Cooperative Robustness to Dephasing

G. Luca Celardo,1,2,3 Paolo Poli,1 Luca Lussardi,1 and Fausto Borgonovi1,2,3

1Dipartimento di Matematica e Fisica, Università Cattolica del Sacro Cuore, via Musei 41, I-25121 Brescia, Italy
2Interdisciplinary Laboratories for Advanced Materials Physics, Università Cattolica del Sacro Cuore, via Musei 41, I-25121 Brescia, Italy
3Istituto Nazionale di Fisica Nucleare, Sezione di Pavia, via Bassi 6, I-27100, Pavia, Italy

(Dated: March 31, 2014)

We analyze a 1-d ring structure composed of many two-levels systems, in the limit where only one excitation is present. The two-levels systems are coupled to a common environment, where the excitation can be lost, which induces super and subradiant behavior. Moreover, each two-levels system is coupled to another independent environment, modeled by a classical white noise, simulating a dephasing bath and described by the Haken-Strobl master equation. Single exciton Superradiance, an example of cooperative quantum coherent effect, is destroyed at a critical dephasing strength proportional to the system size, showing robustness of cooperativity to the action of the dephasing environment. We also show that the coupling to a common dissipative environment contrasts the action of dephasing, driving the entanglement decay to slow down on increasing the system size. Moreover, after a projective measurement which finds the excitation in the system, the entanglement reaches a stationary value, independent of the initial conditions.

PACS numbers: 71.35.-y, 03.65.Yz, 05.60.Gg

I. INTRODUCTION

Emergent properties arise due to cooperative behavior of the many constituents of a complex system. They belong to the system as a whole and not to its constituents, and are at the center of many research fields in condensed matter physics. In quantum systems, differently from classical ones, additional emergent properties are possible due to quantum coherence. Among the many fascinating aspects of these properties, one important open question regards their robustness to the effects induced by the presence of an environment. This robustness might enable to exploit coherent quantum effects to build quantum devices for information technologies and basic energy science.

As an example of quantum coherent emergent property, we consider here single exciton Superradiance [1]. Superradiance was originally discovered in the context of atomic clouds interacting with the electromagnetic field (EMF) [2], but it was soon recognized to be a general phenomenon in open quantum systems [3] under the conditions of coherent coupling with a dissipative environment, characterized by a continuum of states. In particular, its relevance in quantum transport was pointed out in Ref. [4]. Superradiance, in the seminal paper by Dicke [2], involved many excited atoms (each modeled as a two-levels system). Dicke showed that, when the wavelength associated with the emitted photon is larger than the system size, there are some states which emit light with an intensity proportional to N^2, where N is the number of atoms. This kind of Superradiance would occur also in an ensemble of classical emitters with proper initial conditions. However, Superradiance can occur also when only one excitation is present in the system. In this case it is a purely quantum effect [1], due to exciton states extended over many sites (representing a fully entangled state of the two-levels systems sharing the excitation). The decay rate of such a state is cooperatively enhanced w.r.t. the single system decay rate, in that it is proportional to the system size. For instance, in molecular aggregates [5], if we call γ the radiative decay rate of an isolated molecule, an excitation spread coherently over N molecules has a radiative decay rate equal to $N\gamma$. Note that Superradiance comes always together with Subradiance, that is the existence of other states with a suppressed decay rate (i.e. smaller than the single system decay rate).

Superradiant behavior with respect to the EMF was found experimentally in many molecular aggregates [6,7]. Since the discovery of quantum coherent effects in biological systems even at room temperature [8–12], Superradiance has been thought to have a functional role in photosynthesis, both w.r.t. the absorption of electromagnetic radiation and w.r.t. the transfer of the excitation to another absorbing complex [12,13]. Moreover, proposals of solid state quantum devices for photon sensing and light harvesting based on Superradiance have been made [17].

