A supramolecular polymeric heterojunction composed of an all-carbon conjugated polymer and fullerenes†

Shengda Wang, a Xingcheng Li, a Xinyu Zhang, a Pingsen Huang, a Pengwei Fang, a Junhuai Wang, b Shangfeng Yang, a,b Kaifeng Wu b and Pingwu Du a,

Abstract

Herein, we design and synthesize a novel all-carbon supramolecular polymer host (SPh) containing conjugated macrocycles interconnected by a linear poly(para-phenylene) backbone. Applying the supramolecular host and fullerene C60 as the guest, we successfully construct a supramolecular polymeric heterojunction (SPh–C60). This carbon structure offers a means to explore the convex–concave π–π interactions between SPh and C60. The produced SPh was characterized by gel permeation chromatography, mass spectrometry, FTIR, Raman spectroscopy, and other spectroscopies. The polymeric segment can be directly viewed using a scanning tunneling microscope. Femtosecond transient absorption and fluorescence up-conversion measurements revealed femtosecond (<300 fs) electron transfer from photoexcited SPh to C60, followed by nanosecond charge recombination to produce the C60 triplet excited state. The potential applications of SPh–C60 in electron- and hole-transport devices were also investigated, revealing that C60 incorporation enhances the charge transport properties of SPh. These results expand the scope of the synthesis and application of supramolecular polymeric heterojunctions.

Introduction

The design and fabrication of heterojunctions in varying dimensions have attracted much attention for many applications, such as transistors, solar cells, solid-state lasers, and diodes.1–4 It is worth noting that organic heterojunctions played very important roles in organic thin-film solar cells.5 Various organic electron-donating molecules, such as thiophenes,6 porphyrins7,8 and tetraphiafulvalene derivatives9 can construct C60-based donor–acceptor (D–A) heterojunction systems, which can effectively suppress aggregation of fullerene derivatives and facilitate energy conversion. Imahori and co-workers reported porphyrin/C60 composite clusters and discovered photocurrent generation under light irradiation.10,11 Inspired by these studies, crown-shaped small molecular heterojunctions were constructed using curved nanographene host molecules for photocurrent generation.12 Supramolecular polymers are regarded as an important source of intelligent materials and show broad applications.13–18 These supramolecular structures can be formed by various different interactions, such as metal coordination,19–21 π–π stacking,22 host–guest recognition,23–25 hydrogen bonding,26,27 Würthner and co-workers achieved a co-assembled p–n-junction on a nanoscopic scale containing a p-type oligo(phenylene vinylene) donor and an n-type phenylene bismide acceptor, which are initially formed via hydrogen bonding and subsequently self-assemble into chiral stacks by π–π interactions.28 Aida and co-workers reported an unusual supramolecular polymerization reaction upon heating as well as cooling using a metalloporphyrin-based tailored monomer to investigate its stimuli-responsive applications.29 Recently, frustrated Lewis pairs were implemented into supramolecular polymers combined with π-conjugated O-bridged triphenylborane and triphenylamines by Meijer and co-workers.30 The Yang group reported novel supramolecular polymeric nanospheres comprised of chromophoric guest molecules and disulfiodebridged bispillar[5]arene to construct a light-harvesting system.31 However, the construction of highly ordered, multi-stage, multilayered polymeric supramolecular systems is still an unsolved challenge.32,33 The structural effects of charge mobilities in supramolecular polymeric heterojunction systems have been rarely explored. Conjugated polymers (CPs) have attracted great interest for various optoelectronic applications due to their

† Electronic supplementary information (ESI) available. See DOI: 10.1039/d1sc03410c
semiconductivity in pristine (neutral) or doped states.44 CPs generally exhibit an efficient absorption or emission at the band edge.45 For example, excitons with bounded electron–hole pairs are created to emit strong luminescence when photons are absorbed in poly(phenylenevinylene) materials.46 The wide band-gap poly(p-phenylene) (PPP) materials have a rigid-rod character and contain very stable benzene rings.47 Therefore, much attention has also been paid to their synthesis and electronic properties.38–41 Linear or cyclic benzene rings in PPP and cyclo-para-phenylene (CPP) macrocycles can be considered as conjugated segments of graphene nanoribbons and single-walled carbon nanotubes (SWCNTs).48–49 In addition, it has been found that these macrocycles show good supramolecular interactions with fullerenes such as C\textsubscript{60} (ref. 50 and 51) and C\textsubscript{70}.52 Their electron transfer properties between a macrocycle and fullerenes have been recently investigated by von Delius and Guldi,53,54 Martin,55 and our group.52,56,57 Thus, integrating the physical properties of macrocycle-based conjugated polymers and fullerenes to make supramolecular polymeric heterojunctions could have many interesting properties and applications in molecular electronics and materials.38

Herein, we report design and synthesis of a novel PPP-based supramolecular polymeric heterojunction containing conjugated macrocycles interconnected by a PPP backbone, which acts as a supramolecular host to form a guest–host supramolecular polymeric heterojunction with fullerene C\textsubscript{60} (SPh \supset C\textsubscript{60}), representing the first polymeric segment of the supramolecular heterojunction of carbon nanopeapods (Fig. 1). In specific, the conjugated macrocycles mimic the curved polyphenylene-C\textsubscript{60} peapod segment of a CNT, and the linear PPP backbone is the linear polyphenylene part along the CNT. This polymer was fully characterized by different techniques. In addition, the supramolecular interactions between SPh and fullerene C\textsubscript{60} were investigated. Moreover, transient absorption measurements were performed to investigate the charge transport dynamics between SPh (electron donor) and C\textsubscript{60} (electron acceptor). The charge transport properties of the supramolecular polymeric heterojunction were examined using the space charge limited current (SCLC) method, revealing that C\textsubscript{60} incorporation enhances the charge transport properties of SPh.

