Polycyclic Aromatic Hydrocarbons Phenanthrene and Retene Modify the Action Potential via Multiple Ion Currents in Rainbow Trout *Oncorhynchus mykiss* Cardiac Myocytes

Eeva-Riikka Vehniäinen, a,* Jaakko Haverinen, b and Matti Vornanen b

aDepartment of Biological and Environmental Sciences, University of Jyväskylä, Jyväskylä, Finland

bDepartment of Environmental and Biological Sciences, University of Eastern Finland, Joensuu, Finland

Abstract: Polycyclic aromatic hydrocarbons (PAHs) are ubiquitous contaminants in aqueous environments. They affect cardiovascular development and function in fishes. The 3-ring PAH phenanthrene has recently been shown to impair cardiac excitation–contraction coupling by inhibiting Ca$^{2+}$ and K$^{+}$ currents in marine warm-water scombrid fishes. To see if similar events take place in a boreal freshwater fish, we studied whether the PAHs phenanthrene and retene (an alkylated phenanthrene) modify the action potential (AP) via effects on Na$^{+}$ (I_{Na}), Ca$^{2+}$ (I_{CaL}), or K$^{+}$ (I_{K}, I_{K1}) currents in the ventricular myocytes of the rainbow trout (*Oncorhynchus mykiss*) heart. Electrophysiological characteristics of myocytes were measured using whole-cell patch clamp. Micromolar concentrations of phenanthrene and retene modiﬁed the shape of the ventricular AP, and retene profoundly shortened the AP at low micromolar concentrations. Both PAHs increased I_{Na} and reduced I_{CaL} and I_{K}, but retene was more potent. Neither of the PAHs had an effect on I_{K1}. Our results show that phenanthrene and retene affect cardiac function in rainbow trout by a mechanism that involves multiple cardiac ion channels, and the final outcome of these changes (shortening of AP) is opposite to that observed in scombrid fishes (prolongation of AP). The results also show that retene and aryl hydrocarbon receptor (AhR) agonist have an additional mechanism of toxicity besides the previously known AhR-mediated, transcription-dependent one. Environ Toxicol Chem 2019;38:2145–2153. © 2019 SETAC

Keywords: Aquatic toxicology; Cardiotoxicity; Mode of action; Polycyclic aromatic hydrocarbons

INTRODUCTION

Polycyclic aromatic hydrocarbons (PAHs) are ubiquitous contaminants that occur as complex mixtures in aquatic environments. They originate from petrogenic or pyrogenic sources, and they enter the waters via atmospheric deposition, oil accidents, municipal and industrial efﬂuents, and urban runoff. Individual PAHs as well as PAH mixtures (such as oil) affect the development and function of the heart in several fish species (Billiard et al. 1999; Incardona et al. 2004, 2006, 2009, 2011, 2014; Dubansky et al. 2013; Brette et al. 2017; Raine et al. 2017).

Phenanthrene and retene (1-methyl-7-isopropyl phenanthrene) are 3-ring PAHs. Phenanthrene is common in both petrogenic and pyrogenic mixtures of PAHs, and it causes reversible bradycardia and atrioventricular conduction block in zebrafish (*Danio rerio*) and a slight increase in heart rate and reduction of circulation in marine medaka (*Oryzias melastigma*; Incardona et al. 2004; Mu et al. 2014; Sun et al. 2015; Cypher et al. 2017). In Pacific bluefin tuna (*Thunnis orientalis*), phenanthrene affects the cardiac action potential (AP) and ion currents (Brette et al. 2017). Retene is an alkylated phenanthrene, and it has been found in sediments downstream from pulp and paper mills, in landﬁlls, and in oil sand–produced water (Leppanen and Oikari 1999a, 1999b; Legler et al. 2011; Cheng et al. 2018). Retene is an aryl hydrocarbon receptor (AhR) agonist, and it activates the AhR and causes changes in the transcription of several genes, leading to developmental defects in the cardiovascular system (Billiard et al. 1999; Scott et al. 2011; Vehniäinen et al. 2016).

Contraction of the vertebrate heart is triggered by cardiac AP, which originates from the primary pacemaker center at the border zone between the sinus venosus and the atrium (Yamauchi and Burnstock 1968; Haverinen and Vornanen 2007). From there AP spreads throughout the atrium and via the atrioventricular canal further to the ventricular wall, thereby triggering sequential contractions of atrium and ventricle.
Aquaria at a rate of 150 to 200 L/04.10.07.

...ion with compressed air. Groundwater (average pH 8.0,\textsuperscript{(Sedmera et al. 2003). Cardiac AP is generated by the complex interaction between several voltage-gated ion currents in the sarcolemma of cardiac myocytes. In fish ventricular myocytes, there are 2 major inward currents, the fast Na+ current (I\textsubscript{Na}) and L-type Ca2+ current (IC\textsubscript{aL}; long-lasting), and 2 major outward K+ currents, the fast component of the delayed rectifier K+ current (IK\textsubscript{r}) and the background inward rectifier K+ current (IK\textsubscript{1}; Vornanen 2016). Besides these major ion currents, fish ventricular myocytes may have T-type Ca2+ current (IC\textsubscript{aT}; transient) and the slow component of the delayed rectifier K+ current (IK\textsubscript{s}; Nemtsas et al. 2010; Hassanen et al. 2011; Abramochkin et al. 2018; Haverinen et al. 2018a). The shape of the cardiac AP is dependent on the antagonistic effects of INa and IK1 on membrane potential and an important factor in uninterrupted propagation of cardiac AP (Varghese 2016; Vornanen 2016). The aim of the present study was to investigate if phenanthrene and retene modulate the 4 major ion currents of the rainbow trout (Oncorhynchus mykiss) ventricle, which could reveal novel toxic effects of these PAHs on the fish heart.

