Performance Evaluation of Concentric Triple Tube Heat Exchanger by using CFD

Suryakant
M.Tech Scholar
Truba Institute of Engineering & Information Technology
Bhopal (M.P), India
suryakant011090@gmail.com

Shravan Vishwakarma
Assistant Professor
Truba Institute of Engineering & Information Technology
Bhopal (M.P), India

Jitendra Mishra
Assistant Professor
Truba Institute of Engineering & Information Technology
Bhopal, (M.P), India

Abstract: The main objective of this work is to design a concentric three-cylinder heat exchanger for better heat movement, using a sum of four expansions to verify its hot presentation under similar boundary conditions. For this reason, the second creep condition is specified for robust dividers where the heat flow for the outer side divider is concentrated to achieve an adiabatic state while the dividers and inner vanes of the cylinder are coupled. The deltas for the outside and inside of the line are characterized as mass flow trees; The power source is marked as an outlet with a pressure factor. Flow programming is used to determine the movement of liquid and heat flow in the measurement zones. The applicable conditions are governed iteratively by the limited volume details with the SIMPLE calculation. The RNG-k-epsilon model is used for storm currents because the impact of eddies on strong currents is more accurate than the standard k-epsilon model and the second booster graph method is used for the deflection of the eruptive energy and the its propagation speed. The results show that computer examination of the liquid elements of a concentric three-tube heat exchanger with inclined scales at 45 °C provides the circulation temperature, the speed of heat movement, and, in general, a coefficient of thermal movement more than 11.74% higher than sloped blades are at 30 °C and 28.96% higher than straight stairs, 9mm high and 42.22% higher than three tube heat exchangers concentric fins.

Keywords: Heat Exchanger, Rib, Temperature, TCTHE.

I. INTRODUCTION

The heat exchanger is a device or device for the exchange of heat between two fluids that can be in immediate or backhanded contact. There are numerous utilizations for heat exchangers in our everyday life. For instance, condensers and evaporators are utilized in boilers, condensers, air coolers and cooling towers, and so forth. Heat exchangers are additionally utilized in the car business as radiators and oil coolers in motors. Heat exchangers are likewise broadly utilized in the substance and interaction businesses to move heat between two fluids that are in a couple of states.

The general thermal exhibition of heat exchangers can be improved by procedures that improve heat move. Improving heat move has significant ramifications for energy saving and ecological issues. Different strategies have been created to improve the exhibition of thermal liquids and the energy effectiveness of such devices, bringing about a decrease in their size and cost of proprietorship. These cycles can be characterized both as dynamic cycles that require outer energy, and as detached cycles to improve heat trade surfaces with explicit calculations (blades, confounds and balances, and so forth) and as added substances for fluids. Interior additions in the cylinders have been discovered to be more successful in improving tempestuous convective heat move. Consequently, inner supplements in tubes currently assume a significant part in business applications.

II. LITERATURE REVIEW

Mahmoud Mohammed Abdelmagied et al. [1] the presentation characteristics of a triple tightened adjusted warmth exchanger (TCTHE) are obtained likely and numerically. The new arrangement was made by adding another liquid route to a twofold conelike chamber device (DCTHE). The investigation hopes to guage the nice and cozy properties of TSTHE at various key operational and plan limits, including Reynolds water number, change in channel water temperatures, and stream approaches, incline focuses and extents of pitch (bit of the circle). A Cartesian 3D model was made with the ANSYS 14.5 programming group to get a wise point of view on the thermal power of TCTHE with A level of detail not by and
enormous available in tests. A restricted volume discretization system was wont to handle the prevalent conditions. Amin Shahsavar et al. [2] during this paper, entropy examination and warmth execution appraisal of a dormant accumulating device (LHSHE) with wave channels during relaxing and establishing instruments need to be performed. The system with different frequencies was pursued for various temperatures and Reynolds number of the flow move fluid (HTF). The water is facilitated in reverse manners within the interior and outer chambers and therefore the PCM is added to the middle chamber. The glow exchanger was examined for the temperature, liquid substance and speed of the PCM, similarly as heat entropy and disintegration age rates. M. Abdelmagied et al. [3] during this paper, the heat and hydrodynamic properties of another glow exchanger called triple circle tube device (TSCTHE) are likely recognized and differentiated and a twofold twist tube device (DSCTHE) for reference. The new arrangement was made by adding a 3rd chamber to a DSCTHE. The examination was coordinated considering the conditions of heat move from the blustery fluid to the fluid. The place of the investigation is to deal with the thermo water powered properties of TSCTHE with different operational and supportive limits. Ahmed H.N. Al-Mudhaifar et al. [4] during this examination, another adjusted line device was presented and mathematically researched to enhance the nice and cozy presentation of the phase transition Material (PCM) atomic power stockpiling framework (TES). To assess the nice and cozy exhibition of this warmth exchanger, its presentation was contrasted which of two sorts of warmth exchangers. These warmth exchangers included: the coasting tube device and therefore the three cylinder device. Two-dimensional advanced models are created. Cao X et al. [5] within the cooling framework, buildup from the refrigerant radiates an excellent deal of heat. Utilizing buildup heat from cooling frameworks to store heat for water warming and mechanical high temp water system advances energy saving and inactive warmth stockpiling (LHTES) offers special advantages. Contrasted with the shell and cylinder device, the trio tube device (TTHE) can understand heat stockpiling and boiling water planning simultaneously, however a few of studies have taken a gander at the heat yield. Z. Li et al. [6] To tackle the difficulty of the low warm conductivity of stage change materials (PCM), three distinct strategies are being considered, including the alteration of the calculation, the expansion of nanoparticles and metal froth porosities are analyzed. Various centralizations of nanoparticles and metal froth porosities are analyzed. Various headings of the HTF stream within the internal and external lines are assessed as for the course of gravity.

