This study was partly supported by grants-in-aid from the Ministry of Health, Labour and Welfare of Japan (H22-Shokuhin-Ippan-012, H23-Shinko-Shitei-020, H24-Shokuhin-Ippan-007, and H24-Shokuhin-Ippan-008).

Hidemasa Izumiya, Jun Terajima, Shouji Yamamoto, Makoto Ohnishi, Haruo Watanabe, Akemi Kai, Takayuki Kurazono, Masumi Taguchi, Tetsuo Asai, Masato Akiba, Yuko Matsumoto, and Yutaka Tamura

Author affiliations: National Institute of Infectious Diseases, Tokyo, Japan (H. Izumiya, J. Terajima, S. Yamamoto, M. Ohnishi, H. Watanabe); Tokyo Metropolitan Institute of Public Health, Tokyo (A. Kai); Saitama Institute of Public Health, Saitama, Japan (T. Kurazono); Osaka Prefectural Institute of Public Health, Osaka, Japan (M. Taguchi); National Veterinary Assay Laboratory, Tokyo (T. Asai); National Institute of Animal Health, Ibaraki, Japan (M. Akiba); Yokohama City Institute of Health, Kanagawa, Japan (Y. Matsumoto); and Rakuno Gakuen University, Hokkaido, Japan (Y. Tamura)

DOI: http://dx.doi.org/10.3201/eid1905.121395

References

1. Threlfall EJ. Epidemic Salmonella typhimurium DT 104-a truly international multiresistant clone. J Antimicrob Chemother. 2000;46:7–10. http://dx.doi.org/10.1093/jac/46.1.7
2. Briggs CE, Fratamico PM. Molecular characterization of an antibiotic resistance gene cluster of Salmonella typhimurium DT104. Antimicrob Agents Chemother. 1999;43:846–9.
3. van Belkum A. Tracing isolates of bacterial species by multilocus variable number of tandem repeat analysis (MLVA). FEMS Immunol Med Microbiol. 2007;49:22–7. http://dx.doi.org/10.1111/j.1574-695X.2006.00173.x
4. Lindstedt BA, Vardund T, Aas L, Kapperud G. Multiple-locus variable-number tandem-repeats analysis of Salmonella enterica subsp. enterica serovar Typhimurium using PCR multiplexing and multicolor capillary electrophoresis. J Microbiol Methods. 2004;59:163–72. http://dx.doi.org/10.1016/j.mimet.2004.06.014
5. Larsson JT, Torpdahl M, Petersen RF, Sorensen G, Lindstedt BA, Nielsen EM. Development of a new nomenclature for Salmonella typhimurium multilocus variable number of tandem repeats analysis (MLVA). Euro Surveill. 2009;14:19174 http://www.eurosurveillance.org/View-Article.aspx? ArticleId=19174
6. Anderson ES, Ward L.R, Saxe MJ, de Sa JD. Bacteriophage-typing designations of Salmonella typhimurium. J Hyg (Lond). 1977;78:297–300. http://dx.doi.org/10.1017/S0022172400056187
7. Hermans AP, Abee T, Zwieringh MH, Aarts HJ. Identification of novel Salmonella enterica serovar Typhimurium DT104-specific prophage and nonprophage chromosomal sequences among serovar Typhimurium isolates by genomic subtractive hybridization. Appl Environ Microbiol. 2005;71:4979–85. http://dx.doi.org/10.1128/AEM.71.9.4979-4985.2005

Address for correspondence: Hidemasa Izumiya, 1-23-1 Toyama, Shinjuku-ku, Tokyo, 162-8640, Japan; email: izumiya@nih.go.jp

Single Genotype of Anaplasma phagocytophilum identified from Ticks, Camargue, France

To the Editor: Granulocytic anaplasmosis is a tickborne zoonosis caused by Anaplasma phagocytophilum bacteria, which are emerging in Europe. Besides infecting humans, A. phagocytophilum infect a wide range of wild and domestic mammals (1). In Europe, the Ixodes ricinus tick is the main vector for the bacteria, but A. phagocytophilum has also been detected in association with Rhipicephalus and Dermacentor spp. ticks (2). The climate and biotopes of the Mediterranean region are particularly favorable for several species of ticks and, therefore, for tickborne diseases.

