Observation of a vector charmoniumlike state in $e^+e^- \rightarrow D_s^+(D_{s1}(2536))^-$ and c.c.
27 National Institute for Nuclear Physics-Sezione di Napoli, 80126 Napoli
28 National Institute for Nuclear Physics-Sezione di Torino, 10125 Torino
29 Advanced Science Research Center, Japan Atomic Energy Agency, Naka 319-1195
30 J. Stefan Institute, 1000 Ljubljana
31 Institut für Experimentelle Teilchenphysik, Karlsruher Institut für Technologie, 76131 Karlsruhe
32 Kennesaw State University, Kennesaw, Georgia 30144
33 King Abdulaziz City for Science and Technology, Riyadh 11442
34 Korea Institute of Science and Technology Information, Daejeon 34141
35 Korea University, Seoul 02841
36 Kyoto University, Kyoto 606-8502
37 Kyungpook National University, Daegu 41566
38 Laboratory of the Linear Accelerator, Univ. Paris-Sud, CNRS/IN2P3, Université Paris-Saclay, Orsay 91898
39 École Polytechnique Fédérale de Lausanne (EPFL), Lausanne 1015
40 P.N. Lebedev Physical Institute of the Russian Academy of Sciences, Moscow 119991
41 Liaoning Normal University, Dalian 116029
42 Faculty of Mathematics and Physics, University of Ljubljana, 1000 Ljubljana
43 Ludwig Maximilians University, 80539 Munich
44 Luther College, Decorah, Iowa 52101
45 Malaviya National Institute of Technology Jaipur, Jaipur 302017
46 University of Maribor, 2000 Maribor
47 Max-Planck-Institut für Physik, 80805 München
48 School of Physics, University of Melbourne, Victoria 3010
49 University of Mississippi, University, Mississippi 38677
50 University of Miyazaki, Miyazaki 889-2192
51 Moscow Physical Engineering Institute, Moscow 115409
52 Moscow Institute of Physics and Technology, Moscow Region 141700
53 Graduate School of Science, Nagoya University, Nagoya 464-8602
54 Kobayashi-Maskawa Institute, Nagoya University, Nagoya 464-8602
55 Università di Napoli Federico II, 80055 Napoli
56 Nara Women’s University, Nara 630-8506
57 National Central University, Chung-li 32054
58 National United University, Miaoli 36003
59 Department of Physics, National Taiwan University, Taipei 10617
60 H. Niewodniczanski Institute of Nuclear Physics, Krakow 31-342
61 Nippon Dental University, Niigata 951-8580
62 Niigata University, Niigata 950-2181
63 University of Nova Gorica, 5000 Nova Gorica
64 Novosibirsk State University, Novosibirsk 630090
65 Osaka City University, Osaka 558-8585
66 Pacific Northwest National Laboratory, Richland, Washington 99352
67 Panjab University, Chandigarh 160014
68 Peking University, Beijing 100871
69 University of Pittsburgh, Pittsburgh, Pennsylvania 15260
70 Theoretical Research Division, Nishina Center, RIKEN, Saitama 351-0198
71 University of Science and Technology of China, Hefei 230026
72 Seoul National University, Seoul 08826
73 Showa Pharmaceutical University, Tokyo 194-8543
74 Soongsil University, Seoul 06978
75 University of South Carolina, Columbia, South Carolina 29208
76 Sungkyunkwan University, Suwon 16419
77 School of Physics, University of Sydney, New South Wales 2006
78 Department of Physics, Faculty of Science, University of Tabuk, Tabuk 71451
79 Tata Institute of Fundamental Research, Mumbai 400005
80 Department of Physics, Technische Universität München, 85748 Garching
81 Toho University, Funabashi 274-8510
82 Earthquake Research Institute, University of Tokyo, Tokyo 113-0032
83 Department of Physics, University of Tokyo, Tokyo 113-0033
84 Tokyo Institute of Technology, Tokyo 152-8550
85 Tokyo Metropolitan University, Tokyo 192-0397
In the past decade, measurements of the exclusive cross sections for e^+e^- annihilation into charmed or charmed-strange meson pairs above the open-charm threshold have attracted much attention [1–10]. These open-charm final states are dominantly produced from the Okubo-Zweig-Iizuka (OZI)-allowed strong decays of excited vector charmonium states (ψ states). A comprehensive study of the exclusive e^+e^- cross sections to various open-charm final states could help one to understand the couplings of these ψ states, and extract their resonant parameters.

