Quantum phase transitions in d–wave superconductors

Ki-Seok Kim, Sung-Sik Lee, Jae-Hyeon Eom and Sung-Ho Suck Salk

Department of Physics, Pohang University of Science and Technology Pohang 790-784, Korea

1Korea Institute of Advanced Studies, Seoul 130-012, Korea

(Dated: March 22, 2022)

Based on an effective Lagrangian obtained from the holon-pair boson theory of Lee and Salk [Phys. Rev. B 64, 052501 (2001)] for high T_c cuprates, we explore physical states involved with quantum phase transitions around a critical hole doping of d–wave superconductivity. We find a new quantum phase transition, a confinement to deconfinement transition for internal gauge charge in the superconducting phase. An antiferro- to para- magnetic transition in the superconducting state is explained in the context of the confinement to deconfinement transition. We obtain effective field theories in each region associated with the phase transitions.

PACS numbers: 73.43.Nq, 74.20.-z, 11.30.Rd

Since experimental revelation of weak antiferromagnetism in underdoped superconducting state,1 the coexistence of the antiferromagnetism (AFM) and d–wave superconductivity (dSC) has been a subject of great theoretical interest.2 However, it is still unknown whether despite the coexistence there exists any interplay (or correlation) between the AFM and dSC. Earlier we found that the AFM of nodal fermions can coexist with the dSC with no interplay in very low doping region.3. As a result the superconducting transition in the underdoped region is found to fall in the XY universality class in agreement with experiments.3, 4, 5. It is naturally expected that the AFM disappears as hole concentration increases. It is well known that in the overdoped region there exists no AFM. Thus a quantum phase transition associated with the AFM is expected to occur in the superconducting phase. Extending the earlier analysis3, 4, 5 to higher doping where the AFM is expected to disappear, we show that a confinement to deconfinement transition (CDT) of internal U(1) gauge charge can occur in the superconducting phase. This new quantum phase transition is shown to be responsible for the disappearance of the AFM in the overdoped region.1. Further, we argue that non-Fermi liquid behavior in high T_c cuprates can be resolved in the quantum critical point associated with the CDT.

Earlier, the holon-pair boson theory of Lee and Salk6 reproduced the salient features of the observed arch-shaped superconducting transition temperature in the phase diagram of hole doped high T_c cuprates and the peak-dip-lump structure of optical conductivity in agreement with observations. Following this holon-pair boson theory,6, we introduce an effective Lagrangian6 involved with low energy excitations. Here the low energy excitations refer to the phase fluctuations of the spinon pair and holon pair order parameters, the massless spinons (Dirac fermions near the d–wave nodal points) and holons (bosons), and gauge fluctuations associated with these particles. The gauge fluctuations a_μ allow the presence of internal flux responsible for energy lowering, which arises as a result of electron hopping. Considering the above elementary excitations, we write the $(2+1)D$

low energy Lagrangian in the slave boson representation,

$$ Z = \int D\psi_1 D\psi_b D\phi_{sp} D\phi_{bp} D\alpha_\mu e^{-\int d^3x\mathcal{L}}, $$

$$ \mathcal{L} = \mathcal{L}_{sp} + \mathcal{L}_{bp}, $$

$$ \mathcal{L}_{sp} = \frac{K_{sp}}{2} |\partial_\mu \phi_{sp} - 2a_\mu|^2 + \bar{\psi}_\mu \gamma_\mu (\partial_\mu - iA_\mu) \psi_\mu, $$

$$ \mathcal{L}_{bp} = \frac{K_{bp}}{2} (\partial_\mu \phi_{bp} - 2A_\mu)^2 + |(\partial_\mu - iA_\mu)\psi_\mu|^2 $$

Here ϕ_{sp} (ϕ_{bp}) is the phase field of the spinon pair (holon pair) order parameter. $K_{sp} \sim J_b|\Delta_{sp}|^2$ is the phase stiffness of the spinon pair order parameter and $K_{bp} \sim J|\Delta_{bp}|^2$, that of the holon pair order parameter where J is the antiferromagnetic coupling and $J_b = J(1-\delta)^2$, the renormalized antiferromagnetic coupling in association with hole doping δ. $\Delta_{sp(bp)} = |\Delta_{sp(bp)}| e^{i\phi_{sp(bp)}}$ is the spinon (holon) pairing order parameter. ψ_μ represents the 4 component spinor,6, 8 of the massless Dirac fermion near the nodal points ($1=1$ and 2) and ψ_b, the holon (boson) quasiparticle. a_μ is the U(1) internal gauge field and A_μ, the external electromagnetic field,4, 8.

