**Introduction**

Type I interferons (IFNs); IFNαs and IFNB1 and the type II IFN; IFNG, trigger diverse biological responses in target cells, which include antiviral, immunemodulatory, antiangiogenic, antiproliferative and proapoptotic effects. Despite the beneficial effects of IFNB1 in experimental breast cancers, clinical translation has been disappointing, possibly due to induction of survival pathways leading to treatment resistance. Defects in autophagy, a conserved cellular degradation pathway, are implicated in numerous cancer diseases. Autophagy is induced in response to cancer therapies and can contribute to treatment resistance. While the type II IFN, IFNG, which in many aspects differs significantly from type I IFNs, can induce autophagy, no such function for any type I IFN has been reported. We show here that IFNB1 induces autophagy in MCF-7, MDAMB231 and SKBR3 breast cancer cells by measuring the turnover of two autophagic markers, MAP1LC3B and SQSTM1/p62. The induction of autophagy in MCF-7 cells occurred upstream of the negative regulator of autophagy MTORC1, and autophagosome formation was dependent on the known core autophagy molecule ATG7 and the IFNB1 signaling molecule STAT1. Using siRNA-mediated silencing of several core autophagy molecules and STAT1, we provide evidence that IFNB1 mediates its antiproliferative effects independent of autophagy, while the proapoptotic function of IFNB1 was strongly enhanced in the absence of autophagy. This suggests that autophagy induced by IFNB1 promoted survival, which might contribute to tumor resistance against IFNB1 treatment. It may therefore be clinically relevant to reconcile a role for IFNB1 in the treatment of breast cancer with concomitant inhibition of autophagy.

**IFNB1/interferon-β-induced autophagy in MCF-7 breast cancer cells counteracts its proapoptotic function**

Malene Ambjørn, Patrick Ejlerskov, Yawei Liu, Michael Lees, Marja Jäättelä and Shohreh Issazadeh-Navikas

1 Biotech Research and Innovation Centre (BRiC); University of Copenhagen; Copenhagen, Denmark; 2 Unit for Cell Death and Metabolism and Centre for Genotoxic Stress Research; Danish Cancer Society Research Center; Copenhagen, Denmark

**Keywords:** ATG5, ATG7, ULK1, STAT1, apoptosis, cell cycle, EIF4EBP1

**Abbreviations:** IFN, interferon; MAP1LC3B, microtubule-associated protein 1 light chain 3 beta; ATG, Autophagy-related; ULK1, unc-51-like kinase 1 (C. elegans); STAT, signal transducer and activator of transcription; eGFP, enhanced green fluorescence protein; ER, estrogen receptor; MTORC1, mechanistic target of rapamycin complex 1; EIF4EBP1, eukaryotic translation initiation factor 4E binding protein 1; RPS6, ribosomal protein S6; RPS6KB1, ribosomal protein S6 kinase, 70 kDa, polypeptide 1; TUNEL, terminal-deoxynucleotidyl transferase-dUTP nick end labeling; BAX, BCL2-associated X protein; PARP1, poly (ADP-ribose) polymerase 1; ISGs, interferon stimulated genes; IRF1, interferon regulatory factor 1
more potent than IFNAs and IFNG. Furthermore, IFNG may in some cases even enhance cancer progression.

Although IFNs have been used with success to treat some hematological malignancies and solid cancers, they have displayed poor and transient effects in breast cancer patients. This is despite IFNB1’s cytotoxic effects on breast cancer cells in vitro and its ability to reduce both breast cancer growth and tumor-related angiogenesis in vivo. The unsatisfactory clinical translation of type I IFN effects in some cancerous diseases could reflect activation of survival pathways leading to tumor resistance to IFN treatment.

Macroautophagy (hereafter referred to as autophagy) is an evolutionarily conserved cellular survival mechanism, in which cytoplasmic constituents such as long-lived proteins, protein aggregates and entire organelles are targeted to lysosomes for degradation by means of double-membrane vesicles, called autophagosomes. Autophagy occurs at a low basal level under normal conditions to maintain cellular homeostasis, but is highly induced by many stimuli including starvation and metabolic stress. Dysfunction in the autophagic pathway is implicated in a growing number of diseases, including cancer. However, the role of autophagy in relation to cancer and tumorigenesis is complex and highly context dependent.

Substantial evidence supports a role for autophagy in prevention of tumorigenesis by maintaining genomic integrity and decreasing DNA damage, restricting tissue necrosis and inflammation, and degrading specific proteins or organelles that otherwise would lead to aberrant signaling pathways and increased oxidative stress. It is also possible that autophagy-mediated cell death in some specific settings can contribute to tumor suppression. In contrast, transformed cells often have elevated levels of autophagy, which promotes their metabolisms and is necessary for their continued proliferation and survival both in vitro and in vivo. In the hostile tumor microenvironment lacking nutrients and oxygen, cancer cells can also activate autophagy as an essential survival pathway to cope with periods of starvation and hypoxia. Genotoxic and metabolic stresses conferred by commonly used anticancer therapies may further enhance the autophagic activity of cancer cells, and it is believed that this response contributes to treatment resistance as inhibition of autophagy can potentiate the therapeutic efficiency of anticancer drugs. Thus, while autophagy can act as an initial barrier to tumorigenesis, it can also support progression and subsequent maintenance of already established cancers.

Several reports have shown that IFNG induces autophagy in various cell types with different biological outcomes. Interestingly, in hepatocellular carcinomas (HCC) IFNG-induced autophagy contributes to cell death rather than treatment resistance. To our knowledge, direct regulation of autophagy by type I IFNs has not been reported previously.

In the present study we report for the first time that IFNB1 can induce autophagy in breast cancer cells using several different methods that measure steady-state autophagy levels or autophagic flow. We further show that IFNB1 has antiproliferative and proapoptotic effects in MCF-7 breast cancer cells. To elucidate the biological relevance of IFNB1-induced autophagy, we silenced several core autophagy molecules by siRNAs and showed that IFNB1-induced autophagy did not modulate its antiproliferative properties, but significantly reduced its proapoptotic capacity. We further showed that STAT1 was important for IFNB1-induced autophagy, thus also decreasing the proapoptotic effect of IFNB1. We moreover investigated molecular events underlying these biological effects of IFNB1.

