Roles of Organic Fragments in Redirecting Crystal/Molecular Structures of Inorganic–Organic Hybrids Based on Lacunary Keggin-Type Polyoxometalates

Ruhollah Khajavian 1, Vida Jodaian 2,*, Fatemeh Taghipour 1, Joel T. Mague 3 and Masoud Mirzaei 1, 4

1 Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, Mashhad 9177948974, Iran; ruhollah_khajavian2002@yahoo.com (R.K.); fatemetaghipoor@gmail.com (F.T.)
2 Department of Chemistry, Islamshahr Branch, Islamic Azad University, Islamshahr 3317843154, Iran
3 Department of Chemistry, Tulane University, New Orleans, LA 70118, USA; joelt@tulane.edu
4 Correspondence: hvidajodaian@yahoo.co.nz (V.J.); mirzaeesh@um.ac.ir (M.M.); Tel: +98-513-880-5554 (M.M.)

Abstract: Lacunary polyoxometalates (LPOMs) are key precursors for the synthesis of functional POMs. To date, reviews dedicated to behavioral studies of LPOMs often comprise the role of metal ions, including transition metal (TM) and rare earth (RE) ions, in extending and stability of high-nuclearity clusters. In contrast, the role of organic ligands in the structures and properties of lacunary-based hybrids has remained less explored. In this review, we focus on the role of organic fragments in the self-assembling process of POM-based architectures and discuss relationships between the nature and structure of organic ligand and properties such as the topology of hybrid inorganic–organic material in RE and TM-RE heterometallic derivatives of lacunary Keggin-type POMs. The effects of organic fragment in mixed ligand hybrids are also briefly reviewed.

Keywords: polyoxometalates; Keggin; inorganic–organic hybrids; rare earth; lacunary

1. Introduction

Polyoxometalates (POMs), a large group of fascinating polynuclear metal-oxo clusters of early transition metals such as Mo, W and V, constitute a marvelous class of inorganic systems, due to their intriguing structures and remarkable potential applications in electrochemistry, catalysis, magnetism, and medicine [1–6]. Lacunary POMs (LPOMs) with a set of remarkable properties such as high coordination reactivity, rigidity, oxidative and thermal stability are an important sub-class of POMs [7]. Typically, LPOMs imply that topologies gain by the loss of one single [MO] moiety or multiple [M_{x}O_{2x-1}] moieties, resulting in the formation of the monolacunary or polylacunary POMs, respectively. Mainly, lacunary species are limited to polyoxotungstates, while lacunary POMs of polyoxomolybdates and polyoxovanadates are uncommon [8]. Tungsten skeleton of the POMs with saturated Keggin [XW_{12}O_{40}]^{n−} and Wells–Dawson-type [X_{2}W_{18}O_{62}]^{n−} structures can be partially decomposed by the addition of a weak base, while retaining the original Keggin and Wells–Dawson-type structures, to form lacunary species, such as [XW_{17}O_{39}]^{n−} and [X_{2}W_{17}O_{61}]^{n−} [9]. The lacunary species with high negative charge and nucleophilic oxygen-enriched surfaces can interact with various cations. In fact, owing to the negative-charged surface and defect binding sites, LPOMs can act as outstanding multidentate nucleophilic ligands toward the electrophilic center. Transition metal (TM) or lanthanoid (Ln) cations can be incorporated into the defect sites of LPOMs to form metal-substituted POMs, which exhibit unique chemical properties that depend on the incorporated metal ions [10–22]. Metal-substituted POMs possess a higher negative charge density than the saturated parent POMs due to the substitution of a high oxidation state W^{v+} ion by a low oxidation state Mn^{2+} ion (usually n = 1–3). One of the promising approaches toward the synthesis of this kind of material is combining metal-substituted POMs with organic or metal–organic fragments.
to make inorganic–organic hybrid-based LPOMs. Various POM-based inorganic–organic hybrids with interesting structural and functional properties were reported [23–25]. In this field, a certified fact is that the synthesis of such hybrids depends on the selection of POMs as inorganic building blocks and organic ligands as structure-directing and functional components. Therefore, the careful choice of POM species and organic ligands are vital for the synthesis of hybrids with intriguing topologies and improved properties. The utilization of organic fragments as a solvent or coordinated with metal centers in the metal-substituted POM compounds can improve physical and chemical properties of these compounds. Most metal-substituted POM hybrids contain N-donor organic ligands. In these structures, organic fragments not only act as charge-compensation cations, but also as multidentate chelating agents to coordinate TM or Ln cations. This highlights the significant role of organic ligands as stabilizing agents in forming hybrid structures. The general structures discussed in this review are summarized in Figure 1.

Figure 1. Some organic ligands employed to inorganic–organic hybrids based on lacunary Keggin-type polyoxometalates in the literature.

In the present review, we highlight the most important investigations of inorganic–organic hybrid compounds combining LPOMs with TM and Ln centers. This field of research reveals a great variety of N/O-donor ligands and their potential roles in the assembly of metal-substituted POMs that have not been previously reviewed. Therefore, this review provides a comprehensive description of the different roles of various ligands in their interaction with these relevant inorganic clusters.

2. Inorganic–Organic Hybrids Based on TMSPs

TM-substituted polyoxometalates (TMSPs) are an important class of materials [26,27]. Compared to nonlacunary heteropolyoxometalates, the localized surface charge of LPOMs have made them reactive building blocks for the construction of these hybrids. They are commonly used as excellent precursors, since (i) the LPOMs are easy to obtain from intact materials in high yield, (ii) vacant sites are conducive to encapsulate various transition metals, including mixed-valent metal ions, and (iii) the robustness of POMs makes it possible to predict the frameworks of the ultimate products. Hundreds of different types of LPOMs saturated by TM or even TM complexes have been reported in recent years [28–31]. However, the introduction of an organic ligand in TMSPs has a pivotal impact on the chemical/physical properties or the structural features of the hybrid via synergetic effects between the properties of the POM and those of the ligand. Therefore, the role of the organic ligands as structure-directing agents is predominant in these inorganic–organic hybrid
constructions, a point that is less considered in the compounds containing polyoxometalate clusters. Because of the nucleophilic interaction between POM anions and TM complexes, popular series of inorganic–organic hybrids based on lacunary POMs are composed of discrete structures that TM complexes substituted in the vacant sites of POMs. Many structures are reported that have these characteristics [32–37]. Abundant sandwich-type TMSPs are reported to have a varied nuclear core. Among them are some TM cores that are coordinated to organic ligands. Furthermore, additional TM complexes can have roles of charge compensation or structure-directing and promote the dimension of these TMSPs. For instance, organic solvents such as DMF and DMSO can be appropriate ligands for coordination to the TMSPs [38–41]. Table 1 provides an exhaustive list of various N-/O-donor ligands that can be connected to LPOMs.

2.1. TMSPs with N-Donor Ligands

Metal complexes of lacuna are popular in studies of POM hybrids. For example, Kato et al. studied the interaction of some TM-substituted α-Keggin polyoxotungstates with cis-platinum(II) moieties containing N-donor ligands [42–44]. Magnetic properties are highly dependent on the nature of the bridging ligands. In the KRh[(PW10O37)(Ni(H2O)2(μ-1,1-N3))]19H2O discrete cluster, N3− is connected with two NiII ions substituted in the vacant sites of the polyanion and the relationship between the structural parameters and the value of the magnetic exchange parameter J for μ-1,1-N3 complexes is considered [45].

Multi-dentate N-donor ligands as structure-stabilizing agents can capture and stabilize the in situ-generated TM oligomers or aggregates to construct novel POMs. en is another bidentate N-donor organic fragment that has largely been employed in the TMSPs. Compounds such as [Ni6(μ3-OH)3(en)3(H2O)6(B-α-AsW9O34)]6H2O and [Ni6(μ3-OH)3(en)3(H2O)6(B-α-AsW9O34)]10H2O are important examples of hexa-Ni-substituted POMs based on single lacunary Keggin fragments because they contain the highest number of transition metal ions in known lacunary Keggin arsenotungstate monomers [46,47]. Discrete dimers (H2en)2[CuII8(en)4(H2O)2(B-α-GeW9O34)12]5H2O and (H2en)2[CuII8(en)4(H2O)2(B-α-SiW9O34)12]8H2O are constructed from two trivacant Keggin [B-α-XW9O34]10− (X=GeIV/SiIV) fragments and an octa-Cu cluster [48]. In these structures, hydrogen bonding interactions between the nitrogen atoms of en ligands and surface oxygen atoms of polyoxoanions generate extended supramolecular networks [49]. In the case of H10K2Na2[Zr4(μ3-O)2(μ-OH)2(en)2(B-α-GeW10O32)]4DMF·2H2O as the first Zr-substituted POM with N–Zr–N bonds; however, a 1D chain structure is formed through the connection of potassium cations and sandwich-type polyoxoanion [50]. Another interesting example is the structure of [Cu(en)2(H2O)2][Cu(en)2][α-PCuW11O39Cl]·3H2O, which is similar to those of ([Cu(en)2(H2O)][Cu(en)2][α-PCuW11O39Cl]·6H2O and ([Cu(en)2][α-PCuW11O39Cl]·6H2O [51]. However, the first is an isolated structure whereas the second and third are 1D linear polymeric chains through [Cu(en)2]2+ bridges via Cu–Cl–Cu–O–W linkages [52]. Belt-like hexa-CuII cluster-substituted POM, [Cu6(en)2(H2O)2(B-α-GeW9O34)2], in the presence of two [Cu(en)2]2+ units or [Cu4(deta)(H2O)2]2+ complex bridges form a 1D chain structure, as is found in the other similar hexa-CuII cluster-substituted POM with Cu(en)2 bridges [53,54]. In these cases, the coordination of en ligands on the hexa-CuII cluster increases the number of the TM cations in the sandwich belt. In fact, each [Cu6(en)2(H2O)2(B-α-GeW9O34)2] as a complete cluster connects four others via four Cu(en)22+ bridges to form a novel 3D framework, which is rare in sandwich-type POMs [55,56]. Similarly, [CuII(H2O)2][CuII6(en)3(H2O)3(B-α-SiW9O34)2] displays 3D (3,6)-connected nets with (4·62)·(42·64·82·102) topology, which are built by octa-Cu sandwiched polyoxometalate building blocks through copper cation bridges [48].

[[Cu6(μ3-OH)3(en)3(H2O)3(B-α-PW9O34)]·7H2O exhibits an unprecedented 3D framework with hexagonal channels enclosed by three interweaved helical chains in the TMSP chemistry [46]. The steric effect of organic ligands is known to be an important factor in the modification of the structure of coordination compounds, and smaller steric hindrance of the organic ligands favored the POM anions functioning as high-connected
linkages in coordination compounds. Thus, the substitution of dap by en organic ligands in the compounds with the same dimeric Keggin polyoxoanions \([\text{PW}_{11}\text{CuO}_{39}]^{10–}\) results in different dimensionality. \([\text{Cu(en)}_2]^{2+}\) fragments have smaller volume and steric hindrance in comparison with \([\text{Cu(dap)}]^{2+}\) and, hence, have easy access to \([\text{PW}_{11}\text{CuO}_{39}]^{10–}\) dimers to link with their external active oxygen atoms, forming higher-dimensional and higher-connected POM-based hybrid compounds \([52,57]\).

Sandwich-type structures can encapsulate TM clusters. \([\text{Cu(dap)}]^{2+}(\text{H}_2\text{O})_2]\{\text{Cu(dap)}\}_2(\text{B-α-SiW}_{12}\text{O}_{40})\}_2\}·4\text{H}_2\text{O}\) is an example of a sandwich-type structure with a hexa-nuclear ring \([58]\). Some discrete dimers are also constructed from two trivacant Keggin \([\text{B-α-XW}_{10}\text{O}_{34}]^{10–}\) (X=Ge\(^{IV}\)/Si\(^{IV}\)) fragments and a \([\text{Cu}(\text{dap})]^{2+}\) complex \([46,48]\). The double-cluster complex of \([\text{Ni}_{10}(\mu_3-\text{OH})\text{O}_2(\text{dap})_2(\text{H}_2\text{O})_6][\text{Cu}(\text{dap})_2(\text{H}_2\text{O})_2]\{\text{Cu}(\text{dap})_2(\text{H}_2\text{O})_2\}_2\}·4\text{H}_2\text{O}\) is a unique structure containing both hexa- and hepta-Ni\(^{II}\)-substituted trivacant Keggin clusters of \([\text{Ni}_{10}(\text{dap})_3\text{PW}_9]\) and \([\text{Ni}_{10}(\text{dap})_3\text{PW}_9]\) \([46]\). Linear organic ligands such as dap can link the sandwich POTs as nodes \([39,60]\). For example, Chen et al. reported a tetra-nuclear \([\text{Co}^{II}_4(\text{Hdap})_2]\) substituted sandwich-type Keggin germanotungstate unit with \([\text{Co}(\text{dap})]^{2+}\) bridges that represented the first 2D organic–inorganic hybrid cobalt-substituted sandwich-type polyoxotungstate \([61]\).

\([\text{Ni}_{10}(\mu_3-\text{OH})\text{O}_2(\text{dien})_2(\text{B-α-PW}_{12}\text{O}_{34})]\}_2\}·4\text{H}_2\text{O}\) is the first extended TMSP with a 1D zigzag chain made of Ni and \(\text{PW}_{12}\) SBU s via corner-sharing between \([\text{NiO}_6]\) and \(\text{WO}_6\) octahedra via intermolecular interactions. This compound contains the highest number of Ni ions in any known lacunary Keggin polyoxotungstate, as well \([62]\). In addition to its usual coordination mode, dien can bridge between metal centers, as well. For example, a 2D layer-like structure has been recently reported in which \([\text{Bi}_2\text{W}_{20}\text{O}_{70}]^{14–}\) polyanions are linked by \([\text{Cu}(\text{dien})_2]^{2+}\) bridges \([63]\).

bpy and phen, as rigid organic ligands, are powerful tools controlling the structure of the final product because they can act as structure-stabilizing agents or structure-directing agents to influence coordination geometries or connecting modes of transition-metals in the vacant sites of POTs in the construction of novel TMSPs. In addition, the N-donor groups may also generate hydrogen bonding interactions and \(\pi–\pi\) interactions in the formation of target structures, which may affect the properties of complexes \([64–69]\). A survey of the literature shows that investigations on bpy/phen-containing copper-complex-substituted Keggin POTs have been reported extensively \([70,71]\); however, organic–inorganic hybrid di-copper-bpy/phen-substituted monovacant Keggin POTs have been explored to a limited extent.

Compound \([\text{Cu}_1^\text{III}(\text{phen})_2\text{Cl}_2][\text{Cu}_1^\text{II}(\text{phen})_2][\text{Cu}_2^\text{II}(\text{phen})_2\{\text{PW}_{11}\text{O}_{39}\}]\) represents the first discrete di-copper-phen complex-substituted monovacant Keggin polyoxotungstate. It is of note that the \(\pi–\pi\) interactions between adjacent phen rings may play an important role in the structure stabilization of the title compound \([43,68]\). In the compound \([\text{Cu}_1^\text{III}(\text{pz})_2(\text{phen})_3]_2[\text{Cu}^\text{II}(\text{phen})_2][\text{Na}(\text{H}_2\text{O})_2][\text{VI}^\text{IV}_3\text{Cu}^\text{II}_6\text{O}_6(\text{As}^\text{V}_{12}\text{W}_{12}\text{O}_{33})]_2\}·6\text{H}_2\text{O}\), two \([\text{AsW}_{12}\text{O}_{33}]\) clusters are connected by the mixed hexa-TM ring unit \([\text{VI}^\text{IV}_3\text{Cu}^\text{II}_6\text{O}_6]\) to form a sandwich-type dimer, which are further bonded in “ABAB” mode by the \([\text{Na}(\text{H}_2\text{O})_2]\) linker, resulting in pure inorganic chains. The unique “L-shaped” trinuclear complex \([\text{Cu}_2(\text{pz})_2(\text{phen})_3]\) is supported together via staggered \(\pi–\pi\) interactions to generate extending waveform 2D supramolecular layers, which are further aggregated with their adjacent analogues by complexes \([\text{Cu}(\text{phen})_2]\) via H-bonding interactions to yield an unprecedented 3D metal–organic network with 1D cavities. The pure inorganic 1D sandwich chains are implanted in the cavities as guest units via supramolecular interactions to form a POMOF 3D framework \([72]\). In the skeleton of \([\text{Cu}^\text{II}(\text{bpy})(\text{H}_2\text{O})][\text{Cu}^\text{II}_2(\text{bpy})_2(\text{H}_2\text{O})\{\alpha-\text{PW}_{11}\text{O}_{39}\}]\}_2\}·\text{H}_2\text{O}\), there are three crystallographically unique \(\text{Cu}^\text{II}\) cations. They all adopt the square pyramid geometry with two N atoms from 2,2′-bpy ligands and three O atoms from the \([\alpha-\text{PW}_{11}\text{O}_{39}]^{7–}\) fragments or water molecules. This complex displays a 1D zigzag infinite chain architecture constructed by alternating di-copper-bpy-substituted \([\text{Cu}^\text{II}_2(\text{bpy})_2(\text{H}_2\text{O})(\alpha-\text{HPW}_{11}\text{O}_{39})]\) polyoxoanions with Cu–O linkers. Notably, this com-
compound is a new di-transition metal-bpy-substituted monovacant Keggin phosphotungstate with a 1D dual-bridging chain structure [68].

