TP53 p.R337H prevalence in a series of Brazilian hereditary breast cancer families

Nathalia M Cury1,2, Victor EF Ferraz1,3* and Wilson A Silva Jr1,2,3

Abstract

Background: Approximately 5-10% of breast cancers are hereditary. Among hereditary syndromes, Hereditary Breast and Ovarian Cancer Syndrome (HBOC) and Li-Fraumeni Syndrome (LFS) have received the most attention. HBOC is due to mutations in the BRCA1 and BRCA2 genes and is characterized by breast adenocarcinoma and/or epithelial ovarian carcinoma. LFS is associated with germline mutations in TP53; the most frequent cancer types associated with this syndrome are sarcoma, breast cancer, leukemia, brain tumors and adrenocortical carcinomas. Other cancers related to LFS are found at lower frequencies. In Brazil, especially in the southern part of the country, a specific mutation in the TP53 gene, TP53 p.R337H, occurs at a high frequency in childhood adrenocortical tumors. It has been proposed that this mutation increases breast cancer risk in southern Brazilian women.

Methods: We carried out a case-control study to determine the prevalence of the TP53 p.R337H mutation in 28 female cancer patients attended at the Cancer Genetic Counseling Service of the General Hospital of the University of São Paulo Medical School of Ribeirão Preto who fulfilled Hereditary Breast and Ovary Cancer Syndrome genetic test criteria compared to healthy woman (controls). TP53 p.R337H mutation status was determined using the High Resolution Melting (HRM) method, followed by DNA sequencing. Fisher’s test was used to compare the prevalence of TP53 p.R337H in the patient and control groups.

Results: Two of the breast cancer cases (7.1%) and none of the controls carried the TP53 p.R337H mutation. At the time of the investigation, both cases fulfilled testing criteria for Hereditary Breast and Ovary Cancer Syndrome but not Li-Fraumeni or Li-Fraumeni-like Syndrome, based on genetic testing criteria of NCCN Clinical Practice Guidelines in Oncology (v.1.2010).

Conclusions: We suggest that genetic screening of Brazilian breast cancer patients who fulfill Hereditary Breast and Ovary Cancer Syndrome criteria and have a family history that includes other tumors of the LFS/LFL spectrum be tested for the TP53 p.R337H mutation.

Keywords: Breast cancer, TP53 mutation, BRCA1, High resolution melting

Background

The World Health Organization (WHO) estimates that over one million women are affected annually by breast cancer [1]. In Brazil, breast cancer is the most prevalent cause of death due to cancer among women from 40 to 69 years old [2]. About 5-10% of breast cancers are hereditary, and approximately 30% of young women who develop this type of cancer have a predisposition to disease [3-6]. Two major hereditary cancer predisposition syndromes are related to hereditary breast cancer phenotype: Hereditary Breast and Ovarian Cancer Syndrome (HBOC) and Li-Fraumeni Syndrome (LFS). HBOC is due to mutations in the BRCA1 and BRCA2 genes; it is characterized by ductal or lobular breast adenocarcinoma and epithelial ovarian carcinoma [7].

In 1990, LFS was found to be associated with germline mutations in TP53 [8]. Pathogenic mutation carriers for this gene have a cumulative risk of up to 90% for the development of a cancer spectrum, which is usually diagnosed before the age of 45. The most frequent cancer types include sarcoma, breast cancer, brain tumors, leukemia and adrenocortical carcinomas. Other cancers

* Correspondence: vferraz@usp.br

1Department of Genetics, Ribeirão Preto Medical School, University of São Paulo (FMERP/USP), São Paulo, Brazil
2Center for Medical Genomics, HC-FMRP/USP, Ribeirão Preto, Brazil
3Full list of author information is available at the end of the article

© 2014 Cury et al.; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.
are observed at a lower frequency, including lymphomas, gastric cancer and melanoma [9,10]. Families that do not have the classic phenotype of this syndrome are called Li-Fraumeni like (LFL) or Li-Fraumeni variant (Table 1) [11-13]. The NCCN Clinical Practice Guidelines in Oncology v.4.2013 take into account only classic LFS and Chompret criteria for LFS/LFL genetic testing [14].

