New Records of *Bartonella* Spp. And *Rickettsia* Spp. In Lice Collected From Small Rodents

Asta Aleksandričienė
Vytautas Magnus University

Algimantas Paulauskas (algimantas.paulauskas@vdu.lt)
Vytautas Magnus University

Michal Stanko
Institute of Parazitology, Slovak Academy of Sciences

Jana Fríčová
Institute of Parasitology, Slovak Academy of Sciences

Jana Radzijevskaja
Vytautas Magnus University

Research

Keywords: lice, rodents, Bartonella, Rickettsia, Slovakia

Posted Date: August 28th, 2020

DOI: https://doi.org/10.21203/rs.3.rs-66143/v1

License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License

Version of Record: A version of this preprint was published at Vector-Borne and Zoonotic Diseases on May 1st, 2021. See the published version at https://doi.org/10.1089/vbz.2020.2722.
Abstract

Background: Lice are blood-sucking insects that are of medical and veterinary significance as parasites and vectors for various infectious agents. More than half of described blood-sucking lice species are found on rodents. Rodents are important hosts of several Bartonella and Rickettsia species and some of these pathogens are characterised as human pathogens in Europe. Rodent ectoparasites, such as fleas and ticks, are important vectors of Bartonella spp. and Rickettsia spp., but knowledge about the presence of these bacteria in lice is limited. The aim of this study was to determine the prevalence of Bartonella and Rickettsia bacteria in lice collected from rodents in Slovakia.

Methods: The ectoparasites were collected from small rodents captured from 2010 to 2015 at four different sites in eastern Slovakia. The presence of Bartonella and Rickettsia pathogens in lice samples was screened by real-time PCR, targeting ssrA and gltA genes respectively. The molecular characterisation of the Bartonella strains was based on sequence analysis of partial rpoB and ITS genes, and of the Rickettsia species on sequence analysis of the gltA gene.

Results: A total of 1074 lice of seven species were collected from six rodent species in Slovakia from 2010 to 2015. Bartonella DNA was detected in three species of lice Hophpleura affinis (collected from Apodemus agrarius, A. flavicollis and Myodes glareolus), Polyplax serrata (from A. agrarius) and Hoplopleura sp. (from A. flavicollis). Sequence analysis revealed that the Bartonella strains belonged to the B. cooperensis, B. tricoreum and B. taylorii genogroups. Rickettsia DNR was detected in H. affinis and P. serrata lice collected from A. agrarius. Sequence analysis revealed the presence of two Rickettsia species: R. helvetica and Rickettsia sp.

Conclusions: To the best of the authors’ knowledge, this is the first report on the occurrence and diversity of Bartonella spp. and Rickettsia spp. in lice collected from small rodents in Europe. This study is also the first to detect B. cooperensis in Slovakia.

Background

Small rodents are important hosts of ectoparasites such as fleas, ticks, mites and lice and are reservoir hosts or carriers of medically important pathogens [1]. Rodent ectoparasites (fleas and lice) are vectors of Bartonella spp. and Rickettsia spp. [1–3].

Bartonella spp. and Rickettsia spp. are gram-negative bacteria that can cause severe disease in humans and animals [4, 5]. Currently, 37 Bartonella species and three subspecies have been identified [6]. Small rodents represent an important group of potential reservoirs for many Bartonella infections. More than 20 Bartonella species have been detected in different rodent species. At least six Bartonella species found in rodents in Europe have been implicated in human illnesses [2]. Bartonella spp. have been reported in rodents and their ectoparasites (ticks, mites, and fleas) in Sweden [7], Denmark [8], Poland [9], Spain [10], Lithuania [11, 12], Slovakia [13, 14] and Germany [15].

Thirty-one Rickettsia species and two subspecies have been validated and published [16]. Members of the Rickettsia genus are divided into four groups: spotted fever group (SFG), typhus group (TG), ancestral group (AG) and transitional group (TRG) [17]. SFG rickettsia are widespread in Europe and are currently recognised as human and animal pathogens [5]. Several molecular studies conducted in Germany [18], Slovakia [3, 19, 20, 21], Hungary [22], Croatia [23], Poland [17] and Lithuania [24, 25] have demonstrated the presence of rickettsial DNA in small rodents and their ectoparasites (such as ticks, mites and fleas).

Sucking lice (Phthiraptera: Anoplura) are obligate blood-feeding insects and permanent ectoparasites of eutherian mammals. All their life cycle stages are closely related with their vertebrate hosts and they cannot survive without them. More than 540 species of blood-sucking lice have been described that parasitise over 840 mammal species belonging to 12 mammalian orders [26, 27]. Small rodents are the most common hosts of sucking lice: about 67% of the described sucking lice species are found on rodents [28]. The sucking lice are of medical and veterinary significance as vectors of louse-borne pathogens (viruses, bacteria, fungi and protozoa) to vertebrate hosts [29]. Blood-sucking lice are highly host-specific and each species of sucking louse parasitises a single host species or only a few closely related host species [26, 30]. In Europe, reports of pathogens in lice are scarce. Homok et al. [29] were the first to report Rickettsia spp. in lice from livestock animals and proved that lice could be potential vectors of arthropod-borne pathogens. However, there is limited information available with regard to Bartonella spp. and Rickettsia in lice collected from rodents in Europe. The role of lice in the life cycles of Rickettsia and Bartonella is still not clear. The aim of this study was to determine the prevalence of Bartonella and Rickettsia species in lice collected from rodents in Slovakia.

