Floristic Diversity Assessment of Home Garden in Palayamkottai Region of Tirunelveli District, Tamil Nadu: a Means of Sustainable Biodiversity Conservation

J. Vijayakumari, V. Sundara Prabha, E. Jebarubi, T. Leon Stephan Raj, S. Beschi Antony Rayan
Post Graduate and Research Department of Botany, St. Xavier’s College (Autonomous), Palayamkottai, Tamil Nadu, India

How to cite this paper: J. Vijayakumari | V. Sundara Prabha | E. Jebarubi | T. Leon Stephan Raj | S. Beschi Antony Rayan "Floristic Diversity Assessment of Home Garden in Palayamkottai Region of Tirunelveli District, Tamil Nadu a Means of Sustainable Biodiversity Conservation" Published in International Journal of Trend in Scientific Research and Development (ijtsrd), ISSN: 2456-6470, Volume-3 | Issue-3, April 2019, pp.1484-1491, URL: https://www.ijtsrd.com/papers/ijtsrd23390.pdf

Copyright © 2019 by author(s) and International Journal of Trend in Scientific Research and Development Journal. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (CC BY 4.0) (http://creativecommons.org/licenses/by/4.0/)

ABSTRACT

Home garden is an integrated system which consists of different plants in its small area that produces a variety of foods and agricultural products including vegetables, fruits, medicinal plants, ornamentals etc. All home gardeners were individually interviewed about home garden management and plant utilization, among other information. The biological and cultural significance of agro biodiversity in home gardens are highlighted with the future obligation and prospect in home gardens to improve our natural resource and avoid the pollution with free air circulation. The main objective of this study was to assess the status, composition and diversity of plants in an urban home gardens with the help of socio economic factors of households. The study was carried out in Palayamkottai region of Tirunelveli district of Tamil Nadu, India. A total of 182 species were observed, which belonging to 159 genera and 71 families. Most of plants were dicot with 53 families and 150 species, whereas monocot with 15 families and 29 species and third one gymnosperm were presented with 2 families and 2 species and a single species of Pteridophyte also were documented. Fabaceae, Apocynaceae and Solanaceae were the most dominant families and 2 species and a single species of Pteridophyte also were documented. Fabaceae, Apocynaceae and Solanaceae were the most dominant among other information. The biological and cultural significance of agro biodiversity in home gardens are highlighted with the future obligation and prospect in home gardens to improve our natural resource and avoid the pollution with free air circulation. The main objective of this study was to assess the status, composition and diversity of plants in an urban home gardens with the help of socio economic factors of households. The study was carried out in Palayamkottai region of Tirunelveli district of Tamil Nadu, India. A total of 182 species were observed, which belonging to 159 genera and 71 families. Most of plants were dicot with 53 families and 150 species, whereas monocot with 15 families and 29 species and third one gymnosperm were presented with 2 families and 2 species and a single species of Pteridophyte also were documented. Fabaceae, Apocynaceae and Solanaceae were the most dominant families and 2 species and a single species of Pteridophyte also were documented. Fabaceae, Apocynaceae and Solanaceae were the most dominant

KEYWORDS: Home garden, biodiversity, agricultural, medicinal plant and ornamental

