Rethinking cholera pathogenesis- No longer all in the same “camp”

Kim E. Barrett
Department of Medicine and Ph.D Program in Biomedical Sciences, University of California, San Diego, School of Medicine, La Jolla, CA, USA

ARTICLE HISTORY Received 6 July 2016; Accepted 6 July 2016

KEYWORDS barrier function; cell signaling: cholera toxin; diarrhea

The model whereby cholera toxin evokes chloride, and thus fluid, secretion by the intestinal epithelium is one of the most enduring paradigms in gastrointestinal physiology. Following internalization, the active subunit of cholera toxin, CtxA, is trafficked to the basolateral membrane and evokes ADP-ribosylation of the \(\alpha \)-subunits of stimulatory G proteins. In turn, this persistently activates adenyl cyclase, massively elevates cAMP, and triggers chloride secretion via the activation of CFTR chloride channels. Water follows paracellularly, leading to profuse watery diarrhea. The model has been expanded over the years to incorporate an additional effect of cholera toxin on the enteric nervous system, which amplifies the diarrheal response. Nevertheless, the prevailing wisdom has been that \(V. \) cholerae, unlike invasive diarrheal pathogens, evokes diarrhea by non-inflammatory means that leave the epithelium largely intact.

In their recent study published in \textit{Virulence}, Satitsri \textit{et al.} challenge this prevailing wisdom, at least for one cholera variant. \textit{V. cholerae} O1 El Tor variant (EL) is a major epidemic strain to which several recent large outbreaks of severe diarrheal illness have been attributed. Compared to classical (CL) and El Tor (ET) biotypes of \textit{V. cholerae} serotype O1, infection with the mixed biotype EL results in more severe diarrhea and dehydration, an effect that had previously been attributed to its much higher production of cholera toxin. Using a mouse model, Satitsri and colleagues set out to examine whether the increased severity of EL-associated disease additionally reflected an inflammatory component that might damage epithelial integrity.

Initial studies showed that inoculation of closed ileal loops in mice with EL bacteria resulted in a fluid accumulation response that was fundamentally distinct from that caused by CL bacteria. Whereas the response to CL was fully abrogated by a CFTR inhibitor, that evoked by EL involved not only CFTR, but also calcium-activated chloride channels (CaCC) as demonstrated with a CaCC inhibitor. Furthermore, EL, but not CL, infection compromised epithelial barrier function in a manner that was independent of the effect of infection on either CFTR or CaCC. EL, but not CL, infection also caused activation of NF-\(\kappa \)B, the production of proinflammatory cytokines, and increased expression of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2). The ability of EL to activate NF-\(\kappa \)B, iNOS and COX-2 was linked to the effect of infection on epithelial barrier function, whereas COX-2 activation contributed to fluid secretion via the production of E-series prostaglandins that can elevate both cAMP and calcium in the epithelium. The authors also showed that both fluid accumulation and barrier dysfunction induced by EL infection could be reversed, in part, by an antibody to the LPS receptor, TLR-4. Finally, the authors studied whether the ability of EL to evoke inflammatory changes and barrier dysfunction is simply attributable to an increased capacity for Ctx production. While purified Ctx caused both fluid accumulation and barrier dysfunction in murine ileal loops, the former effect occurred at much lower toxin concentrations, and the ability of purified Ctx to cause barrier dysfunction was less than that induced by \textit{bona fide} EL infection, even when infection resulted in similar toxin concentrations. Further, Ctx alone had no effect on iNOS or COX-2 expression, whereas both proteins were potently stimulated by LPS. Thus, EL bacteria likely also stimulate Ctx-independent pathways to amplify mucosal inflammation and resulting barrier dysfunction, although it cannot be excluded that the kinetics and magnitude of toxin production in the setting of infection may not be modeled well by a one-time inoculation with purified toxin, and that these factors might influence the pathophysiological consequences that ensue with live infection.

