UNITS IN F_2D_{2p}

KULDEEP KAUR, MANJU KHAN

Abstract. Let p be an odd prime, D_{2p} be the dihedral group of order $2p$, and F_2 be the finite field with two elements. If $*$ denotes the canonical involution of the group algebra F_2D_{2p}, then bicyclic units are unitary units. In this note, we investigate the structure of the group $B(F_2D_{2p})$, generated by the bicyclic units of the group algebra F_2D_{2p}. Further, we obtain the structure of the unit group $U(F_2D_{2p})$ and the unitary subgroup $U_*(F_2D_{2p})$, and we prove that both $B(F_2D_{2p})$ and $U_*(F_2D_{2p})$ are normal subgroups of $U(F_2D_{2p})$.

INTRODUCTION

Let FG be the group algebra of the group G over the field F and $U(FG)$ denotes its unit group. The anti-automorphism $g \mapsto g^{-1}$ of G can be extended linearly to an anti-automorphism $a \mapsto a^*$ of the group algebra FG known as canonical involution of FG. Let $U_*(FG)$ be the unitary subgroup consisting of the elements of $U(FG)$ that are inverted by canonical involution $*$. These elements are called unitary units in FG. If F is a finite field of characteristic 2, then $U_*(FG)$ coincides with $V_*(FG)$; otherwise, it coincides with $V_*(FG) \times \langle -1 \rangle$. Here $V_*(FG)$ denotes the set of all unitary units in the normalized

2000 Mathematics Subject Classification. 16U60, 20C05.
Key words and phrases. Unitary units; Unit Group; Group algebra.
unit group $V(FG)$. Interest in the group $U_*(FG)$ arose in algebraic topology and unitary K-theory \cite{6}.

We are interested in the structure of the unit group $\mathcal{U}(F_2D_{2p})$ and the unitary subgroup $\mathcal{U}_*(F_2D_{2p})$. For a finite abelian p-group G and the field F with p elements, R. Sandling \cite{7} gave the structure of $V(FG)$ and the structure of $V_*(FG)$ was obtained by A.A.Bovdi and A.A.Sakach in \cite{2} for a finite field F of characteristic p. For a field F with two elements and a 2-group G up to order 16, R. Sandling \cite{8} gave the presentation for $V(FG)$. Later on, A.Bovdi and L. Erdei \cite{1} described the structure of the unitary subgroup $V_*(F_2G)$, where G is a nonabelian group of order 8 and 16. In \cite{4} V. Bovdi and A. L. Rosa computed the order of the unitary subgroup of the group of units when G is either an extraspecial 2-group or the central product of such a group with a cyclic group of order 4, and F is a finite field of characteristic 2. In the same paper, they computed the order of the unitary subgroup $V_*(FG)$, where G is a 2-group with an abelian subgroup A of index 2 and an element b such that b inverts every element in A and the order of b is 2 or 4. V. Bovdi and T.Rozgonyi in \cite{3} described the structure of $V_*(F_2G)$, where the order of b is 4.

For a dihedral group G of order 6 and 10 and an arbitrary finite field F, the structure of the unit group $\mathcal{U}(FG)$ is described in \cite{9} and \cite{5}. Here we give the structure of the unit group $\mathcal{U}(F_2D_{2p})$ and the group $\mathcal{U}_*(F_2D_{2p})$. The bicyclic units of F_2D_{2p} play an important role in finding the structure of unit group. We also study the structure of the group, $\mathcal{B}(F_2D_{2p})$, generated by bicyclic units of F_2D_{2p}.
For an element \(g \in G \) of order \(n \), write \(\hat{g} = 1 + g + g^2 + \cdots + g^{n-1} \).

If \(g, h \in G, o(g) < \infty \), then

\[
\hat{u}_{g,h} = 1 + (g - 1)\hat{h}
\]

has an inverse \(\hat{u}_{g,h}^{-1} = 1 - (g - 1)\hat{h} \). Moreover, \(\hat{u}_{g,h} = 1 \) if and only if \(h \) is in the normalizer of \(\langle g \rangle \). The element \(\hat{u}_{g,h} \) is known as a bicyclic unit of the group algebra \(FG \) and the group generated by them is denoted by \(B(FG) \). Observe that all nontrivial bicyclic units of the group algebra \(F_2 D_{2p} \) are unitary units with respect to canonical involution.

