Emergence of a turbulent cascade in a quantum gas

Nir Navon1, Alexander L. Gaunt1, Robert P. Smith1 & Zoran Hadzibabic1

A central concept in the modern understanding of turbulence is the existence of cascades of excitations from large to small length scales, or vice versa. This concept was introduced in 1941 by Kolmogorov and Obukhov1–3, and such cascades have since been observed in various systems, including interplanetary plasmas4, supernovae5, ocean waves6 and financial markets7. Despite much progress, a quantitative understanding of turbulence remains a challenge, owing to the interplay between many length scales that makes theoretical simulations of realistic experimental conditions difficult. Here we observe the emergence of a turbulent cascade in a weakly interacting homogeneous Bose gas—a quantum fluid that can be theoretically described on all relevant length scales. We prepare a Bose–Einstein condensate in an optical box2, drive it out of equilibrium with an oscillating force that pumps energy into the system at the largest length scale, study its nonlinear response to the periodic drive, and observe a gradual development of a cascade characterized by an isotropic power-law distribution in momentum space. We numerically model our experiments using the Gross–Pitaevskii equation and find excellent agreement with the measurements. Our experiments establish the uniform Bose gas as a promising new medium for investigating many aspects of turbulence, including the interplay between vortex and wave turbulence, and the relative importance of quantum and classical effects.

Compared to classical fluids, superfluids present fascinating peculiarities such as irrotational and frictionless flow, which raises fundamental questions about the character of turbulent cascades8–9. Numerous experiments on quantum-fluid turbulence have been performed with liquid helium, exploring both vortex8,10–12 and wave turbulence13–15, but their theoretical understanding is hampered by the strong interplay between many length scales, or vice versa. This concept was introduced in 1941 by Kolmogorov and Obukhov1,2, and such cascades have since been observed in various systems, including interplanetary plasmas4, supernovae5, ocean waves6 and financial markets7. Despite much progress, a quantitative understanding of turbulence remains a challenge, owing to the interplay between many length scales that makes theoretical simulations of realistic experimental conditions difficult. Here we observe the emergence of a turbulent cascade in a weakly interacting homogeneous Bose gas—a quantum fluid that can be theoretically described on all relevant length scales. We prepare a Bose–Einstein condensate in an optical box2, drive it out of equilibrium with an oscillating force that pumps energy into the system at the largest length scale, study its nonlinear response to the periodic drive, and observe a gradual development of a cascade characterized by an isotropic power-law distribution in momentum space. We numerically model our experiments using the Gross–Pitaevskii equation and find excellent agreement with the measurements. Our experiments establish the uniform Bose gas as a promising new medium for investigating many aspects of turbulence, including the interplay between vortex and wave turbulence, and the relative importance of quantum and classical effects.

The basic idea of our experiment is outlined in Fig. 1. We prepare a quasi-pure Bose–Einstein condensate (BEC) of 87Rb atoms in a cylindrical optical box2, and drive it out of equilibrium with a spatially uniform, oscillating force that primarily couples to the lowest, dipole-like axial mode. Our box has length $L = 27.1 \mu m$ and radius $R = 16.1 \mu m$ (here and elsewhere, errors represent 1σ uncertainties). For our typical atom number $N \approx 10^5$, the initial, equilibrium BEC has a chemical potential $\mu/k_B \approx 2$ nK (where k_B is the Boltzmann constant), interaction energy per particle $E_{int}/k_B \approx 1$ nK and negligible kinetic energy, while the optical temperature for Bose–Einstein condensation is $T \approx 50$ nK. The driving force is provided by a magnetic field gradient that creates a potential $U(x) = \Delta Uz/L$, where the coordinate z is along the axis of the box (Fig. 1a). The natural scale for ΔU, separating weak and strong drives, is set by μ.

