Purifying Selection and Molecular Adaptation in the Genome of *Verminephrobacter*, the Heritable Symbiotic Bacteria of Earthworms

Kasper U. Kjeldsen\(^1,2,†\), Thomas Bataillon\(^3,*†\), Nicolás Pinel\(^4\), Stéphane De Mita\(^5\), Marie B. Lund\(^1\), Frank Panitz\(^6\), Christian Bendixen\(^6\), David A. Stahl\(^4\), and Andreas Schramm\(^1\)

\(^1\)Department of Bioscience, Microbiology, Aarhus University, Denmark
\(^2\)Center for Geomicrobiology, Department of Bioscience, Aarhus University, Denmark
\(^3\)Bioinformatics Research Center, Aarhus University, Denmark
\(^4\)Department of Civil and Environmental Engineering, University of Washington
\(^5\)Institut de Recherche pour le Développement, Montpellier, France
\(^6\)Department of Molecular Biology and Genetics, Aarhus University, Tjele, Denmark

\(^†\)These authors contributed equally to this work.
\(*\)Corresponding author: E-mail: tbata@birc.au.dk.

Accepted: 6 February 2012

Draft (automatically annotated) genome of *Verminephrobacter aporrectodeae* subsp. *tuberculatae* strain At4\(^T\) (Vtu) genome is deposited in GenBank under accession number AFAL00000000

Abstract

While genomic erosion is common among intracellular symbionts, patterns of genome evolution in heritable extracellular endosymbionts remain elusive. We study vertically transmitted extracellular endosymbionts (*Verminephrobacter*, Betaproteobacteria) that form a beneficial, species-specific, and evolutionarily old (60–130 Myr) association with earthworms. We assembled a draft genome of *Verminephrobacter aporrectodeae* and compared it with the genomes of *Verminephrobacter eiseniae* and two nonsymbiotic close relatives (*Acidovorax*). Similar to *V. eiseniae*, the *V. aporrectodeae* genome was not markedly reduced in size and showed no A–T bias. We characterized the strength of purifying selection ($\omega = dN/dS$) and codon usage bias in 876 orthologous genes. Symbiont genomes exhibited strong purifying selection ($\omega = 0.09 \pm 0.07$), although transition to symbiosis entailed relaxation of purifying selection as evidenced by 50% higher ω values and less codon usage bias in symbiont compared with reference genomes. Relaxation was not evenly distributed among functional gene categories but was overrepresented in genes involved in signal transduction and cell envelope biogenesis. The same gene categories also harbored instances of positive selection in the *Verminephrobacter* clade. In total, positive selection was detected in 89 genes, including also genes involved in DNA metabolism, tRNA modification, and TonB-dependent iron uptake, potentially highlighting functions important in symbiosis. Our results suggest that the transition to symbiosis was accompanied by molecular adaptation, while purifying selection was only moderately relaxed, despite the evolutionary age and stability of the host association. We hypothesize that biparental transmission of symbionts and rare genetic mixing during transmission can prevent genome erosion in heritable symbionts.

Key words: symbiosis, evolution, nonsynonymous substitutions, purifying selection, positive selection, genome reduction, extracellular symbiont.

© The Author(s) 2012. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.
This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0), which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Lack of Genome Erosion in Verminephrobacter Symbionts

