Demonstration of the key substrate-dependent charge transfer mechanisms between monolayer MoS$_2$ and molecular dopants

Soohyung Park1,2,3, Thorsten Schultz1,2, Xiaomin Xu1, Berthold Wegner1, Areej Aljarb4, Ali Han4, Lain-Jong Li4,5, Vincent C. Tung4,6, Patrick Amsalem1 & Norbert Koch1,2

Tuning the Fermi level (E_F) in two-dimensional transition metal dichalcogenide (TMDC) semiconductors is crucial for optimizing their application in (opto-)electronic devices. Doping by molecular electron acceptors and donors has been suggested as a promising method to achieve E_F-adjustment. Here, we demonstrate that the charge transfer (CT) mechanism between TMDC and molecular dopant depends critically on the electrical nature of the substrate as well as its electronic coupling with the TMDC. Using angle-resolved ultraviolet and X-ray photoelectron spectroscopy, we reveal three fundamentally different, substrate-dependent CT mechanisms between the molecular electron acceptor 1,3,4,5,7,8-hexafluorotetracyano-naphthoquinodimethane (F$_6$TCNNQ) and a MoS$_2$ monolayer. Our results demonstrate that any substrate that acts as charge reservoir for dopant molecules can prohibit factual doping of a TMDC monolayer. On the other hand, the three different CT mechanisms can be exploited for the design of advanced heterostructures, exhibiting tailored electronic properties in (opto-)electronic devices based on two-dimensional semiconductors.
Two-dimensional transition metal dichalcogenides (2D TMDCs) are promising next-generation semiconductor materials, owing to their superior electronic properties that originate from their low dimensionality and high symmetry\(^1-3\). For practical 2D TMDC-based electronic devices, e.g., thin-film transistors (TFTs)\(^4-6\), chemical sensors\(^7-9\), photodetectors\(^10-12\), and photovoltaic cells\(^11-14\), one of the key challenges is controlling the doping level, and thus the Fermi level \(E_F\) position, of the 2D TMDC semiconductors without breaking their low dimensionality and high symmetry, so that the desired electrical properties are retained.

Various methods have been proposed for tuning \(E_F\) within the band gap of TMDCs, including substitution with dopant atoms\(^15\), stacking with other 2D materials\(^16\), exposure to gases\(^6-8,17\), adsorption of alkali metals\(^18-19\), and adsorption of organic molecules\(^20-26\). In accordance with this approach, deposition of molecular electron acceptors or donors on TMDCs has been suggested as a very effective strategy for controlling the \(E_F\) position via doping, and accordingly high-performance TFTs were realized\(^22-24,26\). However, the extent to which the changes in electrical TFT characteristics were contributed to electron transfer between the dopant molecules and the monolayer TMDC (ML-TMDC) was not unambiguously demonstrated, and mostly changes of photoluminescence intensity of excitons versus trions were interpreted as signature of charge transfer (CT). A fundamental understanding of the CT mechanisms occurring at the interface between dopant molecules and ML-TMDCs as well as direct evidence of \(E_F\) position tuning, e.g., as typically achieved by photoelectron spectroscopy, are lacking, mostly because conductive substrates for the ML-TMDC were employed. For instance, Katoh et al.\(^27\) investigated n-type doping of WS\(_2\) by potassium atom deposition. However, degenerately doped, highly conductive TiO\(_2\) was used as substrate, from which the ML-TMDC was separated only via an ultrathin boron nitride layer, and the role of the underlying metal oxide substrate remains elusive. Regardless, renormalization of the WS\(_2\) band gap and spin-orbit splitting due to many-body effects was demonstrated.

Understanding the electronic properties of interfaces in devices such as those present in 2D TMDC-based devices is crucial for performance optimization. For instance, the TMDC/insulator interface determines the electronic properties of the active layer when a bias is applied to the gate in a TFT, while TMDC/metal interfaces serve as the electrical contacts between the semiconductor and the drain or source electrodes. In this context, it was demonstrated that the substrate dielectric properties significantly affect the electronic structure of ML-TMDC monolayers, such as band gap renormalization\(^27,28\), and the TMDC-substrate interaction influences the exciton and trion binding energies (BEs)\(^28,29\). Also of importance for devices is minimizing the Schottky barrier height between a metal contact and the TMDC, as pronounced Fermi level pinning seems to limit the range of tunability, as revealed via thermionic emission studies by Kim et al.\(^30\). Here, the electronic coupling and chemical interaction between the TMDC and metals play vital roles. These findings show that the supporting substrate should be fully considered in studies aiming at unraveling molecular dopant/TMDC monolayer interactions, as also CT processes may be affected. Therefore, investigating molecular dopant/ML-TMDC interfaces on different types of substrates is crucial for obtaining a comprehensive understanding of the CT processes and the energy levels, which is needed for reliably tuning ML-TMDC electronic properties for device applications.

