REDUCTION OF REAL POWER LOSS BY IMPROVED SHUFFLED FROG-LEAPING ALGORITHM

Dr. Lenin Kanagasabai *1
*1 Professor, Department of EEE, Prasad V.Potluri Siddhartha Institute of Technology, Kanuru, Vijayawada, Andhra Pradesh -520007, India

Abstract

This paper presents Improved Shuffled Frog-Leaping (ISFL) algorithm for solving optimal reactive power problem. A new search-acceleration parameter has been introduced into the formulation of the original shuffled frog leaping (SFL) algorithm to create an adapted form of the shuffled frog algorithm for solving the reactive power problem. The shuffled frog-leaping algorithm draws its formulation from two other search techniques: the local search of the ‘particle swarm optimization’ technique; and the competitiveness mixing of information of the ‘shuffled complex evolution’ technique. Proposed Improved Shuffled Frog-Leaping (ISFL) algorithm has been tested in standard IEEE 30,57,118 & Practical 191 Utility (Indian) System bus test systems and simulation results show clearly about the better performance of the proposed algorithm in reducing the real power loss & control variables within the limits.

Keywords: Optimal Reactive Power; Transmission Loss; Evolutionary Algorithms; Shuffled Frog Leaping; Shuffled Complex Evolution.

Cite This Article: Dr. Lenin Kanagasabai. (2018). “REDUCTION OF REAL POWER LOSS BY IMPROVED SHUFFLED FROG-LEAPING ALGORITHM.” International Journal of Research - Granthaalayah, 6(10), 146-157. https://doi.org/10.29121/granthaalayah.v6.i10.2018.1172.

1. Introduction

To till date various methodologies has been applied to solve the Optimal Reactive Power problem. Many types of mathematical methodologies like linear programming, gradient method [1-8] has been utilized to solve the reactive power problem, but those techniques found difficult in handling the constraints in the reactive power problem. After that various types of evolutionary algorithms [9-12] has been applied to solve the reactive power problem. But some algorithm good in exploration means, it lacks in exploitation and few algorithm’s good in exploitation but lack in exploration. Speed of convergence is poor for some algorithms even though they got good trade-off between exploration and exploitation. This paper presents Improved Shuffled Frog-Leaping (ISFL) algorithm for solving optimal reactive power problem. A new search-acceleration parameter has been introduced into the formulation of the original shuffled frog leaping (SFL) algorithm [13-15] to create an adapted form of the shuffled frog algorithm for solving the reactive
power problem. The shuffled frog-leaping algorithm draws its formulation from two other search techniques: the local search of the ‘particle swarm optimization’ technique; and the competitiveness mixing of information of the ‘shuffled complex evolution’ technique. Proposed Improved Shuffled Frog-Leaping (ISFL) algorithm has been tested in standard IEEE 30,57,118 & Practical 191 Utility (Indian) System bus test systems and simulation results show clearly about the better performance of the proposed algorithm in reducing the real power loss & control variables within the limits.

2. Objective Function

Active Power Loss
Main objective of the reactive power dispatch problem is to minimize the active power loss and mathematically written by,

\[
F = P_L = \sum_{k \in \text{Nbr}} g_k \left(V_i^2 + V_j^2 - 2V_iV_j\cos\theta_{ij} \right)
\]

(1)

Where F- objective function, \(P_L \) – power loss, \(g_k \) - conductance of branch, \(V_i \) and \(V_j \) are voltages at buses i,j, Nbr- total number of transmission lines in power systems.

Voltage Profile Improvement
Objective function (F) has be rewritten to minimize the voltage deviation in PQ buses as follows,

\[
F = P_L + \omega_v \times VD
\]

(2)

Where VD - voltage deviation, \(\omega_v \) - is a weighting factor of voltage deviation.

