Mitochondrial Phylogenomics yields Strongly Supported Hypotheses for Ascaridomorph Nematodes

Guo-Hua Liu1,2, Steven A. Nadler3, Shan-Shan Liu1, Magdalena Podolska4, Stefano D’Amelio5, Renfu Shao6, Robin B. Gasser7 & Xing-Quan Zhu1,2

Ascaridomorph nematodes threaten the health of humans and other animals worldwide. Despite their medical, veterinary and economic importance, the identification of species lineages and establishing their phylogenetic relationships have proved difficult in some cases. Many working hypotheses regarding the phylogeny of ascaridomorphs have been based on single-locus data, most typically nuclear ribosomal RNA. Such single-locus hypotheses lack independent corroboration, and for nuclear rRNA typically lack resolution for deep relationships. As an alternative approach, we analyzed the mitochondrial (mt) genomes of anisakids (~14 kb) from different fish hosts in multiple countries, in combination with those of other ascaridomorphs available in the GenBank database. The circular mt genomes range from 13,948-14,019 bp in size and encode 12 protein-coding genes, 2 ribosomal RNAs and 22 transfer RNA genes. Our analysis showed that the *Pseudoterranova decipiens* complex consists of at least six cryptic species. In contrast, the hypothesis that *Contracaecum ogmorhini* represents a complex of cryptic species is not supported by mt genome data. Our analysis recovered several fundamental and uncontroversial ascaridomorph clades, including the monophyly of superfamilies and families, except for Ascaridiidae, which was consistent with the results based on nuclear rRNA analysis. In conclusion, mt genome analysis provided new insights into the phylogeny and taxonomy of ascaridomorph nematodes.

Parasitic nematodes (roundworms) cause diseases associated with serious morbidity and mortality in animals and substantial reductions in crop yields1. For example, species in the superfamily Ascaridoidea (ascaridoids)2, including species of *Anisakis, Ascaris, Baylisascaris, Contracaecum, Pseudoterranova and Toxocara*, are particularly important pathogens of various animals, and are transmissible to humans, where they cause diseases such as anisakidosis, ascariasis and toxocariasis3–5. In cases where ascaridoid larvae are directly responsible for human disease, infection is acquired through accidental ingestion of embryonated eggs (e.g., toxocariasis) or the consumption of larvae within raw meat or fish products (e.g., anisakidosis)6.

Although some species of ascaridoids can be readily identified and distinguished based on morphological features (e.g., *Toxocara cati, Toxocara canis and Toxascaris leonina*), molecular data have revealed cryptic species complexes within other morphological species (e.g., *Anisakis simplex, Contracaecum rudolphii* and *Pseudoterranova decipiens*). Some of these cryptic species show considerable differences in host and geographical ranges7–9. The biodiversity of ascaridoids is substantial, consistent with the broad range of hosts infected by these nematodes, including birds, mammals, reptiles, fish and amphibians10; there are also differences in ecology of

1State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province 730046, P. R. China. 2College of Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan Province 410128, P. R. China. 3Department of Entomology and Nematology, University of California, Davis, CA 95616, USA. 4National Marine Fisheries Research Institute, Kollatija 1, 81-332 Gdynia, Poland. 5Department of Public Health and Infectious Diseases, Section of Parasitology, Sapienza University of Rome, Rome, Italy. 6Genealogy Research Centre, University of the Sunshine Coast, Queensland 4558, Australia. 7Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria 3010, Australia. Correspondence and requests for materials should be addressed to R.B.G. (email: robinbg@unimelb.edu.au) or X.Q.Z. (email: xingquanzhu1@hotmail.com)
particular host-parasite affiliations, and considerable genetic variation within species11. Important zoonotic disease complexes, such as anisakiosis, have substantial public health impact in several countries, including China, Germany, Japan, Netherlands and Spain12, emphasizing the need for improved diagnosis of the causative agents.

The accurate identification of ascaridoids to species is central to diagnosis, and also underpins fundamental and applied research of these important parasites. Challenges to diagnosis include the lack of species-level morphological features for most larvae, which are the stage responsible for disease in many cases. For many ascaridoid species complexes, identification to species is not possible based on morphology, such that nuclear or mitochondrial (mt) markers are necessary for identification. The first and second internal transcribed spacers of nuclear ribosomal DNA (ITS-1 and ITS-2 = ITS) have frequently been used as a species-specific marker in such cases13–16. By contrast, because of its relative conservation, the small subunit (SSU) of nuclear ribosomal RNA gene does not consistently provide sufficient sequence variation for the differentiation of ascaridoid species17. Most mt genes are much more variable in sequence than nuclear ribosomal RNA genes18,19, and recent studies have shown that amino acid sequences inferred from mt genome sequences are very useful for species identification as well as for investigating their inter-relationships20–24.

