Impact of Roux-En-Y Gastric Bypass Surgery on Neurohormonal and Gastrointestinal Physiology: Insights for Future Weight Loss Efforts

Hisham Hussan1, Emmanuel Ugbarugba2, Somashekar G Krishna3, Darwin L Conwell4, David Bradley5, Clinton K. Stevens5, Bradley Needleman6

1Obesity and Bariatric Endoscopy Section (OBES), Division of Gastroenterology, Hepatology and Nutrition, The Ohio State University Medical Center, Columbus, OH, United States
2Division of Hospital Medicine, The Ohio State University Medical Center, Columbus, OH, United States
3Division of Gastroenterology, Hepatology and Nutrition, The Ohio State University Medical Center, Columbus, OH, United States
4Division of Endocrinology, Diabetes and Metabolism, The Ohio State University Medical Center, Columbus, OH, United States
5Division of Medical Oncology, The Ohio State University, Wexner Medical Center, Columbus, OH, United States
6Center for Minimally Invasive Surgery, Department of Surgery, The Ohio State University Medical Center, Columbus, OH, United States

*Correspondence Author: Hussan Hisham, MD, Division of Gastroenterology, Hepatology and Nutrition, The Ohio State University Wexner Medical Center, 395 12th Ave, Suite 240 Columbus, OH 43210, Tel: (614)293-6255; Fax: (614) 293-8518; E-mail: Hussan.Hisham@osumc.edu

Received date: October 31, 2017; Accepted date: November 08, 2017; Published date: November 13, 2017

Copyright: © 2017 Hisham H, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Abstract

Roux-en-Y Gastric Bypass (RYGB), is an effective weight loss intervention for patients failing conventional nonsurgical methods. Despite its popularity, only a subset of patients undergo RYGB due to its cumbersome nature. Furthermore, patients may experience nutritional deficiencies or weight regain after RYGB. This review will delineate the less known impact of RYGB on neurohormonal and gastrointestinal physiology involved in weight loss. Understanding these alterations will contribute to the development of future novel investigations targeting viable weight loss strategies.

Keywords: Obesity; Weight loss; Gastrointestinal physiology; Feeding; Neurohormonal physiology; Roux-en-Y; Gastric bypass

Introduction

RYGB is one of the most common bariatric approaches and leads to marked improvements in inflammatory status, insulin resistance, and several metabolically active hormones including leptin and adiponectin [1-7]. These improvements are associated with lower morbidity and mortality even in severely obese patients [8-17].

Therefore, the number of patients undergoing Roux-en-Y gastric bypass (RYGB) surgery has increased by almost tenfold in the past 2 decades, with approximately 101,645 operations performed in 2011 alone [18,19]. However, although RYGB is effective for the vast majority of patients, a small proportion of RYGB patients develop serious nutritional complications, debilitating gastrointestinal (GI) symptoms, and/or fail to reach their weight loss goals [20-25].

Thus, RYGB use decreased in recent years with the increasing application of sleeve gastrectomy as an effective and less cumbersome bariatric approach [26,27]. Furthermore, newer less invasive weight loss interventions, such as intra-gastric balloons for instance, are gaining popularity and may induce weight loss through delayed gastric emptying and humoral changes [28].

As a result, it is important to review the influence of RYGB on neurohormonal and gastrointestinal physiology in order to understand their role in RYGB induced weight loss and ultimately guide future less invasive weight management innovations that can mimic RYGB effect effectively.

Methods

We performed a literature search in PubMed and Medline, using terms bariatric surgery, gastric bypass, obesity surgery, and Roux-en-Y. These were searched as Medical Subject Headings “MeSH” terms and also as text words.

These individual MeSH term search results and text word search results were all combined using the Boolean operator “OR”. The combined search was limited to English language using the language filter. Human and animal studies were included.

This search result was then coupled with secondary search terms in relation to our focus topics using the Boolean operator “AND”. The title and abstracts of articles that resulted from this secondary search were screened for relevance in relation to the focus topic. If found relevant, their references were further reviewed to identify additional published studies not indexed in PubMed.