MATERIAL AND METHODS

Animals

Hatchery-reared rainbow trout (Oncorhynchus mykiss; 73.43 ± 11.69 g, n = 18) were obtained from the local fish farm (Kontiolahti, Finland). In the animal facilities of the University of Eastern Finland, the trout were maintained in 500-L metal aquaria for a minimum of 3 wk before use in the experiments and fed aquarium fish food (Ewos) at least 5 times a week. Water temperature was regulated at 14 ± 0.5 °C (Computec Technologies), and oxygen saturation was maintained by aeration with compressed air. Groundwater (average pH 8.0, conductivity 13 µS/cm) was constantly flowing through the aquaria at a rate of 150 to 200 L/d (permission E5AV12832/04.10.07/2015).

Myocyte isolation

All experiments were conducted in vitro on enzymatically isolated ventricular myocytes. Fish were killed by a cranial concussion and pithing, and the heart was rapidly excised. Ventricular myocytes were isolated using retrograde perfusion of the heart and the standard concentrations of hydrolytic enzymes as reported for the method developed in our laboratory (Vornanen 1997). Cell isolation was conducted at room temperature (20–22 °C). Isolated myocytes were used in the experiments within 10 h from isolation.

Whole-cell patch clamp

Whole-cell current-clamp recordings were made by using an Axopatch 1D amplifier (Axon Instruments). Clampex 9.2 software was used for data acquisition, and off-line analysis of the recordings was done using the Clampfit 10.4 software package. During the experiments, myocytes were continuously superfused with external saline solution at a rate of 1.5 to 2 mL min−1. The temperature of the external solution in the recording chamber was regulated at 14 °C by using a Peltier device (CL-100 from Warner Instruments or HCC-100A from Dagan) and continuously recorded on the same file with electrophysiological data. Patch pipettes were pulled (PP-83; Narishige) from borosilicate glass (King Precision) and had a resistance of 2.7 ± 0.06 MΩ when filled with the internal saline solution. After gaining a gigahm seal, the membrane under the pipette tip was ruptured by a short-voltage pulse (zap) to gain access to the cell, transients attributable to series resistance (7.3 ± 0.26 MΩ) and pipette capacitance were canceled, and the capacitive size of ventricular myocytes was determined.

For recording of APs and K+ currents, the external saline solution contained (mmol/L−1) 150 NaCl, 5.4 KCl, 1.2 MgCl\textsubscript{2}, 1.8 CaCl\textsubscript{2}, 10 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid (HEPES), and 10 glucose, with pH adjusted with NaOH to 7.6 at 20 °C (giving a pH of 7.68 at the experimental temperature). The composition of the pipette (internal) solution was as follows (mmol/L−1): 140 KCl, 4 MgATP, 1 MgCl\textsubscript{2}, 0.03 Tris-GTP, and 10 HEPES (pH adjusted with KOH to 7.2 at 20 °C). To elicit APs, ventricular myocytes were stimulated with current pulses of constant duration (4 ms) and with increasing amplitude. The initial stimulus strength was 200 pA, and it was raised with 20-pA increments until an all-or-none AP was elicited (Badr et al. 2018). The stimulation frequency was 1 Hz. The following AP parameters were analyzed off-line: resting membrane potential (V\textsubscript{rest}), threshold potential of AP (V\textsubscript{th}), critical depolarization (V\textsubscript{th} – V\textsubscript{rest}), AP overshoot (mV), AP amplitude (AMP, mV), AP duration at 50% repolarization level (APD50, ms), maximum rate of AP upstroke (+dV/dt, mV ms−1), and the maximum rate of AP repolarization (–dV/dt, mV ms−1; Figure 1). Measures V\textsubscript{in}, I\textsubscript{th}, and critical depolarization are for electrical excitability of ventricular myocytes, that is, the ease with which AP can be triggered by a depolarizing current.

Voltage dependency of the rapid component of the delayed rectifier K+ current (IK\textsubscript{r}) and the inward rectifier K+ current (IK\textsubscript{1}) were measured using standard stimulation protocols (Vornanen et al. 2002a) from the holding potential of −80 mV. When recording IK\textsubscript{1}, the external saline included 2 µM E-4031 (1-[2-(6-methyl-2-pyridyl)ethyl]-4-(4-methylsulfonyl-aminobenzoyl)piperidine), 0.5 µM tetrodotoxin (TTX; Tocris Cookson), and 10 µM nifedipine, to block IK\textsubscript{r}, INa, and IC\textsubscript{aL} respectively. Also, IK\textsubscript{1} was recorded in the presence of TTX (0.5 µM), nifedipine (10 µM), and 0.2 mM BaCl\textsubscript{2} (to block IK\textsubscript{1}).

