Electronic structure, magnetism and disorder in the Heusler compound Co$_2$TiSn

Hem Chandra Kandpal1, Vadim Ksenofontov1, Marek Wojcik2, Ram Seshadri3 and Claudia Felser1

1 Institut für Anorganische Chemie und Analytische Chemie, Johannes Gutenberg-Universität, Staudinger Weg 9, 55099 Mainz, Germany
2 Institute of Physics, Polish Academy of Sciences, Al. Lotnikow 32/46, 02-668 Warszawa, Poland
3 Materials Department and Materials Research Laboratory, University of California, Santa Barbara, CA 93106, USA

E-mail: kandpal@uni-mainz.de

Received 16 October 2006, in final form 14 November 2006
Published 2 March 2007
Online at stacks.iop.org/JPhysD/40/1587

Abstract
Polycrystalline samples of the Heusler compound Co$_2$TiSn have been prepared and studied using bulk techniques (x-ray diffraction and magnetization) as well as local probes (119Sn Mössbauer spectroscopy and 59Co nuclear magnetic resonance spectroscopy) in order to determine how disorder affects the half-metallic behaviour and also to establish the joint use of Mössbauer and NMR spectroscopies as a quantitative probe of local atom ordering in these compounds. Additionally, density functional electronic structure calculations on ordered and partially disordered Co$_2$TiSn compounds have been carried out at a number of different levels of theory in order to simultaneously understand how the particular choice of DFT scheme as well as disorder affects the computed magnetization. Our studies suggest that a sample which seems well ordered by x-ray diffraction and magnetization measurements can possess up to 10% of antisite (Co/Ti) disordering. Computations similarly suggest that even 12.5% antisite Co/Ti disorder does not destroy the half-metallic character of this material. However, the use of an appropriate level of non-local DFT is crucial.

1. Introduction
In recent years, the challenge of creating spintronic devices [1] has increasingly required, for spin valves and for spin injection, ferromagnetic materials with high Curie temperatures, high magnetic moments and high spin polarization. These are invariably attributes of half-metallic ferromagnets [2]. A half-metal is a ferromagnet with a gap in one of the spin directions at the Fermi energy ϵ_F. Amongst the numerous compounds studied which have this property, the Heusler compounds are perhaps the most promising. Many recent investigations on bulk [3–8] and thin film [9–13] Heusler compounds have been carried out, and their use in devices has been investigated as well [11, 14–19].

A number of electronic structural and magnetic studies have been carried out on one specific Heusler compound Co$_2$TiSn. For example, Majumdar et al [20] have observed a semiconductor–metal transition at the Curie temperature of this compound at 350 K, for which they invoked the low carrier concentration at the ϵ_F. Pierre et al [21] have systematically studied the magnetic behaviour of Co$_2$TiSn. A number of theoretical studies on this compound have also been carried out [22–25]. Despite this considerable body of theoretical and experimental work, some of the behaviour of Co$_2$TiSn remains ambiguous.

The goal of this contribution is twofold. We use a combination of x-ray diffraction and magnetization measurements on a well-annealed (800 K, 14 days) polycrystalline sample of
Co$_2$TiSn to establish that it seems, by these techniques, to be a well-ordered, and a full (integral) moment ferromagnet, which we treat as a criterion for its being a half-metal. We then use the local probes of 119Sn Mössbauer spectroscopy and 59Co spin-echo nuclear magnetic resonance spectroscopy to accurately establish the degree of antisite disorder in this seemingly well-ordered compound. Finally, we establish that different levels of the density functional theory provide distinctly different results regarding whether the compound is half-metallic or not. Using the highest level of these computations, we demonstrate that as much as even 12.5% antisite Co/Ti disorder does not destroy the half-metallic character.