CONTACT Kim E. Barrett, Ph.D kbarrett@ucsd.edu University of California, San Diego, Mailcode 0063, 9500 Gilman Drive, La Jolla, CA 92093-0063, USA. Comment on: Satitsri S, et al. Pathophysiological mechanisms of diarrhea caused by the Vibrio cholerae O1 El Tor variant: an in vivo study in mice. \textit{Virulence} 2016; 7(7): 789-805; http://dx.doi.org/10.1080/21505594.2016.1192743 © 2016 Taylor & Francis
In summary, Satitsri and co-workers propose a model whereby EL infection causes an initial increase in epithelial permeability in the gut, which permits access of endogenous LPS to basolateral TLR4 and stimulation of NF-κB in intestinal epithelial cells, as well as the activation of subepithelial immunocytes. The resulting upregulation of iNOS and COX-2 further exacerbates barrier dysfunction, while COX-2-derived PGE₂ can trigger chloride secretion via both cAMP- and calcium-dependent pathways, and activation of CFTR and CaCC, respectively. These latter effects synergistically augment the cAMP-dependent prosecretory effects of Ctx itself, resulting in more severe diarrhea and dehydration that is further exacerbated by “leak-flux” diarrhea across the compromised epithelium.

This new contribution to the literature, therefore, sheds light on the complex mechanisms of diarrheal pathogenesis caused by emerging biotypes of an ancient pathogen. In fact, it is increasingly being recognized that Ctx can cause epithelial barrier dysfunction in vivo and in vitro, and that human cholera patients do in fact present with evidence of epithelial damage and activation of an innate immune response during the acute phase of the disease. Thus, particularly in the setting of infection with El Tor variants of V. cholerae, which in fact have become predominant causes of modern epidemics, we must entertain a more nuanced understanding of the mechanisms that result in life-threatening disease. These more complex mechanisms, moreover, may be overlaid on host-specific factors, such as variations in innate immune reactivity and perhaps also the influence of the highly variable resident microbiota, which is known to modulate epithelial function. This could account for heterogeneity in the clinical presentation of cholera, even in populations similarly exposed to pathogenic strains. Further, in the face of emerging antibiotic resistance, limiting therapeutic options for severe disease, new appro-a-ches to the treatment of cholera beyond supportive rehydration will likely be needed. In this regard, the work presented highlights possible targets, such as EP and TLR4 receptors, as well as NF-κB activation, that might profitably be explored in clinical trials if the current results can be extrapolated to human patients.

Disclosure of potential conflicts of interest

No potential conflicts of interest were disclosed.

Funding

Studies from the author’s laboratory on related topics have been supported by grants DK28305 and AI077661 from the National Institutes of Health.

References

[1] Van Heyningen WE, Van Heyningen S, King CA. The nature and action of cholera toxin. Ciba Found Symp 1976; 73-88; PMID:791600
[2] Barrett KE, Keely SJ. Chloride secretion by the intestinal epithelium: molecular basis and regulatory aspects. Annu Rev Physiol 2000; 62:535-72; PMID:10845102; http://dx.doi.org/10.1146/annurev.physiol.62.1.535
[3] Lencer WI. Microbes and microbial Toxins: paradigms for microbial-mucoosal toxins. V. Cholera: invasion of the intestinal epithelial barrier by a stably folded protein toxin. Am J Physiol Gastrointest Liver Physiol 2001; 280: G781-6; PMID:11292584
[4] Muanprasat C, Chatsudhipong V. Cholera: pathophysiology and emerging therapeutic targets. Future Med Chem 2013; 5:781-98; PMID:23651092; http://dx.doi.org/10.4155/fmc.13.42
[5] Thiagarajah JR, Verkman AS. CFTR pharmacology and its role in intestinal fluid secretion. Curr Opin Pharmacol 2003; 3:594-9; PMID:14644010; http://dx.doi.org/10.1016/j.coph.2003.06.012
[6] Lundgren O, Jodal M. The enteric nervous system and cholera toxin-induced secretion. Comp Biochem Physiol A Physiol 1997; 118:319-27; PMID:9366063; http://dx.doi.org/10.1016/S0300-9629(96)00312-X
[7] Mandal S, Mandal MD, Pal NK. Cholera: a great global concern. Asian Pac J Trop Med 2011; 4:573-80; PMID:21803312; http://dx.doi.org/10.1016/S1995-7645(11)60149-1
[8] Safa A, Nair GB, Kong SY. Evolution of new variants of Vibrio cholerae O1. Trends Microbiol 2010; 18:46-54; PMID:19942436; http://dx.doi.org/10.1016/j.tim.2009.10.003
[9] Chin CS, Sorenson J, Harris JB, Robins WP, Charles RC, Jean-Charles RR, Bullard J, Webster DR, Kasarskis A, Peluso P, et al. The origin of the Haitian cholera outbreak strain. N Engl J Med 2011; 364:33-42; PMID:21142692; http://dx.doi.org/10.1056/NEJMoa1012928
[10] Harris AM, Chowdhury F, Begum YA, Khan AI, Faruque AS, Svennerholm AM, Harris JB, Ryan ET, Cravioto A, Calderwood SB, et al. Shifting prevalence of major diarrheal pathogens in patients seeking hospital care during floods in 1998, 2004, and 2007 in Dhaka, Bangladesh. Am J Trop Med Hyg 2008; 79:708-14; PMID:18981509
[11] Schwartz BS, Harris JB, Khan AI, Larocque RC, Sack DA, Malek MA, Faruque AS, Qadri F, Calderwood SB, Luby SP, et al. Diarrheal epidemics in Dhaka, Bangladesh, during three consecutive floods: 1988, 1998, and 2004. Am J Trop Med Hyg 2006; 75:1067-73; PMID:16765021
[12] Siddique AK, Nair GB, Alam M, Sack DA, Huq A, Nizam A, Longini IM, Jr., Qadri F, Faruque SM, Colwell RR, et al. El Tor cholera with severe disease: a new threat to Asia and beyond. Epidemiol Infect 2010; 138:347-52; PMID:19678971; http://dx.doi.org/10.1017/S0950268809990550
[13] Ghosh-Banerjee J, Senoh M, Takahashi T, Hamabata T, Barman S, Koley H, Mukhopadhyay AK, Ramamurthy T, Chatterjee S, Asakura M, et al. Cholera toxin production by the El Tor variant of Vibrio cholerae O1 compared to prototype El Tor and classical biotypes. J Clin Microbiol
2010; 48:4283-6; PMID:20810767; http://dx.doi.org/10.1128/JCM.00799-10

