Preliminary Study on Species Diversity and Community Characteristics of Gamasid Mites on Small Mammals in Three Parallel Rivers Area of China

Juan-Xiu Zhou 1, Xian-Guo Guo 1,*, Wen-Yu Song 1, Cheng-Fu Zhao 1, Zhi-Wei Zhang 1, Rong Fan 1, Ting Chen 1, Yan Lv 1, Peng-Wu Yin 1 and Dao-Chao Jin 2

1 Institute of Pathogens and Vectors, Yunnan Provincial Key Laboratory for Zoonosis Control and Prevention, Dali University, Dali 671000, China
2 Institute of Entomology, Guizhou University, Guiyang 550025, China
* Correspondence: xgguo2002@163.com; Tel.: +86-872-2257-154

Abstract: (1) Background: Gamasid mites are a large group of arthropods, and some of them are of medical importance. Besides directly biting humans and causing dermatitis, some gamasid mites are the vector of rickettsialpox and potential vector of hemorrhagic fever with renal syndrome (HFRS). The Three Parallel Rivers Area of China is one of the hotspots of biodiversity research in the world, with complicated topographic landforms, different types of vegetation, special elevation gradients and high biodiversity. (2) Methods: Species richness (S): the Shannon–Wiener diversity index (H), Simpson dominance index (D) and Pielou evenness index (E) were used to analyze the basic community structure. The β diversity (Cody index) was used to reflect the diversity difference between any two adjacent elevation gradients. The method based on Preston’s lognormal model for species abundance distribution was used to estimate the total number of gamasid mite species. (3) Results: A total of 3830 small mammal hosts captured from the nine survey sites were identified as 44 species, 27 genera and nine families. From the body surface of the hosts, 26,048 gamasid mites were collected and identified as 10 families, 21 genera and 82 species (excluding 847 unidentified specimens) with high species diversity. The species diversity of the mite community fluctuated greatly in different elevation gradients. The highest peaks of species richness and β diversity appeared at altitudes of 3000–3500 m (S = 42) and 1500–2000 m (β = 17.5), respectively. The species abundance distribution of the mites was successfully fitted by Preston’s lognormal model, and the total number of gamasid mite species in the Three Parallel Rivers Area was estimated to be 153 species. (4) Conclusions: Gamasid mites on small mammals are abundant with complex
community structures and high species diversity in the Three Parallel Rivers Area of China. There is an apparent community heterogeneity of the mites on different hosts and in different environments.

Keywords: acari; gamasid mites; ectoparasites; species diversity; community; Three Parallel Rivers Area; China

1. Introduction

Gamasid mites are a large group of arthropods with complex and diverse ecological behaviors. It is estimated that about 8280 species of gamasid mites have been recorded worldwide, with more than 600 species documented in China [1,2]. Gamasid mites belong to the suborder Mesostigmata and order Parasitiformes in the subclass Acari of the class Arachnoida [3,4]. There are five primary stages in the life cycle of gamasid mites, the egg, larva, protonymph (first nymph), deutonymph (second nymph) and adult (the male and female). The majority of gamasid mites are soil-living and free-living with complex habitats and ecological behaviors. For ectoparasitic gamasid mites, nearly all stages (except the egg) can be found on the body surface of small mammals and other animal hosts which are used as food sources of the mites [5–7]. Some species of ectoparasitic gamasid mites can transmit some zoonoses, and some endoparasitic gamasid mites can directly parasitize the lungs of animals or people, causing pulmonary acarasis [8–10]. As a whole group of arthropods, ectoparasitic gamasid mites (including facultatively and occasionally ectoparasitic species) have extensive hosts, including small mammals, aves (birds), reptiles, amphibians and other arthropods. Besides directly stinging the human skin and causing dermatitis, some species of gamasid mites are suspected to be associated with the transmission of more than 20 zoonotic diseases, with some species being the transmitting vector of rickettsialpox and potential vectors of hemorrhagic fever with renal syndrome (HFRS) [11–16]. Some gamasid mites can be the intermediate host of cotton rat filarial (*Litomosoides carinii* Travassos, 1919), the pathogen of cotton rat filarial disease, causing harm to experimental rats and mice [17,18].

Located in the Longitudinal Range-Gorge Region of the Hengduan Mountains in the eastern Himalayas, the Three Parallel Rivers Area is a unique geographical region in the northwest of Yunnan Province, southwest China. It is a transitional zone between the Tibetan Plateau (Qinghai–Tibet Plateau) and Yunnan–Guizhou Plateau [19–22]. As the intersection of the three geographical regions of East Asia, South Asia and the Tibetan Plateau, the Three Parallel Rivers Area borders Myanmar to the west, Tibet Autonomous Region to the northwest and Sichuan Province to the northeast and east [23,24]. In the northwest of Yunnan Province, there are three rivers (Jinshajiang, Lancangjiang and Nujiang rivers) originating from the Tibetan Plateau, flowing from the north towards the south [19,24]. The three rivers parallel each other, passing through Gaoligong Mountain, Nushan Mountain, Yunling Mountain and Shaluli Mountain without intersecting [23,25]. This area has a series of deep valleys, and four central high mountains are divided by three rivers, forming a very complex longitudinal mountain–valley landscape [24,25]. The topography, landscape, ecological environment and climate type in the area are incredibly complex with considerable changes in altitudes ranging from 720 m to 6740 m, which may contribute to the complex composition and high species diversity of animals and plants. It is one of the areas with the world’s most diverse species and has become one of the hotspots in biodiversity research [26,27]. Ma et al. conducted a particular study on plant species diversity in the Three Parallel Rivers Area and found 98 species of plants [22], Renee Mullen et al. conducted a regional-level assessment of the alpine flora and reported 369 species of plants [28].

Rodents and some other small mammals are not only the important infectious source of some zoonoses (zoonotic diseases), but are also the most important hosts of ectoparasitic gamasid mites [2,4,29], and therefore it is of significance to study the mites on their body
Some previous studies have shown that the Three Parallel Rivers Area and its adjacent areas are rich in species of aves and mammals (including small mammals), but unfortunately few studies have dealt with ectoparasitic mites (including ectoparasitic gamasid mites) in the areas [30–33]. According to the field investigation data of nine survey sites in the Three Parallel Rivers Area from 2001 to 2015, this paper conducted a preliminary study on the species diversity and basic community characteristics of gamasid mites on small mammals in this unique area for the first time.

2. Materials and Methods

2.1. Field Survey Sites

The original data came from a long-term field investigation of nine survey sites in the Three Parallel Rivers Area of northwest Yunnan Province, southwest China between 2001 and 2015. The nine survey sites are as follows: Gongshan (27°44′40″ N, 98°39′55″ E), Jianchuan (26°32′26″ N, 99°54′16″ E), Yulong (26°52′27″ N, 100°14′08″ E), Xianggelila (27°50′45″ N, 99°44′31″ E), Lanping (26°27′24″ N, 99°24′55″ E), Weixi (27°10′50″ N, 99°17′09″ E), Deqin (28°28′01″ N, 98°54′59″ E), Lushui (25°49′34″ N, 98°51′27″ E) and Fugong (26°54′19″ N, 98°52′07″ E) (Figure 1 in Results).
2.2. Gamasid Mites Collection and Identification

In the involved nine survey sites, mousetraps were placed randomly in different habitats (residential areas, cultivated farmlands, grasslands, shrubs, forests, etc.) in the evening and checked the following morning. The trapped rodents and other small mammals (hosts) were separately placed in marked white cloth bags and then transported to the field laboratory where gamasid mites were collected. The captured hosts were anesthetized with ether and then gamasid mites on their body surface were collected one by one. According to the appearance (body sizes, shape and coat color), various comprehensive measurements (body length, body weight, tail length, ear height and hind foot length, etc.) and other morphological features, each host was identified into species [34–36]. The collected gamasid mites from each host were preserved in a vial containing 70% ethanol and then mounted onto a glass slide in Hoyer’s mounting medium. The mounted mites were finally identified into species under a microscope based on related taxonomic literature and identification books which contain a series of identification keys [4,37–39]. The use of animals (including animal euthanasia) for our research was officially approved by the Animals’ Ethics Committee of Dali University, under permission number DLDXLL2020-1104. Representative specimens of animal hosts and gamasid mites were deposited in the specimen repository of the Institute of Pathogens and Vectors, Dali University, Dali, Yunnan, China.