2. Experimental and computational methods

Co$_2$TiSn was prepared by arc-melting the elements under an argon atmosphere after many pump/purge steps using a 10^{-4} mbar vacuum. The arc-melting procedure was repeated three times to ensure homogeneity. The product was subsequently sealed in an evacuated silica tube and annealed at 800 K for 14 days. The room temperature x-ray diffraction pattern of Co$_2$TiSn was measured on a Bruker D8 instrument operated in reflection geometry with a MoK$_\alpha_1$ x-ray source. To improve statistics, three datasets were collected and used in the Rietveld refinement. SQUID magnetization measurements on the annealed sample were performed on a Quantum Design MPMS 5XL magnetometer. The measured saturation magnetic moment was $2 \mu_B$ per formula unit at 5 K.

Mössbauer measurements on powder samples were performed in the transmission geometry using a constant-acceleration spectrometer and a He bath cryostat. 119Sn Mössbauer spectrum was measured using a 10 mCl 119Sn (CaSnO$_3$) source. The Recoil 1.03 Mössbauer analysis software was used to fit the experimental spectrum [26]. 59Co NMR experiments on samples of powdered Co$_2$TiSn were carried out at 4.2 K using a broadband phase-sensitive spin-echo spectrometer [27]. The NMR spectrum was recorded by measuring spin-echo intensities. In the final NMR spectrum, the intensities were corrected for the enhancement factor and for the usual c^2 dependence of spectrum intensity, to obtain relative intensities that are proportional to the number of nuclei with a given NMR resonance frequency. The external magnetic field was zero, and a constant excitation RF field was used [28].

We have used a combination of four different first principles density functional theory codes: the full-potential linear augmented plane wave code WIEN2K [29] and the principles density functional codes: the full-potential software was used to fit the experimental spectrum [26]. 59Co relativistic Korringa–Kohn–Rostoker SPRKKR [32] method as atomic sites (SPRKKR) and atomic and interstitial sites (LMTO-ASA). The experimental cell parameter was used in all the calculations.

The exchange-correlation energy functional was evaluated within the local density approximation (LDA), using the von-Barth–Hedin [33], as well as the generalized gradient approximation (GGA), using the Perdew–Burke–Ernzerhof [34] parametrization. Muffin-tin radii (RMTs) were taken in

![Figure 1. MoK$_\alpha$ x-ray powder diffraction pattern of an annealed Co$_2$TiSn sample, plotted on a semilog scale. Points are data, and the grey line is the Rietveld fit. The difference profile is also displayed in the panel below, in linear counts. The inset is the Heusler crystal structure showing Co atoms (small black spheres) at 8a ($\frac{1}{2}$,$\frac{1}{2}$,$\frac{1}{2}$), Ti atoms (small light-grey spheres) at 4a (0,0,0) and Sn atoms (large dark-grey spheres) at 4b ($\frac{1}{2}$,$\frac{3}{2}$,$\frac{1}{2}$). Vertical lines at the top of the plot are the expected a_1 and a_2 peak positions. The low angle peaks are indexed.](image)

the range 2.3–2.36 aBohr for all the atoms, and this resulted in nearly touching spheres. Self-consistent calculations employed a grid of 455 irreducible k points on a $25 \times 25 \times 25$ mesh in the irreducible wedge of the Brillouin zone. This number of irreducible k points was found to be sufficient for convergence. The energy convergence criterion was set to 10^{-5}. Charge convergence was monitored concurrently.

3. Results and discussion

3.1. Experiments

Figure 1 displays the Mo-K$_\alpha$ x-ray powder diffraction pattern of the annealed Co$_2$TiSn sample. Experimental data are displayed as points. The data were subject to refinement using the Rietveld method as implemented in the XND code [35]. The grey line is the Rietveld fit ($R_{Bragg} = 3.7\%$) to the cubic $Fm\bar{3}m$ Heusler structure with a cell parameter that is refined to 6.0718(3)\AA. Since the atomic number of Sn (Z = 50) is well distinguished from the atomic numbers of Ti (Z = 22) and Co (Z = 27), we performed a number of simulations where the Sn site was partially occupied by these lighter atoms. These simulations suggested that Sn is fully ordered in this compound. The small Z difference between Co and Ti did not allow for their relative occupancies in the two sites to be refined, so that in the refinement model, their occupancies were fixed to one corresponding to 8.8% antisite Co/Ti disorder as suggested by the other local probes presented here. The refined isotropic thermal parameters for all atoms were somewhat large but reasonable, in the range $B = 1.4$ to 1.7 \AA^2.

