Evaluation and validation of a prediction model for extubation success in very preterm infants

Rebecca A. Dryer1,2, Anand Salem1,3, Vivek Saroha1,3, Rachel G. Greenberg4,5, Matthew A. Rysavy6,7, Sanjay Chawla8 and Ravi M. Patel5,10

© The Author(s), under exclusive licence to Springer Nature America, Inc. 2022

OBJECTIVE: To perform an external validation of a publicly available model predicting extubation success in very preterm infants. STUDY DESIGN: Retrospective study of infants born <1250 g at a single center. Model performance evaluated using the area under the receiver operating characteristic curve (AUROC) and comparing observed and expected probabilities of extubation success, defined as survival ≥5 d without an endotracheal tube.

RESULTS: Of 177 infants, 120 (68%) were extubated successfully. The median (IQR) gestational age was 27 weeks (25–28) and weight at extubation was 915 g (755–1050). The model had acceptable discrimination (AUROC 0.72 [95% CI 0.65–0.80]) and adequate calibration (calibration slope 0.96, intercept -0.06, mean observed-to-expected difference in probability of extubation success −0.08 [95% CI −0.01, −0.15]).

CONCLUSIONS: The extubation success prediction model has acceptable performance in an external cohort. Additional prospective studies are needed to determine if the model can be improved or how it can be used for clinical benefit.

Journal of Perinatology (2022) 42:1674–1679; https://doi.org/10.1038/s41372-022-01517-z

INTRODUCTION

Invasive mechanical ventilation in very preterm infants is associated with adverse outcomes such as bronchopulmonary dysplasia (BPD) and neurodevelopmental impairment [1]. Reducing the duration of invasive mechanical ventilation by early extubation may reduce these risks, but extubation failure is associated with an increased risk of BPD, death and intracranial hemorrhage [2, 3].

Recently, a model to estimate the probability of successful extubation in very preterm infants was developed [3] and made available online at www.extubation.net. The model includes six variables associated with extubation success: gestational age at birth, chronological age at extubation, weight at extubation, pre-extubation blood gas pH, pre-extubation FiO2, and highest respiratory severity score (RSS) in the first 6 h of age. The area under the receiver operating characteristic curve (AUROC) for the model was 0.77 in the development cohort. However, the performance of the model in an external cohort of infants undergoing a clinically-indicated extubation attempt is unknown.

We aimed to assess the performance of the extubation success prediction model in a cohort of infants in which extubation was attempted at an academic U.S. neonatal intensive care unit (NICU). Additionally, we aimed to evaluate the performance of alternative prediction models and examine differences in characteristics and outcomes between infants with extubation success, compared to failure. Our goal is to guide the development of future tools that may inform decisions about extubation for very preterm infants.

METHODS

Study design

We conducted a retrospective observational study that included intubated infants with a birth weight <1250 g admitted from 8/1/08 to 7/31/17 at Emory University Hospital Midtown in Atlanta, Georgia, with initial extubation occurring within 60 days of birth. These criteria were used to match the selection criteria of the cohort in which the model was derived [3]. Infants with first extubation after 60 postnatal days, prior extubation, a first extubation that was unplanned, or with data missing for the extubation model or outcome were excluded. The study was approved by the Emory University Institutional Review Board with a waiver of informed consent and was performed in accordance with the Declaration of Helsinki. The TRIPOD Checklist for Prediction Model Validation was used to ensure transparent reporting of findings [4] (Supplementary Table 1).

Predictors and outcome

Data were collected on the six predictors in the extubation success calculator: gestational age at birth, chronological age at extubation, weight at extubation, pre-extubation FiO2, pre-extubation pH (closest to extubation, regardless of timing), and the highest respiratory severity score (RSS) in the first six hours of age. RSS was calculated as the product of the mean airway pressure and FiO2. Additional data available on infant and maternal demographics, surfactant and caffeine exposure, and several aspects of pre- and post- extubation ventilatory support were collected. Extubation success was defined as survival for ≥5 days without an endotracheal tube, consistent with the derivation cohort [3]. BPD was graded according to severity using published criteria [5]. Retinopathy of prematurity receiving treatment was defined as receipt of laser or intravitreal anti-VEGF therapy. Severe intraventricular hemorrhage, defined as grade 3 or 4, and periventricular leukomalacia were ascertained based on

