Review

Systematic review on medicinal plants used for the treatment of Giardia infection

Sultan Alnomasy a, Ghaidaar Raheem Lateef Al-Awst b, Yosra Raziani c, Aishah E. Albalawi d, Abdullah D. Alanazi e, Massumeh Niazi f, Hossein Mahmoudvand g

⇑ Corresponding author.
E-mail address: dmahmodvand@gmail.com (H. Mahmoudvand).

Article info

Article history:
Received 30 December 2020
Revised 24 May 2021
Accepted 26 May 2021
Available online 1 June 2021

Keywords:
Giardiasis
Medicinal plants
In vitro
In vivo
Clinical trials

Abstract

Background: However, broad adoption of herbal remedies for giardiasis is at present hampered by uncertain findings of investigation not always sufficiently powered. This study was aimed at systematically reviewing the existing literature in herbal medicines to treat giardiasis.

Methods: This review was carried out 06- PRISMA guideline and registered in the CAMARADES-NC3Rs Preclinical Systematic Review and Meta-Analysis Facility (SyRF) database. The search was performed in five databases which are Scopus, PubMed, Web of Science, EMBASE, and Google Scholar without time limitation for all published articles (in vitro, in vivo, and clinical studies). The searched words and terms were: “Giardia”, “giardiasis”, “extract”, “essential oil”, “herbal medicines”, “anti-Giardia”, “In vitro”, “In vivo”, “clinical trial” etc.

Results: Out of 1585 papers, 40 papers including 28 in vitro (70.0%), 7 in vivo (17.5%), 2 in vitro/ in vivo (5.0%), and 3 clinical trials (7.5%) up to 2020, met the inclusion criteria for discussion in this systematic review. The most widely used medicinal plants against Giardia infection belong to the family Lamiaceae (30.0%) followed by Asteraceae (13.5%), Apiaceae (10.5%). The most common parts used in the studies were aerial parts (45.0%) followed by leaves (27.4%) and seeds (7.5%). The aqueous extract (30.0%), essential oil (25.4%) and hydroalcholic and methanolic (10.5%) were considered as the desired approaches of herbal extraction, respectively.

Conclusion: The current review showed that the plant-based anti-Giardia agents are very promising as an alternative and complementary resource for treating giardiasis since had low significant toxicity. However, more studies are required to elucidate this conclusion, especially in clinical systems.

© 2021 The Author(s). Published by Elsevier B.V. on behalf of King Saud University. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Contents

1. Introduction .. 5391
2. Materials and methods 5392

Peer review under responsibility of King Saud University.
1. Introduction

Giardiasis is considered as one of the most prevalent protozoan infection of humans in the worldwide which caused by an intestinal protozoan flagellate called *Giardia lamblia* (syn. *G. duodenalis*, *G. intestinalis*) (Plutzer et al., 2010). According to the World Health Organization (WHO) reports over 200 million recent cases of giardiasis that are diagnosed around the world every year; where it has been classified in the “neglected diseases initiative” (Plutzer et al., 2010). Previous reviews have shown that the infection rate in asymptomatic people varies from 8 to 30% in developing countries; while in industrialized countries the prevalence rate is 1–8% (Savioli et al., 2006). Humans especially children are usually infected as fecal-oral routes via direct or indirect the ingestion of infectious cysts in water and food. The incubation period varies from 9 to 15 days after ingestion of cysts (Feng and Xiao, 2011). Symptoms of this infection are varied from the absence of symptoms to acute watery diarrhea, nausea, epigastric pain and weight loss (Muhsen and Levine, 2012).

Since there is no effective and safe vaccine to prevent *Giardia* infection; therefore, chemotherapy with synthetic drugs is now considered as the best choice for giardiasis treatment (Watkins and Eckmann, 2014). In recent years, studies showed that the use of these synthetic drugs are associated with some limitations such as treatment-refractory cases and some drug-related side effects including nausea, mild headache, dizziness and a metallic taste in the mouth, yellowing of the skin and elevated liver enzymes (Watkins and Eckmann, 2014; Leitsch, 2015; Lalle and Hanevik, 2018); therefore, the search and discovery of new alternative anti-*Giardia* drugs with high effectiveness as well as minimal toxicity has been considered by researchers in recent years.

From ancient times, medicinal herbs and their derivatives have been broadly used for health promotion and therapy for chronic, as opposed to life-threatening, diseases (Lalle and Hanevik, 2018). Herbal medicines have also been successfully used in the treatment of a wide range of bacterial, viral, fungal, and parasitic infections (Vandana et al., 2012). Previous reviews have demonstrated the anti-*Giardia* effects of some herbal extract such as *Carum coticum*, *Lavandula stoechas*, *Tanacetum parthenium*, *Ferula assa-foetida*, *Allium paradoxum*, *Allium sativum*, *Artemisia annua*, *Allium ascalonicum*, *Chenopodium botrys*, *ZizIphora clinopodioides*, *Zataria multiflorahad*, *Eucalyptus globulus*, *Lippia beriandievi*, *Punica grana- tum*, they also reported that the hydroalcoholic extract of *Ferula assa-foetida*, *Chenopodium botrys*, and *Tanacetum parthenium* have the 100% *in vitro* efficacy against *G. lamblia*; while, the maximum *in vivo* efficacy against giardiasis was observed for the *Allium sativum* extract at the concentration of 80 mg/mL (Hezarjaribi et al., 2015; Bahmani et al., 2014; Nazer et al., 2019). However, broad adoption of herbal remedies for giardiasis is at present hampered by uncertain findings of investigation not always sufficiently powered. This study aimed at systematically reviewing the existing literature in herbal medicines to treat giardiasis.

