Original Research Article

Evaluation of Antibacterial Activity of some Indian Herbal Extracts

R. Kavitha*, C. Valli, R. Karunakaran, K. Vijayarani and R. Amutha

Department of Animal Nutrition, Madras Veterinary College, Vepery, Chennai - 600 007,
Tamil Nadu Veterinary and Animal Sciences University, India

*Corresponding author

Abstract

Sixteen traditional medicinal herbs that are used in Indian traditional medicine and which are commonly available in Tamil Nadu were collected for the study. Different medicinal parts of the herbs were selected and dried and grounded under aseptic condition. To determine the in vitro antimicrobial effect, aqueous and ethanol extracts were prepared and tested against Staphylococcus aureus, Escherichia coli, Salmonella enteritidis and Clostridium perfringens. Allium sativum bulbs (Garlic) showed significantly higher zone of inhibition against Staphylococcus aureus, Escherichia coli and Salmonella enteritidis when compared with Syzygium aromaticum bud (Clove). Other extracts evinced no zone of inhibition. In the case of Clostridium perfringens, Syzygium aromaticum bud (clove) was the only herb showed zone of inhibition. Among the ethanol extracts tested Syzygium aromaticum bud (Clove) showed significantly (p<0.05) higher zone of inhibition against Staphylococcus aureus, Escherichia coli and Salmonella enteritidis. Murraya koenigii leaves (Curry leaves) was found to have highest zone of inhibition against Clostridium Perfringens.

Keywords
Antibacterial activity, Indian herbs, Herbal extracts

Article Info
Accepted: 05 June 2020
Available Online: 10 July 2020

Introduction

The past three decades has witnessed the production of various new antibiotics by pharmacological industries for treatment of bacterial diseases. The use of antibiotics at sub therapeutic dose as growth promoters, also was on the increase. The overuse and misuse of antibiotics has led to genetic mutation in bacteria leading to the development of bacterial resistance to antibiotics. A surge in the development and spread of antibiotic resistance has become a major cause for concern (Aarestrup et al., 2008). The quest for alternative products has clearly intensified in the recent years with the increase in regulations regarding the use of antibiotic growth promoters and the rise in consumer demand for poultry products from “Raised Without Antibiotics” or “No
Antibiotics Ever” flocks (Gadde et al., 2017). Currently there has been an increased awareness on usage of traditional herbal medicine as alternative to antibiotics. These herbal preparations of plant origin are easily available, inexpensive, safe, efficient, and rarely cause any side effects. Plants have an amazing ability to produce a wide variety of secondary metabolites, like alkaloids, glycosides, terpenoids, saponins, steroids, flavonoids, tannins, quinones and coumarins (Tiwari et al., 2010). These secondary plant metabolites are a source of plant derived antimicrobial substances (Srivastava et al., 2013). Some of these natural plant products are highly efficient in the treatment of bacterial infections (Fernebro et al., 2011). It is with this background the evaluation of antibacterial activity of extracts of some traditional herbs commonly available in Tamil Nadu was undertaken.

Materials and Methods

Collection of herbal samples

Sixteen traditional medicinal herbs Allium sativum, Andrographis paniculata, Azadirachta indica, Cinnamomum verum, Coriandrum sativum, Curcuma longa, Emblica officinalis, Mentha spicata, Moringa oleifera, Murraya koenigii, Ocimum sanctum, Phyllanthus niruri, Piper nigrum, Syzygium aromaticum, Trigonella foenum and Zingiber officinale that are used in Indian traditional medicine and which are commonly available in Tamil Nadu were collected for the study.

Different parts of the herbs have different active principles, and hence the part that is traditionally used for medicinal purpose was selected for each particular herb. The herbs and their parts selected for the study are listed in table 1.

