THE FIRST EIGENVALUE OF DIRAC AND LAPLACE OPERATORS ON SURFACES

J.F. GROSJEAN ET E. HUMBERT

Abstract. Let \((M, g, \sigma)\) be a compact Riemannian surface equipped with a spin structure \(\sigma\). For any metric \(\tilde{g}\) on \(M\), we denote by \(\mu_1(\tilde{g})\) (resp. \(\lambda_1(\tilde{g})\)) the first positive eigenvalue of the Laplacian (resp. the Dirac operator) with respect to the metric \(\tilde{g}\). In this paper, we show that
\[
\inf \frac{\lambda_1(\tilde{g})^2}{\mu_1(\tilde{g})} \leq \frac{1}{2},
\]
where the infimum is taken over the metrics \(\tilde{g}\) conformal to \(g\). This answers a question asked by Agricola, Ammann and Friedrich in [AAF99].

1 MSC 2000: 34L15, 53C27, 58J05.

Contents

1. Introduction 1
2. Generalized metrics 2
3. The metrics \((g_{\alpha,\varepsilon})_{\alpha,\varepsilon}\) 4
4. Proof of relation \((5)\) 5
5. Proof of relation \((6)\) 7
References 13

1. Introduction

Let \((M, g, \sigma)\) be a compact Riemannian surface equipped with a spin structure \(\sigma\). For any metric \(\tilde{g}\) on \(M\), we denote by \(\Sigma_{\tilde{g}}M\) the spinor bundle associated to \(\tilde{g}\). We let \(\Delta_{\tilde{g}}\) be the Laplace-Beltrami operator acting on smooth functions of \(M\) and \(D_{\tilde{g}}\) be the Dirac operator acting on smooth spinor fields with respect to the metric \(\tilde{g}\). We also denote by \(\mu_1(\tilde{g})\) (resp. \(\lambda_1(\tilde{g})\)) the smallest positive eigenvalue of \(\Delta_{\tilde{g}}\) (resp. \(D_{\tilde{g}}\)).

Agricola, Ammann and Friedrich asked the following question in [AAF99]:

When \(M\) is a two dimensional torus, can we find on \(M\) a Riemannian metric \(\tilde{g}\) for which \(\lambda_1(\tilde{g})^2 < \mu_1(\tilde{g})\) ?

The main goal of this article is to answer this question. We prove the

Theorem 1.1. There exists a family of metrics \((g_{\varepsilon})_{\varepsilon}\) conformal to \(g\) for which
\[
\limsup_{\varepsilon \to 0} \lambda_1(g_{\varepsilon})^2 \text{Vol}_{g_{\varepsilon}}(M) \leq 4\pi
\]
\[
\liminf_{\varepsilon \to 0} \mu_1(g_{\varepsilon}) \text{Vol}_{g_{\varepsilon}}(M) \geq 8\pi.
\]
Theorem 1.1 clearly answers the question of [AAF99] but says much more: first, the result is true on any compact Riemannian surface equipped with a spin structure and not only when M is a two-dimensional torus. In addition, the metric \bar{g} can be chosen in a given conformal class. Finally, this metric \bar{g} can be chosen such that $(2-\delta)\lambda_1(g)^2 < \mu_1(g)$ where $\delta > 0$ is arbitrary small. More precisely Theorem 1.1 shows

Corollary 1.2. On any compact Riemannian surface (M,g), we have

$$\inf \frac{\lambda_1(\bar{g})^2}{\mu_1(\bar{g})} \leq \frac{1}{2}$$

where the infimum is taken over the metric \bar{g} conformal to g.

Theorem 1.1 has other interesting consequences. Indeed, it proves

Corollary 1.3. For any compact surface (M,g) equipped with a spin structure σ, we let

$$\lambda_{\text{min}}^+(M,g,\sigma) = \inf \lambda_1(\bar{g}) \operatorname{Vol}_{\bar{g}}^+(M)$$

where the infimum is taken over the metrics \bar{g} conformal to g. Then, we have $\lambda_{\text{min}}^+(M,g,\sigma) \leq \lambda_{\text{min}}^+(S^2)$ where $\lambda_{\text{min}}^+(S^2)$ is the same invariant computed on the standard sphere S^2.

This corollary is an immediate consequence of the fact that $\lambda_{\text{min}}^+(S^2) = 2\sqrt{2}$ (see [AHM03]). This result was announced in [AHM03]. The conformal invariant λ_{min}^+ has been studied in many papers (see for example [HijNo, LatNo, Bär92, Amm03, AHM03, AM06]). Indeed, it has many relations with Yamabe problem (see [LP87]). Corollary 1.3 has been proved in all dimensions by Ammann in [Amm03] if either $n \geq 3$ or is D is invertible. Corollary 1.3 extends the result to the remaining case: $n = 2$ and $\text{Ker}(D) \neq \{0\}$. In [AHM03], an alternative proof of the case $n \geq 3$ is given and the proof of the case $n = 2$ is sketched.

In the same spirit, a consequence of Theorem 1.1 is

Corollary 1.4. For any compact surface (M,g), we let

$$\mu_{\text{sup}}(M,g) = \sup \mu_1(\bar{g}) \operatorname{Vol}_{\bar{g}}^+(M)$$

where the infimum is taken over the metrics \bar{g} conformal to g. Then, we have $\mu_{\text{sup}}(M,g) \geq \mu_{\text{sup}}(S^2)$ where $\mu_{\text{sup}}(S^2)$ is the same invariant computed on the standard sphere S^2.

The invariant μ_{sup} has been studied in [CGPS03] and Corollary 1.4 is a particular case of Theorem A in this paper. We obtain here another proof.

Acknowledgement: The authors are very grateful to Bernd Ammann for having drawn our attention to the question in [AAF99].