Detailed studies by Nadler et al.20–24, investigated the phylogenetic relationships of a range of Ascaridomorph taxa. Despite these advances, difficulties remain concerning the detection of cryptic species and the relationships among major lineages, such as families and superfamilies. For example, although some studies27,28 indicated that Anisakidae is more closely related to Ascarididae than to Toxocaridae, others29,30 have argued the opposite, and some have suggested that Anisakidae is sister to Toxocaridae + Ascarididae31,32. These results reflect inadequate resolution at higher levels for nuclear ribosomal data, conflicts between different inference methods, impacts of taxon sampling and limited phylogenetic signal from small data sets33,34. To overcome these limitations, we employed complete amino acid sequence data sets derived from mt genomes. Herein, we sequenced the complete mt genomes of six anisakids (Table 1), and reconstructed phylogenetic relationships using the data of these anisakids in combination with all mt genomic data sets available for ascaridomorph nematodes in public databases. Analyses of mt genome sequences in the present study have provided novel insights into the phylogenetic relationships of several major lineages of ascaridomorphs.

Table 1. Anisakid nematodes representing Pseudoterranova spp. and Contraaccaucum ogmorhini populations from different hosts, geographical origins and GenBank accession numbers.

Species/population	Host species	Geographical origin	Mitochondrial genome Accession no	ITS-2 Accession no
Pseudoterranova bulbosa	Erignathus barbatus (Bearded seal)	Newfoundland, Canada	KUS58720	AY143971
Pseudoterranova cattani	Otaria byronia (South American sea lion)	Concepcion, Chile	KUS58721	AY143983
Pseudoterranova decipiens s.l.	Chaenocephalus aceratus (Blackfin icefish)	South Shetland Islands, Antarctica	KUS58722	AY143980
Pseudoterranova decipiens s.l.	Osmerus eperlanus (European smelt)	Elbe estuary, Germany	KUS58723	AY143978
Pseudoterranova krabbei	Halichoerus grypus (Grey seal)	Froya Island, Norway	KUS58724	AY143966
Contraaccaucum ogmorhini s.l.	Arctocephalus pusillus doriferus	Australia	KUS58725	AY1291473
Contraaccaucum ogmorhini s.l.	Arctocephalus pusillus pusillus	South Africa	KUS58726	AY1291472
Contraaccaucum ogmorhini s.l.	Zalophus californianus	Pacific Canada	KUS58727	AY1291471

Results

Mitochondrial genomes of selected anisakids. The complete mt genomes of Pseudoterranova krabbei, Pseudoterranova decipiens s.l. (h. Chaenocephalus aceratus) (PDCA), Pseudoterranova decipiens s.l. (host Osmerus eperlanus) (PDOE), Pseudoterranova cattani, Pseudoterranova bulbosa and three Contraaccaucum ogmorhini s.l. from different hosts [Arctocephalus pusillus doriferus (COAPD), Arctocephalus pusillus pusillus (COAPP) and Zalophus californianus (COZC)] were 13,948 bp, 13,965 bp, 13,962 bp, 13,950 bp, 13,957 bp, 14,019 bp, 14,013 bp and 14,010 bp, respectively. Each of the 8 mt genomes contains 36 genes, consisting of 12 protein-encoding, 2 rRNA, and 22 tRNA genes (Fig. 1), which is typical for chromadorean nematodes. Gene order (36 genes) for eight genomes is the same as published for Anisakis simplex (Anisakidae)35, Ascaris spp. (Ascarididae)36 Toxocara spp. (Toxocaridae)37, but distinct from Ascaridia spp. (Ascarididae)30 and Cucullanus robustus (Cucullanidae)34. In comparison to the Ascaridia species, at least three rearrangement events occurred in An. simplex. The 12 protein-coding genes have ATT, ATG or TTG as a start codon. Most of the protein-coding genes use TAA or TAG as a complete termination codon, except for cox1, cox2, cox3, nad5 and nad4L, which have abbreviated stop codons (TA or T). The tRNA genes range from 52 to 63 bp. Their predicted secondary structures (not shown) are similar to those of other anisakids24,32,37,38. The rrrL gene is located between tRNA-His and nad3, and rrnS gene is located between tRNA-Glu and tRNA-Asn. The longer non-coding region (NCL) is located between the RNA-serUCN and tRNA-Asn, and the shorter non-coding region (NCR) is between nad4 and cox1.

