Kurort Health Walking Preferentially Decreases Higher Blood Pressure and Improves Mood

Shinya Minatoguchi, MD, PhD; Taro Minagawa, MD, PhD; Kazuhiko Nishigaki, MD, PhD; Shinsuke Ojio, MD, PhD; Shinji Yasuda, MD, PhD; Kaori Osawa, BSc; Munenori Sasaki, BSc; Masashi Ogawa, BSc; Tatehiro Marumo, BSc; Shin Takano, BSc

Background: Kurort is a German term from the words *kur* (cure) and *ort* (area), and refers to improvements in patients' health in areas full of nature. We investigated the effect of *kurort* health walking in the 2 urban-style *kurort* health walking courses opened in Gifu City on systolic blood pressure (SBP), diastolic blood pressure (DBP), heart rate, and mood.

Methods and Results: The subjects were 454 people (136 males, 318 females; mean ±SD age 61.7±9.9 years) taking part in *kurort* health walking for the first time. SBP, DBP, and heart rate were measured before and after *kurort* health walking. Mood was assessed using a 10-item checklist after *kurort* health walking. *Kurort* health walking significantly decreased SBP and DBP and increased heart rate. The decrease in SBP was significantly greater in the SBP ≥140 than <140 mmHg group, indicating that SBP before *Kurort* health walking was inversely correlated with the change in SBP. Similarly, the decrease in DBP was significantly greater in the DBP ≥90 than <90 mmHg group, indicating that DBP before *Kurort* health walking was also inversely correlated with the change in DBP. All 10 items on the mood assessment were significantly improved after *kurort* health walking.

Conclusions: *Kurort* health walking preferentially decreases higher blood pressure and improves mood.

Key Words: Diastolic blood pressure; *Kurort* health walking; Mood; Systolic blood pressure
Participants were asked to provide details regarding their age, sex, height, weight, presence of hypertension, dyslipidemia, and diabetes on a checklist before walking. SBP, DBP, and heart rate were measured using a wrist-type automatic sphygmomanometer, which is easy to use outdoors, before and after kurort health walking. After walking, participants were asked to complete a survey to evaluate changes in mood.

To ensure safety, participants with an SBP >180 mmHg and/or a DBP >110 mmHg are prohibited from kurort health walking, and kurort health walking is not performed in July and August because of the very hot climate in Gifu City in summer. Warming-up exercise before walking and cooling-down exercises after walking were performed under the direction of the health exercise instructors.

There are 2 courses for kurort health walking in Gifu City. The Mt. Kinka-Nagara River-Gifu Park course (Figure 1) is situated in the city center close to the Nagara River and extends to the foot of Mt. Kinka. This course is 2.3 km long and has an elevation of 30 m. The Mt. Dodogamine-Nagara River-Fureai Forest course (Figure 2) is situated in the northern area of the city and consists of a beautiful forest with many seasonal birds. This course is 3.2 km long and has an elevation of 80 m.

To maintain target heart rate during walking, participants were asked to measure their heart rate at 5 points on the Mt. Kinka-Nagara River-Gifu Park course, and on 6 points on the Mt. Dodogamine-Nagara River-Fureai Forest course (Figures 1, 2). Participants walked either course, accompanied by 2 health exercise instructors. The target heart rate during walking was defined as (160−age) beats/min. If the heart rate increased beyond the target heart rate, participants were asked to slow the pace of walking so that heart rate was maintained under the target. Because the exercise level was maintained under the anaerobic threshold, it was considered safe for cardiac patients.

This study was approved by the Ethics Committee of Gifu Municipal Hospital (Approval no. 634) and conformed with the principles outlined in the Declaration of Helsinki (Br Med J 1964; ii: 177). This study was registered with the University Hospital Medical Information Network (UMIN) Clinical Trials Registry (ID: UMIN000041617).
Measurement of SBP, DBP, and Heart Rate
SBP, DBP, and heart rate were measured before and after the completion of kurort health walking using a wrist-type sphygmomanometer. In analyses, SBP and DBP were each divided into 2 groups (SBP ≥140 and <140 mmHg; DBP ≥90 and <90 mmHg group) based on the definition of hypertension in the 2019 Japanese Society of Hypertension guidelines for the management of hypertension.6

Heart rate was only evaluated for the 403 participants who documented their heart rate both before and after kurort health walking in the checklist.

