Penning-trap mass measurements on \(^{92,94-98,100}\text{Mo} \) with JYFLTRAP

A. Kankainena, V.S. Kolhinen, V.-V. Elomaab, T. Eronenc, J. Hakala, A. Jokinen, A. Saastamoinen, and J. Äystö

Department of Physics, P. O. Box 35(YFL), FI-40014 University of Jyväskylä, Finland

Received: 31 January 2012
Published online: 18 April 2012 – © Società Italiana di Fisica / Springer-Verlag 2012
Communicated by E. De Sanctis

Abstract. Penning-trap measurements on stable \(^{92,94-98,100}\text{Mo} \) isotopes have been performed with relative accuracy of \(1 \times 10^{-8} \) with the JYFLTRAP Penning-trap mass spectrometer by using \(^{85}\text{Rb} \) as a reference. The Mo isotopes have been found to be about 3 keV more bound than given in the Atomic Mass Evaluation 2003 (AME03). The results confirm that the discrepancy between the ISOLTRAP and JYFLTRAP data for \(^{101-105}\text{Cd} \) isotopes was due to an erroneous value in the AME03 for \(^{96}\text{Mo} \) used as a reference at JYFLTRAP. The measured frequency ratios of Mo isotopes have been used to update mass-excess values of 30 neutron-deficient nuclides measured at JYFLTRAP.

1 Introduction

Recently, a discrepancy was found between cadmium mass measurements performed at JYFLTRAP, where \(^{96}\text{Mo}^+ \) was used as a reference [1], and SHIPTRAP [2] and ISOLTRAP results, where \(^{85}\text{Rb}^+ \) was used as a reference ion [3]. Earlier JYFLTRAP has shown to be capable of performing very accurate mass measurements. Therefore, it was assumed that the \(^{96}\text{Mo} \) mass-excess value would be about 3 keV off in the Atomic Mass Evaluation 2003 (AME03) [4]. The mass evaluation done in ref. [3] showed that there is a \(-3.2 \) keV shift between the AME03 value and the evaluated value for \(^{96}\text{Mo} \). In this work, we wanted to confirm this evaluation result by a direct mass measurement of \(^{96}\text{Mo} \). If the mass of \(^{96}\text{Mo} \) is off by 3 keV, also the neighbouring isotopes connected by \((n, \gamma)\) reactions in the AME03 are likely to be off. Thus, we decided to check the mass-excess values of all stable molybdenum isotopes and investigate where the possible 3 keV offset could come from. These measurements have a direct effect on previous JYFLTRAP results since stable molybdenum isotopes \((^{94,96,97,98}\text{Mo}) \) have been used as references for 30 neutron-deficient nuclides at JYFLTRAP.

2 Mass measurements

JYFLTRAP [5] is a double cylindrical Penning-trap mass spectrometer for accurate mass measurements at the Ion-Guide Isotope Separator On-Line (IGISOL) facility [6,7] in Jyväskylä, Finland. The setup consists of a Radio-Frequency Quadrupole (RFQ) cooler and buncher [8] and a double Penning-trap [9] spectrometer (see fig. 1). In this experiment, we used an off-line electric discharge ion source at IGISOL to create singly-charged \(^{85}\text{Rb}^+ \) and \(^{92,94-98,100}\text{Mo}^+ \) ions.

The first trap of JYFLTRAP (purification trap) is used for the isobaric purification of the injected ion bunches by using the buffer-gas cooling technique [10]. The mass measurement is carried out in the second Penning trap (precision trap). The measurement is based on the determination of the sideband frequency of the ions of interest \(\nu_+ + \nu_- \), where \(\nu_+ \) and \(\nu_- \) are the reduced cyclotron frequency and the magnetron frequency, respectively. In an ideal Penning trap, this sideband frequency matches with the true cyclotron frequency \(\nu_c = \frac{1}{2 \pi m} \) of ions with charge state \(q \) and mass \(m \) in the magnetic field \(B \) [11]. The frequency determination was done by using the time-of-flight ion-cyclotron-resonance (TOF-ICR) technique [12]. In this method, the ion’s radial energy is increased in the trap by using an azimuthal quadrupole radio-frequency (RF) field with the cyclotron frequency of the ions. Since the radial energy of the ions is converted to axial energy in the gradient of the magnetic field when extracted from the trap, the increased energy leads to a shorter flight time to the micro-channel plate (MCP) detector. In this experiment, a Ramsey-type ion motion excitation was used [13,14] with two 25 ms long fringes separated by a 750 ms long waiting time. Figure 2 shows two examples of Ramsey TOF resonances for \(^{85}\text{Rb}^+ \) and \(^{96}\text{Mo}^+ \). The cyclotron frequency of an ion and its uncertainty are obtained from the experimental TOF data by fitting the theoretical fit function.
The mass measurement in a Penning trap is based on the measurement of the frequency ratio \(r \) between a reference ion with a well-known mass and an ion of interest:

\[
r = \frac{\nu_{c,\text{ref}}}{\nu_c}.
\]

This frequency ratio and its uncertainty are used to deduce the mass of the ion of interest by using the equation

\[
m_{\text{meas}} = r(m_{\text{ref}} - m_e) + m_e,
\]

where \(m_{\text{meas}} \) is the mass of the atom of interest, \(m_{\text{ref}} \) is the mass of the reference atom and \(m_e \) is the mass of the electron. Thus, the uncertainty in the mass of the reference atom contributes to the final mass value, and it can be re-evaluated by using the most accurate knowledge for the mass of the reference atom.

3 Data analysis and results

To minimize frequency shifts coming from the drifting magnetic field, the measurements were performed by running 2 scan cycles of the ion of interest (Mo\(^+\)) and then 2 scan cycles of the reference ion (\(^{85}\text{Rb}^+\)) and repeating this pattern. The measured data were divided into 15-cycle-long runs. A count-rate class analysis [15], where the data were divided into classes according to the number of detected ions, was carried out. The frequency was extrapolated to 0.6 ions in the trap due to the 60% detection efficiency.

The average frequency ratios were calculated by using the weighted means. The internal errors (\(\sigma_{\text{int}} \), statistical uncertainties of the weighted means) were compared to external errors (\(\sigma_{\text{ext}} \), weighted standard deviations) and so-called Birge ratios \(R = \sigma_{\text{ext}}/\sigma_{\text{int}} \) were determined [16].
Table 1. Isotope, number of measurements, frequency ratio \(r \), mass excess and the literature value [4] for the mass excess. Each measurement contains 15 scan cycles. The reference ion was \(^{85}\text{Rb}^+\).

Isotope	#	\(r \)	ME (keV)	AME03 (keV)	JYFL-AME03 (keV)
\(^{92}\text{Mo}\)	16	1.082380355(10)	-86807.8(8)	-86805(4)	-2.8(39)
\(^{94}\text{Mo}\)	21	1.105914702(12)	-88412.7(9)	-88410(2)	-3.0(21)
\(^{95}\text{Mo}\)	17	1.117699950(12)	-87710.8(1.0)	-87707(2)	-3.3(21)
\(^{96}\text{Mo}\)	26	1.129463266(13)	-88793.4(1.0)	-88790(2)	-2.9(22)
\(^{97}\text{Mo}\)	23	1.141256082(14)	-87542.8(1.1)	-87540(2)	-2.3(22)
\(^{98}\text{Mo}\)	16	1.153025857(15)	-88114.5(1.2)	-88112(2)	-2.7(23)
\(^{100}\text{Mo}\)	11	1.176604185(16)	-86190.9(1.3)	-86184(6)	-6.6(60)

Fig. 3. Measured frequency ratios between \(^{85}\text{Rb}^+\) and \(^{96}\text{Mo}^+\) obtained by using 25-750-25 ms Ramsey excitation. Each data point contains 15 scan cycles (≈ 22 min) of both masses. Solid line is the weighted average of these points and the dotted lines show one standard deviation limits.

In the ideal case, the ratio should be close to 1. For the uncertainty of \(r \) we took always the larger one of the internal and external uncertainties. For this value \(\sigma_r \), a mass-dependent uncertainty \(\sigma_m(r) = (7.5 \cdot 10^{-10}/u) \cdot \Delta m \cdot r \) [17] and a residual uncertainty \(\sigma_{res}(r) = (7.9 \cdot 10^{-9}) \cdot r \) [17] were added quadratically.

