Strong cosmic censorship and Misner spacetime

Pedro Denaro and Gustavo Dotti

Facultad de Matemática, Astronomía y Física (PaMAF), Universidad Nacional de Córdoba and Instituto de Física Enrique Gaviola, CONICET. Ciudad Universitaria, (5000) Córdoba, Argentina

Misner spacetime is among the simplest solutions of Einstein’s equation that exhibits a Cauchy horizon with a smooth extension beyond it. Besides violating strong cosmic censorship, this extension contains closed timelike curves. We analyze the stability of the Cauchy horizon, and prove that neighboring spacetimes in one parameter families of solutions through Misner’s in pure gravity, gravity coupled to a scalar field, or Einstein-Maxwell theory, end at the Cauchy horizon developing a curvature singularity.

PACS numbers: 04.50.+h,04.20.-q,04.70.-s, 04.30.-w

CONTENTS

I. Introduction 1
II. Misner spacetime 2
A. Null geodesics 3
III. Instability of the Cauchy horizon in Einstein-scalar field theory 5
A. Massless test scalar fields on M_2^+ 5
B. Scalar fields on (M_2^+, η_{ab}) 6
C. Instability of the Cauchy horizon in M_2^+ 6
IV. Instability of the Cauchy horizon in Einstein-Maxwell theory 8
A. Maxwell fields on M_2^+ 8
B. Instability of the Cauchy horizon in M_2^+ 9
V. Instability of the Cauchy horizon in pure gravity 10
VI. Discussion 11
Acknowledgments 11
References 11

I. INTRODUCTION

The possibility of smoothly extending a solution of Einstein’s equations beyond the maximal Cauchy development of compact or asymptotically simple data is an undesirable feature of General Relativity (GR). From a $3+1$ viewpoint, the evolution of the three-metric ceases to be non unique at the Cauchy horizon, predictability being lost in a classical theory. Strong cosmic censorship (SCC) is the conjecture that this can only happen for isolated, non generic solutions of GR. Notably, these pathologies occur among the most important solutions of GR: all double horizon black holes in the Kerr Newman family, those where either charge, angular momentum, or both, are nonzero. In these black holes the inner horizon is a Cauchy horizon for any Cauchy surface connecting both copies of spatial infinity i_0, and the standard analytic extension beyond it is unique only if we enforce the non physical requirement of analyticity. In the rotating case, moreover, causality is completely lost in the analytic extension, it being possible to connect any two given events in this region with a future directed timelike curve [1]; in particular, there are closed timelike curves -CTCs- through any point. A simple argument first given by Penrose in [2] (see also [3]) suggests that any perturbation of these solutions will actually end at the Cauchy horizon with a curvature singularity. The instability
Fourier series in (and b Misner space, and T and the boost v defined by the condition v < ∂/∂t of the spatial coordinates y, z extends from minus to plus infinity, two dimensional Misner space has the manifold structure of a cylinder 2ψ,t → (exp(γ)u, exp(−γ)v), γ > 0, is given by

(ψ, t) → (ψ + γ, t). (5)

Two dimensional Misner space M2 is defined as the quotient of) under the action of the subgroup G = {B^n | n ∈ Z} of the Lorentz group in 1 + 1 dimensions, that is, points in) which are related by B^n for some n ∈ Z are considered equivalent, M2 being the set of equivalence classes. Since (ψ, t) and (ψ + nγ, t), n ∈ Z represent the same point of M2, and t extends from minus to plus infinity, two dimensional Misner space has the manifold structure of a cylinder S^1 × R, 2πψ/γ being an angular coordinate of S^1 (Figure 1), on which the flat Lorentzian metric (3) is defined. Since the non vanishing vector field ∂/∂t is always null, it gives a time orientation on M2: we define the future null half-cone as that where ∂/∂t belongs. This is consistent with the time orientation ∂/∂x^0 on the covering), as can be seen by lifting ∂/∂t to), which gives −(2v)^−1 (∂/∂x^0 − ∂/∂x^1), a vector field that lies in the same half-cone of ∂/∂x^0 since v < 0 on).

of the Cauchy horizon was illustrated for the Reissner Nordström spacetime in [3], using a model with a cross flow of outgoing and ingoing lightlike fluxes. An instability of transverse derivatives of test scalar fields along the Cauchy horizon of extremal Reissner-Nordström black hole was recently found in [5, 6], the analogous result for extremal Kerr black holes is given in [7].

Misner spacetime is obtained from the half space x^0 < x^1 of Minkowski space by identifying points connected by a fixed boost. In spite of its simplicity, the resulting spacetime has a rich structure that includes a Cauchy horizon with CTCs beyond it. Being a flat spacetime, it is possible to obtain explicit solutions for scalar and Maxwell test fields and use these results in perturbation theory to order higher than one for the coupled scalar-gravity and Maxwell-gravity systems. We use these results, as well as perturbations in pure gravity, to show that Misner spacetime is an isolated solution in any of these theories. More precisely, we prove that given a one parameter family of solutions through Misner’s in any of these theories, neighboring solutions develop a curvature singularity that truncates the spacetime at the Cauchy horizon except for fine tuned cases.

We review the construction of Misner space in Section II where we also analyze in detail the null geodesics, as they provide insight in the evolution of massless fields. In Section III we prove that a zero scalar field on a Misner background is a non generic solution within the Einstein-scalar field theory: except for fine tuned cases, perturbations of this solution within the in Einstein-scalar field theory develop a curvature horizon that truncates the spacetime at the Cauchy horizon. The analogous result is proved for the Einstein-Maxwell theory in Section IV, and then for pure gravity in Section V.

