Expression and significance of cyclooxygenase-2 mRNA in benign and malignant ascites

Jing Lu, Xiao-Feng Li, Li-Xia Kong, Lin Ma, Su-Huan Liao, Chang-You Jiang

Jing Lu, Xiao-Feng Li, Li-Xia Kong, Su-Huan Liao, Department of Gastroenterology, the Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai 519000, Guangdong Province, China
Lin Ma, Department of Oncology, the Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai 519000, Guangdong Province, China
Chang-You Jiang, Health Bureau of Jinwan District, Zhuhai 519000, Guangdong Province, China

Author contributions: Lu J performed the research and drafted the article; Li XF designed the research and revised the article; Kong LX and Ma L critically revised the article; Liao SH and Jiang CY analyzed the data and interpreted the results.

Supported by Fund of Science and Technology Plan Project in Zhuhai, No. PC20061084

Correspondence to: Dr. Lin Ma, Department of Oncology, the Fifth Affiliated Hospital of Sun Yat-Sen University, No. 52, Meihua East Road, Zhuhai 519000, Guangdong Province, China. linma1227@hotmail.com

Telephone: +86-756-2528845 Fax: +86-756-2528845

Received: June 2, 2013 Revised: August 8, 2013 Accepted: September 3, 2013 Published online: October 28, 2013

Abstract

AIM: To investigate the mRNA expression of cyclooxygenase-2 (COX-2) in benign and malignant ascites, and to explore the difference in COX-2 mRNA expression among different diseases.

METHODS: A total of 36 samples were collected from the Fifth Affiliated Hospital of Sun Yat-Sen University and divided into two experimental groups: benign ascites (n = 21) and malignant ascites (n = 15). Benign ascites included cirrhotic ascites (n = 10) and tuberculous ascites (n = 5). Malignant ascites included oophoroma (n = 7), cancer of colon (n = 5), cancer of the liver (n = 6), gastric cancer (n = 2), and bladder carcinoma (n = 1). The mRNA expression of COX-2 in ascites was examined with reverse transcriptase polymerase chain reaction (RT-PCR) technology, and the positive rate of COX-2 mRNA was compared between different diseases.

RESULTS: The positive rate of COX-2 mRNA in malignant ascites was 42.9% (9/21), which was significantly higher than in benign ascites, 6.7% (1/15), difference being significant between these two groups (χ² = 4.051, P = 0.044). The proportion of the positive rate in the malignant ascites was as follows: ovarian cancers 57.1% (4/7), colon cancer 40.0% (2/5), liver cancer 33.3% (2/6), gastric cancer 50.0% (1/2), and bladder cancer 0.00% (0/1). However, there was no significant difference in COX-2 mRNA expression among various tumors with malignant ascites (χ² = 1.614, P = 0.806). Among the benign ascites, COX-2 mRNA levels were different between the tuberculous ascites (0/5) and cirrhotic ascites (1/10), but there was no significant difference (P = 1.000).

CONCLUSION: COX-2 mRNA, detected by RT-PCR, is useful in the differential diagnosis of benign and malignant ascites, which also has potential value in the clinical diagnosis of tumors.

© 2013 Baishideng. All rights reserved.

Key words: Ascites; Cyclooxygenase-2 mRNA; Reverse transcriptase polymerase chain reaction; Malignant tumor

Core tip: Ascites is a common symptom caused by a variety of diseases, the differential diagnosis between benign ascites and malignant ascites is one of the most important issues in clinical practice. Cytologic examinations and ascites tumor markers can provide important evidence, but their sensitivity and specificity are far from satisfactory. Our study aimed to explore the difference in cyclooxygenase-2 (COX-2) mRNA expression among different diseases. Our research suggests that COX-2 mRNA can be detected by reverse transcriptase polymerase chain reaction, but there are no significant differences in the expression of COX-2 mRNA among benign and malignant ascites.
various disease types with benign or malignant ascites.

Lu J, Li XF, Kong LX, Ma L, Liao SH, Jiang CY. Expression and significance of cyclooxygenase-2 mRNA in benign and malignant ascites. *World J Gastroenterol* 2013; 19(40): 6883-6887 Available from: URL: http://www.wjgnet.com/1007-9327/full/v19/i40/6883.htm DOI: http://dx.doi.org/10.3748/wjg.v19.i40.6883

INTRODUCTION

Ascites is a gastroenterological term for an accumulation of fluid in the peritoneal cavity, which might result from cirrhosis, tuberculous peritonitis or a malignant tumor.

