ON THE NORM-CONTINUITY FOR EVOLUTION FAMILY ARISING FROM NON-AUTONOMOUS FORMS

OMAR EL-MENNAOUI AND HAFIDA LAASRI

ABSTRACT. We consider evolution equations of the form
\[\dot{u}(t) + A(t)u(t) = 0, \quad t \in [0, T], \quad u(0) = u_0, \]
where \(A(t), \ t \in [0, T], \) are associated with a non-autonomous sesquilinear form \(a(t, \cdot, \cdot) \) on a Hilbert space \(H \) with constant domain \(V \subset H \). In this note we continue the study of fundamental operator theoretical properties of the solutions. We give a sufficient condition for norm-continuity of evolution families on each spaces \(V, H \) and on the dual space \(V' \) of \(V \). The abstract results are applied to a class of equations governed by time dependent Robin boundary conditions on exterior domains and by Schrödinger operator with time dependent potentials.

INTRODUCTION

Throughout this paper \(H, V \) are two separable Hilbert spaces over \(\mathbb{C} \) such that \(V \) is densely and continuously embedded into \(H \) (we write \(V \hookrightarrow_d H \)). We denote by \(\langle \cdot | \cdot \rangle_V \) the scalar product and \(\| \cdot \|_V \) the norm on \(V \) and by \(\langle \cdot | \cdot \rangle_H, \| \cdot \|_H \) the corresponding quantities in \(H \). Let \(V' \) be the antidual of \(V \) and denote by \(\langle \cdot, \cdot \rangle \) the duality between \(V' \) and \(V \). As usual, by identifying \(H \) with \(H' \) we have \(V \hookrightarrow_d H \cong H' \hookrightarrow_d V' \) see e.g., [5].

Let \(a : [0, T] \times V \times V \to \mathbb{C} \) be a non-autonomous sesquilinear form, i.e., \(a(t; \cdot, \cdot) \) is for each \(t \in [0, T] \) a sesquilinear form,
\[a(\cdot; u, v) \text{ is measurable for all } u, v \in V, \]
such that
\[|a(t, u, v)| \leq M\|u\|_V\|v\|_V \quad \text{and} \quad \text{Re } a(t, u, u) \geq \alpha\|u\|_V^2 \quad (t, s \in [0, T], u, v \in V), \tag{2} \]
for some constants \(M, \alpha > 0 \) that are independent of \(t, u, v \). Under these assumptions there exists for each \(t \in [0, T] \) an isomorphism \(A(t) : V \to V' \) such that \(\langle A(t)u, v \rangle = a(t, u, v) \) for all \(u, v \in V \). It is well known that \(-A(t)\), seen as unbounded operator with domain \(V \), generates an analytic \(C_0 \)-semigroup on \(V' \). The operator \(A(t) \) is usually called the operator associated with \(a(t; \cdot, \cdot) \) on \(V' \). Moreover, we associate an operator \(A(t) \) with \(a(t; \cdot, \cdot) \) on \(H \) as follows
\[D(A(t)) = \{ u \in V | \exists f \in H \text{ such that } a(t; u, v) = \langle f | v \rangle_H \text{ for all } v \in V \}, \]
\[A(t)u = f. \]

It is not difficult to see that \(A(t) \) is the part of \(A(t) \) in \(H \). In fact, we have \(D(A(t)) = \{ u \in V : A(t)u \in H \} \) and \(A(t)u = A(t)u \). Furthermore, \(-A(t)\) with domain \(D(A(t)) \) generates a holomorphic \(C_0 \)-semigroup on \(H \) which is the restriction to \(H \) of that generated by \(-A(t)\). For all this results see e.g. [22, Chapter 2] or [3, Lecture 7].

