ENUMERATING ISOCLINISM CLASSES OF SEMI-EXTRASPECIAL GROUPS

MARK L. LEWIS1 AND JOSHUA MAGLIONE2

1Department of Mathematical Sciences, Kent State University, Kent, OH 44242, USA
(lewis@math.kent.edu)

2Fakultät für Mathematik, Universität Bielefeld, D-33501 Bielefeld, Germany
(jmaglione@math.uni-bielefeld.de)

(Received 27 September 2018; first published online 24 February 2020)

Abstract We enumerate the number of isoclinism classes of semi-extraspecial p-groups with derived subgroup of order p^2. To do this, we enumerate $\text{GL}(2,p)$-orbits of sets of irreducible, monic polynomials in $\mathbb{F}_p[x]$. Along the way, we also provide a new construction of an infinite family of semi-extraspecial groups as central quotients of Heisenberg groups over local algebras.

Keywords: Pfaffian; genus 2; bilinear maps

2010 Mathematics subject classification: Primary 20D15
Secondary 20D60

1. Introduction

All groups in this paper are finite, and p is a prime. A p-group G is said to be semi-extraspecial if every subgroup N having index p in $Z(G)$ satisfies the condition that G/N is extraspecial. Beisiegel [2] was the first to introduce the term semi-extraspecial group, and we believe he was also the first to study them (see [17]). Semi-extraspecial groups are a special case of Camina groups, i.e., groups G where every irreducible character vanishes on $G\setminus G'$ [5, 6, 19]. In fact, semi-extraspecial groups are exactly the Camina p-groups of class 2 [24, Theorem 1.2].

These groups are virtually indistinguishable, so, in the context of group isomorphism and enumeration, they pose a challenge. Indeed, the (non-trivial) central quotients of Heisenberg groups over fields, considered in [18], are all semi-extraspecial groups. Those quotients have exponent p, isomorphic character tables, two possible orders of centralizers and a limited number of possible isomorphism types of automorphism groups—after fixing the order of the group and derived subgroup.

Applying ideas from [3], we study the semi-extraspecial p-groups G with $|G'| = p^2$ by considering a $\text{PGL}(2,p)$-action on multisets of polynomials in $\mathbb{F}_p[x]$. In particular, we enumerate the number of isoclinism classes of such groups up to order p^{12}. A slight
extension of Verardi [24, Corollary 5.11] states that there is a unique isoclinism class of semi-extraspecial groups G with $|G| = p^6$ and $|G'| = p^2$ for each prime p. We show that a similar result holds for the next larger size of semi-extraspecial groups.

Theorem 1.1. For each prime p, there is a unique isoclinism class of semi-extraspecial groups G with $|G| = p^8$ and $|G'| = p^2$.

At this point, one might be tempted to conjecture that, for every prime p and every positive integer n, there is a unique isoclinism class of semi-extraspecial groups G with $|G| = p^{2n+2}$ and $|G'| = p^2$. However, starting with the next size, we will see that the situation becomes more complicated.

Theorem 1.2. For every prime p, there are $p^2 - 3 - \gcd(2, p)$ isoclinism classes of semi-extraspecial groups G with $|G| = p^{10}$ and $|G'| = p^2$.

For the next size, the formula gets even more complicated.

Theorem 1.3. For every prime p, the number of isoclinism classes of semi-extraspecial groups G with $|G| = p^{12}$ and $|G'| = p^2$ is

$$\frac{1}{30}(11p^2 - 5p - 22 + 10 \gcd(3, p - 2) + 6 \gcd(5, p) + 12 \gcd(5, p^2 - 1)).$$

We could continue in this fashion and find formulas, depending on p, for the number of isoclinism classes of semi-extraspecial groups G with $|G| = p^{2n+2}$ and $|G'| = p^2$ for values of n that are larger than five. However, these functions appear to get progressively more complicated as n increases, and we believe that these cases illustrate the procedure so that the sufficiently motivated reader can compute the function for larger n if desired.

Along the way to enumerating these isoclinism classes, we find a new way of constructing an infinite family of semi-extraspecial groups. To date, all known constructions of semi-extraspecial groups begin with a semifield A or by taking a central product of semi-extraspecial groups. A (finite) semifield is an algebra with identity where the product $a * b = 0$ if and only if either $a = 0$ or $b = 0$. Since A is finite, this implies that every non-zero element has both a left inverse and a right inverse. However, since A is not necessarily associative or commutative, these left and right inverses need not be equal. It is this invertibility condition that makes the following groups semi-extraspecial.

If A is any algebra, the Heisenberg group over A is the group

$$H(A) = \left\{ \begin{pmatrix} 1 & e & z \\ 1 & f & 1 \end{pmatrix} \middle| e, f, z \in A \right\}. \quad (1.4)$$

It is not difficult to see that $H(A)$ is semi-extraspecial if and only if A is a semifield [17]. Because $H(A)$ is semi-extraspecial when A is a semifield, every central quotient is either abelian or semi-extraspecial. One can twist the semifield group in (1.4) to get a different class of semi-extraspecial groups [16]. At the moment, the only method we know of constructing a semi-extraspecial group is to take a quotient of $H(A)$ for a semifield A, a quotient of the twisted semifield groups in [16], or to take central products of these groups.
To obtain the new construction in this paper, we start with an algebra \(A \) with zero divisors. Because of the zero divisors, \(H(A) \) is not semi-extraspecial. We correct this by constructing the quotient by a subspace that complements the minimal ideal in \(A \).

Theorem 1.5. Let \(K \) be a finite field, let \(a(x) \in K[x] \) be irreducible of degree \(\geq 2 \) and let \(c > 1 \) be an integer. Suppose that \(S \leq A \) is a \(K \)-subspace, and set \(G = H(A)/N(S) \), where

\[
N(S) = \left\{ \begin{bmatrix} 1 & 0 & s \\ 1 & 0 & 1 \\ 1 & 0 & 1 \end{bmatrix} \mid s \in S \right\}.
\]

Then \(G \) is semi-extraspecial if and only if \(A = S + (a(x)^{c-1}) \).

We ask whether all of the groups in Theorem 1.5 are also central quotients of the semifield groups in (1.4). This is true for all of the ones we have been able to determine. The cases we have studied most closely are the quotients of the semifield groups of order \(3^{12} \). We note that, although there are many infinite families of semifields that have been constructed \([13, 14]\), there is no evidence that these families contain all of them. Indeed, they do not span the table of semifields of order 81 \([7]\). Going back to our initial question, we ask: If \(G \) is as in Theorem 1.5, then does there exist a semifield \(A \) of order \(p^{cd} \) such that \(G \cong H(A)/Z \), where \(Z \) is some proper subgroup of the centre of \(H(A) \)? It is possible that the construction in Theorem 1.5 might yield new semi-extraspecial groups that do not arise as a quotient of a group associated with any semifield.