The Roux-en-Y gastric bypass procedure

Four bariatric surgical procedures are commonly performed in the United States and worldwide: 1) RYGB; 2) Adjustable Gastric Banding (AGB); 3) Sleeve Gastrectomy (VSG), and 4) Bilopancreatic Diversion (BPD) with or without duodenal switch (Figure 1).
RYGB was introduced in 1967 as a treatment for obesity [29]. The RYGB procedure involves creation of a proximal stomach pouch approximately 30 ml in size. The intestinal jejunum is then transected ~30 cm below the Ligament of Treitz to form the Roux limb.

The distal jejunal segment then forms a gastroenterostomy, while the proximal segment is connected to the small bowel ~100 cm below the jejunal division. Despite a degree of recent standardization, construction of gastric pouches, gastrojejunostomies or the Roux-en-Y limbs all exhibit patient-specific variability [30].

Neurohormonal and Gastrointestinal Physiology Alterations after Roux-en-Y gastric bypass (Figure 2)

After RYGB surgery, the activity of the mesolimbic reward pathway and other reward centers is reduced in response to food pictures, especially visual representations of high caloric density food. This is associated with a decreased desire to eat [34,35]. Furthermore, RYGB surgery patients have indistinguishable hunger reactions and brain activity to food presentation from lean controls [36]. This indicates a degree of RYGB-induced normalization of obesity-associated food neural impulses.

Peptide YY (PYY) and Glucagon-like peptide-1 (GLP-1), produced by the L cells in the GI tract, may play a critical role in this integrated neural response. They have been shown to act on the central nervous system to modulate appetite and feeding behavior [37-39]. A strong body of evidence indicates that PYY and GLP-1 are suppressed in obese patients and increase after RYGB surgery [40-44]. This increase occurs in a dose dependent manner in relation to dietary caloric content and is likely due to RYGB anatomical changes, as opposed to the subsequent weight loss, as the increase occurs prior to significant weight loss [45-47]. Although less well studied, motilin, a peptide released from the upper intestine, stimulates phase III migrating motor complex and hunger. Morbidly obese patients have higher motilin levels compared to lean controls, and evidence suggests that these levels normalize after gastric bypass surgery [48].

Ghrelin, an orexigenic or appetite-stimulating hormone [49-51], is decreased shortly after RYGB in some studies. However, ghrelin returns to pre-operative levels a few months after surgery despite continued weight loss [52], arguing against its role as a significant contributor to long-term changes in appetite after RYGB surgery.

The summation of these findings suggests 1) that neural responses to food are altered in obesity and appear to be recovered after RYGB surgery, and 2) that this phenomenon may be related to the neurohormonal effects of gastrointestinal incretin hormones. These findings are critically important for future research in obesity pharmacotherapy and emphasize the need further investigation in the future.

Impact of RYGB on olfactory and taste perception and relation to weight loss

Taste and smell are important modulators of feeding behavior and appetite [53,54]. Taste sensation is decreased in obese compared to lean controls, which may partly explain the inhibited reward during food ingestion [55-57]. After RYGB, the acuity for sweet and sour tastes is increased to levels that resemble lean subjects [57,58]. There is also a rapid shift in sweet taste from pleasant to unpleasant after surgery [59], likely due to altered post-surgical neural responses. These changes potentially lead to improved reward response to food or high caloric food aversion after surgery [34,60-62]. Olfactory sense and discrimination is decreased in obese patients, possibly as result of chronic high fat intake associated with obesity [57,63,64]. However, although olfactory function seems to improve after Sleeve Gastrectomy, RYGB does not lead to similar normalization,
irrespective of BMI [57,65,66]. Although incompletely understood, this intriguing finding may be due to more pronounced olfactory dysfunction in RYGB surgery candidates at baseline and/or to unidentified procedure-specific factors. This data suggest that taste may play a role in obesity and weight loss after RYGB.