We now assume that there exist \(0 < \gamma < 1 \) and a continuous function \(\omega : [0, T] \to [0, +\infty) \) such that
\[|a(t, u, v) - a(s, u, v)| \leq \omega(t - s)\|u\|_{V^*}\|v\|_V \quad (t, s \in [0, T], u, v \in V), \tag{3} \]

*THIS WORK IS SUPPORTED BY DEUTSCHE FORSCHUNGSGEMEINSCHAFT DFG (GRANT LA 4197/8-1)
Recall that for symmetric forms, i.e., if V where $a(t; u, v) = \overline{a(t; v, u)}$ for all t, u, v, then the square root property is satisfied.

Under the assumptions (1)-(5) it is known that for each $x_0 \in V$ the non-autonomous homogeneous Cauchy problem
\begin{align}
\dot{u}(t) + A(t)u(t) &= 0 \quad \text{a.e. on } [0, T], \\
u(0) &= x_0,
\end{align}
has a unique solution $u \in MR(V, H) := L^2(0, T; V) \cap H^1(0, T; H)$ such that $u \in C([0, T]; V)$. This result has been proved by Arendt and Monniaux [4] (see also [10]) when the form a satisfies the weaker condition
\begin{align}
|a(t, u, v) - a(s, u, v)| \leq \omega(|t - s|)||u||_V||v||_V, \quad (t, s \in [0, T], u, v \in V).
\end{align}

In this paper we continue to investigate further regularity of the solution of (6). For this it is necessary to associate to the Cauchy problem (6) an evolution family
\begin{align*}
\mathcal{U} := \left\{ U(t, s) : 0 \leq s \leq t \leq T \right\} \subset \mathcal{L}(H)
\end{align*}
which means that:
\begin{enumerate}
\item $U(t, t) = I$ and $U(t, s) = U(t, r)U(r, s)$ for every $0 \leq r \leq s \leq t \leq T$,
\item for every $x \in X$ the function $(t, s) \mapsto U(t, s)x$ is continuous into H for $0 \leq s \leq t \leq T$
\item for each $x_0 \in H, U(.)x_0$ is the unique solution of (6).
\end{enumerate}

Definition 0.1. Let $Y \subseteq H$ be a subspace. An evolution family $\mathcal{U} \subset \mathcal{L}(H)$ is said to be **norm continuous in Y** if $\mathcal{U} \subset \mathcal{L}(Y)$ and the map $(t, s) \mapsto U(t, s)$ is norm continuous with value in $\mathcal{L}(Y)$ for $0 \leq s < t \leq T$.

If the non-autonomous form a satisfies the weaker condition (7) then it is known that (6) is governed by an evolution family which is norm continuous in V [15, Theorem 2.6], and norm continuous in H if in addition $V \hookrightarrow H$ is compact [15, Theorem 3.4]. However, for many boundary value problem the compactness assumption fails.

In this paper we prove that the compactness assumption can be omitted provided a satisfies (3) instead of (7). This will allow us to consider a large class of examples of applications. One of the main ingredient used here is the non-autonomous **returned adjoint form** $a^*_{\gamma} : [0, T] \times V \times V \to \mathbb{C}$ defined by
\begin{align}
a^*_{\gamma}(t, u, v) := a(T - t, v, u) \quad (t, s \in [0, T], u, v \in V).
\end{align}

The concept of returned adjoint forms appeared in the work of D. Daners [7] but for different interest. Furthermore, [15, Theorem 2.6] cited above will be also needed to prove our main result.

We note that the study of regularity properties of the evolution family with respect to (t, s) in general Banach spaces has been investigated in the case of constant domains by Komatsu [14] and Lunardi [17], and by Acquistapace [1] for time-dependent domains.

We illustrate our abstract results by two relevant examples. The first one concerns the Laplacian with non-autonomous Robin boundary conditions on an unbounded Lipschitz domain. The second one traits a class of Schrödinger operators with time dependent potential.
1. Preliminary results

Let \(a : [0, T] \times V \times V \to \mathbb{C} \) a non-autonomous sesquilinear form satisfying (1) and (2). Then the following well known result regarding \(L^2 \)-maximal regularity in \(V' \) is due to J. L. Lions

Theorem 1.1 (Lions, 1961). For each given \(s \in [0, T] \) and \(x_0 \in H \) the homogeneous Cauchy problems

\[
\begin{aligned}
&\dot{u}(t) + A(t)u(t) = 0 \quad \text{a.e. on } [s, T], \\
u(s) = x,
\end{aligned}
\]

(9)

has a unique solution \(u \in MR(V, V') := MR(s, T; V, V') := L^2(s, T; V) \cap H^1(s, T; V') \).

