Silencing Early Viral Replication in Macrophages and Dendritic Cells Effectively Suppresses Flavivirus Encephalitis

Chunting Ye, Sojan Abraham, Haoquan Wu, Premlata Shankar, N. Manjunath*
Paul L. Foster School of Medicine, Center of Excellence in Infectious Diseases, Texas Tech University Health Sciences Center, El Paso, Texas, United States of America

Abstract

West Nile (WN) and St. Louis encephalitis (SLE) viruses can cause fatal neurological infection and currently there is neither a specific treatment nor an approved vaccine for these infections. In our earlier studies, we have reported that siRNAs can be developed as broad-spectrum antivirals for the treatment of infection caused by related viruses and that a small peptide called RVG-9R can deliver siRNA to neuronal cells as well as macrophages. To increase the repertoire of broad-spectrum antiflaviviral siRNAs, we screened 25 siRNAs targeting conserved regions in the viral genome. Five siRNAs were found to inhibit both WNV and SLE replication in vitro reflecting broad-spectrum antiviral activity and one of these was also validated in vivo. In addition, we also show that RVG-9R delivers siRNA to macrophages and dendritic cells, resulting in effective suppression of virus replication. Mice were challenged intraperitoneally (i.p.) with West Nile virus (WNV) and treated i.v. with siRNA/peptide complex. The peritoneal macrophages isolated on day 3 post infection were isolated and transferred to new hosts. Mice receiving macrophages from the anti-viral siRNA treated mice failed to develop any disease while the control mice transferred with irrelevant siRNA treated mice all died of encephalitis. These studies suggest that early suppression of viral replication in macrophages and dendritic cells by RVG-9R-mediated siRNA delivery is key to preventing the development of a fatal neurological disease.

Citation: Ye C, Abraham S, Wu H, Shankar P, Manjunath N (2011) Silencing Early Viral Replication in Macrophages and Dendritic Cells Effectively Suppresses Flavivirus Encephalitis. PLoS ONE 6(3): e17889. doi:10.1371/journal.pone.0017889

Editor: Baochuan Lin, Naval Research Laboratory, United States of America

Received December 3, 2010; Accepted February 15, 2011; Published March 15, 2011

Copyright: © 2011 Ye et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This work was supported by NIH grant U01AI075419 to MN. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: Manjunath.swamy@ttuhsc.edu

Introduction

West Nile (WN), Japanese B encephalitis (JE) and St. Louis encephalitis (SLE) viruses are mosquito-borne flaviviruses that can cause a devastating acute neurological illness with up to 30% mortality and permanent neurological disabilities in the survivors [1]. There has been a steady increase in the number of WNV infections in the US since it first appeared in 1999 [2,3,4]. WNV has been classified as potential category B bioterrorism agent by NIAID and there is no effective treatment for this infection. The recently emerging RNA interference (RNAi) technology appears to have a great potential in antiviral therapeutics [reviewed in 5,6,7]. However, currently the major limitation for therapeutic use of siRNA is the short serum half-life and poor cellular uptake of siRNA [8]. Thus, delivering effective quantities of siRNAs into the right target cells in vivo through clinically feasible methods represents a major challenge for the successful development of RNAi-based therapeutics [9]. Our recent studies suggest that a small peptide derived from the rabies virus glycoprotein fused to a highly positively charged 9-mer polyarginine residues (RVG-9R) can provide a tool for siRNA delivery to neuronal cells as well as macrophages [10,11]. Intravenous injection with RVG-9R-complexed siRNA in mice could reduce the LPS induced TNF-α production by macrophages in blood as well as by microglia in the brain, leading to a significant reduction in neuronal apoptosis [11]. Since flaviviruses are thought to first multiply in dendritic cells and macrophages before spreading to the brain [12,13,14] in this study we tested if RVG-9R is able to deliver siRNA to macrophages to suppress the early virus replication in these cells. In addition, to expand the repertoire of broad-spectrum siRNAs capable of suppressing multiple flaviviruses, we also tested a panel of 25 siRNAs targeting relatively conserved genomic regions.

