About the spectra of a real nonnegative matrix and its signings

K. Attas, A. Boussaïri*, and M. Zaidi

Communicated by Yu. A. Drozd

Abstract. For a complex matrix M, we denote by $\text{Sp}(M)$ the spectrum of M and by $|M|$ its absolute value, that is the matrix obtained from M by replacing each entry of M by its absolute value. Let A be a nonnegative real matrix, we call a signing of A every real matrix B such that $|B| = A$. In this paper, we characterize the set of all signings of A such that $\text{Sp}(B) = \alpha \text{Sp}(A)$ where α is a complex unit number. Our motivation comes from some recent results about the relationship between the spectrum of a graph and the skew spectra of its orientations.

1. Introduction

Throughout this paper, all matrices are complex, unless otherwise noted. The identity matrix of order n is denoted by I_n and the transpose of a matrix A by A^T. Let Σ be a subgroup of \mathbb{C}^*, the group of nonzero complex numbers under multiplication. Two square matrices A and B are Σ-diagonally similar if $B = \Lambda^{-1} A \Lambda$ for some diagonal matrix Λ with diagonal entries in Σ. A square matrix A is reducible if there exists a permutation matrix P, so that A can be reduced to the form $PAP^T = \begin{pmatrix} X & Y \\ 0 & Z \end{pmatrix}$ where X and Z are square matrices. A square matrix which is not reducible is

*Corresponding author.

2020 MSC: 05C20, 05C50.

Key words and phrases: spectra, digraphs, nonnegative matrices, irreducible matrices.
said to be irreducible. A real matrix A is nonnegative, (we write $A \geq 0$), if all its entries are nonnegative.

Let A be an $n \times n$ real or complex matrix. The multiset $\{\lambda_1, \ldots, \lambda_n\}$ of eigenvalues of A is called the spectrum of A and is denoted by $\text{Sp}(A)$. We usually assume that $|\lambda_1| \geq |\lambda_2| \geq \ldots \geq |\lambda_n|$. The spectral radius of A is $\rho(A) := |\lambda_1|$. The relationship between the spectrum of a graph and the skew spectra of its orientations is studied in many papers (see for example [1,2,4–6,8,10]). Our work is closely related to the result of Shader and So [8]. To state this result, we need to introduce some definitions and notations.

Let G be a finite simple graph with vertex set $V(G) = \{v_1, \ldots, v_n\}$ and edge set $E(G)$. The adjacency matrix of G is the symmetric matrix $A(G) = (a_{ij})_{1 \leq i,j \leq n}$ where $a_{ij} = a_{ji} = 1$ if $\{v_i, v_j\}$ is an edge of G and $a_{ij} = a_{ji} = 0$ otherwise. Since the matrix $A(G)$ is symmetric, its eigenvalues are real. The adjacency spectrum $\text{Sp}(G)$ of G is defined as the spectrum of $A(G)$. Let G^σ be an orientation of G, which assigns to each edge a direction so that the resultant graph G^σ becomes an oriented graph. The skew-adjacency matrix of G^σ is the real skew-symmetric matrix $S(G^\sigma) = (a^\sigma_{ij})_{1 \leq i,j \leq n}$ where $a^\sigma_{ij} = -a^\sigma_{ji} = 1$ if (v_i, v_j) is an arc of G^σ and $a^\sigma_{ij} = 0$ otherwise. The skew-spectrum $\text{Sp}(G^\sigma)$ of G^σ is defined as the spectrum of $S(G^\sigma)$. Note that $\text{Sp}(G^\sigma)$ consists of only purely imaginary eigenvalues because $S(G^\sigma)$ is a real skew-symmetric matrix.

Let G be a bipartite graph with bipartition $[I,J]$, the orientation G^ε that assigns to each edge of G a direction from I to J is called the canonical orientation. Shader and So [8] showed that $\text{Sp}(G^\varepsilon) = i \text{Sp}(G)$. Moreover, they proved that a graph G is bipartite if and only if $\text{Sp}(G^\sigma) = i \text{Sp}(G)$ for some orientation G^σ of G.

