PROGNOSTICATION OF DOMESTIC ANIMALS IN INDIA USING ARIMA MODEL

D.Akila¹, S. Jeyalakshmi², G.Suseendran³ Srinath Doss⁴, Balaganesh .D⁵

¹ Associate Professor, Department of Information Technology, Vels Institute of Science, Technology & Advanced Studies (VISTAS), Chennai, India Email : akindia@yahoo.com
²Assistant Professor, Department of Information Technology, Vels Institute of Science, Technology & Advanced Studies (VISTAS), Chennai, India Email : pravija.lakshmi@gmail.com
³Assistant Professor, Department of Information Technology, Vels Institute of Science, Technology & Advanced Studies (VISTAS), Chennai, India Email : suseendar_1234@yahoo.co.in
⁴Professor, Faculty of Computing, Botho University, Botswana e-mail: srinath.doss@bothouniversity.ac.bw.
⁵Dean Faculty of Computer Science and Multimedia, Lincoln University College, Malaysia Email : balaganesh@lincoln.edu.my

Received: 15.01.2020 Revised: 18.02.2020 Accepted: 21.03.2020

INTRODUCTION

Time series are called as a Box-Jenkins or ARIMA model on the off chance that they contain discrete, direct and stochastic procedures. Autoregressive models known as AR, moving average known as MA, and autoregressive moving normal models, which is a blended model of MA and AR models were grown individually by Yule (1927), Slutsky (1927) and Wold (1954). The models applied to the models which weren’t stationary yet made stationary because of the procedure of distinction computation, were called as Merged Autoregressive Moving Average Model (ARIMA). This model is likewise alluded to as Box-Jenkins system.

India is the largest populated nation which is in second place after china. Populace of India is anticipated near 137 crores or 13690 lakhs of every 2019, contrast with 135Acres out of 2018. 1.08% is the anticipated value for the populace development rate at 2019. India will include 149 lakhs in 2019 that is close to Somalia population. The Department of Animal Husbandry and Dairying (DIAHD) discharged an enumeration report of domesticated animals populace for the year 2019 on October 16. The information uncovered that the domesticated animals populace in India has developed by 4.6% from 512 million out of 2012 to around 536 million of every 2019. Domesticated animals is a significant info and yield for agribusiness. An earlier information about the sum and appropriation of animals part is critical for horticultural activities. Thus animals figure has stirred in interests of specialists everywhere throughout the world, particularly in India. However, there is no adequate and solid apparatus for gauging domesticated animals. This investigation is an endeavour toward discovering appropriate techniques for anticipating of domesticated animals.

Keywords: ARIMA models,
The ARIMA model of time arrangement examination has a few points of interest. It depends to register the ACF and PACF of the domesticated animals information and to decide the ARIMA models. In the typical time arrangement examination, stationarity of the fundamental procedure is a basic condition. In the event that the procedure is non-stationary, ARIMA models must be fitted as it were in the wake of accomplishing stationarity by suitable differencing of the arrangement.

In any case, it has been utilized right now assess its found that it isn’t hard to utilize this strategy. Now and again it gives as close conjecture of different strategies. All in all, it portion not

Joe Frank Mgaya et al [4] proposed a forecast method on the consumption of livestock products such as milk-products, poultry-eggs, meat and poultry will increase the utilize of animal feed and it will help farmers. The forecasting is done by the data provided by the FAOSTAT using Autoregressive integrated moving average model. The result provide from this method by forecasting the livestock products which will increase the demand for animal feed. The research is done in analyzing some factors which will result in the consumption of the live stocks products due to an increase in population. The sorghum and millet has a good potential in animal feed industry. The livestock products demand will increase when the population and there is an income grow. The growth increase in millet and sorghum in animal feed, competition between livestock and people over corn is reduced by that. The traditional crops which is dependent over rain can be swap for the millet and sorghum when there is an need in the animal feed industry. This will reduce the poverty and improve their daily life in the areas.

Jack E. Houston et al [5] proposed a method to forecast the water needed for Broiler production. The water needed in three stages primary breeding stage of broiler flock, and in hatchery and finished stage of broiler. The ARIMA and structural models are used to forecast the number of broilers. From the Analysis it indicates 15 percentage slippage in demand in water is forecasted related to economic variables. There is no structural change when using the structural model. The forecasted broiler water demand in the future is adopted based on the response of economic supply. The economic decision are taken related to the investment of broiler production on the three successive stages, for each stage they take a decision. The proposed model can also taken into consideration for other animal production methods this can take as a base model for other production of different animal.

The importance of economic factors are considered for the variation in economic variable in one or more production stages. If we ignore the water demand from the economic variables there will be an loss of 15 percentage in water is forecasted using the structural model.

