Spin liquid versus dimer phases in an anisotropic J_1-J_2 frustrated square antiferromagnet

Alexandros Metavitsiadis,1 Daniel Sellmann,1 and Sebastian Eggert1

1Department of Physics, University of Kaiserslautern, D-67663 Kaiserslautern, Germany
(Dated: August 25, 2021)

The spin-1/2 J_1-J_2 antiferromagnet is a prototypical model for frustrated magnetism and one possible candidate for a realization of a spin liquid phase. The generalization of this system on the anisotropic square lattice is given by the J_1-J_2-J_1'-J_2' Heisenberg model, which can be treated by a renormalization group (RG) analysis of coupled frustrated chains. The J_1-J_2-J_1'-J_2'-model shows an interesting interplay of Néel order, dimerization, and spin liquid behavior. The analytical findings supported by numerical results indicate that for the isotropic model the phase at intermediate coupling strength $0.4J_1 \lesssim J_2 \lesssim 0.6J_1$ is not a spin liquid, but has instead a spontaneously staggered dimer order.

In the search of exotic quantum states and quantum phase transitions, frustrated antiferromagnetic systems have increasingly become the center of attention 1-2. The competing interactions between spins potentially lead to a large entropy even at low temperatures, which together with quantum fluctuations may give rise to quantum phases with unconventional or topological order parameters 3-5. In particular, the so-called spin liquid state without long range order of a conventional (local) order parameter has been much discussed in the literature ever since Anderson related this phase to high-temperature superconductivity 6. A solid proof for a system which shows a spin liquid ground state has long been elusive, due to inherent numerical and analytical problems in frustrated systems. Nonetheless, some good evidence for possible spin liquid states has recently been presented for the Hubbard model on the honeycomb 7 and the anisotropic triangular lattice 8, as well as for the Heisenberg model on a Kagome lattice 9-11, and on the J_1-J_2 frustrated square lattice 12-14.

In particular, the J_1-J_2 Heisenberg model has been treated with a vast array of theoretical methods 12-43, which is also the model originally considered by Anderson 6. Early numerical works have shown an intermediate phase between ordinary Néel order for $J_2 \lesssim 0.4J_1$ and collinear Néel order for $J_2 \gtrsim 0.6J_1$ 15, but the underlying correlations in this phase remain hotly debated. Most works have predicted a plaquette or columnar dimer order as the most likely scenario 16-20, but more recent numerical works have again proposed a spin liquid 12-14. Unfortunately, the issue may never be conclusively solved using numerical methods, since convergence with finite size and/or temperature of data from density matrix renormalization group (DMRG) or tensor matrix methods is very slow. In particular, it was shown recently for the related two-dimensional (2D) J-Q model that the finite size scaling on moderate lengths would lead to the prediction of a spin liquid, even though the system orders in the thermodynamic limit 14. In general, the slow convergence is related to the observation that spin liquid states are often very close in energy to competing states with dimer order 10-11.

In light of the disappointing numerical situation, analytical methods become very important, but the problem is difficult since series expansions 14-50, chain mean-field theories 43, spin wave theories 23, or coupled cluster methods 29-40-41 have to incorporate frustrating...
interactions, which tend to cancel each other. Therefore, the methods often become unstable or diverge near the most interesting phase transitions. Another very promising analytical approach is to couple one-dimensional (1D) systems [17, 43, 49]. However, even in this case the frustrating inter-chain interactions tend to cancel each other so that interesting new phases only come up in higher order treatments at intermediate inter-chain coupling strength. This is not necessarily a fundamental limitation, however, since the leading frustration effects can be taken into account within each chain if a different geometry is chosen as we will show here.

