Adiabatic entanglement transport in Rydberg aggregates

S. Möbius, S. Wüster, C. Ates, A. Eisfeld and J. M. Rost
Max Planck Institute for the Physics of Complex Systems, Nöthnitzer Strasse 38, 01187 Dresden, Germany
E-mail: sew654@pks.mpg.de

Abstract. We consider the interplay between excitonic and atomic motion in a regular, flexible chain of Rydberg atoms, extending our recent results on entanglement transport in Rydberg chains [Wüster et al., Phys. Rev. Lett. 105 053004 (2010)]. In such a Rydberg chain, similar to molecular aggregates, an electronic excitation is delocalised due to long range dipole-dipole interactions among the atoms. The transport of an exciton that is initially trapped by a chain dislocation is strongly coupled to nuclear dynamics, forming a localised pulse of combined excitation and displacement. This pulse transfers entanglement between dislocated atoms adiabatically along the chain. Details about the interaction and the preparation of the initial state are discussed. We also present evidence that the quantum dynamics of this complex many-body problem can be accurately described by selected quantum-classical methods, which greatly simplify investigations of excitation transport in flexible chains.

PACS numbers: 32.80.Ee, 82.20.Rp, 34.20.Cf

1. Introduction

Rydberg atoms have recently received increasing attention in cold atomic physics, to a large part due to their strong long-range interactions, with diverse consequences from dipole-blockade [1 2 3] to long range molecules [4 5 6]. Among the interactions in cold Rydberg gases, resonant dipole-dipole interactions [7 8 9] and their non-resonant variant (van-der-Waals interactions) [10 11] are particularly prominent. These interactions enable Rydberg ensembles to simulate the quantum dynamics of other long-range interacting systems, from condensed matter physics [12 13] to molecular aggregates [9 14 15]. We focus on the latter possibility, and explore basic consequences of joint dynamics of atomic motion and excitonic transport.

Within an essential state picture, where only two Rydberg states per atom are taken into account, the transfer of excitation can be adequately described by using the exciton theory of Frenkel [16 17]. Following the pioneering paper by Franck and Teller [18], this theory has found wide application in describing excitation transfer, e.g. in molecular crystals [19], photosynthesis [20] or organic dye aggregates [21]. In all these systems the coupling between the exciton and nuclear degrees of freedom strongly influences the
excitation transfer [18, 22, 23, 24, 25, 26, 27, 28]. Similar effects will be reported in the present study.

The strong interactions between the monomers of molecular aggregates lead to coherently delocalised entangled states [29, 30, 31] which are e.g. responsible for the J-band of organic dye aggregates. Recent experiments indicate robust excitonic coherence even in biological systems, such as photosynthetic complexes [32, 33, 34].

In all these excitonic systems the resonant nature of the interaction plays a crucial role. Besides the transfer of excitation, this interaction also creates a potential, which for an atom pair depends like \(1/R^3\) on their distance \(R\). For Rydberg atoms it has been recognized that this potential can lead to large forces on the individual atoms [35, 15] and thus cause their motion. In contrast to the atomic motion induced by van-der-Waals interaction, which is due to strongly off-resonant coupling, the character of the motion (repulsive, attractive or even mixed) in the resonant case depends strongly on the excitonic eigenstates [15]. These in turn depend on the atomic positions, which is why excitation transport and motion become interlinked. In this respect our setup [15, 36] strongly differs from that in Ref. [37], where the effect of externally enforced atomic motion on exciton transport is studied.

In this article, we extend our previous studies of excitons and their dynamics in Rydberg chains [15, 36]. To study exciton dynamics with Rydberg ensembles, one requires strong selectivity of the accessible electronic states of each atom and control over the initial exciton state. We consider both requirements, and furthermore provide additional details on the Newton’s cradle type entanglement transport scenario reported in [36]. Specifically we vary atomic masses and interaction potentials. For the entanglement transport scenario, we show that two mixed quantum-classical methods are well suited to describe this complex many-body problem: Tully’s surface hopping method, and the Ehrenfest method. For short chains, we validate these quantum-classical propagation methods by comparison with a full quantum mechanical calculation, finding perfect agreement.

The paper is organized as follows: In section 2 we describe which conditions we imply in order to label a Rydberg chain as Rydberg aggregate. After a brief comparison with molecular aggregates (section 2.1), we describe our geometric setup and Hamiltonian (section 2.2), illustrate how a simple treatment of transition dipole-dipole interactions can emerge (section 2.3), argue the validity of our essential states model (section 2.4), lay the basis for a description of the Rydberg chain’s excitations in terms of excitons and their localisation (section 2.5) and show how the initial states for our later applications could be obtained (section 2.6). The final part of section 2 (section 2.7) details the quantum and quantum-classical formalisms used to simultaneously model the dynamics of atomic motion and excitons. After these preparations, we proceed in section 3 to a detailed presentation of the entanglement transport scenario first reported in Ref. [36] and survey the parameter space for this scenario in section 4. Some appendices supply further details.
2. Rydberg aggregates

2.1. Brief comparison with molecular aggregates

Since molecular aggregates have been extensively studied over the last 70 years it is appropriate to briefly juxtapose the Rydberg aggregates to these "conventional" molecular aggregates.

Molecular aggregates appear in various contexts, ranging from organic crystals 19,38 over self-assembled cylindrical dye aggregates 39 to complex biological light harvesting systems 20. These systems range from only two monomers up to thousands of monomers, which can aggregate into various geometrical arrangements. The (resonant) transition-dipole-dipole interaction between the monomers leads to entangled states, often accompanied by a drastic change in the absorption spectrum compared to that of the single monomer 21,29. Besides some fundamental interest (e.g. in photosynthesis) the extraordinary properties of these aggregates have led to various applications, ranging from sensitizers in photography 40,41, to the measurement of membrane potentials 42,43, and cancer therapy 44. Also in the development of efficient, low-cost artificial light harvesting units (like organic solar cells) dye aggregates might play an important role 45,46.

In molecular aggregates the monomers are held at their positions and orientations e.g. by a protein environment or by van-der-Waals interactions, with distances of the order of a few Ångström. In the Rydberg aggregates investigated here, the distances are of the order of a few micrometers and, most importantly, the Rydberg atoms are free to move. The main difference, however, between molecular aggregates and Rydberg aggregates is the internal structure and the environment. While the Rydberg atoms are at ultra-cold temperatures and interact only weakly with the environment, the electronic excitation in the molecular case does strongly couple to the environment (often at ambient temperature) and a plethora of internal vibrational modes 47. This typically necessitates various approximations and assumptions in the theoretical description of molecular aggregates, since often details about the environment or even the precise arrangement of the monomers are unknown. Furthermore, due to the small distances, the direct experimental observation of coherent energy transfer in molecular aggregates is challenging. Hence, related investigations are typically of spectroscopic nature 48, and infer the exciton dynamics only indirectly.

In contrast the beauty of Rydberg aggregates is, that individual excitation and manipulation of the atoms can be done more easily. Also, since environment and vibrations do not play a role, it is possible to develop a detailed theoretical description where common approximations can be checked.

2.2. General setup

We study a chain of N identical atoms with mass M and denote the position of the nth atom by \mathbf{R}_n. These positions are grouped into a $3N$ dimensional vector...
Adiabatic entanglement transport in Rydberg aggregates

Figure 1. Visualization of the electronic state $|\pi_1\rangle$.

$R = (R_1, \ldots, R_N)^T$ In the following we will refer to these coordinates as nuclear coordinates. Each atom should be initially well localised, for example in the ground state of an optical lattice or a micro-lens array [49]. We can then ensure that the distance $R_{nm} \equiv |R_n - R_m|$ between the atoms is large enough to neglect the overlap between the electronic wave functions of atoms n and m.

Consider a situation where all but one of the N atoms are in a Rydberg state $|\nu s\rangle$, with principal quantum number ν and angular momentum $l = 0$. The remaining atom is in an angular momentum $l = 1$ state $|\nu p\rangle$, which we will call the “excited” state. We now define the single-excitation Hilbert space, whose electronic part is spanned by

$$|\pi_n\rangle \equiv |s \cdots p \cdots s\rangle,$$

a state in which atom n is in the p state and all others are in the s state. In figure 1 the state $|\pi_1\rangle$ and the initial spatial arrangement is sketched for the case $N = 5$. Note that the role of s and p is more or less interchangeable.

For a clear cut picture of exciton transport, the states $|\pi\rangle$ should form the essential part of the electronic basis for the whole aggregate. This requires that transitions to other states, such as $|s \cdots p \cdots s \cdots p \cdots s\rangle$ or $|s \cdots d \cdots s\rangle$ are negligible, because they are energetically far detuned with respect to the relevant couplings. Then, the only relevant interactions occur within the space spanned by $|\pi\rangle$ and conserve the number of excitations. In section 2.4 we show by an example that these requirements can be fulfilled.

