MORE ON GROUPS AND COUNTER AUTOMATA

TAKAO YUYAMA

Abstract. Elder, Kambites, and Ostheimer showed that if the word problem of a finitely generated group H is accepted by a G-automaton for an abelian group G, then H is virtually abelian. We give a new, elementary, and purely combinatorial proof to the theorem. Furthermore, our method extracts an explicit connection between the two groups G and H from the automaton as a group homomorphism from a subgroup of G onto a finite index subgroup of H.

1. Introduction

For a group G, a G-automaton is a finite automaton augmented with a register that stores an element of G. Such an automaton first initializes the register with the identity element 1_G of G and may update the register content by multiplying by an element of G during the computation. The automaton accepts an input word if the automaton can reach a terminal state and the register content is 1_G when the entire word is read. (For the precise definition, see Section 2.4.) For a positive integer n, \mathbb{Z}^n-automata are the same as blind n-counter automata, which were defined and studied by Greibach [14,15].

The notion of G-automata is discovered repeatedly by several different authors. The name “G-automaton” is due to Kambites [22]. (In fact, they defined the notion of M-automata for any monoid M.) Dassow–Mitrana [8] and Mitrana–Stiebe [26] use extended finite automata (EFA) over G instead of G-automata.

For a finitely generated group G, the word problem of G, with respect to a fixed finite generating set of G, is the set of words over the generating set representing the identity element of G (see Section 2.2 for the precise definitions). For several language classes, the class of finitely generated groups whose word problem is in the class is determined [1,2,10,17,19,27,28], and many attempts are made for other language classes [3,4,12,13,20,21,24,25]. One of the most remarkable theorems about word problems is the well-known result due to Muller and Schupp [27], which states that, with the theorem by Dunwoody [9], a group has a context-free word problem if and only if it is virtually free. These theorems suggest deep connections between group theory and formal language theory.

Involving both G-automata and word problems, the following broad question was posed implicitly by Elston and Ostheimer [11] and explicitly by Kambites [22].

Question 1. For a given group G, is there any connection between the structural property of G and of the collection of groups whose word problems are accepted by non-deterministic G-automata?

Note that by G-automata, we always mean non-deterministic G-automata. As for deterministic G-automata, the following theorem is known.

Key words and phrases. word problem, G-automaton, abelian group.

This work was supported by JSPS KAKENHI Grant Number 20J23039.
Theorem 1 (Kambites [22, Theorem 1], 2006). Let G and H be groups with H finitely generated. Then the word problem of H is accepted by a deterministic G-automaton if and only if H has a finite index subgroup which embeds in G.

For non-deterministic G-automata, several results are known for specific types of groups. For a free group F of rank ≥ 2, it is known that a language is accepted by an F-automaton if and only if it is context-free [5, Proposition 2; 7, Corollary 4.5; 23, Theorem 7]. Combining with the Muller–Schupp theorem, the class of groups whose word problems are accepted by F-automata is the class of virtually free groups. The class of groups whose word problems are accepted by $(F \times F)$-automata is exactly the class of recursively presentable groups [7, Corollary 3.5; 23, Theorem 8; 26, Theorem 10]. For the case where G is (virtually) abelian, the following result was shown by Elder, Kambites, and Ostheimer.

Theorem 2 (Elder, Kambites, and Ostheimer [10], 2008).

1. Let H be a finitely generated group and n be a positive integer. Then the word problem of H is accepted by a \mathbb{Z}^n-automaton if and only if H is virtually free abelian of rank at most n [10, Theorem 1].
2. Let G be a virtually abelian group and H be a finitely generated group. Then the word problem of H is accepted by a G-automaton if and only if H has a finite index subgroup which embeds in G [10, Theorem 4].

