An Overview: Some Medicinal Plants as Aphrodisiac Agents

Vidhya A. Mali*, Misbah A. Chanda2, Dr. Padma L. Ladda3, Dr. Nilofar S. Naikwade4, Dr. Sanaulla A. Tamboli 5

*1, 2 M. Pharm Student, Appasaheb Birnale College of Pharmacy, Sangli, India
3 Associate Professor, Department of Pharmacology, Appasaheb Birnale College of Pharmacy, Sangli, India.
4 Professor & HOD Department of Pharmacology, Appasaheb Birnale College of Pharmacy, Sangli, India.
5 Principal, Appasaheb Birnale College of Pharmacy, Sangli, India.
*Corresponding author’s E-mail: vidyamali441@gmail.com

Received: 10-04-2022; Revised: 24-06-2022; Accepted: 02-07-2022; Published on: 15-07-2022.

ABSTRACT

Aphrodisiacs are foods or beverages that increase sexual arousal in those who consume them. Substances that improve libido (i.e., sexual desire, arousal), substances that promote sexual potency (i.e., erection effectiveness), and substances that increase sexual pleasure are the three types of aphrodisiacs. Quality of life is influenced by sexual health and function. Various natural aphrodisiac plants potentials are favoured to overcome the problem of male sexual (or) erectile dysfunction. This overview discusses the aphrodisiac potential of plants, including their botanical names, families, parts used, and isolated substances, as well as the mechanisms of aphrodisiac activity and references was tabulated to aid researchers in the production of new herbal products.

Keywords: Aphrodisiac, Sexual dysfunction, Medicinal plants, penile erection.

INTRODUCTION

S

exual activity is widely acknowledged as an essential component of a balanced and healthy lifestyle and well-being in humans, improved sexual conduct may lead to improved relationships, contentment and self-esteem1. Apart from that, they’ve signified a man’s desire, as sexual potency has long been regarded as an important part of the male ego in all cultures, worry and humiliation are commonly linked to deteriorating sexual aptitude. sexual dysfunction, in particular erectile dysfunction is a serious medical condition.

Erectile dysfunction is characterised as the inability to obtain and retain sufficient erection for naturally satisfying intercourse on a regular basis2. Psychological, neurological, hormonal, and vascular pathologies, as well as some diseases, disorders, and their treatment through medication induction, are all causes of this form of impotency2. The growth in human life expectancy has increased the need for drugs that can provide this quality of longevity. Sexual Dysfunction can be treated in a variety of ways. Products that improve sexual performance, alleviate impotence, or treat Erectile Dysfunction are among them. The Ayurvedic school of medicine treats sexual inefficiencies and deficits with a particular therapy called Rasayana therapy. In debility, especially as people get older, a class of Rasayana medications known as ‘Vrishya’ or ‘Vajikaran Rasayana’ has been recommended4. Aphrodisiacs for ED, infertility causts, spermatogenesis, semenogenesis, and reproduction procedures for rectifying faulty semen are a sexual satisfaction are all included in Vajikarna therapy5.

PATHOPHYSIOLOGY

Sexual stimuli like auditory, olfactory, visual, tactile pathways, dreams and emotions like psychogenic stimuli influences penile erection 4. Penile innervations are autonomic and somatic. In autonomic nervous system, penile innervation is mediated by cavernous nerves that originate from pelvic plexus5. Cavernous nerves are unique because they neither release acetylcholine not the nor epinephrine. Non-adrenergic non-cholinergic fibers (NANC) have Nitric oxide as neurotransmitter 3. Triggering of cavernous nerves causes penile erection while adrenergic and somatic nerves are responsible for ejaculation.

For normal rigid erection: a) Sympathetic nerves inhibit nor epinephrine release, b) Parasympathetic nerves release nitric oxide and acetylcholine, c) Somatic nerves release acetylcholine. Central and peripheral mechanism of action of erectile function: cyclic guanosine monophosphate, cyclic adenosine monophosphate, protein kinases and potassium channels.
Figure 1: Possible mode of action of aphrodisiac bioactive principles in male rats.

Figure 2: Causes of sexual dysfunction
a) Cyclic guanosine monophosphate (cGMP):
The nitric oxide synthase enzyme is triggered in response to sexual stimulation allowing nitric oxide to be released from parasympathetic nerve endings, in the smooth muscle cells of the corpora cavernosa of penis. Nitric oxide activates soluble guanylate cyclase in the vascular and neurological tissue, guanylate cyclase is an isoenzyme which produces cyclic guanylyl monophosphate as the second messenger.

