Higher order moments of the estimated tangency portfolio weights

Farrukh Javed \(^a\), Stepan Mazur\(^a\) and Edward Ngailo\(^b\)

\(^a\)Örebro University School of Business, Sweden; \(^b\)Department of Mathematics, Linköping University, Sweden.

ARTICLE HISTORY
Compiled January 27, 2020

Online Supplementary Materials

In Lemma 0.1, we present a stochastic representation for \(\mathbf{l}^T \mathbf{A}^{-1} \mathbf{z}\) obtained in [2], that plays a fundamental role in the derivations of the higher moments for \(\mathbf{l}^T \mathbf{A}^{-1} \mathbf{z}\). Below, the symbol \(\mathcal{F}(d_1, d_2, s)\) stands for the non-central \(\mathcal{F}\)-distribution with \(d_1\) and \(d_2\) degrees of freedom and the non-centrality parameter \(s\), while the symbol \(\sim\) stands for the equality in distribution.

Lemma 0.1. Let \(\mathbf{A} \sim \mathcal{W}_k(n, \Sigma)\), \(n > k\) and \(\mathbf{z} \sim \mathcal{N}_k(\mu, \lambda \Sigma)\) with \(\lambda > 0\) and positive definite \(\Sigma\). Furthermore, let \(\mathbf{A}\) and \(\mathbf{z}\) be independent and \(\mathbf{l}\) be a \(k\)-dimensional vector of constants. Then the stochastic representation of \(\mathbf{l}^T \mathbf{A}^{-1} \mathbf{z}\) is given by

\[
\mathbf{l}^T \mathbf{A}^{-1} \mathbf{z} \sim \frac{1}{u_1} \left(\mathbf{l}^T \Sigma^{-1} \mu + \sqrt{\left(\lambda + \frac{\lambda(k-1)}{n-k+2} u_3 \right)} \right) \mathbf{l}^T \Sigma^{-1} \mathbf{l} u_2
\]

where \(u_1 \sim \chi^2_{n-k+1}\), \(u_2 \sim \mathcal{N}(0, 1)\) and \(u_3 \sim \mathcal{F}(k-1, n-k+2, s)\) with \(s = \mu^T \mathbf{R}_1 \mu / \lambda\) and \(\mathbf{R}_1 = \Sigma^{-1} - \mu \Sigma^{-1} \mu^T \Sigma^{-1} / \mathbf{l}^T \Sigma^{-1} \mathbf{l}\). The random variables \(u_1\), \(u_2\) and \(u_3\) are mutually independently distributed.

From Lemma 0.1, note that the stochastic representation of \(\mathbf{l}^T \mathbf{A}^{-1} \mathbf{z}\) is given in terms of independently distributed \(\chi^2\), a standard normal and a non-central \(\mathcal{F}\) random variables.

Corresponding author: Farrukh Javed. Email: Farrukh.Javed@oru.se
Proof of Theorem 4.1: From Lemma 0.1 we obtain that

\[
E \left[(l^TA^{-1}z)^r \right] = E \left[\left(\frac{1}{u_1} \left(t^T \Sigma^{-1} \mu + \sqrt{\left(\lambda + \frac{\lambda(k-1)}{n-k+2} u_3 \right) l^T \Sigma^{-1} u_2} \right) \right)^r \right]
\]

\[
= E \left[\left(\frac{1}{u_1} \right)^r \right] E \left[\left(l^T \Sigma^{-1} \mu + \sqrt{\left(\lambda + \frac{\lambda(k-1)}{n-k+2} u_3 \right) l^T \Sigma^{-1} u_2} \right)^r \right]
\]

where the last equality follows from the fact that \(u_1 \) is independent of \(u_2 \) and \(u_3 \).

Since \(u_1 \sim \chi^2_{n-k+1} \), we get that \(1/u_1 \sim \text{Inv-\chi}^2_{n-k+1} \). From [3, p. 18] it follows that

\[
E \left[\left(\frac{1}{u_1} \right)^r \right] = \frac{\Gamma \left(\frac{n-k+1}{2} - r \right)}{2^r \Gamma \left(\frac{n-k+1}{2} \right)} = \frac{\Gamma \left(\frac{n-k+1}{2} - r \right)}{2^r (\frac{n-k+1}{2} - 1)...(\frac{n-k+1}{2} - 2r+1) \Gamma \left(\frac{n-k+1}{2} - r \right)}
\]

\[
= \frac{1}{(n-k-1)...(n-k-2r+1)}, \quad n-k+1 > 2r.
\]

This result follows from the property \(\Gamma(x) = (x-1)\Gamma(x-1) \).

