Automorphisms of elementary adjoint Chevalley groups

of types A_l, D_l, E_l over local rings with $1/2$ \footnote{The work is supported by the Russian President grant MK-2530.2008.1 and by the grant of Russian Fond of Basic Research 08-01-00693.}

E. I. Bunina

Abstract.

In this paper we prove that every automorphism of an elementary adjoint Chevalley group of types A_l, D_l, E_l, over local commutative ring with $1/2$ is a composition of a ring automorphism and conjugation by some matrix from the normalizer of the Chevalley group in $GL(V)$ (V is the adjoint representation space).

INTRODUCTION

Let G_{ad} be a Chevalley–Demazure group scheme associated with an irreducible root system Φ of type A_l ($l \geq 2$), D_l ($l \geq 4$), E_l ($l = 6, 7, 8$); $G_{ad}(\Phi, R)$ be a set of points G_{ad} with values in a commutative ring R; $E_{ad}(\Phi, R)$ be the elementary subgroup of $G_{ad}(\Phi, R)$, where R is a commutative ring with 1. In this paper we describe automorphisms of groups $E_{ad}(\Phi, R)$ over local commutative rings with 1/2.

Similar results for Chevalley groups over fields were proved by R. Steinberg \cite{48} for finite case and by J. Humphreys \cite{34} for infinite case. Many papers were devoted to description of automorphisms of Chevalley groups over different commutative rings, we can mention here the papers of Borel–Tits \cite{10}, Carter–Chen Yu \cite{14}, Chen Yu \cite{15}–\cite{19}. E. Abe \cite{1} proved that automorphisms are standard for Noetherian rings, it could completely close the question about automorphisms of Chevalley groups over arbitrary commutative rings (for the case of systems of rank ≥ 2 and rings with 1/2), but in consideration of adjoint elementary groups in the paper \cite{1} there is a mistake, that can not be corrected by methods of this paper. Namely, in the proof of Lemma 11 the author uses the fact that $\text{ad}(x_\alpha)^2 = 0$ for all long roots, but it is not true in the adjoint representation. The main problem here is the case of groups of type E_8, since in all other cases Chevalley groups have a representation with the property $\text{ad}(x_\alpha)^2 = 0$ for all long roots, but in the case E_8 there are no such representations.

In the given paper we consider also this case E_8, and it can help to close the question about automorphisms of Chevalley groups over commutative rings with 1/2.

We generalize some methods of V.M. Petechuk \cite{41} to prove the main theorem.

Note that we consider the cases A_l, D_l, E_l, but the case A_l was completely studied by the papers of W.C. Waterhouse \cite{61}, V.M. Petechuk \cite{43}, Fuan Li and Zunxian Li \cite{37}, and also for rings without 1/2. The paper of I.Z. Golubchik and A.V. Mikhailov \cite{29} covers the case C_l, that is not considered in the present paper.
1. Definitions and formulation of the main theorem

We fix a root system Φ, that has one of types A_l ($l \geq 2$), D_l ($l \geq 4$), or E_l ($l = 6, 7, 8$), with the system of simple roots Δ, the set of positive (negative) roots Φ^+ (Φ^-), the Weil group W. Recall that in our case any two roots are conjugate under the action of the Weil group. Let $|\Phi^+| = m$. More detailed texts about root systems and their properties can be found in the books [35], [12].

Suppose now that we have a semisimple complex Lie algebra L with the Cartan subalgebra H (more details about semisimple Lie algebras can be found in the book [35]).

Lie algebra L has a decomposition $L = H \oplus \sum_{\alpha \neq 0} L_{\alpha}$,

$$L_{\alpha} := \{x \in L \mid [h, x] = \alpha(h)x \text{ for every } h \in H\},$$

and if $L_{\alpha} \neq 0$, then $\dim L_{\alpha} = 1$, all nonzero $\alpha \in H$ such that $L_{\alpha} \neq 0$, form some root system Φ. The root system Φ and the semisimple Lie algebra L over \mathbb{C} uniquely (up to automorphism) define each other.

On the Lie algebra L we can introduce a bilinear Killing form $\kappa(x, y) = tr(\text{ad} x \text{ ad} y)$, that is non-degenerated on H. Therefore we can identify the spaces H and H^*. We can choose a basis $\{h_1, \ldots, h_l\}$ in H and for every $\alpha \in \Phi$ elements $x_{\alpha} \in L_{\alpha}$ so that $\{h_i; x_{\alpha}\}$ is a basis in L and for every two elements of this basis their commutator is an integral linear combination of the elements of the same basis. This basis is called a Chevalley basis.

Introduce now elementary Chevalley groups (see [47]).

Let L be a semisimple Lie algebra (over \mathbb{C}) with a root system Φ, $\pi : L \to \mathfrak{gl}(V)$ be its finitely dimensional faithful representation (of dimension n). If H is a Cartan subalgebra of L, then a functional $\lambda \in H^*$ is called a weight of a given representation, if there exists a nonzero vector $v \in V$ (that is called a weight vector) such that for any $h \in H$, $\pi(h)v = \lambda(h)v$.

In the space V in the Chevalley basis all operators $\pi(x_{\alpha})^k/k!$ for $k \in \mathbb{N}$ are written as integral (nilpotent) matrices. An integral matrix also can be considered as a matrix over an arbitrary commutative ring with 1. Let R be such a ring. Consider matrices $n \times n$ over R, matrices $\pi(x_{\alpha})^k/k!$ for $\alpha \in \Phi, k \in \mathbb{N}$ are included in $M_n(R)$.

Now consider automorphisms of the free module R^n of the form

$$\exp(tx_{\alpha}) = x_{\alpha}(t) = 1 + t\pi(x_{\alpha}) + t^2\pi(x_{\alpha})^2/2 + \cdots + t^k\pi(x_{\alpha})^k/k! + \ldots$$

Since all matrices $\pi(x_{\alpha})$ are nilpotent, we have that this series is finite. Automorphisms $x_{\alpha}(t)$ are called elementary root elements. The subgroup in $\text{Aut}(R^n)$, generated by all $x_{\alpha}(t), \alpha \in \Phi, t \in R$, is called an elementary Chevalley group (notation: $E_{\pi}(\Phi, R)$).

In elementary Chevalley group we can introduce the following important elements and subgroups:

| $w_{\alpha}(t) = x_{\alpha}(t)x_{-\alpha}(-t^{-1})x_{\alpha}(t), \alpha \in \Phi, t \in R^*$; |
| $h_{\alpha}(t) = w_{\alpha}(t)w_{\alpha}(1)^{-1};$ |
| N is generated by all $w_{\alpha}(t), \alpha \in \Phi, t \in R^*$; |
— H is generated by all $h_\alpha(t)$, $\alpha \in \Phi$, $t \in R^*$.

The action of $x_\alpha(t)$ on the Chevalley basis is described in [13], [57].

It is known that the group N is a normalizer of H in elementary Chevalley group, the quotient group N/H is isomorphic to the Weil group $W(\Phi)$.

All weights of a given representation (by addition) generate a lattice (free Abelian group, where every \mathbb{Z}-basis is also a \mathbb{C}-basis in H^*), that is called the weight lattice Λ_π.

Elementary Chevalley groups are defined not even by a representation of the Chevalley groups, but just by its weight lattice. Namely, up to an abstract isomorphism an elementary Chevalley group is completely defined by a root system Φ, a commutative ring R with 1 and a weight lattice Λ_π.

Among all lattices we can mark two: the lattice corresponding to the adjoint representation, it is generated by all roots (the root lattice Λ_{ad}) and the lattice generated by all weights of all representations (the lattice of weights Λ_{sc}). For every faithful representation π we have the inclusion $\Lambda_{ad} \subseteq \Lambda_\pi \subseteq \Lambda_{sc}$. Respectively, we have the adjoint and universal elementary Chevalley groups. In this paper we study adjoint elementary Chevalley groups.

Every elementary Chevalley group satisfies the following conditions:

(R1) $\forall \alpha \in \Phi \forall t, u \in R \ x_\alpha(t)x_\alpha(u) = x_\alpha(t + u)$;
(R2) $\forall \alpha, \beta \in \Phi \forall t, u \in R \ \alpha + \beta \neq 0 \Rightarrow$

$$[x_\alpha(t), x_\beta(u)] = x_\alpha(t)x_\beta(u)x_\alpha(-t)x_\beta(-u) = \prod x_{i\alpha + j\beta}(c_{ij}t^iu^j),$$

where i, j are integers, product is taken by all roots $i\alpha + j\beta$, replacing in some fixed order; c_{ij} are integer numbers not depending of t and u, but depending of α and β and of order of roots in the product. In the cases under consideration always

$$[x_\alpha(t), x_\beta(u)] = x_{\alpha + \beta}(\pm tu).$$

(R3) $\forall \alpha \in \Phi \ w_\alpha = w_\alpha(1)$;
(R4) $\forall \alpha, \beta \in \Phi \forall t \in R^* \ w_\alpha h_\beta(t)w_\alpha^{-1} = h_{w_\alpha(\beta)}(t)$;
(R5) $\forall \alpha, \beta \in \Phi \forall t \in R^* \ w_\alpha x_\beta(t)w_\alpha^{-1} = x_{w_\alpha(\beta)}(ct)$, where $c = c(\alpha, \beta) = \pm 1$;
(R6) $\forall \alpha, \beta \in \Phi \forall t \in R^* \forall u \in R \ h_\alpha(t)x_\beta(u)h_\alpha(t)^{-1} = x_\beta(t^{(\beta, \alpha)}u)$.