Numerical simulations in Fig. 1a show the microscopic behaviour of a shaken trapped gas, which gradually changes from simple unidirectional sloshing along z to an omnidirectional turbulent flow; in addition to the wave-like motion, we observe vortex lines (depicted in red), which are detected by computing the local circulation. (Snapshots of the turbulent flow do not obey the cylindrical symmetry of the (time-dependent) Hamiltonian. In real physical systems, any such symmetry is always broken by imperfections; in our simulations the symmetry breaking is provided by the position of the numerical grid.) Here the shaking amplitude is $\Delta U/\mu = 1$ and the longest shaking time $t_s = 2$ s corresponds to 16 driving periods.

Experimentally, we probe the global properties of the gas by releasing it from the trap and imaging it along a radial direction (x) after a long
In this regime, coherence is an oscillation in the centre of mass (along the z axis, see Fig. 1a) for \(N = 10(1) \times 10^4 \). a, Free oscillation after a 20-ms kick with \(\Delta U/k_B = 1.7 \text{nK} \). Fourier spectrum of the free oscillation in a (orange line), and displacement after a whole number of driven oscillations, with driving amplitude \(\Delta U/k_B = 0.3 \text{nK} \) and \(t_s = 2 \text{s} \) (blue points). The solid blue line is a fit (see Methods). Error bars in a and b represent 1σ errors. c, Small-amplitude \(\omega_m \) versus \(N \) for free (orange) and driven (blue) oscillations with the same \(\Delta U \) and \(t_s \) values as in a and b.

time-of-flight (TOF) expansion, \(t_{\text{TOF}} \geq 100 \text{ ms} \). From the images we extract the centre of mass and momentum distribution of the cloud. The position of the centre of mass reflects the axial in-trap sloshing, and the evolution of the momentum distribution reveals the cascade of excitations from small to large wavevectors \(k \)—the so-called direct cascade.

In Fig. 1b–d we show a qualitative experimental signature of turbulence with three key examples of TOF images (upper panels) and the corresponding angular distributions of atoms \(p(\theta) \) (lower panels). The initial BEC (Fig. 1b) shows an anisotropic expansion, which is driven by the conversion of interaction into kinetic energy, and reflects the shape of the container\(^{20}\). In sharp contrast, after sufficiently long shaking the expansion is isotropic (Fig. 1c), with \(p(\theta) \) exhibiting small fluctuations around \(1/(2\pi) \). This is the first qualitative signature of a kinetic-energy-dominated turbulent state, in which the long-range coherence of the BEC is destroyed. We stress that this highly non-equilibrium state is fundamentally different from an equilibrium non-condensed state, which is also kinetic-energy-dominated and displays isotropic expansion. The key point is that, in our box trap, there is a large separation between the initial \(E_{\text{int}} \) and \(k_B T_c \). This gives us access to the regime in which the total (mostly kinetic) energy per particle \(E \) satisfies \(E_{\text{int}} \ll E \ll k_B T_c \). In this regime, coherence is destroyed in the turbulent state, but the corresponding equilibrium state with the same \(E \) is still deeply condensed. In Fig. 1c, the dashed circle corresponds to an expansion energy of \(k_B T_c/2 \), and the average energy of the atoms is clearly much lower; from the second moment of the TOF distribution we get \(E \approx 0.12k_B T_c \), which in equilibrium would correspond to a condensed fraction \(n \approx 0.7 \) (ref. 27). Indeed, if we stop shaking and allow the turbulent gas to relax, a BEC reforms (Fig. 1d) with the expected \(n = 0.71 \). For all our studies of the turbulent state we restrict the shaking amplitude (\(\Delta U \ll 2\mu \)) and time (\(t_s \leq 4 \text{s} \)) so that \(E < 0.25k_B T_c \), which corresponds to an equilibrium \(\eta \leq 0.5 \).

To see how pumping energy at the largest length scale (with a spatially uniform force) leads to a turbulent cascade, we perform detailed spectroscopy of the lowest-lying axial mode of the BEC (see Fig. 2). In contrast to the harmonic trap, for which the dipole mode is fixed by the trapping frequency (Kohn’s theorem), in the box it depends on interactions, which results in nonlinear behaviour for non-vanishing shaking amplitudes.