The polynomial and ARIMA models are attempted. The standard thing Box-Jenkins philosophy of time arrangement investigation relies upon the idea of ACF and PACF. Be that as it may, the framework basic the India animals design in unique from that is hard to picture:it exhibits pure randomness. Propelled by this curious conduct of animals design in India, diverse ARIMA approaches are attempted right now long go gauging of domesticated animals for India.

Figure 1. Domestic animals
improve the anticipating capacities in correlation with different models. For assessing the model sufficiency, different unwavering quality measurements like Stationary R squared, R squared, Root Mean Square Error known as RMSE, Mean Total Percentage Error known as MAPE, Maximum Absolute Percentage Error Known as MaxAPE, Mean Absolute Error known as MAE, Normalized BIC, Maximum Absolute Error known as MaxAE are all have been utilized. Lesser the different unwavering quality measurements, better will be the productivity of the model in anticipating what’s to come domesticated animals creation. For computing the Box-Ljung Q measurements have too been utilized. Utilizing the above strategies, yearly domesticated animals creation figures have been made. No single model has the risen as the best for long go determining of yearly domesticated animals information. For early piece of Livestock, Meat, Milk, Poultry and Fish ARIMA model gives fairly better estimate. An autoregressive integrated moving average (ARIMA) model in this AR stands for indication of evolving variables means prior values. I stand for integration it demonstrates that the information esteem have been supplanted with the contrast between their qualities an

\[z_t = az_t - t - 1 + \epsilon_t \]

where \(z_t \) refers to reliant variable, \(z_t - 1 \) is a slacked subordinate variable and \(\epsilon_t \) refers to the MA. In the ARMA model, MA and AR model value is stationary.

\[z'_t = z_t - z_{t-1} \]

where \(z'_t \) is the future utilization, \(z_t \) and \(z_t - 1 \) are unique arrangement and slacked unique arrangement, individually (stationary information are characterized underneath).

The future utilization of Domestic animals can be utilized by the mix of three First models and it produce a model[15].

The following stage is to locate the underlying qualities for the sets of regularity and no seasonality (p and q). Right now, ACF and halfway ACF (PACF) are principal logical apparatuses utilized. The i is referred to the stationary information, we process connection among \(z_t \) and \(z_t - i \) over the n-i matches in the informational index.

\[ACF(i) = \frac{\sum(\mu - \mu)(\mu - \mu)}{\sum(\mu - \mu)^2} = \frac{\text{Cov}(z_t, z_{t-i})}{\text{Var}(z_t)}, \ldots (3) \]

where \(z_t \) refers the original series, \(z_t - k \) refers original series lagged version and \(\mu \) – data taken in mean.

The PACF is characterized as the direct connection among \(z_t \) and \(z_t - i \) controlling for potential impacts of direct connections among values at middle slacks.

\[PACF = \frac{\text{Cov}(z_t, z_{t-i})}{\sqrt{\text{Var}(z_t)\text{Var}(z_{t-i})}}, \ldots (4) \]

The AR model is represented by ACF and MA model is represented by PACF.

Using the constructed method the livestock production are as follows

Name	Result
Goat	ARIMA (1, 1, 0)
Cattle	ARIMA (1, 1, 0)
Buffalo	ARIMA (2, 1, 0)
Pig	ARIMA (1, 1, 0)
Fish	ARIMA (0, 1, 1)
Poultry	ARIMA (0, 1, 1)

The above Table show the value for the ARIMA model on the Domestic animal. From the above gauge models proposed to fit the suitable ARIMA model, it very well may be discovered that determined (with 95% certainty limit) creation for the year 2018 is lower than 2019 however in consequent years the creation increments[16].

Year	Production (in million tonnes)
1961	1.70
1970	2.02
1980	2.63
1990	3.66

The graph given below shows the meat production in India form 1961-2018. The meat includes cattle, poultry, sheep/mutton, goat, pig meat, and wild game. The increase in human population and lot of peoples becoming non-vegetarian the meat production is increasing in an incredible rate. The method of preserving meat is also an essential method which cause an uproar in meat production.
The above table represents the production of meat in India. The table shows from 1961-2018. The production rate between 1961-1970 is low when compared to the following year like 1970-1980. The production rate increase in the following years. The increase in production is due to the packaging of meat, preserving of meat etc.

Year	Production
2000	4.45
2010	6.09
2018	7.45

The above table represents the meat production of livestock types in India varies from 1990-2018. In the above table the value of various meat like duck, goat, beef, pig meat, poultry are mentioned. If u see the above table the production of the poultry meat is going in a vigorous state. In 1990 the poultry value is 391,500 t and in 2018 it is 3.62 million t. The increase in the value is because of usage of poultry meat in various places.

