GROTHENDIECK—SERRE CONJECTURE FOR GROUPS OF TYPE F_4
WITH TRIVIAL f_3 INVARIANT

V. PETROV AND A. STAVROVA

Abstract. Assume that R is a semi-local regular ring containing an infinite perfect field. Let K be the field of fractions of R. Let H be a simple algebraic group of type F_4 over R such that H_K is the automorphism group of a 27-dimensional Jordan algebra which is a first Tits construction. If $\text{char } K \neq 2$ this means precisely that the f_3 invariant of H_K is trivial. We prove that the kernel of the map

$$H^1_{\text{ét}}(R, H) \to H^1_{\text{ét}}(K, H)$$

induced by the inclusion of R into K is trivial.

This result is a particular case of the Grothendieck—Serre conjecture on rationally trivial torsors. It continues the recent series of papers [PaSV], [Pa], [PaPS] and complements the result of Chernousov [Ch] on the Grothendieck—Serre conjecture for groups of type F_4 with trivial g_3 invariant.

1. Introduction

In the present paper we address the Grothendieck—Serre conjecture [Se p. 31, Remarque], [Gr, Remarque 1.11] on the rationally trivial torsors of reductive algebraic groups. This conjecture states that for any reductive group scheme G over a regular ring R, any G-torsor that is trivial over the field of fractions K of R is itself trivial; in other words, the natural map

$$H^1_{\text{ét}}(R, G) \to H^1_{\text{ét}}(K, G)$$

has trivial kernel. It has been settled in a variety of particular cases, and we refer to [Pa] for a detailed overview. The most recent result belongs to V. Chernousov [Ch] who has proved that the Grothendieck—Serre conjecture holds for an arbitrary simple group H of type F_4 over a local regular ring R containing the field of rational numbers, given that H_K has a trivial g_3 invariant. We prove that the Grothendieck—Serre conjecture holds for another natural class of groups H of type F_4, those for which H_K has trivial f_3 invariant. In fact, since our approach is characteristic-free, we establish the following slightly more general result.

Theorem 1. Let R be a semi-local regular ring containing an infinite perfect field. Let K be the field of fractions of R. Let J be a 27-dimensional exceptional Jordan algebra over R such that J_K is a first Tits construction. Then the map

$$H^1_{\text{ét}}(R, \text{Aut } (J)) \to H^1_{\text{ét}}(K, \text{Aut } (J))$$

induced by the inclusion of R into K has trivial kernel.

Corollary. Let R be a semi-local regular ring containing an infinite perfect field k such that $\text{char } k \neq 2$. Let K be the field of fractions of R. Let H be a simple group scheme of type F_4 over R such that H_K has trivial f_3 invariant. Then the map

$$H^1_{\text{ét}}(R, H) \to H^1_{\text{ét}}(K, H)$$

induced by the inclusion of R into K has trivial kernel.
2. Isotopes of Jordan algebras

In the first two sections \(R \) is an arbitrary commutative ring.

A \textit{(unital quadratic)} Jordan algebra is a projective \(R \)-module \(J \) together with an element \(1 \in J \) and an operation

\[
J \times J \rightarrow J \\
(x, y) \mapsto U_x y,
\]

which is quadratic in \(x \) and linear in \(y \) and satisfies the following axioms:

\begin{itemize}
 \item \(U_1 = \text{id}_J \);
 \item \(\{x, y, U_z z\} = U_x \{y, x, z\} \);
 \item \(U_{U_x y} = U_x U_y U_z \),
\end{itemize}

where \(\{x, y, z\} = U_{x+y} - U_x y - U_y z \) stands for the linearization of \(U \). It is well-known that the split simple group scheme of type \(F_4 \) can be realized as the automorphism group scheme of the split 27-dimensional exceptional Jordan algebra \(J_0 \). This implies that any other group scheme of type \(F_4 \) is the automorphism group scheme of a twisted form of \(J_0 \).

