Abstract. The rate of convergence of simple random walk on the Heisenberg group over \(\mathbb{Z}/n\mathbb{Z} \) with a standard generating set was determined by Bump et al \[1, 2\] to be \(O(n^2) \). We extend this result to random walks on the same groups with an arbitrary minimal symmetric generating set. We also determine the rate of convergence of simple random walk on higher-dimensional versions of the Heisenberg group with a standard generating set. We obtain our results via Fourier analysis, using an eigenvalue bound for sums of twisted circulant matrices. The key tool is a generalization of a version of the Heisenberg Uncertainty Principle due to Donoho-Stark \[4\].

1. Introduction

In this paper we establish upper bounds on the norms of certain sums of Hermitian matrices. Our interest in this result is twofold. First, using standard Fourier analytic techniques developed by Diaconis \[3\], our bounds enable an analysis of rates of convergence for a family of random walks on various finite Heisenberg groups, building on work of Bump et al. \[1\]. Second, we obtain our bound using a type of “uncertainty principle” that may be useful in analyzing other related problems.

1.1. Heisenberg groups. The Heisenberg group over a ring \(R \) is the set of 3 \(\times \) 3 matrices of the form

\[
\begin{pmatrix}
1 & x & z \\
0 & 1 & y \\
0 & 0 & 1
\end{pmatrix},
\]

with \(x, y, z \in R \), under the usual operation of matrix multiplication. In this paper we take \(R = \mathbb{Z}/n\mathbb{Z} \) for an odd prime integer \(n \). Letting \((x, y, z)\) denote the above matrix, the resulting Heisenberg group \(H(n) \) is generated by \(X = (1, 0, 0) \) and \(Y = (0, 1, 0) \), since \(XYX^{-1}Y^{-1} = (0, 0, 1) \). This group has order \(n^3 \) and center \(\{(0, 0, z)\} \) of size \(n \).

The stipulations that \(n \) be odd and prime are mainly for convenience.

The authors of \[1\] establish the rate of convergence of random walk on \(H(n) \) with steps taken uniformly at random from \(\{X^{\pm 1}, Y^{\pm 1}\} \). Their approach is to use the standard representation-theoretic techniques of \[3\], though there are difficulties. The group \(H(n) \) has \(n^2 \) one-dimensional representations and \(n - 1 \) irreducible representations of dimension \(n \). To apply the standard machinery what is needed are good bounds on the eigenvalues of the average of the images of the generators under the \(n \)-dimensional representations of \(H(n) \). This leads to the study (in \[1\]) of the matrices \(M(r) \) defined as follows. Let \(S \) be the \(n \times n \) “shift” matrix which acts on the standard basis by \(Se_i = e_{(i-1) \mod n} \).
and for \(r = 1, \ldots, n - 1 \), let \(D(r) \) be the diagonal matrix whose \(j \)th entry is \(2 \cos(2\pi r j/n) \). Then for each \(r \) the matrix

\[
M(r) = \frac{1}{4} (S + S^{-1} + D(r))
\]

is the average of the images of \(X^{\pm 1} \) and \(Y^{\pm 1} \) in one of the \(n \)-dimensional irreducible representations of \(H(n) \). The papers \([1]\) and \([2]\) present several different proofs that the norm of \(M(r) \) is bounded above by \(1 - O(\frac{1}{n}) \). Once this is done, a straightforward analysis of the one-dimensional representations of \(H(n) \) reveals that those eigenvalues can be as large as \(1 - O\left(\frac{1}{n^2}\right) \), so the bound on \(M(r) \) shows that the behavior of random walk is governed by the one-dimensional representations and a mixing time of \(O(n^2) \) is established.

In this paper we generalize the first approach utilized in \([2]\) in two different ways. Our main contribution is the analysis of simple random walks on \(H(n) \) with different minimal, symmetric generating sets. For \(s_1, s_2, r_1, r_2 \in \mathbb{Z}/n\mathbb{Z} \), consider random walk on \(H(n) \) with steps taken uniformly from

\[
G = \{(s_1, r_1, 0), (-s_1, -r_1, 0), (s_2, r_2, 0), (-s_2, -r_2, 0)\}.
\]

Note that \(G \) generates \(H(n) \) if and only if \(r_1 s_2 \neq r_2 s_1 \mod n \). In the case that \(G \) generates, the matrices analogous to \(M(r) \) that arise in the representation theory are averages of matrices that we call twisted circulants. We will define these matrices shortly. The main aim of this paper is to establish the same bound \(1 - O(\frac{1}{n}) \) on the eigenvalues of these averages of twisted circulants. The same reasoning then yields mixing times \(O(n^2) \) for random walk on \(H(n) \) with generating set \(G \).

