Possibilities and limitations of using low biomass samples for urologic disease and microbiome research

Jung Kwon Kim1,2,*, Sang Hun Song1,*, Gyoohwan Jung1, Byeongdo Song1, Sung Kyu Hong1,2,*

1 Department of Urology, Seoul National University Bundang Hospital, Seongnam, Korea
2 Department of Urology, Seoul National University College of Medicine, Seoul, Korea

1. Introduction

Disease of the genitourinary tract has been traditionally associated with chronic inflammation, with epidemiological studies connecting underlying prostatitis to changes in the tumor microenvironment and subsequent pathogenesis.1-3 With urine no longer established as a sterile environment as previously believed, distinct bacterial flora in the bladder and prostate of males with disorders of the urinary tract have been identified, with microbial dysbiosis putatively implicated as a cause of inflammation and clinical manifestation.4 Fueled by advances in assay techniques including 16S ribosomal RNA (rRNA) and shotgun metagenomic sequencing, microbial taxonomies stratified by abundance and diversity can be used as potential biomarkers for identifying the presence and prognosis of disease as well as response to treatment.4,5

Although it is widely appreciated that both direct and indirect microbiomes can influence host immunity and harbor pro-neoplastic and anti-tumorigenic capabilities, identified uropathogens differ greatly between studies with variable associative significance.6,7 These disparities in microbiota taxonomies are partly due to different sample types and assay techniques, not to mention probable sampling bias and contamination factors that might have been overlooked. As such, the significance and limitations of current microbiomes studies must be carefully addressed.7,8 Here, we reviewed notable literature in different fields of urology, encompassing benign prostatic hyperplasia (BPH), lower urinary symptoms (LUTS), chronic prostatitis (CP) or chronic pelvic pain syndrome (CPPS), urolithiasis, as well as bladder and prostate cancer. Limitations of current studies that should be considered in future research were also examined.
promoted by metabolic syndrome linked to the development of BPH and LUTS. Since prostatic inflammation has been suggested to play a major role in the progression of BPH, the urinary microbiome has been suspected to participate in the pathogenesis of BPH (Table 1). Several studies have evaluated the association between the microbiota in BPH and male LUTS with samples obtained from both midstream and catheterized urine. While certain bacterial species including *Eubacterium* and *Defluviococcus* have been implicated in BPH, most studies show bacterial species ubiquitously identified regardless of BPH with no *a*-diversity. In addition, midstream “clean catch” urine failed to show adequate association with LUTS and increasing IPSS scores. Most studies preferred such collection methods as opposed to catheterized urine due to ease of collection. However, *Lachnospiraceae* has shown a promising protective effect against BPH. It shows decreased abundance in BPH subjects than in cancer patients and healthy controls. Jain et al have also found that *Escherichia coli* isolated from BPH tissues can induce inflammation and DNA damage in vitro prostate epithelial cells, corroborating the connection between local microbiome-mediated inflammation and BPH/LUTS progression. National Institutes of Health (NIH) classification has defined CP/CPPS as an acute or chronic pelvic pain or discomfort in the pelvic region with urinary symptoms and/or sexual dysfunction for at least three of the previous six months excluding other sources of pelvic pain, including urinary tract infection, anatomic abnormalities, cancer, and neurological disorders. Although there are overlapping symptoms between CP/CPPS and bacterial prostatitis or sexually transmitted infections, the presence and type of bacteria on conventional culture did not correlate with the presence or severity of CP/CPPS. Several studies have evaluated the diversity of microbiome in patients with CP/CPPS patients in comparison with that of controls and found that bacterial species are increased in the urine or seminal fluids of patients with CP/CPPS, although definitive patterns are lacking. Elevations of multiple bacterial taxa including *Clostridia* and *Bacteroidia* in urine and *Achromobacter*, *Stenotrophomonas*, and *Brevibacillus* in seminal fluids have been identified in patients of CP/CPPS, whereas levels of *Lactobacilli* are decreased in patients with CP/CPPS.

2.2. OAB/UUI and IC/BPS

The etiology of an overactive bladder (OAB) has not been completely elucidated yet. According to International Urogynecological Association (IUGA)/International Continence Society (ICS), OAB is defined based on clinical symptoms such as urinary urgency usually associated with high urinary frequency and nocturia with or without urgency urinary incontinence (UUI) in the absence of UTI or other identified pathologies. Therefore, a negative result in urine culture is essential for diagnosing OAB. As the dogma of sterile urine has been debunked, several attempts have been made to evaluate the urinary microbiome from OAB patients utilizing gene sequencing (Table 2). Multiple studies assessing microbiomes in catheterized urine have shown elevated levels of *Actinobaculum* and *Aerococcus* in women with OAB and UUI. Such elevation can be associated with the severity of symptoms. IC/BPS (interstitial cystitis/bladder pain syndrome) is a chronic painful bladder condition without other causes such as acute or recurrent infection, cancer, radiation-induced injury, or medication-induced injury. Although the diagnostic criteria of the European Society for the Study of IC/BPS (ESSIC) and the American Urological Association (AUA) are the most widely adopted criteria for IC/BPS, there is no single consensus definition for IC/BPS. The ESSIC has defined IC/BPS as chronic (>6 months) pelvic pain, pressure, or discomfort perceived to be related to the urinary bladder, accompanied by at least one or the other urinary symptoms such as a persistent urge to void or high frequency without other probable causes. Several studies have shown differences in the diversity of microbiome between IC/BPS patients and asymptomatic controls with variable results, including an overall increase of *Lactobacillus* genus in IC groups but decreased levels of *Lactobacillus acidophilus* without showing overall differences in fungal composition or presence of Hunner lesions.

