MINIREVIEW – Professional Development

A toolbox for digitally enhanced teaching in synthetic biology

Liv Teresa Muth†, Liam Richard Jenkins Sánchez‡, Silke Claus†,*,#, José Manuel Salvador Lopez†,@ and Inge Van Bogaert*,$

Department of Biotechnology, Centre for Synthetic Biology, Ghent University, Coupure Links 653, 9000 Ghent, Belgium

†Corresponding author: Department of Biotechnology, Centre for Synthetic Biology, Ghent University, Coupure Links 653, 9000 Ghent, Belgium. Tel: +32 9 264 60 34; E-mail: inge.vanbogaert@ugent.be

One sentence summary: In this Minireview, a summary of different tools and resources for digitally enhanced and distance teaching of Synthetic Biology is provided, ranging from virtual mobility over MOOCs to gamification.

Abstract

The global pandemic of COVID-19 has forced educational provision to suddenly shift to a digital environment all around the globe. During these extraordinary times of teaching and learning both the challenges and the opportunities of embedding technologically enhanced education permanently became evident. Even though reinforced by constraints due to the pandemic, teaching through digital tools increases the portfolio of approaches to reach learning outcomes in general. In order to reap the full benefits, this Minireview displays various initiatives and tools for distance education in the area of Synthetic Biology in higher education while taking into account specific constraints of teaching Synthetic Biology from a distance, such as collaboration, laboratory and practical experiences. The displayed teaching resources can benefit current and future educators and raise awareness about a diversified inventory of teaching formats as a starting point to reflect upon one’s own teaching and its further advancement.

Keywords: synthetic biology; higher education; digitally-enhanced teaching; distance education

Definitions

Synthetic Biology “aims to design and engineer biologically based parts, novel devices and systems—as well as redesigning existing, natural biological systems” (Kitney and Freemont 2012).

Distance learning takes place in a learning environment in which “learners and teachers are separated by geographical and/or temporal distance”, while “a form of mediated learning can be achieved using a combination of technologies” (Wheeler 2012a).

Digital learning accounts for “a set of technology-mediated methods that can be applied to support student learning and can include elements of assessment, tutoring and instruction.”, also referred to as technology-enhanced learning or E-learning (Wheeler 2012b).

Emergency Remote Teaching “is a temporary shift of instructional delivery to an alternate delivery mode due to crisis
INTRODUCTION

Since the onset of the COVID-19 pandemic in the beginning of 2020, Synthetic Biology (SynBio) education—as all study disciplines—is heavily affected by physical distancing constraints. This disruptive change transformed the way education is delivered as there was no alternative but to suddenly switch all teaching and learning from classrooms into the students’ homes. Students, teaching and administrative staff had to develop ad hoc solutions to bridge teaching and learning during these challenging times. Most higher education institutions did not have—to an extent that allowed them to easily tackle the sudden increased demand—the digital maturity, nor the required ICT infrastructure coverage or appropriate expertise and institutional strategies. Nevertheless, at the same time it became evident that this forced change into a digital environment also bears potential to foster innovative teaching, boost its acceptance among teachers and students and to accelerate the transformation of teaching through digital tools.

In response to the pandemic, educators had to adapt their courses in a short time span with limited availability of individual training and support. In the long term, technical preparedness of teaching staff and educational IT infrastructure are essential parts of the equation towards quality education, but so is training teachers in how to make best pedagogical use of technology-embedded teaching and build confidence among educators to move beyond ‘Emergency Remote Teaching’. Not only educators had to learn how to navigate within online teaching platforms but also the learners themselves. Even though one might think about students as ‘Digital Natives’, the student body’s diversity needs to be taken into account. It should not be taken for granted that all students have the necessary skills, access and resources to fully participate in online education.

Particularly teaching SynBio in a virtual environment poses some additional obstacles as this STEM discipline is fundamentally linked to hands-on experience in wet lab exercises and potential research stays that are challenging to convey online. However, shifting into a virtual environment also holds potential. The fast-growing knowledge in the field of SynBio demands for quickly adaptable teaching solutions in the classroom. Even though it is essential that students learn how to adequately handle lab equipment, funding and material for laboratory exercises might be limited. Here, digital alternatives can be used to supplement hands-on practical lessons while easing financial constraints.

SynBio is a field that emerged around the turn of the millennium, bridging various disciplines from molecular biology over computer sciences to chemistry. SynBio aims to break down biological complexity, accumulate knowledge about living systems and standardize it into parts that can be used as a modular toolbox to recombine them in new and predictable biological entities (Cameron, Bashor and Collins 2014). The following characteristics inherent to SynBio have direct implications on how it is taught to students and provide powerful opportunities for its provision in higher education:

- Rapid development: SynBio is progressing at a rapid pace (Meng and Ellis 2020)—so fast that content taught in a SynBio course at this moment can become outdated within a few years. Thus, teaching SynBio requires more frequent updates compared to other fields of research in higher education (Haliman et al. 2019).
- Applicability: SynBio’s application potential relates to its power to tackle real-world challenges (Voigt 2020) and can be used in pedagogical concepts like problem-based learning (Kuldell 2007) in order to create meaningfulness and give perspectives on future employment sectors.
- Cross-disciplinary collaboration: SynBio combines a wide spectrum of STEM disciplines but it is also interconnected with entrepreneurship, scientific communication, arts and design, social sciences and ethics (Kuldell 2007). Incorporation of a plurality of perspectives in their education, will allow students to experience working in interdisciplinary teams and synergistically develop ideas.

In order to contribute to sharing good teaching practices for training the next generations of SynBio educators, this Minireview focuses on digital teaching formats within respectively applicable to the field of SynBio. Even though our interest in this topic was triggered by the COVID-19 pandemic’s restriction on face-to-face teaching, the impact of innovative teaching goes beyond the scope of this pandemic. By providing an overview of tools for digitally enhanced teaching, the respective strength and shortcomings (Table 1) and corresponding available resources (Tables 2–5)—though by far not an exhaustive collection—we aim to reduce the constraints that are faced in respect to distance teaching of SynBio and at the same time inspire creativity and innovation among STEM educators beyond disciplinary boundaries.