Let \(F_q \) be a finite field with \(q \) elements and \(n \) be a positive integer coprime with \(q \). If order of \(q \mod n \) is \(d \), then the set \(\{a_0, a_0q, \ldots a_0q^{d-1}\} \) of elements of \(\mathbb{Z}_n \) is said to be \(q \)-cycle modulo \(n \). Further, if \(\alpha \) is a primitive \(n \)-th root of unity, then the polynomial

\[
f_{a_0}(x) = (x - \alpha^{a_0})(x - \alpha^{a_0q}) \cdots (x - \alpha^{a_0q^{d-1}}),
\]

is an irreducible factor of \(\phi_n(x) \) over \(F_q \) is of degree \(d \). Hence, the number of irreducible factors of \(\phi_n(x) \) over \(F_q \) is \(\frac{\phi(n)}{d} \). Since \(F_2 \) is a field with 2 elements and \(D_{2p} \) is the dihedral group of order \(2p \), it follows that if order of \(2 \mod p \) is \(d \), then the number of irreducible factors of the cyclotomic polynomial \(\phi_p(x) \) over \(F_2 \) is \(\frac{\phi(p)}{d} \) and each irreducible factor is of degree \(d \).

Unit Group of \(F_2 D_{2p} \)

Theorem 1. Let \(G \) be the dihedral group

\[
D_{2p} = \langle a, b \mid a^p = 1, b^2 = 1, b^{-1}ab = a^{-1} \rangle.
\]
Suppose $V = \langle 1 + \overline{D_{2p}} \rangle$, where $\overline{D_{2p}}$ denotes the sum of all elements of D_{2p}. Then

$$U(F_2D_{2p})/V \cong \begin{cases} GL_2(F_{2^d}) \times GL_2(F_{2^d}) \cdots \times GL_2(F_{2^d}), & \text{if } d \text{ is even} \\ \underbrace{GL_2(F_{2^d}) \times GL_2(F_{2^d}) \cdots \times GL_2(F_{2^d})}_{\phi(p) \text{ copies}}, & \text{if } d \text{ is odd} \end{cases}$$

and hence $|U(F_2D_{2p})| = \begin{cases} 2((2^d - 1)(2^{2d} - 2^d))^{\phi(p)/d}, & \text{if } d \text{ is even} \\ 2((2^{2d} - 1)(2^{2d} - 2^d))^{\phi(p)/2d}, & \text{if } d \text{ is odd} \end{cases}$

We need the following lemmas:

Lemma 2. Let p be an odd prime such that order of $2 \ mod \ p$ is d. If ζ is a primitive p-th root of unity, then ζ and ζ^{-1} are the roots of the same irreducible factor of $\phi_p(x)$ over F_2 if and only if d is even.

Proof. Assume that ζ and ζ^{-1} are the roots of the same irreducible factor of $\phi_p(x)$ over F_2. It follows that -1 and 1 are in same 2-cycle $mod \ p$ and so there exist some $t < d$ such that $2^t \equiv -1 \ mod \ p$. Hence order of $2^t \ mod \ p$ is 2. Further, since $2^d \equiv 1 \ mod \ p$, it implies that $(2^t)^d \equiv 1 \ mod \ p$. Hence $2|d$.

Conversely, let d be even, say $d = 2t$. Then $2^t \equiv -1 \ mod \ p$ and hence -1 and 1 are in same 2-cycle $mod \ p$. The result follows. \qed

Lemma 3. Let ζ be a primitive p-th root of unity. If order of $2 \ mod \ p$ is d, then $[F_2(\zeta + \zeta^{-1}) : F_2] = \frac{d}{2}$, if d is even and $[F_2(\zeta + \zeta^{-1}) : F_2] = d$, if d is odd and in this case $F_2(\zeta + \zeta^{-1}) = F_2(\zeta)$.
Proof. We claim that \([F_2(\zeta) : F_2(\zeta + \zeta^{-1})] = 1\) or \(2\). If \([F_2(\zeta) : F_2(\zeta + \zeta^{-1})] = s > 2\), then the degree of the minimal polynomial of \((\zeta + \zeta^{-1})\) over \(F_2\) is \(\frac{d}{s}\), which is less than \(\frac{d}{2}\). Hence, there is a polynomial over \(F_2\) satisfied by \(\zeta\) of degree less than \(d\), which is impossible.

