Ontology Matching Techniques: A Gold Standard Model

Alok Chauhan¹, Vijayakumar V², Layth Sliman³
¹²School of Computing Science & Engineering, VIT University, Chennai;
³EFREI, PARIS
alok.chauhan@vit.ac.in, vijayakumar.v@vit.ac.in, layth.sliman@efrei.fr

Abstract. Typically an ontology matching technique is a combination of much different type of matchers operating at various abstraction levels such as structure, semantic, syntax, instance etc. An ontology matching technique which employs matchers at all possible abstraction levels is expected to give, in general, best results in terms of precision, recall and F-measure due to improvement in matching opportunities and if we discount efficiency issues which may improve with better computing resources such as parallel processing. A gold standard ontology matching model is derived from a model classification of ontology matching techniques. A suitable metric is also defined based on gold standard ontology matching model. A review of various ontology matching techniques specified in recent research papers in the area was undertaken to categorize an ontology matching technique as per newly proposed gold standard model and a metric value for the whole group was computed. The results of the above study support proposed gold standard ontology matching model.

Keywords: Ontology matching, gold standard, metric etc.

1 Introduction

Reported slowing down in speed of improvement in the field of ontology matching is the motivation behind present work [1]. It requires a fresh look into the field of ontology matching. Ontology matching can be performed at various levels, criteria, and environments leading to different kind of techniques (Fig. 1). It may be done either locally at the element level or globally at the structure level of ontologies. Matching criterion could be semantic, syntactic, terminological, structural and extensional based. Matching environment could be either context or content based. Various legals combinations of matching levels, criteria and environments give rise to whole range of concrete techniques as shown in Fig.1. As all these techniques are complimentary to each other, various matching systems use a combination of these techniques.

But it leads to following questions with respect to above model classification of ontology matching techniques:

1. Are there any relationship among various matching levels, criteria and environments?
2. Can we have any guideline to combine all the different aspects/dimensions of ontology matching as shown in model classification, assuming it leads to some kind of synergy approximating as gold standard?

3. Instead of arbitrary selection of concrete techniques for an ontology matching system, is there any pattern corresponding to a holistic concept of meaning?

In the following sections, we will address these issues.

2 Related Work

Traditionally, almost all ontology matching surveys [3-6] focussed on classification/disintegration rather than integration, hence model proposed in this paper is a novel idea, though this integrative model would not have been possible in the absence of excellent surveys made earlier. The closest approach to the current work [7] classifies matching techniques in terms of three layers, viz., data layer, ontology layer and context layer which does have some resemblance to proposed model but goals of the two approaches are entirely different.

3 Gold Standard Model

Intuitively, on the basis of above mentioned classification, one might even propose a gold standard model for an ontology matching system in terms of a layered view of ontology matching criteria as shown in Fig. 2. This new model is a structured regrouping of generic ontology matching criteria in the form of a layered representation having subsumption relationship among successive layers from top to bottom. In a way the new model is derived from model classification by integrating generic matching criteria leading to a comprehensive state-of-the-art representation of ontology matching or it looks like a compressed/folded version of model classification. As per the proposed model (Fig. 2), by “Gold Standard”, we mean an ontology matching system that includes all the nine layers (Context, Content, …., Extensional).

Fig. 2. A gold standard model for an ontology matching system

![Gold Standard Model Diagram]

Above model represents a holistic/universal view of meaning in terms of existing constructs, though at present we do not have any methodology to support this model but an effort in this direction has been made by the authors [8] and process to propose a new foundation ontology is underway.