These systems are usually subject to the effects of different environments. Together with a common dissipative one, where the excitation can be lost either by recombination and photon emission or by trapping to a central core absorber, there are also other environments (such as a phonon bath) which induce various kinds of noise characterized by different correlation time-scales, to be compared to the excitonic transport time: i) short-time correlations give rise to dephasing (homogeneous broadening), and ii) long-time correlations produce on-site static disorder (inhomogeneous broadening). The interplay of different environments is essential to determine the efficiency of light absorption and excitation transfer.

The interplay of a dephasing phonon environment with a common dissipative environment has been considered
in [5], but only the behavior of populations were analyzed and little attention was given to coherences. Here, we focus our attention on the effect of the coupling to a common dissipative environment on the loss of quantum coherence induced by the dephasing bath. In particular, we address the question of how cooperativity can protect coherences and entanglement.

The coupling to the dissipative environment, which induces Superradiance, is taken into account by means of an effective non-Hermitian Hamiltonian \[H = H_0 + i\gamma Q \] where \(\gamma \) is the dephasing rate, proportional to the intensity of site energy fluctuations. Note that, within this framework, it is possible to recover the generation of entanglement found in the case of two qubits coupled to a common dissipative environment at zero temperature in Ref. [20]. The coupling to a dephasing environment is modeled as stochastic fluctuations of diagonal energies, a common way to include dephasing in exciton dynamics, and it might also explain why they are so common in natural photosynthetic complexes.

We consider here a simple model with \(N \) two-levels systems arranged in a ring structure. This paradigmatic model has been considered in several papers [5, 17, 24–27] to describe different systems, such as molecular J-aggregates [5], bio-inspired devices for photon sensing [17], and efficient light-harvesting systems [25]. In particular, it has been often considered in the frame of exciton transport in natural photosynthetic complexes, such as LHI, LHI, where chlorophyll molecules indeed aggregate to form ring-like structures [28].

Usually, under low light intensity, only one excitation is considered and the system becomes equivalent to a tight binding model where one particle can hop from site to site, as described in Fig. 1. Specifically, we consider a ring with nearest neighbors hopping, \(\Omega \), described by the following periodic tight binding Hamiltonian:

\[
H_0 = \sum_{j=1}^{N} E_j |j\rangle \langle j| + \Omega \sum_{j=1}^{N} (|j\rangle \langle j+1| + |j+1\rangle \langle j|).
\]

We also fix the energy scale taking \(\Omega = 1 \) and, for simplicity, \(E_j = 0 \), for \(j = 1, \ldots, N \).

Each site is coupled to a common dissipative environment with coupling strength \(\gamma \), as shown in Fig. 1. This common environment describes very well both the coupling with the EMF, in the case of molecular aggregates with parallel dipoles [5], and the coupling with a central core absorber, which can be modeled by a semi-infinite lead characterized by a continuum of states [29]. This dissipative opening can be modeled by an effective non-Hermitian Hamiltonian, which can be written as [10]

\[
\mathcal{H} = H_0 - i\gamma Q, \quad Q_{ij} = 1, \quad i, j = 1, \ldots, N.
\]

The non-Hermitian Hamiltonian describes the decay of probability due to the loss of excitation in the common continuum decay channel. When all of the sites are coupled to a single channel, we can have a superradiant behavior. Specifically, in this model there are a superradiant state,

\[
|S\rangle = \frac{1}{\sqrt{N}} \sum_{i=1}^{N} |i\rangle,
\]

with a decay width given by \(N\gamma \), and \(N - 1 \) subradiant states, orthogonal to the superradiant one, with zero decay width for any value of \(\gamma \). Note that this situation is a peculiarity of this model: usually, the superradiant regime sets in only above a critical value of the coupling with the continuum of states. This fact shows that ring-shaped nanostructures are ideal to exploit Superradiance, and it might also explain why they are so common in natural photosynthetic complexes.

The effect of the dephasing environment is taken into account in the frame of the Haken-Strobl model [21]. A non-Hermitian term \(\gamma Q \) is added to the Hamiltonian to model the coupling with a common dissipative environment.

