AtTCTP2 mRNA and protein movement correlates with formation of adventitious roots in tobacco

Roberto Toscano-Morales, Beatriz Xoconostle-Cázares, Angélica Concepción Martínez-Navarro, and Roberto Ruiz-Medrano*

Department of Biotechnology and Bioengineering; CINVESTAV; Zacatenco, Mexico DF, Mexico

The Translationally Controlled Tumor Proteins, or TCTP, is a superfamily of exclusively eukaryotic proteins essential in the regulation of proliferation and general growth. However, it is clear that these are multifunctional proteins given (1) the pleiotropic effects of its mutations, and (2), the multiple processes in which this protein is involved. TCTP function in general is conserved, since Arabidopsis *AtTCTP1* can rescue a Drosophila mutant, and vice versa. It has become clear, however, that these proteins may have “taxon-specific” functions. In the case of plants, mRNA and/or proteins have been found in the phloem translocation stream of different species, suggesting a role in long-distance signaling. We have found that a second Arabidopsis *TCTP* gene, *AtTCTP2*, codes for a protein that moves long-distance through a graft union in tobacco. Interestingly, the mRNA is also transported long-distance. Both mRNA and protein move long-distance; interestingly, the movement, while more efficient from source to sink tissues, also occurs in the opposite direction. The protein reaches the nuclei of parenchyma cells and adventitious roots. Furthermore, it is clear that the long-distance delivery of *AtTCTP2* protein and mRNA is required for the induction of adventitious roots. A model is presented that accounts for these observations.

TCTP is essential for growth and development in eukaryotes

The translationally Controlled Tumor Proteins (TCTP) are found in most eukaryotes in which they have an essential role in regulating general growth and proliferation. Knock out of this gene in certain species, such as mouse, Drosophila and Arabidopsis leads to lethality during early stages of development; this underscores its central role in development. On the other hand its function appears to be rather conserved, since the expression of an Arabidopsis *TCTP* gene can complement a Drosophila TCTP mutant, and vice versa, but some members may have functions specific for each taxon. For example, TPT1 mRNA, the human isoform of TCTP, activates Protein Kinase R (which is part of the Interferon pathway and is also induced by viral double-stranded RNA); this protein in turn down-regulates translation. Furthermore, TPT1 induces histamine release from mast cells [hence its other name, Histamine Release Factor (HRF)] and regulates B and T cell proliferation, demonstrating an important role in the modulation of the immune response, at least in mammals. TPT1 also activates transcription of genes involved in pluripotency, such as *oct4* and *nanog*. Other members of this family engage in molecular mimicry, such as the *Plasmodium falciparum* TCTP; this may be a strategy to suppress the host’s immune response. The fact that this protein is secreted into serum and acts as a chemokine illustrates in some cases its non-cell autonomous function.

In plants, the induction of TCTP by different types of stress and signaling molecules (such as heavy metals, pathogen attack, salt, and methyl jasmonate, among several others) suggests a role in maintenance of homeostasis in response to environmental stimuli. The over-expression of the Arabidopsis thaliana *TCTP* gene, *AtTCTP1*, induces drought tolerance via stomatal closure, while a *Nicotiana benthamiana* TCTP negatively

Keywords: adventitious roots, Agrobacterium rhizogenes, plant regeneration, RNA and protein long-distance transport, TCTP

© Roberto Toscano-Morales, Beatriz Xoconostle-Cázares, Angélica Concepción Martínez-Navarro, and Roberto Ruiz-Medrano

