SURFACE PENCILS IN EUCLIDEAN 4-SPACE \mathbb{E}^4

Betül Bulca & Kadri Arslan

Abstract

In the present paper we study the problem of constructing a family of surfaces (surface pencils) from a given curve in 4-dimensional Euclidean space \mathbb{E}^4. We have shown that generalized rotation surfaces in \mathbb{E}^4 are the special type of surface pencils. Further, the curvature properties of these surfaces are investigated. Finally, we give some examples of flat surface pencils in \mathbb{E}^4.

1 Introduction

The problem of constructing a family of surfaces from given curve is (i.e. surface pencils) important for differential geometry. In recent years surface pencils in \mathbb{E}^3 was studied many paper with respect to the curves family. In 2004 Wang et al. studied the problem of constructing a surface family from a given spatial geodesic [12]. Further, Lie et al. derived the necessary and sufficient condition for a given curve to be the line of curvature on a surface [10]. However, Kasap et al. generalized the marching-scale functions given in [12] and gave a sufficient condition for a given curve to be a geodesic on a surface [7]. Recently, Bayram et al. extend the method given in [12] to derive the necessary and sufficient condition for a given curve to be both isoparametric and asymptotic on a parametric surface [2]. Also, Ergün et al. considered surface pencil with a common line of curvature in Minkowski 3-space [4]. In 2008, Zhao and Wang proposed a new method for designing developable surface by constructing a surface pencil passing through a given curve which is quite in accord with the practice in industry design and manufacture [13].

In the present paper we extend the surface pencil in 4-dimensional Euclidean space \mathbb{E}^4. The object of study in this paper is to extend the correct parametric representation of the surface M for a given curve $\gamma(s)$ in 4-dimensional Euclidean space \mathbb{E}^4. This paper consist of 3 sections. The first section is introduction. In the Section 2 we give some basic concepts of surfaces in \mathbb{E}^4 which are used in the further sections of this paper. In Section 3, by utilizing the Frenet frame from differential geometry, we derive necessary and sufficient condition for the

12000 Mathematics Subject Classification. 53C40, 53C42

Key words and phrases: Surface pencil, marching-scale function, Gaussian curvature.
correct representation of the surface patch \(X(s, t)\), where the parameter \(s\) is the arc-length of the curve \(\gamma(s)\). The basis idea is to represent \(X(s, t)\) as a linear combination of the vector functions \(V_2(s)\) and \(V_4(s)\) which are the normal vector and second binormal vector of \(\gamma(s)\) respectively. The surface pencil which we consider in the present paper is parametrized by

\[
X(s, t) = \gamma(s) + A(t)V_2(s) + B(t)V_4(s), \quad t \in J \subset \mathbb{R},
\]

where \(A(t)\) and \(B(t)\) are differentiable functions which are called marching-scale functions. Further, we have calculated the Gaussian, normal and mean curvature of this surface. However, we obtain some equations of the marching-scale functions \(A(t)\) and \(B(t)\) for the case \(M\) becomes a Vranceanu surface. Finally, we give some examples of flat surface pencils in \(\mathbb{E}^4\) given with the spacial marching-scale functions.

2 Basic Concepts

Let \(M\) be a smooth surface in \(\mathbb{E}^4\) given with the patch \(X(u, v) : (u, v) \in D \subset \mathbb{E}^2\). The tangent space to \(M\) at an arbitrary point \(p = X(u, v)\) of \(M\) span \(\{X_u, X_v\}\). In the chart \((u, v)\) the coefficients of the first fundamental form of \(M\) are given by

\[
E = \langle X_u, X_u \rangle, \quad F = \langle X_u, X_v \rangle, \quad G = \langle X_v, X_v \rangle,
\]

where \(\langle \cdot, \cdot \rangle\) is the Euclidean inner product. We assume that \(g = EG - F^2 \neq 0\), i.e. the surface patch \(X(u, v)\) is regular.

Let \(\chi(M)\) and \(\chi^\perp(M)\) be the space of the smooth vector fields tangent to \(M\) and the space of the smooth vector fields normal to \(M\), respectively. Given any local vector fields \(X_1, X_2\) tangent to \(M\) consider the second fundamental map \(h : \chi(M) \times \chi(M) \rightarrow \chi^\perp(M)\);

\[
h(X_i, X_j) = \tilde{\nabla}X_i X_j - \nabla X_i X_j \quad 1 \leq i, j \leq 2.
\]

This map is well-defined, symmetric and bilinear.

