Heat capacity of Schottky type in low-dimensional spin systems

Saeed Mahdavifar1,2 and Alireza Akbari2,3

1 Department of Physics, Guilan University, PO Box 41335-1914, Rasht, Iran
2 Institute for Advanced Studies in Basic Sciences, PO Box 45195-1159, Zanjan, Iran
3 Max-Planck-Institut für Physik komplexer Systeme, Nöthnitzer Straße 38, 01187 Dresden, Germany

Received 23 October 2007, in final form 6 March 2008
Published 22 April 2008
Online at stacks.iop.org/JPhysCM/20/215213

Abstract

The heat capacity of low-dimensional spin systems is studied using theoretical and numerical techniques. Keeping only two energy states, the system is mapped onto the two-level-system (TLS) model. Using the low-temperature Lanczos method, it is confirmed that the behavior of the energy gap as functions of the control parameter is the same in the two models studied; a conclusion that can probably be extrapolated to the general case of any system that possesses an energy gap.

1. Introduction

Gaps in the energy spectrum play a crucial role in condensed matter physics. Fundamental properties in superconductivity or in the fractional quantum Hall effect originate from the existence of a gap between the ground state and the excited states. In particular, it is extremely interesting to study the behavior of the gap in low-dimensional quantum spin systems. Many exact numerical results on one-dimensional quantum spin systems with nearest neighbor couplings have been accumulated during recent decades.

The one-dimensional (1D) spin-1/2 system was solved by Bethe [1] in 1931 with his famous ansatz. The ansatz allows the computation of the energy eigenvalues. The isotropic 1D spin-1/2 system with nearest neighbor couplings is gapless. The anisotropic spin-1/2 chain is denoted by the XXZ model [2, 3]. The Hamiltonian of the XXZ model on a periodic chain of N sites is

\begin{equation}
H = J \sum_{i=1}^{N} S_i^x S_{i+1}^x + S_i^y S_{i+1}^y + \Delta S_i^z S_{i+1}^z,
\end{equation}

where $J > 0$ is the exchange coupling in the xy easy plane and Δ is the anisotropy in the z direction. The Ising regime is governed by $\Delta > 1$ and there is a gap in the exciton spectrum, while for $\Delta \leq -1$, the ground state is in the ferromagnetic phase and there is a gap over the ferromagnetic state. In the region $-1 < \Delta \leq 1$, the ground state of the system is in the gapless spin-fluid phase.

The spin-1 system is not solvable with the Bethe ansatz or similar techniques. The anisotropic spin-1 chain is only gapless [4] in the region $-1 < \Delta < 0$. Haldane [5] formulated in 1983 his famous conjecture that quantum spin chains (isotropic) with integer spin $S = 1, 2, \ldots$ have a gap, whereas chains with half-integer spin $S = 1/2, 3/2, \ldots$ are gapless.

During the last two decades ladder-systems [6] as quantum spin systems between one and two dimensions have been studied with numerical methods. Concerning the ground state properties, it has been found that ladder-systems with an even number of legs ($l = 2, 4, 6, \ldots$) do not. In particular, since the antiferromagnetic two-leg ladder-systems have a gap in the spin excitation spectrum, they reveal extremely rich quantum behavior in the presence of a magnetic field [7]. Such quantum phase transitions in spin systems with gapped excitation spectra were indeed studied experimentally [8–13].

On the other hand, investigating the behavior of the energy gap of spin systems in the vicinity of quantum critical points has attracted much interest recently [3, 14–16]. In general, the critical point of a thermodynamic system in the Hamiltonian formulation is defined as the value at which the energy gap vanishes as a power law, which is known as scaling behavior. The opening of the energy gap in the vicinity of the quantum critical point is found to scale with a critical exponent. The value of the critical gap exponent is very important to find the universality class of a continuous quantum phase transition.

The discovery of gapless or gapped excitations has led to the investigation of the thermodynamic properties. One of the most important thermodynamic functions is the heat capacity. Usually, there is a lambda-type anomaly in the figure.
of the heat capacity versus temperature. It was interpreted as indicating a phase transition to a magnetically ordered phase. An important characteristic of the low-dimensional magnets is the absence of the long range order in models with a continuous symmetry at any finite temperature [17]. There is also a broad maximum in the plot of the heat capacity versus temperature, characteristic of low-dimensional systems. This is known as the Schottky peak.