Let \(v \) be an \textit{invertible} element of \(J \) (that is, \(U_v \) is invertible). An \textit{isotope} \(J^{(v)} \) of \(J \) is a new Jordan algebra whose underlying module is \(J \), while the identity and \(U \)-operator are given by the formulas

\[
1^{(v)} = v^{-1}; \\
U_x^{(v)} = U_x U_v.
\]

An \textit{isotopy} between two Jordan algebras \(J \) and \(J' \) is an isomorphism \(g: J \rightarrow J^{(v)} \); it follows that \(v = g(1)^{-1} \). We are particularly interested in \textit{autotopies} of \(J \); one can see that \(g \) is an autotopy if and only if

\[
U_{g(x)} = g U_x g^{-1} U_{g(1)}
\]

for all \(x \in J \). In particular, transformations of the form \(U_x \) are autotopies. The group scheme of all autotopies is called the \textit{structure group} of \(J \) and is denoted by \(\text{Str}(J) \). Obviously it contains \(\mathbb{G}_m \) acting on \(J \) by scalar transformations.

It is convenient to describe isotopies as isomorphisms of some algebraic structures. This was done by O. Loos who introduced the notion of a \textit{Jordan pair}. We will not need the precise definition, see \cite{Lo75} for details. It turns out that every Jordan algebra \(J \) defines a Jordan pair \((J, J) \), and the isotopies between \(J \) and \(J' \) bijectively correspond to the isomorphisms of \((J, J) \) and \((J', J') \) \cite[Proposition 1.8]{Lo75}). In particular, the structure group \(\text{Str}(J) \) is isomorphic to \(\text{Aut}((J, J)) \). We use this presentation of \(\text{Str}(J) \) to show that, if \(J \) is a 27-dimensional exceptional Jordan algebra, \(\text{Str}(J) \) can be seen as a Levi subgroup of a parabolic subgroup of type \(P_7 \) (with the enumeration of roots as in \cite{BI}) in an adjoint group of type \(E_7 \). See also Garibaldi \cite{Ga}.

\textbf{Lemma 1.} \textit{Let } \(J \text{ be a 27-dimensional exceptional Jordan algebra over a commutative ring } R \). \textit{There exists an adjoint simple group } \(G \text{ of type } E_7 \text{ over } R \text{ such that } \text{Str}(J) \text{ is isomorphic to a Levi subgroup } L \text{ of a maximal parabolic subgroup } P \text{ of type } P_7 \text{ in } G \).

\textit{Proof.} By \cite{Lo75} Theorem 4.6 and Lemma 4.11] for any Jordan algebra \(J \) the group \(\text{Aut}((J, J)) \) is isomorphic to a Levi subgroup of a parabolic subgroup \(P \) of a reductive group \(\text{PG}(J) \) (not necessarily connected; the definition of a parabolic subgroup extends appropriately). Moreover, \(\text{PG}(J) \cong \text{Aut}(\text{PG}(J)/P) \). If \(J \) is a 27-dimensional exceptional Jordan algebra, i.e., an Albert algebra, the group \(\text{PG}(J) \) is of type \(E_7 \) and \(P \) is a parabolic subgroup of type \(P_7 \). Let \(G \) be the corresponding adjoint group of type \(E_7 \). Then by \cite[Théoreme 1]{Dem} we have \(\text{Aut}(\text{PG}(J)/P) \cong \text{Aut}(G) \cong G \). Hence \(\text{Aut}((J, J)) \) is isomorphic to a Levi subgroup of a parabolic subgroup \(P \) of type \(P_7 \) in \(G \). \(\square \)
3. Cubic Jordan algebras and the first Tits construction

A cubic map on a projective R-module V consists of a function $N: V \to R$ and its partial polarization $\partial N: V \times V \to R$ such that $\partial N(x, y)$ is quadratic in x and linear in y, and N is cubic in the following sense:

- $N(tx) = t^3 N(x)$ for all $t \in R$, $x \in V$;
- $N(x + y) = N(x) + \partial N(x, y) + \partial N(y, x) + N(y)$ for all $x, y \in V$.

These data allow to extend N to $V_S = V \otimes_R S$ for any ring extension S of R.

A cubic Jordan algebra is a projective module J equipped with a cubic form N, quadratic map $\# : J \to J$ and an element $1 \in J$ such that for any extension S/R

- $(x^\#)^\# = N(x)x$ for all $x \in J_S$;
- $1^\# = 1; N(1) = 1$;
- $T(x^\#, y) = \partial N(x, y)$ for all $x, y \in J_S$;
- $1 \times x = T(x)1 - x$ for all $x \in J_S$,

where \times is the linearization of $\#$, $T(x) = \partial N(1, x)$, $T(x, y) = T(x)T(y) - N(1, x, y)$, $N(x, y, z)$ is the linearization of ∂N.

