NEF DIMENSION OF MINIMAL MODELS

FLORIN AMBRO

Abstract. We reduce the Abundance Conjecture in dimension 4 to the following numerical statement: if the canonical divisor K is nef and has maximal nef dimension, then K is big. From this point of view, we “classify” in dimension 2 nef divisors which have maximal nef dimension, but which are not big.

0. Introduction

A minimal model is a complex projective variety X with at most terminal singularities, whose canonical divisor K is numerically effective (nef): $K \cdot C \geq 0$ for every curve $C \subset X$. Up to dimension three, minimal models have a geometrical characterization (Kawamata [9, 12], Miyaoka [14, 15, 16]):

Abundance Conjecture. Let X be a minimal model. Then the linear system $|kK|$ is base point free, for some positive integer k.

In dimension four, it is enough to show that X has positive Kodaira dimension if K is not numerically trivial (Kawamata [9], Mori [17]). A direct approach is to first construct the morphism associated to the expected base point free pluricanonical linear systems:

$$f : X \rightarrow \text{Proj}(\oplus_{k \geq 0} H^0(X, kK)).$$

Since K is nef, f is the unique morphism with connected fibers which contracts exactly the curves $C \subset X$ with $K \cdot C = 0$. Tsuji [22] and Bauer et al [2] have recently solved this existence problem birationally: for any nef divisor D on X, there exists a rational dominant map $f : X \rightarrow Y$ such that f is regular over the generic point of Y and a very general curve C is contracted by f if and only if $D \cdot C = 0$. This rational map is called the nef reduction of D, and $n(X, D) := \dim(Y)$ is called the nef dimension of D. The nef reduction map is non-trivial, except for the two extremal cases:

1. $n(X, K) = 0$: K is numerically trivial in this case [2], and Abundance is known (Kawamata [11]).

1991 Mathematics Subject Classification. Primary: 14E30. Secondary: 14J10, 14N30.
(ii) $n(X, K) = \dim(X)$: $K \cdot C > 0$ for very general curves $C \subset X$.

The nef reduction rational map is the identity.

Our main result is that Abundance holds for a minimal model X if the nef reduction map is non-trivial and the Log Minimal Model Program and Log Abundance hold in dimension $n(X, K)$. The latter two conjectures are known to hold up to dimension three (Shokurov [21], Keel, Matsuki, McKernan [13]), hence we obtain

Theorem 0.1. Let X be a minimal model with $n(X, K) \leq 3$. Then the linear system $|kK|$ is base point free for some positive integer k.

The Base Point Free Theorem (Kawamata, Shokurov [11]) states that Abundance holds if the canonical class K is big. Combined with Theorem 0.1 the 4-dimensional case of Abundance is equivalent to the following

Conjecture 0.2. Let X be a minimal 4-fold. If K has maximal nef dimension, then K is big.

We stress that this statement is numerical: since K is nef, K is big if and only if $K^{\dim(X)} \neq 0$. For this reason, it is important to investigate how far are (adjoint) divisors of maximal nef dimension from being big. Questions of similar type have appeared in the literature: a divisor D is strictly nef (Serrano [20]) if $D \cdot C > 0$ for every curve $C \subset X$. Up to dimension 3, it is known that $\pm K$ is strictly nef if and only if $\pm K$ is ample (see [20] [23] and the references there). We point out that Conjecture 0.2 is false for the anti-canonical divisor $-K$ (which, at least in dimension two, is the only exception below):

Theorem 0.3. Let X be a smooth projective surface. Assume that D is a nef Cartier divisor of maximal nef dimension, which is not big. Then exactly one of the following cases occurs:

1. The divisor $K + tD$ is big for $t > 2$.
2. There exists a birational contraction $f: X \to Y$ and there exists $t \in (0, 2]$ such that $D = f^*(D_Y)$, and $K_Y + tD_Y \equiv 0$. Moreover, D is effective up to algebraic equivalence. In Sakai’s classification table [18], Y is either a degenerate Del Pezzo, or an elliptic ruled surface of type II_c, II^*_c.

Theorem 0.1 is proved in several steps. The properties of the nef reduction map f and the numerically trivial case of Abundance [10] imply that f is birational to a parabolic fiber space $f': X' \to Y'$, and the canonical class K descends to a divisor P on Y'. After an idea of Fujita [6], it is enough to show that P is the semi-positive part in the Fujita decomposition associated to a log variety (Y', Δ):
the semi-ampleness of P follows then from the Log Minimal Model Program and Log Abundance applied to (Y', Δ). The key ingredient in this argument is an adjunction formula for the parabolic fiber space f' (Kawamata [8, 10], Fujino, Mori [4, 5]), similar to Kodaira’s formula for elliptic surfaces. We expect that the logarithmic version of Theorem 0.1 follows from the same argument, provided that Kawamata’s adjunction formula [8] is extended to the logarithmic case (see also Fukuda [7]).

