Dynamical decoupling in common environment

Yu Pan, Hong-Ting Song and Zai-Rong Xi

Key Laboratory of Systems and Control, Institute of Systems Science, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing 100190, People’s Republic of China
E-mail: zrxi@iss.ac.cn

Received 27 March 2012, in final form 2 August 2012
Published 21 September 2012
Online at stacks.iop.org/JPhysB/45/205504

Abstract
Dynamical decoupling (DD) sequences were invented to eliminate the direct coupling between a qubit and its environment. We further investigate the possibility of decoupling the indirect qubit–qubit interaction induced by a common environment, and successfully find simplified solutions that preserve the bipartite quantum states to arbitrary order. Through analysing the exact dynamics of the controlled two-qubit density matrix, we have proven that applying independent Uhrig DD (UDD) on each qubit will effectively eliminate both the qubit–environment and indirect qubit–qubit couplings to the same order as in the single-qubit case, only if orders of the two UDD sequences have different parities. More specifically, UDD(n) on one qubit with UDD(m) on another are able to produce $\min(n, m)$th-order suppression while $n + m$ is odd. Our results can be used to reduce the pulse number in relevant experiments for protecting bipartite quantum states, or dynamically manipulating the indirect interaction within a certain quantum gate and quantum bus.

(Some figures may appear in colour only in the online journal)

1. Introduction
A qubit is constantly losing its coherence due to interaction with environment. Dynamical decoupling (DD) sequences are proposed to eliminate the unwanted qubit–environment couplings with instantaneous π pulses, and efficiency of DD sequences is largely dependent on the pulse locations. Equidistant DD is a first-order solution [1], while more advanced sequences employ non-equidistant [2, 3] or concatenated pulse locations [4, 5]. Particularly in this paper we are concerned about UDD [2], whose pulse locations are $t\delta_j$:

$$\delta_j = \sin^2 \left(j\pi / 2(n+1) \right).$$

The UDD sequence was first derived under pure dephasing models [6], able to protect the qubit coherence up to nth order with n pulses.

In recent years, DD has been successfully extended to preserve multipartite quantum states [7–13]. By nesting layers of UDD (NUDD), total $(n + 1)^m$ pulses are needed to freeze a system of m qubits to nth order without knowing any details of the qubit–environment coupling [8, 10, 14–16]. It can be seen that in NUDD, the pulse number grows polynomially with pulse order. However, for a specific experimental setup, it is more realistic and efficient to tailor the pulse sequence accordingly, since the pulse number is limited during a fixed time interval [17, 18] and errors from each imperfect pulse will accumulate [19–21]. There are already some efforts to reduce the pulse number. If prior knowledge is available, such as the initial qubit state [7], environmental coupling spectrum [11] or unbalanced decoherence rates [12], the above universal plan can be greatly simplified.

In this paper, we introduce another approach to reduce the DD sequence which is needed for a two-qubit system linearly coupled to a common bosonic bath. This situation may arise when two qubits are not spatially separated enough to create independent environments [22] or noises felt by each qubit are correlated [11, 23]. In addition, a common environment has long been exploited to generate an entangling gate and serve as a quantum bus between qubits [24–27]. While these gates and buses are idle we can use DD sequences to switch off the interactions and in the meantime protect the states.

As it turns out, the simplified sequence is made very easy to implement. For example, we can apply UDD(n) (n-pulse UDD) on the first qubit and UDD(m) on the second qubit. n and m can be chosen at will as long as they have different
2. Dynamics in common quantum bath

We consider a two-qubit spin-boson model:

\[H = \sum_k \omega_k b_k \dagger b_k + (\sigma_{z1} + \sigma_{z2}) \sum_k \lambda_k (b_k \dagger b_k), \]

where \(b_k \) is the annihilation operator for the \(k \)th mode of the bath and \(\lambda_k \) is the coupling strength. \(\sigma_{z1} \) and \(\sigma_{z2} \) are spin operators acting on the first and second qubit, respectively. This model describes a pure dephasing process due to the couplings with environment. With \(|\uparrow\rangle \) and \(|\downarrow\rangle \) being the eigenstates of \(\sigma_{z} \), we can define four basis states \(|0\rangle = |\downarrow\downarrow\rangle, |1\rangle = |\uparrow\downarrow\rangle, |2\rangle = |\uparrow\uparrow\rangle \). This two-qubit system can be exactly solved [25, 28]. In this section, we adopt the canonical transformation [29] as the interaction picture of the bath operator \(\sum_k \omega_k b_k \dagger b_k \), the unitary evolution that was generated by the ‘effective’ Hamiltonian. After the canonical transformation [25, 28] defined as \(J(\omega) = \sum_k \lambda_k^2 (\omega - \omega_k) \), we can then write down the evolution of the density matrix \(\rho \) as

