miRTarBase 2020: updates to the experimentally validated microRNA–target interaction database

Hsi-Yuan Huang1,2,†, Yang-Chi-Dung Lin1,2,†, Jing Li1,2, Kai-Yao Huang1,2, Sirjana Shrestha3, Hsiao-Chin Hong1,2, Yun Tang1,2, Yi-Gang Chen1, Chen-Nan Jin1, Yuan Yu4, Jia-Tong Xu1, Yue-Ming Li4, Xiao-Xuan Cai1, Zhen-Yu Zhou1, Xiao-Hang Chen5, Yuan-Yuan Pei5, Liang Hu5, Jin-Jiang Su5,6, Shi-Dong Cui1, Fei Wang1,2, Yue-Yang Xie1, Si-Yuan Ding1, Meng-Fan Luo1, Chih-Hung Chou2,3,†, Nai-Wen Chang8, Kai-Wen Chen9, Yu-Hsien Cheng2, Xin-Hong Wan5, Wen-Lian Hsu10, Tzong-Yi Lee1,2,*†, Feng-Xiang Wei5,6,11,* and Hsien-Da Huang1,2,3,*

1School of Life and Health Sciences, The Chinese University of Hong Kong, Shenzhen, Longgang District, Shenzhen, Guangdong Province 518172, China, 2Warshel Institute for Computational Biology, The Chinese University of Hong Kong, Shenzhen, Longgang District, Shenzhen, Guangdong Province 518172, China, 3Department of Biological Science and Technology, National Chiao Tung University, Hsinchu 300, Taiwan, 4School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, Longgang District, Shenzhen, Guangdong Province 518172, China, 5The Genetics Laboratory, Longgang District Maternity & Child Healthcare Hospital of Shenzhen City, Shenzhen, Guangdong Province 518172, China, 6Department of Cell Biology, Jiamusi University, Jiamusi, Heilongjiang Province 154007, China, 7Center for Intelligent Drug Systems and Smart Bio-devices (IDS²B), National Chiao Tung University, Hsinchu, Taiwan, 8Graduate Institute of Biomedical Electronics and Bioinformatics, National Taiwan University, Taipei 106, Taiwan, 9Institute of Molecular Medicine and Bioengineering, National Chiao Tung University, Hsinchu 300, Taiwan, 10Institute of Information Science, Academia Sinica, Taipei 115, Taiwan and 11Department of Pathogenic Microorganisms, Zunyi Medical University, Zunyi, Guizhong Province 563006, China

Received September 15, 2019; Revised September 30, 2019; Editorial Decision October 01, 2019; Accepted October 22, 2019

ABSTRACT

MicroRNAs (miRNAs) are small non-coding RNAs (typically consisting of 18–25 nucleotides) that negatively control expression of target genes at the post-transcriptional level. Owing to the biological significance of miRNAs, miRTarBase was developed to provide comprehensive information on experimentally validated microRNA–target interactions (MTIs). To date, the database has accumulated >13,404 validated MTIs from 11,021 articles from manual curations. In this update, a text-mining system was incorporated to enhance the recognition of MTI-related articles by adopting a scoring system. In addition, a variety of biological databases were integrated to provide information on the regulatory network of miRNAs and its expression in blood. Not only targets of miRNAs but also regulators of miRNAs are provided to users for investigating the up- and downstream regulations of miRNAs. Moreover, the number of MTIs with high-throughput experimental evidence increased remarkably (validated by CLIP-seq technology). In conclusion, these improvements promote the miRTarBase as one of the most comprehensively annotated and experimentally validated microRNA–target interaction databases. The updated version of miRTarBase is now available at http://miRTarBase.cuhk.edu.cn/.

INTRODUCTION

MicroRNAs (miRNAs) are a family of small non-coding RNAs with 18–25 nucleotides; they are transcribed from DNA sequences into primary miRNAs and then processed into precursor and mature miRNAs in animals and plants. Perfect or near-perfect complementary binding of miRNAs to their target mRNAs negatively regulates gene expression in terms of accelerating mRNA degradation or suppressing mRNA translation (1). Many investigations have reported that miRNAs play crucial roles in numerous biological processes, such as cell cycle, cell proliferation, cell differentiation, apoptosis, metabolism, and cellular signaling.