Comparative analyses of members of the P. decipiens complex and C. ogmorhini. Nucleotide sequences or the conceptually translated amino acid sequences from the protein-coding genes were aligned and compared to assess sequence divergence. Across the entire mt genome, the uncorrected nucleotide sequence divergence was 3.8–9.4% among members of the P. decipiens species complex. For the same group of species, the divergence across nucleotide and amino acid sequences for all protein-coding genes was 3.7–10.6% and 1.7–9.1%, respectively. A comparison of the nucleotide and amino acid divergence between C. ogmorhini...
from three different host species is provided in Table 2. Across the entire mt genome, the sequence divergence between COAPD and COAPP was 0.6% (93 nucleotide substitutions), 1.7% (244 nucleotide substitutions) between COAPP and COZC, and 1.7% (243 nucleotide substitutions) between COAPD and COZC. For the protein-coding genes, the respective divergences in nucleotide and amino acid sequences were 0.6% and 0.9% between COAPD and COAPP; 1.8% and 1.1% between COAPP and COZC; and 1.8% and 1.0% between COAPD and COZC, respectively.

Phylogeny of ascaridoids inferred from mt genomic data sets. The 35 mt genomes analyzed include 20 species (29 taxa) representing Ascaridoidea, 4 species (5 taxa) of Heterakoidea and one species of Seuratoidea (Supplementary Table S1). Monophyly of the superfamilies Ascaridoidea (including three families Ascarididae, Toxocaridae and Anisakidae) and Heterakoidea (including two families Heterakidae and Ascaridiidae) were strongly supported in Bayesian (posterior probability, BPP = 1.0, Fig. 2) and maximum likelihood (ML) (bootstrap, BS = 100%, Fig. 2) analyses.

The Ascaridoidea, represented by families Ascarididae, Toxocaridae and Anisakidae, were monophyletic, with strong nodal support in Bayesian and ML analyses (BPP = 1.0, BS = 100%, Fig. 2). The family Ascarididae was monophyletic, with strong support in all analyses (BPP = 1.0, BS = 100%), as was the family Toxocaridae (BPP = 0.97, BS = 55%). The superfamilies Heterakoidea and Ascaridoidea were strongly supported as monophyletic (BPP = 1.0, BS = 100%, Fig. 2). The two species representing the Heterakoidea were monophyletic, with strong support (BPP = 1.0, BS = 100%) in both analyses, but the three representatives of the family Ascarididae (all species of *Ascaridia*) were paraphyletic. One species of *Ascaridia*, *A. galli*, was sister to the two *Heterakis* species, whereas the remaining two *Ascaridia* taxa grouped together. The close relationship of *A. galli* to the two *Heterakis* species was strongly supported by Bayesian inference, but weakly supported in the ML analysis. Eight of the 11 in-group genera analyzed has two or more representative species (Fig. 2); all of these genera, except *Ascaridia*, were monophyletic, with strong BPP or BS support.

Within the family Ascarididae, the genus *Toxascaris* (represented by *T. leonina*) was sister to *Baylisascaridae* spp., *Parascaris univalens* and *Ascaris* spp. (Fig. 2, BPP = 1.0, BS = 100%), supporting the genus *Toxascaris* as a member

Figure 1. The mitochondrial genomes representing six anisakid nematodes. All genes are on the same DNA strand and are transcribed clockwise. Protein-coding and rRNA genes are indicated with the standard nomenclature. tRNA genes are indicated with the one-letter code of their corresponding amino acids. There are two tRNA genes for leucine: L1 for codons CUN and L2 for UUR; and two tRNA genes for serine: S1 for codons AGN and S2 for UCN. "NCL" refers to the large non-coding region. "NCR" refers to a small non-coding region.
of the Ascarididae. In addition, *P. univalens* was sister to the genus *Ascaris* (represented by *A. lumbricoides* and *A. suum*) (Fig. 2, BPP = 1.0, BS = 99%), whereas four species of the genus *Baylisascaris* were a sister group to *Ascaris* plus *Parascaris* (Fig. 2, BPP = 1.0, BS = 100%). The genus *Toxocara* (represented by three species) was sister to the seven genera representing the Ascarididae plus Anisakidae. Within the family Anisakidae, *Pseudoterranova* (five species) was strongly supported as being sister to the genus *Anisakis* (Fig. 2, BPP = 1.0, BS = 100%), and *Contracaecum* (three species) was sister to *Anisakis* plus *Pseudoterranova* (Fig. 2, BPP = 1.0, BS = 98%).

