Diurnal rhythm of blood haematological parameters of sun exposed Martina franca jacks in semitropical desert climate

Pradeep Kumar Godwal, Anil Moolchandani, Hakim Manzer, Vijay Kumar, Meenaxi Sareen, Amit Kumar Chotiya, NS Rathore and Jitendra Kumar

DOI: https://doi.org/10.22271/phyto.2021.v10.i1s.13533

Abstract

Diurnal rhythm of blood haematological parameters was studied in adult and apparently healthy, male Martina franca (Poitou) jacks (n=6). The jacks weighing between 270 to 350 kg, and were fed with standard ration for maintenance as per NRC (2007) once in the morning at 8 AM and water ad-libitum during the period of sun exposure. Blood was collected for haematological parameters at 07:00 h, 10:00 h, 14:00 h and 16:00 h on 1st, 4th and 7th day in a seven day experimental period during October 2016 heat stress period (HS). Thermal heat index (THI) = 69.90 at 7.00h and 80.14 at 14.00h and on a single day in peak winter in December 2016 Control ‘C’, THI: 63.93 at 7.00h and 80.14 at 14.00h). Haematological indices were studied on 1st, 4th and 7th day in the heat stress period which were compared with that on a single day in winter. WBC count increased significantly from 7:00h to 10:00h in both the seasons. Maximum significant increase was observed from 07:00h to 14:00h in heat stress period on 7th day of exposure. RBC, Hb and Hct concentrations increased in the afternoon on day 1 and 4 only in the heat stress period. Higher WBC, HCT, Hb and RBC were observed due to heat stress in the afternoons in the heat stress period and the significance varied.

Keywords: Martina franca (Poitou), diurnal rhythm, haematological profile, heat stress, RBC, WBC, Hb and HCT

1. **Introduction**

In Rajasthan, heat stress is one of the important factors affecting the working capacity of all the animals, including equines. Heat stress is known to affect the physiological indices in animals, including goats, lamb and equines (Karim and Patnayak., 1999). During 2009-10, an attempt was made to study and compare the physiological adjustments made by indigenous and exotic donkeys and mules at ICAR-National Research Centre on Equine, Bikaner. The exotic donkeys (Poitou) were received as gift under Indo-UK collaborative research project through Overseas Development Authority (ODA, UK) at the centre for breed improvement and better quality mule production (Pal et al., 2000) [19]. However till date no comprehensive report describes the physiological stress including hematological changes occurring in these donkeys in response to thermal stress and their tolerance levels after having kept at the subtropical desert climate for more than a decade. Only a single study has described their heat tolerance in response to solar radiation (Pal et al., 2000) [19]. However this study did not evaluate the hematological responses and major responses during the recovery period. Therefore, this study was planned to determine the effect of heat tolerance on physiological reactions and haematological parameters in exotic donkeys (Martina Franca).

2. **Materials and Methods**

Six adult and apparently healthy, male exotic Martina Franca (Poitou) donkeys weighing between 270 to 350 kg, maintained at Equine Production campus (EPC), Bikaner of ICAR-National Research Centre on Equines, Hisar were selected for experimentation at the campus in accordance with the ethical treatment of experimental animals as per Institute Animal Ethics Committee of Rajasthan University of Veterinary and Animal Sciences, Bikaner. These animals were provided with standard ration for maintenance as per NRC (2007) once in the morning at 8 AM and water ad-libitum during the course of study except during the period 10:00h to 14:00h. All experimental animals were housed individually in partially open shed with sufficient height, sunlight, ventilation and space for animal movement.
Animals were in the habit of staying exposed to sun during the period 10:00h to 14:00h in the open sun in their sheds.

2.1 Collection of blood samples
4 ml blood samples were collected from jugular vein with negligible pain and minimal disturbance to the animals. Blood was collected with all aseptic precautions in sterilized tubes containing heparin as anticoagulant @ 2 IU/ml of blood. Blood was immediately mixed gently with the anticoagulant by inverting the tubes four to five times.