Cyclic guanosine monophosphate (cGMP) stimulates cGMP-dependent protein kinase (cGKI) and to lesser extent, protein kinase A. Protein kinase A and activated cGKI phosphorylate phospholamban which inhibits calcium pump as result level of free cytoplasmic calcium is reduced, resulting in relaxation of smooth muscle cells around penis, increased flux of blood into penile tissue, results in penile erection. This cGMP is degraded by Phosphodiesterase enzyme (PDE).

b) Cyclic Adenosine monophosphate (cAMP):
Cyclic Adenosine monophosphate has role in corporal smooth muscle relaxation in body. The activated membrane bound Adenyl cyclase, generates cAMP, activates calcium pump, consequently level of free cytoplasmic calcium is reduced resulting in relaxation of smooth muscle.

c) Protein kinase:

Protein kinase stimulates cell membrane calcium pump, resulting in fall Protein kinase in sarcoplasmic calcium concentration, which causes loss of penile smooth muscle contractile tone and increase in blood flow in cavernous body, causes erection.

d) Potassium channels:
Opening of potassium channels through cyclic nucleotides induces relaxation of smooth muscle cells. Opening of potassium channels leads to efflux of K+ from smooth muscle cell, results in hyperpolarization and inhibitory effect on trans membrane Ca2+ flux and finally relaxation of smooth muscle.

Table 1: List of plants having aphrodisiac potential activity

Sr. No.	Plant Name and Family	Part Used	Chemical constituents	Uses /Activity	Probable mechanism of action	Reference
1	Allium sativum Amaryllidaceae	Bulb	Sulfur compounds, peptides, steroids, terpenoids, flavonoids, and phenols are the main phytochemicals isolated from bulb of this plant.	Antioxidant, anti-bacterial, anti-fungal, anti-diabetic.	Increase in sexual behavior.	9,10.
2	Allium tuberosum Alliaceae	seed	Steroidal saponins, alkaloids, amides and sulphur containing compounds have been reported from the seeds of this plant.	Antibacterial, anti-emetic.	Improvement in sexual performance in sexually active and inactive rats.	11,12
3	Anacardium occidentale	Seed oil	Saponins, alkaloids, flavonoids, steroids, phenols, glycosides, volatile oils and terpenoids have been reported from seed oil	Antioxidant, anti-bacterial, anticancer, anti-inflammatory.	Increase in MF and IF, and decrease in ML. The oil showed no toxicity at given doses	13,14
4	Algeria nervosa Convolvulaceae	root, flower and leaf	Alkaloids, glycosides, flavonoid glycosides and steroids are reported from flowers of this plant	Aphrodisiac, nerve tonic	Stimulation in mounting behaviour in concentration dependent manner	15,16
5	Asparagus racemases Asparagaceae	Roots	Saponins, carbohydrates, glycosides and mucilage’s have been reported from root	Antidiabetic immunomodulatory activities, anti-diarrheal, antiulcer	Increase in number of mounts and mating performance. Showed increase in weight of reproductive organs, PE and MF indicating improvement in sexual behaviour	17,18,19
6	Butea frondose Fabaceae	Bark	hydrocarbons (eicosane), triterpenes (8-amyrin), sterols (camp sterol and sitosterol), flavonoids (vicenin II, vitexin chrysosbery 7-O-8-D-glucuronic acid 6, 8-di-crammosyl apigenin and luteolin,) and lauric, myristic, palmitic, linoleic and linolenic acids	Diuretic, anthelmintic rubefacient, aphrodisiac	Improvement in sexual performance in sexually active and inactive male rats.	20,21
7	Blepharis edulis	Root	Hydroxamate and benoxazolone, 4'-Odiglycoside of decarboxyrosmaniric form root	Anti-diabetic, anti-hyperlipidemic	Significant and sustained increase in level of testosterone.	22,23,24
8	Bryonia laciniosa	seeds	-	Constipation, anti-diabetes,	Significant improvement in MF, IF, IL, increase in reproductive organ weight	25,26
No.	Plant Name	Part	Secondary Metabolites	Medicinal Activity	Significant Increase in:	
-----	------------------------------------	------------	--	---	--	
9	Chenopodium album Amananthaceae	seeds	Phenolic glycoside, chenoalbuside have been reported from the root alcoholic extract of this plant	Antibacterial activity, spasmolytic, antimicrobial, anthelminthic activity, sperm immobilizing agent	MF, IF EL, LH	
10	Chlorophyllum borivilianum Lilaceae	Root	Fatty acids, sterol stigmastanol and saponin	Aphrodisiac activity, antistress, anti-oxidant, antimicrobial	MI, EL, IL, Testosterone	
11	Crocus sativus Iridaceae	stigma	crocin, crocetin, safranal and picrocrocin	Antimicrobial, anti-oxidant, antidepressant	MF, IF, EF, MI, IL, EI	
12	Curculigo orchoids Amaryllidaceae	rhizome	triterpenoids (curculicol) [60,64], glycosides (curculin 0.1 A, B, C) [61], curculigosaponin (curculigenin A, B, C) [62] and alkaloids (yuccagenin, lycorin)	Aphrodisiac activity, anti-convulsant, androgenic activity	MI, EL, Testosterone	
13	Catha edulis celsebrae	leaf		Antimicrobial, anti-oxidant	Increase in plasma testosterone levels by more than 2 folds	
14	Casimiroa edulis Rutaceae	seeds and leaves	Imidazolonic derivatives (dimethylhistamine, methylhistamine) and flavonoid glycoside (camisimoidine, rutin) are reported	Anti-tumor, activity, anti-inflammatory, antioxidant	Increase in MF, IF, PEI	
15	Caesalpinia benthamiana fabaceae	root	Phenolic compounds (gallic acid, resveratrol, tannin) and cassane diterpenoids, (benthaminin 1 and 2)	Vasoactivity, antioxidant, aphrodisiac property.	Significantly increase in MF, IF, PEI	
16	Dactylorhiza hatagirea Orchidaceae	root	Dactylorhins A, B, C, D, E and dactyloses (A and B) are reported	Anti-septic, antioxidant, anticancer, antimicrobial	Highly significant increase in seminal fructose levels and sperm count	
17	Ferula harmonis Apliaceae	seeds	Sesquiterpenes coumarins and sesquiterpenes (ferutinone, feroline and tenuferidine)	Anti-osteoporosis, anti-inflammatory, anti-microbial, anti-fungal		
18	Fadogia agrestis (Rubiaceae)	stem	Alkaloids, saponins, anthrquinones and flavonoids	Anti-bacterial, ameliorative activity agent, anti-plasmodial	Increases blood testosterone level	
19	Lyceum barbarum Solanaceae	fruit	scopoletin, beta-sitosterol, plicumaric acid, glucose, daucosterol and betaine	Anti-oxidant, abdominal pain, infertility, headache	Significantly increased tests and epididymis weight, superoxide dismutase activity and sexual hormone levels in the damaged rat testes	
20	Montanoa tementosa Asteraceae	whole plant	Sesquiterpenes lactones tokomexanthin and oxeapone diterpene	Antifertility activity in women	increase in sexual behavior, increase in mounting behavior	
21	Mucuna puriens Fabaceae	seeds	alkaloids, glycosides, terpenoids, saponins, tannins	Aphrodisiac, nerve tonic, anti-parkinson	Showed significant increase in MF, IF and PE and decreased the MI, PEI and inter intromission interval	
22	Panax ginseng Araliaceae	root	Ginsenosides, saponins	Anti-diabetic, anti-tumor, anti-oxidation	Enhanced nitric oxide synthesis [110] resulting in relaxation of corpus cavernosum in penis and	

