Identification of Novel Immunohistochemical Tumor Markers for Primary Hepatocellular Carcinoma; Clathrin Heavy Chain and Formiminotransferase Cyclodeaminase

Masanori Seimiya,1 Takeshi Tomonaga,1 Kazuyuki Matsushita,1 Masahiko Sunaga,1 Masamichi Oh-ishi,2 Yoshio Kodera,2 Takakazu Maeda,2 Shigetsugu Takano,3 Akira Togawa,3 Hideyuki Yoshitomi,3 Masayuki Otsuka,3 Masakazu Yamamoto,4 Masayuki Nakano,5 Masaru Miyazaki,3 and Fumio Nomura1

Early diagnosis of hepatocellular carcinoma (HCC) greatly improves its prognosis. However, the distinction between benign and malignant tumors is often difficult, and novel immunohistochemical markers are necessary. Using agarose two-dimensional fluorescence difference gel electrophoresis, we analyzed HCC tissues from 10 patients. The fluorescence volumes of 48 spots increased and 79 spots decreased in tumor tissues compared with adjacent nontumor tissue, and 83 proteins were identified by mass spectrometry. Immunoblot confirmed that the expression of clathrin heavy chain (CHC) and Ku86 significantly increased, whereas formimino-transferase cyclodeaminase (FTCD), rhodanese, and vinculin decreased in tumor. The protein expression in tumor and nontumor tissues was further evaluated by immunostaining. Interestingly, CHC and FTCD expression was strikingly different between tumor and nontumor tissues. The sensitivity and specificity of individual markers or a combination for the detection of HCC were 51.8% and 95.6% for CHC, 61.4% and 98.5% for FTCD, and 80.7% and 94.1% for CHC+FTCD, respectively. Strikingly, the sensitivity and specificity increased to 86.7% and 95.6% when glypican-3, another potential biomarker for HCC, was used with FTCD. Moreover, CHC and FTCD were useful to distinguish early HCC from benign tumors such as regenerative nodule or focal nodular hyperplasia, because the sensitivity and specificity of the markers are 41.2% and 77.8% for CHC, 44.4% and 80.0% for FTCD, which is comparable with those of glypican-3 (33.3% and 100%). The sensitivity significantly increased by combination of these markers, 72.2% for CHC+FTCD, and 61.1% for CHC+glypican-3 and FTCD+glypican-3, as 44.4% of glypican-3 negative early HCC were able to be detected by either CHC or FTCD staining. Conclusion: Immunostaining of CHC and FTCD could make substantial contributions to the early diagnosis of HCC. (HEPATOLOGY 2008;48:519-530.)

Abbreviations: 2-DE, two dimensional electrophoresis; 2D-DIGE, two dimensional fluorescence difference gel electrophoresis; CHC, clathrin heavy chain; eHCC, early hepatocellular carcinoma; FNH, focal nodular hyperplasia nodules; FTCD, formimino-transferase cyclodeaminase; HCC, primary hepatocellular carcinoma; Ku86, 82-kDa ATP-dependent DNA helicase II; LRN, large regenerative nodule; mRNA, messenger RNA.

From the 1Department of Molecular Diagnosis, Graduate School of Medicine, Chiba University; 2Laboratory of Biomolecular Dynamics, Department of Physics, Kitausato University School of Science; 3Department of General Surgery, Graduate School of Medicine, Chiba University; 4Department of Surgery, Institute of Gastroenterology, Tokyo Women's Medical University; and the 5Division of Clinical Investigation, National Hospital Organization, Chiba Medical Center, Chiba, Japan.

Received November 15, 2007; accepted April 1, 2008.

Supported by Grant-in-Aid 18014007, 18659363, 19390330 and 19390154 to T. T. and F. N. from the Ministry of Education, Science, Sports and Culture of Japan and also by the Chiba Serum Institute Memorial Fund for Health Medical Welfare.

Address reprint requests to: Takeshi Tomonaga, Department of Molecular Diagnosis, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8670, Japan. E-mail: tomonaga@faculty.chiba-u.jp; fax: (81)-43-226-2169.

Copyright © 2008 by the American Association for the Study of Liver Diseases.

Published online in Wiley InterScience (www.interscience.wiley.com).

DOI 10.1002/hep.22364

Potential conflict of interest: Nothing to report.

Additional Supporting Information may be found in the online version of this article.
Primary hepatocellular carcinoma (HCC) is a major health problem worldwide.\(^1,2\) It is known that HCC develops from a chronic inflammatory liver disease due to hepatitis B virus and hepatitis C virus infection; therefore, HCC shows especially high prevalence in Asia and Africa, where the rate of hepatitis C virus infection is high.\(^3\) In Japan, HCC has been ranked as the third most common cancer causing death.\(^4\) Screening tests are serological and radiological. Alpha-fetoprotein, lens culinaris agglutinin-reactive fraction of alpha-fetoprotein, and serum protein induced by vitamin K absence or antagonist-II are the most commonly used diagnostic markers for HCC, although their sensitivity and specificity are not high enough and are inadequate for identifying early stage HCC.\(^5,6\) The radiological test most widely used for surveillance is ultrasonography. Although ultrasound is able to detect small nodules of smaller than 2 cm, biopsy of these lesions is recommended for the diagnosis of HCC if the vascular profile on dynamic imaging is not characteristic of HCC.\(^7\) Such small masses range from benign nodules to malignant HCCs, and it is difficult, even for experienced pathologists, to distinguish dysplasia and well-differentiated HCC, especially when the lesion is small; therefore, development of new immunocytochemical markers is needed to diagnose early HCC.

