ON TWO-POINT CONFIGURATIONS IN A RANDOM SET

Hoi H. Nguyen

Department of Mathematics, Rutgers University, Piscataway, NJ 08854, USA
hoi@math.rutgers.edu

Received: 8/2/08, Accepted: 1/3/09, Published: 1/8/09

Abstract

We show that with high probability a random subset of \{1, \ldots, n\} of size \(\Theta(n^{1-1/k})\) contains two elements \(a\) and \(a + d^k\), where \(d\) is a positive integer. As a consequence, we prove an analogue of the Sárközy-Fürstenberg theorem for a random subset of \{1, \ldots, n\}.

1. Introduction

Let \(\wp\) be a general additive configuration, \(\wp = (a, a + P_1(d), \ldots, a + P_{k-1}(d))\), where \(P_i \in \mathbb{Z}[d]\) and \(P_i(0) = 0\). Let \([n]\) denote the set of positive integers up to \(n\). A natural question is:

Question 1.1. How is \(\wp\) distributed in \([n]\)?

Roth’s theorem [6] says that for \(\delta > 0\) and sufficiently large \(n\), any subset of \([n]\) of size \(\delta n\) contains a nontrivial instance of \(\wp = (a, a + d, a + 2d)\) (here nontrivial means \(d \neq 0\)). In 1975, Szemerédi [8] extended Roth’s theorem for general linear configurations \(\wp = (a, a + d, \ldots, a + (k - 1)d)\). For a configuration of type \(\wp = (a, a + P(d))\), Sárközy [7] and Fürstenberg [2] independently discovered a similar phenomenon.

Theorem 1.2 (Sárközy-Fürstenberg theorem, quantitative version). [9, Theorem 3.2],[4, Theorem 3.1] Let \(\delta\) be a fixed positive real number, and let \(P\) be a polynomial of integer coefficients satisfying \(P(0) = 0\). Then there exists an integer \(n = n(\delta, P)\) and a positive constant \(c(\delta, P)\) with the following property. If \(n \geq n(\delta, P)\) and \(A \subset [n]\) is any subset of cardinality at least \(\delta n\), then

- \(A\) contains a nontrivial instance of \(\wp\).
- \(A\) contains at least \(c(\delta, P)|A|^{2n^{1/\deg(P)-1}}\) instances of \(\wp = (a, a + P(d))\).

\(^1\)This work was written while the author was supported by a DIMACS summer research fellowship, 2008.
In 1996, Bergelson and Leibman [1] extended this result for all configurations $\varphi = (a, a + P_1(d), \ldots, P_{k-1}(d))$, where $P_i \in \mathbb{Z}[d]$ and $P_i(0) = 0$ for all i.

Following Question [1.1], one may consider the distribution of φ in a “pseudo-random” set.

Question 1.3. Does the set of primes contain a nontrivial instance of φ? How is φ distributed in this set?

The famous Green-Tao theorem [3] says that any subset of positive upper density of the set of primes contains a nontrivial instance of $\varphi = (a, a + d, \ldots, a + (k-1)d)$ for any k. This phenomenon also holds for more general configurations $(a, a + P_1(d), \ldots, a + P_{k-1}(d))$, where $P_i \in \mathbb{Z}[d]$ and $P_i(0) = 0$ for all i (cf. [9]).

The main goal of this note is to consider a similar question.

Question 1.4. How is φ distributed in a typical random subset of $[n]$?

Let φ be an additive configuration and let δ be a fixed positive real number. We say that a set A is (δ, φ)-dense if any subset of cardinality at least $\delta |A|$ of A contains a nontrivial instance of φ. In 1991, Kohayakawa-Luczak-Rödl [5] showed the following result.

Theorem 1.5. Almost every subset R of $[n]$ of cardinality $|R| = r \gg \delta n^{1/2}$ is $(\delta, (a, a + d, a + 2d))$-dense.

The assumption $r \gg \delta n^{1/2}$ is tight, up to a constant factor. Indeed, a typical random subset R of $[n]$ of cardinality r contains about $\Theta(r^3/n)$ three-term arithmetic progressions. Hence, if $(1-\delta)r \gg r^3/n$, then there is a subset of R of cardinality δr which does not contain any nontrivial 3-term arithmetic progression.

Motivated by Theorem [1.5], Laba and Hamel [4] studied the distribution of $\varphi = (a, a + d^k)$ in a typical random subset of $[n]$, as follows.

