THE VARIABLE STAR POPULATION OF THE GLOBULAR CLUSTER B514 IN THE ANDROMEDA GALAXY∗

GISELLA CLEMENTINI1, RODRIGO CONTRERAS1,2, LUCIANA FEDERICI1, CARLA CACCIARI1, ROBERTO MERIGHI1, HORACE A. SMITH3, MARCIO CATELAN4,5, FLAVIO FUSI PECCI1, MARCELLA MARCONI6, KAREN KINEMUCHI6,7, and BARTON J. PRITZL8

1 INAF, Osservatorio Astronomico di Bologna, Bologna, Italy; gisella.clementini@oabo.inaf.it
2 Dipartimento di Astronomia, Università di Bologna, Bologna, Italy
3 Department of Physics and Astronomy, Michigan State University, East Lansing, MI 48824, USA; kuehncha@msu.edu, smith@pa.msu.edu, beers@pa.msu.edu
4 Pontificia Universidad Católica de Chile, Departamento de Astronomía y Astrofísica, Santiago, Chile; mcatelan@astro.puc.cl
5 INAF, Osservatorio Astronomico di Capodimonte, Napoli, Italy; marcella@na.astro.it
6 Universidad de Concepción, Departamento de Astronomía, Concepción, Chile; kkinemuchi@astro-udec.cl
7 Department of Astronomy, University of Florida, 211 Bryant Space Science Center, Gainesville, FL 32611-2055, USA; kinemuchi@astro.ufl.edu
8 Department of Physics and Astronomy, University of Wisconsin Oshkosh, Oshkosh, WI 54901, USA; pritzlb@uwosh.edu

Received 2009 July 30; accepted 2009 September 15; published 2009 October 5

ABSTRACT

A rich harvest of RR Lyrae stars has been identified for the first time in B514, a metal-poor ([Fe/H] ∼=−1.95 ± 0.10 dex) globular cluster (GC) of the Andromeda galaxy (M31), based on Hubble Space Telescope Wide Field Planetary Camera 2 and Advanced Camera for Surveys time-series observations. We have detected and derived periods for 89 RR Lyrae stars (82 fundamental-mode, RRab, and 7 first-overtone, RRc, pulsators, respectively) among 161 candidate variables identified in the cluster. The average period of the RR Lyrae variables (⟨Pab⟩ = 0.58 days and ⟨Pc⟩ = 0.35 days, for RRab and RRc pulsators, respectively) and the position in the period–amplitude diagram both suggest that B514 is likely an Oosterhoff type I cluster. This appears to be in disagreement with the general behavior of the metal-poor GCs in the Milky Way, which show instead Oosterhoff type II pulsation properties. The average apparent magnitude of the RR Lyrae stars sets the mean level of the cluster horizontal branch at ⟨V(RR)⟩ = 25.18 ± 0.02 mag, corresponding to a distance of about 800 ± 30 kpc, based on a value of M_V that sets μ_0(LMC)=18.52 mag.

Key words: galaxies: individual (M31) – globular clusters: individual (B514) – stars: distances – stars: variables: other – techniques: photometric

1. INTRODUCTION

The Andromeda galaxy provides us with a unique opportunity to study the formation and evolution of a massive spiral galaxy other than the Milky Way (MW). Various authors (van den Bergh 2000, 2006) suggested that M31 originated as an early merger of two or more massive metal-rich progenitors, accounting for the galactic halo wide range in metallicity (Durrell et al. 2001) and age (Brown et al. 2003) compared to the MW. There is also an interesting suggestion by Kravtsov (2002) that the “young” second-parameter globular clusters (GCs) in our Galaxy, as well as at least some of the MW dwarf spheroidal companions, were in fact accreted from M31 when Andromeda was forming its Population II stars.