Recently, the human genome project has been completed, and the genome database published. Moreover, high-throughput analysis of proteins has become possible by the development of tandem mass spectrometry technology. The breakthrough of this proteome technology enabled comparative studies of comprehensive protein expression and the identification of protein. As for HCC, proteome analysis using two-dimensional electrophoresis (2-DE), two-dimensional fluorescence difference gel electrophoresis (2D-DIGE), and liquid chromatography (2-DE), two-dimensional fluorescence difference gel electrophoresis (2D-DIGE), and liquid chromatography have recently been reported.\(^8-10\) Although a number of proteins have been identified as candidate markers for HCC,\(^11,12\) none have been applied in the clinical setting; therefore, a more comprehensive and sophisticated approach is mandatory to find novel proteins associated with HCC. Oh-ishi et al.\(^13\) developed agarose 2-DE, which uses agarose gel in the first dimension. This method not only allows for large-scale quantitative comparisons of protein expression but is also able to resolve high-molecular-mass proteins larger than 150 kDa that are difficult to resolve with immobilized pH gradient (IPGs). We have previously identified several novel proteins with altered expression in primary colorectal cancer and esophageal cancer using agarose 2-DE or agarose 2D-DIGE.\(^14,15\) These techniques appear to have advantages of adequate sensitivity, high reproducibility, and a wide dynamic range.

In this study, we aimed to identify novel biomarkers useful for the diagnosis of HCC. For that purpose, we compared protein expressions between HCC and adjacent nontumor tissues using the agarose 2D-DIGE method. Differentially expressed proteins were validated by immunoblot or immunostaining and were further evaluated for their potential as novel immunohistochemical markers.

Materials and Methods

The following details can be found in the Supplementary Information 1: protein extraction, fluorescent dye (CyDye) labeling, agarose 2D-DIGE, enzymatic in-gel digestion of proteins, identification of proteins, and quantification of messenger RNA (mRNA).

Human Tissue Samples. Ten HCC tissues were obtained at resection in the Department of General Surgery, Chiba University Hospital. The clinical features of these 10 cases are summarized in Table 1. Written informed consent was obtained from each patient before surgery. Excised samples were obtained within 1 hour after the operation from the tumor and adjacent non-tumor tissue. All excised tissues were immediately placed in liquid nitrogen and stored at −80°C until analysis.

Immunoblotting. Protein extracts were separated by electrophoresis on 10% to 20% polyacrylamide gradient gel. Proteins were transferred to polyvinylidene fluoride membranes (Millipore, Bedford, MA) in a tank transfer apparatus (Bio-Rad, Hercules, CA), and the membranes were blocked with 5% skim milk in phosphate-buffered saline. Anti-clathrin heavy chain (CHC) mouse monoclonal antibody (BD Biosciences Pharmingen) diluted 1:4000, anti-82 kDa adenosine triphosphate-dependent DNA helicase II (Ku86) mouse monoclonal antibody (COSMO BIO Co., Ltd, Tokyo, Japan) diluted 1:4000, anti-vinculin mouse monoclonal antibody (Upstate Biotechnologies, NY) diluted 1:8000, anti-formiminotransferase cyclodeaminase (FTCD) rabbit polyclonal antibody (COSMO BIO Co., Ltd, Tokyo, Japan) diluted 1:8000, and anti-lamin B1 mouse monoclonal antibody (Transduction Laboratories, Lexington, KY) diluted 1:1000 were used for the immunoblotting. Membranes were incubated with primary antibodies and then with horseradish peroxidase-conjugated anti-mouse or anti-rabbit IgG (Cell Signaling Technology, Beverly, MA) diluted 1:1000. The membranes were developed by a chemiluminescence method using the ECL Plus detection system (GE Healthcare, Milwaukee, WI). The signals were quantified by using the Image J program (National Institutes of Health, Bethesda, MD).

No.	Age	Sex	Virus	Size (mm)	Adjacent Tissue	AJCC Stage
1	69	Male	—	70 × 70	Normal	III
2	65	Male	HCV	60 × 45	LC	III
3	76	Male	—	55 × 45	CH	III
4	80	Male	HCV	30 × 38	LC	II
5	58	Female	—	45 × 40	LC	II
6	61	Male	HCV	35 × 32	CH	II
7	65	Male	HCV	25 × 16	LC	I
8	75	Male	HCV	25 × 23	CH	I
9	75	Male	HCV	25 × 20	LC	II
10	79	Male	HCV	110 × 90	CH	III

HCV, hepatitis C virus; LC, liver cirrhosis; CH, chronic hepatitis.
antibody (Abcam, Cambridge, UK) diluted 1:2000, and anti-thiosulfate sulfurtransferase (rhodanese) rabbit polyclonal antibody (Santa Cruz Biotechnology Inc., Santa Cruz, CA) diluted 1:1000 in blocking buffer were used as primary antibodies. Goat anti-mouse immunoglobulin G (IgG) horseradish peroxidase (Bio-Rad Laboratories, Hercules, CA) diluted 1:3000, and rabbit antigoat IgG horseradish peroxidase (Cappel, West Chester, PA) diluted 1:500 in blocking buffer were used as secondary antibodies. Antigens on the membrane were detected with enhanced chemiluminescence detection reagents (GE Healthcare).

Immunohistochemistry. From 20 HCC specimens (five well-differentiated, 10 moderately differentiated, and five poorly differentiated HCC), paraffin-embedded blocks of tumor and adjacent nontumor tissue were collected in the Department of General Surgery, Chiba University Hospital. Four-µm sections from paraffin tissue were fixed on slide glasses. In addition, tissue arrays (CA3, CSN3, CS3; SuperBio-Chips, Seoul, Korea) were used for immunohistochemistry, which contained 83 tumor (14 well differentiated, 40 moderately differentiated, 11 poorly differentiated, and 18 unclassified HCC) and 68 nontumor liver tissues. Two adenoma specimens were obtained from the Division of Clinical Investigation, National Hospital Organization, Chiba Medical Center. Three large regenerative nodules (LRN), five focal nodular hyperplasia nodules (FNH), and 18 early HCC (eHCC) specimens were obtained from the Institute of Gastroenterology, Tokyo Women’s Medical University Hospital. Tissues were deparaffinized in xylene and rehydrated by reducing the concentration of ethanol (100%, 100%, and 70%, 5 minutes each). Antigens were unmasked with microwave irradiation for 5 minutes in pH 6.0 citric buffer three times. Primary antibodies were diluted as follows. Anti-CHC antibody diluted 1:200, anti-FTCD antibody diluted 1:200, anti-rhodanese antibody diluted 1:100, and anti-Glypican-3 antibody (Biomosaics, Burlington, VT) diluted 1:100 in blocking buffer. EnVision + system (DAKO Japan, Kyoto, Japan) was used to visualize tissue antigens. Tissue sections were counterstained with hematoxylin for 1 minute. Protein expression was scored as negative (0), weak (1), moderate (2), and strong (3). Two pathologists evaluated immunohistochemical staining of the samples. The results of the evaluation agreed in 96.0% of cases. When the results were discordant, the judgment was made by the other investigator.