MAIN BODY

Virtual lectures

Virtual lectures are often used to teach fundamental knowledge and can be divided in two types: synchronous and asynchronous. In synchronous lectures, teaching staff delivers lectures live using video conferencing technology. These can additionally be recorded and later made available to students to improve accessibility, while still being considered synchronous. Live delivery allows the lecturers to control and adapt their pace according to the students’ needs (Racheva 2018), to use in-time feedback and quizzes about the students’ current stage of learning and understanding and to facilitate real-time social interaction e.g. in break-out rooms (Nieuwoudt 2020). Indeed, even before the onset of the pandemic, lecture formats have been shifting away from traditional approaches—characterized by mere knowledge transmission from the lecturer to the students—towards active student engagement. For lectures, approaches that shift part of the students’ learning into independent self-study can be found in ‘flipping the classroom’—meaning that students have the first contact with learning materials outside of the classroom using lower levels of cognitive skills like acquiring knowledge while the lecture sessions are used for building higher cognitive skills such as analysis and
Evaluation (Akçayır and Akçayır 2018). This is particularly beneficial for teaching SynBio-related fields which require critical thinking (Winstead and Huang 2019). Within ‘Just-in-Time Teaching’ the main focus lies on identifying the students’ level of understanding by letting the them prepare material and submit assignments before the session, so the teacher can tailor the in-person session towards the most challenging points e.g. to mitigate emotional attrition, with supportive and reachable instructors (Aloni and Harrington 2018; Lowenthal et al. 2020). Nonetheless, synchronous lectures have some limitations, such as ‘Zoom Hangovers’, caused by overstimulation, external distraction and long sessions (Lowenthal et al. 2020).

Asynchronous, or on-demand lectures, are lectures which are recorded with the specific intent of being made available online at a later date. Compared to synchronous lectures, asynchronous lectures are less problematic regarding technological reliability and access barriers such as time-zone differences (Lowenthal et al. 2020) and allow the students to have more control over how quickly information is presented, decreasing cognitive load and stress (Guo, Li and Han 2018; Nieuwoudt 2020). However, this independence and low interactivity can result in feelings of isolation. Tools such as discussion boards can be key to mitigate emotional attrition, with supportive and reachable instructors (Aloni and Harrington 2018; Lowenthal et al. 2020). In the same regard, grading systems are good strategies to promote student engagement (Procko et al. 2020). In any case, adequate lecture lengths (preferably under 30 min and strictly under 60 min) should be kept in mind (Guo, Li and Han 2018).

Virtual mobility

International student mobility was heavily affected by international travel restrictions. Consequently, ‘Virtual Mobility’ suddenly became more inviting. The concept is defined as a ‘set of ICT supported activities, organized at institutional level, that realize or facilitate international, collaborative experiences in a context of teaching and/or learning’ (European Commission 2020). It allows students to follow courses at another educational institute than the students’ home institute, in other parts of the world in an online mode. Both institutes agree priorly to recognize the course, so it becomes part of the student’s curriculum. Virtual Mobility can lower barriers to gain international experience e.g. in regards to financial burden for traveling and living abroad and for students facing health-related and political issues (Buchem et al. 2018). Virtual Mobility can also take place in the form of virtual internships in companies, through virtual guest lectures or in physical exchange programs that are complemented with virtual elements. The Erasmus project ‘Tea-Camp’ funded a 2-year study in which various aspects of Virtual Mobility were studied and assembled the outcomes in one book (Teresevičienė, Volungevičienė and Daukšienė 2011). As a follow-up, the ‘Open Virtual Mobility Learning Hub’ was designed as a central reference point (Buchem et al. 2018).

‘Remote Experts’ became more accessible to students because of the compelled use of videoconferencing technology. The opportunity to speak directly to authors of scientific research led to increased excitement about otherwise challenging material (Basiliko and Gupta 2015). Also, students themselves can step into the shoes of Remote Experts in initiatives such as ‘Skype a Scientist’ that matches researchers—even early career researchers from Graduate School onwards—with classrooms around the globe. This way students can practice their

Table 1. Overview of delivery modes for digitally enhanced teaching and respective strengths and shortcomings.
Delivery mode
Synchronous
Virtual lectures
Virtual mobility
MOOCs
YouTube playlists and podcasts
Online debates
Social media
Virtual labs
Gamification
Student competitions
presentation skills and provision of scientific content tailored to a non-expert audience (Skype a Scientist).

Extra advantages of Virtual Mobility are the promotion of second language competency, cultural exchange and mutual understanding among students and researchers across the globe (Al-Samarraie 2019). It can serve as ‘an opportunity to reflect and elaborate on renewed models of internationalization at home’ (Coimbra Group 2020). One has to acknowledge that virtual mobility should never aim to fully replace physical mobility because the same levels of support, interaction among students or student–teachers and participant motivation cannot be reached (Buiskool and Hudepohl 2020). A shift to virtual mobility also implies a more elaborate development of online platforms and difficult logistics in terms of planning. In the future, a mixed approach in which virtual mobility is used as preparation; support and follow-up of the physical version is expected to be most beneficial.

Massive open online courses

Massive Open Online Courses (MOOCs) are courses offered on learning platforms that are based on common principles such as democratization of educational offers, video-assisted learning, self-assessment, modularity and short-term education (López Meneses, Vázquez Cano and Mac Fadden 2020). These online courses, which appeared for the first time in 2008, do not have any restriction on the number of enrolled students and are free of charge to everyone, although fees must usually be paid to receive a recognizable certificate. MOOCs have the potential to diversify the higher educational landscape, by providing easily-scalable, informal and student-centred alternatives to traditional programs, as MOOCs give students more autonomy to shape their individual learning paths and expand the curriculum further than their traditional education programs (Lambert 2020; Blum-Smith, Yurkofsky and Brennan 2021; Julia, Peter and Marco 2021). One of the biggest advantages of MOOCs is the great variety of topics directly accessible to learners.