*Correspondence to: Roberto Ruiz-Medrano; Email: rmedrano@cinvestav.mx

Received: 06/15/2015

Revised: 07/01/2015

Accepted: 07/04/2015

http://dx.doi.org/10.1080/15592324.2015.1071003

This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial License (http://creativecommons.org/licenses/by-nc/3.0/), which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited. The moral rights of the named author(s) have been asserted.
bacterium rhizogenes. We have also tested tobacco explants when harbored by Agrobacterium rhizogenes.24,25 We have recently found that some plant TCTPs enhance in vitro plant regeneration in tobacco explants when harbored by Agrobacterium rhizogenes.24,25 We have also proposed that, while the phylogenetic relationships of plant TCTPs are difficult to establish perhaps due to unequal evolutionary rates, extensive horizontal gene transfer, or both, the predicted structures of plant TCTPs fall within 2 groups. Interestingly, those that are capable of enhancing regeneration fall within one of these groups, the pumpkin TCTP (CmTCTP) and the Arabidopsis thaliana TCTP2 (AtTCTP2).27 This regeneration capacity may be related to a role in differentiation, rather than proliferation, and, on a speculative note, could be important for vegetative reproduction in certain species. The fact that some of these species in which vegetative reproduction occurs, such as potato and strawberry, harbor TCTP isoforms that are structurally related to CmTCTP and AtTCTP2, supports this notion.27

Arabidopsis AtTCTP2 induces adventitious roots upon its long-distance transport

AtTCTP2 is one of 2 TCTP genes in Arabidopsis, AtTCTP1 having been more thoroughly studied.4,27 Evidence has been found that the latter is a central mitotic regulator in plants, and probably also in animals; it is also required for gametophyte development, and, more generally, knock-out of this gene results in early embryonic lethality.4,27 AtTCTP2, on the other hand, has been considered a pseudogene; however, some evidence from our group indicates otherwise.25 Indeed, AtTCTP2-GFP fusions are expressed; the resulting protein accumulates in stomata, trichomes and root cortex nuclei in Arabidopsis and tobacco (Fig. 1). Importantly, AtTCTP2 also enhances in vitro plant regeneration of tobacco explants when harbored by A. rhizogenes.25

It was observed that the accumulation pattern of AtTCTP2-GFP in regenerated tobacco plants was similar to that in Arabidopsis, i.e. in root cortex nuclei.25 Since the upstream region of this gene drove the expression of a GUS reporter gene in the vasculature,25 it was proposed that the products of this gene, too, are transported long-distance through the vasculature. To determine whether this was the case, regenerated tobacco expressing an AtTCTP2-GFP fusion was grafted onto WT tobacco, and vice versa.28 Given that the stock plant included mature leaves, while the grafted scion included mostly sink tissues, phloem movement would be expected to occur in direction of the scion. In this case, RNA and protein corresponding to the AtTCTP2-GFP fusion were detected moving from transgenic stock to non-transgenic stock. Importantly, the tissue selected for analysis in the scion was at a considerable distance from the graft union; RNA was detected by qRT-PCR, but also the fusion protein (through Western blot and by analysis of GFP-associated fluorescence by confocal microscopy). The fraction of AtTCTP2 RNA found in the scion (i.e., the mobile form) relative to the transgenic stock AtTCTP2 RNA (measured as the ratio of AtTCTP2 mRNA per 100 mg of scion sink leaf to AtTCTP2 mRNA in 100 mg of source leaf tissue) was close to 9%. This approach may be useful to determine the rate of movement for phloem mobile transcripts. Interestingly, AtTCTP2-GFP RNA movement was detected from sink to source tissue; i.e., when the scion expressed this fusion, although the long-distance movement ratio was much lower (ca. Three%). This raises several questions, the main one as to the route through which this RNA, and several others, move long distance from sink to source tissues. Similar results were observed at the protein level. An additional conundrum is evident from the analysis of the AtTCTP2-GFP protein transport across the graft union. Indeed, GFP-associated fluorescence is observed in non-transgenic scion or stock in stomata grafted with AtTCTP2-GFP-expressing plants. These cell types are symplastically isolated upon reaching maturity; thus, it is not clear how AtTCTP-GFP RNA or protein gain access to them. An obvious possibility is that this occurs before plasmodesmata are sealed by deposition of β-glucans; or that such movement occurs through the extracellular space. Thus, AtTCTP2 would be exported and afterwards imported into the guard cells, presumably via a putative PTD in this protein (although this has not been described yet in plant TCTPs). Likewise, this protein accumulates in nuclei of cortex cells after its movement across the graft union. In any case, the accumulation pattern of AtTCTP2 after its long-distance delivery is the same as in the tissue that...
expresses it. Thus, once the protein is transported across a graft union, it must interact with factors that direct AtTCTP2 to its proper localization, i.e., in the cortex, where it possibly induces adventitious roots.