For any arbitrary orthonormal frame field \(\{N_1, N_2\}\) of \(M\), recall the shape operator \(A : \chi^\perp(M) \times \chi(M) \rightarrow \chi(M)\);

\[
A_{N_i}X = - (\tilde{\nabla}X_i, N_i)^T, \quad X_i \in \chi(M).
\]

This operator is bilinear, self-adjoint and satisfies the following equation:

\[
\langle A_{N_k}X_j, X_i \rangle = \langle h(X_i, X_j), N_k \rangle = c^k_{ij}, \quad 1 \leq i, j, k \leq 2
\]

where \(c^k_{ij}\) are the coefficients of the second fundamental form. The equation \((3)\) is called Gaussian formula and

\[
h(X_i, X_j) = \sum_{k=1}^{2} c^k_{ij} N_k, \quad 1 \leq i, j \leq 2.
\]
The Gaussian curvature and normal curvature of the surface M are given by
\[K = \frac{1}{W^2} \sum_{k=1}^{2} (c_{11}^k c_{22}^k - (c_{12}^k)^2), \tag{7} \]
and
\[K_N = \frac{1}{W^2} \left(E (c_{12}^1 c_{22}^2 - c_{12}^2 c_{22}^1) - F (c_{11}^1 c_{22}^1 - c_{11}^2 c_{22}^2) + G (c_{11}^1 c_{12}^2 - c_{11}^2 c_{12}^1) \right), \tag{8} \]
respectively. Recall that a surface M is said to be flat (resp. has flat normal bundle) if its Gaussian curvature K (resp. normal curvature K_N) vanishes identically. Further, the mean curvature vector of the surface M is defined by
\[\vec{H} = \frac{1}{2W^2} \sum_{k=1}^{2} (e_{11}^k G + e_{22}^k E - 2e_{12}^k F) N_k. \tag{9} \]
Recall that a surface M is said to be minimal if its mean curvature vector vanishes identically \cite{3}.

3 Surface Pencils in \mathbb{E}^4

Let $\gamma = \gamma(s) : I \to \mathbb{E}^4$ be a unit speed regular curve in Euclidean 4-space \mathbb{E}^4. The corresponding Frenet formulas have the following form:
\[
\begin{align*}
\gamma'(s) &= V_1(s), \\
V_1'(s) &= \kappa_1(s) V_2(s), \\
V_2'(s) &= -\kappa_1(s) V_1(s) + \kappa_2(s) V_3(s), \\
V_3'(s) &= -\kappa_2(s) V_2(s) + \kappa_3(s) V_4(s), \\
V_4'(s) &= -\kappa_3(s) V_3(s),
\end{align*}
\tag{10}
\]
where $V_1(s), V_2(s), V_3(s), V_4(s)$ is the Frenet frame field and κ_1, κ_2 and κ_3 are the Frenet curvatures of $\gamma(s)$. If the Frenet curvatures are constant then $\gamma(s)$ is called W-curve \cite{5}.

Let M be a local surface given with the regular patch
\[X(s, t) = \gamma(s) + A(t)V_2(s) + B(t)V_4(s), \quad t \in J \subset \mathbb{R}, \]
where, $A = A(t)$, and $B = B(t)$ are smooth functions, defined in $J \subset \mathbb{R}$ and satisfying
\[
\begin{align*}
(1 - \kappa_1(s) A(t))^2 + (\kappa_2(s) A(t) - \kappa_3(s) B(t))^2 &> 0, \\
A'(t)^2 + B'(t)^2 &> 0.
\end{align*}
\]
For the sake of simplicity let us denote:
\[
\begin{align*}
a(s, t) &= 1 - \kappa_1(s) A(t), \\
b(s, t) &= \kappa_2(s) A(t) - \kappa_3(s) B(t).
\end{align*}
\tag{11}
This surface is one-parameter family of plane curves \(\alpha(t) = (A(t), B(t)) \) lying in the normal plane span \(\{V_2(s), V_4(s)\} \) of \(\gamma \). The surface given with the parametrization (11) is called pencil surface in \(\mathbb{E}^4 \). If \(\gamma(s) \) is a W-curve then \(M \) becomes a generalized rotation surface defined by Ganchev and Milousheva in [6] and see also [1].

We prove the following result.

