Temperature-doping phase diagrams for $\text{Ba(Fe}_{1-x}\text{TM}_x\text{)}_2\text{As}_2$ (TM = Ni, Cu, Cu / Co) single crystals

N. Ni, A. Thaler, J. Q. Yan, A. Kracher, E. Colombier, S. L. Bud’ko, and P. C. Canfield

Ames Laboratory and Department of Physics and Astronomy,
Iowa State University, Ames, IA 50011, USA

S. T. Hannahs

National High Magnetic Field Laboratory,
1800 East Paul Dirac Drive, Tallahassee, Florida 32310, USA

(Dated: June 17, 2010)
Abstract

Microscopic, structural, transport and thermodynamic measurements of single crystalline Ba(Fe_{1-x}TM_{x})_{2}As_{2} (TM = Ni and Cu) series, as well as two mixed TM = Cu / Co series, are reported. In addition, high magnetic field, anisotropic $H_{c2}(T)$ data were measured up to 33 T for the optimally Ni doped BaFe_{2}As_{2} sample. All the transport and thermodynamic measurements indicate that the structural and magnetic phase transitions at 134 K in pure BaFe_{2}As_{2} are monotonically suppressed and increasingly separated in a similar manner by these dopants. In the Ba(Fe_{1-x}Ni_{x})_{2}As_{2} ($x \leq 0.072$), superconductivity, with T_{c} up to 19 K, is stabilized for $0.024 \leq x \leq 0.072$. In the Ba(Fe_{1-x}Cu_{x})_{2}As_{2} ($x \leq 0.356$) series, although the structural and magnetic transitions are suppressed, there is only a very limited region of superconductivity: a sharp drop of the resistivity to zero near 2.1 K is found only for the $x = 0.044$ samples. In the Ba(Fe_{1-x-y}Co_{x}Cu_{y})_{2}As_{2} series, superconductivity, with T_{c} values up to 12 K ($x \sim 0.022$ series) and 20 K ($x \sim 0.047$ series), is stabilized. Quantitative analysis of the detailed temperature-dopant concentration ($T-x$) and temperature-extra electrons ($T-e$) phase diagrams of these series shows that there exists a limited range of the number of extra electrons added, inside which the superconductivity can be stabilized if the structural and magnetic phase transitions are suppressed enough. Moreover, comparison with pressure-temperature phase diagram data, for samples spanning the whole doping range, further reinforces the conclusion that suppression of the structural / magnetic phase transition temperature enhances T_{c} on the underdoped side, but for the overdoped side T_{c}^{max} is determined by e. Therefore, by choosing the combination of dopants that are used, we can adjust the relative positions of the upper phase lines (structural and magnetic phase transitions) and the superconducting dome to control the occurrence and disappearance of the superconductivity in transition metal, electron-doped BaFe_{2}As_{2}.

PACS numbers: 74.10.+v; 74.62.Dh; 74.70.Xa; 74.25.-q
I. INTRODUCTION

The iron pnictide superconductors have been the focus of extensive research since the layered LaFeAsO$_{0.9}$F$_{0.1}$ was reported superconducting around 26 K at ambient pressure \[1\] and later at 43 K, under applied pressures up to 4 GPa \[2\]. T_c soon rose to 55 K at ambient pressure in RFeAsO$_{0.9}$F$_{0.1}$ (R=Ce, Pr, Nd, Sm) \[3–6\]. But the size of single crystals of these 1111 superconductors, grown by either a high temperature / high pressure technique \[7\] or flux-growth method \[8\], were small and thus limited the research on the 1111 system. In addition, problems associated with the stoichiometry of O and F made reproducibility hard to maintain in these compounds.

Fortunately, another high T_c, Fe-pnictide family with T_c up to 38 K, (Ba$_{1-x}$K$_x$)Fe$_2$As$_2$, was soon discovered \[9, 10\]. Following the discovery of this oxygen-free compound in polycrystalline form, sizable single crystals of (Ba$_{1-x}$K$_x$)Fe$_2$As$_2$ were grown, using solution growth methods, with dimensions up to $3 \times 3 \times 0.2$ mm3 \[11–13\]. Unfortunately these K-doped samples were found to be rather inhomogeneous and there is a significant layer to layer concentration variation even in one piece \[11, 14\]. On the other hand, it was soon found that transition metal doping on the Fe site in this ”122” family could induce superconductivity up to 24 K \[15–17, 19, 20\]. This discovery was important not only because it made Fe pnictides different from cuprates in the sense that superconductivity is generally destroyed by doping in the CuO plane, but also because large, high quality, homogeneous single crystals could be easily grown and reproduced \[12, 15, 19–25\]. The crystal volume can be as large as 0.2 cm3 and the samples are the most homogeneous ones among all the Fe pnictide superconductors, which is critical for detailed and systematic studies. Given these advantages, even though T_c is lower than 30 K, a great deal of research has been done on these systems.

The phase diagram of Ba(Fe$_{1-x}$Co$_x$)$_2$As$_2$ was mapped out in detail \[20, 24\]. It was found the structural and magnetic phase transitions are suppressed with doping and, at intermediate dopings, superconductivity is stabilized with a coexistence range for antiferromagnetism and superconductivity on the low x side of the superconducting dome \[19, 29\].

In order to compare the effects of 3d electron doping on BaFe$_2$As$_2$, and thus try to discover the similarities and differences, to understand the relation between the structural / antiferromagnetic phase transition and superconductivity, as well as the condi-
tions for the appearance of superconductivity in these systems, we focus on electron doped BaFe$_2$As$_2$: Ba(Fe$_{1-x}$Ni$_x$)$_2$As$_2$, Ba(Fe$_{1-x}$Cu$_x$)$_2$As$_2$ ($x \leq 0.356$) and two families of Ba(Fe$_{1-x-y}$Co$_x$Cu$_y$)$_2$As$_2$ ($x \sim 0.022$ and $x \sim 0.047$) series. Single crystals were grown and characterized. An initial work which showed only the transport measurements on a subset of samples from these series has been published [19]; in this paper a comprehensive study, on more samples and series, is presented. In specific, for these four series, data from structural, microscopic, transport and thermodynamic measurements are presented. All these measurements show that the structural / magnetic phase transitions at 134 K in pure BaFe$_2$As$_2$ are monotonically suppressed and separated by these dopants. For the Ba(Fe$_{1-x}$Ni$_x$)$_2$As$_2$ series, superconductivity is stabilized over a smaller doping range than that for the Ba(Fe$_{1-x}$Co$_x$)$_2$As$_2$ series. High field, anisotropic $H_{c2}(T)$ measurements done on the optimally Ni doped BaFe$_2$As$_2$ sample, with an applied magnetic field up to 33 T, revealed behavior comparable to that found for K- and Co- doped BaFe$_2$As$_2$ [11, 20, 30].

In the Ba(Fe$_{1-x}$Cu$_x$)$_2$As$_2$ ($x \leq 0.356$) series, superconductivity is not stabilized for $T > 3$ K. For one concentration, $x = 0.044$, a sharp drop of the resistivity to zero shows up near 2 K. This feature may be a sign of very limited ($0.035 < x < 0.050$) superconducting region near this Cu doping level. In the Ba(Fe$_{1-x-y}$Co$_x$Cu$_y$)$_2$As$_2$ ($x \sim 0.022$) series, although Ba(Fe$_{0.976}$Co$_{0.024}$)$_2$As$_2$ is not superconducting, the introduction of extra Cu atoms further suppresses the structural / magnetic phase transitions and a T_c dome, with a maximum T_c value of 12 K, is found. In the Ba(Fe$_{1-x-y}$Co$_x$Cu$_y$)$_2$As$_2$ ($x \sim 0.047$) series, Cu is doped into Ba(Fe$_{0.953}$Co$_{0.047}$)$_2$As$_2$, an underdoped compound with $T_c \sim 16$ K. As Cu is added, the structural and magnetic phase transitions are suppressed further, and T_c rises to ~ 20 K.

Comparisons of the $T - x$ and $T - e$ phase diagrams for TM=Co, Ni, Cu, Cu / Co series combined with our previous work on Rh, Pd dopings [25] reveal that, although the suppression of the upper transitions better scales with the doping level x, the location and extent of the superconducting dome scales better with the number of extra conduction electrons added, which are one for each Co, two for each Ni and three for each Cu atom.
II. SAMPLE GROWTH, STRUCTURAL AND COMPOSITIONAL DETERMINATION AND EXPERIMENTAL METHODS

Single crystals of Ba(Fe$_{1-x}$TM$_x$)$_2$As$_2$ (TM=Ni, Cu, Cu / Co) were grown out of a TMAs self flux, using conventional high-temperature solution growth techniques [31]. The growth protocol of Ni doped BaFe$_2$As$_2$ single crystal growths is the same as for Co-doping [20]. Cu doped BaFe$_2$As$_2$ and Cu / Co doped BaFe$_2$As$_2$ single crystal growths are slightly different, though. We use small Cu shot, rather than CuAs, to introduce the dopant because no binary CuAs compound is known to exist. For Cu doped BaFe$_2$As$_2$ ($x \leq 0.356$), small Ba chunks, FeAs powder and Cu shot were mixed together according to the ratio Ba : FeAs : Cu = 1 : 4 : m. The nominal concentration x_{nominal} can be calculated as $Cu/(Cu+Fe) = m/(4+m)$.

For Ba(Fe$_{1-x-y}$Co$_x$Cu$_y$)$_2$As$_2$ ($x \approx 0.022$), small Ba chunks, FeAs, CoAs powder and Cu shot were mixed together according to the ratio Ba : FeAs : CoAs : Cu = 1 : 3.88 : 0.12 : m.

For Ba(Fe$_{1-x-y}$Co$_x$Cu$_y$)$_2$As$_2$ ($x \approx 0.047$), Ba : FeAs : CoAs : Cu = 1 : 3.75 : 0.25 : m were mixed. These mixtures were placed into a 2 ml or 5 ml alumina crucible. A second, catch crucible, containing quartz wool, was placed on top of this growth crucible and then both were sealed in a quartz tube under $\sim 1/3$ atmosphere Ar gas. The sealed quartz tube was heated up to 1180 °C, stayed at 1180 °C for 5 to 8 hours, and then cooled to 1000 °C over 36 hours. Once the furnace reached 1000 °C, the excess liquid was decanted from the plate like single crystals.

