Arthroscopic Technique for Distal Tibial Allograft Bone Augmentation With Suture Anchor Fixation for Anterior Shoulder Instability

John M. Tokish, M.D., Joseph C. Brinkman, M.D., and Jeffrey D. Hassebrock, M.D.

Abstract: Recurrent instability associated with glenoid bone loss is a commonly encountered problem after anterior shoulder dislocation. Surgical management with bony augmentation can be achieved with several allograft or autograft options. Fixation strategies also vary, including screw, suture button, or suture anchor fixation. Concerns exist regarding screw fixation because of the technical difficulty of a medial portal establishment, as well as the potential for graft osteolysis. Suture button fixation for osteochondral graft fixation has been previously described. However, no description of graft fixation using suture anchors exists. We describe an arthroscopic technique for glenoid augmentation using distal tibial allograft with suture anchor fixation.

The role of glenoid bone loss in recurrent shoulder instability after shoulder dislocation is well recognized.1-5 Previous literature has defined “critical” bone loss, or the amount of bone loss associated with recurrent instability, as 15% to 20% of the bony glenoid.5-7 Several surgical management options exist to manage this bone loss and mitigate the risk of recurrent instability, including the Latarjet, coracoid transfer, iliac crest bone graft, distal clavicle autograft, and Bristow procedures.8-14 Most of these procedures have been described with screw fixation, which presents technical and potential long-term concerns. Achieving a perpendicular orientation for ideal screw placement arthroscopically is technically demanding. Additionally, when screw fixation is performed, caution must be taken to avoid injury to the adjacent axillary, musculocutaneous, and suprascapular nerves.15-17 Other concerns involve graft osteolysis and symptomatic hardware.18-22 Because achieving bony augmentation through an open technique presents a unique set of complications, arthroscopic techniques have been described more recently.18,23-27 However, concerns with arthroscopic fixation techniques have persisted.28,29 Suture anchors have shown promising biomechanical results when compared with screw fixation and remain a reliable option for the management of anteroinferior glenohumeral instability.30,31 Suture anchor fixation may be a promising alternative to avoid the concerns associated with traditional screw fixation.

In this report, we describe a technique for arthroscopic suture anchor fixation of distal tibia osteochondral allograft. The aim is to detail the rationale and technical aspects of osteochondral bone augmentation of glenoid bone defects using suture anchor fixation. The benefits of this technique include the use of a standard arthroscopic approach for graft delivery that obviates working medially to the coracoid or requiring a subscapularis split. Additionally, this technique uses an approach as well as instrumentation with which the surgeon is familiar.

Surgical Technique

Step 1: Preoperative Workup

The standard workup for recurrent glenohumeral instability primarily includes a detailed history and physical examination. Advanced imaging is obtained to closely assess soft-tissue integrity, as well as evaluate for and quantify glenoid bone loss. The amount of bone...
loss is calculated on magnetic resonance imaging or computed tomography in each patient. The results of this workup are used to determine the patient’s candidacy for the procedure; we use glenoid bone loss of 20% as a relative indication for bony augmentation. This imaging is also used to determine the size of graft necessary to restore the shoulder to an on-track deformity and re-create a native anatomic perfect circle.

Step 2: Surgical Positioning

An examination under anesthesia is performed once general anesthesia is obtained. The patient is then positioned in the lateral decubitus position using a beanbag. The arm’s position is held in standard fashion at our institution with a padded arm sleeve (STAR sleeve; Arthrex, Naples, FL), along with devices for traction and lateral distraction. Standard posterior, anterosuperior, and mid-glenoid portals are established.32 The posterior portal is established initially to allow subsequent portals to be placed under direct visualization by an outside-in technique. Of note, this posterior portal is enlarged such that it can accommodate a standard Latarjet 6-mm offset guide (Arthrex).