The draft genome assembly of *Verminephrobacter aporrec- todeae* subsp. *tuberculatae* strain At4\(^T\) (Vtu) consisted of 1,082 unique contigs with an average read depth of 45x (see Materials and Methods and supplementary text, Supplementary Material online). The Vtu and the *V. eiseniae* strain EF01-2\(^T\) (Vei) genomes are similar in size, gene, and G + C content to those of *Acidovorax avena* subsp. *citrulli* strain AAC00-1 (Aac) and *Acidovorax sp. JS42* (Ajs) (table 1). By comparing the gene complement encoded by the Vtu genome against those of Vei, Aac, and Ajs, it is obvious that the size of the Vtu draft genome assembly (4.6 Mbp) under-estimates the actual genome size, which is likely close to the size of the Vei genome (supplementary text, Supplementary Material online). Thus the symbiont genomes have apparently escaped the size reduction and strong A–T bias typical of heritable symbiotic bacteria. Using reciprocal basic local alignment search tool (Blast), we identified a set of 1,038 orthologous genes shared among the four genomes. Phylogenetic analyses of various taxonomic marker genes consistently group all known *Verminephrobacter* species in a monophyletic clade with *Acidovorax* as a sister lineage (Pinel et al. 2008; Lund et al. 2010). We inferred by maximum likelihood, a four-species unrooted phylogeny for each ortholog alignment. In 961 cases out of the 1,038, the species tree topology described above was strongly supported by an Akaike’s Information Criterion (AIC) at least three units lower (better) than alternative topologies. The remaining 77 orthologs were discarded from further analyses because they did not discriminate reliably between topologies (n = 65) or supported alternative topologies (n = 12). To further guard against spurious results due to saturation of nucleotide substitutions, we examined the total number of synonymous substitutions estimated on each ortholog.
phylogeny (supplementary fig. S2, Supplementary Material online) and discarded every ortholog exhibiting >6 synonymous substitutions expected per site (summed over the entire tree). This left a set of $n = 876$ orthologs representing “least diverged” genes conforming to the species tree.

With this set, we quantified divergence between the two symbiont genomes. Pairwise divergence between the Vei and Vtu genomes accounts for about one-third of the total divergence in each of the unrooted ortholog phylogenies with 1 and 0.1 expected synonymous and nonsynonymous substitution per site, respectively (mean $d_S \pm$ standard deviation [SD] = 1.05 \pm 0.33; mean $d_N \pm$ SD = 0.1 \pm 0.05; supplementary fig. S2 and table S6, Supplementary Material online). We then quantified selective constraints in the symbiont genomes by estimating the ratio of nonsynonymous to synonymous substitution rates $\omega = d_N/d_S$. Values of $\omega < 1$ indicate purifying selection, that is, most amino acid substitutions are deleterious and thus removed, $\omega = 1$ indicates the absence of constraints, whereas $\omega > 1$ indicates that fixation of amino acid–replacing mutations is driven by positive selection. We estimated ω on each terminal branch of the unrooted ortholog phylogenies (fig.1, branch model H1, supplementary fig. S1, Supplementary Material online). Median ω values were 0.04 and 0.06 in the Aac and Ajs genomes, respectively, and 0.09 in both symbiont genomes. These values are within the range reported for free-living bacteria (0.02–0.09; fig. 1; Novichkov et al. 2009) and lower than in heritable endosymbionts and host-associated pathogens (0.11–0.25; fig. 1; Kuwahara et al. 2008; Kuo et al. 2009; Novichkov et al. 2009), indicating that Verminephrobacter genomes still undergo fairly strong purifying selection.

Relaxed Purifying Selection in Verminephrobacter Genomes Compared with Their Free-Living Relatives

Despite substantial purifying selection in Verminephrobacter, we found clear evidence for relaxed purifying selection in the Vei and Vtu genomes relative to Acidovorax. The genome-wide distribution of ω was shifted toward higher...
values in the symbiont genomes (fig. 1), and 755 of the 876 orthologs had a higher ω (binomial test, $P < 10^{-10}$) in the symbiont versus nonsymbiont terminal branches (fig. 2A). This finding is robust on three accounts. First, our analysis is based on a model-averaging procedure to ensure reliable estimation of ω (see Materials and Methods). Second, the finding is not an artifact of a single symbiont genome (Vtu) being poorly sequenced and yielding apparent elevated nonsynonymous substitution rates (supplementary fig. S3, Supplementary Material online). Last, even when restricting our analysis to subsets of orthologs with $dS < 2.5$ (corresponding to \sim0.5 expected substitution per branch and site), the vast majority of orthologs exhibited inflated ω values on the symbiont branches (supplementary fig. S4, Supplementary Material online).

Codon usage bias analysis represents an independent way to document relaxed purification selection (Hershberg and Petrov 2008). Less bias is expected when purification selection fails to remove slightly deleterious mutations with suboptimal codon usage. We quantified codon usage bias in the four species through the effective number of codons (ENCp) used (Novembre 2002). ENCp is inversely proportional to the intensity of codon usage bias; high values therefore indicate relaxed purification selection. In Vei and Vtu, 90% of the 876 orthologs had higher ENCp values (binomial test, $P < 10^{-10}$) (fig. 2B), providing additional evidence for relaxed purification selection in the Verminephrobacter genomes.

