Ambiguity surrounds the existence and morphology of the human forniceal commissure. We combine advanced in-vivo tractography, multidirectional ex-vivo fiber dissection, and multi-planar histological analysis to characterize this structure’s anatomy. Across all 178 subjects, in-vivo fiber dissection based on the Human Connectome Project 7 T MRI data identifies no interhemispheric connections between the crura fornicis. Multidirectional ex-vivo fiber dissection under the operating microscope demonstrates the psalterium as a thin soft-tissue membrane spanning between the right and left crus fornicis, but exposes no commissural fibers. Multiplanar histological analysis with myelin and Bielchowsky silver staining, however, visualizes delicate cruciform fibers extending between the crura fornicis, enclosed by connective tissue, the psalterium. The human forniceal commissure is therefore much more delicate than previously described and presented in anatomical textbooks. This finding is consistent with the observed phylogenetic trend of a reduction of the forniceal commissure in non-human primates compared to non-primate eutherian mammals.
Interhemispheric white matter circuits transverse the hemispheric midline and connect homotopic brain regions. Amongst these interhemispheric connections, the corpus callosum is the most prominent neopallial commissure in the human brain. Phylogenetically older commissures common to all vertebrates—the anterior commissure, ventral hippocampal, and fornical (dorsal hippocampal) commissure—demonstrate a disproportionate reduction in primates. While the anatomy and functions of the first two have been well described in the human brain, the existence, morphology, and function of a fornical commissure remains elusive.

The first anatomical descriptions of the fornical commissure as a triangular subpial structure date back to macroscopic studies in monotremata and marsupialia in the late 19th century. The fornical commissure was first referred to as (dorsal) psalterium or David’s lyra, given its macroscopic similarity to the psalter, a zither-like instrument. Subsequent terms included the dorsal hippocampal commissure in contrast to the ventral hippocampal commissure—the fornix transversus, or the interammonic commissure. The first demonstration of the fornical commissure in non-human primates (NHP) using silver impregnation methods emphasized the relative paucity of these fibers compared to non-primate eutherian mammals. The striking reduction in its magnitude was confirmed during extensive investigations of the commissural connections of the hippocampal formation in macaques using axonal tracing. These tracer studies showed that the fibers of the NHP fornical commissure did not originate in the hippocampal formation proper but in parahippocampal areas: the periallocortical presubiculum and entorhinal cortex, as well as—albeit to a lesser extent—the isocortical and proisocortical areas of the posterior parahippocampal gyrus.

In 1993, Gloor et al. published a comprehensive histological description of the hippocampal commissural system in humans. While there was no significant remnant of the ventral hippocampal commissure, the dorsal hippocampal commissure (i.e., fornical commissure) was described as a voluminous structure with a midline thickness corresponding to approximately one-fourth of the splenium. This description of the fornical commissure in humans distinctly exceeded that in NHP and thus contradicts the overall phylogenetic trend. It also contradicted electrophysiological studies, that implied the non-existence of a direct inter-hippocampal commissural connection in the human brain. To the best of our knowledge, the study of Gloor et al. constitutes the only histological study of the human fornical commissure to date. More recent studies using ex vivo fiber dissection and in vivo tractography provided conflicting results regarding the existence and morphology of a fornical commissure in the human brain.

In this multimodal anatomical study, we characterized the morphology of the human fornical commissure by combining advanced in vivo tractography, multidirectional ex vivo fiber dissection, and multiplanar histological analysis.

Results

In vivo fiber dissection (tractography). We successfully identified and mapped the fornix in all 178 participants (individual dissections are available from https://neurovault.org/collections/12108). Figure 1 provides a representative tractography reconstruction of the fornix and its adjacent commissural white matter tracts. We reliably identified the anterior and posterior columns of the fornix enclosing the anterior commissure, the body of the fornix underneath the corpus callosum, and the split of fornix into the crura fornacis at the posterior end of the corpus callosum (splenium). The crura arched around the thalami and continued as fimbriae along the medial temporal lobe to terminate in the hippocampi. Commisural fibers between the crura fornacis were, however, not evident. Figure 2 shows the fornix percentage overlay map. The full map is provided online (https://neurovault.org/collections/12108/). There was no evidence of a fornical commissure.

Multidirectional ex vivo fiber dissection. The subsplenial region between the fornical crura, where the fornical commissure would be expected, was approached in a stepwise fashion. Fiber dissection was performed from ventral to dorsal, dorsal to ventral, and from caudal to rostral.

