ИССЛЕДОВАТЕЛЬСКАЯ СТАТЬЯ
Применение микрочипов для идентификации происхождения генов вирусов гриппа диких птиц

Р. Н. Гейдаров1, Н. Ф. Ломакина2, Е. Ю. Боравлева3, И. С. Холодилов2, А. С. Гамбарян3
В. М. Михайлович1, Е. Е. Фесенко3

1 ФГБНУ «Институт молекулярной биологии имени В.А. Энгельгардта РАН», Москва, Российская Федерация
2 ФГБНУ «Федеральный научный центр исследований и разработки иммунобиологических препаратов им. М.П. Чумакова РАН», Москва, Российская Федерация
3 ФГБНУ «Институт биофизики клетки РАН», Пущино, Российская Федерация

Ключевые слова: вирус гриппа, мониторинг, микрочип

АННОТАЦИЯ
В черте города Москвы из фекалий диких водоплавающих птиц изолировали 42 штамма вируса гриппа птиц и проанализировали их на микрочипах «Биогрипп», которые содержат 176 зондов к различным участкам генома вирусов гриппа. Микрочип позволяет определять: 1) субтип поверхностных белков гемагглютинина и нейраминидазы; 2) структуру C-концевой последовательности вирусного белка NS1, влияющую на степень ингибитория транскрипции клеточных хозяевских генов, в том числе ответственных за синтез интерферона; 3) наличие стоп-кодонов и мутацию N66S в рамке считывания вирусного белка PB1-F2, 4) наличие полисоснового сайта протеолитического расщепления гемагглютинина.

Среди изолятов от диких птиц идентифицированы вирусы гриппа субтипов H3N1, H3N6, H3N8, H4N6, H1N1, H5N3 и H11N9. Все они содержали последовательность ESEV на C-конце белка NS1, полноразмерную рамку считывания для белка PB1-F2. Замена N66S в PB1-F2 обнаружена у шести штаммов. Однако такие маркеры патогенности, как последовательность ESEV (лиганд PDZ-домена) в вирусном белке NS1 и замена N66S PB1-F2 в контексте генома вирусов гриппа диких уток, не делали вирус патогенным для мышей. Все изоляты были высокоурожайны в куриных эмбрионах, инфекционны и иммуногенны для мышей, но не вызывали у этих животных клинических симптомов заболевания.

The use of microarrays for identification of the origin of genes of avian influenza viruses in wild birds

Rustam N. Heydarov1, Natalia F. Lomakina2, Elizaveta Yu. Boravleva3, Ivan S. Kholodilov2, Alexandra S. Gambaryan3, Vladimir M. Mikhailovich1, Eugene E. Fesenko3

1 Engelhardt Institute of Molecular Biology, RAS, Moscow, Russian Federation
2 Chumakov Federal scientific center for research and development of immune-and-biological products, Moscow, Russian Federation
3 Institute of Cell Biophysics, RAS, Pushchino, Russian Federation
4 Corresponding author: Alexandra Gambaryan: al.gambaryan@gmail.com

Keywords: avian influenza virus, monitoring, microarray

ABSTRACT
Forty-two strains of avian influenza viruses were isolated from the wild waterfowl's feces in the city of Moscow. These viruses as well as reference strains and some experimental reassortants were analyzed by microarrays. The used microarrays contained 176 probes to the different segments of influenza virus genome. The microarray allows to determine 1) the hemagglutinin and neuraminidase proteins subtype; 2) the primary structure of the C-terminal sequence of the viral NS1 protein, which serves as a ligand for the PDZ domain; 3) the presence of stop codons and substitution N66S in the reading frame of the viral protein PB1-F2; 4) the presence of the polybasic site for hemagglutinin cleavage. The viruses of H3N1, H3N6, H3N8, H4N6, H1N1, H5N3 and H11N9. All isolates contained the ESEV sequence at the C-terminus of the NS1 protein, full-length reading frame for the PB1-F2 protein. The replacement of N66S in PB1-F2 was found in six strains. However, the presence of ESEV sequence (ligand of PDZ domain) in the NS1 virus protein and the N66S substitution in PB1-F2 did not lead to the pathogenicity of these viruses for mice. All isolates demonstrated high yield growth in chicken embryos, were infectious and immunogenic for mice, but did not induce any clinical symptoms.
ВВЕДЕНИЕ
Основным природным резервуаром вирусов гриппа А служат дикие водоплавающие птицы, в первую очередь — утки. Вирус бессимптомно размножается в кишечнике уток и передаётся преимущественно фекально-оральным путём через воду [1]. Долгая адаптация вируса к своему хозяину приводит к тому, что вирус хорошо размножается в определённых тканях, интенсивно выделяется во внешнюю среду, но хозяин при этом практически не страдает. Такое поведение «выгодно» вирусу, так как активные птицы лучше распространяют инфекцию.
Признак высокой патогенности обычно встречается не в природных экосистемах, а там, где постоянный приток объектов заражения обеспечивается искусственным образом. Примером таких систем могут служить птицефабрики, где формируются высокопатогенные вирусы птичьего гриппа (high pathogenic avian influenza viruses, HPAIV). Если анализировать эволюционные деревья вирусов, то HPAIV обычно расположены на концах молодых ветвей, поскольку вирус, убивающий хозяина, как следствие, исчезает и сам [2].

