Incidence of fatigue associated with immune checkpoint inhibitors in patients with cancer: a meta-analysis

I. Kiss1, M. Kuhn2, K. Hrusak3 & T. Buchler3*

1Department of Comprehensive Cancer Care, Masaryk Memorial Cancer Institute and Faculty of Medicine, Masaryk University, Brno; 2Institute of Biostatistics and Analyses Ltd, Masaryk University, Brno; 3Department of Oncology, First Faculty of Medicine, Charles University and Thomayer University Hospital, Prague, Czech Republic

Available online 13 May 2022

Background: Fatigue is one of the most common adverse effects associated with cancer immunotherapy using checkpoint inhibitors (CPIs). Because treatment-related fatigue also frequently occurs in patients treated with non-immunological therapies, our study aimed to compare the incidence of fatigue in CPI-treated patients with that associated with non-immune therapies in randomised trials.

Methods: PubMed and ClinicalTrials.gov were searched for phase III studies using a CPI alone or in combination with chemotherapy or non-immunologic targeted therapy in the experimental arm and control arm using inactive therapies such as placebo or observation, chemotherapy, or non-immunologic targeted therapy. Adverse events listed in the full texts as well as those available from clinicaltrials.gov were reviewed for all identified studies.

Results: A total of 60 studies involving 41 435 patients were included in the analysis. All-grade fatigue was reported in 30.4% of patients [95% confidence interval (CI) 29.9% to 31.0%] in the immunotherapy arms of the analysed studies. Using anti-programmed cell death protein 1 agents as reference, the odds ratio (OR) for fatigue was significantly higher both for anti-cytotoxic T lymphocyte-associated antigen 4 agents (OR 1.46, 95% CI 1.04-2.04) and the combination of anti-cytotoxic T lymphocyte-associated antigen 4 and anti-programmed cell death protein agents (OR 1.43, 95% CI 1.12-1.83). Fatigue was significantly less likely to occur in patients treated with CPI compared with patients receiving chemotherapy (OR 0.79, 95% CI 0.73-0.85), but significantly was more common in patients receiving the combination of CPI/chemotherapy compared with patients receiving chemotherapy alone (OR 1.12, 95% CI 1.03-1.22).

Conclusions: Although immunotherapy using CPIs was associated with treatment-related fatigue, the occurrence of all-grade fatigue was significantly higher in patients treated with chemotherapy compared with patients receiving CPIs. The risk of fatigue was higher for CPI/chemotherapy combinations than for chemotherapy alone. These results suggest that although the effects of CPIs and chemotherapy are additive, chemotherapy was the dominant cause of treatment-related fatigue in the analysed trials.

Key words: checkpoint inhibitors, fatigue, meta-analysis, chemotherapy, immunotherapy, targeted therapy

INTRODUCTION

Checkpoint inhibitors (CPIs) targeting the programmed cell death protein 1 (PD-1) receptor and its ligand programmed death-ligand 1 (PD-L1) and the cytotoxic T lymphocyte-associated antigen 4 (CTLA4) receptor are used for a variety of cancers in monotherapy or in combinations. These immunotherapies have revolutionised the treatment of many types of solid and haematological malignancies over the past decade.

Fatigue is a syndrome characterised by diminished energy and/or increased need to rest disproportionate to activity level. It can also be accompanied by feelings of generalized weakness, diminished concentration, decreased interest in usual activities, sleep disturbances, emotional instability, and cognitive problems.1

Fatigue is the most common adverse event associated with CPI therapy.2-3 Fatigue is also commonly associated with chemotherapy and persists for many months or years after its completion.1,4 Targeted therapy, particularly oral tyrosine kinase inhibitors, is also significantly associated with fatigue that leads to treatment reduction in 10%-20% of patients.5-7
The aim of the present meta-analysis was to carry out a systematic analysis of randomised clinical trials to compare the incidence of fatigue between patients with solid cancers treated with CPIs and those receiving other antineoplastic systemic therapies including chemotherapy and non-immunologic targeted therapies.

METHODS

Study selection

PubMed and clinicaltrials.gov were searched using terms ‘cancer’ and ‘ipilimumab or MDX-010’, ‘nivolumab or MDX-1106’, ‘avelumab or MSB0010718C’, ‘durvalumab or MEDI-4736’, ‘pembrolizumab or MK-3475’, ‘atezolizumab or MPDL3280A’, ‘tremelimumab or CP-675,206’, ‘cemiplimab or REGN2810’. The database searches were run on 1 February 2021. The reference lists of retrieved records were scanned for relevant records. Other recent systematic analytical studies were also screened for possible reports missed by the above search.8,9 The study selection process is shown in Figure 1. The search was limited to studies in English with tabulated adverse event data and to phase III studies per clinicaltrials.gov. Adverse events listed in the full texts as well as those available from clinicaltrials.gov were reviewed for all identified studies. The study was carried out according to the Preferred Reporting Items for Systematic Reviews and Meta-analyses (PRISMA) guidelines.10

Statistical analysis

For each selected toxicity, the percentages and confidence intervals (CIs) of patients with the relevant type of adverse events are reported within each study, and jointly according to the type of immunotherapy. As part of the study arm comparison, the odds ratio (OR) and CI for each study are reported separately. We considered the following types of treatment in the CPI arms: CPI, CPI with chemotherapy, CPI with non-immunologic targeted therapy. Differences between types of CPI were analysed for the following categories: anti-PD-1 agents, anti-PD-L1 agents, anti-CTLA4 agents, and combinations of anti-CTLA4 agents with anti-PD-1/PD-L1 antibodies (anti-PD-1 and anti-PD-L1 agents were considered jointly in combinations with anti-CTLA4 drugs).

