Leveraging Predictions in Smoothed Online Convex Optimization via Gradient-based Algorithms

Yingying Li\(^1\) and Na Li\(^1\)

\(^1\)John A. Paulson School of Engineering and Applied Sciences, Harvard University

Abstract

We consider online convex optimization with time-varying stage costs and additional switching costs. Since the switching costs introduce coupling across all stages, multi-step-ahead (long-term) predictions are incorporated to improve the online performance. However, longer-term predictions tend to suffer from lower quality. Thus, a critical question is: how to reduce the impact of long-term prediction errors on the online performance? To address this question, we introduce a gradient-based online algorithm, Receding Horizon Inexact Gradient (RHIG), and analyze its performance by dynamic regrets in terms of the temporal variation of the environment and the prediction errors. RHIG only considers at most \(W\)-step-ahead predictions to avoid being misled by worse predictions in the longer term. The optimal choice of \(W\) suggested by our regret bounds depends on the tradeoff between the variation of the environment and the prediction accuracy. Additionally, we apply RHIG to a well-established stochastic prediction error model and provide expected regret and concentration bounds under correlated prediction errors. Lastly, we numerically test the performance of RHIG on quadrotor tracking problems.

1 Introduction

In this paper, we consider online convex optimization (OCO) with switching costs, also known as “smoothed” OCO (SOCO) in the literature [1, 2, 3, 4, 5]. The stage costs are time-varying but the decision maker (agent) has access to noisy predictions on the future costs. Specifically, we consider stage cost function \(f(x_t; \theta_t)\) parameterized by a time-varying parameter \(\theta_t \in \Theta\). At each stage \(t \in \{1, 2, \cdots, T\}\), the agent receives the predictions of the future parameters \(\theta_{t|t-1}, \cdots, \theta_{T|t-1}\), takes an action \(x_t \in X\), and suffers the stage cost \(f(x_t; \theta_t)\) plus a switching cost \(d(x_t, x_{t-1})\). The switching cost \(d(x_t, x_{t-1})\) penalizes the changes in the actions between consecutive stages. This problem enjoys a wide range of applications. For example, in the data center management problems [6, 7], the switching cost captures the switch on/off costs of the servers [7], and noisy predictions on future electricity prices and network traffic are available for the center manager [8, 9]. Other applications include smart building [10, 11], robotics [12], smart grid [13], connected vehicles [14], optimal control [15], etc.

Unlike OCO [16], the switching costs considered in SOCO introduce coupling among all stages, so multi-step-ahead predictions are usually used for promoting the online performance. However, in most cases, predictions are not accurate, and longer-term predictions tend to suffer lower quality. Therefore, it is crucial to study how to use the multi-step-ahead predictions effectively, especially, how to reduce the impact of long-term prediction errors on the online performance.

Recent years have witnessed a growing interest in studying SOCO with predictions. However, most literature avoids the complicated analysis on noisy multi-step-ahead predictions by considering a rather simplified prediction model: the costs in the next \(W\) stages are accurately predicted with no errors while the costs beyond the next \(W\) stages are adversarial and not predictable at all [6, 7, 17, 15, 8]. This first-accurate-then-adversarial model is motivated by the fact that long-term predictions are much worse than the short-term ones, but it fails to capture the gradually increasing prediction errors as one predicts further into the future. Several online algorithms have been proposed for this model, e.g. the optimization-based algorithm AFHC [9], the gradient-based algorithm RHGD [17], etc. Moreover, there have been a few attempts to consider noisy multi-step-ahead predictions in SOCO. In particular, [1] proposes a stochastic prediction error model to describe the correlation among prediction errors. This stochastic model generalizes stochastic filter prediction errors. Later, [18] proposes an optimization-based algorithm CHC, which generalizes AFHC and MPC [19], and analyzes its performance based on the stochastic model in [1].
We call θ for notation simplicity, we define θ_k stage x where Prediction models.

In RHIG, the agent can choose to utilize only $W \geq 0$ steps of future predictions, where W is a tunable parameter for the agent.

We first analyze the dynamic regret of RHIG by considering general prediction errors without any (stochastic model) assumptions. Our regret bound depends on both the errors of the utilized predictions, i.e. k-step-ahead prediction errors for $k \leq W$; and the temporal variation of the environment $V_T = \sum_{t=1}^{T} \sup_{x \in X} |f(x; \theta_t) - f(x; \theta_{t-1})|$. Interestingly, the regret bound shows that the optimal choice of W depends on the tradeoff between the variation of environment V_T and the prediction errors, that is, a large W is preferred when V_T is large while a small W is preferred when the prediction errors are large. Further, the k-step prediction errors have an exponentially decaying influence on the regret bound as k increases, indicating that RHIG effectively reduces the negative impact of the noisy multi-step-ahead predictions.

We then consider the stochastic prediction error model in \cite{1,18} to analyze the performance of RHIG under correlated prediction errors. We provide an expected regret bound and a concentration bound on the regret. In both bounds, the long-term correlation among prediction errors has an exponentially decaying effect, indicating RHIG's good performance even with strongly correlated prediction errors.

Finally, we numerically test RHIG on online quadrotor tracking problems. Numerical experiments show that RHIG outperforms AFHC and CHC especially under larger prediction errors. Besides, we show that RHIG is robust to unforeseen shocks in the future.

Additional related work: There is a related line of work on predictable OCO (without switching costs) \cite{20,21,22,23}. In this case, stage decisions are fully decoupled and only one-step-ahead predictions are relevant. The proposed algorithms include OMD \cite{21,22}, DMD \cite{20}, AOMD \cite{23}, whose regret bounds depend on one-step prediction errors \cite{22,23,20} and V_T if dynamic regret is concerned \cite{23}.

Besides, it is worth mentioning the related online decision making problems with coupling across stages, e.g. OCO with memory \cite{24,25}, online optimal control \cite{26,15,27,28}, online Markov decision processes \cite{29,30,31}, etc. Leveraging inaccurate predictions in these problems is also worth exploring.

Notation: Π_X denotes the projection onto set X. $X^T = X \times \cdots \times X$ is a Cartesian product. ∇_x denotes the gradient with x: $\sum_{k=0}^{t} \alpha_t = 0$ if $k < 0$. $\| \cdot \|_F$ and $\| \cdot \|$ are Frobenius norm and L_2 norm.

2 Problem Formulation

Consider stage cost function $f(x_t; \theta_t)$ with a time-varying parameter $\theta_t \in \Theta$ and a switching cost $d(x_t, x_{t-1})$ that penalize the changes in the actions between stages. The total cost in horizon T is: $C(x; \Theta) = \sum_{t=1}^{T} [f(x_t; \theta_t) + d(x_t, x_{t-1})]$, where $x_t \in \mathcal{X} \subseteq \mathbb{R}^n$, $\theta_t \in \Theta \subseteq \mathbb{R}^p$, and we denote $x := (x_1^T, \ldots, x_T^T)^T$, $\theta = (\theta_1^T, \ldots, \theta_T^T)^T$. The switching cost enjoys many applications as discussed in Section 1. The presence of switching costs $d(x_t, x_{t-1})$ couples decisions among stages. Therefore, all parameters in horizon T, i.e. $\theta_1, \ldots, \theta_T$, are needed to minimize $C(x; \Theta)$. However, in practice, only predictions are available ahead of the time and the predictions are often inaccurate, especially the long-term predictions. This may lead to wrong decisions and degrade the online performance. In this paper, we aim at designing an online algorithm to use prediction effectively and unveil the unavoidable influences of the prediction errors on the online performance.

Prediction models. In this paper, we denote the prediction of the future parameter θ_t obtained at the beginning of stage t as $\theta_{t|t-1}$ for $t \leq \tau \leq T$. The initial predictions $\theta_{0|0}, \ldots, \theta_{T|0}$ are usually available before the problem starts. We call $\theta_{t|t-k}$ as k-step-ahead predictions of parameter θ_t and let $\delta_t(k)$ denote the k-step-prediction error, i.e. $\delta_t(k) := \theta_t - \theta_{t|t-k}$, $\forall 1 \leq k \leq t$. For notation simplicity, we define $\delta_{t|\tau} := \delta_{t|0}$ for $\tau \leq 0$, and thus $\delta_t(k) = \delta_t(t)$ for $k \geq t$. Further, we denote the vector of k-step prediction errors of all stages as follows $\delta(k) = (\delta_1(k)^T, \ldots, \delta_T(k)^T)^T \in \mathbb{R}^{pT}$, $\forall 1 \leq k \leq T$.

2
It is commonly observed that the number of lookahead steps greatly influences the prediction accuracy and in most cases long-term prediction errors are usually larger than short-term ones.

We will first consider the general prediction errors without additional assumptions on $\delta_t(k)$. Then, we will carry out a more insightful discussion for the case when the prediction error $||\delta_t(k)||$ is non-decreasing with the number of lookahead steps k. Further, it is also commonly observed that the prediction errors are correlated. To study how the correlation among prediction errors affect the algorithm performance, we adopt the stochastic model of prediction errors in [1]. The stochastic model is a more general version of the prediction errors for Wiener filter, Kalman filter, etc. In Section 5, we will review this stochastic model and analyze the performance under this model.

Protocols. We summarize the protocols of our online problem below. We consider that the agent knows the function f and d is convex with respect to θ in hindsight when θ is known, i.e. $\theta_1, \ldots, \theta_{t-1}, \theta_{T|t-1}$.

1. The agent receives the predictions $\theta_{t|t-1}, \ldots, \theta_{T|t-1}$ at the beginning of stage t.
2. The agent selects x_t based on the predictions and the history, i.e. $\theta_1, \ldots, \theta_{t-1}, \theta_{t|t-1}, \ldots, \theta_{T|t-1}$.
3. The agent suffers $f(x_t; \theta_t) + d(x_t, x_{t-1})$ at the end of stage after true θ_t is revealed.

Performance metrics. This paper considers (expected) dynamic regret [23]. The benchmark is the optimal solution x^* in hindsight when θ is known, i.e. $x^* = \arg \min_{x \in X} C(x; \theta)$, where $x^* = (x^*_1, \ldots, (x^*_T)^\top)$.

Notice that x^* depends on θ but we omit θ for brevity. Let x^A denote the actions selected by the online algorithm A. The dynamic regret of A with parameter θ is defined as

$$\text{Reg}(A) = C(x^A; \theta) - C(x^*; \theta)$$

When considering stochastic prediction errors, we define the expectation of the dynamic regret:

$$\mathbb{E}[\text{Reg}(A)] = \mathbb{E}[C(x^A; \theta) - C(x^*; \theta)],$$

where the expectation is taken with respect to the randomness of the prediction error as well as the randomness of θ_t if applicable.

Lastly, we consider the following assumptions throughout this paper.

Assumption 1. $f(x; \theta)$ is α strongly convex and l_f smooth with respect to $x \in X$ for any $\theta \in \Theta$. $d(x, x')$ is convex and l_d smooth with respect to $x, x' \in X$.

Assumption 2. $\nabla_x f(x; \theta)$ is h-Lipschitz continuous with respect to θ for any $x, i.e.

$$||\nabla_x f(x; \theta_1) - \nabla_x f(x; \theta_2)|| \leq h||\theta_1 - \theta_2||, \forall x \in X, \theta_1, \theta_2 \in \Theta.$$

Assumption [1] is common in convex optimization literature [32]. Assumption [2] ensures a small prediction error on θ only causes a small error in the gradient. Without such an assumption, little can be achieved with noisy predictions. Lastly, we note that these assumptions are for the purpose of theoretical regret analysis. The designed algorithm would apply for general convex smooth functions.

3 Receding Horizon Inexact Gradient (RHIG)

This section introduces our online algorithm Receding Horizon Inexact Gradient (RHIG). It is based on a promising online algorithm RHGD [17] designed for an over-simplified prediction model: at stage t, the next W-stage parameters $\{\theta_{t+W-1}\}_{t=1}^{T-W}$ are exactly known but parameters beyond W steps are adversarial and totally unknown. We will first briefly review RHGD and then introduce our RHIG as an extension of RHGD to handle the inaccurate multi-step-ahead predictions.

1 If only W-step-ahead predictions are received, we define $\theta_{t+W-1} := \theta_{t+\tau-1}$ for $\tau \geq W$.

3
3.1 Preliminary: RHGD with accurate lookahead window

RHGD is built on the following observation: the k-th iteration of offline gradient descent (GD) on the total cost $C(x; \theta)$ for stage variable $x_{\tau}(k)$, i.e.,

$$x_{\tau}(k) = \Pi_x [x_{\tau}(k-1) - \eta \nabla_x C(x(k-1); \theta)], \quad \forall 1 \leq \tau \leq T,$$

where

$$\nabla_x C(x; \theta) = \nabla_x f(x_{\tau}; \theta_{\tau}) + \nabla_x d(x_{\tau}, x_{\tau-1}) + \nabla_x d(x_{\tau+1}, x_{\tau}) I_{(\tau \leq T-1)},$$

only requires neighboring stage variables $x_{\tau-1}(k-1), x_{\tau}(k-1), x_{\tau+1}(k-1)$ and local parameter θ_{τ}, instead of all variables $x(k-1)$ and all parameters θ. This observation allows RHGD \cite{17} (Algorithm 1) to implement the offline gradient for W iterations by only using $\{\theta_{\tau}\}_{T-W+1 \leq \tau \leq T}$. Specifically, at stage $2 - W \leq \tau \leq T$, RHGD initializes $x_{\tau+W}(0)$ by an oracle ϕ (Line 4), where ϕ can be OCO algorithms (e.g. OGD, OMD \cite{16}) that compute $x_{\tau+W}(0)$ with $\{\theta_{\tau}\}_{T-W+1 \leq \tau \leq T}$. If $t + W > T$, skip this step. Next, RHGD applies the offline GD to compute $x_{t+W-1}(1), x_{t+W-2}(2), \ldots, x_t(W)$, which only uses $\theta_{t+W-1}, \ldots, \theta_t$ respectively (Line 5-7). RHGD skips x_t if $\tau \not\in \{1, \ldots, T\}$. Finally, RHGD outputs $x_t(W)$, the W-th update of offline GD.

\begin{algorithm}
\caption{Receding Horizon Gradient Descent (RHGD)\cite{17}}
\begin{algorithmic}[1]
\STATE 1: \textbf{Inputs}: Initial decision x_0; stepsize η; initialization oracle ϕ
\STATE 2: Let $x_1(0) = x_0$.
\FOR {\textbf{t} $= 2 - W, \ldots, T$}
\STATE 3: Initialize $x_{t+W}(0)$ by oracle ϕ if $t + W \leq T$.
\STATE 4: \FOR {$\tau = \min(t + W - 1, T)$ \textbf{down to} \textbf{max}(t, 1)}
\STATE 5: Update $x_{\tau}(t + W - \tau)$ by the offline GD on x_{τ} in (4).
\STATE 6: Output $x_t(W)$ when $1 \leq t \leq T$.
\STATE 7: \ENDFOR
\STATE 8: \ENDFOR
\end{algorithmic}
\end{algorithm}

3.2 Our algorithm: RHIG for inaccurate predictions

\begin{algorithm}
\caption{Receding Horizon Inexact Gradient (RHIG)}
\begin{algorithmic}[1]
\STATE 1: \textbf{Inputs}: The length of the lookahead horizon: $W \geq 0$; initial decision x_0; stepsize η; initialization oracle ϕ
\STATE 2: Let $x_1(0) = x_0$.
\FOR {\textbf{t} $= 2 - W$ to T}
\STATE 3: \IF {$t + W \leq T$}
\STATE 4: Compute $x_{t+W}(0)$ by the initialization oracle ϕ with inexact information.
\STATE 5: \ENDIF
\STATE 6: Compute $x_{\tau}(t + W - \tau)$ based on the prediction $\theta_{\tau|t-1}$ and the inexact partial gradient:
\STATE 7: $x_{\tau}(k) = \Pi_x [x_{\tau}(k-1) - \eta g_{\tau}(x_{\tau-1; \tau|t-1}; \theta_{\tau|t-1})], \quad \text{where } k = t + W - \tau.$
\STATE 8: \ENDIF
\STATE 9: \ENDFOR
\STATE 10: Output the decision $x_t(W)$ when $1 \leq t \leq T$.
\STATE 11: \ENDFOR
\end{algorithmic}
\end{algorithm}

With noisy predictions, it is natural to use the prediction $\theta_{\tau|t-1}$ to estimate the future partial gradients,

$$g_{\tau}(x_{\tau-1; \tau|t-1}; \theta_{\tau|t-1}) = \nabla_x f(x_{\tau}; \theta_{\tau|t-1}) + \nabla_x d(x_{\tau}, x_{\tau-1}) + \nabla_x d(x_{\tau+1}, x_{\tau}) I_{(\tau \leq T-1)},$$

and then updates x_{τ} by the estimated gradients. This motivates Receding Horizon Inexact Gradient (RHIG) in Algorithm\cite{2}. Compared with RHGD, RHIG has the following major differences.