†To whom correspondence should be addressed. Tel: +86 755 2351 9601; Email: huanghsienda@cuhk.edu.cn
Correspondence may also be addressed to Feng-Xiang Wei. Tel: +86 755 2893 3003; Email: haowei727499@163.com
Correspondence may also be addressed to Tzong-Yi Lee. Tel: +86 755 2351 9551; Email: leetzongyi@cuhk.edu.cn
†The authors wish it to be known that, in their opinion, the first two authors should be regarded as Joint First Authors.

© The Author(s) 2019. Published by Oxford University Press on behalf of Nucleic Acids Research. This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact journals.permissions@oup.com
(2,3), and various diseases. The study of miRNA–target interactions (MTIs) has been gaining a surge of interest from researchers due to the causal relationship between miRNAs and disease development. An increasing number of studies (4–6) have reported extracellular/circulating miRNAs in biological fluids, such as plasma, serum, cerebrospinal fluid, saliva, breast milk, urine, tears, colostrum and peritoneal fluid. Most importantly, dysregulated expression patterns of miRNAs may serve as potential biomarkers for disease diagnosis and prognosis.

Owing to the biological significance of miRNAs, a number of online resources have been developed for the data warehousing and functional analysis of MTIs. miRBase is the primary miRNA sequence repository that facilitates the inquiry for comprehensive miRNA nomenclature, sequence and annotation data (7). DIANA-TarBase accumulates manually curated interactions between miRNA and gene with the annotations of detailed meta-data, experimental methodologies and conditions (8). HMDD can provide functional enrichment information on miRNAs and the regulatory network of MTIs (9,10). miR2Disease can provide users disease-associated MTIs based on the information on miRNA–disease relationships obtained from research articles (11). In recent years, a variety of computational methods have been published for the identification of target binding sites of miRNAs, mainly according to the base pairing of miRNA and target sequences (12). However, these approaches developed on the basis of perfect seed pairing may result in false-positive predictions of MTIs (13). Therefore, these predicted results based on wet-lab experiments, such as real-time quantitative reverse transcription–polymerase chain reaction, enzyme-linked immunosorbent assay, immunohistochemistry and western blot, must be verified. Additionally, reporter assay is widely used in examining the physical interaction between miRNA and its target through the evidence of decreased expression level of a reporter protein (14). Given the surge of high-throughput sequencing technologies (15), the sequencing data obtained from CLIP (16), PAR-CLIP (17) and CLASH (18) can be used to explore miRNAs and their targets with expression evidence.

In post-transcriptional regulations, understanding how miRNAs downregulate target genes and transcription factors (TFs) regulate miRNAs is critical. More evidence has indicated that aberrant regulation of miRNAs by TFs can induce phenotypic variations and diseases. TransmiR is a knowledge base of comprehensive transcriptional networks between TFs and miRNAs that serve as gene dysregulators in different diseases (19). DIANA-miRGen (20) and mirTrans (21) were designed to provide annotations of cell-specific miRNA TSSs and discovery of TF-miRNA regulation networks, respectively. SomamiR is a database of somatic mutations affecting miRNAs and noncoding RNAs between miRNAs and their targets; miR2GO is a computational tool in miRNA seed regions for knowledge-based analysis of genetic variants and somatic mutations (22,23). miRNA sponges are competing endogenous RNAs (ceRNAs); miR Sponge was established as an experimentally supported database that contains 599 miRNA-sponge interactions and 463 ceRNA relationships from 11 species (24).

Owing to an increasing number of miRNA–target interaction studies being published over the past 10 years, miRTarBase (25–28) was developed to integrate MTIs and their functional roles in various biological processes. In this update, miRTarBase aims to accumulate experimentally validated MTIs, which are subsequently manually curated, based on a high-accuracy text-mining system. Furthermore, the upstream (TFs to miRNAs) and downstream (miRNAs to targets) regulations of miRNAs in different diseases have been integrated into this updated resource to enhance the functional analyses of miRNAs.