1Emory University School of Medicine, Atlanta, GA, USA. 2Johns Hopkins University School of Medicine, Baltimore, MD, USA. 3Children’s Healthcare of Atlanta, Atlanta, GA, USA. 4Duke University School of Medicine, Durham, NC, USA. 5Duke Clinical Research Institute, Durham, NC, USA. 6University of Iowa, Iowa City, IA, USA. 7University of Texas Health Science Center at Houston, Houston, TX, USA. 8Children’s Hospital of Michigan, Central Michigan University, Mt Pleasant, MI, USA. 9Email: rmpatel@emory.edu

Received: 10 September 2021 Revised: 6 September 2022 Accepted: 8 September 2022

Published online: 24 September 2022
ultrasound reports by a pediatric radiologist. Necrotizing enterocolitis was defined as modified Bell Stage IIA or greater. No blinding of predictor or outcome assessment was performed.

Statistical methods

The sample size was pragmatic with an intent to have at least 10 outcome events per parameter in the extubation model. No imputation for missing data was performed. To assess model performance, we generated probabilities of extubation success using the parameters from the published extubation success calculator, available at www.extubation.net. Next, we generated receiver operating characteristic curves using predicted probabilities and calculated the AUROC as a measure of model discrimination for extubation success. We also calculated calibration plots to compare predicted vs. observed probabilities of extubation success by deciles of predicted probability [6, 7]. Within each decile, the observed proportion of infants with extubation success and corresponding 95% binomial confidence intervals were reportable. The calibration plot included a fitted linear model slope and intercept. In addition, we estimated the observed-to-expected mean difference in extubation success.

To determine how model parameters compared from the original published extubation success calculator to our cohort, we recalibrated the Gupta et al. logistic regression model for our cohort and compared odds ratios of extubation success from the initial derivation cohort to the one generated from this validation cohort. Subsequently, we evaluated how a more parsimonious model or expanded model changed discrimination, by comparing the AUROC among different models that removed variables with odds ratio estimates that were different from the derivation cohort (Reduced model) or included variables that were different at a $P < 0.10$ between extubation success groups that were not in the original model (Expanded model). Because chorioamnionitis was added as a descriptive characteristic after the initial analysis and ascertainment of clinical chorioamnionitis can be subjective, this was not included as a variable in the Expanded model. We also included the evaluation of a recently published two-variable model by Kidman et al. that included gestational age at birth and pre-extubation mean arterial pressure (MAP) [8], as well as gestational age only, given the strong prognostic influence of gestational age on neonatal outcomes and the goal to determine the incremental prognostic value of the other variables in the calculator. For comparisons of AUROC across models, we only reported results generated from the validation study cohort, which was paired with statistical comparisons between models using the likelihood ratio test as described below. Additionally, we evaluated for the presence of possible interaction between gestational age and postnatal age using interaction terms in our model, which could be considered a combined indicator of the postmenstrual maturity of an infant. We compared the -2 Log likelihood of the Gupta et al. model to other models that had a nested structure (gestational age-only, Reduced and Expanded model) using likelihood ratio tests, which considers differences in the degrees of freedom (number of variables) of the different models. Because pre-extubation MAP was not in the Gupta et al. model, we did not perform a direct comparison with the Kidman et al. model. As an alternative, we compared the Kidman et al. model to the Expanded model, which did contain pre-extubation MAP.

To explore optimal cut-offs of predicted probability of extubation success considering both sensitivity and specificity, Youden’s J [9] and Euclidean distance to the point of predicted probability were used. Youden’s J values can indicate the point of predicted probability of extubation success where equal weight is given to sensitivity and specificity, with the highest value reflective of a probability threshold that could potentially be used for informed decision making. Characteristics between infants with extubation success and failure were compared using chi-square or Fisher’s exact test for categorical variables, independent sample t-tests for means and Wilcoxon rank-sum tests for medians. The mean probability of extubation success at time of extubation was compared by severity of BPD using linear regression, with and without adjustment for gestational age, to determine the independent association of extubation success probability after accounting for gestational age. All other outcome comparisons were unadjusted, to only account for potential differences after considering random variation, and were not intended for causal inference. Analyses were performed using SPSS version 27 (IBM) and GraphPad Prism 8. A two-sided $P < 0.05$ was considered statistically significant.

