Establishment of a nomogram with EMP3 for predicting clinical outcomes in patients with glioma: A bi-center study

Anke Zhang1 | Houshi Xu2 | Zeyu Zhang1 | Yibo Liu1 | Xiaying Han3 | Ling Yuan4 | Yunjia Ni2 | Shiqi Gao1 | Yuanzhi Xu2 | Sheng Chen1 | Junkun Jiang4 | Yike Chen1 | Xiaotao Zhang1 | Meiqing Lou2 | Jianmin Zhang1

1Department of Neurosurgery, School of Medicine, The Second Affiliated Hospital, Zhejiang University, Hangzhou, China
2Department of Neurosurgery, School of Medicine, Shanghai General Hospital, Shanghai Jiao Tong University, Shanghai, China
3Department of Orthopedics, School of Medicine, Shanghai General Hospital, Shanghai Jiao Tong University, Shanghai, China
4Tongji University, Shanghai, China

Correspondence
Meiqing Lou, Department of Neurosurgery, School of Medicine, Shanghai General Hospital, Shanghai Jiao Tong University, Shanghai, China. Email: loumq_68128@vip.sina.com
Jianmin Zhang, Department of Neurosurgery, School of Medicine, The Second Affiliated Hospital, Zhejiang University, Hangzhou, Zhejiang Province, China. Email: jzm135@zju.edu.cn

Funding information
This research was funded by National Natural Science Foundation of China (82071287 and 81870916), Natural science foundation of Shanghai (18ZR1430400), and the Cross Research Fund of Medicine and Engineering of Shanghai Jiao Tong University (YG2019QNA67)

Abstract
Aim: To demonstrate the clinical value of epithelial membrane protein 3 (EMP3) with bioinformatic analysis and clinical data, and then to establish a practical nomogram predictive model with bicenter validation.

Methods: The data from CGGA and TCGA database were used to analyze the expression of EMP3 and its correlation with clinical prognosis. Then, we analyzed EMP3 expression in samples from 179 glioma patients from 2013 to 2017. Univariate and multivariate cox regression were used to predict the prognosis with multiple factors. Finally, a nomogram to predict poor outcomes was formulated. The accuracy and discrimination of nomograms were determined with ROC curve and calibration curve in training and validation cohorts.

Results: EMP3 was significantly higher in higher-grade glioma and predicted poor prognosis. In multivariate analysis, high expression of EMP3 (HR = 2.842, 95% CI 1.984–4.071), WHO grade (HR = 1.991, 95% CI 1.235–3.212), and IDH1 mutant (HR = 0.503, 95% CI 0.344–0.737) were included. The nomogram was constructed based on the above features, which represented great predictive value in clinical outcomes.

Conclusion: This study demonstrated EMP3 as a novel predictor for clinical progression and clinical outcomes in glioma. Moreover, the nomogram with EMP3 expression represented a practical approach to provide individualized risk assessment for glioma patients.

Keywords
biomarker, glioma, immune infiltration, nomogram, prognosis
1 | INTRODUCTION

Glioma is the most common malignant tumor of the central nervous system, with a 5-year overall survival (OS) rate of approximately 36%, and accounts for more than 70% of intracranial malignant tumors.1–3 Regardless of tumor malignancy and aggressive treatment, the average median OS time is still only 12–18 months.4,5 Although various therapeutic modalities are available, such as surgical resection, chemotherapy, radiotherapy, and immunotherapy, patients with glioma have low survival rates.

Therapeutic effects are affected by tumor heterogeneity and genetic and epigenetic factors. Moreover, aggressive therapies compromise the quality of life of patients and confer harmful adverse reactions. Therefore, knowledge of mechanisms underlying tumor progression is critical for management strategies and prognostic predictions.

With the development of high-throughput microarray technology, gene expression profiling has been widely used to determine signatures or biomarkers associated with tumor progression and clinical prognosis.6–8 Although many studies of the prognostic biomarkers have been reported, few have been validated in the clinical setting. Genetic signatures identified from four different published microarray datasets have been validated in glioma cohorts.9–11 However, the clinical value of these genetic signatures is undetermined and has not been applied in clinical practice.

The tumor immune microenvironment participates in oncogenesis and tumor progression, and affects clinical prognosis.12 Several studies have demonstrated the correlation between the tumor immune microenvironment and N6-methyladenosine (m6A) modification; however, the potential role of m6A modification in immune infiltration is still unclear, especially in glioma. m6A is the most common mRNA modification in diverse cells and has various regulatory functions in tumorigenesis, progression, and immune modulation.13 In our current study, we built a model with integrated m6A and immune infiltration data to improve the overall prediction of outcome for glioma patients without using a large number of samples to verify its clinical practicality.14 To the best of our knowledge, few studies have applied human glioma samples to verify signatures or biomarkers screened from public datasets. Therefore, we aimed to combine bioinformatic analysis with clinical data to confirm the clinical value of the signature and established a nomogram predictive model to guide the clinical therapy and assess prognosis.