Recall that the maximal regularity space \(MR(V, V') \) is continuously embedded into \(C([s, T], H) \) [21, page 106]. A proof of Theorem 1.1 using a representation theorem of linear functionals, known in the literature as Lions’s representation Theorem can be found in [21, page 112] or [8, XVIII, Chapter 3, page 513].

Furthermore, we consider the non-autonomous adjoint form \(a^* : [0, T] \times V \times V \to \mathbb{C} \) of \(a \) defined by

\[
a^*(t; u, v) := \overline{a(t; v, u)}
\]

for all \(t \in [0, T] \) and \(u, v \in V \). Finally, we will need to consider the returned adjoint form \(a^*_r : [0, T] \times V \times V \to \mathbb{C} \) given by

\[
a^*_r(t, u, v) := a^*(T - t, u, v).
\]

Clearly, the adjoint form is a non-autonomous sesquilinear form and satisfies (1) and (2) with the same constant \(M, \alpha \). Moreover, the adjoint operators \(A^*(t), t \in [0, T] \) of \(A(t), t \in [0, T] \) coincide with the operators associated with \(a^* \) on \(H \). Thus applying Theorem 1.1 to the returned adjoint form we obtain that the Cauchy problem associated with \(A_r^*(t) := A^*(T - t) \)

\[
\begin{aligned}
&\dot{v}(t) + A_r^*(t)v(t) = 0 \quad \text{a.e. on } [s, T], \\
v(s) = x,
\end{aligned}
\]

(10)

has for each \(x \in H \) a unique solution \(v \in MR(V, V') \). Accordingly, for every \((t, s) \in \Delta := \{(t, s) \in [0, T]^2 : t \leq s\} \) and every \(x \in H \) we can define the following family of linear operators

\[
U(t, s)x := u(t) \quad \text{and} \quad U_r^*(t, s)x := v(t),
\]

where \(u \) and \(v \) are the unique solutions in \(MR(V, V') \) respectively of (9) and (10). Thus each family

\[
\{U(t, s) : (t, s) \in \Delta\} \quad \text{and} \quad \{U_r^*(t, s) : (t, s) \in \Delta\}
\]

yields a contractive, strongly continuous evolution family on \(H \) [15, Proposition].

In the autonomous case, i.e., if \(a(t, \cdot, \cdot) = a(\cdot, \cdot) \) for all \(t \in [0, T] \), then one knows that \(-A_0\), the operator associated with \(a_0 \) in \(H \), generates a \(C_0 \)-semigroup \((T(t))_{t \geq 0}\) in \(H \). In this case \(U(t, s) := T(t - s) \) yields a strongly continuous evolution family on \(H \). Moreover, we have

\[
(12) \quad U(t, s) = T(t - s) = U^*(t, s) = U_r^*(t, s).
\]

Here, \(T(\cdot) \) denote the adjoint of \(T(\cdot) \) which coincides with the \(C_0 \)-semigroup \((T^*(t))_{t \geq 0}\) associated with the adjoint form \(a^* \). In the non-autonomous setting however, (12) fails in general even in the finite dimensional case, see [7, Remark 2.7]. Nevertheless, Proposition 1.2 below shows that the evolution families \(U \) and \(U_r^* \) can be related in a similar way. This formula appeared in [7, Theorem 2.6].

Proposition 1.2. Let \(U \) and \(U_r^* \) be given by (11). Then we have

\[
(13) \quad [U_r^*(t, s)]' x = U(T - s, T - t)x
\]

for all \(x \in H \) and \((t, s) \in \Delta\).

