Identification of adenoid subtype characterized with immune-escaped phenotype in lung squamous carcinoma based on transcriptomics

Jie Mei1,2,3†, Yun Cai3†, Ofek Mussafi4†, Mingfeng Zheng1, Yongrui Xu1, Ruo Chen1, Guanyu Jiang1, Wenjun Mao1*, Wei Xia5* and Yuan Wan4*

Abstract
Non-small cell lung cancer (NSCLC) is a heterogeneous disease, and its demarcation contributes to various therapeutic outcomes. However, a small subset of tumors shows different molecular features that are in contradiction with pathological classification. Unsupervised clustering was performed to subtype NSCLC using the transcriptome data from the TCGA database. Next, immune microenvironment features of lung adenocarcinoma (LUAD), lung squamous carcinoma (LUSC), and lung adenoid squamous carcinoma (LASC) were characterized. In addition, diagnostic biomarkers to demarcate LASC among LUSC were screened using weighted gene co-expression network analysis (WGCNA) and validated by the in-house cohort. LASC was identified as a novel subtype with adenoid transcriptomic features in LUSC, which exhibited the most immuno-escaped phenotype among all NSCLC subtypes. In addition, FOLR1 was identified as a biomarker for LASC discrimination using the WGCNA analysis, and its diagnostic value was validated by the in-house cohort. Moreover, FOLR1 was related to immuno-escaped tumors in LUSC but not in LUAD. Overall, we proposed a novel typing strategy in NSCLC and identified FOLR1 as a biomarker for LASC discrimination.

Keywords: NSCLC, Subtype, Immuno-escaped, Biomarker

To the editor.
Lung cancer is the leading cause of cancer-related death worldwide. Its histological and biological heterogeneity contributes to various therapeutic outcomes [1]. Lung cancer can be mainly classified as small cell lung cancer (SCLC) and non-SCLC (NSCLC). NSCLC, accounting for about 85% of the lung cancer cases, dominantly consists of lung adenocarcinoma (LUAD) and lung squamous carcinoma (LUSC) [2]. Although LUAD and LUSC are the largest NSCLC subgroups, they appear to be disparate diseases with distinct molecular, pathological, and clinical features [3]. For example, LUAD seems to be
Fig. 1 (See legend on next page.)
more immune-escaped compared with LUSC. Tumor-infiltrating lymphocytes (TILs) and PD-L1 expression are shown to be higher in LUAD. However, TILs and PD-L1 expression showed inter- and intra-tumor heterogeneity in both LUAD and LUSC [4]. However, due to the heterogeneity, a small subset of tumors shows different molecular features that are in contradiction with pathological classification.

Considering the limited treatment options for LUSC with LUAD [5], we sought to identify a subtype in LUSC with the genomic signatures similar to LUAD. Firstly, we performed unsupervised clustering of LUAD and LUSC patients and identified four clusters (Additional file 2: Fig. S1A, B). Notably, we found that several LUSC patients mingled in clusters enriched with LUAD patients (Additional file 2: Fig. S1C), and we defined these LUSC as lung adenoid squamous carcinoma (LASC) (Fig. 1A). Notably, KRT7, KRT18, and NAPSA, selectively expressed in LUAD, were highly expressed in LASC, while KRT5, TP63, and DSG3, the biomarkers for LUSC, were lowly expressed in LASC (Fig. 1B, C). In addition, critical targetable mutations were also higher in LASC compared with LUSC (Fig. 1D). Previous study showed that oncogenic mutations in EGFR, KRAS, BRAF, HER2, and ALK were extremely rare or absent in patients with pure LUSC, whereas LUSC with minor glandular component (LUSC-mGC) had a relatively high frequency of EGFR, ALK, or KRAS mutations [6], similar genomic alternations to the third subtype of LASC found in our study. However, whether LASC belongs to LUSC-mGC is need to be further explored. Moreover, the prognosis of LASC was worse than LUSC in terms of overall survival (OS), progression-free survival (PFS), and disease-special survival (DSS) (Fig. 1E). Given difference in TILs between LUAD and LUSC [4], we next characterized the immune features in three NSCLC subtypes. LASC exhibited the highest immune score, stromal score, and ESTIMATE score, while the lowest tumor purity (Additional file 2: Fig. S2A). In addition, most immune-modulators and most TILs were the highest in LASC, followed by LUAD (Additional file 2: Fig. S2B, C). Furthermore, the most immune checkpoints were the highest in LASC (Additional file 2: Fig. S2D).

