SYBR Green-based Real-Time PCR targeting kinetoplast DNA can be used to discriminate between the main etiologic agents of Brazilian cutaneous and visceral leishmaniases

Daniela Pita-Pereira, Rachel Lins, Marcia P Oliveira, Rosimar B Lima, Bernardo AS Pereira, Otacilio C Moreira, Reginaldo P Brazil and Constança Britto

Abstract

Background: Leishmaniases control has been hampered by the unavailability of rapid detection methods and the lack of suitable therapeutic and prophylactic measures. Accurate diagnosis, which can distinguish between Leishmania isolates, is essential for conducting appropriate prognosis, therapy and epidemiology. Molecular methods are currently being employed to detect Leishmania infection and categorize the parasites up to genus, complex or species level. Real-time PCR offers several advantages over traditional PCR, including faster processing time, higher sensitivity and decreased contamination risk.

Results: A SYBR Green real-time PCR targeting the conserved region of kinetoplast DNA minicircles was able to differentiate between Leishmania subgenera. A panel of reference strains representing subgenera Leishmania and Viannia was evaluated by the derivative dissociation curve analyses of the amplified fragment. Distinct values for the average melting temperature were observed, being 78.95°C ± 0.01 and 77.36°C ± 0.02 for Leishmania and Viannia, respectively (p < 0.05). Using the Neighbor-Joining method and Kimura 2-parameters, the alignment of 12 sequences from the amplified conserved minicircles segment grouped together L. (V) braziliensis and L. (V) shawi with a bootstrap value of 100%; while for L. (L) infantum and L. (L) amazonensis, two groups were formed with bootstrap values of 100% and 62%, respectively. The lower dissociation temperature observed for the subgenus Viannia amplicons could be due to a lower proportion of guanine/cytosine sites (43.6%) when compared to species from subgenus Leishmania (average of 48.4%). The method was validated with 30 clinical specimens from visceral or cutaneous leishmaniases patients living in Brazil and also with DNA samples from naturally infected Lutzomyia spp. captured in two Brazilian localities.

Conclusions: For all tested samples, a characteristic amplicon melting profile was evidenced for each Leishmania subgenus, corroborating the data from reference strains. Therefore, the analysis of thermal dissociation curves targeting the conserved kinetoplast DNA minicircles region is able to provide a rapid and reliable method to identify the main etiologic agents of cutaneous and visceral leishmaniases in endemic regions of Brazil.

Keywords: SYBR Green Real-time PCR, Leishmaniases, kinetoplast DNA, thermal dissociation curves, molecular diagnosis, Brazil
Background
The leishmaniases represent a group of diseases with worldwide distribution and a wide spectrum of clinical presentations, which constitute an important public health problem. Their control has been hampered by the unavailability of rapid means of detection and the lack of suitable therapeutic or prophylactic measures. In the Americas, members from the subgenus (Viannia), including Leishmania (Viannia) braziliensis and Leishmania (Viannia) panamensis, and from the Leishmania (Leishmania) mexicana complex cause the majority of cutaneous disease cases, whereas Leishmania (Leishmania) infantum (Syn. L. chagasi) is associated with visceral disease [1,2]. Cutaneous leishmaniasis (CL) in Brazil is caused by a variety of dermotropic Leishmania species and a great diversity of these parasites is found in the Amazon Region. Except in primary forest areas in North Brazil and the Amazon Region, L. (V.) braziliensis is the main widespread etiologic agent of CL in Brazil [3].

An accurate diagnostic method that allows the distinction between Leishmania isolates with overlapping geographic distribution is necessary to enable appropriate prognosis, epidemiology and therapy conduct. To this aim, molecular methods have been increasingly employed in an effort to detect infection and categorize Leishmania parasites up to genus, complex or species level [4]. Epidemiological data (clinical presentation and area of endemicity etc) are therefore of prime interest to complement molecular diagnosis. Different PCR-based methods targeting microsatellites, kinetoplastic DNA (kDNA), telomeric sequences, or gp63, hsp70, miniexon, \(\beta \)-tubulin, and rRNA genes have already been proposed [5]. More recently, real-time PCR, a platform that can process a sample in less than an hour, has been reported [5]. More recently, real-time PCR, a platform that can process a sample in less than an hour, has been reported [5].

