Spin liquid behaviour in $J_{\text{eff}} = 1/2$ triangular lattice Ba$_3$IrTi$_2$O$_9$

Tusharkanti Dey, A.V. Mahajan, P. Khuntia, M. Baenitz, B. Koteswararao, and F.C. Chou

1Department of Physics, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
2Max Planck Institute for Chemical Physics of Solids, 01187 Dresden, Germany
3Center for Condensed Matter Sciences, National Taiwan University, Taipei 10617, Taiwan

Abstract

Ba$_3$IrTi$_2$O$_9$ crystallizes in a hexagonal structure consisting of a layered triangular arrangement of Ir$^{4+}$ ($J_{\text{eff}} = 1/2$). Magnetic susceptibility and heat capacity data show no magnetic ordering down to 0.35 K inspite of a strong magnetic coupling as evidenced by a large Curie-Weiss temperature $\theta_{\text{CW}} \sim -130$ K. The magnetic heat capacity follows a power law at low temperature. Our measurements suggest that Ba$_3$IrTi$_2$O$_9$ is a 5d, Ir-based ($J_{\text{eff}} = 1/2$), quantum spin liquid on a 2D triangular lattice.

PACS numbers: 75.40.Cx, 75.45.+j, 75.47.Lx

Introduction: Since Anderson proposed the resonating valence bond model [1], researchers have been searching for experimental realizations of quantum spin liquids (QSL) [2] in geometrically frustrated magnets. In such materials, incompatibility of local interactions, called frustration, leads to a strong enhancement of quantum spin fluctuations and effectively suppresses the long range magnetic ordering. As a result, the material remains paramagnetic down to very low temperature compared to the Curie-Weiss (CW) temperature θ_{CW}. The frustration in these materials often arises from some special geometries like triangular, kagomé, pyrochlore, garnet etc. [3].

The spin liquid candidates found so far have been mostly 3d transition metal based materials. A few examples are two-dimensional (2D) Kagomé systems SrCr$_9$Ga$_{24}$O$_{49}$S$_3$ ($S = 3/2$) [4], and ZnCu$_3$(OH)$_6$Cl$_2$ ($S = 1/2$) [5]. S = 1 2D triangular lattice antiferromagnet NiGa$_2$S$_4$ [6], organic materials like $S = 1/2$ triangular lattice κ-(ET)$_2$Cu$_2$(CN)$_3$ [7] etc. There are very few examples of spin liquid systems with 4d or 5d spins. Na$_4$Ir$_2$O$_8$ [8], a $S = 1/2$ spin liquid in a three-dimensional (3D) hyperkagome network, is probably the most notable member of the 5d spin liquid family.

Recently, Ba$_4$CuSb$_2$O$_9$ ($S = 1/2$) with hexagonal space group P6$_3$mc was suggested to be in the QSL ground state [9]. High pressure hexagonal (P6$_3$mc, 6H-B) and cubic (Fm-3m, 3C) phases of Ba$_3$NiSb$_2$O$_9$ have also been suggested to be in the 2D and 3D QSL ground state, respectively [10].

We have been searching for QSL candidates among hexagonal oxides with 4d/5d elements instead of 3d elements. The 5d materials are very different from 3d materials and thus interesting because of a weak onsite Coulomb energy but a strong spin-orbit coupling. For example, Sr$_2$IrO$_4$ [11] and Ba$_2$IrO$_4$ [12] are reported to be spin-orbit driven Mott insulators. The magnetic properties of these systems have been described based on a $J_{\text{eff}} = 1/2$ state for the Ir$^{4+}$ ion. Among the various Ir-based compounds, Ba$_3$IrTi$_2$O$_9$ is rather interesting since it has a chemical formula similar to the Cu and Ni-based compounds (discussed in the previous paragraph) and it crystallizes in a hexagonal structure [13]. However, detailed structural parameters have not been reported. Byrne et al. [13] reported magnetic susceptibility of Ba$_3$IrTi$_2$O$_9$ in the temperature range 77 – 600 K. High antiferromagnetic Weiss temperature ($|\theta_{\text{CW}}| > 400$ K) was obtained by them, suggesting that the magnetic Ir$^{4+}$ ions are strongly coupled with each other. An obvious question arises, do they order at lower temperatures? If not then, is it a spin liquid system and a 5d analog of Ba$_3$CuSb$_2$O$_9$?