For simplicity, we have performed calculations in compactified Misner space M2 × T^2, where M2 is two-dimensional Misner space, and T^2 a 2-torus. We can recover the non-compact case by taking the limit a, b → ∞ of the periods a and b of the spatial coordinates y and z. This amounts to a few changes in the test field expressions, such as replacing Fourier series in (y, z) with Fourier transforms.

II. MISNER SPACETIME

Consider the half space of two-dimensional Minkowski spacetime

\[ds^2 = -(dx^0)^2 + (dx^1)^2 = -du dv, \quad u = x^0 - x^1, \quad v = x^0 + x^1, \] (1)

defined by the condition v < 0. Introduce coordinates

\[\psi = -\ln \left(\frac{v}{v_0} \right), \quad t = -uv, \] (2)

v_0 < 0 a constant used for dimensional purposes. The line element in these coordinates is

\[ds^2 = -d\psi dt - td\psi^2, \] (3)

and the boost

\[B : (u, v) \rightarrow (\exp(\gamma)u, \exp(-\gamma)v), \gamma > 0, \] (4)

is given by

\[(\psi, t) \rightarrow (\psi + \gamma, t). \] (5)
A. Null geodesics

The image under \mathcal{B} of the Minkowskian null geodesic $v = v_o < 0$ is the geodesic $v = \exp(-\gamma) v_o$; \mathcal{M}_2 can therefore be regarded as the strip $\mathcal{S}_0 \subset \tilde{\mathcal{M}}_2$ limited by $\ell = \{(u,v_o), u \in \mathbb{R}\}$ and $B\ell = \{(u,\exp(-\gamma) v_o), u \in \mathbb{R}\}$, with the boundary points (u,v_o) and $(\exp(\gamma)u, \exp(-\gamma)v_o)$ identified for every $u \in \mathbb{R}$. This construction is shown in Figure 2 where some of the points to be identified are marked with circles. A geodesic segment in $\tilde{\mathcal{M}}_2$ connecting identified points maps onto a closed curve in \mathcal{M}_2 of square length

$$\Delta s^2 = -\Delta u \Delta v = -2t (\cosh(\gamma) - 1).$$

(6)

These closed curves are timelike in the $t > 0$ sector and spacelike in the $t < 0$ sector. The $t_o = 0$ segment h connecting $(u = 0, v = v_o)$ with $(u = 0, v = \exp(-\gamma)v_o)$ corresponds to a closed null geodesic which is a horizon separating the causally pathological $t > 0$ region from the globally hyperbolic $t < 0$ region.

The vector fields

$$N_1 = \frac{\partial}{\partial t}, \quad \tilde{N}_2 = -t \frac{\partial}{\partial t} + \frac{\partial}{\partial \psi}$$

(7)

are geodesic, null and, since $N_1^a N_2^b = -\frac{1}{t}$, future oriented; this explains the arrangement of future half-cones in Figure 1 from where it is readily seen that any future causal curve crossing h (i.e., $\dot{t} \neq 0$ at $t = 0$) must satisfy $\dot{t} > 0$ at $t = 0$. Note that N_1 in (7) is affine but \tilde{N}_2 is not. In fact, there is no globally defined affine geodesic field proportional to \tilde{N}_2. It is however possible to rescale separately \tilde{N}_2 in the $t > 0$ and $t < 0$ open sets to obtain a future null affine geodesic field N_2 in each of these regions:

$$N_2 = \begin{cases} \frac{\partial}{\partial t} + \frac{1}{t} \frac{\partial}{\partial \psi}, & t > 0 \\ \frac{\partial}{\partial t} - \frac{1}{t} \frac{\partial}{\partial \psi}, & t < 0 \end{cases}$$

(8)

The integral curves of N_1 starting at (t_0, ψ_0) at affine parameter $s = 0$ are

$$t = t_0 + s, \quad \psi = \psi_0, \quad -\infty < s < \infty.$$

(9)
These geodesics are complete and cross \(h \). The integral curves of \(\tilde{N}_2 \), starting at \((t_0, \psi_0) \) at affine parameter \(s = 0 \) are the future incomplete null geodesics

\[
\begin{align*}
t &= t_0 - s, \psi &= \psi_0 - \ln \left(\frac{t_0 - s}{t_0} \right), \quad -\infty < s < t_0 & \text{if } t_0 > 0 \\
t &= 0, \psi &= -\ln \left(e^{-\psi_0} - \frac{s}{s_0} \right), \quad -\infty < s < s_0 e^{-\psi_0}, s_0 > 0 & \text{if } t_0 = 0 \\
t &= t_0 + s, \psi &= \psi_0 - \ln \left(\frac{t_0 + s}{t_0} \right), \quad -\infty < s < -t_0 & \text{if } t_0 < 0
\end{align*}
\]