Using the well-known binomial formula (see [1, p. 129]) and the fact that \(u_2 \) and \(u_3 \) are independent, we obtain that

\[
E \left[\left(\frac{1}{u_1} \right)^r \right] E\left[\left(l^T \Sigma^{-1} \mu + \sqrt{\left(\lambda + \frac{\lambda(k-1)}{n-k+2} u_3 \right) l^T \Sigma^{-1} u_2} \right)^r \right] = \sum_{i=0}^{r} \binom{r}{i} \left(l^T \Sigma^{-1} \mu \right)^{r-i} \left(\sqrt{\left(\lambda + \frac{\lambda(k-1)}{n-k+2} u_3 \right) l^T \Sigma^{-1} u_2} \right)^{i/2} E \left[u_2^{j/2} \right] E \left[\left(\lambda + \frac{\lambda(k-1)}{n-k+2} u_3 \right)^{i/2} \right]
\]

Let us note that the odd moments of the standard normal distribution are equal to zero, i.e. \(E \left[u_2^{2j+1} \right] = 0 \) for \(j \in \{0, 1, 2, \ldots \} \), while the even moments are given by

\[
E[u_2^{2j}] = \frac{(2j)!}{2^j j!} \quad \text{for} \quad j \geq 1,
\]

c.f. [4, Chapter 34.2]). It leads us to
\[
\begin{align*}
E & \left[(l^T \Sigma^{-1} \mu + \sqrt{\frac{\lambda + \lambda(k-1)}{n-k+2}u_3} l^T \Sigma^{-1}u_2)^r \right] \\
& = \sum_{i=0}^{r} \binom{r}{i} (l^T \Sigma^{-1} \mu)^{r-i} (\lambda l^T \Sigma^{-1} l)^{i/2} E \left[u_2^i \right] E \left[\left(1 + \frac{k-1}{n-k+2}u_3 \right)^{i/2} \right] \\
& = (l^T \Sigma^{-1} \mu)^r + \sum_{j=1}^{\lfloor r/2 \rfloor} \binom{r}{2j} (l^T \Sigma^{-1} \mu)^r - 2j (\lambda l^T \Sigma^{-1} l)^j E \left[u_2^{2j} \right] E \left[\left(1 + \frac{k-1}{n-k+2}u_3 \right)^j \right].
\end{align*}
\]

Applying the binomial formula again we get
\[
E \left[\left(1 + \frac{k-1}{n-k+2}u_3 \right)^j \right] = E \left[\sum_{m=0}^{j} \binom{j}{m} \left(\frac{k-1}{n-k+2}u_3 \right)^m \right] = \sum_{m=0}^{j} \binom{j}{m} \left(\frac{k-1}{n-k+2} \right)^m E [u_3^m].
\]

For \(m \geq 1 \) it holds that (see [4, Chapter 32.2])
\[
\begin{align*}
c_m & := \left(\frac{k-1}{n-k+2} \right)^m E [u_3^m] \\
& = \frac{\Gamma \left(\frac{n-k+2}{2} - m \right) \Gamma \left(\frac{k-1}{2} + m \right)}{\Gamma \left(\frac{n-k+2}{2} \right) \Gamma \left(\frac{k-1}{2} \right)} e^{-\frac{s^2}{2}} F_1 \left(m + \frac{k-1}{2} ; \frac{k-1}{2} ; \frac{s}{2} \right) \\
& = \frac{(k-1+2(m-1)) \ldots (k-1)}{(n-k-2(m-1)) \ldots (n-k)} e^{-\frac{s^2}{2}} F_1 \left(m + \frac{k-1}{2} ; \frac{k-1}{2} ; \frac{s}{2} \right),
\end{align*}
\]

Finally, putting all the terms together we get the statement of the theorem.

