A New Designs of Microstrip Wi-Fi-shape Nanoantenna & Microstrip Wi-Fi-shape Slot Nanoantenna at THz region

Bassam Raoof Mohammed Ali 1,3,*, Abdulkadhum Jaafar Alyasiri 2, Faris Mohammed Ali 2

1 Department of Communications Techniques Engineering, Engineering Technical College / Najaf, Al-Furat Al-Awsat Technical University, Iraq.
2 Al-Furat Al-Awsat Technical University, Iraq.
3 Department of Computer Techniques Engineering, College of Technical Engineering, University of Al-Kafeel, Iraq.

bassam90asd@gmail.com

Abstract. The Evolution of Terahertz technology led to focus of Scientists and Researchers on this technology field. Terahertz region lies between optics frequency range and electronics, so THz frequencies are lowest frequencies make the free space conventional optics enable still be utilized before microwave components adopt. In this paper, CST studio suite 2018 simulator is utilized to simulate and design a new Microstrip Wi-Fi-shape Nanoantenna (MWNA) & Microstrip Wi-Fi-shape Slot Nanoantenna (MWSNA). Reflection coefficient (S11), Directivity, Gain and Bandwidth are computed. The results that achieved working at Terahertz frequencies in Nano size. The Bandwidth of MWNA design and the MWSNA design working in the range of (103.3 -110.3 THz) and (124.5 -127.8 THz) respectively. The Microstrip nanoantenna that utilized consist of three layers, Patch made from Gold, Substrate layer that utilized Silicon and Ground plane layer made from Gold. So the applications of these bands of THz frequencies work at visible region and near infrared (IR).

1. Introduction

The nanoantenna, is otherwise called the optical antenna. Optical antenna is like the traditional antenna, truth be told, it manages electromagnetic waves with the exception of that nanoantenna works in the optical frequency segment of the electromagnetic spectrum. Antenna measurements are comparable to the working wavelength so that to achieve resonance at optical frequencies, antennas must be shrinking to the nanoscale measurement. Nanoantenna can be defined as "a nanometer scale metallic structure that is capable of enhancing the optical radiation interaction with the matter" [1].

In 1959, Richard Feynman presented an imaginative paper with titled "There’s Plenty of Room at the Bottom". He discussed the problem of controlling materials on a nanoscale measurements. This paper proposed an inspired scientific idea added to open researcher's eyes on the nanotechnology a little decades later. He talked about the likelihood of building nanoscale electric circuits and he said "is it possible to emit light from nanoantenna array, like we emit radio waves from antenna array to beam the radio programs to Europe? Which is similar to beam the light out in a definite direction with high directivity" [1] [2].
The progress made by Feynman in nanofabrication techniques and nanotechnology studies produce Feynman's suggestion a fact and many nanoantennas for several applications have been fabricated [3] [4] [5] [6].

The general features of radio frequency and microwave counterparts are compatible with the optical antenna. On the other side, the analogies among conventional antennas and nanoantennas are limited in light of the fact that the physical properties that have materials and materials reaction to the optical frequencies are various from that at RF/microwave frequencies. For this referenced reason the design and the direct scaled-down interpretation of conventional antenna theory is impossible; thusly the new Nano scaled-down antenna theory should take consider the various phenomena at the optical frequencies [7].

The first concept of Nano optical was introduced by K. B. Crozier group in Stanford University indicating to the Nano photonic device which connects optical-frequency electromagnetic waves to sub-wavelength scale effectively by using surface Plasmon effects [8]. So, Nanoantennas are designed to discover the light in the visible part the infrared part, and farther, perhaps applied in Polari metric imaging systems, optical sensors, and for another application [9].

Newly Nanoantennas have received growing attention in nanotechnology research. This antenna can be used in many applications like microscopy, data-communication, spectroscopy, and even solar energy harvesting [10].

