Exploiting Parallelism Opportunities with Deep Learning Frameworks

Yu Emma Wang
ywang03@g.harvard.edu
Harvard University

Carole-Jean Wu
carolejeanwu@fb.com
Facebook

Xiaodong Wang
xdwang@fb.com
Facebook

Kim Hazelwood
kimhazelwood@fb.com
Facebook

David Brooks
dbrooks@eecs.harvard.edu
Harvard University

Abstract
State-of-the-art machine learning frameworks support a wide variety of design features to enable a flexible machine learning programming interface and to ease the programmability burden on machine learning developers. Identifying and using a performance-optimal setting in feature-rich frameworks, however, involves a non-trivial amount of performance characterization and domain-specific knowledge. This paper takes a deep dive into analyzing the performance impact of key design features and the role of parallelism. The observations and insights distill into a simple set of guidelines that one can use to achieve much higher training and inference speedup. The evaluation results show that our proposed performance tuning guidelines outperform both the Intel and TensorFlow recommended settings by 1.29× and 1.34×, respectively, across a diverse set of real-world deep learning models.

1 Introduction
The popularity of deep learning (DL) has spawned a plethora of domain-specific frameworks for machine learning (ML) including Caffe/Caffe2 [24], PyTorch [25], TensorFlow [2], and MXNet [10]. These frameworks all provide high-level APIs for the building blocks of DL models, largely reducing the prototyping cycle due to substantial use of libraries. This greatly improves the productivity of developers building end-to-end DL models. In addition to programmability benefits, these frameworks also provide many DL-specific optimizations to improve performance and portability across software stacks and new hardware systems. The net result is an explosion in the development of ever more complex DL models and a concomitant increase in the computation costs of training. Recent analysis shows a 3.5 month doubling time of AI training computation for popular DL models, exceeding the traditional performance growth of Moore’s Law [3].

Computing performance is especially important for deep learning. When models go into production at scale, individual performance improvements can affect datacenter resources and whether a model can be deployed to performance- and energy-constrained mobile devices [19, 30, 35]. Even during the prototyping phase, when human overhead is a larger bottleneck than machine overhead, model training time is still on a critical path for DL developer productivity. Since all popular DL frameworks provide high-level abstractions, one important question is how much performance overhead this improved programmability is adding. A further question is whether we can reduce this “programmability tax” by tuning the complex set of design choices available in current frameworks. Answering both questions requires a comprehensive understanding of framework performance.

Previous work compared popular DL frameworks [5], without revealing the root causes of the performance difference. We believe the performance comparison of specific frameworks is not the key issue. When we disintegrate widely-used frameworks into components, i.e., design features, we find that frameworks have significantly overlapping features, which affect performance in the same way. These design features include the rich set of parallelism opportunities within and between model layers and across input data (e.g., batches). Other key choices available to users include back-end math kernels, threading libraries, and scheduling policies.

Figure 1 shows an example of Inception v3 training on a dual-socket CPU platform, whose final performance is improved by 3.6× with properly tuned framework configurations. Fine-tuning of framework knobs requires expert knowledge of their performance impact. In this example, tuning the inter-operator parallelism speeds up the framework native operators by 1.54×. Exploiting intra-operator parallelism speeds up them by another 25×, translating to 2.4× performance improvement for the entire model. Compared to the recommended TensorFlow setting [16], our chosen setting speeds up the native operators by 6.5×, and the overall workload by 1.15×. In our evaluation results, we speedup some models by over 2×. Selecting the optimal setting is not straightforward, especially for at-scale CPU platforms that
serve a large, diverse DL use cases in production datacenter fleets [19]. It thus motivates in-depth studies for better performance.

This paper provides three major contributions:

- We provide a detailed analysis of fundamental performance implications of key framework design features on CPU platforms, including scheduling mechanisms, operator designs, library back ends, and parallelism mechanisms. We find that the programmability tax ranges from 63% to 1.3%.
- Using insights from this analysis, we propose simple guidelines for tuning framework parameters to maximize parallelism and reduce framework overheads.
- We demonstrate the usability of our approach by integrating our methodology with TensorFlow, which we will open source. Our settings achieve the same average globally optimal performance, and outperform the suggested settings from Intel [4] and TensorFlow [16] performance guides by 1.29× and 1.34×, respectively, across a set of real-world DL models, including several from the MLPerf suite [29].

2 Framework Design Overview

Deep learning frameworks have lowered the programming effort for DL researchers and decreased prototyping time for new models. Abstraction provided by these frameworks hides some design choices, such as run-time scheduling and actual implementation of operators, which may not be noticeable by users but are important for performance. In this section, we describe how deep learning framework design choices (Section 2.1) exploit parallelism opportunities exposed in deep learning workloads (Section 2.2), and overview our framework parameter tuning methodology (Section 2.3). We also discuss related work.

Our performance analysis focuses on CPUs, which are the most widely-used platforms serving ML workloads in datacenters [17, 19]. Performance improvement directly translates into capacity efficiency improvement. As we will see, DL frameworks offer a large set of tradeoffs to exploit parallelism that lead to significant optimization opportunities on CPUs.

2.1 Design Features

Figure 2 presents the stack of DL frameworks and design features that we study. This work focuses on frameworks with opaque (manually implemented) operators, a design adopted by popular DL frameworks. Frameworks that do not use such operators do not share the same structure and features as in Figure 2, including Tensor Comprehensions [33], TVM [11], and Julia [7]. Such frameworks claim to have better modularity and to extend more easily to new operators and new platforms [6], but their designs differ in important ways that put them out of the scope of this paper.

Scheduler

Here “scheduler” refers to the operator scheduler, not the process scheduler of the OS. It takes a computational graph representing the DL workload and schedules its operators based on dependencies and hardware resources. Two common approaches are synchronous and asynchronous scheduling. Synchronous scheduling schedules one operator at a time. Asynchronous scheduling schedules all operators in ready state, such that the operators can execute in parallel if hardware resources are available. In the example of Figure 2, asynchronous scheduling is faster than synchronous scheduling, assuming unlimited hardware units. However, as we will show in Section 4, given limited hardware resources, the optimal mechanism usually falls between the two extremes.

