REMARKS ON THE LIECHTI-STRENNER’S EXAMPLES HAVING
SMALL DILATATIONS

JI-YOUNG HAM AND JOONGUL LEE

Abstract. We show that the Liechti-Strenner’s example for the closed non-orientable
surface of genus 2 in [LS18] is minimal among the monic polynomials with negative coef-
ficients of degree 2k - 1. We also show that the Liechti-Strenner’s example of orientation-
reversing homeomorphism for the closed orientable surface of genus 2k - 1 in [LS18] is
minimal among the monic polynomials with negative coefficients of degree 4k.

1. Introduction

Let \(\Sigma_g \) be a surface of finite type. A homeomorphism \(h \) of \(\Sigma_g \) is called pseudo-Anosov
if there is a pair of transversely measured foliations \(F^u \) and \(F^s \) in \(\Sigma \) and a real number
\(\lambda > 1 \) such that \(h(F^u) = \lambda F^u \) and \(h(F^s) = 1/\lambda F^s \) [Thu88, CB88]. The number \(\lambda \) is
called the dilatation of \(h \) and the logarithm of \(\lambda \) is called the topological entropy. The
set of dilatations of pseudo-Anosov homeomorphisms of the group of isotopy classes \(\Sigma_g \)
is discrete [AY81, Iva88]. In particular, there exists the minimal dilatation.

The dilatation of a pseudo-Anosov homeomorphism of \(\Sigma_g \) measures its dynamical com-
plexity. Furthermore, the collection of topological entropies has a geometric interpretation
as the collection of Teichmüller distances between Riemann surfaces of the same topolog-
ical type as \(\Sigma_g \) [Abi80]. In particular, the logarithm of the minimal dilatation of a genus
\(g \) surface gives the length of the systole for the genus \(g \) moduli space.

For an orientable surface \(S_g \), several results have been known on the bounds of the
minimal dilatation, \(\delta_g \), for all pseudo-Anosov homeomorphisms of \(S_g \). Penner gave an
upper and lower bounds for the dilatations of \(S_g \), and proved that as \(g \) tends to infinity,
the minimal dilatation tends to one (the logarithm of the minimal dilatation tends to
zero on the order of \(1/g \) [Pen91]. The upper bound was improved by Bauer for closed
surfaces of genus \(g \geq 3 \) [Bau92].

However, the exact value of the minimal dilatation \(\delta_g \) of \(S_g \) has been found only when
the genus \(g \) is two [CH08].

More is known for the minimal dilatation of orientation-preserving pseudo-Anosov
homeomorphisms on \(S_g \) with orientable invariant foliations. Denote the minimal di-
latation of orientation-preserving pseudo-Anosov homeomorphisms on \(S_g \) with orientable
invariant foliations by \(\delta^+(S_g) \). The following Table 1 shows the known values.

The pseudo-Anosov homeomorphisms realizing \(\delta^+(S_g) \) in Table 1 were constructed by
Zhirov [Zhi95] for \(g = 2 \), Lanneau and Thiffeault [LT11] for \(g = 3 \) and 4, Leiniger [Lei04]
for \(G = 5 \), Kin and Takasawa [KT13] and Aaber and Dunfield [AD10] for \(g = 7 \), and

2010 Mathematics Subject Classification. 37E30, 37B40, 57M60.
Key words and phrases. Minimal dilatation, Nonorientable surface, Liechti-Strenner, pseudo-Anosov
stretch factors.
The minimal polynomial of $\delta^+(S_g)$ is given by:

g	$\delta^+(S_g) \approx$	Minimal polynomial of $\delta^+(S_g)$
1	2.61803	$x^2 - 3x + 1$
2	1.72208	$x^4 - x^3 - x^2 - x + 1$
3	1.40127	$x^6 - x^4 - x^3 - x^2 + 1$
4	1.28064	$x^8 - x^5 - x^4 - x^3 + 1$
5	1.17628	$x^{10} + x^9 - x^7 - x^6 - x^5 - x^4 - x^3 + x + 1 = \frac{x^{12} - x^7 - x^6 - x^5 + 1}{x^2 - x + 1}$
6	1.15486	$x^{14} + x^{13} - x^9 - x^8 - x^7 - x^6 - x^5 + x + 1$
7	1.12876	$x^{16} - x^9 - x^8 - x^7 + 1$

