Carbon dioxide capture and efficient fixation in a dynamic porous coordination polymer

Pengyan Wu1, Yang Li1, Jia-Jia Zheng2,3, Nobuhiko Hosono2,4, Ken-ichi Otake2, Jian Wang1*, Yanhong Liu1, Lingling Xia1, Min Jiang1, Shigeyoshi Sakaki3 & Susumu Kitagawa2*

Direct structural information of confined CO2 in a micropore is important for elucidating its specific binding or activation mechanism. However, weak gas-binding ability and/or poor sample crystallinity after guest exchange hindered the development of efficient materials for CO2 incorporation, activation and conversion. Here, we present a dynamic porous coordination polymer (PCP) material with local flexibility, in which the propeller-like ligands rotate to permit CO2 trapping. This process can be characterized by X-ray structural analysis. Owing to its high affinity towards CO2 and the confinement effect, the PCP exhibits high catalytic activity, rapid transformation dynamics, even high size selectivity to different substrates. Together with an excellent stability with turnover numbers (TON) of up to 39,000 per Zn1.5 cluster of catalyst after 10 cycles for CO2 cycloaddition to form value-added cyclic carbonates, these results demonstrate that such distinctive structure is responsible for visual CO2 capture and size-selective conversion.

1 School of Chemistry and Materials Science, Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, Jiangsu Normal University, 221116 Xuzhou, Jiangsu, China. 2 Institute for Integrated Cell-Material Sciences, Kyoto University Institute for Advanced Study, Kyoto University, Yoshida Ushinomiya-cho, Sakyo-ku, Kyoto 606-8501, Japan. 3 Fukui Institute for Fundamental Chemistry, Kyoto University, Nishi-hiraki cho, Takano, Sakyo-ku, Kyoto 606-8103, Japan. 4 Present address: Department of Advanced Materials Science, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8561, Japan. *email: wjian@jsnu.edu.cn; kitagawa@icems.kyoto-u.ac.jp

https://doi.org/10.1038/s41467-019-12414-z
The huge consumption of fossil fuels has resulted in sharply rising levels of anthropogenic CO$_2$ emission, leading to serious linkage problems associated with global warming and climate change.$^{1-2}$ Practical CO$_2$ capture and sequestration (CCS) are currently usually limited to extensive energy input during desorption and compression processes.$^{3-5}$ Captured CO$_2$ should ideally be synchronously converted into high-value chemicals, allowing the emitted CO$_2$ to be reused in carbon cycling processes. One of the greenest approaches is cycloaddition of CO$_2$ to epoxides, a 100% atom-economical reaction, to form cyclic carbonates, which have numerous applications in petrochemicals, fine chemicals, and pharmaceuticals.$^{6-8}$ The relatively low reactivity and kinetic inertness of CO$_2$ make it essential to develop efficient catalytic systems for its incorporation, activation, and conversion. Furthermore, direct structural information of the molecular state of captured CO$_2$ by X-ray diffraction (XRD) techniques is invaluable despite the practical difficulties associated with its gaseous nature because this not only enables a thorough understanding of the specific host-guest interaction or activation mechanism and processes, but also leads to the development of new and improved catalysts. A limited number of reports$^{9-13}$ revealed that commensurate CO$_2$-trapping crystal structures were produced when the host has sufficient flexibility to trap guest molecules, resulting in a high probability of developing gas-trapping structures.

Porous coordination polymers (PCPs) or metal-organic frameworks (MOFs) are emerging as a promising class of crystalline porous materials with wide applications, including gas adsorption and storage,14,15 and heterogeneous catalysis.$^{16-18}$ PCPs therefore have an advantage over other catalysts with respect to CO$_2$ chemistry because of their integration of the inherent sorptive behavior with the uniform Lewis/Bronsted acidic or basic active sites endowed by their facile tunability and modular nature, as well as their ultra-high surface area and heterogeneous nature.$^{19-21}$ Furthermore, flexibility and softness in spatial and electronic structures can provide a dynamic space that transforms in response to guest trapping.$^{22-24}$ Flexible structures usually have lower thermal stability than rigid structures in a single network; however, this problem can be overcome by interpenetration.25 Despite this, the location of CO$_2$ molecules in an interpenetrated PCP crystal has not yet been reported. PCPs also impose size-selective and shape-selective restrictions through readily fine-tuned channels and pores, displaying a molecular sieving effect.26,27 Thus our aim is to introduce local electronic structures can provide a dynamic space that transforms in response to guest trapping, lending itself to trap guest molecules, resulting in a high probability of developing gas-trapping structures.

