Analysis of Important Factors Having an Impact on Safety in Road Tunnels – Research Findings

Natalia Schmidt-Polończyk

AGH University of Science and Technology / Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie

* Corresponding author / Autor korespondencyjny: nschmidt@agh.edu.pl

ABSTRACT

Aim: This article presents relevant safety issues in road tunnels based on the results of a survey and evacuation experiments conducted on real scale in two existing road tunnels in Poland.

Project and methods: An analysis of the relevant factors influencing the level of safety in road tunnels was carried out based on the results of experimental studies in two road tunnels in which the course of evacuation under fire conditions was observed. As part of the study, several evacuation trials were carried out at equal smoke levels, examining a different parameter each time: pre-movement time, speed of movement, the effect of smoke on the speed of movement, the effect of tunnel infrastructure on evacuation, among others. A survey carried out among 504 respondents, in turn, attempted to assess the awareness of hazards and safety procedures in road tunnels. The survey has four parts and questions covered the following issues: knowledge of tunnel infrastructure, behaviour in case of congestion, choice of evacuation route, behaviour during the evacuation, personal belongings during the evacuation, self-assessment of tunnel safety knowledge and the role of experience. An analysis was also carried out of the information available in Poland on safety guidelines for road tunnels, which can help tunnel users to improve their knowledge on tunnel safety.

Results: The survey results indicate an insufficient level of knowledge regarding safety in road tunnels – only 16% of respondents answered more than 50% of the questions correctly. Ignorance of road tunnel infrastructure itself and the safety rules for the tunnel was also diagnosed. An analysis of the information available to the road users demonstrates that this information is difficult to access and that there is a lack of uniform guidelines to educate the public on the topic raised in the article. A significant impact of evacuation exercises carried out on an accurate scale was emphasised, providing valuable data on the evacuation process and increasing the level of safety in the engineering facilities analysed by raising the awareness of the participants in the experiment.

Conclusions: The research findings presented in this article allow for better understanding of the behaviour of the participants of accidents and fires in road tunnels. In addition, the need to raise the awareness of the road users on the dangerous situations that may occur in a tunnel and the appropriate response to them has been demonstrated.

Keywords: safety, fire, smoke, evacuation, road tunnel

Type of article: original science article

Received: 23.01.2022; Reviewed: 17.02.2022; Accepted: 17.02.2022;
Author’s ORCID ID: N. Schmidt-Polończyk – 0000-0003-0674-9680;
Please cite as: SFT Vol. 59 Issue 1, 2022, pp. 84–94, https://doi.org/10.12845/sft.59.1.2022.4;
This is an open access article under the CC BY-SA 4.0 license (https://creativecommons.org/licenses/by-sa/4.0/).
Introduction

Road tunnels are more and more often an essential part of road infrastructure, so the safety aspect of these structures has become a frequent subject of research by scientists. Although from a statistical point of view, the accident rate in tunnels is lower than for open roads, it is worth noting that due to the geometrical characteristics of road tunnels the effects of hazardous situations may be on a different scale compared to open road spaces [1]. It should be emphasised that the consequences of accidents in partially enclosed spaces, such as tunnels, can be much more severe [2]. The above is evidenced by the tragic consequences of tunnel fires, e.g. in the Mont Blanc tunnel in 1999, where 39 people died, mainly because these people failed to evacuate, probably due to unawareness of the danger and ignorance of safety procedures [3]. A similar scenario occurred during the 2006 Viamala tunnel fire in Switzerland (9 fatalities), the 2010 Wuxi Lihu tunnel fire (24 fatalities), the 2014 Yanhou tunnel fire in China (40 fatalities), or for example the 2017 Taojiakuang tunnel fire in Weihai, China (12 fatalities) – these are only selected examples.

Admittedly, attempts can be made to downplay the usefulness of research into tunnel safety on the grounds that there are few road tunnels in Poland. However, an analysis of a few basic facts is enough to resolve any doubts as to the essence of research on tunnel safety.

- In Poland, there are currently a dozen or so road tunnels in use in urban and non-urban areas,
- more tunnel investments are planned in Poland: e.g. under Luboń Mały as part of the so-called “Zakopianka”, in Świnoujście, Wrocław, Kraków, near Rzeszów, so the number of tunnels in Poland will undoubtedly increase in the near future,
- more and more frequent car journeys of Polish citizens

