Naimark dilations of qubit POVMs and joint measurements

Juha-Pekka Pellonpää1,∗, Sébastien Designolle2 and Roope Uola3

1 Turku Centre for Quantum Physics, Department of Physics and Astronomy, University of Turku, FI-20014 Turku, Finland
2 Group of Applied Physics, University of Geneva, 1211 Geneva, Switzerland
3 University of Geneva, 1211 Geneva, Switzerland

E-mail: juhpello@utu.fi

Received 14 September 2022; revised 7 February 2023
Accepted for publication 7 March 2023
Published 22 March 2023

Abstract
Measurement incompatibility is one of the cornerstones of quantum theory. This phenomenon appears in many forms, of which the concept of non-joint measurability has received considerable attention in the recent years. In order to characterise this non-classical phenomenon, various analytical and numerical methods have been developed. The analytical approaches have mostly concentrated on the qubit case, as well as to scenarios involving sets of measurements with symmetries, such as position and momentum or sets of mutually unbiased bases. The numerical methods can, in principle, decide any finite-dimensional and discrete joint measurability problem, but they naturally have practical limitations in terms of computational power. These methods exclusively start from a given set of measurements and ask whether the set possesses incompatibility. Here, we take a complementary approach by asking which measurements are compatible with a given measurement. It turns out, that this question can be answered in full generality through a minimal Naimark dilation of the given measurement: the set of interest is exactly those measurements that have a block-diagonal representation in such dilation. We demonstrate the use of the technique through various qubit examples, leading to an alternative characterisation of all compatible pairs of binary qubit measurements, which retrieves the celebrated Busch criterion. We further apply the technique to special examples of trinary and continuous qubit measurements.

Keywords: quantum measurement, joint measurability, Naimark dilation

(Some figures may appear in colour only in the online journal)

∗ Author to whom any correspondence should be addressed.
1. Introduction

The act of measurement is in the core of any physical theory. In quantum theory, this process provides a window between the microscopic and macroscopic worlds. It is through this fundamental action that one collects new data, verifies and falsifies predictions, and ultimately develops novel theoretical models. Given its fundamental position and strong mathematical grounds, the theory of quantum measurements keeps naturally lending itself to open questions, such as the measurement problem [1], uncertainty relations [2, 3], and practical applications of quantum information theory [4–6]. In this article, we contribute to a specific open question of characterising a central quantum-to-classical border within quantum measurement theory, that is, the threshold between sets of measurements that allow and do not allow a simultaneous readout.

In quantum theory, the traditional description for the act of measurement is given through Hermitian operators, also called observables. By now, it is self-evident that such presentation differs from classical physics, in that whereas all classical measurements can be performed simultaneously, this is no longer true in the quantum scenario. Such discrepancy sets fundamental limitations on the possibility of coding information about non-commuting quantities into a quantum state, as shown by the famous preparation uncertainty relations of Heisenberg and Robertson.

By now, the quantum information theoretic representation of quantum measurements has deviated from the notion of observables due to the introduction of more general positive operator-valued measures (POVMs for short). POVMs offer various advantages over their predecessors in that they, e.g. better capture realistic measurement implementations [1, 7], can perform better in discriminating quantum states [8, 9], and offer various fine-tuned notions of measurement incompatibility [10–15].

For our purposes, a central property of POVMs is that of joint measurability. This is a generalisation of the notion of commutativity of observables. In short, joint measurability asks whether the measurement data of a given set of measurements can be classically post-processed from the data of a single measurement. On the conceptual level, joint measurability has found various applications in, e.g. quantum correlations [16–20], contextuality [21], quantum state discrimination [8, 9, 22, 23], quantum communication [24], and quantum thermodynamics [25]. Hence, the task of characterising sets of measurements that allow a simultaneous readout has become an important and actively investigated problem not only from the foundational, but also from the practical perspective [26–29], see also [30] for a recent review.

Typically, one is interested in characterising the sets of measurements that allow a joint measurement. Here, we take a slightly complementary approach by using a technique that characterises those measurements that are jointly measurable with a given POVM. The technique is based on a minimal Naimark dilation, i.e. representing POVMs as observables in a larger space, and it connects to the sole notion of incompatibility possessed by observables, i.e. non-commutativity. Namely, the set of POVMs that are jointly measurable with a given POVM turns out to be exactly the set of those measurements that have a block-diagonal representation in a minimal dilation of the given POVM. Such block-diagonal measurements are characterised by the commutant of the relevant observable in the minimal dilation space. We want to stress out that this technique has appeared in the past in conceptual works including some of the authors [31–33] and that connections between joint measurability and commutativity in some dilation space have been reported independently in [31, 34–36]. However, the works [32, 33] did not concentrate on explicitly characterising joint measurability of given sets of POVMs and the works [34–36] did not specify a single generally applicable Naimark dilation. Some of the involved dilations even require one to know some joint measurement before the
construction of the dilation, i.e. one gets the dilation only after one has solved the problem of joint measurability. Here, we stress that one can simply use a minimal dilation of the involved measurements in order to solve the problem of joint measurability. We further note that this dilation is fully constructive. The investigation of joint measurability criteria arising from this process is the main contribution of this manuscript.

Although the minimal dilation technique applies even to infinite-dimensional systems, see [31], we concentrate on the qubit case for simplicity. In this setting, the technique provides an alternative way of obtaining the celebrated Busch criterion for joint measurability of two unbiased qubit measurements [37] and gives a full characterisation of those qubit effects that are (pairwise) compatible with a given qubit effect. Moreover, we compare the technique to that of [38] in the case of two symmetric three-valued qubit POVMs, and provide examples of compatible pairs and triplets of continuous qubit POVMs.

2. Joint measurability

We describe quantum measurements as POVMs. In the case of a discrete (finite dimensional) measurement, these are essentially sets of positive semi-definite matrices $E = (E_1, E_2, \ldots, E_N)$ that sum to the identity operator, i.e. $\sum_{n=1}^N E_n = 1$. In the continuous case, a POVM is a normalised (weakly) σ-additive map from a σ-algebra $A \subseteq 2^\Omega$ to the set of positive operators of a Hilbert space. A discrete POVM $B = (B_1, B_2, \ldots, B_M)$ is called jointly measurable with E, if there exists a third POVM $N = (N_{ij})$ with $i = 1, \ldots, N$ and $j = 1, \ldots, M$ such that

$$E_i = \sum_{j=1}^M N_{ij}$$

$$B_j = \sum_{i=1}^N N_{ij}$$

for all i and j. Otherwise, the POVMs E and B are called incompatible. The POVM N is called a joint or parent POVM. This definition generalises directly to continuous POVMs by replacing the sums in equations (2.1) and (2.2) with (total) sets as well as the singletons i and j with measurable sets, i.e. two POVMs E and B (defined on σ-algebras $A \subseteq 2^\Omega$ and $B \subseteq 2^\Xi$) are jointly measurable if there is a POVM N defined on the product σ-algebra $A \otimes B \subseteq 2^{\Omega \times \Xi}$ such that $E(X) = N(X \times \Xi)$ for all $X \in A$ and $B(Y) = N(\Omega \times Y)$ for all $Y \in B$.

For basic examples of jointly measurable POVMs, one can choose E and B commuting, i.e. $[E_i, B_j] = 0$ for all i and j, in which case $N_{ij} = E_i B_j = \sqrt{E_i} E_1 \sqrt{B_j}$ is clearly a joint POVM. For a non-commuting example one can take noisy spin measurements defined by

$$E_{\pm 1} = \frac{1}{2} \left(1 \pm \frac{1}{\sqrt{2}} \sigma_i \right),$$

$$B_{\pm 1} = \frac{1}{2} \left(1 \pm \frac{1}{\sqrt{2}} \sigma_j \right).$$

In this case, a joint POVM is given by

$$N_{ij} = \frac{1}{4} \left[1 \pm \frac{1}{\sqrt{2}} (i \sigma_1 + j \sigma_3) \right], \quad i, j = \pm 1.$$

One can further show [37] that this joint POVM is optimal in the sense that if one increases the length of the Bloch vectors of $E_{\pm 1}$ or $B_{\pm 1}$, the measurements become incompatible.
In the above examples, the (optimal) joint POVM is rather simple to find. Some techniques for finding joint POVMs for more complex scenarios have been reported in the literature based on a so-called adaptive strategy [39] and other ansätze [40–42]. Such techniques typically do not use auxiliary systems. In the following, we map the problem of finding joint measurements into a problem of characterising a commutant in a minimal Naimark dilation space. This provides further natural ansätze for joint measurements. We focus our attention to the qubit case and demonstrate the technique by building optimal and suboptimal joint measurements for various scenarios.

3. Naimark dilations of discrete qubit POVMs

Let \mathcal{H} be a two-dimensional (qubit) Hilbert space. By fixing an orthonormal basis $\{\varphi_1, \varphi_2\} \subset \mathcal{H}$ we may identify \mathcal{H} with \mathbb{C}^2 via unitary operator $U: \mathcal{H} \to \mathbb{C}^2$, $U := |(1, 0)\rangle\langle \varphi_1| + |(0, 1)\rangle\langle \varphi_2|$, where the vectors $(1, 0)$ and $(0, 1)$ constitute the standard basis of the Hilbert space \mathbb{C}^2. In what follows, we identify any operator $O: \mathcal{H} \to \mathcal{H}$ with the operator $(2 \times 2$-matrix) UOU^* on \mathbb{C}^2 and study only matrices. Clearly, each 2×2-matrix M corresponds to a unique operator U^*MU on \mathcal{H}.

We say that a positive semidefinite 2×2-matrix E is an effect if $1 - E$ is also positive semidefinite; here 1 is the identity matrix. Any effect E can be written in the form

$$E = \frac{1}{2} \sum_{\mu=0}^{3} e^{\mu} \sigma_{\mu} = \frac{1}{2} (e^{0} \mathbb{1} + e \cdot \sigma) = \frac{1}{2} \left(e^{0} + 3 e^{1} - i e^{2} \right)$$

where $(e^{0}, e^{1}, e^{2}, e^{3}) = (e^{0}, e) \in \mathbb{R}^4$, $\|e\| := \sqrt{(e^{1})^2 + (e^{2})^2 + (e^{3})^2} \leq \min\{e^{0}, 2 - e^{0}\}$, and $e^{0} = |e| = 1$ (resp. $e^{0} = 2$ and $|e| = 0$).