2.1.1 Hematological parameters
Total leucocyte counts (TLC, units x1000/cu mm), total erythrocyte counts (TEC, units x millions/cu mm), Packed cell volume (%) and Hemoglobin (g%) were estimated in automated five parts blood cell counter (MS4, France). Prior to analysis of the samples, the analyser was calibrated by ascertaining the accuracy of analysis through manual hematological methods (Jain, 1975)\(^9\).

2.1.2 Statistical analyses
The data was subjected to descriptive analysis for deriving group means, standard error, analysis of variance (ANOVA) and post ANOVA pair-wise comparison of means by Fisher’s Least Significant Test, and correlations between various parameters in statistical software SYSTAT 7.0. Significance was considered at \(p<0.05\).

3. Results and Discussion
The various blood haematological parameters studied to quantify the effect of heat stress on donkeys during the heat stress period characterized by high solar radiation during the afternoons in comparison to the thermonutral period in winter are presented in the following tables.

Table 3.1: Effect of heat stress on white blood cell counts in Martina Franca donkeys (Poitou Jacks)
Table 3.1 Effect of heat stress on white blood cell counts in Martina Franca donkeys (Poitou Jacks)

Diurnal Time Points	1st day	4th day	7th day	Thermo-neutral Period
07:00 h	9.14 ± 1.31	8.85 ± 0.76	7.78 ± 0.64\(^a\)	9.70 ± 0.76\(^a\)
10:00 h	8.10 ± 1.00\(^A\)	7.81 ± 0.46\(^A\)	9.79 ± 1.30\(^bA\)	13.44 ± 1.50\(^bB\)
14:00 h	9.97 ± 0.73\(^B\)	7.62 ± 0.70\(^B\)	14.82 ± 0.83\(^cC\)	11.57 ± 0.84\(^bB\)
16:00 h	7.96 ± 0.73\(^A\)	9.96 ± 0.30\(^AB\)	12.33 ± 0.58\(^cB\)	10.49 ± 1.10\(^bB\)

A, B, C: Values with different superscripts within a column (within time) vary significantly with each other (\(p<0.05\))

A, b, c: Values with different superscripts within a column (within time) vary significantly with each other (\(p<0.05\))

1, 4, 7d: days of exposure from 10AM-2PM; TN: animals kept in similar condition in thermoneutral climate in winter

Table 3.2: Effect of heat stress on Red Blood Cell counts in Martina Franca donkeys (Poitou Jacks)
Table 3.2 Effect of heat stress on Red Blood Cell counts in Martina Franca donkeys (Poitou Jacks)

Diurnal Time Points	1st day	4th day	7th day	Thermo-neutral Period
07:00 h	7.32 ± 0.05\(^B\)	7.78 ± 0.55\(^B\)	6.07 ± 0.30\(^A\)	5.87 ± 0.38\(^AB\)
10:00 h	7.52 ± 0.59\(^A\)	7.41 ± 0.42\(^A\)	6.12 ± 0.22\(^A\)	6.57 ± 0.32\(^AB\)
14:00 h	7.76 ± 0.31\(^B\)	7.64 ± 0.49\(^B\)	6.21 ± 0.24\(^A\)	7.11 ± 0.52\(^AB\)
16:00 h	8.02 ± 0.03\(^B\)	7.81 ± 0.33\(^B\)	6.01 ± 0.31\(^A\)	6.00 ± 0.23\(^A\)

A, B, C: Values with different superscripts within a row (within days) vary significantly with each other (\(p<0.05\))

A, b, c: Values with different superscripts within a column (within time) vary significantly with each other (\(p<0.05\))

1, 4, 7d: days of exposure from 10AM-2PM; TN: animals kept in similar condition in thermoneutral climate in winter

Table 3.3: Effect of heat stress on Hemoglobin in Martina Franca donkeys (Poitou Jacks)
Table 3.3 Effect of heat stress on Hemoglobin in Martina Franca donkeys (Poitou Jacks)