Wprowadzenie

Tunele drogowe coraz częściej stanowią istotny element infrastruktury drogowej, a więc i aspekt bezpieczeństwa w tych obiektach stał się często przedmiotem badań naukowców. Pomimo że ze statystycznego punktu widzenia, wskaźnik wypadkowości w tunelach jest niższy niż w przypadku dróg otwartych, to warto zauważyć, że ze względu na charakterystykę geometryczną tuneli drogowych skutki sytuacji niebezpiecznych mogą mieć inną skalę w porównaniu do wypadków drogowych [1]. Należy podkreślić, że konsekwencje wypadków w częściowo zamkniętych przestrzeniach, takich jak tunele, mogą być znacznie poważniejsze [2]. Świadczyć o tym tragiczne konsekwencje pożarów w tunelach, np. w tunelu Mont Blanc w 1999 r., gdzie zginęło 39 osób, głównie dlatego, że osoby te nie podjęły ewakuacji – prawdopodobnie z powodu nieświadomości zagrożenia i nieznajomości procedur bezpieczeństwa [3]. Podobny scenariusz miał miejsce podczas pożarów: w tunelu Viamala w Szwajcarii w 2006 roku (9 ofiar śmiertelnych); w tunelu Wuxi Lihu w 2010 roku (24 ofiary śmiertelne), w tunelu Yanhou w Chinach w 2014 roku (40 ofiar śmiertelnych), w tunelu Taojiakuang w Weihai w Chinach w 2017 r. (12 ofiar śmiertelnych) – to tylko wybrane przykłady.

Co prawda można próbować pomniejszać celowość badań w zakresie bezpieczeństwa w tunelach, argumentując to tym, iż w Polsce tunele drogowe jest niewiele. Wystarczy jednak analiza kilku podstawowych faktów, aby rozwijać wszelkie wątpliwości w zakresie zasadności badań dotyczących bezpieczeństwa w tunelach:

- w Polsce na dzień dzisiejszy jest w użytku kilkanaście tuneli drogowych na terenach miejskich oraz poza miejskimi,
- w Polsce planowane są kolejne inwestycje tunelowe: m.in. pod Luboniem Małym w ciągu tzw. „Zakopianki”, w Świnoujściu, we Wrocławiu, w Krakowie, w okolicach Rzeszowa.
across European countries (and elsewhere) are often connected with the use of road tunnels,

- the consequences of accidents, collisions or other emergencies in a road tunnel alter considerably the scale of the risk compared to the incidents in the open (the consequences can be much more tragic).

This article presents essential aspects related to safety in a road tunnel taking into account the results of fire evacuation tests conducted on a real scale. The aim of the publication is to show the role of the human factor, in particular the lack of knowledge of potential drivers about safety affecting the level of safety in tunnels. Recent studies proved that an essential factor affecting accident rates is the level of knowledge of the road users, not only drivers but also passengers [4]. Therefore, this article also includes the results of own research on the preliminary diagnosis of the assessment of awareness and knowledge of the safe operation of tunnel infrastructure among potential users of road tunnels.

Potentially dangerous situations in a road tunnel

During the operation of traffic tunnels, a user is exposed to many hazards, including increased concentration levels of harmful solid and gaseous pollutants, vehicle collisions, leakage of toxic substances, etc. From the point of view of the hazard scale, fires are the most significant and most dangerous incidents in tunnels. According to the statistics, they do not occur very often, but their effects in a semi-enclosed space such as a tunnel can be much more severe compared to open traffic routes. Unlike open fires, a fire in a space enclosed on four sides, such as a road tunnel, can be characterised by rapid development. There is also a likelihood of a fire spreading to other vehicles, causing an increase in firepower, as happened in 2001 in the St. Gotthard tunnel [14]. 86 fatalities, 68 injured, 100 vehicles damaged were the consequence of just four fires in road tunnels: Mont Blanc, St. Gotthard, Tauren, Wuxi Lihu, which gives a picture of the danger of such incidents and a much higher risk than for traffic accidents in open spaces [5].

A fire in a tunnel can last for several days and cause enormous losses not only in material assets, the tunnel construction (see Figure 1.) but also in the surrounding area, significantly reducing its communication and tourist value, as happened after the fire in the Mont Blanc tunnel in 1999. It took more than 50 hours to extinguish the fire completely, and the tunnel was only reopened after three years. However, the tragic consequences of this disaster in the form of 39 fatalities are undoubtedly the most significant loss [3].

Oznacza to, że w najbliższym czasie liczba tuneli w Polsce z pewnością będzie się zwiększać,

- coraz częstsze podróże samochodem mieszkańców Polski po krajach europejskich (i nie tylko) są niejednokrotnie związane z korzystaniem z tuneli drogowych,

- konsekwencje wypadków, kolizji czy też innych sytuacji awaryjnych w tunelu drogowym znacznie zmieniają skalę zagrożenia w porównaniu do zdarzeń w ciągach komunikacyjnych prowadzonych w otwartych przestrzeniach (konsekwencje te mogą być dużo bardziej tragiczne).