The degree of relaxation in purification selection varies across different functional gene categories; this has been used to infer the role of genes in insect endosymbionts (Toft et al. 2009; Pérez-Brocal et al. 2011): greatest relaxation is expected for genes rendered obsolete upon transition to symbiosis, while strong purification selection indicates essential gene functions. Querying for orthologs with the highest absolute increase in ω ($\Delta\omega > 0.09$) between symbiont and nonsymbiont lineages, we identified 102 orthologs that experienced the greatest relaxation of purification selection in the two symbiont genomes (supplementary table S1, Supplementary Material online). To ensure that large ω values are not caused by erroneous recruitment of paralogs, we used BlastP searches to identify the number of per-genome paralogs for each of the 102 orthologs. More than 90 orthologs had no identifiable paralogs in their parent genomes (supplementary table S1, Supplementary Material online). In the case of paralogs present, we validated inferred orthologs by phylogenetic reconstruction (supplementary fig. S6, Supplementary Material online). This analysis left 100 orthologs that experienced the strongest relaxation of purification selection in the symbiont lineages. We examined the predicted functional categories of these orthologs using Clusters of Orthologous Groups (COG)-based analysis and annotation (Tatusov et al. 2001) and found significant over-representation of COG categories T (signal transduction; binomial test, $P < 0.002$) and M (cell envelope biogenesis/outer membrane functions, $P < 0.0005$) compared with the set of 876 orthologs (fig. 3A). This suggests that a sizeable proportion of the genes involved in signal transduction and surface structures became dispensable when the Verminephrobacter lineage became symbiotic. Such genes govern interactions with the environment and likely experience dramatic changes in selective pressure upon transition from a free-living to a symbiotic lifestyle; genes in the latter category are often disproportionately lost in heritable intracellular symbionts (Toft and Andersson 2010). In contrast, orthologs involved in translation (COG category J) and most notably in membrane transport (COG categories E, F, G, and P) were about 3-fold underrepresented ($P < 0.0005$), suggesting a key importance of uptake systems for the Verminephrobacter–earthworm symbiosis. Few instances of strongly relaxed purification selection occur in the otherwise abundant COG category E (amino acid transport and metabolism, supplementary fig. S5, Supplementary Material online).
online). This pattern is consistent with the hypothesized symbiont function in nitrogen recycling for their host (Pandazis 1931; Schramm et al. 2003). Manual annotation of the 100 orthologs under most relaxed purifying selection in Vei and Vtu confirmed the COG-based analysis (supplementary table S1, Supplementary Material online). Orthologs involved in biosynthesis of membrane lipoproteins and glycolipids, and in biosynthesis and degradation of peptidoglycan represented COG category M, while two-component systems and transcriptional regulators represented COG category T (supplementary table S1, Supplementary Material online).

Footprints of Molecular Adaptation in the Symbiont Genomes

Transition to symbiosis can be seen as colonization of a new ecological niche (the host) triggering episodes of adaptation detectable at the molecular level (Toft and Andersson 2010). We used a conservative branch-site likelihood ratio test (Zhang et al. 2005) to identify orthologs with sites evolving under positive selection ($\omega > 1$) in the symbiont terminal branches of the four-species phylogeny. To account for multiple testing ($n = 876$ tests), we used a false discovery rate (FDR) approach and detected 90 orthologs evolving under positive selection in the symbiotic branches (Vei, Vtu; $n = 89$). Using the same threshold, we only detected 10 orthologs evolving under positive selection in the nonsymbiont genomes. Scrutinizing the 90 ortholog sets for erroneous recruitment of paralogs (see above), we identified one set where paralogy may bias our inference (supplementary fig. S7, Supplementary Material online), leaving a total of 89 orthologs of which 68 have no paralogs in any of the four genomes (supplementary table S2, Supplementary Material online). Another concern is the quality of the draft genome (454 sequencing) data. However, for the 89 positively selected genes 1) the overall dS/dS values for Vtu and Vei are similar (supplementary fig. S3, Supplementary Material online), 2) rates of homopolymeric runs are not systematically higher in Vtu.
relative to Vei or Acidovorax (supplementary table S8, Supplementary Material online), 3) gene length is virtually identical in Vtu and Vei (supplementary table S8, Supplementary Material online), and 4) frame shifts are absent; we are thus confident that detection of positive selection is not biased by 454 sequencing errors.

