N\textsuperscript{6}-methyladenosine RNA methylation: From regulatory mechanisms to potential clinical applications

Peipei Li\textsuperscript{1,2†}, Yuntao Wang\textsuperscript{1†}, Yiwen Sun\textsuperscript{2}, Sanjie Jiang\textsuperscript{2*} and Jingjing Li\textsuperscript{1*}

\textsuperscript{1}Department of Oncology, Weifang Medical University, Weifang, China, \textsuperscript{2}BGI Genomics, BGI-Shenzhen, Shenzhen, China

Epitranscriptomics has emerged as another level of epigenetic regulation similar to DNA and histone modifications. N\textsuperscript{6}-methyladenosine (m\textsuperscript{6}A) is one of the most prevalent and abundant posttranscriptional modifications, widely distributed in many biological species. The level of N\textsuperscript{6}-methyladenosine RNA methylation is dynamically and reversibly regulated by distinct effectors including methyltransferases, demethylases, histone modification and metabolites. In addition, N\textsuperscript{6}-methyladenosine RNA methylation is involved in multiple RNA metabolism pathways, such as splicing, localization, translation efficiency, stability and degradation, ultimately affecting various pathological processes, especially the oncogenic and tumor-suppressing activities. Recent studies also reveal that N\textsuperscript{6}-methyladenosine modification exerts the function in immune cells and tumor immunity. In this review, we mainly focus on the regulatory mechanisms of N\textsuperscript{6}-methyladenosine RNA methylation, the techniques for detecting N\textsuperscript{6}-methyladenosine methylation, the role of N\textsuperscript{6}-methyladenosine modification in cancer and other diseases, and the potential clinical applications.

KEYWORDS
RNA methylation, N\textsuperscript{6}-methyladenosine, regulatory mechanisms, cancer, tumor therapy

1 Introduction

With the development of epigenetics, epitranscriptomics has emerged as another level of epigenetic regulation and has recently become a research hotspot. The epitranscriptome refers to the relevant functional changes of the transcriptome without any alteration of the RNA sequence. Conceptually, the epitranscriptome covers all the chemical modifications of RNA dynamically regulated by the removal and addition of various chemical groups in cells (Saletore et al., 2012). To date, over 170 RNA chemical modifications have been identified, including N\textsuperscript{6}-methyladenosine (m\textsuperscript{6}A), N\textsuperscript{1}-methyladenosine (m\textsuperscript{1}A), 5-hydroxymethylcytosine (hm\textsuperscript{5}C), 5-methylcytidine (m\textsuperscript{5}C), ribose 2\textsuperscript{'-}O-methylation (Nm), 1-methylguanaine (m\textsuperscript{1}G), 6-methylguanaine (m\textsuperscript{6}G),
7-methylguanine (m\textsuperscript{7}G), N\textsuperscript{4}-acetylcytidine (ac\textsuperscript{4}C) and pseudouridine (w) (Wiener and Schwartz, 2021), but most of their functions are largely unknown. Among them, 72 variants of methyl group modifications are conjugated at distinct positions in RNA bases. Since the first discovery of m\textsuperscript{6}A RNA methylation in 1974, it has been identified as one of the most prevalent and abundant posttranscriptional modifications, widely distributed in many biological species, such as mammals (Desrosiers et al., 1974; Liu et al., 2022), plants (Yue et al., 2019; Yu Q. et al., 2021), zebrafish (Zhao et al., 2017), insects (Yang et al., 2021), yeast (Yadav and Rajasekharan, 2018), bacteria (Deng et al., 2015) and viruses (Bayoumi et al., 2020), accounting for approximately 50% of total methylated ribonucleotides in total RNA content (Wei (Yadav and Rajasekharan, 2018), bacteria (Deng et al., 2015) and 1974; Liu et al., 2022), plants (Yue et al., 2019; Yu Q. et al., 2021), abundant posttranscriptional modiﬁcations, ultimately affecting various physiological and pathological processes. reveal its potential clinical applications. m\textsuperscript{6}A RNA methylation, the role of m\textsuperscript{6}A modification in cancer as well as the potential clinical applications.

2 Regulation of N\textsuperscript{6}-methyladenosine RNA modification

m\textsuperscript{6}A RNA methylation is functionally important and tightly modulated by several molecular mechanisms in eukaryotes. As described above, catalytic enzymes, methyltransferases and demethylases dynamically and reversibly direct the addition and removal of m\textsuperscript{6}A RNA methylation, and are termed “m\textsuperscript{6}A writers” and “m\textsuperscript{6}A erasers”, respectively. Some binding proteins (“m\textsuperscript{6}A readers”) recognize and function by decoding m\textsuperscript{6}A methylation as well as recruiting downstream functional protein complexes to mediate biological activities. Histone modification also guides m\textsuperscript{6}A deposition in stop codons of CDSs and 3\textsuperscript{′}-UTRs. The dynamics of m\textsuperscript{6}A regulation can be achieved by some transcription factors that recruit the m\textsuperscript{6}A methyltransferase complex to specific RNA loci in distinct cellular contexts. In addition, nutrition and metabolites can reverse and modulate m\textsuperscript{6}A methylation patterns (Figure 2).

2.1 RNA N\textsuperscript{6}-methyladenosine machinery

m\textsuperscript{6}A methylation is catalysed by a multicomponent m\textsuperscript{6}A methyltransferase complex that is composed of two predominant proteins, methyltransferase-like 3 (METTL3) and methyltransferase-like 14 (METTL14), and their cofactors WTAP, HAKAI, RBM15, RBM15B, VIRMA and ZC3H13 (Knuckles et al., 2018; Yue et al., 2018; Bawankar et al., 2021). Although both METTL3 and METTL14 have methyltransferase domains, only METTL3 contains a catalytically active subunit, which requires S-adenosylmethionine (SAM) as a substrate to mediate catalytic activity. The SAM binding pocket is distributed on one side of the central β-sheet and is enclosed by the catalytic site loop (Wang et al., 2016). METTL14 is associated with the stabilization of the conformation between METTL3 and the RNA
substrate (Zhou H. et al., 2021). The METTL3-METTL14 complex is formed in the cytoplasm and is located in the nucleus, and it induces m^A methylation (Scholler et al., 2018). Both in vitro methylation assays and CLIP combined with photoactivatable ribonucleoside-enhanced crosslinking (PAR-CLIP) suggested that the METTL3-METTL14 complex efficiently catalyses m^A methylation on the GGACU or GGAC motifs of RNAs, consistent with the RRACH motif of a previous study (Liu et al., 2014). The depletion of Mettl3 and/or Mettl14 could greatly reduce the peak numbers and the enrichment of m^A in the global transcriptome (Vu et al., 2017; Weng et al., 2018). Except for these two modulators, other m^A writers lack methyltransferase activity. WTAP guides METTL3 and METTL14 into nuclear speckles to efficiently methylate target RNAs (Ping et al., 2014). RBM15 and RBM15B have been confirmed to interact with WTAP by coimmunoprecipitation and bind to specific RNA regions that are adjacent to the DRACH sequence, suggesting that RBM15 and RBM15B can recruit the METTL3-WTAP complex and direct these methyltransferases to DRACH consensus sequence sites for m^A modification (Patil et al., 2016; Shi et al., 2019). RBM15 and RBM15B targets induce X-chromosome inactivation and gene silencing by binding to IncRNA XIST, and VIRMA prefers to mediate alternative polyadenylation and mRNA methylation near the 3'-UTRs and stop codon regions (Yue et al., 2018; Zhu et al., 2021). ZC3H13 complexes with WTAP or other cofactors to regulate nuclear m^A RNA methylation (Wen et al., 2018). Recently, METTL16, as an independent RNA methyltransferase, was shown to catalyse the m^A methylation of U6 spliceosomal RNA (snRNA) and U6-like hairpins of Mat2a mRNA (Shima et al., 2017). ZCCHC4, a new m^A methyltransferase, was found to specifically recognize the AAC motif associated with rRNA methylation (Ma et al., 2019).