Results and discussion

Molecular design of SPh

To obtain the target supramolecular polymeric heterojunction as the segment of carbon nanopeapods with desired structural features, the appropriate functional building unit for π-extension should be rationally selected. Thus, a bifunctional conjugated macroyclic host with the reaction sites in the π-position will be a good candidate for both linear polymeric π-extension and supramolecular interaction. A previous study showed that a cyclic precursor can react with the linear component containing three phenyl rings.26 Then, a tetra-substituted phenylene unit with different reaction sites can connect with the cyclic molecule by the Suzuki–Miyaura coupling reaction to achieve the bifunctional monomer and subsequently to form a long π-conjugated PPP-based polymeric segment of CNTs. Once fullerene molecules are embedded into CPP moieties of the conjugated polymer, a polymeric segment of carbon nanopeapods can be achieved.

Synthesis of SPh

The synthesis procedure for SPh is summarized in Fig. 2. Compound 2’,5’,5’-dibromo-4,4’-dichloro-1,1’,4’,4”-terphenyl (1) was prepared according to our previously reported procedure.26 Then, two bromo groups in 1 were transformed into 4,4,5,5’-tetramethyl-1,3,2-dioxaborolane groups by Pd-catalyzed borylation to produce compound 2 in a yield of \sim60%. Subsequently, linear compound 2 was embedded into the ring-shaped structure to generate the monomer for polymerization. Under the standard conditions for a Pd-catalyzed Suzuki coupling reaction, compound 2 reacted with the curved precursor 3 to synthesize the key macrocycle intermediate 4, which was successfully converted into the targeted macroyclic monomer 5, a light yellow solid, by an aromatization reaction. All these small molecules were fully characterized by NMR, and MS (Fig. S16–S23†). Finally, a polymerization reaction using compound 5 was carried out in dry DMF by a nickel-mediated Yamamoto homocoupling reaction, and the polymer SPh was then obtained as an intense yellow solid in a yield of \sim72%.

Characterization of the SPh and SPh \supset C\textsubscript{60}

The successful synthesis of π-extended polymer SPh from compound 5 was confirmed by gel permeation chromatography (GPC), FTIR, mass spectrometry, and Raman spectroscopy. After the polymerization reaction, Soxhlet extractions with methanol and acetone were performed to remove lower molecular weight oligomers; the GPC molecular weight data for SPh are presented in Fig. 3a and S1.† The weight average molecular weight (M_w), relative number-average molecular weight (M_n), and polydispersity index (PDI) of SPh were measured, and the results...
showed that $M_n = 10,768 \text{ g mol}^{-1}$ using polystyrene as the standard. This weight is approximately equal to 11 repeating units. The large PDI value at 2.66 suggested a broad molecular weight distribution. The mass spectra are shown in Fig. S2 and S7,† demonstrating different lengths of the polymeric molecules with roughly similar mass distribution results before and after the chromatographic purification of the polymer. This is probably due to the high molecular weight, low solubility, and some aggregation in SPh, which make purification of each oligomer very difficult. MALDI-TOF MS spectrometry data of SPh show a series of equidistant mass peaks in the high-molecular-weight fraction with up to 17 repeating units. The m/z and interval values ($\Delta m/z = 910.36$) are consistent with the calculated values, indicating the successful polymerization of compound 5.

Moreover, we compared the GPC traces of SPh\supseteqC$_{60}$ in different solvents (Fig. S10†). Only small oligomers are present, probably due to the poor solubility of SPh\supseteqC$_{60}$ in chloroform (CHCl$_3$) and N,N-dimethylformamide (DMF) (Fig. S10†). It should be noted that the concentration for GPC was approximately 5 mg mL$^{-1}$ and substantial insolubilities in the concentrated solutions cannot be introduced into the mobile phase. Thus, the results only reflect smaller soluble oligomers dissolved in CHCl$_3$ and DMF. In addition, SPh\supseteqC$_{60}$ was further characterized by FTIR (Fig. S8†). C_{60} contains the C–C bond and C=C bond, and four absorption peaks are found in the FTIR spectra of SPh\supseteqC$_{60}$ at 526, 576, 1161, and 1430 cm$^{-1}$, respectively. Compared with the FTIR spectrum of SPh, the results suggest the formation of a supramolecular polymeric heterojunction (SPh\supseteqC$_{60}$). Raman spectroscopy was also used to characterize SPh\supseteqC$_{60}$. In Fig. S9† the Raman dominant peak of SPh\supseteqC$_{60}$ at 1469 cm$^{-1}$, indicating the stretching mode of cages of C$_{60}$, slightly shifted compared with that of C$_{60}$ (1468 cm$^{-1}$), which is similar to C$_{60}$-β-CDP reported by Diao and co-workers.59,60 These results indicate that the formation of supramolecular complexes (SPh\supseteqC$_{60}$) did not change the nature of C$_{60}$. No appreciable Raman peaks of SPh can be recognized in SPh\supseteqC$_{60}$, probably due to the strong fluorescence background signal of SPh.

Raman spectroscopy was further used to characterize SPh. Fig. 3b, S3, and S4† show the Raman spectra of SPh and monomer 5. A strong Raman G-band appears at approximately 1600 cm$^{-1}$ for both SPh and compound 5, which probably arises from the symmetrical vibration caused by the collective C–C stretching modes of the benzenoid rings along the transverse tube axis. The D-band at ~1200 cm$^{-1}$ mainly originates from the in-plane C–H bending modes, and those around 1270 cm$^{-1}$ correspond to ring breathing modes. In addition, the main peaks of [10]cyclo-para-phenylene were at 1206, 1265, and 1582 cm$^{-1}$, and the signals of linear PPP are located at 1215, 1285, and 1602 cm$^{-1}$.‡ Some of these peaks are quite similar to signals of SPh, which further confirms the existence of cyclo-para-phenylene macrocycle and one-dimensional PPP structures. All these results suggest the polymerization of monomer 5 and the formation of SPh.