4 Coverage Metric

An appropriate metric may also be proposed to measure the coverage of ontology matching criteria by a class of ontology matching systems as per proposed model. Proposed metric called C-measure (Coverage-measure) is as follows:

\[
C - \text{Measure} = \frac{\sum (\text{frequency of ontology matching techniques})}{9 \times (\text{number of matching systems})}
\]

5 Proposed Study

The proposed comparative study of ontology matching techniques is based on the models shown in Fig. 1 and Fig. 2. For this purpose, recent research papers from www.ontologymatching.org are used as sample and titles of these papers are searched manually on the basis of appropriate keywords. The choice of keywords may seem arbitrary but the logic behind using these keywords in such a manner is to cover all the concrete techniques given in Fig. 1 and to avoid overlapping
among different layers of the proposed model (Fig. 2). The whole effort is to derive an intuitive ontology matching model from the well known classification of matching techniques (Fig. 1). The approaches mentioned in these papers are classified manually on the basis of models mentioned above. Results of proposed study are found to be in accordance with proposed gold standard ontology matching model.

5.1 Extensional Layer

It is the innermost layer of the proposed model (Fig. 2). The online repository (http://www.ontologymatching.org/publications.html) was searched with keyword = "instance". An appropriate search word is helpful in getting more results. Overall some twenty-eight (28) research papers were reviewed in this category and chart below shows frequency distribution of various parameters/elements of the proposed gold standard model (Fig. 3, 4) [9 - 36].

SI No.	Keyword	content	context	element	semantic	syntactic	structural	terminological	extensioonal
1	M. Seddique, K. Matlap (Deb Haft, M. Aziz): An efficient metric of automatic weight generation for properties in instance-based techniques. WestF. 2015	p	p	p	p	p	p	p	
2	J. Rousen, D. Martin, P. Yett, P. Patel-Schneider: CogIt: A Cognitive Support Approach to Property and Instance Alignment. In Proceedings of ISWC, 2015	p	p	p	p	p	p	p	
3	M. Koy webal, Damiel Minkkon: Decision Making Bias in Instance Matching Model Selection. In Proceedings of ISWC, 2015	p	p	p	p	p	p	p	
4	J. U. Zhang, K. Zhang, J. Tang: A Large Scale Instance Matching Via Multiple Indexes and Candidate Selection Knowledge-Based Systems, 2013	p	p	p	p	p	p	p	
5	S. Rong, K. Niu, X. Wang, H. Wang, G. Yang, Y. Yu: A Machine Learning Approach for Instance Matching Based on Similarity Metrics. In Proceedings of ISWC, 2013.	p	p	p	p	p	p	p	
6	K. Zamanifar, F. Alkhayen: A New Similarity Measure for Instance Data Matching. In Proceedings of CGIT, 2011.	p	p	p	p	p	p	p	
7	T. Kitajima, A. Ther, E. Bahri: A similarity-based instance of large life science-ontology. In Proceedings of DL, 2007	p	p	p	p	p	p	p	
8	F. Berntsen, S. Møhl, P. Moerk: Interactive Schema Translation with Instance-Level Mappings. In Proceedings of VLDB (Demonstration), 2009	p	p	p	p	p	p	p	
9	J. Wang, J. Khan, F. Lichtenberg, W. Max: Instance-based Schema Matching for Web Databases by Domain-specific Query Processing. In Proceedings of VLDB, 2004	p	p	p	p	p	p	p	
10	R. Akin, M. Takeda, S. Momota: Integrating Multiple Internet Directories by Instance-based Learning. In Proceedings of ICMI, 2003	p	p	p	p	p	p	p	

Fig. 3. Analysis of extensional layer

What we can see from above chart is that very few research papers dealing with instance-based techniques really include all the components of the proposed model, i.e., from context to extensional. One can as well see the emphasis on certain components (content, structure, syntactic) as compared to other components. The emphasis on extensional component is obvious in this case.

5.2 Terminological Layer

This layer is above extensional layer and online repository is searched with keywords such as “string”, “lexic”ons and “thesaur”i and nineteen (19) research papers were reviewed (Fig. 5, 6) [37 - 55].
Though no concrete inferences can be made out of above analysis (Fig. 5), it just suggests, intuitively, the inclusion of left over components in ontology matching techniques covered under various layers from a “Gold Standard” point of view. We do find gaps in coverage of various layers in this category (Terminological) of matching techniques.