©Copyright protected. Unauthorised republication, reproduction, distribution, dissemination and copying of this document in whole or in part is strictly prohibited.
No.	Species	Part(s)	Chemical Constituents	Biological Activity
23	Pedalium murex	whole plant	Flavonoids (pedalidin, diosmetin, dinatin) from leaves and flowers, and \(\text{hepatic}^{\text{4}}\)-one, tetrahydropaphanol, octacosane.	Anti-microbial, insecticidal activity, antioxidant. Increased penile rigidity and grth.
24	Ruta chalepensis	leaves, aerial parts	Alkaloids, flavonoids, coumarins, tannins, volatile oil, sterols and triterpenes	Abortifacient, analgesic, antihelmintic. Significant improvement in weight of gonads, accessory sex organs and semen quality without affecting the metabolic functions.
25	Passiflora incarnate	leaves	N-allylamides, N-isobutylamides 1, 2-methylbutylamid and 1, 2-phenylethylamide	Anti-inflammatory, aphrodisiac effect. Positive effect on general mating pattern, penile erection and serum sex hormone levels.
26	Spilanthes acmella	flower	Flavonoids (acacetin 7-O-rhamnose, 7-O-β-D-glucosyl-2-O-(3-acetylarabinoisosyl)	Anti-inflammatory, aphrodisiac activity. Exhibit significant aphrodisiac activity.
27	Turnera aphrodisiaca	seeds	Cyanoglucoside (132), flavonoid [133] and phenolic glycosides	Aphrodisiac, abortive, expectorant. Increasing mounting behaviour.
28	Tinospora cordifolia	Stem	Alkaloids, carbohydrates, glycosides, sterols, proteins, saponins, gums and mucilages, diterpenoid lactones, glycosides, steroids, sesquiterpenoids, phenolics, aliphatic compounds and polysaccharides	Anti-diabetics, antioxidant, anti-inflammatory. Significant increase in number of mounts and mating performance.
29	Trichophyton zeylanicus	leaves	Flavonoids, terpenoids, saccharides, phenolics, and cyanogenic derivatives, luteolin B-C-E-propenoic acid	Anti-microbial, antioxidant, anti-inflammatory. Significant increase in percentage of male achieving one ejaculatory series and resuming a second one, in sexually exhausted male rats.
30	Tricholepis glaberrima	aerial parts	-	Anti-microbial, antioxidant, antifungal, aphrodisiac. Significant increase in number of mounts and mating performance.
31	Vanda tessellata orchidaceae	flowers	Terpenoid (ocimene, linalool oxde, linalool, and neralol), benzenoid, phenylpropanoid, methylbenzoate, benzyl acetate, phenylethanol, and phenylethyl acetate	Anti-inflammatory, aphrodisiac. Increase mating performance, and showed increase in male-female ratio of resulting offspring.
Seven new withanolide glycosides called withanosides I, II, III, IV, V, VI, and VII were isolated from an Indian natural medicine, Ashwagandha, the roots of Indian Withania somnifera, together with four known compounds, withaferin A, 5α,20α(R)-diol-hydroxy-6α,7αepoxy-1-oxowitha-2,24-dienolide, physagulin D, and coagulin Q. Antioxidant, anti-stress, anti-tumor. Resulted in a decrease in stress, improved the level of antioxidants and improved overall semen quality. 101,102