We now propose to study a more general J_1-J_2-J'_1-J'_2 model, which takes into account the effects of frustration within each chain before they are coupled, but at the same time allows to make exact analytic predictions in parts of the phase diagram. The model is given by the standard Heisenberg model on the 2D lattice

$$H = \sum_{\langle i,j \rangle} J_{ij} S_i \cdot S_j$$

with $J_{ij} > 0$ acquiring values according to the geometry of Fig. 4. Notice that the lattice vectors of the square lattice are tilted by 45° relative to the directions of the zig-zag chains. One special property of this model is that it can be treated by a renormalization group (RG) treatment of quasi 1D chains which becomes exact in the form of a Luttinger liquid.

In the presence of inter-chain couplings J'_1 and J'_2 the field theories of neighboring chains become coupled and give rise to a richer operator content [58–60]. Any chain in the system is coupled to two neighboring chains, so it is natural to consider three copies of the field theory that are weakly coupled. For self-consistency all three copies must renormalize in the same way, which implies the following symmetric formulation of the perturbing Hamiltonian in terms of three non-Abelian field theories $\nu = 1, 2, 3$

$$\delta H = 2\pi v \sum_{\nu=1}^3 \left[\lambda_0 J_{\nu,L} \cdot J_{\nu,R} + \lambda_1 n_{\nu} \cdot n_{\nu+1} + \lambda_2 \nu \cdot \nu+1 \right] + \lambda_0 (J_{\nu,L} \cdot J_{\nu+1,R} + \text{e.c.}) + \lambda_c (J_{\nu} \cdot n_{\nu+1} - \text{e.c.}),$$

with e.c. denoting the operator after exchanging the chain index, and the bare couplings are

$$\lambda_n = \Omega_0 \frac{(J'_2 - J'_1)}{2\pi v}, \quad \lambda_b = \frac{J'_1 + J'_2}{2\pi v}, \quad \lambda_c = \Omega_0 \frac{J'_1}{2\pi v}, \quad \nu = 0.$$

Letting the ultra-violet cutoff evolve according to $\Lambda(\ell) = \Lambda_0 e^{-\ell}$ and using the operator product expansion [61, 62], we get the following coupled differential equations for the coupling constants (see appendix)

$$\dot{\lambda}_a = \lambda_a \left[\lambda_b + \lambda_c \right] / \lambda_n,$$

$$\dot{\lambda}_b = \lambda_b \left[\lambda_c + \lambda_n \right] / \lambda_n,$$

$$\dot{\lambda}_c = \lambda_c \left[\lambda_a + \lambda_b \right] / \lambda_n,$$

where the dots denote normal ordering. The velocity is approximately $v = \pi d_1 - 1.65 J_2$ if a linear dependence on J_2 is assumed [52] while to leading order $J_2 \approx 1.723 (J_2 - J_1)$ where $J_1 \approx 0.241167 J_1$ [53, 54].

The leading instabilities of the chains are a finite staggered field $(−1)^x S(x) \propto n$ with effective scaling dimension $d_n = 1/2 + \lambda_n/4$ and a dimerization $(−1)^x S(x) \cdot S(x+1) \propto \epsilon$, where $\epsilon = \text{tr}_g$ has effective scaling dimension $d_\epsilon = 1/2 - 3\lambda_n/4$ [51]. The marginal coupling λ_ϵ itself renormalizes and becomes relevant for $\lambda_n > 0$, which leads to a dimerized phase for $J_1 < J_2 < \infty$ [53–54]. Therefore, the in-chain frustration J_2 determines if the leading instability is dimerization for $J_2 > J_1$ or Néel order for $J_2 < J_1$. For $J_2 = J_1$ the system is a spin liquid in form of a Luttinger liquid.
FIG. 2: The phase diagram of the anisotropic J_1-J_2-J_{1}'-J_{2}' model from the RG analysis as a function of the anisotropy r and the frustration f. The analytical functions in Eqs. (7) and (10) are indistinguishable on this scale.

scale Δ, below which scale invariance is lost and no further renormalization is possible.