Although I. ricinus ticks are rare or absent in the Mediterranean Basin, serosurveys performed on equine populations in Camargue, southern France, indicated an A. phagocytophilum seroprevalence of ≈10% (3). To investigate the prevalence and diversity of A. phagocytophilum bacteria in ticks in Camargue, we collected questing ticks from horse pastures and feeding ticks from horses.

Ticks feeding on horses were collected in randomly selected stables during 2007 (84 stables), 2008 (72 stables), and 2010 (19 stables). The stables were chosen among those where evidence of A. phagocytophilum seroconversion in horses had previously been found (3). In 2008 and 2010, questing ticks were collected by the dragging method in 19 pastures, around bushes, and in areas where horses spent the most time. Surveys were conducted in the spring, which represents the peak activity time of Ixodes ticks.

A total of 406 adult ticks were collected, representing 6 species: Rhipicephalus bursa, R. sanguineus, R. turanicus, R. pusillus, Dermacentor marginatus, and Hyalomma marginatum. Tick species were identified by morphologic criteria and molecular analyses based on mitochondrial 12S rDNA sequences (4). Total DNA was extracted from the ticks by using the NucleoSpin Tissue Kit (Macherey-Nagel, Düren, Germany) (5). A. phagocytophilum was detected by nested PCR targeting the 16S rDNA (online Technical Appendix 1, www.cdc.gov/EID/article/19/5/15-1003-Techapp1.pdf).

Of the 406 ticks, 40 were infected with A. phagocytophilum. The infected group included ticks from all 6 collected species except R. pusillus. Infection rates among the species ranged from 0 to 22% (online Technical Appendix 2, www.cdc.gov/EID/article/19/5/15-1003-Techapp2.pdf). The prevalence of A. phagocytophilum infection did not differ significantly between species (logistic regression model, p = 0.76) but was higher among questing ticks than feeding ticks (p<0.001; odds ratio 1.15).
We amplified 6 loci by nested PCR (online Technical Appendix 1) to characterize *A. phagocytophilum* genetic diversity in positive samples: *ankA*, *msp4*, *pleD*, *typA*, and intergenic regions *hemE*–*APH_0021* and *APH_1099*–*APH_1100* (National Center for Biotechnology Information annotation). The GenBank accession numbers for the nucleotide sequences are JX197073–JX197368. No polymorphism was found among the 6 loci tested in the 40 *A. phagocytophilum*–positive ticks. The genotype identified was 100% identical to the reference sequence (NC_007797) for loci *msp4*, *pleD*, and *typA* and for intergenic regions *hemE*–*APH_0021* and *APH_1099*–*APH_1100*. The *ankA* sequence was 96% similar (487 nt) to the reference sequence. The relevance of these loci as markers of diversity was verified (online Technical Appendix 3, wwwnc.cdc.gov/EID/article/19/5/12-1003-Techapp3.pdf).

To study the phylogenetic relationships between cognate sequences, we included in our analysis all sequences available in GenBank for genes *ankA* and *msp4*. To account for recombination events that affect *ankA* and *msp4* (data not shown) in phylogenetic analyses, we used Neighbor-Net networks (Figure). Phylogenetic analysis of *msp4* (Figure, panel A) indicated that the genotype of *A. phagocytophilum* from ticks in Camargue was included in a clade that also includes genotypes that infect humans and horses in the United States. The diversity of the *ankA* sequences has been described as 4 phylogenetic clusters (6). All sequences obtained in our study were included in cluster I, particularly in a branch composed exclusively of sequences of *A. phagocytophilum* isolated from humans in the United States (Figure, panel B).

Previous studies investigating *A. phagocytophilum* have revealed a genetic diversity that is thought to have been caused by sympatric epidemiologic cycles involving different vectors and reservoir hosts (1,6,7). In 5 species of ticks (40 ticks total) that we collected from a 250-km² area in southern France, we found only 1 genotype of *A. phagocytophilum*, which we determined to be phylogenetically close to genotypes found in the United States. Sequences phylogenetically related to bacteria in the United States were also observed in Sardinia (8) and Sicily (9).
The low diversity we found could be explained by a recent introduction of the bacteria into the area [although A. phagocytophilum–seropositive horses have been found in the area since 2001 (3)] or by a selective sweep linked to the particular ticks and host reservoir in Camargue. The 5 species of ticks that we found positive for A. phagocytophilum have been described as potential vectors of A. phagocytophilum in the Mediterranean Basin (2,10). Among the tick species in our investigation, R. bursa and R. sanguineus ticks are the 2 main carriers of A. phagocytophilum, and these ticks are likely to feed on humans and, thus, pose a risk of infection to the local population. Further studies are needed to address the potential effect of A. phagocytophilum–infected ticks on human health in this area and, more specifically, the relationship between genotype and pathogenicity.

