Real Jacobian mates

Janusz Gwoździewicz

May 20, 2015

Abstract

Let p be a real polynomial in two variables. We say that a polynomial q is a real Jacobian mate of p if the Jacobian determinant of the mapping $(p, q) : \mathbb{R}^2 \to \mathbb{R}^2$ is everywhere positive. We present a class of polynomials that do not have real Jacobian mates.

1 Introduction

This note is inspired by [2] where Braun and dos Santos Filho proved that every polynomial mapping $(p, q) : \mathbb{R}^2 \to \mathbb{R}^2$ with everywhere positive Jacobian determinant and such that $\deg p \leq 3$ is a global diffeomorphism.

A pair of polynomials $p, q \in \mathbb{R}[x, y]$ such that the mapping $(p, q) : \mathbb{R}^2 \to \mathbb{R}^2$ has everywhere positive Jacobian will be called real Jacobian mates. The key role in [2] plays the result that $p = x(1 + xy)$ does not have a real Jacobian mate.

This result is a special case of Theorem 1. In Theorem 2 a wide class of polynomials that do not have real Jacobian mates is characterized. In particular every polynomial such that its Newton polygon has an edge described in Corollary 1 belong to this class. This gives a new proof of [3, Theorem 5.5] that polynomials of degree 4 with at least one disconnected level set do not have real Jacobian mates.

2 Glacial tongues

Theorem 1 Let p be a real polynomial in two variables and let $B \subseteq A$, be the subsets of the real plane such that:

(i) the set B is bounded,

(ii) for every $t \in \mathbb{R}$ the set $p^{-1}(t) \cap A$ is either empty, or is contained in B, or is homeomorphic to a segment and its endpoints belong to B,

(iii) the border of A contains a half-line.

Then for every $q \in \mathbb{R}[x, y]$ there exists $v \in \mathbb{R}^2$, such that $\text{Jac}(p, q)(v) = 0$.

Proof. Suppose that there exists \(q \in \mathbb{R}[x, y] \) such that \(\text{Jac}(p, q) \) vanishes nowhere. Under this assumption the mapping \(\Phi = (p, q) : \mathbb{R}^2 \to \mathbb{R}^2 \) is a local diffeomorphism.

Take any \(t \in \mathbb{R} \) such that the set \(A_t = p^{-1}(t) \cap A \) is nonempty. If \(A_t \subset B \) then \(\Phi(A_t) \subset \Phi(B) \). If \(A_t \) is homeomorphic to a segment with endpoints in \(B \) then the restriction of \(\Phi \) to \(A_t \) is a locally injective continuous mapping from the source \(A_t \) which is homeomorphic to a segment to a vertical line \(\{t\} \times \mathbb{R} \) which is homeomorphic to \(\mathbb{R} \). By the extreme value theorem and the mean value theorem such a mapping is either increasing or decreasing. Hence, the image \(\Phi(A_t) \) is a vertical segment with endpoints that belong to \(\Phi(B) \).

Since \(A \) is the union of the sets \(A_t \) and \(\Phi(B) \) is bounded, so it is \(\Phi(A) \).

Let \(L \) be a half-line contained in the border of \(A \). Because the mapping \(\Phi \) is bounded on \(A \) it is also bounded on \(L \). Consequently the polynomials \(p \) and \(q \) restricted to \(L \) are constant (because they behave on \(L \) like polynomials in one variable). We arrived to a contradiction with the condition that \(\Phi \) is locally injective. ☐

Every set \(A \) satisfying assumptions of Theorem 1 will be called a glacial tongue with a straight border.

Example 1 Let \(p = x(1 + xy) \). In [2] it is checked (Lemma 4.1 and Remark 1) that \(A = \{(x, y) \in \mathbb{R}^2 : 0 < x < 1, -\frac{1}{2} < y \leq -1\} \) is a glacial tongue with a straight border for the polynomial \(p \). Hence, \(p \) does not have a Jacobian mate.