Results

Identification of Altered Expressed Proteins in Human HCC Tissue. To search for novel biomarkers useful for the diagnosis of HCC, we used the agarose 2D-DIGE method to explore proteins differently expressed between HCC and adjacent nontumor tissues. Each nontumor sample was labeled with Cy3, each cancer sample was labeled with Cy5, and pooling aliquots were labeled with Cy2, respectively. These labeled proteins were mixed and separated in the same 2D gel (Fig. 1A). Protein spots that were increased or decreased in tumor tissues were displayed as red or green, respectively. These spots were detected and quantitated with DeCyder imaging analysis software, and then statistical analysis was performed across the 10 gels. The fluorescence volumes of 48 spots increased and 79 spots decreased in cancer tissues compared with adjacent nontumor tissue (Student t test, P < 0.05). To identify the proteins, 500 µg whole-cell lysates of HCC or nontumor tissues (Table 1; cases 1 and 2) were separated by conventional agarose 2-DE, and proteins were visualized by Coomassie blue staining (Fig. 1B). We carefully compared the DIGE image with Coomassie blue staining gels and picked altered protein spots manually. A total of 101 (83 proteins) of 127 spots were identified by mass spectrometry (Tables 2 and 3). The expression of these identified proteins was differentially expressed in most of the 2D-DIGE gel (Tables 2 and 3). Although many have previously been reported as differentially expressed proteins in HCC, which we were able to reproduce using a proteomic approach, a few were further tested for their clinical use. Moreover, most down-regulated proteins were related to detoxification and metabolism, which probably reflect liver dysfunction accompanying the development of HCC. Thus, we made an attempt to find proteins that could be potential diagnostic markers for HCC.

Validation of Differentially Expressed Protein Between Tumor and Nontumor Tissues. Although 2-DE is a powerful technique, multiple proteins may be included in one spot, leading to misinterpretation of the results. Therefore, to confirm the difference of protein expression between tumor and nontumor tissues, validation using other methods is essential. Thus, immunoblot analyses of several proteins with commercially available antibodies were performed to confirm the differential protein expression in tumor tissues. CHC and Ku86 were up-regulated, whereas FTCD, rhodanese, and vinculin were down-regulated in most tumor tissues (Fig. 2). It is interesting to note that a ladder of smaller bands below full-length vinculin was observed and one of the bands around 60 kDa, which might be cleaved products of vinculin, was stronger in nontumor tissues than in tumor tissues.

Quantification of mRNA Levels. Differentially expressed proteins are commonly regulated at the transcrip-
tional level or through translational and posttranslational modifications. To explore the mechanisms leading to the changes of protein expression, we examined the mRNA level of the proteins by quantitative reverse transcription polymerase chain reaction. The mRNA levels of FTCD, rhodanese, and vinculin were decreased in most tumor tissues, consistent with the changes of protein expression. In contrast, CHC and Ku86 mRNA levels did not correlate with their protein expression levels (Fig. 3); therefore, overexpression of CHC and Ku86 in tumor tissues does not occur at the transcriptional level.

Immunohistochemical Analysis. Although there was no bias in the cellularity of tumor and adjacent nontumor tissues, whole tissue sections included nonhepatic parenchymal cells, and the altered protein expression in our 2-DE analysis may emanate from such nonhepatocyte components. Thus, the differential protein expression in HCC was also validated by immunohistochemistry to examine the localization of identified proteins. Paraffin-embedded tumor tissue and adjacent nontumor tissues of all 20 cases were stained with antibodies that were used in immunoblot analysis (Fig. 4). CHC has been reported to localize in the plasma membrane and the cytoplasmic face of intracellular organelles. Although no staining of CHC was observed in nontumor tissues, tumor cells showed scattered staining in the cytoplasm and plasma membrane (Fig. 4A). Bile duct, endothelial cell, and Kupffer cells were also positively stained. FTCD showed strong and uniform staining in the cytoplasm of nontumor tissue compared with faint staining in the cytoplasm of tumor cells (Fig. 4B). Rhodanese showed a mixture of scattered and strong staining in the cytoplasm of nontumor tissue, whereas tumor tissue was scarcely stained (Fig. 4C). These results confirmed the differential expression of proteins between tumor and nontumor tissues.

Clinical Application. Discrimination of well-differentiated HCC and nontumor tissues within a cirrhotic liver is often difficult even for experienced pathologists, and additional immunohistochemical markers are
needed. Although the expression level of CHC and FTCD was strikingly different between tumor and non-tumor tissues, analysis of 10 cases is not enough to consider CHC and FTCD as potential histological markers for HCC. Also the histology of nontumor tissues of the 10 cases was variable. To validate the usefulness of CHC and FTCD staining for the diagnosis of HCC, we obtained a commercial tissue array of HCC in which the degree of tumor differentiation and clinicopathological features had been proven (Table 4). The expression level of CHC and FTCD was scored as 0, 1, 2, or 3 by the staining intensity of the proteins. Most HCC tissues showed strong CHC expression (score 3) and negative to weak (score 0, 1) FTCD expression (43 of 83 cases and 51 of 83 cases). In contrast, most non-HCC tissues showed negative to moderate CHC expression (score 0, 1, 2) and moderate to strong FTCD (score 2, 3) expression (65 of 68 cases and 67 of 68 cases) (Table 5A). The sensitivity and specificity for the diagnosis of HCC using CHC expression level above were 51.8% and 95.6%, whereas those using FTCD expression level were 61.4% and 98.5%, respectively. If the combination of CHC and FTCD expression levels were used, the sensitivity and specificity for the diagnosis of HCC were 80.7% and 94.1%, respectively (Table 5B). Interestingly, CHC and FTCD expression level in tumor tissues correlates with tumor differentiation (well-differentiated HCC, 21.4%, 28.6%; moderately differentiated HCC, 52.5%, 15.0%; poorly differentiated HCC, 72.7%, 9.1%, respectively) (Table 5C). CHC and FTCD expression levels did not correlate with other clinicopathological features (age, sex, stage, and tumor size) (data not shown). These results indicated that immunostaining of CHC and FTCD could contribute to the pathological diagnosis of HCC.

