Fighting obesity: When muscle meets fat

Xin Yang, Pengpeng Bi & Shihuan Kuang

To cite this article: Xin Yang, Pengpeng Bi & Shihuan Kuang (2014) Fighting obesity: When muscle meets fat, Adipocyte, 3:4, 280-289, DOI: 10.4161/21623945.2014.964075

To link to this article: https://doi.org/10.4161/21623945.2014.964075
Fighting obesity: When muscle meets fat

Xin Yang, Pengpeng Bi, and Shihuan Kuang*

Department of Animal Science; Purdue University; West Lafayette, Indiana, USA

Keywords: adipocyte, adipose, AMPK, fat, Insulin resistance, muscle, myokine

The prevalence of obesity has risen to an unprecedented level. According to World Health Organization, over 500 million adults, equivalent to 10%–14% of the world population, were obese with a body mass index (BMI) of 30 kg/m² or greater in 2008.1 This rising prevalence and earlier onset of obesity is believed to be resulted from an interplay of genetic factors, over-nutrition and physical inactivity in modern lifestyles. Obesity also increases the susceptibility to metabolic syndromes, hypertension, cardiovascular diseases, Type 2 diabetes mellitus (T2DM) and cancer.2-4 The global obesity epidemic has sparked substantial interests in the biology of adipose tissue (fat). In addition, the skeletal muscle and its secretive factors (myokines) have also been shown to play a critical role in controlling body energy balance, adipose homeostasis and inflammation status.5 Interestingly, skeletal muscle cells share a common developmental origin with brown adipocytes,6,7 which breaks down lipids to generate heat—thus reducing obesity. Here, we provide a brief overview of the basics and recent progress in muscle-fat crosstalk in the context of body energy metabolism, obesity, and diabetes. We summarize the different types of adipocytes, their developmental origins and implications in body composition. We highlight the role of several novel myokines in regulating fat mass and systemic energy balance, and evaluate the potential of skeletal muscles as a therapeutic target to treat obesity.

Characterization and Origin of Brown, White and Beige Adipocytes

White and brown adipocytes are 2 types of commonly known fat cells in mammals.8 White adipocytes are characterized by a spherical shape, a large single lipid droplet that takes up to 90% of the total cell volume, and few mitochondria.9 White adipocytes constitute the bulkiy white adipose tissues (WAT) located under the skin (subcutaneous fat), in the muscle (intramuscular fat or “marbling” fat), and in the abdominal cavity attached to the visceral mass (visceral fat).10 They store excess food intake (or energy surplus) in the form of triglycerides, which can be utilized to generate energy under energy deficit conditions. In contrast, brown adipocytes contain multilocular lipid droplets and numerous mitochondria.9 They are found in brown adipose tissues (BAT) mainly located in the interscapular regions of rodents and human infants.10,11 Unlike white adipocytes, brown adipocytes break down lipids to produce heat, thus reducing adiposity. The thermogenesis of brown adipocytes is mediated by uncoupling protein 1 (UCP1) that is uniquely located in their inner mitochondria membrane. Of note, uncoupling activity of UCP1 is under control by sympathetic innervation12 as well as other factors like free fatty acids from lipolysis.13 The thermogenic “energy-leaking” feature of brown adipocytes has made BAT an appealing therapeutic target for treating obesity.14

Although brown and white adipocytes share multiple morphological and functional similarities, their developmental origins are surprisingly different (Fig. 1). Recent studies have revealed a vascular or perivascular localization of white adipocyte progenitors, and identified several molecular markers of these cells (for example Zfp423, VE-Cad, PDGFRB, and PDGFRα).15-18 However, the anatomical localization of brown adipocyte progenitors has not been reported. Interestingly, classic brown fat, but not white fat, shares a developmental origin with the skeletal muscle. Lineage tracing studies demonstrate that muscle and brown fat are from a population of mesodermal progenitors that express myogenic marker genes Myf5, Pax7 and Pax3.6,19,20 Furthermore, brown adipocytes and muscle cells share a similar mitochondrial proteomic signature21 and both contribute to thermogenesis.22,23 In fact, brown fat precursors express a variety of myogenic genes prior to differentiation.24 This is followed by progressive loss of myogenic signature gene expression during brown fat maturation. Recent studies have begun to elucidate factors that diverge brown adipose from muscle development. Particularly, PRDM16 (PRD1-BF-1-RIZ1 homologous domain-containing protein-16) has been shown to be a bidirectional switch that determines BAT versus muscle fate.6 Loss of PRDM16 in brown preadipocytes leads to a phenotypic switch to muscle cells, while ectopic expression of PRDM16 in myoblasts switches them back to brown adipocytes.6 More recently, it was reported that miR-133 acts as an upstream regulator of PRDM16 to control skeletal muscle vs. BAT fate choice in muscle stem cells (satellite cells).25 Although BAT-specific deletion of PRDM16 does not affect embryonic BAT development, it promotes white fat-specific gene expression in BAT in young mice and attenuates thermogenesis in old mice.26 These lines of evidence suggest that BAT originates differently from WAT, but shares developmental similarities with skeletal muscles.

It has long been known that when rodents are exposed to cold stress or β-adrenergic stimulating drugs, certain depots of WAT undergo a “browning” process, giving rise to brown adipocyte-like...
cells (called beige or brite adipocytes) with multilocular lipid droplets, UCP1 expression and thermogenic activity. However, whether adult humans have a similar capacity to form inducible BAT (iBAT) has been unclear. Recently, advanced imaging analysis using positron emission tomography (PET) revealed that in cold conditions, active “brown-like” adipocytes form along the cervical-supraclavicular area in human adults. These cells retain radioactive fluorodeoxyglucose, suggesting that they actively uptake and utilize glucose. Different from classic WAT and BAT, iBAT is characterized by the presence of beige adipocytes. 32 Beige cells specifically express several marker genes (for example, Tnfrnfs9, Tmem26 and Tbx1 in mice and HOXC8, HOXC9 and CITED1 in humans) that are not expressed by white or brown adipocytes. In contrast, brown adipocytes uniquely express several maker genes (for example, Eva1, Hspb7 and Pdk4 in mouse and EPSTI1, LHX8 and ZIC1 in human) that are not shared by beige or white cells. Notably, genetic analysis of human iBAT suggests it contains both brown and beige adipocytes. 34,35