Measured frequency ratios and their uncertainties are shown in table 1. Birge ratios were close to 1 in each mass measurement set. This means that the deviations in the data are statistical. The used atomic mass unit is \(u = 931.494.009 \) \(0(71) \) keV [18], the electron mass \(m_e = 510.998910(13) \) keV [19], and the value for \(^{85}\text{Rb}\) mass excess ME = -82167.331(11) keV [4]. An example of the measured frequency ratios is shown in fig. 3.

4 Comparison to previous measurements

In the Atomic Mass Evaluation 2003 (AME03) the molybdenum masses had three main sources. Masses 92-93, 94-95, 95-96, 96-97, 97-98 were linked together with \((n, \gamma)\) reaction measurements [20,21]. Masses 92, 94, 95, 96, 98 were measured with a mass spectrometer by using different CH molecules as references [22]. Masses 92-94 and 98-100 were measured by comparing mass differences of molybdenum oxide chlorides [23]. Actually, also other molybdenum pairs were measured in ref. [23] but only two links were left in the AME03 sheets. Moreover, there have been several \(\beta\)-decay measurements from both sides [24–31]. Different reaction studies, such as \((p, n)\) [32–34], \((p, d)\) [35], \((d,^3\text{He})\) [36], \((^3\text{He}, p)\) [37], \((^3\text{He}, d)\) [38,39], \((^3\text{He}, ^6\text{He})\) [40], \((t, p) \) [41], \((t, \alpha) \) [42], and \((n, \alpha)\) [43], have also yielded information on molybdenum isotopes.

In fig. 4 all the links influencing the Mo mass-excess values in the AME03 are shown. Since the JYLTRAP values disagreed with the AME03 values (except for \(^{92}\text{Mo}\)), a thorough comparison to earlier measurements was carried out and all possible links from and to the Mo isotopes in the AME03 were checked out in this work. The results are given below nuclide by nuclide.

The main result is that the values from Bishop et al. [23] disagree with the JYLTRAP values and explain most of the difference between the JYLTRAP results and the AME03 values. Deviations were also found to \(^{92}\text{Mo}\) \((n, \gamma)\) results between AME03 and JYFLTRAP in this work. The \(^{92}\text{Mo}\) and \(^{94}\text{Mo}\) agree nicely with the JYLTRAP values. JYLTRAP mass-excess values for Mo isotopes suggest that these Mo isotopes are systematically too weakly bound in the AME03. This will also have an effect on the nuclides which have main influences coming from these isotopes, such as for neighbouring Nb and Tc nuclides or \(^{101}\text{Mo}\).

\(^{92}\text{Mo}\)

The JYLTRAP mass value for \(^{92}\text{Mo}\) agrees with the values from \(^{92}\text{Mo}\) \((n, \gamma)\) experiments, which have altogether a 78.3% influence on the \(^{92}\text{Mo}\) value in the AME03. The JYLTRAP value for \(^{92}\text{Mo}\) agrees with the AME03 value and other experimental data except with the data from ref. [23]. The JYLTRAP mass value for \(^{92}\text{Mo}\) is 6.3(22) keV higher than the value obtained from the mass difference of \(^{94}\text{Mo}[^{35}\text{Cl}^{16}\text{O}]\)–\(^{92}\text{Mo}[^{37}\text{Cl}^{16}\text{O}]\) [23] employing the JYLTRAP mass value of \(^{94}\text{Mo}\) (see fig. 5). For \(^{92}\text{Mo}\), some \((p, n), (^3\text{He}, t), (p, \alpha)\) and \((\alpha, ^8\text{He})\) experiments having uncertainties bigger than 20 keV have been omitted from
Fig. 4. (Colour on-line) Influences (%) of different reactions on the molybdenum mass-excess values in the AME03 [4]. The red arrows show the reactions which disagree with the results of this work. The masses of highlighted Mo isotopes were measured in this work.

Fig. 5. Mass excess of 92Mo measured at JYFLTRAP compared to earlier experiments of C$_7$H$_8$–92Mo (Ries et al. [22]), 94Mo 35Cl16O–92Mo37Cl18O (Bishop et al. [23]), 92Mo(p, d)94Mo (Kozub and Youngblood [35]), 92Mo(1He,4He)96Mo (Pardo et al. [40]), 93Tc S_p value (Aysto et al. [25]). 92Mo(n, γ)93Mo (Islam et al. [20]) and AME03 [4]. Bishop (1963)* employs the AME03 mass value [4] for 94Mo instead of the value from this work.