The reactivity of other nitrogen heterocyclic ligands such as imi has also been studied. It has been shown that imi ligands connect to metal ions via M–Nimi bonds, and no M–Cimi bond in POMs has been observed to date [73–77]. In addition, numerous studies have shown that imi could interfere with DNA via weak interactions (hydrogen bonds, π–π stacking, etc.), and then halt cell growth and division [78,79]. Compound \([\text{Ag}_2\text{(H}_{2}\text{biim})_2]\)Cl·H_2O displays a 2D network featuring dimerized monolacunar Keggin anions [PW_{11}O_{39}]_2 which are connected through hexanuclear silver clusters. Interestingly, besides \([\text{Ag}_5]^{5+}\) clusters, there are other kinds of argentophilic \([\text{Ag}_4]^{4+}\) clusters coexisting in this compound [80]. Liu et al. reported three hexa-nuclear-substituted sandwich-type arsenotungstates [81]. The transition metal ions (NiII, CoII, and MnII) and Na+ are alternately coordinated in the six-membered central belt by \([\eta^2-\text{AsW}_9\text{O}_{33}]^{9–}\) units, taz, and water molecules. The contribution of nitrogen atoms of the ligands in the formation of hydrogen bonding network leads to the fortification of the structures [81]. Htz as a rigid multifunctional ligand can provide four sequential electron-donating nitrogen atoms to coordinate to metals with the smaller steric hindrance. Many metal–organic frameworks based on Htz ligands exhibit intriguing topologies and interesting magnetic, absorptive, and photophysical properties, having diverse coordination/bridging modes [82,83]. For example, in \([\text{Cu}_{48}(\text{tz})_{6}(\text{H}_{2}\text{O})_5][\text{PMo}^{VI}_{10}\text{Mo}^{V}\text{O}_{39}]\)·10H_2O, the six-nuclear copper clusters are bridged by the tz ligands to form wave-like layers by the \(\eta^2\)-Hzt ligands. The polyoxomolybdate anions act as the eight-connected node to link the layers into a 3D framework [84].

2.2. TMSPs with O-Donor Ligands

O-donor ligands have been comparatively less studied than flexible nitrogen donating ligands for the design and synthesis of new hybrids. As a peculiar branch of POMs, considerable attention has been directed toward POM-based metal carbonyl derivatives in recent years because of their unique structures and potential catalytic properties [85–88]. For example, Na₂H₂[(CH₃)₄N]₆[Te₂W₂₀O₇₀(Re(CO)₅)₂]·20H₂O is a monomeric tellurotungstate(IV)-supported rhenium carbonyl derivative similar to that of the previously reported tricarbonyl metal polyoxoanion complexes \([\text{X}_2\text{W}_{20}\text{O}_{70}(\text{M(CO)}_{15})_2]^{12–}\) (X = Sb, Bi and M = Re, Mn) composed of two identical \([\beta\beta\text{TeW}_9\text{O}_{33}]\) units joined by two \([\text{WO}_6]\) octahedra. Furthermore, two Re atoms and two central W atoms are located in the same plane and each carbonyl rhenium group fac-[Re(CO)₅]⁺ is in the “out-of-pocket” structural motif [88].

Acetate has been frequently used as a bridging ligand to connect different fragments. For example, in the monomeric structure of \([\gamma\text{-H}_2\text{SiW}_{18}\text{O}_{56}\text{Pd}_2(\text{OAc})_2]\)⁴⁻, Pd atoms are bridged by two bidentate acetate ligands [89]. However, the synthesis is usually performed in acetate buffer solution [90]. Crown-shaped Ru-substituted arsenotungstate \([\text{As}_3\text{W}_{40}\text{O}_{140}(\text{Ru}_2(\text{OAc}))_2]\)·22H₂O present a new acetate-bridged Ru-substituted arsenotungstate. \([\text{As}_4\text{W}_{40}\text{O}_{140}]^{28–}\) cyclic unit embeds two \([\text{Ru}_2(\text{OAc})]\)⁷⁺ segments in its cavities. A bidentate acetate ligand connects two diametrically opposed Ru atoms in a \((\mu_2-\eta^1\cdot\eta^1)^1\) fashion. As far as we know, such a crown-shaped acetate-bridged Ru-substituted arsenotungstate is the first report that supports the structural novelty of this rare compound [91]. Kholdeeva, Kortz, and co-workers reported isolated polyanions with unprecedented hexazirconium and hexa-hafnium core and the metal ions occupying the vertices of an octahedron that is accommodated by two (β-AsW₉O₃₃) fragments. The two \((\text{AsW}_9)\) units are not eclipsed, leaving a cavity perfectly suitable to host the M₆ unit. Furthermore, five bridging acetate ligands lead to stronger bonding between metal centers [92]. The first carboxylic group decorated arsenotungstate was reported in 2015 [93]. Each MnII ion in the \(\text{Na}_{15}[(\text{Mn}^{II}(\text{COOH}))_3(\text{AsW}_9\text{O}_{33})_2](\text{H}_{2}\text{O})_2\)·15H₂O is chelated with four oxygen atoms (\(\mu_2-\text{O}\)) from four \([\text{WO}_6]\) octahedra belonging to two different \([\text{AsW}_9]\) units and edge-sharing with two adjacent \([\text{NaO}_6]\) groups. The most interesting structural feature is that three carboxylic groups are separately bonded to three manganese ions.
[Ni(en)(H2O)4]3[Si6(en)3(1,3-bdc)1.5(B−PCW6O34)]2·8H2O represents the first 2D polyoxometalate cluster organic frameworks with honeycomb-like lattice consisting of [Ni(en)3(1,3-bdc)1.5(B−PCW6O34)] structural building units linked by 1,3-bdc ligands. Although the honeycomb-like lattice-based POMs and organic ligands have been investigated, there is no example based on TMSPs as structural building units. It is remarkable that H[Ni6(en)3(H2O)]2[Ni6(en)3(OAc)2(Tris)(H2O)2](B−PCW6O34)]5H2O is functionalized by three types of organic ligands, which is rare in POMs. Furthermore, the nitrogen atoms of the Tris ligand incorporate in hydrogen bonding and help to expand the structure [94]. Subjoining of multi-dentate organic ligands such as tartaric acid and glycolic acid into tetranuclear sandwich-type [Zr4(H2O)2(µ3-O)2(PhW10O37)2]2− not only helps in the fortification of the sandwich-type cluster, but also, in some cases, induces chirality in the polyoxometalates [95]. Utilization of the dicarboxylato ligands such as [OOC(CH2)4COO]2− (adipate), instead of monocarboxylate ligands, can lead to the oligomeric structure. As shown in the dimeric helical Na2K12[Ni(H2O)6][SiW9O34](OH)6Ni6(C6H8O4)3·40H2O structure, three adipato linkers connect two [SiW9Ni4] units (Figure 2) [96]. Liu et al. reported unique nona-Mn10-encapsulated sandwich-type species in which the utilization of three oxalate ligands lead to the formation of planar hexagonal [Mn6] core. This structure was further connected to another three external Mn10 cations and constructed a 1D oxalate-bridging high-nuclear Mn-sandwiched antimonotungstate chain [97]. The utilization of chiral ligands and transfer of chirality to achiral LPOM units has been reported by using L- or D-tartrate units (tart) in the large polyoxoanion compound [a−P2W16O50]12− [98]. In another interesting study, Ishimoto et al. successfully prepared a BINOL-functionalized lacunary Keggin-type POM for the asymmetric oxidation of thioanisole [99]. This is especially true in POMs, which contain multiple metal centers that are subject to rapid racemization via water exchange, partial hydrolysis, or fluxional rearrangements. As a result, it is often challenging to discriminate between enantiomers and/or diastereomers, and even more formidable to achieve partial or complete resolution. The polytungstate assembly of [(a−P2W16O50)Zr2(µ3-O)(mal)]218− consists of two divacant [a−P2W16O50]12− anions linked by four Zr cations and is constitutionally similar to the centrosymmetric complex, [Zr4(µ3-O)2(µ2-OH)2(H2O)4(P2W16O59)2]14−, reported by Pope et al. [100]. While in it, the µ2-OH and terminal aqua ligands are replaced by the oxygens of the ligating malates (from carboxylate and hydroxio moieties) [101]. Changing organic units to D/L-mandelic acid has been seen in similar architecture [102]. Wang et al. also reported four similar chiral sandwich-type compounds consisting of tetra-ZrIV-substituted sandwich-type Keggin polyoxoanion and L-/D-mal fragments. The most striking structural feature of (NH4)3Na3K5[Zr4(µ3-O)2(L-mal)(D-mal)(B−SiW10O37)]2 relative to similar compounds is that each [Zr4(µ3-O)2(L-mal)(D-mal)(B−SiW10O37)]10− polyoxoanion joins adjacent six K+ bridges and each K+ bridge links to adjacent three [Zr4(µ3-O)2(L-mal)(D-mal) (B−SiW10O37)]10− polyoxoanions, leading to a 2D layer. Furthermore, adjacent 2D layers are interconnected by two Na+ cations, forming a 3D framework [103].

Figure 2. (a) Structure of Na2K12[Ni(H2O)6][SiW9O34](OH)6Ni6(C6H8O4)3·40H2O hybrid with adipic acid as ligand; (b) structure of Na1.5K2.5[Ni(H2O)6]0.5(SiW9O34)(OH)3Ni4(C6H13NO2)3·17H2O hybrid with dimethylaminobutiric acid as ligand [96].
Table 1. Summary of inorganic–organic hybrids based on TMSPs with N-/O-donor ligands.

Compound	LPOM	Metal	Ligand	Ref.
[(CH₃)₂N]₄[α-PW₁₁O₃₉(cis-Pt(NH₃)₂)]·10H₂O	mono	Pt	amine	[42]
[(CH₃)₂N]₄[α-SiW₁₁O₃₉(cis-Pt(NH₃)₂)]·13H₂O	mono	Pt	amine	[43]
[(CH₃)₂N]₄[α-GeW₁₁O₃₉(cis-Pt(NH₃)₂)]·11H₂O	mono	Pt	2,2’-bipyridine	[44]
[(CH₃)₂N]₄[α-AIW₁₁O₃₉(cis-Pt(NH₃)₂)]·11H₂O	mono	Pt	1,10-phenanthroline	[45]
{[Ni₆(μ₂-α)-OH]₃(H₂O)}₃(B₭-AsW₈O₂₁)·6H₂O	mono	Pt	N₄N’-dimethylpipерazine	[46]
{[Ni₆(μ₂-α)-OH]₃(H₂O)}₃(B₭-AsW₈O₂₁)·6H₂O	mono	Pt	azide	[47]
{[Ni₆(μ₂-α)-OH]₃(H₂O)}₃(B₭-AsW₈O₂₁)·6H₂O	mono	Pt	ethylenediamine	[48]
{[Ni₆(μ₂-α)-OH]₃(H₂O)}₃(B₭-AsW₈O₂₁)·6H₂O	mono	Pt	1,2-diaminopropane	[49]
{[Ni₆(μ₂-α)-OH]₃(H₂O)}₃(B₭-AsW₈O₂₁)·6H₂O	mono	Pt	ethylenediamine	[50]
{[Ni₆(μ₂-α)-OH]₃(H₂O)}₃(B₭-AsW₈O₂₁)·6H₂O	mono	Pt	ethylenediamine	[51]
{[Ni₆(μ₂-α)-OH]₃(H₂O)}₃(B₭-AsW₈O₂₁)·6H₂O	mono	Pt	ethylenediamine	[52]
{[Ni₆(μ₂-α)-OH]₃(H₂O)}₃(B₭-AsW₈O₂₁)·6H₂O	mono	Pt	ethylenediamine	[53]
{[Ni₆(μ₂-α)-OH]₃(H₂O)}₃(B₭-AsW₈O₂₁)·6H₂O	mono	Pt	ethylenediamine	[54]
{[Ni₆(μ₂-α)-OH]₃(H₂O)}₃(B₭-AsW₈O₂₁)·6H₂O	mono	Pt	ethylenediamine	[55]
{[Ni₆(μ₂-α)-OH]₃(H₂O)}₃(B₭-AsW₈O₂₁)·6H₂O	mono	Pt	ethylenediamine	[56]
{[Ni₆(μ₂-α)-OH]₃(H₂O)}₃(B₭-AsW₈O₂₁)·6H₂O	mono	Pt	ethylenediamine	[57]
{[Ni₆(μ₂-α)-OH]₃(H₂O)}₃(B₭-AsW₈O₂₁)·6H₂O	mono	Pt	ethylenediamine	[58]
{[Ni₆(μ₂-α)-OH]₃(H₂O)}₃(B₭-AsW₈O₂₁)·6H₂O	mono	Pt	ethylenediamine	[59]
{[Ni₆(μ₂-α)-OH]₃(H₂O)}₃(B₭-AsW₈O₂₁)·6H₂O	mono	Pt	ethylenediamine	[60]
{[Ni₆(μ₂-α)-OH]₃(H₂O)}₃(B₭-AsW₈O₂₁)·6H₂O	mono	Pt	ethylenediamine	[61]
{[Ni₆(μ₂-α)-OH]₃(H₂O)}₃(B₭-AsW₈O₂₁)·6H₂O	mono	Pt	ethylenediamine	[62]
{[Ni₆(μ₂-α)-OH]₃(H₂O)}₃(B₭-AsW₈O₂₁)·6H₂O	mono	Pt	ethylenediamine	[63]
{[Ni₆(μ₂-α)-OH]₃(H₂O)}₃(B₭-AsW₈O₂₁)·6H₂O	mono	Pt	ethylenediamine	[64]
{[Ni₆(μ₂-α)-OH]₃(H₂O)}₃(B₭-AsW₈O₂₁)·6H₂O	mono	Pt	ethylenediamine	[65]
{[Ni₆(μ₂-α)-OH]₃(H₂O)}₃(B₭-AsW₈O₂₁)·6H₂O	mono	Pt	ethylenediamine	[66]
Compound	LPOM	Metal	Ligand	Ref.
----------	------	-------	--------	------
[Cu(phen)Cl]2[CuCl(phen)2][CuCl2(phen)2(µ-PW1O9)]	tri	Cu	1,10-phenanthroline	[67]
[Cu(phen)][Cu(phen)][GeW6O36]2H2O	mono	Cu	2,2'-bipyridine	[68]
[Cu(phen)][CuCl2(phen)2(µ-PW1O9)]	mono	Cu	1,10-phenanthroline	[69]
Na[CuCl2(bpy)(OH)]2[Cu2(bpy)(H2O)(µ-PW1O9)]3H2O	mono	Cu	1,3-bis(4-pyridyl)propanoic acid	[70]
[Cu(bpy)(H2O)][Cu2(bpy)(H2O)(µ-PW1O9)]H2O	mono	Cu	1,10-phenanthroline	[71]
[[SiW12O40]Cu2][Cu(phen)2(H2O)(ac)]23	mono	Cu	1,10-phenanthroline	[72]
[Cu(phen)Cl][CuCl2(phen)2][Na(H2O)2][VII3CuII4O6] (AsIVW6O33)2	tri	V, Cu	pyrazine	[73]
[[Na(H2O)2][M(imi)3][SiW6O32]2	tri	Mn, Co, Ni, Zn, Mn	imidazole	[74]
[[K(H2O)0.5][ZrL/D malate]3H2O	mono	Ni, Cu, Fe	1,3-bis(1,2,4-triazol-1-yl)propane	[75]
[[Cu(tz)(H2)4(H2O)3][PMO27O90]	mono	Ni, Cu	carbonyl	[76]
[K3(OC3)3Mn(µ-x-C6H5GeW6O36)6H2O]	mono	Fe, Mn, Ni, Zn, Cu	carbonyl	[77]
[Na6.7M3.5(H2O)2][M(imi)3][SiW6O32]	tri	Mn	acetylene	[78]
[(CH3)4N][Mn(H2O)6][Mn2.5W6.5O20] (β-SbW6O32)[Mn(CO)3]2	tri	Mn	acetylene	[79]
Na2H[CH2]4N][TeW20O70][Re(CO)3]2	tri	Mn	acetylene	[80]
K2H[OH]2[(CH3COO)2(µ-W-PW1O9)]2	tri	Mn	acetylene	[81]
Cs6Mn[ZrO4(phen)(OH)2](H2O)(CH3COO)3[AsW9O33]2	tri	Mn	acetylene	[82]
Cs6Mn[H2O](OH)2[O2(OH)(phen)(CS2O5)]3[AsW9O33]2	tri	Mn	acetylene	[83]
H[NaH2O][Mn(CO)2(Oac)2(Tris)H2O]2	tri	Mn	acetylene	[84]
[Ni(phen)][Ni(phen)][GeW6O36]2H2O	mono	Cu	2,2'-bipyridine	[85]
[Ni(phen)][Ni(phen)][GeW6O36]2H2O	mono	Cu	2,2'-bipyridine	[86]
[Ni(phen)][Ni(phen)][GeW6O36]2H2O	mono	Cu	2,2'-bipyridine	[87]
[Ni(phen)][Ni(phen)][GeW6O36]2H2O	mono	Cu	2,2'-bipyridine	[88]
[Ni(phen)][Ni(phen)][GeW6O36]2H2O	mono	Cu	2,2'-bipyridine	[89]
[Ni(phen)][Ni(phen)][GeW6O36]2H2O	mono	Cu	2,2'-bipyridine	[90]
[Ni(phen)][Ni(phen)][GeW6O36]2H2O	mono	Cu	2,2'-bipyridine	[91]
[Ni(phen)][Ni(phen)][GeW6O36]2H2O	mono	Cu	2,2'-bipyridine	[92]
[Ni(phen)][Ni(phen)][GeW6O36]2H2O	mono	Cu	2,2'-bipyridine	[93]
[Ni(phen)][Ni(phen)][GeW6O36]2H2O	mono	Cu	2,2'-bipyridine	[94]
[Ni(phen)][Ni(phen)][GeW6O36]2H2O	mono	Cu	2,2'-bipyridine	[95]
[Ni(phen)][Ni(phen)][GeW6O36]2H2O	mono	Cu	2,2'-bipyridine	[96]
[Ni(phen)][Ni(phen)][GeW6O36]2H2O	mono	Cu	2,2'-bipyridine	[97]
[Ni(phen)][Ni(phen)][GeW6O36]2H2O	mono	Cu	2,2'-bipyridine	[98]
[Ni(phen)][Ni(phen)][GeW6O36]2H2O	mono	Cu	2,2'-bipyridine	[99]
[Ni(phen)][Ni(phen)][GeW6O36]2H2O	mono	Cu	2,2'-bipyridine	[100]
[Ni(phen)][Ni(phen)][GeW6O36]2H2O	mono	Cu	2,2'-bipyridine	[101]
[Ni(phen)][Ni(phen)][GeW6O36]2H2O	mono	Cu	2,2'-bipyridine	[102]
[Ni(phen)][Ni(phen)][GeW6O36]2H2O	mono	Cu	2,2'-bipyridine	[103]
3. Inorganic–Organic Hybrids Based on RESPs

It is apparent that most mentioned RE-POMs are purely inorganic, and the investigations of organic–inorganic hybrids based on RE-POMs are relatively scarce. Although the simultaneous presence of organic and LPOM ligands that are bound to RE centers is also rare, one can expect that their properties are conveyed to novel hybrid molecules [110]. Occasionally, organic solvents can be connected to metal centers in the POM-based structures. For example, solvents such as acetone, DMSO, and DMF can play the role of a ligand in the dimeric, 1D, and 2D inorganic–organic hybrids based on RESPs by coordinating to metal centers [111,112]. By considering structural features, organic ligands with their functional groups reduce distances between RE centers and facilitate the formation of polynuclear fragments. Thus, in this section, we discuss the role of these interactions in the stability and structural features of rare-earth-substituted inorganic–organic hybrids. The tendency of RE centers to carboxylate groups results in effective interactions between these fragments. Naruke and co-workers reported [Ce3(CO3)(SbW10O33)(W5O18)3]18− anion with two different types of POMs. In the crystal structure, the triangular [Ce3(CO3)]2+ core was surrounded by one trivacant [B–α-SbW9O33]3– and three monolacunary Lindqvist anions [W8O18]5− [113]. The presence of carbonate in the structure led to the isolation of a compound that was isomorphous to another structure, previously reported by the authors [114].

