BMJ Open

Does preoperative rehabilitation for patients planning to undergo joint replacement surgery improve outcomes? A systematic review and meta-analysis of randomised controlled trials

Li Wang,¹,²,³ Myeongjung Lee,⁴ Zhe Zhang,⁵ Jessica Moodie,¹ Davy Cheng,¹,⁶ Janet Martin¹,⁶,⁷

ABSTRACT

Objectives: The clinical impact of preoperative physiotherapy on recovery after joint replacement remains controversial. This systematic review aimed to assess the clinical impact of prehabilitation before joint replacement.

Design: We searched PubMed, Embase and Cochrane CENTRAL up to November 2015 for randomised controlled trials comparing prehabilitation versus no prehabilitation before joint replacement surgery. Postoperative pain and function scores were converted to Western Ontario and McMaster Universities Osteoarthritis Index (WOMAC) pain and function subscales (0–100, high scores indicate worse outcome). Random effects meta-analysis was performed to calculate weighted mean differences (WMD, 95% CI), subgrouped by hip and knee surgery.

Primary and secondary outcomes: Postoperative pain and function scores, time to resume activities of daily living, quality of life, length of hospital stay, total cost, patient satisfaction, postoperative complications, any adverse events and discontinuations.

Results: Of 22 studies (1492 patients), 18 had high risk of bias. Prehabilitation slightly reduced pain scores within 4 weeks postoperatively (WMD: -6.1 points, 95% CI: -10.6 to -1.6 points, on a scale of 0–100), but differences did not remain beyond 4 weeks. Prehabilitation slightly improved WOMAC function score at 6–8 and 12 weeks (WMD: -0.7, 95% CI: -1.0 to -0.3), and time to climbing stairs (WMD: -1.5 days, 95% CI: -3.0 to -0.1 days), toilet use (0–9 days, 95% CI: -1.3 to 0.5 days) and chair use (WMD: -1.2 days, 95% CI: -1.7 to -0.8 days). Effects were similar for knee and hip surgery. Differences were not found for SF-36 scores, length of stay and total cost. Other outcomes of interest were inadequately reported.

Conclusions: Existing evidence suggests that prehabilitation may slightly improve early postoperative pain and function among patients undergoing joint replacement; however, effects remain too small and short-term to be considered clinically-important, and did not affect key outcomes of interest (ie, length of stay, quality of life, costs).

INTRODUCTION

Total joint replacement surgery is considered as one of the most successful medical interventions, with significant pain relief and improvement in physical function and quality of life for patients with severe osteoarthritis.¹ However, the recovery for a significant proportion of patients remains difficult and prolonged, and many never gain optimal functionality postoperatively.²,¹ Therefore, researchers, clinicians and policymakers are still looking for better ways to improve the timelines and extent of recovery for patients undergoing total joint replacement.

Strengths and limitations of this study

- The methodology was rigorous, and included a comprehensive systematic search—without limits by language, date or publication status—that identified seven randomised controlled trials (RCTs) not included in any previous systematic reviews.
- We went beyond previous published systematic reviews by analysing the effect of prehabilitation by converting to a standardised measurement of Western Ontario and McMaster Universities Osteoarthritis Index (WOMAC) pain and function scores, and used different presentation methods to enhance interpretability and to improve ability to find potential signals in effect size through meta-analysis.
- This meta-analysis addressed all available clinically relevant outcomes, while previous reviews addressed only a few selected outcomes. Application of GRADE for rating quality of evidence provides improved context for interpreting the findings in light of inherent strengths and limitations of the included studies.
- Compliance with prehabilitation was problematic in some studies, and was not reported in a number of studies.
Physiotherapy has been delivered to patients for rehabilitation, traditionally after total joint replacement. However, preoperative physiotherapy and exercise programmes (also known as ‘prehabilitation’) have been proposed as a potential way to expedite recovery times and improve overall extent of recovery in patients planning to undergo joint replacement. One recently published review recommended preoperative exercise to maintain or improve function and pain; however, this recommendation was based on only one narrative systematic review with indeterminate effects. Although it seems intuitive that prehabilitation should improve patient disposition at the time of surgery, and may prepare patients for a better recovery after surgery, significant uncertainties remain about the overall balance of benefits and risks (and costs) for prehabilitation.

A number of related systematic reviews and meta-analyses have been published in the recent decade, with inconsistent methods and varied conclusions. Two papers suggested that prehabilitation reduced pain for patients undergoing joint replacement and improved physical function for patients undergoing hip replacement surgery, but not knee replacement surgery, while the remainder suggested prehabilitation did not clearly demonstrate beneficial effects or were unable to provide definitive conclusions. Furthermore, significant methodological limitations or errors have been identified among the existing systematic reviews. Some only qualitatively summarised the results, two other meta-analyses are outdated, or mistakenly included some trials in which postoperative outcomes were not reported. Thus, we conducted an updated methodologically rigorous systematic review with meta-analysis to clarify whether evidence supports prehabilitation for patients planning to undergo joint replacement.

METHODS

Eligibility criteria
We systematically searched three databases up to 10 November 2015, including PubMed, Embase and Cochrane Central Register of Controlled Trials (CENTRAL). Eligible studies had to be randomised controlled trials comparing preoperative rehabilitation programmes (ie, prescribed and supervised exercises or physiotherapy with or without cointerventions such as education, nutritional counselling, acupuncture, transcutaneous electrical nerve stimulation, etc) versus no formal preoperative rehabilitation programmes, reporting at least one clinically-relevant outcome of interest during the postoperative period. Clinical outcomes of interest included postoperative pain scores (Visual Analogue Scale (VAS), or pain subcomponents of Western Ontario and McMaster Universities osteoarthritis index (WOMAC) or pain-related subdomains of other instruments), patient functionality (WOMAC function score, SF-36 physical functioning subdomain or other function-related instruments), time to resume activities of daily living (ADL), quality of life, patient satisfaction, infection, transfusions, stroke and death or overall postoperative complications. Resource-related outcomes of interest included hospital length of stay, readmissions and total hospital costs or total health system costs. Timeframes of relevance included in-hospital outcomes, as well as clinical or resource-related outcomes over the longer term, postoperatively.

Search terms included MeSH and keyword terms for exercise, prehabilitation, physiotherapy, physical therapy, activity, weight training, weight lifting, aquatic, swimming, strength training, endurance training, cycling, biking, kinesiotherapy, hydrotherapy, fitness, orthopaedic surgery and joint replacement and ‘random*’. Limitations were placed neither on date of publication nor on language. Detailed search strategies are provided in the Appendix.

Literature screening and data extraction
Two reviewers (ML, ZZ) independently screened the articles by title and abstract using the predetermined eligibility criteria. Any disagreements were resolved by a third reviewer (LW). The third reviewer (LW) also checked all the reference lists of existing systematic reviews or meta-analyses and other reviews for potentially additional eligible articles.

Two reviewers (ML, JM) independently assessed the risk of bias of the included trials using the methods recommended by Cochrane Collaboration including random sequence generation, allocation concealment, missing or incomplete outcome data, and blinding of patients, study personnel and outcome assessors. Any discrepancies were resolved by the third reviewer (LW).

Standardised data extraction forms were developed to specify the study characteristics, patient characteristics and outcomes. Three reviewers (ML, ZZ and LW) extracted the data. Data were verified by a fourth reviewer (JM).

Statistical analysis
Meta-analysis was performed using the random effects model. For discrete outcomes, relative risk (RR) and 95% CIs (RR, 95% CI) were calculated. For continuous outcomes, for example, pain score and function score, weighted mean differences (WMD, 95% CI) were calculated after conversion to the Western Ontario and McMaster Universities osteoarthritis index (WOMAC) pain score (0–100) and WOMAC function score (0–100), in which a higher score indicates worse outcome. Sensitivity analysis was conducted by calculating standardised mean differences (SMD) and ratio of means (RoM).

If different pain scores were reported in one article (eg, WOMAC pain, SF-36 pain score), the WOMAC pain score was preferentially used. If WOMAC pain score was not reported, the pain score reported in the study was converted to a WOMAC pain score to allow for
comparison across studies, and to allow for estimation of overall effect size. If pain scores were reported at rest and during activity, the pain score during activity was preferentially used for analysis. If pain scores were reported during different types of activities, the largest change of pain score during the most active movement was used preferentially. If different function scores were reported, the WOMAC function score was used preferentially for analysis. In the absence of WOMAC function scores, the alternate function score provided in the study was converted to a WOMAC function score. Two studies only reported total scores of Hospital for Special Surgery Knee Rating System (HSSK) and WOMAC, respectively. Given the function score accounting for most of the total score and with similar trends of change over time as total score, we used the total score to replace the function score. To test whether this changed the effect size, sensitivity analysis was performed after removing the total scores from function measures to recalculate effect size.

To improve clinical relevance and interpretation of the results for postoperative pain and function improvement, we also converted continuous data from WOMAC pain score and WOMAC function score to a RR for achieving a ‘patient acceptable symptom state’ (defined as the number of patients achieving the threshold pain score or function score at which patients consider themselves ‘well’ or ‘satisfied’) derived from previous research. To calculate the RR, we assumed a normal distribution of WOMAC pain or function scores for the intervention and control groups, and used a threshold of 30 on the WOMAC 0–100 scale to represent the threshold for the patient acceptable symptom state. The proportion of patients in the intervention and control groups with WOMAC pain or function ≤30 was then calculated and combined across studies to derive a pooled RR. Finally, to further add to clinical applicability of the patient reported outcomes, we calculated the risk difference for the number of patients achieving this threshold of ≤30 per 100 patients, using the RR and median risk among the control groups in the included studies. Subsequently, sensitivity analyses were performed to explore whether using different thresholds (20 and 40) changed the conclusions, since our threshold of 30 represents a compromise of 20–40, suggested in previous studies of hip or knee surgery over the short term or long term.

Heterogeneity was estimated using the χ^2 test and I² statistic. Predefined subgroup analyses included separate analysis for hip and knee surgery patients, to test the existing hypothesis from a previous systematic review that prehabilitation improves postoperative pain and function more among patients undergoing hip replacement than among patients with knee replacement. Publication bias was explored using both visual inspection of funnel plots and Egger’s test only when there were at least 10 studies included in the meta-analysis.

GRADE methodology was used to summarise certainty in estimates of effect (quality of evidence) in the critically important outcomes for decision-making, including WOMAC pain scores and function scores from early follow-up to 24 weeks after surgery.