1588
The 119Sn Mössbauer spectrum of the annealed sample of Co$_2$TiSn measured at room temperature is shown in figure 2(a). To fit the spectrum a magnetic hyperfine field distribution model was employed. The Co$_2$TiSn spectrum can be decomposed into three sub-spectra with the same isomer shift, in accordance with the cubic structure of Co$_2$TiSn. Two satellite lines located at $f_D = 27(3)$ MHz and $f_E = 35(4)$ MHz correspond to Co atoms experiencing higher hyperfine fields in comparison to the main line. We consider the main line as originating from Co atoms in ordered stoichiometric surroundings, whereas the satellites stem from Co positions with Co atoms in their first coordination sphere. The first

Figure 2. (a) 119Sn Mössbauer spectrum of annealed Co$_2$TiSn sample recorded at 295 K and (b) the hyperfine magnetic field distribution on Sn atoms in Co$_2$TiSn. The spectrum is fit using a single isomer shift but assuming the following distributions of hyperfine fields and their relative intensities: 65.9(1) kOe (49%), 56.4(8) kOe (39%) and 20(1) kOe (12%).

The 119Sn Mössbauer spectrum of the annealed sample of Co$_2$TiSn measured at room temperature is shown in figure 2(a). To fit the spectrum a magnetic hyperfine field distribution model was employed. The Co$_2$TiSn spectrum can be decomposed into three sub-spectra with the same isomer shift IS $= 1.48(2)$ mm s$^{-1}$ and zero quadrupole splitting. The partial intensities and hyperfine magnetic fields of the three sub-spectra are provided in the caption of figure 2. A resolved hyperfine structure is revealed in the distribution $p(H)$ displayed in figure 2(b). The asymmetrical distribution has a maximum at 65.9(1) kOe and a small intensity at zero value of the hyperfine field. Note that the hyperfine field density distribution curve for a completely ordered compound should contain only one symmetrical peak. The asymmetry in the $p(H)$ distribution as a function of the hyperfine field suggests partial disordering of the environment around Sn. To complete the interpretation, we turn to 59Co NMR spectroscopy.

The 59Co NMR spectrum of Co$_2$TiSn acquired at 5 K is presented in figure 3. The resonance frequencies f are related to the hyperfine fields (indicated on the upper abscissa) through the gyromagnetic ratio, $g = 1.0103$ kHz Oe$^{-1}$. The spectrum can be decomposed into five Gaussian peaks A to E with the parameters described in the caption. The dominant line in the spectrum at frequency $f_C = 21.1(3)$ MHz is unsplit in agreement with the cubic structure of Co$_2$TiSn. Two satellite lines located at $f_D = 27(3)$ MHz and $f_E = 35(4)$ MHz correspond to Co atoms experiencing higher hyperfine fields in comparison to the main line. We consider the main line as originating from Co atoms in ordered stoichiometric surroundings, whereas the satellites stem from Co positions with Co atoms in their first coordination sphere. The first

Figure 3. 59Co NMR spectrum of Co$_2$TiSn. The data could be fit using five Gaussian peaks whose centres are indicated by vertical grey lines. The resonance frequencies (relative intensities) of the five peaks (labelled A to E) are $f_A = 13.7(3)$ MHz (10%), $f_B = 17.3(4)$ MHz (8%), $f_C = 21.1(3)$ MHz (60%), $f_D = 27(3)$ MHz (15%) and $f_E = 35(4)$ MHz (7%). The upper abscissa displays the equivalent hyperfine fields. The insets show the (4Ti + 4Sn) coordination of Co and the 8Co coordination of Sn.
the antise-site disor­dering can be approximately written as
\[\text{[Co}_{2z-0.09}\text{Ti}_{0.09}]\text{[Ti}_{1-0.09}\text{Co}_{0.09}]\text{Sn} \text{ or more concisely as} \]
\[\text{(Co}_{0.91}\text{Ti}_{0.09})(\text{Ti}_{0.09}\text{Co}_{0.09})\text{Sn}. \]

