Adiabatic N-soliton interactions of Bose-Einstein condensates in external potentials

V. S. Gerdjikov1, B. B. Baizakov2, M. Salerno2 and N. A. Kostov3

1Institute for Nuclear Research and Nuclear Energy, Bulgarian Academy of Sciences, Blvd. Tzarigradsko chaussee 72, 1784 Sofia, Bulgaria.
2Dipartimento di Fisica “E.R.Caianiello” and Consorzio Nazionale Interuniversitario per le Scienze Fisiche della Materia (CNISM) Unitá di Salerno, Universitá di Salerno, via S. Allende, 184081 Baroneissi (SA), Italy; and
3Institute for Electronics, Bulgarian Academy of Sciences, Blvd. Tzarigradsko chaussee 72, 1784 Sofia, Bulgaria

(Dated: March 23, 2022)

Perturbed version of the complex Toda chain (CTC) has been employed to describe adiabatic interactions within N-soliton train of the nonlinear Schrödinger equation (NLS). Perturbations induced by weak quadratic and periodic external potentials are studied by both analytical and numerical means. It is found that the perturbed CTC adequately models the N-soliton train dynamics for both types of potentials. As an application of the developed theory we consider the dynamics of a train of matter-wave solitons confined to a parabolic trap and optical lattice, as well as tilted periodic potentials. In the last case we demonstrate that there exist critical values of the strength of the linear potential for which one or more localized states can be extracted from a soliton train. An analytical expression for these critical strengths for expulsion is also derived.

I. INTRODUCTION

One of the most remarkable phenomena occurring in nonlinear systems is the possibility to form localized states of soliton type as a result of the interplay between dispersion and nonlinearity. These states display interesting properties in response to external fields and their interactions have been the subject of continuous interest since the creation of the soliton theory. Besides the motivation from the viewpoint of fundamental physics, studies on soliton interactions are very important for applications such as optical fiber communications systems, where optical solitons are used as information bit carriers [1]. In this context the interaction between neighboring solitons in a train limits the transmission capacity of the communication system, so that soliton interaction becomes very important for optimal information packing and transmission rates design. Trains of solitons (fluxons) in interaction play an important role also in long Josephson junctions where their dynamics, induced by external magnetic fields, is used to construct flux-flow oscillators, devices of interest for applications in superconducting mm and sub-mm wave electronics [2]. Other rapidly developing fields in which interacting solitons play a crucial role are photonic crystals [2] and Bose-Einstein condensates (BEC).

Recently, BEC solitons have attracted a great deal of interest both from the theoretical and the experimental point of view (see e.g. reviews [4]). In particular, self-trapped states capable to propagate in space without distortion are of interest for pulsed atomic soliton lasers, atomic nano-litography and high precision interferometry [3] and the transport of BEC solitons in the presence of external potentials, serving as magnetic and optical traps and waveguides may become important in future technologies.

The aim of the present paper is to study the adiabatic dynamics of a train of N interacting solitons of the nonlinear Schrödinger equation (NLS) in weak external potentials. As a physical model we consider matter-wave solitons in quasi-one dimensional BEC with attractive interactions between atoms, such as 7Li, 85Rb or 137Cs. The results, however, are of interest also for nonlinear optics and for photonic crystals. In particular, we study the N-soliton dynamics in parabolic, linear and periodic potentials, modelling the NLS train soliton interaction in terms of a complex Toda chain (CTC) which is valid in the adiabatic approximation. This model has been successfully used in previous papers (see Refs. [4, 10, 11, 12, 13, 14]) and will be used here to continue the analysis in [13, 20] on the perturbed CTC (PCTC) as a model for N-soliton interaction in BEC with quadratic and periodic potentials. Our results provide an additional confirmation of the stabilization properties of the periodic potentials observed in [21, 22] in a different physical setup. In particular, for the case of an N-soliton train trapped in a weak parabolic trap we find that the train performs contracting and expanding oscillations if its center of mass coincides with the minimum of the potential, while it oscillates around the minimum of the potential as a whole if its center of mass is shifted from the minimum. In the last case contracting and expanding motions of the soliton train is superimposed to the center of mass dynamics. As the strength of the parabolic trap increases we find from numerical simulations that the N-soliton dynamics becomes more complicated with the merging (splitting) of individual solitons when the train is contracted (expanded) during its oscillating motion in the trap. This behavior resemble the phenomenon of...
are briefly summarized.

We have investigated the case of a tilted periodic potentials i.e. a potential which is the superposition of periodic and linear potentials. The effect of the linear potential, if it is strong enough, is that it can overcome the stabilization effect of the periodic potential. As a result we show that there exist critical values of the strength of the linear potential for which one or more localized states can be extracted from a soliton train (array). We find that the critical strength for expulsion changes with the number of the solitons in the train. To this regard we have derives an analytical expression for the potential critical strengths at which expulsion is achieved by means of an Hamiltonian approach for the PCTC. From this comparison we find that the analysis based on the PCTC provides a good description for the expulsion phenomena.

We remark that since the critical value of the potential strength is an indirect measure of the binding energy of an N-solitons train, one could use BEC soliton arrays in accelerated optical lattices to measure N-solitons matter waves binding energies. One could indeed reproduce the effect of the linear potential by means of accelerated optical lattices and measuring the critical acceleration at which the expulsion of one soliton from the array occurs. We hope experiments in this direction will be performed soon.

The paper is organized as follows. In section II we introduce the mean field Gross-Pitaevskii equation (GPE) appropriate for quasi one dimensional BEC in external potentials and discuss the N-soliton interaction in terms of the complex Toda chain. In section III we study the perturbed nonlinear Schrödinger equation and the perturbed CTC equation in the adiabatic approximation for different types of external potentials: quadratic, linear and periodic. The analysis of the N-soliton dynamics obtained from the perturbed CTC with the above potentials is compared with direct numerical GPE simulations in section IV. In section V we introduce a Hamiltonian formulation of the PCTC and derive an analytical expression for the critical strengths of the linear potential for which the phenomenon of soliton expulsion occurs. Finally, in the last section the main results of the paper are briefly summarized.

II. MODEL EQUATIONS AND N-SOLITON INTERACTION

The dynamics of a condensate in the mean-field approximation at zero temperature is governed by the 3D nonlinear Schrödinger equation (in the BEC context called also as Gross-Pitaevskii equation (GPE))

$$i\hbar \frac{\partial \Psi}{\partial t} = \left[-\frac{\hbar^2}{2m} \nabla^2 + V(x, y, z) + \frac{4\pi \hbar^2 a_s N}{m} |\Psi|^2 \right] \Psi,$$

(2.1)

where $\Psi(r, t)$ is the macroscopic wave function of the condensate normalized so that $\int |\Psi(r)|^2 4\pi dr = 1$, N is the total number of atoms, m is the atomic mass, a_s is the s-wave scattering length (below we shall be concerned with attractive BEC for which $a_s < 0$), and

$$V(x, y, z) = \frac{m}{2} [\omega_x^2 x^2 + \omega_y^2 (y^2 + z^2)]$$

(2.2)

is the axially symmetric trapping potential which provides for the tight confinement in the transverse plane (y, z), as compared to loose axial trapping, assuming $\omega_x^2/\omega_y^2 \ll 1$. The condensate trapped in such a potential acquires highly elongated form.

