EMR or endoscopic submucosal dissection (ESD) are highly effective methods for resecting colonic polyps but are ineffective when removing polyps arising from the appendiceal orifice. Endoscopic full-thickness resection (EFTR) using the full-thickness resection device (FTRD; Ovesco, Tuebingen, Germany) is a favorable approach for the management of such lesions because it overcomes the potential risk of perforation or incomplete resection by deployment of an over-the-scope clip (OTSC) beneath the polyp before resection. However, appendicitis

Figure 1. Prophylactic appendiceal retrograde intraluminal stent placement. A, Subpedunculated polyp extending into appendiceal lumen. B, A 7F, 5-cm straight biliary stent exiting the appendix orifice. C, Polyp being withdrawn into the cap of the full-thickness resection device. D, After deployment of the over-the-scope clip (OTSC) and snare polypectomy. E, Endoscopic view of the stent adjacent to the OTSC after resection. F, Fluoroscopic view of the stent adjacent to the OTSC after resection. G, Pathology results showing fragments of tubular adenoma. H, Cecum view at colonoscopy 3 weeks after prophylactic appendiceal retrograde intraluminal stent placement. The appendiceal stent had migrated, but the OTSC remained in situ. I, Residual tissue above the OTSC, concerning for residual polyp, underwent biopsy and showed no remaining adenomatous tissue.
is a known adverse event seen in 0% to 50% of cases, with patients often requiring emergent appendectomy.5-14 Endoscopic retrograde appendiceal therapy is a minimally invasive technique for the treatment of uncomplicated acute appendicitis through internal drainage. Small studies have shown that it is associated with high rates of clinical efficacy (96%-100%).15-17

PROPHYLACTIC APPENDICEAL RETROGRADE INTRALUMINAL STENT PLACEMENT

In our institution, a 52-year-old man was referred for management of a 1.5-cm semi-pedunculated (Paris Isp) polyp that was found during a routine screening colonoscopy (Fig. 1A; Video 1, available online at www.giejournal.org). A biopsy specimen of the polyp revealed tubular adenoma. Because of the position of the polyp, which extended into the appendiceal lumen, the decision was made to pursue EFTR rather than EMR. Recognizing the risk of postprocedural appendicitis, we elected to combine EFTR with prophylactic appendiceal retrograde intraluminal stent placement.

The procedure was performed with a pediatric colonoscope with a cap. After advancing the colonoscope to the cecum, the endoscope was positioned close to the appendix for stability during cannulation. The polyp could be seen on the edge of the valve of Gerlach and prolapsing into the appendiceal lumen (Fig. 1A). An ERCP sphincterorome preloaded with a 0.025-inch guidewire was introduced into the appendiceal orifice. The guidewire was advanced into the appendiceal lumen under fluoroscopic guidance. Contrast was injected and defined the appendix fluoroscopically.

A 7F, 5-cm straight plastic biliary stent was then inserted over the guidewire, with the distal flange left at the appendiceal orifice (Fig. 1B). We then removed the colonoscope and loaded the FTRD. The colonoscope was once again advanced to the cecum. The polyp was then grasped with the forceps (Fig. 1C) and retracted into the cap of the colonoscope, and the OTSC was successfully deployed beneath the polyp (Fig. 1D). The polyp was then resected with a snare, retrieved, and sent to pathology. At the end of the procedure, the plastic stent remained in situ within the appendix lumen, adjacent to the OTSC (Fig. 1E and F).

The patient was admitted overnight and was discharged home the next day. Pathology results showed fragments of tubular adenoma (Fig. 1G). The patient developed no signs of appendicitis and returned for a colonoscopy and appendiceal stent removal 3 weeks later. The OTSC remained in situ, but the stent had already spontaneously migrated. Because of concerns about incomplete resection of the polyp, the polyp site was carefully inspected and a biopsy was performed (Fig. 1H and I). This confirmed no residual adenomatous tissue (Video 1, available online at www.giejournal.org).

Appendicitis after EFTR is probably due to the OTSC restricting outflow from the appendix.5-14,18 The peak onset of appendicitis is within 1 to 2 weeks of the FTRD procedure, and prescribing periprocedural antibiotics does not affect the rate of appendicitis or need for appendectomy after FTRD.5-14 Temporary stent placement in the appendiceal lumen, as outlined in this case, has the potential to maintain drainage of the appendix during the periprocedural period and avoid the risk of appendicitis associated with EFTR. The promising findings outlined in this case will need to be validated in prospective studies, but the technique is likely to be useful in high-risk surgical candidates and those with hostile abdomens.

DISCLOSURE

Dr Khashab is a consultant for Boston Scientific, Olympus America, Medtronic, GI Supply, and Triton. Dr Kambhri is a consultant for Medtronic, Pentax Medical, Boston Scientific, Fujifilm, and Apollo Endosurgery. All other authors disclosed no financial relationships.