Define then the parameters

$$c^{\pm}(E) := \sqrt{\frac{e^{0} \pm |e|}{4|e|} \left(\|e\| \pm |e^{3}| \right)} \geq 0,$$

$$d^{\pm}(E) := \pm (e^{1} - i e^{2}) \sqrt{\frac{e^{0} \pm |e|}{4|e|} \left(\|e\| \pm |e^{3}| \right)} \in \mathbb{C},$$

if $|e| \neq |e^{3}|$, and

$$c^{\pm}(E) := \frac{1}{2} \pm \text{sgn} e^{3} \sqrt{\frac{e^{0} \pm |e^{3}|}{2}} \geq 0,$$

$$d^{\pm}(E) := \frac{1}{2} \pm \text{sgn} e^{3} \sqrt{\frac{e^{0} \pm |e^{3}|}{2}} \geq 0,$$

if $|e| = |e^{3}|$ (i.e. $e^{1} = e^{2} = 0$); here $\text{sgn} x := 1$ when $x \geq 0$ and -1 otherwise. Clearly, $c^{+}(E)c^{-}(E) + d^{+}(E)d^{-}(E) = 0$. We can write the spectral decomposition $E = E^{+} + E^{-}$.
where

\[E^\pm := \left(\frac{|c^\pm(E)|^2}{c^\pm(E)d^\pm(E)} \right)^2 = \frac{e^0 \pm \|e\|}{2\|e\|} \left(\begin{array}{c} \|e\| \pm e^3 \pm (e^1 - ie^2) \\ \|e\| + e^2 \end{array} \right) \]

are rank-1 or zero effects. If \(\|e\| = 0 \) then \(E = (e^0/2) I \) and one has \(E^\pm = (e^0/4)(I \pm \sigma_3) \) by equation (3.1); only in this degenerate case the spectral projections are not unique. Note that \(E \neq 0 \) is of rank 1 if and only if \(E = E^+ \) or \(c^-(E) = d^-(E) = 0 \). Finally, if \(M \) is a positive semidefinite rank-1 matrix then \(M \) can be written in the form

\[M = \left(\begin{array}{cc} \|c\|^2 & c^d \\ c^d & |d|^2 \end{array} \right) \]

where the complex numbers \(c \) and \(d \) are unique if we assume that either \(c > 0 \) and \(d \in \mathbb{C} \) or \(c = 0 \) and \(d > 0 \) (that is, \((c, d) \in (\mathbb{R}_+ \times \mathbb{C}) \cup \{(0) \times \mathbb{R}_+ \} \) where \(\mathbb{R}_+ \) is the set of positive reals).

Let \(\mathcal{E} = (E_1, E_2, \ldots, E_N) \) be an \(N \)-valued POVM of \(\mathbb{C}^2 \), i.e. the non-zero effects

\[E_i = \frac{1}{2} \sum_{\mu=0}^1 e_i^\mu \sigma_\mu = \frac{1}{2} (e_i^0 I + e_i^1 \sigma), \quad i = 1, 2, \ldots, N, \]

sum to the identity matrix \(I \). Write, as above, \(E_i = E_i^+ + E_i^- \) where

\[E_i^\pm := \left(\frac{|c^\pm(E_i)|^2}{c^\pm(E_i)d^\pm(E_i)} \right)^2 \frac{c^\pm(E_i)d^\pm(E_i)}{\|d^\pm(E_i)\|^2} . \]

Let \(m_i \in \{1, 2\} \) be the rank of \(E_i \) and form the multiplicity or rank vector of \(\mathcal{E} \),

\[m := (m_1, m_2, \ldots, m_N) \]

whose \(\ell^1 \)-norm is \(\|m\|_1 = \sum_{i=1}^N m_i \). If \(E_i \) is rank-1 \(m_i = 1 \) define \(c(E_i) := c^+(E_i) \) and \(d(E_i) := d^+(E_i) \). If \(E_i \) is of rank 2 \(m_i = 2 \) define \(c(E_i) := (c^+(E_i), c^-(E_i)) \) and \(d(E_i) := (d^+(E_i), d^-(E_i)) \) which satisfy the orthogonality relation \(c^+(E_i)c^-(E_i) + d^+(E_i)d^-(E_i) = 0 \).

Now the vectors

\[e := (c(E_1), c(E_2), \ldots, c(E_N)), \quad d := (d(E_1), d(E_2), \ldots, d(E_N)) \]

belong to the minimal Naimark dilation space \(\mathbb{C}^{|m|!} \). Indeed, define an isometry \(J_{e,d} : \mathbb{C}^2 \to \mathbb{C}^{|m|!} \) via

\[J_{e,d} : |c\rangle \langle (1, 0)| + |d\rangle \langle (0, 1)| = \begin{pmatrix} c_1 & d_1 \\ c_2 & d_2 \\ \vdots & \vdots \\ c_{|m|!} & d_{|m|!} \end{pmatrix} \]

where we have denoted briefly \(e = (c_1, \ldots, c_{|m|}) \) and \(d = (d_1, \ldots, d_{|m|}) \). Especially, \(e \) and \(d \) are orthonormal vectors (i.e. \(|e| = |d| = 1 \) and \(e|d\rangle = 0 \)). \(J_{e,d} J_{e,d}^* = 1 \), and \(J_{e,d} J_{e,d}^* = |c\rangle \langle c| + |d\rangle \langle d| \) is a projection on \(\mathbb{C}^{|m|!} \). In addition,

\[(c_i, d_i) \in (\mathbb{R}_+ \times \mathbb{C}) \cup \{(0) \times \mathbb{R}_+ \} \]

for all \(i = 1, 2, \ldots, |m| \). Let \(\{b_k\}_{k=1}^{|m|} \) be the standard (orthonormal) basis of \(\mathbb{C}^{|m|!} \). Define \(K_0 := 0, K_i := \sum_{k=1}^{i-1} m_k, i \in \{1, \ldots, N\} \), and projections

\[P_i := \sum_{k=1}^{K_i} |b_k\rangle \langle b_k| \]
so that \(P = (P_1, \ldots, P_N) \) is a projection valued measure (PVM). Since \(E_i = J_{c,d}^* P_i J_{c,d} \) the triple \((\mathbb{C}^{[m]||}, P, J_{c,d})\) is a minimal Naimark dilation of \(E \), see, e.g. [1].

It should be stressed that any orthonormal vectors \(c, d \in \mathbb{C}^{[m]||} \) can be used to define an isometry \(J_{c,d} := |c\rangle\langle (1,0)| + |d\rangle\langle (0,1)| \) and POVM \(E \) via \(E_i := J_{c,d}^* P_i J_{c,d} \) but \(m \) is not necessarily the multiplicity vector of \(E \). It may happen that some \(m_i = 2 \) but the rank of \(E_i \) is 0 or 1. However, if \(E \) is a rank-1 POVM (i.e. \(m_i \equiv 1 \) so \(||m||_1 = N \)) then one has the following uniqueness result.

Proposition 1. Let \(N \) be a positive integer. Then there is a bijection between the set of \(N \)-valued rank-1 POVMs and the set of orthonormal vectors \(c, d \in \mathbb{C}^N \) such that \((c_i, d_i) \in (\mathbb{R}_+ \times \mathbb{C}) \cup \{(0, 0) \times \mathbb{R}_+\} \) for all \(i = 1, 2, \ldots, N \).

Example 1. In this example, we characterise all \(N \)-valued qubit POVMs whose multiplicity vectors \(m \) have the same length \(||m||_1 = 4 \) using the above dilation technique. We have the following nontrivial cases \(m = (1, 1, 1, 1) \) \([N = 4] \), \(m = (2, 1, 1) \), \(m = (1, 2, 1) \), \(m = (1, 1, 2) \) \([N = 3] \), and \(m = (2, 2) \) \([N = 2] \). In all these cases, the dilation space is \(\mathbb{C}^4 \) and the isometry

\[
J_{c,d} = \begin{pmatrix} c_1 & d_1 \\ c_2 & d_2 \\ c_3 & d_3 \\ c_4 & d_4 \end{pmatrix}
\]

where \((c_i, d_i) \in (\mathbb{R}_+ \times \mathbb{C}) \cup \{(0, 0) \times \mathbb{R}_+\} \), \(i = 1, 2, 3, 4 \), are such that \(||c|| = ||d|| = 1 \) and \(\langle c|d \rangle = 0 \). By varying \(c \) and \(d \) we get all POVMs with \(||m||_1 = 4 \). The above cases differ on the definition of the projections \(P_i \):

- \(m = (1, 1, 1, 1) \) Now \(P_i = |b_i\rangle \langle b_i| \) for all \(i \), e.g.

\[
P_3 = |b_3\rangle \langle b_3| = \begin{pmatrix} 0 \\ 0 \\ 1 \\ 0 \end{pmatrix} \begin{pmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}
\]

and

\[
E_3 = J_{c,d}^* P_3 J_{c,d} = \begin{pmatrix} \tau_1 & \tau_2 & \tau_3 & \tau_4 \\ \overline{d_1} & \overline{d_2} & \overline{d_3} & \overline{d_4} \end{pmatrix} \begin{pmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} c_1 & d_1 \\ c_2 & d_2 \\ c_3 & d_3 \\ c_4 & d_4 \end{pmatrix} = \begin{pmatrix} \langle c_1|d_1 \rangle \\ \langle c_2|d_2 \rangle \\ \langle c_3|d_3 \rangle \\ \langle c_4|d_4 \rangle \end{pmatrix} = \begin{pmatrix} \langle c|d \rangle_1 \langle c|d \rangle_2 \\ \overline{\langle c|d \rangle_1} \overline{\langle c|d \rangle_2} \end{pmatrix}.
\]

Similarly,

\[
E_i = \begin{pmatrix} \langle c_i|d_i \rangle \langle c_i|d_i \rangle \\ \overline{\langle c_i|d_i \rangle} \overline{\langle c_i|d_i \rangle} \end{pmatrix} = \begin{pmatrix} \langle c_i|d_i \rangle \langle c_i|d_i \rangle \\ \overline{\langle c_i|d_i \rangle} \overline{\langle c_i|d_i \rangle} \end{pmatrix} = \begin{pmatrix} \langle c|d \rangle_i \langle c|d \rangle_i \\ \overline{\langle c|d \rangle_i} \overline{\langle c|d \rangle_i} \end{pmatrix} \]

for all \(i = 1, 2, 3, 4 \), and one can check that

\[
\sum_{i=1}^4 E_i = \sum_{i=1}^4 \begin{pmatrix} \langle c_i|d_i \rangle \langle c_i|d_i \rangle \\ \overline{\langle c_i|d_i \rangle} \overline{\langle c_i|d_i \rangle} \end{pmatrix} = \begin{pmatrix} \langle c|d \rangle \langle c|d \rangle \\ \overline{\langle c|d \rangle} \overline{\langle c|d \rangle} \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \end{pmatrix} = \mathbb{I}.
\]

\(^4\) Clearly, the vectors \(P_i c \) and \(P_i d, i = 1, \ldots, N, \) span \(\mathbb{C}^{[m]||} \).
• \(m = (2, 1, 1) \) The cases \(m = (2, 1, 1), m = (1, 2, 1), \) and \(m = (1, 1, 2) \) are essentially the same, so we study only the first one. Now \(P_1 = |b_1\rangle\langle b_1| + |b_2\rangle\langle b_2|, P_2 = |b_3\rangle\langle b_3|, \) and \(P_3 = |b_4\rangle\langle b_4| \) showing that

\[
E_1 = \left(|c_1|^2 \begin{pmatrix} \tau_1 d_1 \\ d_1^2 \end{pmatrix} + |c_2|^2 \begin{pmatrix} \tau_2 d_2 \\ d_2^2 \end{pmatrix}, \right) \quad E_2 = \left(|c_3|^2 \begin{pmatrix} \tau_3 d_3 \\ d_3^2 \end{pmatrix}, \right) \quad E_3 = \left(|c_4|^2 \begin{pmatrix} \tau_4 d_4 \\ d_4^2 \end{pmatrix} \right).
\]

Note that \(E_1 \) is of rank 2 exactly when \(c_1 d_2 \neq c_2 d_1 \) (which we must assume).

