PROPERTIES OF SCALAR-QUARK SYSTEMS IN SU(3)$_c$ LATTICE QCD

HIDEAKI IIDA and TORU T. TAKAHASHI
Yukawa Institute for Theoretical Physics (YITP), Kyoto University
Kitashirakawa-oiwake, Sakyo, Kyoto 606-8502, Japan
ida@yukawa.kyoto-u.ac.jp

HIDEO SUGANUMA
Department of Physics, Kyoto University
Kitashirakawa-oiwake, Sakyo, Kyoto 606-8502, Japan

Received 17 February 2008
Revised (Day Month Year)

We perform the first study for the bound states of colored scalar particles ϕ (“scalar quarks”) in terms of mass generation with quenched SU(3)$_c$ lattice QCD. We investigate the bound states of ϕ, $\phi^\dagger \phi$ and $\phi \phi^\dagger$ (“scalar-quark hadrons”), as well as the bound states of ϕ and quarks ψ, i.e., $\phi^\dagger \psi$, $\psi \psi \phi$ and $\phi \phi^\dagger \psi$ (“chimera hadrons”). All these new-type hadrons including ϕ have a large mass of several GeV due to large quantum corrections by gluons, even for zero bare scalar-quark mass $m_\phi = 0$ at $a^{-1} \sim 1$GeV. We find a similar m_ϕ-dependence between $\phi^\dagger \psi$ and $\phi \phi^\dagger \psi$, which indicates their similar structure due to the large mass of ϕ. From this study, we conjecture that all colored particles generally acquire a large effective mass due to dressed gluons.

Keywords: Dynamical mass generation; Lattice QCD; Scalar-quarks; Diquarks.

PACS Nos.: 12.38.Gc, 12.38.Mh, 14.40.Gx, 25.75.Nq

1. Introduction

The origin of mass is one of the fundamental and fascinating subjects in physics. About 99% of mass of matter in the world originates from the strong interaction, which provides the large constituent quark mass $M_\psi = (300 - 400)$MeV. Such a dynamical fermion-mass generation in the strong interaction can be interpreted as spontaneous chiral-symmetry breaking (χSB)

In the strong interaction, however, there is other type of dynamical mass generation than χSB. For instance, gluons, which are massless in perturbation QCD, seem to have a large effective mass as $(0.5 - 1.0)$GeV due to non-perturbative effects. Actually, glueballs, which are ideally composed only by gluons, have a large mass, e.g., about 1.5GeV. The same holds for charm quarks. Whereas the current mass of charm quarks is about 1.2GeV at the renormalization point $\mu = 1$GeV,
the constituent charm-quark mass in the quark model is set to be about 1.6GeV. The about 400MeV difference between the current and the constituent charm-quark masses could be explained by dynamical mass generation without \(\chi_{\text{SB}} \), since there is no chiral symmetry for such heavy quarks. These examples imply mass generation without \(\chi_{\text{SB}} \) in the strong interaction. We therefore conjecture that large dynamical mass generation generally occurs even without \(\chi_{\text{SB}} \) in the strong-interaction world, i.e., all colored particles have a large effective mass generated by dressed gluon effects. In this study, we investigate the system of colored scalar particles, which do not have chiral symmetry.

2. Scalar-quark Hadrons and Chimera Hadrons in Lattice QCD

We consider light 3c-colored “scalar-quarks” \(\phi \). The light scalar-quarks can be also regarded as idealized point-like “diquarks” at the scale of \(a^{-1} \sim 1\text{GeV} \). We investigate “scalar-quark mesons” \(\phi^\dagger \phi \) and “scalar-quark baryons” \(\phi \phi \phi \) as the bound states of scalar quarks \(\phi \). We also investigate the bound states of scalar-quarks \(\phi \) and quarks \(\psi \), i.e., \(\phi^\dagger \psi \), \(\psi \psi \phi \) and \(\phi \phi \psi \), which we name “chimera hadrons.”