Table 2. Nucleotide (nt) and/or predicted amino acid (aa) sequence differences in each mt gene among three *Contracaecum ogmorhini* samples upon pairwise comparison. COAPD: *Contracaecum ogmorhini* s.l. (Arctocephalus pusillus pusillus doriferus). COAPP: *Contracaecum ogmorhini* s.l. (Arctocephalus pusillus pusillus). COZC: *Contracaecum ogmorhini* s.l. (Zalophus californianus).

Gene/region	Nt sequence length	COAPD	COAPP	COZC	Nt difference (%)	Number of aa	COAPD	COAPP	COZC	aa difference (%)
atp6	600	600	600	600	0.3	1.5	1.9	199	199	1.0
nad1	873	873	873	873	0.6	0.9	0.8	290	290	0.3
nad2	846	846	846	846	0.7	2.4	2.2	281	281	0.3
nad3	336	336	336	336	0.3	0.9	1.2	111	111	0.3
nad4	1230	1230	1230	1230	0.4	2.9	3.2	409	409	1.2
nad4L	234	234	234	234	0.4	0.9	0.4	77	77	1.3
nad5	1582	1579	1582	1582	0.6	0.3	0.6	527	526	0.6
nad6	435	435	434	434	0.5	0.7	0.2	144	144	0.0
cox1	1576	1576	1576	1576	1.2	2.4	2.2	525	525	1.0
cox2	696	696	696	696	0.4	2.8	2.7	231	231	1.3
cox3	766	766	766	766	0.4	2.7	2.5	152	152	1.6
cytb	1107	1107	1107	1107	1.0	2.1	2.0	368	368	1.1
rrnS	691	690	690	690	0.4	0.7	0.9	—	—	—
rrnL	963	962	962	962	0.6	2.1	1.9	—	—	—
22 tRNAs	1253	1243	1254	1254	0.7	1.4	1.5	—	—	—

Discussion

Ascaridomorph nematodes are diverse; the superfamily Ascaridoidea alone contains more than 50 genera, including parasites of mammals, birds, amphibians, reptiles and fishes. Most molecular phylogenetic studies have focused on ascaridoid genera in the families Ascarididae and Anisakidae, and have mainly been based on nuclear ribosomal RNA genes. More recently, some phylogenetic studies of the Ascaridae have used mt genetic and complete mt genomic data sets. Here, we sequenced the mt genomes of eight representatives of the family Anisakidae and conducted comprehensive phylogenetic analyses of these nematodes and all other ascaridomorphs for which mt genomic data were available in databases. The present study has reinforced insights into the phylogenetic relationships of several lineages of ascaridomorphs and delivers a rich source of genetic markers for systematic, population genetic and epidemiological studies of these nematodes. In addition, such markers might also be used to explore the host specificity and zoonotic potential of these worms.

Our results are consistent with the division of the sampled ascaridomorph nematodes into three superfamilies: Ascaridoidea, Heterakoidea and Seuratoida. Each of these superfamilies was monophyletic in our analysis with strong support, regardless of the analytical method. Within the superfamily Ascaridoidea, monophyly of the families Ascarididae, Anisakidae and Toxocaridae are each strongly supported by Bayesian and ML analyses. The best Bayesian consensus tree depicts a sister group relationship between Anisakidae and Ascarididae; however, this relationship is not reliably supported by ML bootstrap resampling. In other analyses of mt genomes, phylogenetic trees support a closer relationship between Anisakidae and Toxocaridae, but these studies involved single representatives of each family. Analysis of nuclear SSU rRNA sequence data supports a closer relationship between Ascarididae and Toxocaridae. In other analyses of molecular data, Anisakidae is sister to Ascarididae plus Toxocaridae.

Within the Ascarididae and Anisakidae, the relationships among genera based on mt genome sequence data is the same as that from a combined analysis of nuclear rRNA gene and *cox2* as well as morphological data sets. Relationships of species groups within *Contracaecum* are also consistent with the results inferred from nuclear rRNA gene sequences.

