Matrix Methods for Solving Algebraic Systems

Ioannis Z. Emiris
Dept Informatics & Telecoms, University of Athens, Greece

March 2014 *

Abstract

We present our public-domain software for the following tasks in sparse (or toric) elimination theory, given a well-constrained polynomial system. First, C code for computing the mixed volume of the system. Second, Maple code for defining an overconstrained system and constructing a Sylvester-type matrix of its sparse resultant. Third, C code for a Sylvester-type matrix of the sparse resultant and a superset of all common roots of the initial well-constrained system by computing the eigen-decomposition of a square matrix obtained from the resultant matrix. We conclude with experiments in computing molecular conformations.

1 Introduction

The problem of computing all common zeros of a system of polynomials is of fundamental importance in a wide variety of scientific and engineering applications. This article surveys efficient methods based on the sparse resultant for computing all isolated solutions of an arbitrary system of n polynomials in n unknowns. In particular, we construct matrix formulae which yield nontrivial multiples of the resultant thus reducing root-finding to the eigendecomposition of a square matrix.

Our methods can exploit structure of the polynomials as well as that of the resulting matrices. This is an advantage as compared to other algebraic methods, such as Gröbner bases and characteristic sets. All approaches have complexity exponential in n, but Gröbner bases suffer in

*Update of chapter in: “Symbolic Algebraic Methods and Verification Methods”, Springer, 2001.
the worst case by a quadratic exponent, whereas for matrix-based methods the exponent is linear. Moreover, they are discontinuous with respect to perturbations in the input coefficients, unlike resultant matrix methods in general. Of course, Gröbner bases provide a complete description of arbitrary algebraic systems and have been well developed, including public domain stand-alone implementations or as part of standard computer algebra systems. There is also a number of numerical methods for solving algebraic systems, but their enumeration goes beyond this article’s scope.

The next section describes briefly the main steps in the relatively young theory of sparse elimination, which aspires to generalize the results of its mature counterpart, classical elimination. Section 3 presents the construction of sparse resultant matrices. Section 4 reduces solution of arbitrary algebraic systems to numerical linear algebra, avoiding any issues of convergence. Our techniques find their natural application in problems arising in a variety of fields, including problems expressed in terms of geometric and kinematic constraints in robotics, vision and computer-aided modelling. We describe in detail problems from structural biology, in section 5.

The emphasis is placed on recent and new implementations, described in each respective section, with pointers to where they can be found. They have been ported on several architectures, including Sun, DEC, Linux and Iris platforms. Previous work and open questions are mentioned in the corresponding sections.

2 Sparse elimination

Sparse elimination generalizes several results of classical elimination theory on multivariate polynomial systems of arbitrary degree by considering their structure. This leads to stronger algebraic and combinatorial results in general (Gelfand et al. 1994), (Sturmfels 1994), (Cox et al. 1998); the reader may consult these references for details and proofs. Assume that the number of variables is n; roots in $(\mathbb{C}^*)^n$ are called toric. We use x^e to denote the monomial $x_1^{e_1} \cdots x_n^{e_n}$, where $e = (e_1, \ldots, e_n) \in \mathbb{Z}^n$. Let the input Laurent polynomials be

$$f_1, \ldots, f_n \in \mathbb{Q}[x_1^{\pm 1}, \ldots, x_n^{\pm 1}].$$

The discussion applies to arbitrary coefficient fields and roots in the torus of their algebraic closure. Let $\text{support } A_i = \{a_{i1}, \ldots, a_{im_i}\} \subset \mathbb{Z}^n$ denote the set of exponent vectors corresponding to monomials in f_i with nonzero coefficients: $f_i = \sum_{a_{ij} \in A_i} c_{ij} x^{a_{ij}}$, for $c_{ij} \neq 0$. The Newton polytope $Q_i \subset$
Definition 2.1 Given convex polytopes $A_1, \ldots, A_n, A'_k \subset \mathbb{R}^n$, mixed volume, is the unique real-valued function $MV(A_1, \ldots, A_n)$, invariant under permutations, such that, $MV(A_1, \ldots, \mu A_k + \rho A'_k, \ldots, A_n)$ equals