The FTIR spectra also demonstrate the successful polymerization of compound 5 into SPh (Fig. 3c, d, S5 and S6†). Fig. 3c shows the C–H stretching of 5 and SPh in the high wavenumber region. Three obvious peaks (3026 cm$^{-1}$, 2921 cm$^{-1}$, and 2850 cm$^{-1}$) were observed for compound 5. In sharp contrast, only the peak located at 2913 cm$^{-1}$ appears for SPh. In the FTIR spectra of the low wavenumber region (Fig. 3d), significant differences were also observed for SPh (mainly four peaks at 1260 cm$^{-1}$, 1093 cm$^{-1}$, 1017 cm$^{-1}$, and 800 cm$^{-1}$) and
compound 5 (two sharp peaks at 1467 cm\(^{-1}\) and 813 cm\(^{-1}\), and one broad band maximized at 1095 cm\(^{-1}\)). Similar peaks at 813 cm\(^{-1}\) for 5 and 800 cm\(^{-1}\) for SPh are associated with out-of-plane C–H deformation from the vibration of a \textit{para}-disubstituted benzene ring. Moreover, the peak at 1467 cm\(^{-1}\) for compound 5 is completely gone after polymerization. A new peak at ~1260 cm\(^{-1}\) appears in SPh, consistent with the FTIR spectrum of PPP polymers.\(^{82}\)

The polymeric chains of SPh composed of a conjugated hoop-shaped structure were further confirmed by the scanning tunneling microscope (STM) imaging technique at the submolecular level. Using a drop casting method, the high-resolution STM image with a singly dispersed carbon nanohoop structure is shown in Fig. 3e. Many hoop-shaped structures with a disordered arrangement were adsorbed onto the surface, as well as a lot of aggregated particles with bright spots. To clearly observe the morphology of the polymeric segment, an enlarged image is shown in Fig. 3f. To test the composition of these tiny spots, an energy-dispersive X-ray spectroscopy (EDX) experiment was conducted and the results showed that these tiny spots should be carbon-containing moieties (see Fig. S11†). The polymeric chain containing around seven conjugated macrocycles can be identified and the hoop-shaped structure was clearly recognized, confirming the contracture of SPh.

Photophysical properties of SPh

The photophysical properties of SPh and monomer 5 were investigated in solution by UV-vis absorption spectroscopy, steady-state fluorescence spectroscopy, and time-resolved fluorescence decay spectroscopy (Fig. 4). The absorption spectrum of SPh showed an intense absorption band maximized at ~326 nm with a shoulder band in the range of 372–432 nm, which is slightly redshifted compared to 5 (maximized at ~317 nm). Because of the same CPP skeletons, SPh and 5 show nearly the same fluorescence spectra with maximum peaks at ~470 nm and 465 nm, respectively. The fluorescence quantum yields determined for compound 5 and SPh are \(\Phi_F = 23\%\) for SPh and \(\Phi_F = 14\%\) for 5 (using anthracene in ethanol as reference, \(\Phi_F = 30\%\)). Both values are much lower than that of \(\text{[10]}\text{CPP} (\Phi_F = 65\%)^{63}\) probably because the functionalized benzene rings increase the proportion of nonradiative decay of the excited states. The fluorescence colors of SPh and 5 are shown in Fig. 2b, indicating their similarity on emitting blue fluorescence.

The luminescence lifetimes (\(\tau_s\)) of SPh and 5 were further measured by the time-resolved photoluminescence (TRPL) technique using a nanosecond pulsed laser system (Fig. 4c and d). The fluorescence decay of 5 follows first-order kinetics with a lifetime \(\tau_s = 2.7\) ns at 469 nm when excited at ~300 nm. SPh shows a similar single-exponential decay with a much longer fluorescence lifetime of \(\tau_s = 18.7\) ns. Based on the above results, the similarity of these optical properties for SPh and 5 in solution indicates that the motif of \textit{cyclo-para}-phenylene plays an important role.

Supramolecular chemistry and ultrafast excited-state dynamics

For a long time, fullerenes have been widely studied as guests in various organic host architectures owing to their unusual shape (approximately spherical) and chemical nature (nonpolar polymers).\(^{65}\) These organic host architectures have specific sizes for C\textsubscript{60} to construct various host–guest molecular systems via supramolecular interactions and weak supramolecular van der Waals interactions, such as supramolecular organic frameworks,\(^{64}\) cycloextrin,\(^{65}\) calix[8]arene,\(^{66}\) crown ether,\(^{57,68}\) macrocyclic bis-exTF hosts,\(^{59}\) and nanorings.\(^{63,69}\) Cyclo-\textit{para}-phenylene with ten phenyl groups has an appropriate size to complex with C\textsubscript{60}, as evidenced by single crystal X-ray diffraction analysis and NMR studies.\(^{69,70}\) These results confirmed that such a conjugated macrocycle has the right size to selectively encapsulate C\textsubscript{60}. Recently, \(\pi\)-extended crown-shaped CPP\textsubscript{5}\(^{66}\) and porphyrin-embedded nanorings\(^{71}\) showed highly enhanced binding constants with fullerenes C\textsubscript{60}. Their supramolecular structures with C\textsubscript{60} can also be directly observed by single-crystal X-ray diffraction. All these results make it possible for SPh to form a host–guest supramolecular polymeric heterojunction with fullerene C\textsubscript{60} (SPh loro C\textsubscript{60}).