Given the difficulties associated with K homogeneity [11, 14], determining how homogeneous the TM doped samples are is important. Using wavelength dispersive x-ray spectroscopy (WDS) in the electron probe microanalyzer of a JEOL JXA-8200 electron-microprobe, extensive elemental analysis was performed on each of these batches, especially on the pieces which were used to make the magnetization, resistivity and heat capacity measurements. For those pieces, the samples were carefully exfoliated and cut into several pieces. WDS measurements were done up to five pieces of sample from each batch. The average x and y values,
	Ba(Fe$_{1-x}$Ni$_x$)$_2$As$_2$		Ba(Fe$_{1-x}$Cu$_x$)$_2$As$_2$		Ba(Fe$_{1-x-y}$Co$_x$Cu$_y$)$_2$As$_2$ (x ~ 0.022)
N	18 10 44 18 11 12 28	N	16 11 17 26 12 16	N	18 12 20 30 20 20 28
$x_{nominal}$	0.01 0.02 0.03 0.04 0.05 0.07 0.09	m	0.02 0.05 0.09 0.1 0.11 0.12		
x_{WDS}	0.0067 0.016 0.024 0.032 0.046 0.054 0.072	$x_{nominal}$	0.005 0.012 0.022 0.024 0.027 0.029		
2σ	0.001 0.002 0.002 0.003 0.002 0.002 0.004	x_{WDS}	0.0077 0.02 0.026 0.035 0.044 0.05		
		2σ	0.002 0.002 0.002 0.004 0.002 0.002		
		N	43 12 10 8 17 23	m	0.14 0.16 0.26 0.45 1 3
$x_{nominal}$		$x_{nominal}$	0.034 0.038 0.061 0.101 0.20 0.429		
x_{WDS}		x_{WDS}	0.061 0.068 0.092 0.165 0.288 0.356		
2σ		2σ	0.002 0.002 0.008 0.02 0.02 0.02		
		m	0 0.014 0.03 0.05 0.07 0.09 0.14		
$y_{nominal}$		$y_{nominal}$	0 0.0035 0.0074 0.012 0.017 0.022 0.034		
y_{WDS}		y_{WDS}	0 0.005 0.01 0.019 0.026 0.032 0.043		
2σ		2σ	0 0.002 0.002 0.003 0.004 0.003 0.004		
Table I continued

Ba(Fe$_{1-x}$-y Co$_x$Cu$_y$)$_2$As$_2$	(x ∼ 0.047)					
N	7	8	37	36	7	41
x_{WDS}	0.047	0.051	0.047	0.047	0.045	0.045
2σ	0.002	0.002	0.003	0.002	0.002	0.002
m	0	0.001	0.05	0.09	0.12	0.15
$y_{nominal}$	0	0.0025	0.012	0.022	0.029	0.036
y_{WDS}	0	0.0045	0.019	0.034	0.046	0.058
2σ	0	0.001	0.002	0.004	0.004	0.006

TABLE I: WDS data for all five series. N is the number of locations measured in one batch, m is as described in the crystal growth method part, $y_{nominal}$ is calculated as $m/(4+m)$, x_{WDS} and y_{WDS} are the average x and y values measured in one batch, 2σ is two times the standard deviation of the N values measured.

Table I summarizes the results of the WDS measurements of the Ba(Fe$_{1-x}$TM$_x$)$_2$As$_2$ (TM=Ni, Cu, Cu / Co) series. N is the total number of spots measured for a given batch. $x_{nominal}$ and $y_{nominal}$ are the nominal doping concentrations. x_{WDS} and y_{WDS} are the average values of the N measurements for a given batch. m is the quantity of elemental Cu added, as described above. 2σ is twice the standard deviation of the N values measured for one batch, which is taken as the compositional error bar in this paper. The 2σ error bars, which also include machine errors, for all the spots measured in one batch are < 10% of the average x values. These results further demonstrate the relative homogeneity of the Ba(Fe$_{1-x}$TM$_x$)$_2$As$_2$ series.

Figure 1 shows a graphic summary of the measured doping concentration vs. nominal doping concentration. The data points for Ba(Fe$_{1-x}$Ni$_x$)$_2$As$_2$ can be fitted well by a straight line. The ratio of the measured Ni concentration to the nominal Ni concentration is roughly 0.8. For comparison, this number is 0.74 for Co doped BaFe$_2$As$_2$ [20]. Figure 1 (b) summarizes the measured Cu concentration vs. nominal Cu concentration for low Cu dopings.
FIG. 1: (a) Measured Ni concentration vs. nominal Ni concentration for the Ba(Fe$_{1-x}$Ni$_x$)$_2$As$_2$ series. (b) Enlarged measured Cu concentration vs. nominal Cu concentration for Ba(Fe$_{1-x-y}$Co$_y$Cu$_y$)$_2$As$_2$ ($x = 0$, $x \sim 0.022$ and $x \sim 0.047$). Inset: x_{WDS} vs. $x_{nominal}$ for Ba(Fe$_{1-x}$Cu$_x$)$_2$As$_2$ in the whole doping range.

(y$_{nominal} < 0.1$) for all Ba(Fe$_{1-x}$Cu$_x$)$_2$As$_2$ and Ba(Fe$_{1-x-y}$Co$_y$Cu$_y$)$_2$As$_2$ ($x \sim 0.022$ and $x \sim 0.047$) growths. Although Cu was doped in different series, all the data points fall on the same line. The measured Cu concentration is roughly 1.6 times the nominal Cu concentration in this low doping range. For larger Cu doping values, the ratio of WDS measured Cu concentration over nominal Cu concentration decreases and the x_{WDS} value saturates around 0.35, as shown in the inset of Fig. 1 (b). This could be due to the increasing TM:As ratio as $x_{Cu}^{nominal}$ increases; due to the use of Cu rather than CuAs, the TM : As ratio in the melt is 1.4 : 1 when $x_{Cu}^{nominal} = 0.4$ and 1.6 : 1 when $x_{Cu}^{nominal} = 0.6$, both of which are much larger than the value of 1:1 used for TM = Co and Ni.
Powder X-ray diffraction measurements, with a Si standard, were performed at room temperature on a Rigaku Miniflex diffractometer with Cu K_{α} radiation. Diffraction patterns were taken on ground single crystals from each batch. The unit cell parameters were refined by "UnitCell" software. Peak positions were determined from the peak maximum. Zero shift was corrected by the average shift of those Si peaks which have no overlap with the sample peaks. Error bars were taken as twice of the standard deviation, σ, which was obtained from the refinements.

![Diffraction Patterns](image)

FIG. 2: Powder X-ray diffraction patterns for Ba(Fe$_{0.644}$Cu$_{0.356}$)$_2$As$_2$, Ba(Fe$_{0.895}$Co$_{0.047}$Cu$_{0.058}$)$_2$As$_2$, Ba(Fe$_{0.928}$Ni$_{0.072}$)$_2$As$_2$ and pure BaFe$_2$As$_2$.

Figure 2 shows the powder x-ray diffraction patterns for pure BaFe$_2$As$_2$ and the samples which have the highest doping level for each dopant: Ba(Fe$_{0.644}$Cu$_{0.356}$)$_2$As$_2$, Ba(Fe$_{0.985}$Co$_{0.047}$Cu$_{0.058}$)$_2$As$_2$ and Ba(Fe$_{0.928}$Ni$_{0.072}$)$_2$As$_2$. No impurity phases can be detected in any of these batches. Since Ba(Fe$_{0.644}$Cu$_{0.356}$)$_2$As$_2$ has the highest doping concentration among all series, the lattice parameters manifest the largest changes; the combined (213) and (008) peaks in pure BaFe$_2$As$_2$ that overlap the Si peak around 56° split to either side and reveal three peaks which are indicated by arrows in Ba(Fe$_{0.644}$Cu$_{0.356}$)$_2$As$_2$.

Heat capacity data were collected in a Quantum Design (QD) Physical Properties Measurement System (PPMS) using the relaxation technique. Magnetization and temperature-
dependent AC electrical transport data (f=16 Hz, I=3 mA) were collected in a QD Magnetic Properties Measurement System (MPMS) using a LR700 AC resistance bridge. Electrical contact was made to the sample by using Epotek H20E silver epoxy to attach Pt wires in a four-probe configuration. For all series, the measured room temperature resistivities varied from 0.1mΩ cm to 1mΩ cm. Because these samples are easy to exfoliate or crack [20, 33, 34], \(\rho(T)/\rho_{300K} \) instead of resistivity is plotted as a function of temperature for all series in this paper.

Field-dependent DC electrical transport data were collected in the 33 T magnet facility in National High Magnetic Field Lab (NHMFL) in Tallahassee, FL. \(R(H) \) data at different temperatures were measured for \(H||c \) axis and \(H\perp c \) axis. To correct the temperature off-sets associated with the resistive probe used at the NHMFL [20], \(R(T) \) data for both samples, in zero field, were measured in the Quantum Design MPMS unit. These shifts were at most 4% of \(T_c \).

III. RESULTS

A. \(\text{Ba(Fe}_{1-x}\text{Ni}_x\text{)}_2\text{As}_2 \)

\(\text{Ba(Fe}_{1-x}\text{Ni}_x\text{)}_2\text{As}_2 \) compounds were reported to superconduct by Xu. et al [16], however, no detailed presentation of transport and thermodynamic data or determination of a phase diagram of the structural, magnetic and superconducting phases was made. In order to map the phase diagram of \(\text{Ba(Fe}_{1-x}\text{Ni}_x\text{)}_2\text{As}_2 \), single crystals were grown and characterized.

The evolution of the lattice parameters with the doping level is shown in Fig. 3. For Ni dopings up to \(x =0.072 \), the lattice parameter \(a \) increases slightly, by 0.04%, while the lattice parameter \(c \) decreases almost ten times faster, by 0.35%, and thus the unit cell volume decreases monotonically by 0.26%. This is different from Co-doped \(\text{BaFe}_2\text{As}_2 \), in which, up to the \(x = 0.114 \) doping level, \(a \) and \(c \) lattice parameters decrease by 0.07% and 0.5% respectively and the unit cell volume decreases by 0.6%.

Figure 4 (a) shows the normalized resistivity data taken from 2 K to 300 K for \(\text{Ba(Fe}_{1-x}\text{Ni}_x\text{)}_2\text{As}_2 \). Each subsequent data set is shifted downward by 0.3 for clarity. The data show behavior very similar to \(\text{Ba(Fe}_{1-x}\text{Co}_x\text{)}_2\text{As}_2 \) [20, 21, 22]. With Ni doping, the resistive anomaly associated with the structural and magnetic phase transitions is suppressed from
FIG. 3: Room temperature lattice parameters of the Ba(Fe_{1-x}Ni_{x})_{2}As_{2} series, a and c as well as unit cell volume, V, normalized to the values of pure BaFe_{2}As_{2} \((a_0 = 3.9621(8) \, \text{Å}, c_0 = 13.018(2) \, \text{Å}, V_0 = 204.357 \, \text{Å}^3)\) as a function of measured Ni concentration, \(x_{WDS}\).

