A Rapid, Simple, Trace, Cost-Effective, and High-Throughput Stable Isotope-Dilution Liquid Chromatography–Tandem Mass Spectrometry Method for Serum Methylmalonic Acid Quantification and Its Clinical Applications

Lizi Jin 1,2,†, Zhenni Liu 1,2,†, Weiyuan Zhou 1,2, Wei Zeng 1, Minhang Wu 3, Yu Zhang 3, Tianjiao Zhang 1,2, Falin He 1,2,* and Chuanbao Zhang 1,2,*

1 National Center for Clinical Laboratories, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology, Beijing 100730, China
2 Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
3 Zhejiang Biosan Biochemical Technologies Co., Ltd., Hangzhou 310012, China
* Correspondence: flhe@nccl.org.cn (F.H.); cbzhang@nccl.org.cn (C.Z.); Tel.: +86-010-58115059 (F.H. & C.Z.); Fax: +86-010-65132968 (F.H. & C.Z.)
† These authors contributed equally to this work.

Highlights:
What are the main findings?
• An established method for trace, simple, rapid, cheap, sensitive, accurate, robust, and high-throughput for methylmalonic acid quantification.
• Good chromatographic separation of MMA and its intrinsic isomer and good signals of MMA were achieved using a simple isocratic elution strategy.
• Materials and reagents that are complex or not always accessible and procedures in previous methods such as derivatization, multistep SPE, incubations, evaporations, drying, or reconstitutions are not required in this MMA quantification method.

What is the implication of the main finding?
• This method is suitable for large-scale MMA testing.

Abstract: Background: Methylmalonic acid (MMA) is an essential indicator of vitamin B12 (VB12) deficiency and inherited metabolic disorders (IMDs). The increasing number of requests for MMA testing call for higher requirements for convenient MMA testing methods. This study aims to develop a convenient quantification method for serum MMA. Methods: The method was established based on the stable isotope-dilution liquid chromatography–tandem mass spectrometry (ID-LC-MS/MS) technique. The LC-MS/MS parameters and sample preparation were optimized. Specificity, sensitivity, robustness, accuracy, and clinical applicability were validated according to CLSI C62-A guidelines. MMA levels in VB12-sufficient subjects and VB12-deficient subjects were measured. Results: MMA and its intrinsic isomer, i.e., succinic acid (SA), were completely separated. The average slope, intercept, and correlation relationship (R) with 95% confidence intervals, during the two months, were 0.992 (0.926–1.059), −0.004 (−0.012–0.004), and 0.997 (0.995–0.999), respectively. The limit of detection and quantification were <0.058 µmol/L and 0.085 µmol/L, respectively. Intra-run, inter-run, and total imprecisions were 1.42–2.69%, 3.09–5.27%, and 3.22–5.47%, respectively. The mean spiked recoveries at the three levels were 101.51%, 92.40%, and 105.95%, respectively. The IS-corrected matrix effects were small. The VB12-deficient subjects showed higher MMA levels than VB12-sufficient subjects. Conclusions: A convenient LC-MS/MS method for serum MMA measurement was developed and validated, which could be suitable for large-scale MMA testing and evaluating MMA levels in VB12-deficient patients.
Keywords: liquid chromatography–tandem mass spectrometry; methylmalonic acid; vitamin B12 deficiency; method improvements

1. Introduction

Methylmalonic acid (MMA), an abnormal metabolic product of defective cobalamin metabolism and methylmalonate, is considered to be a specific diagnostic biomarker of vitamin B12 (VB12) deficiency [1–4] and methylmalonic acidemia [5]. VB12 (i.e., cobalamin) is a key cofactor of the enzymatic conversion of methylmalonyl-CoA to succinyl-CoA and the conversion of homocysteine to methionine [6]. An insufficiency of VB12 can lead to elevated methylmalonyl-CoA and homocysteine, causing high levels of MMA and total homocysteine (tHcy) in the blood [3,4]. VB12 deficiency is a common and serious condition [3,4,7] with a high prevalence across many populations, for example, 70–80% in African and Asian children, 40% in Latin American children and adults, and close to 20% in the elderly [3,7]. The measurement of MMA level is also helpful in the screening, confirmation diagnosis, and therapy monitoring of inherited metabolic disorder (IMD) [8].

Early identification of VB12 deficiency is vital for early determination of causes and early prevention and remission of serious presentations; VB12, tHcy, and MMA are all helpful diagnostic indicators for these disorders. The VB12 assay is the most commonly used test. However, previous studies have suggested that MMA is a more sensitive and representative biomarker for VB12 deficiency than VB12 and tHcy [3,4], because: (1) Testing for tHcy is less specific since its concentrations can be easily influenced by many environmental factors [3,9]; (2) VB12 is a less stable indicator and is easily affected by environmental factors [10], while MMA is very stable [11]; (3) MMA is more sensitive than VB12 because MMA can increase before VB12 falls [12,13]; (4) Elevated MMA can persist for several days even after replacement is started [14]. (5) VB12 measurements cannot reflect the true status of VB12. VB12 is measured by automated immunoassays based on competitive-binding immune chemiluminescence [3,15,16]. However, immunoassays lack specificity since they simultaneously measure VB12, as well as holohaptocorrin and holotranscobalamin [3,10]. Under these circumstances, increasingly more requests for MMA testing, and therefore, effective and convenient MMA testing is in demand.

MMA is a “mass spectrometry (MS)-based disease biomarker” [17]. Currently, there are no routine economic immunoassays that can quantify MMA. Gas chromatography–mass spectroscopy (GC-MS) [18] was the gold standard for MMA measurements. However, GC-MS-based MMA testing has several drawbacks (including high costs, cumbersome and laborious procedures, large sample volume, and long analytical time) [19,20]. Liquid chromatography–tandem mass spectroscopy (LC-MS/MS) methods are currently preferred for MMA measurements [14,21–38].

There are many published papers on MMA measurements by LC-MS/MS, using derivatized, non-derivatized, more or less complicated sample extraction, etc. Table 1 summarizes the reported analytical procedures of MMA measurement based on LC-MS/MS (from 2000 to 2022 [14,21–38]). Given a comprehensive consideration of all the method procedures as well as the aspects of cost-effectiveness, testing speeding, convenience, method performance, purpose, degree of difficulty for introducing the testing, robustness, accuracy, safety, and environmental protection, it is evident that all of these methods have their advantages and disadvantages. The improvement history of MMA testing shows that the method procedures basically consist of one or more of the following steps: multistep solid-phase extraction (SPE), derivations, protein precipitation, and ultrafiltration, while to complete the above step, at least one of the processes of evaporations, incubations, heating, dryings, reconstitutions, or centrifugations is required [14,21–38]. Improvements in procedures have usually focused on reducing these steps by changing different reagents or materials or by applying new materials [14,21–38]. These improvements have reduced time and cost. However, with the deepening understanding of the clinical significance
of MMA and the widespread popularization of mass spectrometry technology in clinical laboratories, requests for MMA testing are evidently increasing, which calls for more convenient testing methods.

Different from the previous paths of improvement, we took advantage of a simple mobile phase strategy to improve simple MMA detection, which required fewer reagents and a smaller sample. There was no need for complex and dangerous derivation reagents, costly/not always accessible ultrafiltration materials, or processes that are time-consuming and laborious, such as evaporations, incubations, dryings, and reconstitutions. The established method in this study demonstrated several advantages for MMA detection, for example, convenient, environmentally friendly, economical, and more cost-effective for the assessment of VB12 deficiency; only several simple reagents in small volume were needed and sample preparation could be completed in 20 min. Since LC-MS/MS testing is currently mainly manual, such improvements are significant, especially, when there are numerous requests for MMA testing.
Table 1. A literature review of previous methylmalonic acid quantification based on the liquid chromatography–tandem mass spectrometry method (from 2000 to 2022). Abbreviations of the names of equipment/columns are not listed and abbreviations of reagents are list in the table for reading convenience. Note: LC-MS/MS, liquid chromatography–tandem mass spectrometry; LC, liquid chromatography; MMA, methylmalonic acid; LOD, limit of detection; LOQ, limit of quantification; HCl, hydrochloride; SPE, solid phase extraction; SRM, selected reaction monitoring; CVs, coefficient of variations; NA, not available; MRM, multiple reaction monitoring; DBS, dried blood spot; SIM, single-ion monitoring; HPLC, high-performance liquid chromatography; tHcy, total homocysteine.

