Standardised inventories of spiders (Arachnida, Araneae) of Macaronesia II: The native forests and dry habitats of Madeira archipelago (Madeira and Porto Santo islands)

Jagoba Malumbres-Olarte‡§, Mário Boieiro‡, Pedro Cardoso§†, Rui Carvalho‡, Luís Carlos Fonseca Crespo§‡, Rosalina Gabriel‡, Nuria Macías Hernández§#, Octávio S. Pauloª, Fernando Pereira‡, Carla Rego‡, Alejandra Ros-Prieto‡, Isamberto Silva*, Ana Vieiraª, François Rigalh‡, Paulo A. V. Borges‡,*

‡ CE3C – Centre for Ecology, Evolution and Environmental Changes / Azorean Biodiversity Group and Universidade dos Açores, Angra do Heroismo, Azores, Portugal
§ LIBRe – Laboratory for Integrative Biodiversity Research, Finnish Museum of Natural History, University of Helsinki, Helsinki, Finland
| IUCN SSC Spider & Scorpion Specialist Group, Helsinki, Finland
¶ Biodiversity Research Institute UB, Departament Department of Evolutionary Biology, Ecology and Environmental Sciences (Arthropods), Barcelona, Spain
Island Ecology and Evolution Research Group, IPNA-CSIC, Tenerife, Canary Islands, Spain
≥ Faculdade de Ciências da Universidade de Lisboa, Departamento de Biologia Animal e Centro de Biologia Ambiental, Computational Biology and Population Genomics Group, Lisbon, Portugal
» Instituto das Florestas e da Conservação da Natureza, Funchal, Portugal
« Environment and Microbiology Team, Université de Pau et des Pays de l’Adour, Pau Cedex, France
* IUCN - SSC Mid-Atlantic Island Invertebrates Specialist Group, Angra do Heroismo, Azores, Portugal

Corresponding author: Jagoba Malumbres-Olarte (jagoba.malumbres.olarte@gmail.com)

Academic editor: Jeremy Miller

Received: 22 Oct 2019 | Accepted: 12 Dec 2019 | Published: 14 Jan 2020

Citation: Malumbres-Olarte J, Boieiro M, Cardoso P, Carvalho R, Crespo LCF, Gabriel R, Macías Hernández N, Paulo OS, Pereira F, Rego C, Ros-Prieto A, Silva I, Vieira A, Rigal F, Borges PAV (2020) Standardised inventories of spiders (Arachnida, Araneae) of Macaronesia II: The native forests and dry habitats of Madeira archipelago (Madeira and Porto Santo islands). Biodiversity Data Journal 8: e47502.

https://doi.org/10.3897/BDJ.8.e47502
Abstract

Background

Here we present the data obtained from the samples collected as part of a large research project (MACDIV) which aims at understanding the drivers of spider (Araneae) community assembly in Macaronesian islands. To obtain the data, we applied the sampling protocol COBRA (Conservation Oriented Biodiversity Rapid Assessment), in twelve 50 m x 50 m native forest plots and five dry habitat plots on the island of Madeira and in 5 dry habitat plots on the island of Porto Santo. Through this publication, we contribute to the knowledge of the arachnofauna of the Madeiran archipelago.

New information

From the samples that we collected, we obtained a total of 14,902 specimens, of which 49% were adults (7,263). We identified these specimens to 87 species and 18 morphospecies (undescribed), belonging to 26 families. Species of the family Linyphiidae dominated the samples, with 24 (morpho)species. Out of the 105 recorded (morpho)species, 34 were endemic, 26 native non-endemic, 22 introduced and 23 species of unknown origin. We report seven new records of possibly recently introduced species in the Madeiran archipelago. We also present 21 new records for Madeira island and 32 for Porto Santo (33 for the whole archipelago).

Keywords

Arthropoda, Araneae, Madeira, Porto Santo, native forest, dry habitat, exotic species, standardised sampling

Introduction

The north Atlantic archipelago of Madeira is composed of the volcanic islands of Madeira, Porto Santo and the Desertas, as well several islets. At approximately 700 km from the African coast and at more than 400 km from the Canary Islands, it is the second most isolated Macaronesian archipelago, after the Azores. This intermediate distance, combined with an geological age of 5-27 My, has allowed frequent colonisation rates and enough diversification time to generate diverse species communities (Fernández-Palacios 2010, Fernández-Palacios et al. 2011). Since its settlement in the XV Century by the Portuguese, the archipelago has gone through a profound environmental transformation. Nevertheless, the main island of the archipelago, i.e. Madeira, still preserves a considerable area of unique native laurel forest (laurisilva), covering 20% of the island (Boieiro et al. 2015, Boieiro et al. 2018).
The laurisilva is indeed a unique and iconic ecosystem, that is often seen as representative of the Macaronesian archipelagos as a whole and contains a great deal of endemic species (Boieiro et al. 2010, Boieiro et al. 2013, Borges et al. 2008). However, the archipelago is also the home of more open habitats, such as scrublands and thermophilous grasslands, present in drier conditions than those where laurisilva is found. Although these often overlooked dry habitats may not be as species-rich as forests, they do contribute to the endemic fauna of the archipelago, which represent 20% of all the species (Borges et al. 2008). Moreover, Madeiran dry habitats may also contain a substantial number of unknown species that have eluded recent taxonomic, conservation and faunistic research, including IUCN Red List assessments (Martín et al. 2008, Martín et al. 2010, Silva et al. 2008, Cardoso et al. 2017), as well as unrecorded exotic species (Silva et al. 2008).

The need for an update in many taxa is exemplified by spiders. Although, according to the last available checklist (Cardoso and Crespo 2008), the spider fauna of Madeira archipelago is composed of 183 species (including 58 endemic species), new taxa have been discovered since then (e.g. Crespo et al. 2009, Crespo et al. 2014).

This publication is the second of a series on Macaronesian spider fauna (see Malumbres-Olarte et al. 2019) and provides habitat, biogeographic and colonisation information on the species collected in 12 native forest plots and 10 native dry habitat plots on the islands of Madeira and Porto Santo through the project MACDIV.

Sampling methods

Study extent: We established twenty-two 50 m × 50 m plots, grouped according to habitat and between-plot distances. Twelve plots were located in areas covered with laurisilva and grouped in two sets of six. Within each set, plots were placed at increasing distances from a first, reference plot (Table 1): 0.1, 1, 5, 10 and 20 km (Fig. 1). The remaining 10 plots were located in areas of open dry habitat, five on Madeira island and five on Porto Santo, also at increasing distances from a reference plot (0.1, 1, 5 and 10 km). This design allowed for testing of distance decay patterns on beta diversity on a log scale. We set up the forest plots in well-preserved native forest areas, where native tree species, such as *Clethra arborea*, *Laurus novocanariensis*, *Ocotea foetens* and *Persea indica*, were dominant (Neves et al. 1996, Menezes et al. 2005) (Fig. 2). We set the dry plots in grasslands at low-altitude, where the vegetation cover was dominated by herbaceous species and several shrubs, like *Echium* spp, *Euphorbia piscatoria* and *Globularia salicina* (Medeiros et al. 2010) (Fig. 3).

Plot name (island)	Habitat	Longitude	Latitude
Madeira d1	Dry	-16.70261	32.74633
Madeira d2	Dry	-16.70307	32.74691

Table 1. Coordinates and habitat type of sampling plots.
Plot name (island)	Habitat	Longitude	Latitude
Madeira d3	Dry	-16.71886	32.74618
Madeira d4	Dry	-16.75788	32.72623
Madeira d5	Dry	-16.8138	32.66138
Madeira f1	Forest	-16.9371	32.79582
Madeira f2	Forest	-16.93654	32.79801
Madeira f3	Forest	-16.9347	32.80462
Madeira f4	Forest	-16.90233	32.78108
Madeira f5	Forest	-16.88654	32.73302
Madeira f6	Forest	-17.15781	32.82816
Madeira f7	Forest	-17.15871	32.82706
Madeira f8	Forest	-17.15336	32.82306
Madeira f9	Forest	-17.11369	32.79154
Madeira f10	Forest	-17.05499	32.7746
Porto_Santo 1	Dry	-16.30453	33.09135
Porto_Santo 2	Dry	-16.30536	33.0921
Porto_Santo 3	Dry	-16.32426	33.09041
Porto_Santo 4	Dry	-16.36452	33.07376
Porto_Santo 5	Dry	-16.38267	33.03804