Dissection from ventral to dorsal (Fig. 3): The entorhinal cortex as well as the cortex from the parahippocampal and fusiform gyri was peeled away, and the arcuate fibers were removed to expose the fibers of the parahippocampus and the inferior longitudinal fasciculus. The mesencephalon, the thalamus, part of the hypothalamus and the caudate nucleus were removed to expose the columnae, body and crura of the fornices, and the roof of the lateral ventricles. To expose the fimbria, the fibers of the parahippocampal gyrus and the inferior longitudinal fasciculus were removed as well as part of the coru ammonis and the ependyma of the floor of the atrium and temporal horn. The fornix was then dissected from the dorsal end of the fimbria along the crus towards the body (Fig. 3d). By the end of the dissection the body of the corpus callosum was exposed (Fig. 3e). We were able to identify the psalterium as a thin soft tissue membrane spanning between the right and left crus fornacis in all specimens. It was limited rostrally by the merging bodies of the fornix, rostro-dorally by the septum pellicudum, dorso-caudally it attached to the splenium of the corpus callosum and ventrally it abutted the velum interpositum. We were, however, unable to identify any crossing fibers between the crura fornacis.

Dissection from dorsal to ventral (Fig. 4): Both hemispheres were cut down to the level of the corpus callosum, exposing the supracommissural hippocampus. The callosal fibers were removed layer by layer until the ventricles, the septum pellicudum, and the crus fornacis were shining through. On one side the ventricle was opened to identify the caudate nucleus, the choroid plexus, and crus of the fornix. The removal of the remaining callosal fibers was performed and the underlying psalterium dissected without identification of crossing fibers between the fornices.

Dissection from caudal to rostral (Fig. 5a–g): The hemispheres were reduced up to the splenium of the corpus callosum. The splenium was fenestrated to visualize the lateral ventricle, the crus fornacis and the psalterium. In the midline, the callosal fibers were separated and elevated from the psalterium. There were no fibers identified crossing from one crus fornacis to the other.

Based upon the measurements in nine human specimens (Table 1), the psalterium had a mean length of 1.4 cm (SD 0.40 cm) and a mean width of 2.4 cm (SD 0.51 cm) (Fig. 5). In summary, the psalterium was visualized in all human brain specimens as a soft tissue membrane that spans between the two crus fornacis and is bounded rostrally by the union of the crus fornacis to form the body of the fornix, rostro-dorally by the septum pellicudum, dorso-caudally by the splenium of the corpus callosum, and ventrally by the velum interpositum. It was not possible to identify commissural fibers between the two crus fornacis by further dissection of this membrane.

Multiplanar histological analysis. Representative examples of the myelin-stained histological appearance of coronal, sagittal and axial sections through the human splenium and caudal body of the corpus callosum are shown in Fig. 6. Supplementary Fig. 2 demonstrates a comparative study using the same tissue...
preparation and staining method in a sheep brain, in which the fornical commissure is readily identifiable on macroscopic examination. Supplementary Fig. 3 shows representative coronally oriented serial sections through the human brain using the Bielschowsky silver staining technique.

While the fornical (dorsal hippocampal) commissure was evident as a distinct und voluminous white matter tract between the two hippocampi in the sheep brain, in the human brain we identified only a delicate bundle of commissural fibers extending between the crura fornicis. While the splenial fibers showed a caudo-convex trajectory and were running in parallel bundles, the interforniceal fibers had a net-like configuration. In comparison to a previous histological description of the human fornical commissure, this commissural system was found to be very discreet and of small extent in the rostrocaudal axis. The caudal bulbous expansion of the splenium wrapped around the caudal contour of the fornical commissure. Rostrally, the fornical commissure formed an increasingly thinner plate fading out where the fornix detached itself from the undersurface of the corpus callosum and came together with the contralateral fornix. The commissural fibers were enclosed by connective tissue, which also formed the boundary to the splenium of the corpus callosum in the midline and the fibers of the forceps major laterally, corresponding to the macroscopically identified psalterium. Ventrally, the connective tissue was covered by pia mater, continuous with the pia mater of the fornices. Rostro-dorsally, the connective tissue layer merged into the septum pellucidum.

Discussion

The multimodal anatomical approaches of this study indicate that the human fornical commissure is much more delicate than...
previously described and presented in anatomical textbooks. This finding is consistent with the observed phylogenetic trend of a reduction of the fornical commissure in NHP compared to non-primate eutherian mammals. This anatomical redimensionalization of the fornical commissure permits a critical reinterpretation of previous studies and serves to tailor future investigations on the morphology, function, and pathophysiological role of this structure.

Virtual fiber dissection based on 7 Tesla diffusion-weighted imaging dataset of 178 participants did not identify interhemispheric connections between the crura fornici. Previous tractography literature has been inconclusive about the visualization of a fornical commissure: while some studies of the fornices did not describe commissural fibers\(^{30,32-34}\), others did describe a fornical commissure\(^{31,35,37,38}\). Considering the spatial proximity between fibers of the splenium and the fornical commissure, as histologically demonstrated in our study, there is a risk of misattributing splenial fibers as fibers of the fornical commissure in tractography studies. The tractographic phenotype of the fornical commissure in studies achieving putative detection\(^{31,35,37,38}\) resembles the visual appearance of rostrocaudal splenial fibers, but not that of histologically detected fornical commissure fibers in our study. The absence of evidence in our study, however, might not be the evidence of absence. Previous reports indicated that fibers crossing the hemispheric midline have a different diameter\(^{39}\). In this case, the algorithm might not be able to trace commissural connections accurately. While the Human Connectome Project 7 Tesla data is a high-field high-resolution dataset offering high quality in vivo data (1 mm) for studying connectational anatomy in the living human brain, future studies might benefit from using submillimeter resolution datasets.