In this study, we investigate molecular acceptor/ML-TMDC/substrate systems using insulating (sapphire)\(^31\), semi-metallic (highly oriented pyrolytic graphite (HOPG)), and metallic (Au) substrates. With angle-resolved ultraviolet photoelectron spectroscopy (ARUPS) and X-ray photoelectron spectroscopy (XPS), we monitor the changes of \(E_F\), the sample work function \((\Phi)\), and core levels induced by acceptor deposition. According to our observations, we identify three distinct CT mechanisms between the acceptor molecules (1,3,4,5,7,8-hexafluoro-tetracyano-naphthoquinodimethane \((F_5TCNQN)\) and ML-TMDC (Mo\(_2\)), depending on substrate type. The mechanisms for electron transfer from the (i) Mo\(_2\) gap states to the acceptors (sapphire), (ii) substrate to acceptors with an electric field across the ML-Mo\(_2\) (HOPG), (iii) combined metal/ML-Mo\(_2\) system to acceptors. The difference between (ii) and (iii) is rooted in the different electronic coupling strength between the ML-Mo\(_2\) and the substrates. Consequently, factual doping of Mo\(_2\) proceeds only on the insulating substrates.

Results

Impact of CT on work function and valence electronic levels.

To investigate how CT processes between a TMDC monolayer and the molecular acceptor \(F_5TCNQN\), which has also been employed as n-type dopant for organic semiconductors, could be influenced by the choice of substrate, ARUPS measurements were performed for Mo\(_2\)/sapphire, Mo\(_2\)/HOPG, and Mo\(_2\)/Au with stepwise deposition of \(F_5TCNQN\). We note that the Mo\(_2\) monolayers used in this study consist of azimuthally disordered flakes. However, owing to the specific features of the TMDC band structure—related to the high symmetry of the TMDCs—ARUPS spectra feature a high photoemission intensity only along the \(\Gamma\)-K and \(\Gamma\)-M directions of the single-crystal Brillouin zone (BZ), thus the spectra correspond to a linear superposition of the electronic bands along the aforementioned high symmetry directions\(^32-33\).

We note that, while it was shown that the electrical conductivity of sapphire can increase to about \(10^{-5}\) S/m by creating a high density of defects after annealing to 600 °C and proton bombardment\(^3\), our experimental conditions ensure the insulating character of sapphire. Particularly, for samples with insufficient Mo\(_2\) monolayer coverage and thus no percolation pathways for CT, we were not able to record any photoemission spectrum due to sample charging (also after sample annealing).

The ARUPS spectra measured in normal emission, as shown in Fig. 1, correspond to the electronic states at the \(\Gamma\) point of the BZ. These \(\Gamma\) point spectra show the highest intensity in the entire BZ, with the top valence band (VB) as an intense and sharp peak, allowing any spectral energy shifts to be accurately resolved. In addition, all spectra in this study exhibit a rigid energy shift upon molecular acceptor deposition, without band distortions (within instrument resolution), indicating that any momentum line cut (1D spectra along energy) provides the same information on energy shifts (exemplified in Supplementary Fig. 1 for the \(\Gamma\) and \(K\) points). For clarity, we stress that the global VB maximum is not at the \(\Gamma\) point (VB\(_M\)) or at the \(K\) point (VB\(_M\)). Thus, the \(K\) point should be considered for determining the Mo\(_2\) ionization energy (IE), with \(IE = \Phi + VB_M\) (with all valence energy levels referenced to \(E_F\))\(^34\). VB\(_M\) determined by a linear extrapolation of the emission onset toward the background from the spectra in Fig. 1, is at 1.80 eV BE for the pristine Mo\(_2\) films on sapphire and HOPG, and at 1.30 eV BE on Au. In analogy, VB\(_M\) determined to be at 1.78 eV BE on sapphire, 1.70 eV BE on HOPG, and 1.28 eV BE on Au substrates (see Fig. 2). There is a very small substrate-dependent variation (not more than 0.08 eV) in the energy difference between VB\(_M\) and VB\(_M\), which might be related to the presence of defect states of Mo\(_2\) monolayer and/ or substrate-specific interactions. Moreover, the Mo\(_2\) monolayer on HOPG might be more homogeneous, leading to the slightly wider energy difference between VB\(_M\) and VB\(_M\).
different F6TCNNQ coverages. A work function increase of \(\approx 0.6 \) eV is observed for all samples after acceptor adsorption. All VB spectra were recorded at the (semi-) metallic substrates (HOPG and Au) withdrew the electrons from the gap states of the monolayer, resulting in now unfilled gap states not observable in an ARUPS experiment.