W artykule przedstawiono istotne aspekty związane z bezpieczeństwem w tunelu drogowym, uwzględniając wyniki autorskich badań ewakuacji w warunkach pożaru, prowadzonych w skali rzeczywistej. Celem publikacji jest wskazanie roli czynnika ludzkiego, w szczególności braku wiedzy potencjalnych kierowców o bezpieczeństwie, wpływającej na poziom bezpieczeństwa w tunelach. Ostatnio przeprowadzone badania wykazały, że istotnym czynnikiem oddziałującym na wypadkowość jest poziom wiedzy użytkowników dróg – nie tylko kierowców, ale i pasażerów [4]. Dlatego w niniejszej pracy przedstawiono również wyniki własnych badań dotyczących wstępnej diagnozy oceny świadomości i wiedzy na temat bezpiecznej eksploatacji infrastruktury tunelowej wśród potencjalnych użytkowników tuneli drogowych.

Sytuacje potencjalnie niebezpieczne w tunelu drogowym

Podczas eksploatacji tuneli komunikacyjnych użytkownik narażony jest na wiele zagrożeń, do których zaliczyć można np. podwyższony poziom koncentracji szkodliwych zanieczyszczeń stałych i gazowych, kolizje pojazdów, wyciek toksycznych substancji, itp. Z punktu widzenia skali zagrożenia, największymi i najbardziej niebezpiecznymi zdarzeniami w tunelach są pożary. Według statystyk nie występują one bardzo często, jednak ich skutki w przestrzeni częściowo zamkniętej, jaką jest tunel, mogą być znacznie poważniejsze w porównaniu z otwartymi ciągami komunikacyjnymi. W przeciwnieństwie do pożarów przebiegających na otwarnej przestrzeni pożar w tunelu drogowym, ograniczonym z czterech stron, może charakteryzować się gwałtownym rozwojem. Istnieje również prawdopodobieństwo rozprzestrzeniania się ognia na inne pojazdy, powodując wzrost mocy pożaru, tak jak to miało miejsce w roku 2001 w tunelu St. Gotthard [14]. 86 ofiar śmiertelnych, 68 rannych, 100 pożarów uszkodzonych było konsekwencją pożaru tylko czterech pożarów, w tunelach drogowych: Mont Blanc, St. Gotthard, Tauren, Wuxi Lihu, co daje obraz niebezpieczeństwa takich zdarzeń i dużo większego ryzyka niż w przypadku wypadków komunikacyjnych na przestrzeniach otwartych [5].

Pożar w tunelu może trwać kilka dni i powodować olbrzymie straty nie tylko w dobrach materialnych czy konstrukcji tunelu (zob. ryc. 1.), ale i w otaczającym go rejonie, znacznie obniżając jego walory komunikacyjne i turystyczne. Stało się tak po pożarze w tunelu Mont Blanc w 1999 roku. Całkowite uszkodzenie ognia zajęło ponad 50 godzin, a tunel otwarto ponownie dopiero po trzech latach. Jednak tragiczne skutki tej katastrofy – 39 ofiar śmiertelnych – to bez wątpienia największa strata [3].
With fires occurring in road tunnels, the priority is to evacuate those at risk in the shortest possible time. The evacuation process is a complex issue, depending on many factors. One of them is the awareness of the users that a fire in such a facility is a deadly risk. Unfortunately, as numerous examples and studies have shown, general awareness of the risks is relatively low.

Assessment of tunnel safety awareness and knowledge

An attempt to assess the awareness of safety procedures was made on a group of 504 respondents by conducting a survey among them, detailed results are presented in the article [6]. The questionnaire has four parts. The first dealt with the identification data, the second with the frequency of using road tunnels, knowledge of the rules on safe behaviour and experience in the evacuation process. The third section included questions verifying knowledge of the basic rules of safe behaviour in a tunnel, and the fourth section explored awareness of the dangers in a tunnel and behavioural aspects during different situations. Questions covered the following issues: knowledge of the tunnel infrastructure, behaviour in case of congestion, choice of the escape route, behaviour during an evacuation, self-assessment of the knowledge on tunnel safety and the role of experience.

On average, the respondents answered 5 out of 15 questions correctly. Only 16% of the respondents answered more than 50% of the questions correctly. Moreover, no one indicated correct answers to 12 or more questions. Interestingly, most respondents were confident that they had better knowledge of road tunnel safety than they actually did.

The results indicate the need for educational activities among the public so that safety levels increase and the complex safety systems operating in road tunnels support the conscious actions of its users [6].

Based on the results of the survey, the following findings were made:

- a gap in knowledge of the tunnel infrastructure (it should be emphasised that cycling, walking and parking of cars is prohibited in road tunnels, which create potentially dangerous situations),

W obliczu zdarzających się pożarów w tunelach drogowych priorytetową kwestią jest ewakuacja osób zagrożonych w jak najkrótszym czasie. Proces ten jest zagadnieniem złożonym, zależnym od wielu czynników. Jednym z nich jest kwestia świadomości użytkowników, że pożar w takim obiekcie stanowi śmiertelne zagrożenie. Niestety, jak wskazują liczne przykłady i badania, powszechnej świadomości o zagrożeniach jest raczej niska.