We first study the small-amplitude centre-of-mass response for various \(N \), using both free and driven oscillations. In the first method, we pulse on a constant \(\Delta U \) for a short time and let the gas oscillate freely in the trap for a variable hold time before releasing it and measuring the centre of mass in TOF (Fig. 2a). In the Fourier spectrum of this oscillation (orange line in Fig. 2b) we see a single strong peak, with no indication that the gradient kick directly couples to other low-lying modes. In the second method, we apply a continuous oscillating drive of (angular) frequency \(\omega \) and amplitude \(\Delta U \leq 0.5 \mu \), and perform TOF measurements after a whole number of drive periods. Similarly to a driven harmonic oscillator, the displacement of the centre of mass has a dispersive line shape as a function of \(\omega \), vanishing on resonance (see Methods). As shown in Fig. 2b, the two methods give the same resonant frequency \(\omega_{\text{res}} \).

In Fig. 2c we plot the small-amplitude \(\omega_{\text{res}} \), versus \(N \), and compare the data with various theories. The hydrodynamic prediction (solid green line) is \(\omega_{\text{HD}} = \pi c/L \), where \(c = \sqrt{\mu/\epsilon} \) is the speed of sound and \(\mu \) is the atom mass. This theory assumes that the healing length \(\xi = \hbar/\sqrt{2m\epsilon} \) (where \(\hbar \) is the reduced Planck constant) satisfies \(\xi \ll L \). It is therefore not applicable in the \(N \to 0 \) limit, where \(\omega_{\text{res}} = 3\pi^2\hbar/(2mL^2) \) (red star in Fig. 2c) is given by the splitting of the lowest axial single-particle states. For our largest BEC, \(L/\xi \approx 20 \), but \(\omega_{\text{HD}} \) is still

Figure 2 | Nonlinear spectroscopy of the lowest axial mode of the BEC and the route to turbulence. a, b, Small-amplitude oscillations of the centre of mass (along the z axis, see Fig. 1a) for \(N = 10(1) \times 10^4 \). a, Free oscillation after a 20-ms kick with \(\Delta U/k_B = 1.7 \text{nK} \). Fourier spectrum of the free oscillation in a (orange line), and displacement after a whole number of driven oscillations, with driving amplitude \(\Delta U/k_B = 0.3 \text{nK} \) and \(t_s = 2 \text{s} \) (blue points). The solid blue line is a fit (see Methods). Error bars in a and b represent 1σ errors. c, Small-amplitude \(\omega_m \) versus \(N \) for free (orange) and driven (blue) oscillations with the same \(\Delta U \) and \(t_s \) values as in a and b. (t_s ≤ 4 s) so that \(E < 0.25k_B T_c \), which corresponds to an equilibrium \(\eta \leq 0.5 \).

Horizontal error bars represent 1σ errors; the \(\omega_{\text{res}} \) errors are smaller than the point size. The grey shaded area shows numerical solutions of the Bogoliubov equations and the red star is the analytical non-interacting limit. Green lines are based on hydrodynamic approximations (see text).

d, e, Nonlinear response, for \(N = 8(1) \times 10^4 \). d, Driven-oscillation signals as in b, for various \(\Delta U \). e, \(\omega_{\text{res}} \) and linewidth \(\Gamma \) versus \(\Delta U \) (blue points), and the corresponding results of GPE simulations (red bands). Inset, TOF anisotropy \(A \) versus \(\Delta U/\mu \) for \(t_s = 4 \text{s} \) of resonant driving. All measurements of the centre of mass were done with \(t_{\text{TOF}} = 140 \text{ ms} \).
Figure 3 | Development of a turbulent cascade. a, Momentum distribution of the turbulent gas (solid black line), for $N = 7(1) \times 10^3$, $\Delta U/\mu = 1.1(1)$, $t_t = 4 \text{ s}$, $\omega(2\pi\kappa) = 9 \text{ Hz}$ and $t_{\text{res}} = 100 \text{ ms}$. The vertical red lines indicate the momentum resolution k_{low} (left) and the energy sink at k_{high} (right); the dashed blue line is a guide to the eye, offset from the data for clarity. Lower inset, compensated spectrum $k^{\gamma - 1} \tilde{n}(k)$ with $\gamma = 3.5$ (in log–log scale); k_{m} and k_{M} define the fitting ranges used in b–d. Upper inset, steady-state distribution from GPE simulations, for $\Delta U/\mu = 1$.