Fig. 6. Mass excess of 94Mo measured at JYFLTRAP compared to earlier experiments of C$_7$H$_8$–94Mo (Ries et al. [22]), 94Mo35Cl16O–92Mo37Cl18O (Bishop et al. [23]), 94Tc(β^+)94Mo (Hamilton et al. [26]), 94Nb(β^-)94Mo (Snyder et al. [27], Hocquenghem et al. [28]), 94Mo(p, n)94Tc (McPherson and Gabrielle [32]), 94Mo(n, γ)95Mo (Islam et al. [20]) and AME03 [4]. The values marked with * are based on the AME03 [4] mass values of 92Mo and 95Mo.

The mass value measured for 94Mo at JYFLTRAP disagrees with the AME03 value by $-3.0(21)$ keV. Similarly to 92Mo, there is a $6.3(22)$ keV difference between the JYFLTRAP value and the value obtained from the mass difference of 94Mo35Cl16O–92Mo37Cl18O [23] employing the JYFLTRAP value for 92Mo (see fig. 6). Actually, even bigger disagreement is found when the AME03 value for 92Mo is used. In addition, the value from C$_7$H$_8$–94Mo [22] gives a $5.3(31)$ keV higher mass-excess value for 94Mo than measured at JYFLTRAP. The beta-decay experiments [26–28] agree with the JYFLTRAP value but the value from (p, n) reactions [32] disagrees with it. The
The values marked with * are based on the AME03 [4] mass values of ^{94}Mo and ^{96}Mo. Islam (1991)* refers to $^{94}\text{Mo}(n,\gamma)^{95}\text{Mo}$ value and b to the $^{95}\text{Mo}(n,\gamma)^{96}\text{Mo}$ value.

$^{94}\text{Mo}(n,\gamma)^{95}\text{Mo}$ [20] agrees nicely with the JYFLTRAP results for ^{94}Mo and ^{96}Mo. A shift of about 3 keV is found when the AME03 value for ^{95}Mo is used instead of the JYFLTRAP value.

^{95}Mo

The JYFLTRAP mass value for ^{95}Mo is 3.3(21) keV lower than the AME03 value. The AME03 value is mainly based on the $^{94}\text{Mo}(n,\gamma)^{95}\text{Mo}$ [20] and $^{95}\text{Mo}(n,\gamma)^{96}\text{Mo}$ [20] values, which agree well with the JYFLTRAP results for ^{94}Mo, ^{95}Mo, and ^{96}Mo. A shift is observed when the AME03 value is applied for ^{94}Mo and ^{96}Mo, again indicating that these Mo isotopes are systematically less bound in the AME03 (see fig. 7). Also the value based on the beta decay $^{95}\text{Nb}(\beta^-)^{95}\text{Mo}$ [24] disagreeing with the JYFLTRAP value has an influence on the ^{95}Mo value in the AME03.

^{96}Mo

The JYFLTRAP mass-excess value for ^{96}Mo is 2.9(22) keV lower than the AME03 value. All reaction links in the AME03 agree with the JYFLTRAP value when JYFLTRAP mass-excess values for ^{95}Mo and ^{97}Mo are used (see fig. 8). The disagreement between the AME03 value and the JYFLTRAP value comes from the erroneous mass values of ^{95}Mo and ^{97}Mo in the AME03.

^{97}Mo

The JYFLTRAP mass-excess value for ^{97}Mo is 2.3(22) keV lower than the AME03 value. The JYFLTRAP value agrees with all the reaction links in the AME03 except with the values from $^{97}\text{Nb}(\beta^-)^{97}\text{Mo}$ [31], $^{96}\text{Mo}(n,\gamma)^{97}\text{Mo}$ and $^{97}\text{Mo}(n,\gamma)^{98}\text{Mo}$ when AME03 values for ^{96}Mo and ^{98}Mo are applied (see fig. 9). The ^{97}Nb beta decay does not have an influence on the ^{97}Mo mass value in the AME03.