Ocena świadomości i wiedzy na temat bezpieczeństwa w tunelu

Próbę oceny świadomości dotyczącej procedur bezpieczeństwa przeprowadzono na grupie 504 respondentów, realizując wśród nich badania ankietowe, których szczegółowe wyniki przedstawiono w artykule [6]. Ankieta składa się z czterech części, z których pierwsza dotyczy danych identyfikacyjnych, druga – częstotliwości użytkowania tuneli drogowych, znajomości zasad bezpiecznego zachowania się oraz doświadczenia w procesie ewakuacji. W trzeciej części zawarto pytania weryfikujące znajomość podstawowych zasad bezpiecznego zachowania się w tunelu, a w czwartej badano świadomość zagrożenia w tunelu oraz aspekty behawioralne podczas różnych sytuacji. Pytania obejmowały zagadnienia: znajomość infrastruktury tunelu, zachowania w przypadku zatoru, wyboru drogi ewakuacji, zachowania podczas ewakuacji, rzeczy osobistych podczas ewakuacji, samoczynne wiedzy o bezpieczeństwie w tunelu oraz rolę doświadczenia.

Średnio respondenci odpowiadali poprawnie na 5 z 15 pytań. Tylko 16% respondentów odpowiedziało poprawnie na więcej niż 50% pytań, ponadto nikt nie wskazał prawdziwych odpowiedzi na 12 i więcej pytań. Co ciekawe, większość respondentów była przekonana, że posiada lepszą niż w rzeczywistości wiedzę na temat bezpieczeństwa w tunelach drogowych.

Wyniki wskazują na potrzebę prowadzenia działań edukacyjnych wśród społeczeństwa, by poziom bezpieczeństwa wzrósł, a skomplikowane systemy bezpieczeństwa funkcjonujące w tunelach drogowych wspierały świadome działania jego użytkowników [6].

Na podstawie wyników ankiety stwierdzono, że:

- istnieje luka w wiedzy o infrastrukturze tunelowej (należy podkreślić, że w tunelach drogowych zabronione jest poruszanie się rowerem, chodzenie i parkowanie samochodów, które stwarzają potencjalnie niebezpieczne sytuacje),
knowledge gap about these tunnel safety rules (in tunnels you should not turn, reverse or stop your car),

- in an emergency situation such as a fire in road tunnels, immediate, efficient evacuation is the most critical issue in protecting people's health and lives – tunnel users do not want to leave their personal property behind – almost 84% of the respondents would take their personal belongings with them when evacuating.

Interestingly, most respondents rated their knowledge of safety procedures in the tunnel much higher than in reality. Only 14.7% of the respondents admitted having no knowledge of the safety procedures in road tunnels, and 26.8% did not know fire safety procedures.

The results of part 3 of the survey, which dealt with safety rules, indicated that the respondents greatly overestimated their knowledge, as 88% of them did not answer even half of the questions correctly. Comparing the above with the respondents’ statements, it is reasonable to conclude that the respondents overestimated their knowledge and lacked it [6].

Where can I find information on safety rules in a road tunnel?

Let us imagine that we are travelling by car in Poland. We set off from Gdańsk, where we pass through the tunnel under Martwa Wisła river to central Poland, then in Warsaw we pass through the tunnel under Ursynów or the Wisłostrada tunnel heading south, passing the tunnel under the Gen. Ziętka Roundabout in Katowice, and then the Emilia tunnel in Laliki along the S1 national road, just before Zwardoń. How do you prepare to drive safely in these several different tunnels?

Each road tunnel is a unique engineering object, where the parameters may differ from those of another, a third, etc. However, there are some key commonalities upon which universal rules for safe traffic in tunnels can be developed – is this the case?

Tunnels on the Trans-European Road Network (TEN-T) are managed by appropriate entities designated by the administrative authority [7]. For each tunnel, the tunnel manager shall nominate one Safety Officer, prior approval of the administrative authority. Particular schedules are constructed for the various activities to maintain safety in these facilities. Instructions for safe use are also developed, together with rules for behaviour in various situations. These instructions are undoubtedly an essential element in efforts to maintain the highest possible level of safety in tunnels. They are dedicated to a specific facility, hence there may be several or a dozen or more of them.

Furthermore, what is the availability of these materials? Does this information reach us? Who among us has read such a document? Is it that we are forced to educate ourselves in this area by consulting the road rules and the websites of units that manage these facilities? It should also be noted that tunnels may have different managers depending on their location and class of the road along which they are led. Hence the

Where can I find information on safety rules in a road tunnel?