Measurement of Mood
Based on a previously reported method,7 a questionnaire was used in this study to determine changes in the following 10 mood items: feeling lively, feeling refreshed, a vivid feeling, feeling exhilarated, feeling relaxed, feeling calm, a fun feeling, feeling anxious, feeling irritated, and feeling tired after completing the kurort health walking. Participants rated each item as ‘improved’, ‘no change’, or ‘worsened’. These ratings were scored as 1 for ‘improved’, 0 for ‘no change’, and −1 for ‘worsened’. The effects of kurort health walking on each of the 10 mood items individually and the sum score for all 10 mood items were assessed by averaging scores across all 454 participants.

Statistical Analysis
Data are presented as the mean±SD. The Kolmogorov-Smirnov test was used to determine the normality of data distribution. The significance of the differences in variables between groups was determined by paired and unpaired Student’s t-tests. Correlation coefficients between 2 variables were obtained by linear regression analysis. Two-sided P<0.05 was considered significant, and P<0.01 and P<0.001 were considered highly significant. All statistical analyses were performed using GraphPad Prism 7 (GraphPad Software, San Diego, CA, USA).

Results
Participants’ Background
Of the 454 participants in this study, 136 were male and 318 were female. The age of participants ranged from 11 to 89 years (mean age 61.7±9.9 years). Mean body mass index was 22.1±2.8 kg/m². Some of participants (~30%) had past histories of hypertension (n=84), diabetes (n=22), and dyslipidemia (n=31).
MINATOGUCHI S et al.

DBP before kurort health walking and the change in DBP after kurort health walking (P<0.0001; n=454; Figure 5D).

Mood
Kurort health walking significantly improved scores for each of the mood items, namely feeling lively (mean score after walking 0.65±0.47; P<0.0001 compared with before walking), feeling refreshed (0.87±0.33; P<0.0001), a vivid feeling (0.65±0.48; P<0.0001), feeling exhilarated (0.82±0.38; P<0.0001), feeling relaxed (0.77±0.41; P<0.0001), feeling calm (0.65±0.47; P<0.0001), a fun feeling (0.74±0.43; P<0.0001), feeling anxious (0.44±0.49; P<0.0001), feeling irriated (0.51±0.50; P<0.0001), and feeling tired (0.40±0.52; P<0.0001). In addition, kurort health walking significantly improved the sum score of the 10 mood items (mean score after walking 6.5±3.2 out of perfect score of 10; P<0.0001 compared with before walking; Figure 6).

Discussion
The major findings of the present study are that: (1) kurort health walking in the courses in Gifu City decreased both SBP and DBP; (2) the decrease in SBP was significantly greater in the SBP ≥140 than <140 mmHg group, and the change in SBP was inversely correlated with SBP before walking; (3) the decrease in DBP was significantly greater in the DBP ≥90 than <90 mmHg group, and the change in

SBP, DBP, and Heart Rate
Kurort health walking significantly decreased both SBP (from 130.5±18.4 to 124.4±16.8 mmHg; P<0.0001; n=454; Figure 3A) and DBP (from 81.6±11.3 to 80.6±11.8 mmHg; P=0.0203; n=454; Figure 3B). Heart rate increased significantly from 73.1±12.1 to 75.8±12.3 beats/min (P<0.0001; n=415; Figure 3C).

In the SBP ≥140 mmHg group, SBP decreased significantly from 152.2±10.2 to 139.1±14.6 mmHg (P<0.0001; n=140; Figure 4A), whereas in the SBP <140 mmHg group SBP decreased significantly from 120.9±11.9 to 117.8±13.2 mmHg (P<0.0001; n=314; Figure 4B). The decrease in SBP was significantly greater in the SBP ≥140 mmHg group (−12.9±13.9 mmHg; n=140) than in the SBP <140 mmHg group (−3.0±11.2 mmHg; n=314; P<0.0001; Figure 4C). Thus, there was an inverse correlation between SBP before kurort health walking and the change in SBP after kurort health walking (Figure 4D).

In the DBP ≥90 mmHg group, DBP decreased significantly from 96.1±5.6 to 92.4±9.7 mmHg (P<0.0001; n=112; Figure 5A). In the DBP <90 mmHg group, DBP decreased from 76.8±8.2 to 76.7±9.7 mmHg (n=342), but the difference did not reach statistical significance (P=0.823; Figure 5B). The decrease in DBP was significantly greater in the DBP ≥90 mmHg group (−3.6±8.8 mmHg; n=112) than in the SBP <90 mmHg group (−0.1±8.9 mmHg; n=342; P=0.0003; Figure 5C). Thus, there was an inverse correlation between DBP before kurort health walking and the change in DBP after kurort health walking (P<0.0001; n=454; Figure 5D).