In the MW, the vast majority of GCs that contain significant numbers of RR Lyrae stars sharply divide into two very distinct classes, the Oosterhoff types I and II (Oosterhoff 1939; see Catelan 2009 for a recent review) according to the mean pulsation periods of their RR Lyrae variables. Oosterhoff type I (OoI) GCs have ⟨Pab⟩ ≃ 0.56 days, Oosterhoff type II clusters (OoII) have ⟨Pab⟩ ≃ 0.66 days (Clement et al. 2001). This phenomenon is referred to as the Oosterhoff dichotomy. There is evidence that OoI and OoII clusters in the MW may have different kinematical and spatial distributions thus possibly resulting from different accretion or formation events in the halo. This is supported also by a difference in mean chemical abundance, OoI clusters being on average more metal poor than OoII clusters, and possibly by a difference in age, metal-poor clusters being on average slightly older than the intermediate-metallicity ones (van den Bergh 1993; De Angeli et al. 2005; Marin-Franch et al. 2009). Whatever the mechanism, it is clear that the Oosterhoff dichotomy reflects conditions within the MW halo at the time of GC formation. The existence or absence of the Oosterhoff phenomenon among the M31 GCs therefore provides information on the halo formation processes and thus on the chemical/dynamical evolution history of the dominant galaxy of the Local Group (Catelan 2004, 2009). Detection and characterization of RR Lyrae stars in M31 GCs is challenging since they are too crowded to be well studied with ground-based telescopes. There has been only one previous attempt at detecting RR Lyrae stars in the GCs of M31. Clementini et al. (2001) used archival data obtained with the Wide Field Planetary Camera 2 (WFPC2) onboard the Hubble Space Telescope (HST)
to make the first tentative detection of RR Lyrae stars in four clusters, namely, G11, G33, G64, and G322. A number of RR Lyrae candidates were identified in each cluster (two, four, eleven, and eight variables, in G11, G33, G64, and G322, respectively), but the small number of available data points and the short time baseline did not allow a definition of light curves and hence periods. As part of a Cycle 15 HST program we observed a number of M31 GCs to properly characterize their variable star population. The clusters were selected so as to have metallicities that, in the MW, would place them either in the OoI or in the OoII groups. Here, we present results for B514, a GC located at a projected distance of ~55 kpc from the M31 center, not far from the galaxy’s major axis (Galleti et al. 2005). The color–magnitude diagram (CMD) indicates that B514 is a classical, old metal-poor GC. The metallicity [Fe/H] is estimated as the weighted mean value of a few independent determinations, namely, -1.8 ± 0.3 (spectroscopic from Galleti et al. 2005), -1.8 ± 0.15 (from the CMD; Galletti et al. 2006), and $\sim -2.14 \pm 0.15$ (from the CMD; Mackey et al. 2007).

The integrated absolute magnitude M_V has been estimated of ~ -9.1 mag, and classifies the cluster among the brightest globulats of M31. Moreover, the observed half-light radius $r = 1.6$ arcsec, corresponding to ~ 6 pc at the distance of M31 (see below), is significantly larger than for most clusters of the same luminosity (Federici et al. 2007).

In this Letter, we present results of a search for variable stars which lead us to the discovery of about a hundred RR Lyrae stars in B514. This number is larger than found in the vast majority of the MW GCs, and since we are not able to resolve the cluster’s core, there are likely many more RR Lyrae stars in B514. This is the first time that a large sample of RR Lyrae stars is discovered in an M31 GC and that their pulsation properties (periods, amplitudes, etc.) are fully characterized, thus allowing one to establish the cluster’s Oosterhoff type. Here, we focus on the Oosterhoff classification of B514 and on its importance to get hints on the formation of the Andromeda galaxy by comparison with the properties of variables in the MW GCs. We also present a $V, V-I$ CMD of B514 based on the Advanced Camera for Surveys (ACS) data extending to $V = 28$ mag. This is about half a magnitude fainter than the cluster CMDs by Galleti et al. (2006) and Mackey et al. (2007). The complete list of the cluster variables with ephemerides, photometric data and light curves, will be presented in R. Contreras et al. (2009, in preparation), where we will discuss in more detail their specific pulsation and evolutionary properties.

