Fast reset and suppressing spontaneous emission of a superconducting qubit

Cite as: Appl. Phys. Lett. 96, 203110 (2010); https://doi.org/10.1063/1.3435463
Submitted: 26 February 2010 . Accepted: 02 May 2010 . Published Online: 21 May 2010

M. D. Reed, B. R. Johnson, A. A. Houck, L. DiCarlo, J. M. Chow, D. I. Schuster, L. Frunzio, and R. J. Schoelkopf

ARTICLES YOU MAY BE INTERESTED IN

Broadband filters for abatement of spontaneous emission in circuit quantum electrodynamics
Applied Physics Letters 107, 172601 (2015); https://doi.org/10.1063/1.4934867

Planar superconducting resonators with internal quality factors above one million
Applied Physics Letters 100, 113510 (2012); https://doi.org/10.1063/1.3693409

Surface participation and dielectric loss in superconducting qubits
Applied Physics Letters 107, 162601 (2015); https://doi.org/10.1063/1.4934486

THE WORLD’S RESOURCE FOR VARIABLE TEMPERATURE SOLID STATE CHARACTERIZATION
Fast reset and suppressing spontaneous emission of a superconducting qubit

M. D. Reed,1,2* B. R. Johnson,1 A. A. Houck,1,2 L. DiCarlo,1 J. M. Chow,1 D. I. Schuster,1 L. Frunzio,1 and R. J. Schoelkopf1

1Departments of Physics and Applied Physics, Yale University, New Haven, Connecticut 06520, USA
2Department of Electrical Engineering, Princeton University, Princeton, New Jersey 08544, USA

(Received 26 February 2010; accepted 2 May 2010; published online 21 May 2010)

Spontaneous emission through a coupled cavity can be a significant decay channel for qubits in circuit quantum electrodynamics. We present a circuit design that effectively eliminates spontaneous emission due to the Purcell effect while maintaining strong coupling to a low-Q cavity. Excellent agreement over a wide range in frequency is found between measured qubit relaxation times and the predictions of a circuit model. Using fast (nanosecond time-scale) flux biasing of the qubit, we demonstrate in situ control of qubit lifetime over a factor of 50. We realize qubit reset with 99.9% fidelity in 120 ns. © 2010 American Institute of Physics. [doi:10.1063/1.3435463]

In circuit quantum electrodynamics (cQED), engineered artificial atoms used as quantum bits (qubits) interact strongly with the electromagnetic modes of a transmission-line microwave cavity.1 The large qubit–photon coupling affords capabilities such as coherent interactions of qubit and photon states,2,3 large coupling between spatially separated qubits mediated by the cavity bus,2,3,4 and nondestructive joint qubit readout.4,5 However, this strong coupling can also cause undesirable shortening of qubit lifetime (T1) due to radiative decay through the cavity.6 This effect, first described by Purcell,7 describes a quantized system coupled to spontaneous emission while maintaining strong coupling to the electromagnetic continuum. In cQED, qubits are generally sufficiently detuned to have suppressed relaxation but T1 can still be limited by decay through the cavity. As qubit lifetime is of paramount importance in quantum computing,6,7,8,9 a means of further inhibiting radiative decay is desirable.

The Purcell decay rate can be significantly reduced6 by increasing either the cavity quality factor Q or the detuning between the qubit (wq) and cavity (w) frequencies, Δ = wq − w, but these solutions have unwelcome implications of their own. For example, reducing the cavity decay rate κ = wq/ Q can diminish qubit readout fidelity15 because fewer signal photons are collected in a qubit lifetime. A large κ is also beneficial for resetting a qubit to its ground state by bringing it near to the cavity resonance and exploiting the Purcell-enhanced decay rate. Increasing Δ similarly has adverse effects on readout fidelity and applications that exploit large state-dependent frequency shifts.8,14,15 A better solution would improve qubit T1 independent of the cavity Q, leaving its optimization up to other experimental concerns.

In this letter, we introduce a design element for cQED termed the “Purcell filter,” which protects a qubit from spontaneous emission while maintaining strong coupling to a low-Q cavity. We demonstrate an improvement of qubit T1 by up to a factor of 50 compared to predicted values for an unfiltered device with the same κ/2π ≈ 20 MHz. Combining the large dynamic range of almost two orders of magnitude in T1 with fast flux control, we then demonstrate fast qubit reset to 99% (99.9%) fidelity in 80 ns (120 ns).

