On frequentist coverage errors of Bayesian credible sets in moderately high dimensions

KEISUKE YANO1,\ast, and KENGO KATO2,\ast\ast

1Department of Mathematical Informatics, Graduate School of Information Science and Technology, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan. E-mail: \astyano@mist.i.u-tokyo.ac.jp

2Department of Statistics and Data Science, Cornell University, 1194 Comstock Hall, Ithaca, NY 14853. E-mail: \ast\astkk976@cornell.edu

In this paper, we study frequentist coverage errors of Bayesian credible sets for an approximately linear regression model with (moderately) high dimensional regressors, where the dimension of the regressors may increase with but is smaller than the sample size. Specifically, we consider quasi-Bayesian inference on the slope vector under the quasi-likelihood with Gaussian error distribution. Under this setup, we derive finite sample bounds on frequentist coverage errors of Bayesian credible rectangles. Derivation of those bounds builds on a novel Berry–Esseen type bound on quasi-posterior distributions and recent results on high-dimensional CLT on hyperrectangles. We use this general result to quantify coverage errors of Castillo–Nickl and L^∞-credible bands for Gaussian white noise models, linear inverse problems, and (possibly non-Gaussian) nonparametric regression models. In particular, we show that Bayesian credible bands for those nonparametric models have coverage errors decaying polynomially fast in the sample size, implying advantages of Bayesian credible bands over confidence bands based on extreme value theory.

Keywords: Castillo-Nickl band, credible rectangle, sieve prior.

1. Introduction

Bayesian inference for high or nonparametric statistical models is an active research area in the recent statistics literature. Posterior distributions provide not only point estimates but also credible sets. In a classical regular statistical model with a fixed finite dimensional parameter space, it is well known that the Bernstein–von Mises (BvM) theorem holds under mild conditions and the posterior distribution can be approximated (under...
the total variation distance) by a normal distribution centered at an efficient estimator (e.g. MLE) and with covariance matrix identical to the inverse of the Fisher information matrix as the sample size increases. The BvM theorem implies that a Bayesian credible set is typically a valid confidence set in the frequentist sense, namely, the coverage probability of a \((1 - \alpha)\)-Bayesian credible set evaluated under the true parameter value is approaching \((1 - \alpha)\) as the sample size increases; cf. [57], Chapter 10. There is also a large literature on the BvM theorem in nonparametric statistical models. Compared to the finite dimensional case, however, Bayesian uncertainty quantification is more complicated and more sensitive to prior choices in the infinite dimensional case. [21, 25] find some negative results on the BvM theorem in the infinite dimensional case. [7, 37, 40] develop conditions under which the BvM theorem holds for Gaussian white noise models and nonparametric regression models; see also [20, 27, 52]. Employing weaker topologies than \(L^2\), [10] elegantly formulate and establish the BvM theorem for Gaussian white noise models; see also [47] for the adaptive BvM theorem for Gaussian white noise models. Subsequently, [11] establish the BvM theorem in a weighted \(L^\infty\)-type norm for nonparametric regression and density estimation. There are also several papers on frequentist coverage errors of Bayesian credible sets in the \(L^2\)-norm. [39] study asymptotic frequentist coverage errors of \(L^2\)-type Bayesian credible sets based on Gaussian priors for linear inverse problems; see also [51, 53] for related results. Using an empirical Bayes approach, [54] develop \(L^2\)-type Bayesian credible sets adaptive to unknown smoothness of the function of interest. We refer the reader to Chapter 7 in [32] and Chapter 12 in [29] for further references on these topics.

This paper aims at studying frequentist coverage errors of Bayesian credible rectangles in an approximately linear regression model with an increasing number of regressors. We provide finite sample bounds on frequentist coverage errors of (quasi-)Bayesian credible rectangles based on sieve priors, where the model allows both an unknown bias term and an unknown error variance, and the true distribution of the error term may not be Gaussian. Sieve priors are distributions on the slope vector whose dimension increases with the sample size. We allow sieve priors to be non-Gaussian or not to be an independent product. We employ a “quasi-Bayesian” approach with Gaussian error distributions. The resulting posterior distribution is called a “quasi-posterior.”

An important application of our results is finite sample quantification of Bayesian nonparametric credible bands based on sieve priors. We derive finite sample bounds on coverage errors of Castillo–Nickl [11] and \(L^\infty\)-credible bands in Gaussian white noise models, linear inverse problems, and (possibly non-Gaussian) nonparametric regression models; see Section 3.1 ahead for the definition of Castillo–Nickl credible bands. The lit-
erature on frequentist confidence bands is broad. Frequentist approaches to constructing confidence bands date back to Smirnov and Bickel–Rosenblatt [50, 6]; see also [15, 19, 30] for more recent results. In contrast, there are relatively limited results on Bayesian uncertainty quantification based on L^∞-type norms. [31] study posterior contraction rates in the L^r-norm for $1 \leq r \leq \infty$, and [9] derive sharp posterior contraction rates in the L^∞-norm. [35] derive adaptive posterior contraction rates in the L^∞-norm for Gaussian white noise models and density estimation; see also [64] for adaptive posterior contraction rates. Building on their new BvM theorem, [11] develop credible bands (Castillo-Nickl bands) based on product priors that have correct frequentist coverage probabilities and at the same time shrink at (nearly) minimax optimal rates for Gaussian white noise models. [63] study conditions under which frequentist coverage probabilities of credible bands based on Gaussian series priors approach one as the sample size increases for nonparametric regression models with sub-Gaussian errors. [47] establish qualitative results on adaptive credible bands for Gaussian white noise models. Still, quantitative results on frequentist coverage errors of nonparametric credible bands are scarce. Our quantitative result complements the qualitative results established by [11] and [63] and contributes to the literature on Bayesian nonparametrics by developing deeper understanding on Bayesian uncertainty quantification in nonparametric models. More recently, [60] also derive a quantitative result on coverage errors of Bayesian credible bands based on Gaussian process priors. We will clarify the difference between their results and ours in Section 1.1 ahead.

Notably, our results lead to an implication that supports the use of Bayesian approaches to constructing nonparametric confidence bands. It is well known that confidence bands based on extreme value theory (such as e.g. those of [6]) perform poorly because of the slow convergence of Gaussian maxima. In the kernel density estimation case, [33] shows that confidence bands based on extreme value theory have coverage errors decaying only at the $1/\log n$ rate (regardless of how we choose bandwidths) where n is the sample size, while those based on bootstrap have coverage errors (for the surrogate function) decaying polynomially fast in the sample size; see also [15]. Our result shows that Bayesian credible bands (for the true function in Gaussian white noise models and linear inverse problems; for the surrogate function in nonparametric regression models) have also coverage errors decaying polynomially fast in the sample size, implying an advantage of Bayesian credible bands over confidence bands based on extreme value theory; see Remarks 3.2 and 3.8 for more details. Another potentially interesting implication of our analysis of the Castillo-Nickl band is the following. In this paper, we use a sieve prior that truncates high frequency terms of the function. In a Gaussian white noise model,
our results show that the coverage error for the true function of the Castillo-Nickl band decays fast in the sample size (i.e., decays at a polynomial rate in the sample size), and at the same time the L^∞-diameter converges at a minimax optimal rate as long as the cut-off level 2^J is chosen in such a way that $2^J \sim (n/\log n)^{1/(2s+1)}$ where s is the smoothness level. This implies that, as long as we confine ourselves to nonadaptive credible bands, a sieve prior would not be less favorable than a prior that models high-frequency terms of the function.

The main ingredients in the derivation of the coverage error bound in Section 2 are (i) a novel Berry–Esseen type bound for the BvM theorem for sieve priors, i.e., a finite sample bound on the total variation distance between the quasi-posterior distribution based on a sieve prior and the corresponding Gaussian distribution, and (ii) recent results on high dimensional CLT on hyperrectangles [14, 17]. Our Berry–Esseen type bound improves upon existing BvM-type results for sieve priors; see the discussion in Section 1.1. The high dimensional CLT is used to approximate the sampling distribution of the centering estimator by the Gaussian distribution that matches with the Gaussian distribution approximating the (normalized) posterior distribution.

In addition, importantly, derivations of coverage error bounds for nonparametric models in Section 3 are by no means trivial and require further technical arguments. Specifically, for Gaussian white noise models, we will consider both credible bands based on centering estimators with fixed cut-off dimensions and without cut-off dimensions, which require different analyses on bounding the effect of the bias to the coverage error. For linear inverse problems, we will cover both mildly and severely ill-posed cases. For nonparametric regression models, we will consider random designs and so can not directly apply the result of Section 2 since we assume fixed designs in Section 2; hence we have to take care of the randomness of the design, and to this end, we will employ some empirical process techniques.

1.1. Literature review and contributions

For a nonparametric regression model, [60] derive finite sample bounds on frequentist coverage errors of Bayesian credible bands based on Gaussian process priors. They assume (i) Gaussian process priors, (ii) that the error term follows a sub-Gaussian distribution, and (iii) that the error variance is known. The present paper markedly differs from [60] in that (i) we work with possibly non-Gaussian priors; (ii) we allow a more flexible error distribution; and (iii) we allow the error variance to be unknown. More specifically, (i) to allow for non-Gaussian priors, we develop novel Berry–Esseen type bounds on
Bayesian credible sets in moderately high dimensions

quasi-posterior distributions in (mildly) high dimensions. (ii) In addition, to weaken the dimensionality restriction and the moment assumption on the error distribution, we make use of high-dimensional CLT on hyperrectangles developed in [14, 17]. (iii) Finally, when the error variance is unknown, the quasi-posterior contraction for the error variance impacts on the coverage error for the slope vector and so a careful analysis is required to take care of the unknown variance.

The present paper also contributes to the literature on the BvM theorem in nonparametric statistics, which is now quite broad; see [10, 11, 25, 37, 40, 47] for Gaussian white noise models, [7, 27] for linear regression models with high dimensional regressors, and [60, 63] for nonparametric regression models with Gaussian process priors. See [13] for high-dimensional linear regression under sparsity constraints. Note that [13] also discusses non-Gaussian error distributions. See also [8, 12, 26, 28, 42, 43, 48] for related results. We refer the reader to [3, 18, 24, 38] on the BvM theorem for quasi-posterior distributions.

Importantly, our Berry–Esseen type bound improves on conditions on the critical dimension for the BvM theorem. [7, 27, 52] study such critical dimensions for sieve priors. First, [7] does not cover the case with an unknown error variance, while the results in [27, 52] cover the case with an unknown error variance. Our result is consistent with the result of [7] when the error variance is assumed to be known. Meanwhile, our result substantially improves on the results of [27, 52] for the unknown error variance case. Namely, the results of [27, 52] show that the BvM theorem holds if $p^3 = o(n)$ under typical situations when the error variance is unknown, where p is the number of regressors and n is the sample size; on the other hand, our result shows that the BvM theorem holds if $p^2(\log n)^3 = o(n)$, thereby improving on the condition of [27, 52]. See Remark 2.2 for more details. Our BvM-type result allows us to cover wider smoothness classes of functions when applied to the analysis of Bayesian credible bands in nonparametric models.

1.2. Organization and notation

The rest of the paper is organized as follows. In Section 2, we consider Bayesian credible rectangles for the slope vector in an approximately linear regression model and derive finite sample bounds on frequentist coverage errors of the credible rectangles. In Section 3, we discuss applications of the general result established in Section 2 to nonparametric models. Specifically, we cover Gaussian white noise models, linear inverse models, and nonparametric regression models with possibly non-Gaussian errors. In Section 4, we give a proof of the main theorem (Theorem 2.1). Proofs of the other results are given in [61].
Throughout the paper, we will obey the following notation. Let $\| \cdot \|$ denote the Euclidean norm, and let $\| \cdot \|_\infty$ denote the max or supremum norm for vectors or functions. Let $\mathcal{N}(\mu, \Sigma)$ denote the Gaussian distribution with mean vector μ and covariance matrix Σ. For $x \in \mathbb{R}$, let $x_+ = \max\{x, 0\}$. For two sequences $\{a_n\}$ and $\{b_n\}$ depending on n, we use the notation $a_n \lesssim b_n$ if $a_n \leq cb_n$ for some universal constant $c > 0$, and $a_n \sim b_n$ if $a_n \lesssim b_n$ and $b_n \lesssim a_n$. For any symmetric positive semidefinite matrices A and B, the notation $A \preceq B$ means that $B - A$ is positive semidefinite. Constants c_1, c_2, \ldots, c and $\tilde{c}_1, \tilde{c}_2, \ldots$ may not depend on the sample size n and the dimension p. The values of c, c_1, c_2, \ldots and $\tilde{c}_1, \tilde{c}_2, \ldots$ may be different at each appearance.

2. Bayesian credible rectangles

Consider an approximately linear regression model

$$Y = X\beta_0 + r + \varepsilon,$$

where $Y = (Y_1, \ldots, Y_n)^T \in \mathbb{R}^n$ is a vector of outcome variables, X is an $n \times p$ design matrix, $\beta_0 \in \mathbb{R}^p$ is an unknown coefficient vector, $r = (r_1, \ldots, r_n)^T \in \mathbb{R}^n$ is a deterministic (i.e., non-random) bias term, and $\varepsilon = (\varepsilon_1, \ldots, \varepsilon_n)^T \in \mathbb{R}^n$ is a vector of i.i.d. error terms with mean zero and variance $0 < \sigma_0^2 < \infty$. We are primarily interested in the situation where the number of regressors p increases with the sample size n, i.e., $p = p_n \to \infty$ as $n \to \infty$, but we often suppress the dependence on n for the sake of notational simplicity. In addition, we allow the error variance σ_0^2 to depend on n, i.e., $\sigma_0^2 = \sigma_0^2(n)$, which allows us to include Gaussian white noise models in the subsequent analysis as a special case. In the general setting, the error variance σ_0^2 is also unknown. In the present paper, we work with the dense model with moderately high-dimensional regressors where β_0 need not be sparse and $p = p_n$ may increase with the sample size n but $p \leq n$. To be precise, we will maintain the assumption that the design matrix X is of full column rank, i.e., rank $X = p$. The approximately linear model (1) is flexible enough to cover various nonparametric models such as Gaussian white noise models, linear inverse problems, and nonparametric regression models, via series expansions of functions of interest in those nonparametric models; see Section 3.

We consider Bayesian inference on the slope vector β_0. To this end, we work under the quasi-likelihood with a Gaussian distribution on the error ε. Namely, we work with the quasi-likelihood of the form

$$(\beta, \sigma^2) \mapsto (2\pi\sigma^2)^{-n/2}e^{-\|Y - X\beta\|^2/(2\sigma^2)}.$$
Bayesian credible sets in moderately high dimensions

We assume independent priors on β and σ^2, i.e.,

$$\beta \sim \Pi_\beta, \quad \sigma^2 \sim \Pi_{\sigma^2}, \quad \beta \perp \sigma^2,$$

where we assume that Π_β is absolutely continuous with density π, i.e., $\Pi_\beta(d\beta) = \pi(\beta)d\beta$, and Π_{σ^2} is supported in $(0, \infty)$. Then the resulting quasi-posterior distribution for (β, σ^2) is

$$\Pi(d(\beta, \sigma^2) \mid Y) \propto (2\pi\sigma^2)^{-n/2} e^{-\|Y - X\beta\|^2/(2\sigma^2)} \hat{\pi}(\beta)d\beta \Pi_{\sigma^2}(d\sigma^2),$$

and the marginal quasi-posterior distribution for β is $\Pi_\beta(d\beta \mid Y) = \pi(\beta \mid Y)d\beta$, where

$$\pi(\beta \mid Y) = \pi(\beta) \int \frac{e^{-\|Y - X\beta\|^2/(2\sigma^2)}}{\int e^{-\|Y - X\beta\|^2/(2\sigma^2)} \pi(\beta)d\beta} \Pi_{\sigma^2}(d\sigma^2 \mid Y).$$

Here $\Pi_{\sigma^2}(d\sigma^2 \mid Y)$ denotes the marginal quasi-posterior distribution for σ^2:

$$\Pi_{\sigma^2}(d\sigma^2 \mid Y) = \frac{\int (2\pi\sigma^2)^{-n/2} e^{-\|Y - X\beta\|^2/(2\sigma^2)} \hat{\pi}(\beta)d\beta \Pi_{\sigma^2}(d\sigma^2)}{\int (2\pi\sigma^2)^{-n/2} e^{-\|Y - X\beta\|^2/(2\sigma^2)} \pi(\beta)d\beta \Pi_{\sigma^2}(d\sigma^2)}.$$

We will assume that Π_{σ^2} may be data-dependent, e.g., $\Pi_{\sigma^2} = \delta_{\hat{\sigma}^2}$ for some estimator $\hat{\sigma}^2$ of σ^2 (in that case, $\Pi_{\sigma^2}(\cdot \mid Y) = \delta_{\hat{\sigma}^2}$), but Π_β is data-independent.

We will derive finite sample bounds on frequentist coverage errors of Bayesian credible rectangles for the approximately linear model (1) under a prior of the form (2). For a vector $c = (c_1, \ldots, c_p)^\top \in \mathbb{R}^p$, a positive number $R > 0$, and a positive sequence $\{w_j\}_{j=1}^p$, let $I(c, R)$ denote the hyperrectangle of the form

$$I(c, R) := \left\{ \beta = (\beta_1, \ldots, \beta_p)^\top \in \mathbb{R}^p : \frac{\|\beta_j - c_j\|}{w_j} \leq R, \quad 1 \leq j \leq p \right\}.$$
Condition 2.2. There exist nonnegative constants $\delta_1, \delta_2, \delta_3 \in [0, 1)$ such that with probability at least $1 - \delta_3$, $\Pi_{\sigma^2} \left(\left\{ \sigma^2 : \left| \sigma^2 / \sigma_0^2 - 1 \right| > \delta_1 \right\} \mid Y \right) \leq \delta_2$.

Condition 2.3. The inequality $\phi_{\Pi_\beta}(1/\sqrt{n}) \leq 1/2$ holds.

Condition 2.1 assumes that the prior Π_β on β has a sufficient mass around its true value β_0. Condition 2.2 is an assumption on the marginal posterior contraction for the error variance σ^2. Condition 2.2 includes the known error variance case as a special case; if the error variance is known, then we may take $\Pi_{\sigma^2} = \delta_0^2$ (Dirac delta at σ_0^2) and $\delta_1 = \delta_2 = \delta_3 = 0$. Condition 2.3 is a preliminary flatness condition on Π_β. More detailed discussions on these conditions are provided after the main theorem (Theorem 2.1).

We also assume the following conditions on the model.

Condition 2.4. There exists a positive constant C_2 such that $\|X(X^T X)^{-1} X^T r\| \leq C_2 \sigma_0 \sqrt{p \log n}$.

Condition 2.5. There exists a positive constant C_3 such that one of the following conditions holds:

(a) $\mathbb{E}[|\varepsilon_1/((\sigma_0 C_3)^q)|] \leq 1$ for some integer $4 \leq q < \infty$;
(b) $\mathbb{E}[\exp\{(\varepsilon_1^2/((\sigma_0 C_3)^2))\}] \leq 2$.

Condition 2.4 controls the norm of the bias term. Condition 2.5 is a moment condition on the error distribution. These conditions are sufficiently weak and in particular covers all the applications we will cover.

The following theorem, which is the main result of this section, provides bounds on frequentist coverage errors of the Bayesian credible rectangle $I(\hat{\beta}, \hat{R}_\alpha)$ together with bounds on the “radius” \hat{R}_α of $I(\hat{\beta}, \hat{R}_\alpha)$. In what follows, let $\bar{\lambda}$ and $\underline{\lambda}$ denote the maximum and minimum eigenvalues of the matrix $(X^T X)^{-1}$, respectively, and let $\overline{w} := \max\{w_1, \ldots, w_p\}$ and $\underline{w} := \min\{w_1, \ldots, w_p\}$ denote the maximal and minimal weights, respectively.

Theorem 2.1 (Coverage errors of credible rectangles). Suppose that Conditions 2.1–2.4 and either of Condition 2.5 (a) or (b) hold. Then there exist positive constants c_1 and c_2 depending only on C_1, C_2, C_3 and q such that the following hold. For every $n \geq 2$, we have

$$\left| \mathbb{P}(\beta_0 \in I(\hat{\beta}, \hat{R}_\alpha)) - (1 - \alpha) \right| \leq \phi_{\Pi_\beta} \left(c_1 \sqrt{p \log n} + c_2 \left(\delta_1 p \log n + \delta_2 + \delta_3 + \frac{\tau}{\sigma_0 \bar{\lambda}^{1/2}} \sqrt{\log p + \zeta_n} \right) \right) \tag{4}$$
Bayesian credible sets in moderately high dimensions

where \(\tau := \| (X^T X)^{-1} X^T r \|_\infty \) and

\[
\zeta_n = \begin{cases}
 p^{1-q/2}(\log n)^{-q/2} + \left(\frac{\lambda p \log^2(pn)}{n} \right)^{1/6} & \text{under Condition } 2.5 \ (a) \\
 n^{-c_2} + \left(\frac{\lambda p \log^2(pn)}{n} \right)^{1/6} & \text{under Condition } 2.5 \ (b) .
\end{cases}
\]

In addition, there exist positive constants \(c_3 \) and \(c_4 \) depending only on \(\alpha \) and \(w \) such that the following two bounds (5) and (6) hold with probability at least

\[
\begin{aligned}
&1 - c_1 p^{1-q/2}(\log n)^{-q/2} - \delta_3 \quad \text{under Condition } 2.5 \ (a) \\
&1 - c_1 n^{-c_2} - \delta_3 \quad \text{under Condition } 2.5 \ (b) .
\end{aligned}
\]

Provided that the right hand side on (4) is smaller than \(\min\{\alpha/2, (1-\alpha)/2\} \), the diameter \(\hat{R}_\alpha \) is bounded from above as

\[
\hat{R}_\alpha \leq c_3 \sigma_0 \lambda^{1/2} E \left[\max_{1 \leq i \leq p} |N_i/w_i| \right] \quad (5)
\]

for \(N_1, \ldots, N_p \sim N(0,1) \) i.i.d., and for sufficiently large \(p \) depending only on \(\alpha \), the diameter \(\hat{R}_\alpha \) is bounded from below as

\[
c_4 \sigma_0 \lambda^{1/2} \sqrt{\log p} \leq \hat{R}_\alpha . \quad (6)
\]

Theorem 2.1 shows that the frequentist coverage error of the Bayesian credible rectangle depends on the prior \(\Pi_\beta \) on \(\beta \) only through the lack-of-flatness function \(\phi_{\Pi_\beta} \). The discussions below provide a typical bound on \(\phi_{\Pi_\beta} \). We note that the requirement that the right hand side on (4) is smaller than \(\alpha/2 \) is used to derive the upper bound on \(\hat{R}_\alpha \), while the requirement that the same quantity is smaller than \((1-\alpha)/2 \) is used to derive the lower bound on \(\hat{R}_\alpha \).