Consider now two orientations G^σ and G^τ of G. We say that G^σ and G^τ are switching-equivalent if there exists a subset W of $V(G)$ such that G^σ is obtained from G^τ by reversing the direction of all arcs between W and $V(G)\setminus W$. Clearly, the skew-adjacency matrices of switching-equivalent orientations are $\{-1,1\}$-diagonally similar. Hence, they have the same spectrum. When G is bipartite, Anuradha et al. [1] proved that $\text{Sp}(G^\tau) = i \text{Sp}(G)$ if and only if G^σ is switching-equivalent to the canonical orientation.

These results can be stated in term of matrices as follows.

Proposition 1. Let A be a $\{0,1\}$-symmetric matrix. Then the following statements are equivalent:
i) There exists a real skew-symmetric matrix B such that $|B| = A$ and $\text{Sp}(B) = i\text{Sp}(A)$;

ii) There exists a permutation matrix P such that

$$PAP^T = \begin{pmatrix} 0 & X \\ X^T & 0 \end{pmatrix}$$

where the zero diagonal blocks are square.

Proposition 2. Let $A = \begin{pmatrix} 0 & X \\ X^T & 0 \end{pmatrix}$ be a $\{0,1\}$-symmetric matrix and let B be a skew-symmetric matrix such that $|B| = A$. Then, the following statements are equivalent:

i) $\text{Sp}(B) = i\text{Sp}(A)$;

ii) B is $\{-1,1\}$-diagonally similar to $\tilde{A} = \begin{pmatrix} 0 & X \\ -X^T & 0 \end{pmatrix}$.

For a $\{0,1\}$-symmetric matrix A, the propositions above characterize the set of all skew-symmetric signings B of A, such that $\text{Sp}(B) = i\text{Sp}(A)$. In this paper, we consider the more general problem.

Problem 1. Let A be a nonnegative real matrix and let α be a complex unit number. Characterize the set of all signings B of A such that $\text{Sp}(B) = \alpha\text{Sp}(A)$.

We solve this problem when A is an irreducible matrix. To state our main result, we need some terminology. A digraph D is a pair consisting of a finite set $V(D)$ of vertices and a subset $E(D)$ of ordered pairs of vertices called arcs. Let v,v' be two vertices of D, a path P from v to v' is a finite sequence $v_0 = v, \ldots, v_k = v'$ such that $(v_0, v_1), \ldots, (v_{k-1}, v_k)$ are arcs of D. The length of P is the number k of its arcs. If $v_0 = v_k$, we say that P is a closed path. A digraph is said to be strongly connected if for any two vertices v and v', there is a path joining v to v'. It is easy to see that a strongly connected digraph contains a closed path. The period of a strongly connected digraph is the greatest common divisor of the lengths of its closed paths.

With each $n \times n$ matrix $A = (a_{ij})_{1 \leq i,j \leq n}$, we associate a digraph D_A on the vertex set $[n] = \{1, \ldots, n\}$ and with arc set $\{(i,j) : a_{ij} \neq 0\}$. It is easy to show that A is irreducible if and only if D_A is strongly connected. The period of an irreducible matrix is the period of its associate digraph. For example, if A is the adjacency matrix of a connected graph G, then
About the spectra of a real nonnegative matrix

its period is either 1 or 2. Moreover, the period of A is 2 if and only if G is bipartite.

Let A be an irreducible nonnegative real matrix of period p. For each complex unit number α, we denote by $\mathcal{M}(\alpha, A)$ the set of all signings B of A such that $\text{Sp}(B) = \alpha \text{Sp}(A)$.

