DEVELOPMENT OF MICROSATellite LOCi FOR THE ENDANGERED SEAGRASS ZOSTERA JAPONICA (ZOSTERACEAE)

XIAOMEI ZHANG, YI ZHOU, DONGXIU XUE, AND JIN-XIAN LIU

1Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, Shandong, People’s Republic of China; and 2University of the Chinese Academy of Sciences, No. 19A, Yuquan Road, Beijing 100049, People’s Republic of China

- **Premise of the study:** New microsatellite markers were developed for the Asian endangered seagrass *Zostera japonica* (Zosteraceae) to assess genetic diversity and population structure of this species. In China, *Z. japonica* populations have drastically decreased since the 1970s.
- **Methods and Results:** A total of 12 polymorphic tetranucleotide microsatellite loci were isolated and characterized in *Z. japonica*. The number of alleles per locus ranged from one to 11. The expected and observed heterozygosity ranged from 0 to 0.772 and from 0 to 1.000, respectively.
- **Conclusions:** The new microsatellites will be useful in evaluating clonality and population structure of *Z. japonica* and aiding in conservation and management of the endangered seagrass in Asia.

Key words: clonality; population genetics; seagrass; *Zostera japonica*; Zosteraceae.

Seagrass beds are recognized as critical to threatened coastal habitats around the world (Duffy, 2006). The seagrass *Zostera japonica* Asch. & Graebn. (Zosteraceae), an annual/perennial marine flowering angiosperm, is mainly distributed in the intertidal and shallow subtidal zones from temperate to subtropical regions along the North Pacific coast, especially in East Asia (Short et al., 2007). Meanwhile, *Z. japonica* is an introduced species on the west coast of North America (Harrison and Bigey, 1982) and has been reported from British Columbia (Canada) and Washington, Oregon, and California (USA) (Short et al., 2007). *Zostera japonica* can rapidly thrive and form extensive meadows through vegetative reproduction in the intertidal zone (Zhang et al., 2015). However, anthropogenic activities have led to a strong decline of natural populations in Asia.

To conserve and restore *Z. japonica*, much attention should be paid to genetic diversity and population genetic structure, yet few studies have been reported. Microsatellite markers prevail in genetic studies of seagrasses. In the genus *Zostera* L., microsatellites have been developed for quite a few species, such as *Z. marina* Gaertn. (Peng et al., 2012), *Z. muelleri* Irmsch ex Asch. (Sherman et al., 2012), and *Z. nigricaulis* (J. Kuo) S. W. L. Jacobs & Les (Smith et al., 2013), but specialized primers for *Z. japonica* were limited until now. Jiang et al. (2011) have developed a set of dinucleotide microsatellite loci for this species, and the analysis of short tandem repeat (STR) loci by PCR methods has proven to be informative. However, the PCR products of dinucleotide loci often produce multiple visible stutter bands that sometimes complicate the interpretation of alleles. The amplification of tetranucleotides is easier to interpret because only a single stutter band is typically observed (Walsh et al., 1996). Here we report isolation and characterization of the first set of polymorphic tetranucleotide microsatellite loci for *Z. japonica*, which will be used to investigate genetic diversity and population structure of this species.

METHODS AND RESULTS

Genomic DNA was isolated from fresh leaf tissue of a single individual of *Z. japonica* collected from Qingdao, China (36°05′N, 120°34′E) (Appendix 1). Genomic DNA extraction was undertaken using the E.Z.N.A. HP Plant DNA Mini Kit (OMEGA Bio-tek, Norcross, Georgia, USA) according to manufacturer’s protocols. A DNA extract of 50 μL with a concentration of 118 μg/μL was obtained. Microsatellites were isolated following the enrichment protocols of Glenn and Schable (2005). Total genomic DNA was digested with *RsaI* (New England Biolabs, Ipswich, Massachusetts, USA). The digested fragments were ligated to double-stranded SuperSNX-24 linkers and then hybridized with a 5′-biotinylated oligonucleotide probe (AGAT)₈ (Life Technologies, Shanghai, China). The DNA fragments containing microsatellite sequences were captured on streptavidin-coated Dynabeads (Invitrogen, Carlsbad, California, USA), and the captured DNA was recovered by PCR using the SuperSNX-24 forward primer (Life Technologies). The PCR products were purified using TakaRa MiniBEST DNA Fragment Purification Kit ver.3.0 (TakaRa Biotechnology Co., Dalian, Liaoning, China), ligated into pEASY-TI cloning vector (TransGen, Beijing, China), and transformed into Trans1-Ti competent cells (TransGen). A total of 201 positive clones were sent to Life Technologies for sequencing. Fragments containing microsatellite repeats were screened using MISA software (Thiel et al., 2003; http://pgrc.ipk-gatersleben.de/misa).