In terms of the basis $|\pi\rangle$, our total Hamiltonian describing atomic motion and interactions within the essential states manifold is given in atomic units by

$$H(R) = -\sum_{n=1}^{N} \frac{\nabla^2 R_n}{2M} + H^{el}(R).$$

Here, the electronic Hamiltonian, which depends on the nuclear coordinates, is

$$H^{el}(R) = \sum_{nm} V_{nm}(R_{nm}) |\pi_n\rangle\langle\pi_m|,$$

† We present our introductory theory as far as possible in three dimensions (3D). For all our results we only consider one-dimensional motion (1D), assuming transverse motion is frozen out by the confinement of the atoms.
where
\[V_{nm}(R_{nm}) = (-1)^\eta \frac{\mu^2}{R_{nm}^3} \]
(4)
is the dipole-dipole coupling between atoms \(n \) and \(m \) and \(R_{nm} \) their separation. We parameterised the strength of the coupling by its magnitude \(\mu^2 \) and sign \(\eta \in \{0, 1\} \).

Due to this resonant dipole-dipole interaction the “excitation” can be transferred from atom \(n \) to \(m \). We outline in section 2.3 why we can avoid a more complicated, angular dependent expression.

For most specific examples throughout this article, we consider the atomic species \(^7\text{Li} \) Lithium. Among the work horses of cold atom physics, this atom is one of the lightest and hence most suited to display phenomena of dipole-dipole interaction induced motion, within the time-scales available. Its atomic mass is roughly \(M = 11000 \) au and transition dipole moment have the strength \(\mu = 1000 \) au between \(s \) and \(p \) states with a principal quantum number \(\nu \approx 30 \ldots 40 \).

In section 4 we survey the response of dynamics dictated by (2) to changes of Hamiltonian parameters. To this end we also generalise the type of interaction, considering \(V_{nm}(R_{nm}) = (-1)^\eta \mu^2/R_{nm}^\alpha \), where \(\alpha \) can for example vary from \(\alpha = 1 \ldots 6 \), with character of the interaction potentials ranging from Coulombic to van-der-Waals. Keep in mind though, that unlike conventional Coulomb or van-der-Waals interactions, those considered here would still have a resonant transition character.

2.3. Dipole-dipole interactions

In this section we outline how the simple form \(V_{nm}(R_{nm}) = (-1)^\eta \mu^2/R_{nm}^3 \) can be obtained for dipole-dipole interactions. For this purpose, we consider a binary atom system with separation \(R_{nm} = R_m - R_n \) and define \(R = |R_{nm}| \) and \(\hat{R} = R_{nm}/R \). We assume one of the atoms is in a \(|\nu s\rangle \) state and the other in a \(|\nu p\rangle \) state, where \(\nu \) is the (large) principle quantum number, subsequently suppressed. As long as one ignores directional effects, the essential states Hilbert space for such two atoms is spanned by \(|sp\rangle, |ps\rangle \). Considering angular dependent transition dipole-dipole interactions amounts to taking into account also the magnetic quantum number. We then have six essential states: \(|\{p, 1\}s\rangle, |\{p, 0\}s\rangle, |\{p, -1\}s\rangle, |s\{p, 1\}\rangle, |s\{p, 0\}\rangle, |s\{p, -1\}\rangle \), using an obvious notation that writes the magnetic quantum number \(m \) of the atom with \(l = 1 \) within the curly brackets.

The non-vanishing dipole-dipole transition amplitudes between those states are
\[V_{1m,00:00,1m'} = -\sqrt{\frac{8\pi}{3}} \left(\frac{d_{\nu 1,0\nu}}{R^3} \right)^2 (-1)^{m'} \times \begin{pmatrix} 1 & 1 & 2 \\ m & -m' & m' - m \end{pmatrix} Y_{2,m'-m}(\hat{R}), \]
(5)
where \(Y_{l,m} \) are spherical harmonics and \((\cdots) \) denotes the Wigner 3j coefficient. The matrix-element \(V_{l,m_1,l_2m_2;l_1'm_1,l_2'm_2} \) describes a transition between the two-atom states
indicated with primed and non-primed subscripts. \(d_{\nu,0}\) is the radial overlap-matrix element between the \(l = 0\) and \(l = 1\) states. We refer to Ref. [9] for further details. In matrix-form, using the above basis ordering, one obtains

\[
V = \begin{bmatrix} 0 & V_{ps} \\ V_{ps}^\dagger & 0 \end{bmatrix}
\]

(6)

with sub-matrices

\[
V_{ps} = \frac{\tilde{\mu}^2}{R^3} \begin{bmatrix} \frac{3 \cos^2 \theta - 1}{6} & \frac{e^{-i\phi}}{\sqrt{2}} \cos \theta \sin \theta & \frac{e^{-2i\phi} \sin^2 \theta}{2} \\ \frac{e^{i\phi} \cos \theta \sin \theta}{\sqrt{2}} & \frac{1 - 3 \cos^2 \theta}{3} & -\frac{e^{-i\phi}}{\sqrt{2}} \cos \theta \sin \theta \\ \frac{e^{2i\phi} \sin^2 \theta}{2} & -\frac{e^{i\phi}}{\sqrt{2}} \cos \theta \sin \theta & \frac{3 \cos^2 \theta - 1}{6} \end{bmatrix}
\]

(7)

In this matrix, the element \((V_{ps})_{ij}\) contains the amplitude of transitions from a state \(|\{p, m_j\} s\rangle\) to \(|\{p, m_i\} s\rangle\), where \(m_i, m_j \in \{1, 0, -1\}\). We used the short-hand \(\tilde{\mu}^2 = (d_{n1, n0})^2\). The angles \(\theta\) and \(\phi\) describe \(\hat{R}\) in a spherical polar co-ordinate system whose \(z\)-axis (\(\hat{z}\)) is the quantization axis with respect to which the magnetic quantum numbers \(m\) is defined. A useful choice of \(\hat{z}\) will be given by the polarisation direction of the light-field used for the initial-state creation, see section 2.6.

We will consider two specific simple cases, assuming a linear Rydberg chain.

case (i): Choose \(\hat{z}\) along the direction of the chain. Then for all distance vectors \(R_{nm}\) we have \(\theta = 0\) and

\[
V_{ps} = \frac{\tilde{\mu}^2}{3R^3} \begin{bmatrix} 1 & 0 & 0 \\ 0 & -2 & 0 \\ 0 & 0 & 1 \end{bmatrix}.
\]

(8)

Thus the magnetic quantum number of the excitation is conserved. Depending on the selected magnetic quantum number \(m\), we can realise different signs \(\eta\) and magnitudes of the interaction.

case (ii): Choose \(\hat{z}\) perpendicular to the direction of the chain, which we assume to be in the \(\hat{x}\) direction. We then have (setting \(\theta = \pi/2\) and \(\phi = 0\))

\[
V_{ps} = \frac{\tilde{\mu}^2}{6R^3} \begin{bmatrix} -1 & 0 & 3 \\ 0 & 2 & 0 \\ 3 & 0 & -1 \end{bmatrix}.
\]

(9)

It can be seen that the \(m = 0\) state decouples and yields a dipole-dipole interaction transport without angular-dependence. For all choices of quantisation axis and magnetic quantum state, we finally define the parameter \(\mu^2\) used in section 2.2 as the modulus of the factor multiplying \(R^{-3}\). How a specific magnetic quantum-number for the excitation can be realised is described in section 2.6.

2.4. Validity of essential states model

Dipole-dipole transitions in principle do not only take place within the \(|sp\rangle, |ps\rangle\) manifold, but also to other states not included in our essential states picture [9].
Nonetheless, parameters where these other states can be ignored can easily be found, as we demonstrate now.

We exploit that transition probabilities from the two original states to all other di-atomic states are negligibly small due to their energy mismatch or selection rules. In other words, all two-atom states to which a direct dipole-dipole transition is possible are much farther detuned than the strength of the transition matrix element. We will illustrate this argument in the following for 7Li.

Consider the two-atom states $|35, s\rangle \otimes |35, p\rangle$, $|35, p\rangle \otimes |35, s\rangle$. The two-atom states energetically nearest and connected via a single dipole-dipole transition are $|36, s\rangle \otimes |34, p\rangle$, $|34, p\rangle \otimes |36, s\rangle$, detuned from our essential states by $\Delta = 8.78$ GHz and connected with a coupling strength of about $V = 65$ MHz. A simple analytical four state model for detuned Rabi-oscillations then predicts population transfer out of the essential-state system of the order of $(V/\Delta)^2 = 5 \times 10^{-5}$ for time scales considered in this paper.

As more rigorous justification of the essential state mode, also accounting for successive, cascaded transitions, we propagated the state $|35, s\rangle \otimes |35, p\rangle + |35, p\rangle \otimes |35, s\rangle$ (an exciton eigenstate, see section 2.5) with a Hamiltonian that contains all ν, l, m states from $\nu = 34$ to $\nu = 36$, setting all dipole-allowed transition matrix elements V to $V = \mu^2/d^3$ for $\mu = 1000$ au and $d = 2 \mu m$. This value for μ overestimates almost all transition dipoles and the value for d is the smallest separation occurring in the atomic dynamics of section 3. Within this ”worst-case” scenario, total transitions out of our target essential states manifold are of the order of 1×10^{-4} within $20 \mu s$, which is longer than the simulated time-span in section 3.

