Elsevier has created a Monkeypox Information Center in response to the declared public health emergency of international concern, with free information in English on the monkeypox virus. The Monkeypox Information Center is hosted on Elsevier Connect, the company's public news and information website.

Elsevier hereby grants permission to make all its monkeypox related research that is available on the Monkeypox Information Center - including this research content - immediately available in publicly funded repositories, with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the Monkeypox Information Center remains active.
Nucleotide Sequence of the Thymidine Kinase Gene Region of Monkeypox and Variola Viruses

JOSEPH J. ESPOSITO1 AND JANICE C. KNIGHT

Molecular Virology Branch, Division of Viral Diseases, Centers for Disease Control, Department of Health and Human Services, Atlanta, Georgia 30333

Received February 27, 1984; accepted March 20, 1984

Among the orthopoxviruses variola virus induces in cells a characteristic thymidine kinase (TK) activity that can be feedback inhibited in reactions with thymidine triphosphate. Northern blot analyses of variola and monkeypox virus-infected cell extracts showed RNAs of the same molecular weight as the major (59% base) and minor (28% base) TK transcripts described for vaccinia virus. The nucleotide sequences of 1275 bp in the TK gene region of variola and monkeypox viruses have been determined. When these sequences were compared with such sequences reported for vaccinia virus, differences were observed at 41 nucleotide positions. Examination of the putative encoded TK polypeptide for the three viruses revealed variation at eight amino acid positions. Two major differences in the amino acid composition of the variola virus TK were identified that might play a role in alteration of its kinetic properties.

Increased induction of thymidine kinase (TK) activity has been observed in cells infected with Shope fibroma virus (2) and with most orthopoxviruses (3, 20, 21). TK gene mapping (7, 16, 30, 32) with a more precise localization (1) of the TK transcript within the vaccinia conserved central DNA region (HindIII—"J" fragment), and the synthesis in rabbit reticulocyte lysates (1, 14) and Xenopus laevis oocytes (18) of enzymatically active TK from early mRNA from vaccinia virus (WR)-infected TK-cells confirmed earlier observations (25) that indicated the TK activity is virus encoded.

McAuslan (20-22) originally suggested that the vaccinia TK was an allosteric-type enzyme because thymidine, ATP, and HeLa cell-soluble extract stabilized and reactivated TK that had been partially purified through Sephadex. The reactivated TK under appropriate levels of ATP could be feedback inhibited by thymidine triphosphate (TTP), however, TTP did not feedback inhibit the crude active TK. Bedson explored the possibility of distinguishing orthopoxviruses by resolving serologic and/or physico-chemical differences in the TK (3). With infected cell lysates in a standardized assay he observed that only the TK activities of variola viruses and the so-called "whitepox" viruses (which are identical to variola viruses by endonuclease analyses 8, 9, 12, Esposito et al. in preparation) were sensitive to feedback inhibition by TTP (4-8 µmol/liter). The 51 orthopoxviruses that Bedson compared included 11 variola viruses, 5 "whitepox" viruses, 10 variola-cowpox hybrids, 6 alastrim-rabbitpox hybrids (4, 5), 5 monkeypox strains, plus 1 white variant monkeypox virus, and 13 other members of the genus. Tests with the hybrid viruses indicated that the TK character segregated as an independent biologic marker.

Recently, Weir and Moss (33) and Hruby et al. (17) determined nucleotide sequences in the TK gene region of WR vaccinia virus. Weir and Moss (33) also sequenced the TK region of three vaccinia spontaneous TK-mutants. Using primer extension and nuclease DNA-RNA hybrid digestion, they located precisely on the vaccinia genome the 5' and 3' ends of a 570-base TK transcript. Two possible TK transcriptional

1 Author to whom requests for reprints should be addressed.
regulatory (A + T rich) signals (approximately at −10 and at −35 from the mRNA 5' end) were recognized in the terminal sequences of an adjacent late gene. Identification of the 177 codons (531 bases) for the TK protein (20,077 Da) and sequencing the mutants disclosed the probable translation initiation and termination sites and revealed that the TK character was due to an apparent single-base reiteration which produces a reading frameshift and consequent nonsense codon downstream.