2. **Generalized metrics**

Let f be a smooth positive function and set $\bar{g} = f^2 g$. Let also for $u \in C^\infty(M)$

$$I_\bar{g}(u) = \frac{\int_M |\nabla u|_{\bar{g}}^2 \, dv_{\bar{g}}}{\int_M u^2 \, dv_{\bar{g}}}.$$

It is well known that $\mu_1(\bar{g}) = \inf I_\bar{g}(u)$ where the infimum is taken over the smooth non-zero functions u for which $\int_M u \, dv_{\bar{g}} = 0$. We now can write all these expressions in the metric g. We then see that for $u \in C^\infty(M)$, we have

$$I_\bar{g}(u) = \frac{\int_M |\nabla u|^2_{\bar{g}} \, dv_{\bar{g}}}{\int u^2 f^2 \, dv_{\bar{g}}}$$

and $\mu_1(\bar{g}) = \inf I_\bar{g}(u)$ where the infimum is taken over the smooth non-zero functions u for which $\int_M u f^2 \, dv_{\bar{g}} = 0$. Now if f is only of class $C^{0,a}(M)$ for some $a > 0$, we can define $\bar{g} = f^2 g$. The 2-form \bar{g} is not really a metric since f is not smooth. We then say that g is a *generalized metric*. We can
We also have proves Lemma 2.1. □

It is easy to see that \(\lim_{n \to \infty} \) and set \(v = u - \frac{u_n f_n^2 dv_g}{f_n dv_g} \). We have \(\int_M v^2 f_n^2 dv_g = 0 \) and hence

\[
|\int_M u_n f^2 dv_g| = |\int_M u_n (f^2 - f_n^2) dv_g| \leq C \int_M |u_n| (f + f_n)^2 \| f - f_n \|_{\infty}.
\]

Since the sequence \((f_n)_n\) tends uniformly to \(f \) and since \(\int_M f_n^2 u_n^2 dv_g = 1 \), we get that \(\lim_n \int_M u_n f^2 dv_g = 0 \). In the same way,

\[
\int_M f^2 u_n^2 dv_g = \int_M f_n^2 u_n^2 dv_g + o(1) = 1 + o(1).
\]

Finally, we obtain

\[
\int_M f^2 v^2 dv_g = 1 + o(1).
\]

Together with (2) and (3), we obtain that \(\mu_1(\bar{g}) \leq \liminf_n \mu_1(f_n^2 g) \). Now, let \(u \) be associated to \(\mu_1(\bar{g}) \) and set \(v = u - \frac{u_n f_n^2 dv_g}{f_n dv_g} \). We have \(\int_M v^2 f_n^2 dv_g = 0 \) and hence

\[
\mu_1(f_n^2 g) \leq I_{\bar{g}}(v).
\]

It is easy to see that \(\lim_n I_{f_n^2 g}(v) = I_{\bar{g}}(u) = \mu_1(\bar{g}) \). We then obtain that \(\mu_1(\bar{g}) \geq \limsup_n \mu_1(f_n^2 g) \). This proves Lemma 2.1. □
In the same way, if $\tilde{g} = f^2g$ is a metric conformal to g where f is positive and smooth, we define

$$J_\tilde{g}(\psi) = \int_M |D\tilde{g}\psi|^2 f^{-2} \tilde{g} \, dv_{\tilde{g}} / \int_M \langle D\tilde{g}\psi, \psi \rangle_{\tilde{g}} \tilde{g} \, dv_{\tilde{g}}.$$

The first eigenvalue of the Dirac operator $D\tilde{g}$ is then given by $\lambda_1^+(\tilde{g}) = \inf J_\tilde{g}(\psi)$ where the infimum is taken over the smooth spinor fields ψ for which $\int_M \langle D\psi, \psi \rangle_{\tilde{g}} \tilde{g} \, dv_{\tilde{g}} > 0$. Now, it is well known (see [Hit74, Hij01]) that we can identify isometrically on each fiber spinor fields for the metric g and spinor fields for the metric \tilde{g}. Moreover, we have for all smooth spinor fields ϕ such that $\lambda_1(\tilde{g}) = J_{\tilde{g}}(\phi)$ and such that $D\tilde{g}\phi \equiv \lambda_1(\tilde{g}) f\phi$.

We then have a result similar to Lemma 2.1:

Lemma 2.2. If (f_n) is a sequence of smooth positive functions which converges uniformly to f, then $\lambda_1(f_n^2g)$ tends to $\lambda_1(\tilde{g})$.

The proof is similar to the one of Lemma 2.1 and we omit it here.

3. The metrics $(g_{\alpha,\varepsilon})_{\alpha,\varepsilon}$

In this paragraph, we construct the metrics $(g_{\alpha,\varepsilon})_{\alpha,\varepsilon}$ which will satisfy:

$$\limsup_{\varepsilon \to 0} \lambda_1(g_{\alpha,\varepsilon})^2 \text{Vol}_{g_{\alpha,\varepsilon}}(M) \leq 4\pi + C(\alpha).$$

where $C(\alpha)$ is a positive constant which goes to 0 with α and

$$\liminf_{\varepsilon \to 0} \mu_1(g_{\alpha,\varepsilon}) \text{Vol}_{g_{\alpha,\varepsilon}}(M) \geq 8\pi.$$

Clearly this implies Theorem 1.1. By Lemmas 2.1 and 2.2, one can assume that the metrics $(g_{\alpha,\varepsilon})_{\alpha,\varepsilon}$ are generalized metrics. We just have to define the volume of M for generalized metric by $\text{Vol}_{f_2g}(M) = \int_M f^2 dv_g$. At first, without loss of generality, we can assume that g is flat near a point $p \in M$. Let $\alpha > 0$ be a small number to be fixed later such that g is flat on $B_p(\alpha)$. We set for all $x \in M$ and $\varepsilon > 0$,

$$f_{\alpha,\varepsilon}(x) = \begin{cases} \varepsilon^2 \frac{e^{2\alpha^2 r^2}}{r^2} & \text{if } r \leq \alpha \\ \varepsilon^2 + \alpha^2 & \text{if } r > \alpha \end{cases}$$

where $r = d_g(.,p)$. The function $f_{\alpha,\varepsilon}$ is of class $C^{0,\alpha}$ for all $\alpha \in [0,1]$ and is positive on M. We then define for all $\varepsilon > 0$, $g_{\alpha,\varepsilon} = f_{\alpha,\varepsilon}^2g$. The 2-forms $(g_{\alpha,\varepsilon})_{\alpha,\varepsilon}$ will be the desired generalized metrics. For these metrics, we have