Our stepwise dissections of nine previously frozen, formalin-fixed human brains using the operating microscope showed a fine triangular soft tissue membrane between the fornical crura, but no clear commissural fibers. The soft tissue membrane, which we identified in all specimens, was consistent with previous descriptions of the psalterium\(^{29}\). There is only a small number of fiber dissection studies specific to this anatomical region: no fibers suspicious of a fornical commissure were identified by Shah et al. of 2012\(^{27}\), Destrieux et al. 2013\(^{28}\), and Gündor et al. 2017\(^{30}\). However, Tubbs et al. visualized the psalterium in twenty specimens, and in some cases dissected individual fine fiber-like bundles within the psalterium, which were designated as fornical commissure\(^{29}\). We were not able to identify such fibers during the dissection under the operating microscope. While fiber dissection under the operating microscope after brain preparation following a modified Klingler technique appears to be suitable for identifying larger and parallel fiber tracts\(^{40-43}\), it might be less applicable to fine and cruciform fibers as is the case for the fornical commissure. This may explain why we were unable to identify distinct commissural fiber tracts in the psalterium through ex vivo fiber dissection.

The microscopic anatomy of the fornical commissure has been subject to extensive studies in NHP: the work of Amaral et al. on the commissural connections of the hippocampal commissure in macaques through the use of anterograde and retrograde labeling techniques revealed a number of differences in their organization compared to previous studies in rodents and lagomorphs\(^{21}\). First and foremost, there was an overall reduction in the size of the commissural projections. Second, it was surprising that the hippocampus proper received no commissural input. The most prominent portions of the commissural fibers originated in the presubicular and terminated in the medial entorhinal area on the opposite side. The entorhinal cortex, in turn, was the origin of homotopic commissural projections with additional minor portions to the contralateral subiculum. Demeter et al. characterized the distinct hippocampal and parahippocampal origins of the fibers of fimbria, fornix, and the fornical commissure in NHP\(^{22,23}\). From their presubicular, entorhinal, and parahippocampal origins, the fibers of the...
forniceal commissure pass through the alveus – not the fimbria – into the medial (alvear) fornix (contrasted by the lateral (fimbrial) fornix), continue to the undersurface of the crus fornici, and thence cross along the undersurface of the splenium to the crus fornici of the opposite side, where they follow the same path in a retrograde sequence. The morphological characteristics of the fibers comprising the forniceal commissure were studied in detail by Lamantia and Rakic in myelin-stained histological sections of primate brains. In this work, the forniceal commissure was described to be composed of approximately 237,000 predominantly small and medium-sized myelinated axons, representing 0.4% of the telencephalic commissural axons. The fibers of the forniceal commissure could be differentiated morphologically from the fibers of the splenium by their smaller caliber and paler staining properties.

While early anatomical studies in humans contradicted the existence of a distinct forniceal commissure, the work of Gloor et al. described a well-defined voluminous tract ventral to the splenium with fibers of smaller caliber and paler staining than those of the splenium. Remarkable in the description by Gloor et al. was in particular the thickness of the tract, corresponding in its greatest extension to about one fourth of the splenium. This surpasses the representation in NHP severalfold and contradicts the expected phylogenetic trend of a decrease in the volume of the forniceal commissures relative to the splenium. In our multiplanar histological analysis, we reliably detected a subtle connective tissue membrane between the crura fornicis as the microscopic correlate of the psalterium. This membrane encapsulated fine cruciform fiber bundles, likely corresponding to the phylogenetic remnant of the forniceal commissure. In all six
specimens, the fornical commissure appeared much more discreet than described by Gloor et al.2, and as usually depicted in anatomical textbooks. The morphology of the structure identified as dorsal hippocampal commissure (i.e., fornical commissure) in the work of Gloor et al.2 resembles the appearance of the rostrally turning ventral part of the splenium in our examinations.

There is considerable controversy in the literature not only regarding the morphological characteristics but also concerning the functional and pathophysiological relevance of the fornical commissure2,44.

