Nudged Elastic Band in Topological Data Analysis

Henry Adams, Atanas Atanasov, and Gunnar Carlsson
Comptop Seminar, Stanford University
January 29, 2010
Abstract

We introduce a method for analyzing high-dimensional data. Our approach is inspired by Morse theory and uses the nudged elastic band method from computational chemistry. As output, we produce an increasing sequence of cell complexes modeling the dense regions of the data. We test the method on data sets arising in social networks, in image processing, and in microarray analysis, and we obtain small cell complexes revealing informative topological structure.
Outline

1. Persistent homology \implies motivating questions
2. Nudged elastic band (chemistry)
3. Nudged elastic band (data analysis)
4. Testing on datasets
 - 3x3 optical image patches
 - 5x5 range image patches
 - 3x3 optical flow patches
5. Kinks, higher dimensions, conclusions
Problem

• How do you find structure hidden in a high-dimensional point cloud dataset?
 – Persistent homology
 – Mapper

Example: 3x3 optical image patches, from *On the local behavior of spaces of natural images* by G. Carlsson, T. Ishkhanov, V. de Silva, and A. Zomorodian
Persistent homology

1. Take dense core subset.

\[\rho_k(x) = \frac{1}{d(x, \text{k-th nearest neighbor})} \]

\[k = 300 \]

\[k = 15 \]
Persistent homology

1. Take dense core subset.

\[\rho_k(x) = \frac{1}{d(x, k\text{-th nearest neighbor})} \]

Remark: you may not have these projections onto nice basis elements.
Persistent homology

1. Take dense core subset.
2. Build increasing sequence of simplicial complexes.
Persistent homology

1. Take dense core subset.
2. Build increasing sequence of simplicial complexes.
3. Compute Betti barcodes.
Persistent homology

4. Identify model.
 - Usually with your bare hands, not automated
Motivating questions

(A) How do you find a simple model matching the Betti barcodes?

– Your simplicial complexes are not simple.
– Nice homology generators?
– Localized homology generators?
– Cell complexes are often nice models.
Motivating questions
(B) Can we be more robust to noise?

- For persistence pipeline, removing noise, say by taking dense core subsets, is usually necessary.
- Rips & Witness simplicial complexes greatly affected by non-Hausdorff noise.
- However, removing noise but not features is hard.
- “Noise” is a misnomer: all data points contain information.
- Instead of cutting out the noise, can we see through the noise? (Analogy from our reading group)
Aside: Removing noise but not features is hard.

- For optical image patches, dense core subsets separate primary and secondary features from noise…
\textit{Aside:} Removing noise but not features is hard.

- For optical image patches, dense core subsets separate primary and secondary features from noise…
- Not so lucky with optical flow patches.
Aside: Removing noise but not features is hard.

- For optical image patches, dense core subsets separate primary and secondary features from noise…
- Not so lucky with optical flow patches.
Aside: Removing noise but not features is hard.

- For optical image patches, dense core subsets separate primary and secondary features from noise…
- Not so lucky with optical flow patches.
Aside: Removing noise but not features is hard.

Optical image 3-circle model

Optical flow 3-circle model

Fills to Klein bottle.

Fills to torus.
Motivating questions

(A) How do you find a simple model matching the Betti barcodes?
(B) Can we be more robust to noise?

We’d like:
Nudged elastic band (chemistry)

- Energy landscape for molecule configurations
- Local minima are stable configurations
- Minimum energy paths are transitions

Nudged elastic band method for finding minimum energy paths of transitions by H. Jónsson, G. Mills, and K. W. Jacobsen (1998)
Nudged elastic band (chemistry)

• Start with piecewise-linear band
• Evolve it towards the minimum energy path
• First guess: move each node according to
 $$-\nabla\text{Energy}.$$ This fails.
Nudged elastic band (chemistry)

• Instead, use an energy and a “spring” force.
• The force acting on a node is

\[
\text{Force} = -c \nabla \text{Energy} \bigg|_\perp + (||u^+|| - ||u^-||) \tau
\]

u^+, u^- are the adjacent vectors in the band.
τ is the tangent approximation. Naïve choice is $\tau = \frac{u^+ + u^-}{2}$.
$-\nabla \text{Energy} \bigg|_\perp$ is the component of the negative energy gradient perpendicular to τ.
C is the constant of proportionality between the forces.
Nudged elastic band (chemistry)

- Instead, use an energy and a “spring” force.
- The force acting on a node is

\[
\text{Force} = -c \nabla \text{Energy} \ |_{\perp} + (\|u^+\| - \|u^-\|) \tau
\]

- Simulate the differential equation:
 take small step, recalculate forces.
- Stop when forces become very small.
- May be multiple transition paths.
- More sophisticated options.
Nudged elastic band (chemistry)

• Instead, use an energy and a “spring” force.

• The force acting on a node is

\[\text{Force} = -c \nabla \text{Energy} \big|_\perp + (\|u^+\| - \|u^-\|) \tau \]
Nudged elastic band (data analysis)

- Maximize density instead of minimizing energy.
- Local maxima are vertices.
- Maximum density paths are edges.
Nudged elastic band (data analysis)

- Maximize density instead of minimizing energy.
- Local maxima are vertices.
- Maximum density paths are edges.
- Higher dimensional cells?
- Inductively, we build a cell complex model.
Density function

• We want a differentiable density function built from our point cloud $X \subset \mathbb{R}^n$.