However, their proof is somewhat indirect in the sense that it depends on a deep theorem by Gromov [16], which states that every finitely generated group with polynomial growth function is virtually nilpotent. In fact, their proof proceeds as follows. Let H be a group whose word problem is accepted by a \mathbb{Z}^n-automaton. They first develop some techniques to compute several bounds for linear maps and semilinear sets. Then a map from H to \mathbb{Z}^n with certain geometric conditions is constructed to prove that H has polynomial growth function. By Gromov’s theorem, H is virtually nilpotent. Finally, they conclude that H is virtually abelian, using some theorems about nilpotent groups and semilinear sets. Because of the indirectness of their proof, the embedding in Theorem 2 (2) is obtained only \textit{a posteriori} and hence has no relation with the combinatorial structure of the G-automaton.

To our knowledge, there are almost no attempts so far to obtain explicit algebraic connections between G and H, where H is a group that has a word problem accepted by a G-automaton. The only exception is the result due to Holt, Owens, and Thomas [19, Theorem 4.2], where they gave a combinatorial proof to a special case of Theorem 2 (1) for the case where $n = 1$. (In fact, their theorem is slightly stronger than Theorem 2 (1) for $n = 1$ because it is for \textit{non-blind} one-counter automata. See also [10, Section 7].)

In this paper, we give a new, elementary, and purely combinatorial proof to Theorem 2.

Theorem 3. Let G be an abelian group and H be a finitely generated group. Suppose that the word problem of H is accepted by a G-automaton A. Then one can define a finite collection of monoids $(M(\mu,p))_{\mu,p}$, as in Definition 3, such that:

1. Each $M(\mu,p)$ consists of closed paths in A with certain conditions,
2. Each $M(\mu,p)$ induces a group homomorphism $f_{\mu,p}$ from a subgroup $G(\mu,p)$ of G onto a subgroup $H(\mu,p)$ of H, and
3. At least one of $H(\mu,p)$’s is a finite index subgroup of H.

For the implication from Theorem 3 to Theorem 2 see Section 2.4.
Note that the direction of the group homomorphisms $f_{\rho,\rho}$ in Theorem 3 is opposite to the embeddings in Theorem 1 and Theorem 2. This direction seems more natural for the non-deterministic case; this observation suggests the following question.

Question 2. Let G and H be groups with H finitely generated. Suppose that the word problem of H is accepted by a G-automaton. Does there exist a group homomorphism from a subgroup of G onto a finite index subgroup of H? If so, is it obtained combinatorially?

Our Theorem 3 is the very first step for approaching Question 2. Note that an affirmative answer to Question 2 would generalize Theorem 1.

2. Preliminaries

2.1. Words, subwords, and scattered subwords. For a set Σ, we write Σ^* for the free monoid generated by Σ, i.e., the set of words over Σ. For a word $u = a_1a_2\cdots a_n \in \Sigma^*$ ($n \geq 0, a_i \in \Sigma$), the number n is called the length of u, which is denoted by $|u|$. For two words $u,v \in \Sigma^*$, the concatenation of u and v are denoted by $u \cdot v$, or simply uv. The identity element of Σ^* is the empty word, denoted by ε, which is the unique word of length zero. For an integer $n \geq 0$, the n-fold concatenation of a word $u \in \Sigma^*$ is denoted by u^n. For an integer $n > 0$, we write $\Sigma^{<n}$ for the set of words of length less than n.

A word $u \in \Sigma^*$ is a subword of a word $v \in \Sigma^*$, denoted by $u \subseteq v$, if there exist two words $u_1,u_2 \in \Sigma^*$ such that $u_1u_2 = v$. A word $u \in \Sigma^*$ is a scattered subword of a word $v \in \Sigma^*$, denoted by $u \subseteq_{sc} v$, if there exist two finite sequences of words $u_1,u_2,\ldots,u_n \in \Sigma^*$ $(n \geq 0)$ and $v_0,v_1,\ldots,v_n \in \Sigma^*$ such that $u = u_1u_2\cdots u_n$ and $v = v_0u_1v_1u_2v_2\cdots u_nv_n$. That is, v is obtained from u by inserting some words. Note that the two binary relations \subseteq and \subseteq_{sc} are both partial orders on Σ^*.