\[
U_f(t) = \exp \left[\sum_k \lambda_k \left(\frac{\exp(-i\omega t) - 1}{\omega_k} b_k - \frac{\exp(i\omega t) - 1}{\omega_k} b_k^\dagger \right) \right] + i(\sigma_{z1} + \sigma_{z2})^2 \sum_k \lambda_k^2 \frac{\omega_k t - \sin(\omega_k t)}{\omega_k^2},
\]

(2)

The collective term \((\sigma_{z1} + \sigma_{z2})^2 = 2(\gamma + \sigma_{z1} \sigma_{z2}) \) generates an indirect coupling between the two qubits dependent on their states, which will further induce an oscillation of quantum correlations [25, 27, 29]. In order to preserve an arbitrary state, not only couplings to bath oscillators but also the indirect couplings must be removed. By introducing the spectral density function [30] defined as \(J(\omega) = \sum_k \lambda_k^2 \delta(\omega - \omega_k) \), we can then write down the evolution of the density matrix \(\rho \) as

\[
\rho(t) = \frac{1}{2} \begin{pmatrix}
\exp(-i\Delta(t) - \Gamma(t)) & \frac{\delta(t)}{\omega_k} & \frac{\delta(t)}{\omega_k} & \exp(-i\Delta(t) - \Gamma(t)) \\
\frac{\delta(t)}{\omega_k} & 1 & 1 & \frac{\delta(t)}{\omega_k} \\
\frac{\delta(t)}{\omega_k} & 1 & 1 & \frac{\delta(t)}{\omega_k} \\
\exp(-i\Delta(t) - \Gamma(t)) & \frac{\delta(t)}{\omega_k} & \frac{\delta(t)}{\omega_k} & \exp(-i\Delta(t) - \Gamma(t))
\end{pmatrix},
\]

with

\[
\Delta(t) = 4 \int_0^\infty J(\omega) \frac{\sin(\omega t)}{\omega^2} d\omega,
\]

\[
\Gamma(t) = 4 \int_0^\infty J(\omega) \frac{2\sin^2(\omega t/2)}{\omega^2} \coth \left(\frac{\beta \omega}{2} \right) d\omega.
\]

3. Pulse-controlled dynamics

In this section, we adopt the canonical transformation technique which was used in deriving the UDD sequence for a single qubit [2, 6]. Also we use the notations from [6] by defining

\[A_{eff} = UA_f U^\dagger, A(t) = \exp(iH_{eff} t)A \exp(-iH_{eff} t), \]

(5)

\[U = \exp[(\sigma_{z1} + \sigma_{z2}) K], K = \sum_k \lambda_k b_k \dagger b_k \]

(6)

Operator \(A_{eff} \) acquires time dependence under the action of the ‘effective’ Hamiltonian. After the canonical transformation \(U \), the effective Hamiltonian is diagonal:

\[H_{eff} = \sum_k \omega_k b_k \dagger b_k - \frac{\lambda_k^2}{\omega_k^2} (\sigma_{z1} + \sigma_{z2})^2 \]

(7)

and the time-dependent flip operators \(\sigma_{ki}(t) \) are

\[\sigma_{ki}(t) = \exp[2\sigma_z(t) K(t)] \exp \left(-4i \sum_k \frac{\lambda_k^2}{\omega_k} \sigma_{ki} \right) \sigma_{ki}, \]

with

\[K(t) = \sum_k \lambda_k \left(b_k \dagger e^{-i\omega t} - b_k e^{i\omega t} \right). \]

(8)

Making use of these expressions, dynamics of the density matrix elements can be obtained by explicit calculation. For an arbitrary element \(\rho_{ij} \), the average evolution is

\[
\langle \rho_{ij} \rangle(t) = \int d\omega |\langle S| \rho_{ij} |S_e^{\dagger} \rangle(t) - |\langle S| \rho_{ij} |S_e^{\dagger} \rangle(t) \rangle^2,
\]

(9)

where \(|\langle S| \rho_{ij} |S_e^{\dagger} \rangle(t) \rangle \) represents collective phase evolution. Note that the phase factor is absent in the classical noise model [11, 23]. If two qubits are subjected to the same classical noise, it is adequate to use simultaneous DD pulses on each qubit.