2. Materials and methods

2.1. Search strategy

This review was carried out 06- PRISMA guideline and registered in the CAMARADES-NC3Rs Preclinical Systematic Review and Meta-Analysis Facility (SyRF) database. In this review study, data were obtained from published articles indexed in multiple databases such as Scopus, PubMed, Web of Science, EMBASE, and Other database like Google Scholar. We interrogated these databases for scientific articles that related to anti-*Giardia* effects of medicinal without a date limitation. Thus, all published studies *in vitro*, *in vivo*, and clinical studies were identified. It included studies published in languages other than English in the searching process if they have an English abstract. These studies were retrieved using the search terms “*Giardia*”, “*giardiasis*”, “extract”, “essential oil”, “herbal medicines”, “anti-*Giardia*”, “*in vitro*”, “*in vivo*”, “clinical trial” (Fig. 1).

2.2. Quality assessment and article selection

Those studies were examined in which the effects of herbal medicines against giardiasis. First, the studies were imported to the EndNote X9 software (Thomson Reuters, New York, NY, USA) and duplicate studies were deleted. Afterwards, three independent authors examined the title and abstract of the studies and the relevant studies were included for further analysis. The same authors carefully read the studies and the eligible studies with adequate inclusion criteria were selected.

2.3. Exclusion criteria

The studies with inadequate information, abstract submitted in congresses whose full texts were not available, failure to match methods with results the incorrect interpretation of the results was excluded from the current study.

2.4. Inclusion criteria

Inclusion criteria of this study were the articles testing the anti-*Giardia* effects of medicinal herbs against *Giardia* infection, emphasizing the *in vitro*, *in vivo*, and clinical trial studies (Fig. 1).

2.5. Data extraction

Three independent authors extracted information from the selected articles and, if needed, the differences were resolved by the corresponding author. The extracted data include plant name, family, part of used, extraction, dose, parasite form, results, reference.
3. Results

Out of 1585 papers, 40 papers including 28 in vitro (70.0%), 7 in vivo (17.5%), 2 in vitro/ in vivo (5.0%), and 3 clinical trials (7.5%) up to 2020, met the inclusion criteria for discussion in this systematic review with the data extracted presented in Tables 1–3. The obtained results showed 57 plant species, belonging to 48 genera and 19 families, which have pharmacological confirmation and therapeutic effects against *Giardia* infection (Tables 1–3 and Fig. 2). Totally 19 families were found the anti-*Giardia* activity in vitro and in vivo. The most widely used medicinal plants against *Giardia* infection belong to the family Lamiaceae (30.0%) followed by Asteraceae (13.5%) and Apiaceae (10.5%) (Fig. 3).

The obtained results showed that the most common parts used in the studies were aerial parts (45.0%) followed by leaves (27.4%) and seeds (7.5%). Whereas, other parts used were flowers, peels, bulb, and fruits (Fig. 4). The findings of the present review showed that aqueous extract (30.0%), essential oil (25.4%) and hydroalcoholic and methanolic (10.5%) were considered as the desired approaches of herbal extraction, whereas the chloroformic (10.7%) and petroleum ether extract (7.5%) were the second most used herbal extractions (Fig. 5).

Based on the obtained results demonstrated that the most effective medicinal plants against *G. lamblia* in vitro were *A. sativum*, *Artemisia sieberi*, and *Chenopodium botrys* which showed the greatest effect at a concentration of 0.1 μg/mL. In vivo studies also demonstrated that the most effective medicinal herbs against animal model giardiasis was *Helianthemum glomeratum* methanolic extract with the ED50 value of 0.125 mg/kg. By clinical studies, aqueous extract of *Anethum graveolens* at the dose of 1 ml/tree times for 5 days, significantly improved the symptoms in pediatric patients with giardiasis; whereas the extract was safe and tolerable over treatment way. *Triticum vulgare* and *Mentha crispa* at the dose of 2 g/day for 7 and 10 days considerably reduced both cyst passage and copro-antigen levels in asymptomatic and symptomatic patients with giardiasis compared with the placebo group.

4. Discussion

Based on WHO reports (2005), medicines herbs and plant-derived compounds due to minimal or no industrial processing and side effects have been widely applied to treat not only on infectious diseases but also on a wide range of other diseases such as cardiovascular, gastrointestinal, diabetes, cancer through local or regional healing approaches in developing and developed countries (World Health Organization, 2005). Today, it has been proven that biological activity and beneficial medicinal possessions of medicinal herbs is because of having the secondary metabolites
A list of medicinal herbs with *in vitro* anti-Giardia effects. From 40 papers which met the inclusion criteria for based on the 06-PRISMA guideline, 28 papers (70.0%) including 37 genera and 48 species of plants showed the anti-Giardia activity *in vitro*.