2.1. Discussions on conditions

We first verify that a locally log-Lipschitz prior satisfies Conditions 2.1 and 2.3, providing an upper bound of \(\phi_{\Pi_\beta} \).

Definition 2.1. A locally log-Lipschitz prior is defined as a prior distribution on \(\beta \) such there exists \(L = L_n > 0 \) with

\[
| \log \pi(\beta) - \log \pi(\beta_0) | \leq L \| \beta - \beta_0 \| \text{ for all } \beta \text{ with } \| \beta - \beta_0 \| \leq \sigma_0 \lambda^{-1/2} \sqrt{p \log n}.
\]
Proposition 2.1. For a locally log-Lipschitz prior Π_β with log-Lipschitz constant L, we have $\Phi_{\Pi_\beta}(c\sqrt{p\log n}) \leq cL\sigma_0\lambda^{1/2}\sqrt{p\log n}$ for any $c > 0$. Hence the prior Π_β satisfies Condition 2.3 if $\sigma_0L\lambda^{1/2}/\sqrt{n} \leq 1/2$.

To provide examples of prior distributions on β that satisfy Condition 2.1, we focus on the following two subclasses of locally log-Lipschitz priors. Let $B := \|\beta_0\|$ denote the Euclidean norm of β_0.

(Isotropic prior) An isotropic prior is of the form $\pi(\beta) = \rho(\|\beta\|)\int \rho(\|\beta\|)d\beta$ where ρ is a probability density function on \mathbb{R}^+ such that ρ is strictly positive and continuously differentiable on $[0, B + \sigma_0\lambda^{1/2}\sqrt{p\log n}]$, and such that $\int_0^\infty x^k\rho(x)dx \leq \exp(mk\log k)$ for all $k \in \mathbb{N}$ for some positive constant m.

(Product prior) A product prior of log-Lipschitz priors is of the form $\pi(\beta) = \prod_{i=1}^p \pi_i(\beta_i)$ where each log π_i is strictly positive on $[0, B + \sigma_0\lambda^{1/2}\sqrt{p\log n}]$ and \tilde{L}-Lipschitz for some $\tilde{L} > 0$.

For the sake of exposition, we make the following additional condition to verify that isotropic or product priors satisfy Condition 2.1.

Condition 2.6. There exists a positive constant c such that $\log\left\{\sqrt{\det(X^TX)}/\sigma_0^p\right\} \leq cp\log n$.

This condition is satisfied in all the applications we will cover in Section 3. The following proposition shows that isotropic or product priors are locally log-Lipschitz priors satisfying Condition 2.1.

Proposition 2.2. Under Condition 2.6, an isotropic prior and a product prior of log-Lipschitz priors satisfy Condition 2.1. An isotropic prior is a locally log-Lipschitz prior with locally log-Lipschitz constant L such that

$$L \leq c_1B \max_{0 \leq x \leq B + \sigma_0\lambda^{1/2}\sqrt{p\log n}} |(\log \rho)'(x)|$$

for some positive constant c_1 depending only on m and c that appear in the definition of ρ and Condition 2.6. In particular, if $\pi(\beta)$ is the standard Gaussian density, then $L \leq c_1B^2$. A product prior of log-Lipschitz priors with log-Lipschitz constant \tilde{L} is locally log-Lipschitz with $L = \tilde{L}p^{1/2}$.

Next, we will discuss Condition 2.2. We consider following two cases:

(Plug-in) $\Pi_{\hat{\sigma}_0^2} = \Pi_{\hat{\sigma}_0^2}(Y) := \|Y - X(X^TX)^{-1}X^TY\|^2/(n - p)$:
(Full-Bayes) Π_β is the standard Gaussian distribution and Π_σ^2 is the inverse Gamma distribution $IG(\mu_1, \mu_2)$ with shape parameter $\mu_1 > 1/2$ and scale parameter $\mu_2 > 1/2$.

The following two propositions yield possible choices of $\delta_1, \delta_2,$ and δ_3.

Proposition 2.3 (Plug-in). Suppose that Condition 2.5 holds and also that $n \geq cp$ for some $c > 1$. In addition, suppose that $\delta_1 > 0$ satisfies that $\tilde{\delta}_1 := \{\delta_1 - 2\|r\|^2/\sigma_0^2(n - p)\} - 1/(n - p) > 0$. Then there exist positive constants c_1 and c_2 depending only on c, C_3 and q such that

$$
P (|\delta_n^2/\sigma_0^2 - 1| \geq \delta_1) \leq \begin{cases} c_1 \max\{n^{-4/q}\delta_1^{-q/2}, n^{1-q/2}\tilde{\delta}_1^{-q}\} & \text{under Condition 2.5 (a)}, \\
c_1 \exp(-c_2n \max\{\delta_1^2, \tilde{\delta}_1^2\}) & \text{under Condition 2.5 (b)}. \end{cases}
$$

Proposition 2.4 (Full-Bayes). Suppose that Condition 2.5 holds and also $n \geq cp$ for some $c > 1$. In addition, suppose that $\delta_1 > 0$ satisfies that $\tilde{\delta}_1 := \{\delta_1 - 2\|r\|^2/\sigma_0^2(n - p)\} - 1/(n - p) > 0$. Then there exist positive constants c_1 and c_2 depending only on c, μ_1, μ_2, C_3 and q such that

$$
\Pi_\sigma^2(\sigma^2 : |\sigma^2/\sigma_0^2 - 1| > \delta_1 | Y) \leq c_1(n\tilde{\delta}_1)^{-1}
$$

with probability at least

$$
\begin{cases} 1 - c_1 \max\{n^{-4/q}\delta_1^{-q/2}, n^{1-q/2}\tilde{\delta}_1^{-q}\} & \text{under Condition 2.5 (a)}, \\
1 - c_1 \exp(-c_2n \max\{\delta_1^2, \tilde{\delta}_1^2\}) & \text{under Condition 2.5 (b)}. \end{cases}
$$

To better understand implications of these propositions, Table 1 summarizes possible rates of $\delta_1, \delta_2, \delta_3$ when $n \geq cp$ for some $c > 0$, $\|r\|^2/n = o(n^{-1/2})$, and σ_0^2 is independent of n.

Table 1. Possible rates of $\delta_1, \delta_2, \delta_3$ with respect to n: κ is arbitrary.

Condition 2.5 and prior	δ_1	δ_2	δ_3
(a) and plug-in	$n^{-1/2}\kappa/q$	0	$\max\{n^{-1/2}, n^{1-\kappa}\}$
(a) and full Bayes	$n^{-1/2}\kappa/q$	$n^{-1/2}-\kappa/q$	$\max\{n^{-1/2}, n^{1-\kappa}\}$
(b) and plug-in	$n^{-1/2}\sqrt{\log n}$	0	n^{-1}
(b) and full Bayes	$n^{-1/2}\sqrt{\log n}$	$n^{-1/2}(\log n)^{-1/2}$	n^{-1}

Remark 2.1 (Comparison with [63]). Proposition 4.1 in [63] studies possible rates for δ_1 when a prior for β is Gaussian and the error distribution is sub-Gaussian. Our results in Propositions 2.3 and 2.4 are compatible with their result up to logarithmic factors under their setup.
2.2. Berry–Esseen type bounds on posterior distributions

Before presenting applications of the main theorem, we derive an important ingredient of the proof of Theorem 2.1, namely, the Berry–Esseen type bound on posterior distributions. For $R > 0$, let $H(R)$ be the intersection of the sets $\{Y \in \mathbb{R}^n : \|X(\hat{\beta}(Y) - \beta_0)\| \leq R\sqrt{p \log n} \sigma_0 / 4\}$ and $\{Y \in \mathbb{R}^n : \Pi_{\sigma^2}(|\sigma^2/\sigma_0^2 - 1| \geq \delta_1 | Y) \leq \delta_2\}$. For two probability measures P and Q, $\|P - Q\|_{TV}$ denotes the total variation between P and Q.

Proposition 2.5 (Berry–Esseen type bounds on posterior distributions). Under Conditions 2.1–2.3, there exist positive constants c_1 and c_2 depending only on C_1, C_2, C_3 such that for every $n \geq 2$,

$$\left\|\Pi_{\beta}(\cdot | Y) - N(\hat{\beta}, \sigma_0^2(X^\top X)^{-1})\right\|_{TV} \leq \phi_{\Pi_{\beta}}(c_1 \sqrt{p \log n}) + c_1(\delta_1 p \log n + \delta_2) + n^{-c_2 p}$$

whenever $Y \in H(c_1)$.

Proposition 2.6. Under Conditions 2.4 and 2.5, there exist positive constants c_1 and c_2 depending only on C_2, C_3, and q such that

$$\mathbb{P}(Y \notin H(c_1)) \leq \begin{cases}
 c_1 p^{1-q/2}(\log n)^{-q/2} + \delta_3 & \text{under Condition 2.5 (a)}, \\
 c_1 n^{-c_2 p} + \delta_3 & \text{under Condition 2.5 (b)}.
\end{cases}$$

Remark 2.2 (Critical dimension for the Bernstein–von Mises theorem). The previous propositions immediately lead to the critical dimension for the BvM theorem. We will compare our result with the results on the critical dimension by [7, 28, 52]. In this comparison, we assume a locally log-Lipschitz prior with locally log-Lipschitz constant L; that $\|\beta_0\|$ and L are independent of n; and that $\sigma_0^2 \lambda^{1/2} \sim n^{-1/2}$. The following are a summary of the existing results:

- [28] shows that when the error distribution has a smooth density with known scale parameter, the BvM theorem holds if $p^4 \log p = o(n)$ and some additional assumptions are verified;
- [52] shows that when the high-dimensional local asymptotic normality holds, the BvM theorem holds if $p^3 = o(n)$; see also [45];
- [7] shows that when the error distribution is Gaussian with known variance, the BvM theorem holds if $p \log n = o(n)$.

Our result (Propositions 2.1, 2.3, 2.5, and 2.6) improves on [28, 52] in that...
Bayesian credible sets in moderately high dimensions

• when the error variance is assumed to be known (i.e., $\delta_1 = \delta_2 = \delta_3 = 0$), our result implies that the BvM theorem (for the quasi-posterior distribution) holds if $p \log n = o(n)$ and if the error distribution has finite fourth moment. Compared to [28], our result substantially improves on the critical dimension by employing the Gaussian likelihood even when the Gaussian specification is incorrect;

• when the error variance is unknown, our result shows that the BvM theorem holds for β if $p^2(\log n)^3 = o(n)$ for sub-Gaussian error distributions, thereby improving on the condition of [52].

Importantly, our result covers the unknown error variance case, which makes our analysis different from [7]. In nonparametric regression, it is usually the case that the error variance is unknown, and hence it is important to consider unknown variance cases in such an application. If the error distribution is Gaussian with a known error variance, our result is consistent with [7].

3. Applications

In this section, we consider applications of the general results developed in the previous sections to quantifying coverage errors of Bayesian credible sets in Gaussian white noise models, linear inverse problems, and (possibly non-Gaussian) nonparametric regression models.

3.1. Gaussian white noise model

We first consider a Gaussian white noise model and analyze coverage errors of Castillo-Nickl credible bands. Consider a Gaussian white noise model

$$dY(t) = f_0(t)dt + \frac{1}{\sqrt{n}}dW(t), \ t \in [0,1],$$

where dW is a canonical white noise and f_0 is an unknown function. We assume that f_0 is in the Hölder–Zygmund space $B_{\infty,\infty}^s$ with smoothness level $s > 0$. It will be convenient to define the Hölder–Zygmund space $B_{\infty,\infty}^s$ by using a wavelet basis. Let $S > s$ be an integer and fix sufficiently large $J_0 = J_0(S)$. Let $\{\phi_{J_0,k} : 0 \leq k \leq 2^{J_0} - 1\} \cup \{\psi_{l,k} : J_0 \leq l, 0 \leq k \leq 2^l - 1\}$ be an S-regular Cohen–Daubechies–Vial (CDV) wavelet basis of $L^2[0,1]$. Then the Hölder–Zygmund space $B_{\infty,\infty}^s$ is defined by $B_{\infty,\infty}^s = \{f : \|f\|_{B_{\infty,\infty}^s} < \infty\}$ with

$$\|f\|_{B_{\infty,\infty}^s} := \max_{0 \leq k \leq 2^{J_0} - 1} |\langle \phi_{J_0,k}, f \rangle| + \sup_{J_0 \leq l \leq \infty, 0 \leq k \leq 2^l - 1} 2^{(s+1)/2} |\langle \psi_{l,k}, f \rangle|,$$
where \(\langle \cdot, \cdot \rangle\) denotes the \(L^2[0,1]\) inner product, i.e., \(\langle f, g \rangle := \int_{[0,1]} f(t)g(t)dt\). In what follows, for the notational convention, let \(\psi_{J_0-1,k} := \phi_{J_0,k}\) for \(0 \leq k \leq 2^{J_0} - 1\).

Consider a sieve prior for \(f\), that is, a prior deduced from a prior \(\Pi_\beta\) on \(\mathbb{R}^{2^J}\) via the map \((\beta_{J_0-1,0}, \beta_{J_0-1,1}, \ldots, \beta_{J-1,2^{J-1}-1}) \mapsto \sum_{(l,k) \in \mathcal{I}(J)} \psi_{l,k}(\cdot)\beta_{l,k}\), where \(\mathcal{I}(J) := \{(l,k) : J_0 \leq l \leq J - 1, 0 \leq k \leq 2^l - 1\} \cup \{(l,k) : l = J_0 - 1, 0 \leq k \leq 2^{J_0} - 1\}\).

For given \(\alpha \in (0,1)\), the \((1-\alpha)\)-Castillo–Nickl credible band based on an efficient estimator \(\hat{f}\), an admissible sequence \(w = (w_1, w_2, \ldots)\), and a sieve prior \(\Pi_\beta\) is defined as

\[
\mathcal{C}_w(\hat{f}, \hat{R}_\alpha) := \left\{ f : \sup_{(l,k) \in \mathcal{I}_\infty} \left| \frac{\langle f - \hat{f}, \psi_{l,k}\rangle}{w_l} \right| \leq \hat{R}_\alpha \right\}
\]

where \(\mathcal{I}_\infty := \{(l,k) : J_0 \leq l < \infty, 0 \leq k \leq 2^l - 1\} \cup \{(l,k) : l = J_0 - 1, 0 \leq k \leq 2^{J_0} - 1\}\), and an admissible sequence \(w\) is defined as a positive sequence such that \(w_l/\sqrt{l} \uparrow \infty\) as \(l \to \infty\). The radius \(\hat{R}_\alpha\) of the band is taken in such a way that \(\Pi_\beta\{\mathcal{C}_w(\sum_{(l,k) \in \mathcal{I}(J)} \psi_{l,k}(\cdot)\beta_{l,k}, \hat{R}_\alpha) \mid Y\} = 1 - \alpha\). Truncating a centering estimator ensures that such radius indeed exists for a sieve prior.

The following proposition derives bounds on the coverage error and the \(L^\infty\)-diameter of the Castillo–Nickl credible band based on a sieve prior. In the following proposition, we use \(\hat{f}_\infty := \sum_{(l,k) \in \mathcal{I}_\infty} \psi_{l,k}\hat{f}\) to denote a centering estimator. See p. 1946 of [11] for the definition of \(\mathcal{M}_0(w)\) and well-definedness of \(\hat{f}_\infty\).

Let

\[
u_J := \inf_{J_0 \leq l \leq \infty} \frac{w_l}{\sqrt{l}}, \quad v_J := \max_{J_0 - 1 \leq l \leq J - 1} \frac{w_l}{\sqrt{l}}, \quad \text{and} \quad \overline{v}_J := \max_{J_0 - 1 \leq l \leq J - 1} \frac{w_l}{\sqrt{l}}.
\]

In addition, let \(\tilde{H} := \{Y : \sup_{J_0 \leq l \leq \infty, 0 \leq k \leq 2^l-1} |\langle f_0 - \hat{f}_\infty, \psi_{l,k}\rangle|/w_l \leq \hat{R}_\alpha\}\). For simplicity, we assume that \(\sqrt{l} \leq w_l\) for \(J_0 - 1 \leq l < \infty\) and \(1 \leq (J/\overline{v}_J)^2 u_j^2 \uparrow \infty\) as \(J \to \infty\).

Proposition 3.1. Under Conditions 2.1 and 2.3 for \(\Pi_\beta\) with \(p = 2^J\), \(X = \mathcal{I}_p\), and \(\sigma_0 = 1/\sqrt{\nu}\), there exist positive constants \(c_1, c_2\) depending only on \(C_1\) appearing in Condition 2.1 such that the following hold. For \(n \geq 2\), we have

\[
|\mathbb{P}(f_0 \in \mathcal{C}_w(\hat{f}_\infty, \hat{R}_\alpha)) - (1 - \alpha)| \leq \phi_{\Pi_\beta} \left(c_1 \sqrt{2^J \log n} + c_1 n^{-c_2 2^J} + \mathbb{P}(Y \notin \tilde{H}) \right).
\]

In addition, there exist positive constants \(c_3, c_4\) depending only on \(\alpha\) such that the following hold. Assume that the right hand side above except \(\mathbb{P}(Y \notin \tilde{H})\) is smaller than \(\min\{\alpha/2, (1 - \alpha)/2\}\). Then

\[
\mathbb{P}(Y \notin \tilde{H}) \leq c_3 \left(e^{-c_4 J(J/\overline{v}_J)^2 u_J^2} + n^{-c_2 2^J} \right).
\]
for sufficiently large J depending only on α and $\{w_l\}$; and the L^∞-diameter of the intersection $C^B_w(\hat{f}_\infty, \hat{R}_\alpha) := C_w(\hat{f}_\infty, \hat{R}_\alpha) \cap \{ f : \|f\|_{B^s_{\infty, \infty}} \leq B \}$ for any $B > 0$ is bounded from above as
\[
\sup_{f, g \in C^B_w(\hat{f}_\infty, \hat{R}_\alpha)} \|f - g\|_{\infty} \leq c_3 \left(v_J \sqrt{\frac{2^J J}{n}} + 2^{-J} B \right)
\]
with probability at least $1 - c_4 n^{-c_2 2^J}$.

Proof sketch of Proposition 3.1. First, we transform the Gaussian white noise model into a Gaussian infinite sequence model $Y_{i,k} = \beta_{0,l,k} + \varepsilon_{l,k}$, $(l, k) \in \mathcal{I}_\infty$, where $\beta_{0,l,k} := \langle f_0, \psi_{l,k} \rangle$ for $(l, k) \in \mathcal{I}_\infty$, and $\varepsilon_{l,k}$ are i.i.d. $\mathcal{N}(0, 1/n)$ variables. Second, we apply Theorem 2.1. Let $Y_\infty = \{ Y_{i,k} : (l, k) \in \mathcal{I}_\infty \}$ and observe that $\mathbb{P}(Y \not\in \tilde{H}) = \mathbb{P}(Y_\infty \not\in \tilde{H}')$ with $\tilde{H}' = \{ Y_{i,k} : \sup_{J < l, 0 \leq k \leq 2^l - 1} |Y_{i,k} - \beta_{0,l,k}/w_l| \leq \hat{R}_\alpha \}$. Since
\[
\mathbb{P}(f_0 \in C_w(\hat{f}_\infty, \hat{R}_\alpha)) = \mathbb{P} \left(\max_{(l,k) \in \mathcal{I}(J)} |\varepsilon_{l,k}/w_l| \sqrt{\sup_{J \leq l < \infty, 0 \leq k \leq 2^l - 1} |\varepsilon_{l,k}/w_l|} \leq \hat{R}_\alpha \right),
\]
we have
\[
\left| \mathbb{P}(f_0 \in C_w(\hat{f}_\infty, \hat{R}_\alpha)) - \mathbb{P} \left(\max_{(l,k) \in \mathcal{I}(J)} |\varepsilon_{l,k}/w_l| \leq \hat{R}_\alpha \right) \right| \leq \mathbb{P}(Y_\infty \not\in \tilde{H}').
\]
Then we apply Theorem 2.1 with $p = 2^J$, $Y = \{ Y_{i,k} : (l, k) \in \mathcal{I}(J) \}$, $X = I_p$, $\sigma_0 = 1/\sqrt{n}$, and $r = 0$ to obtain bounds on $\mathbb{P}(\max_{(l,k) \in \mathcal{I}(J)} |\varepsilon_{l,k}/w_l| \leq \hat{R}_\alpha)$ and \hat{R}_α. It remains to bound $\mathbb{P}(Y_\infty \not\in \tilde{H}')$. To this end, we use the concentration inequality for the Gaussian maximum together with a high-probability lower bound on \hat{R}_α. The detail can be found in Appendix C.1 of [61].

