In silico prediction of secretory proteins of Opisthorchis viverrini, Clonorchis sinensis and Fasciola hepatica that target the host cell nucleus

Claudia Machicado a,b, * , Maria Pia Soto a, c , Luis Felipe La Chira a , Joel Torres d , Carlos Mendoza e , Luis A. Marcos f

a Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Honorio Delgado 430, Lima 31, Peru
b Institute for Biocomputation and Physics of Complex Systems, University of Zaragoza, Spain
c Laboratorio de Investigación en Biología Molecular y Farmacología Experimental, Universidad Católica de Santa María, Urb. San José, San José s/n, Arroque, Peru
d Facultad de Ciencias Biológicas, Universidad Nacional Mayor de San Marcos, Av. Carlos Germán Amezaga 375, Cercado de Lima, Peru
e Facultad de Ciencias Biológicas, Universidad Nacional de Trujillo, Av. Juan Pablo II, Trujillo, 13011, Peru
f Department of Medicine (Division of Infectious Diseases), Department of Microbiology and Immunology, State University of New York at Stony Brook, NY, Stony Brook, USA

ARTICLE INFO
Keywords:
Opisthorchis viverrini
Clonorchis sinensis
Fasciola hepatica
In silico
Secretion
Nuclear targeting
Cancer

ABSTRACT
Liver flukes Fasciola hepatica, Opisthorchis viverrini and Clonorchis sinensis are causing agents of liver and hepatobiliary diseases. A remarkable difference between such worms is the fact that O. viverrini and C. sinensis are carcinogenic organisms whereas F. hepatica is not carcinogenic. The release of secretory factors by carcinogenic flukes seems to contribute to cancer development however if some of these target the host cell nuclei is unknown. We investigated the existence of O. viverrini and C. sinensis secretory proteins that target the nucleus of host cells and compared these with the corresponding proteins predicted in F. hepatica. Here we applied an algorithm composed by in silico approaches that screened and analyzed the potential genes predicted from genomes of liver flukes. We found 31 and 22 secretory proteins that target the nucleus of host cells in O. viverrini and C. sinensis, respectively, and that have no homologs in F. hepatica. These polypeptides have enriched the transcription initiation process and nucleic acid binding in O. viverrini and C. sinensis, respectively. In addition, other 11 secretory proteins of O. viverrini and C. sinensis, that target the nucleus of host cells, had Fasciola homologs, have enriched RNA processing function. In conclusion, O. viverrini and C. sinensis have 31 and 22 genes, respectively, that may be involved in their carcinogenic action through a direct targeting on the host cell nucleus.

1. Introduction
Liver infections caused by flukes or trematodes, also termed parasitic flatworms, are considered a serious global public health problem with over 60 million people infected around the world and above 10% population at risk of these infections (Fürst et al., 2012a; Prasad et al., 2011). The burden of these infections in the world is widely distributed with high prevalence rates in Asia and South America (Marcos et al., 2007; Parkinson et al., 2007; Machicado et al., 2016) whereas other regions have less prevalence rates (Saijuntha et al., 2019). This demonstrates the widespread distribution of liver flukes throughout the world that leads to huge economic losses in animal husbandry and morbidity in humans.

Among the causative flukes of trematodiasis, O. viverrini and C. sinensis, two human carcinogens, cause opisthorchiasis and clonorchiasis, respectively, that affect both the bile ducts and the liver parenchyma (WHO, 2020). About one out of six individuals with opisthorchiasis may develop cholangiocarcinoma (CCA), or cancer of the bile ducts (Haswell-Elkins et al., 1994; Parkin, 2006). Similarly, chronic infection by C. sinensis produces liver fibrosis and CCA. The mechanism of carcinogenesis displayed by these worms is multifactorial and it comprises the mechanical irritation of biliary tissue, the chronic tissue inflammation and the toxic action of secreted factors (Buisson, 2007). Interestingly, secreted mitogens such as Ov-GRN-1 by O. viverrini stimulate cell proliferation, angiogenesis and wound repair (Smout et al., 2015). To perform these tasks, the secreted proteins should be either recognized by membrane receptors of host cell or enter the cell. Subcellular targeting will depend on the nature of the parasite proteins. Whether some O. viverrini or C. sinensis proteins target the nucleus of the host cell is unknown.

* Corresponding author.
E-mail address: claudia.machicado.r@upch.pe (C. Machicado).

https://doi.org/10.1016/j.heliyon.2021.e07204
Received 8 October 2020; Received in revised form 21 February 2021; Accepted 31 May 2021
Fasciola hepatica is a fluke that causes an acute liver disease termed fascioliasis with eosinophilic abscesses through the liver parenchyma and a chronic infection in the biliary ducts leading to fibrosis and sometimes cirrhosis (Marcos et al., 2009). Morbidity caused by fascioliasis in children has been associated with malnutrition and anemia (Cabada and White, 2012). On the other hand, the chronic infection in adults may cause significant morbidity including cholangitis, biliary stones, cholecystitis, biliary obstruction, among other complications (Gandhi et al., 2019; Robinson and Dalton, 2009). Last, but not least, the emergent resistance of Fasciola to the only active drug in clinical practice, triclabendazole, both in animals and humans has brought major concerns to the veterinary and medical societies (Overend and Bowen, 1995; Brennan et al., 2007; Kelley et al., 2016).

O. viverrini, C. sinensis and F. hepatica are relative organisms with close phylogenetic relationships and phenotypical features (Furst et al., 2012b). Despite those biological similarities there is a remarkable difference among liver flukes. O. viverrini and C. sinensis is a causative agent of cancer whereas F. hepatica is not reported as such. Hypothetically, different pathogenicity factors and different host response to each liver fluke infection might suggest that O. viverrini and C. sinensis releases cancer inducing factors whereas F. hepatica might not. The transcriptomes of these flukes might provide insights on these questions and establish differences at a genomic and transcriptomic levels that help explain the carcinogetic properties of O. viverrini and C. sinensis.

During infection, microorganisms release pathogenic factors and other proteins that facilitate the entry and survival of the pathogen agent. Subcellular targeting of pathogenic effectors to different locations within the host cell would be of vital importance for survival of microorganisms (Eickhoff et al., 2007). A major interest is the nuclear targeting because DNA might be damaged by exogenous molecules. Since DNA damage (i.e. point mutations) is associated with cancer there is an increasing interest in recognizing effectors released by infectious agents, particularly bacteria, that target the host nucleus (Xia et al., 2019). Nuclear targeting displays different mechanisms that depend on the proteins size. Small proteins (MW < 40 KDa) can enter the cell nucleus through passive diffusion. In the other hand, larger proteins (MW > 40KDa) are dependent of a nuclear localization signal (NLS) linked to the immature proteins that establish the final protein location (Freitas and Cunha, 2009). This mechanism has been suggested for the nuclear targeting protein urease A (ureA) of Helicobacter pylori that has been associated with the bacterial pathogenicity (Lee et al., 2015).

Some bacterial secretory factors that target host cell nucleus have been identified by in silico screening of bacterial genomes aimed to find NLSs. For instance, 49 proteins were predicted to have a putative NLS in H. pylori which were further localized in the nucleus by experiments in COS-7 cells (Lee et al., 2012). DNA damage promoted by secretory proteins that target the cell nucleus is a plausible mechanism of cell transformation meaning that carcinogetic agents (i.e. bacteria, parasites and virus) would promote cell transformation through a set of nuclear targeting factors (Benamrouz et al., 2012). For instance, a hypothetical relationship between Mycoplasma infection and prostate cancer development has been proposed by the finding of 29 bacterial secretory proteins that target the host cell nucleus (Khan et al., 2016a). Similarly, an in silico study predicted 47 secretory and nuclear targeting proteins from C. pneumoniae that may have the potential to trigger lung cancer through the alteration in replication, transcription, and DNA damage repair mechanisms (Khan et al., 2016b).

Liver flukes, intestinal and secretory proteins (ESPs) of adult worms have been determined by experimental assays (Mulvenna et al., 2010; Robinson et al., 2009; Di Maggio et al., 2016; Zheng et al., 2011). ESPs from liver flukes are composed by enzymes, cytoskeleton proteins, mRNAs and antioxidants and its composition varies with the developmental stage. The subcellular localization of the ES proteins is mostly cytoplasmic, but some factors are predicted nuclear located (Shi et al., 2020). The fact that extracellular vesicles (EVs), produced by liver flukes, contain a major portion of ESPs suggests that exosomes transport factors that mediate the immune response during the parasite infection (Nawaz et al., 2019). Therefore some nuclear targeting ES proteins released by worms may play a major role in their pathogenesis and further cell transformation by carcinogetic liver flukes. Whether these nuclear ES proteins target or not the host cells is still an open question.

Herein we hypothesize that some ES proteins of both O. viverrini and C. sinensis target the host nucleus and they are missing in F. hepatica. The aim of this study is to predict and compare the nuclear targeting of secretory proteins present in liver flukes and to recognize their role within the host cell. Such knowledge will bring insights of unique actions in the host nucleus displayed by factors released by carcinogetic worms but unlikely by F. hepatica during infection. Future in vitro studies of such proteins in liver flukes will be needed as well as the determination of their potential effects on the host DNA.

2. Materials and methods

2.1. Protein database of the parasites genomes

The proteomes deduced from the genomes of O. viverrini, F. hepatica and C. sinensis were downloaded from the WormBase Parasite database version WBP59 (https://parasite.wormbase.org/index.html), WormBase Parasite database encompasses flatworms as well as nematodes, and provides genome sequence, genome browsers, semi-automatic annotation and comparative genomics data for approximately one hundred species (H owe et al., 2016, 2017). The O. viverrini’s genome analyzed had the BioProject ID PRJNA226268, assembly OpiliV1.0 deposited in 2014 (Young et al., 2014). The F. hepatica genome was under the BioProject ID PRJEB25283 (Cwikinski et al., 2015a). The C. sinensis’ genome analyzed here was under the BioProject ID PRJDA72781 deposited in 2013 (Huang et al., 2013).

2.2. Prediction of subcellular localization in eukaryotic cells

The whole proteins coded by genes have a subcellular localization defined as its final location within a cell. Subcellular localization of the whole genes that compose the genomes of O. viverrini, F. hepatica and C. sinensis was predicted through FUEL-mLoc web-server (http://bioinf.oie.poly.edu/hk/FUEL-mLoc/). This algorithm uses Feature-Unified prediction and Explanation of multi-Localization of cellular proteins in multiple organisms (Wan et al., 2017). Those nuclear predicted proteins were selected and analyzed by Balanced Subcellular Localization Predictor, BaCeLo (http://gpcr.biocomp.unibo.it/bacello/pred.htm), a computational tool assists in the prediction of protein subcellular localization including nucleus, cytoplasm, secretory pathway, mitochondrion and chloroplast. BaCeLo is based on different support vector machines organized in a decision tree (Pierleoni et al., 2006). The resulting proteins were named “Nuclear targeting candidates”.

2.3. Analysis of physicochemical properties of the nuclear targeting proteins

Theoretical isoelectric point (pI) and molecular weight (MW) were obtained through ProtParam (https://web.expasy.org/protparam/). This tool provides the physicochemical profile for a given protein deposited in Swiss-Prot or TrEMBL or for a user entered protein sequence (Gasteiger et al., 2005). The amino acid sequences were entered in ProtParam and data was retrieved for each protein considered as nuclear targeting candidates. Only those proteins with MW less than 40 KDa were selected as potential to target the nucleus of host cells. The resulting proteins were named “Nuclear predicted proteins”.