Sampling description: We applied two versions of the optimised and standardised COBRA protocol (Conservation Oriented Biodiversity Rapid Assessment) (Cardoso 2009): the protocol for temperate forests (which we applied in forest plots) and the protocol for open habitats (applied to dry habitat plots). The COBRA protocols have been proposed as part of standard inventorying and monitoring programmes on island and continental ecosystems and have already been used for a number of studies on spiders and beetles (Cardoso 2009, Borges et al. 2018, Malumbres-Olarte et al. 2017, Malumbres-Olarte et al. 2018, Crespo et al. 2018). The forest COBRA protocol consisted of: four night aerial samples (1 hour / sample), two day sweeping samples and two night sweeping samples (1 hour / sample), two day beating samples and two night beating samples (1 hour / sample) and 12 pitfall samples (4 traps / sample). In addition, we collected the following samples to also cover beetle diversity (beetle data will be included in future publications): two diurnal active aerial searching under bark, lichens and bryophytes (ABS) (1 hour / sample) and two diurnal active aerial searching in decaying trunks, dead wood on the ground and under stones (GWS) (1 hour / sample). The protocol for dry open areas was composed of: four night ground samples (1 hour / sample) and four day sweeping samples and four night sweeping samples (1 hour / sample). Sampling occurred in August 2016 (forest habitat plots of Madeira) and April 2017 (dry habitat plots of Madeira and Porto Santo).
Figure 1.
Location of plots on Madeira and Porto Santo islands. MF: Madeira forest habitat plots. MD: Madeira dry habitat plots. PSD: Porto Santo dry habitat plots. Numbers correspond to plot numbers.

a: Madeira and Porto Santo Islands
b: Archipelago of Madeira
c: Madeira forest habitat plots 6-12
d: Madeira forest habitat plots 1-6
e: Madeira dry habitat plots 1-5
f: Porto Santo dry habitat plots 1-5
Figure 2. [doi]
Forest habitat Plot 3 of Madeira island (Credit: Jagoba Malumbres-Olarte).

Figure 3. [doi]
Dry habitat Plot 1 of the island of Porto Santo (Credit: Jagoba Malumbres-Olarte).
Geographic coverage

Description: Madeira and Porto Santo islands, Madeira, Macaronesia, Portugal

Coordinates: 32.66138 and 33.0921 Latitude; -17.15871 and -16.30453 Longitude.

Taxonomic coverage

Taxa included:

Rank	Scientific Name	Common Name
order	Araneae	Spiders

Temporal coverage

Data range: 2016-8-01 - 2017-4-30.

Notes: Sampling in the native forest occurred in August 2016. Sampling in dry habitats occurred in April 2017.

Collection data

Collection name: Dalberto Teixeira Pombo insect collection at the University of Azores

Collection identifier: DTP

Specimen preservation method: All specimens were preserved in 96% ethanol

Curatorial unit: Dalberto Teixeira Pombo insect collection at the University of Azores (Curator: Paulo A. V. Borges)

Usage rights

Use license: Open Data Commons Attribution License

Data resources

Data package title: MACDIV_COBRA_Madeira_Forest_and_Dry

Resource link: http://ipt.gbif.pt/ipt/resource?r=spiders_madeira

Alternative identifiers: http://islandlab.uac.pt/software/ver.php?id=38

Number of data sets: 1
Data set name: MACDIV_COBRA_Madeira_Forest_and_Dry

Download URL: http://ipt.gbif.pt/ipt/resource?r=spiders_madeira

Data format: Darwin Core Archive

Data format version: version 1

Description: The following data table includes all the records for which a taxonomic identification of the species was possible. The dataset submitted to GBIF is structured as a sample event dataset, with two tables: event (as core) and occurrences. The data in this sampling event resource have been published as a Darwin Core Archive (DwCA), which is a standardised format for sharing biodiversity data as a set of one or more data tables. The core data table contains 562 records (eventID). One extension data table also exists with 3281 occurrences. An extension record supplies extra information about a core record. The number of records in each extension data table is illustrated in the IPT link. This IPT archives the data and thus serves as the data repository. The data and resource metadata are available for downloading in the downloads section.

Column label	Column description
Table of Sampling Events	Table with sampling events data (beginning of table)
id	Unique identification code for sampling event data
eventID	Identifier of the events, unique for the dataset
samplingProtocol	The sampling protocol used to capture the species
sampleSizeValue	The numeric amount of time spent in each sampling
sampleSizeUnit	The unit of the sample size value
samplingEffort	The amount of time of each sampling
eventDate	Date or date range the record was collected
eventTime	Time of the day the record was collected
startDayOfYear	The earliest ordinal day of the year on which the event occurred
endDayOfYear	The latest ordinal day of the year on which the event occurred
year	Year of the event
month	Month of the event
day	Day of the event
habitat	The surveyed habitat
fieldNumber	The code given to each sample
locationID	Identifier of the location
islandGroup	Name of archipelago
island	Name of the island
------------------------	---
country	Country of the sampling site
countryCode	ISO code of the country of the sampling site
stateProvince	Name of the region of the sampling site
locationRemarks	Details on the locality site
decimalLatitude	Approximate centre point decimal latitude of the field site in GPS coordinates
decimalLongitude	Details on the locality site
Details on the locality site	The reference point for the various coordinate systems used in mapping the earth
coordinateUncertaintyInMetres	Uncertainty of the coordinates of the centre of the sampling plot
coordinatePrecision	Precision of the coordinates
georeferenceSources	A list (concatenated and separated) of maps, gazetteers or other resources used to georeference the Location, described specifically enough to allow anyone in the future to use the same resources.

Table of Species Occurrence	Table with species abundance data (beginning of new table)
id	Unique identification code for species abundance data
type	Type of the record, as defined by the Public Core standard
licence	Reference to the licence under which the record is published
institutionID	The identity of the institution publishing the data
collectionID	The identity of the collection publishing the data
institutionCode	The code of the institution publishing the data
collectionCode	The code of the collection where the specimens are conserved
datasetName	Name of the dataset
basisOfRecord	The nature of the data record
dynamicProperties	The name of the scientific project funding the sampling
occurrenceID	Identifier of the record, coded as a global unique identifier
catalogNumber	Record number of the specimen in the collection
recordedBy	Name of the person who performed the sampling of the specimens
individualCount	Total number of individuals captured
organismQuantityType	The unit of the identification of the organisms
sex	The sex and quantity of the individuals captured
lifeStage	The life stage of the organisms captured
establishmentMeans	The process of establishment of the species in the location, using a controlled vocabulary: 'naturalised', 'introduced', 'endemic', "unknown"
---------------------	---
occurrenceStatus	Information about the presence/absence of the species
eventID	A unique identifier of an occurrence
identifiedBy	Name of the person who made the identification
dateIdentified	Date on which the record was identified
scientificName	Complete scientific name including author and year
kingdom	Kingdom name
phylum	Phylum name
class	Class name
order	Order name
family	Family name
genus	Genus name
specificEpithet	Specific epithet
taxonRank	Lowest taxonomic rank of the record
scientificNameAuthorship	Name of the author of the lowest taxon rank included in the record

Additional information

Results

We collected a total of 14,902 specimens – of which 49% were adults (7,263) - belonging to 105 (morpho) species and 26 families (Tables 2, 3, 4) - 87 species and 18 morphospecies (undescribed) (Malumbres-Olarte et al. 2019b). The number of species per plot oscillated between 19-32, with the minimum in the dry Plot 4 of Porto Santo (PS4) and the maximum number in Plot 3 of Madeiran forest (MF3). Out of the recorded (morpho)species, 34 were endemic, 26 native non-endemic, 22 introduced and 23 species of unknown origin. We report seven new records of introduced species in the Madeiran archipelago. On Madeira island, we recorded 88 (morpho)species, of which 26 were endemic, 26 native non-endemic, 19 introduced and 17 species of unknown origin. On Porto Santo island, we recorded 48 (morpho)species, of which 12 were endemic species, 7 native non-endemic species, 14 introduced species and 15 species of unknown origin. We present 21 new records for Madeira island and 32 for Porto Santo (33 for the whole archipelago).
Table 2.
Abundance, biogeographic category and previous records of (morpho)species in six of the forest plots on Madeira island. Abbreviations: Plot names: Madeira forest (MF); Madeira dry habitat (MD); Porto Santo dry habitat (PSD). Biogeographic category (Biog. cat): Endemic (END); Introduced (INT); Macaronesian (MAC); Native non-endemic (NAT); Unknown (UK). Previous records (Prev. Rec.): Madeira (M), Porto Santo (PS), Not recorded (No). Reference for previous records: List of Madeiran Fauna (LMF) (Borges et al. 2008), World Spider Catalogue (WSC) (Natural History Museum Bern 2019).