And the Voltage deviation given by:

\[
VD = \sum_{i=1}^{Npq} |V_i - 1|
\]

(3)

Where Npq- number of load buses

Equality Constraint
the power balance equation with respect to the equality constraint of the problem is written as follows:

\[
P_G = P_D + P_L
\]

(4)

Where \(P_G \)- total power generation, \(P_D \) - total power demand.

Inequality Constraints
The inequality constraint with upper and lower bounds on the active power of slack bus \((P_g) \), and reactive power of generators \((Q_g) \) are written as follows:

\[
P_{g\text{slack}}^{\text{min}} \leq P_{g\text{slack}} \leq P_{g\text{slack}}^{\text{max}}
\]

(5)
Upper and lower bounds on the bus voltage magnitudes (V_i) is given by:

$$V_i^{\text{min}} \leq V_i \leq V_i^{\text{max}}, i \in \mathbb{N}$$ \hfill (7)

Upper and lower bounds on the transformers tap ratios (T_i) is given by:

$$T_i^{\text{min}} \leq T_i \leq T_i^{\text{max}}, i \in \mathbb{N}_T$$ \hfill (8)

Upper and lower bounds on the compensators (Q_c) is given by:

$$Q_{c_i}^{\text{min}} \leq Q_c \leq Q_{c_i}^{\text{max}}, i \in \mathbb{N}_C$$ \hfill (9)

Where \mathbb{N} is the total number of buses, \mathbb{N}_g is the total number of generators, \mathbb{N}_T is the total number of Transformers, \mathbb{N}_C is the total number of shunt reactive compensators.

3. Shuffled Frog-Leaping Algorithm

The shuffled frog-leaping algorithm (SFL) is a memetic metaheuristic that is designed to seek a global optimal solution by performing a heuristic search. It is based on the evolution of memes carried by individuals and a global exchange of information among the population. In essence, it combines the benefits of the local search tool of the particle swarm optimization and the idea of mixing information from parallel local searches to move toward a global solution. The SFL algorithm has been tested on several combinatorial problems and found to be efficient in finding global solutions. The SFL algorithm involves a population of possible solutions defined by a set of frogs (i.e. solutions) that is partitioned into subsets referred to as memeplexes. The different memeplexes are considered as different cultures of frogs, each performing a local search. Within each memeplex, the individual frogs hold ideas, that can be influenced by the ideas of other frogs, and evolve through a process of memetic evolution. After a number of memetic evolution steps, ideas are passed among memeplexes in a shuffling process. The local search and the shuffling processes continue until convergence criteria are satisfied.

First, an initial population of ‘P’ frogs is created randomly. For S-dimensional problems, each frog i is represented by S variables as $X_i=(x_{i1}, x_{i2}, \ldots, x_{iS})$. The frogs are sorted in a descending order according to their fitness. Then, the entire population is divided into m memeplexes, each containing n frogs (i.e. $P=m\times n$). In this process, the first frog goes to the first memeplex, the second frog goes to the second memeplex, frog m goes to the mth memeplex, and frog $m+1$ goes to the first memeplex, and so on. Within each memeplex (figure 1b), the frogs with the best and the worst fitness are identified as X_b and X_w, respectively. Also, the frog with the global best fitness is identified as X_g. Then, an evolution process is applied to improve only the frog with the worst fitness (i.e. not all frogs) in each cycle. Accordingly, the position of the frog with the worst fitness is adjusted as follows:

$$\text{change in frog position } (D_i) = \text{rand}() \cdot (X_b - X_w)$$ \hfill (10)
new position $X_w = \text{current position } X_w + D_i ; \ (D_{\text{max}} \geq D_i \geq -D_{\text{max}})$ (11)

Where $\text{rand}()$ is a random number between 0 and 1; and D_{max} is the maximum allowed change in a frog’s position. If this process produces a better frog (solution), it replaces the worst frog. Otherwise, the calculations in equations (10) and (11) are repeated with respect to the global best frog (i.e. X_g replaces X_b). If no improvement becomes possible in this latter case, then a new solution is randomly generated to replace the worst frog with another frog having any arbitrary fitness. The calculations then continue for a specific number of evolutionary iterations within each memeplex. The main parameters of the SFL algorithm are: number of frogs P, number of memeplexes, and number of evolutionary iterations for each memeplex before shuffling.