2. OBSERVATIONS AND DATA REDUCTION

Time-series F606W, F814W observations of B514 (R.A. = 00$^{\circ}$31$^{\prime}$09.83, decl. = -37$^{\circ}$53$^{\prime}$59$^{\prime\prime}$6) were obtained with the WFPC2 under HST program GO 11081 (PI: G. Clementini) in 2007 June 12–14. The time series consisted of 15 individual exposures in each filter, of 1100s length, taken by alternating the WFPC2 under HST program GO 11081 (PI: G. Clementini) in 2007 June 12–14. The time series consisted of 15 individual prereduced images supplied by the STScI pipeline, whose extended time series are optimized for the detection of variable stars of RR Lyrae type. The WFPC2 candidate variables were then counteridentified on the ACS data. A further search with VARFIND was later performed on the ACS archive data, and the counteridentification with the WFPC2 data was iteratively repeated. The search procedure returned a final catalog of 161 candidate variables, most of which are located on the cluster HB. Many more will likely exist in the core of the cluster that we have not detected. Periods and classification in type of the candidate variables were derived from the study of the light curves with Graphical Analyzer of Time Series (GRATiS; see Clementini et al. 2000). We obtained reliable periods and light curves for 89 RR Lyrae stars: 82 fundamental-mode (RRab) and 7 first-overtone (RRc) pulsators. For the remaining 72 candidates, we still lack a firm classification, mostly because of scatter in the data. The time sampling of our data covers nearly 29 hr in three observing blocks of 7 hr each, separated by two gaps of 50 minutes and 7 hr, respectively. In addition, we have six epochs of archive data spaced by 694 and 368 days. This ensures that all possible periods of RR Lyrae stars are well sampled and no bias or alias effects are present, and allows us to derive accurate periods mostly to the 4th decimal digit.

Figure 1 shows the $V, V-I$ CMD of B514, obtained from the ACS data, for stars in four separate regions at increasing distance from the cluster center.

Only sources with object type flag=1 (i.e., best measured stars), crowding < 0.3, $-0.5 <$ sharpness < 0.5, $\chi^2 < 1.5$ for $V > 24$ mag and $\chi^2 < 2.5$ for brighter stars are shown in the figure. 10 Confirmed variable stars are plotted as red filled circles, candidate variables with sufficient light curve sampling as blue filled circles, and less reliable candidates as green filled circles. According to their position on the CMD, the vast majority of the candidate variables discovered in B514 are likely RR Lyrae stars. However, our candidate’s list also includes a number of binaries and a few objects above and below the HB. Variable stars are plotted in the CMD using mean magnitudes and colors computed as simple averages of the available photometric measurements. The scatter observed around the average level of

10 The photometric data generating the CMD are available in electronic form upon request.
the HB is therefore largely due to variable stars with uneven coverage of the light curve, and will likely be significantly reduced when the mean magnitudes will be derived averaging over the full pulsation cycle. The upper panel of Figure 2 shows the location of the B514 variable stars on the $3^\prime\!22^\prime\prime \times 3^\prime\!22^\prime\prime$ field of view covered by the ACS observations of Galleti et al. (2006). The lower panel of Figure 2 shows an enlargement of the variable stars’ map corresponding to a $30^\prime \times 30^\prime$ region around the cluster center. As noted in Federici et al. (2007), B514 is rather extended (see their Figure 6) and its tidal radius was estimated as $\sim\!17$ arcsec ($\sim\!65$ pc) from the analysis of the distribution of the integrated light and star counts. However, we have detected variables well beyond this distance, in particular five RR Lyrae stars are located farther than 50 arcsec and as far as $\sim\!90$ arcsec from the cluster center (Figure 2). Although they are likely field stars, the CMD shown in Figure 1 indicates that a non-negligible fraction of the cluster population is still present in the annulus 50–100 arcsec, suggesting the possibility that at least a few of these distant variables may belong to the cluster. Radial velocity membership will be the most reliable way to assess to which population they belong.