Beige adipocytes can be differentiated de novo from precursors or transdifferentiate from mature white adipocytes (Fig. 1). Beige cell precursors are believed to be enriched in Pax3+ cell lineage. A study using Adiponectin-Cre combined with Tert inducible lacZ mice (named Adipo-chaser mice) shows that in response to cold stimulation, preadipocytes in subcutaneous fat undergo de novo differentiation to form beige cells, while abdominal beige fat cells accumulate through proliferation. Using EdU labeling combined with β3-adrenergic receptor stimulation, it was shown that the mitotic index was 7.5 times higher in epididymal WAT than inguinal WAT. Interestingly, UCP1 co-localizes with a fraction of the proliferating cells. Together, these studies suggest the existence of beige preadipocytes. It is worth mentioning that an independent study identified a population of beige precursors within skeletal muscle that respond to bone morphogenetic protein 7 (BMP7) stimulation. On the other hand, interconversion of white and beige adipocytes has also been observed. Even before the characterization of beige cells, it was reported that white adipose precursors do not increase in response to cold acclimation, and iBAT formation is predominantly due to β3-adrenergic receptor-dependent transdifferentiation of white adipocytes. Indeed, murine perivascular Pdgfra+ cells differentiate into beige adipocytes upon β-adrenergic receptor stimulation, but become white adipocytes in
response to high fat diet (HFD) feeding. Based on these studies, cold can induce de novo formation of beige adipocytes from a population of beige precursor cells. These beige adipocytes are plastic; they can become white adipocytes upon warm adaption and switch back to beige adipocytes after additional cold stimulation. Beige cell formation is regulated by many factors. Among these, inhibition of Prdm16 blocks the function of beige adipose and induces redistribution of subcutaneous white fat to unfavorable visceral fat, resulting in obesity and metabolic disorders.

On the contrary, inhibition of Notch signaling dramatically promotes “browning” of white adipocyte through activating Prdm16 and Pparg (Peroxisome proliferator-activated receptor gamma). Importantly, the Notch inhibitor dibenzazepine (DBZ) effectively reduces adiposity and improves glucose metabolism in ob/ob mice. Further understanding of mechanisms underlying beige cell development and adipose “browning” will have a huge impact in the treatment of obesity.

Adipose depots at different anatomical locations not only differ in the relative composition of brown, beige and white adipocytes, but are also heterogeneous in developmental origins. Classic brown adipose depots include interscapular BAT (isBAT), subscapular BAT (sBAT), cervical BAT (cBAT), peri-aortic BAT (paBAT) and renal BAT (rBAT), whereas white adipose depots include anterior subcutaneous WAT (asWAT), inguinal WAT (inWAT), retroperitoneal WAT (rWAT), gonadal WAT (gWAT), mesenteric WAT (mWAT), and intramuscular fat (IMAT). The white adipose depots can also be broadly divided into subcutaneous WAT (asWAT and inWAT) and visceral WAT (sWAT, rWAT and gWAT). IMAT refers to adipocytes located in muscle interstitium and is different from the intramyocellular triglycerides, which refer to cellular lipid droplets within muscle cells. Developmentally, visceral WAT develops from the lateral plate mesoderm Wnt+ cells whereas no subcutaneous or BAT were found to come from the Wnt+ population. A recent in vivo lineage tracing experiment employing the Myf5-Cre, Myod-Cre, Pax3-Cre mice models combined with mTmG dual reporter mice shows that while isBAT depot contains 99% Myf5 lineage adipocytes, cBAT had only ~60% Myf5 lineage adipocytes. Myf5 lineage cells also contribute to 25% and 50% of asWAT and rWAT progenitors.

Figure 2. Distribution of various adipose depots Adipose tissues are generally divided into brown adipose depots and white adipose depots. Brown adipose depots include interscapular BAT (isBAT), subscapular BAT (sBAT), cervical BAT (cBAT), peri-aortic BAT (paBAT) and renal BAT (rBAT). White adipose depots include anterior subcutaneous WAT (asWAT), inguinal WAT (inWAT), retroperitoneal WAT (rWAT), gonadal WAT (gWAT), mesenteric WAT (mWAT), and intramuscular fat (IMAT).
respectively. Pax3 lineage tracing shows similar results, but interestingly, shows gender differences in various depots especially in rBAT and gWAT. These experiments together suggest that depot-specific origin of adipose tissues is under combined influences of genetic, breeds, age, gender and even seasons.

Role of Skeletal Muscle in Body Energy Balance

Obesity results from an energy surplus (i.e. greater energy intake than expenditure). As the largest organ in the body, the skeletal muscle comprises ~40% of body mass and serves as one of the major regulators of body energy homeostasis. Even under severe obese conditions, skeletal muscles still account for ~25% of body mass and remain metabolically active to a certain extent. In order to satisfy the structural and functional needs for skeletal muscle, massive amounts of energy are utilized for muscle protein synthesis and motor function under both resting and exercise conditions. Skeletal muscles mainly utilize glucose as the energy source, but can also utilize free fatty acids (FFA) and amino acids (AA) as fuels or structural “building blocks.” Thus, the skeletal muscle can affect not only glucose, but also fat and protein homeostasis in the body.

Skeletal muscles uptake ~75% of ingested carbohydrate from meals. Postprandial plasma glucose is primarily taken up through glucose transporter 4 (GLUT4) facilitated infusion, and then subjected to glycolysis, oxidative phosphorylation, or glycogen synthesis depending on individual activity levels. The process of glucose uptake and catabolism during muscle activity contributes to a negative energy balance. Contraction and insulin stimulation are 2 main activators of muscle glucose uptake.