2.2. Word problem for groups. Let H be a finitely generated group. A choice of generators for H is a surjective monoid homomorphism ρ from the free monoid Σ^* on a finite alphabet Σ onto H. The word problem of H with respect to ρ, denoted by $WP_{\rho}(H)$, is the set of words in Σ^* mapped to the identity element 1_H of H via ρ, i.e., $WP_{\rho}(H) = \rho^{-1}(1_H)$.

Although the word problem $WP_{\rho}(H)$ depends on the choice of generators ρ, this does not cause problems:

Lemma 1 (e.g., [20] Lemma 1). Let \mathcal{C} be a class of languages closed under inverse homomorphisms and let H be a finitely generated group. Then $WP_{\rho}(H) \in \mathcal{C}$ for some choice of generators ρ if and only if $WP_{\rho}(H) \in \mathcal{C}$ for any choice of generators ρ. \square

This is the reason why we use “the word problem of H” rather than “a word problem of H.”

2.3. Graphs and paths. A graph is a 4-tuple (V,E,s,t), where V is the set of vertices, E is the set of (directed) edges, s: $E \rightarrow V$ and t: $E \rightarrow V$ are functions assigning to every edge $e \in E$ the source $s(e) \in V$ and the target $t(e) \in V$, respectively. A graph is finite if it has only finitely many vertices and edges.

A path (of length n) in a graph $\Gamma = (V,E,s,t)$ is a word $e_1e_2\cdots e_n \in E^*$ $(n \geq 0)$ of edges $e_i \in E$ such that $t(e_i) = s(e_{i+1})$ for $i = 1,2,\ldots,n-1$. We usually use Greek letters to denote paths in a graph. For a non-empty path $\omega = e_1e_2\cdots e_n \in E^*$, the source and the target of ω are defined as $s(\omega) = s(e_1)$ and $t(\omega) = t(e_n)$, respectively. If $\omega = e_1e_2\cdots e_n$ and $\omega' = e'_1e'_2\cdots e'_k$ are non-empty paths such that $t(\omega) = s(\omega')$, or at least one of ω and ω' is empty, then the concatenation of ω and ω', denoted by $\omega \cdot \omega'$ or $\omega\omega'$, is the path $e_1e_2\cdots e_ne'_1e'_2\cdots e'_k$ of length $n+k$, i.e., the concatenation as words. A path ω in Γ is closed if $t(\omega) = s(\omega)$.
if \(s(\omega) = t(\omega) \), or \(\omega = \epsilon \). For a closed path \(\sigma \) and an integer \(n \geq 0 \), we write \(\sigma^n \) for the \(n \)-fold concatenation of \(\sigma \).

For a graph \(\Gamma = (V, E, s, t) \), an edge-labeling function is a function \(\ell \) from \(E \) to a set \(M \). If \(M \) is a monoid and \(\omega = e_1 e_2 \cdots e_n \) is a path in \(\Gamma \), then the label of \(\omega \) is defined as \(\ell(\omega) = \ell(e_1) \ell(e_2) \cdots \ell(e_n) \) via the multiplication of \(M \).

2.4. **G-automata.** For a group \(G \), a (non-deterministic) \(G \)-automaton over a finite alphabet \(\Sigma \) is defined as a 5-tuple \((\Gamma, \ell_\Sigma, p_{init}, p_{ter}) \), where \(\Gamma = (V, E, s, t) \) is a finite graph, \(\ell_\Sigma : E \to G \) and \(\ell_\Sigma : E \to \Sigma^* \) are edge-labeling functions, \(p_{init} \in V \) is the initial vertex, and \(p_{ter} \in V \) is the terminal vertex. For simplicity, we assume that \(\ell_\Sigma(e) \in \Sigma \cup \{ \epsilon \} \) for each \(e \in E \).

Note that this assumption does not decrease the accepting power of \(G \)-automata. Indeed, if necessary, one can subdivide an edge \(e \) with labels \(\ell_\Sigma(e) = uv, \ell_\Sigma(e) = g \) into two new edges \(e_1, e_2 \) with labels \(\ell_\Sigma(e_1) = u, \ell_\Sigma(e_2) = g \) and \(\ell_\Sigma(e_2) = v, \ell_\Sigma(e_2) = 1_G \). An accepting path in a \(G \)-automaton \(A = (\Gamma, \ell_G, \ell_\Sigma, p_{init}, p_{ter}) \) is a path \(\alpha \) in \(\Gamma \) such that \(s(\alpha) = p_{init}, t(\alpha) = p_{ter} \), and \(\ell_G(\alpha) = 1_G \) (we consider that the empty path \(\epsilon \in E^* \) is accepting if and only if \(p_{init} = p_{ter} \).

