Continued fraction algorithms and Lagrange’s theorem in \mathbb{Q}_p

Asaki Saito1, Jun-ichi Tamura2, and Shin-ichi Yasutomi3

1Future University Hakodate, Hakodate, Hokkaido 041-8655, Japan
2Tsuda College, Kodaira, Tokyo 187-8577, Japan
3Toho University, Funabashi, Chiba 274-8510, Japan

January 18, 2017

Abstract

We present several continued fraction algorithms, each of which gives an eventually periodic expansion for every quadratic element of \mathbb{Q}_p over \mathbb{Q} and gives a finite expansion for every rational number. We also give, for each of our algorithms, the complete characterization of elements having purely periodic expansions.

1 Introduction

In this paper, we intend to add a classical flavor to the p-adic world related to the well-known theorem of Lagrange (resp., Galois) on the complete characterization of eventually (resp., purely) periodic continued fractions (cf. [5], [4]; see also [7]).

In what follows, p denotes a prime, \mathbb{Q}_p the field of p-adic numbers, and \mathbb{Z}_p the ring of p-adic integers. Schneider [9] gave an algorithm that generates continued fractions of the form

$$\frac{p^{k_1}}{d_1 + \frac{p^{k_2}}{d_2 + \frac{p^{k_3}}{\ddots}}} \quad (k_1 \in \mathbb{Z}_{\geq 0}, k_{n+1} \in \mathbb{Z}_{> 0}, d_n \in \{1, \ldots, p-1\} \ (n \geq 1))$$

and found periodic continued fractions for some quadratic elements of \mathbb{Z}_p over \mathbb{Q} (see also [2]). Ruban [8] gave an algorithm that generates continued fractions

*Author to whom correspondence should be addressed. Electronic mail: saito@fun.ac.jp
of the shape
\[g_0 + \frac{1}{g_1 + \frac{1}{g_2 + \frac{1}{\ddots}}} \]

where
\[g_n \in \left\{ \sum_{i=-m}^{0} e_i p^i \mid m \in \mathbb{Z}_{\geq 0}, e_i \in \{0, 1, \ldots, p-1\} \right\} \quad (n \geq 0). \]

On the other hand, Weger [15] has found a class of infinitely many quadratic elements \(\alpha \in \mathbb{Q}_p \) over \(\mathbb{Q} \) such that the continued fraction expansion of \(\alpha \) obtained by Schneider’s algorithm is not periodic. Ooto [6] has found a similar result related to the algorithm given by Ruban. Weger [16] has mentioned in his paper, “it seems that a simple and satisfactory \(p \)-adic continued fraction algorithm does not exist”, and given a periodicity result of lattices concerning quadratic elements of \(\mathbb{Q}_p \). Browkin [1] has proposed some \(p \)-adic continued fraction algorithms; nevertheless, the periodicity has not been proved for the continued fractions obtained by applying his algorithms to quadratic elements of \(\mathbb{Q}_p \). By disclosing a link between the hermitian canonical forms of certain integral matrices and \(p \)-adic numbers, Tamura [10] has shown that a multidimensional periodic continued fraction converges to \((\alpha, \alpha^2, \ldots, \alpha^{n-1}) \) in the \(p \)-adic sense without considering algorithms of continued fraction expansion, where \(\alpha \) is the root of a polynomial in \(\mathbb{Z}[X] \) of degree \(n \) stated in Lemma 4.1.

We can summarize the above situation as follows: There have been proposed several \(p \)-adic continued fraction algorithms. However, it remains quite unclear whether or not there exists a simple algorithm that generates periodic continued fractions for all the algebraic elements of \(\mathbb{Q}_p \) of fixed degree greater than one. Even for quadratic elements, \(p \)-adic versions of Lagrange’s theorem have not been found.

The main objectives of this paper are to define some algorithms generating continued fractions of the form
\[d_0 + \frac{t_1 p^{k_1}}{d_1 + \frac{t_2 p^{k_2}}{d_2 + \frac{t_3 p^{k_3}}{\ddots}}} \quad (k_n \in \mathbb{Z}_{>0}, \ t_n, d_n \in \mathbb{Z} \setminus p\mathbb{Z} \ (n \geq 1)) \quad (1) \]

with \(d_0 \in \mathbb{Q}_p \) such that \(d_0 = \lfloor d_0 \rfloor \) (see (2) for the definition of the integral part \(\lfloor \alpha \rfloor \) of \(\alpha \in \mathbb{Q}_p \)) and to give

(i) \(p \)-adic versions of Lagrange’s theorem for the three algorithms, i.e., the periodicity of the resulting continued fractions for quadratic elements of \(\mathbb{Q}_p \) over \(\mathbb{Q} \), and
(ii) \(p \)-adic versions of Galois’ theorem concerning purely periodic continued fractions.

Moreover, we show that the continued fraction expansions of an arbitrary rational number always terminate by our algorithms.

It is worth mentioning that our algorithms have a common background with those proposed in [11, 12, 13, 14, 3] in the design of continued fraction algorithms.

The rest of this paper is organized as follows. In Section 2, we consider expanding \(\alpha \in \mathbb{Q}_p \) into continued fractions whose form is more general than the form (1). In Section 3, we establish convergence properties of the continued fractions introduced in Section 2. In Section 4, we give two basic maps \(T_i (i = 1, 2) \) and present related lemmas. We define three algorithms in terms of these basic maps in Section 5. In Section 6, we show that each of our algorithms gives an eventually periodic expansion for every quadratic Hensel root, i.e., every quadratic element of \(\mathbb{Q}_p \) over \(\mathbb{Q} \) whose existence is guaranteed by Hensel’s Lemma. We do the same for every quadratic element in Section 7. In Sections 8 and 9, we show that the continued fractions for every rational number obtained by our algorithms always terminate. We conclude with several remarks in Section 10.

2 \(p \)-adic continued fraction expansions

In what follows, \(\alpha \) denotes an element of \(\mathbb{Q}_p \) unless otherwise mentioned. We mean by the \(p \)-adic expansion of \(\alpha \) the series

\[
\alpha = \sum_{i=-\infty}^{\infty} e_i p^i \quad (e_i = e_i(\alpha) \in \{0, 1, \ldots, p - 1\})
\]

with \(e_i \neq 0 \) at most finitely many \(i \leq 0 \). We define the integral and fractional parts of \(\alpha \), denoted by \([\alpha]\) and \(\langle \alpha \rangle\) respectively, as

\[
[\alpha] := \sum_{i=-\infty}^{0} e_i p^i \quad \text{and} \quad \langle \alpha \rangle := \sum_{i=1}^{\infty} e_i p^i.
\] \(\text{(2)} \)