RESULTS

Studies identified

Figure 1 outlines study inclusion and exclusion. A total of 399 titles and abstracts were screened for inclusion, of which 110 studies were collected in full-text for review. Of these, 88 were excluded for the following reasons: no prehabilitation arm (ie, education only or postoperative rehabilitation only, n=46), not randomised (n=21), duplicate studies (n=4), no postoperative outcomes data (n=9), no outcome of interest (n=2), conference abstracts (n=3) and protocol only (n=3). In total, 22 randomised controlled trials (1492 patients) of prehabilitation versus no prehabilitation met the inclusion criteria. Twenty studies provided usable data for the meta-analysis, and 22 studies contributed qualitative or quantitative data.

Description of included studies

Among the 22 included studies, 8 studies were of patients undergoing total hip replacement; 17–30–36 12 studies included patients undergoing total knee replacement 16–37–47 and two studies included either hip or knee replacement. Most studies were conducted in developed countries (North American and Europe), except for three in developing countries (Serbia, Thailand and Turkey). The median sample size of included studies was 54, ranging from 21 to 165 patients. Mean age ranged from 51 to 76 years (table 1).

Nine studies compared physiotherapist-supervised exercise plus home exercise versus no intervention, or usual care. Five compared physiotherapist-supervised exercise versus no intervention, or usual care. Three studies compared physiotherapist-supervised exercise plus education versus no intervention. Three studies compared physiotherapist-supervised exercise plus education versus education. One each compared physiotherapist supervised exercise plus education versus control (kinesiologist supervised upper body exercise) and physiotherapist supervised exercise plus home exercise versus education plus home exercise, respectively, (see online supplementary table S1).

Risk of bias

Among the 22 trials, adequate sequence generation was reported in 17 trials 16–30–33–36–43–45–48 and allocation concealment was reported in 8 trials. The patients were blinded in one study, 39 healthcare providers were blinded in three studies 38–39–44 and outcome assessors were blinded in 12 studies. Seventeen studies 17–30–34–36–40–42–43–46–49 reported loss to follow-up, ranging from 1.7% to 65.3%; among which the
proportion of loss to follow-up was more than 15% in 10 studies. Ten of 17 studies with incomplete data used intention to treat analysis. Overall, 4 of the 22 included trials were rated as having a low risk of bias and 18 trials were rated as having a high risk of bias (table 2).

Online supplementary table S2 qualitatively summarises the major findings of included studies. In total, 22 studies described at least one clinical or resource-related benefit for prehabilitation versus control, and 18 studies described no significant improvement for prehabilitation versus control. We conducted meta-analysis for pain scores, function scores, SF-36 PCS and MCS, hospital length of stay and total costs, based on data availability.

Postoperative pain

Fifteen trials with 18 comparisons and 1046 patients reported postoperative pain scores using different instruments, namely, WOMAC, VAS, Knee injury and Osteoarthritis Outcome Score (KOOS)/Hip disability and Osteoarthritis Outcome Score (HOOS) and 10-graded scale. Only two trials reported significant improvement in pain at early follow-up (≤3 months), including VAS pain at 3 months, and KOOS/HOOS pain at 6 weeks postoperatively, but not significant at 3 months. After converting to WOMAC pain 0–100, prehabilitation significantly reduced postoperative pain at 4 weeks or less; however, the reduction of pain was clinically nominal (4 trials, 213 patients, WMD −6.1, 95% CI −10.6 to −1.6, figure 2, GRADE: low certainty in estimates, tables 3 and 4). Differences in WOMAC pain scores after 4 weeks were no longer statistically significant for prehabilitation versus control (WOMAC pain score at 6–8 weeks, 5 trials, 488 patients, WMD −1.4, 95% CI −5.5 to +2.6; at 12 weeks, 10 trials, 806 patients, WMD −2.9, 95% CI −6.2 to +0.3; at 24 weeks, 3 trials, 247 patients, −2.5, 95% CI −5.6 to +0.6; at 1 year, 1 trial, 109 patients, WMD −2.0, 95% CI −7.5 to +3.5; GRADE: low to moderate certainty in estimates, tables 3 and 4).

When expressed as a RR, patients undergoing prehabilitation were more likely to achieve the acceptable pain state (WOMAC pain score ≤50) with RR 1.09. When expressed as an absolute risk difference, 3.9% more patients with prehabilitation achieved the acceptable pain state (WOMAC pain score ≤50) than patients without prehabilitation at 4 weeks (online supplementary table S3). However, this small difference would be considered clinically nominal.

Postoperative function

Of 16 trials reporting on postoperative function, only four reported significant improvement in
function, including higher hip external rotation or higher flexion range of motion scores, WOMAC physical function and total score, and less time to reach 90° of knee flexion and greater improvement in ADL after surgery.

Sixteen trials (1118 patients) reported postoperative function scores, using different instruments, namely, WOMAC, Harris hip score, SF-36 physical component summary (PCS), SF-36 physical functioning score, HSSK score, HOOS function in daily living, and KOOS/HOOS ADL. After converting function scores to WOMAC function score (0–100), the difference was slightly improved (but numerically small on a scale of 0–100) with prehabilitation versus no prehabilitation at early follow-up (WOMAC function score at 6–8 weeks, 5 trials, 488 patients, WMD −3.9, 95% CI −7.6 to −0.3, RR=1.10, figure 3, GRADE: moderate certainty in estimates, tables 3 and 4), and at 12 weeks (12 trials, 836 patients, WMD −4.0, 95% CI −7.5 to −0.5, RR=1.02, figure 4, GRADE: very low certainty in estimates, tables 3 and 4). No significant difference for WOMAC function score was found after 12 weeks (at 24 weeks, 5 trials, 345 patients, WMD −0.5, 95% CI −5.8 to +4.7; at 1 year, 6 trials, 296 patients, WMD −0.6, 95% CI −2.6 to +1.5, GRADE: low certainty in estimates, tables 3 and 4).

When expressed as a RR for achieving the acceptable threshold, the relative increases were small (RR 1.10 at 6–8 weeks; 1.02 at 12 weeks). When expressed as an absolute difference in likelihood of achieving the acceptable threshold, the differences ranged from 1.3% to 5.4% more patients achieving a WOMAC function score ≤30 at 6–8 weeks and 12 weeks, respectively, (online supplementary table S3).

Resumption of ADL

Resumption of ADL was rarely reported. In the two studies (99 patients) that reported ADL, meta-analysis suggested significantly earlier resumption of activities, including climbing stairs (2 trials, 99 patients, WMD −1.4 days, 95% CI −1.9 to −0.8 days), use of toilet (2 trials, 99 patients, −0.9-day, 95% CI −1.3 to −0.5 days) and use of chair (2 trials, 99 patients, −1.2 days, 95% CI −1.7 to −0.8 days), but not for time to first day of walking (2 trials, 99 patients, −0.2-day, 95% CI −0.4 to +0.0-day), (table 3). However, based on the total time-course of recovery, the difference was small.

Quality of life

In nine studies, significant differences were not found for quality of life as reported in the SF-36, Quality of Well Being instrument, HOOS Hip-related quality of life, KOOS/HOOS Quality of Life subscale, and Patient Specific Complaints (PSC) questionnaire. However, three trials reported a significant difference in quality of life scores within the first month, including improved physical function scores or physical composite scores as reported in the SF-36 or EuroQol five Dimension Health Questionnaire (EQ5D).

Table 1 Characteristics of included RCTs

Study name	Patients, (n)	Type of surgery	Countries	Mean age	% Female	Mean BMI	% Total OA
Beaupre 2004	131	TKR	Canada	67	55	31.4	NR
Bitterli 2011	80	THR	Switzerland	66.9	38	27.4	NR
Brown 2012	32	THR	USA	NR	NR	36.8	NR
D’Lima 1996	30	TKR	USA	69.8	46.6	NR	83.3
Evgeniadis 2008	48	TKR	Greece	68.3	76.3	34.1	100
Ferrara 2008	23	THR	Italy	63.4	60.8	NR	100
Gilbey 2003	76	THR	Australia	65.2	61.8	27.9	NR
Gocen 2004	60	THR	Turkey	51.3	35.5	NR	49
Gostootner 2011	38	TKR	Australia	69.7	78.9	27.8	100
Hoogeboom 2010	21	THR	The Netherlands	76	66	NR	NR
Matassi 2014	122	TKR	Italy	66.5	48	28.5	NR
McKay 2012	22	TKR	Canada	61.3	59	34.3	100
Mitchell 2005	160	THR	UK	70.3	57.9	NR	100
Oosting 2012	30	THR	The Netherlands	76	80	32.2	100
Rooks 2006	108	THR/TKR	USA	64.1	56	31.6	100
Topp 2009	54	TKR	USA	63.8	68	32.1	100
Tungtrongjit 2012	60	TKR	Thailand	64.5	83.3	24.8	100
Villadsen 2014	165	THR/TKR	Denmark	67	56	30.3	100
Vukomanovic 2014	45	THR	Serbia	58.4	67	NR	100
Wang 2002	28	THR	Australia	67.1	64	NR	89
Weidenhielm 1993	39	TKR	Sweden	63.5	51.3	29.6	100
Williamson 2007	120	TKR	UK	69.8	52.9	32.7	100

BMI, body mass index; NR, not reported; OA, osteoarthritis; RCT, randomised controlled trial; THR, total hip replacement; TKR, total knee replacement; UK, UK; USA, USA of America.
Study	Random sequence generation	Allocation concealment	Blinding of patients	Blinding of healthcare providers	Blinding of outcome assessors	Incomplete outcome data	Intention to treat analysis	Risk of bias
Beaupre 2004	Yes	Yes	No	No	Yes	Yes, LTFU>15%	Yes	Low risk
Bitterli 2011	Yes	Yes	No	Yes	Yes	Yes, LTFU>15%	Yes	Low risk
Brown 2012	Yes	Unclear	No	Unclear	Unclear	Yes, LTFU>15%	No	High risk
D'Lima 1996	Yes	Unclear	Unclear	Unclear	Unclear	No	Not applicable	High risk
Evgeniadis 2008	Yes	Yes	Yes	Yes	Unclear	Yes, LTFU>15%	Yes	Low risk
Ferrara 2008	Yes	Unclear	No	Yes	Yes	Yes	No	High risk
Gilbey 2003	Unclear	Unclear	Unclear	Unclear	Yes	Yes	No	High risk
Gocen 2004	Yes	Unclear	No	No	Yes	Yes	No	High risk
Gstoettner 2011	Yes	No	Unclear	Unclear	Unclear	Yes	No	High risk
Hoogeboom 2010	Yes	Yes	No	No	Yes	Yes	Yes	Low risk
Matassi 2014	Yes	Unclear	No	No	Yes	No	Not applicable	High risk
McKay 2012	Yes	Yes	Unclear	Unclear	Unclear	Yes, LTFU>15%	Yes	High risk
Mitchell 2005	Yes	Yes	Unclear	Unclear	Yes	Yes, LTFU>15%	Yes	High risk
Oosting 2012	Yes	Unclear	No	Yes	Yes	Yes, LTFU>15%	Yes	High risk
Rooks 2006	Yes	Unclear	Unclear	Unclear	Yes	Yes, LTFU>15%	Yes	High risk
Topp 2009	Unclear	Unclear	No	Yes	Yes	No	Not applicable	High risk
Tungtrongjit 2012	Yes	Unclear	No	Yes	No	Not applicable	High risk	
Villadsen 2014	Unclear	Yes	No	Yes	Yes	Yes	Yes	High risk
Vukomanovic 08	Unclear	Unclear	Unclear	Unclear	Unclear	Yes, LTFU>15%	No	High risk
Wang 2002	Unclear	Unclear	Unclear	Unclear	No	No	Not Applicable	High risk
Weidenhielm 1993	Yes	Unclear	Unclear	Yes	Yes	No	Yes	High risk
Williamson 2007	Yes	Yes	No	Yes	Yes, LTFU>15%	Yes	High risk	

