Mechanism of Coulomb breakup reactions of two-neutron halo nuclei 6He and 11Li

Yuma Kikuchi1, Takayuki Myo2,3, Kiyoshi Katō4, and Kiyomi Ikeda1

1 Nishina Center for Accelerator-Based Science, RIKEN, Wako 351-0198, Japan.
2 General Education, Faculty of Engineering, Osaka Institute of Technology, Osaka 535-8585, Japan.
3 Research Center for Nuclear Physics (RCNP), Osaka University, Ibaraki 567-0047, Japan.
4 Graduate School of Science, Hokkaido University, Sapporo 060-0810, Japan.

E-mail: yuma.kikuchi@riken.jp

Abstract. We investigate the three-body Coulomb breakup reactions of two-neutron halo nuclei and discuss the correlations of every binary subsystem such as of core-n and n-n by showing the invariant mass spectra. It is found that the final-state interactions of core-n and n-n binary subsystems dominantly determine the observed energy distributions of the breakup cross sections, such as the low-lying enhancements. Furthermore, we investigate the effects of the 9Li core excitations on the Coulomb breakup cross section of 11Li. It is shown that the integrated E_1 strength at low energy region is reduced by $\sim 15\%$ by the inclusion of the 9Li core excitations.

1. Introduction

Since the discovery of neutron halo nuclei such as 11Be, 6He, and 11Li, extensive studies have been performed to understand their exotic structure caused by the weakly-bound nature of valence neutrons [1]. Theoretically, using the models based on the core + valence neutrons picture, the halo structure of the ground states and the excitations of halo nuclei have been investigated [2–5]. In two-neutron halo nuclei, it has been pointed out the correlation between two halo neutrons is important to explain the observed small two-neutron separation energies and large matter radii [3].

Experimentally, the Coulomb breakup reactions have been performed to expose the role of the n-n correlation in the two-neutron halo nucle. The observed Coulomb breakup cross section provides with interesting information on the properties of weak binding and the excitations of halo nuclei. It is also expected to gain a deeper understanding of the n-n correlation in the two-neutron halo nuclei through the Coulomb breakup reactions [6]. To understand the n-n correlation in the two-neutron halo nuclei, there are at least two problems to be solved: (i) clarifying the dominant breakup process such as the direct breakup to a noninteracting three-body continuum or sequential decay via the resonance of the binary subsystem, (ii) evaluating the influence of the final-state interactions (FSI) on the cross section.

It has been observed in 11Li that the amount of the $(1s_{1/2})^2$ component ($45\pm10\%$) of the halo neutrons is comparable to that of $(0p_{1/2})^2$ [7]. This fact indicates the breaking of the $N = 8$ magic number in the ground state of 11Li. To reproduce this situation in 11Li, most of
the theoretical studies based on the $^9\text{Li} + n + n$ three-body models assume the $1s_{1/2}$ orbit is degenerated with the $0p_{1/2}$ one energetically by using the different ^9Li-n interactions for even and odd parity states [6; 8; 9]. However, Esbensen et al. [8] have mentioned that the $^9\text{Li} + n + n$ three-body model assuming the inert ^9Li core fails to explain the observed charge radius and the $E1$ strength in ^{11}Li consistently.

In Ref. [10], Myo et al. have shown that various physical quantities such as the matter and charge radii and the $E1$ strength of halo nuclei. The Coulomb breakup cross section as function of the total energy E as

$$
\sigma(E) = \frac{16\pi^3}{9\hbar c} N_{E1}(E_\gamma) \frac{d^3B(E1)}{dKdk},
$$

where $N_{E1}(E_\gamma)$ is the virtual photon number with the photon energy E_γ. Two momenta, k and K, represent relative momenta in Jacobi coordinates for the three-body system. The $E1$ strength distribution is given as

$$
\frac{d^3B(E1)}{dKdk} = \frac{1}{2J_{gs} + 1} \left| \langle \Phi^{(-)}(k, K) | \hat{O}(E1) | \Phi_{gs} \rangle \right|^2,
$$

where Φ_{gs} and $\Psi^{(-)}(k, K)$ are the wave functions for the ground and excited states, respectively, and the ground-state wave function for ^6He and ^{11}Li are the same ones as in Ref. [4] and [5], respectively. The total spin of the ground state is given as J_{gs}. Using Eq. (2), we obtain the Coulomb breakup cross section as function of the total energy E as

$$
\frac{d\sigma}{dE} = \int dKdk \frac{d^3\sigma}{dKdk} \delta \left(E - \frac{\hbar^2k^2}{2\mu} - \frac{\hbar^2K^2}{2M} \right),
$$

where μ and M are reduced masses corresponding to k and K, respectively. Similarly, we can calculate the invariant mass spectra as

$$
\frac{d\sigma}{d\varepsilon_1} = \int dKdk \frac{d^3\sigma}{dKdk} \delta \left(\varepsilon_1 - \frac{\hbar^2k^2}{2\mu} \right),
$$