Here we report preparation, structural analysis, magnetic susceptibility and specific heat measurements on Ba$_3$IrTi$_2$O$_9$. It crystallizes in space group P6$_3$mc like Ba$_4$CuSb$_2$O$_9$ and 6H-B phase of Ba$_3$NiSb$_2$O$_9$. A large negative θ_{CW} is obtained from CW fitting of susceptibility data but no magnetic ordering is found from susceptibility and heat capacity measurements down to 0.35 K. Magnetic heat capacity follows a power law at low temperature. This indicates that the system is highly frustrated and an example of a 5d QSL. We suggest that this is the first candidate of a 5d based quantum spin liquid on a 2D triangular lattice with $J_{\text{eff}} = 1/2$.

Experimental Details: Polycrystalline sample of Ba$_3$IrTi$_2$O$_9$ was prepared by conventional solid state reaction method using high purity (99.9%) starting materials.

Powder x-ray diffraction (XRD) measurements were performed at room temperature with Cu $K\alpha$ radiation ($\lambda = 1.54182$ Å) in a PANalytical X’Pert PRO diffractometer. Magnetization measurements were performed in a Quantum Design SQUID Vibrating Sample Magnetometer (SVSM). Heat capacity measurements were carried out in the temperature range 0.35 – 295 K and field range 0 – 9 T in a Quantum Design Physical Properties Measurement System (PPMS). High temperature (upto 800 K) susceptibility was measured using a PPMS VSM.

Results and Discussions: XRD measurement was done to check the phase purity of the sample and to de-
termine crystal parameters, as the parameters were not mentioned in the earlier report [13]. The Ru-analog of Ba$_3$IrTi$_2$O$_9$ i.e., Ba$_3$RuTi$_2$O$_9$ has been mentioned in literature and it crystallizes in the hexagonal P6$_3$/mmc space group [14]. On the other hand, with a different Ir and Ti ratio, Ba$_3$TiIr$_2$O$_9$ has been suggested to crystallize in the space group P6$_3$/mmc [13]. In both these space groups metal-metal structural dimers (2b sites or 4f site) are separated by the 2a site metal plane. In P6$_3$/mc, the metal ions within the dimer are ordered while in P6$_3$/mmc space group the metal ions within the dimers are not ordered. We tried to refine our XRD data using these space groups and found P6$_3$/mc gives better refinement with a large site sharing by the Ti$^{4+}$ and Ir$^{4+}$ ions (see supplemental material [15]). The lattice constants obtained from refinement are $a = b = 5.7214$Å and $c = 14.0721$Å.

In the ideal case (i.e., without any site disorder), the Ti(3) site is occupied by Ti$^{4+}$ ions and the Ti(2) and Ir(1) sites are occupied by distinct metal ions Ti$^{4+}$ and Ir$^{4+}$, respectively. This is indeed (nearly) the situation in Ba$_3$CuSb$_2$O$_9$ where the Cu site is occupied only by Cu$^{2+}$ (leaving aside a 5% site disorder), and Sb$^{5+}$ ions are located at Sb(1) and Sb(2) sites. However in our case, we found a $(37\pm 10\%)$ site sharing of Ir$^{4+}$ ions with Ti$^{4+}$ ions between Ir(1) and Ti(2) sites and $(7 \pm 4\%)$ site sharing with Ti$^{3+}$ ions in Ti(3) site. This is in fact not unexpected, as their ionic radii are very similar. Sakamoto et al. also found 21% site sharing between Ti$^{4+}$ and Ir$^{4+}$ in Ba$_3$TiIr$_2$O$_9$ [15] and a similar site disordered situation is reported in the case of Ba$_3$RuTi$_2$O$_9$ by Radtke et al. [12]. They studied probability of different Ru$^{4+}$ and Ti$^{4+}$ combinations based on high resolution electron energy loss spectroscopy and first principles band structure calculations and concluded that site sharing of ions in 2b sites (i.e., Ir(1) and Ti(2) sites in our case) is more probable while site sharing with 2a sites (i.e., Ir(1) and Ti(3) sites in our case) is less probable. This was suggested because structural dimers of like ions (Ti-Ti) are energetically unfavourable due to a strong Ti-Ti repulsion. The same reason is probably valid in our case and results in a small 7% site sharing between Ir$^{4+}$ ions at Ir(1) site and Ti$^{4+}$ ions at Ti(3) site.

In case of perfect ordering among Ti$^{4+}$ and Ir$^{4+}$, these two ions form face-sharing IrTiO$_3$ bioctahedra (shown in Fig. [1 ii]) and Ir$^{4+}$ spins form an edge-shared triangular lattice in the ab plane, as shown in Fig. [1]. As a consequence of site disorder, the edge-shared triangular planes will be depleted. Further, Ir occupying the Ti(2) sites might also form a depleted triangular plane. A possible arrangement is shown in Fig. [1 iii]. The blue atoms represent Ti and the red atoms are Ir.