• \(m = (2, 2) \) Now \(P_1 = |b_1\rangle\langle b_1| + |b_2\rangle\langle b_2|, P_2 = |b_3\rangle\langle b_3| + |b_4\rangle\langle b_4| \) so that

\[
E_1 = \left(|c_1|^2 \begin{pmatrix} \tau_1 d_1 \\ d_1^2 \end{pmatrix} + |c_2|^2 \begin{pmatrix} \tau_2 d_2 \\ d_2^2 \end{pmatrix}, \right) \quad E_2 = \left(|c_3|^2 \begin{pmatrix} \tau_3 d_3 \\ d_3^2 \end{pmatrix} + |c_4|^2 \begin{pmatrix} \tau_4 d_4 \\ d_4^2 \end{pmatrix} \right).
\]

Further assumptions \(c_1 d_2 \neq c_2 d_1 \) and \(c_3 d_4 \neq c_4 d_3 \) yield rank-2 effects \(E_1 \) and \(E_2 \).

Example 2. In this example, we study 2-valued qubit POVMs. It is easy to see that we have (essentially) the following cases:

• \(m = (1, 1) \) Now

\[
E_1 = \left(|c_1|^2 \begin{pmatrix} \tau_1 d_1 \\ d_1^2 \end{pmatrix}, \right) \quad E_2 = \left(|c_2|^2 \begin{pmatrix} \tau_2 d_2 \\ d_2^2 \end{pmatrix} \right) = I - E_1 = \left(\frac{1 - |c_1|^2}{-c_1 d_1} \begin{pmatrix} -\tau_1 d_1 \\ 1 - d_1^2 \end{pmatrix} \right)
\]

where \((c_i, d_i) \in (\mathbb{R}_+ \times \mathbb{C}) \cup \{0\} \times \mathbb{R}_+ \), \(i = 1, 2 \), are such that \(||c|| = ||d|| = 1 \) and \((c|d) = 0 \).

• \(m = (2, 1) \) Now

\[
E_1 = \left(|c_1|^2 \begin{pmatrix} \tau_1 d_1 \\ d_1^2 \end{pmatrix} + |c_2|^2 \begin{pmatrix} \tau_2 d_2 \\ d_2^2 \end{pmatrix}, \right) \quad E_2 = \left(|c_3|^2 \begin{pmatrix} \tau_3 d_3 \\ d_3^2 \end{pmatrix} \right)
\]

where \((c_i, d_i) \in (\mathbb{R}_+ \times \mathbb{C}) \cup \{0\} \times \mathbb{R}_+ \), \(i = 1, 2, 3 \), are such that \(||c|| = ||d|| = 1 \), \((c|d) = 0 \), and \(c_1 d_2 \neq c_2 d_1 \).

• \(m = (2, 2) \) See the preceding example.

4. Jointly measurable discrete qubit POVMs

Let \(E = (E_1, E_2, \ldots, E_N) \) be an \(N \)-valued qubit POVM with the multiplicity vector \(m \) and the minimal Naimark dilation \((\mathbb{C}^{|m|}, P, J_{c,d})\) as before. To characterise all qubit POVMs \(B \) jointly
measurable with E, one can pick any POVM $F = (F_1, F_2, \ldots, F_M)$ of the dilation space $\mathbb{C}^{|m|}$, such that each effect F_j is decomposable\(^5\) with respect to P, that is,

$$F_j = \bigoplus_{i=1}^{N} F_{ij}$$

where $F_j = (F_{ij}, F_{i2}, \ldots, F_{im})$ is a POVM of \mathbb{C}^m (whose identity operator is P_j). Now it may happen that an effect F_j is zero. In the case $m_i = 1$ the POVM F_j ‘is’ just a sequence of numbers $f_{ij} \geq 0$ (i.e. $F_j = f_{ij} P_j$) such that and $\sum_{j=1}^{M} f_{ij} = 1$, whereas in the case $m_i = 2, F_j$ is a qubit POVM. The jointly measurable POVM $B = (B_1, B_2, \ldots, B_d)$ is of the form

$$B_j = J_{e,d}^* F_j J_{e,d} = \sum_{i=1}^{N} J_{e,d}^* F_{ij} J_{e,d}$$

and the joint POVM is $N = \{N_j\}$ where

$$N_j = J_{e,d}^* F_j J_{e,d}.$$

Indeed, since $\sum_{j=1}^{M} F_{ij} = P_i$ one sees that $\sum_{j=1}^{M} N_{ij} = J_{e,d}^* P_i J_{e,d} = E_i$ and $\sum_{j=1}^{N} N_{ij} = B_j$. It can be shown that we get all compatible POVMs B by using this Naimark dilation technique \([31]\). This follows easily since any effect N_j of a joint POVM is majorised by $E_i = (P_i^* J_{e,d} P_i J_{e,d})$ so that there exists an effect $F_{ij} \leq P_i$ for which $N_j = J_{e,d}^* F_{ij} J_{e,d}$ holds. Next we study the structure of the effects N_j.

If $m_i = 1$ then $N_{ij} = f_{ij} P_i$. If $m_i = 2$ then we can identify the qubit effect F_{ij} with the matrix

$$\frac{1}{2} \sum_{\mu=0}^{3} f_{ij}^{\mu} \sigma_{\mu} = \frac{1}{2} (f_{ij}^{0} \mathbb{1} + f_{ij}^{1} \sigma_i)$$

where $(f_{ij}^{0}, f_{ij}^{1}, f_{ij}^{2}, f_{ij}^{3}) = (f_{ij}^{0} P_i f_{ij}^{0} P_i, f_{ij}^{1} P_i f_{ij}^{1} P_i)$ and $\|f_{ij}\| = \min(f_{ij}^{0}, 2 - f_{ij}^{3})$. Indeed, since now $P_i = \sum_{k=K-1}^{K} |b_k\rangle \langle b_k|$,

$$F_{ij} = Y_i^* \frac{1}{2} \sum_{\mu=0}^{3} f_{ij}^{\mu} \sigma_{\mu} Y_i = \frac{1}{2} \sum_{\mu=0}^{3} f_{ij}^{\mu} Y_i^* \sigma_{\mu} Y_i$$

where $Y_i = |(1,0)\rangle \langle b_{K-1}| + |(0,1)\rangle \langle b_K|$ is an isometry. From the equations

$$J_{e,d}^* Y_i^* \sigma_0 Y_i J_{e,d} = \begin{pmatrix} |c_{K-1}|^2 \tau_{K-1} d_{K-1} & \tau_{K-1} d_{K-1} \\ |c_{K-1}|^2 \tau_{K-1} d_{K-1} & |d_{K-1}|^2 \end{pmatrix},$$

$$J_{e,d}^* Y_i^* \sigma_1 Y_i J_{e,d} = \begin{pmatrix} c_{K-1} \tau_{K-1} & c_{K-1} \tau_{K-1} \\ c_{K-1} \tau_{K-1} & -c_{K-1} \tau_{K-1} \end{pmatrix},$$

$$J_{e,d}^* Y_i^* \sigma_2 Y_i J_{e,d} = \begin{pmatrix} d_{K-1} \tau_{K-1} & -d_{K-1} \tau_{K-1} \\ d_{K-1} \tau_{K-1} & -d_{K-1} \tau_{K-1} \end{pmatrix},$$

$$J_{e,d}^* Y_i^* \sigma_3 Y_i J_{e,d} = \begin{pmatrix} c_{K-1} \tau_{K-1} & c_{K-1} \tau_{K-1} \\ c_{K-1} \tau_{K-1} & -c_{K-1} \tau_{K-1} \end{pmatrix}.$$

\(^5\) That is, F and P commute: $[F_j, P_i] = 0$.

8
one can calculate
\[
N_{ij} = J_{c,d}^* F_{ij} J_{c,d} = \frac{1}{2} \sum_{\mu=0}^{3} f_{ij}^{\mu} J_{c,d} Y_i^* \sigma_{\mu} Y J_{c,d}.
\]

Next we give some examples.

4.1. Compatible effects

In this section we take advantage of the method presented above to derive the criterion on joint measurability of two two-valued (unbiased) qubit POVMs first presented by Paul Busch in 1986 [37].

Fix a two-valued qubit POVMs \(E = (E_1, E_2) \), \(E_1 + E_2 = 1 \), and all related notions as in section 3. Note that \(E \) is fully determined by the (nontrivial) effect \(E_1 \) which we denote briefly by \(E \). Next we characterise all two-valued qubit POVMs \(B = (B, \mathbb{I} - B) \) (i.e. effects \(B \)) which are jointly measurable with \(E \). We have (essentially) three cases:

- **\(m = (1, 1) \)** Let \(e_1, e_2 \in [0, 1] \) be arbitrary and
 \[
 B = J_{c,d}^* \begin{pmatrix} e_1 & 0 \\ 0 & e_2 \end{pmatrix} J_{c,d} = e_1 E_1 + e_2 E_2 = e_2 \mathbb{I} + (e_1 - e_2) E
 \]
 showing that the effects \(E \) and \(B \) commute.

- **\(m = (2, 1) \)** Let \(F = \begin{pmatrix} f_{11} & f_{12} \\ f_{21} & f_{22} \end{pmatrix} \) be any effect and \(e_3 \in [0, 1] \). Then
 \[
 B = J_{c,d}^* \begin{pmatrix} f_{11} & f_{12} & 0 & 0 \\ f_{21} & f_{22} & 0 & 0 \\ 0 & 0 & e_3 \end{pmatrix} J_{c,d} = \begin{pmatrix} \tau_1 & \tau_2 & \tau_3 & \tau_4 \\ \overline{d}_1 & \overline{d}_2 & \overline{d}_3 & \overline{d}_4 \end{pmatrix} \begin{pmatrix} f_{11} & f_{12} & 0 & 0 \\ f_{21} & f_{22} & 0 & 0 \\ 0 & 0 & e_3 \end{pmatrix} \begin{pmatrix} c_1 & d_1 \\ c_2 & d_2 \\ c_3 & d_3 \\ c_4 & d_4 \end{pmatrix}.
 \]