Now, if \(d\) is even, then by last lemma, we obtain a polynomial of degree \(d\) satisfied by \(\zeta\) and \(\zeta^{-1}\). It implies that there is a polynomial of degree \(d - 1\) satisfied by \(\zeta + \zeta^{-1}\). Hence \([F_2(\zeta + \zeta^{-1}) : F_2] < d\) and therefore, \([F_2(\zeta) : F_2(\zeta + \zeta^{-1})] = 2\). Further, if \(d\) is odd, then \([F_2(\zeta) : F_2(\zeta + \zeta^{-1})] \neq 2\). Hence \(F_2(\zeta) = F_2(\zeta + \zeta^{-1})\) and so \([F_2(\zeta + \zeta^{-1}) : F_2] = d\). \(\Box\)

Proof of the Theorem. Let the cyclotomic polynomial

\[
\phi_p(x) = f_1(x)f_2(x)\ldots f_s(x)
\]

be the product of irreducible factors over \(F_2\), where \(s = \frac{\phi(p)}{d}\). Assume that \(\gamma_i\) is a root of irreducible factor \(f_i(x)\) over \(F_2\). Define a matrix representation of \(D_{2p}\),

\[
T_{\gamma_i} : D_{2p} \to M_2(F_2(\gamma_i + \gamma_i^{-1}))
\]

by the assignment

\[
a \mapsto \begin{pmatrix} 0 & 1 \\ 1 & \gamma_i + \gamma_i^{-1} \end{pmatrix}, \quad b \mapsto \begin{pmatrix} 1 & 0 \\ \gamma_i + \gamma_i^{-1} & 1 \end{pmatrix}
\]

If \(d\) is even, then define \(T = T_0 \oplus T_{\gamma_1} \oplus T_{\gamma_2} \oplus \cdots \oplus T_{\gamma_s}\), the direct sum of the given representations \(T_{\gamma_i}, 1 \leq i \leq s\), and \(T_0\) is the trivial representation of \(D_{2p}\) over \(F_2\) of degree 1.
Suppose \(d \) is odd. Lemma (2) implies that \(\gamma_i \) and \(\gamma_i^{-1} \) are roots of the different irreducible factors of \(\phi_p(x) \). If \(\gamma_i^{-1} \) is a root of \(f_j(x) \), then choose \(\gamma_j = \gamma_i^{-1} \). Without loss of generality, assume that \(\gamma_1, \gamma_2, \ldots, \gamma_{s'} \) are the roots of distinct irreducible factors of \(\phi_p(x) \) such that \(\gamma_i \neq \gamma_j^{-1} \) for \(1 \leq i, j \leq s' \). Then define \(T = T_0 \oplus \bigoplus_{i=1}^{s'} T_{\gamma_i} \), the direct sum of all distinct matrix representation. Therefore,

\[
T : D_{2p} \to \mathcal{U}(F_2 \oplus M_2(F_2(\gamma_1 + \gamma_1^{-1}))) \oplus \cdots \oplus M_2(F_2(\gamma_k + \gamma_k^{-1})))
\]

given by

\[
a \mapsto \begin{pmatrix} 1, \begin{pmatrix} 0 & 1 \\ 1 & \gamma_1 + \gamma_1^{-1} \end{pmatrix} \end{pmatrix}, \cdots, \begin{pmatrix} 0 & 1 \\ 1 & \gamma_k + \gamma_k^{-1} \end{pmatrix}
\]

and

\[
b \mapsto \begin{pmatrix} 1, \begin{pmatrix} 1 & 0 \\ \gamma_1 + \gamma_1^{-1} & 1 \end{pmatrix} \end{pmatrix}, \cdots, \begin{pmatrix} 1 & 0 \\ \gamma_k + \gamma_k^{-1} & 1 \end{pmatrix}
\]

is a group homomorphism, where \(k = s = \frac{\phi(p)}{d} \), if \(d \) is even and \(k = s' = \frac{\phi(p)}{2d} \) if \(d \) is odd.