2.4. Gene ontology and recognition of orthologs

Transcript IDs of O. viverrini and C. sinensis corresponding to the nuclear predicted proteins with <40 KDa were entered in Biomart available
in WormBase Parasite Database (https://parasite.wormbase.org/biomart/martview) to obtain the gene description, gene ontology, and UNIPROT IDs. In addition, the section Homology implemented in Bio-mart was used both to identify homologs between O. viverrini and F. hepatica as well as C. sinensis and F. hepatica. First, transcript IDs of O. viverrini were entered and then the option “Restrict results to genes with orthologues in F. hepatica” was activated, to recognize homologs in these species. Then, transcript IDs of O. viverrini were entered and the option “Restrict results to genes without orthologues in F. hepatica” to recognize the O. viverrini exclusive proteins, not present in F. hepatica. The same procedure was applied to identify C. sinensis homologs in F. hepatica by entering the name of such organisms. Homology analysis was conducted considering the available genomes mentioned in 2.1.

2.5. In silico secretion analysis

SignalP v 5.0 (Almagro et al., 2019) and SecretomeP v. 2.0 (Bendtsen et al., 2004) were used to predict secretory proteins that belong either to the classical or non-classical secretory pathway, respectively. This analysis was done for Ov-only proteins, Cs-only proteins, Ov-Fh homologs and Cs-Fh homologs. Through SignalP, those proteins that had an N-terminal signal peptide (SP) were considered secretory factors. In SecretomeP, those proteins with a NN-value >0.9 were selected.

2.6. Search for genes in available transcriptomes, data from ESPs and extracellular vesicles (EVs) from adult worms

The predicted nuclear ES proteins of O. viverrini and C. sinensis were searched in data available from their transcriptomes (Young et al., 2014; Huang et al., 2013) as well as in data from their ESPs (Mulvenna et al., 2010; Zheng et al., 2011, 2013; Shi et al., 2020) and EVs, these latter described for O. viverrini (Chaiyadet et al., 2015). Data from EVs of C. sinensis was not available. Sequences were subjected to either Blastx or Blastp analysis through Blastþ against sequences of the available transcriptomes. Those sequences that aligned across >50% of their length and shared more than 40% amino acid identity with p-value <0.05 were considered positive matches. For ESPs and EVs, the polypeptide IDs were searched for through the supplementary data of publications (Mulvenna et al., 2010; Zheng et al., 2011, 2013; Shi et al., 2020; Chaiyadet et al., 2015).

2.7. Functional enrichment

The set of genes that resulted unique either to O. viverrini or to C. sinensis that code nuclear predicted factors, were entered in gProfiler (Reimand et al., 2007) to run an enrichment analysis. The genomes of O. viverrini and C. sinensis, mentioned in 2.1., were individually selected.

Table 1. Nuclear predicted proteins of O. viverrini, C. sinensis and F. hepatica that meet the MW criterion and that were predicted secretory proteins.

Nuclear predicted proteins	Nuclear targeting candidates	Nuclear predicted proteins (MW < 40 KDa)	Nuclear predicted Excretion/Secretory (ES) Proteins
Ov^a		Ov^b	
Fh^a		Fh^b	
Cs^a		Cs^b	
Non annotated	941	65	533
Annotated	736	31	1471
Total predicted	1677	96	2004
	477	17	241
	175	9	350
	1657	26	591
	31	11	22
	13	13	
	9	9	

^a O. viverrini Genome Project PRJNA222628.

^b F. hepatica Genome Project PRJEB25283.

^c C. sinensis Genome Project PRJDA72781.

Figure 1. Flowchart of the study. Fasciola hepatica (Fh), Opisthorchis viverrini (Ov), Clonorchis sinensis (Cs). Potential genes predicted from genome: a n = 16830 genes, b n = 16356 genes, c n = 13634 genes. SVM: Support Vector Machine.
Proteins identified from the *Opisthorchis viverrini* transcriptome that were nuclear predicted ES polypeptides and that were unique to *O. viverrini* (Ov-only).

Ov-only (transcript code)	secretion pathway	Polypeptide ID	Protein name	pI	MW (kDa)	GO term name	Presence in Transcriptome (Young et al., 2014)	Presence in ESP (Mulvenna et al., 2010)	Presence in EVs (Chaiyadet et al., 2015)
T265_01214	- +	A0A075A1H4	Uncharacterized protein	9.33	18.18	Yes No No			
T265_02161	- +	A0A075A7P6	Uncharacterized protein	7.80	18.86	Yes No No			
T265_03874	- +	A0A075AHR9	Uncharacterized protein	6.71	5.48	Yes No No			
T265_04711	- +	A0A0742M72	Uncharacterized protein	9.98	7.98	Yes No No			
T265_04717	- +	A0A0742M6Y6	Uncharacterized protein	10.57	16.09	Yes No No			
T265_04888	- +	A0A0742ML5	Uncharacterized protein	9.89	10.33	Yes No No			
T265_06955	- +	A0A0742EA4	Uncharacterized protein	9.24	33.15	Yes No No			
T265_07638	- +	A0A0742N39	Uncharacterized protein	6.75	27.13	Yes No No			
T265_12328	- +	A0A0745XX8	Uncharacterized protein	8.99	17.74	Yes No No			
T265_15862	- +	A0A0745669	Uncharacterized protein	8.84	17.81	Yes No No			
T265_16081	- +	A0A0745YX4	Uncharacterized protein	7.98	7.72	Yes No No			
T265_11183	- +	A0A0745480	Uncharacterized protein	6.94	18.64	Yes No No			
T265_05010	- +	A0A075AFU9	Uncharacterized protein	5.94	18.90	Yes No No			
T265_05387	- +	A0A0745XX3	Uncharacterized protein	9.21	21.17	Yes No No			
T265_05849	- +	A0A0745MM0	Uncharacterized protein	9.97	16.85	Yes No No			
T265_05881	- +	A0A075AFR1	Uncharacterized protein	10.00	34.11	Yes No No			
T265_07775	- +	A0A0742Y25	HTH_38 domain-containing protein	10.58	25.89	DNA binding	Yes No No		
T265_07973	- +	A0A0742K32	Uncharacterized protein	8.88	24.28	Yes No No			
T265_09699	- +	A0A0745S59	Uncharacterized protein	9.23	33.74	Yes No No			
T265_10448	- +	A0A0745C18	Uncharacterized protein	9.99	9.62	Yes No No			
T265_12220	- +	A0A0745V12	Uncharacterized protein	4.53	16.89	Yes No No			
T265_13715	- +	A0A0745K30	Uncharacterized protein	10.39	21.27	Yes No No			
T265_14284	- +	A0A0745CR2	Uncharacterized protein	7.64	36.92	nucleic acid binding	Yes No No		
T265_11894	+ -	A0A0745XX4	Homeobox domain-containing protein	9.00	27.36	DNA binding	Yes No No		
T265_01616	+ -	A0A075AIXS	Uncharacterized protein	6.00	30.82	integral to membrane	Yes No No		
T265_00703	+ -	A0A0745BS3	Uncharacterized protein	12.00	22.99	Yes No No			
T265_00902	- +	A0A075ADB9	TFIIB-type domain-containing protein	5.68	15.38	transcription from RNA polymerase III promoter	Yes No No		
T265_03631	- +	A0A0742Q59	DNA (admine[55]-N[1])-methyltransferase non-catalytic subunit TRM6	8.42	14.15	regulation of transcription, DNA-templated	Yes No No		
T265_04852	- +	A0A075AG04	Uncharacterized protein	9.69	14.76	Yes No No			
T265_11103	- +	A0A0745B31	Uncharacterized protein	7.90	23.28	Yes No No			
T265_12124	- +	A0A07456D7	Uncharacterized protein	9.84	10.64	nucleic acid binding	Yes No No		

(continued on next page)
Table 2 (continued)

Polypeptide ID	Polypeptide name	pl	MW (kDa)	GO term name	Presence in	Presence in
T265_14447	Uncharacterized protein	7.65	13.92	SecretomeP classical(SecretomeP)	Yes	No
T265_46003	Uncharacterized protein	9.66	36.53	SignalP	Yes	No
T265_09600	Uncharacterized protein	6.01	21.31	SignalP	Yes	No
T265_09600	Uncharacterized protein	6.01	21.31	SignalP	Yes	No
T265_10790	Homeobox domain-containing protein	7.16	30.37	DnaB binding	Yes	No
T265_12256	Homeobox domain-containing protein	7.16	30.37	DNA binding	Yes	No

Gene ontology (GO) obtained through Biomart, MF is Molecular Function, BP is Biological Process and CC is Cellular Component. Polypeptide IDs correspond to the UniProtKB/TrEMBL IDs. The presence and absence of a secretion pathway is denoted with ‘-’ if it is absent and ‘þ’ if it is present. References appear in the manuscript.

as the study genomes in gProfiler. Statistical domain scope under the advanced options was set to All known genes/all annotated genes, whereas the Significance threshold was changed to Benjamini-Hochberg FDR and the user threshold set as of 0.05. Graphics and tables were downloaded and further analyzed. The procedure was repeated with both *O. viverrini* genes that had homologs in *F. hepatica* and *C. sinensis* genes that had homologs with *F. hepatica*.

3. Results

3.1. Prediction of the subcellular localization and physicochemical properties of nuclear predicted proteins

F. hepatica had more potential genes predicted from the genome (n = 16830) than *O. viverrini* (n = 16356) and *C. sinensis* (n = 13634). The predicted genes of these three parasites were not specific-stage genes which means that these can be expressed in any live stage of liver flukes. Next, these genes were analyzed through various computational tools as shown in Figure 1. First, FUEL-mLoc was applied to recognize nuclear targeting candidates. This tool predicts targeting into 22 different subcellular localizations including nucleus, cytoplasm, extracellular, cell membrane, mitochondrion, cytoskeleton, Golgi-apparatus, endoplasmic reticulum, chloroplast, vacuole, centrosome, lysosome, cell-wall, endosome, peroxisome, synapse, melanosome, spindle-pole-body, microsome, cianelle, undetermined and unknown locations. A total of 3320 polypeptides of *O. viverrini* and 3607 polypeptides of *C. sinensis* were predicted nuclear located which is higher than the number predicted for *F. hepatica* (n = 1096) as shown in Figure 1.

All of these proteins were selected for a second analysis with BaCelLo, to determine subcellular localizations. As a result, *C. sinensis* contained more nuclear targeting candidates (n = 2004) than *O. viverrini* (n = 1677) and *F. hepatica* (n = 96) (Figure 1).

The whole predicted nuclear targeting candidates were selected for further analysis. MW and pl were computed for each nuclear targeting candidate (Table S1). In this study those proteins with MW < 40 kDa were selected as candidates to target the cell nucleus according to previous work (Khan et al., 2016a). Our results showed that 39% of *O. viverrini* candidates (n = 652), as well as 29% of *C. sinensis* candidates (n = 591) and 27% of *F. hepatica* candidates (n = 26) had MW < 40 kDa (Figure 1, Table 1). Gene annotations were mostly available for *C. sinensis* and *O. viverrini* candidates than *F. hepatica* proteins (Table 1).