The couplings λ_n and λ_c are the most relevant and likely dominate. A large negative $\lambda_n < 0$ corresponds to a regular Néel order while for a large positive value $\lambda_n > 0$ the Néel order on each chain is collinear to the neighboring chains. A large $\lambda_c < 0$ indicates a staggered dimer order on the 2D lattice while $\lambda_c > 0$ gives a herringbone dimer structure. Depending on the microscopic couplings, it is also possible for the system to acquire a dimerized or magnetically ordered ground state when one of the marginal couplings λ_n or λ_c, respectively, reaches first the strong coupling limit $[63, 64]$. Finally, the relevant coupling constant λ_c with scaling dimension $d_c = 3/2$ may also become largest, a case where no simple order can be assigned to the 2D system and a spin liquid phase is possible.

We now proceed to numerically integrate the RG equations (6) for different lattice parameters until one of the couplings becomes unity $[55, 64]$. The constant Ω in the definition of the initial values in Eq. (6) must be of order unity according to bosonization, but cannot be derived exactly, so that we choose $\Omega = 1$ here. We have also tested other values for the cutoff and Ω and found that the resulting phase diagram remains qualitatively the same, while the quantitative positions of the phase transition lines may change slightly (see below).

There are two key parameters of physical interest in this model, namely the frustration $f = J_2 / J_1 = J_{2}' / J_{1}'$, and the anisotropy $r = J_{2}' / J_1 = J_{2}' / J_{1}'$, which determine the value of all four couplings $[63, 64]$. The isotropic 2D model is recovered for $r \rightarrow 1$. The resulting phase diagram as a function of r and f is shown in Fig. 2.

Lower critical line - The lower critical line $f_{ci}(r)$ between the Néel and the staggered dimer order is determined by the competition between the relevant coupling $\lambda_n < 0$ and the marginally relevant coupling $\lambda_u > 0$. The relevant coupling λ_u is initially zero and remains so small that it does not play a role here. For a different choice of a strongly reduced value for $\Omega = 0.5$ the critical line is slightly shifted down by 10%, so that Néel order is slightly suppressed for $\Omega < 1$ (and slightly stabilized for $\Omega > 1$).

If we completely ignore all coupling constants except λ_n and λ_u in Eqs. (6), the lower critical line $f_{ci}(r)$ can be analytically determined to be

$$f_{ci}(r) = J_c / J_1 + \frac{a_1}{b_1 - \ln r}, \quad (7)$$

which is the critical value of frustration at which the breakdown energy scales for dimer order $\Delta_n = \Lambda_0 (1 - 1/\lambda_n)$ and Néel order $\Delta_n = \Lambda_0 \lambda_n$ become equal. In terms of the initial couplings we have $a_1 \approx 1/1.723$ and $b_1 \approx 1 + \ln(2\pi v/(J_1 - J_c)\Omega^2)$ from Eq. (6). Remarkably, this analytical form remains a rather accurate estimate for the fully integrated RG flow even in the presence of all other couplings, albeit with fitted values of $a_1 = 0.459$ and $b_1 = 2.629$. In the limit $r \rightarrow 1$, we predict the critical point $f_{ci}(1) \rightarrow 0.416$ for the transition to a staggered dimerized phase in the 2D J_1-J_2 square antiferromagnet.

Upper critical line - While a single chain remains in the dimer phase for $J_c < J_2 < \infty [55, 57]$, in the J_1-J_2-J_{1}'-J_{2}'-model a large J_2 can destroy the dimer phase $[60]$. This behavior defines an upper critical line $f_{cu}(r)$, with $f_{cu}(0) \rightarrow \infty$, beyond which the system is driven out of the dimer phase. The RG Eqs. (6) cannot capture this behavior since it occurs for large deviations from $J_2 = J_c$. However, it is possible to consider the limit $J_2 \gg J_1$ as a new fixed point, where (unfrustrated) chains along the horizontal J_2 direction in Fig. 1 (bottom) are weakly coupled by all other couplings. The low energy physics is determined by the competition of a coupling with J_{2}' to every second chain (rectangular pattern) and a coupling J_1 or J_{1}' which couples even and odd chains (zigzag pattern) $[47, 55, 57, 67]$. Here the weaker coupling $J_{2}' < J_1$ can never dominate over J_1 in the course of the RG flow and can safely be ignored. Analogously to the RG analysis above, the perturbation of the independent chain fixed point is given by