where ε_1 is the energy of the binary subsystem. Using Eq. (4), we can discuss the effects of binary subsystem correlations, such as core-n and $n-n$, on the Coulomb breakup reaction.
To evaluate the distributions given in Eqs. (3) and (4), it is necessary to obtain the scattering states, $\Psi^-(k, K)$. Here, we obtain $\Psi^-(k, K)$ using CSLS[11; 12]. The incoming scattering state Ψ^- in the bra-representation is described as

$$\langle \Psi^-(k, K) \rangle = \langle \Phi_0(k, K) \rangle + \langle \Phi_0(k, K) \rangle \hat{V} \lim_{\varepsilon \to 0} \frac{1}{E - \hat{H} + i \varepsilon},$$

where Φ_0 is a solution of an asymptotic Hamiltonian \hat{H}_0. The interaction \hat{V} is defined by subtracting \hat{H}_0 from the total hamiltonian \hat{H} and becomes the source of FSI.

The Green’s function in Eq. (5) is replaced with the complex-scaled Green’s function in CSLS, and the relation between the Green’s function in Eq. (5) and the complex-scaled one is given as

$$\lim_{\varepsilon \to 0} \frac{1}{E - \hat{H} + i \varepsilon} = \hat{U}^{-1}(\theta) \frac{1}{E - \hat{H}^\theta} \hat{U}(\theta) = \sum_{n} \hat{U}^{-1}(\theta) |\chi_n^\theta\rangle \frac{1}{E - E_n^\theta} \langle \tilde{\chi}_n^\theta | \hat{U}(\theta) \rangle.$$

In derivation of the right-hand-side of Eq. (6), we insert the complete set constructed with $\{\chi_n^\theta\}$, being the eigenstates of the complex-scaled Hamiltonian \hat{H}^θ. We here calculate the eigenstates and eigenvalues of \hat{H}^θ, $\{|\chi_n^\theta\rangle\}$ and $\{E_n^\theta\}$ by using the core + $n + n$ three-body models [4; 5]. We obtain $\Psi^-(k, K)$ as

$$\langle \Psi^-(k, K) \rangle = \langle \Phi_0(k, K) \rangle + \sum_{n} \langle \Phi_0(k, K) \rangle \hat{V} \hat{U}^{-1}(\theta) |\chi_n^\theta\rangle \frac{1}{E - E_n^\theta} \langle \tilde{\chi}_n^\theta | \hat{U}(\theta) \rangle.$$

The scattering state in CSLS consists of two terms: The first term represents the noninteracting continuum states, and the second is the effects of FSI. This description of the scattering states is useful to investigate the effects of correlations in the final states after the breakup. The correlations in the ground state can also be seen in the transition to the first term.

3. Coulomb breakup cross sections of 6He and 11Li

We first show the Coulomb breakup cross section with respect to the total energy of 6He and 11Li, in Fig. 1, in comparison with the observed ones [13; 14]. In both cases, the calculated cross sections show the low-lying enhancements, and well reproduces the observed data. We also estimate the effect of FSI on the cross sections by taking only the first term in Eq. (7) in

Figure 1. Obtained Coulomb breakup cross sections of 6He and 11Li, measured from the threshold energy of core + $n + n$. The left and right panels represent the cross sections for 6He and 11Li, respectively. The observed data, shown as solid squares, are taken from Ref. [13] for 6He and from Ref. [14] for 11Li.
Figure 2. Invariant mass spectra of the Coulomb breakup reaction of 6He. The left and right panels present the spectra for α-n and n-n, respectively. The observed data, shown as solid squares, are taken from Ref. [13]. An arrow in the left panel indicates the position of the 5He$(3/2^-)$ resonances in our calculation.

Figure 3. Invariant mass spectra of the Coulomb breakup reaction of 11Li. The left and right panels present the spectra for 9Li-n and n-n, respectively. In the left panel, three types of spectra are presented: The total distribution (solid), s-wave component (dotted), and p-wave component (dashed). Two arrows in the left panel indicate the position of the p-wave resonances in our calculation.

the calculation, and it is found that correlations in final states play decisive roles in reproducing the Coulomb breakup cross sections.

To discuss what kinds of FSI are important in the Coulomb breakup reactions, we calculate the invariant mass spectra for binary subsystems. We show the spectra for 6He in Fig. 2. From the results, the invariant mass spectra for the α-n subsystem shows the peak at around 0.7 MeV corresponding to the 5He$(3/2^-)$ resonance. The α-n correlation is clearly confirmed in the invariant mass spectra of the Coulomb breakup cross section. For the n-n subsystem, the low-lying enhancement is seen near the zero-energy region, which indicates the importance of the n-n virtual state in the final states.