LTFU, lost to follow-up.
Nevertheless, the numeric differences were small and the significance disappeared at 3 months. Three studies including 149 patients reported SF-36 Physical Component Summary (SF-36 PCS) and Mental Component Summary (SF-36 MCS). Meta-analysis of SF-36 PCS and MCS did not detect significant differences at any time-point (from 6 weeks to 1 year, table 3).

Length of hospital stay and total cost

Only one out of 10 studies found a significant reduction in hospital length of stay (mean difference -0.8–day). Meta-analysis of these studies did not detect significant differences in hospital length of stay for prehabilitation versus control (7 studies, 507 patients, WMD -0.3 days, 95% CI -0.8 to $+0.1$ days, figure 5).

Of the few studies that reported on costs, none reported significant reduction of overall costs with prehabilitation, but one described significantly increased physiotherapy costs with prehabilitation (mean difference £136.5). Even when total costs were converted to Canadian dollars and combined through meta-analysis, the results did not differ for prehabilitation versus none (2 studies, 242 patients, WMD $+$0.5, 95% CI -384 to $+$393).

Other outcomes

Other outcomes of interest, including patient satisfaction, stroke, cardiovascular events and readmissions, were inadequately reported for meta-analysis. Adverse events and discontinuations were rarely reported within the studies; however, in at least one study, there was concern about increased cardiovascular events and stroke, and poorer SF-36 general health, energy and mental health among the withdrawn patients although the author stated no evidence that study withdrawal varied by group. In some studies, there were reports of patient withdrawals due to adverse events. Some studies reported no significant postoperative complications between groups, no serious adverse events or no adverse events.

Subgroup analysis and sensitivity analysis

Effect sizes were similar between hip and knee replacement subgroups for WOMAC pain and function scores (see online supplementary table S3), as indicated by non-significant p values for interaction.

Sensitivity analysis using SMD (instead of WMD), RoM and different thresholds for defining patient acceptable symptom state (20 and 40, instead of 30), and replacing function sub-score with total score, did not significantly change the results (see online supplementary tables S4 and S5).

While publication bias was not indicated for pain score, asymmetric funnel plots indicated the possibility of publication bias for function scores (see online supplementary figures S1 and figure S2, table 2).

INTERPRETATION

Main findings

Existing evidence from 22 randomised controlled trials suggests that prehabilitation for patients planning to...
undergo joint replacement does not affect postoperative pain and function to a degree that would be considered clinically relevant; however, this is based on studies with significant limitations, providing very low certainty in estimates. While some differences reached statistical significance, the effects are too small to be considered clinically important (ie, an improvement of a few points on a scale of 0–100 is likely clinically irrelevant, and undetectable to patients). Our analysis shows that prehabilitation reduced WOMAC pain score by 6 with 95% CI (−10.6 to −1.6) within 4 weeks, and with no difference remaining beyond 4 weeks, which is generally smaller than the minimal clinically important improvement of at least 9.7 at 6 weeks,51 52 even when the most optimistic estimates are considered in our analysis. The difference would have been only 3.9% of patients achieving 30 in WOMAC pain subscale when the extremities of the CIs are considered in our analysis. Even when the ‘patient accepted pain state’ was defined as achieving 30 in WOMAC pain subscale 0–100,18–20 there was only an absolute increase of 3.9% of patients achieving this threshold. Similarly for function improvement, prehabilitation improved early function by 3.9–4.0 points on the WOMAC function subscale 0–100, which is much smaller than the threshold of minimally important difference, ranged from 7.9 to 25.9,54–56 and only 1.3% to 5.4% more patients reached a WOMAC function score ≤30. Although prehabilitation allowed patients to resume ADL 0.9–1.4 days earlier than no formal prehabilitation, the difference is trivial, and, importantly, very few studies reported on this time point (ie, 2 of 22 studies), which prevents definitive conclusions. Similarly, for the outcome of length of stay, there was no difference between groups, and if statistical significance had been achieved, the difference would have been only 0.3 days, which is a minimal difference. Jurisdictions considering implementation (or continuation) of prehabilitation services should consider whether resources could be better spent elsewhere on interventions of proven clinical benefit. Until sufficient evidence accrues to definitively conclude that prehabilitation provides meaningful benefit, investment in prehabilitation does not represent the best use of limited resources in a healthcare system where other opportunities with proven benefits could be funded instead.

Relation to prior reviews
Similar to this meta-analysis, most previous meta-analyses10 11 and systematic reviews7 9 12 suggested that the impact of prehabilitation has not been proven by the existing evidence. In contrast to our analysis, Gill and McBurney8 suggested that exercise-based interventions reduce pain and improve physical function for people awaiting hip replacement surgery, but not those awaiting knee replacement surgery. It is notable that there were some limitations in the analysis by Gill and McBurney,8 wherein some included trials did not report

Table 3 Summary of results for prehabilitation versus no prehabilitation

Outcomes	Studies, (n)	Patients, (n)	Heterogeneity test p value	I² (%)	WMD and 95% CI
Pain at 4 weeks or less	4	213	0.08	55	−6.1 (−10.6 to −1.6)*
Pain at 6–8 weeks	5	488	0.31	16	−1.4 (−5.5 to +2.6)
Pain at 12 weeks	10	806	0.05	46	−2.9 (−6.2 to +0.3)
Pain at 24 weeks	3	247	0.22	33	−2.5 (−5.6 to +0.6)
Pain at 1 year or more	1	109	NA	NA	−2.0 (−7.5 to +3.5)
Function at 4 weeks or less	5	257	<0.001	79	−3.6 (−7.7 to +0.5)
Function at 6–8 weeks	5	488	0.21	31	−3.9 (−7.6 to −0.3)*
Function at 12 weeks	12	836	<0.001	69	−4.0 (−7.5 to −0.5)*
Function at 24 weeks	5	345	<0.001	89	−0.5 (−5.8 to +4.7)
Function at 1 year or more	6	296	0.99	0	−0.6 (−2.6 to +145)
First days of climbing stairs	2	99	0.44	0	−1.4 (−1.9 to −0.8)*
First days of walking	2	99	0.24	29	−0.2 (−0.4 to +0.002)
First days of use of toilet	2	99	0.87	0	−0.9 (−1.3 to −0.5)*
First days of use of chair	2	99	0.50	0	−1.2 (−1.7 to −0.8)*
SF-36 MCS at 6 weeks	1	19	NA	NA	2.7 (−9.4 to +14.7)
SF-36 PCS at 12 weeks	3	149	0.13	50	−0.3 (−5.4 to +4.7)
SF-36 PCS at 24 weeks	1	109	NA	NA	0.0 (−3.4 to +3.4)
SF-36 PCS at 1 year	1	109	NA	NA	−3.0 (−6.4 to +0.4)
SF-36 MCS at 6 weeks	1	17	NA	NA	−3.4 (−19.9 to +13.0)
SF-36 MCS at 12 weeks	3	149	0.72	0	−0.4 (−3.7 to +2.9)
SF-36 MCS at 24 weeks	1	109	NA	NA	−1.0 (−4.9 to +2.9)
SF-36 MCS at 1 year	1	109	NA	NA	−2.0 (−5.1 to +1.1)
Length of stay (days)	7	507	0.68	0	−0.3 (−0.8 to +0.1)
Total cost (Canadian dollars)	2	242	0.99	0	+5 (−384 to +393)

Pain and function scores were converted to WOMAC (Western Ontario and McMaster Universities osteoarthritis index) 0–100 subscales, and high score indicates more pain or dysfunction.
*p<0.05.
MCS, mental component summary; NA, not applicable; PCS, physical component summary; WMD, weighted mean difference.
Table 4 GRADE evidence profile: prehabilitation versus no formal prehabilitation for total joint replacement

