A number filter for matter-waves

G. Nandi,1 A. Sizmann,2 J. Fortágh,3 and R. Walser1

1Institut für Quantenphysik, Universität Ulm, D-89069 Ulm, Germany
2Ludwig-Maximilians-Universität München, D-80539 München
3Physikalisches Institut der Universität Tübingen, D-72076 Tübingen, Germany

(Dated: February 2, 2008)

In current Bose-Einstein condensate experiments, the shot-to-shot variation of atom number fluctuates up to 10%. In here, we present a procedure to suppress such fluctuations by using a nonlinear \(p - \pi - \bar{p} \) matter wave interferometer for a Bose-Einstein condensate with two internal states and a high beam-splitter asymmetry \((p, \bar{p} \neq 0.5)\). We analyze the situation for an inhomogeneous trap within the Gross-Pitaevskii mean-field theory, as well as a quantum mechanical Josephson model, which addresses complementary aspects of the problem and agrees well otherwise.

PACS numbers: 03.75.Dg, 03.75.Gg

Keywords: nonlinear matter-wave interferometry, two-mode squeezing, noise suppression, BEC

I. INTRODUCTION

Nonlinear optical wave propagation is known to give rise to chaos, spectral and temporal distortion or an amplification of noise [1]. This fundamentally limits the signal-to-noise ratio in state-preparation experiments or measurements. For example, the nonlinearity constrains the capacity of optical communication systems [2], or the resolution of a gravitational-wave interferometer [3], where the momentum transfer to the mirror produces an intensity-dependent phase shift. However, optical nonlinearities are also capable of wave-packet self-stabilization and of a phase-sensitive reduction of noise. Second- and third-order nonlinearities, and especially the Kerr effect in optical fibers, produce energy stabilization and a noise reduction below the standard quantum limit [4, 5, 6, 7, 8, 9, 10, 11] in various experimental configurations [12].

The past decade of matter-wave physics has also shown remarkable similarities with the development of quantum optics in the 60’s. A lucent description of this parallelism of quantum optics [13] and atomic matter waves is found in [14]. Starting from the seminal measurement of spatial coherence in normal and degenerate gases [15, 16, 17, 18], the field has eventually progressed to study density fluctuations in trapped, three dimensional Bose-Einstein condensates (BEC) [19, 20, 21] and fermionic gases [22]. By reducing dimensionality via geometric confinement in planar traps, one-dimensional traps, in optical lattices or on atomic chips [23] the field has now been opened to a plethora of condensed matter phenomena [24, 25, 26, 27, 28, 29, 30, 31]. While the perfection of communication quality is the key issue for optics today, the main application for cold atomic matter waves is quantum metrology and sensing. Reaching the quantum limit and surpassing it with matter-waves is a major research direction [32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42]. In this context, atoms or ions prove to be more flexible than light, as we can control many-particle entanglement and exploit different quantum statistics [43, 44, 45].

The statistical ensembles that are generated in most of the current experiments are never of the quality as theoretically envisaged. In particular, most of the current BEC experiments face a shot-to-shot variation of particle number \(N \) of about 10%. This is primarily due to technical uncertainties in the evaporation procedure. If each individual BEC realization would be characterized by a pure Fock state \(|\Psi_N\rangle \), then the uncertainty \(\mathcal{P}_N \) in atom number will lead to an mixed state ensemble with a density operator

\[
P = \sum_N N |\Psi_N\rangle \langle \Psi_N| .
\]

Thus, each observable will lose contrast caused by this number uncertainty. In this paper, we will establish an atom number filter for matter waves that allows a number stabilization, i.e., after passing each BEC through the filter the number uncertainty is less than before.

\[a_n\]

\[a(0)\]

\[a(L)\]

\[a_{out}\]

\[\phi_1 = kL + \sigma p N_n\]

\[\phi_2 = -kL + \sigma (1-p) N_n\]

FIG. 1: Setup for an asymmetric optical nonlinear interferometer with a propagation length \(L \) and a splitting ratio \(p \), \((1-p) \), \(p \neq 0.5 \). Due to a Kerr-nonlinearity (susceptibility \(\sigma \)), one obtains a differential phase shift \(\phi_{NL} = \phi_1 \) - \(\phi_2 = \sigma (2p - 1) N_{in} \), proportional to an input photon intensity \(N_{in} \). A subsequent self-interference of strong \(a_1 \) and weak field \(a_2 \) stabilizes the output field intensity \(N_{out} = |a_{out}|^2 \) and diverts the noise to the rejection port \(a_{rej} \).