Methods
Organisms, cell culture and DNA extraction
Promastigotes of Leishmania (V.) braziliensis (MHOM/BR/1975/M2903), L. (V.) shawi (MCEB/BR/1984/M8408), L. (V.) guyanensis (MHOM/BR/1975/M4147), L. (V.) lainsoni (MHOM/BR/1981/M6426), L. (V.) naiffi (MDAS/BR/1979/M5533), L. (L.) infantum (Syn. L. chagasi) [2] (MHOM/BR/1974/PP75) and L. (L.) amazonensis (MHOM/BR/1977/LTB0016) were provided by the Leishmania collection from Fiocruz (CLIOC), Rio de Janeiro. Epimastigotes from Trypanosoma cruzi (CI-Brener and DM28c strains), Endotrypanum monteroeigi, Herpetomonas muscarum muscarum (ATCC 30260), Phytomonas sp. and Crithidia fasciculata (ATCC11745), were obtained from the Protozoa collection from Fiocruz (COLPROT), Rio de Janeiro. Parasites were cultivated in 3.7% brain heart infusion (BHI) medium supplemented with 10% heat-inactivated fetal bovine serum, penicillin 500 U/mL and streptomycin 500 mg/mL at 28°C for 4 days to reach late-log phase growth. Cells were harvested, washed and resuspended in phosphate-buffered saline (PBS) pH 7.4. Cell pellets containing 300 μL PBS were incubated with proteinase K (at a final concentration of 300 μg/mL) at 55°C for 2 h, and DNA was extracted by the sodium dodecyl sulfate/phenol extraction method [14]. The extracted DNA was precipitated with ethanol, dissolved in 50 μL of TE buffer (10 mM Tris-Cl, 1 mM EDTA) and quantified by measuring absorbance at 260 nm.

Clinical specimens
5 mM EDTA-supplemented peripheral blood and bone marrow aspirates, as well as tissue biopsy specimens stored in 0.9% sodium chloride solution, were obtained from 30 patients with confirmed leishmaniasis, as follows. Fifteen of these patients were children considered to be VL carriers, living in the municipality of Campo Grande (Mato Grosso do Sul State) with ages ranging from 2-13 years old, and presenting characteristic clinical features (fever, hepatosplenomegaly and pancytopenia) associated to the detection of parasites in bone marrow aspirates by means of direct microscopy or in NNN (Novy-MacNeal-Nicolle) culture, and/or positive serology (≥ 1:80) as determined by indirect immuno-fluorescence (IIF). The remaining fifteen patients were from the municipality of Rio de Janeiro (Rio de Janeiro State), inhabiting areas with well-known occurrences of CL related to L. (V.) braziliensis and previously diagnosed by Giemsa staining of biopsy smears,
histopathological examination of biopsies, or culture and/or PCR-RFLP on DNA extracted from lesion biopsies [15]. Samples corresponding to 1 mm³ of skin biopsies obtained from the borders of the lesions, as well as 300 μL of EDTA-supplemented peripheral blood or bone marrow aspirates were used for DNA isolation, according to previously described protocols [15,16]. All DNA samples from clinical specimens were kindly provided by the National Reference Laboratory in Molecular Diagnosis of Leishmaniases, Instituto Oswaldo Cruz/Fiocruz, Rio de Janeiro (approved by the Ethics Committee of Fiocruz - protocol No. 503/09).

Lutzomyia sand fly samples

Wild sand flies positive for infection with either *L. (V.) braziliensis* or *L. (L.) infantum* were divided into pools (10 insects per pool). DNA extraction and multiplex PCR assays followed by isotopic hybridization with specific *Leishmania* probes were performed as previously described [17,18]. A total of eleven positive *Lutzomyia* female pools were evaluated, consisting of: (i) five *Lu. intermedia* pools and three *Lu. migonei* pools collected in 2003, in two areas from the municipality of Rio de Janeiro (Rio de Janeiro State) with notification of CL [17]; (ii) two *Lu. cruzi* and one *Lu. forattinii* pools collected in an endemic area of VL in the municipality of Corumbá (Mato Grosso do Sul State), in May/June 2006 [18].