Based on its structure, SPh contains a macroring unit for C\textsubscript{60} to construct the designed carbon nanopeapod segment. We performed UV-vis experiments and fluorescence quenching experiments on the C\textsubscript{60} titration to confirm the existence of the supramolecular interactions between SPh and C\textsubscript{60}. When C\textsubscript{60} was added into a SPh solution in toluene, the solution color obviously changed from yellow to brown. Upon C\textsubscript{60} titration into the SPh solution, the absorption spectra of SPh showed an obvious enhancement in the range of 280–430 nm (Fig. 5a). The absorption band maximum at ~330 nm should be mainly due to the presence of C\textsubscript{60}. Also, the fluorescence intensity was significantly reduced under a hand-held UV lamp excited at

Fig. 4 (a) UV-vis absorption (solid line) and fluorescence (dot line) spectra of SPh (red) and compound 5 (blue) in CH\textsubscript{2}Cl\textsubscript{2}. (b) SPh and compound 5 in CH\textsubscript{2}Cl\textsubscript{2} solution under UV irradiation at 365 nm. Emission lifetimes for compound 5 (c) and SPh (d) in CH\textsubscript{2}Cl\textsubscript{2}.

© 2021 The Author(s). Published by the Royal Society of Chemistry

Edge Article Chemical Science

Chem. Sci., 2021, 12, 10506-10513 | 10509
365 nm; measurements of its emission intensity during titration (Fig. 5b) suggest that fullerene \(\text{C}_{60} \) can efficiently quench the fluorescence. Monomer 5 was chosen to study the supramolecular interaction with \(\text{C}_{60} \) by fluorescence spectroscopy. The titrating results showed that its \(K_\text{a} \) is \(\approx 1.02 \times 10^5 \text{ M}^{-1} \) (Fig. S12†). The interaction between monomer 5 and \(\text{C}_{60} \) was further observed by \(^1\text{H} \) NMR spectroscopy when \(\text{C}_{60} \) was added into monomer 5 in CDCl\(_3\) (Fig. S13†). The benzene signals shifted downfield by \(\approx 0.07 \) ppm. These results confirmed that monomer 5 could act as a supramolecular host with \(\text{C}_{60} \) to form \(5 \bowtie \text{C}_{60} \), suggesting that polymer \(\text{SPh} \) can also interact with \(\text{C}_{60} \) to form \(\text{SPh} \bowtie \text{C}_{60} \). Mass spectrometry clearly shows the formation of the monomer \(5 \bowtie \text{C}_{60} \) complex (Fig. S14†).

To understand the detailed quenching mechanisms between the photoexcited \(\text{SPh} \) host and \(\text{C}_{60} \) guest, we performed femtosecond transient absorption (TA) and fluorescence upconversion (FU) measurements (see ESI† for experimental details). In these experiments, the samples were pumped at 350 nm, which can excite both \(\text{SPh} \) and \(\text{C}_{60} \) species. Fig. 6a plots the TA spectra of \(\text{SPh} \) at the indicated pump-probe delays, displaying a negative feature within 400–450 nm and broadband absorptive features extending from 500 nm to the near-infrared (NIR) region. We assign the negative feature to the stimulated emission (SE) of photoexcited \(\text{SPh} \) and the positive features to its excited state absorption (ESA). This assignment was established by comparing the TA kinetics probed for SE and ESA to the FU kinetics measured for \(\text{SPh} \) (Fig. 6a). The close agreement between these three kinetic traces suggests that they all track the decay process of photoexcited \(\text{SPh} \).

The TA spectra of the \(\text{SPh} \bowtie \text{C}_{60} \) complex in the presence of encapsulated \(\text{C}_{60} \) (\(\text{SPh} \bowtie \text{C}_{60} \)) are presented in Fig. 6c. In this case, the negative SE feature of \(\text{SPh} \) disappeared, indicating immediate depletion of the \(\text{SPh} \) excited state by \(\text{C}_{60} \). This ultrafast process was further confirmed by the FU experiment. As shown in Fig. 6b, when measured under the same conditions as pure \(\text{SPh} \), \(\text{SPh} \bowtie \text{C}_{60} \) displayed negligible photon counts even near time zero, suggesting that the excited \(\text{SPh} \) is depleted on a timescale much faster than the instrument response (\(\ll 300 \) fs). Based on the energy levels of \(\text{SPh} \) and \(\text{C}_{60} \), we can identify this ultrafast interaction as an electron transfer from photoexcited \(\text{SPh} \) to \(\text{C}_{60} \). Indeed, in the TA spectra in Fig. 6c, we observe the instantaneous formation of a positive shoulder peak at \(\approx 1080 \) nm that is consistent with the anion radical peak of \(\text{C}_{60} \) (\(\text{C}_{60}^- \)).\(^{33}\) Meanwhile, a positive peak at \(\approx 650 \) nm and a broad positive band centered at \(\approx 950 \) nm also formed instantaneously, which can be assigned to the cation radical of \(\text{SPh} \) (\(\text{SPh}^+ \)).\(^{72}\) Clearly, \(\text{C}_{60}^- \) and \(\text{SPh}^+ \) are products of electron transfer from photoexcited \(\text{SPh} \) to \(\text{C}_{60} \), and their nearly-instantaneous formation further confirmed that this electron transfer process occurred on a femtosecond timescale. This ultrafast electron transfer is likely enabled by a strong electronic coupling between \(\text{SPh} \) and \(\text{C}_{60} \) that are in intimate contact due to supramolecular interactions.