Methods

Sample collection and identification

Small mammals were live-captured between 2010 and 2015 using Swedish bridge metal traps baited with sunflower seeds at four different sites in eastern Slovakia: two with mixed forest vegetation with a predominance of beech, hornbeam and spruce [Čermeľ (208-600 m a.s.l.; 48°45′46″N; 21°8′17″E) and Hýľov (500-750 m a.s.l.; 48°44′22″N; 21°4′18″E)], and two with deciduous forest vegetation [the Botanical garden in Košice (208 m a.s.l.; 48°44′6″N; 21°14′16″E) with a predominance of hornbeam, and the Rozhanovce game reserve (215 m a.s.l.; 48°45′36″N; 21°2′30″E), an ecotone of oak-hornbeam forest and pasture in a menagerie] (collection sites are more described in 3, 13, 31, 32).

At each site, 50 traps were placed 5 m apart in transects (approximately 250 m in length) for two consecutive nights. Captured animals were transported to the laboratory where they were determined to species level and euthanised under licenses from the Ministry of Environment of the Slovak Republic No. 4874/2011-2-2.
The ectoparasites (ticks, fleas, mites and lice) were collected and placed in 70 % ethanol until determination. Lice were then determined by species and sex using light microscopy according to Smetana [33] and Wegner [34].

Molecular analyses

Lice from each rodent host were grouped in pools by species, life stage and sex. A total of 275 sample pools (between one and ten lice per pool): 38 pools of larvae, 151 pools of females and 86 pools of males were analysed. DNA from lice was extracted using 2.5 % ammonium hydroxide solution [35]. Bartonella and Rickettsia DNA in samples was detected using a duplex TaqMan real-time PCR targeting 124 bp fragment of ssrA and 103 bp fragment of citrate synthase (gltA) genes respectively. The qPCR amplifications were carried out in a 15-μl final volume consisting of 1 μl of extracted DNA, (1x) SensiMix™ II Probe No-ROX Kit (Bioline Reagents Ltd, UK), 1 μM of each primer and 0.5 μM of each probe. The reaction was carried out in a real-time thermocycler Rotor-Gene Q 5plex model with software version 1.7 (Qiagen GmbH, Germany). The optimised thermal cycler programme was 95 °C for 10 minutes (1 cycle), followed by 50 cycles of denaturation at 95 °C for 20 seconds, annealing at 50 °C for 1 minute, and extension at 72 °C for 10 seconds. Results that satisfied the amplification cut-offs below 40 Ct (cycle threshold) when the threshold was 0.10101 indicated positive samples. Bartonella-positive samples were tested further in two PCRs using a set of genus-specific primers targeting the 795 bp fragment of the RNA polymerase β-subunit (rpoB) gene [36] and primers targeting the 16S-23S rRNA gene intergenic species region (ITS) (0.9–1.6 kb) [37, 38]. A nested PCR that targeted the partial gltA gene (338 bp fragment) [19] was used for amplification of Rickettsia spp. The primer sequences and target genes used in this study are presented in Table 1. Negative (dH2O) and positive controls (DNA of Bartonella-infected rodents and the DNA of Rickettsia-infected ticks, confirmed by sequencing) were included in real-time PCR, conventional and nested PCRs runs. Products of amplification were identified in 1.5 % agarose gel after undergoing electrophoresis under standard conditions and staining with ethidium bromide solution (2 μg/ml), and then visualised using the UV transilluminator (EASY Win32, Herolab, Germany).

Representative positive PCR products were extracted from the agarose gel and purified using the GeneJET Gel Extraction Kit (ThermoFisher Scientific, Lithuania) according to the manufacturer's instructions (Macrogen Europe, Netherlands). The obtained sequences were edited, aligned with one other and compared with the sequence data available from NCBI GenBank, using the Mega X program and the NCBI BLAST® blastn suite applet. The most appropriate model of nucleotide substitution for each alignment dataset was determined according to the Bayesian information criterion (BIC). Phylogenetic trees were constructed using the maximum-likelihood (ML) method with the Tamura-Nei model. Bootstrap support was calculated by means of 1,000 replicates. Bartonella and Rickettsia sequences obtained in this study were deposited in the GenBank database under the accession numbers MT840662 - MT840520 (Bartonella ITS region), MT876371 - MT876377, MT833866 (BartonellarpOB gene) and MT876378 - MT876382 (RickettsiaiglT gene).

Statistical analysis

The prevalence of pathogens in lice was calculated as a minimum infection rate (MIR) with 95 % confidence intervals (CI). MIR was calculated as the ratio of the number of positive pools to the total number of lice tested. The underlying MIR assumption was that only one infected individual exists in a positive pool [39].

Results

A total of 1074 lice belonging to seven species (28 Hoplopleura acanthopus, 732 Hoplopleura affinis, 1 Hoplopleura edentula, 7 Hoplopleura sp., 225 Polyplax serrata, 79 Polyplax spinulosa, and 2 Polyplax sp.) were collected from 216 small rodents representing six species (Apodemus agrarius n = 151, Apodemus flavicollis n = 35, Microtus arvalis n = 13, Microtus subteraneus n = 2, Myodes glareolus n = 11 and Rattus norvegicus n = 4). Both sexes of lice and larvae were found on the rodents (Table 2).