In this section, we consider expanding \(\alpha \) into a continued fraction of the form

\[
d_0 + \frac{t_1 p^{k_1}}{d_1 + \frac{t_2 p^{k_2}}{d_2 + \frac{t_3 p^{k_3}}{\ddots}}} \quad (k_i \in \mathbb{Z}_{>0}, \ t_i, d_i \in \mathbb{Z}_p \setminus p\mathbb{Z}_p \ (i \geq 1))
\]

with \(d_0 \in \mathbb{Q}_p \) such that \(d_0 = [d_0] \). Note that this class of continued fractions contains ones of the form (1).
Let t be a map from $p\mathbb{Z}_p \setminus \{0\}$ to $\mathbb{Z}_p \setminus p\mathbb{Z}_p$. Then, $\frac{t(x)p^{v_p(x)}}{x} \in \mathbb{Z}_p \setminus p\mathbb{Z}_p$ for all $x \in p\mathbb{Z}_p \setminus \{0\}$, where $v_p(\alpha)$ denotes the p-adic additive valuation of α. We consider a family of the maps of the form

$$T : p\mathbb{Z}_p \setminus \{0\} \rightarrow p\mathbb{Z}_p,$$

$$T(x) := \frac{t(x)p^{v_p(x)}}{x} - d(x),$$

where d is a map from $p\mathbb{Z}_p \setminus \{0\}$ to $\mathbb{Z}_p \setminus p\mathbb{Z}_p$. Since $d(x) = t(x)p^{v_p(x)} - T(x)$ and $T(x) \in p\mathbb{Z}_p$, we have $[d(x)] = \lfloor \frac{t(x)p^{v_p(x)}}{x} \rfloor \in \{1, \ldots, p-1\}$ for all $x \in p\mathbb{Z}_p \setminus \{0\}$. Hence, d is uniquely determined if the image of d, denoted by $\text{Im}(d)$, satisfies $\text{Im}(d) \subset \{1, \ldots, p-1\}$.

Since

$$x = \frac{t(x)p^{v_p(x)}}{d(x) + T(x)},$$

we have

$$T^{n-1}(\langle \alpha \rangle) = \frac{t(T^{n-1}(\langle \alpha \rangle))p^{v_p(T^{n-1}(\langle \alpha \rangle))}}{d(T^{n-1}(\langle \alpha \rangle)) + T^{n}(\langle \alpha \rangle)},$$

provided that $T^{n-1}(\langle \alpha \rangle) \neq 0$ ($n \in \mathbb{Z}_{>0}$). Setting

$$t_i = t \left(T^{i-1}(\langle \alpha \rangle) \right),$$

$$k_i = v_p \left(T^{i-1}(\langle \alpha \rangle) \right),$$

$$d_i = d \left(T^{i-1}(\langle \alpha \rangle) \right),$$

for $i \in \{1, \ldots, n\}$, we have

$$\alpha = [\alpha] + \frac{t_1 p^{k_1}}{d_1 + \frac{t_2 p^{k_2}}{d_2 + \frac{\ldots}{\ldots}}},$$

$$\frac{\ldots}{\ldots} + \frac{t_{n-1} p^{k_{n-1}}}{d_{n-1} + \frac{t_n p^{k_n}}{d_n + T^n(\langle \alpha \rangle)}}$$

Related to the continued fraction expansion of α, there occur three cases:

(i) $\langle \alpha \rangle = 0$.

We do not expand $\langle \alpha \rangle = 0$, and we have $\alpha = [\alpha]$.

(ii) There exists $N \in \mathbb{Z}_{>0}$ such that $T^N(\langle \alpha \rangle) = 0$ and $T^n(\langle \alpha \rangle) \neq 0$ for all $0 \leq n < N$.

We can expand α into the finite continued fraction
\[\alpha = [\alpha] + \frac{t_1 p^{k_1}}{d_1 + \frac{t_2 p^{k_2}}{d_2 + \frac{t_3 p^{k_3}}{\ddots + \frac{t_N p^{k_N}}{d_N}}}}. \] (4)

(iii) $T^n(\langle \alpha \rangle) \neq 0$ for all $n \in \mathbb{Z}_{\geq 0}$.

We can expand α into the infinite continued fraction
\[[\alpha] + \frac{t_1 p^{k_1}}{d_1 + \frac{t_2 p^{k_2}}{d_2 + \frac{t_3 p^{k_3}}{\ddots}}}. \] (5)

We will show that the continued fraction (5) converges to α in the succeeding section.

Remark 2.1.

(i) We can consider a variety of maps T. In fact, we will give three algorithms of continued fraction expansion in Section 5; consequently, the expression in continued fractions (4) and (5) are not uniquely determined for a given $\alpha \in \mathbb{Q}_p$.

(ii) The continued fractions considered by Schneider [9] are generated by setting $t(x) \equiv 1$ and $\text{Im}(d) \subset \{1, \ldots, p-1\}$.

3 Convergence of continued fractions

In this section, we show that the continued fraction described in Section 2 always converges to α for $\alpha \in \mathbb{Q}_p$. Without loss of generality, we may assume that $\alpha \in p\mathbb{Z}_p \setminus \{0\}$ in this section.

We define two sequences $\{p_n\}_{n \geq -1}$ and $\{q_n\}_{n \geq -1}$ in terms of t_i, k_i, d_i in (5) by the following recursion formulas:
\[
\begin{align*}
p_{-1} &= 1, & p_0 &= 0, & p_n &= d_n p_{n-1} + t_n p^{k_n} p_{n-2} & (n \geq 1), \\
q_{-1} &= 0, & q_0 &= 1, & q_n &= d_n q_{n-1} + t_n p^{k_n} q_{n-2} & (n \geq 1).
\end{align*}
\]

In the case of the finite expansion (4), we define p_n and q_n for n with $-1 \leq n \leq N$.

Lemmas 3.1–3.3 given below are easily seen (cf. [7]).
Lemma 3.1.
\[
\frac{t_1p^{k_1}}{d_1} + \frac{t_2p^{k_2}}{d_2} + \ldots + \frac{t_np^{k_n}}{d_n} = \frac{p_n}{q_n} \quad (n \geq 1).
\]

Lemma 3.2.
\[
\alpha = \frac{p_n + T^n(\alpha)p_{n-1}}{q_n + T^n(\alpha)q_{n-1}} \quad (n \geq 1).
\]

Lemma 3.3.
\[
p_{n-1}q_n - p_nq_{n-1} = \prod_{i=1}^{n} (-t_ip^{k_i}) \quad (n \geq 1).
\]

We denote by $|\alpha|_p$ the p-adic absolute value of $\alpha \in \mathbb{Q}_p$, i.e., $|\alpha|_p := 1/p^{v_p(\alpha)}$.