- **\(m = (2, 2) \)**
 Let \(F = \begin{pmatrix} f_{11} & f_{12} \\ f_{21} & f_{22} \end{pmatrix} \) and \(G = \begin{pmatrix} g_{11} & g_{12} \\ g_{21} & g_{22} \end{pmatrix} \) be any effects so that
 \[
 B = J_{c,d}^* \begin{pmatrix} f_{11} & f_{12} & 0 & 0 & 0 & 0 & 0 & 0 \\ f_{21} & f_{22} & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & g_{11} & g_{12} & 0 & 0 & 0 & 0 \\ 0 & 0 & g_{21} & g_{22} & 0 & 0 & 0 & 0 \end{pmatrix} J_{c,d} = \begin{pmatrix} \tau_1 & \tau_2 & \tau_3 & \tau_4 \\ \overline{d}_1 & \overline{d}_2 & \overline{d}_3 & \overline{d}_4 \end{pmatrix} \begin{pmatrix} f_{11} & f_{12} & 0 & 0 \\ f_{21} & f_{22} & 0 & 0 \\ 0 & 0 & g_{11} & g_{12} \\ 0 & 0 & g_{21} & g_{22} \end{pmatrix} \begin{pmatrix} c_1 & d_1 \\ c_2 & d_2 \\ c_3 & d_3 \\ c_4 & d_4 \end{pmatrix}.
 \]
 Consider then an unbiased two-outcome qubit POVM \((E, \mathbb{I} - E) \). Up to an irrelevant unitary, one can write
 \[
 E = \frac{\mathbb{I} + e \cdot \sigma}{2} = \frac{\mathbb{I} + a \sigma_3}{2},
 \]
where $e = (0, 0, a)$ and $|a| \leq 1$. The case $|a| = 1$ is trivial so that we restrict to $|a| < 1$ in the following. Therefore we have $m = (2, 2)$ and, by using the general procedure introduced previously, we write

$$
E = J^* \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix} J
\text{ where } J = \begin{pmatrix} \sqrt{\frac{1-a}{2}} & 0 \\ 0 & \sqrt{\frac{1-a}{2}} \\ 0 & 0 \\ \sqrt{\frac{1-a}{2}} & 0 \end{pmatrix},
$$

Now let us consider another (possibly biased) two-outcome qubit POVM $(B, 1 - B)$ jointly measurable with $(E, 1 - E)$. We know that

$$B = J^* \begin{pmatrix} F & 0 \\ 0 & G \end{pmatrix} J, \quad (4.1)
$$

where F and G are two qubit effects. In the Pauli basis, equation (4.1) gives

$$b^0 = \frac{\ell^1 + g^0}{2} + a \cdot \frac{\ell^2 + g^2}{2}
$$

$$b^1 = \sqrt{1 - a^2} \cdot \frac{\ell^1 + g^1}{2}
$$

$$b^2 = \sqrt{1 - a^2} \cdot \frac{\ell^2 - g^2}{2}
$$

$$b^3 = \frac{\ell^1 - g^0}{2} + a \cdot \frac{\ell^2 - g^2}{2}
$$

where $B = (b^0 1 + b \cdot \sigma)/2$ and similarly for F and G. Define $m(x) := \min\{x, 2 - x\}, x \in [0, 2]$. Then we can use $(f^1)^2 + (f^2)^2 + (f^3)^2 \leq [m(f^0)]^2$, $(g^1)^2 + (g^2)^2 + (g^3)^2 \leq [m(g^0)]^2$, and the Cauchy–Schwarz inequality to get

$$e^2 + b^2 - (e \cdot b)^2
$$

$$\leq a^2 + (1 - a^2) \left[\frac{(f^1 + g^1)^2}{2} + \frac{(f^2 - g^2)^2}{2} + \frac{(f^3 - g^3)^2}{2} + a \cdot \frac{f^0 - g^0}{2} \right]^2
$$

$$\leq a^2 + (1 - a^2) \left[\frac{(m(f^0) + m(g^0))^2}{2} + \frac{(m(f^0) - m(g^0))^2}{2} + 2a \cdot \frac{m(f^0) + m(g^0)}{2} \cdot \frac{f^0 - g^0}{2} \right]^2
$$

$$\leq a^2 + (1 - a^2) \left[\frac{m(f^0) + m(g^0) + |f^0 - g^0|}{2} \right]^2 \leq 1,
$$

so that in the end we have the following (equivalent) inequality [1, Prop. 14.1]:

$$\|e + b\| + \|e - b\| = \sqrt{e^2 + b^2 + 2e \cdot b} + \sqrt{e^2 + b^2 - 2e \cdot b} \leq |1 + e \cdot b| + |1 - e \cdot b| = 2.
$$

Thus, we have proven that any qubit effect B compatible with E satisfies the above Busch’s criterion [37]. Actually, this holds for any compatible pair of (possibly biased) qubit effects [1, Prop. 14.2].
Conversely, if we take any unbiased two-outcome qubit POVM such that \(e^2 + b^2 \leq 1 + (\mathbf{e} \cdot \mathbf{b})^2 \), the following choice gives rise to valid positive \(F \) and \(G \) satisfying equation (4.1):

\[
\begin{align*}
 f^0 &= g^0 = b^0 = 1 \quad \text{(unbiased)} \\
 f^1 &= g^1 = \frac{b^1}{\sqrt{1 - \lambda^2}} \\
 f^2 &= -g^2 = \frac{b^2}{\sqrt{1 - \lambda^2}} \\
 f^3 &= -g^3 = b^3
\end{align*}
\]

that is, \(E \) and \(B \) are compatible. Finally, we note that there exist incompatible (biased) effects \(E \) and \(B \) such that \(e^2 + b^2 \leq 1 + (\mathbf{e} \cdot \mathbf{b})^2 \) holds. For instance, take \(e^0 = \sqrt{15}/4, e = (0, 0, e^0) \), \(b^0 = \frac{1}{3} \), and \(b = \frac{1}{3}(1, 0, 0) \) to get \(e^2 + b^2 - (\mathbf{e} \cdot \mathbf{b})^2 = 1 \). If the corresponding (rank-1) effects

\[
E = \frac{\sqrt{15}}{4} \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, \quad B = \frac{1}{8} \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}
\]

had a joint POVM, i.e. \(E = N_{11} + N_{12} \) and \(B = N_{11} + N_{21} \), then \(N_{11} \leq E \) and \(N_{11} \leq B \) yield

\[
N_{22} = 1 - E - B = \frac{1}{8} \begin{pmatrix} 7 - 2\sqrt{15} & -1 \\ -1 & 7 \end{pmatrix}
\]

is not positive (since \(7 - 2\sqrt{15} \approx -0.7 \)).

4.2. Three-valued symmetric POVM

Our symmetry group is the (additive) cyclic group \(\mathbb{Z}_3 = \{0, 1, 2\} \) equipped with the addition modulo 3, e.g. \(1 + 2 \equiv 0 \pmod{3} \). It operates on itself: any \(k \in \mathbb{Z}_3 \) corresponds to a permutation (i.e. bijection) \(b_k(\ell) := k + \ell \pmod{3} \) for all \(\ell \in \mathbb{Z}_3 \). Furthermore, \(\mathbb{Z}_3 \) acts in \(\mathbb{C}^2 \) via the unitary representation \(k \mapsto U_k := R(2k\pi/3) \) where

\[
R(\theta) := \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix} \in \text{SO}(2)
\]

is the rotation matrix. Hence, we get the mutually commuting unitaries

\[
U_0 = \mathbb{1}, \quad U_1 = U_2^* = \frac{1}{2} \begin{pmatrix} -1 & -\sqrt{3} \\ \sqrt{3} & -1 \end{pmatrix}, \quad U_2 = U_1^* = (U_1)^2 = \frac{1}{2} \begin{pmatrix} -1 & \sqrt{3} \\ \sqrt{3} & -1 \end{pmatrix}.
\]

Let \(|+\rangle = (1, 0)\) and \(|-\rangle = (0, 1)\) denote the eigenvectors of \(\sigma_3 \). Define a 3-valued covariant POVM \(\mathbb{E} \) with effects \(E_k := \frac{1}{2} U_k |+\rangle \langle +| U_k^* \), \(k \in \mathbb{Z}_3 \), and its noisy version \(\mathbb{E}^\lambda, \lambda \in [0, 1] \), via

\[
E^\lambda_k := \lambda E_k + (1 - \lambda) \mathbb{1}/3, \quad k \in \mathbb{Z}_3
\]

Let \(\eta \in [0, 1] \) and define a POVM \(\mathbb{B}^\eta \) via

\[
B^\eta_k = \eta \frac{2}{3} |+\rangle \langle +| + (1 - \eta) \frac{1}{3} \mathbb{1}, \quad B^\eta_k = U_k B^0_k U_k^*, \quad k \in \mathbb{Z}_3.
\]
It is shown in appendix A that POVMs E^λ and B^η are jointly measurable when
\[
\eta \leq \frac{\lambda^2}{2 \left(1 - \sqrt{1 - \lambda^2}\right)}.
\]
If we assume that $\eta = \lambda$ then one must have $\lambda \leq 4/5 = 0.8$. This, however, is not the optimal value, as can be seen analytically by using the joint measurement characterisation of [38], which gives $\lambda \lesssim 0.866$.

5. Examples of jointly measurable continuous qubit POVMs

Suppose that two qubit POVMs E and B (defined on σ-algebras $\mathcal{A} \subseteq 2^\Omega$ and $\mathcal{B} \subseteq 2^\Xi$) are jointly measurable with a joint POVM N. Now a Naimark dilation of E can be constructed as follows: Let $\mu : \mathcal{A} \to [0, 1]$ be a probability measure such that E is absolutely continuous with respect to it. For example, $\mu(X) = \frac{1}{2} \text{tr} [E(X)]$ is fine. Then, by the Radon-Nikodym theorem, E has a qubit density D, i.e. one can write $E(X) = \int_X D(x) d\mu(x)$, $x \in X$, where each $D(x)$ is positive semidefinite 2×2 matrix and $x \mapsto D(x)$ is μ-measurable [43]. By using the spectral decomposition of $D(x)$, also $x \mapsto \sqrt{D(x)}$ is μ-measurable and one can define an isometry J from \mathbb{C}^2 into $L^2(\mu) \otimes \mathbb{C}^2$, where $L^2(\mu)$ is the Lebesgue (Hilbert) space6, via

\[
\left[J \begin{pmatrix} c_1 \\ c_2 \end{pmatrix} \right](x) := \sqrt{D(x)} \begin{pmatrix} c_1 \\ c_2 \end{pmatrix}, \quad (c_1, c_2) \in \mathbb{C}^2, \quad x \in \Omega.
\]

Now, for all $X \in \mathcal{A}$, one gets $E(X) = J^* P(X) J$ where P is the canonical spectral measure defined by

\[
P(X) \begin{pmatrix} \psi_1 \\ \psi_2 \end{pmatrix}(x) := \begin{pmatrix} \chi_X(x) \psi_1(x) \\ \chi_X(x) \psi_2(x) \end{pmatrix}, \quad \psi_1, \psi_2 \in L^2(\mu),
\]

and χ_X is the characteristic function of the set $X \in \mathcal{A}$. The obtained Naimark dilation is not necessarily minimal7 (since the rank of $D(x)$ can be 0 or 1) but we can still write, for all $X \in \mathcal{A}$ and $Y \in \mathcal{B}$,

\[
N(X \times Y) = \int_X \sqrt{D(x)} F_x(Y) \sqrt{D(x)} d\mu(x), \quad B(Y) = \int_\Omega \sqrt{D(x)} F_x(Y) \sqrt{D(x)} d\mu(x),
\]

where each F_x is a qubit POVM8 on \mathcal{B} [31, 33]. In the next examples, E and B are given and we try to find N by assuming that each F_x is absolutely continuous with respect to the probability measure ν of B (e.g. $\nu(Y) = \frac{1}{2} \text{tr} [B(Y)]$); now N is absolutely continuous with respect to the product measure $\mu \times \nu$ and has a qubit density with respect to it. This method is easy to generalise for three (or more) jointly measurable POVMs as follows.