Plant name	Family	Part of used	Extraction	Collection place	Dose	Parasite form	Results	Year	Ref.
Achillea santolina	Asteraceae	Aerial parts	Aqueous extract	Iraq	31.25–2000 mg/ml	Trophozoite	The results showed that at the dose of 2000 mg/ml completely eliminate the *G. lamblia* trophozoites.	2010	(Al-kaissi, 2010)
Ageratum conyzoides	Asteraceae	Flower, leaf	Essential oil-Hydroalcoholic extract	Thailand	1–1000 µg/ml	Trophozoite	White-purple leaf and flower purple extracts showed high activity (IC50 ≤ 100 µg/mL) against *G. duodenalis* trophozoites, with IC50 ± SD values of 45.67 ± 0.51 and 96.00 ± 0.46 µg/mL, respectively. In subsequent experiments, IC50 ± SD values of LW-P and FP essential oils were 35.00 ± 0.50 and 83.33 ± 0.41 µg/mL, respectively. TEM revealed the degeneration of flagella and ventral discs of *G. duodenalis* trophozoites following exposure to crude extracts.	2020	(Pintong et al., 2020)
Allium sativum	Amaryllidaceae	Aerial parts	Essential oil	Iran	0.2, 0.1, 0.01 and 0.001 µg/ml	Trophozoite-cyst	The essential oil at the concentration of 0.1 and 0.2 µg/ml indicated appreciable parasiticidal effect (p < 0.05).	2020	(Azadbakht et al., 2020)
Allium sativum	Amaryllidaceae	Bulb	Hydroalcoholic extracts	Iran	2 and 5 mg/ml	Cyst	The fatality rate on *G. lamblia* cysts *in vitro* was 22.65 ± 10.47%.	2016	(Fallahi et al., 2016)
Artemisia annua	Asteraceae	Aerial parts	Hydroalcoholic extract	Iran	100 mg/ml	Cyst	Results of this study indicated that concentration of 50 and 100 mg/ml of hydroalcoholic extract of *A. annua* after 3 and 24 h has the most killing and cytotoxicity activity on *G. lamblia* cysts *in vitro*. Cyst and trophozoite contact (intermix) of *G. lamblia* with extract of *A. annua* with variant concentrations (1, 10, 50, and 100 mg/ml) after 1 and 180 min caused following cyst and trophozoite elimination rates: (67, 69, 71 and 73%), (65, 67, 67 and 72%), (94, 96, 97 and 99%) and (100, 100, 100 and 100%), respectively.	2020	(Bahman et al., 2012)
Artemisia annua	Asteraceae	Aerial parts	Chloroformic extract	Iran	1, 10, 50 and 100 mg/ml	Trophozoite-cyst	The essential oil at the concentration of 0.1 and 0.2 µg/ml indicated appreciable parasiticidal effect (p < 0.05).	2016	(Golami et al., 2016)
Artemisia annua	Asteraceae	Leaf	Chloroformic extract	Iran	1, 10, 50 and 100 mg/ml	Cyst trophozoite	Chloroformic extracts of *A. annua* at 10 mg/ml and 100 mg/ml concentration had affected on *Giardia* cyst 96%, 95% and trophozoite (100%) after 3 h.	2014	(Gholami et al., 2014)
Artemisia campestris	Asteraceae	Aerial parts	Aqueous extract	Iraq	31.25–2000 mg/ml	Trophozoite	The results showed that at the dose of 2000 mg/ml completely eliminate the *G. lamblia* trophozoites.	2010	(Al-kaissi, 2010)
Artemisia sieberi	Asteraceae	Aerial parts	Essential oil	Iran	0.2, 0.1, 0.01 and 0.001 µg/ml	Trophozoite-cyst	The essential oil at the concentration of 0.1 and 0.2 µg/ml indicated appreciable parasiticidal effect (p < 0.05).	2020	(Azadbakht et al., 2020)
Carum coticum	Apiaceae	Leaves	Aqueous extract, essential	Iran	1–100 mg/ml	Cyst	After 60 min Minimum Inhibitory Concentrations (MIC) of *Carum coticum* alcoholic extracts and essential oil were 100 mg and 8 mg/ml, respectively. After 120 min, MIC of *Carum coticum* alcoholic extracts and essential oil were 75 mg and 6 mg/ml, respectively; and after 180 min MIC of *Carum coticum* alcoholic extracts and essential oil were 75 and 4 mg/ml, respectively.	2009	(Shahabi et al., 2009)
Chenopodium botrys	Chenopodiaceae	Aerial parts	Essential oil	Iran	0.2, 0.1, 0.01 and 0.001 µg/ml	Trophozoite/cyst	The essential oil at the concentration of 0.1 and 0.2 µg/ml indicated appreciable parasiticidal effect (p < 0.05).	2016	(Fallahi et al., 2016)
Chenopodium botrys	Chenopodiaceae	Seed	Aqueous and alcoholic extracts	Iran	1.25, 2.5, 5, 10, 20 mg/ml	Cyst	The highest giardicidal effect of alcoholic and aqueous extracts of *Chenopodium botrys* L. at 37 °C, in 20 mg/ml and 5 h after experiment were 100% and 66.1% respectively.	2013	(Rezaeemansh et al., 2013)
Citrus aurantifolia	Rutaceae	Peels	Hexane extract	México	1–10 mg/mL	Trophozoite	4-hexen-3-one, citral and geraniol showed IC50 values of 34.2, 64.5 and 229.49 µg/mL in axenic cultures after 24 hr of incubation, respectively. When these results were compared with a positive control of metronidazole; 4-hexen-3-one was 66 times; citral was 112 and geraniol was 441 times less active respectively. The other tested compounds did not inhibit the growth of cultured *G. lamblia* trophozoites. C. pepo seeds petroleum ether extract exhibited 100% mortality within 120 h giving IC50 of 60671.32 ppm (with a concentration of 500 ppm).	2015	(Dominguez-Vigil et al., 2015)
Cucurbita pepo L.	Cucurbitaceae	Seed	Petroleum ether, and methanol	Sudan	1000 ppm, 500 ppm, 250 ppm	trophozoite		2013	(Elhadi et al., 2013)
Table 1 (continued)

