Automated Product Inspection in Industry 4.0 Environment

M B Kiran

1Associate Professor, Department of Mechanical Engineering, Pandit Deendayal Energy University, Gandhinagar, Gujarat, INDIA

E-Mail: MB.Kiran@sot.pdpu.ac.in

Abstract. The emergence of Industry 4.0 technologies demands new techniques of measurement which would facilitate seamless integration with other devices in the wireless IoT network. Many of the existing product inspection methods cannot be deployed directly in the IoT environment. Thus, there is a need for innovative inspection techniques in the Industry 4.0 environment. In this context, the proposed inspection technique assumes special significance. Surface irregularities observed in product manufacturing can be due to chatter, vibration, worn-out cutting tools, condition of the machine tools, etc. Evaluation of surface texture helps in predicting a product’s functionality. In this work, an attempt has been made to identify the surface texture images acquired from Shaping, Milling, Electric discharge machining (E.D.M.) and Sand Blasting processes during online inspection. In addition to surface texture identification, the proposed method will also measure surface roughness and component dimensions. Thus, entire product inspection can be done online, and in a single setup. This is also an 100% online inspection method. The main contribution of this proposed research work is that all types of inspection are completed in a single set up, resulting in significant savings.

1. Introduction

Surface texture may be defined as the superposition of roughness, waviness, and error in the form. Surface irregularities having shorter wavelengths are known as roughness. Surface irregularities having medium wavelength are known as waviness and surface irregularities having large wavelength are known as form error. Surface texture evaluation helps in predicting the functionality of a machined component. Many industries such as automobile and machine tool manufacturing normally do the surface inspection of machined components. This is required for ensuring customer satisfaction. During the component inspection, they check not only the surface finish but also the processor texture of the machined surface. This is because the same roughness can be achieved by the different manufacturing processes. Thus, even the component drawing in addition to specifying dimensions will specify both surface finish and texture information. Many researchers have been working on texture evaluation. But as far as the knowledge of the author goes not a single paper exists today which addresses (i) dimensional inspection (ii) surface roughness inspection and (iii) process identification or texture classification. In this work, an attempt has been made to identify the surface textures acquired from Shaping, Milling, Electric discharge machining (EDM) and Sand Blasting processes. Subsequently, both dimensional and surface roughness assessments are done. The findings presented in this article are useful to academicians, practitioners, and researchers.
2. Literature survey

Texture evaluation methods can be classified into statistical, structural, and morphological methods. Statistical methods extract a set of features from a given image [1]. These features are used for classifying a given image by using statistical pattern recognition techniques. The statistical methods can be classified as follows.

- Gray level difference method [2]. In this technique, the probability density function is calculated for the variation in image intensities.
- The spatial grey level dependence method [3]. In this method, joint gray level distribution for two gray levels at distance ‘d’ and angle ‘θ’ is estimated. These are called first and second-order statistics.
- The grey-level run-length method [4, 5]. A set of connected pixels having the same gray value is called an identical run. This method computes the number of identical runs.

2.1 Gray level Cooccurrence Matrix (GLCM)

GLCM was proposed by Haralick et al. [3]. Many researchers have used this method for classifying images [3]. The main problem with this method is to define both ‘d’ and angle ‘θ’. In this work, an attempt has been made to identify the surface textures produced from Shaping, Milling, Electric discharge machining (E.D.M.) and Sand Blasting processes. In this research, the experiment was repeated at different values of ‘d’ and angle ‘θ’. Surface texture classification is useful for determining whether a product becomes successful when it is put into service. Several researchers have been working in the area of classification.

2.2 Structural methods

These methods Haralick et al. [3] try to identify a set of primitives from a given image. The method then tries to define texture as an arrangement of such primitives by different placement rules. A major problem with this method is to define the shape and size of the area where texture features should be collected.