After deposition, m^A methylation is reversible and can be removed by demethylases ("m^A erasers"). FTO belongs to the nonheme Fe(II)- and α-KG-dependent dioxygenase AlkB family. FTO was the first enzyme reported to modulate m^A demethylation in 2011. In addition, m^Am RNA, m^A RNA, m^T single-stranded DNA and m^U single-stranded RNA modifications can be demethylated by FTO (Wei et al., 2018). Mauer et al. found that the catalytic activity of FTO towards m^Am was approximately 10 times greater than that towards m^A (Mauer et al., 2017). It has been reported that snRNA and snoRNA are targets of FTO (Mauer et al., 2019). Another m^A demethylase, ALKBH5, is a member of the ALKB family and seems to be specific for m^A RNA methylation (Yu F. et al., 2021).
m6A modification affects RNA fate by recruiting m6A-binding proteins (m6A ‘readers’) such as YTH domain-containing proteins, insulin-like growth factor 2 mRNA-binding proteins IGF2BP1-3 and the heterogeneous nuclear ribonuclease (HNRNP) family (Zhao et al., 2020). In mammals, YTH domain-containing proteins contain five members: YTHDC1, YTHDC2, YTHDF1, YTHDF2, and YTHDF3. YTHDC1 play roles in alternative splicing events, nuclear export of RNAs into the cytoplasm and mRNA decay (Xiao et al., 2016). YTHDC2 promotes target mRNA translation (Mao et al., 2019). YTHDF1 interacts with the translation initiation factors eIF3 and eIF4A3 to enhance the translation efficiency of m6A-modified mRNAs (Liu et al., 2020; Cai et al., 2022). YTHDF2 and YTHDF3 are involved in the degradation of target mRNAs associated with p-bodies, and the depletion of Ythdf2 and Ythdf3 causes a considerable increase in m6A mRNA abundance in cells. hnRNPA2B1, hnRNPC and hnRNPG are related to mRNA splicing (Bi et al., 2019). In contrast, IGF2BP1/2/3, FMRP, and PRRC2A are essential for the stabilization of m6A-modified transcripts in a m6A-dependent manner (Huang et al., 2018; Edens et al., 2019; Wu et al., 2019).

2.2 Histone modification guides N6-methyladenosine deposition

Histone modification has an effect on m6A deposition. H3 lysine 36 trimethylation (H3K36me3) is a classical transcription activator that shows a similar m6A distribution. H3K36me3 chromatin immunoprecipitation (ChIP)-seq analysis indicated that approximately 70% of H3K36me3 sites overlapped with m6A peaks, suggesting a close connection between H3K36me3 and m6A modification (Huang et al., 2019) (Figure 2). SETD2 and KDM4A are H3K36me3 methyltransferase and H3K36me3 demethylase, respectively (Mar et al., 2017). More surprisingly, changes in H3K36me3 levels by utilizing dCas9-SETD2 or dCas9-KDM4A can significantly alter m6A abundance in human and mouse transcriptomes, revealing that H3K36me3 is a modulator of m6A deposition. Of note, most H3K36me3-dependent m6A sites are targeted by METTL3, METTL14 and WTAP, demonstrating the association between H3K36me3 and m6A modification. In addition, METTL14 can directly bind to H3K36me3, which leads to the recruitment of other m6A methyltransferases to activate RNA Pol II and controls m6A methylation on mRNA (Huang et al., 2019; Zhou X. L. et al., 2021). Therefore, the
2.3 Transcription factors affect N6-methyladenosine deposition

Transcription factors also recruit m6A methyltransferases to regulate RNA modification in specific cell contexts. Zinc-finger protein 217 (ZFP217) is a transcriptional activator of some key pluripotency genes that are essential for maintaining self-renewal in mESCs. METTL3 can be bound and sequestered by ZFP217, preventing the formation of the m6A methyltransferase complex and m6A methylation on ZFP217 target transcripts (Aguilo et al., 2015). In contrast, the transcription factors SMAD2 and SMAD3 preferentially recruit the METTL3-METTL14-WTAP methyltransferase complex to their target transcripts and increase the m6A modification of target transcripts (Bertero et al., 2018). Different functions of m6A deposition on the target transcripts determine the distinct roles of ZFP217 and SMAD2/3 in ESCs. Another study reported that METTL3 could interact with the CAATT-box binding protein CEBPZ on target transcripts and mediate m6A modification to promote the translation of target mRNAs that maintain the leukemic state in acute myeloid leukaemia (AML) cells (Barbieri et al., 2017). Frequently, these transcription factors manipulate m6A deposition on a subset of target transcripts in specific cellular contexts to implement dynamic regulation of gene expression (Figure 2).

2.4 Nutritional metabolism and metabolites regulate N6-methyladenosine deposition

Evidence has shown that nutritional challenge and metabolites play crucial roles in the manipulation of m6A deposition. Cycloleucine is a competitive inhibitor of methionine adenosyltransferase that decreases m6A RNA methylation levels by reducing SAM concentrations (Kang et al., 2018). Betaine, as a methyl donor for SAM synthesis, prompts m6A methylation by suppressing FTO expression in the adipose tissues of high-fat diet-fed mice, which increases the expression of the mitochondrial protein PGC-1α to improve metabolic disorder (Zhou et al., 2015). It has been reported that curcumin enhances m6A modification by decreasing ALKBH5 and increasing METTL3 and METTL14 expression in the livers of piglets (Ding et al., 2016). Undoubtedly, high-fat diets affect m6A modification in various models and tissues (Tung et al., 2010; Wu et al., 2020) (Figure 2).

SAM, a common methyl donor, is involved in most cellular methylation processes. The change in cellular SAM concentration affects DNA and histone methylation as well as RNA methylation (Duncan et al., 2013). METTL3 requires SAM as a substrate to mediate catalytic activity and m6A writing. Interestingly, the SAM binding affinity of METTL3 is regulated by substrate RNA availability. S-adenosyl homocysteine (SAH) is the metabolite of SAM during the demethylation reaction that can strongly inhibit METTL3 methyltransferase activity (Li F. et al., 2016; Selberg et al., 2019). Demethylases, FTO and ALKBH5 are 2-oxoglutarate (αKG)- and Fe(II) dependent. The FTO and ALKBH5 mutants of the αKG-Fe(II) oxygenase domain lost the catalytic activities of m6A demethylation (Feng et al., 2014; Zhang X. et al., 2019). Recently, NADH and NADPH were identified as the direct binding partners of FTO by using a florescence quenching assay. Both NADH and NADPH could enhance FTO demethylase activity, indicating that reducing NADPH and NADH may attenuate demethylation reactions. Conversely, the induction of NADPH by glucose injection or a high-fat diet suppressed m6A modification (Figure 2). In contrast, the depletion of G6P dehydrogenase (G6PD) or NAD kinase (NADK) enhanced cellular m6A abundance, which was reversed by NADPH supplementation (Wang L. et al., 2020).

