Determing the load on the long-based structure of the platform car with elastic elements in longitudinal beams (p. 6–13)

Sergii Panchenko
Ukrainian State University of Railway Transport, Kharkiv, Ukraine
ORCID: http://orcid.org/0000-0002-7626-9933

Oleksij Fomin
State University of Infrastructure and Technologies, Kyiv, Ukraine
ORCID: http://orcid.org/0000-0003-2387-9946

Glib Vatulia
Ukrainian State University of Railway Transport, Kharkiv, Ukraine
ORCID: http://orcid.org/0000-0002-3823-7201

Oleksander Ustenko
Ukrainian State University of Railway Transport, Kharkiv, Ukraine
ORCID: http://orcid.org/0000-0002-3071-0332

Alyona Lovska
Ukrainian State University of Railway Transport, Kharkiv, Ukraine
ORCID: http://orcid.org/0000-0002-8604-1764

This paper reports a study into the dynamic loading and strength of an improved carrying structure of the platform car. A special feature of the car is the presence of elastic elements in the main longitudinal beams of the frame. This could improve the fatigue strength of the carrying structure of the platform car under operational modes.

Mathematical modeling was carried out to determine the dynamic load on the carrying structure of the platform car. The fluctuations of bouncing were taken into consideration. It has been established that the vertical acceleration of the carrying structure of the platform car without cargo is about 2.0 m/s² (0.2 g). In this case, the vertical accelerations that act on the carrying structure of the platform car are lower by 15 % as compared to the prototype wagon.

The main indicators of strength of the bearing structure of the platform car have been determined. The calculation was carried out using a method of finite elements employing the software suite SolidWorks Simulation (France). When compiling the estimation scheme, it was taken into consideration that the carrying structure of the platform car was loaded with four containers, the size of 1SS. In this case, the maximum equivalent stresses occur in the region of interaction between a pivot beam and spreads and are 254.0 MPa. That warrants the strength of the carrying structure of the platform car.

The numerical values of acceleration of the carrying structure of the platform car have been determined, as well as the fields of their location, by applying computer simulation.

The fatigue strength and oscillation eigenfrequencies in the carrying structure of the platform car have been investigated; their designed service time has been estimated.

The reported research would contribute to building innovative structures of platform cars, as well as to improving the efficiency of combined transportation.

Keywords: platform car, carrying structure, dynamic load, structural strength, fatigue strength, transport mechanics, rail transport.

References

1. Das, A., Agarwal, G. (2020). Investigation of Torsional Stability and Camber Test on a Meter Gauge Flat Wagon. Advances in Fluid Mechanics and Solid Mechanics, 271–280. doi: https://doi.org/10.1007/978-981-15-0772-4_24

2. Šrťaňiak, P., Kurčík, P., Pavlík, A. (2018). Design of a new railway wagon for intermodal transport with the adaptable loading platform. MATEC Web of Conferences, 235, 00030. doi: https://doi.org/10.1051/matecconf/20182350030

3. Fabian, P., Gerlici, J., Masek, J., Marton, P. (2013). Versatile, Efficient and Long Wagon for Intermodal Transport in Europe. Communications - Scientific Letters of the University of Zilina, 15 (2), 118–123. Available at: http://communications.uniza.sk/index.php_Communications/article/view/628

4. Krason, W., Niegoda, T. (2014). FE numerical tests of railway wagon for intermodal transport according to PN-EU standards. Bulletin of the Polish Academy of Sciences Technical Sciences, 62 (4), 843–851. doi: https://doi.org/10.2478/bpasts-2014-0093

5. Nand, S., Trivedi, R., Kant, S., Ahmad, J., Mamraj, M. (2020). Design, Analysis and Prototype Development of Railway Wagons on Different Loading Conditions. SSRN Electronic Journal. doi: https://doi.org/10.2139/ssrn.3539937

6. Myamin, S., Lingaitis, L. P., Daulylia, S., Vačiūnas, G., Bogdevičius, M., Bareika, G. (2015). Determination of the dynamic characteristics of freight wagons with various bogie. Transport, 30 (1), 88–92. doi: https://doi.org/10.3846/16484142.2015.1020565

7. Stołow, V., Simić, G., Purzic, S., Milković, D., Slavčev, S., Radulović, S., Mänzich, V. (2019). Comparative analysis of the results of theoretical and experimental studies of freight wagon Siggmarsh-twin. IOP Conference Series: Materials Science and Engineering, 664, 012026. doi: https://doi.org/10.1088/1757-899X/664/1/012026

8. Fomin, O., Lovska, A., Pšteck, V., Kuceva, P. (2020). Research of stability of containers in the combined trains during transportation by railroad ferry MM Science Journal, 2020 (1), 3728–3733. doi: https://doi.org/10.17973/mmjss.2020_03_2019043

9. Fomin, O., Lovska, A., Pšteck, V., Kuceva, P. (2019). Dynamic load effect on the transportation safety of tank containers as part of combined trains on railway ferries. Vibroengineering PROCEDIA, 29, 124–129. doi: https://doi.org/10.21595/vp.2019.21138

10. Domin, Yu. V., Cherniak, H. Yu. (2003). Osnovy dymamiki vahoniv. Kyiv: KUETT, 269.

11. Kir’yanov, D. V. (2006). Mathcad 13. Sankt-Peterburg: BHV. Peterburg, 608.

12. Dyakonov, V. (2000). MATHCAD 8/2000: spetsial’niy spravochnik. Sankt-Peterburg: Piter, 592.

13. DSTU 7598:2014. Freight wagons. General requirements to calculation and designing of the new and modernized 1520 mm gauge wagons (non-self-propelled) (2015). Kyiv: UTS, 757.

14. GOST 33211-2014. Freight wagons. Requirements to structural strength and dynamic qualities. Moscow, 54.

15. Alyamovskiy, A. A. (2007). SolidWorks/COSMOSWorks 2006–2007. Inzhenernyi analiz metodom konechnykh elementov. Moscow, 784.

16. Fomin, O., Lovska, A., Radkevych, V., Horban, A., Skliarenko, I., Gurenkova, O. (2019). The dynamic loading analysis of containers placed on a flat wagon during shunting collisions. ARPN Journal of Engineering and Applied Sciences, 14 (21), 3747–3752. Available at: https://www.researchgate.net/publication/337316337_THE_DYNAMIC_LOADING_ANALYSIS_OF_CONTAINERS_PLACED_ON_A_FLAT_WAGON_DURING_SHUNTING_COLLISIONS

17. Vatulia, G. L., Lobik, O. V., Deryzement, S. V., Verevicheva, M. A., Orel, Y. F. (2019). Rationalization of cross-sections of the compos-
An important role in the market of transport services belongs to container transportation. Railroads, especially under the conditions of increased competition from road transport, must respond quickly to the needs of the market and the growing demand for container transportation, including interstate traffic. Demand for container transportation can vary significantly during the year, which testifies to the expediency of introducing removable equipment on universal railroad freight cars that are involved in the deliveries of containers. This paper reports the design of a removable frame structure for a universal platform that could carry two 20-ft or one 40-ft container. The proposed technical solution does not require changes in the structure of the car and changes in its model; with a decrease in the demand for container transportation, it would allow this car to be used for its main purpose.

According to the current methodology, the efforts that operate on the frame during the transportation of containers have been determined. The strength of the proposed structure was estimated by a finite-element method. The maximum stresses arising in the proposed structure are 164.4 MPa; they occur in the corners of the stops attached to the stand-up staples of the platform. The resulting stress values do not exceed the allowable ones. The results of calculating the removable equipment indicate its sufficient strength. Requirements for placing cargo on the rolling stock assume a mandatory check to fit the dimensions, which confirmed that the container hosted by the frame does fit them. The proposed structure makes it possible to abandon disposable fastening parts, improve the safety of container transportation, and increase competitiveness in the container transportation market.

Keywords: universal platform, container transportation, removable equipment, strength, finite-element method.