Study (Year)	LC-MS/MS Platform	Materials and Method Procedures	LC-MS/MS Parameters	Precision, Accuracy, LOD, and LOQ	Method Characteristics
Magera et al. (2000) [21]	API 3000 (Perkin-Elmer Scie) with two Perkin-Elmer Series 200M pumps	1. Methanol	1. Sample volume of 600 µL (300 µL urine with 300 µL water) with 600 µL of internal standard solution (1.2 mmol/L MMA-d3)	1. Analytes: MMA only.	1. Requiring at least one hour for sample treatment (for per sample).
		2. Water	2. Solid phase extraction (SPE) on a Gilson APDC automated SPE sample processor, then, preconditioning, sample loading, washing, and elution.	2. Validated sample types: serum (but claimed types were serum and urine).	2. Validated applications: NA.
		3. Formic acid	3. Evaporate the elute to dryness in a water bath at 30 ºC under dry nitrogen.	3. Validated procedure steps: SPE, multievaporation, drying, derivatization, multireconstitutions, etc.; complex.	3. Requiring more than two hours for sample treatment (for per sample).
		4. Methyl-tert-butyl ether	4. Transfer the residue using 200 µL 3 mol/L HCl in n-butanol at 85 ºC for 15 min and evaporate the excess reagents in 10 min at 40 ºC under nitrogen.	4. Requiring derivatization reagents, etc.	4. Requiring derivatization reagents, etc.
		5. Acetonitrile	5. Derivatization: derivatize the resulting residue using 200 µL 3 mol/L HCl in n-butanol at 85 ºC for 15 min and evaporate the excess in 10 min at 40 ºC under nitrogen.		
		6. The residue was dissolved in 100 µL of 80:20 (by volume) acetonitrile/denitroz water.	6. The residue was dissolved in 100 µL of methanol.		
		7. Ammonium formate	7. Requiring at least one hour for sample treatment.		
		8. Phosphoric acid	8. Requiring complex reagents.		
		9. Methyl tert-butyl ether	9. Requiring derivatization reagents, etc.		
		10. Ammonium formate	10. Requiring more than two hours for sample treatment.		

Kushvar et al. (2001) [22]	API 2000 (Applied Biosystems / MDS SCIEX, Foster City, USA) tandem mass spectrometer with a PE series 200 HPLC system (Perkin-Elmer Analytical Instruments)	1. Methanol	1. LC: (1) Column: LC-18; (2) Mobile phase: acetonitrile in 1 mL/L formic acid (60:40, by volume); MS: (1) Positive-ion mode; (2) Monitor from m/z 122 for MMA and from m/z 125 for MMA-d3; (3) Selected reaction monitoring (SRM) mode.	1. Mean recoveries were 90.9% (0.25 µmol/L), 96.0% (0.50 µmol/L), and 94.8% (2.0 µmol/L).	1. Requiring complex reagents, etc.
		2. Water	2. Mean recoveries were 96.9% (0.25 µmol/L), 94.0% (0.50 µmol/L), and 92.0% (2.0 µmol/L).	2. Requiring derivatization reagents, etc.	
		3. Acetonitrile	3. Mean recoveries were 93.5% at 0.5 µmol/L and 99.1% at 2.0 µmol/L.		
		4. Methyl-tert-butyl ether	4. Requiring steps: multievaporation, derivatization, heating, multi reconstitutions, etc.; complex.		
		5. Ammonium formate	5. Requiring derivatization reagents, etc.		
		6. Phosphoric acid	6. Requiring derivatization reagents, etc.		
		7. Methyl tert-butyl ether	7. Requiring at least one hour for sample treatment.		
Table 1. Cont.

Study (Year)	LC-MS/MS Platform	Reagents	Sample Preparation	LC-MS/MS Parameters	Precision, Accuracy, LOD, and LOQ	Method Characteristics
Schmedes et al. (2006) [23]	Micromass Quattro Micro tandem mass spectrometer with a Waters 2795 Alliance HPLC system	1. d9-Butanol				
2. Acetonitrile
3. Methanol
4. Formic acid
5. 37% HCl
6. Water | 1. 750 µL serum was mixed with 375 µL internal standard solutions (2 µmol/L).
2. SFE (go through preconditions, sample load, wash, and elution). The column was washed sequentially with 1 mL each of water, methanol, and butanol before elution of the MMA with 300 µL of a 3:1:60 mixture of concentrated (37%) HCl and butanol.
3. Incubate the elution for 15 min at 70 °C, after 15 min, the temperature was lowered to 54 °C, and then left overnight for evaporation of the HCl-butanol reagent.
4. Evaporate the residues and leave 100 µL of the liquid, add 500 µL acetonitrile-water (20:80 by volume) | 1. LC: (1) Columns: Waters-Symmetry C18 cartridge; (2) Mobile phase: 1 g/L formic acid-acetonitrile (35:65 by volume)
2. MS: (1) Positive-ion mode; (2) Monitor from m/z 231 to m/z 119 for MMA and from m/z 234 to m/z 122 for MMA-d3; (3) MRM mode. | 1. Total CVs were 5.0–6.7% at 0.15 µmol/L, 0.36 µmol/L, and 0.65 µmol/L.
2. Mean spiked recovery was 101%.
3. NA.
4. <0.048 µmol/L. | 1. Analytes: MMA only.
2. Validated sample types: plasma
3. Validated Applications: NA
4. Procedure steps: complex.
5. Required sample volume: 750 µL.
6. Requiring at least 1.5 h for sample treatment. |
| la Marca et al. (2007) [24] | Applied Biosystems/MDS Sciex API 4000™ Triple-Quad Mass Spectrometer equipped with an Agilent 1100 Quaternary Capillary Pump | 1. Acetonitrile
2. Formic acid
3. Water | 1. Punch a 3.2 mm filter paper disk containing ~3.4 µL whole blood from each DBS, and extracted it for 15 min with 200 µL of a solution containing acetonitrile/H2O 7:3 and 5 mL/L formic acid, plus 330 nmol/L labeled MMA as internal standard; 2 µL of injection for analysis | 1. LC: (1) Columns: Gemini C6-phenyl(Phenomenex); (2) Mobile phase: an isocratic profile of 40:60 between mobile phase of H2O (eluent A) and acetonitrile (eluent B), each containing 5 mL/L formic acid.
2. MS: (1) Negative-ion mode; (2) Monitor from m/z 117.1 to m/z 73 for MMA and from m/z 120.1 to m/z 76 for MMA-d3; (3) MRM mode. | 1. Intra- and inter-assay CVs were 3.6–6% and 3.3–6%, respectively
2. Recovery: 93.6–123.0%.
3. 1.95 µmol/L.
4. 4.20 µmol/L. | 1. Analytes: MMA and 3OH-PA (3-OH-propionic acid).
2. Validated sample types: DBS
3. Validated Applications: capable of monitoring and quantifying MMA and 3OH-PA during newborn screening as a 2nd-tier test. No validations on vitamin B12 deficiency assessment.
4. Procedure steps: simple.
5. Required sample volume: ~3.4 µL whole blood on DBS.
6. Requiring approximately 18 min for sample treatment.
7. Little known about the ways to details of method validation.
8. Low sensitivity: the highest LOQ and LOD as compared with the other methods, and is not suitable for the investigation of populations with normal (usually <2 µmol/L) to deficient levels of vitamin B12 (raised MMA levels).
9. Organic solvent in larger volume were required as the mobile phase as compared with our method. |
Table 1. Cont.

Study (Year)	LC-MS/MS Platform	Reagents	Sample Preparation	LC-MS/MS Parameters	Precision, Accuracy, LOD, and LOQ	Method Characteristics
Blom et al. (2007) [14]	Micromass Quattro LC (Waters) with an Agilent HPLC (Amsterdam, the Netherlands)	1. Methanol 2. Formic acid 3. Microcon ultrafilter	1. An aliquot of 100 µL of plasma was pipetted onto the Microcon ultrafilter, followed by 100 µL 0.8 µmol/L MMA-d3 internal standard solution. 2. After vortexing, the tube was centrifuged for 30 min at 14,000 × g. 3. Acidified 100 µL ultrafiltrate with 10 µL of 4% formic acid and inject 10 µL of the sample into the LC-MS/MS system.	1. LC: (1) Column: Symmetry C18; (2) Mobile phase: 15% methanol/0.4% formic acid. 2. MS: (1) Negative-ion mode; (2) Monitor from m/z 116.8 to 72.9 for MMA and from m/z 119.8 to 75.9 for MMA-d3.	1. Intra- and inter-assay CVs at 0.278 µmol/L were 1.5% and 6.7%, respectively. 2. Spiked recovery of 98–101% at levels up to 2 µmol/L. 3. 0.1 µmol/L. 4. NA.	1. Analytes: MMA only. 2. Validated sample types: plasma. 3. Validated Applications: NA. 4. Procedure steps: simple and consist only of ultrafiltration and centrifugations. 5. Required sample volume: 100 µL for plasma. 6. Approximately 35 min for sample treatment. 7. Requiring ultrafilter tubes which are not cheap and not always accessible. The centrifugation requires a longer time for the ultrafiltration. Not suitable for laboratories which have large request volumes. 8. Having the requirement on sample volumes. Not suitable for a sample with a volume less than 50 µL.
Lakso et al. (2008) [25]	Agilent1100 LC/MSD	1. Acetonitrile 2. Acetic acid 3. Ammonium acetate 4. Water	1. Human plasma treated with EDTA or citrate (20 µL) was added to 800 µL of the protein precipitation solution in 2 mL glass autosampler vials. The vials were capped, placed on an orbital shaker for 5 min, centrifuged at 6400 × g for 10 min at 15 °C, and then placed in the autosampler of the LC-MS instrument.	1. LC: (1) Column: Merck SeQuant ZIC-HILIC; (2) Mobile phase: 4 volumes acetonitrile plus 1 volume 100 mmol/L ammonium acetate buffer, pH 4.5. 2. MS: (1) Negative-ion mode; (2) MMA and D3-MMA were quantified by SIM mode (m/z 117.2 and 120.2, respectively).	1. Intra-assay CVs were less than 5% on all 6 days and inter-assay CVs of single measurements were also less than 5%. 2. Spiked recoveries were between 90% and 95%. 3. 0.03 µmol/L. 4. 0.09 µmol/L.	1. Analytes: MMA only. 2. Validated sample types: plasma. 3. Clinical Applications: no validations on clinical patients. 4. Procedure steps: simple and consists only of protein precipitation and centrifugation. 5. Required sample volume: 200 µL for plasma. 6. Approximately 15 min for sample treatment. 7. Requiring reagents are cheap and easily accessible. 8. The SIM mode is less reliable than MRM mode. 9. In particular, using ammonium acetate buffer would require more time and effort for the equipment maintenance/startup before/after use, and would be required to prevent salting out during use, otherwise, it would easily cause contamination or scrapping of the instrument or column! 10. Organic solvent in large volume were required as the mobile phase (e.g., to prepare 1000 mL mobile phase, 800 mL acetonitrile is required). 11. The total LC-MS/MS assay time, including column washing and reconditioning, was 10 min, which is longer as compared with other methods.
Table 1. Cont.