For \(t_0 \neq 0 \) the above equations imply \(\psi = \psi_0 - \ln \left(\frac{t_0}{t_0} \right) \), with \(t \rightarrow 0^+ \) (\(t \rightarrow 0^- \)) at the geodesic future end if \(t_0 > 0 \) (\(t_0 < 0 \)). These geodesic spiral, asymptotically approaching \(h \) as \(s \rightarrow |t_0| \), see Figure 1. This behavior can be understood using the construction in Figure 2: a future directed segment along the \(v \) direction, starting at a point \(p \in \ell \), will reach \(\mathcal{B} \ell \) at \(q \) and emerge at the equivalent point \(q' \in \ell \) which lies closer to \(h \) than \(p \), and this process repeats indefinitely. The affine geodesic \(h \) starting at \((t_0 = 0, \psi_0) \) in the direction of \(\tilde{N}_2 \) (increasing \(\psi \)), has a tangent vector \((e^\psi/s_0)\frac{\partial}{\partial \psi}\) (see [11]), which, being non-periodic in \(\psi \), does not define a vector field on \(h \). This is a peculiar situation, allowed to closed affine null geodesics in a Lorentzian geometry, for which the vector can scale in every turn and still have a constant norm. It can be understood by noting that \(h \) lifts to the (future affine null) geodesic \(\tilde{h} \) of \(\tilde{M}_2 \) given by \(u = 0, v = v_0(e^{-\psi_0} - (s/s_0)) \). The \(n \)-th turn of \(h \) \((n = 0, 1, 2, \ldots)\) lifts to the intersection \(\tilde{h}_n \) of \(\tilde{h} \) with the strip \(S_n \subset \tilde{M}_2 \) limited by \(\ell_n = \{(u, \exp(-n\gamma) v_0), u \in \mathbb{R}\} \) and \(\mathcal{B} \ell_n = \ell_{n+1} \). The affine parameter span of this geodesic segment is \(\exp(-n\gamma) \) times that of the segment \(h_1 \), yet the \(\psi \) span is the same, therefore \(\dot{\psi} \) scales as \(\exp(+n\gamma) \) relative to the first turn. An extension of \(M_2 \) can be constructed that is geodesically complete, but it fails to be a Hausdorff manifold [8].

The \(M_2^\subset \) subset defined by the condition \(t < 0 \) is globally hyperbolic, any \(t = \) constant surface is a Cauchy surface with Cauchy horizon \(h \). The region \(t > 0 \) violates causality in any possible form: given any two points \(p \) and \(q \) in this figure.
region, there is a future oriented timelike curve from p to q (these curves can be easily constructed with the help of Figure 2). Thus, \mathcal{M}^\subset_2 is a two-dimensional example of spacetime smoothly extensible beyond a Cauchy horizon, i.e., violating SCC, with the extension violating causality in any possible form.

Motivated by this observation, we devote the following subsections to the study of test scalar fields on M^{\subset} effects). Yet, it gives information on the Ricci scalar up to order two for the coupled scalar-gravity system (14)-(15). Note that $\dot{\Phi}$ satisfies the equation of a test scalar field on the Misner background (that is, without back-reaction effects). This will we used to prove that \mathcal{R} in (20) diverges as $t \to 0^-$ for generic solutions of the theory (14)-(15) near (17).

III. INSTABILITY OF THE CAUCHY HORIZON IN EINSTEIN-SCALAR FIELD THEORY

Let Φ be a massless scalar field minimally coupled to gravity on the manifold $M^\subset = S^2_0 \times \mathbb{R}_{t<0} \times T^2_{(y,z)}$. The field equations are

$$G_{ab} = 8\pi \left[(\partial_a \Phi)(\partial_b \Phi) - \frac{1}{2} g_{ab} g^{cd}(\partial_c \Phi)(\partial_d \Phi) \right]$$

$$0 = g^{cd} \nabla_a \nabla_c \Phi,$$

where ∇_a is the Levi-Civita derivative of g_{ab}. These equations admit the solution

$$\Phi_\lambda = 0, \ g_{ab} = \eta_{ab}.$$

In this section we will prove that, although this solution can be extended to $M^\subset_2 = S^2_0 \times \mathbb{R}_t \times T^2_{(y,z)}$ (i.e., add the $t \geq 0$ sector) any neighboring solution of the system (14)-(15) on the manifold M^\subset_2 develops a curvature singularity as $t \to 0^-$. To this end, consider a monoparametric family of solutions $(\Phi_\lambda, (g_{ab})_\lambda)$ such that

$$(g_{ab})_{\lambda=0} = \eta_{ab}, \ \Phi_{\lambda=0} = \Phi_0 = 0.$$

Denote with n overdots the $n-\text{th}$ derivative with respect to the parameter λ, evaluated at $\lambda = 0$, then

$$\Phi_\lambda = \lambda \dot{\Phi} + \frac{1}{2} \lambda^2 \ddot{\Phi} + \ldots$$

$$(g_{ab})_\lambda = \eta_{ab} + \lambda \dot{g}_{ab} + \frac{1}{2} \lambda^2 \ddot{g}_{ab} + \ldots$$

and similarly for any other tensor field. From (14)-(15) we obtain for the Ricci scalar \mathcal{R}

$$\mathcal{R}_t = \frac{1}{2} \lambda^2 \dddot{\mathcal{R}} + \mathcal{O}(t^3)$$

where

$$\dddot{\mathcal{R}} = 16\pi \eta^{ab}(\partial_a \Phi)(\partial_b \Phi),$$

and

$$0 = \eta^{ab} \partial_a \partial_b \Phi.$$

Note that $\dot{\Phi}$ satisfies the equation of a test scalar field on the Misner background (that is, without back-reaction effects). Yet, it gives information on the Ricci scalar up to order two for the coupled scalar-gravity system (14)-(15). Motivated by this observation, we devote the following subsections to the study of test scalar fields on M^\subset_2, starting with (y,z) independent fields, that is, scalar fields on M^\subset_2. This will we used to prove that \mathcal{R} in (20) diverges as $t \to 0^-$ for generic solutions of the theory (14)-(15) near (17).
A. Massless test scalar fields on \mathcal{M}_2