Muscle contraction directly stimulates glucose uptake predominantly through activation of AMP-activate protein kinase (AMPK), which increases GLUT4 translocation to the muscle cell membrane (sarcolemma). Briefly, muscle contraction increases the ratio of AMP/ATP, which is detected by energy sensor AMPK. The activated AMPK then phosphorylates TBC1 domain family member 4 and 1 (TBC1D 4 and TBC1D1), leading to the release of GLUT4 from cytoplasmic storage vesicles to the sarcolemma. Differential phenotypes of mice lacking AMPK α, β, or γ subunit suggest that each subunit has a unique role in regulating muscle glucose uptake.

AMPK-independent mechanisms may also be involved in skeletal muscle glucose uptake. For example, the antioxidant N-acetyl-l-cysteine (NAC) and the nitric oxide synthase (NOS) inhibitor N(G)-monomethyl-l-arginine (l-NMMA) can attenuate contraction stimulated glucose uptake in both wild type and muscle specific AMPKα2 knockout mice. As an energy “sensor” and regulatory molecule, AMPK also inhibits glycogen synthesis, promotes fatty acid oxidation, and enhances mitochondria oxidation in contracting muscle cells. AMPK also promotes exercise-mediated improvements in insulin sensitivity through mechanisms involving interleukin 6 (IL-6), adiponectin, IR, IRS, and mTOR. Human studies indicate that AMPK mRNA and protein levels are down-regulated in obese subjects but elevated by exercise, suggesting the potential of AMPK mimetic as therapeutic agents to treat obesity and insulin resistance. In fact, metformin, an AMPK activating compound, has been used as the first-line drug in current clinical treatments of diabetes. The most updated meta-analyses also indicate that metformin also reduces colorectal, liver, pancreatic and stomach cancer risks in diabetic patients.

Insulin stimulates muscle glucose uptake and disposal through the IR-IRS-PI3K pathway. Inulin binding to the insulin receptor (IR) activates the intrinsic tyrosine kinase of IRβ-subunit, which phosphorylates insulin receptor substrate 1 (IRS-1). Phospho-IRS-1 docks class I phosphatidylinositol-3-kinase (PI3K), which phosphorylates Akt and atypical protein kinase C zeta (αPKCζ), leading to GLUT4 translocation. Inulin resistance commonly associated with obesity and T2DM describes the condition of reduced cellular responsiveness to circulating insulin, resulting in the hyperinsulinemia, hyperglycemia and hyperlipidemia. Insulin resistance dampens insulin signaling transduction without damaging the structures needed for glucose uptake, since insulin resistant human skeletal muscles exhibit normal GLUT4 translocation when stimulated by contraction or hypoxia. As ~80% of body insulin stimulated glucose uptake is mediated by the skeletal muscle, skeletal muscle insulin resistance can be devastating, and can lead to a vicious circle of insulin resistance and metabolic disorders. Thus, exercise therapies and pharmaceutical compounds that improve muscle insulin sensitivity represent a promising direction to treat Type 2 diabetes and other metabolic syndromes.

In addition to glucose, skeletal muscle also utilizes fatty acids and proteins depending on availability of substrates. This adaptive process is known as “metabolic flexibility.” During fasting, fatty acid oxidation (FAO) accounts for up to 90% of muscle energy supply. Healthy human skeletal muscle actively catabolizes non-esterified fatty acid (NEFA) via hormone-sensitive lipoprotein lipase (LPL), while muscles of obese or T2DM patients show nearly diminished NEFA uptake and deficiency in FAO. The impaired FFA metabolism potentially causes ectopic lipid accumulation in skeletal muscle, liver, and heart; increasing the risk of insulin resistance and metabolic disorders. The impaired FFA metabolism may be associated with mitochondrial mass reduction or functional disruption, such as inhibition of carnitine palmitoyltransferase 1 (CPT-1) mediated lipid transport and ROS inactivation of mitochondrial membrane enzymes.

The skeletal muscle is also highly active in protein metabolism since it requires rapid protein synthesis and degradation for maintaining muscle turnover. Proteins also serve as a source of energy for muscle contraction under extreme fasting conditions. Increased levels of plasma amino acids (AA) and decreased skeletal muscle protein synthesis were evident in obese animal models. Skeletal muscle protein metabolism is regulated by complex mechanisms. Mammalian target of rapamycin (mTOR), especially the mTOR complex 1 (mTORC1), is the most important regulator of skeletal muscle mass and protein synthesis in response to high plasma AA concentration. Activation of mTOR initiates canonical muscle protein synthesis
pathways, and interestingly, partially decreases autophagic influx that facilitates protein degradation.\(^{49}\)

Myokines Regulate Body Fat Composition and Inflammation Status

Skeletal muscle is not only a motor organ but also an endocrine organ releasing small secretive molecules known as myokines. Broadly speaking, “peptides or proteins that are produced, expressed and released by muscle fibers and exert a paracrine or endocrine effect” are referred to as myokines.\(^{68,71}\) Myokines often alter body energy utilization and inflammatory status, therefore affecting weight gain and fat composition. Common myokines include irisin, myostatin, interleukins (IL6, 7, 8, 15), Leukemia Inhibitory Factor (LIF), among others.\(^{72}\)