The oropharyngeal phase of swallowing and weight loss after RYGB

The oropharyngeal phase is stereotyped in humans and starts with solid food transportation to the back of the mouth after ingestion [67]. Then food is processed through mastication cycles in order to soften it and form a bolus suitable for subsequent swallowing [67, 68]. A review of studies evaluating mastication in obese compared to lean patients leads to inconsistent findings. In some reports, obese patients assembled food faster, with less chewing time (CT) and chewing cycles (CC) [69,70]. However, two additional studies showed either increased or unchanged CC and CT in obese patients [71,72]. This variation could be due to sample size and study design. After RYGB surgery, patients ingest smaller and more frequent meals [73,74] and solid food mastication CC and CTs are increased [75]. Meal ingestion time is also prolonged [76]. The prolonged eating rate and chewing seen in RYGB can contribute to its positive impact on satiety [77]. It's noteworthy that improved mastication was thought to contribute to efficacy of other obesity treatments such as aspiration therapy [77,78].

Gastric function after RYGB and impact on weight loss

Significant digestion of macronutrients occurs in the stomach. With accelerated emptying, gastric retention is decreased after RYGB [79-85]. In a recent study, using Scintigraphy and 3DCT, accelerated gastric emptying was found to correlate with small volume of gastric pouch and lower risk of weight regain after RYGB [86]. This accelerated gastric emptying potentiually enhances the postprandial insulin response seen after RYGB, and may be partially responsible for the augmented release of GLP-1 and PYY [84, 85]. Reduction of gastrojejunal anastomosis size was also associated with better weight loss maintenance after RYGB, however underlying mechanisms are not completely understood [87]. After bariatric surgery, baseline and peak gastric acid secretion from the excluded stomach remnant is reduced, with no change in fasting and post-prandial gastric levels [88-92]. The change gastric acid secretion may affect PYY levels after RYGB surgery and subsequent weight loss [93]. Postprandial intrinsic factor and pepsinogen secretion is also substantially decreased [91,94]. In summary, the increased gastric emptying and decreased secretion are important factors in post-RYGB weight loss and may account for the augmented release of GLP-1 and PYY after RYGB.

Pancreatic exocrine function after RYGB and impact on malabsorption and satiety

Fecal elastase-1 is reduced 8 months post-RYGB as opposed to obese controls [95]. In parallel, patients who undergo RYGB exhibit lower trypsin, chymotrypsin and amylase soon after surgery [96-98]. The decreased pancreatic exocrine function could be due to surgical alteration and can be responsible for the activation of PYY and the mild fatty acids malabsorption seen after RYGB [98]. This led to techniques promoting malabsorption such as the EndoBarrier (GI Dynamics, Lexington, MA, USA) and the incision less magnetic anastomosis system (IMAS) [99,100]. Cholecystokinin (CCK) is secreted from I cells in the duodenum and jejunum in the presence of duodenal lipids. It affects gallbladder contraction and pancreatic enzymes secretion. Furthermore, CCK was shown to induce satiety by interacting with the vagus nerve sensory fibers and subsequently brain satiety centers [101]. Fasting CCK levels are increased after RYGB surgery [102]. CCK postprandial levels are either not changed or increased, with a more rapid rise after meal ingestion, in RYGB patients [103,104]. These CCK changes are likely due to the anatomical alteration and rapid gastric transit leading to altered postprandial levels and maybe responsible for the increased satiety after RYGB.

Bile acids and weight loss after RYGB

Plasma bile acids (BA) were suggested to affect genes implicated in inflammation, obesity, and glucose metabolism [105]. Scanning BA increases gradually in rats, starting at week 14 post RYGB [106]. A twofold increase was also shown in human studies after RYGB, independent of weight loss [107,108]. This increase in serum BA involves both fasting and peak postprandial levels [102]. Alternatively, although fecal BA levels peak in the first days post RYGB in rats, they normalize afterwards with a trend towards lower fecal BAs compared to sham controls [106]. This was also seen in an ileal transposition rat model which alters the small bowel anatomy in a similar fashion to RYGB [109]. These findings were replicated in a small human study by Odstrcil et al in which fecal BA absorption did not increase when measured at 5 and 14 month post RYGB [110]. Following RYGB surgery, the plasma Cholic acid: Chenodeoxycholic acid (CA: CDCA) ratio in obese rats declines to levels observed in lean animals. Decreased ratio of CA to CDCA derived BAs is also seen in stool, suggesting a change in the bile acid pool post-RYGB surgery [106]. The ratio is not significantly different between RYGB and nonobese, weight- and age-matched human controls [102]. Markers of hepatic BA biosynthesis and uptake do not increase after RYGB surgery, suggesting that there is no increased hepatic production or decreased absorption of BAs to explain the rise in serum levels. In contrast, gene expression analysis indicates more BA reabsorption in the bilioenteric limb of the small intestine, highlighting the importance of enterohepatic recycling to the increased serum BA levels [106,109]. Thus, in conclusion, serum BA are increased after RYGB with improved CA: CDCA ratio.