Let us imagine that we are travelling by car in Poland. We set off from Gdańsk, where we pass through the tunnel under Martwa Wisła river to central Poland, then in Warsaw we pass through the tunnel under Ursynów or the Wisłostrada tunnel heading south, passing the tunnel under the Gen. Ziętka Roundabout in Katowice, and then the Emilia tunnel in Laliki along the S1 national road, just before Zwardoń. How do you prepare to drive safely in these several different tunnels?

Each road tunnel is a unique engineering object, where the parameters may differ from those of another, a third, etc. However, there are some key commonalities upon which universal rules for safe traffic in tunnels can be developed – is this the case?

Tunnels on the Trans-European Road Network (TEN-T) are managed by appropriate entities designated by the administrative authority [7]. For each tunnel, the tunnel manager shall nominate one Safety Officer, prior approval of the administrative authority. Particular schedules are constructed for the various activities to maintain safety in these facilities. Instructions for safe use are also developed, together with rules for behaviour in various situations. These instructions are undoubtedly an essential element in efforts to maintain the highest possible level of safety in tunnels. They are dedicated to a specific facility, hence there may be several or a dozen or more of them.

Furthermore, what is the availability of these materials? Does this information reach us? Who among us has read such a document? Is it that we are forced to educate ourselves in this area by consulting the road rules and the websites of units that manage these facilities? It should also be noted that tunnels may have different managers depending on their location and class of the road along which they are led. Hence the
instructions may not only be different in their scope (as the parameters of the tunnels are different), but they may be located in different places. In the age of the Internet, it is not a significant problem to access this knowledge, but with the multitude of things to be done and the fast pace of life, there is probably not enough time for it.

The role of research in improving safety in road tunnels

As a consequence of the fires in tunnels that have occurred in the last several years, measures have been taken to improve safety during tunnel operation, as evidenced by the legislation issued, among others [7–8], and numerous scientific studies concerning for instance evacuation behaviour [6, 9], movement speed [10], tunnel infrastructure [11], evacuation exit [12] or research on numerical modeling of the evacuation process [13] – these are just some examples. Real-scale empirical research is precious for the development of science because it provides knowledge about phenomena or processes that are closest to the actual events. Conducting such research is extremely difficult, which is associated to the risk, requires good organisation, commitment and support of various units, including emergency services. It should be emphasised that exercises related to emergency services, which play an essential training role, are one thing, and empirical investigations using new technologies are another, which in addition to their educational function, provide important material for analysis in terms of improving the safety of tunnel infrastructure.

The first real-scale evacuation studies in a road tunnel from a coach, conducted under smoke conditions in Poland, took place in the Emilia tunnel in Laliki in 2016 [6]. Approximately 50 students of the Faculty of Civil Engineering and Resource Management of the University of Science and Technology participated in the experiment (former name of the faculty was: Faculty of Mining and Geoenengineering).

The evacuation studies undertaken consisted of four tests in which a vehicle collision was simulated, resulting in a fire in the tunnel. During the first attempt, participants were not given information on the exact purpose of the visit, the rules of behaviour, the presence of smoke, the tunnel’s infrastructure (presence and location of emergency exits, where the coach stops). A coach straight from Kraków entered the tunnel to obtain an element of surprise among the participants of the experiment (see Figure 2).

Rola badań naukowych w podnoszeniu poziomu bezpieczeństwa w tunelach drogowych

W konsekwencji pożarów w tunelach, do jakich doszło w ciągu ostatnich kilkunastu lat, podjęto działania mające na celu poprawę bezpieczeństwa podczas eksploatacji tuneli, o czym świadczą wydane akty prawne m.in. [7–8] oraz liczne badania naukowe dotyczące zachowania podczas ewakuacji [6, 9], prędkości poruszania się [10], infrastruktury tunelu [11], wyboru wyjścia ewakuacyjnych [12], czy badań modelowania numerycznego procesu ewakuacji [13] – to tylko wybrane przykłady. Niezwykle cennymi dla rozwoju nauki są badania empiryczne prowadzone w skali rzeczywistej, które dostarczają wiedzy o zjawiskach czy procesach najbardziej zbliżonych do realnych zdarzeń. Prowadzenie takich badań jest wyjątkowo trudne, ponieważ związane jest z ryzykiem, wymaga dobrej organizacji, zaangażowania oraz wspaniało różnych jednostek m.in. służb ratowniczych. Należy podkreślić, że czym innym są ćwiczenia służb ratowniczych, które odgrywają ważną rolę szkoleniową, a czym innym badania empiryczne przy użyciu nowych technologii, które oprócz funkcji edukacyjnej dostarczają istotnego materiału do analizy w zakresie podnoszenia bezpieczeństwa infrastruktury tunelowej.

Pierwsze badania ewakuacji w tunelu drogowym z autokaru, prowadzone w skali rzeczywistej w warunkach zadymienia w Polsce miały miejsce w tunelu Emilia w Lalikach w roku 2016 [6]. W eksperymentzie wzięło udział ok. 50 studentów Wydziału Inżynierii Lądowej i Gospodarki Zasobami Akademii Górniczo-Hutniczej (wcześniejsza nazwa wydziału to: Wydział Górniczego i Geoinżynierii).