In this paper, we proposed a new design of Microstrip Wi-Fi-shape Nanoantenna (MWNA) & Microstrip Wi-Fi-shape Slot Nanoantenna (MWSNA). So the MWNA & MWSNA are composed from Patch antenna, Silicon material as dielectric Substrate and Ground plane. The Gold materials are used in ground plane and patch. We used gold material since it has high conductivity without changing the properties in THz region. In these two proposed designs the size of patch is proportional to the half wavelength from the size of substrate. So the result that achieved from the two design show good Directivity and Gain since we got a very suitable bands in both designs at THz region for visible region and near infrared (IR) applications.

2. Theory of Microstrip Nanoantenna

The idea of Microstrip antenna comes back to the start of the 1950 and it was presented by Deschamps, and for several years later Microstrip based antenna was presented by Gutton and Baissino, Despite the spread of the Microstrip concept, where there was little activity to develop in 15 years [11] [12] So, In the early of 1970, the development of Microstrip antenna began to increase with the need for thin antennas for spacecraft, conformal, and missiles [13].

Microstrip antenna have attracted in much consideration from engineers, researchers and designers what's more, have been utilized widely in RF and microwave systems, for example, biomedical systems, radar, communications, navigation, and remote sensing. Microstrip antennas can take a several of shapes, for example, dipole, patch, traveling-wave structure, or a slot, intended for specific applications [14].

2.1 Patch Antenna (first layer)

The first layer is called patch, Microstrip patch antennas are conceded one of a most fundamental and essential kinds of planar Antenna. Huge numbers of the ideas and methods utilized with Microstrip Patch Antennas can be connected straightforwardly to other planar antennas [14]. Microstrip patch antenna consider the simplest types of Microstrip Antenna which essentially composed of three layers that is shown in Figure 1. This layer is responsible about radiation. It is manufactured from a thin conducting material for example gold (Au) or copper (Cu) and is printed or etched on the second layer (medium) that is called the dielectric substrate.

The form of patch may take numerous geometrical shape, like square, rectangular, triangular, elliptical and circular or other various shapes [15].
2.2 Substrate (second layer)
The dielectric substrate conceder medium layer that is lie between the patch and the ground. So, to plan a minimized size of Microstrip, the dielectric substrate must be utilized with a high dielectric constant value yet this lets a reduced efficiency and narrow bandwidth. Hence, a tradeoff must be made between the size of the antennas and its performance. One of the consideration that is effect on the substrate material is the dielectric constant on the radiation characteristics. A high dielectric constant resulting a low radiation from a Microstrip patch antenna [11] [15] [16].

2.3 Ground (third layer)
This layer classified as last layer (third) of Microstrip antenna. So, this layer consider corresponding side of the substrate with a conducting material that is called ground plane that is represent the third layer [15].

![Figure 1. Basic structure of Microstrip][11].

3. Nanoantenna Design Configuration
In this section, we illustrate the Microstrip Nanoantenna layers, dimensions, usage material, figures and relationship. So in the new presented designs of Nanoantenna which is called Microstrip Wi-Fi-shape Nanoantenna (MWNA) & Microstrip Wi-Fi-shape Slot Nanoantenna (MWSNA) as shown in Figure 2 and Figure 3 respectively. The above Microstrip Nanoantennas are composed from three layer: Patch, Substrate and Ground. The gold metal used in both patch Nanoantenna and patch slot Nanoantenna. The dimensions of MWNA patch are four circle with (R1=125, R2=275, R3=425, R4=575) nm, the distance between the circle is 150 nm with thickness (t) 20 nm.

The substrate layer dimensions are 900, 900 nm W, L respectively. The dielectric material that is used in substrate is Silicon with thickness (h) 50 nm. We used the silicon because it has high dielectric constant εr=11.9. The ground layer dimensions are 900*900 nm² meanwhile the thickness (t) is 20 nm. Gold metal is used in the design of ground layer.

Moreover, to get a good solution for both reflection coefficient S_{11} and far-field must utilized a waveguide excitation port. The all parameters of MWNA & MWSNA as shown in Table 1.
Table 1, Nanoantenna Dimensions.

