Body language signals for rodent social communication
Christian L Ebbesen1,2 and Robert C Froemke1,2,3

Integration of social cues to initiate adaptive emotional and behavioral responses is a fundamental aspect of animal and human behavior. In humans, social communication includes prominent nonverbal components, such as social touch, gestures and facial expressions. Comparative studies investigating the neural basis of social communication in rodents has historically been centered on olfactory signals and vocalizations, with relatively less focus on non-verbal social cues. Here, we outline two exciting research directions: First, we will review recent observations pointing to a role of social facial expressions in rodents. Second, we will review observations that point to a role of ‘non-canonical’ rodent body language: body posture signals beyond stereotyped displays in aggressive and sexual behavior. In both sections, we will outline how social neuroscience can build on recent advances in machine learning, robotics and micro-engineering to push these research directions forward towards a holistic systems neurobiology of rodent body language.

Facial expressions and whisking
Mice and rats display a variety of facial expressions. Both mice [9] and rats [10] make stereotyped expressions (‘grimaces’) with their facial musculature in response to pain and stress: tightening of orbital muscles, squinting eyes and retraction of the ears (Figure 1a). Rats also make facial expressions (forward movement and blushing of the ears) [11] (Figure 1b) and jumps [12] when experiencing positive emotions, such as after tickling. In wild mice, ear posture correlates with their behavior in tests that are thought to measure the animals’ emotional state: approaching a novel odor and exploring the open arms in an elevated plus-maze. Mice with retracted ears behave more cautiously than mice with their ears in an upright, forward position [13]. Rats also display different facial expressions when presented with taints that evoke different emotional responses (e.g. bitter, unpleasant quinine, and sweet and palatable sucrose) [14,15].

If rodent facial expressions differ between emotional states, that raises the possibility that these facial cues could be perceived by conspecifics and play a role in social communication. Increasing evidence across species suggests that facial expressions are displayed in social situations, and distinguishable by conspecifics. For example, ear wiggling is a social signal displayed by female rats during courtship [16,17]. Naked mole rats — a eusocial rodent species — have an extensive vocabulary of non-verbal body language, including elaborate facial interactions (e.g. head-on pushing, mouth gaping and tooth fencing) [18]. These facial interactions are involved in the control of ‘lazy’ workers [19] and help maintain reproductive suppression [20]. A landmark study found that when an intruder mouse was placed into the cage of

Introduction
Many social cues are nonverbal (a smile, a raised eyebrow, a shrug). A failure to correctly process and interpret social cues is thought to underlie social dysfunction in many neuropsychiatric conditions, from negatively biased interpretations of social signals in depression [1] to a near-complete breakdown of social understanding in some individuals with autism spectrum disorder [2]. A comparative investigation in rodents — where we have advanced tools for monitoring and manipulating neural activity during behavior — could be a powerful way to advance our understanding of the evolution and function of neural circuits for processing social cues [3].

In general, we know little about the use of posture and gesture in orchestrating social group behavior. A comparative study of body language is an old idea [4], but the systems neuroscience of rodent body language is still in early days. It is clear that rodents make use of stereotyped body postures and movements in sexual courtship (e.g. female rats darting) and in aggression and dominance (e.g. rat boxing) [5]. However, compared to our detailed knowledge about the processing of socially significant olfactory signals in aggressive [6], sexual [7] and parental [8] behaviors, we know much less about how body language signals (touch, movement, postures) are integrated by the rodent brain.
Rodent facial expressions (a) Pain grimace in rats: Orbital tightening, cheek flattening, folded, curled ears angled forwards or outwards [10]. (b) Altered facial expression after tickling: Ear blushing and ears angled backwards [11]. (c) In a mouse resident-intruder paradigm, the resident and intruder mice display two different facial expressions maintained during fighting: The resident displays tightened eyes and flattened ears, while the intruder displays widened eyes and erect ears [21]. (d) Examples of distinguishable facial expressions in mice: expressions after drinking sweet and bitter liquid, pain and freezing behavior [22]. (e) In rats, whiskers are more protracted in social facial interactions before an aggressive interaction than in social facial interactions before nonaggressive interactions. [26]. Figure permissions pending. Permissions: (a) Reproduced from Ref. [10] under a CC BY 2.0 license, (b) reproduced from Ref. [11] under a CC BY 4.0 license, (c) reproduced from Ref. [21] with permission from Elsevier (d) reproduced from [22] with permission from AAAS (e) reproduced from Ref. [26] with permission from APA.
the resident mouse, the two mice displayed two different facial expressions, which they maintained, even during fighting: The resident displayed tightened eyes and flattened ears, while the intruder displayed widened eyes, erect ears and an open mouth [21**] (Figure 1c). A recent study found that it was possible to train an image classifier to distinguish between facial expressions in head fixed mice in a wide range of situations (aversive and palatable tastants, LiCl-induced nausea, painful electric shock, freezing) [22] (Figure 1d).

Rats are nocturnal [23], have modest visual acuity [24], and often encounter conspecifics head-on in burrows [25]. This suggests that ethologically they more often would sense faces of conspecifics with the whiskers rather than by vision. Beyond palpating the face of a social interaction partner, the whiskers themselves might also convey information, social or otherwise. During rat social facial interactions, whiskers are more protracted in aggressive than in nonaggressive interactions (Figure 1c), and female rats whisk with a lower amplitude when meeting male conspecific than when meeting female conspecific [26]. During social facial interactions, cessation of sniffing by a subordinate rat decreases the likelihood that a dominant rat will initiate antagonistic behaviors [27]. It is still unclear what aspects of rat behavior communicate subordination during such a facial interaction: The cessation of sniffing itself [28], altered patterns of ultrasonic vocalizations [29,30], whisking [26], body posture [23] or — perhaps — some combination of the recently described, sniff-locked nose-twitching and head-bobbing [31**].

Positioning, motion, and asymmetry of the mouth, nose and whiskers [32,33] and rapid whisker twitches (whisker ‘pumps’) [34*] are predictive of upcoming motor behavior (e.g. running, turning). Whisker pumps might serve as a social cue during facial interactions. Rats have also been shown to display contagious yawning [35]. Yawning is a social signal in many species [36], but we know little about if and how yawning functions as a social signal in rats [37].

Mice also spontaneously engage in social facial whisker touch [38] and neonatal whisker trimming leads to social behavior deficits in adult [39]. Mice also perform an interesting whisking-related social dominance behavior referred to as ‘whisker barbering’: dominant mice will pin down subordinates, grab their vibrissae by the teeth and pull them out by the roots with a hard tug [40,41].

Detailed knowledge about the facial musculature [42–47], 3D facial anatomy [48–50], and whisker biomechanics [51,52] (Figure 2a–d) might together provide an understanding of the topology of facial expression space, and predict the range of facial expressions that a rodent can produce [47,53−55]. This would enable the description of a kind of ‘natural scene statistics’ of facial expressions, a powerful analytical framework pioneered in classic investigations of visual cortex [56]. Building on recent approaches in robotic methods of delivering complex, 3D sensory stimuli to whiskers [57,58,59*] (Figure 2e), it might be possible to present complex, naturalistic, and/or full-field patterns of whisker stimulation to estimate facial expression receptive fields in the whisker system. Such an approach would allow us to understand if and how the neural encoding of socially significant whisker stimuli [30,60−63] differ from the encoding of non-social stimuli, such as objects and textures [64,65].