2.3. Urolithiasis

The relationship between microbiota and urinary stone formation is relatively well-known (Table 3). For example, struvite stones are strongly associated with urea-splitting microbiota including *Proteus mirabilis* which can induce alkaline urinary environments, resulting in the crystallization of calcium, magnesium, and phosphate in the urine. Several studies have reported the connection of urolithiasis with *Oxalobacter formigenes*, a Gram-negative, obligate anaerobe in intestinal microbiota. By reducing oxalate absorption but stimulating oxalate secretion by the intestinal mucosa, *Oxalobacter* can reduce urinary oxalate excretion. Such oxalate-degrading ability of *Oxalobacter* suggests that intestinal depletion of *Oxalobacter* is associated with the generation of calcium oxalate urinary stone and that *Oxalobacter* could function as a probiotic with a potential role in treating hyperoxaluria.

In addition, diet is known to be a meaningful risk factor for stone formation, leading to an increased attention to indirect gut microbiota. With the development of next-generation sequencing (NGS) technology, several studies have analyzed intestinal microbiome from kidney stone patients and healthy controls. Microbiota associated with short chain fatty acid (SCFA) production are decreased in patients with renal stones, putatively hindering the protective role of SCFA in maintaining gut barriers and decreasing systemic inflammation.

2.4. Bladder cancer

Emerging evidence supports the pro-carcinogenic role of local microbial populations in the genitourinary tract. However, urine samples containing microorganisms (or microbial fragments and/or DNA) are limited in determining the “localization of bacteria in situ” to specific anatomical sites in the urethra, bladder, ureter, and/or kidney. For this reason, research studies on the microbiome in urothelial cell carcinoma have been mostly limited to bladder cancer (BCa). While notable risk factors such as smoking, chemical exposure, and radiation therapy have been identified, it has been hypothesized that chronic infection might drive the development of BCa, as exemplified in *Schistosoma* mediating the production of N-nitrosamine, a well-described carcinogen. Urinary microbiome of the bladder might play multiple roles in BCa pathogenesis and progression notably by building a biofilm barrier in the urinary tract epithelium, maintaining symbiosis with potential pathogenic bacteria, and disintegrating harmful metabolites (Table 4).