Remark 3.1 (Coverage error rates). The finite sample bound in Proposition 3.1 leads to the following asymptotic results as $n \to \infty$. In this discussion, we assume a locally log-Lipschitz prior with locally log-Lipschitz constant $L = L_n$ and a true function f_0 with $\|f_0\|_{B^s_{\infty, \infty}} \leq B$ for some $B = B_n$. Set $2^J = (n/\log n)^{1/(2s+1)}$ and set $w_l = \sqrt{l}$ for $l \leq J - 1$ and $w_l = u_l \sqrt{l}$ for $l \geq J$ with $u_l \uparrow \infty$ as $l \to \infty$. Then we have
\[
\left| \mathbb{P}(f_0 \in C^B_w(\hat{f}, \hat{R}_\alpha)) - (1 - \alpha) \right| \leq O(L_n(n/\log n)^{-s/(2s+1)}) \quad \text{and}
\]
\[
\sup_{f, g \in C^B_w(\hat{f}_\infty, \hat{R}_\alpha)} \|f - g\|_{\infty} \leq O(B_n(n/\log n)^{-s/(2s+1)}),
\]
where the latter holds with probability at least $1 - c_4 n^{-c_2 2^J}$ (the sequence $\{w_l\}$ here depends on n, but we can apply Proposition 3.1; see Remark C.1 in [61] for the detail). In particular, for the standard Gaussian prior, the coverage error is $O(B_n^2(n/\log n)^{-s/(2s+1)})$.

We note that the above asymptotic results are derived from the non-asymptotic result in Proposition 3.1 where the constants do no depend on \(f_0 \); hence the above asymptotic results hold uniformly in \(f_0 \) as long as \(\| f_0 \|_{B_{s,\infty}} \leq B \). The same comments apply to the subsequent results.

Remark 3.2 (Comparison of coverage errors). The previous remark shows that Bayesian credible bands have coverage errors (for the true function) decaying polynomially fast in the sample size \(n \). This rate is much faster than that of confidence bands based on Gumbel approximations (see Proposition 6.4.3 in [32]); confidence bands based on Gumbel approximations have coverage errors decaying only at the \(1/\log n \) rate. In the kernel density estimation case, [33] shows that confidence bands based on Gumbel approximations have coverage errors decaying only at the \(1/\log n \) rate, while bootstrap confidence bands have coverage errors decaying polynomially fast in \(n \) for the surrogate function.

Remark 3.3 (Undersmoothing). In most cases, a priori bound on \(\| f_0 \|_{B_{s,\infty}} \) is unknown, and so \(B = B_n \) should be chosen as a slowly divergent sequence, which can be thought of as a “undersmoothing” penalty (cf. [11] Remark 5). Interestingly, however, our result shows that this undersmoothing penalty only affects the \(L^\infty \)-diameter and not affect the coverage error of the band, which is a sharp contrast with standard \(L^\infty \)-confidence bands for densities or regression functions.

Consider another centering estimator: \(\hat{f}_J := \sum_{(l,k) \in I(J)} \psi_{l,k} \int \psi_{l,k} dY \). The following proposition derives bounds on the coverage error and the \(L^\infty \)-diameter of the Castillo–Nickl credible band based on a sieve prior and the centering estimator \(\hat{f}_J \). We use the same notation \(u_J, v_J, \overline{w}_J \) as in the previous proposition. Let

\[
\overline{H}_2 := \left\{ Y : \sup_{J \leq l < \infty, 0 \leq k \leq 2^l-1} |\langle f_0, \psi_{l,k} \rangle|/w_l \leq \overline{R}_\alpha \right\}.
\]

For simplicity, we assume \(\sqrt{l} \leq w_l \) for \(J_0 - 1 \leq l < \infty \).

Proposition 3.2. Under Conditions 2.1 and 2.3 for \(\Pi_\beta \) with \(p = 2^J \), \(X = I \), and \(\sigma_0 = 1/\sqrt{n} \), there exist positive constants \(c_1, c_2, c_3 \) depending only on \(C_1 \) appearing in Condition 2.1 and \(\alpha \) such that the following hold. For \(n \geq 2 \) and for \(B > 0 \) satisfying \(\| f_0 \|_{B_{s,\infty}} \leq B \), we have

\[
|P(f_0 \in C_w(\hat{f}_J, \overline{R}_\alpha)) - (1 - \alpha)| \leq \phi_{\Pi_\beta} \left(c_1 \sqrt{2^J \log n} \right) + c_1 n^{-c_2 2^J} + P(Y \notin \overline{H}_2).
\]
In addition, assume that the right hand side above except \(\mathbb{P}(Y \notin \hat{H}_2) \) is smaller than \(\min\{\alpha/2,(1-\alpha)/2\} \). Then the \(L^\infty \)-diameter of the intersection \(C_w^B(f_J,\hat{R}_\alpha) := C_w(f_J,\hat{R}_\alpha) \cap \{f : \|f\|_{L^{\infty}} \leq B\} \) is bounded from above as

\[
\sup_{f,g \in C_w^B(f_J,\hat{R}_\alpha)} \|f-g\|_\infty \leq c_3 \left(v_J \sqrt{2J^2/n} + 2^{-JsB}\right)
\]

with probability at least \(1-c_1n^{-c_2J} \). If in addition \((\sqrt{n}w_J B)/(u_J J^{2(s+1/2)}) \downarrow 0 \) as \(J \to \infty \), then \(\mathbb{P}(Y \notin \hat{H}_2) \leq c_1n^{-c_2J} \) for sufficiently large \(J \) depending only on \(\alpha \), \(\{w_l\} \), and \(B \).

A proof of the proposition is given in Appendix C.2 of [61].

Remark 3.4 (Choice of the sequence \(w \)). Consider the same setting as in Remark 3.1. Then we have \((\sqrt{n}w_J B)/(u_J J^{2J(s+1/2)}) = O(B/u_J) \) and so the sequence \(u_l \) must satisfy \(u_J/B_n \to \infty \) as \(n \to \infty \) to ensure that \((\sqrt{n}w_J B)/(u_J J^{2J(s+1/2)}) \downarrow 0 \) as \(J \to \infty \). Without this exception, the same asymptotic results hold as in Remark 3.1.

3.2. Linear inverse problem

In this section we extend the previous analysis to a linear inverse problem

\[
dY(t) = K(f_0)(t)dt + \frac{1}{\sqrt{n}}dW(t), \quad t \in [0,1],
\]

where \(K \) is a known linear operator and \(f_0 \) is included in the Hölder–Zygmund space \(B_{s,\infty}^s \) for some \(s > 0 \) as described in the previous section. To describe the degree of ill-posedness, we use the wavelet-vaguelette decomposition \(\{\psi_{l,k}, v_{l,k}\} \) of \(K \), where \(\{\psi_{l,k}\} \) is a wavelet basis (with the same notational convention used in the previous subsection), \(\{v_{l,k}\} \) and \(\{\kappa_{l,k}\} \) are near-orthogonal functions, and \(\{\kappa_{l,k}\} \) are quasi-singular values such that \(K(\psi_{l,k}) = \kappa_{l,k} v_{l,k} \) for \((l,k) \in \mathcal{I}_\infty \). For details, see [1, 23, 38, 36] and references therein. Our results cover both mildly ill-posed and severely ill-posed cases for \(\{\kappa_{l,k}\} \). Say that the problem of recovering \(f_0 \) is mildly ill-posed if \(\kappa_{l,k} \sim 2^{-rl} \) for some \(r > 0 \), and severely ill-posed if \(\kappa_{l,k} \sim e^{-rt} \) for some \(r > 0 \).

We consider a sieve prior induced from a prior \(\Pi_\beta \) on \(\mathbb{R}^2 \) with \(J \geq J_0 \) via expanding the function \(f \) using the wavelet basis \(\{\psi_{l,k}\} \). For given \(\alpha \in (0,1) \), consider the \((1-\alpha)\)-Castillo–Nickl credible band for \(f \) based on a sieve prior \(\Pi_\beta \) and a sequence \(w = (w_1, w_2, \ldots) \) such that \(\min_{0 \leq k \leq 2l-1} \kappa_{l,k} w_l/\sqrt{l} \uparrow \infty \) as \(l \to \infty \):

\[
C_w(\hat{f}_\infty,\hat{R}_\alpha) := \left\{ f : \max_{(l,k) \in \mathcal{I}_\infty} \frac{|(f - \hat{f}_\infty, \psi_{l,k})|}{w_l} \leq \hat{R}_\alpha \right\},
\]
where the centering estimator is $\hat{f}_\infty := \sum_{(l,k)\in I_\infty} \psi_{l,k} \kappa_{l,k}^{-1} \int v_{l,k}^{(1)} dY$, which converges almost surely in $M_0(w)$. See the supplement for well-definedness of \hat{f}_∞. In linear inverse problems, the radius R_α is chosen in such a way as $\Pi_\beta(C_w(\sum_{(l,k)\in I(J)}(\hat{f}_\infty, \psi_{l,k})\psi_{l,k}, R_\alpha) \mid Y) = 1 - \alpha$, where $\Pi_\beta(\cdot \mid Y)$ is the quasi-posterior under the likelihood of the truncated indirect Gaussian sequence model: $\int v_{l,k}^{(1)} dY = \kappa_{l,k} \beta_{l,k} + \frac{1}{\sqrt{n}} \int v_{l,k}^{(1)} dW$ for $(l,k) \in I(J)$. This slight modification using the quasi-posterior as well as truncating the centering estimator is required to apply the main theorem; see the proof sketch below.

The following theorem derives bounds on the coverage error of the Castillo–Nickl credible band in the linear inverse problem. We use the same notation π_J as in the previous section. Let $u_J := \inf_{J \leq l, 0 \leq k < 2^l - 1} \kappa_{l,k} w_l / \sqrt{l}$ and $v_J := \sup_{J \leq l, 0 \leq k < 2^l - 1} \kappa_{l,k} w_l / \sqrt{l}$.

In addition, let $\pi_J := \max_{(l,k) \in I(J)} \kappa_{l,k}$ and let $\varphi_J := \min_{(l,k) \in I(J)} \kappa_{l,k}$. Let Σ be denote the $2^J \times 2^J$ covariance matrix of $\{ \int v_{l,k}^{(1)} dY : (l,k) \in I(J) \}$. Finally, let $H_3 = \{ Y : \sup_{J \leq l, 0 \leq k < 2^l - 1} |\langle f - \hat{f}_\infty, \psi_{l,k} \rangle| / w_l \leq \hat{R}_\alpha \}$. For simplicity, we assume that $1 \leq \{ J^{1/2}/(\pi_J \varphi_J) \} u_J \uparrow \infty$ as $J \to \infty$.

Proposition 3.3. Under Conditions 2.1 and 2.3 for Π_β with $p = 2^J$, $X = \Sigma^{-1/2} \text{diag}\{ \kappa_{l,k} : (l,k) \in I(J) \}$, and $\sigma_0 = 1$, there exist positive constants c_1, c_2 depending only on C_1 appearing in Condition 2.1, K, and $\{ \psi_{l,k} : (l,k) \in I_\infty \}$ such that the following hold. For $n \geq 2$, we have

$$
\left| \Pr(f_0 \in C_w(\hat{f}_\infty, \hat{R}_\alpha)) - (1 - \alpha) \right| \leq \phi_{\Pi_\beta}(c_1 \sqrt{2^J \log n}) + c_1 n^{-c_2 2^J} + \Pr(Y \notin H_3).
$$

In addition, there exist positive constants $c_3, c_4 > 0$ depending only on α, K, and $\{ \psi_{l,k} : (l,k) \in I_\infty \}$ such that the following hold. Assume that the right hand side above except $\Pr(Y \notin H_3)$ is smaller than $\min\{ \alpha/2, (1 - \alpha)/2 \}$. Then,

$$
\Pr(Y \notin H_3) \leq c_3 \left(e^{-c_4 J/(\pi_J \varphi_J)^2} u_J^2 + n^{-c_2 2^J} \right)
$$

for sufficiently large J depending only on α, $\{ w_l \}$, K, and $\{ \psi_{l,k} : (l,k) \in I_\infty \}$; and the L_∞-diameter of $C_w^B(\hat{f}_\infty, \hat{R}_\alpha) := C_w(\hat{f}_\infty, \hat{R}_\alpha) \cap \{ f : \|f\|_{B_\infty, \infty} \leq B \}$ for any $B > 0$ is bounded from above as

$$
\sup_{f,g \in C_w^B(\hat{f}_\infty, \hat{R}_\alpha)} \|f - g\|_\infty \leq c_3 \left(v_J \left(\frac{2^J J}{\Sigma^2 n} + 2^{-J} B \right) \right)
$$

with probability at least $1 - c_1 n^{-c_2 2^J}$.

Proof sketch of Proposition 3.3. The proof is almost the same as that of Proposition 3.1, but it requires an additional analysis due to the non-orthogonality of $\{ v_{l,k}^{(1)} : (l,k) \in I_\infty \}$.
\[\mathcal{I}_\infty \). First, we transform the indirect Gaussian white noise model into an indirect Gaussian sequence model via \(\{u_{l,k}^{(1)} : (l,k) \in \mathcal{I}_\infty \} \): \(\tilde{Y}_{l,k} = \kappa_{l,k}/\beta_{0,l,k} + \tilde{\varepsilon}_{l,k}, (l,k) \in \mathcal{I}_\infty \), where \(\beta_{0,l,k} := (f_0, \psi_{l,k}) \) for \((l,k) \in \mathcal{I}_\infty \) and \(\tilde{\varepsilon}_{l,k} \) are (dependent) jointly Gaussian variables. Then

\[
P(f_0 \in C_w(\tilde{f}_\infty, \tilde{R}_\alpha)) = P \left(\sup_{(l,k) \in \mathcal{I}_\infty} |\kappa_{l,k}^{-1}\tilde{Y}_{l,k} - \beta_{0,l,k}|/w_l \leq \tilde{R}_\alpha \right).
\]

Second, we apply Theorem 2.1. Let \(\tilde{Y}_\infty = \{ \tilde{Y}_{l,k} : (l,k) \in \mathcal{I}_\infty \} \) and observe that \(P(Y \not\in \tilde{H}_3) = P(\tilde{Y}_\infty \not\in \tilde{H}_3) \) with \(\tilde{H}_3 = \{ \tilde{Y}_\infty : \sup_{J,l \leq k \leq 2^l-1} |\kappa_{l,k}^{-1}\tilde{Y}_{l,k} - \beta_{0,l,k}|/w_l \leq \tilde{R}_\alpha \} \). Then

\[
\left| P(f_0 \in C_w(\tilde{f}_\infty, \tilde{R}_\alpha)) - P \left(\max_{(l,k) \in I(J)} |\kappa_{l,k}^{-1}\tilde{Y}_{l,k} - \beta_{0,l,k}|/w_l \leq \tilde{R}_\alpha \right) \right| \leq P(\tilde{Y}_\infty \not\in \tilde{H}_3).
\]

Consider the linear regression model with \(p = 2^J \), \(Y = \Sigma^{-1/2}(\tilde{Y}_{-1,0}, \ldots, \tilde{Y}_{J-1,2^{J-1}-1})^T \), \(X = \Sigma^{-1/2}\text{diag}(\kappa_{l,k} : (l,k) \in I(J)) \), \(\beta_0 = (\beta_{0,0,0}, \ldots, \beta_{0,J-1,2^{J-1}-1})^T \), \(r = 0 \), \(\sigma_0 = 1 \), and \(\varepsilon = \Sigma^{-1/2}(\tilde{\varepsilon}_{-1,0}, \ldots, \tilde{\varepsilon}_{J-1,2^{J-1}-1})^T \sim \mathcal{N}(0, I_p) \). For this model, the OLS estimator is \(\hat{\beta} = (X^TX)^{-1}X^TY = (\kappa_{l,k}^{-1}\tilde{Y}_{l,k})_{(l,k) \in I(J)} \), and so

\[
P \left(\max_{(l,k) \in I(J)} |\kappa_{l,k}^{-1}\tilde{Y}_{l,k} - \beta_{0,l,k}|/w_l \leq \tilde{R}_\alpha \right) = P(\beta_0 \in I(\tilde{\beta}, \tilde{R}_\alpha))
\]

with weights \(w_{l,k} = w_l \) for \((l,k) \in I(J) \). Thus we can apply Theorem 2.1 to obtain bounds on \(P(\max_{(l,k) \in I(J)} |\kappa_{l,k}^{-1}\tilde{Y}_{l,k} - \beta_{0,l,k}|/w_l \leq \tilde{R}_\alpha) \) and \(\tilde{R}_\alpha \). It remains to bound \(P(\tilde{Y}_\infty \not\in \tilde{H}_3) \), which is similar to the final step of the proof of Proposition 3.3. The detail can be found in Appendix C.3 of [61].

Remark 3.5 (Coverage error rates in linear inverse problems). Consider a locally log-Lipschitz prior with locally log-Lipschitz constant \(L = L_n \). We assume a true function \(f_0 \) with \(\|f_0\|_{B_{2^J,\infty}} \leq B \) for some \(B = B_n \). Set \(J \) as follows: for a (positive) constant \(c \) with \(c < 1/(2r) \),

\[
2^J = \begin{cases} n/\log n \right)^{1/(2s+2r+1)} & \text{in mildly ill-posed cases (Case M)}; \\
c \log n & \text{in severely ill-posed cases (Case S)}.
\end{cases}
\]

Set \(w_l = (\max_{0 \leq k \leq 2^l-1} \kappa_{l,k})^{-1}\sqrt{l} \) for \(l \leq J - 1 \) and \(w_l = w_l(\min_{0 \leq k \leq 2^l-1} \kappa_{l,k})^{-1}\sqrt{l} \) for \(l \geq J \) with \(w_l \uparrow \infty \) as \(l \to \infty \). Then we have

\[
|P(f_0 \in C_w(\tilde{f}_\infty, \tilde{R}_\alpha)) - (1 - \alpha)| \leq \begin{cases} O(L_n(n/\log n)^{-s/(2s+2r+1)}) & \text{in Case M} \text{ and} \\
O(L_n(n/\log n)^{-s}) & \text{in Case S}.
\end{cases}
\]

\[
\sup_{f,g \in C_w^{(n)}(\tilde{f}_\infty, \tilde{R}_\alpha)} \|f - g\|_{\infty} \leq \begin{cases} O(B_n(n/\log n)^{-s/(2s+2r+1)}) & \text{in Case M} \\
O(B_n(n/\log n)^{-s}) & \text{in Case S}.
\end{cases}
\]
where the latter holds with probability at least $1 - c_1 n^{-c_2 2^j}$ (again the sequence $\{w_l\}$ here depends on n but we can apply Proposition 3.3; see Remark C.2 in [61] for the detail).

3.3. Nonparametric regression model

Finally we consider a nonparametric regression model

$$Y_i = f_0(T_i) + \varepsilon_i, \ i = 1, \ldots, n,$$

where $\varepsilon = (\varepsilon_1, \ldots, \varepsilon_n)^T$ is the vector of i.i.d. error terms with mean zero and variance σ_0^2 and T_1, \ldots, T_n are an i.i.d. sample with values in $[0, 1]$. For simplicity, we assume that ε and $\{T_i: i = 1, \ldots, n\}$ are independent, and σ_0 does not depend on n.

We consider a sieve prior for f_0. To this end, we use p basis functions $\{\psi^p_j(\cdot): 1 \leq j \leq p\}$, and constrict a credible band for f of the form

$$C(\hat{f}, \tilde{R}_\alpha) = \left\{ f : \left\| \frac{f(\cdot) - \hat{f}(\cdot)}{\psi^p(\cdot)} \right\|_\infty \leq \tilde{R}_\alpha \right\},$$

where $\hat{f}(\cdot) := \sum_{j=1}^{p} \psi^p_j(\cdot) \hat{\beta}_j$, with $\hat{\beta} := \arg\min \beta \sum_{i=1}^{n} (Y_i - \sum_{j=1}^{p} \psi^p_j(T_i) \beta_j)^2$, \tilde{R}_α is chosen in such a way that $\Pi_f \{C(\hat{f}, \tilde{R}_\alpha) \mid Y\} = 1 - \alpha$, and $\psi^p(\cdot) := (\psi^p_1(\cdot), \ldots, \psi^p_p(\cdot))^T$. We consider a prior Π_f of f induced from a sieve prior Π_β on \mathbb{R}^p via the map $(\beta_1, \ldots, \beta_p) \mapsto \sum_{j=1}^{p} \beta_j \psi^p_j(\cdot)$.

The setting of the nonparametric regression is different from that of Section 2 in that the regressors T_1, \ldots, T_n are stochastic. Due to this additional randomness, we need an additional analysis to develop bounds on the coverage error and the L^∞-diameter of the band. To this end, we modify Conditions 2.1 and 2.3, and add conditions on the basis functions. Let $\tilde{\psi}^p(\cdot) := \psi^p(\cdot) / \|\psi^p(\cdot)\|$, $\xi_p := \sup_{t \in [0,1]} \|\psi^p(t)\|$, and $\beta_0 := \arg\min_\beta \mathbb{E}[(f_0(T_1) - \psi^p(T_1))^2]$. For $R > 0$, let

$$\tilde{B}(R) := \left\{ \beta : \|\beta - \beta_0\| \leq n^{-1/2} R \right\} \quad \text{and} \quad \tilde{\phi}_\Pi(R) := 1 - \inf_{\beta, \beta_0 \in \tilde{B}(R)} \frac{\pi(\beta)}{\pi(\beta_0)}.$$

Condition 3.1. There exists a positive constant C_1 such that $\pi(\beta_0) \geq n^{-C_1 p}$.

Condition 3.2. The inequality $\tilde{\phi}_\Pi(1/\sqrt{n}) \leq 1/2$ holds.

Condition 3.3. There exist strictly positive constants \underline{b} and \overline{b} such that the eigenvalues of the $p \times p$ matrix $(\mathbb{E}[\psi^p_j(T_1) \psi^p_k(T_1)])_{1 \leq i, j \leq p}$ are included in $[\underline{b}^2, \overline{b}^2]$.

imsart-bj ver. 2014/10/16 file: YanoKato_BwM_Bernoulli_arXiv.tex date: February 1, 2022
Condition 3.4. There exist positive constants C_4 and C_5 such that
\[
\log \xi_p \leq C_4 \log p \quad \text{and} \quad \log \sup_{t \neq t' \in [0,1]} \frac{\|\tilde{\psi}_p(t) - \tilde{\psi}_p(t')\|}{|t - t'|} \leq C_5 \log p.
\]

Conditions 3.1 and 3.2 are versions of Conditions 2.1 and 2.3 under stochastic regressors. Condition 3.3 is standard. Condition 3.4 is not restrictive; for example, this condition holds for Fourier series, Spline series, CDV wavelets, and local polynomial partition series; see [5] for details.