Table 1. The known values of $\delta^+(S_g)$

The minimal polynomial of $\delta^+(N_g)$ is given by:

g	$\delta^+(N_g) \approx$	Minimal polynomial of $\delta^+(N_g)$
4	1.83929	$x^3 - x^2 - x - 1$
5	1.51288	$x^4 - x^3 - x^2 + x - 1$
6	1.42911	$x^5 - x^3 - x^2 - 1$
7	1.42198	$x^6 - x^5 - x^4 - x^3 + x - 1$
8	1.28845	$x^7 - x^4 - x^3 - 1$
10	1.21728	$x^{11} - x^6 - x^5 - 1$
12	1.17429	$x^{13} - x^7 - x^6 - 1$
14	1.14551	$x^{15} - x^8 - x^7 - 1$
16	1.12488	$x^{16} - x^9 - x^8 - x^7 + 1$
18	1.10938	$x^{17} - x^9 - x^8 - 1$
20	1.09730	$x^{19} - x^{10} - x^9 - 1$

Table 2. The known values of $\delta^+(N_g)$

Hironaka [Hir10] for $g = 8$. Hironaka [Hir10] then showed that all of the examples above except the $g = 7$ example arise from the fibration of the link complement of 6_2^2. From genus 6 to genus 8, each example identified the lower bound calculated by Lanneau and Thiffeault [LT11] as the minimal dilatation.

Recently, Liechti and Strenner [LS18] determined the minimal dilatation of pseudo-Anosov homeomorphisms with orientable invariant foliations on the closed nonorientable surfaces of genus 4, 5, 6, 7, 8, 10, 12, 14, 16, 18 and 20 and the minimal dilatation of orientation-reversing pseudo-Anosov homeomorphisms with orientable invariant foliations on the closed orientable surfaces of genus 1, 3, 5, 7, 9, and 11. Denote by N_g the closed nonorientable surface of genus g and by $\delta^+(N_g)$ the minimal dilatation among pseudo-Anosov homeomorphisms of N_g with an orientable invariant foliation. Denote the minimal dilatation among orientation-reversing pseudo-Anosov homeomorphisms on S_g with orientable invariant foliations by $\delta_{\text{rev}}^+(S_g)$. The values worked by Liechti and Strenner [LS18] are in the following Table 2 and Table 3.

The main purpose of the paper is to show that the Liechti-Strenner’s example for the closed non-orientable surface of genus $2k$ in [LS18] is minimal among the monic polynomials with negative coefficients of degree $2k-1$ and show that the Liechti-Strenner’s example of orientation-reversing homeomorphism for the closed orientable surface of genus
Remarks on the Liechti-Strenner’s examples having small dilatations

Table 3. The known values of $\delta_{\text{rev}}^+(S_g)$

g	$\delta_{\text{rev}}^+(S_g)$	Minimal polynomial of $\delta_{\text{rev}}^+(S_g)$
1	1.61803	$x^2 - x - 1$
3	1.25207	$x^3 - x^2 - x^3 - 1$
5	1.15973	$x^{12} - x^{11} - x^5 - 1$
7	1.11707	$x^{16} - x^{15} - x^7 - 1$
9	1.09244	$x^{20} - x^{19} - x^9 - 1$
11	1.07638	$x^{24} - x^{23} - x^{11} - 1$

$2k - 1$ in [LS18] is minimal among the monic polynomials with negative coefficients of degree $4k$.

Theorem 1.1. Denote by N_{2k} the closed nonorientable surface of genus $2k$. For all $k \geq 2$,

$$x^{2k-1} - x^k - x^{k-1} - 1$$

gives the minimal dilatation among the polynomials

$$x^{2k-1} - a_{2k-2}x^{2k-2} \cdots - a_1 x - 1$$

where whose associated pseudo-Anosov homeomorphisms on N_{2k} have orientable invariant foliations and where $a_i \geq 0$ for $1 \leq i \leq 2k - 2$.