Operator

Frameworks include both native operators and operators based on library kernels. The way operators make use of kernels can have a surprisingly large impact on performance. For example, Figure 2 shows two potential implementations of a MatMul operator based on library kernel MATMUL, to implement the MatMul operator at the framework level. The right one passes arguments as is to MATMUL. The left one splits matrix x into smaller blocks and passes each block to a thread in a thread pool. We will show in Section 5.2 that the latter performs better because it parallelizes data preparation before entering the MATMUL kernel.

Library

Mathematical libraries provide efficient parallel implementations of common kernels. We study three widely-used libraries: MKL, MKL-DNN and Eigen. A thread pool manages a number of threads that execute tasks upon request. Besides the thread pools used by math libraries, DL frameworks use additional thread pools to parallelize computations outside of the math kernels. We study thread pool implementations in the C standard library, Eigen, and Folly.

Beyond One-Socket

Parallelism mechanisms need to be applied based on workloads. Common mechanisms include data and model parallelism.

2.2 Parallelism Opportunities

A DL workload can be expressed with a computational graph, where a node represents an operator, and an edge indicates the dataflow dependencies between operators [2]. DL workloads expose the parallelism within an operator (intra-operator), between operators (inter-operator), and among requests. Efficient framework designs should exploit such opportunities.

2.2.1 Parallelism within an Operator

Operators manipulate tensors, i.e. n-dimensional arrays. The parallelism within an operator (intra-operator parallelism) can be exploited with the following techniques.

SIMD

The use of single instruction multiple data (SIMD) architectures, e.g., Intel’s AVX instructions [27], is implemented in mathematics libraries. The MKL, MKL-DNN, and Eigen libraries can use AVX2 and AVX512 instructions.

Multi-Threading

Multi-threading is implemented at the operator and library levels. For example, MKL uses OpenMP for multi-threading. At the operator level, a framework may have a separate thread pool for further parallelism.

Data Parallelism

Data parallelism splits one batch of data into multiple smaller batches. Thus it can improve performance of large-batch workloads.

2.2.2 Parallelism between Operators

Scheduling

The parallelism across operators (inter-operator parallelism) can be exploit by asynchronous scheduling, to place independent operators on different hardware units.
Model Parallelism Model parallelism is realized by scheduling different operators (or the same operator after splitting along the model size dimension) on different hardware sockets or nodes, such as distributing large embedding tables across hardware nodes [15].

Model Pipelining Model pipelining is a special case of model parallelism [9]. One hardware node receives data from a previous node and operates on it while the previous node is computing the next training step. In contrast to data parallelism, model parallelism lowers the memory requirement for large models. This work does not study model pipelining.

2.2.3 Parallelism among Requests Parallelism among requests can be exploited by batching, to transform request-level parallelism to intra-op parallelism. For example, multiple image classification requests can be combined and executed in a single session, such that the number of requests is mapped to the batch size dimension.

2.3 Framework Parameter Tuning Based on our analysis of design features and parallelism opportunities, we reduce the number of design features needing to be selected from five (scheduling mechanism, operator design, math library, thread pool library, parallelism mechanism) to one, the number of asynchronous scheduling thread pools. Other features, such as operator parallelism, follow from that choice. We propose simple guidelines for tuning framework features based on a model’s inter-operator parallelism, as reflected in its computational graph. To demonstrate their usability, we integrate the guidelines with TensorFlow, and achieve 1.29× and 1.34× speedup over Intel [4] and TensorFlow [16] recommended settings, respectively. We also achieve the same average performance as with globally optimal settings and 95% of globally optimal performance in the worse case. We have developed a TensorFlow plugin that sets framework parameters automatically. We will open source the plugin. Details are in Section 8.

Previous work proposed to tune TensorFlow parameters automatically [18], which treats the tuning process as a black box and therefore does not explain how parameters affect performance. Our work differs in three ways. First, our tuning method is supported by strong analysis. A deep understanding of framework designs and the root causes of performance difference makes our tuning method intuitive and lightweight. Second, performance with our worst-case settings differs by less than 5% from the global optimum obtained by exhaustive search, while previous work [18] reports large performance degradation. Finally, the robustness of our guidelines, is validated on a different set of real-world DL workloads using a state-of-the-art two-socket system. Our evaluation highlights the importance of framework parameter tuning for state-of-the-art translation and recommendation models.

3 Experimental Setup We will open-source our scripts and workloads.

CPU Platforms We use three Intel Skylake CPU platforms, small, large, and large.2. large.2 contains two sockets of large with a peak bi-directional bandwidth of 120 GB/s. large and large.2 represent widely-used datacenter servers. small has fewer cores; we use it to eliminate threading overhead for certain studies. We use large and small for most of the analysis where the performance tuning guidelines are summarized, and large.2 for the evaluation of the guidelines. small has 32 fused multiply-add (FMA) units per core, while large has 64 per core. Although all of the platforms support hyperthreading, each core has only one set of FMA units, which limits the benefits of hyperthreading if both hyperthreads need FMA units. The specifications are summarized in Table 1. large and large.2 are Amazon Web Services m5.metal instances. Unless otherwise specified, we use the large platform.

SKU	Cores	TFLOPS	Freq	LLC	
small	17-6700k	4	0.423*	4 GHz	8 MB
large	Platinum 8175M	24	1.64*	2.5 GHz	33 MB

* Estimated with GeekBench v4 [26].
Frameworks Because TensorFlow supports all features, we use TensorFlow v1.13 with the MKL-DNN back end, unless otherwise specified. Conducting the same experiments with PyTorch (Caffe2 module) shows similar results, so in this paper we focus on TensorFlow. We set thread affinity to prioritize binding one software thread with one physical core [4].

