Li, Bing; Chen, Da-wei; Yang, Yun-feng; Yu, Guang-rong
EFEITO DE SEGUNDA TRANSFERÊNCIA DO DEDO DO PÉ PARA MÃO NA DISTRIBUIÇÃO DE PRESSÃO PLANTAR DO PÉ DOADOR
Acta Ortopédica Brasileira, vol. 24, núm. 1, 2016, pp. 39-42
Sociedade Brasileira de Ortopedia e Traumatologia
São Paulo, Brasil

Disponível em: http://www.redalyc.org/articulo.oa?id=65743578007
EFEITO DE SEGUNDA TRANSFERÊNCIA DO DEDO DO PÉ PARA MÃO NA DISTRIBUIÇÃO DE PRESSÃO PLANTAR DO PÉ DOADOR

Bing Li¹, Da-wei Chen¹,², Yun-feng Yang¹, Guang-rong Yu¹

1. Tongji University School of Medicine, Xangai, China Tongji Hospital, Departamento de Ortopedia, Xangai, China.
2. Fudan University, Shangai Medical College, Shangai Pudong Hospital, Departamento de Ortopedia, Xangai, China.

RESUMO

Objetivo: Investigar o efeito da segunda transferência dedo do pé para mão sobre a distribuição da pressão plantar do pé doador. Métodos: Doze espécimes cadavéricos normais de pé frescos congelados foram submetidos a uma carga axial de 600 N. Um sistema de análise F-Scan da pressão plantar foi utilizado para medir a pressão do antepé plantar. O teste foi realizado sob as condições em que o segundo dedo do pé esteve intacto, a remoção do segundo dedo do pé com a segunda cabeça metatarsáica preservada, e a remoção do segundo dedo do pé em combinação com o terço distal do segundo metatarsal, respectivamente. Resultados: A pressão de pico da segunda cabeça do metatarsano foi maior do que quatro outras regiões do antepé plantar. Não houve qualquer alteração estatisticamente significativa na distribuição de pressão plantar do antepé após o segundo dedo do pé ser removido (p > 0.05). Quando o segundo dedo do pé e o terço distal do segundo metatarsal foram removidos, a distribuição de pressão plantar do antepé mudou significativamente (p < 0.05). Conclusões: Um segundo metatarsal intacto é essencial para a distribuição normal da pressão plantar. A remoção do segundo dedo do pé com a segunda cabeça do metatarsano preservada teve pouca influência sobre a distribuição da pressão plantar do pé doador. A remoção do segundo dedo do pé e um terço distal do segundo metatarsal resultou em distorção da distribuição da pressão plantar anormal.

Nível de Evidência II, Estudo Experimental.

Descritores: Pé. Dedos do pé/cirurgia. Dedos do pé/transplante.

INTRODUÇÃO

Com o desenvolvimento da microcirurgia, transferências de dedo do pé para a mão têm sido amplamente usadas para reconstrução dedos de mãos lesionados. Esta técnica pode melhorar significativamente a função da mão lesionada. Porém, relatos sobre a influência da tal operação sobre a função do pé doador são raros. Barca et al.¹ relataram que a transferência do segundo dedo do pé influenciou a função do pé doador em menor grau comparado com a transferência do hálux, e portanto, foi preferido. Na prática clínica, a transferência do segundo dedo do pé é mais comumente usada para reconstruir o polegar. Com base no grau de defeito do polegar, transferência do segundo dedo do pé, com ou sem a segunda cabeça metatarsáica preservada poderia ser o método de escolha.²

Todos os autores declaram não haver nenhum potencial conflito de interesses referente a este artigo.

Citação: Li B, Chen DW, Yang YF, Yu GR. Efeito de segunda transferência do dedo do pé para mão na distribuição de pressão plantar do pé doador. Acta Ortop Bras. [online]. 2016;24(1):39-42. Disponível em URL: http://www.scielo.br/aob.

ABSTRACT

Objective: To investigate the effect of second toe-to-hand transfer on the plantar pressure distribution of the donor foot. Methods: Twelve normal fresh-frozen cadaveric foot specimens were subjected to an axial load of 600 N. An F-Scan plantar pressure analysis system was used to measure the forefoot plantar pressure distribution after the second toe was removed (p > 0.05). When the second toe and the distal one-third of the second metatarsal were removed, the forefoot plantar pressure distribution changed significantly (p < 0.05). Conclusions: An intact second metatarsal is essential for the normal distribution of plantar pressure. Removal of the second toe with the second metatarsal head reserved had little influence on the plantar pressure distribution of the donor foot. Removal of the second toe and distal one-third of the second metatarsal resulted in abnormal plantar pressure distribution.