2 | MATERIALS AND METHODS

2.1 | Collection of human-derived tumor samples

Sample collection and data analysis were approved by Institutional board of the Second Hospital affiliated to Zhejiang University and Shanghai General Hospital affiliated to Shanghai Jiao Tong University. Tumor tissues were recruited between January 2013 and September 2017 from the department of neurosurgery in both of the Second Hospital affiliated to Zhejiang University and Shanghai General Hospital affiliated to Shanghai Jiao Tong University. Inclusion criteria include the following: (1) all glioma patients confirmed with pathohistological diagnosis and immunohistochemic-staining results for protein expression (EMP3, Ki67, and PHH3), mutant status (P53, IDH1, and ATRX), and methylation status of MGMT; and (2) patients with glioma is surgically removed for the first time. Exclusion criteria include the following: (1) patients who receive preoperative radiotherapy or chemotherapy; (2) patients with glioma whose histological grading or staining results are uncertain; and (3) patients with no integrated data of 3-year follow-up. A total of 179 cases were eligible for inclusion.

2.2 | Data source and expression analysis

In this study, we analyzed both HGG and LGG. All glioma data sets were obtained from Gliovis (http://gliovis.bioinfo.cnio.es/), including three datasets (CGGA, TCGA, Rembrandt) containing 1948 samples: grade I patients (n = 663), grade II patients (n = 615), grade III patients (n = 663), and grade IV patients (n = 668).

2.3 | Immune cells and bioinformatic analysis

The single sample gene set enrichment analysis (ssGSEA) was used to define an enrichment fraction that represents the absolute enrichment of genomes in each sample with R package “GSVA” within a given dataset. Normalized enrichment fractions can be calculated for each type of immune cell. Genome set signature of 28 immune markers have been reported, few have been validated in the clinical setting. Genetic signatures identified from four different published microarray datasets have been validated in glioma cohorts.9–11 Given the limited evidence that EMP3 may be a biomarker to predict the prognosis in gliomas, our study was performed to determine the relationship between EMP3 and immune infiltration and clinical outcomes and to establish a practical nomogram predictive model to guide the clinical therapy and assess prognosis.
2.4 | Immunohistochemical analysis

Human-derived glioma samples were fixed in 4% paraformaldehyde at room temperature for 24 h and then embedded in paraffin. The blocks were cut into 8 μm slices for the following analysis. Sections were blocked with 5% goat serum at room temperature for 1 h and then were stained with EMP3 (1:100, Santa Cruz, sc-81797, USA). After washing with PBS, the sections were incubated with secondary antibody (1:5000, Beijing Zhongshan-Golden Bridge Technology Co., Ltd) at 37°C for 30 min. The ABC method (Vector Laboratories) was used at room temperature. The images were observed using an AX-80 microscope (Olympus, Tokyo, Japan) and were analyzed with ImageJ software.

2.5 | Real-time PCR

Total RNA was extracted from human glioma core region and adjacent tissues using TRIzol reagent (Invitrogen, Carlsbad, CA, USA). Reverse transcription was carried out by using FastQuant RT kit (Tiangen, Shanghai, China). Real-time PCR was carried out using SuperReal SYBR Green kit (Tiangen, Shanghai, China) and LightCycler 96 (Roche, Penzberg, Germany). The primer sequences were listed as follow: EMP3 forward: GCCATGCATCCCTCTTGCT; EMP3 reverse: CTGACATTACTGCAGGCCCA; ACTB forward: using SuperReal SYBR Green kit (Tiangen, Shanghai, China) and USA). Reverse transcription was carried out by using FastQuant jacent tissues using TRIzol reagent (Invitrogen, Carlsbad, CA, (GraphPad Software). Continuous variables were reported as Mean ± SD. For the clinical data, Student's t-test was used for continuous variables and chi-square or Fisher’s exact test for categorical variables. All tests were two-sided. Spearman correlation analysis was used for correlation analysis. Both univariate and multivariable Cox regression were performed to estimate clinical outcomes. We used a multivariable model with a forward stepwise regression procedure to screen out the potential predictors that have been reported or assumed to be predictive of poor outcome. Based on the multivariable analysis, we used modeling nomograms to predict prognosis at 1-, 2-, and 3-year follow-ups. R package "meta" was used for Meta-analysis. p < 0.05 was considered significant for all statistical analyses.

2.6 | Nomogram construction and validation

The patients from the Second Hospital affiliated to Zhejiang University were considered as training cohorts, and the patients from Shanghai General Hospital were included in validation cohorts. In the survival analysis, the association between traits and overall survival was assessed using Cox regression model. The Kaplan-Meier survival curves were plotted and compared by log-rank tests with R packages ‘survival’ and ‘survminer’. In the training cohort, independent predictive risk factors were screened by multivariate Cox regression analysis. Based on independent factors, the nomogram model was established with the R software version 4.0.1 (https://www.r-project.org) to predict outcomes in 1-, 2-, and 3-year follow-ups. The performance evaluation of the nomogram includes c-index, calibration curves, and ROC curve, which were verified by the calibration curve generated by the validation cohort. ROC curves, sensitivity, and specificity values were generated using R package "pROC".