RESULTS

Among a total of 182 infants meeting inclusion criteria, we had complete data for the extubation prediction model in 177 infants, of which 120 (68%) had extubation success (Supplementary Fig. 1). Infants who failed extubation had a lower birth weight and gestational age ($P < 0.001$, Table 1). In addition, a diagnosis of clinical chorioamnionitis was more common among infants who failed extubation ($P = 0.01$). There were no significant differences in maternal race, infant sex, multiple gestation, mode of delivery, APgar score at 1 and 5 min, highest MAP and FiO$_2$ in the first 12 h of age, receipt of surfactant within 2 h of age, or RSS in the first 6 h of age by extubation success groups (Table 1).

Model validation

The AUROC of the primary 6 variable model was 0.72 (95% CI 0.65–0.80, Fig. 1). A linear fit line of the calibration plot had a slope of 0.96, y-intercept of –0.06 and R^2 of 0.81 (Fig. 1). The mean observed-to-expected difference in probability of extubation success was –0.08 (95% CI –0.01, –0.15). Exploring cut-points of extubation success considering both specificity and sensitivity, the highest Youden’s J and lowest Euclidean distance were at a predicted probability of extubation success of 0.80 (sensitivity of 0.63, specificity of 0.74) (Supplementary Table 2 and Supplementary Fig. 2). Infants with a predicted probability of extubation success of >0.80 had an 83% incidence of first-attempt extubation success, compared to 52% for infants with a predicted probability of extubation success ≤0.80.

Model modification

When the original model was derived again in our validation cohort dataset using the six variables in the original extubation success calculator, the AUROC was 0.759 (Fig. 2). There was no evidence of statistical interaction between gestational age and postnatal age ($P = 0.80$). After removal of RSS as a predictor, the AUROC was 0.744. After expanding the model by adding birth weight, pre-extubation MAP, receipt of peri-extubation steroids and caffeine, the AUROC was 0.787. The AUROC of a gestational-age only model was 0.712 and of a recently published two-variable model based only on gestational age and MAP was 0.721. Statistical comparisons of the various models are reported in the legend of Fig. 2.

Comparison of factors between derivation and validation cohort

Odds ratio estimates were similar among the validation cohort and the derivation cohort, with the exception of RSS in the first 6 h of age, which showed differing directions in risk estimates between the two cohorts (Supplementary Fig. 3). Selected characteristics of both cohorts are shown in Supplementary Table 3.

Peri-extubation characteristics

Infants that failed extubation weighed less at the time of extubation ($P = 0.002$, Table 2), and received a higher FiO$_2$ ($P < 0.001$), had a lower blood gas pH ($P = 0.003$), higher MAP ($P = 0.02$) and an earlier postnatal age at extubation ($P = 0.02$). There was no significant difference in the interval in hours between the pre-extubation blood gas and time of extubation between groups ($P = 0.55$). Infants who failed extubation were more likely to receive peri-extubation steroids ($P = 0.009$). There was no significant difference between the groups in receipt of caffeine prior to extubation ($P = 0.06$).

Clinical outcomes

Infants who failed extubation had an increased severity of BPD or death ($P < 0.001$, Table 3). In addition, among infants with extubation attempts prior to 36 weeks’ postmenstrual age, the probability of extubation success at first extubation attempt was inversely correlated with the severity of BPD (Supplementary Fig. 4). Infants who failed extubation had a longer length of stay ($P = 0.003$), longer duration of ventilation ($P < 0.001$), were more
likely to receive postnatal steroids ($P < 0.001$). Other outcomes are shown in Table 3.