In the rest of this section, we study a single-mode optical field (i.e. a harmonic oscillator) in the case of a single photon. We use the position representation of the position (quadrature)

6 Consisting of equivalence classes of μ-square integrable complex functions on Ω.
7 The only drawback of non-minimality is that, for a given N, the POVMs F_x are not necessarily unique.
8 Actually, one needs some regularity conditions for the measurable spaces, e.g. they are standard Borel [33].
operator Q (with the spectral measure Q) where the number states $|n\rangle$ are represented as the Hermite–Gauss functions

$$h_n(x) := \frac{1}{\sqrt{2^n n! \sqrt{\pi}}} H_n(x) e^{-\frac{1}{2}x^2} = \frac{(-1)^n}{\sqrt{2^n n! \sqrt{\pi}}} \sqrt{\frac{\pi}{2^n n!}} e^{\frac{i}{2}x^2} \frac{d^n e^{-x^2}}{dx^n}$$

where H_n is a (normalised) Hermite polynomial. Hermite polynomials H_n are given by the recursion relation $H_0(x) = 1$, $H_1(x) = 2x$, and $H_{n+1}(x) = 2xH_n(x) - 2nH_{n-1}(x)$ or by the Rodrigue’s formula $H_n(x) = (-1)^n e^{x^2} \frac{d^n e^{-x^2}}{dx^n}$. The spectral measure of the rotated (or tilted) quadrature Q_θ is

$$Q_\theta(X) = e^{i\theta a^+a} Q(X) e^{-i\theta a^+a} = \sum_{n,m=0}^{\infty} e^{i(n-m)\theta} \int_X h_n(x) h_m(x) dx |n\rangle \langle m|$$

for all Borel sets $X \subseteq \mathbb{R}$; here a is the lowering operator [1]. Note that the momentum operator $P = Q_{\pi/2}$. The projection of Q_θ onto the single-photon subspace span\{0, 1\} is the (qubit) POVM

$$\int_X \left(\frac{1}{\sqrt{2\pi}} \sqrt{2\pi e^{-\theta}} \frac{e^{-x^2}}{2\pi} \right) \frac{e^{-\pi^2 x^2}}{\sqrt{\pi}} dx$$

whose noisy version is

$$Q_\theta^{\text{prono}}(X) := (1 - \epsilon_\theta) \int_X \left(\frac{1}{\sqrt{2\pi e^{\theta}}} \sqrt{2\pi e^{-\theta}} \frac{e^{-x^2}}{2\pi} \right) \frac{e^{-\pi^2 x^2}}{\sqrt{\pi}} dx + \epsilon_\theta \int_X \left(\begin{array}{c} 1 \\ 0 \\ 0 \\ 1 \end{array} \right) \frac{e^{-\pi^2 x^2}}{\sqrt{\pi}} dx$$

where $\epsilon_\theta \in [0, 1]$.

Similarly consider energy $H = \hbar \omega \left(a^+ a + \frac{1}{2} \right)$ whose spectral measure is $\{n\} \mapsto N_n := |n\rangle \langle n|$. The projected noisy energy POVM has two non-zero effects:

$$N_0^{\text{prono}} := (1 - \epsilon) \left(\begin{array}{cc} 1 & 0 \\ 0 & 0 \end{array} \right) + \epsilon \frac{1}{2} \left(\begin{array}{cc} 1 & 0 \\ 0 & 1 \end{array} \right) = \left(\begin{array}{cc} 1 - \epsilon/2 & 0 \\ 0 & \epsilon/2 \end{array} \right)$$

$$N_1^{\text{prono}} := (1 - \epsilon) \left(\begin{array}{cc} 0 & 0 \\ 0 & 1 \end{array} \right) + \epsilon \frac{1}{2} \left(\begin{array}{cc} 0 & 1 \\ 1 & 0 \end{array} \right) = \left(\begin{array}{cc} \epsilon/2 & 0 \\ 0 & 1 - \epsilon/2 \end{array} \right)$$

where $\epsilon \in [0, 1]$. Next we study joint measurability of POVMs $N_1^{\text{prono}}, Q_0^{\text{prono}},$ and Q_θ^{prono} for any $\theta \notin \{0, \pi\}$. It is shown in appendix B that

- $N_1^{\text{prono}}, Q_0^{\text{prono}},$ and Q_θ^{prono} are jointly measurable if

\[
\frac{\epsilon}{2 - \epsilon} + \epsilon_0 + \epsilon_\theta - 2 \geq 0,
\]
• Q^{prono}_0 and Q^{prono}_θ are jointly measurable if
 \[\epsilon_0 + \epsilon_\theta - 1 \geq 0, \]

• N^{prono} and Q^{prono}_0 are jointly measurable if
 \[\frac{2}{2 - \epsilon} + \epsilon_0 - 2 \geq 0, \]

• N^{prono} and Q^{prono}_θ are jointly measurable if
 \[\frac{2}{2 - \epsilon} + \epsilon_0 - 2 \geq 0. \]

In the case $\epsilon = \epsilon_0 = \epsilon_\theta$ we find better limits: for example, N^{prono}, Q^{prono}_0, and Q^{prono}_θ are jointly measurable if $\epsilon \geq \frac{4}{7}$.

Finally, we show in appendix B that the noisy projected canonical phase
\[
\Phi(X) := \left(1 - \epsilon\right) \int \left(\begin{array}{c} 1 \\ e^{i\theta/2} \end{array}\right) \frac{d\theta}{2\pi} + \epsilon \int \left(\begin{array}{cc} 1 & 0 \\ 0 & 1 \end{array}\right) \frac{d\theta}{2\pi}, \quad X \subseteq [0, 2\pi),
\]
and N^{prono} are jointly measurable if $\epsilon \geq 1 - \frac{1}{\sqrt{2}}$.

6. Conclusions

We have analysed a method for characterising all measurements that are jointly measurable with a given measurement. The technique maps the problem of deciding joint measurability into the problem of finding suitable block-diagonal POVMs in a minimal Naimark dilation space of one of the involved POVMs. We have demonstrated the use of the technique with heuristic ansätze. Whereas some of these lead to the optimal noise tolerance, such as in the case of the celebrated Busch criterion [37], we have shown that in other scenarios, such as symmetric trinary qubit measurements, an optimal ansatz may be harder to find. We have further presented a full closed-form characterisation of all qubit effects that are jointly measurable with a given qubit effect, and extended our analysis to scenarios involving pairs and triplets of continuous qubit measurements.

Data availability statement

No new data were created or analysed in this study.

Appendix A

Let $E_k^\lambda := \lambda^2 |+\rangle \langle +| + \frac{1}{3} |0\rangle \langle 0|, k \in \mathbb{Z}_3$. If $\lambda \neq 1$, E^λ is of rank 2 so that its minimal covariant Naimark dilation consists of the dilation space $\mathbb{C}^2 \times \mathbb{C}^2 \times \mathbb{C}^2 \cong \mathbb{C}^2 \oplus \mathbb{C}^2 \oplus \mathbb{C}^2$, with the basis $\{|k\pm\rangle\}$ where $|0\pm\rangle := (|\pm\rangle, 0, 0)$, $|1\pm\rangle := (0, |\pm\rangle, 0)$, $|2\pm\rangle := (0, 0, |\pm\rangle)$, the PVM $P_k := |k+\rangle \langle k+| + |k-\rangle \langle k-|$, $k \in \mathbb{Z}_3$, the isometry
\[J_\lambda = \frac{2}{\lambda} \sqrt{a_+^\lambda |k+\rangle \langle +| U_k^* + \sqrt{a_-^\lambda |k-\rangle \langle -| U_k^*} , \quad a_\pm^\lambda := \frac{1 \pm \lambda}{3}, \]

and the unitary representation

\[Z_3 \ni k \mapsto V_k := \sum_{\ell=0}^2 |b_\ell(\ell)\rangle \langle \ell+| + |b_\ell(\ell)\rangle \langle \ell-|. \]

Indeed, clearly \(P_k = V_k P_k V_k^* \) is covariant, \(J_\lambda U_k = V_k J_\lambda \), and \(E_\lambda^k = J_k^* P_k J_\lambda \).

Suppose then that \(B = (B_j) \) is a qubit POVM which is jointly measurable with \(E^\lambda \). For any\(^9\) joint POVM \(N = (N_{ij}) \) (i.e. \(\sum_i N_{ij} = E_\lambda^k \) and \(\sum_j N_{ij} = B \)) there exist three unique qubit POVMs \(\tilde{A}^{(k)} = (\tilde{A}_{ij}^{(k)}) \), \(k \in \mathbb{Z}_3 \), such that \(N_{ij} = J_k^* \tilde{A}^{(k)} J_\lambda \); here \(\tilde{A}^{(k)} \) operates in the subspace spanned by \(\{|k+\rangle, |k-\rangle\} \). By defining matrices

\[A_j^{(k)} := \begin{pmatrix} \langle k+| \tilde{A}_{ij}^{(k)} |k+\rangle & \langle k+| \tilde{A}_{ij}^{(k)} |k-\rangle \\ \langle k-| \tilde{A}_{ij}^{(k)} |k+\rangle & \langle k-| \tilde{A}_{ij}^{(k)} |k-\rangle \end{pmatrix}, \]

we get

\[N_{ij} = J_k^* \tilde{A}^{(k)} J_\lambda = U_k (M^{\lambda} \ast A^{(k)}) U_k^* \]

where

\[M^{\lambda} := \left(\begin{array}{cc} a_+^\lambda & \sqrt{a_-^\lambda a_+^\lambda} \\ a_-^\lambda & a_-^\lambda \end{array} \right) = \frac{1}{3} \left(\begin{array}{cc} 1 + \lambda & \sqrt{1 - \lambda^2} \\ \sqrt{1 - \lambda^2} & 1 - \lambda \end{array} \right) \geq 0 \]

and \(\ast \) is the entrywise (Schur) product. One can solve the \(A \)-matrices (showing uniqueness):

\[A_j^{(k)} = (U_k^* N_{ij} U_k) \ast N^{\lambda} \]

where

\[N^{\lambda} := 3 \left(\begin{array}{cc} (1 + \lambda)^{-1} & 1/\sqrt{1 - \lambda^2} \\ 1/\sqrt{1 - \lambda^2} & (1 - \lambda)^{-1} \end{array} \right) \geq 0. \]

Note that there may be many \(A \)-matrices (i.e. many joint POVMs \(G \)) giving the same marginal \(B_j = (M^{\lambda} \ast A^{(0)j}) + U_j (M^{\lambda} \ast A^{(1)j}) U_j^* + U_j (M^{\lambda} \ast A^{(2)j}) U_j^* \).