Preparation of the herbal extracts

The plant samples (250 gms) were suitably cleaned from extraneous matter, shade dried for 72 hours and ground to pass through 1 mm sieve using a Willey mill under aseptic conditions (Haniyeh et al., 2010). The ground samples were then stored in air tight containers. To determine the in vitro antimicrobial effect of the samples, aqueous and ethanol extracts of the herbal samples were first prepared. To prepare aqueous extract, the ground samples, 100 mg each were taken in a sterile eppendorf tubes to which was added 1 ml of sterile water, vortexed and kept in refrigerator overnight. To prepare ethanol extract, the ground samples, 100 mg each were taken in a sterile eppendorf tubes to which was added 1 ml of 95% ethanol, vortexed and kept in refrigerator overnight. Hence, for each of the herbal sample, aqueous and ethanol extracts were prepared. Each of these extracts (aqueous and ethanol) were tested for their in vitro antibacterial activity.

Preparation of microorganisms

The microorganisms under study were Staphylococcus aureus, Escherichia coli, Salmonella enteritidis and Clostridium perfringens. They were isolated from the clinical samples obtained from Poultry Disease Diagnosis and Surveillance Laboratory, Veterinary College and Research Institute, Namakkal. The organisms were isolated in nutrient agar medium and selectively cultured at 37 °C for 24 hrs. The bacterial strains were identified by gram staining and confirmed by biochemical tests as per the directions from Bergy’s manual for determinative bacteriology.

In vitro antimicrobial assay

To determine the in vitro antimicrobial effect of the herbal samples, sterilized circular disc, microbial cultures (Staphylococcus aureus, Escherichia coli, Salmonella enteritidis and Clostridium perfringens) aqueous and ethanol
extracts of the herbal samples were first prepared and kept ready.

Circular disc of 6 mm diameter were made from the Whatman no 1 filter paper. Discs were impregnated with equal volume (15μl) of the respective plant extracts (aqueous / ethanol). The discs were aseptically placed over plates of Mueller Hinton agar for *Staphylococcus aureus*, Mac Conkey agar for *Escherichia coli* and Nutrient agar for *Salmonella enteritidis* and *Clostridium Perfringens* agar for *Clostridium perfringens*, seeded with the respective test pathogens. After drying in the air, the plates were incubated at 37 °C for 24 hours. For the *Clostridium perfringens*, the plates were kept in an anaerobic jar in an upright position at 37 °C for 24 hours. Sterile water and 95 % ethanol were used as control respectively for aqueous and ethanol extracts of samples. Further the inoculums were adjusted to 0.5 Mc Fairland turbidometry (Haniyeh et al., 2010).

The sensitivity of the microorganism species to the plant extracts (aqueous / ethanol) were determined by measuring the size of the inhibitory zones (including the diameter of the disc) on the agar surface around the discs using zone of inhibition scale. Inhibition zones with diameter values 8 mm were considered as not active against microorganisms and zones less than 12 mm were considered as having low antibacterial activity. Diameters between 12 and 16 mm were considered moderately active, and these with >16mm were considered highly active (Indu et al., 2006).

Results and Discussion

The aqueous extracts of sixteen herbs tested for antibacterial activity on four poultry pathogens are presented in Table 2, 3. Aqueous extract of *Allium sativum* bulbs (Garlic) and *Syzygium aromaticum* bud (Clove) were the only candidates that showed zone of inhibition against *Staphylococcus aureus*. Significantly (p<0.05) higher zone of inhibition was evinced by *Allium sativum* bulbs (Garlic) (13.67±0.21) when compared with *Syzygium aromaticum* bud (Clove) (10.50 ± 0.22). In the case of *Escherichia coli* only *Allium sativum* bulbs (Garlic) (12.50 ± 0.22) had moderate antibacterial activity. The aqueous extracts of other herbs evinced no zone of inhibition. For *Salmonella enteritidis*, *Allium sativum* bulbs (Garlic) and *Syzygium aromaticum* bud (Clove) were the only candidates that showed zone of inhibition. *Allium sativum* pods (Garlic) (14.67 ± 0.21) had significantly (p<0.05) higher zone of inhibition (mm) when compared with *Syzygium aromaticum* bud (Clove) (12.50 ± 0.34). The aqueous extracts of other herbs evinced no zone of inhibition. Allicin is the active ingredient of garlic that acts by partially inhibiting DNA and protein synthesis and also totally inhibiting RNA synthesis as a primary target (Eja et al., 2007). Organo sulfur compounds and phenolic compounds have also been reported to be involved in the garlic antimicrobial activity (Griffiths et al., 2002 and Jombo et al., 2011). Among the aqueous extracts tested *Syzygium aromaticum* (Clove) (15.00 ± 0.00) was the only herbal extract found to have significant moderate antibacterial activity against *Clostridium Perfringens*. The other herbal extracts evinced no zone of inhibition.