Step 3: Diagnostic Arthroscopy and Glenoid Preparation

A diagnostic arthroscopy is performed to thoroughly assess the present pathology. Preoperative imaging is correlated with intraoperative visualization to focus on the area of bone loss. To confirm a minimum of 20% bone loss, a probe is placed through the posterior portal for intra-articular measurement while the arthroscope is placed anteriorly. Capsular and aggressive labral liberation is performed (Fig 1, Video 1). The anterior glenoid surface is prepared for graft placement by debridement down to viable bone with an emphasis on creating a flush surface to receive the graft. Care is taken to confirm adequate space for graft fixation inside the liberated labrum. A single suture is placed through the anterior labrum and retrieved percutaneously. This suture allows later retraction that is performed to facilitate graft delivery (Fig 2, Video 1).

While viewing from the anterosuperior portal, the surgeon places the Latarjet guide from the posterior portal until the flange sits flush on the glenoid and the guide is in direct bony contact posteriorly (Fig 3, Video 1). The flange should be perpendicular to the long axis of the glenoid. Kirschner wires are then placed through the posterior guide until they are visualized to be at the
anterior margin of the glenoid. These wires should be placed parallel to each other, parallel to the glenoid surface, and with a 6-mm offset. After the guide is removed, the wires are over-drilled using a 3.5-mm cannulated drill. Next, the top-hat sleeves from the FlipCutter drills (Arthrex) are placed over the cannulated drills, which are then removed, leaving the FlipCutter top hats in place. The inferior FlipCutter is then placed into the top hat and advanced across the glenoid from posterior to anterior until it is visualized. Regarding the FlipCutter setting, the ideal size would be 16 mm; however, 13 mm is currently the largest size available and is therefore the size we use. The FlipCutter is spun and gently retracted until a perfectly rounded “flush cut” is obtained in the inferior half of the glenoid (Fig 4, Video 1). This process is repeated through the superior drill hole, which should create a similarly flush cut that is parallel to and slightly overlapping the inferior FlipCutter. This should result in a nearly perfect planning cut of the anterior glenoid without any significant step-off along the superior-to-inferior axis. The FlipCutters are then removed and replaced with a FiberStick (Arthrex) such that there is a passing stitch from posterior to anterior through each of the drill holes (Fig 5, Video 1).

Fig 4. View from the anterosuperior portal of a right shoulder in the lateral decubitus position showing placement of the FlipCutter (white arrow) through a drill hole posteriorly with planing of the anterior glenoid surface to prepare the graft bed. The superior K-wire (blue arrow) placed through the Latarjet guide is still in place.

Fig 5. View from the anterosuperior portal of a right shoulder in the lateral decubitus position with passing sutures placed from posterior to anterior, with the bone measurement guide (blue arrow) in place from the mid-glenoid portal to measure graft size. The measurement guide is used to measure the glenoid bony defect to confirm accurate graft sizing.

Fig 6. Preparation of distal tibial allograft.

Step 4: Graft Preparation

Although several grafts are available, the distal tibial allograft is our graft of choice and is detailed in this report. The distal tibial allograft is a versatile graft that has the distinct advantage of a chondral component. The tibial allograft is cut to the appropriate size as guided by preoperative imaging and intraoperative visualization. Typically, an 8-mm graft is sufficient to restore glenoid bone loss of approximately 30%.1,6

The graft should be cut and prepared according to the predetermined size required (Fig 6, Video 1). Typically, the graft should be roughly 25 mm long, 1 cm deep, and 1 cm wide. By use of the same Latarjet offset guide that was used on the glenoid, 2 drill holes are created, oriented parallel to the long axis of the graft. The previously used Kirschner wires and cannulated drills are again used to ensure that the graft tunnels exactly match the tunnels in the glenoid. Two 2.6-mm
FiberTaks (Arthrex) are then loaded in a retrograde manner through the graft holes such that the tails of the suture anchors are passed from anterior to posterior through the graft, outside the shoulder (Fig 7, Video 1). The FiberTak loops, through which a trailing stitch is then placed, remain on the anterior aspect of the graft.

