THE COARSE GEOMETRIC ℓ^p-NOVIKOV CONJECTURE FOR SUBSPACES OF NON-POSITIVELY CURVED MANIFOLDS

LIN SHAN AND QIN WANG

Abstract. In this paper, we prove the coarse geometric ℓ^p-Novikov conjecture for metric spaces with bounded geometry which admit a coarse embedding into a simply connected complete Riemannian manifold of nonpositive sectional curvature.

1. Introduction

The coarse geometric Novikov conjecture provides an algorithm of determining non-vanishing of the higher index for elliptic differential operators on noncompact Riemannian manifolds. It implies Gromov’s conjecture stating that a uniformly contractible Riemannian manifold with bounded geometry cannot have uniformly positive scalar curvature, and the zero-in-the-spectrum conjecture stating that the Laplacian operator acting on the space of all L^2-forms of a uniformly contractible Riemannian manifold has zero in its spectrum [9,13,17,22-30].

Recently, an ℓ^p analog of the coarse geometric Novikov conjecture for $1 < p < \infty$ was introduced in [8]. Although the ℓ^p analog of the coarse Novikov conjecture has no known geometric or topological applications when $p \neq 2$, this study contributes to the general interests of understanding of the K-theory of some operator algebras. For example, Zhang and Zhou proved that K-theory for L^p Roe algebra of a finite asymptotic dimensional metric space does not depend on p in [31]. More related references are included in [8].
In this paper, we prove the following result.

THEOREM 1. Let Γ be a discrete metric space with bounded geometry. If Γ admits a coarse embedding into a simply-connected complete Riemannian manifold of non-positive sectional curvature, then the coarse geometric ℓ^p-Novikov conjecture holds for Γ, i.e., the index map

$$e_* : \lim_{d \to \infty} K_*(B^p_L(P_d(\Gamma))) \to K_*(B^p(\Gamma))$$

is injective.

Recall that for two metric spaces X and Y, a map $f : X \to Y$ is said to be a **coarse embedding** [12] if there exist non-decreasing functions ρ_1 and ρ_2 from $\mathbb{R}_+ = [0, \infty)$ to \mathbb{R}_+ such that:

1. $\rho_1(d(x, y)) \leq d(f(x), f(y)) \leq \rho_2(d(x, y));$
2. $\lim_{r \to \infty} \rho_i(r) = \infty$ for $i = 1, 2.$

2. The coarse geometric Novikov conjecture

In this section, we shall recall the concepts of the ℓ^p-Roe algebra [22], Yu’s ℓ^p-localization algebras [27] and the coarse geometric ℓ^p-Novikov conjecture.

Let X be a metric space. X is called **proper** if every closed ball is compact. When X is discrete, X has **bounded geometry** if for any $R > 0$, there exists $M_R > 0$ such that for any $x \in X$ the cardinality $|B(x; R)|$ is less than or equal to M_R. For $r > 0$, a r-net in X is a discrete subset $Y \subset X$ such that for any $y_1, y_2 \in Y$, $d(y_1, y_2) \geq r$ and for any $x \in X$ there is a $y \in Y$ such that $d(x, y) < r$. A general metric space X is called to have bounded geometry if X has a r-net Y for some $r > 0$ such that Y has bounded geometry.
Throughout the paper, \(p > 1 \). And \(\mathcal{K}_p = \mathcal{K}(\ell^p) \), the set of all compact operators over \(\ell^p \).

DEFINITION 2 ([22][3]). Let \(X \) be a proper metric space, and fix a countable dense subset \(Z \subseteq X \). Let \(T \) be a bounded operator on \(\ell^p(Z, \ell^p) \), and write \(T = (T(x, y))_{x, y \in Z} \) so that each \(T(x, y) \) is a bounded operator on \(\ell^p \). \(T \) is said to be locally compact if

- each \(T(x, y) \) is a compact operator on \(\ell^p \);
- for every bounded subset \(B \subseteq X \), the set
 \[
 \{(x, y) \in (B \times B) \cap (Z \times Z) : T(x, y) \neq 0\}
 \]
 is finite.

The propagation of \(T \) is defined to be

\[
propagation(T) = \inf\{S > 0 : T(x, y) = 0 \text{ for all } x, y \in Z \text{ with } d(x, y) > S\}.
\]

The algebraic \(\ell^p \) Roe algebra of \(X \), denoted by \(B^\text{alg}_{\ell^p}(X) \), is the subalgebra of \(\mathcal{L}(\ell^p(Z, \ell^p)) \) consisting of all finite propagation, locally compact operators. The \(\ell^p \) Roe algebra of \(X \), denoted by \(B^p(X) \), is the closure of \(B^\text{alg}_{\ell^p}(X) \) in \(\mathcal{L}(\ell^p(Z, \ell^p)) \).

\(B^p(X) \) does not depend on the choice of \(Z \). See [31] for a proof.

DEFINITION 3 ([27]). The \(\ell^p \)-localization algebra \(B^p_L(X) \) is the norm-closure of the algebra of all bounded and uniformly norm-continuous functions \(g : [0, \infty) \to B^p(X) \) such that

\[
propagation(g(t)) \to 0 \quad \text{as} \quad t \to \infty.
\]

The evaluation homomorphism \(e \) from \(B^p_L(X) \) to \(B^p(X) \) is defined by \(e(g) = g(0) \) for \(g \in B^p_L(X) \).
Definition 4. Let Γ be a discrete metric space and $d \geq 0$. The Rips complex of Γ at scale d, denoted by $P_d(\Gamma)$, is the simplicial complex with vertex set Γ, and where a finite subset $E \subset \Gamma$ spans a simplex if and only if $d(g, h) \geq d$ for all $g, h \in E$.

Points in $P_d(\Gamma)$ can be written as formal linear combinations $\sum_{g \in \Gamma} t_g g$, where $t_g \in [0, 1]$ for each g and $\sum_{g \in \Gamma} t_g = 1$. $P_d(\Gamma)$ is equipped with the ℓ^1 metric, i.e.,

$$d\left(\sum_{g \in \Gamma} t_g g, \sum_{g \in \Gamma} s_g g\right) = \sum_{g \in \Gamma} |t_g - s_g|.$$

To define the assembly map, we recall that when $p = 2$, Yu in [27] proved that the local index map from K-homology to K-theory of localization algebra is an isomorphism for finite-dimensional simplicial complexes. Qiao and Roe in [21] later generalized this isomorphism to general locally compact metric spaces. Therefore for $p \in (1, \infty)$, considering the analogs of ℓ^p-Roe algebra and ℓ^p-localization algebra, we get the following assembly map which is equivalent to the original map when $p = 2$. The following conjecture is called the coarse geometric ℓ^p-Novikov conjecture:

Conjecture 5. If Γ is a discrete metric space with bounded geometry, then the index map

$$e_* : \lim_{d \to \infty} K_*(B^p_L(P_d(\Gamma))) \to \lim_{d \to \infty} K_*(B^p(P_d(\Gamma))) \cong K_*(B^p(\Gamma))$$

is injective.

3. An ℓ^p coarse Mayer-Vietoris principle

In this section, we present an ℓ^p coarse Mayer-Vietoris principle similar to the argument in [14].
DEFINITION 6 ([14]). Let X be a proper metric space, and let A and B be closed subspace with $X = A \cup B$. We say that (A, B) is a w-excisive couple, or that $X = A \cup B$ is a w-excisive decomposition, if for each $R > 0$ there is some $S > 0$ such that

$$\text{Pen}(A; R) \cap \text{Pen}(B; R) \subset \text{Pen}(A \cap B; S),$$

where $\text{Pen}(A; R)$ is the set of points in X of distance at most R from A.

DEFINITION 7 ([14]). Let A be a closed subspace of a proper metric space X. Denote by $B^p(A; X)$ the operator-norm closure of the set of all locally compact, finite propagation operators T whose support is contained in $\text{Pen}(A; R) \times \text{Pen}(A; R)$, for some $R > 0$ (depending on T).

One can see that $B^p(A; X)$ is a two-sided ideal of $B^p(X)$. For $s, t \in [0, \infty)$ with $s < t$, let $i_{s,t} : \text{Pen}(A; s) \to \text{Pen}(A; t)$ be the inclusion map. Then $i_{s,t}$ induces a map

$$i_{s,t}^* : \ell^p(\text{Pen}(A; t), \mathcal{K}_p) \to \ell^p(\text{Pen}(A; s), \mathcal{K}_p).$$

Then the induced map $i_{s,t,*} : B^p(\text{Pen}(A; s)) \to B^p(\text{Pen}(A; t))$ is defined by, for any $f \in \ell^p(\text{Pen}(A; t), \mathcal{K}_p)$ and $T \in B^p(\text{Pen}(A; s))$,

$$i_{s,t,*}(T)(f) = T(i_{s,t}^*(f)).$$

By definition, we have $i_{t,r,*} \circ i_{s,t,*} = i_{s,r,*}$ for any $s < t < r$. And $\|i_{s,t,*}(T)\|_t \leq \|T\|_s$ for $T \in B^p(\text{Pen}(A; s))$. Here we identify A as $\text{Pen}(A; 0)$. Since $B^p(A; X) = \lim_{n \to \infty} B^p(\text{Pen}(A; n))$, we define that, for any $T \in B^p(A)$, $i_\ast : K_\ast(B^p(A)) \to K_\ast(B^p(A; X))$ by

$$i_\ast(T) = \lim_{n \to \infty} i_{0,n,*}(T).$$
Lemma 8 ([14]). The induced map

\[i_* : K_*(B^p(A)) \to K_*(B^p(A;X)) \]

is an isomorphism.

Proof. This is because that the inclusions \(A \subset Pen(A; n) \) and \(Pen(A; n) \subset Pen(A; n + 1) \) are coarsely equivalent, hence the induced maps on \(K \)-theory are all isomorphisms. \(\square \)

Let \(X = A \cup B \). Let \(I = B^p(A;X) \) and \(J = B^p(B;X) \). Define \(U : A \times A \to K_p \) such that

\[
U(x, y) = 0 \text{ if } x \neq y,
\]

\[
U(x, x) = \left(\begin{array}{cc}
I_{r(x)} & 0 \\
0 & 0
\end{array} \right),
\]

where \(I_{r(x)} \) is a rank \(r(x) \) identity matrix for some \(r(x) \in \mathbb{N} \). We define a partial order on all such \(U \) by the following: \(U_2 \leq U_1 \) if \(\text{rank}(U_2(x,x)) \leq \text{rank}(U_1(x,x)) \) for all \(x \in X \). Let \(\mathcal{U} \) be the set of all such operators \(U \) with this order.

Proposition 9. The collection \(\mathcal{U} \) is an approximate unit of \(I \).