In Fig. 3, we also show the calculated invariant mass spectra for 11Li. From the results, we confirm that both invariant mass spectra for 9Li-n and n-n show the low-lying enhancements. For 9Li-n, it is seen that the peak comes from the s-wave component as shown in the left panel in Fig. 3. This result indicates the virtual-state correlation of the 9Li-n subsystem. For n-n, we find the similar behavior to that for 9Li-n, and the virtual-state correlation of the n-n subsystem is confirmed in the spectra. One the other hand, from Fig. 3, the p-wave resonances in 10Li does not contribute to the invariant mass spectra for the 9Li-n subsystem since the energies of the
Figure 4. Comparison between the $E1$ strength distributions with different $(s_{1/2})^2$ components. The solid line represent the result of using the ground-state wave function with $(s_{1/2})^2 = 44\%$, which is used in the right panel of Fig. 1. The dashed line is the result with $(s_{1/2})^2 = 21\%$. The dotted line is taken from Ref. [9].

p-wave resonances, which are obtained at 275 keV and 506 keV in our calculation, are higher than the peak position of the total energy of the breakup cross section shown in the right panel of Fig. 1.

From the results for 6He and 11Li, it is found that the invariant mass spectra for core-n subsystems reflect the characters of the core-n correlations in two-neutron halo nuclei, while the behaviors of the spectra for n-n subsystem are commonly dominated by the n-n virtual-state correlation in two nuclei.

4. Effects of 9Li core excitations on the Coulomb breakup reaction of 11Li

To investigate the effects of the 9Li core excitations on the Coulomb breakup reaction of 11Li, we compare the $E1$ transition strength calculated in our coupled-channel 9Li + $n + n$ model [5] with the result in Ref. [9], in which the three-body model assuming the inert 9Li core is employed.

We here calculate the $E1$ strength distribution using the different 11Li wave function, in which the coupling to the 2p-2h configuration involved only by the pairing correlation in 9Li core is taken into account. This restriction leads to the small $(s_{1/2})^2$ component as 21.0% in the ground state, which gives a similar value to that in the three-body model assuming the inert 9Li core. The calculated distribution is shown in Fig.4 as dashed line in comparison with the result in the model assuming the inert core (dotted line). The wave function used in the results shown as dashed and dotted lines contain almost the same amount of the s-wave components in the 11Li ground state. In two kinds of results, the $E1$ strength distributions commonly have peaks at around 0.5 MeV; however, there exists a large difference of strength around the peak energy. This is due to the fact that about 15% of the integrated strength in our calculation escapes to the higher excited states having the excited components of the 9Li core.

We confirm that the observed Coulomb breakup cross section and the $E1$ strength distribution cannot be reproduced only by taking into account the coupling to the 2p-2h excitation due to the pairing correlation in 9Li. To reproduce the observed cross section, it is essential to include the 2p-2h excitation coming from not only the pairing correlation but also the tensor one in the 9Li core. By taking into account both correlations in 9Li, we obtain the result shown as solid line in Fig. 4, which is used in the calculation of the cross section in the right panel in Fig. 2.
5. Summary

In this study, we calculate the three-body Coulomb breakup cross sections and invariant mass spectra for binary subsystems of 6He and 11Li. Our calculations reproduce the Coulomb breakup cross sections well. From the result of cross sections, it is found that the FSI has a dominant contribution to explain the low-lying enhancement seen in the cross sections. It is confirmed that the subsystem correlations of the 5He($3/2^-$) resonance and the 10Li virtual state dominantly determine the distributions of the invariant mass spectra of the breakup reactions of 6He and 11Li, respectively, while the n-n virtual-state correlations are found in both cases. Furthermore, we investigated the effects of the 9Li core excitations on the Coulomb breakup reaction of 11Li. It is shown that the integrated $E1$ strength is reduced by $\sim 15\%$ by inclusion of the 9Li core excitations. It is essential to take into account 2p-2h excitations due to the tensor and pairing correlations in the 9Li core in reproducing the observed Coulomb breakup cross section of 11Li.

References

[1] Tanihata I, Savajols H and Kanungo R 2013 Prog. Part. Nucl. Phys. 68 215
[2] Zhukov M V, Danilin B V, Fedorov D V, Bang J M, Thompson I J and Vaagen J S 1993 Phys. Rep. 231 151
[3] Aoyama S, Mukai S, Katō K and Ikeda K 1995 Prog. Theor. Phys. 93 99
[4] Myo T, Katō K, Aoyama S and Ikeda K 2001 Phys. Rev. C 63 054313
[5] Myo T, Kikuchi Y, Katō K, Toki H and Ikeda K 2008 Prog. Theor. Phys. 119 561
[6] Esbensen H and Bertsch G F 1992 Nucl. Phys. A 542 310
[7] Simon H et al. 1999 Phys. Rev. Lett. 83 496
[8] Esbensen H, Hagino K, Mueller P and Sagawa H 2007 Phys. Rev. C 76 024302
[9] Hagino K, Sagawa H, Nakamura T and Shimoura S 2009 Phys. Rev. C 80 031301
[10] Myo T, Katō K, Toki H and Ikeda K 2007 Phys. Rev. C 76 024305
[11] Kikuchi Y, Myo T, Takashina M, Katō K and Ikeda K 2009 Prog. Theor. Phys. 122 499
[12] Kikuchi Y, Katō K, Myo T, Takashina M and Ikeda K 2010 Phys. Rev. C 81 044308
[13] Aumann T et al. 1999 Phys. Rev. C 59 1252
[14] Nakamura T 2007 Nucl. Phys. A 788 243c