Anaplastic thyroid cancer: genome-based search for new targeted therapy options

Daniel Alexander Hescheler¹²*, Milan Janis Michael Hartmann³*, Burkhard Riemann¹, Maximilian Michel⁴, Christiane Josephine Bruns³, Hakan Alakus³ and Costanza Chiapponi³

¹Department of Nuclear Medicine, University Hospital Münster, Münster, Germany
²European Institute for Molecular Imaging (EIMI), University of Münster, Münster, Germany
³Department of General, Visceral, Tumor and Transplant Surgery, University Hospital Cologne, Cologne, Germany
⁴Institute of Zoology, University of Cologne Germany, Cologne, Germany

Correspondence should be addressed to H Alakus: hakan.alakus@uk-koeln.de
*(D A Hescheler and M J M Hartmann contributed equally to this work)

Abstract

Objective: Anaplastic thyroid cancer (ATC) is one of the most lethal human cancers with meager treatment options. We aimed to identify the targeted drugs already approved by the Food and Drug Administration (FDA) for solid cancer in general, which could be effective in ATC.

Design: Database mining.

Methods: FDA-approved drugs for targeted therapy were identified by screening the databases of MyCancerGenome and the National Cancer Institute. Drugs were linked to the target genes by querying Drugbank. Subsequently, MyCancerGenome, CIViC, TARGET and OncoKB were mined for genetic alterations which are predicted to lead to drug sensitivity or resistance. We searched the Cancer Genome Atlas database (TCGA) for patients with ATC and probed their sequencing data for genetic alterations which predict a drug response.

Results: In the study, 155 FDA-approved drugs with 136 potentially targetable genes were identified. Seventeen (52%) of 33 patients found in TCGA had at least one genetic alteration in targetable genes. The point mutation BRAF V600E was seen in 45% of patients. PIK3CA occurred in 18% of cases. Amplifications of ALK and SRC were detected in 3% of cases, respectively. Fifteen percent of the patients displayed a co-mutation of BRAF and PIK3CA. Besides BRAF-inhibitors, the PIK3CA-inhibitor copanlisib showed a genetically predicted response. The 146 (94%) remaining drugs showed no or low (under 4% cases) genetically predicted drug response.

Conclusions: While ATC carrying BRAF mutations can benefit from BRAF inhibitors and this effect might be enhanced by a combined strategy including PIK3CA inhibitors in some of the patients, alterations in BRAF WT ATC are not directly targeted by currently FDA-approved options.

Introduction

Anaplastic thyroid cancer (ATC) is one of the most lethal human cancers with a historical median survival of 5–12 months and a 1-year survival rate of 20–60% (1, 2, 3). About 50% of patients have metastatic disease at the time of diagnosis (1) which generally requires a systemic therapy in addition to surgery and/or radiation therapy.

A recent single-institution retrospective study on 479 patients treated at the University of Texas MD Anderson
Cancer Center over 20 years (3) revealed that targeted therapy and immunotherapy play an increasing role, resulting in significantly improved 1- and 2-year survival rates (59 and 42%, respectively). Median overall survival (OS) for patients treated with targeted therapy, regardless of their grouping, was 15.7 months compared with 7.6 months in patients not having received any targeted therapy (3). In another single-institution retrospective study with 120 Korean ATC patients, tyrosine kinase inhibition (TKI) was also associated with favorable OS in a multivariate analysis (4).

Although to date, half of the patients are still receiving cytotoxic chemotherapy (3), first-line therapy is progressively shifting toward targeted therapy options as precision medicine and the increasing role of molecular testing in clinical routine is evolving (5). The Food and Drug Administration (FDA) approval of the combination BRAF/MEK inhibitor therapy for the management of BRAF V600E-positive ATC in 2018 was a major first step in this direction. Besides BRAF (dabrafenib and vemurafenib) and MEK inhibitors (trametinib and cobimetinib), TKI like cabozantinib, lenvatinib, sorafenib and pazopanib, the mTOR inhibitor sapanisertib, PPAR-agonist efatutazone, the ALK inhibitor ceritinib, the VEGF inhibitor bevacizumab and several combined treatment and immunotherapeutic agents (pembrolizumab, ipilimumab, nivolumab, durvalumab, tremelimumab, spartalizumab and atezolizumab) are currently being tested in clinical trials (Table 1) (2).

However, ATC is an orphan disease, accounting for only 3% of thyroid cancers (1). Given the low number of patients that can consequently be recruited for clinical studies, a thorough in silico screening of possible treatment strategies offers an intriguing approach for planning future targeted therapy trials.

The aim of this study is to explore if any of the 155 drugs which have been approved by the FDA for targeted therapy of other solid cancers may play a role in the treatment of ATC based on such an in silico analysis of genetic alterations in ATC.

Genetic alterations in anaplastic thyroid cancer
We identified 15 studies that reported genomic data on a total of 809 ATC patients (Table 2). The data set of Landa et al. (7) provides the largest available whole-exome sequencing (WES) data set and we therefore based our drugability estimates on this study. Systematic tumor genomics data of ATC generated mutation significance as indicated by MutSig and putative copy number alterations as indicated by GISTIC 2.0 were extracted from Landa et al. (7). We included datasets of anaplastic thyroid cancers (n = 33) and excluded poorly differentiated thyroid cancers (n = 84 pat). Mutation variants and copy number variations (CNVs) directly or indirectly affecting genes of potentially targeted therapy options were identified. As the validation study for our work, we used the study by Pozdeyev et al. (8), which provides information on the targeted sequencing of 196 ATC tumors.