b, Dynamics of $\tilde{n}(k)$ towards the steady state, for $\Delta U/\mu = 1.1(1)$. Inset, observably lower than ω_{res}. We empirically find that an upper bound on ω_{res} (dashed green line in Fig. 2c) is obtained by calculating ω_{3D} for an effective BEC volume that excludes the region within ξ of the trap walls. Finally, we linearize the GPE around the ground-state BEC solution for our box trap and numerically solve the resultant Bogoliubov equations (see Methods). These solutions are shown as the grey shaded area in Fig. 2c, which accounts for the experimental uncertainty in the box size. We find excellent agreement with the data, without any adjustable parameters.

In Fig. 2d, e we show measurements for driven oscillations with different drive strengths. Increasing ΔU shifts and broadens the resonance, and both trends are reproduced by our GPE simulations (red bands in Fig. 2e); for very large ΔU the classical-field GPE approximation may gradually break down. The line broadening, seen for any non-zero ΔU, indicates nonlinear coupling to other modes, which provides the route for the transfer of excitations into other directions and a direct cascade.

In the inset of Fig. 2e we plot the anisotropy of the TOF expansion $A = (1/2) \int \rho(0) - 1/(2\pi) \rho(\theta) \text{d}\theta$ (see Methods) for 4 s of resonant driving. For $\Delta U \gtrsim 0.8 \mu$ we observe the isotropic expansion $(A \approx 0)$ that qualitatively signals turbulence. A key quantitative expectation for an isotropic turbulent cascade is the emergence of a steady-state power-law momentum distribution: $n(k) \propto k^{-\gamma}$, where γ is a constant28. Owing to collisions with the background gas in the vacuum chamber (see Methods), $n(k) \approx 1$ for $k/k_{\text{m}} < 6(5) \text{ nK}$, which corresponds to an energy sink. Away from these boundaries we observe a power-law behaviour, with $\gamma \approx 3.5$. This behaviour is even more visually evident in the lower inset, in which we plot $k^{\gamma - 1} \tilde{n}(k)$, with $\gamma_0 \equiv 3.5$. In the top inset in Fig. 3a we show the result of GPE simulations (for $\Delta U/\mu = 1$, which also exhibit a power-law distribution. Moreover, the experiment and simulations are consistent with the same value of γ.

In Fig. 3b we present the evolution of $\tilde{n}(k)$ towards the turbulent steady state, as the shaking time is increased. In the inset we show (on a linear scale) the total atom populations in the low-k ‘source’ region $k_0 < k_{\text{low}}$ and in the range $k_{\text{low}} < k < k_{\text{high}}$, where the power-law distribution is established in steady state (k_{low} and k_{high} are boundaries defined in the lower inset of Fig. 3a). Initially there is a net transfer of population from the source to the cascade region. The population growth in the cascade region means that the population flux through this k-space range is not constant at these early times. However, once the steady state is established, the population in the cascade k range saturates at a constant value, while the source is still slowly depleted. This is indeed what is expected for a direct cascade, in which a constant, k-independent population flux passes from the source, through the cascade range, to the high-k sink; formally, this population flux, for a given energy flux, should tend to zero as the sink is moved towards infinite energy28. (For a non-infinite-energy sink, one strictly speaking has a quasi-steady state, because at very long times the source would be too depleted to support a constant-flux cascade.)

We further cross-validate our experiments and first-principles calculations by fitting the cascade exponent γ in the range $k_{\text{low}} < k < k_{\text{high}}$. As $\Delta U/\mu$ exceeds 1, the experiment and simulations exhibit very similar evolution with the shaking time, and reach a steady-state value of γ after $t_t \approx 2 \text{ s}$. In Fig. 3d we plot the measured and simulated γ values versus the shaking amplitude for fixed $t_t = 4 \text{ s}$. Here we see that the steady-state value of γ is essentially independent of ΔU, reinforcing the robustness of our conclusions (for small ΔU the steady state is not reached for $t_t = 4 \text{ s}$; see also the inset of Fig. 2e).