Engineering advances in miniaturization make it now possible to record gaze direction and eye movements — and likely also whisker movements — by head-mounted cameras in freely-moving rats [66*] and mice [67,68] (Figure 2f). Using this approach, it was recently reported that mice close their eyes when a conspecific is within close distance [69**] — an unexpected and interesting observation in the context of making and recognizing facial expressions. With miniaturized, head-mounted thermocouples, accelerometers, gyroimeters, and Hall-effect probes, it is possible to quantify sniffing patterns, nose movements, and head-bobbing in freely-moving animals [27,31**] (Figure 2g–h). It remains unclear how these aspects of facial behavior vary during social interactions. Alternatively to using head-mounted cameras to record facial behavior in freely moving animals, a recently described method combines real-time tracking with motorized cameras to capture high-resolution ‘close-up’ images of animals moving in a large 3D arena [70*].

Quantifying whisker movements during social facial interactions remains a challenge. Whisker tracking of solitary animals has reached high levels of accuracy. In head-fixed mice with most whiskers trimmed, simultaneous measurements of the three-dimensional shapes and kinematics of eight whiskers can be obtained automatically [71]. However, in socially interacting animals (with full, un-trimmed whisker fields), overlapping and occluded whiskers remain a major problem, and thus far social whisking patterns have either been tracked manually [26,30,60,61,63] or approximated by automatically tracking the average movement of the whisker field as a whole [61]. A promising path towards automatic whisker tracking in socially-interacting animals is to combine recent advances in automatic whisker tracking in freely-moving animals [72] (Figure 2i) with techniques for tracking the movement of single whiskers despite overlaps and occlusions by painting single whiskers with a fluorescent dye [73,74] (Figure 2j).

Posture and movement as body language signals

A role of body language in signaling distress

Several studies have shown that rats will actively help conspecifics in distress. Rats will press a lever to lower a
distressed and wriggling rat dangling in a harness (prod-
ded with a sharp pencil if it did not exhibit sufficient signs
do discomfort) [75] (Figure 3a), rats will press a lever to
remove a conspecific from a water tank [76], and rats will
leave a dark and comforting hiding place and stay in a
brightly lit, open arena to ensure that a nearby conspecific
does not receive a painful shock [77] (Figure 3b). More
recent studies have shown that rats [78] and mice [79] will
open a door to release a conspecific trapped in a small
plastic tube (Figure 3c), and that rats will open a door that
lets a cagemate escape a pool of water [80] (Figure 3d).

What drives the behavior of the helper animal? In rats,
restraint-tube-opening behavior depends on familiarity with

the strain of rat in distress [81]. Behavioral changes occur
after drugging the helper rat, with benzodiazepine sedation
leading to longer opening latency [82] and heroin
administration abolishing opening [83]. Door-opening
latency changes if there are multiple potential helpers,
and depends on if these ‘bystanders’ are sedated [84]. In
voles, oxytocin receptor knockout delays door-opening for
a soaked conspecific [85]. Multiple studies have varied the
rescue paradigms to clarify what emotional states might
motivate door opening and helping behavior. Helpers might
be motivated by empathic concern for the distressed, may
desire rewarding social interactions, open the door out
of curiosity or boredom, or might be irritated by aversive cues
from the trapped animal, among other hypotheses [86–95].
Relatedly, the behaviors of the distressed animal might also be an important factor. Trapped animals produce lower-frequency distress calls in the first restraint sessions [78,81], but might also display other signs or signals of stress, such as seen in pain and sickness [23,96]. This raises the possibility that other signals such as olfactory cues [97,98] or elements of body language such as gesture and posture could be used to signal distress and solicit help. Several studies have found rodents are indeed sensitive to body language signals of distress, such as freezing [99,100], and rats prefer a room decorated with images of conspecifics in a neutral pose rather than a room decorated with images of conspecifics in pain (i.e. facial grimaces and hunched posture) [101**].

Controlled experiments involving robotic animals [102] or virtual animals [103] is powerful way to probe the sensitivity of animals to visual social stimuli. Some studies have simulated body language distress signals by robotic animals [102]. Rats will work to release a moderately rat-like robot from a restraint tube, and rats seem to discriminate between robots based on behavior [104]. There is ongoing work to develop more complex rat robots, capable of realistic postures and movement patterns [105,106*,107].

Instructing social partners through body language
Several studies have investigated the behavior of rats in artificial social games which also might involve body language. Rats will cooperate at rates above chance level in iterated prisoner’s dilemma games [108–110], but the interpretation of such games is complex, since an iterated prisoner’s dilemma can be dominated without any theory of mind [111]. Body language is usually not quantified but a classic study reported that cooperation would break down if the animals could not see each other, and that rats would engage in specific left-turning or right-turning feint behaviors apparently to influence the behavior of the partner animal [108]. The importance of visual observation has been highlighted in another social coordination nose-poke task [112].

Multiple studies have found that rats will work to deliver food to conspecifics [113–116,117*,118], and that – when given the option to donate food to conspecifics at no extra cost to themselves – rats will prefer that conspecifics receive food also [119,120,121*,122]. Many of these
studies report observations that are in line with the supposition that rats use body language signals to communicate what they want the ‘chooser’ animal to do, and that the chooser animal is sensitive to these signals. In one study, the likelihood of donating food by the chooser rat incurring no extra cost, was modulated by the display of food-seeking behavior by the prospective recipients, expressed as poking a nose port by social interactions through a mesh [121]. In another study, where rats could work to deliver food to a conspecific only, subject rats provided food correlated with the intensity of movements and body postures displayed by the prospective recipients. These putative body language signals included stretching their paws towards the food, sniffing through the mesh in the direction of the food, and other attention-grabbing behaviors directed at the subject rat [117].

Studies investigating the behavior of groups of mice in complex environments have found marked individual differences in displays of social postures and movements [123,124], and patterns in social interaction partnering [125–128]. However, while postures and movement patterns correlate with social dominance [123,129], it is still unclear if and how body language cues might help establish, maintain, or adjust the dominance hierarchy [123] or social networks of co-habitation [125].

Individual differences in movement and postures during co-housing or colony dynamics might mirror the observation that animals tend to take on different behavioral roles. When rats are moving together in dyads, some become ‘leaders’ and some become ‘followers’ [130]. In a test where rats have to dive underwater to collect morsels of food, some become ‘divers’ (swimming and collecting food), and other rats become non-divers which wait for the other animal to bring them food [131,132]. In wild mice performing collective nest building, some mice will become nest-builders (carrying out the vast majority of the work in collecting nesting material) and some mice will only participate weakly or not at all [133].

One important set of behavioral roles in group-housed animals is co-parenting and caretaking of infant rodent pups. Parenting behavior and active care for pups is orchestrated by innate circuits to some degree [8]. In the context of body language, however, maternal female mice can solicit the help of sexually experienced males [134–136] and virgin females [137–139] for aspects of pup caretaking (e.g. nest building, pup retrieval, crouching, and pup grooming). The parental behaviors expressed by males and female virgins develop with exposure or experience with pups (concaveation) and during co-housing with a dam and litter. The presence of experienced dams accelerates concaveation [139,140] indicating that dams engage in some behaviors or interactions that affect the emergence of co-parenting abilities in males or virgin females. Olfactory and auditory cues from the dam play a role. Blockade of these signals delay the development of co-parenting in males and — even without visual input from the dam — replay of dam vocalizations or dam odors can induce parenting in males [135]. Body language and motor activity of the dam also contribute, as dams will actively engage virgins in maternal care by ‘shepherding’ the virgins to the nest and pups. Furthermore, dams demonstrate maternal behavior in spontaneous pup retrieval episodes that allow virgin females to learn by observation [140]. Active social engagement and demonstration by dams might be a key driver in facilitation of social learning of co-parenting. Free-living, wild dams selectively choose to communally nurse [141,142], but we do not yet know the role of body language signals in coordinating co-parenting between dams in outdoor colonies.