Many additional Y states with $J^{PC} = 1^{--}$ with masses above the open-charm threshold have been discovered in the last 14 years [11–19]. It has been noticed that the Y states above the open-charm threshold do not appear explicitly as peaks either in the total hadronic cross section or in the exclusive e^+e^- cross sections to open-charm final states [20] [the only vector charmoniumlike states which reveal themselves as peaks at threshold are the $\psi(2^{+})$ and $\psi(3^{+})$]. In $e^+e^- \rightarrow Y \rightarrow \pi^+\pi^-J/\psi$ and $\pi^+\pi^-\psi(2S)[Y = Y(4260), Y(4660)]$ processes, events in $\pi^+\pi^-$ mass spectra tend to accumulate at the $f_0(980)$ nominal mass, which has an $s\bar{s}$ component. Thus, it is natural to search for Y states with a $(c\bar{c})(\bar{c}s)$ quark component. As mentioned in Ref. [23], bound states of $D_s^0\bar{D}_s^+$ mesons, e.g., $D_s^0\bar{D}_s^+(2536)$, can appear as a result of $f_0(980)$ exchange. Unfortunately, open-charmed-strange production associated with these Y states has not yet been observed.

In this Letter, we perform a measurement of the exclusive cross section for $e^+e^- \rightarrow D_s^+\bar{D}_s^- (2536)^- (\rightarrow D_s^0 K^- / D_s^- K_0^0)$ as a function of center-of-mass (C.M.) energy from the $D_s^+\bar{D}_s^- (2536)^-$ mass threshold to 5.59 GeV via initial-state radiation (ISR) [24]. In this process, a charmoniumlike state decaying to $D_s^+\bar{D}_s^- (2536)^-$ is observed for the first time. The data used in this analysis correspond to 921.9 fb$^{-1}$ of integrated luminosity at C.M. energies of 10.52, 10.58, and 10.867 GeV collected by the Belle detector [25] at the KEKB asymmetric-energy e^+e^- collider [26,27].

We use PHOKHARA [28] to generate signal Monte Carlo (MC) events, determine the detector efficiency, and optimize selection criteria for signal events. Generic MC samples of $\Upsilon(4S) \rightarrow B^+B^- / B^0\bar{B}^0$, $\Upsilon(5S) \rightarrow B^{(*)}_sB^{(*)}_s$, and $e^+e^- \rightarrow q\bar{q}(q = u, d, s, c)$ at $\sqrt{s} = 10.52, 10.58$, and 10.867 GeV with four times the luminosity of data are used to study possible backgrounds.

We fully reconstruct the ISR photon γ_{ISR}, D_s^0, and K^- / K_0^0, but do not reconstruct the \bar{D}^0 / D^- mesons. Since the \bar{D}^0 / D^- decays are not reconstructed, the detection efficiency for the $e^+e^- \rightarrow D_s^+\bar{D}_s^- (2536)^-$ (or $\bar{D}^0 K^- / D^- K_0^0$) process is greatly improved. For the measurement of the $e^+e^- \rightarrow D_s^+\bar{D}_s^- (2536)^-$ cross section, we determine the invariant mass spectrum of $D_s^+\bar{D}_s^- (2536)^- (M(D_s^+\bar{D}_s^- (2536)^-))$, which is equivalent to the mass recoiling against $\gamma_{\text{ISR}} (M_{\text{rec}}(\gamma_{\text{ISR}}))$. Here, $M_{\text{rec}}(\gamma_{\text{ISR}})$ is calculated using $M_{\text{rec}}(\gamma_{\text{ISR}}) = \sqrt{(P_{\text{C.M.}} - P_{\text{ISR}})^2}$, where $P_{\text{C.M.}}$ and P_{ISR} are the four-momenta of the initial e^+e^- system and the ISR photon, respectively. However, the energy resolution of γ_{ISR} is very poor due to its high energy. We constrain the recoil mass of the $\gamma_{\text{ISR}}D_s^0 K^- / \gamma_{\text{ISR}}D_s^- K_0^0$ to the nominal mass of the D^0 / D^- meson [29] to improve the resolution for the ISR photon for events within the \bar{D}^0 / D^- signal region. Before applying the mass constraint, the mass resolution of the $M(D_s^+\bar{D}_s^- (2536)^-)$ system is about 180 MeV/c2. As a result of the constraint, the mass resolution is significantly improved, to about 5 MeV/c2.

The D_s^+ candidates are reconstructed using eight decay modes: $\phi \pi^+$, $K^+ (892) 0 K^+$, $K_s^0 K^+$, $K^+ K^- \pi^+ \pi^0$, $K_s^0 \rho^0 K^+$, $K^+ (892) K_0^0$, $\eta \pi^+$, and $\eta' \pi^+$. We use the techniques of Ref. [30] to reconstruct particles such as photons, charged...
pions and kaons, and K_S^0. The ϕ, $K^*(892)^0$, and $K^*(892)^+$ candidates are reconstructed in the K^+K^-, $K^-\pi^+$, and $K^0\pi^+$ decay modes. The invariant masses of the K_S^0, ϕ, $K^*(892)^0$, and $K^*(892)^+$ candidates are required to be within 10, 10, 50, and 50 MeV/c² of the corresponding nominal masses [29] (>95% signal events are retained), respectively.