Theorem 1.2. Denote by S_{2k-1} the closed orientable surface of genus $2k - 1$. For all $k \geq 2$,

$$x^{4k} - x^{2k+1} - x^{2k-1} - 1$$

gives the minimal dilatation among the polynomials

$$x^{4k} - a_{4k-1}x^{4k-1} \cdots - a_1 x - 1$$

where whose associated pseudo-Anosov homeomorphisms on S_{2k-1} are orientation reversing with orientable invariant foliations and where $a_i \geq 0$ for $1 \leq i \leq 4k - 1$.

2. Perron-Frobenius matrix

Definition. Let $M = (m_{ij})$ and $N = (n_{ij})$ be two nonnegative $d \times d$ matrices. We say $M > N$ if $m_{ij} \geq n_{ij}$ for all $i, j \in \{1, 2, \ldots, d\}$ and strict inequality holds for at least one entry.

Lemma 2.1 (Perron-Frobenius). Let T and L be two Perron-Frobenius matrices such that $T > L$, then the spectral radius λ_T of T is strictly bigger than the spectral radius λ_L of L.

Proof. Let $t > 0$ be a left eigenvector of T corresponding to λ_T and let $l > 0$ be a right eigenvector of L corresponding to λ_L. Then

$$Tl > Ll = \lambda_L l$$

and

$$\lambda_T tl = tTl > \lambda_L tl.$$

Therefore $\lambda_T > \lambda_L$. \qed
Proposition 2.2. The transpose of the Frobenius companion matrix of
\[x^{2k-1} - a_{2k-2}x^{2k-2} \cdots - a_1 x - 1 \]
is
\[
\begin{bmatrix}
0 & 1 & 0 & \cdots & 0 \\
0 & 0 & 1 & \cdots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & \cdots & 1 \\
1 & a_1 & a_2 & \cdots & a_{2k-2}
\end{bmatrix},
\]
and the transpose of the Frobenius companion matrix of
\[x^{4k} - a_{4k-1}x^{4k-1} \cdots - a_1 x - 1 \]
is
\[
\begin{bmatrix}
0 & 1 & 0 & \cdots & 0 \\
0 & 0 & 1 & \cdots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & \cdots & 1 \\
1 & a_1 & a_2 & \cdots & a_{4k}
\end{bmatrix},
\]

Proposition 2.3. [LS18, Proposition 4.1] Let \(\psi : N_g \to N_g \) be a pseudo-Anosov map with a transversely orientable invariant foliation on the closed non-orientable surface \(N_g \) of genus \(g \). Then its stretch factor \(\lambda \) is a root of a (not necessarily irreducible) polynomial \(p(x) \in \mathbb{Z}[x] \) with the following properties:

1. \(\deg(p) = g - 1 \)
2. \(p(x) \) is monic and its constant coefficient is \(\pm 1 \)
3. The absolute values of the roots of \(p(x) \) other than \(\lambda \) lie in the open interval \((\lambda^{-1}, \lambda) \). In particular, \(p(x) \) is not reciprocal or anti-reciprocal.
4. \(p(x) \) is reciprocal mod 2.

Proposition 2.4. [LS18, Proposition 4.3] Let \(\psi : S_g \to S_g \) be an orientation-reversing pseudo-Anosov map with transversely orientable invariant foliations. Then its stretch factor \(\lambda \) is a root of a (not necessarily irreducible) polynomial \(p(x) \in \mathbb{Z}[x] \) with the following properties:

1. \(\deg(p) = 2g \)
2. \(p(x) \) is monic and its constant coefficient is \((-1)^g \)
3. \(p(x) = (-1)^g x^{2g}p(-x^{-1}) \)
4. The absolute values of the roots of \(p(x) \) other than \(\lambda \) and \(-\lambda^{-1}\) lie in the open interval \((\lambda^{-1}, \lambda) \).

Lemma 2.5. Let \(A \) be the adjacent matrix for a graph \(G \) with \(n \) vertices. Then \(A \) is primitive if and only if \(G \) is strongly connected and the gcd of the lengths of the loops in \(G(A) \) is one.

Proof. See [DM67, Chapter 6, Section 1, Remarks, 6, 8].

Lemma 2.6. (1) If \(x^{2k-1} - a_{2k-2}x^{2k-2} \cdots - a_1 x - 1 \) gives the dilatation on \(N_{2k} \), then \(a_i \equiv a_{2k-1-i} \mod 2 \) and at least for one \(a_i \) with \(\gcd(2k-1, 2k-1-i) = 1 \), \(a_i \neq 0 \) for \(1 \leq i \leq k-1 \).
Lemma 2.7. Let $k \geq 2$.

