 410–1590 cells/µL) %CD4 [52, range 31–60]) and absolute CD8 (65 cells/µL [range, 190–1140 cells/µL], %CD8 [20; range, 12–41]) counts and reduced IgG (550 mg/dL; range, 636–1600 mg/dL) and IgM (21 mg/dL; range, 56–352 mg/dL) were measured on HD 2 and HD 3, respectively, it is well known that lymphopenia develops in settings of severe infection and sepsis [1]. Chromosomal analysis of his bone marrow revealed a normal male chromosomal complement with no abnormal clones detected (ARUP Laboratories).

Serial magnetic resonance imaging (MRI) revealed symmetric cortical and subcortical diffusion restriction of the bilateral cerebral hemispheres, leptomeningeal enhancement, hemorrhagic transformation of the left posterior parietal lobe, and focal areas of restricted diffusion in the right upper cervical spinal cord (Figure 2). Throughout the 14-day hospital course, the patient remained unable to follow commands. His neurological status decompensated from eye-opening to purposeful withdrawal from pain and thereafter to abnormal decerebrate posturing and compromise of brainstem reflexes. After discussing the prognosis with his family, he was discharged to inpatient hospice and died on HD 14.
A complete autopsy was performed under infectious precautions. Significant findings at autopsy included extensive granulomatous meningitis involving the brain, spinal cord, and posterior pituitary, with numerous cryptococcal organisms (Figure 3A and B). No intraparenchymal microorganisms were identified in the brain, but there were diffuse bilateral cerebral cortical infarcts with hemorrhage in the left posterior parieto-occipital region. A small infarct was identified in the cervical spinal cord, correlating with MRI findings. In addition, there was a large cryptococcoma in the upper lobe of the left lung (5 cm) comprising a partially encapsulated area of necrosis admixed with pools of mucin containing numerous cryptococcal organisms (Figure 3C and D). In addition, rare cryptococcal organisms were diffusely present throughout bilateral lungs. The cause of death was determined to be from complications of disseminated cryptococcosis with cryptococcal meningitis.

PATIENT CONSENT

Written consent was obtained from the family and the study design conforms to all standards.

EPIDEMIOLOGY AND GENOTYPES

Cryptococcus neoformans and C. gattii independently evolved an estimated 30–40 million years ago [2]. Believed to be a primary pathogen and not limited to opportunistic infections in immunocompromised hosts [2], C. gattii was reported to be endemic only in tropical and subtropical climatic zones such as Australia, Brazil, Southern and Southeast Asia, Mexico, Southern California, and countries in central Africa, until the outbreak in British Columbia, Canada in 1996 [3, 4]. Since then, C. gattii has emerged in other areas of North America, with the majority of cases reported in Washington state, Oregon, and Northern California [5, 6].
Cryptococcus gattii is divided into 4 lineages—VGI, VGII, VGIII, and VGIV—according to the International Society for Human and Animal Mycology (ISHAM) [2]. In 2019, a new lineage, named VGV, was discovered in environmental samples from the Central Miombo Woodlands of Zambia, Africa [7]. The predominant genotype of the isolates from the environment and infected humans and animals in the Pacific Northwest of the United States (US PNW) is VGII, whereas VGIII is more often found in Southern California [5, 8]. The distribution of the molecular subtypes in the US PNW is as follows: VGIIa (50%), VGIIc (32%), VGIIb (10%), VGI (5%), and VGIII (3%) [9]. Outside of the US PNW, the molecular subtypes in the United States have been identified as VGIII (43%), VGI (42%), and VGII (15%) [6]. We now report a VGI case in Texas.

Cryptococcal infections are believed to be acquired by the inhalation of fungal cells from the environment, and C. gattii has been isolated from several types of trees, soil, air, and water [3, 9, 10]. Upon inhalation, the yeasts travel through the respiratory system to the terminal alveoli where they reproduce, enter the lymph nodes and bloodstream, and disseminate to other organs, predominantly to the central nervous system [5, 11, 12]. Many C. gattii cases have been reported in the US PNW area since 1996, but there are only 14 reported cases in the southern United States: 8 in Georgia (VGI, 6; VGIII, 2), 2 in Florida (VGI, 1; VGII, 1), 1 in Alabama (VGI), and 3 in New Mexico (VGI, 1; VGIII, 2) [6, 13]. Similar to our patient, there was no known relevant travel history in many of these cases, and the isolates were genetically different from those found in the endemic region of the US PNW, indicating that they were likely locally acquired. Genotype-dependent differences within the C. gattii species complex help characterize pathogenesis and virulence. For example, VGI, VGII, and VGIII affect immunocompetent hosts more commonly than VGIV [5]. Data have shown that VGII causes severe lung disease and death, usually without dissemination and central nervous system (CNS) involvement, whereas VGI usually causes CNS disease with concurrent lung involvement [5].