Parra-Grande et al have reported that the amount of *Actinobacteria* is much higher in non-neoplastic bladder mucosa specimens than in tumor tissues, supporting the hypothesis that Actinomycete-rich microbes associated with a lower incidence of BCa in women might have a preventive effect against BCa. Pederzoli et al have demonstrated noticeable cluster differences in urine and tissue samples between males and females, implicating intersexual differences in microbiome that may explain the reduced prevalence of BCa in females due to the overall bladder microenvironment.
Study	Sample size	Material	Analysis technique	Significant findings	Limitations
BPH/LUTS					
Yu et al (2015)	12 BPH compared to 13 PCa subjects	Urine, seminal fluid, expressed prostatic secretion (EPS)	16S rRNA gene sequencing with PCR-DGGE analysis	BPH more likely to harbor increased Eubacterium, Deflavicoccus and less Bacteroidetes bacteria, Alphaproteobacteria, Firmicutes bacteria, Lachnospiraceae, Propionibacterium, Sphingomonas, Ochrobactrum	Limited samples
Bajic et al (2020)	28 BPH compared to 21 controls	Midstream voided urine, Catheterized urine	16S rRNA gene sequencing and EQUC	Symptom severity based on IPSS scores significantly associated with detectable bacteria on catheterized urine.	Midstream urine inadequate to sample microbiome.
Holland et al (2020)	30 men with LUTS	DNA from urine and fecal samples	16S rRNA gene sequencing	Lachnospiraceae Blautia showed protective effect against LUTS, especially bother components in IPSS, with correlation sustained at different levels of IPSS severity.	Limited sample, patients initially selected for biopsy, midstream urine
Jain et al (2020)	36 BPH	DNA and sections from resected tissue	Culture and/or V3 16S rRNA gene sequencing	Inflammation identified in all BPH tissue, with Proteobacteria, Actinobacteria, Firmicutes, Bacteroidetes most commonly identified in V3 16S rRNA gene sequencing. E.coli isolated from BPH induced NF-kB activation and DNA damage in vitro.	Limited sample, multiple bacteria present with variable levels at different regions of same sample
Lee et al (2021)	77 BPH and 30 controls	Midstream voided urine DNA	16S rRNA amplicon sequencing.	Lactobacillus, Staphylococcus, Bacillus, Faecalibacterium, Listeria, Enhydrobacter, Pseudomonas, Neisseria, Phascolarctobacterium, Dolosigranulum, Haemophilus, [Ruminococcus] torques, Bacteroides, Prevotellaceae NK3B31 group found in relative abundance in BPH	Cross-sectional study, no α-diversity, voided urine only
CP/CPPS					
Shoskes et al (2016)	25 CP/CPPS and 25 controls	Urine DNA	16S rRNA gene sequencing	17 taxa over-represented in CP/CPPS including Clostridia and Bacteroidia and 5 under-represented including Bacilli, with increased overall bacterial diversity vs. control.	Cross-sectional design
Mändar et al (2017)	21 CP/CPPS and 46 controls	Seminal fluid DNA	16S rRNA gene sequencing	CP/CPPS group: - more Proteobacteria - less Lactobacilli (especially Lactobacillus iners) CP/CPPS group: - more Achromobacter, Stenotrophomonas, Brevibacteriaceae	Lifestyle confounding factors not considered
Choi et al (2020)	17 CP/CPPS and 4 controls	Seminal fluid	Bacterial culture and DNA pyrosequencing	The microbiota present in the semen and urine Samples of fertile men present more operational taxonomic units. Less microbial diversity could be associated with CP symptoms.	Small sample, contaminants not controlled
Suarez et al (2021)	5 men with CP/CPPS and 5 controls	Urine seminal fluid	Sequencing and Nitric oxide levels and proinflammatory cytokines in seminal and serum	In patients with CP/CPPS, a predominance of anaerobes or a combination of aerobes and anaerobes in a titer of >10⁵ colony-forming units per ml in post-massage urine is associated with worse clinical status.	Small sample
Kogan et al (2021)	170 with CP/CPPS	Post-massage urine (VB3)	Meares–Stamey test		Cluster analysis not done
Study	Sample size	Material	Analysis technique	Significant findings	
-----------------------------	-------------	---------------------------	---	--	
OAB/UUI					
Hilt et al (2014)	41 women with OAB and 24 controls	Catheterized urine	16S rRNA gene sequencing and EQUC	Both OAB and control group: Lactobacillus, Corynebacterium, Streptococcus, Staphylococcus, Bifidobacterium spp. only OAB group: Aerococcus, Corynebacterium	
Pearce et al (2014)	23 women with UUI and 25 controls	Catheterized urine	16S rRNA gene sequencing and EQUC	UUI group: more Actinobaculum, Actinomyces, Arthrobacter, Corynebacterium, Gardnerella, Oligella, Staphylococcus, Streptococcus	
Karstens et al (2016)	10 women with daily UUI and 10 controls	Catheterized urine	16S rRNA gene sequencing	OAB group: - less Lactobacillus	
Thomas-White et al (2017)	74 women with UUI and 60 controls	Catheterized urine	16S rRNA gene sequencing	Hormone-negative women: - less Lactobacillus, Gardnerella	
Wu et al (2017)	30 women with OAB and 25 controls	Catheterized urine	16S rRNA gene sequencing	UUI group: - more Sneathia, Staphylococcus, Proteus, Helcococcus, Gemella, Mycoplasma, Aerococcus	
Fok et al (2018)	126 Women undergoing POP/SUI surgery	Catheterized urine	16S rRNA gene sequencing	Higher OABq symptom severity score: - more Atopobium vaginae, Finegoldia magna	
IC/BPS					
Braundmeier-Fleming et al (2016)	18 with IC/BPS and 16 controls	Stool and vaginal swab	rDNA sequencing	IC/BPS group: - less Eggerthella sinensis, Collinsella aerofaciens, F. prausnitzii, Odoribacter splanchinicus, Lactonifactor longoviformis	
Abernethy et al (2017)	20 with IC/BPS and 20 controls	Catheterized urine	rDNA sequencing	IC group: - less Lactobacillus acidophilus IC/BPS group: - more Lactobacillus gasseri, less Corynebacterium	
Nickel et al (2019)	181 with IC/BPS and 182 controls	Midstream urine	Ibis T5000: Multilocus PCR coupled with ESI-TOF-MS	No overall differences in fungal species/genus composition or diversity by symptom flare status or pain severity. Increased presence and relative abundance of Candida and Malassezia for high urinary symptoms	
Nickel et al (2020)	202 with IC/BPS	Midstream urine	Ibis T5000: Multilocus PCR coupled with ESI-TOF-MS	Male HL group: - more Negativicoccus succinivorans, Porphyromonas somerae, Mobiluncus curtisi, Corynebacterium renale	
Nickel et al (2022)	59 with IC/BPS	Midstream urine	16S rRNA gene sequencing	Male HL group: - more Negativicoccus succinivorans, Porphyromonas somerae, Mobiluncus curtisi, Corynebacterium renale	
Nickell et al (2022)	59 with IC/BPS	Midstream urine	16S rRNA gene sequencing	Male HL group: - not significant species/abundance differentiation between overall/female Hunner lesion (HL) and non-HL groups	
BCa is a disease of older people, with more than 75% being diagnosed at age 65 or older and 45% at age 75 or older. Luzzago et al. have reported that a more advanced age is associated with a higher cancer-specific mortality rate in BCa without metastasis. Likewise, elderly over 70 years of age had more bladder tumor study and found a relative decrease in species by α-diversity in tumor tissues compared to that in non-malignant tissues. Bladder microbiome abundances of phyla such as Firmicutes and Actinobacteria were similar to urinary microbiome values of previous studies. It has been reported that β-diversity differs between BCa and non-malignant tissue. Recently, Li et al. have demonstrated that tumor microbiome correlates with the regulation of epithelial–mesenchymal transition in muscle invasive bladder cancer (MIBC) based on TCGA samples, with significant overlap of genera composition based on 16S rRNA sequencing data. Chen et al. have reported that PD-L1-positive cell count is positively correlated with the abundance of the urogenital microbiome. Using urine samples (urination and catheterization/cystoscopy), some studies have reported significantly greater α and β diversities. However, Chipollini et al. have demonstrated lower α diversity in BCa compared to matched healthy controls. Wu et al. and Zeng et al. have shown that richness measures of males with BCa are higher than those of males without cancer. Wu et al. have reported that Acinetobacter, Anaerococcus, and Sphingobacterium are increased whereas Serratia, Proteus, and Roseomonas are decreased in 31 male patients with BCa than in 18 age-matched healthy controls. Subsequently, Zeng et al. have reported higher microbiome species diversity in a recurrence group than in a non-recurrence group of non-muscle invasive bladder cancer (NMIBC) patients after transurethral resection of bladder tumor (TURBT), with 9 genera increased in the recurrence group. Popović et al. have compared 12 patients with BCa and 11 age-matched controls and demonstrated that Fusobacterium, Actinobaculum, Faecalibacterium, and Campylobacter genera are significantly enriched in BCa patients. Recently, Ma et al. have reported tobacco smoking can change urinary microbial compositions and promote tumorigenesis. Hussein et al. have reported microbiome differences between a BCG response group and a BCG-refractory group. They also analyzed differences between BCa and no cancer groups as well as between NMIBC and MIBC. Oresta et al. have shown that microbial differences are related to disease progression and that different results of microbiome analysis depend on the type of urinary specimen collection, suggesting that additional research is needed in the future.