FDA-approved targeted therapy and their biological targets
In order to find new therapeutic options in anaplastic thyroid cancer, we first identified all FDA-approved drugs for any cancer therapy by searching the databases of National Cancer Institute (https://www.cancer.gov/news-events/cancer-currents-blog/2017/aliqopa-fda-follicular-lymphoma) and MyCancerGenome (https://www.mycancergenome.org/content/page/what-is-my-cancer-genome/), as previously described (6) (database query 09/2021) (Supplementary Table 1 (http://doi.org/10.6084/m9.figshare.14937117), see section on supplementary materials given at the end of this article). We identified 155 FDA/EMA-approved drugs targeting cancer genetic alterations. These drug lists were linked to 136 genes by querying databases of the University of Texas MD Anderson Cancer Center (https://pct.mdanderson.org/) and Drugbank (9), which encode the potential sites of binding and action of each drug (Supplementary Table 1 (http://doi.org/10.6084/m9.figshare.14937117)). Special attention was given to specific genetic alterations resulting in either drug sensitivity or drug resistance to targeted therapy. Hereby the expert-crowdsourced, publication-based databases from MyCancerGenome (https://www.mycancergenome.org/content/page/what-is-my-cancer-genome/), CIViC (10), TARGET (https://software.broadinstitute.org/cancer/cga/target) and OncoKB (11) (Supplementary Table 2 (http://doi.org/10.6084/m9.figshare.14937117)) were mined.
Table 1 Overview of clinical trials involving ATC (data from Al-Jundi et al. (37)). The table lists the clinical trials on BRAF/MEK inhibitors, kinase inhibitors, mTOR inhibitors and combination therapies in anaplastic thyroid cancer in terms of study design, primary outcomes and reported adverse events. Data from Al-Jundi et al. (37) has been updated with current clinical trials still recruiting. Many trials do not focus on ATC exclusively, but rather include ATC among other thyroid cancer types.

Drug/clinicalTrials.gov ID/ reference	Mechanism of action	Enrolled patients*	Primary outcome	Study design	Results	Reported adverse events
BRAF inhibitors						
Vemurafenib	BRAF^{V600E}	ATC: 7 (multiple BRAFV600E mutant tumors)	ORR	Phase II, basket trial	PR: 14%	
CR: 14%	Rash, fatigue, arthralgia					
Hyman et al. (38)						
BRAF/MEK inhibitor combination						
Dabrafenib and Trametinib	Dabrafenib: BRAF^{V600E}					
Trametinib: MEK1, MEK2	ATC: 16 locally advanced or metastatic BRAF^{V600E} mutant disease	ORR	Phase II, single arm, open label	PR: 63%		
CR: 6%	Skin papilloma hyperkeratosis, alopecia, fatigue, fever, diarrhea, acneiform rash					
Subbiah et al. (17)						
Trametinib and Dabrafenib		BRAF-positive ATC, neoadjuvant estimated enrolment: 18	ORR	Phase II, single arm, open label, recruiting	N/A	
estimated end date: 01/26						
(clinicaltrials.gov)	N/A					
NCT04739566						
Tyrosine kinase inhibitors						
Axitinib	VEGFR, PDGFR, KIT	DTC: 45 (resistant to or not appropriate for RAI)				
MTC: 11						
ATC 11	ORR	Phase II, single arm, open label	ORR of 30%			
SD for _ 16 weeks: 38%						
PFS: 18.1 months	Fatigue, diarrhea, nausea, anorexia, hypertension, stomatitis					
Cohen et al. (39)						
Lenvatinib	VEGFR, PDGFR, EGFR, RET, KIT	Enrolled all types of thyroid cancer, but results reported one cohort for 17 patients with ATC	Serious/ non-serious AE	Phase II, single arm, open label	Median PFS: 7.4 months	
Most frequent AE (decreased appetite, 82%; HTN, 82%; fatigue, 59%; nausea, 59%; proteinuria, 59%)	Hypertension, diarrhea, fatigue, anorexia, weight loss, nausea					
Tahara et al. (28)						
Lenvatinib		ATC estimated enrolment: 39	OS	Phase II, single arm, open label	N/A	
completed 03/20, no results published yet	Fatigue, skin and hair hypopigmentation, diarrhea, nausea					
NCT02726503						
Pazopanib	VEGFR, FGFR, PDGFR, RET, KIT	ATC: 15 (advanced or metastatic disease)	Tumor response rate	Phase II, two arms, open label	No response	Fatigue, skin and hair hypopigmentation, diarrhea, nausea
Bible et al. (27)						
Selpercatinib	VEGFR, FGFR, RET	Thyroid cancer with RET alterations (including ATC) estimated enrolment: 30	ORR	Phase II, single arm, open label, recruiting	N/A	
estimated end date: September 24 (clinicaltrials.gov)	N/A					
NCT04759911						

(Continued)
Table 1 (Continued).

Drug/clinicalTrials.gov ID/ reference	Mechanism of action	Enrolled patients*	Primary outcome	Study design	Results	Reported adverse events
Sorafenib Capdevila et al. (40)	VEGFR, PDGFR, RET, KIT, FLT	DTC: 16 MTC: 15 ATC: 3 (metastatic progressive unsuitable for surgery, RAI, or radiotherapy)	ORR	Retrospective, Spanish o_-label-sorafenib-use program	DTC PR: 19% MTC PR: 47% ATC PR: 33%	Hand-foot skin reaction, diarrhea, alopecia, skin rash or desquamation
Sunitinib Ravaud et al. (26)	VEGFR, PDGFR, RET, KIT, FLT	DTC: 41 (RAI resistant) MTC: 26 ATC: 4 (sunitinib as a first-line anti-angiogenic therapy)	ORR	Phase II, single arm, open label	DTC PR: 22% MTC PR: 38.5% ATC: no response	Cytopenia, diarrhea, fatigue, hand-foot skin reaction, nausea, musculoskeletal pain, hypertension
Serine/threonine kinase inhibitors						
Abemaciclib NCT04552769	CDK4 CDK6	Metastatic or locally advanced anaplastic/undifferentiated thyroid cancer estimated enrolment: 17	ORR	Phase II, single arm, recruiting	N/A estimated end date: September 23 (clinicaltrials.gov)	N/A
mTOR inhibitors						
Everolimus Lim et al. (41)	mTOR	Thyroid cancer (all subtypes): 38	Disease control rate (PR + SD > 12 weeks)	Phase II, single arm, open label	PR: 5% (2/38, one PTC patient and one FTC) SD: 76%	Mucositis, anorexia, abnormal, liver enzymes, acneiform rash
Everolimus Hanna et al. (42)		DTC: 33 MTC: 10 ATC: 7	PFS	Phase II, single arm, open label	DTC: Median PFS 12.9 months, PR 1/38 MTC: Median PFS 13.1 months, PR 1/10 ATC: Median PFS 2.2 months, PR 1/7	N/A estimated end date: January 22 (clinicaltrials.gov)
MLN0128 NCT02244463		Metastatic ATC estimated ATC: 25	PFS	Phase II, single arm, open label, recruiting	N/A estimated end date: July 23 (clinicaltrials.gov)	N/A
Combination therapies under investigation						
Atezolizumab Bevacizumab Cobimetinib Vemurafenib Paclitaxel Nab-Paclitaxel NCT03181100	Atezolizumab: PD-1L Bevacizumab: VEGFR Cobimetinib: MEK1, MEK2 Vemurafenib: BRAFV600E Paclitaxel: antimicrotubule agent Nab-Paclitaxel: albumin-stabilized antimicrotubule agent	ATC and poorly differentiated thyroid cancer estimated enrolment: 50	OS	Phase II, open label, parallel assignment, recruiting	N/A estimated end date: July 23 (clinicaltrials.gov)	N/A