Theorem 1.6. Let $k \geq 2$ be an integer. Then there exists a positive real number $\varepsilon(k)$ with the following property. Let δ be a fixed positive real number, then almost every subset R of $[n]$ of cardinality $|R| = r \gg \delta n^{1-\varepsilon(k)}$ is $(\delta, (a, a + d^k))$-dense.

It was shown that $\varepsilon(2) = 1/110$, and $\varepsilon(3) \gg \varepsilon(2)$, etc. Although the method used in [4] is strong, it seems to fall short of obtaining relatively good estimates for $\varepsilon(k)$. On the other hand, one can show that $\varepsilon(k) \leq 1/k$. Indeed, a typical random subset of $[n]$ of size r contains $\Theta(n^{1+1/k}r^2/n^2)$ instances of $(a, a + d^k)$. Thus if $(1-\delta)r \gg n^{1+1/k}r^2/n^2$ (which implies $r \ll \delta n^{1-1/k}$) then there is a subset of size δr of R which does not contain any nontrivial instance of $(a, a + d^k)$.

In this note we shall sharpen Theorem [1.6] by showing that $\varepsilon(k) = 1/k$.
Theorem 1.7 (Main theorem). Almost every subset R of $[n]$ of size $|R| = r \gg n^{1-1/k}$ is $(\delta, (a, a + d^k))$-dense.

Our method to prove Theorem 1.7 is elementary. We will invoke a combinatorial lemma and the quantitative Sárközy-Fürstenberg theorem (Theorem 1.2). As the reader will see later on, the method also works for more general configurations $(a, a + P(d))$, where $P \in \mathbb{Z}[d]$ and $P(0) = 0$.

2. A Combinatorial Lemma

Let $G(X, Y)$ be a bipartite graph. We denote the number of edges going through X and Y by $e(X, Y)$. The average degree $\bar{d}(G)$ of G is defined to be $e(X, Y)/(|X||Y|)$.

Lemma 2.1. Let $\{G = G([n], [n])\}_{n=1}^\infty$ be a sequence of bipartite graphs. Assume that for any $\varepsilon > 0$ there exist an integer $n(\varepsilon)$ and a number $c(\varepsilon) > 0$ such that $e(A, A) \geq c(\varepsilon)|A|^2\bar{d}(G)/n$ for all $n \geq n(\varepsilon)$ and all $A \subset [n]$ satisfying $|A| \geq \varepsilon n$. Then for any $\alpha > 0$ there exist an integer $n(\alpha)$ and a number $C(\alpha) > 0$ with the following property. If one chooses a random subset S of $[n]$ of cardinality s, then the probability of $G(S, S)$ being empty is at most α^s, providing that $|S| = s \geq C(\alpha)n/\bar{d}(G)$ and $n \geq n(\alpha)$.

Proof. For short we denote the ground set $[n]$ by V. We shall view S as an ordered random subset, whose elements will be chosen in order, v_1 first and v_s last. We shall verify the lemma within this probabilistic model. Deduction of the original model follows easily.

For $1 \leq k \leq s - 1$, let N_k be the set of neighbors of the first k chosen vertices, i.e., $N_k = \{v \in V, (v_i, v) \in E(G) \text{ for some } i \leq k\}$. Since $G(S, S)$ is empty, we have $v_{k+1} \notin N_k$. Next, let B_{k+1} be the set of possible choices for v_{k+1} (from $V \setminus \{v_1, \ldots, v_k\}$) such that $N_{k+1}\setminus N_k \leq c(\varepsilon)\varepsilon\bar{d}(G)$, where ε will be chosen to be small enough ($\varepsilon = \alpha^2/6$ is fine) and $c(\varepsilon)$ is the constant from Lemma 2.1. We observe the following.

Claim 2.2. $|B_{k+1}| \leq \varepsilon|V|$.

To prove this claim, we assume for contradiction that $|B_{k+1}| \geq \varepsilon|V| = \varepsilon n$. Since $B_{k+1} \cap N_k = \emptyset$, we have $e(B_{k+1}, B_{k+1}) \leq e(B_{k+1}, V \setminus N_k) \leq c(\varepsilon)\varepsilon\bar{d}(G)|B_{k+1}| < c(\varepsilon)|B_{k+1}|^2\bar{d}(G)/n$. This contradicts the property of G assumed in Lemma 2.1 provided that n is large enough.

Thus we conclude that if $G(S, S)$ is empty then $|B_{k+1}| \leq \varepsilon|V|$ for $1 \leq k \leq s - 1$.