Irisin is a short peptide cleaved from the extracellular domain of the Fndc5 (fibronectin domain-containing 5). Fndc5 mRNA is abundantly expressed in the heart, brain, rectum and skeletal muscle and moderately in the intracranial artery, tongue and optic nerve.\(^{72-74}\) The expression pattern implies that irisin may exert functions on multiple tissues. One example is that exercising mice have elevated Fndc5 in their hippocampus, suggesting that Fndc5 positively regulates neural activities.\(^{75}\) Another example is the original discovery demonstrating irisin as an “exercise hormone” secreted by skeletal muscle. Once secreted, irisin circulates through the bloodstream to fat tissues, where it promotes browning of white adipocytes.\(^{76}\) The irisin mediated “browning” of WAT depends on proliferator-activated receptor γ coactivator 1 α (PGC1-α).\(^{77}\) The “browning” can be synergistically enhanced by fibroblast growth factor21 (FGF21), a cold-induced myokine.\(^{78-80}\) Irisin also serves as a focal regulator of muscle cell metabolism through promoting mitochondria biogenesis and metabolic gene expression.\(^{81}\) Besides its hormonal function, Fndc5 may serve as a transmembrane signaling protein.\(^{82}\) However, contradictory results regarding association between plasma irisin levels and insulin sensitivity have been reported in human studies.\(^{83}\) For example, obesity and T2DM are reported to be negatively correlated with irisin/ FNDC5 secretion and mRNA expression.\(^{84,85}\) In contrast, high levels of baseline plasma irisin are correlated with insulin resistance in obese patients, implying the possibility of “irisin resistance”.\(^{86}\) In cell culture experiments, palmitate and glucose treatments that partially mimics diabetic and obese situations decrease muscle cell FNDC5 mRNA expression.\(^{85}\) Other studies show that neither acute nor long term exercise significantly improves circulating irisin level or brown fat gene expression, despite elevated irisin/Fndc5 expression in muscle.\(^{84,85}\) Another independent study reports that the human FNCD5 gene start codon is mutated, and irisin treatment does not increase human brite cell formation in vitro.\(^{87}\) Although the majority of studies support the idea that irisin/Fndc5 mediates the “crosstalk” of skeletal muscles to other tissues in rodents,\(^{80,88}\) whether the effect of irisin can be translated to humans remains to be confirmed.

Myostatin (Mstn), also called growth/differentiation factor 8 (GDF8), is another extensively studied and well-established myokine. Mstn belongs to the highly conserved TGF-β family and its absence causes dramatic increases of muscle cell size (hypertrophy) in humans, mice, cattle and other mammals.\(^{89,92}\) Mstn also affects other tissues such as adipose and bone.\(^{93}\) In addition to muscle hypertrophy, reduced adiposity and adipose browning were observed in muscle-specific and whole body Mstn knockout, but not in adipose-specific Mstn knockout mice.\(^{93-95}\) Mechanistically, whole body deletion of Mstn robustly induces Fndc5 expression in skeletal muscle, which in turn increases serum irisin levels and promotes formation of beige fat cells.\(^{96}\) Although Mstn and one of its receptors – activin receptor IIb (ActRIIB) – are expressed by adipocytes, the expression level may be too low to provide physiological relevance,\(^{97-99}\) explaining the lack of phenotype in adipose-specific knockout mice. Consistently, Mstn treatment has no effect on cultured adipocytes.\(^{96}\) Together these lines of evidence suggest that Mstn reduces body fat composition and induces “browning” of WAT likely through an indirect mechanism mediated by the skeletal muscle. In both human and rodents, Mstn is expressed at higher levels in obese individuals and lower levels in exercised subjects.\(^{99,101}\) As Mstn seems to partially explain the beneficial effect of exercise, targeting Mstn signaling pathway using soluble ActRIIB decoy receptor ACE-031 is currently in clinical trial.\(^{102}\)

The IL family members (IL-4, 6, 7, 8 and 15) are regarded as myokines for their versatile functions in regulating energy homeostasis, immune responses and cell movements.\(^{94}\) They are produced in muscle cells, though some, such as IL-8, are mainly produced by other cell types. Of these IL family myokines, IL-6 appears to have the most promising clinical value. IL6 production is low when cellular glucose import is high, but increases during exercise\(^{103}\) or when skeletal muscle glycogen content is low.\(^{103}\) IL-6 also promotes muscle growth and regeneration\(^{104-107}\) in addition to its function in improving muscle glucose metabolism.\(^{106}\) Recombinant IL-6 improves glucose metabolism and insulin sensitivity in humans, and helps to shift the source of skeletal muscle energy from glucose to fat.\(^{5}\) However, IL-6 is also produced by adipocytes and has been shown to induce insulin resistance\(^{107-109}\) and inflammation in adipose tissues.\(^{110}\) Moreover, elevation of the long-term effect of IL-6 seems to suggest some adverse effects.\(^{111}\) Other IL family members IL-7, 8 and 15 are all involved in immune responses that play a key role in adipose tissue function.\(^{5}\) Although they are not yet well-characterized, they do seem to facilitate the maintenance of energy homeostasis or inflammation status. Notably, IL-15 mediates muscle-fat interaction by negatively regulating lipid metabolism.\(^{112}\)

Other myokines and potential myokines include LIFs,\(^{5}\) FGF2,\(^{7}\) brain-derived neurotrophic factor,\(^{70,113,114}\) follistatin,\(^{5}\) insulin-like growth factor 1,\(^{7,115,116}\) monocyte chemoattractant protein \(^{117,118}\) and myonectin\(^{19,120}\) (Table 1). Myokines are secreted in different amounts and combinations depending on various physical activity levels. Some of the myokines are also produced in adipose tissue and are known as adipomyokines.\(^{70}\) The adipomyokines are key players involved in bidirectional muscle-fat cross talk.
More Muscle, Less Fat?

Obesity and sarcopenia (age related loss of muscle) represent 2 typical situations in which fat mass and muscle mass are negatively correlated. Obesity is generally accompanied by increased fat and lean mass, but the fat mass increases at a larger scale, resulting in a smaller lean muscle to fat ratio. The overall increased body mass in obese individuals also leads to skeletal muscle overload, resulting in greater leg and trunk muscle strength but not handgrip or arm strength. Sarcopenic obesity, which affects 5–10% of the elderly, is a type of obesity in which patients have normal body mass but little lean mass. Sarcopenic obesity is difficult to detect and treat, because subjects have a normal body weight. In addition to sarcopenic obesity, aging is naturally accompanied by sarcopenia and fat deposition, together with redistribution of body fat from appendicular to stomach and ectopic sites such as liver and muscle.