Given the similar mutation rates of the BRCA1, BRCA2 and TP53 genes, Lee et al. [15] proposed that women who developed breast cancer before 30 years of age should undergo genetic testing for all three genes simultaneously. Custodio et al. (2013) estimated an overall frequency of 0.2-0.3% for TP53 p.R337H in a southern Brazil state [16]. This mutation has been identified in >90% of Brazilian patients with childhood adenocortical carcinoma, a rare but remarkably frequent tumor in southeastern and southern Brazil [16]. It also has been proposed that this mutation increases breast cancer risk in women, especially in southern Brazil [17-19]. The frequency of TP53 p.R337H in women with breast cancer has been reported as 2.4% [18], while in healthy women it is only 0.3% [20].

Given this potential association with breast cancer and the high frequency of TP53 p.R337H in southern Brazil, we conducted a case-control study to compare TP53 p.R337H mutation prevalence in healthy controls with that in female breast cancer patients in Ribeirão Preto, Sao Paulo state, located in southeast Brazil. The affected women fulfilled HBOC genetic test criteria, according to NCCN Clinical Practice Guidelines in Oncology v.1.2010 [21].

Methods

Subjects

This study was approved by the Ethics Committee of the University of Sao Paulo Medical School of Ribeirão Preto, SP, Brazil; informed consent was obtained from participants. We analyzed 28 DNA samples of unrelated women diagnosed with breast cancer that fulfilled the criteria for HBOC genetic testing according to NCCN Clinical Practice Guidelines in Oncology v.1.2010 [21] (Table 2). All patients were enrolled in the Cancer Genetic Counseling Service of the General Hospital of the University of São Paulo Medical School of Ribeirão Preto (HCFMRP-USP).

The control group was formed by 120 healthy women, age-matched to cases (Table 3), without family history of cancer, randomly selected among women attended at HCFMRP-USP and unrelated to the patients.

Sample collection

Peripheral blood samples (10 mL) were collected into vacutainer tubes containing EDTA, while they were attended at the clinic. Genomic DNA was extracted using the Wizard Genomic DNA Purification Kit (Promega, Madison, WI, USA), following the manufacturer’s recommendations and stored at -20°C until genotyping analysis. The samples were collected from March 2009 to June 2010.

Genotype determination

High Resolution Melting (HRM)

The HRM method was used to detect the TP53 p.R337H mutation. The HRM primer sequences were as described by Bastien et al. [22]. Reactions were performed with a total volume of 20 uL (3.6 uL of MiliQ water, 1.2 mL of each primer at 5 pmol/uL, 10 uL of MeltDoctor HRMTM Master Mix (Applied Biosystems) and 4 uL of DNA at 5 ng/uL). The amplification parameters were: 95°C for 10 minutes, 40 cycles of 95°C for 15 seconds and annealing temperature for 1 minute. For melting curve analysis, the parameters were: 95°C for 10 seconds, 60°C

Table 1 Current genetic testing criteria for LFS
Classification
Classic (Li et al., 1988) [25]
Birch (Birch et al., 1994) [11]
Eeles (Eeles, 1995) [12]
Revised Chompret (Tinat et al., 2009) [26]

FDR, First-degree relative; SDR, Second-degree relative.
for 1 minute, 95°C for 15 seconds and 60°C for 15 seconds. The samples with different melting curves were sequenced to validate and characterize the mutation.

DNA sequencing

For TP53, the different melting curve fragments were sequenced in an automatic sequencer XL 3500 Genetic Analyzer (Applied Biosystems). The reaction consisted of 1 to 2 uL of amplified DNA, 2 uL of Big Dye Terminator v3.1 Cycle, 2 uL of 5X Sequencing Buffer (Applied Biosystems), 1 uL of primer and sufficient water to complete 10 uL. The amplification parameters of the sequencing reaction were: 95°C for 1 minute followed by 25 cycles of 95°C for 10 seconds, 50°C for 5 seconds and 60°C for 4 minutes.