Family	Species	Biog.Cat.	Prev. Rec.	MF1	MF2	MF3	MF4	MF5	MF6
Agelenidae	*Eratigena feminea* (Simon, 1870)	UK	No	0	0	0	0	0	0
Agelenidae	*Synaphris saphrynis* Lopardo, Hormiga & Melic, 2007	UK	No	0	0	0	0	0	0
Agelenidae	*Tegenaria domestica* (Clerck, 1757)	I	M	0	0	1	0	0	1
Araneidae	*Agalenatea redii* (Scopoli, 1763)	I	M, PS	0	0	0	0	0	0
Araneidae	*Araniella maderiana* (Kulczyński, 1905)	N	M, PS	0	0	0	2	0	0
Araneidae	*Argiope trifasciata* (Forskål, 1775)	UK	M, PS	0	0	0	0	0	0
Araneidae	*Cyclosa maderiana* Kulczyński, 1899	N	M	0	0	0	0	1	0
Araneidae	*Cyrtophora citricola* (Forskål, 1775)	I	M	0	0	0	0	0	0
Araneidae	*Mangora acalypha* (Walckenaer, 1802)	I	M	0	0	0	0	0	0
Araneidae	*Neoscona crucifera* (Lucas, 1838)	I	M, PS	1	1	5	3	7	2
Araneidae	*Zygiella x-notata* (Clerck, 1757)	I	M, PS	0	0	0	0	0	0
Cheiracanthiidae	*Cheiracanthium albidulum* (Blackwall, 1859)	E	M, PS	15	5	28	2	8	12
Clubionidae	*Porholclubiona decora* (Blackwall, 1859)	N	M, PS	1	0	0	2	0	3
Dictynidae	*Lathyis affinis* (Blackwall, 1862)	E	M, PS	0	1	8	0	11	0
Dictynidae	*Nigma puella* (Simon, 1870)	UK	M, PS	0	0	0	0	0	0
Dysderidae	*Dysdera coiffalti* Denis, 1962	E	M	0	1	1	0	0	0
Dysderidae	*Dysdera crocata* C.L.Koch, 1838	I	M, PS	0	0	0	0	0	0
Gnaphosidae	*Drassodes lutescens* (C.L.Koch, 1839)	UK	M	0	0	0	0	0	0
Gnaphosidae	*Haplodrassus* sp. 158	E	No	0	0	0	0	0	0
Gnaphosidae	*Haplodrassus* sp. 164	UK	No	0	0	0	0	0	0
Gnaphosidae	*Haplodrassus ommissus* (O. Pickard-Cambridge, 1872)	N	No	0	0	0	0	0	0
Gnaphosidae	*Heser hispanus* Senglet, 2012	UK	No	0	0	0	0	0	0
Family	Species	Biog.Cat.	Prev. Rec.	MF1	MF2	MF3	MF4	MF5	MF6
--------------	--	-----------	------------	-----	-----	-----	-----	-----	-----
Gnaphosidae	*Macarophaeus cultior* (Kulczyński, 1899)	E	No	0	0	2	0	0	0
Gnaphosidae	*Micaria pallipes* (Lucas, 1846)	UK	M	0	0	0	0	0	0
Gnaphosidae	*Setaphis carmeli* (O.P.-Cambridge, 1872)	UK	No	0	0	0	0	0	0
Gnaphosidae	*Trachyzelotes holosericeus* (Simon, 1878)	UK	M	0	0	0	0	0	0
Gnaphosidae	*Trachyzelotes lyonneti* (Audouin, 1826)	UK	M, PS	0	0	0	0	0	0
Gnaphosidae	*Zelotes aeneus* (Simon, 1878)	I	No (LMF), M (WSC)	0	0	0	0	0	0
Gnaphosidae	*Zelotes tenuis* (L.Koch, 1866)	I	No	0	0	0	0	0	0
Gnaphosidae	*Zimirina lepida* (Blackwall, 1859)	E	M	0	0	0	0	0	0
Linyphiidae	*Agyneta canariensis* Wunderlich, 1987	N	No (LMF), M (WSC)	0	0	0	0	0	0
Linyphiidae	*Agyneta fuscipalpa* (C.L.Koch, 1836)	I	No	0	0	0	0	0	0
Linyphiidae	*Canariellanum* sp. 21	E	No	0	0	0	0	0	10
Linyphiidae	*Centromerus variegatus* Denis, 1962	E	M	0	0	0	2	0	0
Linyphiidae	*Ceratinopsis* sp. 111	E	No	0	0	0	0	0	0
Linyphiidae	*Ceratinopsis acripes* (Denis, 1962)	N	M	3	1	2	2	4	2
Linyphiidae	*Ceratinopsis infuscata* (Denis, 1962)	E	M	0	0	0	1	2	0
Linyphiidae	*Ceratinopsis* sp. 233	E	No	0	0	1	0	0	0
Linyphiidae	*Ceratinopsis* sp. 58	E	No	0	0	1	0	0	0
Linyphiidae	*Diplocephalus graecus* (O.P.-Cambridge, 1873)	I	No	0	0	0	0	0	0
Linyphiidae	*Entelecara schmitzi* Kulczyński, 1905	UK	M	2	5	5	0	5	0
Linyphiidae	*Frontinellina dearmata* (Kulczyński, 1899)	E	M	6	4	3	7	62	0
Linyphiidae	*Frontiphantes fulgurenotatus* (Schenkel, 1938)	E	M	0	0	1	0	3	4
Linyphiidae	*Leptlyphantes mauli* Wunderlich, 1992	E	M	0	0	1	0	0	0
Linyphiidae	*Microctenonyx subitaneus* (O.P.-Cambridge, 1875)	UK	M	0	0	0	0	0	0
Linyphiidae	*Microlinyphia johnsoni* (Blackwall, 1859)	N	M, PS	3	6	7	12	21	8
Linyphiidae	*Ostearius melanopygius* (O.P.-Cambridge, 1880)	I	M	0	0	0	0	0	0
Family	Species	Biog.Cat.	Prev. Rec.	MF1	MF2	MF3	MF4	MF5	MF6
--------------	--	-----------	------------	-----	-----	-----	-----	-----	-----
Linyphiidae	*Palliduphantes schmitzi* (Kulczyński, 1899)	N	M	5	0	1	10	0	17
Linyphiidae	*Parapelecopsis nemoralioides* (O. Pickard-Cambridge, 1884)	I	No	0	0	0	0	0	0
Linyphiidae	*Pelecopsis inedita* (O.P.-Cambridge, 1875)	I	No	0	0	0	0	0	0
Linyphiidae	*Tenuiphantes sp. 259*	E	No	0	0	0	0	0	0
Linyphiidae	*Tenuiphantes tenebricoloides* (Schenkel, 1938)	E	M	0	0	0	1	1	0
Linyphiidae	*Tenuiphantes tenuis* (Blackwall, 1852)	I	M, PS	50	35	53	43	34	66
Linyphiidae	*Turinyphia madeirana* (Schenkel, 1938)	E	M	0	0	0	5	1	
Liocranidae	*Mesiotelus cf. grancanariensis* Wunderlich, 1992	N	No	0	0	0	0	0	0
Lycosidae	*Hogna insularum* (Kulczyński, 1899)	E	M, PS	0	0	0	0	0	0
Lycosidae	*Hogna schmitzi* Wunderlich, 1992	E	PS	0	0	0	0	0	0
Lycosidae	*Pardosa proxima* (C.L.Koch, 1847)	N	M, PS	0	0	0	0	0	0
Mimetidae	*Ero aphan* (Walckenaer, 1802)	N	M, PS	0	0	1	0	0	1
Mysmenidae	*Trogloneta meideirensis* Wunderlich, 1987	E	M	0	2	3	4	1	13
Nesticidae	*Eidmannella pallida* (Emerton, 1875)	I	M	0	0	0	0	0	0
Oecobiidae	*Oecobius similis* Kulczyński, 1909	N	M, PS	0	0	0	0	0	0
Oonopidae	*Gamasomorpha insularis* Simon, 1907	UK	M	0	0	0	0	0	0
Oonopidae	*Oonops cf. pulcher* Templeton, 1835	UK	No	0	0	0	0	0	0
Oonopidae	*Opopaea concolor* (Blackwall, 1859)	N	M	0	0	0	0	0	0
Oonopidae	*Orchestina sp. 160*	E	No	0	0	0	0	0	0
Oxyopidae	*Oxyopes sp. 80*	UK	No	0	0	0	0	0	0
Philodromidae	*Philodromus insulanus* Kulczyński, 1905	E	M	0	0	0	0	0	0
Philodromidae	*Philodromus MAD266*	UK	No	0	0	0	0	0	0
Philodromidae	*Thanatus vulgaris* Simon, 1870	UK	M, PS	0	0	0	0	0	0
Pholcidae	*Pholcus madeirensis* Wunderlich, 1987	E	M	3	1	7	0	0	0
Salticidae	*Chalcocirus sublestus* (Blackwall, 1867)	N	M	0	0	0	0	0	0
Family	Species	Biog.Cat.	Prev. Rec.	MF1	MF2	MF3	MF4	MF5	MF6
------------	--	-----------	------------	-----	-----	-----	-----	-----	-----
Salticidae	*Macaroeris cf. desertensis* Wunderlich, 1992	E	No	0	0	0	0	0	0
Salticidae	*Macaroeris cf. diligens* (Blackwall, 1867)	E	No	0	0	0	0	0	0
Salticidae	*Macaroeris diligens* (Blackwall, 1867)	N	M, PS	3	0	1	1	2	0
Salticidae	*Macaroeris* sp. 8	E	No	0	0	0	0	0	0
Salticidae	*Pellenes maderianus* Kulczyński, 1905	N	M	0	0	0	0	0	0
Scytodidae	*Scytodes velutina* Heineken & Lowe, 1832	UK	M	0	0	0	0	0	0
Segestriidae	*Ariadna maderiana* Warburton, 1892	E	M, PS	0	0	0	0	0	0
Segestriidae	*Segestria florentina* (Rossi, 1790)	I	M, PS	0	0	0	0	0	0
Tetragnathidae	*Meta stridulans* Wunderlich, 1987	E	M	8	7	9	1	2	15
Theridiidae	*Cryptachaea blatta* (Urquhart, 1886)	I	No	3	0	13	9	3	0
Theridiidae	*Dipoena longitarsis* (Denis, 1962)	E	M	0	0	0	1	0	0
Theridiidae	*Echinotheridion gibberosum* (Kulczyński, 1899)	N	M	37	28	63	4	32	7
Theridiidae	*Enoplognatha diversa* (Blackwall, 1859)	I	M, PS	0	0	0	0	0	0
Theridiidae	*Enoplognatha sattleri* Bösenberg, 1895	N	M	0	0	0	0	1	0
Theridiidae	*Episinus maderianus* Kulczyński, 1905	N	M	182	59	160	42	33	84
Theridiidae	*Kochiura aulica* (C.L.Koch, 1838)	N	M, PS	0	0	0	0	0	0
Theridiidae	*Laseola* sp. 268	E	No	0	0	0	0	0	0
Theridiidae	*Macaridion barreti* (Kulczyński, 1899)	N	M	55	63	112	1	60	15
Theridiidae	*Paidiscra orotavensis* (Schmidt, 1968)	N	M	0	13	1	2	0	0
Theridiidae	*Rhomphaea nasica* (Simon, 1873)	I	M	0	1	2	0	0	1
Theridiidae	*Rugathodes madeirensis* Wunderlich, 1987	E	M	48	2	2	156	8	96
Theridiidae	*Steatoda grossa* (C.L.Koch, 1838)	I	M, PS	0	0	0	0	0	0
Theridiidae	*Steatoda nobilis* (Thorell, 1875)	N	M, PS	0	0	0	0	0	0
Theridiidae	*Theridion hannoniae* Denis, 1945	UK	M	0	0	0	0	0	0
Theridiidae	*Theridion musivivum* Schmidt, 1966	N	M, PS	0	0	0	0	0	0
Theridiidae	*Theridion* sp. 89	E	No	4	2	2	2	11	1
Table 3.
Abundance, biogeographic category and previous records of (morpho)species in five of the forest plots and two of the dry habitat plots on Madeira island. Abbreviations: Madeira forest plot (MF), Madeira dry plot (MD).