Step 5: Graft Delivery and Fixation

First, the mid-glenoid portal is replaced with a large 16-mm cannula (Arthrex) (Fig 8, Video 1). The 2 passing stitches that were previously placed through the graft are then retrieved through the mid-glenoid portal. The inferior passing stitch is tied around the tails of the inferior FiberTak, which is then repeated for the superior FiberTak. With the camera in the anterosuperior portal, the passing sutures are pulled from the back, delivering the tails of the FiberTaks through the glenoid in a retrograde fashion. This allows the glenoid to be delivered through the large mid-glenoid portal (Fig 9, Video 1). By use of both the posterior sutures and the anterior sutures through the loops of the FiberTaks, the graft can be maneuvered and its placement can be fine-tuned until it is flush against the glenoid.

Fig 7. Prepared distal tibial allograft with suture anchors (white arrows) in place. By use of the Latarjet offset guide, 2 drill holes are created, oriented parallel to the long axis of the graft. Two 2.6-mm FiberTaks are then loaded in a retrograde manner through the graft holes with the tails of the suture anchors passed from anterior to posterior through the graft, outside the shoulder.

Fig 8. View of the right shoulder in the lateral decubitus position showing the large 16-mm cannula prior to insertion in the enlarged anterior mid-glenoid portal, with the retraction stitch (white arrow) as noted through the mid-glenoid portal attached to the anterior labrum.

Fig 9. The distal tibial allograft (white arrow) is being shuttled in through the enlarged mid-glenoid portal while viewing is performed intra-articularly from the anterosuperior portal in a right shoulder in the lateral decubitus position.

Fig 10. View from the posterior portal of the distal tibial allograft in position (white arrow) on the anterior glenoid in a right shoulder in the lateral decubitus position. The trailing stitches are outside the mid-glenoid portal, and the probe is through the anterosuperior portal.
Step 6: Labral Restoration and Closure

Once the graft is positioned appropriately, attention is turned to the labrum. The sutures previously placed through the anterior loops are now passed through the native anterior labrum, which repairs the native labrum to the anatomic anterior aspect of the graft (Fig 11, Video 1). Arthroscopic instruments are then removed, and the skin is closed and dressed in standard sterile fashion.

Discussion

Glenoid bone loss is a complex issue that is centrally implicated in recurrent shoulder instability after primary dislocation. Specifically, bone loss ranging from 15% to 20% is deemed critical and has been independently associated with an increased risk of recurrent instability events. In cases with glenoid bone loss greater than that which can be managed with a coracoid graft, bone grafting procedures are preferred. Various treatment strategies exist, with options including an open approach versus an arthroscopic approach, in addition to various graft options (Table 1). Each of these is associated with respective benefits and drawbacks. The optimal procedure would be one that is technically viable, financially responsible, available arthroscopically, and reproducible and that uses a bone graft that allows for robust osseous and chondral augmentation.

In terms of arthroscopic management of glenoid bone loss, the most commonly cited options include the Latarjet procedure, iliac crest autograft, distal tibial allograft, and distal clavicle autograft. Fixation options also vary between screw, suture button, and suture anchor fixation. Metal screws are traditionally used for fixation, and this technique is supported by clinical and biomechanical studies. The traditional screw fixation technique has benefits of biomechanical stability and technical viability. However, concerns associated with screw fixation exist.

| Table 1. Advantages and Disadvantages of Common Glenoid Bone Grafts and Coracoid Transfer Procedures |
|---------------------------------|---------------------------------|---------------------------------|
| Iliac crest autograft | Anatomic restoration of contouring, incorporation, availability, cost | No chondral surface, donor-site morbidity risk |
| Distal clavicle autograft | Osteochondral, availability, incorporation, cost | Donor-site morbidity, prior AC arthritis as limiting factor |
| Latarjet or Bristow coracoid transfer | Availability, cost, sling effect | Nonanatomic solution, technically challenging, no chondral surface |
| Distal tibial allograft | Osteochondral, restoration of contouring, no donor-site morbidity | Incorporation, cost, availability |