Finally kinetic and potential energies of the dynamics presented in our manuscript amount to only about 5% of the energetic separation between $|35p\rangle$, $|35d\rangle$.

These estimates, while exemplary, show that there is no general problem with finding physically realistic scenarios with Rydberg atoms that can be described well with our model.

2.5. Excitons, exciton localisation and full aggregate initial state

To gain some insight into the structure of the dynamics induced by the Hamiltonian \eqref{eq:2}, consider eigenstates of the electronic Hamiltonian

$$H^{el}(\mathbf{R})|\varphi_k(\mathbf{R})\rangle = U_k(\mathbf{R})|\varphi_k(\mathbf{R})\rangle.$$ \hspace{1cm} \eqref{eq:10}

For each \mathbf{R} there are N eigenstates labeled by the index k. Each of these eigenstates can be expanded in terms of the previously introduced basis $|\pi_n\rangle$ as

$$|\varphi_k(\mathbf{R})\rangle = \sum_m c_{km}(\mathbf{R})|\pi_m\rangle.$$ \hspace{1cm} \eqref{eq:11}

These eigenstates are termed Frenkel “excitons” \cite{16, 17} and form an adiabatic (Born-Oppenheimer) basis in the language of molecular physics. The corresponding

\S We obtain the lithium state energies using quantum-defect theory as described in \cite{50} and transition strength as outlined in \cite{9} with numerical Numerov calculation of radial overlaps.
Adiabatic entanglement transport in Rydberg aggregates

Figure 2. Initial population of the (out of phase) repulsive excitonic state for different α as a function of the dislocation ratio a/x_0. The vertical black line indicates our choices for a/x_0 employed in section 4. Other lines indicate the population in the different excitonic states for a chain containing 6 Rydberg atoms.

Figure 3. Sketch of the initial total density distribution of Rydberg atoms for the case of $N = 5$ atoms.

eigenenergies $U_k(R)$, which also depend parametrically on the nuclear coordinates R, define the adiabatic potential surfaces. As evident from (11), an exciton is a coherent superposition of different localised excitation states.

Consider now a regular chain of Rydberg atoms with spacing x_0, which is perturbed by a dislocation of two atoms in close mutual proximity (distance a), see figure 3. The interaction between these atoms is much larger than interactions involving the remaining atoms. As a consequence two of the exciton states localise on the dislocation atoms. For $a \ll x_0$ the state whose Born-Opp. surface has repulsive character [15] can be approximately written as $|\varphi_{\text{rep}}\rangle \approx (|\pi_1\rangle + (-1)^n |\pi_2\rangle)/\sqrt{2}$. Such repulsive dimer states are observed e.g. in [8]. In figure 2 the excitonic population on the various atoms as a function of a/x_0 is shown for the case $N = 6$ and different interaction exponents α. Our survey of dynamics presented later requires sufficiently good coherent exciton localisation on the dislocation atoms, which lead to our choices of a/x_0 indicated by the vertical black lines in the figure.
We now are in position to discuss the whole initial state of our Rydberg aggregate, describing the electronic state and the position of the atoms. The initial spatial wave function of each atom is assumed Gaussian with standard deviation σ_0. This resembles an experimental situation where the ground-state atoms are trapped in harmonic potentials prior to their excitation to the Rydberg level, as discussed in the next section. For a sketch of this arrangement, see figure 3.

We take the complete initial wave function (i.e. containing nuclear and excitonic degrees of freedom) as

$$\Psi(t=0) = \varphi_{\text{rep}}(R) \prod_{n=1}^{N} \phi_{G}(R_n), \quad (12)$$

$$\phi_{G}(R_n) = N \exp (-|R_n - R_{0n}|^2/2\sigma_0^2), \quad (13)$$

where R_{0n} is the center of mass of the n-th Gaussian and N a normalization factor. As above, the index “rep” denotes the unique exciton state with globally repulsive behaviour $[15]$. In (12), the exciton state varies with the nuclear co-ordinates R within the initial Gaussian distribution, but as long as $\sigma_0 \ll a$ this effect will be small. We found that one obtains almost identical dynamics to that presented in the following, if $\varphi_{\text{rep}}(R)$ is replaced by $\varphi_{\text{rep}}(R_0)$ in (12).

2.6. State preparation

In this section we will briefly describe how states discussed in the previous section could be prepared experimentally.

At the very beginning, ground state atoms are confined e.g. in optical traps created by microlens arrays that provide the desired spatial arrangement, in our case a linear chain with distances a and x_0. Ideally there would be exactly one atom per trap-site. These ground state atoms are then transferred into a certain Rydberg state (say $35s$) via laser excitation \parallel. We now have a state, which we denote by $|s\cdots s\rangle$, where all atoms are in the same Rydberg state $|35s\rangle$. Due to the ultra-cold temperatures the Rydberg atoms can be regarded as frozen (the distances between the sites have to be chosen such that acceleration and blockade effects due to van-der-Waals interaction $[51]$ are negligible). Then by applying a short microwave pulse, which will be specified below, the eigenstate of the chain $|\psi_{\text{ini}}\rangle \approx (|\pi_1\rangle + |\pi_2\rangle)/\sqrt{2}$ can be excited. To reach $|\psi_{\text{ini}}\rangle \approx (|\pi_1\rangle - |\pi_2\rangle)/\sqrt{2}$ we require a further phase-flip described below.

For definiteness we choose the propagation direction of the microwave pulse perpendicular to the chain. Within the dipole approximation the interaction of atom n with the microwave pulse is given by

$$W_n(t) = -\mu_n \mathcal{E}(t) \quad (14)$$

with the dipole operator μ_n and electric field $\mathcal{E}(t)$.

\parallel If there is more than one atom in the ground state trap one can ensure, due to dipole-blockade, that there is actually only one Rydberg excitation per site.
Since our target initial electronic state is essentially located on two atoms, in the following we discuss the microwave excitation exemplary for a dimer. The extension to larger systems can be easily done. In this section, we enlarge our essential state space beyond \(| \pi_1 \rangle \) and \(| \pi_2 \rangle \) to include also the “ground state” \(| ss \rangle \) and the doubly excited state \(| \{ p, m_1 \} \{ p, m_2 \} \rangle \). In this basis the Hamiltonian of the system can be written as

\[
H = \begin{pmatrix}
2E_s & \mathbf{W}_1(t) & \mathbf{W}_2(t) & 0 \\
\mathbf{W}_1^\dagger(t) & (E_s + E_p) \mathbf{1}_3 & V_{ps} & \mathbf{W}_2(t) \\
\mathbf{W}_2^\dagger(t) & V_{ps} & (E_s + E_p) \mathbf{1}_3 & \mathbf{W}_1(t) \\
0 & \mathbf{W}_2(t) & \mathbf{W}_1(t) & 2E_p \mathbf{1}_9
\end{pmatrix}
\] (15)

with \(V_{ps} \) given by \(2 \) and \(E_s \) and \(E_p \) denoting the energies of the respective Rydberg states. Further, \(\mathbf{1}_n \) denotes a \(n \times n \) unit-matrix, \(\mathbf{W}_j(t) \) a \(3 \times 1 \) vector and \(\mathbf{W}_j(t) \) a \(3 \times 9 \) matrix. The components \(m \) of \(\mathbf{W}_j(t) \) are given by \(\langle \mathbf{W}_j(t) \rangle_m = \langle ss | W_j(t) | \{ p, m \} s \rangle \), and similarly \(W_j(t) \) has elements given by \(\langle s \{ p, m_2 \} | W_1(t) | \{ p, m_1 \} \{ p, m_2 \} \rangle \).

We now take the microwave to be linearly polarized and choose our quantization axis \(\hat{z} \) in the direction of the polarization, i.e. \(\mathcal{E}(t) = \mathcal{E}(t) \hat{z} \). Similar as in Section 2.3 we get for the matrix elements

\[
\langle ss | \mu_1 \hat{z} | \{ p, m \} s \rangle = \frac{d_{p \nu_0 \nu_1}}{\sqrt{3}} \delta_{m0}
\] (16)