Among the ethanol extracts tested *Coriandrum sativum* seeds (Coriander), *Curcuma longa* dry tuber (Turmeric) *Murraya koenigii* leaves (Curry leaves) and *Syzygium aromaticum* bud (Clove) were found to have antibacterial activity against all the four organisms tested. In the case of *Staphylococcus aureus* significantly (p<0.05) higher zone of inhibition was noted by *Syzygium aromaticum* bud (Clove) (21.00 ± 0.00) when compared with other herbal ethanol extracts. *Piper nigrum* seeds (Black
pepper) (19.67 ± 0.21) had the second place. In the case of *Escherichia coli*, *Syzygium aromaticum* bud (Clove) (20.33 ± 0.21) had the significantly (P<0.05) highest antibacterial activity than other ethanol extracts of other herbs. *Cinnamomum verum* bark (Cinnamon) had significantly (P<0.05) highest antibacterial activity next to *Syzygium aromaticum* bud, as compared to ethanol extracts of other herbs. For *Salmonella enteritidis*, *Syzygium aromaticum* bud (Clove) (17.50 ± 0.22) was found to have significantly (P<0.05) higher zone of inhibition when compared ethanol extracts of other herbs. *Andrographis paniculata* leaf with stem (Nilavembu), *Azadirachta indica* leaves (Neem), *Cinnamomum verum* bark (Cinnamon), *Ocimum sanctum* leaves (Tulsi), *Phyllanthus niruri* leaves (Keelanelli), *Piper nigrum* seeds (Black pepper) and *Trigonella foenum* seeds (Fenugreek) were found to have no zone of inhibition. Essential oils are potential sources of novel antimicrobial compounds especially against bacterial pathogens (Prabuseenivasan et al., 2006). The high levels of eugenol present in clove essential oil is responsible for its strong antimicrobial activities. It is well known that both eugenol and clove essential oil phenolic compounds can denature proteins and react with cell membrane phospholipids changing their permeability and inhibiting a great number of gram-negative and gram-positive bacteria as well as different types of yeast (Chaieb et al., 2007, Walsh et al., 2003).

Table.1 List of herbs and their part selected for the study

S. No	Botanical name of the herb	Common name of the herb	Plant part used
1	*Allium sativum*	Garlic	Bulb
2	*Andrographis paniculata*	Nilavembu	Leaf with stem
3	*Azadirachta indica*	Neem	Leaf
4	*Cinnamomum verum*	Cinnamon	Bark
5	*Coriandrum sativum*	Coriander	Seed
6	*Curcuma longa*	Turmeric	Rhizome
7	*Emblica officinalis*	Amla	Fruit
8	*Mentha spicata*	Mentha	Leaf
9	*Moringa oleifera*	Moringa leaves	Leaf
10	*Murraya koenigii*	Curry leaves	Leaf
11	*Ocimum sanctum*	Tulsi	Leaf
12	*Phyllanthus niruri*	Keelanelli	Full plant with root
13	*Piper nigrum*	Black pepper	Flower bud
14	*Syzygium aromaticum*	Clove	Flower bud
15	*Trigonella foenum*	Fenugreek	Seed
16	*Zingiber officinale*	Dry ginger	Rhizome
Table 2 In vitro antimicrobial activity against *Staphylococcus aureus*, *Escherichia coli*, *Salmonella enteritidis* and *Clostridium perfringens* of aqueous extracts of herbs

