Genetic and Pharmacological Modifications of Thrombin Formation in Apolipoprotein E-deficient Mice Determine Atherosclerosis Severity and Atherothrombosis Onset in a Neutrophil-Dependent Manner

Citation
Borissoff, Julian I., Jeroen J. T. Otten, Sylvia Heeneman, Peter Leenders, René van Oerle, Oliver Soehnlein, Sarah T. B. G. Loubele, et al. 2013. Genetic and pharmacological modifications of thrombin formation in apolipoprotein E-deficient mice determine atherosclerosis severity and atherothrombosis onset in a neutrophil-dependent manner. PLoS ONE 8(2): e55784.

Published Version
doi:10.1371/journal.pone.0055784

Permanent link
http://nrs.harvard.edu/urn-3:HUL.InstRepos:10707824

Terms of Use
This article was downloaded from Harvard University’s DASH repository, and is made available under the terms and conditions applicable to Other Posted Material, as set forth at http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA

Share Your Story
The Harvard community has made this article openly available. Please share how this access benefits you. Submit a story.

Accessibility
Genetic and Pharmacological Modifications of Thrombin Formation in Apolipoprotein E-deficient Mice Determine Atherosclerosis Severity and Atherothrombosis Onset in a Neutrophil-Dependent Manner

Julian I. Borissoff1,2,3*, Jeroen J. T. Otten4, Sylvia Heeneman3, Peter Leenders1, René van Oerle1, Oliver Soehnlein5, Sarah T. B. G. Loubelle1, Karly Hamulyák1, Tilman M. Hackeng6, Mat J. A. P. Daemen4, Jay L. Degen7, Hartmut Weiler8, Charles T. Esmon9, Joanne van Ryn10, Erik A. L. Biessen1, Henri M. H. Spronk1, Hugo ten Cate1

1 Laboratory for Clinical Thrombosis and Hemostasis, Department of Internal Medicine, Cardiovascular Research Institute Maastricht, Maastricht University Medical Center, Maastricht, The Netherlands, 2 Program in Cellular and Molecular Medicine, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts, United States of America, 3 Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, United States of America, 4 Department of Pathology, Experimental Vascular Pathology Research Group, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, The Netherlands, 5 Institute for Cardiovascular Molecular Research, Medical Faculty, RWTH Aachen University, Aachen, Germany, 6 Department of Biochemistry, Cardiovascular Research Institute Maastricht, Maastricht University Medical Center, Maastricht, The Netherlands, 7 Developmental Biology, Children’s Hospital Research Foundation, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America, 8 Blood Research Institute, The Blood Center of Southeastern Wisconsin, Milwaukee, United States of America, 9 Oklahoma Medical Research Foundation and Howard Hughes Medical Institute, Oklahoma City, Oklahoma, United States of America, 10 Department of CardioMetabolic Disease Research, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, Germany

Abstract

Background: Variations in the blood coagulation activity, determined genetically or by medication, may alter atherosclerotic plaque progression, by influencing pleiotropic effects of coagulation proteases. Published experimental studies have yielded contradictory findings on the role of hypercoagulability in atherogenesis. We therefore sought to address this matter by extensively investigating the in vivo significance of genetic alterations and pharmacologic inhibition of thrombin formation for the onset and progression of atherosclerosis, and plaque phenotype determination.

Methodology/Principal Findings: We generated transgenic atherosclerosis-prone mice with diminished coagulant or hypercoagulable phenotype and employed two distinct models of atherosclerosis. Gene-targeted 50% reduction in prothrombin (FII1/WT: APOE−/−) was remarkably effective in limiting disease compared to control APOE−/− mice, associated with significant qualitative benefits, including diminished leukocyte infiltration, altered collagen and vascular smooth muscle cell content. Genetically-imposed hypercoagulability in TMP1/Pro: APOE−/− mice resulted in severe atherosclerosis, plaque vulnerability and spontaneous atherothrombosis. Hypercoagulability was associated with a pronounced neutrophilia, neutrophil hyper-reactivity, markedly increased oxidative stress, neutrophil intraplaque infiltration and apoptosis. Administration of either the synthetic specific thrombin inhibitor Dabigatran etexilate, or recombinant activated protein C (APC), counteracted the pro-inflammatory and pro-atherogenic phenotype of pro-thrombotic TMP1/Pro: APOE−/− mice.

Conclusions/Significance: We provide new evidence highlighting the importance of neutrophils in the coagulation-inflammation interplay during atherogenesis. Our findings reveal that thrombin-mediated proteolysis is an unexpectedly powerful determinant of atherosclerosis in multiple distinct settings. These studies suggest that selective anticoagulants employed to prevent thrombotic events may also be remarkably effective in clinically impeding the onset and progression of cardiovascular disease.

Citation: Borissoff JJ, Otten JJT, Heeneman S, Leenders P, van Oerle R, et al. (2013) Genetic and Pharmacological Modifications of Thrombin Formation in Apolipoprotein E-deficient Mice Determine Atherosclerosis Severity and Atherothrombosis Onset in a Neutrophil-Dependent Manner. PLoS ONE 8(2): e55784. doi:10.1371/journal.pone.0055784

Editor: Pieter H. Reitsma, Leiden University Medical Center, The Netherlands

Received October 4, 2012; Accepted December 30, 2012; Published February 7, 2013

Copyright: © 2013 Borissoff et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: Boehringer Ingelheim GmbH provided Dabigatran etexilate-supplemented and placebo diets. This study was supported by a Marie Curie fellowship (MEST-CT-2005-020706) from the European Commission (to Dr. J.J. Borissoff) and a SenterNovem grant (to Cardiovascular Research Institute Maastricht (CARIM)). Dr. J.J. Borissoff is a recipient of a Kootstra Talent Fellowship (2011) from Maastricht University and is supported by a Rubicon fellowship (825.11.019), granted by the Netherlands Organization for Scientific Research (NWO). Dr. Oliver Soehnlein is supported by the Deutsche Forschungsgemeinschaft (SO876/3-1 and SO876/4-1). Dr. Hugo ten Cate is sponsored by a Gutenberg Research College Fellowship (Gutenberg University, Mainz, Germany). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
Introduction