The 89 orthologs were functionally broadly distributed, with COG categories T, M, L and H marginally overrepresented relative to the initial set of orthologs (fig. 3A). As discussed above, genes involved in signal transduction (T) and outer membrane functions (M) govern interactions with the environment. While some of these genes may become obsolete upon transition to a symbiotic lifestyle, others may become essential for symbiont-host interactions and undergo adaptive evolution. Fifteen of the 89 orthologs were also in the subset of 100 orthologs showing greatest relaxation of purifying selection (supplementary tables S1 and S2, Supplementary Material online). Two nonexclusive processes can explain the overlap. First, strong positive selection on a gene will increase its average dN/dS in the symbionts clade possibly lumping it in the “most relaxed selection” category. Second, a gene could experience relaxed purifying selection after transition to symbiosis, which, in turn, may open new avenues for adaptation.

The 89 orthologs were manually annotated (supplementary table S2, Supplementary Material online). Orthologs with a predicted function in signal transduction (T) primarily comprised two-component systems, which have a key role in niche adaptation of bacteria (Alm et al. 2006). Orthologs with a predicted outer membrane function represented lipid A-synthase (set 923), lipid A-sugar transferases (sets 333, 339), and lipoprotein acyl-transferases (sets 93, 95). Such genes often undergo positive selection in pathogenic bacteria, where they are important, for example, for attachment and evasion of host defenses (Fitzpatrick et al. 2005; Chen et al. 2006; Soyer et al. 2009). Apolipoprotein acyl-transferase Lnt (set 93) evolves under positive selection in uropathogenic Escherichia coli that, like Verrminephrobacter, colonize a urinary tract environment (Chen et al. 2006). In Vibrio fischeri, the extracellular symbiont of the Euprymna squid light organ, lipid A-acylating enzymes are key players in colonization (Adin et al. 2008). One of the lipid A-acylating proteins of V. fischeri (HtrB1, locus tag VF_A0687) is homologous (30% pairwise amino acid identity) to ortholog set 339. Like V. fischeri, Verrminephrobacter colonize their hosts by recruitment from a mixed microbial community, migration to a specific host tissue, and attachment (Davidson and Stahl 2008). Surface lipoproteins and glycolipids may thus be important for both symbiont-host recognition and for attachment.

Several of the 89 orthologs inferred to undergo positive selection have a predicted function in peptidoglycan biosynthesis (sets 297, 304) and degradation (sets 155, 306, 326, 688, and 1477) (supplementary table S2, Supplementary Material online). Peptidoglycan monomers mediate host interactions of pathogenic and symbiotic bacteria and are recognized by the innate immune system of animals (Cloud-Hansen et al. 2006, Moya et al. 2008). Accordingly, N-acetylmuramoyl-L-alanine amidase, a putative homolog of ortholog set 326, also undergoes positive selection in uropathogenic E. coli (Chen et al. 2006). Peptidoglycan constituents are also important for the V. fischeri–Euprymna symbiosis (Adin et al. 2009, Altura et al. 2011). The V. fischeri membrane transport protein AmpG (locus tag VF_0720) controls the extracellular concentration of peptidoglycan monomers released by hydrolytic enzymes (like orthologous set 306 and 326), which in turn affects the morphogenesis of the Euprymna light organ. The Vei and Vtu orthologs of set 1386 (supplementary table S1, Supplementary Material online) are AmpG homologs sharing 32% full-length amino acid identity with the V. fischeri AmpG and may serve a similar function as AmpG in V. fischeri. Further discussion of the functional significance of the orthologs evolving under positive selection in Vei and Vtu is included in the footnote of supplementary table S2, Supplementary Material online.