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License. https://doi.org/10.1530/EC-21-0624 https://ec.bioscientifica.com © 2022 The authors Published by Bioscientifica Ltd.
Study design	Primary outcome	Enrolled patients	Mechnism of action	Reported adverse events
Phase I/ib, open label, parallel assignment, single arm, double-blind, randomized, not recruiting	Phase II, single arm, open label, recruiting	N/A	N/A	N/A
Phase II, single arm, open label, recruiting	Phase II, single arm, open label, recruiting	N/A	N/A	N/A
Phase II, single arm, open label, recruiting	Phase II, single arm, open label, recruiting	N/A	N/A	N/A
Phase I/Ib, open label, parallel assignment, single arm, double-blind, randomized, not recruiting	Phase II, single arm, open label, recruiting	N/A	N/A	N/A
Phase I/Ib, open label, parallel assignment, single arm, double-blind, randomized, not recruiting	Phase II, single arm, open label, recruiting	N/A	N/A	N/A
Phase II, single arm, open label, recruiting	Phase II, single arm, open label, recruiting	N/A	N/A	N/A
Phase I/Ib, open label, parallel assignment, single arm, double-blind, randomized, not recruiting	Phase II, single arm, open label, recruiting	N/A	N/A	N/A
Phase II, single arm, open label, recruiting	Phase II, single arm, open label, recruiting	N/A	N/A	N/A
Phase I/Ib, open label, parallel assignment, single arm, double-blind, randomized, not recruiting	Phase II, single arm, open label, recruiting	N/A	N/A	N/A
Phase II, single arm, open label, recruiting	Phase II, single arm, open label, recruiting	N/A	N/A	N/A
Phase I/Ib, open label, parallel assignment, single arm, double-blind, randomized, not recruiting	Phase II, single arm, open label, recruiting	N/A	N/A	N/A
Phase II, single arm, open label, recruiting	Phase II, single arm, open label, recruiting	N/A	N/A	N/A

For placebo-controlled studies, only the number for patients enrolled under the treatment arm is mentioned (data from Al-Jundi et al. (37)).
Table 2: Genomic data concerning ATC. The table lists all genomic data found involving anaplastic thyroid cancer. Shown are the number of samples, the main alternated genes in % of the whole sample group and their nationality, gender distribution in % and median age accordingly.

Study	n of samples	Type of sequencing/number of genes	Genes % of total	Genes	Nationality	Gender in %	Median age in years
Nikiforova et al. 2013	27	TS 12	BRAF 26%	PIK3CA 11%	USA	N/A	N/A
Jeon et al. 2016	11	WES 520	KRAS 9%	N/A	Korea	27/73	75
Landa et al. 2016	33	TS 341	TP53 30%	N/A	USA	27/24(49)	66
Latteyer et al. 2016	30	TS 9	TERT 4%	N/A	Germany	55/45	70
Tiedje et al. 2017	118	TS 17	N/A	N/A	Germany	48/52	65
Ibrahimpasic et al. 2017	57	TS 410	N/A	N/A	USA	44/56	>45
Bonhomme et al. 2017	94	TS 50	N/A	N/A	France	40/60	68
Chen et al. 2018	12	TS 46/50	N/A	N/A	USA	48/52	55
Duan et al. 2019	25	TS 18	N/A	N/A	USA	48/52	55
Yoo et al. 2019	13	WGS	N/A	N/A	Korea	37/63	61
Ravi et al. 2019	11	WES	N/A	N/A	N/A	N/A	N/A
Xu et al. 2020	107	TS (multiple platforms)	N/A	N/A	USA/Australia	46/54	68
Lai et al. 2020	27	TS 7	N/A	N/A	Taiwan	49/51	75

ATC, anaplastic thyroid cancer; BRAF, v-Raf murine sarcoma viral oncogene homolog B; f, female; HRAS, gene encoding for the H-Ras (Harvey Rat sarcoma virus) protein; KRAS, gene encoding for the K-Ras (Kirsten rat sarcoma virus) protein; n, number; NRAS, neuroblastoma RAS viral oncogene homolog; N/A, not available; m, male; PIK3CA, gene coding for phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit alpha; TGS, third generation sequencing; TERT, gene encoding for telomerase reverse transcriptase; TP53, gene encoding for tumor protein p53; TS, target sequencing; WES, whole exome sequencing; WGS, whole genome sequencing.
Drug response prediction

Drug response prediction was calculated as previously described (6). Briefly, the genetic datasets of ATC were searched for (i) gain of function; (ii) CNV-amplification; (iii) specific genetic alterations.

The data on approved drugs and their targets were integrated with data on genomic alterations from patients annotated with the biologically relevant genetic alterations. The prediction of whether a patient might respond to a given drug is based on the following criteria:

(i) The gene underlying the FDA-approved drug target shows a copy number increase in the ATC dataset of the TCGA study.
(ii) The drug targets a gene whose product shows a gain of function in the TCGA dataset.
(iii) The drug shows literature-based effectiveness on a specific alteration found in the TCGA dataset such as indicated in the FDA guidelines (7).

Gain of function

Gene alterations resulting in gain of function were determined by querying the databases OncoKB (11) and CIVIC (10). These databases derive a biological effect score from publications. Gene alterations were defined as ‘gain of function’ according to the OncoKB-score (gain of function or like gain of function), CIVIC score (pathogenetic, likely pathogenetic or positive), as well as mutations affecting Chang’s mutational hotspots (12).

CNV-amplification

The data from cBioPortal (13) is annotated with a copy number analysis algorithm (GISTIC 2.0 (14)), which indicates the copy number level per gene: ‘−2’ deep loose, ‘−1’ shallow loose, ‘0’ diploid, ‘1’ low-level gain and ‘2’ high-level amplification. The threshold of high-level amplification ‘2’ was chosen to signify an occurrence of a copy number increase in each tissue sample.