$$
\mu MV(A_1, \ldots, A_k, \ldots, A_n) + \rho MV(A_1, \ldots, A'_k, \ldots, A_n),
$$

for $\mu, \rho \in \mathbb{R}_{\geq 0}$, and, $MV(A_1, \ldots, A_n) = n! \text{Vol}(A_1)$, when $A_1 = \cdots = A_n$, where $\text{Vol}(\cdot)$ denotes standard euclidean volume in \mathbb{R}^n.

If the polytopes have integer vertices, their mixed volume takes integer values. We are now ready to state a generalization of Bernstein’s theorem (Gelfand et al. 1994), (Cox et al. 1998):

Theorem 2.2 Given system (1), the cardinality of common isolated zeros in $(\mathbb{C}^*)^n$, counting multiplicities, is bounded by $MV(Q_1, \ldots, Q_n)$. Equality holds when certain coefficients are generic.

Newton polytopes model the polynomials’ structure and provide a “sparse” counterpart of total degree. Similarly for mixed volume and Bézout’s bound (simply the product of all total degrees), the former being usually significantly smaller for systems encountered in engineering applications. The generalization to stable volume provides a bound for non-toric roots.

The algorithm by Emiris and Canny (1995) has resulted to program mixvol:

Input: supports of n polynomials in n variables
Output: mixed volume and mixed cells
Language: C
Availability: http://www.di.uoa.gr/~emiris/soft_geo.html

Program mixvol enumerates all mixed cells in the subdivision of $Q_1 + \cdots + Q_n$, thus identifying the integer points comprising a monomial basis of the quotient ring of the ideal defined by the input polynomials. Mixed cells also correspond to start systems (with immediate solution) for a sparse homotopy of the original system’s roots. Important work in these areas has been done by T.Y. Li and his collaborators (Gao et al. 1999).

The resultant of a polynomial system of $n + 1$ polynomials in n variables with indeterminate coefficients is a polynomial in these indeterminates, whose vanishing provides a necessary and sufficient condition for
the existence of common roots of the system. Different resultants exist depending on the space of the roots we wish to characterize, namely projective, affine or toric. Sparse or toric resultants express the existence of toric roots. Let

\[f_0, \ldots, f_n \in \mathbb{Q}[x_1^{\pm 1}, \ldots, x_n^{\pm 1}], \]

with \(f_i \) corresponding to generic point \(c_i = (c_{i1}, \ldots, c_{im_i}) \) in the space of polynomials with support \(A_i \). This space is identified with projective space \(\mathbb{P}^{m_i - 1} \). Then system (2) can be thought of as point \(c = (c_0, \ldots, c_n) \).

Let \(Z \) denote the Zariski closure, in the product of projective spaces, of the set of all \(c \) such that the system has a solution in \((\mathbb{C}^*)^n\). \(Z \) is an irreducible variety.

Definition 2.3 The sparse resultant \(R = R(A_0, \ldots, A_n) \) of system (2) is a polynomial in \(\mathbb{Z}[c] \). If \(\text{codim}(Z) = 1 \) then \(R \) is the defining irreducible polynomial of the hypersurface \(Z \). If \(\text{codim}(Z) > 1 \) then \(R = 1 \).

The resultant is homogeneous in the coefficients of each polynomial. If \(MV_{-i} = MV(Q_0, \ldots, Q_{i-1}, Q_{i+1}, \ldots, Q_n) \), then the degree of \(R \) in the coefficients of \(f_i \) is \(\deg f_i R = MV_{-i} \). \(\deg R \) will stand for the total degree.