References

1. Organisation for Cooperation between Railways (OSJD) (2019). Otchet o deyat'nosti Organizatsii sotrudnichestva zheleznym dorog za 2018 god. (Uterverhden 6 iyunya 2019 g. XLIII session Soveshchaniya Ministrov OSZhd (g. Tashkent, Respublika Uzbekistan, 4-7 iyunya 2019 g.)). Available at: https://osjd.org/dbmm/download?vp=51&col_id=121&id=1578
2. Tolstykh, A. D. (2008). Tipy konteynerov i metody ih ispol'zovaniya v logisticheskikh tehnologiyah. Transport Rossiskoy Federatsii, 3-4 (16-17), 52–55. Available at: http://rostransport.com/transportrf/pdf/17/52-55.pdf
3. Rzezeczyki, A., Wińnicki, B. (2016). Strength Analysis of Shipping Container Floor with Gooseneck Tunnel under Heavy Cargo Load. Journal of Physics: Conference Series, 1549, 012014. doi: https://doi.org/10.1088/1742-6596/1549/3/012017
4. Wang, Z., Qian, C. (2020). Strength analysis of LNG tank container for trains under inertial force. Journal of Physics: Conference Series, 1549, 032107. doi: https://doi.org/10.1088/1742-6596/1549/3/032107
5. Mochiladze, I. G., Ter'yakov, A. V., Sokolov, A. M. (2006). Soveshchavshivie vagomon-platform dlya mezhduobronodnix perevozok konteynerov. Zheleznye dorogi mira, 8, 52–55.
6. Nader, M., Sala, M., Korzub, J., Kostrewski, A. (2014). Rail transport wagon as a new, innovative constructional solution for the transport of semi-trailers and truck combinations for intermodal transport. Logistika, 4, 2272–2279.
7. Krasno, W., Niewoda, T. (2014). FE numerical tests of railway wagon for intermodal transport according to PN-EU standards. Bulletin of the Polish Academy of Sciences Technical Sciences, 62 (4), 843–851. doi: https://doi.org/10.2478/bpasts-2014-0093
8. Mochiladze, I. G. (2009). Adaptatsiya zheleznodorozhnyh vagonov k mezhduobronodnym perevozkom gruzov. Moscow: IBS-Holding, 534.
9. Teplovoe uslovia razmeshcheniya i krepleniya gruzov: Prilozhenie 3 k Saglasheniou o mezhduobronodnom zheleznodorozhnom gruzovom soobschenii (SMGS) (2019). Organizatsiya sotrudnichestva zheleznym dorog (OSZhD). Available at: https://
23. Baykasoglu, C., Sunbuloglu, E., Bozdag, S. E., Aruk, F., Toprak, T., Mungan, A. (2012). Numerical static and dynamic stress analysis on railway passenger and freight car models. International Iron & Steel Symposium, 579–586. Available at: http://web.hitit.edu.tr/dosyalar/yanilayincengizbaykasoglu@hitit.edu.tr1109201307K9T0V.pdf

24. Dovhanin, S. S., Kalashnyk, V. O., Reidemeister, A. G., Shykunov, O. A. (2019). Investigation of possibility of hopper cars unloading on the car dumper VRS–134M. MATEC Web of Confences, 294, 06003. doi: https://doi.org/10.1051/matecconf/201929406003

25. Lee, H.-J., Jung, S.-B., Jang, H.-H., Shin, D.-H., Lee, J. U., Kim, K. W., Park, G.-J. (2015). Structural-optimization-based design process for the body of a railway vehicle made from extruded aluminum panels. Proceedings of the Institution of Mechanical Engineers, Part F, Journal of Rail and Rapid Transit, 230 (4), 1283–1296. doi: https://doi.org/10.1177/0954409715593971

26. Myamin, S., Lymys, O., Neduzha, L., Krylychuk, O. (2017). Mathematical modeling of dynamic loading of cassette bearings for freight cars. Transport Means: Proceedings of 21st International Scientific Conference. Kaunas, 973–976.

27. Stoilov, V., Slavchev, S. S., Purgic, S. (2015). Static strength analysis of the body of a wagon, series Zaps. Journal of The Balkan Tribological Association, 21 (1), 49–57.

28. DSTU 7398:2014. Freight wagons. General requirements to calculation and designing of the new and modernized 1520 mm gauge wagons (non-self-propelled). Kyiv, 162.

29. Muradian, L. A., Shaposhnyk, V. Y., Mischenko, A. A. (2016). Methodological fundamentals of determination of unpowered rolling stock maintenance characteristics. Science and Transport Progress. Bulletin of Dnipropetrovsk National University of Railway Transport, 1 (61), 169–179. doi: https://doi.org/10.15802/2016/61044

30. Muradyan, L. A., Shaposhnik, V. Yu., Mishchenko, A. A. (2016). Opytnye marshruty DIUIT-UZ: «Opytnaya eksploataciya – nauchnye obosnovaniya – massovoe vneshdnei». Vagonynt, 5-6 (110-111), 57–59.
This paper proposes a method to experimentally study the stressed state of the metallic structure of an overhead crane when using running wheels of different designs. The study employed a functioning electric, supporting, double-girder overhead crane with a capacity of 5 tons and a run of 22.5 m. Strain gauges assembled in a semi-bridge circuit and connected to the analog-digital converter Zetlab210 (Russia) were used to determine the girder deformations at the time of hoisting and moving cargoes of different masses. The cargo was lifted and displaced under the same conditions, on the regular wheels of a cargo trolley and the wheels with an elastic rubber insert. The girder deformation diagrams were constructed. The subsequent recalculations produced the stressed state’s dependences at each point of cargo movement when using both regular wheels and the wheels with an elastic rubber insert. Also established were the dependences and the duration of oscillations that occur over the cycle of cargo lifting and moving. The experimental study cycle included cargo lifting in the far-left position by a trolley, moving the cargo to the far-right position, and returning the trolley with the cargo to its original position.

It should be noted that the application of a new, modernized design of the running wheels of a cargo trolley with an elastic rubber insert effectively dampen the oscillations in the metallic structure of the crane.

The experimental study’s results helped establish an 18% reduction in stresses in the girder of the overhead crane, as well as a decrease in peak vibrations, by 20 seconds, at the same cycles of cargo hoisting and moving. In addition, using wheels with an elastic rubber insert reduces the period of oscillation damping at the end of the cycle of cargo movement, by at least 30%.

Keywords: strain-gauge testing, stresses, running wheel, elastic insert, overhead crane, cargo trolley.

References

1. Castro, J. C., Palafax, E. H., Gómez, L. H. H., Mendoza, G. S., Grijalba, Y. L., López, P. R. (2019). Analysis of the structural girders of a crane for the license renewal of a BWR Nuclear Power Plant. Procedia Structural Integrity, 17, 115–122. doi: https://doi.org/10.1016/j.prostr.2019.08.016

2. Slepuzhnikov, Ye., Fidrovska, N. (2020). Vykorystannia kravni mostovoho typu v suchasnyi promyslovosti. Collection of Scientific Papers AOFOZ, 96–97. doi: https://doi.org/10.36604/05.06.2020.v3.40

3. Sapon, M., Gorbachenko, O., Kondratyev, S., Krytsky, V., Mayatsky, V., Medvedev, V., Smyshlyavea, S. (2020). Prevention of Damage to Spent Nuclear Fuel during Handling Operations. Nuclear and Radiation Safety, 2 (86), 62–71. doi: https://doi.org/10.32818/nrs.2020.2(80).08

4. Fidrovska, N., Slepuzhnikov, E., Larin, O., Varchenko, I., Lipovyi, V., Afanaseko, K., Harbuz, S. (2020). Increase of operating reliability of the travel wheel using the use of the elastic inserts. EUREKA: Physics and Engineering, 5, 69–76. doi: https://doi.org/10.21303/2461-4262.2020.001387

5. Otrosh, Y., Kovalov, A., Smekiv, O., Radeshko, I., Diven, V. (2018). Methodology remaining lifetime determination of the building structures. MATEC Web of Conferences, 230, 02023. doi: https://doi.org/10.1051/matecconf/201823002023

6. Tong, Y., Ge, Z., Zhan, X., Shen, G., Li, D., Li, X. (2018). Research on welding deformation for box girder of bridge crane based on thermal elasto-plastic theory. Advances in Mechanical Engineering, 10 (5), 168781401877588. doi: https://doi.org/10.1177/1687814018775885

7. Sprouss, B., Jakitas, A., Turla, V., Iljin, I., Šěkol, N. (2011). Dynamic reaction forces of an overhead crane on lifting. TRANSPORT, 26 (3), 279–283. doi: https://doi.org/10.3846/16484142.2011.622144

8. Yixiao, Q., Ji, J., Haiming, Y. (2016). High Precision Analysis of Stress Concentration in Girder Structure of Casting Crane. International Journal of Science and Qualitative Analysis, 2 (2), 14–18. doi: https://10.11464/j.jsqa.20160202.11