\footnote{For instance, if OGD is used as the initialization oracle ϕ, then $x_{t+W}(0) = x_{t+W-1}(0) - \xi_{t+W} \nabla_x f(x_{t+W-1}(0); \theta_{t+W-1})$, where ξ_{t+W} denotes the stepsize.}
Figure 1: Example: RHIG for $W = 2, T = 4$. (Orange) at $t = 0$, initialize $x_2(0)$ by x_0. (Yellow) at $t = 0$, initialize $x_3(0)$ by x_0, and update $x_2(1)$ and $x_2(2)$ by τ with $\theta_2(0)$ and θ_0, respectively. At $t = 2$, initialize $x_4(0)$ by x_0, then update $x_2(1), x_2(2)$ by inexact offline GD ϕ with $\theta_2(1)$ and $\theta_2(2)$, respectively. $t = 3, 4$ are similar. Notice that $x_1(1) = (x_1(1), \ldots, x_4(1))$ is computed by inexact offline gradient with 2-step-ahead predictions, and $x_2(2)$ by 1-step-ahead predictions.

- (Line 1) Unlike RHGD, the lookahead horizon length $W \geq 0$ is tunable in RHIG. When selecting $W = 0$, RHIG does not use any predictions in Line 5-7. When selecting $1 \leq W \leq T$, RHIG utilizes at most W-step-ahead predictions $\{\theta_{t-1}|_{T=t} W-1\}$ in Line 5-7. Specifically, when $W = T$, RHIG utilizes all the future predictions $\{\theta_{t+1}|_{T=t} W-1\}$. Interestingly, one can also select $W > T$. In this case, RHIG not only utilizes all the predictions but also conducts more computation based on the initial predictions $\{\theta_{t+1}|_{T=t} W=1\}$ at $t \leq 0$ (recall that $\theta_{t+1}|_{T=t} W=1$ when $t \leq 0$). Notably, when $W \rightarrow +\infty$, RHIG essentially solves $\arg\min_{x \in X} C(x; (\theta_{t+1})_{T=1} W=1)$ at $t \leq 0$ to serve as warm starts at $t = 1$. The choice of W will be discussed in Section 4.5.

- (Line 5) Notice that the oracle ϕ no longer receives θ_{t+W-1} exactly in RHIG, so OCO algorithms need to be modified here. For example, OGD initializes $x_{t+W}(0)$ by prediction $\theta_{t+W-1}|_{t-1}$:

\[x_{t}(0) = \Pi_{\mathcal{X}}[x_{t-1}(0) - \xi_{t} \nabla x_{t-1} f(x_{t-1}(0); \theta_{t-1}|_{t-1})], \text{ where } t = t + W. \tag{6} \]

Besides, we note that since $\theta_{t+1}|_{T=t}$ is available, OGD can also use $\theta_{t+1}|_{T=t}$ to update $x_{t}(0)$. Similarly, OCO algorithms with predictions, e.g. (A)OMD [21], [23], DMD [33], can be applied.

- (Line 7) Instead of exact offline GD in RHGD, RHIG can be interpreted as inexact offline GD with prediction errors. Especially, 5 can be written as $x_{t}(k) = x_{t}(k - 1) - \eta \nabla x_{t} C(x(k - 1); \theta_{t} - \delta(W - k + 1))$ by the definition ϕ. More compactly, we can write RHIG updates as

\[x(k) = \Pi_{\mathcal{X}}[x(k - 1) - \eta \nabla x_{C}(x(k - 1); \theta - \delta(W - k + 1))], \quad \forall 1 \leq k \leq W; \tag{7} \]

where $\nabla x_{C}(x(k - 1); \theta - \delta(W - k + 1))$ is an inexact version of the gradient $\nabla x_{C}(x(k - 1); \theta)$.

Though the design of RHIG is rather straightforward, both theoretical analysis and numerical experiments show promising performance of RHIG even under poor long-term predictions (Section 4.6). Some intuitions are discussed below. By formula (7), as the iteration number k increases, RHIG employs inexact gradients with shorter-term prediction errors $\delta(W - k + 1)$. Since shorter-term predictions are often more accurate than the longer-term ones, RHIG gradually utilizes more accurate gradient information as iterations go on, reducing the optimality gap caused by inexact gradients. Further, the longer-term prediction errors used at the first several iterations are compressed by later gradient updates, especially for strongly convex costs where GD enjoys certain contraction property.

Lastly, with a gradient-based ϕ and a finite W, RHIG only utilizes gradient updates at each t and is thus more computationally efficient than AFHC [1] and CHC [18] that solve multi-stage optimization.

4 General Regret Analysis

This section considers general prediction errors without stochastic model assumptions and provides dynamic regret bounds and discussions before which is a helping lemma on the properties of $C(x; \theta)$.

3 For more discussion on $W > T$, we refer the reader to our supplementary material.

4 The results in this section can be extended to more general time-varying cost functions, i.e. $f_t(\cdot)$, where the prediction errors will be measured by the difference in the gradients, i.e. $\sup_{x \in \mathcal{X}} \| \nabla f_t(x) - \nabla f_{t-k}(x) \|$.

5
Lemma 1. \(C(x; \theta) \) is a strongly convex function and \(L = l_f + 2l_d \) smooth with \(x \in \mathbb{X}^T \) for any \(\theta \in \Theta^T \).

The following theorem provides a general regret bound for RHIG with any initialization oracle \(\phi \).

Theorem 1 (General Regret Bound). Under Assumption \(\text{[12]} \) for \(W \geq 0 \), oracle \(\phi, \eta = \frac{1}{2\tau} \), we have

\[
\text{Reg}(\text{RHIG}) \leq \frac{2L}{\alpha} \rho^W \text{Reg}(\phi) + \sum_{k=1}^{\min(W,T)} \rho^{k-1} \| \delta(k) \|^2 + 1_{(W>T)} \frac{\rho^T - \rho^W}{1 - \rho} \zeta \| \delta(T) \|^2,
\]

where \(\rho = 1 - \frac{\alpha}{2\tau} \), \(\zeta = \frac{h^2}{\tau} + \frac{\alpha^2}{2\tau} \), \(\text{Reg}(\phi) = C(x(0); \theta) - C(x^*; \theta) \) and \(x(0) \) is computed by \(\phi \).

The regret bound (8) consists of three terms. The first term \(\frac{2L}{\alpha} \rho^W \text{Reg}(\phi) \) depends on \(\phi \). The second term \(\sum_{k=1}^{\min(W,T)} \rho^{k-1} \| \delta(k) \|^2 \) and the third term \(1_{(W>T)} \frac{\rho^T - \rho^W}{1 - \rho} \zeta \| \delta(T) \|^2 \) depend on the errors of the predictions used in Algorithm 2 (Line 5-7). Specifically, when \(W \leq T \), at most \(W \)-step-ahead predictions are used, so the second term involves at most \(W \)-step-ahead prediction errors \(\{ \delta(k) \}_{k=1}^W \) (the third term is irrelevant). When \(W > T \), RHIG uses all predictions, so the second term includes all prediction errors \(\{ \delta(k) \}_{k=1}^T \); besides, RHIG conducts more computation by the initial predictions \(\{ \theta_t(0) \}_{t=1}^T \) at \(t \leq 0 \) (see Section 3), causing the third term on the initial prediction error \(\| \delta(T) \|^2 \).

An example of \(\phi \): restarted OGD \([34] \). For more concrete discussions on the regret bound, we consider a specific \(\phi \), restarted OGD \([34] \), as reviewed below. Consider an epoch size \(\Delta \) and divide \(T \) stages into \(\lceil T/\Delta \rceil \) epochs with size \(\Delta \). In each epoch \(k \), restart OGD \([\text{9}] \) and let \(\xi_k = \frac{1}{\alpha} \) at \(t = k\Delta + j \) for \(1 \leq j \leq \Delta \). Similar to \([34] \), we define the variation of the environment as \(\Delta = \sum_{t=1}^{T} \sup_{x \in \mathbb{X}} \| f(x; \theta_t) - f(x; \theta_{t-1}) \| \) and consider \(\Delta \) is known and \(1 \leq \Delta \leq T. \) Obtain a meaningful regret bound, we impose Assumption \(\text{[3]} \) where condition i) is common in OCO literature \([34, 23, 35] \) and condition ii) requires a small switching cost under a small change of actions.

Assumption 3. i) There exists \(G > 0 \) such that \(\| \nabla_x f(x; \theta) \| \leq G, \forall x \in \mathbb{X}, \theta \in \Theta \). ii) There exists \(\beta \) such that \(0 \leq d(x, x') \leq \beta \| x - x' \|^2 \).

Theorem 2 (Regret bound of restarted OGD). Under Assumption \(\text{[12]} \) consider \(T > 2 \) and \(\Delta = \lceil \sqrt{2T/V_T} \rceil \), the initialization based on restarted OGD described above satisfies the regret bound:

\[
\text{Reg}(\text{OGD}) \leq C_1 \sqrt{V_T T \log(1 + \sqrt{T/V_T})} + \frac{h^2}{\alpha} \| \delta(\min(W,T)) \|^2,
\]

where \(C_1 = \frac{42\sqrt{G^2}}{\alpha} + \frac{32\sqrt{G^2}G^2}{\alpha} + 20 \).

Notice that restarted OGD’s regret bound (9) consists of two terms: the first term \(C_1 \sqrt{V_T T \log(1 + \sqrt{T/V_T})} \) is consistent with the original regret bound in [34] for strongly convex costs, which increases with the environment’s variation \(V_T \); the second term \(\frac{h^2}{\alpha} \| \delta(\min(W,T)) \|^2 \) depends on \(\min(W,T) \)-step prediction error, which is intuitive since OGD [\text{9}] in our setting only has access to the inexact gradient \(\nabla_{x_{t-1}} f(x_{t-1}(0); \theta_{t-1}[s,W-1]) \) predicted by the \(\min(W,T) \)-step-ahead prediction \(\theta_{s-1}[s,W-1] \).

Corollary 1 (RHIG with restarted OGD initialization). Under the conditions in Theorem 7 and 2 RHIG with \(\phi \) based on restarted OGD satisfies

\[
\text{Reg}(\text{RHIG}) \leq \rho^W \left[\frac{2L}{\alpha} C_1 \sqrt{V_T T \log(1 + \sqrt{T/V_T})} \right] \quad \text{Part I}
\]

\[
+ \frac{2L h^2}{\alpha} \rho^W \| \delta(\min(W,T)) \|^2 + \sum_{k=1}^{\min(W,T)} \zeta \rho^{k-1} \| \delta(k) \|^2 + 1_{(W>T)} \frac{\rho^T - \rho^W}{1 - \rho} \zeta \| \delta(T) \|^2.
\]

where \(\rho = 1 - \frac{\alpha}{2\tau} \), \(\zeta = \frac{h^2}{\tau} + \frac{\alpha^2}{2\tau} \), and \(C_1 \) is defined in Theorem 2.

\(^5 \)This is without loss of generality. When \(V_T \) is unknown, we can use doubling tricks and adaptive stepsizes to generate similar bounds [23].

\(^6 \)Other norms work too, only leading to different constant factors in the regret bounds.

\(^7 \)We have this error term because we do not impose the stochastic structures of the gradient errors in [34].
The order of the regret bound. The regret bound in Corollary 1 consists of two parts: Part I involves the variation of the environment \(V_T \); while Part II consists of the prediction errors \(\{\|\delta(k)\|\}_{k=1}^{\min(W,T)} \). The regret bound can be written as \(\tilde{O}(\rho^W \sqrt{V_T/T} + \sum_{k=1}^{\min(W,T)} \rho^{k-1}\|\delta(k)\|^2) \). The prediction errors \(\|\delta(k)\|^2 \) can be either larger or smaller than \(V_T \) as mentioned in [23]. When \(V_T = o(T) \) and \(\|\delta(k)\|^2 = o(T) \) for \(k \leq W \), the regret bound is \(o(T) \). As a simple example of sublinear regrets, consider \(\theta_{t-1} \) as the prediction of \(\theta_{t+k} \) \((k \geq 0) \) at time \(t \), then \(\|\delta(k)\|^2 = O(V_T) \) under proper assumptions, so when \(V_T = o(T) \), the regret is \(o(T) \).

Impact of \(V_T \). The environment variation \(V_T \) only shows up in the Part I of the regret bound in Corollary 1. Fixing \(V_T \), notice that Part I decays exponentially with the lookahead window \(W \). This suggests that the impact of the environment variation \(V_T \) on the regret bound decays exponentially when one considers a larger lookahead window \(W \), which is intuitive since long-term thinking/planning allows early preparation for changes in the future and thus mitigates the negative impact of the environment variation.

Impact of \(\delta(k) \). Part II in Corollary 1 includes the prediction error terms in (9) and in Theorem 1. Notably, for both \(W \leq T \) and \(W \geq T \), the factor in front of \(\|\delta(k)\|^2 \) is dominated by \(\rho^{k-1} \) for \(1 \leq k \leq \min(W,T) \), which decays exponentially with \(k \) since \(0 < \rho < 1 \). This suggests that the impact of the total \(k\)-step-ahead prediction error \(\|\delta(k)\|^2 \) decays exponentially with \(k \), which also indicates that our RHIG (implicitly) focuses more on the short-term predictions than the long-term ones. This property benefits RHIG’s performance in practice since short-term predictions are usually more accurate and reliable than the long-term ones.

Choices of \(W \). The optimal choice of \(W \) depends on the trade-off between \(V_T \) and the prediction errors. For more insightful discussions, we consider non-decreasing \(k\)-step-ahead prediction errors, i.e. \(\|\delta(k)\| \geq \|\delta(k-1)\| \) for \(1 \leq k \leq T \) (in practice, longer-term predictions usually suffer worse quality). It can be shown that Part I increases with \(V_T \) and Part II increases with the prediction errors. Further, as \(W \) increases, Part I decreases but Part II increases. Thus, when Part I dominates the regret bound, i.e. \(V_T \) is large when compared with the prediction errors, selecting a large \(W \) reduces the regret bound. On the contrary, when Part II dominates the regret bound, i.e. the prediction errors are large when compared with \(V_T \), a small \(W \) is preferred. The choices of \(W \) above are quite intuitive: when the environment is drastically changing while the predictions roughly follow the trends, one should use more predictions to prepare for future changes; however, with poor predictions and slowly changing environments, one can ignore most predictions and rely on the understanding of the current environment. Lastly, though we only consider RHIG with restarted OGD, the discussions provide insights for other \(\phi \).