In the case of quantum noise, still by flipping the sign of \(\sigma_z \) and \(\sigma_x(\pi) \), \(\Gamma(t) \) will be effectively averaged to zero. However, we cannot apply the same sequence on both qubits, since simultaneous \(\pi \) pulses will have no influence on the value of \((\sigma_{z1} + \lambda_{z2})^2 \) and so on phase evolution. This motivates us to consider the following scenario: \(n \) pulses of \(\pi \) rotation along axis-\(x \) are applied to the first qubit, with the pulse locations given by \(\delta_1, \delta_2, \ldots, \delta_{n+1} \), whereas \(m \) analogous pulses are applied to the second qubit at different times \(\delta_{m1}, \delta_{m2}, \ldots, \delta_{mm} \). Totally, \(n + m \) pulses are applied to the two-qubit system. We arrange the \(n + m \) pulse timings in increasing order and denote them by \(\delta_1, \delta_2, \ldots, \delta_{n+m} \), with \(\delta_j < \delta_{j+1} \). At each \(\delta_j \), either the \(\sigma_z \) or \(\sigma_x \) operator switches its sign. At the same time, the operator \(\sigma_z, \sigma_x \) changes its sign \(n + m \) times at these instants. In the following section, we seek to find the correct \(n + m \) pulse locations which preserve both phases and amplitudes of the density matrix elements.
\[x_{\sigma_{i+1}}(\delta_{n}+1t) (\sigma_{i+1}^{e}(t) e^{-i\Delta_{0}^{\text{eff}}t} |U\rangle S) \]
\[= \sum_{i=1}^{m} x_{\sigma_{i+1}}(\delta_{n}+1t) (\sigma_{i+1}^{e}(t) e^{-i\Delta_{0}^{\text{eff}}t} |U\rangle S) \]
\[\cdots + x_{\sigma_{2}}(\delta_{2}) \sigma_{i+1}(\delta_{1}) e^{-i\Delta_{0}^{\text{eff}}t} |U\rangle S \]
\[= \sum_{i=1}^{m} x_{\sigma_{i+1}}(\delta_{n}+1t) (\sigma_{i+1}^{e}(t) e^{-i\Delta_{0}^{\text{eff}}t} |U\rangle S) \]
\[\cdots + x_{\sigma_{2}}(\delta_{2}) \sigma_{i+1}(\delta_{1}) e^{-i\Delta_{0}^{\text{eff}}t} |U\rangle S \]
\[= \sum_{i=1}^{m} x_{\sigma_{i+1}}(\delta_{n}+1t) (\sigma_{i+1}^{e}(t) e^{-i\Delta_{0}^{\text{eff}}t} |U\rangle S) \]
\[\times \exp(2K) \exp[-2K(\delta_{1}-t) + 2K(\delta_{2}-t) \cdots \]
\[+ (-1)^{m}2K(\delta_{n}-t) + (-1)^{m+1}2K(\delta_{1}-t) + (-1)^{m}2K(\delta_{n}-t) \]
\[\cdots + 2K(\delta_{2}-t) - 2K(\delta_{1}-t)). \]

The ensemble average in equation (14) has already been calculated in [6]. With the existing results from [6] and combining equations (11) and (14), the final form of \(\rho_{01}(t) \) can be organized in a rather compact way:

\[\rho_{01}(t) = \exp(i\Delta_{m}(t) - \Gamma_{m}(t)), \]

with

\[\Delta_{m}(t) = 4 \int_{0}^{\infty} \frac{J(\omega)}{\omega^{2}} (x_{m} + c_{m}(\text{ot}) \text{d}o, \]
\[\Gamma_{m}(t) = 2 \int_{0}^{\infty} \frac{J(\omega)y_{m}(\text{ot})}{\omega^{2}} \text{coth}(\beta\omega/2) \text{d}o, \]
\[x_{m}(\text{ot}) = (-1)^{m} \sin(\text{ot}) + 2 \sum_{j=1}^{m} (-1)^{j+1} \sin(\text{ot}\delta_{j}), \]
\[y_{m}(\text{ot}) = 1 + (-1)^{m} \text{e}^{-\text{ot}} + 2 \sum_{j=1}^{m} (-1)^{j} \text{e}^{-\text{ot}\delta_{j}}, \]
\[z_{m}(\text{ot}) = 2 \sum_{j=1}^{m} (-1)^{j+1} \sin(\text{ot}\delta_{j} - 1), \]
\[c(\text{ot}) = -2\text{ot} \sum_{j=1}^{m} (-1)^{j-1} \delta_{j} + \frac{(-1)^{m+1}}{2} \]

Unlike single-qubit DD, here the phase factor \(\Delta_{m}(t) \) will induce collective dynamics and should be minimized. \(y_{m}(\text{ot}) \) is the so-called filter function of an \(m \)-pulse sequence [2, 3] and \(\Gamma_{m}(t) \) is responsible for decoherence.

