GUIDELINES IN FOCUS

Chiari malformation Type I - effect of the section of the filum terminale

Jerônimo Buzetti Milano
Alecio Cristino Evangelista Santos Barcelos
Jefferson Walter Daniel
Andrei Fernandes Joaquim
Fernando Luiz Rolemberg Dantas
Roger Schmidt Brock
Eloy Rusafa Neto
Eduardo de Freitas Bertolini
Marcelo Luis Mudo
Franz Jooji Onishi
Ricardo Santos Oliveira
Ricardo Vieira Botelho

METHODOLOGY FOR EVIDENCE COLLECTION

This guideline followed the standards for a systematic review with evidence collected based on the Evidence-Based Medicine movement. We used the structured method to formulate the question, synthesized by the P.I.O. acronym, in which: P - corresponds to patients diagnosed with Chiari malformation type I; I - section of the filum terminale, O - robust measures of relevant clinical prognosis. The clinical question was: “What is the effect of the section of the filum terminale in the treatment of Chiari malformation type I symptoms?” From this structured question, we identified the descriptors used to search for evidence in the Medline-Pubmed databases. A total of 21 abstracts and titles were considered eligible for analysis, in addition to 10 studies obtained through cross-references. After applying the eligibility criteria (inclusion and exclusion), only two studies were included to answer the structured question (Annex 1).

CLINICAL QUESTION

Does the section of the filum terminale improve the functional prognosis of patients with Chiari malformation type I?

GRADE FOR RECOMMENDATION AND LEVEL OF EVIDENCE

A: Experimental or observational studies of higher consistency.
B: Experimental or observational studies of lower consistency.

Created on: July 2020

1. Sociedade Brasileira de Neurocirurgia, São Paulo, SP, Brasil
E-mail: wmbernardo@usp.br

http://dx.doi.org/10.1590/1806-9282.66.7.1021

The Guidelines Project, an initiative of the Brazilian Medical Association, aims to combine information from the medical field in order to standardize producers to assist the reasoning and decision-making of doctors. The information provided through this project must be assessed and criticized by the physician responsible for the conduct that will be adopted, depending on the conditions and the clinical status of each patient.
OBJECTIVE
This guideline aims to analyze the effect of the section of the filum terminale in the treatment of Chiari malformation type I symptoms.

CONFLICT OF INTEREST
There is no conflict of interest related to this review that can be declared by any of the authors.

INTRODUCTION
Chiari malformation type I (CM) is a congenital dysplasia of the posterior cranial fossa which results in herniations of the cerebellar tonsils through the foramen magnum (Beijani, 2001). The clinical scenario may involve headache, which worsens with the Valsalva maneuver, dizziness, tinnitus, dysphagia, dysphonia, caused by compression of the lower cranial nerves, in addition to the impairment of sensory and motor tracts, which manifests as unbalance, ataxic gait, paresthesias, or paresis. Magnetic resonance imaging (MRI) is the gold standard to confirm the diagnosis, demonstrating the absence of the cisterna magna due to tonsillar herniation (McRae, 1960; Nishikawa, 1997).

The most widely accepted theory to explain the physiopathology of CM is based on the disproportion between the continent, represented by the posterior cranial fossa, delimited by the clivus, the petrous portion of the temporal bone, occipital bone, and cerebellar tentorium, and the content, comprising the cerebellum, brainstem, cranial nerves (III to XII), and vascular structures. Thus, the cerebellar tonsils migrate caudally and impact the foramen magnum, compromising the flow of cerebrospinal fluid between the cranium and spinal canal (Schady W. et al., 1987; Nishikawa M. et al., 1997; Karagöz F. et al., 2002; Milhorat TH. et al., 2010).

The widely accepted treatment of CM is the decompression of the posterior fossa through suboccipital craniectomies, opening the foramen magnum, with or without magnification of the dura mater, associated with resection of the posterior arch of the atlas and, more rarely, of the axis lamina to decompress the cerebellar tonsils and restore the cerebrospinal fluid flow through the foramen magnum (Oliveira et al., 2018; Zhao et al., 2016; Steinmetz et al., 2003).

