Parceria para o desenvolvimento produtivo com produtos biossimilares: perspectivas de acesso a produtos biológicos no mercado brasileiro

Partnership for productive development of biosimilar products: perspectives of access to biological products in the Brazilian market

Morton Aaron Scheinberg¹, Paulo Antonio Oldani Felix², Igor Age Kos³, Maurício De Angelo Andrade⁴, Valderilio Feijó Azevedo³

¹ Hospital Israelita Albert Einstein, São Paulo, SP, Brasil.
² Hospital Federal dos Servidores do Estado, Rio de Janeiro, RJ, Brasil.
³ Universidade Federal do Paraná, Curitiba, PR, Brasil.
⁴ Laboratórios Pfizer Ltda, São Paulo, SP, Brasil.

DOI: 10.1590/S1679-45082018RW4175

RESUMO

O processo de manufatura de produtos biológicos é complexo, oneroso e crítico para o produto final, com impacto em sua eficácia e segurança. Seu uso está sendo cada vez mais ampliado no tratamento de diversas doenças, e cerca de 50% do orçamento anual do sistema de saúde público brasileiro é consumido por tais produtos. Com o término da proteção de patentes de produtos biológicos diversos, estão sendo desenvolvidos os biossimilares. Porém, há preocupações relacionadas com sua eficácia e segurança, fazendo com que os órgãos reguladores criem regulamentações para sua aprovação e monitoramento. No Brasil, estão sendo implantados programas de parceria entre laboratórios públicos nacionais e laboratórios detentores de tecnologia, objetivando a obtenção de conhecimento, capacitação profissional e transferência desta tecnologia. Tais parcerias visam à produção local destes medicamentos estratégicos a um custo reduzido para o Sistema Único de Saúde. Os acordos oferecem vantagens mútuas para o governo e o laboratório detentor da patente do produto biológico: ao primeiro, estabelece-se um fluxo de desenvolvimento biotecnológico, que possibilita redução de custos e autossuficiência na produção, enquanto ao segundo garante-se a exclusividade da venda do produto durante a transferência da tecnologia por um prazo estabelecido.

Descritores: Medicamentos biossimilares; Parcerias público-privadas; Acesso aos serviços de saúde

ABSTRACT

The manufacturing process for biological products is complex, expensive and critical for the final product, with an impact on their efficacy and safety. They have been increasingly used to treat several diseases, and account for approximately 50% of the yearly budget for the Brazilian public health system. As the patents of biological products expire, several biosimilars are developed. However, there are concerns regarding their efficacy and safety; therefore, the regulatory agencies establish rules to approve and monitor these products. In Brazil, partnership programs between national government-owned companies and private technology holders have been implemented, aiming at knowledge sharing, capacity-building and technological transfer. Such
partnerships locally promote manufacturing of these strategic drugs at reduced costs to the public health system. These agreements offer mutual advantages to both the government and patent holders: for the former, a biotechnological development flow is established and enables potential cost reduction and self-sufficient production; whereas for the latter, exclusive sales of the product are ensured during technological transfer, for a fixed period.

Keywords: Biosimilar pharmaceuticals; Public-private sector partnerships; Health services accessibility

INTRODUÇÃO

O advento dos medicamentos biológicos revolucionou o tratamento de diversas doenças. Seu processo de produção é complexo e oneroso, uma vez que é baseado em organismos vivos que produzem grandes e complexas estruturas moleculares, e pequenas alterações na concepção e execução do processo podem afetar diretamente seu perfil de eficácia e segurança.\(^{(1)}\) O processo é tão crítico para o produto final que a maioria das empresas obtém patente do processo de produção e não necessariamente do próprio medicamento biológico.

O término do período de proteção de patentes de vários medicamentos biológicos permite que diversas empresas desenvolvam e comercializem tais produtos. Devido às particularidades do processo de produção, que não é totalmente compartilhado e divulgado pela empresa originadora, a concepção de uma cópia idêntica é praticamente impossível, tornando, assim, a experiência adquirida com os medicamentos genéricos (obtidos por síntese química) não aplicável aos medicamentos biológicos. Este cenário origina questionamentos e preocupações relevantes relacionadas com a eficácia, a segurança e a imunogenicidade destes produtos.\(^{(1-3)}\)

Como os medicamentos biológicos consomem parte substancial dos orçamentos nacionais de saúde, é alta a pressão financeira para se adotarem cópias muito semelhantes, denominadas biossímilares.\(^{(4)}\) Diante destes fatos, agências reguladoras e associações médicas de todo o mundo enfrentam o desafio de estabelecer regras para a determinação do grau de similaridade de um biossimilar com seu produto de referência, de forma a assegurar que apresentem o mesmo perfil de qualidade, eficácia e segurança, permitindo sua aprovação e comercialização.