The following proposition derives bounds on the coverage error and the L^∞-diameter of $C(\hat{f}, \tilde{R}_\alpha)$. Let $\tau_2 := \sqrt{E[(f_0(T_1) - \psi^p(T_1)^T \beta_0)^2]}$, $\tau_\infty := \|f_0(\cdot) - \psi^p(\cdot)^T \beta_0\|_\infty$, and $\tau := \|f_0(\cdot) - \psi^p(\cdot)^T \beta_0\|_1/\|\psi^p(\cdot)\|_\infty$. These parameters quantify the approximation errors by the basis functions.

Proposition 3.4. Under Conditions 3.1-3.4 together with Conditions 2.2 and 2.5, there exist positive constants c_1, c_2 depending only on C_1, \ldots, C_5, b, \tilde{b}, and q appearing in these conditions such that the following hold. For $n \geq 2$ and any sufficiently small $\delta > 0$, we have
\[
|\mathbb{P}(f_0) \in C(\hat{f}, \tilde{R}_\alpha)) - (1 - \alpha)|
\leq \tilde{c}_n \left(c_1 \sqrt{p \log n} + \delta_2 + \delta_3 + c_1 (n^{-2b} + \delta_1 p \log n + \zeta_n + \gamma_n) \right),
\]
where
\[
\gamma_n := \frac{n \tau_2^2}{\log n} + \max \left\{ 1, \left(p \xi_p^2 / n \right)^{1/2} \right\} \tau_\infty n^{\delta} \log p + \sqrt{n \tau} \sqrt{\log p}
\quad \text{and}
\]
\[
\zeta_n := \begin{cases}
\zeta_2^n \left(\frac{\xi_p^2}{n} \right)^{1/2} n^{1/q} (\log n)^{1/3},
\left(\frac{\xi_p^2}{n} \right)^{1/6}
\end{cases}
\quad \text{under Condition 2.5 (a)}
\]
\[
\left(\frac{\xi_p^2}{n} \right)^{1/6}
\quad \text{under Condition 2.5 (b)}
\]
In addition, there exists a positive constant c_3 depending only on α and b such that the following holds: provided that the right hand side on (9) is smaller than $\alpha/2$, we have
\[
\sup_{f, g \in C(\hat{f}, \tilde{R}_\alpha)} \|f - g\|_\infty \leq c_3 \sqrt{\xi_p^2 (\log p) / n}
\]
with probability at least $1 - \delta_3 - c_1 \left\{ \sqrt{n \tau} \sqrt{\log p} + n^{-c_2(p)} \right\}$.

We note that the proof of Proposition 3.4 does not use a lower bound on \tilde{R}_α in Theorem 2.1 (more precisely, its version for random designs). Hence we do not have to assume that the right hand side on (9) is smaller than $(1 - \alpha)/2$; see the discussion after Theorem 2.1.
Remark 3.6 (Magnitudes of $\xi_p, \tau_2, \tau_\infty,$ and τ). For typical basis functions including Fourier series, spline series, and CDV wavelets, we have $\xi_p \lesssim \sqrt{n}$; see Section 3 in [5]. If f_0 is in the H"older–Zygmund space with smoothness level $s > 0$, then $\tau_2 \sim \tau_\infty \sim n^{-s}$ for an S-regular CDV wavelet basis with $S > s$. For other bases and other function classes, bounds on τ_2 and τ_∞ can be found in approximation theory; see e.g. [22] and Section 3 in [5]. Finally, for the Haar wavelet basis, we have $\tau \sim \tau_\infty / \sqrt{n}$, since $\tau \leq \tau_\infty / \inf_{t \in [0,1]} \| \psi^p(t) \|$; for periodic S-regular wavelets, we also have $\tau \sim \tau_\infty / \sqrt{n}$ as shown in Appendix C.4.3 of [61].

Remark 3.7 (Coverage error rates for the true function). Consider the unknown variance case. Assume that there exists a constant $s > 1/2$ such that $\tau_2 \sim \tau_\infty \sim n^{-s}$, $\tau \sim n^{-s-1/2}$, and $\xi_p \lesssim \sqrt{n}$. Assume also that the error distribution is Gaussian (for the non-Gaussian case, add ζ_n to the bound on the coverage error). We use a locally log-Lipschitz prior with locally log-Lipschitz constant $L = L_n$ on β and use the estimator $\hat{\sigma}^2 = \hat{\sigma}_n^2$ as in Proposition 2.3. Take $p \sim (n / \log n)^{1/(2s+1)} b_n$ with a positive nondecreasing sequence $b_n = O(\log n)$. In this case, we have

$$|P(f_0 \in C(\hat{f}, \hat{R}_n)) - (1 - \alpha)| \leq C \left[L_n \left(\frac{n}{\log n} \right)^{-s/(2s+1)} b_n^{1/2} + \left(\frac{n}{\log n} \right)^{-(s-1/2)/(2s+1)} b_n \log n + \frac{\log n}{b_n^{s+1/2}} \right]$$

and

$$\sup_{f,g \in C(\hat{f}, \hat{R}_n)} \| f - g \|_\infty \leq C \left(\frac{n}{\log n} \right)^{-s/(2s+1)} b_n^{1/2},$$

where the latter holds with probability at least $1 - c_1 (\log n)/b_n^{s+1/2}$, and the constant C is independent of n.

Remark 3.8 (Coverage error rates for the surrogate function). Consider coverage errors for the surrogate function $f_{0,p} := \psi^p(\cdot)^\top \beta_0$ when the error distribution is Gaussian. In this case, since $\tau_\infty = \tau_2 = \tau = 0$, we have

$$|P(f_{0,p} \in C(\hat{f}, \hat{R}_n)) - (1 - \alpha)| \leq O\left(\frac{n}{\log n} \right)^{-(s-1/2)/(2s+1)} b_n \log n$$

and

$$\sup_{f,g \in C(\hat{f}, \hat{R}_n)} \| f - g \|_\infty \leq O\left(\frac{n}{\log n} \right)^{-s/(2s+1)} b_n^{1/2}$$

where the latter holds with probability at least $1 - c_1 \exp\{-c_2 (n / \log n)^{1/(2s+1)}\}$. This shows that Bayesian credible bands have coverage errors (for the surrogate function) decaying polynomially fast in the sample size n in nonparametric regression models.
4. Proof of Theorem 2.1

4.1. Supporting lemmas

We begin with stating some supporting lemmas that will be used in the proof of Theorem 2.1. They include the high-dimensional CLT on hyperrectangles, the anti-concentration inequality for the Gaussian distribution, Anderson’s lemma, and the concentration inequality for the Gaussian maximum.

The high-dimensional CLT on hyperrectangles is stated as follows: in the following lemma, let \(Z_1, \ldots, Z_n \) be independent \(p \)-dimensional random vectors with mean zero. Let \(Z_{ij} (i = 1, \ldots, n, j = 1, \ldots, p) \) denote the \(j \)-th coordinate of \(Z_i \). Let \(\tilde{Z}_1, \ldots, \tilde{Z}_n \) be independent centered \(p \)-dimensional Gaussian vectors such that each \(\tilde{Z}_i \) has the same covariance matrix as \(Z_i \). Let \(A_{\text{re}} \) be the class of all closed hyperrectangles in \(\mathbb{R}^p \): for any \(A \in A_{\text{re}} \), \(A \) is of the form \(A = \{ \beta \in \mathbb{R}^p : a_i \leq \beta_i \leq \pi_i, 1 \leq i \leq p \} \) with \((a_1, \ldots, a_p)^\top \in \mathbb{R}^p\) and \((\pi_1, \ldots, \pi_p)^\top \in \mathbb{R}^p\). We assume the following three conditions:

- **H1.** There exists \(b > 0 \) such that \(n^{-1} \sum_{i=1}^n \mathbb{E}[Z_{ij}^2] \geq b \) for all \(1 \leq j \leq p \);
- **H2.** There exists a sequence \(B_n \geq 1 \) such that \(n^{-1} \sum_{i=1}^n \mathbb{E}[|Z_{ij}|^{2+k}] \leq B_n^4 \) for all \(1 \leq j \leq p \) and for \(k = 1, 2 \);
- **H3.** Either one of the following two conditions holds:
 - (a) There exists an integer \(4 \leq q < \infty \) such that \(\mathbb{E}[(\max_{1 \leq j \leq p} |Z_{ij}|/B_n)^q] \leq 1 \) for all \(1 \leq i \leq n \);
 - (b) \(\mathbb{E}[\exp(|Z_{ij}|/B_n)] \leq 2 \) for all \(1 \leq i \leq n \) and \(1 \leq j \leq p \).

Lemma 4.1 (High dimensional CLT on hyperrectangles; Proposition 2.1 in [17]). Let

\[
\rho = \rho_n := \sup_{A \in A_{\text{re}}} \left| \mathbb{P} \left(\sum_{i=1}^n Z_i/\sqrt{n} \in A \right) - \mathbb{P} \left(\sum_{i=1}^n \tilde{Z}_i/\sqrt{n} \in A \right) \right|.
\]

Under Conditions H1-H3, there exists a positive constant \(\tilde{c}_1 \) such that

\[
\rho \leq \begin{cases}
\tilde{c}_1 \left(\frac{B_n^2 \log^2(\pi_n)}{n} \right)^{1/6} + \tilde{c}_1 \left(\frac{B_n^2 \log^2(\pi_n)}{n^{1+2/3}} \right)^{1/3} & \text{under Condition H3 (a),} \\
\tilde{c}_1 \left(\frac{B_n^2 \log^2(\pi_n)}{n} \right)^{1/6} & \text{under Condition H3 (b).}
\end{cases}
\]

The constant \(\tilde{c}_1 \) depends only on \(b \) appearing in Condition H1 and \(q \) appearing in Condition H3.

Next we state the anti-concentration inequality for the Gaussian distribution, Anderson’s lemma, and the concentration inequality for the Gaussian maximum.
Lemma 4.2 (Anti-concentration inequality for the Gaussian distribution; [41]). Let $Z = (Z_1, \ldots, Z_p)^\top$ be a centered Gaussian random vector in \mathbb{R}^p with $\sigma_j^2 := \mathbb{E}[Z_j]^2 > 0$ for all $1 \leq j \leq p$. Let $\underline{\sigma} := \min\{\sigma_j\}$. There exists a universal positive constant \bar{c}_2 such that for every $z = (z_1, \ldots, z_p)^\top \in \mathbb{R}^p$ and $R > 0$,

$$\gamma := \gamma(R) := \mathbb{P}(Z_j \leq z_j + R 1 \leq \forall j \leq p) - \mathbb{P}(Z_j \leq z_j 1 \leq \forall j \leq p) \leq \bar{c}_2 \frac{R}{\underline{\sigma}} \sqrt{\log p}.$$

Lemma 4.3 (Anderson’s lemma; Corollary 3 in [2]). Let Σ and $\tilde{\Sigma}$ be symmetric positive semidefinite $p \times p$ matrices, and let C be a symmetric convex set in \mathbb{R}^p. If $\Sigma - \tilde{\Sigma}$ is positive semidefinite, then $\mathbb{P}(Z \in C) \leq \mathbb{P}(\tilde{Z} \in C)$ for $Z \sim N(0, \Sigma)$ and $\tilde{Z} \sim N(0, \tilde{\Sigma})$.

Lemma 4.4 (Concentration inequality for the Gaussian maximum; Theorem 2.5.8. in [32]). Let $N_1, \ldots, N_p \sim N(0, 1)$ i.i.d. and let $\{w_i\}_{i=1}^p$ be a positive sequence with $\underline{w} = \min_{1 \leq i \leq p} w_i$. Then for every $R > 0$,

$$\mathbb{P}\left(\max_{1 \leq i \leq p} |N_i/w_i| - \mathbb{E}\left[\max_{1 \leq i \leq p} |N_i/w_i|\right] \geq R\right) \leq 2 \exp(-\underline{w}^2 R^2/2).$$

4.2. Proof of Theorem 2.1

We only prove the theorem under Condition 2.5 (a). The proof under Condition 2.5 (b) is done by replacing Lemma 4.1 (a) by Lemma 4.1 (b).

The proof is divided into two parts. We first derive an upper bound on the coverage error $|\mathbb{P}(\beta_0 \in I(\hat{\beta}(Y), \hat{R}_a)) - (1 - \alpha)|$ and then bound the radius \hat{R}_a of $I(\hat{\beta}(Y), \hat{R}_a)$.

Step 1: Upper bound on the coverage error

We start with proving that \hat{R}_a concentrates on the $(1 - \alpha)$-quantile of some distribution with high probability. Let $\underline{\zeta}$ be the upper bound in Proposition 2.5. From Proposition 2.5, we have

$$\left|\Pi_{\mathcal{B}}(I(\hat{\beta}(Y), \hat{R}_a) \mid Y) - \mathcal{N}(I(\hat{\beta}(Y), \hat{R}_a) \mid \hat{\beta}(Y), \sigma_0^2(X^\top X)^{-1})\right| \leq \underline{\zeta} \quad \text{for } Y \in H,$$

where recall that $H = \{Y : \|X(\hat{\beta}(Y) - \beta_0)\| \leq c_1 \sqrt{p \log n} \sigma_0/4\} \cap \{Y : \Pi_{\mathcal{B}}(\{\sigma^2/\sigma_0^2 - 1\}) \geq \delta_1 \mid Y \} \leq \delta_2\}$. Let $\tilde{S} \sim \mathcal{N}(0, (X^\top X)^{-1})$ and let G be the distribution function of $\sigma_0 \max\{\|e_i\|^2/\sigma_0^2\}$, where $e_{(p,i)}$ is the p-dimensional unit vector whose i-th component is 1. Now since $\mathcal{N}(I(\hat{\beta}(Y), \hat{R}_a) \mid \hat{\beta}(Y), \sigma_0^2(X^\top X)^{-1}) = G(\hat{R}_a)$, we have $|\mathbb{P}(\beta_0 \in I(\hat{\beta}(Y), \hat{R}_a)) - G(\hat{R}_a)| \leq \underline{\zeta}$ for $Y \in H$. This implies

$$G^{-1}(1 - \alpha - \underline{\zeta}) \leq \hat{R}_a \leq G^{-1}(1 - \alpha + \underline{\zeta}) \quad \text{for } Y \in H,$$ \hspace{1cm} (10)
where G^{-1} denotes the quantile function of G.

Next, we will derive an upper bound on $P(\beta_0 \in I(\tilde{\beta}(Y), \tilde{R}_\alpha)) - (1 - \alpha)$ (the lower bound follows similarly). Let ρ be the constant in Lemma 4.1 when $Z_j = n(X^\top X)^{-1}X_j \varepsilon_j$ for $j = 1, \ldots, n$, where $X_j = (X_{j1}, \ldots, X_{jp})^\top$ for $j = 1, \ldots, n$. For $R > 0$, let $\gamma(R)$ be the constant in Lemma 4.2 when $Z = \sigma_0 \bar{S}$. Finally, let $\tilde{r} := (X^\top X)^{-1}X^\top r$. From inequality (10) and by the definitions of ρ, G, and γ, we have

$$P(\beta_0 \in I(\tilde{\beta}(Y), \tilde{R}_\alpha)) - (1 - \alpha) \leq P\left(\max_{1 \leq i \leq p} \{\varepsilon_{(p),i}(X^\top X)^{-1}X^\top(\varepsilon + r)/w_i\} \leq G^{-1}(1 - \alpha + \zeta)\right) - (1 - \alpha) + P(Y \notin H) \leq P\left(\max_{1 \leq i \leq p} \{\varepsilon_{(p),i}(\sigma_0 \bar{S} + \tilde{r})/w_i\} \leq G^{-1}(1 - \alpha + \zeta)\right) - (1 - \alpha) + \rho + P(Y \notin H) \leq \gamma(||\tilde{r}||_{\infty}) + \zeta + \rho + P(Y \notin H).$$

Proposition 2.6 gives an upper bound on $P(Y \notin H)$. From Lemmas 4.1 and 4.2, we obtain the following bounds on ρ and γ: For some $\bar{c}_1 > 0$ depending only on q,

$$\rho \leq \bar{c}_1 \left\{ \left(\frac{p \log^7 (pm) \bar{\lambda}}{n} \right)^{1/6} + \left(\frac{p \log^3 (pm) \bar{\lambda}}{n^{1-2/q}} \right)^{1/3} \right\} \quad \text{and} \quad \gamma \leq \bar{c}_1 \frac{\|\tilde{r}\|_{\infty}}{\sigma_0 \bar{\lambda}^{1/2}} \sqrt{\log p},$$

which completes Step 1.

Step 2: Upper bound on the max-diameter

We start with deriving a high-probability upper bound on \tilde{R}_α using the quantile function F^{-1} of $\max_{1 \leq i \leq p} |N_i/w_i|$ for independent standard Gaussian random variables $\{N_i : i = 1, \ldots, p\}$. From Lemma 4.3, we have

$$P\left(\max_{1 \leq i \leq p} |N_i/w_i| \leq R/\left(\sigma_0 \bar{\lambda}^{1/2}\right)\right) \leq P\left(\max_{1 \leq i \leq p} |\sigma_0 \bar{S}_i/w_i| \leq R\right) \leq P(Y \notin H)$$

Together with inequality (10), we have

$$\tilde{R}_\alpha \leq \sigma_0 \bar{\lambda}^{1/2} F^{-1}(1 - \alpha + \zeta) \quad \text{for} \quad Y \in H. \quad (11)$$

Next, we will bound $F^{-1}(1 - \alpha + \zeta)/E[\max_{1 \leq i \leq p} |N_i/w_i|]$. From Lemma 4.4, there exists $\bar{c}_2 > 1$ depending only on α and w such that

$$P\left(\max_{1 \leq i \leq p} |N_i/w_i| - E\left[\max_{1 \leq i \leq p} |N_i/w_i|\right] \geq \bar{c}_2 E\left[\max_{1 \leq i \leq p} |N_i/w_i|\right]\right) < \alpha - \alpha/2 < \alpha - \zeta.$$

Therefore, by the definition of F^{-1}, we have

$$F^{-1}(1 - \alpha + \zeta) = \inf\left\{ R : P\left(\max_{1 \leq i \leq p} |N_i/w_i| \geq R\right) \leq \alpha - \zeta \right\} \leq (1 + \bar{c}_2) E\left[\max_{1 \leq i \leq p} |N_i/w_i|\right].$$
Together with (11), we obtain the desired upper bound on \tilde{R}_α.

Step 3: Lower bound on the max-diameter

As in Step 2, we have

$$\sigma_0 \lambda^{1/2} m_0^{-1} F^{-1}(1 - \alpha - \zeta) \leq \tilde{R}_\alpha$$ for $Y \in H$ \hfill (12)

Next, we will show that $\tilde{F}^{-1}(1 - \alpha - \zeta) \geq \tilde{c}_3 \sqrt{\log p}$ for some constant \tilde{c}_3 depending only on α. From the Paley–Zygmund inequality, we have for $\theta \in (0,1)$,

$$\mathbb{P}\left(\max_{1 \leq i \leq p} |N_i| \geq \theta \mathbb{E}\left[\max_{1 \leq i \leq p} |N_i| \right] \right) \geq (1 - \theta)^2 \frac{(\mathbb{E}[\max_{1 \leq i \leq p} |N_i|])^2}{\mathbb{E}[\max_{1 \leq i \leq p} |N_i|^2]}.$$ \hfill (13)

From Lemma 4.4 together with the inequality $\mathbb{E}[\max_{1 \leq i \leq p} |N_i|] \geq \sqrt{\log p}/12$, there exists a universal positive constant \tilde{c}_4 such that

$$\mathbb{E}\left[\left(\max_{1 \leq i \leq p} |N_i| \right)^2 \right] \leq \left(\mathbb{E}\left[\max_{1 \leq i \leq p} |N_i| \right] \right)^2 (1 + \tilde{c}_4/\sqrt{\log p}),$$ \hfill (14)

where we have used Lemma 4.4 to deduce that

$$\mathbb{E}\left[\left(\max_{1 \leq i \leq p} |N_i| \right)^2 \right] \leq \left(\mathbb{E}\left[\max_{1 \leq i \leq p} |N_i| \right] \right)^2 + 4 \int_0^{\infty} \mathbb{E}\left[\left| N_t \right| \right]^2 e^{-t \mathbb{E}\left[\max_{1 \leq i \leq p} |N_i| \right]} dt \leq \left(\mathbb{E}\left[\max_{1 \leq i \leq p} |N_i| \right] \right)^2 + \tilde{c}_5 \left(\mathbb{E}\left[\max_{1 \leq i \leq p} |N_i| \right] + 1 \right)$$

for some universal positive constant \tilde{c}_5. Let $\eta := (1 + \alpha)/2$. Take p such that $1/(1 + \tilde{c}_4/\sqrt{\log p}) \geq (\eta + 1)/2$, and take $\theta_\alpha^* = 1 - \sqrt{(2\eta)/(\eta + 1)}$. Then, from inequalities (13) and (14), we have

$$\mathbb{P}\left(\max_{1 \leq i \leq p} |N_i| \geq \theta_\alpha^* \mathbb{E}\left[\max_{1 \leq i \leq p} |N_i| \right] \right) \geq (1 - \theta_\alpha^*)^2 \frac{(\mathbb{E}[\max_{1 \leq i \leq p} |N_i|])^2}{\mathbb{E}[\max_{1 \leq i \leq p} |N_i|^2]} \geq \eta \geq \alpha + \zeta.$$

Thus we have

$$\tilde{F}^{-1}(1 - \alpha - \zeta) \geq \theta_\alpha^* \mathbb{E}\left[\max_{1 \leq i \leq p} |N_i| \right] \geq (\theta_\alpha^*/12) \sqrt{\log p}. \hfill (15)$$

Together with (12), we obtain the desired lower bound on \tilde{R}_α. \hfill \(\blacksquare\)

5. Conclusion

We have studied finite sample bounds on frequentist coverage errors of Bayesian credible rectangles to approximately linear regression models with moderately high dimensional
Bayesian credible sets in moderately high dimensions

repressors. As an application, we have shown that Bayesian credible bands have coverage errors (for the true function) decaying polynomially fast in the sample size in Gaussian white noise models and linear inverse problems; the similar results hold for the surrogate function in nonparametric regression models. This supports the use of Bayesian approaches to constructing nonparametric confidence bands.