Study (Year)	Materials and Method Procedures				
LC-MS/MS Platform	Reagents	Sample Preparation	LC-MS/MS Parameters	Precision, Accuracy, LOD, and LOQ	Method Characteristics
Carvalho et al. (2008) [26]	Waters QuattroMicro tandem mass spectrometry equipped with an atmospheric pressure chemical ionization (APCI) probe and two Shimadzu LC-10A Trp HPLC pumps	1. 2,3,4,5,6-Pentafluorobenzylbromide (PFBBr)	1. LC: (1) Column: Synergi-MaxRP, Phenomenex; (2) Mobile phase: (isocratically with 70% acetonitrile in water.	1. Within-day CVs at 0.15 µmol/L, 0.49 µmol/L, 2.15 µmol/L were 7.5%, 6.4%, and 4.2%, respectively. Total CVs at 0.15 µmol/L, 0.49 µmol/L, 2.15 µmol/L were 10.7%, 7.0%, and 4.8%, respectively.	1. Analytes: MMA only. 2. Validated sample types: serum. 3. Clinical Applications: NA. 4. Procedure steps: simple, dangerous, etc. 5. Required sample volume: only 50 µL for serum. 6. Requiring more than 1.5 h for sample treatment. 7. Requiring reagents that are complex and dangerous. PFBBr is a lacrimator and an eye irritant.
Fasching et al. (2010) [27]	Waters Acquity LC-MS/MS System (Waters Corp, Milford, MA)	1. Self-made dialyzed plasma for calibration preparation (endogenous methylmalonic acid removal, a complex step).	1. LC: (1) Columns: Waters-Symmetry C18 (2) Mobile phase: mixture from pump A2 (0 %—type 1 water with 0.1 % formic acid) and B1 (15 %—methanol with 0.1 % formic acid). MS: (1) Negative ion mode; (2) Monitor from m/z 479 to m/z 323 for MMA derivative, and from m/z 482 to m/z 325 for MMA-d3 derivative; (3) Full scan mode.	1. Typical intra- and interassay CVs are <10%.	1. Analytes: MMA only. 2. Validated sample types: plasma. 3. Clinical Applications: NA. 4. Procedure steps: simple and not requiring SPE, derivatization, dryness, and reconstitution. 5. Required sample volume: 200 µL for plasma. 6. At least 45 min for sample treatment. 7. Requiring ultrafilters which are not cheap and not always accessible. 8. Using ultrafilter requires long time for centrifugation. 9. Little known about method performance. 10. The self-made dialyzed plasma used for calibration is hard and complex to prepare.
Study (Year) | **LC-MS/MS Platform** | **Materials and Method Procedures** | **Sample Preparation** | **LC-MS/MS Parameters** | **Precision, Accuracy, LOD, and LOQ** | **Method Characteristics** |
---|---|---|---|---|---|---|
Pedersen et al. (2011) [28] | TSQ Quantum Access triple quadrupole mass spectrometer (Thermo Fisher Scientific) with a transwave T3A-4 multichannel HPLC system (Thermo Fisher Scientific) | Initial work was performed on a Micromass Quattro Micro triple quadrupole atmospheric pressure ionization (API) triple quadrupole tandem mass spectrometer (Waters Corp), and later, transferred to an API 4000 QTrap (AB SCIEX, Foster City, CA). | 1. Take 25 μL serum spiked with 25 μL of 300 nmol/L MMA-d3. | 1. LC: (1) Column: Allure® Organic Acids column; (2) Turbulent flow and HPLC conditions are complex: MS: (1) Negative ion mode; (2) Two MRM transitions: a quantifier (117.1 → 73.1) and a qualifier (117.1 → 55.2), were monitored for MMA; One MRM transition (120.1 → 73.1) was monitored for MMA-d3. | 1. Analyte: MMA only. | 1. Analytes: MMA only. |
Yuan et al. (2012) [29] | A Cyclofile-MAX TurboFlow column (50 × 0.5 mm, Thermo Fisher Scientific) was used for online extraction, and a mixing column (Agilent, Santa Clara, CA, USA) was placed between the injector and the TurbolFlow column | 1. Cyclodextrin-3-dodecanoic acid (CUDA) | 1. 500 µL sample (serum or plasma) was mixed with 500 µL of water and 25 µL of working IS solution. | 1. LC: (1) Column: Allure® Organic Acids column; (2) Turbulent flow and HPLC conditions are complex: MS: (1) Negative ion mode; (2) Two MRM transitions: a quantifier (117.1 → 75.3) and a qualifier (117.1 → 55.2), were monitored for MMA; One MRM transition (120.1 → 73.1) was monitored for MMA-d3. | 1. Analyte: MMA only. | 1. Analytes: MMA only. |
Table 1. Cont.