The fast Na+ current (INa) was measured under a reduced Na+ gradient (20 mM [Na+]\textsubscript{e}, 5 mM [Na+]\textsubscript{i}) across the sarcolemma to obtain good control of the membrane voltage. The composition of the external saline was (mmol/L−1): 20 NaCl, 120 CsCl, 1 MgCl\textsubscript{2}, 0.5 CaCl\textsubscript{2}, 10 glucose, and 10 HEPES at pH 7.7 (adjusted with CsOH at 20 °C; Haverinen and Vornanen 2004). Nifedipine (10 µmol L−1) was included in the external solution to block IC\textsubscript{aL}. The pipette solution consisted of (in mmol L−1) 5 NaCl, 130 CsCl, 1 MgCl\textsubscript{2}, 5 etgazic acid (EGTA), 5 Mg\textsubscript{2}ATP, and 5 HEPES (pH adjusted to 7.2 with CsOH at 20 °C). Using
established stimulus protocols, I_{Na} was elicited from a holding potential of -120 mV (Haverinen and Vornanen 2006; Haverinen et al. 2018b).

The composition of the external saline solution for recording I_{CaL} was as follows (mmol/L$^{-1}$): 150 NaCl, 5.4 CsCl, 1.8 CaCl$ _2$, 1.2 MgCl$ _2$, 10 HEPES, and 10 glucose (pH adjusted to 7.6 at 20 °C with CsOH). We included TTX (0.5 μM) in this saline to block Na$^+$ current (I_{Na}, Vornanen 1998). Because Cs$^+$ may flow through the Erg K$^+$ channels, 2 μM E-4031 was included in the external solution to prevent contamination by I_{Kr}. The pipette solution contained (mmol L$^{-1}$) 130 CsCl, 15 tetraethylammonium chloride, 5 MgATP, 1 MgCl$ _2$, 5 oxaloacetate, 10 HEPES, and 5 EGTA (pH adjusted to 7.2 at 20 °C with CsOH; all chemicals from Sigma). We elicited I_{CaL} from a holding potential of -80 to $+10 \text{ mV}$ at a frequency of 0.2 Hz.Recording of I_{CaL} is complicated by time-dependent rundown (decline) of the current. To minimize the effect of rundown on results, time-dependent changes in I_{CaL} were monitored after getting access to the whole configuration. For the same reason, the analysis of PAH effects was limited to the 2 highest concentrations. Only those cells where I_{CaL} stabilized within approximately 5 min from the start of recording were accepted for analysis.

PAHs

The stocks of phenanthrene (Sigma-Aldrich) and retene (MP Biomedicals) were made in dimethyl sulfoxide (DMSO) at 20 mM. Test solutions at concentrations of 0.3, 1.0, 10, and 30 μM for phenanthrene and 0.1, 1.0, and 10 μM for retene were made daily in external saline solutions. Effects of the highest DMSO concentration in the experimental solutions on AP parameters and ion currents were tested in separate experiments. No statistically significant effects were noticed.

Statistical analyses

After checking the normality of distribution and equality of variances, one-way analysis of variance (with Tukey’s or Dunnett’s T3 post hoc test) or nonparametric test (with Friedman’s test) were used for evaluating the effect of different PAH concentrations on AP parameters and maximum ion currents. All statistical tests were performed using SPSS (IBM; Ver 21.0) software. Data are presented as mean ± standard error of the mean (SEM), and $p < 0.05$ was considered statistically different.

RESULTS

Phenanthrene and retene differentially modify the AP in rainbow trout ventricular myocytes

Phenanthrene had no effect on the duration of AP at the level of 50% repolarization (APD50; Figure 2A and E) but shortened it at the zero voltage level (APD0) at 30 μM (Figure 2A). Phenanthrene increased the maximum upstroke velocity (+dV/dt) at 1 and 10 μM and accelerated the maximum rate of AP repolarization (−dV/dt) at 10 and 30 μM (Figure 2C). Retene had more pronounced effects on APs than phenanthrene. The duration of the AP (APD50 and APD0) was strongly shortened at 1 and 10 μM concentrations (Figure 3A and E). Retene augmented the AP amplitude at 10 μM and increased the overshoot at 1 and 10 μM (Figure 3B). The maximum rate of AP upstroke became faster at all concentrations of retene, but the effect on −dV/dt was significant only at 10 μM (Figure 3C). Excitability of ventricular myocytes was decreased at the highest (10 μM) retene concentration as the critical depolarization needed to elicit AP was approximately 18% higher than in the control (Figure 3B).

Phenanthrene and retene modulate cardiac I_{Na}, I_{CaL}, and I_{Kr} currents but have no effect on I_{K1}

Phenanthrene and retene affected all studied ventricular ion currents except I_{K1}, but retene caused the effects at lower concentrations than phenanthrene. Under exposure of 10 μM phenanthrene or 1 μM retene, the peak density of I_{Na} was
increased by 12 and 17%, respectively (Figure 4A and B). The effects of the highest concentrations (30 µM phenanthrene, 10 µM retene) were slightly less and statistically nonsignificant (Figure 4B).

After getting electrical access to the cell, there was a clear increase in the amplitude of \(I_{Ca,L} \) attributable to the buffering of intracellular free Ca\(^{2+} \) by EGTA of the pipette solution (removal of Ca\(^{2+} \)-dependent inactivation of \(I_{Ca,L} \)). Then, the current stabilized and enabled the recording of drug effects on \(I_{Ca,L} \) (Figure 5A and B). Phenanthrene reduced \(I_{Ca,L} \), but the effect was statistically significant only at the highest concentration tested, 30 µM (Figure 5C). Retene diminished \(I_{Ca,L} \) at 1 and 10 µM (Figure 5C).