$$\text{Vol}_{g_{\alpha,\varepsilon}}(M) = \int_M f_{\alpha,\varepsilon}^2 dv_g = \int_{B_p(\alpha)} f_{\alpha,\varepsilon}^2 dv_g + \int_{M \setminus B_p(\alpha)} f_{\alpha,\varepsilon}^2 dv_g.$$
Since g is flat on $B_p(\alpha)$, we have
\[\int_{B_p(\alpha)} f_{\alpha,\epsilon}^2 dv_g = \int_{0}^{2\pi} \int_{0}^{\epsilon r} \frac{r}{(\epsilon^2 + r^2)^2} dr d\Theta. \]
Setting $y = \frac{\alpha}{\epsilon}$ we obtain:
\[\int_{B_p(\alpha)} f_{\alpha,\epsilon}^2 dv_g = 2\pi \epsilon^2 \int_{0}^{\frac{\epsilon}{\alpha}} \frac{r}{(1 + r^2)^2} dr = 2\pi \epsilon^2 \left(\int_{0}^{\epsilon} \frac{r}{(1 + r^2)^2} dr + o(1) \right) = \pi \epsilon^2 + o(\epsilon^2). \]
Since $f_{\alpha,\epsilon}^2 \leq \frac{\epsilon^4}{\alpha^2}$ on $M \setminus B_p(\alpha)$, we have $\int_{M \setminus B_p(\alpha)} f_{\alpha,\epsilon}^2 dv_g = o(\epsilon^2)$. We obtain
\[\text{Vol}_g(M) = \pi \epsilon^2 + o(\epsilon^2). \] (7)
In the whole paper, the notation "$o(\cdot)$" must be understood as ϵ tends to 0.

4. PROOF OF RELATION (5)

Let $f : \mathbb{R}^2 \to \mathbb{R}^2$ be defined by $f(x) = \frac{2}{1 + |x|^2}$. Let ψ_0 be a non-zero parallel spinor field on \mathbb{R}^2 such that $|\psi_0|^2 = 1$. As in [AHM03], we set on \mathbb{R}^2
\[\psi(x) = f \left(\frac{x}{\epsilon} \right) (1 - x) \cdot \psi_0. \]
As easily computed, we have on \mathbb{R}^2
\[D\psi = f\psi \text{ and } |\psi| = f \frac{x}{\epsilon}. \] (8)
Now, we fix a small number $\delta > 0$ such that g is flat on $B_p(\delta)$. Then, we take $\epsilon \leq \alpha \leq \delta$. We will let ϵ go to 0. We let also η be a smooth cut-off function defined on M such that $0 \leq \eta \leq 1$, $\eta(B_p(\delta)) = \{1\}$, $\eta(M \setminus B_p(2\delta)) = \{0\}$. Identifying $B_p(\delta)$ in M with $B_0(\delta)$ in \mathbb{R}^2, we can define a smooth spinor field on M by $\psi_\epsilon = \eta(x) \psi \left(\frac{x}{\epsilon} \right)$. Using (8), we have
\[Dg(\psi_\epsilon) = \nabla \eta \cdot \psi \left(\frac{x}{\epsilon} \right) + \frac{\eta}{\epsilon} f \left(\frac{x}{\epsilon} \right) \psi \left(\frac{x}{\epsilon} \right). \] (9)
Since $\langle \nabla \eta \cdot \psi \left(\frac{x}{\epsilon} \right), \psi \left(\frac{x}{\epsilon} \right) \rangle \in i \mathbb{R}$ and since $|Dg \psi_\epsilon|^2 \in \mathbb{R}$, we have
\[\int_{M} |Dg \psi_\epsilon|^2 f_{\alpha,\epsilon}^{-1} dv_g = I_1 + I_2 \] (10)
where
\[I_1 = \int_{M} |\nabla \eta|^2 \left| \psi \left(\frac{x}{\epsilon} \right) \right|^2 dx \quad \text{and} \quad I_2 = \int_{M} \frac{\eta^2}{\epsilon^2} f^2 \left(\frac{x}{\epsilon} \right) \left| \psi \left(\frac{x}{\epsilon} \right) \right|^2 f_{\alpha,\epsilon}^{-1} dx. \]
At first, let us deal with I_1. By (8),
\[I_1 \leq C \int_{M} f \left(\frac{x}{\epsilon} \right) f_{\alpha,\epsilon}^{-1} dx = C \int_{B_p(\alpha)} f \left(\frac{x}{\epsilon} \right) f_{\alpha,\epsilon}^{-1} dx + C \int_{B_p(2\delta) \setminus B_p(\alpha)} f \left(\frac{x}{\epsilon} \right) f_{\alpha,\epsilon}^{-1} dx \]
where, as in the following, C denotes a constant independent of α and ϵ. On $B_p(\alpha)$, $f \left(\frac{x}{\epsilon} \right) f_{\alpha,\epsilon}^{-1} = 2$. Hence,
\[\int_{B_p(\alpha)} f \left(\frac{x}{\epsilon} \right) f_{\alpha,\epsilon}^{-1} dx \leq C \alpha^2. \]
On $B_p(2\delta) \setminus B_p(\alpha)$, since $\epsilon \leq \alpha$,
\[f \left(\frac{x}{\epsilon} \right) f_{\alpha,\epsilon}^{-1} \leq \frac{4\alpha^2}{\epsilon^2 + r^2} = \frac{4\alpha^2}{\epsilon^2 \left(1 + \left(\frac{\alpha}{\epsilon} \right)^2 \right)} \]
Hence,

\[
\int_{B_p(2\delta) \setminus B_p(\alpha)} f \left(\frac{x}{\varepsilon} \right) f_{\alpha,\varepsilon}^{-1} dx \leq \frac{4\alpha^2}{\varepsilon^2} \int_0^{2\pi} \int_{\alpha}^\delta \frac{r}{(1 + (\frac{r}{\varepsilon})^2)} dr d\Theta
\]

\[
\leq 8\pi\alpha^2 \int_{2\delta}^\infty \frac{r}{(1 + r^2)} dr
\]

\[
\leq 8\pi\alpha^2 \ln \left(\frac{\varepsilon^2 + \delta^2}{\varepsilon^2 + \alpha^2} \right).
\]

We get

\[
\int_{B_p(2\delta) \setminus B_p(\alpha)} f \left(\frac{x}{\varepsilon} \right) f_{\alpha,\varepsilon}^{-1} dx \leq C \alpha^2 \ln \left(\frac{2\delta^2}{\alpha^2} \right).
\]

Finally, we obtain

\[
I_1 \leq C \alpha^2 + C \ln \left(\frac{2\delta^2}{\alpha^2} \right) = a(\alpha) \quad (11)
\]

where \(a(\alpha)\) goes to 0 with \(\alpha\). Now, by (8),

\[
I_2 \leq 8\pi \alpha^2 \int_{2\delta}^\infty \frac{r}{(1 + r^2)} dr.
\]

Mimicking what we did to get (7), we obtain that

\[
I_2 \leq 8\pi \alpha^2 + o(1)
\]

when \(\varepsilon\) tends to 0. Together with (10) and (11), we obtain

\[
\int_M |D_g \psi_\varepsilon|^2 f_{\alpha,\varepsilon}^{-1} dv_g \leq 8\pi + a(\alpha) + o(1).
\]