To the best of our knowledge, only Mansour et al. have compared voided urine and tissue samples from BCa patients and demonstrated no significant change in α diversity, although a significant change in β diversity has been found. Subsequently, they reported that defensins and microbes could affect the development, progression, and treatment options of BCa.

2.5. Microbiome in prostate cancer

Carcinogenic effects of microbiomes on prostate cancer can be largely divided into direct and indirect effects, with the former occurring when microbes directly contact associated tissue and organs, causing pathogenic change. Direct effect of microbiomes occurs quite naturally when commensal microbiota are present, as in the case of colorectal and intestinal malignancies. In contrast, indirect effects are associated with distant causalities such as aberrations in host immunology and systemic inflammation as well as gut absorption of metabolites that can ultimately impact progression into cancer or affect response to treatment when the equilibrium of microbiota is disturbed due to disease or infection. Prostate cancer (PC) has fundamentally been associated with chronic inflammation in tumoral tissues, leading to upregulation of local inflammatory cytokines and subsequent increased risk of malignant transformation. Due to the nature of elevated prostate-specific antigen (PSA) in prostatitis as well as PC, studies of microbiomes in PC can further elucidate the role of bacterial infection in PC pathogenesis and improve the accuracy of PSA as a biomarker for PC (Table 5).
Study	Sample size	Material	Analysis technique	Significant findings	Limitations
Parra-Grande et al (2022)55	26 paired BCa and adjacent non-tumor mucosa	Tissue	16S rRNA amplicon sequencing	Higher overall richness of microbial composition and increased *Actinobacteria* observed in non-neoplastic bladder mucosa	Cross-sectional design, no true negative control, lifestyle factors not controlled.
Pederzoli et al (2020)96	48 therapy-naive BCa and 59 healthy controls	Urine, Tissue	16S rRNA sequencing	More *Klebsiella* in female BCa urine, with abundant *Burkholderia* identified in BCa tissue in both sexes. Urine microbiome shared >80% of microbiome to tissue. BCA with lower species richness and diversity, with significant difference in β-diversity. *Cupriavidus* spp., *Acinetobacter*, *Anoxybacillus*, *Escherichia-Shigella*, *Geobacillus*, *Pelomonas*, *Ralstonia*, and *Sphingomonas* enriched in BCa tissue, whereas *Lactobacillus*, *Prevotella_9*, and *Ruminococccaceae* were decreased. Microbes were associated with expression of classical EMT (Epithelial—mesenchymal transition)-associated genes, with abundance related to ECM (extracellular matrix) gene expression. Implicated microbes include *E.coli*, *SM4/1*, and *Oscillatoria*.	Life style factors or previous antibiotic treatment not controlled. Small sample size, no true negative control.
Liu et al (2019)49	22 BCa and 12 adjacent non-tumor mucosa	Tissue	16S rRNA sequencing	BCa with lower species richness and diversity, with significant difference in β-diversity. *Cupriavidus* spp., *Acinetobacter*, *Anoxybacillus*, *Escherichia-Shigella*, *Geobacillus*, *Pelomonas*, *Ralstonia*, and *Sphingomonas* enriched in BCa tissue, whereas *Lactobacillus*, *Prevotella_9*, and *Ruminococccaceae* were decreased.	Small sample size, no true negative control.
Li et al (2021)53	405 MIBC TCGA samples	Tissue	Whole transcriptome RNA-sequencing (TCGA legacy database)		Lack strict contamination control.
Chen et al (2022)55	28 male NMIBC subjects (9 PD-L1 positive, 19 PD-L1 negative)	Urine, tissue	16S rRNA gene sequencing	PD-L1 positive group had enriched microbiome, with increased *Leptotrichia*, *Roseomonas*, and *Propionibacterium* and decreased *Prevotella* and *Massilia* compared to PD-L1 negative subjects.	Small sample size, midstream urine specimens used.
Wu et al (2018)58	31 male BCa, 18 healthy control	Urine	16S rRNA amplicon sequencing	β-diversity significantly differed between BCa & control, with overall bacterial enrichment in BCa with increased *Acinetobacter*, *Anaerococcus*, and *Sphingobacterium*, and decreased *Serratia*, *Proteus*, and *Roseomonas* genus. *Herbaspirillum*, *Porphyromabacter*, and *Bacteroides* were associated with high risk subgroups.	Small sample size, midstream urine.
Zeng et al (2020)99	62 male BCa and 18 healthy controls	Urine	16S rRNA amplicon sequencing	Bacterial enrichment in BCa group, with species diversity higher in the recurrence group in NMIBC after TURBT including *Micrococcus* and *Brachybacterium*.	Small sample size, midstream urine.
Chipollini et al (2020)57	38 BCa and 10 healthy control	Urine	16S rRNA sequencing	Decreased diversity in BCa, with higher species richness and increased *Bacteroides* and *Faecalbacterium*	Small sample size.
Popović et al (2018)51	12 male BCa age-matched to 11 control	Urine	16S rRNA sequencing	*Fusobacterium* enriched in bladder cancer *Veillonella*, *Streptococcus* and *Corynebacterium* more in control	Small sample size, midstream urine, only male patients.
Ma et al (2021)90	15 male BCa, 15 control	Urine	16S rRNA sequencing		Small sample size, lifestyle factors not considered.
Hussein et al (2021)56	43 BCa, 10 control	Urine	16S rRNA amplicon sequencing	β-diversity with *Actinomyces*, *Achromobacter*, *Brevibacterium*, and *Brucella* in bladder cancer *Hemophilis*, *Veillonella* higher in MIBC while *Cupriavidus* higher in NMIBC *BCG responded group with more Serratia and Brochothrix, *Negativococcus*, *Escherichia-Shigella*, and *Pseudomonas* in NMIBC	Small sample size, midstream urine.
Oresta et al (2021)52	122 BCa, 29 control	Urine	16S rRNA sequencing	Catheterized urine microbiome increased in bladder cancer exacerbating with disease progression	Small sample size.
Mansour et al (2020)54	10 urine and 14 tissue samples from 10 BCa	Urine, tissue	16S rRNA sequencing		Small sample size, no negative control.
Mansour et al (2022)52	55 BCa, 29 BPH	tissue	16S rRNA sequencing		
to the genitourinary tract makes it an ideal entity for research due to the high rate of exposure to the indirect microbial pathway from urine and gut as well as direct influence of the tumor environment. As such, extensive research has been undertaken to determine alterations of microbiota in urine, prostatic fluids, fecal material, plasma, and tissues, showing a generally positive association of PC with certain bacterial species found to be abundant in PC than in benign controls. Analyses of fecal and urine microbiome have provided promising results, identifying bacteria associated with higher GS (≥7 vs. 6) and absolute risk of PC. Identified bacteria include, but are not limited to, *Staphylococcus*, *Streptococcus*, and *Bacteroides*. Use of androgen deprivation therapy (ADT) significantly altered microbial diversity, with higher *Ruminococcus gravis* and *Bacteroides* and decrease in *Corinebacterium*. Matched analyses between hormone-sensitive PC and castration-resistant PC after ADT have shown similar increases of *Bacteroides*, *Fusobacteria*, *Synergistetes*, and *Tenericutes*, with corresponding decreases of *Proteobacteria*, *Actinobacteria*, and *Cyanobacteria*. Use of abiraterone acetate has been consistently correlated with increased bacterial species with PC pathogenesis.