Our approach, following \([2]\), is to generalize a version of the Heisenberg Uncertainty Principle due to Donoho and Stark \([4]\). We discuss this further in Section 1.3.

Another generalization of the main result of \([2]\) applies to simple random walk on higher-dimensional Heisenberg groups. The \(d \)-dimensional Heisenberg group consists of upper triangular \((d+2) \times (d+2)\) matrices with ones on the diagonal and zeroes everywhere else except the top row and the rightmost column. With entries from \(\mathbb{Z}/n\mathbb{Z} \), this is a nilpotent group of order \(n^{2d+1} \) and class \(d + 1 \).

Using a tensor product decomposition of the representations of these groups, we show that the rate of convergence of simple random walk on these groups with a standard set of generators can be determined easily from the lower-dimensional case. The result is Corollary 4.1 with the standard generators, \(d n^2 \) steps are necessary and sufficient for convergence of simple random walk on the \(d \)-dimensional Heisenberg group over \(\mathbb{Z}/n\mathbb{Z} \). This works easily because the tensor product decomposition is naturally compatible with the standard basis. Probably the same rate occurs with other generating sets, though we do not carry out this analysis.

1.2. Main theorem. We begin with the definition of the twisted circulants. We will index the rows and columns of all matrices starting at 0. Let \(S \) denote the \(n \times n \) matrix with \(ij \) entry 1 if \(i + 1 = j \mod n \) and 0 otherwise. Thus \(S \) enacts the shift operator on the standard basis of \(\mathbb{C}^n \). A circulant is any non-negative power of \(S \). If \(D \) is a diagonal matrix with entries \(d_i \) and \(C = S^s \) is a circulant then the matrix \(DC \) has the entries \(d_i \) on the \(s \)th (cyclic) diagonal above the main:
Recall that \(n \) is a fixed odd prime. Let \(\omega = e^{2\pi i/n} \) and let \(R \) be the diagonal matrix with \(R_{jj} = \omega^{j} \). Note that \(SR = \omega RS \).

A twisted circulant is a unitary matrix of the form
\[
A(r, s) := R_r S_s,
\]
and these have Hermitian counterparts
\[
M(r, s) := \frac{1}{2} (R_r S_s + (R_r S_s)^*) = \frac{1}{2} (A(r, s) + \omega^{rs} A(-r, -s))
\]
with \(r, s \in \mathbb{Z}_n \).

The matrices \(A(r, s) \) are scalar multiples of the matrices in the images of the \(n \)-dimensional representations of \(H(n) \). Note that the matrix \(M(r) \) that arose in \([1]\) is equal to \(\frac{1}{2} (M(r, 0) + M(0, 1)) \).

Our main result (proved in Section 2.3) is this:

Theorem 1.1. If \(r_1 s_2 \not\equiv r_2 s_1 \mod n \) then the norm of \(\frac{1}{2} (M(r_1, s_1) + M(r_2, s_2)) \) is at most \(1 - O\left(\frac{1}{n}\right) \).

If \(r_1 s_2 \equiv r_2 s_1 \mod n \) then the operators \(M(r_1, s_1) \) and \(M(r_2, s_2) \) commute, and the analysis is different; we discuss this case in Section 3.

Corollary 1.2. If \(r_1 s_2 \not\equiv r_2 s_1 \mod n \) then \(n^2 \) steps are necessary and sufficient for random walk on \(H(n) \) with generating set \(\{(s_1, r_1, 0), (-s_1, -r_1, 0), (s_2, r_2, 0), (-s_2, -r_2, 0)\} \) to become uniform.

The next observation can be used in the same way to determine mixing times for random walks with larger sets of generators.