SYSTEM OVERVIEW AND DATABASE CONTENT

Since the first version of miRTarBase was released in 2011, the number of experimentally validated MTIs has increased drastically over the last 10 years. Meanwhile, the web interface of miRTarBase has been enhanced constantly to provide users more effective and efficient accessing experience. In recent upgrades, miRTarBase was further dedicated to provide a comprehensive MTI repository with a finer user interface. Figure 1 presents the highlighted improvements of this update. With an attempt to provide users the most comprehensive information on MTIs, a text-mining system was enhanced to search for more MTI-related articles against PubMed literature database. Our curators then manually curated these MTI-related articles to extract validated miRNA–target interactions with promising experimental evidence. In addition, many biological databases and standalone tools were integrated to increase the academic value of miRTarBase: miRNA information from miRBase (7); target gene information from National Center for Biotechnology Information (NCBI) Entrez (29) and RefSeq (30); miRNA regulators information from Trans-Mir (19), miR Sponge (24), and SomamiR (22,31); disease information from HMDD (9,10); gene and miRNA expression profiling from Gene Expression Omnibus (GEO) (32); The Cancer Genome Atlas (TCGA) (33,34); Circulating MicroRNA Expression Profiling (CMEP) (35). Table 1 displays a list of the databases that have been integrated into miRTarBase. Furthermore, in this update, users can access all relevant information on MTIs of interest through a user-friendly and interactive visualization interface.

UPDATED DATABASE CONTENT AND STATISTICS

Table 2 presents the improvements and updated content of miRTarBase 2020. As indicated in the table, the number of curated articles, MTIs and species increased substantially. Up to September 2019, this update (version 8) has significantly increased the number of MTIs compared with miRTarBase 7.0. A total of 479,340 curated MTIs between 4,312 miRNAs and 23,426 target genes were collected from 11,021 research articles. In addition, this updated version has integrated additional 100 CLIP-seq data from nine independent studies that can be used to support many MTIs (Supplementary Table S1).

A scoring system has been incorporated into the automatic text-mining system for further manual curations to enhance the recognition of MTIs and a high score means that the article is more related to MTIs. We have also up-
Figure 1. Highlighted improvements of miRTarBase 2020. As the most comprehensive resource on miRNA–target interactions, this update accumulates >470,000 manually confirmed MTIs supported with experimental evidence.

Table 1. List of the databases that are integrated by miRTarBase

Type	Database name
Gene and miRNA-specific databases	miRBase (7), NCBI Entrez gene (29), NCBI RefSeq (30)
SNP or mutation related databases	SomamiR (22,31)
miRNA–disease association Database	HMDD (9,10)
The regulation of miRNAs	TransMir (19), miRSponge (24)
miRNAs expression	CMEP (35), Gene Expression Omnibus (GEO) (32), The Cancer Genome Atlas (TCGA)

dated the version of previously integrated databases to include miRNA information, miRNA–disease associations, gene information, and mRNA sequences. Data contents provided by TransMir (19), miRSponge (24), SomamiR (22,31) and CMEP (35) were recently integrated to improve the information related to the regulation of miRNAs and the presence of cell-free miRNAs. Additionally, an enhanced viewer for displaying the TF–miRNA target relationships is embedded into the miRTarBase web interface.

Circulating miRNA expression

Circulating cell-free miRNAs as potential biomarkers of diseases have been stably presented in blood (36). Researchers have focused on the discovery, development, and evaluation of diagnostic, prognostic, and predictive biomarkers and technologies. In this update, we have integrated the data from CMEP (35) to represent the miRNA expression profiling in blood, including 10,419 samples obtained from 66 datasets. We believe that the information on circulating miRNA expression can enable biological and clinical researchers to gain biological insights into these interesting miRNAs and develop novel non-invasive biomarkers for clinical diagnosis.