Let \(B = B^g \) above, where \(\psi \) is a unit vector, \(\eta \in [0, 1] \), and

\[B_0^\eta = \eta \frac{2}{3} \langle \psi | \langle \psi | + (1 - \eta) \frac{1}{3} \mathbb{1}, \quad B_k^\eta = U_k B_0^\eta U_k^*, \quad k \in \mathbb{Z}_3. \]

Since \(B^g \) is also covariant we may assume that \(N \) is covariant, i.e. satisfies \(N_{k+\ell,j+\ell} = U_{ij} N_{ij} U_{ij}^* \) (note that \(\tilde{N}_{ij} := \frac{1}{2} \sum_{k=0}^2 U_k^* N_{k+\ell,j+\ell} U_k \) gives the same marginals as \(N \) and is covariant).

For \(\psi = \mid - \rangle \), we guess that

\[A_0^{(k)} = U_k^* A U_k, \quad A = \begin{pmatrix} d & 0 \\ 0 & e \end{pmatrix}, \quad d, e \geq 0, \quad d + e = \frac{2}{3}, \]

\(^9\) Of course, the joint POVM of \((E^{\lambda}, F) \) needs not be unique.
could be a good choice for \(N_{i0} = U_i (M^\lambda \ast A^{(k)}_0) U_i^* \). This determines the rest of the effects by the covariance condition \(N_{i+k+f} = U_i N_i U_i^* \). Let us solve parameter \(d \) from

\[
B_0 = \frac{1}{3} \begin{pmatrix} 1 - \eta & 0 & 1 + \eta \\ 0 & 1 & 0 \end{pmatrix} = M^\lambda \ast A + U_1 (M^\lambda \ast U_1^* A U_1) U_1^* + U_2 (M^\lambda \ast U_2^* A U_2) U_2^*
\]

\[
= \frac{1}{4} \begin{pmatrix} 3 + \sqrt{1 - \lambda^2} \, d + \left(1 - \sqrt{1 - \lambda^2} \right) e & 0 \\ 0 & \left(3 + \sqrt{1 - \lambda^2} \right) e + \left(1 - \sqrt{1 - \lambda^2} \right) d \end{pmatrix}
\]

where \(e = \frac{2}{\pi} - d \). The solution is

\[
d = \frac{\lambda^2 - 2\eta \left(1 - \sqrt{1 - \lambda^2} \right)}{3\lambda^2} \leq \frac{\lambda^2}{3\lambda^2} = \frac{1}{3}
\]

so that automatically \(e = \frac{2}{\pi} - d \in \left[\frac{1}{3}, \frac{2}{3} \right] \) when \(d \in \left[0, \frac{1}{3} \right] \). The condition \(d \geq 0 \) is equivalent to \(\lambda^2 - 2\eta \left(1 - \sqrt{1 - \lambda^2} \right) \geq 0 \) or

\[
\eta \leq \frac{\lambda^2}{2 \left(1 - \sqrt{1 - \lambda^2} \right)} =: f(\lambda)
\]

where \(f(\lambda) \) runs from 1 to \(\frac{1}{4} \) when \(\lambda \) goes from 0 to 1, i.e. the POVMs are jointly measurable when \(\eta \in [0, f(\lambda)] \). In this case, one can easily calculate the joint POVM \(N \).

Appendix B

In this appendix, we study joint measurability of the triplet \((N^{\text{promo}}, Q_0^{\text{promo}}, Q_0^{\text{promo}}) \) for any \(\theta \notin \{0, \pi\} \). Using a result of [20, appendix B] we get a joint normalised operator valued measure (OVM) \(G \) whose effects are

\[
G(\{0\} \times X \times Y) = \int_X \int_X \frac{dxdy}{\pi} e^{-x^2-y^2} \times \begin{pmatrix} 1 - \epsilon/2 & 1 - \epsilon/2 \left[(1 - \epsilon_0)\sqrt{2}x + (1 - \epsilon_0)\sqrt{2}ye^{-i\theta} \right] \\ (1 - \epsilon/2) \left[(1 - \epsilon_0)\sqrt{2}x + (1 - \epsilon_0)\sqrt{2}ye^{-i\theta} \right] & \epsilon/2 + (1 - \epsilon/2) \left[(1 - \epsilon_0)2x^2 + (1 - \epsilon_0)2y^2 \right] + (1 - \epsilon_0)(1 - \epsilon_0)4xy\cos \theta + \epsilon_0 + \epsilon_0 - 2 \end{pmatrix}
\]

\[
G(\{1\} \times X \times Y) = \int_X \int_X \frac{dxdy}{\pi} e^{-x^2-y^2} \times \begin{pmatrix} \epsilon/2 & \epsilon/2 \left[(1 - \epsilon_0)\sqrt{2}x + (1 - \epsilon_0)\sqrt{2}ye^{-i\theta} \right] \\ \epsilon/2 \left[(1 - \epsilon_0)\sqrt{2}x + (1 - \epsilon_0)\sqrt{2}ye^{-i\theta} \right] & 1 - \epsilon/2 + \epsilon/2 \left[(1 - \epsilon_0)2x^2 + (1 - \epsilon_0)2y^2 \right] + (1 - \epsilon_0)(1 - \epsilon_0)4xy\cos \theta + \epsilon_0 + \epsilon_0 - 2 \end{pmatrix}
\]
Since \(\int_{\mathbb{R}} xe^{-x^2} \, dx = 0 \) and \(\int_{\mathbb{R}} 2x^2 e^{-x^2} \, dx / \sqrt{\pi} = 1 \) one gets a joint OVM for \(Q_0^{\text{prono}} \) and \(Q_0^{\text{prono}} \):

\[
G_1(X \times Y) := G(\{(0, 1) \times X \times Y\}) = G(\{(0) \times X \times Y\}) + G(\{1\} \times X \times Y) = \int_{\mathbb{R}} \int_{\mathbb{R}} \frac{dx \, dy}{\sqrt{\pi}} e^{-x^2 - y^2} \\
\quad \quad \times \left(\frac{1}{(1 - \epsilon_0) \sqrt{2x} + (1 - \epsilon_0) \sqrt{2y} e^{i\theta}} \right) \left((1 - \epsilon_0) \sqrt{2x} + (1 - \epsilon_0) \sqrt{2y} e^{i\theta} \right) \\
\quad \quad \quad + (1 - \epsilon_0)(1 - \epsilon_0) 4xy \cos \theta + \epsilon_0 + \epsilon_0 - 1 ,
\]

\[
G_1(X \times \mathbb{R}) = G(\{(0, 1) \times X \times \mathbb{R}\}) = \int_{\mathbb{R}} \frac{dx}{\sqrt{\pi}} e^{-x^2} \left(\frac{1}{(1 - \epsilon_0) \sqrt{2x}} \right) \left((1 - \epsilon_0) \sqrt{2x} \right) = Q_0^{\text{prono}}(X),
\]

\[
G_1(\{X \times \mathbb{R}\}) = G(\{(0, 1) \times X \times \mathbb{R}\}) = Q_0^{\text{prono}}(Y).
\]

Similarly, a joint OVM of \(N_0^{\text{prono}} \) and \(Q_0^{\text{prono}} \)

\[
G_2(\{0\} \times Y) := G(\{(0) \times X \times Y\}) = \int_\mathbb{R} \frac{dy}{\sqrt{\pi}} e^{-y^2} \left(\frac{1 - \epsilon}{2} \right) \left((1 - \epsilon/2)(1 - \epsilon_0) \sqrt{2y} e^{i\theta} \right) \\
\quad \quad \quad + (1 - \epsilon/2)(1 - \epsilon_0) 2y^2 + \epsilon_0 - 1 ,
\]

\[
G_2(\{1\} \times Y) := G(\{(1) \times X \times Y\}) = \int_\mathbb{R} \frac{dy}{\sqrt{\pi}} e^{-y^2} \left(\epsilon/2 \right) \left((1 - \epsilon/2)(1 - \epsilon_0) \sqrt{2y} e^{i\theta} \right) \\
\quad \quad \quad + \epsilon/2 \left((1 - \epsilon/2) + (1 - \epsilon/2)(1 - \epsilon_0) 2y^2 + \epsilon_0 - 1 \right) ,
\]

\[
G_2(\{0\} \times \mathbb{R}) = G(\{(0) \times X \times \mathbb{R}\}) = \left(1 - \epsilon/2 \right) \left(\begin{array}{cc} 0 & \epsilon/2 \\ 0 & \epsilon/2 \end{array} \right) = N_0^{\text{prono}}, \quad G_2(\{1\} \times \mathbb{R}) = G(\{(1) \times X \times \mathbb{R}\}) = N_0^{\text{prono}}.
\]

Finally, for \(N_0^{\text{prono}} \) and \(Q_0^{\text{prono}} \) we get

\[
G_3(\{0\} \times X) := G(\{(0) \times X \times \mathbb{R}\}) = \int_{\mathbb{R}} \frac{dx}{\sqrt{\pi}} e^{-x^2} \left(\frac{1 - \epsilon/2}{(1 - \epsilon/2)(1 - \epsilon_0) \sqrt{2x}} \right) \\
\quad \quad \quad + \epsilon/2 \left((1 - \epsilon/2) + (1 - \epsilon/2)(1 - \epsilon_0) 2x^2 + \epsilon_0 - 1 \right) ,
\]

\[
G_3(\{1\} \times X) := G(\{(1) \times X \times \mathbb{R}\}) = \int_{\mathbb{R}} \frac{dx}{\sqrt{\pi}} e^{-x^2} \left(\epsilon/2 \right) \left((1 - \epsilon/2)(1 - \epsilon_0) \sqrt{2x} \right) \\
\quad \quad \quad + \epsilon/2 \left((1 - \epsilon/2) + (1 - \epsilon/2)(1 - \epsilon_0) 2x^2 + \epsilon_0 - 1 \right) .
\]

When OVMs \(G, G_1, G_2, \) and \(G_3 \) are positive, i.e. POVMs? Since these OVMs contain a matrix inside an integral, the matrix must be positive semidefinite for all values of \(x \) and \(y \). But the left upper corners of the matrices are always non-negative so it is enough to check that the determinants are non-negative:

For \(G(\{(0) \times X \times Y\}) \) and \(G(\{1\} \times X \times Y) \) the determinants are

\[
\begin{array}{c}
\left(\frac{1 - \epsilon}{2} \right)^2 \frac{\epsilon + \epsilon_0 + 2 + \epsilon_0(1 - \epsilon_0) 2x^2 + \epsilon_0(1 - \epsilon_0) 2y^2}{\geq 0} \\
\left(\frac{\epsilon}{2} \right)^2 \frac{\epsilon + \epsilon_0 + 2 + \epsilon_0(1 - \epsilon_0) 2x^2 + \epsilon_0(1 - \epsilon_0) 2y^2}{\geq 0}
\end{array}
\]

and

\[
\begin{array}{c}
\left(\frac{1 - \epsilon}{2} \right)^2 \frac{\epsilon + \epsilon_0 + 2 + \epsilon_0(1 - \epsilon_0) 2x^2 + \epsilon_0(1 - \epsilon_0) 2y^2}{\geq 0} \\
\left(\frac{\epsilon}{2} \right)^2 \frac{\epsilon + \epsilon_0 + 2 + \epsilon_0(1 - \epsilon_0) 2x^2 + \epsilon_0(1 - \epsilon_0) 2y^2}{\geq 0}
\end{array}
\]
which are non-negative (i.e. \(G \) is a POVM) exactly when
\[
\frac{\epsilon}{2-\epsilon} + \epsilon_0 + \epsilon_\theta - 2 \geq 0.
\]
The determinant related to \(G_1 \) is
\[
\epsilon_0 + \epsilon_\theta - 1 + (1 - \epsilon_0)\epsilon_0 2x^2 + (1 - \epsilon_\theta)\epsilon_\theta 2y^2 \geq \epsilon_0 + \epsilon_\theta - 1
\]
so that \(G_1 \) is positive exactly when
\[
\epsilon_0 + \epsilon_\theta - 1 \geq 0.
\]
Since \(\epsilon_0 + \epsilon_\theta - 1 \geq \frac{\epsilon_2}{\epsilon} + \epsilon_0 + \epsilon_\theta - 2 \), the positivity of \(G \) implies the positivity of \(G_1 \) as expected. If \(\epsilon < 1 \) and \(\epsilon_0 = \epsilon_\theta = \frac{1}{2} \), then \(G_1 \) is positive but \(G \) is not.