INTRODUCTION

Home gardens are traditional agro forestry systems characterized by the intricacy of their structure with lot of functions. Home gardens can be defined as 'land use system involving deliberate management of multipurpose biological varieties such as trees, herbs and shrubs in intimate association with annual and perennial agricultural crops and variable livestock within the compounds of individual houses. Home garden is an integrated system which comprises different things in its small area (the family house, a kitchen garden, a mixed garden etc). It produces a variety of foods, medicine and agricultural products. These products could be used both for home consumption and for incoming purpose. There are numerous types of home gardens were serving for several functions. Vegetable gardens were the cultivation of different kinds of vegetables and fruits. Herbal gardens can be grown in a small a spot as a window box. Growing of culinary herbs and spices gives the freshest ingredients. Different herbs are usually separated through the planting design and cultivated in pot. Rose gardens mainly for the cultivation of flowers for income or beautification and fourth one knot gardens had squares of flora or paving encased by dwarf. The knot garden looks to control nature to into beautiful patterns. Oriental gardens incorporates the use of water and paths, rocks and sculptured bushes and trees to create a peaceful and tranquil garden. Wild garden is a natural type of garden. Its natural style encourages the growth of natural plants and wild grasses. Home gardens are cultivation systems for both food and non-food production. Nevertheless, home gardens are mostly known for their food production function considered to be their basic function. The different denominations associated to home gardens are home food gardens, urban food gardens, domestic food gardens and kitchen garden. The different denominations associated to home gardens are home food gardens, urban food gardens, domestic food gardens and kitchen garden. The different denominations associated to home gardens are home food gardens, urban food gardens, domestic food gardens and kitchen garden. The different denominations associated to home gardens are home food gardens, urban food gardens, domestic food gardens and kitchen garden. The different denominations associated to home gardens are home food gardens, urban food gardens, domestic food gardens and kitchen garden. The different denominations associated to home gardens are home food gardens, urban food gardens, domestic food gardens and kitchen garden.
instance in Benin, where the reported plant used for non-food purposes compare to food ones it should be expected that home gardens are functionally diverse. Because food and health care are basic human needs, we predict that food and medicinal function will predominate other functions. Home garden species typically have multiple uses, meeting family needs for food, medicine, shade, religious rituals and ornamental purposes, and these species can be cultivated, tolerated, enhanced, and protected. Tolerance includes practices within human-made environments that are directly related to the conservation of useful plants that existed before the environments were transformed. Currently, the floristic composition of home gardens tends toward ornamental plants. Not all plants receive the same attention. The choice of certain species is associated with their use in community celebrations or as foods consumed in everyday life and the use of certain species to treat diseases for generations. A clear differentiation of the floristic composition between Mestizo and Maya home gardens. In Latin America, the purpose of home gardens is related to the edible, medicinal and aesthetic uses of a particular species, which are the most common factors due to the high frequency of these uses. In this study, the floristic composition of home gardens, the contribution of edible and medicinal species to household subsistence in Palayamkottai region of Tirunelveli District, Tamil Nadu, India.

MATERIALS AND METHODS

Study Area

The present study was conducted in Palayamkottai (8.7166° N and 77.7333° E) region of Tirunelveli district of Tamil Nadu, India. Temperature 28°C and humidity 78%. Palayamkottai was called as the Oxford of the southern Tamil Nadu. It is around 189.9 km² and the population about 4,73,637. Mainly four areas were considered in this study such as KTC Nagar, Perumalpuram, Santhi Nagar and NGO Colony (Fig.1).

Information collection and analysis

Field information from these home gardens was collected from January to August, 2018. In the first interview, each interviewee was asked the following questions to obtain a list of the most frequently mentioned home garden plants. For this analysis 182 species were considered. The botanical material was identified with the support of college Herbarium for St. Xavier’s college of Palayamkottai and experts of taxonomy. Households were identified as sampling units for the survey.

RESULT AND DISCUSSION

A total of 182 plant species were collected from the Palayamkottai region of Tirunelveli District. In the Habitat, most of the home garden plants 32% (60 species) were trees, 21% (39 species) were shrubs, 33% (61 species) were herbs, 10% were (18 species) climbers and 4% (7 species) were twainers (Fig.2).

