Variable Star Signature Classification using Slotted Symbolic Markov Modeling

K.B. Johnstona, A.M. Peterb

aFlorida Institute of Technology, Physics and Space Sciences Department, Melbourne, Florida, USA 32901
bFlorida Institute of Technology, Systems Engineering Department, Melbourne, Florida, USA 32901

Abstract

With the advent of digital astronomy, new benefits and new challenges have been presented to the modern day astronomer. No longer can the astronomer rely on manual processing, instead the profession as a whole has begun to adopt more advanced computational means. This paper focuses on the construction and application of a novel time-domain signature extraction methodology and the development of a supporting supervised pattern classification algorithm for the identification of variable stars. A methodology for the reduction of stellar variable observations (time-domain data) into a novel feature space representation is introduced. The methodology presented will be referred to as Slotted Symbolic Markov Modeling (SSMM) and has a number of advantages which will be demonstrated to be beneficial; specifically to the supervised classification of stellar variables. It will be shown that the methodology outperformed a baseline standard methodology on a standardized set of stellar light curve data. The performance on a set of data derived from the LINEAR dataset will also be shown.

Keywords: stellar variability, supervised classification, Markov Modeling, time-domain analysis

1. Introduction

With the advent of digital astronomy, new benefits and new challenges have been presented to the modern day astronomer. While data is captured in a more efficient and accurate manner using digital means, the efficiency of data retrieval has led to an overload of scientific data for processing and storage. Where once the professional astronomer was faced with ten to a hundred data points for a given night, the now more common place “full-sky survey” mission results in millions of data points. This means that more stars, in more detail are
1.1 Related Work

captured per night; but increasing data capture begets exponentially increasing data processing. Database management, digital signal processing, automated image reduction and statistical analysis of data have all made their way to the forefront of tools for the modern astronomer. Astro-statistics and astro-informatics are fields which focus on the application and development of these tools to help aid in the processing of large scale astronomical data resources.

This paper focuses on one facet of this budding area, the construction and application of a novel time-domain signature extraction methodology and the development of a supporting supervised pattern classification algorithm for the identification of variable stars. Given the reduction of a survey of stars into a standard feature space, the problem of using prior patterns to identify new observed patterns can be reduced to time tested classification methodologies and algorithms. Such supervised methods, so called because the user trains the algorithms prior to application using patterns with known (hence the supervised) classes or labels, provide a means to probabilistically determine the estimated class type of new observations. These methods have two large advantages over manual-classification procedures: the rate at which new data is processed is dependent only on the computational processing power available and the performance of a supervised classification algorithm is quantifiable and consistent. Thus the supervised classification algorithms produce rapid, efficient and consistent results.

A methodology for the reduction of stellar variable observations (time-domain data) into a novel feature space representation is introduced. The methodology presented will be referred to as Slotted Symbolic Markov Modeling (SSMM) and has a number of advantages which will be demonstrated over the course of this paper which are beneficial; specifically to the supervised classification of stellar variables. The paper is structured as follows. First, the data, prior efforts, and challenges uniquely associated to classification of stars via stellar variability is reviewed. Second, the novel methodology, SSMM, is outlined including the feature space and signal conditioning methods used to extract the unique time-domain signatures. Third, a set of classifiers (radial basis function neural network, random forest/bagged decisions tree, k-nearest neighbor, and Parzen window classifier) is trained and tested on the extracted feature space using both a standardized stellar variability dataset and the LINEAR dataset. Fourth, performance statistics is generated for each classifier and a comparing and contrasting of the methods are discussed. Lastly, an anomaly detection algorithm is generated using the so called one-class Parzen Window Classifier and the LINEAR dataset. The result will be the demonstration of the SSMM methodology as being a highly competitive feature space reduction technique, for usage in supervised classification algorithms.

1.1 Related Work

The idea of constructing a supervised classification algorithm for stellar classification is not unique to this paper [14], nor is the construction of a classifier for time variable stars. Methods pursued include the construction of a detector to determine variability [2], the design of random forests for the detection of
photometric redshifts in spectra [9], the detection of transient events [12] and
the development of machine-assisted discovery of astronomical parameter
relationships [22]. Debosscher [11] explored several classification techniques for
the supervised classification of variable stars, quantitatively comparing the per-
formance in terms of computational speed and performance. Likewise, other
efforts have focused on comparing speed and robustness of various methods
[4, 43, 42]. These methods span both different classifiers and different spectral
regimes, including IR surveys [1, 36], RF surveys [47] and optical [51]. Methods
for automated supervised classification include procedures such as: direct para-
metric analysis [64], fully automated neural networking [44, 45] and Bayesian
classification [17].

The majority of these references rely on periodicity domain feature space
reductions. Debosscher [11] and Templeton [62] review a number of feature
spaces and a number of efforts to reduce the time domain data, most of which
implement Fourier techniques, primarily implementing the Lomb-Scargle (L-S)
Method [34, 53], to estimate the primary periodicity [17, 40, 51, 37, 10]. Lomb-
Scargle is favored because of the flexibility it provides with respect to observed
datasets; it is frequently used when sample rates are irregular and drop outs
are common in the data being observed, as is often the case with astronomical
observations. Long et al. [35] advance L-S even further, introducing multi-band
(multidimensional) generalized L-S, allowing the algorithm to take advantage
of information across filters, in cases where multi-channel time-domain data is
available. There have also been efforts to estimate frequency using techniques
other than L-S such as the Correntropy Kernelized Periodogram, [24] or MUlti
Signal Classifier [59].

The assumption of the light curve being periodic, or even that the function-
ality of the signal being represented in the limited Fourier space that Lomb-Scargle
uses, has been shown [39, 2] to result in biases and other challenges when used
for signature identification purposes. Supervised classification algorithms
implementing these frequency estimation algorithms do so to generate an estimate
of primary frequency; the primary frequency is then used to fold all observa-
tions resulting in a plot of magnitude vs. phase, something Deb and Singh [10]
refer to as “reconstruction”. After some interpolation to place the magnitude
vs. phase plots on similar regularly sampled scales, the new folded time series
can be directly compared (1-to-1) with known folded time series. Comparisons
can be performed via distance metric [53], correlation [46], further feature space
reduction [11] or more novel methods [25]. It should be noted that the family of
stars with the label “stellar variable” is a large and diverse population: eclipsing
binaries, irregularly pulsating variables, nova (stars in outburst), multi-model
variables, and many others are frequently processed using the described meth-
ods despite the underlying stellar variability functionality not naturally lending
itself to Fourier decomposition and the associated assumptions that accompany
the said decomposition. Indeed this is why Szatmary et al. [58], Barclay et al.
[2], Palaversa et al. [39] and others suggest using other decomposition methods
such as discrete wavelet transformations, which have been shown to be powerful
in the effort to decompose a time series into the time-frequency (phase) space for
1.2 Data Specific Challenges

The classification of time series data has a number of considerations that need to be made. In this section, we detail computational issues associated with processing astronomical time series and propose appropriate techniques to mitigate the challenges.