The detection of exfoliated ascites cells is often used to identify these diseases in the clinic, but there is no economic, practical, or effective index with a high specificity. Therefore, it is important to discriminate benign from malignant ascites for clinical diagnosis and treatment [1,2].

In recent years, cyclooxygenase-2 (COX-2) has been extensively studied as an inducible expression protein, and has been detected in various tumor tissues in epidemiologic and cytologic researches [3,4], such as pancreatic cancer, colorectal carcinoma, non-small lung cancer and so on. Research has found that COX-2 expression is unregulated in precancerous lesions and preinvasive carcinoma and positively correlates with tumor invasion and lymphatic metastasis [5,6]. Therefore, increasing expression of COX-2 might occur in the early stages of the tumor and the detection of COX-2 level is helpful for early diagnosis.

However, there are only few studies regarding COX-2 expression in benign and malignant ascites. We employed reverse transcriptase polymerase chain reaction (RT-PCR) technology to detect the expression level of COX-2 in benign and malignant ascites, and analyzed the difference in mRNA expression of COX-2 among different disease types.

MATERIALS AND METHODS

Subjects

A total of 36 patients with ascites who underwent abdominoentesis at the Fifth Affiliated Hospital of Sun Yat-Sen University between August 2011 and March 2012 were selected. The subjects were divided into benign and malignant groups according to medical history, physical examination, B ultrasound, computed tomography (CT), pathology and the presence of exfoliated tumor cells. There were 15 patients with benign ascites, including nine males and six females, aged 43-75 years with an average age of 62.5 ± 1.8 years; the patients consisted of 10 cases of cirrhosis and five cases of tuberculous peritonitis according to disease type. There were 21 patients with malignant ascites, including 11 males and 10 females, aged 41-79 years with an average age of 58 ± 2.3 years; the patients consisted of seven cases of ovarian cancer, five cases of colon cancer, six cases of liver cancer, two cases of gastric cancer and one case of bladder cancer according to disease type.

The samples were centrifuged at 3000 r/min for 15 min immediately after collection from the patients, and the supernatant was removed. The pellet was stored in -80 ℃ refrigerator for total RNA extraction.

The sample collection was approved by the Ethics Committee of the hospital and all patients provided written informed consent.

RT-PCR

Primer design: The gene sequences of the primers were designed with Primer Premier 5.0 software according to the literature [5-6] and mRNA sequences for human COX-2 reported by NCBI; GAPDH was selected as the positive control primer for RT-PCR and synthesized by the Shanghai ShengGong Biological Engineering Co., Ltd., China (Table 1).

Total RNA extraction: Total RNA was extracted from benign and malignant ascites with RNA extraction reagent (Trizol, Invitrogen, United States), and its content and purity were measured by ultraviolet spectrophotometry [1.9 < D(260)/D(280) < 2.1].

Synthesis of cDNA by reverse transcription: Reverse transcription was performed to synthesize cDNA with the Avian Myeloblastosis Virus (AMV) Reverse Transcriptase Kit, which contained AMV reverse transcriptase and oligo(dT)18 primer. The RT-PCR reaction mixture of 10 μL contained 1 μL extracted total RNA, 2 μL MgCl₂, 1 μL 10× RNA PCR buffer, 3.75 μL RNase free dH₂O, 1 μL dNTP mixture, 0.25 μL RNase inhibitor, 0.5 μL AMV reverse transcriptase and 0.5 μL Oligo dT-adaptor primer. The reaction conditions were set at 30 ℃ for 10 min, 50 ℃ for 30 min, 99 ℃ for 5 min and 5 ℃ for 5 min.