Intestinal motility after RYGB

There is a paucity of data on intestinal motility after RYGB. Solid food transit in the small bowel seems to be slower after RYGB while colonic motility was similar up to 72 hours [84,111]. Another study used a lactose breath test and showed accelerated oroecal transit which could be due to faster gastric emptying and/or small bowel bacterial overgrowth [81]. As opposed to solids, liquids were shown to empty faster into the cecum. The faster liquid transit may contribute to the early rise in PYY and GLP-1 after RYGB and potentially improve satiety [85]. In summary, after RYGB, liquids small intestinal transit seems to be faster while the opposite holds for solids. This discrepancy between solids and liquids transit may contribute to improved satiety and satiation after RYGB.

Impact of RYGB on the microbiome and relation to weight loss

An expanding literature supports a role for the gut microbiome in obesity and after RYGB weight loss. When obese-lean discordant twin pairs were compared, gut microbiome of the obese group was less diverse [112]. Further, transfer of gut microbiome from lean and obese
Conflict-of-interest Statement

No financial support was utilized in the creation of this project.

Conflict-of-interest Statement

The authors do not have any relevant conflicts of interest (including relevant financial interests, activities, relationships, and/or affiliations).

Data Sharing Statement

No additional data are available.

References

1. Puzziferri N, Roshek TB, Mayo HG, Gallagher R, Belle SH, et al. (2014) Long-term follow-up after bariatric surgery: A systematic review. Jama 312: 934-942.
2. Yamaura K, Okamoto H, Akiyoshi K, Irita K, Taniyama T, et al. (2001) Effect of low-dose milrinone on gastric intramucosal pH and systemic inflammation after hypothermic cardiopulmonary bypass. J Cardiothorac Vasc Anesth 15: 197-203.
3. Vendrell J, Broch M, Vilarrasa N, Molina A, Gomez JM, et al. (2004) Resistin, adiponectin, ghrelin, leptin, and proinflammatory cytokines: Relationships in obesity. Obes Res 12: 962-971.
4. Laimer M, Ebenbichler CF, Kaser S, Sandhofer A, Weiss H, et al. (2002) Markers of chronic inflammation and obesity: A prospective study on the reversibility of this association in middle-aged women undergoing weight loss by surgical intervention. Int J Obes Relat Metab Disord 26: 659-662.
5. Trachtenbroit MA, Leichman JG, Algham MF, Miller CC 3rd, Moody FG, et al. (2009) Body weight, insulin resistance, and serum adipokine levels 2 years after 2 types of bariatric surgery. Am J Med 122: 435-442.
6. Brethauer SA, Henehan HM, Eldar S, Gaitman P, Huang H, et al. (2011) Early effects of gastric bypass on endothelial function, inflammation, and cardiovascular risk in obese patients. Surg Endosc 25: 2650-2659.
7. Miller GD, Nicklas BJ, Fernandez A (2011) Serial changes in inflammatory biomarkers after Roux-en-Y gastric bypass surgery. Surg Obes Relat Dis 7: 618-624.
8. Adams TD, Stroup AM, Gress RE, Adams KE, Calle EE, et al. (2009) Cancer incidence and mortality after gastric bypass surgery. Obesity (Silver Spring) 17: 796-802.
9. Christou NV, Lieberman M, Sampalis F, Sampalis JS (2008) Bariatric surgery reduces cancer risk in morbidly obese patients. Surg Obes Relat Dis 4: 691-695.
10. Christou NV, Sampalis JS, Lieberman M, Look D, Auger S, et al. (2004) Surgery decreases long-term mortality, morbidity, and health care use in morbidly obese patients. Ann Surg 240: 416-423.