5.3 Structural Layer

Online repository is searched with keywords such as “structural”, “constraint”, “taxonomy” and “graph”. Largest number of papers (42) were reviewed under this category (Fig. 7) [56 – 97]. The chart (Fig. 8) below shows the frequency distribution of various matching criteria.

Ontology matching techniques under this category seems to favor certain aspects of matching over others and this gap may be filled to achieve better results. Coverage of layers is not as good as it was in extensional techniques.

Fig. 5. Analysis of terminological layer

Fig. 6. Coverage of terminological ontology matching techniques

Fig. 7. Analysis of structural layer
Keywords such as “terminological” and “annot”ated were used for the purpose of searching and it was noticed that term “terminological” is being used in a different way (such as a directory) as opposed to what we may infer from Fig. 1 (String based, Language based). Some fifteen (15) research papers were reviewed under this category (Fig. 9) [98 – 112]. The chart for this layer is shown below (Fig. 10).

Online repository (http://www.ontologymatching.org/publications.html) was searched with keywords “background”, “upper”, “context”, and “sat” to get more results (22) for this layer/ category (Fig. 11) [113 – 134]. Coverage wise, we get the best results here (Fig. 12).

There is no need to search for remaining layers (Element, Structure, Content and Context) of proposed model (Fig. 2) as all the concrete techniques of standard matching technique classification model (Fig. 1) have already been covered in previous layers.
6 Results and Conclusion

Given below is metric (C-measure) computation of various layers as per above mentioned study:

Sl. No.	Layer	C-measure
1	Extensional	0.527778
2	Terminological	0.444444
3	Structural	0.470899
4	Syntactic	0.437037
5	Semantic	0.656566

It is interesting to note that concrete techniques at the beginning (Formal resource-based) and end (Instance-based and Model-based) of the spectrum (Fig. 1) fare much better with respect to proposed coverage metric, as most of the ontology matching systems falling under these categories employ most of the available ontology matching criteria. It appears as if two ends of gold standard model induce a comprehensive coverage of matching criteria due to in-built subsumption or reverse subsumption relationship. It is followed by Structural and Terminological techniques in that order (defined as per chosen keywords). As per our metric, Syntactic techniques (defined as per selected keywords) come last. Results of study reaffirm our conjecture that ontology matching techniques with higher C-measure score are best placed as per our proposed gold standard model and could be a good indicator towards the need of converging/unifying various ontology matching efforts towards a common model as proposed by us and not just incremental improvements in individual domains. This ranking has nothing to do with individual techniques’ performance as per existing vertical metrics (Precision, Recall, and F-Measure), though it has already been reported in literature that ontology matching using background knowledge does improve match result [120]. The aim of this study is to complement existing vertical metrics with newly proposed horizontal coverage metric. It is the combination of horizontal (C-measure) as well as vertical
(recall, precision and F-measure) which is expected to give much better and consistent evaluation of match results. Also, present study in a way reconfirms the standard ontology matching classification model (Fig. 1).

7 Limitations of Study

Due to inductive nature of hypothesis, study based on just one repository is sufficient but it can be expanded to include more resources. Similarly, manual review of papers may not be a limitation as automation may lead to compromise with quality of results.

8 Future Work

As future work, proposed model may be applied to popular matching systems and results may be analyzed to prove the utility of coverage metric. OAEI results may also be analyzed from this new perspective and requirement of unification of various ontology matching approaches may be assessed and emphasized.