4. Improved Shuffled Frog-Leaping (ISFL) Algorithm

In the SFL algorithm, each memeplex is allowed to evolve independently to locally search at different regions of the solution space. In addition, shuffling all the memeplexes and re-dividing them again into a new set of memeplexes results in a global search through changing the information between memeplexes. As such, the SFL algorithm attempts to balance between a wide search of the solution space and a deep search of promising locations that are close to a local optimum.

As expressed by equation (10), each individual frog (solution) in a memeplex is trying to change its position towards the best frog within the memeplex or the overall best frog. As shown in this equation, when the difference in position between the worst frog X_w (i.e. the frog under evolution) and the best frogs (X_b or X_g) becomes small, the change in frog X_w’s position will be very small, and thus it might stagnate at a local optimum and lead to premature convergence. To overcome such an occurrence, this Improved Shuffled Frog-Leaping (ISFL) algorithm proposes that the right-hand side of equation (10) be multiplied by a factor C called the ‘search–acceleration factor’, as follows:

$$\text{change in frog position } (D_i) = \text{rand}() \cdot C \cdot (X_b - X_w)$$ (12)
Assigning a large value to the factor C at the beginning of the evolution process will accelerate the global search by allowing for a bigger change in the frog’s position and accordingly will widen the global search area. Then, as the evolution process continues and a promising location is identified, the search – acceleration factor, C, will focus the process on a deeper local search as it will allow the frogs to change its positions. The search – acceleration factor, which can be a positive constant value, linear, or nonlinear function of time, provides the means to balance between global and local search.

Start
Determine Population size (p), Number of memeplexes (m) Iterations within each memeplex
Generate population (p) randomly
Evaluate the fitness of (p)
Sort (p) in descending order
Partition p into m memeplexes
Shuffle the memeplexes
Is Convergence criteria satisfied?
If yes determine the best solution
If no go back to step e
End

In order to intensify the search, the algorithm has been modified as follows,
When m=m+1, it=it+1 then determine
x_b, x_w, x_g.
Apply equations (10,11)
Is new frog is better than worst?
If no- apply equations (10, 11) with replacing x_b by x_g.
If yes -go to step 5.
Is new frog better than worst?
If no generate new frog randomly.
If yes go to step 5.
Replace worst frog
End
Else go back to determine m and it again
Where m = no of memeplexes
It = no of iterations

5. Simulation Results

In standard IEEE 30-bus, 41 branch system validity of proposed Improved Shuffled Frog-Leaping (ISFL) algorithm has been verified and the system has 6 generator-bus voltage magnitudes, 4 transformer-tap settings, and 2 bus shunt reactive compensators. 2, 5, 8, 11 and 13 are considered as PV generator buses, Bus 1 is taken as slack bus and others are PQ load buses. Primary variables limits are given in Table 1.
In Table 2 the power limits of generators buses are listed.

Bus	Pg	Pgminimum	Pgmaximum	Qgminimum	Qmaximum
1	96.00	49	200	0	10
2	79.00	18	79	-40	50
5	49.00	14	49	-40	40
8	21.00	11	31	-10	40
11	21.00	11	28	-6	24
13	21.00	11	39	-6	24

Table 3 shows the proposed Improved Shuffled Frog-Leaping (ISFL) algorithm successfully kept the control variables within limits. Table 4 narrates about the performance of the proposed Improved Shuffled Frog-Leaping (ISFL) algorithm. Table 5 list out the overall comparison of the results of optimal solution obtained by various methods.