2.3 Multiresolution filtering method

Multiresolution filtering method (e.g., Gabor filtering) is very much similar to the way the human visual system works. Gabor filter work with texture in spatial-frequency domain s [6, 7, 8, 9, 10, 11]. Thus, it is clear from above that not a single paper exists today which addresses (i) dimensional inspection (ii) surface roughness inspection and (iii) process identification or texture classification, in a single setup. With the advent of Industry 4.0, there is a need to design and develop novel techniques, as many of the existing inspection techniques cannot be deployed directly in Industry 4.0 environments [12,13,14]. Also, nowadays, there is a great demand for 100% inspection of machined components. Especially, in automobile and machine tool companies. Thus, it is clear from above that not a single paper exists today which addresses (i) dimensional inspection (ii) surface roughness inspection and (iii) process identification or texture classification, in a single setup. This is very much required in industrial inspection of machined components. In this work, an attempt has been made to identify the surface textures acquired from Shaping, Milling, Electric discharge machining (E.D.M.) and Sand Blasting processes. Subsequently, both dimensional and surface roughness assessments are done. The findings presented in this article are useful to academicians, practitioners, and researchers.
3. Methodology
Research methodology consists of -Experimental set-up, Specimen preparation, Surface texture inspection, Surface roughness inspection and Dimensional inspection.

3.1 Experimental set-up.

The experimental set-up (Figure 1) consists of a charge coupled device (CCD) camera, cables, a frame grabber, an advanced Image processing board, and a high-end computer. The workstation uses the Windows operating system. In-house software is developed using C++, for computing the roughness parameters, dimensional inspection, and texture assessment.

3.2 Specimen preparation

Test specimens are made of EDM, Shaping, Milling, and Sand Blasting processes. Table 1 shows the sample specimen details of milled specimens.

![Figure 1. Experimental set-up](image1.jpg)

![Figure 2. Surface images (a) shaped (b) EDM (c) milled and (d) sandblasting processes](image2.jpg)

![Figure 3. Stylus instrument measurement setup](image3.jpg)
Table 1 Milled specimen details

Speed (rpm)	Depth of Cut (mm)	Feed (mm/min)	StylusRa (μm)
280	0.4	12.5	1.31
280	0.4	31.5	1.53
280	0.4	80.0	3.18
280	0.4	100.0	3.30
280	0.4	200.0	2.80
280	0.4	250.0	3.70

3.3 Surface texture inspection

Figure 2 (a) to (d) shows the surface images of shaping, EDM, milling, and sandblasting processes respectively, captured by using a CCD camera connected to the vision system. Table 2 shows the digital image of a milled surface.

3.4 Texture Identification

Texture identification process consists of the following steps.

3.4.1 Grey level co-occurrence matrix (GLCM): Digital images obtained in the previous step are used for computing the co-occurrence matrix. Each entry in the co-occurrence table shows the joint distribution of gray levels i and j, separated at distance ‘d’ and angle ‘θ’. Table 3, shows a sample co-occurrence matrix. Co-occurrence matrix tries to capture texture details from a given image, this it does, by using image intensity values.

Table 2: Digital Image of a Milled surface

200	138	236	225	180	167	74
182	127	235	181	171	137	65
160	147	232	161	157	122	55
143	173	201	133	165	100	52
131	217	164	141	178	105	46
122	229	190	146	229	128	75
122	202	213	145	236	132	81

Table 3: Co-occurrence matrix (GLCM)

12	15	0	0	0	0	0
20	4	1	0	0	0	0
0	4	0	0	0	0	0
12	15	0	0	0	0	0
12	15	0	0	0	0	0
12	15	0	0	0	0	0
12	15	0	0	0	0	0

3.4.2. Texture features extraction from GLCM

Texture features are calculated by using following formulae.
Contrast
\[\sum_{i=0}^{L-1} \sum_{j=0}^{L-1} \frac{\left(\sum_{i=0}^{L-1} \sum_{j=0}^{L-1} P(i,j) \right)(i-j)}{n} = 0 \]
(1)

Correlation
\[\sum_{i=0}^{L-1} \sum_{j=0}^{L-1} \frac{(i \times j) \times P(i,j) - (\mu_x \times \mu_y)}{\sigma_x \times \sigma_y} \]
(2)