Низкопатогенные вирусы гриппа диких птиц (low pathogenic avian influenza viruses, LPAIV) расположены в основаниях эволюционных ветвей всех субтипов вирусов гриппа А. Они эволюционируют медленно и сохраняют ряд характерных признаков. К таким признакам относятся: консервативное строение рецепторсвязывающего участка в верхушечной части сайта протеолитического расщепления, характерные для HPAIV – RSKV и RSEV; наличие стоп-кодонов в позициях 12 и 58 и мутацию N66S в рамке считывания белка PB1-F2; наличие в NA подтипов H5 и H7 полиосновного сайта протеолитического расщепления, характерные для LPAIV – RSKV и RSEV; наличие в NA подтипов H5 и H7 полиосновного сайта протеолитического расщепления, характерный для HPAIV.

В представленной работе на микрочипах «Биогрипп» проанализировано 42 штамма вируса гриппа А, выделенных от диких водоплавающих птиц в черте города Москвы, 5 референсных штаммов, изолированных от птиц и людей и различающихся по патогенности, а также 5 экспериментальных реассортантов, для которых определяли происхождение генных сегментов.

МАТЕРИАЛЫ И МЕТОДЫ

Вирусы

Вирусы из фекалий чаек и уток выделены в 2006–2014 гг. на берегу пруда в Тропаревском парке города Москвы и хранятся в коллекции Федерального научного центра исследований и разработки иммунобиологических препаратов им. М. П. Чумакова (Москва, Россия).

Реассортантный вирус VNH5N1-PR8/CDC-RG (VN-PR) (H5N1) сконструирован в Центрах по контролю и профилактике заболеваний США (Centers for Disease Control and Prevention, Atlanta, USA) и содержит гены, кодирующие белки NA и HA от вируса A/Vietnam/1203/2004 (H5N1), а остальные — от штамма A/Puerto Rico/8/34 (H1N1) (PR8). Вирус любезно предоставлен д-ром R. Donis. В гене NA методом обратной генетики модифицирован участок кодирующий полиосновный сайт нарезания. Холодоадаптированный вирус A/Leningrad/134/17/57 (H2N2) (Len) любезно предоставлен проф. Л. Г. Руденко (Институт экспериментальной медицины, Санкт-Петербург, Россия). Вирус A/Hamburg/5/2009 любезно предоставлен д-ром М. Н. Матросовичем (Institute of Virology, Philippus University, Marburg, Germany), Вирус A/mallard/Sweden/91/2002 (H7N9) любезно предоставлен д-ром R. A. Fouchier (Department of Virology, Erasmus Medical Centre, Rotterdam, The Netherlands). Вирус A/duck/Buryatia/664/1988 (H3N1) получена из коллекции Национального исследовательского центра эпидемиологии и микробиологии имени почетного академика Н. Ф. Гамалеи (Москва, Россия).

Полные названия и обозначения вирусов приведены в Табл. 1.
Таблица 1. Исследованные вирусы