We say that a path \(\omega \) in \(\Gamma \) is promising if \(\omega \) is a subword of some accepting path in \(A \), i.e., there exist two paths \(\omega_1, \omega_2 \in E^* \) such that the concatenation \(\omega_1 \omega_2 \in E^* \) is an accepting path in \(A \). The language accepted by a \(G \)-automaton \(A \), denoted by \(L(A) \), is the set of all words \(u \in \Sigma^* \) such that \(u \) is the label of some accepting path in \(A \), i.e., \(L(A) = \{ \ell_\Sigma(\alpha) \in \Sigma^* \mid \alpha \text{ is an accepting path in } A \} \).

Proposition 1 (e.g., [23, Proposition 2]). For a group \(G \), the class of languages accepted by \(G \)-automata are closed under inverse homomorphisms. \(\square \)

Replacing the register group \(G \) by its finite index subgroup or finite index overgroup does not change the class of languages accepted by \(G \)-automata:

Proposition 2 (e.g., [10, Proposition 8]). Let \(G \) be a group and \(H \) be a subgroup of \(G \). Then every language accepted by a \(H \)-automaton is accepted by a \(G \)-automaton. If \(H \) has finite index in \(G \), then the converse holds. \(\square \)

3. **Proof of the main theorem**

Throughout this section, we fix an abelian group \(G \), a finitely generated group \(H \), a choice of generators \(\rho : \Sigma^* \to H \), and a \(G \)-automaton \(A = (\Gamma, \ell_G, \ell_\Sigma, p_{init}, p_{ter}) \) such that \(WP_\rho(H) = L(A) \). We write the group operation of \(G \) additively and \(0_G \) for the identity element of \(G \).

The following lemma is a starting point of our proof.

Lemma 2. Let \(\omega \) and \(\omega' \) be paths in \(\Gamma \) such that \(s(\omega) = s(\omega') \) and \(t(\omega) = t(\omega') \), and suppose that \(\omega \) is promising. Then \(\ell_G(\omega) = \ell_G(\omega') \) implies \(\rho(\ell_\Sigma(\omega)) = \rho(\ell_\Sigma(\omega')) \).

Proof. Since \(\omega \) is promising, there exist two paths \(\omega_1, \omega_2 \) in \(\Gamma \) such that \(\omega_1 \omega_2 \) is an accepting path in \(A \). It follows from the assumption that \(\ell_G(\omega_1 \omega_2) = \ell_G(\omega_1) + \ell_G(\omega') + \ell_G(\omega_2) = \ell_G(\omega) + \ell_G(\omega_2) = 0_G, \) and \(\omega_1 \omega_2 \) is also an accepting path in \(A \). That is, \(\ell_\Sigma(\omega_1 \omega_2), \ell_\Sigma(\omega_1 \omega_2) \in WP_\rho(H) \), and \(\rho(\ell_\Sigma(\omega_1))\rho(\ell_\Sigma(\omega))\rho(\ell_\Sigma(\omega_2)) = 1_H = \rho(\ell_\Sigma(\omega_1))\rho(\ell_\Sigma(\omega'))\rho(\ell_\Sigma(\omega_2)) \) in \(H \). Thus we have \(\rho(\ell_\Sigma(\omega)) = \rho(\ell_\Sigma(\omega')) \). \(\square \)
Each Lemma 3. Definition 3. For a minimal accepting path are accepting paths in A. Definition 2. A A accepting paths in relation \sqsubseteq.

Proof. Since both Remarks 1. Note that, by Higman’s lemma [18, Theorem 4.4], the scattered subword relation \sqsubseteq_{sc} on Σ^* is a well-quasi-order. In particular, there are only finitely many minimal accepting paths in A, and every accepting path on A dominates some minimal accepting path in A.