Real-time PCR assays

SYBR Green-based real-time PCR was performed with primers directed to the conserved motif of *Leishmania* kinetoplast DNA minicircles [5′-GGC CCA CTA TAT TAC ACC AAC CCC-3′ and 5′-GGG GTA GGG GGC TTC TGC GAA-3′] [19]. The reaction mixture contained 1× Power SYBR Green Master Mix (Applied Biosystems, Foster City, CA, USA), 1 pmol of each primer, 25 ng of template DNA and distilled ultra-pure water for a final reaction volume of 15 μL. The reactions were set up, in triplicate, in a 96-well optical reaction plate in an ABI Prism 7500 Sequence Detection System (Applied Biosystems, Foster City, CA, USA). The PCR conditions were as follows: an initial 12-min incubation step at 94°C, followed by 35 cycles of 30 s at 94°C, 30 s at 55°C, and 30 s at 72°C. The generation of amplification plots and dissociation kinetic analyses were according to the manufacturer’s protocol. After amplification, the melting curve test was performed with an initial denaturation step at 95°C for 5 s, followed by 15 seconds at 50°C and continuous heating at 0.1°C/s to 90°C. Calculation of the melting temperature for each amplicon (Tm) was done directly by the equipment software. Each assay was repeated at least 3 times to check the reproducibility and reliability. Stringent measures to control sample contamination included two non template negative controls (NTC - reaction mix without DNA and distilled water alone) and DNA obtained from healthy donors’ peripheral blood or from uninfected *Lutzomyia* (male specimen), in each reaction plate. Positive controls (50 ng *Leishmania* DNA) were also included.

Conventional PCR for cloning

DNA samples from four *Leishmania* reference strains - *L. (V.) braziliensis*, *L. (V.) shawi*, *L. (L.) infantum* and *L. (L.) amazonensis*, were submitted to a conventional PCR using the same primer pair described for the real-time PCR. The 50 μL reaction consisted of 5 μL DNA template, 5 pmol primers, 1× Taq polymerase buffer, 1.25 U Taq DNA polymerase (Applied Biosystems, Foster City, CA, USA), 4.5 mM MgCl₂, 100 μM of each dNTP (Invitrogen Corporation, Carlsbad, CA, USA) and distilled ultra-pure water. The mixture was incubated in a Perkin-Elmer thermocycler (GeneAmp PCR System 9600; Applied Biosystems, Foster City, CA, USA), following the same amplification conditions reported for the real-time PCR. Ten microlitres of amplification product were resolved in 2% agarose gel electrophoresis, stained with GelRed® (Sigma-Aldrich, St. Louis, MO, USA) and visualized under UV-light. The remaining 40 μL were purified using the commercial kit Wizard® SV Gel and PCR Clean-up System (Promega, Madison, WI, USA), according to the manufacturer’s protocol. After DNA quantification by spectrophotometry, the fragments were cloned using TOPO TA cloning kit® (Invitrogen Corporation, Carlsbad, CA, USA) following the manufacturer’s recommendation.

Sequence Analysis

For each *Leishmania* reference strain, three clones derived from the amplified conserved minicircles region were sequenced using the BigDye Terminator Cycle Sequencing Kit Ready Reaction version 3.1 on the ABI Prism 3100 Avant Genetic Analyzer (Perkin-Elmer, Applied Biosystems, Foster City, CA, USA), following the manufacturer’s specifications. Sequence homology searches were made by the online NCBI BLAST software: http://blast.ncbi.nlm.nih.gov/Blast.cgi. Sequences were aligned using the CLUSTAL software in the BioEdit software package [20]. A tree was constructed using the MEGA 3.1 software [21], applying the Neighbor-Joining method and Kimura 2-parameters. Stability of the tree was confirmed by bootstrap analysis.

Results and discussion

Limited nucleotide variation of the kDNA conserved motifs promote distinctive melting profiles for *Leishmania* subgenera

Genomic DNA extracted from four *Leishmania* promastigote reference strains, representing both Viannia and
Leishmania subgenera, was assayed. For each subgenus, the SYBR Green melting curve analysis showed a single peak indicating its specificity, which was confirmed by fractionation in an agarose gel. Figure 1 demonstrates the typical dissociation curves representing specific melting temperatures (Tm) generated by the kDNA amplified products of promastigote reference strains from Viannia and Leishmania subgenera [Figure 1- A1 and A2, respectively]. Leishmania (L.) infantum and L. (L.) amazonensis, both from subgenus Leishmania, presented an average Tm of 78.95°C ± 0.01, and the two Viannia species, L. (V.) braziliensis and L. (V.) shawi, revealed a slightly lower but statistically distinct Tm value of 77.34°C ± 0.01 (p < 0.001 - Mann-Whitney Rank Sum Test).