Figure 3. (A) Systolic blood pressure (SBP), (B) diastolic blood pressure (DBP), and (C) heart rate before (pre) and after (post) kurort health walking. Significant decreases were seen in (A) SBP (from 130.5±18.4 to 124.4±16.8 mmHg; n=454; P<0.0001, paired Student’s t-test) and (B) DBP (from 81.6±11.3 to 80.6±11.8 mmHg; n=454; P=0.0203, paired Student’s t-test), and (C) heart rate increased significantly (from 73.1±12.1 to 75.8±12.3 beats/min; n=415; P<0.0001, paired Student’s t-test). Data are presented as the mean±SD.
Kurort health walking decreased blood pressure

Kurort health walking-induced changes in systolic blood pressure (SBP) in participants according to SBP before kurort health walking (≥140 vs. <140 mmHg). (A) In participants with SBP ≥140 mmHg, kurort health walking significantly decreased SBP (152.2±10.2 to 139.1±14.6 mmHg; n=140; P<0.0001, paired Student's t-test). (B) In participants with SBP <140 mmHg, kurort health walking significantly decreased SBP (from 120.9±11.9 to 117.8±13.2 mmHg; n=314; P<0.0001, paired Student's t-test). (C) The decrease in SBP due to kurort health walking was significantly greater in the SBP ≥140 than <140 mmHg group, with changes in SBP (ΔSBP) of −12.9±13.9 mmHg (n=140) and −3.0±11.2 mmHg (n=314), respectively (P<0.0001, unpaired Student's t-test). Data are presented as the mean±SD. (D) Relationship between SBP and ΔSBP. There was an inverse correlation between SBP before kurort health walking and ΔSBP (P<0.0001).

Figure 4.

Kurort health walking was significantly greater in the SBP ≥140 than <140 group (−12.9±13.9 vs. −3.0±11.2 mmHg, respectively; P<0.0001), indicating that the higher the SBP, the greater the decrease in SBP after kurort health walking (Figure 4D). When participants were divided into 2 groups based on SBP before kurort health walking (i.e., SBP ≥140 and <140 mmHg), the decrease in SBP after kurort health walking was significantly greater in the SBP ≥140 than <140 group (−12.9±13.9 vs. −3.0±11.2 mmHg, respectively; P<0.0001), indicating that the higher the SBP, the greater the decrease in SBP after kurort health walking (Figure 4D). When participants were divided into 2 groups based on DBP before kurort health walking (i.e., DBP ≥90 and <90 mmHg), the decrease in DBP after kurort health walking was significantly greater in the DBP ≥90 than <90 mmHg group (−3.6±8.8 vs. −0.1±8.9 mmHg, respectively; P=0.0003), indicating that the higher the DBP, the greater the decrease in DBP (Figure 5D). Furthermore, as shown in Figures 4D and 5D, there is an inverse correlation between SBP and DBP before kurort health walking and the change in SBP and DBP after kurort health walking. Kurort health walking preferentially decreased higher than lower blood pressure and was safely performed even by hypertensive patients with SBP ≥140 mmHg and DBP ≥90 mmHg, decreasing their high blood pressure (Figures 4 and 5). Based on these findings, kurort health walking may be a useful strategy to reduce SBP and DBP in hypertensive patients. It has previously been reported that aerobic exercise decreases both SBP and DBP in both hypertensive patients and normotensive subjects.8,11 The precise mechanisms by which aerobic exercise decreases blood pressure have not been fully clarified; however, some possible mech-

DBP was inversely correlated with DBP before walking; and (4) kurort health walking improved mood.

Recently in Japan, the popularity of kurort health walking has gradually increased with the support of local governments and companies. The 2 kurort health walking courses in Gifu City are well designed and well maintained by the Gifu City administration; thus, walking through these courses may improve participants' physical condition and mood by relieving physical and mental tension by attenuating augmented sympathetic nerve activity. In the present study, kurort health walking decreased SBP and DBP (Figure 3A,B) and significantly increased heart rate (Figure 3C). On average, kurort health walking decreased SBP by 6.1 mmHg, decreased DBP by 1 mmHg, and increased heart rate by 2.7 beats/min. The increase in heart rate after exercise such as walking is a physiologically normal response, and an increase in heart rate of 2.7 beats/min is very small and can be regarded as safe (Figure 3C). Checking participants’ heart rate during kurort health walking to ensure that it was maintained under the target rate (calculated as [160–age] beats/min) meant that kurort health walking was performed safely.