3 Approaches for detecting N6-methyladenosine RNA methylation

Several techniques have been developed for detecting m6A RNA methylation (Table 1). Although immuno-northern blot and m6A dot blot facilitate easier and faster observation of global m6A levels, the disadvantages are obvious with lower sensitivity and are semiquantitative accuracy (Nagarajan et al., 2019). High-performance liquid chromatography–mass spectrometry (HPLC–MS/MS) is used for quantifying m6A levels with high sensitivity; however, this approach cannot provide details about RNA sequence and localization information (Thuring et al., 2017). Site-specific cleavage and radioactive labelling followed by ligation-assisted extraction and thin-layer chromatography (SCARLET) is suitable for stoichiometric quantification, but it is very tedious and is only used to validate the known m6A changes at a given site (Liu and Pan, 2016). Above all, these techniques are not appropriate for widespread identification and localization of modified sites; subsequently, high-throughput sequencing methods have emerged and have been rapidly developed. m6A-specific antibody-based high-throughput sequencing strategies are widely used for the identification of m6A, which include m6A-Seq, MeRIPSeq, PA-m6A-Seq, m6A-CLIP and m6A individual-nucleotide resolution cross-linking and immunoprecipitation (miCLIP) (Dominissini et al., 2012; Meyer et al., 2012; Chen et al., 2015; Ke et al., 2015; Linder et al., 2015). MeRIP-seq was first identified in 2012, allowing for m6A analysis with 100- to 200-nucleotide resolution. In terms of MeRIP-seq, mRNA was fragmented into 100-nucleotide lengths.
and immunoprecipitated by a m^6^A-specific antibody with the combination of high-throughput deep sequencing. miCLIP enables the detection of m^6^A residues at precise positions with single-nucleotide resolution. However, the number of identified m^6^A peaks is limited due to the low cross-linking efficiency of this method. m^6^A-specific antibody-based sequencing approaches have some obvious drawbacks. m^6^A antibodies are not strikingly specific for m^6^A, may also bind to m^6^Am sites and other non-m^6^A-specific sequences. Distinct commercial m^6^A antibodies show differences in affinity for m^6^A (Haussmann et al., 2016). Endoribonuclease-based techniques include antibody-free m^6^A sequencing methods such as m^6^A-REF-Seq and MAZTER-Seq and rely on the endoribonuclease activity of MazF (Zhang Z. et al., 2019; Garcia-Campos et al., 2019). Therefore, the motif preference of endoribonuclease determines the limitation, and these methods detect a portion of the m^6^A sites. Recently, chemical labelling strategies have been reported, including m^6^A-SEAL, m^6^A-label-seq and m^6^A-SAC-seq (Wang Y. et al., 2020; Shu et al., 2020; Hu et al., 2022). Nevertheless, improvements in the chemical labelling efficiency are needed. A specific method for m^6^A detection in the global transcriptome should be validated by other techniques to obtain a more accurate m^6^A landscape.

### TABLE 1 Approaches for the detection of m^6^A RNA methylation.

| Approaches     | Principle                | Advantages                                      | Limitations                                               | References                  |
|---------------|--------------------------|-------------------------------------------------|----------------------------------------------------------|-----------------------------|
| m^6^A dot blot| Antibody based immunoblot| Easy, fast                                      | Low sensitive, semi-quantitative                          | Nagarajan et al. (2019)     |
| HPLC-MS/MS    | Mass spectrum            | High sensitive, quantitative                    | Lack of RNA sequence and localization                     | Thuring et al. (2017)       |
| SCARLET       | Thin-layer chromatography| Quantitative                                    | Complicated, low-throughput                              | Liu and Pan, (2016)         |
| m^6^A-Seq     | Antibody based sequencing| High-throughput                                 | 100–200 nucleotide resolution, antibody specificity      | Dominissini et al. (2012)   |
| MeRIPseq      | Antibody based sequencing| High-throughput                                 | 100–200 nucleotide resolution, antibody specificity      | Meyer et al. (2012)         |
| miCLIP        | Antibody based sequencing| High-throughput, single site                    | Low cross-linking efficiency, antibody specificity        | Linder et al. (2015)        |
| MAZTER-Seq    | Endoribonuclease based sequencing | High-throughput, single site | Preference of the enzyme | Garcia-Campos et al. (2019) |
| m^6^A-REF-Seq | Endoribonuclease based sequencing | High-throughput, single site | Preference of the enzyme | Zhang Z. et al. (2019) |
| m^6^A-SEAL    | Chemical labeling sequencing | High-throughput, single site | Chemical labeling efficiency | Wang Y. et al. (2020) |
| m^6^A-label-seq | Chemical labeling sequencing | High-throughput, single site | Chemical labeling efficiency | Shu et al. (2020) |
| m^6^A-SAC-seq | Chemical labeling sequencing | High-throughput, single site | Chemical labeling efficiency | Hu et al. (2022) |

**FIGURE 3**
Diverse functions of m^6^A RNA methylation in cancers. m^6^A RNA methylation plays a crucial role in tumorigenesis and cancer progression. m^6^A RNA methylation is reversible and is also tightly regulated by "writers" and "readers". m^6^A RNA methylation contributes to mediating CSC pluripotency, cancer proliferation, tumour metastasis, and tumor immunity. More details are shown in a graphical form.
4 Role of N\textsuperscript{6}-methyladenosine RNA methylation in human diseases

N\textsuperscript{6}-methyladenosine (m\textsuperscript{6}A) RNA methylation is involved in multiple RNA metabolism pathways, such as splicing, localization, translation efficiency, stability and degradation, ultimately affecting various physiological and pathological processes. For instance, m\textsuperscript{6}A methylation has been demonstrated to regulate the haematopoietic system, the central nervous system, immunity, stemness, mammalian spermatogenesis and brain development. The dysregulation of m\textsuperscript{6}A methylation is associated with various diseases, especially cancer (Figure 3).

4.1 N\textsuperscript{6}-methyladenosine and cancer

4.1.1 N\textsuperscript{6}-methyladenosine in cancer stem cells

Cancer stem cells (CSCs) are a type of cells possessing a stem cell-like capacity to self-renew, differentiate and survive and give rise to many types of cancers (Nassar and Blanpain, 2016). CSCs lead to the tolerance of standard therapeutics and CSCs, tumour recurrence, and distant metastasis (Walcher et al., 2020). Cui et al. found that m\textsuperscript{6}A methylation played a role in the tumorigenesis of glioma stem cells (GSCs). Mettl3/14 knockdown prominently promoted GSC self-renewal and tumorigenesis by decreasing m\textsuperscript{6}A levels, whereas METTL3 overexpression exerted negative effects (Cui et al., 2017; Zhang et al., 2017). MeRIP-seq revealed that silencing Mettl3/14 altered m\textsuperscript{6}A enrichment and that m\textsuperscript{6}A RNA methylation of ADAM19 regulated GSC self-renewal and tumorigenesis. Similarly, Visvanathan et al. confirmed that METTL3 was essential for glioma cell differentiation and GSC maintenance. Furthermore, METTL3 is also involved in radiosensitivity and DNA repair through the SOX2 axis in GSCs (Visvanathan et al., 2018).

Wang et al. provided the first evidence of the interplay between m\textsuperscript{6}A methylation and osteosarcoma stem cells (OSCs). Compared with non-OSCs, METTL14 and FTO were significantly reduced in OSCs. Meanwhile, MeRIP-seq and RNA-seq analyses of OSCs and non-OSCs revealed that differentially expressed genes containing differentially methylated m\textsuperscript{6}A peaks were associated with the Wnt pathway and the pluripotency of stem cells (Wang et al., 2019).

Ly P Vu and others revealed that METTL3 expression was elevated in leukaemia cells compared with normal haematopoietic cells. miCLIP analysis showed that METTL3 enhanced the m\textsuperscript{6}A methylation of target genes such as Bcl2, Myc and Pten in the human acute myeloid leukaemia (AML) MOLM-13 cell line, which promoted the mRNA translation of these genes, thereby retaining pluripotency properties and inhibiting cell differentiation. Notably, silencing of Mettl3 in human myeloid leukemia cell lines promoted cell differentiation and cell apoptosis (Vu et al., 2017). WTAP is associated with haematopoietic stem cell (HSC) homeostasis and haematopoietic regeneration (Wang H. et al., 2018; Li et al., 2018). Recent research conducted by Bansal et al. suggested a role for m\textsuperscript{6}A modification in myeloid leukaemia. WTAP expression was increased in AML cells derived from patients with AML, while knockdown of Wtap led to the repression of cell proliferation, the activation of cell differentiation and apoptosis in a leukaemia cell line (Bansal et al., 2014) (Figure 3).