Acetic acid has been frequently used as a bridging agent in the synthesis of inorganic–organic hybrids because of its small size and tendency to RE metals [115]. In the dimeric structures of [RE(α-XW11O39)(H2O)]2 [X = Si, Ge, P], acetic acid units act as linkers via (η2, μ,1,1) fashion, connecting two RE centers. The atomic radius of metals has an important role in the construction of such compounds (Table 2) [116–119]. When Na9[B–α-AsW9O33] as precursor reacts to RE ions, it is involved in decomposition and rearrangement reactions that leads to the formation of [B–b-AsW9O33]9−, [W5O13], [W2O10], and [WO6] fragments. These components are coordinated with RE cations while acetate groups act as ancillary ligands [120].

Amino acids, as a type of carboxyl-and-amo-no-containing flexible multidentate ligand, are outstanding candidates for performing as organic modifiers in the building of novel structures [121,122]. In this regard, four gly amino acids linked two {RE(α-BW11O39)} subunits by sharing O atoms in μ2-O or μ3-O modes. Neighboring [RE2(gly)4(α-BW11O39)]2+ units were oppositely aligned in a staggered fashion in which N–H···O hydrogen bonds between gly molecule and surface O atoms of POM units as well as Van der Waals interactions generated the 3D supramolecular framework [123]. The polyoxoanion scaffolds of three kinds of L-ala-decorated and RE-incorporated arsenotungstate hybrids are similar. It can be designated as two [As2W19O68]18− polyanions encapsulating an ala-decorated W-O-RE heterometallic cluster (Eu4W6(H2O)10(alal)2O14)14+, [RE4W6(H2O)8(alal)4O15(OH)2]16+ (RE = GdⅢ, TbⅢ), and [RE4W6(H2O)10(alal)2O15(OH)2]16+ (RE = DyⅢ, HoⅢ, ErⅢ, YbⅢ,

Table 1. Cont.

Compound	LPOM	Metal	Ligand	Ref.
([Cu2(2,2′-bpy)3(H2O)][GeW9O34]2·7H2O	tri	Cu	2,2′-bipyridine	[104]
Na[(Cu(2,2′-bpy)(imi))[Cu(2,2′-bpy)]2AsW13O43As(OH)]·8H2O	tri	Cu	2,2′-bipyridine imidazole	[105]
Na(H2O)6[Co3(OH)(pydz)4(H2O)7][Co6(PW10O37)2(pydz)4] (H2O)6	di	Co	pyridazine	[106]
H8K2Na5[Zr6(μ3-O)9](OH)9(OAc)[H2O](β-GeW10O37)2]·20H2O	di	Zr	acetate	[107]
H8K2Na12[4(Zr[μ3-μ1-μ2](OAc)2]6)Zr2(OAc)2 (α-GeW10O37)2]·22H2O	di	Zr	oxalate	[108]
(NH4)3Na5K4[Zr4(μ3-μ2)(2-μ-OH)2(ox)2(SiW10O37)2]·23H2O	di	Zr	pyridine-3, 4-dicarboxylic acid	[109]

For example, solvents such as acetone, DMSO, and DMF can play the role of a ligand in the POM-based structures. Occasionally, organic solvents can be connected to metal centers in the POM-based structures. For example, solvents such as acetone, DMSO, and DMF can play the role of a ligand in the dimeric, 1D, and 2D inorganic–organic hybrids based on RESPs by coordinating to metal centers [111,112]. By considering structural features, organic ligands with their functional groups reduce distances between RE centers and facilitate the formation of polynuclear fragments. Thus, in this section, we discuss the role of these interactions in the stability and structural features of rare-earth-substituted inorganic–organic hybrids. The tendency of RE centers to carboxylate groups results in effective interactions between these fragments. Naruke and co-workers reported [Ce3(CO3)(SbW10O33)(W5O18)3]18− anion with two different types of POMs. In the crystal structure, the triangular [Ce3(CO3)]2+ core was surrounded by one trivacant [B–α-SbW9O33]3− and three monolacunary Lindqvist anions [W8O18]5− [113]. The presence of carbonate in the structure led to the isolation of a compound that was isomorphous to another structure, previously reported by the authors [114].

Acetic acid has been frequently used as a bridging agent in the synthesis of inorganic–organic hybrids because of its small size and tendency to RE metals [115]. In the dimeric structures of [RE(α-XW11O39)(H2O)]2 [X = Si, Ge, P], acetic acid units act as linkers via (η2, μ,1,1) fashion, connecting two RE centers. The atomic radius of metals has an important role in the construction of such compounds (Table 2) [116–119]. When Na9[B–α-AsW9O33] as precursor reacts to RE ions, it is involved in decomposition and rearrangement reactions that leads to the formation of [B–b-AsW9O33]9−, [W5O13], [W2O10], and [WO6] fragments. These components are coordinated with RE cations while acetate groups act as ancillary ligands [120].

Amino acids, as a type of carboxyl-and-amo-no-containing flexible multidentate ligand, are outstanding candidates for performing as organic modifiers in the building of novel structures [121,122]. In this regard, four gly amino acids linked two {RE(α-BW11O39)} subunits by sharing O atoms in μ2-O or μ3-O modes. Neighboring [RE2(gly)4(α-BW11O39)]2+ units were oppositely aligned in a staggered fashion in which N–H···O hydrogen bonds between gly molecule and surface O atoms of POM units as well as Van der Waals interactions generated the 3D supramolecular framework [123]. The polyoxoanion scaffolds of three kinds of L-ala-decorated and RE-incorporated arsenotungstate hybrids are similar. It can be designated as two [As2W19O68]18− polyanions encapsulating an ala-decorated W-O-RE heterometallic cluster (Eu4W6(H2O)10(alal)2O14)14+, [RE4W6(H2O)8(alal)4O15(OH)2]16+ (RE = GdⅢ, TbⅢ), and [RE4W6(H2O)10(alal)2O15(OH)2]16+ (RE = DyⅢ, HoⅢ, ErⅢ, YbⅢ,
LuIII), concluding in a four-leaf-clover-shaped tetrameric structure. However, the major inconsistency in the ala-decorated W-O-RE heterometallic clusters lies in the number of ala molecules, which may result from the different coordination geometries of RE ions and the various construction modes of W-O-RE heterometallic clusters. It should be mentioned that the carboxyl groups of ala ligands only coordinate with the W centers in the compounds containing DyIII, HoIII, ErIII, YbIII, and LuIII ions, and they not only link the W centers together but also combine RE ions in the other compounds [124].

Table 2. List of bridging ligands and their characterization in the dimeric inorganic–organic hybrids based on RESP's.

Ligand	RE - RE Distance (Å)	RE-O_carboxylate (Å)	RE-O_PROM	Compound	Ref
Acetic acid	4.085	2.418, 2.450	2.259–2.290	[Yb(α-SiW$_{11}$O$_{39}$(H$_2$O)$_2$(μ-OAc)$_2$]$_{12}^{-}$	[116]
	4.148	2.460, 2.505	2.319–2.360	[Eu(α-SiW$_{11}$O$_{39}$(H$_2$O)$_2$(μ-OAc)$_2$]$_{12}^{-}$	[117]
	4.133	2.446, 2.492	2.317–2.349	[Gd(α-SiW$_{11}$O$_{39}$(H$_2$O)$_2$(μ-OAc)$_2$]$_{12}^{-}$	[117]
	4.111	2.432, 2.472	2.293–2.349	[Tb(α-SiW$_{11}$O$_{39}$(H$_2$O)$_2$(μ-OAc)$_2$]$_{12}^{-}$	[117]
	4.103	2.436, 2.454	2.290–2.339	[Dy(α-SiW$_{11}$O$_{39}$(H$_2$O)$_2$(μ-OAc)$_2$]$_{12}^{-}$	[117]
	4.086	2.413, 2.458	2.275–2.315	[Ho(α-SiW$_{11}$O$_{39}$(H$_2$O)$_2$(μ-OAc)$_2$]$_{12}^{-}$	[117]
	4.070	2.410, 2.432	2.273–2.320	[Er(α-SiW$_{11}$O$_{39}$(H$_2$O)$_2$(μ-OAc)$_2$]$_{12}^{-}$	[117]
	4.065	2.412, 2.441	2.275–2.291	[Tm(α-SiW$_{11}$O$_{39}$(H$_2$O)$_2$(μ-OAc)$_2$]$_{12}^{-}$	[117]
	4.082	2.419, 2.437	2.291–2.337	[Y(α-SiW$_{11}$O$_{39}$(H$_2$O)$_2$(μ-OAc)$_2$]$_{12}^{-}$	[118]
	4.110	2.430, 2.450	2.300–2.351	[Y(α-GeW$_{11}$O$_{39}$(H$_2$O)$_2$(μ-OAc)$_2$]$_{12}^{-}$	[118]
	4.154	2.502, 2.503, 2.525	2.365–2.404	[Sm(α-PW$_{11}$O$_{39}$(H$_2$O)$_2$(μ,1,1)-(OAc)]$_{10}^{-}$	[119]
	4.131	2.474, 2.486, 2.515	2.334–2.362	[Eu(α-PW$_{11}$O$_{39}$(H$_2$O)$_2$(μ,1,1)-(OAc)]$_{10}^{-}$	[119]
	4.078	2.424, 2.459, 2.475	2.312–2.369	[Gd(α-PW$_{11}$O$_{39}$(H$_2$O)$_2$(μ,1,1)-(OAc)]$_{10}^{-}$	[119]
	4.106	2.446, 2.489, 2.456	2.106–2.359	[Tb(α-PW$_{11}$O$_{39}$(H$_2$O)$_2$(μ,1,1)-(OAc)]$_{10}^{-}$	[119]
	4.068	2.437, 2.451, 2.453	2.292–2.341	[Ho(α-PW$_{11}$O$_{39}$(H$_2$O)$_2$(μ,1,1)-(OAc)]$_{10}^{-}$	[119]
	4.121	2.462, 2.482, 2.485	2.327–2.384	[Er(α-PW$_{11}$O$_{39}$(H$_2$O)$_2$(μ,1,1)-(OAc)]$_{10}^{-}$	[119]
Oxalic acid	6.163	2.363, 2.402	2.252–2.294	[Y(α-PW$_{11}$O$_{39}$(Y(H$_2$O)$_2$(ox))]$_{12}^{-}$	[125]
	6.160	2.362, 2.370	2.251–2.291	[Y(α-PW$_{11}$O$_{39}$(Y(H$_2$O)$_2$(ox))]$_{12}^{-}$	[125]
	6.136	2.335	2.203–2.286	[Y(α-PW$_{11}$O$_{39}$(Y(H$_2$O)$_2$(ox))]$_{12}^{-}$	[125]
	6.161	2.373, 2.409	2.247–2.310	[Y(α-PW$_{11}$O$_{39}$(Y(H$_2$O)$_2$(ox))]$_{12}^{-}$	[125]
	6.360	2.295, 2.414	1.983–2.143	[(x-ox)]$_{12}^{-}$	[125]

Although ox ligands, such as the aforementioned ligands containing carboxylate groups, act as a linkage in the dimer of [RE$_{x}$-XW$_{11}$O$_{39}$] subunits, their distances between RE centers are different (Table 2) [125]. In some cases, this ligand imposes polynuclear structures and deduces tetrameric moieties [126,127]. Tartric acid compared to oxalic acid is more flexible, but their carboxylate groups can be completely or partially deprotonated. Hence, two [RE$_{2}$(As$_{5}$W$_{10}$O$_{35}$)] subunits can be linked by two series of non-equivalent tartric acid segments in an unusual fashion [128]. For the dimeric polyoxotungstate [Ho(tart)(α-PW$_{11}$O$_{39}$)]$_{10}^{-}$, the tartrate anion connects two HoIII ions by one carboxyl O atom and one hydroxyl O atom from each end of the tart ligand. Furthermore, two tartrate anions displayed a type of mesomeric configuration with the co-existence of the D-tartrate anion and L-tartrate anion, which played a significant role in understanding the organic carboxylic acid functionalization. Both two nonequivalent eight-coordinate Ho$_{III}$ centers demonstrated distorted square antiprisms configurations, which are all defined by four O donors from the two tartrate fragments and four O atoms from the lacunary site of the [α-PW$_{11}$O$_{39}$]$^{10-}$ polyanion [129]. K$_{3}$LiH$_{2}$RE$_{5}$(H$_{2}$O)$_{7}$(RE$_{2}$H$_{2}$O$_{4}$As$_{5}$W$_{19}$O$_{68}$(WO$_{2}$)$_{2}$ (C$_{6}$H$_{12}$N)$_{2}$)$_{3}$ nH$_{2}$O (RE = Y, Tb, Dy, Ho, Er, Tm, Yb, Lu) is the first high-nuclear RE metal-substitute arsenotungstate aggregate with citric bridges. In these hybrids, the citrate fragments link RE centers and [WO$_{2}$] units to form trimeric structures [130]. Two Dy ions occupy non-adjacent sites of lacunary [As$_{5}$W$_{10}$O$_{38}$] polyanion, and each of them is coordinated to a tridentate citric acid ligand. Strong hydrogen bonding resulting from lattice water molecules has fortified the architecture [131]. In the dimeric structure of K$_{20}$Li$_{2}$[RE$_{3}$(μ$_{3}$-OH)(H$_{2}$O)$_{6}$][As$_{5}$W$_{10}$O$_{35}$(mal)]$_{2}$·17H$_{2}$O (RE = Dy, Tb, Gd, Eu, and Sm) a tri-RE cluster [RE$_{3}$(μ$_{3}$-OH)(H$_{2}$O)$_{6}$]$^{8+}$ linked [As$_{5}$W$_{10}$O$_{35}$(mal)] and [As$_{5}$W$_{10}$O$_{35}$(mal)] build-
ing blocks by sharing carboxylate groups of mal ligands [132]. Structural characterization of Na₄H₆[[Pr(H₂O)₂]₂[As₂W₁₉O₆₈]]WO₃(mal)₂] 24H₂O revealed that the Pr³⁺ ions formed a 1D infinite helical chain-like architecture by hinging between organo-functionalized [[As₂W₁₉O₆₈]]WO₃(mal)₂]¹⁻ polyanions. In this case, mal ligands stabilized the structure by the formation of five-membered W–O–C–O chelate rings [133].