The present study included five species from the superfamily Heterakoidea, two from the family Heterakidae and three from the family Ascarididae. In a previous investigation of mt genomes, monophyly of Ascarididae was well supported based on phylogenetic analysis of *Ascaridia* species; however, inclusion of *Heterakis* species yields a non-monophyletic Ascaridiidae due to the sister-group relationship of *A. galli* to *Heterakis*. Support for this result was strong from Bayesian inference (BPP = 1.0), but weak from ML analysis (BS = 77%). Some previous studies using morphological data indicated that the families Heterakidae and Ascaridiidae (Heterakoidea) were most closely related to the infra-order Oxyuridomorpha. However, studies based on SSU rRNA gene sequence...
data have yielded conflicting results. For example, approximately half of the analyses performed by Nadler et al.26, based on SSU rRNA, yield a sister group relationship between Oxyuridomorpha and Heterakoidea. Previous studies of mt genomic data sets including those of \textit{Ascaridia}32, \textit{Heterakis}42 and \textit{Ascaridia}20 supported a close relationship between Ascaridiidae and Ascaridomorpha. The improved sampling of Heterakoidea analyzed herein also supports a clade consisting of Ascaridoidea and Heterakoidea, rather than Heterakoidea and Oxyuridomorpha. Consistent with previous studies20,32,43, the current study provides strong support that \textit{Ascaridia galli} is sister to the genus \textit{Heterakis}, and supports the hypothesis that families Heterakidae and Ascaridiidae are more closely related to the infra-order Ascaridomorpha.

There is considerable value in employing mt genome markers to explore genetic variation within the genera \textit{Pseudoterranova} and \textit{C. ommorphi}, because phenotypic differentiation is unreliable44. The \textit{P. decipiens} complex consists of at least five cryptic species (genetically but morphologically indistinguishable), namely \textit{P. decipiens}, \textit{P. azarasi}, \textit{P. cattani}, \textit{P. krabbei} and \textit{P. bulbosa}45,46. From the present study, nucleotide and amino acid sequences representing the mt proteome show a range of divergences (3.7–10.6% and 1.7–9.1%, respectively), and phylogenetic analyses indicate that these \textit{Pseudoterranova} samples represent six distinct lineages (cf. Fig. 2). The nucleotide sequence differentiation (3.8–9.4%) detected in mt genomes was consistent with previous findings of differentiation (0–6.8%) in the sequences of the nuclear ITS rDNA from five \textit{P. decipiens} species complex members\textsuperscript{47).

In addition, we characterized here the mt genomes of three representatives of \textit{C. ommorphi} from different origins.

Figure 2. Phylogenetic relationships among ascaridoid nematodes inferred from Bayesian and maximum likelihood analyses of amino acid sequences for 12 mitochondrial genes. \textit{Thelazia callipaeda}, \textit{Brugia malayi}, \textit{Wellcomeia siamensis} and \textit{Enterobius vermicularis} were used as outgroups. Bayesian posterior probability (BPP) and maximum likelihood bootstrap proportions (BS) are shown.
and hosts, and found sequence differences of <1.8% in the genes representing the mt proteome, which is comparable with levels detected between A. suum specimens from China and USA (1.5%) 30, and T. canis from China and Australia (2.3%) 31,48 (cf. Fig. 2). Taken together, these findings suggest that C. ogmorhini specimens from different host species represent a single species rather than sibling species, which contradicts previous conclusions from studies using nuclear ITS rDNA showing limited nucleotide variation (0.2–0.7%) 49.

Methods

Genomic DNA samples of anisakid nematodes. Genomic DNA samples representing five sibling species of the Pseudoterranova decipiens complex and three populations of C. ogmorhini s.l. are listed in Table 1. These DNA samples had been used in our two previous studies 47,49, and these anisakids had been identified preliminarily to species based on host preference, morphological characters and predilection sites 50. The identities of these DNA samples were re-confirmed by PCR amplification and sequencing of the region spanning ITS-1, 5.8 S rRNA gene and ITS-2 47,49. In addition, phylogenetic analysis of ITS data supports clustering of the Pseudoterranova in a previous study 49.