9. Kutsenko, L., Semkov, O., Kalykovskiy, A., Zapolskiy, L., Shoman, O., Virchenko, G. et. al. (2019). Development of a method for computer simulation of a swinging spring load movement path. Eastern-European Journal of Enterprise Technologies, 1 (7 (97)), 60–73. doi: https://doi.org/10.15388/1729-4061.2019.154191

10. Kutsenko, L., Vanin, V., Shoman, O., Yahlonskiy, P., Zapolskiy, L., Hrytsyna, N. et. al. (2019). Modeling the resonance of a swinging spring based on the synthesis of a motion trajectory of its load. Eastern-European Journal of Enterprise Technologies, 3 (7 (99)), 53–64. doi: https://doi.org/10.15388/1729-4061.2019.168909

11. Nischeta, S. A., Chernyshova, E. P., Narkevich, M. Y., Krishan, A. L., Sagdatov, A. I. (2017). Damage of bridge lifting cranes and crane metal structures. Journal of Engineering and Applied Sciences, 12 (3), 6387–6590. Available at: http://docsdrive.com/pdfs/medwelljournals/jaeos/2017/6387-6590.pdf

12. Antov, V. V., Tolokonnikov, A. S., Vorobev, A. V., Sakalo, V. I. (2017). Methods of determining the margin of cyclic crack resistance of metal structures for hoisting machinery. IOP Conference Series: Materials Science and Engineering, 177, 012096. doi: https://doi.org/10.1088/1757-899X/177/1/012096

13. Frankovsky, P., Delyova, I., Sivok, P., Kurylo, P., Pivarozhka, E., Neumann, V. (2020). Experimental Assessment of Time-Limited Operation and Rectification of a Bridge Crane. Materials, 13 (12), 2708. doi: https://doi.org/10.3390/ma13122708

14. Gryhorov, O. V., Anischenko, G. O., Petenko, N. O., Strizhak, V. V., Turchyn, O. V., Radchenko, V. S. et. al. (2019). Improvement of crane steel structures work the way of applying of hydraulic drive and some other solutions in mechanisms of movement and slewing. Hebezeug und Fördermittel, 2 (61), 4–25. Available at: http://journals.net/files/2019-2-61-01.pdf

15. Meng, W., Yang, Z., Qi, X., Cai, J. (2013). Reliability Analysis-Based Numerical Calculation of Metal Structure of Bridge Crane. Mathematical Problems in Engineering, 2013, 1–5. doi: https://doi.org/10.1155/2013/260576

16. Haniszewski, T. (2014). Strength analysis of overhead traveling crane with use of finite element method. Transport problems, 9 (1), 19–26. Available at: https://www.researchgate.net/publication/276235576

17. Yifei, T., Wei, Y., Zhen, Y., Dongbo, L., Xianglong, L. (2013). Research on Multidisciplinary Optimization Design of Bridge Crane. Mathematical Problems in Engineering, 2013, 1–10. doi: https://doi.org/10.1155/2013/763545

18. Patel, H., Upadhyay, D., Patel, D. (2020). Design optimization of box girder in gantry crane using finite element analysis software. International Research Journal of Engineering and Technology, 07 (08), 1906–1917. Available at: https://www.ijrjet.org/archives/V7/I8/IJRJET-V78317.pdf

19. Delic, M., Colic, M., Mesic, E., Pervan, N. (2017). Analytical calculation and fem analysis main girder double girder bridge crane. TEM Journal, 6 (1), 48–52. doi: https://dx.doi.org/10.18421/TEM61-07

20. Slepuzhnikov, Ye., Varchenko, I., Fidrovska, N. (2020). Provedenna eksperimentalnykh doslidzhen metodom tznometriyi. ICSR
This paper reports the dependences that have been derived to determine the effective width of a free flange in a dangerous cross-section of the wide-flange hull girder with the breaking of the wall/edges/axis at elastic-plastic deformation depending on the applied load for a perfectly plastic material without strengthening. Currently, there are no systematic dependences to determine the effective width of the free flange of girders of this type, except for certain cases. The technique is suitable for use for both purely elastic and elastic-plastic deformation. To calculate the stressed-strained state in two-dimensional problem from the elasticity and plasticity theory. It has been shown that the node is exposed to simple loading. The reported results were derived within the framework of the deformation theory of plasticity. The largest ratio of external load to the boundary of a resistive tensometric sensor. International Scientific Journal: Mechanics. Technologies. Materials, 9 (1), 44–47. Available at: https://stumejournals.com/journals/mtm/2015/1/44.full.pdf

DOI: 10.15587/1729-4061.2021.225106

DETERMINING THE ELASTIC-PLASTIC EFFECTIVE WIDTH OF THE FREE FLANGE OF A HULL GIRDER WITH THE BREAKING OF A WALL (p. 32–40)

Valerii Sokov
Admiral Makarov National University of Shipbuilding, Mykolaiv, Ukraine

ORCID: http://orcid.org/0000-0003-3933-879X

Leonii Korostylov
Admiral Makarov National University of Shipbuilding, Mykolaiv, Ukraine

ORCID: http://orcid.org/0000-0002-4370-3270

References

1. Sokov, V. M. (2020). Veryfikatsia ta modyfikatsiya formuly V. P. Suslova dla efektyvnoi shyrynny vilnoho poiasku balky zilamom stinky. Suchasni tehnolohiyi proektuvannia, pobudovy, ekspluatatsi i remontu sder, morskykh tekhnichnykh zasobiv i izhenernykh sporud: materialy vseukrainskoiu naukovo-tekhniichnoi konferentsii z mizhnarodnoiu uchastiu. Mykolaiv: NUK, 106–110.

2. Sokov, V. M. (2020). Efektyvna shyryna vilnoho flantsia sudnovoi balky zilamom stinky v nebezpechnomu perezri. Inovatsiyi v sudnovodobuvanii ta okeanotekhniki: materialy XI mizhnarodnoi naukovo-tekhniichnoi konferentsii. Mykolaiv: NUK, 233–236.

3. Belenkiy, L. M., Raskin, Y. N., Vutlemin, J. (2007). Effective plating in elastic–plastic range of primary support members in double-skin ship structures. Marine Structures, 20 (3), 115–123. doi: https://doi.org/10.1016/j.marstruc.2007.06.002

4. Hanssen, T., Gath, J., Nielsen, M. P. (2010). An improved effective width method based on the theory of plasticity. Advanced Steel Construction, 6 (1), 515–547. doi: https://doi.org/10.18057/ijasc.2010.6.1.1

5. Lin, Z., Zhao, J. (2012). Modeling inelastic shear lag in steel box beams. Engineering Structures, 41, 90–97. doi: https://doi.org/10.1016/j.engstruct.2012.03.018

6. Yemelin, Y. (1992). On the effective width of girder flanges in elastic and elasto-plastic stages. Journal of Constructional Steel Research, 21 (1-3), 195–204. doi: https://doi.org/10.1016/0143-974x(92)90027-e

7. Shi, Q.-X., Wang, B. (2015). Simplified calculation of effective flange width for shear walls with flange. The Structural Design of Tall and Special Buildings, 25 (12), 558–572. doi: https://doi.org/10.1002/tal.1272

8. Cheng, X., Chen, Y., Pan, L. (2013). Experimental study on steel beam–columns composed of slender H-sections under cyclic bending. Journal of Constructional Steel Research, 88, 279–288. doi: https://doi.org/10.1016/j.jcsr.2013.05.020

9. Erkmen, B., Kilic, B. T. (2019). Determination of Effective Breadth Width of Steel Plate-Stiffener Based on Nonlinear FE Analysis. The 14th Nordic Steel Construction Conference, 3 (3-4), 829–834. doi: https://doi.org/10.1002/tal.1272

10. Okabe, T., Takeda, N. (2002). Elastoplastic shear-lag analysis of single-fiber composites and strength prediction of unidirectional multi-fiber composites. Composites Part A: Applied Science and Manufacturing, 33 (10), 1327–1335. doi: https://doi.org/10.1016/s1359-835x(02)00170-7

11. Kimura, S., Koyanagi, J., Hama, T., Kawada, H. (2007). An Improved Shear-Lag Model for a Single Fiber Composite with a Ductile Matrix. Key Engineering Materials, 334-335, 333–336. doi: https://doi.org/10.4028/www.scientific.net/kem.334-335.333

12. Nie, J.-G., Tian, C.-Y., Cai, C. S. (2008). Effective width of steel–concrete composite beam at ultimate strength stage. Engineering Structures, 30 (3), 1396–1407. doi: https://doi.org/10.1016/j.engstruct.2007.07.027

13. Timoshenko, S. P., Goodier, J. N. (1970). Theory of Elasticity Audio CD. New York: McGraw–Hill Book Company.

14. Suslov, V. P., Kochanov, Yu. P., Spihtarenko, V. N. (1972). Streitfein-ya mehanika korablya i osnovy teorii upragosti. Leningrad: Stadnostroenie, 720.