In the same way, by (9), since \(\int_M \langle D_g(\psi_\varepsilon), \psi_\varepsilon \rangle dv_g \in \mathbb{R}\) and since \((\nabla \eta \cdot \psi(\frac{x}{\varepsilon}), \psi(\frac{x}{\varepsilon})) \in i\mathbb{R}\), we have

\[
\int_M \langle D_g(\psi_\varepsilon), \psi_\varepsilon \rangle dv_g = \int_M \eta^2 f \left(\frac{x}{\varepsilon} \right) \left| \psi \left(\frac{x}{\varepsilon} \right) \right|^2 dv_g.
\]

By (8), this gives

\[
\int_M \langle D_g(\psi_\varepsilon), \psi_\varepsilon \rangle dv_g = \int_M \eta^2 f \left(\frac{x}{\varepsilon} \right) dv_g.
\]

With the computations made above, it follows that

\[
\int_M \langle D_g(\psi_\varepsilon), \psi_\varepsilon \rangle dv_g = 4\pi \varepsilon + o(\varepsilon).
\]

Together with (12) and (11), we obtain

\[
\lambda_1(g_{\alpha,\varepsilon})^2 \text{Vol}_{g_{\alpha,\varepsilon}}(M) \leq (J_{g_{\alpha,\varepsilon}}(\psi_\varepsilon))^2 \text{Vol}_{g_{\alpha,\varepsilon}}(M) \leq \left(\frac{8\pi + a(\alpha) + o(1)}{4\pi \varepsilon + o(\varepsilon)} \right)^2 \left(4\pi \varepsilon^2 + o(\varepsilon^2) \right) = \frac{1}{\varepsilon} \left(4\pi + a(\alpha) + o(1) \right).
\]

Relation (5) immediately follows.
First we need the following estimate

Lemma 5.1. For any \(\varepsilon > 0 \) and \(u \in C^\infty_c(B_p(\alpha)) \), then

\[
\int_M u^2 f^2_{\alpha, \varepsilon} dv_g \leq \frac{\varepsilon^2}{8} \int_M |\nabla u|^2 dv_g + \frac{1}{\pi \varepsilon^2} \left(\int_M u f^2_{\alpha, \varepsilon} dv_g \right)^2.
\]

Proof. Let \(g_\varepsilon = f^2_{\alpha, \varepsilon} g \). Then \((B_p(\alpha), g_\varepsilon)\) is embedded in a canonical sphere of volume \(\int_{R^2} \left(\frac{\varepsilon^2}{\varepsilon^2 + r^2} \right)^2 dx = \pi \varepsilon^2 \). Then from the Poincaré-Sobolev inequality, we have

\[
\int_M u^2 dv_{g_\varepsilon} \leq \frac{1}{\mu_{1, \varepsilon}} \int_M |\nabla^\varepsilon u|^2_{g_\varepsilon} dv_{g_\varepsilon} + \frac{1}{V_{g_\varepsilon}} \left(\int_M u dv_{g_\varepsilon} \right)^2
\]

where \(\mu_{1, \varepsilon} = \frac{8}{\varepsilon^2} \) is the first nonzero eigenvalue of the Laplacian on the sphere of volume \(V_{\varepsilon} = \pi \varepsilon^2 \) and \(\nabla^\varepsilon u \) denotes the gradient of \(u \) with respect to the metric \(g_\varepsilon \). Now since \(|\nabla^\varepsilon u|_{g_\varepsilon}^2 = f^2_{\alpha, \varepsilon} |\nabla u|_{g}^2 \) and \(dv_{g_\varepsilon} = f^2_{\alpha, \varepsilon} dv_g \), we get the desired result.

\[\square \]

Lemma 5.2. For any \(u, v \in C^\infty(M) \), we have

\[
\int_M (\Delta u) v^2 dv_g = \int_M |\nabla (uv)|_{g}^2 dv_g - \int_M u^2 |\nabla v|_{g}^2 dv_g.
\]

Proof. The proof is an elementary calculation.

\[\square \]

Because of the relation \(9 \), the inequality \(9 \) is equivalent to the following

\[
\liminf_{\varepsilon \to 0} \varepsilon^2 \mu_1 (g_\varepsilon) \geq 8
\]

In order to prove this inequality, we assume that for any \(\varepsilon \) small enough, there exists \(k, 0 < k < 1 \) so that

\[
\mu_1 (g_\varepsilon) < \frac{8}{\varepsilon^2} k.
\]

Let \(u_\varepsilon \) be an eigenfunction associated to \(\mu_1 (g_\varepsilon) \). Then \(u_\varepsilon \in C^2(M) \) and \(\Delta_{g_\varepsilon} u_\varepsilon = \mu_1 (g_\varepsilon) u_\varepsilon \) where \(\Delta_{g_\varepsilon} \) denotes the Laplacian associated to the metric \(g_\varepsilon \). Since the dimension is 2, \(\Delta_{g_\varepsilon} = \frac{1}{f^2_{\alpha, \varepsilon}} \Delta \) and

\[
\Delta u_\varepsilon = \mu_1 (g_\varepsilon) f^2_{\alpha, \varepsilon} u_\varepsilon.
\]

We normalize \(u_\varepsilon \) so that \(\| u_\varepsilon \|_{H^1_1} = 1 \). Up to a subsequence we can assume that \(\int_M |\nabla u_\varepsilon|^2 dv_g \to l \) and \(\int_M u_\varepsilon^2 dv_g \to l' \) with \(l + l' = 1 \). Since \((u_\varepsilon) \) is bounded in \(H^2_1 \), there exists a subsequence so that \(u_\varepsilon \to u \) weakly in \(H^1_1 \). In the following, all the convergences are up to subsequence. We sometimes omit to recall this fact.