DISCUSSION

The extubation prediction model in our validation cohort had an AUROC of 0.72, compared to an AUROC of 0.77 in the previously published derivation cohort [3]. By convention, an AUROC of 0.5 is non-informative, 0.7 to 0.8 is considered acceptable, 0.8–0.9 is considered excellent and more than 0.9 is considered outstanding, although this depends on the clinical context [10, 11]. Based on these categorizations, both the Gupta et al. study [3] and the results from our validation study demonstrate acceptable model performance in determining extubation success among infants undergoing a clinically-determined extubation attempt. Based on the calibration data, the model slightly underestimated extubation success on average in our cohort (8% lower than expected), but the calibration slope and intercept supported acceptable calibration.

In our study, 68% of very preterm infants were successfully extubated on initial attempt and those that failed extubation had a higher severity of BPD. By comparison, extubation success in the Gupta et al. [3] study was 73%. Notably, the association between the highest RSS in the first 6 h of life and extubation success differed between the two cohorts. This may reflect differences in early respiratory care, including surfactant administration and approaches to mechanical ventilation, which may influence RSS. Because this variable is included in the original model, we assessed the impact of its removal and found only a small reduction in model discrimination.

We defined extubation success as survival without an endotracheal tube for 5 days to be consistent with the definition used in the original study by Gupta et al. [1, 3]. Other definitions of extubation success exist, with a 3–7 days duration of observation being most common and rates of extubation success varying based on definition [12]. All of the infants in this study received caffeine, although some received caffeine after extubation. In addition, some received peri-extubation steroids. Inclusion of these factors into an expanded model suggested they might slightly improve model performance, although the association between these factors and extubation success may not be generalizable to other centers. A recent study reported that a two-factor model that included gestational age and mean airway pressure predicted extubation success with an AUROC of 0.77 [8].

Table 1. Baseline characteristics.

Baseline characteristics	Extubation failure ($n = 57$)	Extubation success ($n = 120$)	P
Gestational age, mean weeks ± SD	25.8 ± 1.6	27.2 ± 1.9	<0.001
Gestational age group			0.001
22 to <25 weeks	19 (33.3%)	18 (15.0%)	
25 to <28 weeks	30 (52.6%)	55 (45.8%)	
28 to <31 weeks	8 (14.0%)	47 (39.2%)	
Birth weight, mean ± SD	773 ± 172	917 ± 205	<0.001
Multiple gestation	18 (31.6%)	31 (25.8%)	0.43
Mode of delivery			0.16
Vaginal	15 (26.3%)	31 (25.8%)	
Routine cesarean	20 (35.1%)	58 (48.3%)	
Emergent cesarean	22 (38.6%)	31 (25.8%)	
Sex			0.56
Male	34 (59.6%)	66 (55.0%)	
Female	23 (40.4%)	54 (45.0%)	
Race/ethnicity*			0.18
Black	45 (78.9%)	94 (79.7%)	
White	8 (14.0%)	16 (13.6%)	
Hispanic	2 (3.5%)	0	
Other	2 (3.5%)	8 (6.8%)	
Documentation of maternal ...	11 (19.3%)	8 (6.7%)	0.01
Receipt of antenatal steroids			0.32
None	8 (14.0%)	25 (21.2%)	
Partial	10 (17.5%)	13 (11.0%)	
Complete	39 (68.3%)	80 (67.8%)	
1 min Apgar score, median (IQR)	3 (2–5)	3 (2–5)	0.88
5 min Apgar score, median (IQR)	7 (5–8)	7 (5–8)	0.67
Age at caffeine initiation, median (IQR) in hours since birth	13 (5–24)	14 (5–24)	0.86
Early surfactant within 2h of birth	18 (31.6%)	35 (29.2%)	0.74
Highest RSS in first 6h of birth, mean ± SD	2.5 ± 1.6	2.7 ± 2.0	0.56
Highest FiO2 in first 12h of birth, median (IQR)	0.35 (0.27–0.50)	0.40 (0.28–0.50)	0.51
Highest MAP in first 12h of birth, median cm H2O (IQR)	8.5 (7.5–9.0)	8.1 (7.0–9.4)	0.54

SD standard deviation, IQR interquartile range, RSS respiratory severity score, FiO2 fraction of inspired oxygen, MAP mean airway pressure.