Another important point mentioned above is that AtTCTP2 RNA and protein movement occurs from sink to source tissue. It is not clear the pathway followed, but it is unlikely that the phloem is the conduit involved in its delivery. A cell-to-cell pathway would be the alternative pathway (Fig. 2). This possibility is indirectly supported by the analysis of RNA movement between a parasitic plant (Cuscuta reflexa) and its host (Tomato and Arabidopsis); the former functions as a strong sink for the plant, to which it is symplasmically connected. Indeed, several different C. reflexa transcripts are transported into Arabidopsis or tomato. Similar results have been obtained during the analysis of RNA movement across a graft union between different Arabidopsis accessions and when parasitized by C. reflexa. Interestingly, in both cases, AtTCTP1 was a prominent mobile mRNA. Thus, it is becoming clear that cell-to-cell and long-distance movement pathways for proteins and RNAs operate in plants.

It is also clear that massive long-distance mRNA transport occurs in plants, the role of which in whole plant physiology is poorly understood. To date, there are no examples of mutants lacking in such movement, and given the massive nature of such transport, it is unlikely that such mutants would be viable. However, analysis of gain-of-function could be accomplished by grafting experiments in which either stock or scion express one of such mobile RNAs, such as the one described here. An interesting observation was that, when the stock expressed AtTCTP2, but also the scion (albeit less prominently), adventitious roots were formed in close proximity to the graft union. Of note, AtTCTP2-GFP (as GFP-associated fluorescence) was detected in these roots, and more precisely, in the nuclei of root cortex cells, which is the site of AtTCTP2 accumulation in Arabidopsis and in transgenic tobacco. These roots were not observed in WT tobacco or WT tobacco homografts, but neither in ungrafted AtTCTP2-expressing tobacco plants; thus, the transport of AtTCTP2 (protein or mRNA) through a graft union is required for the formation of these roots. Adventitious roots are those that are formed in tissues that normally do not give rise to them, most notably stems, and are a response to stress such as drought or wounding. It is likely that the the long-distance transport of AtTCTP2, is necessary, but not sufficient to induce emergence of aerial roots; the grafting procedure (as a form of stress) and the A. rhizogenes rol genes, may be the other triggering factors. It is evident that the endogenous tobacco TCTP mRNA and/or protein do not induce aerial roots in homografts; it is possible that these are not phloem-mobile or capable of intercellular movement. Indeed, it is also possible that cell-to-cell or long-distance transport of TCTP mRNA or protein occurs only in certain vascular plants. Another possibility is that AtTCTP2 mRNA and/or protein is not subject to the same regulatory constraints (at the postranscriptional, translational and/or post-translational levels) as the endogenous tobacco TCTP, the misexpression of which could also result in the induction of aerial roots. Regardless, this illustrates that the long-distance transport of an RNA and its encoded protein results in a discernible phenotype.