\(\square \)

Proof of Corollary 4.2: From Theorem 4.1 it follows that
\[
\kappa_1 := E \left[l^T A^{-1} z \right] = \frac{1}{n-k-1} l^T \Sigma^{-1} \mu.
\]

Using the binomial formula and properties of the mathematical expectation, we
obtain that
\[
E \left[(l^T A^{-1} z - \kappa_1)^r \right] = E \left[\sum_{i=0}^{r} \left(\begin{array}{c} r \\ i \end{array} \right) (-\kappa_1)^{r-i} (l^T A^{-1} z)^i \right] = (-\kappa_1)^r + \sum_{i=1}^{r} \left(\begin{array}{c} r \\ i \end{array} \right) (-1)^{r-i} \kappa_1^{r-i} E \left[(l^T A^{-1} z)^i \right]. \tag{3}
\]

Finally, applying Theorem 4.1 we get the statement of the corollary.

\[\square\]

Proof of Corollary 4.3: From Theorem 4.1 and [4, Chapter 32.2] we obtain that
\[
c_1 = \frac{k - 1}{n - k + 2} E[u_3] = \frac{s + k - 1}{n - k},
\]
\[
c_2 = \left(\frac{k - 1}{n - k + 2} \right)^2 E[u_3^2] = \frac{s^2 + (2s + k - 1)(k + 1)}{(n - k)(n - k - 2)}.
\]

Using Corollary 4.2, we get that the second order central moment of $l^T A^{-1} z$ is given by
\[
E[(l^T A^{-1} z - E[l^T A^{-1} z])^2] = (-\kappa_1)^2 + \sum_{i=1}^{2} \left(\begin{array}{c} 2 \\ i \end{array} \right) \frac{(-\kappa_1)^{2-i}}{(n - k - 1) \ldots (n - k - 2i + 1)}
\]
\[
\times \left[(l^T \Sigma^{-1} \mu)^i + \sum_{j=1}^{\lfloor i/2 \rfloor} \left(\begin{array}{c} i \\ 2j \end{array} \right) \frac{(2j)!}{2^j j!} (l^T \Sigma^{-1} \mu)^{i-2j} (\lambda l^T \Sigma^{-1} l)^j \left(1 + \sum_{m=1}^{j} \left(\begin{array}{c} j \\ m \end{array} \right) c_m \right) \right]
\]
\[
= \kappa_1^2 - \frac{2\kappa_1}{n - k - 1} l^T \Sigma^{-1} \mu + \frac{1}{(n - k - 1)(n - k - 3)}
\]
\[
\times \left[(l^T \Sigma^{-1} \mu)^2 + \lambda \left(1 + \frac{s + k - 1}{n - k} \right) l^T \Sigma^{-1} l \right]
\]
\[
= \left[\frac{1}{(n - k - 1)(n - k - 3)} - \frac{1}{(n - k - 1)^2} \right] (l^T \Sigma^{-1} \mu)^2
\]
\[
+ \frac{\lambda}{(n - k - 1)(n - k - 3)} \left(1 + \frac{s + k - 1}{n - k} \right) l^T \Sigma^{-1} l
\]
\[
= d_1^{(0)} (l^T \Sigma^{-1} \mu)^2 + d_2^{(0)} l^T \Sigma^{-1} l
\]
with $d_1^{(0)}$ and $d_2^{(0)}$ as defined in the formulation of the corollary.
In order to derive the third order central moment of $\mathbf{1}^T \mathbf{A}^{-1} \mathbf{z}$, it holds that

$$
\mathbb{E}
\left[
\left(\mathbf{1}^T \mathbf{A}^{-1} \mathbf{z} - \mathbb{E}[\mathbf{1}^T \mathbf{A}^{-1} \mathbf{z}]\right)^3
\right]
= (-\kappa_1)^3 + \sum_{i=1}^{3} \binom{3}{i} \frac{(-\kappa_1)^{3-i}}{(n-k-1) \ldots (n-k-2i+1)}
\times
\left[
\left(\mathbf{1}^T \mathbf{\Sigma}^{-1} \mu\right)^i + \sum_{j=1}^{\lfloor i/2 \rfloor} \binom{i}{2j} \frac{(2j)!}{2^j j!} \left(\mathbf{1}^T \mathbf{\Sigma}^{-1} \mu\right)^{i-2j} \left(\lambda \mathbf{1}^T \mathbf{\Sigma}^{-1} \mu\right)^j \left(1 + \sum_{m=1}^{j} \binom{j}{m} c_m\right)
\right]
= -\kappa_1^3 + \frac{3\kappa_1^2}{n-k-1} \mathbf{1}^T \mathbf{\Sigma}^{-1} \mu - \frac{3\kappa_1}{(n-k-1)(n-k-3)} \left[\left(\mathbf{1}^T \mathbf{\Sigma}^{-1} \mu\right)^2 + \lambda (1 + c_1) \mathbf{1}^T \mathbf{\Sigma}^{-1} \mu \cdot \mathbf{1}^T \mathbf{\Sigma}^{-1} \mu\right]
+ \frac{1}{(n-k-1)(n-k-3)(n-k-5)} \left[\left(\mathbf{1}^T \mathbf{\Sigma}^{-1} \mu\right)^3 + 3\lambda (1 + c_1) \mathbf{1}^T \mathbf{\Sigma}^{-1} \mu \cdot \mathbf{1}^T \mathbf{\Sigma}^{-1} \mu\right]
\times \left(1 + \frac{s+k-1}{n-k}\right) \mathbf{1}^T \mathbf{\Sigma}^{-1} \mu \cdot \mathbf{1}^T \mathbf{\Sigma}^{-1} \mu
\right]
= d_1^{(1)} \left(\mathbf{1}^T \mathbf{\Sigma}^{-1} \mu\right)^3 + d_2^{(1)} \mathbf{1}^T \mathbf{\Sigma}^{-1} \mu \cdot \mathbf{1}^T \mathbf{\Sigma}^{-1} \mu
\right]
$$