The equality (13) will play a crucial role in the proof of our main result. We include here a new proof for the sake of completeness.
Proof. (of Proposition 1.2) Let \(\Lambda = (0 = \lambda_0 < \lambda_1 < \ldots < \lambda_{n+1} = T) \) be a subdivision of \([0, T]\). Let \(a_k : V \times V \to \mathbb{C} \) for \(k = 0, 1, \ldots, n \) be given by

\[
a_k(u, v) := a_{k, \Lambda}(u, v) := \frac{1}{\lambda_{k+1} - \lambda_k} \int_{\lambda_k}^{\lambda_{k+1}} a(r; u, v) \, dr \quad \text{for} \ u, v \in V.
\]

All these forms satisfy (2) with the same constants \(\alpha, M \). The associated operators in \(V' \) are denoted by \(A_k \in \mathcal{L}(V, V') \) and are given for all \(u \in V \) and \(k = 0, 1, \ldots, n \) by

\[
A_k u := A_{k, \Lambda} := \frac{1}{\lambda_{k+1} - \lambda_k} \int_{\lambda_k}^{\lambda_{k+1}} A(r) u \, dr.
\]

Consider the non-autonomous form \(a_\Lambda : [0, T] \times V \times V \to \mathbb{C} \) defined by

\[
a_\Lambda(t; \cdot, \cdot) := \begin{cases} a_k(\cdot, \cdot) & \text{if } t \in [\lambda_k, \lambda_{k+1}) \\
a_n(\cdot, \cdot) & \text{if } t = T. \end{cases}
\]

Its associated time dependent operator \(A_\Lambda(\cdot) : [0, T] \subset \mathcal{L}(V, V') \) is given by

\[
A_\Lambda(t) := \begin{cases} A_k & \text{if } t \in [\lambda_k, \lambda_{k+1}) \\
A_n & \text{if } t = T. \end{cases}
\]

Next denote by \(T_k \) the \(C_0 \)-semigroup associated with \(a_k \) in \(H \) for all \(k = 0, 1 \ldots n \). Then applying Theorem 1.1 to the form \(a_\Lambda \) we obtain that in this case the associated evolution family \(U_\Lambda(t, s) \) is given explicitly for \(\lambda_{m-1} \leq s < \lambda_m < \ldots < \lambda_{l-1} \leq t < \lambda_l \) by

\[
U_\Lambda(t, s) := T_{l-1}(t - \lambda_{l-1}) T_{l-2}(\lambda_{l-1} - \lambda_{l-2}) \ldots T_{m}(\lambda_{m+1} - \lambda_m) T_{m-1}(\lambda_m - s),
\]

and for \(\lambda_{l-1} \leq a \leq b < \lambda_l \) by

\[
U_\Lambda(t, s) := T_{l-1}(t - s).
\]

By [20, Theorem 3.2] we know that \((U_\Lambda)_\Lambda \) converges weakly in \(MR(V, V') \) as \(|\Lambda| \to 0 \) and

\[
\lim_{|\Lambda| \to 0} \|U_\Lambda - U\|_{MR(V, V')} = 0
\]

The continuous embedding of \(MR(V, V') \) into \(C([0, T]; H) \) implies that \(\lim_{|\Lambda| \to 0} U_\Lambda = U \) in the weak operator topology of \(\mathcal{L}(H) \).