Defining $\phi_p = \phi_{bp} - \phi_{sp}$ and $\phi_c = -(\phi_{bp} + \phi_{sp})$, Eq. (1) is rewritten,

$$ Z = \int D\psi_1 D\psi_b D\phi_{c} D\phi_{c} D\alpha_\mu e^{-\int d^3x\mathcal{L}}, $$

$$ \mathcal{L} = \mathcal{L}_{c} + \mathcal{L}_{p} + \mathcal{L}_{int}, $$

$$ \mathcal{L}_{c} = \frac{K_c}{2} (\partial_\mu \phi_c + 4a_\mu + 2A_\mu)^2 + \bar{\psi}_\mu \gamma_\mu (\partial_\mu - iA_\mu) \psi_\mu $$

$$ + |(\partial_\mu - iA_\mu)\psi_\mu|^2, $$

$$ \mathcal{L}_{p} = \frac{K_p}{2} (\partial_\mu \phi_p - 2A_\mu)^2, $$

$$ \mathcal{L}_{int} = \kappa_{sp} (\partial_\mu \phi_c + 4a_\mu + 2A_\mu)(\partial_\mu \phi_p - 2A_\mu), $$

where $\kappa = K_{sp} + K_{bp}$ and $\kappa_{sp} = \frac{K_p - K_{sp}}{4}$. The original Lagrangian Eq. (1) is now rewritten in terms of the Cooper pair phase field, $\phi_p = \phi_{bp} - \phi_{sp}$ as a composite of the spinon pair phase field ϕ_{sp} and the holon pair phase field ϕ_{bp}, and the "chargeon pair" phase field, $\phi_c = -(\phi_{bp} + \phi_{sp})$ as a composite of the spinon pair phase
field ϕ_p and the "anti-holon" pair phase field $-\phi_p$. Here "chargeon pair" refers to the spin singlet pair oppositely charged to the Cooper pair and "anti-holon", the opposite charge of holon with spin 0. The Cooper pair as a hole pair in the hole doped cuprates carries charge $+2e$ and no internal gauge charge while the chargeon pair carries charge $-2e$ and internal gauge charge -4ϵ. Here κ is the phase stiffness of both the chargeon pair order parameter ϕ_e and the Cooper pair order parameter ϕ_p.

Making a renormalization group analysis, it can be shown that via the coupling term L_{int} the phase stiffness κ is renormalized in low energy limit $\delta \rightarrow 0$, and the low energy effective Lagrangian Eq. (2) can be rewritten as

$$L = L_c + L_p,$$

$$L_c = \frac{K}{2} |\partial_\mu \phi_e + 4a_\mu + 2A_\mu|^2 + \bar{\psi} \gamma_\mu (\partial_\mu - ia_\mu) \psi$$

$$+ |(\partial_\mu - ia_\mu - iA_\mu) \psi_b|^2,$$

$$L_p = \frac{K}{2} |\partial_\mu \phi_p - 2A_\mu|^2,$$ \hspace{1cm} (3)

with $K = \frac{K_\phi K_p}{K_\phi + K_p}$, where K is the renormalized phase stiffness via L_{int}. The effective Lagrangian above is now separated into two independent sectors, one for the chargeon pair Lagrangian and the other for the Cooper pair Lagrangian. The former explains for the internal gauge charge CDT [10, 11, 12, 13] (as will be discussed later) and the latter, for the superconducting phase transition. We note that both the Dirac fermion and the holon (boson) are coupled to the chargeon pair field via the $U(1)$ internal gauge field.

As hole concentration increases in the underdoped region, the phase stiffness increases in this region [2]. When the hole concentration exceeds a critical value δ_c of d-wave superconducting transition, the Cooper pairs are boson-condensed, i.e., $<e^{i\phi_p}> \neq 0$ and the superconducting state emerges. The insulator-superconductor transition at $T = 0K$ falls into the quantum phase transition of the XY universality class in the extreme type II limit [4]. At finite temperature the KT transition is expected to occur [1]. See Fig. 1 for a schematic diagram of showing the regions of the Cooper pair order phase condensation $<e^{i\phi_p}> \neq 0$ and the chargeon pair condensation $<e^{i\phi_e}> \neq 0$ as a function of doping δ.