Bulk ligands containing carboxylate groups may rarely show the bridging effect [134,135]. It was observed that pyridine-4-carboxylic acid can only substitute the water molecules that were coordinated to the bridging lanthanide cation in the structure of [REK(H₂O)₁₂][RE(H₂O)₆] [(H₂O)₄RE(BW₁₁O₃₀H)]₂·20H₂O due to the to the steric encumbrance [136]. Ritchie et al. utilized middle RE metals including europium, terbium, and K₁₁₄[As₂W₁₉O₆₇(H₂O)] units and also Hpic precursors to establish sandwich structures containing two [B-β-AsW₈O₃₀] subunits. A considerable point was the embedment of three [WO₅(pic)] fragments in the [TB₂(pic)(H₂O)₂](B-β-AsW₈O₃₀)(WO₅(pic))₃¹⁰⁻ architecture. The addition of RE components (coordinated to the non-sandwiched [WO₅(pic)] unit) led to the development of [(RE)₈(pic)₆(H₂O)₂₂][B-β-AsW₈O₃₀]¢[WO₅(pic)]₆¹²⁻ (RE = Tb, Eu) structures [137]. In the structure of tetrameric [RE₂(H₂O)₄(pic)₂W₂O₅]¢[RE(H₂O)₅(pic)₂O₄][B-β-TeW₈O₃₀H₂]¢ (RE = La, Ce, Nd, Sm, Eu) III), Hpic ligand stabilized the structure by connecting W and RE atoms together by forming stable N–O–C–O–W five-membered-rings or N–O–RE–O–W–O six-membered-ring motifs [138]. The reaction of 3,4-pdc, RE ions, and monolacunary silicotungstate polyanions lead to monomeric (3,4-pdc)₂RE(H₂O)₂ SiW₁₁O₃₉(RE = La, Pr, Dy) structures. In these structures 3,4-pdc was coordinated to RE centers of RESPs, stabilizing the RE ions on the POM polyanion and preventing them from RE-precipitation. In addition, intermolecular interactions increased the dimensions of architecture [18], [PW₁₁O₃₀RE(phen)(H₂O)₂]¢(phen)₈·8H₂O (RE = Pr, Gd, Sm, La) are the first N-containing organic ligands of functionalized mono-RE-substituted polyoxometalates. These dimeric structures consist of two similar RESPs and coordination of the RE center to the surface oxygen atom of adjacent POM unit adjoins these subunits. Strong π–π interactions between phen moieties coordinated to RE centers form a novel 1D supramolecular chain structure. Other noncovalent interactions such as O–H···O, N–H···O, and π–π interactions lead to the construction of a 3D supramolecular structure [139].

Organophosphonates as multidentate ligands can provide appropriate electron-donor features and symmetry for the building of high nuclearity RESPs, offering additional stability and opportunity to fine-tune the properties. For example, in the polymeric clusters of [Dy₉(ampH)₄(H₂O)₂₂(ampH)](PW₁₁O₃₀)₂] and [Dy₉(OC₃)₃(ampH)₂(H₂O)₁₂(PW₁₀O₃₇)]⁻³⁻, Dy ions were linked together by bridging oxido ligands from the ampH⁻ ligands to form sandwich-type and propeller-shaped POMs [140].

In some cases, organic ligands not only do not contribute to the increasing nuclearity of a structure but also acts vice versa. A notable example is the work of Li et al. Because of the blocking effect of DMEA, the trimeric polyoxoanion [Ce₂(H₂O)₆(DMEA)W₄O₉ (α-SeW₆O₃₃)₃] with an infrequent V-shaped [Se₃W₂O₁₀] group was obtained (Figure 3a), whereas in the presence of DMAHCl, the hexameric polyoxoanion [Ce₂W₄O₉(H₂O)₇ (α-SeW₆O₃₃)₃]₂¹⁻ was constructed from two equivalent trimeric subunits through two −O–W–O–CeO− connections (Figure 3b) [141].
In recent years, the design and synthesis of 3d-4f inorganic–organic hybrids based on RESPs has increasingly become an emerging field of research due to an undeniable competitive reaction among strongly oxyphilic RE cations and less active TM cations by highly negative POM precursors in the reaction system. Thus, the discovery and recognition of novel POM-based TM–RE heterometallic derivatives with remarkable structures and properties remains a severe and inquisitorial challenge [142–145]. Such architectures containing TM and RE centers can lead to the formation of discrete to 3D nets. In some cases, N-donor organic fragments are connected to TMs rather than RE metal centers. These TM complexes can be seen as charge-balancing cation, linkage, and directing agents for the construction of high dimension architectures. In the simplest case, complexes of TMs only act as charge-balancing agents for RESPs, such as discrete structures of 1:2 sandwich-type [Dy(GeW$_{11}$O$_{39}$)$_{2}$] subunits that are decorated by [Cu(H$_2$O)$_3$]$^{2+}$ and [Cu(H$_2$en)(Hen)]$^{5+}$ coordination cations. These Cu metal centers decrease the negative charge over the heteropolyanions to stabilize the whole framework [146]. In another work, two lacunary [B-α-GeW$_{34}$]$_{10}$– Keggin moieties were linked together via a rhomb-like [CeIVCuIIIO$_{18}$]$_{2}$ cluster to form a Weakley-type structure [147]. Compared to the TM-substituted germanotungstate [148], the substitution of one external copper ion by a [Ce(OAc)]$^{3+}$ group led to the increase in Cu⋯Cu distance [147].

Dolbecq, Mialane, and co-workers reported heterometallic cubane clusters of three monolacunary silicotungstates based on [LnCu$_3$(OH)$_3$O] (Ln = La, Gd, Eu) units [149]. It was observed that the presence of exogenous ligands is essential for obtaining such structures. In addition, the radius of the rare earth center played a crucial role in the dimensionality of the isolated compound [149]. In a similar manner, Wu et al. obtained [DyMn$_4$] cubanes sandwiched by two tetravacant silicotungstates [150]. Other appended cubanes [REMnIII]$_{4}$ (RE = HoIII, TmIII, YbIII, SmIII, GdIII, ErIII, and CeIV) were also reported using tetravacant [SiW$_{6}$O$_{33}$] ligand [151].

Trilacunary [SbW$_9$O$_{33}$] can effectively assemble RE ions and TMs into aggregates in the presence of different anions. The resulting compounds K$_3$Na$_{11}$[RE$_3$(H$_2$O)$_9$NiIII$_3$(H$_2$O)$_6$ (SbW$_9$O$_{33}$)$_3$(WO$_4$)(CO$_3$)]·(H$_2$O)$_{40}$ (RE = LaIII, PrIII, and NdIII) exhibited cyclic trimeric aggregates of three [SbW$_9$O$_{33}$] units enveloping one CO$_3$$^{2-}$-templated and one WO$_4$$^{2-}$-templated trigonal-prismatic [RE$_3$(H$_2$O)$_9$NiIII$_3$(H$_2$O)$_6$(WO$_4$)(CO$_3$)] units [152]. When complexes of TM act as linking centers between RESPs, they can establish high-dimension architectures. The coordination bond interactions and weak interactions between adjacent 1D chains play a significant role in the zigzagging distances and angles of different 1D chains. Numerous structures were reported in which [Cu(en)$_2$]$^{2+}$ moieties connected to well-known [RE(XW$_{11}$O$_{39}$)$_2$] (X = P, Si, Ge) dimeric structures. For the dimeric structure of [RE(PW$_{11}$O$_{39}$)$_2$] (RE = La, Ce, Pr, Nd, Sm, Er), 1D zigzag chain structures (via Cu(en)$_2$ linkage) were extended to 2D sheet structures by weak interactions between the 1D chain and [Na$_2$(en)$_2$(H$_2$O)$_3$]$^{2+}$ linking cluster presented in other zigzag chain structures. These
resonance chains were different in bonding distances and angles, due to the coordination bond and weak interactions between adjacent 1D chains [153,154]. [Cu(en)₂] unit in the [Cu(en)₂]₁{[RE(PW₁₁O₃₉)]₂}¹⁴⁻ (RE = Ce, Pr) contributed to the generation of 1D zigzag chains which was further extended to 2D supramolecular architectures through hydrogen bonding between nitrogen atoms and [Ce(PW₁₁O₃₉)]¹¹⁻ polyanions of the neighboring 1D chain [155]. In the case of H₂[Ce(en)₂H₂O]₄{[Cu(en)₂][Pr(PW₁₁O₃₉)]₂}·2H₂O, however, weak Cu···O electrostatic interactions contributed to making a bidimensional sheet structure [155]. In addition to [Cu(en)₂] complexes [156–159], the presence of other metal centers such as K⁺ ions were reported to help construct a 1D chain consisting of [RE(XW₁₁O₃₉)]₂ building blocks in a series of organic–inorganic hybrids based on lacunary Keggin silico- and germanotungstates [160–164].

Dap, like en segments, is a bidentate ligand that has been used in PBTREHDs crystal structures [165–169]. A behavioral study showed that copper dap complexes generate 1D “dendritic” chain-like TM-Ln heterometallic POMs, whereas en generated a 2D TM-Ln heterometallic sheet architecture [157]. In 2014, a series of 1D antiparallel Cuᴵᴵ⁻REᴵᴵ⁺ heterometallic germanotungstate polymeric chains were reported in which [Ln(H₂O)₃(α-GeW₁₁O₃₉)]⁵⁻ moieties were first connected with each other and then these 1D chains were linked together through bridging [Cu(dap)₂]³⁺ cations and formed a 1D double-chain architecture [170]. In a similar case, an eight-coordinate RE ion with distorted square antiprism geometry occupy the vacant site of the [α-SiW₁₁O₃₉]⁸⁻ polyanion and one free space is coordinated to adjacent polyanions, while two [α-H₂SiW₁₁O₃₉RE(H₂O)₃] (RE = Ceᴵᴵ⁺, Prᴵᴵ⁺, Ndᴵᴵ⁺, Smᴵᴵ⁺, Euᴵᴵ⁺, Gdᴵᴵ⁺, Tbᴵᴵ⁺, Dyᴵᴵ⁺, Erᴵᴵ⁺) units are connected to adjacent fragments by Cu(dap)₂ linkage. There are [Cu(dap)₂(H₂O)] complexes connected to the surface oxygen of polyanions that, by incorporating hydrogend bonding, established 3D architecture [171].

In a recent study by Wu et al., a rare coordination mode was reported for phen ligands. It was observed that phen ligands preferred Ln over TM. The authors attributed this to the steric hindrance effect in the structure of (Hphen)₂[Fe(phen)₃]Cl₂[(phen)Fe(β-α-GeW₁₁O₃₉)]₂ [172]. This ligand can generate π–π stacking interactions which help to stabilize the structure [173].

In the 1D chain of [Cu₂(tpy)₂][RE(H₂O)₃]H₂SiW₁₁O₃₉Cl·2H₂O (RE = Sm, Eu) compounds, the RE element of [RE-α-SiW₁₁] cluster is in connection with [Cu(tpy)] segments via Cu–O bonds and they expand a 1D circle-connecting-circle chain [174]. Zhou et al. demonstrated the first example of an organic–inorganic hybrid with a 3D framework based on the RE-containing monovacant silicotungstate Keggin-type POMs and bimpy ligands. [Cu₂(bimpy)₂(H₂O)₂][RE(H₂O)₃(α-SiW₁₁O₃₉)] xH₂O [RE = Euᴵᴵ⁺, Smᴵᴵ⁺, H₂O tpypy, and Ceᴵᴵ⁺] compounds were isosstructural, showing a 3D framework featuring [SiW₁₁₁⁻-RE-SiW₁₁⁻]₁⁻ Ln inorganic chains and [{Cu/bimpy} metal–organic ribbons, stemmed from Cuᴵ⁺ ions and bimpy ligands. The adjacent [{Cu/bimpy}] ribbons were connected by two antiparallel [−SiW₁₁−Eu−SiW₁₁−]₁⁻ chains and created a 2D sheet structure, which was further extended to a 3D framework [175].

The substitution of two water molecules by two thr ligands in the [Fe₄(H₂O)₁₀(β-β-SbW₁₀O₃₃)]⁶⁻ polyanion [176] led to the formation of [RE(H₂O)₈]₂[Fe₄(H₂O)₈(thr)]₂[β-β-SbW₁₀O₃₃]₂·2H₂O (RE = Prᴵᴵ⁺, Ndᴵᴵ⁺, Smᴵᴵ⁺, Euᴵᴵ⁺, Gdᴵᴵ⁺, Dyᴵᴵ⁺, Luᴵᴵ⁺) inorganic–organic hybrids in which two non-coordinated RE centers were attached to terminal oxygen of two [β-β-SbW₁₀O₃₃] subunits [177]. Similar architecture was achieved by changing hetropolyp to [β-β-AsW₁₀O₃₃] subunits [178]. Hpic is another interesting ligand that can generate diverse coordination modes within different coordination geometries of RE ions. The presence of middle RE centers, Gdᴵᴵ⁺, and Dyᴵᴵ⁺ ions in the solution containing Hpic, Feᴵᴵ⁺ ion, and [β-β-SbW₁₀] precursor produced discrete structures with different architectures. The molecular structure of these compounds consisted of two types of non-Krebs-type quadric-inserted [Fe₂W₄O₆(H₂O)₂(Hpic)]₄[B-β-SbW₁₀O₃₃]⁶⁻ and [RE(H₂O)₈]₂[Fe₂W₂O₇(H₂O)₄(pic)₂(Hpic)]₄[B-β-SbW₁₀O₃₃]⁴⁻ moieties. In the first sub-unit hexa-nuclear [Fe₂W₄O₆(H₂O)₂(Hpic)]₄ group and the second subunits, the octa-nuclear
\[
[[\text{Dy}(\text{H}_2\text{O})_8]_2[\text{Fe}_4\text{W}_2\text{O}_7(\text{H}_2\text{O})_4(\text{pic})_2(\text{Hpic})_2]} \text{ was sandwiched by two } [\text{B-}\beta-\text{SbW}_9\text{O}_{33}] \text{ polyanions. In the case of } \text{Ho}^{\text{III}}, \text{Er}^{\text{III}} \text{ metal ions eight aqua ligands were substituted by four Hpic ligands (Figure 4a). Although both sides of this polyanion were supported by two } [\text{RE}(\text{H}_2\text{O})_5]^{\text{III}} \text{ groups, the structure was extended to a 1D heterometallic double chain through the connection of the mentioned atoms in the same direction (Figure 4b). Similar structures were also observed for a series of compounds containing } \text{La}^{\text{III}}, \text{Pr}^{\text{III}}, \text{Nd}^{\text{III}}, \text{Sm}^{\text{III}}, \text{ and } \text{Eu}^{\text{III}} \text{ cations, in which the connection of one O atom of a carboxylate moiety and one } \text{RE}^{\text{III}} \text{ ion of the adjacent unit and the interconnection of these chains constructed a 3D extended framework (Figure 4d) [179].}
\]

Figure 4. (a) View of the pic-substituted Krebs-type unit observed in \([\text{RE}(\text{H}_2\text{O})_6]_2[\text{Fe}_4(\text{H}_2\text{O})_2(\text{Hpic})_2(\text{B-pc})_2]\) \((\text{RE} = \text{Ho}^{\text{III}}, \text{Er}^{\text{III}})\). (b) One-D double chain observed in previous compounds. (c) View of the pic-substituted Krebs-type unit observed in \([\text{RE}(\text{H}_2\text{O})_5]_2[\text{Fe}_4(\text{H}_2\text{O})_2(\text{pic})_4(\text{B-}\beta-\text{SbW}_9\text{O}_{33})_2] \) \([\text{RE} = \text{La}^{\text{III}}, \text{Pr}^{\text{III}}, \text{Nd}^{\text{III}}, \text{Sm}^{\text{III}}, \text{Eu}^{\text{III}}]\) compounds. (d) Three-D extended framework observed in these structures [179].

Because of high affinity of RE cation linkers to the anionic surface of polyanions, their utilization in synthesis is challenging and almost leads to precipitation [180,181]. By introducing O-donor ligands to the reaction medium Zhao et al. [182] successfully established the 3D \(\text{K}_4\text{Na}_4[\text{Ce}^{\text{III}}(\text{ox})_3(\text{H}_2\text{O})_2]_2[[\text{Mn}(\text{H}_2\text{O})_3]_2[\text{Mn}_4(\text{GeW}_9\text{O}_{34})_2(\text{H}_2\text{O})_2]-14\text{H}_2\text{O}\) hybrid with Weakley sandwich-type structure via tetra MnII belt and 3d-4f connector. Zhang and co-workers prepared two types of RESP hybrids based on phosphotungstates via oxalate linkages. The \(([\alpha-\text{PW}_{11}\text{O}_{39}]\text{RE}(\text{H}_2\text{O})_2)_2(\text{ox})]^{10−} \) \((\text{RE} = \text{Y}^{\text{III}}, \text{Dy}^{\text{III}}, \text{Ho}^{\text{III}}, \text{ and } \text{Er}^{\text{III}})\) hybrid consisted of seven coordinated REs substituted into mono-lacunary phosphotungstates in which one ox ligand interconnected two polyanion units and generated dimeric architectures. In another work, a 3d-4f heterometallic cluster sandwiched phosphotungstate dimers of \([\text{Fe}_2\text{RE}(\beta-\text{PW}_{10}\text{O}_{37})_2(\text{tart})]^{9−} \) \((\text{RE} = \text{La}^{\text{III}}, \text{Ce}^{\text{III}}, \text{Sm}^{\text{III}}, \text{Tb}^{\text{III}})\). Fe−O−RE−O−Fe bonds with the support of tart ligands linked \([\beta-\text{PW}_{10}\text{O}_{37}]^{9−}\) polyanions and stabilized the structure [183].