3 Matrix formulae

Different means of expressing a resultant are possible (Cox et al. 1998), (Emiris and Mourrain 1999). Ideally, we wish to express it as a matrix determinant, or a divisor of such a determinant where the quotient is a nontrivial extraneous factor. This section discusses matrix formulae for the sparse resultant, which exploit the monomial structure of the Newton polytopes. These are sparse resultant, or Newton, matrices. We restrict ourselves to Sylvester-type matrices which generalize the coefficient matrix of a linear system and Sylvester’s matrix of two univariate equations.

There are two main approaches to construct a well-defined, square, generically nonsingular matrix \(M \), such that \(R \mid \det M \). The rows of \(M \) will always be indexed by the product of a monomial with an input polynomial. The entries of a row are coefficients of that product, each corresponding to the monomial indexing the respective column. The degree of \(\det M \) in the coefficients of \(f_i \), equal to the number of rows with coefficients of \(f_i \), is greater or equal to \(\deg f_i R \). Obviously, the smallest possible matrix has dimension \(\deg R \).

The first approach, introduced by Canny and Emiris in 1993, relies on a mixed subdivision of the Minkowski sum of the Newton polytopes.
\[Q = Q_0 + \cdots + Q_n \] (Canny and Pedersen 1993), (Sturmfels 1994), (Canny and Emiris 2000). The algorithm uses a subset of \((Q + \delta) \cap \mathbb{Z}^n\) to index the rows and columns of \(M\). \(\delta \in \mathbb{Q}^n\) must be sufficiently generic so that every integer point lies in the relative interior of a unique \(n\)-dimensional cell of the mixed subdivision of \(Q + \delta\). In addition, \(\delta\) is small enough so that this cell is among those that had the point on their boundary. Clearly, the dimension of the resulting matrix is at most equal to the number of points in \((Q + \delta) \cap \mathbb{Z}^n\). This construction allows us to pick any one polynomial so that it corresponds to exactly \(\deg f_i\) \(R\) rows.

The greedy version of Canny and Pedersen (1993) uses a minimal point set and is the algorithm implemented by function \texttt{spares()} in the Maple package of the same name. It is also included as function \texttt{sresultant()} in Maple package \texttt{multires} developed at INRIA (http://www-sop.inria.fr/galaad/logiciels/multires.html):

\begin{itemize}
 \item \textbf{Input:} \(n+1\) polynomials in \(n\) variables, an arbitrary number of parameters
 \item \textbf{Output:} sparse resultant matrix in the parameters
 \item \textbf{Language:} Maple
 \item \textbf{Availability:} http://www-di.uoa.gr/~emiris/soft_alg.html
\end{itemize}

For instance, \texttt{spares([f0,f1,f2],[x1,x2])} constructs the sparse resultant matrix of the 3 polynomials by eliminating variables \(x_1, x_2\). The function also expresses the polynomial coefficients in terms of any indeterminates other than \(x_1, x_2\). Optional arguments may specify vector \(\delta\) and the subdivision of \(Q\).

The second algorithm, by Emiris and Canny (1995), is incremental and yields usually smaller matrices and, in any case, of dimension no larger than the cardinality of \((Q + \delta) \cap \mathbb{Z}^n\). We have observed that in most cases of systems with dimension bounded by 10 the algorithm gives a matrix at most 4 times the optimal. The selection of integer points corresponding to monomials multiplying the row polynomials uses a vector \(v \in (\mathbb{Q}^*)^n\). In those cases where a minimum matrix of Sylvester type provably exists, the incremental algorithm produces this matrix. These are precisely the systems for which \(v\) can be deterministically specified; otherwise, a random \(v\) can be used.