AC, acromioclavicular joint.
Table 2. Pearls and Pitfalls of Arthroscopic Suture Anchor Fixation of Distal Tibial Allograft for Shoulder Instability

Pearls	Pitfalls
A sufficiently wide exposure should be obtained.	Inadequate exposure of the glenoid and labrum should be avoided. Failure to expose or properly prepare the native bone will result in difficult graft placement and inadequate conformity.
The same drill guide should be used for the glenoid and for the graft to ensure proper matching and alignment.	Failure to manage sutures may result in tangling and may prevent graft passage.
Accurate FlipCutter placement should be ensured, with slight overlapping of the superior and inferior cuts and care taken to avoid any step-off.	Failure to create flush and accurate FlipCutter cuts may result in poor graft positioning or mal-seating.
Handheld tensioners should be used to apply generous pressure to ensure graft conformity.	Failure to appropriately tension the graft may result in poor congruity of the construct.

including an increased risk of osteolysis, neurovascular damage, and symptomatic hardware in up to 46% of patients.15,19,38 Accordingly, screw-less fixation methods such as suture buttons or suture anchors are appealing options. Fixation with suture buttons has been described in the literature and has biomechanical strength similar to screw fixation but is technically demanding, with a reported learning curve of 30 operative cases.29,39 Fixation with suture anchors may be an appealing alternative that also shows adequate biomechanical strength.31

This report describes the rationale, technique, and limitations of arthroscopic management of glenoid defects using an osteochondral allograft. The outlined technique involves a distal tibial allograft. It is important to note that suture anchors can be used in the fixation of other grafts, such as coracoid, iliac crest, or distal clavicle graft, per the treating surgeon’s preference. Benefits of the reported technique include stable biomechanical fixation, a limited risk of graft osteolysis, a decreased risk of symptomatic hardware, and elimination of the need for the far-medial portal. Limitations include the potential for an increased learning curve, cost, and issues associated with graft choice including bony incorporation. Table 2 presents pits and pitfalls of our procedure. Long-term studies are needed to analyze the clinical outcomes of suture anchor fixation, in addition to tracking any consequences of glenoid reactions to all-soft suture anchors that have been noted in cases of labral repair.40