№	Вирус	Обозначение	Субтип	Номер в GenBank (ген)	PB1-F2	Линия NS1*
1	A/duck/Buryatia/664/1988	d/664	H3N1	MF969261, MF969262 (HA, NA)	N	A
2	A/duck/Primorie/3628/2002	d/3628	H9N2	DQ787797, DQ787799, DQ787800 (HA, M, NS)	N	A
3	A/mallard/Sweden/91/2002	m/Sw	H7N9		N	A
4	A/gull/Moscow/3100/2006	g/5100	H6N2	EU152234–EU152241	N	A
5	A/duck/Moscow/3554/2008	d/5554	H5N1	GU991376, MF969260 (HA, NA)	N	A
6	A/duck/Moscow/3556/2008	d/5556	H5N1		N	A
7	A/duck/Moscow/3661/2008	d/3661	H4N6	MF680290–MF680297	N	A
8	A/duck/Moscow/3641/2008	d/3641	H11N9	GU991377 (HA)	N	A
9	A/duck/Moscow/3806/2009	d/3806	H3N8	CY120775 (HA)	N	B
10	A/duck/Moscow/3735/2009	d/3735	H4N6	CY120772, MF422091–MF422097	N	B
11	A/duck/Moscow/3740/2009	d/3740	H4N6	CY120773, MF422098–MF422104	N	B
12	A/duck/Moscow/3799/2009	d/3799	H4N6	CY120774, MF422105–MF422111	N	B
13	A/duck/Moscow/3720/2009	d/3720	H6N2	CY120771 (HA)	N	B
14	A/duck/Moscow/4242/2010	d/4242	H5N8		S	A
15	A/duck/Moscow/4298/2010	d/4298	H5N8		N	A
16	A/duck/Moscow/4203/2010	d/4203	H5Nx		N	A
17	A/duck/Moscow/4238/2010	d/4238	H5N6		N	A
18	A/duck/Moscow/4182/2010	d/4182	H5N5	KF885672–KF885679	N	A
19	A/duck/Moscow/4206/2010	d/4206	H5N3		N	A
20	A/duck/Moscow/4031/2010	d/4031	H6N2		S	A
21	A/duck/Moscow/4494/2011	d/4494	H5N8		S	A
22	A/duck/Moscow/4521/2011	d/4521	H5N8		S	A
23	A/duck/Moscow/4522/2011	d/4522	H5N8		S	A
24	A/duck/Moscow/4681/2011	d/4681	H3N8		S	A
25	A/duck/Moscow/4661/2011	d/4661	H5N8		N	A
26	A/duck/Moscow/4518/2011	d/4518	H4N6	MF673524–MF673531	N	A
27	A/duck/Moscow/4528/2011	d/4528	H4N6	MF673532–MF673539	N	A
28	A/duck/Moscow/4641/2011	d/4641	H4N6	MF422112–MF422119	N	A
29	A/duck/Moscow/4652/2011	d/4652	H4N6	KX518711–KX518718	S	A
30	A/duck/Moscow/4643/2011	d/4643	H4N6	KX509943–KX509950	N	A
31	A/duck/Moscow/4524/2011	d/4524	H5N2		N	A
32	A/duck/Moscow/4771/2012	d/4771	H4N6	MF673540–MF673547	N	A
33	A/duck/Moscow/4772/2012	d/4772	H4N6		N	A
34	A/duck/Moscow/4781/2012	d/4781	H4N6	KX530510–KX530517	N	A
35	A/duck/Moscow/4843/2012	d/4843	H4N6	MF673548–MF673555	N	A
36	A/duck/Moscow/4844/2012	d/4844	H4N6		N	A
37	A/duck/Moscow/4788/2012	d/4788	H3N8		N	A
38	A/duck/Moscow/4780/2012	d/4780	H3N8		N	B
39	A/duck/Moscow/4952/2013	d/4952	H5N3		N	A
40	A/duck/Moscow/4971/2013	d/4971	H5N3		N	A
41	A/duck/Moscow/4970/2013	d/4970	H1N1		N	B
42	A/duck/Moscow/5037/2014	d/5037	H5N8		N	A
43	A/Leningrad/134/17/57	Len	H2N2		N	A
44	A/Puerto Rico/8/34	PR8	H1N1		N	A
45	A/Hamburg/5/2009	Hamb	H1N1		N	A
46	A/Vietnam/1203/2004 × A/Puerto Rico/8/34	VN-PR	H5N1		N	A
47	A/chicken/Kurgan/3654at/2005	ch/Ku	H5N1	HQ724520–HQ724527	N	A

Экспериментальные рессоартанты

№	Вирус	Обозначение	Субтип	Номер в GenBank (ген)	PB1-F2	Линия NS1*
48	VN-PR × Len (клон 5697)					A
49	VN-PR × Len (клон 4760)					A
50	Hamb × Len (клон 4885)					A
51	Hamb × Len (клон 4886)					A
52	Hamb × Len (клон 4888)					A

* Аминокислота в позиции 66 белка PB1-F2.

* Линия гена NS1 согласно [15].
Выделение вирусов

Выделение вирусов проводили из свежих фекалий, которые суспендировали в двойном объеме фосфатно-солевого буфера (PBS) с добавлением антибиотиков: 0.4 мг/мл гентамицина, 0.1 мг/мл канамицина, 0.01 мг/мл нистатина и 2% раствора MycoKill AB (PAALabatories GmbH). Суспензию центрифугировали 10 мин при 4 000 об/мин и полученным супернатантом (200 мл) заражали 10-дневные куриные эмбрионы (КЭ). Аллантоиноющую жидкость собирали через 48 ч и для дальнейшего пассирования отбирали пробы, положительные в реакции гемагглютинации (РГА).

Секвенирование

РНК выделяли серционным методом (набор Diatom RNA prep; ООО «Лаборатория Изоген», Россия) или с тризомом (TRI Reagent LS, Sigma) из аллантоиновой жидкости инфицированных КЭ и освобожденного 30%-го гомогената, приготовленного из органов на PBS. В реакциях обратной транскрипции с ферментом MMLV (Promega, США) и полимеразой цепочной реакции (ПЦР) с Taq-полимеразой использовали универсальные или специфические для вируса гриппа праймеры. Амфилицированные в ПЦР фрагменты разделяли в о.8—1.5%-ном агарозном геле в присутствии бромистого этидия, извлекали из агарозного геля и очищали с помощью коммерческих наборов (OOO «Лаборатория Изоген» или Wizard PCR Preps DNA Purification Systems, A7170, Promega). Секвенирование ДНК проводили с использованием набора реактивов ABI PRISM® BigDye™ Terminator v.3.1 с по следующим анализом продуктов реакции на автоматическом секвенинатуре DНК ABI PRISM 3100-Avant.

