Coprime commutators in $\text{PSL}(2, q)$

Marco Antonio Pellegrini and Pavel Shumyatsky

Abstract. We show that every element of $\text{PSL}(2, q)$ is a commutator of elements of coprime orders. This is proved by showing first that in $\text{PSL}(2, q)$ any two involutions are conjugate by an element of odd order.

1. Introduction

An element g of a group G is called commutator if there exist $x, y \in G$ such that $g = [x, y]$. Here, as usual, $[x, y] = x^{-1}y^{-1}xy$. In 1951 Ore conjectured that every element of a nonabelian finite simple group is a commutator. Almost sixty years later, as a result of major efforts by many group-theorists, Ore’s conjecture has been confirmed by Liebeck, O’Brien, Shalev and Tiep [6].

An element of a group is called a coprime commutator if it can be written as a commutator of elements of coprime orders. In [8] the second author of the present paper conjectured that every element of a nonabelian finite simple group is a coprime commutator. He showed that this is true for the alternating groups. Computational work with Magma [1] seems to confirm this conjecture. Namely, we verified that every element of a nonabelian simple group of order less than 10^7 is a coprime commutator. Here we will prove that this is also true for all simple groups $\text{PSL}(2, q)$.

Theorem 1.1. Let $q > 3$ be a prime-power. Every element of $\text{PSL}(2, q)$ is a coprime commutator.

Our proof of the above theorem is based on analysis of cosets of a certain subgroup in $\text{SL}(2, q)$, where $q \equiv 1 \pmod{4}$. We will show that

1991 Mathematics Subject Classification. 20D06, 20F12.
Key words and phrases. Coprime commutator; involutions.
The second author was supported by CNPq-Brazil.
every coset of that subgroup contains an element of odd order. From
this we deduce the following theorem.

Theorem 1.2. Each coset of the centralizer of an involution in
$\text{PSL}(2, q)$ contains an element of odd order.

The above theorem is somewhat related to the following question
asked by Paige in the beginning of the sixties:

*Is it true that if T is a Sylow 2-subgroup of the finite group G, then
each coset of T in G contains at least one element of odd order?*

Thompson gave a negative answer to Paige’s question in [9]. He
showed that the group $\text{PSL}(2, 53)$ provides a counter-example. Re-
cently Goldstein and Guralnick proved that for any prime p there
exist infinitely many finite simple groups G with a coset of a Sylow
p-subgroup T of G in which every element has order divisible by p [3].

In view of our Theorem 1.2 the following related conjecture seems
plausible.

Conjecture 1.3. Let T be a Sylow 2-subgroup of a finite group
G and t an involution in $Z(T)$. Then each coset of $C_G(t)$ contains an
element of odd order.

It is not difficult to see that in the case of soluble groups the con-
jecture is true. Our Theorem 1.2 shows that the conjecture is also
ture when $G = \text{PSL}(2, q)$. Note that if we allow t to be non-central
in T, then there are counter-examples. For instance take $t = (1, 2)$ in
$G = \text{Sym}(4)$. In this case, the coset $C_G(t)(1, 3, 2, 4)$ consists only of
elements of even order.

However it seems that for finite simple groups Conjecture 1.3 can
be generalized in the following way.

Conjecture 1.4. Each coset of the centralizer of an involution
in a finite simple group G contains an element of odd order unless
$G = \text{PSL}(n, 2)$ with $n \geq 4$.

We verified with MAGMA that the last conjecture holds for all sim-
ple groups of order less than 10^{10}. Furthermore, we will show that the
groups $\text{PSL}(n, 2)$, with $n \geq 4$, always are an exception to Conjecture
1.4.

2. Cosets in $\text{PSL}(2, q)$

In this section we prove Theorem 1.2. Recall that in $\text{PSL}(2, q)$ all
involution are conjugate (see, for instance, [2 §38]). Thus, it suffices
to prove the claim for a single involution.
First however some preparatory work is required. We start with two elementary lemmas.

Lemma 2.1. Let a, b, x, y be non-zero elements of a field and suppose that $xa + ya^{-1} = xb + yb^{-1}$. Then, either $a = b$ or $xa = yb^{-1}$.