However, recent advances in NGS and metagenomics have identified distinct microbial signatures that can distinguish healthy controls from cancer patients. A few studies have also reported differential diversity in prostatic secretions of PC, with no single bacterium identified as a causative factor. Current studies are limited by small sample sizes and the lack of true negative controls in addition to missing comparison with clean-catch urine to remove microbiota of urethral origin. No seminal microbiome research has so far accounted for reagent contamination. This may lead to misinterpretation of contaminant microbiome as significant for disease.

Although the indirect pathway of urine or fecal microbiomes has been extensively described in literature, results are inconclusive due to a high risk of contaminant DNA and low microbial biomass in historically "sterile" urine. As such, a handful of studies have examined the local effects of microbiome in radical prostatectomy (RP) specimens in order to identify significant pathogenic microbiomes. *Propionibacterium* acnes has been implicated as a possible pro-inflammatory bacterial species related to PC. This was supported by an investigation of a Chinese RP cohort (*n* = 65) which found that *Propionibacterium* in addition to *Acinetobacter* and *Pseudomonas* was more abundant in tumor tissues than in nearby benign tissues. A more recent Denmark study on 94 subjects has reported an increase of *Shewanella* but significant decreases of *Bacteroides fragilis*, *Sainmirine betaherpesvirus*, *Staphylococcus saprophyticus*, and *Vibro parahaemolyticus*, implying the potential association of specific species with PC pathogenesis. However, these studies utilized formalin–fixed paraffin-embedded (FFPE) samples for analysis, which had a high risk of bacterial contamination, not to mention that *Propionibacterium* acnes, *Pseudomonas*, and *Acinetobacter* are known contaminants in bacterial analysis, inciting the question of the reliability of such studies that did not sequence negative controls or remove possible contaminating endogenous DNA prior to assessment.