Анализ на микрочипе

Для анализа использовали кДНК, синтезированную в реакции обратной транскрипции в присутствии вирусной РНК, фермента MMLV и праймера uni12 5’-AGCAAAAGCAGG-3’. кДНК вируса амплифицировали методом предельных разведений, выращивая в течение 96 ч при 26°С. ПЦР-продукт образует комплекс с комплементарным иммобилизованным зондом. Анализ результатов гибридизации проводили с помощью универсального аппаратурно-программного комплекса ТУ 9445-004-02699501-2006 (Институт молекулярной биологии им. В. А. Энгельгардта, Россия). Сигнал флуоресценции в каждой ячейке регистрировали камерой с ПЗС-матрицей и подвергали оцифровке.

Анализ патогенности вирусов для мышей

Мышам линии BALB/c весом 8–12 г вводили интраоперационно под легким эфирным наркозом по 50 мл цельной или разведенной вирусодержащей аллантоиноной жидкости (ВАЖ). Проводили ежедневное наблюдение за состоянием подопытных особей и изменением их веса в сравнении с животными контрольной группы. На 14-е сутки после заражения отбирали кровь для определения уровня антигена методом ИФА. Инфекционность вирусов определяли титрованием на КЭ и выявляли в lg эмбриональных инфекционных доз (lg ЭИД50).

Получение реассортантов

Для получения холодоадаптированных реассортантов с донором аттенуации Len 10-дневные КЭ заражали одновременно вирусами Len и донором поверхностных белков – по 7,0 lg ЭИД50 каждого вируса. КЭ инкубировали 18 ч при 32°С, после чего проводили еще один пассаж длительностью 18 ч при 32°С. Аликвоту полученного вирусного урожая инкубировали в течение ночи с мышиной иммунной сывороткой против вируса Len; затем клонировали методом предельных разведений при 26°С и отбирали пробы, положительные в реакции торможения гемагглютинации с сывороткой против донора аттенуации Len. Порция вируса урожая инкубировали в течение 18 ч при 32°С, после чего проводили еще один пассаж длительностью 18 ч при 32°С. Порция полученного вирусного урожая инкубировала в течение ночи с мышиной иммунной сывороткой против вируса Len; затем клонировали методом предельных разведений при 26°С и отбирали пробы, положительные в реакции торможения гемагглютинации с сывороткой против донора аттенуации Len.

Результаты

В осенние месяцы 2006–2014 гг. на берегу московского пруда в Тропаревском парке собирали фекалии диких водоплавающих птиц и изолировали из них вирусы гриппа. За 9 лет было собрано около 2 000 об разцов, из которых выделили 42 штамма вируса гриппа птиц (Табл. 1). Все полученные вирусы характеризовались высокой урожайностью в КЭ и не обладали патогенностью для мышей [16]. Три вируса испытали на цыплятах и также выявили их апатогенность [17]. Геном нескольких вирусов частично или полностью секвенировали [18]. Все выделенные вирусы проанализированы на микрочипе «Биогрипп».

В качестве референсных штаммов использовали вирусы: A/duck/Buryatia/664/1988 (H3N1), A/duck/Primorie/3628/2002 (H9N2), A/mallard/Sweden/91/2002 (H7N9), штамм A/chicken/Kurgan/3654at/2005 (H5N1) [19], аттенуированный в лабораторных условиях, а также циркулировавшие в человеческой популяции
вирусы гриппа подтипов H1N1, H2N2 и H1N1pdm. Основные характеристики и краткие обозначения исследованных вирусов приведены в Табл. 1.

В результате анализа определены субтипы HA и NA всех изолятов. Для вирусов, у которых гены, кодирующие белки HA и NA, были секвенированы ранее, результаты секвенирования на биочипе соответствовали результатам секвенирования.

Факторы патогенности в природных изолятах
Полиосновной сайт нарезания HA был идентифицирован в HA вируса ch/Ku (H5N1), что соответствует данным секвенирования (GenBank HQ724523.1).

Устойчивость к лекарственным препаратам адаптантного рода, обусловленная заменами в белке M2, обнаружена только у вирусов гриппа человека: PR8 (A27 и N31) и Hamb (N31).

На Рис. 1 приведены данные изменения веса мышей для вирусов гриппа подтипов H3N8 и H3N1. Динамика изменения веса мышей, зараженных утиными вирусами 2008–2014 гг. с N66 и S66 в белке PR8-F2, не отличалась достоверно от динамики контрольных. Аналогичные результаты получены и для вирусов подтипов H4N6 и H6N2 (Табл. 2). Важно подчеркнуть, что у всех зараженных мышей наблюдался мощный вирусспецифический иммунный ответ, проявляющийся в высоких титрах антител (по данным ИФА). Это свидетельствовало о том, что заражение прошло успешно. Единственный утиный штамм вируса гриппа, который вызывал болезнь и гибель мышей, – изолят 1988 года d/664.