Proof. Let \(T \in I \), for any \(\epsilon > 0 \), for any \(x, y \in X \), \(T(x,y) \) is either a zero operator or a compact operator over \(\ell^p \). \(X \times X \) is countable, so each pair \((x,y) \in X \times X \) has a corresponding integer \(n \).

Let \(F(x,y) \) be a finite rank operator over \(\ell^p \) such that \(\|T(x,y) - F(x,y)\| < \frac{1}{2^n} \epsilon \) when \(T(x,y) \neq 0 \) and \(n \) is the corresponding integer of \((x,y) \), and \(F(x,y) = 0 \) when \(T(x,y) = 0 \). Then \(F = (F(x,y)) \) is a locally finite rank operator of finite propagation with \(\|T - F\| < \epsilon \).

For each fixed \(x \), since \(F \) has finite propagation, there are only finitely many \(y \) such that \(F(x,y) \neq 0 \). Let \(U(x,x) = \left(\begin{array}{cc}
I_{r(x)} & 0 \\
0 & 0
\end{array} \right) \) be a finite-rank projection for some \(r(x) \in \mathbb{N} \) such that \(U(x,x)F(x,y) = F(x,y) \).
for all \(y \) with \(F(x, y) \neq 0 \). Then define a \(U_\lambda = \{ U(x, y) = 0 \text{ if } x \neq y \} \), and \(U(x, x) = \begin{pmatrix} I_{r(x)} & 0 \\ 0 & 0 \end{pmatrix} \) where \(U(x, x) \) is defined ahead.

Then

\[
\|U_\lambda T - T\| \leq \|U_\lambda T - U_\lambda F\| + \|U_\lambda F - F\| + \|F - T\|.
\]

Here \(\|F - T\| \leq \epsilon \), \(U_\lambda F - F = 0 \) and \(\|U_\lambda T - U_\lambda F\| \leq \|U_\lambda\| \|F - T\| < \epsilon \). So \(\|U_\lambda T - T\| \leq 2\epsilon \) and the proof is done. \(\Box \)

PROPOSITION 10.

1. \(B^p(A; X) + B^p(B; X) = B^p(X) \) for any decomposition \(A \) and \(B \) of \(X \);
2. \(B^p(A; X) \cap B^p(B; X) = B^p(A \cap B; X) \) if \(A \) and \(B \) are \(w \)-excisive.

Proof. Naturally, \(B^p(A; X) + B^p(B; X) \subset B^p(X) \). For any \(T \in B^p_{\text{alg}}(X) \), assume that \(\text{propagation}(T) = R \). Let \(\chi_A \) be the characteristic function of \(A \). Then \(T \cdot \chi_A \in B^p(A; X) \) and \(T \cdot (1 - \chi_A) \in B^p(B; X) \), and \(T = T\chi_A + T(1 - \chi_A) \in B^p(A; X) + B^p(B; X) \). Hence \(B^p(A; X) + B^p(B; X) = B^p(X) \).

For the second part, \(B^p(A \cap B; X) \subset B^p(A; X) \cap B^p(B; X) \) holds for any decomposition pair \((A, B) \). By Proposition 9, one can easily see that \(B^p(A; X) \cap B^p(B; X) = B^p(A; X)B^p(B; X) \). For \(T_A \in B^p_{\text{alg}}(A; X) \) and \(T_B \in B^p_{\text{alg}}(B; X) \) with

\[
\text{Supp}(T_A) \subset \text{Pen}(A; R') \times \text{Pen}(A; R');
\]

\[
\text{Supp}(T_B) \subset \text{Pen}(B; R'') \times \text{Pen}(B; R'').
\]

\((A, B)\) is \(w \)-excisive, then there exists \(S > 0 \) such that

\[
\text{Supp}(T_A T_B) \subset \text{Pen}(A \cap B; S) \times \text{Pen}(A \cap B; S).
\]

Hence \(B^p(A; X)B^p(B; X) \subset B^p(A \cap B; X) \). \(\Box \)
Combining these lemmas, we have the following ℓ^p coarse Mayer-Vietoris principle.

PROPOSITION 11. Let A and B be a w-excisive decomposition of X, then the following sequence is exact:

\[
\cdots \to K_j(B^p(A \cap B)) \to K_j(B^p(A)) \oplus K_j(B^p(B)) \to K_j(B^p(X)) \to K_{j-1}(B^p(A \cap B)) \to \cdots
\]

4. **Twisted ℓ^p-Roe algebras and twisted ℓ^p-localization algebras**

In this section, we shall define the twisted ℓ^p-Roe algebras and the twisted ℓ^p-localization algebras for bounded geometry spaces which admit a coarse embedding into a simply connected complete Riemannian manifold of nonpositive sectional curvature. The construction of these twisted ℓ^p-algebras is similar to those twisted algebras introduced in [29].

Let M be a simply connected complete Riemannian manifold of nonpositive sectional curvature. In the following, we shall assume that the dimension of M is even. If $\dim(M)$ is odd, we can replace M by $M \times \mathbb{R}$. Indeed, the product manifold $M \times \mathbb{R}$ is also a simply connected complete Riemannian manifold with nonpositive sectional curvature. And if $f : \Gamma \to M$ is a coarse embedding, then the induced map $f' : \Gamma \to M \times \mathbb{R}$ defined by $f'(\gamma) = (f(\gamma), 0)$ is also a coarse embedding so that we can replace f by f'. Thus, without loss of generality, we assume $\dim M = 2n$ for some integer $n > 0$.

Let $\mathcal{A} = C_0(M, \text{Cliff}_\mathbb{C}(TM))$ be the C^*-algebra of continuous functions a on M which have value $a(x) \in \text{Cliff}_\mathbb{C}(T_xM)$ at each point $x \in M$ and vanish at infinity, where $\text{Cliff}_\mathbb{C}(T_xM)$ is the complexified Clifford
algebra \cite{2,18} of the tangent space T_xM at $x \in M$ with respect to the inner product on T_xM given by the Riemannian structure of M. Then $\text{Cliff}_C(TM)$ is the Clifford bundle over M. Meanwhile, for any $x \in M$, $\text{Cliff}_C(T_xM)$ is also a Hilbert space, so that $\text{Cliff}_C(TM)$ is also a Hilbert space bundle. Let $\mathcal{H} = L^2(M, \text{Cliff}_C(TM))$, the set of all L^2 sections of $\text{Cliff}_C(TM)$, which is a Hilbert space. \mathcal{A} acts on \mathcal{H} by pointwise multiplication. For $a \in \mathcal{A}$ and $h \in \mathcal{H}$. Define $a_{\text{max}} = \max\{\|a(x)\| : x \in M\}$. Then $\|a \cdot h\| \leq a_{\text{max}}\|h\|$ and $\mathcal{A} \subset L(\mathcal{H})$. For $n \in \mathbb{N}$, define $\mathcal{H}_{n,p} = \mathcal{H} \oplus_p \cdots \oplus_p \mathcal{H}$, the ℓ^p-direct sum of n copies of \mathcal{H}. The ℓ^p-norm of $\mathcal{H}_{n,p}$ is defined as

$$\|(f_1, \cdots, f_n)\|_p = \sqrt[p]{\sum_{i=1}^{n} \|f_i\|^p}, \quad \text{for } f_1, \cdots, f_n \in \mathcal{H}.$$

Let $M_n(\mathcal{A})$ be the set of $n \times n$ matrices with entries in \mathcal{A}. Then elements of $M_n(\mathcal{A})$ act on $\mathcal{H}_{n,p}$ by matrix multiplication. For $a = (a_{i,j})_{i,j \in \{1, \cdots, n\}} \in M_n(\mathcal{A})$ and $h_n \in \mathcal{H}_{n,p}$, $\|a \cdot h_n\| \leq \max_{i,j \in \{1, \cdots, n\}} \{(a_{i,j})_{\text{max}}\} \cdot \|h_n\|$. Hence $M_n(\mathcal{A}) \subset L(\mathcal{H}_{n,p})$. Let $r_{n,n+1} : \mathcal{H}_{n+1,p} \to \mathcal{H}_{n,p}$ be the projection map defined by $r_{n,n+1}(h_1, \cdots, h_n, h_{n+1}) = (h_1, \cdots, h_n)$, for $(h_1, \cdots, h_{n+1}) \in \mathcal{H}_{n,p}$. Then $r_{n,n+1}^*(M_n(\mathcal{A})) \subset M_{n+1}(\mathcal{A})$. This is equivalent to embed $M_n(\mathcal{A})$ into $M_{n+1}(\mathcal{A})$ by placing matrices at the top left corner and inserting 0 at the right column and the bottom line. And $\|r_{n,n+1}^*(M)\| \leq \|M\|$ for all $M \in M_n(\mathcal{A})$. Let $M_{\infty,p}(\mathcal{A})$ be the inductive limit of $\{M_n(\mathcal{A})\}_{n=1}^{\infty}$. Define $\mathcal{H}_{\infty,p}$ to be the ℓ^p-direct sum of infinite copies of \mathcal{H} with the ℓ^p-norm

$$\|\{f_i\}_{i=1}^{\infty}\|_p = \sqrt[p]{\sum_{i=1}^{\infty} \|f_i\|^p}, \quad \text{for } \{f_i\}_{i=1}^{\infty} \in \mathcal{H}_{\infty,p}.$$
Then $\mathcal{H}_{\infty,p} \cong \ell^p(\mathbb{N}, \mathcal{H}) \cong \ell^p(\mathbb{N}) \otimes_p \mathcal{H}$ and all $M_n(\mathcal{A})$ can be considered as subalgebras of $\mathcal{L}(\mathcal{H}_{\infty,p})$. Denote by $\mathcal{K}_p \otimes_{alg} \mathcal{A}$ the algebraic tensor product of \mathcal{K}_p and \mathcal{A}. Naturally $\mathcal{K}_p \otimes_{alg} \mathcal{A}$ acts on $\mathcal{H}_{\infty,p}$ and $\mathcal{K}_p \otimes_{alg} \mathcal{A} \subset \mathcal{L}(\mathcal{H}_{\infty,p})$. Let $\mathcal{K}_p \otimes_p \mathcal{A} = \mathcal{K}_p \otimes_{alg} \mathcal{A} \mathcal{L}(\mathcal{H}_{\infty,p})$. It follows that $\mathcal{K}_p \otimes_p \mathcal{A} \cong M_\infty(\mathcal{A})$.

Let Γ be a discrete metric space with bounded geometry. Let $f : \Gamma \to M$ be a coarse embedding.