Individuals who exercise regularly gain more muscle mass, have better muscle function, and lower risks of obesity and T2DM. In contrast, physical inactivity is associated with decreased muscle mass, increased visceral adiposity, and increased macrophage infiltration, chronic systemic inflammation, insulin resistance, obesity, and T2DM. As discussed previously, skeletal muscle exercise increases energy expenditure, stimulates secretion of beneficial myokines, and increases insulin sensitivity. Muscle exercise also attenuates adipogenesis of mesenchymal stem cells through Akt-mediated mechanical signal responses. An increase in skeletal muscle mass may directly lead to reduced body fat composition, manifested by the fact that body builders often find themselves stuck in an extremely lean condition.

Consistently, animals with enhanced muscle growth, such as Mstn knockout mice and Callipyge sheep, often have little body fat deposition. However, moderate to high intensity exercise training increases intramyocellular triglycerides, a lipid store within muscle cells. This phenomenon is referred to as “athlete’s paradox” and is likely associated with an increase in oxidative metabolism in exercised muscle. The intramyocellular triacylglycerol droplets act as a FFA fuel source for muscle contraction. Interestingly, diabetic individuals also have elevated levels intramyocellular triglycerides.

Body fat deposition in turn affects skeletal muscle function. It is widely accepted that inflammatory adipokines secreted by ectopic accumulation of fat leads to muscle insulin resistance. It was also reported that FFA and exercise mimetics (such as AICAR) impact the secretion of myokines, especially the IL family members. Importantly, fat deposition affects muscle homeostasis. Decreases of muscle mass were consistently reported in obese rodents and humans. In accordance, mice with ectopic fat accumulation exhibit impaired muscle regeneration possibly due to lipid toxicity, pro-inflammatory cytokines and compromised muscle stem cell or satellite cell function. Adipocytes are nevertheless necessary for muscle regeneration, and in the absence of adipocytes skeletal muscles cannot regenerate after injury. This observation suggests that adipocytes or their “crosstalk” to muscle cells may facilitate muscle recovery. Indeed, adiponectin, an adipokine secreted by adipocytes, has been reported to improve skeletal muscle regeneration by promoting satellite cell proliferation and differentiation.

Table 1. Potential myokines, their secretion and target sites, and functions

Production site	Target site	Function
muscle, brain, gastrointestinal sites, others	muscle, brain	fatty acid oxidation, cognition
various	muscle-bone interphase, central nervous system, heart, blood vessels	muscle-bone interaction, neurogenesis
muscle, liver, others	muscle, adipose tissue	anti-obese, browning of WAT
Liver, muscle	muscle, liver	Antagonizes myostatin
muscle, mast cells, Th2 cells, eosinophils, and basophils	muscle, leukocytes and other immune cells, brain	immunity regulation, satellite cell proliferation, muscle hypertrophy and myogenesis, cognition
muscle, adipose, liver, pancreas	muscle, adipose, liver, pancreas	glucose production, fatty acid oxidation, hepatic glucose production, anti-inflammation
muscle	muscle, immune cells	satellite cell differentiation, T/B cell development
muscle	muscle, liver	chemokine, angiogenic factor
muscle	muscle	fat metabolism, muscle-fat interaction
muscle, brain, liver, heart, intracranial artery, tongue, and nerve	muscle, brain	oxidative metabolism, browning of WAT
various	muscle, blood, bone, liver, nerve	cell proliferation, muscle hypertrophy and regeneration
Muscle, adipose, blood and etc.	various	recruiting monocytes, neutrophils, lymphocytes, and inducing chemotaxis
muscle, adipose, bone	muscle, adipose	muscle mass, fatty acid oxidation, browning of WAT
muscle	muscle, adipose	metabolic control
Summary and Future Trends

Muscle-fat interaction is a complicated process acting at multiple levels. (1) Developmental origin. Muscle and fat both develop from mesenchymal precursors; brown fat and skeletal muscle share surprisingly similar origins, suggesting a close relationship, even interconversion between adipocytes and muscle cells. (2) Energy balance. Muscle affects global energy balance and inflammatory status through its active metabolism of nutrients. In these processes, muscle substrates and metabolites intricately “talk” to adipose and other tissues. (3) Body composition. Increased muscle mass and muscle exercise reduces fat deposition and increases insulin sensitivity through secretion of beneficial myokines. (4) Adipose tissue affects muscle inflammation, insulin sensitivity and regeneration possibly through adipokine secretion and physical infiltration, providing a novel target to regulate muscle function.

In conclusion, regulating skeletal muscle function represents a potential strategy to counteract obesity and T2DM. Understanding muscle-fat interaction may lead to the development of exercise therapies and molecular targets for obesity treatment. It is also critical to understand how muscle reacts to fat accumulation in order to minimize loss of muscle mass and function in obesity. Areas that need further exploration include the research of beneficial myokines, individually tailored training programs, and mechanisms underlying muscle-fat interactions that can be employed for developing drugs. It is critical to carry out human studies in order to translate animal data into novel therapeutic approaches to benefit mankind.

Disclosure of Potential Conflicts of Interest

No potential conflicts of interest were disclosed.