Lemma 5.3. There exists a constant \(c_0 \) such that \(u = c_0 \).
Proof. Let \(\varphi \in C^\infty(M) \) and

\[
\eta_\rho := \begin{cases}
1 & \text{on } B_\rho(\rho) \\
0 & \text{on } M \setminus B_\rho(2\rho)
\end{cases}
\]
satisfying \(0 \leq \eta_\rho \leq 1 \) and \(|\nabla \eta_\rho| \leq \frac{1}{\rho} \). We have

\[
\int_M \langle \nabla u, \nabla \varphi \rangle = \int_M \langle \nabla u, \nabla (\eta_\rho \varphi) \rangle dv_g + \int_M \langle \nabla u, \nabla ((1 - \eta_\rho) \varphi) \rangle dv_g. \tag{16}
\]

Now we have

\[
\int_M \langle \nabla u, \nabla (\eta_\rho \varphi) \rangle dv_g = \int_M \langle \nabla u, \nabla \eta_\rho \rangle \varphi dv_g + \int_M \langle \nabla u, \nabla \eta_\rho \rangle \eta_\rho \varphi dv_g
\leq C \left(\int_{B_\rho(2\rho)} |\nabla u|^2 dv_g \right)^{1/2} \left(\int_{B_\rho(2\rho)} |\nabla \eta_\rho|^2 dv_g \right)^{1/2}
+ \left(\int_{B_\rho(2\rho)} |\nabla u|^2 dv_g \right)^{1/2} \left(\int_{B_\rho(2\rho)} |\nabla \varphi|^2 dv_g \right)^{1/2}.
\]

The limit of the last term is 0 when \(\rho \to 0 \). Moreover from the definition of \(\eta_\rho \) and from the fact that \(M \) is a 2-dimensional locally flat domain, the limit of \(\left(\int_{B_\rho(2\rho)} |\nabla \eta_\rho|^2 dv_g \right)^{1/2} \) is bounded in a neighborhood of 0. Then we deduce that

\[
\int_M \langle \nabla u, \nabla (\eta_\rho \varphi) \rangle dv_g \to 0 \tag{17}
\]
when \(\rho \to 0 \). On the other hand

\[
\left| \int_M \langle \nabla u, \nabla ((1 - \eta_\rho) \varphi) \rangle dv_g \right| = \lim_{\varepsilon \to 0} \left| \int_M \langle \nabla u_\varepsilon, \nabla ((1 - \eta_\rho) \varphi) \rangle dv_g \right|
= \lim_{\varepsilon \to 0} \left| \int_M \langle \Delta u_\varepsilon, (1 - \eta_\rho) \varphi \rangle dv_g \right|
= \lim_{\varepsilon \to 0} \left| \mu_1(g_\varepsilon) \int_M f_{\alpha,\varepsilon} u_\varepsilon (1 - \eta_\rho) \varphi dv_g \right|.
\]

Now from the definition of \(f_{\alpha,\varepsilon} \) and from \(\varepsilon_4 \) we get

\[
\left| \mu_1(g_\varepsilon) \int_M f_{\alpha,\varepsilon} u_\varepsilon (1 - \eta_\rho) \varphi dv_g \right| \leq \frac{8}{\varepsilon^2} k\varepsilon^4 \left(\int_M u_\varepsilon^2 dv_g \right)^{1/2} \left(\int_M (1 - \eta_\rho) \varphi^2 dv_g \right)^{1/2}
\]
where \(C \) is a constant depending on the compact support of \((1 - \eta_\rho) \varphi \). Then making \(\varepsilon \to 0 \), we deduce that

\[
\int_M \langle \nabla u, \nabla ((1 - \eta_\rho) \varphi) \rangle dv_g = 0.
\]
Now, reporting this and \ref{lem:17} in \ref{lem:16} we obtain that \(\int_M (\nabla u, \nabla \varphi) dv_g = 0 \) and \(\Delta u = 0 \) on \(M \) in the sense of distributions. This implies that \(u \equiv c_0 \) on \(M \) for a constant \(c_0 \).

\[
\text{Lemma 5.4. Let } (c_\varepsilon)_\varepsilon \text{ be a bounded sequence of real numbers. Then}
\]

\[
\int_M f_{\alpha, \varepsilon}^2 u^2 dv_g \leq O(\varepsilon^2 \|u_\varepsilon - c_\varepsilon\|_{L^2}^2 + \varepsilon^3).
\]

Proof. Let \(\eta \) be a \(C^\infty \) function defined on \(M \) so that

\[
\eta := \begin{cases}
1 & \text{on } B_p(\alpha/2) \\
0 & \text{on } M \setminus B_p(\alpha)
\end{cases}
\]

satisfying \(0 \leq \eta \leq 1 \) and \(|\nabla \eta| \leq 1 \).

From the lemma \ref{lem:5.1} we have

\[
\int_M (u_\varepsilon - c_\varepsilon)^2 f_{\alpha, \varepsilon}^2 \eta^2 dv_g \leq \frac{\varepsilon^2}{8} \int_M |\nabla((u_\varepsilon - c_\varepsilon) \eta)|^2 dv_g + \frac{1}{\pi \varepsilon^2} \left(\int_M (u_\varepsilon - c_\varepsilon) \eta f_{\alpha, \varepsilon}^2 dv_g \right)^2
\]

and applying the lemma \ref{lem:5.2} to the first term of the right hand side, we get

\[
\int_M (u_\varepsilon - c_\varepsilon)^2 f_{\alpha, \varepsilon}^2 \eta^2 dv_g \leq
\]

\[
\frac{\varepsilon^2}{8} \int_M (\Delta(u_\varepsilon - c_\varepsilon))(u_\varepsilon - c_\varepsilon) \eta^2 dv_g + \frac{\varepsilon^2}{8} \int_M (u_\varepsilon - c_\varepsilon)^2 |\nabla \eta|^2 dv_g + \frac{1}{\pi \varepsilon^2} \left(\int_M (u_\varepsilon - c_\varepsilon) \eta f_{\alpha, \varepsilon}^2 dv_g \right)^2.
\]

From \ref{lem:16} we deduce that

\[
\int_M (u_\varepsilon - c_\varepsilon)^2 f_{\alpha, \varepsilon}^2 \eta^2 dv_g \leq
\]

\[
\frac{\varepsilon^2}{8} \mu_1(g_\varepsilon) \int_M u_\varepsilon(u_\varepsilon - c_\varepsilon) \eta f_{\alpha, \varepsilon}^2 dv_g + \frac{\varepsilon^2}{8} \|u_\varepsilon - c_\varepsilon\|_{L^2}^2 + \frac{1}{\pi \varepsilon^2} \left(\int_M (u_\varepsilon - c_\varepsilon) \eta f_{\alpha, \varepsilon}^2 dv_g \right)^2.
\]

First case: assume that \(\int_M u_\varepsilon(u_\varepsilon - c_\varepsilon) \eta f_{\alpha, \varepsilon}^2 dv_g \geq 0 \).