For each $d > 0$, we shall extend the map f to the Rips complex $P_d(\Gamma)$ in the following way. Note that f is a coarse map, i.e., there exists $R > 0$ such that for all $\gamma_1, \gamma_2 \in \Gamma$,

$$d(\gamma_1, \gamma_2) \leq d \implies d_M(f(\gamma_1), f(\gamma_2)) \leq R.$$

For any point $x = \sum_{\gamma \in \Gamma} c_\gamma \gamma \in P_d(\Gamma)$, where $c_\gamma \geq 0$ and $\sum_{\gamma \in \Gamma} c_\gamma = 1$, we choose a point $f_x \in M$ such that

$$d(f_x, f(\gamma)) \leq R$$

for all $\gamma \in \Gamma$ with $c_\gamma \neq 0$. The correspondence $x \mapsto f_x$ gives a coarse embedding $P_d(\Gamma) \to M$, also denoted by f.

Choose a countable dense subset Γ_d of $P_d(\Gamma)$ for each $d > 0$ in such a way that $\Gamma_d \subset \Gamma_{d'}$ when $d < d'$.

Let $B^p_{alg}(P_d(\Gamma), \mathcal{A})$ be the set of all functions

$$T : \Gamma_d \times \Gamma_d \to \mathcal{K}_p \otimes_p \mathcal{A} \subset \mathcal{L}(\ell^p \otimes_p L^2(M, \text{Cliff}_{\mathbb{C}}(TM)))$$

such that

1. there exists $C > 0$ such that $\|T(x, y)\| \leq C$ for all $x, y \in \Gamma_d$;
2. there exists $R > 0$ such that $T(x, y) = 0$ if $d(x, y) > R$;
3. there exists $L > 0$ such that for every $z \in P_d(\Gamma)$, the number of elements in the following set

$$\{(x, y) \in \Gamma_d \times \Gamma_d : d(x, z) \leq 3R, d(y, z) \leq 3R, T(x, y) \neq 0\}$$

is at most L.

is less than L.

(4) there exists $r > 0$ such that

$$\text{Supp}(T(x, y)) \subset B(f(x), r)$$

for all $x, y \in \Gamma_d$, where $B(f(x), r) = \{m \in M : d(m, f(x)) < r\}$

and, for all $x, y \in \Gamma_d$, the entry $T(x, y) \in \mathcal{K}_p \otimes_p A$ is a function on M with $T(x, y)(m) \in \mathcal{K}_p \otimes_p \text{Cliff}_C(T_m M)$ for each $m \in M$

so that the support of $T(x, y)$ is defined by

$$\text{Supp}(T(x, y)) := \{m \in M : T(x, y)(m) \neq 0\}.$$

For $f \in \ell^p(\Gamma_d, \mathcal{H}_{\infty, p})$, we define

$$Tf(x) = \sum_{y \in \Gamma_d} T(x, y)f(y).$$

Then $T = (T(x, y)) \in \mathcal{L}(\ell^p(\Gamma_d, \mathcal{H}_{\infty, p})).$

DEFINITION 12. The twisted ℓ^p-Roe algebra $B^p(P_d(\Gamma), A)$ is defined to be the operator norm closure of $B^p_{\text{alg}}(P_d(\Gamma), A)$ in $\mathcal{L}(\ell^p(\Gamma_d, \mathcal{H}_{\infty, p})).$

The above definition of the twisted ℓ^p-Roe algebra is similar to that in [29].

Let $B^p_{L,\text{alg}}(P_d(\Gamma), A)$ be the set of all bounded, uniformly norm-continuous functions

$$g : \mathbb{R}_+ \to B^p_{\text{alg}}(P_d(\Gamma), A)$$

such that

(1) there exists a bounded function $R(t) : \mathbb{R}_+ \to \mathbb{R}_+$ with $\lim_{t \to \infty} R(t) = 0$ such that $(g(t))(x, y) = 0$ whenever $d(x, y) > R(t)$;

(2) there exists $L > 0$ such that for every $z \in P_d(\Gamma)$, the number of elements in the following set

$$\{(x, y) \in \Gamma_d \times \Gamma_d : d(x, z) \leq 3R, d(y, z) \leq 3R, g(t)(x, y) \neq 0\}$$
is less than L for every $t \in \mathbb{R}_+$.

(3) there exists $r > 0$ such that $\text{Supp}((g(t))(x, y)) \subset B(f(x), r)$ for all $t \in \mathbb{R}_+$, $x, y \in \Gamma_d$, where $f : P_d(\Gamma) \to M$ is the extension of the coarse embedding $f : \Gamma \to M$ and $B(f(x), r) = \{m \in M : d(m, f(x)) < r\}$.

DEFINITION 13. The twisted ℓ^p-localization algebra $B^p_L(P_d(\Gamma), \mathcal{A})$ is defined to be the norm completion of $B^p_{L,\text{alg}}(P_d(\Gamma), \mathcal{A})$, where $B^p_{L,\text{alg}}(P_d(\Gamma), \mathcal{A})$ is endowed with the norm

$$\|g\|_\infty = \sup_{t \in \mathbb{R}_+} \|g(t)\|_{B^p(P_d(\Gamma), \mathcal{A})}.$$

The above definition of the twisted ℓ^p-localization Roe algebra is similar to that in [29]. The evaluation homomorphism e from $B^p_L(P_d(\Gamma), \mathcal{A})$ to $B^p(P_d(\Gamma), \mathcal{A})$ defined by $e(g) = g(0)$ induces a homomorphism at K-theory level:

$$e_* : \lim_{d \to \infty} K_*(B^p_L(P_d(\Gamma), \mathcal{A})) \to \lim_{d \to \infty} K_*(B^p(P_d(\Gamma), \mathcal{A})).$$

THEOREM 14. Let Γ be a discrete metric space with bounded geometry which admits a coarse embedding $f : \Gamma \to M$ into a simply connected, complete Riemannian manifold M of non-positive sectional curvature. Then the homomorphism

$$e_* : \lim_{d \to \infty} K_*(B^p_L(P_d(\Gamma), \mathcal{A})) \to \lim_{d \to \infty} K_*(B^p(P_d(\Gamma), \mathcal{A})).$$

is an isomorphism.

The proof of Theorem 14 is similar to the proof of Theorem 6.8 in [29]. To begin with, we need to discuss ideals of the twisted algebras associated to open subsets of the manifold M.

DEFINITION 15.
(1) The support of an element \(T \) in \(B_{alg}^p(P_d(\Gamma), \mathcal{A}) \) is defined to be
\[
\text{Supp}(T) = \left\{ (x, y, m) \in \Gamma_d \times \Gamma_d \times M : m \in \text{Supp}(T(x, y)) \right\} = \left\{ (x, y, m) \in \Gamma_d \times \Gamma_d \times M : (T(x, y))(m) \neq 0 \right\}.
\]

(2) The support of an element \(g \) in \(B_{L,alg}^p(P_d(\Gamma), \mathcal{A}) \) is defined to be
\[
\bigcup_{t \in \mathbb{R}^+} \text{Supp}(g(t)).
\]

Let \(O \subset M \) be an open subset of \(M \). Define \(B_{alg}^p(P_d(\Gamma), \mathcal{A})_O \) to be the subalgebra of \(B_{alg}^p(P_d(\Gamma), \mathcal{A}) \) consisting of all elements whose supports are contained in \(\Gamma_d \times \Gamma_d \times O \), i.e.,
\[
B_{alg}^p(P_d(\Gamma), \mathcal{A})_O = \{ T \in B_{alg}^p(P_d(\Gamma), \mathcal{A}) : \text{Supp}(T(x, y)) \subset O, \forall x, y \in \Gamma_d \}.
\]

Define \(B^p(P_d(\Gamma), \mathcal{A})_O \) to be the norm closure of \(B_{alg}^p(P_d(\Gamma), \mathcal{A})_O \). Similarly, let
\[
B_{L,alg}^p(P_d(\Gamma), \mathcal{A})_O = \left\{ g \in B_{L,alg}^p(P_d(\Gamma), \mathcal{A}) : \text{Supp}(g) \subset \Gamma_d \times \Gamma_d \times O \right\}
\]
and define \(B^p_L(P_d(\Gamma), \mathcal{A})_O \) to be the norm closure of \(B_{L,alg}^p(P_d(\Gamma), \mathcal{A})_O \) under the norm \(\|g\|_\infty = \sup_{t \in \mathbb{R}^+} \|g(t)\|_{B^p(P_d(\Gamma), \mathcal{A})} \).

Note that \(B^p(P_d(\Gamma), \mathcal{A})_O \) and \(B^p_L(P_d(\Gamma), \mathcal{A})_O \) are closed two-sided ideals of \(B^p(P_d(\Gamma), \mathcal{A}) \) and \(B^p_L(P_d(\Gamma), \mathcal{A}) \), respectively. We also have an evaluation homomorphism \(e : B^p_L(P_d(\Gamma), \mathcal{A})_O \to B^p(P_d(\Gamma), \mathcal{A})_O \) given by \(e(g) = g(0) \).

Lemma 16. For any two open subsets \(O_1, O_2 \) of \(M \), we have
\[
B^p(P_d(\Gamma), \mathcal{A})_{O_1} + B^p(P_d(\Gamma), \mathcal{A})_{O_2} = B^p(P_d(\Gamma), \mathcal{A})_{O_1 \cup O_2},
\]
\[
B^p(P_d(\Gamma), \mathcal{A})_{O_1} \cap B^p(P_d(\Gamma), \mathcal{A})_{O_2} = B^p(P_d(\Gamma), \mathcal{A})_{O_1 \cap O_2},
\]
\[
B^p_{L}(P_d(\Gamma), \mathcal{A})_{O_1} + B^p_{L}(P_d(\Gamma), \mathcal{A})_{O_2} = B^p_{L}(P_d(\Gamma), \mathcal{A})_{O_1 \cup O_2},
\]
\[
B^p_{L}(P_d(\Gamma), \mathcal{A})_{O_1} \cap B^p_{L}(P_d(\Gamma), \mathcal{A})_{O_2} = B^p_{L}(P_d(\Gamma), \mathcal{A})_{O_1 \cap O_2}.
\]
Consequently, we have the following commuting diagram connecting two Mayer-Vietorís sequences at K-Theory level:

\[
\begin{array}{cccccc}
AL_0 & \rightarrow & BL_0 & \rightarrow & CL_0 & \\
\downarrow & & \downarrow & & \downarrow & \\
CL_1 & \rightarrow & BL_1 & \rightarrow & AL_1 & \\
\downarrow & & \downarrow & & \downarrow & \\
A_0 & \rightarrow & B_0 & \rightarrow & C_0 & \\
\downarrow & & \downarrow & & \downarrow & \\
C_1 & \rightarrow & B_1 & \rightarrow & A_1 &
\end{array}
\]

where, for $* = 0, 1$,

\[
\begin{align*}
AL_* &= K_*(B^p_L(P_d(\Gamma), \mathcal{A})_{O_1 \cap O_2}), \\
CL_* &= K_*(B^p_L(P_d(\Gamma), \mathcal{A})_{O_1 \cup O_2}), \\
A_* &= K_*(B^p(P_d(\Gamma), \mathcal{A})_{O_1 \cap O_2}), \\
C_* &= K_*(B^p(P_d(\Gamma), \mathcal{A})_{O_1 \cup O_2}), \\
B_* &= K_*(B^p(P_d(\Gamma), \mathcal{A})_{O_1}) \bigoplus K_*(B^p(P_d(\Gamma), \mathcal{A})_{O_2}).
\end{align*}
\]

Proof. We shall prove the first equality. Other equalities can be proved similarly. Then the two Mayer-Vietorís exact sequences follow from Lemma 2.4 of [14].