In addition, antifungal susceptibility varies among genotypes. In a study assessing the antifungal susceptibility profiles of 350 C. gattii isolates from clinical, environmental, and veterinary sources, VGII isolates had significantly higher geometric mean minimum inhibitory concentrations (MICs) than VGI isolates for the following antifungal drugs: amphotericin B, fluconazole, itraconazole, voriconazole, and isavuconazole [14]. In addition, clinical VGII isolates had a significantly higher geometric mean MIC than clinical VGI isolates for flucytosine [14]. Fluconazole and flucytosine had the lowest levels of activities against the C. gattii strains, while isavuconazole,
immunocompetent patients [12]. These features were consis-
tatory response and intracranial pressure in the brain of
munocompromised patients, suggesting an increased in
cryptococcal meningitis. However, immunocompetent patients
munocompromised and immunocompetent patients with
were the common clinical manifestations reported for both im-
well [12]. Headache, fever, vomiting, and meningeal irritation
in a younger population in the immunocompetent group as
pulmonary cryptococcosis, cryptococcal meningitis presents
at a younger age than infected immunocompromised pa-
patients. However, cavitation was less likely to occur in immuno-
competent patients diagnosed with pulmonary cryptococcosis
were at a younger age than infected immunocompromised pa-
patients. However, cavitation was less likely to occur in immuno-
competent pulmonary cryptococcosis patients [20]. Similar to
pulmonary cryptococcosis, cryptococcal meningitis presents
in a younger population in the immunocompetent group as
well [12]. Headache, fever, vomiting, and meningeal irritation
were the common clinical manifestations reported for both im-
munocompromised and immunocompetent patients with
cryptococcal meningitis. However, immunocompetent patients
presented with more visual and auditory symptoms than im-
munocompromised patients, suggesting an increased inflam-
mary response and intracranial pressure in the brain of
immunocompetent patients [12]. These features were consist-
tent with the clinical presentations of our patient.

DIAGNOSIS AND TREATMENT

Because C gattii primarily infects otherwise healthy patients
with no known predisposing risk factors, and symptoms evolve
slowly along an indolent course, these patients tend to wait lon-
ger to seek medical treatment and often present with advanced
neurological symptoms [15]. This impedes early recognition
and treatment initiation, making rapid diagnosis of utmost
importance.

Current guidelines recommend antigen testing as the initial
diagnostic tests in the setting of cryptococcosis [21]. However,
not all cryptococcal antigen tests are reliable. It is important to
utilize tests with a broad range of reactivity to reduce genotype
bias and increase sensitivity [22]. Even so, cryptococcal antigen
tests can be accurate and rapid diagnostic tools [23]. Several
studies have shown excellent sensitivity (93%-100%) and spe-
cificity (94%-100%) with serum and CSF, especially in patients
with disseminated cryptococcosis [21, 24]. Multiplex PCR
syndromic panels are currently available for the rapid detection
of C neoformans/C gattii in CSF, but they do not differentiate
between the 2 species [25]. Gram stain and culture remain di-
agnostic gold standards [21] and are required to isolate the or-
ganism for subsequent susceptibility testing.

For the initial management of invasive cryptococcal disease,
including disseminated, severe pulmonary, and/or CNS infec-
tions, an amphotericin-based treatment strategy remains the
therapeutic mainstay, with flucytosine as an adjunct [26].
Serial lumbar punctures are critically important to alleviate el-
evated intracranial pressure when present. Fluconazole is typi-
cally reserved for continued “consolidative” and long-term
“maintenance” phase treatment or for milder forms of isolated
pulmonary cryptococcosis. These recommended antifungal
regimens are the same for C gattii and C neoformans. Clinical
practice guidelines have also suggested more intensive radi-
ological follow-up for intracerebral cryptococcomas due to the
propensity for C gattii to cause more numerous lesions [26].
Such extensive intracerebral disease may necessitate surgical
amelioration, prolonged antifungal therapy, or both. In addi-
tion, C gattii clinical isolates may display reduced triazole sus-
ceptibility, hindering consolidated and maintenance-phase

treatment [27, 28]. Posaconazole, voriconazole, and isavucona-
ze have been used as alternatives in this situation, with vary-
ing degrees of reported success [29–31]. As such, the
cryptococcal antifungal armamentarium is currently quite
limited.