Most notably, the gap states observed for MoS2/sapphire are not present for MoS2/HOPG as well as MoS2/Au (Fig. 2b, c), although the MoS2 monolayers transferred to HOPG and Au were synthesized under the same conditions compared to those on sapphire, and underwent the same cleaning procedure in UHV. Thus, the likely reason for the absence of gap states is that the (semi-) metallic substrates (HOPG and Au) withdrew the electrons from the gap states of the monolayer, in contrast to the MoS2/HOPG substrate. As for the pristine MoS2/HOPG no gap states existed for the pristine MoS2/HOPG sample. From this, we infer that the gap states are quenched, i.e., emptied, as a result of the electron transfer from MoS2 to \(F_6 \)TCNNQ, when using sapphire as supporting substrate. For the pristine MoS2/HOPG no gap states were synthesized under the same conditions compared to those on sapphire, and underwent the same cleaning procedure in UHV. Thus, the likely reason for the absence of gap states is that the (semi-) metallic substrates (HOPG and Au) withdrew the electrons from the gap states of the monolayer, resulting in now unfilled gap states not observable in an ARUPS experiment.

{COMMUNICATIONS PHYSICS | https://doi.org/10.1038/s42005-019-0212-y ARTICLE}
states are detected, the origin of the electrons transferred to the molecules must therefore be different. In contrast, much broader molecule-induced features are observed for F6TCNNQ/MoS2/Au (Fig. 2c), which yet calls for another CT mechanism as compared to when using sapphire and HOPG substrates. Consequently, three different CT mechanisms are at play for the three studied cases, which are discussed in more detail in the following.

Impact of CT on the individual heterostructure components. To assess the involvement of the individual components, i.e., ML-MoS2 versus substrate, in the CT processes, core level spectra of the three ML-MoS2/substrate systems with increasing F6TCNNQ coverage are analyzed, and displayed in Fig. 3. Note, the F 1s level is related only to F6TCNNQ molecules and the Mo 3d level to the MoS2 monolayer. The Al 2p, C 1s, and Au 4f levels are representative of the sapphire, HOPG, and Au, respectively.

First, we attend to the F 1s core level that is indicative of the oxidation state of F6TCNNQ. As apparent from Fig. 3a, d, and g, the F 1s core levels for 5 Å F6TCNNQ on all substrates are observed at 686.7 eV (±0.05 eV), which dominantly represents F6TCNNQ−1 owing to the interfacial CT. With increasing F6TCNNQ coverage, F 1s levels shift by 0.3–0.5 eV toward higher BE, due to an increasing contribution from neutral F6TCNNQ molecules that become predominant in the multilayer film. Therefore, for all three systems, the F 1s core level spectra consistently confirm the occurrence of electron transfer from the F6TCNNQ overlayer to the MoS2 substrate system to the acceptor.

Before discussing the details of the Mo 3d and Al 2p core levels, the energy reference in XPS is briefly reiterated. Because of the electrically insulating properties of sapphire, the position of EF within the band gap of the (grounded) MoS2 monolayer serves as the energy reference for the XPS measurements. When F6TCNNQ is adsorbed on top of the MoS2 monolayer, electrons are transferred from MoS2 to the F6TCNNQ molecules, which results in a change in EF (ΔEF) in the MoS2 monolayer (Fig. 1b). Because the ML-MoS2 is electrically connected to the detector, EF is re-aligned to 0 eV BE again, resulting in a rigid shift (same value of ΔEF) for all ML-MoS2/sapphire spectra. For this reason, the Mo 3d and Al 2p core levels observed for MoS2/sapphire are due to a change in EF within the MoS2 monolayer, and not due to any chemical shifts. For MoS2/sapphire (Fig. 3b), a shift of Mo 3d by up to 0.3 eV toward lower BE is observed, depending on the F6TCNNQ coverage. As explained above, this is due to the Fermi level shift, as caused by p-doping of the MoS2 monolayer.

The concomitant shift of the Al 2p core level (sapphire) by the same amount further supports the interpretation of the EF shift in ML-MoS2 due to doping by the acceptors. In contrast, for ML-MoS2 on HOPG and Au, the energy reference (EF) is that of the highly conductive (semi-) metallic substrates. In Fig. 3f, the C 1s core level at 284.4 eV can be assigned to the sp2 carbons of HOPG. Regardless of the F6TCNNQ coverage, the BE of the HOPG level remains constant, and only decreasing intensity is observed because of the signal attenuation by the F6TCNNQ overlayer. The same is observed for the Au 4f core level at 84 eV BE in Fig. 3i. Both substrate core level spectra series indicate that the energy reference does not depend on the F6TCNNQ coverage when conductive substrates are employed.