To include scalar-quarks \(\phi \) together with quarks \(\psi \) and gluons in QCD, we adopt the generalized QCD Lagrangian density,

\[
L = -\frac{1}{4} G_{\mu\nu}^a G^{a\mu\nu} + \mathcal{L}_F + \mathcal{L}_{\text{SQ}}, \quad \mathcal{L}_{\text{SQ}} = \text{tr} \left(D_\mu \phi \right)^\dagger (D^\mu \phi) - m_\phi^2 \text{tr} \phi^\dagger \phi, \tag{1}
\]

where \(\mathcal{L}_F \) denotes the quark part and \(m_\phi \) the bare mass of scalar-quarks \(\phi \). In the actual calculation, we use a discretized Euclidean action on the \(16^3 \times 32 \) lattice at \(\beta = 5 \) \(.7 \), i.e., lattice spacing \(a^{-1} \sim 1.1\text{GeV} \). The parameters employed in the analysis are summarized in Table 1.

The gauge-invariant local operators \(O(\mathbf{x}, t) \) of scalar-quark hadrons and chimera hadrons are summarized in Table 2. We introduce “scalar-quark flavor” denoted by \(i, j, k \) and investigate the scalar-quark flavor non-singlet mesons, which do not have disconnected diagrams in their correlators. Note that, without the “scalar-quark flavor” degrees of freedom, the baryonic local operators of \(\phi \phi \phi \) and \(\phi \phi \psi \) inevitably

Names	Lorentz properties	Local operators
Scalar-quark meson	Scalar	\(M_i(x) = \Gamma^{ij}_M \phi_i^\dagger(x) \phi_j(x) \)
Scalar-quark baryon	Scalar	\(B_i(x) = \Gamma^{ijk}_B \epsilon_{abc} \phi_i^\dagger(x) \phi_j(x) \phi_k(x) \)
Chimera meson	Spinor	\(C^a_M(x) = \phi_a(x) \psi(x) \)
Chimera baryon	Scalar	\(C_B(x) = \epsilon_{abc} (\psi_a^\dagger(x) C_{75} \psi_b(x)) \phi_c(x) \)
Chimera baryon	Spinor	\(C_B^a(x) = \Gamma^{ijk}_B \epsilon_{abc} \phi_i^\dagger(x) \phi_j(x) \psi_c(x) \)
vanish due to the anti-symmetric tensor ϵ_{abc}. We calculate the temporal correlator $G(t) = \overline{\psi} \sum_{\vec{x}} \langle O(\vec{x}, t)O(\vec{0}, 0) \rangle$, where the total momentum is projected to be zero. The mass M of these hadrons is obtained as $M \approx -\frac{1}{T} \ln G(T)$ for large T.

Here, we show the lattice results for the masses of new-type hadrons. Figure 1 shows the squared scalar-quark-meson mass $M_{\phi^+\phi}^2$ and the squared scalar-quark-baryon mass squared $M_{\phi\phi\phi}^2$, plotted against the bare scalar-quark mass squared m_{ϕ}^2 at $a^{-1} \approx 1.1$GeV. Even for zero bare scalar-quark mass, scalar-quark hadrons have a large mass as $M_{\phi^+\phi} \approx 3$GeV and $M_{\phi\phi\phi} \approx 4.7$GeV. We find the “constituent scalar-quark picture”, i.e., $M_{\phi^+\phi} \approx 2M_{\phi}$ and $M_{\phi\phi\phi} \approx 3M_{\phi}$, where $M_{\phi} \approx (1.5 - 1.6)$GeV is the constituent scalar-quark mass. The calculation can be performed even in the region $m_{\phi}^2 < 0$ due to large quantum corrections on ϕ. We also find the relations, $M_{\phi^+\phi}^2 \approx 4m_{\phi}^2 + \text{const.}$ and $M_{\phi\phi\phi}^2 \approx 9m_{\phi}^2 + \text{const.}$ from the figure. Together with the “constituent scalar-quark picture”, we reach the relation $M_{\phi}^2 \approx m_{\phi}^2 + \Sigma_{\phi}$, where Σ_{ϕ} is the self-energy of ϕ and is expected to be insensitive to m_{ϕ}. This is a natural relation between the renormalized mass and the bare mass for scalar particles.