Corollary 1.3. Let \(r_i, s_i \in \mathbb{Z}_n \) for \(i = 1, \ldots, d \) and consider the matrix \(M = \frac{1}{d} \sum M(r_i, s_i) \). If there are \(2k \) disjoint pairs of integers in \(\{1, 2, \ldots, d\} \) such that \(r_i s_j \not\equiv r_j s_i \mod n \) for each pair \(i, j \), then the norm of \(M \) is at most \(1 - \frac{2k}{n} \). In particular if a constant fraction of the indices can be paired in this way then the norm of \(M \) is at most \(1 - O\left(\frac{1}{n}\right) \).

Proof. The matrix \(M \) is the average of \(k \) matrices of norm at most \(2 - \frac{2}{n} \) and \(d - 2k \) matrices of norm 1. \(\square \)
1.3. Remarks on uncertainty and Gauss sums. Theorem 1.1 can be framed in the context of the following general question: given two Hermitian matrices A and B what can one say about the norm of the sum $A + B$? The triangle inequality yields an upper bound of $||A|| + ||B||$ on the largest eigenvalue of $A + B$, and of course this bound is sometimes achieved e.g. when the leading eigenvectors of A and B coincide. Horn’s inequalities generalize this observation but do not address the “typical” situation. Specifically, suppose the diagonalizing bases are “well-mixed” with respect to each other, meaning roughly that the eigenspaces for the leading eigenvalues of A and B are very far from aligning. This is meant to suggest that the two eigenbases should satisfy a kind of uncertainty principle: any vector well-concentrated in the eigenbasis of A should be spread out in the eigenbasis of B, and vice versa. Applying this to the leading eigenvector of $A + B$ gives a bound on its eigenvalue as a weighted average of the largest parts of the spectra of A and B. See Section 2.1 for precise statements; in the context of twisted circulants, this yields Theorem 1.1.

This is very similar to the uncertainty principle of Donoho-Stark [4]. In their case the eigenspaces for A and B are related by the Fourier Transform, but this is not essential. Their beautiful and simple proof of the uncertainty principle relies solely on the fact that the individual matrix entries of the Fourier Transform are of size $O(\sqrt{\frac{1}{n}})$. In fact this is exactly what we mean by “well-mixed.” Thus our uncertainty principle, Lemma 2.1, is just a slight generalization of the result from [4].

For the particular twisted circulants we are interested in, when we computed the change of basis matrix (see Section 2.2) we were delightfully surprised by the appearance of Gauss sums in our calculation. These enabled us to establish that the entries have norm exactly $\frac{1}{\sqrt{n}}$, and hence the uncertainty principle applies.

2. Proof of main theorem

2.1. Uncertainty Principle. For a set $S \subseteq \{0, \ldots, n-1\}$ and $x \in \mathbb{C}^n$ define x_S to be the projection of x onto the coordinates of S: $(x_S)_j = x_j$ for $j \in S$ and $(x_S)_j = 0$ for j otherwise. Let \bar{S} denote the complement $\{0, \ldots, n-1\} \setminus S$.

Lemma 2.1 (Uncertainty principle). Suppose U is a unitary matrix and c a positive real number such that $|U_{i,j}| \leq \frac{c}{\sqrt{n}}$ for all $1 \leq i, j \leq n$. Then for any sets $S, T \subseteq \{0, \ldots, n-1\}$ and any $v \in \mathbb{C}^n$ of unit norm,

$$\frac{|S||T|}{n} \geq \left(\frac{1 - \|Uv\|_T^2 - \|v_S\|^2}{c\|v_S\|} \right)^2.$$

Proof. The bound $|U_{i,j}| \leq \frac{c}{\sqrt{n}}$ implies that the maximum absolute value for a coefficient of Uv_S is $|S|\frac{c}{\sqrt{n}} \frac{1}{\sqrt{|S|}} \|v_S\|$ which implies that

$$\|Uv_S\|_T \leq \frac{c\|v_S\|}{\sqrt{n}} \sqrt{|S||T|}.$$

Now $1 - \|Uv\|_T^2 = \|Uv\|_T^2 \leq \|Uv_S\|_T^2 + \|Uv_S\|_T^2 \leq (\frac{c\|v_S\|}{\sqrt{n}} \sqrt{|S||T|} + \|v_S\|)^2$ where we’ve used (1) on the first term and the fact that U is unitary on the second term. Rearranging terms gives the result. □
Lemma 2.3. Let D be a unitary matrix with $|U_{i,j}| \leq \frac{1}{\sqrt{n}}$ for all $1 \leq i, j \leq n$. For any $v \in \mathbb{C}^n$ of unit norm and sets $S, T \subseteq \{0, \ldots, n-1\}$ with $|S||T| \leq \frac{n^2}{2\pi^2}$, we have $\max(||v_S||, ||(Uv)_T||) \geq \frac{1}{4}$.