With an understanding of disorder from NMR, we can return to the x-ray diffraction in order to understand why it is unable to discern the disorder. The exchange of Ti with Co atoms on both 8a positions, as suggested by NMR, is indicative of the structure being partially DO3-like. Because both the usual Heusler (L2₁) and the DO₃ structure type have the same space group (Fm₃m) and because the atomic numbers of Ti and Co are not well separated, the determined composition \((\text{Co}_{0.91}\text{Ti}_{0.09})(\text{Ti}_{0.09}\text{Co}_{0.09})\text{Sn} \) is not easily distinguished by x-ray diffraction from pristine Co₂TiSn.

The site assignment of Sn atoms follows from the statistic analysis of intensities obtained from Mössbauer spectroscopic measurements. The first coordination sphere of Sn atoms comprises eight Co atoms. Partial substitution of Co atoms by Ti atoms should diminish the hyperfine magnetic field of Sn atoms. This effect clearly follows from the hyperfine field distribution presented in the caption of figure 2. The sub-spectrum with a hyperfine field of 65.9(1) kOe can be assigned to the ‘undisturbed’ configuration of Sn atoms. The sub-spectrum with the reduced hyperfine field of 56.4(8) kOe corresponds to Sn with seven Co and one Ti neighbours. The part of the distribution with a hyperfine field of 20(1) kOe indicates the further increase in the amount of Ti atoms substituting Co atoms in the first coordination sphere of Sn; 6 Co and 2 Ti. The binomial distribution then suggests 8.6% of Ti atoms substituting Co on average, which is in excellent agreement with the 8.8% proposed based on the \(^{59}\text{Co}\) NMR experiment. The composition \((\text{Co}_{0.91}\text{Ti}_{0.09})(\text{Ti}_{0.09}\text{Co}_{0.09})\text{Sn} \) is therefore consistent with the \(^{119}\text{Sn}\) Mössbauer data as well.

3.2. Computation

Densities of state of ordered Co₂TiSn obtained using the different methods are shown in figure 4. It is seen that the methods using spherical potentials (LMT0-ASA and SPRKKR) fail to obtain the correct, measured full moment, which we take here to mean a half-metallic ground state. Panel (a) of this figure shows that within these computational schemes, minority spin states are occupied. The full-potential schemes embodied in the \(\text{Wien2k}\) and \(\text{FPLMTO}\) codes, however, do correctly obtain a minority gap in this compound and the full, measured magnetic moment of 2 \(\mu_B\) per formula unit. Very little, if any, difference is seen between the two spherical potential codes, and between the two full-potential methods. The calculated moments using different codes and using LDA and GGA are summarized in table 1. The calculated total magnetic moments are in the range 0.84–2.00 \(\mu_B\). It is also noted that in addition to using full-potential methods, gradient corrections (GGA) help to obtain the correct full moment electronic structure description of this compound.

In agreement with our NMR and Mössbauer experiments, the most probable defects in Co₂TiSn are Co–Ti swap, which give rise to the general formula \((\text{Co}_{2z-\text{Ti}}\text{Ti}_{1-\text{Co}}\text{Co}_{\text{Sn}}) \) with \(z \) in this case being close to 0.09. Two other kinds of disorder [36] can be considered: a Co-antisite where a Ti atom is replaced by Co, and a Ti-antisite where a Co atom is replaced by Ti. We do not consider any disordering of Sn since neither the local probes nor x-ray diffraction give any suggestion of it. We have considered all three cases of disordering in band structure calculations, with a disordering rate of 12.5%. This value was chosen because it is easily implemented in supercells involving doubling lattice parameters in all three directions. It is also close to what is experimentally observed. It should be noted that all three modes of disorder require lowering of the symmetry from cubic.