A fim de discutirmos os tópicos mais relevantes sobre as particularidades referentes à introdução de biossímilares no mercado brasileiro, foi realizada uma pesquisa qualitativa nas principais bases de dados de artigos científicos publicados (PubMed e LILACS) e de organizações da saúde e autoridades sanitárias nacionais e internacionais (Agência Nacional de Vigilância Sanitária – ANVISA –, Ministério da Saúde, Organização Mundial da Saúde – OMS –, Food and Drug Administration – FDA – e European Medicines Agency – EMA).

Recomendações globais para avaliação de biossímilares

Em 2009, a OMS publicou o *Guidelines on evaluation of similar biotherapeutic products* (SBP),\(^{(4)}\) que é utilizado por diversas agências reguladoras como base para elaboração de suas regulamentações. Para avaliar a similaridade, a primeira etapa são as caracterizações físico-química e biológica completas do biossimilar, em uma comparação direta com o produto de referência.

Por outro lado, além desta caracterização físico-química, ligações com receptores celulares são avaliadas, com base em ensaios e estudos com animais, incluindo farmacodinâmica e toxicidade. Os métodos usados para determinar a comparabilidade entre os biossímilares e seu produto de referência devem ser suficientemente seletivos e específicos para detectar diferenças entre os dois. A importância de tais diferenças só pode ser verificada em estudos pré-clínicos e clínicos. Com isso, uma abordagem baseada no risco tem sido recomendada para avaliação da biossimilaridade,\(^{(5)}\) quando esse é diminuído ao se pré-fixar, com relativa proximidade, a estatística de comparação entre o inovador e o biossimilar. Mais ainda, diferenças em relação ao produto inovador devem ser detectadas por estudos independentes de desfecho de fase III precedidos de estudos clínicos obrigatórios de farmacocinética e farmacodinâmica, em formato de fase I.\(^{(5)}\) Por fim, a via de administração e a posologia de um biosimilar também devem ser as mesmas que as do produto de referência.

O biossimilar deve ter eficácia e segurança semelhantes às do produto referência, que são demonstradas pela realização de estudos clínicos randomizados, duplo-cegos e controlados (com o produto referência). O desenho preferido para a comparação dos dados em tais estudos é o de ensaio de equivalência (com determinação de limites comparativos, superior e inferior). Em outras circunstâncias, no entanto, justifica-se um ensaio de não inferioridade.\(^{(5)}\)

A margem de equivalência/não inferioridade deve ser previamente especificada e justificada às autoridades reguladoras, com base na relevância clínica, e as diferenças detectadas nos efeitos do tratamento devem ser aceitáveis para a comunidade médica, sem qualquer impacto negativo no atendimento ao paciente.

Os agentes biológicos são, muitas vezes, imunogênicos. Isto torna necessária a avaliação do potencial de
imunogenicidade de um biossimilar e, consequentemente, de sua segurança e eficácia, com a devida determinação da prevalência de anticorpos antidroga. Tal avaliação deve ocorrer também com o produto de referência.(9)

Após a comprovação da biosimilaridade, ainda restam algumas questões controversas, como a extrapolação de indicações, a nomenclatura da nova medicação e a intercambialidade, todas baseadas no fato de os produtos não serem moléculas idênticas.

A extrapolação para uso nas demais indicações é um procedimento permitido pelo FDA e EMA, desde que o mecanismo de ação seja o mesmo nas indicações consideradas, e a indicação extrapolada não inclua população pediátrica. No entanto, isto causa diferentes posições entre os países, já que a maioria das doenças tratadas com medicamentos biológicos não apresenta patogenia totalmente conhecida, impossibilitando a demonstração de que o mecanismo de ação é o mesmo nas diferentes indicações.(7,8)