3 Newton polygon and branches at infinity

Let \(p = \sum a_{i,j}x^iy^j \) be a nonzero polynomial. By definition the Newton polygon \(\Delta(p) \) is the convex hull of the set \(\{(i, j) \in \mathbb{N}^2 : a_{i,j} \neq 0\} \). An edge \(S \) of the Newton polygon \(\Delta(p) \) will be called an outer edge if it has a normal vector \(\vec{v} = (v_1, v_2) \) directed outwards \(\Delta(p) \) such that \(v_1 > 0 \) or \(v_2 > 0 \). If \(v_1 > 0 \) then \(S \) will be called a right outer edge. With every right outer edge \(S \) we associate a rational number \(\theta(S) = v_2/v_1 \) and call this number the slope of \(S \).

Example 2 The Newton polygon of \(p = x + x^2 + x^3y + y^2 + x^3y^2 + xy^4 \) has 4 outer edges. Three of them are right outer edges with slopes \(-1, 0, \) and \(2 \).

\(^1\) Suppose that a continuous and locally injective function \(f : [a, b] \to \mathbb{R} \) in neither increasing nor decreasing. Then there exist \(x_1, x_2, x_3, a \leq x_1 < x_2 < x_3 \leq b \) such that \(f(x_1) \leq f(x_2) \geq f(x_3) \) or \(f(x_1) \geq f(x_2) \leq f(x_3) \). By the extreme value theorem \(f \) restricted to \([x_1, x_3]\) has a maximal or a minimal value at some point \(c \) inside the interval \([x_1, x_3]\). Shrinking \([x_1, x_3]\), if necessary, we may assume that \(f \) restricted to \([x_1, x_3]\) is injective. By the mean value theorem \(f(x_3) \in f([x_1, c]) \) or \(f(x_1) \in f([c, x_3]) \) which gives a contradiction.
The objective of this section is to describe branches at infinity of a curve \(p(x, y) = 0 \) and associate with each branch a certain outer edge of the Newton polygon of \(p \).

Let \(V = \{(x, y) \in \mathbb{R}^2 : p(x, y) = 0\} \). Assume that the curve \(V \) is unbounded and consider a one-point algebraic compactification \(\tilde{\mathbb{R}}^2 = \mathbb{R}^2 \cup \{\infty\} \) of the real plane (see [1] Definition 3.6.12). Then \(\infty \) belongs to the Zariski closure of \(V \) in \(\tilde{\mathbb{R}}^2 \). By [1] Lemma 3.3] in a suitably chosen neighborhood of \(\infty \) the curve \(V \cup \{\infty\} \) is the union of finitely many branches which intersect only at \(\infty \). Each branch is homeomorphic to an open interval under an analytic homeomorphism \(p : (\epsilon, \epsilon) \to V \cup \{\infty\}, p(0) = \infty \).

It follows from the above that after passing to coordinates \(x \) and \(y \) in \(\mathbb{R}^2 \) and substituting \(s = t^{-1} \) in \(p \) we get the following characterization of branches at infinity.

Lemma 1 Assume that \(V = \{(x, y) \in \mathbb{R}^2 : p(x, y) = 0\} \) is an unbounded polynomial curve. Then in a suitably chosen neighborhood of infinity in \(\mathbb{R}^2 \) the curve \(V \) is the union of finitely many pairwise disjoint “branches at infinity”. Each branch at infinity is homeomorphic to a union of two open intervals \((\epsilon, -\epsilon) \cup (\epsilon, +\epsilon) \) under a homeomorphism \((x, y) \to (\hat{x}(t), \hat{y}(t)) \) which is given by Laurent power series

\[
\hat{x}(t) = a_k t^k + a_{k-1} t^{k-1} + \cdots \\
\hat{y}(t) = b_l t^l + b_{l-1} t^{l-1} + \cdots
\]

convergent for \(|x| > R\).

Lemma 2 Keep the assumptions an notations of Lemma 1. If \(a_k \neq 0, b_l \neq 0 \) then \((k, l)\) is a normal vector to some outer edge of the Newton polygon of \(p \).