The algorithm proceeds by constructing candidate rectangular matrices in the input coefficients. Given such a matrix with the coefficients specialized to generic values, the algorithm verifies whether its rank is complete using modular arithmetic. If so, any square nonsingular submatrix can be returned as \(M\); otherwise, new rows (and columns) are added to the candidate. This is the first part of program \texttt{far}. The entire \texttt{far} has:
Input: $n+1$ polynomials in n variables to be eliminated, one in the coefficient field

Output: sparse resultant matrix and a superset of the common roots

Language: C

Availability: http://www.di.uoa.gr/~emiris/soft_alg.html

For instance, commands “far -nco trial input” and “far -nco -ms 0 trial input” construct a sparse resultant matrix, where file input.exps contains the supports and file input.coef contains vector v and the MV_{-i}, if known (otherwise the program computes them by calling mixvol and writes them in file temp_all_mvs). In the first case, we assumed file trial.msum exists and contains all needed integer points for matrix construction. In the second example this file is created and filled in by far. A number of command line options exists, including “-iw trial.indx” to store the matrix definition in file trial.indx in order to be used by subsequent executions.

Sparse resultant matrices, including the candidates constructed by the incremental algorithm, are characterized by a structure that generalizes the Toeplitz structure and has been called quasi-Toeplitz (Emiris and Pan 2002). An open implementation problem is to exploit this structure in verifying full rank, aspiring to match the asymptotic acceleration of almost one order of magnitude. Another open question concerns exploiting quasi-Toeplitz structure for accelerating the solution of an eigenproblem.

D’Andrea (2002) proved that, if the mixed subdivision is constructed carefully, it is possible to obtain Macaulay-type formulae for the sparse resultant, namely to define a submatrix whose determinant yields the extraneous factor. Emiris and Konaxis (2011) simplified this construction with the aim of obtaining an implementation.

4 Algebraic solving by linear algebra

To solve the well-constrained system (1) by the resultant method we define an overconstrained system and apply the resultant matrix construction. Matrix M need only be computed once for all systems with the same supports. So this step can be carried out offline, while the matrix operations to approximate all isolated roots for each coefficient specialization are online.

We present two ways of defining an overconstrained system. The first method adds an extra polynomial f_0 to the given system (thus defining a well-studied object, the u-resultant). The constant term is a new inde-
terminate:

\[f_0 = x_0 + c_{01}x_1 + \cdots + c_{0n}x_n \in (\mathbb{Q}[x_0])[x_1^{\pm1}, \ldots, x_n^{\pm1}]. \]

Coefficients \(c_{0j} \) are usually random. \(M \) describes the multiplication map for \(f_0 \) in the coordinate ring of the ideal defined by \([1]\). An alternative way to obtain an overconstrained system is by hiding one of the variables in the coefficient field and consider (after modifying notation to unify the subsequent discussion) system:

\[f_0, \ldots, f_n \in (\mathbb{Q}[x_0])[x_1^{\pm1}, \ldots, x_n^{\pm1}]. \]

\(M \) is a matrix polynomial in \(x_0 \), and may not be linear.

In both cases, the idea is that when \(x_0 \) is equal to the respective coordinate of a common root, then the resultant and, hence, the matrix determinant vanish. An important issue concerns the degeneracy of the input coefficients. This may result in the trivial vanishing of the sparse resultant or of \(\det M \) when there is an infinite number of common roots (in the torus or at toric infinity) or simply due to the matrix constructed. An infinitesimal perturbation has recently been proposed by D’Andrea and Emiris (2001), which respects the structure of Newton polytopes and is computed at minimal extra cost.

The perturbed determinant is a polynomial in the perturbation variable, whose leading coefficient is guaranteed to be nonzero. The trailing nonzero coefficient is always a multiple of a generalized resultant, in the sense that it vanishes when \(x_0 \) takes its values at the system’s roots. This is a univariate polynomial in \(x_0 \), hence univariate equation solving yields these coordinates. Moreover, the \(u \)-resultant allows us to recover all coordinates via polynomial factorization. The perturbed matrix can be obtained by package \texttt{spares}, provided that local variable \texttt{PERT_DEGEN_COEFS} is appropriately set, as explained in the package’s documentation. An open problem concerns the combination of this perturbation with the matrix operations described below.