The relation \ref{lem:14} implies

\[
\int_M (u_\varepsilon - c_\varepsilon)^2 f_{\alpha, \varepsilon}^2 \eta^2 dv_g \leq k \int_M u_\varepsilon(u_\varepsilon - c_\varepsilon) \eta f_{\alpha, \varepsilon}^2 dv_g + \frac{\varepsilon^2}{8} \|u_\varepsilon - c_\varepsilon\|_{L^2}^2 + \frac{1}{\pi \varepsilon^2} \left(\int_M (u_\varepsilon - c_\varepsilon) \eta f_{\alpha, \varepsilon}^2 dv_g \right)^2.
\]

A straightforward computation shows that

\[
(1 - k) \int_M u_\varepsilon^2 f_{\alpha, \varepsilon}^2 \eta^2 dv_g + c_\varepsilon^2 \int_M f_{\alpha, \varepsilon}^2 \eta^2 dv_g \leq
\]

\[
(2 - k)c_\varepsilon \int_M u_\varepsilon f_{\alpha, \varepsilon}^2 \eta^2 dv_g + \frac{\varepsilon^2}{8} \|u_\varepsilon - c_\varepsilon\|_{L^2}^2 + \frac{1}{\pi \varepsilon^2} \left(\int_M (u_\varepsilon - c_\varepsilon) \eta f_{\alpha, \varepsilon}^2 dv_g \right)^2.
\] (18)

Now note that
\[
\int_M u_\varepsilon f_{\alpha,\varepsilon}^2 \eta^2 dv_g = \int_M u_\varepsilon f_{\alpha,\varepsilon}^2 (\eta^2 - 1) dv_g + \int_M u_\varepsilon f_{\alpha,\varepsilon}^2 dv_g = \int_M u_\varepsilon f_{\alpha,\varepsilon}^2 (\eta^2 - 1) dv_g + \frac{1}{\mu_1(g_\varepsilon)} \int_M \Delta u_\varepsilon dv_g = \int_M u_\varepsilon f_{\alpha,\varepsilon}^2 (\eta^2 - 1) dv_g \leq \int_{M \setminus B_{p(\alpha/2)}} u_\varepsilon f_{\alpha,\varepsilon}^2 (\eta^2 - 1) dv_g
\]

and from the definition of \(f_{\alpha,\varepsilon}\) and \(\eta\) and from the fact that \(u_\varepsilon\) is bounded in \(L^2\), we deduce that

\[
\int_M u_\varepsilon f_{\alpha,\varepsilon}^2 \eta^2 dv_g = O(\varepsilon^4).
\]

Since \(c_\varepsilon\) is bounded, (18) becomes

\[
(1 - k) \int_M u_\varepsilon f_{\alpha,\varepsilon}^2 \eta^2 dv_g + c_\varepsilon \int_M f_{\alpha,\varepsilon}^2 \eta^2 dv_g \leq O(\varepsilon^4) + \frac{\varepsilon^2}{8} \|u_\varepsilon - c_\varepsilon\|_{L^2}^2 + \frac{1}{\pi \varepsilon^2} \left(\int_M (u_\varepsilon - c_\varepsilon) \eta f_{\alpha,\varepsilon}^2 dv_g \right)^2
\]

\[
= O(\varepsilon^4) + \frac{\varepsilon^2}{8} \|u_\varepsilon - c_\varepsilon\|_{L^2}^2 + \frac{1}{\pi \varepsilon^2} \left(\int_M f_{\alpha,\varepsilon}^2 u_\varepsilon (\eta - 1) dv_g + \int_M f_{\alpha,\varepsilon}^2 u_\varepsilon dv_g - c_\varepsilon \int_M f_{\alpha,\varepsilon}^2 \eta \right)^2
\]

\[
= O(\varepsilon^4) + \frac{\varepsilon^2}{8} \|u_\varepsilon - c_\varepsilon\|_{L^2}^2 + \frac{1}{\pi \varepsilon^2} \left(\int_M f_{\alpha,\varepsilon}^2 u_\varepsilon (\eta - 1) dv_g - c_\varepsilon \int_M f_{\alpha,\varepsilon}^2 \eta \right)^2 \quad (19)
\]

where in the last equality we have used the fact that \(\int_M f_{\alpha,\varepsilon}^2 u_\varepsilon dv_g = \frac{1}{\mu_1(g_\varepsilon)} \int_M \Delta u_\varepsilon dv_g = 0\).

Using the same arguments as above we see that \(\int_M f_{\alpha,\varepsilon}^2 u_\varepsilon (\eta - 1) dv_g = O(\varepsilon^4)\). Reporting this in (19) we get

\[
(1 - k) \int_M u_\varepsilon f_{\alpha,\varepsilon}^2 \eta^2 dv_g + c_\varepsilon \int_M f_{\alpha,\varepsilon}^2 \eta^2 dv_g \leq O(\varepsilon^4) + \frac{\varepsilon^2}{8} \|u_\varepsilon - c_\varepsilon\|_{L^2}^2 + \frac{O(\varepsilon^4)}{\varepsilon^2} \int_M f_{\alpha,\varepsilon}^2 \eta dv_g + \frac{\varepsilon^2}{\pi \varepsilon^2} \left(\int_M f_{\alpha,\varepsilon}^2 \eta dv_g \right)^2.
\]

Now

\[
\int_M f_{\alpha,\varepsilon}^2 \eta dv_g = \int_{B_p(\alpha)} f_{\alpha,\varepsilon}^2 dv_g = \int_0^{2\pi} \int_0^{\alpha/\varepsilon} \int_0^t \frac{\varepsilon^4 r}{(\varepsilon^2 + r^2)^2} dr d\Theta
\]

\[
= 2\pi \varepsilon^2 \int_0^{\alpha/\varepsilon} \frac{t}{(1 + t^2)^2} dt \leq 2\pi \varepsilon^2 \int_0^{+\infty} \frac{t}{(1 + t^2)^2} dt = \pi \varepsilon^2.
\]

This gives
(1 - k) \int_M u_\varepsilon^2 f_{\alpha, \varepsilon}^2 \eta^2 dv_g + c_\varepsilon^2 \int_M f_{\alpha, \varepsilon}^2 \eta^2 dv_g \leq O(\varepsilon^4) + \frac{\varepsilon^2}{8} \|u_\varepsilon - c_\varepsilon\|^2_{L^2} + \frac{c_\varepsilon^2}{\pi \varepsilon^2} \left(\int_M f_{\alpha, \varepsilon}^2 \eta dv_g \right)^2
\leq O(\varepsilon^4) + \frac{\varepsilon^2}{8} \|u_\varepsilon - c_\varepsilon\|^2_{L^2} + c_\varepsilon^2 \int_M f_{\alpha, \varepsilon}^2 \eta dv_g
= O(\varepsilon^4) + \frac{\varepsilon^2}{8} \|u_\varepsilon - c_\varepsilon\|^2_{L^2}.