Proposition 1 Let \(M \) be a pencil surface given by the parametrization (1). Then the Gaussian curvature of \(M \) is

\[
K = \frac{(a^2 + b^2) (A'B'' - B'A'') \{ A'b\kappa_3 - B'(\kappa_1 a - \kappa_2 b) \} - ((A')^2 + (B')^2) (ab - b_a)^2}{g^2},
\]

where \(a(s, t) \) and \(b(s, t) \) are smooth functions defined in (11).

Proof. The tangent space of \(M \) is spanned by the vector fields

\[
X_s = a(s, t)V_1(s) + b(s, t)V_3(s), \quad X_t = A'(t)V_2(s) + B'(t)V_4(s).
\]

Hence, the coefficients of the first fundamental form of the surface are

\[
\begin{align*}
E &= \langle X_s, X_s \rangle = a(s, t)^2 + b(s, t)^2, \\
F &= \langle X_s, X_t \rangle = 0, \\
G &= \langle X_t, X_t \rangle = (A'(t))^2 + (B'(t))^2,
\end{align*}
\]

where \(\langle , \rangle \) is the standard scalar product in \(\mathbb{E}^4 \).

The second partial derivatives of \(X(s, t) \) are expressed as follows

\[
\begin{align*}
X_{ss} &= a_s(s, t)V_1(s) + (\kappa_1 a s, t) - \kappa_2(s)b(s, t)) V_2(s) + b_s(s, t)V_3(s) + \kappa_3(s)b(s, t)V_4(s), \\
X_{st} &= a_t(s, t)V_1(s) + b_t(s, t)V_3(s), \\
X_{tt} &= A''(t)V_2(s) + B''(t)V_4(s)
\end{align*}
\]

Further, the normal space of \(M \) is spanned by the vector fields

\[
\begin{align*}
N_1 &= \frac{1}{\sqrt{(A'(t))^2 + (B'(t))^2}}(-B'V_2 + A'V_4), \\
N_2 &= \frac{1}{\sqrt{a(s, t)^2 + b(s, t)^2}}(-b(s, t)V_1 + a(s, t)V_3).
\end{align*}
\]

Using (5), (14) and (15) we can calculate the coefficients of the second
fundamental form as follows:

\[
c_{11} = \langle X_{ss}(s,t), N_1 \rangle = \frac{A'b\kappa_3 - B'(\kappa_1 a - \kappa_2 b)}{\sqrt{(A'(t))^2 + (B'(t))^2}},
\]

\[
c_{12} = \langle X_{st}(s,t), N_1 \rangle = 0,
\]

\[
c_{22} = \langle X_{tt}(s,t), N_1 \rangle = \frac{A'B'' - B'A''}{\sqrt{(A'(t))^2 + (B'(t))^2}},
\]

\[
(16)
\]

\[
c_{11}^2 = \langle X_{ss}(s,t), N_2 \rangle = \frac{ab_s - ba_s}{\sqrt{a(s,t)^2 + b(s,t)^2}},
\]

\[
c_{12}^2 = \langle X_{st}(s,t), N_2 \rangle = \frac{ab_t - ba_t}{\sqrt{a(s,t)^2 + b(s,t)^2}},
\]

\[
c_{22}^2 = \langle X_{tt}(s,t), N_2 \rangle = 0.
\]

With the help of (7) and (16), we obtain the Gaussian curvature given with the equation (12).

An easy consequence of Proposition 1 is the following.

Corollary 2 Let \(M \) be a pencil surface given by the parametrization (1). If

\[
A'B'' - B'A'' = 0 \quad \text{and} \quad ab_t - ba_t = 0,
\]

(17)

hold then \(M \) has vanishing Gaussian curvature.

Proposition 3 Let \(M \) be a pencil surface given by the parametrization (1). Then the mean curvature of \(M \) is

\[
\left\| \overrightarrow{H} \right\|^2 = \frac{1}{4} \left\{ \left(\frac{(ab_s - ba_s)}{E^3} \right)^3 + \frac{1}{G} \left[\frac{(A'B'' - B'A'')}{G} + \frac{A'b\kappa_3 - b'(\kappa_1 a - \kappa_2 b)}{E} \right]^2 \right\}.
\]

(18)

Proof. Substituting (13) and (16) into (9) we get

\[
\overrightarrow{H} = \frac{1}{2EG^{3/2}} \left\{ E(A'B''-B'A'') + G(A'b\kappa_3-B'(\kappa_1 a-\kappa_2 b)) \right\} N_1 + \frac{1}{2EG^{3/2}} (ab_s - ba_s) N_2.
\]

(19)

The norm of the mean curvature vector (19) gives (18). ■

Proposition 4 Let \(M \) be a pencil surface given by the parametrization (1). Then the normal curvature of \(M \) is

\[
K_N = \frac{(ab_t - ba_t)}{E^2G^2} \left\{ G(A'b\kappa_3 - B'(\kappa_1 a - \kappa_2 b)) - E(A'B'' - B'A'') \right\}.
\]

(20)

Proof. Substituting (13) and (16) into (8) we get the result. ■

Now, we consider some special cases of surface pencils.

