Expression and localization of aromatase during fetal mouse testis development
Caroline Borday, Jorge Merlet, Chrystèle Racine, René Habert

To cite this version:
Caroline Borday, Jorge Merlet, Chrystèle Racine, René Habert. Expression and localization of aromatase during fetal mouse testis development. Basic and Clinical Andrology, 2013, 23 (1), pp.12. <inserm-00911997>

HAL Id: inserm-00911997
http://www.hal.inserm.fr/inserm-00911997
Submitted on 1 Dec 2013

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Expression and localization of aromatase during fetal mouse testis development

Caroline Borday¹,²,³†, Jorge Merlet¹,²,³†, Chrystèle Racine¹,²,³ and René Habert¹,²,³∗

Abstract

Background: Both androgens and estrogens are necessary to ensure proper testis development and function. Studies on endocrine disruptors have highlighted the importance of maintaining the balance between androgens and estrogens during fetal development, when testis is highly sensitive to environmental disturbances. This balance is regulated mainly through an enzymatic cascade that converts irreversibly androgens into estrogens. The most important and regulated component of this cascade is its terminal enzyme: the cytochrome p450 19A1 (aromatase hereafter). This study was conducted to improve our knowledge about its expression during mouse testis development.

Findings: By RT-PCR and western blotting, we show that full-length aromatase is expressed as early as 12.5 day post-coitum (dpc) with maximal expression at 17.5 dpc. Two additional truncated transcripts were also detected by RT-PCR. Immunostaining of fetal testis sections and of gonocyte-enriched cell cultures revealed that aromatase is strongly expressed in fetal Leydig cells and at variable levels in gonocytes. Conversely, it was not detected in Sertoli cells.

Conclusions: This study shows for the first time that i) aromatase is expressed from the early stages of fetal testis development, ii) it is expressed in mouse gonocytes suggesting that fetal germ cells exert an endocrine function in this species and that the ratio between estrogens and androgens may be higher inside gonocytes than in the interstitial fluid. Furthermore, we emphasized a species-specific cell localization. Indeed, previous works found that in the rat aromatase is expressed both in Sertoli and Leydig cells. We propose to take into account this species difference as a new concept to better understand the changes in susceptibility to Endocrine Disruptors from one species to another.

Keywords: Cyp19a1, Aromatase, Testis, Fetus, Mouse, Gonocytes, Development, Endocrine disruptors, Leydig cells, Souris, Développement, Perturbateurs endocriniens, Cellules de Leydig

Résumé

Les androgènes et les oestrogènes sont indispensables au développement et aux fonctions du testicule. Le testicule est particulièrement sensible aux perturbateurs endocriniens pendant le développement foetal et beaucoup de perturbateurs endocriniens agissent en modifiant la balance oestrogènes/androgènes. Physiologiquement, cette balance est régulée par une cascade enzymatique qui convertit irréversiblement les androgènes en oestrogènes. Le composant principal de cette cascade est le cytochrome p450 19A1 (appelé couramment aromatase). Le but de ce travail a été d’étudier l’expression de l’aromatase testiculaire au cours du développement foetal chez la souris.

(Continued on next page)
To determine if aromatase is translated in mouse testis, western blot analysis was performed using a specific anti-aromatase antibody (MCA2077T, Serotec, France) (Figure 1D). Two proteins around 54 kDa and one around 27 kDa were detected. The protein of 54 kDa was also present in the ovary extract and it approximately corresponded to the aromatase expected size. We thus suppose that the two heaviest proteins derived from the full-length form of aromatase (T1) with the highest form corresponding to a testis-specific post-translational modification that remains to be identified. In order to understand the origin of the 27 kDa protein, we analysed sequences of the T2 and T3 variants. It revealed that the splicing of exon 3 in T2 would change the ORF and create a precocious codon stop leading to a probably not detected protein of 6 kDa. Splicing of exons 3 and 4 in T3 would not change the ORF allowing in theory the synthesis of a truncated protein of 46 kDa. No protein at this expected size was detected in the western blot (Figure 1D). However, the use of an alternative start codon located later in T2 and T3 sequences may lead to a protein of 27 kDa containing the C-terminal part of aromatase.

These findings are different from those of the only previously published paper on this topic showing that, in the mouse, aromatase expression starts at 17.5 dpc and reaches the highest level at day 1 post-partum [3]. In our study, we detected aromatase expression as early as 12.5 dpc. This discrepancy probably results from the improvement of the methods of detection made since 1994. This is an important point because it shows that estrogens can be produced by mouse fetal testes very early and throughout development.

Our findings indicate that different aromatase transcripts are generated in fetal mouse testes. Previous studies in different mammalian species (including the mouse) reported
that tissue-specific aromatase expression is driven by specific promoters [4-6]. Each tissue-specific promoter is associated with a specific untranslated first exon. In mice testis Golovine et al. have shown that aromatase transcripts may emerge from a specific promoter called Ptes [4]. Our study showed that aromatase expression is also regulated at a second transcriptional level generating two additional truncated variants T2 and T3 by mRNA splicing. Our results suggest that there are several forms of aromatase protein however the nature and the physiological function of these isoforms remain to be investigated.