15. Eremenko, S. Yu. (1991). Metody konechnykh elementov v mehanike deformiruemyh tel. Kharkiv: Izd-vo «Osnova» pri Khark. un-te., 272.
Reduction of the complexity of production of articles from composite materials is largely ensured by the use of reinforcing semi-finished products in which fibers pre-form a framework. Among all the variety of reinforcing systems, woven sleeves (preforms) occupy a special place. The high degree of deformability in a nonimpregnated condition makes it possible to lay this reinforcement on any surface without folds and cuts that provide preservation of strand continuity. This advantage of woven sleeves is accompanied by a change in local reinforcement angles and, consequently, the variable nature of physical and mechanical characteristics of the curved part surface. A method for calculating physical and mechanical characteristics of the composite based on preforms at any point of the part depending on the pattern of laying strands on a curved surface has been developed. The possibility of application of the rod model of the composite to describe physical and mechanical characteristics of the composite material with a woven reinforcement was analyzed. The model essence consists in that the composite is modeled by a diamond-shaped rod system. The rhombus sides serve as fibers and the diagonals as the binder. To verify the theoretical results and substantiate practical recommendations, a series of experimental studies were performed based on the formation of material specimens from two types of woven sleeves with different reinforcement angles. The experimental study program included tensile, bending, and compression tests. A fairly good convergence of theoretical and experimental data was obtained. For example, a square of the correlation coefficient was not less than 0.95 for the modulus of elasticity, not less than 0.8 for the Poisson’s ratio, and not less than 0.9 for tensile and compressive strengths. This is the rationale for using the rod model to describe the considered class of composites. The use of the developed procedure will make it possible to increase the perfection of the considered class of designs and obtain rational parameters of the process of their manufacture.

Keywords: sleeve, preform, reinforcement angle, rod model, fibers, binder, test, stretching, bending, compression.

References
1. Fomin, O., Logvinenko, O., Burlutsy, O., Rybun, A. (2018). Scientific Substantiation of Thermal Leveling for Deformations in the Car Structure. International Journal of Engineering & Technology, 7 (4.3), 125. doi: https://doi.org/10.14419/ijet.v7i4.3.19721
2. Bychkov, A. S., Kondratiev, A. V. (2019). Criterion-Based Assessment of Performance Improvement for Aircraft Structural Parts with Thermal Spray Coatings. Journal of Superhard Materials, 41 (1), 53–59. doi: https://doi.org/10.3103/s1063457619100108
3. Mustafa, L. M., Ismailov, M. B., Sanin, A. F. (2020). Study on the effect of plasticizers and thermoplastics on the strength and toughness of epoxy resins. Naukovyi Visnyk Nationalnoho Hirnychoho Universytetu, 4, 63–68. doi: https://doi.org/10.33271/nvnu/2020-4/063
4. Kondratiev, A., Slivinsky, M. (2018). Method for determining the thickness of a binder layer at its non-uniform mass transfer inside the channel of a honeycomb filler made from polymeric paper. Eastern-European Journal of Enterprise Technologies, 6 (5 (96)), 42–48. doi: https://doi.org/10.15587/1729-4061.2018.150387
5. Rodichev, Y. M., Smetankina, N. V., Shupikov, O. M., Ugrimson, S. V. (2018). Stress-Strain Assessment for Laminated Aircraft Cockpit Windows at Static and Dynamic Loads. Strength of Materials, 50 (6), 868–873. doi: https://doi.org/10.1007/s11223-019-00033-4
6. Kondratiev, A., Gaiduchuk, V., Nabokina, T., Tsartsynskyi, A. (2020). New Possibilities of Creating the Efficient Dimensionally Stable Composite Honeycomb Structures for Space Applications. Advances in Intelligent Systems and Computing, 45–59. doi: https://doi.org/10.1007/978-3-030-37618-5_5
7. Leong, K. H., Ramakrishna, S., Huang, Z. M., Bibo, G. A. (2000). The potential of knitting for engineering composites – a review. Composites Part A: Applied Science and Manufacturing, 31 (3), 197–220. doi: https://doi.org/10.1016/s1359-835x(99)00067-6
8. Donetsky, K. I., Kogan, D. I., Khrulkov, A. V. (2014). Properties of the polymeric composite materials made on the basis of braided preforms. Proceedings of VIAM, 3. doi: https://doi.org/10.18577/2307-6046-2014-0-3-5-5
9. Okano, M., Sugimoto, K., Saito, H., Nakai, A., Hamada, H. (2005). Effect of the braiding angle on the energy absorption properties of a hybrid braided FRP tube. Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications, 219 (1), 59–66. doi: https://doi.org/10.1243/146442005x10256
10. Erber, A., Drechsler, K. (2009). Torsional performance and damage tolerance of braiding configurations. JEC Composites Magazine, 46, 42–45.
11. Arolf, B., Gessler, A., Metzner, C., Birkefeld, K. (2015). Braiding processes for composites manufacture. Advances in Composites Manufacturing and Process Design, 3–26. https://doi.org/10.1061/978-1-78242-307-2.00001-4
12. Birkefeld, K., Pickett, A., Middendorf, P. (2018). 8.5 Virtual Design and Optimisation of Braided Structures Considering Production Aspects of the Preform. Comprehensive Composite Materials II, 85–97. doi: https://doi.org/10.1007/978-1-4020-4478-7_10
13. Li, X., Binienda, W. K., Littell, J. D. (2009). Methodology for Impact Modeling of Triaxial Braided Composites Using Shell Elements. Journal of Aerospace Engineering, 22 (3), 310–317. doi: https://doi.org/10.1061/(asce)0893-1312(2009)22:3(310)
14. Lomov, S. V., Parmas, R. S., Bandypadhyay Ghosh, S., Verpoest, I., Nakai, A. (2002). Experimental and Theoretical Characterization of the Geometry of Two-Dimensional Braided Fabrics. Textile Research Journal, 72 (8), 706–712. doi: https://doi.org/10.1177/004050002070200810
15. Lomov, S. V., Mikolanda, T., Kosek, M., Verpoest, I. (2007). Model of internal geometry of textile fabrics: Data structure and virtual reality implementation. Journal of the Textile Institute, 98 (1), 1–13. doi: https://doi.org/10.1353/joti.2006.0251
16. Verleye, B., Croce, R., Griebel, M., Klitz, M., Lomov, S. V., Morren, G. et. al. (2008). Permeability of textile reinforcements: Sim-
ulation, influence of shear and validation. Composites Science and Technology, 68 (13), 2804–2810. doi: https://doi.org/10.1016/j.compscitech.2008.06.010
17. Zilio, L., Dias, M., Santos, T., Santos, C., Fonseca, R., Amaral, A., Aquino, M. (2020). Characterization and statistical analysis of the mechanical behavior of knitted structures used to reinforce composites: Yarn compositions and flat stitches. Journal of Materials Research and Technology, 9 (4), 8323–8336. doi: https://doi.org/10.1016/j.jmrt.2020.05.089
18. Samipour, S. A., Khalilui, V. I., Batrakov, V. V. (2017). A method for calculating the parameters for manufacturing preforms via radial braiding. Journal of Machinery Manufacture and Reliability, 46 (3), 302–308. doi: https://doi.org/10.3103/s1052618817030128
19. Samipour, S. A., Danilov, Y. S. (2016). Development and verification of an analytic technique to determine the stiffness parameters of braided tubular parts. Russian Aeronautics, 59 (4), 460–465. doi: https://doi.org/10.3103/s1068799816040048
20. Chen, C. M., Kam, T. Y. (2007). Elastic constants identification of symmetric angle-ply laminates via a two-level optimization approach. Composites Science and Technology, 67 (3-4), 698–706. doi: https://doi.org/10.1016/j.compscitech.2006.04.016
21. Kondratiev, A., Gaidachuk, V., Nabokina, T., Kovalenko, V. (2019). Determination of the influence of deflections in the thickness of a composite material on its physical and mechanical properties with a local damage to its wholeness. Eastern-European Journal of Enterprise Technologies, 4 (1 (100)), 6–13. doi: https://doi.org/10.15587/1729-4061.2019.174025
22. Andreev, A. V., Karpov, Ya. S. (2010). Modelingrupniki i prochnostnykh svoystv kompozitov, armirovannykh pletenymi rukavami. Voprosy proektirovaniya i proizvodstva konstruktivnykh letatel’nyh apparatov, 4 (64), 7–10
23. Kondratiev, A., Andrieiev, O. (2020). Forecasting characteristics of composite strength on the basis of preforms in elements of building structures. Municipal economy of cities, 6 (159), 2–9. doi: https://doi.org/10.33042/2522-1809-2020-6-159-2-9
24. Chaoanchi, F., Rahali, Y., Ganghoffer, J. F. (2014). A micromechanical model of woven structures accounting for yarn–yarn contact based on Hertz theory and energy minimization. Composites Part B: Engineering, 66, 368–380. doi: https://doi.org/10.1016/j.compositesb.2014.05.027
25. Karpov, Y. S., Lepikhin, P. P., Taranenko, I. M. (2001). Mechanics of composite materials. Kharkiv: National Aerospace University “Kharkiv Aviation Institute” Publ., 104.
26. Wang, H., Wang, Z. (2015). Quantification of effects of stochastic feature parameters of yarn on elastic properties of plain-weave composite. Part 1: Theoretical modeling. Composites Part A: Applied Science and Manufacturing, 78, 84–94. doi: https://doi.org/10.1016/j.compositesa.2015.07.022
27. Wu, L., Zhang, F., Sun, B., Gu, B. (2014). Finite element analyses on three-point low-cyclic bending fatigue of 3-D braided composite materials at microstructure level. International Journal of Mechanical Sciences, 84, 41–53. doi: https://doi.org/10.1016/j.ijmecsci.2014.03.036
28. Wu, Z., Au, C. K., Yuen, M. (2003). Mechanical properties of fabric materials for draping simulation. International Journal of Clothing Science and Technology, 15 (1), 56–68. doi: https://doi.org/10.1108/09556220310461169
29. Kondratiev, A. (2019). Improving the mass efficiency of a composite launch vehicle head fairing with a sandwich structure. Eastern-European Journal of Enterprise Technologies, 6 (7 (102)), 6–18. doi: https://doi.org/10.15587/1729-4061.2019.184551
30. Ahmadi, M. S., Johari, M. S., Sadighi, M., Esfandeh, M. (2009). An experimental study on mechanical properties of GFRP biaxial biaxial braided composite rods. Express Polymer Letters, 3 (9), 560–568. doi: https://doi.org/10.3144/expresspolymlett.2009.70
31. Pellegino, S. (2012). Satellite Hardware: Stow-and-Go for Space Travel. Advanced Materials and Processes, 170, 39–41
32. Arnold, W., William, A., Wieslaw, B., Robert, G., Lee, K., Justin, L., Gary, R. (2009). Characterization of Triaxial Braided Composite Material Properties for Impact Simulation. 65-th American Helicopter Society International Annual Forum, 2, 912–933
33. Balea, L., Dussere, G., Bernhart, G. (2014). Mechanical behaviour of plain-knit reinforced injected composites: Effect of inlay yarns and fibre type. Composites Part B: Engineering, 56, 20–29. doi: https://doi.org/10.1016/j.compositesb.2013.07.028
34. Bergmann, T., Heimbs, S., Maier, M. (2015). Mechanical properties and energy absorption capability of woven fabric composites under ±45° off-axis tension. Composite Structures, 125, 362–373. doi: https://doi.org/10.1016/j.compstruct.2015.01.040
35. Bouaida, Z., Farge, L., André, S., Meshaka, Y. (2015). Influence of the fiber/matrix strength on the mechanical properties of a glass fiber/thermoplastic-matrix plain weave fabric composite: Composites Part A: Applied Science and Manufacturing, 75, 28–38. doi: https://doi.org/10.1016/j.compositesa.2015.04.012
36. Ayanci, C., Carey, J. P. (2011). Experimental validation of a regression-based predictive model for elastic constants of open mesh tubular diamond-braid composites. Polymer Composites, 32 (2), 243–251. doi: https://doi.org/10.1002/pc.21042