A detailed understanding of the anatomy of the human fornical commissure, its relationship to the splenium of the corpus callosum, and its physiological radiomorphological appearance is important in the evaluation of commissural dysgenesis. Since the anterior commissure, the corpus callosum, and the fornical commissure develop through the same commissural plate, malformations may often be combined and the popular term callosal agenesis falls short29,45. In patients with cavum septi pellucidi or cavum vergae, the psalterium, and hence also the fornical commissure, was described to be absent, while the corpus callosum appears morphologically normal29,47. However, the multimodal anatomical characterization of the fornical commissure in our study emphasizes that its discreet nature renders it almost impossible to draw definitive conclusions regarding its existence or prominence based on routine MRI or sonographic techniques. Further histological studies are needed to explore the relationship between ventricular development and the morphology of both psalterium and fornical commissure.

Having a precise three-dimensional conception of a structure’s anatomy is the prerequisite for targeted and safe surgery. The fornical commissure is of neurosurgical relevance, both as a potential target of ablative procedures and as a possible source of adverse effects in the event of unintended injury29. Transecting the psalterium has been advocated as an essential component of forebrain commissurotomy48–51. While certain authors attribute no or minor relevance to the fornical commissure in mesial

Fig. 4 Fiber dissection from the dorsal aspect.

a) Exposure of the corpus callosum (CC) and the supracommissural hippocampus with its medial longitudinal stria (MLS), lateral longitudinal stria (LLS) and the indusium griseum (IG). b) Removal of the fibers of the body of the corpus callosum (BCC) until the lateral ventricle (LV), the crus fornix (CF), and the septum pellucidum (SP) were shining through (right). Further dissection of the remaining callosal fibers and removal of the choroid plexus and lamina affixa revealed the taenia fornix (TF), thalamus (Th), lamina terminalis (LT) and the caudate nucleus (CN) (left). c) Elevation of the psalterium (Ps) without identification of commissural fibers between the crus fornix (CF) revealed the velum interpositum (VI). The choroid plexus (CP) is fixed to the crus fornix via the taenia fornix (TF) and to the lamina affixa (LA) through the taenia choroidea (TC). The thalamus (Th) is shining through the choroid plexus and the lamina affixa. d) Different specimen, where the SP and Ps was left intact on the left side, but on the right the CP and LA were removed to expose the Th and the choroidal fissure (FC). Dissection of the right CN revealed the underlying fibers of the internal capsule (IC). Stripping of the ependyma in the atrium (A) exposed the fibers of the forceps major (FM). The calcar avis (CA) is formed by the underlying sulcus calcarius. Starting from the SCC and running over the atrium are the fibers of the tapetum (Ta). e) Anterior oblique view on the same specimen (before dissection of the CN). The fibers of the FM create the bulb of the posterior horn (B). **Dissections:** NK (A–C) and CS (D–E).
temporal lobe epilepsy25,26,52–56, others consider it as one of the most important pathways of contralateral seizure propagation and false lateralization of the ictal onset in extracranial EEG recordings2,44,57,58. Ictal involvement of the forniceal commissure has been associated with the phenomena of pure amnestic seizures and transient epileptic amnesia2,44. However, the specific contribution of transecting the psalterium to the anti-seizure effect of forebrain commissurotomy is still unclear. Since the functional relevance of the forniceal commissure remains obscure, it is unknown, which implications unintentional injury has. Memory deficits have been observed in patients after splenial callosotomies, yet it is unclear to what degree the forniceal commissure and the splenium, respectively, contributed to these deficits59. NHP were shown to suffer from impaired discrimination learning after lesioning the forniceal commissure60 and a recent study postulated a role of the forniceal commissure in human familiarity-based recognition memory37. Based on our macroanatomic fiber dissections and those of other groups27–30,61, however, it can be concluded that intraoperative visualization of the forniceal commissure, whether for preservation or ablation, is not a realistic prospect.

This study has several limitations that need to be considered. First, our sample size for the human ex vivo fiber dissection and histological analyses was relatively small with nine and eight

Specimen	Length (cm)	Width (cm)
1	2.2	2.9
2	1.4	2.4
3	1.1	2.4
4	0.9	1.9
5	1.7	2.2
6	1.6	3.4
7	1.3	2.2
8	1.1	1.7
9	1.2	2.2

Length and width (compare Fig. 5) of the psalterium in nine human specimens.
Fig. 6 Multiplanar histology of the psalterium. a Schematic illustration of the histological section planes: coronal (B), sagittal (C) and axial (D).