Here, we report the successful design of a two-fold interpenetrated framework, Zn-DPA·2H$_2$O (DPA = 4,4',4''-tricarboxyltriphenylamine and (E)-1,2-di-(pyridin-4-yl)diazene). Their propeller-like ligands 4,4'-carboxyltriphenylamine and (E)-1,2-di-(pyridin-4-yl)diazene (dpa).

Results

Synthesis and characterization of Zn-DPA·2H$_2$O and Zn-DPA. The reaction of Zn(NO$_3$)$_2$·6H$_2$O, 4,4'-carboxyltriphenylamine and (E)-1,2-di-(pyridin-4-yl)diazene (dpa) under solvothermal condition gave red crystals Zn-DPA·2H$_2$O ([Zn$_{1.5}$(tca)(dpa)$_{0.45}$]·2H$_2$O) in high yield (82%). A single-crystal XRD study revealed that Zn-DPA·2H$_2$O crystallizes in monoclinic space group C2/c. The asymmetric unit of Zn-DPA·2H$_2$O contains one and a half Zn$^{2+}$ ions, one deprotonated tca$^{2-}$ anion, half of a dpa ligand and two lattice water molecules. The Zn(1) atom is hexacoordinated by six carboxylate oxygen atoms belonging to six different tca$^{2-}$ ligands, forming an octahedral geometry (Supplementary Fig. 1). Adjacent Zn(II) centers are linked by carboxylate oxygen atoms of tca$^{2-}$ ligands with a Zn1–Zn2 separation of 3.338(2) Å, forming a trinuclear Zn$_6$(CO$_2$)$_6$ unit (Supplementary Fig. 2). It is noteworthy that two unsaturated zinc centers on both ends of a trinuclear unit are well-oriented toward the channels, facilitating their full accessibility for the substrates to their open sites of Lewis acidic centers (Supplementary Fig. 3).

The tca$^{2-}$ ion resembles a propeller with the central nitrogen having sp3 hybridization, since its phenyl rings are tilted relative to each other with dihedral angles of 78.2(6)$^\circ$, 80.6$^\circ$, and 87.6(9)$^\circ$ (Fig. 1a). The dihedral angle between the phenyl rings of two tca$^{2-}$ ligands located at the trans position of the Zn$_6$(CO$_2$)$_6$ cluster is 0.0$^\circ$, and the N–N distance between these ligands is 16.57 and 16.84(3) Å (Supplementary Fig. 5). Each tca$^{2-}$ ligand-linked six Zn(II) centers in a μ$_6$-η1-η1-η1-η1-η1-η1 manner to form an infinite two-dimensional (2D) sheet parallel to the ab plane (Supplementary Fig. 4); these adjacent layers are further pillared in the third dimension by accessorial dpa ligands through their pyridine groups to afford an extended 3D coordination framework with one-dimensional rectangular channels of ca. 13.2 × 9.7 Å2 along the b-axis (Supplementary Fig. 6). This exhibits a two-nodal (3,8)-connected tfz-d topology with the (42)$_0$(66)-98 Schl"{a}fli symbol (Supplementary Fig. 7). Notably, the large channel allows the penetration of another identical net; thus, the entire structure of Zn-DPA·2H$_2$O is a two-fold interpenetrated 3D net (Fig. 1b). The interpenetrated nets are connected through C–H–π interactions (spacings 3.15 Å). Despite interpenetration, three-dimensionally running channels with cross-sections of 5.8 × 11.5 Å2 are still observed along the b-axis (Fig. 1c and Supplementary Fig. 3). The solvent-accessible volume calculated by the PLATON program is 1883.3 Å3, which is 31.6% of the unit-cell volume.