Massless scalar fields Φ on \mathcal{M}_2 satisfy $\partial_\mu \partial_\nu \Phi = 0$, they are a superposition $\Phi = R(u) + L(v)$ of left and right moving waves. For fields defined on \mathcal{M}_2, the extra condition

$$R(e^{\gamma}u) - R(u) = L(v) - L(e^{-\gamma}v) = c$$

should be imposed, where c is a constant and $c = 0$ if $\lim_{u \to 0} R(u)$ exists. Using the inverse of $[2]$, $v = v_o e^{-\psi}$, $u = \begin{cases} -v_o e^{\psi + \ln(|t|/v_0^2)}, & t > 0 \\ v_o e^{\psi + \ln(|t|/v_0^2)}, & t < 0, \end{cases}$ and introducing $L(v) = L(v_o e^{-\psi}) = l(\psi)$, condition $[23]$ reads $l(\psi) - l(\psi + \gamma) = c$, which implies that there exists a periodic function \hat{l}, $\hat{l}(\psi + \gamma) = \hat{l}(\psi)$, such that

$$l(\psi) = \hat{l}(\psi) - \frac{c}{\gamma} \psi.$$

A similar analysis for $R(u)$ in $[23]$ using $[24]$ leads to

$$\Phi = \begin{cases} \hat{l}_c(\psi) + \hat{r}_c(\psi + \ln(|t|/v_0^2)) + \frac{c_0}{\gamma} \ln(|t|/v_0^2), & t < 0 \\ \hat{l}_c(\psi) + \hat{r}_c(\psi + \ln(|t|/v_0^2)) + \frac{c_0}{\gamma} \ln(|t|/v_0^2), & t > 0 \end{cases} \tag{26}$$

where all hatted functions are periodic with period γ, and therefore bounded if they are to be smooth in the corresponding $t > 0$ or $t < 0$ half-space. Note that $\lim_{t \to 0} R(t, \psi)$ along curves in the open set \mathcal{M}_2^γ cannot exist unless $c_0 = 0$ and \hat{r}_c is a constant, which may then be absorbed into \hat{l}_c to set $\hat{r}_c = 0$ (a similar analysis applies for \mathcal{M}_2^γ). Continuity across h ($t = 0$) would furthermore require $\hat{l}_c = \hat{l}_c =: \hat{l}$. Thus, the only solutions that are continuous through \mathcal{M}_2 are the left moving waves $\Phi = \hat{l}(\psi)$ for all t. This is the condition, and the fields dealt with in $[9]$.

B. Scalar fields on $(\mathcal{M}_2^\gamma, \eta_{ab})$

The massless scalar field Φ equation on $(\mathcal{M}_2^\gamma, \eta_{ab})$ is

$$0 = 4t \frac{\partial^2 \Phi}{\partial t^2} - 4 \frac{\partial^2 \Phi}{\partial \psi \partial t} + 4 \frac{\partial \Phi}{\partial t} + \frac{\partial^2 \Phi}{\partial y^2} + \frac{\partial^2 \Phi}{\partial z^2} = \Box_2 \Phi + \Delta_2 \Phi, \tag{27}$$

where $\Delta_2 = \frac{\partial^2}{\partial y^2} + \frac{\partial^2}{\partial z^2}$ and \Box_2 is the massless scalar field operator on \mathcal{M}_2^γ. Solutions of $[27]$ can be written as

$$\Phi = \phi_0(\psi, t) + \phi_1(\psi, t, y, z), \tag{28}$$

where

$$\phi_0(\psi, t) = \frac{1}{ab} \int_0^a dy \int_0^b dz \Phi(\psi, t, y, z) \tag{29}$$

is a (y, z)-independent solution of $\Box_2 \phi_0 = 0$,

$$\phi_0(\psi, t) = \hat{l}(\psi) + \hat{r}(\psi + \ln(|t|/v_0^2)) + \frac{c_0}{\gamma} \ln(|t|/v_0^2), \tag{30}$$

and

$$\phi_1 = \sum_{k,l,n = -\infty \atop (l,n) \neq (0,0)}^{\infty} C_{(k,l,n)}(t) e^{2\pi ik \psi/\gamma} e^{2\pi i y/a} e^{2\pi i n z/b}, \tag{31}$$