However, some authors have proposed the theory that the caudal migration of the cerebellar tonsils occurs due to the caudal traction of the spinal cord and, consequently, of the brainstem and cerebellum, resulting in occult tethered cord syndrome (Tubbs et al., 2004; Wehby et al., 2004). Therefore, the section of the filum terminale was proposed as a therapeutic approach for CM. According to the proponents of this theory, this technique, which is already used on the treatment of filum terminale lipomas and other spinal dysraphisms, could improve CM symptoms, with lower risks of complications than the classical technique (Royo-Salvador, 1997; Tubbs et al., 2004; Wehby et al., 2004; Royo-Salvador et al., 2005).

RESULTS OF THE SELECTED EVIDENCE
Does the section of the filum terminale improve the functional prognosis of patients with Chiari malformation type I?

This systematic review was based on two case series published by the same group of authors (Royo-Salvador, 1997; Royo-Salvador et al., 2005). It was not possible to define if the cases of the first study were included in the second. Thus, both studies were evaluated. The methodological qualities of both studies, according to the criteria proposed by MINORS, were low (3 and 4, respectively, considering the 16 points) (Slim et al., 2003). These are retrospective studies with small samples of non-consecutive patients, without a standardized analysis of outcomes, with data collection carried out by the surgical team, with a follow-up time not clearly defined.

Therefore, considering the scientific literature available, it is not possible to determine if the section of the filum terminale improves the functional prognosis of patients with Chiari malformation type I.

SYNTHESIS OF EVIDENCE
The theory that presents occult tethered cord as the genesis of CM, as well as the section of the filum terminale as the treatment for this condition, is controversial (Massimi et al., 2011). In addition, the fact that the classically established treatment for this disease, which consists in the decompression of the posterior fossa, demonstrates clinical outcomes that are satisfactory...
and reproducible in several centers reinforces as the
physiopathology of CM the theory of reduced volume
of the posterior fossa during its formation in the embry-
onic stage (Zhao et al., 2016; Oliveira et al., 2018; Beijani
G, McRae, 1960, Nishikawa et al., 1997, Karagöz F. et
al., 2002, Pang et al., 2011).

The analysis of the 31 excluded studies obtained in
the initial search (21) and from cross-references (10),
resulted in the exclusion of 29. These studies included
patients with a diagnosis of tethered spinal cord or other
spinal dysraphisms, case reports or review studies, in
addition to the studies in which it was not possible to
specify whether the authors treated patients with Chiari
malformation type I or Type II (Millorat et al., 2010).

Both studies included present evidence level 4
(case series of low quality according to the criteria
proposed by Oxford) (available on Http://www.cebm.
net/oxford-centre-evidence-based-medicine-levelsevi-
dence-march-2009; Royo-Salvador, 1997; Royo-Salva-
dor et al., 2005).

RECOMMENDATION

It is not possible to recommend the section of the *filum terminale* in the treatment of Chiari malforma-
tion type I based on the findings of this system-
atic review.

The section of the *filum terminale* for treating
Chiari malformation can be considered an experi-
mental treatment.

ANNEX I

Structured question

P - patients with Chiari malformation type I
I - section of the *filum terminale*
O - robust measures of clinical prognosis

Methodology for Evidence Search

PubMed-Medline

(arnold chiari malformation OR (chiari 1) OR (type
1 chiari)) AND (filum terminal*)

First batch of studies retrieved: 25 titles of original
studies

Studies retrieved

The evidence used was retrieved by the following
steps: elaboration of the clinical question, structuring
of the question, search for evidence, presentation of
results, and recommendations.

We reviewed articles from the MEDLINE (PubMed)
databases, with no time limit.

The studies retrieved during the search were
initially evaluated based on their titles, then their
abstracts, and, finally, the studies selected were evalu-
ated in full. Two authors were responsible for the
independent evaluation of the results and all disagree-
ments were resolved through discussions between
them (JWD and FO). Cross-references obtained from
the primary articles were evaluated.

The search was conducted on 1st January 2019 and
21 papers were obtained, in addition to 10 obtained
through cross-references, which had their abstracts
evaluated. Of this total of 31 papers, 13 were excluded
because their content was not related to the object of
study or they were case reports (Figure 1). Among the
18 papers evaluated in full, 16 were excluded for vari-
ous reasons (Table 1). Only two studies were included
for the final analysis.