Drivers for Genome Evolution in Extracellular Heritable Symbionts

Unlike intracellular insect endosymbionts (Moran et al. 2008) and stinkbug extracellular endosymbionts (Hosokawa et al. 2006; Kikuchi et al. 2009), the earthworm symbiont genomes are not eroded, despite their ancient association, host fidelity, and vertical transmission (Davidson and Stahl 2006, 2008; Lund et al. 2010). Lack of genomic synteny between Vei and Aac/AJs and a high number of mobile elements in the Vei genome (Pinel 2009) may indicate that Verrminephrobacter moves toward genome reduction according to the symbiont stage theory (Moran et al. 2009; Toft and Andersson 2010). However, age of the symbiosis (60–130 Myr), strong purifying selection, and low levels of pseudogenization (Pinel 2009) do not support this scenario. Furthermore, analysis of genes unique for the symbiont lineage (fig. 3B) suggests that Verrminephrobacter have acquired novel genes after transition into symbiosis, most prominently coding for amino acid and carbohydrate transport, while genes coding for signal transduction are underrepresented compared with the reference genomes.

Our results show a more nuanced pattern of genome evolution in Verrminephrobacter compared with heritable intracellular symbionts of insects, that is, the absence of genome reduction and A–T bias, fairly strong purifying selection, pervasive molecular adaptation, and signs of gene acquisition after transition to symbiosis. We propose that this pattern of genome evolution is best explained by the life cycle of the symbionts (Bright and Bulgheresi 2010). Verrminephrobacter experience a short free-living stage during vertical transmission: the symbionts move to the worm Kjeldsen et al.
surface and are, together with other bacteria, enclosed in egg capsules, where they colonize the developing embryos (Davidson and Stahl 2006, 2008). It is possible that earthworms exchange symbionts residing in their mucus during mating, leading to biparental inheritance. This mode of transmission may select against the loss of genes essential for surviving outside the host and may offer a window of opportunity for recombination and lateral gene transfer, which will slow down or prevent Muller’s ratchet (Felsenstein 1974; Moran 1996). In contrast, vertical transmission of insect intracellular and stinkbug extracellular endosymbionts is uniparental (Hosokawa et al. 2006; Moran et al. 2008) and stringent, effectively preventing genetic mixing.

Material and Methods

Organisms and Genome Sequencing

The annotated genome sequences of Aac, Ajs, and Vei were downloaded from the NCBI website (table 1). A draft genome sequence of Vtu was obtained by pyrosequencing using the GS20 and GS20 FLX platforms (Roche 454 Life Sciences) as per the manufacturers recommendations. Genomic DNA was extracted from a Vtu cell culture grown in liquid R2A medium using the “DNeasy Blood and Tissue Kit” (Qiagen). A shotgun library was prepared from 50 µg DNA using the “Standard DNA Library Preparation Kit” (Roche). Nebulized, purified, and A and B adapter-linked single strand DNA fragments (average size 200–700 bp) were clonally amplified using the “Emulsion PCR Kit I” (Roche). Four independent GS20 runs and one GS20 FLX sequencing run were performed to produce 1,625,984 101 bases. 20 were considered significant, were clonally amplified using the ‘‘Emulsion PCR Kit I’’ (Roche). Four independent GS20 runs and one GS20 FLX sequencing run were performed to produce 1,625,984 bases. The Vtu draft genome sequence was assigned accession number AFAL00000000 in the GenBank WGS sequence repository.

Putative protein-coding genes were identified with GLIMMER v3.02 (Delcher et al. 2007) using default settings and a lower size cutoff of 150 bp. Predicted genes were validated by homology searches using inferred amino acid sequences as Blast search queries against release 45 of the NCBI refseq protein database (Pruitt et al. 2007). Hits with an e-value cutoff $< 1 \times 10^{-20}$ were considered significant, leaving 3,788 predicted protein-coding genes (table 1).

Identification of Orthologous Gene Sets

Sets of orthologous genes shared by the four species were identified via amino acid sequence-based reciprocal Blast searches using an e-value cutoff of 1×10^{-20}. Inferred amino acid sequences of each identified gene set were aligned using ClustalW v1.81 (Thompson et al. 1994) and those sets comprised of members with less than 20% difference in sequence length and that shared $> 35\%$ sequence identity across their entire length were considered orthologous. DNA sequence-based codon alignments of the orthologous gene sets were constructed from the corresponding aligned amino acid sequences using PAL2NAL v12.2 (Suyama et al. 2006). For functional assignment, orthologs were manually compared against InterPro (Zdobnov and Apweiler 2001) and COG (Tatusov et al. 2001) databases. Automated functional assignment was performed by rps-Blast (Marchler-Bauer et al. 2002) (standalone Blast release 2.2.24) against the preformatted COG v. 1.0 database. The top e-value COG match was recorded for each query.