with

$$C_{(k,l,n)}(t) := \frac{1}{\gamma ab} \int_0^\gamma d\psi \int_0^a dy \int_0^b dz \phi_1 e^{2\pi ik \psi/\gamma} e^{-2\pi i y/a} e^{-2\pi i n z/b}. \tag{32}$$
Equation (27) reduces to
\[
\frac{d^2 C(k,l,n)}{dt^2} + (1 - i\nu) \frac{dC(k,l,n)}{dt} - \left(\frac{m}{2}\right)^2 C(k,l,n) = 0,
\]
(33)
where
\[
m \equiv 2\pi \sqrt{\frac{l^2}{\pi^2} + \frac{n^2}{\pi^2}}, \quad \nu \equiv \frac{2\pi k}{\gamma}.
\]
Introducing
\[
x \equiv m\sqrt{-t} \in (0, \infty) \quad C(k,l,n) = e^{i\nu \ln(x)} D(k,l,n),
\]
(35)
gives a Bessel equation of imaginary order for $D(k,l,n)$:
\[
x^2 \frac{d^2 D(k,l,n)}{dx^2} + x \frac{dD(k,l,n)}{dx} + (x^2 + \nu^2)D(k,l,n) = 0,
\]
(36)
which admits the following two real, bounded, linearly independent C^∞ solutions for $x \in (0, \infty)$ (we follow the notation and conventions in \url{http://dlmf.nist.gov/10.24}):
\[
\tilde{J}_\nu(x) := \text{sech}\left(\frac{1}{2}\frac{\pi\nu}{\sqrt{2}}\right) \text{Re}(J_{i\nu}(x)) \quad \tilde{Y}_\nu(x) := \text{sech}\left(\frac{1}{2}\frac{\pi\nu}{\sqrt{2}}\right) \text{Re}(Y_{i\nu}(x)).
\]
Thus
\[
C(k,l,n) = \left(A(k,l,n)\tilde{J}_\nu(x) + B(k,l,n)\tilde{Y}_\nu(x)\right) e^{i\nu \ln(x)}
\]
(38)
and $A(-k,-l,-n) = A^*_n(k,l,n)$ for real Φ. The functions (37) satisfy
\[
\tilde{J}_\nu(x) = \tilde{J}_{-\nu}(x), \quad \tilde{Y}_\nu(x) = \tilde{Y}_{-\nu}(x)
\]
(39)
and have the following asymptotic behavior: as $x \to \infty$ ($t \to -\infty$)
\[
\tilde{J}_\nu(x) = \sqrt{\frac{2}{\pi x}} \cos\left(x - \frac{\pi}{4}\right) + O(x^{-3/2})
\]
(40)
\[
\tilde{Y}_\nu(x) = \sqrt{\frac{2}{\pi x}} \sin\left(x - \frac{\pi}{4}\right) + O(x^{-3/2}),
\]
(41)
as $x \to 0^+$ ($t \to 0^-$)
\[
\tilde{J}_\nu(x) = \sqrt{\frac{2\tanh(\pi\nu/2)}{\pi\nu}} \cos\left(\nu \ln(x/2) - \gamma_\nu\right) + O(x^2)
\]
(42)
\[
\tilde{Y}_\nu(x) = \sqrt{\frac{2\coth(\pi\nu/2)}{\pi\nu}} \sin\left(\nu |\ln(x/2) - \gamma|\nu\right) + O(x^2)
\]
(43)
where γ_ν is defined by
\[
\exp(i\gamma_\nu) = \left(\frac{\sinh(\pi\nu)}{\pi\nu}\right)^{1/2} \Gamma(1 + i\nu)
\]
(44)

C. Instability of the Cauchy horizon in M^∞_ϵ

The instability of the Cauchy horizon in M^∞_ϵ is expressed as follows:

Theorem 1: Let $(g_{\lambda})_{ab}, \Phi_{\lambda})$ be a one-parametric family of solutions for the Einstein-real scalar field equations (14)-(15) on the manifold $M^\infty_\epsilon = S^1_\psi \times \mathbb{R}_{t<0} \times \mathbb{T}^2_{(y,z)}$. Assume that $\lambda = 0$ corresponds to Misner spacetime (16). Let \mathcal{R}_t be the Ricci scalar of g_t, then equations (20)-(22) hold and, generically, $\mathcal{R} \sim 1/t$ as $t \to 0^-$.
Proof: There only remains to prove that, with the exception of fine tuned solutions, $\ddot{R} \sim 1/t$ as $t \to 0^-$. From (22),
\[\ddot{R} = \ddot{R}_{(0)(0)} + \ddot{R}_{(1)(1)} + 2\ddot{R}_{(0)(1)} \] (45)
where
\[\ddot{R}_{(i)(j)} = -\frac{1}{\gamma} \frac{\partial \phi_i}{\partial \psi} \frac{T_i}{T_j} + C_{\phi_i \phi_j} + 2 \frac{\partial \phi_i}{\partial \psi} \frac{T_i}{T_j} + 2 \frac{\partial \phi_i}{\partial \psi} \frac{T_i}{T_j} \] (46)
and $\phi_{i}, i = 0, 1$ were defined in (28)-(31).

From (30) we obtain
\[\ddot{R}_{(0)(0)} = \frac{4}{\gamma} \left[\dot{r}^2 (\psi) + \ln(|t|/v_o^2) + \frac{c}{\gamma} \right] \left[\frac{c}{\gamma} - \dot{r}^2 (\psi) \right] \] (47)
Since the derivative of a periodic function cannot be a nonzero constant, $\ddot{R}_{\psi 0}$ can only vanish if either ψ and \dot{r} vanish or c and \dot{l} vanish. For generic one-parametric solutions of the Einstein-scalar field theory $\ddot{R}_{\psi 0} \sim 1/t$ near the Cauchy horizon. This divergence could only be canceled by the $1/t$ contribution from \ddot{R}_{11} (implied by the asymptotic behavior (42)-(43)) by fine tuning the constants in these independent pieces of the scalar field.

If we restrict to fields that decay along past directed causal curves, we need to set $c = 0$. This does not prevent the divergence (47) except, once again, for the fine tuned case of pure left or right moving waves.