with $d_1^{(1)}$ and $d_2^{(1)}$ which are defined in the statement of the corollary.

Finally, we derive the fourth order central moment of $\mathbf{1}^T \mathbf{A}^{-1} \mathbf{z}$. From Corollary 4.2,
we have

$$
E \left[(1^T A^{-1} z - E[1^T A^{-1} z])^4 \right] = (-\kappa_1)^4 + \frac{4}{(n-k-1)...(n-k-2i+1)} \sum_{i=1}^{4} \binom{4}{i} (-\kappa_1)^{4-i} \\
\times \left[(1^T \Sigma^{-1} \mu)^i + \sum_{j=1}^{[i/2]} \binom{i}{2j} (\frac{1}{2^j})^j (1^T \Sigma^{-1} \mu)^{i-2j} \left(\lambda (1^T \Sigma^{-1} \mu)^2 \right)^{j} \left(1 + \sum_{m=1}^{j} \binom{j}{m} c_m \right) \right] \\
= \frac{1}{(n-k-1)^4} (1^T \Sigma^{-1} \mu)^4 - \frac{4\kappa_1^3}{n-k-1} 1^T \Sigma^{-1} \mu + \frac{6\kappa_1^2}{(n-k-1)(n-k-3)} (1^T \Sigma^{-1} \mu)^2 \\
+ \frac{6\lambda(1 + c_1)\kappa_1^2}{(n-k-1)(n-k-3)} (1^T \Sigma^{-1} \mu)^3 - \frac{4\kappa_1}{(n-k-1)(n-k-3)(n-k-5)} (1^T \Sigma^{-1} \mu)^4 \\
+ \frac{6\lambda(1 + c_1)}{(n-k-1)...(n-k-7)} (1^T \Sigma^{-1} \mu)^4 + \frac{6\lambda(1 + c_1)}{(n-k-1)...(n-k-7)} (1^T \Sigma^{-1} \mu)^2 1^T \Sigma^{-1} \mu \\
+ \frac{6\lambda(1 + c_1)}{(n-k-1)...(n-k-7)} (1^T \Sigma^{-1} \mu)^3 \\
+ \frac{3\lambda^2(1 + 2c_1 + c_2)}{(n-k-1)...(n-k-7)} (1^T \Sigma^{-1} \mu)^4 \\
= \left[\frac{1}{(n-k-1)^3(n-k-3)} - \frac{3}{(n-k-1)^4} - \frac{4}{(n-k-1)^2(n-k-3)(n-k-5)} \right] (1^T \Sigma^{-1} \mu)^4 \\
+ \left[\frac{6\lambda(1 + c_1)}{(n-k-1)^3(n-k-3)} - \frac{12\lambda(1 + c_1)}{(n-k-1)^2(n-k-3)(n-k-5)} \right] (1^T \Sigma^{-1} \mu)^3 \\
+ \left[\frac{6\lambda(1 + c_1)}{(n-k-1)...(n-k-7)} \right] (1^T \Sigma^{-1} \mu)^2 1^T \Sigma^{-1} \mu \\
+ \left[\frac{3\lambda^2(1 + 2c_1 + c_2)}{(n-k-1)...(n-k-7)} \right] (1^T \Sigma^{-1} \mu)^2 \\
= d_1^{(2)} (1^T \Sigma^{-1} \mu)^4 + d_2^{(2)} (1^T \Sigma^{-1} \mu)^2 1^T \Sigma^{-1} \mu + d_3^{(2)} (1^T \Sigma^{-1} \mu)^2
$$

with $d_1^{(2)}$, $d_2^{(2)}$, and $d_3^{(2)}$ as defined in the formulation of the corollary. It completes the proof of the corollary.