By X_α we denote the subgroup consisting of all $x_\alpha(t)$ for $t \in R$.

We will need two types of automorphisms of elementary Chevalley groups $E_{ad}(\Phi, R)$.

Ring automorphisms. Let $\rho : R \rightarrow R$ be an automorphism of R. The mapping $x \mapsto \rho(x)$ from $E_{ad}(\Phi, R)$ onto itself is an automorphism of the group $E_{ad}(\Phi, R)$, that is denoted by the same letter ρ and is called a ring automorphism of the group $G_{\pi}(\Phi, R)$. Note that for all $\alpha \in \Phi$ and $t \in R$ an element $x_\alpha(t)$ is mapped into $x_\alpha(\rho(t))$.

Automorphisms-conjugations. Let V be a representation space of the group $E_{ad}(\Phi, R)$, $C \in \text{GL}(V)$ be some matrix that does not move our Chevalley group:

$$CE_{ad}(\Phi, R)C^{-1} = E_{ad}(\Phi, R).$$

Then the mapping $x \mapsto CxC^{-1}$ from $E_{\pi}(\Phi, R)$ onto itself is an automorphism of the Chevalley group, that is denoted by i and is called an automorphism-conjugation of the group $E(R)$, induced by the element C of $\text{GL}(V)$.
Theorem 1. Let \(E_{\text{ad}}(\Phi, R) \) be an elementary Chevalley group with an irreducible root system of type \(A_l \) (\(l \geq 2 \)), \(D_l \) (\(l \geq 4 \)), or \(E_l \) (\(l = 6, 7, 8 \)). \(R \) be a commutative local ring with \(1/2 \). Then every automorphism of \(E_{\text{ad}}(\Phi, R) \) is a composition of a ring automorphism and an automorphism-conjugation.

Next sections are devoted to the proof of Theorem 1.

2. Replacing the initial automorphism to the special one.

From this section we suppose that \(R \) is a local ring with \(1/2 \), the Chevalley group is adjoint, in this section root system is arbitrary. In this section we use some reasonings from [41].

Let \(J \) be the maximal ideal (radical) of \(R \), \(k \) the residue field \(R/J \). Then \(E_J \) is the greatest normal proper subgroup of \(E_{\text{ad}}(\Phi, R) \) (see [2]). Therefore, \(E_J \) is invariant under the action of \(\varphi \).

By this reason the automorphism \(\varphi : E_{\text{ad}}(\Phi, R) \to E_{\text{ad}}(\Phi, R) \)
induces an automorphism \(\overline{\varphi} : E_{\text{ad}}(\Phi, R)/E_J = E_{\text{ad}}(\Phi, k) \to E_{\text{ad}}(\Phi, k) \).

The group \(E_{\text{ad}}(\Phi, k) \) is a Chevalley group over field, therefore the automorphism \(\overline{\varphi} \) is standard (see [47]), i.e. it has the form
\[
\overline{\varphi} = i_{\overline{g}} \overline{\rho}, \quad \overline{g} \in N(E_{\text{ad}}(\Phi, k)),
\]
where \(\overline{\rho} \) is a ring automorphism, induced by some automorphism of \(k \).

It is clear that there exists a matrix \(g \in GL_n(R) \) such that its image under factorization \(R \) by \(J \) coincides with \(\overline{g} \). We are not sure that \(g \in N(E_{\text{ad}}(\Phi, R)) \).

Consider a mapping \(\varphi' = i_g^{-1} \varphi \). It is an isomorphism of the group \(E_{\text{ad}}(\Phi, R) \subset GL_n(R) \) onto some subgroup in \(GL_n(R) \), with the property that its image under factorization \(R \) by \(J \) coincides with the automorphism \(\overline{\rho} \).

These arguments prove

Proposition 1. Every matrix \(A \in E_{\text{ad}}(\Phi, R) \) with elements from the subring \(R' \) of \(R \), generated by unit, is mapped under the action of \(\varphi' \) to some matrix from the set
\[
A \cdot GL_n(R, J) = \{ B \in GL_n(R) \mid A - B \in M_n(J) \}.
\]

Let \(a \in E_{\text{ad}}(\Phi, R) \), \(a^2 = 1 \). Then the element \(e = \frac{1}{2}(1 + a) \) is an idempotent in the ring \(M_n(R) \). This idempotent \(e \) defines a decomposition of the free \(R \)-module \(V = R^n \):
\[
V = eV \oplus (1 - e)V = V_0 \oplus V_1
\]
(the modules \(V_0, V_1 \) are free, since every projective module over local field is free [39]). Let \(\overline{V} = \overline{V}_0 \oplus \overline{V}_1 \) be decomposition of the \(k \)-module \(\overline{V} \) with respect to \(\overline{\rho} \), and \(\overline{e} = \frac{1}{2}(1 + \overline{a}) \).

Then we have

Proposition 2. The modules (subspaces) \(\overline{V}_0, \overline{V}_1 \) are images of the modules \(V_0, V_1 \) under factorization by \(J \).
Proof. Let us denote the images of V_0, V_1 under factorization by J by \widetilde{V}_0, \widetilde{V}_1, respectively. Since $V_0 = \{x \in V | e x = x\}$, $V_1 = \{x \in V | e x = 0\}$, we have $\varnothing(\overline{x}) = \frac{1}{2}(1 + a(x))e(x)$. Then $\widetilde{V}_0 \subseteq V_0$, $\widetilde{V}_1 \subseteq V_1$.

Let $x = x_0 + x_1$, $x_0 \in V_0$, $x_1 \in V_1$. Then $\varnothing(\overline{x}) = \varnothing(\overline{x}_0) + \varnothing(\overline{x}_1) = \overline{x}_0$. If $\overline{x} \in \widetilde{V}_0$, then $\overline{x} = \overline{x}_0$. □

Let $b = \varphi'(a)$. Then $b^2 = 1$ and b is equivalent to a modulo J.

Proposition 3. Suppose that $a, b \in E_\pi(\Phi, R)$, $a^2 = b^2 = 1$, a is a matrix with elements from the subring of R, generated by the unit, b and a are equivalent modulo J, $V = V_0 \oplus V_1$ is a decomposition of V with respect to a, $V = V'_0 \oplus V'_1$ is a decomposition of V with respect to b. Then $\dim V'_0 = \dim V_0$, $\dim V'_1 = \dim V_1$.

Proof. We have an R-basis of the module $V \{e_1, \ldots, e_n\}$ such that $\{e_1, \ldots, e_k\} \subset V_0$, $\{e_{k+1}, \ldots, e_n\} \subset V_1$. It is clear that $\overline{ae}_i = \overline{a e}_i = \left(\sum_{j=1}^n a_{ij} e_j\right) = \sum_{j=1}^n a_{ij}e_j$.

Let $\overline{V} = \overline{V}_0 \oplus \overline{V}_1$, $\overline{V}' = \overline{V}'_0 \oplus \overline{V}'_1$ are decompositions of k-module (space) V with respect to \overline{a} and \overline{b}. It is clear that $\overline{V}_0 = \overline{V}'_0$, $\overline{V}_1 = \overline{V}'_1$. Therefore, by Proposition 2 the images of the modules V_0 and V'_0, V_1 and V'_1 under factorization by J coincide. Let us take such $\{f_1, \ldots, f_k\} \subset V'_0$, $\{f_{k+1}, \ldots, f_n\} \subset V'_1$ that $\overline{f}_i = \overline{e}_i$, $i = 1, \ldots, n$. Since the matrix of transformation from $\{e_1, \ldots, e_n\}$ to $\{f_1, \ldots, f_n\}$ is invertible (it is equivalent to the identical matrix modulo J) we have that $\{f_1, \ldots, f_n\}$ is a R-basis in V. It is clear that $\{f_1, \ldots, f_k\}$ is a R-basis in V'_0, $\{v_{k+1}, \ldots, v_n\}$ is a R-basis in V'_1. □

3. Images of w_{α_i}

We consider some fixed adjoint Chevalley group $E = E_{ad}(\Phi, R)$ with the root system A_l ($l \geq 2$), D_l ($l \geq 4$), E_6, E_7 or E_8, its adjoint representation in the group $GL_n(R)$ ($n = l + 2m$, where m is the number of positive roots of Φ), with the basis of weight vectors $v_1 = x_{\alpha_1}$, $v_{-1} = x_{-\alpha_1}$, \ldots, $v_{n} = x_{\alpha_n}$, $v_{-n} = x_{-\alpha_n}$, $V_1 = l_1$, \ldots, $V_l = l_l$, corresponding to the Chevalley basis of the system Φ.

We also have the isomorphism φ', described in Section 2.

Consider the matrices $h_{\alpha_i}(-1), \ldots, h_{\alpha_i}(-1)$ in our basis. They have the form $h_{\alpha_i}(-1) = \text{diag}[\pm 1, \ldots, \pm 1, 1, \ldots, 1]$, on $(2j - 1)$-th and $(2j)$-th places we have -1 if and only if $\langle \alpha_i, \alpha_j \rangle = -1$. As we see, for all i $h_{\alpha_i}(-1)^2 = 1$.