Zero field cooled (ZFC) and field cooled (FC) magnetic susceptibility was measured with different fields in the temperature range 2 – 400 K. No magnetic ordering is found down to 2 K but with 100 Oe field ZFC-FC splitting is seen below 80 K (shown in Fig. [8] in supplemental material [10]). However, the splitting is very small (only 11% of total magnetization at 2 K) and supressed when measured even with 500 Oe. This suggests that a small fraction of the spins take part in a glassy state while the majority of the spins do not. In Na$_4$Ir$_3$O$_8$ also a small ZFC-FC (< 10% of total magnetization) splitting was observed below 6 K which the authors concluded as coming from a small fraction of the spins [8]. Fig. [9] shows the temperature (T) dependence of dc magnetic susceptibility of the as-prepared sample (light-blue open squares). Data obtained with field 5 kOe using a SVSM.
(2–300 K) and using a VSM with a high-temperature attachment with field 50 kOe (300–800 K) have been shown together. Susceptibility data can be fitted well with the CW formula in the high temperature (150–800 K) region (shown in Fig. 2), which yields temperature independent susceptibility \(\chi_0 = 0.61 \times 10^{-4} \text{cm}^3/\text{mol} \), Curie constant \(C = 0.149 \text{cm}^3/\text{K/mol} \) and \(\theta_{\text{CW}} = -133 \text{ K} \). In many Ir based oxides \(\chi_0 \) is found to be large and varies within a wide range \([15, 16]\). The \(C \) value obtained from fitting is much less than that expected for \(S = 1/2 \) magnetic moments \((0.375 \text{ cm}^3/\text{K/mol}) \) value. The large \(\theta_{\text{CW}} \) value suggests that there still are significant correlations in the triangular planes despite the depletion. The suppression of magnetic moments could be an effect of the extended nature of the 5d orbitals and the strong spin-orbit coupling expected for 5d transition metal oxides. Indeed, in the magnetically ordered iridates such as Sr\(_2\)IrO\(_4\) the low temperature saturation moments have been found to be less than one tenth of a \(\mu_B \) and effective moment in the paramagnetic region is found to be \(\sim 0.4 \mu_B \) \([19]\).

With the aim of investigating as to how the preparation procedure might affect the site ordering and hence the magnetic properties, we quenched the as-prepared sample in liquid nitrogen from 1000\(^0\)C. Comparing the normalised x-ray diffraction pattern of both as-prepared (AP) and quenched (QN) samples, we found that width of all the peaks and peak height of many peaks are decreased in the QN sample. This indicates that the crystal symmetry is unchanged but ionic disorder (and possibly distortions) are less in the QN sample compared to the AP sample. Refinement of XRD pattern is consistent with a \(\sim 35\% \) site disorder between Ir\(^{4+}\) and Ti\(^{4+}\) cations at the 2b site but without any site sharing with the 2a site Ti\(^{4+}\) cations. We also found a marginal increase in the lattice constants with \(a = b = 5.7216\AA \) and \(c = 14.0768\AA \). Susceptibility for the QN sample measured with field 5 kOe in the temperature range 2–400 K (Fig. 2) shows no sign of magnetic ordering. Data fitted to CW law in the temperature range (150–400 K) yields \(\chi_0 = 1.68 \times 10^{-4} \text{ cm}^3/\text{mol} \), \(C = 0.145 \text{ cm}^3/\text{K/mol} \) and \(\theta_{\text{CW}} = -111 \text{ K} \). The \(\theta_{\text{CW}} \) is somewhat smaller than in the AP sample while \(C \) is nearly unchanged. Inverse susceptibilities (after subtracting the temperature independent part \(\chi_0 \)) of AP and QN samples are linear in temperature and deviate from linearity below \(\sim 80 \text{ K} \), as shown on the right axis of Fig. 2.

The large, negative \(\theta_{\text{CW}} \) indicates that Ir\(^{4+}\) magnetic moments are strongly antiferromagnetically coupled with each other. Apparently something prevents long range magnetic ordering to set in even at 0.35 K (evident from heat capacity measurement) which is nearly four hundred times lower than \(\theta_{\text{CW}} \). This suggests that inspite of the depletion of magnetic ions from the triangular planes, geometrical frustration continues to exist in the depleted triangular lattice and plays a dominant role in determining the magnetic properties of this system. Note that a part of the Curie term could be arising from a few percent of uncorrelated Ir\(^{4+}\) spins (and possibly some Ti\(^{4+}\) as well) present in the system, which we call orphan spins (discussed later).