\[\square\]
References

[1] Biggs, N. L. (1979). The roots of combinatorics. Historia Mathematica, 6, 109–136.
[2] Bodnar, T. & Okhrin, Y. (2011). On the product of inverse Wishart and normal distributions with applications to discriminant analysis and portfolio theory. Scandinavian Journal of Statistics, 38, 311–331.
[3] Glen, A. G. (2017). Computational Probability Applications, volume 247 of International Series in Operations Research & Management Science, chapter On the Inverse Gamma as a Survival Distribution, (pp. 15–30). Springer International Publishing: Switzerland.
[4] Walck, C. (1996). Hand-book on statistical distributions for experimentalists. Internal Report SUF–PFY/96–01, Stockholm University.
Table 1. Mean, variance, skewness and kurtosis of the estimated TP weights. The returns are assumed to be independently multivariate normally and t-distributed. k is taken to be 10, and $l = 1_k$.

Risk Aversion	Moments	$n = 30$	$n = 60$	$n = 120$						
	$N_10(\mu, \Sigma)$	$t_{10}(5, \mu, 0.6\Sigma)$	$t_{10}(10, \mu, 0.8\Sigma)$	$N_10(\mu, \Sigma)$	$t_{10}(5, \mu, 0.6\Sigma)$	$t_{10}(10, \mu, 0.8\Sigma)$				
$\alpha = 3$	Mean	0.864776	1.110531	0.947911	0.659764	0.761651	0.701336	0.591427	0.651834	0.611435
	Variance	5.567486	11.583640	7.539621	1.168022	2.292749	1.532996	0.412463	0.797585	0.539417
	Skewness	0.312385	0.340557	0.326781	0.165592	0.193511	0.183743	0.105690	0.123817	0.126428
	Kurtosis	5.839568	5.987360	5.883379	3.760057	3.921065	3.777257	3.307217	3.303203	3.384185
$\alpha = 5$	Mean	0.518866	0.668637	0.569284	0.395859	0.463346	0.417420	0.354856	0.391722	0.364384
	Variance	2.004295	4.130472	2.696112	0.420488	0.826535	0.552009	0.148487	0.288967	0.193801
	Skewness	0.312385	0.293890	0.302154	0.165592	0.197716	0.189284	0.105690	0.110918	0.119119
	Kurtosis	5.839568	5.912035	5.583926	3.760057	3.897097	3.808134	3.307217	3.317417	3.320139
$\alpha = 10$	Mean	0.259433	0.330666	0.289738	0.197929	0.230357	0.210714	0.177428	0.196028	0.183325
	Variance	0.501074	1.039429	0.672494	0.105122	0.206214	0.139646	0.037122	0.072717	0.047920
	Skewness	0.312385	0.345765	0.320551	0.165592	0.175258	0.193042	0.105690	0.115015	0.102036
	Kurtosis	5.839568	6.592671	5.900996	3.760057	3.828284	3.867597	3.307217	3.330776	3.327171
$\alpha = 50$	Mean×10	0.518866	0.668637	0.569284	0.395859	0.463346	0.417420	0.354856	0.391722	0.364384
	Variance×10	2.004295	4.130472	2.696112	0.420488	0.826535	0.552009	0.148487	0.288967	0.193801
	Skewness	0.312385	0.293890	0.302154	0.165592	0.197716	0.189284	0.105690	0.110918	0.119119
	Kurtosis	5.839568	5.912035	5.583926	3.760057	3.897097	3.808134	3.307217	3.317417	3.320139
$\alpha = 100$	Mean×10	0.259433	0.330666	0.289738	0.197929	0.230357	0.210714	0.177428	0.196028	0.183325
	Variance×10	0.501074	1.039429	0.672494	0.105122	0.206214	0.139646	0.037122	0.072717	0.047920
	Skewness	0.312385	0.345765	0.320551	0.165592	0.175258	0.193042	0.105690	0.115015	0.102036
	Kurtosis	5.839568	6.592671	5.900996	3.760057	3.828284	3.867597	3.307217	3.330776	3.327171
Table 2. Mean, variance, skewness and kurtosis of the estimated TP weights. The returns are assumed to be independently multivariate normally and t-distributed. k is taken to be 15, and $l = 1_k$.