S.No	Name of the herb	Antimicrobial activity (Zone of inhibition in mm)
		Staphylococcus aureus, *Escherichia coli*, *Salmonella enteritidis*, *Clostridium perfringens*
1	*Allium sativum* (Garlic)	13.67 ± 0.21, 12.50 ± 0.22, 14.67 ± 0.21
2	*Andrographis paniculata* (Nilavembu)	NZI, NZI, NZI
3	*Azadirachta indica* (Neem)	NZI, NZI, NZI
4	*Cinnamomum verum* (Cinnamon)	NZI, NZI, NZI
5	*Coriandrum sativum* (Coriander)	NZI, NZI, NZI
6	*Curcuma longa* (Turmeric)	NZI, NZI, NZI
7	*Emblica officinalis* (Amla)	NZI, NZI, NZI
8	*Mentha spicata* (Menta)	NZI, NZI, NZI
9	*Moringa oleifera* (Moringa leaves)	NZI, NZI, NZI
10	*Murraya koenigii* (Curry leaves)	NZI, NZI, NZI
11	*Ocimum sanctum* (Tulsi)	NZI, NZI, NZI
12	*Phyllanthus niruri* (Keelanelli)	NZI, NZI, NZI
13	*Piper nigrum* (Black pepper)	NZI, NZI, NZI
14	*Syzygium aromaticum* (Clove)	10.50 ± 0.22, 12.50 ± 0.34, 15.00 ± 0.00
15	*Trigonella foenum* (Fenugreek)	NZI, NZI, NZI
16	*Zingiber officinale* (Dry ginger)	NZI, NZI, NZI

Mean of six observations, values bearing different superscripts within a column differ significantly (p<0.05), NZI- No zone of inhibition.
Table 3 *In vitro* antimicrobial activity against *Staphylococcus aureus, Escherichia coli, Salmonella enteritidis* and *Clostridium perfringens* of ethanolic extracts of herbs

S.No	Name of the herb	Staphylococcus aureus, Zone of inhibition in mm	Escherichia coli Zone of inhibition in mm	Salmonella enteritidis Zone of inhibition in mm	Clostridium perfringens Zone of inhibition in mm
1	*Allium sativum* (Garlic)	14.67±0.21	NZI	14.67±0.21	NZI
2	*Andrographis paniculata* (Nilavembu)	17.33±0.21	17.17±0.31	NZI	16.00±0.00
3	*Azadirachta indica* (Neem)	14.50±0.22	15.83±0.17	NZI	NZI
4	*Cinnamomum verum* (Cinnamon)	18.83±0.16	18.67±0.21	NZI	NZI
5	*Coriandrum sativum* (Coriander)	14.83±0.17	16.83±0.17	16.17±0.31	18.00±0.00
6	*Curcuma longa* (Turmeric)	17.83±0.17	16.33±0.21	17.17±0.17	17.83±0.40
7	*Embleca officinalis* (Amla)	NZI	17.67±0.21	NZI	NZI
8	*Mentha spicata* (Mentha)	16.50±0.22	15.33±0.42	16.00±0.26	17.00±0.00
9	*Moringa oleifera* (Moringa leaves)	17.00±0.36	14.67±0.21	15.00±0.26	NZI
10	*Murraya koenigii* (Curry leaves)	16.50±0.22	17.50±0.22	16.17±0.31	19.00±0.00
11	*Ocimum sanctum* (Tulsi)	17.17±0.48	15.67±0.76	NZI	17.67±0.21
12	*Phyllanthus niruri* (Keelaneli)	16.50±0.22	15.50±0.22	NZI	NZI
13	*Piper nigrum* (Black pepper)	19.67±0.21	17.67±0.21	NZI	16.67±0.21
14	*Syzygium aromaticum* (Clove)	21.00±0.00	20.33±0.21	17.50±0.22	17.00±0.00
15	*Trigonella foenum* (Fenugreek)	18.50±0.22	16.67±0.21	NZI	15.00±0.00
16	*Zingiber officinale* (Dry ginger)	16.50±0.22	16.50±0.22	17.00±0.26	NZI