References

1. Malik VS, Willett WC, Hu FB. Global obesity: trends, risk factors and policy implications. Nat Rev Endocrinol 2013; 9:13-27; PMID:23615616; http://dx.doi.org/10.1038/nrendo.2012.199
2. Park YW, Zhu S, Palaniappan L, Heshka S, Carnethon MR, Heysmfield SB. The metabolic syndrome: prevalence and associated risk factor findings in the US population from the third national health and nutrition examination survey, 1988-1994. Arch Intern Med 2003; 163:427-36; PMID:12588201; http://dx.doi.org/10.1001/archinte.163.4.427
3. Adams KS, Schurtzkin A, Harris TB, Kipnis V, Mosov T, Ballard-Barbash R, Hollenbeck A, Leitzmann MF. Overweight, obesity, and mortality in a large prospective cohort of persons to 70 years old. New Eng J Med 2006; 355:765-78; PMID:16926275; http://dx.doi.org/10.1056/NEJMoa055643
4. Kalbukov E, Nosympcberg C, Ohert E, Kofler M, Tordjman K, Greenman Y, Stern N. Prevalence of hypertension in type 2 diabetes mellitus: impact of the tightening definition of high blood pressure and association with confounding risk factors. J Cardiometabolic Syndrome 2006; 1:95-101; PMID:17679829; http://dx.doi.org/10.1111/j.1559-4564.2006.05513.x
5. Pedersen BK, Febbraio MA. Muscles, exercise and obesity: skeletal muscle as a secretory organ. Nat Rev Endocrinol 2012; 8:457-65; PMID:22473333; http://dx.doi.org/10.1038/nrendo.2012.49
6. Seale P, Bjork B, Yang W, Kajimura S, Chin S, Kuang S, Scime A, Devarakonda S, Conroe HM, Erdjument-Bromage H, et al. PRDM16 controls a brown adipose tissue mitochondrial switch. Nature 2008; 454:966-7; PMID:18719582; http://dx.doi.org/10.1038/nature07182
7. Schulz TJ, Huang TL, Tran TT, Zhang H, Townsend KL, Shadrach JL, Cerletti M, McDougall LE, Giorgetti N, Tchkonia T, et al. Identification of inducible skeletal muscle adipose determination in skeletal muscle satellite cells. Nature 2013; 498:105-10; PMID:24178063; http://dx.doi.org/10.1038/nature12497
8. Cinti S. The adipose organ. Prostaglandins, Leuko-trienes, and Essential Fatty Acids 2005; 73:9-15; PMID:15936182; http://dx.doi.org/10.1016/j.plfa.2005.04.010
9. Cinti S. The adipose organ. Dis Model Mech 2012; 5:588-94; PMID:22395102; http://dx.doi.org/10.1242/dmm.009662
10. Rosen Evan D, Spiegelman Bruce M. What we talk about when we talk about fat. Cell 2014; 156:20-44; PMID:24439368; http://dx.doi.org/10.1016/j.cell.2013.12.012
11. Liddell ME, Bert MJ, Dahlqvist Leinhard O, Heglin M, Elander L, Slawik M, Massack T, Nilsson D, Romu T, Nuutila P, et al. Evidence for two types of brown adipose tissue in humans. Nat Med 2013; 19:631-4; PMID:23608313; http://dx.doi.org/10.1038/nmm.3017
12. Cannon B, Nedergraaf J. Brown adipose tissue: function and physiological significance. Physiol Rev 2004; 84:277-359; PMID:15179197; http://dx.doi.org/10.1152/physrev.00015.2003
13. Fedorensko A, Liehko PV, Kirikov Y. Mechanism of fatty-acid-dependent UCP1 uncoupling in brown fat mitochondria. Cell 2012; 149:400-13; PMID:22063128; http://dx.doi.org/10.1016/j.cell.2012.09.010
14. Saito M. Brown adipose tissue as a therapeutic target for human obesity. Obes Res Clin Pract 2013; 7:e432-8; PMID:24459687; http://dx.doi.org/10.1016/j.ercp.2013.09.006
15. Tang W, Zve D, Suh JM, Bsnakoverski D, Kyba M, Hammer RE, Tallquist MD, Graff JM. White fat progenitor cells reside in the adipose vasculature. Science 2008; 322:583-6; PMID:18801968; http://dx.doi.org/10.1126/science.1156322
16. Gupta BK, Mepani RJ, Kleiner S, Le JC, Khandekar MJ, Cohen P, Frontini A, Blomwick DC, Ye L, Cinti S, et al. Zfp423 expression identifies committed preadipocytes and localizes to adipose endothelial and perivascular cells. Cell Met 2012; 15:230-9; PMID:22332624; http://dx.doi.org/10.1016/j.cmet.2012.01.010
17. Tran KV, Gealekman O, Frontini A, Zianguest MC, Morroni M, Giordano A, Smolenski A, Perugini J, De Matreis R, Barbiari A, et al. The vascular endothelium of the adipose tissue gives rise to both white and brown fat cells. Cell Met 2012; 15:222-9; PMID:22332623; http://dx.doi.org/10.1016/j.cmet.2012.01.008
18. Berry R, Rodeheffer MS. Characterization of the adipoocyte cellular lineage in vivo. Nat Cell Biol 2013; 15:302-8; PMID:23434825; http://dx.doi.org/10.1038/mc095696
19. Liu W, Liu Y, Li, X, Kuang S. Intramuscular adipose is derived from a non-Pax3 lineage and required for efficient regeneration of skeletal muscles. Dev Biol 2012; 361:27-38; PMID:22037766; http://dx.doi.org/10.1016/j.ydbio.2011.10.011
20. Lepper C, Pan CM. Inducible lineage tracing of Pax-7 descendant cells reveals embryonic origin of adult satellite cells. Genesis 2010; 48:424-36; PMID:20641127; http://dx.doi.org/10.1002/dvg.20630
21. Forner F, Kumar C, Liber CA, Fromme T, Klingenspor M, Mann M. Proteome differences between
30. Nedergaard J, Bengtsson T, Cannon B. Unexpected metabolic dysfunction and a subcutaneous to visceral directional interconversion of brite and white adipocytes. J Cell Sci 2013; 126:3527-32; PMID:23876442; http://dx.doi.org/10.1242/jcs.125420.

31. Wang QA, Tao C, Gupta RK, Scherer PE. Tracking adipogenesis during white adipose tissue development, expansion and regeneration. Nat Med 2013; 19:1538-44; PMID:23995982; http://dx.doi.org/10.1038/nm.3183.

32. Lee YH, Petkova AP, Mottillo EP, Granneman JG. In vivo identification of bipotential adipocyte progenitors recruited by beta3-adrenoceptor activation and high-fat feeding. Cell Metab 2012; 15:480-91; PMID:22482870; http://dx.doi.org/10.1016/j.cmet.2012.03.009.

33. Barbatelli G, Murano I, Madsen L, Hao Q, Jimenez M, Kristiansen K, Giacobino JP, De Matteis R, Cinti S, et al. Ablation of PRDM16 and beige adipose causes metabolic dysfunction and a subcutaneous to visceral fat switch. Cell 2014; 156:304-16; PMID:24493984; http://dx.doi.org/10.1016/j.cell.2013.12.021.