4.1.2 N\textsuperscript{6}-methyladenosine in cancer cell proliferation and migration

Numerous reports have elucidated that m\textsuperscript{6}A modification is involved in cancer cell proliferation and tumour metastasis in different types of cancers. Recent findings revealed that METTL14 exerted an oncogenic function by increasing the expression levels of targets such as MYB and MYC in AML, while SPI downregulated the expression level of MEETL14 (Weng et al., 2018). FTO demethylase is elevated and plays an oncogenic role in AML. It has been demonstrated that a high level of FTO prompts cell proliferation and viability, whereas it reduces cell apoptosis and global m\textsuperscript{6}A methylation by repressing the expression of ASB2 and RARA (Li Z. et al., 2017). Su et al. observed that R-2-hydroxyglutarate (R-2HG) attenuated FTO activity and augmented global m\textsuperscript{6}A modification in R-2HG-sensitive AML cells, which decreased the stability of Cebpa/Myc mRNA and the activities of relevant cell signalling pathways (Su et al., 2018).

In bladder cancer, METTL3 interacts with DGCR8 to facilitate pri-miR221/222 maturation, which leads to a decrease in PTEN and ultimately promotes cell proliferation (Han et al., 2019). Similarly, another study showed that METTL3 was significantly elevated in bladder cancer, and METTL3 knockdown dramatically suppressed cancer cell proliferation, cell invasion, and tumour formation through the AFF4/MYC/NF-kB axis cell signalling pathway (Cheng et al., 2019). Xie et al. revealed that METTL3 also binds to YTHDF2, which induces the degradation of target tumour suppressor mRNAs, including Klf4 and Setd7, regulating the progression of bladder cancer (Xie et al., 2020). Nevertheless, METTL14 has been confirmed to be decreased in bladder cancer, and depletion of Mettl14 accelerated cell proliferation, tumour metastasis and self-renewal by decreasing the stability of m\textsuperscript{6}A-modified Notch1 transcripts (Gu et al., 2019).

Evidence indicates that the hnRNPA1 expression level is elevated by EGFRvIII, leading to increased glycolytic gene expression in gliomas. Meanwhile, hnRNPA1 promotes Max mRNA splicing and then induces the generation of Delta Max, which promotes Myc-dependent cell transformation (Babic et al., 2013). Another study showed that silencing hnRNPA2 represses cancerous cell viability, cell invasion, tumour metastasis and chemoresistance by decreasing the expression of MMP-2 and phospho-STAT3. Notably, hnRNPA2 has been regarded as an
oncogenic driver in gliomas (Deng et al., 2016) (Figure 3). Numerous studies have described how m^6^A methylation contributes to cell proliferation, cell invasion, and tumour metastasis in other cancers, including breast cancer, ovarian cancer, cervical cancer, prostate cancer, lung cancer, hepatocellular carcinoma, gastric carcinoma, pancreatic cancer and colorectal cancer (Hu et al., 2019; Yang et al., 2019; Ma et al., 2020; Yang et al., 2020; Guo et al., 2021; Zhang and Xu, Forthcoming 2022).

4.1.3 N^6^-methyladenosine in tumour immunity

Recent studies have revealed that m^6^A RNA methylation induces the activation and infiltration of various immune cells into the tumour microenvironment (TME), influencing the efficacy of cancer immunotherapy. Macrophages are closely associated with tumour initiation and progression. Yin et al. elucidated that METTL3 in macrophages regulates tumour development. Silencing of Mettl3 in macrophages facilitated tumour growth and lung metastasis. The TME was reshaped by inducing regulatory T (Treg) cells into tumour sites and promoting the infiltration of M1-and M2-like tumour-associated macrophages (Yin et al., 2021). Mettl14 knockdown in macrophages suppressed the antitumour activity of CD8^+^ T cells and improved tumour growth (Dong et al., 2021).

Natural killer (NK) cells play an important role in cancer immune surveillance and can directly recognize and kill cancer cells. YTHDF2 was critical for modulating NK-cell maturation, NK-cell homeostasis, IL-15-mediated survival, and antitumor activity due to the regulation of downstream target genes such as Stat5, Eomes and Tardbp (Ma et al., 2021). Song et al. found that METTL3 expression was decreased in tumour-infiltrating NK cells of cancer patients. In mice, they observed that depletion of Mettl3 enhanced NK-cell responsiveness to IL-15 and promoted tumour progression and metastasis by targeting SHP-2 (Song et al., 2021).

Silencing of Mettl3 in CD4^+^ T cells destroyed T-cell differentiation and homeostasis by repressing the activation of IL-7-mediated STAT5/suppressor of cytokine signalling (Li H. B. et al., 2017). Yao et al. revealed that conditional deletion of Mettl3 in CD4^+^ T cells inhibited T follicular helper differentiation and maturation, thereby preventing the antibody response of B cells by promoting the degradation of m^6^A-modified Tcf7 mRNA (Yao et al., 2021). In breast cancer, the expression levels of METTL14 have a positive correlation with the infiltration of CD4^+^ T cells, CD8^+^ T cells, dendritic cells, macrophages and neutrophils, but they negatively correlated with Treg cells in breast cancer (Gong et al., 2020) (Figure 3).

4.2 N^6^-methyladenosine and other human diseases

Emerging evidence has demonstrated that m^6^A RNA methylation is closely related to other human diseases, including cardiovascular disease, metabolic syndrome, psychiatric disorders and autoinflammatory disorders. Dorn et al. (Dorn et al., 2019) showed that the global m^6^A level of cardiomyocytes was significantly elevated in response to hypertrophic stimulation and that METTL3 played a vital role in cardiomyocyte hypertrophy. Notably, upregulated m^6^A modification resulted in compensated cardiac hypertrophy, whereas downregulated m^6^A levels led to eccentric cardiomyocyte remodelling and dysfunction. Overexpression of Mettl3 increased the expression levels of mitogen-activated protein (MAP)K6, MAPK5, and MAPK14 in cardiomyocytes, which was positively correlated with cardiomyocyte size, revealing that METTL3 is sufficient to drive cardiomyocyte hypertrophy. However, no histopathologic changes were observed in Mettl3-overexpressing mice.

Zhou et al. identified that YTHDC2 was significantly repressed in nonalcoholic fatty liver disease (NAFLD) patients, and Ythdc2-depleted hepatocytes led to the accumulation of excessive triglycerides (TGs) by reducing the expression levels of lipogenic genes, including fatty acid synthase, sterol regulatory element-binding protein 1c, and acetyl-CoA carboxylase 1 (Zhou B. et al., 2021). Furthermore, m^6^A sequencing was performed in human type 2 diabetes islets, and sequencing analysis showed that multiple hypomethylated transcripts were associated with insulin secretion, the insulin/IGF1 signalling pathway and cell cycle progression. Mettl14 knockout in mouse ß-cells caused a reduction in global m^6^A levels, giving rise to a similar islet phenotype in human T2D (De Jesus et al., 2019).

