Image Processing Systems Institute of the RAS: New Challenges

V O Sokolov

1Samara Scientific Center of the RAS, Studencheshkiy Lane, 32a, Samara, Russia, 443001

Abstract. I summed up twenty-five years of work of the Image Processing Systems Institute RAS. I celebrated achievements of the team; the people who contributed to the establishment and development of the Institute; also outlining current trends in scientific research and new challenges the Institute’s scientists face in modern conditions.

1. Introduction
The Image Processing Systems Institute of the RAS (IPSI RAS) marks a jubilee in 2018. I intend to show how its research team went from strength to strength. I also sum up landmark accomplishments the Institute has made and outline topical research issues the Institute’s scientists are set to address in the modern world.

2. History of establishment
In the late 70s of the last century, a group of researchers of Kuibyshev Aviation Institute headed by Professor (currently, academician) Victor Alexandrovich Soifer [1] actively collaborated with researchers at the Institute of Information Transmission Problems of the USSR Academy of Sciences and Department A of P. N. Lebedev Physical Institute of the USSR Academy of Sciences. Thanks to that collaboration, the Kuibyshev (currently, Samara) scientists made fundamental research findings in the areas of digital image processing, laser beam mode shaping, synthesis of Bessel beams, tailored wavefront shaping, and mathematical modeling in diffractive optics [2-12].

In the 80s of the last century, V. A. Soifer, A. M. Prokhorov, I. N. Sisakian and their disciples published a series of joint research papers in leading Soviet scientific journals [3-12], having established a new research direction, which has been given the name “Computer (Diffractive) Optics”. This interdisciplinary research direction emerged at the interface of such fields of science as cybernetics, quantum electronics, and microelectronics.

To further develop research in the emerging scientific field, in 1988 the Presidium of the USSR Academy of Sciences established a Kuibyshev Branch of the Central Design Bureau of Unique Instrumentation (KB CDB UI) of the USSR Academy of Sciences with 60 employees on the staff. The Presidium of the USSR Academy of Sciences designated Computer (Diffractive) Optics as a key research direction for the newly set up academic Institute.

3. Kuibyshev Branch of the CDB of Unique Instrumentation of the RAS
The core of the research body of the KB CDB UI of the USSR Academy of Sciences was composed of young scientists with Candidate degrees in Science, including Ye. Yu. Arefiev, M. A. Golub, N. L. Kazanskiy, V. V. Kotlyar, O. V. Prisekina, A. G. Khramov, with V. A. Soifer (Doctor of Engineering)
appointed as Director. The credit for great efforts associated with the organization of the Branch goes to Yu. N. Boyarkin (the Deputy Director for General Affairs), L. F. Egorova, Yu. A. Runkov, L. P. Chepurnova, G. G. Yamovich. Following its establishment, the KB CDB UI of the USSR Academy of Sciences operated on a self-supporting basis, with its budget depending on a search for customers and implementation of applied research projects under commercial contracts. While remaining a self-sustained organization, the research team of the Branch was also actively involved in the basic research, in the first place, thanks to participating in the state scientific-and-research programs, such as “Advanced Information Technology”, “Science-Intensive Technologies”, “Conversion in Samara”, (the last two programs came to life with academician Shorin’s assistance). Partaking in these programs enabled the research team in the harsh 90s to obtain and publish a number of ground-breaking research findings in laser technology [14-15] and generation of light beams with novel properties [16-18]. With the leading researchers (V. A. Soifer, V. V. Kotlyar, M. A. Golub, N. L. Kazanskiy, L. L. Dokolovich, S. N. Khonina) making it their priority to publish their findings in the leading international optical journals, V. Soifer’s scientific school soon began to be recognized internationally, which brought in first international contracts and allowed Dr. M. Golub and Dr. V. Kotlyar to defend their Doctoral dissertations with flying colors in Moscow. The scientific and practical significance of the research results jointly obtained by Samara and Moscow scientists (V. P. Shorin, V. A. Soifer, I. N. Sisakian V. A. Barvinok, V. I. Bogdanovich et al.) brought them in 1992 a State Prize of the RF in Science and Technology.

4. Establishment of the Institute
The research achievements of the team enabled V. A. Soifer, with the assistance of academicians S. V. Emelyanov and Yu. I. Zhuravlev, to secure Resolution N 21 of the RAS Presidium of 26 January, 1993 that reorganized the Samara Branch of CDB UI of the RAS into the Image Processing Systems Institute of the RAS. The newly established Institute received new divisions dealing with pattern recognition and image analysis. At the time, the self-supporting principle of operation was retained and was not dropped until 1998.

In the economically hard years of establishment, IPSI RAS managed to survive and later flourish thanks to close integration with a leading Russian university -- S. P. Korolyov Samara National Research University (below, Samara University). Immediately after the establishment of the SB CDB UI of the USSR Academy of Sciences, joint Order N 167 of 14 December, 1988 of the MinVuz of the RSFSR and the USSR Academy of Sciences decreed the organization of a joint Research and Training Center “Spectrum”, which went on to successfully develop over the subsequent 30 years [19]. The collaboration of the IPSI RAS with Samara University provided V. Soifer’s scientific school with a constant inflow of highly skilled specialists, who combine active research with teaching activities. Joint work has led to the establishment of new university sub-departments and centers for collective use of scientific equipment [20-21]. It is due to the joined efforts that many most challenging competitions were won and joint research projects were and have been implemented. Deepening integration with Samara University has proven to be an esC & Pe for the IPSI RAS team under the RAS reform initiated in 2013. In particular, in 2014 five scientists with a Doctoral degree and 14 scientists with a Candidate degree moved from IPSI RAS to Samara University, having chosen to work full-time at the National Research University as fallout of the RAS reform.