The complete coding sequence and exon-intron boundaries of BRCA1 and BRCA2 were analyzed in two TP53 p.R337H positive females. The sequences of the primers were those described by Leeneer et al. [23], and Keshavarzi et al. [24], respectively.

Statistical analyses

The TP53 p.R337H mutation frequency in breast cancer patients and controls was compared using Fisher’s exact test with GraphPad Prism 5 software to calculate odds ratios (OR), with confidence intervals (CIs) of 95%. A p-value of <0.05 was considered to be statistically significant. The TP53 p.R337H frequency in breast cancer patients was compared to the estimated Brazilian population frequency [16], which we assumed to be the true prevalence rate for the Brazilian population, using the one-sided exact test for binomial proportions.

Results

Twenty-eight women diagnosed with breast cancer were tested for TP53 mutations; two of them (7.1%) were found to carry a pathogenic mutation, heterozygous TP53 p.R337H (Figure 1). Both are negative for BRCA1 and BRCA2 pathogenic mutations. TP53 p.R337H is known to be more frequent in women with breast cancer, especially in families in southern Brazil suspected to have Li-Fraumeni Syndrome [17].

Patient 1 was diagnosed with parotid cancer at age 60 and bilateral breast cancer at age 61 in the left breast and age 62 in the right breast. Her brother had Central Nervous System cancer at age 58. Nevertheless, she did not meet the criteria for Li-Fraumeni Syndrome according to NCCN Guidelines v.1.2010 [21] and v.4.2013 [14], because the tumors related to the Li-Fraumeni Syndrome spectrum, in this case breast and prostate cancer, were diagnosed in third degree relatives (Figure 2). In the context of HBOC, she fulfilled the criteria of bilateral breast cancer personal history at any age, as two third-degree relatives were also diagnosed with breast cancer (Table 2).

Patient 2 was diagnosed with breast cancer at age 30. Her sister and her cousin were diagnosed with breast cancer at ages 42 and 35, respectively. Both had the same TP53 mutation; they were heterozygous for TP53 p.R337H. Additionally, her uncle was diagnosed with prostate cancer after he turned 60. Other tumors that are not part of the Li-Fraumeni Syndrome spectrum were diagnosed in second and third-degree relatives (Figure 3). There were two HBOC criteria for this patient: breast cancer personal history before 45 years old and family history of breast cancer before 50 years old; one first-degree relative and one third-degree relative were diagnosed with breast cancer before they were 50 (Table 2).
The HBOC criteria fulfilled for all 28 patients based on NCCN Guidelines v1.2010 [21] continued without change in v4.2013 [14].

Though both patients had a family history that included other tumors at the time of investigation, they did not fulfill the criteria for Li-Fraumeni Syndrome, according to NCCN Clinical Practice Guidelines in Oncology v.1.2010 [21]. However, the v.4.2013 [14] of these guidelines (Table 4) indicated that individuals with breast cancer by 35 years of age, not before 30 years of age as in previous version, and negative for BRCA1/2 fulfills LFS testing criteria. Consequently, according to the latest NCCN guidelines, patient 2 fulfills the criteria for LFS. In addition to the classic LFS [25] and Chompret [26] criteria, there are two more clinical criteria, called Birch [11] and Eeles [12]. Patient 1 just meets Eeles criteria for LFL, the less stringent one.

In comparison with the two of 28 HBOC breast cancer women patients who had the TP53 p.R337H mutation, none of the 120 healthy women without family history of cancer had this mutation. We found a significant association of TP53 p.R337H mutation with breast cancer (p = 0.0347; Table 5). Comparing our results with the overall frequency of TP53 p.R337H in southern Brazil, assumed by Custodio et al. (2013) to be in the range of 0.2–0.3% [16], we found that the TP53 p.R337H mutation frequency was significantly higher among breast cancer women with HBOC than in the general Brazilian population (p = 0.001 and 0.003 in comparison to 0.2 and 0.3%, respectively; one-sided exact binomial test).