Family	Species	MF7	MF8	MF9	MF10	MF11	MF12	MD1	MD2
Araneidae	Eratigena feminea (Simon, 1870)	0	0	0	0	0	0	0	0
Agelenidae	Synaphris saphrynis Lopardo, Hormiga & Melic 2007	0	0	0	0	0	0	0	0
Araneidae	Tegenaria domestica (Clerck, 1757)	0	0	0	0	0	0	0	0
Araneidae	Agalenatea redii (Scopoli, 1763)	0	0	0	0	0	0	7	22
Araneidae	Araniella maderiana (Kulczyński, 1905)	3	0	3	0	0	1	0	0
Araneidae	Argiope trifasciata (Forskål, 1775)	0	0	0	0	0	10	17	
Araneidae	Cyclosa maderiana Kulczyński, 1899	0	1	0	0	0	1	0	0
Araneidae	Cyrtophora citricola (Forskål, 1775)	0	0	0	0	0	0	0	0
Araneidae	Mangora acalyphe (Walckenaer, 1802)	0	0	0	0	0	2	0	
Araneidae	Neoscona crucifera (Lucas, 1838)	2	1	1	1	1	2	0	0
Araneidae	Zygiella x-notata (Clerck, 1757)	0	0	0	0	0	0	0	0
Cheiracanthiida	Cheiracanthium albidulum (Blackwall, 1859)	34	11	36	9	15	43	0	0
Clubionidae	Porrhoclubiona decora (Blackwall, 1859)	2	0	3	2	0	1	1	2
Dictynidae	Lathys affinis (Blackwall, 1862)	6	1	2	2	0	3	0	0
Dictynidae	Nigma puella (Simon, 1870)	0	0	0	0	0	0	0	0
Dysderidae	Dysdera coffalti Denis, 1962	3	1	2	0	0	0	0	0
Dysderidae	Dysdera crocata C.L.Koch, 1838	0	0	0	0	0	2	5	
Family	Species	MF7	MF8	MF9	MF10	MF11	MF12	MD1	MD2
------------	--	-----	-----	-----	------	------	------	-----	-----
Gnaphosida	*Drassodes lutescens* (C.L.Koch, 1839)	0	0	0	0	0	0	0	0
Gnaphosida	*Haplodrassus* sp. 158	0	0	0	0	0	0	0	0
Gnaphosida	*Haplodrassus* sp. 164	0	0	0	0	0	0	0	0
Gnaphosida	*Haplodrassus omissus* (O. Pickard-Cambridge, 1872)	0	0	0	0	0	0	13	1
Gnaphosida	Heser hispanus Senglet, 2012	0	0	0	0	0	0	35	23
Gnaphosida	*Macarophaeus cultor* (Kulczyński, 1899)	0	0	0	0	0	0	0	0
Gnaphosida	*Micaria pallipes* (Lucas, 1846)	0	0	0	0	0	0	0	0
Gnaphosida	*Setaphis carmelii* (O.P.-Cambridge, 1872)	0	0	0	0	0	0	0	0
Gnaphosida	*Trachyzelotes holosericeus* (Simon, 1878)	0	0	0	0	0	0	0	0
Gnaphosida	*Trachyzelotes lyonneti* (Audouin, 1826)	0	0	0	0	0	0	4	2
Gnaphosida	*Zelotes aeneus* (Simon, 1878)	0	0	0	0	0	0	0	0
Gnaphosida	*Zelotes tenuis* (L.Koch, 1866)	0	0	0	0	0	0	0	0
Gnaphosida	*Zimirina lepida* (Blackwall, 1859)	0	0	0	0	0	0	3	0
Linyphiida	*Agyneta canariensis* Wunderlich, 1987	0	0	0	0	0	0	0	0
Linyphiida	*Agyneta fuscipalpa* (C.L.Koch, 1836)	0	0	0	0	0	0	3	9
Linyphiida	*Canariellanum* sp. 21	0	0	0	0	0	0	0	0
Linyphiida	*Centromerus variegatus* Denis, 1962	0	0	0	0	0	0	0	0
Linyphiida	*Ceratinopsis* sp. 111	0	0	0	0	0	0	1	0
Linyphiida	*Ceratinopsis acripes* (Denis, 1962)	2	1	1	1	4	6	0	0
Linyphiida	*Ceratinopsis infuscata* (Denis, 1962)	0	2	8	0	1	0	0	0
Linyphiida	*Ceratinopsis* sp. 233	0	1	0	0	0	0	0	0
Linyphiida	*Ceratinopsis* sp. 58	0	0	0	0	0	0	0	0
Linyphiida	*Diplocephalus graecus* (O.P.-Cambridge, 1873)	0	0	0	0	0	103	375	
Linyphiida	*Entelecara schmitzi* Kulczyński, 1905	1	0	2	5	2	7	0	0
Linyphiida	*Frontinellina dearmata* (Kulczyński, 1899)	7	1	4	8	32	43	0	0
Linyphiida	*Frontiphantes fulgurenatus* (Schenkel, 1938)	14	0	1	0	2	1	0	0
Linyphiida	*Lepthyphantes mauli* Wunderlich, 1992	0	0	0	0	0	0	0	0
Linyphiida	*Microctenonyx subitaneus* (O.P.-Cambridge, 1875)	0	0	0	0	0	0	0	0
Linyphiida	*Microlinyphia johnsoni* (Blackwall, 1859)	2	3	4	8	8	27	0	0
Linyphiida	*Ostearius melanopygius* (O.P.-Cambridge, 1880)	0	0	0	0	0	0	0	0
Linyphiida	*Palliduphantes schmitzi* (Kulczyński, 1899)	3	0	0	5	1	3	0	0
Linyphiida	*Parapelecopsis nemoraloides* (O. Pickard-Cambridge, 1884)	0	0	0	0	0	2	3	
Family	Species	MF7	MF8	MF9	MF10	MF11	MF12	MD1	MD2
-------------------	--	-----	-----	-----	------	------	------	-----	-----
Linyphiidae	*Pelecopsis inedita* (O.P.-Cambridge, 1875)	0	0	0	0	0	10	15	
Linyphiidae	*Tenuiphantes* sp. 259	0	0	0	0	0	0		
Linyphiidae	*Tenuiphantes tenebricoloides* (Schenkel, 1938)	0	0	0	1	1	0		
Linyphiidae	*Tenuiphantes tenuis* (Blackwall, 1852)	31	58	13	49	25	56	0	4
Linyphiidae	*Turinyphia maderiana* (Schenkel, 1938)	0	2	0	1	4	0	0	
Liocranidae	*Mesiotelus* cf. *grancanariensis* Wunderlich, 1992	0	0	0	0	0	1		
Lycosidae	*Hogna insularum* (Kulczyński, 1899)	0	0	0	0	0	60	49	
Lycosidae	*Hogna schmitzi* Wunderlich, 1992	0	0	0	0	0			
Lycosidae	*Pardosa proxima* (C.L.Koch, 1847)	0	0	3	0	0			
Mimetidae	*Ero aphan* (Walckenaer, 1802)	0	0	0	2	0			
Mysmenidae	*Trogloneta madeirensis* Wunderlich, 1987	0	0	0	2	0			
Nesticidae	*Eidmannella pallida* (Emerton, 1875)	0	0	0	0	0			
Oecobiidae	*Oecobius similis* Kulczyński, 1909	0	0	0	0	0			
Oonopidae	*Gamasomorpha insularis* Simon, 1907	0	0	0	0	0			
Oonopidae	*Oonops* cf. *pulcher* Templeton, 1835	0	0	0	0				
Oonopidae	*Opopaea* concolor* (Blackwall, 1859)	0	0	0	0				
Oonopidae	*Orchestina* sp. 160	0	0	0	0				
Oxyopidae	*Oxyopes* sp. 80	0	0	0	0				
Philodromidae	*Philodromus insulanus* Kulczyński, 1905	1	0	0	0	0			
Philodromidae	*Philodromus MAD266*	0	0	0	0				
Philodromidae	*Thanatus vulgaris* Simon, 1870	0	0	0	0				
Pholcidae	*Pholcus madeirensis* Wunderlich, 1987	0	0	0					
Salticidae	*Chalcoscurts subleustus* (Blackwall, 1867)	0	0	0					
Salticidae	*Macaroeris* cf. *desertensis* Wunderlich, 1992	0	0	0					
Salticidae	*Macaroeris* cf. *diligens* (Blackwall, 1867)	0	0	0					
Salticidae	*Macaroeris* diligens* (Blackwall, 1867)	4	1	8					
Salticidae	*Macaroeris* sp. 8	0	0	0					
Salticidae	*Pellines* maderianus Kulczyński, 1905	0	0						
Scytodidae	*Scytodes velutina* Heineken & Lowe, 1832	0	0						
Segestridae	*Anadia maderiana* Warburton, 1892	0	0						
Segestridae	*Segestria* florentina* (Rossi, 1790)	0							
Tetragnathidae	*Meta* stridulans* Wunderlich, 1987	3							
Theridiidae	*Cryptachae blattea* (Urquhart, 1886)	2							
Theridiidae	*Dipoenata* longitaris* (Denis, 1962)	0							
Family	Species	MF7	MF8	MF9	MF10	MF11	MF12	MD1	MD2
-------------	--	-----	-----	-----	------	------	------	-----	-----
Theridiidae	*Echinotheridion gibberosum* (Kulczyński, 1899)	39	3	9	1	22	71	0	0
Theridiidae	*Enoplognatha diversa* (Blackwall, 1859)	0	0	0	0	0	0	0	0
Theridiidae	*Enoplognatha satleri* Bösenberg, 1895	0	0	0	0	0	0	0	0
Theridiidae	*Episinus maderianus* Kulczyński, 1905	64	14	41	38	18	11	0	0
Theridiidae	*Kochiura aulica* (C.L.Koch, 1838)	0	0	0	0	0	0	0	0
Theridiidae	*Laseola sp.* 268	0	0	0	0	0	0	0	0
Theridiidae	*Macaridion barreti* (Kulczyński, 1899)	14	0	17	19	19	119	0	0
Theridiidae	*Paidiscura orotavensis* (Schmidt, 1968)	3	1	1	15	2	0	0	0
Theridiidae	*Rhomphaea nasica* (Simon, 1873)	0	0	0	0	0	0	0	0
Theridiidae	*Rugathodes madeirensis* Wunderlich, 1987	1	1	0	0	5	6	0	0
Theridiidae	*Steatoda grossa* (C.L.Koch, 1838)	0	0	0	0	0	0	2	4
Theridiidae	*Steatoda nobilis* (Thorell, 1875)	6	7	2	0	2	0	0	0
Theridiidae	*Theridion hannoniae* Denis, 1945	0	0	0	0	0	0	0	0
Theridiidae	*Theridion musivivum* Schmidt, 1956	0	0	0	1	0	0	0	0
Theridiidae	*Theridion sp.* 89	4	0	0	2	0	0	0	0
Thomisidae	*Misumena cf. nigromaculata* Denis, 1963	0	0	0	0	0	0	0	1
Thomisidae	*Misumena spinifera* (Blackwall, 1862)	1	0	4	0	0	2	0	0
Thomisidae	*Thomisus onustus* Walckenaer, 1805	0	0	0	0	0	0	0	0
Thomisidae	*Xysticus nubilus* Simon, 1875	0	0	0	0	0	0	0	9
Uloboridae	*Hyptiotes flavidus* (Blackwall, 1862)	10	1	5	2	15	8	0	0
Uloboridae	*Uloborus walckenaerius* Lateille, 1806	0	0	0	0	0	0	0	0
Zodariidae	*Zodarion styliferum* (Simon, 1870)	0	0	0	0	0	0	0	0