Blood coagulation and inflammation are evolutionary coupled host-defense mechanisms, which operate via common molecular and cellular pathways, serve as protection against infections or bleeding, promote wound healing and restore the integrity of injured tissues [1–3]. Atherosclerosis is a progressive chronic inflammatory vascular disorder, which can result in atherothrombotic plaque rupture and subsequent superimposed thrombus formation [4–6]. Besides the detrimental role of coagulation during the onset of acute atherothrombotic complications, there is evidence that local activation of hemostatic factors within early human atherosclerotic lesions may also be important in atherogenesis [7]. In addition to the overt leukocyte infiltration into the lesions and enhanced cell death, which are considered major markers for plaque instability, today’s concept of a vulnerable plaque suggests that repeated plaque microruptures and subclinical microthrombosis are critical processes to plaque growth and subsequent atherothrombosis [8–10]. Histopathological reports demonstrate that thrombosis may exist prior to rupture [11,12]. Numerous in vitro studies indicate that key clotting proteases such as thrombin can also catalyze a wide range of cellular actions related to cardiovascular function and pathophysiology – e.g. vascular permeability, oxidative stress, migration and proliferation of vascular smooth muscle cells, leukocyte adhesion, chemotaxis, inflammation, and apoptosis [13]. Experimental animal studies demonstrate that administration of direct thrombin inhibitors in ApoE−/− mice attenuates atherosclerotic plaque progression and promotes plaque stability of advanced atherosclerotic lesions by reducing the levels of inflammation and the number of macrophages infiltrating the lesions [14–16]. In sharp contrast, there is also evidence showing that hypercoagulability in ApoE−/− mice carrying prothrombotic mutations promotes atherosclerotic plaque stability via thrombin-mediated impairment of monocyte transendothelial migration [17]. In the near future, millions of patients with arterial vascular disease will be treated with novel, selective anticoagulant agents. Whereas this matter remains of major scientific and clinical significance, there is still limited understanding of the relevance of blood coagulation in atherosclerosis in vivo [18]. In attempting to reconcile these apparently contradictory findings, we extensively investigated the in vivo significance of genetic alterations and pharmacologic inhibition of thrombin formation for the onset and progression of atherosclerosis, but also plaque phenotype determination.

Methods

Animals

TMPro/Pro mice, carrying a thrombomodulin (TM) gene mutation resulting in diminished TM-dependent generation of activated protein C (APC) [19], and prothrombin (FII) heterozygous mice with genetically imposed hypoprothrombinemia [20] were crossed into a pure C57BL/6 background for at least 8 generations and subsequently crossedbred to ApoE−/− mice (Charles River, Maastricht, The Netherlands), carrying the same background. Only female mice were used throughout the entire study. All animal experimental protocols were carried out in compliance with the Dutch government guidelines and were approved by the Animal Care and Use Committee of Maastricht University (Maastricht, The Netherlands).

Mouse Models of Atherosclerosis

In a spontaneous atherosclerosis model, female TMPro/Pro;ApoE−/−, FII−/−;ApoE−/− (age, 8–9 weeks; n = 10 per group) and control ApoE−/− mice (age, 8–9 weeks; n = 20) received regular chow diet (Hope Farms, Woerden, The Netherlands) for 35 weeks and were then sacrificed for a detailed analysis. In a separate experimental setup, consisting of identical groups, carotid atherosclerotic plaques were induced via placement of perivascular collars around the common carotid arteries as described before [21]. All animals were fed on a high-fat diet (15% cocoa butter, 1% corn oil, 0.25% cholesterol, 40.5% sucrose, 10% cornstarch, 20% casein, free of cholate, total fat content 16%; Hope Farms, Woerden, The Netherlands) for two weeks before collar placement and for additional six weeks after surgery. Diets and water were provided ad libitum throughout all experiments.

Pharmacological Interventions

Female TMPro/Pro;ApoE−/− mice (n = 10 per treatment group; age, 8–9 weeks) fed on a standard high-fat diet (D12451; Research Diets, NJ, USA) for 2 weeks were subsequently subjected to a surgical implantation of non-constrictive perivascular carotid collars and then assigned to different interventions or placebo for a total of 6 weeks. The study design involved an intervention arm with mice receiving standard D12451 high-fat chow supplemented with oral Dagibatran etexilate (7.5 mg DE/gram chow). In a second intervention arm, TMPro/Pro;ApoE−/− mice were fed on a standard D12451 high-fat diet and received intraperitoneal (i.p.) administration of recombinant murine APC (rmAPC) in bolus doses of 2.5 mg/kg/per every 5 days. Placebo-treated mice received injection of saline and were fed on standard D12451 high-fat chow. rmAPC was produced in the laboratory of Dr. Charles T. Esmon (Oklahoma Medical Research Foundation and Howard Hughes Medical Institute, Oklahoma City, Oklahoma, USA). Both DE-supplemented high-fat and placebo chow diets were prepared at Department of CardioMetabolic Disease Research, Boehringer Ingelheim Pharma GmbH & Co. KG (Biberach an der Riss, Germany).

Competing Interests: The authors have the following interests. Boehringer Ingelheim GmbH provided Dagibatran etexilate-supplemented and placebo diets for this study and is the employer of Joanne van Ryn. Dr. ten Cate has received speaker fees from Bayer, Boehringer Ingelheim, GlaxoSmithKline and Leo Pharma. There are no further patents, products in development or marketed products to declare. This does not alter the authors’ adherence to all the PLOS ONE policies on sharing data and materials.

* E-mail: j.ilcheff@maastrichtuniversity.nl

Sa Current address: Department of Pathology, Academic Medical Center Amsterdam, Amsterdam, The Netherlands
Sb Current address: Institute for Cardiovascular Prevention (IPEK), Ludwig Maximilian University (LMU), Munich, Germany

©b Current address: Institute for Cardiovascular Prevention (IPEK), Ludwig Maximilian University (LMU), Munich, Germany
Blood Sampling, Blood Cell Counts, Blood Coagulation and Lipid Profile Analysis. Cytokines and Chemokines Profile Analysis. Tissue Harvesting, Preparation and Morphometry. Histology and Immunohistochemistry. FeCl₃-induced Carotid Artery Injury Model. Lipid Uptake Analysis in Bone Marrow-derived Macrophages (BMM). Leukocyte-Endothelium Interactions in Atherosclerotic Carotid Arteries. Characterization of Bone Marrow Cell Populations by CFU-C Assays and Flow Cytometry

For an expanded Methods section, please see the online supplement of the article (Methods S1).