In 2016, IPSI RAS enters the Federal Scientific and Research Center “Crystallography and Photonics” of the RAS (FSRC “C & P” of the RAS) as a Branch. Alongside the IPSI RAS, among the organizing institutions of the Center for Crystallography and Photonics are A. V. Shubnikov Institute for Crystallography, Institute of Laser and Information Technology Problems of the RAS, and the Center for Photochemistry of the RAS. The scientific and methodological management of the IPSI RAS -- a Branch of the Center for Crystallography and Photonics of the RAS -- is provided by the division of Nanotechnology and Information Technology of the RAS. The Institute works under the scientific supervision of academician of the RAS, V. A. Soifer.

The IPSI RAS has been doing research in the following research directions (as approved by the RAS Presidium, Resolution N 37 of 12 Feb, 2008):
– Computer (Diffractive) Optics, nanophotonics, optical information technologies and systems;
3

– Systems for image analysis and pattern recognition; and
– Geo-Information technology.

The Institute has five successfully operating laboratories of:
– Diffractive Optics (Head: Prof. L. L Doskolovich, Doctor of Phys. & Math. [22]);
– Laser Measurements (Head: Prof. V. V. Kotlyar, Doctor of Phys. & Math. [23]);
– Micrco- and Nanotechnology (Head: Ass. Prof. R. V. Skidanov, Doctor of Phys. & Math.);
– Mathematical Methods for Image Processsing (Head: Prof. V. V. Sergeev, Doctor of Eng.); and
– Smart Videodata Analysis (Head: Ass. Prof. A. A. Nikonorov, Doctor of Eng.)

5. Journal of Computer Optics

A significant aspect of the IPSI RAS activity is the publication of a scientific journal *Computer Optics* (cofounders: Samara University and the FRSC for Crystallography and Photonics of the RAS). Publication of the scientific collection *Computer Optics* had began in 1987 on the initiative of academicians Ye. P. Velikhov and A. M. Prokhorov, and Professor I. N. Sisakian to provide the information support of a complex program for the scientific and technical progress of member-countries of the Council for Mutual Economic Assistance. Starting with issue 16 -- commemorating I. N. Sisakian’s death (1996) -- the collection issues began to be exclusively published in Samara. Note that the credit for further development and success of the edition should mainly go to the contribution from members of V. Soifer’s scientific school [24-25]. In 2007, the collection was upgraded to a scientific journal published quarterly (since the second half of 2015 -- bimonthly). The Editorial Board includes five members of the RAS (S. Yu. Zheltov, Yu. I. Zhuravlev, V. Ya. Panchenko, V. A. Soifer, I. A. Scherbakov), a corresponding member of the RAS (B. V. Kryzhanovsky), seven Doctors of Science (N. L. Kazanskiy, V. V. Kotlyar, A. V. Kupriyanov, V. S. Pavelyev, V. V. Sergeev, S. N. Khonina, V. M. Chernov), scientists from the Republic of Ireland (Dr. Liam O’Faolain, Tyndall National Institute, Cork, Ireland), Germany (Professor Rihard Kowarzik, Friedrich Shiller University, Jena), India (Professor Kehar Singh), China (academician Jin GuoFan, Singhua University, Beijing), USA (Dr. Olga Korotkova, the University of Miami; Sos Agayan, Doctor of Phys. & Math, Texas University in San Antonio) and Finland (Professor Jari Turunen, Joensuu University). The journal is intended for researchers and specialists active in the areas of research such as diffractive optics; optical information technology; nanophotonics and nanostructure optics; image analysis and understanding, pattern recognition; geoinformation technologies; digital image/signal processing, information coding and protection; Earth remote sensing techniques; hyperspectral data analysis; numerical methods of computer-generated diffractive optics; and smart video stream analysis.

The Journal’s development strategy is worked out by Editor-in-Chief, academician V. A. Soifer [26], while a key role in the Editorial Board’s every-day operation belongs to the Issuing editor, Ye. Ya. Tkhtarov. A supreme IPSI RAS’ achievement is the fact that the Journal of Computer Optics is indexed by the most authoritative bibliometric scientific publication databases: since 2012 -- by Scopus and since 2017 -- by the Web of Science Core Collection (Emerging Source Citation Index). To date, all the articles starting with the first 2009 issue have been indexed by Scopus and starting with the first 2015 issue -- by the Web of Science Core Collection. According to Scopus statistics, the most cited articles of the Journal were penned by the IPSI RAS scientists [27-43].

6. Research Achievements

The IPSI RAS researchers have made an essential contribution to the development of research areas such as diffractive computer-generated optics and digital image processing & recognition.

The IPSI scientists have proposed and studied new classes of diffractive optical elements intended to address both fundamental and practical problems [33-36, 43-54]:
– Generation of light beams with unique properties,
– Laser micromanipulation,
– Laser engineering,
– Illuminating devices,
– Ultra-tight focusing,
– Optical sensors, to name just few.
To be able to design and characterize the diffractive optical elements, the IPSI RAS researchers have proposed a theory and techniques of the computing experiment in diffractive optics [55-62], also proposing procedures for synthesizing diffractive micro- and nanoreliefs and bringing them to a mature level [63-73].

The IPSI RAS researchers have developed software packages for image processing and mathematical tools for computer vision systems [31-32, 36-42, 74-80]. These software-hardware complexes are based on (i) in-house methods and algorithms, such as a directional field method; hierarchical data representation and compression, and transmission and distributed storage of large-volume images; and (ii) methods for analysis and understanding of hyperspectral data obtained from Earth remote sensing. The IPSI engineers and programmers have created geo-information technologies and systems to address problems in agriculture and regional management.

These results were published in leading international scientific journals and summarized in fundamental monographs published by renowned publishing houses all over the world in the Russian, English [81-87] and Chinese languages.