To prove the first equality, it suffices to show that

\[
B^p_{alg}(P_d(\Gamma), \mathcal{A})_{O_1 \cup O_2} \subseteq B^p_{alg}(P_d(\Gamma), \mathcal{A})_{O_1} + B^p_{alg}(P_d(\Gamma), \mathcal{A})_{O_2}.
\]

Now suppose $T \in B^p_{alg}(P_d(\Gamma), \mathcal{A})_{O_1 \cup O_2}$. Take a continuous partition of unity $\{\varphi_1, \varphi_2\}$ on $O_1 \cup O_2$ subordinate to the open over $\{O_1, O_2\}$ of $O_1 \cup O_2$. Define two functions

\[
T_1, T_2 : \Gamma_d \times \Gamma_d \longrightarrow \mathcal{K}_p \otimes_p \mathcal{A}
\]

by

\[
T_1(x, y)(m) = \varphi_1(m)(T(x, y)(m)),
\]

\[
T_2(x, y)(m) = \varphi_2(m)(T(x, y)(m)).
\]
\[T_2(x, y)(m) = \varphi_2(m) \left(T(x, y)(m) \right) \]

for \(x, y \in \Gamma_d \) and \(m \in M \).

Then \(T_1 \in B^p_{\text{alg}}(P_d(\Gamma), \mathcal{A})_{O_1}, T_2 \in B^p_{\text{alg}}(P_d(\Gamma), \mathcal{A})_{O_2} \), and

\[T = T_1 + T_2 \in B^p_{\text{alg}}(P_d(\Gamma), \mathcal{A})_{O_1} + B^p_{\text{alg}}(P_d(\Gamma), \mathcal{A})_{O_2} \]

as desired. \(\square \)

It would be convenient to introduce the following notion associated with the coarse embedding \(f : \Gamma \to M \).

DEFINITION 17. Let \(r > 0 \). A family of open subsets \(\{ O_i \}_{i \in J} \) of \(M \) is said to be \((\Gamma, r)\)-separate if

1. \(O_i \cap O_j = \emptyset \) if \(i \neq j \);
2. there exists \(\gamma_i \in \Gamma \) such that \(O_i \subseteq B(f(\gamma_i), r) \subset M \) for each \(i \in J \).

LEMMA 18. If \(\{ O_i \}_{i \in J} \) is a family of \((\Gamma, r)\)-separate open subsets of \(M \), then

\[e_* : \lim_{d \to \infty} K_*(B^p_E(P_d(\Gamma), \mathcal{A})_{\sqcup_{i \in J} O_i}) \to \lim_{d \to \infty} K_*(B^p(P_d(\Gamma), \mathcal{A})_{\sqcup_{i \in J} O_i}) \]

is an isomorphism, where \(\sqcup_{i \in J} O_i \) is the (disjoint) union of \(\{ O_i \}_{i \in J} \).

We will prove Lemma 18 in the next section. Granting Lemma 18 for the moment, we are able to prove Theorem 14.

Proof of Theorem 14. (29). For any \(r > 0 \), we define \(O_r \subset M \) by

\[O_r = \bigcup_{\gamma \in \Gamma} B(f(\gamma), r), \]

where \(f : \Gamma \to M \) is the coarse embedding and \(B(f(\gamma), r) = \{ p \in M : d(p, f(\gamma)) < r \} \).
For any \(d > 0 \), if \(r < r' \) then \(B^p(P_d(\Gamma), \mathcal{A})_{O_r} \subseteq B^p(P_{d'}(\Gamma), \mathcal{A})_{O_{r'}} \) and \(B^p_L(P_d(\Gamma), \mathcal{A})_{O_r} \subseteq B^p_L(P_{d'}(\Gamma), \mathcal{A})_{O_{r'}} \). By definition, we have

\[
B^p(P_d(\Gamma), \mathcal{A}) = \lim_{r \to \infty} B^p(P_d(\Gamma), \mathcal{A})_{O_r},
\]

\[
B^p_L(P_d(\Gamma), \mathcal{A}) = \lim_{r \to \infty} B^p_L(P_d(\Gamma), \mathcal{A})_{O_r}.
\]

On the other hand, for any \(r > 0 \), if \(d < d' \) then \(\Gamma_d \subseteq \Gamma_{d'} \) in \(P_d(\Gamma) \subseteq P_{d'}(\Gamma) \) so that we have natural inclusions \(B^p(P_d(\Gamma), \mathcal{A})_{O_r} \subseteq B^p(P_{d'}(\Gamma), \mathcal{A})_{O_{r'}} \) and \(B^p_L(P_d(\Gamma), \mathcal{A})_{O_r} \subseteq B^p_L(P_{d'}(\Gamma), \mathcal{A})_{O_{r'}} \). These inclusions induce the following commuting diagram

\[
\begin{array}{ccc}
K_*(B^p_L(P_d(\Gamma), \mathcal{A})_{O_r}) & \xrightarrow{\epsilon_*} & K_*(B^p(P_d(\Gamma), \mathcal{A})_{O_r}) \\
\downarrow & & \downarrow \\
K_*(B^p_L(P_{d'}(\Gamma), \mathcal{A})_{O_r}) & \xrightarrow{\epsilon_*} & K_*(B^p(P_{d'}(\Gamma), \mathcal{A})_{O_r}) \\
\downarrow & & \downarrow \\
K_*(B^p_L(P_{d'}(\Gamma), \mathcal{A})_{O_{r'}}) & \xrightarrow{\epsilon_*} & K_*(B^p(P_{d'}(\Gamma), \mathcal{A})_{O_{r'}})
\end{array}
\]

which allows us to change the order of limits from \(\lim_{d \to \infty} \lim_{r \to \infty} \) to \(\lim_{d \to \infty} \lim_{r \to \infty} \) in the second piece of the following commuting diagram

\[
\begin{array}{ccc}
\lim_{d \to \infty} K_*(B^p_L(P_d(\Gamma), \mathcal{A})) & \xrightarrow{\epsilon_*} & \lim_{d \to \infty} K_*(B^p(P_d(\Gamma), \mathcal{A})) \\
\downarrow \cong \downarrow & & \downarrow \cong \\
\lim_{d \to \infty} \lim_{r \to \infty} K_*(B^p_L(P_d(\Gamma), \mathcal{A})_{O_r}) & \xrightarrow{\epsilon_*} & \lim_{d \to \infty} \lim_{r \to \infty} K_*(B^p(P_d(\Gamma), \mathcal{A})_{O_r}) \\
\downarrow \cong \downarrow & & \downarrow \cong \\
\lim_{r \to \infty} \lim_{d \to \infty} K_*(B^p_L(P_d(\Gamma), \mathcal{A})_{O_r}) & \xrightarrow{\epsilon_*} & \lim_{r \to \infty} \lim_{d \to \infty} K_*(B^p(P_d(\Gamma), \mathcal{A})_{O_r})
\end{array}
\]

So, to prove Theorem 14 it suffices to show that, for any \(r > 0 \),

\[
\epsilon_* : \lim_{d \to \infty} K_*(B^p_L(P_d(\Gamma), \mathcal{A})_{O_r}) \to \lim_{d \to \infty} K_*(B^p(P_d(\Gamma), \mathcal{A})_{O_r})
\]

is an isomorphism.
Let $r > 0$. Since Γ has bounded geometry and $f : \Gamma \to M$ is a coarse embedding, there exist finitely many mutually disjoint subsets of Γ, say $\Gamma_k := \{\gamma_i : i \in J_k\}$ with some index set J_k for $k = 1, 2, \ldots, k_0$, such that $\Gamma = \bigcup_{k=1}^{k_0} \Gamma_k$ and, for each k, $d(f(\gamma_i), f(\gamma_j)) > 2r$ for distinct elements γ_i, γ_j in Γ_k.

For each $k = 1, 2, \ldots, k_0$, let

$$O_{r,k} = \bigcup_{i \in J_k} B(f(\gamma_i), r).$$

Then $O_r = \bigcup_{k=1}^{k_0} O_{r,k}$ and each $O_{r,k}$, or an intersection of several $O_{r,k}$, is the union of a family of (Γ,r)-separate (Definition 17) open subsets of M.

Now Theorem 14 follows from Lemma 18 together with a Mayer-Vietoris sequence argument by using Lemma 19. \hfill \Box

5. Strong Lipschitz homotopy invariance

In this section, we shall present Yu’s arguments about strong Lipschitz homotopy invariance for K-theory of the twisted localization algebras [29], and prove Lemma 18 of the previous section.

Let $f : \Gamma \to M$ be a coarse embedding of a bounded geometry discrete metric space Γ into a simply connected complete Riemannian manifold M of nonpositive sectional curvature, and let $r > 0$. Let \{\{O_i\}_{i \in J} be a family of (Γ, r)-separate open subsets of M, i.e.,

(1) $O_i \cap O_j = \emptyset$ if $i \neq j$;

(2) there exists $\gamma_i \in \Gamma$ such that $O_i \subseteq B(f(\gamma_i), r) \subset M$ for each $i \in J$.

For $d > 0$, let $X_i, i \in J$, be a family of closed subsets of $P_d(\Gamma)$ such that $\gamma_i \in X_i$ for every $i \in J$ and \{\{X_i\}_{i \in J} is uniformly bounded in the sense
that there exists $r_0 > 0$ such that $\text{diameter}(X_i) \leq r_0$ for each $i \in J$. In particular, we will consider the following three cases of $\{X_i\}_{i \in J}$:

1. $X_i = B_{P_d(\Gamma)}(\gamma_i, R) := \{x \in P_d(\Gamma) : d(x, \gamma_i) \leq R\}$, for some common $R > 0$ for all $i \in J$;
2. $X_i = \Delta_i$, a simplex in $P_d(\Gamma)$ with $\gamma_i \in \Delta_i$ for each $i \in J$;
3. $X_i = \{\gamma_i\}$ for each $i \in J$.

