Erdős-Burgess constant of the multiplicative semigroup of the quotient ring of $\mathbb{F}_q[x]$

Jun Haoa Haoli Wangb,* Lizhen Zhanga

aDepartment of Mathematics, Tianjin Polytechnic University, Tianjin, 300387, P. R. China
b College of Computer and Information Engineering
Tianjin Normal University, Tianjin, 300387, P. R. China

Abstract

Let S be a semigroup endowed with a binary associative operation \ast. An element e of S is said to be idempotent if $e \ast e = e$. The Erdős-Burgess constant of the semigroup S is defined as the smallest $\ell \in \mathbb{N} \cup \{\infty\}$ such that any sequence T of terms from S and of length ℓ contains a nonempty subsequence the product of whose terms, in some order, is idempotent. Let q be a prime power, and let $\mathbb{F}_q[x]$ be the ring of polynomials over the finite field \mathbb{F}_q. Let $R = \mathbb{F}_q[x]/K$ be a quotient ring of $\mathbb{F}_q[x]$ modulo any ideal K. We gave a sharp lower bound of the Erdős-Burgess constant of the multiplicative semigroup of the ring R, in particular, we determined the Erdős-Burgess constant in the case when K is factored into either a power of some prime ideal or a product of some pairwise distinct prime ideals in $\mathbb{F}_q[x]$.

Key Words: Erdős-Burgess constant; Davenport constant; Multiplicative semigroups; Polynomial rings

*Corresponding author’s Email: bjpeuwanghaoli@163.com
1 Introduction

Let S be a nonempty semigroup, endowed with a binary associative operation $*$ on S, and denote by $E(S)$ the set of idempotents of S, where $x \in S$ is said to be an idempotent if $x*x = x$.

P. Erdős posed a question on idempotent to D.A. Burgess as follows.

“If S is a finite nonempty semigroup of order n, does any S-valued sequence T of length n contain a nonempty subsequence the product of whose terms, in some order, is an idempotent?”

In 1969, Burgess [1] answered this question in the case when S is commutative or contains only one idempotent. This question was completely affirmed by D.W.H. Gillam, T.E. Hall and N.H. Williams, who proved the following stronger result:

Theorem A. ([2]) Let S be a finite nonempty semigroup. Any S-valued sequence of length $|S| - |E(S)| + 1$ contains one or more terms whose product (in the order induced from the sequence T) is an idempotent; In addition, the bound $|S| - |E(S)| + 1$ is optimal.

G.Q. Wang [6] generalized the result in the context of arbitrary semigroups (including both finite and infinite semigroups).

Theorem B. ([6], Theorem 1.1) Let S be a nonempty semigroup such that $|S \setminus E(S)|$ is finite. Any sequence T of terms from S of length $|T| \geq |S \setminus E(S)| + 1$ contains one or more terms whose product (in the order induced from the sequence T) is an idempotent.

Moreover, Wang [6] characterized the structure of extremal sequences of length $|S \setminus E(S)|$ and remarked that although the bound $|S \setminus E(S)| + 1$ is optimal for general semigroups S, the better bound can be obtained for specific classes of semigroups. Hence, Wang proposed two combinatorial additive constants associated with idempotents.

Definition C. ([6], Definition 4.1) Let S be a nonempty semigroup and T a sequence of terms from S. We say that T is an idempotent-product sequence if its terms can be ordered so that their product is an idempotent element of S. We call T (weakly) idempotent-product free if T contains no nonempty idempotent-product subsequence, and we call T strongly idempotent-product free if T contains no nonempty subsequence the product whose terms, in the order induced from the sequence T, is an idempotent. We define $I(S)$, which is called the Erdős-Burgess constant of the semigroup S, to be the least $\ell \in \mathbb{N} \cup \{\infty\}$ such that every sequence T of terms from S of length at least ℓ is not (weakly) idempotent-product free, and we define $SI(S)$, which is called the strong Erdős-Burgess constant of the semigroup S, to be the least $\ell \in \mathbb{N} \cup \{\infty\}$ such that every sequence T of terms from S of length at least ℓ is not strongly...
idempotent-product free. Formally, one can also define

\[I(S) = \sup \{|T| + 1 : T \text{ takes all idempotent-product free sequences of terms from } S \} \]

and

\[SI(S) = \sup \{|T|+1 : T \text{ takes every strongly idempotent-product free sequences of terms from } S \} \]