Discussion
Based on our study, we suggest that TP53 p.R337H mutation prevalence in breast cancer patients suspected of...
HBOC in Ribeirão Preto, São Paulo, Brazil is high (7.1%). This result falls within the range of that found in previous studies conducted in southern Brazil (2.4-13%) [17,18]. However, the study by Achatz et al. is based on LFS/LFL families with tumors other than breast cancer.

This mutation is responsible for exchanging an arginine for a histidine (CGC to CAC) at codon 337, located at an oligomerization domain of p53 protein. It has been primarily associated with adrenocortical tumors in children [27,28].

Contact of alpha-helices of two adjacent monomers through a hydrogen bond is critical to oligomer stability and hence for p53 binding to DNA. Because histidine pKa is lower than arginine pKa, increased pH conditions
(pH 8.3) cause histidine deprotonation, making it incapable of forming a hydrogen bond, consequently preventing protein binding to DNA [27,29]. However, the pathogenicity of TP53 p.R337H is still questionable due to the low number of functional studies.

Achatz et al. (2007) [17] screened for the TP53 p.R337H mutation in 45 Brazilian subjects from unrelated families with cancer histories suggestive of LFS. They found the mutation in six cases (13%). Interestingly, the most common tumor type in these families was breast cancer (30.4%).

Assumpção et al. (2008) [18] estimated the prevalence of this mutation in 123 breast cancer cases and 223 age-matched controls. Three of the cases (2.4%) and none of the controls were carriers of the TP53 p.R337H mutation (P = 0.04). All three cases were relatively young at diagnosis (range 19-44 years old), and two of the three cases had a family history suggestive of LFS.

The role of the TP53 p.R337H mutation in breast carcinogenesis is still unclear. Achatz et al. (2007) found that, in an invasive ductal breast adenocarcinoma sample, the TP53 p.R337H mutation was homozygous in tumor tissue and heterozygous in peripheral blood, suggesting a role in tumor development. However, Assumpção et al. (2008) found the mutant TP53 p.R337H allele to be absent in the three breast tumors examined.

Gomes et al. (2012) [30] evaluated TP53 p.R337H mutation frequency in 390 unselected breast cases and 324 controls from Rio de Janeiro state. Two of the breast cancer cases (0.5%) and none of the controls carried the mutation.

Both cases had an early age at diagnosis (<40 years old) and a family history including breast and other cancer types.

Our study shows that TP53 p.R337H is found in women who fulfill HBOC genetic testing criteria but not the LFS criteria, according to NCCN Clinical Practice Guidelines in Oncology v.1.2010 [21]. The change made in v.4.2013 [14] of these guidelines led us to include patient 2 in LFS genetic testing criteria, but not patient 1. This patient potentially fulfills the Eeles criteria, which is not included in NCCN testing criteria. This fact, associated with the apparently high frequency of TP53 p.R337H mutation in the population that we analyzed, reinforces the necessity of adjusting genetic testing criteria for hereditary syndromes according to local populations characteristics.

It has been suggested that TP53 genetic testing should be considered for women diagnosed with breast cancer under age 30 after they have previously tested negative for mutations in BRCA1 and BRCA2 [31]. However, given similar mutation rates in early breast cancer, Lee et al. (2012) [15] proposed that these women should undergo genetic testing for mutations in all three genes at the same time. Taking into account the high frequency of the TP53 p.R337H mutation in Brazilian women with breast cancer [17,18,20,30], and given that the TP53 p.R337H genetic test (single nucleotide change at codon 337) is easy, fast and inexpensive, we suggest that the TP53 p.R337H mutation screening should not be restricted to early breast cancer patients, but to all Brazilian breast cancer patients with a family history that includes other LFS/LFL tumors.