From the results of section 2.3 we then notice that microwave polarisation along the chain (see \(2 \)) or perpendicular to the chain (see \(3 \)) leads to a de-coupling of the angular momentum state \(m = 0 \) from the other \(m \) states. Thus we can consider the reduced Hamiltonian

\[
H = \begin{pmatrix}
2E_s & \Omega_1(t) & \Omega_2(t) & 0 \\
\Omega_1(t) & (E_s + E_p) & V_{ps} & \tilde{\Omega}_2(t) \\
\Omega_2(t) & V_{ps} & (E_s + E_p) & \tilde{\Omega}_1(t) \\
0 & \tilde{\Omega}_2(t) & \tilde{\Omega}_1(t) & 2E_p
\end{pmatrix}
\] (17)

with \(\Omega_n(t) = \frac{1}{\sqrt{3}} \mathcal{E}(t) d_{p \nu_0 \nu_1} \) and \(\tilde{\Omega}_n \) is of the order of \(\Omega_n \). It is instructive to diagonalize within the one-exciton space to obtain the “eigenstates” \(| \pm \rangle = \frac{1}{\sqrt{2}} (| \pi_1 \rangle \pm | \pi_2 \rangle) \) with energies \(E_{\pm} = (E_s + E_p) \pm V_{ps} \). Taking \(E_s \) as zero of energy we obtain for the Hamiltonian in this basis

\[
H = \begin{pmatrix}
0 & \Omega_+ (t) & \Omega_- (t) & 0 \\
\Omega_+ (t) & E_p + V_{ps} & 0 & \tilde{\Omega}_+(t) \\
\Omega_- (t) & 0 & E_p - V_{ps} & \tilde{\Omega}_-(t) \\
0 & \tilde{\Omega}_+(t) & \tilde{\Omega}_-(t) & 2E_p
\end{pmatrix}
\] (18)

with \(\Omega_{\pm} = \frac{1}{\sqrt{2}} (\Omega_1 \pm \Omega_2) \). Since we are dealing with identical atoms \(\Omega_- = 0 \), hence the microwave couples only to the symmetric state \(| + \rangle = \frac{1}{\sqrt{2}} (| \pi_1 \rangle + | \pi_2 \rangle) \). Thus in order to be resonant with the transition \(| ss \rangle \rightarrow | + \rangle \) we will detune the microwave by \(V_{ps} \) w.r.t. the atomic transition frequency. This also means that the microwave is detuned by \(2V_{ps} \) w.r.t. the transition from the state \(| + \rangle \) to the doubly excited state \(| pp \rangle \), so that the population of the doubly excited state will be strongly suppressed.
Ideally the microwave pulse should transfer all the population from the $|ss\rangle$ state to the $|+\rangle$ state and be so short that the atoms do not move appreciably during the duration of the pulse. We have done full numerical simulations of this excitation scheme for three Lithium atoms, and we found that pulses of few nanoseconds duration can be used to achieve this goal.

It also is of interest to access the aggregate eigenstate $|-\rangle$. We will actually focus on dynamics arising from a $|-\rangle$-type initial state and interactions with $\eta = 1$ throughout this article, since in that case the smaller energetic separation between the totally repulsive adiabatic state and its energetic neighbour leads to more interesting non-adiabatic effects. This scenario was also considered in our previous work \[15, 36\].

Since $|-\rangle$ does not directly couple to the linear polarised microwave, as argued above, this requires a second state preparation step in which e.g. the phase of the $|\pi_2\rangle$ component of the quantum state is inverted. This can be achieved using a Rabi-2π laser pulse, which is resonant on the transition from $|\nu_p\rangle$ to e.g. the absolute ground-state $|2s\rangle$ and spatially focussed to only interact with atom two \[52\].

2.7. Dynamical methods

Up to this point we have introduced the Rydberg aggregate as an ensemble of alkali atoms with parameters chosen to enable a description of collective excitations in terms of Frenkel excitons, and explained how the atoms can be brought into the required internal electronic states. To form a flexible Rydberg aggregate, we further wish to include motion of the atoms. We now list different possibilities to describe this motion numerically.

2.7.1. Exact solution: Schrödinger’s equation The full quantum-mechanical many-body problem posed by the Hamiltonian \[2\] is conceptually straightforward, but becomes quickly intractable as the number of atoms N is increased. For small N it is however no problem to directly solve the Schrödinger equation

$$i\frac{\partial}{\partial t}|\Psi\rangle = H|\Psi\rangle.$$ \[19\]

Expanding the full wave function in electronic (diabatic) states according to $|\Psi(R)\rangle = \sum_{n=1}^{N} \phi_n(R)|\pi_n\rangle$, we arrive at

$$i\frac{\partial}{\partial t}\phi_n(R) = \sum_{m=1}^{N} \left[-\frac{\nabla^2 R_{nm}}{2M} \phi_n(R) + V_{nm}(R_{nm})\phi_m(R) \right].$$ \[20\]

We solve \[20\] for three Li atoms in order to validate the quantum-classical methods presented further below, which in turn will then be faithfully used for longer chains. In practise, the irrelevant centre-of-mass degree of freedom is removed from \[20\] resulting in an effectively two-dimensional (2D) problem. This is solved on a discrete spatial grid.

The above diabatic representation of the wave function $\phi_n(R)$ allows a straight
forward propagation. To interpret the results and compare them with the quantum-classical methods, it can also be beneficial to move to the adiabatic representation

$$\Psi(R) = \sum_{k=1}^{N} \tilde{\phi}_k(R) \varphi_k(R).$$

(21)

The two representations are related by

$$\tilde{\phi}_k(R) = \sum_n O_{kn}(R) \phi_n(R).$$

(22)

with $O_{kn}(R) = \langle \varphi_k(R) | \pi_n \rangle$. For instance, the initial state (12) corresponds to $\tilde{\phi}_{\text{rep}}(R) = \prod_{n=1}^{N} \phi_G(R_n)$ and $\tilde{\phi}_k(R) = 0$ for $k \neq \text{rep}$ in this representation.

When analysing our results, we will not show the full N-dimensional nuclear/atomic wave function but focus on the more intuitive total atomic density, which is given by

$$n(R) = \sum_{j=1}^{N} \sum_{m=1}^{N} \int d^{N-1}R_{\{j\}} |\phi_m(R)|^2.$$

(23)

Here $\int d^{N-1}R_{\{j\}}$ denotes integration over all but the jth nuclear coordinate. The density $n(R)$ gives the probability to find an atom at position R.

We will assume that wave functions of different atoms never occupy the same space. For the calculations shown, this assumption turned out to be valid.

2.7.2. Quantum-classical propagation When the number of atoms N exceeds values where the direct quantum solution of the time-dependent Schrödinger equation (20) is tractable, we resort to mixed quantum-classical methods, namely the Ehrenfest method \cite{53, 54} and Tully’s fewest switching algorithm \cite{54, 55}. In both approaches, the nuclear coordinates R are treated classically and an ensemble of trajectories $R(t)$ is propagated in a way specified below. In order to represent the initial nuclear wave packet, we randomise the initial positions and velocities for the trajectories according to the Wigner distribution of the initial state (12). Since the spatial density of each atom is assumed to be Gaussian, this simply amounts to un-correlated Gaussian spread of both, position (with standard deviation $\sigma_0/\sqrt{2}$) and velocities (with standard deviation $1/((2\sigma_0 M)$). To obtain the total atomic density $n(R)$, the positions of the atoms are binned throughout all trajectories.

The excitonic propagation is done by expanding $|\Psi(R, t)\rangle = \sum_{k=1}^{N} \tilde{c}_k(t) |\varphi_k(R)\rangle$, where the complex amplitudes \tilde{c}_k are determined by

$$i \frac{\partial}{\partial t} \tilde{c}_k = U_k(R) \tilde{c}_k - i \sum_{q=1}^{N} \hat{R} \cdot d_{kq} \tilde{c}_q,$$

(24)

where $U_k(R)$ are the adiabatic potential energy surfaces defined in (10) and

$$d_{kq} = \langle \varphi_k(R) | \nabla_R | \varphi_q(R) \rangle$$

(25)

are the so-called non-adiabatic coupling vectors.
The two methods differ in the classical propagation method for the nuclear coordinates. In the Ehrenfest method the nuclear dynamics is determined by Newton’s equations

$$M \ddot{R} = -\nabla_R \bar{U}(R, t)$$ \hspace{1cm} (26)

with the average potential \(\bar{U}(R, t) = \langle \Psi(R, t) | H^{\text{el}}(R) | \Psi(R, t) \rangle = \sum_k |\tilde{c}_k(t)|^2 U_k(R) \). In contrast in Tully’s method each trajectory moves classically on a single adiabatic surface \(U_k(R) \), except for the possibility of instantaneous jumps among the adiabatic states. Between jumps the classical equation of motion is

$$M \ddot{R} = -\nabla_R U_k(R).$$ \hspace{1cm} (27)

Details on Tully’s method and our numerical implementation are given in Appendix B.

Now, when performing the average over trajectories the spreading due to the surface hopping is combined with the spreading due to different trajectories for different initial classical nuclear positions.

3. Entanglement transport

In the previous section we have explained the design of a flexible Rydberg aggregate and our various methods for dynamical propagation. Hence we are ready to consider the dynamical problem introduced in Ref. [36] in more detail. We study the effect of resonant dipole-dipole interactions on a regular linear chain of Rydberg atoms. Initially we impose a “deformation” in the distances between the atoms that gives rise to an associated localised exciton state, which is strongly repulsive. We demonstrate a strong correlation between the resulting exciton dynamics and the motion of the atoms. A combined pulse of atomic displacements (“deformation”) and localised electronic excitation propagates adiabatically through the chain in a manner reminiscent of Newton’s cradle. We show that this can also be viewed as adiabatic entanglement transport, since the initial electronic state \(|\varphi_{\text{rep}}(R, t = 0)\rangle \) is a Bell-state [56]. To see this, we re-write the initial state

$$|\varphi_{\text{rep}}(R, t = 0)\rangle \approx \frac{1}{\sqrt{2}} \left(|\pi_1\rangle - |\pi_2\rangle \right)$$ \hspace{1cm} (28)

$$= \frac{1}{\sqrt{2}} \left[|ps\rangle - |sp\rangle \right] \otimes |s \cdots s\rangle,$$ \hspace{1cm} (29)

where the state in square brackets concerns the dislocated atoms, and \(|s \cdots s\rangle \) the rest of the chain. Prior to demonstrating the combined transport of displacement, excitation and entanglement, we validate the quantum-classical methods required for larger chains.