When the transverse confinement is strong enough, so that the transverse oscillation quantum, $\hbar \omega_{\perp}$, is much greater than the characteristic mean-field interaction energy, $(4\pi \hbar^2 a_s/m)|\Psi|^2$, the dynamics is effectively one-dimensional. In this case, the wave function may be effectively factorized as $\Psi(x, y, z, t) = \phi(x, y, z) \psi(x, t)$, and integrating it over the transverse plane (x, y, z), one derives the effective 1D equation

$$i\hbar \frac{\partial \psi}{\partial t} = \left[-\frac{\hbar^2}{2m} \frac{\partial^2}{\partial x^2} + \frac{m}{2} \omega_x^2 x^2 + g_1 D |\psi|^2 \right] \psi,$$

(2.3)

where we have neglected the zero-point energy of the transverse motion, $\hbar \omega_{\perp}$, and defined a coefficient of the 1D nonlinearity, $g_{1D} = 4\pi \hbar^2 a_s m^{-1} \int |\phi(y, z)|^4 dy dz = 2a_s \hbar \omega_{\perp}$. It is convenient to use normalized units for time and space variables, introducing transformations: $t \rightarrow \omega_{\perp} t$, $x \rightarrow x / a_{\perp}$, and the rescaled wave function $u \rightarrow \sqrt{2N |a_{\perp}|} \psi$

$$i \frac{\partial u}{\partial t} + \frac{1}{2} \frac{\partial^2 u}{\partial x^2} - V_2 x^2 u + |u|^2 u = 0,$$

(2.4)

where $V_2 = \omega_x^2 / (2a_{\perp}^2)$, is a small parameter characterizing the strength of the external parabolic potential. In the experiment of Rice University [2] a matter-wave soliton train (comprising $N \sim 10$ solitons) of Bose-condensed 7Li atoms ($a_s = -0.21$ nm, $m = 11.65 \cdot 10^{-27}$ kg) was created. Radial confinement was strong, $\omega_{\perp} \sim 800$ Hz, while the axial one had been as weak as $\omega_x \sim 3$ Hz. In the experiment [4], where a single soliton of 7Li BEC was created, the trap aspect ratio was smaller: $\omega_{\perp} \sim 710$ Hz, $\omega_x \sim 50$ Hz. Therefore, $V_2 \sim 10^{-5} \div 10^{-3}$ is in the range of realistic experimental conditions. Below we shall consider also other kinds of weak potentials in the axial direction x, instead of (or combined with) the parabolic trap in Eq. (2.4), see [24, 25]. Assuming them as perturbations $iR[u] = V(x)u(x, t)$, we move them to the right hand side of the governing equation.

The N-soliton train interactions for the nonlinear Schrödinger equation (NLS) and its perturbed versions...
\[\frac{\partial u}{\partial t} + \frac{1}{2} \frac{\partial^2 u}{\partial x^2} + |u|^2 u = i \epsilon R[u], \]
\text{(2.5)}

started with the pioneering paper [8], by now has been extensively studied (see [9] and references therein). Several other nonlinear evolution equations (NLEE) were also studied, among them the modified NLS equation [13, 14], the Ablowitz-Ladik system [14], and others. Extensively studied (see [9, 10, 11, 12, 13] and references therein). By the soliton train we mean a solution of the (perturbed) NLS fixed up by the initial condition:

\[u(x, t = 0) = \sum_{k=1}^{N} u_k^0(x, t = 0), \quad u_k^0(x, t) = \frac{2\nu_k e^{i\phi_k}}{\cosh z_k}, \]
\text{(2.6)}

\[z_k(x, t) = 2\nu_k(x - \xi_k(t)), \quad \xi_k(t) = 2\mu_k t + \xi_{k,0} \]
\text{(2.7)}

\[\phi_k(x, t) = \frac{\mu_k}{v_k} z_k + \delta_k(t), \quad \delta_k(t) = W_k t + \delta_{k,0}, \]
\text{(2.8)}

Each soliton has four parameters: amplitude \(\nu_k \), velocity \(\mu_k \), center of mass position \(\xi_k \) and phase \(\delta_k \). The adiabatic approximation uses as a small parameter \(\epsilon_0 \ll 1 \) the soliton overlap which falls off exponentially with the distance between the solitons. Then the soliton parameters must satisfy [8]:

\[|\nu_k - \nu_0| \ll \nu_0, \quad |\mu_k - \mu_0| \ll \mu_0, \]
\[|v_k - v_0| |\xi_{k+1,0} - \xi_{k,0}| \gg 1, \]
\text{(2.9)}

where \(v_0 = \frac{1}{N} \sum_{k=1}^{N} v_k \) and \(\mu_0 = \frac{1}{N} \sum_{k=1}^{N} \mu_k \) are the average amplitude and velocity respectively. In fact we have two different scales:

\[|\nu_k - \nu_0| \approx \epsilon_{0}^{1/2}, \quad |\mu_k - \mu_0| \approx \epsilon_{0}^{1/2}, \]
\[|\xi_{k+1,0} - \xi_{k,0}| \approx \epsilon_{0}^{-1}. \]

One can expect that the approximation holds only for such times \(t \) for which the set of \(4N \) parameters of the soliton train satisfy [20].

Equation (2.6) finds a number of applications to nonlinear optics and for \(R[u] \equiv 0 \) is integrable via the inverse scattering transform method [20, 21]. The N-soliton dynamics in the adiabatic approximation is modelled by a complex generalization of the Toda chain [8, 10, 14, 15, 16, 17, 18, 19]:

\[\frac{d^2 Q_j}{dt^2} = 16\nu_0^2 \left(e^{Q_{j+1} - Q_j} - e^{Q_j - Q_{j-1}} \right), \quad j = 1, \ldots, N. \]
\text{(2.10)}

The complex-valued \(Q_k \) are expressed through the soliton parameters by:

\[Q_k(t) = 2i\lambda_0 \xi_k(t) + 2k \ln(2\nu_0) + i(k\pi - \delta_k(t) - \delta_0), \]
\text{(2.11)}

where \(\delta_0 = 1/N \sum_{k=1}^{N} \delta_k \) and \(\lambda_0 = \mu_0 + iv_0 \). Besides we assume free-ends conditions, i.e., \(e^{-Q_j} = e^{Q_{j+1}} \equiv 0 \).

Note that the N-soliton train is not an N-soliton solution. The spectral data of the corresponding Lax operator \(L \) is nontrivial also on the continuous spectrum of \(L \). Therefore the analytical results from the soliton theory can not be applied. Besides we want to treat solitons moving with equal velocities and also to account for the effects of possible nonintegrable perturbations \(R[u] \).

The fact [22, 23] that the CTC, like the (real) Toda chain (RTC) [22], is a completely integrable Hamiltonian system allows one to analyze analytically the asymptotic behavior of the N-soliton trains. However unlike the RTC, the CTC has richer variety of dynamical regimes [8, 12, 20] such as:

- asymptotically free motion if \(\nu_j \neq \nu_k \) for \(j \neq k \); this is the only dynamical regime possible for RTC;
- \(N \)-s bound state if \(\nu_1 = \cdots = \nu_N \) and \(\xi_k \neq \xi_j \) for \(k \neq j \);
- various intermediate (mixed) regimes; e.g., if \(\nu_1 = \nu_2 > \cdots > \nu_N \) but \(\xi_k \neq \xi_j \) for \(k \neq j \) then we will have a bound state of the first two solitons while all the others will be asymptotically free;
- singular and degenerate regimes if two or more of the eigenvalues of \(L \) become equal, e.g., \(\zeta_1 = \zeta_2 \) and \(\xi_j \neq \xi_k \) for \(2 < j \neq k \).

By \(\zeta_k = v_k + i\omega_k \) above we have denoted the eigenvalues of the Lax matrix \(L \) in the Lax representation \(L = [M, L] \) of the CTC where:

\[L = \sum_{k=1}^{N} b_k E_{kk} + \sum_{k=1}^{N-1} a_k (E_{k,k+1} + E_{k+1,k}), \]
\text{(2.12)}

where

\[b_k \equiv \frac{-1}{2} \frac{dQ_k}{dt} = \frac{\mu_k + iv_k}{2}, \quad a_k = \frac{1}{2} e^{(Q_{k+1} - Q_k)/2}, \]

and the matrices \(E_{kp} \) are defined by \((E_{kp})_{ij} = \delta_{ki}\delta_{pj} \). The eigenvalues \(\zeta_k \) of \(L \) are time independent and complex-valued along with the first components \(\eta_k = \zeta_1^{(k)} \) of the normalized eigenvectors of \(L \):

\[L \zeta^{(k)} = \zeta_k \zeta^{(k)}, \quad (\zeta^{(k)}, \zeta^{(m)}) = \delta_{km}. \]

The set of \(\{ \zeta_k \equiv v_k + i\omega_k \} \) may be viewed as the set of action-angle variables of the CTC.