### Results

**IFNB1 induced autophagy in MCF-7 breast cancer cells.**

In order to study the ability of IFNB1 to induce autophagy in breast cancer cells, we used MCF-7 breast carcinoma cells stably expressing a fusion protein consisting of enhanced green fluorescence protein (eGFP) and MAP1LC3B/LC3. The MCF-7 cells responded to human recombinant IFNB1 treatment with a dose-dependent phosphorylation of tyrosine residue 701 in STAT1, which occurred immediately after activation of the IFN receptor complex (Fig. 1A). MAP1LC3B is a widely used marker in autophagy research, which upon autophagy induction is converted from a cytosolic MAP1LC3B-I form to an autophagosome-bound MAP1LC3B-II form by lipidation with

---

**Figure 1 (See opposite page).** IFNB1 induced autophagy in MCF-7 breast cancer cells by mediatiing MAP1LC3B conversion. (A) MCF-7 cells were IFNB1 responsive. MCF-7 eGFP-MAP1LC3B cells were cultured for 24 h, serum starved 3 h and stimulated with control medium or 100 or 1000 U/ml of IFNB1 for 30 min. Western blot analysis was performed for p-STAT1 and STAT1 protein. (B and C) IFNB1 induced MAP1LC3B-I to MAP1LC3B-II conversion. (B) MCF-7 eGFP-MAP1LC3B cells were cultured for 24 h and then treated with control medium, 1000 U/ml IFNB1 or 1 μM rapamycin for further 24 h. Western blot analysis was performed for MAP1LC3B and ACTB/β-actin proteins. (C) Quantification of band intensities in (B). Data represent mean and SEM of three independent experiments. Statistical analysis was performed using one-way repeated measures ANOVA followed by Dunnett’s post-test. (D-F) IFNB1 induced eGFP-MAP1LC3B translocation. MCF-7 eGFP-MAP1LC3B cells were cultured for 72 h and then treated for an additional 24 h with control medium or 100 U/ml IFNB1 or with 200 nM rapamycin 2 h prior to fixation. Percentage of eGFP-MAP1LC3B-positive cells was quantified automatically as described in Materials and Methods. (D) Representative pictures of control, IFNB1 and rapamycin-treated cells. (E) Quantification of eGFP-MAP1LC3B translocation after IFNB1 treatment. Three different thresholds, >5, >10 or >15 eGFP-MAP1LC3B puncta/cell, were used to define an eGFP-MAP1LC3B puncta-positive cell. Data represent mean and SEM of three independent experiments, each obtained from an average of five replicates. Statistical analysis was performed using Student’s paired t-test. (F) Quantification of eGFP-MAP1LC3B translocation after rapamycin treatment. A threshold of >5 eGFP-MAP1LC3B puncta/cell was used to define an eGFP-MAP1LC3B puncta-positive cell. Data represent mean and SD of three replicates. Statistical analysis was performed using Student’s unpaired t-test.

**IFNB1 induced autophagic flow.** MCF-7 RLuc-MAP1LC3B 97 and RLucMAP1LC3B 9702 cells were cultured for 72 h and then treated with control medium, 100 or 1000 U/ml IFNB1 or 200 mM rapamycin. The autophagic flux was measured at 6, 12 and 24 h after treatment as described in Materials and Methods. Data represent mean and SEM of six replicates and is representative of two independent experiments. Statistical analysis using one-way repeated measures ANOVA followed by Dunnett’s post test against the control sample was performed individually for each time point.

---

**288 Autophagy Volume 9 Issue 3**
Figure 1. For figure legend, see page 288.
Autophagy is a dynamic process where MAP1LC3B is turned over even under basal conditions. Therefore, an increase in MAP1LC3B-II and accumulation of MAP1LC3B-positive puncta do not necessarily reflect an induction of autophagy, but can also result from impaired MAP1LC3B-II degradation. To clarify the cause of IFNB1-induced accumulation of MAP1LC3B-II and MAP1LC3B-positive puncta, we measured autophagic flow by a Renilla luciferase (RLuc) reporter-based assay for MAP1LC3B turnover. This assay compares the rate of the MAP1LC3B degradation in MCF-7 cells expressing RLuc fused to either wild-type MAP1LC3B, which is degraded by autophagy, or to mutated MAP1LC3B (G120A), which cannot be lipidated or recruited to autophagosomal membranes. We treated the MCF-7-RLuc-MAP1LC3B WT and MCF-7-RLuc-MAP1LC3B(G120A) cells in parallel with different concentrations of IFNB1 or rapamycin and measured luciferase activities 6, 12 and 24 h later. As shown in Figure 1G, IFNB1 induced autophagic flow in a dose- and time-dependent manner suggesting that the observed MAP1LC3B-II accumulation seen by western blot (Fig. 1B and C) and in the eGPF-MAP1LC3B translocation assay (Fig. 1D and E) indeed reflected an induction of autophagic flow by IFNB1.

SQSTM1/p62 is another widely used autophagy marker. It binds directly to both MAP1LC3B and ubiquitin, and drives the selective degradation of ubiquitinated cargo through the autophagic pathway. The level of SQSTM1 is believed to reflect autophagosome turnover, since akin to MAP1LC3B, SQSTM1 is itself sequestered by the autophagosome during this process and degraded in the autolysosome, which is formed after fusion of the autophagosome with lysosomes. SQSTM1 levels were significantly decreased after 24 h treatment with IFNB1 or rapamycin. SQSTM1 degradation began after 12 h of IFNB1 treatment and further increased over 24 and 48 h (Fig. 2C) in accordance with the MAP1LC3B flow data (Fig. 1G). The levels of SQSTM1 mRNA remained unchanged after 24 h of IFNB1 treatment, thus ruling out that the observed decrease in SQSTM1 protein levels was caused by transcriptional changes (Fig. 2D). Collectively, the above data indicated that IFNB1 induced autophagic flow in MCF-7 cells.

IFNB1 induced autophagy in MDAMB231 and SKBR3 breast cancer cells. Breast cancer is a heterogenous disease and patients are treated differently depending on the hormone and ERBB2/HER2 receptor status of their cancers, among other features. MCF-7 cells are estrogen receptor (ER)-positive. We tested whether IFNB1 also induces autophagy, measured by MAP1LC3B conversion and SQSTM1 degradation, in two cell lines.
MTORC1 pathway using MCF-7 cells. The activity of MTORC1 can be investigated indirectly by measuring the phosphorylation status of two downstream targets of MTORC1; EIF4EBP1/eukaryotic translation initiation factor 4E binding protein 1 and RPS6KB1/ribosomal protein S6 kinase, 70 kDa, polypeptide 1 or its downstream target RPS6/ribosomal protein S6. As shown in Figure 4A, a decrease in phosphorylated EIF4EBP1 relative to total EIF4EBP1 protein levels was detected following IFNB1 treatment. The decrease was seen after 12 h of treatment and became more prominent after 24 to 48 h of treatment. Moreover, the decrease in phosphorylated EIF4EBP1 relative to total EIF4EBP1 protein levels was IFNB1 dose dependent, measured at 24 h of treatment (Fig. 4B). These data indicated that IFNB1 induced autophagy in various breast cancer cell lines.