We next explored discriminating biomarkers for LASC using the WGCNA algorithm (Additional file 2: Fig. S3A–D). We visualized the gene network with a heatmap and meta-modules (Additional file 2: Fig. S4A, B), and two modules were extracted (Additional file 2: Fig. S4C). The genes in the turquoise and blue modules were mainly associated with tumor immunity-related with processes and surfactant homeostasis, respectively (Additional file 2: Fig. S4D, E). Given genes in the turquoise module were TIL markers, we utilized the genes in the blue module as biomarkers for LASC. The score of these genes was highly expressed in LASC compared with LUSC and exhibited high diagnostic values (Fig. 2A, B). In addition, FOLR1 exhibited the highest value among these genes (Fig. 2C). Moreover, the results from the validated cohort showed that FOLR1 was upregulated in LUAD compared with LUSC (Fig. 2D, E), which could be a novel biomarker in the discrimination between LUAD and LUSC. In addition, high FOLR1 was associated with poor prognosis in LASC (Fig. 2F).

Subsequently, we investigated the correlation of FOLR1 with immune features. In LUSC, immune score, stromal score, and ESTIMATE score were higher, while tumor purity was lower in the high-FOLR1 group (Additional file 2: Fig. S5A). In addition, most immune-modulators
Fig. 2 (See legend on previous page.)
and TILs were enriched in the high-FOLR1 group (Additional file 2: Fig. S5B, C). Moreover, FOLR1 was positively correlated with most immune checkpoints (Additional file 2: Fig. S5D). However, these correlations could not be observed in LUAD (Additional file 2: Fig. S6A–D). The results from the validated cohort showed that FOLR1 was positively correlated with PD-L1 in LUSC but not in LUAD (Fig. 2G–J). We also assessed the expression of FOLR1 in different cell types in NSCLC and the results showed that FOLR1 was highly expressed in tumor cells (Additional file 2: Fig. S7A, B). FOLR1 is often overexpressed in multiple cancers, which is often associated with tumor progression and poor patient prognosis [7].

In lung cancer, FOLR1 is mainly expressed in LUAD and more highly expressed in metastatic lymph node, and nanoparticle targeted FOLR1 enhanced photodynamic therapy [8]. In addition, high FOLR1 expression correlates with adenocarcinoma histology and EGFR mutation in lung cancer [9]. Furthermore, trans-differentiation of LUAD to LUSC depending on the signaling of Lkb1 [10], Whether FOLR1 mediates trans-differentiation between LUAD and LUSC and its association with Lkb1 signaling might be an interesting topic.

Immune feature-based risk stratification is critical for prognostic and therapeutic assessment in both lung cancer and other cancer types [11–14]. To sum up, we proposed a novel typing strategy in NSCLC and indicated LASC could be a dominant subtype benefiting from immunotherapy. We also identified FOLR1 as a biomarker for LASC discrimination. However, due to limited clinical features and genetic alterations provided by Outdo Biotech, we fail to compare the associations between FOLR1 expression and clinical features in detail, which should be further explored. Overall, the importance of FOLR1 detection should be emphasized in LUSC for the identification of the novel subtype.

Acknowledgements

Not applicable.

Author contributions

WM, WX, and YW designed the study and participated in coordination and project control. JM, YC, OM, MZ, YX, RC, and GJ collected the public data and conducted the bioinformatics analysis. JM and OM performed IHC staining. JM, YC, and OM wrote the draft. WM, WX, and YW revised the manuscript. XX got financial support. All authors reviewed and approved the final edition. All authors read and approved the final manuscript.

Funding

This work was supported by the Natural Science Foundation of Jiangsu Province (BK20210068), the Top Talent Support Program for Young and Middle-aged People of Wuxi Municipal Health Commission (HB2020003), and the High-end Medical Expert Team of the 2019 Taihu Talent Plan (2019-THICTD-1).

Availability of data and materials

All data supported the results in this study are showed in this published article and its Additional files 1 and 2. In addition, original data for bioinformatics analysis could be downloaded from corresponding platforms.