1.2.1. Continuous Time Series Data

Stellar variable time series data can roughly be described as passively observed time series snippets, extracted from what is a contiguous signal (star shine) over multiple nights or sets of observations. The continuous nature of the time series provides both complications and opportunities for time series analysis. The time series signature have the potential to change over time, and new observations mean increased opportunity for an unstable signature over the long term. If the time signature does not change, then new observations will result in additive information that will be used to further define the signature function associated with the class. Implementing a methodology that will address both issues (potential for change and potential for additional information) would be beneficial. If the sampling was regular (and continuous) Short-Time Fourier Transforms (Spectrograms) or Periodograms would be ideal, although these methods would be complicated to turn into, or extract from, the signature pattern of the variable star as the dimensions of the spectrogram would grow with increasing time observations. Likewise, the data analyzed cannot be necessarily represented in Fourier space (perfectly) and while the wavelet version of the spectrogram or scalogram could be used, the data is also irregularly sampled further complicating the analysis. Methods for obtaining regularly spaced samples from irregular samples are known however, these methods have unforeseen effects on the frequency domain signature which is being extracted, thereby corrupting the signature pattern.

1.2.2. Irregular Sampling

Astronomical time series data is also frequently irregular, i.e., there is no associated fixed \(\Delta t \) over the whole of the data that is consistent with the observation. Even when there is a consistent observation rate, this rate is often broken up because of a given observational plan, day-light interference or weather-related constraints. Whatever method is used must be able to handle various irregular sampling rates and observational dropouts, without introducing biases and artifacts into the derived feature space that will be used for classification. Most analysis methods require or at least depend on regularized samples. Those that do not, either require some form of transformation from irregular to regular sample rate by a defined methodology, or apply some assumption about the time-domain function that generated the variation to begin with (such as L-S).
Irregular Sampling solutions [6, 8] to address this problem, can be defined one of three ways: Slotting Methods which model points along the time line using fuzzy or hard models [10, 48], re-sampling estimators which use interpolation to generate the “missing points” and obtain a consistent sample rate, and L-S like estimators which apply a model or basis function across the time series and maximizes the coefficients of the basis function to find an accurate representation of the time series.

1.2.3. Signature Representations

The stellar variable moniker covers a wide variety of variable types: stationary (consistently repeating identical patterns), non-stationary (patterns that increase/decrease in frequency over time), non-regular variances (variances that change over the course of time, shape changes), as well as both Fourier and non-Fourier sequences/patterns. Pure time-domain signals do not lend themselves to signature identification and pattern matching, as their domain is infinite in terms of potential discrete data (dimensionality). So not only must a feature space representation be found, but the dimensionality should not increase with increasing data. There are a number of time-domain dimensionality reduction methodologies available, DFT and DWT are two of the big contenders in today’s research. Piecewise Aggregate Approximation [27] and Symbolic Aggregate Approximation [32] methodologies however, has been shown to compete with both methods [33], and in some cases has been shown to perform better when pattern matching is of interest (and not necessarily determination of frequency or underlying features of the generating time domain signal).

2. Proposed Feature Extraction Methodology

The algorithm designed encompasses the analysis, reduction and classification of data. The a priori distribution of class labels are roughly evenly distributed for both studies, therefore the approach uses a multi-class classifier. Should the class labels with additional data become unbalanced, other approaches are possible [52]. Based on the outlined data/domain specific challenges, this paper will attempt to develop a feature space extraction methodology that will construct an analysis of stellar variables and characterize the shape of the periodic stellar variable signature. A number of methods have been demonstrated that fit this profile [21, 18, 19], however many of these methods focus on identifying a specific time series shape sequence in a long(er) continuous time series, and not necessarily on the differentiation between time series sequences. To address these domain specific challenges, the following methodology outline is implemented:

1. To address the irregular sampling rate, a slotting methodology is used [49]: Gaussian kernel window slotting with overlap. The slotting methodology is used to generate estimates of amplitudes at regularized points, with the result being a up-sampled conditioned waveform. This has been shown to be useful in the modeling and reconstruction of variability dynamics [48],
2.1 Slotting (Irregular Sampling)

and is similar to the methodologies used to perform Piecewise Aggregate Approximation \[27\].

2. To reduce the conditioned time series into a usable feature space, the amplitudes of the conditioned time series will be mapped to a discrete state space based on a standardized alphabet. The result is the state space representation of the time domain signal, and is similar to the methodologies used to perform Symbolic Aggregate Approximation \[32\].

3. The state space transitions are then modeled as a first order Markov Chain, and the state transition probability matrix (Markov Matrix) is generated, a procedure unique to this study. It will be shown that a mapping of the transitions from observation to observation will provide an accurate and flexible characterization of the stellar variability signature.

The Markov Matrix is unfolded into a vector, and is the signature pattern (feature vector) used in the classification of time-domain signals for this study.

2.1. Slotting (Irregular Sampling)

Each waveform is modeled using the slotting re-sampling methodology for irregularly sampled waveforms outlined in Rehfeld et al. \[49\]. The slotting method results in a set of regularly sampled amplitude estimates; these are the conditioned waveforms for this analysis. Let the set of \(\{ y(t_n) \}_{n=1}^{N} \) samples, where \(t_1 < t_2 < t_3 < \ldots < t_N \) and there are \(N \) samples, be the initial time series dataset. The observed time series data is standardized (subtract the mean, divide by the standard deviation), and then the slotting procedure is applied. If \(x[i] \leftarrow y(t_i) \), then the algorithm to generate the slotted time domain data is given in Algorithm 1.
2.1 Slotting (Irregular Sampling)

Algorithm 1 Gaussian Kernel Slotting

1: procedure GAUSSIANKERNELSLOTTING($x[i], t[i], w, \lambda$
2:
3: $x_{\text{prime}}[i] \leftarrow (x[i] - \text{mean}(x[i]))/\text{std}(x[i])$ \hspace{1em} \triangleright \text{Standardize Amplitudes}
4: $t[i] \leftarrow t[i] - \text{min}(t[i])$ \hspace{1em} \triangleright \text{Start at Time Origin}
5: slotCenters $\leftarrow 0 : \frac{w}{2} : \max(t[i]) + w$ \hspace{1em} \triangleright \text{Make Slot Locations}
6: timeSeriesSets $= []$ \hspace{1em} \triangleright \text{Initialize Time Series Sets}
7: slotSet $= []$ \hspace{1em} \triangleright \text{Make an Empty Slot Set}
8:
9: while $i < \text{length}(\text{slotCenters})$ do \hspace{1em} \triangleright \text{Compute Slots}
10: $idx \leftarrow \text{all } t \text{ in interval } [\text{slotCenters} - w, \text{slotCenters} + w]$
11: inSlotX $\leftarrow x[idx]$
12: inSlotT $\leftarrow t[idx]$
13:
14: if inSlot is empty then \hspace{1em} \triangleright \text{There is a Gap}
15: if slotSet is empty then \hspace{1em} \triangleright \text{Move to Where Data is}
16: currentPt $\leftarrow \text{find next } t > \text{slotCenters} + w$
17: $i \leftarrow \text{find last } \text{slotCenters} < t[\text{currentPt}]$
18: else \hspace{1em} \triangleright \text{Store the Slotted Estimates}
19: add slotSet to structure timeSeriesSets
20: slotSet $\leftarrow []$
21: end if
22: else
23: weights $\leftarrow \exp(-(\text{inSlot} - \text{slotCenters})^2 * \lambda))$
24: meanAmp $\leftarrow \sum(\text{weights} * \text{inSlotX})/\sum(\text{weights})$
25: add meanAmp to the current slotSet
26: end if
27: $i++$
28: end while
29: end procedure