For the purpose of comparing pooled data within the type of immunotherapy, the OR and CI were derived from a random effect model as recommended by Tufanaru et al.11 For three-arm studies with two immunotherapy arms and a non-immunotherapy control arm, we proceeded according to guidance published by Rücker et al.12 using the method of splitting the shared group to include results of multi-arm trials in pairwise meta-analysis. Heterogeneity between studies is described using Cochran Q statistics and I² statistics. Comparisons between different types of immunotherapy were carried out using a logistic model with random effect. All statistical analyses were carried out using software R version 3.6.3 (R Foundation for Statistical Computing, Vienna, Austria) using the R package meta.13

RESULTS

Selection of studies

We screened a total of 8632 records of phase III studies for cancer, of which 93 studies included treatment with CPIs. A total of 60 studies (including six three-arm studies) involving 41 435 patients with evaluated toxicity were included in the analysis. The characteristics of the included studies and the retrieved data are summarized in Supplementary Table S1, available at https://doi.org/10.1016/j.esmoop.2022.100474. The cancer types were breast cancer (n = 3), colorectal cancer (n = 1), gastroesophageal cancer (n = 4), hepatocellular cancer (n = 1), head and neck carcinoma...
(n = 4), lung cancer (n = 24), melanoma (n = 7), mesothelioma (n = 2), prostate cancer (n = 2), renal cancer (n = 7), and urothelial cancer (n = 6). There were 67 study arm pairs included in the pairwise analysis. All-grade toxicities were analysed due to low occurrence of high-grade fatigue in the included studies.

Overall incidence of fatigue in patients treated with CPIs. All-grade fatigue was reported in 30.4% of patients (95% CI 29.9%-31.0%) in the immunotherapy arms of the analysed studies (Table 1 and Supplementary Table S2, available at https://doi.org/10.1016/j.esmoop.2022.100474). Using anti-PD-1 agents as reference, OR for fatigue was significantly higher both for anti-CTLA4 agents (OR 1.46, 95% CI 1.13-1.89) and the combination of anti-CTLA4 and anti-PD-L1 agents (OR 1.12, 95% CI 1.03-1.22) (Table 3). There was an intermediate heterogeneity among the studies (Table 1).

CPI versus chemotherapy. Twenty-six studies were retrieved for the analysis. Fatigue was significantly less likely to occur in patients treated with CPI compared with patients receiving chemotherapy (OR 0.79, 95% CI 0.73-0.85) (Table 3). There was an intermediate heterogeneity among the studies (Table 1).

CPI with chemotherapy versus chemotherapy alone. Fifteen studies (16 study arm pairs) were included in the analysis with the majority of the trials (n = 10; 66%) carried out in patients with lung cancer. Fatigue was slightly, but significantly more common in patients treated with CPI compared with patients receiving chemotherapy alone (OR 1.12, 95% CI 1.03-1.22) (Table 4). There was low heterogeneity (Table 1).

CPI with non-immunologic targeted therapy versus non-immunologic targeted therapy alone. All studies in this category were randomised trials for metastatic renal cell carcinoma. No significant difference was found in the occurrence of fatigue (OR 0.92, 95% CI 0.76-1.12) (Table 5). There was an intermediate heterogeneity among the studies (Table 1).

Table 1. Risk of all-grade fatigue—summary of results

Type of analysed studies	Arms	Number of participants	Number of study arm pairs	Rate of events (95% CI)	Odds ratio (95% CI)	Heterogeneity	Certainty of evidencea	
All	CPI	23 235	66	30.4 (29.9-31.0)	0.99 (0.91-1.07)	202.6 (<0.001)	67.9 (58.6-75.1)	Moderate
CPI versus inactive control	CPI	4330	12	30.1 (28.8-31.5)	**1.46 (1.13-1.89)**	61.0 (<0.001)	82.0 (69.7-89.3)	Low
CPI versus CT	CPI	9105	28	24.8 (23.9-25.7)	**0.79 (0.73-0.85)**	28.1 (0.405)	4.0 (0.0-33.2)	High
CPI + CT versus CT	CPI	5851	16	34.1 (32.9-35.4)	**1.12 (1.03-1.22)**	7.3 (0.949)	0.0 (0.0-1.8)	High
CPI + TT versus TT	CPI	2082	5	39.1 (37.0-41.3)	**0.92 (0.76-1.12)**	9.0 (0.061)	55.5 (0.83.6)	Moderate

Statistically significant differences between arms per odds ratio are in bold.

CI, confidence interval; CPI, checkpoint inhibitor; CT, chemotherapy; TT, targeted therapy.