An upper and a lower bound in a special case. Next, we consider a special case when \(V_T \) is much larger than the prediction errors. It can be shown that the optimal regret is obtained when \(W \to +\infty \).

Corollary 2. Consider non-decreasing \(k\)-step-ahead prediction errors, i.e. \(\|\delta(k)\|^2 \geq \|\delta(k-1)\|^2 \) for \(1 \leq k \leq T \).

When \(\sqrt{V_T} \log(1 + \sqrt{T/V_T}) \geq \frac{2Lh_2^2}{2L\xi_1(1-\rho)^2} \|\delta(T)\|^2 \), the regret bound is minimized by letting \(W \to +\infty \). Further, when \(W \to +\infty \), RHIG’s regret can be bounded below.

\[
\text{Reg}(\text{RHIG}) \leq \frac{\zeta}{1-\rho} \sum_{k=1}^{T} \rho^{k-1} \|\delta(k)\|^2.
\]

Since \(\sqrt{V_T} \log(1 + \sqrt{T/V_T}) \) increases with \(V_T \), the condition in Corollary 2 essentially states that \(V_T \) is much larger in comparison to all the prediction errors. Interestingly, the bound in Corollary 2 is not affected by \(V_T \), but all prediction errors \(\{\|\delta(k)\|^2\}_{k=1}^{T} \) are involved, though the factor of \(\|\delta(k)\|^2 \) exponentially decays with \(k \). Next, we show that such dependence on \(\|\delta(k)\|^2 \) is unavoidable.

Theorem 3 (Lower bound for a special case). For any online algorithm \(A \), there exists nontrivial \(\sum_{t=1}^{T} f(x_t; \theta_t) + d(x_t, x_{t-1}) \) and predictions \(\theta_{t|t-1} \) satisfying the condition in Corollary 2 with parameters \(\rho_0 = (\frac{\sqrt{T}}{\sqrt{L} + \sqrt{T}})^2 \), \(\zeta_0 = (\frac{(1-\sqrt{\rho_0})^2}{\alpha + \rho_0}) \alpha(1-2\rho_0) > 0 \), such that the regret satisfies:

\[
\text{Reg}(A) \geq \frac{\zeta_0}{1-\rho_0} \sum_{k=1}^{T} \rho_0^{k-1} \|\delta(k)\|^2.
\]

In Theorem 3 the influence of \(\|\delta(k)\|^2 \) also decreases exponentially with \(k \), though with a smaller decay factor \(\rho_0 \). It is left as future work to close the gap between \(\rho \) and \(\rho_0 \) (and between \(\zeta \) and \(\zeta_0 \)).

8 All the monotonicity claims above are verified in the supplementary file and omitted here for brevity.
5 Stochastic Prediction Errors

In many applications, prediction errors are usually correlated. For example, the predicted market price of tomorrow usually relies on the predicted price of today, which also depends on the price predicted yesterday. Motivated by this, we adopt an insightful and general stochastic model on prediction errors, which was originally proposed in [1]:

\[
\delta_t(k) = \theta_t - \theta_{t|t-k} = \sum_{s=t-k+1}^{t} P(t-s)e_s, \quad \forall 1 \leq k \leq t
\]

where \(P(s) \in \mathbb{R}^{n \times q} \), \(e_1, \ldots, e_T \in \mathbb{R}^q \) are independent with zero mean and covariance \(R_e \). Model (10) captures the correlation patterns described above: the errors \(\delta_t(k) \) of different predictions on the same parameter \(\theta_t \) are correlated by sharing common random vectors from \(\{e_t, \ldots, e_{t-k+1}\} \); and the prediction errors generated at the same stage, i.e. \(\theta_{t+k} - \theta_{t+k|t-1} \) for \(k \geq 0 \), are correlated by sharing common random vectors from \(\{e_t, \ldots, e_{t+k}\} \). Notably, the coefficient matrix \(P(k) \) represents the degree of correlation between the \(\delta_t(1) \) and \(\delta_t(k) \) and between \(\theta_t - \theta_{t|t-1} \) and \(\theta_{t+k} - \theta_{t+k|t-1} \).

As discussed in [1] [18], the stochastic model (10) enjoys many applications, e.g. Wiener filters, Kalman filters [36]. For instance, suppose the parameter follows a stochastic linear system:

\[
\theta_t = \gamma \theta_{t-1} + e_t \quad \text{with a given } \theta_0 \text{ and random noise } e_t \sim N(0, 1).
\]

Then \(\theta_t = \gamma^k \theta_{t-k} + \sum_{s=t-k+1}^{t} \gamma^{t-s} e_s \), and \(\theta_{t-k} = \gamma^k \theta_{t-k} \); the prediction error \(\delta_t(k) \) satisfies the model (10) with \(P(t-s) = \gamma^{t-s} \). A large \(\gamma \) causes strong correlation among prediction errors.

Our next theorem bounds the expected regret of RHIG by the degree of correlation \(\|P(k)\|_F \).

Theorem 4 (Expected regret bound). Under Assumption [7][2] \(W \geq 0 \), \(\eta = 1/L \) and initialization \(\phi \),

\[
\mathbb{E}[\text{Reg}(RHIG)] \leq \frac{2L}{\alpha} \rho^W \mathbb{E}[\text{Reg} (\phi)] + \sum_{l=0}^{\min (W,T)-1} \zeta \|R_e\|_2(T-t) \|P(t)\|^2_F \rho^l - \rho^W \frac{1}{1 - \rho}
\]

where the expectation is taken with respect to \(\{e_t\}_{t=1}^T \), \(\rho = 1 - \frac{\alpha}{2L} \), \(\zeta = \frac{h^2}{\alpha} + \frac{h^2}{2T} \).

The first term in Theorem 4 represents the influence of \(\phi \) while the second term captures the effects of the correlation. We note that the \(t \)-step correlation \(\|P(t)\|^2_F \) decays exponentially with \(t \) in the regret bound, indicating that RHIG efficiently handles the strong correlation among prediction errors.

Next, we provide a regret bound when RHIG employs the restarted OGD oracle as in Section 4. Similarly, we consider a known \(\mathbb{E}[V_T] \) and \(1 \leq V_T \leq T \) for technical simplicity.

Corollary 3 (RHIG with restarted OGD). Under Assumption [7][3] consider the restarted OGD with \(\Delta = \lfloor \sqrt{2T / \mathbb{E}[V_T]} \rfloor \), we obtain

\[
\mathbb{E}[\text{Reg}(RHIG)] \leq \rho^W C_2 \sqrt{\mathbb{E}[V_T]} T \log (1 + \sqrt{T / \mathbb{E}[V_T]}) + \sum_{l=0}^{\min (W,T)-1} \zeta \|R_e\|_2(T-t) \|P(t)\|^2_F \rho^l - \rho^W \frac{1}{1 - \rho},
\]

where we define \(C_2 = \frac{2L C_1}{\alpha} \) and \(C_1 \) is defined in Theorem 2.

Notice that large \(W \) is preferred with a large environment variation and weakly correlated prediction errors, and vice versa.

Next, we discuss the concentration property. For simplicity, we consider Gaussian vectors \(\{e_t\}_{t=1}^T \).

Theorem 5 (Concentration bound). Consider Assumption [7][3] and the conditions in Corollary 3. Let \(\mathbb{E}[\text{Reg Bdd}] \) denote the expected regret bound in Corollary 3 when \(\mathbb{E}[V_T] = T \), then we have

\[
P(\text{Reg}(RHIG) \geq \mathbb{E}[\text{Reg bdd}] + b) \leq \exp \left(-c \min \left(\frac{b^2}{K^2}, \frac{b}{K} \right) \right), \quad \forall b > 0,
\]

where \(K = \zeta \sum_{l=0}^{\min (W,T)-1} \|R_e\|_2(T-t) \|P(t)\|^2_F \rho^l - \rho^W \frac{1}{1 - \rho} \) and \(c \) is an absolute constant.

Theorem 5 shows that the probability of the regret being larger than the expected regret by \(b > 0 \) decays exponentially with \(b \), indicating a nice concentration property of RHIG. Further, the concentration effect is stronger (i.e. a larger \(1/K \)) with a smaller degree of correlation \(\|P(t)\|^2_F \).

9 Similar results can be obtained for sub-Gaussian random vectors.
6 Numerical Experiments

We consider online quadrotor tracking of a vertically moving target \cite{37}. We consider (i) a high-level planning problem which is purely online optimization without modeling the physical dynamics; and (ii) a physical tracking problem where simplified quadrotor dynamics are considered \cite{37}.

In (i), we consider SOCO: \(\min \sum_{t=1}^{T} \frac{1}{2} (x_t - \theta_t)^2 + \beta(x_t - x_{t-1})^2 \), where \(x_t \) is quadrotor’s altitude, \(\theta_t \) is target’s altitude, and \((x_t - x_{t-1})^2 \) penalizes a sudden change in the quadrotor’s altitude. The target \(\theta_t \) follows: \(\theta_t = y_t + d_t \), where \(y_t = \gamma y_{t-1} + e_t \) is an autoregressive process with noise \(e_t \) \cite{38} and \(d_t = a \sin(\omega t) \) is a periodic signal. The predictions are the sum of \(d_t \) and the optimal predictions of \(y_t \). Notice that a large \(\gamma \) indicates worse long-term predictions. We consider both a small \(\gamma = 0.3 \) and a large \(\gamma = 0.7 \) for different levels of errors. We compare RHIG with AFHC \cite{6} and CHC \cite{18}. (See the supplementary material for more details.) Figure 2(a) shows that with small prediction errors, the three algorithms perform similarly well and RHIG is slightly better. Figure 2(b) shows that with large prediction errors, RHIG significantly outperforms AFHC and CHC. Some intuitive explanations are provided below. Firstly, AFHC and CHC are optimization-based methods, while our RHIG is based on gradient descent, which is known to be more robust to errors. Secondly, RHIG implicitly reduces the impact of the (poorer-quality) long-term predictions and focuses more on the (better) short-term ones by using long-term predictions in the first several updates and then using short-term ones in later updates to refine the decisions; while AFHC and CHC treat predictions more equally by taking averages of the optimal solutions computed by both long-term and short-term predictions (see \cite{1} \cite{18} for more details). These two intuitive reasons may explain the better numerical performance of our RHIG when compared with AFHC and CHC.

In (ii), we consider a simplified second-order model of quadrotor vertical flight: \(\ddot{x} = k_1 u - g + k_2 \), where \(x, \dot{x}, \ddot{x} \) are the altitude, velocity, and acceleration respectively, \(u \) is the control input (motor thrust command), \(g \) is the gravitational acceleration, \(k_1 \) and \(k_2 \) are physical parameters. We consider time discretization and cost function \(\sum_{t=1}^{T} \frac{1}{2} (x_t - \theta_t)^2 + \beta u_t^2 \). The target \(\theta_t \) follows the process in (i), but with a sudden change in \(d_t \) at \(t_c = 5.6s \), causing large prediction errors at around \(t_c \), which is unknown until \(t_c \). Figure 2(c) plots the quadrotor’s trajectories generated by RHIG with \(W = 1, 10 \) and shows RHIG’s nice tracking performance even when considering physical dynamics. \(W = 10 \) performs better first by using more predictions. However, right after \(t_c \), \(W = 1 \) performs better since the poor prediction quality there degrades the performance. Lastly, the trajectory with \(W = 10 \) quickly returns to the desired one after \(t_c \), showing the robustness of RHIG to prediction error shocks.

7 Conclusion

This paper studies how to leverage multi-step-ahead noisy predictions in smoothed online convex optimization. We design a gradient-based algorithm RHIG and analyze its dynamic regret under general prediction errors and a stochastic prediction error model. RHIG effectively reduces the impact of multi-step-ahead prediction errors. Future work includes: 1) closing the gap between the upper and the lower bound in Section 4; 2) lower bounds for general cases; 3) online control problems; 4) the convex case analysis without the strong convexity assumption; etc.
References

[1] Niangjun Chen et al. “Online convex optimization using predictions”. In: ACM SIGMETRICS Performance Evaluation Review. Vol. 43. 1. ACM. 2015, pp. 191–204.

[2] Gautam Goel and Adam Wierman. “An Online Algorithm for Smoothed Regression and LQR Control”. In: The 22nd International Conference on Artificial Intelligence and Statistics. 2019, pp. 2504–2513.

[3] Yiheng Lin, Gautam Goel, and Adam Wierman. “Online Optimization with Predictions and Non-convex Losses”. In: arXiv preprint arXiv:1911.03827 (2019).

[4] Gautam Goel et al. “Beyond online balanced descent: An optimal algorithm for smoothed online optimization”. In: Advances in Neural Information Processing Systems. 2019, pp. 1875–1885.

[5] Niangjun Chen, Gautam Goel, and Adam Wierman. “Smoothed Online Convex Optimization in High Dimensions via Online Balanced Descent”. In: Conference On Learning Theory. 2018, pp. 1574–1594.

[6] Minghong Lin et al. “Online algorithms for geographical load balancing”. In: Green Computing Conference (IGCC), 2012 International. IEEE. 2012, pp. 1–10.

[7] Minghong Lin et al. “Dynamic right-sizing for power-proportional data centers”. In: IEEE/ACM Transactions on Networking (TON) 21.5 (2013), pp. 1378–1391.

[8] Deyun Wang et al. “Multi-step ahead electricity price forecasting using a hybrid model based on two-layer decomposition technique and BP neural network optimized by firefly algorithm”. In: Applied Energy 190 (2017), pp. 390–407.

[9] Paulo Cortez et al. “Multi-scale Internet traffic forecasting using neural networks and time series methods”. In: Expert Systems 29.2 (2012), pp. 143–155.

[10] Francesco Zanini et al. “Online convex optimization-based algorithm for thermal management of MPSoCs”. In: Proceedings of the 20th symposium on Great lakes symposium on VLSI. ACM. 2010, pp. 203–208.

[11] Yingying Li et al. “Distributed Reinforcement Learning for Decentralized Linear Quadratic Control: A Derivative-Free Policy Optimization Approach”. In: arXiv preprint arXiv:1912.09135 (2019).

[12] Tomas Baca et al. “Model predictive trajectory tracking and collision avoidance for reliable outdoor deployment of unmanned aerial vehicles”. In: 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE. 2018, pp. 6753–6760.

[13] Lingwen Gan et al. “Real-time deferrable load control: handling the uncertainties of renewable generation”. In: ACM SIGMETRICS Performance Evaluation Review 41.3 (2014), pp. 77–79.

[14] Jackeline Rios-Torres and Andreas A Malikopoulos. “A survey on the coordination of connected and automated vehicles at intersections and merging at highway on-ramps”. In: IEEE Transactions on Intelligent Transportation Systems 18.5 (2016), pp. 1066–1077.

[15] Yingying Li, Xin Chen, and Na Li. “Online optimal control with linear dynamics and predictions: Algorithms and regret analysis”. In: Advances in Neural Information Processing Systems. 2019, pp. 14887–14899.

[16] E. Hazan. Introduction to Online Convex Optimization, Foundations and Trends(r) in Optimization Series. Now Publishers, 2016. ISBN: 9781680831702. URL: https://books.google.com/books?id=IFxLvgAACAAJ

[17] Yingying Li, Guannan Qu, and Na Li. “Online optimization with predictions and switching costs: Fast algorithms and the fundamental limit”. In: arXiv preprint arXiv:1801.07780 (2018).