III. OBJECTIVE

A triple concentric tube heat exchanger has to be designed for the various conditions. The main objectives of the present work are as follow.

- To study about various heat exchangers and its mathematical relations.
- To prepare of triple concentric tube heat exchanger of different computational model.
- To perform CFD analysis on all designs of triple concentric tube heat exchanger.
- To compare the results of all designs of triple concentric tube heat exchanger.

IV. METHODOLOGY

A. Mathematical analysis of concentric triple tube heat exchanger

The numerical examination of concentric triple cylinder heat exchanger has been led in present turn out included for cooling. The chilly liquids stream in the internal cylinder and external cylinder at a temperature of \(T_{c1(in)} \) and ways out at temperatures \(T_{c1(out)} \) where \(T_{c2(out)} \) in the inward cylinder and external cylinder, individually. The hot liquid which must be cooled enters from the internal annulus of the triple cylinder heat exchanger at a temperature of \(T_{h(in)} \) and ways out at a temperature of \(T_{h(out)} \) as demonstrated in fig.1.

![fig1](attachment:image.png)

Fig. 1: Arrangement of fluid flow in triple tube heat exchanger

Appearing of the heat move in a triple chamber heat exchanger is certainly not something similar for the situation where the hot liquid streams equivalent way as the cool liquid and the condition where the hot liquid streams the backup course of action as the fresh liquid. In that capacity, the definitions for these two undeniable outlines are bankrupt down self-ruling.

B. Overall heat transfer coefficient of the concentric triple tube heat exchanger
\[U = \frac{q_h}{A \times LMTD_{avg}} \]

Where

- \(A \) = Inner tube area
- \(LMTD_{avg} \) = Average logarithmic mean temperature differences

\[LMTD_{avg} = \frac{LMTD_{h\&c} + LMTD_{h\&nf}}{2} \]

Where

- \(LMTD_{h\&c} \) = Logarithmic mean temperature differences of hot & cold fluid
- \(LMTD_{h\&nf} \) = Logarithmic mean temperature differences of hot & nano-fluid

\[LMTD_{h\&c} = \frac{\Delta T_1 - \Delta T_2}{\ln \left(\frac{\Delta T_1}{\Delta T_2} \right)} \]

And

\[LMTD_{h\&nf} = \frac{\Delta T_3 - \Delta T_4}{\ln \left(\frac{\Delta T_3}{\Delta T_4} \right)} \]

Where

- \(\Delta T_1 = T_{h, in} - T_{c, out} \)
- \(\Delta T_2 = T_{h, out} - T_{c, in} \)
- \(\Delta T_3 = T_{h, in} - T_{nf, out} \)
- \(\Delta T_4 = T_{h, out} - T_{nf, in} \)

Effectiveness of concentric triple tube heat exchanger

\[Effectiveness = \frac{q_h}{q_{max}} \]

Where

- \(q_{max} \) = Maximum possible heat transfer rate.