Proof. Multiplying both sides of the equation $xa + ya^{-1} = xb + yb^{-1}$ by $xy^{-1}ab^{-1}$, we have

$$x^2y^{-1}a^2b^{-1} + xb^{-1} = x^2y^{-1}a + xab^{-2}.$$

Thus, we deduce

$$x^2y^{-1}a^2b^{-1} - x^2y^{-1}a = xab^{-2} - xb^{-1}.$$

Therefore,

$$x^2y^{-1}a(ab^{-1} - 1) = xb^{-1}(ab^{-1} - 1)$$

and so the lemma follows. □

Lemma 2.2. Let r be a prime-power number and F a finite field with r elements. For any non-zero element u of F, set

$$S_u = \{a + b \mid a, b \in F, ab = u\}.$$

Then

1. $|S_u| = \frac{r-2}{2} + 1$, if r is even;
2. $|S_u| = \frac{r-2}{2} + 2$, if r is odd and u is a square in F;
3. $|S_u| = \frac{r-1}{2}$, if r is odd and u is not a square in F.

Proof. Suppose $s \in S_u$. Then s can be written in the form $s = a + ua^{-1}$. If u is a square in F, choose d such that $u = d^2$. If r is even, then for every u there is a unique d such that $u = d^2$. If r is odd, then either u is non-square or there are precisely two elements, d and $-d$, with the above property. According to Lemma 2.1 for every possible value of s, different from s_d and s_{-d}, there are precisely two elements $a_1, a_2 \in F^\times$ such that $s = s_{a_1}$ and $s = s_{a_2}$. Now we let a run over $F^\times \setminus \{d, -d\}$.

If r is even, we obtain $\frac{r-2}{2}$ different values for s_a. Adding to this set s_d, we conclude that $|S_u| = \frac{r-2}{2} + 1$.

If r is odd and u is a square, we obtain $\frac{r-3}{2}$ different values for s_a. Adding to this set s_d and s_{-d}, we conclude that $|S_u| = \frac{r-3}{2} + 2$.

Finally, if r is odd and u is not a square, we obtain $\frac{r-1}{2}$ different values for s_a. Therefore in this case $|S_u| = \frac{r-1}{2}$. □

We can now prove the following.
Proposition 2.3. Let K be the finite field with q elements, where $q \equiv 1 \pmod{4}$. Let $G = \text{SL}(2, K)$ and choose a generator ν of the multiplicative group K^\times of K. Let

$$a = \begin{pmatrix} \nu & 0 \\ 0 & \nu^{-1} \end{pmatrix}, \quad b = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix},$$

Denote by H the subgroup of \tilde{G} generated by a and b. Then for every $x \in \tilde{G} \setminus H$ the coset Hx contains an element of odd order.

Proof. Suppose that the proposition is false and the coset Hx entirely consists of elements of even order. Then in fact every element in Hx has order divisible by 4. Indeed, suppose that the order of x is not divisible by 4. Write $\langle x \rangle = \langle y \rangle \times \langle z \rangle$, where y has odd order and z is an involution such that $x = yz$. Then $z = \begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix} \in H$. Therefore Hx contains the element y which is of odd order. Hence, we assume that all elements in Hx have order divisible by 4.

We will now use the fact that every element of \tilde{G} whose order is divisible by 4 is conjugate to an element of H (see [2, §38]). Let S_u have the same meaning as in Lemma 2.2 and $\text{tr}(h)$ denote the trace of a matrix h. Then S_1 is precisely the set $\{\text{tr}(h) \mid h \in H\}$. Here we use the fact that $0 \in S_1$, since $q \equiv 1 \pmod{4}$. Further, Lemma 2.1 shows that the order of $h \in H$ is completely determined by $\text{tr}(h)$. Let

$$S^* = \{\text{tr}(h) \mid h = 1 \text{ or } h \text{ is of even order in } H\}.$$

Thus, we will obtain a contradiction once we show that there exists $h \in H$ such that $\text{tr}(hx) \notin S^*$. Let $x = \begin{pmatrix} \alpha & \beta \\ \gamma & \delta \end{pmatrix}$ and denote by R the set $\{\text{tr}(a^i x) \mid i = 0, 1, \ldots, q-2\}$. Then

$$R = \{\alpha \nu^i + \delta \nu^{-i} \mid i = 0, 1, \ldots, q-2\} = S_{\alpha \delta}.$$

Suppose that $\alpha \delta$ is not a square in K. Then, by Lemma 2.2 $|S_{\alpha \delta}| = \frac{q-1}{2}$, while $|S_1| = \frac{q-3}{2} + 2$. Hence $\text{tr}(a^i x) \notin S^*$ for some i, as required. Therefore we assume that $\alpha \delta = m^2$ for some $m \in K$.