Finally, Theorem 0.3 follows from the classification of surfaces and generalizes a result of Serrano [20].

Acknowledgments. This work was supported through a European Community Marie Curie Fellowship.

1. Preliminary

A variety is a reduced and irreducible separable scheme of finite type, defined over an algebraically closed field of characteristic zero. A contraction is a proper morphism $f: X \to Y$ such that $O_Y = f_*O_X$.

Let X a normal variety, and let $K \in \{\mathbb{Z}, \mathbb{Q}, \mathbb{R}\}$. A K-Weil divisor is an element of $Z^1(X) \otimes_{\mathbb{Z}} K$. Two \mathbb{R}-Weil divisors D_1, D_2 are K-linearly equivalent, denoted $D_1 \sim_K D_2$, if there exist $q_i \in K$ and rational functions $\varphi_i \in k(X)^\times$ such that $D_1 - D_2 = \sum_i q_i(\varphi_i)$. An \mathbb{R}-Weil divisor D is called

(i) K-Cartier if $D \sim_K 0$ in a neighborhood of each point of X.
(ii) nef if D is \mathbb{R}-Cartier and $D \cdot C \geq 0$ for every curve $C \subset X$.
(iii) ample if X is projective and the numerical class of D belongs to the real cone generated by the numerical classes of ample Cartier divisors.
(iv) semi-ample if there exists a contraction $\Phi: X \to Y$ and an ample \mathbb{R}-divisor H on Y such that $D \sim \mathbb{R} \Phi^*H$. If D is rational, this is equivalent to the linear system $|kD|$ being base point free for some k.
(v) big if there exists $C > 0$ such that $\dim H^0(X, kD) \geq Ck^{\dim(X)}$ for k sufficiently large and divisible. By definition,

$$H^0(X, kD) = \{a \in k(X)^\times; (a) + kD \geq 0\} \cup \{0\}.$$

The Iitaka dimension of D is $\kappa(X, D) = \max_{k \geq 1} \dim \Phi_{[kD]}(X)$, where $\Phi_{[kD]}: X \to \mathbb{P}(|kD|)$ is the rational map associated to the linear system $|kD|$. If all the linear systems $|kD|$ are empty, $\kappa(X, D) = -\infty$.

If D is nef, the numerical dimension $\nu(X, D)$ is the largest non-negative integer k such that there exists a codimension k cycle $C \subset X$ with $D^k \cdot C = 0$.

Definition 1.1. (V.V. Shokurov) A K-b-divisor D of X is a family $\{D_{X'}\}_{X'}$ of K-Weil divisors indexed by all birational models of X, such that $\mu_*(D_{X''}) = D_{X'}$ if $\mu: X'' \to X'$ is a birational contraction.

Equivalently, $\mathbf{D} = \sum_E \text{mult}_E(D)E$ is a K-valued function on the set of all (geometric) valuations of the field of rational functions $k(X)$, having finite support on some (hence any) birational model of X.

Example 1. (1) Let ω be a top rational differential form of X. The associated family of divisors $K = \{(\omega)_{X'}\}_{X'}$ is called the canonical b-divisor of X.

(2) A rational function $\varphi \in k(X)^\times$ defines a b-divisor $D = \{(\varphi)_{X'}\}_{X'}$.

(3) An \mathbb{R}-Cartier divisor D on a birational model X' of X defines an \mathbb{R}-b-divisor \mathbf{D} such that $(\mathbf{D})_{X''} = \mu^*D$ for every birational contraction $\mu: X'' \to X'$.

An \mathbb{R}-b-divisor \mathbf{D} is called K-b-Cartier if there exists a birational model X' of X such that $D_{X'}$ is K-Cartier and $\mathbf{D} = \mathbf{D}_{X'}$. In this case, we say that \mathbf{D} descends to X'. An \mathbb{R}-b-divisor \mathbf{D} is b-nef (b-semi-ample, b-big, b-nef and good) if there exists a birational contraction $X' \to X$ such that $\mathbf{D} = \mathbf{D}_{X'}$, and $D_{X'}$ is nef (semi-ample, big, nef and good).

A log pair (X, B) is a normal variety X endowed with a \mathbb{Q}-Weil divisor B such that $K + B$ is \mathbb{Q}-Cartier. A log variety is a log pair (X, B) such that B is effective. The discrepancy \mathbb{Q}-b-divisor of a log pair (X, B) is

$$A(X, B) = K - K + B.$$

A log pair (X, B) is said to have at most Kawamata log terminal singularities if $\text{mult}_E(A(X, B)) > -1$ for every geometric valuation E.

2. Nef reduction

The existence of the nef reduction map is originally due to Tsuji [22]. An algebraic proof of the sharper statement below is due to Bauer, Campana, Eckl, Kebekus, Peternell, Rams, Szemberg, and Wotzlaw [2].