Figure 1 depicts publication dynamics at the IPSI RAS. Publications are seen to grow particularly over the last five years. Such a growth may be credited to RAS’ and University’s programs for support of publications and the implementation of Russian Science Foundation programs. Notably increasing is the number of publications in prestigious journals with the Web-of-Science impact-factor 3+: NeuroImage [88], Physics Review Letters [89-90], Nature Communications [91], ACS Applied Materials & Interfaces [92], Scientific Reports [93], Applied Physics Letters [94-95], Optics Letters [48, 53, 96-97], Optics Express [98-104], Photonics Research [105], and the like. In particular, in the journals indexed by the international databases Scopus and Web of Science Core Collection, published by the IPSI RAS researchers are, respectively, 187 and 146 papers in the year 2016, and 187 and 155 papers in the year 2017.

Active publication and world-class research findings have led to an increase in the personal bibliometric indices of the IPSI employees both in the Russian Scientific Citation Index and in international databases (see Table 1). Of particular significance is the fact that not only venerable scientists, such as V. A. Soifer, N. L. Kazansky, V. V. Kotlyar, S. N. Khonina, and L. L. Doskolovich, but also a younger generation of scientists in their thirties (A. A. Kovalev, Ye. A. Bezus, D. A. Bykov) have made it to the top. It is worth noting that the leading IPSI RAS scientists have been doing fairly well according to the Web of Science Core Collection database:

- V. A. Soifer, ResearcherID C-3088-2017, publications: 247, citations: 2644, Hirsh: 29;
- V. V. Kotlyar, ResearcherID A-5830-2014, publications: 232, citations: 2413, Hirsh: 28;
- S. N. Khonina, ResearcherID E-2467-2014, publications: 259, citations: 2374, Hirsh: 26;
- N. L. Kazanskiy, ResearcherID Q-2349-2015, publications: 148, citations: 1406, Hirsh: 26;
- L. L. Doskolovich, ResearcherID B-1600-2014, publications: 77, citations: 1139, Hirsh: 21.

Achievements of the IPSI RAS scientists have been marked with a variety of state, regional, and international awards:

- 1992 - State Prize of the RF in Science and Technology - V. A. Soifer awarded jointly with other Samara University’s scientists (V. A. Barvinok, V. I. Bogdanovich, P. A. Bordakov, V. I. Mordasov, A. G. Tzidulko, V. P. Shorin), I. N. Sisakian and industry specialists;
1993 - The First Prize of the German Society of Assistance for Applied Information Science for the best research work in the area of image processing and pattern recognition - V. A. Soifer and S. N. Khonina;
1995 - The Order of Honor (V. A. Soifer);
1998-2017 - Regional Prizes in Science and Technology - N. L. Kazanskiy, V. V. Kotlyar, V. V. Sergeev (1998); V. M. Chernov (1999); V. A. Soifer, V. A. Fursov, V. V. Kravchuk (2001); N. I. Glumov, N. Yu. Ilyasova, A. G. Khramov (2003); A. V. Volkov (2007); S. V. Karpeev (2008); L. L. Doskolovich (2009); S. N. Khonina (2010); R. V. Skidanov (2011); V. V. Myasnikov (2012); S. I. Kharitonov (2013); S. B. Popov (2014); A. A. Kovalev (2015); D. L. Golovashkin (2016); D. A. Bykov, and A. V. Kupriyanov (2017);
1999 - Title of the “Honored Scientist of the RF” (V. A. Soifer);
1999 - Medal of the Order “For the Services to the Fatherland” of the II degree (N. L. Kazanskiy);
2000 - V. A. Soifer was awarded a title of the corresponding member of the Russian Academy of Sciences, on the division of Information Technology and Computing Systems of the RAS;
2004 - State Prize of the RF for Young Scientists (D. L. Golovashkin and V. S. Pavelyev);
2004 - Order for the “For the Services to the Fatherland”, IV degree (V. A. Soifer);
2007-2018 годы - Samara Region Governor’s Prize for the Outstanding Achievements in Science and Technology - V. A. Soifer (2007), V. V. Kotlyar (2013), S. N. Khonina (2015), N. L. Kazanskiy (2016), L. L. Doskolovich and V. V. Sergeev (2017), R. V. Skidanov and V. A. Fursov (2018);
2008 - Prize of the RF government for the Outstanding Achievements in Science and Technology (V. A. Soifer);
2008 - Title the “Honored Worker of the RF Higher School” (V. A. Fursov);
2010 - the Order “For the Services to the Fatherland”, III degree (V. A. Soifer);
2010 - The RF government Prize in Education (V. A. Soifer awarded jointly with academician V. P. Shorin and faculty members of other universities);
2011 - Medal of the Russian Academy of Sciences with the Prize for Young Scientists of the RAS awarded by the results of the 2010 competition (V. A. Kolpakov);
2012 - Golden Medal of the Geneva International Invention Exhibition (Swiss) - A. G. Khramov, awarded jointly with scientists from Samara State Medical University;
2014 - Medal of the Russian Academy of Sciences with Prizes to young scientists, awarded by the results of the 2013 competition (D. A. Bykov and A. V. Gavrilov);
2014 - Prize “Scopus Award Russia” from the Elsevier Publishing House in the nomination “For Contribution to Science” - V. A. Soifer (joint award with the Russian Foundation for Basic Research);
2014 - Title of the “Honored Scientist of Samara Region” (N. L. Kazanskiy);
2015 - Medals of the RAS with Prizes to university students, awarded by the results of the 2014 competition (Ye. V. Byzov and S. V. Kravchenko);
2015 - the Order of Honor from the European Academy of Natural Science of the city of Hanover for the “Great Contribution to Scientific Research” (V. A. Soifer);
2015 - L. L. Doskolovich elected a Professor of the RAS on the division of Nanotechnology and Information Technology;
2016 - Prize “Scopus Award Russia” from the “Elsevier” Publishing House in the nomination “For Contribution to Science” - N. L. Kazanskiy (a joint award with the Ministry of Education and Science of the RF);
2016 - V. A. Soifer elected a member of the Russian Academy of Sciences on the division of Nanotechnology and Information Technology of the RAS;
2017 - Title of the “Honored Scientist of Samara Region” (V. V. Kotlyar).