For pure BaFe_{2}As_{2}, the resistive anomaly is very similar to that seen in pure CaFe_{2}As_{2} [35] as well as very lightly Co doped BaFe_{2}As_{2} \([20]\). With higher Ni doping, the resistive anomaly becomes a broadened upturn. The suppression of the resistive anomaly can also be seen in Fig. 4 (b), which shows the enlarged \(d(\rho(T)/\rho_{300K})/dT\) below 140 K for Ba(Fe_{1-x}Ni_{x})_{2}As_{2}; two kinks similar to those in Ba(Fe_{1-x}Co_{x})_{2}As_{2} \([20, 26]\) can be observed. Based on the Co-doping work \([20, 26]\), and considering the similarities between Co-doping and Ni-doping, it is natural to believe that the higher-temperature feature is associated with the structural phase transition and the lower-temperature feature is associated with the magnetic phase transition. Recent neutron scattering work \([36]\) on the Ba(Fe_{0.961}Rh_{0.039})_{2}As_{2} compound has confirmed this assumption and clarified the criteria to infer the structural phase transition temperature \(T_s\) and magnetic phase transition temperature \(T_m\) from the resistivity data, which are shown for \(x = 0.024\) sample in Fig. 4 (b). These criteria will be employed in this paper for the samples which have two distinct kinks in \(d(\rho(T)/\rho_{300K})/dT\) (including Co-doping). For the samples which have blurred kinks in \(d(\rho(T)/\rho_{300K})/dT\) due to the nearness between \(T_s, T_m\) and the superconducting temperature, \(T_c\), like the \(x = 0.032\) sample, the criteria to infer \(T_s\)
FIG. 4: The Ba(Fe$_{1-x}$Ni$_x$)$_2$As$_2$ series: (a) The temperature dependent resistivity, normalized to the room temperature value. Each subsequent data set is shifted downward by 0.3 for clarity. (b) $d(\rho(T)/\rho_{300K})/dT$ for $y \leq 0.032$. The criteria to infer T_s and T_m from the resistivity data are shown. (c) Enlarged low temperature $\rho(T)/\rho_{300K}$. The offset and onset criteria to infer T_c are shown.

and T_m are shown in the inset of Fig. 4(b).

As we can see, as T_s and T_m are suppressed, superconductivity appears. For $x = 0.024$, T_s is suppressed to 77 K, T_m is suppressed to 66 K, and zero resistivity is detected below 6.8 K. For $x = 0.046$, the resistive anomaly associated with structural and magnetic phase transitions is no longer detected and T_c increases to the maximum value around 19 K. For larger x, T_c decreases and is suppressed to ~ 5.7 K for $x = 0.072$. The superconducting feature can be seen more clearly in Fig. 4(c), which presents the low temperature resistivity data for Ba(Fe$_{1-x}$Ni$_x$)$_2$As$_2$. The offset and onset criteria to determine T_c, are also shown in Fig. 4(c). These criteria are employed to infer T_c from resistivity data in this paper. It can be seen that the superconducting transition width of Ba(Fe$_{1-x}$Ni$_x$)$_2$As$_2$ is smaller than 2 K as inferred from the resistivity measurements.

Figure 5(a) shows the $M(T)/H$ data taken in 1 T with $H \perp c$. For pure BaFe$_2$As$_2$, a drop in susceptibility, associated with the structural / magnetic phase transitions around 134 K, can be clearly seen. With Ni doping, this feature is suppressed to lower temperature and
FIG. 5: The Ba(Fe$_{1-x}$Ni$_x$)$_2$As$_2$ series: (a) $M(T)/H$ data taken at 1 T with $H \perp c$. (b) Field-cooled (FC) and zero-field-cooled (ZFC) low field $M(T)/H$ data taken at 2.5 mT with $H \perp c$. The criterion to infer T_c is shown. (c) $d(M(T)/H)/dT$ for $x \leq 0.024$. The criteria to infer T_s and T_m are shown. (d) The criterion to infer T_s for $x = 0.032$ sample.

the derivative, $d(M/H)/dT$, presented in Fig. 5 (c), splits, consistent with the resistivity data shown in Fig. 4 (b). The criteria to infer T_s and T_m from the magnetization data are shown in Fig. 5 (c) and were employed in this paper for the samples which have two distinct kinks in $d(M/H)/dT$. For sample $x = 0.032$, due to the nearness of T_s, T_m and T_c, only a very weak slope change can be detected in the magnetization data, therefore the criterion to infer T_s is different and shown in Fig. 5 (d). There is no detectable feature for us to infer T_m from the magnetization data for $x = 0.032$ sample. It is also worth noting that $M(T)/H$ data show an almost linear temperature dependence above the structural and magnetic phase transition temperatures. This linear behavior is similar to that seen in
The magnitude of the susceptibility in the normal state, centered around \(7 \times 10^{-4}\) emu/mole, is again similar to that of \(\text{Ba(Fe}_{1-x}\text{Co}_{x})\text{As}_2\). Figure 5(b) shows the \(M(T)/H\) data taken at 2.5 mT with \(H\) perpendicular to the crystallographic \(c\)-axis of the \(\text{Ba(Fe}_{1-x}\text{Ni}_{x})\text{As}_2\) samples. The Meissner effect can be clearly seen in the field-cooled (FC) data, the zero-field-cooled (ZFC) data highlight the transition even more dramatically. The superconductive fractions are similar to the superconducting fractions of \(\text{Ba(Fe}_{1-x}\text{Co}_{x})\text{As}_2\). The criterion to determine \(T_c\) from the magnetization data is shown for \(x = 0.046\) sample which has the maximum \(T_c\) in this series, and will be used for all the series presented in this paper.

The heat capacity data of the \(\text{Ba(Fe}_{1-x}\text{Ni}_{x})\text{As}_2\) series have been presented and published in reference [37]. Together with the heat capacity data of the \(\text{Ba(Fe}_{1-x}\text{Co}_{x})\text{As}_2\) series, a \(\Delta C/T_c \propto T_c^2\) relation was revealed.

The structural / magnetic and superconducting transition temperatures inferred from Figs. 4, 5 and the heat capacity data [37] are summarized in Table II and Fig. 6. The criteria to infer these temperature are shown in Fig. 4(b) and Fig. 5(b). For \(x = 0.032\) sample, \(T_s\) and \(T_m\) are marked with * in the table since different criteria are employed for this concentration. As we can see from Table II for small \(x\) values, \(T_s\) and \(T_m\) are suppressed and split. For higher \(x\)-values, superconductivity is stabilized as \(T_s\) and \(T_m\)

dopant	\(x\)	\(\rho\)	\(M\)	\(C\)
Ni				
0	134 134	134 134		
0.0067	121 118	119 119		
0.016	100 94	100 94		
0.024	77 66 8.6 6.8 80 68 3.9	2.5		
0.032	54* 37* 16.6 15.9 53* 15.1	14.6		
0.046	19.4 18.8	18.4 17.8		
0.054	15.5 14.3	14.4 13.9		
0.072	7.5 5.7	6 5.2		

TABLE II: Summary of \(T_s\), \(T_m\) and \(T_c\) from resistivity, magnetization and specific heat measurements for the \(\text{Ba(Fe}_{1-x}\text{Ni}_{x})\text{As}_2\) series. *: see text.
FIG. 6: $T - x$ phase diagram of Ba(Fe$_{1-x}$Ni$_x$)$_2$As$_2$ single crystals for $x \leq 0.072$. The precise form of T_s and T_m lines are not yet determined in the superconducting dome region, but we assume that they intersect with the superconducting dome near T_{c}^{max} [28], which is implied by the shading plotted in the superconducting dome.

continue to be suppressed. All of the $T - x$ data can be used to assemble a temperature-doping concentration ($T - x$) phase diagram for Ba(Fe$_{1-x}$Ni$_x$)$_2$As$_2$ as shown in Fig. 6. It has very similar appearance as the one for Ba(Fe$_{1-x}$Co$_x$)$_2$As$_2$ except the superconducting dome occurs at a lower x and over a smaller x-range.

FIG. 7: $R(H)$ data of Ba(Fe$_{0.054}$Ni$_{0.046}$)$_2$As$_2$ with $H \perp c$ (left panel) and $H \parallel c$ (right panel).
Given the similarities, and differences, between the Ni doped and Co doped BaFe$_2$As$_2$ systems, a comparison of the $H_{c2}(T)$ curves, which reflect the properties of the superconductivity in these two systems, is desirable. Anisotropic H_{c2} data taken for Ba(Fe$_{0.954}$Ni$_{0.046}$)$_2$As$_2$ in the magnetic fields up to 33 T are summarized in Fig. 7. Although data was taken on two samples, only one set of $R(H)$ data is shown. The left panel of Fig. 7 presents the $R(H)$ data taken from 11 K to 19 K in 1 K steps for $H \perp c$. The right panel presents the $R(H)$ data taken from 5 K to 19 K in 1 K steps for $H || c$. Offset and onset criteria to infer H_{c2} are shown.

Two Co dopings are logically comparable to the near optimally doped Ba(Fe$_{0.954}$Ni$_{0.046}$)$_2$As$_2$: the comparably doped Ba(Fe$_{0.953}$Co$_{0.047}$)$_2$As$_2$ which has a similar T_c, and the near-optimally doped Ba(Fe$_{0.926}$Co$_{0.074}$)$_2$As$_2$. Temperature dependent H_{c2} curves for Ba(Fe$_{0.954}$Ni$_{0.046}$)$_2$As$_2$ are presented in Fig. 8 in comparison with Ba(Fe$_{0.953}$Co$_{0.047}$)$_2$As$_2$ (Fig. 8(a)) and Ba(Fe$_{0.926}$Co$_{0.074}$)$_2$As$_2$ (Fig. 8(b)). The anisotropy of near-optimally doped Ba(Fe$_{0.954}$Ni$_{0.046}$)$_2$As$_2$ is virtually identical to near-optimally doped Ba(Fe$_{0.926}$Co$_{0.074}$)$_2$As$_2$ as indicated from Fig. 8(b) whereas it is almost 2 times larger than that of the underdoped Ba(Fe$_{0.953}$Co$_{0.047}$)$_2$As$_2$ (similar doping level, similar T_c) as shown in Fig. 8(a). This is a clear manifestation of the idea that the anisotropy of the superconducting state is not defined by x, but rather by the low temperature structural / magnetic state of the system [20]. The anisotropic parameter $\gamma (= H_{c2}^{\perp c}(T)/H_{c2}^{|| c}(T))$ of Ba(Fe$_{0.954}$Ni$_{0.046}$)$_2$As$_2$ is shown in Fig. 8(c). It was calculated by taking each data point from $H_{c2}^{\perp c}(T)$ curve and interpolating $H_{c2}^{|| c}(T)$ at the same T-value, from the $H_{c2}^{|| c}$ curve. As we can see, γ varies from 2 far from T_c to 3 near to T_c by offset criterion or from 1.7 far from T_c to 3 near to T_c by onset criterion.