This can be achieved by using a nonlinear matter wave interferometer, cf. Figs. 1 and 3 which is in analogy to a nonlinear fiber optics setup [7]. We will assume that the condensate consists of atoms with two internal states. Due to the highly asymmetric splitting, which is crucial in this setup, the condensate fraction in one arm of the interferometer experiences a strong nonlinear phase evolution, while the other part only undergoes a weak nonlinear phase shift.
The underlying physical mechanism of the suppression of number fluctuations is based on the repulsive interaction amongst particles and has been used in the context of spin squeezing \[46, 47\] or the Josephson effect \[48, 49, 50\]. The ideas presented in here are also related to the work of Poulsen and Mølmer \[51\], since their approach combines ideas for light squeezing in a nonlinear optical interferometer with the idea for spin-squeezing of two spatial, initially identically occupied, condensate modes, generated via Bragg scattering. Our approach is different, as it explicitly requires a highly asymmetric splitting \(p \neq 0.5\) or would it disappear at all and it uses internal states of the atom.

This paper is organized as follows: First, we briefly review the central idea of amplitude stabilization of a nonlinear optical interferometer in Sec. III. Second, we introduce an equivalent model for a bosonic matter wave in Sec. III. This is studied within a mean-field picture to consider the effects of inhomogeneous traps as well as a Josephson model of two quantized plane wave modes, which address the quantum aspects and effects of finite particle numbers. Finally, conclusions are drawn in Sec. IV.

II. THE PRINCIPLE OF NONLINEAR INTERFEROMETERS IN OPTICAL FIBERS

A very fundamental type of nonlinearity, which is present in many systems, is the intensity-dependent phase shift. In photon optics it is due to the optical Kerr effect \[41\] characterized by a susceptibility \(\sigma\) and in matter waves it is caused by interatomic atom forces measured by the s-wave scattering length \(a_s\). This leads to a self- or cross-phase modulation and possibly to a self-trapping potential in the nonlinear Schrödinger equation of motion of wave-packets.

In the context of nonlinear interferometry \[7\], the intensity filtering property is best in a highly asymmetric, highly transmissive configuration, depicted in Fig. 1. The interference of a strong wave with a weak wave can eliminate a major fraction of the input noise of \(a_{\text{in}}\) in the output port \(a_{\text{out}}\). A predominant part of the noise is channeled to the rejection port \(a_{\text{ref}}\), consuming a small fraction of the input photon number.

Its two-step nonlinear self-stabilization mechanism is very simple and visualized in Fig. 2. After the first beam-splitter, the asymmetric splitting of an input beam causes an intensity-dependent differential phase shift between the two arms \(a_1\) and \(a_2\) of the interferometer. The nonlinear phase shift transforms intensity amplitude increase/reduction due to field fluctuations into a correlated phase advance/delay. Therefore, it causes a correlated phase spread relative to the average nonlinear phase shift. The second beam-splitter superposes both interferometer beams coherently. It changes the quadrature angle of the field amplitude relative to the noise distribution so that the amplitude-phase correlation eliminates the amplitude noise to a large degree. For perfect stabilization, the phase advance/delay of the stronger mode relative to the weaker, quasi stationary, linearly propagating mode reduces/increases the output transmission by the right amount to eliminate the input intensity fluctuations.

It has been shown that the stabilization mechanism does not only eliminate classical noise or works only with continuous wave coherent light. Instead, this method is also applicable with broadband ultrashort solitons and in the quantum regime of field fluctuations. The fiber-optic asymmetric Sagnac interferometer has been used as a photon number filter for optical solitons \[4, 10\]. Some of the best squeezing results have been obtained with this set-up, which did not require any active stabilization. The quantum noise reduction below the shot noise (Poisson) limit has been modeled by the quantum nonlinear Schrödinger equation (NLSE). It is in perfect agreement within the measurement uncertainty and stability has been obtained. Again, the noise reduction mechanism can be readily understood by modeling the essentials of the asymmetric interferometer by linearized fluctuations in a semiclassical approach where now the uncorrelated vacuum fluctuations are entering through the unused input port of the interferometer and where the associated phase is the soliton envelope phase. The corresponding semiclassical picture is then well represented by Fig. 2 where the noise ellipses are then the minimum uncertainty regions.

Thus, the question arises, how the analogy of interference of bosonic fields can be applied to matter waves. The analogy is not trivial, because the quanta of the optical field and the massive bosons of the matter field are described by different ensembles. Also, on a practical side, it can be asked how well the asymmetric interferometer can function as a number filter for matter waves.