[14] Krug SM, Schulzke JD, Fromm M. Tight junction, selective permeability, and related diseases. Semin Cell Dev Biol 2014; 36:166-76; PMID:25220018; http://dx.doi.org/10.1016/j.semcdb.2014.09.002

[15] Guichard A, Cruz-Moreno B, Aguilar B, van Sorge NM, Kuang J, Kurkciyan AA, Wang Z, Hang S, Pineton de Chambrun GP, McCole DF, et al. Cholera toxin disrupts barrier function by inhibiting exocyst-mediated trafficking of host proteins to intestinal cell junctions. Cell Host Microbe 2013; 14:294-305; PMID:24034615; http://dx.doi.org/10.1016/j.chom.2013.08.001

[16] Ellis CN, LaRocque RC, Uddin T, Krastins B, Mayo-Smith LM, Sarracino D, Karlsson EK, Rahman A, Shirin T, Bhuiyan TR, et al. Comparative proteomic analysis reveals activation of mucosal innate immune signaling pathways during cholera. Infect Immun 2015; 83:1089-103; PMID:25561705; http://dx.doi.org/10.1128/IAI.02765-14

[17] Qadri F, Bhuiyan TR, Dutta KK, Raqib R, Alam MS, Alam NH, Svennerholm AM, Mathan MM. Acute dehydrating disease caused by Vibrio cholerae serogroups O1 and O139 induce increases in innate cells and inflammatory mediators at the mucosal surface of the gut. Gut 2004; 53:62-9; PMID:14684578; http://dx.doi.org/10.1136/gut.53.1.62

[18] Moore S, Thomson N, Mutreja A, Piarroux R. Widespread epidemic cholera caused by a restricted subset of Vibrio cholerae clones. Clin Microbiol Infect 2014; 20:373-9; PMID:24575898; http://dx.doi.org/10.1111/1469-0691.12610

[19] Rebaudet S, Mengel MA, Koivogui L, Moore S, Mutreja A, Kande Y, Yattara O, Sarr Keita V, Njanpop-Lafourcade BM, Fournier PE, et al. Deciphering the origin of the 2012 cholera epidemic in Guinea by integrating epidemiological and molecular analyses. PLoS Negl Trop Dis 2014; 8:e2898; PMID:24901522; http://dx.doi.org/10.1371/journal.pntd.0002898

[20] Resta-Lenert SC, Barrett KE. Modulation of Intestinal Barrier Properties by Probiotics: Role in Reversing Colitis. In: Fromm M, Schulzke JD, eds. Molecular Structure and Function of the Tight Junction: From Basic Mechanisms to Clinical Manifestations 2009:175-82.

[21] Satitsri S, et al. Pathophysiological mechanisms of diarrhea caused by the Vibrio cholerae O1 El Tor variant: an in vivo study in mice. Virulence 2016; 7(7): 789-805; http://dx.doi.org/10.1080/21505594.2016.1192743