Statistical Analysis
All statistics were performed using Prism, version 6.00 (GraphPad Software Inc., San Diego, CA, USA) and IBM SPSS Statistics 20.0 (SPSS Japan Inc., an IBM company, Tokyo, Japan). Data sets were assessed for normality using Kolmogorov-Smirnov test or Bartlett’s test for homogeneity of variance. Data were compared using unpaired 2-tailed t test or one-way ANOVA, followed by Newman-Keuls posthoc test for multiple comparisons. In case of non-normal distribution, non-parametric tests such as Mann-Whitney or Kruskall-Wallis test with Dunn’s post hoc analysis were used as appropriate. Data are expressed as mean ± SD, unless otherwise stated. A 2-tailed p<0.05 was considered statistically significant.

Results
We first generated transgenic cross bred in genetically imposed variations in coagulation potential. Homozygous prothrombin (FII) deficiency in mice results in embryonic and neonatal lethality due to severe hemorrhagic phenotype and loss of vascular integrity [20]. Therefore, we employed uniformly viable FII heterozygous ApoE⁻/⁻ mice (characterized by hypoprothrombinemia and diminished FVII and thrombin generation but...
Thrombin and Atherosclerosis

A

H&E

TOLUIDINE BLUE

AL = 4/10

AL = 8/10

AL = 10/10

AL = 8/10

B

PLAQUE BURDEN PER CAROTID ARTERY (10^2 mm²)

C

STENOSIS (% OF TOTAL LUMEN)

D

NECROTIC CORE (% OF PLAQUE AREA)

E

MEAN FIBROUS CAP THICKNESS (μm)

F

INTIMA/MEDIA RATIO

G

MEAN OUTER DIAMETER (mm)

**

PLOS ONE | www.plosone.org 4 February 2013 | Volume 8 | Issue 2 | e55784
Coagulation Phenotype is a Key Factor in Atherosclerotic Plaque Growth and Phenotype Determination

We then assessed the extent, as well as the phenotype of the atherosclerotic plaques formed in the aortic arch in experimental cohorts of mice following 35 weeks on a regular chow diet. FII+/-:ApoE-/- mice with a genetic defect in prothrombin exhibited highly attenuated atherosclerotic lesion formation relative to control ApoE-/- mice (Figure 1A,B). Macrophage infiltration (MAC-2+ cells) and α-smooth muscle actin (SMA; α-SMA+ cells) content were unaffected in FII+/-:ApoE-/- mice compared to ApoE-/- control mice (Figure 1A,C,D). However, hypoprophrombinemia was also linked to a significant decrease in neutrophil recruitment (Figure 1A,E), abundant collagen deposition (Figure 1A,F), thus showing a more fibrotic appearance, stable plaque phenotype and decreased number of advanced atherosclerotic lesions formed. In sharp contrast, pro-thrombotic TMPro/Pro:ApoE-/- mice displayed severe atherosclerosis development with remarkably increased total plaque area (Figure 1A,B). TMPro/Pro:ApoE-/- mice showed unstable lesions (Figure 1A,B), associated with markedly decreased α-SMA and collagen content (Figure 1A,F), and significantly higher neutrophil (Ly6G+ cells) infiltration (Figure 1A,E). These effects were independent of plasma lipid levels (Table S1B) and could not be attributed to an increased uptake of modified lipoproteins by macrophages (Figure S1A,B,C,D). Hypercoagulable TMPro/Pro:ApoE-/- mice showed significantly increased spontaneous mortality rates, albeit the exact cause of death could not be pinpointed (Figure 1G).

Hence, to further verify the net effects of underlying alterations in clotting potential on plaque phenotype, we also studied the impact of both genetic perturbations on collagen-induced carotid artery atherosclerosis [21]. High-fat diet fed FII+/-:ApoE-/- mice displayed significantly decreased plaque volume, degree of stenosis, intima/media ratio and expansion of the arterial wall, 6 weeks after bilateral perivascular carotid collar placement (Figure 2A,B,C,D). Furthermore, hypercoagulability ameliorated plaque stability, testified by a significantly increased mean fibrous cap thickness (Figure 2A,E). Conversely, TMPro/Pro:ApoE-/- mice and control ApoE-/- mice were identical and quantified by using toluidine blue (TB) staining (second and third row). Whereas hypercoagulable mice were significantly protected against plaque progression (26.5±12.6*10^3 in FII+/-:ApoE-/- vs. 69.2±18.4*10^3 μm^2 in ApoE-/- control mice, n = 10 per group, p<0.0001), pro-thrombotic mice developed severe and occlusive atherosclerotic burden (146.4±52.7*10^3 in TMPro/Pro:ApoE-/- vs. 53.9±27.0*10^3 μm^2 in ApoE-/- control mice, n = 10 per group, p = 0.0001). The degree of stenosis in TMPro/Pro:ApoE-/- reached an average of 88.6±8.1% (vs. 62.2±16.1% in ApoE-/- mice, n = 10 per group, p = 0.0002), whereas it was substantially lower in FII+/-:ApoE-/- mice (36.8±11.9% vs. 64.9±9.6% in ApoE-/- mice, n = 10 per group, p = 0.0001). (A, D) Pearson’s chi-squared test (χ²) detected a significant difference in the number of advanced atherosclerotic lesions (presence of fibrous cap atheromata [54]) formed between FII+/-:ApoE-/- (4 out of 10) and TMPro/Pro:ApoE-/- mice (10 out of 10) (n = 10 per group, p = 0.0108). In fact, the necrotic area within the lesions of the hypercoagulable mice was significantly increased: 56.2±17.7% vs. 26.5±12.6% in TMPro/Pro:ApoE-/- mice, whereas it profoundly decreased in FII+/-:ApoE-/- mice. Of note, the average outer diameter of the common carotid artery is 0.36 mm [21], thus suggesting that TMPro/Pro:ApoE-/- atherosclerotic plaques undergo a dramatic outward remodeling as indicated in panel (G). p<0.05; **p<0.01; ***p<0.001. Error bars represent mean ± SD. Arrows indicate examples of positive staining/fibrous cap thickness. Abbreviations: H&E – hematoxylin and eosin; AL – advanced atherosclerotic lesion.
hypercoagulability on neutrophil function and hematopoiesis in the context of atherosclerosis. Intravital microscopy studies revealed that neutrophils were significantly more adherent to atherosclerotic lesions in the common carotid artery of TMPro/Pro:ApoE2/2 than in ApoE2/2 control mice after 6 weeks on a high-fat diet (Figure 4G,H,I,J). These data consolidated our histological findings (Figure 4A,C,D), suggesting that hypercoagulability can promote initiation and progression of atherosclerotic lesions in a neutrophil-dependent manner.