The thermogravimetric analysis curve of Zn-DPA·2H$_2$O reveals that the lattice water molecules are removed by heating and that the coordination framework is thermally stable up to ca. 260 ºC. Thus, desolvation was accomplished by heating as-synthesized Zn-DPA·2H$_2$O at 120 ºC under vacuum for 32 h to generate desolvated Zn-DPA ([Zn$_{1.5}$(tca)(dpa)$_{0.45}$]$_n$ and TGA (Supplementary Fig. 8) clearly indicated that the guest water molecules were completely excluded. Single-crystal XRD of desolvated Zn-DPA indicated that Zn-DPA has a similar unit-cell volume with minor distortions (∆V/V$_{Zn-DPA·2H_2O}$ = 0.45%, ∆β = + 0.4º) compared to Zn-DPA·2H$_2$O (Supplementary Table 1). Three phenyl rings of the tca$^{2-}$ units undergo minor rotational rearrangements upon desolvation, resulting in dihedral angles relative to each other of 80.7(6)$^\circ$, 81.5(5)$^\circ$, and 86.6(9)$^\circ$ (Fig. 1d). Two phenyl rings of the tca$^{2-}$ ligands located at the trans position around the Zn$_6$(CO$_2$)$_6$ cluster remain parallel to each other (dihedral angle, 0.0º); however, one of N–N distance between these two tca$^{2-}$ ligands decreases to 16.56(5) Å (Supplementary Fig. 5). This also leads to corresponding small changes in many of the key dihedral angles and torsion angles, which are summarized in Supplementary Table 2. In particular, the torsion angle of O–Zn–O–C changes from −3.08º and −56.95º to 1.30º and −58.64º. Detailed analysis revealed small but non-negligible framework deformations. There was a minimal variation in the interlayer distance between the 2D sheets and the angle between the sides of the 3D net, and the distance between the different interpenetrated nets increased...
slightly from 17.053 Å in Zn-DPA·2H₂O to 17.084 Å in Zn-DPA (Fig. 1e); thus, the main channels (void volume: 31.6%) are still remained. A careful comparison of the two powder X-ray diffraction (PXRD) patterns of as-synthesized Zn-DPA·2H₂O and Zn-DPA also further confirmed that their frameworks remained almost unchanged (Supplementary Fig. 9).

Direct observation of CO₂ molecules trapped in Zn-DPA. Desolvated Zn-DPA shows no obvious sorption of N₂ at 77 K (Supplementary Fig. 10). At 195 K, CO₂ sorption by Zn-DPA gave a reversible Type-I isotherm without hysteresis (Fig. 2a), indicating that the effective micropore filling occurs for CO₂. The saturated CO₂ uptake was about 78.4 cm³ g⁻¹, corresponding to 15.6 wt% or 2.0 CO₂ per formula unit. The Brunauer–Emmett–Teller (BET) surface area of Zn-DPA was determined as 283 m² g⁻¹. At 273 and 293 K, the adsorption isotherms of CO₂ show a gradual increase and reach maximal amounts of 44.5 cm³ g⁻¹ (8.7 wt%) and 34.8 cm³ g⁻¹ (6.8 wt%), respectively. The coverage-dependent CO₂ adsorption enthalpy (Q_st) of Zn-DPA was calculated using the Clausius–Clapeyron equation based on isotherms measured at 273 and 293 K (Fig. 2b and Supplementary Fig. 11). The obtained Q_st was found to be in the range 29.4–32.4 kJ mol⁻¹ by fitting the data to the virial model²⁸. The high Q_st may indicate strong interactions between the Zn-DPA coordination framework and CO₂ guests.