Proof. Let \(d = \max\{ki + lj : (i, j) \in \Delta(p)\} \). The polynomial \(p \) can be written as a sum \(p = \sum_{ki+lj \leq d} c_{i,j} x^i y^j \). Substituting \((x, y) \to (\hat{x}(t), \hat{y}(t))\) to \(p \) and collecting together the terms of the highest degree we get

\[
0 = p(\hat{x}(t), \hat{y}(t)) = \left(\sum_{ki+lj = d} c_{i,j} a_k^i b_l^j \right) t^d + \text{terms of lower degrees}.
\]

The necessary condition for this identity is a cancellation of terms in the sum in parenthesis. If there are at least two distinct coefficients \(c_{i_1,j_1} \neq 0, c_{i_2,j_2} \neq 0 \), satisfying \(ki_1 + lj_1 = ki_2 + lj_2 = d \) then the straight line \(\{(i, j) \in \mathbb{R}^2 : ki + lj = d\} \) touches \(\Delta(p) \) at least two points, hence along the edge.

Since \((x, y) \to (\hat{x}(t), \hat{y}(t))\) is a Laurent parametrization of a branch at infinity, we have \(|(\hat{x}(t), \hat{y}(t))| \to \infty \) as \(t \to +\infty \) which proves that at least one of exponents \(k, l \) is positive and shows that \(\Delta(p) \cap \{(i, j) \in \mathbb{R}^2 : ki + lj = d\} \) is an outer edge. \(\blacksquare\)

Using Lemma 2 we may associate to every branch at infinity of the curve \(p = 0 \) the unique outer edge of the Newton polygon of \(p \). In the next lemma we
will show that the slope of the associated edge characterizes the asymptotic of the branch at infinity.

For two real valued functions g, h defined in some interval (R, ∞) we will write $g(x) \sim h(x)$ if there exist constants $c > 0$, $C > 0$, and $r > 0$ such that $c|h(x)| \leq |g(x)| \leq C|h(x)|$ for all $x > r$.

Lemma 3 Let $p(x, y)$ be a nonzero real polynomial such that for every x_0 the set $X = \{(x, y) \in \mathbb{R}^2 : x > x_0, y > 0, p(x, y) = 0\}$ is nonempty. Then for sufficiently large x_0 there exists a finite collection of continuous semialgebraic functions $f_k : (x_0, +\infty) \to \mathbb{R}, k = 1, \ldots, s$ such that

(i) $0 < f_1(x) < \ldots < f_s(x)$ for $x > x_0$,

(ii) X is the union of graphs $\{(x, y) \in \mathbb{R}^2 : y = f_k(x), x > x_0\}, k = 1, \ldots, s$,

(iii) for every f_k there exists a right outer edge S_k of the Newton polygon of $p(x,y)$ such that $f_k(x) \sim x^{\theta(S_k)}$.

Proof. Part (i) and (ii) follow from the Cylindrical Decomposition Theorem for semialgebraic sets (see for example [1, Theorem 2.2.1]).

To prove (iii) observe that the graph of f_k is unbounded and homeomorphic to an open interval. Thus, we may assume, increasing x_0 if necessary, that this graph is a half-branch at infinity. By Lemma 1 there exists a homeomorphism of an open interval $(R, +\infty)$ to the graph given by Laurent power series (1), (2) with $a_k \neq 0, b_l \neq 0$. Since $\tilde{x}(t) \to +\infty$ for $t \to +\infty$, the leading term of $\tilde{x}(t)$ has a positive exponent k. By estimations $\tilde{x}(t) \sim t^k$, $\tilde{y}(t) \sim t^l$ and identity $f_k(\tilde{x}(t)) = \tilde{y}(t)$ we get $f_k(x) \sim x^{l/k}$. Finally, by Lemma 2 there exists a right outer edge S of the Newton polygon of p such that $l/k = \theta(S)$. ■

4 Main result

Theorem 2 Assume that the Newton polygon of $p \in \mathbb{R}[x,y]$ has a right outer edge S with endpoint $(0, 1)$ and positive inclination and that the curve $p = 0$ has a real branch at infinity associated with the edge S. Then p has a glacial tongue with a straight border.

Proof. Without loss of generality we may assume, changing signs of variables if necessary, that one of half-branches associated with the edge S lies in the positive quadrant $x > 0, y > 0$.