Glypican-3 has been reported as a promising marker in the distinction between HCC and nonmalignant hepatocellular lesions. Therefore, we compared the diagnostic value of CHC and FTCD for HCC with that of glypican-3 and also examined whether the combination of the three potential markers can improve the diagnostic accuracy of HCC. The sensitivity and specificity of glypican-3 were 62.7% and 97.1%, respectively, which were comparable with those of CHC or FTCD (Table 5B). Strikingly, the sensitivity and specificity increased to

Table 2. Protein Expression in HCC and Adjacent Nontumorous Tissue

Database Accession No.	Protein Name	Average Mass	Homogeneity Rate (%)	T-test Score	Coverage (%)	Fold Increase	References*
T1 gi-2506872	Fibronectin precursor	262,586	80	0.025	73.8	3.2	1.53
T2 gi-4758012	Clathrin heavy chain 1	191,595	89	<0.001	42.2	3.1	2.26
T3 gi-19913410	Major vault protein	99,248	100	<0.001	82.4	8.6	1.73
T4 gi-2804273	Alpha actinin 4	102,250	78	0.008	88.6	10.3	1.36
T5 gi-4507677	Tumor rejection antigen (gp96)	92,450	90	0.022	167.4	20.2	1.67
T6 gi-6005942	Valosin-containing protein	89,247	90	0.028	128.2	18.4	1.49
T7 gi-34304590	Heat shock 90kDa protein 1 beta	83,194	100	0.002	51.9	7.0	2.13
T8 gi-10863945	8240A ATP-dependent DNA helicase II (Ku86)	82,888	100	0.020	53.0	8.0	3.04
T9 gi-4506077	Protein kinase C substrate 80k-H isoform 1	59,278	78	<0.001	52.5	10.7	1.69
T10 gi-862457	Enol-CoA hydratase	82,888	80	0.021	43.0	6.8	2.09
T11 gi-4557385	Complement component 3 precursor	187,027	80	0.014	88.1	5.3	1.71
T12 gi-4389275	Albumin complex with myristic/triiodobenzoinoic acid	66,017	100	0.001	127.0	17.1	1.43
T13 gi-37267	Transketolase	67,732	88	0.036	70.0	9.7	2.67
T14 gi-129379	60kDa Heat shock protein, mitochondrial precursor	60,998	83	0.004	139.4	21.2	1.88
T15 gi-576554	Anthrithrombin III variant	52,673	75	0.041	30.4	8.4	1.53
T16 gi-475900	Calreticulin precursor	48,123	100	0.017	83.3	15.4	1.52
T17 gi-2506774	Keratin, type II cytoskeletal B (Cytokeratin 8)	53,623	88	0.008	150.2	32.5	2.29
T18 gi-4504505	Hydroxysteroid (17-beta) dehydrogenase 4	79,688	100	0.015	57.2	8.3	2.09
T19 gi-24497583	Aldo-ketoreductase family 1, member C3	36,835	90	0.038	114.3	25.7	1.86
T20 gi-4504447	Heterogeneous nuclear ribonucleoprotein A2/B1 isofrom A2	35,987	88	0.008	40.6	12.3	1.44
T21 gi-21735621	Mitochondrial malate dehydrogenase precursor	35,485	88	0.037	53.3	18.7	1.28
T22 gi-5031765	11-Beta-hydroxysteroid dehydrogenase 1	32,382	88	0.037	21.3	4.2	1.28
T23 gi-30584583	Homo sapiens tyrosine 3-monoxygenase	29,250	90	<0.001	93.5	37.2	2.16