The most energetic ISR photon is required to have energy greater than 3 GeV in the e^+e^- C.M. frame. Pairs of photons are combined to form π^0 candidates. The energies of the photons from π^0 are required to be greater than 50 MeV in the calorimeter barrel and 100 MeV in the calorimeter end caps [31] in the laboratory frame. The η candidates are reconstructed via $\gamma\gamma$ and $\pi^+\pi^-\pi^0$ decay modes. Photon candidates from $\eta \rightarrow \gamma\gamma$ are required to have energies greater than 100 MeV in the laboratory frame. The reconstructed η candidates are then combined with $\pi^+\pi^-$ pairs to form η' candidates. The mass windows applied for π^0, $\eta \rightarrow \gamma\gamma$, $\eta \rightarrow \pi^+\pi^-\pi^0$, and η' candidates are ±12, ±20, ±10, and ±10 MeV/c², which are within approximately 2.5σ of the corresponding meson nominal masses [29]. After applying the mass window requirements, mass-constrained fits are applied to the π^0, η, and η' candidates to improve their momentum resolutions.

Before calculation of the D^+_s candidate mass, a fit to a common vertex is performed for charged tracks in the D^+_s candidate. After the application of the above requirements, D^+_s signals are clearly observed. We define the D^+_s signal region as $|M(D^+_s) - m_{D^+_s}| < 12$ MeV/c² (∼2.0σ). Here and throughout the text, m_i represents the nominal mass of particle i [29]. To improve the momentum resolution of the D^+_s meson candidate, a mass-constrained fit to the D^+_s nominal mass [29] is performed. The D^+_s mass sideband regions are defined as $1912.34 < M(D^+_s) < 1936.34$ MeV/c² and $2000.34 < M(D^+_s) < 2024.34$ MeV/c², which are twice as wide as the signal region. The D^+_s candidates from the sidebands are also constrained to the central mass values in the defined D^+_s sideband regions. The D^+_s candidate with the smallest χ^2 from the D^+_s mass fit is kept. Besides the selected ISR photon and D^+_s, we require at least one additional K^- or K_S^0 candidate in the event, and retain all the combinations (the fraction of events with multiple candidates is 1.7%).

Figure 1(a) shows the sum of the recoil mass spectra against the $\gamma_{ISR}D^+_sK^-/K_S^0$ and $\gamma_{ISR}D^+_sK^*_S^0$ systems after requiring the events be within the $D_s^+(2536)^-$ signal region (see below) in data. Due to the poor recoil mass resolution, the D^+/D^- signal is very wide. The D^+/D^- signal component is modeled using a Gaussian function convolved with a Novosibirsk function [32] derived from the signal MC samples, while the combinatorial backgrounds are described by a second-order polynomial. The solid curve is the total fit; the D^+/D^- signal yield is 275 ± 32. We define an asymmetric requirement of $-200 < M_{rec}(\gamma_{ISR}D^+_sK^-/K_S^0) - m_{D^+/D^-} < 400$ MeV/c² for the D^+/D^- signal region.

FIG. 1. (a) The recoil mass spectrum against the $\gamma_{ISR}D^+_sK^-/K_S^0$ system before applying the D^+/D^- mass constraint. The yellow histogram shows the normalized $D_{s1}(2536)^-$ mass sidebands (see below). The red dashed lines show the required D^+/D^- signal region. (b) The recoil mass spectrum against the $\gamma_{ISR}D^+_sK^*_S^0$ system in data. The yellow histogram shows the normalized D_{s1}^+ mass sidebands. The red dashed lines show the required $D_{s1}^+(2536)^-$ signal region, and the blue dashed lines show the $D_{s1}(2536)^-$ mass sidebands.

Hereinafter the D^+/D^- mass constraint is applied for events in the D^+/D^- signal region to improve mass resolution.

The recoil mass spectrum against the $\gamma_{ISR}D_{s1}^+$ system after requiring the events within D^+/D^- signal region is shown in Fig. 1(b). A clear $D_{s1}(2536)^-$ signal is observed. The signal shape is described by a double Gaussian function (all the parameters are fixed to those from a fit to the MC simulated distribution), and a threshold function is used for the backgrounds. The threshold function is $\langle M_{rec} - x_{thr}\rangle e^{-\alpha M_{rec}} + \beta_1 (M_{rec} - x_{thr})^2 \beta_2 (M_{rec} - x_{thr})^3$, where M_{rec} is the recoil mass of the $\gamma_{ISR}D_{s1}^+$; the parameters α, β_1, and β_2 are free; the threshold parameter x_{thr} is fixed from generic MC simulations. The fit yields 254 ± 36 $D_{s1}(2536)^-$ signal events as shown in Fig. 1(b) [33]. We define the $D_{s1}(2536)^-$ signal region as $|M_{rec}(\gamma_{ISR}D_{s1}^+) - m_{D_{s1}(2536)^-}| < 8$ MeV/c² (∼2.5σ), and sideband regions as shown by blue dashed lines, which are three times as wide as the signal region. To estimate the signal significance of the $D_{s1}(2536)^-$, we compute $\sqrt{-2\ln(\mathcal{L}_0/\mathcal{L}_{max})}$ [34], where \mathcal{L}_0 and \mathcal{L}_{max} are the maximized likelihoods without and with the $D_{s1}(2536)^-$ signal, respectively. The statistical significance of the $D_{s1}(2536)^-$ signal is 8σ.