The slotting procedure selects a set of points about a point on the time grid and within the slot to be considered; for this implementation an overlapping slot (75% overlap) was used. Where overlapping here means that the window width is larger then the distance between slot centers. These points are then weighted using a Gaussian model to generate a weighted mean amplitude for the slot. This methodology is effectively Kernel Smoothing with Slotting [30]. The time series, with irregular sampling and large gaps is conditioned by the Gaussian slotting method. Gaps in the waveform are defined as regions where a slot contains no observations. Continuous observations (segments) are the set of observations between the gaps. This results in a set of waveforms that have equally spaced sampling. This conditioning is also similar to the Piecewise Aggregation Approximation [31, 27]. Instead of down-sampling the time domain datasets as PAA does however, the data is up-sampled using the slotting methodology. This is necessary because of the sparsity of the time domain
2.2 State Space Representation

If it is assumed that the conditioned standardized waveform segments have an amplitude distribution that approximates a Gaussian distribution (which they won’t, but that is irrelevant to the effort), then using a methodology similar to Symbolic Aggregate Approximation \([32, 33]\) methodologies, an alphabet (state space) is defined based on our assumptions as an alphabet extending between \(\pm 2\sigma\) and will encompass 95% of the amplitudes observed. This need not always be the case, but the advantage of the standardization of the waveform is that, with some degree of confidence the information from the waveform is contained roughly between \(\pm 2\sigma\). The resolution of the alphabet granularity is to be determined via cross-validation to determine an optimal resolution. Figure 1 demonstrates a eight state translation; the alphabet will be significantly more resolved than this for astronomical waveforms.

Figure 1: Example State Space Representation

The set of state transitions, the transformation of the conditioned signal, is used to populate a transition probability matrix or first order Markov Matrix.

2.3 Transition Probability Matrix (Markov Matrix)

The transition state frequencies are estimated for signal measured between empty slots, transitions are not evaluated between day-night periods, or between slews (changes in observation directions during a night) and only evaluated for continuous observations. Each continuous set of conditioned waveforms (with Slotting and State Approximation applied) is used to populate the empty matrix \(P\), with dimensions equal to \(r \times r\), where \(r\) is the number of states, is built. The matrix is populated using the following rules:

- \(N_{ij}\) is the number of observation pairs \(x[t]\) and \(x[t + 1]\) with \(x[t]\) is state \(s_i\) and \(x[t + 1]\) in state \(s_j\)
• N_i is the number of observation pairs $x[t]$ and $x[t+1]$ with $x[t]$ in state s_i and $x[t+1]$ in any one of the states $j = 1, ..., r$

The now populated matrix P is a transition frequency matrix, with each row i representing a frequency distribution (histogram) of transitions out of the state s_i. The transition probability matrix is approximated by converting the elements of P by approximating the transition probabilities using $P_{ij} = \frac{N_{ij}}{N_i}$. The resulting matrix is often described as a first order Markov Matrix \[54\]. State changes are based on only the observation-to-observation amplitude changes; the matrix is a representation of the linearly interpolated sequence \[20\]. Furthermore, the matrix is unpacked similar to image analysis methods into a feature space vector, with dimensions depend on the resolution and bounds of the states. The algorithm to process the time-domain conditioned data is given in Algorithm \[2\].

Algorithm 2 Markov Matrix Generation

```latex
\begin{algorithm}
\begin{algorithmic}[1]
\Procedure{MarkovMatrixGeneration}{timeSeriesSets, s}
\State \textit{markovMatrix} = []
\For{$i := 1$ to length of \textit{timeSeriesSets}}
\State \textit{markovMatrixPrime} ← []
\State \textit{currentSlotSet} ← \textit{markovMatrixPrime}[j]
\For{$k := 1$ to length of \textit{currentSlotSet}}
\State \textit{idxIn} ← find state containing \textit{currentSlotSet}[k−1]
\State \textit{idxOut} ← find state containing \textit{currentSlotSet}[k]
\State \textit{markovMatrixPrime}[$\textit{idxIn}, \textit{idxOut}$] += \textit{markovMatrixPrime}
\EndFor
\State \textit{markovMatrix} ← \textit{markovMatrix} + \textit{markovMatrixPrime}
\EndFor
\State $N_i = \text{sum along row of } \textit{markovMatrix}$
\For{$j := 1$ to length of \textit{s}}
\If{$N_i \neq 0$}
\State $\textit{markovMatrix}[:; j] \leftarrow \frac{N_{ij}}{N_i}$ \Comment{Estimate Markov Matrix}
\EndIf
\EndFor
\EndProcedure
\end{algorithmic}
```

The resulting Markov Matrix is unpacked into a feature vector given by:

$$
\mathbf{P}_i = \begin{bmatrix}
 p_{11} & p_{12} & \cdots & p_{1r} \\
 p_{21} & p_{22} & \cdots & \cdots \\
 \vdots & \vdots & \ddots & \vdots \\
 p_{r1} & p_{21} & \cdots & p_{rr}
\end{bmatrix} \Rightarrow x_i = \begin{bmatrix}
 p_{11} & p_{12} & \cdots & p_{21} & \cdots & p_{rr}
\end{bmatrix}
$$

(1)

Where \mathbf{P}_i is the Markov Chain of the i^{th} input training set, and x_i is the i^{th} input unfolded training pattern.
2.4 Feature Space Reduction (ECVA)

The resolution of the state set needs to be small to avoid loss of information resulting from over generalization. However, if the state resolution is too small the sparsity of the transition matrix will result in a shape signature that is too dependent on noise and the “individualness” of specific waveform to be of any use. Thus additional processing is necessary for further analysis; even a small set of states (12 x 12) will result in a feature vector with high dimensionality (144 dimensions). While a window and overlap size is assumed for the slotting to address the irregular sampling of the time series data, there are two adjustable features associated with this analysis: the kernel width associated with the slotting and the state space (alphabet) resolution. It is apparent that a range of resolutions and kernel width need to be tested to determine best performance given a generic supervised classifier. For these purposes a rapid initial classification algorithm, General Quadratic Discriminate Analysis [15], was implemented to estimate the mis-classification rate (wrong decisions/total decisions). Not all states will be observed, i.e. the high dimensional feature vector will have information contained in a small subset of elements. Dimensionality reduction methods are often necessary for implementation of classification algorithms, in particular QDA where the construction of a covariance matrix of a sparse feature space can be problematic.

The reduction of the large, sparse, feature vector resulting from the unpacking of the Markov Matrix is performed via extended canonical variate analysis or ECVA [38]. The methodology for ECVA has roots in principle component analysis (PCA). PCA is a procedure performed on large multidimensional datasets with the intent of rotating what is a set of possibly correlated dimensions into a set of linearly uncorrelated variables [56]. The transformation results in a dataset, where the first principle component (dimension) has the largest possible variance. PCA is an unsupervised methodology, i.e. a priori known labels for the data being processed is not taken into consideration, thus a reduction in feature dimensionality and while it maximizes the variance it might not maximize the linear separability of the class space. In contrast to PCA, Canonical Variate Analysis does take class labels into considerations. The variation between groups is maximized resulting in a transformation that benefits the goal of separating classes. Given a set of data \mathbf{x} with: g different classes, n_i observations of each class, and $r \times r$ dimensions in each observation; following Johnson et al. [26], the within-group and between-group covariance matrix is defined as:

$$S_{within} = \frac{1}{n - g} \sum_{i=1}^{g} \sum_{j=1}^{n_i} (\mathbf{x}_{ij} - \bar{x}_{ij})(\mathbf{x}_{ij} - \bar{x}_i)'$$ \hspace{1cm} (2)$$

$$S_{between} = \frac{1}{g - 1} \sum_{i=1}^{g} n_i (\mathbf{x}_i - \bar{x})(\mathbf{x}_i - \bar{x})'$$ \hspace{1cm} (3)$$

where $n = \sum_{i=1}^{g} n_i$, $\bar{x}_i = \frac{1}{n_i} \sum_{j=1}^{n_i} \mathbf{x}_{ij}$, and $\bar{x} = \frac{1}{n} \sum_{i=1}^{g} n_i \mathbf{x}_i$. CV A attempts to maximize the function:
\[J(w) = \frac{w'S_{between}w}{w'S_{within}w} \] (4)