Figure 3. The role of hypo- and hypercoagulability in plaque fibrosis. Picrosirius red-stained sections assessed by light (A, top row) and polarized light (A, second row), indicate a significant decrease in the levels of collagen in TMPro/Pro:ApoE2/- carotid atherosclerotic plaques (6.7±4.3\% vs. 14.3±7.8\% of total plaque area in ApoE2/- mice, n=10 per group, p=0.0193) (B). Hypocoagulable FII-/-:ApoE2/- mice lesions showed a pro-fibrotic appearance, testified by increased collagen deposition (24.4±14.1\% vs. 12.0±6.1\% of total plaque area in ApoE2/- mice, n=10 per group, p=0.0435) and \textalpha-\text{smooth muscle actin} content (25.5±13.6\% vs. 6.9±3.2\% of total plaque area in ApoE2/- mice, n=10 per group, p=0.0003) (B, C). *p<0.05; **p<0.01; ***p<0.001. Error bars represent mean ± SD. Arrows indicate examples of positive staining. Abbreviations: SR – Picrosirius red; \textalpha-SMA - \textalpha-\text{smooth muscle actin.}

doi:10.1371/journal.pone.0055784.g003

Hypercoagulability and Its Effects on Systemic Inflammation and Hematopoiesis: Enhanced Accumulation of Reactive Oxygen Species in Neutrophils

Consistent with this view, hypercoagulability promoted a significant increase in plasma CCL2 and CXCL1 levels (Table S2). TMPro/Pro:ApoE2/- mice showed significantly higher IL-6 plasma levels after 35 weeks on regular chow diet. Although there were trends toward increased IL-1\textbeta, expression of other key pro-inflammatory cytokines such as TNF-\alpha, IFN-\gamma, IL-5 and IL-12 were not statistically different between hypercoagulable and control ApoE2/- mice, indicating that TMPro/Pro:ApoE2/- mice...
exhibited a pro- but not hyper-inflammatory systemic profile (Table S2). In addition, the higher plasma expression levels of granulocyte-colony stimulating factor (G-CSF) in TM^{Pro/Pro}:ApoE^{−/−} mice raises the possibility that the loss of TM function not only impacts on thrombin activity but also affects granulopoiesis in the bone marrow. However, we did not detect major changes in hematopoiesis between hypercoagulable and control ApoE^{−/−} mice after 10 weeks on regular chow diet (Figure S3), including any preferential differentiation towards granulocytic-type colonies. Despite a minor but significant increase in the common myeloid progenitor (CMP) cells, lineage-negative (LK, LS, LSK), granulocyte-macrophage progenitor (GMP) and erythroid/megakaryocyte progenitor (EMP) populations in TM^{Pro/Pro}:ApoE^{−/−} mice, respectively; n = 10 per group; p = 0.0127). Nevertheless, the relative percentage of mature granulocytes in bone marrow, as well as of pro- atherosergic Ly6G^{high} monocytes [22] as measured by flow cytometry, was significantly increased in the pro-thrombotic mice (Figure 6A,B,C). Of interest, another consequence of chronic hypercoagulability was enhanced accumulation of reactive oxygen species in neutrophils and not monocytes, as assessed by DHR fluorescence, the latter considered a measure of neutrophil senescence (Figure 6D,E).
Administration of Direct Thrombin Inhibitor Dabigatran Etxilate (DE) or rmAPC Substantially Decreases Systemic Inflammation, Aborts Atherosclerosis, Promotes Plaque Stability And Prevents Against Atherothrombosis in Hypercoagulable Mice

To study the role of thrombin in modulating atherogenesis in vivo, we administered either the specific oral thrombin inhibitor DE or a recombinant form of the natural anti-coagulant APC for 6 weeks after carotid collar placement in hypercoagulable TMPRO/PRO:ApoE−/− mice on high-fat diet regimen. Remarkably, both interventions completely rescued plaque formation (Figure 7A,B), as also evident by the decreased degree of stenosis, intima/media ratio and positive outward remodeling (Figure 7C,F,G). Whereas in the placebo group 5 out of 10 animals had plaques with overt signs of plaque vulnerability (defined as, i.e. plaque dissection, intraplaque hemorrhage or superimposed thrombus formation), oral DE or rmAPC treatments limited the occurrence of plaque destabilization and atherothrombotic phenomena, and resulted in substantially reduced leukocyte recruitment and enhanced plaque stability (Figure 7A,H,I; Figure 8). In addition, both interventions led to a pronounced decrease in thrombin generation, suggesting that even ApoE−/− mice exerted a low-grade hypercoagulable state (Table S1A, Table S3A). DE and rmAPC therapies significantly limited systemic inflammation (Table S3C), as further exemplified by decreased neutrophil and lymphocyte counts and cytokine and chemokine profiles that show a shift to an anti-inflammatory state (Table S4).