In order to begin understanding the molecular aspects of evolutionary divergence among orthopoxviruses, we have compared the DNA sequences reported for the vaccinia virus TK gene region with DNA sequences derived from the analogous regions in variola and monkeypox viruses. Further, we compared the amino acid sequences of the putative encoded TK polypeptide of the three viruses. Two single-base substitutions were observed in the variola TK gene that resulted in the replacement of an asparagine codon by an aspartic acid codon and of a glutamic acid codon by a lysine codon. These changes might be responsible for the characteristic TTP feedback inhibition of the variola virus TK activity that was reported by Bedson (3).

Figure 1A shows restriction maps (derived in another study, Esposito and Knight, in preparation) that indicate the positions of the analogous HindIII fragments containing the TK gene sequences—vaccinia “J,” variola “L,” and monkeypox “K.” With standard methods (23) we have inserted in bacterial plasmids (pBR-322 or -323) most of the HindIII DNA fragments of the Bangledesh-1975 strain of variola virus (fragments C, E, F, H–P, Fig. 1A) and all fragments except the terminal “J” of Copenhagen monkeypox virus and progeny transposition-deletion variants CpCR, CpCW-N1, and CpCW-N2 (Fig. 1A) (11). Large-scale preparations (23) were made of the pBR-322 recombinants pBSH-L and pN2-K (Fig. 1B). These fragments are analogous to the 220-bp vaccinia TK gene region fragment that was used by Weir and Moss (33) to locate the vaccinia TK mRNA 5' end by primer extension (“G” at position 494, Fig. 3). As shown in Fig. 2, BSH and N2 virus-infected cells clearly contain viral TK gene sequences as is revealed by the hybridization of the RsaI–EcoRI fragment to specific cytoplasmic RNAs. The hybridizing monkeypox and variola virus RNAs, which could be enriched if cyclohexamide was present during infection, contained 600–700 nucleotides relative to the migration of the marker 890 nucleotide RNA, the influenza virus NS gene (provided by Nancy Cox, CDC Influenza Branch). After a prolonged exposure of the northern-blot radioautographs (not shown), we observed a second RNA of about 2400 nucleotides, present at an es-
SHORT COMMUNICATIONS

A) Vaccinia WR

Variola Bangladesh 1975

Monkeypox Copenhagen (N2)

Kbp -40 -30 -20 0 20 40 60 80 100 120 140

B)

Fig. 1. (A) HindIII restriction sites mapped on the genome DNAs of vaccinia, variola, and monkeypox viruses (from Esposito and Knight, in preparation). (B) Endonuclease sites within HindIII fragment “L” of BSH variola virus and HindIII fragment “K” of N2 monkeypox virus. As described in the text, these HindIII fragments were cloned into pBR-322 by standard methods, mapped, and the sequences in the thymidine kinase gene region (Fig. 3) were determined for complementary DNA strands by the Maxam–Gilbert (2%) method with the strategy indicated.

Estimated concentration one-twentieth the level of the major RNA. Both RNA types also have been identified in vaccinia-infected cells by Bajszar et al. (1) who concluded that the longer RNA resulted from a small percentage of the TK transcripts terminating at the end of a 3’ adjacent gene.

The primary structure of the monkeypox and variola virus TK genes was examined by determining the nucleotide sequences...
for 1275 bp of pN2-K and pBSH-L with the strategy shown in Fig. 1B. Complementary DNA strands were sequenced separately by the method of Maxam and Gilbert (24). Usually, about 10–100 pmol of plasmid DNA was restricted (Fig. 1B), and depending on the endonuclease site, fragments either were dephosphorylated and 5' end labeled with [γ-32P]ATP and polynucleotide kinase or were 3' end labeled with [α-32P]dNTPs and DNA polymerase I (Klenow fragment) or with 3'-[α-32P]dATP and terminal transferase (23, 29). After cleavage with a second endonuclease, fragments labeled at one end for sequencing were purified by electroelution from polyacrylamide gels.