7. New Tasks and Plans
Among fresh organizational issues facing the IPSI RAS, of topical priority are establishing effective liaison with the parent organization (FSRC “C&P” of the RAS) and actively partaking in the work of reorganized Samara University and Samara Scientific Center of the RAS, which is now in the process
of reorganization. For the Journal of Computer Optics, the key goal is getting into the main, journal part of the Web of Science Core Collection -- Science Citation Index Expanded, as well as awarding to the Journal an impact-factor Journal Citation Reports (JCR).

Name	Publications	Citations	Hirsch Index
V. A. Soifer	568	8366	44
S. N. Khonina	564	6498	38
V. V. Kotlyar	591	5547	33
N. L. Kazanskiy	428	6484	45
L. L. Doskolovich	321	4390	33
V. S. Paveliev	235	1959	17
R. V. Skidanov	217	2356	20
A. A. Kovalev	229	1600	21
S. I. Kharitonov	152	2009	20
S. V. Karpeev	142	1105	19
D. A. Bykov	80	869	18
E. A. Bezus	77	813	17
S. G. Volotovsky	71	1029	16
P. G. Serafimovich	69	687	14
S. S. Stafeev	80	428	11
A. P. Porfirev	100	358	10
A. V. Ustinov	124	674	13

Table 1. Bibliometric indices of the leading IPSI RAS scientists (RSCI and Scopus).

In the area of scientific research, the scientific supervisor and the Academic Board of the IPSI RAS on a regular basis propose topical research problems to be addressed by the research team. The advanced research topics include analysis and understanding of nanoscale imagery, smart video stream analysis, the use of techniques of virtual and augmented reality when solving medical and engineering problems, a gradual transfer from diffractive optics to the fundamental problems of diffractive nanophotonics and optical data processing, as well as combining efforts of experts in optics and image processing in designing the airborne hyperspectral equipment and ultralight computer vision systems. In a number of these areas, significant advances have already been made and research findings have been obtained and published [32, 75-80, 87-109], attracting interest of the international research community.

8. Conclusion

I wish the IPSI RAS research team to stay in sound health, possess boundless energy and unceasing scientific curiosity, as well as making new creative accomplishments for the benefit of our Motherland and Russian Science!

9. References

[1] Sokolov V O 2015 On the 70th birthday of corresponding member of the Russian Academy of Sciences Victor A. Soifer CEUR Workshop Proceedings 1490 1-8 DOI: 10.18287/1613-0073-2015-1490-1-8

[2] Sergeev V V and Soifer V A 1978 Imitation model of images and data compression method Automatic Control and Computer Sciences 12(3) 75-77

[3] Golub M A, Karpeev S V, Prokhorov A M, Sisakyan I N and Soifer V A 1981 Focusing light into a specified volume by computer synthesized holograms Soviet Technical Physics Letters 7 264-266
[4] Goncharskii A V, Danilov V A, Popov V V, Prokhorov A M, Sisakyan I N, Soifer V A and Stepanov V V 1984 Devices for focusing laser radiation at an angle. Soviet Journal of Quantum Electronics 14(1) 108-109

[5] Goncharskii A V, Danilov V A, Popov V V, Prokhorov A M, Sisakyan I N, Soifer V A and Stepanov V V 1985 Focusing elements for material laser treatment Pisma v Zhurnal Tekhnicheskoi Fiziki 11(23) 1428-1432

[6] Golub M A, Prokhorov A M, Sisakyan I N and Soifer V A 1982 Synthesis of spatial filters for investigation of the transverse mode composition of coherent radiation Soviet Journal of Quantum Electronics 9(9) 1208-1209

[7] Garitchev V P, Golub M A, Karpeev S V, Krivoshlykov S G, Petrov N I, Sissakian I N, Soifer V A, Haubenreisser W, Jahn J U and Willsch R 1985 Experimental investigation of mode coupling in a multimode graded-index fiber caused by periodic microbends using computer-generated spatial filters Optics Communications 55 403-405

[8] Golub M A, Karpeev S V, Kazanskii N L, Mirzov A V, Sisakyan I N, Soifer V A and Uvarov G V 1988 Spatial phase filters matched with transverse-modes Kvantovaya Elektronika 15(3) 617-618

[9] Bereznyi A E, Prokhorov A M, Sisakian I N and Soifer V A 1984 Bessel Optics Doklady Akademii Nauk SSSR 274(4) 802-805

[10] Golub M A, Zhivopistsev E S, Karpeev S V, Prokhorov A M, Sisakyan I N and Soifer V A 1980 Aspheric wave-front creation by computer-generated holograms Doklady Akademii Nauk SSSR 253(5) 1104-1108

[11] Golub M A, Kazanskii N L, Sisakyan I N, Soifer V A and Kharitonov S I 1987 Diffraction calculation for an optical element which focuses into a ring Optoelectronics, Instrumentation and Data Processing 6 7-14

[12] Golub M A, Kazanskii N L, Sisakyan I N and Soifer V A 1988 Computational experiment with plane optical elements Optoelectronics, Instrumentation and Data Processing 1 78-89

[13] Danilov V A, Petrov N I 2016 20 years without Iosif Norairovich Sissakian CEUR Workshop Proceedings 1638 223-235 DOI: 10.18287/1613-0073-2016-1638-236-248