One important limitation of our study is the relatively small number of subjects. Nevertheless, the association of TP53 p.R337H mutation with breast cancer that we found is enough to lead us to suggest that TP53 p.R337H mutation screening should be conducted at the same time as BRCA testing and not necessarily only after patients have previously tested negative for BRCA gene mutations. This could speed up diagnosis of breast cancer and help optimize genetic counseling procedures.

Table 4 Genetic testing criteria according to NCCN clinical practice guidelines in oncology v.4.2013 [14] for LFS

Criteria	Description
Familial TP53 mutation	Individual from a family with a known TP53 mutation
Early-onset breast cancer	Personal history of breast cancer ≤ 35 years of age with a negative BRCA1/2 test
Classic LFS criteria	Personal history of sarcoma < 45 years + 1 first-degree relative with cancer diagnosed at age <45 years + 1 first- or second-degree relative in the same lineage with cancer diagnosed at age < 45 years or sarcoma at any age
Chompret criteria	Personal history of a tumor of the LFS spectrum (eg. soft tissue sarcoma, osteosarcoma, brain tumor, breast cancer, adrenocortical carcinoma, leukemia, lung bronchoalveolar cancer) before 46 years of age + at least one first- or second-degree relative with any of the aforementioned cancers (other than breast cancer if the proband has breast cancer) before the age of 56 years or with multiple primaries at any age
	Personal history of multiple tumors (except multiple breast tumors), two of which belong to the LFS tumor spectrum, with the initial cancer occurring before the age of 46 years
	Personal history of adrenocortical carcinoma or choroid plexus carcinoma at any age of onset, regardless of family history

Table 5 TP53 p.R337H frequency in breast cancer patients with HBOC criteria and control groups

TP53 p.R337H	Control (n = 120)	Breast cancer (n = 28)	P	OR 95% CI
Arg/Arg	120 (100%)	26 (92.9%)	0.0347	0.0439 (0.0020 to 0.9438)
Arg/His	2 (7.1%)			

LFS, Li-Fraumeni Syndrome.
Conclusions

Our study shows that TP53 p.R337H mutation predilection in breast cancer patients suspected of Hereditary Breast and Ovary Cancer Syndrome in Ribeirão Preto, São Paulo, Brazil is high (7.1%) and could play an important role in predisposition to breast cancer in this population. However, there is currently no robust evidence for a role of this mutation in breast carcinogenesis.

We propose that TP53 p.R337H mutation screening be conducted in Brazilian women who have been diagnosed with breast cancer at any age, who fulfill Hereditary Breast and Ovary Cancer Syndrome genetic testing criteria and have a family history that includes other tumors of the LFS/LFL spectrum.

Abbreviations

BRCA1: Breast cancer susceptibility gene 1; BRCA2: Breast cancer susceptibility gene 2; HBOC: Hereditary breast and ovarian cancer syndrome; HCFMRP-USP: General Hospital of the University of São Paulo Medical School of Ribeirão Preto; HRM: High resolution melting; Cls: Confidence intervals; LFL: Li-Fraumeni like; LFS: Li-Fraumeni syndrome; NCCN: National Comprehensive Cancer Network; OR: Odds ratio; PCR: Polymerase chain reaction; WHO: World Health Organization.

Competing interests

The authors declare that they have no competing interest.

Authors’ contributions

WASJ conceived the study. NMC participated in the study design, conducted the mutation analysis, statistical analysis and manuscript preparation. VEFF participated in the study design, acquisition of data, statistical analysis and revised the manuscript critically. All authors read and approved the final manuscript.

Acknowledgements

We thank Adriana Aparecida Marques and Cristiane Ayres Ferreira for their contribution in proofreading the manuscript critically. All authors read and approved the final manuscript.