34. Blaak EE. Basic derangements in skeletal muscle fatty acid metabolism in obesity and type 2 diabetes mellitus. Proc Nutr Soc 2004; 63:323-30; PMID:15294050; http://dx.doi.org/10.1017/S0029601804001869.

35. Sanchez-Gurmaches J, Guertin DA. Adipocytes arise from multiple lineages that are heterogeneous and dynamically distributed. Nat Commun 2014; 5:4909; PMID:24942409; http://dx.doi.org/10.1038/ncomms4909.

36. Nedergaard J, Cannon B. How brown is brown fat? It have different origins and evidence supports a mesothelial source. Nat Cell Biol 2014; PMID:24527030; http://dx.doi.org/10.1038/ncb2740.

37. Sanchez-Gurmaches J, Guertin DA. Adipocytes arise from multiple lineages that are heterogeneous and dynamically distributed. Nat Commun 2014; 5:4909; PMID:24942409; http://dx.doi.org/10.1038/ncomms4909.

38. Chau YY, Bandiera R, Serrells A, Martinez-Estrada OM, Qing W, Lee M, Sligh J, Thornburg A, Berry R, McHale S, et al. Beige adipose: are we subcutaneous fat with different origins and evidence supports a mesothelial source. Nat Cell Biol 2014; PMID:24527030; http://dx.doi.org/10.1038/ncb2740.

39. Nedergaard J, Cannon B. How brown is brown fat? It dependes where you look. Nat Med 2013; 19:540-1; PMID:23652104; http://dx.doi.org/10.1038/nm.3189.

40. Jorgensen SB, Viollet B, Andreelli F, Frosig C, Birk JB, Schjerling P, Vaulont S, Richter EA, Wojtaszewski JF. AMP-activated protein kinase gamma3 isoform has a key role in carbohydrate and lipid metabolism in glycolytic skeletal muscle. J Physiol 2013; 584:1526-31; PMID:23663743; http://dx.doi.org/10.1113/jphysiol.2012.229423.

41. Blaak EE. Basic derangements in skeletal muscle fatty acid metabolism in obesity and type 2 diabetes mellitus. Proc Nutr Soc 2004; 63:323-30; PMID:15294050; http://dx.doi.org/10.1017/S0029601804001869.

42. Pal M, Febbraio MA, Whitham M. From cytokine to myokine: the emerging role of interleukin-6 in metabolic regulation. Immunol Cell Biol 2013; 92:331-9; PMID:24751614; http://dx.doi.org/10.1038/sb.2014.16.

43. Eckardt K, Gorgens SW, Raschke S, Eckel J, Myo-kines in insulin resistance and type 2 diabetes. Diabetologia 2014; 57:1087-99; PMID:24676645; http://dx.doi.org/10.1007/s00125-014-3234-a.

44. Teufel A, Malik N, Mukhopadhyay M, Westphal H. Leptin also mediates by myokines. Adipocyte 2012; 1:164-7; PMID:23861558; http://dx.doi.org/10.1155/2013/674520.

45. Steinberg GR, O’Neill HM, Dzamko NL, Galic S, Naim T, Koopman R, Jorgensen SB, Honeymau J, Hewitt K, Chen ZP, et al. Whole body deletion of AMP-activated protein kinase beta2 reduces muscle AMPK activity and exercise capacity. J Biol Chem 2010; 285:57198-209; PMID:20855892; http://dx.doi.org/10.1074/jbc.M110.102434.

46. Blaak EE. Basic derangements in skeletal muscle fatty acid metabolism in obesity and type 2 diabetes mellitus. Proc Nutr Soc 2004; 63:323-30; PMID:15294050; http://dx.doi.org/10.1017/S0029601804001869.

47. Teufel A, Malik N, Mukhopadhyay M, Westphal H. Leptin also mediates by myokines. Adipocyte 2012; 1:164-7; PMID:23861558; http://dx.doi.org/10.1155/2013/674520.

48. Addison O, Marcus RL, Layto CY, Ryan AS. Inter-muscular fat: a review of the consequences and causes. Le J Can Des Sci Neurologiques 2008; 35:31-40; PMID:18380275.

49. Teubel A, Malik N, Mukhopadhyay M, Westphal H. Leptin also mediates by myokines. Adipocyte 2012; 1:164-7; PMID:23861558; http://dx.doi.org/10.1155/2013/674520.

50. Teubel A, Malik N, Mukhopadhyay M, Westphal H. Leptin also mediates by myokines. Adipocyte 2012; 1:164-7; PMID:23861558; http://dx.doi.org/10.1155/2013/674520.

51. Teubel A, Malik N, Mukhopadhyay M, Westphal H. Leptin also mediates by myokines. Adipocyte 2012; 1:164-7; PMID:23861558; http://dx.doi.org/10.1155/2013/674520.
Adipocyte

Volume 3 Issue 4

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792
117. Scl H, Dietz-Schneider D, Kaiser U, Eked J. Monocyte chemotactic protein-1 is a potential player in the negative cross-talk between adipose tissue and skeletal muscle. Endocrinology 2006; 147:2458-67; PMID:16439461; http://dx.doi.org/10.1210/en.2005-0969

118. Yadav A, Saini V, Arora S. MCP-1: chemotactic protein-1 with a role beyond immunity: a review. Clinica Chimica Acta; Int J Clin Chem 2010; 411:1570-9; PMID:20635466; http://dx.doi.org/10.1016/j.cca.2010.07.006

119. Seldin MM, Peterson JM, Blyth MS, Wei Z, Wong GW. Myonectin (CTRP15), a novel myokine that links skeletal muscle to systemic lipid homeostasis. J Biol Chem 2012; 287:11968-80; PMID:22517733; http://dx.doi.org/10.1074/jbc.M111.336834