The apparently active demonstration of parenting is in contrast to studies reporting that wild rats do not rapidly acquire new foraging techniques by observation, even if they are performed by conspecífics [143]. It is, however, in line with other reported examples of rodents learning by observation [144]. For example, rats can learn to solve a Morris water maze by observing a trained conspecific swim to the hidden platform [145], mice can learn to solve a complex ‘puzzle box’ by observing conspecifics [146], and rats will imitate joystick movements that they have seen a conspecific make to receive a food reward (even though their joystick movements do not actually affect their own reward at all) [147].

Pose estimation and quantitative analysis of body language

Methodological advances in computer vision and machine learning provide new ways to monitor and analyze body language signals for social behavior. Multiple open source packages for machine-learning based markerless tracking of posture and body parts in single animals have recently been developed, including DeepLabCut [148], LEAP [178], DeepPoseKit [150], OptiFlex [151], DeepGraphPose [152] and others [153]. However, translating single animal tracking to multiple animals is not straightforward, for at least two reasons. First, the camera view on a specific animal might be occluded by other animals (especially if any have neural implants). Second, even if all body parts are visible, the body parts have to be ‘grouped’ correctly and assigned to the correct animal.

One straightforward way to distinguish two interacting animals is to use animals that are physically marked or of a different coat color [154–156] (Figure 4a–c). This is a robust method, but excludes some use-cases (e.g. studies of behavioral genetics that require a specific background or where it is important that animals come from the same litter). Another method have used deep neural networks to recognize body parts and metrics of spatiotemporal...
New computational methods for automatically estimating body postures in socially interacting rodents (a,b) Disambiguating body parts of two mice by their coat color (a: [155], b: [156]). (c) Imaging mice of different coat colors and estimating their body postures by approximating the animals as ellipses in a simultaneously acquired depth image (only depth image shown) [154]. (d) Tracking animals of the same coat color by using a spatiotemporal loss function to assign detected body parts to the correct animals [149*] (e) Tracking the identity of multiple animals by training a network to recognize subtle differences in each individual animal’s appearance [158*] (f) Combining depth videography with implanted RFID-chips to track and disambiguate multiple mice in real time [166] (g) Combining depth videography and physical modeling in a computational tool for semi-automatic tracking of body postures in interacting rats [161,163**]. (h) Combining deep learning, physical modeling and a particle-filter based tracking algorithm with spatiotemporal constraints to automatically track the body postures of interacting mice, compatible with electrophysiology (robust to occlusions and camera artifacts due to wires and a neural recording implant carried by the mouse on the right) [167*]. Permissions: (a) With permission from S. R. O. Nilsson & S. A. Golden. (b) With permission from A. Kennedy. (c) reproduced from [154] with permission from National Academy of Sciences (d) With permission from T. Pereira & J. Shaevitz. (e) With permission from the idtracker.ai team, (f) reproduced from Ref. [166] with permission from Springer Nature, (g) reproduced from Ref. [163**] under a CC BY license.

continuity to group body parts and maintain tracking of animal identities, in unmarked animals of the same coat color [149**] (Figure 4d). Another approach maintains the identities of multiple animals by training a network to recognize subtle differences in the appearance of individual animals [157,158**,159*] (Figure 4e). Another approach combines the use of implanted RFID chips [126,160] and the use of depth videography [154,161,162,163**,164,165*] to track movements patterns and body postures in multiple mice, in real time [166] (Figure 4f). The RFID-based identity tracking provides a robust cross-validation of animal position (when sufficiently separated), but may interfere with electrophysiological recordings. We have taken a related approach, building on pioneering work in tracking by physical modeling in rats [161,163**] (Figure 4g), that combines deep learning-based keypoint detection and depth videography in a robust tracking algorithm capable of automatically tracking a 3D model of the posture of interacting mice. This method is compatible with electrophysiology (robust to occlusions and camera artifacts due to wires and a neural recording implant carried by the mouse on the right) (Figure 4h) [167*].

Beyond recording raw postural and movement data, machine learning methods have also provided new ways to segment raw tracking data into behavioral categories in a principled and objective manner, and to discover behavioral structure — the building blocks of body language — in a purely data-driven way. The latter is especially promising, because it could allow discovery of new postures and movement patterns, purely from statistical properties in the behavioral kinematics and agnostic to potential observer bias.

A very effective way of automatically segmenting raw tracking data is to use a supervised approach and train a classifier to reproduce human annotation of behavioral categories [154–156]. This approach will, when using modern, deep-leaning based classifiers and large training sets [155,156], provide a precise way to automatically annotate behavioral data. Unsupervised approaches learn
the behavioral categories from the data itself. Tracked behavioral features from an animal (e.g. 3D coordinates of many body parts) is a high-dimensional time series. To find structure in such, it is possible to draw from a recent work in laboratory studies of worm and insect behavior ([168,169]) and field ethology [170,171].

One approach to discover behavioral categories is to look for ‘building blocks’ of the observed behaviors that re-occur. To this end, an elegant and robust approach is to perform a nonlinear projection from the high-dimensional space of all tracked body part coordinates (often augmented with derived features, such as time derivatives and spectral components) down to a low-dimensional 2D [172**,173–175,176**,177–180] or 3D manifold [181,182] in a manner that preserves local similarity (e.g. t-SNE [183]). On this low-dimensional manifold, similar, re-occurring movements and postures will form clusters, that can be identified by density-based clustering algorithms. The generated clusters are manually inspected and curated (e.g. merged or split) and assigned names (e.g. ‘locomotion’, ‘grooming’, etc.).

Another approach to discover behavioral categories is to define a generative model — for example, some flavor of state space model — and fit this model to the high-dimensional time series of tracked body features [165*,167*,184,185**,186,187**,188–190,191*,192]. This approach is attractive, because it is highly expressive: It is possible to define very complex models, for example, by adding autoregressive terms [165*], by allowing for complex hidden dynamics [193*], by incorporating nested structures [191*], and by including nonlinear transformations [185**]. It is also possible to explicitly incorporate knowledge about the animals anatomy, by writing a full generative model of the animal’s body itself, akin to [175,194**]. However, these methods also have drawbacks. First, complex models quickly become prohibitively computationally expensive to fit to data. Fitting can be accelerated, for example, by using fast modern and efficient sampling algorithms [195] or GPU-accelerated variational inference [167*], but even these methods often show poor mixing/convergence for complex models. Second, even if a model is well fit to data, there is no principled way to discover what the ‘true’ latent structure is (e.g. the true number of hidden states or transition graph structure) [184,196–198]. Thus, for example, the number of hidden states in a state space model of behavior — that is, the number of different behavioral categories — has to be set using a heuristic, for example, by fitting a model with the number of latent states as a free parameter and then choosing a cutoff [165*,190,192], by fixing the number of states based on inspection of raw data and the desired coarseness of the model [167*,188,191*], or — in a very elegant approach — by comparing models with different latent structure according to their ability to capture multiple aspects of the observed data, such both the most likely state and transitions between states [185**].