Integrating over the Dirac spinon field and the holon field in L_c, we obtain in the absence of electromagnetic field A_μ,

$$L_c = \frac{K}{2} |\partial_\mu \phi_e + 4a_\mu|^2 + \frac{1}{2g_{eff}} (\partial_a \times a)^2$$

where $g = \frac{4\epsilon}{\delta_c}$ and $g_{eff} = \frac{\frac{\epsilon}{\delta_c} + \frac{1}{N_b}}{\frac{\epsilon}{\delta_c} + \frac{1}{N_b}}$. Here N_b is the flavor number of the Dirac fermions and N_a, the flavor number of the holon quasiparticles. At the critical hole concentration δ_c where the superconducting phase transition occurs, the internal gauge charge CDT may not necessarily occur, as schematically shown in Fig.

FIG. 1: Schematic phase diagram of underdoped high T_c cuprates at low energy in the plane of hole doping δ vs. temperature T. Only the pseudogap phase (PG) and d-wave superconducting phase (d-SC) are partially shown.

FIG. 2: Schematic phase diagram of the $(2 + 1)D$ Abelian Higgs model with multiple charge 4ϵ in the plane of the phase stiffness K of the chargeon pair vs. the effective coupling strength g_{eff} shown in Eq. (4).

It may be possible to have the internal charge CDT at a critical value δ_c of hole doping above δ_c, where a critical value K_c of the chargeon pair phase stiffness is reached to cause the condensation of chargeon bosons, i.e., $<e^{i\phi_e}> \neq 0$ and the suppression of the internal gauge fluctuations δ_μ. On the other hand, below the critical phase stiffness K_c (the phase boundary line in Fig. 2) the internal charge confinement phase will result in [10].

In passing, we briefly discuss the coexistence between the AFM and dSC for completeness. In the underdoped region of $\delta_c < \delta < \delta_c^{\text{int}}$ the dSC coexists with the confinement phase of the internal charge ϵ as is schematically displayed in Fig. 2. The chargeon pair becomes disordered, i.e., $<e^{i\phi_e}>= 0$ below the critical phase stiffness K_c in this low hole doping region. This leads to AFM of the nodal fermions, as will be discussed here. Integrating over ϕ_e in the disordered phase of $<e^{i\phi_e}>= 0$, we obtain from Eq. (3),

$$L_c = \bar{\psi} \gamma_\mu (\partial_\mu - ia_\mu) \psi + |(\partial_\mu - ia_\mu - iA_\mu) \psi_b|^2$$

$$+ \frac{1}{2g} |(\partial_a \times a + 2\partial_\mu A_\mu)|^2$$ \hspace{1cm} (5)

with the coupling strength $g \sim K_c - K_c^{\text{int}}$. Neglecting coupling between the holon field and the gauge field a_μ for the time being, the Dirac fermion field is known to be massive for $N_a < N_b \approx 3.24$ in the case of non-compact
U(1) gauge field \[3 \] where \(N_c \) is the flavor number of the Dirac fermion and \(N_c \), the critical flavor number for chiral symmetry breaking. The massive Dirac fermion leads to \(AFM \) \[3 \]. The magnetization \(m \) is proportional to the effective coupling strength \(g \). Thus it is given by \(m \sim (K_c - K) \sim \delta^{n2} - \delta^2 \). \[3 \] The chiral symmetry breaking is reduced to \(N_c \) otherwise generated mass to both the spinons and holons. To bound states are expected to occur, causing a dynamical shielding of the internal U(1) gauge charge 4\(\tilde{a} \). Thus it is given by \(N_c \approx 2.24 \). \[15 \] The flavor number \(N_s = 2 \) of present interest is close to the critical flavor number. Admitting the compactness of the internal U(1) gauge field, confinement of the internal U(1) gauge field is not clearly understood yet. Further, we argued that non-Fermi liquid behavior in association with the new quantum states of Science and Technology (2003-2004). In addition, we found that the antiferromagnetic to paramagnetic transition \(1 \) can be understood in the context of the CDT. Various physical states involved with quantum phase transitions are summarized in both Table 1 and Fig. 1.