Very recently, Wang [7] made a comprehensive study of the Erdős-Burgess constant for the direct product of arbitrarily many of cyclic semigroups. As pointed out in [6], the Erdős-Burgess constant reduces to be the famous Davenport constant in the case when the underlying semigroup happens to be a finite abelian group. So we need to introduce the definition of Davenport constant below.

Let \(G \) be an additive finite abelian group. A sequence \(T \) of terms from \(G \) is called a zero-sum sequence if the sum of all terms of \(T \) equals to zero, the identity element of \(G \). We call \(T \) a zero-sum free sequence if \(T \) contains no nonempty zero-sum subsequence. The Davenport constant \(D(G) \) of \(G \) is defined to be the smallest positive integer \(\ell \) such that, every sequence \(T \) of terms from \(G \) and of length at least \(\ell \) is not zero-sum free.

In 2008, Wang and Gao [8] extended the definition of the Davenport constant to commutative semigroups as follows.

Definition D. Let \(S \) be a finite commutative semigroup. Let \(T \) be a sequence of terms from the semigroup \(S \). We call \(T \) reducible if \(T \) contains a proper subsequence \(T' \) (\(T' \neq T \)) such that the sum of all terms of \(T' \) equals the sum of all terms of \(T \). Define the Davenport constant of the semigroup \(S \), denoted \(D(S) \), to be the smallest \(\ell \in \mathbb{N} \cup \{\infty\} \) such that every sequence \(T \) of length at least \(\ell \) of terms from \(S \) is reducible.

Several related additive results on Davenport constant for semigroups were obtained (see [4], [5], [9], [10]). For any commutative ring \(R \), we denote \(S_R \) to be the multiplicative semigroup of the ring \(R \) and \(U(S_R) \) to be the group of units of the semigroup \(S_R \). With respect to the Davenport constant for the multiplicative semigroup associated with polynomial rings \(\mathbb{F}_q[x] \), Wang obtained the following result.

Theorem E. ([4]) Let \(q > 2 \) be a prime power, and let \(\mathbb{F}_q[x] \) be the ring of polynomials over the finite field \(\mathbb{F}_q \). Let \(R \) be a quotient ring of \(\mathbb{F}_q[x] \) with \(0 \neq R \neq \mathbb{F}_q[x] \). Then \(D(S_R) = D(U(S_R)) \).

G.Q. Wang [4] proposed to determine \(D(S_R) - D(U(S_R)) \) for the remaining case that \(R \) is a quotient ring of \(\mathbb{F}_2[x] \).
L.Z. Zhang, H.L. Wang and Y.K. Qu partially answered Wang’s question and obtained the following.

Theorem F. ([10]) Let \(\mathbb{F}_2[x] \) be the ring of polynomials over the finite field \(\mathbb{F}_2 \), and let \(R = \mathbb{F}_2[x]/(f) \) be a quotient ring of \(\mathbb{F}_2[x] \), where \(f \in \mathbb{F}_2[x] \) and \(0 \neq R \neq \mathbb{F}_2[x] \). Then

\[
D(U(S_R)) \leq D(S_R) \leq D(U(S_R)) + \delta_f,
\]

where

\[
\delta_f = \begin{cases}
0 & \text{if } \gcd(x \ast (x + 1_{\mathbb{F}_2}), f) = 1_{\mathbb{F}_2}; \\
1 & \text{if } \gcd(x \ast (x + 1_{\mathbb{F}_2}), f) \in \{x, x + 1_{\mathbb{F}_2}\}; \\
2 & \text{if } \gcd(x \ast (x + 1_{\mathbb{F}_2}), f) = x \ast (x + 1_{\mathbb{F}_2}).
\end{cases}
\]

Motivated by the above additive research on semigroups, in this manuscript we make a study of the Erdős-Burgess constant on the multiplicative semigroups of the quotient rings of the polynomial rings \(\mathbb{F}_q[x] \) and obtain the following result.