The 182 plant species (including a Gymnosperm and Pteridophyte) belonging to 159 genera and 71 families.
S. No	Botanical Name	Vernacular Name	Family	Habit
1.	Andrographis paniculata (Burm.f.) Wall. ex Nees	Siriyanangai	Acanthaceae	Herb
2.	Barleria cristata L.	December poo	Acanthaceae	Herb
3.	Barleria prionitis L.	Sulli flower	Acanthaceae	Herb
4.	Crossandra infundibuliformis (L.) Nees	Kanakambaram	Acanthaceae	Herb
5.	Justicia adhatoda L.	Aadhathoda	Acanthaceae	Shrub
6.	Pseudoranthemum laxiflorum (A. Gray). F.T.Hubb.ex.L.H.Bailey	Nagamalli	Acanthaceae	Shrub
7.	Thunbergia grandiflora (Roxb. ex Rottl.) Roxb	----------	Acanthaceae	Climber
8.	Acorus calamus L.	Vasambu	Acoraceae	Herb
9.	Alternanthera sessilis (L.) R. Br. ex DC.	Ponnankanni keerai	Amaranthaceae	Herb
10.	Amaranthus dubius Mart.exThell	Thandu keerai	Amaranthaceae	Herb
11.	Amaranthus viridis L.	Kuppai keerai	Amaranthaceae	Herb
12.	Celosia argentea L.	Kozhi kondai	Amaranthaceae	Herb
13.	Gomphrena globosa L.	Vaada mali	Amaranthaceae	Herb
14.	Achyranthus bidentata Blume	Kankanbaram	Acanthaceae	Herb
15.	Justicia adhatoda L.	Aadhathoda	Acanthaceae	Shrub
16.	Pseudoranthemum laxiflorum (A. Gray). F.T.Hubb.ex.L.H.Bailey	Nagamalli	Acanthaceae	Shrub
17.	Thunbergia grandiflora (Roxb. ex Rottl.) Roxb	----------	Acanthaceae	Climber
18.	Acorus calamus L.	Vasambu	Acoraceae	Herb
19.	Alternanthera sessilis (L.) R. Br. ex DC.	Ponnankanni keerai	Amaranthaceae	Herb
20.	Amaranthus dubius Mart.exThell	Thandu keerai	Amaranthaceae	Herb
21.	Amaranthus viridis L.	Kuppai keerai	Amaranthaceae	Herb
22.	Celosia argentea L.	Kozhi kondai	Amaranthaceae	Herb
23.	Gomphrena globosa L.	Vaada mali	Amaranthaceae	Herb
24.	Achyranthus bidentata Blume	Kankanbaram	Acanthaceae	Herb
25.	Justicia adhatoda L.	Aadhathoda	Acanthaceae	Shrub
26.	Pseudoranthemum laxiflorum (A. Gray). F.T.Hubb.ex.L.H.Bailey	Nagamalli	Acanthaceae	Shrub
27.	Thunbergia grandiflora (Roxb. ex Rottl.) Roxb	----------	Acanthaceae	Climber
28.	Acorus calamus L.	Vasambu	Acoraceae	Herb
29.	Alternanthera sessilis (L.) R. Br. ex DC.	Ponnankanni keerai	Amaranthaceae	Herb
30.	Amaranthus dubius Mart.exThell	Thandu keerai	Amaranthaceae	Herb
31.	Amaranthus viridis L.	Kuppai keerai	Amaranthaceae	Herb
32.	Celosia argentea L.	Kozhi kondai	Amaranthaceae	Herb
33.	Gomphrena globosa L.	Vaada mali	Amaranthaceae	Herb
34.	Achyranthus bidentata Blume	Kankanbaram	Acanthaceae	Herb
35.	Justicia adhatoda L.	Aadhathoda	Acanthaceae	Shrub
36.	Pseudoranthemum laxiflorum (A. Gray). F.T.Hubb.ex.L.H.Bailey	Nagamalli	Acanthaceae	Shrub
37.	Thunbergia grandiflora (Roxb. ex Rottl.) Roxb	----------	Acanthaceae	Climber
38.	Acorus calamus L.	Vasambu	Acoraceae	Herb
39.	Alternanthera sessilis (L.) R. Br. ex DC.	Ponnankanni keerai	Amaranthaceae	Herb
40.	Amaranthus dubius Mart.exThell	Thandu keerai	Amaranthaceae	Herb
41.	Amaranthus viridis L.	Kuppai keerai	Amaranthaceae	Herb
42.	Celosia argentea L.	Kozhi kondai	Amaranthaceae	Herb
43.	Gomphrena globosa L.	Vaada mali	Amaranthaceae	Herb
No.	Species Name	Common Name	Family	Type
-----	----------------------------------	-------------------------	-----------------	---------
57.	Tecoma stans (L.) Juss. ex Kunth	Nakacenpakam	Bignoniaceae	Shrub