In Corollary 2, we prove that if $\mathcal{M}(\alpha, A)$ is nonempty, then $\alpha = e^{\frac{i\pi k}{p}}$ for some $k \in \{0, \ldots, 2p-1\}$. Moreover, we prove in Proposition 6 that $e^{-\frac{i\pi}{p}} \text{sp}(A) = \text{sp}(A)$. This implies that,

$$\mathcal{M}(1, A) = \mathcal{M}(e^{\frac{2i\pi}{p}}, A) = \mathcal{M}(e^{\frac{2(p-1)i\pi}{p}}, A) = \cdots = \mathcal{M}(e^{\frac{(2p-1)i\pi}{p}}, A)$$

Therefore, it suffices to characterize $\mathcal{M}(1, A)$ and $\mathcal{M}(e^{\frac{i\pi}{p}}, A)$.

In the proof of Corollary 1, we give an explicit construction of a matrix $B_0 \in \mathcal{M}(e^{\frac{i\pi}{p}}, A)$ which is used in our main theorem below.

Theorem 1. Under the notation above, the following statements hold

i) $\mathcal{M}(1, A)$ is the set of matrices $\{-1, 1\}$-diagonally similar to A;

ii) $\mathcal{M}(e^{\frac{i\pi}{p}}, A)$ is the set of matrices $\{-1, 1\}$-diagonally similar to B_0.

2. Some properties of $\mathcal{M}(\alpha, A)$

Throughout, A is an $n \times n$ irreducible nonnegative matrix, p its period and α a unit complex number. We will use the following theorem due to Helmut Wielandt [9].

Theorem 2. Let B be a complex $n \times n$ matrix such that $|B| \leq A$. Then $\rho(B) \leq \rho(A)$. Moreover, if equality holds (i.e., $\rho(A)e^{i\theta} \in \text{Sp}(B)$ for some real number θ) then $B = e^{i\theta}LAL^{-1}$, where L is a complex diagonal matrix such that $|L| = I_n$.

We will use Theorem 2 to prove the following.

Proposition 3. Let B be a signing of A such that $\rho(B) = \rho(A)$. If λ is an eigenvalue of B such that $|\lambda| = \rho(A)$, then $\lambda = \rho(A)e^{\frac{i\pi k}{p}}$ for some $k \in \{0, \ldots, 2p-1\}$.

Proof. Let $A := (a_{ij})_{1 \leq i,j \leq n}, B := (b_{ij})_{1 \leq i,j \leq n}$ and $\lambda = \rho(A)e^{i\theta}$. By Theorem 2, we have $B = e^{i\theta}LAL^{-1}$ where L is a complex diagonal matrix such that $|L| = I_n$. It follows that $b_{ij} = e^{i\theta}l_{ij}a_{ij}l_{ij}^{-1}$ for $i, j \in \{1, \ldots, n\}$,
where \(l_1, \ldots, l_n \) are the diagonal entries of \(L \). Consider now a closed path \(C = (i_1, i_2, \ldots, i_r, i_1) \) of \(D_A \). By the previous equality, we have
\[
\frac{b_{i_1i_2} \cdots b_{i_{r-1}i_r} b_{i_r i_1}}{a_{i_1 i_2} \cdots a_{i_{r-1} i_r} a_{i_r i_1}} = (e^{i\theta} l_{i_1} l_{i_2}^{-1}) \cdots (e^{i\theta} l_{i_{r-1}} l_{i_r}^{-1})(e^{i\theta} l_{i_r} l_{i_1}^{-1}) = (e^{i\theta})^r
\]
Then \((e^{i\theta})^r \in \{1, -1\} \) because \(|B| = A \).

Since \(p \) is the greatest common divisor of the lengths of the closed paths in \(D_A \), we have \((e^{i\theta})^p \in \{1, -1\} \) and then \(\lambda = \rho(A) e^{i\pi k} \) for some \(k \in \{0, \ldots, 2p - 1\} \).

Remark 1. Let \(\lambda \) be an eigenvalue of \(A \) such that \(|\lambda| = \rho(A) \). By applying Proposition 3 to \(B = A \), we have \(\lambda = \rho(A) e^{i\pi k} \) for some \(k \in \{0, \ldots, 2p - 1\} \).

The following result gives a necessary condition under which \(\mathcal{M}(\alpha, A) \) is nonempty.