The filter works by exploiting the fact that the qubit and cavity are typically far detuned. We can therefore modify the qubit’s electromagnetic environment (e.g., the density of photon states at wq) without, in principle, affecting the cavity Q or resonant transmission. The relationship between qubit T1 due to spontaneous emission and admittance Y of the coupled environment is

\[
T_1^{\text{Purcell}} = \frac{C_q}{\text{Re}[Y(w_q)]}
\]

where Cq is the qubit capacitance [Fig. 1(a)].16,17 Previous work6 has demonstrated that Eq. (1) accurately models the observed T1Purcell when all modes of the cavity are taken into account in the calculation of Y. As the relationship holds for any admittance, this decay rate can be controlled by adjusting Y with conventional microwave engineering techniques. In particular, by manipulating Y to be purely reactive (imaginary-valued) at wq, T1Purcell diverges and the Purcell decay channel is turned off. This solution decouples the choice of cavity Q from the Purcell decay rate as desired, and, as we will see, has the advantage of using only conventional circuit elements placed in an experimentally convenient location.

We implement the Purcell filter with a transmission-line stub terminated in an open circuit placed outside the output capacitor Cout [Fig. 1(a)]. The length of this stub is set such that it acts as a λ/4 impedance transformer to short out the 50 Ω environment at its resonance frequency w. We choose Cout to be much larger than the input capacitor, Cin ≈ Cout/15, to ensure that the qubit would be overwhelmingly likely to decay through Cout. The Purcell filter eliminates decay through this channel, leaving only the negligible decay rate through Cin. The combined total capacitance Cout = 80 fF results in a small cavity Q. We use two identical stubs above and below the major axis of the chip [Fig. 1(b)] to keep the design symmetric in an effort to suppress any undesired on-chip modes. The cavity resonates at wq/2π = 8.04 GHz, the filter at w/2π = 6.33 GHz, and a flux bias...
line is used to address a single transmon qubit with a maximum frequency of 9.8 GHz, a charging energy $E_C/2\pi$ of 350 MHz, and a resonator coupling strength $g/2\pi$ of 270 MHz. Transmission through the cavity measured at 4.2 K was compared with our model to validate the microwave characteristics of the device [Fig. 1(c)]. There is a dip corresponding to inhibited decay through C_{out} near its resonance ω_c. The predicted and measured curves are also qualitatively similar, lending credence to the circuit model. This method provided a convenient validation before cooling the device to 25 mK in a helium dilution refrigerator.

We measured the qubit T_1 as function of frequency and found it to be in excellent agreement with expectations. T_1 is well modeled by the sum of the Purcell rate predicted by our filtered circuit model and a nonradiative internal loss $Q_{\text{NR}} \approx 27000$ (Fig. 2). The source of this loss is a topic of current research, though some candidates are surface two level systems, dielectric loss of the tunnel barrier oxide or corundum substrate, and nonequilibrium quasiparticles. This model contains only the fit parameter Q_{NR} combined with the independently measured values of g, E_C, ω_c, ω_f, C_{int}, and C_{out}. An improvement to T_1 due to the Purcell filter was found to be as much as a factor of 50 at 6.7 GHz by comparison to an unfiltered circuit model with the same parameters. This would be much greater in the absence of Q_{NR}. The device also exhibits a large dynamic range in T_1; about a factor of 80 between the longest and shortest times measured.

This range in T_1 can be a challenge to quantify because measurements made at small detunings, where T_1 is a few tens of nanoseconds, have a very low SNR. This issue was avoided through the use of fast flux control. For measurements at small Δ, the qubit is pulsed to the detuning under scrutiny, excited and allowed to decay, then pulsed to 5.16 GHz where measurement fidelity is higher, and interrogated. In the cases where the qubit is nearly in resonance with the cavity, the T_1 is actually so short that it constitutes an interesting resource.

The ability to reset, or quickly cool a qubit to its equilibrium state on demand, is an important capability with a diverse set of applications. Using a qubit to make repeated measurements of a coupled system, for example, requires resetting the qubit between interrogations. Similarly, experiment repetition rates can be greatly enhanced when they are otherwise limited by T_1. Fast reset is also vital for measurement-free quantum error correction. In this scheme, an error syndrome is encoded in two ancilla qubits and conditionally corrected using a three qubit gate. The ancillas, which now hold the entropy associated with the error, are then reset and reused. The Purcell filter is an ideal element with which to demonstrate reset as it allows for a relatively short reset time through the use of a low-Q cavity without limiting T_1 at the operating frequency.

