EXACTNESS FROM PROPER ACTIONS

J. BRODZKI, G.A. NIBLO, AND N.J. WRIGHT

Abstract. In this paper we show that if a discrete group G acts properly isometrically on a discrete space X for which the uniform Roe algebra $C^*_u(X)$ is exact then G is an exact group. As a corollary, we note that if the action is cocompact then the following are equivalent: The space X has Yu’s property A; $C^*_u(X)$ is exact; $C^*_u(X)$ is nuclear.

Introduction

It is a remarkable result of Yu that any discrete metric space with bounded geometry that satisfies a Følner-type condition, which he called property A, also satisfies the coarse Baum-Connes conjecture [7]. The case of a countable discrete group, regarded as a coarse metric space of bounded geometry, was studied by Higson and Roe [2], Guentner and Kaminker [1], and Ozawa [3]. They showed that Yu’s property A is equivalent to exactness of its reduced C^*-algebra $C^*_r(G)$ and to nuclearity of its uniform Roe algebra $C^*_u(G)$. Furthermore, Roe showed for a discrete bounded geometry metric space X that if X has property A then $C^*_u(X)$ is nuclear ([4], Proposition 11.41). It is tempting to conjecture therefore that for a discrete metric space of bounded geometry, nuclearity of $C^*_u(X)$ is in fact equivalent to property A. This conjecture holds if X admits a free cocompact action by a countable group G: since the action is free we may identify $C^*_u(G)$ with a subalgebra of $C^*_u(X)$. If we assume that $C^*_u(X)$ is nuclear, then $C^*_u(G)$ will be exact and G will have property A. The fact that G acts cocompactly on X implies that X and G are coarsely equivalent so X also has property A.

The conjecture is more delicate than it may appear since while property A is a coarse invariant, the uniform Roe algebra is not. For example, for a finite space X with n points, $C^*_u(X)$ is the algebra of $n \times n$ matrices; however all finite spaces are coarsely equivalent to a point.

In this paper we address the case of the conjecture when the space admits a proper, cocompact isometric action by a countable group G. Generalising a theorem in coarse geometry from the case of a free action to a proper action usually requires only a minor adjustment of the argument. This is not the case in our context. The fact that the uniform Roe algebra is not a coarse invariant is manifested in the observation that when the action is not free we no longer have the required embedding of $C^*_u(G)$ into $C^*_u(X)$. The key idea of this paper is to replace the proper action on X by a partially defined free action on an orbit of the original action. In outline we proceed as follows.

Given an orbit Y of the action of G on X and a splitting ϕ of the natural surjection $G \to Y$ we identify the algebra $C^*_u(Y)$ with the subalgebra $C^*_u(\phi(Y))$ of $C^*_u(G)$. We construct a free partial action of G on the orbit Y defined in terms of

2000 Mathematics Subject Classification. Primary: 58B34; Secondary: 20F69, 46L89.
the right action of G on itself and the identification of $\phi(Y)$ with Y. Finally we may appeal to coarse equivalences to establish the following.

Theorem 1. Let X be a uniformly discrete metric space, and let G be a countable group acting properly by isometries on X. If $C^*_u(X)$ is an exact C^*-algebra, then G is an exact group.

From this we deduce the following equivalence.

Corollary 2. If X is a uniformly discrete metric space admitting a proper, cocompact isometric action by a countable group G then the following are equivalent.

1. X has property A;
2. $C^*_u(X)$ is nuclear;
3. $C^*_u(X)$ is exact; G is exact.

Proof. of Corollary 2
The implication $1 \Rightarrow 2$ was established by Roe in [3, Prop. 11.41]. That 2 implies 3 is a well known result, see, e.g. [6]. Theorem 3 provides the implication $3 \Rightarrow 4$. Finally, as the action of G on X is cocompact, X and G are coarsely equivalent, which gives the implication $4 \Rightarrow 1$. □

BACKGROUND
Throughout the paper we will assume that G is a countable group equipped with the unique (up to coarse equivalence) proper left invariant metric d_G. For $R \geq 0$ we will use the notation $B_R(g)$ to denote the closed R-ball about g in G.

Definition 3. A uniformly discrete metric space (X, d_X) has property A if for all $R, \varepsilon > 0$ there exists a family of finite non-empty subsets A_x of $X \times \mathbb{N}$, indexed by x in X, such that

1. for all x, y with $d_X(x, y) < R$ we have $\frac{|A_x \Delta A_y|}{|A_x \cap A_y|} < \varepsilon$;
2. there exists S such that for all x and $(y, n) \in A_x$ we have $d_X(x, y) \leq S$.