For each $i \in J$, let A_{O_i} be the subalgebra of $A = C_0(M, \text{Cliff}_C(TM))$ generated by those functions whose supports are contained in O_i. We define

$$A(X_i : i \in J) = \prod_{i \in J} B^p(X_i) \otimes A_{O_i}$$

$$= \left\{ \bigoplus_{i \in J} T_i \bigg| T_i \in B^p(X_i) \otimes A_{O_i}, \sup_{i \in J} \|T_i\| < \infty \right\}$$

Similarly we define $A_L(X_i : i \in J)$ to be the subalgebra of

$$\left\{ \bigoplus_{i \in J} b_i \bigg| b_i \in B^p_L(X_i) \otimes A_{O_i}, \sup_{i \in J} \|b_i\| < \infty \right\}$$

generated by elements $\bigoplus_{i \in J} b_i$ such that

1. the function

$$\bigoplus_{i \in J} b_i : \mathbb{R}_+ \rightarrow \prod_{i \in J} B^p(X_i) \otimes A_{O_i}$$

is uniformly norm-continuous in $t \in \mathbb{R}_+$.

2. there exists a bounded function $c(t)$ on \mathbb{R}_+ with $\lim_{t \to \infty} c(t) = 0$ such that $(b_i(t))(x, y) = 0$ whenever $d(x, y) > c(t)$ for all $i \in J$, $x, y \in X_i$ and $t \in \mathbb{R}_+$.

For each natural number $s > 0$, let $\Delta_i(s)$ be the simplex with vertices $\{\gamma \in \Gamma : d(\gamma, \gamma_i) \leq s\}$ in $P_d(\Gamma)$ for $d > s$.

Lemma 19. Let $O = \sqcup_{i \in J} O_i$ be the (disjoint) union of a family of (Γ, r)-separate open subsets $\{O_i\}_{i \in J}$ of M as above. Then
THE COARSE GEOMETRIC ℓ^p-NOVIKOV CONJECTURE

(1) $B^p(P_d(\Gamma), A)_O \cong \lim_{R \to \infty} A(\{x \in P_d(\Gamma) : d(x, \gamma_i) \leq R\} : i \in J)$;

(2) $B^p_L(P_d(\Gamma), A)_O \cong \lim_{R \to \infty} A_L(\{x \in P_d(\Gamma) : d(x, \gamma_i) \leq R\} : i \in J)$;

(3) $\lim_{d \to \infty} B^p(P_d(\Gamma), A)_O \cong \lim_{s \to \infty} A(\Delta_i(s) : i \in J)$;

(4) $\lim_{d \to \infty} B^p_L(P_d(\Gamma), A)_O \cong \lim_{s \to \infty} A_L(\Delta_i(s) : i \in J)$.

Proof. (29) Let A_O be the subalgebra of $A = C_0(M, \text{Cliff}_C(TM))$ generated by elements whose supports are contained in O. Let $H_O = L^2(O, \text{Cliff}_C(TM))$ and $H_{O,\infty,p}$ be the ℓ^p-direct sum of infinite copies of H_O with the ℓ^p-norm

$$\|(f_1, \cdots, f_n)\|_p = \sqrt[p]{\sum_{i=1}^{n} \|f_i\|^p}, \quad \text{for } f_1, \cdots, f_n \in H_O.$$

$K_p \otimes_p A_O$ acts on $H_{O,\infty,p}$ and $B^p(P_d(\Gamma), A)_O$ acts on $\ell^p(\Gamma_d, H_{O,\infty,p})$. We have a decomposition

$$\ell^p(\Gamma_d, H_{O,\infty,p}) = \bigoplus_{i \in J} \ell^p(\Gamma_d, H_{O_i,\infty,p}).$$

Each $T \in B^p_{\text{alg}}(P_d(\Gamma), A)_O$ has a corresponding decomposition

$$T = \bigoplus_{i \in J} T_i$$

such that there exists $R > 0$ for which each T_i is supported on

$$\{(x, y, p) : p \in O_i, x, y \in \Gamma_d, d(x, \gamma_i) \leq R, d(y, \gamma_i) \leq R\}.$$

On the other hand, the Banach algebra $B^p(\{x \in P_d(\Gamma) : d(x, \gamma_i) \leq R\}) \otimes_p A_{O_i}$ acts on

$$\ell^p(\{x \in \Gamma_d : d(x, \gamma_i) \leq R\}, H_{O_i,\infty,p}),$$

so that on $\ell^p(\Gamma_d, H_{O,\infty,p})$, for each $R > 0$, the algebra $A(\{x \in P_d(\Gamma) : d(x, \gamma_i) \leq R\} : i \in J)$ can be represented as a subalgebra of $B^p(P_d(\Gamma), A)_O$.
In this way, the decomposition $T = \bigoplus_{i \in J} T_i$ induces a Banach algebra isomorphism

$$B^p(P_d(\Gamma), A) \cong \lim_{R \to \infty} A\{x \in P_d(\Gamma) : d(x, \gamma_i) \leq R \} : i \in J$$

as desired in (1). Then (2),(3),(4) follows easily from (1). \qed

Now we turn to recall the notion of strong Lipschitz homotopy [27, 28, 29].

Let $\{Y_i\}_{i \in J}$ and $\{X_i\}_{i \in J}$ be two families of uniformly bounded closed subspaces of $P_d(\Gamma)$ for some $d > 0$ with $\gamma_i \in X_i$, $\gamma_i \in Y_i$ for every $i \in J$. A map $g : \bigsqcup_{i \in J} X_i \to \bigsqcup_{i \in J} Y_i$ is said to be Lipschitz if

1. $g(X_i) \subseteq Y_i$ for each $i \in J$;
2. there exists a constant c, independent of $i \in J$, such that

$$d(g(x), g(y)) \leq c \, d(x, y)$$

for all $x, y \in X_i$, $i \in J$.

Let g_1, g_2 be two Lipschitz maps from $\bigsqcup_{i \in J} X_i$ to $\bigsqcup_{i \in J} Y_i$. We say g_1 is strongly Lipschitz homotopy equivalent to g_2 if there exists a continuous map

$$F : [0, 1] \times (\bigsqcup_{i \in J} X_i) \to \bigsqcup_{i \in J} Y_i$$

such that

1. $F(0, x) = g_1(x)$, $F(1, x) = g_2(x)$ for all $x \in \bigsqcup_{i \in J} X_i$;
2. there exists a constant c for which $d(F(t, x), F(t, y)) \leq c \, d(x, y)$ for all $x, y \in X_i$, $t \in [0, 1]$, where i is any element in J;
3. F is equicontinuous in t, i.e., for any $\varepsilon > 0$ there exists $\delta > 0$ such that $d(F(t_1, x), F(t_2, x)) < \varepsilon$ for all $x \in \bigsqcup_{i \in J} X_i$ if $|t_1 - t_2| < \delta$.

We say $\{X_i\}_{i \in J}$ is strongly Lipschitz homotopy equivalent to $\{Y_i\}_{i \in J}$ if there exist Lipschitz maps $g_1 : \bigsqcup_{i \in J} X_i \to \bigsqcup_{i \in J} Y_i$ and $g_2 : \bigsqcup_{i \in J} Y_i \to$
Define $A_{L,0}(X_i : i \in J)$ to be the subalgebra of $A_L(X_i : i \in J)$ consisting of elements $\oplus_{i \in J} b_i(t)$ satisfying $b_i(0) = 0$ for all $i \in J$.

Lemma 20 ([29]). If $\{X_i\}_{i \in J}$ is strongly Lipschitz homotopy equivalent to $\{Y_i\}_{i \in J}$ then $K_*(A_{L,0}(X_i : i \in J))$ is isomorphic to $K_*(A_{L,0}(Y_i : i \in J))$.

Let e be the evaluation homomorphism from $A_L(X_i : i \in J)$ to $A(X_i : i \in J)$ given by $\oplus_{i \in J} g_i(t) \mapsto \oplus_{i \in J} g_i(0)$.

Lemma 21 ([29]). Let $\{\gamma_i\}_{i \in J}$ be as above, i.e., $O_i \subseteq B(f(\gamma_i), r) \subset M$ for each i. If $\{\Delta_i\}_{i \in J}$ is a family of simplices in $P_d(\Gamma)$ for some $d > 0$ such that $\gamma_i \in \Delta_i$ for all $i \in J$, then

$$e_*(K_*(A_L(\Delta_i : i \in J)) \rightarrow K_*(A(\Delta_i : i \in J))$$

is an isomorphism.

Proof. ([29]). Note that $\{\Delta_i\}_{i \in J}$ is strongly Lipschitz homotopy equivalent to $\{\gamma_i\}_{i \in J}$. By an argument of Eilenberg swindle, we have $K_*(A_{L,0}(\{\gamma_i\} : i \in J)) = 0$. Consequently, Lemma 21 follows from Lemma 20 and the six term exact sequence of Banach algebra K-theory.

We are now ready to give a proof to Lemma 18 of the previous section.

Proof of Lemma 18. By Lemma 19 we have the following commuting diagram

$$\lim_{d \to \infty} B^p_L(P_d(\Gamma), A)_{\bigcup_{i \in J} O_i} \xrightarrow{e} \lim_{d \to \infty} B^p(P_d(\Gamma), A)_{\bigcup_{i \in J} O_i}
\xrightarrow{\cong} \lim_{s \to \infty} A_L(\Delta_i(s)_i : i \in J) \xrightarrow{e} \lim_{s \to \infty} A(\Delta_i(s)_i : i \in J)$$
which induces the following commuting diagram at K-theory level

\[
\begin{array}{ccc}
\lim_{d \to \infty} K_* \left(B^p_L(P_d(\Gamma), \mathcal{A}) \cup_{i \in J} \mathcal{O}_i \right) & \overset{e^*}{\longrightarrow} & \lim_{d \to \infty} K_* \left(B^p(P_d(\Gamma), \mathcal{A}) \cup_{i \in J} \mathcal{O}_i \right) \\
\cong & & \cong \\
\lim_{s \to \infty} K_* \left(A_L(\Delta_i(s) : i \in J) \right) & \overset{e^*}{\longrightarrow} & \lim_{s \to \infty} K_* \left(A(\Delta_i(s) : i \in J) \right)
\end{array}
\]

Now Lemma \[18\] follows from Lemma \[21\].

6. Almost flat Bott elements and Bott maps

In this section, we shall construct uniformly almost flat Bott generators for a simply connected complete Riemannian manifold with nonpositive sectional curvature, and define a Bott map from the K-theory of the Roe algebra to the K-theory of the twisted Roe algebra and another Bott map between the K-theory of corresponding localization algebras. We show that the Bott map from the K-theory of the ℓ^p-localization algebra to the K-theory of the twisted ℓ^p-localization algebra is an isomorphism (Theorem \[25\]).

Let M be a simply connected complete Riemannian manifold with nonpositive sectional curvature. As remarked at the beginning of Section 4, without loss of generality, we assume in the following $\dim(M) = 2n$ for some integer $n > 0$.