[14] Golub M A, Sisakian I N and Soifer V A 1991 Infra-red radiation focusators Optics and Lasers in Engineering 15(5) 297-309 DOI: 10.1016/0143-8166(91)90017-N

[15] Doskolovich L L, Kazanskiy N L, Kharitonov S I and Uspleniev G V 1991 Focussators for laser-branding Optics and Lasers in Engineering 15(5) 311-322 DOI: 10.1016/0143-8166(91)90018-0

[16] Khonina S N, Kotlyar V V, Uspleniev G V, Shinkarev M V and Soifer V A 1992 Trochoson Optics Communications 91(3-4) 158-162 DOI: 10.1016/0030-4018(92)90430-Y

[17] Golub M A, Doskolovich L L, Kazanskiy N L, Kharitonov S I and Uspleniev G V 1992 Computer generated diffractive multi-focal lens Journal of Modern Optics 39(6) 1245-1251 DOI: 10.1080/713823549

[18] Kazanskiy N L 2017 Efficiency of deep integration between a research university and an academic institute Procedia Engineering 201 817-831 DOI: 10.1016/j.proeng.2017.09.604

[19] Kazanskiy N L 2006 A research complex for solving computer optics problems Computer Optics 29 58-77

[20] Kazanskiy N L 2012 Research & education center of diffractive optics Proceedings of SPIE 8410 81400R DOI: 10.1117/12.923233

[21] Kolomiets E I 2016 For the anniversary of Professor L.L. Doskolovich CEUR Workshop Proceedings 1638 213-222 DOI: 10.18287/1613-0073-2016-1638-226-235

[22] Kolomiets E I 2017 For the Jubilee of Professor Victor V. Kotlyar Procedia Engineering 201 169-176 DOI: 10.1016/j.proeng.2017.09.593

[23] Sokolov V O 2016 Contribution of Samara scientists into Computer Optics journal development CEUR Workshop Proceedings 1638 194-206 DOI: 10.18287/1613-0073-2016-1638-194-206
[25] Kazanskiy N L 2017 Editorial: Advances of the journal of Computer Optics Computer Optics 41(1) 139-141 DOI: 10.18287/2412-6179-2017-41-1-139-141

[26] Soifer V A 2014 Quo vadis Computer Optics 38(4) 589

[27] Kazanskii N L, Khonina S N, Skidanov R V, Morozov A A, Kharitonov S I and Volotovskiy S G 2014 Formation of images using multilevel diffractive lens Computer Optics 38(3) 425-434

[28] Kazanskiy N L, Kharitonov S I, Khonina S N, Volotovskiy S G and Strelkov Yu S 2014 Simulation of hyperspectrometer on spectral linear variable filters Computer Optics 38(2) 256-270

[29] Kazanskiy N L, Kharitonov S I, Karsakov A V and Khonina S N 2014 Modeling action of a hyperspectrometer based on the Offner scheme within geometric optics Computer Optics 38(2) 271-280

[30] Kazanskiy N L, Kharitonov S I, Doskolovich L L and Pavelyev A V 2015 Modeling the performance of a spaceborne hyperspectrometer based on the Offner scheme Computer Optics 39(1) 70-76 DOI: 10.18287/0134-2452-2015-1-70-76

[31] Kazanskiy N L and Popov S B 2012 The distributed vision system of the registration of the railway train Computer Optics 36(3) 419-428

[32] Soifer V A and Kupriyanov A V 2011 Analysis and recognition of the nanoscale images: Conventional approach and novel problem statement Computer Optics 35(2) 136-144

[33] Khonina S N and Volotovsky S G 2009 Fracxicon – diffractive optical element with conical focal domain Computer Optics 33(4) 401-411

[34] Nalimov A G, O'Faolain L, Staifev S S, Shania M I and Kotlyar V V 2014 Reflected four-zones subwavelength microoptics element for polarization conversion from linear to radial Computer Optics 38(2) 229-236

[35] Kotlyar V V, Kazanskiy N L, Kharitonov S I, Doikalo-Afiolain L, Staifev S S, Shania M I and Kotlyar V V 2014 Modeling sharp focus radially-polarized laser mode with conical and binary microaxicons Computer Optics 33(1) 52-60

[36] Kotlyar V V, Kovalyov A A and Soifer V A 2014 Diffraction-free asymmetric elegant Bessel beams with fractional orbital angular momentum Computer Optics 38(1) 4-10

[37] Egorov A V, Kazanskiy N L and Serafimovich P G 2015 Using coupled photonic crystal cavities for increasing of sensor sensitivity Computer Optics 39(2) 158-162 DOI: 10.18287/0134-2452-2015-2-158-162

[38] Ilyasova N Y, Kupriyanov A V and Paringar R A 2014 Formation of features for improving the quality of medical diagnosis based on discriminant analysis methods Computer Optics 38(4) 851-855

[39] Denisova A Yu and Myasnikov V V 2014 Anomaly detection for hyperspectral imaginary Computer Optics 38(2) 287-296

[40] Gashnikov M V and Glumov N I 2014 Hierarchical grid interpolation for hyperspectral image compression Computer Optics 38(1) 87-93

[41] Zimichev E A, Kazanskiy N L and Serafimovich P G 2014 Spectral-spatial classification with k-means++ particional clustering Computer Optics 38(2) 281-286

[42] Fursov V A, Bibikov S A and Bajda O A 2014 Thematic classification of hyperspectral images using conjugacy indicator Computer Optics 38(1) 154-158

[43] Karpeev S V, Khonina S N and Kharitonov S I 2015 Study of the diffraction grating on a convex surface as a dispersive element Computer Optics 39(2) 211-217 DOI: 10.18287/0134-2452-2015-2-211-217