Mean of six observations, values bearing different superscripts within a column differ significantly (P<0.05), NZI- No zone of inhibition
Badei et al., (2002) tested the antimicrobial activities of cardamom, cinnamon and clove essential oils against nine gram-positive bacterial strains, four gram-negative bacterial strains, seven molds, and two yeasts, compared with phenol, using the disc diffusion method. Clove essential oil showed the highest antimicrobial activity, and the antimicrobial spectra (diameter of inhibition zones) of 10 % clove essential oil was 1.48 times as that of 10 % phenol.

Among the ethanol extracts tested Murraya koenigii leaves (Curry leaves) (19.00 ± 0.00) was found to have highest zone of inhibition against Clostridium Perfringens followed by Coriandrum sativum seeds (Coriander) (18.00 ± 0.00). The other ethanol extracts had only low zone of inhibition when compared with these two extracts. Ethanol extracts of Allium sativum bulbs (Garlic), Azadirachta indica leaves (Neem), Cinnamomum verum bark (Cinnamon), Emblica officinalis fruit (Amla), Moringa oleifera leaves (Moringa leaves), Phyllanthus niruri stem with leaves (Keelanelli) and Zingiber officinale tuber (Dry ginger) had no activity against Clostridium perfringens. The results are comparable to that of previous studies in which the researchers reported that the various organic extracts of M. koenigii exhibited significant antimicrobial activity against both gram positive and gram negative bacteria (Panghal et al., 2011; Baskaran et al., 2011). This property was attributed to several carbazole alkaloids present in the organic extracts of M. Koenigii (Malwal and Sarin, 2011).

In conclusion, aqueous extracts of herbs behaved differently compared to their ethanol extracts in bringing about antibacterial effect. Among the aqueous extracts of herbs, Allium sativum bulbs was the only herb or the herb that had significantly higher antibacterial potency against Staphylococcus aureus, Escherichia coli, Salmonella enteritidis, however, it had no antibacterial activity against Clostridium Perfringens. Ethanol extract of Syzygium aromaticum bud showed the significantly highest antibacterial potency against Staphylococcus aureus, Escherichia coli and Salmonella enteritidis and ethanol extracts of Murraya koenigii leaves showed significantly highest antibacterial potency against Clostridium Perfringens.

References

Aarestrup FM, H.C Wegener, P. Collignon 2008.Resistance in bacteria of the food chain: Epidemiology and control strategies. Expert Review of Anti-Infective Therapy 6:733-750

Badei A.Z.M S.M.M.Faheid, A.T.M.EI - Akel, Barakat Mahmoud (2002) Application of some spices in flavoring and preservation of cookies: 2-antimicrobial and sensory properties of cardamom, cinnamon and clove. vol : 98 Deutsche Lebensmittel – Rundschau.

Baskaran Ram. Ramasamy vijayakumar. P.M. Mohan. 2011. Enrichment Method for the Isolation of bioactive Actinomycetes from mangrove sediments of Andaman Islands, India Malaysian journal of microbiology vol: 7: 26-32

Chaieb, K. T. Zmantar, R. Ksouri, H. Hajlaoui, K. Mahdouani, C. Abdelly, A. Bakhrouf. 2007. Antioxidant properties of the essential oil of Eugenia Caryophyllata and its antifungal activity against a large number of clinical Candida species. Mycoses.50 (5): 403-6.

Eja ME, BE. Asikong, C. Abriba, G.E. Arikpo, E.E. Anwan, K.H. Enyi-Idoh. 2007. A comparative assessment of the antimicrobial effects of garlic (Allium sativum) and antibiotics on diarrheagenic organisms. Southeast Asian Journal of Tropical Medicine and Public Health. 38(2):343-8.