Discussion

Major Findings

These studies provide strong evidence directly documenting that thrombin and other hemostatic system components are powerful determinants of inflammatory vessel wall disease, and even capable of superseding other pro-atherosclerotic insults. We here...
demonstrate that thrombin activity can influence onset, progression and qualitative properties of atherosclerotic plaques. In two distinct experimental setups (spontaneous and collar-induced atherosclerosis), we show that genetically-imposed 50% reduction in prothrombin (FII$_{+/+}$) in atherosclerosis-prone ApoE$_{2/2}$ mice remarkably diminishes lesion formation and promotes plaque stability. In contrast, mice with genetically impaired anticoagulant function of TM, crossed on ApoE$_{2/2}$ background, develop severe atherosclerotic disease. We here for the first time demonstrate the importance of neutrophils in the coagulation-inflammation interplay during atherogenesis. The principal finding of this study is that hypercoagulability induces enhanced mobilization of neutrophils from the bone marrow into the circulation, accompanied with neutrophil hyper-reactivity, increased oxidative stress, apoptosis and abundant intraplaque neutrophil infiltration, thus promoting unstable atherosclerotic plaque phenotype and spontaneous atherothrombosis. Administration of either the synthetic specific thrombin inhibitor DE or a recombinant form of the natural anticoagulant APC, counteract the pro-inflammatory, pro-atherogenic and pro-thrombotic phenotype of hypercoagulable TM$_{Pro/Pro}$:ApoE$_{2/2}$ mice, resulting in plaque stability and preventing atherothrombosis.

Coagulation and Inflammation in Atherosclerosis

Given the multifactorial nature of atherosclerosis and the well-known capacity of coagulation proteases and their receptors (protease-activated receptors, PARs) and substrates to control inflammatory and reparative processes [18], one would anticipate that hemostatic factors might contribute, at least incrementally, to plaque development. In fact, various pro-thrombotic states have been associated with enhanced atherosclerosis progression in mice in vivo [23–29]. Nevertheless, the mechanisms through which clotting contributes to atherosclerosis progression remain unclear to date. Thrombin is a central coagulation protease, which through the activation of PAR-1 is known to promote numerous pro-atherogenic actions in vitro such as endothelial permeability, migration and proliferation of VSMC, platelet activation, leukocyte adhesion and recruitment, cytokine and chemokine production, vascular calcification, angiogenesis and apoptosis [13]. Similar effects can also be triggered via both PAR-1 and PAR-2 by either TF-FVIIa complex or FXa [18]. In contrast, APC counteracts inflammation through PAR-1 signaling at multiple levels such as enhancing the endothelial barrier integrity, attenuating TF and TNF-α release by monocytes, inhibiting cytokine production, leukocyte endothelial transmigration and NF-κB pathways [30,31].
Our data strongly suggests that increased thrombin generation due to diminished APC production in TMPro/Pro:ApoE−/− mice may be mechanistically-coupled to the pro-atherosclerotic phenotype. Previous studies have indicated that hypercoagulability can have beneficial effects on plaque stenosis during the intermediate phases of progression by promoting positive vascular remodeling [17]. Importantly, our data shows that plaques of prothrombotic mice had profound composition changes, with overt features of plaque vulnerability at later stages of disease development (at 35 weeks on regular chow diet), characterized by the presence of large necrotic cores, thin fibrous caps, significantly increased neutrophil intraplaque infiltration and apoptosis, decreased collagen and VSMC content, occlusive stenosis and spontaneous atherothrombosis. Despite that we show a significant association between hypercoagulability and high rate of spontaneous mortality in TMPro/Pro:ApoE−/− mice, further studies are needed to precisely determine the underlying cause of this observation.

There are numerous pathways, which have been implicated to play a role in the complex interplay between coagulation and inflammation in various pathologic conditions [30]. Here, for the
first time, we show the strong potential of the coagulation system (in particular thrombin) to regulate inflammation in atherosclerosis as highlighted by the effects of direct thrombin inhibition therapy on leukocyte counts, chemokine and cytokine levels. Neutrophils represent another intriguing cellular interface between blood coagulation and inflammation [3,32]. Although the importance of neutrophils in atherosclerosis remains to be defined in detail, several studies have highlighted their pro-atherogenic potential and proposed role in atherosclerotic plaque destabilization [18,33–38]. Our data demonstrate that hypercoagulability promotes enhanced accumulation of reactive oxygen species in neutrophils and, thus triggering enhanced neutrophil senescence. Systemic inflammation involving activated neutrophils is associated with unstable coronary artery disease and considered an independent predictor for cardiovascular outcome in patients [39]. Our data indicate increased neutrophil rolling and arrest on early carotid atherosclerotic plaques in TMPro/Pro:ApoE−/− mice. In addition, the significantly higher neutrophil intraplaque infiltration, consolidated by striking correlations between neutrophil counts and the amount of plaque burden, suggest a key role for neutrophils in this coagulation-inflammation interplay in atherosclerosis. The increased number of circulating pro-atherogenic neutrophils in TMPPro/Pro:ApoE−/− mice can be in part explained by enhanced mobilization from the bone marrow as a result of exuberant plasma G-CSF, CCL-2 and CXCL-1 expression. G-CSF is an essential regulator of the neutrophil mobilization from the bone marrow. Numerous experimental and human studies have shown an association between higher G-CSF plasma levels, neutrophil activation, endothelial dysfunction, enhanced oxidative stress, hypercoagulability and platelet aggregation [40–42].

Figure 8. The effects of direct and indirect inhibition of thrombin activity on plaque fibrosis. Picrosirius red-stained sections assessed by light (A, top row) and polarized light (A, second row), indicate no significant changes in collagen content in TMPro/Pro:ApoE−/− mice after 6-week treatment with either Dabigatran etexilate or mouse rAPC, as compared to placebo (B). Administration of oral Dabigatran etexilate led to a significant increase in α-smooth muscle actin intraplaque content in TMPro/Pro:ApoE−/− mice vs. placebo treatment (20.6 ± 7.4% vs. 6.8 ± 3.8% of total plaque area, n = 10 per group, p < 0.05) (A, C). rAPC therapy did not have an effect (6.2 ± 7.1% of total plaque area, n = 10 per group, p > 0.05) (A, C). *p < 0.05; **p < 0.01; ***p < 0.001. Error bars represent mean ± SD. Arrows indicate examples of positive staining. Abbreviations: SR – (Picro)sirius red; α-SMA – α-smooth muscle actin; HFD – high-fat diet; VSMC – vascular smooth muscle cells; rAPC – recombinant mouse activated protein C.