Table 1 Sequences of aromatase primers used in RT-PCR and qRT-PCR

	Sequence 5′-3′	Tm
RT-PCR all transcripts		55°C
forward	AACCCCATGCAGTATAATGTC	
reverse	CATCTCTCTCAAGTTTCA	
T1 qRT-PCR		60°C
forward	GCCCTCCTCTCCTGAATTTGA	
reverse	CTGCCATGGGAATGAGGG	
internal probe	TACGGTCCTGGCTACT	
T2 qRT-PCR		60°C
forward	GCCCTCCTCTCCTGAATTTGA	
reverse	CGGAAATCGGGAATGAGGG	
internal probe	TCAATACCCAGCTCTCGAC	
T3 qRT-PCR		60°C
forward	CATGCCACTCTCCTGCTGAT	
reverse	CCACCATCCGGAACAGCCAG	
internal probe	TCTTCAATACCCAGCTCTGAC	

Aromatase cell localization in mouse fetal testes

Immunohistochemical analysis of aromatase localization in 17.5 dpc mouse testes using a specific anti-aromatase antibody (MCA2077T, Serotec, France) showed a strong staining in Leydig cells. Importantly, there was no detectable staining in Sertoli cells (Figure 2A). Conversely, previous studies in fetal and neonatal testes showed that aromatase was expressed in both Leydig cells and Sertoli cells in the rat [7,8]. This and other previous reports indicate that aromatase cell localization in fetal testis is quite variable in mammalian species. Indeed, aromatase is
expressed in Leydig cells and not in Sertoli cells in the fetal testis of the Plains Vizcacha rodent [9], is totally absent in the deer [10], and is detected in both Sertoli cells and Leydig cells in fetal baboon and human testes [11,12]. In addition, our immunohistochemical analysis showed that aromatase was also expressed in gonocytes, but the intensity of the signal was not uniform: in some cells the signal was very strong, whereas in others it was faint or undetectable (Figure 2A, arrowheads). Similar results were previously described for Retinoic Acid Receptor alpha [14]. As aromatase localization in germ cells was quite unexpected, aromatase immunostaining was also performed in enriched gonocyte cultures that were prepared from 17.5 dpc mouse testes as previously described [15]. Similarly, aromatase was detected in some germ cell VASA-positive cells, a germ cell-specific marker (Figure 2B). This result identifies a sub-population of gonocytes with endocrine function. Aromatase expression was previously reported in adult rat and human germ cells [16,17] and in pig gonocytes during development [18]. Aromatase expression was also detected in gonocytes of human fetal testes [12].

In conclusion, aromatase cell localization in fetal testis appears to differ from one species to another and as
consequence also the intracellular estrogen concentration. These differences should be taken into account to explain the variations in the susceptibility of fetal testis to estrogenic and anti-androgenic endocrine disruptors in different mammalian species that has been recently lightened [2].

Additional file

Additional file 1: Sequencing results of T1, T2 and T3. The three different transcripts were isolated on gel and sequenced with the following primers: forward 5'-AACCCTAGCGATAATGTC-3' (located in exon II); reverse 5'-CACAATGACCTTCTTGCCA-3' (located in exon V). Each different exon is highlighted in a different color (red exon II, black exon III, and blue exon IV and green exon V. In addition, sequencing from exons VI to X were performed using other primers and showed no difference in T1, T2 and T3 (data not shown).

Competing interests

All authors declare that they have no competing interests.

Authors’ contributions

Conceived the study: RH. Conceived and designed the experiments: RH, CR. Performed the experiments: CB, JM, CR. Analyzed the data: CB, JM, RH. Contributed reagents, materials, analysis tools and financial supports: RH. Wrote the paper: RH, CR. Improved the redaction: CB, JM. All authors read and approved the final manuscript.

Acknowledgements

We thank Véronique Neuville for animal care, Evelyne Moreau and Sébastien Messiaen for technical assistance, Aurélie Gouret for secretarial help and E. Andermarcher for editing the English manuscript.

Funding

This work was supported by Université Paris Diderot-Paris 7, CEA and INSERM. JM was supported by a fellowship from the Ministère de l’Education Nationale de la Recherche et de la Technologie. CB holds a position as Temporary Attached for Teaching and Research (ATER) at the Diderot-Paris 7 University.

Author details

1. Laboratory of Development of the Gonads, Unit of Stem Cells and Radiation, Univ. Paris Diderot, Sorbonne Paris Cité, BP 6, 92265 Fontenay-aux-Roses, France. TCEA, DSV, IRCM, SCSR, LDG, 92265 Fontenay-aux-Roses, France. 2. Unit of Stem Cells and Radiation, LDG / SCSR / IRCM / DSV, INSERM, Centre CEA, BP6, Unité 967, F-92265 Fontenay aux Roses, France.