3.1. Comparison and validation of methods

To confirm the applicability of quantum-classical numerical treatments to the dislocated chain of section 2.2 we consider the smallest nontrivial chain, namely \(N = 3 \). In this case it is no problem to solve the full Schrödinger equation numerically exactly. We are
then in a position to compare all three propagation schemes outlined in section 2.7, full quantum-mechanics (QM), Tully’s fewest switching (Tully) and the Ehrenfest method (EF). We consider two distinct scenarios: (i) predominantly adiabatic dynamics for the validation of the quantum-classical methods for the subsequent section 3.2 (ii) strongly non-adiabatic dynamics, in order to highlight the differences in propagation algorithms.

Scenario (i) is shown in figure 4(a-e). We used $M = 11000$ au and $\mu = 1000$ au as in Ref. [36]. The quantum mechanical probability to find an atom at a certain position predicted by QM and the corresponding semiclassical methods show perfect agreement. As the dynamics is almost completely adiabatic, each avoided collision between two atoms is accompanied by excitation transfer. We will highlight this in detail in the next section, where we consider longer chains. Note that Tully and EF even perfectly reproduce the small fraction of population that has switched to the neighbouring surface ∂, as can be seen in Fig. 4(b).

For scenario (ii), shown in figure 4(f-j), we changed our parameters to $M = 1800$ (hydrogen) and $\mu = 200$ au. This fictitious scenario was solely chosen to increase the system’s non-adiabaticity and is probably not realistic. Due to increased diffusion and collisions, we extended all three models by a phenomenological treatment of ionisation, presented and justified in Appendix C. It can be seen that in contrast to scenario (i), there are now significant transitions from the initial surface “rep” to “mid”. On this surface, the trimer no longer feels an overall repulsive potential [15]. Consequently, atoms that have undergone a change of adiabatic state can approach each other closely where they ionise. This is reflected in the drop of overall population for the QM and Tully models. In contrast, atoms in the EF model always propagate according to a state averaged potential, which due to 75 % population on the repulsive surface is still dominantly repulsive. Consequently we do not observe significant ionisation in the EF model. Despite this main difference, it can be seen that the overall state-population as well as spatial density distribution of the exact QM model is still fairly well reproduced by both Tully and EF.

The physical situation shown in figure 4(a-e) is quite similar to that presented in the following section, except for the number of atoms. The quality of agreement between the three disparate methods found in the case $N = 3$ gives confidence that the quantum classical methods will produce reliable results also for the longer chain considered next, for which a solution of the Schrödinger equation would no longer be feasible.

3.2. Coupled atomic and electronic dynamics

The atomic motion and excitation transfer for a chain of $N = 7$ atoms, when starting in the exciton state with highest energy (which corresponds to the fully repulsive state) is shown in figure 5 and figure 6. As expected, initially the two close atoms strongly repel

¶ For the case $N = 3$ there are three adiabatic surfaces, one overall repulsive (“rep”), one attractive (“att”) and one energetically between those, which we label “mid”.
Adiabatic entanglement transport in Rydberg aggregates

Figure 4. Comparison of QM, Tully and EF for nuclear dynamics in the case \(N = 3 \) for two different parameter sets, yielding adiabatic (a-e) and non-adiabatic dynamics (f-j). The time evolution of the total atomic density \(n(R, t) \) (a,f) is shown together with a comparison of Tully’s surface hopping calculations (black solid line) with the full quantum evolution (red dashed line) and EF (blue dotted line) in the other panels. (b) Relative population on the energetically nearest adiabatic surface, \(n_{\text{mid}} = \int dR |\tilde{\phi}_{\text{mid}}(R)|^2 \) (\(n_{\text{mid}} = |\tilde{c}_{\text{mid}}|^2 \) in the Tully /EF algorithms), as a measure of the propensity of non-adiabatic transitions. The index “mid” is defined in the text. The inset shows the differences Tully-QM (black solid line) and EF-QM (red dashed line). (g) Similar to (b) but showing the total population (Tully (blue solid line), QM (green dashed line), EF (blue dotted line)) and population of all three surfaces “rep”, “mid”, “att” in descending order. (c,h) Spatial slice \(n(x, t_1) \), with \(t_1 \) as indicated by the first vertical white lines in (a,f). (d,i) Spatial slice \(n(x, t_2) \), with \(t_2 \) as indicated by the second vertical white lines in (a,f). (e,j) Difference Tully-QM and EF-QM for the density profiles at \(t_2 \) with lines as in the inset of (b).

Note the spreading of the initially quite localised wavepackets right from the start, for example atom 1. This is due to the initial spatial width of the Rydberg atom distribution \(\sigma_0 \), which gets converted into strong velocity spread \(\Delta v \) due to the

Each other. When atom 2 approaches atom 3 these atoms start to repel each other. Atom 2 slows down and atom 3 accelerates. In this way the momentum of atom 2 is transferred through the chain to atom 7, which is reached at \(t \approx 5.5 \mu s \). Then atom 7 moves away from the remaining \(N-2 \) atoms, as atom 1 did already at the beginning of the evolution. The remaining atoms form a regular chain with distance \(x_0 \) between the atoms and positions shifted by \(x_0 - a \) w.r.t. the initial position of the respective atom. This chain is in a repulsive state and the atoms drift very slowly apart in a manner typical for a regular chain as discussed in [15].
Figure 5. Dynamics of atomic motion and excitation transfer. Shown are snap-shots in time as labelled, of the total atomic density, as a function of spatial co-ordinate. The colour shading reflects the probability of the underlying atom to be excited, and hence demonstrates exciton transport.

steep slope of the dipole-dipole potential. One expects $\Delta v = (2\sigma_0 u^2/Ma^4)^{1/2}$. Then estimating $\Delta x = \Delta vt$ describes the spreading of atom 1 well. Atom 2 initially obtains the same large velocity spread, in the following elastic collision this is however exchanged completely against the (narrow) velocity distribution of 3. After the dislocation has traversed the chain, only the outer atoms have a considerable spread in velocity which results in a large position smear as time progresses (see figure 5). During this transfer of momentum there is negligible overlap of the spatial distributions of different atoms, even at the avoided collisions.\(^+\)

Up to now we have restricted our discussion to the “slow”, “macroscopic” movement of the Rydberg atoms. The interaction strength between a pair of Rydberg atoms at a distance $a = 3.5\mu m$ (corresponding to the average closest distance between atoms up to the time $t=5.5\mu s$) is approximately 141MHz, which corresponds to a “transfer” time of 0.02 μs. This is much faster than the time scale of motion of the atoms. The colour shading in figure 5 and figure 6b visualise how the electronic excitation evolves in time. One sees that the excitation gets transferred such that it is always localised on the two instantaneously nearest atoms, in accordance with the structure of exciton eigenstates outlined in [15]. After 5.5 μs the momentum that was transferred through the chain kicks out the last atom, and a well defined

\(^+\) In interpreting figure 5, keep in mind that a narrow gap between the total density peaks associated with two neighbouring atoms does not imply that the atoms approach closely: correlations between atomic positions are strong and result in the absence of actual close encounters.
Figure 6. Dynamics of atomic motion and excitation transfer averaged over 10^5 realisations. (a) Total atomic density as defined in (23), obtained by binning the classical trajectories $R(t)$, see Appendix B. (b) Diabatic populations $|c_m(t)|^2$ in the localised state basis $|\Psi(t)\rangle = \sum_n c_n(t)|\pi_n\rangle$. The row m shows the excitation probability of atom m. (c) Population on the adiabatic (eigen-) surface rep (red) and the energetically next one (blue). (d) Binary entanglement (see Appendix A) $E_{n,n+1}$ for neighbouring atoms. The pair of indices $n, n+1$ is assigned to each line near its maximum.

close proximity pair no longer exists. The exciton state then assumes the shape for an equidistant chain, de-localised over the entire chain (consisting of the remaining $N-2$ atoms), which subsequently slowly spreads out. However this state change is not completely adiabatic as can be seen in figure 6c: where the adiabatic population on the initial (repulsive) adiabatic surface together with the population on the neighbouring adiabatic surface is shown. One clearly sees a change of population around $t = 5.5 \mu s$, which is the time when atom 7 starts to separate from the chain. The duration over which population transfer between the surfaces occurs corresponds to the time during which the excitation localised on atom 6 and 7 spreads over the remaining chain (see figure 5 and figure 6b). This change of the adiabatic populations can be understood in a simple way: As noted above, up to $t \approx 5 \mu s$ the excitonic transfer time was much faster than the nuclear dynamics. During the time in which atom 7 leaves the chain, however, the excitation has to delocalise over the whole remaining chain to stay in the

Adiabatic entanglement transport in Rydberg aggregates
fully repulsive adiabatic state. The distances involved in this redistribution of excitation are much larger than \(a \) or \(x_0 \), hence the electronic time scale is slower, now of the order of the nuclear motion of atom 7. After the delocalised state is reached, the relevant nuclear dynamics becomes very slow – the system behaves adiabatic again. We found that the magnitude of these non-adiabatic transitions increases with chain length \(N \) if all other parameters are kept constant, reflecting a decrease in the energetic separation of the involved adiabatic states for larger \(N \).