Extend this group homomorphism \(T \) to the algebra homomorphism

\[
T' : F_2 D_{2p} \to F_2 \oplus M_2(F_2(\gamma_1 + \gamma_1^{-1}))) \oplus \cdots \oplus M_2(F_2(\gamma_k + \gamma_k^{-1}))),
\]

where \(M_2(F_2(\gamma_i + \gamma_i^{-1}))) \) is the algebra of \(2 \times 2 \) matrices over the field \(F_2(\gamma_i + \gamma_i^{-1}) \).
Note that the representation T_{γ_i} is equivalent to S_{γ_i}, where

$$S_{\gamma_i}(a) = \begin{pmatrix} \gamma_i & 0 \\ 0 & \gamma_i^{-1} \end{pmatrix}, \quad S_{\gamma_i}(b) = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}.$$

Hence, for $x \in D_{2p}, T_{\gamma_i}(x) = M_i S_{\gamma_i}(x) M_i^{-1}$, where $M_i = \begin{pmatrix} 1 & 1 \\ \gamma_i & \gamma_i^{-1} \end{pmatrix}$.

Suppose that $x = \sum_{i=0}^{p-1} \alpha_i a^i + \sum_{i=0}^{p-1} \beta_i a^i b \in \text{Ker} T'$. Then $T'(x) = 0$ implies that

$$\sum_{i=0}^{p-1} \alpha_i + \sum_{i=0}^{p-1} \beta_i = 0 \quad (1)$$

and for $1 \leq j \leq k, \gamma_j$ and γ_j^{-1} satisfies the polynomials $g(x) = \alpha_0 + \alpha_1 x + \cdots + \alpha_{p-1} x^{p-1}$ and $h(x) = \beta_0 + \beta_1 x + \cdots + \beta_{p-1} x^{p-1}$ over F_2. It follows that irreducible factors of $\phi_p(x)$ are factors of $g(x)$ and $h(x)$.

Further, since all factors are co-prime, it follows that $\phi_p(x)$ divides $g(x)$ and $h(x)$ and hence $\alpha_i = \alpha_j$, and $\beta_i = \beta_j$, $0 \leq i, j \leq p - 1$. Thus, from equation (1), we have $\alpha_i = \beta_i, 0 \leq i \leq p - 1$ and therefore $\text{Ker} T' = F_2 \widehat{D}_{2p}$.

Further, the dimension of $(F_2 D_{2p}/F_2 \widehat{D}_{2p})$ and $F_2 \bigoplus_{i=1}^{k} M_2(F_2(\gamma_i + \gamma_i^{-1}))$ over F_2 are same. Hence

$$F_2 D_{2p}/F_2 \widehat{D}_{2p} \cong F_2 \bigoplus_{i=1}^{k} M_2(F_2(\gamma_i + \gamma_i^{-1})).$$

Since $F_2 \widehat{D}_{2p}$ is nilpotent, T' induces an epimorphism

$$T'' : \mathcal{U}(F_2 D_{2p}) \to \prod_{i=1}^{k} GL_2(F_2(\gamma_i + \gamma_i^{-1}))$$
such that $\ker T'' = \langle 1 + \widehat{D_{2p}} \rangle$. Hence

$$U(F_2D_{2p})/\langle 1 + \widehat{D_{2p}} \rangle \cong \prod_{i=1}^k \text{GL}_2(F_2(\gamma_i + \gamma_i^{-1}))$$

and therefore the result follows.

Structure of $\mathcal{B}(F_2D_{2p})$

Theorem 4. Let p be an odd prime such that order of $2 \mod p$ is d. Then, the group generated by the bicyclic units, i.e.,

$$\mathcal{B}(F_2D_{2p}) \cong \begin{cases}
\text{SL}_2(F_{2^d}) \times \cdots \times \text{SL}_2(F_{2^d}), & \text{if } d \text{ is even} \\
\text{SL}_2(F_{2^d}) \times \cdots \times \text{SL}_2(F_{2^d}), & \text{if } d \text{ is odd}
\end{cases}$$

where $\text{SL}_2(F)$ is the special linear group of degree 2 over F.

We need the following lemmas:

Lemma 5. $D_{2p} \cap \mathcal{B}(F_2D_{2p}) = \langle a \rangle$.

*Proof.** Since D_{2p} is in the normalizer of $\mathcal{B}(F_2D_{2p})$, it implies that $\mathcal{B}(F_2D_{2p}) \cap D_{2p}$ is a normal subgroup of D_{2p}. Therefore, it is either a trivial subgroup or $\langle a \rangle$.