REFERENCES

1. Kotta S, Ansari SH, Ali J. Exploring scientifically proven herbal aphrodisiacs. Pharmacogn Rev. 2013 Jan;7(13):1-10. doi: 10.4103/0973-7847.112832. PMID: 23922450; PMCID: PMC371873.

2. Singh, R, Singh,S, Jeyabalan,G, Ali,A, An Overview on Traditional Medicinal Plants as Aphrodisiac Agent, Journal of Pharmacognosy and Phytochemistry, 2012;1(4):43-56.

3. Goel,B, Maurya,N, Aphrodisiac Herbal therapy for Erectile Dysfunction, Archives of Pharmacy Practice, 2020;11(1):1-7.

4. Singh,R, Ali,A, G. Jeyabalan, Semwal,A, Current status of Indian medicinal plants with aphrodisiac potential, Journal of Acute Disease, 2013:13-21.

5. Dean RC, Lee TF. Physiology of penile erection and pathophysiology of erectile dysfunction. Urol Clin North Am. 2005 Nov;32(4):379-95, v. doi: 10.1016/j.ucin.2005.08.007. PMID: 16291031; PMCID: PMC1351051.

6. Semwal,A, kumar,R, singh,R, Nature’s Aphrodisiacs - A Review of Current Scientific Literature, International Journal of Recent Advances in Pharmaceutical Research, 2013; 3(2): 1-20.

7. Singh,R, Singh,R, G. Jeyabalan, Ali,A, Semwal,A, Sexual Dysfunction: An Overview and Medicinal Plant used for treatment of Sexual dysfunction, Critical Review in Pharmaceutical Sciences, 2012; 1(2): 9-24.

8. Singh,R, Ali, A, Gupta,G, Semwal,A, G. Jeyabalan, Some medicinal plants with aphrodisiac potential: A current status, Journal of Acute Disease, 2013:179-188.

9. Mullaicharam AR, Karthikeyan B, Umamaheswari R. Aphrodisiac property of Allium sativum Linn extract in male rat. Hamdard Medicus. 2004;47:30-35.

10. Agarwal KC. Therapeutic actions of garlic constituents. Med Res Rev. 1996 Jan;16(1):111-24. doi: 10.1002/(SICI)1098-1128(199601)16:1<111:AID-MEDR3>3.0.CO;2-5. PMID: 8788216.

11. Guohua H, Yanhua L, Rengang M, Donghi W, Zhenghi M, Hua Z. Aphrodisiac properties of Allium tuberosum seeds extract. J Ethnopharmacol. 2009 Apr 21;122(3):579-82. doi: 10.1016/j.jep.2009.01.018. Epub 2009 Feb 7. PMID: 19429330.