2. Groups and bilinear maps

Assume that \(K \) is a field and \(U, V \) and \(W \) are \(K \)-vector spaces. A map \(\circ : U \times V \rightarrow W \) is \(K \)-bilinear if, for all \(u, u' \in U, v, v' \in V \) and \(k \in K \),

\[
(u + ku') \circ v = u \circ v + k(u' \circ v), \quad u \circ (v + kv') = u \circ v + k(u \circ v').
\]

We will use \(\mapsto \) to denote a bilinear map (bimap), and in the case where \(\dim_K(W) = 1 \), we call \(\circ \) a bilinear form. The radicals of \(\circ \) are \(U^\perp = \{v \in V \mid U \circ v = 0\} \) and \(V^\perp = \{u \in U \mid u \circ V = 0\} \). The bimap \(\circ \) is non-degenerate if \(U^\perp \) and \(V^\perp \) are trivial, and \(\circ \) is full if \(U \circ V = W \). We say a bimap is fully non-degenerate if it is both full and non-degenerate.

Our main source of bimaps is from finite \(p \)-groups, \(G \), of exponent \(p \) and class 2, via the Baer correspondence. For such a group we define the biadditive commutator map to be \(\circ_G : G/Z(G) \times G/Z(G) \rightarrow G' \), where

\[
(Z(G)g) \circ (Z(G)h) = [g, h].
\]

Then \(\circ_G \) is \(\mathbb{F}_p \)-bilinear and fully non-degenerate. In the case when \(G \) is semi-extraspecial, both \(G/Z(G) \) and \(G' \) are elementary abelian and we write \(\circ_G : V \times V \mapsto W \), where \(V = G/Z(G) \) and \(W = G' \).

Two bimaps \(\circ, \bullet : V \times V \rightarrow W \) are pseudo-isometric if there exists \((f, g) \in \text{Aut}(V) \times \text{Aut}(W) \) such that, for all \(u, v \in V \), \((uf) \bullet (vf) = (u \circ v)g \). The bimaps are isometric if they are pseudo-isometric with pseudo-isometry \((f, 1) \). In \([11]\), Hall initiated a study of \(p \)-groups up to isoclinism as a weaker form of isomorphism. Two class 2 groups \(G \) and \(H \)
are isoclinic if there exist isomorphisms between \(f : G/Z(G) \to H/Z(H) \) and \(g : G' \to H' \) such that \((f,g)\) is a pseudo-isometry from \(\circ_G \) to \(\circ_H \).

Definition 2.1. A class 2 \(p \)-group \(G \) is semi-extraspecial if \(G' = Z(G) = G^p \) and if, for all \(g \in G \setminus Z(G) \) and \(z \in G' \), there exists \(h \in G \) such that \([g,h] = z\).

In the context of bimaps, \(\circ : V \times V \to W \), this is equivalent to the following. For all \(u \in V \), the linear maps \(L_u, R_u : V \to W \), where \(vL_u = u \circ v \) and \(vR_u = v \circ u \), are surjective. As our bimaps are alternating, it is enough to check this for just \(L_u \). This implies that \(\dim(W) \leq \dim(V) \).

An important algebra associated to a \(K \)-bimap \(\circ : V \times V \to W \) is its centroid: the largest algebra \(C \) for which is \(C \)-bilinear. For \(\Omega = \text{End}(U) \times \text{End}(V) \times \text{End}(W) \), the centroid is

\[
C(\circ) = \{(X,Y,Z) \in \Omega \mid (uX) \circ v = u \circ (vY) = (u \circ v)Z\}.
\]

If \(\circ \) is fully non-degenerate, then \(C(\circ) \) is commutative. The centroid plays a critical role in direct decompositions of groups [26] and in the definition of genus [3].

Fix a \(K \)-bimap, \(\circ : V \times V \to W \). For \(\omega \in W^* := \text{Hom}(W,K) \), define \(\circ^\omega : U \times V \to K \), where

\[
u \circ^\omega v = (u \circ v)\omega.
\]

Fix a basis \(\mathcal{X} \) for \(V \) and \(Z^* \) for \(W^* \). For each \(\omega \in Z^* \), write \(\circ^\omega \) as a matrix \(M_\omega \) with respect to \(\mathcal{X} \), the structure constants of the \(K \)-form \(\circ^\omega \). The generalized discriminant of \(\circ : V \times V \to W \), with respect to \(\mathcal{X} \) and \(Z^* \), is a polynomial in indeterminants \(x_\omega \) for \(\omega \in Z^* \), where

\[
\text{disc}(\circ) = \det \left(\sum_{\omega \in Z^*} M_\omega x_\omega \right).
\]

When \(\circ \) is alternating, i.e., for all \(u \in V \), \(u \circ u = 0 \), define the (generalized) Pfaffian of \(\circ \) to be the homogeneous polynomial \(\text{Pf}(\circ) \) such that \(\text{Pf}(\circ)^2 = \text{disc}(\circ) \).

The next theorem is due to Macdonald [19] who proved the conclusion for Camina groups.

Theorem 2.2 (see [19, Theorem 3.1]). A Pfaffian of \(\circ_G : V \times V \to W \) has no solutions in \(\mathbb{P}W \) if and only if \(G \) is semi-extraspecial.

3. Decompositions, groups of genus 2 and Pfaffians

A central decomposition of a group \(G \) is a set \(\mathcal{H} = \{ H : H \leq G \} \) such that \(\langle \mathcal{H} \rangle = G \) for all \(H \in \mathcal{H} \), \(\langle \mathcal{H} - H \rangle \neq G \) and \([H, \langle \mathcal{H} - H \rangle] = 1 \). Note that this definition allows for \(Z(H_1) \neq Z(H_2) \) for \(H_1, H_2 \in \mathcal{H} \). A group \(G \) is centrally indecomposable if \(\{G\} \) is the only central decomposition of \(G \). A direct decomposition of \(G \) is a central decomposition \(\mathcal{H} \) such that, for all \(H \in \mathcal{H} \), \(H \cap \langle \mathcal{H} - H \rangle = 1 \), and \(G \) is directly indecomposable if \(\{G\} \) is the only direct decomposition of \(G \). We say that a central (or direct) decomposition \(\mathcal{H} \) is fully refined if, for all \(H \in \mathcal{H} \), \(H \) is centrally (or directly) indecomposable.

Lemma 3.1. If \(G \) is semi-extraspecial, then \(G \) is directly indecomposable.
Suppose that \mathcal{H} is a direct decomposition of G with $H, K \in \mathcal{H}$. By definition, $[G, H] \leq H$, but since G is semi-extraspecial, it follows that, for all $z \in Z(K)$, there exists $g \in G$ such that $[g, h] = z$. Therefore $H = K$, so $\mathcal{H} = \{G\}$. □

The central product of G with H can be defined as a central quotient of $G \times H$ with an isomorphism $\theta : Z(G) \rightarrow Z(H)$ (c.f. Hall [11]). We note that different isomorphisms θ may produce non-isomorphic central products of groups. Our definition above allows for the case where $Z(G)$ may properly embed into $Z(H)$. Because of this, we prove that, with semi-extraspecial groups, we must have all the centres of each central factor isomorphic.

The following proposition is a slight generalization of Beisiegel [2, Lemma 2].

Proposition 3.2. Suppose that \mathcal{H} is a central decomposition of G such that each $H \in \mathcal{H}$ is semi-extraspecial. Then G is semi-extraspecial if and only if, for each $H \in \mathcal{H}$, $Z(H) = Z(G)$.

Proof. First, we suppose that, for all $H \in \mathcal{H}$, $Z(H) = Z(G)$. If $N < Z(G)$ is a maximal subgroup, then N is a maximal subgroup of each $Z(H)$. Therefore H/N is extraspecial, and $G/N = \langle H/N : H \in \mathcal{H} \rangle$, where $Z(H/N) = Z(G/N)$. This is a central decomposition of G/N into extraspecial groups; hence, G/N is extraspecial.