IFNB1 affected MTORC1 activity in MCF-7 cells. MTORC1 is a key negative regulator of autophagy. To understand the mechanism behind IFNB1-induced autophagy we therefore investigated how IFNB1 treatment affected the MTORC1 pathway using MCF-7 cells. The activity of MTORC1 can be investigated indirectly by measuring the phosphorylation status of two downstream targets of MTORC1; EIF4EBP1/eukaryotic translation initiation factor 4E binding protein 1 and RPS6KB1/ribosomal protein S6 kinase, 70 kDa, polypeptide 1 or its downstream target RPS6/ribosomal protein S6. As shown in Figure 4A, a decrease in phosphorylated EIF4EBP1 relative to total EIF4EBP1 protein levels was detected following IFNB1 treatment. The decrease was seen after 12 h of treatment and became more prominent after 24 to 48 h of treatment. Moreover, the decrease in phosphorylated EIF4EBP1 relative to total EIF4EBP1 protein levels was IFNB1 dose dependent, measured at 24 h of treatment (Fig. 4B). These data indicated that long-term treatment with IFNB1 decreased MTORC1 activity. However, the changes in phosphorylated EIF4EBP1 were not concomitant with a decrease in phosphorylated RPS6 protein levels, except for a slight decrease observed after 48 h of treatment (Fig. 4A and B), or phosphorylated RPS6KB1 levels (data not shown).
when using a lower IFNB1 concentration and nonsaturated levels of rapamycin they collaborated to degrade SQSTM1 (Fig. 4E). Collectively, these data suggested that IFNB1 mediated its effect on autophagy, at least partly, by inhibiting the MTORC1 pathway.

IFNB1 decreased proliferation and induced apoptosis in MCF-7 cells. To understand the functional relevance of the induction of autophagy by IFNB1, we studied the biological effects of IFNB1 on MCF-7 cells. In accordance with earlier reports, we found that IFNB1 decreased the number of MCF-7 cells in a time- and dose-dependent manner as measured with a crystal

---

**Figure 4.** IFNB1 affected MTORC1 activity. (A and B) IFNB1 specifically decreased p-EIF4EBP1 levels. MCF-7 eGFP-MAP1LC3B cells were cultured for 24 h and then treated with (A) control medium or 1000 U/ml IFNB1 for the indicated time intervals, or (B) with control medium or 100 or 1000 U/ml IFNB1 for 24 h. Western blot analysis was performed for p-EIF4EBP1, EIF4EBP1, p-RPS6, RPS6, ACTB and VCL protein levels. (C) Rapamycin triggered SQSTM1 degradation in a dose-dependent manner. Cells were cultured as in (A) and stimulated with the indicated concentrations of rapamycin for 24 h in order to find a saturating and a nonsaturating concentration of rapamycin. Western blot analysis was performed for SQSTM1 and ACTB protein levels. (D) IFNB1 did not potentiate rapamycin-mediated SQSTM1 degradation. Cells were cultured as in (A) and stimulated with control medium, 1000 U/ml IFNB1 and/or 1 μM rapamycin for 24 h. Western blot analysis was performed for SQSTM1 and ACTB protein levels. Shown is a representative western blot for SQSTM1 and ACTB protein levels of two independent experiments. Band intensities were quantified and the average relative intensities shown below. (E) IFNB1 and rapamycin acted together to degrade SQSTM1 at subsaturated concentrations. Cells were cultured as in (A) and stimulated with 100 U/ml IFNB1 and/or 0.1 nM rapamycin for 24 h. Western blot analysis was performed for SQSTM1 and ACTB protein levels. Band intensities were quantified and the relative quantifications are indicated.

---

not shown). This suggested that IFNB1 specifically inhibits the EIF4EBP1 branch of MTORC1 signaling at the concentrations and time points investigated.

To get further evidence that IFNB1 induced autophagy by regulating the MTORC1 pathway we evaluated the effect of combined IFNB1 and rapamycin treatment on SQSTM1 degradation. When using a saturating concentration of rapamycin with regard to SQSTM1 degradation (Fig. 4C), we could not detect any further increase in SQSTM1 degradation after cotreatment with IFNB1 relative to rapamycin treatment alone (Fig. 4D), suggesting that IFNB1 acts upstream of MTORC1. Nevertheless
violet assay (Fig. 5A). We therefore addressed whether this was caused by an effect on proliferation or cell death. As measured by total BrdU incorporation, DNA synthesis was significantly reduced after 48 h of IFNB1 treatment compared with control cells (Fig. 5B). This was supported by an accumulation of cells in the G1 phase of the cell cycle after IFNB1 treatment (Fig. 5C). Moreover, IFNB1 treatment significantly increased the percentage of TUNEL-positive cells (Fig. 6A), indicating that it can induce DNA fragmentation in MCF-7 cells—a phenomenon often associated with apoptotic cell death. Apoptosis can be initiated by intrinsic or extrinsic cell cues, each associated with different molecular pathways. The intrinsic pathway is regulated at the mitochondrial level, where the balanced function of pro- and antiapoptotic members of the BCL2 family regulates mitochondrial membrane integrity. Loss of mitochondrial integrity leads to release of proapoptotic factors into the cytoplasm and activation of downstream caspase cascades contributing to apoptotic cell death. The extrinsic pathway on the other hand is activated by death receptors at the cell surface leading to the activation of CASP8/caspase-8, that in turn activates downstream caspase cascades or crosstalk with the intrinsic pathway. Supporting apoptosis induction by IFNB1 in MCF-7 cells, 48 h of IFNB1 treatment caused cleavage of CASP8 (Fig. 6B) and strong induction of a potent proapoptotic cleavage product of BAX, p18 BAX (Fig. 6C). Furthermore, IFNB1 treatment triggered a time- and dose-dependent cleavage of PARP1/poly (ADP-ribose) polymerase 1 at a site corresponding to CASP3/caspase-3- and/or CASP7/caspase-7-dependent cleavage (giving rise to a 89-kDa C-terminal fragment) (Fig. 6D). We further treated cells with the pan-caspase inhibitor z-VAD-fmk during IFNB1 treatment, which completely prevented the induction of TUNEL-positive cells by IFNB1 treatment (Fig. 6D), verifying that IFNB1 mediated cell death via apoptosis. This was supported by phase-contrast microscopy showing an increase in rounded and detached cells after IFNB1 treatment, which was absent in the presence of z-VAD-fmk treatment (Fig. 6E). Interestingly, the antiproliferative effect of IFNB1 was sustained in the presence of z-VAD-fmk (Fig. 6E), showing that the antiproliferative and proapoptotic functions of IFNB1 are controlled by separate molecular events. In combination, these results show that IFNB1 inhibits proliferation and induces apoptosis in MCF-7 cells.