Study (Year)	LC-MS/MS Platform	Materials and Method Procedures	Precise, Accuracy, LOD, and LOQ	Method Characteristics
Fu et al. (2013) [30]	Triple-quadrupole MS/MS system (Applied Biosystem/MDS SCIEX API 4000 Qtrap) coupled with a Shimadzu HPLC system and a Leap Technologies auto sampler	1. Tris(2-carboxyethyl)phosphine hydrochloride (TCEP-HCl) 2. Formic acid 3. Methanol 4. Water 5. Amicon Ultra 0.5 mL 10K Da	1. Intra-assay and inter-assay CVs were 2.1–4.9% and 2.7–5.9%, respectively. 2. Recovery: 118.00–120.05%. 3. 0.03 µmol/L. 4. NA.	1. Analytes: inborn-error biomarkers: MMA, tHcy, methionine, and 2-methylcitric acid. 2. Validated sample types: plasma (claim plasma and serum). 3. Validated applications: methylmalonic acidemia, etc.; however, only one vitamin B12 deficiency patient were validated. 4. Procedure steps: simple and consists of ultrafiltration and centrifugation but needs incubation. 5. Required sample volume: 100 µL. 6. Requiring approximately 20 min for sample treatment. 7. Requiring to prepare additional reagents, i.e., TCEP-HCl. 8. Requiring Microcon ultrafilters which are not cheap and always not accessible. 9. Unsatisfied recovery rate (116–120%). 10. More cost for vitamin-investigating patients since tHcy can be measured by economic immunoassays and other biomarkers are not relevant to vitaminB12 assessment.
Hempen et al. (2015) [31]	Shimadzu high-performance LC (HPLC) system coupled to a Q-Trap 3200 mass spectrometer from Applied Biosystems	1. Tris(2-carboxyethyl)phosphine hydrochloride (TCEP) 2. Methanol 3. Formic acid 4. Water 5. Microcon centrifugal filter tubes (Millipore)	1. The intraday CVs were 3.2% or less and interday CVs ranged from 3.5% to 6.3%. 2. Recovery: 97.6–119.9%. 3. 0.08 µmol/L. 4. NA.	1. Analytes: MMA and tHcy. 2. Validated sample types: plasma. 3. Validated Applications: no validation. 4. Procedure steps: consists of protein precipitation, and ultrafiltration, a reduction step has to be carried out to ensure the measurement of tHcy, complex. 5. Required sample volume: 100 µL. 6. Requiring at least 1 h for sample treatment. 7. More cost for vitamin deficiency-investigating patients since tHcy can be measured by economic immunoassays. 8. Requiring Microcon ultrafilters which are not cheap and always not accessible.
Study (Year)	Materials and Method Procedures	LC-MS/MS Parameters	Precision, Accuracy, LOD, and LOQ	Method Characteristics
-------------	---------------------------------	---------------------	-----------------------------------	-----------------------
Kushnir et al. (2016) [32]	**Triple quadrupole mass spectrometer**			
AR520 with TurboVion source (AB Sciex, Foster City, CA) with built-in switching valve; binary HPLC pump series 1260 (Agilent Technologies, Santa Clara, CA), vacuum degasser, autosampler CTC PAL (Carrboro, NC) equipped with fast wash station. | **LC**: (1) Column: Luna C18; (2) Mobile phase: A: 5 mmol/L ammonium formate and Mobile phase B: 5 mmol/L ammonium formate in methanol. | **1.** Total CV of the method was below 10%.
2. NA.
3. NA.
4. NA.
5. 0.1 µmol/L. | 1. Analytes: MMA only.
2. Validated sample types: serum (claimed serum and plasma).
3. Validated Applications: NA.
4. Procedure steps: multievaporation, derivatization, reconstitution, etc.; complex.
5. Required sample volume: 500 µL for serum.
6. Requiring approximately 1 h for sample treatment.
7. Requiring multiple reagents which are complex and dangerous.
8. Using ammonium acetate buffer would require more time and effort for the equipment maintenance/startup before/after testing, and would be required to prevent salting out during the testing, otherwise, it would easily cause contaminations or scrapping to the instrument or column. |
| Ambati et al. (2017) [33] | **Agilent 690**
Triple quadrupole mass spectrometer (Agilent, Santa Clara, CA, USA) with an Agilent 1290 binary pump, online degasser, autosampler, and thermostat column compartment (Agilent Technologies, Waldbronn, Germany). | **LC**: (1) Column: ACQUITY UPLC CSH C18; (2) Mobile phase: (A) 12C6-3NPH-HCL solution in 50% ACN and (B) 12C6-3NPH-HCL in 50% ACN were added to 40 µL plasma mixture and mixed well. | **1.** Intraday and interday imprecision were 5.2% and 8.9%, respectively.
2. Recovery: 84.3%.
3. 75 nmol/L.
4. 360 nmol/L. | 1. Analytes: inborn-error biomarkers: MMA, malonic acid, and ethylmalonic acid.
2. Validated sample types: plasma.
3. Validated Applications: accurate quantitation of MMA, malonic acid, and ethylmalonic acid in plasma of mouse.
4. Procedure steps: derivatization, etc.; complex.
5. Required sample volume: 40 µL for serum.
6. Requiring approximately 35 min for sample treatment.
7. Requiring to prepare many complex/dangerous reagents and solutions, etc. |
Table 1. Cont.

Study (Year)	Materials and Method Procedures	Precision, Accuracy, LOD, and LOQ	Method Characteristics
Ma et al. (2022) [34]	A Waters Acquity 1 Class UPLC system (Binary Solvent Manager, Thermostatic Column Manager, and FTN Sample Manager) and a Waters TQ-XS triple quadrupole MS/MS system were used which were controlled by MassLynx 4.2 software (Waters, Milford, MA, USA)		
	1. Dithiothreitol (DTT)	1. Analytes: MMA and tHcy.	
	2. Methanol	2. Validated sample types: serum and urine.	
	3. Acetonitrile	3. Validated Applications: suitable for the investigating serum vitaminB12 status.	
	4. Formic acid	4. Procedure steps: simple, consists only of protein precipitation and centrifugation, but requires dryness and reconstitutions; time-consuming.	
	5. Water	5. Required sample volume: 100 µL for serum.	
		6. Requiring approximately 50 min for sample treatment.	
		7. Their clinical validation results indicated that urine tHcy and urine MMA may not be suitable markers for assessing VB12 status.	
		8. Less cost-effective and more cost for vitamin-investigating patients since tHcy can be measured by economic immunoassays.	
		9. Due to more time required by dryness, reconstitutions, and limited dryness devices, the method may not convenient or suitable for cases in which large volumes of MMA testing are requested; dryness and reconstitutions for several samples seems rapid but will be cumbersome for numerous samples.	
		10. The capability of acetonitrile in protein precipitation is weak. The supernatant was not that clear and there were minor flocculent sediment floating when 300 µL acetonitrile was used to precipitated 100 µL serum. The direct injection of supernatant obtained by simple centrifugation may have potential risk of contaminating the mass spectrum or blocking the column. So acetonitrile should not be selected for protein precipitation unless filter tubes is used for centrifugations.	
Table 1. Cont.

Study (Year)	LC-MS/MS Platform	Materials and Method Procedures	Sample Preparation	LC-MS/MS Parameters	Precise, Accuracy, LOD, and LOQ	Method Characteristics
Ueyanagi et al. (2022) [15]	LCMSTM-8040 system (Shimadzu Corp., Kyoto, Japan) coupled with CLAM-2030	1. Water	1. All the sample deproteinization and derivatization reactions were performed using the fully automated LCMSTM-2030 (Shimadzu Corp., Kyoto, Japan).	1. LC: (1) Column: Shim-pack Scepter HD-C18-80; (2) Mobile phase: (A) MeOH + 0.1% FA and (B) H2O + 0.1% FA.	1. Intra- and inter-assay imprecisions were 4.9-5.2% and 4.9-9.0%, respectively. Recovery: 97.2-102.0%. 2. Recovery: 0.03-0.06 mmol/L. 3. NA.	1. Analytix: 19 organic acids, including MMA. 2. Validated sample types: serum. 3. Validated Applications: suitable for the investigating organic academia; no validations on vitamin B12 deficiency assessment. 4. Procedure steps: automated but complex steps in the machine, e.g., ultrafiltration, evaporation, derivatization, incubations. 5. Required sample volume: 10 mL. 6. Claimed requires less than 30 min for sample treatment. 7. The adaptability of LCM-2030 to non-Shimadzu LC-MS/MS system is unclear and may not economic for the evaluation of vitamin B12 deficiency. 8. Requiring multiple reagents which are complex and dangerous.
Boutin et al. (2022, May) [36,37]	Xevo TQ-S micro (Waters Corporation) equipped with a flow-through needle injector	1. Water	1. Intra- and inter-assay imprecisions were 4.9-5.2% and 4.9-9.0%, respectively. Recovery: 97.2-102.0%. 2. Recovery: 0.03-0.06 mmol/L. 3. NA.	1. LC: (1) Column:Chrompack Separon HD-C18-80; (2) Mobile phase: (A) MeOH + 0.1% FA and (B) H2O + 0.1% FA.	1. Analytix: MMA and creatinine. 2. Validated sample types: dried urine in urine filter paper. 3. Validated Applications: claimed suitable for vitamin B12 deficiency screening in older adults but no validations on relevant patients. 4. Procedure steps: claimed simple and user-friendly but requiring multiple steps and not fast, especially, a step of drying for 2 h; time-consuming. 5. The method is claimed well-suited for a future large-scale screening program of vitamin B12 deficiency in older adults, which is not validated on relevant patients and may be contrary to the results of Ma et al. [34], who reported urine MMA may be contrary to the results of urine in urine filter paper. 6. Not that cost-effective once requiring creatinine to be measured along with MMA, raising the cost.	1. Analytix: 19 organic acids, including MMA. 2. Validated sample types: serum. 3. Validated Applications: suitable for the investigating organic academia; no validations on vitamin B12 deficiency assessment. 4. Procedure steps: automated but complex steps in the machine, e.g., ultrafiltration, evaporation, derivatization, incubations. 5. Required sample volume: 10 mL. 6. Claimed requires less than 30 min for sample treatment. 7. The adaptability of LCM-2030 to non-Shimadzu LC-MS/MS system is unclear and may not economic for the evaluation of vitamin B12 deficiency. 8. Requiring multiple reagents which are complex and dangerous.
Table 1. Cont.