3.2. Homology recognition and prediction of secretory proteins

To test our hypothesis, we identified through Biomart those nuclear targeting proteins that were unique either to *O. viverrini* or *C. sinensis* and that had no orthologs in *F. hepatica*. These proteins were named Ov-only (Fh) or Cs-only (Fh) proteins, respectively. By applying this criterion, 471 Ov-only (Fh) and 399 Cs-only (Fh) polypeptides were predicted nuclear targeting proteins (Tables 2 and 3). Also we found that 182 and 192 nuclear predicted proteins present in *O. viverrini* and *C. sinensis* had homologs in *F. hepatica*, here termed Ov-Fh and Cs-Fh homologs, respectively (Tables 4 and 6).

Next we applied in silico approaches to determine which nuclear predicted proteins were secretory factors, here termed predicted nuclear ES proteins. In summary, 37 Ov-only proteins (missing both in *C. sinensis* and *F. hepatica*) and 25 Cs-only proteins (missing both in *O. viverrini* and *F. hepatica*) were identified (Tables 2 and 3). Homologies were further recognized among the predicted nuclear ES proteins of the three liver flukes studied. We found that 11 Ov-Fh homologs, 11 Cs-Fh homologs, 13 Ov-Cs homologs and 15 Cs-Ov homologs were predicted secretory and targeting the cell nucleus (Tables 4 and 5). Most of the nuclear predicted ES proteins were recognized by SecretomeP as secretory proteins by the non-classical secretion pathway compared with the classical secretion pathway (Tables 2, 3, 4, and 5). The Ov-only proteins (missing in *C. sinensis* and *F. hepatica*) that were predicted secretory and nuclear
targeting had an average MW slightly lower (21 KDa) than Ov-Fh homologs (27 KDa) (Tables 2 and 4). The Ov-only secretory and nuclear proteins had slightly higher average pl (average value = 8) than the Ov-Fh homologs (average value = 7) (Tables 2 and 4). The Cs-only nuclear ES proteins (missing in O. viverrini and F. hepatica) had identical average MW (25 KDa) and pl (average value = 8) to the Cs-Fh homologs (Table 3 and 5). Also some O. viverrini proteins had homologs with C. sinensis, and vice-versa. Our results showed that the Ov-Cs homologs had a lower average MW (22 KDa) than Cs-Ov homologs (27 KDa) whereas the pl is similar (average value = 8) as shown on Tables 4 and 5. Of interest, no F. hepatica nuclear predicted protein was secretory.

3.3. Search for predicted nuclear ES proteins from O. viverrini and C. sinensis in experimental data

The predicted nuclear ES proteins of liver flukes were searched for both in the available transcriptomes and ESPs/EVs data obtained from adult flukes. Of the 37 Ov-only proteins (Table 2), all of these appeared in the available transcriptome whereas one is present in EVs (polypeptide ID A0A074ZQZ9), which is missing in F. hepatica, and no protein appeared in ESPs (Table 2). According to the ontology data, A0A074ZQZ9 is a tRNA (adenine(58)-N(1))-methyltransferase non-transcription were the most common MF and BP, respectively (Table 4). homologs and indicated that DNA/RNA binding and regulation of transcription were the most common MF and BP predicted in Ov-only proteins, respectively. In the other hand, both MF and BP were predicted for most of the Ov-Fh homologs and indicated that DNA/RNA binding and regulation of transcription were the most common MF and BP, respectively (Table 4). These findings showed that GO of the Ov-only predicted nuclear ES proteins and Fh-Ov homologs are similar. The same assessment was done to the 25 Cs-only predicted nuclear ES proteins showing that those polypeptides that are missing in F. hepatica have DNA/RNA acid binding and regulation of transcription as main MF and BP, respectively (Table 3). The Cs-Fh homologs had Zn ion- and DNA-binding as main MFs and transcription regulation as main BP (Table 5).

Next, protein enrichment analysis was carried out on the Ov-only (Fh) proteins and Ov-Fh homologs showing that the transcription initiation factor activity is enriched (GO:0006359, adjusted p-value <0.05) and it involved to the polypeptide A0A075A1X5, A0A075A1D9, A0A074ZQZ9, and A0A074ZB31). DNA binding and regulation of transcription were the most common MF and BP in predicted Ov-only proteins, respectively. In the other hand, both MF and BP were predicted for most of the Ov-Fh homologs and indicated that DNA/RNA binding and regulation of transcription were the most common MF and BP, respectively (Table 4). These findings showed that GO of the Ov-only predicted nuclear ES proteins showing that those polypeptides that are missing in F. hepatica have DNA/RNA acid binding and regulation of transcription as main MF and BP, respectively (Table 3). The Cs-Fh homologs had Zn ion- and DNA-binding as main MFs and transcription regulation as main BP (Table 5).

4. Discussion

In this study we interrogated the entire predicted genes from genomes of O. viverrini, C. sinensis and F. hepatica to look for secretory proteins that target the nuclei of host cells. Our main interest was to identify proteins unique to carcinogenic liver flukes and missing in F. hepatica, to learn about their associated functions. We applied both MpLoc and BaCello, two in silico machines for subcellular localization and recognition of nuclear localization, followed by an additional criterion related to the protein size. Our rationale was that the property of proteins to passively cross into host subcellular compartments is governed by their molecular weight (Tran and Wente, 2006). Therefore, we established that nuclear targeting candidates with molecular weight below 40 KDa were able to passively cross the nucleus, as it was previously described (Khan, 2014). This method has demonstrated to be a suitable tool as an initial exploration for nuclear targeting prediction in E. coli, M. hominis and C. pneumoniae (Khan, 2014; Khan et al., 2016a, 2016b).

As a first and notable finding was the number of genes encoding nuclear predicted proteins of F. hepatica that is notably lower than these predicted in O. viverrini and C. sinensis. According to our results, the carcinogenic helminths have thousands of nuclear predicted proteins whereas F. hepatica have only 26. This amount is comparable with the number of nuclear predicted proteins in bacteria, such as H. pylori (n = 26), M. hominis (n = 29) and C. pneumoniae (n = 47) (Lee et al., 2012; Khan et al., 2016a, 2016b).

The transcriptomes of liver flukes have been sequenced and analyzed and the existence of genes encoding peptidases, cathepsins, metabolic enzymes and transporters is particularly relevant in this group of worms (Cwiklinski et al., 2011a; Young et al., 2014; Huang et al., 2013). Although the subcellular localization of proteins may be estimated from the transcriptomes of liver flukes, it is the first time to the best of our knowledge that the secretory proteins that target the nucleus of host cells are identified in these three related flukes through in silico approaches. Here by applying a homology search we found that some genes are present in the carcinogenic liver flukes but are missing in F. hepatica, here termed Ov-only (Fh) and Cs-only (Fh) genes. We predicted that a total of 471 and 399 nuclear targeting proteins are present only either in O. viverrini or C. sinensis, respectively, but these are missing in F. hepatica. Such polypeptides, that are not specific-stage factors, may be associated with some unique features shown in infection by O. viverrini and binding is an enriched MF that comprised six Cs-only (Fh) genes (GO: 0003676, p-value<0.05) including three zinc finger proteins (H2KPV8, H2KQ76 and G7Y12) as well as a hormone binding factor, histone 3 and Cyclophilin E (Table 7). One of these factors is Zinc finger protein 629 (H2KPV8), a protein that is present in C. sinensis but is missing in F. hepatica. Nucleic acid binding was an enriched MF in the group of Cs-Fh homologs but it was regulated by different factors from Cs-only proteins. Among Cs-Fh homologs, nucleic acid binding was mediated by up to seven factors including two homeobox proteins (Homeobox protein MSX-2 and Visual system homeobox 1), DNA-directed RNA polymerase 1 subunit RPA12, Transcription factor SOX1/2/3/14/21, Protein giant, and ETS translocation variant 1/4/5. Cs-Fh homologs had enriched the transcription regulator activity, protein dimerization and heterocyclic compound binding (Table 7). Enriched BPs associated with Cs-Fh homologs include transcription regulation, RNA biosynthesis, and others and these involved proteins such as ETS translocation variant 1/4/5, Protein giant, Homeobox protein MSX-2, among others (Table 7). There was no BP or CC enriched for Cs-only (Fh) genes.

In summary, the transcription activity was a MF strongly associated with at least one Ov-only (Fh) protein whereas such activity is missing among the Ov-Fh homologs (Table 6). RNA processing was a BP enriched in the Ov-Fh homologs but it was missing in the Ov-only proteins (Table 6). At the contrary, Cs-only (Fh) proteins and Cs-Fh homologs had enriched the acid nucleic binding function through different factors that regulate such activity.
Cs-only transcript code	Secretion pathway	Polypeptide ID	pl	MW (kDa)	GO term name	Presence in Transcriptome (Huang et al., 2013)	Presence in ESP (Zheng et al., 2011)	Presence in ESP (Zheng et al., 2013)	Presence in ESP (Shi et al., 2020)
	Classical (SignalP)								
	Non classical (SecretomeP)								
csin100771	-	G7Y475	9.22	18.29	MF BP CC	Yes No No No			
csin103668	-	G7Y6D84	9.84	17.87	nucleic acid phosphodiester bond hydrolysis	Yes No No No			
					RNA-directed DNA polymerase activity	RNA-dependent DNA replication			
csin104730	-	G7Y7C6	9.38	17.34		Yes No No No			
csin103383	-	H2EQ76	6.42	17.38	nucleic acid binding	Yes No No No			
csin110062	-	G7YK65	8.14	17.49	sequence-specific DNA binding	regulation of transcription, DNA-dependent	host cell nucleus		
					sequence-specific DNA binding transcription factor activity				
csin111218	-	G7YJL8	8.38	17.57		Yes No No No			
csin108410	-	G7Y8D8	6.59	17.31		Yes No No No			
csin110784	-	G7YT7V7	9.84	14.58		Yes No No No			
csin111159	-	G7YUG2	9.56	19.00		Yes No No No			
csin105059	-	G7YUD9	6.57	33.91		Yes No No No			
csin111892	-	G7YV12	9.40	30.52	nucleic acid binding	Yes No No No			
csin113339	-	G7YX80	5.50	22.69	DNA binding	nucleosome	nucleosome	Yes No No No	
					protein heterodimerization activity				
csin11363	-	G7YUQ3	10.27	29.52	MF BP CC	Yes No No No			
csin112241	-	G7YL6	8.72	33.82		Yes No No No			
csin102657	-	H2KP8	9.11	30.06	nucleic acid binding	Yes No Yes			
csin102452	-	G7VY9	5.91	25.24	RNA binding	nucleic acid binding	Yes No No No		
csin104813	-	H2KSJ7	9.22	31.10	isoasemerase activity	Yes No No No			
csin106091	-	G7YQ20	8.63	35.03		Yes No No No			
csin104664	-	G7YC24	9.82	29.11		Yes No No No			
csin109159	-	G7Y39	7.06	23.07		Yes No No No			
csin110947	-	G7YL8	8.37	30.49		Yes No No No			
csin103932	-	G7YAN4	7.59	28.11	zinc ion binding	regulation of transcription, DNA-dependent	nucleus		
csin110299	-	G7YT6	7.57	18.91	zinc ion binding	RNA-directed DNA polymerase activity			
csin111481	-	G7YL5	9.55	31.10	sequence-specific DNA binding	regulation of transcription, DNA-dependent	nucleus		
					DNA binding				