One should note that in literature \(\theta_{\text{CW}} \) and \(\mu_{\text{eff}} \) reported for Ba\(_3\)IrTi\(_2\)O\(_9\) are greater than 400 K and 1.73\(\mu_B \), respectively \([10]\), which are at variance from our data. To clarify this discrepancy, we have fitted the published data (Fig. 9 in supplemental material \([16]\)) with CW law and found \(\chi_{\text{OB}} = 3.42 \times 10^{-4} \text{ cm}^3/\text{mol} \), \(C = 0.10 \text{ cm}^3/\text{K/mol} \) (\(\mu_{\text{eff}} = 0.89 \mu_B \)) and \(\theta_{\text{CW}} = -104 \text{ K} \). Apparently, Bryne et al. used \(\chi_{\text{OB}} = 5.0 \times 10^{-4} \text{ cm}^3/\text{mol} \) leading them to infer a different \(\theta_{\text{CW}} \) and \(\mu_{\text{eff}} \) (see supplemental material \([16]\) for details).

Next, in Fig. 3 we present the heat capacity \((C_P) \) in various fields for the AP and QN samples (data for all fields are shown in supplemental material \([16]\)). No anomaly indicative of long range ordering is found in the measurement range (0.35–295 K). For both the samples, \(C_P \) depends on the applied field below \(\sim 20 \text{ K} \). This field dependence could be arising from a Schottky anomaly of orphan spins. We model the heat capacity of Ba\(_3\)IrTi\(_2\)O\(_9\) as arising out of four contributions. These are namely, the magnetic contribution of the correlated spins \((C_M) \), the lattice contribution \((C_{\text{lat}}) \) and the Schottky anomaly of the orphan spins \((C_{\text{Sch-orp}}) \) and the nuclear Schottky anomaly.

To extract the magnetic part of the heat capacity arising from correlated magnetic moments, we proceed as follows. The \(C_P \) has contributions from \(C_M \), \(C_{\text{lat}} \), the Schottky anomaly \((C_{\text{Sch-orp}}) \) from Ir orphan spins and nuclear Schottky anomaly \((C_{\text{Sch-nuc}}) \). \(C_{\text{lat}} \) is field independent while the others might be field dependent. Using the zero field heat capacity \([C_P(0 \text{ T})] \) and that measured with ‘nT’ field \([C_P(\text{nT})] \), we obtain
The good
\[\Delta = \frac{\mu B H}{T} \]
entropy change \(\Delta S_M\) is shown as a function of temperature for 0T.

\[C_{Sch}(\Delta) = R \left(\frac{\Delta}{k_B T} \right)^2 \frac{\exp \left(\frac{\Delta}{k_B T} \right)}{1 + \exp \left(\frac{\Delta}{k_B T} \right)} \] \(1\)

where \(R\) is the universal gas constant and \(k_B\) is the Boltzmann constant. Inset (a) of Fig. 8 shows \(\Delta C_{P-17K}/T\) obtained for 0T and 9T along with the fit described above. The good fit above \(\sim 2K\) suggests that \(C_M\) is not field dependent at least above \(\sim 2K\) and all the field dependence is in \(C_{Sch-orp}\). However, below \(\sim 2K\), there is deviation of the fit from the data (this is much larger than the expected nuclear Schottky anomaly) which suggests the \(C_M\) might be field dependent there. The fraction of orphan spins \(f\) is found to be \(\sim 3\%\). The Schottky splitting \((\Delta/k_B)\) obtained from fitting for different fields is plotted as a function of field in the inset (b) of Fig. 8. Similar analysis has been reported for Ba\(_3\)CuSb\(_2\)O\(_9\), ZnCu\(_3\)(OH)\(_6\)Cl\(_2\), Y\(_2\)BaNiO\(_5\), etc. At zero field also we found a level splitting of 1.8K which is unexpected but found in Ba\(_3\)CuSb\(_2\)O\(_9\) as well. For \(\mu_0 H \geq 2T\), the Schottky splitting gap follows \(\Delta = \mu_0 B H\), as expected for free spin Schottky anomalies. The ‘9’ value for orphan spins obtained from the linear fit is 2.06.