Таблица 2. Патогенность и иммуногенность для мышей вирусов гриппа диких птиц, отличающихся по аминокислотной последовательности в белке PB1-F2

Вирус	Субтип	A.k. 66	LD₅₀	CT₅₀
d/4242	H5N8	S	> 6	2525
d/4494	H5N8	S	> 6	3215
d/4521	H5N8	S	> 6	3594
d/4522	H5N8	S	> 6	2163
d/664	H5N1	N	1.8	10000
d/5554	H3N1	N	> 6	1983
d/4298	H3N8	N	> 6	1193
d/4661	H3N8	N	> 6	3519
d/4182	H5N3	N	> 6	1748
d/4206	H5N3	N	> 6	4213
d/4641	H4N6	N	> 6	420
d/652	H4N6	S	> 6	515
g/5100	H6N2	N	> 6	312
d/5720	H6N2	N	> 6	783
d/4031	H6N2	S	> 6	406

* Аминокислота в позиции 66 белка PB1-F2.
* Доза вируса, вызывающая гибель 50% мышей, выражена в lg ЭИД₅₀.
* Среднегеометрический титр (CTT) антител в мышинных сыворотках (по данным ИФА).

Определение состава генома лабораторных реассортантов
Благодаря тому, что микрочип «Биогрипп» содержит большое число зондов к каждому из генов разных вирусов гриппа, профили связывания каждого из генов для эволюционно отдаленных вирусов обычно сильно различаются. Например, профили связывания вирусов PR8, Len и Hamb с 14 зондами к гену NS резко отличались как друг от друга, так и от вирусов гриппа птиц (Рис. 2). Различались также профили связывания с 15 зондами к гену M с 14 зондами к гену PB1-F2. (Рис. 3 и 4). Таким образом, показал, что микрочип «Биогрипп» позволяет дифференцировать генные вариации вирусов, мы применяли его для определения происхождения генных сегментов лабораторных реассортантов.

Классический способ получения аттенуированных вакцинных штаммов для живых гриппозных вакцин заключается в реассортации актуального эпидемического вируса с холодоадаптированным донором аттенуации. Реассортация достигается при
Рис. 2. Шесть характерных профилей связывания вирусов с 14 зондами к гену, кодирующему белок NS1. Здесь и далее зонды обозначены как «z».

Рис. 3. Пять характерных профилей связывания вирусов с 15 зондами к гену, кодирующему белок M2.

Рис. 4. Семь характерных профилей связывания вирусов с 14 зондами к гену, кодирующему белок PB1-F2
одновременном заражении КЭ двумя родительскими штаммами и последующем выращивании в селективных условиях [20]. Вакциный штамм представляет собой реассортант с двумя генами, кодирующими белки NA и HA от эпидемического родительского вируса, и шестью остальными генами от донора аттенуации. Контроль состава генома реассортантов – исключительно важная практическая задача. Для ее решения в Институте экспериментальной медицины (Санкт-Петербург, Россия) разработан экспресс-метод микс-ПЦР, позволяющий определять состав генома реассортантов [21]. По сравнению с микс-ПЦР биочип имеет ряд преимуществ при определении состава генома вируса: 1) отпадает необходимость иметь специфические праймеры ко всем генам всех используемых в работе вирусов, 2) высокая производительность и 3) низкая стоимость.

В данном исследовании мы проанализировали 5 экспериментальных реассортантов по генам HA, NA, PB1, NS и M. Донорами поверхностных белков были вирусы VN-PR (H5N1) и Hamb (H1N1). Донором аттенуации служил холодоадаптированный вирус Len (H2N2). Анализ связывания на микрочипе позволил не только однозначно определить происхождение генов HA, NA, PB1, NS и M в реассортантах, но и распознать образцы, в которых присутствовала смесь генов обоих родителей. На Рис. 5 приведены профили связывания родительских вирусов Len и Hamb и экспериментального реассортанта 4886 с зондами к гену, кодирующему белок NS1. Видно, что профиль штамма 4866 является наложением профилей обоих родителей, то есть, содержит смесь генов родительских вирусов.

Все экспериментальные реассортанты содержали ген, кодирующий белок HA от донора поверхностных белков. Реассортанты с H5 HA содержали ген NA N2 от донора Len (H2N2), а реассортанты вируса Hamb (H1N1) – ген NA N1 от родительского штамма Hamb. Однако только в двух штаммах (3697 и 4888) гены PB1, NS и M были от донора аттенуации Len. Штамм 4760 содержал ген PB1 вируса PR8 и смесь генов M – от Len и PR8. Штамм 4885 содержал гены PB1 и M вируса Hamb и смесь генов NS – от обоих родителей. Штамм 4886 содержал ген PB1 от Len, а NS и M – от обоих родителей (Табл. 3).