IV. INSTABILITY OF THE CAUCHY HORIZON IN EINSTEIN-MAXWELL THEORY

Let F_{ab} be a Maxwell coupled to gravity on the manifold $\mathcal{M}_{<}^c = S_{\psi}^1 \times \mathcal{R}_{\psi} \times T^2_{(y,z)}$. The Einstein-Maxwell field equations
\[R_{ab} = 2 F_{ac} F_{bd} g^{cd} - \frac{1}{2} g_{ab} F_{cd} F_{ef} g^{ef} \] (48)
\[\nabla_{[a} F_{bc]} = 0, \quad \nabla^a F_{ab} = 0, \] (49)
admit the solution
\[F_{ab} = 0, \quad g_{ab} = \eta_{ab}, \] (50)
which can be extended to $\mathcal{M}_{c} = S_{\psi}^1 \times \mathcal{R}_{\psi} \times T^2_{(y,z)}$. In this section we will prove that generic neighboring solution of the system (48)-(49) on the manifold $\mathcal{M}_{c}^<\psi$ develop a curvature singularity as $t \to 0^-$. The Ricci scalar vanishes identically for the Einstein-Maxwell system, the singularity arises in the quadratic curvature invariant
\[Q = R_{ab} R_{cd} g^{ac} g^{bd}. \] (51)
Consider a monoparametric family of solutions $(\{F_{\lambda}\}_{ab}, \{g_{\lambda}\}_{ab})$ such that
\[(g_{\lambda=0})_{ab} = \eta_{ab}, \quad (F_{\lambda=0})_{ab} = 0. \] (52)
As in the previous Section, \tilde{n} overdots are used to indicate the $n - \tilde{n}$ derivative with respect to the parameter λ, evaluated at $\lambda = 0$. We have
\[(F_{\lambda})_{ab} = \lambda \dot{F}_{ab} + \frac{1}{2} \dot{\lambda} \ddot{F}_{ab} + ... \] (53)
\[(g_{\lambda})_{ab} = \eta_{ab} + \lambda \dot{g}_{ab} + \frac{1}{2} \dot{\lambda} \ddot{g}_{ab} + ... \] (54)
and
\[Q_{\tilde{n}} = \frac{1}{4} \lambda^4 \ddot{Q} + \mathcal{O}(\dot{\lambda}) \] (55)
where
\[\ddot{Q}_{\tilde{n}} = \ddot{R}_{ab} \ddot{R}_{cd} \eta^{ac} \eta^{bd} \] (56)
\[\ddot{R}_{ab} = 2 \dot{F}_{ac} \dot{F}_{bd} \eta^{cd} - \frac{1}{2} \eta_{ab} \dot{F}_{cd} \dot{F}_{ef} \eta^{ef} \eta^{df}. \] (57)
Note that \dot{F} satisfies the equations of a test Maxwell field on the Misner background, that is
\[\nabla_{[a} \dot{F}_{bc]} = 0, \quad \eta^{bc} \nabla_c \dot{F}_{ab} = 0, \] (58)
where ∇_c is the covariant derivative of η_{ab}, and that this test Maxwell field gives information on the leading term of the curvature scalar Q, which is fourth order in l.
A. Maxwell fields on $M_c^<$

Test Maxwell fields on the $M_c^<$ background are relevant to the Cauchy horizon stability problem because, according to equations (58) and (59), they give the leading order contribution to the $Q = R_{ab}R^{ab}$ curvature scalar in Einstein-Maxwell theory on this manifold.

The second Betti number of $M_c^<$ = $S^1_\psi \times \mathbb{R}_{t<0} \times \mathbb{T}^{(y,z)}$ is 3, the three dimensional space of closed non-exact two forms is generated by $d\psi \wedge dy, d\psi \wedge dz$ and $dy \wedge dz$. Since these two-forms are divergence free for the flat metric η, the general solution of the Maxwell equations on the background η_{ab} is

$$F = Kd\psi \wedge dy + Ld\psi \wedge dz + Mdy \wedge dz + dA^{(0)} + dA^{(1)}$$

where, as done with the scalar field, we have split $A_b = A_b^{(0)} + A_b^{(1)}$ with $L_{\partial_t \partial_y} A_b^{(0)} = L_{\partial_t / \partial z} A_b^{(0)} = 0$. We chose the one-forms $A_b^{(j)}$ in the Lorenz gauge $\nabla^b A_b^{(j)} = 0$, then Maxwell equations reduce to

$$\nabla^b A_b^{(j)} = 0, \quad \eta^{ab} \nabla_a \nabla_b A_c^{(j)} = 0$$

Introducing $A_b^{(0)}(\psi, t) = \sum_{k \in \mathbb{Z}} C^{(k)}_b \exp(2\pi ik\psi / \gamma)$ in (60) we find, after treating separately the $k = 0$ and $k \neq 0$ terms and then summing up the series, that

$$A_b^{(0)}(\psi, t) = 2at + \tilde{l}(\psi) + \tilde{r}(\psi + \ln(-t/v_o^2))$$

This can be simplified using the residual gauge freedom $A_b^{(0)} \rightarrow A_b^{(0)} + \partial_x \chi$, $\eta^{ab} \partial_a \partial_b \chi = 0$. Taking an appropriate χ of the form (30) we get a vector potential of the form

$$A_b^{(0)}(\psi, t) = 2at + \tilde{l}_0$$

$$A_b^{(1)}(\psi, t) = a$$

$$A_b^{(0)}(\psi, t) = c_y \ln(-t/v_o^2) + \tilde{y}(\psi) + \tilde{r}_y(\psi + \ln(-t/v_o^2))$$

$$A_b^{(0)}(\psi, t) = c_z \ln(-t/v_o^2) + \tilde{z}(\psi) + \tilde{r}_z(\psi + \ln(-t/v_o^2))$$

(61)

with a, \tilde{l}_0, c_y, and c_z constants (the irrelevant constant in $A_b^{(0)}(\psi, t)$ can be gauged away using the non-periodic harmonic function $\chi_0 = -av\psi$). For the Maxwell field we obtain

$$F^{(0)} = dA^{(0)} = \begin{pmatrix}
0 & -2a & \tilde{l}_y' + \tilde{r}_y' \\
2a & 0 & (c_y + \tilde{r}_y')/t \\
* & * & 0 \\
* & * & 0 & 0
\end{pmatrix}$$