III. MODELING A NONLINEAR INTERFEROMETER WITH BOSONIC MATTER-WAVES

Let us consider a trapped BEC consisting of two-level atoms labeled by \(\sigma = \epsilon, g\). The complete quantum states are then denoted by \(|\sigma, k_\sigma\rangle\) with the internal state \(\sigma\) and momentum component \(k_\sigma\). The possibly time-dependent trapping
This configuration represents a Ramsey–Bordé-interferometer. Initially, the BEC is prepared in the time-dependent Rabi frequency $\Omega(t)e^{i\mathbf{k}\mathbf{r}}$ with the time-dependent Rabi frequency $\Omega(t)$ and the wave vector \mathbf{k}. This configuration represents a Ramsey–Bordé-interferometer (see Fig. 3 in the standard setup of atom interferometry [52]). Initially, the BEC is prepared in the $|g\rangle$-state and at an instant $t = 0$ a p-pulse creates a superposition of $|g\rangle$ and $|e\rangle$ with a splitting ratio of the populations of $p : (1 - p)$. After a time delay T, a further π-pulse gives rise to an inversion of the populations. After another time interval T, a final beam-splitter with splitting ratio $\bar{p} : (1 - \bar{p})$ mixes the populations again.

![Diagram](image)

FIG. 3: Setup for a matter-wave interferometer. Absorption of a photon k implements an asymmetric beam-splitter with splitting ratio $p : (1 - p)$. After a free time evolution of duration T, an optional π-pulse inverts the populations. The second beam-splitter with splitting ratio $\bar{p} : (1 - \bar{p})$ mixes the states for the final detection of one channel and the rejection of the other (comp. Fig. 1).

A. Theoretical description

In principle, the dynamics of this system is governed by the Schrödinger equation $i\hbar\partial_t|\psi(t)\rangle = \hat{H}(t)|\psi(t)\rangle$ for a many-particle state $|\psi(t)\rangle$ in Fock space and with the Hamiltonian

$$\hat{H}(t) = \hat{H}_{\text{ap}}(t) + \hat{V}_d(t) + \hat{V}_p,$$

where

$$\hat{H}_{\text{ap}}(t) = \int d^3 r \sum_{\sigma = g, e} \delta_{\sigma}(\mathbf{r}) \left[-\frac{\hbar^2 \nabla^2}{2m} + V_{\alpha}(\mathbf{r}, t) \right] \sigma_\sigma(\mathbf{r}),$$

$$\hat{V}_d(t) = \int d^3 r \left[\hbar \Omega(t)e^{i\mathbf{k}\mathbf{r}} \sigma^+_\sigma(\mathbf{r}) \sigma_\sigma(\mathbf{r}) + \text{h.c.} \right],$$

$$\hat{V}_p = \frac{i}{\hbar} \int d^3 r \left[g_{eg} \sigma^+_g(\mathbf{r}) \sigma^+_e(\mathbf{r}) \sigma_g(\mathbf{r}) \sigma_e(\mathbf{r}) + g_{eg} \sigma^+_e(\mathbf{r}) \sigma^+_g(\mathbf{r}) \sigma_g(\mathbf{r}) \sigma_e(\mathbf{r}) + g_{eg} \sigma^+_g(\mathbf{r}) \sigma^+_e(\mathbf{r}) \sigma_g(\mathbf{r}) \sigma_e(\mathbf{r}) \right].$$

In theory, we introduced bosonic field operators

$$[\sigma_\mu(x), \sigma^+_\nu(y)] = \delta(x - y) \delta_{\mu\nu}$$

and interatomic coupling constants $g_{\mu
\nu} = 4\pi\hbar^2 a_{\mu\nu}/m$ between same and different species. $a_{\mu\nu}$ is the corresponding scattering length and m is the mass of a single particle.

In order to get physical insight into this problem, we consider two simplified scenarios. On the one hand, we study the classical field approximation in Sec. IIIB where operators are replaced by complex amplitudes $\hat{a}_\sigma \rightarrow a_\sigma$, which yields the Gross–Pitaevskii (GP) equation. Thus, the statistical character of the operator is neglected. Furthermore, we will consider a quasi one-dimensional, cigar-shaped configuration with tight confinement in the radial direction [52]. The radial part can then be integrated out directly, which results in modified coupling constants $g_{\mu
\nu} \rightarrow \tilde{g}_{\mu
\nu}$. In the following, we tacitly drop the bar. On the other hand, the operator character is accounted for in the Josephson approximation of Sec. III C. In there, we neglect spatial inhomogeneity and consider only the behavior of two plane wave modes.