Risk Aversion	Moments	$n = 30$	$n = 60$	$n = 120$
$\alpha = 3$	Mean	0.547237	0.336593	0.283420
	Variance	27.687910	5.960050	0.856055
	Skewness	0.138575	0.060116	0.036902
	Kurtosis	7.962276	3.842378	3.314540
$\alpha = 5$	Mean	0.328342	0.201956	0.170052
	Variance	9.967647	1.067152	0.311618
	Skewness	0.138575	0.060116	0.036902
	Kurtosis	7.962276	3.842378	3.314540
$\alpha = 10$	Mean	0.164171	0.100978	0.085026
	Variance	2.491912	0.266788	0.077904
	Skewness	0.138575	0.060116	0.036902
	Kurtosis	7.962276	3.842378	3.314540
$\alpha = 50$	Mean×10	0.328342	0.201956	0.170052
	Variance×10	9.967647	1.067152	0.311618
	Skewness×10	0.138575	0.060116	0.036902
	Kurtosis×10	7.962276	3.842378	3.314540
$\alpha = 100$	Mean×10	0.164171	0.100978	0.085026
	Variance×10	2.491912	0.266788	0.077904
	Skewness×10	0.138575	0.060116	0.036902
	Kurtosis×10	7.962276	3.842378	3.314540
Table 3. Bias and MSE of the estimated TP weights. The returns are assumed to be independently multivariate normally and t-distributed. k is taken to be 5, and $l = 1/k$.

| Risk Aversion | Measures | $n = 30$ | | | $n = 60$ | | | $n = 120$ | | |
|---------------|----------|---------|---------|---------|---------|---------|---------|---------|---------|
| $\alpha = 3$ | Bias | 0.143391| 0.273864| 0.189988| 0.062226| 0.127956| 0.0842447| 0.029186| 0.067652| 0.0410798|
| | MSE | 0.462743| 0.875565| 0.597934| 0.150241| 0.276909| 0.191387| 0.061858| 0.115833| 0.077792|
| $\alpha = 5$ | Bias | 0.086035| 0.162429| 0.111631| 0.037336| 0.078528| 0.050852| 0.017512| 0.039863| 0.022786|
| | MSE | 0.166587| 0.317996| 0.211986| 0.054087| 0.100505| 0.068980| 0.022269| 0.041823| 0.027900|
| $\alpha = 10$ | Bias×10 | 0.430174| 0.822092| 0.572502| 0.186679| 0.391421| 0.247014| 0.087558| 0.197323| 0.120782|
| | MSE×10 | 0.04164684| 0.08003997| 0.05369736| 0.01352169| 0.02513045| 0.01714567| 0.005567204| 0.01045792| 0.007018445|
| $\alpha = 50$ | Bias×10 | 0.086035| 0.162498| 0.110764| 0.037336| 0.078350| 0.050550| 0.017512| 0.039870| 0.024039|
| | MSE×10² | 0.166587| 0.316099| 0.213209| 0.054087| 0.101500| 0.068313| 0.022269| 0.041733| 0.027994|
| $\alpha = 100$| Bias×10² | 0.430174| 0.813215| 0.566921| 0.186679| 0.387199| 0.246360| 0.087558| 0.200873| 0.115619|
| | MSE×10³ | 0.416468| 0.792642| 0.539376| 0.135217| 0.252014| 0.170761| 0.556720| 0.104761| 0.701831|
Table 4. Bias and MSE of the estimated TP weights. The returns are assumed to be independently multivariate normally and \(t \)-distributed. \(k \) is taken to be 10, and \(l = 1_k \).

As it can been seen that, the estimator shows some biases for small \(n \) but with the increase in sample size \(n \) and number of assets \(k \), it starts reducing. It is interesting to point out here that relatively large Bias and MSE are observed for small \(n \) and large \(k \), which further diminishes with the increase in \(\alpha \).