Finally we have

(1 - k) \int_M u_\varepsilon^2 f_{\alpha, \varepsilon}^2 \eta^2 dv_g \leq O(\varepsilon^4) + \frac{\varepsilon^2}{8} \|u_\varepsilon - c_\varepsilon\|^2_{L^2} + c_\varepsilon^2 \int_M f_{\alpha, \varepsilon}^2 (\eta - \eta^2) dv_g
\leq O(\varepsilon^4) + \frac{\varepsilon^2}{8} \|u_\varepsilon - c_\varepsilon\|^2_{L^2} + c_\varepsilon^2 \int_{B_\varepsilon(\alpha)} f_{\alpha, \varepsilon}^2 dv_g
= O(\varepsilon^4) + \frac{\varepsilon^2}{8} \|u_\varepsilon - c_\varepsilon\|^2_{L^2}.

(20)

Second case: Assume that \(\int_M u_\varepsilon (u_\varepsilon - c_\varepsilon) \eta^2 f_{\alpha, \varepsilon} dv_g \leq 0. \)

In this case, we have

\[\int_M u_\varepsilon^2 f_{\alpha, \varepsilon}^2 \eta^2 dv_g - 2c_\varepsilon \int_M u_\varepsilon f_{\alpha, \varepsilon}^2 \eta^2 dv_g + c_\varepsilon \int_M f_{\alpha, \varepsilon}^2 \eta^2 dv_g \leq \]
\[O(\varepsilon^4) + \frac{\varepsilon^2}{8} \|u_\varepsilon - c_\varepsilon\|^2_{L^2} + \frac{1}{\pi \varepsilon^2} \left(\int_M (u_\varepsilon - c_\varepsilon) \eta f_{\alpha, \varepsilon} dv_g \right)^2 \]
and we conclude as in the previous case.

Then we have proved that

\[\int_M u_\varepsilon^2 f_{\alpha, \varepsilon}^2 \eta^2 dv_g = O(\varepsilon^4 + \varepsilon^2 \|u_\varepsilon - c_\varepsilon\|^2_{L^2}). \]

To finish the proof, we write

\[\int_M u_\varepsilon^2 f_{\alpha, \varepsilon}^2 dv_g = \int_M u_\varepsilon^2 f_{\alpha, \varepsilon}^2 \eta^2 dv_g + \int_M u_\varepsilon^2 f_{\alpha, \varepsilon}^2 (1 - \eta^2) dv_g \]

and the last term is \(O(\varepsilon^4) \) which completes the proof.

\(\square \)

Proof of Relation (13). First we apply the lemma 5.4 to \(c_\varepsilon = c_0 \) and we see that \(c_0 \neq 0. \) Indeed, let us compute the \(L^2 \)-norm of the gradient of \(u_\varepsilon. \)

\[\int_M |\nabla u_\varepsilon|^2 dv_g = \int_M (\Delta u_\varepsilon) u_\varepsilon dv_g \leq \frac{8k}{\varepsilon^2} \int_M f_{\alpha, \varepsilon}^2 u_\varepsilon^2 dv_g
= \frac{8k}{\varepsilon^2} O(\varepsilon^2 \|u_\varepsilon - c_0\|^2_{L^2} + \varepsilon^4)
= o(1). \]

Then we deduce that up to a subsequence
\[\int_M |\nabla u_\varepsilon|^2dv_g \rightarrow 0. \]

But we have chosen \(u_\varepsilon \) so that \(\|u_\varepsilon\|_{H^2}^2 = 1 \). Then \(\|u_\varepsilon\|_{L^2} \rightarrow 1 \) and \(c_0 \neq 0 \).

Now let us consider \(\overline{u_\varepsilon} = \frac{1}{\text{vol}(M)} \int_M u_\varepsilon dv_g \) and \(a_\varepsilon = \|u_\varepsilon - \overline{u_\varepsilon}\|_{H^2}^2 \). Then \(u_\varepsilon \rightarrow c_0 \) and \(a_\varepsilon \rightarrow 0 \). It follows that the function \(v_\varepsilon = \frac{u_\varepsilon - \overline{u_\varepsilon}}{a_\varepsilon} \) satisfies \(\|v_\varepsilon\|_{H^2}^2 = 1 \) and there exists \(v \in H^2 \) so that \(v_\varepsilon \rightarrow v \) weakly in \(H^2 \) and strongly in \(L^2 \).

To prove (13) we will consider two cases.

First case: Assume that up to a subsequence \(a_\varepsilon = O(\varepsilon) \).

We have

\[\int_M (\Delta u_\varepsilon)^2 dv_g = \mu_1(g_\varepsilon)^2 \int_M f^{4}_{\alpha,\varepsilon} u_\varepsilon^2 dv_g \leq \mu_1(g_\varepsilon)^2 \int_M f^{2}_{\alpha,\varepsilon} u_\varepsilon^2 dv_g \leq \frac{64k}{\varepsilon^4} O(\varepsilon^2 \|u_\varepsilon - \overline{u_\varepsilon}\|_{L^2}^2 + \varepsilon^4) \leq \frac{64k}{\varepsilon^4} O(\varepsilon^2 a_\varepsilon^2 + \varepsilon^4) \leq M. \]

Then \(\|\Delta u_\varepsilon\|_{L^2}, \|\nabla u_\varepsilon\|_{L^2} \) and \(\|u_\varepsilon\|_{L^2} \) are bounded. It well known that the norms

\[\|v\| = \|\Delta v\|_{L^2} + \|\nabla v\|_{L^2} + \|v\|_{L^2} \]

and \(\|v\|_{H^2} \) are equivalent (it is a direct consequence of Bochner formula). Hence, this implies that \((u_\varepsilon)_\varepsilon \) is bounded in \(H^2 \) which is embedded in \(C^0 \). Then \(u_\varepsilon \rightarrow c_0 \) uniformly up to a subsequence. Since \(c_0 \neq 0 \) it follows that for \(\varepsilon \) small enough \(u_\varepsilon \) has a constant sign, which is not possible because \(u_\varepsilon \) is an eigenfunction in the metric \(g_\varepsilon \).