References

1. P. Shvaiko, J. Euzenat: Ontology matching: state of the art and future challenges IEEE Transactions on Knowledge and Data Engineering, 2013
2. J. Euzenat, P. Shvaiko: Ontology Matching. Springer-Verlag, Heidelberg (2013)
3. Rahm, E., Bernstein, P.: A survey of approaches to automatic schema matching. VLDB J. 10(4), 334-350 (2001)
4. Shvaiko, P., Euzenat, J.: A survey of schema-based matching approaches. J. Data Semant. IV, 146-171 (2005)
5. Doan, A.-H., Haley, A.: Semantic integration research in the database community: a brief survey. AI Mag. 26(1), 83-94 (2005)
6. Zanobini, S.: Semantic coordination: the model and an application to schema matching. PhD thesis, University of Trento, Trento, Italy (2006)
7. Ehrig, M.: Ontology Alignment: Bridging the Semantic Gap. Springer, New York (2007)
8. A. Chauhan, V. Vijayakumar, R. Ragalac: Towards a multi-level upper ontology-foundation ontology framework as background knowledge for ontology matching problem Procedia Computer Science, 2015
9. H. Seddiqui, R. Pratap Deb Nath, M. Aono: An efficient metric of automatic weight generation for properties in instance matching technique JWesT, 2015
10. J. Nosner, D. Martin, P. Yeh, P. Patel-Schneider: CogMap: A Cognitive Support Approach to Property and Instance Alignment In Proceedings of ISWC, 2015
11. M. Kejriwal, Daniel Miranker: Decision-making Bias in Instance Matching Model Selection In Proceedings of ISWC, 2015
12. J. Li, Z. Wang, X. Zhang, J. Tang: Large Scale Instance Matching via Multiple Indexes and Candidate Selection Knowledge-Based Systems, 2013
13. S. Rong, X. Niu, E. Xiang, H. Wang, Q. Yang, Y. Yu: A Machine Learning Approach for Instance Matching Based on Similarity Metrics In Proceedings of ISWC, 2012
14. P. H. R. de Assis, A. H. F. Laender: An Instance-based Learning Approach for Ontology Matching In Proceedings of SBBD, 2012
15. S. Duan, A. Fokoue, O. Hassanzadeh, A. Kementsietsidis, K. Srinivas, M. Ward: Instance-Based Matching of Large Ontologies Using Locality-Sensitive Hashing In Proceedings of ISWC, 2012
16. B. Schopman, S. Wang, A. Isaac, S. Schlobach: Instance-Based Ontology Matching by Instance Enrichment JoDS, 2012
17. F. M. Suchanek, S. Abiteboul, Pierre Senellart: PARIS: Probabilistic Alignment of Relations, Instances, and Schema PVLDB, 2012
18. K. Zamanifar, F. Aliamian: A New Similarity Measure for Instance Data Matching In Proceedings of CSIT, 2011
19. S. Wang, A. Isaac, S. Schlobach, L. van der Meij, B. Schopman: Instance-based Semantic Interoperability in the Cultural Heritage SWJ, 2011
20. K. Zaiss, T. Schlueter, S. Conrad: Instance-Based Ontology Matching Using Different Kinds of Formalisms World Academy of Science, Engineering and Technology, 2009
21. K. Zaiss, S. Conrad: Partial Ontology Matching Using Instance Features In Proceedings of OTM, 2009
22. J. Partyka, L. Khan, B. Thuraisingham: Semantic Schema Matching Without Shared Instances In Proceedings of ICSC, 2009
23. K. Janowicz, M. Wilkes: SIM-DLA: A Novel Semantic Similarity Measure for Description Logics Reducing Inter-Concept to Inter-Instance Similarity In Proceedings of ESWC, 2009
24. K. Todorov, P. Geibel: Variable Selection as an Instance-based Ontology Mapping Strategy In Proceedings of SWWS, 2009