*The references details can be found in Supplementary Information 2.
†Previously reported to be up-regulated in HCC.
‡Previously reported to be down-regulated in HCC.
No	Database Accession No.	Protein Name	Average Mass	Homogeneity Rate (%)	T-test	Score	Coverage (%)	Fold Decrease	References*
N1	gi-24657579	VCL protein (VINCLUIN)	116,718	100	0.015	58.3	6.0	1.81	
N2	gi-1709947	Pyruvate carboxylase, mitochondrial precursor	129,533	70	0.007	137.3	10.8	1.70	(14)†
N3	gi-4938304	Lysochrome-ketogluarate reductase	102,064	90	<0.001	62.8	6.9	1.55	
N4	gi-1935009	Similar to elongation factor 2b	57,455	100	0.008	30.8	6.2	1.39	
N5	gi-8659955	Acetate 1	98,318	100	0.008	151.5	18.8	1.39	
N6	gi-31415705	Transferin	76,981	75	0.006	128.0	17.4	1.60	
N7	gi-40789249	Aspartyl-RNA synthetase 2 (mitochondrial)	73,498	100	0.011	36.0	9.0	2.13	
N8	gi-1265193	Phosphoenolpyruvate carboxykinase 2 (mitochondrial)	70,635	75	0.025	189.4	20.1	1.86	
N9	gi-11761629	Fibrinogen, alpha chain isoform alpha preprotein	69,695	80	0.003	86.9	17.9	2.07	
N10	gi-284351	Phosphoglucomutase	61,352	89	0.004	38.8	6.0	1.48	
N11	gi-4758312	Electron-transfering-fliprotein dehydrogenase	68,489	89	0.004	82.6	12.3	1.48	
N12	gi-4557645	Heterogeneous nuclear ribonucleoprotein L isoform a	60,169	100	0.007	41.7	10.4	1.74	
N13	gi-20149621	Hypothetical protein LOC26007	58,892	100	0.001	168.6	35.1	2.29	
N14	gi-4557014	Catalase	59,700	89	0.010	161.6	15.4	1.62	(15)†
N15	gi-11140815	Formiminotransferase cyclodeaminase	58,871	100	0.004	158.6	20.3	2.26	
N16	gi-7431380	Uridine diphosphoglucose dehydrogenase	55,040	100	0.032	31.0	7.7	1.31	
N17	gi-4507813	UDP-glucose dehydrogenase	54,971	100	0.032	50.0	12.4	1.31	
N18	gi-4503375	Dihydrolipoamide dehydrogenase	56,575	100	0.032	60.7	8.7	1.31	
N19	gi-25108887	Aldehyde dehydrogenase family 7 member A1	55,348	78	0.003	25.2	6.0	1.71	
N20	gi-4885821	Glutamate dehydrogenase 1	61,379	100	<0.001	181.0	26.8	1.42	
N21	gi-13027638	UDP-glucose pyrophosphorylase 2 isoform a	56,947	100	<0.001	119.6	23.4	2.37	
N22	gi-7705688	Leucine aminopeptidase	56,031	100	<0.001	94.0	17.4	2.44	
N23	gi-28949044	Human mitochondrial dehydrogenase	54,426	100	0.023	101.3	15.2	1.49	
N24	gi-20151189	Human glutamate dehydrogenase-apo form	55,990	100	<0.001	181.0	26.8	1.74	
N25	gi-16306550	Selenium binding protein 1	52,339	100	0.010	90.0	18.8	1.42	
N26	gi-22547189	Serine hydroxyethyl transferase 1 (soluble) isoform 2	48,978	89	0.010	89.7	22.1	2.30	
N27	gi-4503481	Eukaryotic translation elongation factor 1 gamma	50,100	100	0.001	30.9	5.8	2.23	
N28	gi-6730018	Human L-ariginosine-glycine amidotransferase	44,625	100	0.001	163.7	26.5	2.23	
N29	gi-5031751	3-Hydroxy-3-methylglutaryl coenzyme A synthase 2	56,581	80	0.007	170.1	22.1	1.66	
N30	gi-19743875	Fumarate hydratase precursor	54,619	89	<0.001	121.0	27.2	2.31	
N31	gi-16878083	Enolase 3	46,884	89	<0.001	49.3	12.4	2.31	
N32	gi-4557889	Keratin 18	48,010	86	0.037	134.9	18.2	1.41	
N33	gi-16950633	Argininosuccinate synthetase	55,990	100	<0.001	181.0	26.8	1.74	
N34	gi-4530461	Betaine-homocysteine methyltransferase	44,980	100	<0.001	139.0	33.4	5.19	
N35	gi-28178382	Isocitrate dehydrogenase 2 (NADP+), mitochondrial	50,891	90	0.001	110.0	27.0	2.09	
N36	gi-4557587	Fumaryl acetoacetate hydrolase (fumaryl lactoacetase)	46,326	100	0.001	106.5	24.1	1.71	(19)†

*The references can be found in Supplementary Information 2.
†Previously reported to be down-regulated in HCC.
86.7% and 95.6% when glypican-3 was used with FTCD. These results indicate that combination of the three markers greatly improves the diagnostic accuracy of HCC.

It has recently been recommended to perform a biopsy to identify the features of malignancy when small hepatic masses are detected. As a result, a distinction among regenerative, dysplastic, and malignant hepatocellular nodules is needed on liver biopsy specimens. Therefore, we tested whether we can distinguish eHCC from benign tumors such as dysplastic and regenerative nodules. A total of 18 eHCC tissues and 10 benign tumor tissues (five FNH, three LRN, and two adenomas) were immunostained with CHC, FTCD, and glypican-3 antibodies (Table 6). Note that high-grade dysplastic nodules were included in eHCC because they have been considered as premalignant or malignant lesions by abnormally increased arteriolar and capillary supply. In contrast, low-grade dysplastic nodules were included in benign tumor. Seven eHCCs were distinguished from adjacent nontumor tissues by stronger staining of CHC, whereas one of FNH and LRN was weakly stained with CHC antibody (Fig. 5A, Table 6). Eight eHCCs showed weaker staining of FTCD than adjacent nontumor tissues (Fig. 5B, Table 6). In contrast, all of the FNH and LRN tissues were moderately stained, which is indistinguishable from their adjacent nontumor tissues. Two adenoma tissues showed weaker staining of FTCD than nontumor tissues. Six eHCCs and none of the benign tumors showed stron-
ger staining of glypican-3 than adjacent nontumor tissues. The sensitivity and specificity of CHC, FTCD, and glypican-3 individually for detection of early HCC was 41.2% and 77.8% for CHC, 44.4% and 80.0% for FTCD, and 33.3% and 100% for glypican-3 (Table 6). The sensitivity of CHC or FTCD was better than that of glypican-3. Moreover, the sensitivity significantly increased by combination of these markers, 72.2% for CHC + FTCD, 61.1% for CHC + glypican-3 and FTCD + glypican-3. This is because 44% of glypican-3–negative eHCCs were able to be detected by either CHC or FTCD staining. These results support that CHC and FTCD are potential biomarkers for early detection of HCC.

Discussion

In this study, we compared protein expressions between HCC and adjacent nontumor tissues using a proteome method. A total of 83 proteins with altered expression were identified. Validation of the differentially expressed protein by immunoblot or immunostaining demonstrates that CHC, Ku86, FTCD, rhodanese, and vinculin showed striking differences between tumor and nontumor tissues. Evaluation of the staining intensity of CHC and FTCD enabled us not only to distinguish nontumor and tumor tissues with high accuracy but to discriminate eHCC and benign tumors such as dysplastic and regenerative nodules, which is challenging for expert pathologists. Moreover, CHC and FTCD were able to detect several glypican-3–negative eHCCs, which considerably improved the diagnostic accuracy of eHCC by combination of these markers.