[18] Niangjun Chen et al. “Using predictions in online optimization: Looking forward with an eye on the past”. In: Proceedings of the 2016 ACM SIGMETRICS International Conference on Measurement and Modeling of Computer Science. ACM. 2016, pp. 193–206.

[19] James B. Rawlings David Q. Mayne and Moritz M. Diehl. Model Predictive Control: Theory, Computation, and Design, 2nd Edition. Nob Hill Publishing LLC, 2017.

[20] Eric C Hall and Rebecca M Willett. “Dynamical models and tracking regret in online convex programming”. In: Proceedings of the 30th International Conference on International Conference on Machine Learning-Volume 28. 2013, pp. 1–579.
Appendices

The appendices provide additional discussions and proofs of the theoretical results. In particular, Appendix A provides additional discussions on RHIG when \(W > T \); next, Appendix B provides a proof of Lemma 1. Appendix C provides a proof of Theorem 1. Appendix D provides a proof of Theorem 2, a proof of Corollary 1, and also proves the claimed properties of the regret bound in Section 4. Appendix E discusses the special case and proves Corollary 2 and Theorem 3. Appendix F considers the stochastic prediction errors and proves Theorem 4, Corollary 3, and Theorem 5. Finally, Appendix G provides additional discussions on the numerical experiments.
A Additional Discussions on RHIG when \(W \) is larger than \(T \)

As mentioned in Section 3, in RHIG, one can select the look-ahead horizon \(W > T \). To further illustrate this case, we provide an example of RHIG for \(T = 3 \) and \(W = 5 \) below.

\[
\begin{array}{|c|c|c|c|}
\hline
x_1(0) = x_0 & x_2(0); \phi & x_3(0); \phi \\
\hline
x_1(1); \theta_{1|-4} & x_2(1); \theta_{2|-3} & x_3(1); \theta_{3|-2} \\
\hline
x_1(2); \theta_{1|-3} & x_2(2); \theta_{2|-2} & x_3(2); \theta_{3|-1} \\
\hline
x_1(3); \theta_{1|-2} & x_2(3); \theta_{2|-1} & x_3(3); \theta_{3|0} \\
\hline
x_1(4); \theta_{1|-1} & x_2(4); \theta_{2|0} & x_3(4); \theta_{3|1} \\
\hline
x_1(5); \theta_{1|0} & x_2(5); \theta_{2|1} & x_3(5); \theta_{3|2} \\
\hline
\end{array}
\]

Figure 3: Example of RHIG when \(W = 5 > T = 3 \). (Pink) At \(t = 1 - W = -4 \), let \(x_1(0) = x_0 \). (Orange) At \(t = -3 \), initialize \(x_2(0) \) by \(\phi \), then compute \(x_1(1) \) by inexact offline GD (5) with prediction \(\theta_{1|-1} = \theta_{1|-4} = \theta_{1|0} \). (Yellow) At \(t = -2 \), initialize \(x_3(0) \) by \(\phi \), and update \(x_2(1) \) and \(x_1(2) \) by (5) with \(\theta_{2|-3} = \theta_{2|0} \) and \(\theta_{1|-3} = \theta_{1|0} \) respectively. (Green) At \(t = -1 \), update \(x_3(1), x_2(2), x_1(3) \) by inexact offline GD (5) with \(\theta_{3|-2} = \theta_{3|0}, \theta_{2|-2} = \theta_{2|0}, \) and \(\theta_{1|-2} = \theta_{1|0} \) respectively. (Dark green) At \(t = 0 \), update \(x_3(2), x_2(3), x_1(4) \) by inexact offline GD (5) with \(\theta_{3|-1} = \theta_{3|0}, \theta_{2|-1} = \theta_{2|0}, \) and \(\theta_{1|-1} = \theta_{1|0} \) respectively. (Blue) At \(t = 1 \), update \(x_3(3), x_2(4), x_1(5) \) by inexact offline GD (5) with \(\theta_{3|0}, \theta_{2|0}, \) and \(\theta_{1|0} \) respectively. Then output \(x_1(5) \). (Purple) At \(t = 2 \), update \(x_3(4) \) and \(x_2(5) \) by inexact offline GD (5) with \(\theta_{3|1} \) and \(\theta_{2|1} \) respectively and output \(x_2(5) \). (Red) At \(t = 3 \), update \(x_3(5) \) by inexact offline GD (5) with \(\theta_{3|2} \) and output \(x_3(5) \).

By recalling that \(\theta_{1|\tau} = \theta_{1|0} \) when \(\tau < 0 \), we note that all the computation at \(t \leq 0 \) (above the red lines) is based on initial predictions \(\{\theta_{1|0}, \theta_{2|0}, \theta_{3|0}\} \). Therefore, the computed variables \(x_1(4), x_2(3), x_3(2) \) at \(t = 0 \) can be viewed as the iterated variables of offline (exact) gradient descent \([4] \) under parameters \(\{\theta_{1|0}, \theta_{2|0}, \theta_{3|0}\} \) after 4,3,2 iterations respectively.

Further, we explain the case when \(W \rightarrow +\infty \) by using the example in Figure 3 for \(T = 3 \). Similar to the discussion for Figure 3, for general \(W > T \), it can be verified that the computed variables at \(t = 0 \) are \(x_1(W-1), x_2(W-2), x_3(W-3) \), which can be viewed as the iterated variables of offline (exact) gradient descent \([4] \) under parameters \(\{\theta_{1|0}, \theta_{2|0}, \theta_{3|0}\} \) after \(W-1, W-2, W-3 \) iterations respectively. For \(W \rightarrow +\infty \), \(x_1(W-1), x_2(W-2), x_3(W-3) \) converges to the optimal solution to \(\min_{\theta \in \mathbb{R}^T} C(x; \theta_{1|0}, \theta_{2|0}, \theta_{3|0}) \). Then, at \(t = 1 \), RHIG conducts one inexact gradient update for each \(x_3(W-2), x_2(W-1), x_1(W) \) based on predictions \(\{\theta_{1|0}, \theta_{2|0}, \theta_{3|0}\} \) and outputs \(x_1(W) \). When \(W \rightarrow +\infty \), \(x_1(W) \) is not updated at \(t = 1 \) since it has converged to \(\min_{\theta \in \mathbb{R}^T} C(x; \theta_{1|0}, \theta_{2|0}, \theta_{3|0}) \). At \(t = 2 \), RHIG conducts one inexact gradient update for both \(x_3(W-1) \) and \(x_2(W) \) based on new prediction \(\theta_{3|1} \) and \(\theta_{2|2} \). At \(t = 3 \), RHIG conducts one exact gradient update for \(x_3(W) \) based on new prediction \(\theta_{3|2} \). This explains the scenario when \(W \rightarrow +\infty \).

B Proof of Lemma 1

Firstly, we prove the strong convexity. Since \(f(x_t; \theta_t) \) is \(\alpha \)-strongly convex with respect to \(x_t \), \(\sum_{t=1}^{T} f(x_t; \theta_t) \) is \(\alpha \)-strongly convex with respect to \(x = (x_1^{T}, \ldots, x_T^{T})^{T} \). Since \(d(x_t, x_{t-1}) \) is convex with respect to \((x_t, x_{t-1}) \), \(\sum_{t=1}^{T} d(x_t, x_{t-1}) \) is also convex with respect to \(x \). Consequently, \(C(x; \theta) = \sum_{t=1}^{T} (f(x_t; \theta) + d(x_t, x_{t-1})) \) is \(\alpha \)-strongly convex with respect to \(x \).

Next, we prove the smoothness. For any \(x_t, y_t \in \mathbb{R}^T \), by the \(l_f \)-smoothness of \(f(x_t; \theta_t) \) for all \(t \), we have

\[
f(y_t) \leq f(x_t) + \langle \nabla f(x_t; \theta_t), y_t - x_t \rangle + \frac{l_f}{2} \| y_t - x_t \|^2
\]

By the \(l_d \)-smoothness of \(d(x_t, x_{t-1}) \), for any \(x_t, y_t, x_{t-1}, y_{t-1} \in \mathbb{R}^T \), we have

\[
d(y_t, y_{t-1}) \leq d(x_t, x_{t-1}) + \langle \nabla d(x_t, x_{t-1}), y_t - x_t \rangle + \langle \nabla d(x_{t-1}, x_t), y_{t-1} - x_{t-1} \rangle + \frac{l_d}{2} \| y_t - x_t \|^2 + \| y_{t-1} - x_{t-1} \|^2
\]
for \(t \geq 2 \) and \(d(y_1, x_0) \leq d(x_1, x_0) + \langle \nabla x, d(x_1, x_0), y_1 - x_1 \rangle + \frac{\eta}{2} \| x_1 - y_1 \| ^2 \) for \(t = 1 \).

Therefore, for any \(x, y \in \mathbb{X}^T \), by summing the smoothness inequalities above over \(t = 1, \ldots, T \), we obtain

\[
C(y; \theta) \leq C(x; \theta) + \langle \nabla x C(x; \theta), y - x \rangle + \frac{\eta}{2} \| x - y \| ^2
\]

where we used the fact that \(\nabla_x C(x; \theta) \) is composed of partial gradients \(\nabla_{x_t} C(x; \theta) = \nabla_{x_t} f(x_t; \theta_t) + \nabla_{x_t} d(x_t, x_{t-1}) + \mathbb{I}_{(t \leq T)} \cdot \nabla_{x_t} d(x_{t+1}, x_t) \).

\section{C Proof of Theorem\[1\]}

Consider the offline optimization with parameter \(\theta \), i.e. \(\min_{x \in \mathbb{X}^T} C(x; \theta) \). As mentioned in Section\[3\] RHIG can be interpreted as projected gradient descent on \(C(x; \theta) \) with inexact gradients:

\[
x(k + 1) = \Pi_{\mathbb{X}^T} [x(k) - \eta \nabla_x C(x(k); \theta - \delta(W - k))]
\]

where the exact gradient should be \(\nabla_x C(x(k); \theta) \) but the parameter prediction error \(\delta(W - k) \) results in inexact gradient \(\nabla_x C(x(k); \theta - \delta(W - k)) \). Notice that when \(W - k > T \), by our definition, we have \(\delta(W - k) = \delta(T) \).

Consequently, the regret bound of RHIG can be proved based on the convergence analysis of the projected gradient descent with inexact gradients. We note that unlike the classic inexact gradient where the gradient errors are uniformly bounded, RHIG’s inexact gradients (\[1\]) have different gradient errors at different iterations, thus calling for slightly different convergence analysis.

In the following, we first provide some supportive lemmas, then provide a rigorous proof of Theorem\[1\].

\subsection{C.1 Supportive Lemmas}

Firstly, we provide a bound on the gradient errors with respect to the errors on the parameters.

\textbf{Lemma 2} (Gradient prediction error bound). For any true parameter \(\theta \in \Theta^T \) and the predicted parameter \(\theta' \in \Theta^T \), the error of the predicted gradient can be bounded below.

\[
\| \nabla_x C(x; \theta') - \nabla_x C(x; \theta) \| ^2 \leq h^2 \| \theta' - \theta \| ^2, \quad \forall x \in \mathbb{X}^T
\]

\textbf{Proof}. Firstly, we consider the gradient with respect to each stage variable \(x_t \), which is provided by

\[
\nabla_{x_t} C(x; \theta) = \nabla_{x_t} f(x_t; \theta_t) + \nabla_{x_t} d(x_t, x_{t-1}) + \nabla_{x_t} d(x_{t+1}, x_t) \mathbb{I}_{(t \leq T-1)}
\]

Noticing that \(d(x_t, x_{t-1}) \) does not depend on the parameter \(\theta \), we obtain the prediction error bound of gradient with respect to \(x_t \) as follows.

\[
\| \nabla_{x_t} C(x; \theta') - \nabla_{x_t} C(x; \theta) \| = \| \nabla_{x_t} f(x_t; \theta'_t) - \nabla_{x_t} f(x_t; \theta_t) \| \leq h \| \theta'_t - \theta_t \|
\]

Therefore, the prediction error of the full gradient can be bounded as follows,

\[
\| \nabla_x C(x; \theta') - \nabla_x C(x; \theta) \| ^2 = \sum_{t=1}^{T} \| \nabla_{x_t} C(x; \theta') - \nabla_{x_t} C(x; \theta) \| ^2 \leq h^2 \sum_{t=1}^{T} \| \theta'_t - \theta_t \| ^2 = h^2 \| \theta' - \theta \| ^2
\]

which completes the proof. \(\square \)

Next, we provide an equivalent characterization of the projected gradient update with respect to inexact parameters.

\textbf{Lemma 3} (A representation of inexact projected gradient updates). For any predicted parameter \(\theta' \) and any stepsize \(\eta \), the projected gradient descent with predicted parameter \(x(k + 1) = \Pi_{\mathbb{X}^T} [x(k) - \eta \nabla_x C(x(k); \theta')] \) is equivalent to the following representation.

\[
x(k + 1) = \arg \min_{x \in \mathbb{X}^T} \left\{ \langle \nabla_x C(x(k); \theta'), x - x(k) \rangle + \frac{1}{2\eta} \| x - x(k) \| ^2 \right\}
\]
Lemma 5

By the strong convexity of θ for any inexact parameter θ, both inequalities suffer from additional error terms caused by the parameter prediction error. The last equality uses the fact that $\eta^2 \| \nabla_x C(x(k); \theta') \|^2$ does not depend on x. □

Lastly, we provide a strong-convexity-type inequality and a smoothness-type inequality under inexact gradients. Both inequalities suffer from additional error terms caused by the parameter prediction error.

Lemma 4 (Strong convexity inequality with errors). Consider optimization $\min_{x \in \mathbb{R}^T} C(x; \theta)$. For any $x, y \in \mathbb{R}^T$, for any inexact parameter θ' and the resulting inexact gradient $\nabla_x C(x; \theta')$, we have

$$C(y; \theta) \geq C(x; \theta) + \langle \nabla_x C(x; \theta'), y - x \rangle + \alpha\frac{1}{2} \| y - x \|^2$$

Proof. By the strong convexity of $C(x; \theta)$, for any $x, y \in \mathbb{R}^T$ and any $\theta, \theta' \in \Theta^T$, we obtain the following.

$$C(y; \theta) \geq C(x; \theta) + \langle \nabla_x C(x; \theta'), y - x \rangle + \alpha\frac{1}{2} \| y - x \|^2$$

$$= C(x; \theta) + \langle \nabla_x C(x; \theta'), y - x \rangle - \langle \nabla_x C(x; \theta') - \nabla_x C(x; \theta), y - x \rangle + \alpha\frac{1}{2} \| y - x \|^2$$

$$\geq C(x; \theta) + \langle \nabla_x C(x; \theta'), y - x \rangle - \| \nabla_x C(x; \theta') - \nabla_x C(x; \theta) \| \| y - x \| + \alpha\frac{1}{2} \| y - x \|^2$$

$$\geq C(x; \theta) + \langle \nabla_x C(x; \theta'), y - x \rangle - \frac{1}{\alpha\| \nabla_x C(x; \theta') - \nabla_x C(x; \theta) \|^2} + \alpha\frac{1}{4} \| y - x \|^2$$

$$\geq C(x; \theta) + \langle \nabla_x C(x; \theta'), y - x \rangle - \frac{h^2}{\alpha} \| \theta' - \theta \|^2 + \alpha\frac{1}{4} \| y - x \|^2$$

□

Lemma 5 (Smoothness inequality with errors). Consider optimization $\min_{x \in \mathbb{R}^T} C(x; \theta)$. For any $x, y \in \mathbb{R}^T$, for any inexact parameter θ' and the resulting inexact gradient $\nabla_x C(x; \theta')$, we have

$$C(y; \theta) \leq C(x; \theta) + \langle \nabla_x C(x; \theta'), y - x \rangle + L\| y - x \|^2 + \frac{h^2}{2L} \| \theta' - \theta \|^2$$

Proof. By the smoothness of $C(x; \theta)$, for any $x, y \in \mathbb{R}^T$ and any $\theta, \theta' \in \Theta^T$, we obtain the following.

$$C(y; \theta) \leq C(x; \theta) + \langle \nabla_x C(x; \theta'), y - x \rangle + \frac{L}{2} \| y - x \|^2$$

$$= C(x; \theta) + \langle \nabla_x C(x; \theta'), y - x \rangle + \langle \nabla_x C(x; \theta') - \nabla_x C(x; \theta'), y - x \rangle + \frac{L}{2} \| y - x \|^2$$

$$\leq C(x; \theta) + \langle \nabla_x C(x; \theta'), y - x \rangle + \| \nabla_x C(x; \theta') - \nabla_x C(x; \theta) \| \| y - x \| + \frac{L}{2} \| y - x \|^2$$

$$\leq C(x; \theta) + \langle \nabla_x C(x; \theta'), y - x \rangle + \frac{1}{2L} \| \nabla_x C(x; \theta') - \nabla_x C(x; \theta) \|^2 + L\| y - x \|^2$$

$$\leq C(x; \theta) + \langle \nabla_x C(x; \theta'), y - x \rangle + \frac{h^2}{2L} \| \theta' - \theta \|^2 + L\| y - x \|^2$$

□
C.2 Proof of Theorem\(^1\)

According to Algorithm\(^2\) and the definition of the regret, we have \(\text{Reg}(R\!H\!I\!G) = C(x(W); \theta) - C(x^*; \theta)\) and \(\text{Reg}(\phi) = C(x(0); \theta) - C(x^*; \theta)\), where \(x^* = \arg\min_{x \in T} C(x; \theta)\). For notational simplicity, we denote \(r_k = \|x(k) - x^*\|^2\).