When participants were divided into 2 groups based on SBP before kurort health walking (i.e., SBP ≥140 and <140 mmHg), the decrease in SBP after kurort health walking was significantly greater in the SBP ≥140 than <140 group (−12.9±13.9 vs. −3.0±11.2 mmHg, respectively; P<0.0001), indicating that the higher the SBP, the greater the decrease in SBP after kurort health walking (Figure 4D).
and mental health status have been reported to be associated with cardiovascular events, and walking in kurort may be effective in reducing the risk of cardiovascular events because it decreases SBP and DBP and improves mood.

The advantages of kurort walking in Gifu City compared with normal walking may be that: (1) participants can walk in areas rich in nature, such as scenic hills, forests, rivers, and hot springs, and in a good climate, resulting in good mental feelings; (2) participants are accompanied by health exercise instructors who provide appropriate advice during the walk; (3) blood pressure is measured before and after walking; and (4) heart rate during walking is maintained below the target rate, defined as (160−age) beats/min, by checking heart rate at various points over the course to ensure safety (Figures 1, 2).

Study Limitations
This study only showed the short-term effects of a single bout of exercise. The long-term effects of kurort health walking on blood pressure and mood remain to be investigated. Because the participants in the kurort health walking program are general citizens of Gifu City who happened to take part in the program, we only recorded whether they had hypertension, diabetes, and dyslipidemia, which are

![Graphs showing changes in diastolic blood pressure (DBP) before and after kurort health walking.](image)

Figure 5. Kurort health walking-induced changes in diastolic blood pressure (DBP) in participants according to DBP before kurort health walking (≥90 vs. <90 mmHg). (A) In participants with DBP ≥90 mmHg, kurort health walking significantly decreased DBP (from 96.1±5.6 to 92.3±3.7 mmHg; n=112; P<0.0001, paired Student’s t-test). (B) In participants with DBP <90 mmHg, kurort health walking decreased DBP from 76.8±8.2 to 76.7±1.7 mmHg (n=342), but the difference did not reach statistical significance (P=0.823, paired Student’s t-test). (C) The decrease in DBP due to kurort health walking was significantly greater in the DBP ≥90 than <90 mmHg group, with changes in DBP (∆DBP) of −3.6±8.8 mmHg (n=112) and −0.1±8.9 mmHg (n=342), respectively (P=0.0003, unpaired Student’s t-test). Data are presented as the mean±SD. (D) Relationship between DBP and ∆DBP. There was an inverse correlation between DBP before kurort health walking and ∆DBP (P<0.0001; n=454).
risk factors for coronary artery disease, on the checklist and did not obtain information regarding a history of cardiac and pulmonary diseases or drugs used. Furthermore, it is quite difficult to take blood samples from citizens who take part in kurort walking in the outdoors, although a survey based on blood data, such as blood glucose level, HbA1c, and cholesterol concentrations, may be important. However, because kurort health walking can be regarded as a type of outdoor cardiac rehabilitation, information regarding a history of cardiac disease should have been obtained.

Clinical Perspectives
In this study, SBP and DBP decreased and mood improved in subjects who participated in the kurort health walking program in Gifu City. Of all the participants, approximately 30% had a history of hypertension, diabetes, and dyslipidemia, which are risk factors for coronary artery disease.15 Even in these participants, kurort health walking was performed safely. The present study was performed between June 1, 2020 and May 30, 2021, during the coronavirus pandemic, suggesting that because kurort health walking is mostly an outdoor activity, it can be safely performed in the coronavirus era.

In addition to effectively decreasing blood pressure and improving mood, kurort health walking could be an alternative tool for cardiac rehabilitation. Because cardiac rehabilitation has recently been reported to improve the prognosis of cardiac diseases such as acute myocardial infarction and heart failure,16,17 cardiac rehabilitation is recommended for these patients in the guidelines from the Japanese Circulation Society18 and as part of the standard cardiac rehabilitation program for heart failure from the Japanese Association of Cardiac Rehabilitation Standard Cardiac Rehabilitation Program Planning Committee.19 However, under the health insurance system in Japan, cardiac rehabilitation is limited to 20 weeks after the onset of cardiac diseases. Thus, kurort health walking may be a suitable option for maintaining the health of cardiac patients after they have completed 20 weeks of cardiac rehabilitation. Further investigations are warranted.
Acknowledgment
The authors are grateful for the support of the Health Promotion Section of Gifu Municipal Office, Gifu City, Japan.