If $m = 0$, then $\beta \gamma \neq 0$ and we can work with the matrix $bx = \begin{pmatrix} \gamma & \delta \\ -\alpha & -\beta \end{pmatrix}$ in place of x. So without loss of generality we can assume that $m \neq 0$. We need to show that $R \neq S^*$. If $q - 1$ is not a 2-power, the subgroup $\langle a \rangle$ contains elements of odd order and therefore $S^* \neq S_1$. Since by Lemma 2.2 $|S_1| = |R|$, we obtain a contradiction. Thus, we assume that $q - 1$ is a 2-power and $S^* = S_1 = R$. We have

$$S_1 = R = S_{m^2} = \{mv^i + m \nu^{-i} \mid i = 0, \ldots, q-2\} = mS_1.$$

Suppose that $m^2 = 1$. Since $\det(x) = 1$, it follows that either $\beta = 0$ or $\gamma = 0$. If $\beta = \gamma = 0$, then $x \in \langle a \rangle$. If $\beta \neq 0$, we see that the coset
\langle a \rangle x \text{ contains the transvection } \begin{pmatrix} 1 & \beta \\ 0 & 1 \end{pmatrix}, \text{ which is of odd order. Thus, without loss of generality we can assume that } m^2 \neq 1. \text{ Since } q \equiv 1 \pmod{4}, \text{ the field } K \text{ contains an element } j \text{ such that } j^2 = -1. \text{ We know that } S_1 = mS_1 \text{ and since the order of } m \text{ is at least 4, it follows that } S_1 = jS_1. \text{ Recall that } S_1 = \{ k + k^{-1} \mid k \in K^\times \} \text{ and it is easy to see that }
\begin{align*}
jS_1 &= \{ jk + jk^{-1} \mid k \in K^\times \} = \{ k - k^{-1} \mid k \in K^\times \}.
\end{align*}
We therefore deduce that
\begin{align*}
\{ k + k^{-1} \mid k \in K^\times \} &= \{ k - k^{-1} \mid k \in K^\times \}.
\end{align*}
Considering now the set of squares of the above set we conclude that
\begin{align*}
\{ k^2 + k^{-2} + 2 \mid k \in K^\times \} &= \{ k^2 + k^{-2} - 2 \mid k \in K^\times \}.
\end{align*}
Let \(T = \{ k^2 + k^{-2} \mid k \in K^\times \} \). The above equality shows that \(T + 4 = T \). If \(q = 5 \), then \(T = \{ 0, \nu, \nu^2 \} \) and the equality \(T + 4 = T \) yields a contradiction. Thus \(q \neq 5 \) and so \(j \) is a square in \(K \). Let us determine \(| T |\).

It is clear that the order of \(T \) is the same as the order of \(\{ k^2 + k^{-2} + 2 \mid k \in K^\times \} \). The set \(\{ k^2 + k^{-2} + 2 \mid k \in K^\times \} \) is precisely the set of all squares of elements of \(S_1 \). Obviously \(S_1 = -S_1 \) and so the order of the set of all squares of non-zero elements of \(S_1 \) is half of \(| S_1 | - 1 \). Since \(T \) also contains 0, Lemma 2.2 shows that \(| T | = \frac{q+3}{4} \). Let \(p \) be the characteristic of the field \(K \). The equality \(T + 4 = T \) shows that \(| T | \) must be divisible by \(p \) and since \(| T | = \frac{q+3}{4} \), we conclude that \(p = 3 \). By Mihăilescu's theorem on Catalan's conjecture [7], it now follows that \(q = 9 \). However, a direct computation shows that in \(SL(2, 9) \) every coset of \(H \) contains an element of odd order. More precisely, the computation shows that the set of the orders of elements in \(Hx \) is necessarily one of the following:
\begin{align*}
&\{ 5, 8, 10 \}, \quad \{ 3, 4, 6, 8 \}, \quad \{ 3, 4, 5, 6, 10 \}, \quad \{ 3, 4, 5, 6, 8, 10 \}.
\end{align*}
This completes the proof. \(\square \)

Now we are ready to prove Theorem 1.2.