Remarkably, for ML-MoS2/HOPG, the Mo 3d core level shifts by 0.25 eV to lower BE upon acceptor deposition, the same as did VBM (compare Figs. 1d and 3e). These rigid shifts support the notion of p-doping of MoS2 monolayer/HOPG. In contrast, for MoS2/Au, the Mo 3d core levels exhibit no energy shift, as shown in Fig. 3h. This evidences that the interfacial CT did not affect the electronic properties of the MoS2 monolayer, in full agreement with the constant VBM in Fig. 1f. For the three investigated systems, quantitatively different Mo 3d core level shifts are observed, all being consistent with the respective VBM shifts in Fig. 1. Since the Mo 3d and S 2p core levels of the MoS2 shift in parallel (see Supplementary Fig. 2), notable site-specific chemical reactions between the molecular dopant and the monolayer can be ruled out. These findings, in combination with the same ΔΦ observed for all three substrate types, further imply three fundamentally different CT mechanisms.

Identification of three CT mechanisms. All experimental findings significantly differ depending on the employed substrate, invoking different CT mechanisms, which seem to be strongly influenced by the interaction between the MoS2 monolayer and the supporting substrate. Because the heterostructures comprise strong molecular acceptors, a MoS2 monolayer, and a substrate, two different CT pathways should be considered, namely: (i) a direct CT occurring between the acceptors and the ML-MoS2, and (ii) an indirect CT between acceptors and the substrate, possibly involving the MoS2 monolayer.

We start by testing the direct CT scenario for the three substrates according to the measured energy levels. Considering the reported electron affinity (EA) of F6TCNNQ (5.6 eV) and the measured IE

Fig. 2 Energy distribution curves (EDCs) near Fermi level (EF). EDCs obtained by integration of the corresponding angle-resolved ultraviolet photoelectron spectra around the K point in a narrow interval (1.08–1.36 Å−1) of a MoS2/sapphire, b MoS2/highly oriented pyrolytic graphite (HOPG), and c MoS2/Au with (violet) and without (green) adsorbed F6TCNNQ. The numbers inside the plots correspond to the MoS2 valence band onset, given in electron volts (eV).
of ML-MoS$_2$, with $I_E = \Phi + VBM_K = 4.6 + 1.78 = 6.38$ eV for sapphire, 6.30 eV for HOPG, and 6.23 eV for Au, the possibility of CT from the MoS$_2$ VB to the F$_6$TCNNQ LUMO level can be ruled out. Another possible CT pathway is from thermally excited electrons in the MoS$_2$ global conduction band minimum (CBMK) to F$_6$TCNNQ. The EA of ML-MoS$_2$/substrate is obtained from the determined I_E values (see above) and the reported substrate-dependent band gaps ($E_A = I_E - \text{band gap}$), yielding EA values of 4.27 eV (on sapphire), 4.19 eV (on HOPG), and 4.33 eV (on Au).

The energy difference between the EA of ML-MoS$_2$ and the EA of F$_6$TCNNQ supports transfer of thermally excited electrons. In this case, the electron density (n_e) in the conduction band is an important factor. The n_e of ML-MoS$_2$ is estimated from:

$$n_e = \frac{g_v m^* k_B T}{2\hbar^2} \ln \left(1 + e^{(E_F - E_C)/k_B T} \right),$$ \hspace{1cm} (1)$$

where g_v, m^*, \hbar, k_B, T, and E_C represent the valley degeneracy factors, the band edge effective mass of electrons, the reduced

Fig. 3 X-ray photoelectron spectroscopy (XPS) core level spectra. XPS spectra for MoS$_2$/sapphire (a–c), MoS$_2$/highly oriented pyrolytic graphite (HOPG) (d–f), and MoS$_2$/Au (g–i) heterostructures with different F$_6$TCNNQ coverage, given in Angstrom (Å) in the right handside plots. The numbers inside the plots correspond to the core level shifts, given in electron volts (eV).
Planck constant, the Boltzmann constant, the absolute temperature, and the energy position of the CBM, respectively. Using \(g_e = 6 \), \(m_e = 0.37 m_0 \) and \(E_C = 0.33 \) eV, \(n_e \) is estimated to be \(\sim 10^7 \) cm\(^{-2} \) (refs. 43,44).

For examining the impact of \(n_e \) on eventual CT, we also estimate the density \(\rho \) (cm\(^{-2}\)) of charge transferred into the LUMO levels of F\(_6\)TCNNQ molecules adsorbed on ML-MoS\(_2\) by using the measured \(\Delta \Phi \) and VBM shift (\(\Delta \)VBM), according to the Helmholtz equation\(^{45,46} \),

\[
\rho = \frac{e D \times \epsilon_0 f_0}{\epsilon_0 d_f},
\]