Then, under notation of Lemma 3 this half-branch at infinity is a graph $y = f(x)$ where f is one of the functions $f_k, k = 1, \ldots, s$. Comparing the asymptotic of these functions we see that $\theta(S_1) \leq \theta(S_2) \leq \ldots \leq \theta(S_s)$. Since S has the smallest slope among all right outer edges of the Newton polygon $\Delta(p)$, we have $S = S_1$ and we may assume that $f(x) = f_1(x)$.

Let $V = \{(x,y) \in \mathbb{R}^2 : x > x_0, 0 < y < f(x)\}$.

4
The polynomial \(p \) vanishes nowhere on \(V \), hence without loss of generality we may assume that \(p \) is positive on this set.

Claim 1. For every \(t \neq 0 \) the set \(p^{-1}(t) \cap V \) is bounded.

Proof of 1. If not, then by the Curve Selection Lemma there exists a half-branch at infinity of a curve \(p(x,y) = t \) contained in \(V \). Let \(y = g(x) \) be the graph of this half-branch at infinity. By Lemma 3 \(g(x) \sim x^{\theta(S_1)} \), where \(S_1 \) is one of the right outer edges of the Newton polygon \(\Delta(p - t) \). By inequalities \(0 < g(x) < f(x) \) we get \(\theta(S_1) \leq \theta(S) \). This is impossible because all right outer edges of \(\Delta(p - t) \) have slopes bigger than the slope of \(S \).

Claim 2. For \(x_0 \) sufficiently large, \(V \) does not contain any critical point of \(p \).

Proof of 2. If the intersection of \(V \) with the set of critical points is bounded then it is enough to enlarge \(x_0 \). If this intersection is unbounded then by the Curve Selection Lemma it contains an unbounded semi-algebraic arc \(\Gamma \subset V \). It follows that \(p \) restricted to \(\Gamma \) is constant and nonzero – contrary to Claim 1.

Further, we will assume that \(V \) satisfies assumptions of Claim 2. Then every level set \(p^{-1}(t) \) intersected with \(V \) is a one-dimensional smooth semialgebraic manifold. By Poincare-Bendixon Theorem \(V_t = p^{-1}(t) \cap V \) has a finite number of connected components, each homeomorphic to a circle or to an open interval.

Claim 3. There is no connected component of \(V_t \) homeomorphic to a circle.

Proof of 3. Suppose there is. Then by Jordan’s Theorem it cuts the set \(V \) to two open regions. One of these regions is bounded. Since the function \(p \) is constant on the boundary of this region, it attains an extreme value at some point inside. This is impossible because \(p \) has no critical points in the set \(V \).

Let \(h(y) = p(x_0, y) \) be the restriction of \(p \) to the vertical line \(\{x_0\} \times \mathbb{R} \). A function \(h \) vanishes at the endpoints of the interval \([0, f(x_0)]\) and is positive inside. It is easy to find \(t_0 > 0 \) and two points \(a < b \) inside the interval \([0, f(x_0)]\) such that:

\[
\begin{align*}
&h'(y) \neq 0 \text{ for } y \in (0, a) \cup [b, f(x_0)), \\
h &\text{ increases from } 0 \text{ to } t_0 \text{ in the interval } [0, a], \\
h(y) &> t_0 \text{ for } a < y < b, \\
h &\text{ decreases from } t_0 \text{ to } 0 \text{ in the interval } [b, f(x_0)].
\end{align*}
\]

Claim 4. For every \(t \) such that \(0 < t \leq t_0 \) the set \(V_t = p^{-1}(t) \cap V \) is connected and homeomorphic to an open interval. The topological closure of \(V_t \) intersects the vertical segment \(\{x_0\} \times (0, f(x_0)) \) at two points.

Proof of 4. By the discussion proceeding Claim 4 the polynomial \(p \) attains value \(t \) precisely at two points of the boundary of \(V \). These are \((x_0, y_1)\) and \((x_0, y_2)\), where \(0 < y_1 \leq a \) and \(b \leq y_2 < f(x_0) \). Moreover \(\partial p / \partial y \) does not vanish at these points.