6. Acknowledgement

We are thankful to the Editor, the Associate Editor, and anonymous referees for their helpful comments. K. Yano is supported by the Grant-in-Aid for Young Scientists from the JSPS (19K20222) and by JST CREST (JPMJCR1763).

Supplementary Material

Supplement to “On frequentist coverage errors of Bayesian credible sets in high dimensions” (.pdf). The supplementary material contains the proofs omitted in the main text.

References

[1] Abramovich, F. and Silverman, B. (1998). Wavelet decomposition approaches to statistical inverse problems. Biometrika 85 115–129.

[2] Anderson, T. (1955). The integral of a symmetric unimodal function over a symmetric convex set and some probability inequalities. Proc. Amer. Math. Soc. 6 170–176.

[3] Atchadé, Y. (2017). On the contraction properties of some high-dimensional quasi-posterior distributions. Ann. Statist. 45 2248–2273.

[4] Baraud, Y. (2000). Model selection for regression on a fixed design. Probab. Theory Relat. Fields 117 467–493.

[5] Belloni, A., Chernozhukov, V., Chetverikov, D. and Kato, K. (2015). Some new asymptotic theory for least squares series: Pointwise and uniform results. J. Econometrics 186 345–366.

[6] Bickel, P. and Rosenblatt, M. (1973). On Some Global Measures of the Derivations of Density Function Estimates. Ann. Statist. 1 1071–1095.

[7] Bontemps, D. (2011). Bernstein–von Mises theorems for Gaussian regression with increasing number of regressors. Ann. Statist. 39 2557–2584.
[8] Boucheron, S. and Gassiat, E. (2009). A Bernstein–Von Mises Theorem for discrete probability distributions. *Electron. J. Statist.* 3 114–148.

[9] Castillo, I. (2014). On Bayesian supremum norm contraction rates. *Ann. Statist.* 42 2058–2091.

[10] Castillo, I. and Nickl, R. (2013). Nonparametric Bernstein–von Mises theorems in Gaussian white noise. *Ann. Statist.* 41 1999–2028.

[11] Castillo, I. and Nickl, R. (2014). On the Bernstein–von Mises phenomenon for nonparametric Bayes procedures. *Ann. Statist.* 42 1941–1969.

[12] Castillo, I. and Rousseau, J. (2015). A Bernstein–von Mises theorem for smooth functionals in semiparametric models. *Ann. Statist.* 43 2353–2383.

[13] Castillo, I., Schmidt-Hieber, J. and van der Vaart, A. (2015). Bayesian linear regression with sparse priors. *Ann. Statist.* 43 1999–2028.

[14] Chernozhukov, V., Chetverikov, D. and Kato, K. (2013). Gaussian approximations and multiplier bootstrap for maxima of sums of high-dimensional random vectors. *Ann. Statist.* 41 2786–2819.

[15] Chernozhukov, V., Chetverikov, D. and Kato, K. (2014). Anti-concentration and honest, adaptive confidence bands. *Ann. Statist.* 42 1787–1818.

[16] Chernozhukov, V., Chetverikov, D. and Kato, K. (2014). Gaussian approximation of suprema of empirical processes. *Ann. Statist.* 42 1564–1597.

[17] Chernozhukov, V., Chetverikov, D. and Kato, K. (2017). Central limit theorems and bootstrap in high dimensions. *Ann. Probab.* 45 2309–2352.

[18] Chernozhukov, V. and Hong, H. (2003). An MCMC approach to classical estimation. *J. Econometrics* 115 293–346.

[19] Claeskens, G. and Keilegom, I. V. (2003). Bootstrap confidence bands for regression curves and their derivatives. *Ann. Statist.* 31 1852–1884.

[20] Clarke, B. and Ghosal, S. (2010). Reference priors for exponential families with increasing dimension. *Electron. J. Statist.* 4 737–780.

[21] Cox, D. (1993). An Analysis of Bayesian Inference for Nonparametric Regression. *Ann. Statist.* 21 903–923.

[22] DeVore, R. and Lorentz, G. (1993). *Constructive Approximation.* Springer.

[23] Donoho, D. (1995). Nonlinear Solution of Linear Inverse Problems by Wavelet-Vaguelette Decomposition. *Appl. Comput. Harmon. A.* 2 101–126.

[24] Florens, J. P. and Simoni, A. (2012). Nonparametric estimation of an instrumental regression: A quasi-Bayesian approach based on regularized posterior. *J. Econometrics* 170 458–475.

[25] Freedman, D. (1999). Wald Lecture: On the Bernstein–von Mises theorem with
infinite-dimensional parameters. *Ann. Statist.* **27** 1119–1140.

[26] Gao, C. and Zhou, H. (2016). Bernstein–von Mises theorems for functionals of the covariance matrix. *Electron. J. Statist.* **10** 1751–1806.

[27] Ghosal, S. (1999). Asymptotic normality of posterior distributions in high-dimensional linear models. *Bernoulli* **5** 315–331.

[28] Ghosal, S. (2000). Asymptotic Normality of Posterior Distributions for Exponential Families when the Number of Parameters Tends to Infinity. *J. Multivariate Anal.* **74** 49–68.

[29] Ghosal, S. and van der Vaart, A. (2017). *Fundamentals of Nonparametric Bayesian Inference*. Cambridge Univ. Press.

[30] Giné, E. and Nickl, R. (2010). Confidence bands in density estimation. *Ann. Statist.* **38** 1122–1170.

[31] Giné, E. and Nickl, R. (2011). Rates of contraction for posterior distributions in L^r-metrics, $1 \leq r \leq \infty$. *Ann. Statist.* **39** 2883–2911.

[32] Giné, E. and Nickl, R. (2016). *Mathematical Foundations of Infinite-Dimensional Statistical Models*. Cambridge Univ. Press.

[33] Hall, P. (1991). On convergence rates of suprema. *Probab. Theory Related Fields* **89** 447–455.

[34] Hanson, D. and Watson, E. (1971). A Bound on Tail Probabilities for Quadratic Forms in Independent Random Variables. *Ann. Math. Statist.* **42** 1079–1083.

[35] Hoffmann, M., Rousseau, J. and Schmidt-Hieber, J. (2015). On adaptive posterior concentration rates. *Ann. Statist.* **43** 2259–2295.

[36] Johnstone, I. *Gaussian estimation: Sequence and wavelet models*. Unpublished manuscript.

[37] Johnstone, I. (2010). High dimensional Bernstein–von Mises: simple examples. *IMS Collections* **6** 87–98.

[38] Kato, K. (2013). Quasi-Bayesian analysis of nonparametric instrumental variables models. *Ann. Statist.* **41** 2359–2390.

[39] Knäppt, B., van der Vaart, A. and van Zanten, H. (2011). Bayesian inverse problems with Gaussian priors. *Ann. Statist.* **39** 2626–2657.

[40] Leahu, H. (2011). On the Bernstein–von Mises phenomenon in the Gaussian white noise model. *Electron. J. Statist.* **5** 373–404.

[41] Nazarov, F. (2003). On the Maximal Perimeter of a Convex Set in \mathbb{R}^n with Respect to a Gaussian Measure. In *Geometric Aspects of Functional Analysis (2001-2002)* 169–187. Springer.

[42] Nickl, R. Bernstein–von Mises theorems for statistical inverse problems:
Schrödinger equation. *J. European Math. Society.* to appear.

[43] Nickl, R. and Söhl, J. (2017). Nonparametric Bayesian posterior contraction rates for discretely observed scalar diffusions. *Ann. Statist.* **45** 1664–1693.

[44] Olver, F., Lozier, D., Boisvert, R. and Clark, C. (2010). *NIST Handbook of Mathematical Functions.* Cambridge University Press.

[45] Panov, M. and Spokoiny, V. (2015). Finite Sample Bernstein–von Mises theorem for Semiparametric Problems. *Bayesian Analysis* **10** 665–710.

[46] Petrov, V. (1995). *Limit theorems of probability theory: Sequences of independent random variables.* Oxford University Press.

[47] Ray, K. (2017). Adaptive Bernstein–von Mises theorems in Gaussian white noise. *Ann. Statist.* **45** 2511–2536.

[48] Rivoirard, V. and Rousseau, J. (2012). Bernstein–von Mises theorem for linear functionals of the density. *Ann. Statist.* **40** 1489–1523.

[49] Rudelson, M. and Vershynin, R. (2013). Hanson–Wright inequality and sub-gaussian concentration. *Electron. Commun. Probab.* **18** 1–9.

[50] Smirnov, N. (1950). On the construction of confidence regions for the density of distribution of random variables. *Dokl. Akad. Nauk SSSR* **74** 189–191.

[51] Sniekers, S. and van der Vaart, A. (2015). Credible sets in the fixed design model with Brownian motion prior. *J. Statist. Plann. Inference* **166** 78–86.

[52] Spokoiny, V. Bernstein–von Mises Theorem for growing parameter dimension. arXiv:1302.3430.

[53] Szabó, B., van der Vaart, A. and van Zanten, H. (2015). Honest Bayesian confidence sets for the L^2-norm. *J. Statist. Plann. Inference* **166** 36–51.

[54] Szabó, B., van der Vaart, A. and van Zanten, H. (2015). Frequentist coverage of adaptive nonparametric Bayesian credible sets. *Ann. Statist.* **43** 1391–1428.

[55] Tropp, J. (2012). User-Friendly Tail Bounds for Sums of Random Matrices. *Found. Comput. Math.* **12** 389–434.

[56] Tsybakov, A. (2009). *Introduction to Nonparametric Estimation.* Springer.

[57] van der Vaart, A. (1998). *Asymptotic Statistics.* Cambridge Univ. Press.

[58] van der Vaart, A. and Wellner, J. (1996). *Weak Convergence and Empirical Processes : With Applications to Statistics.* Springer.

[59] von Bahr, B. and Esseen, C. (1965). Inequalities for the rth Absolute Moment of a Sum of Random Variables $1 \leq r \leq 2$. *Ann. Math. Statist.* **36** 299–303.

[60] Yang, Y., Bhattacharya, A. and Pati, D. Frequentist coverage and sup-norm convergence rate in Gaussian process regression. arXiv:1708.04753.

[61] Yano, K. and Kato, K. Supplement to “On frequentist coverage errors of Bayesian
credible sets in moderately high dimensions”.

[62] YANO, K. and KATO, K. On frequentist coverage errors of Bayesian credible sets in moderately high dimensions.

[63] YOO, W. and GHOSAL, S. (2016). Supremum norm posterior contraction and credible sets for nonparametric multivariate regression. *Ann. Statist.* **44** 1069–1102.

[64] YOO, W., ROUSSEAU, J. and RIVOIRARD, V. Adaptive supremum norm posterior contraction: Wavelet spike-and-slab and anisotropic Besov spaces. arXiv:1708.01909.
Supplement to “On frequentist coverage errors of Bayesian credible sets in moderately high dimensions”

This supplemental material is organized as follows: Appendix A contains proofs of Propositions 2.5-2.6 in [62]. Appendix B contains proofs of Propositions 2.1-2.4 in [62]. Appendix C contains proofs for Section 3 in [62]. Appendices C.1-C.2 provide proofs of Propositions 3.1-3.2 in [62]. Appendix C.3 provides a proof of Proposition 3.3 in [62]. Appendix C.4 provides a proof of Proposition 3.4 and a bound on \(\tau \) in Remark 3.6 of [62]. Hereafter, the numbering for theorems, conditions, and propositions follows that of [62].

Appendix A: Proofs for Subsection 2.2

In this section, we provide proofs of Propositions 2.5-2.6.

A.1. Technical Lemmas

We present here some technical lemmas that will be used to prove Proposition 2.5.

Lemma A.1 (Scheffé’s lemma). Let \(Q_1 \) and \(Q_2 \) be probability measures on a measurable space with a common dominating measure \(\mu \). Let \(q_1 = \frac{dQ_1}{d\mu} \) and \(q_2 = \frac{dQ_2}{d\mu} \). Then

\[
\|Q_1 - Q_2\|_{TV} = \frac{1}{2} \int |q_1(x) - q_2(x)|d\mu(x) = \int (q_1(x) - q_2(x))_+ d\mu(x),
\]

Proof. See, e.g., p.84 in [56].

Lemma A.2 (Posterior contraction of a marginal prior distribution). Recall that \(B(R) = \{ \beta \in \mathbb{R}^p : \|X(\beta - \beta_0)\| \leq \sigma_0 R \} \) for \(R > 0 \). Under Conditions 2.1 and 2.3, there exist positive constants \(\tilde{c}_1 \) and \(\tilde{c}_2 \) depending only on \(C_1 \) in Condition 2.1 such that for a sufficiently large \(R > 0 \), the inequality

\[
\Pi_\beta(\beta \notin B(R) \mid Y, \sigma^2) \leq 4 \exp\{\tilde{c}_1 p \log n - \tilde{c}_2 (\sigma_0^2 / \sigma^2) R^2\}
\]

holds for \(Y \in H \), where recall that

\[
H := \{ Y : \|X(\hat{\beta}(Y) - \beta_0)\| \leq R\sigma_0 / 4 \} \cap \{ Y : \Pi_{\sigma^2}(|\sigma^2 / \sigma_0^2 - 1| \geq \delta_1 \mid Y) \leq \delta_2 \}.
\]
Changing variables, we have that

\[\Pi_{\beta}(\beta \in B(R)) \geq \frac{\{1 - \phi_{\Pi_{\beta}}(R)\} \left(\pi eR\right)^{p/2}}{2(p/2 + 1)^{p/2 + 1/2}} \frac{\pi(\beta_0)\sigma_0^p}{\sqrt{\det(X^\top X)}}. \]

Proof of Lemma A.3. Observe that

\[\Pi_{\beta}(\beta \in B(R)) = \int_{B(R)} \pi(\beta) d\beta \geq \inf_{\beta \in B(R)} \left\{ \frac{\pi(\beta)}{\pi(\beta_0)} \right\} \pi(\beta_0) \int_{B(R)} d\beta. \]

Changing variables, we have that

\[\int_{B(R)} d\beta = \frac{(\sigma_0^2 R^2)^{p/2}}{\sqrt{\det(X^\top X)}} \int_{\|\beta\| \leq 1} d\beta = \frac{(\sigma_0^2 R^2)^{p/2} \pi^{p/2}}{\sqrt{\det(X^\top X)} \Gamma(p/2 + 1)}, \]

where \(\Gamma(\cdot)\) is the Gamma function. Using the bound

\[\Gamma(p/2 + 1) \leq \sqrt{2\pi}(p/2 + 1)^{p/2 + 1/2} \exp(-p/2 - 17/18) \]

(e.g., see section 5.6.1. in [44]), we have that

\[\int_{B(R)} d\beta \geq \frac{(\sigma_0^2 \pi eR^2)^{p/2} e^{17/18}}{\sqrt{2\pi} \sqrt{\det(X^\top X)} (p/2 + 1)^{p/2 + 1/2}}. \]

Since \(e^{17/18}/\sqrt{2\pi} \geq 1/2\), we obtain the desired inequality. \(\Box\)

Return to the proof of Lemma A.2. Letting \(P := X(X^\top X)^{-1}X^\top\), we have

\[\Pi_{\beta}(\beta \in B \mid Y, \sigma^2) = \frac{e^{-\langle P(\varepsilon + r), X(\beta - \beta_0)\rangle/\sigma^2 - \|X(\beta - \beta_0)\|^2/(2\sigma^2) \pi(\beta)d\beta}}{\int_{B(V)} e^{-\langle P(\varepsilon + r), X(\beta - \beta_0)\rangle/\sigma^2 - \|X(\beta - \beta_0)\|^2/(2\sigma^2) \pi(\beta)d\beta}. \]

Since \(cx^2 + c^{-1}y^2 \geq 2xy\) for \(x, y, c > 0\), we have, for any \(c > 1\),

\[\int_{B(V)} \exp\{-\langle P(\varepsilon + r), X(\beta - \beta_0)\rangle/\sigma^2 - \|X(\beta - \beta_0)\|^2/(2\sigma^2)\} \pi(\beta)d\beta \]

\[\leq \int_{B(V)} \exp\{\|P(\varepsilon + r)\|/\sigma^2 - \|X(\beta - \beta_0)\|^2/(2\sigma^2)\} \pi(\beta)d\beta \]

\[\leq \int_{B(V)} \exp\{c\|P(\varepsilon + r)\|^2 + c^{-1}\|X(\beta - \beta_0)\|^2/(2\sigma^2) - \|X(\beta - \beta_0)\|^2/(2\sigma^2)\} \pi(\beta)d\beta \]

\[\leq \exp\{c\|P(\varepsilon + r)\|^2/(2\sigma^2) - (1 - c^{-1})(\sigma_0^2/\sigma^2)R^2/2\}. \]

(16)
Letting $\bar{R} = 1/\sqrt{\pi \alpha n}$, we have
\[
\int \exp\{-\langle P(\varepsilon + r), X(\beta - \beta_0) \rangle \sigma^2 - ||X(\beta - \beta_0)||^2/(2\sigma^2)\} \pi(\beta) d\beta \\
\geq \int_{B(\bar{R})} \exp\{-\langle P(\varepsilon + r), X(\beta - \beta_0) \rangle \sigma^2 - ||X(\beta - \beta_0)||^2/(2\sigma^2)\} \pi(\beta) d\beta \\
\geq \int_{B(\bar{R})} \exp[-c||P(\varepsilon + r)||^2 + c^{-1}||X(\beta - \beta_0)||^2/(2\sigma^2) - ||X(\beta - \beta_0)||^2/(2\sigma^2)\} \pi(\beta) d\beta \\
\geq \exp\{-c||P(\varepsilon + r)||^2/(2\sigma^2) - (1 + c^{-1})(\sigma_0^2/\sigma^2)\bar{R}^2/2\}\Pi_\beta(B(\bar{R})). \tag{18}
\]

From (18), from Lemma A.3, and from Condition 2.3, we have
\[
\int \exp\{-\langle P(\varepsilon + r), X(\beta - \beta_0) \rangle \sigma^2 - ||X(\beta - \beta_0)||^2/(2\sigma^2)\} \pi(\beta) d\beta \\
\geq 1 - \phi_{\Pi_{\alpha}}(\bar{R})/2 \exp\left\{\frac{\log n}{2} - \frac{\log p - 1}{2} - \frac{\|P(\varepsilon + r)\|}{\sigma^2} - \frac{(1 + c^{-1})\bar{R}^2}{2}\right\} \\
\geq 4^{-1} \exp\left\{\frac{\log n}{2} - \frac{\log p - 1}{2} - \frac{\|P(\varepsilon + r)\|}{\sigma^2} - \frac{(1 + c^{-1})\bar{R}^2}{2}\right\}, \tag{19}
\]

where the first inequality follows from (18) and from Lemma A.3 and the second inequality follows from Condition 2.3.

Combining (17) and (19) with (16), we have, for $Y \in H$,
\[
\int e^{-\|Y - X\beta\|^2/(2\sigma^2)} \pi(\beta) d\beta / \int e^{-\|Y - X\beta\|^2/(2\sigma^2)} \pi(\beta) d\beta \\
\leq 4 \exp\{((C_1 + 1)/2)p\log n + ((1 + c^{-1})/2)\}(\sigma_0^2/\sigma^2) - ((1 - c^{-1})/2 - c/16)(\sigma_0^2/\sigma^2)\bar{R}^2$.

Taking $c = 3$ completes the proof. \hfill \Box

Lemma A.4. Let A be an $n \times n$ symmetric positive semidefinite matrix such that $\|A\|_{op} \leq 1$ and rank(A) < n. Let $\varepsilon = (\varepsilon_1, \ldots, \varepsilon_n)^T$ be a vector of i.i.d. random variables with mean zero and unit variance.

(a) If in addition Condition 2.5 (a) holds for an integer $q \geq 2$ and $C_3 > 0$, then there exists a positive constant \bar{c}_1 depending only on q and C_3 such that, for every $R > \sqrt{\text{rank}(A)}$,
\[
P(\varepsilon^T A\varepsilon \geq R^2) \leq \bar{c}_1 \text{rank}(A)/(R - \sqrt{\text{rank}(A)})^q.
\]

(b) If instead Condition 2.5 (b) holds for $C_3 > 0$, then there exists a positive constant \bar{c}_1 depending only on C_3 such that, for every $R > 0$,
\[
P(\|A\varepsilon - E[\varepsilon^T A\varepsilon]\| > R) \leq 2 \exp\{-\bar{c}_1 \text{min}(R^q/\|A\|_{HS}^2, R^2)\},
\]
Bayesian credible sets in moderately high dimensions

where \(\| \cdot \|_{\text{HS}} \) denotes the Hilbert–Schmidt norm.

Proof. For Case (a), see Corollary 5.1 in [4]. The inequality in Case (b) is called the Hanson-Wright inequality; for a proof, we refer to [34] and [49].

A.2. Proof of Proposition 2.5

Notations

We define additional notation before the proof. Let \(\tilde{N} := \mathcal{N}(\hat{\beta}(Y), \sigma_0^2 (X^T X)^{-1}) \). Let \(B := B(c_1 \sqrt{p \log n}) \) and \(H := H(c_1) \) for a sufficiently large \(c_1 > 0 \) depending on \(C_1 \) and \(C_2 \). Let \(\Pi^B_{\beta}(d\beta \mid Y) \) be the probability measure defined by

\[
\Pi^B_{\beta}(d\beta \mid Y) := 1_{\beta \in B} \Pi_{\beta}(d\beta \mid Y) / \int_B \Pi_{\beta}(d\beta \mid Y)
\]

and let \(\tilde{\Pi}^B_{\beta} \) be the probability measure defined by

\[
\tilde{\Pi}^B_{\beta}(d\tilde{\beta}) := 1_{\beta \in B} \frac{\tilde{N}(d\beta)}{\int_B \tilde{N}(d\beta)}.
\]

Let \(\Pi_{\beta}(\cdot \mid Y, \sigma^2) \) be the distribution defined by

\[
\Pi_{\beta}(d\beta \mid Y, \sigma^2) := e^{-\|Y - X\beta\|^2/(2\sigma^2)} \pi(\beta) d\beta / \int_B e^{-\|Y - X\beta\|^2/(2\sigma^2)} \pi(\beta) d\beta
\]

and let \(\Pi^B_{\beta}(\cdot \mid Y, \sigma^2) \) be the distribution defined by

\[
\Pi^B_{\beta}(d\beta \mid Y, \sigma^2) := 1_{\beta \in B} e^{-\|Y - X\beta\|^2/(2\sigma^2)} \pi(\beta) d\beta / \int_B e^{-\|Y - X\beta\|^2/(2\sigma^2)} \pi(\beta) d\beta.
\]

In the proof, \(\bar{c}_1, \bar{c}_2, \ldots \) are positive constants depending only on \(C_1, C_2, \) and \(c_1 \).