doi:10.1371/journal.pone.0055784.g008
and CXCL-1 are chemokines recognized for their potent neutrophil chemoattractant activity and capacity to promote vascular inflammation [32], but also known to be critical players in recruitment of monocytes and neutrophils to sites of chronic inflammation [39,43,44]. Thrombin acts as a secretagogue, promotes endothelial dysfunction and induces the release of P-selectin, which is stored in the Weibel-Palade bodies [45]. P-selectin is a powerful mediator of neutrophil adhesion to the endothelium, but also plays an important role in atherogenesis [29,45]. Thrombin is among one of the most potent platelet activators [18]. One may also assume that part of the proatherogenic effects observed in the hypercoagulable mice can be also mediated via platelet activation, known for their crucial role in atherosclerosis progression [46,47]. Platelets interact with a variety of cellular partners such as monocytes, neutrophils, endothelial cells, endothelial progenitor cells, and others, thus induce key inflammatory responses including leukocyte adhesion, migration, proteolysis, thrombosis, but also facilitate the differentiation of macrophages to foam cells [48]. Although we did neither detect any significant correlation between the number of peripheral monocytes and atherosclerotic plaque burden, nor changes in the number of macrophages infiltrating the lesions inTMP/Pro/Pro: APOE~mice vs. control mice, this also does not rule out a role of monocytes in atherogenesis. Neutrophils can rapidly undergo apoptosis as a result of the enhanced oxidative stress. The abundant number of pro-apoptotic leukocytes within the lesions of TMP/Pro/Pro: APOE~mice can overload the phagocytic clearance capacity of the macrophages, thus promoting enhanced macrophage death and subsequent plaque necrosis [49]. In fact, the necrotic core areas and apoptotic indices within the lesions of hypercoagulable mice were substantially increased.

Conclusions and Potential Clinical Implications

Steadily increasing thrombin-antithrombin plasma levels, considered a sensitive marker of thrombin formationin vivo, were independently associated with the presence and severity of coronary atherosclerotic plaques, as defined by coronary computed tomographic angiography (CCTA) [50]. In conclusion, we here provide substantial new evidence showing that controlling coagulation via thrombin inhibition is a potential new therapeutic target to treat atherosclerosis. Given the promising safety profile and significant clinical benefits, which selective anticoagulants may offer over traditional anticoagulant therapy [51,52], including the reduction of risk of stroke and all-cause mortality after acute coronary syndromes, the potential clinical importance of these findings allows the unique opportunity to study if and how administration of novel classes of anticoagulants modifies atherosclerosis phenotype in patients. Nevertheless, due to the large heterogeneity in humans, the multifactorial nature of atherosclerosis, the dual-faceted character that many coagulation factors can exert, and their beneficial roles under normal physiological conditions, one should consider long-term specific coagulation inhibition with caution [53]. There is an urgent need of clinical trials to fully assess the overall benefit and risk balance of long-term therapy with novel oral anticoagulant agents.

Supporting Information

Figure S1 Hypercoagulability in TMP/Pro/Pro: APOE~mice does not alter lipid uptake in bone marrow-derived macrophages (BMM). (A) There were no significant differences found in the lipid uptake in BMM derived from TMP/Pro/Pro: APOE~mice and control APOE~mice, as determined by flow cytometry analysis. (B, G, D) In addition, we also used high performance thin layer chromatography to test the free cholesterol, cholesterol esters and triglycerides accumulation in BMM in response to LDL and oxidized LDL loading and there were no significant differences detected between BMM obtained from TMP/Pro/Pro: APOE~ and control APOE~mice. Error bars represent mean ± SD. Abbreviations: HP-TLC - high performance thin layer chromatography; BMM - Bone marrow-derived macrophages; LDL - low-density lipoprotein; oxLDL - oxidized low-density lipoprotein.

(DOC)

Figure S2 20% FeCl3-induced arterial injury in hyper- and hypocoagulable atherosclerosis-prone mice. Time to occlusion (TTO) and closing times (CT) were established. TTO is defined as the time after FeCl3 application required for the blood flow to decline to 90%, whereas CT represents the time from the start of flow reduction to a complete occlusion of the carotid artery. (A, B) Both TTO and CT were significantly shortened in TMP/Pro/Pro: APOE~ compared to APOE~ control mice (TTO: 4.4±0.9 vs. 14.1±1.1 min., respectively; n=10 per group, p=0.0010) (CT: 1.2±0.8 vs. 13.3±13.0 min., respectively; n=10 per group, p=0.0010), suggesting for a pro-thrombotic arterial vessel wall phenotype. In contrast, hypercoagulability in FII~ /APOE~mice had no effect on thrombus formation during FeCl3-induced arterial injury. Of note, all 10 out of 10 of the TMP/Pro/Pro: APOE~mice formed an occlusive thrombus (animals depicted at 30 min. represent all mice, which did not induce occlusive thrombus formation, indicated by an arrow). *p<0.05; **p<0.01; ***p<0.001. Dotted lines represent mean.

(DOC)

Figure S3 The effects of hypercoagulability on hematopoiesis. Using a CFU-C (colony forming unit in culture) assay, we established that there were no significant differences in the amount of total colonies produced by TMP/Pro/Pro: APOE~ as compared to APOE~ control mice after 8 weeks on a regular chow diet (A). Furthermore, we could not find any changes in the composition, as determined by the CFU subset analysis, indicating that hypercoagulability does not affect hematopoiesis in the bone marrow compartment (B). FACS analysis of the bone marrow consolidated the results of the CFU-G assay (C, D, E). The amount of LSK (Lin–/Sca-1+c-Kit+) cells showed a tendency towards an increase in the TMP/Pro/Pro: APOE~ compared to APOE~ control mice (4.2±0.8% vs. 3.7±0.7% n=12 per group, p=0.0529) (F). The amount of CMP (common myeloid progenitor) cells was significantly increased in the TMP/Pro/Pro: APOE~ mice compared to the controls (15.1±3.3% vs. 12.7±2.3%; n=12 per group, p=0.0492) (G). In addition, EMP and GMP populations in the bone marrow remained unaffected by the hypercoagulable state in TMP/Pro/Pro: APOE~ mice (H, I). *p<0.05; **p<0.01; ***p<0.001. Error bars represent mean ± SD. Abbreviations: CFU-C - colony forming unit; GM - granulocyte-macrophage progenitor; G - granulocyte progenitor; M - macrophage progenitor; LK - cells positive for LIN–c-Kit/Sca-1 lineage markers; LSK - cells positive for LIN–c-Kit/Sca-1 lineage markers; CMPs - common myeloid progenitors; GMP - granulocyte/macrophage progenitors; EMP - erythroid/megakaryocyte progenitors.