According to Proposition 3 we know that every matrix $h_i = \varphi''(h_{\alpha_i}(-1))$ in some basis is diagonal with ± 1 on the diagonal, and the number of 1 and -1 coincides with its number for the matrix $h_{\alpha_i}(-1)$. Since all matrices h_i commutes, there exists a basis, where all h_i have the same form as $h_{\alpha_i}(-1)$. Suppose that we come to this basis with the help of the matrix g_1. It is clear that $g_1 \in GL_n(R, J)$. Consider the mapping $\varphi_1 = g^{-1}_1 \varphi'$. It is also an isomorphism of the
group E onto some subgroup of $GL_n(R)$ such that its image under factorization R by J is $\overline{\rho}$, and $\varphi_1(h_{\alpha_i}(-1)) = h_{\alpha_i}(-1)$ for all $i = 1, \ldots, l$.

Let us consider the isomorphism φ_1.

Matrices $h_{\alpha_k}(a) = \text{diag}[a_1, 1/a_1, a_2, 1/a_2, \ldots, a_m, 1/a_m, 1, \ldots, 1]$ commute with all $h_{\alpha_i}(-1)$, therefore their images under the isomorphism φ_1 also commute with all $h_{\alpha_i}(-1)$. Thus, these images have the form

$$\begin{pmatrix} C_1 & 0 & \ldots & 0 & 0 \\ 0 & C_2 & \ldots & 0 & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & \ldots & C_m & 0 \\ 0 & 0 & \ldots & 0 & C \end{pmatrix}, \quad C_i \equiv \begin{pmatrix} \overline{\rho}(a_i) & 0 \\ 0 & \overline{\rho}(1/a_i) \end{pmatrix} \mod J, \quad C \in GL_1(R, J).$$

Every element $w_i = w_{\alpha_i}(1)$ maps (by conjugation) diagonal matrices into diagonal ones, so its image has block-monomial form.

From $\varphi_1(w_i) \equiv w_i \mod J$ it follows that blocks of $\varphi_1(w_i)$ are in the same places as blocks of w_i.

Consider the first vector of the basis obtained after the last change. Let us denote it by e. The Weil group W transitively acts on all roots, therefore for every root α_i there exists such $w^{(\alpha_i)} \in W$ that $w^{(\alpha_i)} a_1 = a_i$. Consider now the basis $e_1, \ldots, e_{2m}, e_{2m+1}, \ldots, e_{2m+l}$, where $e_1 = e$, $e_i = \varphi_1(w^{(\alpha_i)})e$; for $2m < i \leq 2m + 1$ e_i is not changed. It is clear that the matrix of this basis change is equivalent to 1 modulo J. Therefore the obtained set of vectors is a basis.

It is clear that the matrix $\varphi_1(w_i) \ (i = 1, \ldots, l)$ in the part of basis $\{e_1, \ldots, e_{2m}\}$ coincides with the matrix w_i in the initial basis of weight vectors. Since $h_{i}(-1)$ are squares of w_i, then their images also are not changed in the new basis.

Besides that, we know that $\varphi_1(w_i)$ is block-diagonal up to the first $2m$ and last l elements. Therefore, the last basis part, consisting of l elements, can be changed independently.

Let us denote matrices w_i and $\varphi_1(w_i)$ on this part of basis by \tilde{w}_i and $\varphi_1(w_i)$, respectively. All these matrices are involutions, they have only one -1 in their diagonal forms. Let $\tilde{V} = \tilde{V}_0 \oplus \tilde{V}_1$ be decomposition of the matrix $\varphi_1(w_i)$.

Lemma 1. Matrices $\varphi_1(w_i)$ and $\varphi_1(w_j)$, where $i \neq j$, commute if and only if $\tilde{V}_i^i \subseteq \tilde{V}_0$ and $\tilde{V}_i^j \subseteq \tilde{V}_0^j$.

Proof. If $\varphi_1(w_i)$ and $\varphi_1(w_j)$ commute, then the (free one-dimensional) submodule \tilde{V}_i^i is proper for $\varphi_1(w_j)$ and the (free one-dimensional) submodule \tilde{V}_i^j is proper for $\varphi_1(w_i)$. Therefore either $\tilde{V}_i^i \subset \tilde{V}_i^j$ or $\tilde{V}_i^i \subset \tilde{V}_0^j$. If $\tilde{V}_i^i \subset \tilde{V}_i^j$ then $\tilde{V}_i^i = \tilde{V}_i^j$. Since the module V_i^i is invariant for $\varphi_1(w_j)$, we have $\tilde{V}_0^i \subset \tilde{V}_0^j$, therefore $\tilde{V}_0^i = \tilde{V}_0^j$, and so $\varphi_1(w_i) = \varphi_1(w_j)$ and we come to contradiction. Consequently, $\tilde{V}_i^i \subset \tilde{V}_0^j$, and similarly $\tilde{V}_i^j \subset \tilde{V}_0^i$. \square
Lemma 2. For any root system Φ there exists such a basis in \tilde{V} that the matrix $\tilde{\varphi}_1(w_1)$ in this basis has the same form as w_1, i.e. is equal to
\[
\begin{pmatrix}
-1 & 1 & 0 \\
0 & 1 & 0 \\
0 & 0 & E_{l-2}
\end{pmatrix}.
\]

Proof. Since \tilde{w}_1 is an involution and \tilde{V}_1^1 has dimension 1, there exists a basis $\{e_1, e_2, \ldots, e_l\}$ where $\tilde{\varphi}_1(w_1)$ has the form $\text{diag}[-1, 1, \ldots, 1]$. In the basis $\{e_1, e_2 - 1/2e_1, e_3, \ldots, e_l\}$ the matrix $\tilde{\varphi}_1(w_1)$ has the obtained form. \square

Lemma 3. For the root system A_2 there exists such a basis that $\tilde{\varphi}_1(w_1)$ and $\tilde{\varphi}_1(w_2)$ in this basis have the same form as w_1 and w_2, i.e. are equal to
\[
\begin{pmatrix}
-1 & 1 \\
0 & 1
\end{pmatrix} \quad \text{and} \quad \begin{pmatrix}
1 & 0 \\
1 & -1
\end{pmatrix},
\]
respectively.

Proof. By Lemma 2 we can find a basis in \tilde{V} such that the matrix $\tilde{\varphi}_1(w_1)$ in this basis has the same form as w_1. Let the matrix $\tilde{\varphi}_1(w_2)$ in this basis be
\[
\begin{pmatrix}
a & b \\
c & d
\end{pmatrix}.
\]

Let us make the basis change with the help of the matrix
\[
\begin{pmatrix}
c & (1 - c)/2 \\
0 & 1
\end{pmatrix}.
\]

Under this basis change the matrix $\tilde{\varphi}_1(w_1)$ remains the same form, and the matrix $\tilde{\varphi}_1(w_2)$ becomes
\[
\begin{pmatrix}
a' & b' \\
1 & d'
\end{pmatrix}.
\]

As this matrix is an involution, we have $a' + d' = 0, a'^2 + b' = 1$. So we obtain $d' = -a'$. Now let us use the condition
\[
\left(\begin{pmatrix}
-1 & 1 \\
0 & 1
\end{pmatrix} \begin{pmatrix}
a' & b' \\
1 & -a'
\end{pmatrix}\right)^2 = \begin{pmatrix}
a' & b' \\
1 & -a'
\end{pmatrix} \begin{pmatrix}
-1 & 0 \\
0 & 1
\end{pmatrix}.
\]

This condition gives (its second line and first row) $1 - 2a' = -1$, therefore $a' = 1$. From $a'^2 + b' = 1$ it follows $b' = 0$. \square

Lemma 4. For every root system $\Phi \neq A_2$ we can choose a basis in \tilde{V} such that the matrices $\tilde{\varphi}_1(w_1)$ and $\tilde{\varphi}_1(w_2)$ in this basis have the same form as \tilde{w}_1 and \tilde{w}_2, respectively.

Proof. The intersection of modules \tilde{V}_0^1 and \tilde{V}_0^2 is a free module of dimension $\geq l - 3$. Therefore we can suppose that $\tilde{\varphi}_1(w_1)$ and $\tilde{\varphi}_1(w_2)$ have the form $\begin{pmatrix} * & 0 \\
0 & E_{l-3} \end{pmatrix}$. Moreover, by Lemma 2 we
can suppose that $\varphi_1(w_1)$ has the same form as \tilde{w}_1. We can consider not the whole module \tilde{V}, but its limitation to the first three basis vectors. Let

$$\varphi_1(w_1) = \begin{pmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \end{pmatrix}.$$

Taking basis change with the matrix

$$\begin{pmatrix} b_1 & (1-b_1)/2 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix},$$

we do not change $\varphi_1(w_1)$, but $\varphi_1(w_2)$ becomes

$$\varphi_1(w_2) = \begin{pmatrix} a'_1 & a'_2 & a'_3 \\ b'_1 & b'_2 & b'_3 \\ c'_1 & c'_2 & c'_3 \end{pmatrix}.$$

Now we will use the same conditions as in the previous lemma. The first is $\varphi_1(w_2)^2 - 1 = 0$ (Cond. 1) and the second is $(\varphi_1(w_1)\varphi_1(w_2))^2 - \varphi_1(w_2)\varphi_1(w_1) = 0$ (Cond. 2). If we subtract Condition 1 from Condition 2 we obtain (line 2, row 1) $a'_1 = 1$, (line 2, row 2) $a'_2 = 0$, then from Cond. 1, line 1, row 3, we obtain $a'_3(1+c'_3) = 0$. As $c'_3 \equiv 1 \mod J$, we have $a'_3 = 0$. The same condition, line 2, row 3, gives $b'_3(b'_2+c'_2) = 0$, as $b'_3 \in R^*$, we have $c'_3 = -b'_2$.