2.7 | Statistical analysis

All statistical analyses were performed using R software 4.0.1, SPSS analysis tools (IBM Corp.), or the Prism8 software program (GraphPad Software). Continuous variables were reported as

3 | RESULTS

3.1 | Increased EMP3 expression predicts poor prognosis in gliomas patients

In the initial study, we focused on determining the mechanistic role and clinical value of EMP3 in glioma. To investigate the expression of EMP3 in gliomas at different stages, we analyzed EMP3 mRNA expression in 3 datasets. We observed that the expression of EMP3 was elevated in glioblastoma. In the CGGA dataset, WHO grade III (n = 334) and grade IV (n = 388) tumors had a significantly higher expression of EMP3 than grade II (n = 291) (Figure 1A) tumors. In the TCGA-GBMLGG dataset, a significant increase in EMP3 expression was confirmed in grade III (n = 244) and IV (n = 150) tumors (Figure 1B). Furthermore, an upward trend was also observed in the Rembrandt dataset (Figure 1C).

After elucidating the correlation between EMP3 expression and tumor malignancy, we aimed to demonstrate the prognostic value of EMP3. According to the median value of EMP3 expression, patients were divided into high and low EMP3 expression groups. The Kaplan-Meier curve and survival comparison analysis showed that patients with high EMP3 levels from the CGGA (HR = 1.77, 95% CI = 1.59–1.98), TCGA (HR = 3.69, 95% CI = 2.82–4.83), and Rembrandt (HR = 1.68, 95% CI = 1.46–1.92) datasets had worse overall survival (OS) rates than those with low EMP3 levels (Figure 1D-F). To improve the stability of this result, we used a fixed-effects model to summarize the HRs of these three cohorts. The results confirmed that patients with high EMP3 expression had significantly shorter OS times than patients with low EMP3 levels (RR = 2.00, 95% CI = 1.84–2.18, Figure 1G).

To further validate these results, IHC for EMP3 was performed to evaluate EMP3 expression in patient-derived glioma tissues from two institutions. As expected, there was a significant increase in EMP3 in high-grade glioma (HGG) compared with low-grade glioma (LGG) (Figure 1H-J). In addition, as expected, in comparison with adjacent tissues, a significant increase in EMP3 was revealed in the tumor core region (Figure S1). According to the above data, the expression of EMP3 increased with the progression of glioma, suggesting that EMP3 may be involved in the development of tumor malignancy.
FIGURE 1 Increased EMP3 predicts progression and poor prognosis in gliomas. (A-C) The x-axis represents the WHO grade while the y-axis represents EMP3 expression value (log2). Based on Wilcoxon test. (A) CGGA, (B) TCGA and (C) Rembrandt. (D-F) Kaplan-Meier plots of EMP3 in a variety glioma datasets. (D) CGGA, (E) TCGA, and (F) Rembrandt. (G) Forest plot of the RR values for patients with high EMP3 expression compared with patients with low EMP3 expression. (H-J) Representation of IHC images and quantification of EMP3 expression in low-grade glioma and high-grade glioma. *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001
3.2 EMP3 regulates immune infiltration and immune activation in gliomas

Infiltration of immune cells plays a critical role in a variety of cancers, which may lead to different clinical outcomes. The correlation between the immune profile and prognosis has been reported in several cancers, especially gliomas. The specific presence of EMP3 in lymphoid tissues, including the spleen and thymus, is thought to be directly or indirectly involved in immune system regulation. However, the role of EMP3 in the tumor immune microenvironment remains unclear. Therefore, we aimed to explore the correlation between EMP3 levels and the status of immune infiltration to reveal the underlying mechanism in affecting the prognosis of gliomas. Twenty-eight types of immune cells were systematically estimated from the CGGA dataset using the ssGSEA algorithm (Figure 2A). The Spearman method was used to evaluate the relationship between EMP3 expression and immune cell infiltration, which revealed a close correlation between EMP3 expression and the infiltration of T cells, myeloid-derived suppressor cells (MDSCs), and macrophages (Figure 2B). Notably, the proportions of tumor-infiltrating immune

FIGURE 2 EMP3 is associated with immune infiltration and immune activation in gliomas. (A) Heatmap showing EMP3-associated relative abundance of 28 immune cells in gliomas, annotations show corresponding clinical features of each sample. (B) The correlation between the ssGSEA scores of 28 immune cells and the expression of EMP3 in gliomas. (C) The fraction of 28 immune cells in EMP3 high and low subgroups. Within each group, the scattered dots represent immune cells ssGSEA values. The thick line represents the median value. The bottom and top of the boxes are the 25th and 75th percentiles (Interquartile range, IQR). ***p < 0.001, ****p < 0.0001
cells showed significant differences between the high and low EMP3 subsets (Figure 2C).

In our present study, we observed that the majority of immune cells, both of protumor immune cells, including MDSCs and regulatory T cells (Tregs), and antitumor immune cells, such as natural killer (NK) T cells, were significantly increased in high-grade glioma (Figure 3A). Notably, we observed that patients with high expression of EMP3 also had high expression of the therapeutic targets PD1/PDL1 and CTLA4, which are considered to be immune checkpoint proteins (Figure 3B).

Although the increase in antitumor immune cells in high-grade glioma seems to be paradoxical, the significant infiltration of tumor immune cells might counteract the infiltration of antitumor immune cells and disrupt the balance between the two cell types. To further explore the existence of malignant gliomas with a protumor immune phenotype, manually curated gene sets associated with both adaptive and innate immune responses were used to quantify the immune phenotype (Figure 3C). As is shown in the heatmap, with an increase in EMP3 expression, the tumor microenvironment is more likely to present...