Species richness: 26 21 24 22 22 24 22 26

Table 4.

Abundance of (morpho)species in three of the plots on Madeira island and in the plots on Porto Santo island. Abbreviations: Madeira dry plot (MD), Porto Santo plot (PS).
Family	Species	MD3	MD4	MD5	PSD1	PSD2	PSD3	PSD4	PSD5	Total
Araneidae	Araniella maderiana (Kulczyński, 1905)	0	0	0	0	0	0	0	0	9
Araneidae	Argiope trifasciata (Forskål, 1775)	1	38	4	0	0	0	0	1	71
Araneidae	Cyclosa maderiana Kulczyński, 1899	0	0	0	0	0	0	0	0	3
Araneidae	Cyrtophora citricola (Forskål, 1775)	0	0	1	0	0	0	0	0	1
Araneidae	Mangora acalypa (Walckenaer, 1802)	1	7	22	1	0	0	0	0	33
Araneidae	Neoisconia crucifera (Lucas, 1838)	0	0	0	1	0	0	0	0	28
Araneidae	Zygia x-notata (Clerck, 1757)	0	0	1	0	0	0	0	0	1
Cheiracanthiidae	Cheiracanthium albiculum (Blackwall, 1859)	0	0	0	0	0	0	0	0	218
Clubionidae	Porthoclinobion decora (Blackwall, 1859)	10	7	3	3	3	3	0	9	52
Dictynidae	Lathys affinis (Blackwall, 1862)	0	0	0	16	18	2	0	0	70
Dictynidae	Nigma puella (Simon, 1870)	0	0	15	0	0	0	0	0	15
Dysderidae	Dysdera coiffaiti Denis, 1962	0	0	0	0	0	0	0	0	8
Dysderidae	Dysdera crocata C.L.Koch, 1838	5	8	18	2	0	3	0	0	43
Gnaphosidae	Drassodes lutescens (C.L.Koch, 1839)	0	0	0	0	0	1	0	1	
Gnaphosidae	Haplodrassus sp. 158	0	0	0	18	7	0	25	18	68
Gnaphosidae	Haplodrassus sp. 164	0	0	0	6	5	0	5	2	18
Gnaphosidae	Haplodrassus omissus (O. Pickard-Cambridge, 1872)	6	0	0	0	1	0	13	1	35
Gnaphosidae	Hesper hispanicus Senglet, 2012	1	0	0	0	0	0	0	0	59
Gnaphosidae	Macarophaeus cultior (Kulczyński, 1899)	0	0	0	0	0	0	0	0	2
Gnaphosidae	Mica la pallipes (Lucas, 1846)	1	0	0	0	0	0	1	1	3
Gnaphosidae	Setaphis carmelii (O.P.-Cambridge, 1872)	0	0	0	1	1	6	0	0	8
Gnaphosidae	Trachyzelotes holosericus (Simon, 1878)	1	0	0	7	4	1	0	0	13
Gnaphosidae	Trachyzelotes lyonneti (Audouin, 1826)	0	7	1	4	0	17	0	2	37
Gnaphosidae	Zelotes aeneus (Simon, 1878)	0	0	0	4	0	0	2	1	7
Gnaphosidae	Zelotes tenuis (L.Koch, 1878)	1	0	0	0	0	0	0	0	1
Gnaphosidae	Ziphiro lepad (Blackwall, 1859)	0	1	0	0	1	0	0	0	5
Family	Species	MD3	MD4	MD5	PSD1	PSD2	PSD3	PSD4	PSD5	Total
--------------	--------------------------------	-----	-----	-----	------	------	------	------	------	-------
Linyphiidae	Agyneta canariensis	3	0	0	28	7	3	0	5	46
Linyphiidae	Agyneta fuscipalpa (C.L.Koch, 1836)	2	66	15	8	1	23	10	13	150
Linyphiidae	Canariellanum sp. 21	0	0	0	0	0	0	0	0	10
Linyphiidae	Centromerus variegatus Denis, 1962	0	0	0	0	0	0	0	0	2
Linyphiidae	Ceratinopsis sp. 111	0	0	0	0	0	0	0	0	1
Linyphiidae	Ceratinopsis acripes (Denis, 1962)	0	0	0	0	0	0	0	0	29
Linyphiidae	Ceratinopsis infuscata (Denis, 1962)	0	0	0	0	0	0	0	0	14
Linyphiidae	Ceratinopsis sp. 233	0	0	0	0	0	0	0	0	2
Linyphiidae	Ceratinopsis sp. 58	0	0	0	0	0	0	0	0	1
Linyphiidae	Diplocephalus graecus (O.P.-Cambridge, 1873)	33	2	6	12	3	76	1	9	620
Linyphiidae	Entelecara schmitzi Kulczyński, 1905	0	0	0	0	0	0	0	0	34
Linyphiidae	Frontinellina dearmata (Kulczyński, 1899)	0	0	0	0	0	0	0	0	177
Linyphiidae	Frontiphanus fulgurenotatus (Schenkel, 1938)	0	0	0	0	0	0	0	0	26
Linyphiidae	Leptophantes mauli Wunderlich, 1992	0	0	0	0	0	0	0	0	1
Linyphiidae	Microctenonyx subitaneus (O.P.-Cambridge, 1875)	3	0	0	2	3	8	0	4	26
Linyphiidae	Microlinyphia johnsoni (Blackwall, 1859)	0	1	0	0	0	0	0	0	110
Linyphiidae	Ostearius melanopygius (O.P.-Cambridge, 1880)	0	0	0	0	0	2	0	2	
Linyphiidae	Palliduphantes schmitzi (Kulczyński, 1899)	0	0	0	0	0	0	0	0	45
Linyphiidae	Parapelecopsis nemoraloides (O. Pickard-Cambridge, 1884)	4	0	0	0	0	0	0	0	9
Linyphiidae	Pelecopsis inedita (O.P.-Cambridge, 1875)	3	0	0	0	0	0	0	0	28
Linyphiidae	Tenuiphantes sp. 259	0	0	0	0	1	0	0	0	1
Linyphiidae	Tenuiphantes tenebricoides (Schenkel, 1938)	0	0	0	0	0	0	0	0	4
Linyphiidae	Tenuiphantes tenuis (Blackwall, 1852)	5	0	14	0	1	2	0	1	540
Linyphiidae	Turinyphia maderiana (Schenkel, 1938)	0	0	0	0	0	0	0	0	13
Family	Species	MD3	MD4	MD5	PSD1	PSD2	PSD3	PSD4	PSD5	Total