Participants (studies) Follow-up	Risk of bias	Inconsistency	Indirectness	Imprecision	Publication bias	Overall quality of evidence	Relative effect or WMD (95% CI)	Median risk with non-prehabilitation (95% CI)	Anticipated absolute effects
Pain score at 4 weeks or less, measured with: WOMAC pain subscale 0–100; lower values indicate less pain									
Pain score at 4 weeks or less, measured with: WOMAC pain subscale 0–100; lower values indicate less pain									
213 (4 studies) ≤ 4 weeks	Serious risk of bias¹	Serious inconsistency; p value on test for heterogeneity 0.08, I²=55%	No serious indirectness	No serious imprecision	Uncertain (only 4 studies)	⊗⊗⊗ LOW due to risk of bias and inconsistency	**WMD −6.1** (<9.6 to −1.6)	**43.8%** patients achieved acceptable pain state of ≤30 on WOMAC pain (0–100) scale	**3.9% more** patients achieving acceptable pain state of ≤30 on WOMAC pain (0–100) scale
Pain score at 6–8 weeks, measured with: WOMAC pain subscale 0–100; lower values indicate less pain									
488 (5 studies) 6 to 8 weeks	Serious risk of bias*	No serious inconsistency; p value on test for heterogeneity 0.31, I²=16%	No serious indirectness	No serious imprecision†	Uncertain (only 5 studies)	⊗⊗ MILD due to risk of bias	**WMD −1.4** (−5.5 to +2.6)	**62.2%** patients achieved acceptable pain state of ≤30 on WOMAC pain (0–100) scale	**0% more** patients achieved acceptable pain state of ≤30 on WOMAC pain (0–100) scale
Pain score at 12 weeks, measured with: WOMAC pain subscale 0–100; lower values indicate less pain									
806 (10 studies) 12 weeks	Serious risk of bias*	Serious inconsistency; p value on test for heterogeneity 0.05, I²=46%	No serious indirectness	No serious imprecision	Undetected; Egger’s test p=0.35	⊗⊗⊗ LOW due to risk of bias	**WMD −2.9** (−6.2 to +2.8)	**60.9%** patients achieved acceptable pain state of ≤30 on WOMAC pain (0–100) scale	**1.2% more** patients achieved acceptable pain state of ≤30 on WOMAC pain (0–100) scale
Pain score at 24 weeks, measured with: WOMAC pain subscale 0–100; lower values indicate less pain									
247 (3 studies) 24 weeks	Serious risk of bias*	No serious inconsistency; p value on test for heterogeneity 0.22, I²=33%	No serious indirectness	No serious imprecision	Uncertain (only 3 studies)	⊗⊗ MEDIUM due to risk of bias	**WMD −2.5** (−6.6 to +0.6)	**98%** patients achieved acceptable pain state of ≤30 on WOMAC pain (0–100) scale	**0% patients achieved acceptable pain state of ≤30 on WOMAC pain (0–100) scale**
Function score at 4 weeks or less, measured with: WOMAC function subscale 0–100; lower values indicate better function									
Function score at 4 weeks or less, measured with: WOMAC function subscale 0–100; lower values indicate better function									
257 (5 studies) ≤ 4 weeks	Serious risk of bias*	Serious inconsistency; p value on test for heterogeneity <0.001, I²=79%	No serious indirectness	No serious imprecision†	Uncertain (only 5 studies)	⊗⊗⊗ LOW due to risk of bias and inconsistency	**WMD −3.6** (−7.7 to +0.5)	**26.8%** patients achieved acceptable function state ≤30 on WOMAC function scale (0–100)	**6.2% more** patients achieved acceptable function state ≤30 on WOMAC function scale (0–100)
Function score at 6–8 weeks, measured with: WOMAC function subscale 0–100; lower values indicate better function	488 (5 studies)	6 to 8 weeks	Serious risk of bias*	Unclear concealment: 3 studies; outcome assessors not blinded: 2; missing data >15%; 3	No serious inconsistency; p value on test for heterogeneity = 0.21, $I^2 = 30\%$	No serious indirectness	No serious imprecision	Uncertain (only 5 studies)	Moderate due to risk of bias
---	---	---	---	---	---	---	---	---	---
Function score at 12 weeks, measured with: WOMAC function subscale 0–100; lower values indicate better function	836 (12 studies)	12 weeks	Serious risk of bias*	Unclear concealment: 6 studies; outcome assessors not blinded: 4; missing data >15%; 6	Serious inconsistency; p value on test for heterogeneity <0.001, $I^2 = 69\%$	No serious indirectness	No serious imprecision	Serious; asymmetry on funnel plot; Egger’s test $p = 0.04$	VERY LOW due to risk of bias, inconsistency and publication bias
Function score at 24 weeks, measured with: WOMAC function subscale 0–100; lower values indicate better function	345 (7 studies)	24 weeks	Serious risk of bias*	Unclear concealment: 4 studies; outcome assessors not blinded: 2; missing data >15%; 2	Serious inconsistency; p value on test for heterogeneity <0.001, $I^2 = 89\%$	No serious indirectness	No serious imprecision†	Uncertain (only 7 studies)	LOW due to risk of bias and inconsistency

*None of the studies in the meta-analyses blinded patients and only 2 studies blinded the care providers.
†We did not rate down due to imprecision although 95% CI includes no effect because either extreme of the 95% CI is too small to be clinically important difference.

WMD, weighted mean differences; WOMAC, Western Ontario and McMaster Universities Osteoarthritis Index.
Figure 3
Function score at 6–8 weeks (converted to WOMAC function subscale 0–100) for prehabilitation versus no prehabilitation in joint replacement surgery. WOMAC, Western Ontario and McMaster Universities Osteoarthritis Index.

Study	Function name	Instruments	N, mean (SD) Treatment	N, mean (SD) Control	%	Weight
Globoffner	WOMAC function	(11-point scale, 0=best)	15, 12 (12)	20, 19 (10)	23.55	
McKay	WOMAC function	(0-60, 0=best)	9, 26.6 (17.4)	10, 26.2 (22.1)	4.17	
Oesting	HOOS function in daily living (0-100, 0=best)	-1.57 (-19.37, 16.23)	3, 13.5 (10.8)	11, 14.0 (10.3)	13.73	
Rokos	WOMAC function	(0-60, 0=best)	-0.15 (-7.15, 6.96)	25, 18.8 (13.2)	24, 19.0 (11.8)	28.91
Rokos	WOMAC function	(0-60, 0=best)	1.47 (-6.62, 11.50)	14, 24.0 (10.4)	15, 22.5 (16.8)	12.97
Villadsen	KOOS/HOOS ADL	(5-100, 50=best)	-10.10 (-28.61, -1.99)	84, 23.2 (28.9)	81, 33.3 (28.2)	18.66
Overall			-3.93 (-7.57, -2.29)	244	242	100.00

NOTE: Weights are from random effects analysis

Figure 4
Function score at 12 weeks (converted to WOMAC function subscale 0–100) for prehabilitation versus no prehabilitation in joint replacement surgery. ADL, activities of daily living; WOMAC, Western Ontario and McMaster Universities Osteoarthritis Index. KOOS, Knee injury and Osteoarthritis Outcome Score; HOOS, Hip disability and Osteoarthritis Outcome Score.

Study	Function name	Instruments	N, mean (SD) Treatment	N, mean (SD) Control	%	Weight
Beaure	WOMAC function	(0-100, 100=best)	51, 90 (14)	50, 49 (17)	10.51	
Bitteri	SF-36 PCS	(0-100, 100=best)	33, 25 (18.5)	34, 25 (15.4)	8.17	
Brown	SF-36 physical function	-27.10 (-52.60, -1.60)	31.6 (20.7)	7, 60.7 (30.3)	1.67	
D’Lima	HSSKR total score	-0.19 (-3.36, 2.98)	10, 17.9 (10.8)	5, 18.0 (8.8)	6.68	
D’Lima	HSSKR total score	8.91 (1.26, 19.06)	10, 27.0 (10.6)	5, 18.1 (8.8)	6.09	
Ferrara	WOMAC function	(0-80, 0=best)	-15.00 (-28.59, -1.41)	11, 26.9 (18.2)	12, 41.9 (14.7)	14.58
Gibney	WOMAC total score	-9.00 (-10.19, -7.81)	37, 11.2 (2.5)	31, 20.0 (2.5)	14.58	
Gooen	Harris Hip score	-8.00 (-12.05, -1.15)	29, 14.7 (11.8)	30, 21.3 (9.41)	10.91	
McKay	WOMAC function	(0-80, 0=best)	-1.81 (-20.68, 17.08)	7, 19.3 (17)	10, 21.1 (22.7)	2.79
Mitchell	WOMAC function	(0-80, 0=best)	-2.21 (-5.89, 5.47)	56, 36.6 (19.7)	57, 38.6 (21.9)	6.65
Tungtrongpli	Modified WOMAC	-6.66 (-11.83, -0.38)	30, 15.1 (11.2)	30, 21.2 (11.6)	10.56	
Villadsen	KOOS/HOOS ADL	(0-100, 100=best)	-9.30 (-17.69, -0.91)	84, 20.6 (26.7)	81, 29.3 (28.2)	8.01
Williamson	WOMAC total score	1.40 (-9.96, 11.66)	23, 26.7 (17.7)	19, 24.6 (16.5)	6.36	
Overall			-4.03 (-7.53, -0.53)	476	460	100.00

NOTE: Weights are from random effects analysis
if the patients underwent surgery after the intervention,57, 58 and/or failed to report postoperative outcomes,59, 60 and one included trial allocated patients based on the geographic availability, which may have introduced selection bias and unit of measurement errors. Furthermore, a total of nine relevant trials30-34, 38, 40-42, 44, 45, 50 were not included in Gill (2013).

Strengths and limitations

Strengths of this review include rigorous methodology, including the comprehensive systematic search without limits by language, date or publication status, which identified seven randomised controlled trials30-34, 38, 40-42, 44, 45, 50 not included in any previous systematic reviews.6-13 Furthermore, we analysed the effect of prehabilitation by converting to a standardised measurement of WOMAC pain and function scores, and used different presentation methods to enhance interpretability and to improve ability to find potential signals in effect size through meta-analysis,61 which is beyond what other systematic reviews published. In addition, this meta-analysis addressed all available clinically relevant outcomes, while previous reviews addressed only a few selected outcomes. Application of GRADE for rating quality of evidence provides improved context for interpreting the findings in light of inherent strengths and limitations of the included studies.62, 63

There were a number of specific limitations in the existing clinical trials comparing prehabilitation with control. The most significant limitation is the lack of large randomised controlled trials conducted in this area. Included studies were small (median 81 patient, ranging from 21 to 165), of relatively short duration of follow-up (median 3 months, ranging from 4 weeks to 1 year), and many of them provided inadequate description of the frequency, intensity and duration of prehabilitation provided. Definitions for prehabilitation and for outcomes measurements were heterogeneous across studies. Patient compliance with prehabilitation was reported as 75% in three studies,41, 42, 50 and 90% or greater in seven studies,17, 30, 33, 35, 36, 43, 48 and was not reported in the remainder of the studies. Most studies provided an inadequate description of the components of the prehabilitation programmes provided, and few described the fidelity of programme implementation.64 Future studies in this area should follow current guidelines for intervention description (TIDieR checklist) to enable transparent evaluation and replication of programmes.65 In a number of studies, cointerventions were provided in the prehabilitation (eg, education) and, in some cases, these cointerventions were not provided in the control group.31, 32, 34 Nevertheless, this would likely provide an overestimate of the potential benefit for prehabilitation; despite this potential positive bias, still no differences were found for prehabilitation. Considered

![Figure 5](https://example.com/figure5.png)
together, the heterogeneity of the included studies in types of prehabilitation programmes, control group interventions, compliance and fidelity within the programmes, and systematic differences in the study population, likely impacted the ability to detect differences, if any exist. Although we performed subgroup analysis for hip versus knee replacement surgery, this failed to explain the heterogeneity across studies. Owing to the limited numbers of studies, meta-analysis was not performed for the effect of different types of prehabilitation (eg, exercise only vs exercise plus education). Publication bias was not detected; however, the methodological quality of included studies is very low, which was the major reason that we downgraded the overall quality of evidence. The high risk of bias, combined with the selective reporting of important outcomes across the studies (eg, only two studies reported time to return to ADL and total costs) precludes definitive conclusions, despite at least 22 randomised controlled trials being conducted.