In this paper, theoretical and numerical results are reported for the low-temperature behavior of the heat capacity in low-dimensional spin systems. Theoretically, by keeping only two lowest states, the system is mapped to the well known two-level-system (TLS) model. In this case, the heat capacity is found exactly as a function of the energy gap and the temperature. It is shown that the position of the Schottky heat capacity peak, \(T_M \), and the energy gap behave in the same way as a function of the control parameter. In section 2, the mapping to the TLS model is explained and the theoretical results are presented. In section 3, the results of the low-temperature Lanczos calculations are presented. Numerically, \(T_M \) as a function of the control parameter is computed for ‘the alternating spin-1/2 chains in a magnetic field \(h' \)’ and ‘the 1D Heisenberg Hamiltonian with a staggered magnetic field \(h_s \)’. Finally, the summary and conclusions are presented in section 4.

2. Low-temperature limit heat capacity: two-level-system approach

In this section we discuss a theoretical approach to find the effect of the energy gap on the heat capacity of the quantum spin systems. The spectrum energy of a quantum system may be gapped or gapless. Since, we are going to study the sign of the gap on the heat capacity, gapped systems are considered. At very low temperature we can consider only the lowest energy levels. If we keep only two lowest energy states, the system maps to the two-level-system (TLS) model [18]. We have assumed that the energy gap of this TLS is \(g \) where \(E_1 = E_0 + g \), \(E_0 \) and \(E_1 \) are the ground and first excited states respectively. Our purpose is to determine the behavior of the heat capacity for the quantum spin systems. The heat capacity is expressed by the following relation

\[
C_v = \frac{1}{K_B T^2} \left[\frac{\partial^2 \ln Z}{\partial \beta^2} \right]
\]

where \(Z \) is the partition function denoted by

\[
Z = \text{Tr} \left[e^{-\beta H} \right].
\]

Here \(\beta = \frac{1}{k_B T} \), \(K_B \) is the Boltzmann constant and \(T \) is temperature. We have assumed that \(K_B = 1 \). At very low-temperature limit (TLS limit), we can write

\[
Z \simeq e^{-\beta E_0} + e^{-\beta E_1} = e^{-\beta E_0}(1 + e^{-\beta g}).
\]

Finally from the above equation one can show

\[
C_v = \frac{x^2}{\cosh^2(x)},
\]

where we defined \(x = \frac{\beta E_0}{2} \). This result predicts a Schottky-like peak of the heat capacity behavior versus the \(x \) variation. The position of the Schottky peak takes place at \(x_M \simeq 1.2 \), where we have: \(\text{tanh}(x_M) = 1/\lambda_{M} \). This result shows explicitly an upward increase of the heat capacity versus the magnetic field for \(x < x_M \) and a monotonic decrease for \(x > x_M \). We have plotted the thermal behavior of equation (5) in figure 1. Here, \(x_M \) corresponds to the position of the Schottky peak, \(T_M \), in a constant gap value. It is clear that by increasing the gap value, \(|g| \), the peak approaches higher temperatures and inversely, by decreasing the gap value, it approaches lower temperatures. Therefore we can conclude that width of the energy gap may affect the position of the Schottky heat capacity peak. At a very low-temperature regime, all gapped thermodynamic systems \((N \to \infty, N = \text{number of the spins}) \) can be mapped to the above TLS model.

So far we have not considered any degeneracy. In the general case both of the first two energy levels (TLS) have a degeneracy. It is well known for a two-level-system (TLS) that the account of degeneracy leads to a change in the effective gap and consequently in the \(T_M \) for the Schottky anomaly of heat capacity [19]. In the presence of degeneracy, by a little manipulation, one can show

\[
C_v = \frac{x^2}{\cosh^2(x + x')},
\]

which is very similar to equation (5). Here we denoted \(x' = \frac{g_s}{2T} \) and \(g_s = T \ln \frac{d_1}{d_2} \), where \(d_1 \) and \(d_2 \) have been considered for the order of the degeneracy of the ground state and the first excited state of the system respectively. As we mentioned before, this result predicts a Schottky-like peak in the heat capacity behavior. The Schottky heat capacity peak takes place at \(x_M ' \) which satisfies \(\text{tanh}(x_M + x'_M) = 1/\lambda_{M} \), where \(x'_M = \frac{g_s}{2T} \).

If we assumed that \(d_1 < d_2 \) then \(g_s < 0 \) and therefore the generalized gap \(g + g_s \) will be smaller than the gap. Thus the Schottky peak moves to higher values of the gap in respect to
the case \(g_s = 0 \) (without degeneracy). In the same manner for the case: \(d_2 < d_1 \) we have \(g_s > 0 \), therefore the generalized gap will be larger than the gap. Thus the Schottky peak moves to the lowest values of the gap in respect of the case \(g_s = 0 \).