Definition 2. Let $\mu = e_1e_2\cdots e_n \in E^*$ ($e_i \in E$) be a minimal accepting path in A. A closed path $\sigma \in E^*$ in Γ is pumpable in μ if there exists an accepting path α in A dominating μ such that $\alpha = \alpha_0 e_1 \alpha_1 e_2 \alpha_2 \cdots e_n \alpha_n$ for some paths $\alpha_0, \alpha_1, \ldots, \alpha_n \in E^*$ in Γ and $\sigma \sqsubseteq \alpha_j$ for some $j \in \{0, 1, \ldots, n\}$.

Remarks 1.

(1) In Definition 2 each α_i is a closed path in Γ and satisfies $\ell_G(\alpha_0) + \ell_G(\alpha_1) + \cdots + \ell_G(\alpha_n) = \ell_G(\alpha)$ since $\ell_G(\mu) = 0_G$ and G is abelian.

(2) Every closed path pumpable in a minimal accepting path μ is promising.

Definition 3. For a minimal accepting path μ in A and a vertex $p \in V$, define $M(\mu, p) = \{ \sigma \mid \sigma$ is a closed path in Γ pumpable in μ such that $s(\sigma) = p, \text{ or } \sigma = \varepsilon \}$. Lemma 3. Each $M(\mu, p)$ is a monoid with respect to the concatenation operation, i.e., $\sigma_1, \sigma_2 \in M(\mu, p)$ implies $\sigma_1 \sigma_2 \in M(\mu, p)$.

Proof. Since both σ_1 and σ_2 are pumpable in $\mu = e_1 e_2 \cdots e_n \in E^*$ ($e_i \in E$), there exist two accepting paths $\alpha = \alpha_0 e_1 \alpha_1 e_2 \alpha_2 \cdots e_n \alpha_n$ ($\alpha_i \in E^*$) and $\beta = \beta_0 e_1 \beta_1 e_2 \beta_2 \cdots e_n \beta_n$ ($\beta_i \in E^*$) such that $\sigma_1 \sqsubseteq \alpha_i$ and $\sigma_2 \sqsubseteq \beta_j$ for some $i, j \in \{0, 1, \ldots, n\}$. Then we have $\alpha_i = \alpha'_i \alpha''_i$ for some $\alpha'_i, \alpha''_i \in E^*$ and $\beta_j = \beta'_j \beta''_j$ for some $\beta'_j, \beta''_j \in E^*$. We may assume that $i \leq j$. Since G is abelian, the merged path $\gamma = (\alpha_0 \beta_0)e_1(\alpha_1 \beta_1)e_2(\alpha_2 \beta_2)\cdots e_n(\alpha_n \beta_n)$ and its permutation (1) $\gamma' = (\alpha_0 \beta_0)e_1(\alpha_1 \beta_1)e_2(\alpha_2 \beta_2)\cdots e_i(\alpha'_i \sigma_1 \alpha''_i)\cdots e_j(\beta'_j \beta''_j)e_{j+1} \cdots e_n(\alpha_n \beta_n)$ are accepting paths in A (Figure 1).

For each $M(\mu, p)$, Lemma 3 allows us to define a surjective monoid homomorphism $f_{\mu, p}: M(\mu, p) \rightarrow \rho(\ell_G(M(\mu, p)))$ as the composition function $\rho \circ \ell_G$. By Lemma 2 $f_{\mu, p}$ induces
a well-defined surjective monoid homomorphism \(\bar{f}_{\mu,p} : \ell_G(M(\mu,p)) \to \rho(\ell_G(M(\mu,p))) \). Let \(G(\mu,p) \) (resp. \(H(\mu,p) \)) denotes the subgroup of \(G \) generated by \(\ell_G(M(\mu,p)) \) (resp. the subgroup of \(H \) generated by \(\rho(\ell_G(M(\mu,p))) \). One can easily extend \(\bar{f}_{\mu,p} \) to a unique surjective group homomorphism \(\bar{f}_{\mu,p} : G(\mu,p) \to H(\mu,p) \). The remaining task is to prove that at least one of the \((H(\mu,p))'s \) is a finite index subgroup of \(H \).