Execution list or productivity of the concentric triple cylinder heat exchanger can be the proportion of the heat move pace of the heat exchanger to its pressing factor drop.

\[\eta = \frac{q_h}{\Delta P} \]

Bulk mean temperature of cold fluid

\[T_{b1} = \frac{T_{c1, in} + T_{c1, out}}{2} \]

Bulk mean temperature of hot fluid

\[T_{b2} = \frac{T_{h1, in} + T_{h1, out}}{2} \]

Liner velocity

Liner velocity of normal water

\[v_{normal} = \frac{\dot{m}_{normal}}{\rho_{normal} A_{cross \ normal}} \text{ m/sec} \]

Reynolds No.

Reynolds No. of GNPs

\[R_{e, nf} = \frac{\rho_{nf} \nu_{nf} D_2}{\mu_{nf}} \]

Reynolds No. of cold water

\[R_{e, cold} = \frac{\rho_{cold} \nu_{cold} D_1}{\mu_{cold}} \]

Reynolds No. of normal water

\[R_{e, normal} = \frac{\rho_{normal} \nu_{normal} D_3}{\mu_{normal}} \]

Calculation of Nusselt no. of GNPs:

\[Nu_{nf} = \frac{h_{nf} D_{h,nf}}{k_{nf}} = 0.023 R_{e, nf}^{0.8} \times Pr_{nf}^{0.4} \]

Calculation of Nusselt no. of cold water:

\[Nu_{cold} = \frac{h_{cold} D_{h,cold}}{k_{cold}} = 0.023 R_{e, cold}^{0.8} \times Pr_{cold}^{0.4} \]

Calculation of Nusselt no. of normal water:

\[Nu_{normal} = \frac{h_{normal} D_{h,normal}}{k_{normal}} = 0.023 R_{e, normal}^{0.8} \times Pr_{normal}^{0.4} \]

Heat transfer coefficient for GNPs, Normal and cold water:

\[h_{nf} = \frac{k_{nf} Nu_{nf}}{D_{h,nf}} \text{ W/m}^2\text{.k} \]

Heat transfer coefficient for cold water:

\[h_{cold} = \frac{k_{cold} Nu_{cold}}{D_{h,cold}} \text{ W/m}^2\text{.k} \]

Heat transfer coefficient for Normal water:

\[h_{normal} = \frac{k_{normal} Nu_{normal}}{D_{h,normal}} \text{ W/m}^2\text{.k} \]

Darcy-Weisbach factor for Newtonian fluids:

\[f_D = \frac{64}{Re} \]

Blasius rubbing factor for violent stream in roundabout cylinders

Blasius built up a declaration of rubbing factor in 1913 for \(2100 < Re < 10^5 \)

\[f = 0.0791 \times Re^{-0.32} \]

Koo friction factor

Koo introduced another explicit formula in 1933 for a turbulent flow for \(10^4 < Re < 10^5 \)

\[f = 0.0014 + 0.125 \times Re^{-0.32} \]
The expression for drop through both sides

Pressure drop for GNPs

$$\Delta p_{nf} = 4f_{nf} \frac{L}{D_2} \rho_{nf} \mu_{nf}^2$$

Pressure drop for cold

$$\Delta p_{cold} = 4f_{cold} \frac{L}{D_1} \rho_{cold} \mu_{cold}^2$$

Pressure drop for normal

$$\Delta p_{normal} = 4f_{normal} \frac{L}{D_3} \rho_{normal} \mu_{normal}^2$$

C. Algorithm used for Computational fluid dynamics analysis

D. Governing Equations

For the CFD examination the administering incomplete respectful conditions, in consistent state structure, The overseeing conditions are settled by utilizing the mathematical recreations considering a few presumptions are,

❖ The nano-liquid is thought to be a homogenous and in consistent state condition.
❖ Flow is viewed as violent and incompressible.

E. Conservation of mass or continuity equation

The condition for preservation of mass, or progression condition, can be composed as follows:

$$\frac{\partial u_i}{\partial x_i} = 0$$

Where x is the axial coordinate and u is velocity of fluid

F. Computational fluid dynamics analysis for concentric triple tube heat exchanger

1. CAD model of without baffle of concentric triple tube heat exchanger:

 In the current work a three dimensional CAD model of concentric triple cylinder heat exchanger with straight confuse is made with the assistance of plan measured of ANSYS workbench. The inward cylinders measurement 13.51 mm, middle cylinder breadth 45.26 mm, external cylinder distance across 70.66 mm, length of 500 mm as demonstrated in figure no. 4.