It has been pointed out that plant regeneration and lateral root formation share common pathways. It has also been demonstrated that regenerating tissue does not arise from undifferentiated callus, but rather from founder cells that resemble those from root pericycle. Given the expression pattern of AtTCTP2 in Arabidopsis and in transgenic tobacco, it is tempting to speculate that the
capacity of certain TCTP isoforms, such as CmTCTP and AtTCTP2, to enhance plant regeneration reflects its involvement in lateral root formation, although this awaits experimental confirmation, for example, by complementation of mutants unable to form lateral or secondary roots with these genes. It could also be speculated that some TCTP isoforms are involved in vegetative reproduction that occurs via roots, stolons or tubers in certain plants; presumably, these isoforms originally had a role only in lateral root formation in their ancestors. Finally, plant regeneration and lateral root formation would appear to require long-distance transport of TCTP protein and/or mRNA. An obvious question that is raised by these assumptions is where do these mRNA and proteins originate. Since the AtTCTP2 gene promoter is active in certain root tissues, it is not clear why or how its mRNA and protein are transported to its target tissue, which is in root pericycle. It must be mentioned that GUS activity is detected in a region from which lateral roots emerge; no other root cell type shows such activity. Thus, it is possible that a certain “input” from distantly transported AtTCTP2 (protein and/or mRNA), presumably from leaves, is required for the emergence of lateral roots in the correct position. However, the endogenous transport of AtTCTP2 mRNA and protein remains to be demonstrated in Arabidopsis. A model for AtTCTP2 function is shown in Figure 2. According to this model, the mRNA and protein are synthesized constitutively, albeit at low levels in certain cell types in different plant tissues, for example in mesophyll. Upon a certain stimulus (for example, root wounding), the mRNA and/or protein are transported to root pericycle, where lateral root formation takes place; the mRNA must be translated, and once this occurs, the newly synthesized protein (or the distantly transported protein) enters the nucleus, where it induces adventitious roots. The lines that form an angle represent the graft interface.

Disclosure of Potential Conflicts of Interest
No potential conflicts of interest were disclosed.

Funding
This work was supported by CONACyT grants No. 105985 and 156162 to BX-C and RR-M, respectively, and SENASICA 2014 to BX-C and RR-M). RT-M and ACM-N acknowledge doctoral fellowship support from CONACyT-Mexico. RT-M was also supported by a fellowship from CONACOFI-SENASICA.

References
1. Amson R, Pece S, Martine JC, Di Fiore PP, Telemar A. TPT1/TCTP-regulated pathways in phenotypic reprogramming. Trends Cell Biol 2013; 23:37-46; PMID:23122550; http://dx.doi.org/10.1016/j.tcb.2012.10.002
2. Hsu YC, Chern JJ, Cai Y, Liu M, Choi KW. Drosophila TCTP is essential for growth and proliferation through regulation of dRheb GTPase. Nature 2007; 445:785-8; PMID:17301792; http://dx.doi.org/10.1038/nature05528
3. Chen SH, Wu PS, Chou CH, Yan YT, Liu H, Weng SY, Yang-Yen HF. A knockout mouse approach reveals that TCTP functions as an essential factor for cell proliferation and survival in a tissue- or cell type-specific manner. Mol Biol Cell 2007; 18:3535-32; PMID:17475776; http://dx.doi.org/10.1091/mbc.E07-02-0188

4. Brioudes F, Thierry AM, Chambrier P, Mollereau B, Bendahmane M. Transcriptionally controlled tumor protein is a conserved mitotic growth integrator in animals and plants. Proc Natl Acad Sci USA 2010; 107:16384-9; http://dx.doi.org/10.1073/pnas.1007926107

5. Bommer UA, Borovjagin AV, Greagg MA, Jeffrey IW, Kamal RE, Wade CG, Wakerley J, Wu PS. Translationally controlled tumor protein P23/TCTP is a highly structured RNA, which activates the dsRNA-dependent protein kinase PKR. RNA 2002; 8:478-96; PMID:11991642; http://dx.doi.org/10.1017/S1070838202022586

6. MacDonald SM, Rafnar T, Langdon J, Lichtenstein LM. Molecular identification of an IgE-dependent histamine-releasing factor. Science 1995; 269:688-690; http://dx.doi.org/10.1126/science.7542803