Bartonella infection in lice

Based on real-time PCR analysis, a total of 32 lice DNA pools (11.6%; 32/275 pools) were found to be positive for Bartonella spp. with an overall MIR of 3.0% (32/1074; 95% CI: 2.0–4.2%) and six lice pools were positive for Rickettsia spp. (2.2%; 6/275 pools) with an overall MIR of 0.6% (6/1074; 95% CI: 0.2–1.2%) (Table 2). Positive samples had Ct values of between 18 and 39.

Bartonella DNA was detected in three species of lice H. affinis (collected from A. agrarius, A. flavicollis and M. glareolus), P. serrata (collected from A. agrarius) and Hoplopleura sp. (collected from A. flavicollis). All three live stages of lice were found to be infected with Bartonella spp.: larvae (13.2% positive pools out of 38), males (8.1% out of 86) and females (13.3% out of 151). A higher prevalence of Bartonella spp. was detected in H. affinis (16.2% positive pools out of 148; MIR of 3.3% 24/732; 95% CI: 2.1–4.8%), followed by P. serrata (7.7% positive pools out of 91; MIR of 3.1% 7/225, 95% CI: 1.3–6.3%). One single specimen of seven tested for Hoplopleura sp. was positive.

Bartonella-positive PCR products of good quality were subjected to sequence analysis. A total of 14 good-quality sequences of BartonellarpOB (n=8) gene and ITS region (n=6) were obtained and analysed. The ITS region sequences of Bartonella derived from lice were 100 % identical to each other and 98-100 % identical to Bartonella cooperensis and Bartonella tribocorum sequences deposited in GenBank (Fig. 1). Sequences (samples MT840662, MT840663, MT840664) derived from H. affinis (two pools of females and one pool of larval collected from two A. agrarius rodents) were 100 % identical to each other, 100 % identical to B. cooperensis sequences detected in A. agrarius from Lithuania (GenBank: MH547343) and 98 % identical to B. cooperensis sequences detected in rats from Italy (GenBank: MK562489) and Australia (GenBank: EU111770) (Fig. 1). Sequences (samples MT840518, MT840519, MT840520) derived from H. affinis (two different pools of females collected from a single A. flavicollis and a single M. glareolus) and P. serrata (one pool of males collected from a single A. agrarius) were 100 % identical to each other and with B. tribocorum sequences detected in A. agrarius rodents from Lithuania (GenBank: MH687379) and South Korea (GenBank JN810856) (Fig. 1).
The \textit{pcoB} gene sequences (samples MT876371, MT876372, MT876373, MT876374, MT876375, MT876376 and MT876377) derived from \textit{H. affinis} (five pools of females and two pools of larvae from \textit{A. agrarius} (n=3)) were 100 % identical to each other and to \textit{B. coopersplainsensis} sequences detected in \textit{A. agrarius} from Lithuania (GenBank: MH547343). These sequences showed 98 % similarity to \textit{B. coopersplainsensis} sequences detected in rats from Australia (GenBank: EU111792) and Thailand (GenBank: MF105907) (Fig. 2). One \textit{Bartonella}\textit{pcoB} sequence (sample MT833866) derived from \textit{H. affinis} (one pool of females from a single \textit{A. flavicollis}) was 100 % identical to the \textit{B. taylorii} strain detected in \textit{A. flavicollis} from Turkey (GenBank: MH932636) (Fig. 2).

\textbf{Rickettsia Infection in lice}

Six lice pools of \textit{H. affinis} (four pools) and \textit{P. serrata} (two pools) collected from \textit{A. agrarius} (n=6) were found to be positive for \textit{Rickettsia} spp. \textit{Rickettsia} pathogens were detected in males (2.3 % positive pools out of 86) and females (2.7 % out of 151). A total of five good-quality sequences of \textit{Rickettsia} \textit{gltA} gene were obtained and analysed. Sequence analysis of the partial \textit{gltA} gene revealed the presence of two \textit{Rickettsia} species: \textit{Rickettsia helvetica} (n=4) and unrecognised \textit{Rickettsia} sp. (n=1). \textit{Rickettsia} sequences (samples MT876379, MT876380, MT876381 and MT876382) derived from \textit{H. affinis} (three pools of females) and \textit{P. serrata} (one pool of males) shared 99 % identity (with one nucleotide difference) and were 100 % identical to the \textit{gltA} sequence of \textit{R. helvetica} detected in \textit{A. flavicollis} from Lithuania (GenBank: MF491764) and \textit{R. helvetica} sequences detected in fleas from Slovakia (GenBank: MN276064, MK85717) and in \textit{Ixodes ricinus} ticks from Slovakia (GenBank: EY779822) and Italy (GenBank: MN226407). The \textit{Rickettsia} sequence (sample MT876378) isolated from \textit{H. affinis} (one pool of males) was 100 % identical to the closely phylogenetically related sequences deposited in GenBank for \textit{R. raoultii} (GenBank: MN50895, MH064450, MK875750, MK792599), \textit{R. aeschlimann} (GenBank: JF803905) and \textit{R. helongiangensis} (GenBank: JX945522).