(1) \[x^{2k-1} - x^k - x^{k-1} - 1 \]
gives the minimum spectral radius among the polynomials $x^{2k-1} - a_{2k-2}x^{2k-2} - \cdots - a_1x - 1$ with $a_i = a_{2k-i-1} = 1$ for only one i ($1 \leq i \leq k - 1$) and $a_j = 0$ for all j with $j \neq i$ and $j \neq 2k - 1 - i$.

(2) \[x^{4k} - x^{2k+1} - x^{2k-1} - 1 \]
gives the minimum spectral radius among the polynomials $x^{4k} - a_{4k-1}x^{4k-1} - \cdots - a_1x - 1$ with $a_i = a_{4k-i} = 1$ for only one i ($1 \leq i \leq 2k - 1$) and $a_j = 0$ for all j with $j \neq i$ and $j \neq 4k - i$.

Proof. (1) Let $g(x) = x^{2k-1} - x^{2k-1-i} - x^i - 1$. Then $g(1) = -2 < 0$ and $g(2) = 2^{2k-1} - 2^{2k-1-i} - 2^i - 1 = (2^{2k-1-i} - 1)(2^i - 1) - 2 > 0$. $g'(x) = (2k - 1)x^{2k-2} - (2k - 1 - i)x^{2k-2-i} - ix^{i-1}$. $g'(1) = (2k - 1) - (2k - 1 - i) - i = 0$ and $g'(x) = x^{2k-2}((2k - 1) - (2k - 1 - i)x^{-i} - ix^{-2k+i+1}) \geq 0$ for $x \geq 1$. Hence the largest root of $g(x)$ lies between 1 and 2 and it is the only root bigger than 1. We can regard g as a two variable polynomial $G(x, i)$.

\[\frac{\partial G}{\partial i} = x^i \ln x \left(x^{2k-2i-1} - 1\right) \geq 0 \]

if $x \geq 1$. Hence

\[x^{2k-1} - x^k - x^{k-1} - 1 \]
gives the minimum spectral radius.

(2) Let $g(x)$ be $g(x) = x^{4k} - x^{4k-i} - x^i - 1$. Then $g(1) = -2 < 0$ and $g(2) = 2^{4k} - 2^{4k-i} - 2^i - 1 = (2^{4k-i} - 1)(2^i - 1) - 2 > 0$. $g'(x) = (4k)x^{4k-1} - (4k - i)x^{4k-i-1} - ix^{i-1}$. $g'(1) = 4k - (4k - i) - i = 0$ and $g'(x) = x^{4k-1}((4k) - (4k - i - 1)x^{-i} - ix^{-4k+i}) \geq 0$ for $x \geq 1$. Hence the largest root of $g(x)$ lies between 1 and 2 and it is the only root bigger than 1. We can regard g as a two variable polynomial $G(x, i)$.

\[\frac{\partial G}{\partial i} = x^i \ln x \left(x^{4k-2i} - 1\right) \geq 0 \]

if $x \geq 1$. Hence

\[x^{4k} - x^{2k+1} - x^{2k-1} - 1 \]
gives the minimum spectral radius.
3. Proof of Theorem 1.1 and Theorem 1.2

3.1. **Proof of Theorem 1.1.** Suppose λ is the minimal dilatation of a pseudo-Anosov homeomorphism with a transversely orientable invariant foliation on the closed non-orientable surface N_{2k} of genus $2k$ among the dilatations whose associated monic polynomials have negative coefficients and degree $2k - 1$. Since such polynomials can be considered as the characteristic polynomial of nonnegative Frobenius companion matrix which is also primitive,

$$x^{2k-1} - x^k - x^{k-1} - 1$$

gives the minimal dilation by Lemma 2.6 (1), Lemma 2.7 (1) and Lemma 2.1.