III. EXACT SOLUTION FOR MACROSCOPIC VARIABLES

Let us define the following macroscopic variables:

\[
p = \text{tr} \rho = \sum_{h=1}^{N} \rho_{hh}, \quad q = \sum_{h\neq k} \rho_{hk}.
\]
As for their physical meaning, \(p(t) \) describes the probability of finding the excitation in the ring (which will decay to zero since the system is open) and \(q(t) \) is related to the presence of quantum coherences and it is a real number, being the sum of all the off-diagonal elements of the Hermitian density matrix. Those variables completely characterize the radiative behavior of the system. Indeed, given a state \(\rho \), its decay rate can be written as the probability to be the state \(|S\rangle \), Eq. (3), times the decay rate \(N\gamma \) of the state \(|S\rangle \):

\[
\Gamma_{\rho} = N\gamma\langle S|\rho|S\rangle = \gamma \sum_{n,m} \rho_{nm} = \gamma(p + q).
\]

(7)

From the last expression it is clear that, if \(p = 1 \) and \(q = 0 \), we have the decay rate \(\Gamma_{\rho} = \gamma \), and that we need \(q \neq 0 \) to have Superradiance or Subradiance. For instance, for the fully entangled state, Eq. (3), we have: \(p = 1, q = N - 1 \), so that \(\Gamma_{S} = N\gamma \). This shows that \(q \) represents the coherences responsible for Superradiance.

The system of \(N^2 \times N^2 \) differential equations (4) decouples, so that we can write a close set of equations for the macroscopic variables:

\[
\begin{aligned}
\dot{p} &= -\gamma p - \gamma q, \\
\dot{q} &= -(N\gamma - \gamma)p - (N\gamma - \gamma + \gamma_{\phi})q.
\end{aligned}
\]

(8)

The dynamics of \(p(t) \) and \(q(t) \) can be obtained easily starting from the initial conditions

\[
p(0) = \sum_{k=1}^{N} \rho_{hh}(0) = 1, \quad q(0) = q_{0} = \sum_{k\neq k} \rho_{hk}(0),
\]

(9)

and it is given by

\[
p(t) = p_{-} e^{\lambda_{+} t} + p_{+} e^{\lambda_{-} t},
\]

(10)

\[
q(t) = p_{-} \left(1 + \frac{\lambda_{+}}{\gamma}\right) e^{\lambda_{+} t} - p_{+} \left(1 + \frac{\lambda_{-}}{\gamma}\right) e^{\lambda_{-} t},
\]

(11)

where

\[
p_{\pm} = \frac{\gamma + \lambda_{\pm} + \gamma q_{0}}{\lambda_{+} - \lambda_{-}},
\]

(12)

and \(\lambda_{\pm} \) are the eigenvalues of the linear system (8),

\[
\lambda_{\pm} = \frac{-N\gamma - \gamma_{\phi} \pm \sqrt{N^2\gamma^2 + \gamma_{\phi}^2 + (2N - 4)\gamma\gamma_{\phi}}}{2}.
\]

(13)

Note that Eq. (10) for the population \(p(t) \) is in agreement with the results obtained in Ref. [5], while the results for coherences have not been discussed so far. Note also that, for \(\gamma = 0 \), we have \(\dot{p} = 0 \) and \(\dot{q} = -\gamma \gamma_{\phi} q \), so that coherences would simply decay exponentially as \(q(t) = q(0) \exp(-\gamma \gamma_{\phi} t) \). A very different situation arises because of the coupling with a common dissipative environment. It is interesting to study the limit for small and large \(\gamma_{\phi}/N\gamma \). Let us first assume \(\gamma_{\phi}/N\gamma \ll 1 \) then

\[
\lambda_{+} = \frac{-\gamma_{\phi}}{N} + o\left(\frac{\gamma_{\phi}}{N\gamma}\right),
\]

\[
\lambda_{-} = -N\gamma - \gamma_{\phi} - N - \frac{1}{N} + o\left(\frac{\gamma_{\phi}}{N\gamma}\right).
\]

(14)

This means that, in this regime, the dynamics are characterized by a cooperative (proportional to the system size \(N \)) exponentially fast decay with rate \(-N\gamma \) (superradiant), and a strongly suppressed decay with slope \(\gamma_{\phi}/N \) (subradiant). We will call this the superradiant regime.