2.3. Species Diversity and Basic Community Structure Statistics

Together with species richness (S), which was used to reflect species diversity, the Shannon–Wiener diversity index (H), Simpson dominance index (D) and Pielou evenness index (E) were used to analyze the basic community structure of the small mammal hosts and gamasid mites [40,41]. The β diversity (Cody index) was used to reflect the diversity difference between any two adjacent elevation gradients [42,43].

\[
H = - \sum_{i=1}^{S} P_i \ln P_i
\]

(1)

\[
D = \sum_{i=1}^{S} P_i^2
\]

(2)

\[
E = \frac{H}{\ln S}
\]

(3)

\[
\beta = \frac{g(h) + l(h)}{2}
\]

(4)

In the above formulas, S represents species richness (the number of species), \(P_i\) represents the proportion of the individuals of gamasid mite species \(i\) (or hosts species \(i\)) to the total number of all the species, \(g(h)\) is the number of species increased along the elevation gradient \(h\) (the number of species that were absent in the previous gradient and newly emerged in the following gradient), \(l(h)\) is the number of species decreased along the elevation gradient \(h\) (the number of species present in the previous gradient but absent in the following gradient).

2.4. Species Abundance Distribution and Total Species Estimation

All gamasid mites from nine survey sites in the Three Parallel Rivers Area were taken as a gamasid mite community unit. To illustrate the species abundance distribution of the gamasid mite community on small mammals, a semi-logarithmic rectangular system was established. The X-axis was labeled with log intervals based on \(\log_3 M\), which indicates the individuals of gamasid mites, and the Y-axis was marked with arithmetic scales, representing the number of gamasid mite species. Based on the following formulae, Preston’s lognormal model was used to fit the theoretical curve of species abundance distribution, and the fitting goodness (\(R^2\)) was calculated. According to the final fitting goodness (\(R^2\)), the species abundance theoretical curve equation was established and the
theoretical curve was drawn [44,45]. The total number of gamasid mite species \((S_T)\) was then estimated. According to the total number of species \((S_T)\), the likely missed number of species \((S_M)\) in the field survey was approximately calculated [46,47].

\[
S(R) = S_0 e^{-[a(R-R_0)]^2} \quad (\epsilon = 2.71828 \ldots) \quad \text{(Preston’s lognormal model)}
\]

\[
R^2 = 1 - \sum_{R=0}^{m} \left[S'(R) - S(R) \right]^2 / \sum_{R=0}^{m} \left[S'(R) - \bar{S}(R) \right]^2
\]

\[
\bar{S}(R) = \frac{1}{m} \sum_{R=0}^{m} S'(R)
\]

\[
S_T = \frac{S_0 \sqrt{\pi}}{\alpha}
\]

\[
S_M = S_T - S_A
\]

In the above formulas, \(S(R)\) represents the theoretical number of gamasid species at the \(R\)-th log interval, \(S_0\) represents the number of gamasid mite species at the \(R_0\) log interval, \(m\) is the number of log intervals and \(R_0\) represents the mode log interval. The value of \(\alpha\) was determined according to the best fitting goodness, \(R^2\). \(S'(R)\) represents the actual number of gamasid mite species at \(R\)-th log interval and \(\bar{S}(R)\) represents the average number of gamasid mite species for each log interval. \(S_T\) is the total theoretical number of gamasid mite species in the community (the total expected number of gamasid mite species), \(S_M\) is the number of gamasid mite species likely missed in the field survey and \(S_A\) is the number of gamasid mite species actually collected in the field survey.

3. Results

3.1. Classification and Identification of Gamasid Mites and Their Small Mammal Hosts

Between 2001 and 2015, a total of 26,895 individuals of gamasid mites were collected from the body surface of 3830 small mammal hosts from nine survey sites in the Three Parallel Rivers Area of China (Figure 1). The 3830 small mammal hosts were identified as 44 species, 27 genera and nine families in five orders: Rodentia, Eulipotyphla (previously Insectivora), Scandentia, Lagomorpha and Carnivora (small carnivores only) (Table 1). Of the captured small mammal hosts, rodents (order Rodentia) accounted for 75.00% of species (33/44) and 91.83% of individuals (3517/3830), which are the most dominant category of small mammal hosts in the Three Parallel Rivers Area, and the order Eulipotyphla came next (7.57%, 290/3830). The order Carnivora was the least, accounting for only 0.03% (1/3830) (Table 1). The total proportion of non-rodent small mammal hosts was 8.17% (313/3830). Of 33 species and 3517 individuals of rodent hosts, the species and individuals of murid rodents in the family Muridae accounted for 43.18% (19/44) and 73.55% (2817/3830), and the ratio of murid versus non-murid rodents was 4.02 (2817/700). The survey sites and collected individuals of 44 captured small mammal host species were listed in “Appendix A: Taxonomic checklist of small mammals captured from nine survey sites in the Three Parallel Rivers Area of northwest Yunnan, China (2001–2015)”.

Of the 26,895 collected gamasid mites, 26,048 identified as comprising 10 families (Laelapidae, Dermanyssidae, Macronyssidae, Aceocejidae, Ameroseiidae, Parasitidae, Parholaspidae, Macrochelidae, Pachylaelaptidae and Blattisocidae), 21 genera and 82 species (not including 847 unidentified individuals of gamasid mites due to structural damage, dirt cover (blurry structures) and some suspected new species). Of the 10 families, the family Laelapidae had the most abundant genera, species and individuals: 11 genera, 64 species and 24,853 individuals, which accounted for 95.41% of total gamasid mite individuals. The family Parholaspidae had the fewest genera, species and individuals (one species in one genus with only one individual), which accounted for less than 0.01% of total gamasid mite individuals (Table 2). The 82 identified gamasid mite species and their corresponding small mammal hosts in nine survey sites were given in “Appendix B: Taxonomic checklist of
gamasid mites identified from nine survey sites in Three Parallel Rivers Area of northwest Yunnan, China (2001–2015)”.

Table 1. Identified small mammal hosts from nine survey sites in Three Parallel Rivers Area in northwest Yunnan of China (2001–2015).

Order Names of Small Mammal Hosts	Individuals of Hosts	Number of Host Families	Number of Host Genera	Number of Host Species	Constituent Ratios Cr (%)
Rodentia	3517	4	18	33	91.83
Eulipotyphla	290	2	6	7	7.57
Scandentia	11	1	1	1	0.29
Lagomorphs	11	1	1	2	0.29
Carnivora	1	1	1	1	0.03
Total	3830	9	27	44	100.00

Table 2. Identified gamasid mites from nine survey sites in Three Parallel Rivers Area in northwest Yunnan of China (2001–2015).

Family Names of Gamasid Mites	Number of Gamasid Mite Genera	Number of Gamasid Mite Species	Individuals of Gamasid Mites	Constituent Ratios of Gamasid Mite Individuals Cr (%)
Laelapidae	11	64	24,853	95.41
Dermanyssidae	1	1	16	0.06
Macronyssidae	1	1	928	3.56
Aceosejidae	1	6	31	0.12
Ameroseiidae	2	2	4	0.02
Parasitidae	1	2	3	0.01
Parholaspidae	1	1	1	0.01
Macruchelidae	1	2	48	0.18
Pachyellaaptidae	1	2	11	0.04
Blattisocidae	1	1	153	0.58
Total	21	82	26,048	100.00

3.2. Structural Characteristics and Species Diversity Changes of Gamasid Mite Communities

In this study, all the captured small mammal hosts and identified gamasid mites from the nine survey sites in the Three Parallel Rivers Area were taken as a host community unit and a gamasid mite community unit, respectively, then the species richness (S), Shannon–Wiener diversity index (H), Pielou evenness index (E) and Simpson dominance index (D) of the community structure were calculated. The identified 44 species and 3830 small mammal hosts constituted the “small mammal host community in the Three Parallel Rivers Area”. The species richness (S), Shannon–Wiener diversity (H), Pielou evenness (E) and Simpson dominance (D) of the host community were $S = 44$, $H = 2.52$, $E = 0.67$ and $D = 0.12$, respectively. As shown in Table 3, three species of hosts, Apodemus chevrieri (Milne-Edwards, 1868), Eothenomys miletus (Thomas, 1914) and A. draco (Barrett-Hamilton, 1900), were the most dominant in the Three Parallel Rivers Area, and their constituent ratios (Cr) were $Cr = 24.28\%$ (930/3830), $Cr = 14.41\%$ (552/3830) and $Cr = 13.34\%$ (511/3830), respectively. The individuals of A. chevrieri, E. miletus and A. draco exceeded 500, and the total constituent ratios of the three dominant hosts were 52.04% (1993/3830) of the whole. From A. chevrieri, 30 species and 1775 individuals of gamasid mites were collected, with 34 species and 877 individuals of gamasid mites from E. miletus, and 24 species and 558 individuals of gamasid mites from A. draco. The species richness was highest in E. miletus ($S = 34$), and Shannon–Wiener diversity was highest in A. chevrieri ($H = 2.50$) (Table 3). The species richness of the gamasid mite community on different host species is different, and the species composition of the dominant mites on different hosts is also quite different (Tables 3 and 4).
Table 3. Statistics on community structure of gamasid mites on three dominant species of small mammals in Three Parallel Rivers Area in northwest Yunnan of China (2001–2015).