Using Eq. 1 the Schottky heat capacity can now be subtracted from the measured heat capacity of Ba\(_3\)IrTi\(_2\)O\(_9\). Next, we would like to extract the lattice heat capacity and for that we have used Ba\(_3\)ZnSb\(_2\)O\(_9\) as non-magnetic analog. Since the Debye frequency is primarily determined by the lighter atoms (in these cases oxygens), it will not vary much between these two. The high-temperature heat capacities of Ba\(_3\)IrTi\(_2\)O\(_9\) and Ba\(_3\)ZnSb\(_2\)O\(_9\) differ because of the difference in their molecular weights and lattice volume. By scaling the heat capacity of Ba\(_3\)ZnSb\(_2\)O\(_9\) (obtained from Ref. [9]) by a factor of \(\sim 0.75\) we find that the heat capacities of Ba\(_3\)ZnSb\(_2\)O\(_9\) and Ba\(_3\)IrTi\(_2\)O\(_9\) match in the temperature region \(\sim 20K-30K\). The scaled heat capacity of Ba\(_3\)ZnSb\(_2\)O\(_9\) is then subtracted from that of Ba\(_3\)IrTi\(_2\)O\(_9\) in order to obtain the magnetic heat capacity as shown in Fig. 4.

The \(C_M\) for both AP and QN samples is independent of field from \(\sim 2.5-10K\) and in this range they follow a power law in temperature with power \(\sim 0.4\) for the AP sample and \(\sim 0.7\) for the QN sample. Above \(\sim 10K\) the results can be largely affected by uncertainties associated with the subtraction process. Notably, \(C_M\) for the QN sample is larger than that for the AP sample. Below \(\sim 2K\), \(C_M\) becomes field dependent (for both samples) but follows a power law with temperature with the same power for different fields. This power is 1.9 for the AP sample and 6.5 for the QN sample at very low temperature (shown in Fig. 4). From the heat capacity data of Ba\(_3\)CuSb\(_2\)O\(_9\) (with space group P6\(_3/mmc\)) published in Ref. [22], we have extracted \(C_M\) by subtracting a Schottky contribution. Here also we found \(C_M\) to be field dependent below \(\sim 2K\) but following a power law with power 2.1 for different fields and field independent in the range 5 – 15K (see supplemental material [10]). In many other frustrated systems \(C_M\) follows a power law with temperature. The power is 2 for the 2D \(S = 1\) system NiGa\(_2\)S\(_4\), 1 and 2 for Ba\(_3\)NiSb\(_2\)O\(_9\) 6H-B and 3C phases respectively, between 2 and 3 for Na\(_4\)Ir\(_3\)O\(_8\) and 1 at low-temperature but 2 at higher temperature in \(S = 1/2\) system Ba\(_3\)CuSb\(_2\)O\(_9\) (with space group P6\(_3/mmc\)). A power of 2/3 was predicted by Motrunich [23] for \(S = 1/2\) triangular lattice organic spin liquid system \(\kappa-(ET)_2Cu_2(CN)_3\). In view of the fact that our Ir-based system is expected to have a significant spin-orbit coupling, a fresh theoretical effort in this direction is warranted.

Magnetic entropy change \((\Delta S_M)\) is obtained by integration of \(C_M/T\) with \(T\) and is shown as a function of temperature in the inset of Fig. 4. The \(\Delta S_M\) is an order of magnitude lower than \(\text{Rln} 2\) expected for ordered \(S = 1/2\) systems. In many geometrically frustrated systems it is observed that the entropy change is lower than expected value. For example, the entropy change is 30\% and 41\% of \(\text{Rln}(2S + 1)\) for Ba\(_3\)CuSb\(_2\)O\(_9\) and Ba\(_3\)NiSb\(_2\)O\(_9\) (6H-B phase) respectively, which are similar in structure with Ba\(_3\)IrTi\(_2\)O\(_9\). However, in Ba\(_3\)IrTi\(_2\)O\(_9\) the magnetic moments are strongly reduced probably due to a strong spin-orbit coupling. Here \(S\) is not a good quantum number and probably \(J_{eff}\) is. So the expected...
Interestingly, the heat capacity is different for the QN sample compared to the AP sample implying the influence of atomic site disorder on the details of the triangular lattice and hence the ground state.