Podjęte badania ewakuacji polegały na przeprowadzeniu czterech prób, w których symulowano zderzenie pojazdów, wskutek czego w tunelu doszło do pożaru. Podczas pierwszej próby uczestnicy nie otrzymali informacji na temat: dokładnego celu wizyty, zasad zachowania się, obecności dymu, infrastruktury tunelu (obecności i rozmieszczenia wyjść ewakuacyjnych, miejsca zatrzymania autokaru). Autokar prosto z Krakowa wjechał do tunelu, w celu uzyskania elementu zaskoczenia wśród uczestników eksperymentu (zob. ryc. 2).
In the last two trials, where the smoke was the strongest, evacuees observed disorientation due to significantly reduced visibility (see Figure 3). Synchronised cameras were used to measure the times of the various evacuation stages, and thermal imaging was used to track the behaviour of users in smoke-filled areas. It should be emphasized that during a real fire, smoke and fire gases are very toxic and pose a lethal threat to the evacuees.

Another real-world evacuation experiment was conducted in June 2017 in a tunnel under Martwa Wisła river in Gdańsk (approximately 1,377 m long). Ninety volunteers of different ages took part in the evacuation experiment.
The flow of evacuees, as well as observations of the participants’ behaviour, were carried out using a set of cameras. In addition, thermal imaging cameras were used due to very poor visibility in the vicinity of the coach. To precisely measure the evacuation time of each unit, the organisers used ChronoTrack measurement technology based on UHF technology.

During the first of the three trials of the experiment, the participants were provided with no information about the conduct of the study, the rules of behaviour, the presence of smoke, and the tunnel’s infrastructure. The signal to start evacuation was the occurrence of a situation analogous to an actual fire incident: smoke appeared in the tunnel (see Figure 4), and the fire procedure was activated (including fire lighting, voice announcements and alarm signal). In the last trial, where 40 out of 90 participants were given the task of simulating illness, injury or death, the time taken for the Fire Service to arrive at the scene and the process of segregating the injured were examined (see Figure 5).

Both experiments were conducted using non-toxic, cold smoke so that the conditions during the tests mirrored those during a fire as closely as possible. In addition, to ensure the safety of the participants, the experiment was conducted with the participation of the Fire Brigade, the Police and the medical services. Naturally, the tunnels were closed to vehicle traffic for the duration of the study.

The experiments conducted made it possible to observe many interesting relations, among others:

- the speed of movement during the evacuation depends on the level of smoke, the experience related to the knowledge of the infrastructure of the facility and the attitude of the participants;
- the decision-making process during the evacuation differed according to the level of smoke in the tunnel;
- during the 1st and 2nd experiment (in the Emilia tunnel), where the smoke was low, the first group of people made a decision to evacuate, on the direction of movement, on

Przepływ ewakuowanych osób jak i obserwacje zachowań uczestników eksperymentu prowadzono przy wykorzystaniu zestawu kamer. Ponadto z powodu bardzo słabej widoczności w pobliżu autokaru wykorzystano kamery termowizyjne. Dla precyzyjnego pomiaru czasu ewakuacji każdej jednostki organizatorzy wykorzystali technologię pomiarową ChronoTrack opartą na technologii UHF.

Podczas pierwszej z trzech prób eksperymentu uczestnicy nie otrzymali żadnej informacji na temat: przebiegu badania, zasady zachowania się, obecności dymu, infrastruktury tunelu. Sygnałem do rozpoczęcia ewakuacji było zaistnienie sytuacji analogicznej jak w przypadku rzeczywistego zdarzenia wybuchu pożaru: w tunelu pojawiło się zadymienie (zob. ryc. 4) oraz uruchomiona została procedura pożarowa (m.in. oświetlenie pożarowe, komunikaty głosowe i sygnał alarmowy). W ostatniej próbie, gdzie 40 z 90 uczestników otrzymało zadanie symulacji schorzenia, urazu lub zgonu, badano czas dojazdu staży pożarnej na miejsce zdarzenia oraz przebieg procesu segregacji poszkodowanych (zob. ryc. 5).

Obydwa eksperymenty prowadzono z wykorzystaniem nietoksycznego, zimnego dymu tak, aby warunki pannujące podczas badań w możliwie jak największszym stopniu odzwierciedlały warunki podczas pożaru. Ponadto, dla zapewnienia bezpieczeństwa uczestników, eksperyment przeprowadzono przy udziale straży pożarnej, policji oraz służb medycznych. Oczywiście na czas prowadzenia badań tunele zostały zamknięte dla ruchu pojazdów.