Which is solvable so long as \(S_{within} \) is non-singular, which need not be the case, especially when analyzing multi-collinear data. When the case arises that the dimensions of the observed patterns are multi-collinear additional considerations need to be made. Nørgaard et al. \[38\] outlines a methodology for handling these cases in CVA; the equation \(S_{between}w = \lambda wS_{within} \) is reformulated (in the two class case) as: \((\bar{x}_1 - \bar{x}_2)(\bar{x}_1 - \bar{x}_2)'w = \lambda wS_{within}\), it is then shown that \((\bar{x}_1 - \bar{x}_2)'w\) is a scalar value, and so the equation is rewritten in linear form as \(y = Rw + f\) where \(R = S_{within}w\) and \(b = w\). Likewise for the multi-group case \((g > 2)\) this methodology can be expanded, by having \(y\) contain as columns the differences between each group mean and the overall mean. Partial least squares analysis, PLS2 \[65\], is used to solve the above linear equation, resulting in an estimate of \(w\), and given that, an estimate of the canonical variates (the reduced dimension set). ECV A is applied to the set of patterns and labels, a corresponding feature space that is of dimension \(n\) by \(g\) is constructed.

3. Implementation of Methodology

3.1. Datasets

Two datasets are addressed here, the first is the STARLIGHT dataset from the UCR time series database, the second is published data from the LINEAR survey. The UCR time series dataset is used to base line the time-domain dataset feature extraction methodology proposed, it is compared to the results published on the UCR website. The UCR time series data contains only time domain data that has already been folded and put into magnitude phase space, no differential photometric data from either SDSS or 2MASS, nor star identifications for these data, could be recovered, and only three class types are provided which are not defined besides by number. The second dataset, the LINEAR survey, provides an example of a modern large scale astronomical survey, contains time-domain data that has not been folded or otherwise manipulated, is already associated with SDSS and 2MASS photometric values, and has five identified stellar variable types. For each dataset, the state space resolution and the kernel widths for the slotting methods will be optimized using 5-fold cross-validation. The performances of four classifiers on only the time-domain dataset for the UCR data, and on the mixture of time-domain data and differential photometric data for the LINEAR survey, are estimated using 5-fold cross-validation and testing. The performances of the classifiers will be compared. Finally an anomaly detection algorithm will be trained and tested, for the LINEAR dataset.

3.2. Pattern Classification Algorithm

The training set is used for 5-Fold cross-validation, and a set of four classification algorithms are tested \[23\]: k Nearest Neighbor (k-NN), Parzen Window
Classifier (PWC), Radial Basis Function Neural Network (RBF-NN), and Random Forest (RF). Cross-validation is used to determine optimal classification parameters (e.g., kernel width) for each of the classification algorithms. The first three algorithms implemented were designed by the authors in MATLAB, based on Duda et al. [15] (k-NN and PWC) and Hastie et al. [23] (RBF-NN) algorithm outlines. Request for the implemented code should be made to the authors directly.

3.2.1. k-NN

The k nearest neighbor algorithm is a non-parametric classification method; it uses a voting scheme based on an initial training set to determine the estimated label. For a given new observation, the \(L^2\) Euclidean distance is found between the new observation and all points in the training set. The distances are sorted, and the k closest training sample labels are used to determine the new observed sample estimated label (majority rule). Cross-validation is used to find an optimal k value, where k is any integer greater than zero.

3.2.2. PWC

Parzen windows classification is a technique for non-parametric density estimation, which is also used for classification [41, 15]. Using a given kernel function, the technique approximates a given training set distribution via a linear combination of kernels centered on the observed points. As the PWC algorithm (much like a k-NN) does not require a training phase, as the data points are used explicitly to infer a decision space. Rather than choosing the k nearest neighbors of a test point and labeling the test point with the weighted majority of its neighbor’s votes, one can consider all points in the voting scheme and assign their weight by means of the kernel function. With Gaussian kernels, the weight decreases exponentially with the square of the distance, so far away points are practically irrelevant. Cross-validation is necessary however, to determine an optimal value of \(h\), the “width” of the radial basis function (or whatever kernel is being used).

3.2.3. RBF-NN

A radial basis function neural network (RBF-NN) classification scheme is used to generate a classifier. Using RBF-NN, the observed patterns are first transformed into a new high-dimensional space. The RBF-NN relies on the transformation of the data provided (measured) using the kernel (radial basis) function. These kernels are representative of the measured data and are often generated using prior knowledge. The kernel function used is dependent on the prior knowledge available, which for our classifier is means generated based on the input data points. Each observation with dimension D is translated using the individual Kernels. Thus if there are 100 individual observations, the transformation for a given measurement vector will be a resulting vector of 100. Alternatively, k-mean clustering could be used to reduce the individual datasets to a representative kernel set allowing for the resolution of the kernel transformation, but reducing the number of computations necessary. Each dimension
then is no longer a measurement, but a distance between the measurements to the training data. After the transformation of the data from the observed set to the RBF the data is passed to the LRC algorithm. The logistic regression model arises from the desire to model the posterior probability of the K classes via linear functions in x, while at the same time ensuring that they sum to one and remain in the range [0, 1].

3.2.4 Random Forest Classifier

To generate the random forest classifier, the TreeBagger algorithm in MATLAB is implemented. The algorithm generates n decision trees on the provided training sample. The n decision trees operate on any new observed pattern, and the decision made by each tree are conglomerated together (majority rule) to generate a combined estimated label. To generate Breiman’s ‘random forest’ algorithm [7], the value NVarToSample is provided a value (other than ‘all’) and a random set of variables is used to generate the decision trees; see the MATLAB TreeBagger documentation for more information.

3.3 Comparison to Standard Set (UCR)

The UCR time domain datasets are used to basis classification methodologies [28]. The UCR time domain datasets [46], are derived from a set of Cepheid, RRLyrae, and Eclipsing Binary Stars. The time-domain datasets have been phased (folded) via the primary period and smoothed using the SUPER-SMOOTHER algorithm [50] by the Protopapas study prior to being provided to the UCR database. The waveforms received from UCR are amplitude as a function of phase; the SUPERSMOOTHER algorithm was also used [46] to produce regular samples (in the amplitude vs. phase space). The sub-groups of each of the three classes are combined together in the UCR data (i.e., RRab + RRc = RR), similarly the data is taken from two different studies (OGLE and MACHO). A plot of the phased light curves is given in Figure 2.

Figure 2: UCR Phased Light Curves. Classes are given by number only: 1 = Blue Line, 2 = Green Small Dashed Line, 3 = Red Big Dashed Line

![Figure 2: UCR Phased Light Curves](image-url)
3.3 Comparison to Standard Set (UCR)

Class analysis is a secondary effort when applying the methodology outlined to the UCR dataset, the primary concern is a demonstration of performance of the supervised classification methodology with respect to the baseline performance reported by UCR implementing a simple waveform nearest neighbor algorithm.

