Article Type: Debates in Nephrology

Urine sediment exam provides more diagnostic information in AKI than novel urinary biomarkers: CON

DOI: 10.34067/KID.0004582021

Ashley La and Jay Koyner

Key Points:

Abstract:

Disclosures: J. Koyner reports the following: Consultancy Agreements: Astute Medical, Baxter, Novartis, Mallinckrodt, Sphingotec; Research Funding: Bioporto, Astute Medical, Nxstage medical, Fresenius Medical, NIH; Honoraria: American Society of Nephrology, Society of Critical Care Medicine, Acute Disease Quality Initiative (ADQI); Patents and Inventions: Listed on a patent for Pi GST to detect severe AKI following cardiac surgery - with Argutus Medical; Scientific Advisor or Membership: American Journal of Nephrology and Kidney360, Scientific Ad Board for the NKF of Illinois, Scientific Ad Board for the NKF; Speakers Bureau: NxStage Medical. The remaining author has nothing to disclose.

Funding:

Author Contributions: Ashley La: Conceptualization; Writing - original draft Jay Koyner: Conceptualization; Writing - review and editing

Clinical Trials Registration: No

Registration Number:

Registration Date:

How to Cite this article: Ashley La and Jay Koyner, Urine sediment exam provides more diagnostic information in AKI than novel urinary biomarkers: CON, Kidney360, Publish Ahead of Print, 10.34067/KID.0004582021
Urine sediment exam provides more diagnostic information in AKI than novel urinary biomarkers: CON

Ashley La¹ and Jay Koyner²

1. Department of Medicine, University of Chicago, Chicago, IL, US
2. Section of Nephrology, Department of Medicine, University of Chicago, Chicago, IL, US

Corresponding Author:

Jay L. Koyner MD
University of Chicago
5841 South Maryland Ave
Suite S-507, MC5100
Chicago, IL 60637
jkoyner@uchicago.edu
phone: 773-702-4842
fax: 773-753-8301
Acute kidney injury (AKI) is a common hospital-based complication defined by changes in serum creatinine (Scr) and urine output (UOP). Owing to the limitations of these 2 biomarkers, there has been intense investigation into urinary methods to detect AKI earlier and more accurately, including renewed interest in microscopic urinalysis as well as several investigations into novel urinary biomarkers of kidney dysfunction. While both avenues have led to some progress, novel biomarkers of AKI have outpaced urinalysis in terms of their clinical utility and ability to improve the care of AKI patients.

Urine sediment analysis falls short in predicting outcomes

For over a century, physicians have been analyzing urine sediment under microscopy as a method of further characterizing AKI. Given the longevity of this method, it is concerning that standardization and investigation into its clinical significance and prognostic abilities were largely ignored for decades. More recently, several AKI-urinalysis risk scores have been created to prognosticate kidney and patient-centered outcomes (table 1). These scores utilize the presence of renal tubular epithelial cells (RTEs) and granular casts to suggest the impending severity of AKI. While they have not been widely validated, these scores do show that those with more RTEs and granular casts in their urine are destined for more severe AKI.

One limitation is that urine sediment analysis is typically performed after AKI is already established, clearly reducing its utility in early identification and prevention of AKI. Additionally, there is extremely limited data on validation of the scores outlined in the table. One of the only studies to independently assess these scores demonstrated that 20% and 25% of patients with established stage 2 AKI did not have evidence of acute tubular injury by Chawla and Perazella scores, respectively, in their urine sediment until several days into their disease course. This means that a bland urine sediment from a patient with early AKI is not always reassuring and speaks to the lackluster performance of these tests when rigorously investigated. This same study by Varghese and colleagues also failed to demonstrate the association between initial urine sediment findings and the future receipt of dialysis (a proxy for the most severe forms of AKI). Perhaps multiple urine sediments over several days would provide better insight into a patient’s AKI, but this is not practical nor current standard practice. Additionally, ability to obtain a freshly voided sample, oliguria/anuria, and time are all significant barriers to performing daily urine sediment analyses on every patient with AKI.