\textbf{Discussion}

In Europe, lice collected from rodents have never been examined before for the presence of these bacteria. This study is the first report on the prevalence and diversity of \textit{Bartonella} and \textit{Rickettsia} species in lice collected from rodents in Slovakia. Phylogenetic analysis based on the \textit{Bartonella pcoB} gene and \textit{ITS} region and the \textit{Rickettsia gltA} gene revealed the presence of \textit{B. tribocorum}, \textit{B. coopersplainsensis}, \textit{B. taylorii}, \textit{R. helvetica} and \textit{Rickettsia} sp. in rodent lice.

In this study, \textit{B. taylorii} was detected in \textit{H. affinis} lice collected from \textit{A. flavicollis}. In previous studies, \textit{B. taylorii} has been confirmed in the small mammals \textit{A. agrarius}, \textit{A. flavicollis}, \textit{M. glareolus}, \textit{M. arvalis} and \textit{Taipa europaea} in Slovakia [13, 14]. \textit{B. taylorii} strains in small mammals and their ectoparasites have also been reported in several studies conducted in Europe, including in Germany [15], England [40], Lithuania [11, 12], Slovenia [41], Poland [9] and Spain [10]. \textit{B. taylorii} can infect several sympatric woodland rodents at a given site. A high diversity of \textit{B. taylorii} strains is frequently found in \textit{Apodemus} mice and in \textit{Myodes} and \textit{Microtus} voles [2]. The pathogenic potential of \textit{B. taylorii} is as yet unknown [11, 40].

In this study, the \textit{B. tribocorum} infection was detected in \textit{P. serrata} and \textit{H. affinis} lice collected from \textit{A. flavicollis}, \textit{A. agrarius} and \textit{M. glareolus}. This \textit{Bartonella} species is pathogenic to humans [2]. Previous studies have strongly supported the association of \textit{B. tribocorum} with rats of the genus \textit{Rattus}. \textit{B. tribocorum} has been detected in rats and their fleas in Thailand [42] and \textit{Bartonella} strain closely related to \textit{B. tribocorum} has been detected in louse (adult \textit{P. spinulosa}) collected from rats in Egypt [43]. In the striped field mouse \textit{A. agrarius}, \textit{B. tribocorum} was detected for the first time in South Korea [44] and closely related strains were later confirmed in \textit{A. agrarius} from Slovakia [13] and Lithuania [12].

The present study is the first to detect the \textit{B. coopersplainsensis} infection in Slovakia in \textit{H. affinis} lice collected from \textit{A. agrarius}. Previously, \textit{B. coopersplainsensis} has been isolated in rats from Australia [45] and New Zealand [46] and in one louse pool (\textit{Hoplopleura} spp.) collected from rats in Thailand [42]. \textit{B. coopersplainsensis} has also been reported in \textit{A. agrarius} in Lithuania [12]. There is a lack of information on \textit{B. coopersplainsensis}, therefore the public health impact of this bacteria is unknown [46].

The present study is also the first to demonstrate the presence of \textit{R. helvetica} and \textit{Rickettsia} sp. in lice collected from rodents in Slovakia. Two \textit{R. helvetica} strains were detected in \textit{H. affinis} and \textit{P. serrata} lice collected from \textit{A. agrarius}. \textit{R. helvetica} are considered to be agents of human rickettsioses [17]. In recent studies conducted in Slovakia, \textit{R. helvetica} has been identified in rodents and in fleas, mites and ticks collected from rodents [3, 19, 20, 21]. \textit{R. helvetica} has also been reported in rodents and their ectoparasites in other European countries, such as the Netherlands [47], Hungary [22], Germany [18], Poland [17] and Lithuania [24, 25].

Based only on sequence analysis of the \textit{gltA} gene, the \textit{Rickettsia} sp. detected in this study in \textit{H. affinis} lice pool collected from \textit{A. agrarius} was not identified to species level. The obtained \textit{gltA} sequence showed 100 % identity with the corresponding sequences of \textit{R. aeschlimann}, \textit{R. helongiangensis} and \textit{R. raoultii} in the GenBank database.

The presence of \textit{Bartonella} spp. and \textit{Rickettsia} spp. in lice may result from the acquisition of these bacteria via blood meals from infected rodents. \textit{Bartonella} spp. are transmitted via horizontal transmission: arthropod vectors become infected with \textit{Bartonella} bacteria while feeding on infected hosts, including rodents, and can then transfer the bacteria to another host [42]. Worldwide, the prevalence of \textit{Bartonella} spp. in rodents ranges from 25 to 80%, which suggests a reciprocal adaptation between the bacteria and their reservoirs [1]. As a result of their blood-feeding habits, lice could transfer disease agents between closely-related host species [26, 29] and physical contact between individual rodents may promote the transmission of different \textit{Bartonella} species [1].

Some SFG rickettsiae are thought to circulate in enzootic or epizootic cycles between wild vertebrates and arthropod vectors. The high prevalence of \textit{R. helvetica} previously obtained in small rodents suggests that they may play an important role as potential natural reservoir hosts for this pathogen [18, 25].