Definition 4. A kernel $u : X \times X \to \mathbb{R}$ has (R, ε)-variation if $d_X(x, y) \leq R$ implies $|u(x, y) - 1| < \varepsilon$.

Theorem 5 ([5], Proposition 3.2). If X is a bounded geometry discrete metric space, then X has property A if and only if for all $R, \varepsilon > 0$ there exists a positive definite kernel u with R, ε variation, and such that there exists S for which $d_X(x, y) > S$ implies $u(x, y) = 0$.

Proposition 6. Let G be a countable group acting properly isometrically on a proper metric space X. Then for any basepoint x_0 in X, the map $\psi : g \mapsto gx_0$ is a uniform embedding, and any map $\phi : Gx_0 \to G$ such that $\psi \circ \phi = \text{id}_{Gx_0}$ is a coarse inverse to ψ. If moreover G acts cocompactly then ψ is a coarse equivalence between G and X.

Proof. First we verify that ψ is a coarse map. For g, h in G, we have $d_X(gx_0, hx_0) = d_X(x_0, g^{-1}hx_0)$ as the action is isometric. Given R, if $d_G(g, h) \leq R$ then $g^{-1}h$ lies in $B_R(e)$ which, by properness of the metric d_G is finite, so $d_X(x_0, g^{-1}hx_0)$ is bounded by some number S. Thus for all R there exists S such that $d_G(g, h) \leq R$ implies $d_X(\psi(g), \psi(h)) \leq S$. Properness of ψ follows from properness of the action, so ψ is a coarse map.
Now let $\phi: Gx_0 \to G$ be a splitting of ψ. Then for x, y in Gx_0 we have $x = \phi(x)x_0, y = \phi(y)x_0$. If $d_X(x, y) \leq R$ then $d_X(x_0, \phi(x)^{-1}\phi(y)x_0) \leq R$. Properness of the action ensures that there are only finitely many elements g of G with $d_X(x_0, gx_0) \leq R$, so $\phi(x)^{-1}\phi(y)$ lies in $B_S(e)$, for some S, i.e. $d_G(\phi(x), \phi(y)) \leq S$. The map ϕ is injective, thus it is proper, so ϕ is also a coarse map.

The composition $\psi \circ \phi$ is the identity on Gx_0 by definition, while $g^{-1}(\phi \circ \psi(g))$ is an element of G fixing x_0. The stabiliser of x_0 is finite, so $d_G(g, \phi \circ \psi(g))$ is bounded as a function of g, i.e. $\phi \circ \psi$ is close to the identity on G. Thus ψ is a uniform embedding from G to X, and ϕ implement a coarse equivalence between G and its image.

If the action is cocompact then for some R, the G translations of the R-ball about x_0 cover X, so Gx_0 is R-dense in X. It follows immediately that the inclusion of Gx_0 into X is a coarse equivalence, so $\psi: G \to X$ is a coarse equivalence. \hfill \square

Definition 7. A kernel $k: X \times X \to \mathbb{C}$ has finite propagation if there exists $R \geq 0$ such that $k(x, y) = 0$ for $d(x, y) > R$. The propagation of k is the smallest such R.

If X is a proper discrete metric space, and k is a finite propagation kernel then for each x there are only finitely many y with $k(x, y) \neq 0$. Thus k defines a linear map from $l^2(X)$ to itself, $k * v(x) = \sum_{y \in X} k(x, y)v(y)$. These linear maps are also said to have finite propagation. Note that if additionally X has bounded geometry, then every bounded finite propagation kernel gives rise to a bounded operator on $l^2(X)$.

Definition 8. The uniform Roe algebra, $C^*_u(X)$, is the C^*-algebra completion of the algebra of bounded operators on $l^2(X)$ having finite propagation.

Definition 9. A partial translation of X is a subset t of $X \times X$ such that the coordinate projections of t onto X are injective, and such that $d_X(x, y)$ is bounded for $(x, y) \in t$.

A partial translation can be viewed as a partially defined map from X to X which is close to the identity (where defined). Therefore a partial translation gives rise to a partial isometry of $l^2(X)$ which has finite propagation and hence is an element of $C^*_u(X)$. By definition, the partial isometry is defined by $t(\delta_y) = \delta_x$ if $t(y) = x$, and $t(\delta_y) = 0$ if $t(y)$ is undefined.

Proof of Theorem 1

Fix a basepoint x_0 in X, and let Y be the orbit of x_0 under the action of G. Given a finite propagation operator on $l^2(Y)$ we can extend it to $l^2(X) = l^2(Y) \oplus l^2(X \setminus Y)$ by defining it to be zero on $l^2(X \setminus Y)$. Thus the algebra $C^*_u(Y)$ is a subalgebra of $C^*_u(X)$, hence exactness for $C^*_u(X)$ implies exactness for $C^*_u(Y)$.