There is a natural structure of a quadratic Jordan algebra on J given by the formula

$$ U_{xy} = T(x, y)x - x^\# \times y. $$

Any associative algebra A of degree 3 over R (say, commutative étale cubic algebra or an Azumaya algebra of rank 9) can be naturally considered as a cubic Jordan algebra, with N being the norm, T being the trace, and $x^\#$ being the adjoint element to x.

Moreover, given an invertible scalar $\lambda \in R^\times$, one can equip the direct sum $A \oplus A \oplus A$ with the structure of a cubic Jordan algebra in the following way (which is called the first Tits construction):

$$ 1 = (1, 0, 0); $$

$$ N(a_0, a_1, a_2) = N(a_0) + \lambda N(a_1) + \lambda^{-1}N(a_2) - T(a_0a_1a_2); $$

$$ (a_0, a_1, a_2)^\# = (a_0^\# - a_1a_2, \lambda^{-1}a_2^\# - a_0a_1, \lambda a_1^\# - a_2a_0). $$

Now we state a transitivity result (borrowed from [PeR Proof of Theorem 4.8]) which is crucial in what follows.

Lemma 2. Let E be a cubic étale extension of R, A is the cubic Jordan algebra obtained by the first Tits construction from E, y be an invertible element of E considered as a subalgebra of A. Then y lies in the orbit of 1 under the action of subgroup of $\text{Str}(A)(R)$ generated by $G_m(R)$ and elements of the form U_x, x is an invertible element of A.

Proof. As an element of A y equals $(y, 0, 0)$. Now a direct calculation shows that

$$ U_{(0, 0, 1)}U_{(0, y, 0)}y = N(y)1. $$

\[\square\]

Over a field, Jordan algebras that can be obtained by the first Tits construction can be characterized in terms of cohomological invariants. Namely, to each J one associates a 3-fold Pfister form $\pi_3(J)$, and J is of the first Tits construction if and only if $\pi_3(J)$ is hyperbolic (see [Pe Theorem 4.10]). Another equivalent description is that J splits over a cubic extension of the base field. If the characteristic of the base field is distinct from 2, π_3 is equivalent to the cohomological f_3 invariant,

$$ f_3 : H^3_{\text{et}}(-, F_4) \to H^3(-, \mu_2). $$

4. Springer form

From now on J is a 27-dimensional cubic Jordan algebra over R.
Let E be a cubic étale subalgebra of J. Denote by E^\perp the orthogonal complement to E in J with respect to the bilinear form T (it exists for the restriction of T to E is non-degenerate); it is a projective R-module of rank 24. It is shown in [PeR Proposition 2.1] that the operation

$$E \times E^\perp \to E^\perp;$$

$$(a, x) \mapsto -a \times x$$

equips E^\perp with a structure of E-module compatible with its R-module structure. Moreover, if we write

$$x^\# = q_E(x) + r_E(x), \quad q_E(x) \in E^\perp, \quad r_E(x) \in E,$$

then q_E is a quadratic form on E^\perp, which is nondegenerate as one can check over a covering of R splitting J. This form is called the Springer form with respect to E.

The following lemma relates the Springer form and subalgebras of J.

Lemma 3. Let v be an element of E^\perp such that $q_E(v) = 0$ and v is invertible in J. Then v is contained in a subalgebra of J obtained by the first Tits construction from E.

Proof. It is shown in [PeR Proposition 2.2] that the embedding

$$(a_0, a_1, a_2) \mapsto a_0 - a_1 \times v - N(v)^{-1}a_2 \times v^\#$$

defines a subalgebra desired. \hfill \Box

Recall that the étale algebras of degree n are classified by $H^1(R, S_n)$, where S_n is the symmetric group in n letters. The sign map $S_n \to S_2$ induces a map

$$H^1(R, S_n) \to H^1(R, S_2)$$

that associates to any étale algebra E a quadratic étale algebra $\delta(E)$ called the discriminant of E. The norm $N_{\delta(E)}$ is a quadratic form of rank 2. We will use later on the analog of the Grothendieck-Serre conjecture for quadratic étale algebras; it follows, for example, from [EGA Corollaire 6.1.14].