In addition to its limited prognostic ability, the inter-observer variability of sediments hinders its diagnostic value. In one study, 14 experienced nephrologists were asked to identify casts, RTEs, and
other common findings from standardized urine sediment photos. Importantly, their responses were highly variable when identifying RTEs or cellular casts. In looking at 5 distinct photos of RTEs, mean agreement was 55.7% with a Kappa (95% CI) of 0.29 (0.26-0.33). RTEs are used in all 3 of the aforementioned risk scores; if sediment examination is to be a useful clinical tool, the components of these scores must first be reliably identified by nephrologists (and other providers) regardless of their clinical experience. While agreement of granular/muddy brown casts was slightly better (78.6% with a kappa of 0.74 (0.71-0.78)), this falls remarkably short of global agreement. This lack of agreement perhaps speaks to the general imperfections of identifying these cellular elements as well as the larger issue of their sensitivity and specificity to AKI itself. Schinstock and colleagues looked at urine from 363 emergency room (ER) patients who were eventually admitted to the hospital and demonstrated that the presence of any RTEs were only 14.5% sensitive for the future development of any stage AKI. They also showed that the presence of any granular casts was only 9.2% sensitive and the combination of RTEs or granular casts were only 22.4% sensitive with a positive predictive value (PPV) of 40.5%.

Most importantly, to our knowledge, there have been no studies that demonstrated improved patient outcomes based on urine-sediment informed clinical care. Unfortunately, automated urine analyzers do not yet identify many of the particles needed to diagnose AKI, leaving the urine sediment exam as an imperfect, user-dependent, and minimally useful tool in the work-up of AKI.

Novel urine biomarkers: the future of AKI care is here

Unlike microscopic urinalysis, many novel urinary biomarkers have been shown to identify patients prior to the presence of clinical AKI, but perhaps more importantly they have been consistently linked with adverse patient outcomes and have been shown to help improve outcomes when acted on. For example, in the Schinstock ER study, a urine neutrophil gelatinase associated lipocalin (uNGAL) ≥42.7 ng/ml provided a higher sensitivity (64.5%) and a PPV on par with that of RTEs and granular casts. Improved sensitivity for detecting AKI allows clinicians to implement renal-protective measures prior to the development of advanced renal damage and can prevent severe AKI and its complications. Recently, Goldstein and colleagues prospectively enrolled hospitalized children at high risk for nephrotoxin-associated AKI, and they demonstrated that uNGAL thresholds of 150 and 300 ng/ml can effectively rule out the future development of Stage 2 or 3 AKI and can potentially be used as a surrogate to replace daily blood draws.
uNGAL is not the only biomarker that has been shown to be elevated earlier than SCr and demonstrated the ability to impact/improve AKI care. There have been several studies which randomized patients at risk for AKI to receive kidney-focused care bundles using urinary Tissue inhibitor metalloprotease-2 and insulin-like growth factor binding protein 7 (TIMP-2 and IGFBP-7) ≥0.3 as part of the enrollment criteria. Those who received these KDIGO guideline-based care bundles, which include management of hemodynamic status (intravenous fluids, inotropes and/or vasopressors), glycemic control, avoidance of nephrotoxins, and potentially nephrology consultation, had lower rates of moderate-severe AKI as well as shorter stays in the ICU and hospital. These biomarkers may be helpful for the identification of the highest risk patients who are likely to benefit from intense, costly, and time-consuming supportive care that may be difficult and impractical to deliver to all patients.

In addition to predicting AKI before it is clinically apparent, several biomarkers have shown diagnostic promise in the presence of established AKI. In a cohort of patients with newly diagnosed Stage 1 or 2 AKI following adult cardiac surgery, increased levels of urinary Interleukin-18 (IL-18) and uNGAL have both been associated with progression to more severe stages of AKI when measured on the day of SCr increase. Beyond predicting which patients will experience AKI progression, novel biomarkers can help identify which patients will develop persistent AKI and need long-term dialysis. In a multicenter international study of 331 mixed ICU patients with established Stage 2 or 3 AKI, elevated urinary C-C motif chemokine ligand-14 (CCL14) was shown to predict when stage 3 AKI would last beyond 72 hours. These findings were recently validated in a separate cohort of patients with severe AKI following cardiac surgery. Novel biomarkers can provide valuable data in prognosticating which patients will progress from an AKI perspective, allowing for the identification of those destined for a rapid kidney recovery versus those who may benefit from measures to prevent progression to acute and chronic kidney disease.