Again taking basis change, but with the matrix

$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & -c'_1 & 1 \end{pmatrix},$$

we do not change $\varphi_1(w_1)$, but $\varphi_1(w_2)$ becomes

$$\varphi_1(w_2) = \begin{pmatrix} 1 & 0 & 0 \\ 1 & b''_2 & b''_3 \\ 0 & c''_2 & -b''_2 \end{pmatrix}.$$

Then directly from Cond. 1 we obtain $b''_2 = -1$, $c''_2 = 0$, and the last basis change with the matrix $diag[1, 1, b''_2]$ makes the obtained forms of $\varphi_1(w_1)$ and $\varphi_1(w_2)$. \hfill \Box

Lemma 5. For the root system D_4 there exists such a basis that $\varphi_1(w_1), \varphi_1(w_2), \varphi_1(w_3) \text{ and } \varphi_1(w_4)$ in this basis have the same forms as $\tilde{w}_1, \tilde{w}_2, \tilde{w}_3, \text{ and } \tilde{w}_4$, i.e. are equal to

$$\begin{pmatrix} -1 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 0 & 0 & 0 \\ 1 & -1 & 1 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 1 & -1 & 1 \\ 0 & 0 & 0 & 1 \end{pmatrix} \text{ and } \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & -1 \end{pmatrix},$$

respectively.

Proof. We take such a basis that $\varphi_1(w_1), \varphi_1(w_3), \varphi_1(w_4)$ have the same form as the initial $\tilde{w}_1, \tilde{w}_3, \tilde{w}_4$. We can do it because w_1, w_3, w_4 are commuting involutions, there exists a basis
where \(\tilde{\phi}_1(w_1), \tilde{\phi}_1(w_3), \tilde{\phi}_1(w_4) \) have the forms diag\([-1, 1, 1, 1]\), diag\([1, 1, -1, 1]\), diag\([1, 1, 1, -1]\), respectively. Then, conjugating them by the matrix

\[
\begin{pmatrix}
1 & -1/2 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & -1/2 & 1 & 0 \\
0 & -1/2 & 0 & 1
\end{pmatrix},
\]

we come to the obtained basis. Now let us look for \(\tilde{\phi}_1(w_2) \). We have the following conditions:

\(\tilde{w}_2^2 = 1 \) (Cond. 1), \((\tilde{w}_1\tilde{w}_2)^2 = \tilde{w}_2\tilde{w}_1 \) (Cond. 2), \((\tilde{w}_3\tilde{w}_2)^2 = \tilde{w}_2\tilde{w}_3 \) (Cond. 3), \((\tilde{w}_4\tilde{w}_2)^2 = \tilde{w}_2\tilde{w}_4 \) (Cond. 4).

Let

\[
\tilde{\phi}_1(w_2) = \begin{pmatrix}
a_1 & a_2 & a_3 & a_4 \\
b_1 & b_2 & b_3 & b_4 \\
c_1 & c_2 & c_3 & c_4 \\
d_1 & d_2 & d_3 & d_4
\end{pmatrix}.
\]

Taking basis change with the matrix

\[
\begin{pmatrix}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & \frac{d_1}{2d_1-d_1} & 0 & \frac{b_1}{b_1-2d_1}
\end{pmatrix},
\]

we do not change \(\tilde{\phi}_1(w_1), \tilde{\phi}_1(w_3), \tilde{\phi}_1(w_4) \), but \(\tilde{\phi}_1(w_2) \) becomes

\[
\begin{pmatrix}
a_1 & a_2 & a_3 & a_4 \\
b_1 & b_2 & b_3 & b_4 \\
c_1 & c_2 & c_3 & c_4 \\
0 & d_2 & d_3 & d_4
\end{pmatrix}
\]

(we do not write primes for simplicity).

Now from the 4-th line of (Cond. 1 - Cond. 2) it follows \(d_2 = d_3 = 0, d_4 = 1 \).

Line 2, row 4 of (Condition 1 - Condition 4) gives \(b_4(b_4-1) = 0 \). Since \(b_4 \in R^* \), we have \(b_4 = 1 \).

Now, taking basis change with the matrix

\[
\begin{pmatrix}
b_3 & b_3 - 2a_3 \\
0 & 2a_3 - b_3 \\
0 & 1 \\
0 & 0 \\
0 & 0 \\
0 & 0 \\
0 & 0 \\
0 & 1
\end{pmatrix},
\]

we do not change \(\tilde{\phi}_1(w_1), \tilde{\phi}_1(w_3), \tilde{\phi}_1(w_4) \), but \(\tilde{\phi}_1(w_2) \) becomes

\[
\begin{pmatrix}
a_1 & a_2 & 0 & a_4 \\
b_1 & b_2 & b_3 & 1 \\
c_1 & c_2 & c_3 & c_4 \\
0 & 0 & 0 & 1
\end{pmatrix}
\]

(again we do not write primes for simplicity).
Then line 1, row 3 of Cond. 1 gives $a_2b_3 = 0 \Rightarrow a_2 = 0$, line 1, row 1 of Cond. 1 gives $a_2^2 = 1 \Rightarrow a_1 = 1$, line 1, row 4 gives $2a_4 = 0 \Rightarrow a_4 = 0$. Line 2, row 4 of Cond. 1—Cond. 2 gives $b_1 = 1$, line 3, row 4 gives $c_1 = c_1$. Line 2, row 3 of Cond. 1 gives $c_3 = -b_2$.

Finally, taking basis change with the matrix

$$
\begin{pmatrix}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & \frac{1-b_3}{2} & b_3 & 0 \\
0 & 0 & 0 & 1
\end{pmatrix},
$$

we do not change $\varphi_1(w_1), \varphi_1(w_3), \varphi_1(w_4)$, but $\varphi_1(w_2)$ becomes

$$
\begin{pmatrix}
1 & 0 & 0 & a_4' \\
1 & b_2' & 1 & 1 \\
c_1' & c_2' & -b_2' & c_1' \\
0 & 0 & 0 & 1
\end{pmatrix}.
$$

After that line 2, row 3 of Cond. 3 gives $b_2' = -1$, and then Cond. 1 gives $c_1' = c_2' = 0$. □

Lemma 6. Suppose that we have some root system Φ and elements $\varphi_1(w_{i_1}) = \tilde{w}_{i_1}, \ldots, \varphi_1(w_{i_k}) = \tilde{w}_{i_k}$, and also $\tilde{\varphi}_1(w_{i_{k+1}})$, where one of the following cases holds:

a) $\Phi = A_l$, $l \geq 3$, $i_1 = 1$, $i_2 = 2, \ldots, i_k = k$, $i_{k+1} = k + 1$, $k + 1 < l$;

b) $\Phi = D_l$, $l > 3$, $i_1 = 1$, $i_2 = l - 1$, $i_3 = l - 2$, \ldots, $i_k = l - k + 1$, $i_{k+1} = l - k$, $4 < k < l$;

c) $\Phi = E_6, E_7$ or E_8, $i_1 = 1, i_2 = 2, \ldots, i_k = k$, $i_{k+1} = k + 1$, $4 \leq k < l - 1$.

Then we can choose such a basis of \tilde{V} that $\tilde{\varphi}_1(w_{i_1}) = \tilde{w}_{i_1}, \ldots, \tilde{\varphi}_1(w_{i_{k+1}}) = \tilde{w}_{i_{k+1}}$.

Proof. In all these cases $\tilde{\varphi}_1(w_{i_{k+1}})$ commutes with all $\tilde{\varphi}_1(w_{i_j}) = \tilde{w}_{i_j}, \ldots, \tilde{\varphi}_1(w_{i_{k-1}}) = \tilde{w}_{i_{k-1}}$, therefore (see Lemma 4) for all $j = i_1, \ldots, i_{k-1}$ $V_j^l \subset V_l^{i_{k+1}}$. Since $V_1^{i_1} \oplus \cdots \oplus V_1^{i_{k-1}} = \langle e_{i_1}, \ldots, e_{i_{k-1}} \rangle$, we infer that $\tilde{\varphi}_1(w_{i_{k+1}})$ is identical on the first $k - 1$ basic vectors. As in Lemma 4 we obtain that $\tilde{\varphi}_1(w_{i_{k+1}})$ is identical on the last $l - k - 2$ basic vectors. Therefore we can limit $\tilde{\varphi}_1(w_{i_{k+1}})$ for the part of basis $\{e_k, e_{k+1}, e_{k+2}\}$ (without loss of generality). Now the proof is completely the same as in Lemma 4. □

Proposition 4. For every root system $\Phi = A_l, D_l, E_l$ we can choose a basis in \tilde{V} such that the matrices $\tilde{\varphi}_1(w_1), \ldots, \tilde{\varphi}_1(w_l)$ in this basis have the same form as $\tilde{w}_1, \ldots, \tilde{w}_l$, respectively.