Using the CTC model one can determine the asymptotic regime of the N-soliton train. Given the initial parameters \(\mu_k(0), \nu_k(0), \xi_k(0), \delta_k(0) \) of the N-soliton train one can calculate the matrix elements \(b_k \) and \(a_k \) of \(L \).
at $t = 0$. Then solving the characteristic equation on $L|_{t=0}$ one can calculate the eigenvalues ζ_k to determine the asymptotic regime of the N-soliton bound states. Another option is to impose on ζ_k a specific constraint, e.g. that all ζ_k be purely imaginary, i.e. all $\nu_k = 0$. This will provide a set of algebraic conditions $L|_{t=0}$, and on the initial soliton parameters $\mu_k(0), \nu_k(0), \xi_k(0), \delta_k(0)$ which characterize the region in the soliton parameter space responsible for the N-soliton bound states.

III. THE PERTURBED NLS AND PERTURBED CTC EQUATIONS

We will consider several specific choices $R^{(p)}[u]$ of perturbations, $p = 1, 2, \ldots$ in $\Delta\mu$. In the adiabatic approximation the dynamics of the soliton parameters can be determined by the system (see $\ref{3}$ for $N = 2$ and $\ref{2} \ref{12}$ for $N > 2$):

\[
\frac{d\lambda_k}{dt} = -4\nu_0 \left(e^{Q_{k+1} - Q_{k}} - e^{Q_{k} - Q_{k-1}} \right) + M_k^{(p)} + iN_k^{(p)}, \quad (3.1)
\]

\[
\frac{d\xi_k}{dt} = 2\mu_k + \Xi_k^{(p)}, \quad \frac{d\nu_k}{dt} = 2(\mu_k^2 + \nu_k^2) + X_k^{(p)}. \quad (3.2)
\]

where $\lambda_k = \mu_k + i\nu_k$ and $X_k^{(p)} = 2\mu_k \Xi_k^{(p)} + D_k^{(p)}$. The right hand sides of Eqs. $\ref{3.1} - \ref{3.2}$ are determined by $R_k^{(p)}[u]$ through:

\[
N_k^{(p)} = \frac{1}{2} \int_{-\infty}^{\infty} \frac{dz_k}{\cosh z_k} \text{Re} \left(R_k^{(p)}[u]e^{-i\phi_k} \right), \quad (3.3)
\]

\[
M_k^{(p)} = \frac{1}{2} \int_{-\infty}^{\infty} \frac{dz_k}{\cosh^2 z_k} \text{Im} \left(R_k^{(p)}[u]e^{-i\phi_k} \right), \quad (3.4)
\]

\[
\Xi_k^{(p)} = \frac{1}{4\nu_k} \int_{-\infty}^{\infty} \frac{dz_k}{\cosh z_k} \text{Re} \left(R_k^{(p)}[u]e^{-i\phi_k} \right), \quad (3.5)
\]

\[
D_k^{(p)} = \frac{1}{2\nu_k} \int_{-\infty}^{\infty} \frac{dz_k (1 - z_k \tanh z_k)}{\cosh z_k} \text{Im} \left(R_k^{(p)}[u]e^{-i\phi_k} \right). \quad (3.6)
\]

Inserting $\ref{3.1}, \ref{3.2}$ into $\ref{3.1} \ref{3.6}$ we derive:

\[
\frac{dQ_k}{dt} = -4\nu_0 \lambda_k + \frac{2k}{\nu_0} \Lambda_0^{(p)} + 2i\xi_k \left(M_0^{(p)} + iN_0^{(p)} \right) + i \left(2\lambda_0 \Xi_0^{(p)} - X_0^{(p)} - \Lambda_0^{(p)} \right), \quad (3.7)
\]

\[
N_0^{(p)} = \frac{1}{N} \sum_{j=1}^{N} N_j^{(p)}, \quad M_0^{(p)} = \frac{1}{N} \sum_{j=1}^{N} M_j^{(p)},
\]

\[
X_0^{(p)} = \frac{1}{N} \sum_{j=1}^{N} X_j^{(p)}. \quad (3.8)
\]

The perturbations result in that ν_0 and μ_0 may become time-dependent. Indeed, from $\ref{3.1}$ we get:

\[
\frac{d\mu_0}{dt} = M_0^{(p)}, \quad \frac{d\nu_0}{dt} = N_0^{(p)}, \quad (3.8)
\]

The small parameter ϵ_0 can be related to the initial distance $r_0 = |\xi_2 - \xi_1|_{t=0}$ between the two solitons. Assuming $\nu_{1,2} \simeq \nu_0$ we find:

\[
\epsilon_0 = \int_{-\infty}^{\infty} dx \left| u_1^{s_1}(x,0)u_2^{s_2}(x,0) \right| \simeq 8\nu_0 r_0 e^{-2\nu_0 r_0}. \quad (3.9)
\]

In particular, $\ref{3.9}$ means that $\epsilon_0 \simeq 0.01$ for $r_0 \simeq 8$ and $\nu_0 = 1/2$.

We assume that initially the solitons are ordered in such a way that $\xi_{k+1} - \xi_k \simeq r_0$. One can check that $N_k^{(p)} \simeq M_k^{(p)} \simeq \exp(-2\nu_0 |k - p|r_0)$. Therefore the interaction terms between the k-th and $k \pm 1$-st solitons will be of the order of $e^{-2\nu_0 r_0}$; the interactions between k-th and $k \pm 2$-nd solitons will be of the order of $e^{-4\nu_0 r_0} \ll e^{-2\nu_0 r_0}$.

The terms $\Xi_k^{(0)}$, $X_k^{(0)}$ are of the order of $r_0^2 \exp(-2\nu_0 r_0)$, where $a = 0$ or 1. However they can be neglected as compared to $\tilde{\mu}_k$ and $\tilde{\nu}_k$, where

\[
\tilde{\mu}_k = \mu_k - \mu_0 \simeq \sqrt{\epsilon_0}, \quad \tilde{\nu}_k = \nu_k - \nu_0 \simeq \sqrt{\epsilon_0}, \quad (3.10)
\]

The corrections to $X_k^{(p)}$, \ldots, coming from the terms linear in u depend only on the parameters of the k-th soliton; i.e., they are ‘local’ in k. The nonlinear terms in u present in $i R_k^{(p)}[u]$ produce also ‘non-local’ in k terms in $N_k^{(p)}$, \ldots.

A. Quadratic and tilted potentials

Let $i R[u] = V(x)u(x,t)$. Our first choice for $V(x)$ is a quadratic one:

\[
V^{(1)}(x) = V_2 x^2 + V_1 x + V_0. \quad (3.11)
\]

Skipping the details we get the results:

\[
N_k^{(1)} = 0, \quad \Xi_k^{(1)} = 0, \quad (3.12a)
\]

\[
M_k^{(1)} = -V_2 \xi_k - \frac{V_1}{2}, \quad (3.12b)
\]

\[
D_k^{(1)} = V_2 \left(\frac{\pi^2}{48\xi_k^2} - \xi_k \right) - V_1 \xi_k - V_0, \quad (3.12c)
\]

and $X_k^{(1)} = D_k^{(1)}$. As a result the corresponding PCTC takes the form $\ref{13}$:

\[
\frac{d\lambda_k}{dt} = -4\nu_0 \left(e^{Q_{k+1} - Q_k} - e^{Q_k - Q_{k-1}} \right) - V_2 \xi_k - \frac{V_1}{2}, \quad (3.13)
\]

\[
\frac{d\nu_k}{dt} = i\int_{-\infty}^{\infty} \frac{dz_k}{\cosh z_k} \text{Im} \left(R_k^{(p)}[u]e^{-i\phi_k} \right) - iD_k^{(1)} \left(\frac{i}{N} \sum_{j=1}^{N} D_j^{(1)} \right). \quad (3.14)
\]
where $\lambda_k = \mu_k + i\nu_k$.