Specific gene alterations

The expert-crowdsourced, publication-based databases (MyCancerGenome, CIVIC, TARGET and OncoKB) list-specific genetic alterations affecting targeted therapy, which were checked on the dataset of anaplastic thyroid cancer (7).

Mutation hotspot analysis

Since mutation hotspots play an important role in thyroid cancer, the mutation datasets were screened to detect mutation hotspots and their frequency. Mutation variants known to be responsive to FDA-approved drugs according to the database DOCM (15) were also searched.

Analysis of genetic coalterations

A co-alteration analysis was performed by querying cBioPortal (13). All genes which were altered in ≥3 (9%) patients were included in this analysis. χ²-tests were performed to identify different distributions of genetic alterations between BRAF-unaltered and BRAF-alterated groups.

Currently recruiting studies on ATC

The databases of the International Conference on Harmonisation of technical requirements for registration of pharmaceuticals for human use – Good clinical practice network (https://ichgcp.net/clinical-trials-registry) and ClinicalTrials.gov (https://clinicaltrials.gov/) were searched for the following terms to identify trials currently recruiting and including patients with ATC: ‘anaplastic thyroid cancer’, ‘thyroid cancer’ and ‘ATC’.

Results

Genetic alterations in targeted genes

To date there are 155 already FDA-approved targeted drugs which could potentially aid ATC patients. According to the National Cancer Institute (https://www.cancer.gov/news-events/cancer-currents-blog/2017/aliqopa-fda-follicular-lymphoma) and MyCancerGenome (https://www.mycancergenome.org/content/page/what-is-my-cancer-genome/) databases, these 155 approved drugs target 136 genes (Supplementary Table 1 (http://doi.org/10.6084/m9.figshare.14937117)).
Twenty-six (79%) of 33 ATC patients from Landa et al. (7) had at least one genetic alteration in the target genes; there were 53 genetic alterations in 24 (17.6%) of 136 targetable genes, with 23 putative driver genetic alterations in 4 genes (BRAF, PIK3CA, ALK and SRC – Fig. 1A). Activating point mutations in the oncogene BRAF were seen in 15 (45.5%) of 33 cases – in all cases occurring as a BRAF V600E mutation. Putative driver PIK3CA mutations were seen in 18% of cases. A similar prevalence of alterations in BRAF and PIK3CA is reported for the 196 tumors examined by Pozdeyev et al. (8) (41 and 14% respectively, Table 2). Genetic alterations in BRAF and PIK3CA were not mutually exclusive (P = 0.13) and occurred in 15% of all and 33% of BRAF-mutated cases. Amplifications of ALK and SRC were detected in 3% of cases respectively (Fig. 1).

Mutational hotspot analysis

The most frequently affected pathway was the RAS pathway, including the BRAF V600 mutational hotspot (45%), followed by the NRAS Q61 (18.2%, 6/33 cases). The PIK3CA pathway was affected by activating mutations in 6 (18%) of 33 cases, including PIK3CA E545 (9.1%, 3/33 cases), PIK3CA E542 (6%, 2/33 cases) and PIK3CA E81K (Fig. 1B).

Analysis of genetic co-alterations

In the BRAF-mutated group, TERT-alterations were significantly more common than in the WT group (93.3% vs 55.6%, P = 0.0183). In the WT group TP53 (88.9% vs 53.3%, P = 0.029), NRAS (33.3% vs 0%, P = 0.017) and PTEN (27.8% vs 0%, P = 0.036) alterations were significantly more frequent (Fig. 1C).

Potential drug options

We predicted the drug response in the ATC tumor samples as previously described (6). The in silico analysis specifically identified BRAF inhibitors (selective BRAF inhibitors or multikinase i.a. BRAF inhibitors). The PIK3CA-inhibitor copanlisib showed a predicted response in 18% of cases. The 146 remaining drugs showed no or low (under 4% cases) genetically predicted drug response in ATC (Fig. 2).

Discussion

Several randomized and non-randomized clinical trials have been conducted in ATC during the last years (Table 1). While in 2019 the Surveillance, Epidemiology, and End Results database still reported no improvement in OS.
between 1986 and 2015 (16) there are clear signs of progress. In 2020, a retrospective analysis of 479 patients treated at the MD Anderson Cancer Center over the course of 20 years revealed a significant increase in BRAF screening from 17% between 2000 and 2013 to 97% between 2017 and 2019. Further, the number of patients receiving targeted therapy increased from 9 to 61% and the median OS for patients treated with targeted therapy increased from 7.6 months in patients not having received any targeted therapy to 15.7 months for the same time-frames (3). Targeted therapies administered to patients at MD Anderson included dabrafenib, trametinib, vemurafenib, cobimetinib, larotrectinib, everolimus, pazopanib, bevacizumab, lenvatinib, selpercatinib, lenalidomide and cetuximab. The median OS increased regardless of the specific therapy scheme (3).

The focus of the present study was to screen targeted cancer drugs approved by the FDA for other solid cancers and to identify those that may play any role in ATC based on its genetic alterations. Since these drugs are already approved, the side-effect profile is known which would lead to a faster approval in another cancer moiety such as ATC. While ATC prognosis is particularly poor, it is also relatively seldom, accounting for only 3% of all thyroid cancer (1). This hinders recruitment for clinical studies, and we consequently tried to build a systematic, in silico theoretical framework for future clinical targeted therapy research.

Fifteen studies covering more than 800 ATC samples were identified (Table 2). The largest WES dataset (7) was used for the discovery of druggability and the largest ATC cohort based on targeted sequencing (8) was defined for validation. Potentially targetable genes of FDA-approved targeted therapy included BRAF, PIK3CA, ALK and SRC (Fig. 1A). It needs to be mentioned that in 13 (39.4%) of 33 patients, the data set of Landa et al. (7) did not cover the whole gene set of 136 druggable genes. Therefore, some genes could be underrepresented (Supplementary Table 6).

The in silico analysis identified BRAF inhibitors, in particular the PIK3 inhibitor copanlisib, the VEGFR-2/c-SRC inhibitor apatinib, and the ALK inhibitors brigatinib, ceritinib, crizotinib and lorlatinib as possible targeted therapy agents for ATC (Fig. 2) (21). Although NRAS-Q61 was the second-highest frequency mutation hotspot (Fig. 1B and C), there are currently no FDA-approved drugs targeting this specific mutation. Besides BI1701963 targeting KRAS and Tipifarnib targeting HRAS (both being tested in ongoing studies), to the best of our knowledge, there is currently no drug targeting NRAS.