FIGURE 3 EMP3 is associated with therapeutic targets of PD1/PDL1 and CTLA4 (A) The correlation between the infiltration of regulatory T cell, MDSC, natural killer T cell, and the expression of EMP3. (B) The correlation between EMP3 expression and therapeutic targets of PD1/PDL1 and CTLA4. (C) Heatmap showing EMP3-associated GSVA scores of 25 innate and adaptive immunity-related gene sets. (D) The correlation between the GSVA scores of 25 immunity-related gene sets and the EMP3 levels in gliomas.
respond to immune checkpoint blockades (ICBs). This is consistent with the conclusion drawn above that FCER1G plays a critical role in the activation of the immune response. In addition, the results of GSVA revealed a high correlation between the FCER1G and the activated PDL1 pathway \(r = 0.57, p < 0.05\), activated CTLA4 pathway \(r = 0.42, p < 0.05\), and T cell–mediated immunity \(r = 0.53, p < 0.05\) (Figure 3D).

The above findings suggest that EMP3 is involved in immune infiltration remodeling in glioma and is closely associated with T-cell infiltration, which plays a significant role in immunosurveillance evasion in malignant glioma.\(^{26}\)

3.3 The clinical value of EMP3 for predicting tumor characteristics and survival outcomes

To better understand the clinical role of EMP3 in patients with glioma, we analyzed tumor samples and clinical data from a total of 179 glioma patients. Patients from the Second Hospital affiliated with Zhejiang University were considered the training cohorts, and those from the Shanghai General Hospital were used as the validation cohorts. The demographic features and clinicopathological characteristics of the patients are presented in Table 1. Detailed information on baseline characteristics, tumor malignancy, comprehensive histopathological biomarkers, and EMP3 expression levels is summarized.

Although there was a slight difference in Ki67 expression between the two cohorts, there were no differences in the patients’ demographics and the other tumor characteristics.

To validate the clinical role of EMP3, according to the median expression levels of EMP3, we divided the patients from the two centers into a high EMP3 group \((n = 82)\) and a low EMP3 group \((n = 97)\). By univariate analysis of clinical features, we observed that EMP3 was more likely to be associated with high malignancy \((p = 0.032)\), high Ki67 expression \((p = 0.005)\), and wild-type IDH \((p < 0.001)\). However, there were no significant differences in age, sex, PHH3 levels, ATRX mutation status, or MGMT methylation levels. In addition, of the patients with tumors with high EMP3 expression, 51.5% and 96.9% had a poor prognosis at 1 year and 3 years after surgery, respectively (Table 2).

In the first year following surgical resection, 66 (36.9%) patients had poor clinical prognosis. In the favorable-outcome group, there were 66 (58.4%) men and 47 (41.6%) women with a mean age of 43.6 ± 15.0 years, while the poor-outcome group consisted of 41 (62.1%) men and 25 (37.9%) women with a mean age of 44.7 ± 17.9 years. Patients with an unfavorable prognosis tended to have higher WHO grade tumors \((p = 0.010)\), higher Ki67 \((p = 0.049)\) and PHH3 expression \((p = 0.023)\), less IDH1 mutations \((p = 0.001)\), and particularly high EMP3 levels \((p < 0.0001)\). However, P53 and ATRX mutation status and MGMT methylation levels showed no significant differences. After 3 years, 145 (81.0%) patients had a poor clinical prognosis; among these patients, there were 87 (60.0%) men and 58 (40.0%) women with a mean age of 44.6 ± 16.0 years, and 20 (58.8%) men and 14 (41.2%) women with a mean age of 41.2 ± 16.4 years were still alive. Moreover, WHO grade \((p < 0.0001)\), Ki67 expression \((p < 0.0001)\), IDH1 mutation status \((p < 0.0001)\), and EMP3 expression levels \((p < 0.0001)\) were also associated with poor clinical prognosis (Table 3).

3.4 Univariate and multivariate analysis of risk factors for overall survival of glioma patients

To determine the clinical predictive value of EMP3 expression, we incorporated factors, including age, sex, WHO grade, expression of Ki67 and PHH3, mutant status of P53, IDH1, and ATRX, methylation level of MGMT, and especially, EMP3 levels of 1013 glioma patients,
into the Cox regression model. Combined with univariate analysis and multivariable Cox regression analysis, the association between 3-year mortality and high malignancy (HR = 2.787, 95% CI: 1.966–3.950), lower IDH1 mutation rates (HR = 0.503, 95% CI: 0.344–0.773), and high EMP3 levels (HR = 2.842, 95% CI: 1.984–4.071) remained significant in the forward stepwise multivariable model. Although the univariate analysis suggested that high expression of Ki67 and PHH3 were predictors for 3-year poor outcome, they were not predictors in the final model. The expression level of EMP3 in glioma patients was significantly correlated with the OS rate. The expression level of EMP3 is a stabilizing factor affecting the survival time of glioma patients (Table 4).