Considering an estimated length for the Leishmania minicircles conserved region of around 120 base pairs, we further investigated these minor differences on the melting temperature for each subgenus by sequencing the amplification products obtained from the analyzed Leishmania species. A kDNA-based conventional PCR was performed and the amplified 120 bp fragments were cloned. Three clones were selected for sequencing for each Leishmania species and 12 generated sequences were aligned, revealing slight variations (nucleotide substitutions, insertions and/or deletions). All 12 sequences are shown in an additional file [see Additional file 1]. Despite the limited number of nucleotide variations in the Leishmania kDNA conserved motif, it was possible to construct a tree based on the Neighbor-Joining method and Kimura 2-parameters [Figure 2]. We observed the formation of a very distinct group with a bootstrap value of 100% comprising L. (V.) shawi and L. (V.) braziliensis, from the subgenus Viannia. This group revealed in its sequence composition a lower G/C content (43.6%) when compared to reference strains from Viannia subgenus.

Figure 1 Melting curve analyses of kDNA conserved regions amplicons. Representative SYBR Green dissociation curves of kDNA amplified products to determinate the melting temperature values [Tm]. Following amplification in the ABI Prism 7500 Sequence Detection System, the amplicons were submitted to a gradual temperature increase (0.1°C/s to 90°C). The Tm calculation of each amplicon was done directly by the software provided (indicated by the perpendicular line in the graphics). Each trace in the charts represents a single analyzed DNA sample. The graphics on the left represent typical kinetic dissociation profiles obtained for the Viannia subgenus: (A1) L. (V.) shawi and L. (V.) braziliensis promastigote reference strains; (B1) clinical samples from cutaneous disease patients; (C1) Lu. intermedia and Lu. migonei pools naturally infected by L. (V.) braziliensis. On the right are represented the melting profiles for the subgenus Leishmania: (A2) L. (L.) amazonensis and L. (L.) infantum promastigote reference strains; (B2) clinical specimens from visceral disease patients; (C2) Lu. cruzi and Lu. forattinii pools naturally infected by L. (L.) infantum.
the subgenus *Leishmania*: *L. (L.) infantum* (48.1%) and *L. (L.) amazonensis* (48.7%). Taking into consideration that the kDNA amplified fragments were of similar lengths, this difference in G/C ratio could explain the lower dissociation temperature observed for DNA amplicons derived from subgenus *Viannia* (77.34°C ± 0.01). For the *Leishmania* subgenus, both analyzed species formed groups with significant bootstrap values - 100% for *L. (L.) infantum* and 62% for *L. (L.) amazonensis* [Figure 2]. Differences in base composition between these two species did not interfere with the dissociation curve kinetics calculated for the respective amplified products.

In order to verify if other *Viannia* species causing CL in Brazil generated the characteristic melting profiles for the kDNA amplicons previously observed for this subgenus, the panel of *Viannia* reference strains was expanded by including *L. (V.) guyanensis*, *L. (V.) naiffi* and *L. (V.) lainsoni* promastigotes [see Additional file 2]. No significant differences were observed when the Tm values for these species, with an average of 77.36°C ± 0.02 (p > 0.05). Table 1 presents the Tm values generated from the dissociation curve analysis for each tested *Leishmania* reference strain from both subgenera. Even though different species from the same subgenus presented similar melting points, the melting curve analyses were able to distinguish between the two main etiologic agents of cutaneous and visceral leishmaniases in Brazil, *L. (V.) braziliensis* and *L. (L.) infantum*, respectively.