For the treatment of the BRAF-mutant ATC, the approval of combined BRAF and MEK inhibition with dabrafenib and trametinib in 2018 represented a major breakthrough with an objective response rate (ORR) of 69% and a stable disease (SD) rate of 19%, although almost all patients experienced adverse events (AE) and 42% grade ≥3 AEs (17). Heterogeneous mechanisms of resistance can modulate the efficacy of BRAF-inhibition, including activation of ERBB3, EGFR, PI3K, IL6, HGF/MET and the reactivation of the MAPK pathway through an acquired KRAS G12D mutation. Inhibition of ERK, a strategy for overcoming BRAF and MEK inhibition resistance in melanoma still needs to be tested in ATC (8).
Due to the coexistence of BRAF and PIK3CA mutations in 15% of tumors, future clinical trials might consider synchronous or metachronous combination therapies with PIK3 inhibitors, as described by Gibson et al. (18). The authors performed a multiregional genomic analysis of an exceptional responder to dual inhibition and demonstrated that this exceptional response was due to coexisting alterations in the MAPK and PI3K/AKT pathways. The PIK3CA inhibitor copanlisib has recently proved very successful in recurrent, indolent non-Hodgkin lymphoma (CHRONOS-3 study (19)) and is currently being tested in trials on radioiodine refractory thyroid cancer in order to improve radioiodine response (NCT04462471). To our best knowledge, there are no current trials testing copanlisib in combined treatments for ATC (Table 1).

ALK overexpression and mutation have been described in 11–20% of ATC patient samples (20, 21). In the TCGA data, only amplifications of ALK were detected in 3% of ATC cases (7). The use of ceritinib, a well-tolerated, highly potent oral ALK-inhibitor, is documented in case reports (22) and is currently being tested in a multicenter, open-label trial (NCT02289144, Table 1).

There are case reports, describing the pre- (23) and postoperative (24) use of the selective VEGFR-2/c-SRC inhibitor apatinib in single patients, but no clinical studies have thus far been published.

BRAF inhibitors provide a good option in patients displaying this mutation. Small studies have used multikinase inhibitors for BRAF V600 WT patients. Sorafenib however exhibited a low ORR (10%), short median progression-free survival (PFS) (1.9 months) and OS (3.9 months) (25). In phase 2 trials, both sunitinib and pazopanib showed no overall response (26, 27). In phase 2 trials including 5–17 patients with ATC, there were PRs of 24–60% under lenvatinib treatment (28, 29). Thus, the two first-line agents for differentiated thyroid cancer (DTC) sorafenib and lenvatinib seem to have a poor response in ATC.

The genetic RET/PTC and NTRK rearrangements observed in papillary thyroid cancer have also been described in ATC (30). Selective RET inhibitors such as selpercatinib and pralsetinib have been approved by the FDA for RAI-refractory RET fusion thyroid cancer. Phase I–II trials including previously treated non-medullary TC (n = 19) report a high response rate (79%) and a 1-year PFS of 64% (31). However, only 2 of the 19 non-medullary TC samples were anaplastic. RET mutations occur rather rarely in ATC (32). Instead, TRK fusions have been reported in 25% of ATC (32). For larotrectinib, a highly potent and selective inhibitor of all TRKs approved for the treatment of adult and pediatric patients with neurotrophic tyrosine receptor kinase (NTRK) fusions, the reported objective response rate for ATC pooled from available phase I/II trials was 29% (33). Additionally, larotrectinib was very well tolerated.

In the study by Pozdeyev et al. (8), TERT promoter mutations were common (65%). The reported coexistence with DTC (34, 35) suggests that they might contribute to the more aggressive DTC phenotype which is prone to conversion to ATC when an ATC-related ‘second hit’ genetic event occurs (8). Whether telomerase inhibitors like INOS401, Telomelysin and Imeltestat, which are currently being tested on myeloid malignancy, might also play a role in the treatment of ATC in the future is still unclear.

Since TP53 seems to be mutated in 9–73% of ATCs (Table 2), p53-activating compounds that are currently being tested on myeloid neoplasms and sarcomas (36) might also offer an option in the future.

The better understanding of the genetic basis of ATC with the identification of BRAF-mutant ATC led to an improvement for the treatment of some ATC patients, however, the median survival of 1.3 years is still quite poor and there is still no satisfying treatment for BRAF WT patients. Here we present the first systematic analysis of all currently available FDA-approved drug options in ATC based on genomic alterations reported from ATC tumor sequencing studies. We restricted this first in silico analysis on already FDA-approved studies as the hurdle to progress to further studies would be relatively low with a drug that has already been approved through clinical trials. However, our data show no new or surprising candidate drug. This could be due to the limited dataset of only 33 patients. We restricted our analysis to these 33 patients as these patients could be clearly identified as having ATC as opposed to poorly differentiated thyroid cancer or other types of TC. It would be interesting to repeat this analysis as more tumor samples are sequenced and are deposited on databases. Further, the drug panel could be expanded significantly beyond FDA-approved drugs in order to identify drugs that could be tested in ATC cell lines as a screening tool before going into cell lines and then patients. Lastly, our software algorithm considers only direct gene targets rather than pathways. Therefore, drugs acting indirectly (like the MEK inhibitor selumetinib for NF1 alterations) might not have been considered sufficiently.

Conclusion

Based on the currently available genomic data, targeted therapy options for ATC are limited. PIK3 inhibition might...
be an option for combined strategies with BRAF inhibitors. Few patients might also benefit from VEGFR-2 or ALK inhibitors. However, even this limited dataset identified significant heterogeneity amongst tumor samples. Targeting treatment for BRAF WT tumors seems to be very limited and much more challenging.

Supplementary materials
This is linked to the online version of the paper at https://doi.org/10.1530/EC-21-0624.

Declaration of interest
The authors declare that there is no conflict of interest that could be perceived as prejudicing the impartiality of the research reported.

Funding
This work did not receive any specific grant from any funding agency in the public, commercial or not-for-profit sector.

Data availability
The datasets generated during and/or analyzed during the current study are available in the figshare repository, http://doi.org/10.6084/m9.figshare.14937117.