B. Classical field approximation

Within the classical field approximation, the corresponding scaled quasi-one-dimensional GP equation reads

$$i\partial_t \begin{pmatrix} a_\sigma(z, t) \\ \bar{a}_\sigma(z, t) \end{pmatrix} = \begin{pmatrix} H_{\text{GP}}(t) & 0 \\ 0 & H_{\text{GP}}(t) \end{pmatrix} \begin{pmatrix} a_\sigma(z, t) \\ \bar{a}_\sigma(z, t) \end{pmatrix},$$

where the mean-field energies are $\nu_\mu = g_{\mu
\mu}n_\mu + g_{\mu
\nu}n_\nu$ with $\mu \neq \nu \in \{ e, g \}$ and $n_\sigma = |\bar{a}_\sigma(z, t)|^2$.

In the general case of time-dependent pulses and spatially inhomogeneous traps, it is only possible to solve this equation numerically. Results of such a calculation are presented in Sec. III B. However, if the system size is large and time-dependent pulses happen on short times, then one can solve this simplified situation analytically and gain qualitative understanding.

1. A bulk BEC in the Raman–Nath approximation

The beam-splitter is realized by a quasi-instantaneous ($\tau \ll T, 1/\Delta$) p-pulse in the form of a traveling laser wave with a Rabi frequency Ω. Mathematically, this is described via the unitary transformation

$$U_p = e^{-i\theta(e^{i\mathbf{k}\mathbf{r}}\sigma_+ + \text{h.c.})} = \begin{pmatrix} \cos \theta & -i\sin \theta e^{ikz} \\ -i\sin \theta e^{-ikz} & \cos \theta \end{pmatrix},$$

$$\sigma_+ = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, \quad p = \sin^2 \theta, \quad \theta = \frac{\Omega \tau}{2}. \quad (5)$$

In the following, we have propagated the mean-field state with flat potentials $V_e(z, t) = 0, \quad V_g(z, t) = \Delta$ for a total time $2T$ in Eq. 4. The free nonlinear evolution was interrupted by the interferometer pulse sequence $p - \pi - \bar{p}$ depicted in Fig. 3. We assume that all the population n is initially in the ground state component $\{ a_0(0), \bar{a}_0(0) \} = \{ 0, \sqrt{n} e^{ikz} \}$, moving with a generic momentum k_z. The general solution for the free propagation is obtained easily by making the plane-wave
ansatz
\[\{ \alpha_e(z,t), \alpha_g(z,t) \} = \{ \alpha_e e^{(kz - \phi_e)}, \alpha_g e^{(kz - \phi_g)} \}, \] (6)
with time-dependent phases \(\phi \) and a recoil-shifted momentum \(k_e = k_g + k \). We are interested in the particle density of the output channel \(n_{g}^{\text{out}} = n_{g}(2T) = |\alpha_g(2T)|^2 \) of the interferometer. After simple algebra, one finds for the transmitted channels
\[n_{e}^{\text{out}} = n\left(\frac{1}{2} - \sqrt{p(1-p)} \cos [2Tn\delta_2(p - \frac{1}{2})]\right), \] (7)
\[\xi = np\bar{p} + (1-p)(1-\bar{p}), \quad \gamma = 2\sqrt{p\bar{p}(1-p)(1-\bar{p})}, \]
with \(\delta_2 = g_{ee} - 2g_{eg} + g_{gg} \) a central difference of scattering lengths. The population in the other channel \(n_{g}^{\text{out}} = n - n_{e}^{\text{out}} \) follows from number conservation.

A simplified but less efficient form of the nonlinear interferometer is found from a symmetric mixing \(\bar{p} = \frac{1}{2} \) at the final output beam-splitter
\[n_{e}^{\text{out}} = n\left(\frac{1}{2} - \sqrt{p(1-p)} \cos [2Tn\delta_2(p - \frac{1}{2})]\right). \] (8)

The most salient features of Eqs. (7) and (8) are the absence of linear phase shifts due to the intermediate \(\pi \)-pulse and the nonlinear phase shift. It is proportional to the total interaction time \(2T \), to the density \(n \), the central difference \(\delta_2 \) of scattering lengths, as well as the asymmetry \(p \neq 0.5 \) of initial beam-splitting. The oscillatory response of the interferometer with respect to a varying input particle number \(n \) stabilizes the output particle number \(n_{e}^{\text{out}} \) if operated in the vicinity of an extremum. This suppression of number fluctuations represents a nonlinear number filter for matter waves and is depicted in Fig. 4. It is also important to note that a symmetric splitting \(p = \frac{1}{2} \), or vanishing central difference \(\delta_2 = 0 \) of scattering lengths lead to no effect at all.