Over a field, the Springer form can be computed explicitly in terms of $\pi_3(J)$ and $\delta(E)$. We will need the following particular case:

Lemma 4. Let J be a Jordan algebra over a field K with $\pi_3(J) = 0$. Then

$$q_E = N_{\delta(E)}_{|E} \perp h_E \perp h_E \perp h_E,$$

h stands for the hyperbolic form of rank 2.

Proof. Follows from [PeR Theorem 3.2]. \hfill \Box

We will also use the following standard result.

Lemma 5. Let J be a Jordan algebra over an algebraically closed field F. Then any two cubic étale subalgebras E and E' of J are conjugate by an element of $\text{Aut}(J)(F)$.

Proof. Present E as $F e_1 \oplus F e_2 \oplus F e_3$, where e_i are idempotents whose sum is 1; do the same with E'. By [Lam] Theorem 17.1 there exists an element $g \in \text{Str}(J)(F)$ such that $ge_i = e_i'$. But then g stabilizes 1, hence belongs to $\text{Aut}(J)(F)$. \hfill \Box

5. **Proof of Theorem**

Proof of Theorem Set $H = \text{Aut}(J)$. It is a simple group of type F_4 over R. We may assume that H_K is not split, otherwise the result follows from [Pa Theorem 1.0.1]. Let J be the Jordan algebra corresponding to H; we have to show that if J' is a twisted form of J such that $J'_K \simeq J_K$ then $J' \simeq J$. Set $L = \text{Str}(J)$; then L is a Levi subgroup of a parabolic subgroup of type P_2 of an adjoint simple group scheme G of type E_7 by Lemma [SGA Exp. XXVI Cor. 5.10 (i)] the map

$$H^1_{\text{ét}}(R, L) \to H^1_{\text{ét}}(K, G)$$

is an isomorphism. By [SGA Exp. XXVI Cor. 5.10 (ii)] the map

$$H^1_{\text{ét}}(R, L) \to H^1_{\text{ét}}(K, G)$$

is an isomorphism.
is injective. Since G is isotropic, by \textup{[Pa]} Theorem 1.0.1 the map

$$H^1_{\text{et}}(R, G) \to H^1_{\text{et}}(K, G)$$

has trivial kernel, and so does the map

$$H^1_{\text{et}}(R, L) \to H^1_{\text{et}}(K, L).$$

But $(J'_{K}, J''_{K}) \simeq (J_{K}, J_{K})$, therefore $(J', J') \simeq (J, J)$, that is J' is isomorphic to $J^{(y)}$ for some invertible $y \in J$. It remains to show that y lies in the orbit of 1 under the action of $\text{Str}(J)(R)$.

Present the quotient of R by its Jacobson radical as a direct product of the residue fields $\prod k_i$. An argument in \textup{[PeR]} Proof of Theorem 4.8 shows that for each i one can find an invertible element $v_i \in J_{k_i}$ such that the discriminant of the generic polynomial of $U_{v_i}y_{k_i}$ is nonzero. Lifting v_i to an element $v \in J$ and changing y to $U_{v}y$ we may assume that the generic polynomial $f(T) \in R[T]$ of y has the property that $R[T]/(f(T))$ is an étale extension of R. In other words, we may assume that y generates a cubic étale subalgebra E in J.

Note that E_{K} is a cubic field extension of K; otherwise J_{K} is reduced, hence split, for $\pi_{3}(J_{K}) = 0$ (see \textup{[Pa]} Theorem 4.10)). Consider the form

$$q = N_{E/K} \downarrow h_{E} \downarrow h_{E} \downarrow h_{E};$$

then by Lemma 4 $q_{K} = q_{E_{K}}$. By the analog of the Grothendieck—Serre conjecture for étale quadratic algebras, q and q_{E} have the same discriminant. So q_{E} is a twisted form of q given by a cocycle $\xi \in H^{1}(E, SO(q))$. Now ξ_{K} is trivial, and \textup{[Pa]} Theorem 1.0.1 imply that ξ is trivial itself, that is $q_{E} = q$. In particular, q_{E} is isotropic. Let us show that there is an invertible element v in J such that $q_{E}(v) = 0$.