where \(eD \), \(\epsilon_0 \), \(\epsilon_0 f \), \(d_f \), and \(e \) are the interface dipole, the vacuum permittivity, the effective dielectric constant, the effective dipole distance, and the elementary charge, respectively. The \(eD \) value can be determined from \(eD = \Delta \Phi - \Delta VBM \), with \(\Delta VBM \) being the change in VBM binding energy before and after acceptor adsorption. From our data, \(eD \) is found to amount to 0.17 eV (sapphire), 0.36 eV (HOPG), and 0.55 eV (Au)\(^{45,47,48} \). With \(eD \) thus being in the range of 0.17–0.55 eV and using theoretical values of 4.70 for \(\epsilon_0 f \) (corresponding to the average of \(\epsilon_{MoS_{2,ML}} = 6.4 \) and \(\epsilon_{TMD} = 3 \)) and 3 Å for \(d_f \)\(^{45,49} \), \(\rho \) is found to be \(\sim 10^{13} \) cm\(^{-2} \), providing an estimate of the density of the electrons transferred to an F\(_6\)TCNNQ monolayer for all samples. Clearly, the estimated density of transferred charge \(\rho \) to the F\(_6\)TCNNQ exceeds by far (ca. six orders of magnitude) the estimated available electron density in the conduction band. This allows ruling out direct CT from the conduction band as the predominant process in all three cases.

Furthermore, the estimated \(n_e \) (\(\sim 10^7 \) cm\(^{-2} \)) is small compared to the reported carrier density in MoS\(_2\) monolayers (\(\sim 10^{13} \) cm\(^{-2} \)), which necessitates the existence of gap states between the CBM and VBM\(^{42,50} \). Gap states in 2D TMDCs fabricated via chemical vapor deposition (CVD) thus appear as critical factors for the mechanisms of interfacial CT and energy level alignment. Numerous reports have attributed gap states in ML-MoS\(_2\) on insulating substrates, e.g., SiO\(_2\) and sapphire, to S-vacancies owing to their lower formation energy as compared to Mo-vacancies\(^{35-37,51,52} \). Accordingly, gap states have been invoked as key for the energy level alignment at metal/ML-MoS\(_2\) interfaces\(^{51,53} \).

In the present work, for MoS\(_2\)/sapphire, a clear gap state is observed near \(E_F \) with an IE of 4.6 eV, which is energetically favorable for electron transfer to F\(_6\)TCNNQ, and judged from the spectral weight in Fig. 2a it has a sufficient density. This gap state, which is in the present study unique to MoS\(_2\)/sapphire, allows direct CT, i.e., from the MoS\(_2\) gap state to the LUMO level of F\(_6\)TCNNQ, to occur, as confirmed by the quenching of this state after acceptor adsorption (see Fig. 2a and its discussion above). This is fully in line with the proposition of Wang et al.\(^{22} \).

In contrast, for the ML-MoS\(_2\) on HOPG and Au substrates (Fig. 2b, c), no gap states are observed, which therefore rules out the possibility of direct CT for these two cases. To explain the origin of the transferred charge, the supporting substrate should be considered as an electron reservoir, since \(\Phi_{HOPG} = 4.7 \) eV and \(\Phi_{Au} = 5.3 \) eV are both lower than the F\(_6\)TCNNQ EA (5.6 eV)\(^{26,54} \). Therefore, electron transfer from HOPG and Au to F\(_6\)TCNNQ through the MoS\(_2\) monolayer is plausible. For ML-MoS\(_2\)/HOPG, electrons accumulate in the F\(_6\)TCNNQ layer and their image charges in HOPG, which leads to a high electric field between HOPG and F\(_6\)TCNNQ. The concomitant electrostatic potential drop across the ML-MoS\(_2\) sandwiched between acceptor layer and substrate, shifts the energy levels of the MoS\(_2\), which appears to become p-type doped via this indirect CT. A similar indirect CT process has been suggested for the GoF/WS\(_2\)/HOPG interface, and ultra-thin organic heterojunctions on metal substrates\(^{26,54} \).

Finally, for ML-MoS\(_2\)/Au, the absence of energy level shifts (MoS\(_2\) valence and core levels) upon acceptor deposition is caused by a strong electronic coupling of the TMDC and Au, as orbital hybridization between ML-MoS\(_2\) and Au has been previously reported\(^{35} \). In this case, the electrons are transferred from the hybridized ML-MoS\(_2\)/Au system, which acts as an electron reservoir, to F\(_6\)TCNNQ.

Discussion

Figure 4 summarizes simplified schematics of the three proposed CT mechanisms and the corresponding energy level diagrams for the investigated systems. On general grounds, owing to the low dimensionality of 2D TMDCs, the CT between 2D TMDCs and dopant molecules (acceptors and donors) is strongly influenced by the properties of the surrounding medium, i.e., the supporting substrate. Depending on the insulting, semi-metallic, and metallic properties of the substrate, as well as the coupling strength between the 2D TMDC and the substrate, three different cases can be classified:

(1) Insulating substrate: Direct CT occurs between the 2D TMDC valence levels (if energetically allowed, not the case for the materials investigated here) or gap states (observed in this work) to the LUMO level of the molecular acceptor, resulting in p-type doping of the 2D TMDC, as illustrated in Fig. 4a and d. Note that in the present case, the ML-MoS\(_2\) starts out highly n-type (due to the gap states) and doping by F\(_6\)TCNNQ depletes the gap states, rendering the monolayer less n-type by 0.4 eV. For molecular donors and n-type doping, an analogous mechanism can proceed.