58.	Cordia sebestena L.	Aechinaruvihli	Boraginaceae	Tree
59.	Brassica juncea (L.) Czern.	Kadugu	Brassicaceae	Herb
60.	Ananas cosmusos (L.) Merr.	Amachi	Bromeliaceae	Shrub
61.	Mammillaria baumii Boed.		Cactaceae	Shrub
62.	Opuntia dillenii (Ker-Gawl.) Haw.	Sappathikalli	Cactaceae	Shrub
63.	Tamarindus indica L.	Pulia maram	Fabaceae	Tree
64.	Phanera purpurea (L.) Benth.	Nilattiruvatti	Fabaceae	Tree
65.	Carica papaya L.	Pappali	Caricaceae	Tree
66.	Casuarina equisetifolia L.	Savukku	Casuarinaceae	Tree
67.	Saraca asoca (Roxb.) Willd.	Asogamaram	Caesalpinaceae	Tree
68.	Senna alexandrina Mill.	Alakalam	Caesalpinaceae	Tree
69.	Senna auriculata(L.) Roxb.	Aavaram poo	Caesalpinaceae	Tree
70.	Combretum constrictum (Benth.)	Maruthamaram	Combretaceae	Tree
71.	Combretum indicum (L.)DeFilipps	Irangun mali	Combretaceae	Tree
72.	Tradescantia pallida (Rose) D.R.Hunt	Paccalalari	Commelinaceae	Herb
73.	Ipomoea quamoclit L.	Mayir manikkan	Convolvulaceae	Shrub
74.	Chamaecostus cuspidiatus (Nees & Mart.) C.Specht & D.W.Stev.	Neyccarikamaram	Costaceae	Herb
75.	Costus woodii L.		Costaceae	Tree
76.	Costus igneus Nak		Costaceae	Herb
77.	Citrullus lanatus (Thunb.) Matum. & Nakai	Dharpoosani	Cucurbitaceae	Climber
78.	Cocinia grandis (L.) Voigt		Cucurbitaceae	Climber
79.	Curcums sativusL.		Cucurbitaceae	Climber
80.	Cucurbita maxima Duchesne		Cucurbitaceae	Climber
81.	Lagenaria sicaraita (Molina) Standl.	Suiraili	Cucurbitaceae	Climber
82.	Luffa acutangula Mill.		Cucurbitaceae	Climber
83.	Momordica charantia L.		Cucurbitaceae	Climber
84.	Cupressus sempervirens L.		Cucurbitaceae	Tree
85.	Gycas cirinalis L.	Madanakama poo	Cucurbitaceae	Tree
86.	Gycas revolutaThunb.		Cucurbitaceae	Tree
87.	Muntingia calabura L.		Cucurbitaceae	Tree
88.	Euphorbia cyatophora Murray		Euphorbiaceae	Herb
89.	Codiaeum variegatum (L.) Rumph. ex A.Juss	Aathuppoondu	Euphorbiaceae	Shrub
90.	Euphorbia hirta L.	Amman pacharicy	Euphorbiaceae	Herb
91.	Euphorbia millii Des Moul.	Kreedai kalli	Euphorbiaceae	Shrub
92.	Euphorbia tithymaloides L.	Kanṇadi kalli	Euphorbiaceae	Shrub
93.	Euphorbia trigona Mill.	Paal kalli	Euphorbiaceae	Herb
94.	Ricinus communis L.	Amanakku	Euphorbiaceae	Shrub
95.	Arachis hypogaeaeL.		Fabaceae	Herb
96.	Clitoria ternatea L.		Fabaceae	Tree
97.	Gymopsis tetragonoloba (L.) Taub.		Fabaceae	Herb
98.	Leucaena leucocephala (Lam.)de Wit		Fabaceae	Tree
99.	Mimosa pudica L.		Fabaceae	Herb
100.	Pithecellobium dulce (Roxb.) Benth.	Kodukkapuli	Fabaceae	Tree
101.	Pongamia pinnata (L.) Pierre		Fabaceae	Tree
102.	Sesbania grandiflora (L.) Pers.		Fabaceae	Tree
103.	Sesbania sesban (Lsb.) Merr.		Fabaceae	Tree
104.	Trigonellefoenum-graecum L.		Fabaceae	Tree
105.	Vigna radiata (L.) R. Wilczek		Fabaceae	Herb
106.	Vigna unguiculata (L) Walp.		Fabaceae	Tree
107.	Bauhinia tomentosa L.		Fabaceae	Tree
108.	Bauhinia variegata (L)Benth		Fabaceae	Tree
109.	Coleus blumi Benth		Lamiaceae	Herb
110.	Mentha spicata L.		Lamiaceae	Herb
111.	Ocimum tenuiflorum L.		Lamiaceae	Shrub
112.	Plectranthus amboinicus (Lour.) Spreng.	Karpooravalli elai	Lamiaceae	Herb
113.	Volckameria inermis L.		Lamiaceae	Shrub
114.	Delonix regia (Boj. ex Hook.) Raf.	Vaagai	Leguminosae	Tree