Machine learning based approaches for behavioral tracking and analysis are in continual development along several directions that are of particular interest to the analysis of socially-interacting animals. For example, there are several methods for estimating 3D locations of body parts by triangulation of multiple simultaneous 2D views of the animal [199–202], but such triangulation methods are sensitive to occlusions and thus difficult to use in interacting animals. A recent report showed, that after having collected one good ‘ground-truth’ multi-view 3D dataset, it was possible to train a network to predict the 3D posture of an animal from a single 2D view only [203**]. Building upon work in humans, it might even be possible to learn 3D body skeletons from only 2D views, that is, without the need to capture a ground truth 3D data from multiple cameras in the first place [204*]. Such methods for estimating the 3D posture from a single 2D view could be a very powerful way to deal with camera occlusions in studies of interacting animals.

An elegant way to improve unsupervised behavioral clustering is to do everything in a single operation, whereby a deep neural net simultaneously learns to project the data onto a low-dimensional manifold and estimate an optimal number of latent clusters according to some objective function [205*,206*]. Another promising approach is to use a dictionary-based approach to identify behavioral categories as sequence ‘motifs’ in the raw tracking data [207**].

When analyzing the behavior of single animals, some studies have eschewed body part tracking altogether and identified behavioral categories by fitting state space models directly to video data [165*,190,192,208] or by training a network to replicate human labeling directly from raw video [216]. It would be very useful if these approaches can be modified to handle multiple animals in the same video. This challenge is difficult, not just due to occlusions, but because multiple animals are interaction and thus will have complicated between-animal statistics. Writing a generative model of two animals is more challenging than utilizing two copies of a generative model of a solitary animal. In fact, to understand the structure of rodent body language, and its neural basis, these between-animal statistics are critical to document in high resolution. For example, running towards a conspecific or running away from a conspecific have a very different social ‘meaning’, but may be identical in the kinematic space the single animal, if that animal is modeled in isolation.

Mathematical methods for understanding the behavior of interacting animals are still in active development, with many important and open questions to work on. Recent reports have used unsupervised methods to elucidate how the behavior of interacting Drosophila depends on the relative spatial location of the interacting animals [177]...
and the animals’ behavioral state (e.g. courting or not) [176**]. In ethology, there is related work in the use of information theory [209], modeling [210] and network theory [211*] to understand the role of social interactions in determining collective movement, for example, in fish [212] and baboons [213]. One recent study combined information-theory and presentation of robotic conspecifics to understand the statistics of dyadic interactions in zebrafish [214**] and another study used purely statistical methods to discover that rats rely on social information from conspecifics when exploring a maze [215*].

Conclusions
As outlined above, some methods for automated behavioral analysis — for example, those that discover behavioral structure directly from raw video [165*,190,192,208] — do not return an explicit physical ‘body model’ of the animal; only discrete behavioral categories. For many biological questions, such an ‘ethogram-centric’ view has no drawbacks, but when relating neural data to behavior, continuous information about movement and posture kinematics can be critical. Neural activity is modulated by motor signals [217–219] and vestibular signals [220–222] in many brain areas. To understand how neural circuits process body language cues during social interactions, ‘low-level’ motor and posture related confounds must be regressed out. For example, it is in principle not enough to know that activity in a brain region is different during mutual allogrooming than during boxing to conclude that neurons in this brain region is responding to a difference in social ‘meaning’ (e.g. aggressive, but not agonistic behaviors). Differences in neural activity between behavioral categories might just as well be related simply to ‘low-level’ differences in movements and postures made by the animals in those different behavioral categories.

Regressing out confounding low-level motor and postural signals is a difficult task. Without a body model, it is possible to regress out some variance by regressing the neural activity onto variance in the raw video itself, for example, regress out activity related to face movement by regressing onto principal components of a video of the face [223,224*]. However, movement and posture signals are generally aligned to the animals own body in some form of egocentric frame of reference, for example, to muscles, posture or movement trajectories [225]. The transformation from body to video is highly non-linear and difficult to discover automatically.

There are related complexities when interpreting differences in neural activity in social situations that are associated with sensory input, for example, social events that include vocalizations and social touch. Social touch widely modulates the brain from the hypothalamus [226] to frontal and sensory cortices [62]. Moreover — in context of understanding the structure of body language — it is likely essential to know if a close contact between animals included a social touch or not. While behavioral tracking methods that can estimate the animal 3D posture as a ‘skeleton’ of body points are suited for regressing out signals due to the animals’ own posture and movement, a full, deformable 3D surface model of the animal is required to measure social body touch. To this end, there are also promising machine learning methods on the horizon. For example, starting from a detailed, deformable 3D model of the animal’s shape and color, it is possible to extract a detailed 3D model of an animal’s body surface from a single 2D view, even in complex images [227*,228–231,232**].

Rodents display a wide range of facial expressions (grimaces and whisker movements), including during social interactions. Multiple observations suggest that body postures and movements of conspecifics function as an important social signal. Recent major advances machine-learning methods for behavioral analysis and microengineering of behavioral sensors are making it possible to quantify facial expressions and body postures during complex, social interactions. These data will reveal new questions about the neural basis of social cognition in rodents to understand the comparative neurobiology of body language.

Conflict of interest statement
Nothing declared.

Acknowledgements
This work was supported by The Novo Nordisk Foundation (C.L.E.), the BRAIN Initiative (NSI07616 to R.C.F.) and a Howard Hughes Medical Institute Faculty Scholarship (R.C.F.).

References and recommended reading
Papers of particular interest, published within the period of review, have been highlighted as:

- of special interest
- - of outstanding interest

1. Weightman MJ, Air TM, Baune BT: A review of the role of social cognition in major depressive disorder. Front Psychiatry 2014, 5:179.

2. Klin A, Jones W, Schultz R, Volkmar F, Cohen D: Defining and quantifying the social phenotype in autism. Am J Psychiatry 2002, 159:895-908.

3. Anderson DJ, Adolphs R: A framework for studying emotions across species. Cell 2014, 157:187-200.

4. Darwin C: The Expression of the Emotions in Man and Animals. London: John Murray, Albemarle Street; 1872.

5. Schweinfurth MK: The social life of Norway rats (Rattus norvegicus). eLife 2020, 9:e50420.

6. Anderson DJ: Circuit modules linking internal states and social behaviour in flies and mice. Nat Rev Neurosci 2016, 17:692-704.

7. Lenschow C, Lima SQ: In the mood for sex: neural circuits for reproduction. Curr Opin Neurobiol 2020, 60:155-168.
8. Kohl J: Parenting – a paradigm for investigating the neural circuit basis of behavior. Curr Opin Neurobiol 2020, 60:84-91.

9. Langford DJ, Bailey AL, Chanda ML, Clarke SE, Drummond TE, Echols S, Glick S, Ingrao J, Klassen-Ross T, LaCroix-Fralish ML et al.: Coding of facial expressions of pain in the laboratory mouse. Nat Methods 2010, 7:447-449.

10. Sotocena SG, Sorge RE, Zaloum A, Tuttle AH, Martin LJ, Wieskopf JS, Mapplebeck JC, Wei P, Zhan S, Zhang S et al.: The rat grimace scale: a partially automated method for quantifying pain in the laboratory rat via facial expressions. Mol Pain 2011, 7:1448-8069-7-55.

11. Finlayson K, Lampe JF, Hintze S, Würbel H, Melotti L: Facial indicators of positive emotions in rats. PLoS One 2016, 11:1-24.

12. Ishiyama S, Brecht M: Neural correlates of ticklishness in the rat somatosensory cortex. Science 2016, 354:757-760.

13. Lecors B, Féron C: Correlates between ear postures and emotional reactivity in a wild type mouse species. Behav Processes 2015, 120:25-29.