Cluster Prominence
\[\sum_{i=0}^{L-1} \sum_{j=0}^{L-1} (i+j-\mu_x-\mu_y)^2 \times P(i,j) \]
(3)

Dissimilarity
\[\sum_{i=0}^{L-1} \sum_{j=0}^{L-1} P(i,j)|i-j| \]
(4)

Energy
\[\sum_{i=0}^{L-1} \sum_{j=0}^{L-1} [P^2(i,j)] \]
(5)

Entropy
\[-\sum_{i=0}^{L-1} \sum_{j=0}^{L-1} P(i,j) \times \log(P(i,j)) \]
(6)

Homogeneity
\[\sum_{i=0}^{L-1} \sum_{j=0}^{L-1} \frac{P(i,j)}{1 + |i-j|} \]
(7)

Maximum Probability
\[\max(P_{ij}) \]
(8)

Sum entropy
\[-\sum_{i=0}^{N-2} P_{xy}(i) \log(P_{xy}(i)) \]
(9)

Difference Variance
\[\sum_{i=0}^{L-1} \sum_{j=0}^{L-1} (i-\mu)^2 \times P(i,j) \]
(10)

Difference entropy
\[-\sum_{i=0}^{L-1} P_{xy}(i) \log(P_{xy}(i)) \]
(11)

Inverse difference moment normalized
\[\sum_{i=0}^{L-1} \sum_{j=0}^{L-1} \frac{P_{ij}}{1 + (i-j)^2} \]
(12)

Inverse difference normalized
\[\sum_{i=0}^{L-1} \sum_{j=0}^{L-1} \frac{P_{ij}}{(1 + |i-j|)^2} \]
(13)

Sample texture features of EDM, shaped, milled and sandblasted surface images are shown in Table 4, 5, 6, and 7 respectively.
3.4.3. Feature set reduction: To improve computational efficiency, only those features that are required for classification are selected by using the singular value decomposition method is used. So that all redundant features are eliminated.

3.4.4. Method of texture classification: After selecting a set of required features from the set of available features, the K- nearest neighbour classification scheme is used for classifying images. Out of the total number of samples, one sample (t1) is taken out for classification. The method computes the Euclidean distance between the test sample (t1) and the training sample (t2). The method then assigns the test sample to that class, where the Euclidean distance is minimum. Table 8 shows the results of the classification experiment (Confusion matrix). 15 samples, belonging to different classes, were used in the classification experiment. From Table 8 it is clear the classification rate is 100% in case of EDM (E), milling (M), shaping (S) and sand blasting specimen images. However, in the case of Ground (G) specimens, out of 15 specimen images, 12 were classified correctly as belonged to the class of Ground specimens. But, 2 specimens were classified as Sand Blasting (SB) and one was classified as EDM (E) specimen.

Table 4 Texture features values of EDM surface

Feature No.	E1	E2	E3	E4	E5	E6	E7	E8	E9	E10	E11	E12	E13	E14	E15
F1	0.75	0.74	0.68	0.63	0.64	0.68	0.62	0.78	0.67	0.70	0.64	0.79	0.79	0.69	0.68
F2	0.70	0.76	1.09	1.40	1.20	1.15	1.57	0.57	1.19	1.04	1.38	0.54	0.54	1.07	1.12
F3	0.75	0.74	0.68	0.63	0.64	0.68	0.62	0.78	0.67	0.70	0.64	0.79	0.79	0.69	0.68
F4	2.10	2.13	2.28	2.48	2.46	2.39	2.54	2.02	2.47	2.33	2.47	1.88	1.88	2.26	2.34
F5	0.50	0.49	0.40	0.29	0.36	0.48	0.29	0.63	0.48	0.51	0.36	0.57	0.57	0.40	0.44
F6	17.0	17.0	18.0	20.0	20.0	19.0	20.0	17.0	20.0	19.0	19.0	15.0	15.0	17.0	19.0
F7	5.52	5.52	5.61	5.88	5.95	5.74	5.91	5.47	5.93	5.67	5.78	5.14	5.14	5.50	5.68
F8	1.62	1.64	1.67	1.75	1.76	1.76	1.79	1.63	1.82	1.74	1.77	1.50	1.50	1.66	1.72
F9	0.91	0.93	1.05	1.15	1.08	1.08	1.20	0.84	1.10	1.05	1.15	0.82	0.82	1.06	1.07
F10	3.35	3.81	5.93	4.49	4.43	7.86	4.70	6.24	8.07	8.05	5.97	4.34	4.34	5.22	6.82
F11	18.0	21.0	35.0	28.0	28.0	49.0	30.0	38.0	52.0	51.0	36.0	23.0	23.0	30.0	43.0
F12	0.99	0.99	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.99	0.99	0.99	0.98	0.98