4.1 Eigenproblems

This section describes the online matrix solver of \texttt{far}. Most of the computation is numeric, yet the method has global convergence and avoids issues related to the starting point of iterative methods. We use double precision floating point arithmetic and the LAPACK library because it implements state-of-the-art algorithms, offering the choice of a tradeoff.
between speed and accuracy, and provides efficient ways for computing estimates on the condition numbers and error bounds.

A basic property of resultant matrices is that right vector multiplication expresses evaluation of the row polynomials. Specifically, multiplying by a column vector containing the values of column monomials \(q \) at some \(\alpha \in \mathbb{C}^n \) produces the values of the row polynomials \(\alpha^p f_i(\alpha) \), where integer point (or, equivalently, monomial) \(p \) indexes a row. Letting \(\mathcal{E} \) be the monomial set indexing the matrix rows and columns,

\[
M(x_0) \begin{bmatrix} \vdots \\ \alpha^q \\ \vdots \end{bmatrix} = \begin{bmatrix} \vdots \\ \alpha^p f_i(x_0, \alpha) \\ \vdots \end{bmatrix}, \quad q, p \in \mathcal{E}, i_p \in \{0, \ldots, n\}.
\]

Computationally it is preferable to have to deal with as small a matrix as possible. To this end we partition \(M \) into four blocks \(M_{ij} \) so that the upper left submatrix \(M_{11} \) is of maximal possible dimension under the following conditions: it must be square, independent of \(x_0 \), and well-conditioned relative to some user-defined threshold.

Once \(M_{11} \) is specified, let \(A(x_0) = M_{22}(x_0) - M_{21}(x_0)M_{11}^{-1}M_{12}(x_0) \). To avoid computing \(M_{11}^{-1} \), we use its decomposition to solve \(M_{11}X = M_{12} \) and compute \(A = M_{22} - M_{21}X \). The routine used depends on \(\kappa(M_{11}) \), with the slower but more accurate function \(\text{dgesvx} \) called when \(\kappa(M_{11}) \) is beyond some threshold.

If \((\alpha_0, \alpha) \in \mathbb{C}^{n+1}\) is a common root with \(\alpha \in \mathbb{C}^n \), then \(\det M(\alpha_0) = 0 \Rightarrow \det A(\alpha_0) = 0 \). Let point (or monomial) set \(\mathcal{B} \subset \mathcal{E} \) index matrix \(A \). For any vector \(v' = [\cdots \alpha^q \cdots]^T \), where \(q \) ranges over \(\mathcal{B} \), \(A(\alpha_0)v' = 0 \).

Moreover,

\[
\begin{bmatrix} M_{11} & M_{12}(\alpha_0) \\ 0 & A(\alpha_0) \end{bmatrix} \begin{bmatrix} v \\ v' \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \Rightarrow M_{11}v + M_{12}(\alpha_0)v' = 0,
\]

determines \(v \) once \(v' \) has been computed. Vectors \(v \) and \(v' \) together contain the values of every monomial in \(\mathcal{E} \) evaluated at \(\alpha \).

It can be shown that \(\mathcal{E} \) affinely spans \(\mathbb{Z}^n \) and an affinely independent subset can be computed in polynomial time. Given \(v, v' \) and these points, we can compute the coordinates of \(\alpha \). If all independent points are in \(\mathcal{B} \)
then v' suffices. To find the vector entries that will allow us to recover the root coordinates it is sufficient to search for pairs of entries corresponding to q_1, q_2 such that $q_1 - q_2 = (0, \ldots, 0, 1, 0, \ldots, 0)$. This lets us compute the i-th coordinate, if the unit appears at the i-th position, by taking ratios of the vector entries.