3.3.1. Analysis

The folded waveforms are treated identical to the unfolded waveforms in terms of the processing presented. Values of phase were generated to accommodate the slotting technique, thereby allowing the functionally developed to be used for both amplitude vs. time (LINEAR) as well as amplitude vs. phase (UCR). The slotting, State Space Representation, Markov Matrix and ECVA flow is implemented exactly the same. As there are only three classes in the dataset, the ECVA algorithm results in a dimensionality of only two \((g - 1)\). There is no accompanying differential photometric data with the time-domain data, so only the time-domain data will be focused on for this analysis. The resulting ECVA plot is presented in Figure 3.

Figure 3: ECVA reduced feature space using the UCR Star Light Curve Data

Each classifier is then trained only on the ECVA reduced time-domain feature space. The resulting optimization analysis, based on the 5-fold cross-validation is presented in Figures 4a, 4b, 4c and 4d.
3.3 Comparison to Standard Set (UCR)

Figure 4: Classifier Optimization for UCR Data

(a) Nearest Neighbor Classifiers
(b) Parzen Window Classifier
(c) RBF-NN Classifier
(d) Random Forest

Depending on the methodology used, cross-validation estimates a minimum misclassification error of < 10%. The UCR website reports the following error estimates for this dataset, note that all methods reported use direct distance to generate a feature space (direct comparison of curves): 1-NN Euclidean Distance (15.1%), 1-NN Best Warping Window DTW (9.5%) and 1-NN DTW, no warping window (9.3%). For a more detailed comparison, the confusion matrix for each of the optimized classifiers is presented in Tables 1a, 1b, 1c and 1d.
Table 1: Confusion Matrix for Classifiers Based on UCR Starlight Data

(a) 1-NN

True\Est	1	2	3
1	0.86	0.003	0.13
2	0.0	0.99	0.008
3	0.031	0.002	0.97

(b) PWC

True\Est	1	2	3
1	0.82	0.003	0.18
2	0.0	0.97	0.035
3	0.16	0.004	0.84

(c) RBF-NN

True\Est	1	2	3
1	0.91	0.003	0.082
2	0.065	0.94	0.0
3	0.049	0.0007	0.95

(d) RF

True\Est	1	2	3
1	0.91	0.003	0.082
2	0.0	0.99	0.005
3	0.004	0.0007	0.99

3.3.2. Discussion

The SSMM methodology presented does no worse than the 1-NN presented by Keogh et al. [28] and appears to provide some increase in performance. The procedure described operates on folded data as well as unfolded data and does not need time-warping for alignment of the waveform, demonstrating the flexibility of the method. The procedure not only separated out the classes outlined, but in addition found additional clusters of similarity in the dataset. If these clusters correspond to the sub-groupings reported by the original generating source (RRab and RRe, etc.) is not known, as object identification is not provided by the UCR dataset.

3.4. Application to New Set (LINEAR)

For the analysis of the proposed algorithm design, the LINEAR dataset is parsed into training, cross-validation and test sets on time series data from the LINEAR survey that has been verified, and for which accurate photometric values are available [54, 59]. From the starting sample of 7194 LINEAR variables, a clean sample of 6146 time series datasets and their associated photometric values were used for classification. Stellar class type is limited further to the top five most populous classes: RR lyr(ab), RR lyr(c), Delta Scuti / SX Phe, Contact Binaries and Algol-Like Stars with 2 Minima; resulting in a set of 6086 observations, the distribution of stellar classes is presented in Table 2.
3.4 Application to New Set (LINEAR)

Type	Count	Percent
Algol	287	4.7%
Contact Binary	1805	29.7%
Delta Scuti	68	1.1%
No Variability	1000	16.4%
RRab	2189	36.0%
RRc	737	12.1%

3.4.1 Non-Variable Artificial Data

In support of the supervised classification algorithm, artificial datasets have been generated and introduced into the training/testing set. These artificial datasets are representation of stars without variability. This introduction of artificial data is done for the same reasons the training of the anomaly detection algorithm is performed:

- The LINEAR dataset implemented only represents five of the top (most populous) variable star types, while at least 23 stellar variable types are known [51], thus the class space defined by the classes is incomplete.
- Even if the class space was complete, studies such as Debosscher [11], Dubath et al. [14] have all shown that many stellar variable populations are under-sampled.
- Similarly, many of the studies focus on stellar variables only, and do not include non-variable stars. While filters are often applied to separate variable and non-variable stars (Chi-Squared specifically), these are not necessarily perfect methods for removing non-variable populations, and could result in an increase in false alarms.

This artificial time series is generated with a Gaussian Random amplitude distribution. In addition to the time-domain information randomly generated, differential photometric information is also generated. The differential photometric measurements used to classify the stars are used to generate empirical distributions (histograms) of each of the feature vectors. These histograms are turned into cumulative distribution functions (CDFs). The artificially generated differential photometric patterns are generated via sampling from these generated empirical distribution functions. Sampling is performed via the Inverse Transform method [29]. These artificial datasets are treated identical in processing to the other observed waveforms.

3.4.2 Time Domain and Differential Photometric Feature Space

In addition to the time domain data, differential photometric data is obtainable for the LINEAR dataset, resulting from the efforts of large photometric surveys such as SDSS and 2MASS. These additional features are merged with the reduced time domain feature space, resulting in an overall feature space.
For this study, the optical SDSS filters ($ugriz$) and the IR filters (JK) are used to generate the differential features: $u - g$, $g - i$, $i - K$ and $J - K$. The color magnitudes are corrected for the ISM extinction using $E(B - V)$ from the SFD maps and the extinction curve shape from Berry et al. [3]. In addition to these differential color domain features, bulk time domain statistics are also generated: $logP$ is the log of the primary period derived from the Fourier domain space, $magMed$ is the median LINEAR magnitude, $ampl$, $skew$ and $kurt$ are the amplitude, skewness and kurtosis for the observed light curve distribution. These additional features will be included for the analysis of the LINEAR dataset. See electronic supplement (Combined LINEAR Features, Extra-Figure-CombinedLINEARFeatures.fig) for a plot matrix of the combined feature space.

3.4.3. Analysis

It is assumed that the parameters that minimize the mis-classification rate using QDA, will likewise minimize the mis-classification rate using any of the other classification algorithms. The error resulting from mis-classification is minimized resulting from the cross-validation, optimizing both the kernel width associated with the slotting method as well as the state space resolution of the symbolic alphabet. Using the optimal parameters, a three dimensional plot (the first three ECVA parameters) is constructed; see the electronic supplement for the associated movie (ECVA Feature LINEAR Movie, ExtendedCanonicalVariates.mp4). Figure 5 is a plot of the first two extended canonical variates:

Figure 5: First two Extended Canonical Variates for the Time-Domain Feature Space

Based on the merged feature space, the optimal parameters for the kNN, PWC, RBF-NN and Random Forest Classifier are generated. The error analysis figures for each are presented in Figures 6a, 6b, 6c and 6d respectively.
Testing was performed on a pre-partitioned set, separate from the training and cross-validation populations. The transformation applied to the training and cross-validation data were also applied to the testing data (including centering and rotating). After optimal parameters have been found for both the resolution of the Markov Model and the classification algorithms, the testing set is used to estimate the confusion matrix. A confusion matrix is generated “True labels” are shown on the left column and “Estimated label” are shown on the top row (Tables 3a, 3b, 3c and 3d).
Table 3: Confusion Matrix for Classifiers Based on UCR Starlight Data