Gene ontology (GO) obtained through Biomart, MF is Molecular Function, BP is Biological Process and CC is Cellular Component. Polypeptide IDs correspond to the UniProtKB/TrEMBL IDs. The presence and absence of a secretion pathway is denoted with "-" if it is absent and "+" if it is present. References appear in the manuscript.
Ov homologs transcript code	Secretion pathway	Polypeptide ID	Protein name	pl	MW (kDa)	GO term name
	Classical (SignalP)	Non classical (SecretomeP)				
T265_04509	-	+	A0A074ZZM3	9.22	28.59	sequence-specific DNA binding
			Homeobox domain-containing protein			regulation of transcription, DNA-dependent
						nucleus DNA binding
T265_09914	-	+	A0A075A372	8.35	39.37	RNA binding
			Cyclin N-terminal domain-containing protein			nucleo-transcribed mRNA catabolic process cytoplasm
T265_10276	-	+	A0A0742TV9	9.41	24.73	RNA cap binding
			U6 snRNA-associated Sm-like protein Lsm1			mRNA processing cytoplasmic mRNA processing body
T265_13074	-	+	A0A074ZTW6	8.86	32.49	nucleic acid binding
			Zinc finger, C2H2 type			
T265_11866	-	+	A0A074YXE1	5.29	18.13	transcription co-factor activity
			Mediator of RNA polymerase II transcription subunit 10			regulation of transcription from RNA polymerase II promoter mediator complex
T265_15967	-	+	A0A074Z5L5	5.70	15.74	
			Uncharacterized protein			nucleus
T265_00711	+	-	A0A075ABZ8	5.00	33.60	generation of catalytic spliceosome for second transsterification step
T265_11894	+	+	A0A074YXA4	8.85	27.36	
			Homeobox domain-containing protein			
T265_04852	-	+	A0A075AG04	9.69	14.76	core RNA polymerase III binding transcription factor activity
T265_06927	-	+	A0A074Z6D9	9.30	17.92	
T265_03631	-	+	A0A074ZQZ9	8.42	14.15	tRNA (adenine(58)-N(1))-methyltransferase non-catalytic subunit TBM6
			tRNA (m1A) methylation tRNA methyltransferase complex			
T265_11003	-	+	A0A074Z831	7.00	23.38	nucleic acid binding
T265_12124	-	+	A0A074Z6D7	9.84	10.64	

Gene ontology (GO) obtained through Biomart, MF is Molecular Function, BP is Biological Process and CC is Cellular Component. Polypeptide IDs correspond to the UniProtKB/TrEMBL IDs. The presence and absence of a secretion pathway is denoted with "-" if it is absent and "+" if it is present. References appear in the manuscript.
Table 5. Proteins identified from the Clonorchis sinensis transcriptome that had homologs in *F. hepatica* (Ov-Fh) or *O. viverrini* (Cs-Ov).

Cs homologs transcript code	Secretion pathway	Polypeptide ID	Protein name	pI	MW (kDa)	GO term name
	Classical (SignalP)	Non classical (SecretomeP)				
	Cs-Fh	Cs-Ov				
csin10788	-	+	G7YT9	9.60	37.08	protein dimerization activity
			Transcription factor HES-4			
csin103118	+	-	G7Y944	6.66	29.96	regulation of transcription, DNA-dependent
			ETS translocation variant 1/4/5			
csin100942	-	+	G7Y4L2	11.27	17.01	protein dimerization activity
			STARP antigen			
csin106523	-	+	G7YQ06	8.17	26.60	regulation of transcription from RNA polymerase II promoter
			Protein giant			
	-	+	H2KVQ1	5.29	18.13	regulation of transcription from RNA polymerase II promoter
			Mediator of RNA polymerase II transcription subunit 10			mediator complex
	-	+	G7YJK7	10.05	14.71	regulation of transcription, DNA-dependent
			Homeobox protein MSX-2			
csin108888	-	+	G7YQ6	9.21	23.63	DNA binding
			Uncharacterized protein			
csin112873	-	+	H2KVQ1	5.29	18.13	DNA binding
			Mediator of RNA polymerase II transcription subunit 10			
csin109621	-	+	G7YJK7	10.05	14.71	DNA binding
			Homeobox protein MSX-2			
csin103932	-	+	G7YAN4	7.59	28.11	zinc ion binding
			Myelin transcription factor 1-like protein			regulation of transcription, DNA-dependent
csin110299	-	+	G7YTD6	7.57	18.91	zinc ion binding
			DNA-directed RNA polymerase I subunit RPA12			mRNA cleavage
	-	+	G7YLP5	9.55	31.10	DNA binding
			Visual system homeobox 1			
csin111481	-	+	G7Y7Y9	5.91	25.24	RNA binding
			Peptidyl-prolyl isomerase E (Cyclophilin E)			
csin102452	-	+	H2KPV8	9.11	30.06	nucleic acid binding
			Zinc finger protein 629			
csin104813	-	+	G7YCE5	9.22	36.66	nucleic acid binding
			Uncharacterized protein			
csin109159	-	+	G7YJ09	7.06	23.07	nucleic acid binding
			Uncharacterized protein			
csin106591	-	+	G7YQ20	8.63	35.03	nucleic acid binding
			Uncharacterized protein			
csin104664	-	+	G7YC24	9.82	29.11	nucleic acid binding
			Uncharacterized protein			
csin110947	-	+	G7YLB1	8.37	30.49	nucleic acid binding
			Uncharacterized protein			

Gene ontology (GO) obtained through Biomart, MF is Molecular Function, BP is Biological Process and CC is Cellular Component. Polypeptide IDs correspond to the UniProtKB/TrEMBL IDs. The presence and absence of a secretion pathway is denoted with "-" if it is absent and "+" if it is present. References appear in the manuscript.
Table 6. Enrichment analysis obtained for the Ov-only (Fh) nuclear predicted ES proteins and Ov-Fh homologs.

Ov-Fh homologs	MF	Ov-only proteins					
Freq	Polypeptide ID	Protein name	p-adjusted	Freq	Polypeptide ID	Protein name	p-adjusted
Not applicable	RNA polymerase III general transcription initiation factor activity	1	A0A075AJD9	TFIIB-type domain-containing protein	2.269E-02		
1	A0A074Z2V9	U6 snRNA-associated Sm-like protein LSm1	2.516E-02	RNA cap binding	Not applicable		
4	A0A074Z2V9	Homeobox domain-containing protein	2.516E-02	nucleic acid binding			

Ov-Fh homologs	BP	Ov-only proteins					
Freq	Polypeptide ID	Protein name	p-adjusted	Freq	Polypeptide ID	Protein name	p-adjusted
4	A0A075ABZ8	Uncharacterized protein	1.848E-02	gene expression	Not applicable		
4	A0A074Z2V9	Homeobox domain-containing protein	1.848E-02	RNA metabolic process			
2	A0A075ABZ8	U6 snRNA-associated Sm-like protein LSm1	1.848E-02	mRNA processing			
2	A0A075ABZ8	Uncharacterized protein	1.848E-02	mRNA metabolic process			
4	A0A075ABZ8	U6 snRNA-associated Sm-like protein LSm1	1.848E-02	regulation of metabolic process			
3	A0A074Z2V9	U6 snRNA-associated Sm-like protein LSm1	1.848E-02	regulation of gene expression			
4	A0A075ABZ8	U6 snRNA-associated Sm-like protein LSm1	1.848E-02	nucleobase-containing compound metabolic process			
4	A0A075ABZ8	U6 snRNA-associated Sm-like protein LSm1	1.848E-02	heterocycle metabolic process			
1	A0A075ABZ8	Uncharacterized protein	1.848E-02	spliceosomal conformational changes to generate catalytic conformation			
1	A0A075ABZ8	Uncharacterized protein	1.848E-02	generation of catalytic spliceosome for second transesterification step			
4	A0A075ABZ8	Uncharacterized protein	1.848E-02	cellular aromatic compound metabolic process			
3	A0A074Z2V9	U6 snRNA-associated Sm-like protein LSm1	1.848E-02	regulation of gene expression			

(continued on next page)
Table 6 (continued)