If we now differentiate (3.14) and make use of (3.13) we get (3.15):

$$\frac{d^2 Q_k}{dt^2} = 16\nu_0^2 \left(e^{Q_{k+1}} - Q_k - e^{Q_k} - Q_{k-1}\right) + 4\nu_0 \left(V_2\xi_k + \frac{V_1}{2}\right) - \frac{dD_k^{(1)}}{dt} - i\frac{dD_k^{(1)}}{dt} \sum_{j=1}^{N} dD_j^{(1)} \frac{dt}{dt}.$$

(3.15)

It is reasonable to assume that $V_2 \simeq \mathcal{O} \left(\epsilon_0 / N\right)$; this ensures the possibility to have the N-soliton train 'inside' the potential. It also means that both the exponential terms and the correction terms $V_k^{(1)}$ are of the same order of magnitude. From eqs. (3.13) and (3.14) there follows that $d\xi_0/dt = 0$ and:

$$\frac{d\mu_0}{dt} = -V_2\xi_0 - \frac{V_1}{2}, \quad \frac{d\xi_0}{dt} = 2\mu_0,$$

(3.16)

where μ_0 is the average velocity and $\xi_0 = \frac{1}{N} \sum_{j=1}^{N} \xi_j$, is the center of mass of the N-soliton train. The system of equations (3.16) for $V_2 > 0$ has a simple solution:

$$\mu_0(t) = \mu_{00} \cos(\Phi(t)), \quad \xi_0(t) = \sqrt{\frac{2}{V_2}} \mu_{00} \sin(\Phi(t)) - \frac{V_1}{2V_2}.$$

(3.17)

where $\Phi(t) = \sqrt{2V_2} t + \Phi_0$, and μ_{00} and Φ_0 are constants of integration. Therefore the overall effect of such quadratic potential will be to induce a slow periodic motion of the train as a whole.

By tilted potential below we mean a particular case of the quadratic potential with $V_2 = 0$. Then the equations (3.16) - (3.17) take the form:

$$\frac{d\tilde{\mu}_0}{dt} = -\frac{V_1}{2}, \quad \frac{d\tilde{\xi}_0}{dt} = 2\tilde{\mu}_0,$$

(3.18)

and have the simple solution:

$$\tilde{\mu}_0(t) = -\frac{V_1}{2} t + \tilde{\mu}_{00}, \quad \tilde{\xi}_0(t) = -\frac{V_1}{4} t^2 + \tilde{\mu}_{00} t + \tilde{\xi}_{00}.$$

(3.19)

Therefore the tilted potential accelerates the soliton train as a whole in a prescribed direction. It can be used also to 'pick up' and accelerate one or more of the solitons from the train confined to a periodic potential.

B. Periodic potentials

One may consider several physically important choices of periodic potentials. The simplest one is:

$$V^{(2)}(x) = A_1 \cos(\Omega_1 x + \Omega_0) = A_1 - 2A_1 \sin^2(\Omega_1 x/2 + \Omega_0/2).$$

(3.20)

where A, Ω and Ω_0 are appropriately chosen constants. NLS equation with similar potentials appear in a natural way in the study of Bose-Einstein condensates, see [24].

The relevant integrals for N_k, M_k, Ξ_k and D_k are equal to [24]:

$$N_k^{(2)} = 0, \quad \Xi_k^{(2)} = 0,$$

(3.21)

$$M_k^{(2)} = \frac{\pi A_1 \Omega_1^2}{8\nu_0} \frac{1}{\sinh Z_k},$$

(3.22)

$$D_k^{(2)} = \frac{\pi^2 A_1 \Omega_1^4}{16\nu_0^2} \cosh Z_k \cos(\Omega_1 \xi_k + \Omega_0),$$

(3.23)

where $Z_{1,k} = \pi \Omega_1 / (4\nu_k)$. These results allow one to derive the corresponding perturbed CTC models. Again we find that $d\mu_0/dt = 0$.

The second case we will consider is a linear combination of two potentials of the form (3.20) with correlated frequences:

$$V^{(3)}(x) = A_1 \cos(\Omega_1 x + \Omega_0) + A_2 \cos(\Omega_2 x + \Omega_0).$$

(3.24)

where A_1, Ω_1 and Ω_0 are appropriately chosen constants. Such potentials with correlated frequences, e.g. $\Omega_2 = 2\Omega_1$ also appear in the study of Bose-Einstein condensates, see [24].

The relevant integrals for N_k, M_k, Ξ_k and D_k are equal to [24]:

$$N_k^{(3)} = 0, \quad \Xi_k^{(3)} = 0,$$

(3.25)

$$M_k^{(3)} = A_1 M_k(\Omega_1, Z_{1,k}) \sin(\Omega_1 \xi_k + \Omega_0) + A_2 M_k(\Omega_2, Z_{2,k}) \sin(\Omega_2 \xi_k + \Omega_0),$$

(3.26)

$$D_k^{(3)} = A_1 D_k(\Omega_1, Z_{1,k}) \cos(\Omega_1 \xi_k + \Omega_0) + A_2 D_k(\Omega_2, Z_{2,k}) \cos(\Omega_2 \xi_k + \Omega_0),$$

(3.27)

where

$$M_k(\Omega_j, Z_{j,k}) = \frac{\pi \Omega_j^2}{8\nu_0} \frac{1}{\sin Z_{j,k}},$$

$$D_k(\Omega_j, Z_{j,k}) = \frac{\pi^2 \Omega_j^4}{16\nu_0^2} \cosh Z_{j,k} \sinh Z_{j,k}.$$

(3.28)

$Z_{j,k} = \pi \Omega_j / (4\nu_k)$. These results allow one to derive the corresponding perturbed CTC models. Again we find that $d\mu_0/dt = 0$.

The last case we consider is an elliptic potential of the form:

$$V^{(4)}(x) = -B \frac{\sin^2(\Omega_0 x / k)}{(\Omega_0 x / k)^2},$$

(3.29)

$$= -B \sum_{s=0}^{\infty} G_s(k) \sin(\Omega_0 x),$$

$$G_s(k) = \frac{\left(1 + k^2 / 2k^3 - (2s + 1)^3 \pi^2 / 8k^3 K^2\right) \pi}{K \sinh(\omega_s) / K},$$

(3.30)

$$\Omega_s = \frac{(2s + 1) \pi}{2K}, \quad \omega_s = \frac{(2s + 1) \pi K'}{2K},$$

(3.31)
where \(k \) is the module of the elliptic function, \(K = K(k) \) is the complete elliptic integral of the first kind, and \(B \) is a constant.

The second line of formula (3.24) provides the expansion of \(\text{sn}^2(\Omega x; k) \) as infinite series of trigonometric functions. Each of the terms in this series can be treated as perturbation just like above assuming \(\Omega_0 = -\pi/2 \). As a result we get:

\[
N_k^{(4)} = 0, \quad \Xi_k^{(4)} = 0, \quad (3.32)
\]

\[
M_k^{(4)} = B \sum_{s=0}^{\infty} M_k(\Omega_s, Z_s, k) G_s(k) \cos(\Omega_s \xi_k), \quad (3.33)
\]

\[
D_k^{(4)} = -B \sum_{s=0}^{\infty} D_k(\Omega_s, Z_s, k) G_s(k) \sin(\Omega_s \xi_k), \quad (3.34)
\]

where \(M_k, D_k \) and \(\Omega_s = (2s+1)\Omega \) are defined as in (3.28).

IV. CTC ANALYSIS AND COMPARISON WITH NUMERICAL SIMULATIONS

The dynamics of an individual soliton in a train is determined by the combined action of external potential and the influence of neighboring solitons. The interaction with neighboring solitons can be either repulsive, or attractive depending on the phase relations between them. Particularly, if their amplitudes are equal and the initial phase difference between neighboring solitons is \(\pi \) (as considered below) they repel each other giving rise to expanding motion in the absence of an external field \(V \).

The external potential counterbalances the expansion, trying to confine solitons in the minima of the potential. It is the interplay of these two factors - the interaction of solitons and the action of the external potential, which gives rise to a rich dynamics of the \(N \)-soliton train.

To verify the accuracy of the perturbed CTC model for the description of the \(N \)-soliton train dynamics in external potentials we performed comparison of predictions of corresponding perturbed CTC (PCTC) system and direct simulations of the underlying NLS equation (2.25). Below we present results pertaining to a matter-wave soliton train in a confining (i) parabolic trap and in (ii) a periodic potential modelling an optical lattice.

Here we present the numerical verification of the PCTC model. The perturbed NLS eq. (2.25) is solved by the operator splitting procedure using the fast Fourier transform \([41] \). In the course of time evolution we monitor the conservation of the norm and energy of the \(N \)-soliton train. The corresponding PCTC equations are solved by the Runge-Kutta scheme with the adaptive stepsize control \([32] \).