[44] Kotlyar V V, Khonina S N and Soifer V A 1995 Algorithm for the generation of non-diffracting Bessel modes Journal of Modern Optics 42(6) 1231-1239 DOI: 10.1080/09500349514551071

[45] Doskolovich L L, Kazanskiy N L, Kharitonov S I and Soifer V A 1996 A method of designing diffractive optical elements focusing into plane areas Journal of Modern Optics 43(7) 1423-1433 DOI: 10.1080/09500349608232815

[46] Doskolovich L L, Kazanskiy N L, Soifer V A, Kharitonov S I and Perlo P 2004 A DOE to form a line-shaped directivity diagram Journal of Modern Optics 51(13) 1999-2005 DOI: 10.1080/09500340408232507
Karpeev S V, Pavelyev V S, Konchina S N, Kazanskiy N L, Gavrilo A V and Eropolov V A 2007 Fiber sensors based on transverse mode selection Journal of Modern Optics 54(6) 833-844 DOI: 10.1080/0950034601066125

Kotlyar V V, Skidanov R V, Konchina S N and Soifer V A 2007 Hypergeometric modes Optics Letters 32(7) 742-744 DOI: 10.1364/OL.32.000742

Kazanskiy N L, Murzin S P and Tregub V I 2010 The optical system for the selective laser sublimation of the components of the metal alloys Computer Optics 34(4) 481-486

Konhina S N, Kazanskiy N L and Volotovsky S G 2011 Influence of vortex transmission phase function on intensity distribution in the focal area of high-aperture focusing system Optical Memory and Neural Networks (Information Optics) 20(1) 23-42 DOI: 10.3103/S1060992X11010024

Konhina S N, Kazanskiy N L, Ustinov A V and Volotovski S G 2011 The lensoacon: non-paraxial effects Journal of Optical Technology 78(11) 724-729 DOI: 10.1364/JOT.78.000724

Kazanskiy N and Skidanov R 2012 Binary beam splitter Applied Optics 51(14) 2672-2677 DOI: 10.1364/AO.51.002672

Kotlyar V V, Kovalyov A A and Soifer V A 2014 Asymmetric Bessel modes Optics Letters 39(8) 2395-2398 DOI: 10.1364/OL.39.002395

Kazanskiy N L and Konhina S N 2017 Nonparaxial effects in lensoacon optical systems Optoelectronics, Instrumentation and Data Processing 53(5) 484-493 DOI: 10.3103/S8756699017050089

Kazanskiy N L and Soifer V A 1994 Diffraction investigation of geometric-optical focusators into segment Optik 96(4) 158-162

Kazanskiy N L, Kotlyar V V and Soifer V A 1994 Computer-aided design of diffractive optical elements Optical Engineering 33(10) 3156-3166 DOI: 10.1117/12.178898

Doskolovich L L, Golub M A, Kazanskiy N L, Khramov A G, Pavelyev V S, Seraphimovich P G, Soifer V A and Volotovski S G 1995 Software on diffractive optics and computer generated holograms Proceedings of SPIE 2363 278-284 DOI: 10.1117/12.199645

Kazanskiy N L, Kharitonov S I and Soifer V A 1996 Application of a pseudogeometrical optical approach for calculation of the field formed by a focusator Optics & Laser Technology 28(4) 297-300 DOI: 10.1016/0030-3992(95)00103-4

Golovashkin D L and Kazanskiy N L 2009 Mesh domain decomposition in the finite-difference solution of Maxwell’s equations Optical Memory & Neural Networks (Information Optics) 18(3) 203-211 DOI: 10.3103/S1060992X09030102

Golovashkin D L and Kazanskiy N L 2011 Solving diffractive optics problem using graphics processing units Optical Memory and Neural Networks (Information Optics) 20(2) 85-89 DOI: 10.3103/S1060992X11020019

Kazanskiy N L 2018 Modeling diffractive optics elements and devices Proceedings of SPIE 10774 1077400 DOI: 10.1117/12.2319264

Lyubopytov V S, Tlyavlin A Z, Sultanov A Kh, Bagmanov V Kh, Konhina S N, Karpeev S V and Kazanskiy N L 2013 Mathematical model of completely optical system for detection of mode propagation parameters in an optical fiber with few-mode operation for adaptive compensation of mode coupling Computer Optics 37(3) 352-359

Volkov A V, Kazanskiy N L, Moiseev O Ju and Soifer V A 1998 A method for the diffractive microrelief formation using the layered photoreist growth Optics and Lasers in Engineering 29 281-288 DOI: 10.1016/s0143-8166(97)00116-4

Kazanskiy N L, Uspleniev G V and Volkov A V 2000 Fabricating and testing diffractive optical elements focusing into a ring and into a twin-spot Proceedings of SPIE 4316 193-199 DOI: 10.1117/12.407678

Kazanskii N L, Kolpakov V A and Kolpakov A I 2004 Anisotropic etching of SiO2 in high-voltage gas-discharge plasmas Russian Microelectronics 33(3) 169-182 DOI: 10.1023/B:RUMI.0000026175.29416.eb
[66] Bezus E A, Doskolovich L L and Kazanskiy N L 2011 Interference pattern formation in evanescent electromagnetic waves using waveguide diffraction gratings Quantum Electronics 41(8) 759-764 DOI: 10.1070/QE2011v041n08AEBH014500

[67] Abul'khanov S R, Kazanskii N L, Doskolovich L L and Kazakova O Y 2011 Manufacture of diffractive optical elements by cutting on numerically controlled machine tools Russian Engineering Research 31(12) 1268-1272 DOI: 10.3103/S1068798X11120033