14. Grill HJ, Norgren R: Chronically decerebrate rats demonstrate satiation but not bash shyness. Science 1978, 201:267-269.

15. Grill HJ, Norgren R: The taste reactivity test I. Mimetic responses to gustatory stimuli in neurologically normal rats. Brain Res 1978, 143:263-279.

16. Erksine MS: Solicitation behavior in the estrous female rat: a review. Horm Behav 1989, 23:473-502.

17. Vreeburg JT, Omms MP: Induction of ear wiggling in the estrous female rat by gonadectomy treated rats with androgens and estrogens. Horm Behav 1985, 19:231-236.

18. Lacey EA, Alexander RD, Braude SH, Sherman PW, Jarvis JUM: In: An Ethogram for the Naked Mole-Rat: Nonvocal Behaviors. In: The Biology of the Naked Mole-Rat. Edited by Sherman PW, Jarvis 2008.2008:242 alexander RD. Princeton: Princeton University Press; 2017;

19. Reeve HK: Queen activation of lazy workers in colonies of the eusocial naked mole-rat. Nature 1992, 358:147-149.

20. Clarke FM, Faulkess CG: Dominance and queen succession in captive colonies of the eusocial naked mole-rat, Heterocephalus glaber. Proc R Soc Lond B Biol Sci 1997, 264:993-1000.

21. Defensor EB, Corley MJ, Blanchard RJ, Blanchard DC: Facial expressions of mice in aggressive and fearful contexts. Physiol Behav 2012, 107:683-685.

22. Described facial expressions in socially interacting mice.

23. Dolensek N, Gehlach DA, Klein AS, Gogolla N: Facial expressions of emotion states and their neuronal correlates in mice. Science 2020, 368:89-94.

24. Investigated the neural correlates and visual discriminability of a wide range of mouse facial expressions.

25. Barnett SA: The Rat: A Study in Behavior. Chicago: University of Chicago Press; 1975.

26. Prusky GT, West PWR, Douglas RM: Behavioral assessment of visual acuity in mice and rats. Vision Res 2000, 40:2201-2209.

27. Blanchard RJ, Dulloog L, Markham C, Nishimura O, Nikulina Compton J, Jun A, Han C, Blanchard DC: Sexual and aggressive interactions in a visible burrow system with provisioned burrows. Physiol Behav 2001, 72:245-254.

28. Wolfe J, Mende C, Brecht M: Social facial touch in rats. Behav Neurosci 2011, 125:900-910.

29. Wesson DW: Sniffing behavior communicates social hierarchy. Curr Biol 2013, 23:575-580.

30. Wesson DW: Response to Assini et al. Curr Biol 2013, 23:R997-R998.

31. Assini R, Srotin YB, Laplagne DA: Rapid triggering of vocalizations following social interactions. Curr Biol 2013, 23: R996-R997.

32. Rao RP, Mielke F, Bobrov E, Brecht M: Vocalization-whisking coordination and multisensory integration of social signals in rat auditory cortex. elife 2014, 3:1-20.

33. Kumikova A, Moore JD, Liao SM, Deschénes M, Kleinfeld D: Coordination of orofacial motor actions into exploratory behavior by rat. Curr Biol 2017, 27:688-696.

34. Used a combination of behavioral and physiological sensors to discover and characterize temporal patterns of synchronization among nose movement, sniffing, whisking and head-bobbing. A major step towards a holistic understanding of rodent facial behavior.

35. Dominia KE, Nashed MA, Sehara K, Oraby H, Larkum ME, Sachdev RNS: Whisking asymmetry signals motor preparation and the behavioral state of mice. J Neurosci 2019, 39:9818-9830.

36. Towal RB, Hartmann MJ: Right-left asymmetries in the whisking behavior of rats anticipate head movements. J Neurosci 2006, 26:8838-8846.

37. Wallach A, Deutsch D, Oram TB, Ahissar E: Predictive whisker kinematics reveal context-dependent sensorimotor strategies. PLoS Biol 2020, 18:e3000571.

38. Identified a new and subtle whisking pattern-- fast whisker ‘pumps’ -- and showed that whisker pumps were predictive of upcoming behaviors.

39. Moyah A, Rivas-Zamudio X, Ugarte A, Eguiar JR, Valencia J: Smell facilitates auditory contagious yawning in stranger rats. Anim Cogn 2014, 18:279-290.

40. Guggisberg AG, Mathis J, Schneider A, Hess CW: Why do we yawn? Neurosci Biobehav Rev 2010, 34:1267-1276.

41. Moyah A, Flores Urbina A, Monjaraz Guzmán E, Walusinska O: Yawning: a cue and a signal. Helioyon 2017, 3:e00437.

42. Heckman JJ, Proville R, Heckman GJ, Azfar A, Celiket I, Engilby C: High-precision spatial localization of mouse vocalizations during social interaction. Sci Rep 2017, 7:3017.

43. Soumiya H, Godai A, Arai H, Mori S, Furukawa S, Fukushima H: Neonatal whisker trimming impairs fear/anxiety-related emotional systems of the amygdala and social behaviors in adult mice. PLoS One 2016, 11:e0158983.

44. Sarna J: The Dallia effect: C57BL6 mice bar whiskers by plucking. Behav Brain Res 2000, 108:39-45.

45. Strozik E, Festing MF: Whisker trimming in mice. Lab Anim 1981, 15:309-312.

46. Haidarliu S, Simony E, Golomb D, Ahissar E: Muscle architecture in the mystacial pad of the rat. Anat Rec 2010, 293:1192-1206.

47. Haidarliu S, Simony E, Golomb D, Ahissar E: Collagenous skeleton of the rat mystacial pad. Anat Rec 2011, 294:764-773.

48. Haidarliu S, Golomb D, Kleinfeld D, Ahissar E: Dorsorostral snout muscles in the rat subserve coordinated movement for whisking and sniffing. Anat Rec 2012, 295:1181-1191.

49. Haidarliu S, Kleinfeld D, Deschénes M, Ahissar E: The musculature that drives active touch by vibrissae and nose in mice. Anat Rec 2014, 00 n/a-n/a.

50. Hill DN, Bermejo R, Zeigler HP, Kleinfeld D: Biomechanics of the vibrissa motor plant in rat: rhythmic whisking consists of triphasic neuromuscular activity. J Neurosci 2006, 26:3438-3455.

51. Belli HM, Bresee CS, Graf MM, Hartmann MJZ: Quantifying the three-dimensional facial morphology of the laboratory rat with a focus on the vibrissae. PLoS One 2018, 13:e0194981.

52. Huet LA, Hartmann MJZ: The search space of the rat during whisking behavior. J Exp Biol 2014, 217:3365-3376.

53. Knutsen PM, Biess A, Ahissar E: Vibrissaal kinematics in 3D: tight coupling of azimuth, elevation, and torsion across different whisking modes. Neuron 2008, 59:35-42.
51. Yang AE-T, Belli HM, Hartmann MJZ: Quantification of vibrissal mechanical properties across the rat mystacial pad. J Neurophysiol 2019, 121:1879-1895.
52. Zweifel NO, Bush NE, Abraham I, Murphy TD, Hartmann MJZ: WHISKIT physics: a three-dimensional mechanical model of the rat vibrissal array. bioRxiv 2019 http://dx.doi.org/10.1101/862839

Brought together knowledge from more than a decade of work on whisker biomechanics and facial anatomy in a computational tool that allows physical simulation of active whisking in a natural environment.