In Alzheimer’s disease mouse models, the global m^6^A level was increased in the hippocampus and the cortex compared to C57BL/6 mice, and the interaction of FTO and APOE contributed to the increase in Alzheimer’s disease risk. The overall m^6^A level was elevated in the cortex and the hippocampus of APP/PS1 (Alzheimer’s disease) mice compared to C57BL/6 control mice, and FTO was found to interact with APOE, which was associated with Alzheimer’s disease risk in a prospective cohort study (Keller et al., 2011; Han et al., 2020). Huang et al. found that ALKBH5/FAAH enhanced the expression of circSTAG1, which attenuated astrocyte dysfunction and depressive-like behaviours in vitro and in vivo (Huang et al., 2020).

m^6^A methylation also has a contributory effect on autoinflammatory disorders. Luo et al. identified that the expression levels of METTL14, ALKBH5 and YTHDF2 were downregulated in peripheral blood mononuclear cells of systemic lupus erythematosus (SLE) patients (Luo et al., 2020). In addition, multivariate logistic regression analysis showed that repression of ALKBH5 and YTHDF2 was considered a risk factor for SLE. However, direct mechanistic data should be provided for the function of m^6^A modification in SLE progression. Another study found that Mettl14 knockout inhibited the activation of Treg cells, which impaired the balance between Th17 and Treg cells, leading to the development of spontaneous colitis (Lu et al., 2020).
TABLE 2 Overview of the small-molecule drugs and m^6^A-related factor inhibitors described in the text.

| Drug/inhibitor                  | Molecular structure | m^6^A proteins involved | Function         | References                  |
|---------------------------------|---------------------|-------------------------|------------------|-----------------------------|
| SAM mimic                       |                     | METTL3                  | METTL3 inhibitor | Bedi et al. (2020)          |
| UZH1a                           |                     | METTL3                  | METTL3 inhibitor | Moroz-Omori et al. (2021)   |
| Rhein                           |                     | FTO                     | FTO inhibitor    | Li Q. et al. (2016)         |
| Fluorescein derivative          |                     | FTO                     | FTO inhibitor    | Wang et al. (2015)          |
| Radicicol                       |                     | FTO                     | FTO inhibitor    | Wang R. et al. (2018)       |
| Meclofenamic acid (MA)          |                     | FTO                     | FTO inhibitor    | Huang et al. (2015)         |
| CHTB                            |                     | FTO                     | FTO inhibitor    | Qiao et al. (2016)          |
| Entacapone                      |                     | FTO                     | FTO inhibitor    | Peng et al. (2019)          |
| N-CDPCB                         |                     | FTO                     | FTO inhibitor    | Qiao et al. (2017)          |
| Dac51                           |                     | FTO                     | FTO inhibitor    | Liu et al. (2021)           |
| MV1035                          |                     | ALKBH5                  | ALKBH5 inhibitor | Malacriza et al. (2020)     |
5 Potential clinical applications of N⁶-methyladenosine RNA modification

Due to the major role of m⁶A RNA modification in tumour and other disease progression, m⁶A-associated proteins can be developed as potential therapeutic targets for tumours and other diseases (Table 2). METTL3 attenuates the sensitivity of colon cancer cells to chemotherapy of L-OHP and CPT-11 by upregulating the expression level of CBX8 in a m⁶A-dependent manner (Zhang Y. et al., 2019). Meanwhile, Yhdj1-depleted colon cancer cells are more sensitive to 5-FU and L-OHP (Nishizawa et al., 2018). Another study identified that gemcitabine drove the apoptosis of pancreatic cancer cells with low METTL3 expression (Taketo et al., 2018). The combination of m⁶A methylation and chemotherapeutic drugs contributes to resolving drug resistance in tumours. Cas13-directed methyltransferase has been used for cancer treatment, targeting m⁶A of specific RNA loci (Wilson et al., 2020; Lo et al., 2022).

Specific inhibitors based on m⁶A-related enzymes have been studied. Bedi et al. (Bedi et al., 2020) performed a virtual screening assay to identify potential METTL3 inhibitors from 4,000 adenosine derivatives. One compound, a SAM mimic, was found to be the first inhibitor of METTL3. However, the therapeutic value of this compound is still somewhat limited due to cell penetration issues and nonspecific targets. They also identified another METTL3 inhibitor, UZH1a, that decreased the m⁶A/A ratios in three different cell lines, MOLM-13, HEK293T and U2OS, but the specificity of UZH1a needs further improvement (Moroz-Omori et al., 2021).

Currently, more papers are focused on FTO inhibitors. Rhein, a competitive inhibitor of FTO, binds to the catalytic domain and blocks the catalytic activity of FTO (Li Q. et al., 2016). Fluorescein derivatives, radicicol, IOX3 and MA (a nonsteroidal anti-inflammatory drug) were subsequently identified to repress FTO expression (Huang et al., 2015; Wang et al., 2015; Wang R. et al., 2018). Similar to MA, MA2, an isomer of MA, interacts with FTO to increase the m⁶A level but possesses better cell penetration ability. In addition, CHTB, entacapone and N-CDPCB also repress the demethylase activity of FTO (Qiao et al., 2016; Qiao et al., 2017; Peng et al., 2019). Dac5i inhibits the activity of FTO, promotes T cell response and enhances the anti-PD-1 therapy (Liu et al., 2021). Small-molecule FTO inhibitors have been developed as potential drugs not only for tumour therapy but also for the treatment of neurological diseases, cardiovascular disease, metabolic syndrome and autoimmune inflammatory disorders. To date, little is known about specific ALKBH5 inhibitors. However, the imidazobenzoxazin-5-thione MV1035 was found to be a potential candidate ALKBH5 inhibitor (Malacrida et al., 2020). ALK-04 as an inhibitor of ALKBH5 reduces the infiltration of myeloid-derived suppressor cells and Treg cells and suppresses tumour growth by enhancing the therapeutic effect of anti-PD-1 treatment (Li et al., 2020). (Table 2).

6 Conclusions and future prospects

Despite the initial discovery of m⁶A in 1974, m⁶A modification has received much less attention than histone and DNA epigenetic modifications. Since the establishment of MeRIP-Seq for mapping m⁶A deposition at a transcriptome-wide level in 2012, interest in studying m⁶A methylation has grown rapidly. The level of m⁶A is dynamically and reversibly regulated by various effectors termed “writers”, “erasers” and “readers”. The METTL3-14-WTAP methyltransferase complex is the core constituent of most m⁶A writers, whereas FTO and ALKBH5, as m⁶A demethylases, catalyse the removal of m⁶A. Currently, emerging evidence has shown that transcription factor and histone modification signatures together shape m⁶A deposition, suggesting that the contribution of transcription factor histone modification contributes to the modulation of m⁶A. The interplay between histone H3K36me3 and m⁶A modification provides a novel layer of gene expression regulation. Further crosstalk between m⁶A RNA modification and other epigenetic modifications should be carefully elucidated in the future. Nutritional metabolism and metabolites also influence the regulation of m⁶A. It is possible that tissue-specific m⁶A levels partially correlate with the metabolic activities of specific organs. Overall, the precise regulatory mechanisms of m⁶A are still in their infancy and need to be further investigated. Although high-throughput sequencing-based techniques have greatly promoted the research field of m⁶A methylation, none of the available approaches have simultaneously reached the achievements with single-base resolution, quantification of m⁶A disposition, and low input of RNA. A future method for the direct sequencing of m⁶A RNA will be better for illustrating its functions and dynamics in vivo.