So far we have viewed the dynamics of excitation transport essentially as a wave spreading phenomenon on a chain whose constituents are free to move. It is possible to give the observed phenomenon a quite different twist, by considering the dynamical transport of entanglement that is linked to the excitation migration. In particular we focus on entanglement within the subsystem comprised of the electronic state of atoms \(n \) and \(m \) only, denoted by \(E_{n,m} \). This subsystem can contain much less information than the full many-body quantum state, hence entanglement therein is expected to be more robust and simultaneously more accessible. We summarize in Appendix A how we calculate the relevant bipartite entanglement of formation [57]. As can be seen in Fig. 6 (d), the initially perfect entanglement between 1 and 2 is transported through the chain with only minor losses up to the point where the final atom leaves the chain [*]. Then the exciton state de-localizes over the entire chain, with a resulting drop of bipartite entanglement. A comparison of panels (b) and (d) of figure 6 makes it apparent that entanglement is here a direct consequence of coherent, delocalised excitation: Whenever the diabatic population on both members of a neighbouring atom pair is large, so is the mutual entanglement.

4. Parameter dependence of the entanglement transport

In the following we will investigate how the coupled excitonic and nuclear dynamics depends on the mass \(M \) of the atom, the magnitude \(\mu \) of the used transition dipole and on the absolute initial positions of the atoms. These dependencies can be in principle be studied in experiment. In addition we will also investigate changes of the functional form of the long-range interaction, which is more of general theoretical interest. As in the previous section, for the following calculations we will use and compare the two mixed quantum classical methods.

Since we focus on dynamics which is more or less adiabatic, the motion of the atoms is approximately governed by

\[
M \frac{\partial^2 R}{\partial t^2} = -\nabla_R U_{\text{rep}}(R) = -\nabla_R \frac{\mu^2}{R^3} = 3 \frac{\mu^2}{R^4} ,
\]

(30)

which is equivalent to \(\frac{\partial^2 \lambda}{\partial t^2} R = 3 \frac{\mu^2}{M R^4} \). If we now scale

\[
R_\lambda = \lambda R ,
\]

(31)

* We have verified that both methods outlined previously give the same entanglement evolution for the case \(N = 3 \).
Adiabatic entanglement transport in Rydberg aggregates

Figure 7. Entanglement $E_{nm}(t)$ between neighbouring atoms n and m for different values of the transition dipole moment μ calculated with Tully and Ehrenfest. For each μ the time is scaled with $t_0 = t_0(\mu) = T/\mu$ with $T = 6.44 \mu$s. The curves for different μ are indistinguishable.

$$M_\beta = \beta M, \quad \mu_\gamma = \gamma \mu,$$

we see that (30) remains invariant, if time is also scaled by

$$\tau = t\gamma^{-1}\beta^{1/2}\lambda^{3/2}.$$

This means, for example, that for doubled transition dipole moment μ one expects the dynamics to be twice as fast, but otherwise unchanged. This is confirmed in figure 7 where entanglement transport for various transition dipole strengths is shown, each scaled by (34).

Consider next the distance dependence. Numerical calculations are shown in figure 8. Here we have kept the ratio a/x_0 constant and scaled the distances between the atoms according to (31), however we did not scale the the width σ_0 of the initial nuclear wavefunction. One sees that the overall dynamics obeys the scaling (34), however there are slight differences in the magnitude of the entanglement. These are due to the different relative width of the initial Gaussian. If we scale also σ_0 we obtain perfect agreement as in figure 7.

The dependence on the mass is demonstrated in figure 9. Again one sees that the scaling relation (34) is basically fulfilled, however, there are quite large changes in the absolute value of entanglement when masses or calculation methods are varied, especially after the delocalisation of the excitation (see section 3.2). These differences
Figure 8. As figure 7 but now for scaled distances $\lambda \times 2\mu m$ and constant a/x_0. Here the width σ_0 of the initial nuclear wave-function is kept constant. The time is given in units of $t_0 = t_0(\lambda) = T\lambda^{5/2}$ with $T = 6.44\mu s$.

appear pronounced for very small masses.

To understand the deviations, the number of jumps invoked in Tully’s method is shown as a function of mass in figure 10. As expected for smaller masses the dynamics becomes more non-adiabatic and the number of jumps strongly increases.

From the above analysis one sees that due to an increasing number of jumps there are differences in the dynamics for different masses. However, in practice these differences are quite small as is demonstrated in figure 9. The overall shape of the curves stays the same, only the timescales for the total dynamics changes. Nevertheless one clearly sees that with smaller mass, where the dynamics becomes more non-adiabatic, there is also a larger loss of entanglement.

It is instructive also to compare Tully’s surface hopping approach with the much simpler (and faster) Ehrenfest method. For larger masses, in figure 9, the results obtained from Tully’s surface hopping method and the Ehrenfest-average-potential method do not differ, since only a few transitions between the adiabatic states occur. For lighter masses, where more transitions occur, the methods start to deviate, since the

* The green curve corresponds roughly to hydrogen.

** A similar plot but with the number of jumps reduced by roughly a factor of ten is obtained when starting from the symmetric initial electronic state, due to a larger energy-separation between neighbouring surfaces.
dynamics on the averaged potential in the Ehrenfest-method differs from that stemming from Tully’s algorithm.

4.1. Dependence on the interaction potential

The physical transition dipole-dipole interaction between the states $|\pi_n\rangle$ scales with $1/R^3$, where R is the distance between two Rydberg atoms. In the following we will investigate (hypothetical) resonant energy transfer interactions with power law dependence on the distance

$$V_{nm} = -\mu^2/R_{nm}^\alpha. \quad (35)$$

As already shown in figure 2 to obtain the initial state $|\psi_{ini}\rangle \approx (|\pi_1\rangle - |\pi_2\rangle)/\sqrt{2}$, the ratio a/x_0 has to be decreased for decreasing α. To fix the α dependence of a/x_0 by keeping the ratio of the interaction energy between atom 1 and 2 to that between atom 2 and 3 the constant compared to the case $\alpha = 3$. Parameters selected in this manner are shown in figure 2 as solid black bars.

To have comparable dynamics for different exponents α, we further fix the values of a and x_0. We choose the α dependent initial distance a_α by requiring $V_{12}(a_\alpha) = V_{12}(a_3)$, which leads to $a_\alpha = (a_3)^{3/\alpha}$. Furthermore we have to adapt the width of the initial
nuclear wave packet to the new distance. Our variance σ_α of the Gaussian position distribution is determined by requiring that the corresponding spread of initial potential energies is roughly independent of α. This leads to the condition $\sigma_\alpha \approx \frac{3}{\alpha} a_3^{\frac{3}{\alpha}-1} \sigma_3$.

In figure 11 the entanglement between neighbouring atoms is shown for different α and $M = M_{Li}$. The time is in units of $t_0(\alpha)$, which is different for each α

$$t_0(\alpha) = \frac{\alpha}{3} \sqrt{(a_3d_3)^{1-\frac{3}{\alpha}}} T$$

(36)

with $T = 6.44 \mu s$. One sees that in these scaled time units, for $\alpha \geq 3$, the transport of entanglement is more or less independent of α. For smaller α, however, the entanglement transport is strongly reduced.

5. Conclusions and Outlook

We have demonstrated a strong connection between the motion of a chain (aggregate) of Rydberg atoms and the coherent propagation of a single electronic excitation within the chain. Adiabatic transport ensures that the excitation remains spatially localised near a dislocation passing through the chain. Our results were obtained with Tully’s surface hopping method [54, 55] and the Ehrenfest method [53, 54], both of which we vindicate by comparison with exact quantum calculations for a smaller model system with similar dynamics. A key feature of our setup is that the initial state is a repulsive electronic eigenstate of the chain.

If the system was not prepared in an electronic eigenstate but in a state where the excitation is localised on a single atom, one would find a fast excitation transfer similar...
to that described e.g. in [24, 58]. If free motion is added to such a scenario, however, those parts of the population that necessarily initially reside on an an attractive surface can lead to fast collisions of light atoms. In that case the dynamics could be treated with the Tully algorithm, however the Ehrenfest method would fail (e.g. for the dimer there would be no movement at all).