*Assessed per Grading of Recommendations, Assessment, Development and Evaluations (GRADE) guidelines.75

Table 2. Meta-analysis of studies comparing checkpoint inhibitor versus inactive control

Study	Diagnosis	Inhibitor	N (control/CPI)	OR (95% CI)*	P value
Kwon et al., 201416	Prostate	CTLA4	396/393	0.91 (0.55-1.52)	0.722
Eggermont et al., 201616	Melanoma	CTLA4	474/471	2.28 (1.34-3.89)	0.003
Antonia et al., 201716	Lung	PD-L1	234/475	1.34 (0.75-2.39)	0.329
Beer et al., 201716	Prostate	CTLA4	199/399	2.22 (1.05-4.69)	0.036
Maio et al., 201617	Mesothelioma	CTLA4	189/380	1.12 (0.57-2.21)	0.746
Ferris et al., 202016	Head and neck	CTLA4 + PD-1	240/246	1.62 (0.66-3.98)	0.294
Finn et al., 202016	HCC	PD-1	134/279	0.71 (0.28-1.78)	0.461
Powles et al., 202016	Urothelial	PD-L1	345/344	2.74 (1.20-6.27)	0.017
Orowickoko et al., 202116	Lung	PD-1	273/279	1.12 (0.55-2.28)	0.764
Orowickoko et al., 202116	Lung	CTLA4 + PD-1	273/165	2.37 (1.18-4.78)	0.016
Total			2484/3431	1.49 (1.13-1.96)	0.005

CI, confidence interval; CPI, checkpoint inhibitors; CTLA4, cytotoxic T lymphocyte-associated antigen 4; HCC, hepatocellular carcinoma; OR, odds ratio; PD-1, programmed cell death protein 1; PD-L1, programmed death-ligand 1.

*aControl arm as a reference group.
DISCUSSION

The aetiology of fatigue in cancer patients is multifactorial, and the symptom may be associated with cancer itself as well as with cancer therapies and other medications, psychological consequences of cancer and its treatment, nutritional problems, and concomitant diseases. Fatigue ranks among the most common symptoms of cancer and antineoplastic therapies. As fatigue is also common with non-immune therapies, our study aimed to compare the incidence in CPI-treated patients with that associated with non-immune therapies in randomised trials, to ascertain whether the risk of fatigue should be a factor in guiding treatment decisions.

In the present study, we analysed the incidence of fatigue, a common and important toxicity of therapy with CPIs despite a less striking clinical manifestation. Fatigue has been reported to affect 12%-37% of patients treated with CPI for cancers. In a recent comprehensive meta-analysis of adverse events associated with CPI given in combinations, Zhou et al. found that fatigue occurred in 31% of patients receiving CPI with chemotherapy, 34% of

Table 3. Meta-analysis of studies comparing checkpoint inhibitor versus chemotherapy

Study	Diagnosis	Receptor	N (control/CPI)	OR (95% CI)	P value
Borghaei et al., 2015	Lung	PD-1	268/287	0.76 (0.53-1.07)	0.116
Brahmer et al., 2015	Lung	PD-1	129/131	0.67 (0.40-1.12)	0.129
Robert et al., 2015	Melanoma	PD-1	205/206	1.36 (0.88-2.09)	0.165
Ferris et al., 2016	Head and neck	PD-1	111/236	0.78 (0.47-1.27)	0.309
Herbst et al., 2016	Lung	PD-1	309/682	0.72 (0.53-0.96)	0.026
Reck et al., 2016	Lung	PD-1	150/154	0.47 (0.28-0.78)	0.004
Bellmunt et al., 2017	Urothelial	PD-1	255/266	0.69 (0.47-1.00)	0.053
Carbone et al., 2017	Lung	PD-1	263/267	0.76 (0.54-1.07)	0.120
Rittmeyer et al., 2017	Lung	PD-L1	578/609	0.66 (0.52-0.85)	0.001
Barlesi et al., 2018	Lung	PD-L1	365/393	0.93 (0.64-1.34)	0.698
Larkin et al., 2018	Melanoma	PD-1	102/268	0.91 (0.57-1.43)	0.671
Paz-Ares et al., 2018	Lung	PD-1	280/278	1.01 (0.68-1.50)	0.963
Powles et al., 2018	Urothelial	PD-L1	443/459	0.87 (0.66-1.16)	0.352
Shiata et al., 2018	Gastric	PD-1	276/294	0.77 (0.54-1.11)	0.160
Bang et al., 2018	Gastric	PD-L1	177/184	0.92 (0.52-1.61)	0.761
Cohen et al., 2019	Head and neck	PD-1	234/246	0.66 (0.43-1.01)	0.055
Mok et al., 2019	Lung	PD-1	615/635	0.73 (0.55-0.98)	0.036
Wu et al., 2019	Lung	PD-1	156/337	0.59 (0.40-0.90)	0.011
Ferris et al., 2020	Head and neck	PD-L1	240/237	0.88 (0.52-1.48)	0.635
Herbst et al., 2020	Lung	PD-L1	263/286	0.81 (0.52-1.28)	0.370
Kojima et al., 2020	Esophagus	PD-1	296/314	0.68 (0.47-0.98)	0.037
Powles et al., 2020	Urothelial	CTLA4 + PD-1	315/340	0.77 (0.55-1.08)	0.136
Powles et al., 2020	Urothelial	PD-L1	315/345	0.84 (0.60-1.17)	0.304
Rizvi et al., 2020	Lung	PD-L1	352/369	0.73 (0.50-1.05)	0.088
Rizvi et al., 2020	Lung	CTLA4 + PD-1	352/371	1.03 (0.73-1.45)	0.885
Baas et al., 2021	Mesothelioma	CTLA4	284/300	1.10 (0.76-1.58)	0.612
Powles et al., 2021	Urothelial	PD-1	342/302	0.63 (0.45-0.88)	0.008
Winer et al., 2021	Breast	PD-1	292/309	1.02 (0.67-1.54)	0.925
Total			6718/9105	0.79 (0.73-0.85)	<0.001