We claim that $b \notin D_{2p} \cap \mathcal{B}(F_2D_{2p})$. For that we define a map

$$f : D_{2p} \rightarrow \langle g \mid g^2 = 1 \rangle$$

such that

$$f(a^i) = 1 \text{ and } f(a^i b) = g, 0 \leq i \leq p - 1.$$
Unit Group of F_2D_{2p}

Note that it is a group homomorphism and we can extend this linearly to an algebra homomorphism f' from F_2D_{2p} to $F_2\langle g \rangle$. It is easy to see that the image of the bicyclic units under f' is 1. If $b \in \mathcal{B}(F_2D_{2p})$, then $f'(b) = 1$, which is not possible. Therefore, $b \notin \mathcal{B}(F_2D_{2p})$. This shows that $D_{2p} \cap \mathcal{B}(F_2D_{2p}) \neq D_{2p}$.

Also observe that

$$u_{ab,a}u_{ab,a^2} \cdots u_{ab,a^l} = ab(1 + \widehat{D_{2p}})$$

and

$$u_{b,a}u_{b,a^2} \cdots u_{b,a^l} = b(1 + \widehat{D_{2p}}),$$

where $u_{a,b,a^i} = 1 + (a^i + a^{-i})(1 + a^ib)$ is a bicyclic unit of the group algebra F_2D_{2p} and $l = \frac{p-1}{2}$. It implies that

$$a = u_{ab,a}u_{ab,a^2} \cdots u_{ab,a^l}u_{b,a} \cdots u_{b,a^2}u_{b,a}.$$

Hence, $D_{2p} \cap \mathcal{B}(F_2D_{2p}) = \langle a \rangle$. □

Lemma 6. For $1 \leq i \leq k$, let γ_i be the primitive p-th root of unity described in the proof of the Theorem 1. Then the minimal polynomials of $\gamma_i + \gamma_i^{-1}, 1 \leq i \leq k$, are distinct.

Proof. Suppose that d is even. If ζ is a primitive p-th root of unity, then $[F_2(\zeta + \zeta^{-1}) : F_2] = \frac{d}{2}$. Assume that

$$f(x) = a_0 + a_1x + \cdots + a_{\frac{d}{2}}x^{\frac{d}{2}}$$

is the minimal polynomial over F_2 satisfied by both $\gamma_i + \gamma_i^{-1}$ and $\gamma_j + \gamma_j^{-1}$ for $i \neq j$. It implies that there is a polynomial of degree d over F_2
satisfied by both γ_i and γ_j. This is a contradiction, because the minimal polynomials of γ_i and γ_j over F_2 are co-prime. Hence the result follows.

Further, if d is odd, then $[F_2(\zeta + \zeta^{-1}) : F_2] = d$. Let $f(x)$ be the minimal polynomial over F_2 satisfied by both $\gamma_i + \gamma_i^{-1}$ and $\gamma_j + \gamma_j^{-1}$ for $i \neq j$. It follows that there is a polynomial $g(x)$ of degree $2d$ over F_2 satisfied by $\gamma_i, \gamma_j, \gamma_j$ and γ_j^{-1}. Since d is odd, the minimal polynomials of $\gamma_i^{\pm 1}$ and $\gamma_j^{\pm 1}$ over F_2 are co-prime. Hence the product of the minimal polynomials divides $g(x)$, which is a contradiction. This completes the proof of the lemma.

□

Proof of the theorem: Observe that the image of the bicyclic units of the group algebra F_2D_{2p} are in $\prod_{i=1}^{k} SL_2(F_2(\gamma_i + \gamma_i^{-1}))$ under the map T''. Suppose T''' is the restricted map of T'' to $B(F_2D_{2p})$, i.e.,

$$T''' : B(F_2D_{2p}) \rightarrow \prod_{i=1}^{k} SL_2(F_2(\gamma_i + \gamma_i^{-1}))$$

such that $T'''(x) = T''(x)$ for $x \in B(F_2D_{2p})$. Then $kerT''' \leq kerT''$. Since $b \notin B(F_2D_{2p})$ and $u_{b,a}u_{b,a^2} \cdots u_{b,a^l} = b(1 + \overline{D_{2p}})$, it follows that $kerT''' = \{1\}$.