DOI: 10.15587/1729-4061.2021.235417
ESTIMATING THE DYNAMICS OF A MACHINE-TRACTOR ASSEMBLY CONSIDERING THE EFFECT OF THE SUPPORTING SURFACE PROFILE (p. 51–62)

Ivan Galych
Kharkiv Petro Vasylenko National Technical University of Agriculture, Kharkiv, Ukraine
ORCID: http://orcid.org/0000-0002-9137-036X

Roman Antoshchenkov
Kharkiv Petro Vasylenko National Technical University of Agriculture, Kharkiv, Ukraine
ORCID: http://orcid.org/0000-0003-0769-7464

Viktor Antoshchenkov
Kharkiv Petro Vasylenko National Technical University of Agriculture, Kharkiv, Ukraine
ORCID: http://orcid.org/0000-0002-1136-5430

Igor Lukjanov
Kharkiv Petro Vasylenko National Technical University of Agriculture, Kharkiv, Ukraine
ORCID: http://orcid.org/0000-0003-0325-2660

Sergey Diundik
National Academy of National Guard of Ukraine, Kharkiv, Ukraine
ORCID: http://orcid.org/0000-0003-3558-0028

Oleksandr Kis
Kharkiv National University of Radio Electronics, Kharkiv, Ukraine
ORCID: http://orcid.org/0000-0002-0033-4495

Results of theoretical studies of dynamics of the machine-tractor assembly taking into account the influence of a bearing surface profile were presented. It was established that in the course of operation, the machine-tractor assembly is exposed to a number of external factors leading to a change of vertical loads on the chassis and the engine. Mathematical models of dynamics of a tractor and a machine and a tractor unit consisting of a tractor of pivotally connected articulated and a trailed sower were constructed. Such models make it possible to study dynamics and oscillatory processes of multi-
element units. A mathematical model of tractor wheel dynamics was formed. Speeds and angles of orientation of elements of the machine-tractor assembly in space were determined. Influence of profile of the bearing surface on the unit elements when moving in the field prepared for sowing and the field after plowing was calculated. Theoretical studies of the influence of the bearing surface profile on dynamics of the machine-tractor assembly were performed on the example of KhTZ-242K tractor and Vega-8 Profi sower (Ukraine). When moving, the sower frame has a smaller amplitude of vibration accelerations than that of the tractor. Accordingly, the tractor has higher oscillation energy because it rests on the ground through its wheels having appropriate stiffness. The sower moves with its working bodies immersed into the soil which leads to a decrease in the amplitude of oscillations. The highest energy of amplitude of oscillation accelerations of the sower frame in the vertical direction was observed at frequencies of 15.9; 23.44; 35.3 and 42.87 Hz. It was found that the increase in working speeds of agricultural units was observed from a frequency of 15.9 Hz. It was found that the increase in working speeds of agricultural units leads to the fact that oscillations of all components reach significant values. This entails an increase in dynamic loads on soil and, as a consequence, its compaction.

Keywords: machine-tractor assembly, oscillations of frame elements, mathematical model of the wheel, profile of bearing surface, amplitude of vibration accelerations, spectral density of profile height.