25. R. Albertoni, M. De Martino: Asymmetric and context-dependent semantic similarity among ontology instances Journal on Data Semantics, 2008
26. B.A.C. Schopman, S. Wang, S. Schlobach: Deriving Concept Mappings through Instance Mappings In Proceedings of ASWC, 2008
27. S. Castano, A. Ferrara, S. Montanelli, D. Lorusso: Instance Matching for Ontology Population In Proceedings of SEBD, 2008
28. C. Warten, R. Brussee: Instance-Based Mapping between Thesauri and Folksonomies In Proceedings of ISWC, 2008
29. S. Wang, G. Englebienne, S. Schlobach: Learning Concept Mappings from Instance Similarity In Proceedings of ISWC, 2008
30. P. Senellart, G. Gottlob: On the Complexity of Deriving Schema Mappings from Database Instances In Proceedings of PODS, 2008
31. A. Isaac, L. van der Meij, S. Schlobach, S. Wang: An empirical study of instance-based ontology matching In Proceedings of ISWC+ASWC, 2007
32. L. Serafini, A. Tamilin: Instance Migration in Heterogeneous Ontology Environments In Proceedings of ISWC+ASWC, 2007
33. T. Kirsten, A. Thor, E. Rahm: Instance-based matching of large life science ontologies In Proceedings of DILS, 2007
34. P. Bernstein, S. Melnik, P. Mork: Interactive Schema Translation with Instance-Level Mappings In Proceedings of VLDB (Demonstration), 2005
35. J. Wang, J. Wen, F. Lochovsky, W. Ma: Instance-based Schema Matching for Web Databases by Domain-specific Query Probing In Proceedings of VLDB, 2004
36. R. Ichise, H. Takeda, S. Honiden: Integrating Multiple Internet Directories by Instance-based Learning In Proceedings of IJCAI, 2003
37. Y. Sun, L. Ma, S. Wang: A Comparative Evaluation of String Similarity Metrics for Ontology Alignment JOICS, 2015
38. J. Wang, G. Li, D. Deng, Y. Zhang, J. Feng: Two Birds With One Stone: An Efficient Hierarchical Framework for Top-k and Threshold-based String Similarity Search In Proceedings of ICDE, 2015
39. M. Cochez: Locality-Sensitive Hashing for Massive String-Based Ontology Matching In Proceedings of WI-IAT, 2014
40. M. Cheatham, P. Hitzer: String Similarity Metrics for Ontology Alignment In Proceedings of ISWC, 2013
41. Z. Yang, J. Yu, M. Kitsuregawa: Fast Algorithms for Top-k Approximate String Matching In Proceedings of AAAI, 2010
42. G. Stoilos, G. Stamou, S. Kollas: A String Metric for Ontology Alignment In Proceedings of ISWC, 2005
43. G. Navarro: A Guided Tour to Approximate String Matching ACM Computing Surveys, 1999
44. B. B. Alhassan, S. B. Junaidu, A. A. Obiniyi: Extending an Ontology Alignment System with a Lexical Database SCIRJ, 2015
45. Q. Cai, A. Yates: Large-scale Semantic Parsing via Schema Matching and Lexicon Extension In Proceedings of ACL, 2013
46. S. Sen, S. Somavarapu, N.L. Sarda: Class structures and Lexical similarities of class names for ontology matching In Proceedings of ODBIS, 2007
47. M. S. Chaves, V. L. Strube de Lima: Applying a Lexical Similarity Measure to Compare Portuguese Term Collections In Proceedings of SBAIA, 2004
48. R. Benassi, S. Bergamaschi, M. Vincini: TUCUXI: The InTelligent Hunter Agent for Concept Understanding and LeXical Chaining In Proceedings of WL, 2004
49. T. Sabbah, A. Selamat, M. Ashraf, T. Herawan: Effect of thesaurus size on schema matching quality Knowledge-Based Systems, 2014