3.2. **Proof of Theorem 1.2.** Suppose λ is the minimal dilatation of a pseudo-Anosov homeomorphism which is orientation reversing with orientable invariant foliations on the closed orientable surface S_{2k-1} of genus $2k - 1$ among the dilatations whose associated monic polynomials have negative coefficients and degree $4k$. Since such polynomials can be considered as the characteristic polynomial of nonnegative Frobenius companion matrix which is also primitive,

$$x^{4k} - x^{2k+1} - x^{2k-1} - 1$$

gives the minimal dilation by Lemma 2.6 (2), Lemma 2.7 (2) and Lemma 2.1.

References

[Abi80] William Abikoff, *The real analytic theory of Teichmüller space*, Lecture Notes in Mathematics, vol. 820, Springer, Berlin, 1980. MR 590044

[AD10] John W. Aaber and Nathan Dunfield, *Closed surface bundles of least volume*, Algebr. Geom. Topol. 10 (2010), no. 4, 2315–2342. MR 2745673

[AY81] Pierre Arnoux and Jean-Christophe Yoccoz, *Construction de difféomorphismes pseudo-Anosov*, C. R. Acad. Sci. Paris Sér. I Math. 292 (1981), no. 1, 75–78. MR 610152

[Bau92] Max Bauer, *An upper bound for the least dilatation*, Trans. Amer. Math. Soc. 330 (1992), no. 1, 361–370. MR 1094556

[CB88] Andrew J. Casson and Steven A. Bleiler, *Automorphisms of surfaces after Nielsen and Thurston*, London Mathematical Society Student Texts, vol. 9, Cambridge University Press, Cambridge, 1988. MR 964685

[CH08] Jin-Hwan Cho and Ji-Young Ham, *The minimal dilatation of a genus-two surface*, Experiment. Math. 17 (2008), no. 3, 257–267. MR 2455699

[DM67] A. L. Dulmage and N. S. Mendelsohn, *Graphs and matrices*, Graph Theory and Theoretical Physics, Academic Press, London, 1967, pp. 167–227. (loose errata). MR 0252247

[Hir10] Eriko Hironaka, *Small dilatation mapping classes coming from the simplest hyperbolic braid*, Algebr. Geom. Topol. 10 (2010), no. 4, 2041–2060. MR 2728483

[Iva88] N. V. Ivanov, *Coefficients of expansion of pseudo-Anosov homeomorphisms*, Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 167 (1988), no. Issled. Topol. 6, 111–116, 191. MR 964259

[KT13] Eiko Kin and Mitsuhiko Takasawa, *Pseudo-Anosovs on closed surfaces having small entropy and the Whitehead sister link exterior*, J. Math. Soc. Japan 65 (2013), no. 2, 411–446. MR 3055592

[Lei04] Christopher J. Leininger, *On groups generated by two positive multi-twists: Teichmüller curves and Lehmer’s number*, Geom. Topol. 8 (2004), 1301–1359. MR 2119298

[LS18] Livio Liechti and Balázs Strenner, *Minimal pseudo-Anosov stretch factors on nonorientable surfaces*, arXiv:1806.00033, 2018, Preprint.
Remarks on the Liechi-Strenner’s examples having small dilatations

[LT11] Erwan Lanneau and Jean-Luc Thiffeault, On the minimum dilatation of pseudo-Anosov homomorphisms on surfaces of small genus, Ann. Inst. Fourier (Grenoble) 61 (2011), no. 1, 105–144. MR 2828128

[Pen91] R. C. Penner, Bounds on least dilatations, Proc. Amer. Math. Soc. 113 (1991), no. 2, 443–450. MR 1068128

[Thu88] William P. Thurston, On the geometry and dynamics of diffeomorphisms of surfaces, Bull. Amer. Math. Soc. (N.S.) 19 (1988), no. 2, 417–431. MR 956596

[Zhi95] A. Yu. Zhirov, On the minimum dilation of pseudo-Anosov diffeomorphisms of a double torus, Uspekhi Mat. Nauk 50 (1995), no. 1(301), 197–198. MR 1331364

Da Vinci College of General Education, Chung-Ang University, General Education Building, 84 HeukSeok-Ro, DongJak-Gu, Seoul, 06974, Korea
Email address: jiyoungham1@gmail.com.

Department of Mathematics Education, Hongik University, 94 Wausan-ro, Mapo-gu, Seoul, 04066, Korea
Email address: jglee@hongik.ac.kr