Lemma 3.4.
\[
|q_n|_p = 1 \quad (n \geq 0).
\]

Proof. The claim is true for $n = 0$ and $n = 1$. Assuming that $|q_i|_p = 1$ holds for $0 \leq i \leq n$ with $n \geq 1$, we have $|q_{n+1}|_p = |d_{n+1}q_n + t_{n+1}p^{k_{n+1}}q_{n-1}|_p = 1$ since $|d_{n+1}q_n|_p = 1$ and $|t_{n+1}p^{k_{n+1}}q_{n-1}|_p \leq 1/p$.

Theorem 3.5.

(i) Let n be an integer with $n \geq 1$ or an integer with $1 \leq n \leq N$ if there exists an integer $N \geq 1$ such that $T^n(\alpha) = 0$. Then,
\[
|\alpha - \frac{p_n}{q_n}|_p = \frac{|T^n(\alpha)|_p}{p^{\sum_{i=1}^{n} k_i}}.
\]

holds. In particular,
\[
|\alpha - \frac{p_n}{q_n}|_p = \frac{1}{p^{\sum_{i=1}^{n} k_i}}
\]

holds if $T^n(\alpha) \neq 0$.

(ii) Let $T^n(\alpha) \neq 0$ for all $n \geq 1$. Then,
\[
\lim_{n \to \infty} \frac{p_n}{q_n} = \alpha
\]

holds.

Proof. (i) By Lemma 3.2 we have
\[
\alpha - \frac{p_n}{q_n} = \frac{p_n + T^n(\alpha)p_{n-1}}{q_n + T^n(\alpha)q_{n-1}} - \frac{p_n}{q_n} = \frac{T^n(\alpha)(p_{n-1}q_n - p_nq_{n-1})}{(q_n + T^n(\alpha)q_{n-1))q_n}.
\]
By Lemma 3.3, we have
\[
|T^n(\alpha) (p_{n-1}q_n - p_nq_{n-1})|_p = |T^n(\alpha) \prod_{i=1}^n (-t_i q^{k_i})|_p = \frac{|T^n(\alpha)|_p}{p^{\sum_{i=1}^n k_i}}.
\]

By Lemma 3.4, we have
\[
|(q_n + T^n(\alpha)q_{n-1}) q_n|_p = 1.
\]

Hence, we get
\[
|\alpha - \frac{p_n}{q_n}|_p = \frac{|T^n(\alpha)|_p}{p^{\sum_{i=1}^n k_i}}.
\]

If \(T^n(\alpha) \neq 0\), then \(|T^n(\alpha)|_p = 1/p^{k_n+1}\), which implies
\[
|\alpha - \frac{p_n}{q_n}|_p = \frac{1}{p^{\sum_{i=1}^{n+1} k_i}}.
\]

The assertion (ii) immediately follows from (i). \(\square\)

4 Two basic maps: \(T_1\) and \(T_2\)

We later propose three continued fraction algorithms, each of which gives an eventually periodic expansion for every quadratic element of \(\mathbb{Q}_p\) over \(\mathbb{Q}\) and gives a finite expansion for every rational number. In this section, we introduce maps \(T_1\) and \(T_2\) on the basis of which we construct the algorithms.

We denote by \(A_p\) the set of all the elements of \(p\mathbb{Z}_p\) which are algebraic over \(\mathbb{Q}\) of degree at most two. For simplicity, we will abbreviate “algebraic over \(\mathbb{Q}\)” to “algebraic”, and “quadratic over \(\mathbb{Q}\)” to “quadratic”. We mean, by the minimal polynomial of an algebraic element \(\alpha\), the integral polynomial of the lowest degree which has \(\alpha\) as a root, whose leading coefficient is positive, and whose coefficients are coprime. We denote the minimal polynomial of \(x \in A_p\) by \(aX^2 + bX + c\) if \(x\) is quadratic. We denote it by \(bX + c\) if \(x\) is rational. Note that \(c \neq 0\) if and only if \(x \neq 0\). Let us define a map \(u : A_p \setminus \{0\} \rightarrow \mathbb{Z} \setminus p\mathbb{Z}\) by assigning
\[
u(x) := c|c|_p \in \mathbb{Z} \setminus p\mathbb{Z}
\]
to each \(x \in A_p \setminus \{0\}\). We define two maps \(T_1\) and \(T_2\) from \(A_p \setminus \{0\}\) to \(A_p\) by
\[
T_1(x) := \frac{u(x)p^{\nu_p(x)}}{x} - d_1(x),
\]
and
\[
T_2(x) := -\frac{u(x)p^{\nu_p(x)}}{x} - d_2(x),
\]

where d_1 and d_2 are maps from $A_p \setminus \{0\}$ to $\{1, \ldots, p - 1\}$ which are uniquely defined so as to let $T_1(x)$ and $T_2(x)$ belong to $p\mathbb{Z}_p$, and thus to A_p, for every $x \in A_p \setminus \{0\}$. It is clear that T_1 and T_2 map any quadratic element of A_p to a quadratic one. We remark that T_1 and T_2 belong to the family of the maps $\mathbf{3}$ if we ignore their domains.

Our algorithms introduced in the next section reduce expansions of algebraic elements of \mathbb{Q}_p of degree at most two to expansions of those of $p\mathbb{Z}_p$ whose existence is guaranteed by the following well-known lemma.

Lemma 4.1 (Hensel’s Lemma). Let $f(X) := X^n + a_{n-1}X^{n-1} + \cdots + a_1X + a_0 \in \mathbb{Z}[X]$, where $n \in \mathbb{Z}_{>0}$, $a_1 \in \mathbb{Z} \setminus p\mathbb{Z}$, and $a_0 \in p\mathbb{Z}$. Then, there exists unique $\alpha \in p\mathbb{Z}_p$ such that $f(\alpha) = 0$.

In what follows, we call an element of $p\mathbb{Z}_p$ a quadratic Hensel root if it is a root of $X^2 + bX + c \in \mathbb{Z}[X]$ where $b \in \mathbb{Z} \setminus p\mathbb{Z}$, $c \in p\mathbb{Z}$, and $X^2 + bX + c$ is irreducible. Likewise, we call an element of $p\mathbb{Z}_p$ a rational Hensel root if it is a root of $X + c \in \mathbb{Z}[X]$ with $c \in p\mathbb{Z}$ (obviously, the root is $-c$).

Lemma 4.2. T_1 and T_2 map every quadratic Hensel root to a quadratic Hensel root.