^{98}Mo

The JYFLTRAP value for the mass excess of ^{98}Mo disagrees with the AME03 value by 2.7(22) keV. The JYFLTRAP mass-excess result is in agreement with the results from ^{98}Mo [22] and $^{97}\text{Mo}(n,\gamma)^{98}\text{Mo}$ [20], when JYFLTRAP value for ^{97}Mo is applied (see fig. 10). Here, again a disagreement is found when the AME03 values of ^{97}Mo and ^{98}Mo are used for the $^{97}\text{Mo}(n,\gamma)^{98}\text{Mo}$ and $^{98}\text{Mo}(n,\gamma)^{99}\text{Mo}$ reactions, indicating that the Mo isotopes have generally too high mass-excess values in the AME03.

^{100}Mo

The JYFLTRAP mass-excess value slightly disagrees with the AME03 value for ^{100}Mo. An almost perfect agreement is found with the value based on $^{97}\text{H}_{16}^{100}\text{Mo}$ [22],
Fig. 9. Mass excess of ^{97}Mo measured at JYFLTRAP compared to earlier experiments of C$_2$H$_5$O$_2$-3^8Mo (Ries et al. [22]), $^{97}\text{Nb}(\beta^-)^{97}\text{Mo}$ (Rao et al. [31]), $^{97}\text{Mo}(p,n)^{97}\text{Tc}$ (Comfort et al. [38]), $^{97}\text{Mo}(^3\text{He},d)^{98}\text{Tc}$ (Comfort et al. [38], Martin and Macphail et al. [39]), $^{97}\text{Mo}(n,\gamma)^{98}\text{Mo}$ (Islam et al. [20]), $^{98}\text{Mo}(n,\gamma)^{99}\text{Mo}$ (Islam et al. [20], Firestone et al. [21]), and AME03 [4]. Comfort (1974)* refers to $^{97}\text{Mo}(p,n)^{97}\text{Tc}$ and b to $^{97}\text{Mo}(^3\text{He},d)^{98}\text{Tc}$. The values marked with * are based on the AME03 [4] mass values of ^{96}Mo and ^{98}Mo.

Fig. 10. Mass excess of ^{98}Mo measured at JYFLTRAP compared to earlier experiments of C$_2$H$_5$O$_2$-3^9Mo (Ries et al. [22]), $^{98}\text{Mo}(^{35}\text{Cl}+^{16}\text{O})-3^{98}\text{Mo}-^{35}\text{Cl}+^{16}\text{O}$ (Bishop et al. [23]), $^{98}\text{Mo}(p,n)^{98}\text{Tc}$ (Comfort et al. [38]), $^{97}\text{Mo}(n,\gamma)^{98}\text{Mo}$ (Islam et al. [20]), $^{98}\text{Mo}(n,\gamma)^{99}\text{Mo}$ (Islam et al. [20], Firestone et al. [21]), and AME03 [4]. The values marked with * are based on AME03 [4] mass values of ^{100}Mo and ^{97}Mo.

Fig. 11. Mass excess of ^{100}Mo measured at JYFLTRAP compared to earlier experiments of C$_2$H$_5$O$_2$-1^{00}Mo (Ries et al. [22]), $^{100}\text{Mo}(^{35}\text{Cl}+^{16}\text{O})-8^{98}\text{Mo}^{35}\text{Cl}+^{16}\text{O}$ (Bishop et al. [23]), $^{100}\text{Mo}(t,p)^{100}\text{Mo}$ (Casten et al. [41]), $^{106}\text{Mo}(d,^3\text{He})^{106}\text{Nb}$ (Bindal et al. [36]), $^{106}\text{Mo}(^3\text{He},p)^{106}\text{Tc}$ (De Gelder et al. [37]), $^{106}\text{Mo}(t,\alpha)^{99}\text{Nb}$ (Flynn et al. [42]), $^{106}\text{Mo}(n,\gamma)^{106}\text{Mo}$ (Seyfarth et al. [44], Firestone et al. [21]), and AME03 [4]. The value marked with * is based on the AME03 [4] mass value of ^{98}Mo. The values from $^{(t,^3\text{He})}$ and β^- experiments have been left out due to large uncertainties.