On the other hand, for \(N\gamma/\gamma_{\phi} \ll 1 \) one has

\[
\lambda_{+} = -\gamma + o(\gamma_{\phi}/N),
\]

\[
\lambda_{-} = -\gamma_{\phi}[1 + o(\gamma_{\phi}/N)].
\]

(15)

In this regime any cooperative effect on the decay is lost and the long-time dynamics are dominated by the smallest exponent between \(\gamma \) and \(\gamma_{\phi} \). This is the non-superradiant regime.

IV. SURVIVAL PROBABILITY

The critical dephasing strength separating the superradiant regime from the non-superradiant regime can be studied by means of the survival probability, \(p(t) \), for the excitation to be still in the system at time \(t \). Note that, for \(\gamma_{\phi} = 0 \), assuming as initial condition a superradiant state (\(p_{0} = 1, q_{0} = N - 1 \)), Eq. (3), we have \(p(t) = e^{-N\gamma t} \), while for any subradiant initial state we have: \(p(t) = p_{0} = 1 \).

In Fig. 2 we show the survival probability, \(p(t) \), as a function of time for different \(\gamma_{\phi} \) values, starting from the superradiant state. As one can see, for \(\gamma_{\phi}/N\gamma \ll 1 \), it decreases in time initially as \(e^{-N\gamma t} \) and, for \(t > t^{*} \), as \(e^{-\gamma_{\phi} t/N} \) independently of \(\gamma \). It is relatively easy to estimate the transition time, \(t^{*} \), as the intersection, in logarithmic scale, between the lines with slope \(-N\gamma \) and \(\gamma_{\phi}/N \), obtaining

\[
t^{*} \approx \frac{1}{N\gamma} \log \frac{\gamma_{\phi}}{N\gamma}.
\]

(16)

t^{*}, which represents the timescale at which the superradiant transfer ends, has been shown in Fig. 2 by vertical arrows. On the other side, for large enough dephasing rate \(\gamma_{\phi} > N\gamma \), Superradiance is destroyed and the survival probability decays as \(e^{-t^{*}} \), see Fig. 2.

To determine the critical dephasing strength at which the super and subradiant effect is destroyed, we analyze the decay of both the superradiant state, Eq. (3), and of a particular subradiant state,

\[
|A\rangle = \frac{1}{\sqrt{N}} \sum_{i=1}^{N} (-1)^{i} |i\rangle,
\]

(17)

which is clearly orthogonal to the superradiant one, \(\langle S|A\rangle = 0 \). We compute the time, \(\tau \), at which \(p(\tau) = \ldots \)
1/e. It is clear that Superradiance is completely destroyed when \(\Lambda = 1/\tau \simeq \gamma \). Note that \(\Lambda/\gamma \) has also been called effective cooperation number \((N_{\text{eff}}) \) in literature\[3\].

As it is shown in Fig. 3 the ratio \(\Lambda/\gamma \), for the superradiant initial state, goes to 1 when \(\gamma_0/N\gamma \approx 1 \). For anti-symmetric initial state, we note that, for \(\gamma_0/N\gamma < 1 \), \(\Lambda \propto \gamma_0/N \), and we checked that this behavior is independent of \(\gamma \) and shared by all of the subradiant initial states (not shown in Fig. 3). When \(\gamma_0/N\gamma > 1 \), the ratio \(\Lambda/\gamma \) approaches 1, in agreement with the analytical results presented above.

Fig. 3 also shows the robustness of super and subradiant emergent effects to dynamical disorder: the amount of dephasing needed to destroy the superradiant behavior increases with the system size. Note that the same robustness was found in the presence of static disorder \[19\] 30, so that it appears to be a general property of such coherent emergent effects. Another interesting result is that, at fixed dephasing rate, the decay rate of subradiant states decreases (as \(\gamma_0/N \)) on increasing the system size. This indicates that some kind of quantum coherence is cooperatively preserved in presence of Superradiance.