CONCLUSION
Existing evidence suggests that, in patients undergoing joint replacement, the effect of prehabilitation (exercise/physiotherapy programmes in the months prior to surgery) on pain and function are too small to be considered clinically-important and were not robust over time. Prehabilitation did not result in clinically-important (or statistically significant) differences in most measures of patient recovery, quality of life, length of stay and costs. Future research of sufficient power to measure clinically-relevant outcomes is required to identify which, if any, form of prehabilitation achieves better outcomes than in these trials. Jurisdictions considering implementation of prehabilitation services should consider whether resources could be better spent elsewhere on interventions of proven clinical benefit.

Author affiliations
1Centre for Medical Evidence, Decision Integrity and Clinical Impact (MEDICI), University of Western Ontario, London, Ontario, Canada
2Department of Anesthesiology and Pain Medicine, Konkuk University School of Medicine, Chungju, South Korea
3Michael G DeGroote Institute for Pain Research and Care, McMaster University, Hamilton, Ontario, Canada
4Department of Anesthesiology and Perioperative Medicine, University of Western Ontario, London, Ontario, Canada
5Department of Anesthesiology, Fuwai Hospital, Chinese Academy of Medical Sciences, Beijing, China
6Department of Anesthesiology & Perioperative Medicine, University of Western Ontario, London, Ontario, Canada
7Department of Epidemiology & Biostatistics, University of Western Ontario, London, Ontario, Canada

Acknowledgements The authors would like to thank Gordon Guyatt, MD, for mentorship to Li Wang on methodology, and Amy Nevitt, MLIS, for her contributions to the search updates and manuscript preparation. The authors are also thankful to ‘National Natural Science Foundation of China’ (Project #71073105) for supporting LW in the methodology training.

Contributors LW contributed to the study conception and design, literature screening, acquisition of data, analysis and interpretation of data, drafting of the manuscript and revision based on the comments of the co-authors. ML and ZZ participated in the literature screening, data acquisition and critical revision of the manuscript. JM performed the literature search, article retrieval and data acquisition. DC contributed to study conception and design, and critical revision of the manuscript. JM guided the methodology, and contributed to the study conception and design, data checking and interpretation, drafting and critical revision of the manuscript. All the authors approved the version submitted for publication and agreed to act as guarantors of the work.

Funding This study was supported by the MEDICI Centre, Department of Anesthesia and Perioperative Medicine, London Health Sciences Centre, St. Joseph’s Healthcare London, Lawson Health Research Institute, and the Schulich School of Medicine and Dentistry, University of Western Ontario. In addition, funding was provided in part by ‘AMOSO Innovation Fund’ (Project #INN 11-008, to JM and DC).

Competing interests None declared.

Provenance and peer review Not commissioned; externally peer reviewed.

Data sharing statement No additional data are available.

Open Access This is an Open Access article distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited and the use is non-commercial. See: http://creativecommons.org/licenses/by-nc/4.0/

REFERENCES
1. Felson DT, Lawrence RC, Hochberg MC, et al. Osteoarthritis: New insights. part 2: treatment approaches. Ann Intern Med 2000;133:76–87.
2. Beswick AD, Wylde V, Gooberman-Hill R, et al. What proportion of patients report long-term pain after total hip or knee replacement for osteoarthritis? A systematic review of prospective studies in unselected patients. BMJ Open 2012;2:e000435.
3. Vissers MM, Bussmann JB, Verhaar JA, et al. Recovery of physical functioning after total hip arthroplasty: Systematic review and meta-analysis of the literature. Phys Ther 2011;91:615–29.
4. Nilsson DK, Lagergren S, Roos EM. Knee arthroplasty: Are patients’ expectations fulfilled? A prospective study of pain and function in 102 patients with 5-year follow-up. Acta Orthop 2009;80:55–61.
5. Mak JC, Fransen M, Jennings M, et al. Evidence-based review for patients undergoing elective hip and knee replacement. ANZ J Surg 2014;84:17–24.
6. Ackerman IN, Bennett KL. Does pre-operative physiotherapy improve outcomes from lower limb joint replacement surgery? A systematic review. J Physiother 2004;50:25–30.
7. Jordan RW, Smith NA, Chahal GS, et al. Enhanced education and physiotherapy before knee replacement: is it worthwhile? A systematic review. Physiotherapy 2014;100:305–12.
8. Gill SD, McBuney H. Does exercise reduce pain and improve physical function before hip or knee replacement surgery? A systematic review and meta-analysis of randomized controlled trials. Arch Phys Med Rehabil 2013;94:164–76.
9. Shoemaker MJ, Gibson C, Saagman S. Preoperative exercise in individuals undergoing total knee arthroplasty: state of the evidence. Top Geriatr Rehabil 2013;29:2–16.
10. Hoogeboom TJ, Oosting E, Vriezenkolk JE, et al. Therapeutic validity and effectiveness of preoperative exercise on functional recovery after joint replacement: A systematic review and meta-analysis. PLoS ONE 2012;7:e38031.
11. Wallis JA, Taylor NF. Pre-operative interventions (non-surgical and non-pharmaceutical) for patients with hip or knee osteoarthritis awaiting joint replacement surgery—a systematic review and meta-analysis. Osteoarthritis Cartilage 2011;19:1381–95.
12. Barbay K. Research evidence for the use of preoperative exercise in patients preparing for total hip or total knee arthroplasty. Orthop Nurs 2009;28:127–33.
13. Lucas B. Does a pre-operative exercise programme improve mobility and function post-total knee replacement: a mini-review. J Orthop Nurs 2004;8:25–33.
14. Higgins JPT, Green S ed. Cochrane handbook for systematic reviews of interventions Version 5.1.0 [updated March 2011]. The Cochrane Collaboration, 2011. http://www.cochrane-handbook.org
related quality of life, and health service utilization following primary total knee arthroplasty. J Rheumatol 2004;31:1166–73.

15. Thorlund K, Top R, Brosky JA, et al. Prehabilitation and quality of life three months after total knee arthroplasty: a pilot study. Percept Mot Skills 2012;115:765–74.

16. Evgeniadis G, Beneka A, Malliou P, et al. Effects of pre- or postoperative therapeutic exercise on the quality of life, before and after total knee arthroplasty for osteoarthritis. J Back Musculoskeletal Rehabil 2008;21:161–9.

17. Gösteiner M, Raschner C, Dimberger E, et al. Preoperative proprioceptive training in patients with total knee arthroplasty. Knee 2011;18:265–70.

18. Matassi F, Duerinckx J, Vanderneuville H, et al. Range of motion after total knee arthroplasty: the effect of a preoperative home exercise program. Knee Surg Sports Traumatol Arthrosc 2014;22:703–9.

19. Mitchell C, Walker J, Walters S, et al. Costs and effectiveness of pre- and post-operative home physiotherapy for total knee replacement: a randomised controlled trial. J Eval Clin Pract 2005;11:283–92.

20. McKay C, Prapavessis H, Doherty T. The effect of a prehabilitation exercise program on quadriceps strength for patients undergoing total knee arthroplasty: a randomized controlled pilot study. PM R 2015;7:647–56.

21. Topp R, Swank AM, Quesada PM, et al. The effect of prehabilitation exercise on strength and functioning after total knee arthroplasty. PM R 2009;1:729–35.

22. Tungtrongjit Y, Weing P, Saunkool P. The effect of preoperative quadriceps exercises on functional outcomes after total knee arthroplasty. J Med Assoc Thai 2012;95(Suppl 10):S58–66.

23. Weidenheim L, Mattsson E, Brostrom L, et al. Effect of preoperative physiotherapy in uncompartmental prosthetic knee replacement. Scand J Rehabil Med 1993;25:33–9.

24. Williamson M, Wyatt M, Yen K, et al. Severe knee osteoarthritis: a randomized controlled trial of acupuncture, physiotherapy (supervised exercise) and standard management for patients awaiting knee replacement. Rheumatol (Oxford) 2007;46:1445–9.

25. Roeks DS, Huang J, Bierbaum BE, et al. Effect of preoperative exercise on measures of functional status in men and women undergoing total hip and knee arthroplasty. Arthritis Rheum. 2006;55:700–8.

26. Villadsen A, Overgaard S, Holsgaard-Larsen A, et al. Postoperative effects of neuromuscular exercise prior to hip or knee arthroplasty: a randomized controlled trial. Ann Rheum Dis. 2014;73:1130–7.

27. Villadsen A, Overgaard S, Holsgaard-Larsen A, et al. Immediate efficacy of neuromuscular exercise in patients with severe osteoarthritis of the hip or knee: a secondary analysis from a randomized controlled trial. J Rheumatol. 2014;41:1385–94.

28. Ehrich EW, Davies GM, Watson DJ, et al. Minimal perceptible clinical improvement with the western Ontario and McMaster universities osteoarthritis index questionnaire and global assessments in patients with osteoarthritis, J Rheumatol. 2000;27:2635–41.

29. Escobar A, Quintana JM, Bilbao A, et al. Responsiveness and clinically important differences for the WOMAC and SF-36 after total knee replacement. Osteoarthr Cartilage 2007;15:273–80.

30. Ängs G, Aeschlimann A, Michel BA, et al. Minimal clinically important rehabilitation effects in patients with osteoarthritis of the lower extremities. J Rheumatol. 2002;29:131–8.

31. Escobar A, Garcia Perez L, Herrera-Espiñeira C, et al. Total knee replacement: minimal clinically important differences and responders. Osteoarthr Cartilage 2013;21:2006–12.

32. Quintana JM, Escobar A, Bilbao A, et al. Responsiveness and clinically important differences for the WOMAC and SF-36 after total knee replacement. Osteoarthr Cartilage 2007;15:273–80.
60. Swank AM, Kachelman JB, Bibeau W. Prehabilitation before total knee arthroplasty increases strength and function in older adults with severe osteoarthritis. J Strength Cond Res 2011;25:318.

61. Johnston BC, Bandayrel K, Friedrich JO, et al. Presentation of continuous outcomes in meta-analysis: a survey of clinicians' understanding and preferences. Quebec City, Canada: 21st Cochrane Colloquium, 2013.

62. Guyatt GH, Oxman AD, Vist GE, et al. GRADE: An emerging consensus on rating quality of evidence and strength of recommendations. BMJ 2008;336:924–6.