(62)

where we have omitted the arguments in the periodic (hatted) functions. The two field invariants for (62) are

$$F^{(0)ab} F^{(0)ab} = -32a^2 + 8 t^{-1} [c_y^2 + c_z^2 + c_y(\tilde{r}_y' - \tilde{l}_y') + c_z(\tilde{r}_z' - \tilde{l}_z') - \tilde{l}_y' \tilde{r}_y' - \tilde{l}_z' \tilde{r}_z']$$

(63)

and

$$\epsilon^{abcd} F^{(0)ab} F^{(0)cd} = -16t^{-1} [(l'_y r'_y - l'_y r'_z + c_y(l'_y + r'_z) - c_z(l'_y + r'_y)]$$

(64)

B. Instability of the Cauchy horizon in $M_c^<$

The instability of the Cauchy horizon of $M_c^<$ in the Einstein-Maxwell theory is expressed in the following

Theorem 2: Let $(g_\lambda)_{ab}, (F_\lambda)_{ab}$ be a one-parametric family of solutions for the Einstein-Maxwell field equations (48-49) on the manifold $M_c^<$ = $S^1_\psi \times \mathbb{R}_{t<0} \times \mathbb{T}^{(y,z)}$. Assume that $\lambda = 0$ corresponds to Misner spacetime (50).
Let Q_λ be the square Ricci scalar \(51\) of \(g_t\), then equations \(55\)-\(58\) hold and, generically, \(\dot{Q}\) diverges at least as \(\sim 1/t^2\) as \(t \to 0^-\).

Proof: According to equations \(56\) and \(57\), \(\dot{Q}\) is quartic on \(\dot{F}_{ab}\). Since \(\dot{F}_{ab}\) satisfies Maxwell equations on the flat Misner background (see equation \(58\)), it is of the form \(59\). We will focus on the contribution \(\ddot{Q}\) to \(\dot{Q}\) that is quartic in \(F^{(0)} = dA^{(0)} \) in \(59\). Note from \(62\) that the general \(F^{(0)}\) field is finite on any Cauchy slice in \(M^a_\xi\). A stronger condition of decay as \(t \to -\infty\) can be enforced by requiring \(a = 0\) (see \(63\) and \(64\)). In any case, the contribution \(\ddot{Q}\), obtained by replacing \(\dot{F}\) with \(\dot{F}\) in \(56\) and \(57\) is

\[
\ddot{Q} = 512a^4 - 256a^2 t^{-1} \left[c_y^2 + c_z^2 + c_y (\dot{r}_y - \dot{\hat{r}}_y) + c_z (\dot{r}_z - \dot{\hat{r}}_z) - \dot{\hat{r}}_y' - \dot{\hat{r}}_z' \right] \\
+ 16 t^{-2} \left[\dot{r}_y^2 \dot{\hat{r}}_y^2 + \dot{r}_z^2 \dot{\hat{r}}_z^2 + \dot{r}_y^2 \dot{\hat{r}}_z^2 + 2 \dot{r}_y^2 \dot{r}_z^2 + 2 \dot{r}_y^2 \dot{\hat{r}}_y^2 + 2 \dot{r}_y^2 \dot{\hat{r}}_z^2 + \ldots + 2c_y + 2c_z^4 \right]
\]

where the missing terms in the \(t^{-2}\) coefficient involve growing powers of \(c_y\) and \(c_z\) times derivatives of periodic functions. As \(t \to 0^-\), \(65\) behaves as a bounded function times \(t^{-2}\). This divergence could (in principle) be canceled out by the remaining contributions to \(\ddot{Q}\), but this could only be done by fine tuning, and will not be the case for generic mono-parametric solutions of the Einstein-Maxwell system.

V. **INSTABILITY OF THE CAUCHY HORIZON IN PURE GRAVITY**

The Cauchy horizon of \(M^a_\xi\) can also be seen to be unstable in the context of pure gravity. Consider a mono-parametric family of Ricci flat metrics through \(g_{ab}\) in \(13\):

\[(g_{\lambda})_{ab} = \eta_{ab} + \lambda \bar{g}_{ab} + \ldots\]
(66)

As is well known, any algebraic curvature scalar for a vacuum metric is a polynomial on \(K := R_{abcd} R^{abcd}\) and \(L := \epsilon_{abcd} R_r^a \dot{R}^b_{cd} R^{abcd}\). For \(66\) we obtain

\[K_\lambda = \lambda^2 \tilde{R}_{abcd} \tilde{R}^{efgh} \eta^{ae} \eta^{bf} \eta^{cg} \eta^{dh} + \ldots\]
(67)

and similarly for \(L_\lambda\), that is, knowledge of a linearized solution \(g_{ab}\) of Einstein’s equation provides information on the dominant contributions to \(K\) and \(L\), which are second order in \(\lambda\).

Linear gravity on the background \(13\) can be approached using the formalism in \(10\), which applies to warped metrics of any dimensions with an Einstein compact Riemannian manifold factor which, in our case, is the the trivial 2-torus flat metric \(dy^2 + dz^2\). Three different families of modes arise, tensor, vector and scalar, which satisfy decoupled equations. Among them, the simplest contributions are the two zero modes in the tensor sector, which are constructed using the divergence free trace free harmonic symmetric tensors \(dx \otimes dx - dy \otimes dy\) and \(dx \otimes dy + dy \otimes dx\) on \(T^2\). For these, the metric perturbation is

\[
\dot{g}_{ab} = \begin{pmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & \hat{H}(\psi, t) & \hat{P}(\psi, t) \\ 0 & 0 & \hat{P}(\psi, t) & -\hat{H}(\psi, t) \end{pmatrix}
\]
(68)

and Einstein’s linearized equation \(\ddot{R}_{ab} = 0\) reduces to \(\Box_2 \hat{H} = \Box_2 \hat{P} = 0\) \(10\), that is (see equation \(??\))

\[H = \hat{H}_t(\psi) + \hat{H}_r(\psi + \ln(|t|/v_0^2)) + \frac{C_H}{\lambda} \ln(|t|/v_0^2)\]
(69)

\[P = \hat{P}_t(\psi) + \hat{P}_r(\psi + \ln(|t|/v_0^2)) + \frac{C_P}{\lambda} \ln(|t|/v_0^2).
\]
(70)