Plant name	Family	Part of	Extraction	Collection place	Dose	Parasite form	Results	Year	Ref.	
Cucurbita pepo L.	Cucurbitaceae	Seed	Petroleum ether, and methanol.	Sudan	1000 ppm, 500 ppm, 250 ppm	Trophozoite	C. maxima seeds petroleum ether extract exhibited 100% mortality within 48 h giving IC50 of 548.80 ppm (with a concentration of 1000 and 500 ppm).	2013	(Elhadi et al., 2013)	
Cuminum cyminum	Apiaceae	Aerial parts	Aqueous extract	Iraq	31.25–2000 mg/ml	Trophozoite	The results showed that at the dose of 2000 mg/ml the viability of the G. lamblia trophozoites to 25%.	2010	(Al-kaisi, 2010)	
Curcuma longa	Zingiberaceae	Stem bark	dichloromethane extracts	Egypt	1, 10 and 50 mg/mL	Cyst	The mortality (death) rate on Giardia cysts in was 85% after treatment with extract at concentration of 50 mg/mL after 60 min.	2016	(Dyab et al., 2016)	
Cymbopogon citratus	Poaceae	Leaves	Aqueous extract	Egypt	500 mg/ml	Cyst	C. citratus aqueous extracts were effective against G. lamblia both in vitro and in vivo and they could be natural therapeutic alternative agents to MTZ.	2019	(Harba et al., 2019)	
Echinophora cinerea	Apiaceae	Aerial parts	Aqueous extract	Iran	4 and 8 mg/ml	Cyst	The findings showed, 4 and 8 mg/ml of the same extract caused the gradual destruction of G. lamblia cysts (7.92 and 7.89 cysts/h, respectively). Furthermore, the mean rate of cysts destruction was found to be 8.83 cysts/h by 8 mg/mL of *E. cinerea* extract.	2018	(Ezatpour et al., 2018)	
Eucalyptus camaldulensis	Myrtaceae	Aerial parts	Aqueous extract	Iran	31.25–2000 mg/ml	Trophozoite	The results showed that at the dose of 2000 mg/ml completely eliminate the G. lamblia trophozoites.	2010	(Al-kaisi, 2010)	
Eucalyptus globulus	Myrtaceae	Aerial parts	Essential oil	Iran	0.2, 0.1, 0.01 and 0.001 μg/ml	Trophozoite-cyst	The essential oil at the concentration of 0.1 and 0.2 μg/mL indicated appreciate parasiticidal effect (p < 0.05).	2020	(Azadbakht et al., 2020)	
Eucalyptus radiata	Myrtaceae	Leaves	Methanol extract	Iran	10, 100, 200 mg/ml	Cyst	The methanol extracts with the dilution of 200 mg/ml in 60 mins have the fatality effect of 63.3%.	2012	(Safarnezhad Tameshkel et al., 2012)	
Ferula assa-foetida	Apiaceae	Aerial parts	Aqueous and ethanolic extract	Iran	1, 1.25, 25, 5, 10, and 20 mg/ml	Cyst	The highest effect of ethanolic extract was 100% at 20 mg/ml and in the 4th hour after experiment, while the maximum effect of aqueous extract was 57.23% at the same temperature and with the same concentration, in the 5th hour.	2012	(Rezaee and Shirazbouz, 2012)	
Heracleum glabrescens	Apiaceae	Grain	Methanolic extract	Iran	10, 100, 200 mg/ml	Cyst	The methanol extracts with the dilution of 200 mg/ml in 60 mins have the fatality effect of 44%.	2012	(Safarnejad Tameshkel et al., 2012)	
Lagenaria siceraria	Cucurbitaceae	Seed	Petroleum ether, and methanol.	Sudan	1000 ppm, 500 ppm, 250 ppm	Trophozoite	L. siceraria petroleum ether extract exhibited 100% mortality within 72 h with IC50 of 95.65 ppm.	2013	(Elhadi et al., 2013)	
Lavandula angustifolia	Lamiaceae	Essential oil	Iran	1, 0.5, 0.1%	Trophozoite	The results demonstrated that low (≤1%) concentrations of *L. angustifolia* oil can completely eliminate G. duodenalis.	2017	(Vazini, 2017)		
Lavandula intermedia	Lamiaceae	Essential oil	Iran	1, 0.5, 0.1%	Trophozoite	The results demonstrated that low (≤1%) concentrations of *L. x intermedia* oil can completely eliminate G. duodenalis.	2017	(Vazini, 2017)		
Lippia beriandieri	Verbenaceae	Essential oil	México	1, 2, 5, 10 mg/ml	Trophozoite	The extract showed 90% mortality in trophozoites.	1994	(Ponce-Macotela et al., 1994)		
Lippia graveolens	Verbenaceae	Aerial parts	Essential oil	Portugal	10–400 μg/ml	Trophozoite	The IC50 value was 257 μg/ml. Considering morphological changes, it was roundly shape, irregular dorsal and ventral surface, presence of membrane blebs, electrodense precipitates in cytoplasm and nucleus, and internalization of flagella and ventral disc.	2010	(Machado et al., 2010)	
Mangifera indica	Anacardiaceae	Aerial parts	Aqueous extract	India	31.25–2000 mg/ml	Trophozoite	The results showed that at the dose of 2000 mg/ml reduce the viability of the G. lamblia trophozoites to 75%.	2010	(Al-kaisi, 2010)	
Mentha longifolia	Lamiaceae	Essential oil	Iran	1, 2.5, 5, 10 mg/ml	Trophozoite	Chloroform extract at the dose of 200 μg/ml inhibit > 20% of trophozoites.	2010	(El-Badry et al., 2010)		
Mentha piperita	Lamiaceae	Essential oil	Brazil	1, 10, 50 and 100 μg/ml	Trophozoite	The aqueous extract showed no effect against the trophozoites with an IC50 > 100 μg/ml. The aqueous fraction presented a moderate activity with an IC50 of 45.5 μg/ml. The dichloromethane fraction showed the best antigiardial activity, with an IC50 of 0.75 μg/ml after 48 h of incubation. The morphological and adhesion assays showed that this fraction caused several alterations on plasma	2007	(Vidal et al., 2007)		
Plant name	Family	Part of used	Extraction	Collection place	Dose	Parasite form	Results	Year	Ref.	
----------------------------	-----------------	--------------	-----------------------------	------------------	----------------	---------------	--	------	-------------------------------	
Myrtus communis	Myrtaceae	Aerial parts	Essential oil	Iran	10–500 mg/ml	Cyst	The results exhibited 95% mortality within 96 h, at a concentration 500 µg/ml against *G. lamblia* trophozoites in vitro	2003	(Nr et al., 2003)	
Nigella sativa	Ranunculaceae	Seed	Ethanolic extract	Egypt	500 µg/ml	Trophozoite	The results demonstrated some plant essential oils have benefit effect on Giardia cyst and are suitable for further study to make herbal remedy from them.	2015	(Kabbashi et al., 2015)	