Анализ происхождения генов природных изолятов

В отдельных случаях микрочип «Биогрипп» позволяет определить эволюционное происхождение генов в природных изолятах вирусов гриппа. Так, по профилям связывания с зондами 7–14 к гену NS1 вирусы диких птиц четко разделились на две группы. В первую группу вошли изоляты – и их большинство, – которые практически не взаимодействовали с зондами 11 и 12 и хорошо связывались с зондами 8, 9, 10 и 14. Вирусы второй группы, напротив, хорошо связывались с зондом 12 и совершенно не взаимодействовали с зондами 9 и 10. Изоляты d/4518 и d/5740 являются характерными представителями вирусов первой и второй групп соответственно (Рис. 2). Секвенирование выборочных штаммов каждой из групп позволило установить, что эти различия обусловлены тем, что вирусы содержат ген NS1 двух разных эволюционных линий – A или B [15]. Эти линии, разошедшиеся около 200 лет назад, отличаются 8 нуклеотидами на участке 655–700, перекрывающем зондами 8–12. Таким образом, можно уверенно отнести гены NS1 всех изученных утиных вирусов к определенной эволюционной линии.

Вирусы гриппа подтипов H5N1 и H5N3 по профилям связывания с зондами к HA разделились на две группы по двум параметрам. Во-первых, высокопатогенный штамм ch/Ku (H5N1) связывал зонды к полиосновному участку расщепления HA, а непатогенные вирусы диких уток (H5N3) не связывали.
Таблица 3. Характерные признаки родительских и реассортантных вирусов, по которым можно судить о генном составе реассортантов

Вирус	HA	NA	PB1-F2	NS1	M2				
	Стоп-кодон^a	Вирус^a	PDZ^a	Стоп-кодон^a	Вирус^a	А.к. 27, А.к. 31^b	Вирус^a		
Len	H2	N2	Len	RSKV	+7	Len	V, S	Len	
PR8	H1	N1	PR8	RSEV	0	PR8	A, N	PR8	
Hamb	H1	N1	11, 57	Hamb	–	-11	Hamb	V, N	Hamb
VN-PR	H5	N1	PR8	RSEV	0	PR8	A, N	PR8	

Реассортанты

3697	H5	N2	- Len	RSKV	+7	Len	V, S	Len	
4760	H5	N2	- PR8	RSKV	+7	Len	A/V, N/S	PR+Len	
4885	H1	N1	11, 57	Hamb	RSKV	-11, +7	Len+Hamb	V, N	Hamb
4886	H1	N1	- Len	RSKV	-11, +7	Len+Hamb	V, N/S	Len+Hamb	
4888	H1	N1	- Len	RSKV	+7	Len	V, S	Len	

^a Цифрами обозначены позиции стоп-кодонов в соответствующих генах: «+» –отсутствие стоп-кодона в рамке считывания PB1-F2, 0 – стандартная позиция стоп-кодона в рамке считывания NS1.

^b Принадлежность гена реассортанта на основе характерного профиля связывания с зондами.

^c Последовательность лиганда PDZ-домена.

^d Аминокислоты в позициях 27 и 51 белка M2.

Во-вторых, вирусы H5N1 преимущественно связывались с зондом 1 из набора, распознающего H5 HA, а вирусы H5N3 лучше всего связывались с зондами 3 и 4 (Рис. 5). Таким образом, профили связывания позволяют распознать эволюционную ветвь HPAIV H5N1 и могут быть маркерами высокопатогенных вирусов.

Особый интерес представлял штамм d/664 (H3N1), так как это единственный в нашей практике вирус гриппа, выделенный от диких уток и оказавшийся патогенным для мышей. По профилю связывания с зондами к гену HA этот вирус отличается от всех остальных Н5-вирусов, к гену NA N1 – близок к профилям высокопатогенных H5N1 вирусов, а к гену PB1-F2 – напоминает такой для вирусов гриппа подтипа H2N2, выделенных от человека (Рис. 6, 7 и 8). Конечно, по этой информации невозможно судить о причинах патогенности вируса d/664, но ее достаточно, чтобы обратить на него пристальное внимание. В дальнейшей работе предполагается провести полногеномное секвенирование этого вируса.