Fig. 4 CAD model without baffles for concentric tube triple tube heat exchanger

2. Meshing:

 Meshing is a basic activity in computational liquid elements examination in this interaction CAD calculation is separated into enormous quantities of little pieces called network. The all out no of hubs created in the current work is 3918427 and all out no. of components is 3059523 as demonstrated in figure 5.
Kinds of component produced in this meshing is tet4, Hex8 and Wed6 with component size is 0.5 mm.

3. CAD model of with straight baffle for concentric triple tube heat exchanger:

![Fig. 6: CAD model for with straight baffles](image)

4. Meshing:

Meshing is a basic activity in computational liquid elements investigation in this cycle CAD math is partitioned into enormous quantities of little pieces called network. The complete no of hubs created in the current work is 984253 and all out no. of components is 1000308 as demonstrated in figure 5.5. kinds of component produced in this meshing is tet4, Hex8 and Wed6 with component size is 0.5 mm.

![Fig. 7: Meshing of with straight baffles](image)

H. CAD model of concentric triple tube heat exchanger with inclined baffles at 45°

Current work a three-dimensional CAD model of triple chamber heat exchanger with skewed puzzles is made with the help of plan separated of ANSYS workbench. The internal chambers distance across 13.51 mm, widely appealing cylinder estimation 45.26 mm, outside chamber width 70.66 mm , length of 500 mm and the skewed baffles at 45O with befuddles isolating of 50 mm as shown in figure no. 11.

![Fig. 10: Meshing with inclined baffles at 30°](image)

![Fig. 11: CAD model with inclined baffles at 45°](image)

1. Meshing:

Irrefutably the no. of centers created in the present of work is 2228509 and full scale no. of parts is 6491592 as shown in figure 5.7. Kinds of part delivered in this lattice is tet4, Hex8 and Wed6 with segment size is 0.5 mm.

![Fig. 12: Meshing of concentric tube triple tube heat exchanger with inclined baffles at 45°](image)

I. Boundary condition

1. need of the energy condition of the decide the temperature dispersion.
2. RNG k-epsilon model is utilized for violent stream on the grounds that the twirling impact on fierce stream
having higher exactness as contrasted and standard k-epsilon model.

3. Working liquid graphene nanoplatelets–platinum nanofluid with thickness of 984.3203 kg/m³ and heat exchanger pipe material is aluminum having warm conductivity is k = 15.2 W/mK.

4. Outer container of concentric cylinder heat exchanger is totally protected henceforth no heat move between the external cylinder and air, heat heat transition is set as zero for the external side divider to make adiabatic condition.

5. The inward cylinder and transitional cylinder dividers with ribs are coupled for heat collaboration among liquid and line.

6. Cold and ordinary liquid gulf having mass stream rate is 0.1 kg/sec at temperature 283K and 291K.

7. Nano liquid delta having mass stream rate 6 lit/min (0.1086 Kgs/sec) at temperature 343K

8. For the power source limit condition the measure constrain should be set as zero in light of the fact that the liquid streaming inside the heat exchanger is climatic

9. Rest of all surface treated as divider with no slip conditions set for strong dividers.

10. Coupled plane for pressure speed coupling for pressure The SIMPLE scheme is used, and the following demand increase plane is used for the force-energy disturbance, energy, and its propagation speed.

11. The Fluent solver is utilized for CFD examination.

V. RESULTS

A. Model validation

In order to validate the results of this work, a comparative analysis was carried out with selected background documents. “Nima Mazaheri et al. "Analyzing performance of a ribbed triple-tube heat exchanger operated with graphene nanoplatelets nanofluid based on entropy generation and exergy destruction" Kermanshah University of Technology, Kermanshah, Iran, International Communications in Heat and Mass Transfer 107 (2019) 55–67.

(b) Present of work

Fig. 13: Temperature distribution along the inner tube at 9 mm rib height (a) Nima Mazaheri et al. (2019) and (b) Present of work

Rate variety examination of Nima Mazaheri et al. what’s more, present work with form outline and temperature appropriation along tube length show less variety going from 0.04% for greatest to 0.28% least temperature as fig.14

(b) Present of work

Fig. 13: Temperature distribution along the inner tube at 9 mm rib height (a) Nima Mazaheri et al. (2019) and (b) Present of work

Rate variety examination of Nima Mazaheri et al. what’s more, present work with form outline and temperature appropriation along tube length show less variety going from 0.04% for greatest to 0.28% least temperature as fig.14

Fig. 14: Temperature distribution along tube length Mehdi Bahiraei et al.