Diurnal Time Points	1st day	4th day	7th day	Thermo-neutral Period
07:00 h	13.00 ± 0.82\(^B\)	12.43 ± 0.57\(^AB\)	10.42 ± 0.54\(^A\)	10.72 ± 0.82\(^AB\)
10:00 h	13.47 ± 0.11\(^B\)	13.25 ± 0.20\(^B\)	10.68 ± 0.47\(^A\)	11.45 ± 0.70\(^AB\)
14:00 h	13.80 ± 0.56\(^A\)	13.80 ± 0.90\(^A\)	9.73 ± 0.54\(^A\)	12.82 ± 1.09\(^AB\)
16:00 h	14.67 ± 1.00\(^B\)	14.12 ± 0.47\(^B\)	11.00 ± 0.53\(^A\)	10.10 ± 0.27\(^AB\)

A, B, C: Values with different superscripts within a row (within days) vary significantly with each other (\(p<0.05\))

A, b, c: Values with different superscripts within a column (within time) vary significantly with each other (\(p<0.05\))

1, 4, 7d: days of exposure from 10AM-2PM; TN: animals kept in similar condition in thermoneutral climate in winter

Table 3.4: Effect of heat stress on Hematocrit in Martina Franca donkeys (Poitou Jacks)
Table 3.4 Effect of heat stress on Hematocrit in Martina Franca donkeys (Poitou Jacks)

Diurnal Time Points	1st day	4th day	7th day	Thermo-neutral Period
07:00 h	40.32 ± 1.13\(^AB\)	43.07 ± 3.29\(^A\)	35.18 ± 1.19\(^AB\)	36.67 ± 1.61\(^AB\)
10:00 h	41.63 ± 2.89	41.33 ± 2.08	37.27 ± 1.52\(^B\)	42.98 ± 2.38\(^B\)
14:00 h	42.83 ± 1.39	42.80 ± 2.76	41.62 ± 1.70	46.23 ± 3.98\(^B\)
16:00 h	44.92 ± 5.63	43.63 ± 1.37	37.93 ± 1.91	39.15 ± 2.11\(^B\)

A, B, C: Values with different superscripts within a row (within days) vary significantly with each other (\(p<0.05\))

A, b, c: Values with different superscripts within a column (within time) vary significantly with each other (\(p<0.05\))

1, 4, 7d: days of exposure from 10AM-2PM; TN: animals kept in similar condition in thermoneutral climate in winter