Proof. Since $||v_S|| \leq 1$, the assumption on the size of $|S||T|$ in Lemma 2.1 yields the inequality:

$$((1 - ||(Uv)_T||^2 - ||v_S||^2) \leq \frac{1}{2}.$$

It can easily be verified that $\max(||v_S||, ||(Uv)_T||) \geq \frac{1}{4}$ is a necessary condition for the inequality to hold.

□

2.2. The eigenstructure of DC. Given an arbitrary matrix M, we'll say a unitary U diagonalizes M if U^*MU is a diagonal matrix. Note that Ue_i (e_i being the ith coordinate basis vector) is the eigenvector for M corresponding to the eigenvalue located on the ith diagonal element of U^*MU. (Not all matrices have such a unitary but self-adjoint ones and unitaries do.)

Let F be the $n \times n$ Fourier transform matrix defined by $F_{k,j} = \frac{1}{\sqrt{n}}e^{2\pi i/k}$ where $\omega = e^{2\pi i/n}$. Also, define the permutation matrix Π by $(\Pi)_{s,i} = 1$ for $0 \leq i \leq n-1$ with the remaining entries 0; thus $\Pi_s(x_0 x_1 \cdots x_{n-1})^* = (x_0 x_s \cdots x_{s(n-1)})^*$ (with indices taken mod n).

Lemma 2.3. Let $C = S^*$ be a circulant and D be diagonal with entries a_i of unit norm. Let $\alpha = a_0a_1\cdots a_{n-1}$ and let B be the diagonal matrix with entries

$$B_{k,k} = \frac{\lambda_0^k}{\prod_{l=0}^{k-1} a_{sl}},$$

where λ_0 is any fixed nth root of α. Then the unitary matrix Π^*BF diagonalizes DC. The (j,j) entry of the resulting diagonal matrix $(\Pi^*BF)^*DC(\Pi^*BF)$ is $\omega^j\lambda_0$.

Proof. Define λ_0 to be an nth root of α so that $\lambda_0, \omega\lambda_0, \omega^2\lambda_0, \ldots, \omega^{n-1}\lambda_0$ are all the nth roots of α. It is straightforward to verify that $\omega^j\lambda_0$ is an eigenvalue for DC with eigenvector $x_j = \Pi_s v_j$ where the kth coordinate of v_j is given by

$$(v_j)_k = \frac{\omega^{jk}}{\sqrt{n}} \frac{\lambda_0^k}{\prod_{l=0}^{k-1} a_{sl}}.$$

Define X (respectively V) to be the matrix whose jth column is x_j, (respectively v_j), so that X is a unitary that diagonalizes DC and $X = \Pi^*V$. From (2), since the second factor is independent of j, we see $V = BF$ with B defined in the statement of the lemma.

□

Given r, s, define $X(r, s) = \Pi^*BF$ where B is a diagonal matrix with $B_{r,k} = \omega^{-rs\frac{k(k-1)}{2}}$.

Corollary 2.4. The matrix $X(r, s)$ is unitary, diagonalizes R^*S^*, and has all entries of norm $\frac{1}{\sqrt{n}}$.

Lemma 2.5. Given nonzero elements r_1, r_2, s_1, s_2 of \mathbb{Z}_n such that $r_1s_2 \neq r_2s_1$, each entry of the matrix $(X(r_1, s_1))^*X(r_2, s_2)$ has norm $\frac{1}{\sqrt{n}}$.