The rodents from which the lice were collected have previously been tested for the presence of \textit{Bartonella} and \textit{Rickettsia} pathogens [3, 13, 14]. However, almost all the \textit{Bartonella}-infected and \textit{Rickettsia}-infected lice were derived from non-infected rodent hosts (except for two specimens of \textit{A. agrarius}; data not
shown). In this case, lice could become infected by parasitising on other infected hosts. Examined small rodents infested with lice also harbour other ectoparasites species such as mites, fleas and *I. ricinus* ticks [3, 20]. The presence of *Bartonella* pathogens in lice may also result from acquisition pathogens by co-feeding with *Bartonella*-infected fleas. Fleas are the main vectors for the maintenance and transmission of *B. grahamii*, *B. taylorii* and *B. rochalimae* among populations of small mammals [2]. *B. tribocorum* has been detected in fleas and *B. coopersplainsensis* in ticks and lice [42]. Lice that infest rodents could acquire *Rickettsia* pathogens by co-feeding with infected *I. ricinus* ticks, fleas and mites. Horizontal transmission through a shared blood meal has been demonstrated for some rickettsial pathogens [48]. In a previous study conducted in Slovakia, *Rickettsia* spp. was detected in four species of mites, *I. ricinus* ticks and four flea species, with an overall prevalence of 9.3%, 17.2% and 3.5% respectively [3]. *R. helvetica* has been identified in fleas, ticks and mites [3, 21].

Although, the results of the present study confirm the circulation of *Bartonella* spp. and *Rickettsia* spp. in lice, the role of lice in the transmission of *Bartonella* and *Rickettsia* species remains unknown. Thus, future studies should be performed to determine the specific roles of different species of lice parasitising small rodents in the transmission of *Bartonella* spp. and *Rickettsia* spp. bacteria in order to estimate the potential risks for other mammals (e.g. cats) and humans.

Conclusions

To the best of the authors’ knowledge, this is the first report on the occurrence and diversity of *Bartonella* spp. and *Rickettsia* spp. in lice collected from small rodents in Europe. The data presented in this paper add to knowledge about the distribution of *Bartonella* spp. and *Rickettsia* spp. in rodent ectoparasites, and demonstrate the presence of *Bartonella* pathogens in three species of lice – *H. anis*, *P. serrata* and *Hoplopleura* sp. – and of *Rickettsia* pathogens in two lice species – *H. affinis* and *P. serrata*. This study is also the first to detect *B. coopersplainsensis* in Slovakia.

Abbreviations

SFG
Spotted fever group; TG: Typhus group; AG: ancestral group; TRG: transitional group; MIR: Minimum infection rate; CI: confidence interval; ML: maximum-likelihood method; BIC: Bayesian information criterion.

Declarations

Ethics approval and consent to participate

All procedures performed in studies involving animals were in accordance with the ethical standards of the institution or practice at which the studies were conducted. Small mammals were euthanized according to the laws of the Slovak Republic under the licences of the Ministry of Environment of the Slovak Republic No. 297/108/06–3.1 and No. 6743/2008–2.1.

Consent for publication

Not applicable.

Availability of data and materials

The datasets used and/or analysed during the current study are available from the corresponding author upon reasonable request. Representative sequences were submitted to the GenBank database under the accession numbers MT840662 - MT840520, MT876371 - MT876377, MT833866, MT876378 - MT876382.

Competing interests

The authors declare that they have no competing interests.

Funding

The study was supported by the project VEGA 1/0084/18 and APVV-15-0134.

Authors’ contributions

MS, AA, AP and JR designed the study data, participated in manuscript preparation, review & editing. MS and JF collected specimens for the study and performed the morphological description of specimens. AA and JR performed the experiments. AA, JR and AP conducted the data analysis. All authors read and approved the final manuscript.

Acknowledgements

The authors would like to thank Dr. L. Mošanský, Dr. J. Kraljik, Dr. L. Blaňarová, Dr. D. Miklisová and Mrs. M. Onderová for their assistance in the field and in the laboratory. We are grateful to Dr. Maksim Bratchikov for design of primers for real-time PCR.

References

1. Gutiérrez R, Krasnov B, Morick D, Gottlieb Y, Khokhlova IS, Harrus S. *Bartonella* infection in rodents and their flea ectoparasites: an overview. Vector Borne Zoonotic Dis. 2015;15:27-39.
2. Buffet JP, Kosoy M, Vayssier-Taussat M. Natural history of *Bartonella*-infecting rodents in light of new knowledge on genomics, diversity and evolution. Future Microbiol. 2013;8:1117-28.

3. Špitalská E, Kraljik J, Miklisová D, Boldišová E, Sparagano OAE, Stanko M. Circulation of *Rickettsia* species and rickettsial endosymbionts among small mammals and their ectoparasites in Eastern Slovakia. Parasitol Res. 2020;119:2047-57.

4. Breitschwerdt EB, Kordick DL. *Bartonella* infection in animals: carrier ship, reservoir potential, pathogenicity, and zoonotic potential for human infection. Clin Microbiol Rev. 2000;13:428-38.

5. Parola P, Paddock CD, Socolovschi C, Labruna MB, Medinannik O, Kernif T, et al. Update on tick-borne rickettsioses around the world: a geographic approach. Clin Microbiol Rev. 2013;26:657-702.