Regulatory networks among miRNAs, regulators and targets

Post-transcriptional regulation mediated by miRNAs is an important control mechanism of gene expression. miRNAs have been reported to be widely detected in diverse types
Table 2. Improvements and the number of miRNA–target interactions with different validation methods provided by miRTarBase 8.0

Features	miRTarBase 7.0	miRTarBase 8.0
Release date	2017/09/15	2019/09/15
Known miRNA entry	miRBase v21	miRBase v22
Known Gene entry	Entrez 2017	Entrez 2019
Species	23	32
Curated articles	8,510	11,021
miRNAs	4,076	4,312
Target genes	23,054	23,426
CLIP-seq datasets	231	331
Curated miRNA–target interactions	422,517	479,340
Text-mining technique to prescreen literature	Enhanced NLP	Enhanced NLP+Scoring system
Download by validated miRNA–target sites	Yes	Yes
Browse by miRNA, gene, and disease	Yes	Yes
Regulation of miRNAs	No	Yes
Cell-free miRNA expression	No	Yes
MTIs Supported by strong experimental evidences		
Number of MTIs validated by ‘Reporter assay’	9,489	13,922
Number of MTIs validated by ‘Western blot’	7,258	12,179
Number of MTIs validated by ‘qRT-PCR’	8,210	13,263
Number of MTIs validated by ‘Reporter assay and Western blot’	6,032	10,257
Number of MTIs validated by ‘Reporter assay or Western blot’	10,581	15,710

of cancers and other diseases (37–42). Hence, miRNAs can play an important role for diagnostics and treatment of diseases (43,44). Recent studies have been conducted to understand the mechanisms of miRNA-mediated post-transcriptional regulation (downstream regulation) by constructing miRNA–mRNA regulatory networks (45–49). Although several studies over the past decade have shown considerable changes in miRNA expression profiles in various diseases (50–55), less attention has been paid to the regulatory mechanisms of miRNA expression (upstream regulation). Constructing a comprehensive miRNA regulatory network for understanding how miRNAs are regulated is necessary to study changes in the expression level of miRNAs.

Owing to the upregulation of miRNAs expression by TFs, this update has effectively integrated the relationships between miRNAs and TFs to connect TF to the miRNA regulatory network. TransmiR is a database for TF–miRNA regulations, and it provides experimentally validated regulatory relations between TFs and miRNAs (56). The information regarding the pairs of TF–miRNA, the position of 5′ transcription start site, TF binding site, action type, tissue, species, and the evidence reference is obtained from TransmiR. Moreover, circular RNA (circRNA), another type of regulatory noncoding RNAs, has also been considered in this update. Recent studies have indicated that circRNAs can regulate gene expression by influencing miRNA translation through sponging miRNAs (57–59). The annotations of circRNAs were acquired from miR-Sponge, which provides experimental relationships between circRNA and miRNA (24). In particular, cancer somatic mutation in miRNAs, which can alter the interactions between miRNAs and their targets, such as miRNA, circRNA, ceRNA, and long noncoding RNAs (lncRNAs) (60), was also integrated into our repository based on the annotations of SomamiR (22,31).

Given a miRNA, both targets and their regulators are difficult to analyze based on a variety of online databases or tools. Thus, this update also aims to provide an extended platform for investigating the regulation mechanism of miRNAs by comprehensively constructing the regulatory networks among miRNAs, regulators, and targets.

ENHANCED WEB INTERFACE

As presented in Figure 2, the web interface has been redesigned to be more user-friendly, snappier, and aesthetically pleasing in this version. Users can search for the MTIs of their interest through different queries or directly browse the lists of miRNAs based on different categories: ‘by miRNA name’, ‘by target genes’, ‘by pathway’, ‘by validated method’, ‘by disease’, ‘by literature’, ‘by miRNA name’, ‘by target genes’, ‘by disease’ or ‘by species’. Users can also explore regulators, such as circRNA and TF, for the miRNAs of interest. The layout of MTI information and the regulators of miRNA expression have been rearranged to improve online readability according to user feedback. Meanwhile, the relationship between miRNAs and their regulators is illustrated with an interactive visualization of miRNA regulatory network. These improvements in web interface can promote miRTarBase as a popular online resource in miRNA research.