The $D^+_sD_{s1}(2536)^-$ invariant mass distribution is shown in Fig. 2(a). There is a significant peak around 4626 MeV/c², while no structure is seen in the normalized $D_{s1}(2536)^-$ mass sidebands shown as the yellow histogram. In addition, no peaking background is found in the $D^+_sD_{s1}(2536)^-$ mass distribution from generic MC samples. We therefore interpret the peak in the data as evidence for an exotic charmoniumlike state [35] decaying into $D^+_sD_{s1}(2536)^-$, called $Y(4626)$ hereafter.

One possible background, which is not included in the $D_{s1}(2536)^-$ mass sidebands, is from $e^+e^- \rightarrow D^+_s(\rightarrow D^+_s\gamma)D_{s1}(2536)^-$, where the photon from the D^+_s remains undetected. To estimate such a background contribution, we measure this process with the data.
Data

vertex fits are applied to the e+e− → D^+_s D^0_{s1}(2536)^− signal events in each M(D^+_s D^0_{s1}(2536)^−) bin in data after subtracting the normalized D^0_{s1}(2536)^− sidebands and the e^+e− → D^+_s D^0_{s1}(2536)^− background contribution, and e^+_D^0_{s1}(2536)^− and e^-D^0_{s1}(2536)^− are the reconstruction efficiencies for e^+e− → D^+_s D^0_{s1}(2536)^− and e^+e− → D^+_s D^0_{s1}(2536)^−, respectively, where the ratio of efficiencies is (1.00 ± 0.02). The yield of D^+_s D^0_{s1}(2536)^− after background subtraction for the entire region in Fig. 2(b) is (11.6 ± 3.6). A similar method is applied to estimate the background contribution from e^+e− → D^+_s D^0_{s1}(2536)^− to e^+e− → D^+_s D^0_{s1}(2536)^−.

We perform an unbinned likelihood fit simultaneously to the M(D^+_s D^0_{s1}(2536)^−) distributions of all selected D^0_{s1}(2536)^− signal candidates, the normalized D^0_{s1}(2536)^− mass sidebands, and the e^+e− → D^+_s D^0_{s1}(2536)^− contribution. The yields in the normalized D^0_{s1}(2536)^− mass sidebands and the e^+e− → D^+_s D^0_{s1}(2536)^− contribution are fixed in the fit. The following components are included in the fit to the M(D^+_s D^0_{s1}(2536)^−) distribution: a resonance signal, a nonresonant contribution, the D^0_{s1}(2536)^− mass sidebands, and an e^+e− → D^+_s D^0_{s1}(2536)^− contribution. A Breit-Wigner (BW) function convolved with a Gaussian function (with its width fixed at 5.0 MeV/c² according to the MC simulation), multiplied by an efficiency function that has a linear dependence on M(D^+_s D^0_{s1}(2536)^−) and the differential ISR effective luminosity [36], is taken as the signal shape. Here the BW formula used has the form [37]

\[BW(\sqrt{s}) = \sqrt{12\pi \Gamma_{ee} \Gamma} \frac{\Phi(\sqrt{s})}{s-M^2+iM\Gamma} \frac{\Phi_2(M)}{\Phi_2(M)}, \]

where M is the mass of the resonance, Γ and Γ_{ee} are the total width and partial width to e^+e−, B_f = B(Y(4626) → D^+_s D^0_{s1}(2536)^−) × B(D^0_{s1}(2536)^− → D^0 K^-) is the product branching fraction of the Y(4626) into the final state, and Φ_2 is the two-body decay phase space factor that increases smoothly from the mass threshold with \sqrt{s}, respectively. A two-body phase space form is also taken into account for the nonresonant contribution. The D^0_{s1}(2536)^− mass sidebands and the e^+e− → D^+_s D^0_{s1}(2536)^− contribution are parametrized with threshold functions.