Methodology validation with human clinical specimens and wild sand flies

The findings revealed through the analyses of *Leishmania* promastigote reference strains were corroborated with the inclusion of DNA samples obtained from clinical specimens (peripheral blood, bone marrow aspirates and skin biopsies) of patients living in Brazilian leishmaniasis endemic areas and with confirmed diagnosis of visceral or cutaneous disease. To ensure the reproducibility of the assays, positive controls - DNA from *L. (V.) braziliensis*, *L. (V.) shawi*, *L. (L.) infantum* and *L. (L.) amazonensis* reference strains, were included in each run. Figure 1 shows the characteristic kinetic dissociation profiles for the kDNA amplicons derived from human clinical samples. The results with the VL samples indicated a typical Tm value for the subgenus *Leishmania* (78.94°C ± 0.37) [Figure 1, B2], which is differentiated from the Tm observed for the analyzed dermotropic clinical specimens (77.68°C ± 0.38) [Figure 1, B1]. These data suggest that the technique of dissociation curve analysis has the potential to be applied to discriminate between *L. (V.) braziliensis* and *L. (L.) amazonensis* infection in areas of Brazil where the distribution of these species overlaps. As for cases of visceral disease in Brazilian patients, this methodology is able to identify the etiologic agent *L. (L.) infantum*. The specificity of the method was confirmed with DNA extracted from healthy donors peripheral blood.
The molecular method was also able to differentiate between natural infections caused by *L. (V.) braziliensis* or *L. (L.) infantum* in *Lutzomyia* sand flies, which were previously positive in a diagnostic assay by multiplex conventional PCR following hybridization [17,18]. The assays were performed with DNA samples obtained from five pools of *L. intermedia* and three pools of *L. migonei* (10 insects/pool) collected in the municipality of Rio de Janeiro, in areas with notification of CL in human and dogs [17]; and, also, DNA extracted from two pools of *L. cruzi* and one pool of *L. forattini* from specimens captured in an endemic VL area in the municipality of Corumbá, Mato Grosso do Sul State [18]. As displayed in Figure 1 the data from these specimens were in accordance with our findings, revealing kinetic dissociation profiles compatible with the characteristic Tm previously observed for *L. (V.) braziliensis* (77.25°C ± 0.15) in pools of *L. intermedia/L. migonei* [Figure 1, C1], and for *L. (L.) infantum* (78.98°C ± 0.10) in pools of *L. cruzi/L. forattini* [Figure 1, C2].

DNAs from other Trypanosomatids that also parasitize the hosts of *Leishmania*, such as *Trypanosoma cruzi* (mammalian host) and *Endotrypanum* (invertebrate host), as well as other species closely related (*Herpetomonas, Phytomonas, Crithidia*) were tested for the specificity of the assay. DNA from uninfected *Lutzomyia* was also assayed as a negative control. There was no amplification of DNA in these assays.

Table 1 summarizes the data obtained through the analyses of cultivated *Leishmania* promastigotes, human clinical specimens and naturally infected phlebotomine sand flies.

Molecular markers and PCR-based systems for the diagnosis of *Leishmania* infection

Restriction fragment length polymorphism (RFLP) analyses of PCR-amplified products from multicopy genes have shown promising results in detecting *Leishmania* species and in clarifying the molecular diversity and relationships within *Leishmania* spp. [22-24]. PCR-based methods with further molecular typing by sequence analysis have also been described [25,26]. Real-time PCR is currently considered as an emerging technology for the detection, genetic characterization and quantification of protozoan parasites. By using the Light-Cycler SYBR Green system targeting minicircles kDNA, Nicolas et al. (2002) were able to differentiate four important *Leishmania* species from the Old World [8]. More recently, the performance of PCR-RFLP for the internal transcribed spacer of ribosomal RNA (ITS1) and SYBR Green-based real-time PCR focused on kDNA were compared, with the aim of identifying *L. (L.) infantum, L. (L.) major* and *L. (L.) tropica/killicki*, the etiologic agents of CL in Tunis, directly from human skin scrapings [6]. This comparison revealed a failure of the kDNA real-time PCR method in identifying the Tunisian *L. (L.) tropica/L. (L.) killicki* in 5 out of 27 samples, which the authors attributed to the kinetoplast DNA polymorphism found in *Leishmania* strains. Thus, it was suggested that standardization of kDNA real-time PCR is needed to allow interlaboratory comparisons and...
maximize repeatability. A recent investigation reported the discriminatory power of a new high-resolution tool for the dissociation analysis of PCR products derived from the ITS1 gene [11]. The high resolution melt analysis (HRM) could distinguish between all Old World Leishmania species causing human disease, except L. (L.) infantum from L. (L.) donovani, which presented similar HRM curves. Other studies also demonstrated the ability of melting curve analysis to distinguish Leishmania parasites up to subgenus, complex or species level, through the use of different targets, such as the 18S rDNA sequences [10], gp63 [27] and glucose-6-phosphate dehydrogenase (g6pd) [7]. Alternatively, a TaqMan-based real-time PCR for the detection of glucosephosphate isomerase (GPI) gene was able to discriminate between four Leishmania groups - subgenus Viannia and the complexes L. (L.) mexicana, L. (L.) donovani/infantum and L. (L.) major [12].