Nevertheless, MOOCs show several weaknesses that limit their expansion: high dropout rates, lack of feedback, low interaction, absence of reliable examinations and difficulty to assemble an individual curriculum out of the wide range of MOOCs available as well as limited recognition of the competencies acquired through MOOCs by formal institutions (López Meneses, Vázquez Cano and Mac Fadden 2020; Reparaz, Aznárez-Sanado and Mendoza 2020; Zhu, Bonk and Doo 2020; Pickard, Shah and De Simone 2018). MOOCs can introduce SynBio to students studying related programs, such as biochemistry or computer sciences, which do not necessarily include SynBio in their curricula. The MOOC ‘Principles of Synthetic Biology’, developed by MIT and provided on EdX, gives an overview on the engineering approach of this discipline (Anderson et al. 2019). In the same way that MOOCs can be used to introduce learners from related disciplines SynBio, they can also be used to expand the knowledge of SynBio students into areas related to the interdisciplinarity of SynBio, such as programming or bioethics. For example, the MOOC ‘Engineering Life: Synbio, Bioethics & Public Policy’, developed by Johns Hopkins University and provided on Coursera, gives an overview on the ethical and legal implications of several SynBio applications (Mathews 2021).

During the pandemic not only have students turned towards MOOCs for knowledge and credits, also teachers have made use of them as inspiration to create their own online courses. The rise of MOOCs during the pandemic is reflected in a three-times increase of subscribed learners between 2019 and 2020, compared to the previous term. Although during the pandemic MOOCs usage has increased worldwide, the question remains open whether MOOCs will maintain this trend after face-to-face education can be fully restored.

YouTube playlists and podcasts

While through MOOCs credits can be awarded to be used in formal studies, there is a vast number of informal educational resources available on the web, such as YouTube videos or podcasts. Students can easily consult these free resources to support their learning process and teachers can use them as inspiration or supporting material. Even though they provide freedom to students, their quality may be irregular or untrustworthy (Drew 2017).

Besides being a passive source of information, YouTube—the biggest open-access repository of videos—can be actively integrated in education, with students publishing videos for projects and teachers creating contents that their students and other interested parties can follow (Almobarraz 2018; Curran et al. 2020; Saentamu et al. 2020). However, awareness about the usefulness of YouTube and similar platforms for teaching still needs to be encouraged among education professionals. YouTube offers a range of resources for SynBio as exemplified in Table 2. In addition, the reader is referred to the article of Dy, Aurand and Friedman (2019) that compiled a comprehensive playlist of SynBio educational videos found on YouTube.

Starting with the exchange of private audio files, podcasts have evolved into a free and open format to distribute information. Podcasts can be used in different ways: as substitutional material (providing essential course content), as supplemental material (providing reviewed course material), or as integrated material (providing non-essential extra material). The

Table 2. Selection of YouTube playlists and podcasts related to SynBio education. In addition to this table, the reader is referred to the article of Dy, Aurand and Friedman (2019) that compiled a comprehensive playlist of SynBio educational YouTube videos.

Name	Type of resource	Knowledge/skills
EMBO/iBiology synthetic biology course	YouTube playlist	Lecture videos about SynBio basics and applications, presented by experts from the field
Synthetic biology one	YouTube channel	Videos providing small online courses explaining simple experiments, presented by Jake Wintermute
Genetics unzipped	Educational podcast	Podcast explaining concepts and examples in the field of genetics
SynBioBeta podcast	Podcast	Podcasts containing interviews with different experts from the SynBio field
Talking Biotech podcast	Podcast	Podcasts containing interviews with different experts in the field of biotechnology
use of podcasts as integrational material is the rarest application but at the same time it has the highest potential (Connor et al. 2020). The design of podcasts is of particular importance to provide significant learning experiences. Podcasts can benefit from a high use of structural guidance techniques to continuously remind the audience of the message context, as well as brief and intense episodes or an informal style based on humour (Drew 2017; König 2020). For SynBio podcasts, as for podcasts in general, it is common to have several speakers either in the form of interviews or round table discussions. Podcasts centred around SynBio are not abundant, and the content of the ones available might be too advanced for students not yet familiar with the subject. Nonetheless, podcasts can be of great help for further insight into specific topics or as material about the intersections of SynBio with other disciplines, such as business or ethics. A selection of SynBio YouTube playlists and podcasts can be found in Table 2.

Online debates and discussions

Achieving students’ full engagement in the online learning environment requires high interactivity with the learning materials, but also an elaborate social learning network. Online debates and discussions are a good start since they increase peer-to-peer interaction, which provides opportunities to practice communication skills and increases student interest by providing platforms for dialogue. During the discussions, the teacher is in the role of a moderator that oversees the content and should be aware of the abundance of online fora without curation of the content posted. A teachers’ guide on the practical aspects how to moderate online discussions was written by Feenberg, Xin and Glass (2002). Online tools—such as the online debate website ‘Kialo Edu’ (Kialo Edu)—are designed to help moderate these discussions in an online classroom setting.

Zooming in on communities more specifically dedicated to SynBio, one encounters among other DIYBio.org (Table 3), a global project with its own general ethical framework, open-source mindset and, most importantly, supra-national networks to meet other junior and amateur SynBio scientists online. These discussion platforms provide students with the opportunity of joining SynBio communities outside formal education; thereby, allowing them to engage with laypersons from the general public from early on in their scientific careers. Other examples of discussion fora and networks are given in Table 3.

Social media

Through social media platforms, learners and educators can interact with each other online. One of the first forms of social media were blogs, which can be defined as an online publishing format characterized by a collection of links, news, or opinions with an informal and subjective style and appear in inverse chronological order (Barujel 2005). The use of blogs in higher education (termed ‘Edublogs’) has been proposed since the early 2000s (Cabrera 2019). Educators can create blogs which can be accessed at any moment and respond to students’ questions and comments. Furthermore, students can be encouraged to create blogs themselves, where they can structure and publish their gained scientific insights, improving skills to acquire and organize knowledge, aiding to developing life-long learning competencies.