Missing data for race on 2 infants (both in extubation success group).
This two-variable model in our cohort had an AUROC of 0.72, although this was based on rederivation using the corresponding variables and not the model equation from the Kidman et al. study. Therefore, these two AUROCs may not be directly comparable. In both this study and the study by Kidman et al. [8], pre-extubation MAP was associated with extubation success. By contrast, the study by Gupta et al. [3] reported no association with pre-extubation MAP and extubation success. In addition, we found an association between peri-extubation corticosteroid use and extubation success, which was not observed in the study by Kidman et al. [8]. These differences may be due to differences in practices among centers, and highlight the importance of external validation of predictive models used in clinical practice. Additional studies of model performance of this and other extubation readiness models are needed in other cohorts of similar infants in order to determine which factors might be universally associated with extubation readiness and which factors are impacted by local center practices. It would be useful to assess the association with RSS within 6 h of birth and extubation success in additional studies, given the differences observed between the original Gupta et al. [3] study and this study. In order to make the calculator easier to use, a reduced model without RSS may be more practical and not sacrifice model performance. Additional model inputs such as pre-extubation pH may also be influenced by center practices with regards to pH tolerance or targets. The severity of BPD or death was associated with a lower predicted probability of extubation success in our cohort, even after adjustment for gestational age. This may be reflective of the correlation between other factors in the model, aside from gestational age, and the severity of BPD. These findings are consistent with the association between extubation failure and BPD reported in prior studies [3,8]. However, other factors associated with both BPD and extubation success may either confound or explain the observed association.

Additional studies are needed to determine how use of the extubation success calculator may improve outcomes, including what specific thresholds might inform extubation decisions by clinicians. Because all Youden’s J values were <0.5, this may indicate limitations of using specific probability thresholds generated by the model to guide decisions regarding extubation. Furthermore, we believe additional study is needed before routine clinical use of this model, given the potential unintended consequences of delaying extubation based on a clinician’s interpretation of model results that could prolong invasive mechanical ventilation. Additionally, the extubation prediction model could be useful to evaluate heterogeneity in treatment effect [13] of interventions to improve extubation success [14].

There are some limitations to our study. Our findings may not be generalizable to infants that weigh >1250 grams at birth, have previously been extubated, have an unplanned extubation, or are extubated after 60 postnatal days. In addition, this study’s generalizability may be limited in settings with standardized extubation criteria, which were not in place in this study setting. Additionally, over 90% of infants in our study received any dose of caffeine within 24 h before extubation, and the association between pre-extubation caffeine use and extubation success may differ for centers with more variable caffeine use. Furthermore, differences in outcomes among infants who had extubation success, compared to extubation failure, may be explained by many factors, including confounders that were not accounted for in our study. For example, infants with extubation failure had a higher frequency of non-invasive positive pressure ventilation immediately following extubation, which could indicate that a clinician had a high concern for the potential for extubation failure. Additionally, any peri-extubation systemic corticosteroids exposure, which is not routine practice at the study center, was more common among infants who failed extubation. This might
reflect a higher clinician concern for extubation failure related to airway edema or related airway issues. Importantly, our goals were not causal inference on the association between extubation success and clinical outcomes, but a focus on the external validation of the prediction model, and differences reported in outcomes should be viewed accordingly.

In conclusion, a publicly available prediction model for first-attempt extubation success in very preterm infants demonstrated

Table 2. Peri-extubation characteristics.
Estimated extubation success probability, mean ± SD
Postnatal age at extubation, days, median (IQR)
Weight at extubation, grams, mean ± SD
FiO2 before extubation, median (IQR)
Pre-extubation pH, mean ± SD
Interval between pre-extubation blood gas and extubation, hours, median (IQR)
Any peri-extubation systemic corticosteroidsa
Caffeine before extubation
Caffeine dose before extubation, mg/kg/day, median (IQR)
Mean airway pressure immediately prior to extubation, mean ± SD
Type of respiratory support immediately post extubation
SJIPA
nCPAP
HFNC (≥2 L/min)
LFNC (<2 L/min)
RA
SD standard deviation, IQR interquartile range, FiO2 fraction of inspired oxygen, MAP mean airway pressure, PEEP positive end expiratory pressure, NIPPV non-invasive positive pressure ventilation, nCPAP nasal continuous positive airway pressure, HFNC high flow nasal cannula, LFNC low flow nasal cannula, RA room air. Values are n (%) unless otherwise indicated. aReceipt on the day of extubation. bAdministered through a RAM or Optiflow nasal prong interface. cBi-level positive airway pressure.