PCR amplification of the mt genomes of Anisakid nematodes. Based on the published mt genome sequences of anisakids, 23,32,38, we designed specific primers for long PCR amplification (Supplementary Table S2). We amplified the entire mt genome of individual specimens of anisakid nematodes by long PCR in four or five overlapping fragments, respectively. The four overlapping long-PCR fragments for P. krabbei, P. bulbosa, P. cattani and P. decipiens s.l. (Blackfin icefish) were between nad1 and nad4 (~5.0 kb), between nad4 and rrl (~4.5 kb), between rrl and rrns (~3.5 kb) and between rrns and nad1 (~2.0 kb). The five overlapping long-PCR fragments for P. decipiens s.l. (European smelt) were: nad1 to cyb (~3.0 kb), cyb to nad4 (~2.5 kb), nad4 to cox1 (~1.5 kb), cox1 to rrl (~3.0 kb), and rrl to nad1 (~5.0 kb) (cf. Fig. 1). The five overlapping long-PCR fragments for C. ogmorhini from different hosts were: nad1 to cox3 (~4.0 kb), cox3 to cox1 (~3.0 kb), cox1 to rrl (~3.0 kb), rrl to rrns (~4.0 kb) and rrns to nad1 (~1.8 kb). Each long-PCR reaction was performed in 25 μL using 2 mM MgCl2, 4.0 μL 0.2 mM each of dNTPs, 2.5 μL 10× Taq buffer, 0.25 μL 2.5 μL of each primer, 0.25 μL 1.25 U rTaq polymerase (Takara), and 20–50 ng of total genomic DNA. The PCR conditions were: 92 °C for 2 min (initial denaturation), then 92 °C for 10 sec (denaturation), 54–59 °C for 30 sec (annealing) and 60 °C for 4–5 min (extension) for five cycles, followed by 92 °C for 2 min, then 92 °C for 10 sec, 54–59 °C for 30 sec, and 66 °C for 4–5 min for 30 cycles, and a final extension at 68 °C for 10 min. PCR amplicons were column-purified and then sequenced using a primer-walking strategy 51.

Sequence assembly and mt genome annotation. Sequence reads of anisakid nematodes were assembled with the program ContigExpress of the Vector NTI software package v.6.0 (Invitrogen, Carlsbad, CA). The mt genome sequences of anisakid nematodes were aligned with those of other anisakid nematodes available from the GenBank database 23,32,38 using Clustal X 1.83 52 to infer gene boundaries. Sequences of protein-coding genes were translated into amino acid sequences using the invertebrate mt genetic code in MEGA 5.0 53. Translation and initiation codons were identified by comparison with those of the anisakid nematodes reported previously 23,32,38. The secondary structures of 22 tRNA genes were predicted using tRNAscan-SE 54, with manual adjustment 55. Tandem repeats in the non-coding regions were found using Tandem Repeat Finder program (http://tandem.bu.edu/trf/trf.html) 56.

Phylogenetic analyses. All mt genome sequences of the infra-order Ascaridomorpha, along with those of selected Chromadorea outgroups, were obtained from GenBank and combined for phylogenetic analysis; Thelazia callipaeda, Brugia malayi, Wellcomea siamensis and Enterobius vermicularis were used to root the trees. Amino acid sequences inferred from the nucleotide sequences of 12 mt protein-coding genes were aligned individually using MAFFT v.7.122 57 and were then concatenated to form a single dataset; ambiguously aligned regions were excluded using Gblocks 0.91b 58 using default parameters.

Phylogenetic analyses were conducted using Bayesian (BI) and maximum likelihood (ML) inference. Maximum likelihood analysis was performed using RAxML v.7.0.3 59 and implemented using the CIPRES web portal 60. For ML analysis, the JTT (genes 1–8; cyt, cox1, cox3, atp6, nad2, nad3, nad4L and nad5), LG (genes 9–10; cox2 and nad1), and MtArt (genes 11–12; nad4 and nad6) models were used as selected by ProtTest 2.4 61 based on the Akaike information criterion (AIC). ML analysis was partitioned by gene, and bootstrap resampling was performed using the rapid bootstrapping option with 1,000 iterations. Bayesian analysis was also implemented using CIPRES and MrBayes 3.2.6 62, and four independent Markov chains were run for 100,000 metropolis-coupled MCMC generations, sampling trees every 100 generations. The first 250 trees represented burn-in, and the remaining trees were used to produce Bayesian consensus trees. The analysis was performed until the potential scale reduction factor approached 1 and the average standard deviation of split frequencies was <0.01. For Bayesian analysis, the dataset was partitioned by gene, and the amino acid (aa) model for each gene was estimated from a mixture of models with fixed rate matrices and gamma distributed rates. With this analysis, each model contributes to the results in proportion to its posterior probability (BPP). Maximum-likelihood bootstrap (BS) support of >70% was considered strong support 63. Phylograms were drawn using FigTree v.1.31 (http://tree.bio.ed.ac.uk/software/figtree/).

References

1. Blaxter, M. L. Nematode: genes, genomes and the evolution of parasitism. Adv Parasitol. 54, 101–195 (2003).
2. Anderson, R. C. Nematode Parasites of Vertebrates: Their Development and Transmission (ed Anderson, R. C.). Ch. 5, 245–348 (CAB International, 2000).
3. Jenkins, E. J. et al. Tradition and transition: parasitic zoonoses of people and animals in Alaska, northern Canada, and Greenland. Adv Parasitol. 82, 33–204 (2013).