b–d Floating sections stained for myelin (1:900 dilution, FluoroMyelin Green, F34651, Thermo Fisher Scientific, MA, US) and counterstained with Hoechst 33342 (1:2000 dilution, H3570, Invitrogen, Carlsbad, CA): b Coronal sections from caudal to rostral. BCC body of the corpus callosum, BF body of the fornix, CF commissura fornici, CG cingulate gyrus, crF crus fornici, M connective tissue membrane, SCC splenium of the corpus callosum, SP septum pellucidum. c Sagittal sections from left to right. d Axial sections from basal to dorsal.
In vivo fiber dissection. We performed whole-brain deterministic tractography in the native diffusion-weighted imaging space using StarTrack (https://www.mr-struct.com). A damped Richardson-Lucy algorithm was applied for spherical deconvolutions.17,22 A fixed fiber response corresponding to a shape factor of α = 1.5 × 10−3 mm2 s−1 was adopted, coupled with the geometric damping parameter of 8. Two hundred algorithm iterations were run. The absolute threshold was defined as three times the spherical fiber orientation distribution of a grey matter region of interest (ROI) and the relative threshold as 8% of the maximum amplitude of the fiber orientation distribution.23 A modified Euler algorithm48 was used to perform the whole-brain streamline tractography, with an angle threshold of 35°, a step size of 0.5 mm and a minimum streamline length of 15 mm. We co-registered the structural connectome data to the standard MNI 2 mm space using the following steps: first, whole-brain streamline tractography was converted into streamline density volumes where the intensities corresponded to the number of streamlines crossing each voxel. Second, a study-specific template of streamline density volumes was generated using the Greedy symmetric diffeomorphic normalization (GreedySym) pipeline distributed with advanced single spherical ROI tools (ANTS)24,25. This provided an average template extended around the streamlines volumes for all subjects. The template was then co-registered with a standard 2 mm MNI152 template using flirt as implemented in FSL. This step produced a streamline density template in the MNI152 space. Third, individual streamline density volumes were registered to the streamline density template in the MNI152 space template and the same transformation was applied to the individual whole-brain streamline tractography using the trackmath tool distributed with the software package Tract Querier26 using ANTs GreedySym. This step produced a whole-brain streamline tractography in the standard MNI152 space. Two examiners (KA, SJF) reviewed the alignment through visual inspection and ensured its match with the MNI152 template.

The fornix was dissected manually by two examiners (KA, SJF) in every individual dataset using Trackvis (www.trackvis.org). The placement of the regions of interest (ROIs) and regions of avoidance (ROAs) was guided by the high-resolution T1-weighted image (Supplementary Fig. 1). We used an atlas-based single spherical ROI around the body of the fornix, which was extended around the crus fornicis of each side, to avoid missing any commissural fibers. ROAs were defined for the corpus callosum and the anterior commissure, additional exclusion regions were placed anterior to the septum pellucidum and posterior to the splenium of the corpus callosum.

Percentage overlay maps. The resulting reconstructions were binarized and converted to fiber density maps to generate percentage overlay maps using an in-house matlab script (Matlab R2021b). Results were visualized with FSL (https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FSLeyes).

Cadaver specimens. 17 human brains were obtained from healthy body donations to the Anatomical Institute of the University of Zurich, Switzerland. In Switzerland, body donations are fully anonymized beyond the confirmation of the absence of any neurological pathology, therefore no demographic data were available for the human specimens. Sheep brains for comparative macroscopic and histological post mortem studies were derived from autopsy specimens at the Animal Hospital Zurich from previously healthy female Swiss Alpine sheep (age 2–4 years).

Multidirectional ex vivo fiber dissection. Nine brains were used for fiber dissection under the operating microscopic. Brain preparation followed a modified version of the technique originally described by Joseph Klingler77,78: in brief, the fresh specimens were fixed in a 5% formalin solution for at least 2 months. After fixation, the leptomeninges were removed under the operating microscope. This was followed by refrigeration for 7 days at a temperature of −10 to −15°C. After refrigeration, the brains were dissected16,17,79. The fiber dissection was performed from the superior and inferior aspect and from posterior in three specimens, respectively. Handmade soft wooden spatulas of various tip sizes, suction tips and microforceps were used to peel away the fibers. Specimen storage between different dissection steps was performed in 5% formalin solution at 5°C.

Morphometry of the psalterium. The length and the width of the psalterium were measured in the nine brain specimens used for fiber dissection under the operating microscope using a surgical caliper. The length (l) of the psalterium was measured from the unification of the crura fornix to the body of the fornix to the splenium of the corpus callosum. The width was defined as the distance between the right and left attachment of the crura fornix to the splenium of the corpus callosum. A morphometric analysis (volumetric measurement) of the fornicial commissure or the psalterium was not attempted, given the small dorsoventral extent of the structures bordering macroscopic measurement accuracy and the high variance of their orientation along the rostrocaudal axis.