Study (Year)	LC-MS/MS Platform	Reagents	Sample Preparation	LC-MS/MS Parameters	Precision, Accuracy, LOD, and LOQ	Method Characteristics
Zheng et al. (2022, July)	Xevo TQ-MS micro mass spectrometer (Waters, Manchester, UK) equipped with a UniSpray™ interface and Acquity UPLC I-Class Plus system (Waters, Milford, MA)	1. Acetonitrile 2. Methanol 3. Formic acid 4. Water	1. Clinical samples were centrifuged for 5 min at 3000×g. 2. Samples (plasma/serum, 200 µL) were added to a plate consisting of 96 wells. The working solution of 500 µL acetonitrile consisting of 0.76 µmol/L MMA-D3 was added to the sample. 3. The solvents were shaken for one minute, and then centrifuged for 10 min at 3000×g. 4. The supernatant (300 µL) was added to another plate and evaporated with nitrogen gas for 30–45 min. 5. The residual was reconstituted by 200 µL 0.2% formic acid in water and the plate was shaken for 1 min. Subsequently, the plate was centrifuged for 10 min at 3000×g, prior to LC-MS/MS analysis.	LC: (1) Column: Waters HSS C18; (2) Mobile phase: (A) 0.2% formic acid in water and (B) 100% methanol. MS: (1) Negative modes were used; (2) Monitor from m/z 117 to m/z 73 for MMA and from m/z 120 to m/z 76 for MMA-13C4; (3) Multiple reaction monitoring (MRM) mode. 1. The within- and between-run CVs were 3–7%. 2. Bias: from −1% to 8%. 3. NA. 4. 0.044 µmol/L.	1. Analytes: MMA only. 2. Validated sample types: presented data indicates only on type was validated but not clear on which one was validated (claimed serum/plasma). 3. Validated Applications: no validation on relevant patient for vitamin B12 deficiency assessment. 4. Procedure steps: only consists of protein precipitation and centrifugation, but requires strict evaporation with nitrogen gas and reconstitutions; time-consuming. 5. Required sample volume: 100 or 200 µL for plasma. 6. Requiring at least 50 min for sample treatment. 7. Their claimed requirements on steps: required to ensure that the acetonitrile has evaporated because the presence of this solution causes a double peak in the chromatogram. 8. As mentioned above in Ma [34], the capability of acetonitrile in protein precipitation is weak, the direct injection of supernatant obtained by simple centrifugation may have potential risk of contaminating the mass spectrum or blocking the column; therefore, acetonitrile should not be selected for protein precipitation unless filter tubes is used for centrifugation. 9. Due to more time required by evaporation with nitrogen gas, reconstitutions, and limited dryness devices, the method may not be convenient or suitable for large request volumes of MMA testing. Evaporation and reconstitution for several samples seems rapid but will be cumbersome for numerous samples.	
Table 1. Cont.

Study (Year)	Materials and Method Procedures	LC-MS/MS Parameters	Precision, Accuracy, LOD, and LOQ	Method Characteristics
Jin et al. (method in this study)	6500 Plus triple quadrupole mass spectrometer (AB Sciex, USA) coupled with an ExionLC™ AD ultra-high-performance liquid chromatography system (Applied Biosystems, CA, USA)	1. Methanol 2. Acetonitrile 3. Isopropanol 4. Formic acid 5. Water	1. Intrarun, interrun, and total imprecisions were 1.42–2.69%, 3.09–5.27%, and 3.22–5.47%, respectively. 2. The mean spiked recovery at three levels were 101.51%, 92.40%, and 105.95%, respectively. 3. <0.058 µmol/L. 4. 0.085 µmol/L.	1. Analytes: MMA only. 2. Validated sample types: serum. 3. Validated Applications: suitable for the MMA level evaluation in normal subjects and vitamin B12 deficiency patients. 4. Procedure steps: only consists of protein precipitation and centrifugation, does not require evaporation, drying, or reconstitutions, etc. 5. Required minor sample volume: 50 µL. 6. Requiring less than 25 min for sample treatment. 7. Less consumptions on materials and reagents, e.g., less tubes and less reagent volume used, etc. 8. The mobile phase is salt-free, and it is easy to conduct equipment and column maintenance and startup. 9. Organic solvents in only minor volumes are required for the mobile phase. (e.g., 1000 mL mobile phase only needs 50 mL isopropanol, 180 µL acetonitrile is used for rinse). 10. More suitable for laboratories that receive a large number of requests for MMA testing.
2. Materials and Methods

2.1. Chemicals

Methylmalonic acid (1.0 mg/mL in acetonitrile, 1 mL ampule, certified reference material, Cerilliant®, purity 99%) was purchased from Sigma-Aldrich (Burlington, MA, USA). Isotope-labeled internal standard (IS) methylmalonic acid-\(^{13}\)C\(_4\) in acetonitrile solution (certified reference material, CAS: 1173019-21-0, product no. M-173-1ML, purity 99%) was purchased from Sigma-Aldrich (TX, USA). HPLC-grade methanol, acetonitrile, and isopropanol were purchased from Fisher Scientific (Waltham, MA, USA). Formic acid was purchased from Honeywell (San Francisco, CA, USA). Deionized water (18 Ω) was produced from a Milli-Q Advantage system (Millipore Corp., Bedford, MA, USA).

2.2. Samples

Pooled and individual serum samples for method establishment and individual specimens for clinical application were obtained from fresh leftover specimens in the Department of Laboratory Medicine, Beijing Hospital, Beijing, China. The collection of leftover sera was approved by the Ethics Committee of the Beijing Hospital.

2.3. Calibrators, Internal Standard (IS), and Quality Control (QC) Materials Preparation

Working standard solutions of MMA (218.69 ng/g) used for calibration and working standard solutions of MMA-\(^{13}\)C\(_4\) (148.95 ng/g) were prepared gravimetrically in water. All solutions were aliquoted into 2 mL brown ampoules and stored at −80 °C. For each sample batch, the calibrators were freshly prepared. Eight working calibrators were prepared using 100 µL working standard solutions and subsequently diluted with 800, 700, 600, 500, 400, 300, 200, and 100 µL water, respectively.

Standard solutions of MMA (2003.60 ng/g) used as QC additive standard solutions were prepared gravimetrically in water. To make low-, medium-, and high-levels of QC materials, 3 µL, 5 µL, and 8 µL of QC additive solutions were gravimetrically added to three gravimetrically prepared 400 µL serum pools, respectively.

2.4. Sample Preparation

Fifty microliters of IS working solution, 50 µL of samples/calibrators, and 300 µL methanol were added to a 2.0 mL Eppendorf tube. The mixture was vortexed for 20 s and centrifuged at 148,000 rpm, at 4 °C, for 15 min. The upper phase of the mixture was poured into a new 2.0 mL Eppendorf tube and centrifuged at 148,000 rpm, at 4 °C, for 5 min. Fifty microliters of the upper phase was used for the LC-MS/MS analysis. The injection volume was 1 µL.

2.5. LC-MS/MS Conditions

The LC-MS/MS analysis was performed on a 6500 plus triple quadrupole mass spectrometer (AB Sciex, USA) coupled with an ExionLC™ AD ultra-high-performance liquid chromatography system (Applied Biosystems, CA, USA). The Analyst 1.7.2 software (Applied Biosystems, CA, USA) was used for data processing.

A Shim-pack GIST-HP C18-AQ column (3 µm, 2.1 × 100 mm, SHIMADZU, Japan) with a guard column (Shim-pack GIST-HP (G) C18, 3 µm, 2.1 × 10 with Cartridge (2pcs) and Holder) was used for separation. An isocratic method (100% A phase) was developed for separation. The mobile phase was water containing 0.1% formic acid and 5% isopropanol. The flow rate of the mobile phase was 0.45 mL/min. The column temperature was 35 °C, and the autosampler temperature was set at 8 °C. Acetonitrile was the wash solution of the LC system. The injection volume was 1 µL. A diverter valve was used from 1.9 min to 2.8 min.

The mass spectrometer was operated in the negative electrospray ionization (ESI) mode with multiple reaction monitoring (MRM). The transitions at \(m/z\) 116.9→72.8 for MMA and \(m/z\) 120.9→75.8 for MMA-\(^{13}\)C\(_4\) were monitored for quantification. A source temperature of 450 °C and an ion spray voltage of −4500 V were used. Nitrogen gas was
used as the curtain gas (CUR), nebulizer gas (GS1), auxiliary gas (GS2), and collision gas (CAD), and the pressures of the gases were set at 35, 35, 45, and low mode, respectively. The declustering potential (DP), entrance potential (EP), and collision exit potential (CXP) were set at $-26\, V$, $-12.6\, V$, and $-11.6\, V$, respectively. The collision energy (CE) was set at $-10.9\, eV$.

2.6. Method Validation

The method performance was validated according to the Clinical and Laboratory Standards Institute (CLSI) C62-A guideline [39].

2.6.1. Limits of Detection (LOD) and Limits of Quantification (LOQ)

Fifty microliters of standard solution of MMA (218.69 ng/g) was diluted with water to generate a series of concentrations. The diluted solutions were treated according to the sample preparation described previously. A signal-to-noise ratio (S/N) ≥ 3 with a coefficient of variation (CV) $\leq 20\%$ for 20 injections was defined as the LOD, while an S/N ≥ 10 and a CV $\leq 20\%$ for 20 injections was defined as the LOQ [39,40].

2.6.2. Analytical Precision and Recovery

Pooled serum was filtered using a disposable Corning bottle-top vacuum filter with a 0.22 µm membrane and aliquoted. Four pooled samples with different concentrations of MMA were prepared for the precision and recovery evaluation, that is, sample pools (Level 1), low- (Level 2), medium- (Level 3), and high-levels (Level 4) of QC materials described before. All samples were aliquoted into 2.0 mL Corning vials (1 mL/vial) and stored at $-40\, ^\circ C$ before analysis. Each sample was measured five times per day for five days.