12. Hostettmann, K, Marston A, Wolfender JL (1995). Strategy in the search for new biologically active plant constituents, in: Hostettmann K, Marston A, Maillard M, Hamburger M, eds, Phytochemistry of Plants Used in Traditional Medicine. Proceedings of the Phytochemical Society of Europe Oxford, Oxford Science Publications.pp.18-45.

13. Mbatchovu VC, Kossoono I. Aphrodisiac activity of oils from Anacardium occidentale L. Nuts. Botany Research International. 2009;2(4):253-257.

14. Kannan VR, Sumathi CS, Balasubramanian V, Ramesh N. Elementary Profiling and Antifungal Properties of Cashew (Anacardium occidentale L.) Nuts. Botany Research International. 2009;2(4):253-257.

15. Subramoniam A, Madhavachandran V, Ravi K, Anuja VS. Aphrodisiac property of the elephant creeper Argyreia nervosa. J Endocrinol Reprod. 2007; 2:82-85.

16. Ashish J, Modi SS, Khadayadi UA, Deokate IA, Faraooqi SL, Deore S, et al. Argyreia speciosa Linn Phytochemistry, pharmacognosy and pharmacological studies. J Pharmacol and Phytoth. 2010; 2:34-42.

17. Thakur M, Bhargava S, Dixi VK. Effect of Asparagus racemosus on sexual dysfunction in hyperglycemic male rats. Pharm Bioll. 2009; 47:390-395. DOI:10.1080/13880200902755234.

18. Wani, JA, Rajeshwara N, Achur RK, Nema RA. Phytochemical Screening and Aphrodisiac Property of Tinospora cordifolia. Int J Pharma Clin Res. 2011; 3:21-26.

19. Kumar MC, Udupa AL, Sammodavardhana K, Rathnakar UP, Shvetsha U, Kodancha GP. Acute toxicity and diuretic studies of the roots of Asparagus racemosus Willd in rats. West Ind Med J. 2010; 59:3-6.

20. Ramachandran S, Sridhar Y, Kishore G, Sam S, Saravanam M, Thomas LJ, et al. Aphrodisiac activity of Butea frondosa Koen ex Roxb extract in male rats. Phytomed. 2004; 11:165-168.

21. Hefnawy MS, Mohamed DA, Khamis NE, Afifi AH, Mabry TJ. Phytochemical and biological studies of Butea frondosa roxb. Leaves growing in Egypt. Pharmacognosy. 1984; 22:201-210.

22. SY, Tsai HL, Mau JL. Antioxidant properties of Agracis blaezi, Agrocybe cylindracea, and Boletus edulis. Food Science and Technology. 2007;40(8):1392-1402.

23. Chatterjee A, Sharma NJ, Bangerji, Basa SC. Studies on anactheaceae- benzoazolone from Blepharis edulis Pers. Ind J of Chem. 1990;29:132-134.

24. Afifi AT. A novel 4’-O-diglycoside of decarboxy rosmarinic acid from Blepharis eulalis. Pharma Bio. 2003; 41:487-490.

25. Chauhan, NS, Dixit VK. Effects of Bryonia laciniosa seeds on sexual behavior of male rats. Int J of Impotence Res. 2010; 22:190-195.

26. Reddy J, Vijay GD, Ranganathan TV. In vitro studies on anti-asthmatic, analgesic and anti-convulsivant activities of the medicinal plant Bryonia laciniosa linn. Int J Drug Discovery. 2010; 2:1-10.

27. Pande M, Pathak TM. Sexual function improving effect of Chenopodium album (Bathua sag) in normal male mice. Biomed Pharmacol J. 2008; 1:325-332.

28. Horio TK, Yoshida K, Kikuchi H, Kawabata J, Mizutani J. A Phenolic amide from roots of Chenopodium album. Phytochem. 1993; 33:807-808.

29. Nahar SD, Sarker A. Chenoalbuside: an antioxidant phenolic glycoside from the seeds of Chenopodium album L (Chenopodiaceae). Braz J of Pharmacol. 2005; 15:279-282.

30. Thakur M, Chauhan NS, Bhargava S, Dixit VK. A comparative study on aphrodisiac activity of some Ayurvedic herbs Albinor rats. Arch Sex Behav. 2009b; 38:1009-1015.

31. Sharada L, Deore, Somshekhar SK. Isolation and characterization of phytoconstituents from Chlorophyllum borivilianum. Pharmacog Res. 2010; 2:343-349.

32. Acharya D, Mitaine-Offera AC, Kaushik N, Miyamotoc T, Paululatd T, Marie-Aleth LD. Furostate type steroidal saponis from the roots of Chlorophyllum Borivilianum Helvetica 2262. Chimica Acta. 2008; 91:211-222.