Table 5 Sample texture features obtained from shaped surface

Feature No.	S1	S2	S3	S4	S5	S6	S7	S8	S9	S10	S11	S12	S13	S14	S15
F1	0.72	0.72	0.72	0.70	0.73	0.72	0.71	0.75	0.75	0.73	0.67	0.78	0.72	0.72	0.75
F2	0.86	1.02	1.08	0.84	0.84	1.01	1.21	0.75	0.77	1.03	1.30	0.64	0.86	1.15	0.85
F3	0.72	0.72	0.72	0.70	0.73	0.72	0.71	0.75	0.75	0.73	0.67	0.78	0.72	0.72	0.75
F4	2.76	2.53	2.46	2.68	2.70	2.57	2.62	2.45	2.58	2.50	2.74	2.29	2.77	2.46	2.26
F5	0.80	0.68	0.67	0.75	0.78	0.73	0.69	0.77	0.80	0.74	0.70	0.78	0.78	0.69	0.67
F6	57.0	47.0	44.0	52.0	54.0	48.0	48.0	46.0	51.0	47.0	53.0	43.0	56.0	45.0	40.0
F7	9.21	8.40	8.11	8.90	9.03	8.42	8.44	8.33	8.81	8.28	8.82	8.02	9.21	8.12	7.76
F8	2.22	1.94	1.89	2.14	2.17	2.00	2.01	1.99	2.12	1.96	2.09	1.88	2.21	1.91	1.77
F9	0.98	1.05	1.06	0.96	0.97	1.04	1.10	0.93	0.94	1.04	1.14	0.88	0.98	1.08	0.97
F10	15.0	7.0	12.0	10.0	11.0	15.0	15.0	14.0	15.0	20.0	12.0	15.0	12.0	18.0	11.0
F11	157	65	85	98	120	118	119	108	138	157	124	107	132	131	73
F12	0.99	0.99	0.98	0.99	0.99	0.98	0.98	0.98	0.99	0.98	0.99	0.99	0.99	0.98	0.99
Table 6 Texture features values of milled surface

Feature No.	M1	M2	M3	M4	M5	M6	M7	M8	M9	M10	M11	M12	M13	M14	M15
F1	0.83	0.68	0.62	0.70	0.86	0.72	0.62	0.76	0.90	0.68	0.68	0.83	0.83	0.65	0.81
F2	0.36	0.82	1.27	0.87	0.31	0.68	1.12	0.58	0.21	0.81	0.84	0.37	0.34	0.95	0.40
F3	0.83	0.68	0.62	0.70	0.86	0.72	0.62	0.76	0.90	0.68	0.68	0.83	0.83	0.65	0.81
F4	1.63	2.30	2.56	2.28	1.43	2.02	2.40	1.82	1.03	2.21	2.21	1.48	1.31	2.29	1.58
F5	0.49	0.39	0.30	0.39	0.47	0.30	0.22	0.25	0.36	0.31	0.28	0.36	0.21	0.30	0.37
F6	31.5	29.9	27.2	28.2	31.1	27.6	24.6	25.7	27.8	24.6	22.1	22.7	23.7	20.6	18.8
F7	6.89	7.00	6.79	6.81	6.70	6.65	6.45	6.34	6.12	6.42	6.14	5.91	5.88	5.98	5.53
F8	1.37	1.70	1.79	1.68	1.20	1.51	1.66	1.36	0.89	1.61	1.60	1.22	1.06	1.64	1.29
F9	0.67	0.89	1.09	0.97	0.64	0.86	0.99	0.83	0.51	0.90	0.93	0.69	0.65	0.93	0.69
F10	0.51	0.86	1.89	2.22	0.70	0.47	1.03	0.67	0.28	0.79	0.62	0.41	0.09	1.55	0.22
F11	3.17	9.27	15.1	13.6	2.48	4.64	8.34	3.89	1.21	6.82	6.61	3.32	1.27	9.82	2.68
F12	0.99	0.99	0.98	0.99	1.00	0.99	0.98	0.99	1.00	0.99	0.99	0.99	0.99	0.99	0.99