Phylogenetic and Evolutionary Analyses

A phylogenetic tree was inferred for each set of orthologs. As all sets comprise four species, three unrooted tree topologies are possible: T1: (Aac, Ajs, [Vei, Vtu]), T2: (Aac, Vei, [Ajs, Vtu]), and T3: (Aac, Vtu, [Ajs, Vei]). T1 represents the canonical species trees. The likelihood of each topology was obtained under the general time reversible DNA substitution model using PhyML (Guindon and Gascuel 2003). AIC was used to compare the fit of alternative topologies. For each of the least diverged orthologs (n = 876), a set of alternative “branch models” (supplementary fig. S1, Supplementary Material online) was used to estimate ω and model changes in ω along the underlying topology (here fixed to T1). The codeml program in the PAML package (wrapped using python scripts) was used to estimate jointly ω and the transition to transversion ratio using the “F3×4” model (Yang 2007). A model-averaging procedure was used for robust estimation of ω values in the symbiont (“V”) versus nonsymbiont (“A”) terminal branches of the T1 phylogeny. Briefly, for each ortholog, we obtained the AIC of 5 branch models (supplementary fig. S1, Supplementary Material online) as $AIC = -2 \ln L + 2p$, where $\ln L$ denotes the log-likelihood of the data under the model and p the number of parameters fitted. We used differences in AIC (ΔAIC_i) among the set of alternative branch models (H0, H1, H2, H3, H4) to calculate a set of weights $\{z_0, z_1, z_2, z_3, z_4\}$ as $z_i = \text{Exp}(\Delta AIC_i/\Sigma_i \text{Exp}(\Delta AIC_i))$, where summation is over the set of five models. We then estimated ω_0 (respectively ω_x) as the weighted average of ω values under each model (using z’s as weights). This procedure guards against sensivity of estimation of ω values to a single branch model. We used the effective number of codons (ENC) and its extension to account for heterogeneity in nucleotide composition, ENC prime (ENCp), to quantify bias in codon usage (Novembre 2002; Noembvre 2002). ENCp values were estimated for each gene and species separately using the software ENCprime (version February 2006; November 2002). Whenever needed, we

Purifying Selection and Molecular Adaptation in the Genome of Verminephrobacter

Genome Biol. Evol. 4(3):307–315. doi:10.1093/gbe/evs014 Advance Access publication February 14, 2012 313
controlled for the FDR (Storey and Tibshirani 2003). All statistical analyses and model-averaging calculations were carried out in R (http://www.R-project.org).

Supplementary Material

Supplementary text, figures S1–S5, and tables S1–S8 are available at Genome Biology and Evolution online (http:// www.gbe.oxfordjournals.org/).

Acknowledgments

Funding for genome sequencing was provided by the Carlsberg Foundation, Denmark. The Danish Research Council supported T.B. and K.U.K. We thank Sten Andersen for continuous and invaluable help with maintaining our computer server.