Whereas phenanthrene attenuated \(I_{Kr} \) at 10 and 30 µM, retene was effective even at the lowest test concentration (0.1 µM; Figure 6). Both phenanthrene and retene decreased the \(I_{Kr} \) tail currents at all voltages, where the tail current was activated (Figure 6C and D). The maximum inhibition of \(I_{Kr} \) tail at +40 mV was 79.3 and 59.2% for phenanthrene and retene, respectively. During the depolarizing prepulse, phenanthrene and retene inhibited \(I_{Kr} \) (\(I_{Kr,activ} \)) in the voltage range between 0 and +20 mV but did not have any effect at +40 and +60 mV (Figure 6E and F). This suggests that there is a phenanthrene- and retene-resistant current underlying \(I_{Kr} \), probably the slow component of the delayed rectifier K\(^+\) current, \(I_{Ks} \). Neither of the PAHs had an effect on the background inward rectifier, \(I_{K1} \) (Supplemental Data, Figure S1A and B).

DISCUSSION

Effects on AP

Both 3-ring PAHs affected the ventricular AP of the rainbow trout heart, but retene was a much stronger AP modifier than
FIGURE 4: Phenanthrene and retene increase the fast Na\(^+\) current (I\(_{Na}\)) in rainbow trout ventricular cardiomyocytes. (A) Current–voltage relationship of I\(_{Na}\) in the absence and presence of phenanthrene (left) and retene (right). The stimulus protocol is shown between the graphs. (B) Effects of phenanthrene (10, 30 µM) and retene (1, 10 µM) on the peak density of I\(_{Na}\). The results are means ± SEM of 12 to 14 myocytes from at least 3 animals. Groups denoted by the same letter do not differ significantly from each other.

Phenanthrene did not change V\(_{rest}\) or AMP, consistent with the findings from bluefin tuna cardiomyocytes (Brette et al. 2017); V\(_{rest}\) is maintained by the I\(_{K1}\), which remained untouched by phenanthrene. Phenanthrene had only minor effects on APD; APD was slightly reduced at the zero-voltage level but remained unchanged at the 50% repolarization level. In this respect, rainbow trout clearly differs from bluefin tuna, where phenanthrene lengthened ventricular APD (Brette et al. 2017). The APD is regulated by a delicate balance between influx of Ca\(^{2+}\) via I\(_{CaL}\) and efflux of K\(^+\) via I\(_{Kr}\), I\(_{Ks}\), and I\(_{K1}\) (Grant 2009). Because the resistance of the sarcolemma at the AP plateau is high (Ca\(^{2+}\) and K\(^+\) fluxes are small), small changes in the amplitude and activation/inactivation rate of Ca\(^{2+}\) and K\(^+\) currents will affect APD (Zaza 2010). Shortening of AP at the zero-voltage level suggests that in the early plateau I\(_{CaL}\) is reduced more than I\(_{K}\) by phenanthrene. The results of the present study show a small but clear increase in +dV/dt in rainbow trout with 10 and 30 µM phenanthrene. Phenanthrene also steepened the rate of repolarization (−dV/dt). These are novel actions of PAHs on fish cardiac I\(_{Na}\). Retene was more potent than phenanthrene at enhancing I\(_{Na}\), which is in line with its larger effect on +dV/dt and overshoot of the AP. At the level of intact tissue the larger I\(_{Na}\) means a faster propagation of AP in the ventricular wall. To our knowledge, there are no earlier data on the effects of PAHs on fish cardiac I\(_{Na}\). However, in bluefin tuna ventricular myocytes, phenanthrene did not affect the upstroke velocity of the AP, thus suggesting species-specific differences in PAH modulation of I\(_{Na}\).

Effects on cardiac ion currents

The Na\(^+\) current (I\(_{Na}\)) is active during the upstroke of the AP, causing depolarization of the sarcolemma by fast and large influx of Na\(^+\). Both phenanthrene and retene increased the peak I\(_{Na}\) density in the ventricular myocytes of rainbow trout. Retene was more potent than phenanthrene at enhancing I\(_{Na}\), which is in line with its larger effect on +dV/dt and overshoot of the AP. At the level of intact tissue the larger I\(_{Na}\) means a faster propagation of AP in the ventricular wall. To our knowledge, there are no earlier data on the effects of PAHs on fish cardiac I\(_{Na}\). However, in bluefin tuna ventricular myocytes, phenanthrene did not affect the upstroke velocity of the AP, thus suggesting species-specific differences in PAH modulation of I\(_{Na}\).

Currents I\(_{CaL}\) and I\(_{K}\) are the main determinants of the long AP plateau. They are counteracting currents because I\(_{CaL}\) is depolarizing and I\(_{K}\) repolarizing. The net outcome of the inhibition of these currents can be seen as changes in APD. Notably, both PAHs caused shortening of APD, but retene was much more powerful than phenanthrene. Strong shortening of APD by retene indicates that the net charge influx via I\(_{CaL}\) is inhibited more than the K\(^+\) efflux via I\(_{K}\). The final phase 3 repolarization is accelerated by the background inward rectifier I\(_{K1}\). The increase in the rate of −dV/dt by PAHs is probably attributable to the resistance of I\(_{K1}\) to retene and phenanthrene whereby the uninhibited I\(_{K1}\) overwhelms the reduced I\(_{CaL}\).