Sources of Funding
This study was funded from the Sugiuira Memorial Foundation, Obu City, Aichi, Japan.

Author Contributions
S.M.: organization and design of the study, data interpretation and analysis, manuscript writing, financial support, and final approval of manuscript. T.M., K.N., S.O., S.Y.: data collection and data interpretation. K.O.: data analysis. S.T., M.S., M.O., T.M.: organization of kurort health walking and data collection.

Disclosures
S.M. is a member of Circulation Reports’ Editorial Team. The remaining authors have no conflicts of interest to disclose.

IRB Information
This study was approved by the Ethics Committee of Gifu Municipal Hospital (Approval no. 634).

Data Availability
The deidentified participant data will not be shared.

References
1. Stamler J, Stamler R, Neaton JD. Blood pressure, systolic and diastolic, and cardiovascular risks: US population data. Arch Intern Med 1993; 153: 598–615.
2. Nielsen TJ, Vestergaard M, Christensen B, Christensen KS, Larsen KK. Mental health status and risk of new cardiovascular events or death in patients with myocardial infarction: A population-based cohort study. BMJ Open 2013; 3: e003045.
3. Hata J, Kiyohara Y. Epidemiology of stroke and coronary artery disease in Asia. Circ J 2013; 77: 1923–1932.
4. Guenther K. Exercises in therapy: Neurological gymnastics between Kurort and hospital medicine, 1880–1945. Bull Hist Med 2014; 88: 102–131.
5. Wasserman K, Whipp BJ, Koyl SN, Beaver WL. Anaerobic threshold and respiratory gas exchange during exercise. J Appl Physiol 1973; 35: 236–243.
6. Umemura S, Arima H, Arima S, Asayama K, Dohi Y, Hirooka Y, et al. The Japanese Society of Hypertension guidelines for the management of hypertension (JSH 2019). Hypertens Res 2019; 42: 1235–1481.
7. Ueda H, Machida K, Kawamura N, Koseki N. A study on the process of mood alteration through forest walking. Journal of The Japanese Institute of Landscape Architecture 2013; 76: 533–538.
8. Kiyonaga A, Arakawa K, Tanaka H, Shindo M. Blood pressure and hormonal responses to aerobic exercise. Hypertension 1985; 7: 125–131.
9. Ghadieh AS, Saab B. Evidence for exercise training in the management of hypertension in adults. Can Fam Physician 2015; 61: 233–239.
10. Carpio-Rivera E, Moncada-Jiménez J, Salazar-Rojas W, Solera-Herrera A. Acute effects of exercise on blood pressure: A meta-analytic investigation. Arq Bras Cardiol 2016; 106: 422–433.
11. Whelton SP, Chin A, Xin X, He J. Effect of aerobic exercise on blood pressure: A meta-analysis of randomized, controlled trials. Ann Intern Med 2002; 136: 493–503.
12. Gilani SRM, Feizabad AK. The effects of aerobic exercise training on mental health and self-esteem of type 2 diabetes mellitus patients. Health Psychol Res 2019; 7: 6576.
13. Morres ID, Hatzigeorgiadis A, Stathi A, Comoutos N, Arpin-Cribbie C, Krommidas C, et al. Aerobic exercise for adult patients with major depressive disorder in mental health services: A systematic review and meta-analysis. Depress Anxiety 2019; 36: 39–53.
14. Julien D, Gauvin L, Richard L, Kestens Y, Payette H. The role of social participation and walking in depression among older adults: Results from the VoisiNuAge study. Can J Aging 2013; 32: 1–12.
15. Kannel WB. Some lessons in cardiovascular epidemiology from Framingham. Am J Cardiol 1976; 37: 269–282.
16. Witt BJ, Jacobsen SJ, Weston SA, Killian JM, Meverden RA, Allison TG, et al. Cardiac rehabilitation after myocardial infarction in the community. J Am Coll Cardiol 2004; 44: 988–996.
17. O’Connor CM, Whellan DJ, Lee KL, Keteyian SJ, Cooper LS, Ellis SJ, et al. Efficacy and safety of exercise training in patients with chronic heart failure: HF-ACTION randomized controlled trial. JAMA 2009; 301: 1439–1450.
18. JCS Joint Working Group. Guidelines for rehabilitation in patients with cardiovascular disease (JCS 2012): Digest version. Circ J 2014; 78: 2022–2093.
19. Izawa H, Yoshida T, Ikegame T, Izawa K, Ito Y, Okamura H, et al. Standard cardiac rehabilitation program for heart failure. Circ J 2019; 83: 2394–2398.