The projective quadric over E defined by q_{E} is isotropic, hence has an open subscheme $U \simeq \mathbb{A}_{E}^{n}$. Denote by U' the open subscheme of $R_{E/R}(U)$ consisting of invertible elements. It suffices to show that $U'(k_{i})$ is non-empty for each i, or, since the condition on R implies that k_{i} is infinite, that $U'(k_{i})$ is non-empty.

But $J_{k_{i}}$ splits, and, in particular, it is obtained by a first Tits construction from a split Jordan algebra of 3×3 matrices over k_{i}. The diagonal matrices in this matrix algebra constitute a cubic étale subalgebra of $J_{k_{i}}$. By Lemma 5 we may assume that this étale subalgebra coincides with $E_{k_{i}}$. By \textup{[PeR]} Proposition 2.2 there exists an invertible element $v_{i} \in E_{k_{i}}^{\times}$ such that $q_{E_{k_{i}}}(v_{i}) = 0$. Thus the scheme of invertible elements intersects the quadric over k_{i}, hence, $U'(k_{i})$ is non-empty.

Finally, Lemma 6 and Lemma 7 show that y belongs to the orbit of 1 under the group generated by $G_{2D}(R)$ and elements of the form U_{x}. So $J' \simeq J^{(y)} \simeq J$, and the proof is completed.

The authors are heartily grateful to Ivan Panin, who introduced them to the subject and provided inspiring comments during the course of the work.

\textbf{References}

[B] N. Bourbaki, Groupes et algèbres de Lie. Chapitres 4, 5 et 6, Masson, Paris, 1981.

[Ch] V. Chernousov, Variations on a theme of group splitting by a quadratic extension and Grothendieck—Serre conjecture for group schemes F_{4} with trivial g_{3} invariant. Preprint (2009), http://www.math.uni-bielefeld.de/ LAG/man/354.html

[Dem] M. Demazure, Automorphismes et déformations des variétés de Borel, \textit{Inv. Math.} \textbf{39} (1977), 179–186.

[EGA] A. Grothendieck, Éléments de géométrie algébrique (rédigés avec la collaboration de Jean Dieudonné) : II. Étude globale élémentaire de quelques classes de morphismes, \textit{Inst. Hautes Études Sci. Publ. Math.} \textbf{8} (1961), 5-222.

[SGA] M. Demazure, A. Grothendieck, Schémas en groupes, Lecture Notes in Math., \textbf{151–153}, Springer-Verlag, Berlin-Heidelberg-New York, 1970.

[Ga] R.S. Giribaldi, Structurable algebras and groups of type E_{6} and E_{7}, \textit{J. Algebra} \textbf{236} (2001), 651–691.

[Gr] A. Grothendieck, Le groupe de Brauer II, Sém. Bourbaki \textbf{297} (1965/66).

[Lo75] O. Loos, Jordan pairs, Lecture Notes in Math. \textbf{460}, Springer-Verlag, Berlin-Heidelberg-New York, 1975.

[Lo78] O. Loos, Homogeneous algebraic varieties defined by Jordan pairs, \textit{Mh. Math.} \textbf{86} (1978), 107–129.

[Pa] I. Panin, On Grothendieck—Serre’s conjecture concerning principal G-bundles over reductive group schemes:II, Preprint (2009), http://www.math.uiuc.edu/K-theory/

[PaPS] I. Panin, V. Petrov, A. Stavrova, Grothendieck—Serre conjecture for adjoint groups of types E_{6} and E_{7}, Preprint (2009), available from http://www.arxiv.org/abs/0905.1427
[PaSV] I. Panin, A. Stavrova, N. Vavilov, On Grothendieck—Serre’s conjecture concerning principal \(G \)-bundles over reductive group schemes: I, Preprint (2009), http://www.math.uiuc.edu/K-theory/

[Pe] H. Petersson, Structure theorems for Jordan algebras of degree three over fields of arbitrary characteristic, *Comm. in Algebra* **32** (2004), 1019–1049.

[PeR] H. Petersson, M. Racine, Springer form and the first Tits construction of exceptional Jordan division algebras, *Manuscripta Math.* **45** (1984), 249–272.

[PS] V. Petrov, A. Stavrova, Tits indices over semilocal rings, Preprint (2008), available from http://www.arxiv.org/abs/0807.2140

[Se] J.-P. Serre, Espaces fibrés algébriques, in *Anneaux de Chow et applications*, Séminaire Chevalley, 2-e année, Secrétariat mathématique, Paris, 1958.