Proof. If we have the system A_2, we can use Lemma 3. If $\Phi = A_l$, $l \geq 3$, then we apply Lemma 4 after that Lemma 6 $l - 3$ times, and finally the same arguments as in Lemma 3 for the element $\tilde{\varphi}_1(w_l)$.

If $\Phi = D_l$, then we apply Lemma 5 to the roots $\alpha_{l-3}, \ldots, \alpha_l$, then Lemma 6 $l - 5$ times to the roots $\alpha_{l-4}, \ldots, \alpha_2$, and finally the same arguments as in Lemma 3 for the element $\tilde{\varphi}_1(w_1)$.

If $\Phi = E_l$, then we apply Lemma 5 to the roots $\alpha_2, \ldots, \alpha_5$, then Lemma 6 to the roots $\alpha_6, \ldots, \alpha_{l-1}$, and finally the same arguments as in Lemma 3 for the elements $\tilde{\varphi}_1(w_1)$ and $\tilde{\varphi}_1(w_l)$. □

Therefore, we can now consider the isomorphism φ_2 with all properties of φ_1, and such that $\varphi_2(w_i) = w_i$ for all $i = 1, \ldots, l$.

We suppose that we have the isomorphism φ_2 with these properties.
4. The images of \(x_{\alpha_i}(1) \) and diagonal matrices.

Now we are interested in the images of \(x_{\alpha_i}(t) \). Let \(\varphi_2(x_{\alpha_1}(1)) = x_1 \). Since \(x_1 \) commutes with all \(h_{\alpha_i}(-1), i = 1, 3, \ldots, l \), we have that \(x_1 \) is separated to the blocks of the following form: blocks \(2 \times 2 \) are corresponded to the part of basis \(\{v_i, v_{-i}\} \), where \(i > 1 \) and \(\langle \alpha_i, \alpha_1 \rangle \neq 0 \); blocks \(4 \times 4 \) are corresponded to the part of basis \(\{v_i, v_{-i}, v_j, v_{-j}\} \), where \(i > 1, \alpha_i = \alpha_j \pm \alpha_1 \); and we also have the part \(\{v_1, v_{-1}, V_1, \ldots, V_l\} \).

For \(h_{\alpha_2}(-1) \) we know that \(h_{\alpha_2}(-1)x_1h_{\alpha_2}(-1) = x_1^{-1} \). Then, on the blocks \(2 \times 2 \), described above if \(x_1 \) has the form

\[
\begin{pmatrix}
 a & b \\
 c & d \\
\end{pmatrix},
\]

then this matrix to the second power is 1, therefore \(a^2 + bc = d^2 + bc = 1, b(a + d) = c(a + d) = 0 \). Since \(a + d \equiv 2 \mod J \), we have \(a + d \in R^* \), i.e. \(b = c = 0 \). Since \(a^2 = d^2 = 1 \) and \(a, d \equiv 1 \mod J \), we have \(a = d = 1 \). Thus, on the blocks \(2 \times 2 \) the matrix \(x_1 \) is always 1 (i.e. it coincides with \(x_{\alpha_1}(t) \) on these blocks), so we can now not to consider these basis elements.

Now let us use the conditions \(w_ix_1w_i^{-1} = x_1 \) for \(i \geq 3 \).

At first, all blocks \(4 \times 4 \) has the same form, since every two such blocks are conjugate up to the action of \(w_i, i \geq 3 \).

The conditions \(w_ix_1w_i^{-1} = x_1 \) for \(i \geq 3 \) for the rest of the basis together with the condition \(h_2x_1h_2^{-1} = x_1^{-1} \) say that the matrix on the basis subset \(\{v_1, v_{-1}, V_1, V_2, V_3, \ldots, V_l\} \) has the form

\[
\begin{pmatrix}
 * & * & * & * & 0 & \ldots & 0 \\
 * & * & * & * & 0 & \ldots & 0 \\
 * & * & * & * & 0 & \ldots & 0 \\
 * & * & * & * & 0 & \ldots & 0 \\
 * & * & * & 1 & \ldots & 0 \\
 \ldots & & & & & & \\
 * & * & * & * & 0 & \ldots & 1 \\
\end{pmatrix},
\]

and all lines \(5, \ldots, l \) are expressed via the fourth line. According to the zero corner of this matrix we can restrict the conditions to its left upper submatrix \(4 \times 4 \).

Suppose that on this part of the basis the matrix \(x_1 \) has the form

\[
\begin{pmatrix}
 a_1 & a_2 & a_3 & a_4 \\
 b_1 & b_2 & b_3 & b_4 \\
 c_1 & c_2 & c_3 & c_4 \\
 d_1 & d_2 & d_3 & d_4 \\
\end{pmatrix},
\]

and on the part of basis \(v_2, v_{-2}, v_{1+2}, v_{-1-2} \) it has the form

\[
\begin{pmatrix}
 e_1 & e_2 & e_3 & e_4 \\
 f_1 & f_2 & f_3 & f_4 \\
 g_1 & g_2 & g_3 & g_4 \\
 h_1 & h_2 & h_3 & h_4 \\
\end{pmatrix}.
\]

We will consider the part of basis \(\{v_1, v_{-1}, v_2, v_{-2}, v_{1+2}, v_{-1-2}, V_1, V_2\} \).
Taking basis change with the block-diagonal matrix, that has the form
\[
\begin{pmatrix}
 1 & -\frac{b_4}{a_4} \\
-\frac{b_4}{a_4} & 1
\end{pmatrix}
\]
on every block \{v_i, v_{i-1}\} (it is possible, because \(b_4 \in J\)), and is identical on the block \{V_1, \ldots, V_l\}, we do not change the elements \(w_i, h_i\), and \(x_1\) now has \(b_4 = 0\). So we can suppose that the isomorphism \(\varphi_2\) is such that \(\varphi_2(x_{a_1}(1))\) has \(b_4 = 0\).

Then we make the basis change with the help of diagonal matrix, having the form \(\frac{1}{a_4} \cdot E\) on the part \{\(v_1, v_{-1}, \ldots, v_m, v_{-m}\}\), and being identical on the part \{\(V_1, \ldots, V_l\)\}. Similarly, all elements \(w_i, h_i\) are not changed, and \(a_4\) is now equal to 1.

So we suppose that \(\varphi_2(x_{a_1}(1))\) has \(b_4 = 0\) and \(a_4 = 1\).

On the part of basis under consideration
\[
w_1 = \begin{pmatrix}
 0 & -1 & 0 & 0 & 0 & 0 & 0 & 0 \\
-1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & -1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & -1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & -1 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1
\end{pmatrix}, \quad w_2 = \begin{pmatrix}
 0 & 0 & 0 & 0 & -1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & -1 & 0 & 0 \\
0 & 0 & -1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & -1
\end{pmatrix}
\]

Since
\[
x_{a_1}(1) = \begin{pmatrix}
 1 & -1 & 0 & 0 & 0 & 0 & -2 & 1 \\
-1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 1 & 0 & 0 \\
0 & 0 & -1 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1
\end{pmatrix},
\]

we have
\[
x_1 = \varphi_2(x_1(1)) = \begin{pmatrix}
a_1 & a_2 & 0 & 0 & 0 & 0 & a_3 & 1 \\
b_1 & b_2 & 0 & 0 & 0 & 0 & b_3 & 0 \\
0 & 0 & e_1 & e_2 & e_3 & e_4 & 0 & 0 \\
0 & 0 & f_1 & f_2 & f_3 & f_4 & 0 & 0 \\
0 & 0 & g_1 & g_2 & g_3 & g_4 & 0 & 0 \\
0 & 0 & h_1 & h_2 & h_3 & h_4 & 0 & 0 \\
c_1 & c_2 & 0 & 0 & 0 & 0 & c_3 & c_4 \\
0 & 0 & 0 & 0 & 0 & 0 & d_3 & d_4
\end{pmatrix},
\]

where \(a_1, b_2, e_1, f_2, f_4, g_3, h_4, c_2, c_3, d_4 \equiv 1 \mod J\), \(a_2, g_1 \equiv -1 \mod J\), \(a_3 \equiv -2 \mod J\), all other entries are in \(J\).
We will use the following conditions:

\[\text{Con1} := (x_1 x_{1+2} - x_{1+2} x_1 = 0), \quad \text{Con2} := (h_2 x_1 h_2 x_1 - 1 = 0). \]

Position (3,8) of Con1 gives \(f_3 = -e_3 \), position (2,8) of Con1 gives \(h_3 = -b_3 c_4 \), position (2,8) of Con2 gives \(b_1 = b_3 c_4 \), therefore \(h_3 = -b_1 \). From position (1,1) of Con1 we have \(b_1 (a_2 + g_4) = 0 \), therefore \(b_1 = 0 \), since \(a_2 + g_4 \in R^* \).