References

1. WHO: World Health Organization [http://www.who.int]
2. INCA. National Cancer Institute: Ministry of Health. Department of Health Care Coordination for Prevention and Surveillance. Estimado 2018 Rio de Janeiro: Cancer Incidence in Brazil [http://www2.inca.gov.br]
3. Claus EB, Schildkraut JM, Thompson WD, Risch NJ: Breast cancer susceptibility genes 1 and 2; HBOC: hereditary breast and ovarian cancer syndrome; HCFMRP-USP: General Hospital of the University of São Paulo Medical School of Ribeirão Preto; HRM: High resolution melting; Cls: Confidence intervals; LFL: Li-Fraumeni like; LFS: Li-Fraumeni syndrome; NCCN: National Comprehensive Cancer Network; OR: Odds ratio; PCR: Polymerase chain reaction; WHO: World Health Organization.
4. Walsh T, Canadé S, Coats KH, Swisher E, Stray SM, Higgins J, Roach KC, Mandell J, Lee MK, Giri R, Pershall D, Terekhov T, Lerner J, Bonaiti-Pellias C, Feunteun J: TP53 mutations in childhood cancers and cancer risk for carrier individuals. Br J Cancer 2010, 82(12):1932–1937.
5. NCCN - National Comprehensive Cancer Network: Clinical Practice Guidelines in Oncology. 1st ed. Genetic/Familial High-Risk Assessment: Breast and Ovarian. Li-Fraumeni Syndrome (LiFR-I). V.4, 2013. www.nccn.org.
6. van der Loos Y, Soen SY, Looi LM, Kang P, Kang JH, Svanandik K, Afshin H, Thong MK, Chin KF, Mohd Tallb NA, Yap CH, Teo SH: Comparable frequency of BRCA1, BRCA2 and TP53 germline mutations in a multi-ethnic Asian cohort suggests TP53 screening should be offered together with BRCA1/2 screening to early-onset breast cancer patients. Breast Cancer Res 2012, 14:2966.
7. Custodio G, Parise GA, Kessel Fi, Komchen H, Sabbaga CS, Rosati R, Grisa L, Parise ZZ, Pianowski MA, Fion CM, Ledesma JA, Barboza JR, Figueiredo FR, Sade ER, Abae I, Arram SB, Bingh Seh, Menganelli LR, Figueiredo MM, Carvalho DC, Avila SG, Waisdi TK, Poncio LC, Lima GF, Pontarolo R, Lalli E, Zhou Y, Zambetti GP, Ribeiro RC, Figueiredo-BCC: Impact of Neonatal Screening and Surveillance for the TP53 TP53 P.R337H Mutation on Early Detection of Childhood Adrenocortical Tumors. J Clin Oncol 2013, 31(20):2619–2626.
8. Achaz Ml, Olivier M, Le Calvez F, Mantel-Planche G, Lopes A, Rossis BM, Ashton-Prosilla G, Guzlan I, Palmiero B, Vargas FR, de Rocha AC, Vettore AL, Hainaut P: The TP53 mutation, TP53 P.R337H, is associated with Li-Fraumeni and Li-Fraumeni-like syndromes in Brazilian families. Cancer Lett 2007, 245:1–962.
9. Assumprjo RG, Seidinger AL, Mantellero MJ, Ribeiro RC, Zambetti GP, Ganti R, Sitivak K, Shurtel H, Pei D, Zzerfino LC, Dufloth RM, Brandalise SR, Yunes JA: Association of the germline TP53 TP53 P.R337H mutation with breast cancer in southern Brazil. BMC Cancer 2008, 8:257.
10. Garritano S, Gemignani F, Mandelli B, Palmiero B, Casale ML, Le Calvez K, Forget C, Zambetti G, Grotzki J, Schabas MA, Trinh S, Leen J, Meuret P, Deeba P, Lele J: TP53 P.R337H mutation carriers in the population of Southern Brazil: evidence for a founder effect. Hum Mutat 2010, 31(2):143–150.
11. Palermo EL, Schuler-Faccini L, Calfi M, Achaz Ml, Olivier M, Mantel-Planche G, Marcel V, Aguilar E, Giacomazzi J, Ewald IP, Guiugliani R, Hainaut P, Ashton-Prosilla P: Detection of TP53 P.R337H, a germline TP53 mutation predisposing to multiple cancers, in asymptomatic women participating in a breast cancer screening program in Southern Brazil. Cancer Lett 2008, 261:125–25.
12. NCCN - National Comprehensive Cancer Network: Clinical Practice Guidelines in Oncology. 1st ed. Genetic/Familial High-Risk Assessment: Breast and Ovarian. Hereditary Breast and/or Ovarian Cancer (HBOC-1) V1. 2010. www.nccn.org.
13. Baxtien R, Lewis TB, Hawkes JE, Quackenbush JF, Robbins TC, Palazzo J, Berou CM, Bernard P: High-throughput amplicon scanning of the TP53 gene in breast cancer using high-resolution fluorescent melting curve analyses and automatic mutation calling. Hum Mutat 2008, 29(3):757–764.
14. de Leeneer K, Coene I, Poppe B, de Paepe A, Balisa K: Rapid and sensitive detection of BRCA1/2 mutations in a diagnostic setting: comparison of two high-resolution melting platforms. Clin Chem 2008, 54(6):982–989.
15. Keshavarzi F, Javadi GR, Zeinali S: BRCA1 and BRCA2 germline mutations in 85 Iranian breast cancer patients. Fam Cancer 2012, 11:157–67.
25. Li FP, Fraumeni JF Jr, Mulvihill JJ, Blattner WA, Dreyfus MG, Tucker MA, Miller RW: A cancer family syndrome in twenty-four kindreds. Cancer Res 1988, 48(18):5358–5362.