Conversely, suppose that there exists $H \in \mathcal{H}$ such that $Z(H) \neq Z(G)$. Let $N < Z(G)$ be a maximal subgroup. If $Z(H) > Z(G)$, then N is not a maximal subgroup of $Z(H)$ and, in particular, H/N is not extraspecial. Therefore $\langle HN/N : H \in \mathcal{H} \rangle$ cannot be extraspecial, so G is not semi-extraspecial. On the other hand, suppose that there exists $z \in Z(G)$ such that $z \notin Z(H) = H'$. Then, for all $h \in H$ and $g \in H$, $[g, h] \neq z$. From the central decomposition property, it follows that, for all $h \in H$ and $g \in G$, $[g, h] \neq z$, so that G is not semi-extraspecial. □

We state a useful theorem of Wilson [26] characterizing direct decompositions of p-groups of class 2. A commutative ring is local if it has a unique maximal ideal.

Theorem 3.3 (see [26, Theorem 8]). Let G be class 2 and exponent p. Then $\mathcal{C}(\circ_G)$ is a local \mathbb{F}_p-algebra if and only if G is directly indecomposable.

Lemma 3.1 and Theorem 3.3 together are key to proving the following proposition. In general, for fully non-degenerate bimaps, the centroid is a commutative ring. In the next lemma, we show that because $\mathcal{C}(\circ_G)$ is Artinian with trivial nilradical, $\mathcal{C}(\circ_G)$ must be a simple \mathbb{F}_p-algebra.

Proposition 3.4. If G is semi-extraspecial, then $\mathcal{C}(\circ_G)$ is a field.

Proof. Suppose that $(X, Z) \in \mathcal{C}(\circ_G) \subseteq \text{End}(V) \times \text{End}(W)$ is nilpotent. For all $u \in V$, we claim that the linear map $L_{uX} : V \rightarrow W$, where $v \mapsto (uX) \circ v$, is not surjective. In fact, since $(X, Z) \in \mathcal{C}(\circ_G)$, it follows that $\text{im}(L_{uX}) \leq \text{im}(Z)$. As Z is nilpotent, $\text{im}(Z) < W$, so, for all $g \in G$, there exists $z \in Z(G)$ such that $z \notin [g, G]$. This would imply that G is not semi-extraspecial. Therefore, the nilradical of $\mathcal{C}(\circ_G)$ is trivial. Since $\mathcal{C}(\circ_G)$ is Artinian (in particular, finite), it follows that $\mathcal{C}(\circ_G)$ is semi-simple. By Lemma 3.1 and Theorem 3.3, it follows that $\mathcal{C}(\circ_G)$ is a simple \mathbb{F}_p-algebra. Because \circ_G is fully non-degenerate, $\mathcal{C}(\circ_G)$ is commutative, and by the Wedderburn–Artin theorem, $\mathcal{C}(\circ_G)$ is a field. □
Remark 3.1. Because $K = \mathcal{C}(C_G)$ is a field and C_G is K-bilinear, we now assume throughout that $C_G : V \times V \rightarrow W$ is a bimap over K, so V and W are K-vector spaces. Another fact that we will use later is that $\mathcal{C}(C_G)$ is faithfully represented on all three coordinates whenever C_G is fully non-degenerate; in particular, it is faithfully represented in $\text{End}(W)$. Indeed, if $(X, Z), (Y, Z) \in \mathcal{C}(C_G) \subseteq \text{End}(V) \times \text{End}(W)$, then, for all $u, v \in V$, $(uX - uY) \circ_G v = 0$. Because C_G has trivial radical, $X = Y$.

Definition 3.5. Suppose that G is a nilpotent class 2 and is isoclinic to a direct product $H_1 \times \cdots \times H_r$ of directly indecomposable groups. The genus of G is the maximum rank of $[H_i, H_i]$ as a $\mathcal{C}(C_{H_i})$-module.

Lemma 3.1 and Proposition 3.4 enable a simpler definition of genus for our purposes. The genus of a semi-extraspecial group G is the dimension of G' as a $\mathcal{C}(C_G)$-vector space.

We will say that a (semi-extraspecial) group G is genus d over K if $\mathcal{C}(C_G) \cong K$ and $\dim_K(G') = d$.

Observe that $H(A)$ is semi-extraspecial if and only if $c = 1$. To see this, when $c = 1$, this is a Heisenberg group over a field which is semi-extraspecial, but on the other hand, if $c > 1$, then the ring $K[x]/(a(x)^c)$ has nilpotent elements. These nilpotent elements prevent the group from satisfying the property that, for all $g \in G \setminus G'$ and $z \in G'$, there exists $h \in G$ such that $[g, h] = z$. In the case when $c > 1$, quotients of $H(A)$ can still be semi-extraspecial even though the group is not semi-extraspecial. We will characterize these quotients in §4.

Theorem 3.6 (see [3, Theorem 1.2]). A centrally indecomposable p-group of exponent p and genus 2 over a finite field K is isomorphic to one of the following:

(i) a central quotient of the Heisenberg group $H = H(K[x]/(a(x)^c))$ by a subgroup N, such that $1 - N$ is a K-subspace of $1 - H'$; or

(ii) the matrix group

$$H^p(K, m) := \left\{ \begin{bmatrix} I_2 & e_1 & \cdots & e_m & 0 & z_1 \\ 0 & e_1 & \cdots & e_m & z_2 & \vdots \\ \vdots & & & & I_{m+1} \\ \vdots & & & & \vdots \\ 0 & & & & f_0 \\ \cdots & & & & \vdots \\ 0 & & & & f_m \\ 0 & & & & 1 \end{bmatrix} \bigg| e_i, f_i, z_i \in K \right\}.$$
A key idea used throughout the paper comes from the following theorem. This converts the problem of enumerating groups to enumerating orbits of (principal ideals of) polynomials under the action of $\Gamma L(2, K) = GL(2, K) \rtimes \text{Gal}(K)$. We will describe the details of this action in §3. For our purposes, the crux is that the isomorphism problem of semi-extraspecial groups of order p^{2n+2} with exponent p and derived subgroup of order p^2 is determined by the $GL(2, p)$ action on the multiset of Pfaffians of a fully refined central decomposition of G. Specifically, if H is a fully refined central decomposition of G, then the multiset of Pfaffians of G is $\{\text{Pf}(\circ_H) \mid H \in \mathcal{H}\}$. If every $H \in \mathcal{H}$ is isomorphic to a group from Theorem 3.6(i), then this multiset completely determines the group.

Theorem 3.7 (see [3, Theorem 3.22]). Suppose that G_1 and G_2 are p-groups of class 2, exponent p and genus 2 over K. Let $\mathcal{H}_1 = \{H_1, \ldots, H_s\}$ and $\mathcal{H}_2 = \{K_1, \ldots, K_t\}$ be fully refined central decompositions of G_1 and G_2, respectively. Then $G_1 \cong G_2$ if and only if $s = t$ and there exists $M \in \Gamma L(2, K)$ and σ, a permutation of $\{1, \ldots, t\}$, such that, for all i,

$$(\text{Pf}(\circ_{H_i})^M) = (\text{Pf}(\circ_{K_i\sigma})).$$

We want to pause to give two examples that illustrate some of the nuances of Pfaffians. Our first example shows the need to first determine a fully refined central decomposition of the group before computing its Pfaffian. We note that these examples apply more generally for every prime.