Results

Identification of broad-spectrum antiflaviviral siRNAs

We have previously shown that a siRNA (FVEjw™) targeting highly conserved region in the viral envelope gene could inhibit the replication of both JEV and WNV [15]. However, it has been suggested that instead of a single siRNA, using a combination of 2-3 siRNAs targeting multiple genomic regions may be ideal to enhance efficacy and reduce viral escape as well as off-target effects [16]. Thus, to identify additional siRNAs with broad-spectrum antiviral activity, we tested 25 siRNAs targeting highly conserved regions (Table 1) in the flaviviral genome. We first tested all 25 siRNAs for inhibition of WN infection using FVEjw™ siRNA described earlier as positive control. BHK-21 cells were transfected with individual siRNAs using lipofectamine reagent 24 h before challenge with WNV and tested for virus replication 72 h after challenge by FACS analysis using anti-West Nile Virus/Kunjin envelope specific monoclonal antibody (clone 3.67G, Chemicon) as described earlier [15]. Out of these 25 siRNAs, 5
could inhibit virus replication by more than 80% (Fig. 1a). To test if these siRNAs are also effective when introduced postinfection, BHK-21 cells were first infected with WNV followed 24 h later with siRNA transfection and analyzed for virus replication 72 h later. As shown in Fig. 1b, all 5 siRNAs inhibited viral replication to varying degrees with the best efficacy of 80% inhibition seen with si2, si6 and si11 siRNAs. The 5 effective siRNAs were also tested for broad-spectrum antiviral activity. Since the target regions are also conserved in the SLE, we tested the siRNAs for protection against SLE infection. As shown in Fig. 1c, 60–80% inhibition of SLE virus replication was seen with these siRNAs. Thus, the 5 siRNAs constitute siRNAs with broad-spectrum antiviral activity effective across at least two viral species.

In vivo efficacy of siRNAs

We selected two siRNAs, si6 and si11 for testing their ability to suppress WN and SLE infection in vivo. Si6 targets the WNV NS5 gene, whereas Si11 targets the WNV core protein C. We have previously reported that intravenous delivery of siRNA complexed with RVG-9R can protect mice from JEV-induced encephalitis. Thus we used the same system to test effectiveness against WN infection. Unlike wild type mice, immunodeficient mice including B-cell-deficient mice show 100% mortality in B cell-deficient mice, we tested the treatment with si6 and si11. We infected groups of B cell-deficient mice (10 mice/group) with WNV intraperitoneally and treated them with iv injection of RVG-9R/siRNA complex. The test and the control irrelevant luciferase siRNAs (50 μg/dose/mouse) were administered 15 hours before infection, the siRNA treatment repeated 6 and 24 hours after infection (a total of 3 injections) and the mice were observed for survival for 25 days. All mice treated with the control siRNA/RVG-9R developed a typical neurologic disease and died within 9 days showing that the irrelevant siRNA or RVG-9R has no influence on the course of the disease. In sharp contrast, 80% of mice treated with si6/RVG-9R were protected, with mice living without sickness during the entire course of observation for 25 days (Fig. 2a). The mice treated with si11/RVG-9R showed only partial protection in that they showed a delay in the development of disease but all mice died by 13 days. Next we tested si6 for protection against SLE infection, with infection and siRNA treatment done as described earlier. Similar to the results seen with WNV infection, si6/RVG-9R showed only partial protection in that they showed a delay in the development of disease but all mice died by 13 days. Next we tested si6 for protection against SLE infection, with infection and siRNA treatment done as described earlier. Similar to the results seen with WNV infection, si6/RVG-9R showed only partial protection in that they showed a delay in the development of disease but all mice died by 13 days. We also confirmed that si6 and si11 siRNAs do not induce interferon response both in vitro and in vivo.

Table 1. Details of siRNAs targeting conserved regions of West Nile virus.

siRNA designation	Guide strand sequence	Region in WNV genome	Nt position
Si-01	ugcgaaucggguuguuudTdT	Env	2980–2996
Si-02	accggcguuuacauauggdTdT	Core	138–156
Si-03	ccgcgguuuccauaugadtTdT	Core	137–155
Si-04	ccuacguucccuauggadtTdT	Pre M	886–902
Si-05	gcguuuacauauggadtTdT	Core	135–153
Si-06	ugcguuuacauauggadtTdT	NS5	8103–8121
Si-07	caguugcgaucuugcggdTdT	Pre M	958–974
Si-08	auugcguuucccuaacgdTdT	Env	1287–1305
Si-09	cuugugauccaggacauudTdT	NS1	2323–2340
Si-10	augucuccuccuucaacadtTdT	Env	1286–1304
Si-11	cgccgguuacauauggadtTdT	Core	136–154
Si-12	cgguuuacauauggadtTdT	Core	135–152
Si-13	auugcguuucccucuugdTdT	Env	1294–1312
Si-14	ugugacugacugcggcadtTdT	NS5	9502–9518
Si-15	uccauugcuuccuucaadTdT	Core	76–94
Si-16	caauagccuccuuccaadtTdT	Env	1288–1306
Si-17	gugugacggcucuaugadtTdT	Env	1292–1310
Si-18	uccugugcguuccaugcadtTdT	Env	2325–2343
Si-19	uggugacguuccuugcadtTdT	Env	1293–1311
Si-20	ugugacggacaggacuugdTdT	Env	2323–2339
Si-21	gacucguacuuggacagadtTdT	NS5	8102–8120
Si-22	guuuacauauggacacadtTdT	Core	135–151
Si-23	cuucugacucuucgcagdTdT	NS5	8100–8118
Si-24	ucuuacguacuuggacagdTdT	NS5	8099–8117
Si-25	accguuacuacucaugudTdT	NS5	8320–8336