Now, let \((t, s) \in \overline{\Delta} \) with \(\lambda_{m-1} \leq s < \lambda_m < \ldots < \lambda_{l-1} \leq t < \lambda_l \) be fixed. Applying the above approximation argument to \(a^*_k \) one obtains that

\[
U^*_{a, r}(t, s) = T_{l-1, r}(t - \lambda_{l-1}) T_{l-2, r}(\lambda_{l-1} - \lambda_{l-2}) \ldots T_{m, r}(\lambda_{m+1} - \lambda_m) T_{m-1, r}(\lambda_m - s),
\]

where \(T_{k, r} \) and \(T^*_{k, r} \) are the \(C_0 \)-semigroups associated with

\[
a_{k, r}(u, v) := \frac{1}{\lambda_{k+1} - \lambda_k} \int_{\lambda_k}^{\lambda_{k+1}} a(T - r; u, v) \, dr = \frac{1}{\lambda_{k+1} - \lambda_k} \int_{T - \lambda_{k+1}}^{T - \lambda_k} a(r; u, v) \, dr
\]

and its adjoint \(a^*_{k, r} \), respectively. Recall that \(T^*_{k, r} = T^r_{k, r} \).

On the other hand, the last equality in (21) implies that \(T_{k, r} \) coincides with the semigroup associated with \(a_{k, A_T} \) where \(A_T \) is the subdivision \(\Lambda_T := (0 = T - \lambda_{n+1} < T - \lambda_n < \ldots < T - \lambda_1 < T - \lambda_0 = T) \). It follows from (17)-(18) and (19)-(20) that

\[
\left[U^*_{a, r}(t, s)\right] = \left[T_{m-1, r}(\lambda_m - s) T_{m, r}(\lambda_{m+1} - \lambda_m) \ldots T_{l-2, r}(\lambda_{l-1} - \lambda_{l-2}) T_{l-1, r}(t - \lambda_{l-1}) \right]
\]

\[
= T_{m-1} \left((T - s) - (T - \lambda_m)\right) T_m \left((T - \lambda_m) - (T - \lambda_{m+1})\right) \ldots T_{l-1} \left((T - \lambda_{l-1}) - (T - t)\right)
\]

\[
= U_{A_T}(T - s, T - t)
\]

Finally, the desired equality (13) follows by passing to the limit as \(|\Lambda| = |A_T| \to 0 \). \(\square \)
Remark 1.3. The coerciveness assumption in (2) may be replaced with
\[\text{Re } a(t, u, u) + \omega \| u \|_H^2 \geq \alpha \| u \|_V^2 \quad (t \in [0, T], u \in V) \]
for some $\omega \in \mathbb{R}$. In fact, a satisfies (22) if and only if the form a_ω given by $a_\omega(t, \cdot, \cdot) := a(t, \cdot, \cdot) + \omega(\cdot, \cdot)$ satisfies the second inequality in (2). Moreover, if $u \in MR(V, V')$ and $v := e^{-\omega}u$, then $v \in MR(V, V')$ and u satisfies (9) if and only if v satisfies
\[\dot{v}(t) + (\omega + A(t))v(t) = 0 \quad t\text{-a.e. on } [s, T], \quad v(s) = x. \]

2. Norm continuous evolution family

In this section we assume that the non-autonomous form a satisfies (2)-(5). Thus as mentioned in the introduction, under these assumptions the Cauchy problem (9) has L^2-maximal regularity in H. Thus for each $x \in V$,
\[U(\cdot, s)x \in MR(V, H) := MR(s, T; V, H) := L^2(s, T; V) \cap H^1(s, T; H). \]
Moreover, $U(\cdot, s)x \in C[s, T; V]$ by [4, Theorem 4.2]. From [15, Theorem 2.7] we known that the restriction of U to V defines an evolution family which norm continuous. The same is also true for the Cauchy problem (10) and the associated evolution family U^\ast_r since the returned adjoint form a^\ast_r inherits all properties of a. In the following we establish that U can be extended to a strongly continuous evolution family on V'.

Proposition 2.1. Let a be a non-autonomous sesquilinear form satisfying (2)-(5). Then U can be extended to a strongly continuous evolution family on V', which we still denote U.