Lemma 4. Each \(M(\mu,p) \) is downward closed with respect to \(\sqsubseteq_{sc} \), i.e., if \(\sigma \) is an element of \(M(\mu,p) \) and \(\tau \) is a closed path in \(\Gamma \) with \(\sigma(\tau) = \mu \) such that \(\tau \sqsubseteq_{sc} \sigma \), then \(\tau \in M(\mu,p) \).

Proof. Suppose that \(\tau = e_{1}'e_{2}' \cdots e_{k}' \) \((k \geq 0, e_{i}' \in E)\) and \(\sigma = e_{0}'e_{1}'e_{2}' \cdots e_{k}' \sigma_{k}' \) \((\sigma_{i} \in E^*)\). Each \(\sigma_{i} \) is a closed path in \(\Gamma \). Since, by Lemma 3, \(\sigma_{2}' \) is pumpable in \(\mu = e_{1}e_{2} \cdots e_{n} \) \((n \geq 0, e_{i} \in E)\), there exists an accepting path \(\alpha = e_{0}e_{1}e_{2} \cdots e_{n} \alpha_{n} \) dominating \(\mu \) such that \(\sigma_{2}' \sqsubseteq_{sc} \alpha_{i} \) for some \(i \in \{0,1, \ldots, n\} \). If \(\alpha_{i} = \alpha_{i}' \sigma_{i}^{2} \alpha_{i}'' \), then the path

\[
\gamma = \alpha_{0} e_{1} \alpha_{1} e_{2} \alpha_{2} \cdots e_{i}(\alpha_{i}')^{\tau} \cdot (\sigma_{0}'e_{1}'e_{2}' \cdots e_{k}' \sigma_{k}') \cdot \alpha_{i}'' e_{i+1} \cdots e_{n} \alpha_{n}
\]

is an accepting path in \(A \) (Figure 2).

Lemma 5. Let \(\sigma \in M(\mu,p) \) and \(\omega \sqsubseteq \sigma \) be a path. Then there exist two paths \(\omega_{1}, \omega_{2} \in E^{<|V|} \) such that \(\omega_{1}\omega_{2} \in M(\mu,p) \).

Proof. Let \((\omega_{1}, \omega_{2}) \in E^{*} \times E^{*}\) be a pair of two paths such that \(\omega_{1}\omega_{2} \in M(\mu,p) \) and \(\max\{|\omega_{1}|,|\omega_{2}|\} \) is minimum. Such a pair exists since \(\omega \sqsubseteq \sigma \in M(\mu,p) \). Suppose the contrary that \(\max\{|\omega_{1}|,|\omega_{2}|\} \geq |V| \), say \(|\omega_{1}| \geq |V| \). By the pigeonhole principle, \(\omega_{1} \) must visit some vertex \(p \in V \) at least twice. That is, there exist three paths \(\alpha, \beta, \gamma \) such that \(\omega_{1} = \alpha \beta \gamma \) and \(\beta \) is a non-empty closed path. Now we have \(\alpha \beta \gamma \omega_{2} \subseteq_{sc} \omega_{1}\omega_{2} \in M(\mu,p) \), and Lemma 4 implies \(\alpha \beta \gamma \omega_{2} \in M(\mu,p) \), which contradicts the minimality of \((\omega_{1}, \omega_{2})\).

Proof of Theorem 3 Let \(h \in H \) and fix a word \(v \in \Sigma^{*} \) such that \(\rho(v) = h \). There exists a word \(\bar{v} \in \Sigma^{*} \) such that \(v\bar{v} \in WP_{\rho}(H) \). Define

\[
N = 1 + \max\{|\mu| \mid \mu \in E^{*} \text{ is a minimal accepting path in } A\},
\]

and then \(N < \infty \) by Remark 1. Since \((v\bar{v})^{N} \in WP_{\rho}(H)\), there exists an accepting path