5 Updated mass values of the nuclides measured at JYFLTRAP using Mo references

Up to date, 30 neutron-deficient nuclides have been measured with respect to molybdenum reference ions at JYFLTRAP (see refs. [1, 45, 46]). Thus, the results of this paper have an effect on these mass-excess values. The values can be easily updated by multiplying the old frequency ratio measured against a molybdenum isotope (r_{old}) by the frequency ratio of the corresponding molybdenum ion to $^{85}\text{Rb}^+$ measured in this work ($r_{\text{Mo}-\text{Rb}}$):

$$m_{new} = r_{old} r_{\text{Mo}-\text{Rb}} \cdot [m(^{85}\text{Rb}^+)] + m_e.$$ (3)
Table 2. Old mass-excess values for several neutron-deficient nuclides measured at JYFLTRAP employing Mo isotopes as references and the new values updated with the frequency ratios measured in this work. The difference between the old and new values is also tabulated. The isomer contribution has been taken into account for 83,84Y and 85,87,88Nb.

Isotope	Reference	ΔE_{old} (keV)	ΔE_{new} (keV)	$\Delta E_{new} - \Delta E_{old}$ (keV)
80Y	96Mo	-6114(7) [45]	-61146.8(6.1)	-2.8
81Y	96Mo	-65709(6) [45]	-65711.4(5.5)	-2.4
82Y	96Mo	-68060(6) [45]	-68062.8(5.5)	-2.8
83Y	96Mo	-7220(19)3 [45]	-72204(19)3	-3.2
84Y	96Mo	-73922(20)3 [46]	-73925(20)3	-2.4
85Zr	98Mo	-65908(7) [45]	-65910.6(6.1)	-2.6
86Zr	98Mo	-71418(6) [45]	-71420.3(5.6)	-2.3
87Zr	97Mo	-7958(7) [45]	-77961.0(5.9)	-3.0
88Zr	98Mo	-79341.4(5.3) [46]	-79343.9(5.0)	-2.5
85Nb	98Mo	-83624(7) [45]	-83627.2(6.2)	-3.2
86Nb	98Mo	-66308(21)3 [45]	-66310(21)3	-2.4
87Nb	98Mo	-69129(6)4 [45]	-69132.2(5.6)4	-3.2
88Nb	98Mo	-73870(7)5 [45]	-73873.0(6.5)5	-3.1
96Mo	97Mo	-68235.3(48) keV (old) and	-68238.2(4.5) keV (new).	-3.1

1. The original values of \sim72170(6) keV (old) and \sim72173.2(5.6) keV (new) were modified for an unknown mixture of isomeric states (83Y* at 61.98(11) keV [47]).
2. The original values of \sim73888.8(1.2) keV (old) and \sim73891.2(4.9) keV (new) were modified for an unknown mixture of isomeric states (84Y* at 67 keV [48]).
3. The original values of \sim66273(7) keV (old) and \sim66275.4(6.0) keV (new) were modified for an unknown mixture of isomeric states (85Nb* at $E_x \geq$ 69 keV [49]).
4. Possible contribution from an isomer at 250(160)5 keV [47] has not been taken into account.
5. The original values of \sim73868(7) keV (old) and \sim73871.1(6.4) keV (new) were modified for an unknown mixture of isomeric states (87Nb* at 3.84(14) keV [47]).
6. The original values of \sim76149(7) keV (old) and \sim76151.5(6.1) keV (new) were modified for an unknown mixture of isomeric states (88Nb* at 40(140) keV [47]).
7. A weighted mean of JYFLTRAP and SHIPTRAP values (see ref. [46]). The JYFLTRAP values with 94Mo reference are \sim75983.4(45) keV (old) and \sim75986.3(4.2) keV (new).
8. A weighted mean of JYFLTRAP and SHIPTRAP values (see ref. [46]). The JYFLTRAP values with 94Mo reference are \sim68235.3(48) keV (old) and \sim68238.2(4.5) keV (new).
The updated values are collected in table 2. The Y, Zr, and Nb isotopes were measured as oxides. The uncertainties due to the isomers 85Ym ($E_x = 61.98(11)$ keV [47]), 84Ym ($E_x = 67$ keV [48]), 85Nbm ($E_x \geq 69$ keV [49]), 87Nbm ($E_x = 3.84(14)$ keV [47]), and 88Nbm ($E_x = 40(140)$ keV [47]) have been taken into account according to eq. (14) of ref. [50] and added quadratically to the experimental uncertainties. No correction due to the isomer in 86Nb ($E_x = 250(160)$# keV [47]) has been done since this isomer is considered as uncertain. It should also be noted that for 95Nb, the energy of the isomer is only a lower limit [49]. The previous values for 91Tc and 91Ru were published in ref. [46], which was a joint publication of JYFLTRAP and SHIPTRAP. Here, the JYFLTRAP values measured against 94Mo have been updated and new weighted means of JYFLTRAP and SHIPTRAP values have been calculated for 94Mo and 91Ru. As can be seen from table 2, the updated values are on the average about 2.8 keV lower than the old values. This is well within the error bars.