In recent years, the incidence of HCC has been increasing in a number of countries, including Europe and the United States. As a result, considerable emphasis is now placed on the surveillance of HCC. Recent guidelines for HCC management recommend the combined use of alpha-fetoprotein and ultrasonography for HCC surveillance. When small hepatic masses of 1 to 2 cm within a cirrhotic liver are detected, these lesions should undergo biopsy if they do not exhibit typical radiological features of HCC. Accordingly, a distinction between benign and malignant tumor is demanded for pathologists in small

Table 4. Histology of HCC and Non-HCC Tissues on Tissue Array

Histology	Case
HCC tissue	
Well-differentiated HCC	14
Moderately differentiated HCC	40
Poorly differentiated HCC	11
Unclassified	18
Non-HCC tissue	
Chronic hepatitis	8
Cirrhosis	19
Dysplastic nodule	1
Nonspecific reactive change	11
Reactive hepatitis	20
Unknown	9
biopsies, and further immunohistochemical markers with
sufficient sensitivity and specificity are desired. Some
markers that can distinguish HCC from dysplastic nod-
ules in cirrhosis have recently been reported.17 The diag-
nostic yield of three putative HCC markers, HSP70,
glypican 3, glutamine synthetase, was investigated; these
were previously proposed by other researchers as prom-
ising markers for HCC. However, we identified two
novel proteins, CHC and FTCD, by comprehensive
proteome analysis, and they were found to be useful for
the pathological diagnosis of HCC. Diagnostic values,
such as the sensitivity and specificity of proteins for
HCC, are comparable to glypican-3 in our analyses.
More importantly, the sensitivity and specificity signif-
icantly increased when immunostaining of glypican-3
was used with that of CHC and FTCD. Thus, a com-
bination of these markers is useful for screening of
HCC.

Overexpression of CHC in HCC was confirmed by
immunoblotting, and most HCC showed strong and
scattered staining in the cytoplasm and plasma mem-
branes. Although CHC overexpression has not been re-
ported in any other primary human cancers, fusion of the
CHC gene to other genes, such as ALK and TFE3, has
been documented in large B-cell lymphoma, pediatric re-
nal adenocarcinoma, and inflammatory myofibroblastic
tumor.20-24 These results indicate that deregulated expres-
sion of CHC might play important roles for tumorigen-
esis. CHC is known to be localized in the plasma
membrane and the cytoplasmic face of intracellular or-
ganelles in the plasma membrane, called coated vesicles
and coated pits. These specialized organelles are involved
in the intracellular trafficking of receptors and endocyto-
sis of a variety of macromolecules.25 Recently, Royle et
al.26 showed that clathrin stabilizes fibers of the mitotic
spindle to aid the congression of chromosomes. Because
deregulation of mitotic processes leads to chromosomal
instability, known as marker of cancer, the importance of
clathrin in normal mitosis may be relevant to understand-
ing human cancers. We have previously shown that kinet-
ochore proteins, CENP-A and CENP-H, are up-
regulated in human primary colon cancer, and their

Table 5. Immunohistochemical Analysis From Tissue Array of HCC
A
Expression
Non-HCC
3
2
1
0

| **B** |
Expression	**CHC**	**FTCD**	**Glypican-3**			
HCC (n = 83)	**Non-HCC (n = 68)**					
Sensitivity (%)	**Specificity (%)**					
+	-	+	-			
CHC = 3	43	40	3	65	51.8	95.6
FTCD = 1	51	32	1	67	61.4	98.5
Glypican-3 = 2	52	31	2	66	62.7	97.1
CHC = 3 or FTCD = 1	67	16	4	64	80.7	94.1
CHC = 3 or Glypican-3 = 2	59	24	6	62	71.1	91.2
FTCD = 1 or Glypican-3 = 2	72	11	3	65	88.7	95.6

| **C** |
Expression	**CHC**	**FTCD**						
Non-HCC	**Well**	**Moderate**	**Poor**	**Non-HCC**	**Well**	**Moderate**	**Poor**	
3	3 (4.4%)	3 (21.4%)	21 (52.5%)	8 (27.3%)	45 (66.2%)	4 (28.6%)	6 (15.0%)	1 (9.1%)
2	27 (39.7%)	6 (42.9%)	18 (45.0%)	3 (27.3%)	22 (32.4%)	4 (28.6%)	9 (22.5%)	4 (36.4%)
1	31 (45.6%)	4 (28.6%)	1 (2.5%)	0 (0%)	1 (1.5%)	4 (28.6%)	16 (40.0%)	4 (36.4%)
0	7 (10.3%)	1 (7.1%)	0 (0%)	0 (0%)	0 (0%)	2 (14.3%)	9 (22.5%)	2 (18.2%)

Table 6. Immunohistochemical Analysis of CHC, FTCD, and Glypican 3 in Early HCC Tissues
Expression
T > N or T < N
T > N or T < N
CHC
FTCD
Glypican-3

T, tumor tissues; N, nontumor tissues.
overexpression induces aneuploidy.14,27 Similarly, the up-regulation of CHC observed in this study might cause chromosome missegregation and lead to HCC development.

FTCD showed strong uniform staining in most non-tumor tissue, whereas weak staining was observed in HCC. Interestingly, the intensity of FTCD staining in well-differentiated HCC tissues was more likely to be stronger than that in poorly differentiated HCC tissues, suggesting that the expression of FTCD might be involved in the dedifferentiation of tumor cells. FTCD was previously identified as a 58-kDa rat liver protein with the cytoplasmic surface of the Golgi apparatus \textit{in vivo}.28 It is considered that FTCD is a liver-specific enzyme that controls folic acid metabolism.29 Although FTCD has also been recognized as a liver-specific antigen recognized by the sera of patients with autoimmune hepatitis,30 its involvement in carcinogenesis has not been reported. Thus, our observation is the first report that suggests that down-regulation of FTCD participates in liver carcinogenesis. In contrast, there are some examples in which the up-regulation of Ku86 is associated with tumor progression. Increased expression of Ku70 and Ku86 in a COX-2-dependent mechanism might be associated with hyperproliferation of gastric cancer cells.33 In addition, increased expression of Ku86 has been reported in B-cell chronic lymphocytic leukemia and in aggressive breast tumors.34,35 More precise work is needed to examine the expression level of Ku86 in various tumors and to test whether overexpression of Ku86 is a cause or consequence of tumorigenesis.