We lastly discuss our findings in the context of previous theoretical work. The γ we observe in both the experiment and simulations is close to one of the scarce analytical predictions—the Kolmogorov–Zakharov direct-cascade exponent $\gamma = 3$, for the weak-wave turbulence of a
compressible superfluid. (This result is distinct from the prediction for the Kolmogorov energy spectrum of incompressible-flow-dominated turbulence, $E(k) \propto k^{-5/3}$.) This prediction is based on an idealized theory that starts with the GPE, but neglects the role of vortices and assumes weak interactions between the waves. Our simulations show that vortices are present in the system, but the value of γ suggests that they do not play a quantitatively important part in the turbulent cascade (observed at wavenumbers $k \gtrsim 1$), and the Kolmogorov–Zakharov theory is a reasonable approximation. Consistent with this, in simulations we find that, in the relevant k range, the compressible-flow contribution to the energy dominates over that of the incompressible flow (see Methods, Extended Data Fig. 2). The small difference between $\gamma = 3.5$ and the approximate $\gamma = 3$ could arise as a result of several (interlinked) factors, such as a residual role of vortices, the non-negligible incompressible-flow energy, the fact that in reality the interactions between the waves are not necessarily weak, and the increasing importance of quantum pressure in the GPE with increasing k. The experimental flexibility offered by atomic gases, in particular the possibility to tune the strength of nonlinearity via Feshbach resonances, might enable better understanding of the approximability of the respective analytical predictions, and the limitations of the classical-field methods.

Online Content Methods, along with any additional Extended Data display items and Source Data, are available in the online version of the paper; references unique to these sections appear only in the online paper.

Received 21 February; accepted 10 September 2016.