2.6.3. Matrix Effect

The matrix addition mixing experiment was designed according to CLSI C62A [39] to assess the sample matrix effect before and after IS correction. Two different matrices were prepared: (X) the mixed standard solution of the neat analyte and IS and (Z) the extracted matrix, i.e., the matrix of serum pools (Level 1, Level 2, and Level 3) which were processed based on the established sample preparation procedure. Then, the defined amount of the mixed standard solution (i.e., X) was added to the same amount of extracted matrix (i.e., Z) to prepare the solution (Y), and the same amount of IS solution was added to the extracted matrix (i.e., Z) to prepare the solution (W). The IS in acetonitrile was previously dried under nitrogen gas and reconstituted with the primary mobile phase. The absolute matrix effects and IS-corrected matrix effects were calculated by the following equations:

\[
\text{The absolute matrix effect (\%)} = \left(1 - \frac{A_Y}{A_X + A_Z}\right) \times 100\% ,
\]

where A is the peak area of MMA;

\[
\text{The IS-corrected matrix effect (\%)} = \left(1 - \frac{R_Y}{R_X + R_W}\right) \times 100\% ,
\]

where R is the peak area ratio of MMA to MMA-13C.

2.7. Method Applications

Fresh individual serum samples from healthy controls ($n = 18$, physical examination subjects with normal biochemical indicators, VB12-sufficient subjects ($n = 24$, VB12 > 240 pg/mL, measured by a routine immunoassay), VB12-deficient subjects ($n = 13$, VB12 < 240 pg/mL), patients diagnosed with anemia ($n = 25$), patients diagnosed with vitamin deficiency ($n = 13$), and patients diagnosed with colon cancer ($n = 11$) were randomly collected and measured in a random order. MMA levels in these populations were investigated
using the established LC-MS/MS method. One positive urine sample from methylmalonic academia was measured alongside five urine samples from non-IMDs subjects.

2.8. Statistical Analysis

Statistical analysis was completed using Microsoft Excel 2016 (Microsoft Corporation, Redmond, WA, USA), SPSS 25.0 (IBM Inc., Armonk, NY, USA), and GraphPad Prism (version 8.0.0 for Windows, GraphPad Software, San Diego, CA, USA). The intra-assay, interassays, and total imprecision were calculated using one-way analysis of variance (ANOVA). Analytical performance specifications were established based on the within-subject (\(CV_I\)) and between-subject (\(CV_G\)) biological variations of serum MMA, i.e., 7.2% and 21.1%, respectively [41]. An allowable imprecision (\(CV_A\)) = 0.75 \(CV_I\) was employed to evaluate the precision criterion (i.e., 5.5%). An allowable bias of 10.61%, derived from allowable bias = 0.375 \((CV_I + CV_G)^{1/2}\), was used as the bias criterion. A Mann–Whitney U analysis was used to examine the differences in MMA levels of two subjects.

3. Results

3.1. Optimization of the Mobile Phase Strategy

MMA is a small polar compound with high retention properties, making the acquisition of good chromatographic behavior of MMA difficult. Searching for a suitable mobile phase component and an isocratic method cost most of the time in the method development. The first mobile phase strategy was 0.1% formic acid water solution (A phase) and methanol (B phase). An isocratic method of 50% A phase was initially chosen and the optimization determined 95% of A phase. This strategy (95% A phase) was friendly to both SA and MMA, but SA had a higher signal than MMA (see Supplementary Figure S1). Due to the strong retention properties of MMA, isopropanol was added to the A phase and its percentage was optimized from 50% to 2% (5% was adopted). The addition of isopropanol increased the MMA signal. Then, the percentage of A phase was optimized from 50% to 100% (100% was adopted).

The drying step before the LC-MS/MS analysis was optimized. The dried residue was initially reconstituted by a 5% methanol water solution containing 0.1% formic acid. Interestingly, MMA is a pH-sensitive compound because we found that when the residue was reconstituted by 5% methanol water solution containing 2% formic acid, there was no peak of MMA. Since MMA was monitored in a negative model, a low pH environment could enhance the ion suppression effects leading to a low signal. Reconstitution solutions were optimized from 5% methanol to 100% methanol without formic acid. Better chromatographic behavior, with a smaller peak width (<0.2 min), symmetrical peak, and higher signal of MMA, was obtained when the dried residue was reconstituted with 100% methanol. Thus, the drying step is no longer necessary.

Notably, since MMA is a high retention compound, the rinse solutions for the LC system were carefully optimized. Acetonitrile, methanol, and isopropanol were chosen for initial optimization. When methanol was employed for the rinse solution, obvious carryover existed after an injection of serum samples. When isopropanol was employed for rinsing, the carryover disappeared but the MMA peak in the next injection also disappeared. When acetonitrile was employed for rinsing, robust and good chromatographic behavior of MMA was obtained and no obvious carryover existed.

The injection volume was determined to be 1 \(\mu\)L, as the obvious peak tailing problems started to be presented when the injection volume was set to more than 1 \(\mu\)L.

3.2. Optimization of Sample Preparation

Protein precipitation was the main preparation step. The type of precipitation reagent and volume of the reaction system were optimized. Acetonitrile, methanol, and isopropanol were chosen for initial optimization while acetonitrile and isopropanol were excluded because their relative spiked recovery rates were less than 80%. Five reaction systems (RS) were initially explored for a good recovery rate and high signals (the large precipitation
reagent volume can reduce the signals because of the dilution effects). A relatively good recovery was obtained in RS-5 (see Figure 1).

ID	Reaction system
RS-1	20 µL sample/STD and 10 µL IS 100 µL methanol
RS-2	50 µL sample/STD and 50 µL IS 200 µL methanol
RS-3	50 µL sample/STD and 50 µL IS 250 µL methanol
RS-4	100 µL sample/STD and 50 µL IS 300 µL methanol
RS-5	50 µL sample/STD and 50 µL IS 300 µL methanol
RS-6	50 µL sample/STD and 50 µL IS 400 µL methanol

Figure 1. Optimization results of reaction systems in sample preparation.

3.3. Method Validation

3.3.1. Chromatographic Separation

The total run time of the LC-MS/MS analysis was 4.0 min per sample. The intrinsic isomer, i.e., succinic acid (SA), can be completely separated from MMA by chromatography. SA had a relatively higher signal than MMA. MMA can be significantly distinguished from SA. The retention time of MMA and SA were 2.21 min and 1.80 min, respectively. Figure 2 presents representative chromatographs of MMA and MMA-\(^{13}\)C\(_4\) in standard solutions (A), serum from a healthy control serum (B), and serum from a patient with VB12 deficiency (C).

3.3.2. Linearity, LOD, and LOQ

The average slope, intercept, and correlation relationship (R) with their 95% confidence interval (CI) obtained from 12 inconsecutive calibration curves used for analysis during two months were 0.992 (0.926 to 1.059), −0.004 (−0.012 to 0.004), and 0.997 (0.995 to 0.999), respectively. The LOD was estimated as <7.05 ng/g (0.058 µmol/L), and the CV for 20 consecutive injections (S/N > 3) was 5.24%. The LOQ was estimated as <10.41 ng/g (0.085 µmol/L), and the CV for 20 consecutive injections (S/N > 10) was 4.14%.

3.3.3. Precision and Recovery

Table 2 summarizes the precision and spiked recovery of the LC-MS/MS method at four levels of MMA on five consecutive days. The interrun CV at Level 1 (native pool), Level 2, Level 3, and Level 4 ranged from 3.09% to 5.27%; intrarun CV ranged from 1.42% to 2.69%; and the total CV ranged from 3.22% to 5.47%. All imprecision performance met the allowable precision criterion. The recoveries of MMA at the three levels were 101.51%, 92.40%, and 105.95%, respectively.
3.3.2. Linearity, LOD, and LOQ

The average slope, intercept, and correlation relationship (R) with their 95% confidence interval (CI) obtained from 12 inconsecutive calibration curves used for analysis during two months were 0.992 (0.926 to 1.059), −0.004 (−0.012 to 0.004), and 0.997 (0.995 to 0.999), respectively. The LOD was estimated as <7.05 ng/g (0.058 μmol/L), and the CV for 20 consecutive injections (S/N > 3) was 5.24%. The LOQ was estimated as <10.41 ng/g (0.085 μmol/L), and the CV for 20 consecutive injections (S/N > 10) was 4.14%.

Figure 2. Representative chromatographs of: (A) calibrators; (B) healthy controls; (C) patients.
Table 2. Spiked recovery and precision performance of the LC-MS/MS method for methylmalonic acid quantification.