Example 3.8. Let K be a quadratic extension of \mathbb{F}_5 and let G be a central product of two copies of $H(K)$ with centres identified. So $|G| = 5^{10}$ and $|G'| = 5^2$. Now let $A = \mathbb{F}_5[x]/((x^2 + 2)^2)$ and consider the group $H(A)$. The ideal $(x^2 + 2)$ is spanned by $\{x^2 + 2, x^3 + 2x\}$ in A. Let S be the subspace spanned by $\{1, x\}$. Also let

$$N = \left\{ \begin{bmatrix} 1 & 0 & s \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \mid s \in S \right\} \triangleleft H(A).$$

Later, we prove in Theorem 4.3 that $H = H(A)/N$ is centrally indecomposable and semi-extraspecial. Importantly, $|H| = 5^{10}$ and $|H'| = 5^2$. Because G is decomposable and H is indecomposable, they are not isomorphic. Note also that G is genus 1 over K and H is genus 2 over \mathbb{F}_5.

We will show that they have the same Pfaffians. Assume that $\{\alpha, 1\}$ is a basis for K, where $\alpha^2 + 2 = 0$. Set

$$B = \begin{bmatrix} \alpha & 1 & 0 \\ 3 & \alpha & 1 \\ 0 & \alpha & \alpha \end{bmatrix},$$

so the bimap $\circ_G : \mathbb{F}_5^8 \times \mathbb{F}_5^8 \rightarrow \mathbb{F}_5^2$ has structure constants $\begin{bmatrix} 0 & B^T \\ -B & 0 \end{bmatrix}$. Replacing the basis of K with indeterminants X and Y, the Pfaffian of G is $(X^2 + 2Y)^2$. On the other hand,
Enumerating isoclinism classes of semi-extraspecial groups

\[C = \begin{bmatrix}
0 & 0 & 2(3x^2 + 1) & x^3 + 2x \\
0 & 2(3x^2 + 1) & x^3 + 2x & 3x^2 + 1 \\
2(3x^2 + 1) & x^3 + 2x & 3x^2 + 1 & 0 \\
x^3 + 2x & 3x^2 + 1 & 0 & 0
\end{bmatrix}. \]

Assuming that the basis for \(A \) is \(\{1, x, x^2 + 2, x^3 + 2x\} \), then the structure constants for the bimap \(\circ_H \) are \(\begin{bmatrix} -C^T \end{bmatrix} \). Set the basis of the codomain of \(\circ_H \) to be \(\{x^3 + 2x, x^2 + 1\} \).

Replacing this with indeterminants \(X \) and \(Y \), the Pfaffian is equal to \((X^2 + 2Y^2)^2 \).

Therefore, the Pfaffians of \(\circ_G \) and \(\circ_H \) are identical even though \(G \not\cong H \).

However, if we instead first determine a fully refined central decomposition for \(G \) and \(H \) and compute the Pfaffians of the indecomposable factors we get different invariants. The multiset of Pfaffians for \(G \) is \(\{X^2 + 2Y^2, X^2 + 2Y^2\} \) (or just \(\{X, X\} \) over \(K \)), and the multiset of Pfaffians for \(H \) is \(\{(X^2 + 2Y^2)^2\} \), which are not equivalent.

Theorem 3.7 greatly depends on the fact that the groups are genus 2. When the genus is larger, deciding isomorphism of groups does not reduce to deciding whether their Pfaffians are equivalent with respect to Theorem 3.7. In fact, such groups can have the same Pfaffian and not be isomorphic, as the next example illustrates.

Example 3.9. We present two bimaps \(V \times V \rightarrow W \) with the same Pfaffian that are not pseudo-isometric, so the corresponding groups are not isomorphic. Suppose that \(p = 3 \). Then \(f(x) = x^3 + 2x + 1 \) is irreducible in \(F_3[x] \). The matrices

\[M_1 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 2 \\ 0 & 2 & 0 \end{bmatrix}, \quad M_2 = \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 2 \end{bmatrix}, \quad M_3 = \begin{bmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 1 \end{bmatrix} \]

form the structure constants of the \(F_3 \)-algebra \(F_3[x]/(f(x)) \) with respect to the ordered basis \((1, x, x^2) \). Let \(A \) be the \(3 \times 3 \) matrix with 1 in the \((1, 2) \)-entry, \(-1\) in the \((2, 1) \)-entry and 0 elsewhere. Set \(V = F_3^6 \) and \(W = F_3^3 \). Define two alternating forms with the structure constants

\[\left(\begin{bmatrix} 0 & M_i \\ -M_i & 0 \end{bmatrix} \right) \quad \text{and} \quad \left(\begin{bmatrix} 0 & M_i \\ -M_i & A \end{bmatrix} \right). \]

Both bimaps have the same Pfaffians: \(x^3 + x^2y + xy^2 + 2xz^2 + 2y^3 + 2y^2z + z^3 \). However, the two bimaps cannot be pseudo-isometric as the former contains at least two 3-dimensional totally isotropic subspaces in \(V \), and the latter contains exactly one 3-dimensional totally isotropic subspace. In the context of 3-groups, the corresponding groups are not isomorphic as the former contains at least two abelian subgroups of order \(3^6 \) whereas the latter contains exactly one such abelian subgroup (see [16] for a proof).

The multiple threes in Example 3.9 are a red herring. Instead, it illustrates a general phenomenon that happens when the genus is at least 3. When the genus is 2, \(\circ_G \) can be written as a pair of alternating forms. Kronecker–Dieudonné [9] and Scharlau [21] classify indecomposable pairs of alternating forms. For the (centrally indecomposable)
groups coming from Theorem 3.6(i), there exist bases for V and W such that \circ_G is given by the pair of matrices

$$\begin{bmatrix} 0 & I \\ -I & 0 \end{bmatrix}, \begin{bmatrix} 0 & C \\ -C^T & 0 \end{bmatrix}$$

where C is the companion matrix of a power of an irreducible polynomial in $K[x]$. Together with the fact that the Pfaffian of \circ_G is 0 when $\dim_K(V)$ is odd, this proves the following proposition.

Proposition 3.10. Suppose that G is exponent p and genus 2 over K. If G is centrally indecomposable, then the ideal generated by the Pfaffian of $\circ_G : V \times V \rightarrow W$ is primary in $K[x, y]$.

The group $\Gamma L(2, K)$ acts on polynomials $f(x, y)$ by substitution. That is, for $M = \left(\begin{bmatrix} a & b \\ c & d \end{bmatrix}, \sigma \right) \in \Gamma L(2, K) \rtimes \text{Gal}(K)$, set $f^M(x, y) = f^\sigma(ax + by, cx + dy)$, where σ acts on the coefficients. Let f and g be homogeneous polynomials in x, y. Then f is equivalent to g if there exists $k \in K^\times$ and $M \in \Gamma L(2, K)$ such that $f^M = k \cdot g$. Another perspective is to consider univariate polynomials $f \in K[x]$, with $\deg f = n$, and define

$$f^M(x) = (cx + d)^n f^\sigma \left(\frac{ax + b}{cx + d} \right).$$

Because the Pfaffians are homogeneous, we consider both of these actions.