ОБСУЖДЕНИЕ

В работе проанализировано 42 природных изолята вируса гриппа A субтипов H1N1, H5N1, H3N2, H5N6, H3N8, H4N6, H5N3, H6N2, H7N9, H9N2 и H11N9 на наличие известных на сегодняшний день и описанных в литературе факторов патогенности [9, 10, 12]. В результате выявлено, что такие маркеры, как последовательность ESEV лиганда PDZ-домена в вирусом белке NS1 и замена N66S в рамке считывания вирусного белка PB1-F2, в контексте генома вирусов гриппа диких уток не связана с патогенностью вируса для мышей. Все исследованные нами вирусы эффективно инфицировали мышей, вызывали сильный прирост специфических антител, но не приводили к заболеванию – никаких клинических симптомов не зарегистрировано. Это лишний раз подтверждает, какой сложной и многофакторной характеристикой является патогенность. Среди исследованных штаммов высокопатогенными, то есть вызывающими гибель мышей при низких дозах заражения, были вирусы гриппа подтипа H5N1: ch/Ku и реассортант VN-PR, – а также вирус d/664 (H5N1). Первый из перечисленных – классический высокопатогенный вирус, несмотря на наличие N66 в белке PB1-F2. Его патогенность, в частности, определяется полиосновной последовательностью в сайте нарезания белка HA. Реассортант VN-PR лишен полиосновного сайта и прочих формальных маркеров патогенности (содержит NS1, терминированный RSEV; N66 в PB1-F2 и сайт нарезания, расщепляемый только секреторными сериновыми протеазами), но его патогенность для мышей мало отличается от патогенности ch/Ku: он вызывает гибель мышей при заражении дозой 2.0 lg ЭИД₅₀, и, наконец, высокопатогенный вирус из нашей коллекции – d/664 – по маркеры не отличается от других вирусов подтипа H5N1, не вызывающих у мышей никаких клинических симптомов. Вирус человека Hamb также вызывал заболевание мышей с падением веса (неопубликованные данные), несмотря на характерные признаки, которые принято считать аттенуирующими: отсутствие белка PB1-F2 и отсутствие лиганда PDZ-домена за счёт укорочения белка NS1 (Табл. 3).

Таким образом, патогенность в большей степени определяется не отдельными аминокислотными заменами, а является характерным свойством вирусов конкретных эволюционных линий. Микрочип «Био-грипп» позволяет не только субтиперировать HA и NA, но и, в отдельных случаях, определять эволюционные линии генов, кодирующих поверхностные и внутренние белки вирусов гриппа. В сочетании с возможностью одновременно анализировать большое число образцов по многим параметрам микрочип может быть полезен для мониторинга эволюционных линий.
Мониторинг вирусов гриппа птиц в Москве

Рис. 6. Профили связывания вирусов с зондами к гену HA подтипа H5.

Рис. 7. Профили связывания вирусов с зондами к гену HA подтипа H3.

Рис. 8. Профили связывания вирусов с зондами к гену NA подтипа N1.
мониторинг вирусов гриппа птиц в Москве

патогенных вирусов гриппа в природе. Использованный нами набор зондов был создан в первую очередь для анализа вирусов гриппа человека. Возможно, для анализа вирусов гриппа из дикой природы имеет смысл сконструировать и использовать дополнительные зонды – для не вошедших в данный набор генов вирусов гриппа, что позволит распознавать потенциально опасные эволюционные ветви разных генов.

БЛАГОДАРНОСТИ

Авторы признательны Д. А. Грядунову, зам. директора по науке ИМБ РАН, – за организационную помощь в проведении исследований на микрочипах, проф. Л. Г. Руденко (Институт экспериментальной медицины, Санкт-Петербург, Россия) – за предоставление донора аттенуации A/Leningrad/134/17/57 (H2N2), д-ру М. Н. Матросовичу (Institute of Virology, Philips University, 35043 Marburg, Germany) – за предоставление вируса A/Hamburg/5/2009, д-ру Ron A. M. Fouchier (Department of Virology, Erasmus Medical Centre, Rotterdam, The Netherlands) – за предоставление вируса A/mallard/Sweden/91/2002 (H7N9), д.б.н. С. С. Ямниковой – за предоставление вируса A/duck/Buryatia/664/1988. Работа поддержана грантом РФФИ 14-04-00547-а.

КОНФЛИКТ ИНТЕРЕСОВ

Авторы не преследуют коммерческих или финансовых интересов.

ЦИТИРОВАНИЕ

Гейдаров РН, Ломакина НФ, Боравлева ЕЮ, Холодилов ИС, Гамбарян АС, Михайлович ВМ, Фесенко ЕЕ. Приемление микрочипов для идентификации происхождения генов вирусов гриппа диких птиц. MIR J, 2017; 4(1), 10-20, doi: 10.18527/2500-2236-2017-4-1-10-20.

АВТОРСКИЕ ПРАВА

© 2017 Гамбарян и др. Эта статья публикуется в свободном доступе в соответствии с лицензией Creative Commons AttributionNonCommercial-ShareAlike 4.0 International Public License (CC BY-NC-SA), которая позволяет неограниченное использование, распространение и воспроизведение на любых носителях при условии, что указываются автор и источник публикации, а материал не используется в коммерческих целях.