Workloads We use a set of production-size deep learning models, including three from MLPerf [29] (ResNet-50 [20], Transformer [34], neural collaborative filtering (NCF) [21]), as well as DenseNet [22], SqueezeNet [23], Inception [32], GoogLeNet [31], CaffeNet [24], ResNext [36], and Google’s Wide & Deep Learning model [12]. To deeply understand the design features, we use micro-benchmarks such as matrix multiplication. We use a subset of the aforementioned models to focus our evaluation on the respective design features (Sections 4 and 5). We hold out all the non-vision models for Section 8 to evaluate the proposed method.

Methodology Our profiling methodology enables thorough analysis. We produce time breakdowns (stack bars) for individual CPU cores using Linux’s perf record and profiling one core at a time. Using floating-point performance counters, we measure performance as floating-point operations per second (FLOPS). We trace execution with performance counters by sampling instructions per cycle (IPC) every few milliseconds and ordering the samples by time stamps. The perf stat command with the topdown option produces the top-down breakdown. LLC misses, memory, and UPI traffic come from the corresponding performance counters.

Terminology Here are some terms used often later on.

- **MKL Threads**: the threads for MKL and MKL-DNN.
- **Intra-Operator Threads**: the threads for an operator at framework level. Abbreviated intra-op threads.
- **Inter-Operator Pools**: the independent thread pools in a framework, the size of each set by intra-op threads. Abbreviated inter-op pools, or pools.

4 Scheduling Mechanism

A deep learning model is expressed using a computational graph that represents the data flow between operators. At run time, operator scheduling exposes optimization opportunities, such as scheduling independent operators simultaneously.

In this section we study the trade-offs of using such inter-operator parallelism. 1 We show that not all models benefit from asynchronous scheduling, and that the best setting depends on a model’s inter-operator parallelism, quantified by the width of its computational graph.

Figure 3 shows examples of synchronous and asynchronous scheduling of an Inception module [32], and the use of one and four thread pools. Scheduling of an operator is to submit the job to a thread pool. Sometimes asynchronous scheduling, i.e., running multiple operators simultaneously, can improve performance. For the simple example shown, scheduling one operator at a time takes nine steps to finish (Figure 3a); scheduling four operators at a time reduces the steps to five (Figure 3b). One simple implementation is to create several thread pools of the same size to share the computing hardware (Figure 3c), and to schedule independent operators asynchronously to the thread pools. This design is adopted by popular DL frameworks. In TensorFlow, the number of asynchronous thread pools is called the number of inter-operator threads. Caffe2 calls it the asynchronous thread pool size. In this paper, we refer to it as the inter-op pools, as opposed to intra-op threads. We will show that synchronous scheduling is beneficial in both single-socket and multi-socket systems. The best performance is achieved by balancing intra- and inter-operator parallelism.

4.1 Datacenter Platform Performance

We show that the best number of thread pools is no more than the maximum number of parallel operators for a model. We use the large platform in Table 1.

Figure 4’s bar chart shows the speedup of asynchronous scheduling on different production-size inference and training workloads. The baseline is synchronous scheduling, using one thread pool of size 24. Inference uses three thread pools, each with 8 threads; training uses two pools, each with 12 threads. Workloads benefit from asynchronous scheduling differently. Inception v1 and v2, GoogLeNet, ResNet, and FC-512 speed up more than others.

1The experiments are conducted with the real-world workloads implemented in Caffe2, because the Inception architecture is important for this study, and the Caffe2 model zoo makes it more convenient to use Inception.
The performance difference is because of models’ intrinsic inter-op parallelism, which is quantified by the width, or the number of branches, of their computational graphs. It measures the number of operators that can be scheduled in parallel. The table at the bottom of Figure 4 summarizes the maximum graph width and the best numbers of pools for varying batch sizes. We distinguish between inference and training workloads because the computational graphs of training workloads contain gradient and sum weight operators, which doubles the number of parallel operators. An intrinsic model limitation is that the best numbers of pools (for varying batch sizes) do not exceed the maximum graph width. The best number of pools varies based on batch sizes. Large batches increase the best number of pools for inference, but decrease it for training. That is because the parallel operators for training, gradient and sum weight, become imbalanced with large batches. Gradient becomes much compute-intensive than sum weight. Allocating computing resources evenly for the two hurts performance.

4.2 Inception v2 Case Study

To highlight parallelism opportunities at the intra- and inter-op levels, we use Inception v2 as an example. Its model architecture contains operator branches that can execute in parallel. In the baseline implementations that either schedule each branch naively to one CPU core or schedule one operator to all CPU cores, workload imbalance and synchronization overhead significantly reduce performance. We show that synchronization overhead can be mitigated by choosing the number/size of thread pools to better balance intra- and inter-operator parallelism. We use the small platform in Table 1, as it enables an exhaustive study of possible cases.

Inception v2 Architecture

To simplify the explanation of later results, we first summarize the Inception v2 architecture [32] in Figure 5. Figure 5a shows the top level architecture, color coded as areas 1 and 2. Area 1 exhibits both intra- and inter-op parallelism, while area 2 only has intra-op parallelism. Area 1 contains two inception modules. Module 4 has four branches (Figure 5b) and module 3 has three (Figure 5c). The convolution operators are converted to MatMul using im2col(). So intensive computations are mostly MatMul.

Performance Scaling with Pools and Threads

Figure 6 shows the relative performance of Inception v2 with a batch size of 16, sweeping inter-op pools and MKL threads per pool. The total number of threads on the system is the product of the two. Hyperthreads are used when more than four threads are created. Exceeding eight threads is labeled over-threading because there are more software threads than hardware threads. (Scaling is similar with batch sizes from 1 to 128.)

Hyperthreading does not improve performance significantly, such as [4,1] vs [4,2], and [1,4] vs [2,4] ([Threads, Pools]). The compute-intensive operators, Convs and MatMuls, are bottlenecked by the fused multiply-accumulate (FMA) units, which are shared between hyperthreads on the same core.

As expected, over-threading, i.e., using more software threads than hardware threads, hurts the performance, because-threading overhead increases with more software threads, and computing resources are saturated. As a result, simply setting all framework knobs to the maximum does not yield the best performance.