Theorem 1.1. Let \(q \) be a prime power, and let \(\mathbb{F}_q[x] \) be the ring of polynomials over the finite field \(\mathbb{F}_q \). Let \(R = \mathbb{F}_q[x]/K \) be a quotient ring of \(\mathbb{F}_q[x] \) modulo any ideal \(K \). Then

\[
I(S_R) \geq D(U(S_R)) + \Omega(K) - \omega(K),
\]

where \(\Omega(K) \) is the number of the prime ideals (repetitions are counted) and \(\omega(K) \) the number of distinct prime ideals in the factorization when \(K \) is factored into a product of prime ideals. Moreover, the equality holds for the case when \(K \) is factored into either a power of some prime ideal or a product of some pairwise distinct prime ideals in \(\mathbb{F}_q[x] \).

2 Notation

Let \(S \) be a finite commutative semigroup. The operation on \(S \) will be denoted by \(+ \) instead of \(\ast \). The identity element of \(S \), denoted \(0_S \) (if exists), is the unique element \(e \) of \(S \) such that \(e + a = a \) for every \(a \in S \). If \(S \) has an identity element \(0_S \), let

\[
U(S) = \{a \in S : a + a' = 0_S \text{ for some } a' \in S\}
\]

be the group of units of \(S \). The sequence \(T \) of terms from the semigroups \(S \) is denoted by

\[
T = a_1a_2 \cdot \ldots \cdot a_\ell = \bigcap_{a \in S} a_{v_a(T)},
\]
where \(v_a(T) \) denotes the multiplicity of the element \(a \) occurring in the sequence \(T \). By \(\cdot \) we denote the operation to join sequences. Let \(T_1, T_2 \) be two sequences of terms from the semigroups \(S \). We call \(T_2 \) a subsequence of \(T_1 \) if

\[
v_a(T_2) \leq v_a(T_1)
\]

for every element \(a \in S \), denoted by

\[
T_2 \mid T_1.
\]

In particular, if \(T_2 \neq T_1 \), we call \(T_2 \) a proper subsequence of \(T_1 \), and write

\[
T_3 = T_1 T_2^{-1}
\]

to mean the unique subsequence of \(T_1 \) with \(T_2 \cdot T_3 = T_1 \). Let

\[
\sigma(T) = a_1 + a_2 + \cdots + a_\ell
\]

be the sum of all terms in the sequence \(T \).

Let \(q \) be a prime power, and let \(\mathbb{F}_q[x] \) be the ring of polynomials over the finite field \(\mathbb{F}_q \). Let \(R = \mathbb{F}_q[x] / K \) be the quotient ring of \(\mathbb{F}_q[x] \) modulo the ideal \(K \), and let \(S_R \) be the multiplicative semigroup of the ring \(R \). Take an arbitrary element \(a \in S_R \). Let \(\theta_a \in \mathbb{F}_q[x] \) be the unique polynomial corresponding to the element \(a \) with the least degree, thus, \(\theta_a = \theta_a + K \) is the corresponding form of \(a \) in the quotient ring \(R \).

\(\bullet \) In what follows, since we deal with only the multiplicative semigroup \(S_R \) which happens to be commutative, we shall use the terminology idempotent-sum and idempotent-sum free in place of idempotent-product and idempotent-product free, respectively.