Twenty-five primer pairs were designed by Primer Premier ver.5.00 (Premier Biosoft International, Palo Alto, California, USA). The primers were optimized and polymorphisms were tested by genotyping eight individuals collected from Qingdao, China (36°05′N, 120°34′E). The 5′ end of each forward primer was fluorescently labeled (FAM, HEX, or TAMRA; Life Technologies). All loci were amplified separately on a Mastercycler (Eppendorf, Hamburg, Germany).

1Manuscript received 3 June 2015; revision accepted 8 July 2015.

The authors acknowledge funding from the National Science and Technology Basic Work Program (2015FY110600), the 100 Talents Program of the Chinese Academy of Sciences to J.X.L., and the National Marine Public Welfare Research Project (201305043).

Authors for correspondence: yizhou@qdio.ac.cn (Y.Z.); jinxianliu@gmail.com (J.X.L.)

doi:10.3732/apps.1500064
Zhang et al.—Zostera japonica microsatellites

Applications in Plant Sciences 2015 3 (9): 1500064
doi:10.3732/apps.1500064

of individuals in the population sampled; PIC = polymorphic information content.

TABLE 1. Characterization of 15 microsatellite loci for Zostera japonica.

Locus	Primer sequences (5′–3′)	Repeat motif	Allele size range (bp)	T° (°C)	A	GenBank accession no.
Zj001	F: GCCAAAGTGGTGGTGAA A R: GAAATGTTGATGGATGA C	(TATC)₆	228–236	54	3	KP756928
Zj008	F: ACTTCCCACAACATGGATC A R: GCCCCCTCCTCCTCCTCCA C	(TATC)₆	148–160	56	4	KP756929
Zj018	F: CTTAGGGTGTCGCCACTCT A R: CCAAAATACCTCTGTCCTCTC C	(TAGA)₄	230–250	56	4	KP985542
Zj023	F: TTTTGCAAGTGGTGTTT A R: CTGTCATGGTGTCAGACGG C	(CTAT)₆	329	50	1	KP985543
Zj025	F: GCCGACCTCCTGCACGCTC A R: CTTTCCTCTCCGCCAGCT A	(TATG)₆	360–396	54	5	KP756930
Zj026	F: CCTCCTAGCAACTCATC A R: CAAACTCTAAAGCCCAAC C	(TAGA)₆	104–116	58	4	KP756931
Zj028	F: CTTCTCTCTCTGGCCAGT A R: TCCAAAAACACCAGCACT A	(TCTA)₆	314–350	59	5	KP756932
Zj030	F: GAGGTGATCAAGGAAACCCCA A R: CATAAAGAGGAGCACGACT A	(ATAG)₆	272–324	54	11	KP756933
Zj033	F: ACAGGACTAACAGGAGAAGC A R: GTGACAGAGATGGTGGGC A	(ATAG)₂	226	54	1	KP985545
Zj041	F: GGGAAACAAAAACACCATC A R: AATGGAACAAACCCACGC A	(TATC)₂	144	58	1	KP985548
Zj042	F: CAAACCCTGCACCAAAAC A R: TAGGACCTAAGGCAAACCC A	(TAGA)₆	157–169	50	4	KP756934
Zj011	F: ATCCAGGTGGTCTCACCT A R: ATATCTACACCCGCTCTCC A	(TATC)₇	336–348	56	4	KP985541
Zj029	F: CCTCCTACAACATACACCACCA A R: GGGAGAGAATAGACCGGAA A	(ATCT)₂	149–157	58	3	KP985544
Zj036	F: TTTTCTAAAGGCTTTACCAAA A R: TCACTCTATTTTATATACACCT A	(ATAG)₂	290–294	56	2	KP985546
Zj037	F: CCCTCCTCTCGTGTCTTCT A R: TGGCTCTATGGTCTCTCC A	(TAGA)₆	382–460	52	6	KP985547

Note: A = number of alleles observed; T° = annealing temperature of each primer pair.

Note: A = number of alleles observed; Hₐ = expected heterozygosity; Hₑ = observed heterozygosity; n = number of individuals genotyped; N = number of individuals in the population sampled; PIC = polymorphic information content.

APPLICATIONS IN PLANT SCIENCES 2015 3 (9): 1500064

TABLE 2. Summary genetic statistics for two populations of Zostera japonica screened with 12 newly developed polymorphic microsatellites.a

Locus	HQ (N = 16)	FC (N = 16)
	n A Hₑ Hₛ PIC Pᵇ	n A Hₑ Hₛ PIC Pᵇ
Zj001	16 3 0.621 0.625 0.516 0.2476	15 2 0.517 1.000 0.375 0.0002
Zj008	16 4 0.708 0.750 0.626 0.0287	16 3 0.232 0.250 0.210 1.0000
Zj011	11 3 0.558 0.455 0.432 0.5430	16 1 0.000 0.000 0.000 0.0000
Zj018	11 4 0.710 0.546 0.623 0.1129	16 1 0.000 0.000 0.000 0.0000
Zj025	16 2 0.315 0.375 0.258 1.0000	16 4 0.563 0.250 0.493 0.0019
Zj026	16 2 0.353 0.438 0.283 0.5433	16 3 0.659 0.125 0.567 0.0000
Zj028	16 2 0.772 0.500 0.710 0.0389	16 2 0.585 0.625 0.532 0.9540
Zj029	11 3 0.550 0.455 0.466 0.6040	16 1 0.000 0.000 0.000 0.0000
Zj030	16 2 0.121 0.000 0.110 0.0323	16 3 0.232 0.250 0.210 1.0000
Zj036	16 2 0.515 0.400 0.374 0.6034	16 3 0.179 0.188 0.166 1.0000
Zj037	11 2 0.505 0.400 0.365 0.5736	16 1 0.000 0.000 0.000 0.0000
Zj042	16 2 0.387 0.500 0.305 0.5126	16 5 0.746 0.688 0.675 0.4041