The spread of mobile technologies and the appearance of other social media formats provide alternatives to blogs. The advantages of mobile technologies are obvious: the big social media platforms, outreach and the potential for student engagement with new forms of delivery (Cann 2015). Even more, ‘Microblog’ platforms (any online platform where messages are restricted to 140–200 characters) encourage participation in socio-scientific topics, developing argumentation skills among students (Shaw, Walker and Kafai 2020). Compared to blogs, the accessibility of these mobile social media is much more direct, and the notification systems allow for more dynamic sharing of knowledge (Chawinga 2017). A study across a variety of disciplines showed that students are comfortable with frequently using social media in their education and that it supports deep learning (Samuels-Peretz et al. 2017).

Inside the microbiology field, the ‘Adopt a Bacterium’ project is one example, promoting an interactive teaching experience using Facebook as a platform for shared and supervised discussions (Piantola et al. 2018). Also, on LinkedIn, several open SynBio groups are found, such as the ‘iGEM’, ‘CRISPR and Gene Editing Tools’, ‘DIYbio’ groups. The hashtag #synbio on Twitter guides students towards researchers and their publications in bite-size bits. More than ever, science communication and distribution of research output is changing its trajectory towards social media, urging teachers to include or consult them when updating the curriculum. More information on how social media impacted microbiology dissemination can be found in the communication by Al et al. (2021).

Online forum	Type of platform	Knowledge/skills	url
IndieBiotech.com	Discussion forum	Forum for discussion about democratized biotechnology	https://www.indiebiotech.com/
DIYBio	Mailing list	Finding tips and tricks to perform biology/biotechnology at home and open for ethical discussion	https://groups.google.com/g/diybio?pli=1
Biology Online Forum	Discussion forum	World’s most comprehensive database of biology terms and topics	https://forum.biologyonline.com/
ResearchGate	Social media network	Social media network to share articles and opinions and large Q&A section covering technical support	https://www.researchgate.net
Biology.StackExchange	Discussion forum	Q&A site for biology researchers and academics and students	https://biology.stackexchange.com/
SynBio.StackExchange	Discussion forum	Q&A site for synthetic biology researchers and academics and students	[upcoming] https://area51.stackexchange.com/proposals/125068/synthetic-biology?phase=commitment&conf=1
Table 4. Overview of resources for virtual lab experiments.

Virtual lab	Knowledge/Skills	url	Ref
Serial Cloner, Benchling	Virtual PCR and cloning	http://serialbasics.free.fr/Serial_Cloner.html, https://benchling.com/signin/Cloner	Benchling; Serial Cloner; Fellermann et al. (2018)
Virtual Enzymology GelBox	Enzyme kinetics, Gel electrophoresis	https://github.com/vqf/kinetics, http://douglaslab.org/gelbox/	Quesada (2020), Gingold and Douglas (2018), Katsaros and Stasinakis (2020)
Aipotu	Links genetics, biochemistry and molecular biology with evolution	http://en.bio-soft.net/biocai/aipotu.html	NCBioNetwork
BioNetwork Virtual Microscope Augment app	Interactive virtual 3D microscope, 3D protein structure in Augmented Reality	http://www.ncbiionetwork.org/iet/microscope/, https://molecularweb.epfl.ch/	Hoog et al. (2020)
Labster	SynBio routine from building the genetic circuit, the cloning thereof through plasmid extraction and transformation	https://www.labster.com/simulations/synthetic-biology/	Labster
COVID Moonshot	Modelling of potential inhibitors targeting the main protease of the SARS-CoV-2 virus	https://covid.posterai/covid	Brandt and Novak (2021)

Yet, one should be aware of the associated challenges of using social media for educational purposes. The expectation of short response times and the omnipresent nature of this medium often leads to imbalances in the work/private life separation, which in turn causes stress and anxiety for teaching staff and students (Lepp, Barkley and Karpinski 2014). When using social media, one also needs to be aware of problems in regard to intellectual property laws, privacy, cyberbullying and digital and information illiteracy such as for identifying misinformation. Furthermore, the limited character space and volatility of social media do not leave a lot of room for nuances. Given the complexity of SynBio issues, students tend to be drawn to their peers’ perspectives and thereby reinforcing their own biases (Shaw, Walker and Kafai 2020). Nonetheless, social media cannot be ignored for its impact on our every day’s private and professional lives and therefore should be used adequately to contribute to active learning. Evidence-based recommendations and guidelines for including social media in one’s teaching are provided by Greenhow and Galvin (2020).

Wet lab simulators and virtual labs

Particularly in applied sciences, the perceived value of distance learning suffers from a negative stereotype (Matias and Springs 2020). This originates mainly from the need to acquire a hands-on foundation (including skills involved in investigation, experimentation and evidence evaluation). Molecular biology students stated the lack of performing hands-on lab techniques during the pandemic as one of the major barriers to their learning (Hsu and Rowland-Goldsmith 2021). The fast switch from in-person to online teaching often led to the use of lab videos of teachers performing experiments or animations without any interactive aspects. For a vast database of these videos, the reader is referred to ‘JoVE’ or ‘LabXchange’ (JoVE, LabXchange). Additionally, free videos can also be consulted on YouTube. By using demonstration videos, instead of physically performing the experiments, the focus shifts towards the conceptual understanding of a technique and data analysis. Yet, students still reported having troubles grasping the underlying concepts. This indicates the importance of the exploratory and creative aspects of actively performing lab experiments.