33. Hosseinzadeh H, Ziaee T, Sadeghi A. The effect of saffron, Crocus sativus stigma, extract and its constituents, safranal and crocin on sexual behaviors in normal male rats. Phytomed. 2008; 15:491-49.

34. Arantilis PA, Tsoupras G, Polissiou M. Determination of saffron (Crocus sativus L) components in crude plant extract using high-performance liquid chromatography-UV-visible photodiode-array detection-mass spectrometry. J Chromatograph. 1995; 699:107-118. DOI: 10.1016/0021-9673(95)00044-n; PMID: 7757208.

35. Escrabo J, Alonso GL, Coca-Prados M, Fernandez JA. Crocin, safranal and picrocrocin from saffron (Crocus sativus L) inhibit the growth of human
cancer cells in vitro. Cancer Lett. 1996; 100:23-30. DOI: 10.1016/0304-3835(95)00467-6; PMID: 8620447.

36. Lozano P, Delgado D, Gomez D, Rubio M, Iborra JL. A non-destructive method to determine the safranal content of saffron (Crocus sativus L) by supercritical carbon dioxide extraction combined with high-performance liquid chromatography and gas chromatography. J Biochem Biophys Methods. 2000; 43:367-378. DOI: 10.1016/s1056-022x(00)00090-7; PMID: 10869688.

37. Bisset NG, Wichtl M. (2001). Salviae officinalis folium Herbal Drugs and Phytopharmaceuticals, A Handbook for Practice on a Scientific Basis with Reference to German Commission E Monographs. 2nd ed. Medpharm Stuttgart.pp. 440-443.

38. Thakur M, Thompson D, Connellan P, Deseo MA, Morris C, Dixit VK. Improvement of penile erection, sperm count and seminal fructose levels in vivo and nitric oxide release in vitro by ayurvedic herbs. Andrologia. 2011; 43:273-7. DOI: 10.1111/j.1439-0272.2010. 01068;x; PMID: 21486409.

39. Chauhan NS, Rao CV, Dixit VK. Effect of Curcullio orchioides rhizoids on sexual behaviour of male rats. Fitoterapia. 2007; 78:530-534. DOI: 10.1016/j.fitote.2007.06.005; PMID: 17643866.

40. Thakur M, Chauhan NS, Sharma V, Dixit VK, Bhargava S. Effect of Curculio orchioides on hyperglycemia-induced oligospermia and sexual dysfunction in male rats. Intern J of Impotence Res. 2012; 24:31-37. DOI: 10.1038/jir.2011.43; PMID: 21918533.

41. Asif M, Kumar A. Acute Toxicity Study and In-vivo Anti-inflammatory Activity of Different Fractions of Curculio orchioides Gaertn Rhizome in Albino Wistar Rats. Iranian J of Pharmaceucal Sci. 2010; 6:91-198.

42. Garg SN, Misha LN. Corchioso and Orcinol Glycoside from Curculio orchioides. Phytochem. 1989; 28:1771-2.

43. Rao KVR, Ali N, Reddy NM. (1978). Occurrence of both Sapogenin and Alkolid Lycorine in Curculio orchioides. Ind J Pharm Sci.pp.104-105.

44. Kubo M, Nakanishi K. A New Phenolic Glucoside, Curculioside from rhizomes of Curculio orchioides. Planta Med. 1983; 47:52-5. DOI: 10.1055/s-1997-969949; PMID: 17405094.

45. Mehata BK, Dubey A. 4-Acetyl-2-methoxy-5-methyltriacetone, a New Aliphatic Long-Chain Methoxyketone from Curculio orchioides Roots. Indian J Chem. 1983; 22:282-3.

46. Mehata BK, Gawarikar A. Characterization of Novel Triterpenoid from Curculio orchioides. Indian J Chem. 1991; 30:986-9.

47. Al-Zubairi AS, Ismail P, PeiPei C, Abdul AB, Ali RS, Wahab ASI. Short-term repeated dose biochemical effects of Catha edulis (Khat) crude extract administration in rats. Int J Trop Med. 2008; 3:19-25.

48. Al-Meshal IA, Qureshi S, Ageel AM, Tariq M. The toxicity of Catha edulis (khat) in mice. J Subst Abuse. 1991; 3:107-15. DOI: 10.1006/sop9-3289(05)00011-2; PMID: 16879695.

49. Ali ST, Rakhaa NI. Probable neuro sexual mode of action of Casimiroa edulis seed extract verses sildenafil citrate (Viagra tm) on mating behavior in normal male rats. Pak J Pharm Sci. 2008; 21:1-6. PMID: 18166510.

