Abstract. We show that if B is a block of a finite group algebra kG over an algebraically closed field k of prime characteristic p such that $HH^1(B)$ is a simple Lie algebra and such that B has a unique isomorphism class of simple modules, then B is nilpotent with an elementary abelian defect group P of order at least 3, and $HH^1(B)$ is in that case isomorphic to the Jacobson-Witt algebra $HH^1(kP)$. In particular, no other simple modular Lie algebras arise as $HH^1(B)$ of a block B with a single isomorphism class of simple modules.

1. Introduction

Let p be a prime and k an algebraically closed field of characteristic p. The purpose of this note is to illustrate close connections between the Lie algebra structure of $HH^1(B)$ and the structure of B, where B is a block of a finite group algebra kG. The main motivation for this is the fact that the Lie algebra structure of $HH^1(B)$ is invariant under stable equivalences of Morita type (cf. [3, Theorem 10.7]). We consider two extreme cases for a block B with a single isomorphism class of simple modules. The first result describes the circumstances under which $HH^1(B)$ a simple Lie algebra.

Theorem 1.1. Let G be a finite group and let B be a block algebra of kG having a unique isomorphism class of simple modules. Then $HH^1(B)$ is a simple Lie algebra if and only if B is nilpotent with an elementary abelian defect group P of order at least 3. In that case, we have a Lie algebra isomorphism $HH^1(B) \cong HH^1(kP)$.

Theorem 1.1 implies in particular that no simple modular Lie algebras other than the Jacobson-Witt algebras occur as $HH^1(B)$ of some block algebra of a finite group with the property that B has a single isomorphism class of simple modules. See [6], [7] for details and further references on the classification of simple Lie algebras in positive characteristic. We do not know whether the hypothesis on B to have a single isomorphism class of simple modules is necessary in Theorem 1.1. For the sake of completeness, the second result rules out the case of the trivial one-dimensional Lie algebra for blocks with one isomorphism class of simple modules.

Theorem 1.2. Let G be a finite group and let B be a block algebra of kG having a nontrivial defect group and a unique isomorphism class of simple modules. Then $\dim_k(HH^1(B)) \geq 2$.

The hypothesis that B has a single isomorphism class of simple modules is necessary in Theorem 1.2 for instance, if P is cyclic of order $p \geq 3$ and if E is the cyclic automorphism group of order $p - 1$ of P, then $HH^1(k(P \rtimes E))$ has dimension one.
2. Quoted results

We collect in this section results needed for the proof of Theorem 1.1.

Theorem 2.1 (Okuyama and Tsushima [4]). Let G be a finite group and B a block algebra of kG. Then B is a nilpotent block with an abelian defect group if and only if $J(B) = J(Z(B))B$.

Let A be a finite-dimensional (associative and unital) k-algebra. A derivation on A is a k-linear map $f : A \to A$ satisfying $f(ab) = f(a)b + af(b)$ for all $a, b \in A$. The set $\text{Der}(A)$ of derivations on A is a Lie subalgebra of $\text{End}_k(A)$, with respect to the Lie bracket $[f, g] = f \circ g - g \circ f$, for any $f, g \in \text{End}_k(A)$. For $c \in A$, the map sending $a \in A$ to the additive commutator $[c, a] = ca - ac$ is a derivation on A; any derivation arising this way is called an inner derivation on A. The set $\text{IDer}(A)$ of inner derivations is a Lie ideal in $\text{Der}(A)$, and we have a canonical identification $HH^1(A) \cong \text{Der}(A)/\text{IDer}(A)$. See [8] Chapter 9 for more details on Hochschild cohomology. If A is commutative, then $HH^1(A) \cong \text{Der}(A)$. A k-algebra A is symmetric if A is isomorphic to its k-dual A^* as an A-A-bimodule; this definition implies that A is finite-dimensional.

Theorem 2.2 ([1] Theorem 3.1). Let A be a symmetric k-algebra and let E be a maximal semisimple subalgebra. Let $f : A \to A$ be an E-E-bimodule homomorphism satisfying $E + J(A)^2 \subseteq \ker(f)$ and $\text{Im}(f) \subseteq \text{soc}(A)$. Then f is a derivation on A in $\text{soc}_{Z(A)}(\text{Der}(A))$, and if $f \neq 0$, then f is an outer derivation of A. In particular, we have

$$\sum_S \dim_k(\text{Ext}_A^1(S, S)) \leq \dim_k(\text{soc}_{Z(A)}(HH^1(A)))$$

where in the sum S runs over a set of representatives of the isomorphism classes of simple A-modules.

Corollary 2.3 ([1] Corollary 3.2). Let A be a local symmetric k-algebra. Let $f : A \to A$ be a k-linear map satisfying $1 + J(A)^2 \subseteq \ker(f)$ and $\text{Im}(f) \subseteq \text{soc}(A)$. Then f is a derivation on A in $\text{soc}_{Z(A)}(\text{Der}(A))$, and if $f \neq 0$, then f is an outer derivation of A. In particular, we have

$$\dim_k(J(A)/J(A)^2) \leq \dim_k(\text{soc}_{Z(A)}(HH^1(A)))$$

Theorem 2.4 (Jacobson [2] Theorem 1). Let P be a finite elementary abelian p-group of order at least 3. Then $HH^1(kP)$ is a simple Lie algebra.