The lowering of Ca\(^{2+}\) influx in phenanthrene-treated rainbow trout cardiac myocytes is in line with previous research showing that phenanthrene decreased Ca\(^{2+}\) transients in
Intracellular free Ca^{2+} concentration. In trout ventricular myocytes, the activation of contraction is largely dependent on the sarcolemmal Ca^{2+} influx during the AP plateau because approximately two-thirds of the activator Ca^{2+} is estimated to come from the extracellular space (Vornanen et al. 2002b). Inhibition of I_{CaL} and shortening of the plateau means that Ca^{2+} influx is smaller and there is less time for Ca^{2+} entry. In the intact ventricle, this should appear as reduced force of contraction. Indeed, exposure to PAHs or oil reduces atrial and ventricular contraction and diminishes cardiac stroke volume in larval fish (Incardona et al. 2013; Jung et al. 2013; Edmunds et al. 2015; Esbaugh et al. 2016; Serhus et al. 2016; Khursigara et al. 2017; Perrichon et al. 2018). In rainbow trout yolk sac larvae, retene causes pericardial and yolk sac edemas (Billiard et al. 1999; Scott et al. 2011; Vehniäinen et al. 2016), phenomena often seen with PAH and oil exposures and proposed to be caused by reduced cardiac output (Incardona and Scholz 2016). Taken together, inhibition of I_{CaL} and shortening of the AP plateau would compromise contractility and cardiac output of the heart with the outcome of reduced physical performance level and fitness of the fish. These effects would be particularly strong under the intoxication by retene.

The I_{Kr} channels are notorious for their susceptibility to inhibition by low concentrations of various small-molecule compounds (Sanguinetti and Tristani-Firouzi 2006). The wide pore cavity of the channel allows access of small molecules to the pore (Vandenbregg et al. 2001). Therefore, it is no surprise that also PAHs can block these channels in fish cardiac myocytes. In rainbow trout ventricular myocytes, 10 and 30 μM phenanthrene reduced I_{Kr} by 43 and 75%, respectively. This is slightly less than the inhibition in bluefin tuna, where 5 and 25 μM phenanthrene decreased I_{Kr} by 60 and more than 85%, respectively (Brette et al. 2017). In rainbow trout, the effect of retene on I_{Kr} was more pronounced because 10 μM retene caused a 60% reduction in I_{Kr} (Supplemental Data, Figure S2).

In mammalian heart, blockade of I_{Kr} by many drugs is shown to be proarrhythmic and able to induce chaotic ventricular tachycardia, torsades de pointes (Vandenbregg et al. 2001). However, if both I_{Kr} and I_{CaL} are inhibited simultaneously and at similar drug concentrations, the effect is antiarrhythmic, even when drugs prolong, shorten, or triangulate ventricular APs (Kramer et al. 2013; Obejero-Paz et al. 2015). A typical example is verapamil, a useful human cardiovascular medicine, which inhibits human I_{Kr} and I_{CaL} at similar concentrations (Shetuan et al. 1999; Kang et al. 2012). Because PAHs inhibit both I_{Kr} and I_{CaL} at similar micromolar concentrations, they should not be proarrhythmic in fish ventricle. However, I_{Kr} and I_{CaL} are essential components of the cardiac pacemaker, which determines the rate and rhythm of the heartbeat (Schram et al. 2002). Half-maximal inhibition of I_{Kr} by E-4031 is known to reduce the beating rate of rainbow trout sinoatrial preparations, and therefore inhibition of I_{Kr} might explain the PAH-induced bradycardia of larval fish (Haverinen and Vornanen 2007). Inhibition of I_{CaL} is likely to affect impulse generation and conduction of the nodal tissues (sinoatrial pacemaker and atrioventricular canal) because I_{CaL} is the main determinant for the rate of AP upstroke and impulse conduction (I_{Na} is absent.
or small in nodal cells; Schram et al. 2002). Inhibition of ICaL might therefore appear as atrioventricular block and ventricular bradycardia, phenomena seen in larval fish exposed to PAHs or oil (Incardona et al. 2004, 2005, 2009, 2011; Zeltser et al. 2004; Perrichon et al. 2016, 2018). However, care must be taken when applying results from mature fish to embryos or larval fish.

Because retene is quite hydrophobic (logKow ≈ 6), the actual concentrations in the test chamber most probably were lower than nominal. It must also be borne in mind that retene is quickly metabolized by cytochrome P450 (CYP1A) in fish, and this may lower the concentration of parent retene that reaches cardiac myocytes in vivo (Hawkins et al. 2002). In nature, however, fish are exposed to PAH mixtures that frequently contain CYP1A inhibitors, which in turn decrease the metabolism of PAHs and thus increase the concentration of parent compounds (Hawkins et al. 2002).