In SynBio, molecular procedures such as cloning can be easily simulated with computer resources such as in PCR simulators (‘Virtual PCR Simulator’, Table 4) and even whole DNA assembly environments (‘Benchling’ or ‘Serial Cloner’, Table 4). These simulators provide a conceptual space to rehearse prior theoretical knowledge, without requiring expensive reagents and equipment. Together with a multitude of sequence repositories such as the ‘NCBI Database’ or ‘Addgene’, these simulators facilitate the design of molecular constructs, sequence analysis, PCR primer design and other skills which are all key learning objectives in molecular biology. Yet, the benefit of simulators goes beyond the design stage, nicely illustrated by the availability of various resources for virtual lab experiments (Table 4).

Interactive simulation tools provide a valuable alternative to the analogue lab experiments, with a higher student engagement compared to lab animations or videos (Diwakar et al. 2016; Allen and Barker 2021). In the virtual environment, students can perform individual lab experiments from PCR over gel electrophoresis to microscopy or engage in performing a whole SynBio routine from building a genetic circuit to transformation by using e.g. ‘Labster’ (Table 4). Before the pandemic, lab simulation-based practical training in higher education was rarely used to replace real-life exercises. From an industrial biopharmaceutical perspective, it was found that these virtual trainings could vastly substitute real-life trainings (Wismer et al. 2021). Even if a few lab simulations require advanced computational skills and infrastructure it is conceivable that virtual labs might play a more central role in the future of SynBio education, even after the pandemic.

Preferably, lab experiments—online or in-person—result in real-world significance, something that appeared crucial for the motivation of students (Van Heuvelen et al. 2020). The most relevant example of an online practical exercise with a reality-grounded outcome, stems from the crowdsourced COVID-19 ‘Moonshot’ project (Table 4). Here, students apply their scientific knowledge and creativity in search for inhibitors targeting the main protease of the SARS-CoV-2 virus (Brandt and Novak 2021). All results are posted in a communal database and automatically scored. The highest scoring candidates are synthesized and tested as an actual treatment for SARS-CoV-2, providing the societal relevance to the project.
Table 5. Fully online educational games with elements useful for SynBio teaching.

Name	Knowledge/skills	url	Ref
Geniventure	Virtual game environment teaching basic genetic concepts through puzzle-like challenges	https://geniventure.concord.org	Henderson et al. (2020)
Mission Biotech	Virtual game environment in which the player represents a scientist studying an emerging epidemic	http://www.virtualheroes.biz/MissionBiotech	Eastwood and Sadler (2013)
Hero.Coli	First-person simulator of a bacteria incorporating genetic elements to gain new properties	http://herocoli.com	Goujet (2018)
SynMod	Game for mobile devices, the player learns about amino acids and their properties and aims to use this knowledge to develop new antibiotics	https://www.biofaction.com/portfolio/synmod-game	Schmidt, Radchuk and Meinhart (2014)
FoldIt	Multiplayer competitive game that simulates protein folding	https://fold.it	Cooper et al. (2010)
Nanocrafter	Virtual game environment in which the learner can simulate the assembly of DNA fragments to construct novel genetic devices	Unavailable	Barone et al. (2015)

Gamification

‘Gamification’ refers to the use of game elements in non-game environments. Using gaming strategies in teaching can result in higher grades, higher engagement and student participation and the development of soft skills such as leadership, reflection on scientific values and self-discipline (Toriz 2019). By design, games promote curiosity and exploration, and provide feedback for tasks. Effort is rewarded through public praise, such as leader boards and congratulatory messages, while mistakes are assimilated through ‘fun failure’, which is non-threatening, and thus does not induce anxiety but invites additional exploration (Morris et al. 2013).

In addition to the benefits for students’ learning, smart game design can be used to solve real scientific problems. ‘FoldIt’ is a perfect example in this regard (Table 5). The skills of players were harnessed to predict the 3D structure of folded proteins; with top players succeeding at a greater degree of accuracy than contemporary software. This demonstrates the potential of SynBio games to push the scientific frontier (Cooper et al. 2010). Relevant games in the field of SynBio are compiled in Table 5, which are considered well suited for integration in distance learning.

However, SynBio games are not limited to completely virtual game environments. Collaboration with other students can be enhanced by SynBio-related escape room games that can be executed online while communicating through video conferencing technology (Alonso and Schroeder 2020). Furthermore, some games can be played virtually but rely on real-time, physically occurring molecular or organismic biological processes, termed ‘Biotic Games’. For example, at the organism level, Euglena (Gerber, Kim and Riedel-Kruse 2016) and Paramecium (Riedel-Kruse et al. 2011) responding to external stimuli applied by players can be used in minigames like Pong, Pac-man and soccer. In other games such as ‘Mould Rush’ players scan the growth of microbial cultures and score points for identifying colonies (Pataran et al. 2020).

Gamification as an educational tool is not without limitations. A lack of technical skills both on the educators’ or students’ side can hinder participation. Furthermore, the narrow scope of individual games and the limited number of games available often leads to them not necessarily aligning with course milestones, or only covering certain parts of the desired learning. Therefore, proper thought and prior planning should be placed to guarantee that games are appropriate to the study topic at hand (Sánchez-Mena and Martí-Parreño 2017).

Student competitions

SynBio competitions, such as iGEM or BIOMOD, allow teams of students to present ideas which they have designed, built and tested. These ideas should be directed to solve real-world problems and should involve the design of organisms (iGEM) or molecules (BIOMOD) (Kelwick et al. 2015; Schmitt et al. 2020). However, the area of responsibility goes beyond pure research planning and execution: Participants are asked to also cover research management such as collecting funds from sponsors, managing their budget, researching societal implications as well as creating deliverables for the competition such as websites or posters. Due to the pandemic, BIOMOD 2020 was cancelled while iGEM 2020 was taken fully online and requirements and goals were adjusted to allow the possibility to win prizes for those teams that could not access laboratories. iGEM 2020 showed that a worldwide student competition taking place entirely online is a feasible task. Besides the main SynBio competitions, students can also work on SynBio-related projects in competitions with a broader target group, such as the BioBased Innovation Student Challenge Europe (TKI-BBE 2021).