3.5 Establishment of nomogram and validation of predictive accuracy for poor outcome

To better apply the results of this study to clinical practice, we established a predictive nomogram based on the multivariable regression analysis to predict the 1-, 2-, and 3-year prognosis of patients (Figure 4A). This nomogram showed the risk stratification with the factors of WHO grades, IDH1 mutation status, and EMP3 expression. For an individual patient, risk factors contributed to respective points and the sum corresponded to the probability of 1-, 2-, and 3-year mortality. Then, to confirm the practical value of this model, we performed a calibration plot. The calibration curves

| TABLE 2 Clinical characteristics of 179 glioma patients from two institutions according to EMP3 expression levels |
|---------------------------------|---------------------------------|---------------------------------|------------------|
| | EMP3 low expression | EMP3 high expression | p value |
| Gender (Male) | (n = 82) | (n = 97) | 0.764 |
| Age | 43.6 ± 15.0 | 44.7 ± 17.9 | 0.654 |
| WHO grade | | | 0.032* |
| I | 5 (6.1%) | 1 (1.0%) | |
| II | 21 (25.6%) | 13 (13.4%) | |
| III | 19 (23.2%) | 25 (25.8%) | |
| IV | 37 (45.1%) | 58 (59.8%) | |
| Ki67 level | | | 0.005* |
| Low | 20 (24.4%) | 10 (10.3%) | |
| Median | 18 (22.0%) | 13 (13.4%) | |
| High | 44 (53.7%) | 74 (76.3%) | |
| PHH3 level | | | 0.213 |
| Low | 43 (52.4%) | 47 (48.5%) | |
| Median | 21 (25.6%) | 18 (18.6%) | |
| High | 18 (22.0%) | 32 (33.0%) | |
| PS3 mutant | | | 0.272 |
| Yes | 30 (36.6%) | 28 (28.9%) | |
| No | 52 (63.4%) | 69 (71.1%) | |
| IDH1 mutant | | | 0.0001* |
| Yes | 42 (51.2%) | 74 (76.3%) | |
| No | 40 (48.8%) | 23 (23.7%) | |
| ATRX mutant | | | 0.222 |
| Yes | 43 (52.4%) | 42 (43.3%) | |
| No | 39 (47.6%) | 55 (56.7%) | |
| MGMT methylation | | | 0.825 |
| Yes | 47 (57.3%) | 54 (55.7%) | |
| No | 35 (42.7%) | 43 (44.3%) | |
| 1-year follow-up | | | 0.0001* |
| Alive | 66 (80.5%) | 47 (48.5%) | |
| Dead | 16 (19.5%) | 50 (51.5%) | |
| 3-year follow-up | | | 0.0001* |
| Alive | 31 (37.8%) | 3 (3.1%) | |
| Dead | 51 (62.2%) | 94 (96.9%) | |

The use of * and Bold indicates statistical significance of factors.
revealed that the nomogram was relatively well calibrated and corresponded with prediction and observation. In addition, in the validation cohort, the calibration curve presented minor discrepancies between observed and predicted probabilities (Figure 4B and C). As shown in Figure 4, the AUCs of the 1-, 2-, and 3-year nomograms of the training cohort were 0.806, 0.771, and 0.707, respectively, while the AUCs of the validation cohort were 0.684, 0.686, and 0.693, respectively.

Then, we analyzed these three independent predictors using decline curve analysis (DCA) to confirm the predictive ability of the nomogram for the 1-, 2-, and 3-year overall survival rates of the patients. The curves demonstrated that the nomogram with combined factors was significantly better than individual factors alone in prognostic prediction. In addition, high expressed EMP3 is of great predictive value and accuracy in prognostic prediction of glioma patients (Figure 4D). To demonstrate the generality of the nomogram model, a validation cohort set was used to further confirm the predictive value of the model (Figure 4E). According to the above analysis, the establishment of this model is undoubtedly of substantial significance to both clinician workers and patients.

TABLE 3	Comparison of Clinical characteristics and comprehensive histopathological biomarkers between favorable and unfavorable outcomes at 1-year and 3-year follow-ups										
	1-year follow-up	3-year follow-up									
	Favorable	Unfavorable	p value	Favorable	Unfavorable	p value					
Number	113 (63.1%) 66 (36.9%)	34 (19.0%) 145 (81.0%)	0.625	0.268							
Gender (Male)	66 (58.4%) 41 (62.1%)	20 (58.8%) 87 (60.0%)	0.686	0.900							
Age	43.6 ± 15.0 44.7 ± 17.9	41.2 ± 16.4 44.6 ± 16.0	0.654								
WHO grade											
I	6 (5.3%) 0 (0.0%)	5 (14.7%) 1 (0.7%)	0.010*								
II	28 (24.8%) 6 (17.6%)	14 (41.2%) 20 (13.8%)									
III	25 (22.1%) 19 (28.8%)	5 (14.7%) 39 (26.9%)									
IV	54 (47.8%) 41 (62.1%)	10 (29.4%) 85 (58.6%)									
Ki67 level											
Low	23 (20.4%) 7 (10.6%)	12 (35.3%) 18 (12.4%)	0.049*								
Median	23 (20.4%) 8 (12.1%)	9 (26.5%) 22 (15.2%)									
High	67 (59.3%) 51 (77.3%)	13 (38.2%) 105 (72.4%)									
PHH3 level											
Low	60 (53.1%) 30 (45.5%)	21 (61.8%) 69 (47.6%)	0.023*	0.568							
Median	29 (25.7%) 10 (15.2%)	7 (20.6%) 32 (22.1%)									
High	24 (21.2%) 26 (39.4%)	6 (17.6%) 44 (30.3%)									
P53 mutant											
Yes	41 (36.3%) 17 (25.8%)	12 (35.3%) 46 (31.7%)	0.147	0.689							
No	72 (63.7%) 49 (74.2%)	22 (64.7%) 99 (68.3%)									
IDH1 mutant											
Yes	63 (55.8%) 53 (80.3%)	11 (32.4%) 105 (72.4%)	0.0010*	<0.0001*							
No	50 (44.2%) 19 (19.7%)	23 (67.6%) 40 (27.6%)									
ATRX mutant											
Yes	53 (46.9%) 32 (48.5%)	16 (47.1%) 69 (47.6%)	0.838	0.956							
No	60 (53.1%) 34 (51.5%)	18 (52.9%) 76 (52.4%)									
MGMT methylation											
Yes	68 (60.2%) 33 (50.0%)	21 (61.8%) 80 (55.2%)	0.185	0.485							
No	45 (39.8%) 33 (50.0%)	13 (38.2%) 65 (44.8%)									
EMP3 expression	12.0 ± 5.4 16.3 ± 5.5	7.8 ± 3.9 14.9 ± 5.4	<0.0001*	<0.0001*							
EMP3 level											
Low	66 (58.4%) 16 (24.2%)	31 (91.2%) 51 (35.2%)	<0.0001*								
High	47 (41.6%) 50 (75.8%)	3 (8.8%) 94 (64.8%)									