Considering two samples and two criteria, for Ba(Fe$_{0.954}$Ni$_{0.046}$)$_2$As$_2$, $(dH_{c2}^{|| c}/dT)|_{T_c}$ ranges from -2.2 to -3 T/K and $(dH_{c2}^{\perp c}/dT)|_{T_c}$ ranges from -5 to -5.7 T/K. Assuming the validity of Werthamer-Helfand-Hohenberg (WHH) equation, $H_{c2}(0) = -0.693 T_c (dH_{c2}^{|| c}/dT)|_{T_c}$, $H_{c2}^{\perp c}(0)$ can be estimated to be 70 T to 80 T and $H_{c2}^{|| c}(0)$ can be between 30 T to 40 T. Using the equations $\xi^{\perp c} = (\phi_0 / 2 \pi H_{c2}^{\perp c})^{1/2}$ and $\xi^{|| c} = (\phi_0 H_{c2}^{|| c} / 2 \pi (H_{c2}^{\perp c})^2)^{1/2}$, the coherence length of in plane $\xi^{\perp c}(0)$ is around 30 Å and inter plane $\xi^{|| c}(0)$ is around 14 Å. Alternatively, given that the anisotropic $H_{c2}(T)$ data for optimally Co and Ni doped BaFe$_2$As$_2$ is similar to that found for K-doped BaFe$_2$As$_2$ [11], it is likely that $H_{c2}^{\perp c}(T)$ will continue to bend over to meet the essentially linear $H_{c2}^{|| c}(T)$ curve near $H_{c2}(0) \sim 50$ T, giving an isotropic coherence length of 26 Å.

16
FIG. 8: (a) H_{c2} vs. T from offset criterion (upper panel) and onset criterion (lower panel) of Ba(Fe$_{0.954}$Ni$_{0.046}$)$_2$As$_2$ and Ba(Fe$_{0.953}$Co$_{0.047}$)$_2$As$_2$ [20]. (b) H_{c2} vs. T_c from offset criterion (upper panel) and onset criterion (lower panel) of Ba(Fe$_{0.954}$Ni$_{0.046}$)$_2$As$_2$ and Ba(Fe$_{0.926}$Co$_{0.074}$)$_2$As$_2$ [20]. (c) $\gamma = H_{c2}^{\perp c} / H_{c2}^{\parallel c}$ vs. T/T_c for Ba(Fe$_{0.954}$Ni$_{0.046}$)$_2$As$_2$. For each composition, data inferred from $R(H)$ measurements on two samples are shown.

B. Ba(Fe$_{1-x}$Cu$_x$)$_2$As$_2$

Since superconductivity was found in both Ba(Fe$_{1-x}$Co$_x$)$_2$As$_2$ and Ba(Fe$_{1-x}$Ni$_x$)$_2$As$_2$ series, a straightforward next question is, what will happen if Cu, the next 3d, transition metal element, is doped into BaFe$_2$As$_2$? Will the structural / magnetic phase transitions be suppressed in a similar manner? Will the superconducting dome shrink further? To answer these questions, Ba(Fe$_{1-x}$Cu$_x$)$_2$As$_2$ single crystals were grown and characterized. In Table
FIG. 9: Lattice parameters of the Ba(Fe$_{1-x}$Cu$_x$)$_2$As$_2$ series, a and c as well as unit cell volume, V, normalized to the values of pure BaFe$_2$As$_2$ ($a_0 = 3.9621(8)$ Å, $c_0 = 13.0178$ (20) Å, $V_0 = 204.357$ Å3) as a function of measured Cu concentration, x_{WDS}

I, we showed the results of the elemental analysis of the Ba(Fe$_{1-x}$Cu$_x$)$_2$As$_2$ series. We found Cu-doping has a somewhat larger variation of x values than the other TM dopings (but still much less variation than K-doping). This may come from the fact that small Cu shot rather than CuAs powder was used in the growth procedure, but considering the fact that Co powder rather than CoAs powder was used in reference [21] for the growth of Ba(Fe$_{1-x}$Co$_x$)$_2$As$_2$ crystals and very sharp low field $M(T)/H$ features were observed, it is more likely that this somewhat larger Cu-concentration variation is intrinsic in nature.

The evolution of the lattice parameters of Ba(Fe$_{1-x}$Cu$_x$)$_2$As$_2$ with x is shown in Fig. 9. Comparing to pure BaFe$_2$As$_2$, with Cu doping up to $x=0.356$, the lattice parameter a increases linearly by 2.2%, the lattice parameter c decreases monotonically by 1.7% and the unit cell volume increases by roughly 2.6%.

The electrical transport data for the Ba(Fe$_{1-x}$Cu$_x$)$_2$As$_2$ series from base temperature, 2 K, to 300 K (for $x = 0.044$, the base temperature was 0.9 K) are shown in Fig. 10 the effects of Cu substitution can be clearly seen. As x is increased, the resistive anomaly associated with the structural and magnetic phase transitions is suppressed monotonically. For the lowest doping level, $x = 0.0077$, the resistive anomaly manifests an abrupt increase in
FIG. 10: The temperature dependent resistivity, normalized to the room temperature value, for \(\text{Ba(Fe}_{1-x}\text{Cu}_x)\text{As}_2 \). Each subsequent data set is shifted downward by 0.3 for clarity respectively for (a) and (b).

FIG. 11: (a) \(d(\rho(T)/\rho_{300K})/dT \) of \(\text{Ba(Fe}_{1-x}\text{Cu}_x)\text{As}_2 \) for \(0.035 \geq x \). (b) Enlarged low temperature \(\rho(T)/\rho_{300K} \) data of \(\text{Ba(Fe}_{0.956}\text{Cu}_{0.044})\text{As}_2 \) resistivity similar to that found in pure \(\text{CaFe}_2\text{As}_2 \) followed by a decrease as temperature is lowered further and is very similar to what is shown in Fig. 4 for \(\text{Ba(Fe}_{0.9933}\text{Ni}_{0.0067})\text{As}_2 \). With higher Cu doping, the resistive anomalies associated with the structural and magnetic
phase transitions show a broad upturn. No clearly defined resistive anomaly can be seen for $x > 0.035$, but for $0.061 \geq x > 0.035$, a minimum in the resistivity can be observed, which can be used to identify an upper limit for the structural and magnetic phase transitions. No sign of structural and magnetic phase transitions is detected for $x \geq 0.068$. The suppression of the structural and magnetic phase transitions is further quantified in Fig. 11(a); two kinks, similar to what we have seen in Co and Ni doped BaFe$_2$As$_2$ [19, 20, 26], can be observed. These features are suppressed to lower temperatures with increasing Cu doping.

Given the higher density and wider range of x-values studied in this work (as compared to reference [19]), zero resistivity was found for a single doping: $x = 0.044$, below 2.1 K. Figure

FIG. 12: The Ba(Fe$_{1-x}$Cu$_x$)$_2$As$_2$ series: (a) $M(T)/H$ taken at 1 T with $H \perp c$ for $0 \leq x \leq 0.035$. (b) $M(T)/H$ taken at 1 T with $H \perp c$ for $0.035 < x \leq 0.068$. (c) $d(M(T)/H)/dT$ for $x \leq 0.026$. The criteria to infer T_s and T_m are shown. (d) The criteria to infer T_s and T_m for $x = 0.035$ sample.
(b) shows the enlarged, low temperature, electric transport data of Ba(Fe$_{0.956}$Cu$_{0.044}$)$_2$As$_2$. A very sharp transition to zero resistivity is observed. T_c^{onset} is 2.1 K and T_c^{offset} is 2.2 K.

Figure 12 shows the temperature dependent $M(T)/H$ data taken at 1 T from 2 K to 300 K with H perpendicular to the crystallographic c-axis of the samples. Due to slight ferromagnetic impurities in the higher Cu concentration BaFe$_2$As$_2$ samples ($x > 0.068$), we only show the susceptibility for $x \leq 0.068$. To make the graphs easier to read, the data are grouped into two sets. Figure 12 (a) shows $M(T)/H$ for Ba(Fe$_{1-x}$Cu$_x$)$_2$As$_2$ samples that manifest magnetic anomalies in Fig. 10. A clear drop at the temperature associated with the magnetic anomalies can be seen. Higher temperature susceptibility data show essentially linear temperature dependence, similar to the Ba(Fe$_{1-x}$Ni$_x$)$_2$As$_2$ data shown in Fig. 5.

Figure 12 (b) shows $M(T)/H$ for Ba(Fe$_{1-x}$Cu$_x$)$_2$As$_2$ samples ($0.068 \geq x > 0.035$). Although a resistivity minimum is present in $x = 0.05, 0.061$ and 0.068 samples, no clear feature of structural or magnetic phase transitions, similar to the ones in Fig. 12 (a), can be detected in the susceptibility data. On the other hand, the low temperature susceptibility increases with decreasing temperature whereas the high temperature susceptibility retains its almost linear-in-T behavior. Low field $M(T)/H$ data, down to 1.8 K, for the $x=0.044$ sample, with zero resistivity around 2 K, do not show a diamagnetic signal, but since this is at the edge of range where diamagnetic signal would just be starting, it is hard to conclude if there is (or isn’t) bulk superconductivity in $x=0.044$ sample. To infer T_s and T_m, $d(M/H)/dT$ are plotted in Fig. 12 (c). Due to the blurred features in $d(M/H)/dT$, the criteria to infer T_s for Cu-doping series are different from Ni-doping series, as shown in Fig. 12 (c). Figure 12 (d) shows the manner to infer T_s and T_m for $x = 0.035$ sample.