To determine the interactions between the CO₂ adsorbate and the constructed frameworks, a single crystal of evacuated...
Zn-DPA was fixed inside a glass capillary and sealed with back-filled CO₂ (101 kPa, 195 K). The resulting CO₂-loaded single crystal could be characterized with a conventional X-ray diffractometer at 183 K, where Zn-DPA could absorb two CO₂ molecules per formula unit (Fig. 1h, i). Within each pore, three types of independent CO₂-binding sites were located: CO₂-I [O(1A)–C(1A)–O(2A)], CO₂-II with slight disorder [O(1C)–C(1C)–O(2C)], and O(1CC)–C(1CC)–O(2CC)] and CO₂-III [O(1B)–C(1B)–O(2B)]. Compared with the structure of the dried Zn-DPA, the unit cell of Zn-DPA–CO₂ displays a slight expansion and an obvious distortion (ΔV/V = 0.34%, Δβ = +0.2°) (Supplementary Table 1). The dihedral angles of the tca³⁻ ligands are 78.3(3)°, 82.5(2)°, and 82.7(9)° (Fig. 1g). It was found that CO₂-I was 77% occupancy, adjacent to the unsaturated zinc center, formed the electrostatic interaction in end-on fashion with a Zn–O distance of 3.17(1) Å, which was significantly shorter than the sum of van der Waals radii of zinc (2.10 Å) and oxygen (1.52 Å). The C(δ+)–O atom of CO₂-I also interacts with two carboxylate O atoms from tca³⁻ ligands [C(δ+)–O(3b)–C(3b)–O(6a) – 3.13(2), 3.22(9) Å]. Another O of CO₂ interacts with the pyridyl H atom of dpa ligands and phenyl H atom of tca³⁻ ligands via C–H···O hydrogen bonding with short H–O distances of 2.64(7), 2.88 (2) Å, respectively (Supplementary Fig. 12). CO₂-II (64% occupancy) and CO₂-III (59% occupancy) are located between tca³⁻ ligands via the host–guest C–H···O interactions (2.68(6) Å [O1CC–H4], 2.84(6) Å [O1CC–H2], 2.82(1) Å [O2B–H7], respectively). In addition, CO₂-I molecule interacts with neighbor CO₂-II and CO₂-III in T-shaped [(C(δ+)–O(3b))–O(6a)–C(3b) = 3.90(9) Å, C1A–O2C] and slipped parallel conformation [C(δ+)–C = 3.70 (3) Å, C1A–C1B; 3.26(3) Å, C1A–C1C]. The distance between the different interpenetrated nets is 16.975 Å and the void volume is 31.6% (when CO₂ molecules are omitted) upon CO₂ adsorption (Fig. 1h).

Furthermore, the canonical Monte Carlo (MC) simulations followed by geometry optimization using the PBE-D3 functional indicate that CO₂ molecules are found at three sites, which agree with the experimental result. The PBE-D3-calculated binding energy (BE) for adsorption of one CO₂ molecule in Zn-DPA decreases following the order site I > site II > site III, suggesting that the site I is the most favorable for CO₂ adsorption at low loading (Supplementary Fig. 13). This result was analyzed by using the EINT(H-G) between CO₂ and Zn-DPA and EDEF(H) of Zn-DPA. Because EDEF(G) is negligibly small, it is not discussed herein. The EDEF(H) is similar among the sites I, II, and III (Supplementary Table 3). However, the EINT(H-G) at the site I (−9.88 kcal mol⁻¹) is much larger (much more negative) than at the sites II and III. This EINT(H-G) at the site I mainly arises from the electrostatic interactions of CO₂ molecule with Zn²⁺ and carboxylates because the negatively charged O atom approaches the positively charged Zn atom and the positively charged C atom approaches the negatively charged O atom of the carboxylates (Supplementary Fig. 14). Because the Zn²⁺–CO₂ interaction is absent at the sites II and III, the EINT(H-G) is weaker at these sites than at the site I. This is the reason why the site I exhibits the largest (most negative) CO₂-binding energy. These results indicate that CO₂ adsorption into Zn-DPA is likely to occur first at the site I and then CO₂ adsorption starts to occur at the site II or III. The present calculations also showed the BE value is similar between the sites II and III in the presence of 8 CO₂ molecules at the site I (Supplementary Table 4), exhibiting that CO₂ adsorption similarly occurs at these sites II and III. These computational results are consistent with the experimental results by the single-crystal XRD that CO₂ molecules are found in similar occupancy at both of the sites II and III but the probability is lower than that at the site I. Thus, the combined experimental and computational results suggest that Zn-DPA has a high CO₂-binding affinity and could activate CO₂.