[68] Kazanskiy N L, Kolpakov V A and Podlipnov V V 2014 Gas discharge devices generating the directed fluxes of off-electrode plasma Vacuum 101 291-297 DOI: 10.1016/j.vacuum.2013.09.014

[69] Kazanskiy N L, Moiseev O Yu and Poletayev S D 2016 Microprofile formation by thermal oxidation of molybdenum Technical Physics Letters 42(2) 164-166 DOI: 10.1134/S1063784216020085

[70] Podlipnov V V, Kolpakov V A and Kazanskiy N L 2016 Etching silicon dioxide in outside electrode plasma using chrome mask Computer Optics 40(6) 830-836 DOI: 10.1016/j.pattrec.2016.06.027

[71] Kazanskiy N L, Stepashkin I S, Khusainov A I, Kravchenko S V, Byzov E V and Moiseev M A 2016 Injectional multilens molding parameters optimization Computer Optics 40(2) 203-214 DOI: 10.18287/2412-6179-2016-40-2-203-214

[72] Kazanskiy N L, Kolpakov V A, Krichevskiy S V, Ivliev N A and Markushin M A 2017 A Gas-discharge plasma focuser Instruments and Experimental Techniques 60(5) 748-751 DOI: 10.1134/S0020441217040157

[73] Kazanskiy N L, Kolpakov V A, Krichevskiy S V and Podlipnov V V 2017 Simulations of dynamic resistive evaporation in a vacuum Technical Physics 62(10) 1490-1495 DOI: 10.1134/S1063784217100140

[74] Kazanskiy N L and Popov S B 2010 Machine vision system for singularity detection in monitoring the long process Optical Memory and Neural Networks (Information Optics) 19(1) 23-30 DOI: 10.3103/S1060992X10010042

[75] Nikonorov A, Bibikov S, Myasnikov V, Yuzifovich Y and Fusov V 2016 Correcting color and hyperspectral images with identification of distortion model Pattern Recognition Letters 83 178-187 DOI: 10.1016/j.patrec.2016.06.027

[76] Gashnikov M V, Glumov N I, Kuznetsov A V, Mitekin V A, Myasnikov V V and Sergeev V V 2016 Hyperspectral remote sensing data compression and protection Computer Optics 40(5) 689-712 DOI: 10.18287/2412-6179-2016-40-5-689-712

[77] Vorobiova N S, Sergeyev V V and Chernov A V 2016 Information technology of early crop identification by using satellite images Computer Optics 40(6) 929-938 DOI: 10.18287/2412-6179-2016-40-6-929-938

[78] Nikonorov A V, Petrov M V, Bibikov S A, Kutikova V V, Morozov A A and Kazanskiy N L 2017 Image restoration in diffractive optical systems using deep learning and deconvolution Computer Optics 41(6) 875-887 DOI: 10.18287/2412-6179-2017-41-6-875-887

[79] Fusov V, Minaev E, Zherdev D and Kazanskiy N L 2017 Support subspaces method for recognition of the synthetic aperture radar images using fractal compression International Journal of Advanced Robotic Systems 14(5) 1-8 DOI: 10.1177/1729881417733952

[80] Smelkina N A, Kosarev R N, Nikonorov A V, Bairikov I M, Ryabov K N, Avdeev A V and Kazanskiy N L 2017 Reconstruction of anatomical structures using statistical shape modeling Computer Optics 41(6) 897-904 DOI: 10.18287/2412-6179-2017-41-6-897-904

[81] Soifer V A and Golub M A 1994 Laser beam mode selection by computer generated holograms (Boca Raton, USA: CRC Press)

[82] Soifer V, Kotylov V and Doskolovich L 1997 Iterative methods for diffractive optical elements computation (London: Taylor & Francis Ltd)

[83] Doskolovich L L, Golovanishkin D L, Kazanskiy N L, Khonina S N, Kotylov V V, Pavelev V S, Skidanov R V, Soifer V A (ed.), Solovyev V S, Usplenyev G V and Volkov A V 2002 Methods for computer design of diffractive optical elements (John Wiley & Sons, Inc)
[84] Soifer V A (ed.), Golovashkin D L, Kotlyar V V, Doskolovich L L, Kazanskiy N L, Pavelyev V S, Khonina S N and Skidanov R V 2012 Computer design of diffractive optics (Cambridge: Cambridge Inter. Scien. Pub. Ltd. & Woodhead Pub. Ltd)

[85] Kovalev A A, Gavrilov A V, Golovashkin D L, Doskolovich L L, Dyachenko P N, Khonina S N, Kotlyar V V, Nalimov A G, Nesterenko D V, Pavelyev V S, Shuyupova Y O, Skidanov R V and Soifer V A (ed.) 2014 Diffractive nanophotonics (Boca Raton: CRC Press, Taylor & Francis Group, CISP)

[86] Kazanskiy N L and Kolpakov V A 2017 Optical materials: Microstructuring surfaces with off-electrode plasma (CRC Press, Taylor & Francis Group)

[87] Bezus E A, Bykov D A, Doskolovich L L, Khonina S N, Kotlyar V V, Kovalev A A, Nalimov A G, Porfir'ev A P, Skidanov R V, Soifer V A (ed.) and Staifee S S 2017 Diffractive optics and nanophotonics (CRC Press)

[88] Koush Y, Ashburner J, Prilepin E, Sladky R, Zeidman P, Bibikov S, Scharnowski F, Nikonorov A and De Ville D V 2017 OpenNFT: An open-source Python/Matlab framework for real-time fMRI neurofeedback training based on activity, connectivity and multivariate pattern analysis NeuroImage 156 489-503 DOI: 10.1016/j.neuroimage.2017.06.039

[89] Belotelov V I, Doskolovich L L and Zvezdin A K 2007 Extraordinary magneto-optical effects and transmission through metal-dielectric plasmonic systems Physical Review Letters 98(7) 077401 DOI: 10.1103/PhysRevLett.98.077401