The most simple way to realize DD is to use independent UDD sequences to suppress the decoherence, and hope that phase evolutions will be minimized automatically at the same time. UDD(\(m \)) requires the first \(m \) derivatives of the filter function to be zero at \(\omega = 0 \). These constraints are imposed to engineer \(y_{m}(\text{ot}) \) in the low-frequency region, achieving an error order of \(O(t^{m}) \). Similarly we can also define the filter function for \(\Delta_{m}(t) \) as

\[f_{m}(\text{ot}) = x_{m}(\text{ot}) + z_{m}(\text{ot}) + c(\text{ot}), \]

The density matrix \(\rho(t) \) that is controlled by an arbitrary pulse sequence reads

\[\rho(t) = \begin{pmatrix} 1 & 0 \cr 0 & f_{m}(\text{ot}) \cr \end{pmatrix}, \]

with

\[\gamma(t) = 4 \int_{0}^{\infty} \frac{f(\omega)}{\omega^{2}} \text{coth}(\beta\omega/2) \text{d}o. \]

Definitions of \(\Delta_{m}(t) \) and \(\Gamma_{m}(t) \) are the same as equation (16), but with pulse locations swapped. For example,

\[z_{m}(\text{ot}) = 2 \sum_{j=1}^{m} (-1)^{j+1} \sin(\text{ot}\delta_{j} - 1), \]
\[+ 4 \sum_{j=1}^{m} (-1)^{j+1} \sin(\text{ot}\delta_{j} - \delta_{j}). \]
\[\rho_{12} \text{ and } \rho_{21} \text{ are driven out of the decoherence-free subspace. In spite of this, it is clear that the exponential decay of all density matrix elements are filtered by } y_m(o\ell t) \text{ and } y_n(o\ell t), \text{ which is at the order of } \min(n, m) \text{ if UDD}(n) \text{ and UDD}(m) \text{ are applied on each qubit.} \]

3.1. UDD sequences with different parities

By requiring that the phase shift from equation (11) vanishes, we obtain the equality
\[\delta_1 - \delta_2 + \cdots + (-1)^{n+m-1} \delta_{n+m} + \frac{(-1)^{n+m}}{2} = 0. \quad (20) \]
This is exactly the equation to derive UDD(1). In other words, our \((n+m)\)-pulse sequence has to be a first-order sequence at least. Now we make the first observation: equation (20) holds for any combination of UDD\((n)\) and UDD\((m)\) with \(n+m\) odd. Besides, parity plays an important role in the following relations:
\[\sum_{j=1}^{n} \sum_{j' \neq j} \frac{(-1)^{i+j}}{2} \sin(o\ell t)(\delta_{j'} - \delta_{j}) \]
\[= \sum_{i=1}^{n} \sum_{i' \neq i} \frac{(-1)^{i+j}}{2} \sin(o\ell t)(\delta_{i'} - \delta_{i}), \]
\[\quad \sum_{i=1}^{n} \sum_{i' < i} \frac{(-1)^{i+j}}{2} \sin(o\ell t)(\delta_{i'} - \delta_{i}), \quad \sum_{i=1}^{n} \sum_{i' < i} \frac{(-1)^{i+j+m+n}}{2} \sin(o\ell t)(\delta_{i'} - \delta_{i}). \quad (21) \]

and
\[\sum_{j=1}^{n} \frac{(-1)^{i+j+n+1}}{2} \sin(o\ell t)(\delta_{j} - 1) \]
\[= - \sum_{j=1}^{n} \frac{(-1)^{i+j+n+1}}{2} \sin(o\ell t)(\delta_{j} - 1), \]
\[= - \sum_{j=1}^{n} \frac{(-1)^{i+j+m+n}}{2} \sin(o\ell t)(\delta_{j}). \quad (22) \]