B. CFD analysis for concentric triple tube heat exchanger without ribs

To perform a computational study of liquid elements on a three-cylinder concentric heat exchanger without fins, cold water and normal water flow at 0.1 kg / s and nano-liquid at 0.1086 kg / s. The shaft temperature of the nano-liquid, cold water and typical water is 343K, 283K, and 291K separately, while the source temperature for the inner, middle and outer cylinders is 294.71K respectively, 323.15K and 313.92K.
C. **Computational fluid dynamics analysis for concentric triple tube heat exchanger with straight ribs of 9 mm height**

After performing a computerized study of the liquid elements on a concentric three-cylinder heat exchanger with straight fins 9 mm high. The channel temperatures of nano-liquid, cold water and plain water are 343K, 283K and 291K separately, while the source temperature for the inner, middle and outer cylinders is 298.936 K, 321.83 K and 317.499 K.

D. **Computational fluid dynamics analysis for concentric triple tube heat exchanger with inclined ribs at 30°**

E. **Computational fluid dynamics analysis for concentric triple tube heat exchanger with inclined ribs at 45°**
To decide the heat move pace of the hot nanofluid, cold water and typical water following relations are have been utilized:

\[q_{nf} = m_{nf} \cdot C_{p,nf} \cdot (T_{nf,i} - T_{nf,o}) \]
\[q_{c1} = m_{c1} \cdot C_{p,c1} \cdot (T_{c1, out} - T_{c1, in}) \]
\[q_{c2} = m_{c2} \cdot C_{p,c2} \cdot (T_{c2, out} - T_{c2, in}) \]

VI. CONCLUSION

In the present work, a digital and modernized study of liquid elements was carried out for several developments of a
concentric three-cylinder heat exchanger in order to improve heat generation. In total, four developments were used to verify heat recovery for similar boundary conditions. For this reason, the second non-slip breaking point is established for the strong dividers, with the heat flow for the outer divider concentrated to maintain an adiabatic state while the inner cylinder dividers and fins are coupled. The deltas for the outside and inside of the line are characterized as mass flow trees; the power source is marked as an outlet with a pressure factor. Flow programming is used to determine liquid flow and heat movement in the measurement zones. The related conditions are managed iteratively by the limited volume plan with the SIMPLE calculation. The RNG-k-epsilon model is used for strong currents because the impact of eddies on storm currents is more accurate than the standard k-epsilon model and the second demand updraft diagram is used for disturbances. Accidental energy and their dispersion rate. The different ends result from the numerical and computerized study of the liquid elements for the concentric three-tube exchangers.

- After a PC study of liquid elements on a bladeless three-tube concentric heat exchanger, cold water and typical flow rate at 0.1 kg / s and nanofluid at 0.1086 kg / s. The temperature of the nanofluid bay, cold water and normal water individually is 343 K, 283 K and 291 K, while the temperature at the power source of the inner, focal and outer conductors was found to be 294.71 K, 323.15 K and 313.92 K. The heat movement rates for nanofluids, cold water and clean water are individually 8.29 kW, 4.92 kW and 9.6 kW with an absolute thermal displacement coefficient of 11.1 kW / m 2K.

- After PC examination of the liquid elements on a concentric three-tube heat exchanger with straight fins 9 mm high. The temperatures of the nanofluid, cold water, and typical water delta are 343 K, 283 K and 291 K separately, while the temperatures on the inner, focal and outer line paths were individually 298.936 K, 321.83 K and 313.499 K. The heat displacement rates for nanofluids, cold water and clean water are individually 8.83 kW, 6.69 kW and 11.08 kW, the full thermal displacement coefficient of 12.73 kW / m 2K is of the 13.68% higher than that of heat exchangers with three concentric tubes without fins.

- After performing an automatic liquid element analysis on a three-blade concentric cylinder heat exchanger, which has been moved 30 ° C. Typical nanofluid, cold water and water well temperatures are of 343 K, 283 K and 291 K, while the temperatures of the power source of the inner, middle and outer containers were determined to be 298.57 K, 318.92 K and 318.13 K. The thermal motion for nanofluid, water cold and typical water is 10.05 kW, 7.83 kW and 11.67 kW separately, coefficient of movement of absolute heat equal to 15.15 kW / m 2K, which is 17.36% higher than with tall straight blades 9 mm and 30.86% higher than a continuous heat exchanger with three concentric cylinders.