The charge-separated state \(\{\text{SPh}^+\text{C}_{60}^-\} \) is not very long-lived, as reflected by the decay of \(\text{C}_{60}^- \) and \(\text{SPh}^+ \) features on the ns timescale. Interestingly, accompanying this decay is the gradual formation of a positive peak at \(\approx 750 \) nm that coincides with the spectroscopic features of the \(\text{C}_{60} \) triplet excited state (\(\text{C}_{60}^* \)).\(^{73}\) Thus, the recombination of \(\text{SPh}^+\text{C}_{60}^- \) does not regenerate the ground state \(\text{SPh} \bowtie \text{C}_{60} \) but rather produces \(\text{SPh}^+ \text{C}_{60}^* \). This observation is consistent with the spin–orbit charge-transfer intersystem crossing (SOC-ISC) phenomenon that has been well documented in the literature for organic donor–acceptor systems.\(^{74}\) Specifically, the orbital angular momentum change of the electron during charge recombination can induce spin-flip and populates a triplet state. A related process is also reported for semiconductor nanocrystal–organic molecule hybrid donor–acceptor systems.\(^{75}\) By fitting the kinetics of \(\text{SPh}^+ \) and \(\text{C}_{60}^{-} \)plotted in Fig. 6d, the charge recombination (triplet formation) time was determined as \(\approx 1.1 \) ns. The resulting \(\text{C}_{60}^* \) is long-lived, showing no decay within 8 ns.

![Fig. 5](image-url)
Fig. 5 (a) UV-vis absorption spectra of \(\text{SPh} \) (1.67 × 10^{-4} \text{ mg mL}^{-1}) in the presence of \(\text{C}_{60} \). (b) Fluorescence spectra of \(\text{SPh} \) (1.67 × 10^{-4} \text{ mg mL}^{-1}) in the presence of \(\text{C}_{60} \). The concentrations of \(\text{C}_{60} \) are 0.00–5.50 × 10^{-6} \text{ M}. The solvent is toluene.
The measurements for compound 5 showed similar results to SPh (Fig. S15†). Thus, these time-resolved studies generally reveal femtosecond electron transfer from photoexcited compound 5 and SPh to encapsulated C60, followed by nanosecond charge recombination to produce \(^3 \text{C}_60 \). This offers a novel approach to sensitize \(^3 \text{C}_60 \) that can be used to, for example, generate singlet oxygen for photocatalysis and photodynamic therapy. However, the triplet formation pathway might be detrimental to optoelectronic devices utilizing SPh donors and C60 acceptors, similar to the issue reported in organic solar cells.26–27 Nonetheless, if the rate of charge sweeping out exceeds that of charge recombination in operating devices, triplet formation can be effectively suppressed.78

Charge transport properties of SPh and SPh \(\supseteq \) C60

Owing to the interesting photophysical properties of the polymeric structure of SPh and its host-guest interaction with C60, we further investigated the potential applications of SPh and SPh \(\supseteq \) C60 as the electron- and hole-transport layers for optoelectronic devices.79,80 The electron and hole mobilities (\(\mu_e \) and \(\mu_h \)) were measured based on the SCLC method (Fig. 7a).41 When using only SPh as the electron transport layer, an electron-only device was fabricated as ITO/ZnO/SPh/Ca/Al. The result demonstrates that the \(\mu_e \) value of SPh is \(\approx 4.87 \times 10^{-5} \text{ cm}^2 \text{ V}^{-1} \text{ s}^{-1} \) using the Mott-Gurney equation, a value which is \(\approx 2.5 \) times higher than that of PSi which we reported previously as an electron-transport layer.41 By incorporating fullerene C60 into the SPh polymer, an electron-only ITO/ZnO/SPh \(\supseteq \) C60/Ca/Al device was fabricated and the electron mobility was enhanced to \(\approx 8.06 \times 10^{-5} \text{ cm}^2 \text{ V}^{-1} \text{ s}^{-1} \), which is higher than those of both SPh layer and pure C60 (\(\approx 4.87 \times 10^{-5} \text{ cm}^2 \text{ V}^{-1} \text{ s}^{-1} \) for SPh and \(\approx 6.13 \times 10^{-5} \text{ cm}^2 \text{ V}^{-1} \text{ s}^{-1} \) for C60).

To investigate the influence of C60 incorporation on the hole mobility of SPh, we also fabricated hole-only devices with the structure of ITO/PEDOT:PSS/active layer/MoO3/Ag, where the active layer is SPh, SPh \(\supseteq \) C60 or C60, and PEDOT:PSS is poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (Fig. 7b). The hole mobility of SPh was measured to be \(\approx 2.86 \times 10^{-5} \text{ cm}^2 \text{ V}^{-1} \text{ s}^{-1} \) in the SCLC region. Interestingly, upon incorporating C60 into the SPh polymer, the hole mobility is dramatically enhanced by more than ten times to \(\approx 3.64 \times 10^{-4} \text{ cm}^2 \text{ V}^{-1} \text{ s}^{-1} \), which is even higher than that of pure C60 (\(\approx 9.05 \times 10^{-5} \text{ cm}^2 \text{ V}^{-1} \text{ s}^{-1} \)). Based on these results, we conclude that C60 incorporation enhances electron transport properties of SPh, promising for applications of SPh and SPh \(\supseteq \) C60 in optoelectronic devices.