--------------	--------------------------------------	-----	-----	-----	------	------	------	------	------	-------
Liocranidae	Mesiotelus cf. grancanariensis	0	0	0	20	5	0	1	2	29
Lycosidae	Hogna insularum (Kulczyński, 1899)	54	0	1	6	4	32	34	32	272
Lycosidae	Hogna schmitzi Wunderlich, 1992	0	0	0	7	2	0	0	5	14
Lycosidae	Pardosa proxima (C.L.Koch, 1847)	0	0	0	0	0	0	0	0	3
Mimetidae	Ero aphana (Walckenaer, 1802)	0	0	0	0	0	0	0	0	4
Mysmenidae	Trogloneta madeirensis Wunderlich, 1987	0	0	0	0	0	0	0	0	25
Nesticidae	Eidmannella pallida (Emerton, 1875)	0	0	0	1	0	0	0	0	3
Oecobiidae	Oecobius similis Kulczyński, 1909	82	0	152	5	8	28	1	0	294
Oonopidae	Gamasomorpha insularis Simon, 1907	1	0	0	0	0	0	0	0	2
Oonopidae	Oonops cf. pulcher Templeton, 1835	2	0	0	0	0	1	0	0	3
Oonopidae	Opopaea concolor (Blackwall, 1859)	0	2	0	0	0	0	0	0	3
Oonopidae	Orchestina sp. 160	0	0	0	2	0	0	0	0	2
Oxyopidae	Oxyopes sp. 80	0	0	2	0	0	0	0	0	2
Philodromidae	Philodromus insulanus Kulczyński, 1905	0	0	0	0	0	0	0	0	1
Philodromidae	Philodromus MAD266	0	0	0	0	0	0	1	1	2
Philodromidae	Thanatus vulgaris Simon, 1870	10	5	0	2	8	0	8	4	49
Pholcidae	Pholcus madeirensis Wunderlich, 1987	0	0	0	0	0	0	0	0	11
Salticidae	Chalciscirtus sublestus (Blackwall, 1867)	2	1	20	3	3	1	1	1	34
Salticidae	Macaroeris cf. desertensis Wunderlich, 1992	0	0	0	7	1	0	2	7	17
Salticidae	Macaroeris cf. diligens (Blackwall, 1867)	0	0	0	3	7	5	1	26	42
Salticidae	Macaroeris diligens (Blackwall, 1867)	0	0	0	0	0	0	0	0	26
Salticidae	Macaroeris sp. 8	8	4	4	1	0	0	0	0	27
Salticidae	Pellenes maderianus Kulczyński, 1905	2	0	0	0	0	0	0	0	6
Scytodidae	Scytodes velutina Heineken & Lowe, 1832	0	0	3	0	0	0	0	0	3
Family	Species	MD3	MD4	MD5	PSD1	PSD2	PSD3	PSD4	PSD5	Total
----------------	--	-----	-----	-----	------	------	------	------	------	-------
Segestriidae	Ariadna maderiana Warburton, 1892	0	0	0	1	1	0	0	0	2
Segestriidae	Segestria florentina (Rossi, 1790)	0	3	6	0	0	1	0	0	10
Tetragnathidae	Meta stridulans Wunderlich, 1987	0	0	0	0	0	0	0	0	62
Theridiidae	Cryptachaea blattea (Urquhart, 1886)	0	1	0	0	1	0	0	0	53
Theridiidae	Dipoenata longitarsis (Denis, 1962)	0	0	0	0	0	0	0	0	1
Theridiidae	Echinotheridion gibberosum (Kulczyński, 1899)	0	0	0	0	0	0	0	0	316
Theridiidae	Enoplognatha diversa (Blackwall, 1859)	1	0	0	0	1	1	1	0	4
Theridiidae	Enoplognatha sattleri Bösenberg, 1895	0	0	0	0	0	0	0	0	1
Theridiidae	Episinus maderianus Kulczyński, 1905	0	0	0	0	0	0	0	0	746
Theridiidae	Kochiura aulica (C.L.Koch, 1838)	0	1	0	0	0	0	0	0	1
Theridiidae	Laseola sp. 268	0	0	0	0	0	0	0	1	1
Theridiidae	Macaridion barreti (Kulczyński, 1899)	0	0	0	0	0	0	0	0	494
Theridiidae	Paidiscura orotavensis (Schmidt, 1968)	0	0	0	1	2	19	0	17	77
Theridiidae	Rhomphaea nasica (Simon, 1873)	0	0	0	0	0	0	0	0	4
Theridiidae	Rugathodes madeirensis Wunderlich, 1987	0	0	0	0	0	0	0	0	325
Theridiidae	Steatoda grossa (C.L.Koch, 1838)	1	2	4	0	0	0	0	0	13
Theridiidae	Steatoda nobilis (Thorell, 1875)	0	0	0	0	0	0	0	0	24
Theridiidae	Theridion hannoniae Denis, 1945	0	0	0	1	0	0	0	0	1
Theridiidae	Theridion musivivum Schmidt, 1966	0	0	0	0	0	0	0	0	1
Theridiidae	Theridion sp. 89	0	0	0	0	0	0	0	0	28
Thomisidae	Misumena cf. nigromaculata Denis, 1963	0	0	0	0	0	0	0	0	1
Thomisidae	Misumena spinifera (Blackwall, 1862)	0	0	0	0	0	0	0	0	12
Thomisidae	Thomisus onustus Walckenaer, 1805	0	0	0	1	1	0	0	2	
Family	Species	MD3	MD4	MD5	PSD1	PSD2	PSD3	PSD4	PSD5	Total
-----------------	--------------------------------------	-----	-----	-----	------	------	------	------	------	-------
Thomisidae	Xysticus nubilus Simon, 1875	16	38	4	12	10	7	0	3	101
Uloboridae	Hyptiotes flavidus (Blackwall, 1862)	0	0	0	0	0	0	0	0	111
Uloboridae	Uloborus walckenaerius Latreille, 1806	1	4	7	0	0	0	0	0	13
Zodariidae	Zodarion styliferum (Simon, 1870)	16	13	810	0	0	0	2	9	850
Species richness		30	21	24	31	27	22	19	26	7462