**IFNB1 induced canonical autophagy in MCF-7 breast cancer cells and MEFs.** We investigated if IFNB1-mediated autophagosome formation was dependent on ATG7, which is considered one of the core autophagy molecules indispensable for canonical autophagy. To evaluate the impact of ATG7 silencing on IFNB1-mediated autophagosome formation, we compared IFNB1- and rapamycin-induced autophagy in the face of ATG7 or nonsilencing scrambled control (SCR) siRNA transfection, by means of MAP1LC3B conversion. As shown in Figure 7A, a robust downregulation of ATG7 protein levels was obtained 48 h after ATG7 siRNA transfection relative to transfection with the SCR control. Steady-state MAP1LC3B-II levels were strongly inhibited after ATG7 depletion, as was the increase in MAP1LC3B-II after both IFNB1 and rapamycin treatment as compared with SCR transfected cells (Fig. 7B). This indicated that IFNB1 is, at least to some extent, dependent on ATG7 for autophagosome formation, although still some MAP1LC3B-II conversion remained. However, this could reflect residual ATG7 after siRNA-mediated silencing. To verify the capacity of IFNB1 to mediate autophagy in a non-breast cancer cell type and to have a system where no residual ATG7 was present, we utilized wild-type mouse embryonic fibroblast (MEFs) (Arg740) and the

![Figure 5: IFNB1 inhibited cell proliferation. (A) IFNB1 decreased cell numbers. MCF-7 eGFP-MAP1LC3B cells were cultured for 24 h and then treated for 24 or 48 h with control medium or IFNB1 as indicated before a crystal violet assay was performed. Data represent mean and SEM of four replicates and is representative of two independent experiments. Statistical analysis was performed for each time point using one-way repeated measures ANOVA followed by Dunnett's post test against the control sample, ***p < 0.001. (B) IFNB1 inhibited proliferation. MCF-7 eGFP-MAP1LC3B cells were cultured for 24 h and then treated for further 48 h with control medium or 1000 U/ml IFNB1. Cell proliferation was measured by means of BrdU incorporation. Data represent mean and SEM in arbitrary units (A.U.) of three independent experiments each obtained from an average of four replicates. Statistical analysis was performed using Student's paired t-test, **p < 0.01. (C) IFNB1 induced G1-phase accumulation. MCF-7 eGFP-MAP1LC3B cells were cultured and treated as in (B). Then cells were stained with PI and cell cycle analysis was performed by FACS. Red line is control treatment, blue line is IFNB1 treatment. The experiment is representative of two independent experiments.](image-url)
Figure 6. For figure legend, see page 295.
ULK1/2 (Fig. 8A) was accompanied by inhibition of autophagy, measured as a decrease in MAP1LC3B-II levels (Fig. 7A and 8B) and an increase in SQSTM1 levels (Fig. 8C), relative to SCR-transfected cells.

We next investigated how inhibition of autophagy would impact on the antiproliferative and proapoptotic effects of IFNB1. In the absence of IFNB1 treatment, silencing of ATG7 andULK1/2 led to a small, but still significant inhibition of proliferation compared with SCR-transfected cells as measured by BrdU incorporation (Fig. 8D). This indicated a positive corresponding Atg7−/− MEFs generated from Atg7 knockout mice.61 Both cell lines were found to be equally responsive to mouse recombinant IFNB1 measured as increased phosphorylation of STAT1 (Fig. 7C). When MEFs were treated with IFNB1 for 12 or 48 h, MAP1LC3B-I was robustly converted to MAP1LC3B-II in Atg7+/+ MEFs, while no MAP1LC3B conversion was detected in atg7−/− cells (Fig. 7D). These data indicated that the effect of IFNB1 to induce autophagy extended beyond breast cancer cells, and that IFNB1 induced autophagy through the canonical autophagosome formation pathway.

Blocking autophagy increased the proapoptotic activity of IFNB1 in MCF-7 cells. To investigate the function of IFNB1-induced autophagy in MCF-7 cells, we inhibited autophagy by siRNA-mediated silencing of several autophagy-promoting genes, ATG5, ATG7, or ULK1/2, whose knock out or knockdown previously have been shown to effectively impair the autophagic pathway.43-44 Efficient silencing of ATG7 (Fig. 7A), ATG5, and ULK1/2 (Fig. 8A) was accompanied by inhibition of autophagy, measured as a decrease in MAP1LC3B-II levels (Fig. 7A and 8B) and an increase in SQSTM1 levels (Fig. 8C), relative to SCR-transfected cells.

We next investigated how inhibition of autophagy would impact on the antiproliferative and proapoptotic effects of IFNB1. In the absence of IFNB1 treatment, silencing of ATG7 and ULK1/2 led to a small, but still significant inhibition of proliferation compared with SCR-transfected cells as measured by BrdU incorporation (Fig. 8D). This indicated a positive
regulatory function for constitutive autophagy in proliferation of MCF-7 breast cancer cells as shown previously. In the presence of IFNB1 the same tendency was observed, suggesting that autophagy was not responsible for the antiproliferative effect of IFNB1 seen in these cells (Fig. 8D).

Using a similar experimental setup, we next performed a TUNEL assay. In the absence of IFNB1 there were in general only few TUNEL-positive cells. However, a slight but significant increase in TUNEL-positive cells were seen after ATG5 and ATG7 silencing relative to SCR transfected cells, which is in line with the well-established prosurvival function of constitutive autophagy (Fig. 8E). In contrast, this was not the case for ULK1/2 silencing (Fig. 8E). Interestingly, after IFNB1 treatment there was a robust induction of TUNEL-positive cells in ATG5, ATG7 and ULK1/2 siRNA transfected cells relative to the SCR controls (Fig. 8E). These data strongly suggested that IFNB1-induced autophagy promoted survival and thereby reduced IFNB1’s proapoptotic capacity.