Case I: Let \(M \) be a pencil surface given with the \(W \)-curve

\[
\gamma(s) = (a \cos cs, a \sin cs, b \cos ds, b \sin ds)
\]
as generator. Then M becomes a generalized rotation surface of the form

$$X(s, t) = (f(t) \cos cs, f(t) \sin cs, g(t) \cos ds, g(t) \sin ds)$$ \hfill (21)

where

$$f(t) = a + \frac{1}{k_1} \left(bd^2 B(t) - ac^2 A(t) \right),$$

$$g(t) = b + \frac{1}{k_1} \left(-bd^2 A(t) - ac^2 B(t) \right).$$ \hfill (22)

(see, [6]). For the case $f(t) = r(t) \cos t, g(t) = r(t) \sin t$ and $c = d = 1$ the generalized rotation surface M is called Vranceanu surface [11]. Furthermore, for the case $f(t) = \cos t, g(t) = \sin t$ and $c = d = 1$ the generalized rotation surface M is called Lawson surface [9].

Proposition 5 For the marching-scale functions

$$A(t) = -\frac{ak_1(r(t) \cos t - a) + bk_1(r(t) \sin t - b)}{a^2 + b^2},$$

$$B(t) = \frac{bk_1(r(t) \cos t - a) - ak_1(r(t) \sin t - b)}{a^2 + b^2}.$$

the pencil surface $M \subset \mathbb{E}^4$ becomes a Vranceanu surface.

Proof. Let M be a pencil surface given by the parametrization (1). Substituting $f(t) = r(t) \cos t, g(t) = r(t) \sin t$ and $c = d = 1$ into (22) we get the result. \hfill \blacksquare

Corollary 6 Let M be a pencil surface given by the parametrization (7). If the smooth functions $A(t)$ and $B(t)$ are given by

$$A(t) = -\frac{ak_1(\lambda e^{\mu t} \cos t - a) + bk_1(\lambda e^{\mu t} \sin t - b)}{a^2 + b^2},$$

$$B(t) = \frac{bk_1(\lambda e^{\mu t} \cos t - a) - ak_1(\lambda e^{\mu t} \sin t - b)}{a^2 + b^2}.$$

then M becomes a flat Vranceanu surface in \mathbb{E}^4.

Case II: Suppose M is a pencil surface given with the marching-scale functions $A(t) = B(t) = t$.

A standard ruled surface M in a 4-dimensional Euclidean space \mathbb{E}^4 is defined by

$$M : X(s, t) = \gamma(s) + t\beta(s),$$ \hfill (23)

where

$$\beta(s) = \sum_{i=2}^{4} \beta_i V_i(s),$$ \hfill (24)

is the unit vector in \mathbb{E}^4 and $V_i(s)$ the Frenet vector of the unit speed curve $\gamma(s)$ [5].

By the use of (23), (24) with (1) we get the following result.
Corollary 7 Let M be generalized standard ruled surface given with the parametrization
\[X(s, t) = \gamma(s) + \frac{t}{\sqrt{2}} (V_2(s) + V_4(s)). \] (25)
Then M is a pencil surface with the marching scale functions $A(t) = B(t) = t$.

Corollary 8 Let M be a pencil surface given with the parametrization (25). Then the Gaussian and normal curvatures of M are given by
\[K = -\frac{(\kappa_2 - \kappa_3)^2}{((1 - t\kappa_1)^2 + t^2(\kappa_2 - \kappa_3)^2)^2}, \]
and
\[K_N = \frac{(\kappa_2 - \kappa_3)(t(\kappa_1^2 + \kappa_2^2 - \kappa_3^2) - \kappa_1)}{2((1 - t\kappa_1)^2 + t^2(\kappa_2 - \kappa_3)^2)^2}. \]
respectively.