The fit results are shown in Fig. 2(a), where the solid blue curve is the best fit, the blue dotted curve is the sum of the backgrounds, the red dot-dashed curve is the fitted result to the normalized D^0_{s1}(2536)^− mass sidebands, and the violet dot-dashed curve is for the e^+e− → D^+_s D^0_{s1}(2536)^− contribution. The yield of the Y(4626) signal is 89^{+17}_{-16}. The statistical significance of the Y(4626)
signal is 6.5σ, calculated from the difference of the logarithmic likelihoods [34], $-2\ln(L_0/L_{\text{max}}) = 50.4$, where L_0 and L_{max} are the maximized likelihoods without and with a signal component, respectively, taking into account the difference in the number of degrees of freedom ($\Delta\text{ndf} = 3$). The parametrization of the nonresonant contribution is the dominant systematic uncertainty for the estimate of the signal significance. Changing the two-body phase space form to a threshold function parametrized by $\sqrt{M - x_{\text{th}}}$ or a two-body phase space form plus a threshold function, the $Y(4266)$ signal significance is reduced to 5.9σ. We take this value as the signal significance with systematic uncertainties included. The fitted mass and width for the $Y(4266)$ are ($4625.9^{+6.7}_{-6.6}$(stat)±0.4(syst)) MeV/c^2 and ($49.8^{+3.9}_{-3.5}$(stat)±4.0(syst)) MeV, respectively. The value of $\Gamma_{ee} \times B(Y(4266) \rightarrow D_s^+ D_{s1}(2536)^-) \times B(D_{s1}(2536)^- \rightarrow \bar{D}^0 K^-)$ is obtained to be $(14.3^{+2.8}_{-2.5}$(stat)±1.5(syst)) eV. The systematic uncertainties are discussed below.

The $e^+e^- \rightarrow D_s^+ D_{s1}(2536)^-$ cross section is extracted from the recoil mass spectrum against the $\gamma_{\text{ISR}} D_s^+$ system. The product of the $e^+e^- \rightarrow D_s^+ D_{s1}(2536)^-$ dressed cross section (σ) [38] and the decay branching fraction $B(D_{s1}(2536)^- \rightarrow \bar{D}^0 K^-)$ for each $D_s^+ D_{s1}(2536)^-$ mass bin from threshold to 5.59 GeV/c^2 in steps of 20 MeV/c^2 is computed as

$$\sigma(e^+e^- \rightarrow D_s^+ D_{s1}(2536)^-) B(D_{s1}(2536)^- \rightarrow \bar{D}^0 K^-) = \frac{N_{\text{fit}}^{D_{s1}(2536)^-}}{d\mathcal{L} \times [\Sigma_i(e^{D_s^0 K^-} \times B_i) + R_{D_s^0 K^-}^{D_s^0 K^-} \times [\Sigma_i(e^{D_s^0 K^-} \times B_i)]]}$$

(2)

where $N_{\text{fit}}^{D_{s1}(2536)^-}$ is the yield of fitted $D_{s1}(2536)^-$ signal events after subtracting the $e^+e^- \rightarrow D_s^+ D_{s1}(2536)^-$ background contribution in data, $d\mathcal{L}$ is the effective luminosity [36], $\Sigma_i(e^{D_s^0 K^-} \times B_i)$ and $\Sigma_i(e^{D_s^0 K^-} \times B_i)$ are the sums of the product of the reconstruction efficiency and branching fraction for each D_s^+ decay mode (i) in $D_{s1}(2536)^- \rightarrow \bar{D}^0 K^- \rightarrow D_s^+ D_{s1}(2536)^-$, and $R_{D_s^0 K^-}^{D_s^0 K^-} = B(D_{s1}(2536)^- \rightarrow \bar{D}^0 K^-)/B(D_s^+ D_{s1}(2536)^-) = 0.425 \pm 0.06$ taken from Ref. [29]. The values used to calculate $\sigma(e^+e^- \rightarrow D_s^+ D_{s1}(2536)^-) \times B(D_s^+ D_{s1}(2536)^-) \rightarrow \bar{D}^0 K^-)$ are summarized in Supplemental Material [33]. In the fit to the recoil mass spectrum of $\gamma_{\text{ISR}} D_s^+$ combinations in each $D_s^+ D_{s1}(2536)^-$ mass bin, the $D_{s1}(2536)^-$ signal shape is fixed to that from the overall fit, as shown by the blue solid curve in Fig. 1, and a threshold function is used for the backgrounds. The resulting $\sigma(e^+e^- \rightarrow D_s^+ D_{s1}(2536)^-) \times B(D_{s1}(2536)^-) \rightarrow \bar{D}^0 K^-)$ value as a function of $M(D_s^+ R_{s1}(2536)^-)$ is shown in Fig. 3 with the statistical and systematic uncertainties discussed below summed in quadrature.

The sources of systematic uncertainties for the cross section measurement include detection-efficiency-related uncertainties, branching fractions of the intermediate states, fit uncertainty, resonance parameters, the MC event generator, $e^+e^- \rightarrow D_s^+ D_{s1}(2536)^-$ background contribution, mass resolution as well as the integrated luminosity. The detection-efficiency-related uncertainties include those for tracking efficiency (0.35%/track), particle identification efficiency (1.1%/kaon and 0.9%/pion), K_S^0 selection efficiency (1.4%) [40], π^0 reconstruction efficiency (2.25%/π^0) and photon reconstruction efficiency (2.0%/photon). The above individual uncertainties from different D_s^+ decay channels are added linearly, weighted by the product of the detection efficiency and D_s^+ partial decay width. These uncertainties are summed in quadrature to obtain the final uncertainty related to the reconstruction efficiency.