Although the 3 keV shift in the mass excesses of Mo isotopes is less than σ, it is important to take it into account. For example, the Cd isotopes have been measured at SHIPTRAP [2] and ISOLTRAP [3] by using 85Rb as a reference. The mass-excess values determined with JYFLTRAP for Cd isotopes employing 96Mo as a reference [1] disagreed in some cases with ISOLTRAP and SHIPTRAP (see fig. 12). The shift from the AME03 value in the mass of 96Mo was already observed in the mass evaluation performed in ref. [3]. In this work, we have experimentally determined this mass value. The updated Cd values (see table 2) agree within one standard deviation with the ISOLTRAP data. However, the SHIPTRAP values for 101,102,104Cd still deviate from the ISOLTRAP and JYFLTRAP data.

6 Conclusions
In this paper, we have reported frequency ratios between $^{92,94–98}$Mo and 86Rb measured with the JYFLTRAP setup. The mass-excess values of the Mo isotopes have been determined with about 1 keV precision, which is at least by a factor of 2 more precise than in the AME03. In addition, all measured stable Mo isotopes have been found to be more bound than given in the AME03. This will also have an effect on the nuclides which have main influences coming from these Mo isotopes in the AME03, such as for neighbouring Nb, Mo and Tc nuclides. 94,96,97,98Mo have been used as references for 30 neutron-deficient nuclides measured at JYFLTRAP, and thus, these values have been updated with the new molybdenum values. Although the difference to the previous values is less than σ, it is worthwhile to take it into account for example when comparing to results from other facilities. In addition, proton-capture rates relevant for astrophysical rp [51,52] and vp [53,54] processes depend exponentially on proton separation energies, and already a small change will have an effect on the rate. In any case, the stable molybdenum isotopes are now more accurate references for future mass measurements of neutron-deficient nuclides.

This measurement was motivated by the discrepancy in the cadmium mass-excess values between JYFLTRAP, ISOLTRAP and SHIPTRAP. An inaccurate mass-excess value of 96Mo in the literature has now been confirmed to be the reason for the deviation. This gives a perfect example why the main result from a Penning-trap measurement should be rather the frequency ratio between the reference ion and the ion of interest and its uncertainty rather than the mass-excess value itself. This way one can always use the most accurate value for the mass of the reference ion and recalculate the mass values of ions of interest.

This work has been supported by the EU 6th Framework programme “Integrating Infrastructure Initiative - Transnational Access”, Contract Number: 506065 (EURONS) and by the Academy of Finland under the Finnish Centre of Excellence Programme 2006-2011 (Nuclear and Accelerator Based Physics Programme at JYFL). AK acknowledges the support from the Academy of Finland under the project 127301.