STAT1 was a positive regulator of IFNB1-induced autophagy. IFNB1 signals through the JAK-STAT pathway to

---

**Figure 8.** Blocking autophagy increased the proapoptotic activity of IFNB1. (A) Knockdown efficiency of core autophagy proteins. MCF-7 eGFP-MAP1LC3B cells were cultured for 24 h and transfected the next day with siRNAs targeting ATG5, ULK1/2 or ATG7 as indicated. SCR was used as a nonsilencing control. Seventy-two hours post-transfection cells were lysed and western blot analysis performed with antibodies against ULK1, ATG5 and VCL. (B) Knockdown of core autophagy proteins reduced MAP1LC3B-II levels. MCF-7 eGFP-MAP1LC3B cells were cultured and transfected as in (A), but western blot analysis was performed for MAP1LC3B and ACTB levels. Relative expression levels are shown below the blot. (C) Knockdown of core autophagy proteins increased SQSTM1 levels. Cells were cultured and transfected as in (A), but western blot was performed for SQSTM1 and ACTB levels. Relative expression levels are shown below the blot. (D) IFNB1-induced autophagy did not modulate its antiproliferative response. MCF-7 eGFP-MAP1LC3B cells were cultured for 24 h and transfected the next day with siRNAs targeting different core-autophagy proteins as indicated. Forty-eight hours post-transfection, control medium or 1000 U/ml IFNB1 was added for another 48 h before cell proliferation was measured by BrdU incorporation. Data represent mean and SEM of three independent experiments, each obtained from an average of four replicates. Statistical analysis was performed using one-way repeated measures ANOVA followed by Dunnett’s post test against the SCR transfected sample, *p < 0.05 and **p < 0.01 in the absence of IFNB1, while ***p < 0.01 in the presence of IFNB1. Note the lack of significant interaction between IFNB1 treatment and any of the siRNA transfections using two-way repeated measures ANOVA. (E) IFNB1-induced autophagy counteracted its proapoptotic function. Cells were cultured, transfected and treated as in (A) and stained for DNA fragmentation with a TUNEL assay. Data represent mean and SEM of three independent experiments, where each value is an average of three replicates. The results were analyzed as in (A). *p < 0.05 and **p < 0.01 using Dunnett’s post test against the SCR transfected sample in the absence or presence of IFNB1 respectively. ***p < 0.05, ****p < 0.01 and *****p < 0.001 indicate significant interaction between IFNB1 treatment and the indicated siRNA transfection using two-way repeated measures ANOVA. Significant interaction suggests a relatively larger effect of autophagy on the amount of TUNEL-positive cells in IFNB1-treated samples compared with control-treated samples.
in the absence or presence of IFNB1. In the absence of IFNB1, STAT1 silencing led to a significant increase in SQSTM1 levels (Fig. 9B and C), which was not accompanied by increased SQSTM1 mRNA levels (data not shown), indicating that basal autophagy could be affected by STAT1. However, we could not regulate transcription of many target genes. In accordance, STAT1 was phosphorylated upon IFNB1 treatment in the breast cancer cell lines we examined (Fig. 1A; Fig. 3A and D). To investigate whether STAT1 was influencing IFNB1-induced autophagy, we silenced STAT1 using siRNA in MCF-7 cells (Fig. 9A).

Figure 9. STAT1 was a positive regulator of IFNB1-induced autophagy. (A) Knockdown efficiency of STAT1. MCF-7 eGFP-MAP1LC3B cells were cultured for 24 h and transfected the next day with siRNAs targeting STAT1. SCR siRNA was used as a nonsilencing control. Seventy-two hours post-transfection cells were lysed and western blot analysis performed with antibodies against STAT1 and ACTB. (B) Silencing of STAT1 reduces IFNB1-induced autophagy. MCF-7 eGFP-MAP1LC3B cells were cultured and transfected as in (A). Forty-eight hours post-transfection control medium or 1000 U/ml IFNB1 was added for additional 24 h before cell lysis. Western blot analysis was performed with antibodies against SQSTM1, MAP1LC3B and ACTB. (C) Quantification of band intensities in (B). Data represent mean and SEM of three independent experiments. Statistical analysis was performed using Student’s t-test, *p < 0.05 or **p < 0.01 relative to SCR transfected samples in the absence of IFNB1; *p < 0.05 or **p < 0.01 relative to SCR transfected samples in the presence of IFNB1. (D) STAT1-dependent autophagy did not affect IFNB1’s antiproliferative capacity. MCF-7 eGFP-MAP1LC3B cells were cultured and transfected as in (B), and 48 h post-transfection control medium or 1000 U/ml IFNB1 was added for additional 48 h before cell proliferation was measured by BrdU incorporation. Data represent mean and SEM of three independent experiments, each obtained from an average of three replicates. Statistical analysis was performed using Student’s paired t-test comparing SCR and STAT1 siRNA transfected samples, *p < 0.05 in the presence of IFNB1. Note the lack of a significant interaction between IFNB1 treatment and STAT1 siRNA silencing using two-way repeated measures ANOVA. (E) STAT1-dependent autophagy counteracted IFNB1’s proapoptotic function. MCF-7 eGFP-MAP1LC3B cells were cultured, transfected and treated as in (D) but stained for DNA fragmentation with a TUNeL assay. Data represent mean and SEM of four replicates and are representative of two independent experiments. Statistical analysis was performed using one-way ANOVA followed by Dunnett’s post test against the SCR transfected sample, ***p < 0.01 and ****p < 0.001 in the absence of IFNB1, while ***p < 0.01 in the presence of IFNB1. ""p < 0.001 indicates significant interaction between IFNB1 treatment and STAT1 silencing using two-way ANOVA. Significant interaction suggests a relatively larger effect of autophagy on the amount of TUNeL-positive cells in IFNB1-treated samples when compared with control-treated samples.
detect a concomitant decrease in MAP1LC3B-II following STAT1 silencing (Fig. 9B and C), and thus the role of STAT1 in regulation of basal autophagy in MCF-7 cells requires further investigation. Nevertheless, when cells were treated with IFNB1 after STAT1 silencing, autophagy induction was significantly inhibited, measured as decreased MAP1LC3B-II levels and increased SQSTM1 levels, relative to SCR-transfected cells treated with IFNB1 (Fig. 9B and C). These data suggested that STAT1 was required for IFNB1-induced autophagy.