Theorem 2.1. [22, 2] Let D be a nef \mathbb{R}-Cartier divisor on a normal projective variety X. Then there exists a rational map $f: X \to Y$ to a normal projective variety Y, satisfying the following properties:

(i) f is a dominant rational map with connected fibers, which is a morphism over the general point of Y.

(ii) There exists a countable intersection U of Zariski open dense subsets of X such that for every curve C with $C \cap U \neq \emptyset$, $f(C)$ is a point if and only if $D \cdot C = 0$.

In particular, $D|_W \equiv 0$ for general fibers W of f.
The rational map f is unique, and is called the \textit{nef reduction of} D. The dimension of Y is called the \textit{nef dimension of} D, denoted by $n(X, D)$. In general, the following inequalities hold \cite{9, 2}:

$$
\kappa(X, D) \leq \nu(X, D) \leq n(X, D) \leq \dim(X).
$$

\textbf{Definition 2.2.} A nef \mathbb{Q}-Cartier divisor D is called good if $\kappa(X, D) = \nu(X, D) = n(X, D)$.

\textbf{Remark 2.3.} This is equivalent to Kawamata’s definition \cite{9}. If $\kappa(X, D) = \nu(X, D)$, there exists a dominant rational map $f : X \rightarrow Y$ and a nef and big \mathbb{Q}-divisor H on Y such that $D \sim_{\mathbb{Q}} f^*(H)$, by \cite{9}. Thus $n(X, D)$ coincides with the Iitaka and numerical dimension.

\textbf{Remark 2.4.} \cite{2} The extremal values of the nef dimension are:

(i) $n(X, D) = 0$ if and only if D is numerically trivial ($\nu(X, D) = 0$).

(ii) $n(X, D) = \dim(X)$ if and only if there exists a countable intersection U of Zariski open dense subsets of X such that $D \cdot C > 0$ for every curve C with $C \cap U \neq \emptyset$.

\section{Fujita decomposition}

\textbf{Definition 3.1.} \cite{6} An \mathbb{R}-Cartier divisor D on a normal proper variety X has a \textit{Fujita decomposition} if there exists a b-nef \mathbb{R}-b-divisor P of X with the following properties:

(i) $P \leq \overline{D}$.

(ii) $P = \sup\{H; H \text{ b-nef } \mathbb{R}\text{-b-divisor}, H \leq \overline{D}\}$.

The \mathbb{R}-b-divisor $P = P(D)$ is unique if it exists, and is called the \textit{semi-positive part of} D. The \mathbb{R}-b-divisor $E = \overline{D} - P$ is called the \textit{negative part of} D, and $\overline{D} = P + E$ is called the \textit{Fujita decomposition} of D.

\textbf{Remark 3.2.} Allowing divisors with real coefficients is necessary: there exist Cartier divisors (in dimension at least 3) which have a Fujita decomposition with irrational semi-positive part \cite{3}.

Clearly, a nef \mathbb{R}-Cartier divisor D has a Fujita decomposition, with semi-positive part \overline{D}. More examples can be constructed using the following property:

\textbf{Proposition 3.3.} \cite{6} Let $f : X \rightarrow Y$ be a proper contraction, let D be an \mathbb{R}-Cartier divisor on Y and let E be an effective \mathbb{R}-Cartier divisor on X such that E is vertical and supports no fibers over codimension one points of Y.

Then D has a Fujita decomposition if and only if $f^*D + E$ has a Fujita decomposition, and moreover, $P(f^*D + E) = f^*(P(D))$.
Lemma 3.4. Assume LMMP and Log Abundance. Let \((X, B)\) be a log variety with log canonical singularities. Then \(K + B\) has a Fujita decomposition if and only if \(\kappa(X, K + B) \geq 0\), and the semi-positive part is semi-ample. Moreover,

\[P(K + B) = K_Y + B_Y, \]

for a log minimal model \((Y, B_Y)\).

Proof. If \(K + B\) is nef, it has a Fujita decomposition with semi-positive part \(K + B\). By Abundance, it is semi-ample. If \(K + B\) is not nef, we run the LMMP for \((X, B)\). We may assume that \(X\) is \(\mathbb{Q}\)-factorial by Proposition 3.3. If \(f: (X, B) \rightarrow Y\) is a divisorial contraction, then

\[K + B = f^*(K_Y + B_Y) + \alpha E, \]

where \(E\) is exceptional on \(Y\) and \(\alpha > 0\). Thus \(K + B\) has a Fujita decomposition if and only if \(K_Y + B_Y\) has, and the semi-positive parts coincide. If \(t: (X, B) \rightarrow (X^+, B_{X^+})\) is a log-flip,

\[K + B = K_{X^+} + B_{X^+} + E, \]

where \(E\) is an effective \(\mathbb{Q}\)-b-divisor which is exceptional on both \(X\) and \(X'\). Therefore \(K + B\) has a Fujita decomposition if and only if \(K_{X^+} + B_{X^+}\) has, and the semi-positive parts coincide.