Proof. Let $\alpha \in p\mathbb{Z}_p$ be an arbitrary quadratic Hensel root. By definition, α has a minimal polynomial of the form $X^2 + bX + c \in \mathbb{Z}[X]$ with $b \in \mathbb{Z} \setminus p\mathbb{Z}$ and $c \in p\mathbb{Z}$. We see that $\alpha^2 = b - \alpha$. Since $\alpha = c/\alpha^2$, we have $|\alpha|_p = |c|_p$. Recalling the definition of u, we see that

$$
\frac{u(\alpha)p^{n_p(\alpha)}}{\alpha} = \frac{c}{\alpha} = \alpha^2.
$$

Let

$$
\alpha^2 = \sum_{i=0}^{\infty} e_i p^i \quad (e_i \in \{0, 1, \ldots, p - 1\}, \quad e_0 \neq 0).
$$

Since α^2 is a root of $X^2 + bX + c$, we have $e_0 (e_0 + b) \equiv 0 \pmod{p}$. Let r be an element of $\{1, \ldots, p - 1\}$ satisfying $r \equiv b \pmod{p}$. Since $e_0 \neq 0$, we have $e_0 + b \equiv 0 \pmod{p}$, which implies $e_0 = p - r$. Thus, $d_1(\alpha) = p - r$, and we have $T_1(\alpha) = \alpha^2 - (p - r) \in p\mathbb{Z}_p$. By substituting $X + (p - r)$ for X in $X^2 + bX + c$, we have the minimal polynomial of $T_1(\alpha)$ given by

$$
X^2 + \{b + 2(p - r)\} X + (p - r)b + c + (p - r)^2 \in \mathbb{Z}[X]. \quad (6)
$$

Since $\mathbb{Z} \setminus p\mathbb{Z} \ni b + 2(p - r) \equiv -r \pmod{p}$ and $(p - r)b + c + (p - r)^2 \in p\mathbb{Z}$, we see that $T_1(\alpha)$ is a quadratic Hensel root.

By a similar argument, we can show that $T_2(\alpha) = -\alpha^2 - r \in p\mathbb{Z}_p$ and its minimal polynomial is given by

$$
X^2 + (-b + 2r) X - rb + c + r^2 \in \mathbb{Z}[X]. \quad (7)
$$

Since $-b + 2r \in \mathbb{Z} \setminus p\mathbb{Z}$ and $-rb + c + r^2 \in p\mathbb{Z}$, we see that $T_2(\alpha)$ is also a quadratic Hensel root. \qed
Remark 4.1. Both maps \(T_1 \) and \(T_2 \) preserve discriminants of the minimal polynomials of quadratic Hensel roots, i.e., the discriminants of \(6 \) and \(7 \) are equal to \(b^2 - 4c \).

5 Continued fraction algorithms

On the basis of \(T_1 \) and \(T_2 \) introduced in the previous section, we can consider a variety of continued fraction algorithms which yield an eventually periodic expansion for every quadratic element of \(\mathbb{Q}_p \) and yield a finite expansion for every rational number. In the present paper, we deal with three particular algorithms. As in Section 4, the minimal polynomial of \(x \in A_p \) is denoted by \(aX^2 + bX + c \in \mathbb{Z}[X] \) for quadratic \(x \), and by \(bX + c \in \mathbb{Z}[X] \) for rational \(x \). Our algorithms decide which map, \(T_1 \) or \(T_2 \), is applied to a given \(x \in A_p \setminus \{0\} \) on the basis of two coefficients of its minimal polynomial, namely the coefficient \(b \) of \(X \) and the constant term \(c \), regardless of the degree of \(x \). In the following, we specify our algorithms by specifying the map \(T : A_p \setminus \{0\} \rightarrow A_p \) used by each algorithm:

Algorithm A:

\[T(x) := T_2(x). \]

Algorithm B:

\[T(x) := \begin{cases} T_2(x) & \text{if } b \geq 0, \\ T_1(x) & \text{if } b < 0. \end{cases} \]

Algorithm C:

\[T(x) := \begin{cases} T_2(x) & \text{if } b \geq 0 \text{ and } c > 0, \\ T_1(x) & \text{otherwise}. \end{cases} \]

6 Expansions of quadratic Hensel roots

In this section, we deal with the expansions of quadratic Hensel roots, on the basis of which we expand general quadratic elements of \(\mathbb{Q}_p \). We show that each of our algorithms gives an eventually periodic expansion for any quadratic Hensel root. We will deal with the expansions of general quadratic elements of \(\mathbb{Q}_p \) and those of rational numbers in the subsequent sections.

When considering an expansion of a quadratic Hensel root \(\alpha \), it is convenient to identify \(\alpha \) with the pair \((b, c)\) of coefficients of its minimal polynomial \(X^2 + \)
\(bX + c\). In the following, we will do so and allow writing \(\alpha = (b, c)\). Similarly, we write \(T(\alpha)\) also as \(T(b, c)\). We note that in view of (6) and (7), we have

\[T_1(b, c) = (b + 2(p - r), (p - r)b + c + (p - r)^2),\]
(8)

and

\[T_2(b, c) = (-b + 2r, -rb + c + r^2),\]
(9)

where \(r\) is an element of \(\{1, \ldots, p - 1\}\) satisfying \(r \equiv b \pmod{p}\).

Let \(S\) be the set of all quadratic Hensel roots, i.e.,

\[S = \{(b, c) \in \mathbb{Z}^2 \mid b \in \mathbb{Z} \setminus p\mathbb{Z}, c \in p\mathbb{Z}, \text{ and } X^2 + bX + c \text{ is irreducible}\} .\]

We put

\[S_1 := \{(b, c) \in S \mid b > 0, \ c > 0\} ,\]
\[S_2 := \{(b, c) \in S \mid b < 0, \ c > 0\} ,\]
\[S_3 := \{(b, c) \in S \mid b < 0, \ c < 0\} ,\]
\[S_4 := \{(b, c) \in S \mid b > 0, \ c < 0\} .\]

We further put

\[R := \{(b, c) \in S \mid 1 \leq b \leq p - 1\} ,\]
\[R_1 := \{(b, c) \in S_1 \mid 1 \leq b \leq p - 1\} ,\]
\[R_4 := \{(b, c) \in S_4 \mid 1 \leq b \leq p - 1\} .\]

In the following subsections, we give Theorems 6.1, 6.2, and 6.4 which state the periodicity of the continued fraction expansion obtained by Algorithms A, B, and C, for any given quadratic Hensel root.

6.1 Expansions of quadratic Hensel roots by Algorithm A

Theorem 6.1. The expansion of every quadratic Hensel root obtained by Algorithm A (i.e., \(T_2\)) is purely periodic with period one or two.

Proof. Let \((b, c) \in S\). Let \(r\) be an element of \(\{1, \ldots, p - 1\}\) satisfying \(r \equiv b \pmod{p}\). Then, \(T_2(b, c) = (-b + 2r, -rb + c + r^2)\). Using \(-b + 2r \equiv r \pmod{p}\), we easily see that \(T^2_2(b, c) = (b, c)\). Thus, \((b, c)\) is a purely periodic point with period two or one. \(\square\)

Remark 6.1. It is easy to see that \((b, c) \in S\) is a fixed point of \(T_2\) if and only if \((b, c) \in R\).
6.2 Expansions of quadratic Hensel roots by Algorithm B

Theorem 6.2. The expansion of every quadratic Hensel root obtained by Algorithm B is eventually periodic with period one.