Figure 3 shows a comparison of the nucleotide sequences for the TK gene region in monkeypox and variola virus DNAs together with such sequences that have been determined for vaccinia virus by Weir and Moss (33). We also compared the computer-derived amino acid sequence of the putative encoded polypeptide. The illustration shows all the TK region nucleotide sequences (transcript sense DNA strand) and the TK polypeptide for monkeypox virus. For clarity, only the different TK region nucleotides (* = deletion) and TK amino acids have been shown for variola and vaccinia viruses. Nucleotide sequences were analyzed with the SEQ program (6) and managed with the NIH DEC-10 programs FUR, SOS, and SEQTRAN (J. V. Maizel, Jr., personal communication).

Although correlations of orthopoxvirus base sequences with eucaryotic regulatory signal sequences have not been fully established, the locations of seemingly analogous poxvirus sequences (Fig. 3) are summarized as follows: The locations of candidate vaccinia TK promotor sequences (27, 33) have been indicated (+). The variola TK gene showed an adenine deletion in the proximal candidate promotor region (position 485). Variola and vaccinia DNAs each showed a thymidine deletion (position 472) in sequences between the two possible promotors. Examination of computer-derived open-reading frames revealed that the net result of these deletions in monkeypox, variola, and vaccinia would be the presence of a different carboxy-terminal amino acid sequence and a different translation termination codon position for the 5' adjacent (late) gene in the respective viruses. In vaccinia the translation stop codon (TAA) for this 5' adjacent gene occurs at position 483–485, in monkeypox the stop codon (TAA) occurs at position 479–482, and in variola the stop codon TGA (position 501–503) overlaps the open-reading frame of the TK gene. The effect on the regulation of TK by this crowding of genes is unknown; there might be no effect on the TK early gene since the adjacent gene is ex-
SHORT COMMUNICATIONS

COMPARISON OF THYMIDINE KINASE GENE REGION SEQUENCES

	10	20	30	40	50	60	70	80	90
	G	C	G	GAG	A	T	T	T	T
100	GATGAACTCTCATATCTGAAATTTGCAATACTCTAATGGTTATCTTGGGAATGGAGGCTATCTTTT								
200	ATGTGTATGAATCTTTGCGAGGATACGAAGAATACAAAATTCAGACTTCTGCGATGATGATTCATTTTTT								
300	TCGAGGGTCGACATTCTAACAGATTATTCTGCTACTGTTGATATGACTACAGGTTAGGTGAGAGATTCG								
400	GTTAGCTACATGCTCCTGCGTATGCTGATATATTAAGAGGAATATTGAGCTAATGACATGATTTTAT								
	GAG	T	GAG	C					
500	ATCAAGCGCCGACATCATTCTGCAAATTTGGGCCATCTTTTGCAATACTCAAGAATATTGACCAATGTTG								

Fig. 3. Nucleotide sequences in the thymidine kinase gene region of variola, monkeypox, and vaccinia virus DNAs and the computer-derived amino acid sequence of the putative TK polypeptide. Variola and monkeypox virus nucleotides were sequenced by the Maxam-Gilbert method with the strategy shown in Fig. 1B as described in the text. The complete base sequence of the monkeypox TK gene region is shown with positions of nucleotide variation indicated for variola and vaccinia DNAs. The complete amino acid sequence of the monkeypox TK polypeptide is shown with positions of amino acid variation indicated for the variola and the vaccinia polypeptide. Amino acid type: a = acidic, b = basic, p = polar, n = nonpolar. Symbols: (*) deletion, (+) candidate promoter sequences. Vaccinia sequences were from Weir and Moss (33).