Fernebro. Jenny. 2011 Fighting bacterial infections - Future treatment options. in Drug resistance updates: reviews and commentaries in antimicrobial and anticancer chemotherapy 14(2):125-39.
Gadde U, W.H Kim, S.T Oh, H.S Lillehoj (2017) Alternatives to antibiotics for maximizing growth performance and feed efficiency in poultry: a review. Animal Health Research Review 18:26–45

Griffiths, M.D. 2002. The educational benefits of videogames Education and Health, Education and Health. 20 (3):47-51.

Haniyeh Koochak, Seyyed Mansour Seyyednejad, Hussein Motamedi. 2010. Preliminary study on the antibacterial activity of some medicinal plants of Khuzestan (Iran). Asian Pacific Journal of Tropical Medicine 3(3):180-184.

Indu M.N, A. A. M. Hatha, C. Abi rosh. U. Harsha G. Vivekanandan. 2006. Antimicrobial Activity of some of the south Indian spices against serotypes of Escherichia coli, Salmonella sp, Listeria monocytogenes and Aeromonas hydrophila. Brazilian Journal of Microbiology 37:153-158.

Jombo, G. 2011. Malaria self medications and choices of drugs for its treatment among residents of a malaria endemic community in West Africa. Asian Pacific Journal of Tropical Disease 1(1):10-16.

Malwal, M. and R. Sarin 2011. Antimicrobial efficacy of Murraya koenigii (Linn.) Spreng root extracts. Indian Journal of Natural Products and Resources 2(1)

Panghal, M. V. Kaushal, J.P. Yadav 2011. In vitro antimicrobial activity of ten medicinal plants against clinical isolates of oral cancer cases. Annals of Clinical Microbiology and Antimicrobials 10(1): 21.

Potdar, R.D, S.A. Sahariah, M. Gandhi, S. HKehoe, N. Brown, N.H. Sane, M. Dayama, S. Jha, A. Lawande, P.J. Coakley, E. Marley-Zagar, H. Chopra, D. Shivshankaran P. Chhedaa-Gala, P Muley-Lotankar, G. Subbulakshmi, A.K. Wills, V.A. Cox, V. Taskar, D.J. Barker, A.A. Jackson, B.M. Margetts, C.H. Fall. 2014. Improving women’s diet quality pre conceptionally and during gestation: effects on birth weight and prevalence of low birth weight—a randomized controlled efficacy trial in India. American Journal of Clinical Nutrition. 2014 Nov; 100 (5):1257-68

Prabuseenivasan, S, M. Jayakumar Savarimuthu, Ignachimuthu. 2006. In vitro antibacterial activity of some plant essential oils. BMC Complement Alternate Medicine 6:39-46

Saeed S, Tariq P. 2007. Antibacterial activities of Emblica officinalis and Coriandrum sativum against Gram negative urinary pathogens. Pakistan Journal of Pharmacological Science. 20(1): 32-5.

Srivastava, M., A. Ahuja, S. Kachhwaha, Naveen Kumar Singh. 2013. Management of Idiopathic urticaria in horses Short Communication article history abstract.

Tiwari, B. Anil Chaudhary, Ashutosh Mishrac. D. Ganesh Bhatt. 2010 Anti-Inflammatory effects of the saponins obtained from the leaves of Acorus Calamus. Pharmacology online 2: 395-400

Vijayalakshmi, K. Preethi and J. M. Sasikumar 2010. In vitro cytotoxic effects of Evolavlu salsinoides linn leaves against human cancer cell lines Pharmacology online 3: 409-414.

Walsh. 2003. Antibiotics: Actions, origins, resistance, Washington, DC: ASM Press. Reviewed by Hans Von Döhren

How to cite this article:

Kavitha, R., C. Valli, R. Karunakaran, K. Vijayarani and Amutha, R. 2020. Evaluation of Antibacterial Activity of some Indian Herbal Extracts. *Int.J.Curr.Microbiol.App.Sci.* 9(07): 17-24. doi: https://doi.org/10.20546/ijcmas.2020.907.003