The evolution of a \(N \)-soliton train in the absence of potential \(V(x) = 0 \) is well known, see e.g. \([10, 12] \). These papers propose a method to determine the asymptotic dynamical regime of the CTC for a given set of initial parameters \(\nu_k(0), \mu_k(0), \xi_k(0) \) and \(\delta_k(0) \). Below we will use mainly the following set of parameters \(\nu_k(0) = 1/2, \mu_k(0) = 0, \xi_k(0) - \xi_{k+1}(0) = r_0 \) with two different choices for the phases:

\[
\delta_k(0) = k\pi, \quad (4.1)
\]

\[
\delta_k(0) = 0. \quad (4.2)
\]

These two types of initial conditions (IC) are most widely used in numeric simulations.

In the absence of potential the IC (4.1) ensure the so called free asymptotic regime, i.e. each soliton develops its own velocity and the distance between the neighboring solitons increases linearly in time. At the same time the center of mass of the soliton train stays at rest (see the left panel of Fig. 1). Under the IC (4.2) the solitons attract each other going into collisions whenever the distance between them is not large enough.

From mathematical point of view the IC (4.1) reduce the CTC into a standard (real) Toda chain for which the free asymptotic regime is the only possible asymptotical regime. On the contrary the IC (4.2) lead to singular solutions for the CTC (see \([9, 12, 30] \)). The singularities of the exact solutions for the CTC coincide with the positions of the collisions.

Below we will study the effects of the potentials for both types of IC. One may expect that the quadratic potential will prevent free asymptotic regime of IC (4.1) no matter how small \(V \) is and would not be able to prevent collisions in the case of IC (4.2). The periodic potential, if strong enough, should be able to stabilize and bring to bound states both types of IC.

A. Quadratic potential

For the quadratic external potential \(V(x) = V_2x^2 + V_1x + V_0 \) the perturbed CTC equations in terms of soliton parameters have the form:

\[
\frac{d\mu_k}{dt} = 16\nu_0^3 \left(e^{-2\nu_0(\xi_{k+1} - \xi_k)} \cos \Phi_k - e^{-2\nu_0(\xi_k - \xi_{k-1})} \cos \Phi_{k-1} \right) - V_2\xi_k - \frac{V_1}{2}, \quad (4.3)
\]

\[
\frac{d\nu_k}{dt} = 16\nu_0^3 \left(e^{-2\nu_0(\xi_{k+1} - \xi_k)} \sin \Phi_k - e^{-2\nu_0(\xi_k - \xi_{k-1})} \sin \Phi_{k-1} \right), \quad (4.4)
\]

\[
\frac{d\xi_k}{dt} = 2\mu_k, \quad (4.5)
\]

\[
\frac{d\delta_k}{dt} = 2(\mu_k^2 + \nu_k^2) + V_2 \left(\frac{\pi^2}{48\nu_k^2} - \xi_k^2 \right) - V_1\xi_k - V_0, \quad (4.6)
\]
FIG. 1: Left panel: 9-soliton train with initial parameters as in eq. (4.1) with $r_0 = 8$ in the absence of a potential goes into free asymptotic regime. Solid lines: direct numerical simulation of the NLS equation (2.5); dashed lines: $\xi_k(t)$ as predicted by the CTC equations (4.3)-(4.6) with $V_0 = V_1 = V_2 = 0$ and $r_0 = 8$. Right panel: Evolution of a 9-soliton train with the same initial parameters in the quadratic potential $V(x) = V_2 x^2$ with $V_2 = 0.00005$. Solid lines: direct numerical simulation of the NLS equation (2.5); dashed lines: solution of the PCTC equations (4.3)-(4.6). Initially the train is placed symmetrically relative to the minimum of the potential at $x = 0$.

\[\Phi_k = 2\mu_0 (\xi_{k+1} - \xi_k) + \delta_k - \delta_{k+1}, \]

where μ_k, ν_k, ξ_k and δ_k for $k = 1, \ldots, N$ are the $4N$ soliton parameters, see eqs. (4.3)-(4.6).

The effect of the quadratic potential on the N-soliton train with parameters (4.3) is to balance the repulsive interaction between the solitons, so that they remain bounded by the potential, as illustrated in the right panels of the figures 1 and 2. The quadratic potentials are supposed to be weak, i.e. we choose V_2 so that

\[V_2 \xi_N^2(0) \leq \nu_0, \quad V_2 \xi_1^2(0) \leq \nu_0. \]

Figures 1 and 2 show good agreement between the PCTC model and the numerical solution of the perturbed NLS equation (2.5). They also show two types of effects of the quadratic potential on the motion of the N-soliton train: (i) the train performs contracting and expanding oscillations if its center of mass coincides with the minimum of the potential, (ii) the train oscillates around the minimum of the potential as a whole if its center of mass is shifted. In the last case contracting and expanding motions of the soliton train is superimposed to the center of mass dynamics. As one can see from the figures the period of this motion matches very well the one predicted by formula (3.17). Indeed, from eq. (3.17) it follows that the period of the center of mass motion is $T = 2\pi/\sqrt{2V_2}$.

For the parameters in fig. 2 we have $T \approx 628$ (for 9-soliton train), $T \approx 140$ (for 3-soliton train). Similar is the dynamics also for the 7-soliton train on Fig. 3 for the parameters chosen there we have $T \approx 314$, in good agreement with the numerical simulations. The direct simulations of the NLS equation (2.5) shows that stronger parabolic trap may cause merging of individual solitons at times of contraction, and restoring of the original configuration when the train is expanded. This behavior reminds the phenomenon of "missing solitons" observed in the experiment [6]. However, this situation is beyond the validity of the PCTC approach.

FIG. 2: Harmonic oscillations of a N-soliton train initially shifted relative to the minimum of the quadratic potential $V(x) = V_2 x^2$. Left panel: 9-soliton train, $V_2 = 0.00005$. Right panel: 3-soliton train, $V_2 = 0.001$. The IC of the both trains is given by (4.1) with $r_0 = 8$. In both panels solid lines correspond to direct simulations of the NLS equation (2.5), and dashed lines to numerical solution of the PCTC equations (4.3)-(4.6).

FIG. 3: Dynamics of a 7-soliton train placed asymmetrically relative to the minimum of the trap $V(x) = 0.0002 x^2$. Solid lines: results of direct numerical simulations of the NLS equation (2.5). Dashed lines: result of solution of the PCTC system (4.3)-(4.6) for the center of mass ξ_i. The parameters of solitons are the same as in (4.1) with $r_0 = 8$. The initial shift of the soliton train relative to the minimum of the parabolic trap is 10π.

agreement with the numerical simulations.
B. Tilted periodic potential

Now we consider the dynamics of a N - soliton train in a tilted periodic potential, which is the combination of periodic and linear potentials

$$V(x) = A \cos(\Omega x + \Omega_0) + Bx. \quad (4.9)$$

This potential is of particular interest in studies of Bose-Einstein condensates. A train of repulsive BEC loaded in such a potential (where the periodic potential was a 1D optical lattice and the linear one was due to the gravitation) exhibited Bloch oscillations [33]. At each period of these oscillations condensate atoms residing in individual optical lattice cells coherently tunneled through the potential barriers. This was the first experimental demonstration of a pulsed atomic laser [33]. Recently a new model of a pulsed atomic laser was theoretically developed in [34], where the solitons of attractive BEC were considered as carriers of coherent atomic pulses.

Controlled manipulation with matter - wave solitons is important issue in these applications. Below we demonstrate that solitons of attractive BEC confined in optical lattice can be flexible manipulated by adjustment of the strength of the linear potential. In Fig. 4 we show the extraction of different number of solitons from the 5 - soliton train by increasing the strength of the linear potential B, as obtained from direct simulations of the NLS equation (1) and numerical integration of the PCTC system (38) - (41) with

$$M_k^{(2)} = \frac{\pi A \Omega^2}{8\nu_k} \frac{1}{\sinh Z_k} \sin(\Omega \xi_k + \Omega_0) - \frac{1}{2} B, \quad (4.10)$$

$$D_k^{(2)} = -\frac{\pi A \Omega^2}{16\nu_k^2} \frac{\cosh Z_k}{\sinh^2 Z_k} \cos(\Omega \xi_k + \Omega_0) - B\xi_k. \quad (4.11)$$

As is evident from Fig. 4 the PCTC model provides adequate description of the dynamics of a N-soliton train in a tilted periodic potential. A small divergence between predictions for the trajectory of the left border soliton in Fig. 4 (d), is due to the imperfect absorption of solitons from the right end of the integration domain. Reflected waves enter the integration domain and interact with solitons, which causes the discrepancy.