3. Numerical results

In recent years, numerical methods have been extensively developed and applied to quantum many-body problems. The most frequently used numerical method for these problems is the exact diagonalization of small systems employing the Lanczos technique [20]. The exact diagonalization of small correlated systems does not have any restrictions on the model.

3.1. Alternating Heisenberg spin-1/2 chains in a transverse magnetic field

In this section we consider the alternating spin-1/2 chains in a magnetic field. Since the antiferromagnetic–ferromagnetic (AF–F) chains have a gap in the spin excitation spectrum, they reveal extremely rich quantum behavior in the presence of the magnetic field.

The ground state phase diagram of the AF–F alternating chain in a magnetic field is studied by the numerical diagonalization and the finite-size scaling based on conformal field theory [22]. It is shown that the magnetic state is gapless and described by the Luttinger liquid phase. It is also found that the magnetic state is characterized by the algebraic decay of the spin correlation functions. Recently, Yamamoto et al described the magnetic properties of the model in a magnetic field in terms of the spinless fermions and the spin waves [23]. They employed the Jordan–Wigner transformation and treated the fermionic Hamiltonian within the Hartree–Fock approximation. They have also implemented the modified spin wave theory to calculate thermodynamic functions such as the heat capacity and the magnetic susceptibility. More recently, using the numerical Lanczos method, the effect of a uniform transverse magnetic field on the ground state phase diagram of a spin-1/2 AF–F chain with anisotropic ferromagnetic coupling has been studied [24]. The Hamiltonian of the model under consideration on a periodic chain of \(N \) sites is given by

\[
H = J_{AF} \sum_{j=1}^{N/2} \left[S_{j+1}^x S_j^x + S_{j+1}^y S_j^y + S_{j+1}^z S_j^z \right] \\
- J_F \sum_{j=1}^{N/2} \left[S_{j}^x S_{j+1}^x + S_{j}^y S_{j+1}^y \right] \\
+ \Delta S_j^z S_{j+1}^z + h \sum_{j=1}^{N} S_j^y \tag{7}
\]

where \(S_j^{x,y,z} \) are spin-1/2 operators on the \(j \)th site. \(J_F \) and \(J_{AF} \) denote the ferromagnetic and antiferromagnetic couplings respectively. The limiting case of isotropic ferromagnetic coupling corresponds to \(\Delta = 1 \) and \(h \) is the transverse magnetic field. To explore the nature of the excitation spectrum, we use the modified Lanczos method to diagonalize numerically finite chains \((N = 12, 16, 20, 24)\). The energies of the few lowest eigenstates were obtained for chains with periodic boundary conditions. First, we have computed the three lowest energy eigenvalues of \(N = 12, 16, 20 \) chains with \(J_{AF} = 2J_F \) and different values of the anisotropy parameter \(\Delta \).

In figure 2(a) we have plotted the results of calculations for the isotropic case \(\Delta = 1 \). The excitation gap is determined [24] in the system as the difference between the first excited state and the ground state. As is clearly seen from this figure in the case of zero magnetic field, the spectrum of the model is gapped. For \(h \neq 0 \) the gap decreases linearly with \(h \) and vanishes at the critical field, \(h_c = 1.55 \pm 0.01 \). This is the first level crossing between the ground state energy and the first excited state. To get an accurate estimate of \(h_c \) we have obtained the first level crossing for system sizes of \(N = 12, 14, \ldots, 24 \). The finite-size behavior of these values leads us to \(h_c = 1.55 \pm 0.01 \) for \(N \rightarrow \infty \). The spectrum remains gapless for \(h_c < h < h_c \) and becomes once again gapped for \(h > h_c \). With increasing field, for \(h > h_c \) the gap increases linearly with \(h \). In the region \(h_c < h < h_c \) we also observe numerous additional level crossings between the lowest eigenstates. These level crossings lead to incommensurate effects that manifest themselves in the oscillatory behavior of the spin correlation functions. All crossings disappear at \(h > h_c \) and the correlation functions do not contain oscillatory terms in this region of the phase diagram.