A farmacovigilância após comercialização também é fundamental para identificar e monitorar eventos adversos raros ou incomuns, além de questões relacionadas à eficácia do produto. No entanto, o processo de farmacovigilância pode ser bastante afetado pela não definição da nomenclatura dos produtos biossimilares. A utilização do nome do princípio ativo (como é feito com os medicamentos genéricos) não se aplica aos biossimilares, que são moléculas muito semelhantes, porém, não idênticas. Atualmente, para contornar esta questão, tanto a OMS quanto o FDA recomendam que seja adicionado um qualificador biológico (BO - biologic qualifier) ao nome genérico do produto de referência, possibilitando a distinção entre a referência e o biossimilar em questão.(6,9,10)

A comprovação da biosimilaridade não indica, no entanto, que o produto seja intercambiável e ainda não há definições estabelecidas pelas agências reguladoras sobre o tema. Tal fato faz com que a EMA deixasse a decisão para cada um de seus países-membros, de maneira autônoma, uma vez que isto pode afetar a prescrição do médico. Por outro lado, o FDA vem exigindo mais dados para sua aprovação.

Além disso, também existe a chamada “substituição automática”, que ocorre no momento da dispensação do medicamento. Se aprovada, ela permite a substituição de um medicamento por outro, sem que haja o conhecimento do prescriptor e do paciente, dificultando imensamente a identificação do produto causador de possíveis eventos adversos ocorridos ao longo do tratamento.(11)

Situação legislativa no Brasil

Apenas em 2010, a ANVISA publicou a Resolução da Diretoria Colegiada (RDC) 55/2010, que aborda este assunto, estabelecendo critérios para a aprovação de biossimilares no país. Anteriormente, os produtos eram aprovados sem regulamentação específica, e, a partir de 2002, as autoridades passaram a exigir a realização de estudos clínicos para renovação de registro de produtos biológicos em comercialização.(12) A RDC 55/2010 prevê duas vias para a aprovação de biosimilaridade: uma denominada “comparabilidade” e outra, “desenvolvimento individual”.(13)

Nesta mesma resolução, a nomenclatura utilizada para os biossimilares, ao contrário da maioria dos estudos científicos, chama o biosimilar de “produto biológico” e o produto de referência “biológico novo”, o que gera confusões.(13) A via comparativa é quase idêntica àquela descrita no documento da OMS, que classifica um Produto Bioterapêutico Similar (PBS), ou seja, é mais rigorosa e requer estudos comparativos de fase I e III em relação ao Produto Bioterapêutico de Referência (PBR), além de permitir a extrapolapolação para outras indicações. A via de “desenvolvimento individual” dispensa exercício de comparabilidade com dossiê reduzido, o que gera preocupação com relação à sua utilização, principalmente na regulamentação dos biossimilares de anticorpos monoclonais. Porém, a extrapolapolação das indicações, um importante e polêmico ponto sobre biossimilares, não é permitida por esta via.

Assim, as cópias que são licenciadas usando o caminho de comparabilidade podem ser realmente denominadas “biossimilares”.(13) O tabela 1 demonstra um comparativo geral entre as vias pela RDC 55/2010 e aquelas recomendadas no documento da OMS.

Parceria para o Desenvolvimento Produtivo

Parceria para o Desenvolvimento Produtivo (PDP) é um programa entre laboratórios públicos nacionais e laboratórios detentores de tecnologia, sejam nacionais ou estrangeiros, com a finalidade de obtenção de conhecimento, capacitação profissional e transferência de tecnologia, para produção local, de medicamentos estratégicos para o Sistema Único de Saúde (SUS) a um custo reduzido.(14)

Recentemente, em 2013, o programa foi ampliado com a aprovação de diversas PDP de produtos biológicos de alto custo, com a possibilidade de preço inferior ao praticado no mercado privado. O regulamento do programa de PDP foi aprimorado em 12 de novembro de 2014, por meio da publicação de uma nova portaria, a de número 2.531 de 2014, que redefiniu os critérios e as regras para o estabelecimento e monitoramento de PDP.(15)
Estima-se que os benefícios financeiros deste programa sejam enormes, visto que 50% do orçamento público anual de medicamentos do Ministério da Saúde são consumidos por este grupo de medicamentos (como adalimumabe, etanercepte e infliximabe, em ordem decrescente), atendendo a um número bem menor de pacientes quando comparados a medicamentos para diabetes e hipertensão.\(^{(16)}\)

As propostas do PDP são elaboradas em conjunto entre a empresa detentora da tecnologia e o laboratório público, sendo apresentadas pelo laboratório público ao setor de insumos do Ministério da Saúde (Secretaria de Ciência Tecnologia e Insumos Estratégicos) em períodos específicos do ano. Os projetos incluem informações sobre os participantes, o produto, seu histórico de desenvolvimento, processo produtivo e tecnologia empregada, assim como os investimentos necessários.\(^{(15)}\)