26. Tinat J, Bougeard G, Baert-Desurmont S, Vasseur S, Martin C, Bouvignies E, Caron O, Bressac-de Pallerets B, Benthet P, Dugast C, Bonali-Pellé C, Stoppa-Lyonnet D, Frébourg T: 2009 version of the Chompret criteria for Li Fraumeni syndrome. J Clin Oncol 2002, 27(26):e108–e109; author reply e110.

27. Latronico AC, Pinto EM, Domenech S, Fragoso MC, Martin RM, Zerbini MC, Lucon AM, Mendonca BB: An inherited mutation outside the highly conserved DNA-binding domain of the p53 tumor suppressor protein in children and adults with sporadic adrenocortical tumors. J Clin Endocrinol Metab 2001, 86(10):4970–4973.

28. Figueiredo BC, Sandrini R, Zambetti GP, Pereira RM, Cheng C, Liu W, Lacerda L, Pianovski MA, Michalkiewicz E, Jenkins J, Rodriguez-Galindo C, Mastellaro MJ, Vianna S, Watanabe F, Sandrini F, Arram SB, Bofterra P, Ribeiro RC: Penetrance of adrenocortical tumours associated with the germline TP53 P.R337H mutation. J Med Genet 2006, 43(1):91–96.

29. Digiammarino EL, Lee AS, Cadwell C, Zhang W, Bathiner B, Ribeiro RC, Zambetti G, Kiwacki RW: A novel mechanism of tumorigenesis involving pH-dependent destabilization of a mutant p53 tetramer. Nat Struct Biol 2002, 9(1):12–16.

30. Gomes MC, Kotopoulous J, de Almeida GL, Costa MM, Veira R, Filho Fde A, Pitoombo WB, Leal FR, Royer R, Zhang P, Narod SA: The TP53 P.R337H mutation in TP53 and breast cancer in Brazil. Hered Cancer Clin Pract 2012, 10(1):3.

31. Mccuaig JM, Armel SR, Novokmet A, Ginsburg OM, Dernsky R, Narod SA, Malkin D: Routine TP53 testing for breast cancer under age 30: ready for prime time? Fam Cancer 2012, 11(4):607–613.

doi:10.1186/1897-4287-12-8
Cite this article as: Cury et al. TP53 p.R337H prevalence in a series of Brazilian hereditary breast cancer families. Hereditary Cancer in Clinical Practice 2014 12:8.