References

1. Shabana, A. A. (2013). Dynamics of Multibody Systems. Cambridge University Press, 384. doi: https://doi.org/10.1017/cbo9781139073701
2. Wong, J. Y. (2008). Theory of ground vehicles. Wiley, 592. Available at: https://www.wiley.com/en-us/Theory+of+Ground+Vehicles%20+4%20Edition-p-9780470170380
3. Zhatov, A. G., Karsakov, A. A., Avarnov, V. I. (2013). Formation of towed load depending on the moment of resistance. Traktory i sel’hoz mashiny, 2, 24–25. Available at: https://www.elibrary.ru/item.asp?id=18851435
4. Werner, R., Kormann, G., Mueller, S. (2012). Dynamic modeling and path tracking control for a farm tractor towing an implement with steerable wheels and steerable drawbar. 2nd Commercial Vehicle Technology Symposium. Kaiserslautern, 241–250.
5. Bulgakov, V., Ivanovs, S., Adamchuk, V., Antoshchenkov, R. (2019). Investigations of the Dynamics of a Four-Element Machine-And-Tractor Aggregate. Acta Technologica Agriculturae, 22 (4), 146–151. doi: 10.2478/atia-2019-0026
6. Blundell, M., Harty, D. (2004). The Multibody Systems Approach to Vehicle Dynamics. Butterworth-Heinemann, 288. doi: https://doi.org/10.1016/b978-0-7506-5112-7.x5000-3
7. Antoshchenkov, R. V. (2017). Dynamika ta energetyka rukhu bahatoelementnykh mashyn. Kharkiv: KhNTU, 244. Available at: http://dspace.khntusg.com.ua/handle/123456789/1186
8. Cutini, M., Brambilla, M., Bisaglia, C. (2017). Whole-Body Vibration in Farming: Background Document for Creating a Simplified Procedure to Determine Agricultural Tractor Vibration Comfort. Agriculture, 7 (10), 84. doi: https://doi.org/10.3390/agriculture7100084
9. Dzyuba, O., Dzyuba, A., Polyakov, A., Volokh, V., Antoshchenkov, R., Mykhailov, A. (2019). Studying the influence of structural-mode parameters on energy efficiency of the plough PLN-3-35. Eastern-European Journal of Enterprise Technologies, 3 (1 (99)), 53–65. doi: https://doi.org/10.15587/1729-4661.2019.1659003
10. Lenzini, P., Debodi, R., Preti, C., Calvo, A. (2016). A round robin test for the hand-transmitted vibration from an olive harvester. International Journal of Industrial Ergonomics, 53, 86–92. doi: https://doi.org/10.1016/j.iinderg.2015.10.006
11. Pazooki, A., Cao, D., Rakheja, S., Boilson, P.-É. (2011). Ride dynamic evaluations and design optimisation of a torsio-elastic off-road vehicle suspension. Vehicle System Dynamics, 49 (9), 1453–1476. doi: https://doi.org/10.1080/00423114.2010.516833
12. Guan, D., Fan, C., Xie, X. (2005). A dynamic tyre model of vertical performance rolling over cleats. Vehicle System Dynamics, 43 (sup1), 209–222. doi: https://doi.org/10.1080/00423110500105988
13. Besselink, I. J. M., Schmette, A. J. C., Paeckje, H. B. (2010). An improved Magic Formula/Swift tyre model that can handle inflation pressure changes. Vehicle System Dynamics, 48 (sup1), 337–352. doi: https://doi.org/10.1080/00423111003748088
14. Paeckje, H. (2012). Tire and Vehicle Dynamics. Butterworth-Heinemann, 672. doi: https://doi.org/10.1016/tcvd.2010-0-68548-8
15. Taylor, R. K., Bashford, L. L., Schrodt, M. D. (2000). Methods for measuring vertical tire stiffness. Transactions of the ASAE, 43 (6), 1415–1419. doi: https://doi.org/10.13031/2013.3039
16. Jazan, R. N. (2014). Vehicle dynamics: Theory and Application. Springer. doi: http://doi.org/10.1007/978-1-4614-8544-5
17. Wille, R., Bohn, F., Duda, A. (2005). Calculation of the rolling contact between a tyre and deformable ground. Vehicle System Dynamics, 43, 483–492. doi: https://doi.org/10.1080/00423110500139759
18. Melnik, V., Antoshchenkov, R., Antoshchenkov, V., Kys, V., Galych, I. (2019). Results of experimental studies of tractor type dynamics XT3-243K. Visnyk KhNTUSH imeni Petra Vaalenky, 198, 181–187. Available at: http://dspace.khntusg.com.ua/bitstream/123456789/10461/1/26.pdf
19. Wei, B. S., Yahya, A., Suparjo, B. S., Othman, I. (2002). Mobile, automated, 3-axis laser soil surface profile digitizer. Biological, agricultural and food engineering: Proceedings of 2nd World Engineering Congress (WEC2002). Engineering innovation and sustainability: Global challenges and issues. Kuching, 319–326.
20. Kahir, M. S. N., Ruy, M.-J., Chung, S.-O., Kim, Y.-J., Choi, C.-H., Hong, S.-J., Sung, J.-H. (2014). Research Trends for Performance, Safety, and Comfort Evaluation of Agricultural Tractors: A Review. Journal of Biosystems Engineering, 39 (1), 21–33. doi: https://doi.org/10.5307/jbe.2014.39.1.021

DOI: 10.15587/1729-4061.2021.225121

DEVIISING A METHOD TO ANALYZE THE CURRENT STATE OF THE MANIPULATOR WORKSPACE (p. 63–74)

Natalia Ashhepkova

Oles Honchar Dnipro National University, Dnipro, Ukraine

ORCID: http://orcid.org/0000-0002-1870-1062

This paper has proposed a program analysis method over the current state of the workspace of an anthropomorphic manipulator using the Mathcad software application package (USA). The analysis of the manipulator workspace helped solve the following sub-tasks: to calculate the limits of the grip reach, to determine the presence of “dead zones” within the manipulator workspace, to build the boundaries of the manipulator workspace. A kinematic scheme of the manipulator typically provides for at least five degrees of mobility, which is why in the three-dimensional Cartesian coordinate system the work zone boundaries represent the surfaces of a complex geometric shape. The author-devised method makes it possible to construct the projections of the boundaries of the manipulator’s work zone onto the coordinate planes in the frame of reference associated with the base of the robot.

Using Mathcad’s built-in features makes it possible to effectively solve the above sub-tasks without wasting time developing special-
ized software. The Mathcad software application package provides the possibility of a symbolic solution to the first problem of the kinematics of an industrial robot, that is, the program generates analytical dependences of the coordinates for special point kinematics of an industrial robot, that is, the program generates for the possibility of a symbolic solution to the first problem of the ized software. The Mathcad software application package provides

Abstract and References. Applied mechanics

Special features in constructing mathematical models when using the Mathcad software application package have been revealed. Simulating the manipulator movement taking into consideration constraints for kinematic pairs, the drives’ power, as well as friction factors, makes it possible to optimize the parameters of the manipulator kinematic scheme.

An example of the analysis of the working space of an anthropomorphic manipulator with five degrees of mobility has been considered. The reported results could be used during the design, implementation, modernization, and operation of manipulators.

Keywords: kinematic scheme, grab pole, coordinate conversion, workspace, reach limits.