O processo decisório é realizado por meio de um rito descrito na portaria 2.531, que inclui análise técnica, feita por um Comitê Técnico de Avaliação, com relatório encaminhado para aprovação pelo Conselho Deliberativo, e cujos resultados são anunciados em reuniões do Grupo Executivo do Complexo Industrial da Saúde (GECIS).\(^{(15)}\) De acordo com a portaria 2.531, a duração da PDP não pode exceder 10 anos. Um ponto importante é que a portaria também determina a obrigatoriedade da transferência do banco de células do produto original à instituição pública participante da PDP, para armazenamento e futura utilização na manufatura do produto.\(^{(15)}\)

Para que a instituição pública no Brasil tenha acesso a toda a tecnologia e o apoio necessário para a fabricação do biológico, o Ministério da Saúde irá adquirir o biológico pronto, exclusivamente do fabricante, como parte do desenvolvimento do projeto da PDP, incluindo o registro na ANVISA. A primeira aquisição é iniciada após a execução do contrato de transferência de tecnologia entre a empresa detentora e o laboratório público, e aquisições subsequentes podem ocorrer somente após comprovação do início da transferência de tecnologia para o laboratório público.

Dessa forma, as PDP parecem oferecer um acordo de vantagens mútuas, tanto para o governo quanto para o laboratório privado. Ao primeiro, estabelece um fluxo de desenvolvimento biotecnológico, que possibilita a potencial redução de custos e a autossuficiência na produção, enquanto, ao segundo, garante-se a exclusividade da venda do produto durante a transferência da tecnologia no prazo estabelecido.

O primeiro anticorpo monoclonal a fazer parte de uma PDP e de uma transferência de tecnologia tem como parceiros o laboratório privado Janssen-Cilag Farmacêutica Ltda., que é detentor da tecnologia, a Bionovis S.A., uma empresa privada produtora nacional de biotecnologia, e o laboratório público Bio-Manguinhos. O produto biológico é o Remicade® (infliximabe), que já está no mercado brasileiro desde 1998.\(^{(17)}\) Segundo dados do próprio Bio-Manguinhos, mais de 80% dos frascos de infliximabe adquiridos pelo Ministério da Saúde em 2015 vieram por meio deste programa, o que se reflete em um total aproximado de 180 mil frascos, a um custo de R$175 milhões.\(^{(17)}\)

A Bionovis SA. ficará responsável pela produção no setor privado. Esta empresa é uma *joint venture* entre

Tabela 1. Comparação das recomendações da Organização Mundial da Saúde e as exigências brasileiras, nas duas vias de aprovação para biossimilares

	Organização Mundial da Saúde	Brasil — via individual	Brasil — via da comparabilidade
Química, manufatura e controle de documentação	Somente dados comparativos	De acordo com os padrões de desenvolvimento	Somente dados comparativos
Estudos pré-clínicos	Somente dados comparativos com o produto de referência	Dados comparativos, com algumas exceções	Dados comparativos com o produto de referência
Estudos clínicos em fase I	Dados comparativos de farmacocinética	Não há exigência de ser comparativo	Dados comparativos de farmacocinética
Estudos clínicos em fase III	Dados comparativos de eficácia e segurança, teste em uma doença considerada modelo de sensibilidade para fins comparativos	Dados comparativos, com algumas exceções	Dados comparativos de eficácia e segurança, similar às orientações da Organização Mundial da Saúde
Extrapolação de indicações	Sim	Não	Sim
Intercambiabilidade	Sugere avaliação de dados para intercambiabilidade	Não	Não se manifesta
Nomenclatura de biossimilares	Sugere Denominação Comum Internacional seguido de quatro letras aleatórias	Não definido	Não definido
Sistema de farmacovigilância	Robusto, similar ao do produto de referência	De acordo com os padrões de desenvolvimento	Robusto, similar ao do produto de referência
os laboratórios Aché, EMS, Hypha Pharma e União Química Farmacêutica Nacional S.A. em uma fábrica em construção na cidade Valinhos (SP). Deve-se chamar a atenção ao fato de que o mercado de escolha do tratamento sofrerá grandes transformações com o advento dos biossimilares e das pequenas moléculas de uso por via oral (terapias alvo), uma vez que tais medi-
cações já estão incluídas ou, ao menos, sendo conside-
radas para inclusão nos chamados Protocolos Clínicos e Diretrizes Terapêuticas (PCDT).¹⁷