The employment of two types of TMs in the presence of lanthanoid fragments would improve a special property such as the magnetic susceptibility of POM-based clusters. Accordingly, Sato et al. reported five unique sandwich-type polyanions \([\text{Fe}_4\text{M}_4(\text{RE}(\text{L})_2)_2\text{O}_2(A-\alpha-\text{SiW}_9\text{O}_{34})_2]\) \((\text{M} = \text{Mn}^{\text{III}}, \text{Cu}^{\text{II}}, \text{RE} = \text{Gd}^{\text{III}}, \text{Dy}^{\text{III}}, \text{La}^{\text{III}})\), \(L = \text{acac, hfac}\) via a three-step successive introduction of metal ions into tri-lacunary Keggin-type POM \([\alpha-\alpha-\text{SiW}_9\text{O}_{34}]^{10−}\) in the organic solution. The hepta-nuclear cluster consisted of one central FeII cation surrounded by four pyramid \([\text{MnO}_5]\) moieties between two polyoxoanions [184].
5. Inorganic–Organic Hybrids Based on PBTREHD with Mixed Organic Ligands

As mentioned before, O-donor ligands prefer to interact with RE cations in the presence of TM ions; therefore, the introduction of organic fragments containing carboxylate units in the reaction including mono-RE-substituted Keggin polyanions leads to the dinuclear core instead of a cubane moiety [149,185]. Similar dimeric inorganic–organic hybrids based on monolacunary phosphotungstate and germanotungstate polyanions were reported in which a double carboxylate bridging motif coordinated to RE centers that hydrated [Cu(en)]2 cations balanced the overall charge of constructions [186–188]. Du’s group reported the first 1D ladder-like polyanion chain constructed from monovacant Keggin-type polyanions, RE, TM complexes, and two types of organic ligands. In this case, acetate ions bond two 2.2-type cerium-substituted [α-SiW11O39]7− parts. RE ions in these hybrids were coordinated to tetradentate monolacunary polyoxometalate and three carboxylic O atoms from acetate groups and one water molecule via eight-coordinate square antiprism geometry [185]. In the [Cu(en)(H2O)][Cu(en)]2[Tb(α-PW11O39)(H2O)2(ox)Cu(en)]·6H2O hybrid, tetradentate ox ligand acted as a bridge between two terbium associated with [α-PW11O39]7− anions or two copper ions and constructed a 1D chain along the c-axis and also coordinated to [Cu(en)]2 units [189]. A 1D zigzag chain structure was derived from [CeGeW11O39]$^{5−}$ polyanions or two copper ions and constructed a 1D zigzag chain structure along the c-axis and also coordinated to [Cu(en)]2 units [189]. In the case of a 2D [{Cu(en)}23[Cu(en)(ox)]2(RE2(ox)(α-SiW11O39)2)] (RE = La, Gd, Tb) (Figure 5b) the ox-bridging dimeric [{Cu(en)}23[Cu(en)(ox)]2(RE2(ox)(α-SiW11O39)2)]$^{5−}$ unit [190].

Zhang et al. separated a family of organic–inorganic hybrids based on silicotungstate derivatives with RE-TM heterometals and 2,6-pzdc and en mixed ligands. 2,6-pzdc and its protonated form have various N/O donor agents that, upon participating in hydrogen bonding, facilitate the construction of supramolecular structures [191]. In [{Cu(en)}23[Cu(2,3-pzdc)]2[(α-H2SiW11O39)Ce(H2O)]2]$^{2+}$ hybrids, two carboxylate moieties of two 2,3-pzdc subunits acted as linkage and adjoining cerium centers to construct 1D double-chain architecture. Adjacent N and O atoms of the 2,3-pzdc were linked to CuII coordinated to the O atom of a polyanion and the last free O atoms of a pentadentate organic ligand trapped by cerium. Ultimately, [Cu(en)]2$^{2+}$ was linked to the surface of inorganic ligands and thus, hydrogen bonding 3D framework was obtained [192]. Aromatic N-donor organic ligands not only incorporate the coordination sphere of copper ions but also reinforce the fortification of building blocks by weak interactions [193,194]. Cao’s group demonstrated that the interaction between the [RE(PW11O39)]7− (RE = La, Ce, Gd) and organic ligands played a key role in the construction of the 2D layer structure. In the case of Ce, the coordination involves the oxygen atoms of CeIII subunits and the oxygen atoms of [Pb(en)]$^{2+}$ (en = ethylenediamine). The CeIII subunits were linked to [Pb(en)]$^{2+}$ units in addition to its linking of two RE centers [186]. In the case of a 2D [{Cu(en)}23[Cu(en)(ox)]2(RE2(ox)(α-SiW11O39)2)] (RE = La, Gd, Tb) (Figure 5a) as double chain and one [Cu3(en)2]$^{2+}$ bridge linked this dimeric structure that was further interconnected to generate a 2D layer [190].

Figure 5. (a) Polyhedral and ball-and-stick representation of the asymmetrical unit of [{Cu(en)}23[Cu(2,3-pzdc)]2[(α-H2SiW11O39)Ce(H2O)]2]$^{2+}$ hybrid. (b) The ox-bridging dimeric [{Cu(en)}23[Cu(en)(ox)]2(RE2(ox)(α-SiW11O39)2)]$^{5−}$ unit [190].
Pr, Eu, Gd, Yb) cluster and dinuclear copper(II)-ox complexes [Cu$_2$(bpy)$_2$(μ-ox)]$^{2+}$ leads to a 1D infinite chain that further extends to 3D nets via π–π interactions of bipyridine rings of adjacent chains [195]. Niu et al. reported organic–inorganic hybrids composed of sandwich-type [RE(α-PW$_3$O$_9$)$_2$]$^{11−}$ building blocks and a copper complex with two different types of N-donor organic ligands as linkage. When [RE(α-PW$_3$O$_9$)$_2$] (RE = CeIII, PrIII) dimers were connected by [Cu(en)(2,2′-bipy)]$^{2+}$ and [Cu(en)$_2$]$^{2+}$, a 1D zigzag chain was formed whilst strong hydrogen bonding constructed a 2D lattice [196]. Another interesting example was observed in a series of some isostructural [Cu(cyclam)$_4$][Cu(cyclam)$_4$](α-GeW$_{11}$O$_{39}$)RE(H$_2$O)(OAc)$_2$]$_2$·18H$_2$O (RE = La−Lu) hybrids where acetate ions connected two [(α-GeW$_{11}$O$_{39}$)RE] polyanions, while three type [Cu(cyclam)]$^{2+}$ moieties had different structural roles: surface-appended antenna unit, linking moieties, and charge-balancing cation [197].

The first inorganic–organic hybrid of RE-substituted tellurotungstates containing three different organic ligands dimethylamine hydrochloride, acetic acid, and IN was reported by Han’s group. Accordingly, a family of unique tellurotungstate-based organotin-RE heterometallic hybrids [H$_2$N(CH$_3$)$_2$]$_6$K$_2$Na$_2$[Sn(CH$_3$)$_3$W$_2$O$_4$(IN)][(α-TeW$_9$O$_{33}$)RE(H$_2$O)(OAc)$_2$]$_2$·25H$_2$O [RE = CeIII, PrIII, NdIII, SmIII, EuIII, GdIII, TbIII] were synthesized. In these structures, two dimeric [{Sn(CH$_3$)$_3$W$_2$O$_4$(IN)}](α-TeW$_9$O$_{33}$)Nd(H$_2$O)(OAc)$_2$]$_{10−}$ units were linked by two OAc$^-$ connectors. Two rare tetravacant [B-α-TeW$_8$O$_{33}$]$^{10−}$ subunits sandwiched a cap-sharing IN-decorated [W$_2$O$_4$(IN)]$^{3+}$ fragment. One [Sn(CH$_3$)$_3$]$^{3+}$ group via penta-coordinate square pyramid configuration connected to O atoms of the equatorial belt W centers and eventually, two crystallographically independent RE ions occupied vacant sites of the tetralacunary [B-α-TeW$_8$O$_{33}$]$^{10−}$ subunits via nonacoordinate severely distorted tricapped trigonal prism geometry to construct the new territory of an inorganic–organic hybrid (Figure 6) [198].

![Figure 6. The dimeric skeleton of Na$_2$[[Sn(CH$_3$)$_3$W$_2$O$_4$(IN)]][B-α-TeW$_8$O$_{33}$]Ce(H$_2$O)(OAc)$_2$]$_2$ [198].](image)

[H$_2$N(CH$_3$)$_2$]$_6$K$_2$Na$_2$[RE$_2$(OAc)$_2$(H$_2$O)$_4$Fe$_2$(2,5-pdc)$_2$]$_2$[(B-β-TeW$_8$O$_{33}$)$_2$RE$_2$(H$_2$O)$_6$Fe$_2$(2,5-pdc)$_2$]$_2$·50H$_2$O [RE = EuIII, TbIII, DyIII, ErIII, 2,5-pdc = 2,5-pyrinedicarboxylic acid] isostructural compounds, owing to the unusual decoration of heterometallic centers by various organic components in the field of POM-based TM–RE heterometallic derivatives, have fascinating structures. On the other hand, two asymmetric sandwich-type subunits, [RE$_2$(OAc)$_2$(H$_2$O)$_4$Fe$_2$(2,5-pdc)$_2$]$_2$[(B-β-TeW$_8$O$_{33}$)$_2$]$^{18−}$ and [RE$_2$(H$_2$O)$_6$Fe$_2$(2,5-pdc)$_2$]$_2$[(B-β-TeW$_8$O$_{33}$)$_2$]$^{18−}$, can be regarded as classic Krebs-type [Fe$_4$(H$_2$O)$_{10}$β-TeW$_8$O$_{33}$]$^{24−}$ fragments in which two external FeIII ions are substituted by two RE complexes. Among the two O-donor ligands in the structure, only 2,5-pdc as a linkage, incorporating N and O atoms, conduct tetrameric and then 1D chain arrangement [199].

6. Conclusions

The localized surface charge and diverse structures of LPOMs have made them reactive building blocks for the construction of inorganic-organic architectures. The structures
of the lacuna itself as well as the main coordination modes of organic fragments are key parameters that need to be considered. The topology of the final hybrid depends on the number of vacancies generated in the parent structure. Organic fragments, on the other hand, can work as ornaments, bridges, and stabilizers in the whole structure. Since oxo groups in POM surfaces can only bond with limited species of transition metals, the utilization of organic ligands is crucial. In the present work, we highlighted the most important reports of inorganic–organic hybrid structures combining LPOMs with TM and Ln ions and compared the different roles of various ligands in their interaction with relevant Keggin-type POMs. Our results demonstrate a great variety of organic ligands and their important roles in the architecture of metal-substituted POMs.

Author Contributions: Conceptualization, M.M.; writing—original draft preparation, R.K., V.J., F.T., J.T.M.; writing—review and editing, V.J., M.M. All authors have read and agreed to the published version of the manuscript.

Funding: M.M. acknowledges financial support by the Ferdowsi University of Mashhad (grant no. 3/38582).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Data is contained within the article.

Acknowledgments: The authors would like to express their gratitude to Cambridge Crystallographic Data Centre (CCDC) for providing access to the CSD Enterprise. M.M. appreciates support from the Iran Science Elites Federation and the Zeolite and Porous Materials Committee of the Iranian Chemical Society. J.T.M. thanks Tulane University for the support of the Tulane Crystallography Laboratory.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations

Abbreviation	Full Form
OAc: ac	Acetate
acac	Acetylacetonate
ala	Alanine
am philosophical	(Aminomethyl)phosphonic acid
bdc	Benzenedicarboxylate
bdyl	2,2′-Bipyridinyl
bimpy	3,5-Bis(1-imidazolyl)pyridine
BINOL	(R)- or (S)-1,1′-bi-2-naphthol bipy, bpy: 2,2′-Bipyridine
bpp	1,3-bis(4-pyridyl)propane
btp	1,3-bis(1, 2, 4-triazol-1-yl) propane
cyclam	1,4,8,11-Tetraazacyclotetradecane
dap	Diaminopropane
dien, deta	Diethylenetriamine
DMAHC	Dimethylamine hydrochloride
DMEA	N,N-dimethylethanolamine
DMF	Dimethylformamide
DMSO	Dimethyl sulfoxide
en	Ethylenediamine
gly	Glycine
H2biim	2,2′-Bimidazole
hfac	Hexafluoracetacetonate
Hpic	2-picolinic acid
Htz	1H-tetrazole
imi	Imidazole
IN	Isonicotinate
Ln	Lanthanoide
LPOM	Lacunary POM
Malate
Meppz \(N,N'\)-dimethylpiperazine
ox Oxalate
PBTREHD POM-based TM-RE heterometallic derivative
pdc Pyridine dicarboxylate
phen 1,10-Phenanthroline
pic Picolinate
POM Polynometalate
POMOF Polynometalate open framework/Polyoxometalate-based metal–organic framework
POT Polynoxotungstate
ppz Piperazine
pydz Pyridazine
pz Pyrazine
pzdc Pyrazinedicarboxylic acid
RE Rare earth
RESP Rare earth-substituted POM
tart Tartrate
taz 1,2,4-1H-triazole
TBA Tetrabutylammonium
thr Threonine
TM Transition metal
TMA Tetramethylammonium
TMSP Transition metal-substituted POM
tpy \(2,2':6',2''\)-terpyridine
Tris Tris(hydroxymethyl)aminomethane

References
1. Patel, A.; Narkhede, N.; Singh, S.; Pathan, S. Keggin-type lacunary and transition metal substituted polyoxometalates as heterogeneous catalysts: A recent progress. Catal. Rev. 2016, 58, 337–370. [CrossRef]
2. Ueda, T. Electrochemistry of polyoxometalates: From fundamental aspects to applications. ChemElectroChem 2018, 5, 823–838. [CrossRef]
3. Lotfian, N.; Heravi, M.M.; Mirzaei, M.; Heidari, B. Applications of inorganic-organic hybrid architectures based on polyoxometalates in catalyzed and photocatalyzed chemical transformations. Appl. Organomet. Chem. 2019, 33, e4808. [CrossRef]
4. Samanijan, M.; Mirzaei, M.; Khajavian, R.; Eshtagh-Hosseini, H.; Streb, C. Heterogeneous catalysis by polyoxometalates in metal–organic frameworks. ACS Catal. 2019, 9, 10174–10191. [CrossRef]
5. Clemente-Juan, J.M.; Coronado, E.; Gaita-Ariño, A. Magnetic polyoxometalates: From molecular magnetism to molecular spintronics and quantum computing. Chem. Soc. Rev. 2012, 41, 7464–7478. [CrossRef] [PubMed]
6. Čolović, M.B.; Lacković, M.; Lalatović, J.; Mougharbel, A.S.; Kortz, U.; Krstić, D.Z. Polyoxometalates in Biomedicine: Update and Overview. Curr. Med. Chem. 2020, 27, 362–379. [CrossRef]
7. Rong, C.; Pope, M.T. Lacunary polyoxometalate anions are pi.-acceptor ligands. Characterization of some tungstoruthenate (II, III, IV, V) heteropolyanions and their atom-transfer reactivity. J. Am. Chem. Soc. 1992, 114, 2932–2938. [CrossRef]
8. Anyushin, A.V.; Kondinski, A.; Parac-Vogt, T.N. Hybrid polyoxometalates as post-functionalization platforms: From fundamentals to emerging applications. Chem. Soc. Rev. 2020, 49, 382–432. [CrossRef]
9. Klemperer, W.G. Introduction to Early Transition Metal Polyoxoanions. In Inorganic Syntheses; Ginsberg, A.P., Ed.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 1990; Volume 27, pp. 71–85.
10. Li, C.; Jimbo, A.; Yamaguchi, K.; Suzuki, K. A protecting group strategy to access stable lacunary polynometalyl clusters. Chem. Sci. 2021, 12, 1240–1244. [CrossRef]
11. Fan, Y.-H.; Li, M.-M.; Dang, D.-B.; Bai, Y.; Li, X.-Z.; Zhao, Y.-P.; Niu, J.-Y. Synthesis, structure and magnetic properties of a two-dimensional polymer based on sandwich-type tetra-cobalt(II)-substituted polynoxotungstate anions and 1-D potassium-chains. J. Coord. Chem. 2013, 66, 946–957. [CrossRef]
12. Li, M.-X.; Jin, S.-L.; Liu, H.-Z.; Xie, G.-Y.; Chen, M.-Q.; Xu, Z.; You, X.-Z. A novel hydroxo-bridged ferroc bisubstituted Keggin heteropolytungstate dimer: Synthesis and crystal structure of \(\text{M}_{4}\text{N}_{10}\text{Fe}_{3}(\text{OH})_{4}(\text{PW}_{10}\text{O}_{37})_{2}\cdot 15\text{H}_{2}\text{O} \). Polyhedron 1998, 17, 3721–3725. [CrossRef]
13. Chen, W.-C.; Jiao, C.-Q.; Wang, X.-L.; Shao, K.-Z.; Su, Z.-M. Self-assembly of nanoscale lanthanoid-containing selenotungstates: Synthesis, structures, and magnetic studies. Inorg. Chem. 2019, 58, 12895–12904. [CrossRef]
14. Li, W.-W.; Cai, S.-N.; Tian, Z.-F.; Fan, Y.-H.; Xu, Z.-P.; Bai, Y.; Dang, D.-B. A sandwich-type tungstoantimonate derivative: Synthesis, characterization and catalytic in \(\text{H}_{2}\text{O}_{2} \)-based oxidation of cyclooctene. Inorg. Chem. Commun. 2019, 104, 36–39. [CrossRef]
15. Zhang, G.-H.; Yang, W.-B.; Wu, W.-M.; Wu, X.-Y.; Zhang, L.; Kuang, X.-F.; Wang, S.-S.; Lu, C.-Z. A sandwich-type polyoxometalate for efficient noble-metal-free hydrogen evolution upon visible light irradiation. *J. Catal.* 2019, 369, 54–59. [CrossRef]

16. Zhang, Y.; Li, Y.; Fang, J.; Liu, Y.; Li, P.; Chen, L.; Zhao, J. Two penta-RE encapsulated tetravacant dawson selenotungstates and nanoscale derivatives and their luminescence properties. *Inorg. Chem. Commun.* 2019, 58, 7078–7090. [CrossRef] [PubMed]