The use of * and Bold indicates statistical significance of factors.
4 | DISCUSSION

To the best of our knowledge, there are few studies applying human glioma samples to verify signatures or biomarkers screened from public datasets. Recent studies have identified various molecules for both therapeutic targets and prognostic predictors in gliomas, including RGS16, NLR, TMEM7, SLAMF8, LINC00152, and NUSAP1.27–33 Above novel prognostic factors tend to facilitate tumor progression per se; however, the protumor and immunomodulatory effects of EMP3 were both demonstrated previously.34 Due to rare studies clarified the biological function and clinical value of EMP3 in glioma, here, we combined bioinformatic analysis and clinical data and established a nomogram predictive model with bicenter validation.

The relationship between EMP3 expression and tumors has been revealed in a series of previous studies, with controversial results regarding its role as an oncogene or tumor suppressor in many solid cancers. In upper urinary tract urothelial carcinoma, EMP3 enhances tumor progression and showed clinical value for prognostic prediction.37,38 In our previous study, we revealed that FCER1G is a novel containing tumor homeostasis and can influence the clinical outcome of tumors.37,38 In our present study, we determined that EMP3 enhanced glioma progression and showed clinical value for prognostic prediction.

Tumor initiation and progression is a complex process that requires interactions among cancer cells, the tumor microenvironment, and the immune system.36 Recent studies have revealed that immune cells within the tumor microenvironment have an accessory role in maintaining tumor homeostasis and can influence the clinical outcome of tumors.37,38 In our previous study, we revealed that FCER1G is a novel predictor for clinical prognosis and response to immunotherapy in glioma patients, which is of great clinical significance and will contribute to the development of individualized management plans.39

EMP3 expressed by antigen-presenting cells (APCs) induces allo-reactive cytotoxic T lymphocytes (CTLs) via TNF-α production. The clarification of the role of EMP3 may lead to a cure for malignant tumors.40 In this study, we revealed that there was more immune cell infiltration in EMP3-high glioma. In addition, we observed that the levels of the majority of immune cells, both protumor immune cells, including Tregs and MDSCs,41 and antitumor immune cells42 were significantly increased in high-grade glioma. Although the increase in antitumor immune cells in high-grade glioma seems to be paradoxical, the significant infiltration of protumor immune cells might counteract the infiltration of antitumor immune cells and disrupt the balance between the two cell types. Notably, we observed that patients with high EMP3 expression also had high expression of the
immune checkpoints PD1/PDL1 and CTLA4, which may explain why immune activation was enriched in the EMP3 high subgroup, but did not hinder tumor progression.

In addition to EMP3, WHO grading and IDH1 mutation status were also included in this practical nomogram. Although the mutation of isocitrate dehydrogenase enzyme (IDH) has been proven to be an inciting event in glioma-genesis, recent genome-wide mutation analyses have revealed the prevalence of IDH mutations in more than 70% of WHO grade II and III gliomas or secondary GBMs, whereas fewer than 5% of primary GBMs harbor this mutation. In addition, a variety of studies have suggested that IDH mutation is related to better outcome and sensitivity to chemotherapy. According to various clinical studies, glioma patients with IDH mutations show longer OS and progression-free survival rates than their counterparts with IDH wild-type IDH. Translating the results of these studies into clinical practice is the ultimate goal. One of the highlights

FIGURE 4 Nomogram for clinical outcome at 1-, 2-, and 3-year follow-up. (A) To evaluate the probability of disability for an individual patient, review his/her clinical data and image features list in nomogram. Then, draw a vertical line from the feature status toward the Points axis to obtain respective points based on each feature. Finally, draw a vertical line through the Total points axis, according to the sum of the total score, which will intersect the probability of poor outcomes axis at the predicted probability. (B) Calibration curve and time ROC curve for nomogram in training cohort. The gray line represents performance of ideal nomogram where the predicted probability perfectly corresponds with observed probability. (C) Calibration curve and time ROC curve for nomogram in training cohort. (D and E) DCA curve to verify the prognostic performance of the model by comparison with single factors in training cohort (D) and validation cohort (E)
of this predictive model is the combination of clinical characteristics and biomarkers, making this model more clinically practical.