Outros produtos biológicos, também sujeitos a uma PDP, são biossimilares de biológicos inovadores ampla-
mente utilizados e estabelecidos no mercado brasileiro. Eles incluem o rituximabe e o adalimumabe, para os quais foram estabelecidas PDP entre outros laborató-
rios públicos e empresas detentoras de tecnologia e seus parceiros privados nacionais.¹⁰ É o caso da empresa na-\n
cional Orygen Biotecnologia, outra joint venture, entre a Eurofarma e Biolab, que tem como parceiro na trans-
ferência de tecnologia o laboratório Pfizer, e a partici-
piação dos laboratórios públicos nacionais Bahiafarmá (infliximabe e rituximabe) e Bio-Manguinhos (adalimu-

mabe). Além das PDP já citadas, há outra voltada ao bevacizumabe, um importante produto oncológico, tam-
bém em parceria com Bio-Manguinhos.¹⁷

O primeiro biossimilar a ser comercializado no Brasil foi o do anticorpo monoclonal infliximabe, com o nome Remsima, disponível desde 2016, porém sem acesso ao mercado público por meio de PDP. Apesar de ter sido o primeiro biológico com bom perfil de eficácia e segurança em indicações nas áreas da reumatologia, dermato-gastroenterologia, sua indicação pelos especialistas vem sofrendo sensíveis quedas, tanto no Brasil como no exterior, possivelmente devido à admi-
nistração por acesso endovenoso.

O biossimilar de etanercepte desenvolvido sob o rigor das agências regulatórias de excelência FDA e EMA já está aprovado na Europa sob o nome Remsima, disponível desde 2016, porém sem acesso ao mercado público por meio de PDP. Apesar de ter sido o primeiro biológico com bom perfil de eficácia e segurança em indicações nas áreas da reumatologia, dermato-gastroenterologia, sua indicação pelos especialistas vem sofrendo sensíveis quedas, tanto no Brasil como no exterior, possivelmente devido à administração por acesso endovenoso.

O biosimilar de etanercepte desenvolvido sob o rigor das agências regulatórias de excelência FDA e EMA já está aprovado na Europa sob o nome Remsima, disponível desde 2016, porém sem acesso ao mercado público por meio de PDP. Apesar de ter sido o primeiro biológico com bom perfil de eficácia e segurança em indicações nas áreas da reumatologia, dermato-gastroenterologia, sua indicação pelos especialistas vem sofrendo sensíveis quedas, tanto no Brasil como no exterior, possivelmente devido à administração por acesso endovenoso.

O primeiro biosimilar a ser comercializado no Brasil foi o do anticorpo monoclonal infliximabe, com o nome Remsima, disponível desde 2016, porém sem acesso ao mercado público por meio de PDP. Apesar de ter sido o primeiro biológico com bom perfil de eficácia e segurança em indicações nas áreas da reumatologia, dermatologia e gastrenterologia, sua indicação pelos especialistas vem sofrendo sensíveis quedas, tanto no Brasil como no exterior, possivelmente devido à administração por acesso endovenoso.

O biosimilar de etanercepte desenvolvido sob o rigor das agências regulatórias de excelência FDA e EMA já está aprovado na Europa sob o nome Remsima, disponível desde 2016, porém sem acesso ao mercado público por meio de PDP. Apesar de ter sido o primeiro biológico com bom perfil de eficácia e segurança em indicações nas áreas da reumatologia, dermatologia e gastrenterologia, sua indicação pelos especialistas vem sofrendo sensíveis quedas, tanto no Brasil como no exterior, possivelmente devido à administração por acesso endovenoso.

As características inerentes dos produtos biológicos não permitem que a experiência adquirida com os medicamentos genéricos seja utilizada na disponibi-
lização das “cópias”, denominadas de biossimilares. Diversas questões e preocupações surgiram ao longo do tempo, algumas ainda pendentes e não claramente resolvidas. Enquanto se espera que a comercialização dos biossimilares reduza os custos usualmente altos dos tratamentos com produtos biológicos, esta deve ser feita de maneira que não haja impacto negativo para o paciente, em termos de segurança e eficácia. Um processo de farmacovigilância após a comercializa-
ção, possibilitando a diferenciação e os efeitos dos produtos utilizados, referência ou biosimilar, é funda-
mental para este objetivo.