Proof sketch

We present a proof sketch ahead. The triangle inequality gives

\[
\|\Pi_{\beta}(d\beta \mid Y) - \tilde{N}\|_{\text{TV}} \leq \|\Pi_{\beta}(d\beta \mid Y) - \Pi_{\beta}(d\beta \mid Y, \sigma^2_0)\|_{\text{TV}} + \|\Pi_{\beta}(d\beta \mid Y, \sigma^2_0) - \tilde{N}\|_{\text{TV}}.
\]

(20)

Consider the first term on the right hand side of (20). Let \(S = S(\delta_1) := \{\sigma^2 : |\sigma^2/\sigma_0^2 - 1| \leq \delta_1\} \). From the application of Jensen’s inequality to the function \(x \rightarrow |x| \) and from Condition 2.2, we have

\[
\|\Pi_{\beta}(d\beta \mid Y) - \Pi_{\beta}(d\beta \mid Y, \sigma^2_0)\|_{\text{TV}} \leq \int_S \|\Pi_{\beta}(d\beta \mid Y, \sigma^2) - \Pi_{\beta}(d\beta \mid Y, \sigma^2_0)\|_{\text{TV}} d\sigma^2 + \delta_2
\]
with probability at least $1 - \delta_3$. Consider the first term on the rightmost hand in the above inequality. The triangle inequality gives

$$
\int_S \| \Pi_\beta(d\beta \mid Y, \sigma^2) - \Pi_\beta(d\beta \mid Y, \sigma_0^2) \|_{TV} d\sigma^2 \mid Y \leq A_1 + A_2 + A_3,
$$

where

$$
A_1 := \int_S \| \Pi_\beta(d\beta \mid Y, \sigma^2) - \Pi_\beta^B(d\beta \mid Y, \sigma^2) \|_{TV} d\sigma^2 \mid Y),
$$

$$
A_2 := \int_S \| \Pi_\beta^B(d\beta \mid Y, \sigma^2) - \Pi_\beta^B(d\beta \mid Y, \sigma_0^2) \|_{TV} d\sigma^2 \mid Y),
$$

$$
A_3 := \int_S \| \Pi_\beta^B(d\beta \mid Y, \sigma_0^2) - \Pi_\beta(d\beta \mid Y, \sigma_0^2) \|_{TV} d\sigma^2 \mid Y).
$$

Upper bounds on A_1, A_2, A_3 will be presented in (23), (24), and (25), respectively. Consider the second term on the right hand side of (20). The triangle inequality gives

$$
\| \Pi_\beta(d\beta \mid Y, \sigma_0^2) - \tilde\Pi \|_{TV} \leq A_4 + A_5 + A_6,
$$

where

$$
A_4 := \| \tilde\Pi - \tilde\Pi \|_{TV},
$$

$$
A_5 := \| \tilde\Pi^B - \Pi_\beta^B(d\beta \mid Y, \sigma_0^2) \|_{TV},
$$

and

$$
A_6 := \| \Pi_\beta^B(d\beta \mid Y, \sigma_0^2) - \Pi_\beta(d\beta \mid Y, \sigma_0^2) \|_{TV}.
$$

Upper bounds on A_4, A_5, A_6 will be presented in (27), (28), and (29), respectively.

Step 1: Upper bound on (21)

We start with bounding A_1 in (21). From Lemmas A.1 and A.2, taking a sufficiently large c_1 depending only on C yields

$$
A_1 = \int_S \Pi_\beta(d\beta \mid Y, \sigma_0^2) d\sigma^2 \mid Y \leq 4n^{-\tilde{c}_1}.
$$

We next bound A_2 in (21). Lemma A.1 gives

$$
A_2 = \int_S \int (1 - \phi_{\Pi_2, \beta, \sigma^2}) \Pi_\beta^B(d\beta \mid Y, \sigma_0^2) d\sigma^2 \mid Y,
$$

where

$$
\phi_{\Pi_2, \beta, \sigma^2} := \frac{\pi(\beta)e^{-\|Y-X\beta\|^2/(2\sigma^2)}}{\int_B e^{-\|Y-X\beta\|^2/(2\sigma^2)} \pi(\beta) d\beta} \frac{\int_B e^{-\|Y-X\beta\|^2/(2\sigma^2)} \pi(\beta) d\beta}{\pi(\beta)e^{-\|Y-X\beta\|^2/(2\sigma^2)}}.
$$

From Cauchy–Schwarz’s inequality and from Condition 2.4, we have

$$
\exp\{ - P(e + r), X_0 - X\beta) / \sigma^2 - \|X_0 - X\beta\|^2/(2\sigma^2) \} \\
\geq e^{-P(e + r), X_0 - X\beta) / \sigma_0^2 - \|X_0 - X\beta\|^2/(2\sigma_0^2)} e^{-C_2 c_1 \delta_1 \log n / (1 - \delta_1)} - c_2^2 \delta_1 \log n / (1 - \delta_1).
$$
Therefore, we have $\phi_{\Pi,2}(\beta, \sigma^2) \geq n^{-\varepsilon_2 p} \beta$ for $\beta \in B, Y \in H$, and $\sigma^2 \in S$, and thus since $(1 - e^{-x})_+ \leq x$ for $x > 0$, we obtain

$$A_2 \leq \tilde{c}_2 \delta_1 p \log n. \tag{24}$$

We bound A_3 in (21). From Lemmas A.1 and A.2, taking a sufficiently large c_1 depending only on C_1, we have

$$A_3 \leq \Pi_\beta(\beta \notin B \mid Y, \sigma_0^2) \leq 4n^{-\varepsilon_3 p} \text{ for } Y \in H. \tag{25}$$

Therefore, from inequalities (23), (24), and (25), we obtain

$$\int S \Pi_\beta(d\beta \mid Y, \sigma_0^2) - \Pi_\beta(d\beta \mid Y, \sigma_0^2) \|TV\Pi_\sigma^2(d\sigma^2 \mid Y) \leq \tilde{c}_4 e^{-\varepsilon_5 p \log n} + \tilde{c}_6 \delta_1 p \log n, \tag{26}$$

which completes Step 1.

Step 2: Upper bound on (22)

We start with bounding A_4 in (22). From Lemmas A.1 and A.4, we have

$$A_4 = \bar{N}(B^c) \leq \exp\{-3c_1 \sqrt{p \log n}/4 - \sqrt{p}\}^2/2\}. \tag{27}$$

We next bound A_5 in (22). Lemma A.1 gives

$$A_5 = \int (1 - d\bar{N}^B(\beta) / d\Pi_\beta^B(\cdot \mid Y, \sigma_0^2)) + \Pi_\beta^B(d\beta \mid Y, \sigma_0^2).$$

We denote by $\tilde{\phi}$ the density of \bar{N} with respect to the Lebesgue measure. Observe that

$$\frac{d\bar{N}^B(\beta)}{d\Pi_\beta^B(\cdot \mid Y, \sigma_0^2)}(\beta) = \frac{\tilde{\phi}(\beta)}{\int_B \tilde{\phi}(\beta) d\beta} \text{ and } \frac{d\Pi_\beta^B(\cdot \mid Y, \sigma_0^2)}{d\beta}(\beta) = \frac{\pi(\beta) \tilde{\phi}(\beta)}{\int_B \pi(\beta) \tilde{\phi}(\beta) d\beta}$$

for $\beta \in B$. Together with Jensen's inequality, this gives

$$\int \left(1 - \frac{d\bar{N}^B(\beta \mid Y, \sigma_0^2)}{d\Pi_\beta^B(\cdot \mid Y, \sigma_0^2)}\right) + \Pi_\beta^B(d\beta \mid Y) = \int \left(1 - \int_B \frac{\pi(\beta) \tilde{\phi}(\beta)}{\int_B \pi(\beta) \tilde{\phi}(\beta) d\beta} d\beta\right) + \Pi_\beta^B(d\beta \mid Y)$$

$$\leq \int \int_B \left(1 - \frac{\pi(\beta)}{\pi(\beta)}\right) \frac{\tilde{\phi}(\beta)}{\int_B \tilde{\phi}(\beta) d\beta} d\beta d\Pi_\beta^B(d\beta \mid Y)$$
and thus we obtain
\[A_5 \leq \phi_{\Pi_\beta}(c_1 \sqrt{p \log n}). \]
(28)

We bound \(A_6 \) in (22). From Lemmas A.1 and A.2, taking a sufficiently large \(c_1 > 0 \), we have
\[A_6 = \Pi_\beta(\beta \notin B \mid Y, \sigma_0^2) \leq 4n^{-\tilde{c}_6}. \]
(29)

Therefore, from inequalities (27), (28), and (29), we obtain
\[\| \Pi_\beta(d\beta \mid Y, \sigma_0^2) - \tilde{N} \|_{TV} \leq \phi_{\Pi_\beta}(c_1 \sqrt{p \log n}) + \tilde{c}_7 n^{-\tilde{c}_8}, \]
(30)
which completes Step 2.

Combining (26) and (30) with (21) provides the upper bound of the target total variation and thus completes the proof.

A.3. Proof of Proposition 2.6

Let \(c \) be any positive number. Under Condition 2.5 (a), Lemma A.4 (a) with \(R = c \sqrt{p \log n} \) gives
\[\mathbb{P}(Y \notin H(c)) \leq \tilde{c}_1 p^{1-q/2}(\log n)^{-q/2} + \delta_3 \]
for some \(\tilde{c}_1 > 0 \) depending only on \(c, C_3, \) and \(q \). Under Condition 2.5 (b), Lemma A.4 (b) with \(R = (c^2 + 1)p \log n \) gives
\[\mathbb{P}(Y \notin H(c)) \leq 2 \exp [-\tilde{c}_2 \min \{ p(\log n)^2, p \log n \}] + \delta_3 \]
for some \(\tilde{c}_2 > 0 \) depending only on \(c, C_3, \) and \(q \). Thus, we complete the proof.

Appendix B: Proofs of Propositions 2.1–2.4

B.1. Proof of Proposition 2.1

Let \(\tilde{B}(R) := \{ \beta : \| \beta - \beta_0 \| \leq \sigma_0 \lambda^{1/2} R \} \) for \(R > 0 \). Observe that we have
\[\phi_{\Pi_\beta}(c \sqrt{p \log n}) \leq \sup_{\beta, \beta_0} (1 - \exp [-\log \{ \pi(\beta)/\pi(\beta_0) \}]) \leq c \lambda \lambda^{1/2} \sqrt{p \log n} \]
(31)
for any \(c > 0 \), where the first inequality follows because \(\| X(\beta - \beta_0) \| \geq \lambda^{-1/2} \| \beta - \beta_0 \| \) and the second inequality follows because \(1 - e^{-x} \leq x \). Substituting \(c = 1/(\sqrt{p \log n}) \) into (31), we obtain the desired inequality \(\phi_{\Pi_\beta}(1/\sqrt{n}) \leq \lambda \lambda^{1/2} \sigma_0 / \sqrt{n} \).
B.2. Proof of Proposition 2.2

We start with an isotropic prior. Observe that

\[
\log \pi(\beta_0) = \log \rho(||\beta_0||) - \log \int \rho(||\beta||) d\beta \\
= \log \rho(||\beta_0||) - \log \left\{ p^{\frac{p}{2}}/\Gamma\left(\frac{p}{2} + 1\right) \right\} \int_0^{\infty} x^{p-1} \rho(x) dx \\
\geq \log \left\{ \inf_{x \in [0,B]} \rho(x) \right\} - \bar{c}_1 \log p \\
\geq \log \left\{ \inf_{x \in [0,B]} \rho(x) \right\} - \bar{c}_1 \log p - \bar{c}_1 \log n + \log \left\{ \sqrt{\det(X^\top X)/\sigma_0^p} \right\}
\]

for some positive constant \(\bar{c}_1\) depending only on \(m\) and \(c\) appearing in the definition of an isotropic prior and Condition 2.6. This shows that an isotropic prior satisfies Condition 2.1. Taylor’s expansion gives

\[
\left| \log \frac{\pi(\beta_0 + s_1)}{\pi(\beta_0 + s_2)} \right| \leq \sup_{x: 0 \leq x \leq B + \sqrt{\sigma_0^p} \log n} |(\log \rho)'(x)| (\|\beta_0 + s_1\| - \|\beta_0 + s_2\|)
\]

for \(s_1, s_2 \in \mathbb{R}^p\), which shows that an isotropic prior satisfies the locally log-Lipschitz continuity. Thus, we complete the proof for an isotropic prior.

We next prove the case with a product prior \(\pi(\beta) = \prod_{i=1}^p \pi_i(\beta_i)\). Observe that

\[
\log \pi(\beta_0) \geq p \log \left\{ \min_i \pi_i(0) \right\} - \bar{L} p^{1/2} \|\beta_0\| \\
\geq p \log \left\{ \min_i \pi_i(0) \right\} - \bar{L} p \log n \\
\geq -\bar{L} p (1 + o(1)) \log n - \bar{c}_2 p \log n + \log \left\{ \sqrt{\det(X^\top X)/\sigma_0^p} \right\}
\]

for some positive constant \(\bar{c}_2\) depending only on \(c\) appearing in Condition 2.6. This shows that a product prior satisfies Condition 2.1. The Lipschitz continuity of \(\log \pi(\beta)\) gives

\[
| \log \pi(\beta) - \log \pi(\beta_0) | \leq \sum_{i=1}^P | \log \pi_i(\beta_i) - \log \pi_i(\beta_0) | \leq \bar{L} p^{1/2} \|\beta - \beta_0\|,
\]

which shows that a product prior satisfies the locally log-Lipschitz continuity and thus completes the proof.

B.3. Proof of Proposition 2.3

We only prove the theorem under Condition 2.5 (a). The proof under Condition 2.5 (b) is done by replacing Lemma A.4 (a) with Lemma A.4 (b).
Observe that
\[\hat{\sigma}_u^2 = \|Y - X(X^TX)^{-1}X^TY\|^2 / \{\sigma_0^2(n-p)\sigma_0^2\} \]
\[\leq \left\{ \left\| \varepsilon - X(X^TX)^{-1}X^T\varepsilon \right\|^2 + 2\|r - X(X^TX)^{-1}X^Tr\|^2 + \|\varepsilon^Tu\|^2 \right\} / \{\sigma_0^2(n-p)\} \]
\[= \left\{ \varepsilon^T\tilde{A}\varepsilon + 2\|r - X(X^TX)^{-1}X^Tr\|^2 \right\} / \{\sigma_0^2(n-p)\}, \]
where
\[u := \begin{cases} (I - X(X^TX)^{-1}X^T)r / \|(I - X(X^TX)^{-1}X^T)r\| & \text{if } \{I - X(X^TX)^{-1}X^T\}r \neq 0, \\ \text{arbitrary} & \text{if otherwise,} \end{cases} \]
and \(\tilde{A} := I - X(X^TX)^{-1}X^T + uu^T \). Then Lemma A.4 (a) gives
\[\mathbb{P}(\hat{\sigma}_u^2/\sigma_0^2 - 1 \geq \delta_1) \leq \bar{c}_1/(n-p)^{q/2-1}\delta_1^q \]
for some positive constant \(\bar{c}_1 \) depending only on \(q \).

Next, we will show that
\[\mathbb{P}(\hat{\sigma}_u^2(Y)/\sigma_0^2 - 1 \leq -\delta_1) \leq \bar{c}_2 \max\{n^{q/4}, n\} \leq \bar{c}_3 \max\{n^{q/4}, n\} \]
for some positive constant \(\bar{c}_2 \) depending only on \(q \). Letting \(\bar{P} \) be the projection onto the linear space spanned by columns of \(X \) and \((I - X(X^TX)^{-1}X^T)r \), we have
\[\mathbb{P}(\hat{\sigma}_u^2(Y)/\sigma_0^2 - 1 \leq -\delta_1) \leq \mathbb{P}\left(\left\| \varepsilon^2 - \|\bar{P}\varepsilon\|^2 / \{\sigma_0^2(n-p)\} \leq 1 - \delta_1 \right\| \right) \leq \mathbb{P}\left(\left\| \varepsilon^2/\sigma_0^2(n-p) - n/(n-p) \leq -\delta_1/2 \right\| + \mathbb{P}(\|\bar{P}\varepsilon\|^2/\sigma_0^2(n-p) \geq p/(n-p) + \delta_1/2) \right). \]

For bounding the first term on the rightmost side in (33), we use Rosenthal’s inequality:

Lemma B.1 (Rosenthal’s inequality; see [46] and [59].) For some positive constant \(\bar{c}_3 \) depending only on \(q \), we have \(\mathbb{E}\left(\|\varepsilon/\sigma_0\|^2 - n^{q/2} \right) \leq \bar{c}_3 \max\{n^{q/4}, n\} \).

From Markov’s inequality and from Rosenthal’s inequality, we have
\[\mathbb{P}(\left\{ \|\varepsilon\|^2/\sigma_0^2(n-p) - n/(n-p) \leq -\delta_1/2 \right\} \leq \bar{c}_4 \max\{n^{q/4}, n\} / \{\sigma_0^2(n-p)\}^{q/2} \] for some \(\bar{c}_4 > 0 \) depending only on \(q \). For bounding the second term on the rightmost hand side in (33), Lemma A.4 (a) with \(R = \sqrt{p + (n-p)\delta_1/2} \) gives
\[\mathbb{P}(\|\bar{P}\varepsilon\|^2/\sigma_0^2(n-p) \geq p/(n-p) + \delta_1/2) \leq \bar{c}_4 n^{-q/2} / \delta_1^{q/2}. \]
Combining (34) and (35) with (33), we have (32), which completes the proof under Condition 2.5 (a). □
B.4. Proof of Proposition 2.4

The marginal posterior distribution of σ^2 is given by the inverse Gamma distribution $\text{IG}(a^*, b^*)$, where $a^* = \mu_1 + n/2 - p/2$ and $b^* = \mu_2 + ||Y - PY||^2/2$. The mean of this marginal posterior is $\{2\mu_2 + \|(I - X(X^TX)^{-1}X^T)Y\|^2\}/\{2\mu_1 + n - p - 2\}$; while the variance is $2\{2\mu_2 + \|(I - X(X^TX)^{-1}X^T)Y\|^2\}/\{(2\mu_1 + n - p - 2)(2\mu_1 + n - p - 4)\}$. From Chebyshev’s inequality, we have

$$\Pi_{\sigma^2}(\sigma^2 : |\sigma^2/\sigma_0^2 - 1| \geq \delta_1 | Y) \leq \tilde{c}_1 \frac{\|(I - X(X^TX)^{-1}X^T)Y\|^2}{n^2(\delta_1 - |\mathbb{E}[\sigma^2/\sigma_0^2 | Y] - 1)|^2}$$

for some positive constant \tilde{c}_1 depending only on μ_1 and μ_2. From the proof of Proposition 2.3, we obtain the desired upper bound of $\mathbb{P}(\|(I - X(X^TX)^{-1}X^T)Y\|^2/(n-p)-1 \geq \delta_1/2)$ and thus complete the proof. \hfill \square

Appendix C: Proofs for Section 3

In this section, we provide proofs for Section 3.

C.1. Proof of Proposition 3.1

We use the same notation as in the proof sketch. In addition, let $\{N_{l,k} : (l, k) \in I(J)\} \sim \mathcal{N}(0, 1)$ i.i.d.

Step 1: Upper bounds on $\mathbb{P}(\max_{(l,k) \in I(J)} |\varepsilon_{l,k}/w_l| \leq \tilde{R}_\alpha)$ and \tilde{R}_α

We start with bounding $\mathbb{P}(\max_{(l,k) \in I(J)} |\varepsilon_{l,k}/w_l| \leq \tilde{R}_\alpha)$ and \tilde{R}_α. From Theorem 2.1, there exist \tilde{c}_1, \tilde{c}_2 depending only on C_1 in Condition 2.1 for which we have

$$\mathbb{P}\left(\max_{(l,k) \in I(J)} |\varepsilon_{l,k}/w_l| \leq \tilde{R}_\alpha\right) - (1 - \alpha) \leq \phi_{1,\beta}\left(\tilde{c}_1 \sqrt{2^\beta \log n}\right) + \tilde{c}_1 n^{-\tilde{c}_2 2^\beta}. \tag{36}$$

From the assumption that $w_l \geq \sqrt{I}$ and since $\mathbb{E}[\max_{(l,k) \in I(J)} |N_{l,k}/\sqrt{I}|] < K$ with some universal constant K (cf. the proof of Proposition 2 in [11]), we have

$$\mathbb{E}\left[\max_{(l,k) \in I(J)} \frac{N_{l,k}}{w_l}\right] \leq \mathbb{E}\left[\max_{(l,k) \in I(J)} \frac{N_{l,k}}{\sqrt{I}}\right] \leq K. \tag{37}$$

Assume that the right hand side in (36) is smaller than $\alpha/2$. Then, from Theorem 2.1 and from (37), there exists $\tilde{c}_3 > 0$ depending only on α for which we have

$$\tilde{R}_\alpha \leq \frac{\tilde{c}_3}{\sqrt{n}} \mathbb{E}\left[\max_{(l,k) \in I(J)} \frac{N_{l,k}}{w_l}\right] \leq \frac{\tilde{c}_3 K}{\sqrt{n}} \tag{38}$$
with probability at least $1 - \tilde{c}_1 n^{-\tilde{c}_2 2^J}$. This completes Step 1. Note that it is unnecessary for upper bounding \hat{R}_α to assume that the right hand side is also smaller than $(1 - \alpha)/2$; see the remark below Theorem 2.1.