Size-selective fixation of captured CO₂ in Zn-DPA. The ability of CO₂ capture and the Lewis acid metal sites embedded in its framework suggest that Zn-DPA is a highly promising size-selective heterogeneous catalyst for reactions of CO₂ with substrate. Our catalytic experiments focused on the cycloaddition of carbon dioxide and epoxides. This reaction was performed with Zn-DPA in an autoclave reactor at 1 MPa and 373 K. A small aliquot of the supernatant reaction mixture was analyzed by nuclear magnetic resonance spectroscopy (¹H NMR) to calculate the reaction yield (Supplementary Fig. 15). As shown in Table 1, the transformation was initially examined by using 2-[(phenoxymethyl)oxirane (20 mmol) and CO₂ as the coupling partners, along with 5 μmol of Zn-DPA (based on Zn₁.₅ cluster) and co-catalytic amounts (0.3 mmol) of tetrabutylammonium bromide (TBABr). The results indicated that Zn-DPA can serve as an effective catalyst for the solvent-free synthesis of cyclic carbonates, affording an almost complete conversion within 2 h. The turnover number (TON) was ~4000 per Zn₁.₅ cluster of Zn-DPA, and the turnover frequency (TOF) was ~2000 per Zn₁.₅ cluster of Zn-DPA per hour. To the best of our knowledge, these values are higher than all of those previously reported for MOF-based catalysts in the cycloaddition of carbon dioxide to epoxides under similar conditions. Several control experiments were conducted, e.g. the absence of any of the individual components.

Fig. 2 Isotherms and isosteric heats of CO₂ sorption. a CO₂ adsorption isotherms for Zn-DPA at 195 K (black), 273 K (blue), and 293 K (purple); stp is standard temperature and pressure. b Isosteric heats of CO₂ adsorption for Zn-DPA.
containing Zn-DPA, TBABr, and both, led to only 10% even hardly any 4-(phenoxymethyl)-1,3-dioxolan-2-one product (Supplementary Table 5, entries 1–3). The subcomponents of Zn-DPA were then investigated independently. H$_3$tca, abp, or Zn(NO$_3$)$_2$·6H$_2$O instead of Zn-DPA was applied to CO$_2$ fixation reaction under the same conditions as mentioned above, leading to 11%, 12%, and 43% yield in this product formation (Supplementary Table 5, entries 4–7). Thus, this demonstrated that our MOF Zn-DPA is essential for the cycloaddition reaction of carbon dioxide to epoxides.

We further examined the performance of Zn-DPA in corresponding CO$_2$ cycloaddition reactions, under the same mild conditions, with aliphatic epoxides or aromatic epoxides substituted with different functional groups to check the generality of the catalyst. In the presence of aliphatic epoxides, such as allyl glycidyl ether, butyl glycidyl ether, glycicyl methacrylate, and glycol diglycidyl ether, all gave a high yield (> 90%, Table 1, entries 2–5). The introduction of nitro- or methoxy-groups onto the phenyl ring gave ∼88% and 81% of the respective products under the same reaction conditions. Interestingly, as the molecular size of the epoxide substrate increased, the yield of cyclic carbonate decreased significantly, as illustrated by the 49% yield of 4,4′-((1,3-phenylenebis(oxy))bis(methylene))bis(1,3-dioxolan-2-one) (Table 1, Entry 8). With the bulky epoxide bis(4-(oxiran-2-ylmethoxy)phenyl)methane, there was a dramatic decrease in the yield of cyclic carbonates with only