(a) 1-NN

True\Est	Algol	Contact Binary	Delta Scuti	No Variation	RRab	RRc
Algol	0.76	0.20	0.0	0.0	0.0	0.04
Contact Binary	0.03	0.95	0.005	0.005	0.01	0.0
Delta Scuti	0.0	0.0	0.88	0.12	0.0	0.0
No Variation	0.0	0.0	0.01	0.99	0.0	0.0
RRab	0.0	0.005	0.0	0.0	0.95	0.045
RRc	0.0	0.03	0.0	0.0	0.14	0.83

(b) PWC

True\Est	Algol	Contact Binary	Delta Scuti	No Variation	RRab	RRc
Algol	0.97	0.01	0.0	0.0	0.02	0.0
Contact Binary	0.0	0.99	0.0	0.0	0.0	0.01
Delta Scuti	0.0	0.0	0.94	0.06	0.0	0.0
No Variation	0.0	0.0	0.0	1.0	0.0	0.0
RRab	0.0	0.01	0.0	0.0	0.99	0.0
RRc	0.0	0.01	0.0	0.0	0.0	0.99

(c) RBF-NN

True\Est	Algol	Contact Binary	Delta Scuti	No Variation	RRab	RRc
Algol	0.95	0.05	0.0	0.0	0.0	0.0
Contact Binary	0.0	1.0	0.0	0.0	0.0	0.0
Delta Scuti	0.0	0.0	0.94	0.06	0.0	0.0
No Variation	0.0	0.0	0.0	1.0	0.0	0.0
RRab	0.0	0.0	0.0	0.0	1.0	0.0
RRc	0.0	0.01	0.0	0.0	0.0	0.99

(d) RF

True\Est	Algol	Contact Binary	Delta Scuti	No Variation	RRab	RRc
Algol	0.93	0.07	0.0	0.0	0.0	0.04
Contact Binary	0.0	0.99	0.0	0.0	0.0	0.0
Delta Scuti	0.0	0.0	0.94	0.0	0.0	0.06
No Variation	0.0	0.02	0.0	0.98	0.0	0.0
RRab	0.0	0.0	0.0	0.0	1.0	0.05
RRc	0.0	0.0	0.0	0.0	0.0	1.0

3.4.4. Anomaly Detection

In addition to the pattern classification algorithm outlined, the procedure outlined includes the construction of an anomaly detector. The pattern classification algorithm presented as part of this analysis, partition the entire decision space based on the known class type provided in the LINEAR dataset. The
random forest, kNN, MLP and SVM two-class classifier algorithms, there is no consideration for deviations of patterns beyond the training set observed, i.e. absolute distance from population centers. All of the algorithms investigated consider relative distances, i.e. is the new pattern \(\text{P} \) closer to the class center of \(\text{B} \) or \(\text{A} \)? Thus, despite that an anomalous pattern is observed by a new survey, the classifier will attempt to estimate a label for the observed star based on the labels it knows. To address this concern, a one-class anomaly detection algorithm is implemented.

Anomaly Detection and Novelty Detection methods are descriptions of similar processes with the same intent, i.e., the detection of new observations outside of the class space established by training. These methods have been proposed for stellar variable implementations prior to this analysis [46]. Tax [60] and Tax and Muller [61] outline the implementation of a number of classifiers for One-Class (OC) classification, i.e., novel or anomaly detection. Here, the PWC algorithm (described earlier) is transformed into an OC anomaly detection algorithm. The result is the “lassoing” or dynamic encompassing of known data patterns. The lasso boundary represents the division between known (previously observed) regions of feature space and unknown (not-previously observed) regions. New patterns observed with feature vectors occurring in this unknown region are considered anomalies or patterns without support, and the estimated labels returned from the supervised classification algorithms should be questioned, despite the associated posterior probability of the label estimate. This paper implements the DD Toolbox designed by Tax and implements the PR toolbox [16]. The resulting error curve generated from the cross-validation of the PWC-OC algorithm resembles a threshold model (probit), the point which minimizes the error and minimizes the kernel width is found (Figure 7).

Figure 7: OC-PWC Kernel Width Optimization for LINEAR Data

This point (minimization of error and kernel width) is the optimal kernel
width (2.5). Estimated mis-classification rate of the detector is determined via evaluation of the testing set and found to be 0.067%.

3.4.5. Discussion

Given only time series data (no differential photometric data), for the classes and the LINEAR observations made (resolution of amplitude and frequency rate of observations) a $\sim 6\%$ mis-classification rate with a very basic (QDA) classifier is found. Further performance improvement is expected if other, more general, classifiers were used. Kernel width of the slots used to account for irregular sampling and state space resolution are major factors in performance. There exists for our data, a point of optimal performance with respect to the kernel width and state space resolution, that best separates the classes observed. With the addition of differential photometric data, the mis-classification rate is reduced by another $\sim 2\%$, and results in a nearly separable class space, depending on the methodology used to determine the estimated class. An anomaly detection algorithm is trained and tested on the time series data and differential photometric data. An expected mis-classification rate of $\sim 0.07\%$ is found.

4. Conclusions

The Slotted Symbolic Markov Modeling (SSMM) methodology developed has been able to generate a feature space which separates variable stars by class (supervised classification). This methodology has the benefit of being able to accommodate irregular sampling rates, dropouts and some degree of time-domain variance. It also provides a fairly simple methodology for feature space generation, necessary for classification. One of the major advantages of the methodology used is that a signature pattern (the transition state model) is generated and updated with new observations. The transition frequency matrix for each star is accumulated, given new observations, and the probability transition matrix is re-estimated. The methodology’s ability to perform is based on the input data sampling rate, photometric error and most importantly the uniqueness of the time-domain patterns expressed by variable stars of interest.

The analysis presented has demonstrated the SSMM methodology performance is comparable to the UCR baseline performance analysis, if not slightly better. In addition, the translation of the feature space has demonstrated that the original suggestion of three classes might not be correct; a number of additional clusters are revealed as are some potential mis-classifications in the training set. The performance of four separate classifiers trained on the UCR dataset is examined. It has been shown that the methodology presented is comparable to direct distance methods (UCR base line). It is also shown that the methodology presented is more flexible. The LINEAR dataset provides more opportunity to demonstrate the proposed methodology. The larger class space, unevenly sampled data with dropouts and differential photometric data all provide additional challenges to be addressed. After optimization, the mis-classification rate is roughly $\sim 4\%$, depending on the classifier implemented. An
anomaly detection algorithm is trained and tested on the time series data and differential photometric data as well, with an expected mis-classification rate of $\sim 0.07\%$. The effort represents the construction of a supervised classification algorithm.

4.1 Future Research

Further research is outlined in three main focus topics: dataset improvement, methodology improvement, simulation/performance analysis. The limited dataset and class space used for this study is known. Future efforts will include a more complete class space, as well as more data to support under-represented class types. Specifically datasets such as the Catalina Real Time Transient Survey [13], will provide greater depth and completeness as a prelude to the data sets that will be available from the Panoramic Survey Telescope & Rapid Response System and the Large Synoptic Survey Telescope (LSST).

In addition to improving the underlying training data used, the methodology outline will also be researched to determine if more optimal methods are available. Exploring the effects of variable size state space for the translation could potentially yield performance improvements, as could a comparison of slotting methods (e.g. box slots vs. Gaussian slots vs. other kernels or weighting schemes). Likewise, implementations beyond supervised classification (e.g., unsupervised classification) were not explored as part of this analysis. How the feature space outlined in this analysis would lend itself to clustering or expectation-maximization algorithms is yet to be determined.