References

1. Blaxter, M. L. Nematode: genes, genomes and the evolution of parasitism. Adv Parasitol. 54, 101–195 (2003).
2. Anderson, R. C. Nematode Parasites of Vertebrates: Their Development and Transmission (ed Anderson, R. C.). Ch. 5, 245–348 (CAB International, 2000).
3. Jenkins, E. J. et al. Tradition and transition: parasitic zoonoses of people and animals in Alaska, northern Canada, and Greenland. Adv Parasitol. 82, 33–204 (2013).
4. Chen, J. et al. Canine and feline parasitic zoonoses in China. Parasitol. Vectors. 5, 152 (2012).
5. Shamsi, S. Recent advances in our knowledge of Australian anisakid nematodes. Int J Parasitol Parasites Wild. 3, 178–187 (2014).
6. Newell, D. G. et al. Food-borne diseases - the challenges of 20 years ago still persist while new ones continue to emerge. Int J Food Microbiol. 139, S3–S15 (2010).
7. Mattucci, S. et al. Genetic and morphological approaches distinguish the three sibling species of the Anisakis simplex species complex, with a species designation as Anisakis berlandii n. sp. for A. simplex sp. C (Nematoda: Anisakidae). J Parasitol. 100, 199–214 (2014).
8. Shamsi, S. et al. Genetic and morphological evidences for the existence of sibling species within Contracaecum rudolphii (Hartwich, 1964) (Nematoda: Anisakidae) in Australia. Parasitol Res. 105, 529–538 (2009).
9. Timi, J. T. et al. Molecular identification, morphological characterization and new insights into the ecology of larval Pseudoterranova cattani in fishes from the Argentine coast with its differentiation from the Antarctic species, P. decipiens sp. E (Nematoda: Anisakidae). Vet Parasitol. 199, 59–72 (2014).
10. Sprent, J. F. Ascaridoid nematodes of South American mammals, with a definition of a new genus. J Helminthol. 56, 275–295 (1982).
11. Mattucci, S. & Nascetti, G. Advances and trends in the molecular systematics of anisakid nematodes, with implications for their evolutionary ecology and host-parasite co-evolutionary processes. Adv Parasitol. 66, 47–148 (2008).
12. Baird, F. J. et al. Foodborne anisakiasis and allergy. Mol Cell Probes. 28, 167–174 (2014).
13. Li, M. W. et al. The occurrence of Toxocara malaysiensis in cats in China, confirmed by sequence-based analyses of ribosomal DNA. Parasitol Res. 99, 554–557 (2006).
14. Zhu, X. Q. & Gasser, R. B. Single-stand conformation polymorphism (SSCP)-based mutation scanning approaches to fingerprint sequence variation in ribosomal DNA of ascaridoid nematodes. Electrophoresis. 19, 1366–1373 (1998).
15. Zhu, X. Q. et al. Molecular characterization of a Toxocara variant from cats in Kuala Lumpur, Malaysia. Parasitology. 117, 64 (1998).
16. Zhu, X. et al. Characterisation of Ascari from human and pig hosts by nuclear ribosomal DNA sequences. Int J Parasitol. 29, 469–478 (1999).
17. Nadler, S. A. Phylogeny of some ascaridoid nematodes, inferred from comparison of 18S and 28S rRNA sequences. J Parasitol. 84, 790–798 (1998).
18. Li, M. W. et al. The complete mitochondrial genome of the Ascaris leonina: comparison with other closely related species and phylogenetic implications. Infect Genet Evol. 21, 329–333 (2014).
19. Xie, Y. T. et al. The mitochondrial genome of Baylisascaris procyonis. PLoS One. 6, e27066 (2011).
20. Mohandas, N. et al. Mitochondrial genomes of Anisakis simplex and Contracaecum osculatum (sensu stricto)–comparisons with selected nematodes. Infect Genet Evol. 21, 452–462 (2014).
21. Jabbar, A. et al. The mitochondrial genome of Parascaris univalens–implications for a “forgotten” parasite. Parasit Vectors. 7, 428 (2014).
22. Nadler, S. A. & Hudspeth, D. S. Ribosomal DNA and phylogeny of the Ascarioidea (Nematoda: Secernentea): implications for morphological evolution and classification. Mol Phylogenet Evol. 10, 221–236 (1998).
23. Nadler, S. A. et al. Molecular phylogeny of clade III nematodes reveals multiple origins of tissue parasitism. Parasitology. 134, 1421–1442 (2007).
24. Blaxter, M. L. et al. A molecular evolutionary framework for the phylum Nematoda. Nature. 392, 71–75 (1998).