V. ENTANGLEMENT

Here we would like to address the question whether other kinds of quantum coherence, different from that needed to sustain Superradiance, are preserved by the coupling to a common dissipative environment. Therefore, we will base our analysis on a quantity used to quantify the global entanglement \[10\]:

\[
E[\rho] = -\sum_i \rho_{ii} \ln \rho_{ii} + \sum_i \lambda_i \ln \lambda_i, \quad (18)
\]

where \(\lambda_i \) are the eigenvalues of the density matrix. Note that \(E[\rho] \) measures the entanglement between the many two-levels systems which share the excitation. Let us stress that, for an extended state, see Eq. (3), we have \(E[\rho] = \ln(N) \), while, for a separable state, we have \(E[\rho] = 0 \). Moreover, the von Neumann entropy, \(\sum_i \lambda_i \ln \lambda_i \), vanishes for pure states, so that \(E[\rho] = -\sum_i \rho_{ii} \ln \rho_{ii} \).

In the single exciton approximation it is also possible to compute the concurrence \[31\] for any pair of two-levels systems \(i \neq j \), which is simply given by \[10\]

\[
C_{ij} = 2|\rho_{ij}|. \quad (19)
\]

Before analyzing the effect of opening on the global entanglement, let us discuss the case without opening (\(\gamma = 0 \)). Since the off-diagonal matrix elements are exponentially suppressed, the steady state solution of Eq. (5), is given by, \(\rho_{ij} = \delta_{ij}/N \). Thus, in our model of decoherence, the density matrix becomes diagonal with a homogeneous distribution, and all the off-diagonal matrix elements and \(E[\rho] \) (which represent the coherences) vanish for large enough times. Typically, one has that \(E_\rho(t) \sim e^{-\Gamma_E t} \), for \(t \) large. The dependence of \(\Gamma_E \) on \(\gamma_0 \) for the different parameters has been obtained by an exponential fitting in time and is shown in Fig. 4. As one can see, \(\Gamma_E \) is not monotone with \(\gamma_0 \), since it firstly increases linearly with \(\gamma_0 \) and then, for large dephasing, it decreases as \(1/\gamma_0 \). This fact has been interpreted in literature as a manifestation of the so-called quantum Zeno effect [22]. To summarize, in the case \(\gamma = 0 \) we
Here is:

\[\rho' \]

\[\Gamma_E = \begin{cases}
1.3 \gamma \phi & \text{for } \gamma \phi < 12.4 \Omega / N, \\
200 \Omega^2 / N^2 \gamma \phi & \text{for } \gamma \phi > 12.4 \Omega / N.
\end{cases} \]

(19)

Let us now consider the case \(\gamma \neq 0 \). Under very general assumptions, see Appendix A, it is possible to obtain the asymptotic behavior (for \(t \to \infty \)) of the density matrix:

\[\rho_{ij}(t) = e^{\lambda_{\pm} t} [a \delta_{ij} + (1 - \delta_{ij}) b], \]

(20)

where

\[a = -\frac{p_-}{N}, \quad b = \frac{p_-}{N(N-1)} \left(1 + \frac{\lambda_+}{\gamma}\right), \]

(21)

and \(p_-, \lambda_+ \) are defined in Eqs (12,13). Eq. (20) has been numerically verified in a very large range of parameters.

From the analytical expression, Eq. (20), it is easily deduced that both global entanglement and concurrence decay exponentially in time, as \(\exp(\lambda_{\pm} t) \). In more detail, one gets the asymptotic \((t \to \infty) \) behavior of the concurrence as

\[C_{ij} \sim 2e^{\lambda_{\pm} t} \left[\frac{p_-}{N(N-1)} \left(1 + \frac{\lambda_+}{\gamma}\right) \right], \]