Przeprowadzone eksperymenty pozwoliły na zaobserwowanie szeregu interesujących zależności m.in.:

- prędkość poruszania się podczas ewakuacji zależy od poziomu zadymienia, doświadczenia związanego ze znajomością infrastruktury obiektu oraz nastawienia uczestników;
- proces podejmowania decyzji w trakcie ewakuacji różnił się w zależności od poziomu zadymienia w tunelu

Figure 5. Articulated bus with 90 participants in an experiment in the tunnel “Under Martwa Wisła river” in Gdańsk - before starting one of the experiments in smoky conditions
Rycina 5. Autobus przegubowy z 90 uczestnikami eksperymentu w tunelu pod Martwą Wisłą w Gdańsku – stan przed rozpoczęciem jednego z eksperymentów w warunkach zadymienia
Source: Own elaboration.
Źródło: Opracowanie własne.
the choice of exit, etc. the rest followed it, while in the 3rd and 4th the decisions were made in small groups,

– the phenomenon of the formation of different types of groups of evacuating people depending on the level of smoke was observed – for example, during heavy smoke (experiment 3 and 4 in the Emilia tunnel), characteristic double-lines patterns were observed,

– participants reported feeling insecure or fearful under the influence of increasingly dense smoke,

– the pre-movement time, i.e. the time between the alarm signal and the start of the evacuation on the bus, was reduced in subsequent experiments with the same participants. Time was reduced from 37 s in experiment 1 to 5 s and 3 s in experiments 3 and 4 (in the Emilia tunnel), respectively,

– a learning effect was observed during the experiments, as evidenced by shorter evacuation times from the main tunnel in subsequent experiments (48 s in experiment 1 vs 16–18 s in 2, 3 and 4, in the Emilia tunnel).

Such research findings allow for better understanding of the behaviour of the participants in accidents and fires in road tunnels. This knowledge can be used to create better models of behaviour of accident and fire participants in tunnels and improve tunnel infrastructure. It is worth mentioning that the real-scale research carried out played a unique educational role, which was verified during the aforementioned surveys. Some respondents (12.7%) took part in one of the two evacuation experiments described above. The study results clearly show that there is a significant statistical difference in the number of correct answers between those who took part in the experiment and respondents without such experience.

A detailed course of the evacuation experiment in the Emilia tunnel in Laliki, together with the research results, is included in the scientific study [6].

Summary

This material highlights the level of safety knowledge and hazard awareness in road tunnels among a large group of the respondents [6]. Based on the results of the survey, it can be concluded that there is a need to increase the level of safety in tunnels, not only through the use of various modern systems in these facilities but also by raising public awareness of the tunnel infrastructure itself, the situations that can happen in it and the appropriate response to them. Taking into account the availability of existing information in this field, it would be advisable to develop a comprehensive general education programme with a broad “impact” range, without dedication to a specific facility, but conveying in a general way the principles of safe use of road tunnels. The programme should include information and rules on

– podczas 1. i 2. eksperymentu (w tunelu Emilia), gdzie zadymienie było niewielkie, pierwsza grupa osób podjęła decyzję o ewakuacji, kierunku ruchu, wyborze wyjścia, itp. – reszta podzigała za nią, z kolei w trakcie 3. i 4. testu decyzje były podejmowane w małych grupach,

– zaobserwowano zjawisko formowania się różnych rodzajów grup ewakuujących się osób w zależności od poziomu zadymienia – np. podczas dużego zadymienia (ekspertym 3. i 4. w tunelu Emilia) zaobserwowano charakterystyczne wzory podwójnych linii (ang. characteristic double-lines patterns),

– uczestnicy zgłaszali poczucie niepewności lub strachu pod wpływem coraz gęstszego dymu,

– czas pomiędzy sygnałem alarmowym a rozpoczęciem ewakuacji (ang. pre-movement time) w autobusie uległ skróceniu w kolejnych eksperymentach z tymi samymi uczestnikami. Czas został skrócony z 37 s do 5 s w eksperymencie 1. i odpowiednio do 3 s w eksperymentach 3. i 4. (w tunelu Emilia),

– podczas eksperymentów zaobserwowano efekt uczenia się; świadczą o tym m.in. krótsze czasy ewakuacji z głównego tunelu w kolejnych eksperymentach (48 s w eksperymencie 1. oraz. 16–18 s w eksperymentach 2., 3. i 4. w tunelu Emilia).

Wyniki takich badań pozwalają na lepsze zrozumienie zachowań uczestników wypadków i pożarów w tunelach drogowych. Wiedza ta może zostać wykorzystana do stworzenia doskonalších modeli zachowania się uczestników wypadków i pożarów w tunelach, jak również poprawienia infrastruktury tunelu. Warto nadmienić, że przeprowadzone badania w skali rzeczywistej obejmowały klaże anek tyowych odpowiedzi, które brały udział w eksperymentach, a ankie towanymi bez takiego doświadczenia. Szczegółowy przebieg eksperymentu ewakuacji w tunelu Emilia w Lalikach wraz z wynikami badań zawarto w artykule [6].
the use of all tunnels in its scope. Regardless of the country, the length of the tunnel or its design parameters, a potential road tunnel user should be able to respond correctly to a specific incident.