Performance is best with two pools and two threads per pool. Using four total threads in other ways, such as four pools with one thread each, or one pool with four threads, cannot achieve such performance. Our profiling methodology reveals and visualizes the underlying causes in Figures 7 and 8.

Run-Time Breakdown and Execution Traces

We select four cases, a baseline that uses only one thread, and three cases that each use four threads in total. One software thread is bound to one CPU core. Figure 7 shows the aggregate time breakdown, and Figure 8 shows the corresponding execution traces. In Figure 8, one iteration of Inception v2 inference is marked with red bars, and operators in execution are labeled with the corresponding color in Figure 5, where area 1 exhibits intra- and inter-op parallelism, and area 2 has only intra-op parallelism. The fraction of time each core spent executing (rather than synchronizing) is indicated to the right of each trace. It matches the breakdowns in Figure 7.
As shown in Figure 1, a workload built with a DL framework APIs to ease the development process for framework users. Implementations of Framework Native Operators

In this section, we show that efficient operator design can overcome in different sizes and have different dependencies. Fixing each thread pool size usually incurs synchronization overhead because of work imbalance. Thus there is an opportunity to implement a global thread pool, allowing the scheduler to determine dynamically how many threads to schedule for each operator. For example, in the traces of Figure 5, providing area 1 with two pools of two threads each and area 2 with one pool of four threads can lead to higher performance.

5 Operator Design

Operators are building blocks of DL frameworks, providing basic semantics through high-level language (like Python) APIs to ease the development process for framework users. As shown in Figure 1, a workload built with a DL framework involves library kernels and framework native computation. In this section, we show that efficient operator design can speed up framework native computation, and yields up to 4.2× performance improvement for real-world models.

Implementations of Framework Native Operators

We first describe framework native operators, the operators that do not use library kernels. Native operators handle control flow as well as tensor reshaping, broadcasting, and preprocessing, Some, like those for control flow or input image preprocessing, are necessary. Others can fairly be described as a framework programmability tax. The overhead stems from preparing inputs for library kernels, or computing how to parallelize a given workload in the main thread. One example of the latter kind is Eigen::ParallelFor, used by TensorFlow.

Implementations of Compute-Intensive Operators

A framework operator must sometimes do more than simply pass arguments to library kernels. Data preparation is often required, for example. Taking matrix multiplication (MatMul) as an example, we list two implementations below. In the context of deep learning, x is an input matrix of size $[\text{batch size} \times \text{number of activations}]$ and w is a weight matrix of size $[\text{activations in current layer} \times \text{activations in next layer}]$. We assume MatMul is the interface of a framework operator, and MATMUL is the corresponding library kernel, e.g., in MKL.

Sec 5.1) MatMul1(x, w):

```python
  data_prep($x, w$)
  return MATMUL($x, w$)
```

Sec 5.2) MatMul2(x, w):

```python
  // Reshape $x, w$ into $bx$ and $bw$
  for $bx, bw$ in $x, w$:
    threadpool.run(MatMul1, $bx, bw$)
  return threadpool.join_results()
```

MatMul1 conducts data preparation and passes the matrices to the library kernel. MatMul2 uses an additional thread pool that we call the intra-operator thread pool, to distinguish it from the MKL thread pool. The operator splits the matrices into smaller ones, and passes those small matrices to the intra-op thread pool. The intra-op thread pool then executes multiple copies of MatMul1 in parallel. This way data_prep()
of the whole matrix can be parallelized. Before and after the library call, the data formatting and results gathering work is part of the programmability tax. We will study the two implementations in the following subsections.

5.1 MKL Threads
By analyzing the overhead and scalability of the first operator implementation, MatMul1, we show that both the TensorFlow (TF) operator and the MKL kernel suffer from data preparation overhead, which prevents them from scaling linearly with the number of CPU cores. The results here can also apply when convolution operators are converted to MatMuls using im2col(). We use the large platform in Table 1.

Performance Scaling Both TF and MKL have scaling issues, and TF is slightly worse. Figure 9 shows the speedup of using 24 MKL threads over using one, for both TF operators and MKL kernels. The matrices are squared and represented by one dimension. The total number of floating-point operations is the cube of that number. Figure 9 shows that the speedup of TF is always lower than that of MKL, especially for small matrices. TF speedup is comparable to MKL when matrices are larger than 4k. The maximum speedup achievable is about $16 \times$, which is lower than the number of cores, 24.

Causes of the Poor Scalability Our profiling methodology reveals that data preparation overhead causes suboptimal performance scaling. We pick two variants of MatMul, MatMul-512 and MatMul-4k, that operate on medium- and large-size matrices, respectively. MatMul-512 represents the fully-connected (FC) layers from YouTube [13] and Facebook recommendation [17, 28] models, while MatMul-4k represents the FC layers in Transformer [34]. Figure 10 shows the runtime breakdown of all CPU cores running the MatMuls, using 1 and 24 MKL threads. With multiple threads, the thread tasked with lengthy TF data preparation is the main thread, labeled CPU Core 0. The latency of each MatMul workload is normalized to that of using one MKL thread.

The TF parts of Figure 10 show that TF’s scaling issue is caused by framework overhead, due mainly to TF data preparation for MKL kernels. Using one MKL thread, MatMul-512 spends over 10% of its time in TF data preparation; using 24 MKL threads, the overhead exceeds 72%. Overhead is much lower for MatMul-4k: less than 3% in both cases. Without TF overhead, speedup can clearly be much greater. The MKL parts of Figure 10 show that MKL data preparation causes the scaling issue for MKL kernels. MKL kernel execution time is roughly 1/24 of the original run-time for MatMul-512. Speedup drops with time spent in MKL data preparation.

The Role of Framework Design The Amdahl’s law bottleneck of DL frameworks is non-negligible. The overhead a MatMul with size $n \times n \times n$ scales linearly with $n (O(n))$, while the number of floating-point operations scales cubically ($O(n^3)$). Thus the speedup of large MatMuls (e.g., 4k) is closer to ideal speedup. Realistically, however, the most commonly-used FC layers are not always large enough. Actually smaller ones are common in commercial workloads including YouTube’s [13] recommendation model (of size 256 to 1k) and Facebook’s [17, 28] (of size 64 to 512). Especially when hardware platforms are upgraded to higher floating-point computation capability, we need even larger matrices to amortize the overhead. Thus it is key to focus optimization efforts on mitigating framework overhead.