• A natural choice is

$$\text{Density}(x) = \frac{1}{|X|} \sum_{y \in X} \phi_{y,\sigma}(x)$$

where $\phi_{y,\sigma}$ is the probability density function for a normal distribution, centered at y, with standard deviation σ.
Density function

• We want a differentiable density function built from our point cloud \(X \subset \mathbb{R}^n \).

• A natural choice is
 \[
 \text{Density}(x) = \frac{1}{|X|} \sum_{y \in X} \phi_{y,\sigma}(x)
 \]
 where \(\phi_{y,\sigma} \) is the probability density function for a normal distribution, centered at \(y \), with standard deviation \(\sigma \).

• The choice of \(\sigma \) is analogous to the choice of \(k \) in \(\rho_k \): dictates scale of recovered features. In my opinion, this is the essential parameter. Others are easier to choose.
Finding vertices

• Many possibilities.
• Approach analogous to bands would flow vertices in \(\mathbb{R}^n \) according to \(\nabla \text{Density} \).
• We have better luck as follows:
 – pick an initial seed in the point cloud, step to the point in its neighborhood (100 closest) with highest density.
 – Keep stepping until stabilize at terminal point.
 – Do this for many random seeds.
 – Cluster terminal points, pick one vertex from each large cluster.
Testing on optical data

• 15,000 random points; no dense core subset.

• Four vertices: \(\pm \) and \(\pm \)

[Diagram showing four vertices and a circle with dots inside.]
Finding edges

Force = $-c \nabla \text{Energy}|_\perp + (||u^+|| - ||u^-||)\tau$

becomes

Velocity = $c \nabla \text{Density}|_\perp + (||u^+|| - ||u^-||)\tau$

• For us, swapping force/acceleration with velocity is a matter of preference.
• Naïve tangent, naïve simulator (parameters)
• Choose C so that $||\nabla \phi_\sigma||_\infty = 1$. Depends on dimension.
• Angle force.
Finding edges

• Between every pair of vertices we throw a collection of random initial edges.
• Discard bands that don’t converge or that lie near a non-endpoint vertex.
• Cluster remaining bands (simple metric on bands sharing endpoints), pick one edge from each large cluster.
Testing on optical data

- Four vertices
- Adjacent vertices: four edges on primary circle
Testing on optical data

- Four vertices
- Adjacent vertices: four edges on primary circle
Testing on optical data

- Four vertices
- Adjacent vertices: four edges on primary circle

90% on primary circle
Testing on optical data

- Four vertices
- Adjacent vertices: four edges on primary circle

10% on secondary circles

90% on primary circle
Testing on optical data

- Four vertices
- Adjacent vertices: four edges on primary circle

10% on secondary circles
Testing on optical data

- Four vertices
- Adjacent vertices: four edges on primary circle
- Antipodal vertices: Two edges on each secondary circle

10% on secondary circles
Testing on optical data

- Four vertices
- Adjacent vertices: four edges on primary circle
- Antipodal vertices: Two edges on each secondary circle
Testing on 5x5 range image patches

- Subset of 23-sphere
- Find range primary circle
Testing on optical flow patches

- Subset of 16-sphere
- Find horizontal flow circle
Before angle force, we had kinks!
(Core subset here, not a random subset)
Before angle force, we had kinks!
(Core subset here, not a random subset)
Without angle force

With angle force
Higher dimensional cells
Higher dimensional cells

- Idea: find a short word of edges, throw a random 2-cell with that word as its boundary
- Challenges:
 - No canonical meshing of 2-cell
 - Estimating tangent plane
 - Principle component analysis
 - What should spring force be?
 - Each edge pulls on adjacent vertices to try to achieve the current average length of all edges.
 - Natural spring
 - In need of test datasets to motivate development
Conclusions

• Nudged elastic band has the potential to locate models for datasets.
• Can be used in concert with persistent homology.
• Shows some tolerance to noise.
• What’s next?
 – New datasets
or, coordinates correspond to foreground u, respectively, background v. This primary circle is not shown.

Roth and Black observe that right-left translations and pitch, yaw, or roll. See Figure 8. We will refer to these as pitch, yaw, or roll.

Camera motion can be decomposed into six sub-motions: The first three are translation and rotation about the x, y, or z axis. These are commonly referred to as pitch, yaw, or roll. Note that translation in the horizontal plane is commonly referred to as right-left, up-down, or in-out.

In the camera motion data, we call translation inward, outward, up, down, or in, out translation. They also observe that translation inward occurs more frequently than translation outward, understandably so as people and cars generally move in a planar direction.

Projection of points in the camera motion data onto the x, y, or z basis vectors. These are commonly referred to as right-left, up-down, or in-out. We change coordinates from the canonical basis for the camera to the uz basis vectors and vertical direction s.

We change the coordinate system to explain why the horizontal circle is high-density.

Figure 5 shows linear gradient range patches at all angles. The arrows in the flow patches show the direction of range motion.

Figure 6 shows the range image database to explain why the horizontal circle is high-density.

Figure 7 contains linear gradient range patches at all angles. White pixels are positive and black negative.

Camera motion between frames can be decomposed into six sub-motions: The first three are translation and rotation about the x, y, or z axis.