Table 3. Outcomes of infants by initial extubation failure or success.
Outcome
BPD Grade (Jensen criteria) or deatha
Length of stay, days, median (IQR)
Total duration of mechanical ventilation, days, median (IQR)
Number of endotracheal mechanical ventilation courses
1
2
3
4
Postnatal systemic corticosteroidsc
Retinopathy of prematurity receiving treatment
Severe intraventricular hemorrhage (grade 3 or 4)
Periventricular leukomalacia
Necrotizing enterocolitis (Bell stage II or greater)

aEvaluated among 53 infants with extubation failure and 115 with extubation success. bNo statistical comparisons performed because groups were defined by need for reintubation. cThree infants enrolled in a blinded, randomized trial of hydrocortisone vs. placebo treatment were excluded.
acceptable performance in this external cohort of infants, supporting its potential utility in clinical practice. Additional studies are needed to further refine the model and to determine if its use can improve outcomes.

DATA AVAILABILITY
The corresponding author can be contacted for source data.

REFERENCES
1. Walsh MC, Morris BH, Wragg LA, Vohr BR, Poole WK, Tyson JE, et al. Extremely low birthweight neonates with protracted ventilation: mortality and 18-month neurodevelopmental outcomes. J Pediatr. 2005;146:798–804.
2. Chawla S, Natarajan G, Shankaran S, Carper B, Brion LP, Keszler M, et al. Markers of successful extubation in extremely preterm infants, and morbidity after failed extubation. J Pediatr. 2017;189:113–9.e2.
3. Gupta D, Greenberg RG, Sharma A, Natarajan G, Cotten M, Thomas R, et al. A predictive model for extubation readiness in extremely preterm infants. J Perinatol. 2019;39:1663–9.
4. Collins GS, Reitsma JB, Altman DG, Moons KG. Transparent reporting of a multivariable prediction model for individual prognosis or diagnosis (TRIPOD): the TRIPOD statement. BMJ 2015;350:g7594.
5. Jensen EA, Dysart K, Gantz MG, McDonald S, Bamat NA, Keszler M, et al. The diagnosis of bronchopulmonary dysplasia in very preterm infants: an evidence-based approach. Am J Respir Crit Care Med. 2019;200:751–9.
6. Alba AC, Agoritsas T, Walsh M, Hanna S, Iorio A, Devereaux PJ, et al. Discrimination and calibration of clinical prediction models: users’ guides to the medical literature. JAMA 2017;318:1377–84.
7. Altman DG, Vergouwe Y, Royston P, Moons KG. Prognosis and prognostic research: validating a prognostic model. BMJ 2009;338:b605.
8. Kidman AM, Manley BJ, Boland RA, Davis PG, Bhatia R. Predictors and outcomes of extubation failure in extremely preterm infants. J Paediatr Child Health. 2021;57:913–9.
9. Perkins NJ, Schisterman EF. The Youden Index and the optimal cut-point corrected for measurement error. Biom J. 2005;47:428–41.
10. Swets JA. Measuring the accuracy of diagnostic systems. Science. 1988;240: 1285–93.
11. Mandrekar JN. Receiver operating characteristic curve in diagnostic test assessment. J Thorac Oncol. 2010;5:1315–6.

AUTHOR CONTRIBUTIONS
BD conceived of and designed the study, acquired data and drafted the manuscript, AS and VS acquired data and critically revised the manuscript for important intellectual content, RG, MR, and SC guided analyses and interpretation of data and critically revised the manuscript for important intellectual content and RP conceived of and designed the study, analyzed the data, drafted the manuscript and provided study supervision.

COMPETING INTERESTS
The authors declare no competing interests.

ADDITIONAL INFORMATION
Supplementary information The online version contains supplementary material available at https://doi.org/10.1038/s41372-022-01517-z.

Correspondence and requests for materials should be addressed to Ravi M. Patel.

Reprints and permission information is available at http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.