17. Wang, J.; Hao, Q. Thin films of silica particles covered with lanthanide substituted Keggin polyoxometalates and their optical properties. *J. Alloys Compd.* 2009, 482, 235–239. [CrossRef]

18. Fashapoyeh, M.A.; Mirzaei, M.; Eshtigh-Hosseini, H.; Rajagopal, A.; Lechner, M.; Liu, R.; Streb, C. Photochemical and electrochemical hydrogen evolution reaction of lanthanide-functionalized polyoxotungstates. *Chem. Commun.* 2018, 54, 10427–10430. [CrossRef]

19. Cai, J.; Ye, R.; Jia, K.; Qiao, X.; Zhao, L.; Liu, J.; Sun, W. pH-controlled construction of lanthanide clusters from lacunary polyoxometalate with single-molecule magnet behavior. *Inorg. Chem. Commun.* 2020, 112, 107694. [CrossRef]

20. Zhang, J.; Qin, C.; Wang, E.; Su, Z.; Xu, L. A novel large heteropolytungstate constructed from two types of lacunary Keggin anions: \(\text{K}_7\text{Na}_{13}\{(\text{PW}_{11}\text{O}_{39})_2(\text{PW}_{8}\text{O}_{34})_2(\text{W}_2\text{O}_7)_2\}\cdot 25\text{H}_2\text{O}\). *Inorg. Chim. Acta* 2007, 360, 3376–3379. [CrossRef]

21. Li, C.; Mizuno, N.; Yamaguchi, K.; Suzuki, K. Self-Assembly of Anionic Polyoxometalate–Organic Architectures Based on Lacunary Phosphomolybdates and Pyridyl Ligands. *J. Am. Chem. Soc.* 2019, 141, 7687–7692. [CrossRef]

22. Aoki, S.; Kurashina, T.; Kasahara, Y.; Nishijima, T.; Nomiyama, K. Polyoxometalate (POM)-based, multi-functional, inorganic–organic hybrid compounds: Syntheses and molecular structures of silanol-and/or siloxane bond-containing species grafted on mono-and tri-lacunary Keggin POMs. *Dalton Trans.* 2011, 40, 1243–1253. [CrossRef]

23. Mirzaei, M.; Eshtigh-Hosseini, H.; Alipour, M.; Frontera, A. Recent developments in the crystal engineering of diverse coordination modes (0–12) for Keggin-type polyoxometalates in hybrid inorganic–organic architectures. *Coord. Chem. Rev.* 2014, 275, 1–18. [CrossRef]

24. Taghipour, F.; Mirzaei, M. A survey of interactions in crystal structures of pyrazine-based compounds. *Acta Crystallogr. Sect. C Struct. Chem.* 2019, 75, 231–247. [CrossRef] [PubMed]

25. Taleghani, S.; Mirzaei, M.; Eshtigh-Hosseini, H.; Frontera, A. Tuning the topology of hybrid inorganic–organic materials based on the study of flexible ligands and negative charge of polyoxometalate: A crystal engineering perspective. *Coord. Chem. Rev.* 2016, 309, 84–106. [CrossRef]

26. Ma, X.; Li, H.; Chen, L.; Zhao, J. The main progress over the past decade and future outlook on high-nuclear transition-metal substituted polyoxotungstates: From synthetic strategies, structural features to functional properties. *Dalton Trans.* 2016, 45, 4935–4960. [CrossRef]

27. Oms, O.; Dolbecq, A.; Mialane, P. Diversity in structures and properties of 3d-incorporating polyoxotungstates. *Chem. Soc. Rev.* 2012, 41, 7497–7536. [CrossRef]

28. Guo, L.-Y.; Jagodič, M.; Zeng, S.-Y.; Wang, Z.; Shi, Z.-Q.; Wang, X.-P.; Tung, C.-H.; Sun, D. pH-Controlled assembly of two novel Dawson-sandwiched clusters involving the in situ reorganization of trivacant \(\text{α-[P}_2\text{W}_{15}\text{O}_{56}]^{12–} \) into divacant \(\text{α-[P}_2\text{W}_{10}\text{O}_{7}]^{8–} \). *Dalton Trans.* 2016, 45, 8404–8411. [CrossRef]

29. Cheng, M.; Zhang, Z.; Li, H.-L.; Yang, G.-Y. A new inorganic-organic hybrid transition-metal-substituted polyoxometalate. *Inorg. Chem. Commun.* 2018, 96, 69–72. [CrossRef]

30. Mukhacheva, A.A.; Volchev, V.V.; Abramov, P.A.; Sokolov, M.N. Blocking [RhCl]\(^{2+}\) disorder in the crystal structure of a [SiW\(_{11}\)O\(_9\)][RhCl]\(^{6+}\) salt: Direct localization of the heterometal in a monosubstituted Keggin anion. *Inorg. Chem. Commun.* 2018, 89, 10–12. [CrossRef]

31. Xu, H.; Liu, X.-M.; Su, T.; Chen, W.-C.; Su, Z.-M. Two Ni/Co-substituted sandwich-type germanomolybdates based on an unprecedented trivacant polyanion [α-GeMo\(_{10}\)O\(_{36}\)]\(^{8–}\). *Dalton Trans.* 2020, 49, 977–982. [CrossRef] [PubMed]

32. Bi, L.-H.; Al-Kadamyany, G.; Chubarova, E.V.; Dickman, M.H.; Chen, L.; Gopalas, D.S.; Richards, R.M.; Keita, B.; Nadjo, L.; Jaensch, H. Organo-ruthenium supported sandwich-type polyoxotungstates: Synthesis, structure, electrochemistry, and oxidation catalysis. *Inorg. Chem.* 2009, 48, 10068–10077. [CrossRef]

33. Bi, L.-H.; Kortz, U.; Dickman, M.H.; Keita, B.; Nadjo, L. Trilacunary Heteropolytungstates Functionalized by Organometallic Ruthenium(II), [Ru\(_2\)C\(_6\)H\(_6\)]\(_2\)XW\(_8\)O\(_34\)]\(^{8–}\) (X = Si, Ge). *Inorg. Chem.* 2005, 44, 7485–7493. [CrossRef] [PubMed]

34. Bi, L.-H.; Chubarova, E.V.; Nsouli, N.H.; Dickman, M.H.; Kortz, U.; Keita, B.; Nadjo, L. Dilacunary decatungstates functionalized by organometallic ruthenium(II), [Ru\(_2\)C\(_6\)H\(_6\)](H\(_2\)O)]\([Ru(C\(_6\)H\(_6\))]_{(γ-XW\(_{10}\)}\)\(^{8–}\) (X = Si, Ge). *Inorg. Chem.* 2006, 45, 8575–8583. [CrossRef] [PubMed]

35. Meng, R.-Q.; Suo, L.; Hou, G.-F.; Liang, J.; Bi, L.-H.; Li, H.-L.; Wu, L.-X. Organo-Ru supported sandwich-type tungstoselenates: Synthesis, structure and catalytic properties. *CrystEngComm* 2013, 15, 5867–5876. [CrossRef]

36. Liu, C.-G.; Liu, S.; Zheng, T. Computational Study of Metal–Dinitrogen Keggin-Type Polyoxometalate Complexes [PW\(_{11}\)O\(_{39}\)]\(^{8+}\) (M = Ru, Os, Re, Ir): Bonding Nature and Dinitrogen Splitting. *Inorg. Chem.* 2015, 54, 7929–7935. [CrossRef] [PubMed]

37. Sokolov, M.N.; Adonin, S.A.; Mainichev, D.A.; Sinkevich, P.L.; Vicent, C.; Kompankov, N.B.; Gushchin, A.L.; Nadolinny, V.A.; Fedin, V.P. New [RuNO] Polyoxometalate [PW\(_{11}\)O\(_{39}\)]Ru\(_2\)(NO)\(_4\)]\(^{4+}\): Synthesis and Reactivity. *Inorg. Chem.* 2013, 52, 9675–9682. [CrossRef]

38. Sadakane, M.; Tsukuma, D.; Dickman, M.H.; Bassil, B.; Kortz, U.; Higashijima, M.; Ueda, W. Structural characterization of mono-ruthenium substituted Keggin-type silicotungstates. *Dalton Trans.* 2006, 35, 4271–4276. [CrossRef]
39. Kikukawa, Y.; Suzuki, K.; Yamaguchi, K.; Mizuno, N. Synthesis, Structure Characterization, and Reversible Transformation of a Cobalt Salt of a Dilacunary γ-Keggin Silicotungstate and Sandwich-Type Di-and Tetracobalt-Containing Silicotungstate Dimers. Inorg. Chem. 2013, 52, 8644–8652. [CrossRef]

40. Ogo, S.; Shimizu, N.; Nishiki, K.; Yasuda, N.; Mizuta, T.; Sano, T.; Sadakane, M. Preparation and Redox Studies of a_1-and a_2-Isomers of Mono-Ru-Substituted Dawson-type Phosphotungstates with a DMSO Ligand\([a_1/a_2-P_2W_17O_{63}]^{18-}\). Inorg. Chem. 2014, 53, 3526–3539. [CrossRef]

41. Kikukawa, Y.; Kuroda, Y.; Yamaguchi, K.; Mizuno, N. Diamond-Shaped $[Ag_4]^{1+}$ Cluster Encapsulated by Silicotungstate Ligands: Synthesis and Catalysis of Hydrolytic Oxidation of Silanes. Angew. Chem. Int. Ed. 2012, 51, 2434–2437. [CrossRef]

42. Kato, C.; Suzuki, S.; Ibara, Y.; Aono, K.; Yamashita, R.; Kikuchi, K.; Okamoto, T.; Uno, H. Hydrogen evolution from water under visible-light irradiation using Keggin-type platinum(II)-coordinated phospho-, silico-, and germanotungstates as co-catalysts. Mod. Res. Catal. 2016, 5, 103–129. [CrossRef]

43. Kato, C.; Suzuki, S.; Mizuno, T.; Ibara, Y.; Kurihara, A.; Nagatani, S. Syntheses and characterization of a-Keggin-and a_2-Dawson-type diplatinum(II)-coordinated polyoxotungstates: Effects of skeletal structure, internal element, and nitrogen-containing ligand coordinated to the platinum center for hydrogen production from water under light irradiation. Catal. Today 2019, 332, 2–10.

44. Kato, C.; Nagatani, S.; Mizuno, T. Synthesis, Characterization, and Stability of a a-Keggin-Type Polyoxotungstate-Coordinated Mono-Platinum(II) Complex. Eur. J. Inorg. Chem. 2019, 2019, 517–522. [CrossRef]

45. Mialane, P.; Dolbecq, A.; Riviere, E.; Marrot, J.; Secheresse, F. A Polyoxometalate Containing the $[Ni_2N_3]$ Fragment: Ferromagnetic Coupling in a NaN–I, 1 Azido Complex with a Large Bridging Angle. Angew. Chem. Int. Ed. 2004, 43, 2274–2277. [CrossRef] [PubMed]

46. Zhao, J.W.; Jia, H.P.; Zhang, J.; Zheng, S.T.; Yang, G.Y. A Combination of Lacunary Polyoxometalates and High-Nuclear Transition-Metal Clusters under Hydrothermal Conditions. Part II: From Double Cluster, Dimer, and Tetramer to Three-Dimensional Frameworks. Chem.—Eur. J. 2007, 13, 10030–10045. [CrossRef] [PubMed]

47. Cai, B.; Zhao, J.-W.; Yang, B.-F.; He, H.; Yang, G.-Y. Two Hexa-Ni-Substituted AsW$_9$O$_{34}$ Clusters Functionalized by Organic Ligands. J. Clust. Sci. 2014, 25, 1047–1059. [CrossRef]

48. Zhao, J.W.; Wang, C.M.; Zhang, J.; Zheng, S.T.; Yang, G.Y. Combination of Lacunary Polyoxometalates and High-Nuclear Transition Metal Clusters under Hydrothermal Conditions: IX. A Series of Novel Polyoxotungstates Sandwiched by Octa-Copper Clusters. Chem.—Eur. J. 2008, 14, 9223–9239. [CrossRef]

49. Xue, H.; Zhao, J.W.; Pan, R.; Yang, B.F.; Yang, G.Y.; Liu, H.S. Diverse Ligand-Functionalized Mixed-Valent Hexamanganese Sandwiched Silicotungstates with Single-Molecule Magnet Behavior. Chem.—Eur. J. 2016, 22, 12322–12331. [CrossRef]

50. Ni, Z.-H.; Zhang, Z.; Yang, G.-Y. Two New Tetra-Zr(IV)-Substituted Sandwich-Type Polyoxometalates Functionalized by Different Organic Amine Ligands. J. Clust. Sci. 2018, 29, 1185–1191. [CrossRef]

51. Lisanard, L.; Dolbecq, A.; Mialane, P.; Marrot, J.; Sècheresse, F. Hydrothermal syntheses and characterizations of 0D to 3D polyoxotungstates linked by copper ions. Inorg. Chim. Acta 2004, 357, 845–852. [CrossRef]

52. Zhao, J.-W.; Zheng, S.-T.; Yang, G.-Y. 0-D and 1-D inorganic–organic composite polyoxotungstates constructed from in-situ generated monocopperIII-substituted Keggin polyoxoanions and copperII-organooamine complexes. J. Solid State Chem. 2008, 181, 2205–2216. [CrossRef]

53. Zhao, J.; Shi, D.; Chen, L.; Cai, X.; Wang, Z.; Ma, P.; Wang, J.; Niu, J. Two organic-inorganic hybrid 1D and 3D polyoxotungstates constructed from hexa-CuII-substituted sandwich-tungstate units. CrystEngComm 2012, 14, 2797–2806. [CrossRef]

54. Li, Y.-Y.; Zhao, J.-W.; Wei, Q.; Yang, B.-F.; Yang, G.-Y. Synthesis and characterization of a 1D chain-like Cu$_4$ substituted sandwich-type phosphotungstate with pendant dinuclear Cu–azido complexes. J. Solid State Chem. 2014, 210, 166–170. [CrossRef]

55. Zhang, Z.; Sun, K.N.; Yang, G.Y. Two Series of CuII-Substituted Sandwich-Type Polyoxotungstates Constructed from Trivancient Germanotungstate Fragments. ChemistrySelect 2019, 4, 7559–7565. [CrossRef]

56. Zhao, J.-W.; Zheng, S.-T.; Li, Z.-H.; Yang, G.-Y. Combination of lacunary polyoxometalates and high-nuclear transition-metal clusters under hydrothermal conditions: First 63 8 CdSO$_4$-type 3-D framework built by hexa-CuII sandwiched polyoxotungstates. Dalton Trans. 2009, 1300–1306. [CrossRef]

57. Li, S.; Zhu, W.; Ma, H.; Pang, H.; Liu, H.; Yu, T. Structure and bifunctional electrocatalytic activity of a novel 3D framework based on dimeric monooxygen-substituted polyoxoanions as ten-connected linkages. RSC Adv. 2013, 3, 9770–9777. [CrossRef]

58. Zheng, S.-T.; Yuan, D.-Q.; Zhang, J.; Yang, G.-Y. Combination of Lacunary Polyoxometalates and High-Nuclear Transition Metal Clusters under Hydrothermal Conditions. 3. Structure and Characterization of [Cu(enMe)$_2$][Cu(enMe)$_2$(H$_2$O)$_2$][Cu$_4$(enMe)$_2$(B$_3$Si$_2$W$_9$O$_{34}$)$_2$] 4H$_2$O. Inorg. Chem. 2007, 46, 4569–4574. [CrossRef]

59. Zheng, S.T.; Wang, M.H.; Yang, G.Y. Extended Architectures Constructed from Sandwich Tetra-Metal-Substituted Polyoxotungstates and Transition-Metal Complexes. Chem.—Asian J. 2007, 2, 1380–1387. [CrossRef]

60. Zhao, J.-W.; Zhang, J.; Zheng, S.-T.; Yang, G.-Y. Combination between lacunary polyoxometalates and high-nuclear transition metal clusters under hydrothermal conditions: First (3,6)-connected framework constructed from sandwich-type polyoxometalate building blocks containing a novel [Cu$_8$S$_6$] cluster. Chem. Commun. 2008, 5, 570–572. [CrossRef]

61. Chen, L.; Shi, D.; Zhao, J.; Yang, W.; Ma, P.; Niu, J. Synthesis, structure and magnetism of a 2-D organic–inorganic hybrid tetra-CoIII-substituted sandwich-type Keggin germanotungstate:[Co(dap)$_2$(H$_2$O)$_2$][Co(dap)$_2$][Co$_4$(Hdap)$_2$(B$_3$α-HGeW$_9$O$_{34}$)$_2$] 7H$_2$O. Inorg. Chem. Commun. 2011, 14, 1052–1056. [CrossRef]
Zheng, S.-T.; Yuan, D.-Q.; Jia, H.-P.; Zhang, J.; Yang, G.-Y. Combination between lacunary polyoxometalates and high-nuclear transition metal clusters under hydrothermal conditions: I. from isolated cluster to 1-D chain. Chem. Commun. 2007, 18, 1838–1860. [CrossRef]

Li, J.; Wan, R.; Li, H.; Liu, Y.; Zhang, S.; Ma, P. A new 2-D layer-like organic-inorganic hybrid tungstobismuthate constructed from [B6W12O44]4− units and dimeric [Cu2(dien)2]2+ complex cations. J. Mol. Struct. 2019, 1181, 142–147. [CrossRef]