References

1. Tokish JM, Fitzpatrick K, Cook JB, Mallon WJ. Arthroscopic distal clavicular autograft for treating shoulder instability with glenoid bone loss. \textit{Arthrosc Tech} 2014;3:e475-e481.
2. Provencher MT, Bhatia S, Ghodadra NS, et al. Recurrent shoulder instability: Current concepts for evaluation and management of glenoid bone loss. \textit{J Bone Joint Surg Am} 2010;92:133-151 (suppl 2).
3. Mologne TS, Provencher MT, Menzel KA, Vachon TA, Dewing CB. Arthroscopic stabilization in patients with an inverted pear glenoid: Results in patients with bone loss of the anterior glenoid. \textit{Am J Sports Med} 2007;35:1276-1283.
4. Boileau P, Villalba M, Héry JY, Balg F, Ahrens P, Neyton L. Risk factors for recurrence of shoulder instability after arthroscopic Bankart repair. \textit{J Bone Joint Surg Am} 2006;88:1755-1763.
5. Burkhart SS, De Beer JF. Traumatic glenohumeral bone defects and their relationship to failure of arthroscopic Bankart repairs: Significance of the inverted-pear glenoid and the humeral engaging Hill-Sachs lesion. \textit{Arthroscopy} 2000;16:677-694.
6. Shaha JS, Cook JB, Song DJ, et al. Redefining “critical” bone loss in shoulder instability: Functional outcomes worsen with “subcritical” bone loss. \textit{Am J Sports Med} 2015;43:1719-1725.
7. Piasecki DP, Verma NN, Romeo AA, Levine WN, Bach BR, Provencher MT. Glenoid bone deficiency in recurrent anterior shoulder instability: Diagnosis and management. \textit{J Am Acad Orthop Surg} 2009;17:482-493.
8. Kwapisz A, Fitzpatrick K, Cook JB, Athwal GS, Tokish JM. Distal clavicular osteochondral autograft augmentation for glenoid bone loss: A comparison of radius of restoration versus Latarjet graft. \textit{Am J Sports Med} 2018;46:1046-1052.
9. Warner JPI, Miller MD, Marks P, Fu FH. Arthroscopic Bankart repair with the Suretac device. Part I: Clinical observations. \textit{Arthroscopy} 1995;11:2-13.
10. Hutchinson JW, Neumann L, Wallace WA. Bone buttress operation for recurrent anterior shoulder dislocation in epilepsy. \textit{J Bone Joint Surg Br} 1995;77:928-932.
11. Latarjet M. Treatment of recurrent dislocation of the shoulder. \textit{Lyon Chir} 1954;49:994-997.
12. Hellet AJ. Coracoid transplantation for recurring dislocation of the shoulder. \textit{J Bone Joint Surg Br} 1958;40-B:198-202.
13. Provencher MT, Frank RM, Golijanin P, et al. Distal tibia allograft glenoid reconstruction in recurrent anterior shoulder instability: Clinical and radiographic outcomes. \textit{Arthroscopy} 2017;33:891-897.
14. Waterman BR, Chandler PJ, Teague E, Provencher MT, Tokish JM, Pallis MP. Short-term outcomes of glenoid bone block augmentation for complex anterior shoulder instability in a high-risk population. \textit{Arthroscopy} 2016;32:1784-1790.
15. Gendre P, Thélu CE, d’Ollonne T, Trojani C, Gonzalez JF, Boileau P. Coracoid bone block fixation with cortical buttons: An alternative to screw fixation? \textit{Orthop Traumatol Surg Res} 2016;102:983-987.
16. Zuckerman JD, Matsen FA. Complications about the glenohumeral joint related to the use of screws and staples. \textit{J Bone Joint Surg Am} 1984;66:175-180.
17. Delaney RA, Freehill MT, Janfaza DR, Vlassakov KV, Higgins LD, Warner JJP. 2014 Neer Award Paper:
Neuromonitoring the Latarjet procedure. J Shoulder Elbow Surg 2014;23:1473-1480.
18. Bhatia S, Frank RM, Ghodadra NS, et al. The outcomes and surgical techniques of the Latarjet procedure. Arthroscopy 2014;30:227-235.
19. Balestro JC, Young A, Maccioni C, Walch G. Graft osteolysis and recurrent instability after the Latarjet procedure performed with bioabsorbable screw fixation. J Shoulder Elbow Surg 2015;24:711-718.
20. Haeni DL, Opsomer G, Sood A, et al. Three-dimensional volume measurement of coracoid graft osteolysis after arthroscopic Latarjet procedure. J Shoulder Elbow Surg 2017;26:484-489.