As a result, if \(n\) and \(m\) have different parities, we have
\[x_n(o\ell t) + z_n(o\ell t) + x_m(o\ell t) + z_m(o\ell t) = 0. \quad (23) \]
Moreover, it is easy to verify
\[x_n(o\ell t) + z_n(o\ell t) - x_m(o\ell t) - z_m(o\ell t) = \Im(y_n(t)y_m^{*}(t)), \quad (24) \]
and
\[\sum_{i=1}^{n} \sum_{i' < i} \frac{(-1)^{i+j}}{2} \sin(o\ell t)(\delta_{i'} - \delta_{i}) \]
\[= \sum_{i=1}^{n} \sum_{i' < i} \frac{(-1)^{i+j}}{2} \sin(o\ell t)(\delta_{i'} - \delta_{i}). \]
\[\sum_{i=1}^{n} \sum_{i' < i} \frac{(-1)^{i+j+m+n}}{2} \sin(o\ell t)(\delta_{i'} - \delta_{i}). \quad (25) \]

For \(n+m\) is odd, solving equations (23) and (24) yields
\[f_m(o\ell t) = - f_n(o\ell t) = \Im(y_n(t)y_m^{*}(t))/2. \quad (26) \]
Again the phase factors \(\Delta_{m}(t)\) and \(\Delta_{n}(t)\) are bounded by the filter functions \(y_n(t)\) and \(y_m(t)\). Thus, we have completed the proof that both phase and coherence can be preserved to the same order. In figure 1, we give three examples of independent UDD sequences with different parities, where \(f_m(o\ell t)\) and \(f_n(o\ell t)\) are numerically calculated. It can be seen that the phases are suppressed order by order through increasing the pulse number of each UDD sequence.

3.2. UDD sequences with same parities

We only consider two UDD sequences of even order, and two odd-order sequences share essentially the same property because their middle pulses do not flip the collective operator.
If n and m are even, from equations (21) and (22) we know
\[x_n(ot) + z_n(ot) = x_m(ot) + z_m(ot). \] (27)
A corollary is drawn: $y_n(t)y_m(t)$ is a real number if n and m are even. Moreover, $x_n(ot) + z_m(ot)$ are not bounded by filter functions anymore. As shown in figure 2, phase evolutions are eliminated at a fixed level. Increasing pulse number cannot improve the performance. Suppression of $f_n(ot)$ and $f_m(ot)$ before $ot < 2$ is due to the fact that $\sin ot \approx ot$ if ot is small. As a consequence, $f_n(ot)$ and $f_m(ot)$ are self-corrected to first order, see equation (2). While $\sigma_1, \sigma_2, \sigma_3, \sigma_4$ is effectively averaged at low frequencies, the nonlinear part of $\sigma_1, \sigma_2, \sin ot$ is uncontrollable.

In the present model, the indirect coupling via a thermal bath is commonly weak. If there exists highly nonlinear indirect coupling between the qubits, we expect that more distinctions will be observed by using different UDD sequences.

3.3. Entanglement dynamics

In order to illustrate the difference caused by the parity, especially the distinct oscillation patterns of quantum correlation under different decoupling schemes, we numerically calculate the entanglement dynamics. The initial bipartite state is chosen to be $\frac{1}{2}(|0\rangle + \sqrt{3}|1\rangle + \sqrt{3}|2\rangle + |3\rangle)$, which is partially entangled. In figure 3, we have used concurrence to measure the two-qubit entanglement [31].

We consider the dynamical evolution of concurrence versus time under three kinds of environmental spectrum. We can see that for $J(\omega) = \omega \Theta(1 - \omega)$, the final concurrence at $t = 1$ is perfectly kept at the initial level regardless of the parity. This result is consistent with our earlier observation that the low-frequency part of $f(ot)$ is self-corrected. However, for the other two spectrums, the UDD performances are obviously dependent on the parity difference. For $J(\omega) = \omega \Theta(5 - \omega)$, the combination of UDD(6) and UDD(7) still preserves the initial entanglement at the end of the decoupling cycle, while UDD(6) and UDD(8) fail to do so. Since UDD(6) and UDD(8) are not able to effectively suppress the indirect coupling between the two qubits, the quantum correlation of their final state is much larger than the initial one. A similar increase can be observed in the soft-cutoff spectrum ($J(\omega) = \frac{1}{1 + \omega}$). Note that in this type of spectrum concurrences cannot be well preserved in both combinations owing to severe decoherence [6, 32].