Proof. $(X(r_1, s_1))^*X(r_2, s_2) = F^*B_1^*\Pi_{s_1}^*\Pi_{s_2}^*B_2^*F = F^*B_1^*S_{s_1}^{-1}s_{s_2}^2B_2^*F$. We compute that the (c,d) entry of this product is

$$[(X(r_1, s_1))^*X(r_2, s_2)]_{c,d} = \sum_j \omega^{-cj}\omega^{r_1s_1j(j-1)/2}\omega^{-r_2s_2s_1s_2^{-1}j(s_1s_2^{-1}j-1)/2}\omega^{s_1s_2^{-1}jd}.$$
Let \(\Omega \) be the \(n \)th root of unity satisfying \(\omega = \Omega^2 \). (We use here that \(n \) is odd.) Then the above sum becomes
\[
\sum_j \Omega^{\alpha j^2 + \beta j}
\]
where \(\alpha = r_1 s_1 - r_2 s_2^{-1} s_1^2 \) and \(\beta = -2c - r_1 s_1 + r_2 s_1 + 2s_1 s_2^{-1} d \). As long as \(\alpha \neq 0 \), i.e. \(r_1 s_2 \neq r_2 s_1 \), this is a Gauss sum whose norm is \(\sqrt{n} \).

\[\square\]

In the case that \(r_1 s_2 = r_2 s_1 \), we get \(\alpha = 0 \) and the sum in the proof of the lemma is not a Gauss sum. We discuss this situation in Section 3.

2.3. Putting it together. We now prove our main results. Lemma 2.5 does not apply in the case \(s_1 = 0 \), but here the analysis is easier and in fact doesn’t require that the second operator have entries coming from \(R \). A special case is \(M = \frac{1}{2} (M(r_1, 0) + M(r_1, s_1)) \).

Theorem 2.6. Set \(M = \frac{1}{2} M(r_1, 0) + \frac{1}{2} (DC + (DC)^*) \) with \(C = S^* \) and \(D \) any diagonal matrix with entries of unit norm. Then we have \(\|M\| \leq 1 - O(\frac{1}{n}) \).

Proof. Let \(v \) be a maximal eigenvalue for the self-adjoint operator \(M \) so that \(\|M\| = \langle M v, v \rangle \leq |\langle M_1 v, v \rangle| + |\langle DC v, v \rangle| + 1 = |\langle M_1 v, v \rangle| + |\langle D' U v, U v \rangle| + 1 \), where \(M_1 \) is shorthand for the matrix \(M(r_1, 0) \) and where the matrix \(U \) diagonalizes the unitary matrix \(DC \) with resulting diagonal matrix \(D' \), i.e. \(D' = U^* (DC) U \). By Lemma 2.3, \(U = \Pi_s BF \) and therefore both \(U \) and \(U^* \) have all entries of norm \(\frac{1}{\sqrt{n}} \) and therefore satisfy the conditions for the uncertainty principle (Corollary 2.2). Choosing \(S = [1, \sqrt{n}/2] \) we have \(\max(|v_S|, |(U^* v)_T|) \geq \frac{1}{2} \) for any set \(T \) with \(|T| \leq \sqrt{n} \). If this maximum is achieved by the first term, the fact that all the eigenvalues of \(D \) on \(\tilde{S} \) are bounded by \(2 - O(\frac{1}{n}) \) gives the result. We are left with showing the result under the assumption that \(\|U^* v\| \geq \frac{1}{2} \).

We note that by the proof of Lemma 2.3, the eigenvalues of \(U^* \) are spread evenly around the unit circle. If we let \(\alpha \) be the unit vector in the direction of \(\langle D' U^* v, U^* v \rangle \) and set \(f_i = \langle (D')^i \alpha \rangle \) we have \(|\langle D' U^* v, U^* v \rangle| = |\sum f_i |v_i|^2 | \). Choosing \(T \) to be the locations \(i \) for the top \(\sqrt{n} \) values of \(f_i \) (in absolute value) and noting that the remaining values of \(f_i \) must have absolute value below \(1 - O(\frac{1}{n}) \) yields the result. \(\square \)

Theorem 1.1. Let \(M = \frac{1}{2} (M(r_1, s_1) + M(r_2, s_2)) \) with \(r_1, s_1, r_2, s_2 \) nonzero elements of \(\mathbb{Z}_n \). If \(r_1 s_2 \neq r_2 s_1 \mod n \) then \(\|M\| \leq 1 - O(\frac{1}{n}) \).