Now we introduce two more conditions:

\[\text{Con3} := (x_1 w_1 w_1^{-1} - w_1 h_2 x_1 h_2 = 0), \quad \text{Con4} := (x_2 x_1 - x_{1+2} x_1 x_2 = 0). \]

Denote \(y_1 = a_1 - 1, y_2 = a_2 + 1, y_3 = a_3 + 2, y_4 = b_2 - 1, y_5 = b_3, y_6 = c_1, y_7 = c_2 - 1, y_8 = c_3 - 1, y_9 = c_4, y_{10} = d_1, y_{11} = d_2, y_{12} = d_3, y_{13} = d_4 - 1, y_{14} = e_1 - 1, y_{15} = e_2, y_{16} = e_3, y_{17} = e_4, y_{18} = f_1, y_{19} = f_2 - 1, y_{20} = f_4 - 1, y_{21} = g_1 + 1, y_{22} = g_2, y_{23} = g_3 - 1, y_{24} = g_4, y_{25} = h_1, y_{26} = h_2, y_{27} = h_4 - 1. \) All these \(y_i \) are in \(J \). From the Conditions 1–4 we have the following 27 equations (that are linear with respect to \(y_i \)):
\(y_{23}(-a_2) + y_{24}(a_1 - b_2) + y_{27}a_2 = 0,\)
\(y_{18}(-g_1) + y_{22}(a_1 - c_1) + y_{26}(a_2) = 0,\)
\(y_{1}g_1 + y_{15}(-g_2) + y_{19}(-g_1) + y_{25}a_2 = 0,\)
\(y_{6}(a_3 + 1) + y_{10}(-1) + y_{16}(g_1 + g_2) = 0,\)
\(y_{3}(c_2) + y_{11}(-1) + y_{20} + y_{21}(-f_4) + y_{22}(-e_4) = 0,\)
\(y_{3}(c_3 + c_4 - a_3 + g_1 + g_2) + y_{8}(-1) + y_{9}(-1) + y_{13}(-1) + y_{14}(-1) + y_{23}2^+ + y_{24}(-b_3) = 0,\)
\(y_{9}(-a_3 - 1) + y_{13} + y_{23}(-1) = 0,\)
\(y_{5}c_2 + y_{25}(-f_4) + y_{26}(-e_4) = 0,\)
\(y_{16}a_2 + y_{17}(b_2 - f_2) + y_{18}(-f_4) = 0,\)
\(y_{5}(e_4 - f_4) + y_{16}(1 + 2a_3) = 0,\)
\(y_{15}(-f_1f_4 - 2f_2e_3) + y_{16}(a_1 - a_2 + a_1h_2 + f_1f_2 - f_2^2) + y_{22}(e_3a_2 - f_4b_2) = 0,\)
\(y_{10}(-d_3 - d_4) + y_{11}(-b_1 + 1) + y_{12}e_1 = 0,\)
\(y_{1}(-1) + y_{2}(a_4 + b_2) + y_{3}(-c_2) + y_{4}(-1) + y_{7}2 + y_{11}(-1) = 0,\)
\(y_{5}(-c_2g_3) + y_{16}(b_2 - b_2h_4) + y_{17}a_2 = 0,\)
\(y_{14}g_3 + y_{16}(e_4 - e_3) + y_{21} + y_{23} = 0,\)
\(y_{4}(b_2 + 1) + y_{5}(-c_2) = 0,\)
\(y_{14}(e_1 + 1) + y_{15}f_1 + y_{16}(-g_1) + y_{17}(-h_1) = 0,\)
\(y_{15}(e_1 + f_2) + y_{16}(-g_2) + y_{17}(-h_2) = 0,\)
\(y_{6}(-g_1a_1) + y_{9}(c_3 + c_4 - d_4)(c_1 - d_1) + y_{10}(c_3^2 + c_3c_4 - d_3c_4 - e_1) + y_{11}(-f_1) + y_{25}c_2a_1 = 0,\)
\(y_{16}g_4 + y_{18}e_4 + y_{19} + y_{20}(f_2 - h_4) + y_{27}(-1) = 0,\)
\(y_{14} + y_{21}(g_3 - e_1) + y_{22}f_1 + y_{23}(-1) + y_{24}h_1 = 0,\)
\(y_{17}(-g_1) + y_{22}(-f_4) + y_{24}(g_3 - h_4) = 0,\)
\(y_{4}(-c_2) + y_{6}(-a_2) + y_{8}c_2 + y_{9}d_2 = 0,\)
\(y_{6}(-1) + y_{9}(c_3 + d_4) = 0,\)
\(y_{1}a_2 + y_{2} + y_{4} + y_{6}a_3 + y_{10}(-1 - a_3) = 0,\)
\(y_{19}h_4 + y_{20}(-1) + y_{25}(-g_2) + y_{26}(-h_2) + y_{27} = 0,\)
\(y_{6}(-g_3f_2) + y_{15}(-c_1g_4 - c_2h_4) + y_{16}(d_2 - d_1) + y_{22}(c_4d_2 - c_3c_2 - c_2c_4) + y_{26}(c_4d_1 - c_3c_1 - c_4c_1) = 0,\)
The matrix of this system of linear equations modulo J is

$$
\begin{pmatrix}
0 & 1 & 0 & 0 & 0 & 0 & -1 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & -1 & 0 \\
-1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & -1 & 0 & 0 & 0 & -1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & -1 & 0 & 0 & 0 & -1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & -1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & -1 & 0 \\
0 & 0 \\
\end{pmatrix}
$$

Determinant of this matrix is 2^8, so it is invertible in R. Therefore this system has the unique solution $y_1 = \cdots = y_27 = 0$. Consequently, $x_1 = x_{\alpha_1}(1)$ on the part of basis under consideration. Since all roots are conjugate up to the action of W, we have that $x_1 = x_{\alpha_1}(1)$ on the whole basis. It is clear that also $x_2 = x_{\alpha_2}(1)$.

Now consider the matrix $d_t = \varphi_1(h_{\alpha_1}(t))$. The matrix $h_{\alpha_1}(t)$ is $\text{diag}[t^2, 1/t^2, 1/t, t, 1/t, 1]$ on the part of basis under consideration.

Lemma 7. The matrix d_t is $h_{\alpha_1}(s)$ for some $s \in R^*$.

Proof. For the matrix d_t we have conditions $d_tw_3 = w_3d_t$, \ldots, $d_tw_i = w_id_t$.

Let $l > 2$ and

$$
d_t = \begin{pmatrix}
\gamma_{11} & \gamma_{12} & \cdots & \gamma_{1l} \\
\gamma_{21} & \gamma_{22} & \cdots & \gamma_{2l} \\
\vdots & \vdots & \ddots & \vdots \\
\gamma_{l1} & \gamma_{l2} & \cdots & \gamma_{ll}
\end{pmatrix}
$$

on \tilde{V}.

$$
d_tw_i = w_id_t, \ i > 2, \ \gamma_{ii} = \cdots = \gamma_{i-1,i} = \gamma_{i+1,i} = \cdots = \gamma_{li} = 0. \ \ d_tw_1d_tw_1^{-1} = 1 \ \gamma_{33} = \cdots = \gamma_{li} = 1 \Rightarrow \gamma_{33} = \cdots = \gamma_{li} = 1. \ \ d_tw_1 = w_td_t, \ \gamma_{i-1,j} = \gamma_{l,j}, \ j = 1, 2, \ldots, d_tw_3 = w_3d_t
$$

Every condition $d_tw_i = w_id_t, \ i > 2$, gives $\gamma_{ii} = \cdots = \gamma_{i-1,i} = \gamma_{i+1,i} = \cdots = \gamma_{li} = 0$. From the condition $d_tw_1d_tw_1^{-1} = 1$ now directly follows $\gamma_{33} = \cdots = \gamma_{li} = 1 \Rightarrow \gamma_{33} = \cdots = \gamma_{li} = 1$. Condition $d_tw_1 = w_td_t$ gives that $\gamma_{l-1,j}$ is linearly expressed via $\gamma_{l,j}, \ j = 1, 2, \ldots$, condition $d_tw_3 = w_3d_t$ gives that $\gamma_{2,j}$ is linearly expressed via $\gamma_{l,j}, \ j = 1, 2$.
According to the zero corner we can consider the conditions for \(d_t \) on the part of basis \(v_1, v_{-1}, v_2, v_{-2}, v_{1+2}, v_{-1-2}, V_1, V_2 \), as we did it for \(x_1 \).