Names of Dominant Hosts	Number of Hosts	C\textsubscript{r} of Hosts	Individuals of Gamasid Mites	S	H	E	D
Apodemus chevrieri (Milne-Edwards, 1868)	930	24.28%	1775	30	2.50	0.73	0.12
Eothenomys miletus (Thomas, 1914)	552	14.41%	877	34	1.79	0.51	0.36
Apodemus draco (Barrett-Hamilton, 1900)	511	13.34%	558	24	2.24	0.70	0.18

Table 4. Dominant species of gamasid mites on three dominant species of small mammals in Three Parallel Rivers Area in northwest Yunnan of China (2001–2015).

Names of Dominant Host Species	Names of Dominant Gamasid Mite Species	Individuals of Total Gamasid Mites	Individuals of Dominant Gamasid Mite Species	C\textsubscript{r} of Dominant Gamasid Mite Species
Apodemus chevrieri	Eulaelaps shanghaiensis Wen, 1976	1775	493	27.77%
Eothenomys miletus	Laelaps chinii Wang et Li, 1965	877	509	58.04%
Apodemus draco	Laelaps jingdongensis Tian, Duan et Fang, 1990	558	207	37.10%

The identified 82 species and 26,048 individuals (excluding unidentified ones) of gamasid mites constituted the “Gamasid mite community in the Three Parallel Rivers Area”. The species richness, Shannon–Wiener diversity, Pielou evenness and Simpson dominance of the gamasid mite community were \(S = 82, H = 2.33, E = 0.53 \) and \(D = 0.17 \), respectively. Three species of gamasid mites, Dipolaelaps anourosorecis (Gu et Wang 1981), Laelaps nuttalli Hirst, 1915 and Laelaps echidninus Berlese, 1887, were the most dominant, and their constituent ratios were \(C_r = 32.14\% \) (8371/26,048), \(C_r = 20.97\% \) (5463/26,048) and \(C_r = 11.35\% \) (2957/26,048), respectively. The individuals of \(D. \) anourosorecis, \(L. \) nuttalli and \(L. \) echidninus were more than 2000, and the total constituent ratios of the three dominant gamasid mites were 64.46% (16,791/26,048) of the whole.

The altitudes of the nine survey sites in the Three Parallel Rivers Area are between 862 m and 3880 m. According to the recorded data, seven altitude gradients were used to analyze the variations of species diversity of gamasid mites and small mammal hosts along different altitude gradients. The species richness of small mammal hosts showed a tendency of increasing gradually in the beginning and then decreasing abruptly from the low altitude (<1000 m) to the high altitude (>3500 m) along the vertical gradients (Figure 2). And the species richness of small mammal hosts reached the highest value (\(S = 32 \)) in the high-altitude regions between 3000 and 3500 m (Figure 2, Table 5). In addition, the species richness of gamasid mites formed the first peak (\(S = 41 \)) in the low-altitude regions between 1500 and 2000 m and the second peak (\(S = 42 \)) in the high-altitude regions between 3000 and 3500 m (Figure 2, Table 5). This showed that the changing trend of species richness of gamasid mites is not completely consistent with the small mammal hosts. Cody diversity index was used to analyze the beta-diversity (\(\beta \) diversity) of the gamasid mite community in the Three Parallel Rivers Area, and the \(\beta \) diversity of gamasid mites fluctuated from the low latitude to the high latitude of nine survey sites, which reached the highest value (\(\beta = 17.5 \)) in the low-altitude regions between 1500 and 2000 m (Figure 3).
Animals 2022, 12, 3217

![Graph](image)

Figure 2. Species richness (number of species) variations of gamasid mites and their small mammal hosts along altitude gradients in Three Parallel Rivers Area in northwest Yunnan of China (2001–2015).

Table 5. Statistics on community structure of small mammal hosts and gamasid mites along different altitude gradients in Three Parallel Rivers Area in northwest Yunnan of China (2001–2015).

Altitude Gradients (m)	Individuals of Small Mammal Hosts	Individuals of Gamasid Mites	Statistics on Community Structure of Small Mammal Hosts	Statistics on Community Structure of Gamasid Mites						
			S	H	E	D	S	H	E	D
<1000	182	3702	3	0.39	0.36	0.81	13	0.85	0.33	0.55
1000–1500	214	7315	8	1.47	0.71	0.30	38	1.84	0.51	0.22
1500–2000	400	8710	16	1.91	0.69	0.20	41	1.16	0.31	0.52
2000–2500	367	1498	20	2.18	0.73	0.18	24	2.02	0.64	0.21
2500–3000	735	1304	22	1.67	0.54	0.33	28	2.59	0.78	0.10
3000–3500	1799	2954	32	2.17	0.63	0.16	42	2.61	0.70	0.10
>3500	133	565	13	1.69	0.66	0.26	23	2.07	0.66	0.19

![Graph](image)

Figure 3. Variations of \(\beta \) diversity of gamasid mites along altitude gradients in Three Parallel Rivers Area in northwest Yunnan of China (2001–2015).

3.3. **Species Abundance Distribution and Total Species Estimation of Gamasid Mite Community**

Of the 82 species and 26,048 individuals of identified gamasid mites, the number of gamasid mite individuals in the seventh to eighth logarithmic scale was the highest, but the number of species was minimal. When the logarithmic scale is zero \((R_0 = 0) \), the number of gamasid mites was only one individual, but the number of species was large \((S_0 = 19) \). Based on Preston’s lognormal model, the species abundance distribution of the
gamasid mite community in the Three Parallel Rivers Area was successfully fitted by the lognormal distribution with $a = 0.22$ and $R^2 = 0.9879$. The theoretical curve equation was $\hat{S}(R) = 19e^{-[0.22(R-0)]^2} (S_0 = 19, R_0 = 0)$. The species abundance distribution curve showed that the rare species of gamasid mites with few individuals accounted for the majority of species in the community, while the dominant species with a large number of individuals were only a few. With the increase of the number of gamasid mite individuals, the number of gamasid mite species gradually decreased (Table 6, Figure 4). Of the 82 gamasid mite species, 19 species had only one individual collected, 12 species had two individuals, and one species had three individuals. On the basis of the curve fitting, the total gamasid mite species in the Three Parallel Rivers Area was estimated to be 153 species ($S_T = 153$), 71 species more than the actual collected 82 species.

Table 6. The fitting results of species abundance distribution of gamasid mite community in Three Parallel Rivers Area in northwest Yunnan of China (2001–2015).

Log Intervals Based on log3M	Individual Ranges of Gamasid Mites in Each Log Interval	Midpoint Values of Each Individual Range	Actual Gamasid Mite Species	Theoretical Gamasid Mite Species
0	0–1	1	19	19.00
1	2–4	3	14	18.10
2	5–13	9	14	15.66
3	14–40	27	9	12.29
4	41–121	81	6	8.76
5	122–364	243	9	5.67
6	365–1093	729	7	3.33
7	1094–3280	2187	2	1.77
8	3281–9841	6561	2	0.86

Figure 4. Theoretical curve fitting of species abundance distribution of gamasid mite community in Three Parallel Rivers Area in northwest Yunnan of China (2001–2015).

4. Discussion

The present study showed a great species diversity of gamasid mites and their small mammal hosts in the Three Parallel Rivers Area of China. From abundant species of small mammal hosts (44 species with 3830 individuals), a total of 26,895 individuals of gamasid mites were collected, and 26,048 of them (26,048/26,895) are identified as comprising 82 species and 21 genera in ten families. The Three Parallel Rivers Area is only a partial area in the northwestern Yunnan Province, southwest China, in which the identified species of gamasid mites (82 species) in the present study were not only much more than those from other provinces of China, but also vastly exceeded those recorded from some other regions in the world. The identified 82 species of gamasid mites on small mammals in the

Animal 2022, 12, 3217

9 of 19
present study were obviously greater than the total recorded species of the mites (excluding soil-living and free-living species) in other provinces of China. For example, there have been 53 gamasid mites species recorded from Zhejiang Province, 46 species from Hebei Province, 78 species from Hubei Province, 21 species from Chongqing municipality (a provincial administrative region), 28 species from Shandong Province and 69 species from Fujian province, respectively, according to some previous literature [48–53]. In the world, 56 species of gamasid mites were recorded from two geomorphologic complexes of South-East Slovakia: Košická kotliná basin and Východoslovenská rovina plain, 71 gamasid mite species in Asiatic Russia and 37 species in the Kurzeme Coast of Latvia (Eastern Europe) [54–56]. The present study involved only the ectoparasitic gamasid mites on small mammals (including facultatively and occasionally ectoparasitic species). If soil-living and free-living gamasid mites are investigated in the future, the number of species would be greatly increased. The abundance of gamasid mite species in the Three Parallel Rivers Area is related to the unique geographical environment of this area. Located in the longitudinal valley of the Hengduan Mountains, the complex and diverse variations in topographies, landscapes, ecological habitats and climate types, with huge elevation differences in the Three Parallel Rivers Area support the rich biological resources and high biodiversity together [20,57,58]. The lowest altitude of the Three Parallel Rivers Area is 720 m in Nujiang river valley, and the highest altitude is 6740 m on the top of the Meili Snow Mountains [22,59]. There are many high mountains with an altitude of more than 4000 m in the Three Parallel Rivers Area, such as Laojun Mountain, Gaoligong Mountain, Yulong Snow Mountain, Haba Snow Mountain and Meili Snow Mountain [25]. These mountain landforms usually have different vertical forest zones and climatic types, with high landscape heterogeneity and biodiversity, and the species composition of plants and animals are quite different from the bottom to the top of the mountains [20,57,58]. The species diversity of ectoparasitic gamasid mites is closely related to that of their small mammal hosts. The above complex geographical, topographical and ecological environments led to the abundant species of small mammal hosts and gamasid mites (82 species) in the present study. The unique geographical, topographical and ecological characteristics should be the initial factors influencing the high species diversity of gamasid mite species in the Three Parallel Rivers Area.