The efficacy of reset in this device is readily quantified using a modified Rabi oscillation sequence, described in Fig. 3(a). Each experiment measures the degree to which the qubit is out of equilibrium after some reset time τ; the protocol is insensitive to any equilibrium thermal population of the qubit. The nonequilibrium population is found to exhibit pure exponential decay over three orders of magnitude. The qubit can be reset to 99.9% in 120 ns or any other fidelity depending on τ. The sequence is also performed with the qubit remaining in the operating frequency during the delay to demonstrate the large dynamic range in T_1 available in this system. In the case of multiqubit devices, it is possible that
We acknowledge helpful discussions with M. H. Devoret and L. S. Bishop. This research was supported by LPS/NSA under ARO Contract No. W911NF-05-1-0365 and by the NSF under Grant Nos. DMR-0653377 and DMR-0603369. Additional support provided by CNR-Istituto di Cibernetica, Pozzuoli, Italy (L.F.).

1A. Wallraff, D. I. Schuster, A. Blais, L. Frunzio, R. S. Huang, J. Majer, S. Kurnar, S. M. Girvin, and R. J. Schoelkopf, Nature (London) 431, 162 (2004).

2A. Sillanpää, J. I. Park, and R. W. Simmonds, Nature (London) 449, 438 (2007).

3J. Majer, J. M. Chow, J. M. Gambetta, J. Koch, B. R. Johnson, J. A. Schreier, L. Frunzio, D. I. Schuster, A. A. Houck, A. Wallraff, A. Blais, M. H. Devoret, S. M. Girvin, and R. J. Schoelkopf, Nature (London) 449, 443 (2007).

4S. Filipp, P. Maurer, P. J. Leek, M. Baur, R. Bianchetti, J. M. Fink, M. Göppl, L. Steffen, J. M. Gambetta, A. Blais, and A. Wallraff, Phys. Rev. Lett. 102, 200402 (2009).

5J. M. Chow, L. DiCarlo, J. M. Gambetta, A. Nunnenkamp, L. S. Bishop, L. Frunzio, M. H. Devoret, S. M. Girvin, and R. J. Schoelkopf, arXiv:0908.1955 (unpublished).

6M. D. Reed, L. DiCarlo, B. R. Johnson, L. Sun, D. I. Schuster, L. Frunzio, and R. J. Schoelkopf, arXiv:1004.4323 (unpublished).

7J. Gambetta, W. A. Braff, A. Wallraff, S. M. Girvin, and R. J. Schoelkopf, Phys. Rev. A 76, 012325 (2007).

8D. I. Schuster, A. A. Houck, J. A. Schreier, A. Wallraff, J. M. Gambetta, A. Blais, L. Frunzio, J. Majer, B. Johnson, M. H. Devoret, S. M. Girvin, and R. J. Schoelkopf, Phys. Rev. Lett. 102, 090502 (2009).

9J. M. Chow, J. M. Gambetta, L. Tornberg, J. Koch, L. S. Bishop, A. A. Houck, B. R. Johnson, L. Frunzio, S. M. Girvin, and R. J. Schoelkopf, Phys. Rev. Lett. 101, 080502 (2008).

10M. Purcell, Phys. Rev. 69, 691 (1946).

11P. Goy, J. M. Raimond, M. Gross, and S. Haroche, Phys. Rev. Lett. 50, 1903 (1983).

12J. M. Chow, J. M. Gambetta, L. Frunzio, S. M. Girvin, and R. J. Schoelkopf, arXiv:1004.4323 (unpublished).

13M. Neeley, M. Ansmann, R. C. Bialczak, M. Hofheinz, N. Katz, E. Lucero, A. O’Connell, H. Wang, A. N. Cleland, and J. M. Martinis, Phys. Rev. B 77, 180508 (2008).

14J. Majer, J. A. Houck, J. Koch, D. I. Schuster, B. R. Johnson, J. M. Chow, J. M. Gambetta, J. Majer, L. Frunzio, M. H. Devoret, S. M. Girvin, and R. J. Schoelkopf, Phys. Rev. B 77, 180502 (2008).