List of Control Variables	ISFL
V1	1.0379
V2	1.0286
V5	1.0198
V8	1.0232
V11	1.0542
V13	1.0346
T4,12	0.00
T6,9	0.00
T6,10	0.90
T28,27	0.90
Q10	0.10
Q24	0.10
Real power loss	4.2586
Voltage deviation	0.9098

Table 4: Performance of ISFL algorithm

Iterations	34
Time taken (secs)	10.92
Real power loss	4.2586
Table 5: Comparison of results

List of Techniques	Real power loss (MW)
SGA (Wu et al., 1998) [16]	4.98
PSO (Zhao et al., 2005) [17]	4.9262
LP (Mahadevan et al., 2010) [18]	5.988
EP (Mahadevan et al., 2010) [18]	4.963
CGA (Mahadevan et al., 2010) [18]	4.980
AGA (Mahadevan et al., 2010) [18]	4.926
CLPSO (Mahadevan et al., 2010) [18]	4.7208
HSA (Khazali et al., 2011) [19]	4.7624
BB-BC (Sakthivel et al., 2013) [20]	4.690
MCS (Tejaswini Sharma et al., 2016) [21]	4.87231
Proposed ISFL	4.2586

At that Improved Shuffled Frog-Leaping (ISFL) algorithm has been tested in standard IEEE-57 bus power system. The reactive power compensation buses are 18, 25 and 53. Bus 2, 3, 6, 8, 9 and 12 are PV buses and bus 1 is selected as slack-bus. The system variable limits are given in Table 6.

The preliminary conditions for the IEEE-57 bus power system are given as follows:
Pload = 12.108 p.u. Qload = 3.012 p.u.
The total initial generations and power losses are obtained as follows:
\[\sum P_G = 12.148 \text{ p.u.} \sum Q_G = 3.3123 \text{ p.u.} \]
Ploss = 0.25832 p.u. Qloss = -1.2041 p.u.
Table 7 shows the various system control variables i.e. generator bus voltages, shunt capacitances and transformer tap settings obtained after optimization which are within the acceptable limits. In Table 8, shows the comparison of optimum results obtained from proposed methods with other optimization techniques. These results indicate the robustness of proposed approaches for providing better optimal solution in case of IEEE-57 bus system.

Table 6: Variable Limits

Reactive Power Generation Limits
Bus no
Qgmin
Qgmax

Voltage And Tap Setting Limits
vGmin
0.9

Shunt Capacitor Limits
Bus no
Qcmin
Qcmax
Table 7: Control variables obtained after optimization

Control Variables	ISFL
V1	1.10
V2	1.022
V3	1.028
V6	1.020
V8	1.021
V9	1.000
V12	1.000
Qc18	0.0600
Qc25	0.200
Qc53	0.0401
T4-18	1.000
T21-20	1.023
T24-25	0.802
T24-26	0.801
T7-29	1.002
T34-32	0.804
T11-41	1.010
T15-45	1.029
T14-46	0.910
T10-51	1.020
T13-49	1.060
T11-43	0.910
T40-56	0.900
T39-57	0.950
T9-55	0.950

Table 8: Comparison results

S.No.	Optimization Algorithm	Finest Solution	Poorest Solution	Normal Solution
1	NLP [22]	0.25902	0.30854	0.27858
2	CGA [22]	0.25244	0.27507	0.26293
3	AGA [22]	0.24564	0.26671	0.25127
4	PSO-w [22]	0.24270	0.26152	0.24725
5	PSO-cf [22]	0.24280	0.26032	0.24698
6	CLPSO [22]	0.24515	0.24780	0.24673
7	SPSO-07 [22]	0.24430	0.25457	0.24752
8	L-DE [22]	0.27812	0.41909	0.33177
9	L-SACP-DE [22]	0.27915	0.36978	0.31032
10	L-SaDE [22]	0.24267	0.24391	0.24311
11	SOA [22]	0.24265	0.24280	0.24270
12	LM [23]	0.2484	0.2922	0.2641
13	MBEP1 [23]	0.2474	0.2848	0.2643
Then Improved Shuffled Frog-Leaping (ISFL) algorithm has been tested in standard IEEE 118-bus test system [24]. The system has 54 generator buses, 64 load buses, 186 branches and 9 of them are with the tap setting transformers. The limits of voltage on generator buses are 0.95 -1.1 per-unit., and on load buses are 0.95 -1.05 per-unit. The limit of transformer rate is 0.9 -1.1, with the changes step of 0.025. The limitations of reactive power source are listed in Table 9, with the change in step of 0.01.