Recall that $\mathcal{A} := C_0(M, \text{Cliff}_C(TM))$ and $\dim M = 2n$, the exponential map

\[\exp_x : T_x M \cong \mathbb{R}^{2n} \to M\]

at any point $x \in M$ induces an isomorphism

\[C_0(M, \text{Cliff}_C(TM)) \cong C_0(\mathbb{R}^{2n}) \otimes \mathcal{M}_2^n(\mathbb{C}).\]

Similarly, we define $\mathcal{B} := C_b(M, \text{Cliff}_C(TM))$ to be the Banach algebra of all bounded functions a on M with $a(x) \in \text{Cliff}(T_x M)$ at all $x \in M$.
Let $x \in M$. For any $z \in M$, let $\sigma : [0, 1] \to M$ be the unique geodesic such that
\[
\sigma(0) = x, \quad \sigma(1) = z.
\]
Let $v_x(z) := \frac{\sigma'(1)}{\|\sigma'(1)\|} \in T_zM$. For any $c > 0$, take a continuous function $\phi_{x,c} : M \to [0, 1]$ satisfying
\[
\phi_{x,c}(z) = \begin{cases}
0, & \text{if } d(x, z) \leq \frac{c}{2} \\
1, & \text{if } d(x, z) \geq c.
\end{cases}
\]
For any $z \in M$, let
\[
f_{x,c}(z) := \phi_{x,c}(z) \cdot v_x(z) \in T_zM.
\]
Then $f_{x,c} \in B$. The following result describes certain “uniform almost flatness” of the functions $f_{x,c}$ ($x \in M$, $c > 0$).

Lemma 22. For any $R > 0$ and $\varepsilon > 0$, there exist a constant $c > 0$ and a family of continuous function $\{\phi_{x,c}\}_{x \in M}$ satisfying the above condition (1) such that, if $d(x, y) < R$, then
\[
\sup_{z \in M} \|f_{x,c}(z) - f_{y,c}(z)\|_{T_zM} < \varepsilon.
\]

Proof. Let $c = \frac{2R}{\varepsilon}$. For any $x \in M$, define $\phi_{x,c} : M \to [0, 1]$ by
\[
\phi_{x,c}(z) = \begin{cases}
0, & \text{if } d(x, z) \leq \frac{R}{\varepsilon} \\
\frac{\varepsilon}{R} d(x, z) - 1, & \text{if } \frac{R}{\varepsilon} \leq d(x, z) \leq \frac{2R}{\varepsilon} \\
1, & \text{if } d(x, z) \geq \frac{2R}{\varepsilon}.
\end{cases}
\]
Let $x, y \in M$ such that $d(x, y) < R$. Then we have several cases for the position of $z \in M$ with respect to x, y.

Consider the case where $d(x, z) > c = \frac{2R}{\varepsilon}$ and $d(y, z) > c = \frac{2R}{\varepsilon}$. Since $\phi_{x,c}(z) = \phi_{y,c}(z) = 1$, we have
\[
f_{x,c}(z) - f_{y,c}(z) = v_x(z) - v_y(z).
\]
Without loss of generality, assume $d(x, z) \leq d(y, z)$. Then there exists a unique point y' on the unique geodesic connecting y and z such
that \(d(y', z) = d(x, z) \). Then \(d(y', y) < R \) since \(d(x, y) < R \), so that \(d(x, y') < 2R \).

Let \(\exp_z^{-1} : M \to T_z M \) denote the inverse of the exponential map
\[
\exp_z : T_z M \to M
\]
at \(z \in M \). Then we have
\[
(\alpha) \| \exp_z^{-1}(x) \| = d(x, z) = d(y', z) = \| \exp_z^{-1}(y') \| > c = \frac{2R}{\varepsilon};
\]
\[
(\beta) \| \exp_z^{-1}(x) - \exp_z^{-1}(y') \| \leq d(x, y') < 2R, \text{ since } M \text{ has nonpositive sectional curvature};
\]
\[
(\gamma) v_x(z) = -\frac{\exp_z^{-1}(x)}{\| \exp_z^{-1}(x) \|} \text{ and } v_y(z) = -\frac{\exp_z^{-1}(y')}{\| \exp_z^{-1}(y') \|}.
\]
Hence, for any \(z \in M \), we have
\[
\| f_{x,c}(z) - f_{y,c}(z) \| = \| v_x(z) - v_y(z) \| < 2R/(2R/\varepsilon) = \varepsilon
\]
whenever \(d(x, y) < R \). Similarly, we can check the inequality in other cases where \(z \in M \) satisfies either \(d(x, z) \leq c \) or \(d(y, z) \leq c \).

Now let’s consider the short exact sequence
\[
0 \to A \to B \overset{\pi}{\to} B/A \to 0,
\]
where \(A = C_0(M, \text{Cliff}_\mathbb{C}(TM)) \) and \(B = C_b(M, \text{Cliff}_\mathbb{C}(TM)) \). For any \(f_{x,c} (x \in M, c > 0) \) constructed above, it is easy to see that \([f_{x,c}] := \pi(f_{x,c})\) is invertible in \(B/A \) with its inverse \([\tilde{f}_{x,c}]\). Thus \([f_{x,c}]\) defines an element in \(K_1(B/A) \). With the help of the index map
\[
\partial : K_1(B/A) \to K_0(A),
\]
we obtain an element \(\partial([f_{x,c}]) \) in
\[
K_0(A) = K_0 \left(C_0(M, \text{Cliff}_\mathbb{C}(TM)) \right) \cong K_0 \left(C_0(\mathbb{R}^{2n}) \otimes \mathcal{M}_{2n}(\mathbb{C}) \right) \cong \mathbb{Z}.
\]
It follows from the construction of \(f_{x,c} \) that, for every \(x \in M \) and \(c > 0 \), \(\partial([f_{x,c}]) \) is just the Bott generator of \(K_0(A) \).
The element \(\partial([f_{x,c}]) \) can be expressed explicitly as follows. Let

\[
W_{x,c} = \begin{pmatrix} 1 & f_{x,c} \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ f_{x,c} & 1 \end{pmatrix} \begin{pmatrix} 1 & f_{x,c} \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix},
\]

\[
b_{x,c} = W_{x,c} \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} W_{x,c}^{-1},
\]

\[
b_0 = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}.
\]

Then both \(b_{x,c} \) and \(b_0 \) are idempotents in \(\mathcal{M}_2(A^+) \), where \(A^+ \) is the algebra jointing a unit to \(A \). It is easy to check that

\[
b_{x,c} - b_0 \in C_c(M, \text{Cliff}_C(TM)) \otimes \mathcal{M}_2(C),
\]

the algebra of \(2 \times 2 \) matrices of compactly supported continuous functions, with

\[
\text{Supp}(b_{x,c} - b_0) \subset B_M(x, c) := \{ z \in M : d(x, z) \leq c \},
\]

where for a matrix \(a = \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix} \) of functions on \(M \) we define the support of \(a \) by

\[
\text{Supp}(a) = \bigcup_{i,j=1}^2 \text{Supp}(a_{i,j}).
\]

Now we have the explicit expression

\[
\partial([f_{x,c}]) = [b_{x,c}] - [b_0] \in K_0(A).
\]

Lemma 23 (Uniform almost flatness of the Bott generators). The family of idempotents \(\{b_{x,c}\}_{x \in M, c > 0} \) in \(\mathcal{M}_2(A^+) = C_0(M, \text{Cliff}_C(TM))^+ \otimes \mathcal{M}_2(C) \) constructed above are uniformly almost flat in the following sense:

for any \(R > 0 \) and \(\varepsilon > 0 \), there exist \(c > 0 \) and a family of continuous functions \(\{\phi_{x,c} : M \to [0, 1]\}_{x \in M} \) such that, whenever \(d(x, y) < R \), we have

\[
\sup_{z \in M} \|b_{x,c}(z) - b_{y,c}(z)\|_{\text{Cliff}_C(TM) \otimes \mathcal{M}_2(C)} < \varepsilon,
\]
where \(b_{x,c} \) is defined via \(W_{x,c} \) and \(f_{x,c} = \phi_{x,c}v_x \) as above, and \(\text{Cliff}_C(T_z M) \) is the complexified Clifford algebra of the tangent space \(T_z M \).

Proof. Straightforward from Lemma 22.

It would be convenient to introduce the following notion:

DEFINITION 24. For \(R > 0, \varepsilon > 0, c > 0 \), a family of idempotents \(\{b_x\}_{x \in M} \) in \(\mathcal{M}_2(A^+) = C_0(M, \text{Cliff}_C(TM))^+ \otimes \mathcal{M}_2(\mathbb{C}) \) is said to be \((R, \varepsilon; c)\)-flat if

1. for any \(x, y \in M \) with \(d(x, y) < R \) we have
 \[
 \sup_{z \in M} \|b_x(z) - b_y(z)\|_{\text{Cliff}_C(T_z M) \otimes \mathcal{M}_2(\mathbb{C})} < \varepsilon.
 \]
2. \(b_x - b_0 \in C_c(M, \text{Cliff}_C(TM)) \otimes \mathcal{M}_2(\mathbb{C}) \) and
 \[
 \text{Supp}(b_x - b_0) \subset B_M(x, c) := \{z \in M : d(x, z) \leq c\}.
 \]

Construction of the Bott map \(\beta_* \):

Now we shall use the above almost flat Bott generators for
\[
K_0(A) = K_0\left(C_0(M, \text{Cliff}_C(TM))\right)
\]
to construct a “Bott map”
\[
\beta_* : K_*(B^p(P_d(\Gamma))) \to K_*(B^p(P_d(\Gamma), A)).
\]

To begin with, we give a representation of \(B^p(P_d(\Gamma)) \) on \(\ell^p(\Gamma_d, \ell^p) \), where \(\Gamma_d \) is the countable dense subset of \(P_d(\Gamma) \) and \(H_0 \) is the Hilbert space as in the definition of \(B^p(P_d(\Gamma), A) \).

Let \(B^p_{alg}(P_d(\Gamma)) \) be the algebra of functions
\[
Q : \Gamma_d \times \Gamma_d \to \mathcal{K}_p
\]
such that

1. there exists \(C > 0 \) such that \(\|Q(x, y)\| \leq C \) for all \(x, y \in \Gamma_d \);
2. there exists \(R > 0 \) such that \(Q(x, y) = 0 \) whenever \(d(x, y) > R \);
(3) there exists $L > 0$ such that for every $z \in P_d(\Gamma)$, the number of elements in the following set

$$\{ (x, y) \in \Gamma_d \times \Gamma_d : d(x, z) \leq 3R, d(y, z) \leq 3R, Q(x, y) \neq 0 \}$$

is less than L.

The product structure on $B_{alg}^p(P_d(\Gamma))$ is defined by

$$(Q_1 Q_2)(x, y) = \sum_{z \in P_d} Q_1(x, z) Q_2(z, y).$$

The algebra $B_{alg}^p(P_d(\Gamma))$ acts on $\ell^p(P_d(\Gamma))$. The operator norm completion of $B_{alg}^p(P_d(\Gamma))$ with respect to this action is isomorphic to $B^p(P_d(\Gamma))$ when Γ has bounded geometry.