Ov-Fh homologs	BP	Ov-only proteins								
Freq	**Polypeptide ID**	**Protein name**	**p-adjusted**	**Description**	**Freq**	**Polypeptide ID**	**Protein name**	**p-adjusted**	**Description**	
3	A0A074ZZM3	Homeobox domain-containing protein	1.848E-02	regulation of macromolecule						
	A0A074Z2V9	U6 snRNA-associated 5m-like protein LSM1								
	A0A074YXE1	Mediator of RNA polymerase II transcription subunit 10								
4	A0A075ABZ8	Uncharacterized protein	1.848E-02	nucleic acid metabolic process						
	A0A074ZZM3	Homeobox domain-containing protein								
	A0A074Z2V9	U6 snRNA-associated 5m-like protein LSM1								
	A0A074YXE1	Mediator of RNA polymerase II transcription subunit 10								
4	A0A075ABZ8	Uncharacterized protein	1.848E-02	organic cyclic compound metabolic process						
	A0A074ZZM3	Homeobox domain-containing protein								
	A0A074Z2V9	U6 snRNA-associated 5m-like protein LSM1								
	A0A074YXE1	Mediator of RNA polymerase II transcription subunit 10								
4	A0A074ZZM3	Homeobox domain-containing protein	1.848E-02	regulation of biological process						
	A0A074Z2V9	U6 snRNA-associated 5m-like protein LSM1								
	A0A074YXE1	Mediator of RNA polymerase II transcription subunit 10								
4	A0A074ZZM3	Homeobox domain-containing protein	2.352E-02	biological regulation						
	A0A074Z2V9	U6 snRNA-associated 5m-like protein LSM1								
	A0A074YXE1	Mediator of RNA polymerase II transcription subunit 10								
4	A0A074ZZM3	Homeobox domain-containing protein	2.761E-02	cellular nitrogen compound metabolic process						
	A0A074Z2V9	U6 snRNA-associated 5m-like protein LSM1								
	A0A074YXE1	Mediator of RNA polymerase II transcription subunit 10								
1	A0A075A868	SEC7 domain-containing protein	3.269E-02	regulation of ARF protein signal transduction						
	A0A075ABZ8	Uncharacterized protein								
	A0A074ZZM3	Homeobox domain-containing protein								
	A0A074Z2V9	U6 snRNA-associated 5m-like protein LSM1								
	A0A074YXE1	Mediator of RNA polymerase II transcription subunit 10								
1	A0A075A868	SEC7 domain-containing protein	3.269E-02	ARF protein signal transduction						
	A0A075ABZ8	Uncharacterized protein								
	A0A074ZZM3	Homeobox domain-containing protein								
	A0A074Z2V9	U6 snRNA-associated 5m-like protein LSM1								
	A0A074YXE1	Mediator of RNA polymerase II transcription subunit 10								
1	A0A075A868	SEC7 domain-containing protein	3.758E-02	regulation of Ras protein signal transduction						
	A0A075ABZ8	Uncharacterized protein								
	A0A074ZZM3	Homeobox domain-containing protein								
	A0A074Z2V9	U6 snRNA-associated 5m-like protein LSM1								
	A0A074YXE1	Mediator of RNA polymerase II transcription subunit 10								
2	A0A075A868	SEC7 domain-containing protein	3.758E-02	RNA processing						
	A0A074ZZM3	Homeobox domain-containing protein								
	A0A074Z2V9	U6 snRNA-associated 5m-like protein LSM1								
	A0A074YXE1	Mediator of RNA polymerase II transcription subunit 10								
1	A0A074ZZM3	Homeobox domain-containing protein	4.073E-02	Ras protein signal transduction						
	A0A074Z2V9	U6 snRNA-associated 5m-like protein LSM1								
	A0A074YXE1	Mediator of RNA polymerase II transcription subunit 10								
1	A0A075A868	SEC7 domain-containing protein	4.194E-02	regulation of small GTPase mediated signal transduction						
	A0A074ZZM3	Homeobox domain-containing protein								
	A0A074Z2V9	U6 snRNA-associated 5m-like protein LSM1								
	A0A074YXE1	Mediator of RNA polymerase II transcription subunit 10								
2	A0A075A868	SEC7 domain-containing protein	4.194E-02	regulation of nucleic acid-templated transcription						
	A0A074ZZM3	Homeobox domain-containing protein								
	A0A074Z2V9	U6 snRNA-associated 5m-like protein LSM1								
	A0A074YXE1	Mediator of RNA polymerase II transcription subunit 10								
2	A0A074ZZM3	Homeobox domain-containing protein	4.677E-02	regulation of RNA metabolic process						
	A0A074Z2V9	U6 snRNA-associated 5m-like protein LSM1								
	A0A074YXE1	Mediator of RNA polymerase II transcription subunit 10								
2	A0A074ZZM3	Homeobox domain-containing protein	4.677E-02	regulation of biosynthetic process						
	A0A074Z2V9	U6 snRNA-associated 5m-like protein LSM1								
	A0A074YXE1	Mediator of RNA polymerase II transcription subunit 10								
1	A0A075ABZ8	Uncharacterized protein	4.677E-02	ribonucleoprotein complex subunit organization						
	A0A074ZZM3	Homeobox domain-containing protein								
	A0A074Z2V9	U6 snRNA-associated 5m-like protein LSM1								
	A0A074YXE1	Mediator of RNA polymerase II transcription subunit 10								
2	A0A074ZZM3	Homeobox domain-containing protein	4.677E-02	regulation of transcription, DNA-templated						
	A0A074Z2V9	U6 snRNA-associated 5m-like protein LSM1								
	A0A074YXE1	Mediator of RNA polymerase II transcription subunit 10								
Ov-Fh homologs	Protein name	p-adjusted	BP	Ov-only proteins						
----------------	--------------	------------	----	-----------------						
Freq	Polypeptide ID									
2	A0A074ZZM3	Homeobox domain-containing protein	4.677E-02	regulation of nucleobase-containing compound metabolic process						
2	A0A074YXE1	Mediator of RNA polymerase II transcription subunit 10								
1	A0A074ZZM3	Homeobox domain-containing protein	4.677E-02	regulation of macromolecule biosynthetic process						
1	A0A074YXE1	Mediator of RNA polymerase II transcription subunit 10								
2	A0A074ZZM3	Homeobox domain-containing protein	4.677E-02	regulation of cellular macromolecule biosynthetic process						
2	A0A074YXE1	Mediator of RNA polymerase II transcription subunit 10								
2	A0A074ZZM3	Homeobox domain-containing protein	4.677E-02	regulation of cellular biosynthetic process						
2	A0A074YXE1	Mediator of RNA polymerase II transcription subunit 10								
2	A0A074ZZM3	Homeobox domain-containing protein	4.677E-02	regulation of RNA biosynthetic process						
2	A0A074YXE1	Mediator of RNA polymerase II transcription subunit 10								
1	A0A074ZZM3	Homeobox domain-containing protein	4.697E-02	RNA catabolic process						
Ov-Fh homologs	Protein name	p-adjusted	CC	Ov-only proteins						
----------------	--------------	------------	----	-----------------						
Freq	Polypeptide ID									
Not applicable	transcription factor TFIIIB complex	1	A0A075AJD9	TFIIB-type domain-containing protein	2.521E-02					
Not applicable	rRNA (m1A) methyltransferase complex	1	A0A074ZQZ9	rRNA (adenosine(58)-N(1))-methyltransferase non-catalytic subunit TRM6	2.521E-02					
Not applicable	RNA polymerase III transcription factor complex	1	A0A075AJD9	TFIIB-type domain-containing protein	2.834E-02					
1	A0A074ZZV9	U6 snRNA-associated Sm-like protein LSm1	4.030E-03	P-body	Not applicable					
1	A0A074ZZV9	U6 snRNA-associated Sm-like protein LSm1	4.030E-03	ribonucleoprotein granule						
1	A0A074ZZV9	U6 snRNA-associated Sm-like protein LSm1	4.030E-03	cytoplasmic ribonucleoprotein granule						
4	A0A074ZZM3	Homeobox domain-containing protein	2.478E-02	organelle						
4	A0A074ZZM3	Homeobox domain-containing protein	2.922E-02	intracellular anatomical structure						
3	A0A074ZZV9	U6 snRNA-associated Sm-like protein LSm1	2.478E-02	nucleus						
3	A0A074ZZV9	U6 snRNA-associated Sm-like protein LSm1	2.478E-02	intracellular organelle						
3	A0A074ZZV9	U6 snRNA-associated Sm-like protein LSm1	2.922E-02	mediator complex						
3	A0A074ZZV9	U6 snRNA-associated Sm-like protein LSm1	3.715E-02	membrane-bounded organelle						
3	A0A074ZZV9	U6 snRNA-associated Sm-like protein LSm1	3.715E-02	intracellular membrane-bounded organelle						

Enrichment analysis done by Gprofiler. MF is Molecular function; BP is Biological process and CC is Cellular component.
C. sinensis. In addition, we predicted that carcinogenic liver flukes have homologs in F. hepatica, here termed Ov-Fh and Cs-Fh homologs. We found that 182 and 192 nuclear predicted proteins of O. viverini and C. sinensis, respectively, had homologs in F. hepatica. Those factors may be associated with common features of the pathogenesis of liver flukes infection.

Part of the transcriptome of liver flukes is composed by genes encoding excretory-secretory (ES) proteins. ES proteins from liver flukes contain ES proteins that are a group of polypeptides that are secreted to the extracellular medium where they mediate host-pathogen interactions (Suttiprapa et al., 2018). The secretomes of liver flukes have been previously predicted from the corresponding transcriptomes and most recently determined by experimental techniques. The available secretomes varies across the worms where O. viverini has the biggest secretomes (n = 300) followed by F. hepatica (n = 202) and C. sinensis (n = 175) (Mulvenna et al., 2010; Di Maggio et al., 2016; Shi et al., 2020). Given that we aimed to predict the secretory proteins that target the nuclei of host cells, the whole nuclear predicted proteins were tested to identify which ones are secreted to the extracellular environment. We applied two approaches including SignalP v. 5.0 (Almagro et al., 2019) and SecretomeP v. 2.0 (Bendesen et al., 2004) which were previously utilized to predict secretory proteins in Taxoplasma gondii (Sny et al., 2018). Our results showed the existence of 31 Ov-only (Fh) proteins that have the transcription initiation activity enriched, involving a predicted TFIIB-type domain-containing protein (A0A075AJD9). Zinc finger TFIIB-type proteins assist the RNA polymerase II in the promoter recognition during the transcription. The TFIIB-type domain-containing protein from O. viverini is predicted secretory and it targets the host cell nucleus which suggests a relevant strategy of this fluke to interfere with the normal transcription of the host cell. Eukaryotic RNA polymerases are highly conserved and have identical substrates. Therefore a competitive mechanism between the parasites' and human's TFIIB-type domain-containing protein may lead to abnormal transcription (Papatremomri et al., 2015; Gasser et al., 2017). Given that the polypeptide A0A075AJD9 had no homologs in F. hepatica and it was predicted to be secretory and nuclear targeted, we hypothesize that such protein may be involved in the carcinogenic mechanism displayed by O. viverini. However the polypeptide A0A075AJD9 is missing in the available data from the ESPs and EV cargo (Mulvenna et al., 2010; Chaiyadet et al., 2015). Most proteins contained within O. viverini ESPs are associated with enzyme activity and cytoskeleton with less frequency of nuclear proteins (Mulvenna et al., 2010). According to our results, the existence of the TFIIB-type domain-containing protein and its hypothetical role in the opisthorchiasis and cancer development should be further studied. In addition, we found that the polypeptide A0A074QZQ9, an Ov-only (Fh) found in EVs, is one out of the 108 proteins contained in O. viverini EVs that were demonstrated to promote cell transformation (Chaiyadet et al., 2015). This latter has been mostly associated with the action of granulin and thioedoxin, both present in ESPs, which induced proliferation of host cells by in vitro assays (Mulvenna et al., 2010, Chaiyadet et al., 2015). The involvement of a nuclear targeting proteins has not been investigated but our results suggests that tRNA (adenine-58(N1)-methyltransferase non-catalytic subunit TRM6) may have an effect on the tRNA methylation of host cells. tRNA methylation and its role in infection by liver flukes is currently an unknown topic.

On the other hand, we found that C. sinensis has 22 nuclear predicted ES proteins that are missing in F. hepatica (Cs-only proteins). Such genes are transcribed and one gene encoding Zinc finger protein 629 is among the ESPs previously characterized in C. sinensis (Zheng et al., 2011, 2013; Shi et al., 2020). The role of ESPs in the pathogenesis of clonorchiasis is still unclear but some antigenic factors such as Cs-FBPase, CaMAP-2 and CsAP have been characterized (Zheng et al., 2011, 2013). Zinc finger protein 629 secreted by C. sinensis (and missing in F. hepatica) has not a demonstrated function but its human homolog Zinc finger protein 423 is an oncogene that contributes to the development of CCA (Chaiprasert et al., 2019). The function of Zinc finger protein 629 needs to be further investigated.

The finding that 11 polypeptides either in O. viverini or C. sinensis are nuclear predicted ES and have homologs in F. hepatica (Ov-Fh or Cs-Fh homologs) shows that these phylogenetically related organisms display equivalent mechanisms to manipulate essential activities in the host nucleus. According to the enrichment analysis of Ov-Fh homologs, those common polypeptides are involved in RNA processing and splicing function. Consequently, the mRNA maturation in the host cells may be disrupted by the presence of exogenous parasites factors released during the infection by O. viverini and F. hepatica. According to our results on Cs-Fh homologs, various activities including hercyclical compound binding, transcription regulator activity and DNA binding are commonly present in C. sinensis and F. hepatica. Given that such factors were found in both flukes, these proteins are not expected to be associated with O. viverini/C. sinensis tumorigenesis.

In our study F. hepatica had no predicted nuclear ES protein which constitutes a major difference with the carcinogenic liver flukes. ES proteins of F. hepatica mainly include proteases, protease inhibitors and detoxifying enzymes but nuclear proteins have not been described (Di Maggio et al., 2016). A group of ES proteins of F. hepatica promote the production of cytokines by the host such as IL2, IL7 and IFNγ that participate in modulating host immune response (Liu et al., 2017). Again, the existence of nuclear targeting within ES proteins of F. hepatica has not been previously investigated but our results suggest that such a type of proteins is lacking in the F. hepatica proteome.