Accurate and sensitive procedures for the diagnosis of Leishmania infection and species identification directly from clinical material or through the analysis of phlebotomine sand flies are still required to enable adequate treatment and appropriate leishmaniases control. Identification of the prevalent Leishmania species in sand flies can alert clinicians to potential subsequent human cases in a determined geographic area. In this sense, the use of kDNA minicircles on PCR-based assays coupled to isotopic hybridization has been shown to offer enhanced sensitivity over more traditional diagnostic methods to evaluate natural infection in sand fly vectors from Brazil, allowing DNA detection corresponding to only one Leishmania parasite presented in pools of 10 male phlebotomine insects in reconstituted samples [17]. This high sensitivity is partly due to the elevated copy number of the target kDNA minicircles, which are represented in approximately 10,000 copies per parasite genome. Compared with conventional PCR tests targeting kinetoplast DNA, the most important implication of the assay herein reported is the ability to rapidly discriminate among the pathogenic species representing the most common causative agents of cutaneous and visceral leishmaniasis in Brazilian endemic areas. Similar kinetic dissociation profiles were observed for the amplified products derived from subgenus Viannia reference strains, skin biopsies from L. (V.) braziliensis-related CL patients and Lutzomyia sand flies infected by L. (V.) braziliensis. Likewise, the analyses performed with promastigotes from subgenus Leishmania were in accordance to the results obtained with the set of clinical specimens from VL patients and sand fly vectors infected by L. (L.) infantum.

Conclusions

Based on the sequence-dependent thermal dissociation properties, despite the analysis of a relatively small sample set, our data suggest that SYBR Green-based real-time PCR targeting the conserved minicircles region from kinetoplast DNA provides a rapid, sensitive and simple alternative for the precise identification of Leishmania subgenera. This methodology was able to discriminate among the human-pathogenic species representing the most common causative agents of cutaneous and visceral leishmaniasis in Brazilian endemic areas. Similar kinetic dissociation profiles were observed for the amplified products derived from subgenus Viannia reference strains, skin biopsies from L. (V.) braziliensis-related CL patients and Lutzomyia sand flies infected by L. (V.) braziliensis. Likewise, the analyses performed with promastigotes from subgenus Leishmania were in accordance to the results obtained with the set of clinical specimens from VL patients and sand fly vectors infected by L. (L.) infantum.

Additional material

Additional file 1: Kinetoplast DNA minicircles conserved region sequences This file contains the 12 generated sequences from amplified kDNA minicircles conserved region, representing three clones for each analyzed Leishmania reference strain - L. (V.) braziliensis, L. (V) shawi, L. (L.) infantum chagasi, L. (L.) amazonensis.

Additional file 2: Melting curve analyses of the conserved motifs of kDNA amplicons This file displays the characteristic SYBR Green dissociation profiles of kDNA amplified conserved regions after submitting the amplicons to a gradual temperature increase. The upper graphic represents reference strains of the Leishmania subgenus - L. amazonensis, L. infantum, with an estimated melting temperature (Tm) of 78.95°C ± 0.01. The lower graphic shows the resulting melting analysis for the Viannia subgenus reference strains - L. guyanensis, L. lansoni, L. nanti, L. braziliensis, L. shawi, where an average Tm of 77.36°C ± 0.02 was found. There was a significant difference between the Tm values of the two Leishmania subgenera (p < 0.001 - Mann-Whitney Rank Sum Test).

List of abbreviations

KDNA: kinetoplast DNA; SYBR Green: N', N'-dimethyl-N-[4-[(E)-3-methyl-1,3-benzothiazol-2-ylidene]-methyl-1-phenylquinoxalin-1-ium-2-yl]-N- propylpropane-1,3-diamine; PCR: Polymerase Chain Reaction; Tm: melting temperature; CL: Cutaneous Leishmaniais; VL: Visceral Leishmaniais; gp63.
major surface glycoprotein of 63-kDa, hsp70; heat shock protein of 70-kDa; rRNA: ribosomal RNA; G/C: guanine/cytosine; RFLP: Restriction fragment length polymorphism; ITS1: Internal Transcribed Spacer, 18S rDNA: small subunit of the ribosomal DNA; EDTA: Ethylenediamine tetraacetic acid.

Acknowledgements

The authors are grateful to the Leishmania collection (CLIOC) and the Protozoa collection (COLPROT), both from Instituto Oswaldo Cruz/Fiocruz, Rio de Janeiro, for providing the Leishmania reference strains and closely related trypanosomatids; to Maria Angela Batista Cardoso for the support on the Real Time PCR-based platform; to the Program for Technological Adaptation of figures and table, and revising the English grammar. RPB contributed to sand fly captures and the taxonomic identification of sand flies. BASP and OCM participated with the statistical analysis, and RPB performed the final version of the manuscript. All authors read and approved the final manuscript.