Alternatively, if one considers a simplified interferometer setup in Fig. 4 i.e., without the intermediate \(\pi \)-pulse and chooses a symmetric final beam-splitting \(\bar{p} = \frac{1}{2} \), one obtains
\[n_{e}^{\text{out}} = n\left(\frac{1}{2} + \sqrt{p(1-p)} \cos \left\{(\Delta_D + (\delta_1 + p\delta_2)n)T\right\}\right), \] (9)
with a total propagation time \(T \). This interferometer is sensitive to single particle phase shifts, here in particular to the Doppler-shifted detuning \(\Delta_D = \Delta + k^2/2 \) and also the difference of scattering lengths \(\delta_1 = g_{eg} - g_{gg} \). For example, this setup is used for atom gravitometry [52], but it is also more susceptible to experimental noise (frequency jitter), which deteriorates visibility. Nevertheless, it is favorable for \(^{87}\text{Rb} \) BEC’s, where the coupling constants are \(g_{ee} > g_{eg} > g_{gg} \approx 1.03 \pm 0.97 \), hence \(\delta_2 \) vanishes. In contrast, there is an effect in the latter setup, since the difference \(\delta_1 \) is finite.

2. An inhomogeneous BEC in a square well trap

In order to study the reduction of the filter performance caused by the inherent inhomogeneity of trapped atomic BECs, we have chosen a square-well potential
\[V_g(z,t) = \begin{cases} V_g < 0, & t < 0, |z| < L, \\ 0, & t \geq 0 \end{cases}, \] (10)
to account for the initial inhomogeneity of the ground-state. After the first \(p \)-pulse, the trap is switched off permanently. The excited state potential is identical, but shifted in energy by the detuning from the laser, i.e., \(V_e(z,t) = V_g(z,t) + \Delta \).

In the numerical simulations for the homogeneous and inhomogeneous condensates, we have used generic parameters for a quasi-1d elongated \(^{87}\text{Rb} \) BEC with an atomic mass \(m = 87 \text{amu} \). In a prolate harmonic oscillator with a trapping frequency \(\omega_z = 4.1 \text{s}^{-1} \), the basic length unit would be \(\sigma_{0x} = \sqrt{\hbar/m\omega_z} = 13.2 \mu m \). We have used a multiple of this scale for the length of the square-well trap \(L = 132 \mu m \). Potential depths \(V_g = -\hbar \times 60 \text{Hz}^{-1} \) and detunings \(\Delta = 0 \) are measured in natural energy units \(\hbar \omega_z \). In a copropagating Raman laser configuration, one can have a vanishing momentum transfer \(k = 0 \) and we assumed that the condensate is initially at rest \(k = 0 \). Short laser pulses were used such that the beam-splitters were highly asymmetric \(p = \bar{p} = 0.9 \) and the propagation time between the pulses was \(T = 20 \text{ms} \). We have deliberately modified the \(s \)-wave scattering lengths for \(^{87}\text{Rb} \) slightly to obtain dimensionless quasi-1d coupling constants \(\delta_{ee} = 0.034, \delta_{eg} = 0.10, \) and \(\delta_{gg} = 0.068 \). Thus, the superior \(p - \pi - \bar{p} \) interferometer scheme remains applicable. In principle, this can be achieved via Feshbach resonances or using other elements like \(^{85}\text{Rb} \) or \(^{23}\text{Na} \) altogether.

For this situation, we have numerically solved the time-dependent inhomogeneous GP Eq. (3) and find a similar behavior as for the homogeneous limit in Fig. 4. As expected, we obtain a number stabilization of the nonlinear filter, but at a slightly reduced performance due to the inhomogeneous averaging. We have also verified that the best number stabilization is achieved for highly asymmetric splitting, that the effect does not occur for equal scattering lengths, or linear
matter-wave interferometers at all. Moreover, the assumed square-well trap is not a peculiarity in this context, as we have tried a harmonic oscillator trap and find qualitatively similar results.

C. Quantum mechanical two-mode approximation

In the classical field approximation for a homogeneous bulk system of Sec. III B 1 we have examined the static number filter response of the interferometer. The macroscopically occupied amplitudes were described like two coherently coupled nonlinear oscillators. They exhibited a noise suppression that is analogously used in many other physical systems ranging from electrical circuits to coupled Josephson junctions [53, 54, 55].

In order to probe the quantum aspects of such a system, we will assume now that the atomic fields \(\hat{a}_\sigma \) (z) are dominated by two plane-wave modes labeled with bosonic field amplitudes \(\hat{e} \) and \(\hat{g} \)

\[
\hat{a}_\sigma(z) = \hat{e} e^{ikz} + \hat{\delta} \hat{a}_e, \quad \hat{a}_g(z) = \hat{g} e^{ikz} + \hat{\delta} \hat{a}_g.
\]

Their residual coupling to other modes \(\hat{\delta} \hat{a}_\sigma \), is small at the relevant time scales and will be disregarded altogether.