Proof. Let $x \in H$ and $(t, s) \in \Delta$. Then using Proposition 1.2 and the fact that U and U^\ast_r define both strongly continuous evolution families on V and H we obtain that
\[\|U(t, s)x\|_V = \sup_{\|v\|_V = 1} |< U(t, s)x, v > | = \sup_{\|v\|_V = 1} |(U(t, s)x)v)_H| = \sup_{\|v\|_V = 1} |(x(U(t, s))v)_H| = \sup_{\|v\|_V = 1} |(x)U^\ast_r(T - s, T - t)v)_H| \]
\[= \sup_{\|v\|_V = 1} |< x, U^\ast_r(T - s, T - t)v > | \leq \|x\|_V \|U^\ast_r(T - s, T - t)\|_{\mathcal{L}(V)} \leq c\|x\|_V, \]
where $c > 0$ is such that $\sup_{t, s \in \Delta} \|U^\ast_r(t, s)\|_{\mathcal{L}(V)} \leq c$. Thus, the claim follows since H is dense in V'. \qed

Let $\Delta := \{(t, s) \in \Delta | t \geq s\}$. The following theorem is the main result of this paper.

Theorem 2.2. Let a be a non-autonomous sesquilinear form satisfying (2)-(5). Let $\{U(t, s) : (t, s) \in \Delta\}$ given by (11). Then the function $(t, s) \mapsto U(t, s)$ is norm continuous on Δ into $\mathcal{L}(X)$ for $X = V, H$ and V'.

Proof. The norm continuity for U in the case where $X = V$ follows from [15, Theorem 2.7]. On the other hand, applying [15, Theorem 2.7] to a^\ast_r we obtain that U^\ast_r is also norm continuous on Δ with values in $\mathcal{L}(V)$. Using Proposition 1.2, we obtain by similar arguments as in the proof of Lemma 2.1
\[\|U(t, s) - U(t', s')\|_{\mathcal{L}(V)} \leq \|U^\ast_r(T - s, T - t)x - U^\ast_r(T - s', T - t')x\|_{\mathcal{L}(V)} \]
for all $x \in V'$ and $(t, s), (t', s') \in \Delta$. This implies that U is norm continuous on Δ with values in $\mathcal{L}(V')$. Finally, the norm continuity in H follows then by interpolation. \qed
3. Examples

This section is devoted to some relevant examples illustrating the theory developed in the previous sections. We refer to [4] and [19] and the references therein for further examples.

(i) **Laplacian with time dependent Robin boundary conditions on exterior domain** Let Ω be a bounded domain of \mathbb{R}^d with Lipschitz boundary Γ. Denote by σ the $(d-1)$-dimensional Hausdorff measure on Γ. Let Ω_{ext} denote the exterior domain of Ω, i.e., $\Omega_{ext} := \mathbb{R}^d \setminus \Omega$. Let $T > 0$ and $\alpha > 1/4$. Let $\beta : [0, T] \times \Gamma \to \mathbb{R}$ be a bounded measurable function such that

$$|\beta(t, \xi) - \beta(t, \eta)| \leq c|t - s|^{\alpha}$$

for some constant $c > 0$ and every $t, s \in [0, T], \xi, \eta \in \Gamma$. We consider the from $a : [0, T] \times H^1(\Omega_{ext}) \times H^1(\Omega_{ext}) \to \mathbb{C}$ defined by

$$a(t; u, v) := \int_{\Omega_{ext}} \nabla u \cdot \nabla v \, d\xi + \int_{\Omega_{ext}} \beta(t, \cdot) u \overline{v} \, d\sigma$$

where $u \to u|_{\Gamma} : H^1(\Omega_{ext}) \to L^2(\Gamma, \sigma)$ is the trace operator which is bounded [2, Theorem 5.36]. The operator $A(t)$ associated with $a(t; \cdot, \cdot)$ on $H := L^2(\Omega_{ext})$ is minus the Laplacian with time dependent Robin boundary conditions

$$\partial_\nu u(t) + \beta(t, \cdot) u = 0 \quad \text{on } \Gamma.$$

Here ∂_ν is the weak normal derivative. Thus the domain of $A(t)$ is the set

$$D(A(t)) = \left\{ u \in H^1(\Omega_{ext}) \mid \Delta u \in L^2(\Omega_{ext}), \partial_\nu u(t) + \beta(t, \cdot) u|_{\Gamma} = 0 \right\}$$