6. List of prokaryotic names with standing in nomenclature. 2014. http://www.bacterio.net/bartonella.html. Accessed 20 August 2020.

7. Holmberg M, Mills JN, McGill S, Benjamin G, Ellis BA. *Bartonella* infection in sylvatic small mammals of central Sweden. Epidemiol Infect. 2003;130:149-57.

8. Engbaek K, Lawson PA. Identification of *Bartonella* species in rodents, shrews and cats in Denmark: detection of two *henselae* variants, one in cats and the other in the long-tailed field mouse. APMIS. 2004;112:336-41.

9. Welc-Falciček R, Paziewska A, Bajer A, Bhnke JM, Srinski E. *Bartonella* infection in rodents from different habitats in the Mazury Lake District, Northeast Poland. Vector Borne Zoonotic Dis 2008;8:467-74.

10. Gil H, Garcia-Esteban C, Barandika JF, Peig J, Toledo A, Escudero R, et al. Variability of *Bartonella* genotypes among small mammals in Spain. Appl Environ Microbiol. 2010;76:8062-70.

11. Lipatova I, Paulauskas A, Puraitė I, Radzijevskaja J, Balčiauskas L, Gedimas V. *Bartonella* infection in small mammals and their ectoparasites in Lithuania. Microbes Infect. 2015;17:884-88

12. Mardosaitė-Busaitienė D, Radzijevskaja J, Balčiauskas L, Bratchikov M, Jurgelevičius V, Paulauskas A. Prevalence and diversity of *Bartonella* species in small rodents from coastal and continental areas. Sci Rep. 2019;9:12349.

13. Kraljik J, Paziewska-Harris A, Miklisová D, Blažarová L, Mošanský L, Bona M, Stanko M. Genetic diversity of *Bartonella* genotypes found in the striped field mouse (*Apodemus agrarius*) in Central Europe. Parasitology. 2016;143:1437-42.

14. Špitalská E, Minichová L, Kocianová E, Škultéty L, Mahrníková L, Hamšíková Z, et al. Diversity and prevalence of *Bartonella* species in small mammals from Slovakia, Central Europe. Parasitol Res. 2017;116:3087-95.

15. Silaghi C, Pfeffer M, Kiefer D, Kiefer M, Obiegala A. Bartonella, rodents, eas and ticks: a molecular field study on host-vector-pathogen associations in Saxony, Eastern Germany. Microb Ecol. 2016;72:965-74.

16. List of prokaryotic names with standing in nomenclature. 2014. https://lpsn.dsmz.de/genus/rickettsia. Accessed 20 August 2020.

17. Gajda E, Hildebrand J, Sprong H, Bonna M. Bartonella and *Rickettsia* species in eas collected from small mammals in Slovakia, Central Europe. Parasitol Res. 2017;116:4337-9.

18. Mardosaitė-Busaitienė D, Radzijevskaja J, Balčiauskas L, Paulauskas A. Prevalence and diversity of *Bartonella* species in small mammals and their parasitizing ectoparasites from Saxony, Germany. Vet Parasitol. 2016;215:1-12.

19. Lipatova I, Paulauskas A, Oltersdorf C, Silaghi C, Kiefer D, Kiefer M, Woll D, Pfefferer M. *Rickettsia* in small mammals and their parasitizing ectoparasites from Saxony, Germany. Vet Parasitol. 2016;215:1-12.

20. Mardosaitė-Busaitienė D, Radzijevskaja J, Balčiauskas L, Paulauskas A. First detection of *Rickettsia* species in fleas collected from small mammals in Slovakia. Parasitol Res. 2015;114:4337-9.

21. Heglavcová I, Vichová B, Stanko M. Detection of *Rickettsia* in fleas collected from small mammals in Slovakia, Central Europe. Vector Borne Zoonotic Dis. 2020; doi:10.1089/vbz.2019.2567.