Conclusions: We have presented a potentially new spin liquid system $\text{Ba}_3\text{IrTi}_2\text{O}_9$ which is based on a triangular lattice of Ir^{4+} ions with electrons responsible for the magnetic properties coming from the 5d electronic orbital. The sample crystallizes in $P6_3mc$ space group with a large disorder between Ti^{3+} ions resulting in a site dilution of nearly $1/3$ of the Ir^{4+} sites of the edge-shared triangular plane by non-magnetic Ti^{4+}. Apparently, magnetic correlations and frustrations are still maintained with the absence of magnetic ordering down to 0.35 K in spite of a high θ_{CW} value (~ -130 K). Associated with this is a magnetic heat capacity which, though field dependent, follows a power law with power 1.9 in the low-temperature range. The QN sample has a different behavior. This is somewhat like in $\text{Ba}_3\text{CuSb}_2\text{O}_9$ where different atomic arrangements (Ref. 9 and Ref. 22) give rise to different magnetic heat capacity. As Nakatsuji et al. has reported that due to site sharing between Cu^{2+} and Sb^{5+} ions, a distorted honeycomb lattice is formed in $\text{Ba}_3\text{CuSb}_2\text{O}_9$, we speculate that a similar situation may occur in $\text{Ba}_3\text{IrTi}_2\text{O}_9$ yet maintaining a spin liquid ground state. With the demonstration of the existence of a $J_{\text{eff}} = 1/2$ state (having a large spin-orbit coupling) in Sr_2IrO_4 [24], $\text{Ba}_3\text{IrTi}_2\text{O}_9$ is possibly an example of a $J_{\text{eff}} = 1/2$ quantum spin liquid system and a 5d analog of $\text{Ba}_3\text{CuSb}_2\text{O}_9$. This should open up a new area pertinent to the search for exotic magnetic behaviour in 5d transition metal based compounds.

Acknowledgement: We thank Department of Science and Technology, Govt. of India for financial support. FCC acknowledges the support from National Science Council of Taiwan under project number NSC-100-2119-M-002-021.

[1] P.W. Anderson, Mater. Res. Bull. 8, 153 (1973)
[2] L. Balents, Nature (London) 464, 199 (2010)
[3] For a review, see Introduction to Frustrated Magnetism, edited by C. Lacroix, P. Mendels, F. Mila, Springer, Heidelberg (2010)
[4] A. P. Ramirez, B. Hessen, and M. Winklemann, Phys. Rev. Lett. 84, 2957 (2000)
[5] J. S. Helton, K. Matan, M. P. Shores, E. A. Nytko, B. M. Bartlett, Y. Yoshida, Y. Takano, A. Suslov, Y. Qiu, J.-H. Chung, D. G. Nocera, and Y. S. Lee, Phys. Rev. Lett. 98, 107204 (2007)
[6] S. Nakatsuji, Y. Nambu, H. Tonomura, O. Sakai, S. Jonas, C. Broholm, H. Tsunetsugu, Y. Qiu, and Y. Maeno, Science 309, 1697 (2005)
[7] Y. Shimizu, K. Miyagawa, K. Kanoda, M. Maesato, and G. Saito, Phys. Rev. Lett. 91, 107001 (2003)
[8] Y. Okamoto, M. Nohara, H. Aruga-Katori, and H. Takagi, Phys. Rev. Lett. 98, 137207 (2007)
[9] H. D. Zhou, E. S. Choi, G. Li, L. Balicas, C. R. Wiebe, Y. Qiu, J. R. D. Copley, and J. S. Gardner, Phys. Rev. Lett. 106, 147204 (2011)
[10] J. G. Cheng, G. Li, L. Balicas, J. S. Zhou, J. B. Goodenough, Cenke Xu, and H. D. Zhou, Phys. Rev. Lett. 107, 197204 (2011)
[11] B. J. Kim, H. Jin, S. J. Moon, J.-Y. Kim, B.-G. Park, C. S. Leem, J. Yu, T. W. Noh, C. Kim, S.-J. Oh, J.-H. Park, V. Durairaj, G. Cao, and E. Rothenberg, Phys. Rev. Lett. 101, 076402 (2008)
[12] H. Okabe, M. Isobe, E. Takayama-Muromachi, A. Koda, S. Takeshita, M. Hiraishi, M. Miyazaki, R. Kadono, Y. Miyake, and J. Akimitsu, Phys. Rev. B 83, 155118 (2011)
[13] R. C. Byrne, and C. W. Moeller, J. Solid State Chem. 2, 228 (1970)
[14] C. Maunder, J. Etheridge, N. Wright, and H. J. Whitfield, Acta Crystallogr., Sect. B: Struct. Sci. 61, 154 (2005)
[15] T. Sakamoto, Y. Doi, and Y. Hinatsu, J. Solid State Chem. 179, 2595 (2006)
[16] See Supplemental Material below
[17] G. Radtke, C. Maunder, A. Saul, S. Lazar, H. J. Whitfield, J. Etheridge, and G. A. Botton, Phys. Rev. B 81, 085112 (2010)
[18] Y. Singh and P. Gegenwart, Phys. Rev. B 82, 064412 (2010)
[19] S. Chikara, O. Korneta, W. P. Crummett, L. E. DeLong, P. Schlottmann, and G. Cao, Phys. Rev. B 80, 140407(R) (2009)
[20] M. A. de Vries, K. V. Kamenev, W. A. Kockelmann, J. Sanchez-Benitez, and A. Harrison, Phys. Rev. Lett. 100, 157205 (2008)
[21] A. P. Ramirez, S.W. Cheong, and M. L. Kaplan, Phys. Rev. Lett. 72, 3108 (1994)
[22] S. Nakatsuji, K. Kuga, K. Kimura, R. Satake, N. Katayama, M. Nishibori, H. Sawa, R. Ishii, M. Hagiwara, F. Bridges, T. U. Ito, W. Higemoto, Y. Karaki, M. Halim, A. A. Nugroho, J. A. Rodriguez-Rivera, M. A. Green, C. Broholm, Science 336, 559 (2012)
[23] O. I. Motrunich, Phys. Rev. B 72, 045105 (2005)
[24] B. J. Kim, H. Ohsumi, T. Komesu, S. Sakai, T. Morita, H. Takagi, and T. Arima, Science 323, 1329 (2009)
Supplemental material for “Spin liquid behaviour in $J_{eff} = 1/2$ triangular lattice Ba$_3$IrTi$_2$O$_9$”