Note that $B^p(P_d(\Gamma))$ is stable in the sense that $B^p(P_d(\Gamma)) \cong B^p(P_d(\Gamma)) \otimes \mathcal{M}_k(\mathbb{C})$ for all natural number k. Any element in $K_0(B^p(P_d(\Gamma)))$ can be expressed as the difference of the K_0-classes of two idempotents in $B^p(P_d(\Gamma))$. To define the Bott map $\beta_* : K_0(B^p(P_d(\Gamma))) \to K_0(B^p(P_d(\Gamma), \mathcal{A}))$, we need to specify the value $\beta_*([P])$ in $K_0(B^p(P_d(\Gamma), \mathcal{A}))$ for any idempotent $P \in B^p(P_d(\Gamma))$.

Now let $P \in B^p(P_d(\Gamma)) \subseteq \mathcal{B}(\ell^p(\Gamma_d), \ell^p)$ be an idempotent. Denote $\|P\| = N$. For any $0 < \varepsilon_1 < 1/100$, take an element $Q \in B_{alg}^p(P_d(\Gamma))$ such that

$$\|P - Q\| < \frac{\varepsilon_1}{2N + 2}.$$

Then $\|Q\| < \|P - Q\| + \|P\| < N + 1$, hence

$$\|Q - Q^2\| \leq \|Q - P\| + \|P\| \|P - Q\| + \|P - Q\| \|Q\| \leq \varepsilon_1$$

and there is $R_{\varepsilon_1} > 0$ such that $Q(x, y) = 0$ whenever $d(x, y) > R_{\varepsilon_1}$. For any $\varepsilon_2 > 0$, take by Lemma 23 a family of $(R_{\varepsilon_1}, \varepsilon_2; c)$-flat idempotents $\{b_x\}_{x \in M}$ in $\mathcal{M}_2(\mathcal{A}^+)$ for some $c > 0$. Define

$$\tilde{Q}, \; \tilde{Q}_0 : \Gamma_d \times \Gamma_d \to K_{\mathbb{P}} \otimes_K \mathcal{A}^+ \otimes \mathcal{M}_2(\mathbb{C})$$
by
\[\tilde{Q}(x, y) = Q(x, y) \otimes b_x \]
and
\[\tilde{Q}_0(x, y) = Q(x, y) \otimes b_0, \]
respectively, for all \((x, y) \in \Gamma_d \times \Gamma_d\), where \(b_0 = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}\). Then
\[\tilde{Q}, \tilde{Q}_0 \in B^p_{\text{alg}}(P_d(\Gamma), A^+ \otimes \mathcal{M}_2(\mathbb{C})) \cong B^p_{\text{alg}}(P_d(\Gamma), A^+) \otimes \mathcal{M}_2(\mathbb{C}) \]
and
\[\tilde{Q} - \tilde{Q}_0 \in B^p_{\text{alg}}(P_d(\Gamma), A) \otimes \mathcal{M}_2(\mathbb{C}). \]

Since \(\Gamma\) has bounded geometry, by the almost flatness of the Bott generators (Lemma 23), we can choose \(\varepsilon_1\) and \(\varepsilon_2\) small enough to obtain \(\tilde{Q}, \tilde{Q}_0\) as constructed above such that \(\|\tilde{Q}^2 - \tilde{Q}\| < 1/5\) and \(\|\tilde{Q}_0^2 - \tilde{Q}_0\| < 1/5\).

It follows that the spectrum of either \(\tilde{Q}\) or \(\tilde{Q}_0\) is contained in disjoint neighborhoods \(S_0\) of 0 and \(S_1\) of 1 in the complex plane. Let \(f : S_0 \cup S_1 \to \mathbb{C}\) be a holomorphic function such that \(f(S_0) = \{0\}, f(S_1) = \{1\}\). Let \(\Theta = f(\tilde{Q})\) and \(\Theta_0 = f(\tilde{Q}_0)\). Then \(\Theta\) and \(\Theta_0\) are idempotents in \(B^p(P_d(\Gamma), A^+) \otimes \mathcal{M}_2(\mathbb{C})\) with
\[\Theta - \Theta_0 \in B^p(P_d(\Gamma), A) \otimes \mathcal{M}_2(\mathbb{C}). \]

Note that \(B^p(P_d(\Gamma), A) \otimes \mathcal{M}_2(\mathbb{C})\) is a closed two-sided ideal of \(B^p(P_d(\Gamma), A^+) \otimes \mathcal{M}_2(\mathbb{C})\).

At this point we need to recall the difference construction in K-theory of Banach algebras introduced by Kasparov-Yu [17]. Let \(J\) be a closed two-sided ideal of a Banach algebra \(B\). Let \(p, q \in B^+\) be idempotents such that \(p - q \in J\). Then a difference element \(D(p, q) \in B^p(P_d(\Gamma), A^+) \otimes \mathcal{M}_2(\mathbb{C})\).
$K_0(J)$ associated to the pair p, q is defined as follows. Let

$$Z(p, q) = \begin{pmatrix} q & 0 & 1-q & 0 \\ 1-q & 0 & 0 & q \\ 0 & 0 & q & 1-q \\ 0 & 1 & 0 & 0 \end{pmatrix} \in \mathcal{M}_4(B^+) .$$

We have

$$(Z(p, q))^{-1} = \begin{pmatrix} q & 1-q & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 1-q & 0 & q & 0 \\ 0 & q & 1-q & 0 \end{pmatrix} \in \mathcal{M}_4(B^+) .$$

Define

$$D_0(p, q) = (Z(p, q))^{-1} \begin{pmatrix} p & 0 & 0 & 0 \\ 0 & 1-q & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix} Z(p, q) .$$

Let

$$p_1 = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix} .$$

Then $D_0(p, q) \in \mathcal{M}_4(J^+)$ and $D_0(p, q) = p_1$ modulo $\mathcal{M}_4(J)$. We define the difference element

$$D(p, q) := [D_0(p, q)] - [p_1]$$

in $K_0(J)$.

Finally, for any idempotent $P \in B^p(P_d(\Gamma))$ representing an element $[P]$ in $K_0(B^p(P_d(\Gamma)))$, we define

$$\beta_*([P]) = D(\Theta, \Theta_0) \in K_0(B^p(P_d(\Gamma), A)) .$$

The correspondence $[P] \mapsto \beta_*([P])$ extends to a homomorphism, the Bott map

$$\beta_* : K_0(B^p(P_d(\Gamma))) \to K_0(B^p(P_d(\Gamma), A)) .$$

By using suspension, we similarly define the Bott map

$$\beta_* : K_1(B^p(P_d(\Gamma))) \to K_1(B^p(P_d(\Gamma), A)) .$$
Construction of the Bott map \((\beta_L)_*\) :

Next we shall construct a Bott map for \(K\)-theory of \(\ell^p\)-localization algebras:

\[
(\beta_L)_*: K_*(B^p_L(P_d(\Gamma))) \to K_*(B^p_L(P_d(\Gamma), A)).
\]

Let \(B^p_{L,alg}(P_d(\Gamma))\) be the algebra of all bounded, uniformly continuous functions

\[
g : \mathbb{R}_+ \to B^p_{alg}(P_d(\Gamma)) \subset B(\ell^p(\Gamma_d, \ell^p))
\]

with the following properties:

(1) there exists a bounded function \(R : \mathbb{R}_+ \to \mathbb{R}_+\) with \(\lim_{t \to \infty} R(t) = 0\) such that \(g(t)(x, y) = 0\) whenever \(d(x, y) > R(t)\) for every \(t\);

(2) there exists \(L > 0\) such that for every \(z \in P_d(\Gamma)\), the number of elements in the following set

\[
\{(x, y) \in \Gamma_d \times \Gamma_d : d(x, z) \leq 3R, d(y, z) \leq 3R, g(t)(x, y) \neq 0\}
\]

is less than \(L\) for every \(t \in \mathbb{R}_+\).

The \(\ell^p\)-localization algebra \(B^p_L(P_d(\Gamma))\) is isomorphic to the norm completion of \(B^p_{L,alg}(P_d(\Gamma))\) under the norm

\[
\|g\|_\infty := \sup_{t \in \mathbb{R}_+} \|g(t)\|
\]

when \(\Gamma\) has bounded geometry. Note that \(B^p_L(P_d(\Gamma))\) is stable in the sense that \(B^p_L(P_d(\Gamma)) \cong B^p_L(P_d(\Gamma)) \otimes \mathcal{M}_k(\mathbb{C})\) for all natural number \(k\). Hence, any element in \(K_0(B^p_L(P_d(\Gamma)))\) can be expressed as the difference of the \(K_0\)-classes of two idempotents in \(B^p_L(P_d(\Gamma))\). To define the Bott map \((\beta_L)_*: K_0(B^p_L(P_d(\Gamma))) \to K_0(B^p_L(P_d(\Gamma), A))\), we need to specify the value \((\beta_L)_*([g])\) in \(K_0(B^p_L(P_d(\Gamma), A))\) for any idempotent \(g \in B^p_L(P_d(\Gamma))\) representing an element \([g] \in K_0(B^p_L(P_d(\Gamma)))\).
Now let \(g \in B^p_L(P_d(\Gamma)) \) be an idempotent with \(\|g\| = N \). For any \(0 < \varepsilon_1 < 1/100 \), take an element \(h \in B^p_{L,alg}(P_d(\Gamma)) \) such that

\[
\|g - h\|_\infty < \frac{\varepsilon_1}{2N + 2}.
\]

Then \(\|h - h^2\|_\infty < \varepsilon_1 \) and there is a bounded function \(R_{\varepsilon_1}(t) > 0 \) with \(\lim_{t \to \infty} R_{\varepsilon_1}(t) = 0 \) such that \(h(t)(x, y) = 0 \) whenever \(d(x, y) > R_{\varepsilon_1}(t) \) for every \(t \). Let \(R_{\varepsilon_1} = \sup_{t \in \mathbb{R}_+} R(t) \). For any \(\varepsilon_2 > 0 \), take by Lemma 23 a family of \((R_{\varepsilon_1}, \varepsilon_2; c)\)-flat idempotents \(\{b_x\}_{x \in M} \) in \(M_2(\mathcal{A}^+) \) for some \(c > 0 \). Define

\[
\tilde{h}, \tilde{h}_0 : \mathbb{R}_+ \to B^p_{L,alg}(P_d(\Gamma), \mathcal{A}^+) \otimes M_2(\mathbb{C})
\]

by

\[
\left(\tilde{h}(t) \right)(x, y) = \left(h(t)(x, y) \right) \otimes b_x \in \mathcal{A}^+ \otimes K_p \otimes M_2(\mathbb{C}),
\]

\[
\left(\tilde{h}_0(t) \right)(x, y) = \left(h(t)(x, y) \right) \otimes \left(\begin{array}{cc} 1 & 0 \\ 0 & 0 \end{array} \right) \in \mathcal{A}^+ \otimes K_p \otimes M_2(\mathbb{C})
\]

for each \(t \in \mathbb{R}_+ \). Then we have

\[
\tilde{h}, \tilde{h}_0 \in B^p_{L,alg}(P_d(\Gamma), \mathcal{A}^+) \otimes M_2(\mathbb{C})
\]

and

\[
\tilde{h} - \tilde{h}_0 \in B^p_{L,alg}(P_d(\Gamma), \mathcal{A}) \otimes M_2(\mathbb{C}).
\]