~ 1343 ~
The heat stress period with THI above 80 in the afternoon during the October with substantial exposure of the animals to solar radiation in open sheds induced several hematological changes as compared to the thermonutral period in winter with THI less than 70 (Tables 3.1. to 3.4). The significant increase in the total leukocyte count with the diurnal progression of day was a result of heat stress during the afternoon hours combined with hemocoagulation as the feed intake and water intake was restricted between 10:00h to 14:00h. The levels at 14:00h in the heat stress period on 7th day remained higher than the corresponding values in the thermonutral day. There was an increase in WBC due to heat stress on 7th day. Such a response was not visible on the first day. Moreover, the WBC counts initially increased from 7:00h to 10:00h but later on declined during the thermonutral period as the day progressed. Since there was no substantial solar radiation in the winter, cold stress coupled with the mild wind chill continuing in winter, which is supposed to have increased WBC levels during the early hours of the day. The heat stress itself results in increased leukocyte counts in the horses and donkeys (Alrhman, 2015) [1]. Very few studies have reported hematological values of donkeys. Most of these reports are concentrated on providing the reference values of different breeds of donkeys. No report has described the hematological changes at diurnal time points in donkeys due to climatic effect. This study is therefore so far the first of its kind to report such values. As the diurnal change in the ambient temperature is significantly large in tropics, particularly, in the arid climate, during summers, such information is important from the clinical and diagnostic point of view. Most of the clinicians refer the hematological changes observed in donkeys with the reference values of horses. This is not considered a valid approach (Jordana et al., 1998; Mori et al., 2003; Laus et al., 2015) [10, 16, 13]. The heat stress induces inflammatory response in the vasculature of the arteries and veins resulting in increased number of white blood cells primarily due to increased neutrophils and lymphocytes amongst the WBCs to counter the inflammation. The cardiovascular system increases the cardiac output during heat stress leading to increased blood flow in the vasodilated blood vessels in order to supply extra oxygen and metabolites for work and heat dissipation in respective tissues. Extreme stress has also been reported to cause an increased influx of erythrocytes in the circulation from spleen which acts as a reservoir of erythrocytes in horses during stressful conditions such as exercise (Piccione et al., 2005, 2007; Escribano et al., 2013) [3]. The hematological indices studied during thermonutral climate and during the morning hours were in agreement with the normal range observed in horses and donkeys (Jordana et al., 1998; Mori et al., 2003; Garba et al., 2015; Laus et al., 2015; Burden et al., 2016) [10, 16, 13, 2]. Meteorological factors control the dynamics of hematological parameters in equines (Satue et al., 2013) [21]. Higher PCV, RBC and Hb were observed during summer in the Carthussian mares (Satue et al., 2013) [21], while cold climate is found to reduce the erythrocyte count in horses (Ruiz et al., 2004) [20]. Gill et al. (1979) [6] observed lower Hb and RBC during summer in Arabian horses. In the tropics, where most of the animals are kept in open sheds, there is substantial heat load on these animals due to direct solar radiation (Zakari et al., 2014) [23]. These animals therefore have to alter their behavior and physiology in order to adapt to the climatic changes in order to dissipate heat and remain comfortable. Oxygen consumption and average heart rate is increased in the equines under work or under exercise (Art and Lekeux 1993; Kumar and kumar 2013) [14,12]. Circadian variations in Hb, PCV, and RBC reported in adult horses, mares and foals (Gill and Kompanowska 1986; Komasa et al., 1990; Paglieroni et al., 1994; Ruiz et al., 2004) [5, 11, 18, 20] are more or less in agreement with our findings. A too high or low ambient temperature would lead to higher metabolic activity stimulating erythropoesis. Lower morning temperature in the winters could have led to high values of RBC at 07:00 h. Additionally enhanced sympathetic activity in winter could lead to increased splenic mobilization with the release of RBCs in the bloodstream (Hata et al., 1982; Satue et al., 2013) [8, 21]. Contrarily a previous report has indicated that intense cold could reduce RBC by reducing their half life (Lurie et al., 1993) [15]. Satue et al. (2013) [21] also found higher RBCs and Hct in the summer months than in winter months which is due to heat, physical activity and change in the feeding grass which has a different composition. High temperature and associated decrease in the body fluids in association with the thermoregulatory mechanisms could influence RBC and Hct, limiting the importance of hemoconcentration, because of evaporative sweating and for breathing (Satue et al., 2013) [21]. Sexual activity is also higher in horses during summer and spring causing hemoconcentration and decreases during winter, ceasing completely in winter (Ginther et al., 2008) [7].