Level of Evidence II, Experimental Study.

Keywords: Foot. Toes/surgery. Toes/transplantation.

Citação: Li B, Chen DW, Yang YF, Yu GR. Effect of second toe-to-hand transfer on the plantar pressure distribution of the donor foot. Acta Ortop Bras. [online]. 2016;24(1):39-42. Available from URL: http://www.scielo.br/aob.

DOI: http://dx.doi.org/10.1590/1413-785220162401140540

Pesquisa realizada no Tongji University, School of Life Science and Technology, Institute of Biomechanical Research, Tongji University, Xangai, China.
Correspondência: Yun-feng Yang, Departamento de Ortopedia, Tongji Hospital, Tongji University School of Medicine, 389 Xincun Road, Xangai, China. 200065. dr.yangyf@hotmail.com

Artigo recebido em 13/09/2014, aprovado em 14/08/2015.

Acta Ortop Bras. 2016;24(1):39-42
Os ossos tarso e metatarso formam o arco do pé. Os meta-
tarsos desempenham um papel importante no apoio ao arco
do pé, transferência de tensão, e amortecimento de peso.
Atualmente, alguns estudos clínicos indicaram que o segundo
transplante do dedo do pé poderia causar dor no antepé, calo
plantar e deformidade do antepé.3, 4 Entretanto, não há nenhum
relato relevante de pesquisa biomecânica. Nossa hipótese é
que a remoção do segundo dedo do pé com e sem a segun-
da cabeça metatarsal preservada poderia produzir diferentes
efeitos biomecânicos sobre o pé de doadores. O propósito do
presente estudo foi determinar o efeito da remoção do segundo
dedo do pé em diferentes níveis na distribuição da pressão
plantar do pé doador.

MÉTODOS
Este estudo cumpriu com a Declaração de Helsinki relacionada
com pesquisa realizada com seres humanos. A aprovação ética
foi obtida do Comitê de Ética em Pesquisa, Tongji Hospital, Tongji
University School of Medicine, Xangai, China (KYSB-2014-18). O
doador das amostras ou o parente mais próximo concordou que
os espécimes seriam utilizados em pesquisa médica, e assinaram
o Termo de Consentimento Livre e Esclarecido.

Doze espécimes normais de pés de cadáver fresco congelado
de doze doadores foram examinados. A média de idade dos
doadores no momento da morte era 57,4 anos (variando de 45 a
71 anos). Os espécimes foram amputados 10 cm abaixo da arti-
culação do joelho. Anormalidades preexistentes do pé evidentes
foram excluídas por inspeção visual e uma revisão do histórico
médico. Radiografias foram realizadas para excluir osteoartrite,
fraturas prévias, tumores, osteonecrose, e deformidades nos pés.
Antes do experimento, as amostras foram armazenadas em freezer
a temperatura de -20°C.

Os espécimes foram retirados do freezer e descongelados às
temperatura ambiente naturalmente, 24 h antes do experimento.
A pele, os músculos e outros tecidos moles foram removidos
10 cm acima do tornozelo até expor a tíbia e a fibula. Pele e
ligamentos em torno da articulação do tornozelo foram mantidos
intactos. Parte da fibula proximal foi removida para torná-la cerca
de 5 cm mais curta do que o coto da tíbia, a fim de facilitar a
carga e a fixação.

O espécime foi colocado sobre uma plataforma de carga. A tíbia
proximal foi fixada no fixador sobre uma máquina de carregamen-
to (CSS-44010, Crims Co. Ltd, Changchun, China). A amostra
foi colocada com o tornozelo na posição neutra, mantendo a tíbia
perpendicular à plataforma de carga. Um sistema de análise
de pressão plantar F-Scan (Tekscan Inc., Boston, MA, EUA) foi
utilizado para medir a pressão plantar durante o carregamento.
Um sensor de palmilha foi colocado entre o pé plantar e a plata-
forma de carga. O espécime foi fixado de forma semelhante ao estudo realizado por Yu et al.,5 cinco boxes

\[\begin{array}{c|c|c|c}
\hline
Região & Pico de pressão (KPa) & Intacto (n = 12) & Remoção do segundo dedo do pé (n = 12) & Remoção da segunda parte do metatarso (n = 12) \\
\hline
Hálux & 14,66 ± 3,11 & 17,25 ± 3,25 & 22,70 ± 3,03* \\
MT1 & 35,04 ± 4,42 & 39,19 ± 4,24 & 66,26 ± 6,26* \\
MT2 & 66,17 ± 6,05 & 70,25 ± 6,48 & / \\
MT3-4 & 52,68 ± 5,07 & 56,90 ± 5,13 & 106,44 ± 7,19* \\
MT5 & 22,02 ± 3,50 & 24,95 ± 3,08 & 35,95 ± 4,07* \\
\hline
\end{array} \]