The $\Gamma L(2, K)$-orbits have been studied by Vaughan-Lee [23] and Vishnevetskii [25] when $K = \mathbb{F}_p$. We let $N(q, n)$ denote the number of $\Gamma L(2, \mathbb{F}_q)$-orbits of monic irreducible polynomials of degree n. One can determine the number of isoclinism classes of the centrally indecomposable groups of genus 2 (over \mathbb{F}_p) using [23] and Theorem 5.2. Vaughan-Lee’s theorem enumerates the $\Gamma L(2, p)$-orbits of all irreducible monic polynomials in $\mathbb{F}_p[x]$. Since we do not require the full generality, we record Vaughan-Lee’s theorem for $n \leq 5$.

Theorem 3.11 (see [23]). If p is prime, then

$$N(p, 2) = 1, \quad N(p, 4) = \frac{1}{2} (p + 2 - \gcd(2, p)), \quad N(p, 3) = 1, \quad N(p, 5) = \frac{1}{2} (p^2 - 2 + \gcd(5, p) + 2 \gcd(5, p^2 - 1)).$$

4. **Semi-extraspecial groups of genus 2**

We describe the centrally indecomposable, semi-extraspecial groups of genus 2 based on the classification in Theorem 3.6. The following lemmas quickly determine which groups of genus 2 are not semi-extraspecial.

Lemma 4.1. For all $m \geq 1$, the group $G = H^b(K, m)$ is not semi-extraspecial.

Proof. As $[G : G'] = p^{2m+1}$, the Pfaffian of \circ_G is 0, so invoke Theorem 2.2. \qed

In what follows, we characterize the quotients of $H(K[x]/(a(x)^c))$ that are semi-extraspecial groups. Set $A = K[x]/(a(x)^c)$. Theorem 3.6(i) is only concerned with central
subgroups N such that $1 - N$ is a K-subspace of $1 - H(A)'$. Therefore, for a K-subspace $S \leq A$, we set

$$N(S) = \left\{ \begin{bmatrix} 1 & 0 & s \\ 1 & 0 & 1 \end{bmatrix} \mid s \in S \right\}.$$

Proposition 4.2. Let $a(x) \in K[x]$ be an irreducible polynomial, let $c > 1$ be an integer and let S be a proper K-subspace of $A = K[x]/(a(x)^c)$. Then $H(A)/N(S)$ is semi-extraspecial if and only if $A = S + (a(x)^{c-1})$ and $\deg(a(x)) \geq 2$.

Proof. Let $I = (a(x)^{c-1})$. First, we suppose that $A = S + I$. Since A is a local algebra, the group of units A^\times is $A \setminus (a(x))$. It follows that every non-zero element of A can be written as ua^e for $u \in A^\times$ and $0 \leq e \leq c - 1$. Since S is a proper subspace of A, it follows that $\emptyset \neq A \setminus S \subseteq I$.

To show that $H(A)/N(S)$ is semi-extraspecial, it is enough to show that, for every $0 \neq f \in A$ and $h + S \in A/S$, there exists $g \in A$ such that $fg = h$. Let $f = ua^e$ for some $u \in A^\times$ and $0 \leq e \leq c - 1$. Without loss of generality, $h + S \in A/S$ can be written as $va^{c-1} + S$ for some $v \in A^\times$. With $g = u^{-1}va^{c-e-1}$, we have that $fg = h$, and so $H(A)/N(S)$ is semi-extraspecial.

On the other hand, suppose that $S + I \neq A$. Let $h(x) \in A \setminus (S + I)$. Therefore, for all $f(x) \in I$ and for all $g(x) \in A$, $fg \in I$. In particular, $fg + S \neq h + S$, so $H(A)/N(S)$ cannot be semi-extraspecial. \hfill \Box

We summarize the above results in the following theorem to classify all indecomposable, semi-extraspecial groups of genus 2 with exponent p.

Theorem 4.3. Suppose that G is class 2, exponent p and genus 2 over K. Then G is centrally indecomposable and semi-extraspecial if and only if there exists an irreducible polynomial $a(x) \in K[x]$ of degree ≥ 2, a positive integer c and a subspace $S \leq A := K[x]/(a(x)^c)$ with 2-dimensional complement $\langle f, g \rangle$, such that:

(i) $A = S + (a(x)^{c-1})$;

(ii) A is an irreducible $K[f^{-1}g]$-module; and

(iii) $G \cong H(A)/N(S)$.

Proof. If G is indecomposable and semi-extraspecial, then, by Theorem 3.6, G is contained in one of two (disjoint) families of genus 2 groups. By Lemma 4.1, property (iii) holds, and by Proposition 4.2, property (i) holds. Therefore, there exist $f, g \in A^\times$ that span a complement to S in A. As G is indecomposable, by the proof of [3, Theorem 3.18], A is an irreducible $K[f^{-1}g]$-module.

If, on the other hand, G satisfies properties (i)–(iii) above, then, by Proposition 4.2, G is semi-extraspecial. As $\langle f, g \rangle \oplus S = A$, \circ_G can be written as a pair of alternating
matrices with respect to \(f \) and \(g \), as in §2, of the form
\[
\begin{pmatrix}
0 & M_f \\
-M_f^T & 0
\end{pmatrix}, \begin{pmatrix}
0 & M_g \\
-M_g^T & 0
\end{pmatrix}.
\]

Since \(G \) is semi-extraspecial, \(M_f \) is invertible, so the block-diagonal matrix \(M_f^{-1} \oplus I_{cd} \) induces an isometry of \(\circ_G \) to an alternating bimap with \(I_{cd} \) and \(M_f^{-1}M_g \) in the top-right corners. Because \(A \) is an irreducible \(K[f^{-1}g] \)-module, it follows that the rational canonical form of \(M_f^{-1}M_g \) is the companion matrix of a primary polynomial. Thus, \(G \) is indecomposable.

5. Enumerating isoclinism classes

We use Theorems 3.7 and 4.3 to count the isoclinism classes of semi-extraspecial groups whose derived subgroup has order \(p^2 \). Therefore, these groups can have genus 1 or 2 over \(\mathbb{F}_p \). The genus 1 case essentially follows from the classification of generalized Heisenberg groups in [18, Theorem 3.1].

In the next lemma, we use a consequence of Witt’s theorem [1, Chapter 3]: two alternating bilinear \(K \)-forms are isometric if and only if their radicals have the same dimension.

Lemma 5.1. Assume that \(n \geq 2 \) and that \(q \) is a \(p \)-power. There are semi-extraspecial groups of order \(q^{n+1} \) with exponent \(p \) and derived subgroup of order \(q \), where \(C(\circ_G) \cong \mathbb{F}_q \).