Multiplanar histological analysis. Eight formalin-fixed human brains and two sheep brains were used for histological analysis. Six human brains were cut through the splenium into serial floating sections of 120 µm thickness with a mounting interval of 360 µm using a Vibratome (VT1000 S, Leica, Switzerland) oriented in the coronal (2x), sagittal (2x), and axial (2x) plane

Table 2 Demographics of the human connectome project 7 tesla dataset.
Age

22–25
26–30
31–35
36
Total

Age bins and sex distribution in the Human Connectome Project (downloaded from https://db.humanconnectome.org).
the histological sections were produced by merging single images obtained with a
14. Swanson, L. W. & Cowan, W. M. The connections of the septal region in the
2 min in sodium thiosulfate solution (5%), dehydration, and mounting with Per-
seconds until tissue sections took on a yellow/brown hue, followed by a placement
21. Amaral, D. G., Insausti, R. & Cowan, W. M. The commissural connections
of the hippocampal formation. J. Comp. Neurol. 224, 307–336 (1984).
25. Wilson, C. L. A comparative view of local and interhemispheric limbic
pathways in humans: an evoked potential analysis. Fundam. Mechan. Human
26. Wilson, C. L. et al. Functional connections in the human temporal lobe. II.
Evidence for a loss of functional linkage between contralateral limbic
connections. Exp. Brain Res. 85, 174–187 (1991).
27. Shah, A., Iwawar, S. S. & Goel, A. Analysis of the anatomy of the Papez circuit
and adjoining limbic system by fiber dissection techniques. J. Clin. Neurosci.
19, 289–298 (2012).
28. Destrieux, C., Bourry, D. & Velut, S. Surgical anatomy of the hippocampus.
Neurochirurgie 59, 149–158 (2013).
29. Tabbas, R. S. et al. The epileptogenic psalterium: a review and ananatomical study with
relevance to callosotomy procedures. Neurosurgery 11, 322–328 (2015).
30. Güngör, A. et al. The white matter tracts of the cerebrum in ventricular surgery and hydrocephalus. J. Neurosurg. 126, 945–971 (2017).
31. Colnat-Coulbois, S. et al. Tractography of the amygdala and hippocampus: anatomical study and application to selective amygdalolenticulohippocampectomy. J. Neurosurg. 113, 1135–1143 (2010).
32. Yeo, S. S., Seo, J. P., Kwon, Y. H. & Jang, S. H. Precommissural fornix in the
human brain: a diffusion tensor tractography study. Yonsei Med. J. 54, 315–320 (2013).
33. Postans, M. et al. Interindividual variation in fornix microstructure and macrostructure is related to individual discrimination accuracy for scenes but not faces. J. Neurosci. 34, 12121–12126 (2014).
34. Sotbo-Frankenstein, U. N. et al. Symmetry of the fornix is available for digital exploration and 3D printing at https://www.thingiverse.com/stephfoerkei/designs.

Reporting summary. Further information on research design is available in the Nature Research Reporting Summary linked to this article.

Data availability
The tractography data (Package X) is freely available as a preprocessed dataset from http://www.bcblab.com/BCB/Opendata.html. Individual dissections and the percentage
of the fornix are available from https://neurovault.org/collections/12108/.

Received: 21 December 2021; Accepted: 7 July 2022;
Published online: 25 July 2022