The statistical comparison results have been listed in Table 10 and the results clearly show the better performance of proposed Improved Shuffled Frog-Leaping (ISFL) algorithm in reducing the real power loss.

Finally Improved Shuffled Frog-Leaping (ISFL) algorithm has been tested in practical 191 test system and the following results have been obtained. In Practical 191 test bus system – Number of Generators = 20, Number of lines = 200, Number of buses = 191 Number of transmission lines = 55. Table 16 shows the optimal control values of practical 191 test system obtained by ISFL. And table 17 shows the results about the value of the real power loss by obtained by proposed Algorithm.
Table 17: Optimum Real Power Loss Values Obtained For Practical 191 Utility (Indian) System by ISFL.

Real power Loss (MW)	ISFL
Min	146.4140
Max	149.4651
Average	147.0040

6. Conclusion

In this paper Improved Shuffled Frog-Leaping (ISFL) algorithm successfully solved the optimal reactive power problem. The shuffled frog-leaping algorithm draws its formulation from two other search techniques: the local search of the ‘particle swarm optimization’ technique; and the competitiveness mixing of information of the ‘shuffled complex evolution’ technique. Proposed Improved Shuffled Frog-Leaping (ISFL) algorithm has been tested in standard IEEE 30, 57, 118 & Practical 191 Utility (Indian) System bus test systems and simulation results show clearly about the better performance of the proposed algorithm in reducing the real power loss & control variables within the limits.

References

[1] Alsac.O and B. Scott, (1973) “Optimal load flow with steady state security”, IEEE Transaction. PAS, pp. 745-751.

[2] Lee K.Y, Paru Y.M,Oritz J.L,(1985) “A united approach to optimal real and reactive power dispatch”, IEEE Transactions on power Apparatus and systems, PAS-104 : 1147-1153
[3] Monticelli.A.M.V.F Pereira , and S. Granville, (1987) “Security constrained optimal power flow with post contingency corrective rescheduling”, IEEE Transactions on Power Systems :PWRS-2, No. 1, pp.175-182.

[4] Deeb.N,ShahidehpurS.M, (1990) “Linear reactive power optimization in a large power network using the decomposition approach”,IEEE Transactions on power system, 5(2) : 428-435.

[5] Hobson.E, (1980), “Network constrained reactive power control using linear programming”, IEEE Transactions on power systems PAS -99 (4), pp 868-877.

[6] Lee. K.Y, Y.M Park, and J.L Ortiz, (1993) “Fuel –cost optimization for both real and reactive power dispatches”, IEE Proc; 131C,(3), pp.85-93.

[7] Mangoli.M.K and K.Y. Lee, (1993), “Optimal real and reactive power control using linear programming”, Electr.PowerSyst.Res, Vol.26, pp.1-10.

[8] Canizares.C,A.,A.C.Z.de Souza and V.H. Quintana ,(1996) “Comparison of performance indices for detection of proximity to voltage collapse ,”vol. 11.no.3, pp.1441-1450.

[9] Berizzi.C.Bovo,M.Merlo, and M.Delfanti,(2012), “A GA approach to compare orpf objective functions including secondary voltage regulation,” Electric Power Systems Research, vol. 84, no. 1, pp. 187 – 194.

[10] Roy.P,S.Ghoshal, and S.Thakur,(2012),“Optimal var control for improvements in voltage profiles and for real power loss minimization using biogeography based optimization,” International Journal of Electrical Power and Energy Systems, vol. 43, no. 1, pp. 830 – 838.