Step 2: Upper bound on $\mathbb{P}(Y_\infty \notin \tilde{H}')$

Next we bound $\mathbb{P}(Y_\infty \notin \tilde{H}')$. From Theorem 2.1, we have the set H satisfying the following:

P1 Assume that the right hand side in (36) is smaller than $(1 - \alpha)/2$. Then, there exists $\tilde{c}_4 > 0$ depending only on α such that we have

$$\tilde{c}_4 \frac{1}{\sqrt{n}} J_{1/2}^{1/2} \leq \hat{R}_\alpha$$

for $Y_\infty \in H$ and for $J \geq J_\alpha$ with J_α depending only on α;

P2 We have $\mathbb{P}(Y_\infty \notin H) \leq \tilde{c}_1 n^{-\tilde{c}_2 2^J}$.

From the first property P1 of H, we have

$$\mathbb{P}(Y_\infty \notin \tilde{H}') = \mathbb{P}(Y_\infty \notin \tilde{H}', Y_\infty \in H) + \mathbb{P}(Y_\infty \notin \tilde{H}', Y_\infty \notin H)$$

$$\leq \mathbb{P}\left(\sup_{J \leq l < \infty, 0 \leq k \leq 2^{l-1}} \left| \frac{N_{l,k}}{w_l} \right| \geq \tilde{c}_4 \frac{J_{1/2}}{w_J} \right) + \mathbb{P}(Y_\infty \notin H).$$

The second property P2 of H gives an upper bound on $\mathbb{P}(Y_\infty \notin H)$. From Lemma 4.4, we have, for $J \leq l < \infty$,

$$\mathbb{P}\left(\max_{0 \leq k \leq 2^{l-1}} \left| N_{l,k} \right| \right) \leq \tilde{c}_4 \frac{J_{1/2}}{w_J}$$

$$\leq \mathbb{P}\left(\max_{0 \leq k \leq 2^{l-1}} \left| N_{l,k} \right| - \mathbb{E}\left[\max_{0 \leq k \leq 2^{l-1}} \left| N_{l,k} \right| \right] \geq \tilde{c}_4 \frac{J_{1/2}}{w_J} u_J \sqrt{l} \right)$$

$$\leq \mathbb{P}\left(\max_{0 \leq k \leq 2^{l-1}} \left| N_{l,k} \right| - \mathbb{E}\left[\max_{0 \leq k \leq 2^{l-1}} \left| N_{l,k} \right| \right] \geq \tilde{c}_4 \frac{J_{1/2}}{w_J} u_J \sqrt{l} - \mathbb{E}\left[\max_{0 \leq k \leq 2^{l-1}} \left| N_{l,k} \right| \right] \right)$$

$$\leq 2 \exp\left\{ -\tilde{c}_5 \left(\frac{J^{1/2}}{w_J} u_J - \sqrt{2} / \tilde{c}_4 \right)^2 l \right\}$$

with a positive constant \tilde{c}_5 depending only on \tilde{c}_4. Together with the assumption that $1 \leq (J/w_J^2) u_J^2$, this implies that there exist $\tilde{c}_6, \tilde{c}_7 > 0$ depending only on \tilde{c}_4 such that we
have
\[
P\left(\sup_{J \leq l < \infty, 0 \leq k \leq 2^l - 1} \left| \frac{N_{l,k}}{w_l} \right| \geq c_4 \frac{J^{1/2}}{w_J} \right) \leq \sum_{J \leq l < \infty} P\left(\max_{0 \leq k \leq 2^l - 1} \left| \frac{N_{l,k}}{w_l} \right| \geq c_4 \frac{J^{1/2}}{w_J} \right)
\leq \sum_{J \leq l < \infty} 2 \exp \{-c_6 J (J/w_J)^2 \}
\leq \tilde{c}_7 \exp \{-c_6 J (J/w_J)^2 \}
\]

for \(J \) satisfying \(\{(J^{1/2}/w_J)u_J - \sqrt{J/c_4} \}^2 \geq (1/2)(J^{1/2}/w_J)^2 u_J^2 \) (such \(J \) exists since \((J/w_J)^2 u_J^2 \uparrow \infty \) as \(J \to \infty \)). Thus we complete Step 2.

Step 3: Upper bound on the \(L^\infty \)-diameter

Finally we provide a high-probability upper bound on the \(L^\infty \)-diameter. Fix \(f, g \in C_0^B(\wedge \epsilon_0, \tilde{R}_n) \) and let \(h := f - g \). From the property of a wavelet basis (cf. p. 325 of [32]), there exists \(\tilde{c}_8 > 0 \) depending only on \(\{\psi_{l,k} : (l,k) \in I_\infty \} \) for which we have
\[
\|h\|_\infty \leq \tilde{c}_8 \sum_{J_0 \leq l < \infty} 2^{l/2} \max_{0 \leq k \leq 2^l - 1} |\langle h, \psi_{l,k} \rangle| = \tilde{c}_8 (A_1 + A_2),
\]

where
\[
A_1 := \sum_{J_0 \leq l \leq J_{-1}} 2^{l/2} \max_{0 \leq k \leq 2^l - 1} |\langle h, \psi_{l,k} \rangle| \text{ and } A_2 := \sum_{J \leq l \leq \infty} 2^{l/2} \max_{0 \leq k \leq 2^l - 1} |\langle h, \psi_{l,k} \rangle|.
\]

Inequality (38) gives
\[
A_1 \leq \max_{J_0 \leq l \leq J_{-1}} \left\{ \frac{w_l}{\sqrt{l}} \right\} \sum_{J_0 \leq l \leq J_{-1}} 2^{l/2} \sqrt{2 \tilde{R}_n} \leq \tilde{c}_3 v_J \sqrt{\frac{2J}{n}}
\]

with some \(\tilde{c}_3 > 0 \) depending on \(\tilde{c}_3 \) appearing in (38). Since \(\max\{\|f\|_{B^\pm \infty}, \|g\|_{B^\pm \infty}\} \leq B \), we have
\[
A_2 \leq \sum_{J \leq l \leq \infty} 2^{-ls} \max_{0 \leq k \leq 2^l - 1} 2^{l(s+1/2)} |\langle h, \psi_{l,k} \rangle| \leq 2^{-J s + 2} B,
\]

which completes Step 3 and thus completes the proof.

Remark C.1 (The choice of \(J \) in the second part of Proposition 3.1). For “sufficiently large \(J \)” appearing in the second part of Proposition 3.1, we can take \(J \) satisfying \(J \geq J_\alpha \) and
\[
\{(J^{1/2}/w_J)u_J - \sqrt{J/c_4} \}^2 \geq (1/2)(J^{1/2}/w_J)^2 u_J^2,
\]

where \(J_\alpha \) and \(\tilde{c}_4 = c_4(\alpha) \) are the constants in the property P1. Thus even in the case that \(\{w_l\} \) depends on \(n \) as in Remark 3.1, we can apply Proposition 3.1 to deduce the coverage error.
C.2. Proof of Proposition 3.2

The proof follows essentially the same line and the same notation as those of Proposition 3.1. The only difference is the way of bounding $\mathbb{P}(Y \notin \tilde{H}_2)$. From the lower estimate of \hat{R}_α in Theorem 2.1, we have

$$
\mathbb{P}(Y \notin \tilde{H}_2, Y \in H) \leq \mathbb{P}\left(\sup_{J \leq l < \infty, 0 \leq k \leq 2^l - 1} \frac{\langle f_0, \psi_{l,k} \rangle}{w_l} \geq c_1 \frac{(J^{1/2} / \mu J)}{\sqrt{n}}\right)
$$

for sufficiently large J depending only on α. From the assumption that $\parallel f_0 \parallel_{B_{s,\infty}} \leq B$, we have

$$
\mathbb{P}(Y \notin \tilde{H}_2, Y \in H) \leq \mathbb{P}\left(\frac{\sqrt{n \mu J} B}{\mu J} \geq c_1\right).
$$

This completes the proof. \qed

C.3. Proof of Proposition 3.3

We use the same notation as in the proof sketch. In addition, let $\{N_{l,k} : (l,k) \in \mathcal{I}(J)\} \sim \mathcal{N}(0,1) \text{ i.i.d.}$. From the near-orthogonality of $\{v_{l,k}(1)\}$, there exist positive constants \underline{b} and \overline{b} depending only on K and $\{\psi_{l,k} : (l,k) \in \mathcal{I}_\infty\}$ such that

$$
\underline{b} I_2^{J_s} / n \leq \Sigma \leq \overline{b} I_2^{J_s} / n. \quad (39)
$$

Step 0: the well-definedness of \hat{f}_∞

Before proving the proposition, we will show that \hat{f}_∞ converges almost surely in $\mathcal{M}_0(w)$ for any sequence w such that $\min_{0 \leq k \leq 2^{l-1}} \kappa_{l,k} w_l / \sqrt{l} \uparrow \infty$. Here for a positive sequence $w = (w_1, w_2, \ldots), \mathcal{M}(w) := \{f : \|f\|_{\mathcal{M}(w)} := \sum_{(l,k) \in \mathcal{I}_\infty} |\langle f, \psi_{l,k} \rangle| / w_l < \infty\}$ and $\mathcal{M}_0(w) := \{f \in \mathcal{M}(w) : \lim_{l \to \infty} \max_{0 \leq k \leq 2^{l-1}} |\langle f, \psi_{l,k} \rangle| / w_l = 0\}$.

We begin with showing that $\|\hat{f}_\infty\|_{\mathcal{M}(w)}$ has a finite expectation, which implies it exists almost surely in $\mathcal{M}(w)$. Observe that for $M > 0$,

$$
\mathbb{P}\left(\|\hat{f}_\infty - f_0\|_{\mathcal{M}(w)} > \frac{M}{\sqrt{n}}\right) = \mathbb{P}\left(\sup_{(l,k) \in \mathcal{I}_\infty} \frac{|\tilde{\varepsilon}_{l,k}|}{\kappa_{l,k} w_l} > \frac{M}{\sqrt{n}}\right)
\leq \sum_{J_0 - 1 \leq l < \infty} \mathbb{P}\left(\sup_{0 \leq k \leq 2^{l-1}} \frac{|\tilde{\varepsilon}_{l,k}|}{\sqrt{l}} > \frac{M}{\sqrt{n}} \min_{0 \leq k \leq 2^{l-1}} \kappa_{l,k} w_l / \sqrt{l}\right)
\leq \sum_{J_0 - 1 \leq l < \infty} \mathbb{P}\left(\sup_{0 \leq k \leq 2^{l-1}} |N_{l,k}| > \frac{M}{\sqrt{n}} \min_{0 \leq k \leq 2^{l-1}} \kappa_{l,k} w_l / \sqrt{l}\right).
$$
where the last inequality follows from Anderson’s lemma (Lemma 4.3). Together with
the concentration inequality (Lemma 4.4) and the maximal inequality, this implies that
for sufficiently large $M > 0$,

$$
P(\|\hat{f}_\infty - f_0\|_{\mathcal{M}(w)} > M/\sqrt{n}) \leq 2 \sum_{J_0 - 1 \leq l < \infty} \exp \left[- \left\{ \frac{M}{b} \min_{0 \leq k \leq 2^l - 1} \frac{\kappa_{l,k} w_l}{\sqrt{l}} - \sqrt{2} \right\}^2 l/2 \right]
\leq \tilde{c}_0 \exp \{ -cM^2 \}
$$

with some $\tilde{c}_0, \tilde{c} > 0$, where, for example, take M such that

$$
\frac{M}{b} \min_{(l,k) \in \mathcal{L}_\infty} \frac{\kappa_{l,k} w_l}{\sqrt{l}} - \sqrt{2} > \frac{1}{16} M \min_{(l,k) \in \mathcal{L}_\infty} \frac{\kappa_{l,k} w_l}{\sqrt{l}}.
$$

Note that

$$
\inf_{(l,k) \in \mathcal{L}_\infty} \frac{\kappa_{l,k} w_l}{\sqrt{l}} = \min_{(l,k) \in \mathcal{L}_\infty} \frac{\kappa_{l,k} w_l}{\sqrt{l}} > 0
$$

by the assumption that $\min_{0 \leq k \leq 2^l - 1} \kappa_{l,k} w_l/\sqrt{l} \uparrow \infty$. Using $\mathbb{E}[X] \leq K + \int_K^\infty \mathbb{P}(X \geq t)dt$ for any real valued random variable X and any $K \geq 0$ and observing that $\|f_0\|_{\mathcal{M}(w)} < \infty$ for $f_0 \in B^{\infty,\infty}$, we obtain that $\|\hat{f}_\infty\|_{\mathcal{M}(w)}$ has a finite expectation.

Next, the assumption that $\min_{0 \leq k \leq 2^l - 1} \kappa_{l,k} w_l/\sqrt{l} \uparrow \infty$ gives

$$
P \left(\lim_{l \to \infty} \max_{0 \leq k \leq 2^l - 1} \frac{|(\hat{f}_\infty - f_0), \psi_{l,k}|}{w_l} \neq 0 \right) = P \left(\lim_{l \to \infty} \max_{0 \leq k \leq 2^l - 1} \frac{|\tilde{\epsilon}_{l,k}|}{w_l} \neq 0 \right)
\leq \sum_{M \in \mathbb{Q}, M > 0} \lim_{l \to \infty} \sum_{L \geq L} \mathbb{P} \left(\max_{k=0, ..., 2^l - 1} \frac{|\tilde{\epsilon}_{l,k}|}{\sqrt{l}} \geq \min_{0 \leq k \leq 2^l - 1} \frac{\kappa_{l,k} w_l}{\sqrt{l}} M \right) \to 0,
$$

where the last convergence follows from Lemmas 4.3-4.4. This shows that \hat{f}_∞ converges almost surely in $\mathcal{M}_0(w)$.

Step 1: Upper bounds on $\mathbb{P}(\max{(l,k) \in \mathcal{L}(J)} |\nu_{l,k}^{-1} Y_{l,k} - \beta_{0,l,k}|/w_l \leq \tilde{R}_\alpha)$ and \hat{R}_α

We start with bounding $\mathbb{P}(\max{(l,k) \in \mathcal{L}(J)} |\nu_{l,k}^{-1} Y_{l,k} - \beta_{0,l,k}|/w_l \leq \tilde{R}_\alpha)$ and \hat{R}_α. From Theorem 2.1, and by the same way as in the previous subsection, there exist $\tilde{c}_1, \tilde{c}_2 > 0$ depending only on C_1 in Condition 2.1 for which we have

$$
\mathbb{P} \left(\max_{(l,k) \in \mathcal{L}(J)} \left| \frac{\nu_{l,k}^{-1} Y_{l,k} - \beta_{0,l,k}}{w_l} \right| \leq \tilde{R}_\alpha \right) - (1 - \alpha) \leq \phi_{\Pi,0} \left(\tilde{c}_1 \sqrt{2J \log n} \right) + \tilde{c}_1 e^{-\tilde{c}_2 J \log n}.
$$

(40)
Assume that the right hand side above is smaller than $\alpha/2$. Then, from Theorem 2.1 and from (39), there exist \tilde{c}_3 depending only on α and b in (39) for which we have

$$\tilde{R}_\alpha \leq \frac{\tilde{c}_3}{\xi_2 \sqrt{n}}$$

(41)

with probability at least $1 - \tilde{c}_1 n^{-\tilde{c}_2 2^J}$.

Step 2: Upper bound on $P(\tilde{Y}_\infty \notin H'_3)$

Next we bound $P(\tilde{Y}_\infty \notin H'_3)$. Theorem 2.1 gives the set H satisfying the following:

P'1 Assume that the right hand side in (40) is smaller than $(1 - \alpha)/2$. Then, there exists $\tilde{c}_4 > 0$ depending only on α and b in (39) such that we have

$$\tilde{c}_4 \frac{J^{1/2}}{\nu_j \nu_j^{1/2}} \leq \tilde{R}_\alpha$$

(42)

for $\tilde{Y}_\infty \in H$ and for $J \geq J_\alpha$ with J_α depending only on α;

P'2 We have $P(\tilde{Y}_\infty \notin H) \leq \tilde{c}_1 n^{-\tilde{c}_2 2^J}$.

From the first property P'1, we have

$$P(\tilde{Y}_\infty \notin H'_3) = P(\tilde{Y}_\infty \notin H'_3, \tilde{Y}_\infty \in H) + P(\tilde{Y}_\infty \notin H'_3, \tilde{Y}_\infty \notin H)$$

$$\leq \sup_{J < \infty, 0 \leq k \leq 2^l - 1} \frac{\tilde{c}_4}{\nu_j \nu_j^{1/2}} \leq \frac{J^{1/2}}{\nu_j \nu_j^{1/2}}$$

$$\leq \sup_{J < \infty, 0 \leq k \leq 2^l - 1} \frac{\tilde{c}_4}{\nu_j \nu_j^{1/2}} \leq \frac{J^{1/2}}{\nu_j \nu_j^{1/2}}$$

$$\leq \sup_{J < \infty, 0 \leq k \leq 2^l - 1} \frac{\tilde{c}_4}{\nu_j \nu_j^{1/2}} \leq \frac{J^{1/2}}{\nu_j \nu_j^{1/2}}$$

$$\leq \sup_{J < \infty, 0 \leq k \leq 2^l - 1} \frac{\tilde{c}_4}{\nu_j \nu_j^{1/2}} \leq \frac{J^{1/2}}{\nu_j \nu_j^{1/2}}$$

The second property P'2 bounds $P(\tilde{Y}_\infty \notin H)$. From Lemmas 4.3-4.4 together with the assumption that $1 \leq \{J/\nu_j^2 \nu_j^2\}u_2^2$, there exist positive constants $\tilde{c}_5, \tilde{c}_6, \tilde{c}_7$ depending only on \tilde{c}_4 and b such that we have

$$\sum_{J < \infty} \frac{\tilde{c}_4}{\nu_j \nu_j^{1/2}} \leq \sum_{J < \infty} \frac{J^{1/2}}{\nu_j \nu_j^{1/2}}$$

$$\leq \sum_{J < \infty} \frac{\tilde{c}_4}{\nu_j \nu_j^{1/2}} \leq \frac{J^{1/2}}{\nu_j \nu_j^{1/2}}$$

$$\leq \sum_{J < \infty} \frac{\tilde{c}_4}{\nu_j \nu_j^{1/2}} \leq \frac{J^{1/2}}{\nu_j \nu_j^{1/2}}$$

for sufficiently large J satisfying $\{J^{1/2}/(\nu_j \nu_j) - \sqrt{2}/(\tilde{c}_4)\}^2 \geq (1/2)J\nu_j^2/(\nu_j \nu_j)^2$, which completes Step 2.
Step 3: Upper bound on the L^∞-diameter

We finally provide a high-probability upper bound on the L^∞-diameter. Fix $f, g \in C^B_w(f_\infty, \tilde R_n)$ and let $h := f - g$. From the property of a wavelet basis, there exists $\tilde c_8 > 0$ depending only on $\{\psi_{l,k} : (l, k) \in \mathcal I_\infty\}$ for which we have

$$
\|h\|_\infty \leq \tilde c_8 \sum_{J_0-1 \leq l < \infty} 2^{l/2} \max_{0 \leq k \leq 2^l - 1} \|\langle h, \psi_{l,k}\rangle\| = \tilde c_8(\hat A_1 + \hat A_2),
$$

where

$$
\hat A_1 := \sum_{J_0-1 \leq l \leq J-1} 2^{l/2} \max_{0 \leq k \leq 2^l - 1} \|\langle h, \psi_{l,k}\rangle\| \quad \text{and} \quad \hat A_2 := \sum_{J \leq l < \infty} 2^{l/2} \max_{0 \leq k \leq 2^l - 1} \|\langle h, \psi_{l,k}\rangle\|.
$$

Inequality (41) gives

$$
\hat A_1 \leq \max_{J_0-1 \leq l \leq J-1} \left\{ \frac{\tilde c_8}{\sqrt{l}} \right\} \sum_{J_0-1 \leq l \leq J-1} 2^{l/2} \sqrt{2} \tilde R_0 \leq \tilde c_9 \sqrt{\frac{2^J}{\tilde c_8^2 K^2 n}}
$$

with some $\tilde c_9 > 0$ depending only on $\tilde c_3$ appearing in (41). Since $\max\{\|f\|_{B^{\omega}_{\infty, \infty}}, \|g\|_{B^{\omega}_{\infty, \infty}}\} \leq B$, we have

$$
\hat A_2 \leq \sum_{J \leq l < \infty} 2^{-ls} \max_{0 \leq k \leq 2^l - 1} 2^{l(s+1/2)} \|\langle h, \psi_{l,k}\rangle\| \leq 2^{-Js+2} B,
$$

which completes Step 3 and thus completes the proof.

\textbf{Remark C.2} (The choice of J in the second part of Proposition 3.3). For “sufficiently large J” appearing in the second part of Proposition 3.3, we can take J satisfying $J \geq J_\alpha$ and

$$
\{J^{1/2} u_J / (\pi_J \bar \omega_J) - \sqrt{2/(\tilde c_4)}\}^2 \geq (1/2) J u_J^2 / (\pi_J \bar \omega_J)^2,
$$

where J_α and $\tilde c_4 = \tilde c_4(\alpha)$ are the constants in the property P’1.

C.4. Proof for Section 3.3

We first transform the nonparametric regression model into the following approximately regression model via p basis functions $\{\psi_j^p : 1 \leq j \leq p\}$:

$$
Y = X \beta_0 + r + \epsilon,
$$

where $Y = (Y_1, \ldots, Y_n)^\top$, $X = (X_1, \ldots, X_n)^\top$ with X_i whose $j(\in \{1, \ldots, p\})$-th component is $\psi_j^p(T_i)$, and $r = (r_1, \ldots, r_n)^\top$ with $r_i = f_0(T_i) - \psi_j^p(T_i)^\top \beta_0$. Recall that $\beta_0 \in \arg \min \mathbb E[(f_0(T_1) - \sum_{j=1}^p \psi_j^p(T_1) \beta_j)^2]$.
C.4.1. Supporting lemmas

We begin with stating five supporting lemmas used in the proof. Let \(N_n \) be a random \(n \)-vector from \(\mathcal{N}(0, \sigma_n^2 I_n) \), and \(N_p \) be a random \(p \)-vector from \(\mathcal{N}(0, \sigma_p^2 I_p) \). Let \(B = (B_{ij}) := (\mathbb{E} \psi_i^p(T_1) \psi_j^p(T_1)) \) and recall \(\tilde{\psi}^p(\cdot) := \psi^p(\cdot)/\|\psi^p(\cdot)\| \) and \(\xi_p := \|\|\psi^p(\cdot)\|\|_\infty \).