The ES proteins have been characterized for liver flukes and these vary across worms. For instance, ES proteins of O. viverini include peptidases, heat shock proteins and superoxide dismutase whereas lipid-binding and -transport factors, cysteine-type peptidase and peptidase inhibitor have been characterized in C. sinensis (Young et al., 2014; Huang et al., 2013). ES proteins from F. hepatica mainly include peptidases and cytokines, these latter related to evasion of the host immune response (Cwiklinski et al., 2015a; Liu et al., 2017). Existing data of ESPs is mostly related to non-nuclear factors. However our study predicted that a group of ES proteins from liver flukes may target the host cell nuclei. These proteins should be delivered to host cells through specialized delivery mechanisms such as exosomes or EVs which are vehicles for worms ES proteins transport to host cells (Nawaz et al., 2019). The cargo of EVs from F. hepatica and O. viverini have secretory DNA- and RNA-binding proteins such as exosomes or EVs which are vehicles for worms ES proteins transport to host cells (Nawaz et al., 2019). The cargo of EVs from F. hepatica and O. viverini have been studied through proteomics approaches and the existence of multiple secretory products have been demonstrated (Cwiklinski et al., 2015b; Chaiyadet et al., 2015; Zakeri et al., 2018). Given the result of EV secretions and cargo of EVs from O. viverini trigger gene expression of cancer related genes and wound healing process genes and further lead to develop a tumorigenic phenotype in human cholangiocytes (Chaiyadet et al., 2015). On the other hand, EVs secreted from F. hepatica act not only as immune modulators but also are able to sequester triclabendazole from the culture media (Marcilla et al., 2012; de la Torre-Escudero and Robinson, 2017; Murphy et al., 2020; Davis et al., 2020). By applying in silico approaches we identified one polypeptide (A0A074QZQ9) present in EVs of O. viverini and predicted other 36 that could be found either in ESPs or EVs. Given that secretion and cargo of EVs depends both on biological stage of parasites and on the technique applied, the existence of the nuclear ES proteins here predicted is plausible.

Pathogens that cause cancer are not considered promoters due to its ability to stimulate cell proliferation. This role is performed by some unique factors that interact with host cell proteins, both in cytoplasm and nucleus, thus displaying a direct effect on cell cycle and survival. Of particular interest are those proteins released by infectious agents that cross the nuclear membrane and can interact with nuclear factors and DNA. Those elements may virtually hijack the host cell cycle by controlling critical processes such as cell cycle, apoptosis, survival and response to DNA damage. Our study predicted that O. viverini, C. sinensis and F. hepatica have secretory DNA- and RNA-binding proteins such as...
Cs-Fh homologs	Freq	Peptide ID	Protein name	p-adjusted	Cs-only proteins	Freq	Peptide ID	Protein name	p-adjusted
Not applicable nucleic acid binding	6	H2KQ76	Zinc finger and BTB domain-containing protein 38	2.126E-02	G7Y6X5	Nuclear hormone receptor family member nhr-8			
Not applicable sequence-specific DNA binding									
Not applicable DNA binding									
4	G7Y944	ETS translocation variant 1/4/5	Protein giant	6.629E-05	Not applicable				
	G7YQ06	Protein giant	Homeobox protein MSX-2						
	G7YLP5	Visual system homeobox 1							
5	G7Y944	ETS translocation variant 1/4/5	Protein giant	1.750E-04	DNA binding				
	G7YQ06	Protein giant	Homeobox protein MSX-2						
	G7YLP5	Visual system homeobox 1							
3	G7Y944	ETS translocation variant 1/4/5	Protein giant	2.196E-03	transcription regulator activity				
	H2KQ76	Mediator of RNA polymerase II transcription subunit 10							
6	G7Y944	ETS translocation variant 1/4/5	Protein giant	2.288E-03	nucleic acid binding				
	G7YQ06	Protein giant	Homeobox protein MSX-2						
	G7Y944	ETS translocation variant 1/4/5	DNA-directed RNA polymerase I subunit RPA12						
	G7YLP5	Visual system homeobox 1							
9	G7Y944	ETS translocation variant 1/4/5	Starp antigen	3.952E-03	binding				
	G7YQ06	Protein giant	Homeobox protein MSX-2						
	G7Y944	ETS translocation variant 1/4/5	Homeobox protein MSX-2						
	G7Y944	ETS translocation variant 1/4/5	Myeloblast transcription factor 1-like protein						
	G7Y944	ETS translocation variant 1/4/5	DNA-directed RNA polymerase I subunit RPA12						
	G7YLP5	Visual system homeobox 1							
10	G7Y944	ETS translocation variant 1/4/5	Starp antigen	1.207E-02					
	G7YQ06	Protein giant	Homeobox protein MSX-2						
	G7Y944	ETS translocation variant 1/4/5	Myeloblast transcription factor 1-like protein						
	G7Y944	ETS translocation variant 1/4/5	DNA-directed RNA polymerase I subunit RPA12						
	G7YLP5	Visual system homeobox 1							

(continued on next page)
Freq	Polypeptide ID	Protein name	p-adjusted	MF	Cs-only proteins	
6	G7Y944	ETS translocation variant 1/4/5	1.596E-02	organic cyclic compound binding		
	G7YQ06	Protein giant				
	G7YF27	Transcription factor SOX1/2/3/14/21				
	G7YJK7	Homeobox protein MSX-2				
	G7YTD6	DNA-directed RNA polymerase I subunit RPA12				
	G7YLPS	Visual system homeobox 1				
2	G7YAN4	Myelin transcription factor 1-like protein	3.035E-02	zinc ion binding		
	G7YTD6	DNA-directed RNA polymerase I subunit RPA12				
1	G7YTD6	DNA-directed RNA polymerase I subunit RPA12	3.740E-02	RNA polymerase activity		
2	G7YAN4	Myelin transcription factor 1-like protein	3.740E-02	transition metal ion binding		
	G7YTD6	DNA-directed RNA polymerase I subunit RPA12				
1	G7YTD6	DNA-directed RNA polymerase I subunit RPA12	3.740E-02	5'-3' RNA polymerase activity		
1	G7YTD6	DNA-directed RNA polymerase I subunit RPA12	3.740E-02	DNA-directed 5'-3' RNA polymerase activity		
1	H2KVQ1	Mediator of RNA polymerase II transcription subunit 10	4.276E-02	transcription co-regulator activity		

(continued on next page)
Table 7 (continued)

Freq	Polypeptide ID	Protein name	p-adjusted	BP					
6	G7Y944	ETS translocation variant 1/4/5	2.856E-07	regulation of cellular macromolecule biosynthetic process					
	G7YQ06	Protein giant							
	H2KVQ1	Mediator of RNA polymerase II transcription subunit 10							
	G7YJX7	Homeobox protein MSX-2							
	G7YAN4	Myelin transcription factor 1-3like protein							
	G7YL5P	Visual system homeobox 1							
6	G7Y944	ETS translocation variant 1/4/5	2.856E-07	regulation of macromolecule biosynthetic process					
	G7YQ06	Protein giant							
	H2KVQ1	Mediator of RNA polymerase II transcription subunit 10							
	G7YJX7	Homeobox protein MSX-2							
	G7YAN4	Myelin transcription factor 1-3like protein							
	G7YL5P	Visual system homeobox 1							
6	G7Y944	ETS translocation variant 1/4/5	2.856E-07	regulation of RNA metabolic process					
	G7YQ06	Protein giant							
	H2KVQ1	Mediator of RNA polymerase II transcription subunit 10							
	G7YJX7	Homeobox protein MSX-2							
	G7YAN4	Myelin transcription factor 1-3like protein							
	G7YL5P	Visual system homeobox 1							
7	G7Y944	ETS translocation variant 1/4/5	2.856E-07	heterocycle biosynthetic process					
	G7YQ06	Protein giant							
	H2KVQ1	Mediator of RNA polymerase II transcription subunit 10							
	G7YJX7	Homeobox protein MSX-2							
	G7Y7D6	DNA-directed RNA polymerase I subunit RPA12							
	G7YL5P	Visual system homeobox 1							
6	G7Y944	ETS translocation variant 1/4/5	2.856E-07	aromatic compound biosynthetic process					
	G7YQ06	Protein giant							
	H2KVQ1	Mediator of RNA polymerase II transcription subunit 10							
	G7YJX7	Homeobox protein MSX-2							
	G7Y7D6	DNA-directed RNA polymerase I subunit RPA12							
	G7YL5P	Visual system homeobox 1							
6	G7Y944	ETS translocation variant 1/4/5	2.856E-07	regulation of nucleobase-containing compound metabolism					
	G7YQ05	Protein giant							
	H2KVQ1	Mediator of RNA polymerase II transcription subunit 10							
	G7YJX7	Homeobox protein MSX-2							
	G7YAN4	Myelin transcription factor 1-3like protein							
	G7YL5P	Visual system homeobox 1							
6	G7Y944	ETS translocation variant 1/4/5	2.856E-07	regulation of cellular biosynthetic process					
	G7YQ06	Protein giant							
	H2KVQ1	Mediator of RNA polymerase II transcription subunit 10							
	G7YJX7	Homeobox protein MSX-2							
	G7YAN4	Myelin transcription factor 1-3like protein							
	G7YL5P	Visual system homeobox 1							
Freq	Polypeptide ID	Protein name	p-adjusted	BP	Freq	Polypeptide ID	Protein name	p-adjusted	
------	---------------	--------------	------------	----	------	---------------	--------------	------------	
7	G7Y944	ETS translocation variant 1/4/5	2.856E-07	Cs-Fh homologs	organic cyclic-compound biosynthetic process	7	G7Y964	5	Cs-only proteins
	G7VQ06	Protein giant							
	H2KVQ1	Mediator of RNA polymerase II transcription subunit 10							
	G7YJX7	Homeobox protein MSX-2							
	G7YAN4	Myelins transcription factor 1-like protein							
	G7YT66	DNA-directed RNA polymerase I subunit RPA12							
	G7YL5P	Visual system homeobox 1							
7	G7Y944	ETS translocation variant 1/4/5	2.856E-07	Cs-Fh homologs	nucleobase-containing compound biosynthetic process	7	G7Y944	1	Cs-only proteins
	G7VQ06	Protein giant							
	H2KVQ1	Mediator of RNA polymerase II transcription subunit 10							
	G7YJX7	Homeobox protein MSX-2							
	G7YAN4	Myelins transcription factor 1-like protein							
	G7YT66	DNA-directed RNA polymerase I subunit RPA12							
	G7YL5P	Visual system homeobox 1							
6	G7Y944	ETS translocation variant 1/4/5	4.205E-07	Cs-Fh homologs	regulation of nucleic acid-templated transcription	6	G7Y944	4	Cs-only proteins
	G7VQ06	Protein giant							
	H2KVQ1	Mediator of RNA polymerase II transcription subunit 10							
	G7YJX7	Homeobox protein MSX-2							
	G7YAN4	Myelins transcription factor 1-like protein							
	G7YL5P	Visual system homeobox 1							
6	G7Y944	ETS translocation variant 1/4/5	4.205E-07	Cs-Fh homologs	regulation of gene expression	6	G7Y944	6	Cs-only proteins
	G7VQ06	Protein giant							
	H2KVQ1	Mediator of RNA polymerase II transcription subunit 10							
	G7YJX7	Homeobox protein MSX-2							
	G7YAN4	Myelins transcription factor 1-like protein							
	G7YL5P	Visual system homeobox 1							
7	G7Y944	ETS translocation variant 1/4/5	4.246E-07	Cs-Fh homologs	RNA metabolic process	7	G7Y944	7	Cs-only proteins
	G7VQ06	Protein giant							
	H2KVQ1	Mediator of RNA polymerase II transcription subunit 10							
	G7YJX7	Homeobox protein MSX-2							
	G7YAN4	Myelins transcription factor 1-like protein							
	G7YT66	DNA-directed RNA polymerase I subunit RPA12							
	G7YL5P	Visual system homeobox 1							
6	G7Y944	ETS translocation variant 1/4/5	8.088E-07	Cs-Fh homologs	regulation of nitrogen compound metabolic process	6	G7Y944	6	Cs-only proteins
	G7VQ06	Protein giant							
	H2KVQ1	Mediator of RNA polymerase II transcription subunit 10							
	G7YJX7	Homeobox protein MSX-2							
	G7YAN4	Myelins transcription factor 1-like protein							
	G7YL5P	Visual system homeobox 1							
6	G7Y944	ETS translocation variant 1/4/5	8.088E-07	Cs-Fh homologs	regulation of primary metabolic process	6	G7Y944	6	Cs-only proteins
	G7VQ06	Protein giant							
	H2KVQ1	Mediator of RNA polymerase II transcription subunit 10							
	G7YJX7	Homeobox protein MSX-2							
	G7YAN4	Myelins transcription factor 1-like protein							
	G7YL5P	Visual system homeobox 1							
6	G7Y944	ETS translocation variant 1/4/5	8.391E-07	Cs-Fh homologs	regulation of cellular metabolic process	6	G7Y944	6	Cs-only proteins
	G7VQ06	Protein giant							
	H2KVQ1	Mediator of RNA polymerase II transcription subunit 10							
	G7YJX7	Homeobox protein MSX-2							
	G7YAN4	Myelins transcription factor 1-like protein							
	G7YL5P	Visual system homeobox 1							
Table 7 (continued)