There are several limitations in our study. First, the patient outcome data of patients were recorded from outpatient and telephone interviews at 1, 2, and 3 years, for which there was referral bias due to unacceptable and incoordinate patients with unfavorable neurological status or clinical outcomes. Thus, a potential underestimation of poor prognosis might have influenced the overall estimate. Additionally, because of the relatively limited number of patients, there is potential for minor bias to skew the interpretation.

5 | CONCLUSION

This study demonstrated that EMP3 is a novel independent predictor for clinical diagnosis, prognosis, and immune infiltration in glioma patients. These results are of great clinical significance and will contribute to prognostic prediction and the development of individualized therapies. Although more clinical data from other institutions are required for further validation of our nomograms, individualized quantitative risk assessment using the present nomograms would be a practical approach for predicting prognosis and counseling patients.

CONFLICT OF INTEREST

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be constructed as a potential conflict of interest.

AUTHOR CONTRIBUTIONS

JZ and ML: conception, supervision, and design of this article. AZ and ZZ: data analysis and editing the manuscript. XH, YL, LY, and YN: data collection and patients’ follow-up. SG, SC, JJ, and YX: tumor sample collection and IHC analysis. HX, YC, and XZ: bioinformatic analysis. All authors contributed to the article and approved the submitted version.

DATA AVAILABILITY STATEMENT

Publicly available datasets were analyzed in this study. These data can be found here: http://gliovis.bioinfo.cnio.es/. The supplementary material for this article can be found online. All processed data and R codes used in this study can be obtained from the corresponding author on reasonable request.

ORCID

Anke Zhang https://orcid.org/0000-0002-0007-7724
Sheng Chen https://orcid.org/0000-0002-8374-136X
Jianmin Zhang https://orcid.org/0000-0002-3184-1502

REFERENCES

1. Xu D, Liu R, Meng L, Zhang Y, Lu G, Ma P. Long non-coding RNA ENST01108 promotes carcinogenesis of glioma by acting as a molecular sponge to modulate miR-489. Biomed Pharmacother. 2018;100:20-28. https://doi.org/10.1016/j.biopha.2018.01.126.

zh
19. Alaminos M, Dávalos V, Ropero S, et al. EMP3, a myelin-related gene located in the critical 19q13.3 region, is epigenetically silenced and exhibits features of a candidate tumor suppressor in glioma and neuroblastoma. *Cancer Res.* 2005;65(7):2565-2571. https://doi.org/10.1158/0008-5472.Can-04-4283.

20. Fumoto S, Hiyama K, Tanimoto K, et al. EMP3 as a tumor suppressor gene for esophageal squamous cell carcinoma. *Cancer Lett.* 2009;274(1):25-32. https://doi.org/10.1016/j.canlet.2008.08.021.

21. Xue Q, Zhou Y, Wan C, et al. Epithelial membrane protein 3 is frequently shown as a promoter methylation and functions as a tumor suppressor gene in non-small cell lung cancer. *Exp Mol Pathol.* 2013;95(3):313-318. https://doi.org/10.1016/j.xmep.2013.07.001.

22. Jun F, Hong J, Liu Q, et al. Epithelial membrane protein 3 regulates TGF-β signaling activation in CD44-high glioblastoma. *Oncotarget.* 2017;8(9):14343-14358. https://doi.org/10.18632/oncotarget.11102.

23. Scrideli CA, Carlotti CG Jr, Okamoto OK, et al. Gene expression profile analysis of primary glioblastomas and non-neoplastic brain tissue: identification of potential target genes by oligonucleotide microarray and real-time quantitative PCR. *J Neurooncol.* 2008;88(3):281-291. https://doi.org/10.1007/s11060-008-9579-4.

24. Hänzelmann S, Castelo R, Guinney J. GSVA: gene set variation analysis for microarray and RNA-seq data. *BMC Bioinformatics.* 2013;14:7. https://doi.org/10.1186/1471-2105-14-7.

25. Bolin LM, McNeil T, Lucian LA, et al. HNMP-1: a novel hematopoietic and neural membrane protein differentially regulated in neural development and injury. *J Neurosci.* 1997;17(14):5493-5502. https://doi.org/10.1523/jneurosci.17-14-05493.1997.

26. Lo Presti E, Pizzollo G, Corsale AM, et al. γδ T cells and tumor microenvironment: From immunosurveillance to tumor evasion. *Front Immunol.* 2018;9:1395. https://doi.org/10.3389/fimmu.2018.01395.

27. Wang ZL, Zhang CB, Liu YQ, Wang Z, Jiang T. Peripheral blood test provides a practical method for glioma evaluation and prognosis prediction. *CNS Neurosci Ther.* 2019;25(8):876-883. https://doi.org/10.1111/cnst.13120.

28. Huang R, Li G, Zhao Z, et al. RGS16 promotes glioma progression and serves as a prognostic factor. *CNS Neurosci Ther.* 2020;26(6):791-803. https://doi.org/10.1111/cnst.13382.

29. Xu H, Chai S, Wang Y, et al. Molecular and clinical characterization of PARP9 in gliomas: A potential immunotherapeutic target. *CNS Neurosci Ther.* 2020;26(8):804-814. https://doi.org/10.1111/cnst.13380.