Ocimum basilicum	Lamiaceae	Leaves	Petroleum ether, ethyl acetate, methanol and aqueous extract	Egypt	100 mg/ml	Trophozoite	The IC50 value was 85 µg/ml. Considering morphopological changes, it was roundly shape, irregular dorsal and ventral surface, presence of membrane blebs, electrodense precipitates in cytoplasm and nuclei, and internalization of flagella and ventral disc.	2015	(El-Badry et al., 2010)	
Olea europaea	Oleaceae	Leave	Hydroalcoholic extracts	Portugal	2 and 5 mg/ml	Cyst	The results indicated anti-Giardia activity of OV hydroalcoholic extract and the best response was achieved at higher levels so that there were no significant differences among OV groups at levels of 200 mg/kg with metronidazole (P > 0.05).	2018	(Li et al., 2012)	
Origanum vulgare	Lamiaceae	Aerial parts	Chloroform extract	Iran	5–200 µg/ml	Cyst	The IC50 value was 21.84 µg/ml. Considering morphological changes, it was roundly shape, irregular dorsal and ventral surface, presence of membrane blebs, electrodense precipitates in cytoplasm and nuclei, and internalization of flagella and ventral disc.	2018	(Rahimi-Esboei et al., 2013)	
Pulsatilla chinesis	Ranunculaceae	Aerial parts	Ethyl acetate and aqueous extract	China	39.65–5,000 µg/ml	Trophozoite	The results determined some plant essential oils have benefit effect on Giardia cyst and are suitable for further study to make herbal remedy from them.	2015	(Davoodi and Abbassi-Maleki, 2018)	
Rosmarinus officinalis	Lamiaceae	Leaves	Petroleum ether, ethyl acetate, methanol and aqueous extract	Egypt	100 mg/mL	Trophozoite	The results exhibited 95% mortality within 96 h, at a concentration 500 µg/ml against *G. lamblia* trophozoites in vitro	2013	(Elbadry et al., 2013)	
Sambucus ebulus	Adoxaceae	Fruit	Aqueous Extract	Iran	1, 10, 50, 100 mg/mL	Cyst	The results demonstrated that olive leaf extract had the most fatality rate on *G. lamblia* cysts in vitro (37.90 ± 7.01%).	2014	(Fallahi et al., 2016)	
Satureja hortensiss	Lamiaceae	Leaves	Methanol extract	Iran	10, 100, 200 mg/mL	Cyst	The methanol extracts with the dilution of 200 mg/ml in 60 mins have the fatality effect of 84.3%.	2016	(Harba et al., 2019)	
Satureja khuzestanica	Lamiaceae	Leaves	Hydroalcoholic extracts	Iran	2 and 5 mg/ml, 2.55, 10,25,50 mg/mL	Cyst	The wetary extract at the concentration of 100 mg/mL killed 93% of cysts after 6 h. The n-hexane extract at the concentration of 100 mg/mL killed 100% of cysts after 6 h. Both extracts showed dose dependent antigiardial activity and the n-hexane extract was better than the watery extract.	2017	(Barati et al., 2017)	
Syzygium aromaticum	Myrtaceae	Leaves	Aqueous extract	Egypt	100 mg/mL	Trophozoite	The chloriformic extract of T. parthemum at 1 mg/ml and 10 mg/ml was good activity against *G. lamblia* (IC50 = 0.755 mg/ml).	2015	(Dahab, 2015)	
Tanacetum parthenium	Asteraceae	Aerial parts	Chloroformic	Iran	1, 10, 50 and Trophozoite-			The chloriformic extract of T. parthenium at 1 mg/ml and 10 mg/ml was good activity against *G. lamblia* (IC50 = 0.755 mg/ml).	2014	(Gholami et al., 2015)
Plant name	Family	Part of used	Extraction	Collection place	Dose	Parasite form	Results	Year	Ref.	
---------------------	------------	--------------	-------------	------------------	----------	---------------	--	------------	----------------------	
Thymbra capitata	Lamiaceae	Aerial parts	Essential oil	Egypt	10–300 µg/ml	Trophozoite	The IC50 value was 71 µg/ml. Considering morphological changes, it was roundly shape, irregular dorsal and ventral surface, presence of membrane blebs, electron dense precipitates in cytoplasm and nuclei, and internalization of flagella and ventral disc.	2016	(Abdel-Hafeez et al., 2016)	
Thymus vulgarise,	Lamiaceae	Aerial parts	Essential oil	Iran	10–500 mg/ml	Cyst	This study determined some plant essential oils have benefit effect on Giardia cyst and are suitable for further study to make herbal remedy from them.	2012	(Rezaie manesh and Shirbazou, 2012)	
Thymus zygis	Lamiaceae	Aerial parts	Essential oil	Portugal	10–300 µg/ml	Trophozoite	The IC50 value was 185 µg/ml. Considering morphological changes, it was roundly shape, irregular dorsal and ventral surface, presence of membrane blebs, electron dense precipitates in cytoplasm and nuclei, and internalization of flagella and ventral disc.	2010	(Machado et al., 2010)	
Zataria multiflora	Lamiaceae	Aerial parts	Essential oil	Iran	10–500 mg/ml	Cyst	This study determined some plant essential oils have benefit effect on Giardia cyst and are suitable for further study to make herbal remedy from them.	2012	(Rezaie manesh and Shirbazou, 2012)	
Zatraria multiflora	Lamiaceae	Aerial parts	Essential oil	Iran	0.2, 0.1, 0.01 and 0.001 µg/mL	Trophozoite	The essential oil at the concentration of 0.1 and 0.2 µg/mL indicated appreciate parasiticidal effect (p < 0.05).	2020	(Azadbakht et al., 2020)	
Zingiber officinale	Zingiberaceae	Root	Aqueous extract	Egypt	20 mg/mL	Trophozoite	The present study confirmed that ginger extract is equally active against *G. lamblia* as NTZ. Moreover, this simple *G. lamblia* axenic culture medium proved beneficial for evaluation of the susceptibility of isolates to antiparasitic drugs	2016	(Abdel-Hafeez et al., 2016)	
Zingiber officinale	Zingiberaceae	Rhizome	dichloromethane extracts	Egypt	1, 10 and 50 mg/mL	Cyst	The mortality (death) rate on Giardia cysts in was 97% after treatment with extract at concentration of 50 mg/mL after 60 min.	2016	(Dyab et al., 2016)	
Table 2
A list of in vivo studies considering anti-Giardia effects some medicinal herbs. From 40 papers which met the inclusion criteria for based on the 06-PRISMA guideline, 7 in vivo (17.5%) and 2 in vitro/in vivo (5.0%) up to 2020, met the inclusion criteria for discussion in this systematic review.