Step 1: bound \(\text{Reg}(R\!H\!I\!G)\) with \(r_{W-1}\).

\[
C(x(W); \theta) \leq C(x(W-1); \theta) + \langle \nabla_x C(x(W-1); \theta - \delta(1)), x(W) - x(W-1) \rangle \\
+ L\|x(W) - x(W-1)\|^2 + \frac{\eta^2}{2L}\|\delta(1)\|^2
\]

\[
= \min_{x \in \mathbb{X}^T} \{ \langle \nabla_x C(x(W-1); \theta - \delta(1)), x - x(W-1) \rangle + L\|x - x(W-1)\|^2 \}
\]

\[
+ C(x(W-1); \theta) + \frac{h^2}{2L}\|\delta(1)\|^2 \\
\leq \langle \nabla_x C(x(W-1); \theta - \delta(1)), x^* - x(W-1) \rangle + L\|x^* - x(W-1)\|^2 \\
+ C(x(W-1); \theta) + \frac{h^2}{2L}\|\delta(1)\|^2
\]

\[
\leq C(x^*; \theta) + (L - \frac{\alpha}{4})r_{W-1} + \left(\frac{h^2}{\alpha} + \frac{h^2}{2L} \right)\|\delta(1)\|^2
\]

where we used Lemma\(^3\) in the first inequality, Lemma\(^3\) and \(\eta = \frac{1}{2L}\) in the first equality, Lemma\(^4\) in the last inequality. By rearranging terms, we obtain

\[
\text{Reg}(R\!H\!I\!G) = C(x(W); \theta) - C(x^*; \theta) \leq L\rho r_{W-1} + \zeta\|\delta(1)\|^2 \tag{12}
\]

where \(\rho = 1 - \frac{\alpha}{4L}, \zeta = \frac{h^2}{\alpha} + \frac{h^2}{2L}\).

Step 2: recursive inequality between \(r_{k+1}\) and \(r_k\).

In the following, we will show that

\[
r_{k+1} \leq \rho r_k + \frac{\zeta}{L}\|\delta(W-k)\|^2, \quad \forall 0 \leq k \leq W - 1 \tag{13}
\]

Firstly, by (11), \(\eta = \frac{1}{2L}\), Lemma\(^3\) and its first-order optimality condition, we have

\[
\langle \nabla_x C(x(k); \theta - \delta(W-k)), x^* - x(k+1) \rangle \geq 0, \quad \forall x \in \mathbb{X}^T
\]

By substituting \(x = x^*\) and rearranging terms, we obtain

\[
\frac{1}{2L} \langle \nabla_x C(x(k); \theta - \delta(W-k)), x^* - x(k+1) \rangle \geq \langle x(k+1) - x(k), x(k+1) - x^* \rangle \tag{14}
\]

Next, we will derive the recursive inequality (13) by using (14).

\[
r_{k+1} = \|x(k+1) - x^*\|^2 = \|x(k+1) - x(k) + x(k) - x^*\|^2 \\
= r_k - \|x(k+1) - x(k)\|^2 + 2\langle x(k+1) - x(k), x(k) - x^* \rangle \\
\leq r_k - \|x(k+1) - x(k)\|^2 + \frac{1}{L}\langle \nabla_x C(x(k); \theta - \delta(W-k)), x^* - x(k+1) \rangle \\
= r_k - \|x(k+1) - x(k)\|^2 + \frac{1}{L}\langle \nabla_x C(x(k); \theta - \delta(W-k)), x^* - x(k) \rangle \\
+ \frac{1}{L}\langle \nabla_x C(x(k); \theta - \delta(W-k)), x(k) - x(k+1) \rangle \\
= r_k + \frac{1}{L}\langle \nabla_x C(x(k); \theta - \delta(W-k)), x^* - x(k) \rangle \\
- \frac{1}{L} \langle \nabla_x C(x(k); \theta - \delta(W-k)), x(k+1) - x(k) \rangle + L\|x(k+1) - x(k)\|^2
\]

\[
\leq r_k + \frac{1}{L}\langle \nabla_x C(x(k); \theta - \delta(W-k)), x^* - x(k) \rangle
\]
The proof is inspired by [34]. In this section, we provide a dynamic regret bound for the restarted OGD initialization rule in Section 4, based on the proofs of Theorem 2, Corollary 1 and the claimed properties of the regret bound in Section 4.

Step 3: completing the proof by (13) and (12).

By summing (13) over \(k = 0, \ldots, W - 2\), we obtain
\[
\begin{align*}
 r_{W-1} &\leq \rho^{W-1}r_0 + \frac{\zeta}{L} (\|\delta(2)\|^2 + \rho\|\delta(3)\|^2 + \cdots + \rho^{W-2}\|\delta(W)\|^2) \\
 &\leq \rho^{W-1} \frac{2}{\alpha} (C(x(0); \theta) - C(x^*; \theta)) + \frac{\zeta}{L} \sum_{k=2}^{W} \rho^{k-2}\|\delta(k)\|^2
\end{align*}
\]

By (12), we obtain the regret bound in Theorem 1
\[
\begin{align*}
 \text{Reg}(RHIG) &\leq L\rho(\rho^{W-1} \frac{2}{\alpha} (C(x(0); \theta) - C(x^*; \theta)) + \frac{\zeta}{L} \sum_{k=2}^{W} \rho^{k-2}\|\delta(k)\|^2) + \zeta\|\delta(1)\|^2 \\
 &= \frac{2L}{\alpha} \rho^W \text{Reg}(\phi) + \zeta \sum_{k=1}^{W} \rho^{k-1}\|\delta(k)\|^2
\end{align*}
\]

where we used the fact that \(\|\delta(k)\| = \|\delta(T)\|\) when \(k > T\).

D Proofs of Theorem 2, Corollary 1 and the claimed properties of the regret bound in Section 4

In this section, we provide a dynamic regret bound for the restarted OGD initialization rule in Section 4, based on which we prove Corollary 1. To achieve this, we will first establish a static regret bound for OGD initialization [6]. The proof is inspired by [34].

For notational simplicity, we slightly abuse the notation and let \(x_t\) denote \(x_t(0)\) generated by OGD. Further, by the definition of the prediction errors \(\delta_{t-1}(W)\) for \(W \geq 1\), we can write the initialization rule (6) as the following, which can be interpreted as OGD with inexact gradients:
\[
 x_t = \Pi_E[x_{t-1} - \xi_t \nabla_x f(x_{t-1}; \theta_{t-1} - \delta_{t-1}(\min(W, T)))], \quad t \geq 2;
\]

and \(x_1 = x_0\). Here, we used the facts that \(\theta_{t-1}[t-W-1] = \theta_{t-1} - \delta_{t-1}(W)\) and \(\delta_{t-1}(W) = \delta_{t-1}(T)\) for \(W > T\).
D.1 Static regret bound for OGD with inexact gradients

In this section, we consider the OGD with inexact gradients (15) with diminishing stepsize \(\xi_t = \frac{a}{\alpha t} \) for \(t \geq 1 \). We will prove its static regret bound below.

Theorem 6 (Static regret of OGD with inexact gradients). Consider the OGD with inexact gradients (15) with diminishing stepsize \(\xi_t = \frac{a}{\alpha t} \) for \(t \geq 1 \) and any \(x_0 \). Then, for \(z^* = \arg \min_{z \in \mathbb{R}} \sum_{t=1}^{T} f(z; \theta_t) \), we have the following static regret bound:

\[
\sum_{t=1}^{T} [f(x_t; \theta_t) - f(z^*; \theta_t)] \leq \frac{2G^2}{\alpha} \log(T + 1) + \sum_{t=1}^{T} \frac{h^2}{\alpha} \|\delta_t(\min(W, T))\|^2
\]

Further, the total switching cost can be bounded by:

\[
\sum_{t=1}^{T} d(x_t, x_{t-1}) \leq \frac{16G^2\beta}{\alpha^2}
\]

Proof. Firstly, we prove the static regret bound. Define \(q_t = \|x_t - z^*\|^2 \). Then, for \(t \geq 1 \), we have the following.

\[
q_{t+1} = \|x_{t+1} - z^*\|^2 \leq \|x_t - \xi_{t+1} \nabla_x f(x_t; \theta_t - \delta_t(\min(W, T))) - z^*\|^2
\]

\[
= q_t + \xi_{t+1}^2 \|\nabla_x f(x_t; \theta_t - \delta_t(\min(W, T)))\|^2 - 2\xi_{t+1} \langle x_t - z^*, \nabla_x f(x_t; \theta_t - \delta_t(\min(W, T))) \rangle
\]

\[
\leq q_t + \xi_{t+1}^2 G^2 - 2\xi_{t+1} \langle x_t - z^*, \nabla_x f(x_t; \theta_t) \rangle
\]

where the last inequality uses Assumption [3](i). By rearranging terms, we obtain

\[
\langle x_t - z^*, \nabla_x f(x_t; \theta_t) \rangle \leq \frac{q_t - q_{t+1}}{2\xi_{t+1}} + \xi_{t+1} G^2 - \langle x_t - z^*, \nabla_x f(x_t; \theta_t - \delta_t(\min(W, T))) - \nabla_x f(x_t; \theta_t) \rangle
\]

(16)

By the strong convexity of \(f(x; \theta_t) \), we have \(f(z^*; \theta_t) \geq f(x_t; \theta_t) + \langle z^* - x_t, \nabla_x f(x_t; \theta_t) \rangle + \frac{\alpha}{2} \|z^* - x_t\|^2 \). By rearranging terms and by (16), we obtain

\[
f(x_t; \theta_t) - f(z^*; \theta_t) \leq \frac{q_t - q_{t+1}}{2\xi_{t+1}} + \xi_{t+1} G^2 - \langle x_t - z^*, \nabla_x f(x_t; \theta_t - \delta_t(\min(W, T))) - \nabla_x f(x_t; \theta_t) \rangle - \frac{\alpha}{2} \|z^* - x_t\|^2
\]

\[
\leq q_t - q_{t+1} + \frac{\xi_{t+1} G^2}{2} + \|x_t - z^*\| \|\nabla_x f(x_t; \theta_t - \delta_t(\min(W, T))) - \nabla_x f(x_t; \theta_t)\| - \frac{\alpha}{2} \|z^* - x_t\|^2
\]

\[
\leq q_t - q_{t+1} + \frac{\xi_{t+1} G^2}{2} + \frac{h^2}{\alpha} \|\delta_t(\min(W, T))\|^2 - \frac{\alpha}{4} \|z^* - x_t\|^2
\]

where we used \(ab \leq \frac{a^2}{2} + \frac{b^2}{4} \) for any \(a, b \in \mathbb{R} \) and any \(\epsilon > 0 \) in the second last inequality and Assumption [2] in the last inequality. By summing over \(t = 1, \ldots, T \), we obtain

\[
\sum_{t=1}^{T} [f(x_t; \theta_t) - f(z^*; \theta_t)] \leq \sum_{t=2}^{T} \left(\frac{1}{2\xi_{t+1}} - \frac{1}{2\xi_t} - \frac{\alpha}{4} \right) q_t + \left(\frac{1}{2\xi_2} - \frac{\alpha}{4} \right) q_1 - \frac{1}{\xi_{T+1}} q_{T+1}
\]

\[
+ \sum_{t=1}^{T} \frac{\xi_{t+1}}{2} G^2 + \sum_{t=1}^{T} \frac{h^2}{\alpha} \|\delta_t(\min(W, T))\|^2
\]

\[
\leq \log(T + 1) \frac{2G^2}{\alpha} + \sum_{t=1}^{T} \frac{h^2}{\alpha} \|\delta_t(\min(W, T))\|^2
\]
We denote the set of stages in epoch which completes the proof of the static regret bound. By Assumption 3 ii), we have

\[
\sum_{t=1}^{T} d(x_t, x_{t-1}) \leq \sum_{t=1}^{T} \frac{\beta}{2} \|x_t - x_{t-1}\|^2 \\
\leq \sum_{t=1}^{T} \frac{\beta}{2} \|z_t \nabla_x f(x_t; \theta_{t-1} - \delta_t-1 (\min(W, T)))\|^2 \\
\leq \frac{\beta G^2}{2} \sum_{t=1}^{T} \xi_t^2 \leq \frac{16 \beta G^2}{\alpha^2}
\]

\(\square\)

D.2 Proof of Theorem 2: dynamic regret bound for restarted OGD with inexact gradients

We denote the set of stages in epoch \(k\) as \(T_k = \{k \Delta + 1, \ldots, \min(k \Delta + \Delta, T)\}\) for \(k = 0, \ldots, \lceil T/\Delta \rceil - 1\). We introduce \(z^*_k = \arg\min_{x \in \mathbb{X}} \sum_{t \in T_k} [f(x; z_t)]\) for all \(k\), \(y^*_k = \arg\min_{x \in \mathbb{X}} f(x_t; \theta_t)\) for all \(t\) and \(x^* = \arg\min_{x \in \mathbb{X}} \sum_{t=1}^{T} [f(x_t; \theta_t) + d(x_t, x_{t-1})]\). The dynamic regret of the restarted OGD with inexact gradients can be bounded as follows.

\[
\text{Reg}(\text{OGD}) = \sum_{t=1}^{T} [f(x_t; \theta_t)] + d(x_t, x_{t-1}) - \sum_{t=1}^{T} [f(x_t^*; \theta_t) + d(x_t^*, x_{t-1}^*)] \\
\leq \sum_{t=1}^{T} [f(x_t; \theta_t)] - \sum_{t=1}^{T} [f(x_t^*; \theta_t)] \\
\leq \sum_{t=1}^{T} [f(x_t^*; \theta_t) + d(x_t, x_{t-1})] - \sum_{t=1}^{T} [f(y^*_t; \theta_t)] \\
= \sum_{k=0}^{\lceil T/\Delta \rceil - 1} \sum_{t \in T_k} [f(x_t; \theta_t)] - \sum_{k=0}^{\lceil T/\Delta \rceil - 1} \sum_{t \in T_k} [f(x_t^*; \theta_t)] \\
= \sum_{k=0}^{\lceil T/\Delta \rceil - 1} \sum_{t \in T_k} [f(x_t; \theta_t) - f(z^*_k; \theta_t)] + \sum_{k=0}^{\lceil T/\Delta \rceil - 1} \sum_{t \in T_k} [f(z^*_k; \theta_t) - f(y^*_t; \theta_t)] \\
\leq \lceil T/\Delta \rceil \log(\Delta + 1) \frac{2G^2}{\alpha} + \frac{h^2}{\alpha} \|\min(W, T)\|^2 + \lceil T/\Delta \rceil \frac{16 \beta G^2}{\alpha^2} \\
+ \sum_{k=0}^{\lceil T/\Delta \rceil - 1} \sum_{t \in T_k} [f(z^*_k; \theta_t) - f(y^*_t; \theta_t)]
\]

where the first inequality uses Assumption 3, the second inequality uses the optimality of \(y^*_k\), the last inequality uses Theorem 1 and the fact that the OGD considered here restarts at the beginning of each epoch \(k\) and repeats the stepsizes defined in Theorem 1, thus satisfying the static regret bound and the switching cost bound in Theorem 1 within each epoch.