1. Kolmogorov, A. N. The local structure of turbulence in incompressible viscous fluid for very large Reynolds numbers. *Dokl. Akad. Nauk SSSR* 30, 299–303 (1941).
2. Obukhov, A. On the distribution of energy in the spectrum of turbulent flow. *Dokl. Akad. Nauk SSSR* 32, 22–24 (1941).
3. Sorriso-Valvo, L. et al. Observation of inertial energy cascade in interplanetary space plasma. *Phys. Rev. Lett.* 99, 115001 (2007).
4. Mösta, P. et al. A large-scale dynamo and magnetoturbulence in rapidly rotating core-collapse supernovae. *Nature* 528, 376–379 (2015).
5. Hwang, P. A., Wang, D. W., Walsh, E. J., Krabill, W. B. & Swift, R. N. Airborne measurements of the wavenumber spectra of ocean surface waves. Part I: spectral slope and dimensionless spectral coefficient. *J. Phys. Oceanogr.* 30, 2753–2767 (2000).
6. Ghoshghaie, S., Breymann, W., Peinke, J., Talkner, P. & Dodge, Y. Turbulent cascades in foreign exchange markets. *Nature* 381, 767–770 (1996).
7. Gaunt, A. L., Schmidtutz, T. F., Gottlibovich, I., Smith, R. P. & Hadzibabic, Z. Bose-Einstein condensation of atoms in a uniform potential. *Phys. Rev. Lett.* 110, 200406 (2013).
8. Paolelli, M. S. & Lathrop, D. P. Quantum turbulence. *Annu. Rev. Condens. Matter Phys.* 2, 213–234 (2011).
9. Chester, P. M., Liu, H. & Adams, A. Holographic vortex liquids and superfluid turbulence. *Science* 341, 368–372 (2013).
10. Maurer, J. & Tabeling, P. Local investigation of superfluid turbulence. *Europhys. Lett.* 43, 29–34 (1998).
11. Walmsley, P. M. & Golov, A. I. Quantum and quasiclassical types of superfluid turbulence. *Phys. Rev. Lett.* 100, 245301 (2008).
12. Bradley, D. et al. Direct measurement of the energy dissipated by quantum turbulence. *Nat. Phys.* 7, 473–476 (2011).
13. Ganshin, A. N., Efimov, V. B., Kolmakov, G. V., Mezhov-Deglin, L. P. & McClintock, P. V. E. Observation of an inverse energy cascade in developed acoustic turbulence in superfluid helium. *Phys. Rev. Lett.* 101, 065303 (2008).
14. Abdurakhimov, L. V., Brazhnikov, M. Y., Levchenko, A. A., Remizov, I. & Filatov, S. Turbulent capillary cascade near the edge of the inertial range on the surface of a quantum liquid. *JETP Lett.* 95, 670–679 (2012).
15. Kolmakov, G. V., McClintock, P. V. E. & Nazarenko, S. V. Wave turbulence in quantum fluids. *Proc. Natl Acad. Sci. USA* 111, 4727–4734 (2014).
16. Nore, C., Abid, M. & Brachet, M. E. Kolmogorov turbulence in low-temperature superfluids. *Phys. Rev. Lett.* 78, 3896–3899 (1997).
17. Berloff, N. G. & Svistunov, B. V. Scenario of strongly nonequilibrated Bose–Einstein condensation. *Phys. Rev. A* 66, 013603 (2002).
18. Neely, T. W. et al. Characteristics of two-dimensional quantum turbulence in the Gross–Pitaevskii model. *Phys. Rev. A* 80, 051603 (2009).
19. Reeves, M. T., Billam, T. P., Anderson, B. P. & Bradley, A. S. Inverse energy cascade in forced two-dimensional quantum turbulence. *Phys. Rev. Lett.* 110, 104501 (2013).
20. Henn, E. A. L., Seman, J. A., Roati, G., Magalhães, K. M. F. & Bagnato, V. S. Emergence of turbulence in an oscillating Bose–Einstein condensate. *Phys. Rev. Lett.* 103, 045301 (2009).
21. Ganshin, A. N., Efimov, V. B., Kolmakov, G. V., Mezhov-Deglin, L. P. & McClintock, P. V. E. Observation of an inverse energy cascade in developed acoustic turbulence in superfluid helium. *Phys. Rev. Lett.* 101, 065303 (2008).
22. Henn, E. A. L., Seman, J. A., Roati, G., Magalhães, K. M. F. & Bagnato, V. S. Emergence of turbulence in an oscillating Bose–Einstein condensate. *Phys. Rev. Lett.* 110, 104501 (2013).
23. Kwon, W. J., Moon, G., Choi, J., Seo, S. W. & Shin, Y. Relaxation of quantum energy cascade in superfluid helium. *Phys. Rev. Lett.* 111, 235301 (2013).
24. Tsatsos, M. C. et al. Quantum turbulence in trapped atomic Bose–Einstein condensates. *Phys. Rep.* 622, 1–52 (2016).
25. Gotlibovich, I. et al. Observing properties of an interacting homogeneous Bose–Einstein condensate: Heisenberg–limited momentum spread, interaction energy, and free-expansion dynamics. *Phys. Rev. A* 90, 061604 (2014).
26. Schmidtutz, T. F. et al. Quantum Joule–Thomson effect in a saturated homogeneous Bose gas. *Phys. Rev. Lett.* 112, 040403 (2014).
27. Zakharov, V. E., L’Vov, V. S. & Falkovich, G. Kolmogorov Spectra of Turbulence (Springer, 1992).

Acknowledgements We thank G. V. Shlyapnikov, B. Svistunov, S. Stringari, N. R. Cooper, J. Dalibard, M. J. Davis, R. J. Fletcher, M. W. Zwierlein, K. Fujimoto and M. T. Murphy for valuable discussions, and C. Eggert for experimental assistance. This work was supported by AFSOR, ARO, DARPA OLE, EPSRC (Grant No. EP/N011759/1) and ERC (QBox). The GeForce GTX TITAN X used for the numerical simulations was donated by the NVIDIA Corporation. N.N. and A.L.G. acknowledge support from Trinity College, Cambridge; R.P.S. acknowledges support from the Royal Society.

Author Contributions N.N. initiated the project, and took and analysed the data. A.L.G. wrote the code for the numerical simulations and analysed the results. Z.H. supervised the project. All authors contributed extensively to the interpretation of the data and the writing of the manuscript.