Yang, H.; Cao, M.; Gao, S.; Cao, R. A new hybrid constructed from Dawson-like polyoxometalates and dicopper coordination compounds containing a discrete tridecameric water cluster. J. Mol. Struct. 2014, 1056, 141–145. [CrossRef]

Han, Q.; Ma, P.; Zhao, J.; Wang, J.; Niu, J. A novel 1D tungstoarsenate with mixed organic ligands assembled by hexa-Cu sandwiched Keggin units and dinuclear copper-oxalate complexes. Inorg. Chem. Commun. 2011, 14, 767–770. [CrossRef]

Li, B.; Zhao, J.-W.; Zhang, G.-Y. Hydrothermal synthesis and structure of di-copper2+ complex substituted monocovalent polyoxotungstate with a 1D chain structure. Inorg. Chem. Commun. 2008, 11, 1288–1291. [CrossRef]

Wang, J.; Du, J.; Niu, J. Novel hexanuclear copper(II)-substituted dimeric tungstogermanates. CrystEngComm 2008, 10, 972–974. [CrossRef]

Zhao, H.-Y.; Dong, D.-P.; Liu, B.-K.; Lin, X.; Wang, L. Three new organic–inorganic hybrid di-copper complex substituted monovacant phosphotungstates: Hydrothermal syntheses, structures and properties. Inorg. Chem. Commun. 2018, 88, 25–29. [CrossRef]

Zhao, Z.; Zhou, B.; Su, Z.; Ma, H. Hydrothermal synthesis, structure and properties of copper–bipyridine complexes substituted mono-vacant Keggin arsenotungstate. Solid State Sci. 2010, 12, 803–807. [CrossRef]

Pang, H.; Ma, H.; Yu, Y.; Yang, M.; Xun, Y.; Liu, B. An unusual mono-substituted Keggin anion-chain based 3D framework with 24-membered macrorycles as linker units. J. Solid State Chem. 2012, 186, 23–28. [CrossRef]

Reinoso, S.; Vitoria, P.; Felices, L.S.; Lezama, L.; Gutiérrez-Zorrilla, J.M. Analysis of weak interactions in the crystal packing of inorganic metalorganic hybrids based on Keggin polyoxometalates and dinuclear copper(II)-acetate complexes. Inorg. Chem. 2006, 45, 108–118. [CrossRef]

Wang, K.-P.; Yu, K.; Li, J.-H.; Zhang, M.-L.; Meng, F.-X.; Zhou, B. A Host–Guest Supercapacitor Electrode Material Based on a Mixed Hexa-Transition Metal Sandwiched Arsenotungstate Chain and Three-Dimensional Supramolecular Metal–Organic Networks with One-Dimensional Cavities. Inorg. Chem. 2019, 58, 7947–7957. [CrossRef] [PubMed]

Cui, R.R.; Wang, H.L.; Yang, X.Y.; Ren, S.H.; Hu, H.M.; Fu, F.; Wang, J.W.; Xue, G.L. Imidazole Coordinated Sandwich-type Antimony Poly-oxotungstates Na9[(Na(H2O)2]3(M(C3H4N2)3)(SbW9O33)2] xH2O (M = NiII, CoII, ZnII, MnII). Chin. J. Chem. 2007, 25, 176–181. [CrossRef]

Ma, X.; Yu, K.; Yuan, J.; Cui, L.; Lv, J.; Dai, W.; Zhou, B. Multinuclear transition metal sandwich-type polytungstate derivatives for enhanced electrochemical energy storage and bifunctional electrocatalysis performances. Inorg. Chem. 2020, 59, 5149–5160. [CrossRef] [PubMed]

Sun, M.; Wang, T.; Li, F.; Sun, Z.; Xu, L. A novel sandwich-tungstoantimonate cluster with FeIII ions: Synthesis, magnetic property and electrochemical sensing of dopamine. New J. Chem. 2018, 42, 7480–7484. [CrossRef]

Zhao, H.; Tao, L.; Zhang, F.; Zhang, Y.; Liu, Y.; Xu, H.; Diao, G.; Ni, L. Transition metal substituted sandwich-type polyoxometalates with a strong metal–C(imidazole) bond as anticancer agents. Chem. Commun. 2019, 55, 1096–1099. [CrossRef] [PubMed]

Zhao, Z.; Zhou, B.; Zheng, S.; Su, Z.; Wang, C. Hydrothermal synthesis, crystal structure and magnetic characterization of three hexa-M substituted tungstoarsenates (M = Ni, Zn and Mn). Inorg. Chim. Acta 2009, 362, 5038–5042. [CrossRef]

Shalini, K.; Sharma, P.K.; Kumar, N. Imidazole and its biological activities: A review. Der Chem. Sin. 2010, 1, 36–47.

Zhang, L.; Peng, X.M.; Damu, G.L.; Geng, R.X.; Zhou, C.H. Comprehensive review in current developments of imidazole-based medicinal chemistry. Med. Res. Rev. 2014, 34, 430–437. [CrossRef]

Shi, Z.-Y.; Peng, J.; Li, Y.-G.; Zhang, Z.-Y.; Yu, X.; Alimaje, K.; Wang, X. Assembly of multinuclear Ag complexes and Keggin polyoxometalates adjusted by organic ligands: Syntheses, structures and luminescence. CrystEngComm 2013, 15, 7583–7588. [CrossRef]

Liu, J.-M.; Wang, L.; Yu, K.; Su, Z.-M.; Wang, C.-M.; Wang, C.-M.; Zhou, B.-B. Synthesis, crystal structure and properties of sandwich type complexes based on {AsW9} and a hexa-nuclear unit with three supporting TM-triazole complexes. New J. Chem. 2015, 39, 1139–1147. [CrossRef]

Wu, C.-D.; Lu, C.-Z.; Zhang, H.-H.; Huang, J.-S. Hydrothermal assembly of a novel three-dimensional framework formed by [GdMo12O40]9− anions and nine coordinated GdIII cations. J. Am. Chem. Soc. 2002, 124, 3836–3837. [CrossRef]

Chen, W.; Li, Y.; Wang, Y.; Wang, E.; Zhang, Z. A new polyoxometalate-based 3d–4f heterometallic aggregate: A model for the design and synthesis of new heterometallic clusters. Dalton Trans. 2008, 7, 865–867. [CrossRef] [PubMed]

Wu, X.-Y.; Yang, W.-B.; Wu, W.-M.; Liao, J.-Z.; Wang, S.-S.; Lu, C.-Z. A inorganic-organic hybrid material constructed from the monolacunary polyoxomolybdates and multi-nuclear copper clusters. Inorg. Chem. Commun. 2017, 76, 118–121. [CrossRef]

Zhao, J.; Wang, J.; Zhao, J.; Ma, P.; Wang, J.; Niu, J. Two novel trivacant Keggin-type polytungstates supported manganese carbonyl derivatives synthesized by degradation of metastable [γ-XW12O38]8− (X = GeIV, SiIV). Dalton Trans. 2012, 41, 5832–5837. [CrossRef] [PubMed]

Fang, X.; Anderson, T.M.; Neiwert, W.A.; Hill, C.L. Yttrium polyoxometalates. Synthesis and characterization of a carbonate-encapsulated sandwich-type complex. Inorg. Chem. 2003, 42, 8600–8602. [CrossRef]
90. Zhang, W.; Liu, S.X.; Zhang, C.D.; Tan, R.K.; Ma, F.J.; Li, S.J.; Zhang, Y.Y. An Acetate-Functionalized Tetranuclear Zirconium Sandwiching Polyoxometalate Complex. Eur. J. Inorg. Chem. 2010, 3473–3477. [CrossRef]

91. Han, M.; Niu, Y.; Wan, R.; Xu, Q.; Lu, J.; Ma, P.; Zhang, C.; Niu, J.; Wang, J. A Crown-Shaped Ru-Substituted Arsenotungstate for Selective Oxidation of Sulfides with Hydrogen Peroxide. Chem.-Eur. J. 2018, 24, 11059–11066. [CrossRef]

92. Al-Kadamany, G.; Mal, S.S.; Milev, B.; Donoeva, B.G.; Maksimovskaya, R.I.; Kholdeeva, O.A.; Kortz, U. Hexahafnium-Containing Tungstoarsenates(III) and Their Oxidation Catalysis Properties. Chem.-Eur. J. 2010, 16, 11797–11800. [CrossRef] [PubMed]

93. Ishimoto, R.; Kamata, K.; Suzuki, K.; Yamaguchi, K.; Mizuno, N. Synthesis and structural characterization of BINOL-modified [Ni(µ₂-COOH)₂]₆[(µ₂-COOH)₂(Ni)₃]−·3H₂O. J. Clust. Sci. 2013, 24, 1811–1820. [CrossRef]

94. Zhang, Z.; Wang, Y.-L.; Li, H.-L.; Sun, K.-N.; Yang, G.-Y. Syntheses, structures and optical/electrochemical properties. CrystEngComm 2019, 21, 2641–2647. [CrossRef]

95. Ni, Z.-H.; Li, H.-L.; Li, X.-Y.; Yang, G.-Y. Zr 4-Substituted polyoxometalate dimers decorated by d-tartaric acid/glycolic acid: Syntheses, structures and optical/electrochemical properties. CrystEngComm 2019, 21, 876–883. [CrossRef]

96. Rousseau, G.; Riviere, E.; Dolbeac, A.; Marrot, J.; Oms, O.; Mialane, P. Monomeric, Dimeric Helical, and 1D Nickel Polyoxotungstes Structured by Carboxylic Derivatives. Eur. J. Inorg. Chem. 2013, 2013, 1793–1798. [CrossRef]

97. Liu, J.; Luo, J.; Han, Q.; Cao, J.; Chen, L.; Song, Y.; Zhao, J. Coexistence of long-range ferromagnetic ordering and spin-glass behavior observed in the first inorganic–organic hybrid 1-D oxalate-bridging nona-Mn³⁺ sandwiched tungstoantimonate chain. J. Mater. Chem. C 2017, 5, 2043–2055. [CrossRef]

98. Fang, X.; Anderson, T.M.; Hill, C.L. Enantiomerically Pure Polytungstates: Chirality Transfer through Zirconium Coordination Centers to Nanosized Inorganic Clusters. Angew. Chem. Int. Ed. 2005, 44, 3540–3544. [CrossRef]

99. Ishimoto, R.; Kamata, K.; Suzuki, K.; Yamaguchi, K.; Mizuno, N. Synthesis and structural characterization of BINOL-modified chiral polyoxometalates. Dalton Trans. 2015, 44, 10947–10951. [CrossRef]

100. Gaunt, A.J.; May, I.; Collison, D.; Holman, K.T.; Pope, M.T. Polyoxometal cations within polyoxometalate anions. Seven-coordinate uranium and zirconium heterometal groups in [(UO₂)₅(µ₃-O)(µ₂-H₂O)(µ₂-W₁₅O₄₆)₄]³⁻ and [Zr₄(µ₃-O)₂(µ₂-OH)(H₂O)₄(P₂W₁₆O₅₀)]²⁺. J. Mol. Struct. 2003, 656, 101–106. [CrossRef]

101. Fang, X.; Anderson, T.M.; Hou, Y.; Hill, C.L. Stereoisomerism in polyoxometalates: Structural and spectroscopic studies of bis (malate)-functionalized cluster systems. Chem. Commun. 2005, 28, 5044–5046. [CrossRef]

102. Li, D.; Han, H.; Wang, Y.; Wang, X.; Li, Y.; Yang, E. Modification of tetranuclear zirconium-substituted polyoxometalates—syntheses, structures, and peroxide-like catalytic activities. Eur. J. Inorg. Chem. 2013, 2013, 1926–1934. [CrossRef]

103. Wang, Y.-L.; Zhao, J.-W.; Zhang, Z.; Sun, J.-J.; Li, X.-Y.; Yang, B.-F.; Yang, G.-Y. Enantiomeric Polyoxometalates Based on Malate Chirality-Inducing Tetra-ZrIV-Substituted Keggin Dimeric Clusters. Inorg. Chem. 2019, 58, 4657–4664. [CrossRef]

104. Wang, C.-M.; Zheng, S.-T.; Yang, G.-Y. Novel copper-complex-substituted tungstogermanates. Inorg. Chem. 2007, 46, 616–618. [CrossRef]

105. Zhao, Z.; Zhou, B.; Su, Z.; Zhu, C. Hydrothermal synthesis, structure and properties of a new oxometalate. J. Solid State Chem. 2010, 183, 332–337. [CrossRef]

106. Guo, L.-Y.; Zeng, S.-Y.; Jagličić, Z.; Hu, Q.-D.; Wang, S.-X.; Wang, Z.; Sun, D. A pyridazine-bridged sandwiched cluster incorporating planar hexanuclear cobalt ring and bivacant phosphotungstate. Inorg. Chem. 2016, 55, 9006–9011. [CrossRef]

107. Zhang, Z.; Li, H.-L.; Wang, Y.-L.; Yang, G.-Y. Syntheses, structures, and electrochemical properties of three new acetate-functionalized zirconium-substituted germanotungstates: From dimer to tetramer. Inorg. Chem. 2019, 58, 2372–2378. [CrossRef]

108. Wang, Y.-L.; Zhang, Z.; Li, H.-L.; Li, X.Y.; Yang, G.Y. An Oxalate-Functionalized Tetra-ZrIV-Substituted Sandwich-Type Silicotungstate: Hydrothermal Synthesis, Structural Characterization, and Catalytic Oxidation of Thioethers. Eur. J. Inorg. Chem. 2019, 2019, 417–422. [CrossRef]

109. Lu, C.; Chen, Y.; Li, H.; Chen, L.; Zhai, C.; Zhao, J. An organic–inorganic hybrid tetra-Fe³⁺ incorporated Krebs-sandwich-type tungstoantimonate decorated by pyridine carboxylic ligand. Inorg. Chem. Commun. 2018, 91, 85–90. [CrossRef]

110. Ritchie, C.; Moore, E.G.; Speldrich, M.; Kögerler, P.; Boskovic, C. Terbium polyoxometalate organic complexes: Correlation of structure with luminescence properties. Angew. Chem. Int. Ed. 2012, 50, 7868–7871. [CrossRef]

111. Lu, Y.; Xu, Y.; Wang, E.; Lü, J.; Hu, C.; Xu, L. Novel Two-Dimensional Network Constructed from Polyoxomolybdate Chains Linked through Copper–Organonitrogen Coordination Polymer Chains: Hydrothermal Synthesis and Structure of [H₂bppy]₄[Cu₄(4′-bpy)₃][HPCuMo₁₁O₃₀]. Cryst. Growth Des. 2005, 5, 257–260. [CrossRef]

112. Wang, J.-P.; Zhao, J.-W.; Duan, X.-Y.; Niu, J.-Y. Syntheses and Structures of One- and Two-Dimensional Organic–Inorganic Hybrid Rare Earth Derivatives Based on Monovacant Keggin-Type Polyoxometalates. Cryst. Growth Des. 2006, 6, 507–513. [CrossRef]
113. Naruke, H.; Yamase, T. Crystal structure of $K_{18.5}H_{1.5}[Ce_5(CO_3)(SbW_6O_{33})(W_5O_{18})_3] \cdot 14H_2O$. J. Alloys Compd. 1998, 268, 100–106. [CrossRef]

114. Yamase, T.; Naruke, H.; Sasaki, Y. Crystallographic characterization of the polyoxotungstate [Eu$_3$(H$_2$O)$_9$(SbW$_6$O$_{33}$)(W$_5$O$_{18}$)$_3$] and energy transfer in its crystalline lattice. J. Chem. Soc. Dalton Trans. 1990, 1687–1696. [CrossRef]

115. Ibrahim, M.; Mal, S.S.; Bassil, B.S.; Banerjee, A.; Kortz, U. Yttrium(III)-containing tantala-oxotitanate(III) stabilized by tetrahedral $WO_4^{2−}$ capping unit. [Y$_2$(SbW$_6$O$_{33}$(OH)$_2$)(CH$_3$COO)(H$_2$O)$_3$](WO$_4$)$_4$]. Inorg. Chem. 2011, 50, 956–960. [CrossRef] [PubMed]

116. Mialane, P.; Dolbecq, A.; Rivièrè, E.; Marrot, J.; Sécheresse, F. Functionalization of Polyoxometalates by a Negatively Charged Bridging Ligand: The Dimeric [(SiW$_4$O$_9$)Nn]$_2$(µ-CH$_2$COO)$_2$]$_{12}−$ (Nn = Gd$_{III}$, Yb$_{III}$) Complexes. Eur. J. Inorg. Chem. 2004, 33–36. [CrossRef]

117. Saini, M.K.; Gupta, R.; Parbhakar, S.; Mishra, A.K.; Mathur, R.; Hussain, F. Dimeric complexes of rare-earth substituted Keggin-type silicotungstates: Syntheses, crystal structure and solid state properties. RSC Adv. 2014, 4, 25357–25364. [CrossRef]

118. Hussain, F.; Degonda, A.; Sandriesser, S.; Fox, T.; Mal, S.S.; Kortz, U.; Patzke, G.R. Yttrium containing head-on complexes of silico-and germanotungstate: Synthesis, structure and solution properties. Inorg. Chim. Acta 2010, 363, 4324–4328. [CrossRef]

119. Niu, J.; Wang, K.; Chen, H.; Zhao, J.; Ma, P.; Wang, J.; Li, M.; Bai, Y.; Dang, D. Assembly chemistry between lanthanide cations and monocyclic Keggin polyoxotungstates: Two types of lanthanide substituted phosphotungstates [(a-PW$_{11}$O$_{39}$)H$_2$Ln(H$_2$O)$_3$]$_2$ and [(a-PW$_{11}$O$_{39}$)Ln(H$_2$O)(n$_2$-µ-1)-CH$_3$COO]$_{10}$$. Cryst. Growth Des. 2009, 9, 4362–4372. [CrossRef]