As a consequence of Corollary 8 we obtain the following result.

Corollary 9 If $\kappa_2 = \kappa_3$ then generalized standard ruled surface given with the parametrization (25) is a flat surface with flat normal bundle.

Case III: Suppose M is a pencil surface given the parametrization
\[A(t) = r(t) \cos t, \quad B(t) = r(t) \sin t, \] (26)
then we obtain the following result.

Proposition 10 Let M be a pencil surface given with the parametrization (26). If M is a flat surface satisfying (17) then one of the following case is occurs;

i) The profile curve $\gamma(s)$ is a planar and
\[r(t) = \frac{1}{c_1 \sin t - c_2 \cos t}. \]

ii) The profile curve $\gamma(s) \subseteq E^4$ has curvatures κ_1, κ_2 and κ_3 with
\[\kappa_3(s) = \frac{c_1 \kappa_2(s)}{c_2 + \kappa_1(s)} \quad \text{and} \quad r(t) = \frac{1}{c_1 \sin t - c_2 \cos t}. \]

iii) The profile curve $\gamma(s)$ is a circle and
\[r(t) = \frac{1}{c_1 \sin t - c_2 \cos t}. \]

iv) The profile curve $\gamma(s)$ has constant first curvature
\[\kappa_1(s) = \frac{1}{c_1} \quad \text{and} \quad r(t) = \frac{c_1}{c_1 \cos t}. \]

Here c_1 and c_2 are real constants.
Proof. Let M be a pencil surface given with the parametrization (26). Then substituting (26) into the (17) we get the following system of differential equations
\begin{align*}
2(r')^2 - r r'' + r^2 &= 0, \\
\kappa_1\kappa_3r^2 + (r'\kappa_2 - r\kappa_3) \cos t - (r'\kappa_3 + r\kappa_2) \sin t &= 0.
\end{align*}
Solving this system of equations with the help of Maple programme we get the required results.

References

[1] Arslan, K., Bayram (Kılıç), B., Bulca, B. and Öztürk, G. Generalized rotation surfaces in \mathbb{E}^4. Results Math. 61(2012), 315-327.

[2] Bayram, E., Gülker, F. and Kasap, E. Parametric representation of a surface pencil with a common asymptotic curve. Comp. Aided Design 44(2012), 637-643.

[3] Chen, B. Y., Geometry of Submanifolds. Marcel Dekker Inc., New York (1973).

[4] Ergün, E., Bayram, E. and Kasap, E. Surface pencil with a common line of curvature in Minkowski 3-space. Acta Mat. Sinica (English Series) 30:12 (2014), 2103-2118.

[5] Goncharova, O.A. Standard Ruled Surfaces in \mathbb{E}^n, Dopov. NAN Ukr. 3(2006), 7-12 (Russian).

[6] Ganchev, G. and Milousheva, V. On the Theory of Surfaces in the Four-dimensional Euclidean Space. Kodai Math. J. 31 (2008), 183-198.

[7] Kasap, E., Akyıldız, F.T. and Orbay K. A generalization of surfaces family with common spatial geodesic. Appl. Math. Comput. 201(2008), 781-789.

[8] Klein, F. and Lie, S. Über diejenigen ebenenen kurven welche durch ein geschlossenes system von einfach unendlich vielen vartauschbaren linearen transformationen in sich übergehen, Math. Ann. 4(1871), 50-84.

[9] H.B. Lawson Jr., Complete Minimal Surfaces in S^3. Ann. of Math., 92(1970), 335-374.

[10] Li, C.Y., Wang, R.H. and Zhu, C.G. Parametric representation of a surface pencil with a common line of curvature. Comp. Aided Design 43:9(2011), 1110-1117.

[11] Vranceanu, G. Surfaces de Rotation dans \mathbb{E}^4, Rev. Roum. Math. Pures Appl. XXII. 6(1977), 857-862.
[12] Wang, G., Tang, K. and Tai, C.H. *Parametric representation of a surface pencil with common spatial geodesic.* Comp. Aided Design 36:5(2004), 447-459.

[13] Zhao, H. and Wang, G. *A new method for designing a developable surface utilizing the surface pencil through a given curve.* Progress in Nat. Sci. 18(2008), 105-110.

Kadri Arslan, Betül Bulca
Department of Mathematics
Uludağ University
16059 Bursa, TURKEY
E-mails: arslan@uludag.edu.tr, bbulca@uludag.edu.tr