Parameters	Values (nm)
First Patch circle R1	125
Second Patch circle R2	275
Third Patch circle R3	425
Fourth Patch circle R4	575
Ground width, Wg	900
Ground length, Lg	900
Thickness of Ground t	20
Thickness of patch t	20
width of substrate W	900
length of substrate L	900
Substrate Thickness h	50

Figure 2, overall view of MWNA.
Through the equations that is found in Balanis [17] the length and width of the Microstrip, we can calculate the width and length in both relationship (2-1) and (2-2) with little manipulated the extracted values to the new design.

Actual length L:

$$L = \frac{1}{2f_r\sqrt{\frac{\mu_0}{\varepsilon_0} \sqrt{\varepsilon_{reff}}}} \quad \text{(2-2)}$$

ε_{reff}: Effective dielectric constant.

Actual width W:

$$W = \frac{v_o}{2f_r \sqrt{\varepsilon_r + 1}} \quad \text{(2-1)}$$

v_o: free space velocity of light.

f_r: resonant frequency.

ε_r: dielectric constant.

4. Performance Analysis and Result

The two designs are performed using CST Studio Suite 2018 simulator in Time Domain method. So, in the Figures 4 and 5 shows that the S_{11} reflection coefficient of MWNA & MWSNA. So, the S_{11} reflection coefficient is -31.3 dB at 106 THz in MWNA, while the S_{11} reflection coefficient for the MWSNA is -18.2 dB at 126 THz. The Gain of the MWNA & MWSNA are 6.2 dB and 6.57 dB respectively. The Gain as shown in Figure 6 and 7 which shows that a high acceptable values with comparing to the Directivity.
Figure 4, show Reflection coefficient S_{11} of MWNA.

Figure 5, show Reflection coefficient S_{11} of MWSNA.

Figure 6, Gain of MWNA.

Figure 7, Gain of MWSNA.

The evaluation performance of MWNA & MWSNA shows that a good results for the directivity, where directivity considering a very important parameter since it proportional between the gain and the efficiency. Figures 8 and 9 have shown the directivity of MWNA & MWSNA respectively. In additional the value of directivity at 126 THz is 7.24 dB and at 106 THz is 6.3 dB.
We can calculate the Bandwidth range in MWNA & MWSNA from the reflection coefficient S_{11} with proportional to the -10 dB, as shown in Figures 10 and 11. Where the range of bandwidth started from 103.3 to 110.3 THz for MWNA, while the range of bandwidth started from 124.5 to 127.8 THz for MWSNA.
Finally we compared all the parameters calculated above for both MWNA & MWSNA as shown in Table 2.

Table 2. Comparison between MWNA & MWSNA.

Parameters	MWNA	MWSNA
Resonant Frequency	106 THz	126 THz
Bandwidth	7 THz	3.37 THz
Reflection coefficient	-31.3 dB	-18.2 dB
Gain	6.2 dB	6.57 dB
Directivity	6.3 dB	7.24 dB

Now, to validate our works with other references we makes a comparison between the results that gets from two types proposed designs and the results of references, as shown in table 3.

Table 3. Comparison between MWNA, MWSNA and references.

Name	Sub. type	S_{11} dB	F THz	G dB	D dB	Eff. %	BW THz
[18]	Glass	-16	31.5	5.73	--	--	4
[19]	Silicon	-46.4	8.6	2.03	--	--	2
	$\varepsilon=11.9$						
MWNA	Silicon	-31.3	106	6.2	6.3	98.4	7
	$\varepsilon=11.9$						
MWSNA	Silicon	-18.2	126	6.57	7.24	90.7	3.37
	$\varepsilon=11.9$						

5. **Conclusion**

A novel designs working at visible region and near infrared (IR) is proposed and analyzed in this paper as mentioned above, the first new design called MWNA and the second called MWSNA has been framed and simulated utilizing CST Studio Suite 2018 simulator. There are a different frequencies got from MWNA & MWSNA, MWNA resonant at 106 THz with reflection coefficient -31.3 dB and the MWSNA resonant at 126 THz with reflection coefficient -18.2 dB. The first band of the MWNA covers a range from (103.3-110.3) THz, while the second band covers a range from (124.5-127.8) THz, So where the first band has a wide ratio bandwidth. The Waveguide port is utilized in the two designs above since it consider simple types of feeding technique, so the first band operate at near infrared (IR) while the second band operate at visible region.
References

[1] Daniel Drégely, "Nanoscale Radiation Engineering and Enhanced," Faculty of Mathematics and Physics, University of Stuttgart, PhD. dissertation, 2014.