53. Luo YF, Breeze CS, Rudnicki JW, Hartmann MJZ: Constraints on the deformation of the vibrissae within the follicle. BioRxiv 2020, 2020.04.20.050757.
54. Sherman D, Oram T, Deutsch D, Gordon G, Ahissar E, Harel D: Temporal modulation of whisking via the brainstem loop: statechart modeling and experimental validation. PLoS One 2013, 8 e79831-e79831.
55. Simony E, Bagdasarian K, Herfst L, Brecht M, Ahissar E, Golomb D: Temporal and spatial characteristics of vibrissa responses to motor commands. J Neurosci 2010, 30:8935-8952.
56. Geisler WS: Visual perception and the statistical properties of natural scenes. Ann Rev Psychol 2008, 59:167-192.
57. Goldin MA, Harrell ER, Estebanez L, Shulz DE: Rich spatio-temporal stimulus dynamics unveil sensory specialization in cortical area S2. Nat Commun 2018, 9:4053

Used a multi-whisker stimulator system that can move 24 whiskers independently to investigate how spatiotemporal features of whisker stimuli are encoded in secondary somatosensory cortex.

58. Jacob V, Estebanez L, Le Carr J, Tiercelin J-Y, Parra P, Parésys G, Shulz DE: The Matrix: a new tool for probing the whisker-to-barrel system with natural stimuli. J Neurosci Methods 2010, 189:65-74.
59. Ramirez A, Pneumatikakis EA, Merel J, Paninski L, Miller KD, Bruno RM: Spatiotemporal receptive fields of barrel cortex revealed by reverse correlation of synaptic input. Nat Neurosci 2014, 17:866-875

Used a multi-whisker stimulator system that moves nine whiskers independently to characterize the receptive fields of barrel cortex neurons by reverse-correlation of noise stimuli.

60. Bobrov E, Wolfe J, Rao RP, Brecht M: The representation of social facial touch in rat barrel cortex. Curr Biol 2014, 24:109-113.
61. Ebbesen CL, Doron G, Lenschow C, Brecht M: Vibrissa motor cortex activity suppresses contralateral whisking behavior. Nat Neurosci 2017, 20:82-89.
62. Ebbesen CL, Bobrov E, Rao RP, Brecht M: Highly structured, partner-sex- and subject-sex-dependent cortical responses during social facial touch. Nat Commun 2019, 10:1-16.
63. Lenschow C, Brecht M: Barrel cortex membrane potential dynamics in social touch. Neuron 2015, 85:718-725.
64. Maravall M, Diamond ME: Algorithms of whisker-mediated touch perception. Curr Opin Neurobiol. 2014, 25:176-184.
65. Petersen CCH: Sensorimotor processing in the rodent barrel cortex. Nat Rev Neurosci 2019, 20:533-546.
66. Wallace DJ, Greenberg DS, Sawinski J, Rulla S, Notaro G, Kerr JND: Rats maintain an overhead binocular field at the expense of constant fusion. Nature 2013, 498:65-69

Pioneered 3D eye tracking and gaze estimation in behaving rodents.

67. Meyer AF, Poort J, O’Keefe J, Sahani M, Linden JF: A head-mounted camera system integrates detailed behavioral monitoring with multichannel electrophysiology in freely moving mice. Neuron 2018, 100:46-60.e7.
68. Sattler N, Wehr M: A head-mounted multi-camera system for electrophysiology and behavior in freely-moving mice. BioRxiv 2020, 2020.06.30.181412.
69. Meyer AF, O’Keefe J, Poort J: Two distinct types of eye-head coupling in freely moving mice. Curr Biol 2020, 30:2116-2130.e6

Used a head-mounted miniature camera to record eye movements during social interactions in mice.

70. Nourizadon A, Zimmermann R, Ho CLA, Pellat S, Omen Y, Prevost-Solie C, Raymond G, Pifferi F, Aujard F, Herrel A et al.: Ethloop: automated closed-loop neuroethology in naturalistic environments. Nat Methods 2020, 17:1052-1059

Uses real-time tracking to steer motorized ‘close-up’ cameras, that capture zoomed-in images of mouse lemons moving freely in a large 3D behavioral arena.

71. Petersen RS, Rodriguez AC, Evans MH, Campagner D, Loft MSE: A system for tracking whisker kinematics and whisker shape in three dimensions. PLoS Comput. Biol. 2020, 16 e1007402.
72. Gillespie D, Yap MH, Hewitt BM, Driscoll H, Simanaviciute U, Hodson-Tole EF, Grant RA: Description and validation of the LocoWhisk system: Quantifying rodent exploratory, sensory and motor behaviours. J Neurosci Methods 2019, 328 108440.
73. Nashaat MA, Oraby H, Peña LB, Dominiak S, Larkum ME, Sachdev RNS: Pixying behavior: a versatile real-time and post hoc automated optical tracking method for freely moving and head fixed animals. eNeuro 2017, 4 ENEURO.0245-16.2017.
74. Rigosa J, Lucantonia A, Noselli G, Fasshi A, Zorzin E, Manzino F, Pulecchi F, Diamond ME: Dye-enhanced visualization of rat whiskers for behavioral studies. eLife 2017, 6:1-13.
75. Rice GE, Gainer P: “Altruism” in the albino rat. J Comp Physiol
Psychol 1962, 55:123-125

An early study spearheading the investigation of active helping behavior in rats.

76. Rice GE: Aiding responses in rats: not in guinea pigs. Proc Annu Conv Am Psychol Assoc 1965:105-106.
77. Preobrazhenskaya LA, Simonov PV: Conditioned avoidance responses to the pain stimulation of another animal. Sov Psychol 1974, 12:90-101

Uses a clever paradigm, designed to make a rat weigh emotions of feeling dangerously exposed with emotions associated with a conspecific in distress, to discover how different individuals in “helping behavior” correlates with multiple stress markers: thigmotaxis, movement, urination, defecation and pain-induced aggression. Includes a related study in dogs. A must-read

78. Bartal IB-A, Decety J, Mason P: Empathy and pro-social behavior in rats. Science 2011, 334:1427-1430.
79. Ueno H, Suemitsu S, Murakami S, Kitamura N, Wani K, Matsumoto Y, Okamoto M, Ishihara T: Helping-like behaviour in mice towards conspecifics constrained inside tubes. Sci Rep 2019, 9:5817.
80. Sato N, Tan L, Tate K, Okada M: Rats demonstrate helping behavior toward a soaked conspecific. Anim Cogn 2015, 18:1039-1047.
81. Bartal IB-A, Rodgers DA, Bernardes Sarria MS, Decety J, Mason P: Pro-social behavior in rats is modulated by social experience. eLife 2014, 3:1-16.
82. Bartal IBA, Rodgers DA, Bernardes Sarria MS, Decety J, Mason P: Anxiolytic treatment improves helping behavior in rats. Front Psychol 2016, 7:1-14.
83. Tomek SE, Stegmann GM, Olive MF: Effects of heroin on rat prosocial behavior. Addict Biol 2019, 24:676-684.
84. Havil JK, Sugano YYV, Jacobi MC, Kukreja RR, Jacobi JHC, Mason P: The bystander effect in rats. Sci Adv 2020, 6 eabb4205.
85. Kitano K, Yamagishi A, Horie K, Nishimori K, Sato N: Helping behavior in prairie voles: a model of empathy and the importance of oxytocin. BioRxiv 2020. 2020.10.20.347872.
86. Blystad MH, Andersen D, Johansen EB: Female rats release a trapped cagemate following shaping of the door opening response: opening latency when the restrainer was baited with food, was empty, or contained a cagemate. PLoS One 2019, 14 e0223039.
87. Carvalheiro J, Seara-cardoso A, Mesquita AR, Sousa LD, Oliveira P, Summaville T, Magalhães A, Carvalheiro J, Seara-
cardoso A, Mesquita AR et al.: Helping Behavior in Rats (Rattus norvegicus) When an Escape Alternative Is Present. 2019.