Proof of Theorem 1.2 Let \(C \) be the centralizer in \(G = \text{PSL}(2, q) \) of an involution. If \(q \) is even, then the elements of \(G \) of even order are actually involutions (see [2, Theorem 38.2]). Furthermore, it is easy to see that \(g \in G \) is an involution if and only if \(\text{tr}(g) = 0 \). Hence, we obtain that for every involution \(x \not\in C \) the coset \(Cx \) contains exactly one involution.

Suppose that \(q \equiv 3 \pmod{4} \) and use the following short argument that was communicated to us by R. M. Guralnick. The order of a Borel
subgroup B of G is $\frac{q(q-1)}{2}$ and so it is odd. Since the centralizer C of
an involution has order $q + 1$ (see, for instance, [5, II 8.4]), the group
G can be written as the product $G = CB$ and the result follows.

So, we are left with the case $q \equiv 1 \pmod{4}$. Let $j = \nu \frac{q-1}{4}$ and
define t as the image in $\text{PSL}(2, q)$ of the matrix $\begin{pmatrix} j & 0 \\
0 & -j \end{pmatrix} \in \tilde{G}$. Then, the
centralizer C of t is the image in G of the above subgroup H. Applying
Proposition 2.3, we obtain the result. □

From Theorem 1.2 we deduce the following.

Corollary 2.4. Any two involutions in $\text{PSL}(2, q)$ are conjugate
by an element of odd order.

Proof. Let t_1, t_2 be two distinct involutions in $G = \text{PSL}(2, q)$.
As mentioned at the beginning of this section, there exist an element
$x \in G$ such that $t_2 = x^{-1}t_1x$. Let C be the centralizer of t_1 in G.
Theorem 1.2 implies that the coset Cx contains an element g of odd
order. It is clear that $t_2 = g^{-1}t_1g$. □

We close this section proving the following.

Proposition 2.5. Let $G = \text{SL}(n, 2)$ with $n \geq 4$. Then G has an
involution such that a coset of its centralizer consists only of elements
of even order.

Proof. First, consider in $G_4 = \text{SL}(4, 2)$ the following two involutions
\[
t_1 = \begin{pmatrix} 1 & 1 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 1 \\
0 & 0 & 0 & 1 \end{pmatrix}, \quad t_2 = \begin{pmatrix} 1 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \end{pmatrix}.
\]

Let C_4 be the centralizer in G_4 of t_1. Then, the coset C_4t_2 is the
following set:
\[
C_4t_2 = \left\{ \begin{pmatrix} a_1 & a_2 & a_1 + a_3 & a_4 \\
0 & a_1 & 0 & a_3 \\
a_5 & a_6 & a_5 + a_7 & a_8 \\
0 & a_5 & 0 & a_7 \end{pmatrix} \bigg| a_1a_7 \neq a_3a_5 \right\}.
\]

It can be proved, using for instance Magma that these elements
have order 2, 4 or 6.

Now, assume $n > 4$. In $G_n = \text{SL}(n, 2)$, we consider the following
block matrices: $\tilde{t}_1 = \text{diag}(I_{n-4}, t_1)$ and $\tilde{t}_2 = \text{diag}(I_{n-4}, t_2)$, where I_{n-4}
denotes the identity matrix of size $n-4$. Clearly, these two elements are
both involutions in G_n. Furthermore, denoting by C_n the centralizer
of \(\tilde{t}_1 \) in \(G_n \), we see that the coset \(C_n \tilde{t}_2 \) consists of block matrices \(g \) of shape \((X_g Y_g Z_g W_g) \), where \(X_g \in \text{SL}(n - 4, 2) \), \(W_g \in C_4 t_2 \) and the matrices \(Y_g = (y_{i,j}) \) and \(Z_g = (z_{i,j}) \) are such that \(y_{i,j} = 0 \) for \(j = 1, 3 \) and \(z_{i,j} = 0 \) for \(i = 2, 4 \).

The particular shape of these matrices implies that if \(g \in C_n \tilde{t}_2 \) has order \(k \), then the associated block \(W_g \in C_4 t_2 \) must satisfy the condition \((W_g)^k = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \). However this condition is never satisfied for \(k \) odd.