CI, confidence interval; CPI, checkpoint inhibitors; CTLA4, cytotoxic T lymphocyte-associated antigen 4; HCC, hepatocellular carcinoma; OR, odds ratio; PD-1, programmed cell death protein 1; PD-L1, programmed death-ligand 1.

aControl arm as a reference group.

Table 4. Meta-analysis of studies comparing CPI in combination with chemotherapy versus chemotherapy alone

Study	Diagnosis	Inhibitor	N (control/CPI)	OR (95% CI)	P value
Robert et al., 2011	Melanoma	CTLA4	251/247	1.14 (0.79-1.62)	0.486
Reck et al., 2016	Lung	CTLA4	561/562	1.07 (0.83-1.38)	0.576
Govindan et al., 2017	Lung	CTLA4	473/475	1.02 (0.78-1.35)	0.868
Gandhi et al., 2018	Lung	PD-1	202/405	1.14 (0.81-1.61)	0.461
Horn et al., 2018	Lung	PD-L1	196/198	1.13 (0.72-1.76)	0.608
Schmid et al., 2018	Breast	PD-L1	430/460	1.09 (0.83-1.41)	0.538
Socinski et al., 2018	Lung	PD-1	394/793	1.12 (0.92-1.38)	0.311
Paz-Ares et al., 2019	Lung	CTLA4 + PD-1	266/266	1.22 (0.79-1.90)	0.371
Paz-Ares et al., 2019	Lung	PD-L1	266/265	1.09 (0.69-1.70)	0.717
West et al., 2019	Lung	PD-L1	232/473	0.98 (0.72-1.34)	0.903
Burtenshaw et al., 2019	Head and neck	PD-L1	287/276	0.92 (0.65-1.31)	0.652
Jotte et al., 2020	Lung	PD-L1	334/334	1.30 (0.93-1.82)	0.125
Mittendorf et al., 2020	Breast	PD-L1	164/167	1.07 (0.66-1.69)	0.923
Rudin et al., 2020	Lung	PD-1	223/223	1.00 (0.66-1.52)	0.999
Paz-Ares et al., 2021	Lung	CTLA4 + PD-1	349/358	1.49 (1.02-2.18)	0.041
Powles et al., 2021	Urothelial	PD-1	342/349	1.31 (0.97-1.78)	0.083
Total			4704/5851	1.12 (1.03-1.22)	0.008

CI, confidence interval; CPI, checkpoint inhibitors; CTLA4, cytotoxic T lymphocyte-associated antigen 4; OR, odds ratio; PD-1, programmed cell death protein 1; PD-L1, programmed death-ligand 1.

aControl arm as a reference group.
patients treated with a CPI/targeted therapy combination, 24% of patients with concurrent immunotherapy and radiotherapy, and 26% of patients treated with immunotherapy combinations. Cortellini et al.\(^7\) investigated the association between fatigue and prognosis in patients treated with single-agent CPI for a variety of solid malignancies. They found that fatigue occurring before the 12-week landmark was associated with poor prognosis, whereas late fatigue was not. Early progression, however, is a recognised problem in patients treated with immunotherapy and one of the main reasons for combining CPI with chemotherapy or non-immunologic targeted therapy. Thus, early fatigue could have been associated with early cancer progression in non-responders rather than with autoimmune effects of treatment.

Fatigue in patients treated with CPIs has been associated with cytokine abnormalities, particularly those of interleukin 6 (IL-6). IL-6 is a proinflammatory cytokine with elevated levels in advanced cancer as well as autoimmune adverse events in patients treated with CPIs, as evidenced by the success of the anti-IL-6 agent tocilizumab in treating corticosteroid-refractory autoimmune toxicities.\(^7\)\(^-\)\(^9\) Similarly, IL-17 is also associated with fatigue in the context of autoimmune disease, as well as with CPI toxicity.\(^10\)\(^-\)\(^12\) A polymorphism described in the cytokine IL-17F gene is associated with lower risk of chronic fatigue syndrome, although its role in CPI toxicity remains unexplored.\(^12\) The management of cancer- and cancer treatment-related fatigue is mainly based on non-pharmacological interventions and lifestyle changes. Short-term corticosteroid therapy may be helpful and would probably also suppress the cytokine-mediated mechanisms of CPI-related fatigue.\(^4\)

A limitation of the present analysis includes the possibility of the underreporting of very common symptoms of fatigue, and the fact that the severity of the symptoms changes over the course of cancer and therapy. Longitudinal evolution of fatigue in clinical trials can be assessed using formal quality of life analysis using standard questionnaires which are used in many phase III trials. It is currently unclear how the results of quality of life tools compare with the adverse events collected during randomised trials, however, at least baseline symptoms may be reported more commonly by patients than by physicians.\(^13\) Important changes in self-reported parameters such as fatigue, however, are required to be reported as adverse events per Good Clinical Practice principles.