Table 7 Texture features values of a sandblasted surface

Feature No.	SB1	SB2	SB3	SB4	SB5	SB6	SB7	SB8	SB9	SB10	SB11	SB12	SB13	SB14	SB15
F1	0.85	0.81	0.82	0.87	0.88	0.77	0.81	0.87	0.80	0.77	0.82	0.88	0.82	0.78	0.88
F2	0.29	0.41	0.38	0.26	0.26	0.48	0.41	0.28	0.42	0.50	0.38	0.23	0.37	0.51	0.24
F3	0.85	0.81	0.82	0.87	0.88	0.77	0.81	0.87	0.80	0.77	0.82	0.88	0.82	0.78	0.88
F4	1.66	1.86	1.85	1.51	1.58	2.04	1.77	1.48	1.98	2.17	1.70	1.33	1.81	2.13	1.37
F5	0.64	0.59	0.61	0.63	0.67	0.59	0.50	0.55	0.64	0.67	0.51	0.56	0.60	0.64	0.55
F6	7.44	8.36	7.31	8.52	7.99	8.21	8.33	9.56	8.18	9.00	9.05	9.61	7.09	7.68	8.11
F7	3.93	4.16	3.96	4.05	3.97	4.20	4.13	4.21	4.18	4.34	4.22	4.13	3.91	4.07	3.89
F8	1.46	1.56	1.57	1.33	1.39	1.68	1.46	1.28	1.67	1.79	1.42	1.17	1.54	1.75	1.19
F9	0.60	0.71	0.69	0.57	0.58	0.74	0.71	0.60	0.71	0.76	0.69	0.55	0.68	0.78	0.56
F10	0.12	1.33	1.13	0.85	0.72	1.24	0.55	0.22	1.00	2.12	0.83	0.51	0.77	2.06	0.06
F11	4.63	9.41	9.02	6.28	7.03	10.76	5.54	3.13	9.90	16.90	5.58	3.02	6.75	15.34	2.79
F12	1.00	0.99	0.99	1.00	1.00	0.99	0.99	1.00	0.99	0.99	1.00	0.99	0.99	1.00	0.99

Table 8 Confusion Matrix

Feature No.	G	S	M	SB	E	Classified as	G	S	M	SB	E	Classified as
15	0	0	0	0	0	G	12	0	0	2	1	G
0	15	0	0	0	0	S	0	15	0	0	0	S
0	0	15	0	0	0	M	0	0	15	0	0	M
0	0	0	15	0	0	SB	0	0	0	15	0	SB
0	0	0	0	15	0	E	0	0	0	0	15	E
Table 9. Comparison between Vision and CMM readings

CMM reading (mms)	Vision reading (mms)
35.42	35.4345
40.44	40.4786
45.61	45.6654
50.42	50.4986
55.63	55.6543
60.43	60.4564
65.62	65.6543
70.42	70.4342

Figure 4 Correlation between Vision and Stylus roughness

Surface roughness inspection

Table 4, 5, 6 and 7 shows sample texture feature values obtained for EDM, shaped, milled and sandblast surface image, respectively. Texture features calculated for the different surface images are then used for computing the correlation with the roughness values (Actual Ra) obtained by the stylus method. The readings obtained from the stylus method (Figure 3), is considered as standard and are used for validating vision roughness parameters. Figure 4 shows the correlation between the contrast value (predicted) with the roughness (Actual Ra) obtained from the stylus instrument. Since there is a good correlation between contrast (f1) and Ra value obtained from the stylus instrument. Thus, contrast value (f1) can be used as a vision roughness parameter.