11. Adams TD, Gress RE, Smith SC, Halverson RC, Simper SC, et al. (2007) Long-term mortality after gastric bypass surgery. N Engl J Med 357: 753-761.
12. McCawley GM, Ferriss JS, Gefel D, Northup CJ, Modesitt SC (2009) Cancer in obese women: Potential protective impact of bariatric surgery. J Am Coll Surg 208: 1093-1098.
13. Sjostrom L, Peltonen M, Jacobson P, Sjostrom CD, Karason K, et al. (2007) Long-term mortality after gastric bypass surgery. World J Surg 31: 152-160.
14. Weiner R, El-Sayes I, Manger T, Weiner S, Lippert H, et al. (2014) Antidiabetic efficacy of obesity surgery in Germany: A quality assurance nationwide survey. Surg Obes Relat Dis 10: 322-327.
15. Sjostrom L, Peltonen M, Jacobson P, Sjostrom CD, Kårason K, et al. (2012) Bariatric surgery and long-term cardiovascular events. Jama 307: 56-65.
16. Nguyen NT, Root J, Zainabadi K, Sabio A, Chalifoux S, et al. (2005) Accelerated growth of bariatric surgery with the introduction of minimally invasive surgery. Arch Surg 140: 1198-1202.
17. Buchwald H, Oien DM (2013) Metabolic/bariatric surgery worldwide 2011. Obes Surg 23: 427-436.
18. Martins Tde C, Duarte TC, Mosca ER, Pinheiro Cde F, Marcola MA, et al. (2015) Severe protein malnutrition in a morbidly obese patient after bariatric surgery. Nutrition 31: 535-538.
19. Korpershoek HW, Wittenman EM, Meinardi JR, Vollaard EJ (2010) Severe protein malnutrition in a morbidly obese patient after bariatric surgery. Ned Tijdschr Geneeskd 154: A827.
20. Ramos-Levi AM, Perez-Ferre N, Sanchez-Pernaute A, Torres Garcia AJ, Rubio Herrera MA (2013) Severe vitamin A deficiency after malabsorptive bariatric surgery. Nutr Hosp 28: 1337-1340.
21. Boutin D, Cante V, Levillain F, Figuel X, Guillet G, et al. (2015) Adult kwashiorkor: A rare complication of bariatric surgery. Ann Dermatol Venereol 142: 99-103.
22. Stroh C, Meyer F, Manger T (2014) Beriberi a severe complication after metabolic surgery - Review of the literature. Obes Facts 7: 246-252.
25. Singh S, Suresh S, McClave SA, Cave M (2014) Treating Every needle in the haystack: Hyperammonemic encephalopathy and severe malnutrition after bariatric surgery - a case report and review of the literature. J PEN J Parenter Enteral Nutr 39: 977-985.

26. American Society for Metabolic and Bariatric Surgery (2015) Estimates of bariatric surgeries.

27. Kyzi S, Jahnansouz C, Downey MC, Hevelone N, Ikrampuddin S, et al. (2017) National Trends in Bariatric Surgery 2012-2015: Demographics, Procedure Selection, Readmissions, and Cost. Obes Surg 27: 2933-2939.

28. Moon E, Napoleon B, Roman S, Malvoisin E, Trepo E, et al. (2005) Effects of intragastric balloon on gastric emptying and plasma ghrelin levels in non-morbid obese patients. Obes Surg 15: 510-516.

29. Mason EE, Ito C (1967) Gastric bypass in obesity. Surg Clin North Am 47: K023-K030.

30. Korner J, Inabnet W, Conwell IM, Taveras C, Daud A, et al. (2006) Changes in taste perception and eating behavior after Roux-en-Y gastric bypass surgery in morbidly obese subjects with or without type 2 diabetes. Obes Surg 24: 1969-1974.

31. Lafferre B, Teixeira J, McInty J, Tran H, Egger JR, et al. (2008) Effect of weight loss by gastric bypass surgery versus hypocaloric diet on glucose and insulin levels in patients with type 2 diabetes. J Clin Endocrinol Metab 93: 2479-285.