(22)

and, that of the global entanglement as

\[E[\rho] \sim \frac{p_-}{N} e^{\lambda_{\pm} t} \left\{ \left(2 + \frac{\lambda_+}{\gamma}\right) \ln \left(2 + \frac{\lambda_+}{\gamma}\right) + \left(N - 2 - \frac{\lambda_+}{\gamma}\right) \ln \left[1 - \frac{1}{N-1} \left(1 + \frac{\lambda_+}{\gamma}\right)\right] \right\}. \]

(23)

This means that, in the superradiant regime, where \(\lambda_+ = -\gamma \phi / N \), see (14), the decay of the entanglement is suppressed as we increase the system size. On the other hand, for large dephasing, \(\gamma \phi \gg N \gamma \), where Superradiance is destroyed, the entanglement decays as \(\exp(-\gamma t) \), independently of the system size. Thus entanglement decay displays a transition from a size-independent decay (for \(\gamma \phi \gg N \gamma \)) to a cooperative sustained decay (for \(\gamma \phi \ll N \gamma \)), where the entanglement decay becomes independent of \(\gamma \) and is suppressed on increasing the system size, \(N \), as \(\gamma \phi / N \). This proves that, in the superradiant regime, also other kinds of coherences are affected by cooperativity.

In Fig. 5 we analyze the behavior of \(E[\rho] \), starting from a wave function localized on a single site, \(|\psi_0\rangle = |i\rangle \). Since this state overlaps with the superradiant state with a small probability, \(1/N \), it can be considered mostly subradiant. In Fig. 5 (upper panels) we fix \(\gamma \phi = 0.1 \) and we consider two different situations: with opening (left panel \(\gamma = 1 \)) and without opening (right panel \(\gamma = 0 \)), both for different system sizes, \(N = 10, 40 \). As one can see, the presence of the coupling to a common dissipative environment produces the following effects:

1. it slows down the entanglement decay (compare the left panel with the right one);
2. it decreases the decay on increasing the system size, since the entanglement decays as \(e^{-\gamma_{\phi t}/N} \) (compare the black with the red line in the left panel).

The asymptotic expansion, Eq. (23), represents the entanglement at the time \(t \) for a system that can decay into the continuum. This means that the global entanglement decays not only because of the destruction of

FIG. 4: (Color online) Dependence of the decay rate of the global entanglement for the closed system as a function of the dephasing \(\gamma \phi \) for different \(N \) values, as indicated in the legend. Here is: \(\gamma = 0 \), \(\Omega = 1 \), and as initial state we chose the single site \(|k\rangle \). Dashed (black) line is the fitting \(\Gamma_E = 1.3 \gamma \phi \), red, blue and green dashed lines stand for \(\Gamma_E = C(N)/\gamma \phi \), where \(C(10) = 2, C(20) = 1/2, C(40) = 1/8 \).

FIG. 5: (Color online) Upper panels: Global entanglement, \(E[\rho] \), as function of time, \(t \), starting from a single site, \(|i\rangle \), for the open system with \(\gamma = 1 \) (left panel) and for the closed system with \(\gamma = 0 \) (right panel). In the left panel the analytical results for the asymptotic global entanglement are shown as dot-dashed lines. Different system sizes are considered: \(N = 10 \) (black curves) and \(N = 40 \) (red curves). Lower panel: the same quantities for the normalized density matrix, \(\rho' \), see text. Data are \(\Omega = 1 \) and \(\gamma \phi = 0.1 \).
coherences, but also because of the loss of probability into the continuum. It is interesting to consider what would be the global entanglement after a measurement which finds the excitation in the ring. One should consider the density matrix $\rho(t) = \rho(t) / Tr[\rho(t)]$ after the measurement given by the projection operator $\sum_i |i\rangle\langle i|$. In this case one obtains a stationary entanglement

$$E[\rho] = \frac{1}{N} \left(2 + \frac{\gamma}{N} \right) \ln \left(2 + \frac{\gamma}{N} \right) +$$

$$+ \left(1 - \frac{2}{N} - \frac{\gamma}{N} \right) \ln \left[1 - \frac{1}{N-1} \left(1 + \frac{\gamma}{N} \right) \right],$$

(24)

(see Eq. (B3) in Appendix B), which is independent of time and initial conditions. This finding is confirmed by our numerical results for the entanglement of the normalized density matrix, shown in Fig. 5 (lower left panel). Note that the entanglement of the normalized density matrix indicates the entanglement present in the system at time t, after a measurement which finds the excitation in the system. This result indicates that the opening prevents dephasing to completely destroy coherences also for arbitrarily large times.