Student competitions can offer students motivation to apply their knowledge to real-life situations, gaining new SynBio and interdisciplinary skills in the process (Cadola and Chindamo 2019; Herrera-Limones et al. 2020). Furthermore, the big scope of these competitions requires teams effort from students rather than individual work, fomenting the development of interpersonal and teamwork skills (Schuster, Davol and Mello 2006). However, educators should be aware of the—depending on the scope of the competition—time and resource consuming character of student competitions. Another type of student competitions are hackathons in which a team, often interdisciplinary, seeks to develop a solution or an algorithm to a real and previously defined problem in a limited amount of time, ranging...
from several hours to multiple days. SynBio has the potential to provide stimulating problems for hackathons in educational settings, in which students can develop their programming skills and understanding of biology in interdisciplinary groups (Cambridge University; Horton et al. 2018; Gama et al. 2019; ELIXIR 2021). Based on previous hackathon experiences, a team of researchers developed guidelines on how to organize and manage Bio-Hackathons which can serve educators that aim to implement hackathons at their institutions or in their courses (Garcia et al. 2020).

CONCLUSION

The COVID-19 pandemic has led to temporary physical closure of higher education institutions and forced teachers and students into a rather drastic and global switch from in-person teaching to 'Emergency Remote Teaching’. Even though remarkable responses have been made, the abrupt switch to digital education was rather a solution in the moment of crisis than based on proper long-term implemented technical, professional and pedagogical strategies. With this Minireview we provide a diversified toolbox (Table 1) with explicit examples for educators to easily consult when designing and conducting their higher education courses in an online environment. Above, we have showcased a range of SynBio-specific but also a variety of SynBio-linked resources as SynBio is inherently associated with interdisciplinarity. Consequently, not only SynBio teachers can profit from this toolbox but due to its transferability also educators from other related disciplines that are looking for inspiration can benefit from it.

Social interactions between students are crucial for the learning process, creating a sense of belonging to a college cohort and expanding interpersonal soft skills. Learning full-time online—without a physical space to interact—can have negative consequences for students’ physical and emotional well-being such as feelings of isolation. Formats like student competitions can largely support student community-building. However, most of the interactions in a digital setting are rather formal, whereas informal contacts like joint lunch breaks are more difficult to institutionalize. Even though ‘Virtual Mobility’ can be seen as an alternative to overcome the travel restrictions, since it addresses cultural awareness and intercultural collaboration to a certain extent, it is evidently distinct from physical mobility in which the student immerses in a culturally different environment. Another shortcoming of teaching SynBio online, is the current inability to perform wet lab exercises. Virtual labs can partially be used as substitute, but lack the real proper handling of laboratory equipment and immediate trouble solving. These situations highlight the challenges of virtual environments when it comes to human connection, networking and hands-on experience.

Another point of attention is the sustainability of online resources for teaching. Digital resources need to be maintained and updated to ensure accessibility and state-of-the-art scientific material. Depending on the tool used, educators need to pay attention to identifying scientifically sound resources. Oppositely, this can also provide opportunities to train students’ information and data literacy. Generally, teaching online asks for considerations about the risks of cyberattacks, data misuse and privacy protection—especially when teachers and students are required to sign up for accessing a platform using their own, or their university’s information.

In any case, one should bear in mind that the student population is diverse and students can face problems when it comes to private and quiet spaces to work remotely from home, lacking technical equipment or limited internet connection as well as limited digital literacy. Furthermore, barriers encountered by students with disabilities and impairments need to be taken into account from the beginning e.g. by using the guidelines of ‘Universal Design for Learning’ (Dell 2015; Rogers-Shaw, Carr-Chellman and Choi 2018). This said, it is crucial that ICT, other support structures and educators are capable to provide a safety net for all learners to counteract inequalities and the digital divide.

The delivery modes and respective resources displayed in this Minireview can provide starting points for a fruitful teaching and learning experience. However, teachers should bear in mind that digital tools and resources are only a medium for delivering information but do not per se cause effective and student-centred teaching. Ideally, modern evidence-based pedagogical approaches and digital teaching tools blend together and are complementary to reach the intended beneficiaries. Especially in the digital environment teachers need to adapt their teaching style and carefully design their teaching units. This said, educators are encouraged to consult their institutions’ pedagogical assistance and benefit from MOOCs for teachers’ professional development themselves e.g. ‘Blended and Online Learning Design’ (developed by UCL and provided on FutureLearn) and other published materials (Bruggeman et al. 2021; Mahmood 2021; Sharp et al. 2021). In the sense of student-centred learning and teaching, students can become co-creators of their own learning and generate valuable online teaching content themselves while strengthening the student-staff partnership.

Even though there is no ‘One-Size-Fits-All’ solution, this review aims to contribute to peer-learning among educators. As SynBio itself, the teaching landscape is facing a rapid development and continuous improvement in which also digital tools find their place. Digital teaching solutions used synergistically together with appropriate teaching methodology have the potential to make best use of flexibility—in time, place and content—for learners and educators to reach desired learning outcomes. Therefore, educators—from early career researcher that are teaching their first courses towards senior academics with multiple decades of teaching experience—should use the lessons learnt from crisis-driven experimentations and innovations as an opportunity to reflect on and reimagine their own practices to teaching post-COVID19—just like SynBio typically relies on a Design-Build-Test-Learn cycle to constantly readjust and improve.

ACKNOWLEDGEMENTS

This work was supported by the Research Foundation—Flanders (FWO; grant numbers 28930, 1185417N,197907, 1SC4320N and GOE1319N), as well as the Special Research Fund of Ghent University (BOF; grant number STAO11-17).

Conflicts of Interest. The authors declare to have no conflict of interest.

REFERENCES

Akcayır G, Akcayır M. The flipped classroom: a review of its advantages and challenges. Comput Educ 2018;126:334–45.
Al KF, Puebla-Barragan S, Reid G et al. Young scientist perspective—microbiology trainees and social media: making science go viral during a pandemic. FEMS Microb 2021;2:1.
Al-Samarraie H. A scoping review of videoconferencing systems in higher education learning paradigms, opportunities, and challenges. Int Rev Res Open Distrib Learn. 2019;20:121–40.