For each $y \in Y$, pick an element $\phi(y)$ of G such that $\phi(y)x_0 = y$. We construct a partially defined action of the group G on the space Y as follows. For $g \in G, y \in Y$ we define $g \circ y = x$ if and only if $\phi(y)g^{-1} = \phi(x)$. The element $g \circ y$ in Y is uniquely determined if it exists, since then $g \circ y = \phi(y)g^{-1}x_0$. However it will be undefined if $\phi(y)g^{-1}$ is not in the image of ϕ. Note that $g \circ$, viewed as a partially defined map from X to X is a partial translation, since

$$d_G(\phi(y), \phi(g \circ y)) = d_G(\phi(y), \phi(y)g^{-1}) = d_G(e, g^{-1})$$
which is independent of y, and ϕ is a coarse equivalence by Proposition\(\text{[1]}\). Note that
in the case where G acts freely, the map ϕ is uniquely determined and is a bijection
between Y and G. Using this to identify Y with G, the action $g \circ \phi$ is identified with
the action of G on itself by right multiplication by g^{-1}.

Given R, ε we will produce a positive kernel u on Y with (R, ε)-variation, and
satisfying the hypothesis that $u(x, y)$ vanishes for x, y far apart. Let E_R be the set
of elements of G of the form $\phi(x)^{-1}\phi(y)$, x, y in Y with $d_X(x, y) \leq R$. As ϕ is
a coarse map, there exists S such that if $d_X(x, y) \leq R$ then $d_G(\phi(x), \phi(y)) \leq S$, so
E_R is contained in the ball $B_S(e)$ in G, in particular it is finite. Elements of G act
as partial translations on Y via \circ, hence we can identify E_R with a finite subset of
$C_u^*(Y)$.

Using the characterisation of exactness (\text{[8]} Lemma 2), there exists a completely
positive finite rank map $\theta: C_u^*(Y) \to B(l^2(Y))$ such that:

1. θ has the form $\theta(.) = \sum_{i=1}^d (\delta_{a_i}, \delta_{b_i})T_i$, for some a_i, b_i in Y, and T_i in
 $B(l^2(Y))$, and
2. for all g in E_R we have $\|\theta(g) - g\| < \varepsilon$.

Let F_R denote the set $\{a_i, b_i : i = 1, \ldots, d\}$, and note that for any partial translation
t such that the image of F_R under t does not meet F_R, we have $\theta(t) = 0$. We now define

$$u(x, y) = \langle \delta_x, \theta(\phi(x)^{-1}\phi(y))\delta_y \rangle$$

for x, y in Y, where the elements $\phi(x)^{-1}\phi(y)$ of G are regarded as elements of $C_u^*(Y)$ as above.

First we will verify positivity of u: this is not immediate because as an operator on
$l^2(X)$, $\phi(x)^{-1}\phi(y)$ is not necessarily the composition of the operators corresponding
to $\phi(x)^{-1}$ and $\phi(y)$. This is because $(\phi(x)^{-1}\phi(y)) \circ y'$ may be defined even when
$\phi(x)^{-1} \circ (\phi(y) \circ y')$ is not.

For each y in Y, we define a bounded linear map s_y from $l^2(Y)$ to $l^2(G)$ as follows. Let
$s_y(\delta_{y'}) = \delta_y$ where $g = \phi(y')\phi(y)^{-1}$ in G. Then its adjoint s_y^* satisfies
$s_y^*(\delta_y) = \delta_y'$ if there exists x' with $\phi(x')\phi(x)^{-1} = g$, (such an x' must be unique by
injectivity of ϕ) and is zero otherwise. Thus for x, y, y' in Y, the vector $s_y^*s_y(\delta_{y'})$
is $\delta_{y'}$ for some $x' \in Y$ if we have

$$\phi(y')\phi(y)^{-1} = \phi(x')\phi(x)^{-1},$$

and it is zero otherwise. Note that we can rewrite this as $\phi(y')(\phi(x)^{-1}\phi(y))^{-1} =
\phi(x')$ i.e. $x' = (\phi(x)^{-1}\phi(y)) \circ y'$. We conclude that

$$s_y^*s_y(\delta_{y'}) = \delta_{x'} = (\phi(x)^{-1}\phi(y))(\delta_{y'}) \quad \text{if } x' = (\phi(x)^{-1}\phi(y)) \circ y',$$

$$s_y^*s_y(\delta_{y'}) = 0 = (\phi(x)^{-1}\phi(y))(\delta_{y'}) \quad \text{if } (\phi(x)^{-1}\phi(y)) \circ y' \text{ is undefined.}$$

Hence $s_y^*s_y$ is $\phi(x)^{-1}\phi(y)$ as an operator on $l^2(Y)$. The operators $(\phi(x)^{-1}\phi(y)) =
(s_y^*s_y)$ therefore form a positive matrix over Y, so positivity of u follows from
complete positivity of θ.