VI. MAXIMAL ENTANGLEMENT

Another interesting quantity to be studied is the maximal entanglement (value at the peak) obtained during the whole evolution, see Fig. 5. In absence of coupling to the continuum, $\gamma = 0$, the hopping, Ω, between neighboring sites creates entanglement (with those initial conditions we have $E[\rho(0)] = 0$), which is then exponentially suppressed in time by any chosen dephasing rate, $\gamma_\phi \neq 0$, see Fig. 5. Maximal entanglement occurs at the time $\tau \simeq \hbar / \Delta E$, where $\Delta E \simeq 4\Omega/N$ is the unperturbed energy spacing, and its maximal value decreases on increasing the dephasing rate γ_ϕ. On the other hand, the competing effects due to the coupling with the continuum of states, $\gamma \neq 0$, result in different behaviors depending on the choice of the parameters. Results for maximal entanglement $E_{max}[\rho]$ are presented in Fig. 6. As one can see, in the non-superradiant region, $N\gamma < \gamma_\phi$ (below the thick red line), $E_{max}[\rho]$ is almost independent of the coupling γ, while, on entering the superradiant region, $N\gamma > \gamma_\phi$, there is a strong enhancement of the maximal entanglement (mainly in the region of large dephasing), up to reach a saturation value. In conclusion, we can say that, even in presence of a dephasing environment, an optimal coupling to the continuum of states exists, such that a maximal global entanglement is reached.

VII. CONCLUSIONS

We have analyzed a ring of two-levels systems in the limit where only one excitation is present. We studied the combined effect of different environments on such a ring structure. The two-levels systems are coupled to a common dissipative environment, which induces super and subradiant behavior; moreover, they are also coupled to a dephasing environment, modeled by a classical white noise. We have shown that coherent emergent properties, such as Superradiance and Subradiance, display a cooperative robustness to dephasing, in the sense that the critical dephasing rate needed to destroy these coherent effects increases with the system size. By analyzing the global entanglement, we have demonstrated that the coupling to a common dissipative environment is able to prevent the loss of coherences. Indeed, we have shown that the entanglement decay is suppressed, in the superradiant regime, as we increase the system size. We have also derived an analytical expression for the asymptotic evolution of the density matrix. In the future it would be interesting to understand how this asymptotic form depends on the details of the coupling to the common dissipative environment. This would allow to control the state of a quantum system and its degree of entanglement by suitably coupling it to one or more dissipative environments.

Acknowledgments. We would like to thank Giulio Giuserti, Robin Kaiser, Mohan Sarovar, Rosario Fazio and Diego Ferrari for providing many useful discussions.
Appendix A: Asymptotic form of the density matrix

Let us write the master equation Eq. (5) in the form of a linear system

\[\dot{\rho}_{hk} = (\mathcal{L}_h)_{kk} = \sum_{nm} \mathcal{L}_{hmnm} \rho_{nm}, \]

(A1)

where the \(N^2 \times N^2 \) elements \(\mathcal{L}_{hmnm} \) are time independent. It is easy to see that for large time, \(t \to \infty \), and generic initial conditions the asymptotic behavior of \(\rho_{hk}(t) \) will be dominated by the smallest eigenvalue \(\lambda_0 = -\min_k |\lambda_k| \) of the four-indexes matrix \(\mathcal{L} \), so that

\[\rho_{hk}(t) \sim e^{\lambda_0 t} c_{hk}, \]

(A2)

where the coefficients \(c_{hk} \) depend on the initial conditions and on the labels \((hk) \).