Further, it is known that

$$SL_2(F_2(\zeta + \zeta^{-1})) = \left\langle \begin{pmatrix} 1 & u \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 0 \\ v & 1 \end{pmatrix} \mid u, v \in F_2(\zeta + \zeta^{-1}) \right\rangle.$$

To prove T''' is onto, it is sufficient to prove that the elements of the
form
\[
\left(\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \right), \ldots, \left(\begin{pmatrix} 1 & 0 \\ u_i & 1 \end{pmatrix} \right), \ldots, \left(\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \right)
\]
and
\[
\left(\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \right), \ldots, \left(\begin{pmatrix} 1 & v_i \\ 0 & 1 \end{pmatrix} \right), \ldots, \left(\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \right)
\]
where \(u_i, v_i \in F_2(\gamma_i + \gamma_i^{-1})\) have a preimage in \(\mathcal{B}(F_2D_{2p})\) under \(T''''\) for all \(1 \leq i \leq k\).

Assume that \(y_i = \prod_{j=1, j \neq i}^{k} f_j'((\gamma_i + \gamma_i^{-1})^j)\), such that \(f_j'(x)\) is the minimal polynomial of \((\gamma_j + \gamma_j^{-1})^j\) over \(F_2\). If \(g(x) = \prod_{j=1, j \neq i}^{k} f_j'(x)\), then \(g(\gamma_j + \gamma_j^{-1}) = 0\) for \(1 \leq j \leq k, j \neq i\) and \(g(\gamma_i + \gamma_i^{-1}) = y_i\), a nonzero element of \(F_2(\gamma_i + \gamma_i^{-1})\).

Take \(\{y_i, y_i(\gamma_i + \gamma_i^{-1}), \ldots, y_i(\gamma_i + \gamma_i^{-1})^{t-1}\}\) as a basis of \(F_2(\gamma_i + \gamma_i^{-1})\) over \(F_2\), where \(t = [F_2(\gamma_i + \gamma_i^{-1}) : F_2]\). Therefore, any element \(u_i\) of \(F_2(\gamma_i + \gamma_i^{-1})\) can be written as \(u_i = y_i \sum_{j=0}^{t-1} \alpha_j(\gamma_i + \gamma_i^{-1})^j\). Assume that \(u'(x) = g(x)u(x)\), where \(u(x) = \alpha_0 + \alpha_1 x + \cdots + \alpha_{t-1} x^{t-1} \in F_2[x]\) and therefore \(u'(x) \in F_2[x]\). It is clear that \(u'(\gamma_i + \gamma_i^{-1}) = u_i\) and \(u'(\gamma_j + \gamma_j^{-1}) = 0\) for \(1 \leq j \leq k, j \neq i\). Further, if \(u'(x) = a_0 + a_1 x + \cdots + a_m x^m\), then the generator \(X_i\), whose \(i\)-th component is \(\begin{pmatrix} 1 & 0 \\ u_i & 1 \end{pmatrix}\) and other components are the identity matrix, can be written as \(X_i = e_0 e_1 \cdots e_m\). Here \(e_j\) is an element of \(\prod_{i=1}^{k} SL_2(F_2(\gamma_i + \gamma_i^{-1}))\) such that
the r-th component of e_j is \[
\begin{pmatrix}
1 & 0 \\
a_j(\gamma_r + \gamma_r^{-1})^j & 1
\end{pmatrix},
\] for $0 \leq j \leq m$, $1 \leq r \leq k$. Now we will prove that the preimage of e_j is in $\mathcal{B}(F_2D_{2p})$ under the map T'''.

If $a_j = 0$, then it is trivial. Now assume that $a_j = 1$. Suppose that $M = (M_1, M_2, \ldots, M_k)$, where $M_r = \begin{pmatrix} 1 & 1 \\ \gamma_r & \gamma_r^{-1} \end{pmatrix}$. If

\[(\gamma_r + \gamma_r^{-1})^{j-1} = b_0 + \sum_{s=1}^{l-1} b_s(\gamma_r^s + \gamma_r^{-s}),\]

where $b_i \in F_2$ then the r-th component of $M^{-1}e_jM$ is

\[
\begin{pmatrix}
1 & 0 \\
0 & 1
\end{pmatrix} + (b_0 + \sum_{s=1}^{l-1} b_s(\gamma_r^s + \gamma_r^{-s})) \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}.
\]

By extending the matrix representation S_{γ_r} to an algebra homomorphism over F_2, we obtain that this element is an image of α under the algebra homomorphism S_{γ_r}, where $\alpha = 1 + (b_0 + \sum_{s=1}^{l-1} b_s(a^s + a^{-s}))(1 + b)$. Since $S_{\gamma_r}(\alpha) = M_r^{-1}T_{\gamma_r}(\alpha)M_r$, it follows that $e_j = T''(\alpha)$. If $b_0 = 0$, then

\[\alpha = \prod_{s=1}^{l-1} (1 + b_s(a^s + a^{-s})(1 + b)),\]

is product of bicyclic units of the group algebra F_2D_{2p}. Now if $b_0 = 1$, then

\[\alpha = b \prod_{s=1}^{l-1} (1 + b_s(a^s + a^{-s})(1 + b)).\]