Within this Josephson approximation and in the quasi-1d configuration, we can simplify the Hamiltonian of Eq. (2) further to \(\hat{H} \approx \hat{H}_J \) with

\[
\hat{H}_J = \Delta_D \hat{a}_e + \frac{k_2}{2} \hat{a}_g + \Omega(t) \hat{e}^\dagger \hat{g} + \Omega'(t) \hat{g}^\dagger \hat{e} + \frac{1}{2} g_{eg} \hat{a}_e (\hat{n}_e - 1) + \frac{1}{2} g_{eg} \hat{a}_g (\hat{n}_g - 1) + g_{eg} \hat{a}_e \hat{a}_g,
\]

where \(\hat{n}_\sigma = \{ \hat{e}^\dagger \hat{e}, \hat{g}^\dagger \hat{g} \} \) denotes the particle number operator for the two modes and \(\Delta_D = \Delta + k_2^2/2 \) is the Doppler-shifted detuning as in Eq. (9). The consistency of the limit can be checked quickly by replacing the mode operators again by complex numbers, just to recover Eq. (4).

Clearly, the Josephson Hamiltonian conserves the particle number,

\[
\hat{N} = \hat{a}_e + \hat{a}_g, \quad [\hat{H}_J, \hat{N}] = 0.
\]

Thus, a general state in the N-particle sector of Fock space is given by a superposition of the states \(|n_e, n_g\rangle \) with \(N = n_e + n_g \)

\[
|\psi_N(t)\rangle = \sum_{n=0}^{N} \psi_n^0(t) |N-n,n\rangle.
\]

The time evolution of such a state leads to a simple one-dimensional difference equation for the time-dependent amplitudes

\[
i \psi_n^0(t) = w^n \psi_n^0 + q^n(t) \psi_{n-1}^0 + q^{n+1}(t) \psi_{n+1}^0,
\]

\[
w^n = \Delta_D (N-n) + \frac{k_2}{2} n + \frac{1}{2} g_{eg}(n-1) + \frac{1}{2} g_{eg}(N-n),
\]

\[
q^n(t) = \Omega(t) \sqrt{n(N-n+1)},
\]

which can be solved easily on a computer or approximated analytically [56].

We are now in a position to discuss the number stabilization scheme on a full quantum mechanical level. Given that a single realization of a BEC had a well-defined number \(N \), initially with all atoms in the ground state component \(|\psi_N(t=0)\rangle = |0, n_g = N\rangle \), then there is obviously no need for an extra number filtering device, as it is sharply defined by perfect preparation. However, the experimental reality usually is plagued with technical imperfections, day-to-day variations or finite temperatures ensembles. Thus, one should include the possible number uncertainty in a statistical description and use the density matrix

\[
\rho(t) = \sum_{N=0}^{\infty} \mathcal{P}_N |\psi_N(t)\rangle \langle \psi_N(t)|,
\]

FIG. 5: Evolution of the particle number distribution \(|\psi_N^0(2T)|^2 \) from an initially pure Fock state (solid vertical line) to a broadened distribution, exiting in the interferometer port e. In subplot a), we used \(|0, N = 1720\rangle \), which leads to a large number dispersion. In subplot b) we used the particle number \(|0, N = 940\rangle \) that defines the optimal working point of the interferometer in Fig. 4.

The particle output in the e-channel of the interferometric number filter and its uncertainty are measured by averages, variances and volatility

\[
\langle \hat{n}_e(t) \rangle = \sum_{N=0}^{\infty} \mathcal{P}_N \langle \psi_N(t)| \hat{n}_e |\psi_N(t)\rangle = \sum_{N=0}^{\infty} \mathcal{P}_N \sum_{n=0}^{N} (N-n) |\psi_n^0(t)|^2,
\]

\[
\sigma_e^2(t) = \langle \hat{n}_e^2(t) \rangle - \langle \hat{n}_e(t) \rangle^2, \quad \sigma_{out} = \frac{\sigma_e(2T)}{\langle \hat{n}_e(2T) \rangle}.
\]

We have now evaluated the time-dependent difference Schrödinger equation Eq. (13) for the \(p - \pi - \tilde{p} \) interferometer for a range of initial particle numbers \(0 \leq N \leq 2500 \) in
the BEC. In particular, we have even relaxed the Raman-Nath approximation for the $p - \pi - \bar{p}$ beam-splitter sequence and used real rectangular pulses with duration $\tau = 1.31 \text{ ms} \ll T$ and total pulse areas $\Omega \tau$ such that $p = \bar{p} = 0.9$, as before. All other parameters were as in Sec. [11B2]. The results of this quantum mechanical simulation, in particular the mean output number $\langle n_e(2T) \rangle$ and normalized number uncertainty $\sigma_{n,\text{out}}$ are depicted in Fig. 4. They agree well with the homogeneous and inhomogeneous mean-field calculations.