22. Hornok S, Hofmann-Lehmann R, de Mera IG, Meli ML, Elek V, Hajtós I, et al. Survey on blood-sucking lice (*Phthiraptera: Anoplura*) from ruminants and pigs with molecular detection of *Anaplasma* and *Rickettsia* Vet Parasitol. 2010; 174:355-58.
30. Martinů J, Hyska V, Štefka J. Host specificity driving genetic structure and diversity in ectoparasite populations: Coevolutionary patterns in Apodemus mice and their lice. Ecol Evol. 2018;8:10008-22.
31. Blaňarová L, Stanko M, Carpi G, Miklosová D, Vichová B, Mošanský L, et al. Distinct Anaplasma phagocytophilum genotypes associated with Ixodes trianguliceps ticks and rodents in Central Europe. Ticks Tick Borne Dis. 2014;5:928-38.
32. Stanko M, Fričová J, Miklosová D, Khokhlova IS, Krasnov BR. Environment-related and host-related factors affecting the occurrence of lice on rodents in Central Europe. Parasitology. 2015;142:938-47.
33. Smetana A. Lice from the territory of Czechoslovakia, in Czech. Acta Rerum Naturalium Musei Nationalis Slovaci Bratislava. 1965;11:30-82.
34. Wegner Z. Keys for determinations insects of Poland. Lice – Anoplura. Czesc XVI. Warsaw;1972. p. 90.
35. Rijpkema S, Golubić D, Molkenboer M, Verbeek-De Kruijf N, Schellekens J. Identification of four genomic groups of Borrelia burgdorferi sensu lato in Ixodes ricinus ticks collected in a Lyme borreliosis endemic region of northern Croatia. Exp Appl Acarol. 1996;20:23-30.
36. Renesto P, Gouvenet J, Drancourt M, Roux V, Raoult D. Use of rpoB gene analysis for detection and identification of Bartonella species. J Clin Microbiol. 2001;39:430-37.
37. Jensen WA, Fall MZ, Rooney J, Kordick DL, Breitschwerdt EB. Rapid identification and differentiation of Bartonella species using a single-step PCR assay. J Clin Microbiol. 2000;38:1717-22.
38. Kaewmongkol, G. Detection and characterization of Bartonella species in Western Australia (Thesis of Doctor of Philosophy). School of Veterinary and Biomedical Sciences, Faculty of Health Sciences, Murdoch University, Perth, Western Australia; 2012.
39. Weidong G, Lampman R, Robert J, Novak RJ. Problems in Estimating Mosquito Infection Rates Using Minimum Infection Rate. J. Med. Entomol. 2003;40:595-87.
40. Bown KJ, Bennet M, Begon M. Flea-borne Bartonella grahamii and Bartonella taylorii in bank voles. Emerg Infect Dis. 2004;10:684-87.
41. Kaewmongkol, G. Detection and characterization of Bartonella species in Western Australia (Thesis of Doctor of Philosophy). School of Veterinary and Biomedical Sciences, Faculty of Health Sciences, Murdoch University, Perth, Western Australia; 2012.
42. Ko S, Kang G, Kim HC, Klein TA, Choi KS, Song JW, et al. Prevalence, isolation and molecular characterization of Bartonella species in Republic of Korea. Transbound Emerg Dis. 2016;63:56-67.
43. Gundi VA, Taylor C, Raoul D, La Scola B. Bartonella rattaustraliani nov., Bartonella queenslandensis sp. nov. and Bartonella coopersplainensis sp. nov., identified in Australian rats. Int J Syst Evol Microbiol. 2009;59:2956-61.
44. Sproong H, Wielinga PR, Fonville M, Reusken C, Brandenburg AH, Borgsteede F, et al. Ixodes ricinus ticks are reservoir hosts for Rickettsia helvetica and potentially carry flea-borne Rickettsia Parasit Vectors. 2009;2:41.
45. Brown LD, Christofferson RC, Banajee KH, Del Piero F, Foil LD, Macaluso KR. Cofeeding intra- and interspecific transmission of an emerging insect-borne rickettsial pathogen. Mol Ecol. 2015;24:5475-89.
46. Diaz MH, Bai Y, Malania L, Winchell JM, Kosoy MY. Development of a novel genus-specific real-time PCR assay for detection and differentiation of Bartonella species and genotypes. J Clin Microbiol. 2012;50:1645-49.

Tables

Table 1. Primers and probes used for real-time PCR, conventional and nested-PCRs.
Primer or probe	Sequence (5′-3′)	Target in assay	Reference
ssrA-F1	AGTTGCAATGACAACATATGCGG AAGGCTTCTGGTGCAGGTYG	Bartonella spp ssrA gene	[12, 49]
ssrA-R1	HEX-ACCCCCCTAAACCTGCAGGTT-BHQ1		
ssrA-P1^a			
RpoB-F	CGCATTTGTTTCTCTGATG	Bartonella spp rpoB gene	[36]
RpoB-R	GTRGAYTGGATRGAACGTG		
WITS-F^b	ACCTCCTTTCTAAGGATGAT	Bartonella spp ITS region	[37, 38]
WITS-R^b	CTCTTTCTTCTAGATGATGATCC		
Bh311-332F^c	CTCTTTCTTCTAGATGATGATCC		
Bh473-452R^c	AACCAACTGAGCTACAACCCCT		
Rick F1	TGCMGAYCATGAGCAATGCTTC	Rickettsia spp. gltA gene	This study
Rick R1	CCAAAATGAKGCATATACCGT		
Rick P1^a	FAM-TGCCGGCTCATCYGGAGCTAACCC-BHQ1		
RpCS.877p^b	GGGGACCTGCTCACGCGCGG	Rickettsia spp. gltA gene	[19]
RpCS.1258n^b	ATTGCAAAAAATCACGCTGAACC		
RpCS.896p^c	GGCTAAATGACACGCTGATAA		
RpCS.1233n^c	GCGACGCTATACCCATAGC		

^aProbe, ^bExternal primers, ^cInternal primers.