PCR amplification: After reverse transcription, cDNA was used as the template in PCR amplification with primers for COX-2 and glyceraldehyde-3-phosphate dehydro-

Table 1 Primer sequences of cyclooxygenase-2 and glyceraldehyde-3-phosphate dehydrogenase genes
Primer
COX-2
GAPDH

COX-2: Cyclooxygenase-2; GAPDH: Glyceraldehyde-3-phosphate dehydrogenase.
mRNA expression of COX-2 among different disease types in malignant group

The proportion of the positive rate in the malignant ascites was as follows: ovarian cancer 57.1% (4/7), colon cancer 40.0% (2/5), liver cancer 33.3% (2/6), gastric cancer 50.0% (1/2), and bladder cancer 0.00% (0/1). However, there was no significant difference in COX-2 mRNA expression among various tumors with malignant ascites ($\chi^2 = 1.614, P = 0.806; P > 0.05$), (Table 2).

DISCUSSION

COX, or prostaglandin-endoperoxide synthase (PGH), is a major rate-limiting enzyme in the synthesis of prostaglandin, which is able to metabolize arachidonic acid into prostaglandin products[7-9]. COX-2, an inducible protein expression, is absent in normal cells and tissues, but is rapidly synthesized and expressed under pathological conditions or after stimulation (such as inflammation, hypoxia, laser radiation, ultraviolet radiation, etc). COX-2 is involved in a variety of pathophysiological processes, such as the occurrence and development of inflammation and cancer[9]. At present, mRNA expression of COX-2 in various tumor tissues has been extensively investigated; increasing numbers of research have demonstrated that COX-2 expression is unregulated in precancerous lesions and preinvasive carcinoma and positively correlates with tumor invasion and lymphatic metastasis[11,14]. Therefore, increased expression of COX-2 might occur in the early stage of the tumor and the detection of COX-2 level is helpful for early diagnosis[15,16].

Ascites is a common symptom of many diseases and the differential diagnosis of benign and malignant ascites is important in clinical practice. So far, smear tests of exfoliated cells from ascites and the detection of tumor markers, such as CA-125, CA19-9 and AFP, have been employed to identify ascites induced by malignant tumors, but these indices are far from satisfactory in terms of sensitivity and specificity, so it is important to search for a new indicator of benign and malignant ascites[17-21].

Since COX-2 has a close relationship with tumors, its expression in malignant ascites has become an issue that is worth exploring.

We used RT-PCR to assess the mRNA expression of COX-2 in 21 cases of malignant ascites. The positive rate of COX-2 mRNA was 42.9% (9/21), which was significantly higher than in benign ascites, 6.7% (1/15), the difference being significant between the two groups ($\chi^2 = 4.051$, $P = 0.044$), (Table 2).

mRNA expression of COX-2 among different disease types in benign group

Among the benign ascites, COX-2 mRNA levels were different between the tuberculous ascites (0/5) and cirrhotic ascites (1/10), but the difference being not significant ($P = 1.000$), (Table 2).

RESULTS

mRNA expression of COX-2 in benign and malignant ascites

The positive rate of COX-2 mRNA in malignant ascites was 42.9% (9/21), which was significantly higher than in benign ascites, 6.7% (1/15), the difference being significant between the two groups ($\chi^2 = 4.051$, $P = 0.044$), (Table 2).

mRNA expression of COX-2 among different disease types in benign group

Among the benign ascites, COX-2 mRNA levels were different between the tuberculous ascites (0/5) and cirrhotic ascites (1/10), but the difference being not significant ($P = 1.000$), (Table 2).
potential indicator for the identification of benign and malignant ascites, and an effective supplement to common indices, such as CA125, CA19-9 and AFP.

There were no significant differences in the expression of COX-2 mRNA among various disease types with benign or malignant ascites ($P > 0.05$), which was probably associated with the small number of samples and requires further confirmation. We employed one step RT-PCR, which was easy to perform, required little contact with experimental samples and avoided unnecessary contamination, and also facilitated further research and the development of clinical detection kits.

In conclusion, differential diagnosis between benign and malignant ascites is of importance and is helpful for designing a treatment plan. We hope our study can provide a new insight to explore this field in the future.

COMMENTS

Background

In recent years, cyclooxygenase-2 (COX-2) has been extensively studied as an inducible expression protein, and has been detected in various tumor tissues in epidemiological and cytological research. Therefore, increased expression of COX-2 might occur in the early stage of the tumor and the detection of COX-2 level is helpful for early diagnosis.

Research frontiers

At present, mRNA expression of COX-2 in various tumor tissues has been extensively investigated; more and more research has demonstrated that COX-2 expression is unregulated in precursor lesions and preinvasive carcinoma and positively correlates with tumor invasion and lymphatic metastasis. Therefore, increased expression of COX-2 might occur in the early stages of the tumor and the detection of COX-2 level is helpful for early diagnosis.