If \(f: (X, B) \rightarrow Y\) is a log Fano fiber space, \(K + B\) admits no Fujita decomposition. \(\Box\)

Lemma 3.5. Let \(f: X \rightarrow Y\) be a contraction of normal proper varieties, and let \(D\) be a nef \(\mathbb{R}\)-divisor on \(X\) which is vertical on \(Y\). Then there exists a \(b\)-nef \(\mathbb{R}\)-b-divisor \(D\) of \(Y\) such that \(\overline{D} = f^*D\).

Proof. After a resolution of singularities, Hironaka’s flattenining and the normalization of the total space of the induce fibration, we have a fiber space induced by birational base change

\[
\begin{array}{ccc}
X & \xrightarrow{\mu} & X' \\
\downarrow f & & \downarrow f' \\
Y & \xleftarrow{\mu} & Y' \\
\end{array}
\]

such that \(f'\) is equi-dimensional, \(X'\) is normal and \(Y'\) is non-singular, and \(\mu^*D\) is vertical on \(Y'\). Let \(D'\) be the largest \(\mathbb{R}\)-divisor on \(Y'\) such that \(f'^*D' \leq \mu^*D\). Since \(f'\) is equi-dimensional, \(E = \mu^*D - f'^*D'\) is effective and supports no fibers over codimension one points of \(Y'\). Furthermore, \(E\) is \(f'\)-nef since \(D\) is nef. By [6, Lemma 1.5], \(E = 0\). Therefore \(\mu^*D = f'^*(D')\). In particular, \(D'\) is nef and \(D = \overline{D'}\) satisfies the required properties. \(\Box\)
4. PARABOLIC FIBER SPACES

We recall results of Kawamata [8, 10] and Fujino, Mori [4, 5] on adjacency formulas of Kodaira type for parabolic fiber spaces. Their results are best expressed through Shokurov’s terminology of b-divisors. With a view towards the logarithmic case, we introduce them via lc-trivial fibrations (see [1]).

A parabolic fiber space is a contraction of non-singular proper varieties \(f: X \to Y \) such that the generic fiber \(F \) has Kodaira dimension zero. Let \(b \) be the smallest positive integer with \(|bK_F| \neq \emptyset \). We fix a rational function \(\varphi \in k(X)^\times \) such that \(K + \frac{1}{b}(\varphi) \) is effective over the generic point of \(Y \).

Lemma 4.1. There exists a unique \(\mathbb{Q} \)-divisor \(B_X \) on \(X \) satisfying the following properties:

(i) \(K_X + B_X + \frac{1}{b}(\varphi) = f^*D \) for some \(\mathbb{Q} \)-divisor \(D \) on \(Y \).

(ii) There exists a big open subset \(Y^\dagger \subseteq Y \) such that \(-B_X|_{f^{-1}(Y^\dagger)} \) is effective and contains no fibers of \(f \) in its support.

In particular, \(f: (X, B_X) \to Y \) is an lc-trivial fibration.

Definition 4.2. Let \(f: X \to Y \) be a parabolic fiber space with a choice of a rational function \(\varphi \), as above. The moduli \(\mathbb{Q} \)-b-divisor of \(f \), denoted \(M = M(f, \varphi) \), is the moduli \(\mathbb{Q} \)-b-divisor of the lc-trivial fibration \(f: (X, B_X) \to Y \).

If \(\varphi' \) is another choice of the rational function, then \(bM(f, \varphi) \sim bM(f, \varphi') \). Therefore \(bM \) is uniquely defined up to linear equivalence. According to the following Lemma, \(M \) is independent of birational changes of \(f \):

Lemma 4.3. Consider a commutative diagram

\[
\begin{array}{ccc}
X & \xleftarrow{\nu} & X' \\
\downarrow{f} & & \downarrow{f'} \\
Y & \xleftarrow{\mu} & Y'
\end{array}
\]

where \(f, f' \) are parabolic fiber spaces and \(\mu, \nu \) are birational contractions. Then \(M(f) = M(f') \).

Proof. Assume first that \(\mu \) is the identity morphism. Since \(X, X' \) are nonsingular, it is easy to see that \(A(X, B_X) = A(X', B_{X'}) \). Therefore \(M(f) = M(f') \).

We are left with the case when \(\nu \) is the identity morphism. Let \(B^{(Y)}_X \) and \(B^{(Y')}_X \) be the \(\mathbb{Q} \)-divisors induced by \(f \) and \(f' \), respectively.
Since the general fibre is non-singular of zero Kodaira dimension, there exists a \mathbb{Q}-divisor C on Y' such that $B_X^{(Y')} = B_X + f^*C$. Therefore $M(f) = M(f')$, by [1, Remark 3.3].

Proposition 4.4. Let $f : X \to Y$ be a parabolic fiber space.