$$\delta \mathcal{H}' = 2\pi v \sum_{\nu} \left[\lambda_n J_{\nu,L} \cdot J_{\nu,R} + \lambda_b (J_{\nu,L} \cdot J_{\nu+2,R} + \text{e.c.}) \right. \left. + \lambda_c \epsilon_{\nu} \epsilon_{\nu+2} + \lambda_n n_{\nu} \cdot n_{\nu+2} + \lambda_c \epsilon_{\nu} \partial_x \epsilon_{\nu+1} \right. \left. + \lambda_u (J_{\nu,L} \cdot J_{\nu+1,R} + \text{e.c.}) + \lambda_w n_{\nu} \cdot \partial_x n_{\nu+1} \right]. \quad (8)$$

The initial bare couplings λ_n and λ_u vanish, $\lambda_n \approx -0.36 [53]$, and

$$\lambda_u = \frac{2J_1}{2\pi v}, \quad \lambda_w = \Omega^2 \frac{J_1}{2\pi v}, \quad \lambda_b = \frac{J_{2}'}{2\pi v}, \quad \lambda_n = \Omega^2 \frac{J_{2}'}{2\pi v}.$$
The RG flow of this set of operators reads
\begin{align}
\dot{\lambda}_a &= \lambda_a^2 + \lambda_c - \lambda_n^2 + \frac{1}{4}(\lambda_w^2 - \lambda_n^2), \\
\dot{\lambda}_b &= \lambda_b^2 - \lambda_n \lambda_n + \lambda_n^2, \\
\dot{\lambda}_c &= \lambda_c + \frac{3}{2} \lambda_w \lambda_c - \frac{3}{2} \lambda_b \lambda_n, \\
\dot{\lambda}_n &= \lambda_n - \frac{1}{2} \lambda_a \lambda_n - \frac{1}{2} \lambda_b \lambda_n + \lambda_b \lambda_n, \\
\dot{\lambda}_u &= \lambda_u^2 - \frac{1}{2} \lambda_a \lambda_u + \frac{1}{2} \lambda_w^2, \\
\dot{\lambda}_v &= \frac{3}{4} \lambda_u \lambda_u - \frac{3}{2} \lambda_u \lambda_w, \\
\dot{\lambda}_w &= -\frac{1}{4} \lambda_a \lambda_a - \frac{1}{2} \lambda_u \lambda_u + \lambda_u \lambda_w,
\end{align}
where the rectangular ($\lambda_a, \lambda_c, \lambda_n$) and the triangular ($\lambda_b, \lambda_v, \lambda_w$) patterns renormalize almost independent of each other, connected only indirectly via the in-chain marginal coupling λ_c. In this case, the equations result in a competition between a collinear Néel order with dominant $\lambda_n > 0$ (rectangular pattern) and a dimer order with a dominant $\lambda_n > 0$ (zigzag pattern). The collinear Néel order is different from the regular Néel order discussed above, the dimer order is actually continuously connected to the staggered dimer order in the opposite limit $J_2 \gtrsim J_c$, as indicated in Fig. 2.

Again, ignoring all coupling constants except for λ_u and λ_n, we can find an analytic solution for the upper phase transition line $f_{c2}(r)$
\begin{equation}
 f_{c2}(r) = a_2 - b_2 \ln r, \quad (10)
\end{equation}
with $a_2 = (1 + \ln 2\pi v / \Omega^2) / \pi v$ and $b_2 = 1 / \pi v$. Remarkably, the integrated RG flow from all couplings is again fitted well by the same form with $a_2 = 0.606$ and $b_2 = 0.259$. Therefore, the critical point for transition from dimer to collinear Néel order in the 2D model is predicted to be $f_{c2}(1) = 0.606$.