USERS OF MIRTARBAGE

miRTarBase has been developed for 10 years; the first version, which came out in 2011, was followed by the fourth, sixth, and seventh versions in 2014, 2016 and 2017, respectively. Interestingly, the articles that have cited miRTarBase are distributed in different research areas, and they vary slightly between different versions, which may reflect the developing trend of miRNA studies (Supplementary Figure S1). Among the papers referenced to all releases of miRTarBase, ‘Biochemistry Molecular Biology’ is the most popular research field. For the miRTarBase version 1 (2011), in addition to ‘Biochemistry Molecular Biology’, the rest of the top 10 research areas include ‘Oncology’, ‘Science Technology Other Topics’, ‘Mathematical Computational Biol-
Figure 2. Enhanced web interface of miRTarBase. More comprehensive information related to miRNAs, such as miRNA precursor, mature miRNA information, miRNA-associated diseases, miRNA regulators, supporting evidence, display of miRNA regulatory network, target gene information, miRNA target sites, and the expression profiles of miRNAs and their targets, are provided on the web interface of miRTarBase.

In summary, understanding how miRNAs downregulate target genes and TFs regulate miRNAs is critical to enhancing the functional analyses of miRNAs because aberrant regulation of miRNAs by TFs can induce phenotypic variations and diseases. Consequently, the latest update of miRTarBase addresses this issue and provides not only the targets but also the regulators of miRNAs, such as lncRNA and circRNA, to users for investigation of the up and downstream regulations of miRNAs.

SUMMARY AND PERSPECTIVES

Since the first release of miRTarBase in 2011, experimentally validated MTIs have been continuously accumulated for nearly 10 years. Thus far, we have collected >11,000 articles with experimental evidence on MTIs. The latest release of miRTarBase 8.0 (15 September 2019) contains 479,340 curated MTIs between 4,312 miRNAs and 23,426 target genes. Previously, miRTarBase has reported disease associations of miRNAs and their targets, which can provide potential targets for disease diagnosis. To ensure the correctness of the MTI data collected from heterogeneous resources, we have repeatedly confirmed the content of the articles in miRTarBase with an improved data management system. The manual data-management interface has been optimized to enable data managers to proofread easily and accurately. In addition, we added treatment-related infor-
mation on miRNAs and described the treatment association of miRNAs in particular diseases to increase the researchers’ awareness of the relevance of miRNAs to treatment in the future. In conclusion, as an important biological database, miRTarBase will continually aim at updating and increasing important information related to miRNA and provide a reliable database platform for a wide range of scientific researchers.

SUPPLEMENTAL DATA

Supplementary Data are available at NAR Online.

FUNDING

Warshel Institute for Computational Biology funding from Shenzhen City and Longgang District; Ganghong Young Scholar Development Fund of Shenzhen Ganghong Group Co., Ltd. ‘Center for Intelligent Drug Systems and Smart Bio-devices (IDS²B)’ from The Featured Areas Research Co., Ltd. ‘Center for Intelligent Drug Systems and Smart Scholar Development Fund of Shenzhen Ganghong Group Warshel Institute for Computational Biology funding from FUNDING.”

SUPPLEMENTARY DATA

Funding

Warshel Institute for Computational Biology funding from Shenzhen City and Longgang District; Ganghong Young Scholar Development Fund of Shenzhen Ganghong Group Co., Ltd. ‘Center for Intelligent Drug Systems and Smart Bio-devices (IDS²B)’ from The Featured Areas Research Center Program within the framework of the Higher Education Sprout Project by the Ministry of Education (MOE) in Taiwan.

Conflict of interest statement. None declared.