Risk Aversion	Measures	\(n = 30 \)	\(n = 60 \)	\(n = 120 \)
\(\alpha = 3 \)	Bias	0.328018	0.123007	0.054670
	MSE	5.675082	1.183152	0.415452
\(\alpha = 5 \)	Bias	0.196811	0.073804	0.032802
	MSE	2.043029	0.425935	0.149563
\(\alpha = 10 \)	Bias	0.098406	0.036902	0.016401
	MSE	0.510757	0.106484	0.037391
\(\alpha = 50 \)	Bias	0.196811	0.073804	0.032802
	MSE	0.204303	0.042594	0.014956
\(\alpha = 100 \)	Bias	0.098406	0.036902	0.016401
	MSE	0.510757	0.106484	0.037391

Note: The \(t \)-distribution parameters are adjusted for different risk aversion levels: \(\mu = 5, \mu = 10, \mu = 50, \mu = 100 \), and \(\Sigma = 0.6 \).
Table 5. Bias and MSE of the estimated TP weights. The returns are assumed to be independently multivariate normally and \(t\)-distributed. \(k\) is taken to be 15, and \(l = 1_k\).

Here the estimator shows relatively smaller bias compared to the case presented earlier. It is interesting to point out here that relatively large Bias and MSE are observed for small \(n\) and large \(k\), which further diminishes with the increase in \(\alpha\).

Risk Aversion	Measures	\(n = 30\)	\(n = 60\)	\(n = 120\)						
	\(N_{15}(\mu, \Sigma)\)	\(t_{15}(5, \mu, 0.6\Sigma)\)	\(t_{15}(10, \mu, 0.8\Sigma)\)	\(N_{15}(\mu, \Sigma)\)	\(t_{15}(5, \mu, 0.6\Sigma)\)	\(t_{15}(10, \mu, 0.8\Sigma)\)				
\(\alpha = 3\)	Bias	0.301924	0.508598	0.397823	0.091279	0.157649	0.112649	0.038107	0.072682	0.048728
	MSE	27.779070	61.88950	38.818540	2.972642	5.984903	3.992272	0.867057	1.701807	1.140734
\(\alpha = 5\)	Bias	0.181154	0.291950	0.229171	0.054768	0.103522	0.074764	0.022864	0.046490	0.029294
	MSE	10.000460	22.102220	14.035850	1.070151	2.152747	1.429632	0.312140	0.616901	0.404402
\(\alpha = 10\)	Bias	0.090577	0.157973	0.113672	0.027384	0.045524	0.034965	0.011432	0.022334	0.015459
	MSE	2.500116	5.625195	3.486134	0.267538	0.536525	0.354263	0.078035	0.152945	0.101585
\(\alpha = 50\)	Bias	0.181154	0.307832	0.221892	0.054768	0.103480	0.066069	0.022864	0.043727	0.032967
	MSE	1.000005	2.20673	1.38010	0.010702	0.021713	0.014337	0.003121	0.006119	0.004109
\(\alpha = 100\)	Bias	0.090577	0.163285	0.121813	0.027384	0.054628	0.035939	0.011432	0.023690	0.013484
	MSE	2.500116	5.56487	3.51213	0.026754	0.053872	0.035620	0.007804	0.015352	0.010141
Table 6. Confidence intervals of the estimated TP weights. We provide three different types of CI, i.e., approximated (or asymptotic) CI evaluated via first two exact moments, the CI obtained via stochastic representation obtained by [2], and the CI obtained via stochastic representations under the assumption of \(t \)-distributed data, which are further evaluated at 5 degrees of freedom. The confidence level is 95%. The returns are assumed to be independently multivariate normally and \(t \)-distributed. \(\hat{k} \) is taken to be 5, and \(l = \frac{k}{k} \).

Risk Aversion	Limits	\(n = 30 \)	\(n = 60 \)	\(n = 120 \)	
	\(\chi^2 \) \([\mu, \Sigma] \)	\(\chi^2 \) \(t [15, \mu, 0.8 \Sigma] \)	\(\chi^2 \) \(t [15, \mu, 0.8 \Sigma] \)	\(\chi^2 \) \(t [15, \mu, 0.8 \Sigma] \)	
\(\alpha = 3 \)	Low Limit	-0.610254	-0.573308	-0.143866	0.094753
	Upper Limit	1.996370	2.160804	1.780636	1.559077
\(\alpha = 5 \)	Low Limit	-0.366152	-0.345320	-0.081375	0.056852
	Upper Limit	1.197822	1.444679	1.071927	0.938136
\(\alpha = 10 \)	Low Limit	-0.183076	-0.170182	-0.043104	0.031507
	Upper Limit	0.509811	0.864512	0.535793	0.466585
\(\alpha = 50 \)	Low Limit	-0.306215	-0.346264	-0.045905	0.056852
	Upper Limit	0.119782	0.144493	0.107914	0.093135
\(\alpha = 100 \)	Low Limit	-0.183076	-0.170182	-0.043104	0.031507
	Upper Limit	0.509811	0.864512	0.535793	0.466585
Table 7. Confidence intervals of the estimated TP weights where we provide three different types of CI, i.e., approximated (or asymptotic) CI evaluated via first two exact moments, the CI obtained via stochastic representation obtained by [2], and the CI obtained via stochastic representations under the assumption of \(t \)-distributed data, which are further evaluated at 10 degrees of freedom. It can be seen that for small \(n \) the asymptotic CI and CI based on stochastic representation obtained via MC simulations from normal distribution are not similar, but with the increase in \(n \) the estimates become more consistent. Similarly, the CI based on MC simulations from \(t \)-distribution converges to normal with the increase in degrees of freedom as per the theory says. For large sample size, \(n \), the estimates converge to all in one. Here, it is interesting to note that the length of CI decreases with the increase in risk aversion parameter \(\alpha \). The confidence level is 95%. The returns are assumed to be independently multivariate normally and \(t \)-distributed. \(k \) is taken to be 10, and \(l = \frac{k}{k} \).