Figure 5 shows the \(\text{Wien2k}\)-GGA densities of state, scaled to one Co₂TiSn formula unit, for the three cases of disordering. In order to focus on the gap in the minority spin direction, the data are displayed in a small window of energy around \(\epsilon_F\). It is seen that in all the cases, the minority gap at \(\epsilon_F\) is almost lost. In general, these Heusler compounds seem to be robust half-metals. The calculations refer to zero kelvin, and it can be expected that smearing of

![Figure 4](image-url)

Figure 4. (a) Densities of state of ordered Co₂TiSn obtained using the LMT0-ASA and SPRKKR codes. (b) Densities of state of ordered Co₂TiSn obtained using the \(\text{Wien2k}\) and \(\text{FPLMTO}\) codes. 0 on the energy axis is \(\epsilon_F\). All the calculations used the GGA.

Table 1. Magnetic moments of ordered Co₂TiSn calculated using different schemes.

Code	LDA moment (\(\mu_B\))	GGA moment (\(\mu_B\))
LMT0-ASA	0.84	1.40
SPRKKR	1.11	1.55
\(\text{Wien2k}\)	1.99	2.00
\(\text{FPLMTO}\)	1.99	2.00
Electronic structure, magnetism and disorder in Co$_2$TiSn

4. Conclusions

This work allows a number of conclusions to be drawn from the combination of experiments and computation on an important Heusler compound. From experiments, we observe that compounds that seem to be ordered, from x-ray diffraction and from magnetization measurements, can through local probes such as Mössbauer and NMR be found to possess significant and quantifiable antisite disorder. In this particular case, the precise nature of the disorder is consistent with approximately 9% of Co and Ti exchanging their lattice sites. The power of Mössbauer and NMR used together in establishing local disorder has been demonstrated.

Computationally, the very interesting result is demonstrated that different implementations of the density functional theory provide distinctly different results. To correctly reproduce the half-metallic ground state of Co$_2$TiSn, both non-local descriptions of the exchange-correlation functional (GGA) as well as, more importantly, non-spherical potentials are required to be used in the calculations. Thus, it is only the full-potential methods that are able to correctly represent the electronic structure of Co$_2$TiSn. In agreement with experiment, the system can accommodate quite a large degree of antisite disorder without losing its half-metallic character.

Acknowledgments

This work is financially supported by the DFG (project TP1 and TP7 in research group FG 559). RS gratefully acknowledges the National Science Foundation for support through a Career Award (DMR04–49354). We thank Dr Gerhard H Fecher for his many inputs.