* doi:10.1371/journal.pone.0017889.t001
Figure 1. Protection against WN and SLE viral infection by various siRNAs in BHK21 cells. a) BHK-21 cells were transfected with indicated siRNAs using lipofectamine 2000, infected with WNV (1 moi) 24 h later and tested for virus replication 72 h after infection by FACS analysis. b) Cells were first infected with WNV, transfected with indicated siRNAs 24 h later and tested for virus replication as in a). c) Indicated siRNAs were tested for inhibition of SLE replication as in a). All experiments were done in triplicate in 2 independent experiments and the error bars indicate SD. doi:10.1371/journal.pone.0017889.g001
Figure 2. Intravenous treatment with antiviral siRNA/RVG-9R complex before infection protects mice against WNV and SLEV induced encephalitis without inducing an interferon response. Mice were treated intravenously with either control siLuc, or si6 or si11, complexed with RVG-9R 15 h before infection with 5 LD_{50} of WNV (a) or SLEV (b), the siRNA treatment repeated 4 and 24 h after infection and monitored for survival over time. Black solid line represents si11; black broken line, si6; grey solid line, siLuc. n = 10/group. c) Mice were treated with the control siLuc (solid black line) or si6 siRNA (broken line) daily from 2–5 days after WN infection and monitored for survival. d) Raw 264.7 cells were treated with indicated siRNAs complexed with RVG-9R or as positive control, with poly (I:C) and 4 h later, the cellular RNA was tested for upregulation.
thus, makes an RNAi therapy possible. Indeed, iv treatment with FvEjw siRNA peptide can bind siRNA (by charge interaction) and deliver it to these cell types. Initially expand in dendritic cells and macrophages and then extensively replicate in the brain, ideally siRNA needs to sequester in membranous structures might also contribute to the failure for protection beyond 2 days after infection.

Our results in the present study showing that control macrophages isolated from WN infected mice initiated a fatal disease in new hosts while siRNA treated macrophages were not, clearly shows that initial suppression of viral replication in macrophages is enough to prevent viral transmission to the brain, although silencing in the brain cells might confer an added benefit to suppress any leak through virus that might enter the brain. The fact that siRNA treatment failed to protect when initiated 2 days after infection (Fig. 2c) also point to the importance of preventing the development of a neurologic disease.

In summary, we have identified individual siRNAs that can suppress multiple encephalitogenic flavivirus species and shown that silencing viral replication in DC/macrophages is critical to preventing the development of neurologic disease.

Materials and Methods

Peptides and siRNAs

RVG-9R (YTIWMPENPRPGTPCDIFTNSRGKRASNGG-GGRRRRRRRRR) peptide was synthesized and purified by high-performance liquid chromatography at the Tufts University Core Facility (Boston, MA). In RVG-9R, the carboxy-terminal nine arginine residues were d-arginines. siRNAs shown in Table 1 for the initial screening in vitro studies were synthesized at Dharmacon Pharmaceuticals. Large scale antiviral siRNAs for animal experiments including si6 and si11 as well as the siRNA targeting firefly luciferase (siLuc; 5'-CUUACCGUGAGUACUCUC- GAdTdT-3') were synthesized at Dharmacon (Lafayette, CO).

siRNA transfection and WNV suppression in vitro

Baby hamster kidney cell line (BHK21) was obtained from ATCC (Manassas, Virginia, United States) and maintained in DMEM with 10% FCS. The B956 strain of WNV was obtained from ATCC, grown, and plaque titrated using BHK21 cells. BHK21 cells were seeded in 12-well plates at 5×10⁴ per well for 12–16 h before transfection. Lipid-siRNA complexes were prepared by incubating 150 or 300 pmol of siRNA with Lipofectamine 2000 (Invitrogen, Carlsbad, California, United States) according to the manufacturer’s instruction. Lipid-siRNA complexes were added to the wells in a final volume of 0.5 ml of serum-free DMEM. After incubation for 6 h, cells were washed, and reincubated in DMEM containing 10% FCS, and infected with WNV 24 h post-transfection or 24 h pre-transfection. The infection levels were monitored after 72 h by flow cytometry using anti-WtNle Virus/Kunjin envelope specific monoclonal antibody (clone 3.67G, Chemicon International, from Millipore, USA).