7. References
1. Alrhman SSM. Effects of patrolling and exposure to solar radiation stresses on some blood parameters of police horses (Sawari), Khartoum state, Sudan. Journal of Applied and Industrial Sciences 2015;3(2):45-51.
2. Burden FA, Hazell-Smith E, Mulugeta G, Patrick V, Crawford R, Brownlie HWB. Reference intervals for biochemical and haematological parameters in mature domestic donkeys (Equus asinus) in the UK. Equine vet. Educ 2016;28(3):134-139.
3. Escribano BM, Molina A, Valera M, Tovar P, Aguera EI, Santisteban R et al. D. Genetic analysis of haematological and plasma biochemical parameters in the Spanish purebred horse exercised on a treadmill. Animal 2013;7:1414-1422.
4. Garba UM, Sacka AKB, Lawal A, Idris, Esievo KAN. Baseline vital, haematological and serum biochemical parameters of donkeys. Journal of Veterinary Medicine and Animal Health 2015;7(3):94-98.
5. Gill J, Kompanowska-Jezierska E. Seasonal changes in the red blood cell indices in Arabian brood mares and their foals. Comp Biochem Physiol A Comp Physiol 1986;83:643-51.
6. Gill J, Kownacka M. Seasonal changes in erythrocyte, haemoglobin and leucocyte indexes in pregnant mares of thoroughbred horses. Bull. Acad. Polon. Sci. Ser. Sci. Biol 1979;27:143-148.
7. Ginther OJ, Gastal MO, Gastel EL, Jacob JC, Siddiqui MA, Beg MA. Effects of age on follicle and hormone dynamics during the oestrous cycle in mares. Reprod Fertil Dev 2008;20:955-963.
8. Hata T, Ogihara T, Maruyama A, Mikami H, Nakamur M, Naka T et al. The seasonal variation of blood pressure in patients with essential hypertension. Clin Exp Hypertens A 1982;4:341-354.
9. Jain NC. Schalm's Veterinary Haematology. 4th Ed. Lea and Febiger, Philadelphia 1975.
10. Jordana J, Folch P, Cuenca R. Clinical biochemical parameters of the endangered Catalonian donkey breed:
normal values and the influence of sex, age, and management practices effect. Res. Vet. Sci 1998;64:7-10.
11. Komosa M, Flisinska-Bojanowska A, Gill J. Diurnal changes in the haemoglobin level, red blood cell number and mean corpuscular haemoglobin in foals during the first 13 weeks of life and in their lactating mothers. Comp Biochem Physiol A Comp Physiol 1990;96:151.
12. Kumar V, Kumar P. Impact of thermal stress on rectal, skin surface temperatures, respiration rate, heat load index and heat storage in lactating Murrah buffaloes (Bubalus Bubalis). Buffalo Bulletin 2013;32:1141-1144.
13. Laus F, Spaterna A, Faillace V, Paggi E, Serri E, Vullo C et al. Reference values for hematological and biochemical parameters of mixed breed donkeys (Equus asinus). WULFENIA 2015;22(1):295-304.
14. Lekeux P, Art T, Linden A, Desmecht D, Amory H. Heart rate, hematological and serum biochemical responses to show jumping. Equine Exercise Physiology 1991;3:385-390.
15. Lurie S. Changes in age distribution of erythrocytes during pregnancy: a longitudinal study. Gynecol Obstet Invest 1993;36:141-4.
16. Mori E, Fernandes WR, Mirandola RMS, Kubo G, Ferreira RR, Oliveira JV et al. Reference Values on Serum Biochemical Parameters of Brazilian Donkey (Equus asinus) Breed. Journal of Equine Veterinary Science 2003;23(8):358-364.
17. NRC (national research council). A guide to environmental research on animals. Natl. Acad. Sci Washington, DC 1971.
18. Paglieroni TG, Holland PV. Circannual variation in lymphocytes subset. Transfusion 1994;34(6):512-516.
19. Pal Y, Ashok K, Gupta, yadav MP. Heat Tolerance in Donkeys and Mules. Annals of Arid Zone 2000;39(4):461-464.
20. Ruiz G, Rosenmann M, Cortes A. Thermal acclimation and seasonal variations of erythrocyte size in the Andean mouse Phyllotis xanthopygus rupestris. Comp Biochem Physiol A Mol Integr Physiol 2004;139:405-409.
21. Satue K, Munoz BA. Age related differences in haematological profile of Andalusian broodmares of Carthusian strain. Vet Med 2013;4:175-182.
22. Singh K. and Saxena S.K. Heat tolerance in three breeds of Indian goats. Indian Veterinary Journal 1995;72:466-468.
23. Zakari FO, Ayo JO, Rekwot PI, Umar Kawe MU. Effect of age, sex, physical activity and meteorological factors on haematological parameters of donkeys (Equus asinus). Comp Clin Pathol DOI 10.1007/s00580-014-2026-3. 2014.
24. Zakari FO, Ayo JO, Kawu MU, Rekwot PI. Effect of season and meteorological stress factors on behavioural responses and activities of donkeys (Equus asinus): A review Ann. Anim. Sci 2015;15(2):307-321.