30. Wang KY, Huang RY, Tong XZ, et al. Molecular and clinical characterization of TMEM71 expression at the transcriptional level in glioma. *CNS Neurosci Ther.* 2019;25(9):965-975. https://doi.org/10.1111/cnst.13137.

31. Zou CY, Guan GF, Zhu C, et al. Costimulatory checkpoint SLAMF8 is an independent prognosis factor in glioma. *CNS Neurosci Ther.* 2019;25(3):333-342. https://doi.org/10.1111/cnst.13041.

32. Wang W, Wu F, Zhao Z, et al. Long noncoding RNA LINC00152 is a potential prognostic biomarker in patients with high-grade glioma. *CNS Neurosci Ther.* 2018;24(10):957-966. https://doi.org/10.1111/cnst.12850.

33. Zhu T, Xie P, Gao YF, et al. Nucleolar and spindle-associated protein 1 is a tumor grade correlated prognosis marker for glioma patients. *CNS Neurosci Ther.* 2018;24(3):178-186. https://doi.org/10.1111/cnst.12803.

34. Chen Q, Jin J, Huang X, Wu F, Huang H, Zhan R. EMP3 mediates glioblastoma-associated macrophage infiltration to drive T cell exclusion. *J Exp Clin Cancer Res.* 2021;40(1):160. https://doi.org/10.1186/s13046-021-01954-2.

35. Ernst S, Hofmann R, Ahmadi N, et al. Genomic and expression profiling of glioblastoma stem cell-like spheroid cultures identifies novel tumor-relevant genes associated with survival. *Clin Cancer Res.* 2009;15(21):6541-6550. https://doi.org/10.1158/1078-0432.Ccr-09-0695.

36. Chen DS, Mellman I. Elements of cancer immunity and the cancer-immune set point. *Nature.* 2017;541(7637):321-330. https://doi.org/10.1038/nature21349.

37. Fan X, Rudensky AY. Hallmarks of tissue-resident lymphocytes. *Cell.* 2016;164(6):1198-1211. https://doi.org/10.1016/j.cell.2016.02.048.

38. Galon J, Costes A, Sanchez-Cabo F, et al. Type, density, and location of immune cells within human colorectal tumors predict clinical outcome. *Science.* 2006;313(5795):1960-1964. https://doi.org/10.1126/science.1129139.

39. Xu H, Zhu Q, Tang L, et al. Prognostic and predictive value of FCER1G in glioma outcomes and response to immunotherapy. *Cancer Cell Int.* 2021;21(1):103. https://doi.org/10.1186/s12935-021-01804-3.

40. Kusumoto Y, Okuyama H, Shibata T, et al. Epithelial membrane protein 3 (Emp3) downregulates induction and function of cytotoxic T lymphocytes by macrophages via TNF-α production. *Cell Immunol.* 2018;324:33-41. https://doi.org/10.1016/j.cellimm.2017.12.001.

41. Shimizu K, Iyoda T, Okada M, Yamasaki S, Fujii SI. Immune suppression and reversal of the suppressive tumor microenvironment. *Int Immunol.* 2018;30(10):445-454. https://doi.org/10.1093/intimm/dxy042.

42. Dunn GP, Bruce AT, Ikeda H, Old LJ, Schreider RD. Cancer immuneediting: from immunosurveillance to tumor escape. *Nat Immunol.* 2002;3(11):991-998. https://doi.org/10.1038/ni1102-991.

43. Ichimura K, Pearson DM, Kociaklowksi S, et al. IDH1 mutations are present in the majority of common adult gliomas but rare in primary glioblastomas. *Neuro Oncol.* 2009;11(4):341-347. https://doi.org/10.1215/15228517-2009-025.

44. SongTao Q, Lei Y, Si G, et al. IDH mutations predict longer survival and response to temozolomide in secondary glioblastoma. *Cancer Sci.* 2012;103(2):269-273. https://doi.org/10.1111/j.1349-7006.2011.02134.x.

45. Abe H, Natsumeda M, Kanemaru Y, et al. MGMT expression contributes to Temozolomide resistance in H3K27M-Mutant diffuse midline gliomas and MGMT silencing to Temozolomide sensitivity in IDH-Mutant gliomas. *Neural Med Chir (Tokyo).* 2018;58(7):290-295. https://doi.org/10.2176/nmc.ra.2018-0044.

46. Zhou W, Zhou Z, Wen J, et al. A nomogram modeling [11]C-MET PET/CT and clinical features in Glioma helps predict IDH mutation. *Front Oncol.* 2020;10:2120. https://doi.org/10.3389/fonc.2020.01200.

47. Molloy R, Najac C, Viswanath P, et al. MR-detectable metabolic biomarkers of response to mutant IDH inhibition in low-grade glioma. *Theranostics.* 2020;10(19):8757-8770. https://doi.org/10.7150/thno.47317.

48. Gorlia T, van den Bent MJ, Hegi ME, et al. Nomograms for predicting survival of patients with newly diagnosed glioblastoma: prognostic factor analysis of EORTC and NCIC trial 26981–22981/CE.3. *Lancet Oncol.* 2008;9(1):29-38. https://doi.org/10.1016/s1470-2245(07)70384-4.

SUPPORTING INFORMATION

Additional supporting information may be found online in the Supporting Information section.