and for $u \in D(A(t))$, $A(t) u := -\Delta u$. Thus similarly as in [4, Section 5] one obtains that a satisfies (2)-(5) with $\gamma := r_0 + 1/2$ and $\omega(t) = t^\beta$ where $r_0 \in (0, 1/2)$ such that $r_0 + 1/2 < 2\alpha$. We note that [4, Section 5] the authors considered the Robin Laplacian on the bounded Lipschitz domain Ω. The main ingredient used there is that the trace operators are bounded from $H^{s}(\Omega)$ with value in $H^{s-1/2}(\Gamma, \sigma)$ for all $1/2 < s < 3/4$. This boundary trace embedding theorem holds also for unbounded Lipschitz domain, and thus for Ω_{ext}, see [18, Theorem 3.38] or [6, Lemma 3.6].

Thus applying [4, Theorem 4.1] and Theorem 2.2 we obtain that the non-autonomous Cauchy problem

$$\begin{cases}
\dot{u}(t) - \Delta u(t) &= 0, \quad u(0) = x \in H^1(\Omega_{ext}) \\
\partial_\nu u(t) + \beta(t, \cdot) u &= 0 \quad \text{on } \Gamma
\end{cases}$$

has L^2-maximal regularity in $L^2(\Omega_{ext})$ and its solution is governed by an evolution family $U(\cdot, \cdot)$ that is norm continuous on each space $V, L^2(\Omega_{ext})$ and V'.

3.1. **Non-autonomous Schrödinger operators.** Let $m_0, m_1 \in L^1_{Loc}(\mathbb{R}^d)$ and $m : [0, T] \times \mathbb{R}^d \to \mathbb{R}$ be a measurable function such that there exist positive constants α_1, α_2 and κ such that

$$\alpha_1 m_0(\xi) \leq m(t, \xi) \leq \alpha_2 m_0(\xi), \quad |m(t, \xi) - m(s, \xi)| \leq \kappa |t - s|m_1(\xi)$$

for almost every $\xi \in \mathbb{R}^d$ and every $t, s \in [0, T]$. Assume moreover that there exist a constant $c > 0$ and $s \in [0, 1]$ such that for $u \in C^\infty_c(\mathbb{R}^d)$

$$\int_{\mathbb{R}^d} m_1(\xi)|u(\xi)|^2 \, d\xi \leq c\|u\|_{H^s(\mathbb{R}^d)}.$$

Consider the non-autonomous Cauchy problem

$$\begin{cases}
\dot{u}(t) - \Delta u(t) + m(t, \cdot) u(t) &= 0, \\
u(0) &= x \in V.
\end{cases}$$

Here $A(t) = -\Delta + m(t, \cdot)$ is associated with the non-autonomous form $a : [0, T] \times V \times V \to \mathbb{C}$ given by

$$V := \left\{ u \in H^1(\mathbb{R}^d) \mid \int_{\mathbb{R}^d} m_0(\xi)|u(\xi)|^2 \, d\xi < \infty \right\}$$
and
\[a(t; u, v) = \int_{\mathbb{R}^d} \nabla u \cdot \nabla v d\xi + \int_{\mathbb{R}^d} m(t, \xi) |u(\xi)|^2 d\xi. \]

The form \(a \) satisfies also (2)-(5) with \(\gamma := s \) and \(\omega(t) = t^a \) for \(\alpha > \frac{s}{2} \) and \(s \in [0, 1] \).

This example is taken from [19, Example 3.1]. Using our Theorem 2.2 we have that the solution of Cauchy problem (26) is governed by a norm continuous evolution family on \(L^2(\mathbb{R}^d), V \) and \(V' \).