Conclusions

In conclusion, we successfully synthesized the first supramolecular polymeric heterojunction as the segment of carbon nanopeapods by incorporating the C60 guest into the segment of carbon nanotubes (SPh) containing conjugated macrocycles as the host interconnected by a PPP backbone. In the presence of C60, the fluorescence intensity of SPh was significantly quenched. Transient absorption measurements demonstrated that, upon photoirradiation, C60\(^-\) and SPh\(^+\) are generated due to femtosecond (\(\approx 300 \text{ fs} \)) electron transfer from the photoexcited SPh donor to the C60 acceptor, followed by nanosecond charge recombination to produce the C60 triplet excited state. Furthermore, compared to the host SPh and the guest C60, the SPh \(\supseteq \) C60 showed enhanced electron- and hole-mobilities, promising for applications of SPh and SPh \(\supseteq \) C60 in optoelectronic devices. This study opens a door for bottom-up synthesis of carbon nanopeapod segments.

Data availability

All analytical data is provided in the ESI. All details about synthetic procedures, STM measurements, physical and photophysical characterizations are available in the ESI.

Author contributions

P. D. conceived and designed this research. S. W. synthesized the SPh material, conducted all characterizations and photophysical studies. J. W. and K. W. did ultrafast excited-state dynamics measurements. S. Y and X. L. performed SCLC measurements. S. W., X. L., X. Z., P. H., P. F., J. W., K. W., S. Y. and P. D. co-wrote the paper, and all the authors commented on it.

Conflicts of interest

There are no conflicts to declare.

Acknowledgements

This work was financially supported by the National Key Research and Development Program of China (2017YFA0402800), the National Natural Science Foundation of...
Notes and references

1 W. Zhang, W. S. Jin, T. Fukushima, A. Saeki, S. Seki and T. Aida, Science, 2011, 334, 340–343.
2 B. Z. Tian, X. L. Zheng, T. J. Kempa, Y. Fang, N. F. Yu, G. H. Yu, J. L. Huang and C. M. Lieber, Nature, 2007, 449, 885–889.
3 A. I. Hochbaum and P. D. Yang, Chem. Rev., 2010, 110, 527–546.
4 M. T. Björk, B. J. Ohlsson, T. Sass, A. I. Persson, C. Thelander, M. H. Magnusson, K. Deppert, L. R. Wallenberg and L. Samuelson, Nano Lett., 2002, 2, 87–89.
5 S. Banerjee and S. S. Wong, Nano Lett., 2002, 2, 195–200.
6 O. Harnack, C. Pacholksi, H. Weller, A. Yasuda and J. M. Wessels, Nano Lett., 2003, 3, 1097–1101.
7 S. Günes, H. Neugebauer and N. S. Sariciftci, Chem. Rev., 2007, 107, 1324–1338.
8 K. Matsumoto, M. Fujitsuaka, T. Sato, S. Onodera and O. Ito, J. Phys. Chem. B, 2000, 104, 11632–11638.
9 H. Imahori, K. Hagiwara, T. Akiyama, M. Aoki, S. Taniguchi, T. Okada, M. Shirakawa and Y. Sakata, Chem. Phys. Lett., 1996, 263, 545–550.
10 T. D. M. Bell, T. A. Smith, K. P. Ghiggino, M. G. Ranasinghe, M. J. Shephard and M. N. Paddon-Row, Chem. Phys. Lett., 1997, 268, 223–228.
11 B. Grimm, H. Isla, E. M. Perez, N. Martin and D. M. Guldi, Chem. Commun., 2011, 47, 7449–7451.
12 T. Hasobe, H. Imahori, P. V. Kamat, T. K. Ahn, S. K. Kim, D. Kim, A. Fujimoto, T. Hirakawa and S. Fukuzumi, J. Am. Chem. Soc., 2005, 127, 1216–1228.
13 H. Imahori, M. Ueda, S. Kang, H. Hayashi, S. Hayashi, H. Kaji, S. Seki, A. Saeki, S. Tagawa, T. Umeyama, Y. Matano, K. Yoshida, S. Isoda, M. Shiro, N. V. Tkachenko and H. Lemmetyinen, Chem.-Eur. J., 2007, 13, 10182–10193.
14 Q. Huang, G. L. Zhuang, H. X. Jia, M. M. Qian, S. S. Cui, S. F. Yang and P. W. Du, Angew. Chem., Int. Ed., 2019, 58, 6244–6249.
15 T. Aida, E. W. Meijer and S. I. Stupp, Science, 2012, 335, 813–817.
16 S. Burattini, B. W. Greenland, D. H. Merino, W. G. Weng, J. Seppala, H. M. Colquhoun, W. Hayes, M. E. Mackay, I. W. Hamley and S. J. Rowan, J. Am. Chem. Soc., 2010, 132, 12051–12058.
17 M. Burnworth, L. M. Tang, J. R. Kumpfer, A. J. Duncan, F. L. Beyer, G. L. Fiore, S. J. Rowan and C. Weder, Nature, 2011, 472, 334–337.
18 T. F. A. de Grec and E. W. Meijer, Nature, 2008, 453, 171–173.
19 R. J. Dong, Y. F. Zhou, X. H. Huang, X. Y. Zhu, Y. F. Lu and J. Shen, Adv. Mater., 2015, 27, 498–526.
20 J. B. Beck and S. J. Rowan, J. Am. Chem. Soc., 2003, 125, 13922–13923.
21 F. Wang, J. Q. Zhang, X. Ding, S. Y. Dong, M. Liu, B. Zheng, S. J. Li, L. Wu, Y. H. Yu, H. W. Gibson and F. H. Huang, Angew. Chem., Int. Ed., 2010, 49, 1090–1094.
22 S. Burattini, B. W. Greenland, D. H. Merino, W. G. Weng, J. Seppala, H. M. Colquhoun, W. Hayes, M. E. Mackay, I. W. Hamley and S. J. Rowan, J. Am. Chem. Soc., 2010, 132, 12051–12058.
23 S. Y. Dong, Y. Luo, X. Z. Yan, B. Zheng, X. Ding, Y. H. Yu, Z. Ma, Q. L. Zhao and F. H. Huang, Angew. Chem., Int. Ed., 2011, 50, 1905–1909.
24 B. Zheng, F. Wang, S. Y. Dong and F. H. Huang, Chem. Soc. Rev., 2012, 41, 1621–1636.
25 M. M. Zhang, X. Z. Yan, F. H. Huang, Z. B. Niu and H. W. Gibson, Acc. Chem. Res., 2014, 47, 346.
26 J. V. Barth, J. Weckesser, C. Z. Cai, P. Günter, L. Bürgi, O. Jeandupeux and K. Kern, Angew. Chem., Int. Ed., 2000, 39, 1230–1234.
27 D. C. Sherrington and K. A. Taskinen, Chem. Soc. Rev., 2001, 30, 83–93.
28 F. Wüthrich, Z. J. Chen, F. J. M. Hoeben, P. Osswald, C. C. You, P. Jonkheijm, J. van Herkhuysen, A. P. J. H. Schenning, P. P. A. M. van der Schoot, E. W. Meijer, E. H. A. Beckers, S. C. J. Meskers and R. A. J. Janssen, J. Am. Chem. Soc., 2004, 126, 10611–10618.
29 K. V. Rao, D. Miyajima, A. Nihonyanagi and T. Aida, Nat. Chem., 2017, 9, 1133–1139.
30 B. Adelizzi, P. Chichidob, N. Tanaka, B. A. G. Lamers, S. C. J. Meskers, S. Ogi, A. R. A. Palms, S. Yamaguchi and E. W. Meijer, J. Am. Chem. Soc., 2020, 142, 16681–16689.
31 C. L. Sun, H. Q. Peng, L. Y. Niu, Y. Z. Chen, L. Z. Wu, C. H. Tung and Z. Q. Yang, Chem. Commun., 2018, 54, 1117–1120.
32 X. Zhang, L. Y. Wang, J. F. Xu, D. Y. Chen, L. Q. Shi, Y. F. Zhou and Z. H. Shen, Gaofenzi Xuebao, 2019, 50, 973–987.
33 T. Aida and E. W. Meijer, Isr. J. Chem., 2020, 60, 33–47.
34 I. D. W. Samuel, G. Rumbles, C. J. Collison, R. H. Friend, S. C. Moratti and A. B. Holmes, Synth. Met., 1997, 84, 497–500.
35 D. T. McQuade, A. E. Pullen and T. M. Swager, Chem. Rev., 2000, 100, 2537–2574.
36 G. D. Scholes and G. Rumbles, Nat. Mater., 2006, 5, 920.
37 A. C. Grimsdale and K. Müllen, Adv. Polym. Sci., 2006, 199, 1–82.
38 D. L. Gin, V. P. Conticello and R. H. Grubbs, J. Am. Chem. Soc., 1994, 116, 10507–10519.
39 M. Rehahn, A. D. Schluter, G. Wegner and W. J. Feast, Polymer, 1989, 30, 1054–1059.
40 Z. J. Qiu, B. A. G. Hammer and K. Müllen, Prog. Polym. Sci., 2020, 100, 101179.
41 F. N. Lu and T. Nakashishi, Sci. Technol. Adv. Mater., 2015, 16, 014805.
42 G. Grem, G. Leditzky, B. Ullrich and G. Leising, Adv. Mater., 1992, 4, 36–37.
43 K. P. Strunk, A. Abdulkarim, S. Beck, T. Marszalek, J. Bernhardt, S. Koser, W. Pisula, D. Jansch, J. Freudenberg, A. Pucci, U. H. F. Bunz, C. Melzer and
K. Müllen, *ACS Appl. Mater. Interfaces*, 2019, **11**, 19481–19488.