In marked contrast with the isotropic case, similar analysis of the few lowest levels for an anisotropic AF–F chain in the presence of a transverse magnetic field reveal a principally different behavior. The gap as a function of the transverse magnetic field \(h \) has been computed for the anisotropy parameter \(\Delta = 0.5 \) and different chain lengths \(N = 12, 16, 20 \). In figure 2(b) we have plotted results of these calculations. As is seen from the figure, the excitation spectrum in this case is gapped except at the two critical fields \(h_c = 1.64 \pm 0.01 \) and \(h_c = 1.88 \pm 0.01 \) [24]. We have employed the phenomenological renormalization group (PRG) method [25] to determine these critical fields \((h_c, h_c)\) the PRG equation is

\[
(N + 4)\text{gap}(N + 4, h') = N\text{gap}(N, h), \tag{8}
\]
where \(gap(N, h) = E_1(N, h) - E_0(N, h) \) is the energy gap value for chain length \(N \) in a magnetic field \(h \). At the critical point, \(N(E_1 - E_0) \) should be size independent for large enough systems in which the contribution from irrelevant operators is negligible. Thus, we accurately determined the critical points by the PRG method. We defined \(h_c(N, N + 4) \) as the \(N \)-dependent fixed point of equation (8), and it is extrapolated to the thermodynamic limit in order to estimate \(h_{c1} \). At the critical point \(h = h' = h_c \), therefore, the curves of \(N(E_1 - E_0) \) versus \(h \) for sizes \(N \), \(N + 4 \) cross at certain values \(h_{c1}(N, N + 4) \) and \(h_{c2}(N, N + 4) \) (finite-size critical points). The thermodynamic critical points \((h_{c1}, h_{c2}) \) are obtained by appropriately extrapolating \(h_{c1}(N, N + 4) \) or \(h_{c2}(N, N + 4) \) to \(N \rightarrow \infty \).

In the region \(h_{c1} < h < h_{c2} \), the spin gap, which appears at \(h > h_{c1} \), first increases versus external field and after passing a maximum decreases to vanish at \(h_{c2} \). At \(h > h_{c2} \) the gap once again opens and, for a sufficiently large transverse field becomes proportional to \(h \). To study the finite-temperature properties of the model, we have used the Jaklič formalism. We have computed a hundred lowest eigenvalues of the energies. We have considered different values of the transverse magnetic field, \(h \), and anisotropy parameter \(\Delta \). Therefore using these hundred eigen-energies, we have computed the heat capacity as a function of the temperature \(T \). The position of the Schottky heat capacity peak, \(T_M \) is determined as \(T_M \). In figure 3(a) we have plotted \(T_M \) as a function of the magnetic field \(h \). To arrive at this plot, we have considered \(J_{AF} = 2J_F \), \(\Delta = 1 \) and \(N = 20 \). As is clearly seen from this figure, the position of the Schottky heat capacity peak, \(T_M \), decreases by increasing the magnetic field up to the critical field, \(h_{c1} \). In the intermediate region of the magnetic field, \(h_{c1} < h < h_{c2} \), \(T_M \) is independent of magnetic field. The anomalous behavior is the result of finite-size effects. With increasing magnetic field, for \(h > h_{c2} \), \(T_M \) increases almost linearly.

It is surprising that the behavior of \(T_M \) versus the magnetic field is in complete agreement with the gap behavior with respect to the magnetic field. Thus we conclude that the energy

![Figure 2](image_url)
Figure 2. (a) The excitation gap of a spin-1/2 AF–F chain for the isotropic case \(\Delta = 1.0 \) in a uniform magnetic field for different size numbers \((N = 12, 16, 20)\). (b) The excitation gap of a spin-1/2 AF–F chain in a uniform transverse magnetic field with anisotropic ferromagnetic coupling \(\Delta = 0.5 \), for different size numbers \((N = 12, 16, 20)\).

![Figure 3](image_url)
Figure 3. (a) The Schottky heat capacity peak value, \(T_M \), versus the transverse magnetic field, for a spin-1/2 AF–F chain, and the isotropic case \(\Delta = 1.0 \) in the uniform transverse magnetic field for system size: \(N = 20 \). (b) The Schottky heat capacity peak value, \(T_M \), as a function of the magnetic field, for a spin-1/2 AF–F chain in the uniform transverse magnetic field with anisotropic ferromagnetic coupling: \(\Delta = 0.5 \), and size number: \(N = 20 \). The inset shows the same quantity in the intermediate magnetic field region, \(h_{c1} < h < h_{c2} \).
gap signals the position of the Schottky heat capacity peak. To confirm our idea, we have plotted \(T_M \) versus the transverse magnetic field for \(J_{AF} = 2J_F \), the anisotropy parameter \(\Delta = 0.5 \) and \(N = 20 \) in figure 3(b). As we can see from this figure for low-transverse magnetic field, \(h < h_{c1} \), the behavior of \(T_M \) is the same as the isotropic case. But in the intermediate region, \(h_{c1} < h < h_{c2} \), \(T_M \) first increases versus transverse field and after passing a maximum, decreases up to \(h_{c2} \) (see the inset of the figure 3(b)). For the higher transverse magnetic field, \(h > h_{c2} \), the position of the Schottky heat capacity peak increases as a previous one. This behavior of the \(T_M \) is in complete agreement with the effect of the transverse magnetic field on the energy gap (figure 2(b)).