Innovations and breakthroughs

This study employed RT-PCR to assess the mRNA expression of COX-2 in 21 cases of malignant ascites. The positive rate of COX-2 mRNA was 42.9% (9/21), which was significantly higher than in benign ascites, 6.7% (1/15), ($P < 0.05$). This result indicated that the measurement of COX-2 mRNA facilitates the differential diagnosis between benign and malignant ascites and has a potential value for clinical diagnosis and screening of tumors.

Applications

Differential diagnosis between benign and malignant ascites is of importance and is helpful for designing a treatment plan. The study can provide a new insight to this field in the future.

Peer review

This is an interesting manuscript about mRNA expression of COX-2 in benign and malignant ascites. The authors made a good research on this topic. Differences in COX-2 mRNA expression among different diseases were explored. The data is well presented and discussed.

REFERENCES

1. Metzgeroth G, Kuhn C, Schultheis B, Hehlmann R, Hastak J. Diagnostic accuracy of cytology and immunocytology in carcinomatous effusions. Cytopathology 2008; 19: 205-211 [PMID: 17573908 DOI: 10.1111/j.1365-2305.2007.00468.x]

2. Gu H, Deng YX, Yan L, Zhang GY. The diagnosis potential of the ratio for the differentiation between benign and malignant ascites by the combined measurement of ascites and serum tumor markers as well as the F/S ratio. Zhongguo Xi -anahi YiXue Zazhi 2011; 14: 1595-1599

3. Hill R, Li Y, Tran LM, Dry S, Calvopina JH, Garcia A, Kim C, Wang Y, Donahue TR, Herschman HR, Wu H. Cell intrinsic role of COX-2 in pancreatic cancer development. Mol Cancer Ther 2012; 11: 2127-2137 [PMID: 22784710 DOI: 10.1158/1535-7163.MCT-12-0342]

4. Jiah J, Wang J, Zhao W. COX-2 in non-small cell lung cancer: a meta-analysis. Clin Chirn Act Chn 2013; 419: 26-32 [PMID: 23384501 DOI: 10.1016/j.cca.2013.01.012]

5. Lurje G, Ballbohmer D, Collet PH, Xi H, Baldus SE, Braben- der J, Metzger R, Heihmann M, Neel S, Drebber U, Holocher AH, Schneider PM. COX-2 mRNA expression is significantly increased in acid-exposed compared to nonexposed squamous epithelium in gastroesophageal reflux disease. J Gastrointest Surg 2007; 11: 1105-1111 [PMID: 17619937 DOI: 10.1017/s116500-0011-7]

6. Li Q, Liu N, Chen B, Zhou L, Wang Y, Wang Y, Sun J, Fan Z, Liu RH. Helicobacter pylori enhances cyclooxygenase 2 expression via p38MAPK-ATF-2 signaling pathway in MKNF4 cells. Cancer Lett 2009; 278: 97-103 [PMID: 19201083 DOI: 10.1016/j.canlet.2008.12.032]

7. Boutaud O, Oates JA. Study of inhibitors of the PGH synthase for which potency is regulated by the redox state of the enzymes. Methods Mol Biol 2010; 644: 67-90 [PMID: 20645166]

8. Patruno C. The PGH-synthase system and isozyme-selective inhibition. J Cardiovasc Pharmacol 2006; 47 Suppl 1: S1-S6 [PMID: 16785823 DOI: 10.1097/00005153-20060501-00002]

9. Zhang JB, Gu XY, Zhu KH, He S, Zhou JY, Yu L. The clinical significance of PTEN, Survivin and COX-2 protein expressions in breast carcinoma tissues. Zhonghua Zhongliu Fangzi Zazhi 2010; 17: 1927-1930

10. Zhou XN, Hu F, Chen Y, Tang Y. The expressions and correlation of COX-2 and ERmRNA in breast carcinoma tissues and their relevant research. Zhonghua Zhongliu Fangzi Zazhi 2008; 15: 758-761