The most widespread (morpho)species were *Tenuiphantes tenuis* (Blackwall, 1852) (introduced), *Porrhoclubiona decora* (Blackwall, 1859) (native non-endemic), *Neoscona crucifera* (Lucas, 1838) (introduced), *Microlinyphia johnsoni* (Blackwall, 1859) (native non-endemic), *Cryptachaea blattea* (Urquhart, 1886) (introduced), *Cheiracanthium albidulum* (Blackwall, 1859) (endemic), *Ceratinopsis acripes* (Denis, 1962) (native non-endemic), *Meta stridulans* Wunderlich, 1987 (endemic), *Echinotheridion gibberosum* (Kulczyński, 1899) (native non-endemic), *Episinus maderianus* Kulczyński, 1905 (native non-endemic) and *Paidiscura orotavensis* (Schmidt, 1968) (native non-endemic). The five most abundant species were *Zodarion styliferum* (Simon, 1870) (11%, unknown origin), *Episinus maderianus* Kulczyński, 1905 (9%, native non-endemic), *Diplocephalus graecus* (O.P.-Cambridge, 1873) (8%, introduced), *Tenuiphantes tenuis* (Blackwall, 1852) (7%, introduced) and *Macaridion barreti* (Kulczyński, 1899) (7%, native non-endemic).

Taxonomic and biogeographic classification

In this section, we point out, explain and discuss the identification of some of the species and morphospecies found – the ones for which information is limited and ordered as in Tables 2, 3 and 4 – and their classification as endemic, native non-endemic, introduced and unknown.

Synaphris saphrynis

This species is known from Spain and Selvagens Islands. It is also present on Bugio island (Desertas), as one of the authors (L. Crespo) identified a specimen collected by M. Boieiro et al. in 2011/12 (unpublished record). The limited number of available records does not allow us to infer its total distribution with certainty.

Haplodrassus omissus

Although *Haplodrassus omissus* had not been recorded previously in Madeira, it does not come as a surprise to be present there, given its known distribution across the Mediterranean basin and the Canary Islands.
Haplodrassus sp. 164

This morphospecies is present in Porto Santo and, possibly, in other locations of the Madeira archipelago. Haplodrassus MS 164 belongs to the dalmatensis group.

Haplodrassus sp. 158

The morphospecies Haplodrassus MS158 belongs to a different group from that of Haplodrassus MS164, as its genitalia is more similar to species such as H. deserticola, which is present in the Canary Islands or H. minor, which has been recorded from Europe to Turkey, according to the World Spider Catalogue. It is possible that more species of this group are present in the Madeira archipelago.

Macarophaeus cultior

Macarophaeus cultior may be a single-island endemic from Madeira. Although the World Spider Catalog and the Banco de Datos de Biodiversidad de Canarias (based on Oromí et al. (2002)) shows records from the Canary Islands (Oromí et al. (2002), according to Wunderlich (Wunderlich 2011), there are no new records or mentions of M. cultior in this archipelago.

Zelotes aeneus

We classified this species as introduced, because of its distribution throughout Europe up to Azerbaijan.

Agyneta canariensis

We have considered this species as native non-endemic, because it is present in the Canary Islands, Selvagens and Madeira.

Canariellanum sp. 21

We considered this species as a new endemic species of a genus so far restricted to the Canary Islands.

Ceratinopsis spp.

Given the morphological mismatch of this morphospecies with other described species from the region, we have considered it as endemic to the island of Madeira.

Tenuiphantes sp. 259

This morphospecies is probably a new Tenuiphantes from the archipelago of Madeira and we, therefore, considered it endemic.

Tenuiphantes tenebricoloides

This species has been found and cited several times from the forests of Madeira island. There is a citation from the Canary Islands by Denis (Denis 1941) that was based on a
single female specimen that has not been revised since then. Furthermore, the species has not been cited again from the Canary Islands and, according to J. Wunderlich – who described a very similar species, *T. canariensis*, from the Canary Islands – Denis probably misidentified the species, given the resemblance in the female epigyne between *T. tenebricoloides* and *T. canariensis*, Therefore, we considered *T. tenebricoloides* as a Madeiran endemic (Wunderlich 1987). Future molecular phylogenetic work might resolve the relationship between these two species.

Mesiotelus cf. grancanariensis

The species *Mesiotelus grancanariensis* has been cited from the south west coast of Portugal and across the entire archipelago of Madeira – in treeless dry habitats and along the central mountain chain of Madeira. Hence the classification of this species as a native species.

Oonops cf. pulcher

Although it is possible that this species is an undescribed cryptic species native to Madeira, based on morphological characters, it is very likely to be *Oonops pulcher* and, therefore, introduced.

Orchestina sp. 160

We classified this morphospecies as archipelago-endemic, based on previous findings by L. Crespo in areas with dry habitats of Porto Santo and Desertas.

Oxyopes sp. 80

Since this morphospecies has not been described or cited before, it is very likely endemic to the Madeiran archipelago.

Philodromus sp. 266

This morphospecies has not been described or cited before, hence our classification as endemic.

Macaroeris cf. desertensis, *Macaroeris cf. diligens* and *Macaroeris* sp. 8

We considered *Macaroeris cf. desertensis*, *Macaroeris cf. diligens* and *Macaroeris* sp. 8 as most likely new undescribed species and, therefore, endemic to the Madeiran archipelago.

Lasaeola sp. 268

Based on the morphological features of this morphospecies, we considered it as a new species and, therefore, an archipelago endemic.
Rhomphaea nasica

Rhomphaea nasica is known to be present in Africa and on the remote island of St. Helena. Specimens of this species have also been identified in modified habitats such as the Funchal Botanical Garden (Madeira Island). Therefore, we considered this species as introduced.

Theridion hannoniae

This species has a Mediterranean distribution and, in the Madeiran archipelago, it is usually found in dry, relatively disturbed areas. We classified this species as of *unknown* biogeographic category, given the impossibility of knowing whether it arrived at the Madeiran archipelago naturally or with human intervention.

Theridion sp. 89

This morphospecies is most likely a new species, so we considered it to be single-island endemic, probably from laurel forest.

Misumena cf. nigromaculata

Here we considered this morphospecies to be a new endemic species given the little information on *Misumena nigromaculata*, whose female has been described only once and whose male is unknown.

Xysticus nubilus

Xysticus nubilus has a Mediterranean distribution and is usually found in dry habitats in the Madeiran archipelago. Therefore, as with *Theridion hannoniae*, we classified it as of *unknown* biogeographic category in Madeira.

Hyptiotes flavidus

Although the distribution of this species is largely Mediterranean, given that it is usually found in laurel forests, we classified it as native to Madeira.

Acknowledgements

This research was supported by the project FCT MACDIV financed by Fundação para a Ciência e a Tecnologia – ref. FCT-PTDC/BIABIC/0054/2014, that also supported the Open Access of the manuscript. We are grateful to the Madeira Natural Park for the logistic support as well as permission for the collection of specimens.
Author contributions

PAVB, PC and FR conceived the study design and sampling programme. JM-O, PAVB, PC, LCFC, RG, FP, RC, CR, MB, and FR performed spider sampling. PAVB and LCFC performed spider identification. JM-O analysed the data and JM-O and PAVB led the writing. All authors commented on the final version of the manuscript.