Finally, in figure 4 we have plotted \(T_M \) versus the energy gap for \(N = 20, J_{AF} = 2J_F \) and different values of the anisotropy parameter \(\Delta = 0.5, 1.0 \). For convenience, the numerical results of the region \(h < h_{c1} \) are shown. It is clearly seen that the position of the Schottky heat capacity peak \(T_M \) increases by increasing the energy gap of the system. This is in agreement with results obtained within the two-level model.

3.2. The 1D AF-Heisenberg model in a staggered field

The general feature developed for the alternating spin-1/2 chains in a magnetic field can be applied to the 1D Heisenberg Hamiltonian with a staggered magnetic field \(h_s \),

\[
H = J \sum_{i=1}^{N} [\mathbf{S}_i \cdot \mathbf{S}_{i+1} + h_s (-1)^i \mathbf{S}_i^z].
\]

(9)

It is expected [26–29] that the staggered field induces an excitation gap in the \(S = \frac{1}{2} \) AF-Heisenberg chain, which should be otherwise gapless. The excitation gap caused by the staggered field is indeed found in the real magnets [30–32]. In the absence of the staggered field \((h_s = 0) \), the eigen-spectra are exactly solvable. In the case of the staggered magnetic field \((h_s \neq 0) \), the integrability is lost. The staggered magnetic field produces an antiferromagnetic ordered (Néel order) ground state.

To examine the effect of the staggered magnetic field on the energy gap, we have implemented the modified Lanczos algorithm for finite-size chains \(N = 12, 16, 20 \) using periodic boundary conditions. The energy gap is determined as the difference between the first excited state and the ground state [14], and calculated for different chain lengths and staggered fields \(h_s \). The energy gap is determined as the difference between the first excited state and the ground state [14].

We have plotted, in figure 5(a), the energy gap versus the staggered magnetic field \(h_s \). The results have been plotted for different chain sizes \(N = 12, 16, 20 \). It can be seen that the spectrum is gapless in the absence of the staggered magnetic field \((h_s = 0) \). The application of a staggered magnetic field induces a gap in the spectrum of the model. With increasing the field, for \(h_s > 0 \), the energy gap increases with \(h_s \).

Applying the Jaklič method we have computed a hundred lowest energies for different values of the staggered magnetic field. The heat capacity is computed as a function of the
temperature. In figure 5(b), the position of the Schottky anomaly heat capacity peak T_M is plotted versus h_s for the chain size $N = 20$. As it is seen from the figure, that T_M in this case increases by increasing the staggered magnetic field. This result is in good agreement with the idea that the gap signals the position of the Schottky heat capacity peak, T_M.

4. Summary and discussion

The low-temperature behavior of the heat capacity of low-dimensional spin systems is studied using theoretical and numerical approaches. Theoretically, the system is mapped to the well known two-level-system (TLS) model. In this case, the heat capacity is found exactly as a function of the energy gap and the temperature. The position of the Schottky heat capacity peak, T_M, is determined. It is shown that T_M as a function of the control parameter behaves in the same way as the energy gap versus the control parameter. This shows that the gap has an influence on the position of the Schottky heat capacity peak.

Numerically, the finite-temperature Lanczos method is applied. The Lanczos method is implemented to obtain a hundred of the lowest excited state energies. This formalism is applied to two model chains up to $N = 24$ in length. First, the alternating spin-1/2 chains in a magnetic field are considered. Since, the antiferromagnetic–ferromagnetic (AF–F) chains have a gap in the spin excitation spectrum, they reveal extremely rich quantum behavior in the presence of the magnetic field. The energy gap and heat capacity are computed for both isotropic and anisotropic cases. The numerical results are computed for different values of the external magnetic field. The energy gap and heat capacity are computed as a function of the control parameter behaves in the same way as the energy gap versus the control parameter. This shows that the gap has an influence on the position of the Schottky heat capacity peak.