Acknowledgments

We thank Curtis Nelson and Friederike von Loewenich for generously providing the DNA of strains HGE1, CRT, and Webster; Véronique Bachy for actively helping us to obtain samples from domestic animals; Magalie René-Martellet and Frédéric Beugnet for helping with the morphological identification of ticks; Gillian Martin for proofreading the manuscript; Nelly Dorr for creating the databases used in this study; and Françoise Rieu-Lesme and Sébastien Masséglia who were involved in laboratory work.

Amélie Chastagner, Xavier Bailly, Agnès Leblond, Sophie Pradier,* and Gwenaël Vourc’h

Author affiliations: National Center for Biotechnology Information (INRA), Saint Genèse Champamelle, France (A. Chastagner, X. Bailly, A. Leblond, G. Vourc’h); University of Lyon, Marcy l’Etoile, France (A. Leblond); Ecole Nationale Vétérinaire d’Alfort, Maisons-Alfort, France (S. Pradier); and INRA ENVA ANSES, Maisons-Alfort (S. Pradier)

*Current affiliation: Ecole Nationale Vétérinaire de Toulouse, Toulouse, France.

DOI: http://dx.doi.org/10.3201/eid1905.121003

References

1. Rikhisa Y. Mechanisms of obligatory intracellular infection with Anaplasma phagocytophilum. Clin Microbiol Rev. 2011;24:469–89. http://dx.doi.org/10.1128/CMR.00064-10
2. de la Fuente J, Naranjo V, Ruiz-Fons F, Vicente J, Estrada-Peña A, Almazán C, et al. Prevalence of tick-borne pathogens in ixodid ticks (Acarí: Ixodidae) collected from European wild boar (Sus scrofa) and Iberian red deer (Cervus elaphus hispanicus) in central Spain. Eur J Wildl Res. 2004;50:187–96. http://dx.doi.org/10.1007/s10344-004-0060-1
3. Leblond A, Pradier S, Pittel PH, Fortier G, Boireau P, Chadeou J, et al. An epidemiological survey of equine anaplasmosis (Anaplasma phagocytophilum) in southern France [in French]. Rev Sci Tech. 2005;24:899–908.
4. Beati L, Keirans JE. Analysis of the systematic relationships among ticks of the genera Rhhipicephalus and Boophilus (Acarí: Ixodidae) based on mitochondrial 125 ribosomal DNA gene sequences and morphological characters. J Parasitol. 2001;87:32–48.
5. Halos L, Jamal T, Vial L, Maillard R, Suau A, Le Menache A, et al. Determination of an efficient and reliable method for DNA extraction from ticks. Vet Res. 2004;35:709–13. http://dx.doi.org/10.1051/vetres:2004038
6. Scharf W, Schauer S, Freyburger F, Petrovec M, Schaarschmidt-Kiener D, Liebisch G, et al. Distinct host species correlate with Anaplasma phagocytophilum ankA gene clusters. J Clin Microbiol. 2011;49:790–6. http://dx.doi.org/10.1128/JCM.02051-10
7. Bown KJ, Lambin X, Ogden NH, Begon M, Telford G, Woldehiwet Z, et al. Delineating Anaplasma phagocytophilum ecotypes in coexisting, discrete enzootic cycles. Emerg Infect Dis. 2009;15:1948–54. http://dx.doi.org/10.3201/eid1512.090178
8. Alberti A, Zobba R, Chessa B, Addis MF, Sparagano O, Parpaglia MLP, et al. Equine and canine Anaplasma phagocytophilum strains isolated on the island of Sardinia (Italy) are phylogenetically related to pathogenic strains from the United States. Appl Environ Microbiol. 2005;71:6418–22. http://dx.doi.org/10.1128/AEM.71.10.6418-6422.2005
9. de la Fuente J, Torina A, Caracappa S, Tumino G, Furla R, Almazan C, et al. Serologic and molecular characterization of Anaplasma species infection in farm animals and ticks from Sicily. Vet Parasitol. 2005;133:557–62. http://dx.doi.org/10.1016/j.vetpar.2005.05.063
10. Toledo A, Olmeda AS, Escudero R, Jado I, Valcarcel F, Casado-Nistal MA, et al. Tick-borne zoonotic bacteria in ticks collected from central Spain. Am J Trop Med Hyg. 2009;81:67–74.