Inclusion criteria

1. According to study designs

The search primarily targeted randomized clinical
trials; in their absence, non-randomized clinical trials,
controlled comparative studies, and, finally, a case
series, successively.

2. Language

We included articles in English, Spanish,
and Portuguese.

3. According to publication

Only studies with texts available in its entirety
were considered for critical evaluation.

Method for critical evaluation

For the review protocol, the PRISMA flowchart
(REF) was used to describe the flow of tracking, eli-
gibility, and final selection of papers (Figure 1).

Extraction of results

The results extracted are described in Annex II
and the recommendations were drawn based on their
discussion according to the Oxford grade for recom-
mandation (REF).

Quality assessment

The methodological quality was assessed with the
aid of the MINORS (Methodological Items for Non-Ran-
domized Studies) instrument; Slim et al., 2003).
APPENDIX II

FIGURE 1. FLOWCHART OF THE SEARCH MECHANISM ACCORDING TO THE PRISMA RECOMMENDATIONS FOR SYSTEMATIC REVIEWS (SLIM ET AL., 2003; MOHER ET AL., 2009). PRISMA 2009 FLOW DIAGRAM

TABLE 1. EXTRACTION OF DATA ON THE SECTION OF THE FILUM TERMINALE FOR TREATING CHIARI MALFORMATION TYPE I

Study/ Type of study	Patients	Follow-up/ Prognosis*	Conclusion
Royo-Salvador, et al./ 1997/ Case series	N = 5		
Scoliosis 1 (20%); Syringomyelia 2 (40%); Chiari type I 1 (20%), Associated 1 (20%)			
Mean age: 33.8 years	Improvement in 5 patients (100%)		
Follo-up not informe	SFT is a useful strategy in the treatment of scoliosis, syringomyelia, and Chiari malformation type I		
Royo-Salvador, et al./ 2005/ Case series	N = 20		
Scoliosis 8 (40%); Syringomyelia 5 (25%), Chiari type I 2 (10%), Associated 5 (25%)
Mean age: 33.5 years | Improvement in 9 (45%), Without improvement in 7 (35%), Unknown in 4 (20%)
Follow-up of 4 months to 11 years (mean 4.8 years) | SFT is a useful strategy in the treatment of scoliosis, syringomyelia, and Chiari malformation type I |

*only intervention carried out; there was no control group for comparison
TABLE 2. MINORS (METHODOLOGICAL ITEMS FOR NON-RANDOMIZED STUDIES) OF THE PAPERS INCLUDED IN THIS SYSTEMATIC REVIEW (SLIM ET AL., 2003)

Study / Items	Royo-Salvador (1997)	Items Score	Royo-Salvador (2005)	Items Score
Objective clearly established	Yes. The objective was to report (evaluate) the results of cases operated with a surgical technique (an intervention)	2	Yes. The objective was to report (evaluate) the results of cases operated with a surgical technique (an intervention)	2
Consecutive inclusion of patients	No. Non-consecutive patients	0	No. Non-consecutive patients	0
Prospective data collection	No. Retrospective collection	0	No. Retrospective collection	0
Appropriate outcomes for the objective of the study	No. The author described the clinical improvements of each patient, without standardization of data collection	0	No. The author described the percentages of clinical improvement for each patient, without standardization of data collection	1
Unbiased analysis of the study outcome	No. Although it was not described, it is suggested that the surgical team collected the data	0	No. Although it was not described, it is suggested that the surgical team collected the data	0
Appropriate follow-up time for the objective of the study	Uncertain. There is no description of long-term follow-up.	1	Uncertain. Patients operated between 1993 and 2013. Table 1 suggests that the formal outcomes were collected in September and October 2014.	1
Prospective calculation of study sample size	No. This is a case series with a small sample of patients. Only patients 3 and 4 were suggestive of or compatible with Chiari malformation type I	0	No. This is a case series with a small sample of patients. Only patients 4, 5, and 11 had Chiari malformation type I	0
Total score	3'		4'	

*The maximum MINORS score for non-randomized studies is 16 points. Therefore, the methodological quality of both studies selected is low.