References

[1] Wolf S A, Awschalom D D, Buhrman R A, Daughton J M, von Molnar S, Roukes M L, Chichkeninova A Y and Treger D M 2001 Science 294 1488
[2] de Groot R A, Mueller F M, Engen P G v and Buschow K H J 1983 Phys. Rev. Lett. 50 2024
[3] Block T, Felser C, Jakob G, Einsling J, Mühling B, Gültich P and Cava R J 2003 J. Solid State Chem. 176 646
[4] Umetsu R Y, Kobayashi K, Kaihama R, Fujita A, Fukushima K, Ishida K and Sakuma A 2004 Appl. Phys. Lett. 85 2011
[5] Umetsu R Y, Kobayashi K, Fujita A, Oikawa K, Kaihama R, Ishida K, Endo N, Fukushima K and Sakuma A 2005 Phys. Rev. B 72 214412
[6] Wurmhul S, Fecher G H, Kamphui C, Ksenofontov V, Felser C, Lin H-J and Morais J 2005 Phys. Rev. B 72 184434
[7] Wurmhul S et al 2006 J. Phys. D: Appl. Phys. 39 803
[8] Balke B, Fecher G H, Kamphui C, Felser C, Kobayashi K, Ikemaga E, Kim J-J and Ueda S 2006 Phys. Rev. B 74 104405
[9] Grabis J, Bergmann A, Nefedov A, Westerhol K and Zabel H 2005 Phys. Rev. B 72 204437
[10] Inomata K, Okamura S, Miyazaki A, Kikuchi M, Tuzuka N, Wojcik M and Jedryka E 2006 J. Phys. D: Appl. Phys. 39 816
[11] Yamamoto M, Marakake T, Ishikawa T, Matsuda K, Uemura T and Arita M 2006 J. Phys. D: Appl. Phys. 39 824
[12] Bergmann A, Grabis J, Nefedov A, Westerhol K and Zabel H 2006 J. Phys. D: Appl. Phys. 39 842
[13] Singh L J, Barber Z H, Kohn A, Miyoshi Y, Bugoslavsky Y, Branford W R and Cohen I F 2006 Appl. Phys. Lett. 84 2367
[14] Kämmerer S, Thomas A, Hüttner A and Reiss G 2004 Appl. Phys. Lett. 85 79
[15] Okamura S, Miyazaki A, Sugimoto S, Tuzuka N and Inomata K 2005 Appl. Phys. Lett. 86 232503
[16] Sakuraba Y, Hattori M, Oogane Y, Ando Y, Kato H, Sakuma A, Miyazaki T and Kubota H 2006 Appl. Phys. Lett. 88 192508
[17] Sakuraba Y, Miyakoshi T, Oogane Y, Ando Y, Sakuma A, Miyazaki T and Kubota H 2006 Appl. Phys. Lett. 89 0528508
[18] Oogane Y, Sakuraba Y, Nakata J, Kubota H, Ando Y, Sakuma A and Miyazaki T 2006 J. Phys. D: Appl. Phys. 39 834
[19] Tezuka N, Ikeda N, Miyaraki A, Sugimoto S, Kikuchi M and Inomata K 2006 Appl. Phys. Lett. 89 112514
[20] Majumdar S, Chattopadhyay M K, Sharma V K, Sokhey K J S, Roy S B and Chaddah P 2005 Phys. Rev. B 72 012417
[21] Pierre J, Skolozdra R V and Stadnyk Y V 1993 J. Magn. Magn. Mater. 128 93
[22] Mohan P, Blaha P and Schwarz R K 1995 J. Magn. Magn. Mater. 140–144 183
[23] Lee S C, Lee T D, Blaha P and Schwarz R K 2005 J. Appl. Phys. 97 103C07
[24] Hickey M C, Husmann A, Holmes S N and Jones G A 2006 J. Phys.: Condens. Matter 18 2897
[25] Muru Y, Shirai M and Nagao K 2006 J. Appl. Phys. 99 083112
[26] Spiering H, Døeke and Bottyan L 2000 Hyperfine Interact. 125 197
[27] Nadolski S, Wojcik M, Jedryka E and Nesteruk K 1995 J. Magn. Magn. Mater. 140–144 2187

Figure 5. Densities of state of disordered Co$_2$TiSn obtained using the WIEN2K code: (a) 12.5% Co substituting Ti; (b) 12.5% Ti substituting Co; (c) 12.5% Co/Ti swap.
[28] Bibes M, Balcells L, Valencia S, Fontcuberta J, Wojcik M, Jedryka E and Nadolski S 2001 Phys. Rev. Lett. 87 067210

[29] Blaha P, Schwarz K, Madsen G K H, Kvasnicka D and Luitz J 2001 WIEN2K, an augmented plane wave + local orbitals program for calculating crystal properties http://www.wien2k.at

[30] Savrasov S Y and Savrasov D Y 1992 Phys. Rev. B 46 12181

[31] Jepsen O and Andersen O K 2000 Stuttgart TB-LMTO-ASA Program Version 47 http://www.fkf.mpg.de/andersen/

[32] Ebert H 2005 The Munich SPR-KKR Package, Version 3.6 http://olymp.cup.uni-muenchen.de/ak/ebert/sprkr

[33] von Barth U and Hedin L 1972 J. Phys. C: Solid State Phys. 5 1629

[34] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865

[35] Béjar J F and Baldinozzi G 1998 IUCr CPD Newsletter vol 20, p 3

[36] Picozzi S, Continenza A and Freeman A J 2004 Phys. Rev. B 69 094423