Due to the limitations of transportation, human resources and financial funds, the nine survey sites (elevations between 862 m and 3880 m) in this study have not covered all the mountain landforms in the Three Parallel Rivers Area. The alpine zone above 4000 m has not been involved, and the number of survey sites is also limited (only nine sites). This study is only a preliminary report on gamasid species diversity and community characteristics in the Three Parallel Rivers Area of China. With the continuous expansion and deepening of field investigation in the future, more small mammal hosts and gamasid mite species will be collected, and the composition of dominant hosts and gamasid mite species may also change to some extent. The results of this study suggest that there are abundant species of small mammal hosts and gamasid mites with a complex community structure and high species diversity in the Three Parallel Rivers Area of China. Moreover, the results show that further research is of great academic value.

The variation of species diversity along elevation gradients has been one crucial topic in ecology and biodiversity research in recent years [60–62]. The variation patterns of species diversity along elevation gradients are often diverse in different geographical regions because of habitat heterogeneity, vegetation difference, climate instability and some other environmental factors [62–64]. Some previous studies showed that the species diversity of lizards decreases with increasing elevation and it peaks at middle elevations [65]. The highest species diversity of chigger mites also occurred in the intermediate altitude regions (2000–2500 m and 2000–3000 m) [41,66,67]. In this study, species richness and \(\beta \) diversity are used to analyze the variation of gamasid mite species diversity along altitudinal gradients. The results of this study showed that the species diversity of the gamasid mite community in the Three Parallel Rivers Area fluctuated significantly in different elevation
gradients. The peak of species richness ($S = 42$) occurred at the altitude between 3000 and 3500 m, and the peak of β diversity ($\beta = 17.5$) occurred at the altitude between 1500 and 2000 m (Figures 2 and 3). The result in this paper is not completely consistent with the previous studies [41] and we need further studies.

In this paper, the species composition, species diversity and dominant species of gamasid mites on different host species were also significantly different (Tables 3 and 4), which reflects the heterogeneity of gamasid mite communities on different hosts. The species diversity variation and community heterogeneity of gamasid mites on different host species may be associated with different biological characteristics of different host species and the low host specificity of gamasid mites. Different species of animal hosts with different biological characteristics usually have different susceptibility to parasite infections (including ectoparasite infestations) with different parasite burdens, species composition and species diversity [40,67–69]. Many ectoparasitic gamasid mites have low host specificity, and cross infestation of the mites among different host species is very common, which may also lead to the heterogeneity of a gamasid mite community on small mammals [67,70,71]. The species diversity variation and community heterogeneity of gamasid mites on different host species further suggests the extraordinary complexity of gamasid mite communities on small mammals in the Three Parallel Rivers Area of China.

Of the 82 identified gamasid mite species in this study, several species are closely related to medicine. *Ornithonyssus bacoti* (Hirst, 1913) often stings humans to cause dermatitis [5,7,72], and it is an effective vector of rickettsialpox and an intermediate host of cotton rat filaria, *L. carinii* [17,18,72]. Moreover, *O. bacoti* has been proved to be an important potential vector of hantavirus, the causative agent of hemorrhagic fever with renal syndrome, HFRS [2,11–13]. Aside from *O. bacoti*, some other species of gamasid mites found in the present study, e.g., *Haemolaelaps glasgowi* (Ewing, 1925), *Tricholaelaps myonysognathus* (Grochovskaya et Nguyen-Xuan-Xoe, 1961), *Eulaelaps stabularis* Koch, 1836, *Eulaelaps shanghaiensis* Wen, 1976 and *L. echidninus* can also invade humans to cause dermatitis, and they can be the potential vectors of hantavirus as well [3,14,73]. The occurrence of the above mite species in the Three Parallel Rivers Area may increase the potential danger to the people’s health in this area.

Species abundance distribution, together with the fitting of its theoretical curve, is an important issue in community ecology, and it describes the relationship between the species and individuals in a specific community, that is, the abundance distribution of different species in the community. The species abundance distribution can directly reflect the proportion structure of the dominant, common and rare species in a community [44,74]. Based on the theoretical curve fitting of species abundance distribution, the expected total number of species (the theoretical total number of species) can be roughly estimated [45,75,76]. The species abundance distribution of gamasid mites in the present study was successfully fitted by Preston’s lognormal distribution model, suggesting that it conforms to the lognormal distribution. The result showed that the expected number of gamasid mite species showed a gradual descending tendency with the increase of gamasid mite individuals. It reveals that the majority of the gamasid mite species are sporadic with few individuals, and few gamasid mite species are dominant with abundant individuals. The tendency of species abundance distribution in this paper is almost consistent with that in other ectoparasite communities, such as chigger mites in the previous papers [71,77].

How to scientifically estimate the expected total number of species (the theoretical total number of species) in a specific community is also an important issue in ecology and several methods have been previously used to estimate the total number of species [40,77,78]. As one estimation method, the method used in the present study is based on the curve fitting of species abundance, and it has been applied to study the community of chigger mites and some other ectoparasites, such as fleas and sucking lice [44,47]. The result showed that the theoretical total number of gamasid mite species in the Three Parallel Rivers Area is 153 ($S_T = 153$), which greatly exceeded the 82 actually identified species ($S_A = 82$). It reveals the fact that there are still many gamasid mite species ($S_M = 71$) that have not been collected.
and which were missed in the actual field investigation. The results further suggest that
gamasid mites on small mammals in the Three Parallel Rivers Area of China are abundant
with complex community structures and high species diversity, which is of great academic
value for further in-depth study.

5. Conclusions

Gamasid mites on small mammals are abundant with complex community structures
and high species diversity in the Three Parallel Rivers Area of China. There is an apparent
community heterogeneity of the mites on different hosts and in different environments.

Author Contributions: Conceptualization, funding acquisition, project administration, resources,
supervision, validation and writing—review & editing, X.-G.G.; funding acquisition and supervision,
D.-C.J.; data curation, formal analysis, software, visualization and writing—original draft, J.-X.Z.;
data curation and investigation, C.-F.Z., Z.-W.Z., R.F. and T.C.; methodology, W.-Y.S., Y.L. and P.-W.Y.
All authors have read and agreed to the published version of the manuscript.

Funding: The present study was supported by the Major Science and Technique Programs in Yunnan
Province (No. 202102AA310055-X) and National Natural Science Foundation of China (No. 82160400)
to Xian-Guo Guo, and the Expert workstation for Dao-Chao Jin in Dali Prefecture.

Institutional Review Board Statement: The use of animals (including animal euthanasia) for our
research was officially approved by the Animals’ Ethics Committee of Dali University, approval code:
DLDXLL2020-1104, approval date: 4 November 2020.

Data Availability Statement: The experimental data used to support the findings of this study are
available from the corresponding author request.

Acknowledgments: We would like to express our sincere thanks to the following people who
contributed to the field investigations and laboratory work: Yun-Ji Zou, Qiao-Hua Wang, Wen-Ge
Dong, Peng-Biao Yang, Pei-Ying Peng, Yong Zhang, Cong-Hua Gao, Nan Zhao, Jian-Chang He,
Guo-Li Li, Yan-Liu Li, Xue-Song He, De-Cai Ouyang, some colleagues and college students.

Conflicts of Interest: All the authors declare that there is no conflict of interest.