50. Romero ML, Escobar LI, Lozoya X, Enriquez RG. High-performance liquid chromatographic study of casimiroa edulis: I Determination of imidazole derivatives and rutin in aqueous and organic extracts. J of Chromatogr. 1983; 281:245-251.

51. Zamble A, Martin-Nizard F, Sahapz S, Hennebelle T, Staelis B, Bordet R. Vasoactivity, antioxidant and aphrodisiac properties of Caesalpinia benthamiana roots. J Ethnopharmacol. 2008; 116:112-119. DOI: 10.1016/j.jep.2007.11.016; PMID: 18164568.

52. Dickinson RA, Houghton PJ, Hylands PJ. Antibacterial and antioxidant cassane diterpenoids from Caesalpinia benthamiana. Phytochemistry. 2007;68(10):1436-1441.

53. Rita AD, Peter JH, Peter JH. Antibacterial and antioxidant cassane diterpenoids from Caesalpinia benthamiana. Phytochemistry. 2007; 68:1436-1441. DOI: 10.1016/j.phytochem.2007.03.008; PMID: 17418286.

54. Thakur M, Thompson D, Connellan P, Deseo MA, Morris C, Dixit VK. Improvement of penile erection, sperm count and seminal fructose levels in vivo and nitric oxide release in vitro by ayurvedic herbs. Andrologia. 2011; 43:273-7. DOI: 10.1111/j.1439-0272.2010. 01068;x; PMID: 21486409.
agent. Tenth Radiation Physics and Protection Conference. 2010;4(1):27-30.

76. Dhawan K, Kumar S, Sharma A. Aphrodisiac activity of methanol extract of leaves of Passiflora incarnata Linn in mice. Phytother Res. 2003 Apr;17(4):401-3. doi: 10.1002/ptr.1124. PMID: 12722149.

77. Anita SP. Exploring Passiflora incarnata (L): A medicinal plants secondary metabolites as antioxidant agent. J Med Plants Res. 2006; 4:1496-1501.

78. Li QM, van den Heuvel H, Delorenzo O, Corthout J, Pieters LA, Vlie tenck AJ, Claes M. Mass spectral characterization of C-glycosidic flavonoids isolated from a medicinal plant (Passiflora incarnata). J Chromatogr. 1991 Jan 2;562(1-2):435-46. doi: 10.1016/0378-4347(91)80597-6. PMID: 2026709.

79. Abdullah A, Qarawi A. Stimulatory effect of the aqueous extract of Ruta chalepensis on the sex organs and hormones of male rats. J Appl Res. 2005; 5:206.

80. Gonzalez-Trujano ME, Carrera D, Ventura-Martínez R, Cidililo-Portugal E, Navarrete A. Neuropharmacological profile of an ethanol extract of Ruta chalepensis L. in mice. J Ethnopharmacol. 2006 Jun 15;106(1):129-35. doi: 10.1016/j.jep.2005.12.014. Epub 2006 Jan 26. PMID: 16442764.

81. al-Said MS, Tarir M, al-Yahya MA, Rafatullah S, Ginnawi OT, Ageel AM. Studies on Ruta chalepensis, an ancient medicinal herb still used in traditional medicine. J Ethnopharmacol. 1999 Mar;28(3):305-12. doi: 10.1016/S0378-8741(99)00081-4. PMID: 2335958.

82. Sharma V, Boonen J, Chauhan NS, Thakur M, De Spiegeleer B, Dixit VK. Spilanthes acmella ethanolic flower extract: LC-MS alkylamide profiling and its effects on sexual behavior in male rats. Phytomedicine. 2011 Oct 15;18(13):1161-9. doi: 10.1016/j.phymed.2011.06.001. Epub 2011 Jul 16. PMID: 21757328.

83. Mishra RK, Singh SK. Safety assessment of Syzygium aromaticum flower bud (clove) extract with respect to testicular function in mice. Food Chem Toxicol. 2008 Oct;46(10):3333-8. doi: 10.1016/j.fct.2008.08.006. Epub 2008 Aug 15. PMID: 18765266.

84. Nassar IM, Gaara AH, El-Ghorab AH, Abdel-Razik HF, Shen H, Huq E, et al. Chemical Constituents of Clove (Syzygium aromaticum, fam Myrtaceae) and their antioxidant activity. Rev Latinoamer Quim. 2007; 35:41-50.

85. Kumar S, Madaan R, Sharma A. Evaluation of Aphrodisiac Activity of Turneria aphrodisiaca. Intern J of Pharmacog and Phytochem Res. 2009; 1:1-4.