Code availability
The codes generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

Author contribution statement
Daniel Hescheler and Hakan Alakus designed the computational model and framework. Daniel Hescheler, Hakan Alakus and Costanza Chiapponi carried out the implementation. Daniel Hescheler, Milan Hartmann, Burkhard Riemann, Maximilian Michel, Christiane Bruns, Hakan Alakus and Costanza Chiapponi contributed to the interpretation of the results. Daniel Hescheler, Milan Hartmann, Burkhard Riemann, Maximilian Michel, Christiane Bruns, Hakan Alakus and Costanza Chiapponi contributed critical feedback and helped shape the research, analysis and manuscript. Costanza Chiapponi and Daniel Hescheler wrote the first draft of the manuscript, and all authors critically revised the manuscript. All authors approved the final version of the manuscript. All authors decided to submit this study and agreed to be accountable for all aspects of the work as recommended by the ‘International Committee of Medical Journal Editors’ (ICMJE) authorship criteria.

References
1 Bible KC, Kebebew E, Brierley J, Brito JP, Cabanillas ME, Clark TJ, Di Cristofano A, Foote R, Giordano T, Kasperbauer J, et al. 2021 American Thyroid Association guidelines for management of patients with anaplastic thyroid cancer. Thyroid 2021 31 337–386. (https://doi.org/10.1089/thy.2020.0944)
2 Araque KA, Gubbi S & Klubo-Gwiazdzinska J. Updates on the management of thyroid cancer. Hormone and Metabolic Research 2020 52 562–577. (https://doi.org/10.1055/a-1089-7870)
3 Maniakas A, Dadu R, Busaidy NL, Wang JR, Ferraroito R, Lu C, Williams MD, Gunn GB, Hofmann MC, Cote G, et al. Evaluation of overall survival in patients with anaplastic thyroid carcinoma, 2000-2019. JAMA Oncology 2020 6 1397–1404. (https://doi.org/10.1001/jamaoncol.2020.3362)
4 Park J, Jung HA, Shim JH, Park WY, Kim TH, Lee SH, Kim SW, Ahn MJ, Park K & Chung JH. Multimodal treatments and outcomes for anaplastic thyroid cancer before and after tyrosine kinase inhibitor therapy: a real-world experience. European Journal of Endocrinology 2021 184 837–845. (https://doi.org/10.1530/EJE-20-1482)
5 Salgado SA. Evolution of anaplastic thyroid cancer management: perspectives in the era of precision oncology. Therapeutic Advances in Endocrinology and Metabolism 2021 12 20420188211054692. (https://doi.org/10.1177/20420188211054692)
6 Hescheler DA, Plum PS, Zander T, Quaquas A, Korenkov M, Gassa A, Michel M, Bruns CJ & Alakus H. Identification of targeted therapy options for gastric adenocarcinoma by comprehensive analysis of genomic data. Gastric Cancer 2020 23 627–638. (https://doi.org/10.1007/s10128-020-01045-9)
7 Landa I, Brahimpasic T, Boucai L, Sinha R, Knauf JA, Shah RH, Dogan S, Ricarte-Filho JC, Krishnamoorthy GP, Xu B, et al. Genomic and transcriptomic hallmarks of poorly differentiated and anaplastic thyroid cancers. Journal of Clinical Investigation 2016 126 1052–1066. (https://doi.org/10.1172/JCI85271)
8 Pozdnyev N, Gay LM, Solok ES, Hartmaier R, Deaver KE, Davis S, French JD, Borre PV Vanden, LaBarbera DV, Tan AC, et al. Genetic analysis of 779 advanced differentiated and anaplastic thyroid cancers. Clinical Cancer Research 2018 24 3059–3068. (https://doi.org/10.1158/1078-0432.CCR-18-0373)
9 Wishart DS, Fuenang YD, Guo AC, Lo EJ, Marcu A, Grant JR, Sajed T, Johnson D, Li C, Sayeeda Z, et al. DrugBank 5.0: a major update to the DrugBank database for 2018. Nucleic Acids Research 2018 46 D1074–D1082. (https://doi.org/10.1093/nar/gkx1037)
10 Griffith M, Spies NC, Krysiak K, McMichael AC, Coffman AC, Danos AM, Ainscough BJ, Ramirez CA, Rieke DT, Kujan L, et al. CIVIC is a community KnowledgeBase for expert crowdsourcing the clinical interpretation of variants in cancer. Nature Genetics 2017 49 170–177. (https://doi.org/10.1038/ng.3774)
11 Chakravarty D, Gao J, Phillips SM, Kundra R, Zhang H, Wang J, Rudolph JE, Yaeger R, Soumerai T, Hassan MH, et al. OncoKB: a precision oncology knowledge base. JCO Precision Oncology 2017 1 1–16. (https://doi.org/10.1200/PO.17.00011)
12 Chang MT, Shershtha Bhattacharai TS, Schram AM, Bielski CM, Donghue MTA, Jonsson P, Chakravarty D, Phillips S, Kandoth C, Penson A, et al. Accelerating discovery of functional mutant alleles in cancer. Cancer Discovery 2018 8 174–183. (https://doi.org/10.1002/2159-8290.CD-17-0321)
13 Cerami E, Gao J, Dogrusos U, Gross BE, Sumer SO, Aksoy BA, Jacobsen A, Byrne CJ, Heuer ML, Larsson E, et al. The cBio Cancer Genomics Portal: an open platform for exploring multidimensional cancer genomics data. Cancer Discovery 2012 2 401–404. (https://doi.org/10.1158/2159-8290.CD-12-0095)
14 Merrell CH, Schumacher SE, Hill B, Meyerson ML, Beroukhim R & Getz G. GISTIC2.0 facilitates sensitive and confident localization of the targets of focal somatic copy-number alteration in human cancers. Genome Biology 2011 12 R41. (https://doi.org/10.1186/gb-2011-12-4-r41)
15 Ainscough BJ, Griffith M, Coffman AC, Wagner AH, Kunisaki J, Choudhary MNK, McMichael JF, Fulton RS, Wilson RK, Griffith OL, et al. DoCM: A database of curated mutations in cancer [Internet]. Nature Methods 2016 13 806–807. (https://doi.org/10.1038/nmeth.4000)
16 Lin B, Ma H, Ma M, Zhang Z, Sun Z, Hsieh IY, Okenwa O, Guan H, Li J & Lv W. The incidence and survival analysis for anaplastic thyroid cancer: a SEER database analysis. American Journal of Translational Research 2019 11 1052–1066. (https://doi.org/10.18632/ajt.20063)
D A Hescheler, M J M Hartmann et al.