Conclusions

We found that although immunotherapy is clearly associated with fatigue, the occurrence of all-grade fatigue was significantly higher in patients treated with chemotherapy compared with patients receiving CPIs, with OR of 0.79 (95% CI 0.73-0.85). The risk of fatigue was slightly higher for CPI/chemotherapy combinations than for chemotherapy alone (OR 1.12; 95% CI 1.03-1.22). These results suggest that although the effects of CPI and chemotherapy on fatigue are additive, chemotherapy was the dominant cause of treatment-related fatigue in the analysed trials.

ACKNOWLEDGEMENTS

The authors wish to thank Mr Benjamin Buchler for technical support.

FUNDING

This work was supported by an unrestricted grant from Roche (no grant number).

DISCLOSURE

IK has received research support and honoraria from Roche, Bristol Myers Squibb, Merck Sharp Dohme, Merck, and Servier, all unrelated to the present paper. TB has received research support and honoraria from Roche, Bristol Myers Squibb, Merck Sharp Dohme, Merck, and AstraZeneca, all unrelated to the present paper. All other authors have declared no conflicts of interest.

REFERENCES

1. Portenoy RK, Itri LM. Cancer-related fatigue: guidelines for evaluation and management. Oncologist. 1999;4(1):1-10.
2. Naidoo J, Page DB, Li BT, et al. Toxicities of the anti-PD-1 and anti-PD-L1 immune checkpoint antibodies. Ann Oncol. 2015;26(12):2375-2381.
3. Zhou X, Yao Z, Bai H, et al. Treatment-related adverse events of PD-1 and PD-L1 inhibitor-based combination therapies in clinical trials: a systematic review and meta-analysis. Lancet Oncol. 2021;22(9):1265-1274.
4. Fabi A, Bhargava R, Fatigoni S, et al. Cancer-related fatigue: ESMO Clinical Practice Guidelines for diagnosis and treatment. Ann Oncol. 2020;31:713-723.
5. Takahashi S. Fatigue and its management in cancer patients undergoing VEGFR-TKI therapy. Expert Opin Drug Saf. 2022;21:397-406.
6. Anand D, Escalante CP. Ongoing screening and treatment to potentially reduce tyrosine kinase inhibitor-related fatigue in renal cell carcinoma. J Pain Symptom Manage. 2015;50(1):108-117.
1. Kiss et al.

7. Choueiri TK, Escudier B, Powles T, et al. Cabozantinib versus everolimus in advanced renal cell carcinoma (METEOR): final results from a randomised, open-label, phase 3 trial. Lancet Oncol. 2016;17(7):917-927.

8. Yang F, Markovic SN, Molina JR, et al. Association of sex, age, and Eastern Cooperative Oncology Group performance status with survival benefit of cancer immunotherapy in randomized clinical trials: a systematic review and meta-analysis. JAMA Netw Open. 2020;3(8):e2012534.

9. Wang Y, Zhou S, Yang F, et al. Treatment-related adverse events of PD-1 and PD-L1 inhibitors in clinical trials: a systematic review and meta-analysis. JAMA Oncol. 2019;5(7):1008-1019.

10. Liberati A, Altman DG, Tetzlaff J, et al. The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate healthcare interventions: explanation and elaboration. BMJ. 2009;339:b2700.

11. Tufanaru C, Munn Z, Stephenson M, Aromataris E. Fixed or random effects meta-analysis? Common methodological issues in systematic reviews of effectiveness. Int J Evid Based Healthc. 2015;13(3):196-207.

12. Rücker G, Cates CJ, Schwarzer G. Methods for including information from multi-arm trials in pairwise meta-analysis. Res Synth Methods. 2017;8(4):392-403.

13. Balduzzi S, Rücker G, Schwarzer G. How to perform a meta-analysis with R: a practical tutorial. Evid Based Ment Health. 2019;22(4):153-160.

14. Hodi FS, O'Day SJ, McDermott DF, et al. Improved survival with ipilimumab in patients with metastatic melanoma. N Engl J Med. 2010;363(8):711-723.

15. Robert C, Thomas L, Bondarenko I, et al. Ipilimumab plus dacarbazine for previously untreated metastatic melanoma. N Engl J Med. 2011;364(26):2517-2526.

16. Kwon ED, Drake CG, Scher HI, et al. Ipilimumab versus placebo after radiotherapy in patients with metastatic castration-resistant prostate cancer that had progressed after docetaxel chemotherapy (CA184-043): a multicentre, randomised, double-blind, phase 3 trial. Lancet Oncol. 2014;15(7):700-712.

17. Borghaei H, Paz-Ares L, Horn L, et al. Nivolumab versus Docetaxel in advanced nonsquamous non-small-cell lung cancer. N Engl J Med. 2015;373(17):1627-1639.

18. Brahmer J, Reckamp KL, Baas P, et al. Nivolumab versus docetaxel in advanced squamous-cell non-small-cell lung cancer. N Engl J Med. 2015;373(2):123-135.

19. Motzer RJ, Escudier B, McDermott DF, et al. Nivolumab versus everolimus in advanced renal-cell carcinoma. N Engl J Med. 2015;373(19):1803-1813.