63. Langer G, Meerpohl JJ, Perleth M, et al. [GRADE guidelines: 1. introduction—GRADE evidence profiles and summary of findings tables]. Z Evid Fortbild Qual Gesundhwes 2012;106:357–68.

64. Taylor KL, Weston M, Batterham AM. Evaluating intervention fidelity: an example from a high-intensity interval training study. PLoS ONE 2015;10:e0125166.

65. Hoffmann TC, Glasziou PP, Boutron I, et al. Better reporting of interventions: template for intervention description and replication (TIDieR) checklist and guide. BMJ 2014;348:g1687.
Appendix Search Strategies

Search Updated: November 10th, 2015

PubMed

	Search Strategy grated
1	(((((((((((((((exercise[tiab] OR prehabilitation[tiab] OR prehab[tiab] OR “physical therapy”[tiab] OR physiotherapy[tiab] OR “therapeutic exercise”[tiab] OR “therapeutic activity”[tiab] OR activity[tiab] OR “preoperative rehabilitation”[tiab] OR “weight training”[tiab] OR “weight lifting”[tiab] OR aquatic[tiab] or swimming[tiab] OR “strength training”[tiab] OR “endurance training”[tiab] OR cycling[tiab] OR biking[tiab] OR “weight reduction”[tiab] OR “weight loss”[tiab] OR kinesiotherapy[tiab] OR hydrotherapy[tiab] OR fitness[tiab] OR “exercise therapy”[tiab])

| 2 | (((Arthroplast*[tiab] OR replace*[tiab] OR “orthopedic surgery”[tiab]))) AND ((hip*[tiab] OR knee*[tiab]))

| 3 | 1 AND 2

| 4 | (((((pre-operative[tiab] OR preoperative[tiab] OR pre-op[tiab] OR preop[tiab] OR preoperative care[MeSH Terms])

| 5 | 3 AND 4

| 6 | random*

| 7 | 5 AND 6
	Term
1	exercise.ti,ab.
2	Prehabilitation.ti,ab.
3	Physical therapy.ti,ab.
4	Physiotherapy.ti,ab.
5	Therapeutic exercise.ti,ab.
6	Therapeutic activity.ti,ab.
7	Activity.ti,ab.
8	Preoperative rehabilitation.ti,ab.
9	Weight training.ti,ab.
10	Weight lifting.ti,ab.
11	Aquatic.ti,ab.
12	Swimming.ti,ab.
13	Strength training.ti,ab.
14	Endurance training.ti,ab.
15	Cycling.ti,ab.
16	Biking.ti,ab.
17	Weight reduction.ti,ab.
18	Weight loss.ti,ab.
19	Kinesiotherapy.ti,ab.
20	Hydrotherapy.ti,ab.
21	Fitness.ti,ab.
22	Exercise therapy.ti,ab.
---	---
23	or/1-22
24	arthroplast*.ti,ab.
25	replacement.ti,ab.
26	resurfac*.ti,ab.
27	orthopedic surgery.ti,ab.
28	hip*.ti,ab.
29	knee*.ti,ab.
30	or/24-27
31	28 or 29
32	30 and 31
33	23 and 32
34	random*.mp.
35	33 and 34
36	exp animals/
37	exp human/
38	(dog or dogs or canine or canines or pig or pigs or porcine or rat or rats or cat or feline or felines or lamb or lambs or mouse or mice or rabbit or rabbits).ti,ab.
39	36 not 37
40	38 or 39
41	35 not 39
42	pre-operative.mp.
43	preoperative.mp.
44	preoperative care/
Cochrane CENTRAL

1 "exercise":ti,ab,kw (Word variations have been searched)
2 "prehabilitation":ti,ab,kw (Word variations have been searched)
3 "physical therapy":ti,ab,kw (Word variations have been searched)
4 "physiotherapy":ti,ab,kw (Word variations have been searched)
5 "therapeutic exercise":ti,ab,kw (Word variations have been searched)
6 "therapeutic activity":ti,ab,kw (Word variations have been searched)
7 "activity":ti,ab,kw (Word variations have been searched)
8 "Preoperative rehabilitation":ti,ab,kw (Word variations have been searched)
9 "weight training":ti,ab,kw (Word variations have been searched)
10 "weight lifting":ti,ab,kw (Word variations have been searched)
11 "aquatic":ti,ab,kw (Word variations have been searched)
12 "swimming":ti,ab,kw (Word variations have been searched)
13 "strength training":ti,ab,kw (Word variations have been searched)
14 "Endurance training":ti,ab,kw (Word variations have been searched)
15 "cycling":ti,ab,kw (Word variations have been searched)
16 "biking":ti,ab,kw (Word variations have been searched)
17 "weight reduction":ti,ab,kw (Word variations have been searched)
	Description
18	"weight loss":ti,ab,kw (Word variations have been searched)
19	"kinesiotherapy":ti,ab,kw (Word variations have been searched)
20	"hydrotherapy":ti,ab,kw (Word variations have been searched)
21	"fitness":ti,ab,kw (Word variations have been searched)
22	"Exercise therapy":ti,ab,kw (Word variations have been searched)
23	#1 or #2 or #3 or #4 or #5 or #6 or #7 or #8 or #9 or #10 or #11 of #12 or #13 or #14 or #15 or #16 or #17 or #18 or #19 or #20 or #21 or #22
24	"arthroplasty":ti,ab,kw (Word variations have been searched)
25	"replacement":ti,ab,kw (Word variations have been searched)
26	"resurface":ti,ab,kw (Word variations have been searched)
27	"orthopedic surgery":ti,ab,kw (Word variations have been searched)
28	#24 or #25 or #26 or #27
29	"hip":ti,ab,kw (Word variations have been searched)
30	"knee":ti,ab,kw (Word variations have been searched)
31	#29 or #30
32	"preoperative":ti,ab,kw (Word variations have been searched)
33	"pre-operative":ti,ab,kw (Word variations have been searched)
34	"preop":ti,ab,kw (Word variations have been searched)
35	"pre-op":ti,ab,kw (Word variations have been searched)
36	#32 or #33 or #34 or #35
37	#28 and #31
38	#23 and #37
39	#36 and #38
Supplementary figure 1. Funnel plot to explore publication bias for pain scores

Supplementary figure 2. Funnel plot to explore publication bias for function scores
Study Name	Intervention	Compliance	Control	Postop intervention			
Beaupre 2004	physiotherapist supervised exercise	all but 1 participant completed the 12 sessions	usual care: regular activities and other treatment at discretion of physician	standard postoperative mobilization routine			
	land based: strengthening, aerobic; supervised by physiotherapist; 3 times/week * 4 weeks + education						
Bitterli 2011	home exercise	exercises completed on 91% of the days	no intervention	usual care (outpatient rehabilitation or rehabilitation clinic)			
	land based: strengthening and stretching, home exercises from 2 to 6 weeks, twice daily; 2 verbal and written instruction						
Brown 2012	physiotherapist supervised exercise + home exercise	not reported	usual care	not reported			
	land based: strengthening and stretching, supervised by physiotherapist once a week + home exercise 2 times/week * 8 weeks						
D'Lima 1996	physiotherapist supervised exercise	not reported	no intervention	routine care			
	Intervention A: land based: strengthening, stretching.						
	Intervention B: land based and pool based: strengthening, stretching, aerobic; once a week * 8 weeks						
Author	Year	Supervision	Setting	Intervention Details	Completion	Setting Details	Study Type
---------------	------	--------------------------------------	----------------------------------	--	------------	-----------------------------	-----------------------------------
Evgeniadis	2008	physiotherapist or orthopedist supervised	Exercise	land based: strengthening (mostly upper limb and trunk), 3 times/week * 3	not reported	no intervention	standard rehabilitation
Ferrara	2008	physiotherapist supervised	Exercise + Education	land based: strengthening, aerobic; supervised by physiotherapist; 5 times/week * 4 weeks + education	not reported	no intervention	postop rehabilitation programme
Gilbey	2003	physiotherapist supervised	Exercise + Home Exercise	land based and pool based: strengthening, stretching, aerobic, supervised by physiotherapist + home exercise: 2 times/week *8weeks	97% complete	routine in-hospital physical therapy	clinic-based
Gocen	2004	physiotherapist supervised	Exercise + Education	land based: strengthening, stretching, supervised by physiotherapist for 8 weeks; +education	not reported	no intervention	postoperative and education programme
Gstoettner	2011	physiotherapist supervised	Exercise + Home Exercise	land based: strengthening, stretching, balance; supervised by physiotherapist; once a week * 6 weeks +daily home training with written instructions	not reported	no intervention	not reported
Study	Supervised by	Intervention Details	Sessions Completed	Placebo/Standard Care	Postoperative Care		
------------	---------------------	---	--------------------	------------------------	--------------------		
Hoogeboom 2010	Physiotherapist supervised exercise + education	Land based: strengthening, aerobic, functional; + education	91% of the sessions completed	Usual care + education	Postop usual care protocol		
Matassi 2014	Physiotherapist supervised exercise + home exercise	Land based: increasing lower extremity muscle strengthening supervised by physiotherapist; once a week* 1 week+ home exercise 5 times/week * 6 weeks + written instructions	79.4% completed	Regular activities	Same physiotherapy routines		
McKay 2012	Kinesiologist supervised exercise	Land based: aerobic, strengthening, supervised by kinesiologist; 3 times/week * 6 weeks	98% of the sessions completed	Placebo (upper body exercises)	Standard postop care		
Mitchell 2005	Physiotherapist supervised exercise + home exercise	Land based: pain relief, increase knee flexion and extension, gait re-education, supervised by physiotherapist; 3 times/week * 8 weeks + home exercise 4 times/week * 8 weeks	73.6% sessions completed	Preoperative consultation	Usual hospital physiotherapy (post-discharge only)		
Oosting 2012	Physiotherapist supervised exercise + home exercise	Land based: "functional tasks exercise", supervised by physiotherapist; 2 times/week + home exercise 4 times/week * 3 to 6 weeks	99% of the sessions completed	Usual care (30min supervised class)	Not reported		
Study	Intervention Details	Outcome Measures					
--------------	--	---					
Rooks 2006	Physiotherapist supervised exercise + education Land based and pool based: strengthening, stretching, aerobic, supervised by physiotherapist; 3 times/week * 6 weeks; + education on home modifications	89% of sessions completed Education via leaflet and telephone + 30-60min supervised class					
Topp 2009	Physiotherapist supervised exercise + home exercise Land based: resistance training, flexibility, step training, supervised by physiotherapist, once a week + home exercise 2 times/week	13 sessions completed (range 4 to 23) No intervention postop rehabilitation					
Tungtrongjit 2012	Home exercise Land based: home quadriceps strengthening exercise for 3 weeks	Not reported No intervention postop rehabilitation					
Villadsen 2014	Physiotherapist supervised exercise Land based: standard preoperative educational package + NEMEX programme; supervised by physiotherapist; 2 times/week * 8 weeks	74% attended the pre-specified goal of 12 or more exercise Standard preoperative educational package postop rehabilitation					
Vukomanovic 2008	Physiotherapist supervised exercise + education Land based: physical therapy + education	Not reported No intervention postop rehabilitation					
Wang 2002	Physiotherapist supervised exercise + home exercise Land based and pool based: strengthening, stretching, aerobic, supervised by physiotherapist+ home exercise; 2 times/week	97% of sessions complete Routine perioperative care postop rehabilitation					
Study	Intervention Details						
---------------	--						
Weidenhielm 1993	Physiotherapist supervised exercise + home exercise. Land based: strengthening, stretching, aerobic, supervised by physiotherapist, 3 times/week.	5 weeks; + home exercise daily					
Williamson 2007	Physiotherapist supervised exercise + home exercise. Land based: strengthening, stretching, balance, supervised by physiotherapist; 1 times/week.	+1 hour supervised					