Table 2 Presence of *Bartonella* spp. and *Rickettsia* spp. in lice collected from different species of small rodents.
Rodents species	H. affinis	H. edentula	H. acanthopus	Hoplopleura sp	P. serrata	P. spinulosa						
	No. positive pools/no. pools (no. lice in pools); MIR % [95 % CI]	No. positive pools/no. pools (no. lice in pools); MIR % [95 % CI]	No. positive pools/no. pools (no. lice in pools); MIR % [95 % CI]	No. positive pools/no. pools (no. lice in pools); MIR % [95 % CI]	No. positive pools/no. pools (no. lice in pools); MIR % [95 % CI]	No. positive pools/no. pools (no. lice in pools); MIR % [95 % CI]						
A. agr	3/6 (24)	2/41 (246)	12/78 (418)	-	0/1 (1)	0/4 (4)	0/16 (82)	3/18 (36)	3/38 (79)	-	0/1 (1)	
A. fla	1/1(2)	1/6 (16)	3/7 (16)	-	0/2 (4)	0/5 (9)	0/1 (1)	0/3 (3)	0/10 (19)	-	0/1 (1)	0/2 (2)
M. arv	-	-	-	-	0/2 (4)	0/5 (9)	0/1 (1)	-	0/1 (1)	-	-	
M. sub	-	-	-	-	0/1 (1)	0/1 (1)	0/2 (2)	-	0/1 (1)	-	-	
M. gla	1/5(6)	1/3(3)	-	0/1 (1)	0/1 (1)	-	0/2 (2)	-	0/1 (2)	-		
R. nor	-	-	-	-	-	-	0/1 (1)	0/2 (2)	0/5 (45)	-		
Total	4/7 (26);	4/5 (16);	16/89 (438);	-	0/1 (1)	0/2 (4)	0/16 (82)	3/23 (41);	4/49 (47)	0/1 (8)	0/2 (45)	
	15.4-44.4;	1.5-3.0;	2.1-5.9	-	-	-	-	1.4-57.9;	7.3-19.9;	4.0-10.9;		

Bartonella spp.

L	L	L	L	L	L	L	L	L	L
A. agr	3/6 (24)	0/1 (1)	0/4 (4)	0/16 (82)	3/18 (36)	3/38 (79)	-	0/1 (1)	-
A. fla	1/1(2)	0/2 (4)	0/5 (9)	0/1 (1)	0/3 (3)	0/10 (19)	-	0/1 (1)	0/2 (2)
M. arv	-	0/1 (1)	0/1 (1)	0/2 (2)	-	0/1 (1)	-	-	-
M. sub	-	-	-	-	-	-	-	-	-
M. gla	1/5(6)	0/1 (1)	0/1 (1)	0/2 (2)	-	0/1 (1)	-	-	-
R. nor	-	-	-	-	-	-	-	0/1 (8)	0/2 (45)
Total	4/7 (26);	4/5 (16);	16/89 (438);	-	0/1 (1)	0/2 (4)	0/16 (82)	3/23 (41);	4/49 (47)

Rickettsia spp.

L	L	L	L	L	L	L	L	L	L	
A. agr	0/6 (24)	1/42 (246)	3/78 (418)	0/1 (1)	0/4 (4)	0/16 (82)	1/15 (24)	1/40 (91)	0/1 (1)	
A. fla	0/1 (2)	0/6 (16)	0/7 (16)	0/1 (1)	0/3 (3)	0/3 (3)	0/10 (19)	-	0/1 (1)	0/2 (2)
M. arv	-	-	-	0/2 (4)	0/5 (9)	0/4 (13)	0/1 (1)	-	-	-
M. sub	-	-	-	0/1 (1)	-	-	-	-	-	
M. gla	0/5 (6)	0/3 (3)	0/1 (1)	0/1 (1)	-	0/2 (2)	-	0/1 (2)	-	
R. nor	-	-	-	-	0/1 (1)	0/2 (2)	0/5 (45)	-	-	-
Total	0/7 (26)	1/53 (268);	3/89 (438);	0/4 (1)	0/2 (4)	0/6 (10)	0/5 (14)	0/7 (7)	0/19 (85)	1/20 (29);
	0.4-2.1;	0.7	0.4-2.1;	0.4-2.1	0.4-2.1	0.4-2.1	0.4-2.1	0.4-2.1	0.4-2.1	0.4-2.1

Abbreviations: A. agr – Apodemus agrarius; A. fla – Apodemus flavicollis; M. arv – Microtus arvalis; M. sub – Microtus subterraneus; M. gla – Myodes glareolus; R. nor – Rattus norvegicus
Figure 1

Maximum-likelihood phylogenetic tree for the partial ITS region of Bartonella spp. The phylogenetic tree was created using the Tamura-Nei model and bootstrap analysis of 1000 replicates. Samples sequenced in the present study are marked. Abbreviations: A. agr – Apodemus agrarius, M. gla – Myodes glareolus, A. fla – Apodemus flavicollis, R. rat – Rattus norvegicus, F – female, M – male, L – larva.
Figure 2

Maximum-likelihood phylogenetic tree for the partial rpoB gene of Bartonella spp. The phylogenetic tree was created using the Tamura-Nei model and bootstrap analysis of 1000 replicates. Samples sequenced in the present study are marked. Abbreviations: A. agr - Apodemus agrarius, M. agr - Microtus agrestis, A. a - A. avicollis, F - female, M - male, L - larva.
Figure 3

Maximum-likelihood phylogenetic tree for the partial gltA gene of Rickettsia spp. The phylogenetic tree was created using the Tamura-Nei model and bootstrap analysis of 1000 replicates. Samples sequenced in the present study are marked. Abbreviations: A. agr – Apodemus agrarius, A. fla – Apodemus flavicollis, F – female, M – male.