In summary, the reliability of urine sediment analysis in diagnosing AKI is extremely limited by interpreter variability, lack of diagnostic findings until later in disease course, and lack of large-scale validation. Novel urinary biomarkers have demonstrated the ability to identify and risk stratify patients before and after there are changes in SCr or UOP. They provide clinically relevant information earlier or at the same time as urine sediment and can be used in several AKI timepoints (Table 2). These biomarkers can be paired with other tools like electronic risk scores, the furosemide stress test, or clinical variables to improve patient outcomes and should continue to become an essential part of clinical care for the nephrologist and critical care community.
Disclosures:

J. Koyner reports the following: Consultancy Agreements: Astute Medical, Baxter, Novartis, Mallinckrodt, Sphingotec; Research Funding: Bioporto, Astute Medical, Nxstage medical, Fresenius Medical, NIH; Honoraria: American Society of Nephrology, Society of Critical Care Medicine, Acute Disease Quality Initiative (ADQI); Patents and Inventions: Listed on a patent for Pi GST to detect severe AKI following cardiac surgery - with Argutus Medical; Scientific Advisor or Membership: American Journal of Nephrology and Kidney360, Scientific Ad Board for the NKF of Illinois, Scientific Ad Board for the NKF; Speakers Bureau: NxStage Medical. The remaining author has nothing to disclose.

Funding:

None

Acknowledgements:

The content of this article reflects the personal experience and views of the author(s) and should not be considered medical advice or recommendation. The content does not reflect the views or opinions of the American Society of Nephrology (ASN) or Kidney360. Responsibility for the information and views expressed herein lies entirely with the author(s).

Author Contributions:

Ashley La: Conceptualization; Writing - original draft

Jay Koyner: Conceptualization; Writing - review and editing
References

1. Bagshaw SM, Haase M, Haase-Fielitz A, Bennett M, Devarajan P, Bellomo R. A prospective evaluation of urine microscopy in septic and non-septic acute kidney injury. *Nephrol Dial Transplant*. 2012;27(2):582-588.

2. Chawla LS, Dommu A, Berger A, Shih S, Patel SS. Urinary sediment cast scoring index for acute kidney injury: a pilot study. *Nephron Clin Pract*. 2008;110(3):c145-150.

3. Perazella MA, Coca SG, Hall IE, Iyanam U, Koraishy M, Parikh CR. Urine microscopy is associated with severity and worsening of acute kidney injury in hospitalized patients. *Clin J Am Soc Nephrol*. 2010;5(3):402-408.

4. Varghese V, Rivera MS, Alalwan AA, Alghamdi AM, Gonzalez ME, Velez JCQ. Diagnostic Utility of Serial Microscopic Examination of the Urinary Sediment in Acute Kidney Injury. *Kidney360*. 2021;2(2):182-191.

5. Palsson R, Colona MR, Hoenig MP, et al. Assessment of Interobserver Reliability of Nephrologist Examination of Urine Sediment. *JAMA Netw Open*. 2020;3(8):e2013959.

6. Schinstock CA, Semret MH, Wagner SJ, et al. Urinalysis is more specific and urinary neutrophil gelatinase-associated lipocalin is more sensitive for early detection of acute kidney injury. *Nephrol Dial Transplant*. 2013;28(5):1175-1185.

7. Göcze I, Jauch D, Götz M, et al. Biomarker-guided Intervention to Prevent Acute Kidney Injury After Major Surgery: The Prospective Randomized BigpAK Study. *Ann Surg*. 2018;267(6):1013-1020.

8. Goldstein SL, Krallman KA, Schmerge A, et al. Urinary neutrophil gelatinase-associated lipocalin rules out nephrotoxic acute kidney injury in children. *Pediatr Nephrol*. 2021;36(7):1915-1921.

9. Meersch M, Schmidt C, Hoffmeier A, et al. Prevention of cardiac surgery-associated AKI by implementing the KDIGO guidelines in high risk patients identified by biomarkers: the PrevAKI randomized controlled trial. *Intensive Care Med*. 2017;43(11):1551-1561.

10. Zarbock A, Küllmar M, Ostermann M, et al. Prevention of Cardiac Surgery-Associated Acute Kidney Injury by Implementing the KDIGO Guidelines in High-Risk Patients Identified by Biomarkers: The PrevAKI-Multicenter Randomized Controlled Trial. *Anesth Analg*. 2021.

11. Koyner JL, Garg AX, Coca SG, et al. Biomarkers predict progression of acute kidney injury after cardiac surgery. *J Am Soc Nephrol*. 2012;23(5):905-914.