Proof. The argument has lots of similarities to the previous result. For shorthand write \(A_i = A(r_i, s_i) = R^{s_i} S^{\alpha_i} \) (for \(i = 1, 2 \)) so that \(M(r_1, s_1) = A_1 + A_1^* \). Let \(v \) be a maximal eigenvalue for the self-adjoint operator \(M \) so that \(\|M\| = \langle M v, v \rangle \leq |\langle A_1 v, v \rangle| + |\langle A_2 v, v \rangle| + 2 = |\langle B_1 U_1 v, U_1 v \rangle| + |\langle B_2 U_2 v, U_2 v \rangle| + 2 \) where the unitary matrix \(U_i = X(r_i, s_i) \) diagonalize \(A_i \) with resulting diagonal matrices \(B_i, \) i.e., \(B_i = U_i A_i U_i^* \) for \(i = 1, 2 \). We write \(w = U_1 v \) and we consider the resulting quantities \(|\langle B_1 w, w \rangle| \) and \(|\langle B_2 (U_2 U_2^* w), U_2^* w \rangle| \). Lemma 2.5 establishes that \(U_2 U_2^* \) has all entries bounded by \(\frac{1}{\sqrt{n}} \) and therefore satisfies the uncertainty principle. The remainder of the proof mirrors that of the previous theorem. \(\square \)
3. Equal slopes

The hypothesis that \(r_1 s_2 \neq r_2 s_1 \) in \(\mathbb{Z}_n \) is required for the proof of Lemma 2.5. If \(r_1 s_2 = r_2 s_1 \) then the sum in the proof of that lemma is not a Gauss sum, because \(\alpha = 0 \). For each \(c \) there is a single value of \(d \) that gives a sum of 1, and the rest give zeroes. The resulting matrix is a permutation matrix.

From (1.2) it follows that \((A(r, s))^k = \omega^{\frac{k(k-1)}{2}} A(kr, ks) \). Thus \(A(r, s) \) and \(\omega I \) generate an abelian group of matrices including \(A(kr, ks) \) for all \(k \). So \(r_1 s_2 = r_2 s_1 \) implies that \(M(r_1, s_1) \) and \(M(r_2, s_2) \) commute and generate a group (usually) isomorphic to \(\mathbb{Z}_n^2 \).

In this case, the matrix \(M = \frac{1}{2}(M(r_1, s_1) + M(r_2, s_2)) \) will have norm close to 1 for some choices of the parameters, and will not have norm close to 1 for other choices of parameters. Specifically, we note that the eigenvalues of \(M \) are given as follows. Let \(k = r_1^{-1} r_2 = s_1^{-1} s_2 \), with the inverses taken modulo \(n \). Then the eigenvalues of \(M \) are given by:

\[
\lambda_d = \frac{1}{2} \left(\cos \frac{2\pi d}{n} \cos \frac{2\pi (-k(k-1)/2)r_1 s_1 + kd}{n} \right), \quad d = 0, \ldots, p - 1.
\]

We see that for a given \(n \), these eigenvalues only depend on \(k \) and the product \(r_2 s_2 \). For \(n = 401 \), Figure 4 shows the values of these parameters for which the matrix \(M \) has norm greater than \(1 - \cos(\frac{2\pi}{n}) \). In the graph, the horizontal axis gives the value of \(r_2 s_2 \) while the vertical axis gives the value of \(k r_2 s_2 \).

On the other hand, one finds computationally, again for \(n = 401 \), that the norm of \(M \) is less than \(1 - \frac{1}{n} \) for approximately half of the choices of the parameters.

4. Higher dimensional Heisenberg groups

An analysis very similar to what we have already done can be carried out for the higher dimensional Heisenberg groups defined in Section 1.2. We denote this group by \(H(p, d) \) where \(p = n \) is still an odd prime. As \(p \) and \(d \) will not change we also refer to this simply as \(H \). It is a \(p \)-group of order \(p^{2d+1} \) and nilpotency class \(d + 1 \).