3 Proof of Theorem 1.1

Lemma 3.1. Let \(q \) be a prime power, and let \(\mathbb{F}_q[x] \) be the ring of polynomials over the finite field \(\mathbb{F}_q \). Let \(f \) be a polynomial in \(\mathbb{F}_q[x] \) and let \(f = p_{r_1}^{n_1} p_{r_2}^{n_2} \cdots p_{r_r}^{n_r} \), where \(r \geq 1, n_1, n_2, \ldots, n_r \geq 1 \), and \(p_1, p_2, \ldots, p_r \) are pairwise non-associate irreducible polynomials in \(\mathbb{F}_q[x] \). Let \(R = \mathbb{F}_q[x] / (f) \) be the quotient ring of \(\mathbb{F}_q[x] \) modulo the ideal \((f) \). Let \(a \) be an element in the semigroup of \(S_R \). Then \(a \) is idempotent if and only if \(\theta_a \equiv 0_{\mathbb{F}_q} (\mod p_i^{n_i}) \) or \(\theta_a \equiv 1_{\mathbb{F}_q} (\mod p_i^{n_i}) \) for every \(i \in [1, r] \).
Proof. Suppose that \(a\) is idempotent. Then \(\theta_a \equiv \theta_a \pmod{f}\), which implies that \(\theta_a(\theta_a - 1) \equiv 0 \pmod{f}\) for all \(i \in [1, r]\). Since \(\gcd(\theta_a, \theta_a - 1) = 1\), it follows that for every \(i \in [1, r]\), \(p_i^{n_i}\) divides \(\theta_a\) or \(p_i^{n_i}\) divides \(\theta_a - 1\), that is, \(\theta_a \equiv 0 \pmod{p_i^{n_i}}\) or \(\theta_a \equiv 1 \pmod{p_i^{n_i}}\). Then the necessity holds. The sufficiency holds similarly. □

We remark that in Theorem 1.1, if \(K = \mathbb{F}_q[x]\), then \(R\) is a trivial zero ring and \(I(S_R) = D(S_R) = 1\) and \(\Omega(K) = \omega(K) = 0\), and if \(K\) is the zero ideal then \(R = \mathbb{F}_q[x]\) and \(I(S_R)\) is infinite since any sequence \(T\) of any length such that \(\theta_a\) is a nonconstant polynomial for all terms \(a\) of \(T\) is an idempotent-sum free sequence, and thus, the conclusion holds trivially for both cases. Hence, we shall only consider the case that \(K\) is nonzero proper ideal of \(\mathbb{F}_q[x]\) in what follows.

Proof of Theorem 1.1. Note that \(\mathbb{F}_q[x]\) is a principal ideal domain. Say

\[K = (f)\]

is the principal ideal generated by a polynomial \(f \in \mathbb{F}_q[x]\), where

\[f = p_1^{n_1} p_2^{n_2} \cdots p_r^{n_r},\]

where \(p_1, p_2, \ldots, p_r\) are pairwise non-associate irreducible polynomials of \(\mathbb{F}_q[x]\) and \(n_i \geq 1\) for all \(i \in [1, r]\), equivalently,

\[K = P_1^{n_1} P_2^{n_2} \cdots P_r^{n_r}\]

is the factorization of the ideal \(K\) into the product of the powers of distinct prime ideals \(P_1 = (p_1), P_2 = (p_2), \ldots, P_r = (p_r)\). Observe that

\[\Omega(K) = \sum_{i=1}^{r} n_i\]

and

\[\omega(K) = r.\]