We will set \(C_H = C_P = 0\) to keep the perturbation bounded as \(t \to -\infty\) (note that \(H\) and \(H\) are gauge invariant fields in the linearized gravity theory \(10\)). For the perturbation \(68\)-\(69\) we obtain

\[\dot{K} = \dot{R}_{ab}^{cd} \dot{R}^{abcd} = 32t^{-2} [\dot{\hat{H}}' \dot{\hat{H}}'' + \dot{\hat{H}}' \dot{\hat{P}}'' + \dot{\hat{P}}' \dot{\hat{H}}'' + \dot{\hat{P}}' \dot{\hat{P}}' - \hat{H}'' \dot{H}' - \hat{P}'' \dot{P}' - \hat{H}' \dot{H} - \hat{P}' \dot{P}'],
\]
(71)

which decays along past oriented causal curves and diverges as the future Cauchy horizon is approached. Once again, this divergence could possibly be canceled from \((y, z)\)-independent contributions to \(\ddot{K}\) from the \((y, z)\)-dependent piece of \(\dot{g}_{ab}\), but this could only happen after fine tuning, and not for generic solutions around \(\eta_{ab}\)
VI. DISCUSSION

Penrose’s heuristic argument anticipating a curvature singularity at the Cauchy horizon of a Kerr-Newman black hole applies to the horizon \(h \) of Misner spacetime. This is readily seen by inspecting Figure 1: an observer crossing the horizon is exposed to the information traveling in the geometric optics approximation along the infinitely many geodesics of the form (12) originating in his past. He is thus expected to measure a divergent energy density, as it is easily checked, e.g., in our simplest example: the \((y, z)\)-independent scalar field (30) with \(c = 0 \). The stress-energy-momentum tensor of this field is

\[
T_{ab} = \begin{pmatrix}
\phi'^2 + \bar{\phi}'^2 & \phi'^2/\bar{t} & 0 & 0 \\
\phi'^2/\bar{t} & \phi'^2/t & 0 & 0 \\
0 & 0 & 2\phi'\bar{\phi}'/t & 0 \\
0 & 0 & 0 & 2\phi'\bar{\phi}'/t
\end{pmatrix}
\]

(72)

where we have suppressed the arguments in \(\bar{\phi}(\psi) \) and \(\phi'(\psi + \ln(|t|/v_o^2)) \) and the order of coordinates above is \((\psi, t, y, z)\). An observer crossing the horizon with four-velocity \(u = \bar{\psi}\partial/\partial\psi + t\partial/\partial t + y\partial/\partial y + z\partial/\partial z \) has \(t \neq 0 \) at \(t = 0 \). Note that these coordinates are valid beyond the horizon and hence \(\psi, \bar{t}, \dot{y} \) and \(\dot{z} \) must all be finite at \(t = 0 \). The energy density the observer measures is, after using the condition \(u^au_a \) to eliminate the \(\psi t \) term,

\[
\rho = T_{ab}u^au^b = \phi'^2(\bar{\phi}'^2 - \phi'^2) + \frac{2\phi'^2}{\bar{t}}(1 + y^2 + z^2) + \frac{2\phi'\bar{\phi}'}{\bar{t}}(\bar{\phi}'^2 + \phi'^2) + \left(\frac{\phi'}{\bar{t}}\right)^2 \bar{\phi}'.
\]

(73)

Only the first term on the right hand side of above remains finite as \(t \to 0^- \), the others all diverge except for the trivial \(\bar{t} = 0 \) case. It is interesting to note, however, that there is no curvature singularity in the full Einstein-scalar field theory unless both \(\bar{t} \) and \(\bar{t}' \) are different from zero. This is seen by setting \(c = 0 \) in equation (47), which gives

\[
\bar{R}_{(0)(0)} = \frac{-4\bar{\phi}'(\psi + \ln(|t|/v_o^2))}{\gamma \bar{t}} \frac{\phi'}{\bar{t}^2}.
\]

(74)

Thus, there are situations where the energy density measured by an observer at the horizon diverges while no curvature singularity forms. This happens because in this highly relativistic regime, the pressure/tension cancels the energy density effect on \(T^a_a \propto \bar{R} \) unless both left and right moving waves are present. This can easily be seen from (72): the trace of the two by two \((\psi, t)\) block vanishes and only the \((y, z)\) tensions/pressures, which contain \(\bar{\phi}'\phi' \) products contributes to \(T^a_a \). Note that this happens without violating energy conditions; as is well known, the stress-energy-momentum tensor of a scalar field satisfies the strong as well as the dominant energy conditions. \(T^a_b \) above can indeed be diagonalized to the form \(T_a^b = 2/t \text{ diag}(|\bar{\phi}'\phi'|, -|\bar{\phi}'\phi'|, \bar{\phi}'\phi', \bar{\phi}'\phi'|) \) in a specific orthonormal tetrad.

ACKNOWLEDGMENTS

This work was partially funded from Grants No. PIP 11220080102479 (Conicet-Argentina), and No. Secyt-UNC 05/B498 (Universidad Nacional de Córdoba). Pedro Denaro is a fellow of Conicet.