(DOC)

Table S1 Coagulation profile (A), body weight, lipid profile (B) and complete blood counts (C), assessed after 35 weeks on regular chow diet in FII~ /APOE~ , TMP/Pro/Pro: APOE~ and control APOE~ mice (n=10 per group). *p<0.05; **p<0.01; ***p<0.001. Data are presented as mean ± SD. Abbreviations: ETP - Endogenous
Protein-1

C.

Blood Count; RBC – Red Blood Cells; WBC – White Blood Cells; Lipoprotein; LDL – Low-Density Lipoprotein; CBC – Complete blood counts (C), assessed at 6 weeks after carotid collar placement in TM^{Pro-Pro}/ApoE^{−/−} mice (n = 10 per group). Data are presented as mean ± SD. Abbreviations: IL – interleukin; TNF-α - tumor necrosis factor-alpha; IFN-γ - Interferon-gamma; G-CSF - Granulocyte colony-stimulating factor; MCP-1 - monocyte chemotactic protein-1; MIP-1α - Macrophage inflammatory protein-1α; MIP-1β - Macrophage inflammatory protein-1β; RANTES - Regulated upon Activation, Normal T-cell Expressed, and Secreted; KC - keratinocyte chemoattractant. (DOC)

Methods S1

(DOC)

Acknowledgments

We gratefully acknowledge Diane Fens, Patricia Phuijmens, and Mathijs Groeneweg for their skilful help in processing and measuring specimens. We also thank Dr. Karl Wagner for developing and producing Dabigatran etexilate-supplemented chow. This study was supported by a Marie Curie fellowship (MEST-CT-2003-020706) from the European Commission (to Dr. J.I. Borissoff) and a SenterNovem grant (to Cardiovascular Research Institute Maastricht (CARIM)). Dr. J.I. Borissoff is a recipient of a Kootstra Talent Fellowship (2011) from Maastricht University and is supported by a Rubicon fellowship (825.11.019), granted by the Netherlands Organization for Scientific Research (NWO). Dr. Oliver Soehnlein is supported by the Deutsche Forschungsgemeinschaft (SFB763/3-1 and SFB763/4-1). Dr. Hugo Ten Cate is the recipient of a Gutenberg Research College Fellowship (Gutenberg University, Mainz, Germany).

Author Contributions

Conceived and designed the experiments: JIB EALB SH MJAPD JLD. Analyzed the data: JIB JJTO PL ReO OS STBGL HHS HtC. Contributed reagents/materials/analysis tools: KH TMH MJAPD JLD. Wrote the paper: JIB HHS HtC.

References

1. Degen JL, Bugge TH, Goguen JD (2007) Fibrin and fibrinolysis in infection and host defense. Journal of thrombosis and haemostasis 26: 2787–2792.
2. Delvaeye M, Consay EM (2009) Coagulation and innate immune responses: can we view them separately? Blood 114: 2367–2374.
3. Massberg S, Grahl L, von Bruehl ML, Manukyan D, Pfeiler S, et al. (2010) Reciprocal coupling of coagulation and innate immunity via neutrophil serine proteases. Nature medicine 16: 887–896.
4. Ross R (1999) Atherosclerosis - an inflammatory disease. N Engl J Med 340: 115–126.
5. Libby P (2002) Inflammation in atherosclerosis. Nature 423: 868–874.
6. Fane B, Fane BC (2008) Mechanisms of thrombus formation. N Engl J Med 359: 938–949.
7. Borissoff JI, Neereman S, Kéline É, Kasak P, Van Oerle R, et al. (2010) Early atherosclerosis exhibits an enhanced procoagulant state. Circulation 122: 1821–1830.
8. Mann J, Davies MJ (1999) Mechanisms of progression in native coronary artery disease: role of healed plaque disruption. Heart 82: 265–268.
9. Burke AP, Kolodgie DF, Farb A, Weber DR, Malcom GT, et al. (2001). Healed plaque ruptures and sudden coronary death: evidence that subclinical rupture has a role in plaque progression. Circulation 103: 934–940.
10. Finn AV, Nakano M, Narula J, Kolodgie DF, Virmani R (2010) Concept of vulnerable/unstable plaque. Arterioscler Thromb Vasc Biol 30: 1282–1292.
11. Rottermans SZ, van der Wal AC, Koch KT, Piek JJ, Henriques JP, et al. (2005) Relationship of thrombus healing to underlying plaque morphology in sudden coronary death. J Am Coll Cardiol 55: 123–132.
12. Borissoff JI, Sprock HM, ten Cate H (2009) Is Thrombin a Key Player in the “Coagulation-Atherosclerosis” Maze? Cardiovasc Res 82: 392–403.
13. Be A, Kreuzer J, Frischl M, Schaad S, Isermann B, et al. (2006) Melagatran reduces advanced atherosclerotic lesion size and may promote plaque stability in apolipoprotein E-deficient mice. Arteriosclerosis, thrombosis, and vascular biology 26: 2787–2792.
14. Kadogou NP, Moustardas P, Kasiotopoulos M, Kapelouzou A, Kostomisopoulos N, et al. (2012) The Beneficial Effects of a Direct Thrombin Inhibitor, Dabigatran Exetilate, on the Development and Stability of Atherosclerotic Lesions in Apolipoprotein E-deficient Mice: Dabigatran exetilate and atherosclerosis. Cardiovasc Drugs Ther.
15. Lee IO, Kratz MT, Schirmer SH, Baumhakel M, Bohm M (2011) The effects of direct thrombin inhibition with dabigatran on plaque formation and endothelial function in Apolipoprotein E-Deficient mice. J Pharmacol Exp Ther.
16. Serbaus S, Shahzad K, Vassilis IA, Schiller M, et al. (2009) Hypercoagulability inhibits monocyte transendothelial migration through protease-activated receptor-1, phospholipase-Cbeta-, phosphoinositide 3-kinase-, and nitric oxide-dependent signaling in monocytes and promotes plaque stability. Circulation 120: 774–784.
17. Borissoff JI, Sprock HM, ten Cate H (2011) The hemostatic system as a modulator of atherosclerosis. The New England journal of medicine 364: 1746–1760.
18. Schmitz-Hertzog H, Christie PD, Becker DL, Healy AM, Hancock WW, et al. (1998) A targeted point mutation in thrombomodulin generates viable mice with a prethrombotic state. The Journal of clinical investigation 101: 1983–1991.
19. Sun WY, Witte DP, Degen JL, Colbert MC, Burkart MC, et al. (1998) Postthrombogenic deficiency results in embryonic and neonatal lethality in mice with a prothrombotic state. Proceedings of the National Academy of Sciences of the United States of America 95: 7397–7402.
20. von der Thüsen JH, van Berkel TJ, Biesen EA (2001) Induction of rapid atherogenesis by perivascular carotid collar placement in apolipoprotein E-deficient and low-density lipoprotein receptor-deficient mice. Circulation 103: 1164–1170.
21. Tacke F, Alvarez D, Kaplan TJ, Jakubick C, Spanbroek R, et al. (2007) Monocyte subsets differentially employ CCXCR2, CCR5, and CX3CR1 to accumulate within atherosclerotic plaques. The Journal of clinical investigation 117: 185–194.
23. Westrick RJ, Bodary PF, Xu Z, Shen YC, Broaz GJ, et al. (2003) Deficiency of tissue factor pathway inhibitor promotes atherosclerosis and thrombosis in mice. Circulation 103: 3044–3046.