Take a zero-sum free sequence \(V\) of terms from the group \(U(S_R)\) of length \(D(U(S_R)) - 1\). Take \(b_i \in S_R\) such that \(\theta_{b_i} = p_i\) for each \(i \in [1, r]\). Now we show that the sequence \(V \cdot \prod_{i=1}^{r} b_i^{n_i-1}\) is an idempotent-sum free sequence in \(S_R\). Suppose to the contrary that \(V \cdot \prod_{i=1}^{r} b_i^{n_i-1}\) contains a nonempty subsequence \(W\), say \(W = V' \cdot \prod_{i=1}^{r} b_i^{\beta_i}\), such that \(\sigma(W)\) is idempotent, where \(V'\) is a subsequence of \(V\) and \(\beta_i \in [0, n_i - 1]\) for all \(i \in [1, r]\).
It follows that
\[\theta_{\sigma(W)} = \theta_{\sigma(V') \sigma_i(1)} \theta_{\sigma_i(b_i)} = \theta_{\sigma(V')} p_1^{\beta_1} \cdots p_r^{\beta_r}. \]

(5)

If \(\sum_{i=1}^{r} \beta_i = 0 \), then \(W = V' \) is a nonempty subsequence of \(V \). Since \(V \) is zero-sum free in the group of \(U(S_R) \), we derive that \(\sigma(W) \) is a nonidentity element of the group \(U(S_R) \), and thus, \(\sigma(W) \) is not idempotent, a contradiction. Otherwise, \(\beta_j > 0 \) for some \(j \in [1, r] \), say

\[\beta_1 \in [1, n_1 - 1]. \]

(6)

Since \(\gcd(\theta_{\sigma(V')}, p_1) = 1 \), it follows from (5) that \(\gcd(\theta_{\sigma(W)}, p_1^{\beta_1}) = p_1^{\beta_1} \). Combined with (6), we have that \(\theta_{\sigma(W)} \not\equiv 0 \pmod{p_1^{\beta_1}} \) and \(\theta_{\sigma(W)} \not\equiv 1 \pmod{p_1^{\beta_1}} \). By Lemma 5.1, we conclude that \(\sigma(W) \) is not idempotent, a contradiction. This proves that the sequence \(V \cdot \prod_{i=1}^{r} b_i^{n_i-1} \) is idempotent-sum free in \(S_R \). Combined with (3) and (4), we have that

\[I(S_R) \geq |V| \sum_{i=1}^{r} b_i^{n_i-1} + 1 = (|V| + 1) + \sum_{i=1}^{r} (n_i - 1) = D(U(S_R)) + \Omega(K) - \omega(K). \]

(7)

Now we assume that \(K \) is factored into either a power of some prime ideal or a product of some pairwise distinct prime ideals in \(\mathbb{F}_q[x] \), i.e., either \(r = 1 \) or \(n_1 = \cdots = n_r = 1 \) in (2).

It remains to show the equality \(I(S_R) = D(U(S_R)) + \Omega(K) - \omega(K) \) holds. We distinguish two cases.

Case 1. \(r = 1 \) in (2), i.e., \(f = p_1^{n_1} \).

Take an arbitrary sequence \(T \) of length \(|T| = D(U(S_R)) + n_1 - 1 = D(U(S_R)) + \Omega(K) - \omega(K) \). Let \(T_1 = \prod_{i=0}^{\theta_i \equiv 0 \pmod{p_1}} a \) and \(T_2 = TT_1^{-1} \). Note that all terms of \(T_2 \) are from \(U(S_R) \). By the Pigeonhole Principle, we see that either \(|T_1| \geq n_1 \) or \(|T_2| \geq D(U(S_R)) \). It follows that either \(\theta_{\sigma(T_1)} \equiv 0 \pmod{p_1^{n_1}} \), or \(T_2 \) contains a nonempty subsequence \(T'_2 \) such that \(\sigma(T'_2) \) is the identity element of the group \(U(S_R) \). By Lemma 5.1, the sequence \(T \) is not idempotent-sum free, which implies that \(I(S_R) \leq D(U(S_R)) + \Omega(K) - \omega(K) \). Combined with (7), we have that

\[I(S_R) = D(U(S_R)) + \Omega(K) - \omega(K). \]

Case 2. \(n_1 = \cdots = n_r = 1 \) in (2), i.e., \(f = p_1 p_2 \cdots p_r \).