44 Q. Huang, G. L. Zhuang, M. M. Zhang, J. Y. Wang, S. D. Wang, Y. Y. Wu, S. F. Yang and P. W. Du, *J. Am. Chem. Soc.*, 2019, **141**, 18938–18943.

45 A. Basagni, F. Sedona, C. A. Pignedoli, M. Cattelan, L. Nicolas, M. Casarin and M. Sambi, *J. Am. Chem. Soc.*, 2015, **137**, 1802–1808.

46 R. Jasti, J. Bhattacharjee, J. B. Neaton and C. R. Bertozzi, *J. Am. Chem. Soc.*, 2008, **130**, 17646–17647.

47 C. Camacho, T. A. Niehaus, K. Itami and S. Irle, *Chem. Sci.*, 2013, **4**, 187–195.

48 K. Y. Cheung, S. J. Gui, C. F. Deng, H. F. Liang, Z. M. Xia, Z. Liu, L. F. Chi and Q. Miao, *Chem.*, 2019, **5**, 838–847.

49 W. Xu, X. D. Yang, X. B. Fan, X. Wang, C. H. Tung, L. Z. Wu and H. Cong, *Angew. Chem., Int. Ed.*, 2019, **58**, 3943–3947.

50 D. Canevet, M. Gallego, H. Isla, A. de Juan, E. M. Perez and N. Martin, *J. Am. Chem. Soc.*, 2011, **133**, 3184–3190.

51 T. Iwamoto, Y. Watanabe, T. Sadahiro, T. Haino and S. Yamago, *Angew. Chem., Int. Ed.*, 2011, **50**, 8342–8344.

52 S. S. Cui, G. L. Zhuang, D. P. Lu, Q. Huang, H. X. Jia, Y. Wang, S. F. Yang and P. W. Du, *Angew. Chem., Int. Ed.*, 2018, **57**, 9330–9335.

53 Y. Z. Xu, B. Z. Wang, R. Kaur, M. B. Minameyer, M. Bothe, T. Drewello, D. M. Guldi and M. von Delius, *Angew. Chem., Int. Ed.*, 2018, **57**, 559–573.