Author Information Reprints and permissions information is available at www.nature.com/reprints. The authors declare no competing financial interests. Readers are welcome to comment on the online version of the paper. Correspondence and requests for materials should be addressed to N.N. (nn270@cam.ac.uk).
Anisotropy analysis. To quantify the anisotropy of the TOF expansion, seen in the atomic distribution after a long t_{TOF}, we start with the column-density distribution in the TOF image $\tilde{n}(y, z) = \int n(r)dr$, where $n(r)$ is the three-dimensional distribution and x is the imaging axis. We then define the angular density distribution:

$$ p(\theta) = \frac{1}{\mathcal{N}} \int_{\mathcal{N}} \tilde{p}(r \cos \phi, r \sin \theta) dr $$

(4)

where the polar origin is set at the centre of mass of $\tilde{n}(y, z)$ and \mathcal{N} is the total atom number in the shell $[r_1, r_2]$, so that $\int_0^{2\pi} p(\theta) d\theta = 1$. An isotropic distribution corresponds to the uniform $p_0(\theta) = (2\pi)^{-1}$. To quantify the anisotropy as a deviation from this uniform distribution, we introduce a simple heuristic measure:

$$ A = \frac{2}{\pi} \int_0^{\pi/2} p(\theta) - \frac{1}{2\pi} d\theta $$

so that $A = 0$ for p_0, and $A = 1$ for sharply-peaked distributions. For our pure BEC, the diamond-shaped TOF distribution is close to the idealized square-shaped distribution depicted in the insets of Fig. 1b, d, for which (taking $r_1 = 0$ and $r_2 \to \infty$) the angular distribution is $p(\theta) = p_0(\theta \mod \pi/2)$, with

$$ p_0(\theta) = \frac{\cos^2 \theta}{8} \quad \text{for} \quad 0 < \theta < \pi/4 $$

$$ \frac{\sin \theta}{8} \quad \text{for} \quad \pi/4 < \theta < \pi/2 $$

For this distribution, $A \approx 9\%$. In experiments, any imaging imperfections lead to a positive A; for an equilibrium thermal gas ($\gamma = 0$), which is known to be isotropic, we observe a small residual $A \approx 3\%$, and define all our experimental values of A from this baseline. For the inset of Fig. 2e, the radial integration in Equation (4) is performed in the shell defined by $r_1 = \hbar k_{\text{rad}}/m$ and $r_2 = \hbar k_{\text{rad}}/m$ (corresponding to the vertical red lines in Fig. 3a).

Measurement of the momentum distribution. The measurement of the momentum distribution using the TOF technique requires a kinetic-energy-dominated state. We assess the validity of this measurement by comparing it to Bragg spectroscopy36, which can provide a faithful measurement of the momentum distribution even if the interaction energy is dominant over the kinetic energy. We shine onto the trapped cloud two off-resonant laser beams with wavevectors k_1 and k_2, detuned from each other by a frequency $\Delta \omega$, such that the resultant 1D Bragg-diffraction optical lattice is aligned with the axis of the box trap, $k_1 - k_2 \approx \Delta \omega$.

The angle between the beams is such that the recoil energy of the diffracted atoms $E_r \approx k_1 \times 320 \text{nK}$ is larger than the trap depth ($U_0 \approx k_9 \times 60 \text{nK}$), allowing the diffracted atoms to escape, and also much larger than the spread of energies in the trapped gas. Measuring the fraction of diffracted atoms as a function of $\Delta \omega$ yields the 1D momentum distribution along \hat{z}, $n_z(k_0)$, which is related to the planar distribution \tilde{n} (measured in TOF) by an Abel transform:

$$ n_z(k_0) = \frac{1}{\hbar} \int \tilde{n} \left(k_j^2 + k_z^2 \right) dk_j $$

where $\hbar = 2m/\pi^2$.

We use a long (20 ms) and low-power Bragg pulse to minimize Fourier broadening while always keeping the diffracted fraction below 15%. To compare the TOF and Bragg measurements we integrate our TOF images along \hat{j}.