The converse to this theorem holds as well.

Proposition 2.5. Let P be a finite abelian p-group. If $HH^1(kP)$ is a simple Lie algebra, then P is elementary abelian of order at least 3.

Proof. Suppose that P is not elementary abelian; that is, its Frattini subgroup $Q = \Phi(P)$ is nontrivial. We will show that the set of derivations with image contained in $I(kQ)kP = \ker(kP \to kP/Q)$ is a nonzero Lie ideal in $\text{Der}(kP)$, where $I(kQ)$ is the augmentation ideal of kQ. Indeed, every element in Q is equal to x^p for some $x \in P$, and hence every element in $I(kQ)$ is a linear combination of elements of the form $(x - 1)^p$, where $x \in P$. Every derivation on kP annihilates all elements of this form (using the fact that k has characteristic p), and hence every derivation on kP preserves $I(kQ)kP$. Thus there is a canonical Lie algebra homomorphism $\text{Der}(kP) \to \text{Der}(kP/Q)$, which is easily seen to be nonzero, with nonzero kernel, and hence $HH^1(kP)$ is not simple. The result follows. \(\square\)
Remark 2.6. Theorem [1,4] implies that in fact for any finite p-group P the Lie algebra $HH^1(kP)$ is simple if and only if P is elementary abelian of order at least 3. The special case with P abelian, as stated in [25] will be needed in the proof of [1,4].

3. Auxiliary results

In order to exploit the hypothesis on HH^1 being simple in the statement of Theorem [1,1] we consider Lie algebra homomorphisms into the HH^1 of subalgebras and quotients.

Lemma 3.1. Let A be a finite-dimensional k-algebra and f a derivation on A. Then f sends $Z(A)$ to $Z(A)$, and the map sending f to the induced derivation on $Z(A)$ induces a Lie algebra homomorphism $HH^1(A) \to HH^1(Z(A))$.

Proof. Let $z \in Z(A)$. For any $a \in A$ we have $az = za$, hence $f(az) = f(a)z + af(z) = f(z)a + zf(a) = f(z)a$. Comparing the two expressions, using $zf(a) = f(a)z$, yields $af(z) = f(z)a$, and hence $f(z) \in Z(A)$. The result follows. □

Lemma 3.2. Let A be a local symmetric k-algebra such that $J(Z(A))A \neq J(A)$. Then the canonical Lie algebra homomorphism $HH^1(A) \to HH^1(Z(A))$ is not injective.

Proof. Since $J(Z(A))A < J(A)$, it follows from Nakayama’s lemma that $J(Z(A))A + J(A)^2 < J(A)$. Thus there is a nonzero linear endomorphism f of A which vanishes on $J(Z(A))A + J(A)^2$ and on $k \cdot 1_A$, with image contained in $soc(A)$. In particular, f vanishes on $Z(A) = k \cdot 1_A + J(Z(A))$. By [2,3] the map f is an outer derivation on A. Thus the class of f in $HH^1(A)$ is nonzero, and its image in $HH^1(Z(A))$ is zero, whence the result. □

Lemma 3.3. Let A be a local symmetric k-algebra and let f be a derivation on A such that $Z(A) \subseteq \ker(f)$. Then $f(J(A)) \subseteq J(A)$.

Proof. Since A is local and symmetric, we have $soc(A) \subseteq Z(A)$, and $J(A)$ is the annihilator of $soc(A)$. Let $x \in J(A)$ and $y \in soc(A)$. Then $xy = 0$, hence $0 = f(xy) = f(x)y + xf(y)$. Since $y \in soc(A) \subseteq Z(A)$, it follows that $f(y) = 0$, hence $f(x)y = 0$. This shows that $f(x)$ annihilates $soc(A)$, and hence that $f(x) \in J(A)$. □

Lemma 3.4. Let A be a finite-dimensional k-algebra and J an ideal in A.

(i) Let f be a derivation on A such that $f(J) \subseteq J$. Then $f(J^n) \subseteq J^n$ for any positive integer n.

(ii) Let f, g be derivations on A and let m, n be positive integers such that $f(J) \subseteq J^m$ and $g(J) \subseteq J^n$. Then $[f, g](J) \subseteq J^{m+n-1}$.

Proof. In order to prove (i), we argue by induction over n. For $n = 1$ there is nothing to prove. If $n > 1$, then $f(J^n) \subseteq f(J)J^{n-1} + Jf(J^{n-1})$. Both terms are in J^n, the first by the assumptions, and the second by the induction hypothesis $f(J^{n-1}) \subseteq J^{n-1}$. Let $y \in J$. Then $[f, g](y) = f(g(y)) - g(f(y))$. We have $g(y) \in J^n$; that is, $g(y)$ is a sum of products of n elements in J. Applying f to any such product shows that the image is in J^{m+n-1}. A similar argument applied to $g(f(y))$ implies (ii). □

Proposition 3.5. Let A be a finite-dimensional k-algebra. For any positive integer m denote by $\text{Der}_m(A)$ the k-subspace of derivations f on A satisfying $f(J(A)) \subseteq J(A)^m$.