Since $b(1 + \widehat{D_{2p}}) = u_{b,a} \ldots u_{b,a^l}$ and $1 + \widehat{D_{2p}}$ is in the kernel of T'', it implies that $\alpha(1 + \widehat{D_{2p}})$ is the preimage of e_j under the map T'''.
Therefore, the preimage of X_i is in $\mathcal{B}(F_2D_{2p})$. Similarly we can prove the same thing for other generators. Then

$$\prod_{i=1}^{k} SL_2(F_2(\gamma_i + \gamma_i^{-1})) = T''''(\mathcal{B}(F_2D_{2p})).$$

Hence

$$\mathcal{B}(F_2D_{2p}) \cong \prod_{i=1}^{k} SL_2(F_2(\gamma_i + \gamma_i^{-1}))$$

and so

$$|\mathcal{B}(F_2D_{2p})| = \begin{cases} (2^d(2^d - 1))^k & \text{if } d \text{ is even} \\ (2^d(2^{2d} - 1))^k & \text{if } d \text{ is odd.} \end{cases}$$

The structure of Unitary Subgroup and Unit Group

Theorem 7. The unitary subgroup $\mathcal{U}_*(F_2D_{2p})$ of the group algebra F_2D_{2p} is the semidirect product of the normal subgroup $\mathcal{B}(F_2D_{2p})$ with the group $\langle b \rangle$. Further, $\mathcal{U}(F_2D_{2p}) = \mathcal{U}_*(F_2D_{2p}) \times \prod_{i=1}^{k} \langle z_i \rangle$, where z_i is an invertible element in the center of the group algebra F_2D_{2p} of order $2^d - 1$, if d is even; otherwise it is of order $2^d - 1$.

Proof. Since $GL_2(F_2(\gamma + \gamma^{-1}))$ is the direct product of $SL_2(F_2(\gamma + \gamma^{-1}))$ with the group consisting of all nonzero scalar matrices, we have

$$\mathcal{U}(F_2D_{2p})/V \cong \prod_{i=1}^{k} (SL_2(F_2(\gamma_i + \gamma_i^{-1}))) \times (F_2(\gamma_i + \gamma_i^{-1}))^*I_{2 \times 2}),$$
where $F_2(\gamma + \gamma^{-1})^*$ is the group of all nonzero elements of $F_2(\gamma + \gamma^{-1})$.

Let $F_2(\gamma_i + \gamma_i^{-1})^* = \langle \eta_i \rangle$ for $1 \leq i \leq k$. Since $y_i = \prod_{j=1 \atop j \neq i}^{k} f_j'(\gamma_i + \gamma_i^{-1})$ is a non zero element of $F_2(\gamma_i + \gamma_i^{-1})$, take $\{y_i, y_i(\gamma_i + \gamma_i^{-1}), \ldots, y_i(\gamma_i + \gamma_i^{-1})^{t-1} \}$ as a basis of $F_2(\gamma_i + \gamma_i^{-1})$ over F_2. Here $t = \frac{d}{2}$ when d is even; otherwise $t = d$. Therefore, $\eta_i = y_i h_i(\gamma_i + \gamma_i^{-1}) = h_i'(\gamma_i + \gamma_i^{-1})$, where $h_i(x)$ and $h_i'(x) \in F_2[x]$. Also note that $h_i'(\gamma_j + \gamma_j^{-1}) = 0$ for $i \neq j$. If the constant coefficient of $h_i'(x)$ is $\alpha \eta_i$, then the image of $h_i'(a + a^{-1})$ under the map T' is the element x_i' such that the first component of x_i' is $\alpha \eta_i$, $(i+1)$-th component is $\begin{pmatrix} \eta_i & 0 \\ 0 & \eta_i \end{pmatrix}$ and all the remaining components are zero matrix. Further, if $y_0(x) = \prod_{i=1}^{k} f_i'(x)$, then $y_0(\gamma_i + \gamma_i^{-1}) = 0, 1 \leq i \leq k$ and the constant coefficient of $y_0(x)$ is 1. It follows that the image of $y_0(a + a^{-1})$ under the map T' is the element whose first component is 1 and remaining components are zero. Choose x_i such that $(i+1)$-th component is $\begin{pmatrix} \eta_i & 0 \\ 0 & \eta_i \end{pmatrix}$ and the remaining components are identity matrix. If z_i denotes a preimage of x_i, then either