Proof. Let \(G \) be a group satisfying the assumptions and let \(K = C(\circ_G) \). As \(\circ_G : V \times V \rightarrow W \) is \(K \)-bilinear and \(\dim_K(W) = 1 \), it follows that \(\circ_G \) is an alternating \(K \)-form. By Lemma 3.1, \(G \) is directly indecomposable, so \(\circ_G \) has trivial radical. This leads to a contradiction if \(\dim_K(V) \) is odd, so no such groups exist. On the other hand, if \(\dim_K(V) = 2n \), then
\[
G \cong \left\{ \begin{bmatrix} 1 & u & w \\ I_n & v^T \\ 1 \end{bmatrix} \middle| \begin{array}{l}
u, v \in K^n, \\
w \in K
\end{array} \right\} \leq \text{GL}(n+2, K). \quad \Box
\]

To prove the next theorem, we require a way of building nilpotent groups from bimaps. Suppose that \(\circ : U \times V \rightarrow W \) is a \(K \)-bimap. Then the Heisenberg group with respect to \(\circ \) is the group
\[
H(\circ) = \left\{ \begin{bmatrix} 1 & u & w \\ 1 & v \\ 1 \end{bmatrix} \middle| \begin{array}{l}u, v \in U, \\
w \in V, w \in W\end{array} \right\},
\]
where the product is given by matrix multiplication using \(\circ \). Assuming that \(\circ \) is fully non-degenerate, the centre of \(H(\circ) \) equals the derived subgroup and \(Z(H(\circ)) \cong W \). Moreover,
the commutator bimap of $H(\circ)$ has ‘doubled’ $[,] : (U \oplus V) \times (U \oplus V) \to W$, where

$$((u_1, v_1), (u_2, v_2)) \mapsto u_1 \circ v_2 - u_2 \circ v_1.$$

As matrices, if \circ has structure constants given by the sequence $(M_i)_{i=1}^d$, then $[,]$ has structure constants of the form $\begin{bmatrix} 0 & M_i \\ -M_i^T & 0 \end{bmatrix}$.

Recall from §3 that $N(q,n)$ is the number of $\Gamma L(2, \mathbb{F}_q)$-orbits of monic irreducible polynomials of degree n (see Theorem 3.11). As $GL(2, \mathbb{F}_q)$ is transitive on the non-zero vectors in \mathbb{F}_q^2, it follows that $N(q,1) = 1$.

Theorem 5.2. Suppose that $n \geq 2$ and that q is a p-power. There are $I(q,2n+2) = -1 + \sum_{d|n} N(q,d)$ pairwise non-isomorphic, centrally indecomposable, semi-extraspecial groups of order q^{2n+2} with exponent p and genus 2 over \mathbb{F}_q.

Proof. First, apply Theorem 3.7 to establish that two indecomposable genus 2 groups with exponent p are isomorphic if and only if their Pfaffians are in the same $\Gamma L(2, \mathbb{F}_q)$-orbit. By Proposition 3.10, their Pfaffians are primary. Let $a(x)^c = x^{cd} + a_{cd-1}x^{cd-1} + \cdots + a_0$, and assume that $a(x)$ is an irreducible polynomial in $\mathbb{F}_q[x]$ and that $c \geq 1$. Let C be the companion matrix of $a(x)^c$: that is,

$$C = \begin{bmatrix} 0 & I_{cd-1} \\ \vdots & \\ -a_0 & -a_1 & \cdots & -a_{cd-1} \end{bmatrix}.$$

The group with commutator bimap whose structure constants are

$$\begin{bmatrix} 0 & I \\ -I & 0 \end{bmatrix}, \begin{bmatrix} 0 & -C^T \\ C^T & 0 \end{bmatrix}$$

has a Pfaffian equal to $X^{cd} + a_{cd-1}X^{cd-1}Y + \cdots + a_0Y^{cd}$. Note that this is the determinant of $IX - CY$. Therefore, for every irreducible polynomial $a(x)$ of degree d and $c \geq 1$, there exists an indecomposable p-group of order q^{2cd+2} of genus 2 and exponent p, where $\text{Pf}(\circ_G) = a(x)^c$. By Theorem 3.7, there are $N(q,d)$ isoclinism classes of this type. By Theorem 2.2, semi-extraspecial groups have no linear factors, so we require $d \geq 2$. Thus, to get the number of isoclinism classes of indecomposable semi-extraspecial groups of order q^{2n+2} that are genus 2 over \mathbb{F}_q, we sum over all the divisors d of n, excluding $d = 1$.

Theorem 5.3. For a prime p, there is exactly one isoclinism class of semi-extraspecial groups G with the property that $|G| = p^8$ and $|G'| = p^2$.

Proof. First, we show that G must be indecomposable. If $\{H_1, H_2\}$ is a central decomposition of G, then $|H_i| \in \{p^2, p^5, p^6\}$ because $[G : G'] = p^6$. From Proposition 3.2, $Z(H_i) = Z(G) \cong \mathbb{Z}_p^2$. There are no genus 2 groups of order p^4, and by Lemma 4.1, the genus 2 group of order p^5 is not semi-extraspecial. Therefore G is indecomposable. By Theorems 3.11 and 5.2, there is $I(p,8) = N(p,3) = 1$ isoclinism class.
Remark 5.4. A consequence of Theorem 5.3 is that every semi-extraspecial group with exponent \(p \) and of order \(p^9 \) with \(|G'| = p^3 \) has exactly two non-trivial central non-abelian quotients, determined solely by the order of the factor group. In particular, heuristics to construct characteristic subgroups via graph colourings, as in [4], or from algebras associated to \(o_G \), as in [20, 27], produce no new information. These groups may pose a formidable challenge to isomorphism testing.

Are there other semi-extraspecial groups with derived subgroup of order \(p^3 \) that have the property in Remark 5.4? That is, if \(N, M \leq Z(G) \) and \(|N| = |M| \), are \(G/N \) and \(G/M \) isoclinic? If there are no other such groups, then what is the lower bound on the number of possible isoclinism classes of the form \(G/N \), for a fixed order \(|N| \)? On the other end of the spectrum, what is the upper bound?

6. Proof of Theorem 1.2

Enumerating semi-extraspecial groups of larger order is not as simple as in Theorem 5.3 and will require understanding of how \(GL(2, p) \) acts on (principal) ideals of reducible polynomials. We now focus on univariate polynomials in \(\mathbb{F}_p[x] \), so we dehomogenize \(\text{Pf}(o_G) \) by setting \(y = 1 \). If \(f \in \mathbb{F}_p[x] \), we let \(S_f \) denote the subgroup, \(\text{Stab}_{GL(2, p)}((f)) \), stabilizing the ideal \((f) \).

The next lemma is a well-known statement coming from the (maximal) subgroup structure of \(\text{PSL}(2, p) \). We refer the reader to Dickson [8] (see also Huppert [12] and, for historical remarks, King [15, Theorem 2.1]).

Lemma 6.1. If \(f \) is an irreducible quadratic in \(\mathbb{F}_p[x] \), then \(S_f \cong \Gamma L(1, p^2) \). The subgroups isomorphic to \(\Gamma L(1, p^2) \) in \(GL(2, p) \) are in bijection to monic irreducible quadratics in \(\mathbb{F}_p[x] \).