1. Consider a commutative diagram

$$
\begin{array}{ccc}
X & \xleftarrow{\nu} & X' \\
\downarrow{f} & & \downarrow{f'} \\
Y & \xleftarrow{\varrho} & Y'
\end{array}
$$

where ϱ is a surjective proper morphism, and f' is an induced parabolic fiber space. Then $\varrho^*M(f) \sim_{\mathbb{Q}} M(f')$.

2. If f is semi-stable in codimension one, then $f_*O_X(iK_{X/Y})^* = O_Y(iM_Y) \cdot \varphi^i$, for $b|i$.

3. The moduli \mathbb{Q}-b-divisor $M(f)$ is b-nef.

The key result of this section is the following corollary of [10, Theorem 3.6]:

Theorem 4.5. Let $f : X \to Y$ be a parabolic fiber space. Assume that its geometric generic fibre $X \times_Y \text{Spec}(k(Y))$ is birational to a normal variety \overline{F} with canonical singularities, defined over $k(Y)$, such that $K_{\overline{F}}$ is semi-ample. Then the moduli \mathbb{Q}-b-divisor $M(f)$ is b-nef and good.

Proof. From the definiton of the variation of a fibre space, there exists a commutative diagram

$$
\begin{array}{ccc}
X & \xleftarrow{\nu} & X' \\
\downarrow{f} & & \downarrow{f'} \\
Y & \xleftarrow{\tau} & Y'
\end{array}
$$

such that the following hold:

1. \bar{f} and f' are parabolic fiber spaces.
2. τ is generically finite, and ϱ is a proper dominant morphism.
3. \bar{f} is birationally induced via base change by both f and f'.
4. $\text{Var}(f) = \text{Var}(f') = \dim(Y')$.

Let M, \bar{M}, M' be the corresponding moduli \mathbb{Q}-b-divisors. After a generically finite base change, we may also assume that M' descends to Y', and f' is semi-stable in codimension one. By (3) and Proposition 4.4, we have

$$
\tau^*M = \bar{M} \sim_{\mathbb{Q}} \varrho^*(M').
$$
In particular, $\kappa(M) = \kappa(M^1)$. Since F is a good minimal model, Viehweg’s $Q(f^1)$ Conjecture holds [10, Theorem 1.1.(i)], that is the sheaf $(f^!_i\omega^i_{X/Y})^{**}$ is big for i large and divisible. But $(f^!_i\omega^i_{X/Y})^{**} \cong \mathcal{O}_Y(iM^1_{Y'})$ for $b|i$, since $f^!$ is semi-stable in codimension one. Equivalently, $\kappa(Y^i, M^1_{Y'}) = \dim(Y^i)$, or M^1 is b-nef and big. Therefore τ^*M^1 is b-nef and good, hence M is b-nef and good.

5. Reduction argument

Theorem 5.1. Let X be a projective variety with canonical singularities such that the canonical divisor K is nef. If $n(X, K) \leq 3$, then the canonical divisor K is semi-ample.

Proof. Let $\Phi: X \rightarrow Y$ be the quasi-fibration associated to the nef canonical divisor K of X, and let Γ be the normalization of the graph of Φ:

\[
\begin{array}{ccc}
\mu & \rightarrow & \leftarrow f \\
\downarrow & & \downarrow \\
X & \rightarrow & Y
\end{array}
\]

Since Φ is a quasi-fibration, μ is birational, f is a contraction and $\text{Exc}(\mu) \subset \Gamma$ is vertical over Y. Let W be a general fibre of f.

Step 1: W is a normal variety with canonical singularities, and $K_W \sim_\mathbb{Q} 0$. Indeed, W has canonical singularities and $K_W = \mu^*K|_W$. The definition of Φ implies that K_W is numerically trivial. From [10, Theorem 8.2], we conclude that $K_W \sim_\mathbb{Q} 0$.

Step 2: There exist a diagram

\[
\begin{array}{ccc}
X & \xrightarrow{\mu} & X' \\
\downarrow & & \downarrow f' \\
Y & \rightarrow & Y'
\end{array}
\]

satisfying the following properties:

(a) μ is a birational contraction.
(b) $f': X' \rightarrow Y'$ is a parabolic fiber space.
(c) There exists a simple normal crossings divisor Σ on Y' such that f' is smooth over $Y' \setminus \Sigma$.
(d) The moduli \mathbb{Q}-b-divisor $M = M(f')$ descends to Y' and there exists a contraction $h: Y' \rightarrow Z$ and a nef and big \mathbb{Q}-divisor N on Z such that $M_{Y'} \sim_\mathbb{Q} h^*N$.
(e) Let E be any prime divisor on X'. If E is exceptional over Y', then E is exceptional over X.
Indeed, we may assume that \(Y \) is non-singular. Let \(\Gamma' \to \Gamma \) be a resolution of singularities, and let \(f_0 : \Gamma' \to Y \) be the induced contraction. The general fiber of \(f_0 \) is birational to the general fiber of \(f \). The latter is a normal variety \(W \) with canonical singularities, and \(K_W \sim Q 0 \). Therefore \(f_0 \) is a parabolic fiber space. We define \(f' : X' \to Y' \) to be a parabolic fiber space induced after a sufficiently large birational base change \(Y' \to Y \). By Theorem \(\ref{thm:existence-of-log-trivial-fibration} \), the moduli \(Q \)-b-divisor \(M(f) = M(f_0) \) satisfies (d) once \(Y' \) dominates a certain resolution of \(Y \). Also, (e) holds once \(f' \) dominates a flattening of \(f \), and (b) follows from Hironaka’s embedded resolution of singularities.