20. Robert C, Long GV, Brady B, et al. Nivolumab in previously untreated melanoma without BRAF mutation. N Engl J Med. 2015;372(4):320-330.

21. Eggermont AAM, Chiarion-Sileni V, Grob JJ, et al. Prolonged survival in stage III melanoma with ipilimumab adjuvant therapy. N Engl J Med. 2016;375(19):1845-1855.

22. Fehlings MR, Blumenschein GJ,ayette J, et al. Recurrent squamous-cell carcinoma of the head and neck. N Engl J Med. 2016;375(19):1856-1867.

23. Herbst RS, Baas P, Kim D-W, et al. Pembrolizumab versus docetaxel for previously treated, PD-L1-positive, advanced non-small-cell lung cancer (KEYNOTE-010): a randomised controlled trial. Lancet. 2016;387(10027):1540-1550.

24. Reck M, Rodríguez-Abreu D, Robinson AG, et al. Pembrolizumab versus chemotherapy for PD-L1-positive non-small-cell lung cancer. N Engl J Med. 2016;375(19):1823-1833.

25. Reck M, Luft A, Szczesna A, et al. Phase III randomized trial of ipilimumab plus etoposide and platinum versus placebo plus etoposide and platinum in extensive-stage small-cell lung cancer. J Clin Oncol. 2016;34(31):3740-3748.

26. Antonia SJ, Villegas A, Daniel D, et al. Durvalumab in chemo-radiotherapy in stage III non-small-cell lung cancer. N Engl J Med. 2017;377(20):1919-1929.

27. Beer TM, Kwon ED, Drake CG, et al. Randomized, double-blind, phase III trial of ipilimumab versus placebo in asymptomatic or minimally symptomatic patients with metastatic chemotherapy-naive castration-resistant prostate cancer. J Clin Oncol. 2017;35(1):40-47.

28. Bellmunt J, de Wit R, Vaughn DJ, et al. Pembrolizumab as second-line therapy for advanced urothelial carcinoma. N Engl J Med. 2017;376(11):1015-1026.

29. Carbone DP, Reck M, Paz-Ares L, et al. First-line nivolumab in stage IV or recurrent non-small-cell lung cancer. N Engl J Med. 2017;376(25):2415-2426.

30. Govindan R, Szczesna A, Ahn M-J, et al. Phase III trial of ipilimumab combined with paclitaxel and carboplatin in advanced squamous non-small-cell lung cancer. J Clin Oncol. 2017;35(30):3449-3457.

31. Maio M, Scherperel A, Calabro L, et al. Tremelimumab as second-line or third-line treatment in relapsed malignant mesothelioma (DETER-MINE): a multicentre, international, randomised, double-blind, placebo-controlled phase 2b trial. Lancet Oncol. 2017;18(9):1261-1273.

32. Rittmeyer A, Barlesi F, Waterkamp D, et al. Atezolizumab versus docetaxel in patients with previously treated non-small-cell lung cancer (OAK): a phase 3, open-label, multicentre randomised controlled trial. Lancet. 2017;389(10066):255-265.

33. Socinski MA, Jotte RM, Cappuzzo F, et al. Atezolizumab for first-line treatment of metastatic nonsquamous NSCLC. N Engl J Med. 2018;378(24):2288-2301.

34. Eggermont AAM, Blank CU, Mandala M, et al. Adjuvant pembrolizumab versus placebo in resected stage III melanoma. N Engl J Med. 2018;378(19):1789-1801.

35. Gandhi L, Rodriguez-Abrue D, Gadgeel S, et al. Pembrolizumab plus chemotherapy in metastatic non-small-cell lung cancer. N Engl J Med. 2018;378(22):2078-2092.

36. Horn L, Mansfield AS, Szczesna A, et al. First-line atezolizumab plus chemotherapy in extensive-stage small-cell lung cancer. N Engl J Med. 2018;379(23):2220-2229.

37. Larkin J, Minor D, O’Angelo S, et al. Overall survival in patients with advanced melanoma who received nivolumab versus investigator’s choice chemotherapy in CheckMate 037: a randomised, open-label phase III trial. J Clin Oncol. 2018;36(4):383-390.

38. Motzer RJ, Tannir NM, McDermott DF, et al. Nivolumab plus ipilimumab versus sunitinib in advanced renal-cell carcinoma. N Engl J Med. 2018;378(14):1277-1290.

39. Paz-Ares L, Luft A, Vicente D, et al. Pembrolizumab plus chemotherapy for squamous non-small-cell lung cancer. N Engl J Med. 2018;379(21):2040-2051.

40. Powles T, Duran I, van der Heijden MS, et al. Atezolizumab versus chemotherapy in patients with platinum-treated locally advanced or metastatic urethral carcinoma (IMvigor211): a multicentre, open-label, phase 3 randomised controlled trial. Lancet. 2018;391(10122):748-757.

41. Shitara K, Özgüroğlu M, Bang Y-J, et al. Pembrolizumab versus paclitaxel for previously treated, advanced gastric or gastro-oesophageal junction cancer (KEYNOTE-061): a randomised, open-label, controlled, phase 3 trial. Lancet. 2018;392(10142):123-133.