As shown in figure 3, concurrences undergo violent oscillations within the pulse intervals. In contrast with UDD(6) and UDD(8), the concurrence that is controlled by the combination of UDD(6) and UDD(7) drops more rapidly in the beginning. For $J(\omega) = \frac{1}{1 + \omega}$, the concurrence even reaches zero at one point, indicating that the entanglement is completely lost. However, at the final stage of the decoupling period, the sequences with different parities have a more smooth and steady concurrence, which makes them more feasible since the loose timing constraint for retrieving the final state, compared with the combination of UDD(6) and UDD(8).

4. Conclusion

In this paper, we give a detailed analysis of available DD sequences which can be used to eliminate both qubit–environment and indirect qubit–qubit couplings in a common bath. Exact dynamics under arbitrary pulse sequences are derived. As we find out, it is possible to apply UDD sequences independently on each of the two qubit, and at the same time preserve the bipartite state to higher order. This result greatly simplifies the scheme of universal NUDD when dealing with correlated environments. We have proven that by applying UDD(n) and UDD(m) with $n + m$ odd, the evolutions of all density matrix elements are bounded by the single-qubit filter functions of UDD(n) and UDD(m).

In conclusion, we suggest using UDD sequences with different parities to protect a dephasing bipartite system,
in case that the environments for individual qubit are not completely independent. Besides, our results may find applications in quantum information processing due to its superior ability to dynamically switch off the interaction induced by a common quantum bus.

Acknowledgments

YP wishes to thank Jiang-bin Gong for helpful comments on the manuscript. This work is supported by National Nature Science Foundation under grant nos 61074051 and 61134008.

References

[1] Viola L, Knill E and Lloyd S 1999 Phys. Rev. Lett. 82 2417
[2] Uhrig G S 2007 Phys. Rev. Lett. 98 100504
[3] Biercuk M J et al 2009 Nature 458 996
[4] Khodjasteh K and Lidar D A 2005 Phys. Rev. Lett. 95 180501
[5] Khodjasteh K and Lidar D A 2007 Phys. Rev. A 75 062310
[6] Uhrig G S 2008 New J. Phys. 10 083024
[7] Mukhtar M, Saw T B, Soh W T and Gong J B 2010 Phys. Rev. A 81 012331
[8] Mukhtar M, Soh W T, Saw T B and Gong J B 2010 Phys. Rev. A 82 052338
[9] Agarwal G S 2010 Phys. Scr. 82 038103
[10] Wang Z Y and Liu R B 2011 Phys. Rev. A 83 022306
[11] Pan Y, Xi Z and Gong J B 2011 J. Phys. B: At. Mol. Opt. Phys. 44 175501
[12] Wang Y, Rong X, Feng P B, Xu W J, Chong B, Su J H, Gong J B and Du J 2011 Phys. Rev. Lett. 106 040501
[13] Roy S S, Mahesh T S and Agarwal G S 2011 Phys. Rev. A 83 062326
[14] Jiang L and Imambekov A 2011 Phys. Rev. A 84 060302
[15] Quiroz G and Lidar D A 2011 Phys. Rev. A 84 042328
[16] Kuo W J and Lidar D A 2011 Phys. Rev. A 84 042329
[17] Uhrig G S and Lidar D A 2010 Phys. Rev. A 82 012301
[18] Khodjasteh K, Erdélyi T and Viola L 2011 Phys. Rev. A 83 020305
[19] Kao J, Hung J, Chen P and Mou C 2010 Phys. Rev. A 82 062120
[20] Xiao Z, He L and Wang W 2011 Phys. Rev. A 83 032322
[21] Souza A M, Álvarez G A and Suter D 2011 arXiv:1110.6334
[22] Contreras-Pulido L D and Aguado R 2008 Phys. Rev. B 77 155420
[23] Corn B and Yu T 2009 Quantum Inform. Process. 8 565
[24] Braun D 2002 Phys. Rev. Lett. 89 277901
[25] Oh S and Kim J 2006 Phys. Rev. A 73 062306
[26] Majer J et al 2007 Nature 449 443
[27] Rao D D B, Bar-Gill N and Kurizki G 2011 Phys. Rev. Lett. 106 010404
[28] Rao D D B and Kurizki G 2011 Phys. Rev. A 83 032105
[29] Yuan J B, Kuang L M and Liao J Q 2010 J. Phys. B: At. Mol. Opt. Phys. 43 165503
[30] Weiss U 2008 Quantum Dissipative Systems (Singapore: World Scientific)
[31] Wootters W K 1998 Phys. Rev. Lett. 80 2245
[32] Cywinski L, Lutchyn R M, Nave C P and Das Sarma S 2008 Phys. Rev. B 77 174509