CONCLUSIONS

This case further characterizes C gattii VGI disease progres-
sion, which may help define genotype-specific factors that im-
pact the infectious process. Although fatal C gattii meningitis
cases have been described, the majority have either not been
due to VGI or have not specified the genotype [23]. Because
clinical presentations can vary and disease progression, treat-
ment regimens, and outcomes are species and genotype-
dependent, this case highlights the importance of identifying
C neoformans/C gattii complex genotypes. Increasing aware-
ness and recognition of this pathogen and its lethal potential
in immunocompetent patients is important for ensuring ap-
propriate specimen collection, timely diagnosis, early treat-
ment, and continued vigilance.

Supplementary Data

Supplementary materials are available at Open Forum Infectious Diseases
online. Consisting of data provided by the authors to benefit the reader, the
posted materials are not copyedited and are the sole responsibility of the
authors, so questions or comments should be addressed to the correspond-
ing author.

Acknowledgments

We thank the patient’s family. Written consent to publish the details of
the case was obtained from the patient’s mother. She hopes her son’s case
will bring awareness to this disease and help improve outcomes for other patients in the future.

Financial support. This work was supported by the departmental funding from the Department of Pathology at the University of Texas Medical Branch.

Potential conflict of interest. All authors: No reported conflicts.

All authors have submitted the ICMJE Form for Disclosure of Potential Conflicts of Interest.

References

1. Cavaillon JM, Adib-Conquy M. Immune status in sepsis: the bug, the site of infection and the severity can make the difference. Crit Care 2010; 14:167.

2. Hagen F, Khayhan K, Theelen B, et al. Recognition of seven species in the Cryptococcus gattii/Cryptococcus neoformans species complex. Fungal Genet Biol 2015; 78:16–48.

3. Galanis E, Macdougall L, Kidd S, Morshed M. British Columbia Cryptococcus gattii Working Group. Epidemiology of Cryptococcus gattii, British Columbia, Canada, 1999–2007. Emerging Infect Dis 2010; 16:251–7.

4. Kwon-Chung KJ, Bennett JE. Epidemiologic differences between the two varieties of Cryptococcus neoformans. Am J Epidemiol 1984; 120:123–30.

5. Chen SC-A, Meyer W, Sorrell TC. Cryptococcus gattii infections. Clin Microbiol Rev 2014; 27:980–1024.

6. Lockhart SR, Iqbal N, Harris JR, et al. Cryptococcus gattii in the United States: genotypic diversity of human and veterinary isolates. PLoS One 2013; 8:e74737.

7. Farrer RA, Chang M, Davis MJ, et al. A new lineage of Cryptococcus gattii (VGV) discovered in the Central Zambeziian Mvumo Woodlands. MBio 2019; 10: e02306-1.

8. Harris JR, Lockhart SR, Debes E, et al. Cryptococcus gattii in the United States: clinical aspects of infection with an emerging pathogen. Clin Infect Dis 2011; 53: 1188–95.

9. MacDougall L, Kidd SE, Galanis E, et al. Spread of Cryptococcus gattii in British Columbia, Canada, and detection in the Pacific Northwest, USA. Emerging Infect Dis 2007; 13:42–50.

10. MacDougall L, Fyfe M, Romney M, Starr M, Galanis E. Risk factors for Cryptococcus gattii infection, British Columbia, Canada. Emerging Infect Dis 2011; 17:193–9.

11. Price MS, Perfect JR. Host defenses against cryptococcosis. Immunol Invest 2011; 40:786–808.

12. Li M, Chen Z, Xu L, Gan Z, Peng F, Liu J. A Comparison of the clinical characteristics and outcomes of cryptococcal meningitis in HIV-negative individuals with and without immunosuppression. Neurologist 2019; 24:1–5.

13. Harris JR, Lockhart SR, Sondermeyer G, et al. Cryptococcus gattii infections in multiple states outside the US Pacific Northwest. Emerging Infect Dis 2013; 19: 1620–6.