Dados apresentados como Média ± Desvio Padrão (DP). *Indica diferença significativa em relação ao grupo
intacto e o grupo de remoção da segunda parte do metatarso (p < 0,05). MT: cabeça do metatarso.

Figura 1. Imagem representativa mostrando a distribuição das áreas de pressão plantar: região 1, hálux; região 2, primeira cabeça do metatarso; região 3, segunda cabeça do metatarso; região 4, terceira-quarta cabeça do metatarso; região 5, quinta cabeça do metatarso.

A análise estatística foi realizada usando SPSS versão 17.0 para
Windows (SPSS Inc., Chicago, EUA). Análise de variância de uma
via (ANOVA) foi utilizada para testar as diferenças significativas na
pressão plantar entre os grupos. Onde existiam diferenças entre os
grupos, foi utilizado o testes post-hoc de Tukey para fazer múltiplas
comparações.7 O nível de significância foi estabelecido em p < 0,05.

RESULTADOS
Houve diferenças significativas nas pressões de pico das cinco
regiões plantares do antepé quando o segundo dedo do pé foi
mantido intacto (p < 0,05). A pressão de pico da segunda cabeça
do metatarso foi maior do que nas outras quatro regiões plantares
do antepé (p < 0,05). Sob carga axial de 600N, o pico de pressão
das cinco regiões plantares do antepé apresentou a seguinte or-
dem decrescente: segunda cabeça do metatarso, terceira-quarta
cabeça do metatarso, primeira cabeça do metatarso, quinta ca-
beça do metatarso, e hálux. (Tabela 1)

Não houve qualquer alteração estatisticamente significativa no pico
de pressão de todas as cinco regiões plantares do antepé após o
segundo dedo do pé ter sido removido com a segunda cabeça
metatarsal preservada (p > 0,05). Entretanto, quando o segundo
dedo do pé em combinação com o terço distal do segundo meta-
tarso foram removidos, a distribuição de pressão plantar do antepé
mudou significativamente (p < 0,05). (Tabela 1, Figura 2)
outros autores. Kanatli et al.18 testaram a pressão do antepé segundo e a terceira cabeça metatársica (7,96 N/cm²). A pressão com a maior média de pressão durante a posição estava sob a tar em 16 indivíduos normais, e descobriram que a região plantar tensão.12,17 Nossos resultados foram comparáveis aos relatos de do metatarso está sob maior tensão. Em certa medida, isso pode cobrir que se em condições estáticas ou dinâmicas, o pico de pressão sob o segundo e terceiro metatarsos eram muito mais elevados do que sob a primeira e quinta cabeça metatársica. Nossos resultados mostraram que o pico de pressão abaixo da primeira cabeça do metatarso foi de 4,86 N/cm², e da quarta à quinta cabeça metatársica era 6,26 N/cm². Hinz et al.19 mediram a pressão planar de 26 soldados. Seus resultados indicaram que durante a caminhada, a pressão do antepé ocorria na seguinte ordem decrescente: segunda cabeça do metatarso, terceira cabeça do metatarso, primeira cabeça do metatarso, quarta cabeça do metatarso e quinta cabeça do metatarso, o que é semelhante aos nossos resultados. Atualmente, o transplante do segundo dedo do pé é amplamente usado para reconstruir os dedos, geralmente a reconstrução do polegar.2,20 Embora uma função satisfatória possa ser conseguida para os dedos reconstruídos, as complicações do pé doador não podem ser negligenciadas. Barca et al.1 relataram 10 casos de transferência do segundo dedo do pé para o polegar com ressecção da segunda cabeça do metatarso. Embora não tenha ocorrido nenhuma dor no pé ou mau funcionamento, 20% dos pacientes apresentaram sobrecarga no terceiro metatarso, 10% dos pacientes apresentaram sobrecarga no quarto metatarso, e 20% dos pacientes apresentaram sobrecarga no quinto metatarso. Além disso, uma deformidade de garra no terceiro e quarto dedos foi observada em 20% destes pacientes. Gu et al.3 relataram 212 casos de transferência do segundo dedo do pé para mão, dos quais 171 casos tiveram a segunda cabeça metatársica preservada e 41 casos tiveram ressecção de parte do segundo metatarso. Os pacientes com a segunda cabeça metatársica preservada tinham uma incidência muito menor de dor, restrição de funcionamento, calo plantar, e deformidade do antepé no pé doador. Lui et al.6 relataram um caso de transferência de segundo dedo do pé para mão com parte do segundo metatarso removido. Em um período de seguimento de 30 anos, a paciente apresentou dor persistente no antepé localizado na terceira articulação metatarsofalângeica e na quinta cabeça do metatarso. Enquanto isso, o paciente apresentou hálux valgo, terceiro dedo cruzado e desvio medial do quarto e quinto dedos. Como resultado, a reconstrução do segundo metatarso teve de ser realizada para aliviar a dor e melhorar a função do pé. Estes relatos indicam que, em comparação com ressecção de parte do segundo metatarso, a segunda transferência do dedo do pé com a segunda cabeça do metatarso preservado não iriam influenciar significativamente a função do pé doador.