Uncertainties for D_s^+ decay branching fractions and $R_{D_s^0 K^-}^{D_s^0 K^-}$ are taken from Ref. [29]; the final uncertainties on the D_s^+ partial decay widths are summed in quadrature over the eight D_s^+ decay modes weighted by the product of the efficiency and the D_s^+ partial decay width. Systematic uncertainties associated with the fitting procedure are estimated by changing the order of the background polynomial and the range of the fit. The deviations from nominal fit results are taken as systematic uncertainties. Changing the values of mass and width of $D_{s1}(2536)^-$ by 1σ [29] in each $M(D_s^+ D_{s1}(2536)^-)$ bin has no effect on the fits. Thus, the uncertainty from the resonance parameters can be neglected. The PHOKHARA generator calculates the ISR-photon radiator function with 0.1% accuracy [28]. The uncertainty attributed to the generator can also be neglected.

By fitting the $D_{s1}(2536)^-$ mass spectrum in each $M(D_s^+ D_{s1}(2536)^-)$ bin for $e^+e^- \rightarrow D_s^+ D_{s1}(2536)^-$, we find the signal yields are less than 1. In addition, the $D_{s1}(2536)^-$ signal from the $e^+e^- \rightarrow D_s^+ D_{s1}(2536)^-$ contribution has a much poorer mass resolution according to
MC simulation. Therefore, the systematic uncertainty associated with the $e^+e^- \to D_s^{*+}D_s^{*-}(2536)$ contribution is neglected. The MC simulation is known to reproduce the resolution of mass peaks within 10% over a large number of different systems. The systematic uncertainty in the mass resolution is estimated by comparing the yields when the mass resolution is changed by 10%. The total luminosity is determined to 1.4% precision using wide-angle Bhabha scattering events. All the uncertainties are summarized in Table I. Assuming all the sources are independent, we sum them in quadrature to obtain the total systematic uncertainties.

The following systematic uncertainties on the measured mass and width for the $Y(4626)$, and the $\Gamma_{ee} \times B(Y(4626) \to D_s^{*+}D_s^{*-}(2536) \to \bar{D}^{*0}K^-)$ are considered. The resultant systematic uncertainties attributed to the mass resolution in the width and $\Gamma_{ee} \times B(Y(4626) \to D_s^{*+}D_s^{*-}(2536) \to \bar{D}^{*0}K^-)$ are 0.3 MeV and 0.1 eV. By changing the nonresonant background shape to a threshold function or to the sum of a two-body phase space form and a threshold function, the differences of 0.3 MeV/c^2 and 3.9 MeV in the measured mass and width, and 1.3 eV for the $\Gamma_{ee} \times B(Y(4626) \to D_s^{*+}D_s^{*-}(2536) \to \bar{D}^{*0}K^-)$, respectively, are taken as systematic uncertainties. The uncertainty in the efficiency correction from detection efficiency, branching fractions of the intermediate states, and integrated luminosity is 4.9%. Changing the efficiency function by 4.9% gives a 0.1 MeV/c^2 change on the mass, 0.2 MeV on the width, and 0.7 eV on the product $\Gamma_{ee} \times B(Y(4626) \to D_s^{*+}D_s^{*-}(2536) \to \bar{D}^{*0}K^-)$. Finally, the total systematic uncertainties on the $Y(4626)$ mass, width, and $\Gamma_{ee} \times B(Y(4626) \to D_s^{*+}D_s^{*-}(2536) \to \bar{D}^{*0}K^-)$ are 0.4 MeV/c^2, 4.0 MeV, and 1.5 eV, respectively.

In summary, the product of the $e^+e^- \to D_s^{*+}D_s^{*-}(2536)$ cross section and the decay branching fraction $B(D_s^{*-}(2536) \to \bar{D}^{*0}K^-)$ is measured over the C.M. energy range from the $D_s^{*+}D_s^{*-}(2536)$ mass threshold to 5.59 GeV for the first time. We observe the first vector charmoniumlike state decaying to a charmed-antistrange and anticharmed-strange meson pair $D_s^{*+}D_s^{*-}(2536) \to \bar{D}^{*0}K^-$ with a signal significance of 5.9σ with systematic uncertainties included. The measured mass and width are $(4625.9^{+6.2}_{-6.0}(\text{stat}) \pm 0.4(\text{syst}))$ MeV/c^2 and $(49.8^{+13.9}_{-11.5}(\text{stat}) \pm 4.0(\text{syst}))$ MeV, respectively, which are consistent with the $Y(4660)$ mass of (4643 ± 9) MeV/c^2 and width of (72 ± 11) MeV [29] within uncertainties. The $\Gamma_{ee} \times B(Y(4626) \to D_s^{*+}D_s^{*-}(2536) \to \bar{D}^{*0}K^-)$ is obtained to be $(14.3^{+2.8}_{-2.6}(\text{stat}) \pm 1.5(\text{syst}))$ eV.