Animal experiments for testing siRNA to suppress WNV and SLE

B cell-deficient mice were purchased from the Jackson Laboratories and used at 6–8 weeks of age. All mouse experiments had been approved by the TTUHSC IACUC, and animal infection experiments were performed in a biosafety level 3 animal facility at the TTUHSC. To test protection against WNV, peptide/siRNA complexes (at a peptide to siRNA molar ratio of 10:1) were prepared in 100–200 µl of 5% glucose and injected intravenously at 50 µg of siRNA per mouse per injection 15 hours before i.p. infection with WNV or SLE (5LD₅₀/mouse). The IV siRNA treatment was repeated 6 and 24 h following infection (a total of 3 injections) and the mice were observed for survival for 25 days.
siRNA Suppresses Flaviviral Encephalitis

a
Gated on CD11b+

si6+RVG-9dR siLuc+RVG-9dR Mock

WNV-PE

7% 67% 66%

Gated on CD11c+

si6+RVG-9dR siLuc+RVG-9dR Mock

WNV-PE

11% 85% 71%

b

% CD11b+ cells infected

si6 siLuc Mock

80 60 40 20 0

% CD11c+ cells infected

si6 siLuc Mock

100 80 60 40 20 0

c
Gated on CD11b+

si6+RVG-9dR siLuc+RVG-9dR Mock

SLEV-PE

15% 71% 75%

d

% CD11b+ cells infected

si6 siLuc Mock

100 80 60 40 20 0

e

Percent survival

Days after challenge with WNV infected pel cells

0 5 10 15 20 25

f

Infected + treated with siLuc

DAPI WNV antibody merged

Infected + treated with si6

Infected

uninfected
Figure 3. RVG-9dR delivered siRNA suppresses early WNV replication in macrophages and dendritic cells. Mice were infected with WNV and either not treated (mock) or treated with the control siLuc or si6 siRNA as in Fig. 2a and 3 days after infection, the peritoneal exudate cells were isolated and used to test for virus replication in CD11b and CD11c gated cells by flow cytometry. A representative histogram (a) and cumulative data from 3 mice (b) are shown. Error bars represent SD. c,d) Mice were infected with SLE, treated with control or si6 siRNA and their peritoneal exudate cells examined for virus infection 3 days after infection as in b. A representative histogram (c) and cumulative data from 3 mice (d) are shown. Error bars represent SD. e) Immunomagnetically isolated CD11b+ macrophages from mice in Fig. 2a were transferred to new mice ip and the mice followed for survival over time. Solid black line represents si6 treated antibody and DAPI (magnification = 20X).

doi:10.1371/journal.pone.0017889.g003

RVG-9dR delivery siRNA to macrophage and dendritic cells to suppress WNV infection in vivo

B cell-deficient mice were challenged with WNV and treated with si6 or siLuc complexed RVG-9dR as describe above. Spleen cells were isolated 3 days after challenged, stained with CD11b or CD11c antibody (BD Biosciences, USA) and anti-West Nile Virus/Kunjin envelope specific monoclonal antibody and tested by flow cytometry. Peritoneal CD11b+ cells were immunomagnetically isolated, transferred (i.p.) to new B cell-deficient mice and monitored for survival.

Immunofluorescence Imaging

Mice brains were isolated, fixed in 4% paraformaldehyde (PFA) overnight at 4°C, and cryoprotected in a graded series of sucrose treatment (10%, 20%, and 30%), each overnight at 4°C. Paraffin embedded sagittal sections were cut at 25 µm with a cryostat. Tissue sections were PAP pen applied and preblocked in serum-free protein block for 30 min at ambient temperature. Sections were then reacted overnight at 4°C with antibody against WNV antigen. After three rinses in PBS, sections were reacted with secondary antibodies conjugated with RPE for 1 hr at ambient temperature. After three additional rinses in PBS, sections were then nuclear counterstained with DAPI (Invitrogen) and mounted in fluorescence mounting medium. Images were acquired in independent channels with fluorescence microscope (Olympus BX51WI).