Rhodanese (EC 2.8.1.1) was originally identified as a mitochondrial matrix enzyme and was proposed to play a role in cyanide detoxification.36 Recently, it was demonstrated that H\textsubscript{2}S is a potent toxin normally present in the colonic lumen, which may play a role in ulcerative colitis, and rhodanese is the principal enzyme involved in H\textsubscript{2}S detoxification.37 In fact, the expression of rhodanese was focally lost in ulcerative colitis.38 Moreover, rhodanese was markedly reduced in advanced colon cancer.38 Given that chronic inflammation is an important underlying
condition for tumor development, anti-inflammatory protein such as rhodanese might prevent tumor progression. Recent data have also expanded the concept that inflammation is a critical component of carcinogenesis. In this regard, down-regulation of rhodanese might be a cause of HCC development and could be a potential target for cancer therapy.

Vinculin has a crucial role in the maintenance and regulation of cell adhesion and migration. On recruitment to cell–cell and cell–matrix adhesion–type junctions, vinculin becomes activated and mediates various protein–protein interactions that regulate the links between F-actin and the cadherin and integrin families of cell adhesion molecules. Because the loss of cell–cell and cell–matrix interaction is crucial for the development of tumors, down-regulation of vinculin might contribute to carcinogenesis. In fact, the expression of vinculin was repressed in lung carcinoma in surfactant protein C (SP-C)/c-raf transgenic mice. Overexpression of vinculin suppresses tumorigenicity in transformed cells, whereas cancer cells lacking vinculin enhance cell motility and are highly metastatic. Our finding that vinculin was repressed in HCC further supports its tumor suppressor function. Interestingly, although full-length vinculin is 117 kDa, smaller molecular weight protein (the major one being 60 kDa) was observed and down-regulated in nontumor tissues. Several reports have shown proteolytic cleavage of vinculin. For example, vinculin is proteolyzed by calpain into at least three fragments (105, 95, 85 kDa) during platelet aggregation. Conversely, alpha-actinin–vinculin interactions causes the conformational change of vinculin and generate an approximately 60-kDa fragment of vinculin by papain treatment; there-

References

1. Parkin DM, Bray F, Ferlay J, Pisani P. Estimating the world cancer burden: Globocan 2000. Int J Cancer 2001;94:153-156.
2. Feitelson MA, Sun B, Satiroglu Tufan NL, Liu J, Pan J, Lian Z. Genetic mechanisms of hepatocarcinogenesis. Oncogene 2002;21:2593-2604.
3. Pisani P, Parkin DM, Bray F, Ferlay J. Estimates of the worldwide mortality from 25 cancers in 1990. Int J Cancer 1999;83:18-29.
4. Statistics and Information Dept., Ministry’s Secretariat, Ministry of Health. Vital statistics of Japan 2003. Tokyo, 2003, 66-67.
5. Llover JM, Burroughs A, Bruix J. Hepatocellular carcinoma. Lancet 2003; 362:1907-1917.
6. Nomura F, Ishijima M, Kuwa K, Tanaka N, Nakai T, Ohnishi K. Serum des-gamma-carboxy prothrombin levels determined by a new generation of sensitive immunoassays in patients with small-sized hepatocellular carcinoma. Am J Gastroenterol 1999;94:650-654.
7. Brusi J, Sherman M. Management of hepatocellular carcinoma. Hepatology 2005;42:1208-1236.
8. Liang CR, Leow CK, Neo JC, Tan GS, Lo SL, Lim JW, et al. Proteome analysis of human hepatocellular carcinoma tissues by two-dimensional difference gel electrophoresis and mass spectrometry. Proteomics 2005;5:2258-2271.
9. Lim SO, Park SJ, Kim W, Park SG, Kim HJ, Kim YI, et al. Proteome analysis of hepatocellular carcinoma. Biochem Biophys Res Commun 2002;291:1031-1037.
10. Li C, Hong Y, Tan YX, Zhou H, Ai JH, Li SJ, et al. Accurate qualitative and quantitative proteomic analysis of clinical hepatocellular carcinoma using laser capture microdissection coupled with isotope-coded affinity tag and two-dimensional liquid chromatography mass spectrometry. Mol Cell Proteomics 2004;3:399-409.
11. Santamaria E, Munoz J, Fernandez-Irigoyen J, Prieto J, Corrales FJ. Toward the discovery of new biomarkers of hepatocellular carcinoma by proteomics. Liver Int 2007;27:163-173.
12. Wright LM, Kreikebeijk JT, Fimmel CJ. A concise review of serum markers for hepatocellular cancer. Cancer Detect Prev 2007;31:35-44.
13. Oh-Ishi M, Satoh M, Maeda T. Preparative two-dimensional gel electrophoresis with agarose gels in the first dimension for high molecular mass proteins. Electrophoresis 2000;21:1653-1669.
14. Tomonaga T, Matsushita K, Yamaguchi S, Oh-Ishi M, Kodera Y, Maeda T, et al. Identification of altered protein expression and post-translational modifications in primary colorectal cancer by using agarose two-dimensional gel electrophoresis. Clin Cancer Res 2004;10:2007-2014.
15. Nishimori T, Tomonaga T, Matsushita K, Oh-Ishi M, Kodera Y, Maeda T, et al. Proteomic analysis of primary esophageal squamous cell carcinoma reveals downregulation of a cell adhesion protein, periplakin. Proteomics 2006;6:1011-1018.
16. Capurro M, Wanless IR, Sherman M, Deboer G, Shi W, Miyoshi E, et al. Glypican-3: a novel serum and histochemical marker for hepatocellular carcinoma. Gastroenterology 2003;125:89-97.
17. Di Tommaso L, Franchi G, Park YN, Flamengo B, Destro A, Moreggi E, et al. Diagnostic value of HSP70, glypican 3, and glutamine synthetase in hepatocellular nodules in cirrhosis. Hepatology 2007;45:725-734.
18. Roncalli M, Roz E, Coggi G, Di Rocco MG, Bossi P, Minola E, et al. The vascular profile of regenerative and dysplastic nodules of the cirrhotic liver: implications for diagnosis and classification. Hepatology 1999;30:1174-1178.
19. Bosch FX, Ribes J, Diaz M, Cleries R. Primary liver cancer: worldwide incidence and trends. Gastroenterology 2004;127:55-516.
20. Stachurski D, Miron PM, Al-Homsi S, Hutchinson L, Lee Harris N, Woda B, et al. Anaplastic lymphoma kinase–positive diffuse large B-cell lymphoma with a complex karyotype and cryptic 3