Since \(\Gamma \) has bounded geometry, by the almost flatness of the Bott generators, we can choose \(\varepsilon_1 \) and \(\varepsilon_2 \) small enough to obtain \(\tilde{h}, \tilde{h}_0 \), as constructed above, such that \(\|\tilde{h}^2 - \tilde{h}\|_\infty < 1/5 \) and \(\|\tilde{h}_0^2 - \tilde{h}_0\| < 1/5 \). The spectrum of either \(\tilde{h} \) or \(\tilde{h}_0 \) is contained in disjoint neighborhoods \(S_0 \) of \(0 \) and \(S_1 \) of \(1 \) in the complex plane. Let \(f : S_0 \sqcup S_1 \to \mathbb{C} \) be the function such that \(f(S_0) = \{0\}, f(S_1) = \{1\} \). Let \(\eta = f(\tilde{h}) \) and \(\eta_0 = f(\tilde{h}_0) \). Then \(\eta \) and \(\eta_0 \) are idempotents in \(B^p_L(P_d(\Gamma), \mathcal{A}^+) \otimes M_2(\mathbb{C}) \) with

\[
\eta - \eta_0 \in B^p_L(P_d(\Gamma), \mathcal{A}) \otimes M_2(\mathbb{C}).
\]
Thanks to the difference construction, we define

$$(\beta_L)_*([g]) = D(\eta, \eta_0) \in K_0(B^p_L(P_d(\Gamma), A)).$$

This correspondence $[g] \mapsto (\beta_L)_*([g])$ extends to a homomorphism, the Bott map

$$(\beta_L)_* : K_0(B^p_L(P_d(\Gamma))) \to K_0(B^p_L(P_d(\Gamma), A)).$$

By suspension, we similarly define

$$(\beta_L)_* : K_1(B^p_L(P_d(\Gamma))) \to K_1(B^p_L(P_d(\Gamma), A)).$$

This completes the construction of the Bott map $(\beta_L)_*$.

It follows from the constructions of β_* and $(\beta_L)_*$, we have the following commuting diagram

$$
\begin{array}{ccc}
K_*(B^p_L(P_d(\Gamma))) & \xrightarrow{(\beta_L)_*} & K_*(B^p_L(P_d(\Gamma), A)) \\
\downarrow{\epsilon_*} & & \downarrow{\epsilon_*} \\
K_*(B^p(P_d(\Gamma))) & \xrightarrow{\beta_*} & K_*(B^p(P_d(\Gamma), A))
\end{array}
$$

THEOREM 25. For any $d > 0$, the Bott map

$$(\beta_L)_* : K_*(B^p_L(P_d(\Gamma))) \to K_*(B^p_L(P_d(\Gamma), A))$$

is an isomorphism.

Proof. Note that Γ has bounded geometry, and both the ℓ^p-localization algebra and the twisted ℓ^p-localization algebra have strong Lipschitz homotopy invariance at the K-theory level. By a Mayer-Vietoris sequence argument and induction on the dimension of the skeletons [27, 5], the general case can be reduced to the 0-dimensional case, i.e., if $D \subset P_d(\Gamma)$ is a δ-separated subspace (meaning $d(x, y) \geq \delta$ if $x \neq y \in D$) for some $\delta > 0$, then

$$(\beta_L)_* : K_*(B^p_L(D)) \to K_*(B^p_L(D, A))$$
is an isomorphism. But this follows from the facts that
\[K_\ast(B^p_L(D)) \cong \prod_{\gamma \in D} K_\ast(B^p_L(\{\gamma\})) , \]
\[K_\ast(B^p_L(D, A)) \cong \prod_{\gamma \in D} K_\ast(B^p_L(\{\gamma\}, A)) \]
and that \((\beta_L)_\ast\) restricts to an isomorphism from \(K_\ast(B^p_L(\{\gamma\})) \cong K_\ast(K_p)\) to
\[K_\ast(B^p_L(\{\gamma\}, A)) \cong K_\ast(K_p \otimes A) \]
at each \(\gamma \in D\) by the classic Bott periodicity.

\[\square \]

7. Proof of the Main Theorem

Proof of Theorem 1. We have the commuting diagram
\[
\begin{array}{ccc}
\lim_{d \to \infty} K_\ast(B^p_L(P_d(\Gamma))) & \xrightarrow{(\beta_L)_\ast} & \lim_{d \to \infty} K_\ast(B^p_L(P_d(\Gamma), A)) \\
\downarrow e_\ast & & \downarrow e_\ast \\
\lim_{d \to \infty} K_\ast(B^p(P_d(\Gamma))) & \xrightarrow{\beta_\ast} & \lim_{d \to \infty} K_\ast(B^p(P_d(\Gamma), A)).
\end{array}
\]
Hence, \(\beta_\ast \circ e_\ast = e_\ast \circ (\beta_L)_\ast\). It follows from Theorem 14 and Theorem 25 that \(\beta_\ast \circ \text{ind}\) is an isomorphism. Consequently, the index map
\[e_\ast : \lim_{d \to \infty} K_\ast(B^p_L(P_d(\Gamma))) \to \lim_{d \to \infty} K_\ast(B^p(P_d(\Gamma))) \cong K_\ast(B^p(\Gamma)) \]
is injective. \[\square \]

References

[1] Atiyah, M. F., Bott periodicity and the index of elliptic operators, Q. J. Math., 19(1968), 113-140
[2] Atiyah, M. F., Bott, R., and Shapiro, A., Clifford modules, Topology, 3, Suppl. 1, (1964), 3–38.
[3] Blackadar, B., K-Theory for Operator Algebras (2nd edition), Cambridge Univ. Press, 1998.
[4] Cheeger, J. and Ebin, D. G., Comparison theorems in Riemannian geometry, North-Holland Publishing Company, Amsterdam, 1975.
[5] Chen, X. and Wang, Q., Localization algebras and duality, J. London Math. Soc., 66(2)(2002) 227–239.
[6] Chung, Y.C., Dynamical complexity and K-theory of L^p operator crossed products, preprint (2018). arXiv:1611.09008
[7] Chung, Y.C. and Li, K., *Rigidity of ℓp Roe-type algebras*, Bull. Lond. Math. Soc. (to appear).
[8] Chung, Y.C. and Nowak, P., *Expanders are counterexamples to the coarse p-Baum-Connes conjecture*, preprint (2018). arXiv:1811.10457.
[9] Connes, A., *Non-commutative geometry*, Academic Press, 1994.
[10] Defant, A. and Floret, K., *Tensor norms and operator ideals*, North-Holland Mathematics Studies, North-Holland Publishing Co., 1993.
[11] Dranishnikov, A. N., *On hypersphericity of manifolds with finite asymptotic dimension*, Trans. Amer. Math. Soc. 355(1)(2003), 155–167.
[12] Gromov, M., *Asymptotic invariants for infinite groups*, Vol 2, Proc. 1991 Sussex Conference on Geometry Group Theory, LMS Lecture Note Ser. 182, Academic Press, New York, 1993.
[13] Higson, N. and Roe, J., *On the coarse Baum-Connes conjecture*, in: S. Ferry, A. Ranicki and J. Rosenberg (eds), Proc. 1993 Oberwolfach Conference in the Novikov Conjecture, London Math. Soc. Lecture Note Series 227, Cambridge University Press, 1995, PP. 227-254.
[14] Higson, N., Roe, J. and Yu, G., *A coarse Mayer-Vietoris principle*, Math. Proc. Camb. Phil. Soc., 114(1993) 85–97.
[15] Kasparov, G. G., *Topological invariants of elliptic operators I: K-homology*. Math. USSR Izvestija. 9 (1975) 751–792.
[16] Kasparov, G., *Equivariant KK-theory and the Novikov conjecture*, Invent. Math., 91 (1988)147–201.
[17] Kasparov, G. and Yu, G., *The coarse geometric Novikov conjecture and uniform convexity*, to appear in Advances in Mathematics, 2006.
[18] Lawson, H. B. and Michelsohn, M. L., *Spin Geometry*, Princeton, 1990.
[19] Mishchenko, A. S., *Infinite-dimensional representations of discrete groups, and higher signatures (Russian)*, Izv. Akad. Nauk SSSR Ser. Mat., 38(1974), 81–106.
[20] Phillips, N.C., *Crossed products of Lp operator algebras and the K-theory of Cuntz algebras on Lp spaces*, preprint (2012). arXiv:1309.6406.
[21] Qiao, Y. and Roe, J., *On the localization algebra of Guoliang Yu*, Forum Math., 22(4):657-665, 2010.
[22] Roe, J., *Coarse cohomology and index theory on complete Riemannian manifolds*, Mem. Amer. Math. Soc. 104 (1993), no. 497, x+90 pp.
[23] Roe, J., *Index theory, coarse geometry, and the topology of manifolds*, CBMS Conference Proceedings 90, American Mathematical Society, Providence, R.I., 1996.
[24] Shan, L., *An equivariant higher index theory and nonpositively curved manifolds*, Journal of Functional Analysis, Vol. 255, Issue 6, 1480–1496.
[25] Shan, L. and Wang, Q., *The coarse geometric Novikov conjecture for subspaces of non-positively curved manifolds*, Journal of Functional Analysis, Vol. 248, Issue 2, 448–471.
[26] Yu, G., *Coarse Baum-Connes conjecture*, K-Theory, 9(3)(1995) 199–221.
[27] Yu, G., *Localization algebras and the coarse Baum-Connes conjecture*, K-theory 11(1997) 307–318.
[28] Yu, G. *The Novikov conjecture for groups with finite asymptotic dimension*, Annals of Mathematics, 147(2) (1998), 325-355.
[29] Yu, G., *The coarse Baum-Connes conjecture for spaces which admit a uniform embedding into Hilbert space*, Invent. Math., **139**(2000) 201–240.

[30] Yu, G., *Higher index theory of elliptic operators and geometry of groups*, Proceedings of International Congress of Mathematicians, Madrid, 2006, vol. II, 1623–1639.

[31] Zhang, J. and Zhou, D., *L^p coarse Baum-Connes conjecture and K-theory for L^p Roe algebras*, [arXiv:1909.08712](https://arxiv.org/abs/1909.08712).