Identical to the already known core autophagy molecules, silencing of STAT1 led to a small reduction in proliferation and a slight, but significant, increase in apoptosis in the absence of IFNB1 (Fig. 9D and E). Likewise, silencing of STAT1 affected proliferation similarly with or without IFNB1 (Fig. 9D), while in the presence of IFNB1 there was a significant increase in TUNEL-positive cells (Fig. 9E). The latter indicated that STAT1 was important for IFNB1-induced autophagy, which served to promote survival in MCF-7 cells, thereby reducing IFNB1’s proapoptotic capacity.

Discussion

Pharmacological usage of IFNs in cancer therapy has received much attention in the past due to their potent growth inhibitory and proapoptotic functions. However, widespread use has been hampered due to side effects and dosing issues, and the ability of tumor cells to escape the effects of IFNs by inducing survival pathways thereby causing tumor resistance to IFN treatment. These include the EGFR and STAT3 pathways. Recently IFI6/GIP3, an ISG heavily induced by IFNA, has been further shown to contribute to tamoxifen resistance and many upstream stimuli regulate autophagy through the MTORC1 pathway. To uncover molecular events involved in IFNB1-induced autophagy, we therefore studied the relationship between IFNB1, autophagy and the MTORC1 pathway. We found that treatment with IFNB1 specifically inhibited the EIF4EBP1 branch downstream of MTORC1 without affecting RPS6 phosphorylation, suggesting a negative effect of IFNB1 on MTORC1 activity. The mechanisms that determine the selectivity of MTORC1 for its substrates are not clear, but it has been recently shown that rapamycin, a natural inhibitor of MTORC1, reduces the phosphorylation of EIF4EBP1 and RPS6 with differential sensitivity. It is possible that a differential sensitivity is imposed by IFNB1 treatment. We further found that IFNB1 was unable to potentiate rapamycin-induced autophagy, which supports that IFNB1 acts in the MTORC1 pathway to induce autophagy. Importantly, rapamycin-induced autophagy at saturating rapamycin concentrations can be potentiated by activation of MTORC1-dependent autophagy.

We further showed that IFNB1 strongly inhibited cell proliferation in MCF-7 cells, in accordance with earlier reports showing reduced growth after IFNB1 treatment. Our results in addition suggested that IFNB1 affects autophagy and cell proliferation independently. In agreement, MTORC1 is thought to regulate cell growth/proliferation and autophagy antagonistically.

IFNB1 potentially induced apoptosis in MCF-7 cells. Previous reports have described cytotoxic effects of IFNB1 on MCF-7 cells, however little is known about the molecular mechanisms mediating this effect. Hundreds of ISGs are upregulated in response to IFN treatment in different cells, among which are several proapoptotic genes such as TNFSF10/TRAIL, FAS and CASP8, which regulate the extrinsic apoptotic pathway. IFNA can also downregulate antiapoptotic and activate proapoptotic BCL2 family members in hematopoietic cells, thereby activating the intrinsic apoptotic pathway. We found that IFNB1 triggered an increase in CASP8 activation and the presence of a proapoptotic BAX fragment (p18BAX) and a CASP3/7 cleaved PARP fragment. As MCF-7 cells are devoid of CASP3 and CASP7 most likely induces CASP7 activity in these cells. Collectively, these data indicated that IFNB1 treatment activated both the intrinsic and extrinsic apoptotic pathway in MCF-7 cells. Interestingly, silencing of autophagy in the presence of IFNB1 strongly enhanced its proapoptotic function, suggesting that IFNB1-induced autophagy promoted survival and reduced the proapoptotic capacity of IFNB1. The phenotype was importantly reproduced when targeting three different components of the canonical autophagy core machinery. Among these were ATG7, which we also found to be necessary for IFNB1-induced autophagosome formation.

Of note, we additionally identified STAT1 as an important mediator of IFNB1-induced autophagy in MCF-7 breast cancer cells. STAT1 depletion consequently increased induction of IFNB1-induced apoptosis to the same extent as the known core proteins.
autophagy molecules suggesting similar mechanisms of action. STAT1 activity has been recently described as a positive regulator of IFNG-mediated autophagy in melanoma cells, causing autophagy-related cell death and thereby restricting melanoma lung metastasis. Moreover, IFNG-induced autophagy, which is dependent on the STAT1-induced transcription factor IRF1, also contributes to cell death in HCC cells. STAT1 therefore seems necessary for both IFNG- and IFNB1-induced autophagy, but whereas autophagy induction by IFNG appears to promote cell death, we report here that IFNB1-induced autophagy promoted survival. IFNB1 is incapable of inducing IRF1 in MCF-7 cells, which underscores that IFNG and IFNB1 can induce autophagy by different pathways downstream of STAT1. As IRF1 is a tumor suppressor known to induce apoptosis after IFNG-STAT1 activation, this could potentially also explain the differential biological outcomes of IFNG- and IFNB1-induced autophagy.

It is well established that chemotherapeutics, endocrine therapy, as well as ERBB2 targeted therapy induce autophagy in breast cancer cells, which appears to have a prosurvival function and likely contributing to treatment resistance. It could be argued that part of the autophagy induction we detected after IFNB1 treatment is a compensatory stress response to the cytotoxic effect of IFNB1. However, because the autophagic flow was induced already after 12 h following IFNB1 treatment, we believe that autophagy induction preceded the proapoptotic effect of IFNB1. Interestingly, we also observed that IFNB1 treatment caused MAP1LC3B conversion in MEFs after 12 and 48 h without a concomitant increase in cell death (data not shown). This supports that autophagy triggered by IFNB1 was a primary effect rather than a secondary stress-induced survival response.

Collectively, our data supported that autophagy might be yet another survival pathway activated by IFNB1, which could contribute to treatment resistance. Clinical trials are currently ongoing which explore the combination of anti-autophagy strategies with standard therapies in human cancers. It might therefore be clinically relevant to reconcile a role for IFNB1 in the treatment of breast cancer with concomitant use of autophagy inhibitors, which possibly could enhance the proapoptotic effect of IFNB1 at doses well tolerated by patients.