As mentioned above, abnormal m⁶A methylation is closely related to various diseases, including cancer, cardiovascular disease, metabolic syndrome, psychiatric disorders and autoinflammatory disorders. Accordingly, m⁶A methylation is a double-edged sword for tumour: a lack of m⁶A modification on specific genes accelerates tumour development, while over-m⁶A modification of other genes also induces tumour progression. In fact, many major challenges remain in elucidating the relationships between m⁶A and cancer. First, whether the multiple roles proposed in cancer actually rely on m⁶A modification should be considered. Second, we should not ignore the notion that m⁶A-related effectors may mediate tumour development and the progression in a m⁶A-independent manner. Third, it is worth noting that we elucidate the regulatory association of noncoding RNAs and m⁶A methylation in tumour. Fourth, the effects of m⁶A regulators on tumor cells and immune cells are complicated and need to be
carefully concerned. Fifth, over 170 RNA modifications have been identified, it is worth evaluating whether other RNA modifications in the same RNA transcripts affects the role of m6A methylation in human diseases. Finally, further studies should be carried out to assess the clinical value of m6A in diseases.

Many studies have demonstrated that m6A regulatory factors are suitable as therapeutic targets, and some inhibitors of m6A-related factors, especially FTO, have been discovered. Nevertheless, no clinical trials using m6A inhibitors for the treatment of cancer and other diseases have been reported yet. We also provide several reasonable strategies for driving m6A-based therapy: 1) Nanoparticles can specifically deliver m6A modification molecules to target immune cells for tumour immunotherapeutic treatment. 2) A programmable m6A gene-editing system by dCas13 or dRCas9 provides a potential tool for the treatment of diseases. 3) Chimeric antigen receptor (CAR) immune cells with lentivirus-mediated gene delivery of m6A effectors are beneficial to cancer immunotherapy. 4) It is feasible to treat cancer and other diseases by using a m6A inhibitor combined with other therapies. Further studies are urgently required for the understanding of RNA m6A modifications and clinical applications.

Author contributions

JL and JS made substantial contributions to conception and design. PL involved in drafting and revising the manuscript, YW revised the manuscript and drew the figures, YS drafted the tables.

References

Aguilo, F., Zhang, F., Sancho, A., Fidalgo, M., Di Cecilia, S., Vashisht, A., et al. (2015). Coordination of m(6)A mRNA methylation and gene transcription by ZFP317 regulates pluripotency and reprogramming. Cell Stem Cell 17 (6), 689–704. doi:10.1016/j.stem.2015.09.005

Babic, I., Anderson, E. S., Tanaka, K., Guo, D., Masui, K., Li, B., et al. (2013). EGFR mutation-induced alternative splicing of Max contributes to growth of glycolytic tumors in brain cancer. Cell Metab. 17 (6), 1000–1008. doi:10.1016/j.cmet.2013.04.013

Bansal, H., Yihua, Q., Iyer, S. P., Ganapathy, S., Proia, D. A., Penalva, L. O., et al. (2014). WTAP is a novel oncogenic protein in acute myeloid leukemia. Leukemia 28 (5), 1171–1174. doi:10.1038/leu.2014.16

Barbieri, I., Tzelepis, K., Pandolfini, L., Shi, J., Millan-Zambrano, G., Robson, S. C., et al. (2017). Promoter-bound METTL3 maintains myeloid leukaemia by m6A- A-dependent translation control. Nature 552 (7683), 126–131. doi:10.1038/nature24678

Bawankar, P., Lence, T., Paolontini, C., Hausmann, I. U., Kazlauskienė, M., Jacob, D., et al. (2021). Hakai is required for stabilization of core components of the m6A/AlkB homologue methylation machinery. Nat. Commun. 12 (1), 3778. doi:10.1038/s41467-021-23892-5

Bayoumi, M., Rohaim, M. A., and Munir, M. (2020). Structural and virus regulatory insights into avian N6-methyladenosine (m6A) machinery. Front. Cell Dev. Biol. 8, 543. doi:10.3389/fcell.2020.00543

Bedi, R. K., Huang, D., Eberle, S. A., Wiedmer, L., Sleud, P., and Calafiura, A. (2020). Small molecule inhibitors of METTL3, the major human epi-transcriptional writer. ChemMedChem 15 (9), 744–748. doi:10.1002/cmdc.202000011

Bertero, A., Brown, S., Madrigal, P., Osnato, A., Ortmann, D., Yangou, L., et al. (2018). The SMAD2/3 interactome reveals that TGFβ controls m6A mRNA methylation in pluripotency. Nature 555 (7695), 256–259. doi:10.1038/nature25784

Bi, Z., Liu, Y., Zhao, Y., Yao, Y., Wu, R., Liu, Q., et al. (2019). A dynamic reversible RNA N(6)-methyladenosine modification: Current status and perspectives. J. Cell. Physiol. 234 (6), 7948–7956. doi:10.1002/jcp.28014

Bokar, J. A., Rath-Shambaugh, M. E., Ludwiczak, R., Narayan, P., and Rottman, F. (1994). Characterization and partial purification of mRNA N6-adenosine methyltransferase from HeLa cell nuclei. Internal m6A mRNA methylation requires a multisubunit complex. J. Biol. Chem. 269 (26), 17697–17704. doi:10.1074/jbc.269.26.17697

Cai, J., Chen, Z., Zhang, Y., Wang, J., Zhang, Z., Wu, J., et al. (2022). CircHBBDD1 augments metabolic rewiring and restricts immunotherapy efficacy via m6A modification in hepatocellular carcinoma. Mol. Ther. Oncolytics 24, 755–771. doi:10.1016/j.omto.2022.02.021

Chen, K., Luo, G. Z., and He, C. (2015). High-resolution mapping of N6- Methyladenosine in transcriptome and genome using a photo-crosslinking- assisted strategy. Methods Enzymol. 560, 161–185. doi:10.1016/bs.mie.2015.03.012

Cheng, M., Sheng, L., Gao, Q., Xiong, Q., Zhang, H., Wu, M., et al. (2019). The m6A methyltransferase METTL3 promotes bladder cancer progression via AFF4/ NF-kB/MYC signaling network. Oncogene 38 (19), 3667–3680. doi:10.1038/s41388- 019-0663-x

Cui, Q., Shi, H., Ye, P., Li, L., Qu, Q., Sun, G., et al. (2017). m6A RNA methylation regulates the self-renewal and tumorigenesis of glioblastoma stem cells. Cell Rep. 18 (11), 2622–2634. doi:10.1016/j.celrep.2017.02.059

Conflict of interest

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.
miR221/222 maturation in m6A-dependent manner. METTL3 promote tumor proliferation of bladder cancer by accelerating pri-occurrence of N6-methyladenosine in bacterial mRNA. hnRNP A2/B1 knockdown on inhibition of glioblastoma cell invasion, growth and survival. The obesity related gene, FTO, interacts with APOE, and is associated with Alzheimer’s disease risk: A prospective cohort study. J. Alzheimers Dis. 23 (3), 461–469. doi:10.3233/JAD-2010-101068

Knuckles, P., Lenc, T., Hausmann, I. U., Jacob, D., Kreim, N., Carl, S. H., et al. (2018). Zc3h13/Flac is required for adenosine methylation by bridging the mRNA-binding factor Rbm15/Spen to the m6A machinery component Wtap/Hif2a. Genes Dev. 32 (5-6), 415–429. doi:10.1101/gad.269416.117

Li, F., Kennedy, S., Hajian, T., Gibson, E., Setoiva, A., Xu, C., et al. (2016a). A novel radioactivity-based assay for screening human m6A-RNA methyltransferase, METTL3-METTL14 complex, and demethylase ALKBH3. J. Biomol. Screen. 21 (3), 290–297. doi:10.1177/1087057115625264

Li, H. B., Tong, J., Zhu, S., Battista, P. J., Duffy, E. E., Zhao, J., et al. (2017a). m6A mRNA methylation controls T cell homeostasis by targeting the IL-7/STAT5/COX2 pathways. Nature 548 (7667), 338–342. doi:10.1038/nature23450

