ASL STRUCTURES OF SOME QUADRICS

JOYDIP SAHA AND INDRANATH SENGUPTA

ABSTRACT. Let K be a field and X, Y denote matrices such that, the entries of X are either indeterminates over K or 0 and the entries of Y are indeterminates over K which are different from those appearing in X. We consider ideals of the form $I_1(XY)$, which is the ideal generated by the 1×1 minors of the matrix XY. We prove that the quotient ring $K[X, Y]/I_1(XY)$ admits an ASL structure for certain X and Y.

INTRODUCTION

Let K be a field and $\{x_{ij}; 1 \leq i \leq m, 1 \leq j \leq n\}, \{y_j; 1 \leq j \leq n\}$ be indeterminates over K. Let $R = K[x_{ij}]$ and $S = K[x_{ij}, y_j]$ denote the polynomial algebras over K. Let X denote an $m \times n$ matrix such that its entries belong to the ideal $\langle \{x_{ij}; 1 \leq i \leq m, 1 \leq j \leq n\} \rangle$ and $Y = (y_j)_{n \times 1}$ the generic $n \times 1$ column matrix. Let $I_1(XY)$ denote the ideal generated by the 1×1 minors or the entries of the $m \times 1$ matrix XY. We assume that $m = n$ and write $I = I_1(XY) = \langle g_1, g_2, \ldots, g_n \rangle$. The ideal $I_1(XY)$ is a special case of the defining ideal of a variety of complexes, see [1]. These ideals also feature in [5], in the study of the structure of a universal ring of a universal pair. Tchernev has proved that the set of standard monomials form a free basis for the universal ring.

Under the assumption that X is generic (respectively generic symmetric) and with respect to any monomial order satisfying $x_{11} > x_{22} > \cdots > x_{nn}; x_{ij}, y_j < x_{nn}$ for every $1 \leq i \neq j \leq n$ (respectively $1 \leq i < j \leq n$), it is true that the set $\{g_1, g_2, \ldots, g_n\}$ forms a Gröbner basis for the ideal $I_1(XY)$; see [3]. Another Gröbner basis exists and that also appears in [3], which has been used to prove normality in [3] and compute primary decomposition of these ideals in [4]. In this paper we will show that the knowledge of Gröbner basis actually leads us to the fact that $K[X, Y]/I_1(XY)$ admits an ASL structure.

2010 Mathematics Subject Classification. Primary 13F50; Secondary 13P10.
Key words and phrases. ASL, Gröbner basis, determinantal ideals.

The first author is supported by the NPDF fellowship PDF/2019/001074, sponsored by the SERB, Government of India.

The second author is the corresponding author. This research is supported by the MATRICS research grant MTR/2018/000420, sponsored by SERB.
1. ALGEBRA WITH STRAIGHTENING LAW

ASL or the Algebra with Straightening Law is a special structure on an algebra A, over a partially ordered subset of A. We list the definition and some basic facts below. We refer to [2] for definitions and pertinent results.

Definition 1. Let A be a commutative ring with 1 and H a subset of A. Suppose that H is a partially ordered set (poset). A standard monomial is a product of the form $m_1 \cdots m_k$, such that $m_1 \leq \cdots \leq m_k$.

Definition 2. Let B be a commutative ring with 1 and A an algebra over the ring B. Let H be a finite partially ordered subset of A, which generates A as a B algebra. Then A is an algebra with straightening law (on H, over B) if the following conditions are satisfied:

1. The algebra A is a free B module whose basis is the set of standard monomials.
2. If α and β in H are incomparable and if
 \[\alpha \beta = \sum r_i m_1 m_2 \cdots m_k, \]
 where $r_i \neq 0$ is in B and $m_1 \leq m_2 \leq \cdots \leq m_k$ is the unique expression for $\alpha \beta$ in A as a linear combination of standard monomials, then $m_i \leq \alpha, \beta$ for every i.