50. W. R. van Hage, M. Sini, L. Finch, H. Kolb, G. Schreiber: The OAEI food task: an analysis of a thesaurus alignment task Applied Ontology, 2010
51. A. Isaac, S. Wang, C. Zinn, H. Matthezing, L. van der Meij, S. Schlobach: Evaluating Thesaurus Alignments for Semantic Interoperability in the Library Domain IEEE Intelligent Systems, 2009
52. B. Lauser, G. Johannsen, C. Caracciolo, J. Keizer, W. van Hage, P. Mayr: Comparing human and automatic thesaurus mapping approaches in the agricultural domain In Proceedings of DC, 2008
53. A. Tordai, B. Omelayenko, G. Schreiber: Thesaurus and Metadata Alignment for a Semantic E-Culture Application In Proceedings of K-CAP, 2007
54. A. C. Liang, M. Sini: Mapping AGROVOC and the Chinese Agricultural Thesaurus: Definitions, tools, procedures New Review of Hypermedia and Multimedia, 2006.
55. A. Liang, M. Sini, C. Chun, L. Sijing, L. Wenlin, H. Chunpei, J. Keizer: The Mapping Schema from Chinese Agricultural Thesaurus to AGROVOC New Review of hypermedia and multimedia, 2006
56. A. Essaieha, M. Abed: Towards ontology matching based system through terminological, structural and semantic level Procedia Computer Science, 2015
57. J.-F. Ethier, O. Dameron, V. Curcin, M. McGilchrist, R. A. Verheij, T. Arva, E. Rahm, A. Burgun: A unified structural/terminological interoperability framework based on LexEVS: application to TRANSFoRM JAMIA, 2013
58. V. Svatok, M. Vacura, M. Homola, J. Kluka: Mapping Structural Design Patterns in OWL to Ontological Background Models In Proceedings of K-CAP, 2013
59. M. Mehdi Kekha, M. Ali Nemathakhsh, B. Tork Ladani: Structural Weights In Ontology Matching IJWeST, 2013
60. F. Esposito, N. Fanizzi, C. d’ Amato: Recovering Uncertain Mappings through Structural Validation and Aggregation with the MoTo System In Proceedings of SAC, 2010
61. B. ten Catey, P. G. Kolaitis: Structural Characterizations of Schema-Mapping Languages In Proceedings of ICDT, 2009
62. G. Kappel, H. Kargl, T. Reiter, W. Rettschitzegger, W. Schwing, M. Strommer, M. Wimmer: A Framework for Building Mapping Operators Resolving Structural Heterogeneities In Proceedings of UNISCON, 2008
63. W. Sunna, I. F. Cruz: Structural Alignment Methods with Applications to Geospatial Ontologies Transactions in GIS, 2008
64. G. Konstantinidis, J. L. Ambite: Optimizing the Chase: Scalable Data Integration under Constraints In Proceedings of the VLDB Endowment, 2014
65. G. de Melo: Not Quite the Same: Identity Constraints for theWeb of Linked Data In Proceedings of AAAI, 2013
66. M. Mao, Y. Peng, M. Spring: An adaptive ontology mapping approach with neural network based constraint satisfaction Journal of Web Semantics, 2010
67. X. Li, C. Quix, D. Kensing, S. Geissler: Automatic Schema Merging Using Mapping Constraints Among Incomplete Sources In Proceedings of CIKM, 2010
68. A. Algargawy, E. Schallehn, G. Saake: Fuzzy Constraint-based Schema Matching Formulation Scalable Computing: Practice and Experience, 2008
69. C. Melicke, H. Stuckenschmidt: Applying Logical Constraints to Ontology Matching In Proceedings of IJ, 2007
70. C.-J. Kim, H. Shin, H.-J. Kim: Schema and constraints-based mapping and merging of Topic Maps Information Processing and Management, 2007
A unified approach for aligning taxonomies and debugging taxonomies and their alignments.