Allen TE, Barker SD. BME labs in the era of COVID-19: transitioning a hands-on integrative lab experience to remote instruction using Gameified lab simulations. Biomed Eng Educ 2021;1:99–104.

Almohbarraz A. Utilization of YouTube as an information resource to support university courses. Electron Lib 2018;36:71–81.

Aloni M, Harrington C. Research based practices for improving the effectiveness of asynchronous online discussion boards. Scholar Teach Learn Psychol 2018;4:271–89.

Alonso G, Schroeder KT. Applying active learning in a virtual classroom such as a molecular biology escape room. Biochem Mol Biol Educ 2020;48:514–5.

Anderson DA, Weiss R, Jones RD et al. Principles of synthetic biology: a MOOC for an emerging field. Synth Biol 2019;4:1–8.

Barone J, Bayer C, Copley C et al. Nanocrafter: Design and Evaluation of a DNA Nanotechnology Game. Proc 10th Int Conf Found Digit Games (FDG 2015) 2015;3–7.

Barujel AG. El uso de weblogs en la docencia universitaria. RELATEC Rev Latinoam Tecnol Educ 2005;4:9–24.

Basilio N, Gupta V. Bringing guest scientists to the university biology classroom via the web. FEMS Microbiol Lett 2015;362:1–3.

Benchling. Biology Software. Available at: https://www.benchlin.g.com.

Blum-Smith S, Yurkofsky MM, Brennan K. Stepping back and stepping in: facilitating learner-centered experiences in MOOCs. Comput Educ 2021;160:104042.

Bologna Follow-Up Group. STUDENT-CENTRED LEARNING. Available at: https://ehea.info/page-student-centred-learning.

Brandt GS, Novak WRP. SARS-CoV-2 virtual biochemistry labs on bioinformatics and drug design. Biochem Mol Biol Educ 2021;49:26–8.

Bruggeman B, Tondeur J, Struyven K et al. Experts speaking: crucial teacher attributes for implementing blended learning in higher education. Internet High Educ 2021;48.

Buchem I, Konert J, Carlino C et al. Designing a collaborative learning hub for virtual mobility skills - Insights from the european project open virtual mobility. In: Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics). Springer Verlag, 2018, 350–75.

Buiskool B-J, Hudepohl M. Concomitant expertise for INI report - Virtual formats versus physical mobility. Available at: http://bit.ly/2QFj87J 2020.6.

Cabrera CE. Edublog in the university educational context. Cien
cia y Sociedad 2019;44:7–23.

Cambridge University. Bio-Hackathon. SynBio Fund

Cameron DE, Bashor CJ, Collins JJ. A brief history of synthetic biology. Nat Rev Microbiol 2014;12:381–90.

Cann A. Online technology for teaching and learning-gains and losses. FEMS Microbiol Lett 2015;362:13–5.

Chawinga WD. Taking social media to a university classroom: teaching and learning using Twitter and blogs. Int J Educ Technol High Educ 2017;14.

Coimbra Group. Practices at Coimbra Group Universities in response to the COVID-19: A Collective Reflection on the Present and Future of Higher Education in Europe. Coimbra Group 2020.