To reduce the problem to an eigendecomposition, let r be the dimension of $A(x_0)$, and $d \geq 1$ the highest degree of x_0 in any entry. We wish to find x_0:

$$A(x_0) = x_0^d A_d + x_0^{d-1} A_{d-1} + \cdots + x_0 A_1 + A_0$$

becomes singular. These are the eigenvalues of the matrix polynomial. Furthermore, for every eigenvalue λ, there is a basis of the kernel of $A(\lambda)$ defined by the right eigenvectors of the matrix polynomial. If A_d is nonsingular then the eigenvalues and right eigenvectors of $A(x_0)$ are the eigenvalues and right eigenvectors of monic matrix polynomial $A_d^{-1} A(x_0)$. This is always the case when adding an extra linear polynomial, since $d = 1$ and $A_1 = I$ is the $r \times r$ identity matrix; then $A(x_0) = -A_1 (-A_1^{-1} A_0 - x_0 I)$. Generally, the companion matrix of a monic matrix polynomial is a square matrix C of dimension rd:

$$C = \begin{bmatrix}
0 & I & \cdots & 0 \\
\vdots & \ddots & \ddots & \vdots \\
0 & 0 & \cdots & I \\
-A_d^{-1} A_0 & -A_d^{-1} A_1 & \cdots & -A_d^{-1} A_{d-1}
\end{bmatrix}.$$

The eigenvalues of C are precisely the eigenvalues λ of $A_d^{-1} A(x_0)$, whereas its right eigenvector equals the concatenation of $v_1, \ldots, v_d : v_1$ is a right eigenvector of $A_d^{-1} A(x_0)$ and $v_i = \lambda^{i-1} v_1$, for $i = 2, \ldots, d$. There is an iterative and a direct algorithm in LAPACK for solving this eigenproblem, respectively implemented in hsein and trevc. Experimental evidence points to the former as being faster on large problems. Further, an iterative solver could eventually exploit the fact that we are only interested in real eigenvalues and eigenvectors.

We now address the question of a singular A_d. The following rank balancing transformation is used in far also to improve the conditioning of the leading matrix: If matrix polynomial $A(x_0)$ is not singular for all x_0, then there exists a transformation $x_0 \mapsto (t_1 y + t_2)/(t_3 y + t_4)$ for some $t_i \in \mathbb{Z}$, that produces a new matrix polynomial of the same degree and with nonsingular leading coefficient. The new matrix polynomial has coefficients of the same rank, for sufficiently generic t_i. We have observed
that for matrices of dimension larger than 200, at least two or three quadruples should be tried since a lower condition number by two or three orders of magnitude is sometimes achieved. The asymptotic as well as practical complexity of this stage is dominated by the eigendecomposition.

If a matrix polynomial with invertible leading matrix is found, then the eigendecomposition of the corresponding companion matrix is undertaken. If A_d is ill-conditioned for all linear rank balancing transformations, then we build the matrix pencil and call the generalized eigendecomposition routine `dggev` to solve $C_1 x + C_0$. The latter returns pairs (α, β) such that matrix $C_1 \alpha + C_0 \beta$ is singular with an associated right eigenvector. For $\beta \neq 0$ the eigenvalue is α/β, while for $\beta = 0$ we may or may not wish to discard the eigenvalue. $\alpha = \beta = 0$ occurs if and only if the pencil is identically zero within machine precision.

If the x_0-root coordinates have all unit geometric multiplicity and $A(x_0)$ is not identically singular, then we have reduced root-finding to an eigenproblem and some evaluations to eliminate extraneous eigenvectors and eigenvalues. The complexity lies in $O^* \left(2^{O(n)} (\deg R)^3 d \right)$, where polylogarithmic terms are ignored.

These operations are all implemented in the solver of far: Command “far trial input” constructs the sparse resultant matrix and solves the system with supports in `input.exps`, vector v, mixed volumes MV_{-1} and (integer) coefficients in `input.coef`, and integer points in `trial.msum`. Command line option “-ir trial.indx” reads the matrix definition from file `trial.indx` and option -a tells the program to set $A(x_0) = M(x_0)$, thus avoiding the decomposition of M_{11} and any related numerical errors. Other options control the condition number thresholds, printing of various information, and verification of results.