We now turn to an independent numerical check of the phase diagram of a minimal model of two zig-zag chains with in-chain frustration J_2 and inter-chain coupling J'_2 using the DMRG algorithm [51]. This model can be used to study the stability of the different phases, but quantitative agreement with the full 2D J_1-J_2-J'_2-model should not be expected. To obtain the phase diagram we use the dimer order O_D parameter
\begin{equation}
 O_D = \frac{1}{2} \left[h_1(l) - h_1(l + 1) \right] + \left[h_2(l) - h_2(l + 1) \right], \quad (11)
\end{equation}
with $h_\nu(l) = \langle S_{\nu, l} \cdot S_{\nu, l+1} \rangle$ and the two rung entropy $\tilde{S} = \text{Tr} \bar{\rho} \ln \bar{\rho}$ in terms of the reduced density matrix $\bar{\rho}$ of two successive rungs [58, 60]. Possible anomalies in \tilde{S} or its derivative with respect to some microscopic coupling \tilde{S}' indicate a first or second order phase transition respectively [74, 75]. Measurements are taken close to the center of a system with open boundary conditions and we then apply finite size scaling as a function of both the number of DMRG states kept \tilde{M} and the size of the system L [74].

As shown in the inset of Fig. 3 the onset of the dimer order O_D coincides with the anomalies of the derivative $\tilde{S}' = d\tilde{S}/dJ_2$, indicating a second order phase transition. The resulting phase diagram as a function of $r = J'_2/J'_1$ and $f = J_2/J_1$ is shown in Fig. 3. In the intermediate region we find a non-zero order parameter O_D corresponding to an in-chain dimerization and a staggered dimer arrangement in the 2D model. Note that Néel order in the lower part of the phase diagram corresponds to ferromagnetically correlated rungs of the zig-zag chains and vice versa for the collinear order. The numerical data indicates that the intermediate phase is stable for all r.

In summary, we have considered the general anisotropic J_1-J_2-J'_1-J'_2-model in Fig. 4 which can be tuned from $r = 0$ (decoupled chains) to $r = 1$, where it becomes the famous J_1-J_2-model [62, 43], which is known to have an intermediate phase for $0.4 \lesssim J_2/J_1 \lesssim 0.6$ with strongly debated underlying correlations. One advantage of the J_1-J_2-J'_1-J'_2-model is that the RG analysis becomes exact in the vicinity of two fixed points in the phase diagram, namely close to $r \ll 1$, $J_2/J_1 = 0.241167$ and close to $r \ll 1 \ll f$. At those points a transition from a Néel order to a staggered dimer order and a transition from a staggered dimer order to Néel order can be rigorously shown. The phase transition lines behave asymptotically according to Eqs. (7) and (10). For larger values of r the RG solution becomes less reliable, but the predicted range of the staggered dimer phase $0.416 \lesssim J_2/J_1 \lesssim 0.606$ for $r = 1$ is in surprising agreement with previous studies. In principle,

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{fig3.pdf}
\caption{Numerical DMRG results for the phase diagram of two chains with in-chain frustration $f = J_2/J_1$ and inter-chain couplings $r = J'_2/J'_1$. Inset: Dimer order parameter (red solid line) and the derivative of the two rung entropy (blue dashed line) as a function of f for $J'_1 = J_1$ and $L = 128$ rungs.}
\end{figure}
the staggered dimer phase could also be limited for larger r, which is in fact the case for the corresponding ladder model without frustrating inter-chain couplings $J_2' = 0$ [66]. However, in the $J_1-J_2-J_1'-J_2'$ model there is a different symmetry for large and small values of r, so an intermediate phase must exist for all values of $r \leq 1$. The most likely scenario is therefore that the staggered dimer phase continuously extends from $r = 0$ to $r = 1$. Indeed, our numerical simulations and the RG equations do not indicate that the nature of this phase changes as a function of r. However, if the dimer phase does change it may do so only partially as a function of r and very recent numerical results indeed suggest that for $r = 1$ a spin liquid may exist in part of the phase diagram [14]. Exploring the full phase diagram of the $J_1-J_2-J_1'-J_2'$ model as a function of anisotropy with 2D numerical methods is therefore a promising future research direction.