115.	Lawsonia inermis L.		Lythraceae	Tree
116.	Punica granatum L.		Lythraceae	Tree
117.	Michelia champaca (L.) Baill. ex Pierre	Shenbaga poo	Magnoliaceae	Tree
No.	Species Name	Common Name	Family	Type
-----	--------------	-------------	--------	------
118	Abelmoschus esculentus (L.) Moench	Vendai	Malvaceae	Shrub
119	Ceiba pentandra (L.) Gaertn.	Ilavam panchu maram	Malvaceae	Tree
120	Guazuma ulmifolia Lam.	Thennmaram	Malvaceae	Tree
121	Hibiscus rosa-sinensis L.	Champaruthy	Malvaceae	Shrub
122	Thespesia populnea (L.) Sol. Ex Correa	Poovarasu	Malvaceae	Tree
123	Azadirachta indica A. Juss.	Vembu	Meliaceae	Tree
124	Melia azedarach L.	Malai vempu	Meliaceae	Tree
125	Albizia lebbeck (L.) Benth	Mimisaceae	Tree	
126	Moringa oleifera Lam.	Murungai	Moringaceae	Tree
127	Ensete superbum Roxb.	Kalvalai	Musaceae	Tree
128	Musa paradisiaca L.	Vazhai	Musaceae	Tree
129	Eucalyptus globus L.	Thaillamaram	Myrtaceae	Tree
130	Psidium guajava L.	Koliya	Myrtaceae	Tree
131	Syzygium cumini (L.) Skeels	Naval maram	Myrtaceae	Tree
132	Psidium guajava L.	Thaal poo	Myrtaceae	Tree
133	Mirabilis jalapa L.	Anthimantharai	Myrtaceae	Herb
134	Nymphaea alba L.	Water lily	Nymphaeaceae	Herb
135	Jasminum auriculatum Vahl	Mullai	Oleaceae	Twiner
136	Jasminum grandiflorum (Burm. f.) Andrews	Pitchi	Oleaceae	Twiner
137	Jasminum sambac (L.) Skeels	Kasturi- mallikai	Oleaceae	Twiner
138	Phyllanthus acidus (L.) Skeels	Pulipunelli	Phyllanthaceae	Tree
139	Phyllanthus amarus L.	Keelaneli	Phyllanthaceae	Herb
140	Phyllanthus emblica L.	Periya nelli	Phyllanthaceae	Tree
141	Piper betle L.	Vetrilai kodi	Piperaceae	Shrub
142	Russelia equisetiformis	Chittiramoolam	Plantaginaceae	Herb
143	Plumbago zeylanica L.	Chittiramoolam	Plumbaginaceae	Herb
144	Bambusa vulgaris Schrad ex J.C. Wendl	Mungil	Poaceae	Tree
145	Zea mays L.	Cholam	Poaceae	Herb
146	Portulaca grandiflora Hook.	Pattu rose	Portulacaceae	Herb
147	Ziziphus jujuba Mill.	Elangai	Rhamnaceae	Tree
148	Rosa domestica L.	Roja	Rosaceae	Shrub
149	Hamelia patens Jacq.	Theepputhar	Rubiaceae	Small tree
150	Isora coccinea L.	Vetchi poo	Rubiaceae	Shrub
151	Knoxia hybrid L.	Rubiaceae	Herb	
152	Penta lanceolata (Forssk.) Deflers	Pavazhamalli	Rubiaceae	Shrub
153	Aegle marmelos L.	Vilva maram	Rutaceae	Tree
154	Citrus bergamia Risso	Naarthangai	Rutaceae	Tree
155	Citrus limetta Risso	Sathukudi	Rutaceae	Tree
156	Cardiospermum halicacabum L.	Kariveppilai	Sapindaceae	Tree
157	Manilkara zapota (L.) P. Royen	Sappota	Sapotaceae	Tree
158	Bambusa vulgaris Schrad ex J.C. Wendl	Unni chedi	Verbenaceae	Shrub
159	Zingiber officinale Rosc.	Thuthuvalai	Verbenaceae	Herb
160	Solanum melongena L.	Thakkaali	Solanaceae	Shrub
161	Solanum trilobatum L.	Katharika	Solanaceae	Tree
162	Solanum nigrum L.	Sundaikai	Solanaceae	Shrub
163	Withania coagulans (Stocks) Dunal	Amukura	Solanaceae	Herb
164	Lantana camara L.	Unni chedi	Verbenaceae	Shrub
165	Tectona grandis L.f.	Tekku	Verbenaceae	Tree
178. *Cissus quadrangularis* L. Pirandai kodi Vitaceae Climber
179. *Vitis vinifera* L. ------------- Vitaceae Climber
180. *Zamia furfuracea* L. ------------- Zamiaceae Herb
181. *Curcuma longa* L. Manjal Zingiberaceae Herb
182. *Zingiber officinale* Roscoe Inji Zingiberaceae Herb