West Nile Virus Lineage 2 Strain in Greece, 2012

To the Editor: West Nile virus (WNV) has been in Europe at least since the 1960s (1). Before 2010, WNV epidemics in Europe were caused mainly by lineage 1 strains. However, in 2010, a major WNV epidemic in Central Macedonia, Greece, was caused by a lineage 2 strain (Nea Santa-Greece-2010) (2).

This strain also circulated during 2011 (3), causing a second epidemic among humans throughout the country (4). Although the virus was closely related to the goshawk-Hungary-2004 strain circulating in Hungary, Austria, and Italy (5–7), severe epidemics occurred only in Greece; 273 cases of West Nile neuroinvasive disease (WNND) in humans were reported during the 2 seasons (2,4).

A third epidemic occurred in 2012, and 109 WNND cases were reported (8). Until mid-August, most cases were in central (Attica; 29 cases) and northeastern Greece (East Macedonia and Thrace; 10 cases). In contrast, during the same period, only 3 cases were confirmed at the location of the 2010 epidemic epicenter, in Central Macedonia (9). This situation led to the question of whether the Nea Santa-Greece-2010 strain was responsible for the third epidemic in Greece.
Single Genotype of *Anaplasma phagocytophilum* Identified from Ticks, Camargue, France

Technical Appendix 1

Primers used for sequencing *Anaplasma phagocytophilum*

Primer	Sequences (5′–3′)	Annealing temperature	Fragment length (bp)	
16S_ external *	ge3a: CACATGCAAGTCGAACGGATTATTC TTCCGTATAAGAGGATCTAATCTCC ge10r: GCAGTATGAAAAACAGCTCCAGG	58°C	932	
16S_ internal *	ge9f: AGGGATATTCTTTATAGCTTGCTGGACCACCC ge2r: GCTGCTGAGAAGCCCTTATCC	58°C	544	
ankA - external	forward: TGAAGCTCAACCGCAGCATG reverse: CTCTGCTTGGTGGACCACCC	72°C	540	
ankA - internal	forward: GCTCAACCGCAGCATGTG reverse: GTTGCTGAGAAGCCCTTATCC	66°C	534	
msp4 - external	forward: TCGCTGCAATAGGATTCCCAGA reverse: GAGCTTCCACACCACTTCGTT	66°C	1300	
msp4 - internal†	forward: TTAATTGAAAGCAAATCTTGCTCCTATG reverse: ATGAAATTACAGAGAATGCTG	66°C	849	
pleD - external	forward: ACAAGTGGCTCCTGAAGCCAAT reverse: TGCGTCGATAGCTGCGTTCCA	66°C	1101	
pleD - internal	forward: TGCACATGCGAAGATG	same of pleD-external reverse	69°C	576
typA - external	forward: CCTGGACATGCTGACCTGGG reverse: CGGCGGAACGTAAACCTCACAG	66°C	1455	
typA - internal	forward: GTCGACATGCGAAGATG reverse: CGGCGGAACGTAAACCTCACAG	71°C	550	
hemE-aph0021 - external	forward: GGCGTCTGAGGACCCTATGCC reverse: AGGCCCTTCTCCAGCCCTGCCAAC	66°C	1070	
hemE-aph0021 - internal	forward: GCGATCTGCGCAAAGGTATT reverse: AGGCCCTTCTCCAGCCCTGCCAAC	66°C	537	
aph1099-aph1100 - external	forward: ACAGTGGCAAACCTCAGACGA reverse: TGAGAAGAACACCGGTTGCC	66°C	1453	
aph1099-aph1100 - internal	forward: GTCGACATGCGAAGATG reverse: CGGCGGAACGTAAACCTCACAG	69°C	574	

Published by Massung RF, Slater K, Owens JH, Nicholson WL, Mather TN, Solberg VB, et al. Nested PCR assay for detection of granulocytic ehrlichiae. Journal of Clinical Microbiology. 1998;36:1090-5.