Plant name	Family	Part of used	Extraction	Collection place	Dose	Conditions	Parasite	Results	Year	Ref.
Allium sativum	Amaryllidaceae	Bulb	Chloroform extract	Iran	80 mg/ml	In vivo	Cyst	The cysts of *G. lamblia* were more sensitive to garlic extract than *G. muris*. Although, the infected mice in the test groups were not cured by the doses of 20 and 40 mg/kg body weight, they were completely cyst-free with the dose of 80 mg/kg within three days. The administration of curcumin especially at the dose 20 mg/kg/day significantly reduced the excretion rates of dead cysts and intestinal trophozoite (84.7%) in the faeces of the treated groups. *C. citratus* aqueous extracts were effective against *G. lamblia* both in vitro and in vivo and they could be natural therapeutic alternative agents to MTZ.	2006	(Safar et al., 2006)
Curcuma longa	Zingiberaceae	Stem bark	dichloromethane extracts	Egypt	10 and 20 mg/ kg/day	In vivo	Cyst	The extract significantly reduced the excretion rates of cysts 95.1, 84.3, and 77.7% after treatment with 400, 200, and mg/ml for 10 days	2016	(Dyab et al., 2016)
Cymbopogon citratus	Poaceae	Leaves	Aqueous extract	Egypt	500 mg/kg	In vivo	Cyst	The ED50 (mg/kg) obtained was 0.125 mg/kg. The extract was four times more active than the extract of *Rubus* coriifolius, and its activity is comparable to metronidazole and emetine. The results of the current study indicated that *Lavandula angustifolia* has conceivable effects and it will be a suitable alternative for treatment of Giardiasis.	2016	(Barbosa et al., 2006)
Helianthemum glomeratum	Cistaceae	Flower	Metanolic extract	Mexico	1.25, 2.5, 5, 10 and 20 mg/kg	In vivo (CD-1 mice)	Trophozoite	The extract significantly reduced the excretion rates of cysts 95.1, 84.3, and 77.7% after treatment with 400, 200, and mg/ml for 10 days	2017	(Moon et al., 2006 1)
Lavandula angustifolia	Lamiaceae	Aerial parts	Aqueous extract	Australia	100.200, 400 ml/mg	In vivo (Souri mice)	Cyst	The extract significantly reduced the excretion rates of cysts 95.1, 84.3, and 77.7% after treatment with 400, 200, and mg/ml for 10 days	2006	(Moon et al., 2006)
Lavandula stoechas	Lamiaceae	Aerial parts	Hydroalcoholic extract	Iran	100, 200, and 400 mg/ml for 10 days	In vivo (Swiss albino mice)	Cyst	The ED50 (mg/kg) obtained was 0.125 mg/kg. The extract was four times more active than the extract of *Rubus* coriifolius, and its activity is comparable to metronidazole and emetine. The results of the current study indicated that *Lavandula angustifolia* has conceivable effects in vivo and it will be a suitable alternative for treatment of Giardiasis.	2016	(Moon et al., 2006 1)
Pulinaria undulata	Asteraceae	Aerial parts	Aqueous extract	Egypt	200 mg/kg	In vivo	Cyst	The ED50 (mg/kg) obtained was 0.125 mg/kg. The extract was four times more active than the extract of *Rubus* coriifolius, and its activity is comparable to metronidazole and emetine. The results of the current study indicated that *Lavandula angustifolia* has conceivable effects in vivo and it will be a suitable alternative for treatment of Giardiasis.	2017	(Moon et al., 2006 1)
Punica granatum	Punicaceae	Peel	Methanolic extract	Saudi Arabia	300 mg/kg/day for 30 days	In vivo (Swiss albino mice)	Cyst	The extract significantly reduced the excretion rates of cysts 95.1, 84.3, and 77.7% after treatment with 400, 200, and mg/ml for 10 days	2019	(Moon et al., 2006 1)
Pulicaria undulata	Asteraceae	Aerial parts	Aqueous extract	Egypt	200 mg/kg	In vivo	Cyst	The ED50 (mg/kg) obtained was 0.125 mg/kg. The extract was four times more active than the extract of *Rubus* coriifolius, and its activity is comparable to metronidazole and emetine. The results of the current study indicated that *Lavandula angustifolia* has conceivable effects in vivo and it will be a suitable alternative for treatment of Giardiasis.	2017	(Moon et al., 2006 1)
Rubus coriifolius	Rosaceae	Fruits	Methanolic extract	Australia	1.25, 2.5, 5, 10 and 20 mg/kg	In vivo (CD-1 mice)	Trophozoite	The methanolic extracts showed antigiardial activity with ED50 (mg/kg) obtained was 0.506 mg/kg. Results revealed that the prevention rate in the experimental groups reached approximately 50% by the 10th day of using pomegranate peel extract. Moreover, stool cyst counts of groups showed a significant reduction in the shedding of cysts approximately 75.6% by day 20 post-infection.	2006	(Moon et al., 2006 1)
Yucca baccata	Asparagaceae	Stem	Aqueous extract	Mexico	24.4, 12.2, and 6.1 mg/ml/day for 3 days	In vivo (Mongolian gerbilis)	Trophozoites	Yucca extracts reduced, albeit not significantly, the trophozoite counts in the duodenum segment. Only the high-extract concentration significantly reduced the trophozoite counts in the proximal segment and it was similar to that of metronidazole. The administration of ginger especially at the dose 20 mg/kg/day significantly reduced the excretion rates of dead cysts and intestinal trophozoite (100%) in the faeces of the treated groups similar to that of the 20 mg/kg/day MTZ treatment.	2016	(Dyab et al., 2016)
Zingiber officinale	Zingiberaceae	Rhizome	dichloromethane extracts	Egypt	10 and 20 mg/kg/day	In vivo (Balb/c mice)	Cyst	At the dose of 100 mg/ml is able to remove the *G. lamblia* cysts. This effect is significant compared to the control group (P < 0.05).	2014	(Elmi et al., 2014)