References
1. Ariens-Kappers, C. U., Huber, G. C. & Crosby, E. C. The Comparative
Anatomy of the Nervous System. Including Man. Hafner, New York (1936).
2. Gloo, P., Salanova, V., Olivier, A. & Quensey, L. F. The human dorsal
hippocampal commissure. An anatomically identifiable and functional
pathway. Brain 116, 1249–1273 (1993).
3. Lamantia, A. S. & Rakic, P. Cytological and quantitative characteristics of four
commissural neurons in the rhesus monkey. J. Comp. Neurol. 291, 520–537
(1990).
4. Thiebaut de Schotten, M., Dell’Acqua, F., Valabregue, R. & Catani, M. Monkey
to human comparative anatomy of the frontal lobe association tracts. Cortex
48, 82–96 (2012).
5. Barrett, R. L. C. et al. Differences in frontal network anatomy across primate
species. J. Neurosci. 40, 2094–2107 (2020).
6. Ferrier, D. The croonian lectures on cerebral localisation. BMJ 1, 1349–1355
(1890).
7. Smith, G. E. A preliminary communication upon the cerebral commissures of the
mammalia, with special reference to the monotremata and marsupialia. J. Anat.
71, 528–543 (1937).
8. Villiger, E. & Piersol, G. A. “The brain and spinal cord.” a manual for the
study of the morphology and fibre tracts of the central nervous system. Am. J.
Med. Sci. 146, 908 (1913).
9. Baehr, M., Frotscher, M. & Duus, P. Duus’ topical diagnosis in neurology:
anatomy, physiology, signs, symptoms. Thieme (2005).
10. Scarabino, T. & Salvolini, U. Atlas of morphology and functional anatomy of the
brain. Springer-Nature (2006).
11. Cajal, S. R. Y. & Ramón y Cajal, S. Histologie du système nerveux de l’homme
& des vertébrés. Paris, Maloine (1909).
12. Raisman, G., Cowan, W. M. & Powell, T. P. S. The extrinsic afferent,
commissural and association fibres of the hippocampus. Brain 88, 963–996
(1965).
13. Shipley, M. T. The topographical and laminar organization of the
presubiculum’s projection to the ipsi- and contralateral entorhinal cortex in the
guinea pig. J. Comp. Neurol. 160, 127–145 (1975).
14. Swanson, L. W. & Cowan, W. M. The connections of the septal region in the
rat. J. Comp. Neurol. 186, 621–655 (1979).
15. Blackstad, T. W. Commissural connections of the hippocampal commissure in the
rat, with special reference to their mode of termination. J. Comp. Neurol. 105,
417–537 (1956).
16. Lorente de Nö, R. Studies on the structure of the cerebral cortex. II.
Continuation of the study of the ammonic system. J. fär. Psychologe und
Psychol. Philos. 46, 113–177 (1912).
17. y Cajal, S. R. & Kruit, L. M. Studies on the cerebral cortex-limbic structures.
Lloyd-Luke (1955).
18. Van Hoesen, G. W. & Pandya, D. N. Some connections of the entorhinal (area
28) and perirhinal (area 35) cortices of the rhesus monkey. I. Temporal lobe
afferents. Brain Res. 95, 39–59 (1975).
19. Van Hoesen, G. W., Pandya, D. N. & Butters, N. Some connections of the
entorhinal (area 28) and perirhinal (area 35) cortices of the rhesus monkey. II.
Frontal lobe afferents. Brain Res. 95, 25–38 (1975).
20. Van Hoesen, G. W. & Pandya, D. N. Some connections of the entorhinal (area
28) and perirhinal (area 35) cortices of the rhesus monkey. III. Different
afferentations. Brain Res. 95, 39–59 (1975).
21. Amaral, D. G., Insauti, R. & Cowan, W. M. The commissural connections of
the monkey hippocampal formation. J. Comp. Neurol. 224, 307–336 (1984).
22. De Schotten, M. T. et al. A lateralized brain network for visuo-spatial
attention. Neuron 89, 1–24 (2019).
23. De Schotten, M. T. et al. Anterior interhemispheric transsplenial approach to pineal
region tumours: anatomical study and illustrative case. J. Neurosurg. 128,
182–192 (2018).
24. De Schotten, M. et al. Uncovering a role for the dorsal hippocampal commissure in
recognition memory. Cereb. Cortex 30, 1001–1015 (2020).
25. Catani, M. & Thiebaut de Schotten, M. A diffusion tensor imaging
tractography atlas for virtual in vivo dissections. Cortex 44, 1105–1132 (2008).
26. Tomsch, J. The human posterior commissure. J. Comp. Neurol. 124, 43–50
(1965).
27. Türe, U., Gazi Yaşargil, M., Friedman, A. H. & Al-Mefty, O. Fiber dissection
technique: lateral aspect of the brain. Neurosurgery 357, 409–410 (2017).
28. Yagmurcu, K. et al. Anterior interhemispheric transsplenial approach to pineal
region tumors: anatomical study and illustrative case. J. Neurosurg. 128,
182–192 (2018).
29. Yagmurcu, K. et al. Anterior interhemispheric transsplenial approach to pineal
region tumors: anatomical study and illustrative case. J. Neurosurg. 128,
182–192 (2018).
46. Suárez, R., Gobiús, I. & Richards, L. J. Evolution and development of interhemispheric connections in the vertebrate forebrain. Front. Hum. Neurosci. 8, 497 (2014).
47. Govaert, P. & de Vries, L. S. An atlas of neonatal brain sonography. John Wiley & Sons (2010).
48. Wilson, D. H., Culver, C., Waddington, M. & Gazzaniga, M. Disconnection of the cerebral hemispheres. An alternative to hemispherectomy for the control of intractable seizures. Neurology 25, 1149–1153 (1975).