Retene is an AhR agonist, and it disturbs cardiovascular development in fish via activating AhR and altering transcription (Scott et al. 2011; Vehniäinen et al. 2016). The
present study shows that in addition to this transcriptional route, retene has a direct effect on cardiac function via modulating voltage-gated ion channel activity. Because normal cardiac function is important for cardiovascular development (Glickman and Yelon 2002; Incardona et al. 2015), as well as the development of other tissues and organs (Incardona et al. 2004), retene may cause developmental defects also independently of the AhR. The ability to modulate the activity of cardiac ion channels also means that in addition to early-life stages, retene may be cardiotoxic to juvenile-niles and adults.

CONCLUSION

The 3-ring PAHs phenanthrene and retene differentially modified ventricular APs in rainbow trout cardiomyocytes. Retene was more potent and strongly reduced the duration of ventricular AP. Although phenanthrene and retene had qualitatively similar effects on ion currents, phenanthrene only slightly affected AP duration, probably because of its weaker inhibition of I_{Ks} and I_{Ca} in comparison to retene. Furthermore, the effects of phenanthrene on ventricular AP differed from those reported earlier for the marine warm-water scromboid fish bluefin tuna. The present results suggest that different PAHs may have different direct effects on cardiac function and that these effects may be partly species-specific. This further complicates the environmental risk assessment of PAHs.

Supplemental Data—The Supplemental Data are available on the Wiley Online Library at DOI: 10.1002/etc.4530.

Acknowledgment—The authors thank A. Kervinen for technical assistance. Kontiolahti fish farm is acknowledged for the donation of the fish. The present study was supported by the Academy of Finland (projects 285296, 294066, and 319284, to E.-R. Vehniäinen). The fish used in the experiments fall under the laboratory animal permission of ESAVI/2832/04.10.07.2015.

Data Accessibility—Data are available from the authors (eeva-riikka.vehniainen@jyu.fi).

REFERENCES

Abramochkin DV, Hassinen M, Vornanen M. 2018. Transcripts of Kv7.1 and MinK channels and slow delayed rectifier K⁺ current (I_{Ks}) are expressed in zebrafish (Danio rerio) heart. Pflugers Arch 470:1753–1764.

Badr A, Abu-Amra E, El-Sayed MF, Vornanen M. 2018. Electrical excitability of roach (Rutilus rutilus) ventricular myocytes: Effects of extracellular K⁺, temperature, and pacing frequency. Am J Physiol Regul Integr Comp Physiol 315:R303–R311.

Billiard S, Querbach K, Hodson P. 1999. Toxicity of retene to early life stages of two freshwater fish species. Environ Toxicol Chem 18:2070–2077.

Brette F, Shiels HA, Galli GLJ, Crous C, Incardona JP, Scholz NL, Block BA. 2017. A novel cardioexcitatory mechanism for a pervasive global pollutant. Sci Rep 7:41476.

Cheng I, Wen D, Zhang L, Wu Z, Qiu X, Yang F, Hamer T. 2018. Deposition mapping of polycyclic aromatic compounds in the oil sands region of Alberta, Canada and linkages to ecosystem impacts. Environ Sci Technol 52:12456–12464.

Cypher AD, Consiglio J, Bagatto B. 2017. Hypoxia exacerbates the cardiotoxic effect of the polycyclic aromatic hydrocarbon, phenanthrene in Danio rerio. Chemosphere 183:574–581.

Dubansky B, Whitehead A, Miller JT, Rice CD, Galvez F. 2013. Multitissue molecular, genomic, and developmental effects of the Deepwater Hor- zon oil spill on resident Gulf killifish (Fundulus grandis). Environ Sci Technol 47:5074–5082.

Edmunds PC, Gill JA, Baldwin DH, Linbo TL, French BL, Brown TL, Esbaugh AJ, Mager EM, Stieglitz JD, Hoening R, Benetti D, Grosell M, Scholz NL, Incardona JP. 2015. Corresponding morphological and molecular indicators of crude oil toxicity to the developing hearts of mahi-mahi. Sci Rep 5:17326.

Esbaugh AJ, Mager EM, Stieglitz JD, Hoening R, Brown TL, French BL, Linbo TL, Lay C, Forth H, Scholz NL, Incardona JP, Morris JM, Benetti DD, Grosell M. 2016. The effects of weathering and chemical dispersion on Deepwater Horizon crude oil toxicity to mahi-mahi (Coryphaena hip-purus) early life stages. Sci Total Environ 543:644–651.

Glickman NS, Yelon D. 2002. Cardiac development in zebrafish: Coordination of form and function. Semin Cell Dev Biol 13:507–513.

Grant AO. 2009. Cardiac ion channels. Circ Arrhythm Electrophysiol 2:185–194.

Hassinen M, Laulaja S, Pajaanen V, Haverinen J, Vornanen M. 2011. Thermal adaptation of the crucian carp (Carassius carassius) cardiac delayed rectifier current, I_{Ks} by homeric assembly of Kv7.1 subunits without MinK. Am J Physiol Regul Integr Comp Physiol 301:R255–R265.

Haverinen J, Hassinen M, Dash SN, Vornanen M. 2018a. Expression of calcium channel transcripts in the zebrafish heart: Dominance of T-type channels. J Exp Biol 221:179226.

Haverinen J, Hassinen M, Korajoki H, Vornanen M. 2018b. Cardiac voltage-gated sodium channel expression and electrophysiological characterization of the sodium current in the zebrafish (Danio rerio) ventricle. Prog Biophys Mol Biol 138:59–68.