Taxonomically dicotyledons plants represent the more number of species contribute 150 species belonging to 53 families, whereas monocotyledonous plants contribute 29 species belonging to 15 families, gymnosperm presented with 2 families and 2 species and one pteridophyte species were documented in the study area.

Fabaceae (16 species and 13 Genera), Apocyanaceae (11 species and 10 Genera) and Solanaceae (9 species and 4 Genera) were the most dominant family in this home garden. Acanthaceae (7 species and 6 genera), Cucurbitaceae (7 species and 7 genera), Euphorbiaceae (7 species and 4 genera), Lamiaceae (5 species and 5 genera), Asteraceae (5 species and 5 genera), Oleaceae (5 species and 2 genera), Asparagaceae (5 species and 5 genera), Amaranthaceae (5 species and 5 genera), Rutaceae (5 species and 3 genera), Malvaceae (5 species and 5 genera), Arecaceae (5 species and 5 genera), Caealpinaceae (5 species and 4 genera), Rubiaceae (4 species and 4 genera), Araceae (3 species and 3 genera), Amaryllidaceae (3 species and 3 genera), Costaceae (3 species and 2 genera), Phylanthaceae (3 species and 1 genera), Anacardiaceae, Annonaceae, Acanthaceae, Araceae, Cactaceae, Combretaceae, Cycadaceae, Lythraceae, Meliaceae, Musaceae, Nyctaginaceae, Plantaginaceae, Poaceae, Sapotaceae, Verbenaceae, Vitaceae and Zingiberaceae were represented by two species each, whereas Acoraceae, Agavaceae, Araucariaceae, Asphodelaceae, Balsaminaceae, Basellaceae, Bignonieae, Boraginaceae, Brassicaceae, Bromeliaceae, Caricaceae, Casuarinaceae, Commelinaeae, Convulvulaceae, Cupressaceae, Elaeocarpaeae, Leguminoeae, Magnoliaceae, Mimisaceae, Moringaceae, Nymphacaeae, Orchidaceae, Palmaceae, Pandanaceae, Pedaliaceae, Piperaceae, Plumbaginaceae, Portulacaceae, Rhamnaceae, Rosaceae, Sapindaceae, Simarobaceae, Zamiaceae and Nephrolepideae (Pteridophytes) were mono specific. Zamiaceae and Cupressaceae families are gymnosperm. Nephrolepideae was presented in Pteridophytes (Table 2).