120. Hussain, F.; Gable, R.W.; Speldrich, M.; Kögerler, P.; Boskovic, C. Polyoxotungstate-encapsulated Gd$_{6}$ and Yb$_{10}$ complexes. Chem. Commun. 2009, 3, 328–330. [CrossRef]

121. Chen, W.; Li, Y.; Wang, Y.; Wang, E.; Su, Z. Building block approach to nanostructures: Step-by-step assembly of large lanthanide-containing polytungstoarsenate aggregates. Dalton Trans. 2007, 38, 4293–4301. [CrossRef]

122. Arefian, M.; Mirzaei, M.; Eshtiagh-Hosseini, H.; Frontera, A. A survey of the different roles of polyoxometalates in their interaction with amino acids, peptides and proteins. Dalton Trans. 2017, 46, 6812–6829. [CrossRef]

123. Liu, J.; Yu, J.; Han, Q.; Wen, Y.; Chen, L.; Zhao, J. First quadruple-glycine bridging mono-lanthanide-substituted borotungstate hybrids. Dalton Trans. 2016, 45, 16471–16484. [CrossRef] [PubMed]

124. Li, Y.; Li, H.; Jiang, J.; Chen, L.; Zhao, J. Three Types of Distinguishing I-Alanine-Decorated and Rare-Earth- Incorporated Arsenotungstate Hybrids Prepared in a Facile One-Step Assembly Strategy. Inorg. Chem. 2019, 58, 3479–3491. [CrossRef]

125. Zhang, S.; Wang, Y.; Zhao, J.; Ma, P.; Wang, J.; Niu, J. Two types of oxalate-bridging rare-earth-substituted Keggin-type phosphotungstates [(a-PW$_{11}$O$_{39}$)RE(H$_2$O)$_2$(C$_2$O$_4$)]$_{10}^−$ and [(a-x-PW$_{10}$O$_{38}$)RE$_2$(C$_2$O$_4$)(H$_2$O)$_2$]$_3$. Dalton Trans. 2012, 41, 3764–3772. [CrossRef] [PubMed]

126. Mialane, P.; Dolbecq, A.; Sécheresse, F. Functionalization of polyoxometalates by carboxylato and azido ligands: Macromolecular complexes and extended compounds. Chem. Commun. 2006, 33, 3477–3485. [CrossRef] [PubMed]

127. Mialane, P.; Dolbecq, A.; Marrot, J.; Sécheresse, F. Oligomerization of Yb(III)-substituted Dawson polyoxotungstates by oxalato ligands. Inorg. Chem. Commun. 2005, 8, 740–742. [CrossRef]

128. Wang, Y.; Sun, X.; Li, S.; Ma, P.; Wang, J.; Niu, J. Synthesis and magnetic properties of tartrate-bridging rare-earth-containing polytungstoarsenate aggregates from an adaptive precursor [As$_2$W$_{19}$O$_{67}$(H$_2$O)]. Dalton Trans. 2015, 44, 733–738. [CrossRef] [PubMed]

129. Ma, P.; Hu, F.; Wu, H.; Liu, X.; Wang, J.; Niu, J. Luminescent dimeric polyoxotungstate [Ho$_3$(H$_2$O)$_9$(α-PW$_{11}$O$_{39}$)]$_2^{16−}$ with magnetism and reversible photochromism. J. Lumin. 2020, 217, 116760. [CrossRef]

130. Wang, Y.; Sun, X.; Li, S.; Ma, P.; Niu, J. Generation of large polynuclear rare earth metal-containing organic–inorganic polytungstoarsenate aggregates. Cryst. Growth Des. 2015, 15, 2057–2063. [CrossRef]

131. Li, F.; Guo, W.; Xu, L.; Ma, L.; Wang, Y. Two dysprosium-incorporated tungstoaesnates: Synthesis, structures and magnetic properties. Dalton Trans. 2012, 41, 9220–9226. [CrossRef]

132. Ma, P.; Wan, R.; Si, Y.; Hu, F.; Wang, Y.; Niu, J. Double-malate bridging tri-lanthanoid cluster encapsulated arsena-tungstates: Syntheses, structures, luminescence and magnetic properties. Dalton Trans. 2015, 44, 11514–11523. [CrossRef]

133. Wu, H.; Wan, R.; Si, Y.; Ma, P.; Wang, J.; Niu, J. A helical chain-like organic–inorganic hybrid arsenaotungstate with color-tunable photoluminescence. Dalton Trans. 2018, 47, 1958–1965. [CrossRef]

134. Wu, H.; Zhi, M.; Chen, H.; Singh, V.; Ma, P.; Wang, J.; Niu, J. Well-tuned white-light-emitting behaviours in multicenter-Ln polyoxometalate derivatives: A photoluminescence property and energy transfer pathway study. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2019, 223, 117294. [CrossRef]

135. Wang, K.; Feng, S.; Ma, P. Synthesis, characterization and photoluminescence properties of a benzoic modified lanthanide-containing polyoxometalate. Inorg. Chem. Commun. 2019, 108, 107511. [CrossRef]

136. An, H.; Han, Z.; Xu, T. Three-dimensional architectures based on lanthanide-substituted double-Keggin-type polyoxometalates and lanthanide cations or lanthanide-organic complexes. Inorg. Chem. 2010, 49, 11403–11414. [CrossRef] [PubMed]

137. Ritchie, C.; Baslon, V.; Moore, E.G.; Reber, C.; Boskovic, C. Sensitization of lanthanoid luminescence by organic and inorganic ligands in lanthanoid-organic-polyoxometalates. Inorg. Chem. 2012, 51, 1142–1151. [CrossRef] [PubMed]

138. Han, Q.; Wen, Y.; Liu, J.-C.; Zhang, W.; Chen, L.-J.; Zhao, J.-W. Rare-earth-incorporated tellurotungstate hybrids functionalized by 2-picolinic acid ligands: Syntheses, structures, and properties. Inorg. Chem. 2017, 56, 13228–13240. [CrossRef]
164. Han, Q.; Wen, Y.; Liu, J.; Chen, L.; Zhao, J. Synthesis, structure and electrochemical properties of an inorganic–organic hybrid CuII/III heterometallic germanotungstate. Inorg. Chem. Commun. 2016, 71, 54–60. [CrossRef]

165. Li, Y.; Tian, S.; Li, Y.; Zhao, J.; Ma, P.; Chen, L. Two 2D Cu–Ln heterometallic polyoxometalate aggregates constructed from bis(undecatungstophosphate) lanthanate units and copper–complex bridges. Inorg. Chem. Acta 2013, 405, 105–110. [CrossRef]

166. Zhao, H.-Y.; Yang, B.-F.; Yang, G.-Y. Two new 2D organic–inorganic hybrids assembled by lanthanide-substituted polyoxotungstate dimers and copper–complex linkers. Inorg. Chem. Commun. 2017, 84, 212–216. [CrossRef]

167. Shang, S.; Zhao, J.; Chen, L.; Li, Y.; Zhang, J.; Li, Y.; Niu, J. 2-D and 3-D phosphotungstate-based TM–Ln heterometallic derivatives constructed from dimeric [Ln(α-PW11O39)2]11− fragments and copper-organic complex linkers. J. Solid State Chem. 2012, 196, 29–39. [CrossRef]

168. Luo, J.; Leng, C.; Chen, L.; Yuan, J.; Li, H.; Zhao, J. Three 3D organic–inorganic hybrid heterometallic polyoxotungstates assembled from 1: 2-type [Ln(a-SiW11O39)2]11− silicotungstates and [Cu(dap)2]2+ linkers. Synth. Met. 2012, 162, 1558–1565. [CrossRef]

169. Yao, S.; Yan, J.H.; Duan, H.; Zhang, Z.M.; Li, Y.G.; Han, X.B.; Shen, J.Q.; Fu, H.; Wang, E.B. Integration of Ln-Sandwich POMs into Molecular Porous Systems Leading to Self-Assembly of Metal–POM Framework Materials. Eur. J. Inorg. Chem. 2013, 2013, 4770–4774. [CrossRef]

170. Zhao, J.-W.; Li, Y.-Z.; Ji, F.; Yuan, J.; Chen, L.-J.; Yang, G.-Y. Syntheses, structures and electrochemical properties of a class of 1-D double chain polyoxotungstate hybrids [H2dap][Cu(dap)2][Cu(dap)2(H2O)][Ln(H2O)3(α-GeW11O36)·3H2O]. Dalton Trans. 2014, 43, 5694–5706. [CrossRef]

171. Zhao, J.; Luo, J.; Chen, L.; Yuan, J.; Li, H.; Ma, P.; Wang; J.; Niu, J. Novel 1-D double-chain organic–inorganic hybrid polyoxotungstates constructed from dimeric copper–lanthanide heterometallic silicotungstate units. CrystEngComm 2012, 14, 7981–7993. [CrossRef]

172. Wu, S.-Y.; Yang, Y.-J.; Jing, J.-X.; Li, X.-X.; Sun, Y.-Q.; Zheng, S.-T. Two organic–inorganic hybrid polyoxotungstogermanates containing organic ligand chelated Fe-Dy heterometallic clusters and frequency dependent magnetic properties. Inorg. Chem. Front. 2020, 7, 498–504. [CrossRef]

173. Jingping, W.; Wei, W.; Qingxia, Y.; Jingyang, N. Synthesis and crystal structure of a novel double 1:11 series arsenotungstate: [Cu(phen)]2+[H4[Sm(AsW11O39)2]·6H2O. J. Rare Earths 2008, 26, 638–642. [CrossRef]

174. Zhou, W.; Liu, P.; Zheng, Y.; Peng, J. Bifunctional electro-catalysts stemmed from Ln-Substituted monovacant/saturated Keggin polyoxotungstates and cu-terpyridine chlorides. Catal. Surv. Asia 2018, 22, 136–145. [CrossRef]

175. Zhou, W.; Zhang, Z.; Peng, J.; Wang, X.; Shi, Z.; Li, G. A series of hybrids with a framework constructed from {−SiW11−Ln−SiW11−}n chains and [{Cu/bimpy} ribbons. CrystEngComm 2014, 16, 10893–10901. [CrossRef]

176. Kortz, U.; Savelieff, M.G.; Bassil, B.S.; Keita, B.; Nadjo, L. Synthesis and characterization of iron (III)-substituted, dimeric polyoxotungstates containing organic ligand chelated Fe–Dy heterometallic clusters and various coordination modes of 2-picolinic acid ligands tuning three types of rare 3d–4f heterometallic tungstoantimonates. CrystEngComm 2011, 13, 4770–4774. [CrossRef]

177. Han, Q.-W.; Cao, J.; Li, Y.-Z.; Zhang, J.; Chen, L.-J. First tungstatoiminate-based transition-metal–lanthanide heterometallic hybrids functionalized by amino acid ligands. Cryst. Growth Des. 2014, 14, 6217–6229. [CrossRef]

178. Chen, L.; Zhang, F.; Ma, X.; Luo, J.; Zhao, J. Two types of novel tetra-iron substituted sandwich-type arsenotungstates with supporting lanthanide pendants. Dalton Trans. 2015, 44, 12598–12612. [CrossRef]

179. Chen, Y.; Sun, L.; Chang, S.; Chen, L.; Zhao, J. Synergistic effect between different coordination geometries of lanthanides and various coordination modes of 2-picolinic acid ligands tuning three types of rare 3d–4f heterometallic tungstoantimonates. Inorg. Chem. 2018, 57, 15079–15092. [CrossRef]

180. Yao, S.; Zhang, Z.; Li, Y.; Lu, Y.; Wang, E.; Su, Z. Two heterometallic aggregates constructed from the [P2W12]-based trimeric polyoxotungstates and 3d-4f heterometals. Dalton Trans. 2011, 40, 6475–6479. [CrossRef]

181. Zhang, Z.-M.; Li, Y.-G.; Yao, S.; Wang, E.-B. Hexameric polyoxometalates decorated by six 3d–4f heterometallic clusters. Dalton Trans. 2011, 40, 6475–6479. [CrossRef]

182. Zhao, H.-Y.; Zhao, H.-Y.; Yang, B.-F.; He, H.; Yang, B.-F. Novel three-dimensional organic-inorganic heterometallic hybrid built by sandwich-type tetra-Mn-substituted arsenotungstates through mixed 3d and 4f metal linkers. Cryst. Growth Des. 2013, 13, 5169–5174. [CrossRef]

183. Xue, H.; Zhang, Z.; Pan, R.; Yang, B.-F.; Liu, H.-S.; Yang, G.-Y. Supramolecular nanotubes constructed from 3d–4f heterometallic sandwiched polyoxotungstate dimers. CrystEngComm 2016, 18, 4643–4650. [CrossRef]

184. Sato, R.; Suzuki, K.; Minato, T.; Yamaguchi, K.; Mizuno, N. Sequential Synthesis of 3d–3d′–4f Heterometallic Heptanuclear Clusters in between Lacunary Polyoxometalates. Inorg. Chem. 2016, 55, 2023–2029. [CrossRef]

185. Du, D.; Qin, J.; Li, S.; Lan, Y.; Wang, X.; Su, Z. 3d–4f Heterometallic complexes for the construction of POM-based inorganic–organic hybrid compounds: From nanoclusters to one-dimensional ladder-like chains. Aust. J. Chem. 2010, 63, 1389–1395. [CrossRef]

186. Zhao, H.-Y.; Zhao, J.-W.; Yang, B.-F.; Wei, Q.; Yang, G.-Y. Two Organic–Inorganic Hybrids Assembled by Carboxylate-Bridging Lanthane-Substituted Polyoxometalates Dimers with Copper–ethylendiamine Cations. J. Clust. Sci. 2014, 25, 667–680. [CrossRef]

187. Zhao, H.-Y.; Zhao, J.-W.; Yang, B.-F.; He, H.; Yang, G.-Y. Organic–inorganic hybrids based on monovacant Keggin-type polyoxotungstates and 3d–4f heterometals. CrystEngComm 2013, 15, 8186–8194. [CrossRef]
188. Sun, L.; Liu, Y.; Wang, X.; Li, H.; Luo, J.; Chen, L.; Zhao, J. Syntheses, structures and properties of a series of inorganic-organic hybrid copper–lanthanide heterometal comprising germanotungstates with mixed ligands. *Synth. Met.* **2016**, *217*, 256–265. [CrossRef]

189. Zhao, H.-Y.; Zhao, J.-W.; Yang, B.-F.; He, H.; Yang, G.-Y. Novel organic–inorganic hybrid one-dimensional chain assembled by oxalate-bridging terbium-substituted phosphotungstate dimers and dinuclear copper(II)–oxalate clusters. *CrystEngComm* **2013**, *15*, 5209–5213. [CrossRef]

190. Wang, F.-Q.; Zheng, X.-J.; Wan, Y.-H.; Wang, K.-Z.; Jin, L.-P. Architecture of zero-, one-, two-and three-dimensional structures based on metal ions and pyrazine-2, 6-dicarboxylic acid. *Polyhedron* **2008**, *27*, 717–726. [CrossRef]

191. Zhang, S.; Zhao, J.; Ma, P.; Niu, J.; Wang, J. Rare-Earth–Transition-Metal Organic–Inorganic Hybrids Based on Keggin-type Polyoxometalates and Pyrazine-2, 3-dicarboxylate. *Chem.–Asian J.* **2012**, *7*, 966–974. [CrossRef] [PubMed]

192. Sun, P.; Ma, F.; Liu, S. Inorganic-organic hybrids constructed of bis (undecatungstogermanate) lanthanates polyoxoanions and oxalate-bridged dinuclear copper complexes and their magnetic properties. *Chin. Sci. Bull.* **2011**, *56*, 2331–2336. [CrossRef]

193. Gupta, R.; Parbhakar, S.; Behera, J.N.; Hussain, F. Sandwich type organic-inorganic hybrid of 3d–4f heterometallic containing germanotungstates [{Cu}_{2}Ln_{2}(OX)(SiW_{11}O_{39})_{2}]^{11--}: Syntheses, crystal structures, magnetic and photoluminescence properties. *Inorg. Chem. Commun.* **2016**, *74*, 72–78. [CrossRef]

194. Martín-Caballero, J.; Artetxe, B.; Reinoso, S.; San Felices, L.; Vitoria, P.; Larrañaga, A.; Vilas, J.L.; Gutiérrez-Zorrilla, J.M. Thermostructural behavior in a series of lanthanide-containing polyoxotungstate hybrids with copper(II) complexes of the tetraazamacrocycle cyclam: A single-crystal-to-single-crystal transformation study. *Inorg. Chem.* **2019**, *58*, 4365–4375. [CrossRef]

195. Han, Q.; Liu, J.-C.; Wen, Y.; Chen, L.-J.; Zhao, J.-W.; Yang, G.-Y. Tellurotungstate-based organotin–rare-earth heterometallic hybrids with four organic components. *Inorg. Chem.* **2017**, *56*, 7257–7269. [CrossRef] [PubMed]

196. Liu, J.-C.; Zhao, J.-W.; Song, Y.-F. 1-D Chain Tungstotellurate Hybrids Constructed from Organic-Ligand-Connecting Iron–Lanthanide Heterometal Encapsulated Tetrameric Polyoxotungstate Units. *Inorg. Chem.* **2019**, *58*, 9706–9712. [CrossRef] [PubMed]