Step 3: There exists an effective \(Q \)-divisor \(\Delta \) on \(Y' \) such that \((Y', \Delta)\) is a log variety with Kawamata log terminal singularities, \(K_{Y'} + \Delta \) has a Fujita decomposition and \(K \sim Q f'*(P(K_{Y'} + \Delta)) \).

Indeed, the parabolic fiber space \(f' \) induces an lc-trivial fibration \((X', B_{X'}) \to Y'\), with associated discriminant divisor \(B_{Y'} \). We have

\[
K_{X'} + B_{X'} + \frac{1}{b}(\varphi) = f'^*(K_{Y'} + B_{Y'} + M_{Y'}).
\]

It is clear that \(B_{Y'} \) is effective, \([B_{Y'}] = 0\) and \(\text{Supp}(B_{Y'}) \subseteq \Sigma \). Therefore \((Y', B_{Y'})\) is a log variety with Kawamata log terminal singularities. By (d), there exists an effective \(Q \)-divisor \(\Delta \) on \(Y' \) such that \((Y', \Delta)\) is a log variety with Kawamata log terminal singularities, and \(\Delta \sim Q B_{Y'} + M_{Y'} \). In particular,

\[
K_{X'} + B_{X'} \sim Q f'^*(K_{Y'} + \Delta).
\]

Let \(\mu^*K = K_{X'} - A \) and let \(B_{X'} = E^+ - E^- \) be the decomposition into positive and negative parts. It is clear that \(A \) is effective and exceptional over \(X \), and \(A - E^- \) is vertical on \(Y \). Thus there exist effective \(Q \)-divisors \(A' \leq A \) and \(E' \leq E^- \) such that \(A - E^- = A' - E' \) and \(E' \) is vertical and supports no fibers over codimension one points of \(Y' \). In particular,

\[
\mu^*K + A' + E^+ \sim Q f'^*(K_{Y'} + \Delta) + E'.
\]

By (e), the left hand side has a Fujita decomposition, with semi-positive part \(K \). Proposition \(\ref{prop:existence-of-log-trivial-fibration} \) applies, hence \(K_{Y'} + \Delta \) has a Fujita decomposition and \(K \sim Q f'^*(P(K_{Y'} + \Delta)) \).

Step 4: From the LMMP and Abundance applied to the log variety \((Y', \Delta)\), the semi-positive part of \(K_{Y'} + \Delta \) is b-semi-ample. Therefore \(K \) is b-semi-ample, that is \(K \) is a semi-ample \(Q \)-divisor. \(\Box \)
6. Maximal nef dimension which are not big

We prove Theorem 0.3 in this section. We fix the notation: \(X \) is a smooth projective surface and \(D \) is a nef Cartier divisor which has maximal nef dimension, but it is not big. We denote by \(K \) the canonical divisor of \(X \).

Proposition 6.1. The following hold:

1. \(\kappa(X, D) \leq 0, \nu(X, D) = 1 \).
2. \(D \cdot K \geq 0 \).
3. If \(D \cdot K = 0 \), one of the following holds:
 a) \(\kappa(X, D) = -\infty \) and \(X \) is birational to \(\mathbb{P}_C(E) \), where \(C \) is a non-rational curve.
 b) \(\kappa(X, D) = 0 \) and \(X \) is either a rational surface, or an elliptic ruled surface.
4. Assume \(D \cdot K = 0 \) and \(K^2 \geq 0 \). Then \(D \) is algebraically equivalent to an effective divisor.

Proof.

Since \(D \) cannot be good, (1) holds. We have

\[
\chi(X, mD) = \frac{-D \cdot K}{2} m + \chi(O_X).
\]

Since \(\nu(X, D) > 0 \), \(h^2(mD) = h^0(K - mD) = 0 \) for \(m \gg 0 \).

(2) If \(D \cdot K < 0 \), then \(\kappa(X, D) \geq 1 \). This contradicts (1).

(3) Assume \(D \cdot K = 0 \). In particular, \(\kappa(X) \leq 0 \). Indeed, let \(L \) be a divisor such that \(DL = 0 \). Since \(D \) is nef, \(D \) is orthogonal on the irreducible components of all divisors in \(|mL| \), \(m \geq 0 \). Since \(D \) is orthogonal on at most a countable number of curves, \(\kappa(X, L) \leq 0 \).