For \(G_2 \) we get (from determinants) the positivity conditions
\[
\frac{2}{2-\epsilon} + \epsilon_0 - 2 \geq 0, \quad \frac{2}{\epsilon} + \epsilon_\theta - 2 + (1 - \epsilon_\theta)\epsilon_\theta 2y^2 \geq 0
\]
showing that \(G_2 \) is a POVM if and only if
\[
\frac{2}{2-\epsilon} + \epsilon_\theta - 2 \geq 0.
\]
Note that, since \(\frac{2}{\epsilon} + \epsilon_\theta - 2 \geq \frac{\epsilon_2}{\epsilon} + \epsilon_0 + \epsilon_\theta - 2 \), clearly \(G_2 \) is positive if \(G \) is positive but the converse does not hold (e.g. if \(\epsilon = \frac{1}{2}, \epsilon_\theta = \frac{2}{3}, \) and \(\epsilon_0 < 1 \)). Similarly, \(G_3 \) is a POVM exactly when
\[
\frac{2}{2-\epsilon} + \epsilon_0 - 2 \geq 0.
\]

Example 3. Suppose that \(\epsilon = \epsilon_0 = \epsilon_\theta \). Now \(N^{\text{prono}}, Q_0^{\text{prono}}, \) and \(Q_\theta^{\text{prono}} \) are jointly measurable (\(G \)) if
\[
-2\epsilon^2 + 7\epsilon - 4 \geq 0,
\]
i.e. when
\[
\epsilon \geq \frac{1}{4} \left(7 - \sqrt{17} \right) \approx 0.72.
\]
In addition, \(Q_0^{\text{prono}} \) and \(Q_\theta^{\text{prono}} \) are compatible (\(G_1 \)) if
\[
\epsilon \geq \frac{1}{2},
\]
and \(N^{\text{prono}} \) and \(Q_\theta^{\text{prono}} \) (or \(Q_0^{\text{prono}} \)) are jointly measurable if \(2 \geq (2 - \epsilon)^2 \), i.e. when
\[
\epsilon \geq 2 - \sqrt{2} \approx 0.59.
\]

Note that \(G \) (based on (20)) is not the best possible joint measurement since, e.g. its marginal \(G_1 \) gives a joint measurement for \(Q_0^{\text{prono}} \) and \(Q_\theta^{\text{prono}} \) for any \(\theta \) only when \(\epsilon_0 + \epsilon_\theta \geq 1 \) but we know that, if \(\theta = 0 \) or \(\theta = \pi \), then \(Q_0^{\text{prono}} \) and \(Q_\theta^{\text{prono}} \) are jointly measurable for all \(\epsilon_0, \epsilon_\theta \in [0, 1] \).

Let us try to find a better joint measurement (i.e. we will modify \(G \)).

10 Where the equality holds iff \(\epsilon = 1 \) (i.e. the effects \(N_{0,1}^{\text{prono}} = \frac{1}{2}I \) which commute with everything).

11 Where the equality holds iff \(\epsilon_0 = 1 \) (i.e. \(Q_0^{\text{prono}} \) is a trivial POVM which commutes with everything).
Suppose for simplicity that $\epsilon = \epsilon_0 = \epsilon_\theta$ like in the preceding example. Define an OVM via

\[
G' \{(0) \times X \times Y \} = \int_X \int_Y \frac{dxdy}{\pi} e^{-x^2 - y^2} \begin{pmatrix} 1 - \epsilon/2 & f(\epsilon) [\sqrt{x^2 + \sqrt{2}ye^{-i\theta}}] & f(\epsilon) [\sqrt{x^2 + \sqrt{2}ye^{-i\theta}}] \end{pmatrix},
\]

\[
G' \{(1) \times X \times Y \} = \int_X \int_Y \frac{dxdy}{\pi} e^{-x^2 - y^2} \begin{pmatrix} \epsilon/2 & h(\epsilon) [\sqrt{x^2 + \sqrt{2}ye^{-i\theta}}] & h(\epsilon) [\sqrt{x^2 + \sqrt{2}ye^{-i\theta}}] \end{pmatrix},
\]

where f, g, h, and i are unknown real functions. Since

\[
G' \{(0,1) \times X \times Y \} = \int_X \int_Y \frac{dxdy}{\pi} e^{-x^2 - y^2} \begin{pmatrix} \frac{1}{f(\epsilon) + h(\epsilon) [\sqrt{x^2 + \sqrt{2}ye^{-i\theta}}]} & f(\epsilon) + h(\epsilon) [\sqrt{x^2 + \sqrt{2}ye^{-i\theta}}] & f(\epsilon) + h(\epsilon) [\sqrt{x^2 + \sqrt{2}ye^{-i\theta}}] \\
2f(\epsilon) + g(\epsilon) = \epsilon/2,
\end{pmatrix}
\]

we must have

\[
f(\epsilon) + h(\epsilon) = 1 - \epsilon,
\]

\[
g(\epsilon) + i(\epsilon) = 2\epsilon - 1,
\]

that is,

\[
g(\epsilon) = \epsilon/2 - 2f(\epsilon),
\]

\[
h(\epsilon) = 1 - \epsilon - f(\epsilon),
\]

\[
i(\epsilon) = 3\epsilon/2 - 1 + 2f(\epsilon)
\]

where $f(\epsilon)$ is free. The determinants of the matrices inside $G' \{(0) \times X \times Y \}$ and $G' \{(1) \times X \times Y \}$ are

\[
\begin{pmatrix} (1 - \epsilon/2)f(\epsilon) - f(\epsilon)^2 & f(\epsilon) [\sqrt{x^2 + \sqrt{2}ye^{-i\theta}}] \end{pmatrix}^2 + (1 - \epsilon/2)g(\epsilon),
\]

\[
\begin{pmatrix} (\epsilon/2)h(\epsilon) - h(\epsilon)^2 & f(\epsilon) + h(\epsilon) [\sqrt{x^2 + \sqrt{2}ye^{-i\theta}}] \end{pmatrix}^2 + (\epsilon/2)i(\epsilon)
\]

which must be non-negative for all $x, y \in \mathbb{R}$. Especially, by putting $x = y = 0$ (or looking the lower right corners) we get the necessary conditions $g(\epsilon) \geq 0$ and $i(\epsilon) \geq 0$, that is, $\epsilon/4 \geq f(\epsilon) \geq 1/2 - 3\epsilon/4$ which can hold if and only if $\epsilon/4 \geq 1/2 - 3\epsilon/4$, i.e. $\epsilon \geq 1/2$.

The next conditions are sufficient for G' being positive:

\[
\epsilon > 1/2,
\]

\[
\epsilon/4 \geq f(\epsilon) \geq 1/2 - 3\epsilon/4,
\]

\[
(1 - \epsilon/2)f(\epsilon) - f(\epsilon)^2 \geq 0 \iff 0 \leq f(\epsilon) \leq 1 - \epsilon/2,
\]

\[
(\epsilon/2)h(\epsilon) - h(\epsilon)^2 \geq 0 \iff 0 \leq h(\epsilon) \leq \epsilon/2 \iff 0 \leq 1 - \epsilon - f(\epsilon) \leq \epsilon/2
\]

which reduce to $\epsilon > 1/2$ and $\min\{\epsilon/4, 1 - \epsilon/2, 1 - \epsilon\} \geq f(\epsilon) \geq \max\{1/2 - 3\epsilon/4, 0, 1 - 3\epsilon/2\}$

or, equivalently,

\[
1 - 3\epsilon/2 \leq f(\epsilon) \leq \epsilon/4,
\]

\[
0 \leq f(\epsilon) \leq \epsilon/4,
\]

\[
0 \leq f(\epsilon) \leq 1 - \epsilon,
\]

\[
4/5 < \epsilon \leq 1.
\]

To conclude, to find some $f(\epsilon)$ (and a joint POVM G') one must have $1 - 3\epsilon/2 \leq \epsilon/4$, i.e.

\[
\epsilon > 4/7 \approx 0.57\ldots
\]

12 Let us see what happens if we put $\epsilon = 1/2$ implying

\[
f(1/2) = 1/8, \quad g(1/2) = 0, \quad h(1/2) = 3/8, \quad i(1/2) = 0,
\]

so the second determinant reduce to $-(3/64)[\sqrt{x^2 + \sqrt{2}ye^{-i\theta}}]^2$ which is negative if, e.g. $(x,y) = (1,0)$.

19
so we have a better limit. Now \(f(4/7) = 1/7 \), \(g(4/7) = 0 \), \(h(4/7) = 2/7 \), \(i(4/7) = 1/7 \), and the joint POVM is

\[
G'(\{0\} \times X \times Y) = \int_X \int_Y \frac{dxdy}{\pi} e^{-x^2-y^2} \left(\frac{5/7}{(1/7)[\sqrt{2x} + \sqrt{2ye^{i\theta}}]} (1/7)[\sqrt{2x} + \sqrt{2ye^{-i\theta}}] \right),
\]

\[
G'((1) \times X \times Y) = \int_X \int_Y \frac{dxdy}{\pi} e^{-x^2-y^2} \left(\frac{2/7}{(2/7)[\sqrt{2x} + \sqrt{2ye^{i\theta}}]} (2/7)[\sqrt{2x} + \sqrt{2ye^{-i\theta}}] \right).
\]

By using similar methods, we find a better limit \(\epsilon = \frac{1}{7} \) and a joint POVM for the pair \(P_{\text{proj}} \) and \(Q_\theta^{\text{proj}} \).

\[
G'_2((0) \times Y) = \int_Y \frac{dy}{\sqrt{\pi}} e^{-y^2} \left(\frac{3/4}{(1/4)[\sqrt{2ye^{i\theta}}]} (1/4)[\sqrt{2ye^{-i\theta}}] \right),
\]

\[
G'_2((1) \times Y) = \int_Y \frac{dy}{\sqrt{\pi}} e^{-y^2} \left(\frac{1/4}{(1/4)[\sqrt{2ye^{i\theta}}]} (1/4)[\sqrt{2ye^{-i\theta}}] \right).
\]

For \(P_{\text{proj}}^{\text{proj}} \) and \(Q_\theta^{\text{proj}} \) this method gives the same limit \(\epsilon = 1/2 \) as before with a joint POVM

\[
G'_1(X \times Y) = \int_X \int_Y \frac{dxdy}{\pi} e^{-x^2-y^2} \left(\frac{1}{2} \left(\frac{2}{\sqrt{2x} + \sqrt{2ye^{i\theta}}} \right) \frac{\sqrt{x} + \sqrt{2ye^{-i\theta}}}{2x^2 + 2y^2 + 4x\cos \theta} \right).
\]

Finally, we study compatibility of the projected energy (or number) and the canonical phase.