Now let s be sufficiently large, say $s \geq 2(c(\varepsilon)\varepsilon)^{-1}n/\bar{d}(G)$, and assume that the vertices v_1, \ldots, v_s have been chosen. Let s' be the number of vertices v_{k+1} that do not belong to B_{k+1}. Then we have

$$n \geq |N_s| \geq \sum_{v_{k+1} \notin B_{k+1}} |N_{k+1}\setminus N_k| \geq s'c(\varepsilon)\varepsilon\bar{d}(G).$$
Hence, \(s' \leq (c(\varepsilon)\varepsilon^{-1}n/\overline{d}(G) \leq s/2. \)

As a result, there are \(s - s' \) vertices \(v_{k+1} \) that belong to \(B_{k+1} \). But since \(|B_{k+1}| \leq \varepsilon n \), we see that the number of subsets \(S \) of \(V \) such that \(G(S, S) \) is empty is bounded by

\[
\sum_{s' \leq s/2} \binom{s}{s'} n^{s'} (\varepsilon n)^{s-s'} \leq (6\varepsilon)^{s/2} n(n-1) \ldots (n-s+1) \leq \alpha^s n(n-1) \ldots (n-s+1),
\]

thereby completing the proof.

\[\square\]

3. Proof of Theorem 1.7

First, we define a bipartite graph \(G \) on \([n] \times [n] = V_1 \times V_2\) by connecting \(u \in V_1 \) to \(v \in V_2 \) if \(v - u = d^k \) for some integer \(d \in [1, n^{1/k}] \). Notice that \(\overline{d}(G) \approx C n^{1/k} \) for some absolute constant \(C \).

Let us restate the Sárközy-Fürstenberg theorem (Theorem 1.2, for \(P(d) = d^k \)) in terms of the graph \(G \).

Theorem 3.1. Let \(\varepsilon > 0 \) be a positive constant. Then there exists a positive integer \(n(\varepsilon, k) \) and a positive constant \(c(\varepsilon, k) \) such that \(e(A, A) \geq c(\varepsilon, k)|A|^2 n^{1/k-1} \) for all \(n \geq n(\varepsilon, k) \) and all \(A \subset [n] \) satisfying \(|A| \geq \varepsilon n \).

Now let \(S \) be a subset of \([n]\) of size \(s \). We call \(S \) bad if it does not contain any nontrivial instance of \((a, a + d^k)\). In other words, \(S \) is bad if \(G(S, S) \) contains no edges. By Lemma 2.1 and Theorem 3.1, the number of bad subsets of \([n]\) is at most \(\alpha^s \binom{n}{s} \), provided that \(s \geq C(\alpha)n/\overline{d}(G) \). This condition is satisfied if we assume that

\[
s \geq 2C(\alpha)C^{-1} n^{1-1/k}.
\]

Next, let \(r = s/\delta \) and consider a random subset \(R \) of \([n]\) of size \(r \). The probability that \(R \) contains a bad subset of size \(s \) is at most

\[
\alpha^s \binom{n}{s} \binom{n-s}{r-s} / \binom{n}{r} = o(1),
\]

provided that \(\alpha = \alpha(\delta) \) is small enough.

To finish the proof, we note that if \(R \) does not contain any bad subset of size \(\delta r \), then \(R \) is \((\delta, (a, a + d^k))\)-dense.
References

[1] V. Bergelson and A. Leibman, *Polynomial extensions of Van Der Waerden’s and Szemerédi’s theorems*, J. Amer. Math. Soc. 9(1996), no. 3, 725-753.

[2] H. Fürstenberg *Recurrence in ergodic theory and combinatorial number theory*, Princeton University Press, Princeton (1981).

[3] B. J. Green and T. Tao, *Primes contain arbitrarily long arithmetic progression*, to appear in Ann. Math.

[4] M. Hamel and I. Laba, *Arithmetic structures in random sets*, Electronic Journal of Combinatorial Number Theory 8 (2008).

[5] Y. Kohayakawa, T. Luczak, and V. Rödl, *Arithmetic progressions of length three in subsets on a random sets*, Acta Arith. 75(1996), 133-163.

[6] K. F. Roth, *On certain sets of integers*, J. London Math Soc. 28(1953), 245-252.

[7] A. Sárközy, *On difference sets of inteoges III*, Acta Math. Sci. Hungar., 31, (1978), 125-149.

[8] E. Szemerédi, *On set of integers containing no k elements in arithmetic progressions*, Acta Arith. 27 (1975), 299-345.

[9] T. Tao and T. Ziegler *The primes contain arbitrarily long polynomial progressions*, to appear in Acta Math.