Theorem 1.1. Let us consider the K algebra $S/I_1(\{X,Y\})$, where $X = (x_{ij})$ is generic $n \times n$ matrix of indeterminates x_{ij} and Y is generic $n \times 1$ matrix of indeterminates y_i. Then $S/I_1(\{X,Y\})$ is an algebra with straightening law on the partially ordered set $H = \{x_{ij} + I_1(\{X,Y\}), y_i + I_1(\{X,Y\}) \mid 1 \leq i, j \leq n\}$ over K. The partial order \preceq on H is given by following chains:

1. $\bar{x}_{12} \preceq \cdots \preceq \bar{x}_{1n} \preceq \bar{x}_{21} \preceq \bar{x}_{23} \preceq \cdots \preceq \bar{x}_{2, n} \preceq \cdots \preceq \bar{x}_{n, (n-1)} \preceq \bar{x}_{nn} \preceq \bar{x}_{(n-1), (n-1)} \preceq \cdots \preceq \bar{x}_{11},$
2. $\bar{x}_{n, (n-1)} \preceq \bar{y}_{n} \preceq \cdots \preceq \bar{y}_{1},$
3. $\bar{x}_{22} \preceq \bar{y}_{1},$
4. $\bar{y}_{n} \preceq \bar{x}_{(n-1), (n-1)},$
5. $\bar{x}_{(i+1), (i+1)} \bar{y}_{i} \preceq \bar{x}_{(i-1), (i-1)}$, for $2 \leq i \leq n - 1$.

Here $\bar{\cdot}$ denotes the residue modulo $I_1(\{X,Y\})$.

Proof. We fix monomial order on S as in the theorem for the Gröbner basis for the generic case:

1. $x_{11} > x_{22} > \cdots > x_{nn};$
2. $x_{ij}, y_j < x_{nn}$ for every $1 \leq i \neq j \leq n$.

Let $\mathcal{I} = I_1(\{X,Y\}) = \langle g_1, g_2, \cdots, g_n \rangle$, where $g_i = \sum_{j=1}^{n} x_{ij} y_j$. Then, the set $\{g_1, \cdots, g_n\}$ forms a Gröbner basis for the ideal \mathcal{I} with respect to the
monomial order written above. Therefore, \(\text{in}(\mathcal{I}) = \langle \{x_{ii}y_i \mid 1 \leq i \leq n\} \rangle \) and the set \(L = \{ m \mid m \text{ is a monomial such that } m \notin \text{in}(\mathcal{I}) \} \) forms a basis of \(K \) algebra \(S/\mathcal{I} \). Since only \(x_{ii} \) and \(y_i \) are incomparable in \(H \), for all \(1 \leq i \leq n \), then it is obvious that \(L \) is set of standard monomials in \(S/\mathcal{I} \) with respect to the given partial order on \(H \). Therefore the first condition in ASL holds. Now we have the expression

\[
\bar{x}_{ii} \bar{y}_i = -\left(\sum_{j=1, j \neq i}^{n} \bar{x}_{ij} \bar{y}_j \right).
\]

Here, for each \(1 \leq i \leq n \), we have \(\bar{x}_{ij} \preceq \bar{y}_j \) and \(\bar{x}_{ij} \preceq \bar{y}_i \), \(\bar{x}_{ij} \preceq \bar{x}_{ii} \), for all \(j \neq i \). \[\square\]

REFERENCES

[1] De Concini, E. Strickland, On the variety of complexes, *Adv. in Math* 41(1)(1981) 57-77.
[2] D. Eisenbud, Introduction to algebras with straightening laws, *Marcel Dekker, Inc* (1980)
[3] J. Saha, I. Sengupta, G. Tripathi, Ideals of the form \(I_1(\mathbb{P}^1 \mathcal{M}) \). *Journal of Symbolic Computation* 91(2019) 17–29.
[4] J. Saha, I. Sengupta, G. Tripathi, Primary decomposition and normality of certain determinantal ideals, *Proceedings – Mathematical Sciences* 129(2019), no.4, 129:55.
[5] A.B. Tchernev, Universal complexes and the generic structure of free resolutions, *Michigan Math. J.* 49(1)(2001) 65–96.

Stat-Math Unit, Indian Statistical Institute, 203 B.T. Road, Kolkata 700 108.

Email address: saha.joydip56@gmail.com

Discipline of Mathematics, IIT Gandhinagar, Palaj, Gandhinagar, Gujarat 382355, INDIA.

Email address: indranathsg@iitgn.ac.in