In a future paper, how sampling rates and photometric errors affect the ability to represent the underlying time-domain functionality using synthetic time-domain signals will be explored. Simulation of the expected time domain signals will allow for an estimation of performance of other spectral methods (DWT/DFT for irregular sampling), which will intern allow for and understanding of the benefits and drawbacks of each methodology, relative to both class type and observational conditions. This type of analysis would require the modeling and development of synthetic stellar variable functions to produce reasonable (and varied) time domain signature.

4.2 Acknowledgments

The authors are grateful for valuable discussion with Stephen Wiechecki-Vergara and Hakeem Oluseyi. Research was partially supported by Vencore, Inc. The LINEAR program is sponsored by the National Aeronautics and Space Administration (NRA Nos. NNH09ZDA001N, 09-NEOO09-0010) and the United States Air Force under Air Force Contract FA8721-05-C-0002

5. References

References

[1] R Angeloni, R Contreras Ramos, M Catelan, I Dékány, F Gran, J Alonso-García, M Hempel, C Navarrete, H Andrews, A Aparicio, et al. The vvv
templates project towards an automated classification of vvv light-curves-i. building a database of stellar variability in the near-infrared. *Astronomy & Astrophysics*, 567:A100, 2014.

[2] Thomas Barclay, Gavin Ramsay, Pasi Hakala, Ralf Napiwotzki, Gijs Nelemans, Stephen Potter, and Ian Todd. Stellar variability on time-scales of minutes: results from the first 5 yr of the rapid temporal survey. *Monthly Notices of the Royal Astronomical Society*, 413(4):2696–2708, 2011.

[3] Michael Berry, Željko Ivezić, Branimir Sesar, Mario Juric, Edward F Schlafly, Jillian Bellovary, Douglas Finkbeiner, Dijana Vrbanec, Timothy C Beers, Keira J Brooks, et al. The milky way tomography with sloan digital sky survey. iv. dissecting dust. *The Astrophysical Journal*, 757(2):166, 2012.

[4] Jonas Blomme, LM Sarro, FT O'Donovan, Jonas Debosscher, T Brown, M Lopez, P Dubath, L Rimoldini, D Charbonneau, E Dunham, G. Mandushev, D.R. Ciardi, J. De Ridder, and Aerts C. Improved methodology for the automated classification of periodic variable stars. *Monthly Notices of the Royal Astronomical Society*, 418(1):96–106, 2011.

[5] Vicente J Bolós and Rafael Benítez. The wavelet scalogram in the study of time series. In *Advances in Differential Equations and Applications*, pages 147–154. Springer, 2014.

[6] Robert Bos, Stijn de Waele, and Piet MT Broersen. Autoregressive spectral estimation by application of the burg algorithm to irregularly sampled data. *Instrumentation and Measurement, IEEE Transactions on*, 51(6):1289–1294, 2002.

[7] Leo Breiman, Jerome Friedman, Charles J Stone, and Richard A Olshen. *Classification and regression trees*. CRC press, 1984.

[8] P. M. Broersen. Practical aspects of the spectral analysis of irregularly sampled data with time-series models. *IEEE Transactions on Instrumentation and Measurement*, 58(5):1380–1388, 2009.

[9] Samuel Carliles, Tamás Budavári, Sébastien Heinis, Carey Priebe, and Alexander S Szalay. Random forests for photometric redshifts. *The Astrophysical Journal*, 712(1):511, 2010.

[10] S. Deb and H. P. Singh. Light curve analysis of variable stars using fourier decomposition and principal component analysis. *Astronomy and Astrophysics*, 507(3):1729–1737, 2009.

[11] Jonas Debosscher. Automated classification of variable stars: Application to the ogle and corot databases. *status: published*, 2009.
REFERENCES

[12] S George Djorgovski, AA Mahabal, Ciro Donalek, Matthew J Graham, Andrew J Drake, Baback Moghaddam, and Mike Turmon. Flashes in a star stream: Automated classification of astronomical transient events. In E-Science (e-Science), 2012 IEEE 8th International Conference on, pages 1–8. IEEE, 2012.

[13] AJ Drake, SG Djorgovski, A Mahabal, E Beshore, S Larson, MJ Graham, R Williams, E Christensen, M Catelan, A Boattini, et al. First results from the catalina real-time transient survey. The Astrophysical Journal, 696(1):870, 2009.

[14] P Dubath, L Rimoldini, M Súveges, Jonas Blomme, M López, LM Sarro, Joris De Ridder, J Cuypers, L Guy, I Lecoeur, et al. Random forest automated supervised classification of hipparcos periodic variable stars. Monthly Notices of the Royal Astronomical Society, 414(3):2602–2617, 2011.

[15] Richard O Duda, Peter E Hart, and David G Stork. Pattern classification. John Wiley & Sons, 2012.

[16] R.P.W. Duin, P. Juszczak, P. Paclik, E. Pekalska, D. de Ridder, D.M.J. Tax, and Verzakov S. Prtools4.1, a matlab toolbox for pattern recognition., Delft University of Technology, 2007.

[17] L Eyer and C Blake. Automated classification of variable stars for all-sky automated survey 1–2 data. Monthly Notices of the Royal Astronomical Society, 358(1):30–38, 2005.

[18] Tak-chung Fu. A review on time series data mining. Engineering Applications of Artificial Intelligence, 24(1):164–181, 2011.

[19] Ben D Fulcher, Max A Little, and Nick S Jones. Highly comparative time-series analysis: the empirical structure of time series and their methods. Journal of The Royal Society Interface, 10(83):20130048, 2013.

[20] Xianping Ge and Padhraic Smyth. Deformable markov model templates for time-series pattern matching. In Proceedings of the sixth ACM SIGKDD international conference on Knowledge discovery and data mining, pages 81–90. ACM, 2000.

[21] Josif Grabocka, Alexandros Nanopoulos, and Lars Schmidt-Thieme. Invariant time-series classification. In Machine Learning and Knowledge Discovery in Databases, pages 725–740. Springer, 2012.

[22] Matthew J Graham, SG Djorgovski, Ashish A Mahabal, Ciro Donalek, and Andrew J Drake. Machine-assisted discovery of relationships in astronomy. Monthly Notices of the Royal Astronomical Society, 431(3):2371–2384, 2013.

[23] Trevor Hastie, Robert Tibshirani, and Jerome Friedman. The elements of statistical learning, volume 2. Springer, 2009.
[24] Pablo Huijse, Pablo A Estévez, Pablo Zegers, José Carlos Príncipe, and Pavlos Protopapas. Period estimation in astronomical time series using slotted correntropy. *Signal Processing Letters, IEEE*, 18(6):371–374, 2011.

[25] Pablo Huijse, Pablo A Estevez, Pavlos Protopapas, Pablo Zegers, and Jose C Principe. An information theoretic algorithm for finding periodicities in stellar light curves. *Signal Processing, IEEE Transactions on*, 60(10):5135–5145, 2012.

[26] Richard Arnold Johnson, Dean W Wichern, et al. *Applied multivariate statistical analysis*, volume 4. Prentice hall Englewood Cliffs, NJ, 1992.

[27] Eamonn Keogh, Kaushik Chakrabarti, Michael Pazzani, and Sharad Mehrotra. Dimensionality reduction for fast similarity search in large time series databases. *Knowledge and information Systems*, 3(3):263–286, 2001.

[28] Eamonn Keogh, Xiaopeng Xi, Li Wei, and Chotirat Ann Ratanamahatana. The ucr time series classification/clustering homepage. [URL](http://www.cs.ucr.edu/~eamonn/time_series_data), 2011.