At the critical point \(\delta^{n2} \) Algebraic Fermi liquid is expected to occur since instanton excitations become irrelevant owing to the gauge charge 4\(\tilde{a} \) of the chargeon pair field \[24 \]. Integrating over the chargeon pair field at the critical point in Eq. (3) and incorporating the gauge shift of \(a_\mu \rightarrow a_\mu - \frac{1}{2}A_\mu \), we obtain QED\(3 \) in terms of the massless Dirac spinon and massless holon coupled to the non-compact internal U(1) gauge field,

\[
\mathcal{L}_c = \bar{\psi}_s \gamma_\mu (\partial_\mu - ia_\mu + \frac{1}{2}A_\mu) \psi_s + \frac{N_a}{16} (\partial^a \times a) \frac{1}{\sqrt{-\delta^2}} (\partial \times a), \tag{8}
\]

where \(N_a \) is the flavor number of the chargeon pair field. Here \(N_a = 1 \). Even if Eq. (8) is similar to Eq. (5), the internal U(1) gauge field is non-compact in Eq. (8) while it is compact in Eq. (5). The chiral symmetry breaking is not expected to occur since the coupling strength is above the critical value, i.e., \(N_a + N_s + N_h > N_c \). This result is consistent with the fact that the mass gap of the Dirac fermion or the magnetization vanishes at the critical hole doping \(\delta^{3n2} \). As well known, there exist no well defined quasiparticles in this QED\(3 \) owing to massless gauge fluctuations \[14 \]. But in the deconfinement phase the renormalized spinon and holon are expected to be well defined quasiparticles because the Z\(4 \) gauge fluctuations are massive and suppressed. This seems to be the main difference between critical metallic state at the critical point and fractionalized metallic state in the deconfinement phase. Our non-compact QED\(3 \) emerging at the critical point in the superconducting state may explain non-Fermi liquid behavior \[21 \] in a completely different context from the previous studies \[22, 23, 24 \]. This non-Fermi liquid behavior is not related with the superconductivity but associated with the CDT.

We showed that there exists no interplay between the antiferromagnetism and superconductivity despite the coexistence. This results in the fact that the superconducting transition falls into the XY universality class in agreement with experiments \[3 \]. In addition, we found that the antiferromagnetic to paramagnetic transition \[1 \] can be resolved by the confinement to deconfinement transition of the internal gauge charge. Further, we argued that non-Fermi liquid behaviors in high \(T_c \) cuprates may be described by a critical field theory (QED\(3 \)) in association with the new quantum critical point.

One of us (S.H.S.) greatly acknowledges generous supports of Hakjin program of Korean Ministry of Education (2003-2004) and the BSRI program of Pohang University of Science and Technology (2003-2004).
Here Φ mediating interactions between the vortices. $V(\Phi_{\epsilon(p)})$ is a vortex potential including vortex mass and self-interaction terms. $K = \frac{K_{sp} K_{cp}}{K_{app}}$ is a renormalized phase stiffness resulting from the coupling between the chargeon pair and Cooper pair fields, i.e., $\kappa_{cp}(\partial_{\mu} \phi_{\alpha} + 2A_{\mu}) \partial_{\nu} \phi_{\beta} - 2A_{\nu}$. $K_{sp} = \frac{K_{sp} K_{cp}}{K_{app}}$ is a residual coupling between the two vortex gauge fields. The only remaining coupling $\frac{1}{\kappa_{cp}}(\partial \times c_{\epsilon}) \cdot (\partial \times c_{p})$ between the Cooper pair sector and chargeon pair sector is irrelevant in the renormalization group sense. The scaling dimension of the coupling strength is $[\frac{1}{\kappa_{cp}}] = -1$ and thus the strength of the coupling diminishes as the cut-off energy gets smaller in the renormalization group procedure. As a result the Cooper pair sector and chargeon pair sector are completely decoupled.

3. F. S. Nogueira, Phys. Rev. B 62, 14559 (2000); references therein; Dominic J. Lee and I. D. Lawrie, Phys. Rev. B 64, 184506 (2001); references therein.

4. S.-S. Lee and S.-H. S. Salk, Phys. Rev. B 64, 052501 (2001); S.-S. Lee and S.-H. S. Salk, Phys. Rev. B 66, 054427 (2002); S.-S. Lee, J.-H. Eom, K.-S. Kim, and S.-H. Salk, Phys. Rev. B 66, 064520 (2002).

