UNDECIDABILITY OF $\mathbb{Q}^{(2)}$.

CARLOS MARTINEZ-RANERO, JAVIER UTRERAS, AND CARLOS R. VIDELA

Abstract. It is shown that the compositum $\mathbb{Q}^{(2)}$ of all degree 2 extensions of \mathbb{Q} has undecidable theory.

MSC: 11U05, 03B25, 11R11.

1. Introduction

In this note we are interested in the following question.

Problem 1. For which infinite algebraic extensions K of \mathbb{Q} is the theory Th(K) undecidable?

This question was first raised by A. Tarski and J. Robinson. In the 1930’s A. Tarski showed that \mathbb{Q}^{alg} and $\mathbb{R} \cap \mathbb{Q}^{alg}$ have decidable theories, and in 1959 J. Robinson showed that all number fields (that is, finite extensions of \mathbb{Q}) have undecidable theory. Since there are uncountably many, non-elementarily equivalent, infinite algebraic extensions of \mathbb{Q} and only countably many decision algorithms, it follows that most of them are undecidable. Such examples were pointed out by J. Robinson [4]: for any non-recursive set S of prime numbers the field $\mathbb{Q}_S = \mathbb{Q}(\{\sqrt{p} : p \in S\})$ has undecidable theory. Later the third named author [7] showed that the field \mathbb{Q}_S has undecidable theory for any infinite set of primes S.

An interesting class of fields in which to study the above question, and to test current methods is the class of fields $K^{(d)}$, which are the compositum of all extensions fields F/K of degree at most d over K, where K is a number field.

These fields are Galois over K of infinite degree over K, and every element of $\text{Gal}(K^{(d)}/K)$ has order dividing $d!$. Thus $\text{Gal}(K^{(d)}/K)$ is a pro-S Galois extension, where S is the set of prime numbers that divide $d!$.

E. Bombieri and U. Zannier [1] conjecture that these fields have the Northcott property making them, in this respect, similar to number fields. They proved that $K^{(2)}$ has the Northcott property.

The first named author was partially supported by Proyecto VRID-Enlace No. 218.015.022-1.0.

The second named author was supported by FONDECYT-Postdoctorado No. 3160301.

Part of this work was done while the third author was visiting X. Vidaux in Concepción during May 2018 under Conicyt Project: Fondecyt 1170315.
In this note, we show the following result:

Main Theorem. The theory Q of R. Robinson is first-order interpretable in $Q^{(2)}$, hence $Th(Q^{(2)})$ is undecidable.

X. Vidaux and C. Videla [8] establish a relation between the Northcott property and undecidability. Based on this connection and our present result we conjecture that all $K^{(d)}$ have undecidable theory.

We refer the reader to A. Shlapentokh ([5]) for an update on the subject, and to J. Koenigsmann [2] for a general survey.

2. Undecidability

Before proceeding any further let us fix some notation. Let Q_{al}^{alg} denote a fixed algebraic closure of Q. Recall that for any field $T \subset Q_{al}^{alg}$, the ring O_T denotes the integral closure of Z in T, O_T^\times denotes the multiplicative group of units of O_T and μ_T denotes the group of roots of unity of the field T. Let $\{p_n: n \in \mathbb{N}_{\geq 1}\}$ be the increasing enumeration of the rational prime numbers, $K = Q(\{\sqrt{p}: p \text{ is prime}\})$, $L = K(i)$, $K_n = Q(\{\sqrt{p}: \ell \leq n\})$ and $L_n = K_n(i)$. Note that $L = Q^{(2)}$. Recall that for $f(x) \in Z[x]$ given by $a_nx^n + \cdots + a_0$ and any $k \in \mathbb{N}$, the forward difference operator is given by $\Delta^k f(x) = f(x + k) - f(x)$ and that the n-th iteration satisfies $\Delta^k f(x) = n!a_nk^n$.

Let $L_{ring} = \{0, 1; +, \cdot\}$ denote the language of rings, and for any L_{ring}-structure F we denote by $Th(F)$ its first-order L_{ring}-theory.

In order to show that $Th(L)$ is undecidable, we first use the following Theorem of the third named author (see [7]).

Theorem 2. Let F be a number field and $T \subset \hat{Q}$ a pro-p Galois extension of F, then O_T is first-order definable in T.

In particular since L is a pro-2 Galois extension it follows that O_L is first-order definable in L. This reduces the problem to showing that the theory $Th(O_L)$ is undecidable. In order to do so, we use an improvement, due to C. W. Henson (see [6]), of a result of J. Robinson (see [3]).

Lemma 3. Let R be a ring of algebraic integers and let $F \subset P(R)$ be a family of subsets of R parametrised by an L_{ring}-formula $\varphi(x; y_1, \ldots, y_n)$, i.e.,

$$F \in F \iff \exists b_1, \ldots, b_n \in R \forall x [x \in F \leftrightarrow \varphi(x; b_1, \ldots, b_n)]$$

If the family F contains sets of arbitrary large finite cardinality, then the theory of the ring $Th(R)$ interprets the theory Q of R. Robinson, hence is undecidable.

Moreover, in the same paper, J. Robinson proves the following result:
Lemma 4. For each \(t \in \mathbb{R} \) the set \(\{ x \in \mathcal{O}_K : 0 \ll x \ll t \} \) is finite where \(0 \ll x \ll t \) means that \(x \) and all its conjugates lie strictly between 0 and \(t \).

We are left to show that there is a family as in Lemma 3. This will be done below.

Lemma 5. The group \(\mu_L \) of roots of unity of \(L \) is finite.