Figure 13 (a) shows the specific heat data $C_p(T)$ for the Cu concentrations $x = 0, 0.0077, 0.02$ and 0.026 for temperature near the structural and magnetic phase transitions. The very sharp peak around 134 K associated with the structural / magnetic phase transition can be seen in heat capacity measurement for pure BaFe$_2$As$_2$. For $x = 0.0077$, the single sharp peak in pure BaFe$_2$As$_2$ splits into two features in dC_p/dT as seen in the inset of Fig. 13 (b). With even higher Cu dopings, the sharp peaks become broad. To identify these features more clearly, dC_p/dT for $x = 0.02$ and 0.026 are plotted in Fig. 13 (b). We can see two kinks in the dC_p/dT plot which correspond to the two kinks observed in $d(\rho/\rho_{300})/dT$ [20]. These features are no longer detectable in either C_p or dC_p/dT for $x \geq 0.035$. The inset of Fig. 13 (a) shows the C_p vs. T^2 measured down to 0.9 K for Ba(Fe$_{0.956}$Cu$_{0.044}$)$_2$As$_2$. Although
FIG. 13: (a) Temperature dependent heat capacity of Ba(Fe$_{1-x}$Cu$_x$)$_2$As$_2$ ($x = 0, 0.0077, 0.02$ and 0.026). Inset: C_p vs. T^2 for Ba(Fe$_{0.956}$Cu$_{0.044}$)$_2$As$_2$. (b) dC_p/dT vs. T for Ba(Fe$_{1-x}$Cu$_x$)$_2$As$_2$ ($x = 0.0077, 0.02$ and 0.026).

there is a clear break from the linear behavior seen for $T^2 < 4K^2$, no sharp jump associated with superconductivity can be observed around $4K^2$. This is not surprising since the heat capacity jump decreases with decreasing T_c [37]: for Co-doped and Ni-doped BaFe$_2$As$_2$, the heat capacity jump is rather subtle for superconductors with very low T_c values due to the broadness, such as Ni doped BaFe$_2$As$_2$ samples with T_c around 2.5 K and 4 K, neither of which showed a clear specific heat jump.

The structural / magnetic and superconducting transition temperatures are determined from Figs. [10] - [13] and summarized in Table [III] and Fig. [14]. For the data indexed by **, the resistive features have become so broad that the error bars associated with the determination of the upper (only detectable) transition are defined by the temperature of the resistance minima on the high side and the temperature of the inflection point on the low side. The $T - x$ phase diagram of the Ba(Fe$_{1-x}$Cu$_x$)$_2$As$_2$ series is plotted in Fig. [14]. The structural and magnetic phase transitions are suppressed and increasingly split with Cu doping in a similar manner as Co, Ni dopings, but superconductivity is only detected for $x = 0.044$, with a very low T_c (~ 2 K). Given the narrow range of superconductivity, the extent of the
TABLE III: Summary of T_s, T_m and T_c from resistivity, magnetization and specific heat measurements for the Ba(Fe$_{1-x}$Cu$_x$)$_2$As$_2$ series. *: see text.

dopant	x	ρ	M	C			
Cu		T_s	T_m	T_c^{onset}	T_c^{offset}	T_s	T_m
0.0077		119	117	119	119	117	
0.02		93	86	96	88	84	
0.026		79	71	78	72	82	75
0.035		57	48	56	42		
0.044		40 ± 20**	2.2	2.1			
0.05		30 ± 25**					
0.061		10 ± 10**					

FIG. 14: $T-x$ phase diagram of Ba(Fe$_{1-x}$Cu$_x$)$_2$As$_2$ single crystals for $x \leq 0.061$. Superconductivity is only determined below 2 K, the extent of the superconducting region is unknown, but is bounded by $x = 0.035$ on the underdoped side and $x = 0.05$ on the overdoped side.

superconducting dome and how T_m intersects it (if indeed it does) are speculation.
C. \(\text{Ba(Fe}_{1-x-y}\text{Co}_{x}\text{Cu}_{y})\text{As}_{2} (x \sim 0.022) \)

Whereas doping \(\text{BaFe}_{2}\text{As}_{2} \) with \(\text{Co}, \text{Ni} \) or \(\text{Cu} \) suppresses the upper structural / magnetic phase transitions in similar ways, only \(\text{Co} \) and \(\text{Ni} \) appear to induce a superconducting dome over substantial ranges of \(x \) values. \(\text{Cu} \), while suppressing the structural and magnetic phase transitions, does not lead to a significant superconducting region; so far only one compound with \(x \sim 0.044 \) has \(T_{c} \sim 2 \) K. In order to better understand the effects of \(\text{Cu} \) on the superconducting state, two mixed (\(\text{Cu} \) and \(\text{Co} \)) doping series, \(\text{Ba(Fe}_{1-x-y}\text{Co}_{x}\text{Cu}_{y})\text{As}_{2} (x \sim 0.022 \text{ and } x \sim 0.047) \) were grown and studied.

For the \(\text{Ba(Fe}_{1-x-y}\text{Co}_{x}\text{Cu}_{y})\text{As}_{2} (x \sim 0.022) \) series, the lattice parameters are normalized to the ones of the closely related \(\text{Ba(Fe}_{0.976}\text{Co}_{0.024})\text{As}_{2} \). \(a/a_{0}, c/c_{0} \) and \(V/V_{0} \) are plotted against \(y_{WDS} \) in Fig. 15. With \(\text{Cu} \) doped into \(\text{Ba(Fe}_{0.978}\text{Co}_{0.022})\text{As}_{2} \), the lattice parameter \(a \) increases and the lattice parameter \(c \) decreases. These changes are in qualitatively similar manners to the ones when \(\text{Cu} \) was doped into \(\text{BaFe}_{2}\text{As}_{2} \) (Fig. 9), which are presented in Fig. 15 as solid lines.
FIG. 16: The Ba(Fe$_{1-x}$Co$_x$Cu$_y$)$_2$As$_2$ ($x \sim 0.022$) series. (a) The temperature dependent resistivity, normalized to the room temperature values. Each subsequent data set is shifted downward by 0.3 for clarity. (b) $d(\rho(T)/\rho_{300K})/dT$ for $y \leq 0.019$. (c) Enlarged, low temperature, $\rho(T)/\rho_{300K}$.

Figure 16 (a) shows the electric transport data for the Ba(Fe$_{1-x-y}$Co$_x$Cu$_y$)$_2$As$_2$ ($x \sim 0.022$) series from 2 K to 300 K. For Ba(Fe$_{0.978}$Co$_{0.022}$)$_2$As$_2$ ($y = 0$), no sign of superconductivity can be detected; as the temperature is reduced from 300 K, the resistivity exhibits an upturn around 110 K and then decreases with further cooling. When Cu is doped into Ba(Fe$_{0.978}$Co$_{0.022}$)$_2$As$_2$, the structural / magnetic phase transitions are suppressed to lower temperature and evolve in a manner that is qualitatively similar to what is found for other TM dopings. Figure 16 (b) shows the derivative of $\rho(T)/\rho_{300K}$. Similar to Co, Ni and Cu doped BaFe$_2$As$_2$, two kinks are seen to separate and suppressed to lower temperature as more Cu is added. For intermediate y values, superconductivity can be stabilized. Figure 16 (c) shows an expanded plot of the low temperature, $\rho(T)/\rho_{300K}$ data. When $y = 0.019$, zero resistivity is detected below 9 K. T_c reaches a maximum of 12 K for $y = 0.026$ and drops to 8.3 K for $y = 0.032$ and 2 K for $y = 0.043$.

Figure 17 (a) shows the $M(T)/H$ data taken at 1 T with H perpendicular to the crystallographic c-axis of the Ba(Fe$_{1-x-y}$Co$_x$Cu$_y$)$_2$As$_2$ series. The high temperature drop in the
FIG. 17: The Ba(Fe$_{1-x-y}$Co$_x$Cu$_y$)$_2$As$_2$ ($x \sim 0.022$) series: (a) $M(T)/H$ data taken at 1 T with $H \perp c$. (b) $d(M/H)/dT$ for $y = 0.005$, 0.01 and 0.019 samples. Each subsequent data set is shifted downward by 1×10^{-6} for clarity. (c) Field-cooled (FC) and zero-field-cooled (ZFC) low field $M(T)/H$ data taken at 2.5 mT with $H \perp c$.

susceptibility data is associated with the structural / magnetic phase transitions, and consistent with the resistivity measurements. The high temperature close-to-linear susceptibility can also be seen in this series. The magnitude of the susceptibility is comparable to those of Ba(Fe$_{1-x}$Co$_x$)$_2$As$_2$ and Ba(Fe$_{1-x}$Ni$_x$)$_2$As$_2$. $d(M/H)/dT$ is plotted in Fig. 17 (b). Two kinks can be seen for $y = 0.005$ and 0.01 samples.

Figure 17 (c) shows the $M(T)/H$ data taken at 2.5 mT with H perpendicular to the crystallographic c-axis of the Ba(Fe$_{1-x-y}$Co$_x$Cu$_y$)$_2$As$_2$ ($x \sim 0.022$) series. Superconductivity can be clearly seen in the field-cooled (FC) and zero-field-cooled (ZFC) data. Comparing the low field $M(T)/H$ data with the ones in Ba(Fe$_{1-x}$Co$_x$)$_2$As$_2$ [20], we can see that these two series have very similar superconducting volume fractions / pinning. It is worth noting that, as a ”reality check”, since the superconductivity in the Ba(Fe$_{1-x-y}$Co$_x$Cu$_y$)$_2$As$_2$ series has a superconducting volume that is comparable to that of the Ba(Fe$_{1-x}$Co$_x$)$_2$As$_2$ phase, superconductivity must come from a bulk phase. The width of the superconducting
transition shown in Fig. 17 (c) is not quite as sharp as that found for the higher x-value Ba(Fe$_{1-x}$Co$_x$)$_2$As$_2$ samples, this could imply that the Ba(Fe$_{1-x-y}$Co$_x$Cu$_y$)$_2$As$_2$ samples are not as homogeneous as Ba(Fe$_{1-x}$Co$_x$)$_2$As$_2$ ones. This is consistent with the WDS measurements, summarized in Table I, which, although showing a homogeneous Co concentration for the Ba(Fe$_{1-x}$Co$_x$)$_2$As$_2$ and Ba(Fe$_{1-x-y}$Co$_x$Cu$_y$)$_2$As$_2$ series, indicates that the Cu concentration has a variation of up to 10% of the real Cu concentration in both the Ba(Fe$_{1-x}$Cu$_x$)$_2$As$_2$ and Ba(Fe$_{1-x-y}$Co$_x$Cu$_y$)$_2$As$_2$ series.

Heat capacity data was collected for Ba(Fe$_{0.953}$Co$_{0.021}$Cu$_{0.026}$)$_2$As$_2$, the composition that manifests the highest T_c in this series. A clear heat capacity jump can be seen in Fig. 18 around 11 K. The inset shows temperature dependent C_p/T data near T_c. T_c and $\Delta C_p/T_c$ were inferred using an "isoentropic" construction so that the two areas shown in Fig. 18 have equal areas; $\Delta C_p/T_c$ is 7.6 mJ/mole K2 with T_c equal to 10.4 K. These values fall onto the $\log(\Delta C_p/T_c)$ vs. $\log T_c$ plot shown in reference [37].