Materials and Methods

Cell culture and treatments. MCF-7 eGFP-MAP1LC3B cells and MCF-7 RLuc-MAP1LC3B WT and MCF-7 RLuc-MAP1LC3B G120A cells were propagated in RPMI 1640 (Invitrogen, 21875) supplemented with 6% fetal bovine serum (FBS) (Sigma, F7524), 100 units/ml penicillin and 100 µg/ml streptomycin (Invitrogen, 15070063). Mouse embryonic fibroblasts (MEFs) from Arg7−/− or Arg7+/− mice were propagated in DMEM (Invitrogen, 31966) supplemented with 10% FBS, 100 units/ml penicillin, 100 µg/ml streptomycin and 1% nonessential amino acids (Invitrogen, 11140050), MDAMB231 (ATCC, HTB-26) and SKBR3 (ATCC, HTB-30) cells were propagated in DMEM (Invitrogen, 31966) supplemented with 10% FBS. All cells were incubated at 37°C in 5% CO2. All treatment of cells was done by adding 10× solutions of control medium (0.1% BSA in PBS), human IFNB1 (PBL InterferonSource, 11420-1), mouse IFNB1 (Sigma, I-9032), rapamycin (Sigma, R0395) or carbobenzoxy-valyl-alanyl-aspartyl-[O-methyl]-fluoromethylketone (z-VAD-fmk, Bachem, N-1560). All treatments were done in full medium, except for short-term stimulations with IFNB1 (30 min) for evaluation of STAT1 phosphorylation, where cells were serum starved for 3 h prior to IFNB1 stimulation.

Cell growth assay. MCF-7 eGFP-MAP1LC3B cells were seeded in 24-well plates (NUNC, 142475) and added control medium or IFNB1 (100 or 1000 U/ml) the next day. After 24 or 48 h the medium was removed and cells were fixed in 4% formaldehyde. The cells were stained with 0.1% w/v crystal violet (Sigma, C3886) for 30 min at room temperature, excess dye was washed away with water and the remaining dye extracted with 10% acetic acid. Sample absorbance was measured at 590 nm.

BrdU cell proliferation assay. MCF-7 eGFP-MAP1LC3B cells were seeded in 96-well plates (PerkinElmer, 6005070) and added control medium or 1000 U/ml of IFNB1 the next day. After additional 48 h cells were pulsed with BrdU for 3 h, before DNA incorporation was measured using the DELFIA Cell Proliferation kit (PerkinElmer, AD0200).

TUNEL assay. MCF-7 eGFP-MAP1LC3B cells were seeded in 96-well plates (NUNC, 167008) and control medium or 1000 U/ml of IFNB1 was added the next day. Forty-eight hours later cells were fixed in by adding a 1:1 volume of 8% formaldehyde with 0.6% glutaraldehyde to the cell culture medium. Cells were permeabilized in 0.25% triton-X-100 and stained with a terminal-deoxynucleotidyl transferase-dUTP nick end labeling (TUNEL) assay (Click-iT® TUNEL Alexa Fluor® 594 Imaging Assay, Invitrogen, C10246) to identify cells with fragmented DNA. Nuclei were counterstained with Hoechst 33342 (Molecular Probes). Image acquisition was done using an Amersham InCell1000 High throughput microscope (GE Healthcare) equipped with a 20× Nikon (GE Healthcare) objective. For each well 30 pictures (counting ~5000 cells/well) were taken from randomly placed positions and analyzed automatically using the InCell1000 workstation 3.5 software package (GE Healthcare). Nuclei were segmented based on the Hoechst signal, upon which a 2 µm cellular collar derived from the 594 nm channel was superimposed. TUNEL-positive cells were scored as having a signal/background ratio greater than 1.1 based on initial manual inspection of the images. Each cell per well was scored based on this ratio.

eGFP-MAP1LC3B translocation. MCF-7 eGFP-MAP1LC3B cells were seeded in 96-well plates (NUNC, 167008) and cultured for 72 h before treated with control medium or 100 U/ml of IFNB1 for an additional 24 h period, whereas rapamycin (200 nM) was added 2 h prior to fixation in 4% formaldehyde. Nuclei were stained with Hoechst 33342 and image acquisition was done using an Amersham InCell1000 High throughput microscope equipped with a 40× Nikon objective (GE Healthcare). For each well 15 images were acquired (counting ~100 cells/well) from randomly placed positions within each well and analyzed using the InCell1000 workstation 3.5 software package. Nuclei were identified and segmented based on the Hoechst signal.
and cells were segmented from the GFP channel. MAP1LC3B was evaluated in the GFP channel. Cells with >5, >10 or >15 eGFP-MAP1LC3B puncta were considered positive for eGFP-MAP1LC3B translocation after IFNB1 or rapamycin treatment, as indicated.

**qPCR analysis.** Total RNA was isolated using the RNeasy kit (Qiagen, 74106) and reverse transcribed into cDNA with the iScript cDNA Synthesis kit (Biorad, 170-8891). PCR primers used were as follows: 

- ACTB: TTT GAA TAC TGG ATG G
- RV: GGA TGC ACC CGT CTA CAG GTG AAC TC

(qPCR was performed with Maxima SYBR Green/ROX qPCR Master Mix (Fermentas, K0221). PCR primers were used as follows: 

- SQSTM1 FW: ACC CGT CTA CAG GTG AAC TC and RV: GGA TGC ACC CGT CTA CAG GTG AAC TC
- ACTB FW: ACTB TTT GAA TAC TGG ATG G, RV: GGA TGC ACC CGT CTA CAG GTG AAC TC

The iScript cDNA Synthesis kit (Biorad, 170-8891) was used to reverse transcribe into cDNA with the specific siRNA transfections. 

**Autophagic flux assay.** MCF-7 RLuc-MAP1LC3BWT and MCF-7 RLuc-MAP1LC3BGL20A cells were plated side by side in white 96-well plates (NUNC, 136101). Seventy-two hours later, 50 nM of Enduren substrate (Promega, E6481) was added and RLuc activity was measured using the Glomax Multi+ luminometer 6, 12 and 24 h after IFNB1 treatment. 

The readout was obtained by calculating the ratio of MCF-7 RLuc-MAP1LC3B WT and MCF-7 RLuc-MAP1LC3B G120A cells or the value of the corresponding time point from control medium. 