Now, it suffices to bound \(\sum_{k=0}^{\lceil T/\Delta \rceil - 1} \sum_{t \in T_k} [f(z^*_k; \theta_t) - f(y^*_t; \theta_t)]\). By the optimality of \(z^*_k\), we have:

\[
\sum_{k=0}^{\lceil T/\Delta \rceil - 1} \sum_{t \in T_k} [f(z^*_k; \theta_t) - f(y^*_t; \theta_t)] \leq \sum_{k=0}^{\lceil T/\Delta \rceil - 1} \sum_{t \in T_k} [f(y^*_{k+1}; \theta_t) - f(y^*_t; \theta_t)].
\]

We define \(V^k = \sum_{t \in T_k} \sup_{x \in \mathbb{X}} [f(x; \theta_t) - f(x; \theta_{t-1})]\). Then, for any \(t \in T_k\), we obtain

\[
f(y^*_{k+1}; \theta_t) - f(y^*_t; \theta_t) = f(y^*_{k+1}; \theta_t) - f(y^*_{k+1}; \theta_{k+1}) + f(y^*_{k+1}; \theta_{k+1}) - f(y^*_t; \theta_{k+1}) - f(y^*_t; \theta_{k+1}) - f(y^*_t; \theta_{k+1})
\]

18
Combining the bounds above yields the desired bound on the dynamic regret of OGD below by letting \(\Delta = \sqrt{2T/V_T} \):

\[
\text{Reg}(OGD) \leq [T/\Delta] \log(\Delta + 1) \frac{2G^2}{\alpha} + \frac{h^2}{\alpha} \left(\frac{16\beta G^2}{2} + 2\Delta V_T \right) + 2(\sqrt{2V_T T} + V_T)
\]

\[
\leq \log(2 + \sqrt{2T/V_T}) \left(\frac{2G^2}{\alpha} + \frac{16\beta G^2}{2} + 2(1 + \sqrt{2}) \right) + \frac{h^2}{\alpha} \|\delta(\min(W,T))\|^2
\]

\[
\leq \log(1 + \sqrt{T/V_T}) \left(\frac{4\sqrt{2G^2}}{\alpha} + \frac{32\sqrt{2\beta G^2}}{2} + 8(1 + \sqrt{2}) \right) + \frac{h^2}{\alpha} \|\delta(\min(W,T))\|^2
\]

where we used the facts that \([x] \leq x + 1\), \(1 \leq V_T \leq T\), \(T > 2\), \(\log(2 + \sqrt{2T/V_T}) \leq 2\log(1 + \sqrt{T/V_T})\), and \(8(1 + \sqrt{2}) < 20\).

D.3 Proof of Corollary 1

The proof is straightforward by substituting restarted OGD’s regret bound in Theorem 2 into the general regret bound in Theorem 1 that is,

\[
\text{Reg}(RHIG) \leq \rho W \frac{2L}{\alpha} C_1 \sqrt{V_T T} \log(1 + \sqrt{T/V_T})
\]

\[
+ \frac{2L h^2}{\alpha} \rho W \|\delta(\min(W,T))\|^2 + \sum_{k=1}^{\min(W,T)} \zeta \rho^{k-1} \|\delta(k)\|^2 + \mathbb{1}_{(W>T)} \rho T - \rho W \frac{2L}{1 - \rho} \zeta \|\delta(T)\|^2.
\]

D.4 Proofs of the monotonicity claims in the discussion of Corollary 1

In Section 4 when discussing Choices of \(W \), we claim that “Part I increases with \(V_T \) and Part II increases with the prediction errors. Further, as \(W \) increases, Part I decreases but Part II increases.” For completeness, we prove this claim below.

Properties of Part I \(\rho W \frac{2L}{\alpha} C_1 \sqrt{V_T T} \log(1 + \sqrt{T/V_T}) \): Since \(0 < \rho < 1 \), it is straightforward that Part I monotonically decreases with \(W \). Next, consider function \(p(x) = x \log(1 + \frac{b}{x}) \) for \(x, b > 0 \). Since \(p'(x) = \frac{x}{x + b} - 1 - \log(\frac{x}{x + b}) \geq 0 \) by \(y - 1 \geq \log(y) \) for any \(y > 0 \), function \(p(x) \) monotonically increases with \(x \). Therefore, for any fixed \(W \), Part I monotonically increases with \(\sqrt{V_T} \) and thus \(V_T \).
Properties of Part II $\frac{2Lh^2}{\alpha^2} \rho^W ||\delta(\text{min}(W, T)))||^2 + \sum_{k=1}^{\text{min}(W, T)} \zeta \rho^{k-1} ||\delta(k)||^2 + \mathbb{I}_{(W>T)} \frac{\rho^T}{1-\rho} \zeta ||\delta(T)||^2$: It is straightforward that Part II monotonically increases with $\{||\delta(k)||^2\}_{k=1}^W$. Next, we discuss the monotonicity with respect to W. We first consider $W \leq T$. In this case, Part II is equal to $\text{Part II}(W) := \frac{2Lh^2}{\alpha^2} \rho^W ||\delta(W)||^2 + \sum_{k=1}^W \zeta \rho^{k-1} ||\delta(k)||^2$. Notice that

$$\text{Part II}(W) - \text{Part II}(W - 1) = \frac{2Lh^2}{\alpha^2} \rho^W ||\delta(W)||^2 + \zeta \rho^{W-1} ||\delta(W)||^2 - \frac{2Lh^2}{\alpha^2} \rho^{W-1} ||\delta(W-1)||^2$$

$$= (\frac{2Lh^2}{\alpha^2} (\rho - 1) + \zeta) \rho^{W-1} ||\delta(T)||^2$$

where we used $||\delta(W)||^2 \geq ||\delta(W-1)||^2$, $\rho = 1 - \frac{\alpha}{2L}$, $\zeta = \frac{h^2}{\alpha} + \frac{h^2}{2L}$. Therefore, Part II is monotonically increasing with W for $W \leq T$. Besides, we consider $W > T$. In this case, Part II is equal to $\text{Part II}(W) := \frac{2Lh^2}{\alpha^2} \rho^W ||\delta(T)||^2 + \sum_{k=1}^W \zeta \rho^{k-1} ||\delta(k)||^2 + \frac{2Lh^2}{\alpha^2} \rho^W \zeta ||\delta(T)||^2$. Notice that, when $W > T$, we have

$$\text{Part II}(W) - \text{Part II}(W - 1) = \frac{2Lh^2}{\alpha^2} (\rho^W - \rho^{W-1}) ||\delta(T)||^2 + \frac{\rho^{W-1} - \rho^W}{1-\rho} \zeta ||\delta(T)||^2$$

$$= (\frac{2Lh^2}{\alpha^2} (\rho - 1) + \zeta) \rho^{W-1} ||\delta(T)||^2$$

$$= (\frac{h^2}{2\alpha} + \frac{h^2}{2L}) \rho^{W-1} ||\delta(W-1)||^2 > 0$$

In conclusion, Part II increases with W for $W \geq 1$.

E Analysis on the special case in Section 4

E.1 Proof of Corollary 2

For notational simplicity, let $R(W)$ denote the regret bound in Corollary 1 given lookahead horizon W, i.e.

$$R(W) = \rho^W \frac{2L}{\alpha} C_1 \sqrt{VT} \log(1 + \sqrt{T/V_T})$$

$$+ \frac{2Lh^2}{\alpha} \rho^W ||\delta(\text{min}(W, T)))||^2 + \sum_{k=1}^{\text{min}(W, T)} \zeta \rho^{k-1} ||\delta(k)||^2 + \mathbb{I}_{(W>T)} \frac{\rho^T}{1-\rho} \zeta ||\delta(T)||^2.$$

We will show that $R(W) \leq R(W - 1)$ for $W \geq 1$. Firstly, we consider $W \leq T$. In this case, we have $R(W) = \rho^W \frac{2L}{\alpha} C_1 \sqrt{VT} \log(1 + \sqrt{T/V_T}) + \frac{2Lh^2}{\alpha} \rho^W ||\delta(W)||^2 + \sum_{k=1}^W \zeta \rho^{k-1} ||\delta(k)||^2$. Notice that

$$R(W) - R(W - 1) = (\rho^W - \rho^{W-1}) \frac{2L}{\alpha} C_1 \sqrt{VT} \log(1 + \sqrt{T/V_T}) + \frac{2Lh^2}{\alpha} \rho^W ||\delta(W)||^2$$

$$+ \zeta \rho^{W-1} ||\delta(W)||^2 - \frac{2Lh^2}{\alpha} \rho^{W-1} ||\delta(W-1)||^2$$

$$\leq \rho^{W-1} \left(\frac{2Lh^2}{\alpha} (\rho + \zeta) ||\delta(W)||^2 - (1-\rho) \frac{2L}{\alpha} C_1 \sqrt{VT} \log(1 + \sqrt{T/V_T}) \right)$$

$$\leq 0$$

when the following condition holds for any $W \leq T$.

$$\left(\frac{2Lh^2}{\alpha} (\rho + \zeta) ||\delta(W)||^2 \leq (1-\rho) \frac{2L}{\alpha} C_1 \sqrt{VT} \log(1 + \sqrt{T/V_T}) \right)$$

(18)
Next, we consider $W > T$. In this case, we have $R(W) = \rho^{W} \frac{h^2}{\alpha} C_1 \sqrt{V_T} T \log(1 + \sqrt{T/V_T}) + \frac{2Lh^2}{\alpha} \rho^W \|\delta(T)\|^2 + \sum_{k=1}^{T} \zeta \rho^{k-1} \|\delta(k)\|^2 + \frac{\rho^W}{1-\rho} \zeta \|\delta(T)\|^2$. Therefore,

$$R(W) - R(W - 1) = (\rho^W - \rho^{W-1}) \frac{2Lh^2}{\alpha} C_1 \sqrt{V_T} T \log(1 + \sqrt{T/V_T}) + \frac{2Lh^2}{\alpha} \rho^W \|\delta(T)\|^2$$

$$+ \frac{\rho^W}{1-\rho} \zeta \|\delta(T)\|^2 \leq \rho^{W-1} \left((1 - \rho) \frac{2Lh^2}{\alpha} C_1 \sqrt{V_T} T \log(1 + \sqrt{T/V_T}) \right)$$

$$\leq 0$$

given the condition (18).

In conclusion, we have $R(W) \leq R(W - 1)$ for $W \geq 1$ and the $R(W)$ is minimized by letting $W \to +\infty$. Further, when $W \to +\infty$, we have the following bound.

$$\lim_{W \to +\infty} R(W) = \sum_{k=1}^{T} \zeta \rho^{k-1} \|\delta(k)\|^2 + \frac{\rho^T}{1-\rho} \zeta \|\delta(T)\|^2 \leq \frac{\zeta}{1-\rho} \sum_{k=1}^{T} \rho^{k-1} \|\delta(k)\|^2$$

E.2 Proof of Theorem 3

Without loss of generality, we consider $n = 1$. It is straightforward to generalize the proof to $n > 1$ cases. The proof is based on constructing a special cost function where the lower bound holds.

Consider cost function $f(x_t; \theta_t) = \frac{\theta}{2} (x_t^2 - 2\theta x_t)$ and $d(x_t, x_{t-1}) = \frac{\beta}{2} \|x_t - x_{t-1}\|^2$ on $X = [-1/2, 1/2]$, where $l_t = \alpha$, $l_d = 2\beta$, $L = \alpha + 4\beta$ and $h = \alpha$. Let $\alpha > 1$ and $\frac{\alpha}{L} < 4 + 3\sqrt{2}$ so that $\rho_0 < 1/2$. Let $\theta_t \in X$ for all t, then we have $G = \sup_{x \in X} \|\alpha(x - \theta_t)\| = \alpha$. Let $x_0 = 0$.

Consider a random θ_t:

$$\theta_t = \mu_t + e_{1t} + \cdots + e_{lt}, \quad \forall 1 \leq t \leq T,$$

where e_{it} are independent variables across $1 \leq t \leq T$ and $1 \leq \tau \leq t$. Let the support of e_{it} be $[-\frac{1}{8}, \frac{1}{8}]$ and let $\mu_t = (-1)^t \frac{1}{2}$, so $\theta_t \in X$ is X and $\frac{1}{8} \leq \theta_t \leq \frac{1}{8}$ if t is even and $\frac{1}{8} \leq \theta_t \leq \frac{1}{8}$ if t is odd. Consider predictions at time τ as $\theta_{\tau|\tau} = \mu + e_{1\tau} + \cdots + e_{l\tau}$ for any $0 \leq \tau \leq t$. Therefore, $\delta_{\tau}(t - \tau) = e_{1t+1} + \cdots + e_{lt}$ and $\|\delta(t - \tau)\| \leq \frac{t-\tau}{8^t} \leq 1/8$. According to our construction, we have that $V_T = \sum_{t=1}^{T} \sup_{x \in X} \|\theta_t - \theta_{t-1}\| \geq \alpha T/8$; and $\|\delta(k)\|^2 \leq \frac{T}{8^k}$ for any $k \geq 1$. Then, it is straightforward to verify that the constructed cost functions and predictions satisfy $\sqrt{V_T} T \log(1 + \sqrt{T/V_T}) \geq \frac{2Lh^2}{\alpha} \rho^W \|\delta(T)\|^2$ for any $k \geq 1$.

Notice that knowing $\theta_{\tau}, \ldots, \theta_{T}$ is equivalent with knowing $\mu_t, e_{1t}, \ldots, e_{lt}$. Therefore, let filtration F_t denote all the information at t provide by the predictions and the history, then F_t is generated by $\theta_1, \ldots, \theta_{t-1}$ and $\mu_t, e_{1t}, \ldots, e_{lt}$ for $s \geq t$. Notice that $E[\theta_{\tau} | F_t] = \theta_{\tau|\tau-1}$ for $\tau \geq t$. Besides, for any online algorithm A, we have that x_{tA} is measurable in F_t.