32. Deloose E, Janssen R, Lannoos M, Van der Schueren B, Depoortere I, et al. (2015) Higher plasma motilin levels in obese patients decrease after Roux-en-Y gastric bypass surgery and regulate hunger. Gut 65: 1110-1118.

33. Lai KC, Cheng CH, Leung PS (2007) The ghrelin system in acinar cells: localization, expression, and regulation in the exocrine pancreas. Pancreas 35: 1-8.

34. Romeo CN, Kwok Y, Conceicao E, Pantazatos SP, Puma LM, et al. (2011) Ghrelin enhances appetite and increases food intake in humans. J Clin Endocrinol Metab 86: 5992.

35. Falken Y, Hellstrom PM, Holst JJ, Naslund E (2011) Changes in glucose homeostasis after Roux-en-Y gastric bypass surgery for obesity at day three, two months, and one year after surgery: role of gut peptides. J Clin Endocrinol Metab 96: 2227-2235.

36. Smeets PA, Charbonnier L, van Meer F, van der Laan LN, Spetter MS, et al. (2012) Food-induced brain responses and eating behaviour. Proc Nutr Soc 71: 511-520.

37. Yeomans MR (2006) Olfactory influences on appetite and satiety in humans. Physiol Behav 89: 10-14.

38. Overberg J, Hummel T, Krude H, Wiegand S (2012) Differences in taste sensitivity between obese and non-obese children and adolescents. Arch Dis Child 97: 1048-1052.

39. Goldstein GL, Daun H, Tepper BJ (2005) Adiposity in middle-aged women is associated with genetic taste blindness to 6-n-propylthiouracil. Obes Res 13: 1017-1023.

40. Holinski F, Menenakos C, Haber G, Olze H, Ordemann J, et al. (2015) Olfactory and gustatory function after bariatric surgery. Obes Surg. 41: 656-660.

41. Miras AD, Roux CW (2010) Bariatric surgery and taste: novel effects. J Obes Weight Loss 7: 356-365.

42. Chen JL, Mun EC, Stoyneva V, Mantzoros CS, Goldfine AB (2006) Peptide YY levels are elevated after gastric bypass surgery. Obesity (Silver Spring) 14: 194-198.

43. De Silva A, Salem V, Long CJ, Makwana A, Newbould RD, et al. (2011) Selective reduction in neural responses to high calorie foods following gastric bypass surgery. Ann Surg 253: 502-507.

44. Scholtz S, Miras AD, Chinha N, Prechtl CG, Sleeth ML, et al. (2014) Obese patients after gastric bypass surgery have lower brain-hedonic responses to food than after gastric banding. Gut 63: 891-902.

45. Frank S, Wilms B, Veit R, Ernst B, Thurenhue M, et al. (2014) Altered brain activity in severely obese women may recover after Roux-en-Y gastric bypass surgery. Int J Obes (Lond) 38: 341-348.

46. Batterham RL, Ffytche DH, Rosenthal JM, Zelaya FO, Barker GJ, et al. (2007) PYY modulation of cortical and hypothalamic brain areas predicts feeding behaviour in humans. Nature 450: 106-109.

47. De Silva A, Salem V, Long CJ, Makwana A, Newbould RD, et al. (2011) The gut hormones PYY 3-36 and GLP-1 7-36 amide reduce food intake and modulate brain activity in appetite centers in humans. Cell Metab 14: 700-706.

48. Smeets PA, Charbonnier L, van Meer F, van der Laan LN, Spetter MS, et al. (2012) Food-induced brain responses and eating behaviour. Proc Nutr Soc 71: 511-520.

49. Yeomans MR (2006) Olfactory influences on appetite and satiety in humans. Physiol Behav 89: 10-14.

50. Overberg J, Hummel T, Krude H, Wiegand S (2012) Differences in taste sensitivity between obese and non-obese children and adolescents. Arch Dis Child 97: 1048-1052.

51. Goldstein GL, Daun H, Tepper BJ (2005) Adiposity in middle-aged women is associated with genetic taste blindness to 6-n-propylthiouracil. Obes Res 13: 1017-1023.