3. Limitations of current research

This narrative review identified discrepancies in both direct and indirect pathways holding some levels of significance. It revealed that some pathogens within the urinary tract might show significantly different diversity and compositions, putatively connecting local and systemic microbial environments to pathogenesis. With the introduction of newer NGS techniques including microbial DNA isolation and purification followed by 16S rRNA amplification and sequencing, it is now possible to perform efficient analysis of the entire genome with an inclusion of relatively larger samples to better represent populational significance. However, 16S rRNA does not differentiate between live and dead bacteria. As such, enhanced quantitative urine culture (EQUC) was introduced to overcome the limitations of routine urine. Compared to conventional methods, EQUC has a greater amount of urine sample on various culture media under different atmospheric conditions for a longer period of 48 hours. Therefore, microbiome detected by metagenomics analysis can better represent live microbiome. However, 16S rRNA sequencing has several limitations such as the inability to distinguish closely related bacterial taxa, assess viability of microbiota, and link genotypic resistance to a specific organism, not to mention the inherent limitation of 16S rRNA sequencing to accurately report bacterial abundance. Most initial studies have utilized 16S rRNA amplicon sequencing, especially for analyses of gut microbiome. Studies have suggested that genomic DNA can be diluted to less-than-optimal thresholds, introducing a systemic bias that needs to be considered in 16S rRNA sequencing analyses. For example, despite the inclusion of a relatively large sample, Liss et al have used rectal swabs to collect fecal materials, resulting in a low DNA yield. They had to discard 24 out of 133 initial collected cohorts due to extraction failure or poor DNA quality. 16S RNA and DNA sequencing alone cannot detect functionality. Shotgun metagenomic sequencing is needed to fully determine functional annotation. Statistical methods used in interpretation can further affect the final outcome. As described in Salachan et al, the mode of statistical analyses is not always described. It differs between studies. This was exemplified in a study by Ma et al who re-evaluated spatial distribution (inter-subject heterogeneity) using a diversity-area relationship analysis and found that semen microbiome diversity in a populational cohort was not associated with fertility health as previously suggested.