5.2 Intra-Operator Threads
After decades of optimizing the GEMM kernel, the performance bottleneck has shifted to the overhead of using such kernels, e.g., the data preparation overhead in Figure 10. A natural approach to reducing the overhead in framework design is to parallelize the framework native computation, with an intra-operator thread pool implemented at the framework level, as MatMul2 does. We show that when library kernels are using FMA units, intra-op threads improve performance by utilizing other computational units on the same physical core, thereby benefiting from Intel’s hyperthreading technology. We use the large platform from Table 1.

Performance Improvement We first show how much performance improvement intra-op threads can yield and where it comes from. Figure 11 summarizes speedup and time breakdown when using 1 (left bar) and 24 (right bar) intra-op threads. Both cases use 24 MKL threads. MatMul-512 and MatMul-4k are the same operators as in previous sections. Using 24 intra-op threads reduces the execution time of TF native operators, while that of other parts stays similar. The speedup ranges from $1.05 \times$ (DenseNet) to $4.21 \times$ (SqueezeNet).
Workloads bottlenecked by TF native operators benefit more from intra-op threads. Such workloads, including MatMul-512 and SqueezeNet, have small to medium MatMul or convolution operations, because TF native operators are likely to consume larger fractions of computation time. For example, SqueezeNet has a small percentage of MKL computation since it is designed to have fewer parameters than AlexNet by using many small (1x1) convolution kernels [23].

Programmability Tax Figure 11 also quantifies the framework programmability tax. We estimate the tax using the non-MKL fractions, since they are not compute-intensive and can be largely optimized if written with high-performance language/code as MKL kernels. After optimizing with intra-op threads, the programmability tax ranges from 1.3% (DenseNet) to 63% (MatMul-512). SqueezeNet (47%) is higher than ResNet-50 (26%). MatMul-4k (11%) is slightly smaller. This is the price we are paying for using frameworks.

Full-System Profiling Our profiling methodology visualizes the execution of every core on the CPU platform to expose the reasons for performance improvement. Figure 12 shows the time breakdown for all 48 hyperthreads on the large platform. We focus on the two MatMuls, since they are the simplest workloads. Because cores 24-47 are not active when using one intra-op thread, the third bar is omitted for that case. Core 0 of each case is the same as in Figure 11.

Figure 12 shows that with 24 intra-op threads, TF data preparation is distributed to cores 24 through 47. (The bottom of the third bar for MatMul-512 with 24 intra-op threads shows a tiny TF data preparation cost.) That shortens TF data preparation time in core 0, so that the TF barrier time of cores 1 to 23 is shortened. With only one intra-op thread, cores 1 to 23 spend about 60% (MatMul-512) and 40% (MatMul-4k) of time waiting in barrier, which is a big waste. Hyperthreading Using intra-op threads takes advantage of Intel’s hyperthreading technology by colocating an intra-op thread and an MKL thread on the same physical core. Since they need different hardware resources, they can execute in parallel without contention. The critical path is the MKL thread. The intra-op thread adds no execution time to the overall workload. For example, in Figure 12, logical cores 0 and 24 are on the same physical core. Core 0 executes mostly MKL floating-point operations with FMA units, which core 24 does not need. Even without hyperthreading, the implementation of intra-op threads parallelize the overhead in cores 24-47.

6 Library Choice
Thanks to the mathematics and thread pool libraries, deep learning framework developers do not have to implement every basic function from scratch. In this section we study libraries for machine learning and thread pools. We show that optimization can improve a GEMM kernel’s performance by up to 25%, owing to more efficient data prefetching. We also find that robust thread pools such as Eigen and Folly are better able to keep production-critical workloads running with little variation, thus investing in sophisticated implementations is worthwhile for service providers.

6.1 Machine Learning Library
We compare MKL, MKL-DNN, and Eigen with GEMM (general matrix multiplication) microbenchmarks on the small platform (Table 1) to expose architectural bottlenecks.

We conduct top-down analysis [37] for single-threaded GEMM kernels with a variety of matrix sizes. Figure 13a shows the cycle breakdown (stacked bars) and IPC (dots). The three bars shown for each matrix size are for Eigen, MKL-DNN, and MKL, from top to bottom. For GEMM, MKL performs the best, followed by MKL-DNN. With matrices larger than 4k, about 25% of cycles are back-end bound for Eigen and MKL-DNN.

The back-end bottleneck is caused by last-level-cache (LLC) misses, shown as LLC misses per thousand instructions (MPKI) in Figure 13b. Eigen and MKL-DNN have much higher LLC MPKI than MKL. The LLC miss rate difference is caused by the aggressiveness and effectiveness of data prefetching, shown by the memory traffic in Figure 13c, where the right ends of the bars show memory traffic incurred by LLC misses. MKL’s memory traffic is close to that of MKL-DNN, and its much lower LLC miss rate shows that MKL’s software prefetching is more effective.

We compare the GEMM kernels to demonstrate how and why kernel performance can vary. MKL-DNN is likely outperform other libraries for other kernels, because it is a library...
In previous sections we have explored the framework designs on one-socket CPUs. In this section, we study how those design features can be applied to scale out the workloads beyond one socket. Unsurprisingly, the bottleneck of a two-socket system is the UPI bandwidth between sockets. We study scaling one operator to two sockets and scheduling multiple operators to different sockets, as scaling-out versions of intra- and inter-op parallelism studies. The experiments are conducted on the large and large.2 platforms from Table 1.

7.1 Data Parallelism

We study data parallelism by setting the numbers of intra-op and MKL threads to the total number of physical cores and the number of inter-op threads to one.