Appendix A. Taxonomic Checklist of Small Mammals Captured from Nine Survey
Sites in Three Parallel Rivers Area of Northwest Yunnan, China (2001–2015)

Orders, Families, Genera and Species of Small Mammal Hosts	Survey Sites	Individuals of Hosts
Order Rodentia		
I Family Muridae		
1 Rattus tanezumi (Temminck, 1844)	Gongshan, Jianchuan, Yulong, Weixi, Lushui, Fugong	244
2 R. nitidus (Hodgson, 1845)	Gongshan, Jianchuan, Yulong, Weixi, Deqin, Lushui, Fugong	129
3 R. norvegicus (Berkenhout, 1769)	Gongshan, Jianchuan, Yulong, Weixi	136
4 R. andamanensis (Blyth, 1860)	Gongshan, Jianchuan, Deqin, Lushui	37
5 Niviventer confucianus (Milne-Edwards, 1871)	Gongshan, Jianchuan, Xianggelila, Weixi, Deqin	232
6 N. fulvescens (Gray, 1847)	Gongshan, Weixi, Fugong	101
7 N. andersoni (Thomas, 1911)	Gongshan, Jianchuan, Laping, Weixi	35
8 N. excelsior (Thomas 1911)	Deqin	2
9 Mus musculus Linnaeus, 1758	Gongshan, Jianchuan	9
10 M. caroli Bonhote, 1902	Yulong	1
11 Apodemus draco (Barrett-Hamilton, 1900)	Gongshan, Weixi	511
12 A. peninsulae (Thomas, 1907)	Gongshan, Weixi	91
13 A. chevrieri (Milne-Edwards, 1868)	Gongshan, Jianchuan, Yulong, Laping, Weixi, Xianggelila	930
14 A. agrarius (Pallas, 1771)	Yulong, Xianggelila	4
Orders, Families, Genera and Species of Small Mammal Hosts

Orders, Families, Genera and Species of Small Mammal Hosts	Survey Sites	Individuals of Hosts
15 A. latronum Thomas, 1911	Gongshan, Yulong, Xianggelila, Lanping, Deqin	335
16 Berylmys bowersii (Anderson, 1879)	Gongshan, Weixi	9
17 Micromys minutus (Pallas, 1771)	Jianshuang	9
18 Vernaya fulva (G.M. Allen, 1927)	Weixi	1
19 Bandicota indica (Bechstein, 1800)	Weixi	1
II Family Cricetidae		
20 Eothenomys miletus (Thomas, 1914)	Gongshan, Jianshuang, Yulong, Lanping, Weixi, Deqin	552
21 E. eleusis (Thomas, 1911)	Gongshan, Lanping	13
22 E. proditor Hinton, 1923	Yulong, Xianggelila	23
23 E. custos (Thomas, 1912)	Yulong, Lanping	30
III Family Sciurida		
24 Callosciurus quinquestriatus Anderson, 1871	Lanping, Weixi	6
25 Tamiops swinhoei (Milne-Edwards, 1874)	Gongshan	3
26 Dremomys pernyi (Milne-Edwards, 1867)	Jianshuang, Weixi	20
27 Rupesest foresti (Thomas, 1922)	Jianshuang	13
IV Family Pteromysida		
28 Petaturia alibiventer (Gray, 1834)	Gongshan, Weixi	4
29 P. xanthotis (Milne-Edwards, 1872)	Weixi	2
30 Trogopterus xanthipes (Milne-Edwards, 1867)	Gongshan, Weixi	18
31 Belomys pearsonii (Gray, 1842)	Weixi	1
32 Hylotopus alboniger (Hodgson, 1836)	Weixi	4
33 Pteromys volans (Linnaeus, 1758)	Weixi	11
Order Eulipotyphla		
V Family Talpidae		
34 Scaptonyx fasicaudus (Milne-Edwards, 1872)	Weixi	1
VI Family Soricida		
35 Sorex excelsus (G.M. Allen, 1923)	Gongshan	6
36 S. cylindrica (Milne-Edwards, 1872)	Weixi	3
37 Episoriculus leucops (Hosfield, 1855)	Gongshan, Weixi	7
38 Suncus murinus (Linnaeus, 1766)	Yulong, Xianggelila	14
39 Crocidura attenuata (Milne-Edwards, 1872)	Jianshuang, Yulong	32
40 Anourosorex squamipes (Milne-Edwards, 1872)	Gongshan, Lanping, Weixi	227
Order Scandentia		
VII Family Tupaiidae		
41 Tupaiia belangeri (Wagner, 1841)	Yulong	11
Order Lagomorpha		
VIII Family Ochotoniida		
42 Ochotona thibetana (Milne-Edwards, 1871)	Gongshan, Lanping, Weixi	10
43 O. roylii (Ogilby, 1839)	Gongshan	1
Order Carnivora		
IX Family Mustelidea		
44 Mustela kathiah Hodgson, 1835	Yulong	1

Appendix B. Taxonomic Checklist of Gamasid Mites Identified from Nine Survey Sites in Three Parallel Rivers Area of Northwest Yunnan, China (2001–2015)