S. Alnomasy, Ghaidaa Raheem Lateef Al-Awsi, Y. Raziani et al. Saudi Journal of Biological Sciences 28 (2021) 5391–5402
present in herbs which make them a reliable source for preparation of new drugs (Pavarini et al., 2012; Ghasemzadeh et al., 2016).

Totally 48 plant species were demonstrated to be pharmacologically assessed for their anti-Giardia effects in the current review, whereas the most medicinal plants used belong to the family Lamiaceae followed by Asteraceae, Apiaceae. Studies have shown that plants from families Lamiaceae, Asteraceae, and Apiaceae due to high content phenolic compounds, flavonoids, terpenoids and exhibited a wide range of biological activities such as antimicrobial ones (Raja, 2012; Amiri and Joharchi, 2016; Bessada et al., 2015).

Table 3
A list of clinical trial studies considering anti-Giardia effects some medicinal herbs. From 40 papers which met the inclusion criteria for based on the 06- PRISMA guideline, 3 clinical trials (7.5%) up to 2020, met the inclusion criteria for discussion in this systematic review.

Plant name	Family	Part of used	Extraction	Collection place	Dose	Parasite Results	Year	Ref.
Anethum graveolens	Apiaceae	Leave	Aqueous extract	Iraq	1 ml/3 times a day for 5 days	Trophozoite-cysts This study showed that pediatric patients with giardiasis may benefit from 5 days treatment with AGAE administered as 1 ml 3 times daily, the improvement in the symptoms with this herbal agent was comparable to the standard pharmacological agent Met; results showed that AG is safe and tolerable over treatment course.	2014	(Sahib et al., 2014)
Mentha crispa	Lamiaceae	Leave	Aqueous extract	Brazil	2 g/day for 10 days	Cyst Results showed that the cure rate for the Secnidazole group (84.02%) was significantly higher (P = 0.0022) as that verified in the M. crispa group (47.83%).	2011	(Teles et al., 2011)
Triticum Vulgare (Wheat)	Poaceae	Germ	Oil	Canada	2 g, 3 times a day for 7 days	Cyst In asymptomatic and symptomatic subjects, both cyst passage and coproantigen levels were significantly reduced in those taking WG compared with the placebo group (P < 0.01 and P = 0.06, respectively).	2001	(Grant et al., 2001)

Fig. 2. Schematic representation of medicinal plants and their extracts of various parts used against Giardia infection.
Fig. 3. Plant families evaluated for anti-

Giardia activity. Totally 19 families were found the anti-

Giardia activity in vitro and in vivo. The most widely used medicinal plants against

Giardia infection belong to the family Lamiaceae (30.0%) followed by Asteraceae (13.1%), Apiaceae (10.5%).

Fig. 4. The most parts of herbal medicines used for anti-

Giardia activity. The obtained results showed that the most common parts used in the studies were aerial parts

(45.0%) followed by leaves (27.4%) and seeds (7.5%). Whereas, other parts used were flowers, peels, bulb, and fruits.

Fig. 5. The most type of formulations of herbal medicines used for anti-

Giardia activity. The findings of the present review showed that aqueous extract (30.0%), essential oil

(25.4%) and hydroalcoholic and methanolic (10.5%) were considered as the desired approaches of herbal extraction, whereas the chloroformic (10.7%) and petroleum ether

extract (7.5%) were the second most used herbal extractions.
Flavonoids as one of the main important secondary metabolites of herbs have various pharmacological and favorable health possessions such as antimicrobial activity (Tapas et al., 2008; Cushnie and Lamb, 2005). Based on previous studies, these compounds show their antimicrobial effects by membrane disruption, inhibit cytoplasmic membrane function, bacterial biofilm elimination, inhibition of cell envelope synthesis, inhibition of nucleic acid synthesis, inhibition of electron transport chain, ATP synthesis, inhibition of DNA gyrase, etc. (Xie et al., 2015; Görmia et al., 2019); therefore, the anti-Giardia activity of some plants could be related to the presence of the flavonoids compounds.

Another secondary metabolite of plants to which the antimicrobial effects of plants can be attributed is phenolic compounds (Trombetta et al., 2005). Reviews have demonstrated that polyphenols compounds show their antimicrobial effects through some mechanisms such as variation in permeability of cell membranes, the effect on some intracellular functions produced by hydrogen bonding of the phenolic components to enzymes, and change of the cell wall stability with entirety losses because of various interactions with the cell membrane (Doglia, 2012).

Terpenes (monoterpenes and sesquiterpenes) are one of the main plant-based compounds with a wide range of pharmacological and clinical properties such as antimicrobial ones (Mahizan et al., 2019). Studies showed that these compounds through microbial membrane disruption, interacting with intracellular organelles, and affecting critical cell activity have potent antimicrobial effects (Mahizan et al., 2019; Tariq et al., 2017); suggested that anti-Giardia effects of many plants are contributed to their high content of terpenoids.

Here, we found that aerial parts and leaves were the most frequently part of used during pharmacological confirmation of medicinal herbs against Giardia infection. Based on the previous investigations, leaves are considered as the preferred part of herbs by researchers for pharmacological goals because of having some properties such as (i) having a high amount of bioactive compounds; (ii) choose as a sustainable source of natural compounds; and (iii) ease of harvesting without damaging the plant (Eseyin et al., 2014; Moshi et al., 2012; Bhat et al., 2013; Altemimi et al., 2017).

The findings of our review showed that essential oil (28.6%) and aqueous extract (28.6%) were the most used herbal formulations. Previously it has been proven the general use of essential oil and aqueous extract highlight the role of solvents in extraction of potential bioactive constituents from various herbs and different parts of these plants (Al-Shaibani et al., 2008).