From Figs. 16, 17 and 18 we can determine the structural / magnetic and superconducting transition temperatures for the Ba(Fe$_{1-x-y}$Co$_x$Cu$_y$)$_2$As$_2$ ($x \sim 0.022$) series. These results are summarized in Table IV and graphically presented as a $T - y$ phase diagram in Fig. 19. For the temperature indexed by $**$, T_s was inferred via the same way as we infer T_s for the temperatures indexed by $*$ in the Ba(Fe$_{1-x}$Cu$_x$)$_2$As$_2$ series. For the temperature
indexed by *, the criteria in the inset of Fig. 4 (b) are employed.

Figure 19 shows that the structural and magnetic phase transitions are suppressed and increasingly split with doping, in addition, superconductivity is stabilized in a dome-like region. The phase diagram has a very similar appearance to those found for the Co-doped and Ni-doped series.

dopant	x	y	ρ	M	C
Cu / Co	0.024	0	103	99	
	0.024	0.005	85	78	
	0.022	0.01	75	68	
	0.022	0.019	41	29	
	0.021	0.026	25	15	
	0.021	0.032	8.9	8.3	
	0.021	0.043	4.6	2	

TABLE IV: Summary of T_s, T_m and T_c from resistivity, magnetization and specific heat measurements for the Ba(Fe$_{1-x-y}$Co$_x$Cu$_y$)$_2$As$_2$ ($x \sim 0.022$) series. * and **: see text.

Figure 20 (a) shows the low temperature $\rho(T)/\rho_{300K}$ vs. T data taken at 0 T, 1 T, 3 T, 5 T and 7 T for Ba(Fe$_{0.953}$Co$_{0.021}$Cu$_{0.026}$)$_2$As$_2$ when H is applied perpendicular to the c-axis and along the c-axis, respectively. T_c decreases with increasing applied magnetic field more rapidly for $H || c$. The offset and onset criteria used to infer T_c are shown in Fig. 20 (a). The temperature-dependent, resistive $H_{c2}(T)$ curves are plotted in Fig. 20 (b). Using onset criterion, $(dH_{c2}^{|c|}/dT)|_{T_c}$ is about -7.8 T/K and $(dH_{c2}^{|c|}/dT)|_{T_c}$ is about -3.5 T/K. Using offset criterion, $(dH_{c2}^{|c|}/dT)|_{T_c}$ is about -4.5 T/K and $(dH_{c2}^{|c|}/dT)|_{T_c}$ is about -2.2 T/K. Using the WHH equation, $H_{c2}^{|c|}(0)$ is estimated to be 64 T for onset criterion and 36 T for offset criterion and $H_{c2}^{|c|}(0)$ is to be 28 T for onset criterion and 18 T for offset criterion. Figure 20 (c) shows the anisotropy of the upper critical field $\gamma=H_{c2}^{|c|}/H_{c2}^{|c|}$, which was calculated in the same manner as outlined for Fig. 8. As we can see, in the range of T/T_c from 0.85 to 0.99, γ varies between 2 to 3 for onset criterion and 2 to 4 for offset criterion, which is comparable to the optimal and over-doped Ba(Fe$_{1-x}$Co$_x$)$_2$As$_2$ [20] and the optimally doped Ba(Fe$_{1-x}$Ni$_x$)$_2$As$_2$ (this work).
FIG. 19: $T - y$ phase diagram of Ba(Fe$_{1-x-y}$Co$_x$Cu$_y$)$_2$As$_2$ ($x \sim 0.022$) single crystals. The shading in the superconducting dome implies the existence of a crossover from tetragonal / paramagnetic phase to orthorhombic / antiferromagnetic phase, as used in Fig. 6.

D. Ba(Fe$_{1-x-y}$Co$_x$Cu$_y$)$_2$As$_2$ ($x \sim 0.047$)

It is worth noting that the maximum T_c value for the Ba(Fe$_{1-x-y}$Co$_x$Cu$_y$)$_2$As$_2$ ($x \sim 0.022$) series is around 12 K, which is somewhat low in comparison to the Co- or Ni- doped series. To study the effects of Cu doping further, a Ba(Fe$_{1-x-y}$Co$_x$Cu$_y$)$_2$As$_2$ ($x \sim 0.047$) series was grown and examined. For $y = 0$, this is an underdoped, but superconducting, member of the Ba(Fe$_{1-x}$Co$_x$)$_2$As$_2$ series. The elemental analysis shown in Table I indicates that within a single batch the variation of Cu concentration is roughly $\pm 10\%$ of the average concentration, similar to the variation range in the Ba(Fe$_{1-x-y}$Co$_x$Cu$_y$)$_2$As$_2$ ($x \sim 0.022$) series.

Figure 21 presents the normalized lattice parameters a/a_0, c/c_0 and V/V_0 for this series, where a_0, c_0 and V_0 are the ones for Ba(Fe$_{0.953}$Co$_{0.047}$)$_2$As$_2$. As Cu is doped into Ba(Fe$_{0.953}$Co$_{0.047}$)$_2$As$_2$, the lattice parameter a and unit cell volume increase while the lattice parameter c decreases. As a comparison, the curves of a/a_0 and c/c_0 of the Ba(Fe$_{1-x-y}$Co$_x$Cu$_y$)$_2$As$_2$ ($x=0$, $x \sim 0.022$) series presented in Fig. 9 and Fig. 15 are added as dash line and solid line in Fig. 21. As we can see, the effects of Cu doping on the lattice parameters of these series, are quantitatively similar to each other.
FIG. 20: (a) Low temperature dependent resistivity, normalized by room temperature value, for Ba(Fe$_{0.953}$Co$_{0.047}$)$_2$As$_2$ with 0 T, 1 T, 3 T, 5 T and 7 T magnetic field perpendicular to c-axis (upper panel) and along c-axis (lower panel). (b) Critical field H_{c2} vs. T determined from onset and offset criteria. (c) The ratio of anisotropic critical field $\gamma = H_{c2}^\perp / H_{c2}^\parallel$ vs. T/T_c.

Figure 22 (a) shows the normalized resistivity of this series over the whole temperature range. From the resistivity data, we can see that Ba(Fe$_{0.953}$Co$_{0.021}$Cu$_{0.026}$)$_2$As$_2$ is an underdoped compound with $T_s = 59$ K, $T_m = 48$ K and $T_c \sim 17$ K. With $y = 0.0045$ of Cu doping, T_c increases to 20 K and the structural / magnetic phase transitions are suppressed to such an extent that only a resistance minima is detected before superconductivity truncates the rest of the low temperature resistivity data (Fig. 22 (a) and (b)). The superconductivity feature can be more clearly seen in Fig. 22 (c). For $y = 0.019$ of Cu doping T_c decreases to 15 K, there is no longer any sign of structural and magnetic phase transitions, and the resistivity has a roughly linear temperature dependence above T_c. With even higher Cu doping, T_c is suppressed to about 5 K for $y = 0.034$ Cu doping. For $y = 0.046$ of Cu doping, no zero in resistivity was measured down to 1.8 K, although some decrease in resistivity around 2 K can be seen, which might suggest the onset of the superconducting state. For $y = 0.058$ of
FIG. 21: Lattice parameters of the Ba(Fe$_{1-x-y}$Co$_x$Cu$_y$)$_2$As$_2$ ($x \sim 0.047$) series, a and c as well as unit cell volume, V, normalized to the values of Ba(Fe$_{0.953}$Co$_{0.047}$)$_2$As$_2$ ($a_0=3.9605(6)\,\AA$, $c_0=12.992(4)\,\AA$) as a function of measured Cu concentration, y_{WDS}. The dash lines and solid lines represent the values for the Ba(Fe$_{1-x-y}$Co$_x$Cu$_y$)$_2$As$_2$ ($x \sim 0.022$) and Ba(Fe$_{1-x-y}$Co$_x$Cu$_y$)$_2$As$_2$ ($x = 0$) series shown in Fig. 9 and Fig. 15 respectively.

Cu doping, there is no sign of a superconducting state.

Figure 23 (a) shows the low field $M(T)/H$ data for this series taken at 2.5 mT with H perpendicular to the c axis. In FC measurements, the diamagnetic signal of the same magnitude found for Ba(Fe$_{1-x}$Co)$_2$As$_2$ suggests the same degree of the bulk superconductivity in these samples as is found for the Co or Ni doped series. The T_c values inferred from the susceptibility data are consistent with the resistivity data. Figure 23 (b) shows the temperature dependent $M(T)/H$ data taken at 1 T with H perpendicular to c axis for $0.034 \geq y \geq 0$. For $y = 0$, a clear drop around 60 K can be seen in the susceptibility which is consistent with the structural / magnetic phase transitions seen in the resistivity data. The second, lower temperature drop, around 20 K, is associated the superconductivity. With Cu doping $y \geq 0.0045$, no structural / magnetic phase transitions feature can be seen although there is a minima, for $y = 0.0045$, in the resistivity data. The high temperature linear behavior in susceptibility is also observed in the Ba(Fe$_{1-x-y}$Co$_x$Cu$_y$)$_2$As$_2$ ($x \sim 0.047$) series.
FIG. 22: The Ba(Fe$_{1-x-y}$Co$_x$Cu$_y$)$_2$As$_2$ ($x \sim 0.047$) series: (a) The temperature dependent resistivity, normalized to the room temperature value. Each subsequent data set is shifted downward by 0.3 for clarity. (b) $d(\rho(T)/\rho_{300K})/dT$ for $y=0$ and 0.0045. (c) Enlarged low temperature $\rho(T)/\rho_{300K}$.

Heat capacity data was collected for the first clearly overdoped member of this series: Ba(Fe$_{0.934}$Co$_{0.047}$Cu$_{0.019}$)$_2$As$_2$, and is shown in Fig. 24. The heat capacity jump is consistent with the bulk superconductivity in the sample. The inset shows the enlarged C_p/T vs. T data near T_c. The inferred $\Delta C_p/T_c$ from "isoentropic" construction is 14 mJ/mole K^2 with T_c equal to 13.4 K. These values also fall onto the $log(\Delta C_p/T_c)$ vs. $logT$ plot shown in reference [37].