Let us now assume a kind of ergodicity, in the sense that all diagonal and off-diagonal elements equal some real \((a)\) and complex \((b+ic)\) constant, respectively. More specifically, we assume that the constants \(a, b \) might be dependent on the initial conditions, but not on the position \((hk) \). We therefore conjecture the following asymptotic behavior:

\[\rho_{ij}(t) \sim e^{\lambda_0 t} \left[a_{ij} + (1 - \delta_{ij})(b + ic) \right]. \]

(A3)

Since the asymptotic density matrix, Eq. (A3), should be a solution of the master equation, Eq. (5), the following system for the real part should hold:

\[\begin{cases}
\lambda_0 a = -\gamma [a + (N-1)b], \\
a(\lambda_0 + \gamma) = -\gamma(N-1)b.
\end{cases} \]

(A4)

Requiring the determinant to be zero, in order to have a non-null solution, we obtain

\[\lambda_0 = \frac{-N\gamma - \gamma_0 \pm \sqrt{N^2\gamma^2 + \gamma_0^2 + (2N-4)\gamma\gamma_0}}{2}. \]

Restricting now to the real part, we obtain

\[\lambda_0 = \frac{-N\gamma - \gamma_0 \pm \sqrt{N^2\gamma^2 + \gamma_0^2}}{2}. \]

Restricting now to the real part, we obtain

\[\lambda_0 = \frac{-N\gamma - \gamma_0 \pm \sqrt{N^2\gamma^2 + \gamma_0^2 + (2N-4)\gamma\gamma_0}}{2}. \]

Since \(|\lambda_+| < |\lambda_-|\), one gets \(\lambda_0 = \lambda_- \). In the same way, it is easy to show that the imaginary part of the system can be solved only by \(c = 0 \).

Using Eqs. (10) and (11), and taking into account that \(|\lambda_+| < |\lambda_-|\), one gets immediately Eq. (20):

\[\rho_{ij}(t) \sim e^{\lambda_0 t} \left[-\frac{p_i}{N} \delta_{ij} + (1 - \delta_{ij}) \frac{p_j}{N(N-1)} \left(1 + \frac{\lambda_+}{\gamma} \right) \right]. \]

(A5)
Appendix B: Asymptotic expression for renormalized density matrix and entanglement

From the asymptotic form of the density matrix, Eq. (20), we easily get the asymptotic form of $\rho' = \rho / \text{Tr}(\rho)$:

$$\rho_{ij}(t)' \sim \left[\frac{1}{N} \delta_{ij} + (1 - \delta_{ij}) \frac{1}{N(N-1)} \left(1 + \frac{\lambda + \gamma}{\gamma} \right) \right].$$

To compute the global entanglement, one has to compute the von Neumann entropy, namely the eigenvalues of such a matrix, which are given by:

$$\xi_1 = \frac{1}{N} \left(2 + \frac{\gamma}{\gamma} \right),$$

$$\xi_k = \frac{1}{N} \left[1 - \frac{1}{N-1} \left(1 + \frac{\lambda + \gamma}{\gamma} \right) \right], \quad \text{for} \quad k = 2, ..., N.$$

Simple algebra then gives

$$E[\rho'] = \frac{1}{N} \left(2 + \frac{\lambda + \gamma}{\gamma} \right) \ln \left(2 + \frac{\lambda + \gamma}{\gamma} \right) +$$

$$+ \left(1 - \frac{2}{N} - \frac{\lambda + \gamma}{\gamma N} \right) \ln \left[1 - \frac{1}{N-1} \left(1 + \frac{\lambda + \gamma}{\gamma} \right) \right].$$

In the limit of large N, one easily finds

$$E[\rho'](t) \sim \frac{1}{N} \left(2 \ln 2 - 1 \right) + o(1/N^2),$$

where terms of order $1/N^2$ have been neglected.

Finally, for the asymptotic behavior of concurrence we get

$$C_{ij} = 2 |\rho'_{ij}| \sim 2 \left[\frac{1}{N(N-1)} \left(1 + \frac{\lambda + \gamma}{\gamma} \right) \right].$$