Lemma C.1 (Matrix Chernoff inequality; [55]). Let \(\{A_i : i = 1, \ldots, n\} \) be an i.i.d. sequence of positive semi-definite and self-adjoint \(p \times p \) matrices of which the maximum eigenvalues are almost surely bounded by \(R \). Then, we have

\[
\begin{align*}
\mathbb{P}\{\lambda_{\min}(\sum_{i} A_i/n) \leq (1 - \delta)\lambda_{\min}(\mathbb{E}[A_1])\} & \leq p\{e^{-\delta/(1 - \delta)^{1 - \delta}} n^{\lambda_{\min}(\mathbb{E}[A_1])/R}\}, \\
\mathbb{P}\{\lambda_{\max}(\sum_{i} A_i/n) \leq (1 - \delta)\lambda_{\max}(\mathbb{E}[A_1])\} & \leq p\{e^{\delta/(1 + \delta)^{1 - \delta}} n^{\lambda_{\min}(\mathbb{E}[A_1])/R}\},
\end{align*}
\]

for any \(\delta \in (0, 1] \), where \(\lambda_{\min}(\cdot) \) and \(\lambda_{\max}(\cdot) \) are the maximum and the minimum eigenvalues.

Lemma C.2 (Lemma 4.2 in [5]). Under Conditions 2.3-3.4 and 2.5, we have

\[
\left\| \tilde{\psi}^p(\cdot)^\top \sqrt{n}(\beta - \beta_0) - \tilde{\psi}^p(\cdot)^\top B^{-1} X^\top \varepsilon / \sqrt{n} \right\|_\infty \leq R_1 + R_2,
\]

where \(R_1 \) and \(R_2 \) are random variables such that there exist positive constants \(\tilde{c}_1 \) and \(\tilde{c}_2 \) depending only on \(q \) appearing in Condition 2.5 (a) for which we have

\[
\begin{align*}
R_1 & \leq \left\{ \tilde{c}_1 \eta^2 \sqrt{\{\xi_0^2 \log p\}/n(n^{1/q} \sqrt{\log p} + \sqrt{p\tau})} \right\} \quad \text{under Condition 2.5 (a)}, \\
R_2 & \leq \tilde{c}_2 \eta \sqrt{\log p\tau} \quad \text{under Condition 2.5 (b)},
\end{align*}
\]

with probability at least \(1 - \tilde{c}_2/n \) with any \(\eta > 1 \).

Remark C.3. Belloni et al. [5] provides the proof under Condition 2.5 (a). Observing \(\mathbb{E}[\max_{i = 1, \ldots, n} |\varepsilon_i|] \leq Kn^{1/q} \) with some universal constant \(K \), we can prove the case under Condition 2.5 (b).

Lemma C.3 (Corollary 2.2 and Proposition 3.3 in [16]). Under Conditions 2.3-3.4, for any \(\eta > 0 \), there exists a random variable \(\tilde{Z} \) such that the inequality

\[
\left\| \tilde{\psi}^p(\cdot)^\top B^{-1} X^\top \varepsilon / \sqrt{n} \right\|_\infty - \tilde{Z} \leq \left\{ \tilde{c}_1 \frac{n^{1/4} \log n \xi_p}{n^{1/2} + (\log n)^{3/4} \xi_p^{1/2}} + \frac{(\log n)^{3/4} \xi_p^{1/2}}{n^{1/2} + \frac{(\log n)^{3/4} \xi_p^{1/2}}{n^{1/2}}} \right\} \quad \text{under Condition 2.5 (a)},
\]

\[
\left\{ \tilde{c}_1 \frac{n^{1/4} \log n \xi_p}{n^{1/2} + (\log n)^{3/4} \xi_p^{1/2}} + \frac{(\log n)^{3/4} \xi_p^{1/2}}{n^{1/2} + \frac{(\log n)^{3/4} \xi_p^{1/2}}{n^{1/2}}} \right\} \quad \text{under Condition 2.5 (b)}.
\]
lipschitz in one parameter (e.g., see [49]). Thus, we obtain the desired inequality.

\[E[\|\hat{\psi}^p(\cdot)^T B^{-1/2} N(p)\|_\infty] \leq \bar{c}_1 \sqrt{\log p} \] for some positive constant \(\bar{c}_1 \) depending only on \(C_5 \) appearing in Condition 3.4.

Proof. From Dudley’s entropy integral (e.g., see Corollary 2.2.8 in [49]), we have

\[E[\|\hat{\psi}^p(\cdot)^T B^{-1/2} N(p)\|_\infty] \leq \bar{b} + \int_0^\theta \sqrt{\log N([0,1], d_X, \delta)} d\delta, \]

where \(N([0,1], d_X, \delta) \) is a \(\delta \)-covering number of \([0,1]\) with respect to

\[d_X(t,t') := \{ E[\hat{\psi}^p(t)^T B^{-1/2} N(p) - \hat{\psi}^p(t')^T B^{-1/2} N(p)]^2\}^{1/2} \]

and \(\theta := \sup_{t \in [0,1]} d_X(t,0) \). Since \(\theta \) is bounded by \(2\bar{b} \), we have

\[\int_0^\theta \sqrt{\log N([0,1], d_X, \delta)} d\delta \leq \int_0^{2\bar{b}} \sqrt{\log N([0,1], d_X, \delta)} d\delta. \]

From the bound on covering numbers of functions lipschitz in one parameter (e.g., see Theorem 2.7.11 in [49]), we have \(N([0,1], d_X, \delta) \leq (\bar{c}_2 p^{C_5} / \delta) \) for some \(\bar{c}_2 > 0 \). This gives

\[\int_0^{2\bar{b}} \sqrt{\log N([0,1], d_X, \delta)} d\delta \leq \sqrt{C_5 \log p} + \int_0^{2\bar{b}} \sqrt{\log(\bar{c}_2 / \delta)} d\delta. \]

Thus, we obtain the desired inequality. \(\square \)

Lemma C.5. Under Conditions 3.3-3.4, there exists a positive constant \(\bar{c}_1 \) not depending on \(n \) and \(p \) for which we have

\[\sup_{x \in \mathbb{R}} P(\|\hat{\psi}^p(\cdot)^T B^{-1/2} N(p)\|_\infty - x \leq R) \leq \bar{c}_1 R \sqrt{\log p}, \quad R > 0. \]

Proof. From Theorem 2.1 in [16], we have

\[\sup_{x \in \mathbb{R}} P(\|\hat{\psi}^p(\cdot)^T B^{-1/2} N(p)\|_\infty - x \leq R) \leq \bar{c}_1 \sqrt{\log p} \]

and thus from Lemma C.4, we complete the proof. \(\square \)
C.4.2. Proof of Proposition 3.5

We only prove the theorem under Condition 2.5 (a). Although the proof is not a direct consequence of Theorem 2.1, we can follow the same line as the proof of Theorem 2.1.

Step 1: Modification of the test set

We start with modifying the test set H that covers the randomness of the design. Take $c_1 > 0$ sufficiently large. Modify the test set

$$H = \{ Y : \| X (\hat{x} (Y) - \beta_0) \| \leq c_1 \sqrt{p \log n} \} \cap \{ Y : \Pi_{\sigma^2} (| \sigma^2 - 1 | \geq \delta_1 | Y) \leq \delta_2 \}$$

in Proposition 2.5 as

$$H := \{ (X, Y) : \| X (\hat{x} (Y) - \beta_0) \| \leq c_1 \sqrt{p \log n}, (\bar{b}/2)^2 I_p \preceq X^\top X / n \preceq (2 \bar{b})^2 I_p \}$$

$$\cap \{ (X, Y) : \Pi_{\sigma^2} (| \sigma^2 - 1 | \geq \delta_1 | Y) \leq \delta_2 \}.$$

We bound $P((X, Y) \not\in H)$ as follows:

$$P((X, Y) \not\in H) \leq A_1 + A_2 + A_3 + \delta_3,$$

where

$$A_1 := P(\| X (X^\top X)^{-1} X^\top \varepsilon \| \geq c_1 \sqrt{p \log n / 2}, (\bar{b}/2)^2 I_p \preceq X^\top X / n \preceq (2 \bar{b})^2 I_p),$$

$$A_2 := P(\| X (X^\top X)^{-1} X^\top r \| \geq c_1 \sqrt{p \log n / 2}),$$

$$A_3 := P(\| X \not\in \{ (X, Y) : (\bar{b}/2)^2 I_p \preceq X^\top X / n \preceq (2 \bar{b})^2 I_p \}).$$

Lemma A.4 gives $A_1 \leq \bar{c}_1 n^{-\bar{c}_2 p}$ for some $\bar{c}_1, \bar{c}_2 > 0$. Markov’s inequality gives

$$A_2 \leq \frac{E[\| X (X^\top X)^{-1} X^\top r \|]}{p \log n} \leq \frac{n}{\log n} \frac{\tau_2^2}{p}.$$

Lemma C.1 gives $A_3 \leq \bar{c}_1 n^{-\bar{c}_2 p}$.

Step 2: Upper bound on the coverage error

We start with proving that \hat{R}_α concentrates on the $(1 - \alpha)$-quantile of some distribution with high probability. Let $\bar{\zeta} := \phi_{\Pi_{\sigma^2}} (c_1 \sqrt{p \log n}) + c_1 \delta_1 p \log n + \delta_2 + \delta_3 + c_1 n^{-\bar{c}_2 p}$ with the constant c_2 in Proposition 2.5. From Proposition 2.5, we have

$$| \Pi_{\sigma^2} (\| \tilde{\psi} (\cdot)^\top (\hat{x} - \beta_0) \|_{\infty} \leq \hat{R}_\alpha | Y, X) - P(\| \tilde{\psi} (\cdot)^\top (X^\top X)^{-1} X^\top N_{(n)} \|_{\infty} \leq \hat{R}_\alpha | Y, X) | \leq \bar{\zeta} \text{ for } (X, Y) \in H.$$

Letting G be the distribution function of $\| \tilde{\psi} (\cdot)^\top (X^\top X)^{-1} X^\top N_{(n)} \|_{\infty}$ and letting G^{-1} be its quantile function, we have

$$\hat{R}_\alpha \leq G^{-1}(1 - \alpha + \bar{\zeta}) \text{ for } (X, Y) \in H.$$
Next we bound the Kolmogorov distances between \(\| \tilde{\psi}^p(\cdot)^\top (\tilde{\beta} - \beta_0) \|_\infty \) and \(\sqrt{n} \| \tilde{\psi}^p(\cdot)^\top B^{-1/2} N_p \|_\infty \); between \(\| \tilde{\psi}^p(X^\top X)^{-1} X^\top N(n) \|_\infty \) and \(\sqrt{n} \| \tilde{\psi}^p(\cdot)^\top B^{-1/2} N_p \|_\infty \):

\[
\rho_1 := \sup_{R > 0} |\mathbb{P}(\| \tilde{\psi}^p(\cdot)^\top \sqrt{n}(\tilde{\beta} - \beta_0) \|_\infty \leq R) - \mathbb{P}(\| \tilde{\psi}^p(\cdot)^\top B^{-1/2} N_p \|_\infty \leq R)|,
\]

\[
\rho_2 := \sup_{R > 0} |\mathbb{P}(\| \tilde{\psi}^p(\cdot)^\top \sqrt{n}(X^\top X)^{-1} X^\top N \|_\infty \leq R) - \mathbb{P}(\| \tilde{\psi}^p(\cdot)^\top B^{-1/2} N_p \|_\infty \leq R)|.
\]

We also bound the Lévy concentration function of \(\sqrt{n} \| \tilde{\psi}^p(\cdot)^\top B^{-1/2} N_p \|_\infty \):

\[
\gamma(R) := \sup_{x > 0} \mathbb{P}(\| \tilde{\psi}^p(\cdot)^\top B^{-1/2} N_p \|_\infty - x \leq R).
\]

Let \(\eta = \eta_n \) be an arbitrary divergent sequence. We present useful inequalities for bounding \(\rho_1, \rho_2, \) and \(\gamma(R) \) ahead. Let

\[
D_1 := \sqrt{n} \| \tilde{\psi}^p(\cdot)^\top (\tilde{\beta} - \beta_0) \|_\infty - \| \tilde{\psi}^p(\cdot)^\top B^{-1} X^\top \varepsilon / n \|_\infty,
\]

\[
D_2 := \sqrt{n} \| \tilde{\psi}^p(\cdot)^\top (X^\top X)^{-1} X^\top N(n) \|_\infty - \| \tilde{\psi}^p(\cdot)^\top B^{-1} X^\top N(n) / n \|_\infty,
\]

\[
D_3 := \sqrt{n} \| \tilde{\psi}^p(\cdot)^\top B^{-1} X^\top \varepsilon / n \|_\infty - \tilde{Z},
\]

\[
D_4 := \sqrt{n} \| \tilde{\psi}^p(\cdot)^\top B^{-1} X^\top N(n) / n \|_\infty - \tilde{Z}.
\]

Then we have, for some \(\bar{c}_3, \bar{c}_4 > 0 \) independent of \(n \) and \(p \),

\[
\mathbb{P}(D_1 \geq \bar{c}_3 \eta \left((\xi_{1/p}^2/n)^{1/2} \sqrt{\log p (n^{1/q} \log p + \sqrt{p \tau_\infty}) + \sqrt{\log p r_\infty}} \right)) \leq \bar{c}_4 / \eta^2,
\]

(43)

\[
\mathbb{P}(D_2 \geq \bar{c}_3 \eta \left((\xi_{1/p}^2/n)^{1/2} n^{1/q} \log p \right)) \leq \bar{c}_4 / \eta^2,
\]

(44)

\[
\mathbb{P}(D_3 \geq \bar{c}_3 \eta \left((\xi_{2/n}^2/n)^{1/2} (n^{1/q} \log n) + \left(\frac{\xi_{2/n}^2}{n} \right)^{1/4} (\log n)^{3/4} \right) + \bar{c}_3 \eta^{2/3} \left(\frac{\xi_{2/n}^2}{n} \right)^{1/6} (\log n)^{2/3} \right)
\]

\[
\leq \bar{c}_4 \left(\frac{1}{\eta^2} + \frac{\log n}{n} \right),
\]

(45)

and

\[
\mathbb{P}(D_4 \geq \bar{c}_3 \eta \left((\xi_{2/p}^2/n)^{1/2} (n^{1/q} \log n) + \left(\frac{\xi_{2/p}^2}{n} \right)^{1/4} (\log n)^{3/4} \right) + \bar{c}_3 \eta^{2/3} \left(\frac{\xi_{2/p}^2}{n} \right)^{1/6} (\log n)^{2/3} \right)
\]

\[
\leq \bar{c}_4 \left(\frac{1}{\eta^2} + \frac{\log n}{n} \right),
\]

(46)
where the first two inequalities follows from Lemma C.2 and the last two inequalities follows from Lemma C.3. From inequalities (43) and (45) and from Lemma C.5, we have
\[\rho_1 \leq \tilde{c}_5(A_4 + A_3), \] (47)
for some \(\tilde{c}_5 > 0 \), where
\[A_4 := \frac{1}{\eta^2} + \frac{\log n}{n} + \eta(\log p)^{1/2} \max \left\{ \frac{\xi^2}{\eta^2}, \frac{1}{q^6} \frac{\xi^2}{\eta^2} n, \left(\frac{\xi^2}{\eta^2} \right)^{1/6} \left(\frac{\log n}{n} \right)^{2/3} \right\} \]
and
\[A_5 := \eta(\log p) \tau \max \left\{ 1, \left(\frac{\xi^2}{\eta^2} \right)^{1/2} \right\}. \]
Likewise, from inequalities (44) and (46), and from Lemma C.5, we have
\[\rho_2 \leq \tilde{c}_5 A_4 \]
for some \(\tilde{c}_5 > 0 \). From Lemma C.5, we have, for some \(\tilde{c}_5 > 0 \),
\[\gamma(R) \leq \tilde{c}_5 R \sqrt{\log p}. \] (48)
Finally, we have
\[
\begin{align*}
\mathbb{P}(f_0 \in C(\hat{f}, \hat{R}_n)) - (1 - \alpha) & \leq \mathbb{P}\{\|\hat{\psi}(\cdot)\|_{\infty} \leq G^{-1}(1 - \alpha + \zeta + \tau) - (1 - \alpha) + \mathbb{P}\{(X, Y) \notin H\} \\
& \leq \mathbb{P}\{\|\hat{\psi}(\cdot)\|_{\infty} \leq G^{-1}(1 - \alpha + \zeta + \tau) - (1 - \alpha) + \rho_1 + \mathbb{P}\{(X, Y) \notin H\} \\
& \leq \mathbb{P}\{\|\hat{\psi}(\cdot)\|_{\infty} \leq G^{-1}(1 - \alpha + \zeta) \} - (1 - \alpha) + \gamma(\sqrt{n}) + \rho_1 + \mathbb{P}\{(X, Y) \notin H\} \\
& \leq \zeta + \rho_1 + \rho_2 + \gamma(\sqrt{n}) + \mathbb{P}\{(X, Y) \notin H\},
\end{align*}
\]
and thus from (47)-(48), taking \(\eta = n^\delta \), we obtain the desired upper bound of \(\mathbb{P}(f_0 \in C(\hat{f}, \hat{R}_n)) - (1 - \alpha) \). Likewise, we obtain the desired lower bound of \(\mathbb{P}(f_0 \in C(\hat{f}, \hat{R}_n)) - (1 - \alpha) \), which completes Step 2.

Step 3: Upper bound on the \(L^\infty \)-diameter

We will show that \(G^{-1}(1 - \alpha + \zeta) \leq \tilde{c}_6 \sqrt{\log p}/n \) for some \(\tilde{c}_6 > 0 \). From the concentration inequality for the suprema of the Gaussian process, and from Lemma C.4, we have, for sufficiently large \(\tilde{c}_7 > 0 \) depending only on \(\alpha \) and \(\tilde{b} \),
\[
\mathbb{P}(\|\hat{\psi}(\cdot)\|_{\infty} - \|\tilde{\psi}(\cdot)\|_{\infty} \geq \tilde{c}_7 \sqrt{\log p} \} \leq \alpha - \zeta - \rho_2.
\]
Observing
\[G^{-1}(1 - \alpha + \overline{\zeta}) := \inf \{ R : \mathbb{P}(\|\tilde{\psi}^p(\cdot)^\top (X^\top X)^{-1}X^\top N(\omega)\|_\infty \geq R) \leq \alpha - \overline{\zeta} \} \]
\[\leq \inf \{ R : \mathbb{P}(\|\tilde{\psi}^p(\cdot)^\top B^{-1/2}N(p)/\sqrt{n}\|_\infty \geq R) \leq \alpha - \overline{\zeta} - \rho_2 \} \]
\[= \inf \left\{ R : \mathbb{P} \left(\|\tilde{\psi}^p(\cdot)^\top B^{-1/2}N(p)/\sqrt{n}\|_\infty \right) \right\} \leq \alpha - \overline{\zeta} - \rho_2 \},\]
we have \(G^{-1}(1 - \alpha + \overline{\zeta}) \lesssim \sqrt{(\log p)/n} \) and thus we complete the proof. \(\Box \)

C.4.3. Proof of the bound on \(\tau \)

We will show that \(\tau \lesssim \tau_\infty/\sqrt{p} \) for periodic \(S \geq 2 \)-regular wavelets. Consider a wavelet pair \((\phi, \psi)\) satisfying the following three assumptions:

- There exists an integer \(N \) for which the support of \(\phi \) is included in \([0, N]\) and the support of \(\psi \) is included in \([-N + 1, N]\);
- \(\phi \) and \(\psi \) are \(C^S[0, 1] \);
- The inequality \(\inf_{x \in \mathbb{R}} \sum_{k \in \mathbb{Z}} \{\psi(x - k)\}^2 > 0 \) holds.

We periodize the pair \((\phi, \psi)\) as follows:

\[\phi^{(\text{per})}_{l,k}(t) := \sum_{m \in \mathbb{Z}} 2^{l/2} \phi(2^lt + 2^lm - k) \quad \text{and} \quad \psi^{(\text{per})}_{l,k}(t) := \sum_{m \in \mathbb{Z}} 2^{l/2} \psi(2^lt + 2^lm - k) \]

for \(k = 0, \ldots, 2^l - 1 \) and \(l = 1, \ldots, J \). With \(J_0 \) such that \(2^{J_0} > 2N \), \(\{\phi^{(\text{per})}_{J_0,k} : k = 0, \ldots, 2^{J_0} - 1\} \cup \{\psi^{(\text{per})}_{l,k} : k = 0, \ldots, 2^l - 1, l = J_0, \ldots, J\} \) forms \(p = 2^J \) basis functions based on periodic \(S \)-regular wavelets.

It suffices to show that \(\inf_{t \in [0, 1]} \|\psi^p(t)\| \gtrsim \sqrt{p} \). Since \(2^J > 2N \) and since the support of \(\psi \) is included in \([-N + 1, N]\), we have

\[\|\psi^p(t)\|^2 \geq 2^J \sum_{k=0}^{2^J-1} \left(\sum_{m \in \mathbb{Z}} \psi(2^lt + 2^lm - k) \right)^2 = 2^J \sum_{k=0}^{2^J-1} \sum_{m \in \mathbb{Z}} \{\psi(2^lt + 2^lm - k)\}^2 \]

and

\[2^J \sum_{k=0}^{2^J-1} \sum_{m \in \mathbb{Z}} \{\psi(2^lt + 2^lm - k)\}^2 \geq 2^J \inf_{x \in \mathbb{R}} \sum_{k \in \mathbb{Z}} \{\psi(x - k)\}^2. \]

Thus we complete the proof.