Proof. Let \((b, c) \in S\). We will show that \((b, c)\) is an eventually fixed point of the map \(T\) associated with Algorithm B by considering the following three cases:

(i) \(b \in \{1, \ldots, p-1\}\). According to the definition of Algorithm B, we apply \(T_2\) to \((b, c) \in R\). As described in Remark 6.1, such \((b, c)\) is a fixed point.

(ii) \(b < 0\). We apply \(T_1\) to \((b, c) \in R\) with \(b < 0\). We can write \(b = -np + r\), where \(n \in \mathbb{Z}_{>0}\) and \(r \in \{1, \ldots, p-1\}\). Let \((b', c') = T_1(b, c)\). Then, \(b' = -(n-1)p + p - r\). Thus, the \(n\)-fold iteration of \(T_1\) maps \((b, c)\) to a fixed point given in (i).

(iii) \(b > p\). We apply \(T_2\) to \((b, c) \in R\) with \(b > p\). We can write \(b = np + r\), where \(n \in \mathbb{Z}_{>0}\) and \(r \in \{1, \ldots, p-1\}\). Let \((b', c') = T_2(b, c)\). Since \(b' = -np + r < 0\), this case reduces to (ii).

By the proof of Theorem 6.2, we get the following corollary.

Corollary 6.3. The set of purely periodic points of \(T\) associated with Algorithm B in \(S\) is \(R\).

6.3 Expansions of quadratic Hensel roots by Algorithm C

Theorem 6.4. The expansion of every quadratic Hensel root obtained by Algorithm C is eventually periodic.

Proof. We will show that every orbit of \(T\) associated with Algorithm C starting from a quadratic Hensel root is eventually periodic.

First, we need to discuss the dynamics of \(T\) on \(S\). We apply \(T_2\) to \((b, c) \in S_1\) and \(T_1\) to \((b, c) \in \bigcup_{i=2}^{4} S_i\). We see by (8) that there exists no fixed point of \(T_1\) in \(\bigcup_{i=2}^{4} S_i\) since \(b \neq b + 2(p - r)\). Thus, the fixed points of \(T\) on \(S\) are those of \(T_2\) in \(S_1\), i.e., the points \((b, c) \in R_1\) (cf. Remark 6.1). We see by (8) that in \(S_4\), the values of \(b\) and \(c\) strictly increase with each iteration of \(T_1\), and thus every \((b, c) \in S_4\) is eventually mapped into \(S_1\). Every \((b, c) \in S_1\) other than the fixed points is mapped into either \(S_2\) or \(S_3\) under \(T_2\) (cf. Proof (iii) of Theorem 6.2). In \(S_2\) and \(S_3\), the value of \(b\) strictly increases with each iteration of \(T_1\), and every \((b, c) \in S_2 \cup S_3\) is eventually mapped into \(R = R_1 \cup R_4\) (cf. Proof (ii) of Theorem 6.2).

Second, we should note that \(T_1\) on \(S\) is bijective. The inverse map \(T_1^{-1} : S \to S\) is given by

\[T_1^{-1}(b, c) = (b - 2r, -rb + c + r^2),\]

where \(r\) is an element of \(\{1, \ldots, p-1\}\) satisfying \(r \equiv b \pmod{p}\).
Due to the dynamics of T on S, any orbit starting from a quadratic Hensel root eventually enters either R_1 or R_4. If the orbit enters R_1, then the orbit is eventually periodic with period one since every element of R_1 is a fixed point.

In what follows, we will show that the orbit entering R_4 is also eventually periodic by showing that every element of R_4 is a purely periodic point. Let $(b_0, c_0) \in R_4$. Repeated iteration of T (i.e., T_1) eventually maps (b_0, c_0) into S_1. Two cases occur:

(i) (b_0, c_0) is mapped into S_1 by iterating T even times, i.e., there exists $n \in \mathbb{Z}_{>0}$ such that $T^{2n}(b_0, c_0) \in S_1$ and $T^i(b_0, c_0) \in S_4$ for $0 \leq i \leq 2n - 1$.

(ii) (b_0, c_0) is mapped into S_1 by iterating T odd times, i.e., there exists $n \in \mathbb{Z}_{>0}$ such that $T^{2n-1}(b_0, c_0) \in S_1$ and $T^i(b_0, c_0) \in S_4$ for $0 \leq i \leq 2n - 2$.

We note the following fact: Let $r := b_0 \in \{1, \ldots, p-1\}$. By induction, we can show
\[
T_1^{2k}(b_0, c_0) = (2pk + r, p^2k^2 + rpk + c_0) \quad (k \in \mathbb{Z}),
T_1^{2k-1}(b_0, c_0) = (2pk - r, p^2k^2 - rpk + c_0) \quad (k \in \mathbb{Z}).
\]

Let us consider Case (i). We see that
\[
T^{2n}(b_0, c_0) = T_1^{2n}(b_0, c_0) = (2pn + r, p^2n^2 + rpn + c_0) \in S_1.
\]
Hence, we have
\[
T^{2n+1}(b_0, c_0) = T_2(2pn + r, p^2n^2 + rpn + c_0) = (-2pn + r, p^2n^2 - rpn + c_0).
\]
On the other hand, we see that
\[
T_1^{-2n}(b_0, c_0) = (-2pn + r, p^2n^2 - rpn + c_0) = T^{2n+1}(b_0, c_0).
\]
Since $-2pn + r < 0$, we have
\[
(b_0, c_0) = T_1^{2n} \circ T^{2n+1}(b_0, c_0) = T^{4n+1}(b_0, c_0).
\]
Therefore, in Case (i), (b_0, c_0) is a purely periodic point.

In a similar manner, we can prove that also in Case (ii), (b_0, c_0) is a purely periodic point.

The following lemma characterizes the set of purely periodic points of T associated with Algorithm C in S.

12
Lemma 6.5. The set of purely periodic points of T associated with Algorithm C in S is $P_1 \cup R_1 \cup S_3 \cup S_4$, where P_1 is defined by

$$P_1 := \{(b, c) \in S_1 \setminus R_1 \mid c < \lfloor b \rfloor \langle b \rangle \}.$$ \hfill \(\square\)

Proof. Every element of R_1 and R_4 is a purely periodic point (cf. the proof of Theorem 6.4).

Every $(b, c) \in S_4 \setminus R_4$ is a purely periodic point since (b, c) is mapped into R_4 by iterating T_4^{-1}. Thus, every element of S_4 is a purely periodic point.

It is not difficult to see that $(b, c) \in S_1 \setminus R_1$ is a purely periodic point if and only if $T_1^{-1}(b, c) \in S_4$ which, by (10), is equivalent to $c < rb - r^2 = \lfloor b \rfloor \langle b \rangle$. Hence, P_1 is the set of all purely periodic points in $S_1 \setminus R_1$.