REFERENCES

1. Burgess NG, Bourke MJ. Endoscopic resection of colorectal lesions: the narrowing divide between east and west. Dig Endosc 2016;28:296-305.
2. Moss A, Williams SJ, Hourigan LF, et al. Long-term adenoma recurrence following wide-field endoscopic mucosal resection (WF-EMR) for advanced colonic mucosal neoplasia is infrequent: results and risk factors in 1000 cases from the Australian Colonic EMR (ACE) study. Gut 2015;64:57-65.
3. Oka S, Tanaka S, Saito Y, et al. Local recurrence after endoscopic resection for large colorectal neoplasia: a multicenter prospective study in Japan. Am J Gastroenterol 2015;110:697-707.
4. Raju GS, Lum PJ, Ross WA, et al. Outcome of EMR as an alternative to surgery in patients with complex colon polyps. Gastrointest Endosc 2016;84:315-25.
5. Brewer Gutierrez Ol, Akshintala VS, Ichkhanian Y, et al. Endoscopic full-thickness resection using a clip non-exposed method for gastrointestinal tract lesions: a meta-analysis. Endosc Int Open 2020;8:E313-25.
6. Ichkhanian Y, Vosoughi K, Diehl DL, et al. A large multicenter cohort on the use of full-thickness resection device for difficult colonic lesions. Surg Endosc 2021;35:1296-306.
7. Valli PV, Mertens J, Bauerfeind P. Safe and successful resection of difficult GI lesions using a novel single-step full-thickness resection device (FTRD®). Surg Endosc 2018;32:289-99.
8. Schmidt A, Beyna T, Schumacher B, et al. Colonoscopic full-thickness resection using an over-the-scope device: a prospective multicentre study in various indications. Gut 2018;67:1280-9.
9. Boger P, Rahman I, Hu M, et al. Endoscopic full thickness resection in the colon-rectum: outcomes from the UK Registry. Eur J Gastroenterol Hepatol 2021;33:852-8.
10. Meier B, Stritzke B, Kuellmer A, et al. Efficacy and safety of endoscopic full-thickness resection in the colorectum: results from the German colonic FTRD registry. Am J Gastroenterol 2020;115:1998-2006.

11. Krutzenbichler I, Dollhopf M, Diepolder H, et al. Technical success, resection status, and procedural complication rate of colonoscopic full-wall resection: a pooled analysis from 7 hospitals of different care levels. Surg Endosc 2021;35:3339-53.

12. Bronzwaer MES, Bastiaansen BAJ, Koens L, et al. Endoscopic full-thickness resection of polyps involving the appendiceal orifice: a prospective observational case study. Endosc Int Open 2018;6:E1112-9.

13. Al-Bawardy B, Rajan E, Wong Kee Song LM. Over-the-scope clip-assisted endoscopic full-thickness resection of epithelial and subepithelial GI lesions. Gastrointest Endosc 2017;85:1087-92.

14. Zwager LW, Bastiaansen BAJ, Bronzwaer MES, et al. Endoscopic full-thickness resection (eFTR) of colorectal lesions: results from the Dutch colorectal eFTR registry. Endoscopy 2020;52:1014-23.

15. Liu BR, Ma X, Feng J, et al. Endoscopic retrograde appendicitis therapy (ERAT): a multicenter retrospective study in China. Surg Endosc 2015;29:905-9.

16. Li Y, Mi C, Li W, et al. Diagnosis of acute appendicitis by endoscopic retrograde appendicitis therapy (ERAT): combination of colonoscopy and endoscopic retrograde appendicography. Dig Dis Sci 2016;61:3285-91.

17. Ye LP, Mao XL, Yang H, et al. Endoscopic retrograde appendicitis techniques for the treatment of patients with acute appendicitis. Z Gastroenterol 2018;56:899-904.

18. Costamagna G. Acute appendicitis: will a novel endoscopic “organ-sparing” approach change the treatment paradigm? Gastrointest Endosc 2020;92:190-1.

Johns Hopkins Hospital, Department of Gastroenterology and Hepatology, Baltimore, Maryland (1), Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins University, Baltimore, Maryland (2).

If you would like to chat with an author of this article, you may contact Dr Keane at mkeane13@jhmi.edu.

Copyright © 2021 American Society for Gastrointestinal Endoscopy. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

https://doi.org/10.1016/j.vgie.2021.09.006

Endoscopedia

Endoscopedia has a new look! Check out the redesign of the official blog of *GIE* and VideoGIE. Keep up with the latest news and article discussions and post your comments or questions to VideoGIE authors. Visit us at www.endoscopedia.com.