Table No. 2: Distribution of plant families in the study area

S. No	Family	Genus	Species	S. No	Family	Genus	Species
1.	Acanthaceae	6	7	36.	Lamiaceae	7	7
2.	Acoraceae	1	1	37.	Leguminosae	2	2
3.	Agavaceae	1	38.	38.	Lythraceae	2	2
4.	Acanthaceae	5	6	39.	Magnoliaceae	1	1
5.	Amaryllilaceae	2	2	40.	Malvaceae	5	5
6.	Anacardiaceae	2	2	41.	Melfaceae	2	2
7.	Annonaceae	2	2	42.	Mimisaceae	1	1
8.	Apiaceae	2	2	43.	Moringaceae	1	1
9.	Apocyanaceae	8	12	44.	Musaceae	2	2
10.	Araceae	3	3	45.	Myrtaceae	3	3
11.	Fabaceae	13	17	46.	Nephrolepideae	1	1
12.	Araucariaceae	1	47.	47.	Nyctaginaceae	2	2
13.	Areaceae	3	3	48.	Nymphaeae	1	1
14.	Asparagaceae	5	5	49.	Orchidaceae	1	1
15.	Asphodelaceae	1	50.	50.	Oleaceae	2	5
16.	Asteraceae	6	7	51.	Palmaceae	1	1
17.	Balsaminaceae	4	52.	52.	Pandanaceae	1	1
18.	Basellaceae	1	53.	53.	Pedaliaceae	1	1
19.	Bignoniaceae	1	54.	54.	Phylanthaceae	1	3
20.	Boraginaceae	1	55.	55.	Piperaceae	1	1
21.	Brassicaceae	1	1	56.	Plantaginaceae	2	2
22.	Bromeliaceae	1	57.	57.	Plumbaginaceae	1	1
23.	Cactaceae	2	2	58.	Poaceae	2	2
24.	Caesalpinaceae	2	2	59.	Portulacaceae	1	1
25.	Caricaceae	1	1	60.	Rhamnaceae	1	1
26.	Casuarinaceae	1	1	61.	Rosaceae	1	1
27.	Combretaceae	1	2	62.	Rubiaceae	4	4
28.	Commelinaeae	1	1	63.	Rutaceae	3	5
29.	Convulvulaceae	1	1	64.	Sapindaceae	1	1
30.	Costaceae	2	2	65.	Sapotaceae	2	2
31.	Cucurbitaceae	7	7	66.	Simarobaceae	1	1
32.	Cupressaceae	1	1	67.	Solanaceae	4	10
33.	Cuscutaceae	1	2	68.	Verbenaceae	1	1
34.	Elaeocarpaeae	1	1	69.	Vitaceae	2	2
35.	Euphorbiaceae	5	7	70.	Zamiaceae	1	1
36.	Fagaceae	1	1	71.	Zingiberaceae	2	2
Most plant species of the study area are of considerable ecological and economic importance, useful as bio resources to wild fauna and human beings. Of the total 182 wild/naturalized plant species, most are useful as medicinal plants, and others are valuable as edible fruits, timbers, fuel wood, etc. Although food production is recognized as a basic function of home gardens, the motivation for home gardening is not always for mainly food production. With the recent studies on home gardens in Benin, they revealed high prevalence of food and medicinal plants in gardens, confirming the importance of food production in gardening, and evidencing the key importance of medicinal plant in gardening systems in Benin.