5. I. F. Herbut, Phys. Rev. Lett. 88, 047006 (2002); I. F. Herbut, Phys. Rev. B 66, 094504 (2002); references therein.

6. Z. Tesanovic et al., Phys. Rev. B 65, 180511 (2002).

7. Performing a standard duality transformation of Eq. (2), we obtain

$$
\mathcal{L} = (\partial_{\mu} - i c_{\mu}) \Phi_{\epsilon}^2 + V(\Phi_{\epsilon}) + \frac{1}{2K} (\partial \times c_{\epsilon})^2
- i (\partial \times c_{\epsilon})_{\mu}(4a_{\mu} + 2A_{\mu})
+ \bar{\psi} \gamma_{\mu}(\partial_{\mu} - i a_{\mu}) \psi + (\partial_{\mu} - i a_{\mu} - i A_{\mu}) \psi_{\bar{\mu}}^2
+ (\partial_{\mu} - i c_{\mu}) \Phi_{p}^2 + V(\Phi_{p}) + \frac{1}{2K} (\partial \times c_{p})^2 + i (\partial \times c_{p})_{\mu} 2A_{\mu}
+ \frac{1}{K_{sp}} (\partial \times c_{\epsilon}) \cdot (\partial \times c_{p}).
$$

Here $\Phi_{\epsilon(p)}$ is a chargeon (Cooper) pair vortex field, and $c_{\epsilon(p)}$, a chargeon (Cooper) pair vortex gauge field mediating interactions between the vortices. $V(\Phi_{\epsilon(p)})$ is a vortex potential including vortex mass and self-interaction terms. $K = \frac{K_{sp} K_{cp}}{K_{app}}$ is a renormalized phase stiffness resulting from the coupling between the chargeon pair and Cooper pair fields, i.e., $\kappa_{cp}(\partial_{\mu} \phi_{\alpha} + 4a_{\mu} + 2A_{\mu})(\partial_{\nu} \phi_{\beta} - 2A_{\nu})$. $K_{sp} = \frac{K_{sp} K_{cp}}{K_{app}}$ is a residual coupling between the two vortex gauge fields. The only remaining coupling $\frac{1}{\kappa_{cp}}(\partial \times c_{\epsilon}) \cdot (\partial \times c_{p})$ between the Cooper pair sector and chargeon pair sector is irrelevant in the renormalization group sense. The scaling dimension of the coupling strength is $[\frac{1}{\kappa_{cp}}] = -1$ and thus the strength of the coupling diminishes as the cut-off energy gets smaller in the renormalization group procedure. As a result the Cooper pair sector and chargeon pair sector are completely decoupled.

8. T. Appelquist et al., Phys. Rev. Lett. 60, 2575 (1988).

9. Owing to the massless holon excitations the kinetic energy of the internal gauge field a_{μ} becomes $\frac{N_{s} + N_{d}}{16} (\partial \times a) \cdot (\partial \times a)$ in the $1/N$ expansion. We note that N_{s} in the absence of the holon field is replaced by $N_{s} + N_{b}$ in the presence of that. In our case the flavor number of the holon quasiparticle is $N_{b} = 1$. Thus the critical flavor number of the Dirac fermion is obtained to be
\[N'_c = N_c - N_b \approx 2.24. \]

[19] M. Hermele et al., cond-mat/0404751.

[20] Internal gauge charge \(4\epsilon \) causes quartic anisotropy term for the chargeon pair vortex fields in the presence of instanton excitations. The quartic anisotropy term is irrelevant at a critical point. See T. Senthil et al., Science 303, 1490 (2004); T. Senthil et al., cond-mat/0311326 references therein.

[21] M. Franz and Z. Tesanovic, Phys. Rev. Lett 87, 257003 (2001); M. Franz et al., Phys. Rev. B 66, 054535 (2002).

[22] Ar. Abanov, A. V. Chubukov, and J. Schmalian, cond-mat/0107421.

[23] C. M. Varma, cond-mat/9607105 Catalin Pascu Moca, cond-mat/9911330 references therein.

[24] S. Chakravarty et al., Phys. Rev. B 63, 094503 (2001); C. Nayak and E. Pivovarov, cond-mat/0203580.