The section concludes with accuracy issues, irrespective of whether A_d is regular or not. Since there is no restriction in picking which variable to hide, it is enough that one of the original $n + 1$ variables have unit geometric multiplicity. If none can be found, we can specialize the hidden variable to each of the eigenvalues and solve every one of the resulting subsystems. Other numerical and algebraic remedies are under study, including the aforementioned perturbed determinant. Still, there is an open implementation problem in verifying the multiplicity and solving in such cases. Clustering neighbouring eigenvalues and computing the error on the average value will help handling such cases. Lastly, self-validating methods should be considered to handle ill-conditioned matrix polynomials, in particular in the presence of defective eigenvalues.
5 Molecular conformations

A relatively new branch of computational biology has been emerging as an effort to apply successful paradigms and techniques from geometry and robot kinematics to predicting the structure of molecules and embedding them in euclidean space. This section examines the problem of computing all 3-dimensional conformatons of a molecule described by certain geometric characteristics.

Energy minima can be approximated by allowing only the dihedral angles to vary, while considering bond lengths and bond angles as rigid. We consider cyclic molecules of six atoms to illustrate our approach and show that the corresponding algebraic formulation conforms to our model of sparseness. An in-depth study of cyclic molecules has been presented by Emiris and Mourrain (1999). Direct geometric analysis yields a 3×3 polynomial system

$$f_i = \beta_{i1} + \beta_{i2}x_j^2 + \beta_{i3}x_k^2 + \beta_{i4}x_j^2x_k^2 + \beta_{i5}x_jx_k = 0, \quad i \in \{1, 2, 3\},$$

for $\{i, j, k\} = \{1, 2, 3\}$. The β_{ij} are functions of known parameters. The system has a Bézout bound of 64 and mixed volume 16.

The first instance tried is a synthetic example for which β_{ij} is the j-th entry of $(-9, -1, -1, 3, 8)$ for all i. The symmetry of the problem is bound to produce root coordinates of high multiplicity, so we add $f_0 = x_0 + c_{01}x_1 - c_{02}x_2 + c_{03}x_3$ with randomly selected c_{0j}. The 3-fold mixed volumes are 16, 12, 12, 12 hence $\deg R = 52$. M is regular and has dimension 86, with 30 rows corresponding to f_0. The entire 56×56 constant submatrix is relatively well-conditioned. In the 30×30 matrix polynomial, matrix A_1 is numerically singular; random transformations fail to improve significantly its conditioning. The generalized eigenproblem routine produces 12 complex solutions, 3 infinite real solutions and 15 finite real roots. The absolute value of the four polynomials on the candidate values lies in $[0.6 \cdot 10^{-9}, 0.3 \cdot 10^{-3}]$ for values that approximate true solutions and in $[7.0, 3.0 \cdot 10^{20}]$ for spurious answers. Our program computes the true roots to at least 5 digits, the true roots being $\pm (1, 1, 1), \pm (5, -1, -1), \pm (-1, 5, -1), \pm (-1, -1, 5)$. The average CPU time of the online phase on a SUN SPARC 20 with clock rate 60MHz and 32MB of memory is 0.4 seconds.

Usually noise enters in the process that produces the coefficients. To model this phenomenon, we consider the cyclohexane which has equal inter-atomic distances and equal bond angles. We randomly perturb these
values by about 10% to obtain

$$\beta = \begin{bmatrix}
-310 & 959 & 774 & 1313 & 1389 \\
-365 & 755 & 917 & 1269 & 1451 \\
-413 & 837 & 838 & 1352 & 1655
\end{bmatrix}.$$

We defined an overconstrained system by hiding variable x_3. M has dimension 16 and is quadratic in x_3, whereas the 2-fold mixed volumes are all 4 and $\deg R = 12$. The monic quadratic polynomial reduces to a 32×32 companion matrix on which the standard eigendecomposition is applied. After rejecting false candidates each solution contains at least 8 correct digits. CPU time is 0.2 seconds on average for the online phase.

