Formation of Multi-Planetary Systems in Turbulent Discs

Hanno Rein
John Papaloizou

Rein & Papaloizou 2008 (A&A in press, arXiv:0811.1813)
Multi-planetary systems are more interesting than single planetary systems.

The complete History is encoded in the architecture.
Random forces
An analytic description
Stability of resonant systems
Conclusions
Turbulent disc

• Angular momentum transport

• Magnetorotational instability

• Density perturbations interact gravitationally with planets

• Random forces

MHD simulations are short (hundreds of orbits).

They have low resolution and the issue of convergence is not completely resolved.

Full MHD simulations by Nelson & Papaloizou (2004)
See also Laughlin et al. (2004) and Adams et al. (2008)
Scaling of MRI-forces

- Natural force scale
 \[F_0(r) = M_{\text{pert}} G / L^2 = \pi G \Sigma(r) / 2 \]
- Natural time scale (Correlation time)
 \[\Omega^{-1} \]
- Reduction factors are crucial

Density perturbation	0.1
Gap opening	0.1
...	...

Estimates from MHD simulations by Oishi et al. (2007), Val-Borro et al. (2006), Nelson and Papaloizou (2004)

Force scale doesn’t contain a preferred size scale.
Other factors which reduce the force scale are for example dead zones.
• Forces are stochastic and correlated
\[\langle F_i(t)F_i(t + \Delta t) \rangle_t = \langle F_i^2 \rangle g(|\Delta t|) \]

• Autocorrelation function
\[g(|\Delta t|) = \exp \left(-\frac{|\Delta t|}{\tau_c} \right) \]
Random forces
An analytic description
Stability of resonant systems
Conclusions
Stochastic forces on a single planet

\[\dot{L}_F = m \left(\frac{\partial}{\partial \lambda} + \frac{\partial}{\partial \varpi} \right) (\mathbf{r} \cdot \mathbf{F}) \]

\[\dot{E}_F = m \mathbf{v} \cdot \mathbf{F} \]

\[\dot{\varpi}_F = \frac{\sqrt{1 - e^2}}{n a e} \left[F_\theta \left(1 + \frac{1}{1 - e^2} \frac{r}{a} \right) \sin f - F_r \cos f \right] \]

\[\dot{\lambda}_F = \left(1 - \sqrt{1 - e^2} \right) \dot{\varpi}_F + \frac{2an}{GM} \mathbf{r} \cdot \mathbf{F} \]

We add an additional term to the full Keplerian Hamiltonian and obtain the equations of motions. This gives us the correct pre-factors.

Details described in Rein & Papaloizou (2008)
Growth of orbital parameters

\((\Delta A)^2 = \int_0^t \int_0^t F_i(t') F_i(t'') dt' dt'' \)

\[= \int_0^t \int_0^t \langle F_i^2 \rangle g(|t' - t''|) dt' dt'' \]

\[= 2\langle F_i^2 \rangle \tau_c t \]
\[\text{We can now do the usual trick to obtain the growth rate of all orbital parameters.} \]

\[(\Delta a)^2 = 4 \frac{Dt}{n^2} \]

\[(\Delta e)^2 = 2.5 \frac{\gamma Dt}{n^2 a^2} \]

\[(\Delta \omega)^2 = 2.5 \frac{\gamma Dt}{e^2 n^2 a^2} \]

We can now do the usual trick to obtain the growth rate of all orbital parameters.

All parameters are undergoing a random walk.

Note the different factors, especially the \(1/e\) term.
Growth of orbital parameters - single planet

6 realizations of the same initial conditions.

The mean growth is well characterized by the sqrt(t) laws from the previous slide.
Growth of orbital parameters - two planet case

• Same form as in single planet case

• Amplitude of harmonic oscillator

\[\frac{(\Delta \phi_1)^2}{(p + 1)^2} = \frac{9\gamma f}{a_1^2 \omega_{lf}^2} \ D t \]

\[(\Delta (\Delta \varpi))^2 = \frac{5\gamma s}{4a_1^2 n_1^2 e_1^2} \ D t \]

• Dependence on \(e \)

Don’t get confused by the two \(\Delta \)s.

One is the name of the parameter, the difference in apsidal lines.

The other one describes the growth.

The 1/e dependence shows a coordinate singularity, not a physical instability.

Details in Rein & Papaloizou (2008)
Random forces
An analytic description
Stability of resonant systems
Conclusions
The first thing to notice is that the difference in the apsidal lines will go out of libration first.

This is not due to the random walk in this parameter but note that the eccentricity obtains small values at exactly the same time.

The resonant angle ϕ_1 is still in resonance. Nothing dramatic happens.

The amplitude of ϕ_1 keeps on growing until it finally goes out of resonance.

At that point, the planets are basically undergoing two independent random walks.
We can now make use of the analytic description to get an estimate for the average lifetime of such a resonance.

All we have to do is solving this equation for t. We can also express this in terms of physical parameters of the system.

\[
\frac{(\Delta \phi_1)^2}{(p + 1)^2} = \frac{9 \gamma_f}{a_1^2 \omega_{lf}^2} \quad D t \quad \rightarrow \quad \tau \approx \frac{a_1^2 \omega_{lf}^2}{9 D}
\]

\[
\tau \approx 2.4 \cdot 10^{-4} \left(\frac{a_1 n_1^2}{\sqrt{\langle F_i^2 \rangle}} \right)^2 \left(\frac{1}{2n_1 \tau_c} \right) \left(\frac{17 \omega_{lf} \sqrt{qGJ}}{2n_1 \sqrt{q}} \right)^2 \frac{q}{qGJ} P_1
\]

\[\text{central force}\]
\[\text{turbulent force}\]
This plot shows a comparison between the lifetimes estimated from the analytic prescription and the numerical tests.

The lines correspond to the analytic lifetimes of different planet masses, ranging from Jupiter masses to terrestrial masses.

Two points are slightly off.

The one on the top is more a lower limit because I stop the simulations after a finite time.

The two points on the bottom appear to have a slightly longer lifetime than expected. This is due to the fact that the forces are so strong that the resonance is broken within one libration period.
The most interesting thing to look at is the formation of the systems. The right plot shows the observed system, the left one its formation.

The HD128311 system has been studied before. It turns out that the system cannot reach its current state with smooth migration only. Turbulence might be the best explanation.
Random forces
An analytic description
Stability of resonant systems
Conclusions
Conclusions

• Analytic description of stochastic forces from first principles

• Physical scaling laws allow us to cover large uncertainties

• The result is an analytic formula for the lifetime of resonances

\[\tau \approx \frac{a_1^2 \omega_l^2}{9D} \]

• Turbulence naturally produces system with broken apsidal corotation and provides plausible formation scenarios for many system

• Future observations will allow us to constrain \(D \) and lead to a better understanding of turbulence
Thank you for your attention.

All details are described in Rein & Papaloizou 2008
arXiv:0811.1813