We are thankful for valuable discussions with R. Dilenschneider, J. Sirker, I. Affleck, and N. Sedlmayr. This research was supported by the Collaborative Research Center SFB/TR49 of the DFG.

Appendix: Field theory and RG flow

Here, we sketch the derivation of RG equations [Eqs. (6) and (9)]. The formulation of the relevant operators for the bosonization of the $J_1-J_2-J_1'-J_2'$-model can be done in terms of fermionic operators. The currents are expressed as

$$J^a_\kappa(z_\kappa) = :\psi_{\kappa\eta}^\dagger \frac{\sigma^a_{\eta\eta'}}{2} \psi_{\kappa\eta'} : (z_\kappa),$$

where σ^a are the Pauli matrices, η's sum over the spin components ($\eta = \uparrow, \downarrow$), and κ denotes the chirality ($\kappa = R, L$ or $\kappa = +, -$ respectively). The chiral complex coordinates are $z_\kappa = -i \kappa x + v_\tau$. The dimerization and staggered magnetization operators are given by

$$\epsilon(z) \sim \frac{i}{2} :\psi_{R\eta} \psi_{L\eta} : (z) - :\psi_{L\eta} \psi_{R\eta} : (z),$$

$$n^a(z) \sim \frac{1}{2} \sigma^a_{\eta\eta'} :\psi_{R\eta}^\dagger \psi_{L\eta'} : (z) + :\psi_{L\eta}^\dagger \psi_{R\eta'} : (z),$$

where we simplify the notation using the variable z for operators which depend on both chiral variables z_R, z_L.

The OPEs between J^a_κ, ϵ, and n^b can be calculated using Wick’s theorem [77] and the two-point correlation function

$$(\langle \psi_{\kappa\eta}(z_\kappa) \psi^\dagger_{\kappa'\eta'}(w_{\kappa'}) \rangle) = \delta_{\kappa\kappa'} \delta_{\eta\eta'} \frac{\gamma}{z_\kappa - w_\kappa},$$

where γ depends on the chosen normalization: here $\gamma = 1/2\pi$. Keeping all relevant terms for the coupled field theories and after freezing out the charge degrees of freedom [76], the relevant OPEs are

$$J^a_\kappa(z_\kappa) J^b_{\kappa'}(w_{\kappa'}) = \delta_{\kappa\kappa'} \left[\frac{(\gamma^2/2) \delta_{ab}}{(z_\kappa - w_{\kappa})^2} + i \epsilon_{abc} \frac{J^c_\kappa(z_\kappa)}{z_\kappa - w_\kappa} \right],$$

$$J^a_\kappa(z_\kappa) \epsilon(w) = \frac{i \gamma/2}{z_\kappa - w_\kappa} n^a(w),$$

$$J^a_\kappa(z_\kappa) n^b(w) = \frac{i \gamma/2}{z_\kappa - w_\kappa} \left[\epsilon_{abc} n^c(w) - \kappa \delta_{ab} \epsilon(w) \right],$$

$$\epsilon(z) \epsilon(w) = \frac{\gamma^2}{|z - w|} - |z - w| J_R \cdot J_L(w),$$

$$n^a(z) \epsilon(w) = -i \gamma |z - w| \left[\frac{J^a_R(w_R)}{z_L - w_L} - \frac{J^b_R(w_L)}{z_R - w_R} \right],$$