42. Schmid P, Adams S, Rugo HS, et al. Atezolizumab and nab-paclitaxel in advanced triple-negative breast cancer. N Engl J Med. 2018;379(22):2108-2121.

43. Bang Y-J, Ruiz EV, Van Cutsem E, et al. Phase III, randomised trial of avelumab versus physician’s choice of chemotherapy as third-line treatment of patients with advanced gastric or gastro-oesophageal junction cancer: primary analysis of JAVELIN Gastric 300. Ann Oncol. 2018;29(10):2052-2060.

44. Cohen EEW, Soulères D, Le Tourneau C, et al. Pembrolizumab versus methotrexate, docetaxel, or cetuximab for recurrent or metastatic head-and-neck squamous cell carcinoma (KEYNOTE-040): a randomised, open-label, phase 3 study. Lancet. 2019;393(10167):156-167.

45. Eng C, Kim TW, Bendell J, et al. Atezolizumab with or without cobimetinib versus regorafenib in previously treated metastatic colorectal cancer (MBlaze370): a multicentre, open-label, phase 3, randomised, controlled trial. Lancet Oncol. 2019;20(6):849-861.

46. Mok TSK, Wu Y-L, Kudaba I, et al. Pembrolizumab versus chemotherapy for previously untreated, PD-L1-expressing, locally advanced
Volume 7 ■ Issue 3 ■ 2022

I. Kiss et al.

or metastatic non-small-cell lung cancer (KEYNOTE-042): a randomised, open-label, controlled, phase 3 trial. *Lancet*. 2019;393(10183):1819-1830.

47. Motzer RJ, Penkov K, Haanen J, et al. Avelumab plus axitinib versus sunitinib for advanced renal-cell carcinoma. *N Engl J Med*. 2019;380:1103-1115.

48. Paz-Ares L, Ciuleanu T-E, Cobo M, et al. First-line nivolumab plus ipilimumab combined with two cycles of chemotherapy in patients with non-small-cell lung cancer (CheckMate 9LA): an international, randomised, open-label, phase 3 trial. *Lancet Oncol*. 2021;22(2):198-211.

49. Rini BI, Plimack ER, Stus V, et al. Pembrolizumab plus axitinib versus sunitinib for advanced renal-cell carcinoma. *N Engl J Med*. 2019;380:1116-1127.

50. Rini BI, Powles T, Atkins MB, et al. Atezolizumab plus bevaciezumab versus sunitinib in patients with previously untreated metastatic renal cell carcinoma (IMmotion151): a multicentre, open-label, phase 3, randomised controlled trial. *Lancet*. 2019;393(10189):2404-2415.

51. West H, McCleod M, Hussein M, et al. Atezolizumab in combination with carboplatin plus nab-paclitaxel chemotherapy compared with chemotherapy alone as first-line treatment for metastatic non-squamous non-small-cell lung cancer (IMpower130): a multicentre, randomised, open-label, phase 3 trial. *Lancet Oncol*. 2019;20(7):924-937.

52. Ferris RL, Haddad R, Even C, et al. Durvalumab with or without tremelimumab in patients with recurrent or metastatic head and neck squamous cell carcinoma: EAGLE, a randomised, open-label phase III study. *Ann Oncol*. 2020;31(7):942-950.

53. Gutzmer R, Stroyakovskiy D, Gogas H, et al. Atezolizumab, vemurafenib, and cobimetinib as first-line treatment for unresectable advanced BRAF(V600) mutation-positive melanoma (IMspire150): primary analysis of the randomised, double-blind, placebo-controlled, phase 3 trial. *Lancet*. 2020;395(10240):1835-1844.

54. Herbst RS, Giaccone G, de Marinis F, et al. Atezolizumab for first-line treatment of PD-L1-selected patients with NSCLC. *N Engl J Med*. 2020;383(14):1328-1339.

55. Jotte R, Cappuzzo F, Vynnychenko I, et al. Atezolizumab in combination with carboplatin and nab-paclitaxel in advanced squamous NSCLC (IMpower131): results from a randomized phase III trial. *J Thorac Oncol*. 2020;15(8):1351-1360.

56. Kojima T, Shah MA, Muro K, et al. Randomized phase III KEYNOTE-048: a randomised, open-label, phase 3 study. *Lancet*. 2019;394(10212):1915-1928.

57. Khorana AA, Soff GA, Kakkar AK, et al. Rivaroxaban for thromboprophylaxis in high-risk ambulatory patients with cancer. *N Engl J Med*. 2019;380(8):720-728.

58. Wu Y-L, Lu S, Cheng Y, et al. Pembrolizumab or docetaxel in a predominantly Chinese patient population with previously treated advanced NSCLC: checkMate 078 randomized phase III clinical trial. *J Thorac Oncol*. 2019;14(5):867-875.

59. Burtness E, Harrington KJ, Greil R, et al. Pembrolizumab alone or with chemotherapy versus cetuximab with chemotherapy for recurrent or metastatic squamous cell carcinoma of the head and neck (KEYNOTE-048): a randomised, open-label, phase 3 study. *Lancet*. 2019;394(10212):1929-1939.

60. Finn RS, Ryoo BY, Merle P, et al. Pembrolizumab as second-line therapy in patients with advanced hepatocellular carcinoma in KEYNOTE-240: a randomized, double-blind, phase III trial. *J Clin Oncol*. 2020;38(3):139-149.