[90] Knyazev B A, Choporova Y Y, Mitkov M S, Pavelyev V S and Volodkin B O 2015 Generation of terahertz surface plasmon polaritons using nondiffractive Bessel beams with orbital angular momentum Physical Review Letters 115 163901 DOI: 10.1103/PhysRevLett.115.163901

[91] Belotelov V I, Kreilkamp L E, Akimov I A, Kalish A N, Bykov D A, Kasture S, Yallapragada V J, Gopal A V, Grishin A M, Kartsev S I, Nur-E-Alam M, Vasiliev M, Doskolovich L L, Yakovlev D R, Alameh K, Zvezdin A K and Bayer M 2013 Plasmon-mediated magneto-optical transparency Nature Communications 4 2128 DOI:10.1038/ncomms3128

[92] Kuchmizhak A A, Pustovalov E, Syubaev S, Vitrik O, Kulchin Y, Porfirev A, Khonina S, Kudryashov S I, Danilov P and Ionin A 2016 On-fly femtosecond-laser fabrication of self-organized plasmonic nanotextures for chemo- and biosensing applications ACS Applied Materials & Interfaces 8(37) 24946-24955 DOI: 10.1021/acsami.6b07740

[93] Porfirev A P, Ustinov A V and Khonina S N 2016 Polarization conversion when focusing cylindrically polarized vortex beams Scientific Reports 6 6 DOI: 10.1038/s41598-016-0015-2

[94] Bezus E A, Doskolovich L L and Kazanskiy N L 2011 Scattering suppression in plasmonic optics using a simple two-layer dielectric structure Applied Physics Letters 98(22) 221108 DOI: 10.1063/1.3597620

[95] Kotlyar V V, Pavelyev V S and Volodkin B O 2015 Generation of terahertz surface plasmon polaritons using nondiffractive Bessel beams with orbital angular momentum Physical Review Letters 115 163901 DOI: 10.1103/PhysRevLett.115.163901

[96] Belotelov V I, Kreilkamp L E, Akimov I A, Kalish A N, Bykov D A, Kasture S, Yallapragada V J, Gopal A V, Grishin A M, Kartsev S I, Nur-E-Alam M, Vasiliev M, Doskolovich L L, Yakovlev D R, Alameh K, Zvezdin A K and Bayer M 2013 Plasmon-mediated magneto-optical transparency Nature Communications 4 2128 DOI:10.1038/ncomms3128

[97] Kazanskiy N L, Serafimovich P G and Khonina S N 2013 Use of photonic crystal cavities for temporal differentiation of optical signals Optics Letters 38(7) 1149-1151 DOI: 10.1364/OL.38.001149

[98] Kotlyar V V, Pavelyev V S and Volodkin B O 2015 Generation of terahertz surface plasmon polaritons using nondiffractive Bessel beams with orbital angular momentum Physical Review Letters 115 163901 DOI: 10.1103/PhysRevLett.115.163901

[99] Belotelov V I, Doskolovich L L and Kazanskiy N L 2011 Scattering suppression in plasmonic optics using a simple two-layer dielectric structure Applied Physics Letters 98(22) 221108 DOI: 10.1063/1.3597620

[100] Knyazev B A, Choporova Y Y, Mitkov M S, Pavelyev V S and Volodkin B O 2015 Generation of terahertz surface plasmon polaritons using nondiffractive Bessel beams with orbital angular momentum Physical Review Letters 115 163901 DOI: 10.1103/PhysRevLett.115.163901

[101] Kazanskiy N L and Serafimovich P G 2014 Coupled-resonator optical waveguides for temporal integration of optical signals Optics Express 22(11) 14004-14013 doi:10.1364/OE.22.014004

[102] Khonina S N, Savelyev D A and Kazanskiy N L 2015 Vortex phase elements as detectors of polarization state Optics Express 23(14) 17845-17859 DOI:10.1364/OE.23.017845
[102] Doskolovich L L, Bezus E A, Moiseev M A, Bykov D A and Kazanskiy N L 2016 Analytical source-target mapping method for the design of freeform mirrors generating prescribed 2D intensity distributions Optics Express 24(10) 10962-10971 DOI: 10.1364/OE.24.010962

[103] Khonina S, Degtyarev S, Savelyev D and Ustinov A 2017 Focused, evanescent, hollow, and collimated beams formed by microaxicons with different conical angles Optics Express 25(10) 19052-19064 DOI: 10.1364/OE.25.019052

[104] Doskolovich L L, Bezus E A, Golovastikov N V, Bykov D A and Soifer V A 2017 Planar two-groove optical differentiator in a slab waveguide Optics Express 25(19) 22328-22340 DOI: 10.1364/OE.25.022328

[105] Doskolovich L L, Bezus E A and Bykov D A 2018 Two-groove narrowband transmission filter integrated into a slab waveguide Photonics Research 6(1) 61-65

[106] Kazanskiy N L, Protsenko V I and Serafimovich P G 2017 Performance analysis of real-time face detection system based on stream data mining frameworks Procedia Engineering 201 806-816 DOI:10.1016/j.proeng.2017.09.602

[107] Soifer V A, Korotkova O, Khonina S N and Shchepakina E A 2016 Vortex beams in turbulent media: Review Computer Optics 40(5) 605-624 DOI: 10.18287/2412-6179-2016-40-5-605-624

[108] Soifer V A, Kotlyar V V and Doskolovich L L 2009 Diffractive optical elements in nanophotonics devices Computer Optics 33(4) 352-368

[109] Soifer V A 2014 Diffractive nanophotonics and advanced information technologies Herald of the Russian Academy of Sciences 84(1) 9-18 DOI:10.1134/S1019331614010067