Connor SO, Daly CS, Macarthur J et al. Nurse education in practice podcasting in nursing and midwifery education: an integrative review. Nurse Educ Pract 2020;47:102827.
focus in higher education: the University of Seville ‘Aura Projects’ in the Solar Decathlon 2019. Sustain 2020;12.
Hodges C, Moore S, B Lockee et al. Remote Teaching and Online Learning. Educ Rev 2020;1–15.
Hoog TG, Aufdembrink LM, Gaut NJ et al. Rapid deployment of smartphone-based augmented reality tools for field and online education in structural biology. Biochem Mol Biol Educ 2020;48:448–51.
Horton PA, Jordan SS, Weiner S et al. Project-based learning among engineering students during short-form hackathon events. Proceedings of the Annual Conference and Exposition ASEE 2018; 2018.
Hau JL, Rowland-Goldsmith M. Student perceptions of an inquiry-based molecular biology lecture and lab following a mid-semester transition to online teaching. Biochem Mol Biol Educ 2021;49:15–25.
JoVE. Peer reviewed scientific video journal - Methods and protocols. Available at: https://www.jove.com/.
Julia K, Peter VR, Marco K. Educational scalability in MOOCs: analysing instructional designs to find best practices. Comput Educ 2021;161:104054.
Katsaros NA, Stasinakis PK. Using Aipotu simulation to promote evolution learning and teaching. Biochem Mol Biol Educ 2020;48:433–5.
Kelwick R, Bowater L, Yeoman KH et al. Promoting microbiology education through the iGEM synthetic biology competition. FEMS Microbiol Lett 2015;362:1–8.
Kialo Edu. Kialo Edu - The tool to teach critical thinking and rational debate. Kialo Edu.
Kitney R, Freemont P. Synthetic biology - The state of play. FEBS Lett 2012;586:2029–36.
König L. Podcasts in higher education: teacher enthusiasm increases students’ excitement, interest, enjoyment, and learning motivation motivation. Educ Stud 2020;00:1–4.
Kuldell N. Authentic teaching and learning through synthetic biology. J Biol Eng 2007;1:1–6.
Labster. Virtual Lab: Synthetic Biology Virtual Lab. Available at: https://www.labster.com/simulations/synthetic-biology/.
LabXChange. Learning without limits. Available at: https://www.labxchange.org/.
Lambert SR. Do MOOCs contribute to student equity and social inclusion? A systematic review 2014–18. Comput Educ 2020;145:103693.
Lepp A, Barkley JE, Karpinski AC. The relationship between cell phone use, academic performance, anxiety, and satisfaction with life in college students. Comput Hum Behav 2014;31:343–50.
López Meneses E, Vázquez Cano E, Mac Fadden I. MOOC in higher education from the students’ perspective. A sustain with life in college students. Psychoeduc Rev 2020;1–15.
Matias A, Springs S. Engaging students in hands-on science learning experiences at a distance. All about Mentor 2020: 67–72.
Meng F, Ellis T. The second decade of synthetic biology: 2010–2020. Nat Commun 2020;11:1–4.
Morris BJ, Croker S, Zimmerman C et al. Gaming science: the 'Gamification’ of scientific thinking. Front Psychol 2013;4:1–16.
NCBioNetwork. Virtual Microscope. Available at: http://www.ncbionetwerk.org/iet/microscope/
Nieuwoudt JE. Investigating synchronous and asynchronous class attendance as predictors of academic success in online education. Australasian J Educ Technol 2020;36:15–25.
Novak GM, Patterson ET, Gavrin AD et al. Just-in-Time Teaching: Blending Active Learning with Web Technology. Upper Saddle River: Prentice Hall, 1999.
Pataran P, Kong DS, Maes P et al. Living boxes: opportunities and challenges for integrating living microorganisms in human-computer interaction. 2020.
Piantola MAF, Moreno ACR, Matiello HA et al. Adopt a bacterium – an active and collaborative learning experience in microbiology based on social media. Brazil J Microbiol 2018;49:942–8.
Pickard L, Shah D, De Simone JJ. Mapping microcredentials across MOOC platforms. Proceedings of 2018 Learning with MOOCs, LWMOOCs 2018 2018:17–20.
Procko K, Bell JK, Benore MA et al. Moving biochemistry and molecular biology courses online in times of disruption: recommended practices and resources - a collaboration with the faculty community and ASBMB. Biochem Mol Biol Educ 2020;48:421–7.
Quesada V. Virtual laboratory lessons in enzymology. Biochem Mol Biol Educ 2020;48:442–7.
Racheva V. Social aspects of synchronous virtual learning environments. AIP Conf Proc 2018;2048.
Reparaz C, Aznárez-Sando M, Mendoza G. Self-regulation of learning and MOOC retention. Comput Hum Behav 2020;111.
Riedel-Kruse IH, Chung AM, Dura B et al. Design, engineering and utility of biotic games. Lab Chip 2011;11:14–22.
Rogers-Shaw C, Carr-Chellman DJ, Choi J. Universal design for learning: guidelines for accessible online instruction. Adult Learn 2018;29:20–31.
Samuels-Peretz D, Camiel LD, Teeley K et al. Digitally Inspired Thinking: Can Social Media Lead to Deep Learning in Higher Education? Taylor & Francis, 2017.
Sánchez-Mena A, Martí-Parreño J. Drivers and barriers to adopting gamification: teachers’ perspectives. Electron J e-Learning 2017;15:434–43.
Schmidt M, Radchuk O, Meinhart C. A serious game for public engagement in synthetic biology. Lect Notes Comput Sci 2014;8395:77–85.
Schmitt FJ, Freilingsdorf S, Friedrich T et al. Courses based on iGEM/BIOMOD competitions are the ideal format for research-based learning of xenobiology. ChemBioChem 2020;22:1–9.
Schuster P, Davol A, Mello J. Student competitions-the benefits and challenges. 2006 Annual Conference & Exposition Proceedings, ASEE Conferences 2006.
Serial Cloner. Molecular Biology Software. Available at: http://serialbasics.free.fr/Serial_Cloner.html.
Sharp EA, Norman MK, Spagnololetti CL et al. Optimizing synchronous online teaching sessions: a guide to the ‘New Normal’ in medical education. Acad Pediatr 2021;21:11–5.
Shaw MS, Walker JT, Kafai YB. Arguing about synthetic biology in 140 characters or less : affordances of microblogging for high school students discussions of socio-scientific issues
arguing about synthetic biology in 140 characters or less: affordances of microblogging for high school. 13th International Conference on Computer Supported Collaborative Learning (CSCL) 2020;1:526–33.

Skype a Scientist. Available at: https://www.skypeascientist.com/.

Ssentamu PN, Bagarukayo E et al. Enhancing student interactions in online learning: a case of using YouTube in a distance learning module in a higher education institution in Uganda enhancing student interactions in online learning: a case of using YouTube in a distance learning module. High Educ Res 2020.

Teresevičienė M, Volungevičienė A, Daukšienė E. Virtual Mobility for Teachers and Students in Higher Education: Comparative Research Study on Virtual Mobility. Vytauto Didžiojo Universitetas, 2011.

TKI-BBE Biobased Innovation Student Challenge Europe. 2021. Available at: https://bisc-e.eu/.

Toriz E. Learning based on flipped classroom with just-in-time teaching, Unity3D, gamification and educational spaces. Int J Interac Des Manufac 2019;13:1159–73.

Van Heuvelen KM, Daub GW, Hawkins LN et al. How do I design a chemical reaction to do useful work? Reinvigorating general chemistry by connecting chemistry and society. J Chem Educ 2020;97:925–33.

Voigt CA. Synthetic biology 2020–2030: six commercially-available products that are changing our world. Nat Commun 2020;11:10–5.

Wheeler S. Distance Learning. Encyclopedia of the Sciences of Learning. Boston, MA: Springer US, 2012a;1018–20.

Wheeler S. e-Learning and Digital Learning. Encyclopedia of the Sciences of Learning. Boston, MA: Springer US, 2012b;1109–11.

Winstead A, Huang L. Transitioning from a traditional lecture style organic chemistry classroom into a ‘Flipped’ Classroom. Broad Particip STEM 2019;22:317–39.

Wismer P, Lopez Cordoba A, Baceviciute S et al. Immersive virtual reality as a competitive training strategy for the biopharma industry. Nat Biotechnol 2021;39:116–9.

Zhu M, Bonk CJ, Doo MY. Self-directed learning in MOOCs: exploring the relationships among motivation, self-monitoring, and self-management. Educ Technol Res Dev 2020;68:2073–93.