61. Barlesi F, Vansteenkiste J, Spijgel D, et al. Avelumab versus docetaxel in patients with platinum-treated advanced non-small-cell lung cancer (JAVELIN Lung 200): an open-label, randomised, phase 3 study. *Lancet Oncol*. 2018;19(11):1468-1479.

62. Paz-Ares L, Dvorkin M, Chen YY, et al. Durvalumab plus platinum-etoposide versus platinum-etoposide in first-line treatment of extensive-stage small-cell lung cancer (CASPIAN): a randomised, controlled, open-label, phase 3 trial. *Lancet*. 2019;394(10212):1929-1939.

63. Balshem H, Helfand M, Schünemann HJ, et al. GRADE guidelines: 3. Rating the quality of evidence. *J Clin Epidemiol*. 2011;64(4):401-406.

64. Cortellini A, Vitale MG, De Galtiis F, et al. Early fatigue in cancer patients receiving PD-1/PD-L1 checkpoint inhibitors: an insight from clinical practice. *J Transl Med*. 2021;19(1):376.

65. Yang T, Yang Y, Wang D, et al. The clinical value of cytokines in chronic fatigue syndrome patients receiving PD-1/PD-L1 checkpoint inhibitors: an insight from clinical practice. *J Transl Med*. 2021;19(1):376.

66. Distriou F, Hogan S, Menzies AM, Dummer R, Long GV. Interleukin-6 and IL-10 are prognostic of relapse in ipilimumab-treated patients with unresectable malignant pleural mesothelioma (CheckMate 743): a multicentre, randomised, open-label, phase 3 trial. *Lancet*. 2021;397(10272):375-386.

67. Bellmunt J, Hussain M, Gschwend JE, et al. Adjuvant atezolizumab versus observation in muscle-invasive urothelial carcinoma (IMVigor010): a multicentre, open-label, randomised, phase 3 trial. *Lancet Oncol*. 2021;22(4):525-537.

68. Choueiri TK, Powles T, Burotto M, et al. Nivolumab plus cabozantinib versus sunitinib for advanced renal-cell carcinoma. *N Engl J Med*. 2021;384(9):829-841.

69. Motzer R, Alekseev B, Rha SY, et al. Lenvatinib plus pembrolizumab or everolimus for advanced renal cell carcinoma. *N Engl J Med*. 2021;384(14):1289-1300.

70. Owonikoko TK, Park K, Govindar A, et al. Nivolumab and ipilimumab as maintenance therapy in extensive-disease small-cell lung cancer: checkMate 451. *J Clin Oncol*. 2021;39(12):1349-1359.

71. Powles T, Csöszí T, Özgüroğlu M, et al. Pembrolizumab alone or combined with chemotherapy versus chemotherapy as first-line therapy for advanced urothelial carcinoma (KEYNOTE-361): a randomised, open-label, phase 3 trial. *Lancet Oncol*. 2021;22(7):931-945.

72. Winer EP, Lipatov O, Im S-A, et al. Pembrolizumab versus investigator-choice chemotherapy for metastatic triple-negative breast cancer (KEYNOTE-119): a randomised, open-label, phase 3 trial. *Lancet Oncol*. 2021;22(4):499-511.

73. Cortellini A, Vitale MG, De Galtiis F, et al. Early fatigue in cancer patients receiving PD-1/PD-L1 checkpoint inhibitors: an insight from clinical practice. *J Transl Med*. 2021;19(1):376.

74. Yang T, Yang Y, Wang D, et al. The clinical value of cytokines in chronic fatigue syndrome. *J Transl Med*. 2019;17(1):213.

75. Dimitriou F, Hogan S, Menzies AM, Dummer R, Long GV. Interleukin-6 and IL-10 are prognostic of relapse in ipilimumab-treated patients with unresectable malignant pleural mesothelioma (CheckMate 743): a multicentre, randomised, open-label, phase 3 trial. *Lancet*. 2021;397(10272):375-386.

76. Bellmunt J, Hussain M, Gschwend JE, et al. Adjuvant atezolizumab versus observation in muscle-invasive urothelial carcinoma (IMVigor010): a multicentre, open-label, randomised, phase 3 trial. *Lancet Oncol*. 2021;22(4):525-537.

77. Stroud CR, Hegde A, Cherry C, et al. Tocilizumab for the management of fatigue syndrome. *Arthritis Res Ther*. 2011;13(5):R167.

78. Tarhini AA, Zahoor H, Lin Y, et al. Baseline circulating IL-17 predicts toxicity while TGF-β1 and IL-10 are prognostic of relapse in ipilimumab neoadjuvant therapy of melanoma. *J Immunother Cancer*. 2015;3:39.

79. Metzger K, Frémont M, Roelant C, De Meirleir K. Lower frequency of IL-17F sequence variant (His161Arg) in chronic fatigue syndrome patients. *Biochem Biophys Res Commun*. 2008;376(1):231-233.

80. Atkinson TM, Dueck AC, Satele DV, et al. Clinician vs patient reporting of baseline and postbaseline symptoms for adverse event assessment in cancer clinical trials. *JAMA Oncol*. 2020;6(3):437-439.