NEMEX: neuromuscular exercise programme
Study Name	No. of patients	Type of surgery	Comparison	Rehabilitation	Results	Resource use	others		
Beaupre	131	TKR	PT supervised exercise + postop education vs. usual care	Standard postop mobilization routine	WOMAC pain: NS	Knee ROM: NS; Quadriceps strength: NS; Hamstring Strength: NS from 3mo. to 1 year postoperatively	SF-36: NS in each domains, PCS, and MCS from 3mo. to 1 yr postoperatively	Acute care LOS, transfer LOS, readmission LOS, and total LOS: NS (total LOS: -1.5 d) Institutional costs, homecare costs, readmission costs, total costs: NS (total cost: + $33): Postoperative complications: e.g. pulmonary emboli (n=2), deep vein thrombosis (n=9), infection (n=5), postoperative angina: NS	
Bitterli	80	THR	Preoperative sensorimotor training at home (daily exercises at home) vs. no	Postop. Standard therapy protocol in hospital	SF-36 pain: NS after surgery (4mo.,1 year)	SF-36 physical function: NS after surgery (4mo,1 year) WOMAC: NS after surgery (4mo, 1 year)	SF-36: NS in each domains after surgery 14.6 d	LOS: NS (14.6 vs. 14.6 d)	
Study	Year	TKR	Preop intervention	Postop intervention	SF-36 pain NS at 3mo after surgery	SF-physical function score: ↑(MD+27.1)	SF-36:↑ in physical function score (MD+27.1)	NS in other domains	Quality of Well Being scores (0-1): Percentage improvement - NS
-----------	------	-----	-------------------	---------------------	-----------------------------------	--	---	-------------------	--
Brown	2012	32	Preop. exercise	Usual care	-	-	-	-	-
D'Lima	1996	30	Preop. therapy	Cardiovascular	-	-	-	-	Hospital for Special Surgery Knee Rating (0-30):NS from 3wk to 1yr
Evgeniad	2008	48	Preop. exercise	Usual care	-	ILAS score: NS after surgery (2, 6, 10, 14wks)	SF-36: NS at 1 day after surgery (preop)	-	Arthritis impact measurement scale scores (0-10): Percentage improvement NS
Study	Year	Group Description	Intervention Details	1 mo Changes	3 mo Changes	6 mo Changes			
---------------	------	--	---	---	---	---			
Ferrara 2008	23	Educational and PT supervised physiotherapy program vs. no intervention	Postop. 4 weeks VAS: ↓ at 1, 3 mo. (MD -1.8, -0.97) ROM external rotation: ↑ at 15 days, 1 and 3 mo. after surgery WOMAC pain: NS at 3 mo.	SF-36 PCS: ↑ at 1 mo, but NS at 3 mo	SF-36 MCS: NS				
Gilbey 2003	76	8 weeks customized exercise program vs. no exercise	Postop. Exercise program (until 12 weeks after surgery) VS routine in-hospital PT	WOMAC pain: NS Mean ROM at 3, 12, 24 weeks: ↑ (MD+6, +11, +12) Hip strength mean Z score after surgery (12, 24 weeks): ↑ (MD+0.35, +0.6) WOMAC total score after surgery (3, 12, 24 weeks): ↑ (MD+8, +9, +9) WOMAC stiffness: NS, 3, 12, 24 weeks					
Study	Participants	Intervention	Comparison	Outcome Measures					
------------------	--------------	--------------------------------------	---	--					
Gocen 2004	60 THR	Physiotherapy and educational program vs. no exercise or education	Routine postop. Exercise and educational program vs. no exercise or education	WOMAC function: ↑ 3, 12, 24wks Hip adduction at discharge: NS (MD-0.1) VAS at rest at discharge: NS (MD-0.12) VAS at activity at discharge: NS (MD-0.06) Harris Hip Score: NS at 3mo, 2 years after surgery LOS: NS 					
-	 Gait speed (60m): NS; Gait speed (stairs up): NS; Gait speed (stairs down): NS; Knee stability (OSI): NS; Knee stability (MLSI): NS; Knee stability (APSI): ↓ (MD -0.6) 6wk postoperatively								
Hoogeboom 2010	THR	Therapeutic exercise program vs. usual care	Postop. usual care protocol till discharge	HOOS pain: NS VAS: NS	Functional recovery: NS	HOOS (in all domains): NS VAS: NS	At baseline and preop, LASA physical activity questionnaire (all domains): NS	At baseline and preop, Patient-specific complaints (PSK): NS	LOS: NS 6 vs. 6 days 2 postoperative complications in exercise group: femur fracture and intestinal obstruction. no serious AE
Matassi 2014	TKR	Preoperative home exercise program vs. regular activities	Same postop. physiotherapy routine	Mean time to reach 90° of knee ROM: ↓ (MD -1.1 day) Active knee flexion: NS at 6wks. 6mo, 1yr Passive knee flexion: NS at 6wks. 6mo, 1yr Knee score or patient function score (Knee Society Clinical Rating System): NS at 6wks, 6 mos. 1 yrs.	-	-	LOS: ↓ (MD -0.8 day)		
McKay 2012	TKR	Lower-body strength training program vs. nonspecific upper-body postop. care	Standard postop. care	WOMAC pain: NS, MD+0.7, +0.9 at 6 and 12wks. Quadriiceps strength: NS 50-foot walk: NS Stair test: NS Arthritis self–efficacy	SF-36 PSC: NS	SF-36 (PCS, MCS): NS after surgery	-	-	
Study	Sample Size	Procedure	Intervention	Outcome Measures	Results				
-------	-------------	-----------	--------------	------------------	---------				
Mitchell 2005	160 TKR	PT supervised pre- & postop home exercise	Postop home exercise or hospital PT (home PT) vs. no pre-op exercise + usual hospital PT postop	WOMAC pain: NS, SF-36 bodily pain: NS, WOMAC physical function: NS; WOMAC stiffness: NS; SF-36 physical function: NS at 12wk	LOS: NS (MD -0.4d), Cost of PT: NS(MD + £1.4), Total cost: NS(MD + £4.7)				
Oosting 2012	30 THA	PT supervised exercise vs. usual care	-	HOOS pain: NS, VAS: NS, 6wk changes from baseline. TUG: NS; CRT: ↓ (MD -9.2s); 6MWT: NS; PSC: NS; HOOS other symptoms, function in daily living, function in sport and recreation: NS; LAPAQ: NS	HOOS hip-related quality of life: NS, Patient Specific Complaints (PSC) questionnaire score: NS, Patient satisfaction with PT: NS (86% in both groups) at 12wk	LOS: NS (MD -0.3d), Nursing home after discharge: NS			

Complications: e.g. Wound, delirium, loss of sensation, decubitus ulcers, and...
Rooks	108	THA+	PT supervised	THA vs. education	6wk post-discharge changes from baseline	bowel obstruction	NS	
2006	TKA	exercise+education	For THR: WOMAC pain: NS	For both THR and TKR:	-	-	-	
			SF-36 pain: NS		WOMAC function: NS; SF-36 physical function: NS			
			8wk and 26wk postoperatively		SF-36 role limitation physical: NS; 1-repetition maximum: NS;			
			For TKR: WOMAC pain: NS		Timed up and go: NS; 8wk and 26wk postoperatively			
			SF-36 pain: NS		8wk postoperatively			
Topp	54	TKA	PT supervised	Postoperative rehabilitation	Pain in Sit-to-stand, 6MWT, Ascent and descent stairs: NS?	-	-	-
2009			exercise vs. usual care		6MWT: NS?			
			rehabilitation		Ascent and descent stairs: NS?			
					at 1, 3mo. Maximum extension strength of			
No between-group comparison

Maximum extension strength of the surgical knee:?

at 1, 3mo. postoperatively

No between-group comparison

Modified WOMAC pain score: ↓ (MD -6.3)

Modified WOMAC stiffness score: ↓ (MD -2.5)

at 1 mo

Modified WOMAC function score: ↓ (MD -17.7)

Quadriceps strength:

Modified WOMAC pain score: ↑(MD+1.5)

at 1 mo postoperatively

Modified WOMAC stiffness score: ↓ (MD -2)

Modified WOMAC function score: ↓ (MD -1)

at 3 mo

postoperatively
Measure	Change	Time Point
Pain score	↓ (MD - 2.3)	at 6 mo postoperatively
VAS: NS at 6 mo postoperatively		
Quadriceps strength:	↑ (MD + 2.2)	at 3 mo postoperatively
Total Modified WOMAC score:	NS	
Modified WOMAC stiffness score:	NS	
Modified WOMAC function score:	NS	
Quadriceps strength at 6 mo postoperatively	NS	
Knee Flexion:	NS	
Knee Extension:	NS	
Total knee ROM:	NS	at 1, 3, 6 mo postoperatively
Villadse 165 THA+ PT supervised exercise + education vs. education n 2014

Postoperative rehabilitation	For THR+TKR:	For both THR+TKR or For TKR:	For both THR+TKR or For TKR:
KOOS/HOOS Pain: ↓ (MD -5.4)	KOOS/HOOS ADL: ↑ at 6wk postop, but NS at 3mo postop	KOOS/HOOS ADL: NS at 6wk and 3mo postop	EQ5D VAS: ↓ (MD - 7.6) at 6wk postop, but NS at 3mo postop
For THR:	For THR:	For THR:	For THR:
KOOS/HOOS Pain: NS changes at 6wk and 3mo postop from base line	KOOS/HOOS ADL: NS at 6wk and 3mo postop	EQ5D VAS: NS	At 6wk and 3mo postop
For TKR:	For THR+TKR or For THR or TKR:	For TKR:	For TKR:
KOOS/HOOS Pain: ↓ (MD -8)	KOOS/HOOS symptoms: NS	EQ5D VAS: ↓ (MD - 8.8) changes at 6wk postop from baseline, but NS changes at 3mo postop from baseline	EQ5D VAS: NS

Single-joint hip extension and hip abduction: ↑ (~15% and 35% improvement)

For THR+TKR or THR or TKR:

EQ5D index: NS

One patient with hip OA discontinued the exercise due to an increase in pain.