52. Holinski F, Menenakos C, Haber G, Olze H, Ordemann J, et al. (2015) Olfactory and gustatory function after bariatric surgery. Obes Surg. 41: 656-660.
and protects against obesity-related comorbidities. Am J Physiol Gastrointest Liver Physiol 299: 652-660.

110. Odstrcil EA, Martinez JG, Santa Ana CA, Xue B, Schneider RE, et al. (2010) The contribution of malabsorption to the reduction in net energy absorption after long-limb Roux-en-Y gastric bypass. Am J Clin Nutr 92: 704-713.

111. Pellegrini CA, Deveney CW, Patti MG, Lewin M, Way LW (1986) Intestinal transit of food after total gastrectomy and Roux-Y esophagojejunostomy. Am J Surg 151: 117-125.

112. Turnbaugh PJ, Hamady M, Yatsunenko T, Cantarel BL, Duncan A, et al. (2009) A core gut microbiome in obese and lean twins. Nature 457: 480-484.

113. Ridaura VK, Faith JJ, Rey FE, Cheng J, Duncan AE, et al. (2013) Gut microbiota from twins discordant for obesity modulate metabolism in mice. Science 341: 1241214.

114. Anhe FF, Varin TV, Schertzer JD, Marette A (2017) The gut microbiota as a mediator of metabolic benefits after bariatric surgery. Can J Diabetes.

115. Kong LC, Tap J, Aron-Wisnewsky J, Pelloux V (2013) Gut microbiota after gastric bypass in human obesity: increased richness and associations of bacterial genera with adipose tissue genes. Am J Clin Nutr 98: 16-24.

116. Furet JP, Kong LC, Tap J, Poitou C, Basdevant A, et al. (2010) Differential adaptation of human gut microbiota to bariatric surgery-induced weight loss: links with metabolic and low-grade inflammation markers. Diabetes 59(12): 3049-3057.

117. Tremaroli V, Karlsson F, Werling M, Stahlman M, Kovatcheva-Datchary P, et al. (2015) Roux-en-y gastric bypass and vertical banded gastroplasty induce long-term changes on the human gut microbiome contributing to fat mass regulation. Cell Metabolism 22: 228-238.

118. Ley RE, Turnbaugh PJ, Klein S, Gordon JJ, et al. (2006) Microbial ecology: Human gut microbes associated with obesity. Nature 444: 1022-1023.

119. Guo Y (2017) Gut microbiota after Roux-en-Y gastric bypass and sleeve gastrectomy in a diabetic rat model: Increased diversity and associations of discriminant genera with metabolic changes. Diabetes Metab Res Rev 33.

120. Palleja A, Kashani A, Allin KH, Nielsen T, Zhang C, et al. (2016) Roux-en-Y gastric bypass surgery of morbidly obese patients induces swift and persistent changes of the individual gut microbiota. Genome Medicine 8: 67.

121. Li JV, Ashrafian H, Bueter M, Kinross J, Sands C, et al. (2011) Metabolic surgery profoundly influences gut microbial-host metabolic cross-talk. Gut 60: 1214-1223.

122. Graessler J, Qin Y, Zhong H, Zhang J, Licinio J, et al. (2013) Metagenomic sequencing of the human gut microbiome before and after bariatric surgery in obese patients with type 2 diabetes: Correlation with inflammatory and metabolic parameters. Pharmacogenomics J 13: 514-522.

123. Shao Y, Ding R, Xu B, Hua R, Shen Q, et al. (2017) Alterations of gut microbiota after roux-en-y gastric bypass and sleeve gastrectomy in sprague-dawley rats. Obes Surg 27: 295-302.

124. Liou AP (2013) Conserved shifts in the gut microbiota due to gastric bypass reduce host weight and adiposity. Sci Transl Med 5: 178ra41.

125. Arora T, Seyfried F, Docherty NG, Tremaroli V, le Roux CW, et al. (2017) Diabetes-associated microbiota in fa/fa rats is modified by Roux-en-Y gastric bypass. ISME J 11: 2035-2046.