Proof. By orbit counting, \(|S_f| = 2(p^2 - 1) \). For \(\alpha \in \mathbb{F}_{p^2} \) and \(M = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \), if \(f(x) = (x - \alpha)(x - \alpha^p) \), then

\[
f^M(x) = (a - \alpha c)(a - \alpha^p c) \left(x - \frac{\alpha d - b}{a - \alpha c} \right) \left(x - \frac{\alpha^p d - b}{a - \alpha^p c} \right).
\]

This is the inverse action on the roots of \(f \), so the lemma follows. \(\square \)

Note that the kernel of the action of \(GL(2, p) \) on polynomials is its centre, so we work with \(\text{PGL}(2, p) \) instead. In order to enumerate the isoclinism classes of semi-extraspecial groups of order \(p^{10} \) with derived subgroup of order \(p^2 \), we need to understand an action of dihedral groups in \(\text{PGL}(2, p) \). Assuming that \(p \) is an odd prime, let \(\Delta \) be the set of maximal dihedral subgroups of \(\text{PGL}(2, p) \) of order \(2(p + 1) \); that is, \(\Delta \) contains all the images of the subgroups isomorphic to \(\Gamma L(1, p^2) \) in \(GL(2, p) \). Using the bijection given by Lemma 6.1, a dihedral group acts on \(\Delta \) in the following way. If \(D \in \Delta \) and \(f \) is an irreducible quadratic associated to \(D_f \in \Delta \), then, for \(\delta \in D \), \(D_f^\delta = D_{f^\delta} \). Therefore, for \(D \in \Delta \), the \(D \)-orbit of \(D \) is trivial.

Lemma 6.2. Let \(p \) be an odd prime. For a fixed \(D \in \Delta \), the number of \(D \)-orbits on \(\Delta - D \) is \((p - 1)/2 \).
Proof. We count these orbits by counting the fixed points for every $\delta \in D$. First, note that if $1 \neq \delta \in D$ is not an involution, then $N_{\text{PGL}(2,p)}((\delta)) = D$. Thus, such a δ cannot fix another dihedral group in Δ, so we focus only on the involutions of D.

Each dihedral group in Δ intersects $\text{PSL}(2,p)$ uniquely in a dihedral group of order $p + 1$. Let $\overline{D} = D \cap \text{PSL}(2,p)$. Up to conjugacy, there are two types of involutions in D: those contained in $\text{PSL}(2,p)$ and those outside [22, pp. 226–227]. Suppose that $p \equiv 1 \mod 4$, so \overline{D} has exactly $(p^2 - p)/2$ involutions. Since $|\Delta| = (p^2 - p)/2$, there are $(p^2 - p)(p + 1)/4$ involutions coming up this way. However, $\text{PSL}(2,p)$ has exactly $p(p + 1)/2$ involutions [10, Chapter 38], so each involution in $\text{PSL}(2,p)$ lies in $(p - 1)/2$ dihedral subgroups of order $p + 1$. Therefore the involutions of \overline{D} stabilize $(p - 3)/2$ dihedral groups in $\Delta - D$.

There are $(p + 3)/2$ involutions in D outside of $\text{PSL}(2,p)$, and as many as $(p^2 - p)(p + 3)/4$ involutions outside of $\text{PSL}(2,p)$. One of these involutions, δ, lies in $Z(D)$, so its centralizer is D. As there are $(p^2 - p)/2$ involutions of $\text{PGL}(2,p)$ outside of $\text{PSL}(2,p)$ [10], it follows that δ fixes $(p + 3)/2 - 1$ other dihedral groups in $\Delta - D$. Therefore the number of orbits in this case is equal to

$$\frac{(\frac{1}{2}(p^2 - p) - 1) + (\frac{1}{2}(p + 1)\frac{1}{2}(p - 3)) + (\frac{1}{2}(p + 3)\frac{1}{2}(p + 1))}{2(p + 1)} = \frac{p - 1}{2}.$$

The case when $p \equiv 3 \mod 4$ is similar to the above case. There is one more involution in $\text{PSL}(2,p)$ than above, namely, \overline{D} contains a central involution. The number of fixed points for these involutions follows a similar argument to that above. The argument for the involutions outside of $\text{PSL}(2,p)$ is slightly different. Of the $(p + 1)/2$ involutions of D outside of $\text{PSL}(2,p)$, each one is contained in the centre of some dihedral group of order $2(p - 1)$, so its centralizer is that dihedral group. Hence, there are $(p^2 - p)/2$ such involutions, which are all of the involutions of $\text{PGL}(2,p)$ outside $\text{PSL}(2,p)$. Therefore, each involution of this type is contained in $(p - 1)/2$ groups in Δ and thus fixes $(p - 3)/2$ groups in $\Delta - D$. \qed

Now we are in a position to prove Theorem 1.2.

Proof of Theorem 1.2. If G is indecomposable, then apply Theorems 3.11 and 5.2, so there are

$$I(p, 2 : 4 + 2) = N(p, 4) + N(p, 2) = \frac{1}{2}(p + 4 - \gcd(2, p))$$

such isoclinism classes. Now suppose that G is centrally decomposable with fully refined central decomposition \mathcal{H}. From the proof of Theorem 5.3, for each $H \in \mathcal{H}$, $|H| \geq p^6$. Because $|G| = p^{10}$, it follows that $\mathcal{H} = \{H_1, H_2\}$, where $|H_i| = p^6$. We have two options for the centroid of \mathcal{O}_G from Proposition 3.4: $\mathcal{C}(\mathcal{O}_G)$ is isomorphic to either \mathbb{F}_p or \mathbb{F}_{p^2}. If $\mathcal{C}(\mathcal{O}_G)$ is the quadratic extension, then, by Lemma 5.1, there is exactly $H(p^2, 5) = 1$ group with this property.

We suppose that the centroid is the prime field. In this case, the Pfaffian of \mathcal{O}_G in $\mathbb{F}_p[x, y]$ is the product of two homogeneous quadratics f and g. Without loss of generality, we assume that both f and g are monic. If $f = g$, then \mathcal{O}_G is $\mathbb{F}_p[x]/(f)$-bilinear, so the centroid would be a (non-trivial) field extension, which has already been accounted for. Therefore
This means that, for \(p = 2 \), there are no groups of this type because there is a unique irreducible monic quadratic. Thus, we now assume that \(p > 2 \). By Theorem 3.7, the number of isoclinism classes of these groups is the number of \(\text{PGL}(2,p) \)-orbits on the ideals generated by a product of monic irreducible quadratics. As \(\text{PGL}(2,p) \) is transitive on monic irreducible quadratics, the number of orbits is equal to the number of orbits of one of the stabilizers, say, \(\text{Stab}_{\text{PGL}(2,p)}((f)) \). By Lemmas 6.1 and 6.2, there are exactly \((p-1)/2\) orbits. Thus, the statement of the theorem holds.

7. Proof of Theorem 1.3

Because all the monic irreducible cubics lie in one \(\text{PGL}(2,p) \)-orbit (c.f. Theorem 3.11), it follows, again by orbit counting, that their stabilizers have order 3 in \(\text{PGL}(2,p) \).

Lemma 7.1. In \(\text{PGL}(2,p) \), if \(p \equiv 2 \mod 3 \), then there is a bijection between the Sylow 3-subgroups and the dihedral subgroups of order \(2(p+1) \) given by inclusion.

Proof. Let \(D \) denote a dihedral subgroup of \(G = \text{PGL}(2,p) \) of order \(2(p+1) \). As \(p \equiv 2 \mod 3 \), \(D \) contains a Sylow 3-subgroup, \(P \). If \(x \in D \) has order \(p+1 \), then \(P \leq \langle x \rangle \). Because \(N_G(\langle x \rangle) = D \), it follows that \(N_G(P) = D \).