Table V summarizes these data and Fig. 25 is a temperature-Cu doping concentration $(T - y)$ phase diagram. It is worth noting from Fig. 25 that with the addition of Cu in Ba(Fe$_{0.953}$Co$_{0.047}$)$_2$As$_2$, T_c does not decrease but rather increasing to $\sim 20K$ at $y = 0.0045$, and probably has a higher value of T_c for slightly higher y-values, and then decreases to $\sim 15K$ at $y = 0.019$. These data, along with the other Co / Cu doping series discussed in the previous section, clearly indicate that superconductivity can be induced and stabilized to relatively high T_c values by Cu doping under well defined circumstances.
FIG. 23: The Ba(Fe$_{1-x-y}$Co$_x$Cu$_y$)$_2$As$_2$ ($x \sim 0.047$) series: (a) Field-cooled (FC) and zero-field-cooled (ZFC) low field $M(T)/H$ data taken at 2.5 mT with $H \perp c$. (b) $M(T)/H$ data taken at 1 T with $H \perp c$ for $0 \leq y \leq 0.034$.

FIG. 24: Temperature dependent heat capacity of Ba(Fe$_{0.934}$Co$_{0.047}$Cu$_{0.019}$)$_2$As$_2$. Inset: C_p/T vs. T near the superconducting transition with the estimated ΔC_p shown.
TABLE V: Summary of T_s, T_m and T_c from resistivity, magnetization and specific heat measurements for the Ba(Fe$_{1-x-y}$Co$_x$Cu$_y$)$_2$As$_2$ ($x \sim 0.047$) series.

dopant	x	y	ρ	M	C		
Cu / Co			T_s	T_m	T_c^{onset}	T_c^{offset}	T_c
0.047	0		59	48	17.8	16.5	15.9
0.051	0.0045	40*	21.5	20.4	20.1		
0.047	0.019		15.9	15.2	14.8	13.5	
0.047	0.034		6	4.6	5.7		
0.045	0.046		0	0			

FIG. 25: $T-y$ phase diagram of Ba(Fe$_{1-x-y}$Co$_x$Cu$_y$)$_2$As$_2$ ($x \sim 0.047$) single crystals. The shading in the superconducting dome implies the existence of a crossover from tetragonal / paramagnetic phase to orthorhombic / antiferromagnetic phase, as used in Fig. 6. Note: Given the rapid loss of features associated with the antiferromagnetic transition, the AFM phase line is speculative.

IV. DISCUSSION

As we can see, in each series, good agreement in critical temperatures obtained from the resistivity, magnetization and heat capacity measurements has been observed. The composite $T-x$ phase diagram, shown in Fig. 26 (a) highlights the similarities and differences
between the various Ba(Fe$_{1-x}$TM$_x$)$_2$As$_2$ series. For this diagram, x was the total amount of TM dopants: e.g. for Ba(Fe$_{0.953}$Co$_{0.021}$Co$_{0.026}$)$_2$As$_2$, x would be 0.047. Figure 26 (a) is similar to the one shown in reference [19], but it presents a fuller Co and Cu doping data set as well as multiple Co / Cu doping data sets.

![Diagram](image)

FIG. 26: (a) $T - x$ phase diagrams for Ba(Fe$_{1-x}$TM$_x$)$_2$As$_2$ (TM=Co, Ni, Cu, Co / Cu). (a) $T - e$ phase diagrams for Ba(Fe$_{1-x}$TM$_x$)$_2$As$_2$ (TM=Co, Ni, Cu, Co / Cu).

The suppression rates of the upper phase transitions for all these different series appear to depend on x, the number of TM substituted for Fe in a roughly similar manner which appears to be inconsistent with a simple model of "nesting" induced magnetism in
these materials. However, the extent of the superconducting dome is not well described by this parameterization. The Ba(Fe$_{1-x}$Co$_x$)$_2$As$_2$ series has the widest superconducting dome, ranging from $x \sim 0.03$ to 0.166. Ba(Fe$_{1-x-y}$Co$_x$Cu$_y$)$_2$As$_2$ ($x \sim 0.047$) has a dome extending to $x_{\text{total}} \sim 0.092$. Ba(Fe$_{1-x}Ni_x$)$_2As_2$ ranks third with the dome starting at $x \sim 0.02$ and ending at $x \sim 0.075$. The Ba(Fe$_{1-x-y}$Co$_x$Cu$_y$)$_2$As$_2$ ($x \sim 0.022$) series has an even narrower superconducting dome, ranging from $x_{\text{total}} = x + y \sim 0.032$ to $x_{\text{total}} = x + y \sim 0.065$. The Ba(Fe$_{1-x}Cu_x$)$_2As_2$ series has one superconducting point around $x = 0.044$.

A closely related parameter, the extra electrons added, e, can be inferred and the temperature-extra electrons phase diagram ($T-e$) can be constructed. In this parameterization, a Co dopant introduces one extra electron, a Ni dopant brings two extra electrons and a Cu dopant adds three extra electrons. This leads to extra electron counts corresponding to x for Co doping, $2x$ for Ni doping, $3x$ for Cu doping, $x + 3y$ for Co / Cu mixed doping. This parameterization is consistent with our Hall resistivity and Seebeck coefficient measurements [38]. This extra electron (e) parameterization is consistent with a simple "rigid band" assumption for band filling, but is also consistent with recent proposals based on a density functional calculation that the extra electrons are all localized around the dopant atoms [39], at its heart, the extra electron parameterization simply assumes that one Ni atom has twice the effect of one Co atom and one Cu atom has three times the effect of one Co atom. Based on this parameterization, the $T-e$ phase diagrams are presented in Fig. 26 (b). As we can see, the superconductivity domes, especially on the overdoped side, are much better scaled by this parameter.

A $T-e$ phase diagram similar to Fig. 26 (b) has already been mapped out in our earlier work [19]. Via the fact that the structural, magnetic phase transitions (the superconducting domes) appear to be parameterized by the doping level (the number of additional electrons) respectively, we suggested that superconductivity can be stabilized over a limited, and well delineated, range of e-values when the structural and magnetic phase transitions are adequately suppressed. For example, the data from the Ba(Fe$_{1-x}$Cu$_x$)$_2$As$_2$ series clearly demonstrate that, if by the time the structural / antiferromagnetic phase transitions are suppressed enough, too many extra electrons have been added, the e-filling window for superconductivity can be missed. On the other hand, if we adjust the position of the upper phase line in the $T-e$ phase diagram by judicious doping, so that it does not miss the superconducting window, superconductivity can occur.
Another way of seeing the different dependence of T_s / T_m and T_c is to note that the maximum T_c value for a given doping series occurs where the extrapolated T_s / T_m line hits the superconducting dome. When the data is plotted in a $T - e$ phase diagram, it becomes clear that this point is where the $T_c - e$ data join the universal dome on the overdoped side. By choosing the doping carefully, we can adjust the slope of $T_s(e) / T_m(e)$ and to some extent control where T_c^{max} is. This is demonstrated by the Ba(Fe$_{1-x-y}$Co$_x$Cu$_y$)$_2$As$_2$ series: by progressing from $x = 0$ to $x = 0.022$ to $x = 0.047$, the T_s / T_m line acquires a larger slope and T_c^{max} increases.

The idea that the lower e-value extent of the superconducting dome is determined by the rate of suppression of the T_s / T_m line carries with it the implication that if this line could be suppressed even more rapidly, as a function of e, then T_c^{max} could achieve even higher values. Unfortunately with 3d- or even 4d-transition metal doping [19, 25], Co and Rh have already offered the most efficient rate ($x : e = 1 : 1$). On the other hand T_s / T_m can be suppressed without any doping at all by the application of pressure. Recent pressure measurements of $T - P$ phase diagrams for pure and Co-doped BaFe$_2$As$_2$ [40, 41] show that indeed for pure and underdoped members of the Ba(Fe$_{1-x}$Co$_x$)$_2$As$_2$ series T_c can be increased significantly by suppressing T_s / T_m with pressure whereas over doped members of the series manifest little or no increase in T_c with pressure. Figure 27 summarizes the effects of pressure as well as our 3d and 4d doping in the BaFe$_2$As$_2$ series. T_c^{max} is extracted from the $T - P$ phase diagrams for Ba(Fe$_{1-x}$Co$_x$)$_2$As$_2$ [41] and is selected as the highest T_c value measured for a given x under pressure. As we can see, whereas T_c^{max} differs only slightly from the T_c values found at ambient pressure for the overdoped side of the superconducting dome, it continues to rise for lower x values, showing how large T_c can be if T_s / T_m can be suppressed for lower e-values. These data [19, 25] further emphasize that the two necessary, but not individually sufficient, conditions for superconductivity in this series seem to apply to different halves of the superconducting region: for the underdoped side of the dome, suppression of T_s / T_m is vital for superconductivity and for the overdoped side of the dome the value (and extent) of T_c is defined by the value of e.

Figure 27 brings up a final important point: whereas for electron doping via TM substitution in BaFe$_2$As$_2$, we appear to have a well defined pair of necessary, but not individually sufficient, conditions for superconductivity, it should be born in mind that it is clear that the BaFe$_2$As$_2$ system can be tuned by other means. As clearly demonstrated pressure can
tune T_s / T_m and T_c and produce $T - P$ phase diagrams that are topologically similar to the $T - x$ and $T - e$ phase diagrams we present here. In addition P-doping on the As site and Ru doping on the Fe site are nominally isoelectronic dopings that can also produce similar changes, albeit, at least in the case of Ru-doping for almost an order of magnitude higher doping levels $[17, 18]$. In all of these cases, either by electron doping on the TM site or by physical or "chemical" pressure it is likely that key features in the band structure are being changed in some systematic manner. The challenge is to determine what that manner is.

FIG. 27: The comparison of the effects of chemical doping ($[42]$) and application of pressure $[41]$ for the Ba(Fe$_{1-x}$Co$_x$)$_2$As$_2$ series.

V. CONCLUSION

Microscopic, structural, transport and thermodynamic measurements have been performed on Ni-doped, Cu-doped as well as Co / Cu mixture-doped BaFe$_2$As$_2$ single crystals. Detailed temperature-doping level ($T - x$) and temperature-extra electrons ($T - e$) phase diagrams have been mapped out for all these series. It was found the structural / magnetic phase transitions in pure BaFe$_2$As$_2$ at 134 K are monotonically suppressed in a similar manner by these dopants. Superconductivity up to 19 K, 12K and 20 K can be stabilized in a dome-like region in the phase diagram for Ni-doped, Co \sim0.22 Cu-doped and Co \sim0.47
Cu-doped series respectively while it is very limited in Cu-doped series with only one measured concentration \((x = 0.044)\) showing zero in resistivity near 2 K. The application of 33 T external magnetic field on the optimally Ni doped BaFe\(_2\)As\(_2\) sample suppresses the superconducting temperature down to 0.6 \(T_c(0)\) when \(H \perp c\) and 0.3 \(T_c(0)\) when \(H || c\), indicating a small anisotropy with \(\gamma\) varying from 2 (far from \(T_c\)) to 3 (near to \(T_c\)). Quantitative analysis of the \(T - x\) and \(T - e\) phase diagrams of these series reveals that the maximum \(T_c\) value for a series occurs close to where the extrapolated \(T_s / T_m\) line intersects the superconducting dome and that the rate of the suppression of \(T_s\) and \(T_m\) is governed by \(x\) whereas \(e\) appears to parameterize the envelop of the superconducting dome. The comparison between the effects of chemical doping and application of pressure for Ba(Fe\(_{1-x}\)Co\(_x\))\(_2\)As\(_2\) series further reveals that \(T_c\) in the underdoped region is controlled by the extent \(T_s / T_m\) are suppressed whereas it is defined by the \(e\) value for the overdoped region. Therefore, by choosing the combination of dopants are used we can adjust the relative positions of the upper phase lines (structural and magnetic phase transitions) and the superconducting dome to control the superconductivity in electron-doped BaFe\(_2\)As\(_2\).