Families, Genera and Species of Gamasid Mites	Corresponding Small Mammal Hosts	Survey Sites
I Family Laelapidae Berlese 1892	Rattus tanezumi, Eothenomys miletus, R. nitidus, R. andamanensis, Apodemus chevrieri, R. norvegicus, A. draco, Niviventer confucianus, A. latronum, N. andersoni, Ochotona thibetana, E. custos, N. fulvescens, Mus musculus, Anourosorex squamipes, A. peninsulae, A. agrarius	Gongshan, Lushui, Fugong, Jianshuang, Yulong, Weixi, Xianggelila
1 Laelaps nuttalli Hirst, 1915		
Families, Genera and Species of Gamasid Mites	Corresponding Small Mammal Hosts	Survey Sites
---	----------------------------------	-------------
2 L. echidninus Berlese, 1887	R. tanezumi, E. miletus, R. andamanensis, N. confucianus, A. squamipes, R. norvegicus, N. fulvescens, Berleisia boweri, A. chevrieri, Micromus minutus	Deqin, Lushui, Fugong, Gongshan, Jianshuan, Yulong, Weixi
3 L. guizhouensis Gu et Wang, 1981	A. chevrieri, M. musculus	Deqin, Jianshuan, Yulong
4 L. turkestanicus Lange, 1955	N. confucianus, N. fulvescens, N. andersoni, A. chevrieri, N. excelsior, R. tanezumi, R. andamanensis, E. miletus, R. norvegicus, M. musculus, R. nitratus, Dremomys pernyi, M. caroli, B. boweri, Petaurista albiventer, A. draco, A. peninsularis, Pteromys volans, P. xanthotis, Verna fulva, Trogopterus xanthipes	Deqin, Fugong, Jianshuan, Yulong, Lanping, Weixi, Xianggelila
5 L. traubi Domrow, 1962	N. andersoni, E. miletus, N. excelsior, R. nitratus, N. fulvescens, N. confucianus, A. chevrieri, A. latronum, A. draco, R. norvegicus, D. pernyi, P. volans, P. xanthotis, B. boweri, Episoricus leucops, Bandicota indica	Deqin, Fugong, Jianshuan, Yulong, Lanping, Weixi, Xianggelila
6 L. chini Wang et Li, 1965	E. miletus, A. squamipes, N. confucianus, E. custus, E. eleusis, A. chevrieri, R. tanezumi, Suncus murinus, A. latronum, A. draco, E. leucops, M. minutus, R. norvegicus, E. proditor, A. peninsularis	Deqin, Jianshuan, Yulong, Lanping, Weixi, Xianggelila
7 L. paucisetosa Gu et Wang, 1981	N. fulvescens	Yulong
8 L. algericus Hirst, 1925	M. caroli	Jianshuan
9 L. xingyiensis Gu et Wang, 1981	M. minutus,	Deqin, Fugong, Jianshuan, Lanping
10 L. fukiensis Wang, 1963	N. confucianus, N. fulvescens, N. andersoni, N. excelsior, M. musculus, R. nitratus,	Deqin, Jianshuan, Yulong, Lanping, Xianggelila, Jianshuan
11 L. liui Wang et Li, 1965	B. boweri, A. chevrieri, E. miletus, M. minutus, R. norvegicus, A. latronum, E. eleusis, N. confucianus,	Deqin, Fugong, Jianshuan, Yulong, Lanping, Xianggelila, Jianshuan
12 L. jettmari Vitzthum, 1930	A. chevrieri, E. miletus, M. minutus, R. norvegicus, A. latronum, E. eleusis, N. confucianus,	Deqin, Fugong, Jianshuan, Yulong, Lanping, Xianggelila, Jianshuan
13 L. hongsiensis Grochovskaya et Nguen-Xuan-Xoe, 1961	N. confucianus,	Gongshan
14 L. jingdongensis Tian, Duan et Fang, 1990	A. draco, E. miletus, A. chevrieri, A. latronum, E. eleusis, Callosciurus quinquesextus, N. confucianus, A. peninsularis, R. norvegicus, D. pernyi, E. leucops	Gongshan, Deqin, Lushui, Guyong, Weixi, Xianggelila
15 Haemolaelaps glasgowi (Ewing, 1925)	A. chevrieri, A. squamipes, N. fulvescens, P. albiventer, R. norvegicus, E. miletus, M. musculus, E. proditor	Gongshan, Jianshuan, Weixi, Xianggelila
16 H. casalis (Berlese, 1887)	A. chevrieri, N. confucianus, E. miletus, T. xanthipes, P. volans, B. boweri	Gongshan, Weixi
17 H. petauristae Gu et Wang, 1980	T. xanthipes	Gongshan
18 H. anomalis Wang, Liao et Lin, 1981	B. boweri	Gongshan
19 Androlaelaps singularis Wang et Li, 1965	A. chevrieri, A. squamipes, R. nitratus, R. norvegicus, R. andamanensis, S. murinus, E. miletus, R. norvegicus, Crocidura attenuata, A. squamipes, A. draco, Sorex excelsus, N. andersoni, R. nitratus, E. leucops, O. roylii, A. chevrieri, R. andamanensis, B. boweri, P. albiventer, E. custus, N. confucianus, N. fulvescens, A. latronum, R. tanezumi, A. chevrieri, M. musculus, R. norvegicus, A. latronum, E. eleusis, P. volans, P. xanthotis, B. boweri,	Fugong, Gongshan, Jianshuan, Yulong, Xianggelila
20 Dipolaelaps anuosorencis (Gu et Wang 1981)	N. confucianus, N. fulvescens, A. latronum, R. tanezumi,	Gongshan, Jianshuan, Yulong, Xianggelila
21 D. jiangkouensi Gu, 1985	N. confucianus, N. fulvescens,	Gongshan
22 D. longisetosus Huang, 1985	A. latronum,	Deqin
23 Tricholaelaps myonysognathus (Grochovskaya et Nguen-Xuan-Xoe, 1961)	R. tanezumi,	Lushui
Families, Genera and Species of Gamasid Mites	Corresponding Small Mammal Hosts	Survey Sites
---	----------------------------------	--------------
24 Hypoaspis pavlovskii (Bretgetova, 1956)	N. andersoni, E. miletus, A. draco, N. confucianus, A. squamipes, A. chevrieri, R. tanezumi, N. fulvescens, R. nitidus, R. andamanensis, S. murrini, R. norvegicus, A. latronum, A. peninsulae	Gongshan, Lushui, Fugong, Jianchuan, Yulong, Lanping, Weixi, Xianggelila
25 H. miles (Berlese, 1892)	R. tanezumi, A. squamipes, E. miletus, R. nitidus, A. chevrieri,	Gongshan, Jianchuan, Yulong, Xianggelila
26 H. lurecta Voigt et Oudemans, 1904	R. norvegicus, R. nitidus, A. latronum, R. tanezumi, N. fulvescens, A. chevrieri, C. attenuata,	Gongshan, Deqin, Lushui, Fugong, Yulong
27 H. cianensis Gu, 1990	R. andamanensis, A. chevrieri	Gongshan
28 H. praetemalis Willmann, 1949	A. squamipes, R. tanezumi, R. nitidus,	Gongshan, Lushui, Fugong
29 H. concinna (Teng, 1982)	R. nitidus, R. tanezumi, R. andamanensis, N. fulvescens,	Lushui, Fugong, Gongshan
30 H. aculeifer (Canestrini, 1884)	R. nitidus	Fugong
31 H. ovatus Ma, Ying et Wei, 2003	R. norvegicus, A. draco, A. squamipes, R. nitidus	Gongshan
32 H. digitalis Teng, 1981	A. squamipes	Gongshan
33 H. terti Gu et Bai, 1991	A. squamipes,	Gongshan, Deqin, Jianchuan, Yulong, Lanping, Weixi, Xianggelila
34 Haemogamasus oliviformis Teng et Pan, 1964	A. draco, A. squamipes, E. miletus, E. eleusis, O. thibetana, A. chevrieri, R. nitidus, R. andamanensis, N. fulvescens, A. latronum, N. confucianus, A. peninsulae, R. norvegicus, D. pernyi, C. quinquestriatus, E. custos, A. agrarius	Yulong, Lanping
35 H. dorsalis Teng et Pan, 1964	E. custos, A. chevrieri	Gongshan, Deqin, Weixi
36 H. gongshanensis Tian et Gu, 1989	E. miletus, A. squamipes, A. latronum, A. draco, N. confucianus, O. thibetana	Fugong, Gongshan, Yulong, Lanping, Weixi, Xianggelila
37 H. monticola Wang et Li, 1965	A. draco, A. squamipes, R. andamanensis, N. fulvescens, R. nitidus, N. confucianus, S. murrini, A. chevrieri, E. custos, A. latronum, S. excelsus	Fugong, Lushui, Weixi
38 H. sexsetosus Guo et Gu, 1993	N. fulvescens, E. miletus, T. xanthipes	Gongshan, Jianchuan
39 H. pontiger (Berlese, 1903)	E. miletus	Weixi
40 H. multidentis Guo et Gu, 1997	R. norvegicus	Weixi
41 H. quadrisetatus Vitzthum, 1926	E. miletus, A. squamipes, N. confucianus, R. norvegicus	Gongshan, Weixi
42 H. yenlongensis Gu et Fang, 1987	E. miletus	Weixi
43 H. paradauricus Teng et Pan, 1964	A. chevrieri, N. confucianus	Lanping, Weixi
44 H. samxaicensi Liu et Ma, 2001	A. squamipes, P. volans, T. xanthipes	Weixi
45 H. hodosi Buiakova et Goncharova, 1961	E. miletus, Scaptongx fusicandus	Weixi
46 H. trifurcatus Zhou et Jiang, 1987	R. nitidus,	Gongshan
47 Eulaella stabularis Koch, 1836	R. nitidus, N. fulvescens, R. tanezumi, E. prodictor	Fugong, Lushui, Xianggelila
48 E. shanghaiensis Wen, 1976	A. draco, E. miletus, N. confucianus, A. chevrieri, A. latronum	Weixi, Gongshan, Jianchuan, Yulong, Xianggelila
49 E. dremomydis Gu et Wang, 1984	Rupestes forresti, D. pernyi, E. miletus, A. latronum, N. confucianus, A. peninsulae	Jianchuan, Lanping, Weixi
50 E. substabularis Yang et Gu, 1986	A. draco, A. squamipes, R. tanezumi, A. latronum, A. peninsulae, E. miletus, R. norvegicus, R. nitidus, N. fulvescens, A. chevrieri, A. agrarius, E. eleusis, O. thibetana, N. confucianus, T. xanthipes, Hylopetes albomiger	Gongshan, Deqin, Fugong, Jianchuan, Yulong, Lanping, Weixi
51 E. huazhongensis Yang et Gu, 1985	A. latronum, R. norvegicus, R. nitidus, A. chevrieri, A. draco, E. miletus, N. confucianus, A. peninsulae, S. cylindricauda, E. leucops, P. volans, T. xanthipes, Belongs pearsonii	Deqin, Fugong, Gongshan, Lushui, Weixi
52 E. silvestris Zhou, 1981	R. tanezumi,	Fugong
53 E. dongfangis Wen, 1976	R. nitidus	Fugong
54 Gymnolaelaps sinensis Wang, Zhou et Ji, 1991	A. chevrieri	Weixi
Families, Genera and Species of Gamasid Mites	Corresponding Small Mammal Hosts	Survey Sites
---	---------------------------------	-------------
55 *G. weishanensis* Gu et Guo, 1997	*N. fulvescens*, *A. chevrieri*	Gongshan, Jianchuan, Yulong
56 Cosmolaelaps retirugi (Ma, Yang et Zhang, 2004)	*A. squamipes*, *R. norvegicus*, *E. miletus*	Gongshan, Weixi
57 *C. yeruiyuae* Ma, 1995	*A. squamipes*, *R. tanezumi*, *R. nitidus*, *N. fulvescens*, *G. weishanensis* Gu et Guo, 1997	Gongshan, Lushui, Fugong
58 *Hirstionyssus sunci* Wang, 1962	*E. miletus*, *A. squamipes*, *A. chevrieri*, *R. norvegicus*, *R. tanezumi*, *R. nitidus*, *N. confucianus*, *A. latronum*, *C. attenuata*, *Mustela kathiah*, *Tupaia belangeri*, *A. draco*, *A. agrarius*, *R. andamanensis*	Gongshan, Deqin, Fugong, Jianchuan, Yulong, Lanping, Weixi, Xianggelila
59 *H. callosciuri* Bregetova et Grokhovskaya, 1961	*Tamiops swinhoei*	Deqin
60 *H. neosinicus* Teng et Pan, 1962	*A. draco*, *E. miletus*, *N. confucianus*	Weixi
61 *H. qinghaiensis* Gu et Yang, 1986	*E. miletus*, *A. squamipes*, *A. chevrieri*	Weixi
62 *H. microsci* (Johnston, 1849)	*A. latronum*	Weixi
63 *H. isabellinus* (Oudemans, 1913)	*R. tanezumi*, *R. nitidus*, *R. norvegicus*, *R. andamanensis*, *A. draco*, *N. confucianus*, *A. chevrieri*, *A. peninsulae*, *N. andersoni*	Weixi
64 *H. musculi* (Johnston, 1849)	*A. latronum*	Deqin
65 Liponyssoides muris (Hirst, 1913)	*R. norvegicus*, *T. belangeri*	Weixi
66 *Ornithonyssus bacoti* (Hirst, 1913)	*R. tanezumi*, *R. nitidus*, *R. norvegicus*, *R. andamanensis*, *A. draco*, *N. confucianus*, *A. chevrieri*, *A. peninsulae*, *N. andersoni*	Deqin, Lushui, Fugong, Gongshan, Weixi
67 Lasioseius medius Gu et Guo, 1994	*A. squamipes*, *E. miletus*, *E. custos*	Weixi
68 *L. trifurcipilus* Gu et Guo, 1996	*A. chevrieri*	Weixi
69 *L. qinghaiensis* Wang et Li, 2001	*A. squamipes*, *E. miletus*, *R. nitidus*	Weixi
70 *L. multispathus* Gu et Huang, 1990	*A. squamipes*	Weixi
71 *L. liuqiaoarongae* Ma, 1996	*A. squamipes*	Weixi
72 *L. chenpengi* Ma et Yin, 1999	*A. squamipes*	Weixi
73 *Ameroseius taoerhensis* Ma, 1995	*A. latronum*	Deqin
74 Sinoseius lobatus Bai et Gu, 1995	*E. miletus*, *D. pernyi*	Weixi
75 *Parasitus consanguineus* Oudemans et Voigts, 1904	*A. draco*	Weixi
76 P. tungdumengi Ma, 1995	*A. squamipes*	Weixi
77 Gamasholaspis eothenomydis Gu, 1984	*A. squamipes*	Weixi
78 *Macrocheles liguizhenae* Ma, 1996	*A. draco*, *A. squamipes*, *S. excelsus*, *E. miletus*, *R. nitidus*	Weixi
79 *M. muscaedomesticae* Scopoli, 1772	*A. draco*, *A. squamipes*, *E. miletus*, *R. norvegicus*	Weixi
80 *Pachyalaelaps badongensis* (Liu et Ma, 2003)	*A. draco*	Weixi
Families, Genera and Species of Gamasid Mites	Corresponding Small Mammal Hosts	Survey Sites
--	----------------------------------	--------------
81 P. nuditectus Ma et Yin, 2000 X Family Blattisociidae Garman, 1948	A. latronum	Deqin
82 Proctolaelaps pygmacus (Muller, 1859)	R. tanezumi, N. conficians, N. fulvescens, A. draco, E. miletus, A. peninsulare, R. norvegicus, P. xanthithis, R. nitidus, A. cheirieri, M. musculus, C. attenuata, A. agrarius	Lushui, Fugong, Gongshan, Jianchuan, Yulong, Weixi, Xianggelila