It is also important to emphasise that the real-scale evacuation drills have a huge impact on increasing the level of safety in the analysed engineering facilities [9, 11–12]. People with such experience acquire the ability to appropriately react to potentially dangerous situations, are familiar with the infrastructure of the tunnel, which significantly speeds up the evacuation process by eliminating the delay in the start of the evacuation, so often observed during fires in tunnels (reaction time and decision to evacuate) [9, 13–14], very often excluding the chance to safely leave the endangered place (the most frequent cause of the loss of life).

It should be emphasized the importance of such research, the results of which can be widely used, e.g. for educational purposes, when designing the tunnel infrastructure, as well as during numerical modeling studies, where appropriately selected initial-boundary parameters resulting from real experiments allow a better reflection of reality by the numerical model.

Awareness, knowledge and skillful reaction to potentially dangerous situations among drivers will result in a high level of safety in road tunnels, as it is well known that prevention is much more effective (not only economically) than treating the consequences, often very tragic ones.

Literature / Literatura

[1] Caliendo C., De Guglielmo M.L., Accident Rates in Road Tunnels and Social Cost Evaluation, „Procedia – Social and Behavioral Sciences” 2012, 53, 166–177, https://doi.org/10.1016/j.sbspro.2012.09.870.

[2] Fera M., Macchiaroli R., Use of analytic hierarchy process and fire dynamics simulator to assess the fire protection systems in a tunnel on fire, „International Journal of Risk Assessment and Management” 2010, 14, 504–529, https://doi.org/10.1504/IJRAM.2010.037087.

[3] Voeltzel A., Dix A., A comparative analysis of the Mont-Blanc, Tauern and Gothard tunnel fires, „Routes/Roads” 2004, 324, 18–34.

[4] Rudin-Brown C.M., Edquist J., Lenné M.G., Effects of driving experience and sensation-seeking on drivers’ adaptation to road environment complexity, „Safety Science” 2014, 62, 121–129, https://doi.org/10.1016/j.ssci.2013.08.012.

[5] Fire Accidents in the World’s Road Tunnels [dok. elektr.], http://www.lotsberg.net/artiklar/brann/en_tab.htm, [dostęp: 12.01.2022].

[6] Schmidt-Polończyk N., Wąs J., Porzycyki J., What Is the Knowledge of Evacuation Procedures in Road Tunnels? Survey Results of Users in Poland, „Buildings” 2021, 11(4), 146, https://doi.org/10.3390/buildings11040146.

[7] Directive 2004/54/EC of the European Parliament and of the Council of 29 April 2004 on minimum safety requirements for tunnels in the trans-European road network.

[8] Rozporządzenie Ministra Transportu i Gospodarki Morskiej z dnia 30 maja 2000 r. w sprawie warunków technicznych, jakim powinny odpowiadać drogowe obiekty inżynierskie i ich usytuowanie (Dz.U. Nr 63, poz. 735 z późn. zm.).

[9] Porzycyki J., Schmidt-Polończyk N., Wąs J., Pedestrian behavior during evacuation from road tunnel in smoke condition.
[9] Empirical results, “PLOS ONE” 2018, 13(8), 1–20, https://doi.org/10.1371/journal.pone.0201732.

[10] Seike M., Kawabata N., Hasegawa M., Evacuation speed in full-scale darkened tunnel filled with smoke, „Fire Safety Journal” 2017, 91, 901–907, https://doi.org/10.1016/j.firesaf.2017.04.034.

[11] Nilsson D., Frantzich H., Ronchi E., Fridolf K., Walter A.L., Modig H., Integrating evacuation research in large infrastructure tunnel projects – Experiences from the Stockholm Bypass Project, „Fire Safety Journal” 2017, 97, 119–125, https://doi.org/10.1016/j.firesaf.2017.07.001.

[12] Ronchi E., Fridolf K., Frantzich H., Nilsson D., Walter A.L., Modig H., A tunnel evacuation experiment on movement speed and exit choice in smoke, „Fire Safety Journal” 2017, 97, 126–136, https://doi.org/10.1016/j.firesaf.2017.06.002.

[13] Schmidt-Polończyk N., Burtan Z., Liszka P., Simulation of the Evacuation of People in a Road Tunnel in the Event of Fire – Case Study, „Archives of Mining Sciences” 2021, 61(1), 13–28, https://doi.org/10.24425/ams.2021.136689.

[14] PIARC, Lessons Learned From Recent Tunnel Fires. France, PIARC Committee on Road Tunnels Operation (C3.3), 2006.