We wish to contrast the results of the present study with those obtained in [10] for van-der-Waals interactions. For the case of repulsive van-de-Waals interaction one finds similar trajectories for the movement of the atoms, showing for example Newton’s cradle like transfer of a dislocation through an atomic chain. The crucial difference to the dipole-dipole coupling presented here is the excitation energy transfer involved in the latter. Even more important is that the dynamics in the dipole-dipole case depends on the electronic state. An even stronger contrast to van-der-Waals is found for initial states other than the fully repulsive one treated here. Even mixed, partially attractive, partially repulsive dynamics is possible as shown by Ates et al. [15]. Such dynamics would arise from scenarios presented here only if a sufficient fraction of the atoms has undergone non-adiabatic transitions to other potential surfaces (as in our figure 4(d)).

In this article we have exclusively studied free Rydberg atoms. When the atoms are trapped, the dipole-dipole forces will induce oscillations of atoms in the traps, which in turn lead to oscillating couplings and again to a correlation between the motion of the exciton and the motion of the Rydberg atoms. This gives rise to the well known Davydov-soliton [59, 60]. Constructing large “crystals” of N Rydberg atoms

![Figure 11](image_url)

Figure 11. As figure 7 but now for different exponents α. The time is scaled according to (36).
is problematic since each atom has a finite life-time τ, leading to an even shorter life-time of the crystal of τ/N. For the parameters used in our simulations of section 3 we expect the lifetime to be sufficient. Therefore it would be advantageous to map the strong dipole-dipole interaction in the Rydberg state to the ground state using off-resonant laser dressing techniques [61]. Using this technique and a ring-geometry, it is even possible to use (dressed) Rydberg aggregates for the study of near conical-intersection dynamics [62].

Experimentally, observables as shown in figure 6 could be monitored using techniques for the simultaneous position and state measurement of Rydberg atoms [63]. In our particular system the presence of entanglement can then be directly inferred from the state populations.

Appendix A. Entanglement of formation

The “entanglement of formation” [57, 64] is an entanglement measure for bipartite quantum states, also applicable to mixed states. For a pure state it equals 1 for perfect entanglement and it is 0 for a separable state.

We calculate this entanglement measure in the following way: First consider the reduced density matrix describing the electronic state when the atomic positions are traced out

$$\hat{\sigma} = \sum_{n,m} \sigma_{nm} |\pi_n\rangle \langle \pi_m|,$$

(A.1)

with

$$\sigma_{nm} = \left\{ \begin{array}{ll} \int d^N R \phi^*_n(R) \phi_m(R) & \text{QM} \\ \tilde{c}^*_n c_m & \text{Tully/Ehrenfest} \end{array} \right. \tag{A.2}$$

The first expression holds for the full quantum calculations, the second for the quantum-classical methods. In the latter case $\overline{\cdots}$ denotes the trajectory average and $c_n = \sum_k O_{nk}^T \tilde{c}_k$ are the coefficients in the diabatic basis with O_{nk} defined in (22).

From (A.2) we construct the binary reduced electronic density matrix of atoms a and b

$$\hat{\beta}_{ab} = \text{Tr}^{(a,b)}[\hat{\sigma}].$$

(A.3)

The symbol $\text{Tr}^{(a,b)}[\cdots]$ denotes the trace over the electronic states for all atoms other than a, b. Recall that in the present approach each atom is described by a two level system as discussed in section 2.2 to 2.6. With our labels for those two states, $|s\rangle$ and $|p\rangle$, the trace appearing in (A.3) is over the Hilbert space spanned by the basis $\{|n_1\cdots|n_N\rangle, \ n_j \in s,p\}$

The remaining reduced subspace of atoms a and b is spanned by $|pp\rangle, |ps\rangle, |sp\rangle, |ss\rangle$. Since the states $|\pi_n\rangle$ appearing in (A.1) only contain a single excitation p, all
matrix elements of $\hat{\beta}_{ab}$ involving $|pp\rangle$ vanish. In the reduced basis one finally has

$$\hat{\beta}_{ab} = \begin{pmatrix} 0 & 0 & 0 & 0 \\ 0 & \sigma_{aa} & \sigma_{ab} & 0 \\ 0 & \sigma_{ab}^* & \sigma_{bb} & 0 \\ 0 & 0 & 0 & \sum_{c\neq\{a,b\}} \sigma_{cc} \end{pmatrix}. \tag{A.4}$$

From this we construct

$$S_{ab} = \sqrt{\hat{\beta}_{ab} \hat{\beta}_{ab}^* \sqrt{\hat{\beta}_{ab}}}, \tag{A.5}$$

$$C_{ab} = \max(0, 2\lambda_{ab} - \text{Tr} S_{ab}), \tag{A.6}$$

With the further definitions

$$H(x) = -[x \log_2 x + (1 - x) \log_2 (1 - x)], \tag{A.7}$$

$$E(x) = H(1/2 + \sqrt{1 - x^2}/2), \tag{A.8}$$

where λ_{ab} denotes the largest eigenvalue of S_{ab}, we can finally obtain the binary entanglement of the electronic states of atoms a and b

$$E_{ab} = E(C_{ab}). \tag{A.9}$$

For further details we refer to [57, 64].

Appendix B. Tully’s surface hopping

The quantum mechanical dynamics governed by (24) and the classical equation of motion (27) are solved self-consistently. The atoms move on a single adiabatic potential surface k, which however may be changed via sudden jumps to another surface q. The probability for a jump from state k to state q is given by

$$g_{kq} = \max(0, b_{qk} \Delta t / a_{kk}), \tag{B.1}$$

where Δt denotes the propagation time step and

$$b_{qk} = -2 \text{Re}(a_{qk}^* \dot{R} \cdot d_{qk}), \tag{B.2}$$

$$a_{qk} = c_q c_k^* \tag{B.3}.$$

To determine if during a time step a jump takes place we compare g_{kq} with a uniform random number $\xi \in [0,1]$. If $\xi \leq g_{k1}$, the jump is to the surface $q = 1$, if $g_{k1} < \xi \leq g_{k1} + g_{k2}$, to $q = 2$ and so forth. When a switch takes place the velocity \dot{R} is adjusted in order to conserve the total amount of energy. This will be done in the direction of the non-adiabatic coupling vector d_{kq} as follows

$$\dot{R}(t) = \dot{R}(t - \Delta t) - \gamma_{kq} d_{kq} / M. \tag{B.4}$$

Here

$$\gamma_{kq} = -2 \beta_{kq} \pm \sqrt{\beta_{kq}^2 + 4 \alpha_{kq} (U_k - U_q)}, \tag{B.5}$$

$$\beta_{kq} \leq 0.$$
with
\[\alpha_{kq} = \frac{1}{2M} \sum_{i=1}^{N} |d_{kq}^{(i)}|^2 \] (B.6)
and
\[\beta_{kq} = \sum_{i=1}^{N} \dot{R}_i \cdot d_{kq}^{(i)}. \] (B.7)
If the energy of the final surface \(q \) is larger than that of the initial surface \(k \) and the velocity reduction required is greater than the component of velocity to be adjusted, then the jump is rejected and instead of (B.5) we use
\[\gamma_{kq} = \frac{\beta_{kq}}{\alpha_{kq}} \] (B.8)
which corresponds to a reflection of the velocity component along \(d_{kq} \). Further details about Tully’s algorithm can be found e.g. in \([54, 55]\).

As described in \([65]\) the forces \(\nabla_R U_k(R) = \nabla_R \langle \varphi_k(R)|H^\text{el}(R)|\varphi_k(R) \rangle \) and the non-adiabatic coupling vectors \(d_{ij} \) are calculated using the Hellman-Feynman theorem. One then finds
\[\nabla_R U_k(R) = \langle \varphi_m(R)|(\nabla_R H^\text{el}(R))|\varphi_m(R) \rangle. \] (B.9)
and
\[d_{kq} = \frac{\langle \varphi_i(R)|(\nabla_R H^\text{el}(R))|\varphi_j(R) \rangle}{U_j(R) - U_i(R)} \] (B.10)

The total density \(n(R,t) \), as defined in \((23)\), is obtained through a binning of the single trajectories, which means for each time step our spatial domain is discretised into bins and if a trajectory \(R(t) = (R_1(t)...R_N(t))^T \) lies within such a bin, \(n(R,t) \) for that bin will be increased by one. By normalising \(n(R,t) \) one obtains the probability to find an atom at a given time in a certain interval of space.

Appendix C. Phenomenological model of ionisation

Our essential states model as justified in section 2.4 is only valid while atoms do not approach each other closely. Once they do, dipole-dipole shifts of all electronic states become too large to work in a small Hilbert-space of electronic states. The most prominent consequence is collisional ionisation of Rydberg atoms \([10]\). In order to avoid excursions of our numerical propagation schemes into realms where the underlying model is invalid, we incorporate a simple, phenomenological treatment of ionisation for very close atoms.

For the quantum mechanical calculations, we employ an imaginary absorbing potential of the form
\[i\frac{\partial}{\partial t} \phi_n(R) = \ldots - iW(R)\phi_n(R). \] (C.1)
into (20). The shape of \(W(R) \) is chosen to minimise reflection, while fully removing components of the wave function that correspond to atoms closer than an enforced
minimal distance. For the data of figure 4(f-j), where the ionisation is most important, this distance is $2\mu m$. For the two quantum-classical trajectory methods (EF, Tully), we incorporate the effect described by (C.1) through a stochastic “ionisation probability” $2W(x)\Delta t$ in each discrete time-step of duration Δt.