References

1. Yin, S.G.; Bei, N.X.; Chen, W.P. Soil Gamasida from Northeast China; China Agricultural Press: Beijing, China, 2013. (In Chinese)
2. Xiang, R.; Guo, X.G.; Zhao, C.F.; Fan, R.; Mao, K.Y.; Zhang, Z.W.; Huang, X.B.; Mao, K.Y. Distribution and Host Selection of Tropical Rat Mite (Ornithonyssus bacoti) in Yunnan Province, southwest China. Parasitol. Res. 2013, 112, 1967–1972. [CrossRef] [PubMed]
3. Huang, L.Q.; Guo, X.G.; Speakman, J.R.; Dong, W.G. Analysis of gamasid mites (Acari: Mesostigmata) associated with the Asian house rat, Rattus tanezumi (Rodentia: Muridae) in Yunnan Province, southwest China. Parasitol. Res. 2013, 112, 1967–1972. [CrossRef] [PubMed]
4. Deng, G.F.; Teng, K.F. Economic Insect Fauna of China Fasc. 40 Acari: Dermanyssoidae; Science Press: Beijing, China, 1993. (In Chinese)
5. Rosen, S.; Yeruham, I.; Braverman, Y. Dermatitis in humans associated with the mites Pyemotes tritici, Dermanyssus gallinae, Ornithonyssus bacoti and Androlaelaps calisalis in Israel. Arch. Dermatol. Res. 1998, 290, 169–175. [PubMed]
6. George, D.R.; Finn, R.D.; Graham, K.M.; Mul, M.F.; Maurer, V.; Moro, C.V.; Sparagano, O.A. Should the poultry red mite Dermanyssus gallinae be of wider concern for veterinary and medical science? Parasite Vector 2015, 8, 178. [CrossRef] [PubMed]
7. Beck, W.; Föster-Holst, R. Tropical rat mites (Ornithonyssus bacoti)—Serious ectoparasites. J. Disch. Dermatol. Ges. 2009, 7, 667–670. [CrossRef] [PubMed]
8. Lopatina Iv, V.; Petrova, A.D.; Timoshkov, V.V. The gamasid mites (Parasitiformes: Mesostigmata) of small mammals from undeveloped land in Moscow. Parazitologija 1998, 32, 118–128. [PubMed]
9. Lucky, A.W.; Sayers, C.; Argus, J.D.; Lucky, A. Avian mite bites acquired from a new source–pet gerbils: Report of 2 cases and review of the literature. Arch. Dermatol. 2001, 137, 167–170. [PubMed]
10. Goldman, L. Lichen urticatus syndrome as a manifestation of sensitivity to bites from various species of arthropods. Arch. Derm. Syphilit. 1948, 58, 74–79. [CrossRef]
11. Yin, P.W.; Guo, X.G.; Jin, D.C.; Fan, R.; Zhao, C.F.; Zhang, Z.W.; Huang, X.B.; Mao, K.Y. Distribution and Host Selection of Tropical Rat Mite, Ornithonyssus bacoti, in Yunnan Province of Southwest China. Animals 2021, 11, 110. [CrossRef]
12. Yin, P.W.; Guo, X.G.; Jin, D.C.; Song, W.Y.; Zhang, L.; Zhao, C.F.; Fan, R.; Zhang, Z.W.; Mao, K.Y. Infestation and Seasonal Fluctuation of Gamasid Mites (Parasitiformes: Gamasida) on Indochinese Forest Rat, Rattus andamanensis (Rodentia: Muridae) in Southern Yunnan of China. Biology 2021, 10, 1297. [CrossRef]
13. Reeves, W.K.; Loftis, A.D.; Szumlas, D.E.; Abbassy, M.M.; Helmy, I.M.; Hanafi, H.A.; Dasch, G.A. Ricketsial pathogens in the tropical rat mite Ornithonyssus bacoti (Acari: Macronyssidae) from Egyptian rats (Rattus spp.). Exp. Appl. Acarol. 2007, 41, 101–107. [CrossRef] [PubMed]
14. Xu, X.J.; Tesh, R.B. The role of mites in the transmission and maintenance of Hantaan virus (Hantavirus: Bunyaviridae). J. Infect. Dis. 2014, 210, 1693–1699. [CrossRef] [PubMed]
15. Jiang, F.C.; Wang, L.; Wang, S.; Zhu, L.; Dong, L.Y.; Zhang, Z.T.; Hao, B.; Yang, F.; Liu, W.B.; Deng, Y.; et al. Meteorological factors affect the epidemiology of hemorrhagic fever with renal syndrome via altering the breeding and hantavirus-carrying states of rodents and mites: A 9 years’ longitudinal study. Emerg. Microbes Infect. 2017, 6, e104. [CrossRef] [PubMed]
16. Zhang, Y.; Zhu, J.; Tao, K.; Wu, G.; Guo, H.; Wang, J.; Zhang, J.; Xing, A. Proliferation and location of Hantaan virus in gamasid mites and chigger mites, a molecular biological study. Natl. Med. J. China 2002, 82, 1415–1419. (In Chinese)
17. Renz, A.; Wenk, P. Intracellular development of the cotton-rat filaria Litomosoides carinii in the vector mite Ornithonyssus bacoti. T. Roy. Soc. Trop. Med. H. 1981, 75, 166–168. (In Chinese)
18. Xi, Y.F.; Xu, J.J.; Ren, Y.F.; Yuan, Y.Z.; Tao, G.Y.; Zhao, M.L.; Xu, Y.Y. Drug screening with the cotton-rat model of filariasis. Acta Pharm. Sin. 1979, 14, 455–460. (In Chinese)
19. Ming, Q.Z.; Shi, Z.T. The tentative inquiry on the formation time in the region of three parallel rivers. Yunnan Geog. Environ. Res. 2006, 18, 1–4. (In Chinese) [CrossRef]
20. Zhang, R.Z. Geological events and mammalian distribution in China. Acta Zool. Sin. 2002, 48, 141–153.
21. Wu, S.H.; Dai, E.F.; He, D.M. Major Research Perspectives on Environmental and Developmental Issues for the Longitudinal Range-Gorge Region (LRGR) in Southwestern China. Prog. Geog. 2005, 24, 31–40. (In Chinese) [CrossRef]
22. Ma, C.L.; Robert K, M.; Chen, W.Y.; Zhou, Z.K. Plant diversity and priority conservation areas of Northwestern Yunnan, China. Biodivers. Conserv. 2007, 16, 757–774. [CrossRef]
23. Moseley, R.K. Historical Landscape Change in Northwestern Yunnan, China. Mt. Res. Dev. 2006, 26, 214–219. [CrossRef]
Animals 2022, 12, 3217