88. Cox SS, Reichel CM: Rats display empathic behavior independent of the opportunity for social interaction. Neuropsychopharmacology 2020, 45:1097-1104.

89. Hachiga Y, Schwartz LP, Silberberg A, Kearns DN, Gomez M, Slotnick B: Does a rat free a trapped rat due to empathy or for sociality? J Exp Anal Behav 2018, 110:267-274.

90. Hiura LC, Tan L, Hackenberg TD: To free, or not to free: social reinforcement effects in the social release paradigm with rats. Behav Processes 2018, 152:37-46.

91. Schwartz LP, Silberberg A, Casey AH, Kearns DN, Slotnick B: Does a rat release a soaked conspecific due to empathy? Anim Cogn 2017, 20:299-308.

92. Silberberg A, Allouch C, Sandfort S, Kearns D, Karpel H, Slotnick B: Desire for social contact, not empathy, may explain “rescue” behavior in rats. Anim Cogn 2014, 17:609-618.

93. Silva PRR, Silva RH, Lima RH, Meurer YS, Ceppi B, Yamamoto ME: Are there multiple motivators for helping behavior in rats? Front Psychol 2020, 11:1795.

94. Ueno H, Suemitsu S, Murakami S, Kitamura N, Wani K: Rescue-like behaviour in mice is mediated by their interest in the restraint tool. Sci Rep 2019,1:1.

95. Vasconcelos M, Hollis K, Nowbahari E, Kacelnik A: Pro-sociality without empathy. Biol Lett 2012, 8:910-912.

96. Kolmogorova D, Murray E, Ismail N: Monitoring pathogen-induced sickness in mice and rats. Curr Protoc Mouse Biol 2017, 7:65-76.

97. Bredy TW, Barad M: Social modulation of associative fear learning by pheromone communication. Learn Mem Cold Spring Harb N 2009, 16:12-18.

98. Kiyokawa Y, Shimozuru M, Kikusui T, Takeuchi Y, Mori Y: Alarm pheromone increases defensive and risk assessment behaviors in male rats. Physiol Behav 2006, 87:383-387.

99. Aksak P, Orre M, Bakker P, Cerfani L, Roozendal B, Gazzola V, Motta M, Kayser C: Experience modulates vicarious freezing in rats: a model for empathy. PLoS One 2011, 6.

100. Cruz A, Heinemans M, Márquez C, Moita MA: Freezing displayed by others is a learned cue of danger resulting from co-experiencing own freezing and shock. Curr Biol 2020, 30:1128-1135.e6.

101. Nakashima SF, Ukezono M, Nishida H, Sudo R, Takano Y: Receiving of emotional signal of pain from conspecifics in laboratory rats. A Soc Open Sci 2015, 2:140381 Investigated behavioral responses to images of distressed conspecifics.

102. Abdali J, Korcsok B, Korponi P, Miklösi A: Methodological challenges of the use of robots in ethological research. Anim Behav Cogn 2018, 5:326-340.

103. Naik H, Bastien R, Navab N, Cousin J: Animals in virtual environments. IEEE Trans Vis Comput Graph 2020, 28:2073-2083.

104. Quinn LK, Schuster LP, Aguilar-rivera M, Arnold J, Ball D, Gygi E, Heath S, Holt J, Lee DJ, Taufatofua J et al.: When rats rescue robots. Anim Behav Cogn 2018, 5:368-379 Used rat-like robots to investigate how rats respond to displays of prosocial helping behavior by the robots (in the restraint-tube-paradigm).

105. Ishii H, Shi Q, Fumino S, Konno S, Kinoshita S, Okabayashi S, Iida N, Kimura H, Tahara Y, Shibata S et al.: A novel method to develop an animal model of depression using a small mobile robot. Adv Robot 2013, 27:61-69.

106. Li C, Shi Q, Gao Z, Ma M, Ishii H, Takahashi A, Huang Q, Fukuda T: Design and optimization of a lightweight and compact waist mechanism for a robotic rat. Mech Mach Theory 2020, 146 103723 Recent progress towards a robotic rat model, capable of biomechanically realistic 3D body postures.
Pioneered the use of statistical methods to discover structure in the behavioral of solitary mice directly from raw video.

Uses a combination of depth videography and implanted RFID-chips to allow real-time tracking of multiple mice, with RFID-based detection and correction of tracking errors.

Pioneered the use of wavelet filtering, nonlinear embedding and unsupervised clustering for analysis of animal behavior.

Pioneered the use of semantic segmentation, automatic tracking, and single-cell imaging to analyze a large dataset of animal behavior.

Developed a novel method for analyzing behavioral data from animal experiments, using deep neural networks and unsupervised learning.

Used unsupervised behavioral analysis to investigate how the movements and postures of socially interacting drosophila depends on the relative spatial location of the interacting animals and the animals' behavioral state (e.g., courting or not).
This elegant study analyzed the emergent behavioral structure of a 'virtual rodent'—a generative model of a rodent-like body—trained by reinforcement learning to solve various motor tasks.

Leos-Barajas V, Michoelot T: An introduction to animal movement modeling with hidden Markov Models using Stan for Bayesian inference. ArXiv 2018:10639 Q-Bio Stat. 2018.

Fox E, Sudderth E, Jordan M, Willsky A: Bayesian nonparametric methods for learning markov switching processes. IEEE Signal Process Mag 2010, 5563110.

Li M, Bolker BM: Incorporating periodic variability in hidden Markov models for animal movement. Mov Ecol 2017, 5.

Pohle J, Langrock R, van Beest F, Schmidt NM: Selecting the number of states in hidden Markov Models - pitfalls, practical challenges and pragmatic solutions. ArXiv 2017:08673 Q-Bio Stat. 2017.

Bala PC, Eiseinchen BR, Yoo S, Hayden BY, Park HS, Zimmermann J: OpenMonkeyStudio: automated markerless pose estimation in freely moving macaques. BioRxiv 2020, 2020.01.29.28861.

Günel S, Rhodin H, Morales D, Campagnolo J, Ramdya P, Fua P: DeepFly3D, a deep learning-based approach for 3D limb and appendage tracking in tethered, adult Drosophila. eLife 2019, 8 e48571.

 Nath T, Mathis A, Chen AC, Patel A, Bethge M, Mathis MW: Using DeepLabCut for 3D markerless pose estimation across species and behaviors. Nat Protoc 2019, 14:2152-2176.

Zimmermann C, Schneider A, Aliyayhav M, Brox T, Dieter I: FreiPose: a deep learning framework for precise animal motion capture in 3D spaces. BioRxiv 2020, 2020.02.27.96720.

Gosztolai A, Gune S, Abrate MP, Morales D, Rios VL, Rhodin H, Fua P, Ramdya P: LiftPose3D, a deep learning-based approach for transforming 2D to 3D pose in laboratory animals. BioRxiv 2020, 2020.09.18.292680.

Showed that it is possible to train a network to predict the 3D posture of a mouse from a single 2D view in laboratory conditions.