Examples of light curves for two fundamental-mode and two first-overtone RR Lyrae stars we have identified in B514 are shown in Figure 3. The mean periods of the 89 confirmed RR Lyrae stars in B514 are $\langle P_{ab} \rangle \sim 0.58$ days and $\langle P_c \rangle \sim 0.35$ days for fundamental-mode and first-overtone variables, respectively, suggesting a possible dominance of OoI. Figure 4 shows the V-band period–amplitude diagram of the B514 RR Lyrae stars along with the Oosterhoff loci defined by the Galactic GCs from (Clement & Rowe 2000; linear relations), and the period–amplitude distributions of bona fide regular and evolved RRab stars in M3 (quadratic relations), from Cacciari et al. (2005).

The B514 RR Lyrae stars are close to the loci of OoI systems and regular RRab stars in M3. In conclusion, B514 appears to be a somewhat borderline OoI cluster, as it seems to follow a different rule than what is found in the MW where metal-poor ([Fe/H] $\lesssim -1.7$) GCs containing RR Lyrae stars show OoII properties. However, these results should be taken with caution since B514 could be a peculiar cluster. The entire sample of M31 clusters observed in our Cycle 15 program needs to be carefully analyzed (see R. Contreras et al. 2010, in preparation) to reach more firm conclusions on the Oosterhoff properties of the M31 GCs.

4. CMD AND DISTANCE

The CMD of B514 (see Figure 1) reaches $V \sim 28$ mag and is very rich in stars. It has well-populated HB and red giant branch (RGB). The HB stretches across the RR Lyrae instability strip, which is entirely filled by the large number of confirmed and candidate RR Lyrae stars, and extends significantly to the blue through a blue tail that reaches $V \sim 27$ mag at $B-V \sim 0.1$ mag. The RGB is a prominent feature of the CMD, and does not exhibit significant scatter, thus ruling out a metallicity spread in B514.
Figure 3. V (left panels) and I (right panels) light curves of RR Lyrae stars identified in B514. Two upper rows: fundamental-mode pulsators. Two lower rows: first-overtone pulsators. Filled and open circles indicate WFPC2 and ACS data, respectively. Typical error of the single data point at the magnitude level of the HB is about 0.06 mag.

Figure 4. Period–amplitude diagram in the V band. RRab variables are shown by filled circles; RRc stars are shown by open circles. The linear relations show the period–amplitude distributions of Galactic Oosterhoff type I and II clusters (Clement & Rowe 2000). The quadratic relations show the bona fide regular and evolved RRab stars in M3, from Cacciari et al. (2005), for comparison; analogous relations for the RRc stars are not reported because of the small number of these stars so far detected in B514.

The mean magnitude of the B514 RR Lyrae stars is \(\langle V \rangle = 25.18 \pm 0.02 \) mag (with a dispersion of 0.16 mag among the 81 stars). We adopt an absolute magnitude of \(M_V = 0.44 \pm 0.05 \) mag for RR Lyrae stars with the metallicity \([\text{Fe/H}] = -1.95 \pm 0.1 \) dex of B514 (Clementini et al. 2003), which is consistent with an LMC distance modulus of 18.52 mag. Using the reddening value of \(E(B-V) = 0.07 \pm 0.02 \) mag estimated from Schlegel et al. (1998), we find a distance modulus of \(\mu_0 = 24.52 \pm 0.08 \) mag, which corresponds to a distance of about 800 \(\pm \) 30 kpc, in good agreement with the distance adopted for this cluster by Galleti et al. (2006).