By Claim 2 and Claim 3 the set \(V_t \) is a one-dimensional smooth manifold having a finite number of connected component; each component is semialgebraic and homeomorphic to an open interval. Thus, the closure of \(V_t \) is a graph with vertexes \((x_0, y_1), (x_0, y_2)\) and edges which are connected components of \(V_t \).
By the Implicit Function Theorem the closure of V_t has in a small neighborhood of (x_0, y_1), where $i = 1, 2$ a topological type of an interval $[0, 1)$ which shows that there is exactly one edge which connects (x_0, y_1) and (x_0, y_2).

By Claim 4 the closure of V_{t_0} is a line with two endpoints: (x_0, a) and (x_0, b). Joining them by a vertical segment we get a non-smooth oval. By Jordan’s Theorem this oval cuts the plane into two open regions. Let B_0 be the bounded region, let $B = B_0 \cup \{x_0\} \times (0, f(x_0))$ and let $A = V \cup \{x_0\} \times (0, f(x_0))$.

If $t \leq 0$ then A_t is empty. If $0 < t \leq t_0$ then A_t is homeomorphic to a line with endpoints at $\{x_0\} \times (0, f(x_0))$. If $t > t_0$ then either A_t is empty or the closure of every connected component of A_t intersects the border of A along $x_0 \times (a, b)$. In this case $A_t \subset B$.

Corollary 1 Assume that the Newton polygon of a polynomial $p \in \mathbb{R}[x,y]$ has a right outer edge that: begins at $(0,1)$, has a positive inclination, and its only lattice points are the endpoints. Then p does not have a real Jacobian mate.

Proof. It is enough to prove that there exists a branch at infinity of the curve $p = 0$ associated with the edge S satisfying assumptions of Corollary 1. Let $(0,1), (a,b)$ be the endpoints of S. Then the polynomial p has two terms Ax^ay^b and By corresponding to the lattice points of S. Multiplying x, y and p by nonzero constants, we may reduce our considerations to $A = 1$ and $B = -1$. Substituting $(x(t), y(t)) = (ct^{b-1}, t^{-a})$ we get $p(x(t), y(t)) = (c^a - 1)t^{-a} + \text{terms of lower degrees}$. Hence, the sign of the polynomial p on the curve $(x(t), y(t))$ for large t depends on the sign of $c^a - 1$. The curve $(x(t), y(t))$ for $t > 0$ is a graph of a function. By the appropriate choice of c we can find two functions f_1, f_2 such that $0 < f_1 < f_2$, $f_1(x) \sim f_2(x) \sim x^{\theta(S)}$, p has negative values on the graph of f_1 and has positive values on the graph of f_2. By Lemma 3 this can happen if and only if there is a half-branch at infinity of the curve $p = 0$ which is a graph of a function g with $g(x) \sim x^{\theta(S)}$.

Remark. Using toric modifications of the real plane one can present a shorter proof of Corollary 1.

Example 3 Every polynomial from the list: $p_1 = y + xy^2 + y^4$, $p_2 = y + a y^2 + xy^3$, $p_3 = y + x^2 y^2$, $p_4 = y + ay^2 + y^3 + x^2 y^2$ satisfies assumptions of Corollary 1. The Newton polygons of these polynomials are drawn below.

The polynomials in the above example are taken from [3]. Theorem 1.3 in the cited paper states that these polynomials are canonical forms, up to affine substitution of polynomials of degree 4 without critical points and with at least
one disconnected level set. Theorem 5.5 says that none of these polynomials has a real Jacobian mate. The method of its proof uses an integration based on Green’s formula and requires an analysis of each case separately.

References

[1] B. Benedettini, J. J. Risler, *Real algebraic and semi-algebraic sets*, Hermann, Paris, 1990.

[2] F. Braun, J. R. dos Santos Filho, *The real jacobian conjecture on \(\mathbb{R}^2 \) is true when one of the components has degree 3*, Discrete Contin. Dyn. Syst. 26, 75–87 (2010)

[3] F. Braun, B. Oréfice-Okamoto, *On polynomial submersions of degree 4 and the real jacobian conjecture in \(\mathbb{R}^2 \)*, arXiv:1406.7683

[4] J. W. Milnor, *Singular Points of Complex Hypersurfaces*, Princeton Univ. Press, Princeton, 1968.