Serum Pools	Mean Recovery ± SD	MMA Imprecision				
	Added, ng/g	Detected, ng/g	Recovery, %	Intra-Assay CV	Inter-Assay CV	Total CV
Level 1	0	29.62 ± 1.61	-	5.27	1.42	5.47
Level 2	14.95	44.69 ± 1.76	101.51 ± 5.74	3.09	2.69	4.10
Level 3	25.36	52.94 ± 2.30	92.40 ± 3.40	3.86	2.17	4.43
Level 4	37.20	68.92 ± 2.16	105.95 ± 1.95	3.83	1.55	3.22

3.3.4. Matrix Effect

The absolute matrix effects for Level 1 serum (native, ~0.3 µmol/L), Level 2 serum (spiked, ~0.5 µmol/L), and Level 3 serum (spiked, ~1.0 µmol/L) were −4.74%, −32.95%, and −84.59%, respectively, indicating that ion suppression effects existed in spiked serum without IS correction. IS-corrected matrix effects for Levels 1, 2 and to 3 serum were −0.19%, 6.84%, and 4.06%, respectively, suggesting IS correction could adequately compensate for the observed matrix effect.

3.4. Clinical Application

Figure 3 shows the MMA levels in different subjects. VB12-deficient subjects (VB12 < 240 pg/mL) had significantly higher MMA levels than VB12-sufficient subjects (VB12 > 240 pg/mL) ($p < 0.05$). Additionally, elevated MMA levels were observed in some patients diagnosed with anemia (4/25) and vitamin deficiency (2/13). The MMA levels in these populations were investigated using the established LC-MS/MS method.
4. Discussion

In this study, we established an LC-MS/MS method for MMA quantification that had clear advantages over the previously established LC-MS/MS methods. It is trace, simple, fast, cheap, sensitive, accurate, robust, economic, environmentally friendly, and cost-effective for MMA measurement and is more suitable for laboratories that have large request volumes of MMA testing. These improvements were achieved using protein precipitation combined with a simple mobile phase strategy. Good chromatographic separation of MMA and its isomer was achieved by using an isocratic elution strategy, i.e., 100% A phase (deionized water containing 0.1% formic acid and 8% isopropanol). Materials and reagents, which are complex or not always accessible, and procedures in previous methods, such as derivatization, multistep SPE, incubation, evaporation, drying, or reconstitution, were not required in this MMA quantification method. We believe this LC-MS/MS method for serum MMA is suitable and convenient for the evaluation of MMA status for VB12 deficiency and can be a reference for laboratories intending to improve their established methods as well as laboratories that plan to introduce MMA testing programs.

The analytical performances of the previous LC-MS/MS methods have been studied [14,21–38]. The LOD and LOQ of previous methods have ranged from 0.03–1.95 µmol/L and 0.03–4.20 µmol/L, respectively. The LOD and LOQ of our simplified method were 0.058 µmol/L and 0.085 µmol/L, respectively. The mean recoveries of previous methods varied from 90% to 111%, whereas the mean recoveries of our method ranged from 92.40% to 105.95%. The intra-assay, inter-assay, and total imprecisions of previous methods were 1.3–8.0%, 3.8–8.5%, and 4.6–10.7%, respectively, while the imprecision indicators of our method were 1.42% to 2.69%, 3.09% to 5.27%, and 3.22% to 5.47%, respectively. The LC-MS/MS run time of previous methods varied from 1.0 min to 10 min per sample and the time for sample preparation for a sample ranged from 4 h to 7.5 h, whereas the throughput of our method was 4.0 min per sample with around 20 min for sample preparation.

MMA can be a specific diagnostic biomarker of VB12 deficiency and some inborn errors of metabolism (IEM) [1,2]. It has been reported that moderately elevated MMA (over 0.4 µmol/L in serum, ~46 ng/g) was an early indicator of acquired vitamin B12 insufficiency, and a massive elevation of MMA (over 40 µmol/L in serum, ~4613 ng/g) could strongly indicate IMDs, e.g., methylmalonic acidemia (an IMD with a relatively high prevalence) [22]. We compared MMA levels in VB12-sufficient patients and VB12-deficient patients and observed higher MMA levels in VB12-deficient patients. Additionally, we observed that some patients diagnosed with colon cancer, anemia, diabetes, and coronary disease had elevated MMA.

One of the limitations of this study and previous studies was the lack of measurements of reference materials which have certified values and uncertainty for trueness. Current MMA measurements lack qualified certified reference measurement procedures and reference materials. The standard materials for calibrators and IS that we employed are certified reference materials with certified purities and uncertainties, thus, obtaining metrological traceability to the SI (System International) unit. [34,35]

5. Conclusions

In this study, we established a trace, simple, fast, cheap, sensitive, accurate, robust, economic, environmentally friendly, and cost-effective LC-MS/MS method for serum MMA quantification. This LC-MS/MS method can act as an easy assay and provide fast report results to evaluate the MMA status for vitamin B12 deficiency patients, and is especially applicable for large-scale MMA testing.

Supplementary Materials: The following supporting information can be downloaded at: https://www.mdpi.com/article/10.3390/diagnostics12102273/s1. Figure S1: Chromatographic separation by isocratic elution with 95% A phase (0.1% formic acid water solution) and 5% B phase (methanol). This procedure needs drying and residue reconstitution by 5% methanol.
Author Contributions: Conceptualization, L.J.; Data curation, L.J., W.Z., J.Z., M.W., Y.Z., T.Z., F.H. and C.Z.; Formal analysis, L.J. and Z.L.; Funding acquisition, F.H. and C.Z.; Methodology, Z.L.; Project administration, F.H. and C.Z.; Validation, L.J. and Z.L.; Visualization, L.J. and Z.L.; Resources, M.W., Y.Z., F.H. and C.Z. Writing—original draft, L.J.; Writing—review & editing, L.J. and Z.L.; All authors have accepted responsibility for the entire content of this manuscript and approved its submission. All authors have read and agreed to the published version of the manuscript.

Funding: The National Key Research and Development Program of China (2021YFC1005304 and 2018YFC1002204).

Institutional Review Board Statement: The study was conducted in accordance with the Declaration of Helsinki, and approved by the Ethics Committee of Beijing Hospital (protocol code: 2018YFC1002204, date of approval: 18 July 2022).

Informed Consent Statement: This study was approved for the exemption from informed consent.

Acknowledgments: We are grateful for valuable comments from the reviewers and the kind help from Xueyan Han (Department of Medical Statistics, Peking University First Hospital, Beijing, China) in language editing.

Conflicts of Interest: The authors state no conflict of interest.

References

1. Cox, E.V.; White, A.M. Methylmalonic acid excretion: An index of vitamin-B12 deficiency. Lancet 1962, 2, 853–856. [CrossRef]
2. Rosenberg, L.E.; Lilljeqvist, A.; Hsia, Y.E. Methylmalonic aciduria: Metabolic block localization and vitamin B 12 dependency. Science 1968, 162, 805–807. [CrossRef] [PubMed]
3. Hunt, A.; Harrington, D.; Robinson, S. Vitamin B12 deficiency. BMJ 2014, 349, g5226. [CrossRef] [PubMed]
4. Stabler, S. Vitamin B12 deficiency. BMJ 2001, 323, 824–827. [CrossRef] [PubMed]
5. Haijes, H.A.; Jans, J.J.M.; Tas, S.Y.; Verhoeven-Duif, N.M.; van Hasselt, P.M. Pathophysiology of propionic and methylmalonic acidemias. Part 1: Complications. J. Inherit. Metab. Dis. 2019, 42, 730–744. [CrossRef] [PubMed]
6. Elin, R.J.; Winter, W.E. Methylmalonic acid: A test whose time has come? Am. J. Clin. Nutr. 2009, 89, S693–S696. [CrossRef]
7. Allen, L. How common is vitamin B-12 deficiency? Am. J. Clin. Nutr. 2009, 89, S693–S696. [CrossRef]
8. Longo, N.; Sass, J.O.; Jurecka, A.; Vockley, J. Biomarkers for drug development in propionic and methylmalonic acidemias. J. Inherit. Metab. Dis. 2022, 45, 132–143. [CrossRef]
9. Devalia, V.; Hamilton, M.; Molloy, A. Guidelines for the diagnosis and treatment of cobalamin and folate disorders. Br. J. Haematol. 2014, 166, 496–513. [CrossRef]
10. Mastropaolo, W.; Wilson, M.A. Effect of light on serum B12 and folate stability. Clin. Chem. 1993, 39, 913. [CrossRef]
11. Reineks, E.Z.; Hughes, A.; Wang, S. Effect of storage temperature or collection tube type on blood methylmalonic acid concentrations measured by gas chromatography-mass spectrometry. Clin. Chem. Lab. Med. 2010, 48, 1351–1353. [CrossRef] [PubMed]
12. Monsen, A.L.; Refsum, H.; Markestad, T.; Ueland, P.M. Cobalamin status and its biochemical markers methylmalonic acid and homocysteine in different age groups from 4 days to 19 years. Clin. Chem. 2003, 49, 2067–2075. [CrossRef]
13. Holleland, G.; Schneede, J.; Ueland, P.M.; Lund, P.K.; Refsum, H.; Sandberg, S. Cobalamin deficiency in general practice. Assessment of the diagnostic utility and cost-benefit analysis of methylmalonic acid determination in relation to current diagnostic strategies. Clin. Chem. 1999, 45, 189–198. [CrossRef] [PubMed]
14. Blom, H.J.; van Rooij, A.; Hogeveen, M. A simple high-throughput method for the determination of plasma methylmalonic acid by liquid chromatography-tandem mass spectrometry. Clin. Chem. Lab. Med. 2007, 45, 645–650. [CrossRef] [PubMed]
15. Valente, E.; Scott, J.; Ueland, P.; Cunningham, C.; Casey, M.; Molloy, A. Diagnostic accuracy of holotranscobalamin, methylmalonic acid, serum cobalamin, and other indicators of tissue vitamin B12 status in the elderly. Clin. Chem. 2011, 57, 856–863. [CrossRef]
16. Sobczyńska-Malefora, A.; Gorska, R.; Pelisser, M.; Ruwona, P.; Witchlow, B.; Harrington, D. An audit of holotranscobalamin (“Active” B12) and methylmalonic acid assays for the assessment of vitamin B12 status: Application in a mixed patient population. Clin. Biochem. 2014, 47, 82–86. [CrossRef]
17. Banerjee, S. Empowering Clinical Diagnostics with Mass Spectrometry. ACS Omega 2020, 5, 2041–2048. [CrossRef]
18. McCann, M.T.; Thompson, M.M.; Gueron, I.C.; Lemieux, B.; Gigucose, R.; Tuchman, M. Methylmalonic acid quantification by stable isotope dilution gas chromatography-mass spectrometry from filter paper urine samples. Clin. Chem. 1996, 42 Pt 1, 910–914. [CrossRef]
19. Inoue, Y.; Ohse, M. Prenatal diagnosis of methylmalonic aciduria by measuring methylmalonic acid in dried amniotic fluid on filter paper using gas chromatography-mass spectrometry. Anal. Bioanal. Chem. 2011, 400, 1953–1958. [CrossRef]
20. Stabler, S.P.; Marcell, P.D.; Poddell, E.R.; Allen, R.H.; Lindenbaum, J. Assay of methylmalonic acid in the serum of patients with cobalamin deficiency using capillary gas chromatography-mass spectrometry. J. Clin. Invest. 1986, 77, 1606–1612. [CrossRef]
21. Magera, M.J.; Helgeson, J.K.; Matern, D.; Rinaldo, P. Methylmalonic acid measured in plasma and urine by stable-isotope dilution and electrospray tandem mass spectrometry. *Clin. Chem.* **2000**, *46*, 1804–1810. [CrossRef] [PubMed]