Table 3. Meat production by livestock types (in million tonnes)

Year	Duck	Sheep and Goat	Beef and Buffalo	Pig meat	Poultry
1990	0.03	0.61	2.11	0.41	0.39
2000	0.04	0.69	2.24	0.47	0.91
2010	0.03	0.77	2.54	0.37	2.23
2018	0.25	0.73	2.61	0.30	3.62

The above figure represents the year date back to 1961 to 2018. The varying in the usage of different livestock meat are mentioned.

The above table shows various animal products and their increase in value. And it is forecasted using ARIMA model. Due the increase in animal products in all over the world the animal populace will also increase due to the impact.

Table 5. Represents ARIMA value of domestic animal Products

Product Name	Result
Chevon	ARIMA (1, 1, 0)
Mutton	ARIMA (0, 1, 1)
Milk Trend	ARIMA (1, 1, 0)
Ghee	ARIMA (1, 1, 1)
Milk powder	ARIMA (0, 1, 1)
Fish products export	ARIMA (0, 1, 2)

REFERENCES
1. Şenol ÇELİK, “Estimation of Number Of Small Cattle Through ARIMA Models in Turkey,” J. Math. Syst. Sci., vol. 5, no. 11, 2015, doi: 10.17265/2159-5291/2015.11.003.
2. Karbasi, “Comparison of NNARX , ANN and ARIMA Techniques to Poultry Retail Price Forecasting University of Zabol, College of Agriculture,” Agric. Econ. Dep., pp. 1-12, 2009.
3. D. J. Chaudhari and A. S. Tingre, “Forecasting eggs production in India,” Indian J. Anim. Res., vol. 49, no. 3, pp. 367–372, 2015, doi: 10.5958/0976-0555.2015.00143.0.
4. J. F. Mgaya, “Application of ARIMA models in forecasting livestock products consumption in Tanzania,” Cogent Food Agric., vol. 5, no. 1, 2019, doi: 10.1080/23311932.2019.1607430.
5. J. E. Houston, M. Adhikari, and L. Paudel, “Broiler Water Demand : Forecasting With Structural and Time Series Models,” pp. 2-5, 2005.
6. R. K. Paul, W. Alam, and A. K. Paul, “Prospects of livestock and dairy production in India under time series framework,” *Indian J. Anim. Sci.*, vol. 84, no. 4, pp. 462–466, 2014.
7. S. Nouman, “Modeling and Forecasting of Beef, Mutton, Poultry Meat and Total Meat Production of Pakistan for Year 2020 By Using Time Series Arima Models,” vol. 3, no. September, pp. 285–296, 2014.
8. F. Li and P. Luan, “ARMA model for predicting the number of new outbreaks of Newcastle disease during the month,” Proc. - 2011 IEEE Int. Conf. Comput. Sci. Autom. Eng. CSAE 2011, vol. 4, pp. 660–663, 2011, doi: 10.1109/CSAE.2011.5952933.
9. K. Prabakaran, C. Sivapragasam, and U. Arulanandu, “Forecasting cultivated areas and production of cashew nut in India using ARIMA model,” *Acta Hortic.*, vol. 1080, no. 3, pp. 281–289, 2015, doi: 10.17660/ActaHortic.2015.1080.36.
10. T. J. Sankar, “Design of a Stochastic Forecasting Model for Egg Production,” vol. 1, no. 6, pp. 319–325, 2014.
11. N. Vijay and G. C. Mishra, “Time Series Forecasting Using ARIMA and ANN Models for Production of Pearl Millet (BAJRA) Crop of Karnataka, India,” *Int. J. Curr. Microbiol. Appl. Sci.*, vol. 7, no. 12, pp. 880–889, 2018, doi: 10.20546/ijcmas.2018.7.12.110.
12. G. Ramakrishna & R. Vijaya Kumari, “ARIMA Model for Forecasting of Rice Production in India by using SAS,” *Int. J. Appl. Math. Stat. Sci.*, vol. 6, no. 4, pp. 67–72, 2017.
13. C. S. Biradar, M. S. Dodamani, B. K. Namad, and A. J. Murasalagi, “Organic poultry farming in India: issues and approaches,” *Vet. World*, vol. 4, no. 6, pp. 273–277, 2011, doi: 10.5455/vetworld.4.273.
14. R. K. Paul, W. Alam, and A. K. Paul, “Prospects of livestock and dairy production in India under time series framework,” *Indian J. Anim. Sci.*, vol. 84, no. 4, pp. 462–466, 2014.
15. G. Suseendran, E. Chandrasekaran, D. Akila, D. Balagamesh, “Automatic Seed Classification By Multi-Layer Neural Network With Spatial-Feature Extraction”, *Journal of critical reviews*, Vol. 7(2), 2020, pp.587-590.
16. D. Senthil, G. Suseendran “Data Mining Techniques Using Time Series Research”, International Journal of Recent Technology and Engineering, Vol8.(2S11), September 2019, pp. 121-129