References

[1] P. Acquistapace. Evolution operators and strong solutions of abstract linear parabolic equations. Differential Integral Equations 1 (1988), no. 4, 433-457.
[2] R. A. Adams, J. J. F. Fournier. Sobolev spaces. Second edition. Pure and Applied Mathematics (Amsterdam), 140. Elsevier/Academic Press, Amsterdam, 2003.
[3] W. Arendt. Heat kernels. 9th Internet Seminar (ISEM) 2005/2006. Available at https://www.uni-ulm.de/mawi/iaa/members/professors/arendt.html
[4] W. Arendt, S. Monniaux. Maximal regularity for non-autonomous Robin boundary conditions. Math. Nachr. 1-16(2016) /DOI: 10.1002/mana.201400319
[5] H. Brézis. Functional Analysis, Sobolev Spaces and Partial Differential Equations. Springer, Berlin 2011.
[6] M. Costabel. Boundary integral operators on Lipschitz domains: elementary results. SIAM J. Math. Anal. 19 (1988), no. 3, 613-626.
[7] D. Daners. Heat kernel estimates for operators with boundary conditions. Math. Nachr. 217 (2000), 13-41.
[8] R. Dautray and J.L. Lions. Analyse Mathématique et Calcul Numérique pour les Sciences et les Techniques. Vol. 8, Masson, Paris, 1988.
[9] O. El-Mennaoui, H. Laasri. Stability for non-autonomous linear evolution equations with \(L^p \) – maximal regularity. Czechoslovak Mathematical Journal. 63 (138) 2013.
[10] O. El-Mennaoui, H. Laasri. On evolution equations governed by non-autonomous forms. Archiv der Mathematik (2016), 1-15, DOI 10.1007/s00013-016-0903-5
[11] K. J. Engel, R. Nagel. One-Parameter Semigroups for Linear Evolution Equations, Springer-Verlag, 2000.
[12] S. Fackler J.-L. Lions’ problem concerning maximal regularity of equations governed by non-autonomous forms. Ann. Inst. H. Poincaré Anal. Non Linéaire 34 (2017)
[13] T. Kato. Perturbation theory for linear operators. Springer-Verlag, Berlin 1992.
[14] H. Komatsu, Abstract analyticity in time and unique continuation property of solutions of a parabolic equation, J. Fac. Sci. Univ. Tokyo, Sect. 1 9 (1961), 1-11.
[15] H. Laasri. Regularity properties for evolution family governed by non-autonomous forms. Archiv der Mathematik (2018), https://doi.org/10.1007/s00013-018-1175-z.
[16] J.L. Lions. Equations Différentielles Opérationnelles et Problèmes aux Limites. Springer-Verlag, Berlin, Göttingen, Heidelberg, 1961.
[17] A. Lunardi. Differentiability with respect to \((t, s)\) of the parabolic evolution operator. Israel J. Math. 68 (1989), no. 2, 161-184.
[18] W. Mclean. Strongly elliptic systems and boundary integral equations. Cambridge University Press, Cambridge, 2000.
[19] E. M. Ouhabaz. Maximal regularity for non-autonomous evolution equations governed by forms having less regularity, Arch. Math. 105 (2015), 79-91.
Princeton Univ. Press 2005.
[20] A. Sani, H. Laasri. Evolution Equations governed by Lipschitz Continuous Non-autonomous Forms. Czechoslovak Mathematical Journal. 65 (140) (2015), 475-491.
[21] R. E. Showalter. Monotone Operators in Banach Space and Nonlinear Partial Differential Equations. Mathematical Surveys and Monographs. American Mathematical Society, Providence, RI, 1997.
[22] H. Tanabe. Equations of Evolution. Pitman 1979.

University of Wuppertal School of Mathematics and Natural Sciences Arbeitsgruppe Funktionalanalysis, Gaussstrasse 20 D-42119 Wuppertal, Germany
E-mail address: laasri@uni-wuppertal.de
Ibn Zohr University, Faculty of Sciences Dapartement of mathematics, Agadir, Morocco
E-mail address: elmennaeouimlar@yahoo.fr