O segundo metatarso é uma parte importante do arco do pé. Ele atua na sustentação de peso e mantém a estabilidade do arco do pé. Nas estruturas anatômicas do pé, os três cuneiformes são encaixados um no outro para formar uma estrutura de arco convexo para cima, na articulação tarso-metatarso.1,9 Os cuneiformes medial e lateral sobressaem distalmente para além do cuneiforme intermediário, formando, assim, uma cavidade para acomodar a base do segundo metatarso. Este recesso permite que o segundo metatarso seja firmemente incorporado nele. Tal característica estrutural limita a atividade do segundo metatarso. Como resultado, o segundo metatarso desempenha um papel principal na resistência à flexão e forças de cisalhamento, que são transferidos principalmente através do segundo metatarso durante a caminhada.10-12 O segundo e terceiro metatarsos servem como a coluna medial do pé. A amplitude de movimento destes dois ossos na articulação tarso-metatarso é muito pequena. Em contraste, a primeira articulação tarso-metatarso como a coluna e a quarta e quinta articulações tarso-metatarso como as colunas laterais tem uma grande amplitude relativa de movimento.13,15 Quando o pé suporta um peso, as colunas mediais e laterais poderiam adequadamente amortecer a tensão, enquanto o segundo e terceiro metatarsos dão um forte apoio. Portanto, a tensão suportada pelo segundo e terceiro metatarsos é relativamente maior. Hennig e Milani16 descobriram que se em condições estáticas ou dinâmicas, o pico de pressão sob o segundo e terceiro metatarsos eram muito mais elevados do que sob a primeira e quinta cabeça metatársica. Nossos resultados também demonstraram esse ponto.

Nossos resultados mostraram que o pico de pressão abaixo da segunda cabeça metatársica foi o maior entre as cinco regiões plantares. Isso indica que sob suporte estático de peso, o segundo metatarso está sob maior tensão. Em certa medida, isso pode explicar por que o segundo metatarso é propenso à fratura por pressão.12,17 Nossos resultados foram comparáveis aos relatos de outros autores. Kanatli et al.18 testaram a pressão do antepé planar em 16 indivíduos normais, e descobriram que a região plantar com a maior média de pressão durante a posição estava sob a segunda e a terceira cabeça metatársica (7,96 N/cm²). A pressão da primeira cabeça do metatarso foi de 4,86 N/cm², e da quarta à quinta cabeça metatársica era 6,26 N/cm². Hinz et al.19 mediram a pressão de plantar de 26 soldados. Seus resultados indicaram que...
estudo de cadáveres só poderia refletir a alteração aguda dos parâmetros, e um estudo clínico comparativo deve ser realizado para observar os efeitos em longo prazo.

CONCLUSÃO

Um segundo metatarso intacto teve um papel importante na distribuição normal da pressão plantar. A remoção do segundo dedo do pé com a segunda cabeça do metatarso preservada teve pouca influência sobre a distribuição da pressão plantar do pé doador. A remoção do segundo dedo do pé e um terço distal do segundo metatarso resultou em distribuição anormal da pressão plantar. Na transferência do segundo dedo do pé para mão, a segunda cabeça do metatarso deve ser preservada tanto quanto possível para reduzir as complicações no pé doador.