Second case: Assume that \(\varepsilon = a_\varepsilon o(1) \). In this case we have the

Lemma 5.5. \(v_\varepsilon \rightarrow c_1 \) in \(H^2 \) where \(c_1 \) is a constant.

Proof. The proof is similar to this of lemma 5.3. Indeed we consider \(\varphi \in C^\infty(M) \) and the function \(\eta_\rho \) defined in this previous proof. Then

\[\int_M \langle \nabla v, \nabla \varphi \rangle = \int_M \langle \nabla v, \nabla (\eta_\rho \varphi) \rangle dv_g + \int_M \langle \nabla v, \nabla ((1 - \eta_\rho) \varphi) \rangle dv_g. \]

By the same arguments we have \(\int_M \langle \nabla v, \nabla (\eta_\rho \varphi) \rangle dv_g \rightarrow 0 \) when \(\rho \rightarrow 0 \). Moreover

\[\left| \int_M \langle \nabla v, \nabla ((1 - \eta_\rho) \varphi) \rangle dv_g \right| = \lim_{\varepsilon \rightarrow 0} \left| \int_M \langle \nabla v_\varepsilon, \nabla ((1 - \eta_\rho) \varphi) \rangle dv_g \right| = \lim_{\varepsilon \rightarrow 0} \left| \int_M (\Delta v_\varepsilon)(1 - \eta_\rho) \varphi dv_g \right| = \lim_{\varepsilon \rightarrow 0} \frac{\mu_1(g_\varepsilon)}{a_\varepsilon} \int_M f^{2}_{\alpha,\varepsilon} v_\varepsilon(1 - \eta_\rho) \varphi dv_g. \]
Now let \(\varepsilon \) distributions and \(v \) Laplacian with respect to the metric \(g \). From the definition of \(a_{\varepsilon} \) and the definition of \(\mu(g) \), we have

\[
a_{\varepsilon}^2 \leq 2 \left(\int_M |\nabla u_{\varepsilon}|^2 dv_g + \int_M (u_{\varepsilon} - \pi_{\varepsilon})^2 dv_g \right) \leq 2 \left(1 + \frac{1}{\mu(g)} \right) \int_M |\nabla u_{\varepsilon}|^2 dv_g
\]

\[
= 2 \left(1 + \frac{1}{\mu(g)} \right) \int_M \Delta u_{\varepsilon} u_{\varepsilon} dv_g
\]

\[
= 2 \left(1 + \frac{1}{\mu(g)} \right) \mu_1(g) \int_M f_{a_{\varepsilon}}^2 u_{\varepsilon}^2 dv_g. \tag{22}
\]

Applying lemma 5.4 we get

\[\int_M f_{a_{\varepsilon}}^2 u_{\varepsilon}^2 dv_g = O(\varepsilon^2 \|u_{\varepsilon} - c_{\varepsilon}\|_{L^2}^2 + \varepsilon^4)
\]

\[= O(\varepsilon^2 \|u_{\varepsilon} - \pi_{\varepsilon} - a_{\varepsilon} c_1\|_{L^2}^2 + \varepsilon^4)
\]

\[= O \left(a_{\varepsilon}^2 \varepsilon^2 \left\| \frac{u_{\varepsilon} - \pi_{\varepsilon}}{a_{\varepsilon}} - c_1 \right\|_{L^2}^2 + \varepsilon^4 \right)
\]

\[= O(\varepsilon^4) + o(a_{\varepsilon}^2 \varepsilon^2).
\]

Now reporting this in (22) with the estimate (14) we find

\[a_{\varepsilon}^2 \leq C \frac{8k}{\varepsilon^2} (O(\varepsilon^4) + o(a_{\varepsilon}^2 \varepsilon^2))
\]

\[= O(\varepsilon^2) + a_{\varepsilon}^2 o(1).
\]

But \(\varepsilon = a_{\varepsilon} o(1) \). Then \(a_{\varepsilon}^2 \leq C a_{\varepsilon}^2 o(1) \) and for \(\varepsilon \) small enough \(a_{\varepsilon} = 0 \) and \(u_{\varepsilon} \) is a constant which is impossible.

\[\square\]

References

[AAF99] I. Agricola, B. Ammann and T. Friedrich, A comparison of the eigenvalues of the Dirac and Laplace operators on a two-dimensional torus, Manuscripta Math., 100 (1999), No 2, 231–258.

[Amn03] B. Ammann, A spin-conformal lower bound of the first positive Dirac eigenvalue, Diff. Geom. Appl. 18 (2003), 21–32.

[AHM06] B. Ammann, E. Humbert, The first conformal Dirac eigenvalue on 2-dimensional tori, J. Geom. Phys., 56 (2006), No 4, 623–642.

[AHM05] B. Ammann, E. Humbert, B. Morel, A spinorial analogue of Aubin’s inequality, Preprint

[Bär92] C. Bär, Lower eigenvalue estimates for Dirac operators, Math. Ann., 293, 1992.
[CoES03] B. Colbois and A. El Soufi, Extremal eigenvalues of the Laplacian in a conformal class of metrics: the ‘conformal spectrum’ Ann. Global Anal. Geom., 24 (2003), No 4, 337–349.

[Hij86] O. Hijazi, A conformal lower bound for the smallest eigenvalue of the Dirac operator and Killing Spinors, Comm. Math. Phys., 104 (1986), 151–162.

[Hij91] O. Hijazi, Première valeur propre de l’opérateur de Dirac et nombre de Yamabe, C. R. Acad. Sci. Paris, Série I 313, (1991), 865–868.

[Hij01] O. Hijazi, Spectral properties of the Dirac operator and geometrical structures, Ocampo, Hernan (ed.) et al., Geometric methods for quantum field theory. Proceedings of the summer school, Villa de Leyva, Colombia, July 12-30, 1999. Singapore: World Scientific. 116-169, 2001.

[Hit74] N. Hitchin, Harmonic spinors, Adv. Math. 14 (1974), 1–55.

[LP87] J. M. Lee and T. H. Parker, The Yamabe problem, Bull. Am. Math. Soc., New Ser., 17 (1987), 37–91.

[Lot86] J. Lott, Eigenvalue bounds for the Dirac operator, Pacific J. of Math., 125 (1986), 117–126.

Authors’ address:

Jean-François Grosjean and Emmanuel Humbert,
Institut Elie Cartan BP 239
Université de Nancy 1
54506 Vandoeuvre-lès -Nancy Cedex
France

E-Mail: grosjean@iecn.u-nancy.fr, humbert@iecn.u-nancy.fr