Freq	Peptide ID	Protein name	p-adjusted	BP	p-adjusted
6	G7YQ06	Protein giant			
	H2KVQ1	Mediator of RNA polymerase II transcription subunit 10			
	G7YQ07	Homeobox protein MSX-2			
	G7YAN4	Myelins transcription factor 1-like protein			
	G7YLP5	Visual system homeobox 1			
6	G7YQ06	Protein giant			
	H2KVQ1	Mediator of RNA polymerase II transcription subunit 10			
	G7YQ07	Homeobox protein MSX-2			
	G7YAN4	Myelins transcription factor 1-like protein			
	G7YLP5	Visual system homeobox 1			
7	G7YQ06	Protein giant			
	H2KVQ1	Mediator of RNA polymerase II transcription subunit 10			
	G7YQ07	Homeobox protein MSX-2			
	G7YAN4	Myelins transcription factor 1-like protein			
	G7YTD6	DNA-directed RNA polymerase I subunit RPA12			
	G7YLP5	Visual system homeobox 1			
7	G7YQ06	Protein giant			
	H2KVQ1	Mediator of RNA polymerase II transcription subunit 10			
	G7YQ07	Homeobox protein MSX-2			
	G7YAN4	Myelins transcription factor 1-like protein			
	G7YTD6	DNA-directed RNA polymerase I subunit RPA12			
	G7YLP5	Visual system homeobox 1			
7	G7YQ06	Protein giant			
	H2KVQ1	Mediator of RNA polymerase II transcription subunit 10			
	G7YQ07	Homeobox protein MSX-2			
	G7YAN4	Myelins transcription factor 1-like protein			
	G7YTD6	DNA-directed RNA polymerase I subunit RPA12			
	G7YLP5	Visual system homeobox 1			

(continued on next page)
Freq	Polypeptide ID	Protein name	p-adjusted	BP	Freq	Polypeptide ID	Protein name	p-adjusted	
7	G7Y944	ETS translocation variant 1/4/5	5.64E-06	organic substance biosynthetic process	7	G7Y944	ETS translocation variant 1/4/5	6.27E-06	biosynthetic process
	G7YQ06	Protein giant				G7YQ06	Protein giant		
	H2KQ1	Mediator of RNA polymerase II transcription subunit 10				H2KQ1	Mediator of RNA polymerase II transcription subunit 10		
	G7YJK7	Homeobox protein MSX-2				G7YJK7	Homeobox protein MSX-2		
	G7YAN4	Mylens transcription factor 1-like protein				G7YAN4	Mylens transcription factor 1-like protein		
	G7YT6D	DNA-directed RNA polymerase 1 subunit RPA12				G7YT6D	DNA-directed RNA polymerase 1 subunit RPA12		
	G7YLP5	Visual system homeobox 1				G7YLP5	Visual system homeobox 1		
7	G7Y944	ETS translocation variant 1/4/5	6.56E-06	nucleobase-containing compound metabolic process	7	G7Y944	ETS translocation variant 1/4/5	7.66E-06	heterocycle metabolic process
	G7YQ06	Protein giant				G7YQ06	Protein giant		
	H2KQ1	Mediator of RNA polymerase II transcription subunit 10				H2KQ1	Mediator of RNA polymerase II transcription subunit 10		
	G7YJK7	Homeobox protein MSX-2				G7YJK7	Homeobox protein MSX-2		
	G7YAN4	Mylens transcription factor 1-like protein				G7YAN4	Mylens transcription factor 1-like protein		
	G7YT6D	DNA-directed RNA polymerase 1 subunit RPA12				G7YT6D	DNA-directed RNA polymerase 1 subunit RPA12		
	G7YLP5	Visual system homeobox 1				G7YLP5	Visual system homeobox 1		
7	G7Y944	ETS translocation variant 1/4/5	7.66E-06	cellular aromatic compound metabolic process	7	G7Y944	ETS translocation variant 1/4/5	7.98E-06	organic cyclic compound metabolic process
	G7YQ06	Protein giant				G7YQ06	Protein giant		
	H2KQ1	Mediator of RNA polymerase II transcription subunit 10				H2KQ1	Mediator of RNA polymerase II transcription subunit 10		
	G7YJK7	Homeobox protein MSX-2				G7YJK7	Homeobox protein MSX-2		
	G7YAN4	Mylens transcription factor 1-like protein				G7YAN4	Mylens transcription factor 1-like protein		
	G7YT6D	DNA-directed RNA polymerase 1 subunit RPA12				G7YT6D	DNA-directed RNA polymerase 1 subunit RPA12		
	G7YLP5	Visual system homeobox 1				G7YLP5	Visual system homeobox 1		
7	G7Y944	ETS translocation variant 1/4/5	2.02E-05	cellular nitrogen compound metabolic process	6	G7Y944	ETS translocation variant 1/4/5	7.23E-05	regulation of cellular process
	G7YQ06	Protein giant				G7YQ06	Protein giant		
	H2KQ1	Mediator of RNA polymerase II transcription subunit 10				H2KQ1	Mediator of RNA polymerase II transcription subunit 10		
	G7YJK7	Homeobox protein MSX-2				G7YJK7	Homeobox protein MSX-2		
	G7YAN4	Mylens transcription factor 1-like protein				G7YAN4	Mylens transcription factor 1-like protein		
	G7YT6D	DNA-directed RNA polymerase 1 subunit RPA12				G7YT6D	DNA-directed RNA polymerase 1 subunit RPA12		
	G7YLP5	Visual system homeobox 1				G7YLP5	Visual system homeobox 1		

(continued on next page)
Freq	Polypeptide ID	Protein name	p-adjusted	BP	Freq	Polypeptide ID	Protein name	p-adjusted	
6	G7Y944	ETS translocation variant 1/4/5	8.898E-05	regulation of biological process	6	G7Y944	ETS translocation variant 1/4/5	1.316E-04	biological regulation
	G7YQ06	Protein giant				G7YQ06	Protein giant		
	H.2R.VQ1	Mediator of RNA polymerase II transcription subunit 10				G7YQ06	Protein giant		
	G7YJX7	Homeobox protein MSX-2				G7YQ06	Protein giant		
	G7YAN4	Myelins transcription factor 1-like protein				G7YQ06	Protein giant		
	G7YL5P	Visual system homeobox 1				G7YQ06	Protein giant		
7	G7Y944	ETS translocation variant 1/4/5	1.048E-04	cellular macromolecule metabolic process	7	G7Y944	ETS translocation variant 1/4/5	4.436E-04	macromolecule metabolic process
	G7YQ06	Protein giant				G7YQ06	Protein giant		
	H.2R.VQ1	Mediator of RNA polymerase II transcription subunit 10				G7YQ06	Protein giant		
	G7YJX7	Homeobox protein MSX-2				G7YQ06	Protein giant		
	G7YAN4	Myelins transcription factor 1-like protein				G7YQ06	Protein giant		
	G7YT6D	DNA-directed RNA polymerase I subunit RPA12				G7YQ06	Protein giant		
	G7YL5P	Visual system homeobox 1				G7YQ06	Protein giant		
7	G7Y944	ETS translocation variant 1/4/5	1.113E-03	cellular metabolic process	7	G7Y944	ETS translocation variant 1/4/5	1.123E-03	primary metabolic process
	G7YQ06	Protein giant				G7YQ06	Protein giant		
	H.2R.VQ1	Mediator of RNA polymerase II transcription subunit 10				G7YQ06	Protein giant		
	G7YJX7	Homeobox protein MSX-2				G7YQ06	Protein giant		
	G7YAN4	Myelins transcription factor 1-like protein				G7YQ06	Protein giant		
	G7YT6D	DNA-directed RNA polymerase I subunit RPA12				G7YQ06	Protein giant		
	G7YL5P	Visual system homeobox 1				G7YQ06	Protein giant		
Freq	Polypeptide ID	Protein name	p-adjusted	BP					
------	----------------	--------------------------------	------------	---					
7	G7Y944	ETS translocation variant 1/4/5	1.378E-03	organic substance metabolic process					
	G7YQ06	Protein giant							
	H2KVQ1	Mediator of RNA polymerase II transcription subunit 10							
	G7YJX7	Homeobox protein MSX-2							
	G7YAN4	Myelin transcription factor 1-like protein							
	G7YT66	DNA-directed RNA polymerase I subunit RPA12							
	G7YL5P	Visual system homeobox 1							
2	G7YQ06	Protein giant	2.063E-03	transcription by RNA polymerase II					
	H2KVQ1	Mediator of RNA polymerase II transcription subunit 10							
1	G7YT66	DNA-directed RNA polymerase I subunit RPA12	2.771E-03	mRNA cleavage					
7	G7Y944	ETS translocation variant 1/4/5	3.462E-03	metabolic process					
	G7YQ06	Protein giant							
	H2KVQ1	Mediator of RNA polymerase II transcription subunit 10							
	G7YJX7	Homeobox protein MSX-2							
	G7YAN4	Myelin transcription factor 1-like protein							
	G7YT66	DNA-directed RNA polymerase I subunit RPA12							
	G7YL5P	Visual system homeobox 1							
7	G7Y944	ETS translocation variant 1/4/5	2.028E-02	cellular process					
	G7YQ06	Protein giant							
	H2KVQ1	Mediator of RNA polymerase II transcription subunit 10							
	G7YJX7	Homeobox protein MSX-2							
	G7YAN4	Myelin transcription factor 1-like protein							
	G7YT66	DNA-directed RNA polymerase I subunit RPA12							
	G7YL5P	Visual system homeobox 1							
	G7Y944	ETS translocation variant 1/4/5	4.263E-02	RNA phosphodiester bond hydrolysis					
	G7YQ06	Protein giant							
	H2KVQ1	Mediator of RNA polymerase II transcription subunit 10							
	G7YJX7	Homeobox protein MSX-2							
	G7YAN4	Myelin transcription factor 1-like protein							
	G7YT66	DNA-directed RNA polymerase I subunit RPA12							
	G7YL5P	Visual system homeobox 1							
	G7Y944	ETS translocation variant 1/4/5	7.058E-06	nucleus					
	G7YQ06	Protein giant							
	G7YF27	Transcription factor SOX1.1/2/3/14/21							
	H2KVQ1	Mediator of RNA polymerase II transcription subunit 10							
	G7YJX7	Homeobox protein MSX-2							
	G7YAN4	Myelin transcription factor 1-like protein							
	G7YL5P	Visual system homeobox 1							
7	G7Y944	ETS translocation variant 1/4/5	7.056E-06	membrane-bound organelle					
	G7YQ06	Protein giant							
	G7YF27	Transcription factor SOX1.1/2/3/14/21							
	H2KVQ1	Mediator of RNA polymerase II transcription subunit 10							
	G7YJX7	Homeobox protein MSX-2							
	G7YAN4	Myelin transcription factor 1-like protein							
	G7YL5P	Visual system homeobox 1							
Freq	Polypeptide ID	Protein name	p-adjusted	CC	Protein name	p-adjusted			
------	---------------	--------------	------------	----	--------------	------------			
7	G7Y944	ETS translocation variant 1/4/5	4.771E-05	intracellular organelle					
	G7YQ06	Protein giant							
	G7YF27	Transcription factor SOX3/2/3/14/21							
	H2KVQ1	Mediator of RNA polymerase II transcription subunit 10							
	G7YJK7	Homeobox protein MSX-2							
	G7YAN4	Myelin transcription factor 1-like protein							
	G7YLP5	Visual system homeobox 1							
7	G7Y944	ETS translocation variant 1/4/5	5.316E-05	organelle					
	G7YQ06	Protein giant							
	G7YF27	Transcription factor SOX3/2/3/14/21							
	H2KVQ1	Mediator of RNA polymerase II transcription subunit 10							
	G7YJK7	Homeobox protein MSX-2							
	G7YAN4	Myelin transcription factor 1-like protein							
	G7YLP5	Visual system homeobox 1							
7	G7Y944	ETS translocation variant 1/4/5	9.884E-05	intracellular anatomical structure					
	G7YQ06	Protein giant							
	G7YF27	Transcription factor SOX3/2/3/14/21							
	H2KVQ1	Mediator of RNA polymerase II transcription subunit 10							
	G7YJK7	Homeobox protein MSX-2							
	G7YAN4	Myelin transcription factor 1-like protein							
	G7YLP5	Visual system homeobox 1							
7	G7Y944	ETS translocation variant 1/4/5	1.816E-02	cellular anatomical entity					
	G7YQ06	Protein giant							
	G7YF27	Transcription factor SOX3/2/3/14/21							
	H2KVQ1	Mediator of RNA polymerase II transcription subunit 10							
	G7YJK7	Homeobox protein MSX-2							
	G7YAN4	Myelin transcription factor 1-like protein							
	G7YLP5	Visual system homeobox 1							
1	H2KVQ1	Mediator of RNA polymerase II transcription subunit 10	1.816E-02	mediator complex					
7	G7Y944	ETS translocation variant 1/4/5	1.816E-02	cellular component					
	G7YQ06	Protein giant							
	G7YF27	Transcription factor SOX3/2/3/14/21							
	H2KVQ1	Mediator of RNA polymerase II transcription subunit 10							
	G7YJK7	Homeobox protein MSX-2							
	G7YAN4	Myelin transcription factor 1-like protein							
	G7YLP5	Visual system homeobox 1							