Literature Cited

Adin DM, Engle JT, Goldman WE, McFall-Ngai MJ, Stabb EV. 2009. Mutations in ampG and lytic transglycosylase genes affect the net release of peptidoglycan monomers from Vibrio fischeri. J Bacteriol. 191:2012–2022.
Adin DM, et al. 2008. Characterization of htr8 and msdb8 mutants of the light organ symbiont Vibrio fischeri. Appl Environ Microbiol. 74:633–644.
Alm E, Huang K, Arkin A. 2006. The evolution of two-component systems in bacteria reveals different strategies for niche adaptation. PLoS Comput Biol. 2:e143.
Altura MA, Stabb E, Goldman W, Apicella M, McFall-Ngai MJ. 2011. Attenuation of host NO production by MAMPs potentiates defense development of the host in the squid-vibrio symbiosis. Cell Microbiol. 13:527–537.
Andersson SG, Kurland CG. 1998. Reductive evolution of resident genomes. Trends Microbiol. 6:263–268.
Bright M, Bulgheresi S. 2010. A complex journey: transmission of symbiotic diversity in marine animals: the art of harnessing chemosynthesis. Nat Rev Microbiol. 10:507–514.
Pinel N, Davidson SK, Stahl DA. 2008. Characterization of htr8 and msdb8 mutants of the light organ symbiont Vibrio fischeri. Appl Environ Microbiol. 74:633–644.
Chen SL, et al. 2006. Identification of genes subject to positive selection in uropathogenic strains of Escherichia coli: a comparative genomics approach. Proc Natl Acad Sci U S A 103:5977–5982.
Cloud-Hansen KA, et al. 2006. Breaching the great wall: peptidoglycan and microbial interactions. Nat Rev Microbiol. 4:710–716.
Davidson SK, Stahl DA. 2006. Transmission of noshidial bacteria of the earthworm Eisenia fetida. Appl Environ Microbiol. 72:769–775.
Delcher AL, Bratke KA, Powers EC, Salzberg SL. 2007. Identifying bacterial genes and endosymbiont DNA with Glimmer. Bioinformatics 23:673–679.
Dublier N, Bergin C, Lott C. 2008. Symbiotic diversity in marine animals: the art of harnessing chemosynthesis. Nat Rev Microbiol. 6:263–268.
Pandazis G. 1931. Zur Frage der Bakteriensymbiose bei Oligochaeten. Zentralbl Bakteriol. 120:440–453.
Pérez-Brocal V, Gil R, Moja A, Latorre A. 2011. New insights on the evolutionary history of aphids and their primary endosymbiont Buchnera aphidicola. Int J Evol Biol. 2011:250154.
Pirollo R. 2009. Physiological and genomic insights into the biology of Verminephrobacter Eisenia fetida and Symphyla. PLoS Genet. 5:e196–202.
Pruitt KD, Tatusova T, Maglott DR. 2007. NCBI reference sequences (RefSeq): a curated non-redundant sequence database of genomes, transcripts and proteins. Nucleic Acids Res. 35:D61–D65.
Pruitt KD, Tatusova T, Maglott DR. 2007. NCBI reference sequences (RefSeq): a curated non-redundant sequence database of genomes, transcripts and proteins. Nucleic Acids Res. 35:D61–D65.
Pinel N, Davidson SK, Stahl DA. 2008. Verminephrobacter Eisenia fetidae gen. nov., sp. nov., a noshidial symbiont of the earthworm Eisenia fetida (Savigny). Int J Syst Evol Microbiol. 58:2147–2157.
Soyer Y, Orsi RH, Rodriguez-Rivera LD, Sun Q, Wiedmann M. 2009. Genome-wide evolutionary analyses reveal serotype specific patterns of positive selection in selected Salmonella serotypes. BMC Evol Biol. 9:264.

Storey JD, Tibshirani R. 2003. Statistical significance for genomewide studies. Proc Natl Acad Sci U S A. 100:9440–9445.

Suyama M, Torrents D, Bork P. 2006. PAL2NAL: robust conversion of protein sequence alignments into the corresponding codon alignments. Nucleic Acids Res. 34:W609–W612.

Tatusov RL, et al. 2001. The COG database: new developments in phylogenetic classification of proteins from complete genomes. Nucleic Acids Res. 29:22–28.

Thompson JD, Higgins DG, Gibson TJ. 1994. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 22:4673–4680.

Toft C, Andersson SG. 2010. Evolutionary microbial genomics: insights into bacterial host adaptation. Nat Rev Genet. 11:465–475.

Toft C, Williams TA, Fares MA. 2009. Genome-wide functional divergence after the symbiosis of proteobacteria with insects unraveled through a novel computational approach. PLoS Comput Biol. 5:e1000344.

Woyke T, et al. 2006. Symbiosis insights through metagenomic analysis of a microbial consortium. Nature 443:950–955.

Yang Z. 2007. PAML 4: phylogenetic analysis by maximum likelihood. Mol Biol Evol. 24:1586–1591.

Zdobnov EM, Apweiler R. 2001. InterProScan—an integration platform for the signature-recognition methods in InterPro. Bioinformatics 17:847–848.

Zhang J, Nielsen R, Yang Z. 2005. Evaluation of an improved branch-site likelihood method for detecting positive selection at the molecular level. Mol Biol Evol. 22:2472–2479.

Associate editor: Brandon Gaut