22. Kushnir, M.M.; Komaromy-Hiller, G.; Shushan, B.; Urry, F.M.; Roberts, W.L. Analysis of dicarboxylic acids by tandem mass spectrometry. High-throughput quantitative measurement of methylmalonic acid in serum, plasma, and urine. *Clin. Chem.* **2001**, *47*, 1993–2002. [CrossRef]

23. Schmedes, A.; Brandslund, I. Analysis of methylmalonic acid in plasma by liquid chromatography-tandem mass spectrometry. *Clin. Chem.* **2006**, *52*, 754–757. [CrossRef] [PubMed]

24. la Marca, G.; Malvagia, S.; Pasquini, E.; Innocenti, M.; Donati, M.A.; Zammarchi, E. Rapid 2nd-tier test for measurement of 3-OH-propionic and methylmalonic acids on dried blood spots: Reducing the false-positive rate for propionylcarcinatine during expanded newborn screening by liquid chromatography-tandem mass spectrometry. *Clin. Chem.* **2007**, *53*, 1364–1369. [CrossRef] [PubMed]

25. Lakso, H.A.; Appelblad, P.; Schneede, J. Quantification of methylmalonic acid in human plasma with hydrophilic interaction liquid chromatography separation and mass spectrometric detection. *Clin. Chem.* **2008**, *54*, 2028–2035. [CrossRef] [PubMed]

26. Carvalho, V.M.; Kok, F. Determination of serum methylmalonic acid by alkylation extraction and liquid chromatography coupled to tandem mass spectrometry. *Anal. Biochem.* **2008**, *381*, 67–73. [CrossRef]

27. Fasching, C.; Singh, J. Quantitation of methylmalonic acid in plasma using liquid chromatography-tandem mass spectrometry. *Methods Mol. Biol.* **2010**, *603*, 371–378.

28. Pedersen, T.L.; Keyes, W.R.; Shahab-Ferdows, S.; Allen, L.H.; Newman, J.W. Methylmalonic acid quantification in low serum volumes by UPLC-MS/MS. *J. Chromatogr. B Analyt. Technol. Biomed. Life Sci.* **2011**, *879*, 1502–1506. [CrossRef]

29. Yuan, C.; Gabler, J.; El-Khoury, J.M.; Spatholt, R.; Wang, S. Highly sensitive and selective measurement of undervaritatized methylmalonic acid in serum and plasma by liquid chromatography-tandem mass spectrometry. *Anal. Bioanal. Chem.* **2012**, *404*, 133–140. [CrossRef]

30. Fu, X.; Xu, Y.K.; Chan, P.; Pattengale, P.K. Simple, Fast, and Simultaneous Detection of Plasma Total Homocysteine, Methylmalonic Acid, Methionine, and 2-Methylcitric Acid Using Liquid Chromatography and Mass Spectrometry (LC/MS/MS). *JIMD Rep.* **2014**, *69*, 67–78.

31. Hempen, C.; Wanschers, H.; van der Sluijs Veer, G. A fast liquid chromatographic tandem mass spectrometric method for the simultaneous determination of total homocysteine and methylmalonic acid. *Anal. Bioanal. Chem.* **2008**, *391*, 263–270. [CrossRef] [PubMed]

32. Kushnir, M.M.; Nelson, G.J.; Frank, E.L.; Rockwood, A.L. High-Throughput Analysis of Methylmalonic Acid in Serum, Plasma, and Urine by LC-MS/MS. Method for Analyzing Isomers without Chromatographic Separation. *Methods Mol. Biol.* **2016**, *1378*, 159–173.

33. Ambati, C.S.; Yuan, F.; Abu-Elheiga, L.A.; Zhang, Y.; Shetty, V. Identification and Quantitation of Malonic Acid Biomarkers of In-Born Error Metabolism by Targeted Metabolomics. *J. Am. Soc. Mass Spectrom* **2017**, *28*, 929–938. [CrossRef] [PubMed]

34. Ma, X.; Zou, Y.; Tang, Y.; Wang, D.; Zhou, W.; Yu, S.; Qi, L. High-throughput analysis of total homocysteine and methylmalonic acid with the efficiency to separate succinic acid in serum and urine via liquid chromatography tandem mass spectrometry. *J. Chromatogr. B Analyt. Technol. Biomed. Life Sci.* **2021**, *1193*, 123135. [CrossRef] [PubMed]

35. Ueyanagi, Y.; Setoyama, D.; Kawakami, D.; Mushimoto, Y.; Matsumoto, S.; Hotta, T.; Kang, D. Fully Automated Quantitative Measurement of Serum Organic Acids via LC-MS/MS for the Diagnosis of Organic Acidemias: Establishment of an Automation System and a Proof-of-Concept Validation. *Diagnostics* **2021**, *11*, 2195. [CrossRef]

36. Boutin, M.; Presse, N.; Martineau, T.; Perreault, A.; Gaudreau, P.; Auray-Blais, C. Mass spectrometry analysis of urinary methylmalonic acid to screen for metabolic vitamin B12 deficiency in older adults. *Bioanalysis* **2020**, *12*, 693–705.

37. Boutin, M.; Presse, N.; Allard, D.; Martineau, T.; Gaudreau, P.; Auray-Blais, C. Methylmalonic acid analysis using urine filter paper samples to screen for metabolic vitamin B12 deficiency in older adults. *Bioanalysis* **2022**, *14*, 615–626. [CrossRef] [PubMed]

38. Zheng, Y.; Bergström, M. Validation of an automated UPLC-MS/MS method for methylmalonic acid in serum/plasma and its application on clinical samples. *Scand. J. Clin. Lab. Invest.* **2022**, *82*, 342–347. [CrossRef]

39. CLSI. C-62A: Liquid Chromatography-Mass Spectrometry Methods, Approved Guideline; Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2014.

40. Yu, S.; Wang, D.; Ma, X.; Zhang, Y.; Sun, D.; Zou, Y.; Yu, J.; Zhang, F.; Yang, G.; Xie, S.; et al. Analytical and Clinical Performance of a Liquid Chromatography-Tandem Mass Spectrometry Method for Measuring Gastrin Subtypes G34 and G17 in Serum. *Clin. Chem.* **2021**, *67*, 1220–1229. [CrossRef]

41. Lindberg, M.; Borgström Hager, H.; Brokner, M. Week-to-week biological variation of methylmalonic acid and homocysteine in healthy women. *Scand. J. Clin. Lab. Investig.* **2019**, *79*, 247–250. [CrossRef]