Since $\theta_t \in X$ for all t, it can be shown that the optimal solution $x^* = \arg \min_{x \in X} C(x; \theta)$ is an interior point of X^T and thus satisfies the first-order optimality condition $x^* = A \theta$, where A is the inverse of the Hessian matrix of $C(x; \theta)$. Equivalently, we have $x^*_t = \sum_{s=1}^{T} a_{t,s} \theta_s$. Further, Lemma 5 in [17] shows that $a_{t,s}^2 \geq c_2 \rho_0^{t-s}$ for $\tau \geq t$, where $c_2 = \left(\frac{\alpha}{\alpha + \beta}\right)^2 (1 - \sqrt{\rho_0})^2$.

Since x_{tA} is measurable in F_t, by the projection theory, we have

$$E[\|x^*_{tA} - x^*_t\|^2] \geq E[\|x^*_{tA} | F_t\| - x^*_t\|^2].$$

Notice that

$$E[x^*_t | F_t] = a_{t,1} \theta_1 + \cdots + a_{t,t-1} \theta_{t-1} + a_{t,t} E[\theta_t | F_t] + \cdots + a_{t,T} E[\theta_T | F_t]$$

$$= a_{t,1} \theta_1 + \cdots + a_{t,t-1} \theta_{t-1} + a_{t,t} \theta_{t|t-1} + a_{t,T} \theta_{T|t-1}$$

Therefore,

$$E[\|E[x^*_t | F_t] - x^*_t\|^2] = E[\|a_{t,t} \delta_t(1) + \cdots + a_{t,T} \delta_T(T - t + 1)\|^2]$$
\[
= a_{t,t}^2 \mathbb{E}[\| \delta_t(1) \|^2] + \cdots + a_{t,T}^2 \mathbb{E}[\| \delta_T(T-t+1) \|^2]
\geq c_2(\mathbb{E}[\| \delta_t(1) \|^2] + \cdots + \rho_0^{T-t} \mathbb{E}[\| \delta_T(T-t+1) \|^2])
\]

where we used the independence among the prediction errors and \(a_{t,t}^2 \geq c_2 \rho_0^{T-t} \) for \(t \geq t \).

Summing over \(t \) leads to the following.

\[
\sum_{t=1}^{T} \mathbb{E}[\| x_t^A - x_t^* \|^2] \geq \sum_{t=1}^{T} \mathbb{E}[\| \mathbb{E}[x_t^* | F_t] - x_t^* \|^2]
\geq \sum_{t=1}^{T} (a_{t,t}^2 \mathbb{E}[\| \delta_t(1) \|^2] + \cdots + a_{t,T}^2 \mathbb{E}[\| \delta_T(T-t+1) \|^2])
\geq \sum_{t=1}^{T} c_2 \sum_{k=1}^{T-t+1} \rho_0^{k-1} \mathbb{E}[\| \delta_{k+t-1}(k) \|^2]
= c_2 \sum_{k=1}^{T} \rho_0^{k-1} \sum_{t=1}^{T} \mathbb{E}[\| \delta_{k+t-1}(k) \|^2]
= c_2 \sum_{k=1}^{T} \rho_0^{k-1} \sum_{t=1}^{T} \mathbb{E}[\| \delta_t(k) \|^2] - c_2 \sum_{k=1}^{T} \rho_0^{k-1} \sum_{t=1}^{T} \mathbb{E}[\| \delta_t(k) \|^2]
= c_2 \sum_{k=1}^{T} \rho_0^{k-1} \sum_{t=1}^{T} \mathbb{E}[\| \delta_t(k) \|^2] - c_2 \sum_{k=1}^{T} \rho_0^{k-1} \sum_{t=1}^{T} \mathbb{E}[\| \delta_t(k) \|^2]
= c_2 \sum_{k=1}^{T} \rho_0^{k-1} \sum_{t=1}^{T} \mathbb{E}[\| \delta_t(k) \|^2] - c_2 \sum_{k=1}^{T} \rho_0^{k-1} \sum_{t=1}^{T} \mathbb{E}[\| \delta_t(k) \|^2]
\geq c_2 \sum_{k=1}^{T} \rho_0^{k-1} \sum_{t=1}^{T} \mathbb{E}[\| \delta_t(k) \|^2] \frac{1 - 2\rho_0}{1 - \rho_0}
\geq c_2 \sum_{k=1}^{T} \rho_0^{k-1} \sum_{t=1}^{T} \mathbb{E}[\| \delta_t(k) \|^2] \frac{1 - 2\rho_0}{1 - \rho_0}
\]

where we used \(\delta_t(k) = \delta_t(t) \) for \(k \geq t \) in the third equality and change the counting index from \(t \) to \(k \) in the second last inequality.

By strong convexity, we have \(\mathbb{E}[\text{Reg}(\mathcal{A})] \geq \frac{1}{2} \mathbb{E}[\| x_A - x^* \|^2] \geq c_2 \sum_{k=1}^{T} \rho_0^{k-1} \mathbb{E}[\| \delta_t(k) \|^2] \). Therefore, there must exist a scenario such that \(\text{Reg}(\mathcal{A}) \geq c_2 \frac{1 - 2\rho_0}{1 - \rho_0} \sum_{k=1}^{T} \rho_0^{k-1} \| \delta_t(k) \|^2 \). Since \(h = \alpha \) in our construction, we complete the proof.

\section{Stochastic Regret Analysis}

\subsection*{F.1 Proof of Theorem}\footnote{\textnormal{A}} \label{sec:proof-of-theorem}

By taking expectation on both sides of the regret bound in Theorem\footnote{\textnormal{A}} we have

\[
\mathbb{E}[\text{Reg}(RHIG)] \leq \frac{2L}{\alpha} \rho^W \mathbb{E}[\text{Reg}(\phi)] + \zeta \sum_{k=1}^{\min(W,T)} \rho_0^{k-1} \mathbb{E}[\| \delta_t(k) \|^2] + \sum_{T-W<T} \rho_0^{T} \mathbb{E}[\| \delta_t(T) \|^2],
\]

Therefore, it suffices to bound \(\mathbb{E}[\| \delta_t(k) \|^2] \) for \(1 \leq k \leq T \). By \(\delta_t(k) = (\delta_t(1) \cdot \cdots \cdot \delta_t(T) \cdot k)^T \), \(\delta_k(k) = \theta_t - \theta_{t-k} = P(0) e_t + \cdots + P(k-1) e_{t-k+1} \) for \(k \leq t \) and \(\delta_t(k) = \delta_t(t) \) for \(k > t \), we have

\[
\delta(k) = M_k e, \quad 1 \leq k \leq T
\]
where we define $e = (e_1^T, \ldots, e_T^T)^T \in \mathbb{R}^T$ and

$$M_k = \begin{bmatrix} P(0) & 0 & \cdots & 0 \\ P(1) & P(0) & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ P(k-1) & \cdots & P(1) & P(0) \\ 0 & \cdots & P(k-1) & P(1) \end{bmatrix}.$$

Let R_e denote the covariance matrix of e, i.e.

$$R_e = \begin{bmatrix} R_e & 0 & \cdots & 0 \\ 0 & R_e & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & \cdots & \cdots & R_e \end{bmatrix}$$

Then, for $k \leq T$, we have

$$\begin{align*}
\mathbb{E}[[\delta(k)]^2] &= \mathbb{E}[ee^T M_k^T M_k e] = \mathbb{E}[\text{tr}(ee^T M_k^T M_k)] \\
&= \text{tr}(R_e M_k^T M_k) \\
&\leq \|R_e\|_2 \|M_k\|_F^2 = \|R_e\|_2 \sum_{t=0}^{k-1}(T - t)\|P(t)\|_F^2
\end{align*}$$

where the first inequality is by $\text{tr}(AB) \leq \|A\|_2 \|B\|$ for any symmetric matrices A, B, and $\|\text{diag}(R_e, \ldots, R_e)\|_2 = \|R_e\|_2$ and $\text{tr}(A^T A) = \|A\|_F^2$ for any matrix A. In addition, for $k \geq T$, we have $\mathbb{E}[[\delta(k)]^2] \leq \|R_e\|_2 \sum_{t=0}^{T-1}(T - t)\|P(t)\|_F^2$. In conclusion, for any $k \geq 1$, we have

$$\mathbb{E}[[\delta(k)]^2] \leq \|R_e\|_2 \sum_{t=0}^{\min(k, T) - 1}(T - t)\|P(t)\|_F^2 \tag{21}$$

When $W \leq T$, substituting the bounds on $\mathbb{E}[[\delta(k)]^2]$ into (19) yields the bound on the expected regret below.

$$\begin{align*}
\mathbb{E}[\text{Reg}(RHIG)] &\leq \frac{2L}{\alpha} \rho^W \mathbb{E}[\text{Reg}(\phi)] + \zeta \sum_{k=1}^W \rho^{k-1} \|R_e\|_2 \sum_{t=0}^{k-1}(T - t)\|P(t)\|_F^2 \\
&= \frac{2L}{\alpha} \rho^W \mathbb{E}[\text{Reg}(\phi)] + \zeta \sum_{t=0}^{W-1} \|R_e\|_2(T - t)\|P(t)\|_F^2 \sum_{k=t+1}^W \rho^{k-1} \\
&= \frac{2L}{\alpha} \rho^W \mathbb{E}[\text{Reg}(\phi)] + \zeta \sum_{t=0}^{W-1} \|R_e\|_2(T - t)\|P(t)\|_F^2 \frac{\rho^t - \rho^W}{1 - \rho}
\end{align*}$$

When $W \geq T$, substituting the bounds on $\mathbb{E}[[\delta(k)]^2]$ into (19) yields the bound on the expected regret below.

$$\begin{align*}
\mathbb{E}[\text{Reg}(RHIG)] &\leq \frac{2L}{\alpha} \rho^W \mathbb{E}[\text{Reg}(\phi)] + \zeta \sum_{k=1}^T \rho^{k-1} \|R_e\|_2 \sum_{t=0}^{k-1}(T - t)\|P(t)\|_F^2 \\
&+ \zeta \frac{\rho^T - \rho^W}{1 - \rho} \|R_e\|_2 \sum_{t=0}^{T-1}(T - t)\|P(t)\|_F^2 \\
&= \frac{2L}{\alpha} \rho^W \mathbb{E}[\text{Reg}(\phi)] + \zeta \sum_{t=0}^{T-1} \|R_e\|_2(T - t)\|P(t)\|_F^2 \left(\sum_{k=t+1}^T \rho^{k-1} + \frac{\rho^T - \rho^W}{1 - \rho} \right)
\end{align*}$$

23
\[\frac{2L}{\alpha} \rho^W \mathbb{E}[\text{Reg}(\phi)] + \zeta \sum_{t=0}^{T-1} \| R_e \|_2 (T - t) \| P(t) \|_{\tilde{F}}^2 \rho^t - \rho^W \frac{1}{1 - \rho} \]

In conclusion, we have the regret bound for general \(W \geq 0 \) below.

\[\mathbb{E}[\text{Reg}(RHIG)] \leq \frac{2L}{\alpha} \rho^W \text{Reg}(\phi) + \zeta \sum_{t=0}^{\min(W,T)-1} \| R_e \|_2 (T - t) \| P(t) \|_{\tilde{F}}^2 \rho^t - \rho^W \frac{1}{1 - \rho} \]

F.2 Proof of Corollary 3

Before the proof, we note that we cannot apply the expected regret bound in [34] directly due to the major differences in the problem formulation as discussed below. Firstly, the expected regret definition considered in this paper is different from that in [34] because the true cost function parameter \(\theta_t \) in our case is also random and taken expectation on, while the true cost function in [34] is deterministic and the expectation is only taken on the random gradient noises. Besides, [34] considers unbiased gradient estimation while our gradient estimation \(\nabla \) in [34] considers unbiased gradient estimation while our gradient estimation \(\nabla_{x_t} f(x_t; \theta_t) \) can be biased. Further, [34] considers independent gradient noises at each stage \(t \), while our gradient noises are correlated due to the correlation among prediction errors. Therefore, we have to revise the original proof in [34] for a new regret bound for our setting.

Similar to the proof of Theorem 2, we denote the set of stages in epoch \(k \) as \(T_k = \{ k\Delta + 1, \ldots, \min(k\Delta + \Delta, T) \} \) for \(k = 0, \ldots, \lfloor T/\Delta \rfloor - 1 \); and introduce \(z^*_k = \arg \min_{z \in \mathcal{X}} \sum_{t \in T_k} [f(z; \theta_t)] \), \(y^*_k = \arg \min_{x \in \mathcal{X}} f(x; \theta_t) \), \(x^* = \arg \min_{x \in \mathcal{X}} \sum_{t=1}^{T} [f(x_t; \theta_t) + d(x_t, x_{t-1})] \). Notice that \(z^*_k, y^*_k, x^* \) are all random variables depending on \(\theta \). The expected dynamic regret of OGD can be bounded as follows.

\[\mathbb{E}[\text{Reg}(OGD)] = \sum_{t=1}^{T} \mathbb{E}[f(x_t; \theta_t) + d(x_t, x_{t-1})] - \sum_{t=1}^{T} \mathbb{E}[f(x^*_t; \theta_t) + d(x^*_t, x^*_{t-1})] \]

\[\leq \sum_{t=1}^{T} \mathbb{E}[f(x_t; \theta_t) + d(x_t, x_{t-1})] - \sum_{t=1}^{T} \mathbb{E}[f(x^*_t; \theta_t)] \]

\[\leq \sum_{t=1}^{T} \mathbb{E}[f(x_t; \theta_t) + d(x_t, x_{t-1})] - \sum_{t=1}^{T} \mathbb{E}[f(y^*_t; \theta_t)] \]

\[= \sum_{k=0}^{\lfloor T/\Delta \rfloor - 1} \sum_{t \in T_k} \mathbb{E}[f(x_t; \theta_t) + d(x_t, x_{t-1})] - \sum_{k=0}^{\lfloor T/\Delta \rfloor - 1} \sum_{t \in T_k} \mathbb{E}[f(y^*_t; \theta_t)] \]

\[= \sum_{k=0}^{\lfloor T/\Delta \rfloor - 1} \mathbb{E}[f(x_t; \theta_t) - f(z^*_k; \theta_t)] \sum_{k=0}^{\lfloor T/\Delta \rfloor - 1} \sum_{t \in T_k} \mathbb{E}[d(x_t, x_{t-1})] \]

\[+ \sum_{k=0}^{\lfloor T/\Delta \rfloor - 1} \sum_{t \in T_k} \mathbb{E}[f(z^*_k; \theta_t) - f(y^*_t; \theta_t)] \]

\[\leq [\lfloor T/\Delta \rfloor \log(\Delta + 1)] \frac{2G^2}{\alpha} + \frac{L^2}{\alpha} \mathbb{E}[\| \min(W, T) \|^2] + [\lfloor T/\Delta \rfloor \frac{16\beta G^2}{\alpha^2} \]

\[+ \sum_{k=0}^{\lfloor T/\Delta \rfloor - 1} \sum_{t \in T_k} \mathbb{E}[f(z^*_k; \theta_t) - f(y^*_t; \theta_t)] \]

where the first inequality uses Assumption 3, the second inequality uses the optimality of \(y^*_t \), the last inequality follows from taking expectation on the regret bounds in Theorem 6 and the fact that the OGD considered here restarts at the beginning of each epoch \(k \) and repeats the stepsizes defined in Theorem 6 thus satisfying the static regret bound and switching cost bound in Theorem 6 within each epoch.