There exists no purely periodic point in S_2. In fact, we can see this as follows: Let (b, c) be an arbitrary element of P_1. We have $T_2(b, c) \in S_3$ since $-rb + c + r^2 = c - \lfloor b \rfloor \langle b \rangle < 0$ (cf. (10)). Hence, no purely periodic orbit enters S_2.

Every orbit starting from $(b, c) \in S_3$ passes through R_4 and P_1, and then it re-enters S_3. We denote by (b_0, c_0) (resp., (b_*, c_*)) the point in R_4 (resp., in P_1) on the orbit. Obviously, there exists $m \in \mathbb{Z}_{>0}$ such that $(b, c) = T_1^{-m}(b_0, c_0)$. Since $T_2(b_*, c_*) \in S_3$ is a point on the purely periodic orbit passing through (b_0, c_0), there exists $m_* \in \mathbb{Z}_{>0}$ such that $T_2(b_*, c_*) = T_1^{-m_*}(b_0, c_0)$. We easily see that $T_1^{-1} \circ T_2(b_*, c_*) = (-b_*, c_*)$. Since $b_* > p$ and $c_* > 0$, we see that $T_1^{-1} \circ T_2(b_*, c_*) \in S_2$, which implies $m \leq m_*$. Hence, (b, c) is a point on the purely periodic orbit passing through (b_0, c_0). Therefore, every $(b, c) \in S_3$ is a purely periodic point.

7 Expansions of quadratic elements of \mathbb{Q}_p

Let α be an arbitrary quadratic element of \mathbb{Q}_p. In this section, we will first show that each of the three algorithms gives an eventually periodic expansion for α, by showing that the fractional part $\langle \alpha \rangle$ is mapped to a quadratic Hensel root under some iterate of T_1 and T_2. We will then give a theorem that characterizes elements having purely periodic expansions for each algorithm.

Let α^σ be the conjugate of α other than α. We consider the following six cases:

- **Case 1 A:** $|\alpha|_p < |\alpha^\sigma|_p$ and $|\alpha|_p \leq p^{-1}$,
 - **B:** $|\alpha|_p < |\alpha^\sigma|_p$ and $|\alpha|_p \geq 1$,
- **Case 2 A:** $|\alpha|_p > |\alpha^\sigma|_p$ and $|\alpha|_p \leq p^{-1}$,
 - **B:** $|\alpha|_p > |\alpha^\sigma|_p$ and $|\alpha|_p \geq 1$,
- **Case 3 A:** $|\alpha|_p = |\alpha^\sigma|_p$ and $|\alpha|_p \leq p^{-1}$,
 - **B:** $|\alpha|_p = |\alpha^\sigma|_p$ and $|\alpha|_p \geq 1$.

13
Case 1A: $|\alpha|_p < |\alpha^\sigma|_p$ and $|\alpha|_p \leq p^{-1}$

Let $aX^2 + bX + c \in \mathbb{Z}[X]$ be the minimal polynomial of α. We see that

$$|\alpha^\sigma|_p = \left| \frac{b}{a} - \alpha \right|_p = \frac{|b|}{|a|_p},$$

and

$$|\alpha|_p = \left| \frac{c}{a\alpha^\sigma} \right| = \frac{|c|}{|b|_p}.$$

Since $|\alpha|_p < |\alpha^\sigma|_p$, we have

$$\left| \frac{ac}{b^2} \right|_p < 1. \quad (11)$$

Recalling the definition of u, we see that

$$\frac{u(\alpha)p^\nu(\alpha)}{\alpha} = \frac{u(\alpha)}{\alpha|\alpha|_p} = \frac{c|b|_p}{\alpha} \in \mathbb{Z}_p \setminus p\mathbb{Z}_p.$$

By substituting $c|b|_p/X$ for X in $aX^2 + bX + c$, we have the minimal polynomial of $c|b|_p/\alpha$ given by

$$X^2 + b|b|_p X + ac|b^2|_p \in \mathbb{Z}[X].$$

Note that $b|b|_p \in \mathbb{Z} \setminus p\mathbb{Z}$, and $ac|b^2|_p \in p\mathbb{Z}$ by (11). Hence, $c|b|_p/\alpha$ is the conjugate of the quadratic Hensel root $c|b|_p/\alpha^\sigma$. By the proof of Lemma 4.2, we can see that the fractional part of the conjugate of a quadratic Hensel root is also a quadratic Hensel root. Therefore, $T_1(\alpha) = \langle c|b|_p/\alpha \rangle$ and $T_2(\alpha) = \langle -c|b|_p/\alpha \rangle$ are quadratic Hensel roots.

Consequently, in Case 1A, α is mapped to a quadratic Hensel root under one iteration of either T_1 or T_2.

Case 1B: $|\alpha|_p < |\alpha^\sigma|_p$ and $|\alpha|_p \geq 1$

Obviously, $|\alpha|_p = \left| |\alpha|_p < |\alpha^\sigma|_p \text{ and } |\alpha^\sigma|_p > 1 \right.$ hold. Hence, we have

$$|\langle \alpha \rangle^\sigma|_p = |\alpha^\sigma - |\alpha|_p = |\alpha^\sigma|_p > 1.$$

Since $|\langle \alpha \rangle|_p \leq p^{-1}$ and $|\langle \alpha \rangle|_p < |\langle \alpha \rangle^\sigma|_p$, Case 1B reduces to Case 1A.

Case 2A: $|\alpha|_p > |\alpha^\sigma|_p$ and $|\alpha|_p \leq p^{-1}$

Let $aX^2 + bX + c \in \mathbb{Z}[X]$ be the minimal polynomial of α. Following a discussion similar to the one in Case 1A, we see that

$$|\alpha|_p = \left| \frac{b}{a} \right|_p, \quad |\alpha^\sigma|_p = \left| \frac{c}{b} \right|_p, \quad \text{and} \quad \left| \frac{b^2}{ac} \right|_p > 1. \quad (12)$$

Let us consider the case of applying T_1 to α. Since

$$T_1(\alpha) = \frac{u(\alpha)}{\alpha|\alpha|_p} - d_1(\alpha),$$
the conjugate $T_1(\alpha)^\sigma \neq T_1(\alpha)$ of $T_1(\alpha)$ is given by

$$T_1(\alpha)^\sigma = \frac{u(\alpha)}{\alpha^\sigma |\alpha|_p} - d_1(\alpha).$$

By (12), we have

$$\left| \frac{u(\alpha)}{\alpha^\sigma |\alpha|_p} \right|_p = \left| \frac{b^2}{ac} \right|_p > 1.$$

Since $|d_1(\alpha)|_p = 1$, we have

$$|T_1(\alpha)^\sigma|_p = \left| \frac{u(\alpha)}{\alpha^\sigma |\alpha|_p} \right|_p > 1.$$

Similarly, in the case of applying T_2 to α, we see that $|T_2(\alpha)^\sigma|_p > 1$.