Last is an instance where the input parameters are sufficiently generic to produce 16 real roots. Let β_{ij} be the j-th entry of $(-13, -1, -1, -1, 24)$. We hide x_3 and obtain $\dim M = 16$, whereas $\deg R = 12$, and the companion matrix has dimension 32. There are 16 real roots. Four of them correspond to eigenvalues of unit geometric multiplicity, while the rest form four groups, each corresponding to a triple eigenvalue. For the latter the eigenvectors give us no valid information, so we recover the values of x_1, x_2 by looking at the other solutions and by relying on symmetry. The computed roots are correct to at least 7 decimal digits. The average CPU time is 0.2 seconds.

An equivalent approach to obtaining the same algebraic system may be based on distance geometry. A distance matrix is a square, real symmetric matrix, with zero diagonal. It can encode all inter-atomic distances by associating its rows and columns to atoms. When the entries are equal to a scalar multiple of the corresponding squared pairwise distance, the matrix is said to be embeddable in \mathbb{R}^3. Necessary and sufficient conditions for such matrices to be embeddable are known in terms of the eigenvalues and rank.

The main interest of this approach lies in large molecules. We have examined it in relation with experimental data that determine intervals in which the unknown distances lie. Optimization methods have been developed and applied successfully to molecules with a few hundreds of atoms (Havel et al. 1997). Ours are direct linear algebra techniques which are, for now, in a preliminary stage. We apply results from distance matrix theory and structured matrix perturbations to reduce the rank of the interval matrix respecting the experimental bounds. The Matlab code developed by Emiris and Nikitopoulos (2005) can handle molecules with up to 30 atoms.
References

Canny, J., Emiris, I.Z. (2000): A subdivision-based algorithm for the sparse resultant. J. ACM. 47:417–451

Canny, J., Pedersen, P. (1993): An algorithm for the Newton resultant. Technical Report 1394, Computer Science Department, Cornell University, Ithaca, New York

Cox, D., Little, J., O’Shea, D. (1998): Using algebraic geometry. Springer, New York (Graduate Texts in Mathematics, vol. 185)

D’Andrea, C. (2002): Macaulay-style formulas for the sparse resultant. Trans. of the AMS, 354:2595–2629

D’Andrea, C., Emiris, I.Z. (2001): Computing Sparse projection operators. In: Symbolic Computation: Solving Equations in Algebra, Geometry, and Engineering, eds Green E.L. et al. Contemporary Mathematics, vol. 286, pages 121–139, AMS

Emiris, I.Z., Canny, J.F. (1995): Efficient incremental algorithms for the sparse resultant and the mixed volume. J. Symb. Comput. 20:117–149

Emiris, I.Z., Konaxis, C. (2011): Single-lifting Macaulay-type formulae of generalized unmixed sparse resultants. J. Symb. Computation, 46(8):919–942

Emiris, I.Z., Mourrain, B. (1999): Computer algebra methods for studying and computing molecular conformations. Algorithmica, Special issue on algorithms for computational biology. 25:372–402

Emiris, I.Z., Nikitopoulos, T.G. (2005): Molecular Conformation Search by distance matrix perturbations. J. Math. Chemistry, 37(3):233–253

Emiris, I.Z., Pan, V.Y. (2002): Symbolic and Numeric Methods for exploiting structure in constructing resultant matrices. J. Symb. Computation, 33:393–413

Gao, T., Li, T.Y., Wang, X. (1999): Finding isolated zeros of polynomial systems in \mathbb{C}^n with stable mixed volumes. J. Symb. Comput. 28:187–211

Gelfand, I.M., Kapranov, M.M., Zelevinsky, A.V. (1994): Discriminants and resultants. Birkhäuser, Boston

Havel, T.F., Hyberts, S., Najfeld, I. (1997): Recent advances in molecular distance geometry. In: Bioinformatics, Springer, Berlin (Lecture Notes in Computer Science, vol. 1278)

Sturmfels, B. (1994): On the Newton polytope of the resultant. J. Algebr. Combinat. 3:207–236