References

• Boieiro M, Menezes D, Rego C, Serrano ARM (2010) Spatial patterns of endemism and the conservation of beetles (Carabidae and Staphylinidae) in Madeira Island. In: Serrano A, Borges PA, Boieiro M, Ormi P (Eds) Terrestrial arthropods of Macaronesia - biodiversity, ecology and evolution. Sociedade Portuguesa de Entomologia, 17 pp.
• Boieiro M, Carvalho JC, Cardoso P, Aguiar CaS, Rego C, de Faria e Silva I, Amorim IR, Pereira F, Azevedo EB, Borges PAV, Serrano ARM (2013) Spatial factors play a major role as determinants of endemic ground beetle beta diversity of Madeira Island Laurisilva. PLOS One 8 (5): e64591. https://doi.org/10.1371/journal.pone.0064591
• Boieiro M, Aguiar AF, Rego C, Borges PAV, Serrano ARM (2015) The biodiversity of terrestrial arthropods in Madeira and Selvagens archipelagos. Revista IDE@-SEA 6: 1-20.
• Boieiro M, Matthews TJ, Rego C, Crespo L, Aguiar CAS, Cardoso P, Rigal F, Paulo A, Silva I, Pereira F, Borges PAV, Serrano ARM (2018) A comparative analysis of terrestrial arthropod assemblages from a relict forest unveils historical extinctions and colonization differences between two oceanic islands. PLOS One 13 (4): e0195492. https://doi.org/10.1371/journal.pone.0195492
• Borges PAV, Abreu C, Aguiar AF, Carvalho P, Jardim R, Melo I, Oliveira P, Sérgio C, Serrano AM, Vieira P (2008) A list of the terrestrial fungi, flora and fauna of Madeira and Selvagens archipelagos. Direcção Regional do Ambiente da Madeira and Universidade dos Açores, Funchal and Angra do Heroísmo, 438 pp. [ISBN 978-989-95790-0-2]
• Borges PAV, Cardoso P, Fattorini S, Rigal F, Matthews T, Di Biase L, Amorim I, Florencio M, Borda-de-Água L, Rego C, Pereira F, Nunes R, Carvalho R, Ferreira MT, López H, Pérez Delgado A, Otto R, Fernández Lugo S, De Nascimento L, Caujape-Castells J, Casquet J, Danfouis S, Fournel J, Sadeyen A, Elías R, Fernández-Palacios JM, Oromí P, Thébaud C, Strasberg D, Emerson B (2018) Community structure of woody plants on islands along a bioclimatic gradient. Frontiers of Biogeography 10 https://doi.org/10.21425/f5fbg40295
• Cardoso P, Crespo L (2008) Araneae. In: Borges PAV, Abreu C, Carvalho P, Jardim R, Melo I, Oliveira P, Sergio C, Serrano ARM, Vieira P (Eds) A list of the terrestrial fungi, flora and fauna of Madeira and Selvagens archipelagos. Direcção Regional do Ambiente da Madeira and Universidade dos Açores, Funchal and Angra do Heroísmo, 283-286 pp. [ISBN 978-989-95790-0-2].
• Cardoso P (2009) Standardization and optimization of arthropod inventories — the case of Iberian spiders. Biodiversity and Conservation 18 (14): 3949-3962. https://doi.org/10.1007/s10531-009-9690-7
- Cardoso P, Crespo L, Silva I, Borges P, Boieiro M (2017) Species conservation profiles of endemic spiders (Araneae) from Madeira and Selvagens archipélagos, Portugal. Biodiversity Data Journal 5: e20810 https://doi.org/10.3897/bdj.5.e20810
- Crespo L, Boieiro M, Cardoso P, Aguilar C, Amorim I, Barrinha C, Borges PAV, Menezes D, Pereira F, Rego C, Ribeiro S, Silva I, Serrano AM (2014) Spatial distribution of Madeira Island Laurisilva endemic spiders (Arachnida: Araneae). Biodiversity Data Journal 2: e1051. https://doi.org/10.3897/bdj.2.e1051
- Crespo L, Domènech M, Engüidanos A, Malumbres-Olarte J, Cardoso P, Moya-Laraño J, Frias-López C, Maclas-Hernández N, De Mas E, Mazzuca P, Mora E, Opatova V, Planas E, Ribera C, Roca-Cusachs M, Ruiz D, Sousa P, Tonzo V, Arnedo M (2018) A DNA barcode-assisted annotated checklist of the spider (Arachnida, Araneae) communities associated to white oak woodlands in Spanish National Parks. Biodiversity Data Journal 6: e29443. https://doi.org/10.3897/bdj.6.e29443
- Crespo LC, Cardoso P, Henriques S, Gaspar C (2009) Spiders (Araneae) from Porto Santo (Madeira, Portugal): additions to the current knowledge. Boletin de la Sociedad Entomologica Aragonesa 45: 471-475. URL: http://www.azoresbioportal.angra.uac.pt/files/publicacoes_CRESPO09_SpidersAraneaeFromPortoSantoMadeira.pdf.pdf
- Denis J (1941) Les araignées des îles Canaries. Annales de la Société Entomologique de France 11: 105-130.
- Fernández-Palacios JM (2010) The islands of Macaronesia. In: Serrano A, Borges PA, Boieiro M, Oromí P (Eds) Terrestrial arthropods of Macaronesia - biodiversity, ecology and evolution. Sociedade Portuguesa de Entomologia, 1-30 pp.
- Fernández-Palacios JM, De Nascimento L, Otto R, Delgado J, García-Del-Rey E, Arévalo JR, Whittaker RJ (2011) A reconstruction of Palaeo-Macaronesia, with particular reference to the long-term biogeography of the Atlantic island laurel forests. Journal of Biogeography 38 (2): 226-246. https://doi.org/10.1111/j.1365-2699.2010.02427.x
- Malumbres-Olarte J, Scharff N, Pape T, Coddington JA, Cardoso P (2017) Gauging megadiversity with optimized and standardized sampling protocols: A case for tropical forest spiders. Ecology and Evolution 7 (2). https://doi.org/10.1002/ece3.2626
- Malumbres-Olarte J, Crespo L, Cardoso P, Szüts T, Fannes W, Pape T, Scharff N (2018) The same but different: equally megadiverse but taxonomically variant spider communities along an elevational gradient. Acta Oecologica 88: 19-28. https://doi.org/10.1016/j.actao.2018.02.012
- Malumbres-Olarte J, Cardoso P, Crespo LC, Gabriel R, Pereira F, Carvalho R, Rego C, Nunes R, Ferreira M, Amorim I, Rigal F, Borges PAV (2019a) Standardised inventories of spiders (Arachnida, Araneae) of Macaronesia I: The native forests of the Azores (Pico and Terceira islands). Biodiversity Data Journal 7: e32625. https://doi.org/10.3897/BDJ.7.e32625
- Malumbres-Olarte J, Boieiro M, Cardoso P, Carvalho R, Crespo LC, Gabriel R, Hernández NM, Paulo O, Pereira F, Rego C, Ros-Prieto A, Silva I, Rigal F, Borges PAV (2019b) Spiders from Macaronesia_Madeira. v1.7. GBIF Portugal https://doi.org/10.15468/vnmc0
- Martín J, Arechavaleta M, Borges PAV, Faria B (2008) TOP 100 - As cem espécies ameaçadas prioritárias em termos de gestão na Região Europeia Biogeográfica da Macaronéssia. Consejería de Medio Ambiente y Ordenación Territorial, Gobierno de Canarias [ISBN 8489729387]
• Martín JL, Cardoso P, Arechavaleta M, Borges PAV, Faria BF, Abreu C, Aguiar AF,
Carvalho JA, Costa AC, Cunha RT, Fernandes FM, Gabriel R, Jardim R, Lobo C,
Martins AMF, Oliveira P, Rodrigues P, Silva L, Teixeira D, Amorim IR, Homem N, Martins
B, Martins M, Mendonça E (2010) Using taxonomically unbiased criteria to prioritize
resource allocation for oceanic island species conservation. Biodiversity and
Conservation 19 (6): 1659-1682. https://doi.org/10.1007/s10531-010-9795-z
• Medeiros A, Santos C, Menezes D, Gouveia L, Oliveira P, Pires R (2010) Ponta de São
Lourenço. Serviço do Parque Natural da Madeira, Funchal, 96 pp.
• Menezes D, Freitas I, Gouveia L, Mateus M, Domingues M, Oliveira P, Fontinha S
(2005) A floresta Laurissilva da Madeira Património Mundial. Serviço do Parque Natural
da Madeira, Funchal, 104 pp.
• Natural History Museum Bern (2019) World Spider Catalog 20.0. http://wsc.nmbe.ch.
Accessed on: 2019-5-01.
• Neves H, Valente A, Faria B, Silva I, Marques J, Gouveia N, Silva P, Oliveira P (1996)
Laurissilva da Madeira – Caracterização quantitativa e qualitativa. Parque Natural da
Madeira, Funchal, 192 pp.
• Oromí P, Zurita N, Arechavaleta M, Camacho A (2002) Fauna de invertebrados del
Parque Nacional del Teide. Editorial Organismo Autónomo Parques Nacionales, 421 pp.
• Silva L, Ojeda Land E, Rodríguez Luengo J (2008) Invasive terrestrial flora & fauna of
Macaronesia. TOP 100 in Azores, Madeira and Canaries. ARENA, Ponta Delgada, 545
pp. [ISBN 9789899591011]
• Wunderlich J (1987) Die Spinnen der Kanarischen Inseln und Madeiras: Adaptive
Radiation, Biogeographie, Revisionen und Neubeschreibungen. Triops, Langen, 435
pp.
• Wunderlich J (2011) Extant and fossil spiders (Araneae). Beiträge zur Araneologie 6:
1-640.