Since $|T_1(\alpha)|_p \leq p^{-1}$ and $|T_2(\alpha)|_p \leq p^{-1}$, we see that $|T_1(\alpha)^\sigma|_p < |T_1(\alpha)|_p$ and $|T_2(\alpha)^\sigma|_p < |T_2(\alpha)^\sigma|_p$. Therefore, Case 2A reduces to Case 1A after one iteration of T_1 or T_2.

Case 2B: $|\alpha|_p > |\alpha|_p$ and $|\alpha|_p \geq 1$

Since $|\alpha|_p > |\alpha|_p$ and $|\alpha|_p \geq 1$, we have

$$|\alpha|_p = |\alpha - |\alpha||_p = ||\alpha||_p \geq 1.$$

Since $|\langle \alpha \rangle|_p \leq p^{-1}$ and $|\langle \alpha \rangle|_p < |\langle \alpha \rangle|_p$, Case 2B reduces to Case 1A.

Case 3A: $|\alpha|_p = |\alpha|_p$ and $|\alpha|_p \leq p^{-1}$

Let $\{\alpha_n\}_{n \geq 1}$ be an arbitrary sequence in the set $\{1, 2\}$. We obtain an expansion of α of the form (13) by applying $T_n \circ \cdots \circ T_1$ ($n \in \mathbb{Z}_{>0}$) to α. Let us define a sequence $\{\alpha_n\}_{n \geq 0}$ by

$$\alpha_n = \alpha \quad \text{and} \quad \alpha_0 = \alpha_1 \circ \cdots \circ T_1(\alpha_0) \quad (n \geq 1).$$

Assuming that $|\alpha_n|_p = |\alpha_n|_p$ for all $n \in \mathbb{Z}_{>0}$, it is not difficult to see that the expansion of α is identical with that of α obtained by applying $T_\epsilon \circ \cdots \circ T_1$ ($n \in \mathbb{Z}_{>0}$) to α. Then, by Theorem 3.5 (ii), we get $\alpha = \alpha^\sigma$, which is a contradiction. This proves that there exists $n \in \mathbb{Z}_{>0}$ such that $|\alpha_n|_p \neq |\alpha_n|_p$. Therefore, Case 3A reduces to Case 1A or Case 2A after sufficient iterations of T_1 and T_2.

Case 3B: $|\alpha|_p = |\alpha|_p$ and $|\alpha|_p \geq 1$

If $|\langle \alpha \rangle|_p \neq |\langle \alpha \rangle|_p$, Case 3B reduces to Case 1A or Case 2A; otherwise Case 3B reduces to Case 3A.

Consequently, in all the cases, $\langle \alpha \rangle$ is mapped to a quadratic Hensel root under some iterate of T_1 and T_2, regardless of the order in which they are applied. Hence, by Theorems 6.1, 6.2, and 6.3 we have the following theorem.
Theorem 7.1. The expansion of every quadratic element of \mathbb{Q}_p over \mathbb{Q} obtained by each of Algorithms A, B, and C is eventually periodic.

We now turn to the characterization of elements with purely periodic expansions for each algorithm. Note that we consider d_0 in (1) to be zero for purely periodic expansions, and therefore elements with purely periodic expansions are necessarily in $p\mathbb{Z}_p$.

Except for quadratic Hensel roots, there exists no quadratic element of $p\mathbb{Z}_p$ whose expansion by our algorithms is purely periodic. This is because every quadratic element of $p\mathbb{Z}_p$ is mapped to a quadratic Hensel root under some iterate of T_1 and T_2, as we have seen above.

By Theorem 9.1, which will be shown in Section 9, we also see that there exists no rational number whose expansion is periodic.

Consequently, for each algorithm, the set of elements having purely periodic expansions, i.e., the reduced set, is identical with the set of purely periodic points within the set S of quadratic Hensel roots. Hence, by Theorem 6.1 Corollary 6.3 and Lemma 6.5 we have the following theorem.

Theorem 7.2. The reduced sets for Algorithms A, B, and C are given by S, R, and $P_1 \cup R_1 \cup S_3 \cup S_4$, respectively.

8 Expansions of rational Hensel roots

$\alpha = 0$ is the root of $X \in \mathbb{Z}[X]$ and thus is a rational Hensel root. As described in Section 2 we do not expand $\alpha = 0$ any further.

Let us consider expansions of rational Hensel roots other than 0, i.e., those of roots of $X + c \in \mathbb{Z}[X]$ with $c \in p\mathbb{Z} \setminus \{0\}$. Recall the definitions of our algorithms in Section 5. Since the coefficient b of X of the minimal polynomial in $\mathbb{Z}[X]$ satisfies $b = 1$ for every rational Hensel root, we can classify our algorithms into two classes:

Class I: Algorithms which apply T_2 to every rational Hensel root other than 0 (Algorithms A and B)

Class II: Algorithms which apply T_2 to a rational Hensel root if the coefficient c of its minimal polynomial satisfies $c > 0$ and apply T_1 if $c < 0$ (Algorithm C)

In the following, we show that whichever class an algorithm belongs to, it gives a finite expansion for every rational Hensel root other than 0.

Class I

Let α be an arbitrary rational Hensel root other than 0. Applying T_2 to α, we have

$$T_2(\alpha) = \frac{-u(\alpha)}{\alpha|\alpha|_p} - d_2(\alpha).$$
Let $X + c \in \mathbb{Z}[X]$ be the minimal polynomial of α. Since $\alpha = -c$, we see that $|\alpha|_p = |c|_p$. Since
\[
-\frac{u(\alpha)}{\alpha|\alpha|_p} = 1,
\]
we have $d_2(\alpha) = 1$, which implies
\[
T_2(\alpha) = \frac{-c}{\alpha} - 1 = 0.
\]
Therefore, α is expanded into the finite continued fraction
\[
\alpha = -\frac{c}{1}
\]
by each of the algorithms belonging to Class [1]

\textit{Class [2]}

Let α be an arbitrary rational Hensel root other than 0, and let $X + c \in \mathbb{Z}[X]$ be the minimal polynomial of α.

If $c > 0$, we apply T_2 to α. Hence, α is expanded as
\[
\alpha = -\frac{c}{1}
\]
(cf. Class [1]).

Let us consider the case where $c < 0$. In this case, we apply T_1 to α. Since
\[
\frac{u(\alpha)}{\alpha|\alpha|_p} = -1,
\]
we see that $d_1(\alpha) = p - 1$, which implies
\[
T_1(\alpha) = \frac{c}{\alpha} - (p - 1) = -p.
\]
Note that $T_1(\alpha) = -p$ is also a rational Hensel root whose minimal polynomial is $X + p \in \mathbb{Z}[X]$. Since the constant term p of $X + p$ is positive, $-p$ is expanded as
\[
-p = \frac{-p}{1}
\]
by using T_2. By (13) and (14), we see that α is expanded as
\[
\alpha = \frac{c}{p - 1 + \frac{-p}{1}}
\]
when $c < 0$.