Li, N., Kang, Y., Wang, L., Huff, S., Tang, R., Hui, H., et al. (2020). ALKBH5 regulates anti-PD-1 therapy response by modulating lactate and suppressive immune cell accumulation in tumor microenvironment. Proc. Natl. Acad. Sci. U. S. A. 117 (33), 20159–20167. doi:10.1073/pnas.1908966117

Li, Q., Huang, Y., Liu, X., Gan, J., Chen, H., and Yang, C. G. (2016b). Rhein inhibits ALKB repair enzymes and sensitizes cells to methylated DNA damage. J. Biol. Chem. 291 (21), 11083–11093. doi:10.1074/jbc.M115.711895

Li, Z., Qian, P., Shao, W., Shi, H., Xu, X., Gogol, M., et al. (2018). Suppression of m6A reader YTHDC1 regulates alternative polyadenylation and translation. Cell 174 (5), 1125–1138. doi:10.1016/j.cell.2018.09.014

Linder, B., Grozhik, A. V., Olarerin-George, A. O., Meydan, C., Mason, C. E., and Jaffrey, S. R. (2015). Single-nucleotide-resolution mapping of m6A and m5Am throughout the transcriptome. Nature 522 (7556), 787–792. doi:10.1038/nature14588

Liu, J., Yue, Y., Han, D., Wang, X., Fu, Y., Zhang, L., et al. (2014). A METTL3-METTL14 complex mediates mammalian N6-methyladenosine RNA demethylation. Nat. Chem. Biol. 10 (2), 93–95. doi:10.1038/nchembio.1432

Liu, L., Li, H., Du, W., Yang, Y., Shao, W., Zhong, J., et al. (2022). Insights into N6-methyladenosine and programmed cell death in cancer. Mol. Cancer 21 (1), 32. doi:10.1186/s12943-022-01506-w

Liu, N., and Pan, T. (2016). Probing N6-methyladenosine (m6A) RNA modification in total RNA. In SCARLET Methods. Mol. Biol. 1538, 285–292. doi:10.1007/978-1-4939-3067-8_17

Liu, T., Wei, Q., Jin, J., Luo, Q., Li, Y., Yang, Y., et al. (2020). The m6A reader YTHDF1 promotes ovarian cancer progression via augmenting EIF3C translation. Nucleic Acids Res. 48 (7), 3816–3831. doi:10.1093/nar/gkaa488
resistance to chemotherapy in leukemia.

et al. (2017). SETD2 alterations impair DNA damage recognition and lead to

Reversible methylation of m(6)Am in the 5’ blood-2017-03-775569

541 (7637), 371

Cell Metab.

exploit FTO-mediated regulation of glycolytic metabolism to evade immune

methylation.

Methyladenosine methyltransferase ZCCHC4 mediates ribosomal RNA

8193895

m(6)A methyltransferase component METTL14 in T cells.

J. Exp. Med.

m6A reader YTHDF2 controls NK cell antitumor and antiviral immunity.

Bochenkova, E., Dolbois, A., et al. (2021). METTL3 inhibitors for

2012.05.003

3389/fgene.2022.834413

S. R. (2012). Comprehensive analysis of mRNA methylation reveals enrichment

(2019). FTO controls reversible m(6)Am RNA methylation during snRNA

11 (1), 8

–

17. doi:10.1016/j.gpb.2012.

Visvanathan, A., Patil, V., Arora, A., Hegde, A. S., Arivazhagan, A., Santosh, V.,

Tung, Y. C., Ayuso, E., Shan, X., Bosch, F. O’Rahilly, S., Coll, A. P., et al. (2010).

Hypothalamic-specific manipulation of Fto, the orthology of the human obesity gene

FOO51. Sci. Transl. Med. 11 (48), eaau7116. doi:10.1126/scitranslmed.aau7116

Peng, X., Xiao, W., Ju, D., Sun, B., Hou, N., Liu, Q., et al. (2019). Identification of
tryptcin as a chemical inhibitor of FTO mediating metabolic regulation through

FOFOX. Sci. Transl. Med. 11 (48), eaau7116. doi:10.1126/scitranslmed.aau7116

Ping, X. L., Sun, R. F., Wang, L., Xiao, W., Yang, X., Wang, W. J., et al. (2014).

Mammalian WTAP is a regulatory subunit of the RNA N6-epimethyltransferase.

Cell. 24 (2), 177–189. doi:10.1038/cr.2014.3

Qiao, Y., Yang, Q., Song, C., and Chang, J. (2017). Computational insights into

the origin of decrease/increase in potency of N-CDPCB analogues toward FTO.

J. Biomol. Struct. Dyn. 35 (8), 1758–1765. doi:10.1080/07391102.2016.1193445

Qiao, Y., Zhou, B., Zhang, M., Liu, W., Han, Z., Song, C., et al. (2016). A novel

inhibitor of the obesity-related protein FTO. Biochemistry 55 (10), 1516–1522.
doi:10.1012/acs.biochem.600023

Saletore, Y., Meyer, K., Klorlach, J., Vilfan, I. D., Jaffrey, S., and Mason, C. E. (2012).

The birth of the epitranscriptome: Deciphering the function of RNA modifications.

Genome Biol. 13 (10), 175. doi:10.1186/gb-2012-13-10-175

Scholler, E., Weichmann, F., Treiber, T., Ringle, S., Treiber, N., Flatley, A., et al. (2018).

Interactions, localization, and phosphorylation of the m(6)A generating

METTL3-METTL14-WTAP complex. RNA 24 (4), 499–512. doi:10.1261/rna.046063.117

Selberg, S., Blokhina, D., Antonen, M., Koivisto, P., Siltanen, A., Mervaala, E., et al. (2019).

Discovery of small molecules that activate RNA methylation through cooperative binding to the METTL3-METTL14-WTAP complex active site. Cell Rep. 26 (13), 3762–3771. e3765. doi:10.1016/j.celrep.2019.02.100

Shi, H., Wei, J., and He, C. (2019). Where, when, and how: Context-dependent functions of RNA methylation writers, readers, and erasers. Mol. Cell 74 (4), 640–650. doi:10.1016/j.molcel.2019.04.025

Shima, H., Matsutomo, M., Ishigami, Y., Ebina, M., Muto, A., Sato, Y., et al. (2017).

S-adenosylmethionine synthesis is regulated by selective N(6)-adenosine methylation and mRNA degradation involving METTL16 and YTHDC1. Cell Rep. 21 (12), 3354–3363. doi:10.1016/j.celrep.2017.11.092

Shu, X., Cao, J., Cheng, M., Xiang, S., Gao, M., Li, T., et al. (2020). A metabolic labeling method detects m(6)A transcriptome wide at single base resolution. Nat. Chem. Biol. 16 (8), 887–895. doi:10.1038/s41589-020-0526-9

Song, H., Song, J., Cheng, M., Zhang, M., Wang, T., Tian, S., et al. (2021). METTL3-mediated m(6)A RNA methylation promotes the anti-tumour immunity of natural killer cells. Nat. Commun. 12 (1), 5522. doi:10.1038/s41467-021-25803-0

Su, R., Dong, L., Li, C., Nachtergaele, S., Wunderlich, M., Qing, Y., et al. (2018). R-2HG exhibits anti-tumor activity by targeting FTO(m6A)/MYC/CBEA signaling. Cell 172 (1-2), 90–105. doi:10.1016/j.cell.2017.11.031

Taketo, K., Konno, M., Asai, A., Koseki, J., Toratani, M., Satoh, T., et al. (2018). The epitranscriptome mRNA writer METTL3 promotes chromo- and radiosensitivity in pancreatic cancer cells. Int. J. Oncol. 52 (2), 621–639. doi:10.3892/ijo.2017.4219

Thuring, K., Schmid, K., Keller, P., and Helm, M. (2017). LC-MS analysis of methylated RNA. Methods Mol. Biol. 1562, 3–18. doi:10.1007/978-1-4939-6807-7_3

Tung, Y. C., Ayuso, E., Shan, X., Bosch, F. O’Rahilly, S., Coll, A. P., et al. (2010).