[2] Riffat T.Hussien and Dheif I.Abood, "A WIDEBAND HYBRID PLASMONIC FRAC TAL PATCH NANOANTENNA," international journal of Electronics and Communication Engineering &Technology (IJECET), vol. 5, no. 9, pp. 1-8, 2014.

[3] A. Krasnok et.al, "Optical nanoantennas," Phys.-Usp, vol. 56, no. 6, pp. 539-564, 2013.

[4] S. Cakmakypyan and N. Cinel, "Validation of electromagnetic field enhancement in near-infrared through Sierpinski fractal nanoantennas," Opt. Express, vol. 22, no. 16, p. 19504, 2014.

[5] Zeev Iluz and Amir Boag, "Wideband dual Vivaldi nano-antenna with high radiation efficiency over the infrared frequency band," in Microwave s Communications Antennas and Electronic Systems (COMCAS). IEEE International Conference, 2011.

[6] A. Alú and N. Engheta, "Wireless at the Nanoscale: Optical Interconnects using Matched Nanoantennas," Phys. Rev., 2010.

[7] Lukas Novotny, "Effective wavelength scaling for optical antennas," Physical Review Letters, p. 266802, 2007.

[8] Lingli Zhan and KeXiu Dong, "Design of Resonant Optical Nano-antenna for 1.55μm wavelength," 2011.

[9] Javier Alda et.al, "Nano-antennas for optoelectronics and nanophotonics," SPIE—The International Society for Optical Engineering, 2006.

[10] Ivan Wang and Y. Du, "Directional field enhancement of dielectric nano optical disc antenna arrays," ScienceDirect Elsevier B.V. All rights reserved, 2011.

[11] Shereen A. Shandal, Mahmood F. Mosleh and Mohammed A. Kadim, "Design and Implementation of Wideband Fractal Microstrip Antenna," M.Sc. Thesis, Middle Technical University, Electrical Engineering Technical College, p. 16, 2018.

[12] Saif Nadhem, "Design and Analysis of Slotted Patch Antenna for Wideband Applications," M.Sc. thesis, Al-Mustansriyia University, Department of Electrical Engineering, 2016.

[13] Debashish Guha and Yahia M. M. Antar, "Microstrip and Printed Antennas: New Trends, Techniques And Applications," India: John Wiley & Sons Ltd, 2011.

[14] Zhi Ning Chen and Michael Y. W. Chia, "Broadband Planar Antennas Design and Applications," Institute for Infocomm Research, Singapore, 2006.

[15] Seevan Fahmi Abdulkareem, "Design and Fabrication of Printed Fractal Slot Antennas for Dual-band Communication Applications," M.Sc. Thesis, University of Technology, Department of Electrical Engineering, OCT, 2013.

[16] Girish Kumar, and K. P. Ray, "Broadband Microstrip Antennas," Artech House, Inc., Boston, London, 2003.

[17] Constantine A. Balanis, ANTENNA THEORY ANALYSIS AND DESIGN, Canada: John Wiley & Sons, Inc., Hoboken, New Jersey, 2016.

[18] Iskocakarin and Korkut Yegin, "Glass Superstrate Nanoantennas for Infrared Energy Harvesting Applications," Hindawi Publishing Corporation International Journal of Antennas and Propagation, vol. 2013, p. 7, 2013.

[19] Tan Thet Ming and Goh Chin Hock, "ROUNDED BOWTIE NANOANTENNA FOR SOLAR ENERGY HARVESTER," Journal of Built Environment, Technology and Engineering, vol. 2, no. 0128-1003, March, 2017.