Acknowledgments

We would like to thank M. E. Tillman for the assistance in the high magnetic field \(H_{c2}\) measurement, N. H. Sung for the help in samples growth, E. D. Mun for the aid in the measurements. Work at the Ames Laboratory was supported by the Department of Energy, Basic Energy Sciences under Contract No. DE-AC02-07CH11358.

[1] Yoichi Kamihara, Takumi Watanabe, Masahiro Hirano, and Hideo Hosono, J. Am. Chem. Soc., 130, 3296 (2008)
[2] Hiroki Takahashi, Kazumi Igawa, Kazunobu Arii, Yoichi Kamihara, Masahiro Hirano, Hideo Hosono, Nature, 453, 376 (2008)
[3] G. F. Chen, Z. Li, D. Wu, G. Li, W. Z. Hu, J. Dong, P. Zheng, J. L. Luo, and N. L. Wang, Phys. Rev. Lett., 100, 247002 (2008)
[4] Z. A. Ren, J. Yang, W. Lu, W. Yi, G. C. Che, X. L. Dong, L. L. Sun, Z. X. Zhao, Materials Research Innovations, 12, 105 (2008)
[5] Zhi-An Ren, Jie Yang, Wei Lu, Wei Yi, Xiao-Li Shen, Zheng-Cai Li, Guang-Can Che, Xiao-Li Dong, Li-Ling Sun, Fang Zhou and Zhong-Xian Zhao, Europhys. Lett., 82, 57002 (2008)

[6] X. H. Chen, T. Wu, G. Wu, R. H. Liu, H. Chen, and D. F. Fang, Nature, 453, 761 (2008)

[7] Takeshi Kondo, A. F. Santander-Syro, O. Copie, Chang Liu, M. E. Tillman, E. D. Mun, J. Schmalian, S. L. Bud'ko, M. A. Tanatar, P. C. Canfield, and A. Kaminski, Phys. Rev. Lett., 101, 147003 (2008)

[8] J. Karpinski, N. D. Zhigadlo, S. Katrych, Z. Bukowski, P. Moll, S. Weyeneth, H. Keller, R. Puzniak, M. Tortello, D. Daghero, R. Gonnelli, I. Maggio-Aprie, Y. Fasano, φ. Fischer, K. Rogacki and B. Batlogg, Physica C, 469, 370 (2009)

[9] Marianne Rotter, Marcus Tegel, and Dirk Johrendt, Phys. Rev. Lett., 101, 107006 (2008)

[10] Marianne Rotter, Marcus Tegel, Inga Schellenberg, Falko M Schappacher, Rainer Pöttgen, Joachim Deisenhofer, Axel Günther, Florian Schrettle, Alois Loidl and Dirk Johrendt, New J. Phys., 11, 025014 (2009)

[11] N. Ni, S. L. Bud’ko, A. Kreyssig, S. Nandi, G. E. Rustan, A. I. Goldman, S. Gupta, J. D. Corbett, A. Kracher, and P. C. Canfield, Phys. Rev. B, 78, 014507 (2008)

[12] X. F. Wang, T. Wu, G. Wu, H. Chen, Y. L. Xie, J. J. Ying, Y. J. Yan, R. H. Liu, and X. H. Chen, Phys. Rev. Lett., 102, 117005 (2009)

[13] G. F. Chen, Z. Li, J. Dong, G. Li, W. Z. Hu, X. D. Zhang, X. H. Song, P. Zheng, N. L. Wang, and J. L. Luo, Phys. Rev. B, 78, 224512 (2008)

[14] K. Hashimoto, T. Shibauchi, S. Kasahara, K. Ikada, S. Toneygawa, T. Kato, R. Okazaki, C. J. van der Beek, M. Konczykowski, H. Takeya, K. Hirata, T. Terashima, and Y. Matsuda, arXiv: 0810.3506v1 (2008); Phys. Rev. Lett., 102, 207001 (2009)

[15] A. S. Sefat, R. Jin, M. A. McGuire, B. C. Sales, D. J. Singh, and D. Mandrus, Phys. Rev. Lett., 101, 117004 (2008)

[16] L. J. Li, Y. K. Luo, Q. B. Wang, H. Chen, Z. Ren, Q. Tao, Y. K. Li, X. Lin, M. He, Z. W. Zhu, G. H. Cao and Z. A Xu, New Journal of Physics, 11, 025008 (2009)

[17] Shilpam Sharma, A. Bharathi, Sharat Chandra, V. R. Reddy, S. Paulraj, A. T. Satya, V. S. Sastry, Ajay Gupta, and C. S. Sundar, Phys. Rev. B, 81, 174512 (2010)

[18] F. Rullier-Albenque, D. Colson, A. Forget, P. Thuery, S. Poissonnet, arXiv:1003.5376 (2010)

[19] P. C. Canfield, S. L. Bud’ko, Ni Ni, J. Q. Yan, and A. Kracher, Phys. Rev. B, 80, 060501 (2009)
[20] N. Ni, M. E. Tillman, J.-Q. Yan, A. Kracher, S. T. Hannahs, S. L. Bud’ko, and P. C. Canfield, Phys. Rev. B, 78, 214515 (2008)
[21] Jiun-Haw Chu, James G. Analytis, Chris Kucharczyk, and Ian R. Fisher, Phys. Rev. B, 79, 014506 (2009)
[22] F. L. Ning, K. Ahilan, T. Imai, A. S. Sefat, R. Jin, M. A. McGuire, B. C. Sales, and D. Mandrus, J. Phys. Soc. Jpn., 78, 013711 (2009)
[23] X. F. Wang, T. Wu, G. Wu, H. R. Liu, H. Chen, Y. L. Xie, X. H. Chen, New J. Phys., 11, 045003 (2009)
[24] L. Fang, H. Luo, P. Cheng, Z. Wang, Y. Jia, G. Mu, B. Shen, I. I. Mazin, L. Shan, C. Ren, H. H. Wen, Phys. Rev. B, 80, 140508 (R) (2009)
[25] N. Ni, A. Thaler, A. Kracher, J. Q. Yan, S. L. Bud’ko, and P. C. Canfield, Phys. Rev. B, 80, 024511 (2009)
[26] D. K. Pratt, W. Tian, A. Kreyssig, J. L. Zarestky, S. Nandi, N. Ni, S. L. Bud’ko, P. C. Canfield, A. I. Goldman, R. J. McQueeney, Phys. Rev. Lett., 103 087001 (2009)
[27] C. Lester, Jiun-Haw Chu, J. G. Analytis, S. C. Capelli, A. S. Erickson, C. L. Condron, M. F. Toney, I. R. Fisher, S.M. Hayden, Phys. Rev. B, 79, 144523 (2009)
[28] S. Nandi, M. G. Kim, A. Kreyssig, R. M. Fernandes, D. K. Pratt, A. Thaler, N. Ni, S. L. Budko, P. C. Canfield, J. Schmalian, R. J. McQueeney, and A. I. Goldman Phys. Rev. Lett. 104, 057006 (2010)
[29] R. M. Fernandes, D. K. Pratt, W. Tian, J. Zarestky, A. Kreyssig, S. Nandi, M. G. Kim, A. Thaler, N. Ni, P. C. Canfield, R. J. McQueeney, J. Schmalian, A. I. Goldman, Phys. Rev. B 81, 140501(R) (2010)
[30] M. M. Altarawneh, K. Collar, and C. H. Mielke, N. Ni, S. L. Bud’ko, and P. C. Canfield, Phys. Rev. B, 78, 220505(R) (2008)
[31] P. C. Canfield, Z. Fisk, Phil. Mag., 65, 1117 (1992)
[32] Marianne Rotter, Michael Pangerl, Marcus Tegel, Dirk Johrendt, Angew. Chem. Int. Ed., 47, 7949 (2008)
[33] M. A. Tanatar, N. Ni, C. Martin, R. T. Gordon, H. Kim, V. G. Kogan, G. D. Samolyuk, S. L. Bud’ko, P. C. Canfield, and R. Prozorov, Phys. Rev. B 79, 094507 (2009)
[34] M. A. Tanatar, N. Ni, G. D. Samolyuk, S. L. Bud’ko, P. C. Canfield, and R. Prozorov, Phys. Rev. B 79, 134528 (2009)
[35] N. Ni, S. Nandi, A. Kreyssig, A. I. Goldman, E. D. Mun, S. L. Bud’ko, and P. C. Canfield, Phys. Rev. B 78, 014523 (2008)

[36] A. Kreyssig, M. G. Kim, S. Nandi, D. K. Pratt, W. Tian, J. L. Zarestky, N. Ni, A. Thaler, S. L. Bud’ko, P. C. Canfield, R. J. McQueeney, and A. I. Goldman, Phys. Rev. B 81, 134512 (2010)

[37] Sergey L. Bud’ko, Ni Ni, Paul C. Canfield, Phys. Rev. B 79, 220516 (2009)

[38] Eun Deok Mun, Sergey L. Bud’ko, Ni Ni, A. N. Thaler, P. C. Canfield, Phys. Rev. B 80, 054517 (2009)

[39] H. Wadati, I. Elfimov, G. A. Sawatzky, Unpublished, arXiv:1003.2663v2 (2010)

[40] E. Colombier, S. L. Bud’ko, N. Ni, P. C. Canfield, Phys. Rev. B 79, 224518 (2009)

[41] E. Colombier, M. S. Torikachvili, N. Ni, A. Thaler, S. L. Bud’ko and P. C. Canfield, Supercond. Sci. Technol., 23, 054003 (2010).

[42] New criterion to infer T_s has been applied to the data presented in [20]; three new batches of samples with $x = 0.024, 0.135$ and 0.166 have been grown and characterized.