There are also limitations in terms of sampling. Many studies presented above have utilized midstream urine samples. However, such samples could be contaminated by microbiota from the uroepithelium, periurethral gland, or genital tract, leading to improper evaluation of urinary bladder microbiota. Such risk is higher in females. However, there is also a chance of contamination in males from nearby tissues including urethra. Transurethral catheterization could be the most preferred sampling method which could gain similar outcomes less invasively compared to suprapubic aspiration. Current sampling methods for gut microbiome analysis also need to be improved. Fecal sampling via swabs is most commonly used for bacterial flora studies because of its convenience and non-invasiveness. However, the microbiota content of fecal matter is significantly different from that of the lower digestive tract. Other biopsy methods are invasive. They are neither suitable nor ethical to be used as healthy controls. To prevent cross-contamination, intestinal contents should be collected at a fixed point, utilizing less-invasive sampling devices. To meet such requirements, the development of swallowable sampling devices and the introduction of gnotobiotic mice are presented.
Study	Sample size	Analysis technique	Significant findings	Limitations
Prostate tissue				
Salachan et al (2022)	80 PC and 23 benign from 94 RP specimen, validated in 16 PC and 8 benign	Metatranscriptomics, total RNA sequencing	Significant increase of Shewanella and decrease in Staphylococcus saprophyticus and Vibrio parahaemolyticus in PCa. Over-abundance of Microbacterium species in pT3 tumors vs. T2.	No true normal (used adjacent benign tissue). Contamination not assessed.
Ma et al (2020)	242 PC and 52 adjacent benign tissue RNA sequenced data from TCGA	Whole transcriptome RNA sequencing	Listeria monocytogenes, Methylobacterium radiotolerans JCM 2831, Xanthomonas albilineans GPE PC73, Bradyrhizobium japonicum abundantly found in PC but may be associated with anti-tumoral effects	No true normal.
Feng et al (2019)	65 PC RP specimen matched to adjacent tissue	Metagenome and metatranscriptomics	High signatures of Trichinella in GS > 8 and Astroviridae, Borrelia, Candida, Capillaria, Entamoeba, Enterobius, Histoplasma, Legionella, Mansonella, Porphyr mononas, Shigella, Streptobacillus in GS 6-7. Helio bacter highly associated with low GS and Dicrocoelium with T3.	No true normal
Banerjee et al (2019)	79 65 PC RP specimen matched to adjacent tissue	Microarray-based metagenomic and capture-sequencing	High signatures of Trichinella in GS > 8 and Astroviridae, Borrelia, Candida, Capillaria, Entamoeba, Enterobius, Histoplasma, Legionella, Mansonella, Porphyr mononas, Shigella, Streptobacillus in GS 6-7. Helio bacter highly associated with low GS and Dicrocoelium with T3.	No true normal
Miyake et al (2019)	84 45 PC RP or biopsy specimen and 33 BP TURP specimen (FFPE)	PCR screening for 5 bacterial and 2 viral agents	Rate of Mycoplasma genitalium infection higher in PC, increasing in extensive pT2c-3b disease.	Limited sample, narrow screening range
Fecal (gastrointestinal) material				
Matsushita et al (2021)	96 PCA and 56 benign, randomized to 114 development and 38 validation cohorts	16S rRNA gene amplicon sequencing	Short-chain fatty acid generating bacteria (Rikenellaceae, Alstipes, Lachnospira) increased in high risk PC (GS ≥ 7), with a predictive index generated with 18 bacteria having AUC of 0.85	Limited ethnicity (Japanese), function of microbiota unknown.
Li et al (2021)	56 PC on ADT, 30 PC on RP	16S rRNA gene amplicon sequencing	Low alpha diversity in the ADT cohort, with higher Ruminococcus gnavus and Bacteroides spp. Lachnospira and Roseburia were higher in the RP group.	Cross-sectional design, limited sample.
Daisley et al (2020)	68 PC (21 on ADT, 14 on ADT + abiraterone, 33 control)	16S rRNA gene amplicon sequencing	Corynebacterium spp. is decreased with ADT, and abiraterone use increases Akkermansia muciniphila and modulates patient gut microbiota, potentially influencing treatment response.	Limited sample
Liu et al (2020)	21 at HSPC before ADT, matched with samples recollected after ADT at CRPC	16S rRNA gene amplicon sequencing	Matched compositional analyses between HSPC and CRPC after ADT display increase of Bacteroidetes, Fusobacteria, Synergistetes, Tenericutes, as well as decrease in Proteobacteria, Actinobacteria, and Cyanobacteria.	Limited sample, dietary or lifestyle factors not accounted for.
Sfanos et al (2018)	7 mPC, 7 PC with BCR, 7 localized PC, 3 negative biopsy, 6 healthy controls	16S rRNA gene amplicon sequencing	Significant difference noted in alpha diversity between PC and non-PC groups, with increased of Akkermansia muciniphila and Ruminococaceae spp. in patients taking oral androgen receptor axis-targeted therapies.	Limited sample, used rectal swabs for collection.
Liss et al (2018)	64 PC and 41 negative biopsy rectal swab samples prior to biopsy	16S rRNA gene amplicon sequencing	Abundant Bacteroides and Streptococcus spp. in PC, but mostly similar species diversity between groups.	Used rectal swabs for collection.
Study	Number of Samples	Sample Type	Methodology	Findings
-------	------------------	-------------	-------------	----------
Hurst et al (2022)	46 sequenced samples (24 PC, 22 negative biopsy) with total 318 undergoing urine sediment microscopy	16S rRNA gene amplicon sequencing	Porphyromonas, Varibaculum, Peptoniphilus, and Fenollaria spp. newly discovered in PC urine and further associated with poor prognosis (including Fusobacterium)	Limited sample, only 16S and RNA-seq evaluation used for urine.
Alanee et al (2019)	14 PC and 16 biopsy negative subjects, each 1 urine and 1 fecal sample prior to biopsy	16S rRNA gene amplicon sequencing	Bacterial clustering in urine drastically different between non-PC and GS 7 but not with GS 6. Veillonella, Streptococcus, and Bacteroides increased in PC, with decrease in Faecalibacterium, Lactobacilli, and Acinetobacter.	Limited samples, urine samples may include prostatic secretion (collected after prostate massage)
Shrestha et al (2018)	Total 135 samples (65 PC, 65 negative biopsy, 5 with initial negative but PC found on later biopsy)	16S rDNA gene sequencing	Corynebacterium, Staphylococcus and Streptococcus most commonly found in all samples, with no difference in β-diversity. Identified clusters found more in PC were microbiota implicated in infection.	No true normal
Ma et al (2019)	32 PC and 27 non-PC	16S rRNA gene amplicon sequencing	Overall diversity is lower in PC, with significant increase in Lactococcus, Carnobacterium, and Streptococcus, whereas Cronobacter, Alkaliphilus, and Paenibacillus were decreased in PC.	Limited samples, possible contamination from urinary tract.
Chen et al (2015)	6 PC and 6 negative biopsy	Small RNA sequencing to compare miRNA	Propionibacterium acnes detected in PC but not in normal samples.	Limited samples, no true normal, 16S rRNA not done.
Yu et al (2015)	Urine, EPS, seminal secretions collected from 13 PC and 34 BPH subjects	PCR-DDGE with 16S rDNA and qPCR	PC EPS had increased Bacteroidetes, Alphaproteobacteria, Firmicutes, Lachnospiraceae, Propionicimonas, Sphingomonas, and Ochrobactrum, with decreased Eubacterium and Defluviococcus. E. coli was increased in EPS and seminal secretions of PC, whereas Enterococcus increased only in seminal fluids.	Limited samples
Wang et al (2022)	31 PC and 34 health controls	Fungal ITS sequencing	Filobasidiales, Pyronemataceae, and Cryptococcus ater spp. were increased in PC. Bipolaris genus, Sordariomycetes and Phoma herbarum species were associated with low PSA, high stage, and low risk of relapse, respectively.	Limited samples, only peripheral blood included, cross-sectional design.
Reichard et al (2022)	173 lethal PC and 519 non-lethal PC or never diagnosed male controls	Metabolomics with mass spectrometry	Increased baseline levels of choline, betaine, and phenylacetylglutamine had higher risk of lethal PC.	Non-causal, associative analysis, limited sample without validation.
Poore et al (2020)	59 PC (32 HSPC, 27 CRPC) and 69 non-cancer	Whole transcriptome sequencing	Microbial signatures from cell-free DNA showed significant discrimination of PC from healthy controls.	Limited sample, no true negative
Ou et al (2019)	27 PC undergoing RP, 12 healthy control	cell free bacterial 16S rDNA via qPCR	Similar microbial translocation signatures, but increased 16s rDNA in BCR vs. no BCR and pT3 vs. pT2.	Limited samples