54 Y. Z. Xu and M. von Delius, *Angew. Chem., Int. Ed.*, 2020, **59**, 559–573.

55 D. Canevet, E. M. Perez and N. Martin, *Angew. Chem., Int. Ed.*, 2011, **50**, 9248–9259.

56 Q. Huang, G. L. Zhuang, H. X. Jia, M. M. Qian, S. S. Cui, S. F. Yang and P. W. Du, *Angew. Chem., Int. Ed.*, 2019, **58**, 6244–6249.

57 C. Zhao, H. B. Meng, M. Z. Nie, Q. Huang, P. W. Du, C. R. Wang and T. S. Wang, *Chem. Commun.*, 2019, **55**, 11511–11514.

58 I. Khan, K. Saeed and I. Khan, *Arabian J. Chem.*, 2019, **12**, 908–931.

59 W. Zhang, M. Chen, X. D. Gong and G. W. Diao, *Carbon*, 2013, **61**, 154–163.

60 W. Zhang, X. D. Gong, C. Liu, Y. Z. Piao, Y. Sun and G. W. Diao, *J. Mater. Chem. B*, 2014, **2**, 5107–5115.

61 H. Chen, M. R. Golder, F. Wang, R. Jasti and A. K. Swan, *Carbon*, 2014, **67**, 203–213.

62 A. Abdulkarim, F. Hinkel, D. Jansch, J. Freudenberg, F. E. Golling and K. Müllen, *J. Am. Chem. Soc.*, 2016, **138**, 16208–16211.

63 E. R. Darzi, T. J. Sisto and R. Jasti, *J. Org. Chem.*, 2012, **77**, 6624–6628.

64 E. Fernandez-Bartolome, J. Santos, A. Gamonal, S. Khodabakshi, L. J. McCormick, S. J. Teat, E. C. Sañudo, J. S. Costa and N. Martin, *Angew. Chem., Int. Ed.*, 2019, **58**, 2310–2315.

65 T. Andersson, K. Nilsson, M. Sundahl, G. Westman and O. Wennerstrom, *J. Chem. Soc., Chem. Commun.*, 1992, 604–606.

66 J. L. Atwood, G. A. Koutsantonis and C. L. Raston, *Nature*, 1994, **368**, 229–231.

67 L. Moreira, J. Calbo, R. M. K. Calderon, J. Santos, B. M. Illescas, J. Arago, J. F. Nierengarten, D. M. Guldi, E. Ortiz and N. Martin, *Chem. Sci.*, 2015, **6**, 4426–4432.

68 L. Moreira, B. M. Illescas and N. Martin, *J. Org. Chem.*, 2017, **82**, 3347–3358.

69 J. Xia, J. W. Bacon and R. Jasti, *Chem. Sci.*, 2012, **3**, 3018–3021.

70 T. Iwamoto, Y. Watanabe, T. Sadahiro, T. Haino and S. Yamago, *Angew. Chem., Int. Ed.*, 2011, **50**, 8342–8344.

71 Y. Z. Xu, S. Gsanger, M. B. Minameyer, I. Imaz, D. Maspoch, O. Shyshov, F. Schwer, X. Ribas, T. Drewello, B. Meyer and M. von Delius, *J. Am. Chem. Soc.*, 2019, **141**, 18500–18507.

72 E. Kayahara, T. Koyama, T. Kato and S. Yamago, *J. Am. Chem. Soc.*, 2016, **138**, 334–348.

73 G. Sauve, N. M. Dimitrijevic and P. V. Kamat, *J. Phys. Chem.*, 1995, **99**, 1199–1203.

74 Y. Dong, A. A. Sukhanov, J. Z. Zhao, A. Elmali, X. L. Li, B. Dick, A. Karatay and V. K. Voronkova, *J. Phys. Chem. C*, 2019, **123**, 22793–22811.

75 X. Luo, Y. Y. Han, Z. W. Chen, Y. L. Li, G. J. Liang, X. Liu, T. Ding, C. M. Nie, M. Wang, F. N. Castellano and K. F. Wu, *Nat. Commun.*, 2020, **11**, 7528.

76 L. Q. Qin, X. Z. Liu, X. Zhang, J. W. Yu, L. Yang, F. G. Zhao, M. F. Huang, K. W. Wang, X. X. Wu, Y. H. Li, H. Chen, K. Wang, J. L. Xia, X. H. Lu, F. Gao, Y. P. Yi and H. Huang, *Angew. Chem., Int. Ed.*, 2020, **59**, 15043–15049.

77 A. Rao, P. C. Y. Chow, S. Gélinas, C. W. Schlenker, C.-Z. Li, H.-L. Yip, A. K.-Y. Jen, D. S. Ginger and R. H. Friend, *Nature*, 2013, **500**, 435–439.

78 Y. Q. Hou, X. Zhang, K. P. Chen, D. Y. Liu, Z. J. Wang, Q. Y. Liu, J. Z. Zhao and A. Barbon, *J. Mater. Chem. C*, 2019, **7**, 12048–12074.

79 E. Kayahara, L. S. Sun, H. Onishi, K. Suzuki, T. Fukushima, A. Sawada, H. Kaji and S. Yamago, *J. Am. Chem. Soc.*, 2017, **139**, 18480–18483.

80 A. R. Tameev, L. Y. Pereshivko and A. V. Vannikov, *Mol. Cryst. Liq. Cryst.*, 2008, **497**, 333–338.

81 P. W. M. Blom, M. J. M. dejong and J. J. M. Vleggar, *Appl. Phys. Lett.*, 1996, **68**, 3308–3310.