11. Xia W, Zhao T, Ly J, Xu S, Shi J, Wang S, Han X, Sun Y. Celecoxib enhanced the sensitivity of cancer cells to anticancer drugs by inhibition of the expression of P-glycoprotein through a COX-2-independent manner. J Cell Biochem 2009; 108: 181-194 [PMID: 19562670 DOI: 10.1002/jcb.22239]

12. Wu ZL, Sun GP, Wu Q, Fan LL, Wu WZ. Expression and its correlation of Cox-2 and Her-2/neu in gastric carcinoma tissues. Antai Yixiao 2010; 14: 1171-1173

13. Salimi M, Esfahani M, Habibzadeh N, Aslani HR, Amanzadeh A, Esfandiary M, Sedaghati B, Bdgali SA, Gahremani MH. Change in nicotine-induced VEGF, PGE2 AND COX-2 expression following COX inhibition in human oral squamous cancer. J Environ Pathol Toxicol Oncol 2012; 31: 349-356 [PMID: 23934447 DOI: 10.1615/JEnviroPatholToxicolOncol.2013005365]

14. Hua TR, Meng XY, Wang GY, Zhang Q, Ren J, Jiu J, Chen G. Detection of COX-2, MMP-9, VEGF and RET in thyroid tissues and significances in primary diagnosis of papillary thyroid carcinoma. Jilin Daxue Xuebao | Jilin , 2011; 37: 712-717

15. Huang QY, Song FY, Yi JG. The expression and clinical significance of cyclooxygenase-2 and vascular endothelial growth factor-C in oral squamous cell carcinoma. Linchuang Koufang YiXue Zazhi 2011; 27: 337-339

16. Chen BP, Ling SJ. Value of Combined Detection of CEA, CA 19-9 and 125 in Differential Diagnosis Between Benign and Malignant Ascites. linchuang Xiaoheubing Zazhi 2010; 22: 208-210

17. Passebos-Caume K, Li G, Lambert C, Cottier M, Gentil-Perret A, Fournel P, Péro M, Genin C. Evaluation of a panel of molecular markers for the diagnosis of malignant serous effusions. Clin Cancer Res 2005; 11: 6862-6867 [PMID: 16203775 DOI: 10.1158/1078-0432.CCR-05-0843]

18. Yu JR, Wu YJ, Fu PF, Lv KZ, Gao Y, Xie HY, Zheng SS. The clinical significance of carcinoenymogenic antigen mRNA detection in the peritoneal washes of stomach neoplasms patients. Zhonghua Pathougaizhe Zazhi 2004; 19: 771

Lu J et al. Detection of cyclooxygenase-2mRNA in ascites.
20 Lin YY, Li JJ, Chang CH, Lu YC, Hwang JJ, Tseng YL, Lin WJ, Ting G, Wang HE. Evaluation of pharmacokinetics of 111In-labeled VNB-PEGylated liposomes after intraperitoneal and intravenous administration in a tumor/ascites mouse model. Cancer Biother Radiopharm 2009; 24: 453-460 [PMID: 19694580 DOI: 10.1089/cbr.2008.0572]

21 Horton HM, Dorigo O, Hernandez P, Anderson D, Berek JS, Parker SE. IL-2 plasmid therapy of murine ovarian carcinoma inhibits the growth of tumor ascites and alters its cytokine profile. J Immunol 1999; 163: 6378-6385 [PMID: 10586027]

22 Zhang Q, Mu YS, Wang ZF, Wang XL, Gao F. Correlation of cyclooxygenase-2 mRNA expression with occurrence and development of esophageal carcinoma. Zhonghua Zhongliu Fangzhi Zazhi 2008; 15: 178-180

23 Shao N, Feng N, Wang Y, Mi Y, Li T, Hua L. Systematic review and meta-analysis of COX-2 expression and polymorphisms in prostate cancer. Mol Biol Rep 2012; 39: 10997-11004 [PMID: 23053989 DOI: 10.1007/s11033-012-2001-5]

24 Dixon DA, Blanco FF, Bruno A, Patrignani P. Mechanistic aspects of COX-2 expression in colorectal neoplasia. Recent Results Cancer Res 2013; 191: 7-37 [PMID: 22893198 DOI: 10.1007/978-3-642-30331-9_2]

P-Reviewers Ehrenpreis ED, Kalambokis G S-Editor Wang JL L-Editor Ma JY E-Editor Zhang DN