52. Zhou, G.Z.; Wang, Z.; Huang, W.C.; Li, P.; Yin, G.Q.; Wen, Y.; Cheng, X.H.; Xue, J. Survey of gamasid mite species and evaluation of gamasid mite control efficacy in military camps in Shandong province, China. Chin. J. Vector Biol. Control 2013, 24, 535–537. [CrossRef]

53. Zhou, S.H.; Deng, Y.Q.; Li, S.Y.; Wang, L.L. Supplementary records of Dermaptyssoid mites (Acari: Parasitiformes) in Fujian province. Chin. J. Vector Biol. Control 2012, 23, 467–470. (In Chinese)

54. Mašán, P. A revision of the family Ameroseiidae (Acari, Mesostigmata), with some data on Slovak fauna. Zootaxa 2017, 704, 1–228. [CrossRef]

55. Vinarski, M.V.; Korallo-Vinarskaya, N.P. An annotated catalogue of the gamasid mites associated with small mammals in Asian Russia. The family Hirstionyssidae (Acari: Mesostigmata: Gamasina). Zootaxa 2020, 4838, 102–118. [CrossRef]

56. Salmiane, I.; Heldt, S. Predatory soil mites (Acari, Mesostigmata, Gamasina) from the Western Baltic Coast of Latvia. Acarologia 2001, 41, 295–301.

57. He, J.; Lin, S.; Li, J.; Yu, J.; Jiang, H. Evolutionary history of zoogeographical regions surrounding the Tibetan Plateau. Commun. Biol. 2020, 3, 415. [CrossRef]

58. Kai, H.; Jiang, X. Sky islands of southwest China: I. An overview of phyleogeographic patterns. Chin. Sci. Bull. 2014, 59, 1–13.

59. Wang, Y.; Si Tu, Q.; Li, Z.H. Relationship Between Regional Geographic Environment Characteristics and Soil and Water Loss of Northwest Yunnan Province. Bull. Soil Water Conserv. 2003, 23, 1–5+57. (In Chinese) [CrossRef]

60. Cavarzere, V.; Roper, J.J.; Marchi, V.; Silveira, L.F. Geographical drivers of altitudinal diversity of birds in the Atlantic Forest. Biologia 2021, 76, 3275–3285. [CrossRef]

61. Ghimire, A.; Rokaya, M.B.; Timsina, B.; Bilá, K.; Kindlmann, P. Diversity of birds recorded at different altitudes in central Nepal Himalayas. Ecol. Indic. 2021, 127, 107730. [CrossRef]

62. Heaney, L.R. Small mammal diversity along elevational gradients in the Philippines: An assessment of patterns and hypotheses. Global Ecol. Biogeogr. 2001, 10, 15–39. [CrossRef]

63. Koh, C.N.; Lee, P.F.; Lin, R.S. Bird species richness patterns of northern Taiwan: Primary productivity, human population density, and habitat heterogeneity. Divers. Distrib. 2010, 12, 546–554. [CrossRef]

64. Gao, J.; Zhang, X.; Luo, Z.F.; Lan, J.J.; Liu, Y.H. Elevational diversity gradients across seed plant taxonomic levels in the Lancang River Nature Reserve: Role of temperature, water and the mid-domain effect. J. For. Res. 2018, 29, 1121–1127. [CrossRef]

65. Christy, M.M. Global analysis of reptile elevational diversity. Global Ecol. Biogeogr. 2010, 19, 541–553. [CrossRef]

66. Koh, C.N.; Lee, P.F.; Lin, R.S. Bird species richness patterns of northern Taiwan: Primary productivity, human population density, and habitat heterogeneity. Divers. Distrib. 2010, 12, 546–554. [CrossRef]

67. Li, B.; Guo, X.G.; Zhao, C.F.; Zhang, Z.W.; Mao, K.Y.; Peng, P.Y.; Huang, X.B.; Qian, T.J. Infestation of chigger mites on the Yunnan red-backed vole (Eothenomys miltetus) in Yunnan Province of southwest China between 2001 and 2015. Biologia 2021, 77, 61–68. [CrossRef]

68. Li, B.; Guo, X.G.; Zhao, C.F.; Zhang, Z.W.; Fan, R.; Peng, P.Y.; Song, W.Y.; Ren, T.G.; Zhang, L.; Qian, T.J. Infestation of chigger mites on Chinese mole shrew, Anourosorex squamipes, in Southwest China and ecological analysis. Parasite 2022, 29, 39. [CrossRef]

69. Peng, P.Y.; Guo, X.G.; Song, W.Y.; Hou, P.; Zou, Y.J.; Fan, R. Ectoparasitic chigger mites on large oriental vole (Eothenomys miltetus) across southwest, China. Parasitol. Res. 2016, 115, 623–632. [CrossRef] [PubMed]

70. Feng, P.Y.; Guo, X.G.; Song, W.Y.; Hou, P.; Zou, Y.J.; Fan, R. Ectoparasitic chigger mites on large oriental vole (Eothenomys miltetus) across southwest, China. Parasitol. Res. 2016, 115, 623–632. [CrossRef] [PubMed]

71. Heukelbach, J.; Feldmeier, H. Ectoparasitic Infestations. Curr. Infect. Dis. Rep. 2007, 9, 995–1015. [CrossRef]

72. Ding, F.; Guo, X.G.; Song, W.Y.; Fan, R.; Zhao, C.F.; Mao, K.Y.; Zhang, Z.W.; Peng, P.Y.; Lin, H.; Dong, W.G.; et al. Infestation and distribution of chigger mites on Brown rat (Rattus norvegicus) in Yunnan Province, Southwest China. Trop. Biomed. 2021, 38, 111–121. [CrossRef] [PubMed]

73. Bhuyan, P.J.; Nath, A.J. Record of Tropical Rat Mite, Ornithonyssus bacoti (Acari: Mesostigmata: Macronyssidae) from Domestic and Peridomestic Rodents (Rattus ratus) in Nilgiris, Tamil Nadu, India. J. Arthropod Borne Dis. 2015, 10, 98–101. [PubMed]

74. Heukelbach, J.; Feldmeier, H. Ectoparasitic Infestations. Curr. Infect. Dis. Rep. 2005, 7, 373–380. [CrossRef]

75. McGill, B.J.; Etienne, R.S.; Gray, J.S.; Alonso, D.; Anderson, M.J.; Benecha, H.K.; Dornelas, M.; Enquist, B.J.; Green, J.L.; He, F.; et al. Species abundance distributions: Moving beyond single prediction theories to integration within an ecological framework. Ecol. Lett. 2007, 10, 995–1015. [CrossRef]

76. Guo, X.G.; Qian, T.J.; Meng, X.Y.; Dong, W.G.; Shi, W.X.; Wu, D. Preliminary analysis of chigger communities associated with house rats (Rattus rattus) from six counties in Yunnan, China. Syst. Appl. Acarol. 2006, 11, 13–21.

77. Engen, S. Heterogeneous communities with lognormal species abundance distribution: Species–area curves and sustainability. J. Theor. Biol. 2007, 249, 791–803. [CrossRef]

78. Ding, F.; Jiang, W.L.; Guo, X.G.; Fan, R.; Zhao, C.F.; Zhang, Z.W.; Mao, K.Y.; Xiang, R. Infestation and Related Ecology of Chigger Mites on the Asian House Rat (Rattus tanezumi) in Yunnan Province, Southwest China. Korean J. Parasitol. 2021, 59, 377–392. [CrossRef]

79. Matthews, T.J.; Whittaker, R.J. On the species abundance distribution in applied ecology and biodiversity management. J. Appl. Ecol. 2015, 52, 443–454. [CrossRef]