Note that we do not aim to model realistic ionisation rates, however we do employ the same model of ionisation in all three methods (QM, EF, Tully). Further we point out that this approach practically leads to ionisation of all N atoms, even if only two atoms collided. A physically correct treatment would require a density matrix formalism, going far beyond our goal, to simply to exclude numerical data from unrealistic regions of the model.

References

[1] M. D. Lukin, M. Fleischhauer, R. Côté, L. M. Duan, D. Jaksch, J. I. Cirac and P. Zoller; Dipole Blockade and Quantum Information Processing in Mesoscopic Atomic Ensembles; Phys. Rev. Lett. 87 037901 (2001).

[2] E. Urban, T. A. Johnson, T. Henage, L. Isenhower, D. D. Yavuz, T. G. Walker and M. Saffmann; Observation of Rydberg blockade between two atoms; Nature Physics 5 110 (2009).

[3] A. Gaëtan, Y. Miroshnychenko, T. Wilk, A. Chotia, M. Viteau, D. Comparat, P. Pillet, A. Browaeys and P. Grangier; Observation of collective excitation of two individual atoms in the Rydberg blockade regime; Nature Physics 5 115 (2009).

[4] C. H. Greene, A. S. Dickinson and H. R. Sadeghpour; Creation of Polar and Nonpolar Ultra-Long-Range Rydberg Molecules; Phys. Rev. Lett. 85 2458 (2000).

[5] I. C. H. Liu, J. Stanojevic and J. M. Rost; Ultra-Long-Range Rydberg Trimers with a Repulsive Two-Body Interaction; Phys. Rev. Lett. 102 173001 (2009).

[6] V. Bendkowsky, B. Butscher, J. Nipper, J. B. Balewski, J. P. Shaffer, R. Löw, T. Pfau, W. Li, J. Stanojevic, T. Pohl and J. M. Rost; Rydberg Trimers and Excited Dimers Bound by Internal Quantum Reflection; Phys. Rev. Lett. 105 163201 (2010).

[7] W. R. Anderson, J. R. Veale and T. F. Gallagher; Resonant Dipole-Dipole Energy Transfer in a Nearly Frozen Rydberg Gas; Phys. Rev. Lett. 80 249 (1998).

[8] W. Li, P. J. Tanner and T. F. Gallagher; Dipole-Dipole Excitation and Ionization in an Ultracold Gas of Rydberg Atoms; Phys. Rev. Lett. 94 173001 (2005).

[9] F. Robicheaux, J. V. Hernandez, T. Topcu and L. D. Noordam; Simulation of coherent interactions between Rydberg atoms; Phys. Rev. A 70 042703 (2004).

[10] T. Amthor, M. Reetz-Lamour, C. Giese and M. Weidemüller; Modeling many-particle mechanical effects of an interacting Rydberg gas; Phys. Rev. A 76 054702 (2007).

[11] H. Schenpp, G. Günter, C. S. Hofmann, C. Giese, S. D. Saliba, B. D. DePaola, T. Amthor, M. Weidemüller, S. Sevinçli and T. Pohl; Coherent Population Trapping with Controlled Interparticle Interactions; Phys. Rev. Lett. 104 173602 (2010).

[12] I. Lesanovsky; Many-Body Spin Interactions and the Ground State of a Dense Rydberg Lattice Gas; Phys. Rev. Lett. 106 025301 (2011).

[13] N. Henkel, R. Nath and T. Pohl; Three-Dimensional Roton Excitations and Supersolid Formation in Rydberg-Excited Bose-Einstein Condensates; Phys. Rev. Lett. 104 053004 (2010).

[14] O. Müllken, A. Blumen, T. Amthor, C. Giese, M. Reetz-Lamour and M. Weidemüller; Survival probabilities in coherent exciton transfer with trapping; Phys. Rev. Lett. 99 090601 (2007).

[15] C. Ates, A. Eisfeld and J. M. Rost; Motion of Rydberg atoms induced by resonant dipole-dipole interactions; New J. Phys. 10 045030 (2008).
Adiabatic entanglement transport in Rydberg aggregates
Adiabatic entanglement transport in Rydberg aggregates

[42] M. Reers, T. W. Smith and L. B. Chen; J-aggregate formation of a carbocyanine as a quantitative fluorescent indicator of membrane-potential; Biochemistry 30 4480 (1991).

[43] V. N. Dedov, G. C. Cox and B. D. Roufogalis; Visualisation of mitochondria in living neurons with single- and two-photon fluorescence laser microscopy; Micron 32 653 (2001).

[44] S. N. Rylova, A. Malalitano, D.-A. Persaud-Sawin, W.-X. Guo, J. Chang, P. J. Jansen, A. D. Proia and R. M. Boustany; The CLN3 Gene is a Novel Molecular Target for Cancer Drug Discovery; Cancer Research 62 801 (2002).

[45] S. Dähne; Nanostrukturierte J-Aggregate als potenzielle Lichtsammelsysteme für Photosynthesen; Bunsen-Magazin 4 81 (2002).

[46] S. Kirstein and S. Dähne; J-aggregates of amphiphilic cyanine dyes: Self-organization of artificial light harvesting complexes; International Journal of Photoenergy page 20363 (2006).

[47] J. Roden, A. Eisfeld, M. Dvořák, O. Bünemann and F. Stienkemeier; Vibronic line shapes of PTCDI oligomers in helium nanodroplets; Journal of Chemical Physics 134 054907 (2011).

[48] G. S. Engel, T. R. Calhoun, E. L. Read, T. K. Ahn, T. Mančal, Y. C. Cheng, R. E. Blankenship and G. R. Fleming; Evidence for wave-like energy transfer through quantum coherence in photosynthetic systems; Nature 446 782 (2007).

[49] G. Birkl and J. Fortagh; Micro traps for quantum informa- tion processing and precision force sensing: Laser & Photon. Rev. 1 12 (2007).

[50] G. D. Stevens, C. Iu, T. Bergeman, H. J. Metcalf, I. Seipp, K. T. Taylor and D. Delande; Precision measurements on lithium atoms in an electric field compared with R-matrix and other Stark theories; Phys. Rev. A 53 1349 (1996).

[51] T. Amthor, M. Reetz-Lamour, S. Westermann, J. Denskan and M. Weidemüller; Mechanical Effect of van der Waals Interactions Observed in Real Time in an Ultracold Rydberg Gas; Physical Review Letters 98 023004 (2007).

[52] J. Kruse, C. Gierl, M. Schlosser and G. Birkl; Reconfigurable site-selective manipulation of atomic quantum systems in two-dimensional arrays of dipole traps; Phys. Rev. A 81 060308(R) (2010).

[53] M. S. Topaler, T. C. Allison, D. W. Schwenke and D. G. Truhlar; What is the best semiclassical method for photochemical dynamics of systems with conical intersections?; J. Chem. Phys. 109 3321 (1998).

[54] J. C. Tully and R. K. Preston; Trajectory Surface Hopping Approach to Nonadiabatic Molecular Collisions: The Reaction of H+ with D2; J. Chem. Phys. 55 562 (1971).

[55] J. C. Tully; Molecular dynamics with electronic transitions; J. Chem. Phys. 93 1061 (1990).

[56] M. A. Nielsen and I. L. Chuang; Quantum computation and quantum information; Cambridge University Press (2000).

[57] S. Hill and W. K. Wootters; Entanglement of a Pair of Quantum Bits; Phys. Rev. Lett. 78 5022 (1997).

[58] A. Eisfeld; Phase directed excitonic transport and its limitations due to environmental influence; Chemical Physics 379 33 (2011).

[59] A. S. Davydov and N. I. Kishukha; Solitary Excitons in One-Dimensional Molecular Chains; phys. stat. sol. (b) 59 465 (1973).

[60] W. Weidlich and W. Heudorfer; Coherent Exciton-Phonon Pulse Propagation in One Dimension; Z. Physik 268 133 (1974).

[61] S. Wüster, C. Ates, A. Eisfeld and J. M. Rost; Excitation transport through Rydberg dressing; http://arxiv.org/abs/1011.5483 (2010).

[62] S. Wüster, A. Eisfeld and J. M. Rost; Conical intersections in an ultracold gas; Phys. Rev. Lett., in press; http://arxiv.org/abs/1011.5489 (2011).

[63] C. van Ditzhuijzen, A. Koenderink, L. Noordam and H. van Linden van den Heuvel; Simultaneous position and state measurement of Rydberg atoms; Eur. J. Phys. D 40 13 (2006).

[64] W. K. Wootters; Entanglement of Formation of an Arbitrary State of Two Qubits; Phys. Rev. Lett. 80 2245 (1998).
[65] S. Hammes-Schiffer and J. C. Tully; *Proton-Transfer In Solution - Molecular-Dynamics With Quantum Transitions*; J. Chem. Phys. 101 4657 (1994).