Acknowledgments

We thank Alnylam Pharmaceuticals for synthesizing the siRNAs for this study.

Author Contributions

Conceived and designed the experiments: MN PS. Performed the experiments: CY SA HW. Analyzed the data: CY MN HW PS. Contributed reagents/materials/analysis tools: MN. Wrote the paper: MN CY.

References

1. Fields BN, Knipe DM, Howley PM eds. Field’s Virology. (Lippincott-Raven, Philadelphia), 931–952.
2. Biggerstaff BJ, Petersen LR (2003) Estimated risk of transmission of the West Nile virus through blood transfusion in the US, 2002. Transfusion 43: 1007–1017.
3. Tyler KL (2004) West Nile virus infection in the United States. Arch Neurol 61: 1190–1195.
4. Solomon T (2004) Flavivirus encephalitis. N Engl J Med 351: 370–378.
5. Haasnoot J, Westerhout EM, Berkhouit B (2007) RNA interference against viruses: strike and counterstrike. Nat Biotechnol 25: 1433–1443.
6. Manjunath N, Kumar P, Lee SK, Shankar P (2006) Interfering antiviral immunity: application, subversion, hope? Trends Immunol 27: 329–335.
7. Lares MR, Rossi JJ, Ouellet DL. RNAi and small interfering RNAs in human disease therapeutic applications. Trends Biotechnol 28: 570–579.
8. Kirchhoff F (2006) Silencing HIV-1 in Vivo. Cell 134: 566–568.
9. Grimm D, Kay MA (2007) Therapeutic application of RNAi: is mRNA targeting finally ready for prime time? J Clin Invest 117: 3633–3641.
10. Kumar P, Wu H, McBride JL, Jung KE, Kim MH, et al. (2007) Transvascular delivery of small interfering RNA to the central nervous system. Nature 448: 59–65.
11. Kim SS, Ye C, Kumar P, Chia I, Subramanya S, et al. Targeted delivery of siRNA to macrophages for anti-inflammatory treatment. Mol Ther 18: 993–1003.
12. Diamond MS, Shrestha B, Melhop E, Sitati E, Engle M (2003) Innate and adaptive immune responses determine protection against disseminated infection by West Nile encephalitis virus. Viral Immunol 16: 259–278.
13. Lim PY, Louie KL, Syner LM, Shi PY, Bernard KA. Viral pathogenesis in mice is similar for West Nile virus derived from mosquito and mammalian cells. Virology 400: 93–103.
14. Rios M, Zhang MJ, Grinev A, Serinivasan K, Daniel S, et al. (2006) Monocytes-macrophages are a potential target in human infection with West Nile virus through blood transfusion. Transfusion 46: 659–667.
15. Kumar P, Lee SK, Shankar P, Manjunath N (2006) A single siRNA suppresses fatal encephalitis induced by two different flaviviruses. PLoS Med 3: e96.
16. Manjunath N, Wu H, Subramanya S, Shankar P (2009) Lentiviral delivery of short hairpin RNAs. Adv Drug Deliv Rev 61: 732–745.
17. Diamond MS, Shrestha B, Marri A, Mahan D, Engle M (2003) B cells and antibody play critical roles in the immediate defense of disseminated infection by West Nile encephalitis virus. J Virol 77: 2578–2586.
18. Bai F, Wang T, Pal U, Bao F, Gould LH, et al. (2005) Use of RNA interference to prevent lethal murine west nile virus infection. J Infect Dis 191: 1140–1154.
19. von Eije KJ, ter Brake O, Berkhouit B (2008) Human immunodeficiency virus type 1 escape is restricted when conserved genome sequences are targeted by RNA interference. J Virol 82: 2895–2903.
20. ter Brake O, t Hooft K, Liu YP, Cenflivre M, von Eije KJ, et al. (2008) Lentiviral vector design for multiple siRNA expression and durable HIV-1 inhibition. Mol Ther 16: 557–564.
21. Bai F, Kong KF, Dai J, Qian F, Zhang L, et al. A paradoxical role for neutrophils in the pathogenesis of West Nile virus. J Infect Dis 202: 1804–1812.
22. Xu X, Manthey MA, Malik AB. Requisite role of the cholinergic alpha7 nicotinic acetylcholine receptor pathway in suppressing Gram-negative sepsis-induced acute lung inflammatory injury. J Immunol 184: 401–410.
23. Samuel MA, Diamond MS (2006) Pathogenesis of West Nile Virus infection: a balance between virulence, innate and adaptive immunity, and viral evasion. J Virol 80: 9349–9360.