86. Suresh K, Subramoniam A, Pushpangadan P. Aphrodisiac Activity of Vanda tessellata (Roxb) Hook Ex Don Extract in Male Mice. Ind J Pharmacol. 2000; 32:300-304.

87. Spencer KC, Seigler DS. Cyanogetic Glycosides of Carica papaya and its Phylogenetic Position with Respect to the Violales and Capparales. American J of Bot. 1981; 71:1444-1447.

88. Domínguez XA, Hinojosa M. Mexican medicinal plants. XXVII. Isolation of 5-hydroxy-7,3',4'-trimethoxy-flavone from Turneria diffusa. Planta Med. 1976 Aug;30(1):68-71. PMID: 959393.

89. Auterhoff H, Häufel HP. Inhaltsstoffe der Damiana-Droge [Contents of Damiana drugs]. Arch Pharm Ber Dtsch Pharm Ges. 1968 Jul;301(7):537-44. German. doi: 10.1002/ardp.19683010710. PMID: 5249996.

90. Wani, JA, Rajeshwara N, Achur RK, Nema RA. Phytochemical Screening and Aphrodisiac Property of Tinospora cordifolia. Int J Pharm Clin Res. 2011; 3:21-26.

91. Dixit SN, Khosa RL. Chemical investigation on Tinospora cordifolia. Ind J of App Chem. 1971; 34:46-47.

92. Hanuman JB, Bhatt RK, Sabata BK. A clerodane furano-diterpene from Tinospora cordifolia. J Nat Prod. 1988;51(2):197.

93. Maurya R, Handa SS. Tinocordifolin, a sesquiterpene from Tinospora cordifolia. Phytochem. 1989; 49:11343-6.

94. Estrada-Reyes R, Ortiz-López P, Gutiérrez-Ortíz J, Martínez-Mota L. Turneria diffusa Wild (Turneraceae) recovers sexual behavior in sexually exhausted males. J Ethnopharmacol. 2009 Jun 25;123(3):423-9. doi: 10.1016/j.jep.2009.03.032. Epub 2009 Mar 31. PMID: 19501274.

95. Andreia G, Bezerra R, Fulvio MRT, Carlini EA. Effects of a hydroalcoholic extract of T fistifusa in tests for adaptogenic activity. Bra J Pharmacol. 2011; 21:121-127.

96. Zhao J, Pawar RS, Ali Z, Khan IA. Phytochemical investigation of Turneria diffusa. J Nat Prod. 2007 Feb;70(2):289-92. doi: 10.1021/np060253r. Epub 2007 Feb 7. PMID: 17284070.

97. Padashetty SA, Mishra SH. Aphrodisiac studies of Tricholepis glaberrima with supportive action from antioxidant enzymes. Pharm Biol. 2007; 45:580-586.

98. Subramoniam A, Madhavachandran V, Rajasekharan S, Pushpangadan P. Aphrodisiac property of Trichopus zeylanicus extract in male mice. J Ethnopharmacol. 1999 Jul;67(1):21-7. doi: 10.1016/S0378-8741(97)00040-8. PMID: 9234161.

99. Chacko S, Sethuraman MG, Gorge V, Pushpangadan P. Phytochemical constituent of Trichopus zeylanicus. J Med and Aromatic Plant Sci. 2002; 24:703-706.

100. Suresh K, Subramoniam A, Pushpangadan P. Aphrodisiac Activity of Vanda tessellata (Roxb) Hook Ex Don Extract in Male Mice. Ind J Pharmacol. 2000; 32:300-304.

101. Abbas AM, Kamla K, Mohammad KA, Singh R, Satya NS, Singh V, et al. Withania somnifera Improves Semen Quality in Stress-Related Male Fertility. Evidence-Based Complementary and Alternative Medicine. 2011; 2011:9. doi: 10.1093/ecam/nep138; PMID: 19789214.

102. Matsuda H, Murakami T, Kishi A, Yoshikawa M. Structures of withanosides I, II, III, IV, V, VI, and VII, new withanolide glycosides, from the roots of Indian Withania somnifera DUNAL and inhibitory activity for tachyphylaxis to clonidine in isolated guinea-pig ileum. Bioorganic & Medicinal Chemistry. 2001;9(6):1499-1507. DOI: 10.1016/s0968-0896(01)00024-4; PMID: 11408168.

Source of Support: The author(s) received no financial support for the research, authorship, and/or publication of this article.

Conflict of Interest: The author(s) declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.

For any question relates to this article, please reach us at: globalresearchonline@rediffmail.com
New manuscripts for publication can be submitted at: submit@globalresearchonline.net and submit_ijpsrr@rediffmail.com