Note: A = number of alleles observed; Hₑ = expected heterozygosity; Hₛ = observed heterozygosity; n = number of individuals genotyped; N = number of individuals in the population sampled; PIC = polymorphic information content.

aLocality and voucher information for the sampled populations are available in Appendix 1.

bP values for deviation from Hardy–Weinberg equilibrium.

http://www.bioone.org/loi/apps 2 of 3
Zj018/Zj037, and Zj001 and Zj028/Zj029/Zj036 (P < 0.0042) after Bonferroni correction (Rousset, 2008), but was most likely due to low polymorphism levels at those loci.

CONCLUSIONS

The new polymorphic microsatellite loci developed in this study have proved to be useful to evaluate genetic diversity of Z. japonica. The two studied populations showed different frequencies of alleles at these loci and both displayed fixed alleles. Therefore, it is expected that more alleles will be detected if sampling is conducted more broadly across the species’ range. These available microsatellite loci will facilitate future studies of population genetic and clonal structure, connectivity, and gene flow in Z. japonica, which will contribute to the conservation and management of this species.

LITERATURE CITED

DUFFY, J. E. 2006. Biodiversity and the functioning of seagrass ecosystems. Marine Ecology Progress Series 311: 233–250.

GLENN, T. C. AND N. A. SCHABLE. 2005. Isolating microsatellite DNA loci. Methods in Enzymology 395: 202–222.

HARRISON, P. G. AND R. E. BIGEY. 1982. The recent introduction of the seagrass Zostera japonica Ascherson and Graebner to the Pacific coast of North America. Canadian Journal of Fisheries and Aquatic Sciences 39: 1642–1648.

JIANG, K., H. GAO, N. N. XU, E. P. K. TSANG, AND X. Y. CHEN. 2011. A set of microsatellite primers for Zostera japonica (Zosteraceae). American Journal of Botany 98: e236–e238.

PENG, J., L. A. ZHANG, X. JIANG, C. J. CUI, R. N. WU, AND J. P. ZHAO. 2012. Isolation and characterization of microsatellite markers for Zostera marina and their cross-species amplification in Zostera caespitosa. Conservation Genetics Resources 4: 455–458.

RAYMOND, M., AND F. ROUSSET. 1995. GENEPOP (version 1.2): Population genetics software for exact tests and ecumenicism. Journal of Heredity 86: 248–249.

ROUSSET, F. 2008. GENEPOP’007: A complete re-implementation of the GENEPOP software for Windows and Linux. Molecular Ecology Resources 8: 103–106.

SMITH, T. M., P. H. YORK, A. M. STANLEY, P. I. MACREADIE, M. J. KEOUGH, D. J. ROSE, AND C. D. H. SHERRMAN. 2013. Microsatellite primer development for the seagrass Zostera nigricaulis (Zosteraceae). Conservation Genetics Resources 5: 607–610.

THIEL, T., W. MICHALEK, R. K. VARSHNEY, AND A. GRANER. 2003. Exploiting EST databases for the development and characterization of gene-derived SSR-markers in barley (Hordeum vulgare L.). Theoretical and Applied Genetics 10: 411–422.

Walsh, P. S., N. J. Fildes, AND R. Reynolds. 1996. Sequence analysis and characterization of stutter products at the tetranucleotide repeat locus vWA. Nucleic Acids Research 24: 2807–2812.

ZHANG, X., Y. ZHOU, P. LUI, F. WANG, B. LIU, X. LUI, AND H. YANG. 2015. Temporal pattern in biometrics and nutrient stoichiometry of the intertidal seagrass Zostera japonica and its adaptation to air exposure in a temperate marine lagoon (China): Implications for restoration and management. Marine Pollution Bulletin 94: 103–113.

APPENDIX 1. Voucher and location information for Zostera japonica populations used in this study. One voucher was collected for each population used; all vouchers were deposited in the Marine Biological Museum, Chinese Academy of Sciences, Qingdao, China.

Population code	Collection date	Locality (China)	Geographic coordinates	Herbarium ID
HQ	15 June 2015	Qingdao, Shandong	36°05’N, 120°34’E	MBM283038
FC	5 June 2012	Fangchenggang, Guangxi	21°36’N, 108°13’E	MBMD02001