120. Lim S, Choi SH, Koo BK, Kang SM, Yoon JW, Jang HC, Choi SM, Lee MG, Lee W, Shin H, et al. Effects of aerobic exercise training on C1q tumor necrosis factor alpha-related protein isoform 5 (myonectin): association with insulin resistance and mitochondrial DNA density in women. J Clin Endocrinol Metab 2012; 97:E88-93; PMID:22031510; http://dx.doi.org/10.1210/jc.2011-171743

121. Lafortuna CL, Maffiuletti NA, Agosti F, Sartorio A. Gender variations of body composition, muscle strength and power output in morbid obesity. Int J Obes 2005; 29:833-41; PMID:15917862; http://dx.doi.org/10.1038/sj.ijo.0802955

122. Schaap LA, Koster A, Visser M. Adiposity, muscle mass, and muscle strength in relation to functional decline in older persons. Epidemiol Rev 2012; PMID:23221972

123. Brady AO, Straight CR, Evans EM. Body Composition, Muscle Capacity and Physical Function in Older Adults: An Integrated Conceptual Model. J Aging Phys Act 2013; PMID:23945551

124. Yamada M, Moriguchi Y, Mitani T, Aoyama T, Arai H. Age-dependent changes in skeletal muscle mass and visceral fat area in Japanese adults from 40 to 79 years-of-age. Geriatri Gerontol Int 2014; 14 Suppl 1:8-14; PMID:24450556; http://dx.doi.org/10.1111/ggi.12209

125. Schaps LA, Koster A, Visser M. Adiposity, muscle mass, and muscle strength in relation to functional decline in older persons. Epidemiol Rev 2012; PMID:23221972

126. Sen B, Guilluy C, Xie Z, Case N, Syner M, Thomas J, Ogu I, Rubin C, Burridge K, Rubin J. Mechanically induced focal adhesion assembly amplifies anti-adipogenic pathways in mesenchymal stem cells. Stem Cells 2011; 29:1829-36; PMID:21898699; http://dx.doi.org/10.1002/stem.732

127. Menaki K, Mori T, Sakai A, Sakuma M, Okimoto N, Shimizu Y, Kunugita N, Nakamura T. Climbing exercise enhances osteoblast differentiation and inhibits adipogenic differentiation with high expression of PTHPTHrP receptor in bone marrow cells. Bone 2008; 43:619-26; PMID:18507532; http://dx.doi.org/10.1016/j.bone.2008.04.022

128. Bazzarre TL, Kleiner SM, Litchford MD. Nutrient intake, body fat, and lipid profiles of competitive male and female bodybuilders. J Am Coll Nutr 1990; 9:386-42; PMID:2538462; http://dx.doi.org/10.1080/07315724.1990.10720362

129. Koohmaraie M, Shackelford SD, Wheeler TL, Lone-Sauers SE, Goodpaster BH. Exercise-induced alterations in intramyocellular lipids and insulin resistance: evidence for a paradox in endurance-trained athletes. J Clin Endocrinol Metab 2001; 86:5755-61; PMID:11739435; http://dx.doi.org/10.1210/jcem.86.12.8075

130. Fiaschi T, Magherini F, Gamberi T, Modesti PA, Modesti A. Adiponectin as a tissue regenerating hormone: more than a metabolic function. Cell Mol Life Sci: CMLS 2013; PMID:24322911

131. Tarnopolsky MA, Rennie CD, Robertshaw HA, Fedak-Tarnopolsky SN, Derricks MC, Hamadeh MJ. Influence of endurance exercise training and sex on intramyocellular lipid and mitochondrial ultrastructure, substrate use, and mitochondrial enzyme activity. Am J Physiol Regul, Integr Comp Physiol 2007; 292:R1271-8; PMID:17095651; http://dx.doi.org/10.1152/ajpregu.00472.2006

132. van Loon LJ, Koopman R, Mansers R, van der Weegen W, van Kranenburg GP, Keizer HA. Intramyocellular lipid content in type 2 diabetes patients compared with overweight sedentary men and highly trained endurance athletes. Am J Physiol Endocrinol Metab 2004; 287:E558-65; PMID:15165998; http://dx.doi.org/10.1152/ajpendo.00464.2005

133. Badin PM, Langer D, Moro C. Dynamics of skeletal muscle lipid pools. Trends Endocrinology Metab: TEM 2013; 24:607-15; PMID:23988586; http://dx.doi.org/10.1016/j.tem.2013.08.001

134. Goodpaster BH, He J, Watkins S, Kelley DE. Skeletal muscle lipid content and insulin resistance: evidence for a paradox in endurance-trained athletes. J Clin Endocrinol Metab 2001; 86:5755-61; PMID:11739435; http://dx.doi.org/10.1210/jcem.86.12.8075

135. Romacho T, Elen M, Rohrborn D, Eked J. Adipose tissue and its role in organ crosstalk. Acta Physiologica 2014; PMID:24495317

136. van Loon LJ. Use of intramuscular triacylglycerol as a substrate source during exercise in humans. J Appl Physiol 2004; 97:1170-87; PMID:15358749; http://dx.doi.org/10.1152/japplphysiol.00368.2004

137. Kwon H, Pessin JE. Adipokines mediate inflammation and insulin resistance. Front Endocrinol 2013; 4:71; PMID:23781214; http://dx.doi.org/10.3389/fendo.2013.00071

138. Sanchez J, Nozhenko Y, Palos A, Rodriguez AM. Free fatty acid effects on myokine production in combination with exercise mimetics. Mol Nutr Food Res 2013; 57:1456-67; PMID:23650203; http://dx.doi.org/10.1002/mnfr.201300126

139. Aklademos D, Berdeaux R. The effects of obesity on skeletal muscle regeneration. Front Physiol 2013; 4:371; PMID:24381559; http://dx.doi.org/10.3389/fphys.2013.00371

140. Fiaschi T, Magherini F, Gamberi T, Modiati PA, Modiati A. Adiponectin as a tissue regenerating hormone: more than a metabolic function. Cell Mol Life Sci: CMLS 2013; PMID:24322911