Therefore, the algorithm belonging to Class [2] also gives a finite continued fraction for α.

As a consequence, we get the following theorem.

\textbf{Theorem 8.1.} Each of Algorithms A, B, and C gives a finite expansion for every rational Hensel root.
9 Expansions of rational numbers

In this section, we will show that each of the three algorithms gives a finite expansion for every rational number.

Let α be an arbitrary rational number. We distinguish the following two cases:

Case A: $|\alpha|_p \leq p^{-1}$,

Case B: $|\alpha|_p \geq 1$.

Case A. $|\alpha|_p \leq p^{-1}$

If α is a rational Hensel root, our algorithms give a finite expansion for α (cf. Theorem 5.1).

Let us consider the case where α is not a rational Hensel root. Let $bX + c \in \mathbb{Z}[X]$ be the minimal polynomial of α. Obviously, $\alpha = -c/b$. Since b, c are coprime and $|\alpha|_p \leq p^{-1}$, we see that $b \in \mathbb{Z} \setminus p\mathbb{Z}$ and $c \in p\mathbb{Z}$. Hence, we have $|\alpha|_p = |c|_p$. We easily see that

$$\frac{u(\alpha)}{\alpha|\alpha|_p} = -b \in \mathbb{Z} \setminus p\mathbb{Z},$$

which implies that $T_1(\alpha) = \langle -b \rangle$ and $T_2(\alpha) = \langle b \rangle$ are in $p\mathbb{Z}$, i.e., they are rational Hensel roots. Therefore, the expansion of α obtained by each of our algorithms is finite also in the case where α is not a rational Hensel root.

Case B. $|\alpha|_p \geq 1$

Since $\langle \alpha \rangle \in \mathbb{Q}$ and $|\langle \alpha \rangle|_p \leq p^{-1}$, Case B reduces to Case A.

Summarizing the discussion above, we have the following theorem.

Theorem 9.1. Each of Algorithms A, B, and C gives a finite expansion for every rational number.

10 Concluding remarks

It is worth making some remarks on the generality of our results. We denote by A'_p the set of all the algebraic elements of \mathbb{Q}_p of degree at most two.

1. We have dealt with continued fractions of the form (1), but we can also consider another basic type, namely continued fractions of the form

$$\frac{t_1p^{k_1}}{d_1} + \frac{t_2p^{k_2}}{d_2} + \frac{t_3p^{k_3}}{d_2} + \cdots (k_1 \in \mathbb{Z}, k_{n+1} \in \mathbb{Z}_{>0}, t_n, d_n \in \mathbb{Z} \setminus p\mathbb{Z} \ (n \geq 1)).$$

(15)
The convergence of continued fractions (15) is also guaranteed by Theorem 3.5. By replacing the domain \(A_p \setminus \{ 0 \} \) of \(T_1 \) and \(T_2 \) by \(A'_p \setminus \{ 0 \} \), we can modify our algorithms to generate continued fractions of the form (15). Even with this modification, all the theorems in this paper still hold for the modified algorithms.

2. We have focused on the expansion of the elements of \(A'_p \), but it is easy to extend our algorithms to cover all the elements of \(\mathbb{Q}_p \). One of the simplest ways to do this is to expand every element of \(\mathbb{Q}_p \setminus A'_p \) by using the map \(T \) such that \(t \) and \(d \) in (3) satisfy \(t(x) \equiv 1 \) and \(\text{Im}(d) \subset \{ 1, \ldots, p-1 \} \). The convergence of resulting continued fractions is guaranteed, as we have seen in Section 3. Note that even with this extension, a given element of \(\mathbb{Q}_p \setminus A'_p \) has neither a periodic nor finite expansion since \(\text{Im}(t) \) and \(\text{Im}(d) \) are included in \(\mathbb{Q} \).

Algorithms other than those presented here, as well as the extension of our approach to multidimensional \(p \)-adic continued fractions, will be reported in forthcoming papers.

Acknowledgements

This research was supported by JSPS KAKENHI Grant Number 15K00342.

References

[1] J. Browkin, Continued fractions in local fields, II, Math. Comp. 70 (2001), 1281–1292.
[2] P. Bundschuh, \(\text{p} \)-adische Kettenbrüche und Irrationalität \(\text{p} \)-adischer Zahlen, Elem. Math. 32 (1977), 36–40.
[3] M. Furukado, S. Ito, A. Saito, J.-I. Tamura, S. Yasutomi, A new multidimensional slow continued fraction algorithm and stepped surface, Experimental Math. 23 (2014), 390–410.
[4] É. Galois, Démonstration d’un théorème sur les fractions continues périodiques, Annales de mathématiques pures et appliquées 19 (1828/29), 294–301.
[5] J.-L. Lagrange, Additions au mémoire sur la résolution des équations numériques, Mém. Berl. 24 (1770).
[6] T. Ooto, Transcendental \(\text{p} \)-adic continued fractions, preprint.
[7] O. Perron, Die Lehre von den Kettenbrüchen (Teubner, Leipzig, 1913).
[8] A. A. Ruban, Certain metric properties of \(\text{p} \)-adic numbers (Russian), Sibirsk. Mat. Zh. 11 (1970), 222–227.
[9] T. Schneider, Über p-adische Kettenbrüche, Symp. Math. 4 (1968/69), 181–189.

[10] J.-I. Tamura, A p-adic phenomenon related to certain integer matrices, and p-adic values of a multidimensional continued fraction, in Summer School on the Theory of Uniform Distribution, RIMS Kōkyūroku Bessatsu B29 (2012), 1-40.

[11] J.-I. Tamura, S. Yasutomi, A new multidimensional continued fraction algorithm, Math. Comp. 78 (2009), 2209–2222.

[12] J.-I. Tamura, S. Yasutomi, Algebraic Jacobi-Perron algorithm for bi-quadratic numbers, in Diophantine Analysis and Related Fields 2010, AIP Conf. Proc. 1264 (2010), 139–149.

[13] J.-I. Tamura, S. Yasutomi, A new algorithm of continued fractions related to real algebraic number fields of degree ≤ 5, Integers 11B (2011), A16.

[14] J.-I. Tamura, S. Yasutomi, Some aspects of multidimensional continued fraction algorithms, in Functions in Number Theory and Their Probabilistic Aspects, RIMS Kōkyūroku Bessatsu B34 (2012), 463–475.

[15] B. M. M. de Weger, Periodicity of p-adic continued fractions, Elem. Math. 43 (1988), 112–116.

[16] B. M. M. de Weger, Approximation lattices of p-adic numbers, J. Number Theory 24 (1986), 70–88.