24. Eitzman DT, Westrick RJ, Shen Y, Bodary PF, Gu S, et al. (2005) Homozygosity for factor V Leiden leads to enhanced thrombosis and atherosclerosis in mice. Circulation 111: 1822–1825.

25. Castellino FJ, Ganopolsky JG, Naria F, Sandalov-Cooper MJ, Ploplis VA (2006) Focal arterial inflammation is augmented in mice with a deficiency of the protein C gene. Thromb Haemost 96: 794–803.

26. Iwaki T, Sandalov-Cooper MJ, Brechmann M, Ploplis VA, Castellino FJ (2006) A fibrinogen deficiency accelerates the initiation of LDL cholesterol-driven atherosclerosis via thrombin generation and platelet activation in genetically predisposed mice. Blood 107: 3893–3898.

27. Vicente CP, He L, Tollefsen DM (2007) Accelerated atherogenesis and neutinima formation in heparin cofactor II deficient mice. Blood 110: 4261–4267.

28. Wei HJ, Li YH, Shi GY, Liu SL, Chang PC, et al. (2011) Thrombomodulin domains attenuate atherosclerosis by inhibiting thrombin-induced endothelial cell activation. Cardiovascular research 92: 317–327.

29. Kiszukas J, Chauhan AK, Zhao BQ, Patten IS, Yesilaltay A, et al. (2009) Elevated levels of soluble P-selectin in mice alter blood-brain barrier function, exacerbate stroke, and promote atherosclerosis. Blood 113: 6015–6022.

30. Esmon CT (2005) The interactions between inflammation and coagulation. Br J Haematol 131: 417–430.

31. Van de Wouver M, Cullen D, Conway EM (2004) Thrombomodulin-protein C- EPCR system: integrated to regulate coagulation and inflammation. Arterioscler, thrombosis, and vascular biology 24: 1347–1383.

32. Zernecke A, Weber C (2010) Chemokines in the vascular inflammatory response of atherosclerosis. Cardiovascular research 86: 192–201.

33. Drecialde M, Megens RT, van Zandvoort M, Weber C, Soehnlein O (2010) Hyperlipidemia-triggered neutrophilia promotes early atherosclerosis. Circulation 122: 1837–1845.

34. Ionita MG, van den Borne P, Catanzariti LM, Moll FL, de Vries JP, et al. (2010) Fibrinogen deficiency accelerates the initiation of LDL cholesterol-driven atherosclerosis via thrombin generation and platelet activation in genetically predisposed mice. Blood 107: 3883–3891.

35. Rotzius P, Thams S, Soehnlein O, Keene E, Tseng CN, et al. (2010) Distinct infiltration of neutrophils in lesion shoulders in ApoE/−/− mice. The American journal of pathology 177: 493–500.

36. Johnston B, Burns AR, Sue amatsu M, Inskizut T, Woodman RC, et al. (1999) Chronic inflammation upregulates chemokine receptors and induces neutrophil migration to monocyte chemoattractant protein-1. The Journal of clinical investigation 103: 1269–1276.

37. Nasr N, Ruidavets JB, Arnal JF, Sie P, Larrue V (2009) Association of neutrophil infiltration of neutrophils in lesion shoulders in ApoE/−/− mice. Thromb Haemost 96: 794–803.

38. Drechsler M, Doring Y, Megens RT, Soehnlein O (2011) Neutrophilic inflammation upregulates chemokine receptors and induces neutrophil migration to monocyte chemoattractant protein-1. The Journal of clinical investigation 103: 1269–1276.

39. Barret A, Corsini A (2010) Role of polymorphonuclear neutrophils in atherosclerosis: current state and future perspectives. Atherosclerosis 210: 1–13.

40. Falanga A, Marchetti M, Evangelista V, Manarini S, Oldani E, et al. (1999) Neutrophil activation and hemostatic changes in healthy donors receiving granulocyte colony-stimulating factor. Blood 93: 2506–2514.

41. Cella G, Marchetti M, Vignoli A, Randi ML, Saggiorato G, et al. (2006) Blood oxidative status and-selectins plasma levels in healthy donors receiving granulocyte-colony stimulating factor. Leukemia 20: 1430–1434.

42. Demers M, Krause D8, Schatsberg D, Martinus K, Voorhees JR, et al. (2012) Cancers predispose neutrophils to release extracellular DNA traps that contribute to cancer-associated thrombosis. Proceedings of the National Academy of Sciences of the United States of America 109: 13076–13081.

43. Baetta R, Corsini A (2010) Role of polymorphonuclear neutrophils in atherosclerosis: current state and future perspectives. Atherosclerosis 210: 1–13.