References
1. V. Elomaa et al., Eur. Phys. J. A 40, 1 (2009).
2. A. Martin et al., Eur. Phys. J. A 34, 341 (2007).
3. M. Breitenfeldt et al., Phys. Rev. C 80, 035805 (2009).
4. G. Audi, A.H. Wapstra, C. Thibault, Nucl. Phys. A 729, 337 (2003).
5. A. Jokinen et al., Int. J. Mass Spectrom. 251, 204 (2006).
6. J. Åystö, Nucl. Phys. A 693, 477 (2001).
7. H. Peattile et al., Eur. Phys. J. A 25, 745 (2005).
8. A. Nieminen et al., Nucl. Instrum. Methods Phys. Res. A 499, 241 (2001).
9. V.S. Kolhinen et al., Nucl. Instrum. Methods Phys. Res. A 528, 776 (2004).
10. G. Savard et al., Phys. Lett. A 158, 247 (1991).
11. L.S. Brown, G. Gabrielse, Rev. Mod. Phys. 58, 233 (1986).
12. M. König et al., Int. J. Mass Spectrom. Ion Process. 142, 95 (1995).
13. S. George et al., Int. J. Mass Spectrom. 264, 110 (2007).
14. M. Kretzschmar, Int. J. Mass Spectrom. 264, 122 (2007).
15. A. Kellerbauer et al., Eur. Phys. J. D 22, 53 (2003).
16. R.T. Birge, Phys. Rev. 40, 207 (1932).
17. V.-V. Elomaa et al., Nucl. Instrum. Methods Phys. Res. A 612, 97 (2009).
18. G. Audi, Hyperfine Interact. 132, 7 (2001).
19. Particle Data Group, Phys. Lett. B 667, 103 (2008).
20. M.A. Islam, T.J. Kennett, W.V. Prestwich, Can. J. Phys. 69, 658 (1991).
21. R. Firestone et al., Database of prompt gamma rays from slow neutron capture for elemental analysis (Lawrence Berkeley National Laboratory, 2004) IBNL Paper LBNL-55199.
22. R.R. Ries, R.A. Damerow, W.H. Johnson, Phys. Rev. 132, 1662 (1963).
23. R. Bishop et al., Can. J. Phys. 41, 1532 (1963).
24. L.M. Langer, D.E. Wortman, Phys. Rev. 132, 324 (1963).
25. J. Åystö et al., Nucl. Phys. A 404, 1 (1983).
26. J. Hamilton, K. Löhner, A. Sattler, R.V. Lieshout, Physica 30, 1802 (1964).
27. R.E. Snyder, G.B. Beard, Phys. Rev. 147, 867 (1966).
28. J.C. Hocquenghem, S. André, P. Liaud, J. Phys. France 29, 138 (1968).
29. T. Cretzu, K. Hohmuth, J. Schintlmeister, Nucl. Phys. 70, 129 (1965).
30. N. Antoneva et al., Izv. Akad. Nauk SSSR, Ser. Fiz. 38, 48 (1974).
31. C.N. Rao, B.M. Rao, P.M. Rao, K.V. Reddy, Proceedings of the 17th Nuclear Physics and Solid State Physics Symposium, Bombay Vol. 17 (Department of Atomic Energy, Government of India, 1974) p. 10.
32. M.R. McPherson, F. Gabbard, Phys. Rev. C 7, 2097 (1973).
33. G. Doukellis et al., Nucl. Phys. A 229, 47 (1974).
34. B.D. Kern et al., Phys. Rev. C 18, 1938 (1978).
35. R.L. Kozub, D.H. Youngblood, Phys. Rev. C 7, 404 (1973).
36. P.K. Bindal, D.H. Youngblood, R.L. Kozub, Phys. Rev. C 10, 729 (1974).
37. P. De Gelder et al., Phys. Rev. C 25, 146 (1982).
38. J.R. Comfort, R.W. Finlay, C.M. McKenna, P.T. Debevec, Phys. Rev. C 10, 1236 (1974).
39. D.J. Martin, M.R. Macphail, Phys. Rev. C 13, 1117 (1976).
40. R.C. Pardo et al., Phys. Rev. C 21, 462 (1980).
41. R.F. Casten, E.R. Flynn, O. Hansen, T.J. Mulligan, Nucl. Phys. A 184, 357 (1972).
42. E.R. Flynn, R.E. Brown, F. Ajzenberg-Selove, J.A. Cizewski, Phys. Rev. C 28, 575 (1983).
43. C. Wagemans, J. Wagemans, G. Goeminne, Hyperfine Interact. 132, 323 (2001).
44. H. Seyfarth et al., Fizika (Croatia) 22, 183 (1990).
45. A. Kankainen et al., Eur. Phys. J. A 29, 271 (2006).
46. C. Weber et al., Phys. Rev. C 78, 054310 (2008).
47. G. Audi, O. Bersillon, J. Blachot, A.H. Wapstra, Nucl. Phys. A 729, 3 (2003).
48. J. Pruet et al., Astrophys. J. 644, 1028 (2006).