- After performing a mechanized liquid element study on a 45 ° C compensated three-blade concentric cylinder heat exchanger. The temperatures of the nanofluid shaft, cold water and typical water are 343 K, 283 K and 291 K, while the temperatures of the power source of the inner, middle and outer containers were found to be 303.59 K, 317.95 K and 321.22 K. The rate of heat movement for nanofluid, cold water and plain water is separately 10.45 kW, 8.65 kW and 12.66 kW, the total coefficient of thermal movement equal to 17.04 kW / m 2 K, which is 11.74% higher than with blades inclined at 30 ° C, higher 28.96% compared to straight stairs with a height of 9 mm and 42.22% higher than the triple concentric cylinder heat exchanger without stairs.

From the end above, it was seen that the computational study of the liquid elements of a concentric three-tube heat exchanger, with blades tilted at 45 ° C, provides the maximum appropriation of temperature, a speed of movement of heat, and a coefficient by 11.74% in general heat loss with inclined scales at 30 ° C, 28.96% more than straight stairs with a stature of 9 mm and 42.22% more than three shiftless concentric resistance heat exchangers. With this in mind, a concentric three-tube heat exchanger is proposed with scales calculated at 45 ° for better heat circulation.

REFERENCES

[1] Mahmoud Mohammed Abdelmagied "Investigation of the triple conically tube thermal performance characteristics" International Communications in Heat and Mass Transfer 119 (2020) 104981. doi.org/10.1016/j.ichemtransfer.2020.104981

[2] Amin Shahsavar et al. "Entropy and Thermal performance Analysis of PCM Melting and Solidification Mechanisms in a Wavy Channel Triplex-Tube Heat Exchanger", Renewable Energy, Accepted Date: 15 November 2020, https://doi.org/10.1016/j.renene.2020.11.074.

[3] Mahmoud Abdelmagied "Experimental study of a triple spirally coiled tube heat exchanger thermo-fluid characteristics" Applied Thermal Engineering 180 (2020) 115803. https://doi.org/10.1016/j.applthermaleng.2020.115803.

[4] Ahmed H.N. Al-Mudhafar et al. "Performance enhancement of PCM latent heat thermal energy storage system utilizing a modified webbed tube heat exchanger", 4th Annual CDT Conference in Energy Storage and Its Applications, Professor
Andrew Cruden, 2019, 07-19, University of Southampton, U.K, Energy Reports 6 (2020) 76–85. https://doi.org/10.1016/j.egyr.2020.02.030.

[5] Cao X, Zhang N, Yuan Y & Luo X "Thermal performance of triplex-tube latent heat storage exchanger: simultaneous heat storage and hot water supply via condensation heat recovery" Renewable Energy (2020), doi.org/10.1016/j.renene.2020.05.059.

[6] Vo Tuyen, Nguyen Van Hap & Nguyen Minh Phu "Thermal-hydraulic characteristics and optimization of a liquid-to-suction triple-tube heat exchanger", University of Food Industry (HUFI), Ho Chi Minh City, Viet Nam, Case Studies in Thermal Engineering 19 (2020) 100635. https://doi.org/10.1016/j.csite.2020.100635.

[7] Z. Li et al. "Effect of porous medium and nano-particles presences in a counter-current triple tube composite porous/nano-PCM system", Applied Thermal Engineering (2019), doi:https://doi.org/10.1016/j.applthermaleng.2019.114777.

[8] Abdelmagied M "Thermal Performance Characteristics of a Triple Spiral Tube Heat Exchanger", Chemical Engineering and Processing - Process Intensification (2019), doi: https://doi.org/10.1016/j.cep.2019.107707.

[9] Hossein Javadi et al. "Thermal analysis of a triple helix ground heat exchanger using numerical simulation and multiple linear regression" University of Science and Technology, Babol, 47166-85635, Iran, Geothermics 81 (2019) 53–73. https://doi.org/10.1016/j.geothermics.2019.04.005.

[10] Nima Mazaheri et al. "Analyzing performance of a ribbed triple-tube heat exchanger operated with graphene nanoplatelets nanofluid based on entropy generation and exergy destruction" Kermanshah University of Technology, Kermanshah, Iran, International Communications in Heat and Mass Transfer 107 (2019) 55–67. https://doi.org/10.1016/j.icheatmasstransfer.2019.05.015.