Targeted therapy in anaplastic thyroid cancer

11:4 e210624

Research 2019 11 5888–5896. (available at: https://pubmed.ncbi.nlm.nih.gov/31632557/)

17 Subbiah V, Kreitman RJ, Wainberg ZA, Cho JY, Schellens JHM, Soria JC, Wen PY, Zielsinski C, Cabanillas ME, Urbanowicz G, et al. Dabrafenib and trametinib treatment in patients with locally advanced or metastatic BRAF V600-mutant anaplastic thyroid cancer. Journal of Clinical Oncology 2018 36 7–13. (https://doi.org/10.1200/JCO.2017.73.6785)

18 Gibson WJ, Ruan DT, Paulson VA, Barletta JHA, Hanna GJ, Kraft S, Calles A, Nehs MA, Moore FD, Taylor-Weiner A, et al. Genomic heterogeneity and exceptional response to dual pathway inhibition in anaplastic thyroid cancer. Clinical Cancer Research 2017 23 2367–2373. (https://doi.org/10.1158/1078-0432.CCR-16-2154-T)

19 Matasar MJ, Capra M, Ozcan M, Lv E, Li W, Yahez E, Sapunarova K, Lin T, Jin J, Jurczak W, et al. Copanlisib plus rituximab versus placebo plus rituximab in patients with relapsed indolent non-Hodgkin lymphoma (CHRONOS-3): a double-blind, randomised, placebo-controlled, phase 3 trial. Lancet: Oncology 2021 22 678–689. (https://doi.org/10.1016/S1470-2045(21)00145-5)

20 Murugan AK & Xing MM. Anaplastic thyroid cancers harbor novel oncogenic mutations of the ALK gene. Cancer Research 2011 71 4403–4411. (https://doi.org/10.1158/0008-5472.CAN-10-4041)

21 Latteyer S, Tiedje V, Konig K, Teng S, Heukamp LC, Meder L, Schmid KW, Führer D & Moeller LC. Targeted next-generation transcriptase (TERT) regulation in thyroid cancer: a review. Frontiers in Endocrinology 2019 7 129082104)

22 Godbert Y, De Figueiredo BH, Bonichon F, Chibon F, Hostein I, Péro G, Dupin C, Daubech A, Belleannée G, Gebo A, et al. Remarkable response to crizotinib in woman with anaplastic lymphoma kinase-rearranged anaplastic thyroid carcinoma. Journal of Clinical Oncology 2015 33 e84–e87. (https://doi.org/10.1200/JCO.2013.49.6596)

23 Niu Y, Ding Z, Deng X, Guo B, Kang J, Wu B & Fan Y. A novel multimodal therapy for anaplastic thyroid carcinoma: 1251 seed implantation plus apatinib after surgery. Frontiers in Endocrinology 2020 11 207. (https://doi.org/10.3389/fendo.2020.00207)

24 Cheng L, Jiao Q, Jin Y, Fu H, Zhang H & Chen L. Initial therapy of advanced anaplastic thyroid cancer via targeting VEGFR-2: a case report. OncoTargets and Therapy 2019 12 10495–10500. (https://doi.org/10.2147/OTT.S223727)

25 Savvides P, Nagaiah G, Lavretto F, Fu P, Wright JJ, Chapman R, Cheng L, Jiao Q, Jin Y, Fu H, Zhang H & Chen L. Initial therapy of advanced anaplastic carcinoma of the thyroid. Thyroid 2013 23 600–604. (https://doi.org/10.1089/thy.2012.0103)

26 Ravaud A, de la Fouchardière C, Caron P, Doussau A, Do Ca C, Asselinreau J, Rodien P, Pouessell D, Nicoli-Sere P, Klein M, et al. A multicenter phase II trial of sunitinib in patients with locally advanced or metastatic differentiated, anaplastic or medullary thyroid carcinomas: mature data from the THYSU study. European Journal of Cancer 2017 76 110–117. (https://doi.org/10.1016/j.ejca.2017.01.029)

27 Bible KC, Suman VJ, Menesee ME, Smallridge RC, Molina JR, Maples WJ, Karlin NJ, Traylor AM, Kumar P, Goh BC, et al. A multinational phase 2 trial of pazopanib monotherapy in advanced anaplastic thyroid cancer. Journal of Clinical Endocrinology and Metabolism 2012 97 3179–3184. (https://doi.org/10.1210/jc.2012-1520)

28 Tahara M, Kiyota N, Yamazaki T, Chayahara N, Nakano K, Inagaki L, Toda K, Enokida T, Minami H, Imamura Y, et al. Lenvatinib for anaplastic thyroid cancer. Frontiers in Oncology 2017 7 25. (https://doi.org/10.3389/fonc.2017.00025)

29 Iyer PC, Dadu R, Ferrariotto R, Busaidy NL, Habra MA, Zafereo M, Gross N, Hess KR, Gule-Monroe M, Williams MD, et al. Real-world experience with targeted therapy for the treatment of anaplastic thyroid carcinoma. Thyroid 2018 28 79–87. (https://doi.org/10.1089/thy.2017.0285)

30 Cabanillas ME, Ryder M & Jimenez C. Targeted therapy for advanced thyroid cancer: kinase inhibitors and beyond. Endocrine Reviews 2019 40 1573–1604. (https://doi.org/10.1210/er/2019-00007)

31 Wirth LJ, Sherman E, Robinson B, Solomon B, Kang H, Lorch J, Worden F, Brose M, Patel J, Leboulleux S, et al. Efficacy of selpercatinib in RET-altered thyroid cancers. New England Journal of Medicine 2020 383 625–633. (https://doi.org/10.1056/NEJMoa2005661)

32 Fullmer T, Cabanillas ME & Zafereo M. Novel therapeutics in radioactive iodine-resistant thyroid cancer. Frontiers in Endocrinology 2021 12 836. (https://doi.org/10.3389/FENDO.2021.720723/BIBTEX)

33 Cabanillas ME, Drilon A, Farag AO, Brose MS, McDermott R, Sosah D, Oh D, Almubarak M, Bauman J, Chu E, et al. Abstract 1916P: Larotrectinib treatment of advanced TRK fusion thyroid cancer. Annals of Oncology 2013 14 Suppl 4 S1086. (https://doi.org/10.1016/j.annonc.2013.08.014)