$$n^a(z) n^b(w) = \frac{\gamma^2 \delta_{ab}}{|z - w|} + |z - w| \left[i \epsilon_{abc} \frac{J^c_R(w_R)}{z_L - w_L} + \frac{J^a_L(w_L)}{z_R - w_R} \right] + \tilde{Q}^{ab}(w),$$

with Q^{ab} denoting the zeroth order contraction between the fermionic fields. It turns out that only the trace of this operator is relevant for the calculation of the coupled field theories’ RG flow, which after freezing out the charge degrees of freedom reads

$$\tilde{Q}^{aa} = J_R \cdot J_L.$$
The evolution of the bare couplings is determined from the OPEs of the perturbing operators [Eqs. (4) and (8)] using (17)

$$\frac{d\lambda_k}{dl} = (2 - d_k)\lambda_k - \frac{\pi}{6} \sum_{i,j} C_{ijk} \lambda_i \lambda_j ,$$

where d_k is the scaling dimension of the O_k operator, v the velocity, and C_{ijk} the coefficient extracted from the OPE $O_i(z)O_j(w) \sim O_k(w)$. Comparing Eq. (16) with Eq. (43) in Ref. [58], where a related geometry was studied, one can notice two discrepancies in the coefficients of the equations for the evolution of λ_3 and λ_4. For the former, we believe the difference comes from the 1/2 factor difference of the second term in the current-current OPE, cf. Eq. (10) and Eq. (25) in Ref. [58]. For the latter, the difference arises from the symmetrization of the three chain geometry. A very illustrative example is the $O_{n}O_{n}$ OPE. From Eq. (10) we have

$$O_{n}(z)O_{n}(w) = \frac{\gamma^2}{|z - w|} \sum_{\nu} \left(J^a_{R,\nu} J^a_{L,\nu} + J^b_{R,\nu+1} J^b_{L,\nu+1} \right) - \frac{2n^2}{|z - w|} \sum_{\nu} \left(J^a_{R,\nu} J^a_{L,\nu+1} + J^b_{R,\nu+1} J^b_{L,\nu} \right).$$