Declarations

Ethics approval and consent to participate

Ethical approval (No. YB-M-05-02) for the use of TMAs was granted by the Clinical Research Ethics Committee in Outdo Biotech (Shanghai, China). Consent obtained directly from patient(s).

Consent for publication

Not applicable.
Competing interests
There are no competing interests.

Author details
1 Department of Thoracic Surgery, The Affiliated Wuxi People’s Hospital of Nanjing Medical University, No. 299 Qingyang Road, Wuxi 214023, China. 2 Department of Oncology, The Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi 214023, China. 3 Wuxi Clinical Medical College, Nanjing Medical University, Wuxi 214023, China. 4 The Pq Laboratory of BiomeDx/Rx, Department of Biomedical Engineering, Binghamton University, 65 Murray Hill Road, Biotechnology Building B12625, Binghamton, NY 13850, USA. 5 Department of Intensive Care Unit, The Affiliated Wuxi People’s Hospital of Nanjing Medical University, No. 299 Qingyang Road, Wuxi 214023, China.

Received: 18 September 2022 Accepted: 21 September 2022
Published online: 12 October 2022

References
1. Siegel RL, Miller KD, Fuchs HE, Jemal A. Cancer statistics, 2022. CA Cancer J Clin. 2022;72(1):7–33.
2. Molina JR, Yang P, Cassivi SD, Schild SE, Adjei AA. Non-small cell lung cancer: epidemiology, risk factors, treatment, and survivorship. Mayo Clin Proc. 2008;83(5):584–94.
3. Relli V, Trerotola M, Guerria E, Alberti S. Abandoning the Notion of Non-Small Cell Lung Cancer Trends Mol Med. 2019;25(7):585–94.
4. Zhang XC, Wang J, Shao GG, Wang Q, Qu X, Wang B, et al. Comprehensive genomic and immunological characterization of Chinese non-small cell lung cancer patients. Nat Commun. 2019;10(1):1772.
5. Pan Y, Han H, Labbe KE, Zhang H, Wong KK. Recent advances in predilution models for lung squamous cell carcinoma. Oncogene. 2021;40(16):2817–29.
6. Pan Y, Wang R, Ye T, Li C, Hu H, Yu Y, et al. Comprehensive analysis of oncogenic mutations in lung squamous cell carcinoma with minimal glandular component. Chest. 2014;145(3):473–9.
7. Navia A, Kipreos ET. Emerging roles for folate receptor FOLR1 in signaling and cancer. Trends Endocrinol Metab. 2022;33(3):159–74.
8. Kato T, Jin CS, Ujiie H, Lee D, Fujino K, Wada H, et al. Nanoparticle targeted folate receptor 1-enhanced photodynamic therapy for lung cancer. Lung Cancer. 2017;113:59–68.
9. Nunez M, Beheens C, Woods DM, Lin H, Suraokar M, Kadara H, et al. High expression of folate receptor alpha in lung cancer correlates with adenocarcinoma histology and EGFR [corrected] mutation. J Thorac Oncol. 2012;7(5):833–40.
10. Han X, Li F, Fang Z, Gao Y, Li F, Fang R, et al. Transdifferentiation of lung adenocarcinoma in mice with Lkb1 deficiency to squamous cell carcinoma. Nat Commun. 2014;5:3261.
11. Yi M, Li A, Zhou L, Chu Q, Luo S, Wu K. Immune signature-based risk stratification and prediction of immune checkpoint inhibitor’s efficacy for lung adenocarcinoma. Cancer Immunol Immunother. 2021;70(6):1705–19.
12. Fu T, Dai L, Wu SY, Xiao Y, Ma D, Jiang YZ, et al. Spatial architecture of the immune microenvironment orchestrates tumor immunity and therapeutic response. J Hematol Oncol. 2021;14(1):98.
13. Liu F, Qin L, Liao Z, Song J, Yuan C, Liu Y, et al. Microenvironment characterization and multi-omics signatures related to prognosis and immunotherapy response of hepatocellular carcinoma. Exp Hematol Oncol. 2020;9:10.
14. Chen Y, Wang Y, Luo H, Meng X, Zhu W, Wang D, et al. The frequency and inter-relationship of PD-L1 expression and tumour mutational burden across multiple types of advanced solid tumours in China. Exp Hematol Oncol. 2020;9:17.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.