ACKNOWLEDGEMENT

We thank the KEKB group for the excellent operation of the accelerator; the KEK cryogenics group for the efficient operation of the solenoid; and the KEK computer group, and the Pacific Northwest National Laboratory (PNNL) Environmental Molecular Sciences Laboratory (EMSL) computing group for strong computing support; and the National Institute of Informatics, and Science Information NETwork 5 (SINET5) for valuable network support. We acknowledge support from the Ministry of Education, Culture, Sports, Science, and Technology (MEXT) of Japan, the Japan Society for the Promotion of Science (JSPS), and the Tau-Lepton Physics Research Center of Nagoya University; the Australian Research Council including Grants No. DP180102629, No. DP170102389, No. DP170102204, No. DP150103061, and No. FT130100303; Austrian Science Fund (FWF); the National Natural Science Foundation of China under Contracts No. 11435013, No. 11475187, No. 11521505, No. 11575017, No. 11675166, No. 11705209, No. 11761141009, No. 11975076; Key Research Program of Frontier Sciences, Chinese Academy of Sciences (CAS), Grant No. QYZDJ-SSW-SLH011; the CAS Center for Excellence in Particle Physics (CCEPP); the Shanghai Pujiang Program under Grant No. 18PJ140100; the Ministry of Education, Youth and Sports of the Czech Republic under Contract No. LTT17020; the Carl Zeiss Foundation, the Deutsche Forschungsgemeinschaft, the Excellence Cluster Universe, and the VolkswagenStiftung; the Department of Science and Technology of India; the Istituto Nazionale di Fisica Nucleare of Italy; National Research Foundation (NRF) of Korea Grants No. 2016R1-D1A1B-0101015, No. 2016R1-D1A1B-02012900, No. 2018R1-A2B-3003643, No. 2018R1-A6A1A-06024970, No. 2018R1-D1A1B-07047294, No. 2019K1-A3A7A-09033840, and No. 2019R1-I1A3A-01058933; Radiation Science Research Institute, Foreign Large-size Research Facility Application Supporting project, the Global Science Experimental Data Hub Center of the Korea Institute of Science and Technology Information and KREONET/GLORIAD; the Polish Ministry of Science and Higher Education and the National Science Center; the Ministry of

Source	σ_{sys} (pb)
Detection efficiency	0.0–8.1
Branching fractions	0.0–7.4
Fit uncertainty	0.5–36.2
Mass resolution	0.1–7.7
Luminosity	0.0–2.5
Quadratic sum	0.6–36.3

TABLE I. Summary of the absolute systematic uncertainties (σ_{sys}) on the product of $e^+e^- \to D_s^{*+}D_s^{*-}(2536)$ cross section and the decay branching fraction $B(D_s^{*-}(2536) \to \bar{D}^{*0}K^-)$ for different $M(D_s^{*+}D_s^{*-}(2536))$ bins.
Science and Higher Education of the Russian Federation, Agreement 14.W03.31.0026; from 15.02.2018; the Slovenian Research Agency; Ikerbasque, Basque Foundation for Science, Spain; the Swiss National Science Foundation; the Ministry of Education and the Ministry of Science and Technology of Taiwan; and the United States Department of Energy and the National Science Foundation.