34 Oishi N, Kondo T, Ebina A, Sato Y, Akaishi J, Hino R, Yamamoto N, Mochizuki K, Nakazawa T, Yokomichi H, et al. Molecular alterations of coexisting thyroid papillary carcinoma and anaplastic carcinoma: identification of tert mutation as an independent risk factor for transformation. Modern Pathology 2017 30 1527–1537. (https://doi.org/10.1038/MODPATHOL.2017.75)

35 McKelvey BA, Umbricht CB & Zeiger MA. Telomerase reverse transcriptase (TERT) regulation in thyroid cancer: a review. Frontiers in Endocrinology 2020 11 485. (https://doi.org/10.3389/FENDO.2020.00485)

36 Sanz G, Singh M, Peugeot S & Selivanova G. Inhibition of p53 inhibitors: progress, challenges and perspectives. Journal of Molecular Cell Biology 2019 11 586–599. (https://doi.org/10.1093/jmcb/mjz075)

37 Al-Jundi M, Thakur S, Gibbii S & Klubo-Gwiezdzinska J. Novel targeted therapies for metastatic thyroid cancer – a comprehensive review. Cancers 2020 12 1–37. (https://doi.org/10.3390/cancers12082104)

38 Hyman DM, Puzanov I, Subbiah V, Faris J, Chau I, Blay JY, Wolf J, Raje NS, Diamond EL, Hollebecque A, et al. Vemurafenib in multiple nonmelanoma cancers with BRAF V600 mutations. New England Journal of Medicine 2015 373 726–736. (available at: https://doi.org/10.1056/NEJMoa1502309)

39 Cohen EEW, Rosen LS, Vokes EE, Kies MS, Forastiere AA, Worden FP, Kane MA, Sherman E, Kim S, Bycott P, et al. Axitinib is an active treatment for all histologic subtypes of advanced thyroid cancer: results from a phase II study. Journal of Clinical Oncology 2008 26 4708–4713. (https://doi.org/10.1200/JCO.2008.22.5672)

40 Capdevila J, Iiglesias L, Halperin I, Segura A, Martínez-Trufero J, Váz MÁ, Corral J, Obiols G, Grande E, Grau JJ, et al. Larotrectinib treatment of advanced TRK fusion thyroid cancer. Frontiers in Endocrinology 2018 9 1318–1329. (https://doi.org/10.3389/FENDO.2018.00485)
45 Jeon MJ, Chun SM, Kim D, Kwon H, Jang EK, Kim TY, Kim WB, Shong YK, Jang SJ, Song DE, et al. Genomic alterations of anaplastic thyroid carcinoma detected by targeted massive parallel sequencing in a BRAFV600E mutation-prevalent area. Thyroid 2016 26 683–690. (https://doi.org/10.1089/thy.2015.0506)
46 Tiedje V, Ting S, Herold T, Szymoracki S, Latteyev S, Moeller LC, Zwanziger D, Stuschke M, Fuehrer D & Schmid KW. NGS based identification of mutational hotspots for targeted therapy in anaplastic thyroid carcinoma. Oncotarget 2017 8 42613–42620. (https://doi.org/10.18632/ONCOTARGET.17300)
47 Ibrahimpasic T, Xu B, Landa I, Dogan S, Middha S, Seshan V, Deraje S, Carlson DL, Migliecci J, Knauf JA, et al. Genomic alterations in fatal forms of non-anaplastic thyroid cancer: identification of MED12 and RBM10 as novel thyroid cancer genes associated with tumor virulence. Clinical Cancer Research 2017 23 5970–5980. (https://doi.org/10.1158/1078-0432.CCR-17-1183)
48 Bonhomme B, Godbert Y, Perot G, Al Ghuzlan A, Bardet S, Belleannée G, Crimère L, Do Ca o C, Fouilloux G, Guyetant S, et al. Molecular pathology of anaplastic thyroid carcinomas: a retrospective study of 144 cases. Thyroid 2017 27 682–692. (https://doi.org/10.1089/thy.2016.0254)
49 Chen H, Luthra R, Routbort MJ, Patel KP, Cabanillas ME, Broaddus RR & Williams MD. Molecular profile of advanced thyroid carcinomas by next-generation sequencing: characterizing tumors beyond diagnosis for targeted therapy. Molecular Cancer Therapeutics 2018 17 1575–1584. (https://doi.org/10.1158/1535-7163.MCT-17-0871)
50 Duan H, Li Y, Hu P, Gao J, Ying J, Xu W, Zhao D, Wang Z, Ye J, Lizaso A, et al. Mutational profiling of poorly differentiated and anaplastic thyroid carcinoma by the use of targeted next-generation sequencing. Histopathology 2019 75 890–899. (https://doi.org/10.1111/HIS.13942)
51 Yoo S-K, Song YS, Lee EK, Hwang J, Kim HH, Jung G, Kim YA, Kim S, Cho SW, Won J-K, et al. Integrative analysis of genomic and transcriptomic characteristics associated with progression of aggressive thyroid cancer. Nature Communications 2019 10 1–12. (https://doi.org/10.1038/s41467-019-10680-5)
52 Ravi N, Yang M, Gretarsson S, Jansson C, Mylona N, Sydow SR, Woodward EL, Ekblad L, Wenerberg J & Paulsson K. Identification of targetable lesions in anaplastic thyroid cancer by genome profiling. Cancers 2019 11 402. (https://doi.org/10.3390/CANCERS11030402)
53 Xu B, Fuchs T, Dogan S, Landa I, Katabi N, Fagin JA, Tuttle RM, Sherman E, Gill AJ & Ghosein R. Dissecting anaplastic thyroid carcinoma: a comprehensive clinical, histologic, immunophenotypic, and molecular study of 360 cases. Thyroid 2020 30 1505–1517. (https://doi.org/10.1089/THY.2020.0086)
54 Lai WA, Liu CY, Lin SY, Chen CC & Hang JE. Characterization of driver mutations in anaplastic thyroid carcinoma identifies RAS and PIK3CA mutations as negative survival predictors. Cancers 2020 12 1–13. (https://doi.org/10.3390/CANCERS12071973)

Received in final form 14 February 2022
Accepted 11 March 2022
Accepted Manuscript published online 11 March 2022