\[
\alpha = \omega_{1}\omega_{1}\omega_{2}\cdots \omega_{N}\bar{\omega}_{N}
\]

in \(A \) such that \(\ell_{Ω}(\omega_{i}) = v \) and \(\ell_{Ω}(\bar{\omega}_{i}) = \bar{v} \) for \(i = 1, 2, \ldots, N \). Let \(\mu = e_{1}e_{2} \cdots e_{n} \) \((e_{i} \in E)\) be a minimal accepting path such that \(\alpha \) dominates \(\mu \). Then we have another decomposition

\[
\alpha = \alpha_{0}e_{1}e_{2} \cdots e_{n} \alpha_{n}
\]

for some closed paths \(\alpha_{0}, \alpha_{1}, \ldots, \alpha_{n} \in E^{*} \). Since \(N > n \) and each \(e_{i} \) in the decomposition \(\gamma \) is contained in at most one \(\omega_{i} \) in the decomposition \(\alpha \), at least one of the \(\omega_{i} 's \) is disjoint.

Figure 2. Construction of the path \(\tau \cdot (\sigma_{0}'e_{1}'e_{2}' \cdots e_{k}' \sigma_{k}') \) in (2)
from all e_i’s, i.e., there exist $i \in \{1, 2, \ldots, N\}$ and $j \in \{0, 1, \ldots, n\}$ such that $\omega_i \subseteq \alpha_j$. Since α_j is a pumpable closed path in μ, α_j is an element of $M(\mu, s(\alpha_j))$. By Lemma 3 there exist $\alpha_j', \alpha_j'' \in E^{|V|}$ such that $\alpha_j' \omega_i \alpha_j'' \in M(\mu, s(\alpha_j))$. Then we have $|\ell_\mu(\alpha_j')|, |\ell_\mu(\alpha_j)| < |V|$ and $\rho(\ell_\mu(\alpha_j'))\rho(\ell_\mu(\omega_i))\rho(\ell_\mu(\alpha_j'')) \in H(\mu, s(\alpha))$, hence

$$h = \rho(v) = \rho(\ell_\mu(\omega_i)) \in \rho(\ell_\mu(\alpha_j'))^{-1}H(\mu, s(\alpha))\rho(\ell_\mu(\alpha_j''))^{-1}.$$

From the above argument, we obtain

$$H = \bigcup \left\{ h_1^{-1}H(\mu, p)h_2^{-1} \bigg| \begin{array}{l} \mu \text{ is a minimal accepting path in } A, \\
p \in V, \text{ and } h_1, h_2 \in \rho(\Sigma^{<|V|}) \end{array} \right\},$$

where the right-hand side is a finite union of cosets of H by Remark 1. Thus, by B. H. Neumann’s lemma (1978), no. 3, 311–324. MR513714 ↑

[1] A. V. Anisimov, Certain algorithmic questions for groups and context-free languages, Kibernetika (Kiev) 2 (1972), 4–11. MR312774 ↑

[2] W. W. Boone and G. Higman, An algebraic characterization of groups with soluble word problem, J. Austral. Math. Soc. 18 (1974), 41–53. Collection of articles dedicated to the memory of Hanna Neumann, IX. MR623534 ↑

[3] T. Brough, Groups with poly-context-free word problem, Groups Complex. Cryptol. 6 (2014), no. 1, 9–29. MR3200350 ↑

[4] T. Ceccherini-Silberstein, M. Coornaert, F. Fiorenzi, P. E. Schupp, and N. W. M. Touikan, Multipass automata and group word problems, Theoret. Comput. Sci. 600 (2015), 19–33. MR3394671 ↑

[5] N. Chomsky and M. P. Schützenberger, The algebraic theory of context-free languages, Computer programming and formal systems, 1963, pp. 118–161. MR0152391 ↑

[6] S. Cleary, M. Elder, and G. Ostheimer, The word problem distinguishes counter languages, arXiv, 2006. arXiv:math.GR/0606415 ↑

[7] J. M. Corson, Extended finite automata and word problems, Internat. J. Algebra Comput. 15 (2005), no. 3, 455–466. MR2151422 ↑