2 patients from the control group developed deep periprosthetic infection.
Vukoma 45	THA	PT supervised exercise + education vs. no interventions	Pain at rest (VAS): NS	Pain on movement (VAS): NS at discharge postop	Chair stand: NS	20-m walk: NS	Knee bends: NS	Contra: NS at 3mo	KOOS/HOOS QOL: NS	At 6 wk or 3 mo postop changes from baseline.	Class with the therapist: ↓ (MD -1.65)	LOS: NS (- MD +0.4d)	Five patients were excluded postoperatively because of complications during and post operation.
		Postoperative rehabilitation	First day of activities – use of toilet ↓ (MD -0.9d), use of chair ↓ (MD -1.05d), and walking up and down stairs: ↓ (MD -1.67d)	Changing position in bed: ↑(MD +0.95)	Changing position on the edge: ↑(MD +0.9)	From sitting to standing: ↑(MD +1.05)	Standing: ↑(MD +1.1)	Changing position to lying: ↑(MD +1.15)	Walking: ↑(MD +1.15)				
Use of toilet: ↑(MD +1.9)

Use of Chair: ↑(MD +1.9)

Walking up and down stairs:
↑(MD +1.8)

Endurance while walking:
↑(MD +1)

at the 3rd day postoperatively

Changing position in bed:
↑(MD +0.4)

Changing position on the edge:
↑(MD +0.45)

From sitting to standing: ↑(MD +0.45)

Standing: ↑(MD +0.45)

Changing position to lying:
↑(MD +0.45)

Walking: ↑(MD +0.5)

Use of toilet: ↑(MD +1)

Use of Chair: ↑(MD +1.25)

Walking up and down stairs:
Endurance while walking:
\(\uparrow (MD + 1.85) \)

at the discharge

Flexion of the hip flexed knee:
NS

Flexion of the hip extended knee: NS

Abduction: NS

Harris hip score: NS

JOA hip score: NS

At discharge postoperatively

Oxford Hip Score: NS

At 15 mo postoperatively

Cadence (steps/min): \(\uparrow (MD + 18) \)

Stride length: \(\uparrow (MD + 0.06m) \)

Gait velocity: \(\uparrow (MD + 0.28) \)

At 3 wk postoperatively

Complications:
NS

no wound infections, joint

| Wang | 28 | THA | PT supervised pre- & post-operative exercise vs. PT supervised pre- & post-operative | Postoperative exercise or usual care | \(\uparrow (MD + 1) \) | \(\uparrow (MD + 1.85) \) | Cadence (steps/min): \(\uparrow (MD + 18) \) | Stride length: \(\uparrow (MD + 0.06m) \) | Gait velocity: \(\uparrow (MD + 0.28) \) | Complications: |
usual care

Cadence (steps/min): \(\uparrow (\text{MD} + 9) \)	Cadence (steps/min): \(\uparrow (\text{MD} + 10) \)
Stride length: NS	Stride length: NS
Gait velocity: \(\uparrow (\text{MD} + 0.2) \)	Gait velocity: \(\uparrow (\text{MD} + 0.21) \)
At 12 wk postoperatively	At 24 wk postoperatively

6MWT: NS
At 12 wk postoperatively

6MWT: \(\uparrow (\text{MD} + 64\text{m}) \)
At 24 wk postoperatively

| Weidenh 39 TKP PT supervised VRS (no, mild, moderate, and severe pain): NS No. patients grading the knee as stable or unstable: NS |
|---|---|---|---|---|---|---|
| exercise vs. no exercise | VRS (no, mild, moderate, and severe pain): NS No. patients grading the knee as stable or unstable: NS |
Williams on 2007 TKR	PT supervised exercise vs. education leaflet	VAS: NS (MD -0.09) at 3mo postop	OKS: NS (MD +1.61)	HAD score anxiety: NS (MD +1.84)	HLOS: NS (MD -1.27d)	Cost of PT: £9 per patient	No adverse responses

6MWT: 6-minute walk test; ADL: activities of daily living; APSI: anteroposterior stability index; EQ5D: EuroQol 5 Dimension Health Questionnaire; HAD: Hospital Anxiety and Depression score; HOOS: Hip disability and Osteoarthritis Outcome Score; ILAS: Iowa Level of Assistance Scale; KOOS: Knee injury and Osteoarthritis Outcome Score; KSS: Knee Society Score; LASA: Longitudinal Aging Study Amsterdam; LOS: length of stay; MCS: mental component summary; MD: mean difference; MLSI: medio-lateral stability index; NS: not significant; OA: Osteoarthritis; OKS: Oxford Knee Score questionnaire; OSI: overall stability index; PCS: physical component summary; postop: postoperative; preop: preoperative; PT: physical therapist; ROM: range of motion; THR: total hip replacement; TKP: total knee replacement; TUG: Timed Up & Go; VAS: visual analogue scale; VRS: verbal rating scale; WOMAC: Western Ontario and McMaster Universities Arthritis Inde
Supplementary Table 3: Subgroup Analysis of TKR and THR

Outcomes	Subgroup	No. of studies	No. of patients	Heterogeneity test	I^2 (%)	WMD (95% CI)	interaction p value
Pain at 4 weeks or less	TKR	2	114	0.04	75	-8.6 (-15.0 to -2.3)	0.26
	THR	2	99	0.93	0	-0.9 (-7.5 to +5.8)	
Pain at 6 to 8 weeks	TKR	4	164	0.04	64	-2.7 (-11.7 to +6.3)	0.88
	THR	3	159	0.92	0	-1.3 (-6.5 to +4.0)	
Pain at 12 weeks	TKR	9	534	0.02	55	-3.2 (-7.1 to +0.7)	0.24
	THR	2	107	0.86	0	-3.0 (-9.8 to +3.9)	
Pain at 24 weeks	TKR	3	198	0.54	0	-4.1 (-7.1 to -1.0)	0.47
	THR	1	59	NA	NA	+0.5 (-3.6 to +4.6)	
Function at 4 weeks or less	TKR	3	90	0.004	82	+0.7 (-12.1 to +13.5)	0.47
	THR	3	167	0.009	79	-0.5 (-9.1 to -1.4)	
Function at 6 to 8 weeks	TKR	4	164	0.004	64	-6.3 (-13.9 to +1.3)	0.34
	THR	3	157	0.119	45	-1.7 (-6.9 to +3.5)	
Function at 12 weeks	TKR	9	470	0.04	51	-2.4 (-7.0 to +2.2)	0.14
Function at 24 weeks	TKR	5	228	0.12	45	-4.1 (-7.1 to -1.2)	0.22
Function at 1 year or more	TKR	3	139	0.87	93	0.5 (-3.6 to +4.6)	0.85

TKR: total knee replacement; THR: total hip replacement; NA: not applicable
Supplementary Table 4 Sensitivity Analysis to test robustness of results after removing total score

Outcomes	SMD (95% CI)	RoM (95% CI)	WMD (95% CI) after removing total score
Pain at 4 weeks or less	-0.70 (-1.46 to +0.06)	0.74 (0.68 to 0.81)	NR
Pain at 6 to 8 weeks	-0.17 (-0.38 to +0.05)	0.88 (0.73 to 1.06)	NR
Pain at 12 weeks	-0.20 (-0.40 to 0.00)	0.87 (0.76 to 1.01)	NR
Pain at 24 weeks	-0.26 (-0.56 to +0.04)	0.78 (0.60 to 1.02)	NR
Pain at 1 year or more	-0.14 (-0.51 to +0.24)	0.90 (0.68 to 1.20)	NR
Function at 4 weeks or less	-0.58 (-1.45 to +0.29)	0.90 (0.79 to 1.04)	-5.0 (-9.4 to -0.6)
Function at 6 to 8 weeks	-0.27 (-0.49 to -0.05)	0.86 (0.76 to 1.00)	NR
Function at 12 weeks	-0.48 (-0.91 to -0.05)	0.82 (0.67 to 1.00)	-4.5 (-7.9 to -1.1)
Function at 24 weeks	-0.49 (-1.47 to +0.49)	0.87 (0.56 to 1.33)	+0.1 (-4.1 to +4.3)
Function at 1 year or more	-0.01 (-0.24 to +0.22)	1.01 (0.88 to 1.15)	-0.4 (-2.6 to +1.8)

SMD: Standardized mean difference; RoM: Ratio of mean; WMD: Weighted mean difference; NR: not relevant since total score was not included.
Supplementary Table 5 Sensitivity analysis using different thresholds of patient acceptable symptom state (PASS)

Outcomes	PASS <=30														
	RR	median	RD	RR	median	RD	RR	median	RD	RR	median	RD	RR	median	RD
	baseline		risk	baseline		risk	baseline		risk	baseline		risk	baseline		risk
Pain at 4 weeks or less	1.09	43.8%	3.9%	1.04	94.1%	3.8%	1.76	8.0%	6.1%						
Pain at 6 to 8 weeks	1.00	62.2%	0%	1.00	78.3%	0%	1.02	45.0%	0.9%						
Pain at 12 weeks	1.02	60.9%	1.2%	1.01	79.2%	0.8%	1.10	40.2%	4.0%						
Pain at 24 weeks	1.00	98.0%	0%	1.00	99.9%	0%	1.04	84.7%	3.4%						
Function at 4 weeks or less	1.23	26.8%	6.2%	1.10	71.7%	7.2%	1.67	4.9%	3.3%						
Function at 6 to 8 weeks	1.10	54.3%	5.4%	1.02	69.1%	1.4%	1.20	38.8%	7.8%						
Function at 12 weeks	1.02	62.6%	1.3%	1.02	79.8%	1.6%	1.34	39.2%	13.3%						
Function at 24 weeks	1.00	97.4%	0%	1.00	99.9%	0%	1.01	84.7%	0.8%						
Function at 1 year or more	0.97	88.1%	-2.6%	0.97	98.1%	-2.9%	1.30	66.4%	19.9%						