C. Periodic potential

Another external potential in which the N-soliton train exhibits interesting dynamics is the periodic potential of the form $V(x) = A \cos(12x + \Omega_0)$. This case also may have a direct relevance to matter - wave soliton trains confined to optical lattices. The PCTC system in terms of soliton parameters has the form:

$$\frac{d\mu_k}{dt} = 16\nu_0^3 \left(e^{-2\nu_0(\xi_{k+1} - \xi_k)} \cos \Phi_k - e^{-2\nu_0(\xi_k - \xi_{k-1})} \cos \Phi_{k-1} \right) + M_k^{(2)}(\nu_k), \quad (4.12)$$

$$\frac{d\nu_k}{dt} = 16\nu_0^3 \left(e^{-2\nu_0(\xi_{k+1} - \xi_k)} \sin \Phi_k - e^{-2\nu_0(\xi_k - \xi_{k-1})} \sin \Phi_{k-1} \right), \quad (4.13)$$

$$\frac{d\xi_k}{dt} = 2\mu_k, \quad (4.14)$$

$$\frac{d\Phi_k}{dt} = 2(\mu_k^2 + \nu_k^2) + D_k^{(2)}(\nu_k), \quad (4.15)$$

where $M_k^{(2)}(\nu_k)$, $D_k^{(2)}(\nu_k)$ are given in (3.21) and (3.23), and Φ_k – in eq. (4.7).

Each soliton of the train experience confining force of the periodic potential and repulsive force of neighboring solitons. Therefore, equilibrium positions of solitons do not coincide with the minima of the periodic potential. Solitons placed initially at minima of the periodic potential (Fig. 5) perform small amplitude oscillations around
moderately weak periodic potential, a soliton performs nonlinear oscillations within individual
"nematics" of the train, can be explained as follows. Each soliton far from the train, as shown in the left panel of Fig. 6. This can be observed such as the expulsion of bordering solitons and repulsive forces between neighboring solitons, interesting dynamics can be obtained. When the amplitude of oscillations of particular solitons grow and two solitons closely approach each other, a strong recoil momentum can cause the soliton to leave the train, overcoming barriers of the periodic potential. In Fig. 6 this happens with bordering solitons (the other solitons remain bounded under long time evolution). It is noteworthy to stress that this phenomenon is well described by the PCTC model, as is evident from Fig. 6 left panel.

On the right panel of the same figure we have similar as in (4.11) and we have chosen again the initial positions of the solitons to coincide with the minima of the periodic potential $V(x) = A \cos(\Omega x + \Omega_0)$; i.e. $r_0 = 2\pi/\Omega$. The values of $A = -0.0005$ and $r_0 = 9$ in the right panel of Fig. 6 now are such that the solitons form a bound state. Therefore for any given initial distance r_0 there is a critical value $A_{cr}(r_0)$ for A such that for $A > A_{cr}(r_0)$ the soliton train with IC (4.11) will form a bound state.

In contrast to the quadratic potentials, the weak periodic potential is unable to confine solitons, and repulsive forces between neighboring solitons (at $\nu_i(0) = 1/2$, $\delta_i(0) = k\pi$) induces unbounded expansion of the train similar to what was shown in the left panel of Fig. 6.

The periodic potential can play stabilizing role also for the IC (4.2), when the zero phase difference between neighboring solitons correspond to their mutual attraction. If the periodic potential is strong enough, solitons do not experience collision. The weak periodic potential cannot prevent solitons from collisions, which eventually leads to destruction of the soliton train, as illustrated in Fig. 7. Again for any given initial distance r_0 there will be a critical value $A'_{cr}(r_0)$ for A such that for $A > A'_{cr}(r_0)$ the soliton train with IC (4.2) will form a bound state avoiding collisions.

Attractive interactions at zero phase difference between neighboring solitons can be balanced by expulsive force on solitons, if the train is positioned on an inverted parabolic trap. In this case solitons far from the center experience stronger expulsive force and leave the train, as illustrated in Fig. 8.

V. HAMILTONIAN APPROACH TO PERTURBED NLS AND CTC

The Hamiltonian method has played important role in the analysis of integrable and close to integrable nonlinear evolution equations and dynamical systems, see [21]. In this section we will outline how this method can be used for the analysis of the N-soliton interactions.

The relation between the Hamiltonian properties of the NLS eq. and the CTC model was derived in [12]. Here we will show that this approach can be extended also to the perturbed versions of NLS and CTC. Indeed, the Hamiltonian of eq. (2.20) with $iR[u] = V(x)u(x,t)$ is
Namely one constructs the Lagrangian of NLS, then takes advantage of the variational method \[11, 36\].

Let us now derive the Hamiltonian for the perturbed NLS system (4.12) - (4.15).

One of the ways to derive the CTC from the NLS is based on the use of the variational method \[11, 36\]. Namely one constructs the Lagrangian of NLS, then takes an ansatz of the form:

\[
 u(x, t) = \sum_{k=1}^{N} u_k^{(1s)}(x, t),
\]

and integrate over \(x\) neglecting terms of order \(\epsilon^k\) with \(k > 1\). Here \(u_k^{(1s)}(x, t)\) is the one-soliton pulse with parameters \(\mu_k, \nu_k, \xi_k\) and \(\delta_k\). The results must depend only on the 4N soliton parameters. It was pointed out in \[35\] that if we apply this method directly to the Hamiltonian \(H_{\text{NLS}}\) we get additional singular in \(\epsilon\) elements which are taken care of by a proper regularization. The regularized Hamiltonian is

\[
 H_{\text{reg}} = 4(\mu_0^2 + \nu_0^2)C_1 - 4\mu_0 C_2 + H_{\text{NLS}},
\]

where \(H_{\text{CTC}}\) is the Hamiltonian of the CTC. It is obtained from the Toda chain Hamiltonian:

\[
 H_{\text{TC}} = \sum_{k=1}^{N} \frac{1}{2} p_k^2 + \sum_{k=1}^{N-1} e^{q_{k+1} - q_k},
\]

by a complexification procedure after which the dynamical variables become complex-valued:

\[
 p_k \rightarrow p_k = p_{0,k} + ip_{1,k}, \quad q_k \rightarrow q_k = q_{0,k} + iq_{1,k},
\]

which must satisfy the Poisson brackets:

\[
 \{ p_{0,k}, q_{0,s} \} = \delta_{ks}, \quad \{ p_{1,k}, q_{1,s} \} = -\delta_{ks}, \quad \{ p_{0,k}, q_{1,s} \} = 0, \quad \{ p_{1,k}, q_{0,s} \} = 0.
\]

Then the CTC can be written down as a standard Hamiltonian system with 2N-degrees of freedom and Hamiltonian provided by the real part of the complexified \(H_{\text{TC}}\):

\[
 H_{\text{CTC}} = \sum_{k=1}^{N} \frac{1}{2}(q_{0,k}^2 - p_{1,k}^2)
\]

\[
 + 16\nu_0^2 \sum_{k=1}^{N-1} e^{q_{1,k+1} - q_{1,k}} \cos(q_{1,k+1} - q_{1,k})
\]

\[
 p_{0,k} = \frac{d q_{0,k}}{dt} = -4\nu_0 \mu_k, \quad p_{1,k} = \frac{d q_{1,k}}{dt} = -4\nu_0 \nu_k.
\]