3.5. Dimensional inspection

Table 9 shows the results obtained after the dimensional inspection. Coordinate measuring machine (CMM) readings are used as the standard for calibrating the readings obtained from the vision system.
4. Conclusion

Surface texture classification is carried out on machined surfaces produced by machining processes viz. shaping, sand-blasting, milling, and EDM. The surface texture was identified using a combination of gray level co-occurrence matrix and classifier. The classifiers gave an accuracy of 96%. The method can also be used for performing roughness measurements. It was observed that there was a good correction between vision roughness and that of Ra value obtained from the stylus method. The method can also be used in performing the dimensional inspection. It was found that the minimum accuracy of dimensional inspection obtained is 96%. Thus, the current research demonstrates that the entire product inspection can be done in a single set-up and thus saves the cost of the inspection. Also, the method can be used in the online inspection of machined components and products.

Summary:
- Method presented in this work is capable of identifying images having textures of Shaping, Milling, Grinding, EDM and Sandblasting processes.
- Method can be used for measuring component dimensions e.g., length, diameter, etc.
- Method is also useful in measuring surface roughness of manufactured components.
- By this method 100% inspection is possible.
- Method is non-contact in nature and hence suitable for online inspection.
- Method cannot be used in the texture identification of smooth surfaces (e.g., Polished surface).

5. References

[1] Devdas Shetty and Clement Imbert 1984 Computer Identification of machined surfaces, Journal of Testing and Evaluation, 12 6 375-379
[2] Wesczka J.S and Rosenfeld A 1976 An application of Texture analysis to materials inspection, Pattern Recognition 8 195-199
[3] Haralick R.M. Shanmugam K. and Dinstein I. 1973 Texture features for Image classification IEEE Transactions on Systems, Man and Cybernetics 3 610-621
[4] Galloway M.M 1975 Texture analysis using grey level run lengths, Computer Vision Graphics Image Processing 4 172-179
[5] Chu A., Sehgal C.M., and GreenLeaf J.F. 1990 Use of grey level value distribution of run lengths for texture analysis Letters 11 415-420
[6] Francesco Bianconi, Antonio Fernández 2007 Evaluation of the effects of Gabor filter parameters on texture classification Pattern Recognition 40 12
[7] Ramchandra Manthalkar, P.K Biswas, B.N Chatterji 2003 Rotation invariant texture classification using even symmetric Gabor filters Pattern Recognition Letters 24 12 2061-2068
[8] Mahamadou Idrissa, Marc Acheroy 2002 Texture classification using Gabor filters Pattern Recognition Letters 23 9, Pages 1095-1102
[9] Nam Chul Kim, Hyun Joo So, Directional statistical Gabor features for texture classification, Pattern Recognition Letters 112 18-26
[10] Somayeh Molaei, Mohammad Ebrahim Shiri Ahmad Abadi 2020 Maintaining filter structure: A Gabor-based convolutional neural network for image analysis Applied Soft Computing 88,105960
[11] Arivazhagan, S., Ganesan,L., Padam Priyal,S 2006 Texture classification using Gabor wavelets-based rotation-invariant features Pattern Recognition Letters, 27 16 1976-1982
[12] Yuhang Pan, Ping Zhou, Ying Yan, Anupam Agrawal, Yonghao Wang, Dongming Guo, Saurav Goel 2021 New insights into the methods for predicting ground surface roughness in the age of digitalisation Precision Engineering 67 393-418
[13] Lee BY, Tarng YS. 2001 Surface roughness inspection by computer vision in turning operations International Journal of Machine Tools and Manufacture 41 9 1251-1263
[14] Franco A, Otaduy D, Barreda A I, Fernández-Luna J L, Merino S, González F, Moreno F 2019 Optical inspection of manufactured nanohole arrays to bridge the lab-industry gap Optics & Laser Technology 116 48-57

Acknowledgments
The author would like to express his sincere thanks to the management of Pandit Deendayal Energy University, for providing the necessary infrastructure and timely support.