pressed late in infection (33). No characteristic eucaryotic mRNA cap signal (overlapping GCG triplets) was observed in the poxvirus sequences at the reported (33) vaccinia mRNA start site (position 494). At position 390 (−100 bp upstream)
the characteristic eucaryotic RNA-poly-
merase II promotor sequence 5'-CAAT (10)
was noticed, whether these function sim-
ilarly for poxvirus RNA polymerase is yet
unknown. A search for sequences similar
to the eucaryotic polymerase activator-
enhancer sequences (31) within the 1275
bp revealed such sequences possibly at po-
sitions 341-347 (5'-GTGATTA) and 891-898
(5'-GTGGTAA). At residues 1063-1068 the
hexanucleotide, 5'-AATAAA, which typi-
cally precedes the polyadenylation site in
eucaryotic genes was found immediately
followed by CA, sequences presumed to
specify the preferred site for poly-A ad-
tion (26). The ATG probable translation
start codon (19) for the TK occurred at
position 500-503 followed by an open-read-
ing frame (177 codons) for a polypeptide
of about 20,000 Da that terminates at
(TAA) position 1032-1034 (33).

When we compared the nucleotide dif-
fierences within the TK open-reading frame
for the three viruses we found that there
were 10 loci of silent (third base, "wobble"
locations) mutational differences (positions
604, 656, 700, 743, 824, 863, 907, 935, 953,
and 1033), that would produce no conse-
quent changes in amino acid sequence of
the putative TK polypeptide. However, se-
quencing differences in eight codons were
identified that would be expected to change
the amino acid composition of the putative
TK polypeptide (positions 676, 688, 714, 768,
847, 867, 957-959, and 966). Of the 1275-
base TK gene region sequences compared,
nucleotide variation was observed at 41
residue positions. The putative TK poly-
peptide that is encoded by each virus
showed variation at eight amino acid po-
sitions. Two differences in the amino acid
composition of the variola virus TK were
identified that might play a role in alter-
ation of its kinetic properties. Because of
the nucleotide difference at residue 867, in-
stead of the polar amino acid asparagine
(N) there would be expected an aspartic
acid (D) in variola; the nucleotide differ-
ence at residue 966 would change glutamic
acid (E) for the basic amino acid lysine
(K) in variola. The amino acid differences
could affect the configuration of the variola
TK, possibly exposing an allosteric-effector
site, producing a variola TK activity sen-
tive to feedback inhibition in reactions with
TTP.

The sequences of the three viruses ob-
viously were highly conserved. Within the
1275 bp that we compared, 41 separate res-
iduc positions showed variation (Fig. 3). There
was no single residue position at which a different nucleotide was present for each of the three viruses. Variola and
vaccinia DNAs showed the same nucleo-
tide, whereas monkeypox DNA contained
a different base at 10 loci (residues 88, 424,
472, 497, 605, 676, 688, 824, 847, and 1004).
Monkeypox and vaccinia DNAs showed the
same nucleotide, whereas variola DNA
contained a different base at 10 loci (resi-
dues 196, 327, 463, 485, 701, 743, 863, 867,
935, and 966). Vaccinia DNA contained a
different base at 21 separate loci that
showed the same nucleotide with variola
and monkeypox DNA.

ACKNOWLEDGMENTS

We thank Dr. John Dunn for advice on sequencing
and Dr. Bernard Moss for critical reading of the
manuscript.