[29] Averill M Law and W David Kelton. *Simulation modeling and analysis*, volume 2. McGraw-Hill New York, 1991.

[30] Qi Li and Jeffrey Scott Racine. *Nonparametric econometrics: theory and practice*. Princeton University Press, 2007.

[31] Jessica Lin, Eamonn Keogh, Stefano Lonardi, and Bill Chiu. A symbolic representation of time series, with implications for streaming algorithms. In *Proceedings of the 8th ACM SIGMOD workshop on Research issues in data mining and knowledge discovery*, pages 2–11. ACM, 2003.

[32] Jessica Lin, Eamonn Keogh, Li Wei, and Stefano Lonardi. Experiencing sax: a novel symbolic representation of time series. *Data Mining and knowledge discovery*, 15(2):107–144, 2007.

[33] Jessica Lin, Sheri Williamson, Kirk Borne, and David DeBarr. Pattern recognition in time series. *Advances in Machine Learning and Data Mining for Astronomy*, 1:617–645, 2012.

[34] Nicholas R Lomb. Least-squares frequency analysis of unequally spaced data. *Astrophysics and space science*, 39(2):447–462, 1976.

[35] James P Long, Eric C Chi, and Richard G Baraniuk. Estimating a common period for a set of irregularly sampled functions with applications to periodic variable star data. *arXiv preprint arXiv:1412.6520*, 2014.

[36] Frank J Masci, Douglas I Hoffman, Carl J Grillmair, and Roc M Cutri. Automated classification of periodic variable stars detected by the wide-field infrared survey explorer. *The Astronomical Journal*, 148(1):21, 2014.
REFERENCES

[37] Chow-Choong Ngeow, Scott Lucchini, Shashi Kanbur, Brittany Barrett, and Bin Lin. Preliminary analysis of ulpc light curves using fourier decomposition technique. In *Space Science and Communication (IconSpace), 2013 IEEE International Conference on*, pages 7–12. IEEE, 2013.

[38] Lars Nørgaard, Rasmus Bro, Frank Westad, and Søren Balling Engelsen. A modification of canonical variates analysis to handle highly collinear multivariate data. *Journal of Chemometrics*, 20(8-10):425–435, 2006.

[39] Lovro Palaversa, Željko Ivezić, Laurent Eyer, Domagoj Ruždjak, Davor Sudar, Mario Galin, Andrea Kroflin, Martina Mesarić, Petra Munk, Diđana Vrbanc, et al. Exploring the variable sky with linear. iii. classification of periodic light curves. *The Astronomical Journal*, 146(4):101, 2013.

[40] Min Jeong Park and Sin Sup Cho. Functional data classification of variable stars. *CSAM (Communications for Statistical Applications and Methods)*, 20(4):271–281, 2013.

[41] Emanuel Parzen. On estimation of a probability density function and mode. *The annals of mathematical statistics*, pages 1065–1076, 1962.

[42] Karim Pichara and Pavlos Protopapas. Automatic classification of variable stars in catalogs with missing data. *The Astrophysical Journal*, 777(2):83, 2013.

[43] Karim Pichara, Pavlos Protopapas, D-W Kim, J-B Marquette, and Patrick Tisserand. An improved quasar detection method in eros-2 and macho lmc data sets. *Monthly Notices of the Royal Astronomical Society*, 427(2):1284–1297, 2012.

[44] G Pojmanski. The all sky automated survey. catalog of about 3800 variable stars. *Acta Astronomica*, 50:177–190, 2000.

[45] G Pojmanski. The all sky automated survey. catalog of variable stars. i. 0 h-6 hquarter of the southern hemisphere. *Acta Astronomica*, 52:397–427, 2002.

[46] Pavlos Protopapas, JM Giammarco, L Faccioli, MF Struble, Rahul Dave, and Charles Alcock. Finding outlier light curves in catalogues of periodic variable stars. *Monthly Notices of the Royal Astronomical Society*, 369(2):677–696, 2006.

[47] Umaa Rebbapragada, Kitty Lo, Kiri L Wagstaff, Tara Murphy, and David R Thompson. Classification of askap vast radio light curves. *Proceedings of the International Astronomical Union*, 7(S285):397–399, 2011.

[48] Kira Rehfeld and Jürgen Kurths. Similarity estimators for irregular and age-uncertain time series. *Climate of the Past*, 10(1):107–122, 2014.
[49] Kira Rehfeld, Norbert Marwan, Jobst Heitzig, and Jürgen Kurths. Comparison of correlation analysis techniques for irregularly sampled time series. *Nonlinear Processes in Geophysics*, 18(3):389–404, 2011.

[50] James Dennis Reimann. *Frequency Estimation Using Unequally-Spaced Astronomical Data*. PhD thesis, University of California, Berkeley, 1994.

[51] J. W. Richards, D. L. Starr, A. A. Miller, J. S. Bloom, N. R. Butler, H. Brink, and A. Crellin-Quick. Construction of a calibrated probabilistic classification catalog: Application to 50k variable sources in the all-sky automated survey. *The Astrophysical Journal Supplement Series*, 203(2):32, 2012.

[52] R. Rifkin and A. Klautau. In defense of one-vs-all classification. *The Journal of Machine Learning Research*, 5:101–141, 2004.

[53] O. Rioul and M. Vetterli. Wavelets and signal processing. 8(4):14–38, 1991. doi: 10.1109/79.91217.

[54] Sheldon, M. Ross. *Applied probability models with optimization applications*. Courier Corporation, 2013.

[55] J. D. Scargle. Studies in astronomical time series analysis. ii-statistical aspects of spectral analysis of unevenly spaced data. *The Astrophysical Journal*, 263:835–853, 1982.

[56] M. Scholz. *Approaches to analyse and interpret biological profile data*. PhD thesis, University of Potsdam, Germany, 2006.

[57] B. Sesar, J. S. Stuart, Ž. Ivez i, D. P. Morgan, A. C. Becker, and P. Won iak. Exploring the variable sky with linear. i. photometric recalibration with the sloan digital sky survey. *The Astronomical Journal*, 142(6):190, 2011.

[58] K. Szatmary, J. Vinko, and J. Gál. Application of wavelet analysis in variable star research. i. properties of the wavelet map of simulated variable star light curves. *Astronomy and Astrophysics Supplement Series*, 108:377–394, 1994.

[59] R. Tagliaferri, G. Longo, L. Milano, F. Acernese, F. Barone, A. Ciaramella, and A. Volpicelli. Neural networks in astronomy. 16(3):297–319, 2003.

[60] D.M.J. Tax. *One-class Classification*. PhD thesis, Delft University of Technology, 2001.

[61] D.M.J. Tax and K.R. Muller. Feature extraction for one-class classification. In *Proceedings of the ICANN/ICONIP*, pages 342–349, 2003.

[62] M. Templeton. Time-series analysis of variable star data. *AAVSO*, 32:41, 2004.
[63] C. Torrence and G. P. Compo. A practical guide to wavelet analysis. *Bulletin of the American Meteorological Society*, 79(1), 1998.

[64] A. Udalski, I. Soszynski, M. Szymanski, M. Kubiak, G. Pietrzyński, P. Wozniak, and K. Zebrun. The optical gravitational lensing experiment. cepheids in the magellanic clouds. v. catalog of cepheids from the small magellanic cloud. *Acta Astronomica*, 49:437–520, 1999.

[65] H. Wold. A study in analysis of stationary time series. *Journal of the Royal Statistical Society*, 102(2):295–298, 1939.