[1] G. Pakhlova et al. (Belle Collaboration), Phys. Rev. D 77, 011103 (2008).
[2] G. Pakhlova et al. (Belle Collaboration), Phys. Rev. Lett. 98, 092001 (2007).
[3] G. Pakhlova et al. (Belle Collaboration), Phys. Rev. Lett. 100, 062001 (2008).
[4] G. Pakhlova et al. (Belle Collaboration), Phys. Rev. D 80, 091101 (2009).
[5] G. Pakhlova et al. (Belle Collaboration), Phys. Rev. D 83, 011101(R) (2011).
[6] B. Aubert et al. (BABAR Collaboration), Phys. Rev. D 76, 111105 (2007).
[7] B. Aubert et al. (BABAR Collaboration), Phys. Rev. D 79, 092001 (2009).
[8] P. del Amo Sanchez et al. (BABAR Collaboration), Phys. Rev. D 82, 052004 (2010).
[9] D. Cronin-Hennessy et al. (CLEO Collaboration), Phys. Rev. D 80, 072001 (2009).
[10] M. Ablikim et al. (BESIII Collaboration), Phys. Rev. Lett. 120, 132001 (2018).
[11] B. Aubert et al. (BABAR Collaboration), Phys. Rev. Lett. 95, 142001 (2005).
[12] M. Ablikim et al. (BESIII Collaboration), Phys. Rev. Lett. 100, 102003 (2008).
[13] T. E. Coan et al. (CLEO Collaboration), Phys. Rev. Lett. 96, 162003 (2006).
[14] C. Z. Yuan et al. (Belle Collaboration), Phys. Rev. Lett. 99, 182004 (2007).
[15] Z. Q. Liu et al. (Belle Collaboration), Phys. Rev. Lett. 110, 252002 (2013).
[16] M. Ablikim et al. (BESIII Collaboration), Phys. Rev. Lett. 118, 092001 (2017).
[17] B. Aubert et al. (BABAR Collaboration), Phys. Rev. Lett. 98, 212001 (2007).
[18] X. L. Wang et al. (Belle Collaboration), Phys. Rev. Lett. 99, 142002 (2007).
[19] M. Ablikim et al. (BESIII Collaboration), Phys. Rev. D 96, 032004 (2017).
[20] T. V. Uglov, Y. S. Kalashnikova, A. V. Nefediev, G. V. Pakhlova, and P. N. Pakhlov, JETP Lett. 105, 1 (2017).
[21] G. Pakhlova et al. (Belle Collaboration), Phys. Rev. Lett. 101, 172001 (2008).
[22] M. Ablikim et al. (BESIII Collaboration), Phys. Rev. Lett. 122, 102002 (2019).
[23] M. Karliner and J. L. Rosner, Nucl. Phys. A954, 365 (2016).
[24] Throughout this analysis, for any given mode, the corresponding charge-conjugate mode is implied.
[25] A. Abashian et al. (Belle Collaboration), Nucl. Instrum. Methods Phys. Res., Sect. A 479, 117 (2002); also see Section II in J. Brodzicka et al., Prog. Theor. Exp. Phys. 2012, 04D001 (2012).
[26] S. Kurokawa and E. Kikutani, Nucl. Instrum. Methods Phys. Res., Sect. A 499, 1 (2003), and other papers included in this Volume.
[27] T. Abe et al., Prog. Theor. Exp. Phys. 2013, 03A001 (2013) and references therein.
[28] G. Rodrigo, H. Czyż, J. H. Kühn, and M. Szopa, Eur. Phys. J. C 24, 71 (2002).
[29] M. Tanabashi et al. (Particle Data Group), Phys. Rev. D 98, 030001 (2018).
[30] S. Jia et al. (Belle Collaboration), Phys. Rev. D 98, 092015 (2018).
[31] H. Ikeda et al. (Belle Collaboration), Nucl. Instrum. Methods Phys. Res., Sect. A 441, 401 (2000).
[32] The Novosibirsk function is defined as $f(x) = \exp\left(-\frac{1}{4}(\ln^2(1+\Lambda(x-x_0))/r^2+r^2)\right)$ with $\Lambda = \sinh(\sqrt{\ln 4}/(\sqrt{\ln 4})$. The parameters represent the mean (x_0), the width (σ) and the tail asymmetry (τ).
[33] See Supplemental Material at http://link.aps.org/supplemental/10.1103/PhysRevD.100.111103, for the recoil mass spectra against the $\tau_{\text{ISR}}D_s^+$ system in $e^+e^- \rightarrow D_s^+D_{s1}^{(2536)}\rightarrow \bar{D}^0K^-$ and $e^+e^- \rightarrow D_{s1}^{(2536)}\rightarrow \bar{D}^0K^0$ and for a summary of the values for the effective luminosity, the total reconstruction efficiency, the number of fitted signal events, and the product of the dressed cross section and the decay branching fraction $\sigma(e^+e^- \rightarrow D_s^+D_{s1}^{(2536)}\times B(D_{s1}^{(2536)}\rightarrow \bar{D}^0K^-)$ in each $D_s^+D_{s1}^{(2536)}\rightarrow \bar{D}^0K^-$ mass bin.
[34] S. S. Wilks, Ann. Math. Stat. 9, 60 (1938).
[35] S. Godfrey and N. Isgur, Phys. Rev. D 32, 189 (1985).
[36] E. A. Kuraev and V. S. Fadin, Yad. Fiz. 41, 733 (1985) [Sov. J. Nucl. Phys. 41, 466 (1985)].
[37] X. Y. Gao, C. P. Shen, and C. Z. Yuan, Phys. Rev. D 95, 092007 (2017).
[38] The dressed cross section is $\sigma = \sigma^b/(1-\Pi^2)^2$, where σ^b is the Born cross section, and $|1-\Pi^2|^2 = 0.94$ is the vacuum polarization factor [39].
[39] S. Actis et al., Eur. Phys. J. C 66, 585 (2010).
[40] N. Dash et al. (Belle Collaboration), Phys. Rev. Lett. 119, 171801 (2017).