25. Meldal, B. H. et al. An improved molecular phylogeny of the Nematoda with special emphasis on marine taxa. Mol Phylogenet Evol. 42, 622–636 (2007).
26. Kaag, S. et al. The mitochondrial genome sequence of Enterobius vermicularis (Nematoda: Oxyurida)–an idiosyncratic gene order and phylogenetic information for chromodorean nematodes. Gene. 429, 87–97 (2009).
27. Ross, L. J. L. et al. Molecular phylogeny of slug-parasitic nematodes inferred from 18S rDNA gene sequences. Mol Phylogenet Evol. 55, 738–743 (2010).
28. Li, M. W. et al. The complete mitochondrial genomes for three Toxocara species of human and animal health significance. BMC Genomics. 9, 224 (2008).
29. Kim, T. et al. Phylogeny of Rhigonematormorphs based on the complete mitochondrial genome of Rhigonema thysanophora (Nematoda: Chromadorea). Zool Scr. 43, 289–303 (2014).
30. Liu, G. H. et al. Gnathostoma spinigerum mitochondrial genome sequence: a novel gene arrangement and its phylogenetic position within the class Chromadorea. Sci Rep. 5, 12691 (2015).
31. Park, J. K. et al. Monophyly of clade III nematodes is not supported by phylogenetic analysis of complete mitochondrial genome sequences. BMC Genomics. 12, 392 (2011).
32. Sultana, T. et al. Comparative analysis of complete mitochondrial genome sequences confirms independent origins of plant-parasitic nematodes. BMC Evol Biol. 13, 6 (2013).
33. Liu, G. H. et al. Comparative analyses of the complete mitochondrial genomes of Ascaris lumbricoides and Ascaris suum from humans and pigs. Gene. 492, 110–116 (2012).
34. Liu, R. Q. et al. Contracaecum rudolphii B: gene content, arrangement and composition of its complete mitochondrial genome compared with Anisakis simplex s.l. Exp Parasitol. 130, 135–140 (2012).
35. Liu, S. S. et al. The complete mitochondrial genome of Pseudoterranova azarasi and comparative analysis with other anisakid nematodes. Infect Genet Evol. 33, 293–298 (2015).
36. Nadler, S. A. & Hudspeth, D. S. Phylogeny of the Ascarioidea (Nematoda: Ascarida) based on three genes and morphology: hypotheses of structural and sequence evolution. J Parasitol. 86, 380–393 (2000).
37. Nadler, S. A. et al. Phylogenetic relationships among species of Contracaecum Railliet & Henry, 1912 and Phocascaris Host, 1932 (Nematoda:Ascarioidea) based on nuclear rDNA sequence data. Parasitolology. 121, 455–463 (2000).
38. Spákalová, M. & Birová, V. Efficacy of the per-rectal transfer of postinvasive Heterakis spumosa developmental stages (Nematoda: Oxyurata). Helminthologia. 27, 125–133 (1990).
39. Wang, B. J. et al. Mitochondrial genomes of Heterakis gallinarum and Heterakis beramporia support that they belong to the infraorder Ascaridiformes. Infect Genet Evol. 40, 228–235 (2016).
40. Snábel, V. et al. Molecular identification of Heterakis spumosa obtained from brown rats (Rattus norvegicus) in Japan and its infectivity in experimental mice. Parasitol Res. 113, 3449–3453 (2014).
41. Herrerández-Orts, J. S. et al. Description, microhabitat selection and infection patterns of sealworm larvae (Pseudoterranova decipiens species complex, nematoda: ascarioidea) in fishes from Patagonia, Argentina. Parasit Vectors. 29, 232 (2013).
42. Paggi, L. et al. Genetic evidence for three species within Pseudoterranova decipiens (Nematoda, Ascarida, Ascarioidea) in the north Atlantic and Norwegian and Barents Seas. Int J Parasitol. 21, 195–212 (1991).
43. Paggi, L. et al. Pseudoterranova decipiens species A and B (Nematoda, Ascarioidea): nomenclatural designation, morphological diagnostic characters and genetic markers. Syst Parasitol. 45, 185–197 (2000).
Mitochondrial Phylogenomics yields Strongly Supported Hypotheses for Ascaridomorph Nematodes.

How to cite this article: Liu, G.-H. et al. Mitochondrial Phylogenomics yields Strongly Supported Hypotheses for Ascaridomorph Nematodes. Sci. Rep. 6, 39248; doi: 10.1038/srep39248 (2016).

Publisher's note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.