15A. Shnirman, G. Schön, I. Martin, and Y. Makhlin, Phys. Rev. Lett. 94, 127005 (2005).

16A. A. Houck, M. Ansmann, R. C. Bialczak, M. Hofheinz, N. Katz, E. Lucero, C. McKenney, M. Neeley, H. Wang, E. M. Weig, A. N. Cleland, and J. M. Martinis, Appl. Phys. Lett. 92, 112903 (2008).

17J. M. Martinis, K. B. Cooper, R. McDermott, M. Steffen, M. Ansmann, K. D. Osborn, K. Cicak, S. Oh, D. P. Pappas, R. W. Simmonds, and C. C. Yu, Phys. Rev. Lett. 95, 210503 (2005).

18J. M. Martinis, M. Ansmann, and J. Aumentado, Phys. Rev. Lett. 103, 097002 (2009).

19R. G. Hulet, E. S. Hilfer, and D. Kleppner, Phys. Rev. Lett. 55, 2137 (1985).

20W. Jie, A. Anderson, E. A. Hinds, D. Meschede, L. Møi, and S. Haroche, Phys. Rev. Lett. 58, 666 (1987).

21J. M. Chow, J. M. Gambetta, L. Tornberg, J. Koch, L. S. Bishop, A. A. Houck, B. R. Johnson, L. Frunzio, S. M. Girvin, and R. J. Schoelkopf, Phys. Rev. Lett. 102, 090502 (2009).

22J. M. Gambetta, W. A. Braff, A. Wallraff, S. M. Girvin, and R. J. Schoelkopf, Phys. Rev. A 76, 012325 (2007).

23J. M. Chow, J. M. Gambetta, L. Tornberg, J. Koch, L. S. Bishop, B. R. Johnson, D. I. Schuster, J. Majer, A. Blais, L. Frunzio, S. M. Girvin, and R. J. Schoelkopf, Nature (London) 449, 515 (2007).

24L. DiCarlo, J. M. Chow, J. M. Gambetta, L. S. Bishop, B. R. Johnson, D. I. Schuster, J. Majer, A. Blais, L. Frunzio, S. M. Girvin, and R. J. Schoelkopf, Nature (London) 460, 240 (2009).

25D. Esteve, M. H. Devoret, and J. M. Martinis, Phys. Rev. B 34, 158 (1986).

26M. Neely, M. Ansmann, R. C. Bialczak, M. Hofheinz, N. Katz, E. Lucero, A. O’Connell, H. Wang, A. N. Cleland, and J. M. Martinis, Phys. Rev. B 77, 180508 (2008).

27J. A. Schreier, A. A. Houck, J. Koch, D. I. Schuster, B. R. Johnson, J. M. Chow, J. M. Gambetta, J. Majer, L. Frunzio, M. H. Devoret, S. M. Girvin, and R. J. Schoelkopf, Phys. Rev. B 77, 180502 (2008).

28A. Shnirman, G. Schön, I. Martin, and Y. Makhlin, Phys. Rev. Lett. 94, 127005 (2005).

29A. D. O’Connell, M. Ansmann, R. C. Bialczak, M. Hofheinz, N. Katz, E. Lucero, C. McKenney, M. Neeley, H. Wang, E. M. Weig, A. N. Cleland, and J. M. Martinis, Appl. Phys. Lett. 92, 112903 (2008).

30J. M. Martinis, K. B. Cooper, R. McDermott, M. Steffen, M. Ansmann, K. D. Osborn, K. Cicak, S. Oh, D. P. Pappas, R. W. Simmonds, and C. C. Yu, Phys. Rev. Lett. 95, 210503 (2005).

31J. M. Martinis, M. Ansmann, and J. Aumentado, Phys. Rev. Lett. 103, 097002 (2009).

32B. R. Johnson, M. D. Reed, A. A. Houck, D. I. Schuster, L. S. Bishop, E. Ginossar, J. M. Gambetta, L. DiCarlo, L. Frunzio, S. M. Girvin, and R. J. Schoelkopf, arXiv:1003.2734 (unpublished).

33N. D. Mermin, Quantum Computer Science (Cambridge University Press, New York, 2007).

34M. D. Reed, L. DiCarlo, B. R. Johnson, L. Sun, D. I. Schuster, L. Frunzio, and R. J. Schoelkopf, arXiv:1004.4323 (unpublished).