Home gardens with primarily for both food and medicinal purposes and with more functions (ornamental, protection/delimitation, and miscellaneous purposes) were found everywhere but most garden with high prevalence of ornamental plant species were also mostly found in these regions under the westernization influence. The ornamental quality of Tilzapota’s home gardens differed from that in other regions; these home gardens were mainly used for food security, to improve families’ nutrition, and for economic growth in some cases. Nevertheless, there are newly emerging positive trends in home gardening, which encourage people to maintain biodiversity in rural and urban gardens.

In developing countries the nutritional value of local, neglected horticultural species has been assessed and their cultivation in family gardens promoted to guarantee the intake of vitamins and micro-nutrients. In high-income countries the growing demand for healthier life styles and closer connection with nature has driven a renewed interest towards sustainable agricultural systems and “traditional” food products, capable of connecting consumers to the natural and cultural heritage of a community or a geographical region. Many urban citizens of the developed world have taken up some form of self-production of food in their terraces, roofs, gardens or courtyards as well as in communal areas shared among neighbours.

For all the enumerated wild and naturalized plant species, information such as botanical name, vernacular name, family and habit are provided and plant species in the checklist and their photographs are showed in (Fig3).
CONCLUSION
In this study, we observed totally of 182 plant species belonging to 159 genera and 71 families from the home gardens of Palayamkottai, Tirunelveli District. Among them, 60 species (32%) were trees, 39 species (21%) were shrubs, 61 species (33%) were herbs, 18 species (10%) were climbers and 7 species (4%) were twiner. Home gardens provide good economic and social conditions for outstanding production. They are an important production system of food, medicine and other essential products. It also provides environments in which part of the genetic diversity of many crops can be maintained. In conclusion, home gardens play a major role in the production of food, job opportunities, crop improvement, development, maintenance of the green nature and so on.

REFERENCE
[1] Fernandes ECM and Nair PKR. An evaluation of the structure and function of tropical home gardens. Agricultural Systems. 1986; 21: 279-310.
[2] Kumar BM and Nair PR. 2004. The enigma of tropical home gardens. Agrofor Syst. 2004; 61(1-3): 135–52.
[3] Gibbs L, Staiger PK, Townsend M et al. Methodology for the evaluation of the Stephanie Alexander kitchen garden program. Health Promotion Journal of Australia, 2013; 24(1): 32–43.
[4] Taylor JR and Lovell ST. Urban home food gardens in the global north: research traditions and future directions. Agric Hum Values. 2014; 31(2): 285–305.
[5] Zaïnuddin Z and Mercer D. Domestic residential garden food production in Melbourne, Australia: a fine-grained analysis and pilot study. Aust Geogr, 2014; 45(4): 465–84.
[6] Calvet-Mir L, Gómez-Baggethun E and Reyes-García V. Beyond food production: ecosystem services provided by home gardens. A case study in Val Fosca, Catalan Pyrenees, Northeastern Spain. Ecol Econ, 2012; 74: 153–60.
[7] Laura CM, Hug M, Daniel CM et al. Home garden ecosystem services valuation through a gender lens: a case study in the Catalan Pyrenees. Sustainability. 2016; 8(8): 718.
[8] Serranoa V, Oaindiab M, Josu et al. Plant diversity and ecosystem services in Amazonian home gardens of Ecuador. Agric Ecosyst Environ. 2016; 225: 116–25.
[9] Clarke LW, Li LG and Yu DJZ. Drives of plant biodiversity and ecosystem service production in home gardens across the Beijing municipality of China. Urban ecosystems. 2014; 17(3): 741–60.
[10] Mohri H, Lahoti S, Saito O. Assessment of ecosystem services in homegarden systems in Indonesia, Sri Lanka, and Vietnam. Ecosystem Services, 2013; 5: 124-136.
[11] Salako VK, Fandohan B, Kassa B et al. Home gardens: an assessment of their biodiversity and potential contribution to conservation of threatened species and crop wild relatives in Benin. Genet Resour Crop Evol. 2014; 61(2): 313–30.