21. Argani P, Lui MY, Couturier J, Bouvier R, Fournet JC, Ladanyi M. A novel CLTC-TFE3 gene fusion in pediatric renal adenocarcinoma with t(X;17)(p11.2;q23). Oncogene 2003;22:5374-5378.
22. Chikatani N, Kojima H, Suzuki K, Shintagaw A, Nagasawa H, Shinozaki K, et al. ALK gene insertion to human clathrin heavy chain (CLTC). Mod Pathol 2003;16:828-832.
23. Ma Z, Hill DA, Collins MH, Morris SW, Sumegi J, Zhou M, et al. Fusion of the ALK gene to the clathrin heavy chain gene, CLTC, in human clathrin heavy chain (CLTC)–immunopositive diffuse large B-cell lymphoma with a complex karyotype and cryptic 3

24. Bridge JA, Kanamori M, Ma Z, Pickering D, Hill DA, Lydiatt W, et al. Fusion of the ALK gene to the clathrin heavy chain gene, CLTC, in human clathrin heavy chain (CLTC)–immunopositive diffuse large B-cell lymphoma with a complex karyotype and cryptic 3
26. Royle SJ, Bright NA, Lagnado L. Clathrin is required for the function of the mitotic spindle. Nature 2005;434:1152-1157.

27. Tomonaga T, Matsushita K, Ishibashi M, Nezu M, Shimada H, Ochiai T, et al. Centromere protein H is up-regulated in primary human colorectal cancer and its overexpression induces aneuploidy. Cancer Res 2005;65:4683-4689.

28. Bloom GS, Brashear TA. A novel 58-kDa protein associates with the Golgi apparatus and microtubules. J Biol Chem 1989;264:16083-16092.

29. Bashour AM, Bloom GS. 58K, a microtubule-binding Golgi protein, is a formiminotransferase cyclodeaminase. J Biol Chem 1998;273:19612-19617.

30. Lapierre P, Hajoui O, Homberg JC, Alvarez F. Formiminotransferase cyclodeaminase is an organ-specific autoantigen recognized by sera of patients with autoimmune hepatitis. Gastroenterology 1999;116:643-649.

31. Difilippantonio MJ, Zhu J, Chen HT, Meffre E, Nusenzweig MC, Max EE, et al. DNA repair protein Ku80 suppresses chromosomal aberrations and malignant transformation. Nature 2000;404:510-514.

32. Tong WM, Cortes U, Hande MP, Ohgaki H, Cavalli LR, Lansdorp PM, et al. Synergistic role of Ku80 and poly(ADP-ribose) polymerase in suppressing chromosomal aberrations and liver cancer formation. Cancer Res 2002;62:6990-6996.

33. Lim JW, Kim H, Kim KH. Expression of Ku70 and Ku80 mediated by NF-kappa B and cyclooxygenase-2 is related to proliferation of human gastric cancer cells. J Biol Chem 2002;277:46093-46100.

34. Klein A, Miera O, Bauer O, Golffer S, Schriever F. Chemosensitivity of B cell chronic lymphocytic leukemia and correlated expression of proteins regulating apoptosis, cell cycle and DNA repair. Leukemia 2000;14:40-46.

35. Pucci S, Mazzarelli P, Rabitti C, Giai M, Galuzzi M, Flamia G, et al. Tumor specific modulation of Ku70/80 DNA binding activity in breast and bladder human tumor biopsies. Oncogene 2001;20:739-747.

36. Scott EM, Wright RC. Genetic polymorphism of rhodanese from human erythrocytes. Am J Hum Genet 1980;32:112-114.

37. Picton R, Eggo MC, Merrill GA, Langman MJ, Singh S. Mucoosal protection against sulphide importance of the enzyme rhodanese. Gut 2002;50:201-205.

38. Ramasamy S, Singh S, Taniere P, Langman MJ, Eggo MC. Sulfide-detoxifying enzymes in the human colon are decreased in cancer and upregulated in differentation. Am J Physiol Gastrointest Liver Physiol 2006;291:G288-G296.

39. Coussens LM, Werb Z. Inflammation and cancer. Nature 2002;420:860-867.

40. Bakolitsa C, Cohen DM, Bankston LA, Bobkov AA, Cadwell GW, Jennings L, et al. Structural basis for vinculin activation at sites of cell adhesion. Nature 2004;430:583-586.

41. Rutters H, Zurbig P, Halter R, Borfak J. Towards a lung adenocarcinoma proteome map: studies with SP-C/c-rat transgenic mice. Proteomics 2006;6:3127-3137.

42. Rodriguez Fernandez JL, Geiger B, Salomon D, Sabanay I, Zoller M, Ben-Ze’ev A. Suppression of tumorigenicity in transformed cells after transfection with vinculin cDNA. J Cell Biol 1992;119:427-438.

43. Raz A, Geiger B. Altered organization of cell-substrate contacts and membrane-associated cytoskeleton in tumor cell variants exhibiting different metastatic capabilities. Cancer Res 1982;42:5183-5190.

44. Coll JL, Ben-Ze’ev A, Ezzell RM, Rodriguez Fernandez JL, Baribault H, Oshima RG, et al. Targeted disruption of vinculin genes in F9 and embryonic stem cells changes cell morphology, adhesion, and locomotion. Proc Natl Acad Sci USA 1995;92:9161-9165.

45. Serrano K, Devine DV. Vinculin is proteolyzed by calpain during platelet aggregation: 95 kDa cleavage fragment associates with the platelet cytoskeleton. Cell Motil Cytoskeleton 2004;58:242-252.

46. Bois PR, Borgon RA, Vornlein C, Izard T. Structural dynamics of alpha-actinin-vinculin interactions. Mol Cell Biol 2005;25:6112-6122.