As agências reguladoras estão se adaptando con-
forme mais dados ficam disponíveis, e o Brasil também vem atualizando suas regulamentações, não sendo mui-
to diferente das internacionalmente implantadas. Além das regulamentações para aprovação e monitoramento, o Ministério da Saúde desenvolveu um plano para me-
lhorar o acesso aos produtos, em que a nacionalização da produção de um biológico poderá trazer economia ao país, possibilitando sua aquisição a um preço reduzi-
do. Potencialmente, tal fato tem boas chances de causar um efeito positivo sobre a balança comercial brasileira, gerando impostos e divisas ao país.

Mais importante ainda será o impacto sobre a ca-
deia produtiva, envolvendo fornecedores de insumos, matérias-primas, equipamentos, geração de empregos, qualificação de mão de obra local para garantir a quali-
dade na produção do medicamento, bem como investi-

mentos em infraestrutura.

A introdução recente de biossimilares criou um novo contexto, exigindo o desenvolvimento de novas regu-
lamentações e processos comerciais. Várias questões ainda estão pendentes, e as autoridades reguladoras devem monitorar cuidadosamente e adaptar seus proce-
dimentos, por conta do surgimento de novos dados. Atualmente, a situação no Brasil se encontra harmoni-
izada com a mundial.

I COMENTÁRIOS

As agências reguladoras estão se adaptando con-
forme mais dados ficam disponíveis, e o Brasil também vem atualizando suas regulamentações, não sendo mui-
to diferente das internacionalmente implantadas. Além das regulamentações para aprovação e monitoramento, o Ministério da Saúde desenvolveu um plano para me-

lhorar o acesso aos produtos, em que a nacionalização da produção de um biológico poderá trazer economia ao país, possibilitando sua aquisição a um preço reduzi-
do. Potencialmente, tal fato tem boas chances de causar um efeito positivo sobre a balança comercial brasileira, gerando impostos e divisas ao país.

Mais importante ainda será o impacto sobre a ca-
deia produtiva, envolvendo fornecedores de insumos, matérias-primas, equipamentos, geração de empregos, qualificação de mão de obra local para garantir a quali-
dade na produção do medicamento, bem como investi-

mentos em infraestrutura.

A introdução recente de biossimilares criou um novo contexto, exigindo o desenvolvimento de novas regu-
lamentações e processos comerciais. Várias questões ainda estão pendentes, e as autoridades reguladoras devem monitorar cuidadosamente e adaptar seus proce-
dimentos, por conta do surgimento de novos dados. Atualmente, a situação no Brasil se encontra harmoni-
izada com a mundial.

I INFORMAÇÃO DOS AUTORES

Scheinberg MA: https://orcid.org/0000-0001-8261-7407
Felix PA: https://orcid.org/0000-0003-0300-8668
Kos IA: https://orcid.org/0000-0002-2518-7559
Andrade MA: https://orcid.org/0000-0003-3304-6729
Azevedo VF: https://orcid.org/0000-0002-2346-388X

5
REFERENCES

1. Torres T, Filipe P, Selores M. Impact of biosimilars in psoriasis treatment. Acta Med Port. 2013;26(6):646-8.

2. Wang J, Chow SC. On the regulatory approval pathway of biosimilar products. Pharmaceuticals (Basel). 2012;5(4):353-68.

3. Azevedo VF, Sandorff E, Siemak B, Halbert RJ. Potential regulatory and commercial environment for biosimilars in Latin America. Value Health Reg Issues. 2012;1(2):229-34.

4. World Health Organization (WHO). Guidelines on Evaluation of Similar Biotherapeutic Products (SBPs) [Internet]. Geneva: WHO; 2009 [cited 2018 Oct 26]. Available from: http://www.who.int/biologicals/areas/biological_therapeutics/BIOATHERAPEUTICS_FOR_WEB_22APRIL2010.pdf

5. Azevedo VF. Biosimilars require scientifically reliable comparative clinical data. Rev Bras Reumatol. 2013;53(1):129-31.

6. Feagan BG, Choquette D, Ghosh S, Gladman DD, Ho V, Meibohm B, et al. The challenge of indication extrapolation for infliximab biosimilars. Biologics. 2014;42(4):177-83. Review.