ResNet Performance Figure 15 shows the execution time breakdown of ResNet-50 running on one- and two-socket platforms. The latter speeds up ResNet by 1.43×, less than the two-fold hardware increase. The bottleneck is that UPI traffic peaks at 91.4 GB/s, compared to the theoretical maximum of 120 GB/s. UPI saturation increases the latency of TF native operators on a two-socket platform, which now includes both data preparation and transfer time between sockets.

MatMul Performance To test the limit of the large.2 platform, we conduct microbenchmarking using TensorFlow MatMul operators. Similarly, the UPI bandwidth is the bottleneck for large MatMuls. Figure 16 shows two-socket speedup and corresponding UPI bandwidth consumption. The speedup and UPI throughput increase with larger MatMul sizes, and peak for MatMul-8k. For MatMul-16k, speedup decreases and bandwidth saturates, indicating empirically the maximum UPI bandwidth is around 100 GB/s for such workloads.

The speedup of a workload is determined by its intrinsic parallelism and UPI bandwidth saturation. Figure 17 shows the time breakdown of MatMuls running on one- and two-socket platforms. For medium MatMul sizes like 512, the poor scalability is caused by the limited parallelism of the workload, which cannot hide data preparation overhead. For larger MatMuls, 4k and 8k, the data preparation time of both TF and MKL increases on the two-socket platform because of UPI saturation. MatMul-8k has the best balance of intrinsic parallelism and UPI throughput. It leads to the highest speedup (1.8×, i.e., 44% less execution time than with just one socket), which is close to perfect scaling.

7.2 Model Parallelism

We study model parallelism of a two-socket platform by using two inter-op pools, one per CPU socket. Model parallelism improves performance significantly when the parallel operators are on critical paths and have similar sizes, as with
multiple embedding operators in neural collaborative filtering (NCF). Performance and model parallelism mechanisms will be discussed in the next section.

Model parallelism does not always improve performance. One example is the inter-op parallelism from training workloads, as in Section 4. Assigning gradient and weight sum operators one socket each causes workload imbalance between two sockets when batch size is large. Two-socket platforms are not beneficial when the intra-op thread pool is not implemented at the framework level, since the workload bottleneck is single-threaded operators.

8 Framework Design Tuning

At the outset, we identified five design features: scheduling mechanism, operator implementation, math library, thread pool library, and the parallelism mechanism for platforms larger than one socket. Our analysis has shown that the most effective setting for users to determine is the proper number of inter-op pools based on the model architecture. Intra-op parallelism configurations follow from that setting.

Definitions To determine the number of inter-op pools for a model, we need its average width, which quantifies its inter-op parallelism. (Section 4.1 and Figure 4 mention the maximum width.) The average width of a model is the floor of the ratio of the total number of (heavy) operators divided by the maximum number of layers. A heavy operator is a compute-intensive or embedding operator that usually takes significantly longer execution time than other operators. Examples are the Conv operators in Figure 5, as opposed to lightweight math operators, which are not considered. The average model width of Figure 5b is \(\lceil \frac{3}{2} \rceil = 2 \).

Guidelines The number of inter-op pools (p) is chosen to be the average model width. After p is chosen, we choose the numbers of MKL and intra-op threads such that the entire system is split into p partitions without redundant threads (Section 4.2 and Figure 6). Therefore, the number of MKL threads and the number of intra-op threads for each thread pool should be equal to the total number of physical cores on the system divided by p. That way one MKL thread and one intra-op thread can share the same physical core. MKL threads can use the FMA units and the intra-op threads can use other units via hyperthreading (Section 5.2 and Figure 12).

Evaluation Setup We integrate our guidelines with TensorFlow v1.13. (TensorFlow refers to inter-op pools as inter-op parallelism threads.) We will open source the TensorFlow plugin to the public, to let users apply our guidelines automatically. The size of the design space encompassing the numbers of MKL, intra- and inter-op threads is the cube of the number of logical cores. For the large.2 system, that means 96³ = 884,736 design points. Our guidelines suggest picking only one of those 884,736 possibilities.

We evaluate our guidelines by applying the rules to a fresh set of workloads and by performing the evaluation on a different platform from that used to develop the guidelines. Our analysis uses microbenchmarks and vision models that run with images; for evaluation, we add Inception v3 [32], the wide-deep recommendation model [12], the neural collaborative filtering model (NCF) [21], and Transformer [34], covering recommendation and translation workloads. The

Figure 16. (a) Speedup of a two-socket platform over one socket. (b) Measured peak UPI bandwidth consumption on the two-socket platform is close to 100GB/s.

Figure 17. Run-time breakdown of all CPU cores.

Figure 18. Performance using the recommended TensorFlow settings [16] (baseline), Intel blog [4], our work, and global optimum obtained by exhaustive search. Our work outperforms Intel and Tensorflow suggestions and nearly closes the gap between the state of the art and the global optimum.

Dense	Squeeze	ResNet	IncepV3	W/D	NCF	Trans
1	1	1	2	3	4	4

Table 2. Average model width, i.e., the number of pools selected for Figure 18 based on our guidelines. Intra-op and MKL threads = total physical cores divided by those numbers.
bulld of our analysis uses platforms small and large from Table 1; here we evaluate the guidelines on the large.2 platform, the largest AWS bare metal instance.

Speedup Figure 18 summarizes the speedup of this work over TensorFlow [16] (baseline) and Intel [4] recommended settings. It also compares our settings’ performance to the global optimum obtained by exhaustively sweeping the design space. TensorFlow suggests setting the number of MKL and intra-op threads to the physical core count, and inter-op pools to the socket count. Intel suggests setting MKL and intra-op threads to the number of physical cores per socket, and inter-op pools to the socket count. Our analysis shows that TensorFlow suggests more threads than needed, and Intel’s setting is suitable for models with an average width of two.

Overall, our performance guidelines perform consistently better than the settings recommended by Intel and TensorFlow. Our method bridges the performance gap between those state-of-the-art settings and the global optimum for all evaluated workloads except Inception inference and SqueezeNet training. In those two cases, our guidelines achieve 95% of the performance offered by the global optimal setting. On average, this work achieves the same performance as the global optimum, and 1.34× and 1.29× better performance than TensorFlow’s and Intel’s suggestions, respectively.