49. Wilson, D. H., Reeves, A. G. & Gazzaniga, M. S. “Central” commissurotomy for intractable generalized epilepsy: series two. Neurology 32, 687–697 (1982).
50. Harbaugh, R. E., Wilson, D. H., Reeves, A. G. & Gazzaniga, M. S. Forebrain commissurotomy for epilepsy. Acta Neurochirurgica 68, 263–275 (1983).
51. Hirsch, E., Sneed, O. C., Vergnes, M. & Gilles, F. Corpus callosumotomy in the living patient: a computer model of seizures and status epilepticus. Epilepsy Res 11, 183–191 (1992).
52. Lieb, J. P. & Babb, T. L. Interhemispheric propagation time of human hippocampal seizures: ii. relationship to pathology and cell density. Epilepsia 27, 294–300 (1986).
53. Lieb, J. P., Hoque, K., Skomer, C. E. & Song, X. W. Inter-hemispheric propagation of human mesial temporal lobe seizures: a coherence/phase analysis. Electroencephalogr. Clin. Neurophysiol. 67, 101–119 (1987).
54. VanLandingham, K. E. & Lothman, E. W. Self-sustaining limbic status epilepticus:: ii. Role of hippocampal commissures in metabolic responses. Neurology 41, 1950–1950 (1991).
55. Wilson, C. L., Isokawa-Akesson, M., Wang, M. L., Babb, T. L. & Jr, J. E. Lack of functional evidence for a human hippocampal commissure. Electroencephalogr. Clin. Neurophysiol. 61, S54–S55 (1985).
56. Lacruz, M. E., García Seano, J. J., Valentin, A., Selway, R. & Alarcón, G. Frontal and temporal functional connections of the living human brain. Eur. J. Neurosci. 26, 1357–1370 (2007).
57. Spencer, S. S., Marks, D., Katze, A., Kim, J. & Spencer, D. D. Anatomic correlates of interhemispheric seizure propagation time. Epilepsia 33, 862–873 (1992).
58. Spencer, S. S., Williamson, P. D., Spencer, D. D. & Mattson, R. H. Human hippocampal seizure spread studied by depth and subdural recording: the hippocampal commissure. Epilepsia 28, 479–489 (1987).
59. Phillips, W. A., Hirst, W. & Gazzaniga, M. S. Deficits in recall following partial and complete commissurotomy. Cereb. Cortex. 1, 492–498 (1991).
60. Moss, M., Mahut, H. & Zola-Morgan, S. Concurrent discrimination learning of monkeys after hippocampal, entorhinal, or fornix lesions. Human Connectome Project. Neuroimage 80, 208–209 (2013).
61. Klingler, J. & Gloor, P. The connections of the amygdala and of the anterior temporal cortex in the human brain. J. Comp. Neurol. 115, 333–360 (1960).
62. Tendler, B. C. et al. The Digital Brain Bank: an open access platform for post-mortem datasets. eLife 11, e73153 (2022).
63. Amunts, K. et al. BigBrain: an ultrahigh-resolution 3D human brain model. Brain Struct. Funct. 191 (2012).
64. Noll, D. C. Isokawa-Akesson, M., Wang, M. L., Babb, T. L. & Jr, J. E. Human hippocampal seizure spread studied by depth and subdural recording: the hippocampal commissure. Epilepsia 28, 479–489 (1987).
65. Phillips, W. A., Hirst, W. & Gazzaniga, M. S. Deficits in recall following partial and complete commissurotomy. Cereb. Cortex. 1, 492–498 (1991).
66. Moss, M., Mahut, H. & Zola-Morgan, S. Concurrent discrimination learning of monkeys after hippocampal, entorhinal, or fornix lesions. Human Connectome Project. Neuroimage 80, 208–209 (2013).
67. Klingler, J. & Gloor, P. The connections of the amygdala and of the anterior temporal cortex in the human brain. J. Comp. Neurol. 115, 333–360 (1960).
68. Tendler, B. C. et al. The Digital Brain Bank: an open access platform for post-mortem datasets. eLife 11, e73153 (2022).
69. Amunts, K. et al. BigBrain: an ultrahigh-resolution 3D human brain model. Science 340, 1472–1473 (2013).
70. Vu, A. T. et al. High resolution, whole brain diffusion imaging at 7T for the Human Connectome Project. Neuroimage 122, 318–331 (2015).
71. Nozais, V., Forkel, S., J. F., Souloum, C., Petit, L., & de Schotten, M. T. The connections of the amygdala and of the anterior temporal cortex in the human brain. J. Comp. Neurol. 115, 333–360 (1960).
72. Moeller, S. et al. Multiband multicoil GE-EPI at 7 tesla, with 16-fold acceleration using partial parallel imaging with application to high spatial and temporal whole-brain fMRI. Magn. Reson. Med. 63, 1144–1153 (2010).
73. Caruyer, E., Lenglet, C., Sapiro, G. & Geriche, R. Design of multishell sampling schemes with uniform coverage in diffusion MRI. Magn. Reson. Med. 69, 1534–1540 (2013).
74. Glasser, M. F. et al. The minimal preprocessing pipelines for the Human Connectome Project. Neuroimage 80, 105–124 (2013).
75. Sotiropoulos, S. N. et al. Advances in diffusion MRI acquisition and processing in the Human Connectome Project. Neuroimage 80, 125–143 (2013).
76. Anderson, J. R. L., Skare, S. & Ashburner, J. How to correct susceptibility distortions in spin-echo echo-planar images: application to diffusion tensor imaging. Neuroimage 20, 870–888 (2003).
77. Smith, S. M. et al. Advances in functional and structural MR image analysis and implementation as FSL. Neuroimage 23, 208–219 (2004).
78. Dell’acqua, F. et al. A modified damped Richardson-Lucy algorithm to reduce isotropic background effects in spherical deconvolution. Neuroimage 49, 1446–1458 (2010).