Since the orders of the elements in \(C_4 t_2 \) are 2, 4 or 6, it suffices to check only the cases \(k = 1, 3, 5 \). This can be done using Magma. The claim now follows.

Observe that the involution \(\tilde{t}_1 \) described in the previous proposition does not belong to the center of a Sylow 2-subgroup of the group.

3. Proof of Theorem 1.1

In this section we prove Theorem 1.1 using the properties of the strongly real elements. An element \(g \) of a group \(H \) is called real if it is conjugate to its inverse and is called strongly real if there exists an involution \(t \in H \) such that \(tgt = g^{-1} \). Observe that an element is strongly real if and only if it can be written as the product of two involutions.

Lemma 3.1. Any strongly real element of \(\text{PSL}(2, q) \) is a coprime commutator.

Proof. Let \(g \in G = \text{PSL}(2, q) \) be a strongly real element. Then, there exist two distinct involutions \(t_1 \) and \(t_2 \) in \(G \) such that \(g = t_1 t_2 \). By Corollary 2.4, there exist an element \(x \in G \) of odd order such that \(t_2 = x^{-1} t_1 x \). Hence,

\[
g = t_1 t_2 = t_1 x^{-1} t_1 x = [t_1, x],
\]

and so \(g \) is a coprime commutator.

Note that, actually, we proved that any strongly real element \(g \) in \(G = \text{PSL}(2, q) \) can be written as \(g = [a, b] \), for some involution \(a \) and some element \(b \) of odd order.

Assume \(q > 3 \). If \(q \not\equiv 3 \pmod{4} \), then every element of \(G \) is strongly real, see [10] and [4]. So, by the previous Lemma, it is a coprime commutator.

If \(q = p^f \equiv 3 \pmod{4} \), all real elements are actually strongly real [4]. So, it suffices to study the non-real elements. By [2, Theorem 38.1], only the two classes of unipotent elements are not real. Furthermore, these elements have order \(p \).
Let P be a Sylow p-subgroup in G. Then P is elementary abelian of order q and $B = N_G(P)$, the Borel subgroup of G, is a Frobenius group with a cyclic complement of order $\frac{q-1}{2}$, which acts irreducibly on P. Hence, every element of P is of shape $[g, a]$, for some $g \in P$ and an element a in the complement. The proof is now complete.

References

[1] W. BOSMA, J. CANNON AND C. PLAYOUST, The Magma algebra syste m. I. The user language, J. Symbolic Comput., 24 (1997), 235–265.
[2] L. DORNHOFF, Group representation theory. Part A: Ordinary representation theory, Pure and Applied Mathematics, 7. Marcel Dekker, Inc., New York, 1971.
[3] D. GOLDSTEIN AND R. M. GURALNICK, Cosets of Sylow p-subgroups and a Question of Richard Taylor, arXiv:1208.5283.
[4] N. GILL AND A. SINGH, Real and strongly real classes in $\text{SL}_n(q)$, J. Group Theory 14 (2011), no. 3, 437–459.
[5] B. HUPPERT, Endliche Gruppen. I, Die Grundlehren der Mathematischen Wissenschaften, Band 134 Springer-Verlag, Berlin-New York 1967.
[6] M. W. LIEBECK, E. A. O’BRIEN, A. SHALEV AND P. H. TIEP, The Ore conjecture, J. Eur. Math. Soc., 12 (4) (2010), 939–1008.
[7] P. MIHĂILESCU, Primary cyclotomic units and a proof of Catalan’s conjecture, J. Reine Angew. Math. 572 (2004), 167–195.
[8] P. SHUMYATSKY, Commutators of elements of coprime orders in finite groups, arXiv:1208.3177.
[9] J. G. THOMPSON, On a Question of L. J. Paige, Math. Zeitschr., 99 (1967), 26–27.
[10] P. H. TIEP AND A. E. ZALESSKI, Real conjugacy classes in algebraic groups and finite groups of Lie type, J. Group Theory 8 (2005), no. 3, 291–315.

Departamento de Matemática, Universidade de Brasília, Brasília - DF, Brazil
E-mail address: pellegrini@unb.br

Departamento de Matemática, Universidade de Brasília, Brasília - DF, Brazil
E-mail address: pavel@mat.unb.br