7. Kang HS, Lee MJ, Song H, Han SH, Kim YM, Im JY, Choi I. Molecular identification of IgE-dependent histamine-releasing factor as a B cell growth factor. J Immunol 2001; 166:6545-54; PMID:11359806; http://dx.doi.org/10.4049/jimmunol.166.6.6545

8. Wu PS, Yang CY, Yen JJ, Chou CH, Chen SH, Wang CK, Lai YG, Liao NS, Yang-Yen HF. Critical roles of translationally controlled tumor protein in the homeostasis and TCR-mediated proliferation of peripheral T cells. J Immunol 2009; 183:2373-81; PMID:19605695; http://dx.doi.org/10.4049/jimmunol.0900668

9. Kozoli MJ, Garrett N, Gorden JB. Tpel activates transcription of ovct and nanog in transplanted somatic nuclei. Curr Biol 2007; 17:801-7; PMID:17444271; http://dx.doi.org/10.1016/j.cub.2007.03.062

10. Calderón-Pérez B, Xocoonistle-Cázares B, Lira-Carmona R, Hernández-Rivas R, Ortega-López J, Ruiz-Medrano R. The Plasmodium falciparum Translationally Controlled Tumor Protein (TCTP) is incorporated more efficiently into B cells than its human homologue. Proc Natl Acad Sci USA 2010: 107:16384-9; http://dx.doi.org/10.1073/pnas.1007926107

11. Wang F, Shang Y, Yang, L, Zhu C. Comparative proteomic study and functional analysis of translationally controlled tumor protein in rice roots under H2O2 stress. J Environ Sci 2012; 24:2149-58; http://dx.doi.org/10.1016/S1001-0742(11)61062-0

12. Li G, Liu XY, Li XP, Wang ZY. Cloning of a TCTP Gene in Wheat and Its Expression Induced by Erysiphe graminis. Bull Bot Res 2010; 30:441-7

13. Cao B, Lu Y, Chen G, Li J. Functional characterization of the translationally controlled tumor protein (TCTP) gene associated with growth and defense response in cabbage. Plant Cell Tiss Orga Cult 2010; 103:217-226; http://dx.doi.org/10.1007/s11240-010-9759-6

14. Li D, Deng, Z, Liu X, Qin B. Molecular cloning, expression profiles and characterization of a novel translationally controlled tumor protein gene in rubber tree (Hevea brasiliensis). J Plant Physiol 2013; 170:497-504; PMID:23279392; http://dx.doi.org/10.1016/j.jplph.2012.11.014

15. Kim YM, Han YJ, Hwang CJ, Lee SS, Shin AY, Kim SY, Kim JI. Overexpression of Arabidopsis translationally controlled tumor protein gene AtTCTP enhances drought tolerance with rapid ABA-induced stomatal closure. Mol Cells 2012; 33:617-26; PMID:22610367; http://dx.doi.org/10.1007/s10059-012-0080-8

16. Gupta M, Yoshoka H, Ohnishi K, Mizumoto H, Hikichi Y, Kiba A. A translationally controlled tumor protein negatively regulates the hypersensitive response in Nicotiana benthamiana. Plant Cell Physiol 2013; 54:1403-14; PMID:23788648; http://dx.doi.org/10.1093/pcp/pcr070

17. Tao JJ, Cao YR, Chen H, Wei W, Li QT, Ma B, Zhang WK, Chen SY, Zhang JS. Tobacco TCTP interacts with ethylene receptor NTHK1 and enhances plant growth through promotion of cell proliferation. Plant Physiol 2015 Mar 4; pii: pp.00355 2015 ; http://dx.doi.org/10.1104/pp.15.00355

18. Hoepflinger MC, Rensumer J, Geretschläger AM, Mehlner N, Tenhaken R. The effect of translationally controlled tumor protein (TCTP) on programmed cell death in plants. BMC Plant Biol 2013; 13:135; PMID:23250482; http://dx.doi.org/10.1186/1719-2880-13-135