Corollary 1. If \(\mathcal{M}(\alpha, A) \) is nonempty then \(\alpha = e^{i\pi k} \) for some \(k \in \{0, \ldots, 2p - 1\} \), or equivalently \(\alpha^p = \pm 1 \).

Proof. Let \(\lambda \) be an eigenvalue of \(A \) such that \(|\lambda| = \rho(A) \). By Remark 1, we have \(\lambda = \rho(A) e^{i\pi k} \) for some \(k \in \{0, \ldots, 2p - 1\} \). Let \(B \in \mathcal{M}(\alpha, A) \). Then \(\alpha \rho(A) e^{i\pi k} \in \text{Sp}(B) \) because \(\text{Sp}(B) = \alpha \text{Sp}(A) \). It follows from Proposition 3 that \(\alpha \rho(A) e^{i\pi k} = \rho(A) e^{i\pi h} \) for some \(h \in \{0, \ldots, 2p - 1\} \) and hence \(\alpha = e^{i\pi (h-k) p} \).

It is easy to see that if \(B \in \mathcal{M}(\alpha, A) \), then \(\Lambda^{-1} B \Lambda \in \mathcal{M}(\alpha, A) \) for every \(\{-1, 1\} \)-diagonal matrix \(\Lambda \). Conversely,

Proposition 4. The matrices in the set \(\mathcal{M}(\alpha, A) \) are all \(\{-1, 1\} \)-diagonally similar.

Proof. Let \(B_1, B_2 \in \mathcal{M}(\alpha, A) \). Then \(\text{Sp}(B_1) = \text{Sp}(B_2) = \alpha \text{Sp}(A) \). It follows that \(B_1 \) and \(B_2 \) have a common eigenvalue of the form \(\rho(A) e^{i\theta} \) for some real number \(\theta \). By Theorem 2, we have \(B_1 = e^{i\theta} L_1 A L_1^{-1} \) and \(B_2 = e^{i\theta} L_2 A L_2^{-1} \) where \(L_1, L_2 \) are complex diagonal matrices such that \(|L_1| = |L_2| = 1 \). It follows that \(B_1 = (L_2 L_1^{-1})^{-1} B_2 L_2 L_1^{-1} \). To conclude, it suffices to apply Lemma 1 below.

Lemma 1. Let \(B, B' \) be two signings of \(A \). If there exists a complex diagonal matrix \(\Gamma \) such that \(B' = \Gamma B \Gamma^{-1} \) and \(|\Gamma| = I_n \) then \(B \) and \(B' \) are \(\{-1, 1\} \)-diagonally similar.
Proof. Let \(A := (a_{ij})_{1 \leq i, j \leq n} \), \(B := (b_{ij})_{1 \leq i, j \leq n} \) and \(B' := (b'_{ij})_{1 \leq i, j \leq n} \). We denote by \(\gamma_1, \ldots, \gamma_n \) the diagonal entries of \(\Gamma \). Let \(\Delta := \gamma_1^{-1} \Gamma \). Clearly, we have \(\Delta B \Delta^{-1} = \Gamma B \Gamma^{-1} = B' \). Hence, to prove our lemma, it suffices to check that \(\Delta \) is a \(\{-1, 1\}\)-diagonal matrix. For this, let \(j \in \{2, \ldots, n\} \). As \(A \) is irreducible, the digraph \(D_A \) is strongly connected and then there is a path \(j = i_1, \ldots, i_r = 1 \) of \(D_A \) from \(j \) to \(1 \). By definition of \(D_A \), we have \(a_{i_1 i_2} \neq 0, \ldots, a_{i_r-1 i_r} \neq 0 \). It follows that \(b_{i_1 i_2} \neq 0, \ldots, b_{i_r-1 i_r} \neq 0 \) and \(b'_{i_1 i_2} \neq 0, \ldots, b'_{i_r-1 i_r} \neq 0 \) because \(|B| = |B'| = A \). Moreover, from the equality \(B' = \Gamma B \Gamma^{-1} \) we have \(b'_{i_1 i_2} = \gamma_1 b_{i_1 i_2} \gamma_1^{-1} \), \(b'_{i_2 i_3} = \gamma_2 b_{i_2 i_3} \gamma_2^{-1} \), \ldots, \(b'_{i_{r-1} i_r} = \gamma_{i_{r-1}} b_{i_{r-1} i_r} \gamma_{i_{r-1}}^{-1} \). Then \(b'_{i_1 i_2} \cdots b'_{i_{r-1} i_r} = \gamma_1 \gamma_2^{-1} b_{i_1 i_2} \cdots b_{i_{r-1} i_r} \). But by hypothesis, \(B, B' \) are real matrices and \(|B| = |B'| \), then \(b'_{i_1 i_2} \cdots b'_{i_{r-1} i_r} = \pm b_{i_1 i_2} \cdots b_{i_{r-1} i_r} \) and hence \(\gamma_j \gamma_i^{-1} = \gamma_i \gamma_i^{-1} = \gamma_1 \gamma_1^{-1} \in \{-1, 1\} \), which completes the proof of the lemma. \(\Box \)