Since \(d_t \) commutes with all \(h_i \), we have that on the part of basis under consideration

\[
d_t = \begin{pmatrix}
k_1 & k_2 & 0 & 0 & 0 & 0 & 0 & 0 \\
k_3 & k_4 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & l_1 & l_2 & 0 & 0 & 0 & 0 \\
0 & 0 & l_3 & l_4 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & m_1 & m_2 & 0 & 0 \\
0 & 0 & 0 & 0 & m_3 & m_4 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & n_1 & n_2 \\
0 & 0 & 0 & 0 & 0 & 0 & n_3 & n_4
\end{pmatrix}.
\]

We know that \(x_2 = x_{\alpha_2}(1) \) and \(x_2^t = \varphi_2(x_{\alpha_2}(t)) = d_t x_2 d_t^{-1} = d_t x_2 w_1 d_t w_1^{-1} \). Using these conditions we obtain the expression of \(x_2^t \) through the entries of \(d_t \). Then we can use the condition Con5 := \((x_2^t 2 - x_2 2^t - 0) \). Its position (1,6) gives \(k_3(k_2 + k_3) = 0 \Rightarrow k_2 = -k_3 \), pos. (2,1) gives \(k_4(l_3 - m_3) = 0 \Rightarrow m_3 = l_3 \), pos. (2,5) gives \(l_3(l_1 + m_4) = 0 \Rightarrow l_3 = 0 \), pos. (5,6) gives \(k_2(l_1 + m_1) = 0 \Rightarrow k_2 = 0 \). From Con6 := \((d_t w_1 d_t w_1^{-1} - 1 = 0) \) it follows \(k_1 k_4 = l_1 m_1 = l_4 m_4 = 1 \). Using the condition Con7 := \((w_2 d_t w_2^{-1} - d_t w_1 d_t w_2^{-1} w_1^{-1} = 0) \), we obtain \(m_2 = l_2 = 0 \) (positions (1,2) and (4,3)) and \(l_4 = l_1 k_1 \) (pos. (1,1)). Position (7,7) of Con6 gives \(n_1^2 - (n_1 + n_2)n_3 = 1 \), position (3,7) of Con5 gives \(n_1^2 - (3n_1 + n_2 - 2n_3 - n_4)n_3 = 1 \). Therefore, \(n_3 = 0 \), \(n_2^2 = 1 \). After that we clearly infer \(n_1 = n_4 = 1 \), \(n_2 = 0 \). Finally, position (3,4) of Con5 gives \(k_1 = 1/l_1^2 \). Denote \(1/l_1 \) by \(s \).

It is clear that with the help of the elements \(w_i, i = 3, \ldots, l \), we can define all other diagonal elements. Namely, if \(\langle \alpha_1, \alpha_k \rangle = p \), then \(\varphi(h_{\alpha_1}(t))v_k = s^p \cdot v_k \), \(\varphi(h_{\alpha_1}(t))v_{-k} = s^{-p} \cdot v_{-k} \). Whence \(\varphi(h_{\alpha_1}(t)) = h_{\alpha_1}(s) \).

5. Images of the matrices \(x_{\alpha_i}(t) \), proof of the main theorem.

It is clear that \(\varphi_2(h_{\alpha_k}(t)) = h_{\alpha_k}(s) \), \(k = 1, \ldots, n \). Let us denote the mapping \(t \mapsto s \) by \(\rho : R^* \rightarrow R^* \). Note that for \(t \in R^* \), \(\varphi_2(x_1(t)) = \varphi_2(h_{\alpha_2}(t^{-1})x_1(1)h_{\alpha_2}(t)) = h_{\alpha_2}(s^{-1})x_1(1)h_{\alpha_2}(s) = x_1(s) \). If \(t \notin R^* \), then \(t \in J \), i.e. \(t = 1 + t_1 \), where \(t_1 \in R^* \). Then \(\varphi_2(x_1(t)) = \varphi_2(x_1(1)(x_1(t_1))) = x_1(1)x_1(\rho(t_1)) = x_1(1 + \rho(t_1)) \). Therefore, if we extend the mapping \(\rho \) on the whole ring \(R \) (by the formula \(\rho(t) := 1 + \rho(t - 1), t \in R \)), we have \(\varphi_2(x_1(t)) = x_1(\rho(t)) \) for all \(t \in R \). It is clear that \(\rho \) is injective, additive, multiplicative on all invertible elements. Since every element of \(R \) is the sum of two invertible elements, we have that \(\rho \) is an isomorphism from \(R \) onto some its subring \(R' \). Note that in this situation \(CE(\Phi, R)C^{-1} = E(\Phi, R') \) for some matrix \(C \in GL(V) \). Let us show that \(R' = R \).

Let us denote the matrix units by \(E_{ij} \).

Lemma 8. Elementary Chevalley group \(E(\Phi, R) \) generates the ring \(M_n(R) \).

Proof. The matrix \((x_{\alpha_1}(1) - 1)^2\) has the single nonzero element \(-2 \cdot E_{12} \). Multiplying it to some suitable diagonal matrix we can obtain an arbitrary matrix of the form \(\lambda \cdot E_{12} \) (since \(-2 \in R^* \) and \(R^* \) generates \(R \)). According to the transitive action of the Weil group on the root system \(\Phi \) (for every root \(\alpha_k \) there exists such an element \(w \in W \) that \(w(\alpha_1) = \alpha_k \)) the matrix \(\lambda E_{12} \cdot w \) has the form \(\lambda E_{1,2k} \), and the matrix \(w^{-1} \cdot \lambda E_{12} \) has the form \(\lambda E_{2k-1,2} \). Moreover, according to
the Weil group element that maps the first root to the opposite one, we get an element \(E_{2,1} \).

Taking different combinations of the obtained elements, we can get a non-abelian element \(\lambda E_{ij}, 1 \leq i, j \leq 2m \). Therefore we have always generated the subring \(M_{2m}(R) \). Now let us subtract from \(x_{a_2}(1) - 1 \) suitable matrix units, and we obtain the matrix \(E_{2m+1,2} - 2E_{1,2m+1} + E_{1,2m+2} \). Multiplying its (from the right side) to \(E_{2,i}, 1 \leq i \leq 2m \), we get all \(E_{2m+1,i}, 1 \leq i \leq 2m \).

With the help of Weil group elements we have all \(E_{i,j}, 2m < j \leq 2m + l, 1 \leq j \leq 2n \). Now we have the matrix \(-2E_{1,2m+1} + E_{1,2m+2} \). Multiplying it (from the left side) to \(E_{2m+1,1} \), we get \(E_{2m+1,2m+1} \). With the help of two last matrices we have \(E_{1,2m+1}, \) and, therefore, all \(E_{i,j}, 1 \leq i \leq 2m, 2m < j \leq 2m + l \). It is clear that now we have all matrix units, i.e. the whole matrix ring \(M_n(R) \).

Let us show it for the simplest root system \(A_2 \). In this case \((x_{a_2}(1) - 1)^2 = -2E_{12}, h_{a_2}(t)(-2E_{12}) = -2tE_{12}, i.e., we can obtain every \(\lambda E_{12} \). Then \(w_{a_1}\lambda E_{12}w_{a_1}^{-1} = \lambda E_{21}, \lambda E_{12}E_{21} = \lambda E_{11}, \lambda E_{21}E_{12} = \lambda E_{22}, w_{a_2}(1)\lambda E_{12} = \lambda E_{52}, w_{a_2}(1)\lambda E_{21} = \lambda E_{61}, \lambda E_{52}E_{21} = \lambda E_{51}, \lambda E_{61}E_{12} = \lambda E_{62}, \lambda E_{12}w_{a_2}(1) = \lambda E_{16}, \lambda E_{21}w_{a_2}(1) = \lambda E_{25}, \lambda E_{21}E_{16} = \lambda E_{26}, \lambda E_{12}E_{25} = \lambda E_{15}, \lambda E_{31}E_{15} = \lambda E_{55}, \lambda E_{61}E_{16} = \lambda E_{66}, \lambda E_{31}E_{16} = \lambda E_{56}, \lambda E_{61}E_{15} = \lambda E_{65}, \lambda E_{56}w_{a_1}(1) = \lambda E_{i3}, i = 1, 2, 5, 6, \lambda E_{i6}w_{a_1}(1) = \lambda E_{i4}, i = 1, 2, 5, 6, \lambda w_{a_1}(1)E_{5i} = \lambda E_{3i}, i = 1, 2, 5, 6, \lambda w_{a_1}(1)E_{6i} = \lambda E_{4i}, i = 1, 2, 5, 6, \lambda E_{i1}E_{13} = \lambda E_{43}, \lambda E_{41}E_{14} = \lambda E_{44}, \lambda E_{31}E_{13} = \lambda E_{33}, \lambda E_{31}E_{14} = \lambda E_{34}, \) so we have all matrix units of the subring \(M_6(R) \).

Then \(y = x_{a_1}(1) - 1 = -E_{12} - 2E_{17} + E_{18} + E_{46} - E_{53} + E_{73}, y' = y + E_{12} - E_{46} + E_{53} = E_{18} - 2E_{17} + E_{72}, (E_{18} - 2E_{17} + E_{72}) \cdot \lambda E_{2i} = \lambda E_{7i}, i = 1, \ldots, 6, (w_{a_2}(1) - 1)\lambda E_{7i} = \lambda E_{8i}, i = 1, \ldots, 6, y'' = y' - E_{72} = E_{18} - 2E_{17}, \lambda E_{81}y'' = \lambda E_{88}, \lambda E_{71}y'' = -2\lambda E_{77}, y'y''E_{88} = \lambda E_{18}, y''\lambda E_{77} = -2\lambda E_{17}, \lambda E_{i1}E_{17} = \lambda E_{i7}, \lambda E_{i1}E_{18} = \lambda E_{i8}, \) so we have generated the whole ring \(M_8(R) \).

Lemma 9. If for some \(C \in GL(V) \) we have \(CE(\Phi, R)C^{-1} = E(\Phi, R') \), where \(R' \) is a subring of \(R \), then \(R' = R \).

Proof. Suppose that \(R' \) is a proper subring of \(R \).