Haverinen J, Vornanen M. 2006. Significance of Na⁺ current in the excitability of atrial and ventricular myocardium of the fish heart. J Exp Biol 209:549–557.

Haverinen J, Vornanen M. 2004. Temperature acclimation modifies Na⁺ current in fish cardiac myocytes. J Exp Biol 207:2823–2833.

Haverinen J, Vornanen M. 2007. Temperature acclimation modifies sinoatrial pacemaker mechanism of the rainbow trout heart. Am J Physiol Regul Integr Comp Physiol 292:R1023–R1032.

Hawkins SA, Billiard SM, Tabash SP, Brown RS, Hodson PV. 2002. Altering cytochrome P4501A activity affects polycyclic aromatic hydrocarbon metabolism and toxicity in rainbow trout (Oncorhynchus mykiss). Environ Toxicol Chem 21:1845–1853.

Incardona JP, Carls MG, Day HL, Sloan CA, Bolton JL, Collier TK, Scholz NL. 2009. Cardiac arrhythmia is the primary response of embryonic Pacific herring (Clupea pallasi) exposed to crude oil during weathering. Environ Sci Technol 43:201–207.

Incardona JP, Carls MG, Holland L, Linbo TL, Baldwin DH, Myers MS, Peck KA, Tagal M, Rice SD, Scholz NL. 2015. Very low embryonic crude oil exposures cause lasting cardiac defects in salmon and herring. Sci Rep 5:13499.

Incardona JP, Carls MG, Teraoka H, Sloan C, Collier T, Scholz N. 2005. Aryl hydrocarbon receptor-independent toxicity of weathered crude oil during fish development. Environ Health Perspect 113:1755–1762.

Incardona JP, Collier TK, Scholz NL. 2004. Defects in cardiac function precede morphological abnormalities in fish embryos exposed to polycyclic aromatic hydrocarbons. Toxicol Appl Pharmacol 196;191–205.

Incardona JP, Day HL, Collier TK, Scholz NL. 2006. Developmental toxicity of 4-ring polycyclic aromatic hydrocarbons in zebrafish is differentially dependent on Ah receptor isoforms and hepatic cytochrome P4501A metabolism. Toxicol Appl Pharmacol 217:308–321.

Incardona JP, Gardner LD, Linbo TL, Brown TL, Esbaugh AJ, Mager EM, Stieglitz JD, French BL, Labenja JS, Laetzi CA, Tagal M, Sloan CA, Elizar AB, Benetti DD, Grosell M, Block BA, Scholz NL. 2014. Deepwater Hor- zon crude oil impacts the developing hearts of large predatory pelagic fish. Proc Natl Acad Sci USA 111:E1510–E1518.

Incardona JP, Linbo TL, Scholz NL. 2011. Cardiac toxicity of 5-ring polycyclic aromatic hydrocarbons is differentially dependent on the ary hydrocarbon receptor 2 isozoenzyme during zebrafish development. Toxicol App Pharmacol 257:242–249.

Incardona JP, Scholz NL. 2016. The influence of heart developmental anatomy on cardiotoxicity-based adverse outcome pathways in fish. Aquat Toxicol 177:515–525.

Incardona JP, Swarts TL, Edmunds RC, Linbo TL, Aquilina-Beck A, Sloan CA, Gardner LD, Block BA, Scholz NL. 2013. Exxon Valdez to Deepwater
Horizon: Comparable toxicity of both crude oils to fish early life stages.

Aquatic Toxicol 142–143:303–316.

Jung J, Hicken CE, Boyd D, Anulacion BF, Carls MG, Shim WJ, Incardona JP. 2013. Geologically distinct crude oils cause a common cardiotoxicity syndrome in developing zebrafish. Chemosphere 91:1146–1155.

Kang J, Chen X, Ji J, Lei Q, Rampe D. 2012. Ca2+ channel activators reveal differential L-type Ca2+ channel pharmacology between native and stem cell–derived cardiomyocytes. J Pharmacol Exp Ther 341:510–517.

Khursigara AJ, Perrichon P, Martínez Bautista N, Burggren WW, Esbaugh AJ. 2017. Cardiac function and survival are affected by crude oil in larval red drum, Sciaenops ocellatus. Sci Total Environ 579:797–804.

Kramer J, Obejero-Paz C, Myatt G, Kuryshhev YA, Bruening-Wright A, Verducci JS, Brown AM. 2013. MICE models: Superior to the HERG model in predicting torsade de pointes. Sci Rep 3:2100.

Legler J, van Velzen M, Cenijn PH, Houtman CJ, Lamoree MH, Wegener JW. 2011. Effect-directed analysis of municipal landfill soil reveals novel developmental toxicants in the zebrafish Danio rerio. Environ Sci Technol 45:8552–8558.

Leppanen H, Oikari A. 1999a. Occurrence of retene and resin acids in sediments and fish bile from a lake receiving pulp and paper mill effluents. Environ Toxicol Chem 18:1498–1505.

Leppanen H, Oikari A. 1999b. The occurrence and bioavailability of retene and resin acids in sediments of a lake receiving BKME (bleached kraft mill effluent). Water Sci Technol 40:131–138.

Mu J, Wang J, Jin F, Wang X, Hong H. 2014. Comparative embryotoxicity of phenanthrene and alkyl-phenanthrene to marine medaka (Oryzias melastigma). Mar Pollut Bull 85:505–515.