19. Amznallag N, Passer BJ, Atlantic D, Segura E, Thiry C, Goua AM, Amon R, Telemann A. TSPA6 facilitates the secretion of translationally controlled tumor protein/ histamine-releasing factor via a nonclassical pathway. J Biol Chem 2004; 279:46104-12; PMID:15319436; http://dx.doi.org/10.1074/jbc.M404850200

20. Kim M, Kim M, Kim HY, Kim S, Jung J, Maeng J, Chang J, Lee K. A protein translation domain located at the NH2-terminus of human translationally controlled tumor protein for delivery of active molecules to cells. Biomaterials 2011; 32:222-30; PMID:20865358; http://dx.doi.org/10.1016/j.biomaterials.2010.08.077

21. Kim G, LeBlanc ML, Wafela EK, dePamphilis CW, Westwood JH. Plant science. Genomic-scale exchange of mRNA between a parasitic plant and its hosts. Science 2014; 345:808-11; PMID:25124438; http://dx.doi.org/10.1126/science.1253122

22. Thieme CJ, Rojas-Handle M, Geyer Y, Schudoma C, Jazayeri A, Martinez-Carvajal JI, Heberle-Bors E, Schmid M. The effect of translationally controlled tumor protein on programmed cell death in plants. Mol Cell 2003; 8:943-56; PMID:12865055; http://dx.doi.org/10.1074/mcp.M800420-M9000

23. Lin MK, Lee YJ, Lough TJ, Phinney BS, Lucas WJ. Analysis of the pumpkin plasmodeum proteome provides insights into angiosperm sieve tube function. Mol Cell Proteomics 2009; 8:113-26; PMID:19365055; http://dx.doi.org/10.1074/mcp.M800420-M9000

24. Hinojosa-Moya J, Xocoonistle-Cázares B, Toscano-Morales R, Ramírez-Ortega F, Cabrera-Ponce JI, Ruiz-Medrano R. Characterization of the pumpkin Translationally-Controlled Tumor Protein CtTCTP. Plant Signal Behav 2013; 8:e26477; PMID:24065051; http://dx.doi.org/10.4161/psb.26477

25. Toscano-Morales R, Cabrera-Ponce JI, Xocoonistle-Cázares B, Hinojosa-Moya J, Ruiz-Salas JL, Galván-Gordillo V, Guevara-González RG, Ruiz-Medrano R. AtTCTP2, an Arabidopsis thaliana homolog of Translationally Controlled Tumor Protein, enhances in vitro plant regeneration. Front Plant Sci; 6:468-484; http://dx.doi.org/10.3389/fpls.2015.00468

26. Gürtierrez-Galeano DF, Toscano-Morales R, Calderón-Pérez B, Xocoonistle-Cázares B, Ruiz-Medrano R. Structural divergence of plant TCTPs. Front Plant Sci; 4:561

27. Berkowitz O, Jost R, Pollmann S, Masle J. Characterization of TCTP, the translationally controlled tumor protein, from Arabidopsis thaliana. Plant Cell 2008; 20:340-8; PMID:19060111; http://dx.doi.org/10.1105/tpc.108.061010

28. Toscano-Morales R, Xocoonistle-Cázares B, Martínez-Navaarro AC, Ruiz-Medrano R. Long-distance movement of an Arabidopsis Translationally Controlled Tumor Protein (AtTCTP) mRNA and protein in tobacco. Front Plant Sci; 5:705; PMID:25566280; http://dx.doi.org/10.3389/fpls.2014.00705

29. Venstraeten J, Schotte S, Geelen D. Hypocotyl adventitious root organogenesis differs from lateral root development. Front Plant Sci; 4:5495; PMID:25324849; http://dx.doi.org/10.3389/fpls.2014.00495

30. Sugimoto K, Jiao Y, Meyerowitz EM. Arabidopsis regeneration from multiple tissues occurs via a root development pathway. Dev Cell 2010; 18:463-71; PMID:20230752; http://dx.doi.org/10.1016/j.devcel.2010.02.004