Then \(CM_n(R)C^{-1} = M_n(R') \), since the group \(E(\Phi, R) \) generates the ring \(M_n(R) \), and the group \(E(\Phi, R') = CE(\Phi, R)C^{-1} \) generates the ring \(M_n(R') \). It is impossible, since \(C \in GL_n(R) \).

Now we have proved that \(\rho \) is an automorphism of the ring \(R \). Therefore, composition of the initial automorphism \(\varphi \) and some basis change with the help of the matrix \(C \in GL_n(R) \) (that maps \(E(\Phi, R') \) onto itself), is a ring automorphism \(\rho \). It proves Theorem 1. □

References

[1] Abe E. Automorphisms of Chevalley groups over commutative rings. Algebra and Analysis, 5(2), 1993, 74–90.

[2] Abe E. Chevalley groups over local rings. Tohoku Math. J., 1969, 21(3), 474–494.

[3] Abe E. Chevalley groups over commutative rings. Proc. Conf. Radical Theory, Sendai — 1988, 1–23.

[4] Abe E. Normal subgroups of Chevalley groups over commutative rings. Contemp. Math., 1989, 83, 1–17.

[5] Abe E., Hurley J. Centers of Chevalley groups over commutative rings. Comm. Algebra, 1988, 16(1), 57–74.

[6] Abe E., Suzuki K. On normal subgroups of Chevalley groups over commutative rings. Tohoku Math. J., 1976, 28(1), 185-198.

[7] Bak A. Nonabelian K-theory: The nilpotent class of \(K_1 \) and general stability. K-Theory, 1991, 4, 363–397.
[8] Bak A., Vavilov Normality of the elementary subgroup functors. Math. Proc. Cambridge Philos. Soc., 1995, 118(1), 35–47.

[9] Bloshytsyn V.Ya. Automorphisms of general linear group over a commutative ring, not generated by zero divisors. Algebra and Logic, 1978, 17(6), 639–642.

[10] Borel A., Tits J. Homomorphismes “abstraits” de groupes algébriques simples. Ann. Math., 1973, 73, 499–571.

[11] Borel A. Properties and linear representations of Chevalley groups. Seminar on algebraic groups, 1973, 9–59.

[12] Bourbaki N. Groupes et Algèbres de Lie. Hermann, 1968.

[13] Carter R.W. Simple groups of Lie type, 2nd ed., Wiley, London et al., 1989.

[14] Carter R.W., Chen Yu. Automorphisms of affine Kac–Moody groups and related Chevalley groups over rings. J. Algebra, 1993, 155, 44–94.

[15] Chen Yu. Isomorphic Chevalley groups over integral domains. Rend. Sem. Mat. univ. Padova, 1994, 92, 231–237.

[16] Chen Yu. On representations of elementary subgroups of Chevalley groups over algebras. proc. Amer. Math. Soc., 1995, 123(8), 2357–2361.

[17] Chen Yu. Automorphisms of simple Chevalley groups over Q-algebras. Tohoku Math. J., 1995, 348, 81–97.

[18] Chen Yu. Isomorphisms of adjoint Chevalley groups over integral domains. Trans. Amer. Math. Soc., 1996, 348(2), 1–19.

[19] Chen Yu. Isomorphisms of Chevalley groups over algebras. J. Algebra, 2000, 226, 719–741.

[20] Chevalley C. Certain schemas des groupes semi-simples. Sem. Bourbaki, 1960–1961, 219, 1–16.

[21] Chevalley C. Sur certains groupes simples. Tohoku Math. J., 1955, 2(7), 14–66.

[22] Cohn P., On the structure of the GL_2 of a ring, Publ. Math. Inst. Hautes Et. Sci., 1966, 30, 365–413.

[23] Demazure M., Gabriel P. Groupes algébriques. I. North Holland, Amsterdam et al., 1970, 1–770.

[24] Diedonne J. On the automorphisms of classical groups, Mem. Amer. Math. Soc., 1951, 2.

[25] Diedonne J. Geometry of classical groups, 1974.

[26] Golubchik I.Z., Mikhalev A.V. Isomorphisms of the general linear group over associative ring. Vestnik MSU, ser. math., 1983, 3, 61–72.

[27] Golubchik I.Z. Isomorphisms of the general linear group over an associative ring. Contemp. Math., 1992, 131(1), 123–136.

[28] Golubchik I.Z., Mikhalev A.V. Isomorphisms of unitary groups over associative rings. Zapiski nauchnyh seminarov LOMI, 1983, 132, 97–109 (in Russian).

[29] Grothendieck A. Sur les sous-groupes arithmétiques des groupes semi-simples déployés. Ann. Sci. Ecole Norm. Sup. 4ème sér., 1969, 2, 1–62.

[30] Matsumoto H. Sur les sous-groupes arithmétiques des groupes semi-simples déployés. Ann. Sci. Ecole Norm. Sup. 4ème sér., 1969, 2, 1–62.

[31] McDonald B.R., Automorphisms of GL_n(R), Trans. Amer. Math. Soc., 215, 1976, 145–159.

[32] O’Meara O.T., The automorphisms of linear groups over any integral domain. J. reine angew. Math., 223, 1966, 56–100.

[33] Fuan Li, Zunxian Li. Automorphisms of SL_3(R), GL_3(R). Contemp. Math., 1984, 82, 47–52.

[34] Petechuk V.M. Automorphisms of groups SL_n, GL_n over some local rings. Mathematical Notes, 28(2), 1980, 187–206 (in Russian).
[42] Petechuk V.M. Automorphisms of groups $\text{SL}_3(K)$, $\text{GL}_3(K)$. Mathematical Notes, 31(5), 1982, 657–668 (in Russian).

[43] Petechuk V.M. Automorphisms of matrix groups over commutative rings. Mathematical Sbornik, 1983, 45, 527–542.

[44] Stein M.R. Generators, relations and coverings of Chevalley groups over commutative rings. Amer. J. Math., 1971, 93(4), 965–1004.

[45] Stein M.R. Surjective stability in dimension 0 for K_2 and related functors, Trans. Amer. Soc., 1973, 178(1), 165–191.

[46] Stein M.R. Stability theorems for K_1, K_2 and related functors modeled on Chevalley groups. Japan J. Math., 1978, 4(1), 77–108.

[47] Steinberg R. Lectures on Chevalley groups, Yale University, 1967.

[48] Steinberg R., Automorphisms of finite linear groups, Canad. J. Math., 121, 1960, 606–615.

[49] Suslin A.A., On a theorem of Cohn, J. Sov. Math. 17 (1981), N2, 1801–1803.

[50] Suzuki K., On the automorphisms of Chevalley groups over p-adic integer rings, Kumamoto J. Sci. (Math.), 16(1), 1984, 39–47.

[51] Swan R., Generators and relations for certain special linear groups, Adv. Math. 6 (1971), 1–77.

[52] Taddei G. Normalité des groupes élémentaire dans les groupes de Chevalley sur un anneau. Contemp. Math., Part II, 1986, 55, 693–710.

[53] Vaserstein L.N. On normal subgroups of Chevalley groups over commutative rings. Tohoku Math. J., 1986, 36(5), 219–230.

[54] Vavilov N.A. Structure of Chevalley groups over commutative rings. Proc. Conf. Non-associative algebras and related topics (Hiroshima – 1990). World Sci. Publ., London et al., 1991, 219–335.

[55] Vavilov N.A. An A_3-proof of structure theorems for Chevalley groups of types E_6 and E_7. J. Pure Appl. Algebra, 2007, 1-16.

[56] Vavilov N.A. Parabolic subgroups of Chevalley groups over commutative ring. Zapiski nauchnyh seminarov LOMI, 1982, 116, 20–43 (in Russian).

[57] Vavilov N.A., Plotkin E.B. Chevalley groups over commutative rings. I. Elementary calculations. Acta Applicandae Math., 1996, 45, 73–115.

[58] Vavilov N.A., Petrov V.A. On overgroups of $E_p(2l, R)$. Algebra and Analisys, 2003, 15(3), 72–114.

[59] Vavilov N.A., Gavriloich M.R. A_2-proof of structure theorems for Chevalley groups of types E_6 and E_7. Algebra and Analisys, 2004, 116(4), 54–87.

[60] Vavilov N.A., Gavriloich M.R., Nikoleno SI. Structure of Chevalley groups: proof from the book. Zapiski nauchnyh seminarov LOMI, 2006, 330, 36–76 (in Russian).

[61] Waterhouse W.C. Introduction to affine group schemes. Springer-Verlag, N.Y. et al., 1979.

[62] Waterhouse W.C. Automorphisms of $GL_n(R)$. Proc. Amer. Math. Soc., 1980, 79, 347–351.

[63] Waterhouse W.C. Automorphisms of quotients of $\prod GL(n_i)$. Pacif. J. Math., 1982, 79, 221–233.

[64] Waterhouse W.C. Automorphisms of $\det(X_{ij})$: the group scheme approach. Adv. Math., 1987, 65(2), 171–203.

[65] Zalesskiy A.E. Linear groups. Itogi Nauki. M., 1989, 114–228 (in Russian).

[66] Zelmanov E.I. Isomorphisms of general linear groups over associative rings. Siberian Mathematical Journal, 1985, 26(4), 49–67 (in Russian).