Hypothalamic-specific manipulation of Fto, the orthology of the human obesity gene

FOO51. Sci. Transl. Med. 11 (48), 8771. doi:10.1126/scitranslmed.3008771

van Tran, N., Ernst, F. G. M., Hawley, R. B., Zorbas, C., Ulryck, N., Hackert, P., et al. (2019). The human 18S RNA m6A methyltransferase METTL6 is stabilized by TRMT112. Nucleic Acids Res. (15), 7719–7731. doi:10.1093/nar/gkt619

Visvanathan, A., Patil, V., Arora, A., Hegde, A. S., Arivazhagan, A., Santosh, V., et al. (2018). Essential role of METTL3-mediated m(6)A modification in glioma stem-like cells maintenance and radiosensitivity. Oncogene 37 (4), 522–533. doi:10.1038/onc.2017.351

Vu, L. P., Pickering, B. F., Cheng, Y., Zaccara, S., Nguyen, D., Minaesa, G., et al. (2017). The N(6)-methyladenosine (m6A)-forming enzyme METTL3 controls myeloid differentiation of normal hematopoietic and leukemia cells. Nat. Med. 23 (11), 1369–1376. doi:10.1038/nm.4416

Walcher, L., Kistenecker, A. K., Stro, H., Klette, R., Dluzek, S., Strauss, A., et al. (2020). Cancer stem cells origins and biomarkers: Perspectives for targeted personalized therapies. Front. Immunol. 11, 1280. doi:10.3389/fimmu.2020.01280

Wang, H., Zuo, H., Liu, J., Wén, F., Gao, Y., Zhu, X., et al. (2018a). Loss of YTHDF2-mediated m(6)A-dependent mRNA clearance facilitates hematopoietic stem cell regeneration. Cell Rep. 28 (10), 1035–1038. doi:10.1016/j.celrep.2018.08.082-y

Wang, L., Song, C., Wang, N., Li, S., Liu, Q., Sun, Z., et al. (2020a). NADP1 modulates RNA m(6)A methylation and adenosinase via enhancing FTO activity. Nat. Chem. Biol. 16 (12), 1394–1402. doi:10.1038/s41589-020-0660-2

Wang, P., Dostater, K. A., and Nam, Y. (2016). Structural basis for cooperative function of Mettl3 and Mettl4 methyltransferases. Mol. Cell 63 (2), 306–317. doi:10.1016/j.molcel.2016.05.041
Wang, R., Han, Z., Liu, B., Zhou, B., Wang, N., Jiang, Q., et al. (2018). Identification of natural compound radicicol as a potent FTO inhibitor. Mol. Pharm. 15 (9), 4902–4908. doi:10.1021/acs.molpharmaceut.8b00322

Wang, T., Hong, T., Huang, Y., Su, H., Wu, F., Chen, Y., et al. (2015). Fluorescein derivatives as bifunctional molecules for the simultaneous inhibiting and labeling of FTO protein. J. Am. Chem. Soc. 137 (43), 13736–13739. doi:10.1021/jacs.5b06690

Wang, Y., Xiao, Y., Dong, S., Yu, Q., and Jia, G. (2020b). Antibody-free enzyme-assisted chemical approach for detection of N(6)-methyladenosine. Mol. Cell 41. doi:10.1038/s41422-018-0113-8

Yin, H., Zhang, X., Yang, P., Zhang, X., Peng, Y., Li, D., et al. (2021). RNA m6A methylation orchestrates cancer growth and metastasis via macrophage reprogramming. Nat. Commun. 12 (1), 1394. doi:10.1038/s41422-021-2154-8

Yu, F., Wei, J., Cui, X., Yu, C., Ni, W., Burger, J., et al. (2021a). Post-translational modification of RNA m6A demethylase ALKBH5 regulates ROS-induced DNA damage response. Nucleic Acids Res. 49 (10), 5779–5797. doi:10.1093/nar/gka415

Yu, Q., Liu, S., Yu, L., Xiao, Y., Zhang, S., Wang, X., et al. (2021b). RNA demethylation increases the yield and biomass of rac and potato plants in field trials. Nat. Biotechnol. 39 (12), 1581–1588. doi:10.1038/s41587-021-09982-9

Yue, H., Nie, X., Yan, Z., and Weining, S. (2019). N6-methyladenosine regulatory machinery in plants: Composition, function and evolution. Plant Biotechnol. 17 (7), 1194–1208. doi:10.1111/pbi.13149

Yue, Y., Liu, J., Cui, X., Cao, J., Luo, G., Zhang, Z., et al. (2018). VIRMA mediates preferential m6A mRNA methylation in 3T3L1 and near stop codon and associates with alternative polyadenylation. Cell Discov. 4, 10. doi:10.1038/s41422-018-0019-0

Zhang, X., and Xu, K. (Forthcoming 2022). The role of regulators of RNA m6A methylation in lung cancer. Genes & Dis. doi:10.1016/j.gendis.2021.12.017

Zhang, S., Zhao, B. S., Zhou, A., Lin, K., Zheng, S., Lu, Z., et al. (2017). m6A demethylase ALKBH5 maintains tumorigenicity of glioblastoma stem cells by sustaining FOXM1 expression and cell proliferation program. Cancer Cell 31 (4), 591–606. doi:10.1016/j.ccell.2017.02.013

Zhang, X., Wei, I. H., Wang, Y., Xiao, Y., Liu, J., Zhang, W., et al. (2019a). Structural insights into FTO's catalytic mechanism for the demethylation of multiple RNA substrates. Proc. Natl. Acad. Sci. U. S. A. 116 (8), 2919–2924. doi:10.1073/pnas.1802574116

Zhang, Y., Kang, M., Zhang, B., Meng, F., Song, J., Kaneko, H., et al. (2019b). m6A modification-mediated CIRB8 induction regulates stemness and chemoresistance of colon cancer via upregulation of LGR5. Mol. Cancer 18 (1), 185. doi:10.1186/s12943-019-1116-x

Zhang, Z., Chen, L. Q., Zhao, Y. L., Yang, C. G., Roundtree, I. A., Zhang, Z., et al. (2019c). Single-base mapping of m6A by an antibody-independent method. Sci. Adv. 5 (7), eaaz2580. doi:10.1126/sciadv.aaz2580

Zhao, B. S., Wang, X., Beadell, A. V., Lu, Z., Shi, H., Kuapapu, A., et al. (2017). m6A-dependent maternal mRNA clearance facilitates zebrafish maternal-to-zygotic transition. Nature 542 (7642), 474–478. doi:10.1038/nature21355

Zhao, Y., Shi, Y., Shen, H., and Xie, W. (2020). m6A-binding proteins: the emerging crucial performers in epigenetics. J. Hematol. Oncol. 13 (1), 35. doi:10.1186/s12052-020-10872-8

Zhou, B., Liu, C., Xu, L., Yuan, Y., Zhao, J., Zhao, W., et al. (2021a). Post-translational modification of m6A reader protein YTHDF2 in the control of macrophage polarization. Mol. Cell. 79 (4), 4092–4098. doi:10.1002/cell.2020010526

Zhu, W., Wang, J. Z., Wei, J. F., and Lu, C. (2021). Role of m6A methyltransferase METTL14 in cancers: Roles, structures, and applications. Biochim. Biophys. Acta. Mol. Cell Research. 71 (6), 973–985. doi:10.1016/j.molcel.2018.08.011