We summarize the average model width in Table 2. It is the same as the number of inter-op pools in use. The models shown have average width between one and four, which is diverse. The numbers of MKL and intra-op threads for each model is the total number of physical cores (48) divided by the model width. For example, the setting for the W/D (wide and deep) model is 3 inter-op pools, 16 MKL threads, and 16 intra-op threads, which is also the globally optimal setting.

The performance guides from Intel and TensorFlow are general, aiming to make it easy for most users to get reasonable performance, and they perform reasonably well. For vision models, TensorFlow’s settings perform as well as the global optima and our guidelines, while Intel’s does not perform well for the vision models except for Inception, because Intel’s setting favors models with inter-op parallelism that other vision models do not have. Intel’s settings perform better than TensorFlow’s for recommendation and translation models. The latter have several parallel embedding operators, thus their average width is no less than two. The default TensorFlow setting performs much worse than both the Intel and TensorFlow recommendations. TensorFlow naively sets all parameters—MKL threads, intra-op threads, and inter-op pools—to the number of logical cores. As pointed out in our earlier analysis, this is sub-optimal. Thus TensorFlow users who run only one model and one session at a time should at least set the number of inter-op pools to one instead of using the default setting.

9 Conclusion

We presented detailed evaluation and analysis of key design features and the role of parallelism in a machine learning framework, focusing on scheduling, operator implementation, and library back ends. To maximize parallelism, we proposed simple guidelines for tuning framework parameters, distilled from detailed domain-specific design feature knowledge and analysis. We demonstrated the usability and the additional performance improvement of this approach by integrating and evaluating our methodology with TensorFlow. On average, our method outperformed the suggested settings from Intel and TensorFlow performance guides by 1.29× and 1.34×, respectively, across a set of real-world DL models.

10 Acknowledgement

This work was supported by NSF Grant # CCF-1533737. The authors would like to thank Facebook AI Infrastructure Team, Facebook Hardware/Software Co-Design Team, Udit Gupta, Glenn Holloway, Hsien-Hsin S. Lee, and Brandon Reagan for their feedback.

References

[1] 2019. Folly: Facebook Open-source Library. (2019). https://github.com/facebook/folly.

[2] Martín Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Jeffrey Dean, Matthieu Devin, Sanjay Ghemawat, Geoffrey Irving, Michael Isard, et al. 2016. TensorFlow: A System for Large-Scale Machine Learning. In *OSDI* Vol. 16, 265–283.

[3] Dario Amodei and Danny Hernandez. 2018. AI and Compute. *OpenAI Blog* (2018). https://openai.com/blog/ai-and-compute.

[4] P Anjul. 2018. Tips to Improve Performance for Popular Deep Learning Frameworks on CPUs. *Intel Developer Zone* (2018).

[5] Soheil Bahrampour, Naveen Ramakrishnan, Lukas Schott, and Mohak Shah. 2016. Comparative Study of Caffe, Neon, Theano, and Torch for Deep Learning. (2016).

[6] Paul Barham and Michael Isard. 2019. Machine Learning Systems are Stuck in a Rut. In *Proceedings of the Workshop on Hot Topics in Operating Systems (HotOS 19)*. ACM, 177–183.

[7] Jeff Bezanson, Alan Edelman, Stefan Karpinski, and Viral B Shah. 2017. Julia: A Fresh Approach to Numerical Computing. *SIAM review* 59, 1 (2017), 65–98.

[8] Ashraf Bhuiany, Mahmoud Abuzainah, Niranjan Hasabnis, Niroop Ammbashankar, Faijul Amin, Sheng Fu, and Bhavani Subramanian. [n. d.]. Improving TensorFlow Inference Performance on Intel Xeon Processors. *Intel AI Blog* (n. d.).

[9] Google AI Blog. 2019. Introducing GPipe, an Open Source Library for Efficiently Training Large-scale Neural Network Models. https://ai.googleblog.com/2019/03/introducing-gpipe-open-source-library.html (2019).

[10] Tianqi Chen, Mu Li, Yutian Li, Min Lin, Naiyan Wang, Minjie Wang, Tianjun Xiao, Bing Xu, Chiyuan Zhang, and Zheng Zhang. 2015. MXNet: A Flexible and Efficient Machine Learning Library for Heterogeneous Distributed Systems. *arXiv preprint arXiv:1512.01274* (2015).

[11] Tianqi Chen, Thierry Moreau, Zheng Jiang, Lianmin Zheng, Eddie Yan, Haichen Shen, Meghan Cowan, Leyuan Wang, Yuwei Hu, Luis Ceze, et al. 2018. {TVM}: An Automated end-to-end optimizing compiler for deep learning. In 13th *USENIX Symposium on Operating Systems Design and Implementation (OSDI) 18*, 578–594.

[12] Heng-Tze Cheng. [n. d.]. Wide and Deep Learning: Better Together with TensorFlow. *Google AI Blog* (n. d.). https://ai.googleblog.com/2016/06/wide-deep-learning-better-together-with.html.

[13] Paul Covington, Jay Adams, and Emre Sargin. 2016. Deep Neural Networks for YouTube Recommendations. In *Proceedings of the 10th ACM conference on recommender systems*. ACM, 191–198.

[14] Eigen. 2019. Eigen Thread Pool. (2019). [https://bitbucket.org/eigen/eigen/src/default/unsupported/Eigen/ CXX11/src/ThreadPool/](https://bitbucket.org/eigen/eigen/src/default/unsupported/Eigen/CXX11/src/ThreadPool/).
References:

[15] Assaf Eisenman, Maxim Naumov, Darryl Gardner, Misha Smelyanskiy, Sergey Pupyrev, Kim Hazelwood, Asaf Cidon, and Sachin Katti. 2018. Bandana: Using Non-Volatile Memory for Storing Deep Learning Models. arXiv preprint arXiv:1811.05922 (2018).