(2) Weakly coupled (semi-) metallic substrate: Indirect CT occurs from the substrate to the dopant molecule, through the MoS\(_2\) monolayer as shown in Fig. 4b, e. The charges accumulated in the molecular layer and the substrate lead to a high electric field across the 2D TMDC, resulting in an observable doping of the TMDC layer.

(3) Strongly coupled metallic substrate: CT occurs from the 2D TMDC-metal hybridized frontier level to the LUMO level of the molecular acceptor, as shown in Fig. 4c and f. Because of the strong coupling, the energy levels of the 2D TMDC are pinned to those of the metal substrate and no doping of the 2D TMDC layer proceeds despite substantial CT.

We emphasize that in all three cases above, the sample \(\Phi \) increased upon F\(_6\)TCNNQ deposition by virtually the same amount. Consequently, a change of the TMDC/substrate \(\Phi \) induced by molecular acceptors/donors (or other dopants deposited atop the TMDC) cannot be used as a reliable indicator for doping of the semiconductor. Likewise, a shift of \(E_F \), as observed here for the HOPG substrate, can result from an electric field drop across the ML-TMDC, induced by the charges in the molecular layer and the substrate; this situation is reminiscent of a parallel plate capacitor where the TMDC is the dielectric between the two plates. Only if the substrate can be ruled out as source of charges for the dopants, factual doping of the TMDC occurs, which is crucially important when aiming to study the fundamental behavior of ML-TMDCs as a function of carrier density. Moreover, with the knowledge of the three different CT mechanisms and how they can be implemented, a wide variety of possibilities to fine-tune the electronic properties of ML-TMDCs in device heterostructures becomes available.

Methods

Sample preparation. MoS\(_2\) monolayers were grown on sapphire via CVD and transferred onto an HOPG or Au substrate. The monolayers consist of interconnected individual flakes, thus featuring high overall surface coverage and percolation paths for charge carriers, as exemplarily shown by optical micrographs in Supplementary Fig. 3. Prior to the ARUPS and XPS measurements, all MoS\(_2\) monolayer samples were annealed overnight at 300–350 °C in situ in an ultrahigh vacuum (UHV) preparation chamber (10\(^{-9}\) mbar) to remove carbon.
contaminations and residual poly(methyl methacrylate) involved during the transfer process. F6TCNNQ (Novaled) was deposited in the preparation chamber by sublimation from a resistively heated quartz crucible, and the nominal mass-thickness was determined via quartz crystal microbalance measurements.

Photoemission measurements. ARUPS and XPS spectra were obtained using a hemispherical electron analyzer (SCHENRAM DA30L) using He I (21.22 eV) and Mg Kα (1253.6 eV) as excitation sources, respectively. The energy resolution of ARUPS and XPS of 0.13 eV and 0.75 eV was determined by the width of the Fermi edge of a clean Au sample and the full-width at half-maximum (FWHM) of the Au 4f core level, respectively. For all the shown ARUPS spectra, the contribution from the secondary electron cutoff (SECO) spectra, measured with −10 V sample bias. For the sapphire substrate, proper MoS2 monolayer electrical grounding was established by contacting all sample edges with metal clips (connected to the metal sample holder), to prevent charging during the photoemission measurement. For HOPG and Au substrates, the MoS2 monolayer was connected to the ground through the conductive substrates.

Data availability
The authors declare that the data supporting the findings of this study are available within the paper and its supplementary information file, and source data are also available from the corresponding author upon reasonable request.

Received: 30 July 2019 Accepted: 20 August 2019
Published online: 13 September 2019