Risk Aversion	Limits	\(n = 30 \)	\(n = 60 \)	\(n = 120 \)										
\(\alpha = 3 \)	Low Limit	-3.759861	-3.695323	-3.695323	-5.392500	-4.340719	-1.458468	-1.416387	-2.142870	-1.664340	-0.667327	-0.651245	-1.066886	-0.806229
Upper Limit	2.777996	2.876329	3.909600	3.260189	1.850181	1.897353	2.467225	2.103798						
\(\alpha = 5 \)	Low Limit	-2.255917	-2.185177	-2.185177	-3.236593	-2.572920	-1.085038	-1.013131	-0.400936	-0.387532	-0.64039	-0.477428		
Upper Limit	3.293818	3.548385	5.045671	4.072855	1.667978	1.725642	2.399321	1.957184	1.101089	1.132573	1.480275	1.258643		
\(\alpha = 10 \)	Low Limit	-1.127958	-1.092018	-1.092018	-1.427360	-1.271304	-0.432594	-0.406259	-0.200198	-0.191904	-0.323172	-0.242320		
Upper Limit	1.640824	1.741153	2.501313	2.038984	0.833399	0.869044	1.172196	0.984178	0.555054	0.567932	0.740275	0.628078		
\(\alpha = 50 \)	Low Limit	-0.225592	-0.222586	-0.222586	-0.258794	-0.057068	-0.065381	-0.128393	-0.101194	-0.040401	-0.03850	-0.064075	-0.048679	
Upper Limit	0.329865	0.352950	0.504080	0.405009	0.166690	0.173931	0.231844	0.194239	0.131101	0.113893	0.148280	0.125301		
\(\alpha = 100 \)	Low Limit	-0.112796	-0.112154	-0.112154	-0.127279	-0.043754	-0.043050	-0.063991	-0.049749	-0.020620	-0.019502	-0.0323172	-0.024417	
Upper Limit	0.164082	0.176414	0.250189	0.201104	0.083340	0.086869	0.116531	0.097198	0.055505	0.056390	0.074297	0.062810		
Table 8. Confidence intervals of the estimated TP weights where we provide three different types of CI, i.e., approximated (or asymptotic) CI evaluated via first two exact moments, the CI obtained via stochastic representation obtained by [2], and the CI obtained via stochastic representations under the assumption of \(t \)-distributed data, which are further evaluated at 15 degrees of freedom. The confidence level is 95%. The returns are assumed to be independently multivariate normally and \(t \)-distributed. \(k \) is taken to be 15, and \(l = 15 \).

Risk Aversion	Limits	\(n = 30 \)	\(n = 60 \)	\(n = 120 \)
\(\alpha = 3 \)	Low limit	-9.765966	-9.41929	-9.175559
	Upper limit	10.869331	11.403907	11.765420
\(\alpha = 5 \)	Low limit	-5.859574	-5.904934	-5.904934
	Upper limit	6.516258	6.788271	10.135339
\(\alpha = 10 \)	Low limit	-2.929787	-2.98060	-3.062362
	Upper limit	3.258129	3.426047	5.076556
\(\alpha = 50 \)	Low limit	-0.585697	-0.605093	-0.675586
	Upper limit	0.651626	0.679716	1.015747
\(\alpha = 100 \)	Low limit	-0.292979	-0.295542	-0.352876
	Upper limit	0.325813	0.342677	0.513268