Now, it suffices to bound \(\sum_{k=0}^{\lfloor T/\Delta \rfloor - 1} \sum_{t \in T_k} \mathbb{E}[f(z^*_k; \theta_t) - f(y^*_t; \theta_t)] \). By the optimality of \(z^*_k \), we have that

\[\sum_{k=0}^{\lfloor T/\Delta \rfloor - 1} \sum_{t \in T_k} \mathbb{E}[f(z^*_k; \theta_t) - f(y^*_t; \theta_t)] \leq \sum_{k=0}^{\lfloor T/\Delta \rfloor - 1} \sum_{t \in T_k} \mathbb{E}[f(y^*_{k\Delta+1}; \theta_t) - f(y^*_t; \theta_t)]. \]
We define $E[V^k] = \sum_{t \in T_k} E[\sup_{x \in X} |f(x; \theta_t) - f(x; \theta_{t-1})|]^{10}$ Then, for any $t \in T_k$, we obtain

$$E[f(y_{k\Delta+1}^*; \theta_t) - f(y_t^*; \theta_t)] = E[f(y_{k\Delta+1}^*; \theta_t) - f(y_{k\Delta+1}^*; \theta_{k\Delta+1})] + E[f(y_{k\Delta+1}^*; \theta_{k\Delta+1}) - f(y_{k\Delta+1}^*; \theta_t)] + E[f(y_t^*; \theta_{k\Delta+1}) - f(y_t^*; \theta_t)] \leq 2E[V^k].$$

By summing over $t \in T_k$ and $k = 0, \ldots, \lceil T/\Delta \rceil - 1$, we obtain

$$\sum_{k=0}^{\lceil T/\Delta \rceil - 1} \sum_{t \in T_k} E[f(z_k^*; \theta_t) - f(y_t^*; \theta_t)] \leq 2\Delta E[V_T]$$

Similar to the proof of Corollary 2, by applying the bounds above and $\Delta = \lceil \sqrt{2T/E[V_T]} \rceil$, we obtain the desired bound on the expected dynamic regret of OGD for our setting, i.e.

$$E[\text{Reg}(OGD)] \leq C_1 \sqrt{E[V_T]T \log(1 + \sqrt{T/E[V_T]})} + \frac{h^2}{\alpha} E[\|\delta(\min(W, T))\|^2]$$

where C_1 is a constant factor defined in Theorem 2.

Consequently, by applying Theorem 4 and the bound on $E[\|\delta(W)\|^2]$ in (21), we have the following results.

$$E[\text{Reg}(RHIG)] \leq C_2\rho^W \sqrt{E[V_T]T \log(1 + \sqrt{T/E[V_T]})} + \rho^W \frac{2h^2 L}{\alpha^2} \sum_{t=0}^{\min(W, T)-1} \|R_e\|_2(T-t)\|P(t)\|_F^2$$

$$+ \zeta \sum_{t=0}^{\min(W, T)-1} \|R_e\|_2(T-t)\|P(t)\|_F^2 \frac{\rho^t - \rho^W}{1 - \rho}$$

$$\leq C_2\rho^W \sqrt{E[V_T]T \log(1 + \sqrt{T/E[V_T]})} + \zeta \sum_{t=0}^{\min(W, T)-1} \|R_e\|_2(T-t)\|P(t)\|_F^2 \frac{\rho^t}{1 - \rho}$$

by $\frac{2h^2 L}{\alpha^2} - \frac{\zeta}{1 - \rho} < 0$, where $C_2 = \frac{2L}{\alpha} C_1$.

F.3 Proof of Theorem 5

The proof relies on the Hanson-Wright inequality in [39] [11].

Proposition 1 (Hanson-Wright Inequality [39]). Consider random Gaussian vector $\mathbf{u} = (u_1, \ldots, u_n)^T$ with u_i i.i.d. following $N(0, 1)$. There exists an absolute constant $c > 0$ [12] such that

$$\mathbb{P}(\mathbf{u}^T \mathbf{A} \mathbf{u} \geq \mathbb{E}[\mathbf{u}^T \mathbf{A} \mathbf{u}] + b) \leq \exp \left(-c \min \left\{ \frac{b^2}{\|A\|_F^2}, \frac{b}{\|A\|_2} \right\}\right), \quad \forall b > 0$$

Now, we are ready for the proof. For any realization of the random vectors $\{e_t\}_{t=1}^T$, our regret bound in Section 4 still holds, i.e.

$$\text{Reg}(RHIG) \leq \rho^W \frac{2L}{\alpha} C_1 \sqrt{E[V_T]T \log(1 + \sqrt{T/E[V_T]})} + \frac{2h^2 L}{\alpha} \rho^W \|\delta(\min(W, T))\|^2$$

$$+ \sum_{k=1}^{\min(W, T)} \zeta \rho^k \|\delta(k)\|^2 + 1_{W > T} \frac{\rho^T - \rho^W}{1 - \rho} \zeta \|\delta(T)\|^2$$

[10] Notice that y_t^* is a random variable depending on θ_t for all t. Therefore, in the inequalities below, $E[f(y_{k\Delta+1}^*; \theta_t) - f(y_{k\Delta+1}^*; \theta_{k\Delta+1})]$ can be larger than the term $\sup_{x \in X} E[f(x; \theta_t) - f(x; \theta_{k\Delta+1})]$, where x is restricted to only deterministic variables. Thus, the expectation operator E must be outside the sup operator in our definition of the expected variation of the environment (see $E[V^k]$ and $E[V_T]$).

[11] Here we use the fact that $\|X_t\|_F = 1$ where $\| \cdot \|_F$ is the subGaussian norm defined in [39].

[12] An absolute constant refers to a quantity that does not change with anything.
\[
\leq \rho W \frac{2L}{\alpha} C_1 T \log(2) + \frac{2L h^2}{\alpha} \rho W \|\delta_W(\min(W, T))\|^2 + \sum_{k=1}^{\min(W, T)} \zeta \rho^{k-1} \|\delta(k)\|^2 \\
+ \mathbb{I}_{(W>T)} \left(\frac{\rho T - \rho W}{1 - \rho} \right) \zeta \|\delta(T)\|^2
\]
where we used the technical assumption that \(V_T \leq T\). Let \(R(W)\) denote the second regret bound. It can be verified that

\[
R(W) \leq \mathbb{E}[\text{Regbdd}].
\]

From \([20]\) in the proof of Theorem 4, we have that \(\delta(k) = M_k^T e = M_k^T R_k^{1/2} u\), where \(u\) is a standard Gaussian vector for \(k \leq T\); and \(\delta(k) = M_k^T M_k^{1/2} u\) for \(k \geq T\).

When \(W \leq T\), we have the following formula for the regret bound \(R(W)\).

\[
R(W) = \rho W \frac{2L}{\alpha} C_1 T \log(2) + \frac{2L h^2}{\alpha} \rho W \|\delta_W\|^2 + \zeta \sum_{k=1}^{W} \rho^{k-1} \|\delta(k)\|^2 \\
+ \mathbb{I}_{(W>T)} \left(\frac{\rho T - \rho W}{1 - \rho} \right) \zeta \|\delta(T)\|^2
\]

We bound \(\|A_W\|_F\) below.

\[
\|A_W\|_F \leq \rho W \frac{2L h^2}{\alpha} \|R_k^{1/2} M_k^T M_k R_k^{1/2}\|_F + \zeta \sum_{k=1}^{W} \rho^{k-1} \|R_k^{1/2} M_k^T M_k R_k^{1/2}\|_F \\
\leq \rho W \frac{2L h^2}{\alpha} \|M_k^T R_k^{1/2}\|_F^2 + \zeta \sum_{k=1}^{W} \rho^{k-1} \|M_k R_k^{1/2}\|_F^2 \\
= \rho W \frac{2L h^2}{\alpha} \text{tr}(R_k^{1/2} M_k^T M_k R_k^{1/2}) + \zeta \sum_{k=1}^{W} \rho^{k-1} \text{tr}(R_k^{1/2} M_k^T M_k R_k^{1/2}) \\
= \rho W \frac{2L h^2}{\alpha} \text{tr}(R_k M_k^T M_k) + \zeta \sum_{k=1}^{W} \rho^{k-1} \text{tr}(R_k M_k^T M_k) \\
\leq \rho W \frac{2L h^2}{\alpha} \|R_k\|_2 \text{tr}(M_k^T M_k) + \zeta \|R_k\|_2 \sum_{k=1}^{W} \rho^{k-1} \text{tr}(M_k^T M_k) \\
= \rho W \frac{2L h^2}{\alpha} \|R_k\|_2 \|M_k\|_F^2 + \zeta \|R_k\|_2 \sum_{k=1}^{W} \rho^{k-1} \|M_k\|_F^2 \\
= \rho W \frac{2L h^2}{\alpha} \|R_k\|_2 \sum_{t=0}^{W-1} (T-t)\|P(t)\|_F^2 + \zeta \|R_k\|_2 \sum_{k=1}^{W} \rho^{k-1} \sum_{t=0}^{k-1} (T-t)\|P(t)\|_F^2 \\
= \rho W \frac{2L h^2}{\alpha} \|R_k\|_2 \sum_{t=0}^{W-1} (T-t)\|P(t)\|_F^2 + \zeta \|R_k\|_2 \sum_{t=0}^{W-1} \rho^{t} \|P(t)\|_F^2 + \zeta \|R_k\|_2 \sum_{t=0}^{W-1} \rho^{t} \|P(t)\|_F^2 \\
\leq \zeta \sum_{t=0}^{W-1} \|R_k\|_2 (T-t)\|P(t)\|_F^2 \frac{\rho^t}{1 - \rho}
\]
where we used (21) and \(\zeta = \frac{h^2}{\alpha} + \frac{b^2}{\beta} \) and \(\rho = 1 - \frac{\rho}{T} \).

When \(W > T \), we have the following formula for the regret bound \(R(W) \).

\[
R(W) = \rho W \frac{2L}{\alpha} C_1 T \log(2) + \frac{2h^2 L}{\alpha^2} \rho W \| \delta(T) \|^2 + \zeta \sum_{k=1}^{T} \rho^{k-1} \| \delta(k) \|^2 + \zeta \| \delta(T) \|^2 \frac{\rho^T - \rho W}{1 - \rho}
\]

\[
= \rho W \frac{2L}{\alpha} C_1 T \log(2) + u^T \left(\frac{2h^2 L}{\alpha^2} \rho W + \zeta \frac{\rho^T - \rho W}{1 - \rho} \right) R_{c,W}^1 M_T^1 M_T R_{c,W}^{1/2} + \zeta \sum_{k=1}^{T} \rho^{k-1} R_{c,W}^1 M_k^1 M_k R_{c,W}^{1/2} u
\]

Similarly, we bound \(\| A_W \|_F \) below.

\[
\| A_W \|_F \leq \left(\frac{2h^2 L}{\alpha^2} \rho W + \zeta \frac{\rho^T - \rho W}{1 - \rho} \right) \| R_{c,W}^1 M_T^1 M_T R_{c,W}^{1/2} \|_F + \zeta \sum_{k=1}^{T} \rho^{k-1} \| R_{c,W}^1 M_k^1 M_k R_{c,W}^{1/2} \|_F
\]

\[
\leq \left(\frac{2h^2 L}{\alpha^2} \rho W + \zeta \frac{\rho^T - \rho W}{1 - \rho} \right) \| R_{c,W}^1 \|_2 \sum_{t=0}^{T-1} (T - t) \| P(t) \|_F^2 + \zeta \sum_{k=1}^{T} \rho^{k-1} \| R_{c,W}^1 \|_2 \sum_{t=0}^{k-1} (T - t) \| P(t) \|_F^2
\]

\[
\leq \left(\frac{2h^2 L}{\alpha^2} \rho W + \zeta \frac{\rho^T - \rho W}{1 - \rho} \right) \| R_{c,W}^1 \|_2 \sum_{t=0}^{T-1} (T - t) \| P(t) \|_F^2 + \zeta \| R_{c,W}^1 \|_2 \sum_{t=0}^{T-1} \frac{\rho^T - \rho^t}{1 - \rho} (T - t) \| P(t) \|_F^2
\]

\[
\leq \zeta \sum_{t=0}^{T-1} \| R_{c,W}^1 \|_2 (T - t) \| P(t) \|_F^2 \frac{\rho^t}{1 - \rho}
\]

In conclusion, for any \(W \geq 1 \), we have that \(R(W) = \rho W \frac{2L}{\alpha} C_1 T \log(2) + u^T A_W u \), and

\[
\| A_W \|_F \leq \zeta \sum_{t=0}^{\min(W,T)-1} \| R_{c,W}^1 \|_2 (T - t) \| P(t) \|_F^2 \frac{\rho^t}{1 - \rho}
\]

Further, we have \(\| A_W \|_2 \leq \| A_W \|_F \). Therefore, by Proposition 1, we prove the concentration bound below. For any \(b > 0 \),

\[
\mathbb{P} (\text{Reg} (RHIG) \geq \mathbb{E} \text{[Regbdd]} + b) \leq \mathbb{P} (R(W) \geq \mathbb{E} [\text{Regbdd}] + b)
\]

\[
\leq \mathbb{P} (R(W) \geq \mathbb{E} [R(W)] + b)
\]

\[
= \mathbb{P} (u^T A_W u \geq \mathbb{E} [u^T A_W u] + b)
\]

\[
\leq \exp \left(-\epsilon \min \left(\frac{b^2}{K^2}, \frac{b}{K} \right) \right)
\]

where \(K = \zeta \sum_{t=0}^{\min(T,W)-1} \| R_{c,W}^1 \|_2 (T - t) \| P(t) \|_F^2 \frac{\rho^t}{1 - \rho} \).

G More details of the numerical experiments

(i) The high-level planning problem. The parameters are: \(c_i \sim N(0,1) \) i.i.d., \(T = 20, \alpha = 1, \beta = 0.5, x_0 = 10, \alpha = 4, \omega = 0.5, \eta = 0.5, \xi_t = 1 \), CHC’s commitment level \(v = 3 \). The regret is averaged over 200 iterations.
(ii) **The physical tracking problem.** Consider the second-order system

\[\ddot{x} = k_1 u + g + k_2 \]

where \(x \) is altitude, \(\dot{x} \) is velocity, \(\ddot{x} \) is acceleration, etc.

Consider a discrete-time version of the system above as

\[\frac{x_{t+1} - 2x_t + x_{t-1}}{\Delta^2} = k_1 u_t - g + k_2 \]

which is equivalent to

\[u_t = \frac{1}{k_1} \left(\frac{x_{t+1} - 2x_t + x_{t-1}}{\Delta^2} - (-g + k_2) \right). \]

Consider a cost function at stage \(t \) as

\[\frac{\alpha}{2} (x_t - \theta_t)^2 + \frac{\beta}{2} u_t^2. \]

We can write the cost function in terms of \(x_t \), that is,

\[\frac{\alpha}{2} (x_t - \theta_t)^2 + \frac{\beta}{2} \frac{1}{k_t^2} \left(\frac{x_{t+1} - 2x_t + x_{t-1}}{\Delta^2} - (-g + k_2) \right)^2. \]

Notice that the switching cost is not \(d(x_t, x_{t-1}) \) but \(d(x_{t+1}, x_t, x_{t-1}) \), but we still have the local coupling property of the gradients and we can still apply RHIG.

The experiment parameters are provided below. Consider horizon 10 seconds and time discretization \(\Delta = 0.1 \) s.

Let \(k_1 = 1, k_2 = 1, \alpha = 1, \beta = 1 \times 10^{-5}, x_0 = 1 \) m, \(g = 9.8 \) m/s\(^2\). Let \(e_t \sim N(0, 0.5^2) \) i.i.d. for all \(t \). Consider \(d_t = 0.9 \sin(0.2t) + 1 \) before \(t \leq 5.6 \) s and \(d_t = 0.3 \sin(0.2t) + 1 \) afterwards. Let \(\gamma = 0.6, \xi_t = 1, \eta = 1/L \) and \(L \approx 2.6 \).