CONTRIBUIÇÕES DOS AUTORES: Cada autor contribuiu significativamente para este estudo. BL (0000-0003-2462-4451*) e DC (0000-0001-5867-5631*), co- primeiros autores, foram os principais responsáveis pela redação do manuscrito. BL, YY (0000-0002-0807-8588*) e GY (0000-0002-8051-9763*) idealizaram os experimentos. BL e DC realizaram os experimentos, avaliaram os dados e a análise estatística. BL, DC e YY realizaram a revisão bibliográfica e revisão do manuscrito. *Número ORCID (Open Researcher and Contributor ID).

REFERÊNCIAS

1. Barca F, Santi A, Tartoni PL, Landi A. Gait analysis of the donor foot in micro-surgical reconstruction of the thumb. Foot Ankle Int. 1995;16(4):201-6.
2. Zhang J, Xie Z, Lei Y, Song J, Guo Q, Xiao J. Free second toe one-stage-plasty and transfer for thumb or finger reconstruction. Microsurgery. 2008;28(1):25-31.
3. Gu YD, Cheng DS, Zhang GM, Chen XM, Xu JG, Yang XB. Long-term results of toe transfer: retrospective analysis. J Reconstr Microsurg. 1997;13(6):405-8.
4. Lin PY, Sebastin SJ, Ono S, Belfi LT, Chang KW, Chung KC. A systematic review of outcomes of toe-to-thumb transfers for isolated traumatic thumb amputation. Hand (N Y). 2011;6(3):235-43.
5. Lui TH. Digital ray transposition for correction of late-stage post toe-to-hand transfer forefoot deformity. J Foot Ankle Surg. 2012;51(3):369-72.
6. Yu X, Yu GR, Chen YX, Liu XC. The characteristics and clinical significance of plantar pressure distribution in patients with diabetic toe deformity: a dynamic plantar pressure analysis. J Int Med Res. 2011;39(6):2392-9.
7. Cousins SD, Morrison SC, Drechsler WI. Foot loading patterns in normal weight, overweight and obese children aged 7 to 11 years. J Foot Ankle Res. 2013;6(1):36.
8. de Palma L, Santucci A, Sabetta SP, Rapali S. Anatomy of the Lisfranc joint complex. Foot Ankle Int. 1997;18(6):356-64.
9. Ridola C, Palma A. Functional anatomy and imaging of the foot. Ital J Anat Embryol. 2001;106(2):85-98.
10. Sharkey NA, Ferris L, Smith TS, Matthews DK. Strain and loading of the second metatarsal during heel-lift. J Bone Joint Surg Am. 1995;77(7):1050-7.
11. Jacob HA. Forces acting in the forefoot during normal gait: an estimate. Clin Biomech (Bristol, Avon). 2001;16(9):783-92.
12. Chuckpaiwong B, Cook C, Nunley JA. Stress fractures of the second metatarsal base occur in nondancers. Clin Orthop Relat Res. 2007;461:197-202.
13. Fritz GR, Prieksnik D. First metatarsocuneiform motion: a radiographic and statistical analysis. Foot Ankle Int. 1995;16(3):117-23.
14. Lakin RC, DeGnore LT, Pienkowski D. Contact mechanics of normal tarsometatarsal joints. J Bone Joint Surg Am. 2001;83(A):520-8.
15. Raikin SM, Schon LC. Anthrodosis of the fourth and fifth tarsometatarsal joints of the midfoot. Foot Ankle Int. 2003;24(8):584-90.
16. Hennig EM, Milani TL. [The tripod support of the foot. An analysis of pressure distribution under static and dynamic loading]. Z Orthop Ihre Grenzgeb. 1993;131(3):279-84.
17. Chuckpaiwong B, Cook C, Pietrobon R, Nunley JA. Second metatarsal stress fracture in sport: comparative risk factors between proximal and non-proximal locations. Br J Sports Med. 2007;41(8):510-4.
18. Kanatli U, Yetkin H, Bulukbasi S. Evaluation of the transverse metatarsal arch with gait analysis. Arch Orthop Trauma Surg. 2003;123(4):148-50.
19. Hinz P, Henningesen A, Mathes G, Jäger B, Ekkernkamp A, Rosenbaum D. Analysis of pressure distribution below the metatarsals with different insoles in combat boots of the German Army for prevention of march fractures. Gait Posture. 2008;27(3):535-8.
20. Yazici I, Cavusoglu T, Karakaya EI, Vural AC, Vargel I. Second toe-to-thumb transfer with transposition of the thumb stump to second finger. Injury. 2013;44(8):876-7.