[11] Hu.Z,X.Wang, and G.Taylor,(2010),“Stochastic optimal reactive power dispatch: Formulation and solution method,” International Journal of Electrical Power and Energy Systems, vol. 32, no. 6, pp. 615 – 621.

[12] Eleftherios I. Amoiralis, Pavlos S. Georgilakis, Marina A. Tsili, Antonios G. Kladas,(2010), “Ant Colony Optimisation solution to distribution transformer planning problem”, International Journal of Advanced Intelligence Paradigms , Vol.2, No.4 , pp.316 – 335.

[13] Luo, F.F., Chen, G.L., Guo, W.Z.: An improved ‘fish-search’ algorithm for information retrieval. In: Proceedings of IEEE International Conference on Natural Language, Processing and Knowledge Engineering (NLP-KE 2005), Wuhan, China, pp. 523–528 (2005)

[14] Carmelo J.A.Bastos Filho , Fernando B. de Lima Neto , Anthony J.C.C.Lins , Antonio I.S. Nascimento , Marilia P.Lima , Fish school search nature – inspired algorithms for optimization studies in computational intelligence vol 193 , 2009 , pp 261-277

[15] Eusuff, M.M. and Lansey, K.E., Optimization of water distribution network design using the shuffled frog leaping algorithm. J. Water Resour. Planning Mgmt, 2003, 129, 210 – 225.

[16] Wu.Q.H,Y.J.Cao,and J.Y.Wen,(1998),“Optimal reactive power dispatch using an adaptive genetic algorithm”, Int.J.Elect.Power Energy Syst. Vol 20. Pp. 563-569.

[17] Zhao.B,C.X.Guo,and Y.J.CAO,(2005), “Multiagent-based particle swarm optimization approach for optimal reactive power dispatch”,IEEE Trans. Power Syst. Vol. 20, no. 2, pp. 1070-1078.

[18] Mahadevan.K, KannaN.P.S,(2010)“Comprehensive Learning Particle Swarm Optimization for Reactive Power Dispatch”, Applied Soft Computing, Vol. 10, No. 2, pp. 641–52.

[19] Khazali.A.H.M.Kalantar,(2011),“Optimal Reactive Power Dispatch based on Harmony Search Algorithm”, Electrical Power and Energy Systems, Vol. 33, No. 3, pp. 684–692.

[20] Sakthivel.S.M,Gayathri,V.Manimozhi,(2013),“A Nature Inspired Optimization Algorithm for Reactive Power Control in a Power System”, International Journal of Recent Technology and Engineering,pp29-33Vol.2,Issue-1.

[21] Tejaswini Sharma, Laxmi Srivastava, Shishir Dixit (2016). “Modified Cuckoo Search Algorithm For Optimal Reactive Power Dispatch”, Proceedings of 38 th IRF International Conference, pp4-8. 20th March, 2016, Chennai, India, ISBN: 978-93-85973-76-5.

[22] Chaohua Dai, Weirong Chen, Yunfang Zhu, and Xuexia Zhang, “Seeker optimization algorithm for optimal reactive power dispatch,” IEEE Trans. Power Systems, Vol. 24, No. 3, August 2009, pp. 1218-1231.
[23] J. R. Gomes and O. R. Saavedra, “Optimal reactive power dispatch using evolutionary computation: Extended algorithms,” IEE Proc.-Gener. Transm. Distrib. Vol. 146, No. 6. Nov. 1999.

[24] IEEE, “The IEEE 30-bus test system and the IEEE 118-test system”, (1993), http://www.ee.washington.edu/trsearch/pstca/.

[25] Jiangtao Cao, Fuli Wang and Ping Li, “An Improved Biogeography-based Optimization Algorithm for Optimal Reactive Power Flow” International Journal of Control and Automation Vol.7, No.3 (2014), pp.161-176

*Corresponding author.
E-mail address: gklenin@gmail.com