3. Proof of the main theorem

Assertion \(i \). (resp. assertion \(ii \). for \(p = 1 \)) follows from Proposition 4 and the fact that \(A \in \mathcal{M}(1, A) \) (resp. \(-A \in \mathcal{M}(-1, A) \)). To prove assertion \(ii \). for \(p > 1 \), we will use the cyclic form of irreducible matrices with period \(p \). To define \(k \)-cyclic matrices, let \(n \) be a positive integer and let \(\{r_1, \ldots, r_k\} \) be a partition of \(n \), that is \(r_1, \ldots, r_k \) are positive integers and \(r_1 + \cdots + r_k = n \). For \(i = 1, \ldots, k - 1 \), let \(A_i \) be a \(r_i \times r_{i+1} \) matrix and let \(A_k \) be a \(r_k \times r_1 \) matrix. The matrix

\[
\begin{pmatrix}
0 & A_1 & 0 & \cdots & 0 \\
0 & 0 & A_2 & \cdots & 0 \\
\vdots & \vdots & \ddots & \ddots & \vdots \\
0 & 0 & 0 & \ddots & A_{k-1} \\
A_k & 0 & \cdots & 0 & 0
\end{pmatrix}
\]

is denoted by \(\text{Cyc}(A_1, A_2, \ldots, A_k) \). Each matrix of this form is called \(k \)-cyclic.

The characterization of irreducible matrices with period \(p > 1 \) is given by the following result due to Frobenius.

Proposition 5. Let \(A \) be an irreducible nonnegative real matrix with period \(p > 1 \), then there exists a permutation matrix \(P \) such that \(PAP^T \) is \(p \)-cyclic.
Proposition 6. Let \(A = \text{Cyc}(A_1, A_2, \ldots, A_p) \) be a nonnegative \(p \)-cyclic matrix where \(A_i \) is a \(r_i \times r_{i+1} \) matrix for \(i = 1, \ldots, p-1 \) and \(A_p \) is a \(r_p \times r_1 \) matrix. Let \(\tilde{A} \) be the matrix obtained from \(A \) by replacing the block \(A_p \) by \(-A_p \). Let \(k \in \{0, \ldots, 2p-1\} \), then

i) if \(k \) is even, \(e^{i\frac{\pi k}{p}} A \) is diagonally similar to \(A \), in particular \(\text{Sp}(A) = e^{i\frac{\pi k}{p}} \text{Sp}(A) \);

ii) if \(k \) is odd, \(e^{i\frac{\pi k}{p}} A \) is diagonally similar to \(\tilde{A} \), in particular \(\text{Sp}(\tilde{A}) = e^{i\frac{\pi k}{p}} \text{Sp}(A) \).