References
1. Wang, Q. H., Kalantar-Zadeh, K., Kis, A., Coleman, J. N. & Strano, M. S. Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat. Nanotechnol. 7, 699–712 (2012).
2. Chhowalla, M. et al. The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets. Nat. Chem. 5, 263–275 (2013).
3. McDonnell, S. J. & Wallace, R. M. Atomically-thin layered films for device applications based upon 2D TMDC materials. Thin Solid Films 616, 482–501 (2016).
4. RadisavljevicB et al. Single-layer MoS2 transistors. Nat. Nanotechnol. 6, 147–150 (2011).
5. Wang, H. et al. Integrated circuits based on bilayer MoS2 transistors. Nano Lett. 12, 4674–4680 (2012).
6. He, Q. et al. Fabrication of flexible MoS2 thin-film transistor arrays for practical gas-sensing applications. Small 8, 2994–2999 (2012).
7. Late, D. J. et al. Sensing behavior of atomically thin-layered MoS2 transistors. ACS Nano 7, 4879–4891 (2013).
8. Sarkar, D. et al. MoS2 field-effect transistor for next-generation label-free biosensors. ACS Nano 8, 3992–4003 (2014).
9. Buscema, M. et al. Large and tunable photothermoelectric effect in single-layer MoS2. Nano Lett. 13, 358–363 (2013).
10. Yin, Z. et al. Single-layer MoS2 phototransistors. ACS Nano 6, 74–80 (2012).
11. Bernardi, M., Palsammo, M. & Grossman, J. C. Extraordinary sunlight absorption and one nanometer thick photovoltaics using two-dimensional monolayer materials. Nano Lett. 13, 3664–3670 (2013).
12. Zhao, W. et al. Evolution of electronic structure in atomically thin sheets of WS2 and WSe2. ACS Nano 7, 791–797 (2013).
13. Tongay, S. et al. Broad-range modulation of light emission in two-dimensional semiconductors by molecular physiosorption gating. Nano Lett. 13, 2831–2836 (2013).
14. Kyliáná, I. & Komsa, H.-P. Binding energies of exciton complexes in transition metal dichalcogenide monolayers and effect of dielectric environment. Phys. Rev. B 92, 205418 (2015).
15. Cheng, Y. C., Zhai, Z. Y., Mi, W. B., Guo, Z. B. & Schwingenschlögl, U. Prediction of two-dimensional diluted magnetic semiconductors: doped monolayer MoS2 systems. Phys. Rev. B 87, 100401 (2013).
16. Duan, X. et al. Lateral epitaxial growth of two-dimensional layered semiconductor heterojunctions. Nat. Nanotechnol. 9, 1024–1030 (2014).
17. Ma, D. et al. The adsorption of CO and NO on the MoS2 monolayer doped with Au, Pt, Pd, or Ni: a first-principles study. Appl. Surf. Sci. 383, 98–105 (2016).
18. Rastogi, P., Kumar, S., Bhowmick, S., Agarwal, A. & Chauhan, Y. S. Doping strategies for monolayer MoS2 via surface adsorption: a systematic study. J. Phys. Chem. C 118, 30309–30314 (2014).
19. Doliu, K., Rungger, I., Das Pemmaraju, C. & Sanvito, S. Possible doping strategies for MoS2 monolayers: an ab initio study. Phys. Rev. B 88, 075420 (2013).

20. Du, Y., Liu, H., Neal, A. T., Si, M. & Ye, P. D. Molecular doping of multilayer MoS2 field-effect transistors: reduction in sheet and contact resistances. IEEE Electron Device Lett. 34, 1328–1330 (2013).

21. Tarasov, A. et al. Controlled doping of large-area trilayer MoS2 with molecular redox and oxidants. Adv. Mater. 27, 1175–1181 (2015).

22. Wang, J. et al. Charge transfer within the F4TCNQ-MoS2 van der Waals interface: toward electrical properties tuning and gas sensing application. Adv. Funct. Mater. 28, 1806244 (2018).

23. Nevola, D. et al. Rigid valence band shift due to molecular surface counter-doping of MoS2. Surf. Sci. 679, 254–258 (2019).

24. Zhang, S. et al. Atomic-mapping of hole-doping and p-doping of monolayer group 6 transition-metal disulphides and diselenides. Adv. Mater. 30, 1802991 (2018).

25. Wang, Y. et al. Doping of monolayer transition-metal dichalcogenides via physisorption of aromatic solvent molecules. J. Phys. Chem. Lett. 10, 540–547 (2019).

26. Song, Z. et al. Electronic properties of a 1D intrinsic/p-doped heterojunction in a 2D transition metal dichalcogenide semiconductor. ACS Nano 11, 9128–9135 (2017).

27. Katoch, J. et al. Giant spin-splitting and gap renormalization driven by trions in single-layer WS2/h-BN heterostructures. Nat. Phys. 14, 355–359 (2018).

28. Raju, A. et al. Coulomb engineering of the bandgap and excitons in two-dimensional materials. Nat. Commun. 8, 15251 (2017).

29. Drüppel, M., Deilmann, T., Krüger, P. & Rohlfs, S. Ultrafast carrier cooling in WS2 monolayers. ACS Nano 11, 1588–1596 (2017).

30. Pells, G. P. & Sowden, B. C. The electrical conductivity of sapphire irradiated with ultraviolet light. J. Nucl. Mater. 223, 174–179 (1995).