[8] J. Dassow and V. Mitrana, Finite automata over free groups, Internat. J. Algebra Comput. 10 (2000), no. 6, 725–737. MR1809380 ↑

[9] M. J. Dunwoody, The accessibility of finitely presented groups, Invent. Math. 81 (1985), no. 3, 449–457. MR807066 ↑

[10] M. Elder, M. Kambites, and G. Ostheimer, On groups and counter automata, Internat. J. Algebra Comput. 18 (2008), no. 8, 1345–1364. MR2483126 ↑

[11] G. Z. Elston and G. Ostheimer, On groups whose word problem is solved by a counter automaton, Theoret. Comput. Sci. 320 (2004), no. 2-3, 175–185. MR2064207 ↑

[12] K. Gebhardt, F. Meunier, and S. Salvati, O_n is an n-MCFL, J. Comput. System Sci. 127 (2022), 41–52. MR4388995 ↑

[13] R. H. Gilman, R. P. Kropholler, and S. Schleimer, Groups whose word problems are not semilinear, Groups Complex. Cryptol. 10 (2018), no. 2, 53–62. MR3871464 ↑

[14] S. A. Greibach, Remarks on the complexity of nondeterministic counter languages, Theoret. Comput. Sci. 1 (1975/76), no. 4, 269–288. MR411257 ↑

[15] , Remarks on blind and partially blind one-way multicontur machines, Theoret. Comput. Sci. 7 (1978), no. 3, 311–324. MR513714 ↑

[16] M. Gromov, Groups of polynomial growth and expanding maps, Inst. Hautes Études Sci. Publ. Math. 53 (1981), 53–73. MR625334 ↑
[17] G. Higman, *Subgroups of finitely presented groups*, Proc. Roy. Soc. London Ser. A **262** (1961), 455–475. MR130286

[18] G. Higman, *Ordering by divisibility in abstract algebras*, Proc. London Math. Soc. (3) **2** (1952), 326–336. MR49867

[19] D. F. Holt, M. D. Owens, and R. M. Thomas, *Groups and semigroups with a one-counter word problem*, J. Aust. Math. Soc. **85** (2008), no. 2, 197–209. MR2470538

[20] D. F. Holt, S. Rees, C. E. Röver, and R. M. Thomas, *Groups with context-free co-word problem*, J. London Math. Soc. (2) **71** (2005), no. 3, 643–657. MR2132375

[21] D. F. Holt and C. E. Röver, *Groups with indexed co-word problem*, Internat. J. Algebra Comput. **16** (2006), no. 5, 985–1014. MR2274726

[22] M. Kambites, *Word problems recognisable by deterministic blind monoid automata*, Theoret. Comput. Sci. **362** (2006), no. 1-3, 232–237. MR2259632

[23] ______, *Formal languages and groups as memory*, Comm. Algebra **37** (2009), no. 1, 193–208. MR2482816

[24] M. Kanazawa and S. Salvati, *MIX is not a tree-adjoining language*, Proceedings of the 50th annual meeting of the association for computational linguistics (volume 1: Long papers), July 2012, pp. 666–674.

[25] R. P. Kropholler and D. Spriano, *Closure properties in the class of multiple context-free groups*, Groups Complex. Cryptol. **11** (2019), no. 1, 1–15. MR4000593

[26] V. Mitrana and R. Stiebe, *Extended finite automata over groups*, Discrete Appl. Math. **108** (2001), no. 3, 287–300. MR1807922

[27] D. E. Muller and P. E. Schupp, *Groups, the theory of ends, and context-free languages*, J. Comput. System Sci. **26** (1983), no. 3, 295–310. MR710250

[28] G. A. R. Nesin and R. M. Thomas, *Groups whose word problem is a Petri net language*, Descriptional complexity of formal systems, 2015, pp. 243–255. MR3375036

[29] B. H. Neumann, *Groups covered by permutable subsets*, J. London Math. Soc. **29** (1954), 236–248. MR62122

Department of Mathematics, Tokyo Institute of Technology, Tokyo, Japan

Email address: yuyama.t.aa@m.titech.ac.jp