Proof of Theorem 1.3. In the indecomposable case, we apply Theorem 5.2, and in the case where \(G \) is genus 2 over the quadratic extension, we apply Lemma 5.1. By Theorem 3.11, the number of isoclinism classes is

\[
I(p, 2 \cdot 5 + 2) + H(p^2, 6) = N(p, 5) + 0 = \frac{1}{6}(p^2 - 2 + \gcd(5,p) + 2\gcd(5,p^2 - 1)).
\]

Now, all we have left to do is to count the number isoclinism classes in the decomposable case where the centroid is the prime field. By Proposition 3.2 and Theorem 4.3, a fully refined central decomposition of \(G \) is \(\{H_1,H_2\} \), where \(|H_1| = p^6 \) and \(|H_2| = p^8 \). Thus, the multiset of Pfaffians contains exactly one quadratic and cubic. Hence the stabilizer, in \(\text{GL}(2,p) \), of the multiset is the intersection of stabilizers of a quadratic and a cubic.

By Lemma 6.1, the quadratic stabilizer is isomorphic to \(\Gamma \text{L}(1,p^2) \). Since \(N(p,3) = 1 \), the stabilizer of a cubic has order \(3(p-1) \) as there are \((p^3 - p)/3 \) monic irreducible cubics in \(\mathbb{F}_p[x] \). In \(\text{PGL}(2,p) \), this is the intersection of the dihedral group of order \(2p+2 \) with a cyclic group of order 3. Therefore, when \(p \equiv 0,1 \mod 3 \), these intersections are always trivial in \(\text{PGL}(2,p) \), and the number of orbits in this case is

\[
\frac{1}{3}(p^2 - p)\frac{1}{3}(p^3 - p) = \frac{1}{6}(p^2 - p).
\]

When \(p \equiv 2 \mod 3 \), Lemma 7.1 implies that the Sylow 3-subgroups are cyclic and so contain a unique subgroup of order 3. As there are \((p^3 - p)/3 \) irreducible cubics and \((p^2 - p)/2 \) subgroups of order 3 in \(\text{PGL}(2,p) \), it follows that \(2(p+1)/3 \) cubics have identical stabilizers in \(\text{PGL}(2,p) \). Hence, for a fixed irreducible quadratic, there are \(2(p+1)/3 \) irreducible cubics such that their stabilizer has order 3; for the remaining \((p^3 - 3p - 2)/3 \) cubics, their stabilizer is trivial. Therefore the number of orbits is given by

\[
\frac{1}{3}(p^2 - p)(2(p+1) + \frac{1}{3}(p^3 - 3p - 2)) = \frac{1}{6}(p^2 - p + 4). \qedhere
\]
Enumerating isoclinism classes of semi-extraspecial groups

Acknowledgements. We thank Mikhail A. Chebotar and Jenya Soprunova for translating parts of [25].

References

1. E. Artin, *Geometric algebra* (Interscience Publishers, New York–London, 1957).
2. B. Beisiegel, Semi-extraspezielle p-Gruppen, *Math. Z.* 156(3) (1977), 247–254 (in German).
3. P. A. Brooksbank, J. Maglione and J. B. Wilson, A fast isomorphism test for groups whose Lie algebra has genus 2, *J. Algebra* 473 (2017), 545–590.
4. P. A. Brooksbank, E. A. O’Brien and J. B. Wilson, Testing isomorphism of graded algebras, *Trans. Amer. Math. Soc.* 372(11) (2019), 8067–8090.
5. A. R. Camina, Some conditions which almost characterize Frobenius groups, *Israel J. Math.* 31(2) (1978), 153–160.
6. D. Chillag, A. Mann and C. M. Scoppola, Generalized Frobenius groups. II, *Israel J. Math.* 62(3) (1988), 269–282.
7. U. Dempwolff, Semifield planes of order 81, *J. Geom.* 89(1–2) (2008), 1–16.
8. L. E. Dickson, *Linear groups: with an exposition of the Galois field theory, with an introduction by W. Magnus*, (Dover Publications, New York, 1958).
9. J. Dieudonné, Sur la réduction canonique des couples de matrices, *Bull. Soc. Math. France* 74 (1946), 130–146 (in French).
10. L. Dornhoff, *Group representation theory. Part A: Ordinary representation theory*, Pure and Applied Mathematics, Volume 7 (Marcel Dekker, New York, 1971).
11. P. Hall, The classification of prime-power groups, *J. Reine Angew. Math.* 182 (1940), 130–141.
12. B. Huppert, *Endliche Gruppen. I*, Die Grundlehren der Mathematischen Wissenschaften, Band 134 (Springer-Verlag, Berlin–New York, 1967) (in German).
13. N. L. Johnson, V. Jha and M. Biliotti, *Handbook of finite translation planes*, Pure and Applied Mathematics (Boca Raton), Volume 289 (Chapman & Hall/CRC, Boca Raton, FL, 2007).
14. W. M. Kantor, *Finite semifields*, Finite Geometries, Groups, and Computation, pp. 103–114 (Walter de Gruyter, Berlin, 2006).
15. O. H. King, The subgroup structure of finite classical groups in terms of geometric configurations, in *Surveys in Combinatorics 2005*, London Mathematical Society Lecture Note Series, Volume 327, pp. 29–56 (Cambridge University Press, Cambridge, 2005).
16. M. L. Lewis, Semi-extraspecial groups with an abelian subgroup of maximal possible order, *Adv. Group Theory Appl.* 5 (2018), 91–122.
17. M. L. Lewis, Semi-extraspecial groups, in *Advances in algebra*, Springer Proceedings in Mathematics and Statistics, Volume 277, pp. 219–237 (Springer, Cham, 2019).
18. M. L. Lewis and J. B. Wilson, Isomorphism in expanding families of indistinguishable groups, *Groups Complex. Cryptol.* 4(1) (2012), 73–110.
19. I. D. Macdonald, Some p-groups of Frobenius and extra-special type, *Israel J. Math.* 40(3–4) (1981), 350–364 (1982).
20. J. Maglione, Efficient characteristic refinements for finite groups. Part 2, *J. Symbolic Comput.* 80(part 2) (2017), 511–520.
21. R. Scharlau, Paare alternierender Formen, *Math. Z.* 147(1) (1976), 13–19.
22. R. Steinberg, The representations of $GL(3,q)$, $GL(4,q)$, $PGL(3,q)$, and $PGL(4,q)$, *Canadian J. Math.* 3 (1951), 225–235.
23. M. Vaughan-Lee, Orbits of irreducible binary forms over GF(p), preprint. (arXiv:1705.07418, 2017).
24. L. Verardi, Semi-extraspecial groups of exponent p, *Ann. Mat. Pura Appl. (4)*** 148* (1987), 131–171 (in Italian, with English summary).

25. A. L. Vishnevetskii, The number of classes of projectively equivalent binary forms over a finite field, *Dokl. Akad. Nauk Ukrain. SSR Ser. A* 4 (1982), 9–12, 86 (in Russian, with English summary).

26. J. B. Wilson, Existence, algorithms, and asymptotics of direct product decompositions, I, *Groups Complex. Cryptol.* 4(1) (2012), 33–72.

27. J. B. Wilson, More characteristic subgroups, Lie rings, and isomorphism tests for p-groups, *J. Group Theory* 16(6) (2013), 875–897.