References

1. Grigoriev, S. N., Andreev, A. G., Ivanovsky, S. P. (2013). Present State and Prospects of Industrial Robotics. Mehanotronika, avtomatisiya, upravlenie, 1, 30–34.
2. Schwandt, A., Yuschenko, A. S. (2013). Industrial robot application for advanced mechanical shaping technologies. Robototekhika i tehnischekaya kibernetika, 1 (1), 18–21.
3. Tang, M., Gu, Y., Wang, S., Liang, Q., Wang, X. (2019). Planning of safe working space for the hot-line working robot ICBot. International Journal of Applied Electromagnetics and Mechanics, 61 (1), 97–110. doi: https://doi.org/10.3233/iae-180057
4. Hou, R. G., Gao, J., Li, Z. Y., Wang, S. J., Zhao, G. Y. (2012). Analysis of the Movable Cotton Robot Palletizer Working Space Based on Graphing Method. Advanced Materials Research, 500, 454–459. doi: 10.4028/www.scientific.net/AMR.500.454
5. Goritov, A. N. (2017). Building a three-dimensional model of the workspace of an industrial robot. Proceedings of Tomsk State University of Control Systems and Radiotechnics, 20 (4), 117–121. doi: https://doi.org/10.21293/1818-0442-2017-20-4-117-121
6. Antoshkin, S. B., Bakanov, M. V., Sizyk, V. N. (2019). An autonomous robot control system based on an inverse problems method in dynamics. Modern Technologies. System Analysis. Modeling, 62 (2), 15–23. doi: 10.26731/1813-9108.2019.2(62).15-23
7. Khomchenko, V. G. (2018). About ways of the task of orientation of the working body of the robot manipulator. Dynamics of Systems, Mechanisms and Machines, 6 (2), 76–81. doi: https://doi.org/10.25206/2310-9795-2018-6-2-76-81
8. He, B., He, X. L., Han, L. Z., Cao, J. T., Li, M., Tian, Y. Z. (2010). Working Space Analysis and Simulation of Modular Service Robot Arm Based on Monte Carlo Method. Applied Mechanics and Materials, 34-35, 1104–1108. doi: https://doi.org/10.4028/www.scientific.net/amm.34-35.1104
9. Lopatin, P. K. (2012). Algoritmy islesdovaniya dostizhimosti obekta manipulyatorov v neizvestnoy srede. Mehanotronika, avtomatizatsiya, upravlenie, 9, 49–52.
10. Lopatin, P. (2019). Manipulator control in an unknown static environment. Robotics and Technical Cybernetics, 7 (1), 58–64. doi: https://doi.org/10.31776/rtcj.7108
11. Xie, B. (2012). Motion Planning of Reaching Point Movements for 7R Robotic Manipulators in Obstacle Environment Based on Rapidly-exploring Random Tree Algorithm. Journal of Mechanical Engineering, 48 (63), 63. doi: https://doi.org/10.3901/jme.2012.03.063
12. Schwandt, A., Yuschenko, A. (2020). Collaborative manipulation robots programming with the use of augmented reality interface. Robotics and Technical Cybernetics, 8 (2), 139–149. doi: https://doi.org/10.31776/rtcj.8205
13. Pritykin, F. N., Nelekov, D. E. (2016). Study of the Surfaces Defining the Area Boundaries of the Allowable Configurations of the Mobile Manipulator Mechanism with the Available Forbidden Zones. Mehanotronika, Avtomatizacija, Upravlenie, 17 (6), 407–413. doi: https://doi.org/10.17587/mau.17.407-413
14. Pritykin, F. N., Nelekov, D. I. (2018). Creating a knowledge base about past experience in the synthesis of arm movements of an android robot based on the use of the area of allowed configurations. Software systems and computational methods, 4, 60–67. doi: https://doi.org/10.7256/2454-0714.2018.4.26638
15. Karavaev, Yu. L., Shестаков, A. (2018). Construction of a Service Area of a Highly Maneuverable Mobile Manipulation Robot. Intelligent Systems in Manufacturing, 16 (3), 90–96. doi: https://doi.org/10.22213/2410-9304-2018-3-90-96
16. Li, W., Xiong, R. (2019). Dynamical Obstacle Avoidance of Task-Constrained Mobile Manipulation Using Model Predictive Control. IEEE Access, 7, 88301–88311. doi: https://doi.org/10.1109/access.2019.2925428
17. Krasnov, A. Y., Chepinskiy, S. A., Yifan, C., Huimin, L., Khonun, S. A. (2017). Trajectory control for a robot motion in presence of moving obstacles. Scientific and Technical Journal of Information Technologies, Mechanics and Optics, 17 (5), 790–797. doi: https://doi.org/10.17586/2226-1494-2017-17-5-790-797
18. Korsakov, A., Astapova, L., Smirnova, E. (2020). Object-oriented reconstruction of manipulator’s working area by point cloud. Robotics and Technical Cybernetics, 61 (1), 97–110. doi: https://doi.org/10.31776/rtcj.8305
19. Ashchepkova, N. (2015). Mathcad in the kinematic and dynamic analysis of the manipulator. Eastern-European Journal of Enterprise Technologies, 5 (7 (77)), 54–63. doi: https://doi.org/10.15587/1729-4061.2015.51105
20. Kolotubin, S. A. (2017). Dinamika robototehnicheskikh sistem. Sankt-Peterburg: Universitet ITMO, 117.
21. Maxfield, B. (2009). Essential Mathcad for Engineering, Science, and Math. Academic Press, 528. doi: https://doi.org/10.1016/b978-0-12-374783-9.x0001-x
22. Yurevich, E. I. (2017). Osnovy robototekhniki. Sankt-Peterburg: BHV-Peterburg, 304.
ВИЗНАЧЕННЯ НАВАНТАЖЕНІСТІ ДОВГОБАЗНОЇ КОНСТРУКЦІЇ ВАГОНА-ПЛАТФОРМИ З ПРУЖНИМИ ЕЛЕМЕНТАМИ В ПОВЗДОВЖНІХ БАЛКАХ (с. 6–13)

С. В. Панченко, О. В. Фомін, Г. Л. Ватуля, О. В. Устенко, А. О. Ловська

Проведено дослідження динамічної навантаженості та міцності удосконаленої несучої конструкції вагона-платформи. Особливістю вагона є наявність в основних повздовжніх балках рами пружних елементів. Це дозволить підвищити втомну міцність несучої конструкції вагона-платформи при експлуатаційних режимах.

Для визначення динамічної навантаженості несучої конструкції вагона-платформи проведено математичне моделювання. До уваги прийняті коливання підскакування. Встановлено, що вертикальне прискорення несучої конструкції вагона-платформи в по-рожньому стані складає близько 2,0 m/s² (0,2 g). При цьому вертикальні прискорення, які діють на несучу конструкцію вагона-платформи, нижчі на 15 % у порівнянні з вагоном-прототипом.

Визначено основні показники міцності несучої конструкції вагона-платформи. Розрахунок проведенний за методом скінчених елементів в програмному комплексі SolidWorks Simulation (Франція). При складанні розрахункової схеми враховано, що несуча конструкція вагона-платформи завантажена чотирма контейнерами типорозміру 1СС. Максимальні еквівалентні напружения при цьому виникають у зоні взаємодії шворневої балки з розкосами та складають 254,0 МПа. Тобто міцність несучої конструкції вагона-платформи забезпечується.

Визначено чисельні значення прискорень несучої конструкції вагона-платформи та поля їх дислокації шляхом комп’ютерного моделювання.

Досліджено втомну міцність та власні частоти коливань несучої конструкції вагона-платформи, а також розраховано проектний строк її служби.

Проведені дослідження сприятимуть створенню інноваційних конструкцій вагонів-платформ, а також підвищенню ефективності транспортних послуг.

Ключові слова: вагон-платформа, несуча конструкція, динамічна навантаженість, міцність конструкції, втомна міцність, транспортна механіка, залізничний транспорт.

ВИЗНАЧЕННЯ МОЖЛИВОСТІ ВИКОРИСТАННЯ ЗНІМНОГО ОБЛАДНАННЯ ДЛЯ ПЕРЕВЕЗЕННЯ ВЕЛИКОТОННАЖНИХ КОНТЕЙНЕРІВ ДОВЖИНОЮ 20 ТА 40 ФУТІВ НА УНІВЕРСАЛЬНИЙ ПЛАТФОРМІ (с. 14–21)

В. Ю. Шапошник, О. А. Шикунов, О. Г. Рейдемейстер, Л. А. Мурадян, О. О. Потапенко

Важливе місце на ринку транспортних послуг займають контейнерні перевезення. Залізничний транспорт, особливо в умовах зростаючої конкуренції з боку автомобільного транспорту, повинен швидко реагувати на потреби ринку та зростаючий попит на контейнерні перевезення, в тому числі, і в міждержавному сполученні. Попит на контейнерні перевезення протягом року може значно змінюватися, що свідчить про доцільність впровадження знімного обладнання на універсальні вагонах які залучаються до перевезення контейнерів. Розроблена конструкція знімної рами для універсальної платформи яка дозволить перевозити два 20-футові або один 40-футовий контейнер. Запропоноване технічне рішення не потребує внесення змін в конструкцію вагона та зміни його моделі, а при зменшенні попиту на контейнерні перевезення дозволить використовувати цей вагон за його основним призначенням.

Згідно з діючою методикою, визначені зусилля, які діють на раму при перевезенні контейнерів. Запропонована конструкція була розрахована на міцність методом скінчених елементів. Максимальні напружения, що виникають в запропонованій конструкції, становлять 164,4 МПа та виникають в кутах упорів, що кріпляться за стоякові скоби платформи. Отримані значення напружень не перевищують допустимих. Результати розрахунків змінного обладнання свідчать про його достатню міцність.

Вимоги до розміщення вантажу на рухомому складі передбачають обов’язкову перевірку вписування у габарит, яка підтвердила, що контейнер, розміщений на рамі, знаходиться в габариті. Запропонована конструкція дозволяє відмовитися від одноразових реквізитів кріплення, підвищити безпеку перевезення контейнерів та сприяє збільшенню конкуренції на ринку контейнерних перевезень.

Ключові слова: універсальна платформа, контейнерні перевезення, знімне обладнання, міцність, метод скінчених елементів.
мостовому краї вантажопідійомністю 5 т, та прогоном 22.5 м. За допомогою тензодатчиків, візирних і напівпрозорої схеми та підключених до аналого-цифрового перетворювача Zetlab210 (Росія), були визначені деформації головної балки в момент підйому та переміщення вантажу відносно маси. Підйом та переміщення вантажу, було проведено при одинакових умовах на штатних колесах вантажного візка та на колесах з еластичною гумовою вставкою. Були отримані графіки деформації головної балки. В подальшому перерахунку отримані залежності напруженої стани в кожному моменті переміщення вантажу при використанні як штатних коліс так і коліс з еластичною гумовою вставкою. Також були виявлені залежності та тривалості коливань, які виникають в продовж циклу підйому та переміщення вантажу. Цикл експериментального дослідження складався з підйому вантажу в крайньому лівому положенні вантажним візком, переміщення вантажу в крайне праве положення та повернення вантажного візка з вантажем в початкове положення.