Assume \(\kappa(X) = 0 \). Let \(\sigma: X \to X' \) be the birational contraction to a minimal model. Since \(K_{X'} \sim_Q 0 \), \(K \sim_Q E \) where \(E \) is effective and \(\text{Supp}(E) = \text{Exc}(\sigma) \). Since \(D \cdot K = 0 \), \(D \) is orthogonal on each exceptional divisor, hence \(D = \sigma^*(D_{X'}) \). Thus we may assume \(X \) is a minimal model. After an étale cover, \(X \) is an Abelian surface or a \(K3 \) surface. If \(X \) is an Abelian surface, \(D \) is big by the same argument as in [20 Proposition 1.4]. Contradiction. If \(X \) is a \(K3 \) surface, \(h^0(X, mD) = h^1(X, mD) + 2 \) by Riemann-Roch, hence \(\kappa(X, D) \geq 1 \). Contradiction.

Therefore \(\kappa(X) = -\infty \). Riemann-Roch gives

\[
h^0(X, mD) = h^1(X, mD) + 1 - q(X), \quad m \geq 1
\]

If \(q(X) = 0 \), then \(h^0(D) > 0 \). We are in case (b), and the rest of the claim is well known (see [19]). Assume \(q(X) > 0 \). Then there exists a birational contraction \(X \to X' = \mathbb{P}_C(E) \), with \(q(X) = g(C) \geq 1 \). We are in case (a).

(4) If \(q(X) = 0 \), \(|D| \neq \emptyset \) by Riemann-Roch. Assume \(q(X) > 0 \). There exists a birational contraction \(X \to X' = \mathbb{P}_C(E) \), with \(q(X) = g(C) \). Since \(0 \leq K_X^2 \leq K_{X'}^2 = 8(1 - q(X)) \leq 0 \), we infer that \(X = \mathbb{P}_C(E) \) and \(C \) is an elliptic curve, i.e. \(q(X) = 1 \).

If \(h^1(D + F_t - F_0) > 0 \) for some \(t \in C \), then \(h^0(D + F_t - F_0) > 0 \) by Riemann-Roch. Assume \(h^1(D + F_t - F_0) = 0 \) for every \(t \in C \). Since \(D \) is of maximal nef dimension, \(D \cdot F_0 > 0 \). Therefore \(h^0(F_0, D|F_0) > 0 \). By [20], Proposition 1.5, \(D \) is algebraically equivalent to an effective divisor.

Theorem 6.2. [19] In the case (3b) above, assume moreover that \(D \) is effective and \(D|C > 0 \) for every \((-1)\)-curve \(C \) of \(X \). Then the pair \((X, D)\) is classified as follows:

(i) \(X \) is a rational surface such that \(-K\) is nef and \(K^2 = 0\):

\[
\kappa(X, -K) = 0, \nu(X, -K) = 1, n(X, -K) = 2.
\]

There exists a connected effective cycle \(\sum n_i C_i \in |-K| \) such that the greatest common divisor of the \(n_i \)'s is 1. Also, \(D = m \sum n_i C_i \) for some positive integer \(m \).

(ii) \(X = \mathbb{P}_C(E) \) is a geometrically ruled surface over an elliptic curve \(C \), of type II or \(\Pi^* \) in Sakai’s classification table:

a) \(E = \mathcal{O}_C \oplus \mathcal{O}_C(d) \) with \(d \in \text{Pic}^0(C) \) non-torsion. Let \(C' \) be the section with \(C' \sim C_0 - \pi^*d \). Then \(K + C_0 + C' = 0 \) and \(D = d_0 C_0 + d'C' \).

b) \(E \) is an indecomposable extension of \(\mathcal{O}_C \) by \(\mathcal{O}_C, K + 2C_0 = 0 \) and \(D = d_0 C_0 \).

Proof. (of Theorem 6.2) We contract all \((-1)\)-curves on which \(D \) is numerically trivial: we have a birational contraction \(f: X \to Y \) such that \(D = f^*(D_Y) \) and \(A = K - f^*(K_Y) \) is effective, exceptional on \(Y \). In particular,

\[
\kappa(X, K + tD) = \kappa(Y, K_Y + tD_Y) \text{ for } t \in \mathbb{R}.
\]

By construction, \(D_Y \) is positive on every \(K_Y \)-negative extremal ray of \(Y \). Note that \(Y \) is not a Del Pezzo surface: otherwise \(D_Y \) is semi-ample, hence good, by the Base Point Free Theorem. Therefore \(-K_Y \cdot R \leq 1 \) for every \(K_Y \)-negative extremal ray \(R \) of \(Y \). Moreover, \(D_Y \cdot R \geq 1 \) since \(D_Y \) is Cartier. Therefore \(K_Y + tD_Y \) is nef for \(t \geq 2 \). In particular,

\[
(K_Y + tD_Y)^2 = K_Y^2 + 2(K_Y \cdot D_Y)t + (D_Y^2)t^2 \geq 0 \text{ for } t \geq 2.
\]