Here we analyze random walk on \(H \). We briefly describe the representation theory of \(H \), as communicated to us by Persi Diaconis. There are \(p^d \) one-dimensional irreducible representations and \(p - 1 \) irreducible representations of dimension \(p^d \). These latter representations are described as follows. We view elements of \(H \) as triples \((x, y, z) \), where \(x, y \in \mathbb{Z}_p^d \), and \(z \in \mathbb{Z}_p \). Let \(q = \exp \frac{2\pi i}{p} \) and let \(V \) be the vector space of all complex-valued functions on \((\mathbb{Z}_p)^d \). Then for each \(0 \neq c \in \mathbb{Z}_p \), there is an irreducible representation \(\rho_c \) of \(H \) on \(V \) given by

\[
[\rho_c(x, y, z)f](w) = q^{c(yw+z)} f(w+x).
\]

The key to understanding these representations, and the random walk, is a tensor product decomposition. Let \(W \) denote the vector space of complex-valued functions on \(\mathbb{Z}_p \), and note that the \(V \) is naturally isomorphic to \(W^\otimes d \). Define operators \(S \) and \(R \) on \(W \) by

\[
[S g](u) = g(u+1), \quad [R g](u) = q^u g(u),
\]
Figure 1. A mark indicates that M has eigenvalues greater than $1 - \frac{1}{n}$ for the given choices of $r_1 s_1$ and k. Here $n = 401$.

where S and R are the matrices defined in Section 1.2. Then one easily verifies that the operator $\rho_c(x, y, z)$ decomposes as

$$\rho_c(x, y, z) = q^{cz} \left[R^{wy} S^{x_1} \otimes \cdots \otimes R^{wy} S^{x_d} \right].$$

We are interested in bounding the top eigenvalue of the average of ρ_c on the size $4d$ generating set consisting of the $e_i = (w_i, 0, 0)$ and the $f_i = (0, w_i, 0)$ and their negatives, where w_i denotes the
ith vector in the standard basis of \mathbb{Z}^d_p. We see that

$$\rho_c(e_i) = I \otimes \cdots \otimes I \otimes S \otimes I \cdots \otimes I,$$

with the S appearing in the ith tensor factor, and

$$\rho_c(f_i) = I \otimes \cdots \otimes I \otimes R_c \otimes I \cdots \otimes I.$$

So for fixed i the average $\frac{1}{4}(\rho_c(e_i) + \rho_c(-e_i) + \rho_c(f_i) + \rho_c(-f_i))$ is precisely the sum $\frac{1}{2}M(0,1) + \frac{1}{2}M(c,0)$, tensored with a bunch of identity matrices. Recall from Section 1.1 that $\frac{1}{2}M(0,1) + \frac{1}{2}M(c,0)$ is the same as the matrix $M(c)$ studied in [1]. Thus, by the results of [1] or [2], or by Theorem 2.6, the top eigenvalue of such an operator is at most $1 - O(1/p)$. Averaging these over i again produces an operator with top eigenvalue at most $1 - O(1/p)$.

By contrast, the one-dimensional representations of $H = H(p,d)$ map each of the $4d$ generators $\{\pm e_i, \pm f_i\}$ to a pth root of unity, so the largest value for the average of these $4d$ numbers arises when all but one have value 1 and the other is $\exp(2\pi i/p)$. This comes out to something larger than $1 - O(1/p^2)$, which we have shown is much larger than the contribution from the high-dimensional representations. Thus again in this case the rate of convergence is governed by the one-dimensional representations.

Corollary 4.1. For simple random walk on $H(p,d)$ with steps $\{\pm w_i, 0, 0\}, (0, \pm w_i, 0)$ each chosen with the same probability $1/4d$, the mixing time is $O(dp^2)$.

References

[1] Bump, Diaconis, Hicks, Miclo, Widom. An exercise (?) in Fourier analysis on the Heisenberg group. *Ann Fac Sci Toulouse Math.*, to appear. Available at http://arxiv.org/abs/1502.04160.

[2] Bump, Diaconis, Hicks, Miclo, Widom. Useful bounds on the extreme eigenvalues and vectors of matrices for Harper's operators. *Journal of Operator Theory*, to appear.

[3] Persi Diaconis. *Group Representations in Probability and Statistics*, volume 11 of *Institute of Mathematical Statistics Lecture Notes — Monograph Series*, Hayward, CA, 1988.

[4] David L. Donoho and Philip B. Stark. Uncertainty principles and signal recovery. *SIAM J. Appl. Math.*, 49(3):906–931, 1989.

(Aaron Abrams) Washington and Lee University
E-mail address: abrams@wlu.edu

(Henry Landau) AT&T Research
E-mail address: henry.j.landau@gmail.com

(Zeph Landau) University of California, Berkeley
E-mail address: zeph.landau@gmail.com

(Jamie Pommersheim) Reed College
E-mail address: jamie@reed.edu