PC, prostate cancer; BPH, benign prostatic hyperplasia; TURP, transurethral resection of prostate; FFPE, formalin-fixed paraffin-embedded, ADT, androgen deprivation therapy; CRPC, castration-resistant prostate cancer; Hormone-sensitive prostate cancer; mPC, metastatic prostate cancer; BCR, biochemical recurrence.
Contamination is a critical issue, where the analysis of low biomass in genitourinary diseases suffers the most. Confounding microbiota can be introduced during sample collection, e.g., midstream “clean catch” urine, or even during handling processing. Thus, blanks should be co-analyzed to exclude both human and technical errors. As such, sample handling in biosafety cabinets and controlled environments should be ideally performed, and should be noted within the methods description. Eisenhofer et al. have presented a RIDF checklist to account for cross-contamination and contaminant DNA in blank controls, which includes: a) reporting study design and approaches used to reduce and assess contributions of contamination, b) inclusion of controls to assess contaminant DNA with at least one of each type of negative control, c) determining the level of contamination by comparing biological samples to controls, and d) exploring contaminant taxa and reporting their impact on interpretation. To the best of our knowledge, only two studies in PCa have stringent adhered to such guidelines identifying that four new bacteria (Porphyromonas, Varibaculum, Peptoniphilus, and Fenollaria spp.) in patient urine with significant association with metastatic disease. Therefore, large-scale, well-controlled studies and meta-analyses are required to accurately evaluate the true influence of microbiomes, which hold much potential as potential biomarkers but is currently inconclusive at best.

4. Conclusion

There is no doubt that inflammation is caused by regional microbiomes in the tumor microenvironment and that chronic infection can influence systemic immunity with the potential use of urinary microbiomes as clinical biomarkers of disease as well as response to treatment and clinical prognosis. However, current research is not without limitations, and no microbiome has been identified as a single causative or definitive factor of pathogenesis. Microbiome research studies in genitourinary disorders and malignancies are still in their infant stages, limited by the lack of control for contaminants as well as the myriad of lifestyles and patient factors as well as confounding factors in current results. Larger, well-controlled trials on urinary tract microbiota are needed to investigate the clinical relevance of urinary microbiota.

Conflict of interest

None of the authors have any conflicts of interest with any institution or product.

References

1. Antunes-Lopes T, Vale L, Cohlh AM, Silva C, Rieken M, Gevlate B, et al. The role of urinary microbiota in lower urinary tract dysfunction: a systematic review. Eur Urol Focus 2020;6:361.
2. Puerta Suarez J, Cardona Maya WD. Microbiota, prostatitis, and fertility: bacterial diversity as a possible health ally. Adv Urol 2021;2021:1007366.
3. Bajic P, Dornbier RA, Doshi CP, Wolfe AJ, Farooq AV, Bresler L. Implications of the urinary and faecal microbiota on lower urinary tract symptoms measured by the international prostate symptom score: analysis utilising next-generation sequencing. BJU Int 2020;125:905.
4. Jung S, Samal AG, Das B, Pradhan B, Sahni N, Mohapatra D, et al. Escherichia coli, a common constituent of benign prostate hyperplasia-associated microbiota induces inflammation and DNA damage in prostate epithelial cells. Prostate 2020;80:1341.
5. Lee HY, Wang JW, Jeeu LS, Li CC, Liu Cj, Cho SY, et al. The impact of urine microbiota in patients with lower urinary tract symptoms. Ann Clin Microbiol Antimicrob 2021;20:23.
6. Lee KW, Song HY, Kim YH. The microbiome in urological diseases. Investig Urol 2020;61:338.
7. Krieger JN, Nyberg Jr I, Nickel Ic. NIH consensus definition and classification of prostatitis. JAMA 1999;282:236.
8. Nickel JC, Stephens-Shields AJ, Landis JR, Mullins C, van Bokhoven A, Lucia MS, et al. Evaluation of the urinary microbiota of women with uncomplicated stress urinary incontinence. Am J Obstet Gynecol 2017;216:55.e1.
9. Wu P, Chen Y, Zhao J, Zhang G, Chen J, Wang J, et al. Urinary microbiome and psychological factors in women with overactive bladder. Front Cell Infect Microbiol 2017;7:488.
10. Nickel JC, Stephens-Shields AJ, Landis JR, Mullins C, van Bokhoven A, Lucia MS, et al. A culture-independent analysis of the microbiota of female patients with chronic pelvic pain syndrome. Front Cell Infect Microbiol 2017;7:488.
11. Nickel JC, Ehrlich GD, Krof J, Ahmed A, Sen B, Bhut A, et al. The bacterial microbiota of Hunner lesion interstitial cystitis/bladder pain syndrome. BJU Int 2022;129:104.
D’Amore R, Ijaz UZ, Schirmer M, Kenny JC, Gregory R, Darby AC, et al. A comprehensive benchmarking study of protocols and sequencing platforms for 16S rRNA community profiling. BMC Genom 2016;17:55.

Salachan PV, Sorensen KD. Dysbiotic microbes and how to find them: a review of microbiome profiling in prostate cancer. J Exp Clin Cancer Res 2022;41:31.

Ma Z, Li L. Semen microbiome biogeography: an analysis based on a chinese population study. Front Microbiol 2018;9:3333.

Weng SL, Chiu CM, Lin FM, Huang WC, Liang C, Yang T, et al. Bacterial communities in semen from men of infertile couples: metagenomic sequencing reveals relationships of seminal microbiota to semen quality. PLoS One 2014;9:e110152.

Yu SH, Jung SI. The potential role of urinary microbiome in benign prostate hyperplasia/lower urinary tract symptoms. Diagnostics 2022;12:1862.

Shoemaker R, Kim J. Urobiome: an outlook on the metagenome of urological diseases. Investig Clin Urol 2021;62:611.

Tang Q, Jin G, Wang G, Liu T, Liu X, Wang B, et al. Current sampling methods for gut microbiota: a call for more precise devices. Front Cell Infect Microbiol 2020;10:151.