It remains to replace \(q_{0,k}\) and \(q_{1,k}\) in terms of the soliton parameters in order to get the final expression for \(H_{\text{CTC}}\). Let us now derive the Hamiltonian for the perturbed CTC. To this end we will evaluate \(H_{V}\) in terms of the
\[H_V = \sum_{k=1}^{N} H_k + \sum_{k=1}^{N} (H_{k,k-1} + H_{k,k+1}), \quad (5.13) \]

\[H_k = \int_{-\infty}^{\infty} dx \, V(x) |u_k^{(1s)}(x,t)|^2, \quad (5.14) \]

\[H_{k,k-1} = \int_{-\infty}^{\infty} dx \, V(x) (u_k^{(1s)} u_{k-1}^{(1s)})(x,t). \]

In what follows we will neglect the terms \(H_{k,k-1} \) as compared to \(H_k \), because their ratio is of the order of \(\epsilon \). The integrals in \((5.14) \) for the quadratic and periodic potentials have the form:

\[H_k = 4 \nu_k \left(\left(V_2 (\xi_k^2 - \frac{\pi^2}{48 \nu_k^2}) + V_1 \xi_k + V_0 \right \) + \frac{\pi A \Omega}{\sinh Z_0} \cos(\Omega \xi_k + \Omega_0). \quad (5.15) \]

One can also evaluate the Poisson brackets between the soliton parameters inserting the expressions for \(p_{\alpha,k} \) and \(q_{\beta,s} \) with \(\alpha, \beta = 0,1 \) into \((5.13) \). We skip the lengthy calculations here and only note that these Poisson brackets combined with the Hamiltonian

\[H_{\text{PCTC}} = H_{\text{TC}} + \sum_{k=1}^{N} H_k \quad (5.16) \]

\[H_{\text{PCTC}} = H_{\text{CM}} + H_V, \quad (5.17) \]

indeed produce the equations of motion for the PCTC.

Our next step is to separate the center of mass motion described by \(H_{\text{CM}} \):

\[H_{\text{CM}} = N \left(8 \nu_0^2 (\mu_0^2 - \nu_0^2) + 4 \nu_0 (V_2 \xi_0^2 + V_1 \xi_0 + V_0) \right) - \frac{\pi A \Omega}{\sinh(\frac{4 \pi}{4 \nu_0})} \cos(\Omega \xi_0 + \Omega_0), \quad (5.18) \]

where the subscript 0 stands for the average value of the corresponding parameter, e.g. \(\xi_0 = 1/N \sum_{k=1}^{N} \xi_k \). Then the Hamiltonian \(H_V \) would describe the relative motion of the solitons. We will express it as a function of the \(A \)-dependent potential for the averaged parameters \(\mu_0, \ldots, \delta_0 \) and the relative parameters:

\[\bar{\mu}_k = \mu_k - \mu_0, \quad \bar{\nu}_k = \nu_k - \nu_0, \]

\[\bar{\xi}_k = \xi_k - \xi_0, \quad \bar{\delta} = \delta_k - \delta_0, \quad (5.19) \]

Note, that only \(N-1 \) of the relative parameters are independent; obviously they satisfy \(\sum_{k=1}^{N} \bar{X}_k = 0 \) where \(\bar{X}_k \) stands for \(\bar{\mu}_k, \ldots, \bar{\delta}_k \).

In evaluating \(H_V \) we will neglect higher order terms, i.e. terms of the order \(\epsilon^{3/2} \) and higher, as well as terms of the order \(V_s \epsilon^{1/2} \), \(A \epsilon^{1/2} \) and higher. As a result \(H_{\text{CM}} \) and \(H_V \) simplify to:

\[H_{\text{CM}} = 8 \nu_0^2 (\mu_0^2 - \nu_0^2) + 4 \nu_0 \left(V_2 \xi_0^2 + V_1 \xi_0 + V_0 - \frac{V_2 \pi^2}{48 \nu_0^2} \right) + \frac{\pi A \Omega}{\sinh Z_0} \cos(\Omega \xi_0 + \Omega_0), \quad (5.20) \]

\[H_V = 8 \nu_0^2 \sum_{k=1}^{N} (\bar{\mu}_k^2 - \bar{\nu}_k^2 + \bar{\xi}_k) + 16 \nu_0^2 \sum_{k=1}^{N-1} \cos(q_{1,k+1} - q_{1,k}) + \sum_{k=1}^{N-1} e^{\Omega_0, k+1 - \Omega_0, k} \cos(q_{1,k+1} - q_{1,k}), \quad (5.21) \]

\[\bar{H}_k = 4 \nu_0 V_2 (\xi_k - \xi_0)^2 + \frac{\pi A \Omega}{\sinh Z_0} (\cos(\Omega \xi_k + \Omega_0) - \cos(\Omega \xi_0 + \Omega_0)). \quad (5.22) \]

The Hamiltonian \(H_{\text{CM}} \) which describes the center of mass motion is more simple than \(H_V \) and often one is able to solve explicitly the corresponding equations of motion, see Section IV. The next step would be, using the known expressions for the averaged variables \(\mu_0(t), \ldots, \delta_0(t) \) to insert them into \(H_V \) and try to analyze the corresponding equations of motion. This would provide us with information about the relative motion of the solitons around the center of mass. Usually we get a set of nonlinear and non-integrable ODE.

Our idea here is to use the explicit form of \(H_V \) for the estimation of the critical values of potential strengths \(A, V_2, V_1 \) for which the soliton motion becomes qualitatively different. Doing this we are making use of the following hypothesis based on the well known fact that bound states have negative energies while asymptotically free motions should correspond to positive energies. Therefore we evaluate the Hamiltonian \(H_V \) inserting in it the initial soliton parameters along with the known expressions for \(\mu_0, \ldots, \delta_0 \). If the result is negative we may expect that the relative motion of the solitons will be bounded; otherwise one may expect that at least one (or more) of the solitons will move away from the others. The critical value of the corresponding constants will be derived below with the condition \(H_V = 0 \).

Assume we have only periodic potential present and the initial soliton configuration is \((4.1) \). For \(A = 0 \) the solitons will go into asymptotically free regime. Switching on the self-consistent periodic potentials (such that the solitons initially are located at its minima) it is natural to expect that for \(A > A_c \) the solitons will be stabilized into a bound state. Then from the condition \(H_V = 0 \) we get:

\[A_c = - \left(1 - \frac{1}{N} \right) \frac{64 \nu_0^4}{\pi \Omega} e^{-2 \nu_0 r_0} \sinh \frac{\pi \Omega}{4 \nu_0}. \quad (5.23) \]

Note that the critical values generically should depend not only on the number of solitons \(N \), but also on the initial configuration. The approach we used is not very
the dependence of both critical values on r state while the two end ones separate. of A after emitting two or more solitons.

Table I: The values of A_{cr} obtained from numeric simulations with PCTC versus A_{cr}^th obtained from eq. (5.23) for $N = 3$.

r_0	A_{cr}^exp	A_{cr}^th	$A_{cr}^\text{exp}/A_{cr}^\text{th}$
2π	-0.0053	-0.00365	1.45
7	-0.0025	-0.00166	1.51
8	-0.00084	-0.00057	1.47
9	-0.00030	-0.00020	1.50

Table II: The values of A_{cr}^exp and A_{cr}^3exp obtained from numeric simulations with PCTC versus A_{cr} obtained from eq. (5.23) for $N = 5$.

r_0	A_{cr}^5exp	A_{cr}^3exp	A_{cr}^th	$A_{cr}^\text{exp}/A_{cr}^\text{th}$	$A_{cr}^\text{3exp}/A_{cr}^\text{th}$
2π	-0.0068	-0.0029	-0.0044	1.55	0.66
7	-0.0031	-0.0013	-0.0020	1.56	0.65
8	-0.00115	-0.00043	-0.00068	1.68	0.63
9	-0.00041	-0.000155	-0.00024	1.71	0.65

sensitive to this. It can not provide us with the intermediary critical values when the soliton train is stabilized after emitting two or more solitons.

We compared the theoretical predictions for A_{cr} from eq. (5.23) with the data coming from the numeric solutions of the corresponding PCTC for different choices of the initial distance between the solitons r_0. The results are collected into the table I. The conclusion is that eq. (5.23) provides correct dependence of A_{cr} on r_0 up to an overall constant factor of the order of 1.5.