REFERENCES

1. Bartel,D.P. (2004) MicroRNAs: genomics, biogenesis, mechanism, and function. *Cell*, 116, 281–297.
2. Chen,J.F., Mandel,E.M., Thomson,J.M., Wu,Q., Callis,T.E., Hammond,S.M., Conlon,F.L. and Wang,D.Z. (2006) The role of microRNA-1 and microRNA-133 in skeletal muscle proliferation and differentiation. *Nat. Genet.*, 38, 228–233.
3. Shvidarsan,R.A. (2006) MicroRNAs: regulators of gene expression and cell differentiation. *Blood*, 108, 3364–3365.
4. Zhu,H. and Fan,G.C. (2011) Extracellular/circulating microRNAs and their potential role in cardiovascular disease. *Am. J. Cardiovac. Dis.*, 1, 138–149.
5. Russo,F., Di Bella,S., Bonnici,V., Lagana,A., Rainaldi,G., Pellegrini,M., Pulvirenti,A., Giugno,R. and Ferro,A. (2014) A knowledge base for the discovery of function, diagnostic potential and drug effects on cellular and extracellular microRNAs. *BMC Genomics*, 15(Suppl. 3), S4.
6. Chen,H., Zhou,Y., Wang,Z.-Y., Yan,B.-X., Zhou,W.-F., Wang,T.-T., Zheng,M. and Man,X.-Y. (2019) Exosomal microRNA profiles from serum and cerebrospinal fluid in neurosyphilis. *Sex. Transm. Infect.*, 95, 246–250.
7. Kozomara,A. and Griffiths-Jones,S. (2014) miRBase: annotating high confidence microRNAs using deep sequencing data. *Nucleic Acids Res.*, 42, D68–D73.
8. Vlachos,I.S., Paraskevopoulou,M.D., Karagkouni,D., Georgakilas,G., Vergoulis,T., Kanellos,I., Tsanakas,P., Dellis,D., Chou,C.H., Huang,H.Y., Lin,C.M., Ho,S.Y. et al. (2014) DIANA-TarBase v7.0: indexing more than half a million microRNA and disease associations. *Nucleic Acids Res.*, 43, D153–D159.
9. Huang,Z., Shi,J., Gao,Y., Cui,C., Zhang,S., Li,J., Zhou,Y. and Cui,Q. (2019) HMDD v3.0: a database for experimentally supported human microRNA-disease associations. *Nucleic Acids Res.*, 47, D1013–D1017.
10. Li,Y., Qiu,C., Tu,J., Geng,B., Yang,J., Jiang,T. and Cui,Q. (2014) HMDD v2.0: a database for experimentally supported human microRNA and disease associations. *Nucleic Acids Res.*, 42, D1070–D1074.
11. Jiang,Q., Wang,Y., Hao,Y., Juan,L., Teng,M., Zhang,X., Li,M., Wang,G. and Liu,Y. (2008) miR2Disease: a manually curated database for microRNA deregulation in human disease. *Nucleic Acids Res.*, 37, D98–D104.