5. CONCLUSIONS

We have identified and obtained periods and light curves for 82 RRab stars and 7 RRc stars in the GC B514 of the Andromeda galaxy. The average period of the B514 RRab stars for which we have complete and reliable light curves and their location on the period–amplitude diagram indicate likely Ool-type characteristics (see the right side of Figure 4), however, the cluster’s low metallicity is more typical of an OoII type. Thus, B514 seems to follow a different rule than what is found in the MW, where metal-poor ([Fe/H] \(\lesssim -1.7 \)) GCs containing RR Lyrae stars have Oosterhoff II type. This may suggest that B514 is indeed a somewhat peculiar cluster, as indicated by independent evidence of some similarity with peculiar clusters in the MW such as \(\omega \) Cen, M54, and NGC2419 (Federici et al. 2007). Alternatively, we are seeing an indication that the M31 GCs have different RR Lyrae pulsation characteristics than that seen in the main body of the MW GCs. A more detailed analysis will be done based on the entire sample of M31 clusters observed in our Cycle 15 program, and the results will be presented in a forthcoming paper (R. Contreras et al. 2010, in preparation).

We warmly thank the Program Coordinator, A. Roman, and the Contact Scientist, M. Sirianni, of our HST program for their invaluable help with the Phase II and scheduling of the HST observations. This research was partially supported by COFIS ASI-INAF I/016/07/0. H.A.S. and B.P. thank the Space Telescope Science Institute for support under grant
HST-GO-11081.05-A. M.C. is supported by Proyecto Fondecyt Regular 1071002, by Proyecto Basal PFB-06/2007, by FONDAP Centro de Astrofísica 15010003, and by a John Simon Guggenheim Memorial Foundation Fellowship.

REFERENCES

Brown, T. M., et al. 2003, ApJ, 592, L17
Cacciari, C., et al. 2005, AJ, 129, 267
Catelan, M. 2004, in ASP Conf. Ser. 310, Variable Stars in the Local Group, ed. D. W. Kurtz & K. R. Pollard (San Francisco, CA: ASP), 113
Catelan, M. 2009, Ap&SS, 320, 261
Clement, M. C., & Rowe, J. 2000, AJ, 120, 2579
Clement, M. C., et al. 2001, AJ, 122, 2587
Clementini, G., et al. 2000, AJ, 120, 2054
Clementini, G., et al. 2001, AJ, 120, 2579
Clementini, G., et al. 2003, AJ, 125, 1309
De Angeli, F., et al. 2005, AJ, 130, 116
Dolphin, A. E. 2000a, PASP, 112, L1383
Dolphin, A. E. 2000b, PASP, 112, L1397
Durrell, P. R., Harris, W., & Pritchet, C. I. 2001, AJ, 121, 2557
Federici, L., Galleti, S., Bellazzini, M., Fusi Pecci, F., Buzzoni, A., & Parmeggiani, G. 2007, A&A, 473, 429
Galleti, S., Bellazzini, M., Federici, L., & Fusi Pecci, F. 2005, A&A, 436, 535
Galleti, S., Federici, L., Bellazzini, M., Buzzoni, A., & Fusi Pecci, F. 2006, ApJ, 650, L107
Kravtsov, V. 2002, A&A, 396, L17
Mackey, A. D., et al. 2007, ApJ, 655, L85
Martin-Franch, A., et al. 2009, ApJ, 694, 1498
Oosterhoff, P. Th. 1939, Observatory, 62, 104
Schlegel, D. J., Finkbeiner, D. P., & Davis, M. 1998, ApJ, 500, 525
van den Bergh, S. 1993, MNRAS, 262, 588
van den Bergh, S. 2000, The Galaxies of the Local Group (Cambridge: Cambridge Univ. Press)
van den Bergh, S. 2006, in History of the Local Group, in The Local Group as an Astrophysical Laboratory, ed. M. Livio et al. (Cambridge: Cambridge Univ. Press), 1