[16] Google. 2019. TensorFlow Performance Guide. https://www.tensorflow.org/guide/performance/overview. (2019). TensorFlow Documentation.

[17] Udit Gupta, Xiaodong Wang, Maxim Naumov, Carole-Jean Wu, Brandon Reagen, David Brooks, Bradford Cottel, Kim Hazelwood, Bill Jia, Hsien-Hsin S Lee, Andrey Malevich, Dheevatsa Mudigere, Mikhail Smelyanskiy, Liang Xiong, and Xuan Zhang. 2019. The Architectural Implications of Facebook’s DNN-based Personalized Recommendation. arXiv preprint arXiv:1906.03109 (2019).

[18] Niranjan Hasabnis. 2018. Auto-Tuning TensorFlow Threading Model for CPU Backend. arXiv preprint arXiv:1812.01665 (2018).

[19] Kim Hazelwood, Sarah Bird, David Brooks, Soumith Chintala, Utku Diril, Dmytro Dzhulgakov, Mohamed Fawzy, Bill Jia, Yangqing Jia, Aditya Kalro, et al. 2018. Applied Machine Learning at Facebook: A Datacenter Infrastructure Perspective. In High Performance Computer Architecture (HPCA), 2018 IEEE International Symposium on. IEEE, 620–629.

[20] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016. Deep Residual Learning for Image Recognition. In Proceedings of the IEEE conference on Computer Vision and Pattern Recognition. 770–778.

[21] Xiangnan He, Lizi Liao, Hanwang Zhang, Liqiang Nie, Xia Hu, and Tat-Seng Chua. 2017. Neural Collaborative Filtering. In Proceedings of the 26th international conference on world wide web. International World Wide Web Conferences Steering Committee, 173–182.

[22] Gao Huang, Zhuang Liu, Laurens Van Der Maaten, and Kilian Q Weinberger. 2017. Densely Connected Convolutional Networks. In Proceedings of the IEEE conference on Computer Vision and Pattern Recognition. 4700–4708.

[23] Forrest N Iandola, Song Han, Matthew W Moskewicz, Khalid Ashraf, William J Dally, and Kurt Keutzer. 2016. SqueezeNet: AlexNet-Level Accuracy with 50x Fewer Parameters and 0.5 MB Model Size. arXiv preprint arXiv:1602.07360 (2016).

[24] Yangqing Jia, Evan Shelhamer, Jeff Donahue, Sergey Karayev, Jonathan Long, Ross Girshick, Sergio Guadarrama, and Trevor Darrell. 2014. Caffe: Convolutional architecture for fast feature embedding. In Proceedings of the 22nd ACM international conference on Multimedia. ACM, 675–678.

[25] Nikhil Ketkar. 2017. Introduction to PyTorch. In Deep Learning with Python. Springer, 195–208.

[26] Primate Labs. 2019. GeekBench v4. https://www.geekbench.com/. (2019).

[27] Chris Lomont. 2011. Introduction to Intel Advanced Vector Extensions. Intel White Paper (2011), 1–21.

[28] Maxim Naumov, Dheevatsa Mudigere, Hao-Jun Michael Shi, Jianyu Huang, Narayanan Sundaraman, Jongsoo Park, Xiaodong Wang, Udit Gupta, Carole-Jean Wu, Alisson G Azzolini, Dmytro Dzhulgakov, Andrey Malevich, Iliia Cherniavskii, Yinghai Li, Raghuraman Krishnamoorthi, Ansha Yu, Volodymyr Kondratenko, Stephanie Pereira, Xianjie Chen, Wenlin Chen, Vijay Rao, Bill Jia, Liang Xiong, and Misha Smelyanskiy. 2019. Deep Learning Recommendation Model for Personalization and Recommendation Systems. arXiv preprint arXiv:1906.00091 (2019).

[29] David Patterson. 2018. MLPerf: SPEC for ML. https://rise.cs.berkeley.edu/blog/mlperf-spec-for-ml/. (2018).

[30] Akshitha Srinaram, Abhishek Dhanotia, and Thomas F Wenisch. 2019. SoftSKU: Optimizing Server Architectures for Microservice Diversity at Scale. In Proceedings of the 46th International Symposium on Computer Architecture. ACM, 513–526.

[31] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed, Dragomir Anguelov, Dumitru Erhan, Vincent Vanhoucke, and Andrew Rabinovich. 2015. Going Deeper with Convolutions. In Proceedings of the IEEE conference on Computer Vision and Pattern Recognition. 1–9.

[32] Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jon Shlens, and Zbigniew Wojna. 2016. Rethinking the Inception Architecture for Computer Vision. In Proceedings of the IEEE conference on Computer Vision and Pattern Recognition. 2818–2826.

[33] Maxim Naumov, Dheevatsa Mudigere, Mikhail Smelyanskiy, Liang Xiong, and Xuan Zhang. 2019. The Architectural Implications of Facebook’s DNN-based Personalized Recommendation. arXiv preprint arXiv:1906.03109 (2019).

[34] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz Kaiser, and Illia Polosukhin. 2017. Attention Is All You Need. In Advances in Neural Information Processing Systems. 5998–6008.

[35] Carole-Jean Wu, David Brooks, Kevin Chen, Douglas Chen, Sy Choudhury, Marat Dukhan, Kim Hazelwood, Eldad Isaac, Yangqing Jia, Bill Jia, et al. 2019. Machine Learning at Facebook: Understanding Inference at the Edge. In 2019 IEEE International Symposium on High Performance Computer Architecture (HPCA). IEEE, 331–344.

[36] Saining Xie, Ross Girshick, Piotr Dollár, Zhuowen Tu, and Kaiming He. 2017. Aggregated Residual Transformations for Deep Neural Networks. In Proceedings of the IEEE conference on Computer Vision and Pattern Recognition. 1492–1500.

[37] Ahmad Yasin. 2014. A Top-Down Method for Performance Analysis and Counters Architecture. In 2014 IEEE International Symposium on Performance Analysis of Systems and Software (ISPASS). IEEE, 35–44.