We will now show that u has (R, ε)-variation. For x, y with $d_X(x, y) \leq R$ we
have $\phi(x)^{-1}\phi(y)$ in E_R, hence it follows from (\text{[2]} above that

$$\|\phi(x)^{-1}\phi(y) - \theta(\phi(x)^{-1}\phi(y))\| < \varepsilon.$$
image of \(\phi \), so \((\phi(x)^{-1}\phi(y)) \circ y \) is defined and equals \(x \). Thus \(\phi(x)^{-1}\phi(y)(\delta_0) = \delta_x \), so \(\langle \delta_x, \phi(x)^{-1}\phi(y)(\delta_y) \rangle = 1 \). Hence
\[
|1 - u(x, y)| = |\langle \delta_x, (\phi(x)^{-1}\phi(y) - \theta(\phi(x)^{-1}\phi(y))) (\delta_y) \rangle| < \varepsilon.
\]
We conclude that \(u \) has \((R, \varepsilon)\) variation as required.

Finally we will show that \(u(x, y) \) vanishes for \(d_X(x, y) \) sufficiently large. As \(\phi \) is a uniform embedding, for all \(R' \) there exists \(S' \) such that if \(d_G(\phi(x), \phi(y)) \leq R' \) then \(d_X(x, y) \leq S' \). As \(F_R \) is a finite subset of \(Y \) we note that \(\{ \phi(x')^{-1}\phi(y') : x', y' \in F_R \} \) is a finite subset of \(G \), and choose \(R' \) such that this is contained in the ball \(B_R(e) \) in \(G \). Now if \(x, y \in Y \) and \(x', y' \in F_R \) with \((\phi(x)^{-1}\phi(y)) \circ y' = x' \) then \(\phi(y')\phi(x)^{-1}\phi(y))^{-1} = \phi(x') \) so \(\phi(x')^{-1}\phi(y') = \phi(x)^{-1}\phi(y) \). Hence
\[
d_G(e, \phi(x)^{-1}\phi(y)) = d_G(e, \phi(x')^{-1}\phi(y')) \leq R',
\]
i.e. \(d_G(\phi(x), \phi(y)) \leq R' \), so \(d_X(x, y) \leq S' \). Thus if \(d_X(x, y) > S' \) then for \(y' \) in \(F_R \), \(\phi(y') \circ y' \) cannot be an element of \(F_R \). It follows that if \(d_X(x, y) > S' \) then \(\langle \delta_x, (\phi(x)^{-1}\phi(y))(\delta_y) \rangle \) vanishes. Hence \(u(x, y) \) also vanishes as required.

We have shown that for all \(R, \varepsilon \) there exists a positive kernel on \(Y \) with \((R, \varepsilon)\) variation, and which vanishes for \(x, y \) far apart. It follows by Theorem 3 that \(Y \) has property A. As \(G \) is coarsely equivalent to \(Y \), it too has property A, so by Ozawa’s result \(G \) is exact.

REFERENCES

[1] E. Guentner and J. Kaminker, Exactness and the Novikov conjecture, Topology 41 (2002), no. 2, 411–418.
[2] N. Higson and J. Roe, Amenable group actions and the Novikov conjecture, J. Reine Angew. Math. 519 (2000), 143–153.
[3] N. Ozawa, Amenable actions and exactness for discrete groups, C. R. Acad. Sci. Paris Sér. I Math. 330 (2000), no. 8, 691–695.
[4] J. Roe, Lectures on coarse geometry University Lecture Series 31, American Mathematical Society (2003).
[5] J.-L. Tu, Remarks on Yu’s “property A” for discrete metric spaces and groups, Bull. Soc. Math. France 129 (2001), 115–129.
[6] S. Wassermann, Exact C*-algebras and related topics, Seoul National University, Seoul 1994.
[7] G. L. Yu, The coarse Baum-Connes conjecture for spaces which admit a uniform embedding into a Hilbert space, Inventiones Mathematicae 138 (2000), 201–249.

E-mail address: j.brodzki@soton.ac.uk
E-mail address: g.a.niblo@soton.ac.uk
E-mail address: n.j.wright@soton.ac.uk

School of Mathematics, University of Southampton, Highfield, SO17 1BJ