Then

\[\Omega(K) = \omega(K) = r. \]

(8)
Take an arbitrary sequence T of length $|T| = D(U(S_R))$. For any term a of T, let $\tilde{a} \in S_R$ be such that for each $i \in [1, r]$,

$$\theta_a \equiv \begin{cases} 1_{F_q} \pmod{p_i} & \text{if } \theta_a \equiv 0_{F_q} \pmod{p_i}; \\ \theta_a \pmod{p_i} & \text{otherwise.} \end{cases} \tag{9}$$

Note that $\tilde{a} \in U(S_R)$.

Let $\tilde{T} = \bigsqcup_{a \in T} \tilde{a}$. Then \tilde{T} is a sequence of terms from the group $U(S_R)$ with length $|\tilde{T}| = |T| = D(U(S_R))$. It follows that there exists a nonempty subsequence W of T such that $\sigma(\bigsqcup_{a \in W} \tilde{a})$ is the identity element of the group $U(S_R)$, i.e., $\theta_{\sigma(\bigsqcup_{a \in W} \tilde{a})} = 1_{F_q} \pmod{p_i}$ for each $i \in [1, r]$. By (9), we derive that $\theta_{\sigma(W)} \equiv 0_{F_q} \pmod{p_i}$ or $\theta_{\sigma(W)} \equiv 1_{F_q} \pmod{p_i}$ for each $i \in [1, r]$. By Lemma 3.1, we conclude that $\sigma(W)$ is idempotent. Combined with (8), we have that $I(S_R) \leq D(U(S_R)) = D(U(S_R)) + \Omega(K) - \omega(K)$. It follows from (7) that $I(S_R) = D(U(S_R)) + \Omega(K) - \omega(K)$, completing the proof. \hfill \Box

We close this paper with the following conjecture.

Conjecture 3.2. Let $q > 2$ be a prime power, and let $\mathbb{F}_q[x]$ be the ring of polynomials over the finite field \mathbb{F}_q. Let $R = \mathbb{F}_q[x]/K$ be a quotient ring of $\mathbb{F}_q[x]$ modulo any nonzero proper ideal K. Then $I(S_R) = D(U(S_R)) + \Omega(K) - \omega(K)$.

Acknowledgements

This work is supported by NSFC (grant no. 11501561, 61303023).

References

[1] D.A. Burgess, *A problem on semi-groups*, Studia Sci. Math. Hungar., 4 (1969) 9–11.

[2] D.W.H. Gillam, T.E. Hall and N.H. Williams, *On finite semigroups and idempotents*, Bull. Lond. Math. Soc., 4 (1972) 143–144.

[3] K. Rogers, *A Combinatorial problem in Abelian groups*, Proc. Cambridge Phil. Soc., 59 (1963) 559–562.

[4] G.Q. Wang, *Davenport constant for semigroups II*, J. Number Theory, 153 (2015) 124–134.
[5] G.Q. Wang, *Additively irreducible sequences in commutative semigroups*, J. Combin. Theory Ser. A, **152** (2017) 380–397.

[6] G.Q. Wang, *Structure of the largest idempotent-free sequences in finite semigroups*, arXiv:1405.6278.

[7] G.Q. Wang, *Erdős-Burgess constant of the direct product of cyclic semigroups*, arXiv:1802.08791.

[8] G.Q. Wang and W.D. Gao, *Davenport constant for semigroups*, Semigroup Forum, **76** (2008) 234–238.

[9] G.Q. Wang and W.D. Gao, Davenport constant of the multiplicative semigroup of the ring $\mathbb{Z}_{n_1} \oplus \cdots \oplus \mathbb{Z}_{n_r}$, arXiv:1603.06030.

[10] L.Z. Zhang, H.L. Wang and Y.K. Qu, *A problem of Wang on Davenport constant for the multiplicative semigroup of the quotient ring of $\mathbb{F}_2[x]$*, Colloq. Math., **148** (2017) 123–130.