Entry	Epoxides	Molecular Size	Yieldb (%)	TONc	TOPd
1	![Epoxide](image1)	![Molecular Size](image2)	>99	4000	2000
2	![Epoxide](image3)	![Molecular Size](image4)	99	3960	1980
3	![Epoxide](image5)	![Molecular Size](image6)	99	3960	1980
4	![Epoxide](image7)	![Molecular Size](image8)	98	3920	1960
5	![Epoxide](image9)	![Molecular Size](image10)	91	3640	1820
6	![Epoxide](image11)	![Molecular Size](image12)	88	3508	1754
7	![Epoxide](image13)	![Molecular Size](image14)	81	3252	1626
8	![Epoxide](image15)	![Molecular Size](image16)	49	1940	970
9	![Epoxide](image17)	![Molecular Size](image18)	14	572	286

aReaction conditions: epoxide (20 mmol), catalyst (5 μmol, based on Zn$_{1.5}$ cluster), and TBABr (0.3 mmol) under carbon dioxide (1 MPa), 373 K and 2 h
bYield of isolated product was determined by 1H NMR spectroscopy
cMoles of cyclic carbonate per mole of catalyst Zn-DPA
dMoles of cyclic carbonate per mole of catalyst Zn-DPA per hour
14\% conversion of the reactants, suggesting that the large epoxide substrate restricted diffusion into the pores of Zn-DPA, which limited the access of reactants to the active sites (Table 1, Entry 9)11,32, resulting in size-selective catalysis. Such remarkably high efficiency and size selectivity to epoxides in catalytic CO\textsubscript{2} cycloaddition confirm that the PCP Zn-DPA is a suitable heterogeneous catalyst for carbon fixation. Notably, the catalytic effect in an open-dense flexible PCP was not different for small and bulky epoxide substrates, which highlights the importance of the adaptable channels for the size-selective catalysis for CO\textsubscript{2} fixation (Supplementary Table 6).

FT-IR spectra of Zn-DPA impregnated with a methanol solution of 2-(phenoxymethyl)oxirane (Supplementary Fig. 16) revealed peaks emerging at 1275 and 920 cm-1 corresponding to the characteristic peaks of the Ar–C–O asymmetric and C–O–C symmetric stretching vibrations. A red shift from 1724 cm-1 (free epoxide) combined with its 1H NMR data (Supplementary Fig. 17) indicated adsorption and activation of the epoxide in the channels of Zn-DPA. Density functional theory calculation was carried out to obtain deep insight into the interaction between Zn-DPA and 2-(phenoxymethyl)oxirane molecule (Supplementary Fig. 18). The close contact was observed between the epoxy O atom of substrate and the zinc ion (Zn–O: 3.24(4) Å). C–H···π interaction was also observed between the phenyl hydrogen atom and 2-(phenoxymethyl)oxirane molecule (Supplementary Fig. 18).

Reusability of catalyst Zn-DPA. a Time-course and recycling CO\textsubscript{2} fixation experiments with Zn-DPA under standard conditions. b PXRD patterns of simulated Zn-DPA (bottom), synthesized Zn-PDA (middle), and Zn-PDA after 10 successive times of the CO\textsubscript{2} fixation reaction with 2-(phenoxymethyl)oxirane (top).

In summary, we have successfully constructed a new two-fold interpenetrated PCP that possesses adaptable property for capturing, concentrating, and converting CO\textsubscript{2} using a flexible propeller-like ligand. We have demonstrated that the PCP presents efficient accommodation to CO\textsubscript{2}, which has been confirmed by single-crystal structure analysis of CO\textsubscript{2}-adsorbed phases. Its inherent CO\textsubscript{2} absorbability, exposed Lewis acid metal sites, and well-defined pores allow this PCP to promote effective size-selective fixation of captured CO\textsubscript{2} with appropriate epoxides in a one-pot reaction. Our strategy will open up a new dimension of porous compounds as platforms for determining the gas-loaded crystal structures and efficient utilization of C1 resources. The key to success is to introduce a durable interpenetrated framework, a local flexibility to induce adjustable capture and catalytic Lewis acid sites in the pores.