Enrichment analysis done by Gprofiler. MF is Molecular function; BP is Biological process and CC is Cellular component.
Homeobox domain-containing proteins, Zinc finger domain proteins, and Cyclophilin E. Similar findings have been reported in bacteria such as *M. hominis* and *C. pneumoniae*, where secretory DNA-binding proteins have been predicted and suggested to have a role in carcinogenesis (Khan et al., 2016a; Alshamsan et al., 2017). In contrast, our findings show that secretory DNA-binding proteins are present in *O. viverrini*, *C. sinensis* and *F. hepatica* suggesting that it is unlikely the involvement of such proteins in liver fluke-induced carcinogenesis but these may contribute to liver fluke pathogenesis. Actually, cell transformation displayed by *O. viverrini* infection is not only associated with chronic inflammation and proliferation secretory factors that promote cell growth but also with DNA damage such as adducts (Brindle et al., 2015). Other proteins expressed by *O. viverrini* may be able to manipulate some biological process of the host cells by altering certain pathways and molecules both in the membrane and cytoplasm. For instance, thioredoxin, a component of ESP, is a growth factor and apoptosis inhibitor and it might contribute to carcinogenesis (Young et al., 2014; Shi et al., 2020). Similarly, the genesis of *C. sinensis*-induced OCA is also a complex process where certain ES proteins such as cystatin and Oxidoreductase-peroxiredoxin and carbonyl reductase I (CBR1) are likely implicated in (Shi et al., 2020). Whether some RNA- and DNA-binding proteins secreted by liver flukes contribute with carcinogenesis or other infection-related features remains unclear.

In summary, we predicted nuclear ESPs of liver flukes by applying an algorithm that is not dependent on presence of NLS which is more suitable given that only 30% of nuclear targeting proteins has NLS (Cokol et al., 2000). The TFIBB-type domain-containing protein of *O. viverrini* and Zinc finger protein 629 of *C. sinensis* may disrupt either replication or transcription process, respectively, in host cells. Further studies are needed to demonstrate whether the predicted polypeptides present in carcinogenic liver flukes participate in cell tumorigenesis.

Declarations

Author contribution statement

Claudia Machicado: Conceived and designed the experiments; Performed the experiments; Analyzed and interpreted the data; Contributed reagents, materials, analysis tools or data; Wrote the paper.

Maria Pia Soto: Performed the experiments; Analyzed and interpreted the data; Wrote the paper.

Luis Felipe La Chira, Joel Torres, Carlos Mendoza: Performed the experiments; Analyzed and interpreted the data.

Luis A. Marcos: Conceived and designed the experiments; Analyzed and interpreted the data; Contributed reagents, materials, analysis tools or data; Wrote the paper.

Funding statement

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Data availability statement

Data included in article/supplementary material/referenced in article.

Declaration of interests statement

The authors declare no conflict of interest.

Additional information

Supplementary content related to this article has been published online at https://doi.org/10.1016/j.heliyon.2021.e07204.
Howe, K.L., Bolt, B.J., Shafie, M., Kersey, P., Berriman, M., 2017. WormBase ParaSite - a comprehensive resource for helminth genomics. Mol. Biochem. Parasitol. 215, 2–10.

Huang, Y., Chen, W., Wang, X., et al., 2013. The carcinogenic liver fluke, Clonorchis sinensis new assembly, reannotation and analysis of the genome and characterization of tissue transcriptomes. PloS One 8 (1), e54732.

Kelley, J.M., Elliott, T.P., Beddoe, T., Anderson, G., Skuce, P., Spithill, T.W., 2016. Current threat of triclabendazole resistance in Fasciola hepatica. Trends Parasitol. 32 (6), 458–469.

Khan, A.A., 2014. In silico prediction of Escherichia coli proteins targeting the host cell nucleus, with special reference to their role in colon cancer etiology. J. Comput. Biol. 21 (6), 466–475.

Khan, S., Zakariah, M., Palaniappan, S., 2016a. Computational prediction of Mycoplasma hominis proteins targeting in nucleus of host cell and their implication in prostate cancer etiology. Tumour Biol. 37 (8), 10805–10813.

Khan, S., Imran, A., Khan, A.A., Abul Kalam, M., Ahsanhan, A., 2016b. Systems biology approaches for the prediction of possible role of Chlamydia pneumoniae proteins in the etiology of lung cancer. PloS One 11 (2), e0148530.

Lee, J.H., Jun, S.H., Baik, S.C., Kim, D.R., Park, J.-Y., Lee, Y.S., Choi, C.H., Lee, J.C., 2012. Pathobiological characterization and in silico analysis of food-borne trematode parasites. Parasitol. Res. 111, 5557–5570.

Smout, M.J., Sottilo, J., Laha, T., Sapra, P., Pimenta, R.N., Yue Chan, L., Johnson, M.S., Turnbull, L., Whitchurch, C.B., Giacomini, P.R., Morán, C.S., Colledge, J., Daly, N., Sripa, B., Mulvenna, J.P., Brindley, P.J., Loukas, A., 2015. Carcinogenic parasite secretes growth factor that Accelerates wound healing and potentially promotes neoplasia. PloS Pathog. 11 (10), e1005209.

Smout, M.J., Sottilo, J., Smout, M., Suyapoh, W., Chaiyadet, S., Tripathi, T., Laha, T., Loukas, A., 2018. Opisthorchis viverrini proteome and host-parasite interactions. Adv. Parasitol. 102, 45–72.

Syn, G., Blackwell, J.M., Jamieson, S.E., Francis, R.W., 2018. An in silico pipeline to filter the Toxoplasma gondii proteome for proteins that could traffic to the host cell nucleus and influence host cell epithelialogenesis. Mem. Inst. Oswaldo Cruz 113 (6), e1700471.

Tran, E.J., Wente, S.R., 2006. Dynamic nuclear pore complexes: life on the edge. Cell 125 (6), 1041–1053.

Wan, S., Mak, M.W., Kung, S.Y., 2017. FUEL-mLoc: feature-unified prediction and explanation of multi-localization of cellular proteins in multiple organisms. Bioinformatics 33 (5), 749–750.

World Health Organization, 2020. Fact Sheet: Foodborne Trematode Infections. World Health Organization, Geneva, Switzerland.

Xi, J., Jiang, L., Xing, C., Zhang, L., Wang, H., Li, X., Yan, W., 2019. RNA binding proteins targeting in nucleus of host cell and their implication in prostate cancer etiology. J. Cell. Biochem. 121 (8), 7034–7042.

Xia, X., Liu, H., Xia, P., Han, X., Su, J., Zheng, M., Hu, K., Liu, W., Hu, X., Hu, F., Huang, L., Wang, J., 2018. Identiﬁcation of fasciolaparvulae-derived exosomes and their interaction with host PBMCs and cytokines by shotgun LC-MS/MS. Parasitol. Res. 117 (9), 3044–3056.

Yao, B., Zheng, Y., Li, Z., Zhang, Y., Liu, Y., Xiao, B., Yang, H., Zhai, X., Meng, Z., 2014. The secreted proteome and host-parasite interactions. Adv. Exp. Med. Biol. 826, 111–122.

Zakeri, A., Hansen, E.P., Andersen, S.D., Williams, A.R., Nejsum, P., 2018. Opisthorchis viverrini genome sequence and reference assembly. Bioinformatics 33 (5), 674–680.

Zheng, M., Hu, K., Liu, W., Hu, X., Hu, F., Huang, L., Wang, P., Hu, Y., Huang, Y., Li, W., Liang, C., Yin, X., He, Q., Yu, X., 2011. Proteomic analysis of excretory secretory products from Clonorchis sinensis adult worms: molecular characterization and serological reactivity of a excretory-secretory antigen-fructose-1,6-bisphosphatase. Parasitol. Res. 109 (3), 737–744.

Zhang, M., Hu, K., Liu, W., Li, H., Chen, J., Yu, X., 2013. Proteomic analysis of different period excretory secretory products from Clonorchis sinensis adult worms: molecular characterization, immunolocalization, and serological reactivity of two excretory secretory antigens-methionine aminopeptidase 2 and acid phosphatase. Parasitol. Res. 112 (3), 1287–1297.