Proof. Let

\[
L := \begin{pmatrix}
I_{r_1} & 0 & 0 & \cdots & 0 \\
0 & e^{i\frac{\pi k}{p}} I_{r_2} & 0 & \cdots & 0 \\
0 & 0 & \ddots & \ddots & \vdots \\
0 & 0 & 0 & \ddots & 0 \\
0 & 0 & \cdots & 0 & e^{i\frac{\pi k(p-1)}{p}} I_{r_p}
\end{pmatrix}.
\]

It easy to check that if \(k \) is even, \(e^{i\frac{\pi k}{p}} LAL^{-1} = A \) and if \(k \) is odd, \(e^{i\frac{\pi k}{p}} LAL^{-1} = \tilde{A} \). \qed

The next corollary is a consequence of the above proposition and Proposition 5.

Corollary 2. Let \(A \) be an irreducible nonnegative matrix with period \(p \). Then \(\mathcal{M}(e^{i\frac{\pi k}{p}}, A) \) is nonempty.

Proof. As \((-A) \in \mathcal{M}(-1, A)\), we can assume that \(p > 1 \). By Proposition 5, there exists a permutation matrix \(P \) such that \(PAP^T \) is \(p \)-cyclic. Let \(A' := PAP^T := \text{Cyc}(A'_1, A'_2, \ldots, A'_p) \) and let \(\tilde{A}' \) be the matrix obtained from \(A' \) by replacing the block \(A'_p \) by \(-A'_p \). It follows from Proposition 6 that \(\text{Sp}(\tilde{A}') = e^{i\frac{\pi k}{p}} \text{Sp}(A') \), and hence \(\text{Sp}(P^T \tilde{A}'P) = e^{i\frac{\pi k}{p}} \text{Sp}(P^T A'P) = e^{i\frac{\pi k}{p}} \text{Sp}(A) \). Let \(B_0 := P^T A'P \). Since \(|\tilde{A}'| = A' \), we have \(|B_0| = P^T A'P = A \) and then \(B_0 \in \mathcal{M}(e^{i\frac{\pi k}{p}}, A) \). \qed

References

[1] A. Anuradha, R. Balakrishnan, X. Chen, X. Li, H. Lian and W. So, Skew spectra of oriented bipartite graphs, Electron. J. Combin. 20, 2013, #P18.
[2] A. Anuradha, R. Balakrishnan and W. So, *Skew spectra of graphs without even cycles*, Linear Algebra and its Applications, **444**, 2014, pp.67–80.

[3] N. Biggs, *Algebraic Graph Theory*, Second Edition, Cambridge University Press, 1993.

[4] M. Cavers, S.M. Cioaba, S. Fallat, D.A. Gregory, W.H. Haemers, S.J. Kirkland, J.J. McDonald, M. Tsatsomeros, *Skew-adjacency matrices of graphs*, Linear Algebra Appl. **436**, 2012, pp.4512–4529.

[5] D. Cui and Y. Hou, *On the skew spectra of Cartesian products of graphs*, The Electronic J. Combin. **20** (2), 2013, #P19.

[6] Y. Hou and T. Lei, *Characteristic polynomials of skew-adjacency matrices of oriented graphs*, The Electronic Journal of Combinatorics **18**, 2011, #P156.

[7] C.D. Godsil, Algebraic Combinatorics, Chapman and Hall, London, 1993.

[8] B. Shader and W. So, *Skew spectra of oriented graphs*, The electronic journal of Combinatorics **16**, 2009, N 32.

[9] H. Wielandt, *Unzerlegbare, nicht negative Matrizen*. Mathematische Zeitschrift **52** (1), 1950, pp.642-648.

[10] G. Xu, *Some inequalities on the skew-spectral radii of oriented graphs*, J. Inequal. Appl. **211**, 2012, pp.1–13.

Contact Information

Kawtar Attas,
Abderrahim Boussaïri,
Mohamed Zaidi

Laboratoire de Topologie, Algèbre, Géométrie et Mathématiques Discrètes, Faculté des Sciences Aïn Chock, Hassan II University of Casablanca, Casablanca, Morocco.

E-Mail(s): kawtar.attas@gmail.com, aboussairi@hotmail.com, zaidi.fsac@gmail.com

Received by the editors: 17.09.2019.