12. Hoste E, Bihorac A, Al-Khafaji A, et al. Identification and validation of biomarkers of persistent acute kidney injury: the RUBY study. *Intensive Care Med*. 2020;46(5):943-953.

13. Massoth C, Küllmar M, Enders D, et al. Comparison of C-C motif chemokine ligand 14 with other biomarkers for adverse kidney events after cardiac surgery. *J Thorac Cardiovasc Surg*. 2021.
Table 1 – Summary of Published Urinalysis Acute Kidney Injury Risk Scores and Their Limitations

Study	Study Characteristics and Data	Scoring System	Limitations
Chawla et al 2008 – Neph Clin Pract[^2]	Score created based on 30 single-center patients and a panel of 3 blinded nephrologists and validated in another 18 patients. Inter-observer agreement was 99.8%. Area under the curve (AUC) for non-recovery was 0.79.	Grade 1: No casts or RTE	
Grade 2: At least 1 cast or RTE but <10% of LPF			
Grade 3: Many casts or RTEs (between 10-90% of LPF)			
Grade 4: Sheet of muddy brown casts and RTEs in > 90% of LPF	• Small sample size even with the validation cohort		
• Exceedingly high inter-observer agreement compared to the literature			
• Only in those with established AKI			
Perazella et al 2010 – CJASN[^3]	Validated in 197 single-center patients with acute tubular necrosis or pre-renal AKI. Score ≥ 3 (compared to 0) was associated with 7.3 relative risk of AKI progression. AUC of 0.75 for AKI progression.	0 points: No Casts or RTE seen	
1 point each: 1-5 casts per LPF or 1-5 RTEs per HPF			
2 points each: ≥ 6 casts per LPF or ≥ 6 RTEs per HPF	• Inter-observer agreement fairly low (Kappa of 0.47) for RTEs		
• Urine microscopy performed at time of renal consultation rather than on day 1 of AKI			
• Not blinded to patient’s clinical status			
• Single-center data			
Bagshaw et al 2012 – NDT[^1]	Eighty-three patients with and without sepsis-associated AKI across 2 centers. Scores ≥3 had a PPV of 80% (49-94%) and NPV of 91% (78-96%) for AKI progression.	0 points: No Casts or RTE seen	
1 point each: 1 cast or 1 RTEs per HPF
2 points each: 2-4 casts or RTEs per HPF
3 points each: ≥ 5 casts or ≥ 5 RTEs per HPF | • Only 1 person scored all urine sediments
• Despite being 2 centers, small sample size
• May be specific to critically ill patients |

RTE=Renal Tubule Epithelial Cells; LPF=Low Power Field; HPF=High Power Field

PPV – Positive Predictive Value, NPV - Negative Predictive Value
Table 2 – The Diagnostic Capabilities of Urinary Biomarkers of AKI

AKI Timepoint	Biomarker	Findings
Before SCr / UOP defined AKI	TIMP2*IGFBP7	An elevated urinary TIMP2*IGFBP7 > 0.3 identifies patients at risk for severe AKI, and when coupled with a guideline-based, renal protective care bundle there are lower rates of severe (Stage 2/3) AKI as well as improved patient outcomes (shorter length of stay and lower cost of care).
[7,9,10]		
	uNGAL	Higher urinary NGAL (> 42/7 ng/ml) on admission was associated with higher AKIN stages of AKI, with sensitivity of 64.5% (CI 53.5–74.3) and specificity of 64.5% (58.8-69.8).
[6]		
Clinical AKI diagnosis	uNGAL	Elevated urine NGAL (>141 ng/ml) measured at the time of AKI diagnosis (SCr increase) was associated with 2.32 increased odds of progressive/worsening AKI compared to those with values < 20.1 ng/ml.
[11]		
	IL-18	Elevated urinary IL-18 (>185 pg/ml) measured at the time of AKI diagnosis was associated with 3.6 increased odds of progressive AKI compared to those with values < 29.6 pg/ml.
[11]		
Established AKI	CCL-14	Urinary CCL-14 levels > 2.21 ng/ml in patients with Stage 2 or 3 AKI following cardiac surgery provided a sensitivity of 78% and specificity of 95% for the development of Stage 2 or 3 AKI that lasted 72 hours of more. CCL-14 values provided an AUC of 0.91 for the receipt of RRT in the next 7 days.
[13] |