12. Rajewsky,N. (2006) microRNA target predictions in animals. *Nat. Genet.*, 38, S8–S13.
13. Didiano,D. and Hobert,O. (2006) Perfect seed pairing is not a generally reliable predictor for miRNA–target interactions. *Nat. Struct. Mol. Biol.*, 13, 849–851.
14. Kuhn,D.E., Martin,M.M., Feldman,D.S., Terry,A.V. Jr., Nuovo,G.J. and Elston,T.S. (2008) Experimental validation of miRNA targets. *Methods*, 44, 47–54.
15. Lee,Y.J., Kim,V., Muth,D.C. and Witwer,K.W. (2015) Validated MicroRNA Target Databases: An Evaluation. *Drug Dev. Res.*, 76, 389–396.
16. Ule,J., Jensen,K., Mele,A. and Darnell,R.B. (2005) CLIP: a method for identifying protein-mRNA interaction sites in living cells. *Methods*, 37, 376–386.
17. Hafner,M., Landthaler,M., Burger,L., Khoshrud,M., Hauser,J., Berninger,P., Rothbailer,A., Ascano,M. Jr., Jungkamp,A.C., Munschauer,M. et al. (2010) Transcriptome-wide identification of RNA-binding protein and microRNA target sites by PAR-CLIP. *Cell*, 141, 129–141.
18. Helwak,A., Kudla,G., Dudnakova,T. and Tollervey,D. (2013) Mapping the human miRNA interactome by CLASH reveals frequent noncanonical binding. *Cell*, 153, 654–665.
19. Tong,Z., Cui,Q., Wang,J. and Zhou,Y. (2019) TransmiR v2.0: an updated transcription factor-microRNA regulation database. *Nucleic Acids Res.*, 47, D253–D258.
20. Georgakilas,G., Vlachos,I.S., Zagganias,K., Vergoulis,T., Paraskevopoulou,M.D., Kanellos,I., Tsanakas,P., Dellis,D., Fyvgas,A., Dalamagas,T. et al. (2016) DIANA-miRGen v3.0: an accurate characterization of microRNA promoters and their regulatory miRNAs. *Nucleic Acids Res.*, 44, D190–D195.
21. Hua,X., Tang,R., Xu,X., Wang,Z., Xu,Q., Chen,L., Wingender,E., Li,J., Zhang,C. and Wang,J. (2018) mirTrans: a resource of transcriptional regulation on microRNAs for human cell lines. *Nucleic Acids Res.*, 46, D168–D174.
22. Bhattacharya,A. and Cui,Y. (2016) SomiR: a database of cancer somatic mutations altering microRNA-ceRNA interactions. *Nucleic Acids Res.*, 44, D1005–D1010.
23. Ziebarth,J.D., Bhattacharya,A. and Cui,Y. (2019) Functional analysis of genetic variants and somatic mutations impacting microRNA-target recognition: bioinformatics resources. *Methods Mol. Biol.*, 1970, 101–120.
24. Wang,P., Zhi,H., Zhang,Y., Liu,Y., Zhang,J., Gao,Y., Guo,M., Ning,S. and Li,X. (2015) miR Sponge: a manually curated database for experimentally supported miRNA sponges and ceRNAs. *Database*, 2015, bar098.
25. Hsu,S.D., Lin,F.M., Wu,W.Y., Liang,C., Huang,W.C., Chan,W.L., Tsai,W.T., Chen,G.Z., Lee,C.J., Chiu,C.M. et al. (2011) miRTarBase: a database curates experimentally validated microRNA–target interactions. *Nucleic Acids Res.*, 39, D163–D169.
26. Hsu,S.D., Tseng,Y.T., Shrestha,S., Lin,Y.L., Khabu,A., Chou,C.H., Chu,C.F., Huang,H.Y., Lin,C.M., Ho,S.Y. et al. (2014) miR TarBase update 2014: an information resource for experimentally validated microRNA–target interactions. *Nucleic Acids Res.*, 42, D78–D85.
27. Chou,C.H., Chang,N.W., Shrestha,S., Hsu,S.D., Lin,Y.L., Lee,W.H., Yang,C.D., Hong,H.C., Wei,T.Y., Tu,S.J. et al. (2016) miR TarBase 2016: updates to the experimentally validated microRNA–target interactions database. *Nucleic Acids Res.*, 44, D239–D247.
28. Chou,C.H., Shrestha,S., Yang,C.D., Chang,N.W., Lin,Y.L., Liao,K.W., Huang,W.C., Sun,T.H., Tu,S.J., Lee,W.H. et al. (2018) miR TarBase update 2018: a resource for experimentally validated microRNA–target interactions. *Nucleic Acids Res.*, 46, D296–D302.
29. Magliott,D., Ostell,J., Pruitt,K.D. and Tatusova,T. (2011) Entrez Gene: gene-centered information at NCBI. *Nucleic Acids Res.*, 39, D52–D57.
30. O’Leary,N.A., Wright,M. W., Brister,J.R., Ciufo,S., Maglott,D., Haddad,D., Maglott,D., Pruitt,K.D. and Tatusova,T. (2011) Reference sequence (RefSeq) database at NCBI: current status, taxonomic expansion, and functional annotation. *Nucleic Acids Res.*, 44, D239–D247.
31. Bhattacharya,A., Ziebarth,J.D. and Cui,Y. (2013) SomiR: a database for somatic mutations impacting microRNA function in cancer. *Nucleic Acids Res.*, 41, D977–D982.
32. Barrett,T., Wilhite,S.E., Ledoux,P., Evangelista,C., Kim,I.F., Tomashevsky,M., Marshall,K.A., Phillippy,K.H., Sherman,P.M.,