**Antibodies and western blot analysis.** MCF-7 eGFP-MAP1LC3B cells or Atg7+/+ or Atg7−/− MEFs were seeded in 6-well plates (NUNC, 140675) and treated the next day with control medium, IFNB1 or rapamycin as indicated. At given time points after treatment, cells were washed once in PBS and breast cancer cells were lysed in RIPA buffer (25 mM TRIS-HCl pH 7.6, 150 mM NaCl, 1% NP-40, 1% sodium deoxycholate, 0.1% SDS), while MEFs were lysed in 5% SDS, 10% glycerol, 0.1% SDS, while MEFs were lysed in 3% SDS, 10% glycerol, 0.1% SDS. Membranes were blocked 1 h at RT in either 5% skim milk powder or 5% BSA in PBS-Tween 0.1% (PBS-T) and incubated overnight with primary antibodies at 4°C. The primary antibodies used were against ACTB/β-actin (4967), ULK1 (4776), p-EIF4EBP1/p-4E-BP1 (2855), EIF4EBP1/4E-BP1 (9644), RPS6/S6 (2217), p-RPS6/p-S6 (2211), BAX (2744), STAT1 (9172), p-STAT1 (9171), PARP1/PARP (9532), CASP8/caspase-8 (9746) all from Cell Signaling, ATG5 (TMD-PH-AT5, Cosmo Bio), SQSTM1/p62 (MBL International, PM045), MAP1LC3B (Nanotools, 0231-100/LC3-B-N5) and VCL/vinculin (Sigma, V9131). The next day membranes were incubated with horse-anti-mouse-horse radish peroxidase (HRP) (Vector Laboratories, PI-2000) or donkey-anti-rabbit-HRP (GE Healthcare, NA934-1ML) 1 h at RT and developed with the enhanced chemiluminescence detection system (PerkinElmer, NEL104001EA). Band intensities were quantified with ImageJ (v.1.45p). 

**Propidium iodide cell cycle staining.** Cells were harvested, washed twice in PBS and fixed for 30 min on ice in 70% ice-cold ethanol. Then cells were spun down and 1 ml of propidium iodide (PI)/RNase Staining Buffer (BD Biosciences, 550825) was added to the cell pellet and thoroughly mixed before analysis by FACS. Data were analyzed using FlowJo vs 8.8.6.

**siRNA transfection.** Cells were seeded in relevant tissue plates and transfectioned the next day with 20 to 50 nM siRNA using Lipofectamine 2000 (Invitrogen, 11668027). Forty-eight hours post-transfection cells were treated with control medium, IFNB1 or rapamycin for 24–48 h as indicated, and the relevant assays performed. The siRNAs used were all synthesized by Sigma including the universal negative control 1 (SCR). The sequences were as follows: 

- #1: 5'-CAGUUUGGCCAAUCAUA-3', 
- #2: 5'-UGCAGUUGCCAAUCAUA-3', 
- #3: 5'-CCUCUGGACCUGUAA-3', 
- #4: 5'-CCUGGAGAAGUUAUUGUGA-3', 
- #5: 5'-CUCAGUGAGAAGUUAUAUGUGA-3', 
- #6: 5'-CUCAGUGAGAAGUUAUAUGUGA-3', 
- #7: 5'-CUCAGUGAGAAGUUAUAUGUGA-3'.

The project has received support from the Danish Cancer Society, The Danish Medical Research Council and the Lundbeck Foundation to S.I.-N.
References

1. Borden EC, Sen GC, Uze G, Silverman RH, Ransohoff RM, Foster GR, et al. Interferons at age 50: past, current, and future applications on biomedicine. Nat Rev Drug Discov 2007; 6:975-90; PMID:18049472; http://dx.doi.org/10.1038/nrd2422

2. Caragiul M, Matta M, Tagliaferri P, Lamberts SW, Zapavipiga S, Misso G, et al. Emerging strategies to strengthen the antitumor activity of type I interferons in combination with survival pathways. Curr Cancer Drug Targets 2009; 9:690-704; PMID:19508175; http://dx.doi.org/10.2174/156800909789056980

3. Chawla-Sarkar M, Lindner DJ, Liu YF, Williams BR, Sen GC, Silverman RH, et al. Apoptosis and interferons: role of interferon-induced genes as mediators of apoptosis. Apoptosis 2003; 8:237-49; PMID:12766484; http://dx.doi.org/10.1023/A:10236678075040

4. Sangoi O, Erickson S, Grander D. Mechanisms of interferon-induced cell cycle arrest. Front Biosci 2000; 5039-47; PMID:10762599; http://dx.doi.org/10.2741/Sangfelt

5. Platanias LC. Mechanisms of type-I and type-II interferon-mediated signalling. Nat Rev Immunol 2005; 5:375-86; PMID:15864272; http://dx.doi.org/10.1038/nri1648

6. Damdinsuren B, Nagano H, Sakon M, Kondo M, Usui M, Yamamoto T, Umeshita K, et al. Interferon-beta is more effective in the treatment of pancreatic cancer: facts and apparent artefacts. Cell Death Differ 2010; 17:165-78; PMID:21119065; http://dx.doi.org/10.1038/cdd.2011.11

7. Wei H, Wei S, Gan B, Peng X, Zou W, Guan JL. Suppression of autophagy by FIP200 deletion inhibits mammary tumorigenesis. Genes Dev 2011; 25:1510-27; PMID:21764854; http://dx.doi.org/10.1101/gad.205110.111

8. Yang S, Wang X, Contino G, Liesa M, Sahin E, Ying H, et al. Pancreatic cancers require autophagy for tumor growth. Genes Dev 2011; 25:717-29; PMID:21406549; http://dx.doi.org/10.1101/gad.116111

9. Yang Y, Chee CE, Huang S, Sinicrope FA. The role of autophagy in cancer: therapeutic implications. Mol Cancer Ther 2011; 10:1533-41; PMID:21878645; http://dx.doi.org/10.1158/1535-7163.MCT-11-0047

10. Gutierrez MG, Master SS, Singh SB, Taylor GA, Colomboto MI, Dariec V. Autophagy is a defense mechanism inhibiting BCG and Mycobacterium tuberculosis survival in infected macrophages. Cell 2004; 119:753-66; PMID:15667973; http://dx.doi.org/10.1016/j.cell.2004.11.038

11. Inalb B, Bialk S, Sabahay I, Shani G, Kimchi A. DAP kinase and DRP-1 mediate membrane blebbing and the formation of autophagic vesicles during programmed cell death. J Cell Biol 2002; 157:455-68; PMID:11980920; http://dx.doi.org/10.1083/jcb.20010994

12. Wu X, Quane M, Bhagav G, Takusbi S, Cui G, Yang XD, et al. IFN-γ inhibits gastric carcinogenesis by inducing epithelial cell autophagy and T-cell apoptosis. Cancer Res 2011; 71:4247-59; PMID:21512143; http://dx.doi.org/10.1158/0008-5472.CAN-10-0209

13. Liu P, Du Q, Cao Z, Guo Z, Ekanovich J, Yan W, et al. Interferon-γ induces autophagy with growth inhibition and cell death in human hepatocellular carcinoma (HCC) cells through interferon-regulatory factor-1 (IRF-1). Cancer Cell 2011; 19:343-55; PMID:21621040; http://dx.doi.org/10.1016/j.ccell.2011.09.031