ЛИТЕРАТУРА

1. Webster RG, Bean WI, Gorman OT, Chambers TM, Kawaoka Y. Evolution and ecology of influenza A viruses. Microbiol Rev. 1992; 56(1), 152-79. PubMed PMID: 1579108.
2. Alexander DJ. Should we change the definition of avian influenza for eradication purposes? Avian Dis. 2003; 47(3 Suppl), 976-81. doi: 10.1637/0005-2086-47.s3.976.
3. Stech O, Veits J, Weber S, Deckers D, Schroer D, Vahlenkamp TW, et al. Acquisition of a polybasic hemagglutinin cleavage site by a low-pathogenic avian influenza virus is not sufficient for immediate transformation into a highly pathogenic strain. J Virol. 2009; 83(11), 5864-8. doi: 10.1128/JVI.02469-08.
4. Banks J, Speidel ES, Moore E, Plowright L, Piccirillo A, Capua I, et al. Changes in the haemagglutinin and the neuraminidase genes prior to the emergence of highly pathogenic H7N1 avian influenza viruses in Italy. Arch Virol. 2001; 146(5), 963-73. doi:10.1007/s007050170128.
5. Hatta M, Gao P, Halfmann P, Kawaoka Y. Molecular basis for high virulence of Hong Kong H5N1 influenza A virus and the NS gene of human H5N1 influenza A virus contribute to high virulence in ferrets. PLoS Pathog. 2010; 6(9), e1001106. doi: 10.1371/journal.ppat.1001106.
6. Conenello GM, Zamarin D, Perrone LA, Tumpey T, Palese P. A single mutation in the PB1-F2 protein of H5N1 (HK/97) and 1918 influenza A viruses contributes to increased virulence in mice. Proc Natl Acad Sci USA. 2005; 102(51), 18590-5. doi: 10.1073/pnas.0507415102.
7. Imai H, Shinya K, Takano R, Kiso M, Muramoto Y, Sakabe S, et al. The HA and NS genes of human H5N1 influenza virus contribute to high virulence in ferrets. PLoS Pathog. 2007; 3(10), 1414-21. doi: 10.1371/journal.ppat.0030141.
8. Seo SH, Hoffmann E, Webster RG. Lethal H7N1 influenza viruses escape host anti-viral cytokine responses. Nat Med. 2002; 8(9), 950-4. doi: 10.1038/nm757.
9. Jiao P, Tian G, Li Y, Deng G, Jiang Y, Liu C, et al. A single-amino-acid substitution in the NS1 protein changes the pathogenicity of H5N1 avian influenza viruses in mice. J Virol. 2007; 82(3), 1146-54. doi: 10.1128/JVI.01698-07.
13. Jackson D, Hossain MJ, Hickman D, Perez DR, Lamb RA. A new influenza virus virulence determinant: the NS1 protein four C-terminal residues modulate pathogenicity. Proc Natl Acad Sci USA. 2008; 105(11), 4381-6. doi: 10.1073/pnas.0800482105.

14. Heydarov RN, Fesenko EE, Shaskolskiy BL, Klotchenko SA, Vasin AV, Titov SV, et al. Identification of genetic determinants of influenza A virus resistance to adamantanes and neuraminidase inhibitors using biological microarray. Dokl Biochem Biophys. 2015; 460, 4-8. doi: 10.1134/S1607672915010032.

15. Worobey M, Han GZ, Rambaut A. A synchronized global sweep of the internal genes of modern avian influenza virus. Nature. 2014; 508(7495), 254-7. doi: 10.1038/nature13016.

16. Боравлева ЕЮ, Ломакина НФ, Гамбарян АС. Выделение вирусов гриппа А от птиц на водоёмах Москвы. Казарка. 2012; 15(2), 13-30.

17. Boravleva EY, Chvala IA, Lomakina NF, Repin PI, Mudrak NS, Rudenko LG, et al. Testing of apathogenic influenza virus H5N3 as a poultry live vaccine. Vopr Virusol. 2015; 60(4), 44-9. PubMed PMID: 26665455.

18. Gambaryan AS, Boravleva EY, Lomakina NF, Kropotkina EA, Gordeychuk IV, Chvala IA, et al. Immunization with live nonpathogenic H5N3 duck influenza virus protects chickens against highly pathogenic H5N1 virus. Acta Virol. 2016; 60(3), 316-27. doi: 10.4149/av_2016_03_316.

19. Lomakina NF, Boravleva EY, Kropotkina EA, Yamnikova SS, Drygin VV, Gambaryan AS. Attenuation of A/Chicken/Kurgan/3/2005 (H5N1) influenza virus using selection in an environment simulating the life cycle of wild duck viruses. Mol Gen Microbiol Virusol. 2011; 26, 152-159. doi: 10.3103/S0891416811030025.

20. Alexandrova GI, Polezhaev FI, Budilovsky GN, Garmashova LM, Topuria NA, Egorov AY, et al. Recombinant cold-adapted attenuated influenza A vaccines for use in children: reactogenicity and antigenic activity of cold-adapted recombinants and analysis of isolates from the vaccinees. Infect Immun. 1984; 44(3), 734-9. PubMed PMID: 6724695.

21. Киселева ИВ, Voeten JTM., Teley LC, Ларионова НВ, Дубровина НА, Бердыхулова ЖА, Баженова ЕА, van den Bosch H, Heldens JG, Руденко ЛГ. Анализ состава генома штаммов сезонной и пандемической жи- вой гриппозной вакцины. Молекулярная генетика, микробиология и вирусология. 2011; 4, 29-36.