Nemtsov S, Wettwer E, Christ T, Weidinger G, Ravens U. 2010. Adult zebrafish heart as a model for human heart? An electrophysiological study. J Mol Cell Cardiol 48:161–171.

Obejero-Paz C, Bruening-Wright A, Kramer J, Hawryluk P, Tatalovic M, Dittrich HC, Brown AM. 2015. Quantitative profiling of the effects of vanoxerine on human cardiac ion channels and its application to cardiac risk. Sci Rep 5:17623.

Perrichon P, Le Menach K, Akcha F, Cachot J, Budzinski H, Bustamante P. 2016. Toxicity assessment of water-accommodated fractions from two different oils using a zebrafish (Danio rerio) embryo-larval bioassay with a multilevel approach. Sci Total Environ 568:952–966.

Perrichon P, Mager EM, Pasparakis C, Stieglitz JD, Benetti DD, Grosell M, Burggren WW. 2018. Combined effects of elevated temperature and Deepwater Horizon oil exposure on the cardiac performance of larval mahi-mahi, Coryphaena hippurus. PLoS One 13:e0203949.

Raine JC, Turcotte D, Tumber V, Peru KM, Wang Z, Yang C, Headley JV, Parrott JL. 2017. The effect of oil sands tailings on haddock craniofacial and cardiac development. Environ Sci Technol 51:9656–9665.

Sanguineti MC, Tristani-Firouzi M. 2006. HERG potassium channels and cardiac arrhythmia. Nature 440:463.

Schram G, Pourier M, Melnyk P, Nattel S. 2002. Differential distribution of cardiac ion channel expression as a basis for regional specialization in electrical function. Circ Res 90:939–950.

Scott JA, Incardona JP, Pelkki K, Shepardson S, Hodson PV. 2011. AhR2-mediated, CYP1A-dependent cardiovascular toxicity in zebrafish (Danio rerio) embryos exposed to retene. Aquat Toxicol 101:165–174.

Sedmera D, Beckova M, deAlmeida A, Sedmerova M, Biermann M, Volejnik J, Sarre A, Raddatz E, McCarthy RA, Gourdie RG, Thompson RP. 2003. Functional and morphological evidence for a ventricular conduction system in zebrafish and Xenopus hearts. Am J Physiol Heart Circ Physiol 284:H1152–H1160.

Shetuan Z, Zhengfeng Z, Qiuming G, Mikalski JC, January CT. 1999. Mechanism of block and identification of the verapamil binding domain to HERG potassium channels. Circ Res 84:989–998.

Sarshus E, Incardona JP, Karlsen Ø, Linbo T, Sørensen L, Nordtug T, van der Meeren T, Thorsen A, Thorbjørnsen M, Jentoft S, Edvardsen RB, Meier S. 2016. Crude oil exposures reveal roles for intracellular calcium cycling in haddock craniofacial and cardiac development. Sci Rep 6:31058.

Sun L, Zuo Z, Chen M, Chen Y, Wang C. 2015. Reproductive and transgenerational toxicities of phenanthrene on female marine medaka (Oryzias melastigma). Aquat Toxicol 162:109–116.

Vandenberg JL, Walker BD, Campbell TJ. 2001. HERG K+ channels: Friend and foe. Trends Pharmacol Sci 22:240–246.

Varghese A. 2016. Reciprocal modulation of I_{K1}–I_{Na} extends excitability in cardiac ventricular cells. Front Physiol 7:542.

Vehniainen E, Bremer K, Scott JA, Jurtttila S, Laiho A, Gyneselii A, Hodson PV, Oikari AOJ. 2016. Retene causes multifunctional transcriptomic changes in the heart of rainbow trout (Onchorhyncus mykiss) embryos. Environ Toxicol Pharmacol 41:95–102.

Vornanen M. 1998. L-type Ca2+ current in fish cardiac myocytes: Effects of thermal acclimation and beta-adrenergic stimulation. J Exp Biol 201:533–547.

Vornanen M. 1997. Sarcolemmal Ca influx through L-type Ca channels in ventricular myocytes of a teleost fish. Am J Physiol Regul Integr Comp Physiol 272:R1432–R1440.

Vornanen M. 2016. The temperature dependence of electrical excitability in fish hearts. J Exp Biol 219:1941.

Vornanen M, Ryökkynen A, Nurmi A. 2002a. Temperature-dependent expression of sarcolemmal K+ currents in rainbow trout atrial and ventricular myocytes. Am J Physiol Regul Integr Comp Physiol 282:R1191–R1199.

Vornanen M, Shiels HA, Farrell AP. 2002b. Plasticity of excitation-contraction coupling in fish cardiac myocytes. Comp Biochem Physiol A Mol Integr Physiol 132:827–846.

Yamauchi A, Burnstock G. 1968. An electron microscopic study on the innervation of the trout heart. J Comp Neurol 132:567–587.

Zaza A. 2010. Control of the cardiac action potential: The role of repolarization dynamics. J Mol Cell Cardiol 48:106–111.

Zeltser D, Justo D, Halkin A, Rosso R, Ish-Shalom M, Hochemberg M, Viskin S. 2004. Drug-induced atrioventricular block: Prognosis after discontinuation of the culprit drug. J Am Coll Cardiol 44:105–108.