REFERENCES

1. Bejani GK. Definition of the adult Chiari malformation: a brief historical overview. Neurosurg Focus. 2001 Jul;15(1):E1. Review.
2. McRae DL. The significance of abnormalities of the cervical spine. Caldwell lecture 1959. Am J Roentgenol. 1960;84:3-25.
3. Nishikawa M, Sakamoto H, Hakuba A, Nakanishi N, Inoue Y. Pathogenesis of Chiari malformation: a morphometric study of the posterior cranial fossa. J Neurosurg. 1997;86(1):40-7.
4. Schady W, Metcalfe RA, Butler P. The incidence of craniovascular bony anomalies in the adult Chiari malformation. J Neurol Sci. 1987;82(1-3):193-203.
5. Karagöz F, Izi N, Kapıc𝕚 jóğlu Sencer S. Morphometric measurements of the cranium in patients with Chiari type I malformation and comparison with the normal population. Acta Neurochir (Wien). 2002;144(2):165-71.
6. Milhorat TH, Nishikawa M, Kula RW, Dlugacz YD. Mechanisms of cerebellar tonsill herniation in patients with Chiari malformations as guide to clinical management. Acta Neurochir (Wien). 2010;152(7):1117-27.
7. de Oliveira Sousa U, de Oliveira MF, Herreing LC, Barcelos ACES, Botelho RV. The effect of posterior fossa decompression in adult Chiari malformation and basilar invagination: a systematic review and meta-analysis. Neurosurg Rev. 2018 Jan;41(1):311-321. doi: 10.1007/s10143-017-0857-5.
8. Zhao L, Li MH, Wang CL, Meng W. A Systematic Review of Chiari I Malformation: Techniques and Outcomes. World Neurosurg. 2016 Apr;88:7-14.
9. Steinmetz MP, Benzal EC. Surgical Management of Chiari Malformation. Neurosurgery Quarterly. 13(2):105—112 2003.
10. Tubbs RS, Oakes WJ. (2004) Can the conus medullaris in normal position be tethered? Neurol Res 26:727–731.
11. Welbey MC, O’Hollaren PS, Alston K, Hume J, Richards B. Occult tight filum terminale syndrome: results of surgical untethering. Pediatr Neurosurg. 2004 Mar-Apr;40(2):51-7, discussion 58.
12. Royo-Salvador MB. A new surgical treatment for syringomyelia, scoliosis, Arnold-Chiari malformation, kinking of the brainstem, odontoid recess, idiopathic basilar impression and platybasia. Rev Neurol. 1997 Apr;25(140):523-30.
13. Royo-Salvador MB, Solé-Llenas J, Doménech JM, González-Adrio R. Results of the section of the filum terminale in 20 patients with syringomyelia, scoliosis and Chiari malformation. Acta Neurochir (Wien). 2005 May;147(5):515-23.
14. Slim K, Nini E, Foretter D, Kwiatkowski F, Panis Y, Chipponi J. Methodological index for non-randomized studies (minors): development and validation of a new instrument. ANZ J Surg. 2003 Sep;73(9):712-6.
15. Massimi L, Peraio S, Peppucci E, Tamburrini G, Di Rocco C. Section of the filum terminale: is it worthwhile in Chiari type I malformation? Neurol Sci (2011) 32 (Suppl 3):S349—S351.
16. Pang D, Thompson DN. Embryology and bony malformations of the cranio-vertebral junction. Childs Nerv Syst 2011;27:523—564.
17. Levels of Evidence and Grades of Recommendations - Oxford Centre of Evidence-Based Medicine. Available at: http://www.cebm.net/oxford-centre-evidence-based-medicine-levels-evidence-march-2009/. Accessed September, 2017.
18. Milhorat TH, Bobgnesa PA, Nishikawa M, Francornano CA, McDonnell NB, Roorpraup C, Kula RW. Association of Chiari malformation type I and tethered cord syndrome: preliminary results of sectioning filum terminale. Surg Neurol. 2009 Jul;72(1):20-35. doi: 10.1016/j.surneu.2009.03.008.