In Fig. 5 we show two special wavefunctions: one that corresponds to the optimal input number $N = 940$ and one with $N = 1720$ that exhibits a large number dispersion after passing through the interferometer. The Gaussian nature of the final wavefunction can be explained from a semiclassical analysis through the interferometer. The Gaussian nature of the final wavefunction can be explained from a semiclassical analysis [56]. Both wave functions can be identified also clearly as extrema of the response function in the difference equation [56].

In conclusion, we have analyzed the performance of a nonlinear number filter for matter waves. This addresses the problem of technical shot-to-shot variation of particle number in current Bose-Einstein condensate experiments. A highly asymmetric $p - \pi - \bar{p}$ beam-splitter sequence is required to achieve optimal filtering performance. In the case of symmetric splitting or the absence of nonlinearity, no filtering is seen at all. This method is in direct analogy to a nonlinear fiber optics setup studied in [6,7,10]. In detail, we have analyzed the situation for an homogeneous system and an inhomogeneous trapped gas within the Gross-Pitaevskii mean-field theory, as well as a quantum mechanical Josephson model, which addresses complementary aspects and agrees well otherwise.

We thank E. Kajari for fruitful discussions. G. N. and R. W. acknowledge gratefully financial support by the Deutsches Zentrum für Luft- und Raumfahrt (50 WM 0346), the Landesstiftung Baden-Württemberg (AKZ0904/Atom14), as well as the ESA program SAI (AO-2004-64).

