ABSTRACT

Eranthis stellate belong to Ranunculaceae, which is interest in phylogenetic research because it has often been considered one of the most basal eudicots families. However, there are few chloroplast genome data of Ranunculaceae available. Here, to provide available genomic data for the phylogenetic of Ranunculaceae, we determined the complete chloroplast genome of *E. stellate*. The complete chloroplast sequence is 158,817 bp, including a large single-copy (LSC) region of 87,137 bp, a small single-copy (SSC) region of 16,834 bp, a pair of inverted repeats (IR) regions of 27,424 bp. Plastid genome contain 129 genes, 84 protein-coding genes, 36 tRNA genes, and 8 rRNA genes. Phylogenetic analysis based on 14 chloroplast genomes indicates that *E. stellata* is sister to *Aconitum austrokoreense* clade in Ranunculaceae.

Eranthis stellate is a perennial early spring ephemeral herb, always distributing in the shade of forest or forest edge grassland of in northern China, North Korea and Russia (Li and Michio 2001). *E. stellate* belong to Ranunculaceae, which is interest in phylogenetic research because it has often been considered one of the most basal eudicots families and thus has been studied by many plant systematists using various taxonomic characters (Ghimire et al. 2015; Byng et al. 2016). However, morphological-based classification is susceptible to environmental influences, and there are few genome data of Ranunculaceae available. Herein, in order to provide available genomic data for the phylogenetic of Ranunculaceae, we reported the complete chloroplast genome of *E. stellate* based on Illumina sequencing data. The complete chloroplast genomic data will be helpful to study the origin, evolution and the relationship between the phenotype and environment of *E. stellate* (Xiang et al. 2019).

Although the chloroplast genome is small, it is prone to gene duplication, and significant differences in the molecular level of the intergenic spacers, providing a wealth of information for comparative evolution and phylogenetic studies (Green 2011).

The plant material of *E. stellata* comes from Wangou Forestry Bureau, Baishan city, Jilin province, China (126°47′—127°17′E, 41°51′—42°23′N). The voucher specimen is kept at the Herbarium of College of Forestry, Fujian Agriculture and Forestry University (specimen code FAFU07013).

ARTICLE HISTORY

Received 19 October 2019
Accepted 27 October 2019

KEYWORDS

Eranthis stellata; chloroplast genome; Phylogeny; Ranunculaceae

CONTACT

Xiao Xing Zou *000q131012@fafu.edu.cn* College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, China; Fujian Colleges and Universities Engineering Research Institute of Conservation & Utilization of Natural Bioresources, Fujian Agriculture and Forestry University, Fuzhou, China; Fujian Provincial Ornamental Plant Germplasm Resources Innovation and Engineering Application Research Center, Fujian Agriculture and Forestry University, Fuzhou, China

© 2019 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group. This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial License (http://creativecommons.org/licenses/by-nc/4.0/), which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
phylogenetic analysis was performed based on eight complete chloroplast genomes of Ranunculaceae and six other species as outgroup. Them all downloaded from NCBI GenBank. To reveal the phylogenetic location of *E. stellata*, the sequences were aligned by MAFFT v7.307 (Katoh and Standley 2013), and phylogenetic tree constructed by RAxML (Stamatakis 2014). The phylogenetic tree showed that *E. stellata* was sister to *A. ciliare* - *A. austrokoreense* clade with strong support (Figure 1).

Disclosure statement

No potential conflict of interest was reported by the authors.

Funding

Horizontal science and technology innovation fund project of fujian agriculture and forestry university, project number (KHF190014); This work was supported by the Special Funds for Leading Scientific and Technological Innovation Talents of Fujian Province [118/KRC16006A].

References

Byng JW, Chase MW, Christenhusz MJM, Fay MF, Judd WS, Mabberley DJ, Sennikov AN. 2016. An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG IV. Bot J Linn Soc. 1–20.

Ghimire B, Jeong MJ, Choi GE, Lee H, Suh GU, Heo K, Ku JJ. 2015. Seed morphology of the subfamily Helleboroideae (Ranunculaceae) and its systematic implication. Flora Morphol, Distrib, Functional Ecology Plants. 216:6–25.

Green BR. 2011. Chloroplast genomes of photosynthetic eukaryotes. Plant J Cell Mol Biol. 66(1):34–44.

Katoh K, Standley DM. 2013. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol. 30(4):772–780.

Kearse M, Moir R, Wilson A, Stones-Havas S, Cheung M, Sturrock S, Buxton S, Cooper A, Markowitz S, Duran C, et al. 2012. Geneious basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics. 28(12):1647–1649.

Li LQ, Michio T. 2001. ERANTHIS Salisbury, Trans. Linn. Soc. London 8: 303. 1807, nom. cons. Flora of China, 6: 148–149.

Lohse M, Drechsel O, Kahlau S, Bock R. 2013. Organellar Genome DRAW—a suite of tools for generating physical maps of plastid and mitochondrial genomes and visualizing expression data sets. Nucleic Acids Res. 41(W1):W575–W581.

Stamatakis A. 2014. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics. 30(9):1312–1313.

Wick RR, Schultz MB, Zobel J, Holt KE. 2015. Bandage: interactive visualization of de novo genome assemblies. Bioinformatics. 31(20):3350–3352.

Xiang S, Liu XD, Sun WH, Lan SR, Liu ZJ, Zou SQ. 2019. The complete chloroplast genome sequence of Euscaphis japonica (Staphyleaceae). Mitochondrial DNA Part B, Resour. 4(2):3484–3485.

Figure 1. Phylogenetic analysis of 8 species of Ranunculaceae and 6 other species as outgroup based on chloroplast genome sequences by RAxML, bootstrap support value near the branch.