In Proceedings of EWSW, 2013

E. Rahm, J. Schuhmann, S. Bowers: Taxonomy alignment for interoperability between heterogeneous virtual organizations. Expert Systems with Applications, 2008

A. Locoro, V. Mascardi, A. Scapolla: Evolving and Validating Annotations in Web-based Collaborative Environments through Ontology Matching. In Proceedings of SAC, 2012
110. L. Po, S. Bergamaschi: Automatic Lexical Annotation Applied to the SCARLET Ontology Matcher In Proceedings of ACIIDS, 2010
111. K. Belhajjame, N. W. Paton, S. M. Embury, A. A. Fernandes, C. Hedeler: Feedback-Based Annotation, Selection and Refinement of Schema Mappings for Dataspaces In Proceedings of EDBT, 2010
112. N. James, K. Todorov, C. Hudelot: Ontology Matching for the Semantic Annotation of Images In Proceedings of FUZZ, 2010
113. A. Chauhan, V. Vijayakumar, R. Ragulac: Towards a multi-level upper ontology-foundation ontology framework as background knowledge for ontology matching problem Procedia Computer Science, 2015
114. V. Svatek, M. Vacura, M. Homola, J. Kluka: Mapping Structural Design Patterns in OWL to Ontological Background Models In Proceedings of K-CAP, 2013
115. C. Kingkaew: Using Unstructured Documents as Background Knowledge for Ontology Matching In Proceedings of IMLCS, 2012
116. C. Quix, P. Roy, D. Kensche: Automatic Selection of Background Knowledge for Ontology Matching In Proceedings of SWIM, 2011
117. N. Abadie: Schema Matching Based on Attribute Values and Background Ontology In Proceedings of AGILE, 2009
118. M. Sabou, M. d’Aquin, and E. Motta: Exploring the Semantic Web as Background Knowledge for Ontology Matching Journal on Data Semantics, 2008
119. F. Giunchiglia and P. Shvaiko and M. Yatskevich: Discovering Missing Background Knowledge in Ontology Matching In Proceedings of ECAI, 2006
120. Z. Aleksovski, M. Klein, W. ten Kate, F. van Harmelen: Matching Unstructured Vocabularies using a Background Ontology In Proceedings of EKAW, 2006
121. P. Jain, P. Z. Yeh, K. Verma, R. G. Vasquez, M. Damova, P. Hitzler, Amit P. Sheth: Contextual Ontology Alignment of LOD with an Upper Ontology: A Case Study with Proton In Proceedings of ESWC, 2011
122. A. Locoro, V. Mascardi: A correspondence repair algorithm based on word sense disambiguation and upper ontologies In Proceedings of KEOD, 2009
123. V. Mascardi, A. Locoro, P. Rosso: Automatic Ontology Matching Via Upper Ontologies: A Systematic Evaluation TKDE, 2009
124. A. Kiryakov, K. Simov, M. Dimitrov: OntoMap: Portal for Upper-Level Ontologies In Proceedings of FOIS, 2001
125. A. Locoro, J. David, J. Euzenat: Context-based matching: design of a flexible framework and experiment JoDS, 2014
126. F. Lin, K. Sandkuhl, S. Xu: Context-based Ontology Matching: Concept and Application Cases JUCS, 2012
127. V. Kashyap, A. Sheth: Semantic and schematic similarities between database objects: a context-based approach The VLDB Journal, 1996
128. D. Ngo, Z. Bellahsene, R. Coletta: A Generic Approach for Combining Linguistic and Context Profile Metrics in Ontology Matching In Proceedings of ODBASE, 2011
129. C. F. Da Silval, P. Hoffmann, P. Ghodos: Improve Business Interoperability Through Context-Based Ontology Reconciliation IEBM, 2011
130. A. Tian, J. Sequeda, D. Miranker: QODI: Query as Context in Automatic Data Integration In Proceedings of ISWC, 2013
131. R. Hoeckstra, A. Lodder, F. van Harmelen: Case Frames as Contextual Mappings to Case Law in BestPortaln In Proceedings of JURIX, 2010
132. J. Huang, J. Dang: Context-Sensitive Ontology Matching in Electronic Business In Electronic Business Interoperability: Concepts, Opportunities and Challenges. IGI Global, 2010
133. M. Fahada, N. Moallaa, A. Bourasa: Towards ensuring Satisfiability of Merged Ontology In Proceedings of ICCS, 2011
134. M. Chan, J. Lehmann, A. Bundy: Higher-order representation and reasoning for automated ontology evolution In Proceedings of KEOD, 2010