Chimera hadrons also have a large mass even at $m_{\phi} = m_{\psi} = 0$, i.e., $M_{\phi^+\phi} \approx 1.9$GeV for chimera mesons $\phi^+\psi$, and $M_{\psi\psi\phi} \approx 2.2$GeV, $M_{\phi\psi\psi} \approx 3.6$GeV for chimera baryons $(\psi\phi, \phi\phi\psi)$. We find a “constituent scalar-quark/quark picture”, i.e., an approximate relation as $M_{m_{\phi} + n_{\psi}} \approx m_{\phi} + n_{\psi}$ with the constituent quark mass $M_{\phi} \approx 0.4$GeV, and the large constituent scalar-quark mass $M_{\phi} \approx (1.5 - 1.6)$GeV.
From the m_ψ-dependence of chimera hadron masses, we conjecture a similar structure between chimera mesons $\phi^\dagger \psi$ and chimera baryons $\phi \phi \psi$.\(^9\) The wave-function of ψ in a chimera meson $\phi^\dagger \psi$ is distributed around the heavy scalar-quark ϕ^\dagger due to the large mass of ϕ, and, similarly, the wave-function of ψ in a chimera baryon $\phi \phi \psi$ is distributed around the point-like “di-scalar-quark” $\phi \phi$. (See Fig. 2.)

3. Summary and Conclusion

We have performed the first study of light “scalar-quarks” ϕ (colored scalar particles or idealized diquarks) and their color-singlet hadronic states in quenched SU(3)\(_c\) lattice QCD in terms of dynamical mass generation. We have investigated the mass of “scalar-quark mesons” $\phi^\dagger \phi$, “scalar-quark baryons” $\phi \phi \phi$ and “chimera hadrons” ($\phi^\dagger \psi$, $\psi \psi \phi$, $\phi \phi \psi$), which are composed of quarks ψ and scalar-quarks ϕ. We have observed the large dynamical mass generation of scalar-quarks ϕ about 1.5GeV at $a^{-1} \simeq 1.1\text{GeV}$ due to large quantum corrections by gluons, even at the zero bare scalar-quark mass $m_\phi = 0$. This lattice result also indicates that plausible diquarks used in effective hadron models cannot be described as the point-like particles and should have a much larger size than $a \simeq 0.2\text{fm}$\(^9\)\(^10\).

This study indicates that, even without χ_{SB}, large dynamical mass generation in the strong interaction occurs for the scalar-quark systems. Together with the large glueball mass and the large difference between the current and the constituent charm-quark masses, this type of mass generation would generally occur in the strong interaction, and therefore we conjecture that all colored particles generally acquire a large effective mass due to dressed gluon effects\(^9\)\(^10\) as shown in Fig. 3.

![Fig. 3. Schematic figure for dynamical mass generation of colored particles. Even without chiral symmetry breaking, colored particles generally acquire a large effective mass due to dressed gluons.](image)

References

1. Y. Nambu and G. Jona-Lasinio, *Phys. Rev.* **122**, 345 (1961); *ibid.* **124**, 246 (1961).
2. H. Iida, M. Oka and H. Suganuma, *Eur. Phys. J. A* **23**, 305 (2005).
3. J. E. Mandula and M. Ogilvie, *Phys. Lett. B* **185**, 127 (1987).
4. K. Amemiya and H. Suganuma, *Phys. Rev. D* **60**, 114509 (1999).
5. C. J. Morningstar and M. Peardon, *Phys. Rev. D* **60**, 034509 (1999).
6. N. Ishii, H. Suganuma and H. Matsufuru, *Phys. Rev. D* **66**, 094506 (2002).
7. Particle Data Group (W.M. Yao et al.), *J. Phys. G* **33**, 1 (2006).
8. A. De Rujula, H. Georgi and S. L. Glashow, *Phys. Rev. D* **12**, 147 (1975).
9. H. Iida, H. Suganuma and T. T. Takahashi, *Phys. Rev. D* **75**, 114503 (2007).
10. H. Iida, H. Suganuma and T. T. Takahashi, *AIP Conf. Proc.* **915**, 256 (2007).
11. T. T. Takahashi et al., *Phys. Rev. Lett.* **86**, 18 (2001); *Phys. Rev. D* **65**, 114509 (2002).