21. Di Giacomo G, Costantini A, de Gasperis N, et al. Coracoid graft osteolysis after the Latarjet procedure for anteroinferior shoulder instability: A computed tomography scan study of twenty-six patients. J Shoulder Elbow Surg 2011;20:989-995.
22. Zhu YM, Jiang CY, Lu Y, Li FL, Wu G. Coracoid bone graft resorption after Latarjet procedure is underestimated: A new classification system and a clinical review with computed tomography evaluation. J Shoulder Elbow Surg 2015;24:1782-1788.
23. Amar E, Konstantinidis G, Coady C, Wong IH. Arthroscopic treatment of shoulder instability with glenoid bone loss using distal tibial allograft augmentation: Safety profile and short-term radiological outcomes. Orthop J Sports Med 2018;6. 2325967118774507.
24. Scheibel M, Kraus N, Diederichs G, Haas NP. Arthroscopic treatment of chronic anteroinferior glenoid defect using an autologous tricortical iliac crest bone grafting technique. Arch Orthop Trauma Surg 2008;128:1295-1300.
25. Shah AA, Butler RB, Romanowski J, Goel D, Karadagli D, Warner JJP. Three-dimensional complications of the Latarjet procedure. J Bone Joint Surg Am 2012;94:495-501.
26. Lafosse L, Boyle S. Arthroscopic Latarjet procedure. J Shoulder Elbow Surg 2010;19:2-12 (suppl).
27. Taverna E, Ufenast H, Broffoni L, Garavaglia G. Arthroscopically assisted Latarjet procedure: A new surgical approach for accurate coracoid graft placement and compression. Int J Shoulder Surg 2013;7:120-123.
28. Shin JJ, Hamamoto JT, Leroux TS, et al. Biomechanical analysis of Latarjet screw fixation: Comparison of screw types and fixation methods. Arthroscopy 2017;33:1646-1653.
29. Provencher MT, Aman ZS, LaPrade CM, et al. Biomechanical comparison of screw fixation versus a cortical button and self-tensioning suture for the Latarjet procedure. Orthop J Sports Med 2018;6. 2325967117777842.
30. Chalmers PN, Hillyard B, Kawakami J, et al. Double-loaded suture anchors in the treatment of anteroinferior glenohumeral instability. JSES Int 2020;4:587-591.
31. Saleky B, Hapa O, Isin Y, Guvençer M, Havıççoğlu H, Uzun B. Suture anchor fixation strength in the Latarjet procedure: A biomechanical study in cadavers. Eur J Orthop Surg Traumatol 2019;29:1667-1672.
32. Hamamoto JT, Frank RM, Higgins JD, Provencher MT, Romeo AA, Verma NN. Shoulder arthroscopy in the lateral decubitus position. Arthrosc Tech 2017;6:e1169-e1175.
33. Lo IKY, Parten PM, Burkhart SS. The inverted pear glenoid: An indicator of significant glenoid bone loss. Arthroscopy 2004;20:169-174.
34. Hurley ET, Matache BA, Wong I, et al. Anterior shoulder instability part II—Latarjet, remplissage, and glenoid bone-grafting—An international consensus statement. Arthroscopy 2022;38:224-233.e6.
35. Wong I, John R, Ma J, Coady CM. Arthroscopic anatomic glenoid reconstruction using distal tibial allograft for recurrent anterior shoulder instability: Clinical and radiographic outcomes. Am J Sports Med 2020;48:3316-3321.
36. An VVG, Sivakumar BS, Phan K, Trantalis J. A systematic review and meta-analysis of clinical and patient-reported outcomes following two procedures for recurrent traumatic anterior instability of the shoulder: Latarjet procedure vs. Bankart repair. J Shoulder Elbow Surg 2016;25:853-863.
37. Alvi HM, Monroe EJ, Muriuki M, Verma RN, Marra G, Saltzman MD. Latarjet fixation: A cadaveric biomechanical study evaluating cortical and cannulated screw fixation. Orthop J Sports Med 2016;4. 2325967116643533.
38. LeBus GF, Chahla J, Sanchez G, et al. The Latarjet procedure at the National Football League Scouting Combine: An imaging and performance analysis. Orthop J Sports Med 2017;5. 23259671177726045.
39. Hassebrock JD, Starkweather JR, Tokish JM. Arthroscopic technique for bone augmentation with suture button fixation for anterior shoulder instability. Arthrosc Tech 2020;9:e97-e102.
40. Tompane T, Carney J, Wu WW, et al. Glenoid bone reactivation to all-soft suture anchors used for shoulder labral repairs. J Bone Joint Surg Am 2018;100:1223-1229.