In the next table II we summarize two sets of critical values for the 5-soliton trains. From our numeric experiment we derive two critical values of A. The first one A_{cr}^5exp describes the value of A above which all 5 solitons form a bound state; the second one A_{cr}^3exp shows the value of A above which the three middle solitons form a bound state while the two end ones separate.

Again we see, that formula (5.23) describes correctly the dependence of both critical values on r_0.

VI. CONCLUSIONS

We have studied the dynamics of a N-soliton train confined to external fields (quadratic, periodic and tilted potentials). Both the analytical treatment in the framework of the PCTC model, and numerical analysis by direct simulations of the underlying NLS equation show that the PCTC is adequate for description of the adiabatic N-soliton interactions in weak external potentials. Hamiltonian approach for the perturbed NLS and CTC has been developed, and applied to the analysis of the soliton “expulsion” from the train, which is confined to a periodic potential.

As a physical system of direct relevance we have considered matter-wave soliton trains in magnetic traps and optical lattices. In the range of parameters for the trapping potential, used in the BEC soliton train experiments, we found a good agreement between the analytical estimates based on the PCTC model and numerical simulations of the governing NLS equation. In what concerns the critical strength of the periodic potential at which the soliton expulsion occurs, analytical predictions qualitatively agree with numerical simulations. The developed theory can be useful for controlled manipulation with matter-wave soliton trains.

Acknowledgments

V.S.G. and N.A.K acknowledge partial support from the Bulgarian Science Foundation through contract No. F-1410. B.B. B. wishes to thank the Department of Physics of the University of Salerno, Italy, for providing a research grant during which part of this work was done. M. S. acknowledges financial support from the MIUR, through the inter-university project PRIN-2003, and from the Istituto Nazionale di Fisica Nucleare, sezione di Salerno. We are grateful to Prof. I. Uzunov for useful discussions and for calling our attention to Refs. [27, 28].

[1] A. Hasegawa and Y. Kodama, Solitons in optical communications, (Oxford, Clarendon Press, 1995).
[2] Y. Kivshar and G. Agrawal, Optical Solitons: From Fibers to Photonic Crystals, (Academic Press, San Diego, 2003).
[3] A. Barone, G. Paternó, Physics and Applications of the Josephson Effect, N.Y., Wiley, (1982).
[4] F. Kh. Abdullaev, A. Gammal, A. M. Kamchatnov and L. Tomio, Int. J. Mod. Phys. B 19, 3415 (2005); V. A. Brazhnyi and V. V. Konotop, Mod. Phys. Lett. B 18, 267 (2004).
[5] For recent progress in theory and applications of BEC see the special issue: J. Phys. B. vol.38, No.9 (2005).
[6] K. E. Strecker, G. B. Partridge, A. G. Truscott, and R. G. Hulet, Nature, 417, 150 (2002); K. E. Strecker et al., Advances in Space Research 35, 78 (2005).
[7] L. Khaykovich, F. Schreck, G. Ferrari, T. Bourdel, J. Cubizoles, L. D. Carr, Y. Castin, and C. Salomon, Science
296, 1290 (2002).
[8] V. I. Karpman, V. V. Solov’ev, Physica D 3D, 487-502, (1981).
[9] V. S. Gerdjikov, D. J. Kaup, I. M. Uzunov, E. G. Evstatiev, Phys. Rev. Lett. 77, 3943-3946 (1996).
[10] V. S. Gerdjikov, I. M. Uzunov, E. G. Evstatiev, G. L. Diankov, Phys. Rev. E 55, No 5, 6039-6060 (1997).
[11] J. M. Arnold, JOSA A 15, 1450-1458 (1998); Phys. Rev. E 60, 979-986 (1999).
[12] V. S. Gerdjikov, E. G. Evstatiev, D. J. Kaup, G. L. Diankov, Phys. Lett. A 241, 323-328 (1998).
[13] V. S. Gerdjikov, On Modelling Adiabatic N-soliton Interactions. Effects of perturbations. In "Nonlinear Waves: Classical and Quantum Aspects", Eds.: F. Kh. Abdullaev and V. Konotop. (Kluwer, 2004), 15 - 28.
[14] E. V. Doktorov, N. P. Matsuka, V. M. Rothos. Phys. Rev. E 69, 056607 (2004).
[15] Y. Kodama, A. Hasegawa, IEEE J. of Quant. Electron. QE-23, 510 - 524 (1987).
[16] V. S. Gerdjikov, M. I. Ivanov, P. P. Kulish, Theor. Math. Phys. 44, No.3, 342–357, (1980), (In Russian).
[17] V. S. Shchesnovich and E. V. Doktorov, Physica D 129, 115 (1999); E. V. Doktorov and V. S. Shchesnovich, J. Math. Phys. 36, 7009 (1995).
[18] V. S. Gerdjikov, E. V. Doktorov, J. Yang, Phys. Rev. E 64, 056617 (2001).
[19] V. S. Gerdjikov, I. M. Uzunov, Physica D 152-153, 355-362 (2001).
[20] V. E. Zakharov, S. V. Manakov, S. P. Novokov, L. P. Pitaevskii, Theory of solitons: the inverse scattering method. (Plenum, N.Y.: Consultants Bureau, 1984).
[21] L. A. Takhtadjan and L. D. Fadeev, Hamiltonian Approach to Soliton Theory (Springer Verlag, Berlin, 1986).
[22] S. V. Manakov, JETPh 67, 543 (1974); H. Flaschka. Phys. Rev. B9, 1924–1925, (1974);
[23] V. S. Gerdjikov, Complex Toda Chain – an Integrable Universal Model for Adiabatic N-soliton Interactions. In Proc. of the Workshop "Nonlinear Physics: Theory and Experiment. II", Gallipoli, June-July 2002; Eds.: M. Ablowitz, M. Boiti, F. Pempinelli, B. Prinari. p. 64-70 (2003).
[24] J. C. Bronski, L. D. Carr, B. Deconinck, J. N. Kutz, Phys. Rev. E 63, 036612 (2001); Phys. Rev. Lett. 86, 1402–1405 (2001); J. C. Bronski, L. D. Carr, R. Carretero-Gonzales, B. Deconinck, J. N. Kutz, K. Promislov, Phys. Rev. E 64, 056615 (2001); F. Kh. Abdullaev, B. B. Baizakov, S. A. Darmanyan, V. V. Konotop, M. Salerno, Phys. Rev. A 64, 043606 (2001).
[25] R. Carretero-Gonzalez and K. Promislov, Phys. Rev. A 66, 033610 (2002).
[26] V. S. Gerdjikov, B. B. Baizakov, M. Salerno, Modelling adiabatic N-soliton interactions and perturbations. In: Proceedings of the workshop "Nonlinear Physics: Theory and Experiment. III", Gallipoli, 2004; Eds.: M. Ablowitz, M. Boiti, F. Pempinelli, B. Prinari, Theor. Math. Phys. 144, No. 2, 1138–1146 (2005).
[27] V. S. Gerdjikov, B. B. Baizakov, On Modelling Adiabatic N-soliton Interactions and Perturbations. Effects of external potentials. Report at the International Conference "Gravity, astrophysics and strings at the Black sea", Kiten, Bulgaria, June 10 - 16 (2004).
[28] S. Wabnitz. Electron. Lett. 29, 1711 (1993);
[29] I. M. Uzunov, M. Gölles, F. Lederer, JOSA B 12, No. 6, 1164 (1995);
[30] I. M. Uzunov, M. Gölles, F. Lederer, Phys. Rev. E 52, 1059-1071 (1995).
[31] J. Moser, In Dynamical Systems, Theory and Applications. Lecture Notes in Physics, v. 38, Springer Verlag, (1975), p. 467.
[32] V. S. Gerdjikov, E. G. Evstatiev, R. I. Ivanov, The complex Toda chains and the simple Lie algebras – solutions and large time asymptotics, J. Phys. A: Math & Gen. 31, 8221-8232 (1998).
[33] T. R. Taha and M. J. Ablowitz, J. Comp. Phys. 55, 203 (1984).
[34] W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical Recipes. The Art of Scientific Computing. (Cambridge University Press, 1996).
[35] B. P. Anderson, M. A. Kasevich, Science, 282, 1686 (1998).
[36] L. D. Carr and J. Brand, Phys. Rev. A 70, 033607 (2004).