Methods

Characterizations. Element analyses of C, H, and N was performed on a Vario EL III elemental analyzer. Hydrogen NMR spectra were measured on a Bruker-400 spectrometer with Me\textsubscript{4}Si as an internal standard. X-ray powder diffraction (XRD) patterns of the PCPs were recorded on a Rigaku D/max-2400 X-ray powder diffractometer (Japan) with Cu-K\textsubscript{α} (λ = 1.5405 Å) radiation. Thermogravimetric analysis (TGA) was carried out at a ramp rate of 5 °C/min in a nitrogen flow with a Mettler-Toledo TGA/SDTA851 instrument. FT-IR spectra were recorded using KBr pellets on a JASCO FT/IR 430 spectrometer. Gas adsorption isotherms were obtained on a BELSORP-max adsorption instrument (BEL Japan Inc.) using a volumetric technique. The initial outgassing of the sample was carried out under high vacuum (P < 10-2 Pa, T = 120 °C) for 32 h to remove solvated water molecules. The CO\textsubscript{2} adsorption isotherms for desolvated compounds were collected in a relative pressure range from 10 to 1.0 × 10-3 Pa.

Synthesis of Zn-DPA·2H\textsubscript{2}O. A mixture of 4,4′,4′-tricarboxyltriphenylamine (H\textsubscript{3}tca) (18.9 mg, 0.05 mmol), (E)-1,2-di(pyridin-4-yl)diazene (9.2 mg, 0.05 mmol), and Zn(NO\textsubscript{3})\textsubscript{2}·6H\textsubscript{2}O (29.8 mg, 0.1 mmol) was dissolved in ethanol/water (9/1, 5 mL) in a screw capped vial. The resulting mixture was placed in an oven at 110 °C for 3 days. Red block-shaped crystals were obtained after filtration. Yield:
Synthesis of Zn-DPA. Crystals of Zn-DPA 2H2O were heated to 120 °C in vacuum for ~32 h to afford single crystals of deoxylated Zn-DPA suitable for single-crystal XRD. Anal. calcd. for C26H16N3O6Zn1.5: C, 55.31; H, 2.86; N, 7.44%. Found: C, 55.36; H, 2.79; N, 7.43%.

Single-crystal X-ray diffraction analyses. A single crystal was selected to put in a capillary and evaporated at 120 °C under reduced pressure (below 10⁻² Pa) overnight. Then, CO2 was slowly introdused into the capillary until the pressure reaching 101 kPa at 195 K. After 10 min at 195 K under 101 kPa CO2 atmosphere, the glass capillary was sealed using small torch flame. The gas-loaded crystals were mounted onto a Rigaku XtaLAB AFO10 diffractometer equipped with Mo Ka (λ = 0.71073 Å) optic and slowly cooled down and diffraction data were collected at 183 K. Solution refinement of this structure was performed through direct methods and full-matrix least-squares methods based on F² values with SHELXTL version 2018/3.

Typical procedure for CO2 cycloaddition of epoxides. The catalytic reaction was conducted in a 30 mL autoclave reactor, which was purged with 1 MPa CO2 under constant pressure for 15 min to allow the system equilibration. The vessel was set in an oil bath with constant stirring at 373 K for 2 h. At the end of the reaction, the reactor was placed in an ice bath for 20 min and then opened. The catalysts were separated by centrifugation, and a small aliquot of the supernatant reaction mixture was analyzed by 1H NMR to calculate the reaction yields.

Data availability. The X-ray crystallographic coordinates for structures reported in this study have been deposited at the Cambridge Crystallographic Data Centre (CCDC), under deposition numbers 1564761–1564763. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif. All other data supporting the findings of this study are available within the article and its Supplementary Information, or from the corresponding author upon reasonable request.
Additional information
Supplementary information is available for this paper at https://doi.org/10.1038/s41467-019-12414-z.

Correspondence and requests for materials should be addressed to J.W. or S.K.

Peer review information Nature Communications thanks Stephen Argent and the other, anonymous, reviewers for their contribution to the peer review of this work. Peer reviewer reports are available.

Reprints and permission information is available at http://www.nature.com/reprints

Publisher's note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.