The XRD refinement of the AP sample is shown in Fig. S. The crystal parameters obtained from refinement are given in Table I. We have studied the change in the refinement parameters by varying the site disorder of Ir$^{4+}$ ions with Ti$^{4+}$ ions at Ti(2) and Ti(3) sites. The parameters thus obtained are shown in Fig. S and Fig. T. From the figures we can conclude that (37 ± 10)% disorder with Ti(2) site and (7 ± 4)% disorder with Ti(3) site gives best refinement.

ZFC and FC susceptibilities of the AP sample are shown for different fields in Fig. S. As mentioned in the main paper, the μ_{eff} and $|\theta_CW|$ values obtained by Bryne et al. L3 are much higher than found in our measurements. To find the reason of this mismatch, we have reanalysed the published data on Ba$_3$IrTi$_2$O$_9$ in Ref. L3. The blue open squares in Fig. S represent the inverse susceptibility data as published in Ref. L3. The corresponding susceptibility is shown on the left axis as blue solid squares. We have fitted this susceptibility data with the Curie-Weiss (CW) law in the range 77 – 363 K. This fitting yields temperature independent susceptibility $\chi_{0B} = 3.42 \times 10^{-4}$ cm3/mol, Curie constant $C = 0.10 \text{cm}^3\text{K/mol}$ ($\mu_{eff} = 0.89 \mu_B$) and Curie-Weiss temperature $\theta_{CW} = -104$ K which are somewhat closer to the values obtained from our measurement. Subtracting this χ_{0B}, we have plotted $(\chi - \chi_{0B})^{-1}$ as pink diamonds which is linear in the whole temperature range. Apparently, Bryne et al. did not fit their susceptibility data with CW law to find C and χ_{0}, rather they have chosen a temperature independent susceptibility $\chi_{0A} = 0.50 \times 10^{-4}$ cm3/mol. We have also shown $(\chi - \chi_{0A})^{-1}$ data points as green solid circles which are much different from $(\chi - \chi_{0B})^{-1}$ data points. The slope corresponding to these green circles has been used by Bryne et al. L3 to find θ_CW. Further they have used this θ_CW and a single (at 293K) susceptibility data point (χ'_M) to get the μ_{eff} from the formula $\mu_{eff} = 2.83 \sqrt{\chi_M(T - \theta)}$. Hence, fixing χ_{0A} (without a fitting procedure) and calculating μ_{eff} based on a single susceptibility data point gives unreliable μ_{eff} and θ_{CW} values in Ref. L3.

Heat capacities for different fields for the AP and QN sample are shown Fig. T and Fig. U, respectively. Schottky fits for different fields for the AP sample are shown in Fig. V.

In a recent report on Ba$_3$CuSb$_2$O$_9$ (space group P6$_3$/mmc), Nakatsuji et al. (Ref. 22) have shown the heat capacity of the system after subtracting the lattice contribution. We term this as C'_M. We have analysed their data to extract magnetic heat capacity (C_M) after subtracting the Schottky contribution. Inset of Fig. L3 shows $|C'_M(5T) - C'_M(0T)|/T$ and its fit with $f[C_{Sch}(\Delta_1) - C_{Sch}(\Delta_2)]/T$ (see main paper for details).