†Published by de La Fuente J, Massung RF, Wong SJ, Chu FK, Lutz H, Melli M, et al. Sequence analysis of the msp4 gene of *Anaplasma phagocytophilum* strains. Journal of Clinical Microbiology. 2005;43:1309-17.

All fragments were amplified by nested PCR. For the first PCR, each reaction contained 40 ng of total DNA in a solution of 25 µL with 1 U of Taq polymerase (Qiagen), 2 µL of each primer at 10 µM, 2 µL of dNTP at 25 mM, 5 µL of Q solution (Qiagen) and 1 µL of MgCl2 at 25 mM. Tests were performed to choose optimal annealing temperatures. The PCR program began by an initial denaturation step of 3 min at 95°C, then 40 cycles consisted of a denaturing step of
30 s at 94°C, an annealing step of 30 s at the temperature corresponding to the target gene (see Table 2) and an extension step of 90 s at 72°C, and finally an extension step of 10 min at 72°C. The nested PCR was performed with 5 µL of the first PCR product in a total volume of 50 µL containing 2 U of Taq polymerase, 4 µL of each primer at 10 µM and 4 µL of dNTP at 25 mM. Nested cycling conditions were as described for the primary amplification.
Single Genotype of *Anaplasma phagocytophilum* Identified from Ticks, Camargue, France

Technical Appendix 2

Number (%) of collected ticks positive for *Anaplasma phagocytophilum*, Camargue, France, 2007–2010

Genus spp.	Ticks questing in pastures	Ticks feeding on horses	Total
Rhipicephalus bursa	3/12 (25)	19/247 (7.7)	22/259 (8.5)
Rhipicephalus sanguineus	11/53 (20.7)	2/58 (3.4)	13/111 (11.7)
Rhipicephalus turanicus	2/4 (50)	0/5 (0)	2/9 (22.2)
Rhipicephalus pusillus	0/9 (0)	0/1 (0)	0/10 (0)
Dermacentor marginatus	1/3 (33.3)	1/9 (11.1)	2/12 (16.7)
Hyalomma marginatum	0/0 (0)	1/5 (20)	1/5 (20)
Single Genotype of *Anaplasma phagocytophilum* Identified from Ticks, Camargue, France

Technical Appendix 3

Verification of the nucleotide diversity of *Anaplasma phagocytophilum*, as calculated by use of the Watterson estimator

To verify the relevance of our loci as markers of *A. phagocytophilum* diversity, we compared the nucleotide diversity of *A. phagocytophilum* found in questing ticks collected in Camargue, France, with that found in 6 questing *Ixodes ricinus* ticks collected in the Combrailles (Auvergne, Central France, HALOS 2010 [1]); and with the totality of studied sequences that include 2 cognate sequence obtained in diseased horses from France, 2 American human strains (HGE and Webster), and 1 American roe deer strain (CRT).

The nucleotide diversity was calculated with the Watterson estimator:

\[\theta = K \sum_{i=1}^{n-1} \frac{1}{I_i} \]

with K the proportion of single nucleotide polymorphisms in the sequences. Diversity in Combrailles ticks showed that the markers used in this study were appropriated to describe significant level of diversity (see graph on following page).
Nucleotide diversity of *Anaplasma phagocytophilum* calculated with the Watterson estimator. *n*: number of sequences analyzed and Φ indicates the zero values. Error bars indicate upper limit of the standard deviation of the Watterson estimator.

Length of the sequences analyzed: 462 pb for ankA, 709 pb for msp4, 457 pb for aph1099-aph1100, 477 pb for hemE-aph0021, 308 pb for typA and 471 pb for pleD.

Reference

1. Halos L, Bord S, Cotte V, Gasqui P, Abrial D, Barnouin J, et al. Ecological factors characterizing the prevalence of bacterial tick-borne pathogens in *Ixodes ricinus* ticks in pastures and Woodlands. Appl Environ Microbiol. 2010;76:4413-20.