In Extended Data Fig. 1a, we apply both methods to the initial state, a quasi-pure BEC. In this case the TOF measurement (solid green line) overestimates the width of the momentum distribution, owing to the importance of interactions during the expansion; the Bragg spectrum agrees well with the expected Heisenberg-limited distribution (dashed red line)36. However, as shown in Extended Data Fig. 1b, in the relevant case of the kinetic-energy-dominated turbulent state, the Bragg and TOF measurements are in excellent agreement, validating our assumptions.

Background-gas losses. In the absence of shaking, the atom population in the trap slowly decays owing to collisions with the residual background gas in the vacuum chamber. These one-body losses are k-independent and described by an exponential decay with a time constant that we measured to be $\tau_{\text{gas}} = 13$ s. For analysing the population dynamics in the inset of Fig. 3b, we corrected all populations for this background loss by multiplying them by a common factor $\exp(-t/\tau_{\text{gas}})$.

Numerical simulations of the turbulent cascade. In Extended Data Fig. 2a we show simulations of the dynamics of the in-plane momentum distribution in a shaken gas. Here $\tilde{n}(k)$ is computed from the spatial Fourier transform of the matter-wave field $\psi(r, t)$. We observe that with increasing t, the same power-law behaviour gradually extends from large to ever smaller length scales, as expected for a direct cascade.
Following the procedure outlined in ref. 17, we also study the fluid-dynamical kinetic-energy spectrum $E(k)$. We start by computing $\tilde{w}(k)$, the Fourier transform of the flow field

$$w(r) = (\hbar/m)|\psi(r)|\varphi(r)$$

where $\varphi(r)$ is the phase of $\psi(r)$ and we omit the time label for brevity. Summing $|\tilde{w}(k)|^2$ over all momenta with $|k| = k$ gives the total $E(k)$. Decomposing $\tilde{w}(k)$ into longitudinal and transverse components splits $E(k)$ into the compressible- (E_c) and incompressible-flow (E_i) contributions, respectively. In Extended Data Fig. 2b we plot the ratio $E_c(k)/E_i(k)$. We find that $E_c(k)$ dominates in the k range $k_m < k < k_M$, where the power-law momentum distribution is observed in both experiments and simulations; the same numerical observation was independently made by K. Fujimoto and M. Tsubota (personal communication). This supports the view that waves play a more important part than vortices in the turbulent cascade. Also, the vortices have a core size of approximately ξ, so it qualitatively makes sense that their contribution is not important when $k \gtrsim 1/\xi$.

Data availability. Source Data for Figs 1–3 and Extended Data Figs 1, 2 are available online.

29. Pitaevskii, L. P. & Stringari, S. Bose–Einstein Condensation and Superfluidity Ch. 12 (Oxford Univ. Press, 2016).

30. Stenger, J. et al. Bragg spectroscopy of a Bose–Einstein condensate. *Phys. Rev. Lett.* **82**, 4569–4573 (1999).
Extended Data Figure 1 | Momentum distributions from TOF and Bragg techniques. a, b, Comparison of $n_{1D}(k_z)$ obtained using TOF expansion (solid lines) and Bragg spectroscopy (points), in the case of the initial, quasi-pure BEC (a) and the turbulent gas (b). The red dashed line in a corresponds to the Heisenberg-limited momentum distribution. All distributions are normalized to unity ($\int_0^{\infty} n_{1D}(k_z) \, dk_z = 1$), without any adjustable parameters.
Extended Data Figure 2 | Turbulent cascade in numerical simulations.

a, In-plane momentum distribution $\tilde{n}(k)$ for various shaking times t_s.

b, Ratio of the compressible- (ε_c) to incompressible-flow (ε_i) components of the fluid-dynamical kinetic energy, with the colours corresponding to the shaking times in a. The simulation parameters for both panels are $N = 8 \times 10^4$, shaking frequency $\omega/(2\pi) = 9$ Hz and shaking amplitude $\Delta U' = \mu$.

© 2016 Macmillan Publishers Limited, part of Springer Nature. All rights reserved.