Based on the obtained results, we found that most of the investigations are aimed at in vitro model rather than in vivo assessment of herbs against the Giardia infection. This might be due to some unique features of this assay such as low cost, less time-consuming, and ease of doing and getting results, that let herbs screening on a large scale (Bedell et al., 1997). Although, in vivo assay would be more perfect and specific than in vitro, however it has some disadvantages such as higher cost, being time-consuming, and difficulty to repeat because the animal and pharmacodynamics in the host (Woo et al., 2012).

With all interpretations associated with the high efficiency of medicinal plants, but in recent years, there has been a rising concern about the toxicity and safety of medicinal plants (Bateman et al., 1998). Reviews have reported that adverse health effects of medicinal plants are attributed to some factors such as toxicity of main components, absence of adherence to proper manufacturing practice and subsequently contamination of preparations by means of heavy metals or microorganisms, and adverse reactions because of age, and genetic and underlying diseases of the user (Mensah et al., 2019).

5. Conclusion

In recent years, a wide range of researches are regularly studying on herbal extracts and essential oils to discover agents with potent anti-Giardia efficacy which could be applied for the giardiasis treatment alone or in combination with current synthetic drugs. The major advantages of herbal medicines over chemical medicines is that there are lower risks to develop resistance due to having a combination of different biological compounds with different mechanisms of action. The findings of the present review demonstrated that the plant-based anti-Giardia agents are up-and-coming as an alternative and complementary resource for treating giardiasis since had fewer significant toxicity. In addition to medicinal herbs, plant-derived compounds and compounds derived from natural products can be considered as promising products of effective to treatment of giardiasis. However, more studies are required to elucidate this conclusion, especially in clinical systems.

Declaration of Competing Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

References

Abdel-Hafeez, E.H., Ahmad, A.K., Kamal, A.M., Belal, U.S., Mowsafy, N.M., 2016. Anti-Giardia lamblia activity of ginger (Zingiber officinale) extract in an improved modified axenic culture. Parasitologists United J. 9 (1), 7.
Al-kaiissi, I.N., 2010. The effect of Aqueous some plants Extract on Giardia lamblia in vitro. Al-Anbar J. Veterin. Sci. 3 (2), 48–58.
Al-Megrin, W.A., 2017. In vivo study of pomegranate (Punica granatum) peel extract efficacy against Giardia lamblia in infected experimental mice. Asian Pac. J. Trop. Biomed. 7 (1), 59–63.
Al-Shaibani, I., Phulan, M., Ario, A., Qureshi, T., 2008. Oxidical and larvicidal properties of Adhatoda vasica (L.) extracts against gastrointestinal nematodes of sheep in vitro. Pak. Vet. J. 28 (2), 79–83.
Altemimi, A., Lakhissassi, N., Baharlouei, A., Watson, D., Lighthof, D., 2017. Phytochemicals: Extraction, isolation, and identification of bioactive compounds from plant extracts. Plants 6 (4), 42.
Amini, M.S., Jochari, M.R., 2016. Ethnobotanical knowledge of Apiaceae family in Iran: A review. Avicenna J. Phytomed. 6 (6), 623.
Azadbakht, M., Saeedi Akbarabadi, A., Motazedian, M.H., Monadi, T., Akbari, F., 2020. Anti-parasitic activity of some medicinal plants essential oils on Giardia lamblia and Entamoeba histolytica; in vitro. Res. J. Pharmacogn. 7 (1), 41–47.
Bahman, R.E., Gholami, S., Azadbakht, M., Ziaei, H., 2012. Effect of Hydroalcoholic extracts of Artemisia annua on cysts of Giardia lamblia in Invitro. J. Mazandaran Univ. Med. Sci. 22 (90), 71–80.
Bahrani, M., Saki, K., Rafieian-Kopaei, M., Karamati, S.A., Eftekharz, Z., Jelodari, M., 2014. The most common herbal medicines affecting Sarcomastigophora branches: a review study. Asian Pac. J. Trop. Med. 7 (1), 514–521.
Barati, M., Fakhar, M., Gholami, S., Esboei, B.R., Elm, T., 2017. The evaluation of Stachys lavandulifolia leaf extracts on cysts of G. lamblia, in vitro. J. Archiv. Med. 5 (4).
Barbosa, E., Calzada, F., Campos, R., 2006. Antigiardial activity of methanolic extracts from Helminthothemum glomeratum Lag. and Rubus coronilus Focke in sucking mice CD-1. J. Ethnopharmacol. 108 (3), 395–397. https://doi.org/10.1016/j.jep.2006.05.026. Epub 2006 Jun 2. PMID: 16824716.
Bateman, J., Chapman, R.D., Simpson, D., 1998. Possible toxicity of herbal remedies. Scott. Med. J. 43 (1), 7–15.
Bedell, M.A., Jenkins, N.A., Copeland, N.G., 1997. Mouse models of human disease. Part I: techniques and resources for genetic analysis in mice. Genes Dev. 11 (1), 1–10.
Bessada, S.M., Barreca, J.C., Oliveira, M.B., 2015. Asteraceae species with most prominent bioactivity and their potential applications: A review. Ind. Crops Prod. 15 (76), 604–615.
Bhat, J.A., Kumar, M., Bussmann, R.W., 2013. Ecological status and traditional knowledge of medicinal plants in Kedarnath Wildlife Sanctuary of Garhwal Himalayas, India. J. Ethnopharmacol. Ethnomed. 9 (1), 1.
Cushnie, T.P., Lamb, A.J., 2005. Antimicrobial activity of flavonoids. Int. J. Pharm. 291 (1–2), 174–181.
Dahab, A., 2015. Effect of Syzygium aromaticum and Rosmarinus officinalis extracts on Giardia lamblia and Streptococcus agalactiae. Egypt. Veterin. Med. Soc. Parasitol. 11, 67–75.