Proof. Suppose otherwise. Fix \(\{ w_k : k \in \mathbb{N} \} \) an enumeration of \(\mu_L \), and consider the sequence \(t_k = 2 + w_k + w_k^{-1} \), note that each \(t_k \in K \) and \(0 \ll t_k \ll 4 \), which contradicts Lemma 4. \(\square \)

Let \(N \) denote the order of the finite group \(\mu_L \).

Lemma 6. If \(u \) is an element of \(\mathcal{O}_K^\times \), then \(u^{2N} \in \mathcal{O}_K^\times \).

Proof. Fix \(n \) such that \(u \in \mathcal{O}_L^n \). By a theorem of H. Hasse (see [9], Theorem 4.12), we have that \(\mathcal{O}_L^n : \mu_L \mathcal{O}_K^\times \in \{ 1, 2, \ldots \} \). Thus, \(u^2 \in \mu_L \mathcal{O}_K^\times \), so we can write \(u^2 = \zeta w \) for some \(\zeta \in \mu_L \) and \(w \in \mathcal{O}_K^\times \). It follows from the choice of \(N \) that \(u^{2N} = w^N \in \mathcal{O}_K^\times \). \(\square \)

Lemma 7. There is a first-order definable subset \(W \) of \(\mathcal{O}_L \) such that \(\mathbb{N} \subset W \subset \mathcal{O}_K \).

Proof. We define, recursively, a sequence of definable sets as follows: Let \(X^{(0)} = \{ x_1^2 + x_2^2 : x_1, x_2 \in \mathcal{O}_L^\times \} \), and let \(X^{(n+1)} = \{ x \in \mathcal{O}_L : \exists x_1, x_2 \in X^{(n)} \, (x = x_1 - x_2) \} \). Observe that for each \(n \), the set \(X^{(n)} \) is first-order definable and \(X^{(n)} \subseteq \mathcal{O}_K \). Consider the following polynomial with integer coefficients

\[
\phi(x) = (x + \sqrt{x^2 + 1})^{2N} + (x - \sqrt{x^2 + 1})^{2N}.
\]

Note that for each \(n \in \mathbb{N}, f(n) \in X^{(0)} \). Thus, it follows that for each \(k \in \mathbb{N} \), the \(2N \)-th iteration of the discrete derivative \(\Delta^{2N}_k f = 2(2N)!k^{2N} \in X^{(2N)} \). By Hilbert’s solution to Waring’s problem, there is a natural number, usually denoted by \(g(2N) \), so that every natural number is a sum of at most \(g(2N) \) \(2N \)-powers of natural numbers. Thus,

\[
W = \bigcup_{\ell=0}^{2(2N)!} \{ x \in \mathcal{O}_L : \exists x_1, \ldots, x_{2^{(2N)}} \in X^{(2N)} \, (x = \sum_{k=1}^{g(2N)} x_k + \ell) \}
\]

is as required. \(\square \)

We are now in position to prove the main theorem of this note.

Main Theorem. The theory \(Th(\mathbb{Q}^{(2)}) \) is undecidable.

Proof. Consider the family \(\mathcal{F} \) parametrised by the formula \(\varphi(x, p, q) \)

\[
px \neq 0 \land px \neq q \land \exists x_1, \ldots, x_8 \in W \, [px = x_1^2 + \cdots + x_4^2 \land (q - px) = x_5^2 + \cdots + x_8^2]
\]
In particular, for $p, q \in \mathbb{N}$ this means that $\varphi(x; p, q)$ implies that $0 \ll px \ll q$. Hence, it follows from Lemma 4 and Lagrange’s four square theorem that F contains sets of arbitrary large finite cardinality.

We are unable to treat the case of $K^{(2)}$, where K is an arbitrary totally real number field.

References

[1] Bombieri, Enrico; Zannier, Umberto A note on heights in certain infinite extensions of \mathbb{Q}. Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei (9) Mat. Appl. 12 (2001), 5-14 (2002).

[2] Koenigsmann, Jochen Undecidability in number theory. Model theory in algebra, analysis and arithmetic, 159-195, Lecture Notes in Math., 2111, Fond. CIME/CIME Found. Subser., Springer, Heidelberg, 2014.

[3] Robinson, Julia On the decision problem for algebraic rings. 1962 Studies in mathematical analysis and related topics pp. 297-304 Stanford Univ. Press, Stanford, Calif.

[4] Robinson, Julia The decision problem for fields. 1965 Theory of Models (Proc. 1963 Internat. Sympos. Berkeley) pp. 299-311 North-Holland, Amsterdam.

[5] Shlapentokh, Alexandra First order definability and decidability in infinite algebraic extensions of rational numbers. Israel Journal Math. 226 (2018), 579-633.

[6] van den Dries, Lou Elimination theory for the ring of algebraic integers. J. Reine Angew. Math. 388 (1988), 189-205.

[7] Videla, Carlos R. Definability of the ring of integers in pro-p Galois extensions of number fields. Israel J. Math. 118 (2000), 1-14.

[8] Vidaux, Xavier; Videla, Carlos R. A note on the Northcott property and undecidability. Bull. Lond. Math. Soc. 48 (2016), no. 1, 58-62.

[9] Washington, Lawrence C. Introduction to cyclotomic fields. Second edition. Graduate Texts in Mathematics, 83. Springer-Verlag, New York, 1997. xiv+487 pp. ISBN: 0-387-94762-0

Universidad de Concepción, Concepción, Chile, Facultad de Ciencias Físicas y Matemáticas, Departamento de Matemática, Casilla 160 C

E-mail address: cmartinezr@udec.cl

Universidad de Concepción, Concepción, Chile, Facultad de Ciencias Físicas y Matemáticas, Departamento de Matemática, Casilla 160 C

E-mail address: javierutreras@udec.cl

Mount Royal University, Calgary, Canada, Department of Mathematics and Computing

E-mail address: cvidela@mtroyal.ca