Table I: Atomic parameters obtained by refining x-ray powder diffraction for as-prepared Ba$_3$IrTi$_2$O$_9$ at room temperature with a space group P6$_3$/mc.

	x	y	z	g	
Ba(1)	2a	0	0	0.24199	1.00
Ba(2)	2b	1/3	2/3	0.07981	1.00
Ba(3)	2b	1/3	2/3	0.39153	1.00
Ir(1)	2b	1/3	2/3	0.64464	0.56
Ti(1)	2b	1/3	2/3	0.64464	0.42
Ti(2)	2b	1/3	2/3	0.83775	0.63
Ir(2)	2b	1/3	2/3	0.83775	0.37
Ti(3)	2a	0	0	0.48763	0.93
Ir(3)	2b	0	0	0.48763	0.07
O(1)	6c	0.16098	0.83898	0.57538	1.00
O(2)	6c	0.48859	0.51138	0.74989	1.00
O(3)	6c	0.16098	0.83898	0.91548	1.00

The fit is good above ~ 1.5 K which means C_M is field independent and the field dependence of C'_M in that region is totally coming from Schottky contribution. Below ~ 1.5 K, the fit deviates from data points indicating field dependence of C_M. The Δ obtained from the fit has been used in Eq. 1 of our paper to get the Schottky contribution to heat capacity (f was inferred to be 17%). This is subtracted from C_M to get C_M for Ba$_3$CuSb$_2$O$_9$. For different fields we have extracted C_M as shown in Fig. L3. C_M is field independent in the range 5 – 15 K and follows a power law with temperature with power 1. Below ~ 2 K C_M is field dependent but still follows a power law with power 2.1 for different fields. The behavior is very similar to that found by us in Ba$_3$IrTi$_2$O$_9$.

Figure 5: Refinement pattern of as-prepared (AP) Ba$_3$IrTi$_2$O$_9$ is shown. Inset: Normalised main peaks for the AP and the quenched sample (QN) are shown.
Figure 6: Refinement parameters for the as-prepared (AP) sample obtained by varying disorder at Ti(2) site keeping disorder at Ti(3) site unchanged is shown. R_p and $(R_{wp} - 2)^2$ correspond to the left axis while goodness of fit (GOF) is plotted on right axis. R_{wp} has been offset downward by 2 to show R_p and R_{wp} on the same axis with clarity.

Figure 7: Refinement parameters for the as-prepared (AP) sample obtained by varying disorder at Ti(3) site keeping disorder at Ti(2) site unchanged is shown. R_p and $(R_{wp} - 2)^2$ correspond to the left axis while goodness of fit (GOF) is plotted on right axis. R_{wp} has been offset downward by 2 to show R_p and R_{wp} on the same axis with clarity.
Figure 8: Magnetic susceptibilities of as prepared (AP) Ba$_3$IrTi$_2$O$_9$ sample measured at different fields are shown in a semilog scale.

Figure 9: Inverse susceptibility data of Ba$_3$IrTi$_2$O$_9$ obtained from Ref. [13] is shown as blue open squares. The corresponding susceptibility is shown as blue solid squares with its fit with Curie Weiss (CW) law (green solid line). Inverse susceptibility after subtracting $\chi_0 A = 0.5 \times 10^{-4} \text{ cm}^3/\text{mol}$ (as in Ref. [13]) is shown as green solid circles. The inverse susceptibility after subtracting $\chi_0 B = 3.42 \times 10^{-4} \text{ cm}^3/\text{mol}$ (obtained from CW fit done by us) is also shown as pink diamonds. The dashed line is a guide to eye. Susceptibility is plotted on the left axis while the inverse susceptibilities correspond to the right axis.
Figure 10: Heat capacities of as prepared (AP) Ba$_3$Ir$_2$Ti$_2$O$_9$ sample measured in various applied magnetic fields are shown in a log-log scale.

Figure 11: Heat capacities of quenched (QN) Ba$_3$Ir$_2$Ti$_2$O$_9$ sample measured in various applied magnetic fields are shown in a log-log scale.
Figure 12: Scattered symbols represent \([C_V(n T)-C_V(0 T)]/T \) of the AP sample and the solid line of corresponding color is the fit (described in the main paper).

Figure 13: Magnetic heat capacities \((C_M) \) of Ba$_3$CuSb$_2$O$_9$ (taken from Ref. [22]) for different fields after subtracting Schottky contribution are shown. The solid lines are fits to power law. In the low-temperature region \(C_M \) is field dependent and the power is 2.1 for different fields. In the range 5 – 15 K, \(C_M \) is independent of field and linear in temperature. Inset: Solid squares represent \([C_M(5 T)-C_M(0 T)]/T \) and the solid line is the fit (see text).