REFERENCES

1. BAJZSAK, G., WITZK, R., WEIK, J., and MOSS, B.,
 J. Virol. 45, 62-72 (1983).
2. BARBANTI-BRODANO, G., PORTOLANI, M., BERNAR-
 DINI, A., STIRPE, F., MANNINI-PALLENZONA, A.,
 and LA PLACA, M., J. Gen. Virol. 3, 471-474.
3. BEDSON, H. S., Bull. WHO 60, 377-380 (1982).
4. BEDSON, H. S., and DUMBELL, K. R., J. Hyg. 62,
 141-146 (1964).
5. BEDSON, H. S., and DUMBELL, K. R., J. Hyg. 62,
 147-158 (1964).
6. BRUTLAC, D. L., CLAYTON, J., FRIEDLAND, P., and
 KEDES, L. H., Nucleic Acids Res. 10, 279-294
 (1982).
7. DUBBS, D. R., OTSUKA, H., QAVI, H., and KIT, S.,
 Virology 126, 408-411 (1983).
8. DUMBELL, K. R., and ARCHARD, L. C., Nature (Lon-
 don) 286, 29-32 (1980).
9. DUMBELL, K. R., and KAPSENEBERG, J. G., Bull. WHO
 60, 381-387 (1982).
10. EFSTRATIADIS, A., POSAKONY, J. W., MANIATIS, T.,
 LAWN, R. M., O'CONNELL, C., SPRITZ, A. R.,
 DERIEL, J. K., FORGET, B. G., WEISSMAN, S. M.,
 SIGHTON, J. L., BLECHL, A. E., SMITHIES, O.,
 BARALLE, F. E., SHOULDER, C. C., and PROUD-
 FOO, N. J., Cell 21, 653-668 (1980).
11. ESPOSITO, J. J., CABRADILLA, C. D., NAKANO, J. H., and OBIESKI, J. F., *Virology* 109, 231–243 (1981).
12. ESPOSITO, J. J., NAKANO, J. H., and OBIESKI, J. F., *Virology* 89, 53–66 (1978).
13. HOLLOWAY, R., and OBIESKI, J. F., *J. Gen. Virol.* 49, 181–185 (1980).
14. HRUBY, D. E., and BALL, L. A., *Virology* 113, 594–601 (1981).
15. HRUBY, D. E., and BALL, L. A., *J. Virol.* 40, 456–464 (1981).
16. HRUBY, D. E., and BALL, L. A., *J. Virol.* 43, 403–409 (1982).
17. HRUBY, D. E., MAKI, R. A., MILLER, D. B., and BALL, L. A., *Proc. Nat. Acad. Sci. USA* 80, 3411–3415 (1983).
18. HRUBY, D. E., MILLER, D. B., and BALL, L. A., *Virology* 123, 470–473 (1982).
19. KOZAK, M., *Cell* 15, 1109–1123 (1978).
20. MCAUSLAN, B. R., *Virology* 20, 162–168 (1963).
21. MCAUSLAN, B. R., *Virology* 21, 383–389 (1963).
22. MCAUSLAN, B. R., In "International Symposium on Enzymatic Aspects of Metabolic Regulation, Mexico City, 1966" (National Cancer Institute Monograph 27), pp. 211–219. DHEW, USPHS, NCI, Bethesda, Md., 1967.
23. MANIATIS, T., FRITSCH, E. F., and SAMBROOK, J., "Molecular Cloning: A Laboratory Manual." Cold Spring Harbor Laboratory, Cold Spring Harbor, N. Y., 1982.
24. MAXAM, A. M., and GILBERT, W., In "Methods in Enzymology" (L. Grossman and K. Moldave, eds.), Vol. 65, pp. 499–560. Academic Press, New York, 1980.
25. MOSS, B., In "Comprehensive Virology" (H. Fraenkel-Conrat and R. R. Wagner, eds.), Vol. 3, pp. 495–474. Plenum, New York, 1974.
26. PROUDFOOT, N. J., and BROWNEE, G. G., *Nature (London)* 252, 359–362 (1974).
27. PUCKETT, C., and MOSS, B., *Cell* 35, 441–448 (1983).
28. THOMAS, P. S., *Proc. Nat. Acad. Sci. USA* 77, 5201–5205 (1980).
29. TU, C.-P. D., and COHEN, S. N., *Gene* 10, 177–183 (1980).
30. VASSEF, A., BEN-HAMIDA, F., and BEAUD, G., *Ann. Virol. (Inst. Pasteur)* 134E, 375–385 (1983).
31. WEIHER, H., KONIG, M., and GRUSS, P., *Science* 219, 626–631 (1983).
32. WEIR, J. P., BAJZAR, G., and MOSS, B., *Proc. Nat. Acad. Sci. USA* 79, 1210–1214 (1982).
33. WEIR, J. P., and MOSS, B., *J. Virol.* 46, 530–537 (1983).