14. Hagen F, Illnait-Zaragozi M-T, Bartlett KH, et al. In vitro antifungal susceptibilities and amplified fragment length polymorphism genotyping of a worldwide collection of 350 clinical, veterinary, and environmental Cryptococcus gattii isolates. Antimicrob Agents Chemother 2010; 54:5139–45.

15. Speed B, Hunt D. Clinical and host differences between infections with the two varieties of Cryptococcus neoformans. Clin Infect Dis 1995; 21:28–34. discussion 35.

16. Mitchell TG, Perfect JR. Cryptococcosis in the era of AIDS–100 years after the discovery of Cryptococcus neoformans. Clin Microbiol Rev 1995; 8:515–48.

17. Williamson PR, Jarvis JN, Panackal AA, et al. Cryptococcal meningitis: epidemiology, immunology, diagnosis and therapy. Nat Rev Neurol 2017; 13:13–24.

18. Baddley JW, Chen SC-A, Huisingh C, et al. MSG07: an International Cohort Study comparing epidemiology and outcomes of patients with cryptococcus neoformans or cryptococcus gattii infections. Clin Infect Dis 2021; 73:1133–41.

19. Hu Y, Ren S-Y, Xiao P, Yu F-L, Liu W-L. The clinical and radiological characteristics of pulmonary cryptococcosis in immunocompetent and immunocompromised patients. BMC Pulm Med 2021; 21:262.

20. Sui X, Huang Y, Song W, et al. Clinical features of pulmonary cryptococcosis in thin-section CT in immunocompetent and non-AIDS immunocompromised patients. Radiol Med 2020; 125:31–8.

21. Schub T, Forster J, Suerbaum S, Wagener J, Dichtl K. Comparison of a lateral flow assay and a latex agglutination test for the diagnosis of cryptococcus neoformans infection. Curr Microbiol 2021; 78:3989–95.

22. Tintelnot K, Hagen F, Han CO, Seibold M, Rickerts V, Bokshout T. Pitfalls in serological diagnosis of cryptococcus gattii infections. Med Mycol 2015; 53:874–9.

23. Phillips P, Galanis E, MacDougall L, et al. Longitudinal clinical findings and outcome among patients with Cryptococcus gattii infection in British Columbia. Clin Infect Dis 2015; 60:1368–76.

24. Chen SC-A, Slavin MA, Heath CH, et al. Clinical manifestations of Cryptococcus gattii infection: determinants of neurological sequelae and death. Clin Infect Dis 2012; 55:789–98.

25. Liesman RM, Strasburg AP, Heitman AK, Theel ES, Patel R, Binnicker MJ. Evaluation of a commercial multiplex molecular panel for diagnosis of infectious meningitis and encephalitis. J Clin Microbiol 2018; 56:e01927-17.

26. Perfect JR, Dismukes WE, Dromer F, et al. Clinical practice guidelines for the management of cryptococcal disease: 2010 update by the Infectious Diseases Society of America. Clin Infect Dis 2010; 50:291–322.

27. Torres-Rodriguez JM, Alvarado-Ramírez E, Murciano F, Sellar M. MICs and minimum fungidical concentrations of posaconazole, voriconazole and fluconazole for Cryptococcus neoformans and Cryptococcus gattii. J Antimicrob Chemother 2008; 62:205–6.

28. Datta K, Rhee P, Byrnes E, et al. Isavuconazole activity against Aspergillus lentulus, Neosartorya udagawae, and Cryptococcus gattii, emerging fungal pathogens with reduced azole susceptibility. J Clin Microbiol 2013; 51:3090–3.

29. Forrest GN, Bhalla P, DeBess EE, et al. Cryptococcus gattii infection in solid organ transplant recipients: description of Oregon outbreak cases. Transpl Infect Dis 2015; 17:467–76.

30. Canfield GS, Henao-Martinez AF, Franco-Paredes C, et al. Corticosteroids for posttransplant immune reconstitution syndrome in cryptococcus gattii meningitis-encephalitis: Case report and literature review. Open Forum Infect Dis 2019; 6:ofz480.

31. Okudo J, Civelli VF, Naraog VK, et al. A rare case of cryptococcus gattii meningitis in advanced HIV disease, sagittal thrombosis, and immune reconstitution syndrome, resolved with isavuconazolium. J Investig Med High Impact Case Rep 2020; 8:2324709620959880.