Therefore either \((K_Y + tD_Y)^2 > 0 \text{ for } t > 2 \text{ (case (1))}\), or \(K_Y^2 = K_Y \cdot D_Y = D_Y^2 = 0 \). Assume the latter holds. By Theorem 6.1.4, \(D_Y \) is algebraically equivalent to an effective divisor \(D' \). The pairs \((Y, D')\) are classified by Theorem 6.2. Exactly one of the following holds:
(i) Y is a rational surface and there exists $m \in \mathbb{N}$ such that $K_Y + \frac{1}{m}D_Y \equiv 0$.

(ii) $Y = \mathbb{P}_C(\mathcal{E})$, where C is an elliptic curve and $\deg(\mathcal{E}) = 0$, and $K_Y + tD_Y \equiv 0$ for some $0 < t \leq 2$.

□

References

[1] Ambro, F., *Shokurov’s boundary property*, preprint math.AG/0210271.

[2] Bauer, T.; Campana, F.; Eckl, T.; Kebekus, S.; Peternell, T.; Rams, S.; Szemberg, T.; Wotzlaw, L., *A reduction map for nef line bundles*. Complex geometry (Göttingen, 2000), 27–36, Springer, Berlin, 2002.

[3] Cutkosky, S. D., *Zariski decomposition of divisors on algebraic varieties*, Duke Math. J. 53 (1986), no. 1, 149–156.

[4] Fujino, O., Mori, S., *A canonical bundle formula*, J. Differential Geom. 56 (2000), no. 1, 167–188.

[5] Fujino, O., *A canonical bundle formula for certain algebraic fiber spaces and its applications*, RIMS-1325, June 2001.

[6] Fujita, T., *Zariski decomposition and canonical rings of elliptic threefolds*. J. Math. Soc. Japan 38 (1986), no. 1, 19–37.

[7] Fukuda, S., *Tsuji’s numerically trivial fibrations and abundance*, preprint math.AG/0108032.

[8] Kawamata, Y., *Kodaira dimension of certain algebraic fiber spaces*, J.Fac.Sci.Univ.Tokyo 30 (1983), 1–23.

[9] Kawamata, Y., *Pluricanonical systems of minimal algebraic varieties*, Invent. Math., 79 (1985), 567–588.

[10] Kawamata, Y., *Minimal models and the Kodaira dimension of algebraic fibre spaces*, J. Reine Angew. Math 363 (1985), 1-46.

[11] Kawamata,Y; Matsuda,K; Matsuki,K, *Introduction to the minimal model program*, Algebraic Geometry, Sendai, Advanced Studies in Pure Math. 10 (1987), 283–360.

[12] Kawamata, Y., *Abundance theorem for minimal threefolds*, Invent. Math. 108 (1992), 229–246.

[13] Keel, S.; Matsuki, K.; McKernan, J., *Log abundance theorem for threefolds*. Duke Math. J. 75 (1994), no. 1, 99–119.

[14] Miyaoka, Y., *The Chern classes and Kodaira dimension of a minimal variety*. In *Algebraic Geometry*, Sendai. Adv. Stud. Pure Math. 10, Kinokuniya, Tokyo, 1987, 449–476.

[15] Miyaoka, Y., *Abundance conjecture for minimal threefolds: $\nu = 1$ case*, Comp. Math. 68 (1988), 203–220.

[16] Miyaoka, Y., *On the Kodaira dimension of minimal threefolds*, Math. Ann. 281 (1988), 325–332.

[17] Mori, S., *Flip theorem and the existence of minimal models for 3-folds*, Jour. AMS, 1 (1988), 117–253.

[18] Sakai, F., *D-dimensions of algebraic surfaces and numerically effective divisors*. Compositio Math. 48 (1983), no. 1, 101–118.

[19] Sakai, F., *The structure of normal surfaces*. Duke Math. J. 52 (1985), no. 3, 627–648.
[20] Serrano, F., *Strictly nef divisors and Fano threefolds*, J. reine angew. Math. **464** (1995), 187–206.

[21] Shokurov, V. V., *3-fold log flips*. Russian Acad. Sci. Izv. Math. **40** (1993), no. 1, 95–202.

[22] Tsuji, H., *Numerical trivial fibrations*, preprint [math.AG/0001023](http://arxiv.org/abs/math.AG/0001023).

[23] Uehara, H., *On the canonical threefolds with strictly nef anticanonical divisors*, J. Reine Angew. Math. **522** (2000), 81–91.

DPMMS, CMS, University of Cambridge, Wilberforce Road, Cambridge CB3 0WB, UK.

E-mail address: f.ambro@dpmms.cam.ac.uk