[1] G. Agrawal, *Nonlinear Fiber Optics* (Academic Press, 2001).
[2] P. Mitra and J. Stark, Nature 411, 1027 (2001).
[3] M. Jaekel and S. Reynaud, Europhys. Lett. 13, 301 (1990).
[4] H. Ritz and A. Bandilla, Opt. Comm. 29, 126 (1979).
[5] A. E. Kaplan and P. Meystre, Appl. Phys. B 6, 590 (1981).
[6] M. Kitagawa and Y. Yamamoto, Phys. Rev. A 34, 3974 (1986).
[7] S. Schmitt, J. Ficker, M. Wolff, F. König, A. Sizmann, and G. Leuchs, Phys. Rev. Lett. 81, 2446 (1998).
[8] M. Werner, Phys. Rev. Lett. 81, 4132 (1998).
[9] N. J. Doran and D. Wood, Opt. Lett. 13, 56 (1988).
[10] A. Sizmann and G. Leuchs, Prog. Opt. 39, 373 (1999).
[11] D. Levandovsky, M. Vasilyev, and P. Kumar, Opt. Lett. 24, 89 (1999).
[12] H. Bachor and T. Ralph, *A Guide to Experiments in Quantum Optics* (Wiley-VCH, 2003).
[13] W. P. Schleich, *Quantum Optics in Phase Space* (Wiley-VCH, Berlin, Germany, 2001).
[14] K. Mølmer, N. J. P. 5, 55 (2005).
[15] M. Yasuda and F. Shimizu, Phys. Rev. Lett. 77, 3090 (1996).
[16] M. Andrews, C. Townsend, H.-J. Miesner, D. Durfee, D. Kurn, and W. Ketterle, Science 275, 637 (1997).
[17] B. Saubaméa, T. W. Hijmans, S. Kulin, E. Rasel, E. Peik, M. Leduc, and C. Cohen-Tannoudji, Phys. Rev. Lett. 79, 3146 (1997).
[18] I. Bloch, T. Hänsch, and T. Esslinger, Nature 403, 166 (2000).
[19] C. Orzel, A. Tuchman, M. Fenselau, and M. K. M. Yasuda, Science 291, 2386 (2001).
[20] M. Schellekens, R. Hoppeler, A. Perrin, J. V. Gomes, D. Boiron, A. Aspect, and C. Westbrook, Eurosci. 310, 648 (2005).
[21] C.-S. Chuu, F. Schreck, T. P. Meyrath, J. L. Hanssen, G. N. Price, and M. G. Raizen, Phys. Rev. Lett. 95, 260403 (2005).
[22] T. Jelts, J. McNamara, W. Hogervorst, W. Vassen, V. Krachmalnicoff, M. Schellekens, A. Perrin, H. Chang, D. Boiron, A. Aspect, et al., Nature 445, 402 (2007).
[23] J. Fortágh and C. Zimmermann, Rev. Mod. Phys. 79, 235 (2007).
[24] D. Jacobs, C. Bruder, J. Cirac, C. Gardiner, and P. Zoller, Phys. Rev. Lett. 81, 3108 (1998).
[25] A. Görlitz, J. Vogels, A. Leanhardt, C. Ramen, T. G. ad J. Aboshaeer, A. Chikkatur, S. Gupta, S. Inouye, T. Rosenband, and W. Ketterle, Phys. Rev. Lett. 87, 130402 (2001).
[26] M. Greiner, O. Mandel, T. Esslinger, T. Hänsch, and I. Bloch, Nature 415, 39 (2002).
[27] T. Stöferle, H. Moritz, C. Schori, M. Köhl, and T. Esslinger, Phys. Rev. Lett. 92, 130403 (2004).
[28] I. Bloch, Nature Physics J. 23 (2005).
[29] D. Hellweg, L. Cacciapuoti, M. Kottke, T. Schulte, K. Sengstock, W. Ertmer, and J. J. Arlt, Phys. Rev. Lett. 91, 010406 (2003).
[31] T. Kinoshita, T. Wenger, and D. S. Weiss, Phys. Rev. Lett. 95, 190406 (2005).
[32] N. Ramsey, Rev. Mod. Phys. 62, 541 (1990).
[33] M. Kitagawa and M. Ueda, Phys. Rev. Lett. 67, 1852 (1991).
[34] M. Holland and K. Burnett, Phys. Rev. Lett. 71, 1355 (1993).
[35] D. J. Wineland, J. J. Bollinger, W. M. Itano, and D. J. Heinzen, Phys. Rev. A 50, 67 (1994).
[36] P. Berman, *Atom interferometry* (Academic Press, 1997).
[37] A. Vogel, M. Schmidt, K. Sengstock, K. Bongs, A. Chikkatur, S. Gupta, S. Inouye, T. Rosenband, and W. Ertmer, Phys. Rev. B 84, 664 (2006).
[38] G. Nandi, R. Walser, E. Kajari, and W. P. Schleich, cond-mat/0106037 (2001).
[39] E. Kajari, R. Walser, W. Schleich, and A. Delgado, Gen. Rel. Grav. 36, 2289 (2004).
[40] K. Eckert, P. Hyllus, D. Brüg, U. V. Poulsen, M. Lewenstein, C. Jentsch, T. Müller, E. M. Rasel, and W. Ertmer, Phys. Rev. A 73, 013814 (2006).
[41] S. Dimopoulos, P. Graham, J. Hogan, and M. Kasevich, Phys. Rev. Lett. 98, 111102 (2007).
[42] W. Li, A. Tuchman, H.-C. Chien, and M. Kasevich, Phys. Rev. Lett. 98, 040402 (2007).
[43] K. Mølmer and A. Sørensen, Phys. Rev. Lett. 82, 1835 (1999).
[44] B. Julsgaard, A. Kozhekin, and E. Polzik, Nature 413, 400 (2001).
[45] A. Sørensen, L.-M. Duan, J. I. Cirac, and P. Zoller, Nature 409, 63 (2001).
[46] M. Kitagawa and M. Ueda, Phys. Rev. A 47, 5138 (1993).
[47] L. You, Phys. Rev. Lett. 90, 30402 (2003).
[48] J. Javanainen and M. Y. Ivanov, Phys. Rev. A 60, 2351 (1999).
[49] A. Leggett, Rev. Mod. Phys. 73, 307 (2001).
[50] R. Gati, J. Esteve, B. Hemmerling, T. Ottenstein, J. Appmeier, A. Weller, and M. Oberthaler, N. J. Phys 8, 189 (2006).
[51] U. V. Poulsen and K. Mølmer, Phys. Rev. A 65, 033613 (2002).
[52] A. Peters, K. Chung, and S. Chu, Nature 400, 849 (1999).
[53] A. Barone and G. Paterno, Physics and Application of the Josephson Effect (Wiley Interscience, New York, 1982).
[54] A. Leggett and F. Sols, Found. Phys. 21, 353 (1991).
[55] E. Goldobin, K. Vogel, O. Crasser, R. Walser, W. P. Schleich, D. Koelle, and R. Kleiner, Phys. Rev. B 72, 054527 (2005).
[56] P. Braun, Rev. Mod. Phys. 65, 115 (1993).