Let \(\epsilon \in [0,1] \) and denote \(\epsilon^+ := 1 - \epsilon \). Define the noisy projected canonical phase [1]: for all Borel \(X \subseteq [0,2\pi] \),

\[
\Phi(X) := \epsilon^+ \int_X \left(\begin{array}{c} 1 \\ \epsilon^e^{i\theta} \end{array} \right) \frac{d\theta}{2\pi} + \epsilon \left(\int_X \left(\begin{array}{c} 1 \\ 0 \end{array} \right) \frac{d\theta}{2\pi} = \int_X \left(\begin{array}{c} 1 \\ \epsilon^e^{i\theta} \end{array} \right) \frac{d\theta}{2\pi} \right) \geq 0
\]

for which \(\Phi([0,2\pi]) = 1. \) Let \(c \) and \(d \) be complex numbers in the unit disc, i.e. \(|c| \leq 1 \) and \(|d| \leq 1 \). Define a POVM via

\[
M(\{0\} \times X) := \int_X \left(\begin{array}{c} 1 - \epsilon/2 \\ \sqrt{\epsilon/2} \sqrt{1 - \epsilon/2} e^{i\theta} \end{array} \right) \frac{d\theta}{2\pi} \geq 0,
\]

\[
M(\{1\} \times X) := \int_X \left(\begin{array}{c} \epsilon/2 \\ \sqrt{\epsilon/2} \sqrt{1 - \epsilon/2} e^{i\theta} \end{array} \right) \frac{d\theta}{2\pi} \geq 0.
\]

[For positivity note that, e.g. the determinant of the above matrix is \((\epsilon/2)(1 - c/2)(1 - d/2) \geq 0. \)] Now \(M(\{0\} \times [0,2\pi]) = P_{\text{proj}}^{\text{proj}} \) and \(M(\{1\} \times [0,2\pi]) = Q_\theta^{\text{proj}}. \) To get a joint measurement of \(P_{\text{proj}}^{\text{proj}} \) and \(\Phi \), we must have also \(M(\{0\} \times X) + M(\{1\} \times X) = \Phi(X) \) for all \(X \), i.e. for all \(\theta \),

\[
\left(\begin{array}{cc} 1 - \epsilon/2 \\ \sqrt{\epsilon/2} \sqrt{1 - \epsilon/2} e^{i\theta} \\ \epsilon/2 \end{array} \right) \frac{d\theta}{2\pi} \geq 0,
\]

\[
\left(\begin{array}{cc} \epsilon/2 \\ \sqrt{\epsilon/2} \sqrt{1 - \epsilon/2} e^{i\theta} \\ 1 - \epsilon/2 \end{array} \right) \frac{d\theta}{2\pi} \geq 0.
\]

\[
\left(\begin{array}{cc} 1 \\ \epsilon^e^{i\theta} \\ 1 \end{array} \right),
\]

20
The function $\epsilon \mapsto f(\epsilon)$ (the red curve).

i.e. $(c + d)\sqrt{\epsilon/2}\sqrt{1-\epsilon/2} = \epsilon^\perp = 1 - \epsilon$ or

$$c + d = f(\epsilon) := \frac{1 - \epsilon}{\sqrt{\epsilon/2}\sqrt{1-\epsilon/2}}.$$

Since $|c + d| \leq |c| + |d| \leq 2$, one has to have $f(\epsilon) \leq 2$ [i.e. then c and d and M exist; one can choose, e.g. $c = d = f(\epsilon)/2$]. So to get the smallest possible ϵ (see figure 1) we must solve equation $f(\epsilon) = 2$. The solution is $\epsilon = \epsilon_{\text{min}} := 1 - 1/\sqrt{2} \approx 0.292893$.

To conclude, if $\epsilon \geq \epsilon_{\text{min}}$ then N_{prono} and Φ are jointly measurable.

ORCID iD

Juha-Pekka Pellonpää https://orcid.org/0000-0002-3967-5908

References

[1] Busch P, Lahti P, Pellonpää J-P and Ylinen K 2016 Quantum Measurement (Theoretical and Mathematical Physics) (Berlin: Springer)

[2] Busch P, Lahti P and Werner R F 2014 Colloquium: quantum root-mean-square error and measurement uncertainty relations Rev. Mod. Phys. 86 1261–81

[3] Coles P J, Berta M, Tomamichel M and Wehner S 2017 Entropic uncertainty relations and their applications Rev. Mod. Phys. 89 015002

[4] Gisin N, Ribordy G, Tittel W and Zbinden H 2002 Quantum cryptography Rev. Mod. Phys. 74 145–95

[5] Degen C L, Reinhard F and Cappellaro P 2017 Quantum sensing Rev. Mod. Phys. 89 035002

[6] Herrero-Collantes M and Garcia-Escartin J C 2017 Quantum random number generators Rev. Mod. Phys. 89 015004
[7] Guryanova Y, Friis N and Huber M 2020 Ideal projective measurements have infinite resource costs Quantum 4 222
[8] Oszmaniec M and Biswas T 2019 Operational relevance of resource theories of quantum measurements Quantum 3 133
[9] Uola R, Kraft T, Shang J, Yu X-D and Gühne O 2019 Quantifying quantum resources with conic programming Phys. Rev. Lett. 122 130404
[10] Lahti P 2003 Coexistence and joint measurability in quantum mechanics Int. J. Theor. Phys. 42 893
[11] Heinosaari T and Wolf M M 2010 Non-disturbing quantum measurements J. Math. Phys. 51 092201
[12] Heinosaari T 2016 Simultaneous measurement of two quantum observables: compatibility, broadcasting and in-between Phys. Rev. A 93 042118
[13] Oszmaniec M, Guerini L, Wittek P and Acín A 2017 Simulating positive-operator-valued measures with projective measurements Phys. Rev. Lett. 119 190501
[14] Ioannou M, Sekatski P, Designolle S, Jones B D M, Uola R and Brunner N 2022 Simulability of high-dimensional quantum measurements Phys. Rev. Lett. 129 190401
[15] Cope T and Uola R Quantifying the high-dimensionality of quantum devices (arXiv:2207.05722)
[16] Wolf M M, Perez-Garcia D and Fernandez C 2009 Measurements incompatible in quantum theory cannot be measured jointly in any other local theory Phys. Rev. Lett. 103 230402
[17] Quintino M T, Vértesi T and Brunner N 2014 Joint measurability, einstein-podolsky-rosen steering and Bell nonlocality Phys. Rev. Lett. 113 160402
[18] Uola R, Moroder T and Gühne O 2014 Joint measurability of generalized measurements implies classicality Phys. Rev. Lett. 113 160403
[19] Uola R, Budroni C, Gühne O and Pellonpää J-P 2015 One-to-one mapping between steering and joint measurability problems Phys. Rev. Lett. 115 230402
[20] Kiukas J, Budroni C, Uola R and Pellonpää J-P 2017 Continuous-variable steering and incompatibility via state-channel duality Phys. Rev. A 96 042331
[21] Tavakoli A and Uola R 2020 Measurement incompatibility and steering are simply equivalent for operational contextuality Phys. Rev. Res. 2 013011
[22] Skrzypczyk P, Supič I and Cavalcanti D 2019 All sets of incompatible measurements give an advantage in quantum state discrimination Phys. Rev. Lett. 122 130403
[23] Carmeli C, Heinosaari T and Toigo A 2019 Quantum incompatibility witnesses Phys. Rev. Lett. 122 130402
[24] Guerini L, Túlio Quintino M and Aolita L 2019 Distributed sampling, quantum communication witnesses and measurement incompatibility Phys. Rev. A 100 042308
[25] Beyer K, Uola R, Luoma K and Strunz W T 2022 Joint measurability in nonequilibrium quantum thermodynamics Phys. Rev. E 106 L022101
[26] Zhou F, Yan L, Gong S, Ma Z, He J, Xiong T, Chen L, Yang W, Feng M and Vedral V 2016 Verifying heisenberg’s error-disturbance relation using a single trapped ion Sci. Adv. 2 e1600578
[27] Designolle S, Srivastav V, Uola R, Valencia N H, McCutcheon W, Malik M and Brunner N 2021 Genuine high-dimensional quantum steering Phys. Rev. Lett. 126 200404
[28] Anwer H, Muhammad S, Cherifi W, Miklin N, Tavakoli A and Bourennane M 2020 Experimental characterization of unsharp qubit observables and sequential measurement incompatibility via quantum random access codes Phys. Rev. Lett. 125 080403
[29] Smirne A, Cialdi S, Ciripiani D, Carmeli C, Toigo A and Vacchini B 2022 Experimentally determining the incompatibility of two qubit measurements Quantum Sci. Technol. 7 025016
[30] Gühne O, Haapasalo E, Kraft T, Pellonpää J-P and Uola R 2023 Incompatible measurements in quantum information science Rev. Mod. Phys. 95 011003
[31] Pellonpää J-P 2014 On coexistence and joint measurability of rank-1 quantum observables J. Phys. A 47 052002
[32] Haapasalo E, Pellonpää J-P and Uola R 2015 Compatibility properties of extreme quantum observables Lett. Math. Phys. 105 661–73
[33] Haapasalo E and Pellonpää J-P 2017 Optimal quantum observables J. Math. Phys. 58 122104
[34] Kruszynski P and de Muynck W M 1987 Compatibility of observables represented by positive operator valued measures J. Math. Phys. 28 1761–3
[35] Beneduci R 2017 Joint measurability through naimark’s dilation theorem Rep. Math. Phys. 79 197–214
[36] Mitra A, Ghosh S and Mandayam P Characterizing incompatibility of quantum measurements via their naimark extensions (arXiv:2011.11364)
[37] Busch P 1986 Unsharp reality and joint measurements for spin observables Phys. Rev. D 33 2253
[38] Jae J, Baek K, Ryu J and Lee J 2019 Necessary and sufficient condition for joint measurability Phys. Rev. A 100 032113
[39] Uola R, Luoma K, Moroder T and Heinosaari T 2016 Adaptive strategy for joint measurements Phys. Rev. A 94 022109
[40] Heinosaari T 2013 A simple sufficient condition for the coexistence of quantum effects J. Phys. A: Math. Theor. 46 152002
[41] Designolle S, Farkas M and Kaniewski J 2019 Incompatibility robustness of quantum measurements: a unified framework New J. Phys. 21 113053
[42] Kiukas J, McNulty D and Pellonpää J-P 2022 Amount of quantum coherence needed for measurement incompatibility Phys. Rev. A 105 012205
[43] Hytönen T, Pellonpää J-P and Ylinen K 2007 Positive sesquilinear form measures and generalized eigenvalue expansions J. Math. Anal. Appl. 336 1287–304