31. Guo, Y., Liu, D. & Robertson, J. Chalcogen vacancies in monolayer transition metal dichalcogenides and Fermi level pinning at contacts. Appl. Phys. Lett. 106, 173106 (2015).

32. Liu, D., Guo, Y., Fang, L. & Robertson, J. Sulfur vacancies in monolayer MoS2 and its electrical contacts. Appl. Phys. Lett. 103, 183113 (2013).

33. Wang, D., Li, X.-B., Han, D., Tian, W. Q. & Sun, H.-B. Engineering two-dimensional materials and tungsten dichalcogenides. ACS Nano 11, 6387–6398 (2017).

34. Ramasubramaniam, A. Large excitonic effects in monolayers of molybdenum disulfide. Adv. Mater. 28, 1980210 (2016).

35. Bampoulis, P. et al. Defect-dominated charge transport and Fermi level pinning in MoS2/metal contacts. ACS Appl. Mater. Interfaces 9, 19278–19286 (2017).

36. Amsalem, P. et al. Role of charge transfer, dipole-dipole interactions, and electrostatics in Fermi-level pinning at a molecular heterojunction on a metal surface. Phys. Rev. B 87, 035440 (2013).

37. Zhou, W. et al. Intrinsic structural defects in monolayer molybdenum disulfide. Nano Lett. 13, 2615–2622 (2013).

38. Donarelli, M., Bisti, F., Perrozzi, F. & Ottaviano, L. Tunable sulfur desorption from MoS2 monolayers. Nat. Commun. 3, 1011 (2012).

39. McDonnell, S., Addou, R., Buie, C., Wallace, R. M. & Hinkle, C. L. Defect-dominated doping and contact resistance in MoS2. ACS Nano 8, 2880–2888 (2014).

40. Laturia, A., Van de Put, M. L. & Vandenberghe, W. G. Dielectric properties of hexagonal boron nitride and transition metal dichalcogenides: from monolayer to bulk. npj 2D Mater. Appl. 2, 6 (2018).

41. Kim, S. et al. High-mobility and low-power thin-film transistors based on reduced multilayer MoS2 crystals. Nat. Commun. 3, 1011 (2012).

42. Ashcroft, N. W. & Mermin, N. D. Solid State Physics. (Elsevier, New York, 1976).

43. Oehzelt, M., Koch, N. & Heinzel, G. Organic semiconductor density of states controls the energy level alignment at electrode interfaces. Nat. Commun. 5, 4174 (2014).

44. Oehzelt, M., Koch, N. & Heinzel, G. Organic semiconductor density of states controls the energy level alignment at electrode interfaces. Nat. Commun. 5, 4174 (2014).

45. Park, S. et al. Electronic band dispersion determination in azimuthally disordered single-layer WS2/h-BN heterostructures. J. Phys. Chem. C 170, 179 (2015).

46. McDonnell, S., Addou, R., Buie, C., Wallace, R. M. & Hinkle, C. L. Defect-dominated doping and contact resistance in MoS2. ACS Nano 8, 2880–2888 (2014).

47. Zhou, W. et al. Intrinsic structural defects in monolayer molybdenum disulfide. Nano Lett. 13, 2615–2622 (2013).

48. Amsalem, P. et al. Role of charge transfer, dipole-dipole interactions, and electrostatics in Fermi-level pinning at a molecular heterojunction on a metal surface. Phys. Rev. B 87, 035440 (2013).

49. Bruix, A. et al. Single-layer MoS2 on Au(111): band gap renormalization and substrate interaction. Phys. Rev. B 93, 165422 (2016).

Acknowledgements

This work was funded by the Deutsche Forschungsgemeinschaft (DFG) - Projektnummer 18208777 - SFB 951. S.P. acknowledges support from the Alexander von Humboldt-Stiftung. V.T. acknowledges the support from KAUST Solar Center Seed fund and under User Proposals (#4420 and #5067) at the Molecular Foundry, Lawrence Berkeley National Lab, supported by the Office of Basic Energy Sciences, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. This work was supported by the NSF’s Materials Research Science and Engineering Centers program (DMR-1506265). This work was supported by the Molecular Foundry, Lawrence Berkeley National Lab, supported by the Office of Basic Energy Sciences, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. This work was supported by the Molecular Foundry, Lawrence Berkeley National Lab, supported by the Of

Author contributions

S.P., T.S., and P.A. prepared the manuscript, measured the samples using ARUPS and XPS, and analyzed all data, under the supervision of N.K., X.X., B.W., and P.A. revised the manuscript. A.A., A.H., L.L., and V.C.T. prepared the 2D TMDs samples. All authors commented on the manuscript.

Additional information

Supplementary information accompanies this paper at https://doi.org/10.1038/s42005-019-01921-y.

Competing interests: The authors declare no competing interests.

Reprints and permission information is available online at http://npg.nature.com/reprintsandpermissions/

Publisher's note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.