Novotny D, Ravi N, Graham B, Neverova N, Vedaldi A: C3DPO:
- Canonical 3D pose networks for non-rigid structure from motion. ArXiv 2019:02533 Cs 2019.

Showed a method for estimating the 3D shape and reconstructing the pose of deformable objects from a single monocular view of the motion of keypoints.

Graving JM, Couzin ID: VAE-SNE: a deep generative model for simultaneous dimensionality reduction and clustering. BioRxiv 2020, 2020.07.17.207993.

Combines machine learning methods for low-dimensional manifold embedding and a distance-based loss function on that manifold to perform unsupervised discovery of behavioral categories in a single step.

Luxen K, Fuhrmann F, Kürsch J, Remy S, Bauer P: Identifying behavioral structure from deep variational embeddings of animal motion. BioRxiv 2020, 2020.05.14.095430.

Used unsupervised training of an encoder-decoder network to automatically estimate behavioral ‘motifs’ (latent clusters), and used the transition probability between these motifs to estimate their hierarchical structure.

Reddy G, Desban L, Tanaka H, Rousell J, Mirat O, Wyart C: A lexical approach for identifying behavioral action sequences. BioRxiv 2020, 2020.08.27.270694.

A novel dictionary-based algorithm for identifying behavioral sequences, inspired by statistical models of language.

Batty E, Whiting M, Saxena S, Biderman D, Abe T, Musall S, Gillis W, Markowitz J, Churchland A, Cunningham JP et al.: BehaveNet: nonlinear embedding and Bayesian neural decoding of behavioral videos. In Advances in Neural Information Processing Systems 32. Edited by Wallach H, Larochelle H, Beygelzimer A, d’_{eq}ttxquoting_tq_Ac{\`e}l{\`e}-Buc F, Fox E, Garnett R. Curran Associates, Inc., 2019:15706-15717.

Pilkiewicz KR, Lemasson BH, Rowland MA, Hein A, Sun J, Berdahl A, Mayo ML, Moelhis J, Portfir M, Fernandez-Juricic E et al.: Decoding collective communications using information theory tools. J R Soc Interface 2020.

210. Sumpter DJT, Mann RP, Perna A: The modelling cycle for collective animal behaviour. Interface Focus 2012, 2:764-773.

211. Weiss MN, Franks DW, Brent LJN, Ellis S, Silk MJ, Croft DP:
- Common dataset challenges of animal social network data are not appropriate for hypothesis testing using regression models. Methods Ecol Evol 2020, 12:255-265.

212. Rosenthal SB, Twomey CR, Hartnett AT, Wu HS, Couzin ID: Revealing the hidden networks of interaction in mobile animal groups allows prediction of complex behavioral contagion. Proc Natl Acad Sci 2015, 112:4890-4895.

213. Strandburg-Peshkin A, Farine DR, Couzin ID, Crofoot MC: Shared decision-making drives collective movement in wild baboons. Science 2015, 348:1358-1361.

214. Karakaya M, Macrì S, Porfilio M: Behavioral teleporting of individual ethograms onto animate robots: experiments on social interactions in live zebras. IScience 2020, 23 Transferred the social behavior of real zebra onto robotic replicas of zebras, to be able to vary a social cue (the animals size) while keeping the behavioral kinematics constant.

215. Nagy M, Horisanci A, Kubinyi E, Couzin ID, Vasárhelyi G, Flack A, Vicske T: Synergistic benefits of group search in rats. Curr. Biol. 2020, 30 P4733-4736.e4.

Used analysis and modeling of behavior in a clever paradigm to discover that rats rely of cues from conspecifics when exploring a maze.

216. Bohnsval JP, Wimalasena NK, Clausing KJ, Yarmolinsky D, Cruz T, Chippe A, Orefice LL, Woolf CJ, Harvey CD: DeepEthogram: a machine learning pipeline for supervised behavior classification from raw pixels. BioRxiv 2020 http://dx.doi.org/ 10.1101/2020.09.24.312504.

217. Georgopoulos AL, Kalaska JF, Caminiti R, Massey JT: On the relations between the direction of two-dimensional arm movements and cell discharge in primate motor cortex. J Neurosci 1982, 2:1527-1537.

218. Kropp E, Carmichael JE, Moser M-B, Moser E: Speed cells in the medial entorhinal cortex. Nature 2015, 523:419-424.

219. Parker PRL, Brown MA, Smear MC, Niell CM: Movement-related signals in sensory areas: roles in natural behavior. Trends Neurosci 2020, 43:581-595.

220. Angelaki DE, Ng J, Abrego AM, Charn HM, Asprodinli EK, Dickman JD, Laurens J: A gravity-based three-dimensional compass in the mouse brain. Nat Commun 2020, 11:1695.

221. Kalaska JF: The representation of arm movements in postcentral and parietal cortex. Can J Physiol Pharmacol 1988, 66:455-463.

222. Mimica B, Dunn BA, Tombaz T, Srikant Boja VPTNC, Whitlock JR: Efficient cortical coding of 3D posture in freely behaving rats. Science 2018, 362:584-589.

223. Musall S, Kaufman MT, Juvinett AL, Gluf S, Churchland AK: Single-trial neural dynamics are dominated by richly varied movements. Nat Neurosci 2019, 22:1677-1686.

224. Stringer C, Pachitariu M, Steinmetz N, Reddy CB, Carandini M, Harris KD: Spontaneous behaviors drive multidimensional, brainwide activity. Science 2019, 364 Demonstrated a method (fisemap) for regressing out low-level motor related activity directly from raw video.

225. Omrani M, Kaufman MT, Hatsopoulos NG, Cheney PD: Perspectives on classical controversies about the motor cortex. J Neurophysiol 2017, 118 0n.00795.2016-0n.00795.2016.

226. Tang Y, Benusiglio D, Lefevre A, Hilfiger L, Althammer F, Bludau A, Hagiwara D, Baudon A, Darbon P, Schimmer J et al.: Social touch promotes interframe communication via activation of parvocellular oxytocin neurons. Nat Neurosci 2020, 1-13.

227. Badger M, Wang Y, Modh A, Perkes A, Kolotouros N, Pfommer BG, Schmidt MF, Danilkis K: 3D bird reconstruction: a dataset, model, and shape recovery from a single view. ArXiv 2020086133 Cs 2020 Used a combination of deep learning and physical modeling to estimate the 3D body pose of single birds from a single camera view and multiple, socially interacting birds from multi-camera views.
228. Biggs B, Roddick T, Fitzgibbon A, Cipolla R: Creatures great and small: Recovering the shape and motion of animals from video. *ArXiv*181105804 Cs 2018.

229. Kearney S, Li W, Parsons M, Kim KI, Cosker D: RGB-D-Dog: predicting canine pose from RGBD sensors. *ArXiv*200407788 Cs 2020.

230. Zuffi S, Kanazawa A, Jacobs D, Black MJ: 3D menagerie: modeling the 3D shape and pose of animals. *ArXiv*161107700 Cs 2017.

231. Zuffi S, Kanazawa A, Black MJ: Lions and tigers and bears: capturing non-rigid, 3D, articulated shape from images. 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition; Salt Lake City, UT: IEEE: 2018:3955-3963.

232. Zuffi S, Kanazawa A, Berger-Wolf T, Black MJ: Three-D safari: learning to estimate zebra pose, shape, and texture from images “In the Wild.” *ArXiv*190807201 Cs 2019

Combined deep learning, detailed 3D modeling and knowledge of patterns in an animal’s coat color to extract a detailed 3D surface model of an animal from a single 2D view of a complex natural scene.