For two coupled chains the summation should be omitted which would give a factor of two difference of the λ_n^2 contribution to λ_3 and λ_4. However, the summation is required for the symmetrization of the coupled field theories and therefore the two terms acquire the same coefficient.
[34] A. E. Trumper, L. O. Manuel, C. J. Gazza, and H. A. Ceccatto, Phys. Rev. Lett. 78, 2216 (1997).
[35] R. R. P. Singh, Z. Weihong, C. J. Hamer, and J. Oitmaa, Phys. Rev. B 60, 7278 (1999).
[36] R. R. P. Singh, W. Zheng, J. Oitmaa, O. P. Sushkov, and C. J. Hamer, Phys. Rev. Lett. 91, 017201 (2003).
[37] L. Capriotti and S. Sorella, Phys. Rev. Lett. 84, 3173 (2000).
[38] L. Capriotti, F. Becca, A. Parola, and S. Sorella, Phys. Rev. Lett. 87, 097201 (2001).
[39] J. Richter and J. Schulenburg, Eur. Phys. J. B 73, 117 (2010).
[40] R. F. Bishop, D. J. J. Farnell, and J. B. Parkinson, Phys. Rev. B 58, 6394 (1998).
[41] D. Schmalfuß, R. Darradi, J. Richter, J. Schulenburg, and D. Ihle, Phys. Rev. Lett. 97, 157201 (2006).
[42] L. Wang, Z. C. Gu, F. Verstraete, and X. G. Wen, arXiv:1112.3331.
[43] T. Senthil, A. Vishwanath, L. Balents, S. Sachdev, and M. P. A. Fisher, Science 303, 1490 (2004).
[44] A. W. Sandvik, Phys. Rev. B 85, 134407 (2012).
[45] O. A. Starykh, A. Furusaki and L. Balents, Phys. Rev. B 72, 094416 (2005); S. Eggert, I. Affleck, and M.D.P. Horton Phys. Rev. Lett. 89, 047202 (2002).
[46] T. Giamarchi, *Quantum physics in one dimension* (Oxford science publications, 2004).
[47] O. A. Starykh and L. Balents, Phys. Rev. Lett. 98, 077205 (2007).
[48] A. A. Nersesyan and A. M. Tsvelik, Phys. Rev. B 67, 024422 (2003).
[49] E. Dagotto and T. M. Rice, Science 271, 618 (1996).
[50] I. Affleck, Nuclear Physics B 205, 409 (1986).
[51] I. Affleck, D. Gepner, H. J. Schulz, T. Ziman, J. Phys. A: Math. Gen. 22, 511 (1989).
[52] S. Eggert and I. Affleck, Phys. Rev. B 46, 10866 (1992).
[53] S. Eggert, Phys. Rev. B 54, R9612 (1996).
[54] K. Nomura and K. Okamoto, Journal of Physics A: Mathematical and General 27, 5773 (1994).
[55] S. R. White and I. Affleck, Phys. Rev. B 54, 9862 (1996).
[56] F. D. M. Haldane, Phys. Rev. B 25, 4925 (1982).
[57] D. Allen and D. Sénéchal, Phys. Rev. B 55, 290 (1997).
[58] E. H. Kim, O. Legeza, and J. Sólyom, Phys. Rev. B 77, 205121 (2008).
[59] T. Vekua and A. Homecker, Phys. Rev. B 73, 214427 (2006).
[60] M. A. Martín-Delgado, J. Rodriguez-Laguna, and G. Sierra, Phys. Rev. B 72, 104435 (2005).
[61] D. Sénéchal “An introduction to bosonization” in *Theoretical Methods for Strongly Correlated Electrons*, CRM Series in Mathematical Physics, edited by D. Sénéchal, A. M. S. Tremblay, and C. Bourbonnais (Springer, 2004) Chap. 4, pp. 139-186, ISBN 0-387-00895-0.
[62] J. Cardy, *Scaling and Renormalization in Statistical Physics* (Cambridge University Press, Cambridge, 1996).
[63] D. Allen, F. H. L. Essler, and A. A. Nersesyan, Phys. Rev. B 61, 8871 (2000).
[64] T. Hikihara and O. A. Starykh, Phys. Rev. B 81, 064432 (2010).
[65] In general the ratio \(J'_2/J'_1\) could be taken as an additional independent parameter, but such an extended analysis is not of interest for the 2D model.
[66] A. Lavarélo, G. Roux, and N. Laforencie, Phys. Rev. B 84, 144407 (2011).
[67] S. Ghamari, C. Kallin, S.-S. Lee, and E.S. Sørensen, Phys. Rev. B 84, 174415 (2011).
[68] S. R. White, Phys. Rev. Lett. 69, 2863 (1992).
[69] O. Legeza and J. Sólyom, Phys. Rev. Lett. 96, 116401 (2006).
[70] A. Osterloh, L. Amico, G. Falci, and R. Fazio Nature 416, 608 (2002).
[71] L.-A. Wu, M. S. Sarandy, and D. A. Lidar, Phys. Rev. Lett. 93, 250404 (2004).
[72] R. Dillenschneider, Phys. Rev. B 78, 224413 (2008).
[73] G.-H. Liu, H.-L. Wang, and G.-S. Tian, Phys. Rev. B 77, 214418 (2008).
[74] G. Barczka, Ö. Legeza, R. M. Noack, J. Sólyom, Phys. Rev. B 86, 075133 (2012).
[75] P. Di Francesco, P. Mathieu, D. Senechal, *Conformal field theory* (Springer, 1997).
[76] I. Affleck, in *Fields, Strings and Critical Phenomena*, edited by E. Brézin and J. Zinn-Justin (North-Holland, Amsterdam, 1990) pp. 563-640, (proceedings of Les Houches Summer School, 1988).