Competing interests

The authors declare that they have no competing interests.

Received: 26 August 2011 Accepted: 12 January 2012
Published: 12 January 2012

References

1. Cupolloli E, Medina-Acosta E, Noyes H, Momen H, Grimaldi G Jr: A revised classification for Leishmania and Endotrypanum. Parasitol Today 2000, 16:142-144.
2. Kuhl K, Alain MZ, Cupolloli E, Ferreira GEM, Mauricio IL, Oddene R, Felicianelli MG, Wein T, Miles MA, Schönian G: Comparative microsatellite typing of New World Leishmania infantum reveals low heterogeneity among populations and its recent Old World origin. PLoS Negl Trop Dis 2011, 5(6):e1155.
3. Rangel EF, Lahnson R: Proven and putative vectors of American cutaneous leishmaniasis in Brazil: aspects of their biology and vectorial competence. Mem Inst Oswaldo Cruz 2009, 104(suppl 7):937-954.
4. Schönian G, Mauricio I, Gramoccia M, Caravaca C, Boelant M, Djurdjan JC: Leishmaniasis in the Mediterranean in the era of molecular epidemiology. Trends Parasitol 2008, 24:135-142.
5. Tavares CA, Fernandes AP, Melo MN: Molecular diagnosis of leishmaniasis. Expert Rev Mol Diagn 2003, 3:657-667.
6. Ben Abdoun M, Monbrison F, Bouissima N, Azou K, Bourabtine A, Picot S: Advantages and limits of real-time PCR assay and PCR-restriction fragment length polymorphism for the identification of cutaneous Leishmania species in Tunisia. Trans R Soc Trop Med Hyg 2010, 105(suppl 1):17-22.
7. Castilho TM, Camargo LM, McMahon-Pratt D, Shaw JJ, Floeter-Winter LM: A real-time polymerase chain reaction assay for the identification and quantification of American Leishmania species on the basis of glucose-6-phosphate dehydrogenase. Am J Trop Med Hyg 2008, 78(suppl 1):122-132.
8. Nicolau LS, Nixou G, Prina E: Rapid differentiation of Old World Leishmania species by LightCycler polymerase chain reaction and melting curve analysis. J Microbiol Methods 2002, 51(suppl 3):295-299.
9. Quipe-Tintaya KW, Laurent T, Decuypere S, Hide M, Ranulis AL, Doncker SD, Rijal S, Canavate C, Campino L, Djurdjan JC: Fluorescent assay for molecular typing of the Leishmania donovani complex: taxonomic and clinical applications. J Infect Dis 2005, 192:685-691.
10. Schönian G, Mellenkna K, Schönian G, Fleischer B, Drosten C, Detection, identification and quantification of pathogenic leishmania organisms by a fluorescence resonance energy transfer-based real-time PCR assay. J Clin Microbiol 2003, 41(suppl 4):1529-1533.
11. Talmai-Frank D, Nasereddin A, Schnur LF, Schönian G, Töz SO, Jaffe CL, Baneth G: Detection and identification of Old World Leishmania by high resolution melt analysis. PLoS Negl Trop Dis 2010, 4:e581.
12. Wortmann G, Hochberg L, Houng HL, Sweeney C, Zapor M, Aronson N, Weina P, Ockenhouse CF: Rapid identification of Leishmania complexes by a real-time PCR assay. Am J Trop Med Hyg 2005, 73(suppl 6):999-1004.
13. Wortmann G, Hochberg LP, Arana BA, Razo NR, Arana F, Ryan JR: Diagnosis of cutaneous leishmaniasis in Guatemala using a real-time polymerase chain reaction assay and the smartcytmer. Am J Trop Med Hyg 2007, 76(suppl 5):906-908.
14. Ullana SR, Affkonso MH, Camargo EF, Floeter-Winter LM: Leishmania: genus identification based on a specific sequence of the 18S ribosomal RNA sequence. Exp Parasitol 1991, 72:157-163.
15. Pita-Pereira D, da Silva Trajano V, Pires-Oliveira Neto M, Dazan-AM, Goncalves-da Costa SC, Catanho M, Degwore V, Fernandes O: Use of PCR in diagnosis of human American tegumentary leishmaniasis in Rio de Janeiro, Brazil. J Clin Microbiol 1999, 37(suppl 6):1819-1823.
16. Fraga TL, Brustoloni YM, Lima RB, Donval ME, Osório ET, Oliveira J, Oliveira AL, Pimente PA: Polymerase chain reaction of peripheral blood as a tool for the diagnosis of visceral leishmaniasis in children. Mem Inst Oswaldo Cruz 2010, 105(suppl 3):310-313.
17. Pita-Pereira D, Alves CR, Souza MA, Brazil RP, Bertho AL, Barbosa AF, Britto C: Identification of naturally infected Lutzomyia intermedia and Lutzomyia migonei with Leishmania (Viannia) braziliensis in Rio de Janeiro (Brazil) revealed by a PCR multiplex non-isotopic hybridization assay. Trans R Soc Trop Med Hyg 2005, 99:903-913.
18. Pita-Pereira D, Cardoso MA, Alves CR, Brazil RP, Britto C: Detection of natural infection in Lutzomyia cruzi and Lutzomyia forattini (Diptera: Psychodidae:Phlebotominae) by Leishmania infantum chagasi in an endemic area of visceral leishmaniasis in Brazil using a PCR multiplex assay. Acta Trop 2008, 107:66-69.
19. Passos VM, Lasmar EB, Gonçalo OM, Fernandes O, Degwre V: Detection of Leishmania (Viannia) braziliensis in an endemic area of visceral leishmaniasis in Brazil using a PCR multiplex assay. Acta Trop 2008, 107:66-69.
20. Kumar S, Tamura K, Nei M: MEGA3: Integrated software for molecular evolutionary genetics analysis and sequence alignment. Brief Bioinform 2004, 5(2):150-163.
21. Cupolloli E, Grimaldi G Jr, Momen H, Beverley SM: Intergenic region typing (IRT): a rapid molecular approach to the characterization and evolution of Leishmania. Mol Biochem Parasitol 1993, 73:145-157.
22. Marfurt J, Niederwieser I, Makia ND, Beck HP, Felger I: Diagnostic genotyping of Old and New World Leishmania species by PCR-RFLP. Diagn Microbiol Infect Dis 2003, 46:115-124.
23. Roturera B, Ravel C, Couppel P, Pratlong F, Nacher M, Dedet JP, Carme B: Use of PCR-restriction fragment length polymorphism analysis to identify the main New World Leishmania species and analyze their taxonomic properties and polymorphism by application of the assay to clinical samples. J Clin Microbiol 2006, 44(suppl 2):459-467.
24. Foulet F, Bottereau F, Buffet P, Morzot G, Rivoletter D, Deniau M, Pratlong F, Costa JM, Bretagne S: Detection and identification of Leishmania species from clinical specimens by using a real-time PCR assay and sequencing of the cytochrome b gene. J Clin Microbiol 2007, 45(suppl 7):2110-2115.
26. Gangneux JP, Menotti J, Lorenzo F: Prospective value of PCR amplification and sequencing for diagnosis and typing of old world Leishmania infections in an area of nonendemicity. J Clin Microbiol 2003, 41:1419-1422.