Acknowledgments

We would like to thank J Abouie for insightful comments and stimulating discussions. We are also grateful to B Famudi and M Aliie for carefully reading our manuscript and appreciate their useful comments.

References

[1] Bethe H A 1931 Z. Phys. 77 205
Bethe H A 1966 Z. Phys. 150 327
[2] Kurmann J, Thomas H and Müller G 1966 Physica A 112 235
Kurmann J, Thomas H and Müller G 1966 Physica A 150 327
[3] Dmitriev D V, Krivnov V Ya and Ovchinnikov A A 2002 Phys. Rev. B 65 172409
Dmitriev D V, Krivnov V Ya, Ovchinnikov A A and Langari A 2002 JETP 95 538
[4] Chen W, Hida K and Sanctuary B C 2003 Phys. Rev. B 67 104401
[5] Haldane F D M 1983 Phys. Rev. Lett. 50 1153
[6] Dogotto E and Rice T M 1996 Science 271 618
[7] Schmidt K P and Uhrig G S 2005 Mod. Phys. Lett. B 19 1179
[8] Chaboussant G, Crowell P A, Levy L P, Piovesana O, Madouri A and Mailly D 1997 Phys. Rev. B 55 3046
[9] Chaboussant G, Julien M-H, Fagot-Revarut Y, Hanso M, Levy L P, Berthier C, Horvatic M and Piovesana O 1998 Eur. Phys. J. B 6 167
[10] Chaboussant G, Fagot-Revarut Y, Julien M-H, Hansen M, Berthier C, Horvatic M and Piovesana O 1998 Phys. Rev. Lett. 80 2713
[11] Arcon D, Lappas A, Margadonna S, Prassides K, Ribera E, Veciana J, Rovira C, Henriques R T and Almeida M 1999 Phys. Rev. B 60 4191
[12] Myaffre H, Horvatic H, Berthier C, Julien M-H, Söransan P, Levy L P and Piovesana O 2000 Phys. Rev. Lett. 85 4795
[13] Watson B C, Kotov V N, Meisel N W, Hall D W, Granroth G E, Montfrooij W T, Nagler S E, Jensen D A, Backov R, Petruska M A, Fanucci G E and Talham D R 2001 Phys. Rev. Lett. 86 5168
[14] Mahdavifar S 2007 Euro. Phys. J. B 55 371
[15] Mahdavifar S 2007 Euro. Phys. J. B 59 285
[16] Mahdavifar S 2007 J. Phys.: Condens. Matter 19 406222
[17] Mermin N D and Wagner H 1966 Phys. Rev. Lett. 17 1133
[18] For example see: Cubo R 1967 Statistical Mechanics (Moscow: Mir)
[19] For example see: Wunderlich B and Baur H 1970 Heat capacity of high linear polymers Adv. Polym. Sci. 7 151
[20] Lanczos C 1950 J. Res. Natl Bur. Stand. 45 255
[21] Jaklic I and Prelovsec P 1994 Phys. Rev. B 50 5065
[22] Sakai T 1995 J. Phys. Soc. Japan 64 251
[23] Yamamoto S et al 2005 Fiz.Nick. Temp. 31 974
[24] Mahdavifar S and Akbari A 2008 J. Phys. Soc. Japan 77 62756
[25] Barber M N 1983 Phase Transitions and Critical Phenomena vol 8, ed C Domb and J L Lebowitz (New York: Academic) p 146
[26] Oshikawa M and Affleck I 1997 Phys. Rev. Lett. 79 2883
Oshikawa M and Affleck I 1999 Phys. Rev. B 60 1038
[27] Wang Y-J, Essler F H L, Fabrizio M and Nersesyan A A 2002 Phys. Rev. B 66 024412
[28] Sato M and Oshikawa M 2004 Phys. Rev. B 69 054406
[29] Alcaraz F C and Malvazzi A L 1995 J. Phys. A: Math. Gen. 28 1521
[30] Dender D C, Hammar P R, Reich D H, Broholm C and Aeppli G 1997 Phys. Rev. Lett. 79 1750
[31] Kohgi M, Iwasa K, Mignot J M, Fak B, Gegenwart P, Lang M, Ichiai A, Aoki H and Suzuki T 2001 Phys. Rev. Lett. 86 2439
[32] Feyerherm R, Abens S, Gunther D, Ishida T, Meibner M, Meschke M, Nogami N and Steiner M 2000 J. Phys.: Condens. Matter 12 8495