$$z_i = \sum_{j=1 \atop j \neq i}^{k} h_j'(a + a^{-1})^{2^t-1} + h_i'(a + a^{-1})$$

or

$$z_i = \sum_{j=1 \atop j \neq i}^{k} h_j'(a + a^{-1})^{2^t-1} + h_i'(a + a^{-1}) + y_0(a + a^{-1})$$

which are in the center of $U(F_2D_{2^p})$ of order $2^t - 1$. Further, since $\langle z_i \rangle \cap \langle z_j \mid 1 \leq j \leq k, j \neq i \rangle = \{1\}$, take $W = \prod_{i=1}^{k} \langle z_i \rangle$. Also, note that
$W \cap U_*(F_2D_{2p}) = \{1\}$ and therefore $U(F_2D_{2p}) = W \times (B(F_2D_{2p}) \rtimes \langle b \rangle)$ and $U_*(F_2D_{2p}) = B(F_2D_{2p}) \rtimes \langle b \rangle)$. \(\square\)

Corollary 8. The group generated by bicyclic units $B(F_2D_{2p})$ and the unitary subgroup $U_*(F_2D_{2p})$ are normal subgroups of $U(F_2D_{2p})$.

Corollary 9. The commutator subgroup $U'(F_2D_{2p}) = U'_*(F_2D_{2p})$. Also, $U'(F_2D_{2p})$ is a normal subgroup of $B(F_2D_{2p})$.

Proof. Since $U(F_2D_{2p}) = W \times U_*(F_2D_{2p})$ such that W is in the center of F_2D_{2p}, it follows that $U'(F_2D_{2p}) = U'_*(F_2D_{2p})$. Further, since $U_*(F_2D_{2p}) = B(F_2D_{2p}) \rtimes \langle b \rangle$ and b is in the normalizer of $B(F_2D_{2p})$, it implies that $U'_*(F_2D_{2p}) \leq B(F_2D_{2p}) \leq U_*(F_2D_{2p})$ and hence the result follows. \(\square\)

References

[1] A. Bovdi and L. Erdei. Unitary units in modular group algebras of 2-groups. *Comm. Algebra*, 28(2):625–630, 2000.

[2] A. A. Bovdi and A. A. Sakach. The unitary subgroup of the multiplicative group of the modular group algebra of a finite abelian p-group. *Mat. Zametki*, 45(6):23–29, 110, 1989.

[3] V. Bovdi and T. Rozgonyi. On the unitary subgroup of modular group algebras. *ArXiv e-prints*, March 2008.

[4] Victor Bovdi and A. L. Rosa. On the order of the unitary subgroup of a modular group algebra. *Comm. Algebra*, 28(4):1897–1905, 2000.

[5] Manju Khan. Structure of the unit group of FD_{10}. *Serdica Math. J.*, 35(1):15–24, 2009.
[6] S. P. Novikov. Algebraic construction and properties of Hermitian analogs of K-
theory over rings with involution from the viewpoint of Hamiltonian formalism.
Applications to differential topology and the theory of characteristic classes. I.
II. Izv. Akad. Nauk SSSR Ser. Mat., 34:253–288; ibid. 34 (1970), 475–500, 1970.

[7] Robert Sandling. Units in the modular group algebra of a finite abelian p-group.
J. Pure Appl. Algebra, 33(3):337–346, 1984.

[8] Robert Sandling. Presentations for unit groups of modular group algebras of
groups of order 16. Math. Comp., 59(200):689–701, 1992.

[9] R. K. Sharma, J. B. Srivastava, and Manju Khan. The unit group of FS_3. Acta
Math. Acad. Paedagog. Nyházi. (N.S.), 23(2):129–142, 2007.

E-mail address: kuldeepk@iitrpr.ac.in, manju@iitrpr.ac.in

DEPARTMENT OF MATHEMATICS, INDIAN INSTITUTE OF TECHNOLOGY ROPAR, NANGAL
ROAD, RUPNAGAR - 140 001