27. Tupperwar N, Vineeth V, Rath S, Vaidya T: Development of a real-time polymerase chain reaction assay for the quantification of Leishmania species and the monitoring of systemic distribution of the pathogen. Diagn Microbiol Infect Dis 2008, 61(suppl 1):23-30.

28. Bensoussan E, Naereuddin A, Jonas F, Schnur LF, Jaffe CL: Comparison of PCR assays for diagnosis of cutaneous leishmaniasis. J Clin Microbiol 2006, 44:1435-1439.

29. Bulle B, Millon L, Bart JM, Gallego M, Gambarelli F, Portus M, Schnur L, Jaffe CL, Fernandez-Barredo S, Alunda JM, Piarroux R: Practical approach for typing strains of Leishmania infantum by microsatellite analysis. J Clin Microbiol 2002, 40:3391-3397.

doi:10.1186/1756-3305-5-15

Cite this article as: Pita-Pereira et al: SYBR Green-based Real-Time PCR targeting kinetoplast DNA can be used to discriminate between the main etiologic agents of Brazilian cutaneous and visceral leishmaniases. Parasites & Vectors 2012 5:15.

Submit your next manuscript to BioMed Central and take full advantage of:

- Convenient online submission
- Thorough peer review
- No space constraints or color figure charges
- Immediate publication on acceptance
- Inclusion in PubMed, CAS, Scopus and Google Scholar
- Research which is freely available for redistribution

Submit your manuscript at www.biomedcentral.com/submit