7. Fletcher MP. Biosimilars clinical development program: confirmatory clinical trials: a virtual/simulated case study comparing equivalence and non-inferiority approaches. Biologics. 2011;39(5):270-7.

8. Giraldo J, Vivas NM, Vila E, Badia A. Assessing the (a)symmetry of concentration-effect curves: empirical versus mechanistic models. Pharmacol Ther. 2002;95(1):21-45.

9. Food and Drug Administration (FDA). Nonproprietary naming of biological products. Guidance for Industry [Internet]. Silver Spring; 2015 [cited 2017 Oct 26]. Available from: https://www.biologicsslblog.com/content/uploads/2016/09/ucm459987.pdf

10. World Health Organization (WHO). WHO Expert Committee on Biological Standardization, sixty-sixth report [Internet]. Geneva: WHO; 2016 [cited 2018 Feb 1]. [WHO technical report series, 999]. Available from: http://www.who.int/biologicals/expert_committee/WHO_TRS_999_FINAL.pdf

11. Amaravadi L, Marini J. Mini Focus: bioanalysis of biosimilars. Bioanalysis. 2013;5(5):515-6.

12. Azevedo VF, Mysler E, Alvarez AA, Hughes J, Flores-Murrieta FJ, Castilla EM. Recommendations for the regulation of biosimilars and their implementation in Latin America. GaBi. 2014;3(3):143-8. Review.

13. Brasil. Ministério da Saúde. Agência de Vigilância Sanitária. Resolução da Diretoria Colegiada - RDC nº 55, de 16 de dezembro de 2010. Dispõe sobre o registro de produtos biológicos novos e produtos biológicos e dá outras providências [Internet]. Brasília (DF): Diário Oficial da União; 2010; n°: 241, dezembro 17 [citado 2018 Jul 26]. Disponível em: http://portal.anvisa.gov.br/documents/10181/2718376/RDC_55_2010_COMP.pdf/bb86b1c8-d410-4a51-a9df-a61e165b9618

14. Brasil. Ministério da Saúde. Parceria para o Desenvolvimento Produtivo - PDP [Internet]. Brasília (DF): Ministério da Saúde; 2014 [citado 2017 Mar 13]. Disponível em: http://portalsaude.saude.gov.br/index.php/o-ministerio/principal/lei-a-mais-o-ministerio/581-sctie-razia-deciis/12-deciis/12090-parceria-para-o-desenvolvimento-produtivo-pdp

15. Brasil. Ministério da Saúde. Portaria nº 2.531, de 12 de Novembro de 2014 [Internet]. Brasília (DF): Ministério da Saúde; 2014 [citado 2017 Mar 13]. Disponível em: http://bvsms.saude.gov.br/bvs/saudelegis/gm/2014/prt2531_12_11_2014.html

16. Brasil. Ministério da Saúde. Balanço das Parcerias para o Desenvolvimento Produtivo [Internet]. Brasília (DF): Ministério da Saúde; 2015 [citado 2017 Mar 13]. Disponível em: http://portalarquivos.saude.gov.br/images/pdf/2015/julho/14/13-07-2015-BALANÇO-PDP-FINAL-FINAL.pdf

17. Instituto de Tecnologia em Imunobiológicos (FIOCRUZ). Bio-Manguinhos. Biológicos: mais tecnologia a um custo menor [Internet]. Rio de Janeiro: FIOCRUZ; 2015 [citado 2017 Mar 13]. Disponível em: https://www.bio.fiocruz.br/index.php/noticias/1052-biologicos-mais-tecnologia-a-um-custo-menor

18. O SB4. (BRENZYSTM) da Samsung Bioepis passa a ser o primeiro biossimilar etanercepte a receber aprovação regulamentar no Canadá | EXAME.com - Negócios, economia, tecnologia e carreira [Internet]. [citado 2017 Out 27]. Disponível em: http://exame.abril.com.br/negocios/dino/o-sb4-brenzy-samsung-bioepis-passa-a-ser-o-primeiro-biossimilar-etanercepte-a-receber-aprovacao-regulamentar-no-canada-dino890110711131/

19. Emery P, Vencovský J, Sylwestrzak A, Leszczyński P, Porawska W, Baranauskaitė A, et al. A phase III randomised, double-blind, parallel-group study comparing SB4 with etanercept reference product in patients with active rheumatoid arthritis despite methotrexate therapy. Ann Rheum Dis. 2017;76(1):51-7.