Received: 9 June 2013 Accepted: 9 September 2013
Published: 1 December 2013

References

1. Merlet J, Moreau E, Habert R, Racine C. Differential expression of fetal testicular cells in androgen receptor deficient mice. Cell Cycle 2007, 6:2258–2262.
2. NTumba-Byn T, Molson D, Lacrok M, Leureuil C, Lesage L, Prud’homme SM, Pozzi-Gaulin S, Frydman R, Benchia A, Livere G, Rouiller-Fabre V, Habert R. Differential effects of bisphenol A and dihydrotestosterone on human, rat and mouse fetal Leydig cell function. PLoS One 2012, 7:e53257.
3. Greco TL, Payne AH. Ontogeny of expression of the genes for steroidogenic enzymes P450 side-chain cleavage, 3β-hydroxysteroid dehydrogenase, P450 17α-hydroxylase/C17-20 lyase, and P450 aromatase in fetal mouse gonads. Endocrinology 1994, 133:262–268.
4. Colovos C, Scherwin R, Varsely J. Three different promoters control expression of the aromatase cytochrome P450 gene (cyp19) in mouse gonads and brain. Biol Reprod 2003, 68:978–984.
5. Chow JD, Simpson ER, Boon WC. Alternative 5′-untranslated first exons of the mouse Cyp19A1 (aromatase) gene. J Steroid Biochem Mol Biol 2009, 115:115–125.
6. Von Schalburg KR, Yasuke M, Davidson WS, Koop BF. Regulation, expression and characterization of aromatase (cyp19b1) transcripts in ovary and testis of rainbow trout (Onchorhynchus mykiss). Comp Biochem Physiol B Biochem Mol Biol 2010, 155:118–125.
7. Tsai-Morris CH, Aquilano DR, Dufau ML. Cellular localization of rat testicular aromatase activity during development. Endocrinology 1989, 116:38–46.
8. Rouiller-Fabre V, Carmona S, Merhi RA, Cate R, Habert R, Vigier B. Effect of anti-Mullerian hormone on Sertoli and Leydig cell functions in fetal and immature rats. Endocrinology 1998, 139:1213–1220.
9. Gonzales CR, Merscan Isla ML, Leopardo NP, Willis MA, Dorfman VB, Vitullo AO. Expression of androgen receptor, estrogen receptors alpha and beta and aromatase in the fetal, perinatal, prepubertal and adult testes of the South American plains Vizcacha, Lagostomus maximus (Mammalia, Rodentia). J Reprod Dev 2012, 58:669–35.
10. Hayakawa D, Sasaki M, Suzuki M, Tsubota T, Igota H, Kaji K, Kitamura N. Immunohistochemical localization of steroidogenic enzymes in the testis of the Sika Deer (Cervus nippon) during developmental and seasonal changes. J Reprod Dev 2010, 56:117–123.
11. Bonaquita TW, Zhou H, Babishkin JS, Pepe GJ, Albrecht ED. Expression of P-450 aromatase, estrogen receptor α and β, and oestinhibin in the baboon testis after estrogen suppression during the second half of gestation. Endocrine 2011, 39:75–82.
12. Boskari KL, Caliari ML, Gaucho-Chant-Mantel A, Young J, Lombris M, Meduri G. Human fetal testis: source of estrogen and target of estrogen action. Hum Reprod 2007, 22:1885–1892.
13. Turner KJ, Macpherson S, Millar MR, McNelly AS, Williams K, Cranfield M, Groome NP, Sharpe RM, Fraser HM, Saunders PT. Development and validation of a new monoclonal antibody to mammalian aromatase. J Endocrinol 2002, 172:21–30.
14. Boutogne B, Leviacher C, Durand P, Habert R. Retinoic acid receptors and retinoid X receptors in the rat testis during fetal and postnatal development: immunolocalization and implication in the control of the number of gonocytes. Biol Reprod 1999, 61:1548–1557.
15. Merlet J, Racine C, Moreau E, Moreno SG, Habert R. Male fetal germ cells are targets for androgens that physiologically inhibit their proliferation. Proc Natl Acad Sci USA 2007, 104:3615–3620.
16. Lambard S, Slandre D, Delalande C, Demis-Galeraud J, Bourguiba S, Carreau S. Aromatase in testis: expression and role in male reproduction. J Steroid Biochem Mol Biol 2005, 95:63–66.
17. Carreau S, Bois C, Zanatta L, Silva FR, Bouraima-Lelong H, Delalande C. Estrogen signaling in testicular cells. Life Sci 2011, 89:584–587.
18. Haeussler S, Wagner A, Welter M, Claus R. Changes of testicular aromatase expression during fetal development in male pigs (Sus scrofa). Reproduction 2007, 133:323–330.

Received: 9 June 2013 Accepted: 9 September 2013
Published: 1 December 2013

Cite this article as: Borday et al.: Expression of aromatase during fetal mouse testis development. Basic and Clinical Andrology 2013 23:12.