Особливо слід відзначити, що застосування нової, модернізованої конструкції ходових коліс вантажного візка з еластичною гумовою вставкою ефективно гасить коливання в металокоонструкції крана.

За підсумками експериментальних досліджень було виявлено зменшення напружень в головній балці мостового крану на 18 % та зменшення пікових вібрацій на 20 секунд при одинакових циклах підйому та переміщення вантажу. Також при використанні коліс з еластичною гумовою вставкою зменшується період згасання коливань зменшення циклу переміщення вантажу це, найменше не менше на 30 %.

Ключові слова: тензодатчики, напруження, колесо ходове, еластична вставка, мостовий кран, вантажний візок.

DOI: 10.15587/1729-4061.2021.225106

ВИЗНАЧЕННЯ ПРУЖНО-ПЛАСТИЧНОЇ ЕФЕКТИВНОЇ ШИРИНИ ВІЛЬНОГО ФЛАНЦЮ СУДНОВОЇ БАЛКИ ЗІ ЗЛАМОМ СТІНКИ (с. 32–40)

В. М. Соков, Л. І. Коростильов

Розроблено залежності для визначення ефективної ширини вільного фланцу в небезпечному перерізі широкополої суднової балки зі зламом стінки/кромок/осі при пружно-пластичному деформуванні в залежності від прикладеного навантаження для ідеально-пластичного матеріалу без зміщення. Наразі не існує систематичних залежностей для визначення ефективної ширини вільного фланцу. Балка подібного типу, крім поодиноких випадків. Методика придатна для застосування як для чисто пружного, так і для пружно-пластичного деформування. Для розрахунку напружено-деформованого стану (НДС) використовувався метод (МЕТ) для вирішення об’ємної задачі теорії пластичності. Найбільше відношення зниження залежності від підвищення навантаження до границі плинності дорівнює 0,9. Розрахункова схема враховує найбільш несприятливі умови роботи досліджуваного вузла, коли отримується найбільш безпечні дані. Отримане залежності для теоретичного коекфіцієнту концентрації в небезпечному перерізі, який використовується в запропонованій методикі для визначення моменту переходу від пружної стадії до деформування до пружно-пластичної. При визначенні ефективної ширини врахована ефективності вільного фланцу і його депланації, шляхом визначення компонентів НДС в серединній площині. Доведено життєздатність ідеї проектування для попереднього утворення деяких каркасів. Серед усього різноманіття армуючих систем особливе значення займають плетені рукави (преформи). Високий ступінь деформованості в непросоченому стані з’ясовує можливості використання плетеного армування. Серед штатних коліс так і коліс з еластичною гумовою вставкою використовувалися напруження колеса ходове, які відбивалися в продовж циклу підйому та переміщення вантажу в крайньому лівому положенні вантажним візком.

Ключові слова: пружно-пластична ефективна ширина, балка зі зламом осі/кромок/стінки, двотаврова балка, коекфіцієнт концентрації.

DOI: 10.15587/1729-4061.2021.225142

ВИЗНАЧЕННЯ МЕХАНІЧНИХ ХАРАКТЕРИСТИК КОМПОЗИЦІЙНИХ МАТЕРІАЛІВ НА ОСНОВІ ПЛЕТЕНИХ ПРЕФОРМ (с. 41–50)

А. В. Кондратьев, О. В. Андрєєв, М. А. Шевцова

Зниження трудомісткості виробництва виробів з композиційних матеріалів в значній мірі забезпечується застосуванням армувальних напівфабрикатів, в яких волокна поступово утворюють деякий каркас. Серед усього різноманіття армувальних систем особливо місце займають плетені рукої (премікс). Високий ступінь деформованості в непросоченому стані здатні викласти чіткі розрізи, що забезпечує збереження цілісності джгути. Ця перевага плетеного армування та безпосередньо промислового виготовлення, як наслідок, змінило виготовлення джгути на криволінійну поверхню. Проаналізовано можливість застосування плетеної моделі композитів для опису фізико-механічних характеристик композиційного матеріалу із плетеною арматурою. Сутність моделі полягає в тому, що композит моделюється робобовичною стрижневою системою. Сторони робої замінюються собою, а діапазон зв’язуючих ячеї, як для теоретичних розрахунків, так і для розрахунку прикладеної ідеї проектування композитів.

Ключові слова: рукав, премікс, кут армування, стрижнева модель, волокна, зв’язуючі, випробування, розтягування, витяг.
Наведено результати теоретичних досліджень динаміки машинно-тракторного агрегату з урахуванням впливу профілю опорної поверхні. Встановлено, що в процесі роботи машинно-тракторний агрегат піддається впливу безлічі зовнішніх факторів, що призводить до зміни вертикальних навантажень на ходову частину та двигун. Складено математичні моделі динаміки трактора та машинно-тракторного агрегату у складі трактора шарнірно-з’єднаної компоновки і причіпної сівалки. Такі моделі дозволяють досліджувати динаміку та коливальні процеси багатоелементних агрегатів. Сформовано математичну модель динаміки колеса трактора. Визначено швидкості руху та кути орієнтації елементів машинно-тракторного агрегату у просторі. Розраховано вплив профілю опорної поверхні на елементи агрегату при русі по полю, що підготовлено під сівбу та полю після оранки. Теоретичні дослідження впливу профілю опорної поверхні на динаміку машинно-тракторного агрегату виконано на прикладі трактора ХТЗ-242К та сівалки Vega-8 Profi (Україна). При русі рама сівалки має меншу амплітуду віброприскорень ніж трактор. Відповідно, трактор має більшу енергію коливань, тому, що трактор спирається на грунт через колеса, які мають відповідну жорсткість. Сівалка рухається із заглибленими робочими органами у грунт, що приводить до зниження амплітуди коливань. Найбільша енергія амплітуди віброприскорень рами сівалки у вертикальному напрямі спостерігається на частотах 15,9; 23,44; 35,3 та 42,87 Гц. Визначено, що підвищення робочих швидкостей руху сільськогосподарських агрегатів приводить до того, що коливання всіх складових елементів досягають значних величин. Це тривалий час призводить до підвищення динамічних навантажень на грунт, і як наслідок, переущільнення.

Ключові слова: машинно-тракторний агрегат, коливання елементів рами, математична модель колеса, профіль опорної поверхні, амплітуда віброприскорень, спектральна щільність висоти профілю.

Запропоновано метод програмного аналізу поточного стану антропоморфного маніпулятора з використанням пакету прикладних програм Mathcad (США). При аналізі робочого простору маніпулятора вирішено наступні підзадачі: розраховані межі досяжності схвату, визначено наявність "мертвих зон" у робочому просторі маніпулятора, побудовано границі робочого простору маніпулятора. Кінематична схема маніпулятора містить, як правило, не менш п'яти ступенів рухливості, тому в тривимірній декартовій системі координат границі робочої зони являють собою поверхні складної геометричної форми. Розроблений автором метод дозволяє побудувати проекції границь робочої зони маніпулятора на координатні площини в системі відліку, пов’язаної з основою роботи.

Використання вбудованих функцій Mathcad дозволяє ефективно вирішувати перераховані підзадачі, не витрачаючи часу на розробку спеціального програмного забезпечення. Пакет прикладних програм Mathcad передбачає можливість символьного розв’язку першої задачі кінематики промислового робота, тобто програма генерує аналітичні залежності координат особливої точки R (полюса) схвату від тривимірних функцій узагальнених координат. Отримані аналітичні залежності використовуються для кінематичного і динамічного аналізу маніпулятора.

Виявлено особливості складання математичних моделей при застосуванні пакету прикладних програм Mathcad. Моделювання руху маніпулятора з урахуванням обмежень у кінематичних парах, потужності приводів і коефіцієнтів тертя дозволяє оптимізувати параметри кінематичної схеми маніпулятора.

Розглянуто приклад аналізу робочого простору антропоморфного маніпулятора з п’ятьма ступенями рухливості. Представлені результати можуть бути використані на етапі проектування, впровадження, модернізації та експлуатації маніпуляторів промислових роботів.

Ключові слова: кінематична схема, полюс схвату, перетворення координат, робочий простір, межі досяжності.