(i) For any two positive integers m and n we have $[\text{Der}_m(A), \text{Der}_n(A)] \subseteq \text{Der}_{m+n-1}(A)$.

(ii) The space $\text{Der}_1(A)$ is a Lie subalgebra of $\text{Der}(A)$.

□
(iii) For any positive integer m, the space $\text{Der}_{(m)}(A)$ is an ideal in $\text{Der}_{(1)}(A)$.

(iv) The space $\text{Der}_{(2)}(A)$ is a nilpotent Lie subalgebra of $\text{Der}(A)$.

Proof. Statement (i) follows from (ii). The statements (ii) and (iii) are immediate consequences of (i). Statement (iii) follows from (i) and the fact that $J(A)$ is nilpotent. □

4. PROOF OF THEOREM 1.1

Let G be a finite group and B a block of kG. Suppose that B has a single isomorphism class of simple modules. If B is nilpotent and P a defect group of B, then by [5], B is Morita equivalent to kP, and hence there is a Lie algebra isomorphism $HH^1(B) \cong HH^1(kP)$. Thus if B is nilpotent with an elementary abelian defect group P of order at least 3, then $HH^1(B)$ is a simple Lie algebra by [2,4].

Suppose conversely that $HH^1(B)$ is a simple Lie algebra. If $J(B) = J(Z(B))B$, then B is nilpotent with an abelian defect group P by [2,1]. As before, we have $HH^1(B) \cong HH^1(kP)$, and hence [2,4] implies that P is elementary abelian of order at least 3.

Suppose that $J(Z(B))B \neq J(B)$. Let A be a basic algebra of B. Then $J(Z(A))A \neq J(A)$. Moreover, A is local symmetric, since B has a single isomorphism class of simple modules. Thus $\text{soc}(A)$ is the unique minimal ideal of A. We have $J(A)^2 \neq \{0\}$. Indeed, if $J(A)^2 = \{0\}$, then $\text{soc}(A)$ contains $J(A)$, and hence $J(A)$ has dimension 1, implying that A has dimension 2. In that case B is a block with defect group of order 2. But then $HH^1(A) \cong HH^1(kC_2)$ is not simple, a contradiction. Thus $J(A)^2 \neq \{0\}$, and hence $\text{soc}(A) \subseteq J(A)^2$. By [3,2], the canonical Lie algebra homomorphism $HH^1(A) \rightarrow HH^1(Z(A))$ is not injective. Since $HH^1(A)$ is a simple Lie algebra, it follows that this homomorphism is zero. In other words, every derivation on A has $Z(A)$ in its kernel. It follows from [6,3] that every derivation on A sends $J(A)$ to $J(A)$. Thus, by [3,4], every derivation on A sends $J(A)^2$ to $J(A)^2$. This implies that the canonical surjection $A \rightarrow A/J(A)^2$ induces a Lie algebra homomorphism $HH^1(A) \rightarrow HH^1(A/J(A)^2)$. Note that the algebra $A/J(A)^2$ is commutative since A is local. Since $J(A)^2$ contains $\text{soc}(A)$, it follows that the kernel of the canonical map $HH^1(A) \rightarrow HH^1(A/J(A)^2)$ contains the classes of all derivations with image in $\text{soc}(A)$.

Since there are outer derivations with this property, it follows from the simplicity of $HH^1(A)$ that the canonical map $HH^1(A) \rightarrow HH^1(A/J(A)^2)$ is zero. Using that $A/J(A)^2$ is commutative, this implies that every derivation on A has image in $J(A)^2$. But then [6,4] implies that $\text{Der}(A) = \text{Der}_{(2)}(A)$ is a nilpotent Lie algebra. Thus $HH^1(A)$ is nilpotent, contradicting the simplicity of $HH^1(A)$. The proof of Theorem 1.1 is complete.

Proof of Theorem 1.2. Denote by A a basic algebra of B. Since B has a unique isomorphism class of simple modules and a nontrivial defect group, it follows that A is a local symmetric algebra of dimension at least 2. By [2,3], we have $\dim_k(\text{HH}^1(A)) \geq \dim_k(J(A)/J(A)^2)$. Thus $\dim_k(\text{HH}^1(A)) \geq 1$. Moreover, if $\dim_k(\text{HH}^1(A)) = 1$, then $\dim_k(J(A)/J(A)^2) = 1$, and hence A is a uniserial algebra. In that case B is a block with a cyclic defect group P and a unique isomorphism class of simple modules, and hence B is a nilpotent block. Thus $A \cong kP$. We have $\dim_k(\text{HH}^1(kP)) = |P|$, a contradiction. The result follows. □

Remark 4.1. All finite-dimensional algebras in this paper are split thanks to the assumption that k is algebraically closed. It is not hard to see that one could replace this by an assumption requiring k to be a splitting field for the relevant algebras. The statements [5,1] and [3,4] do not require any hypothesis on k.

Acknowledgement. The present paper was partially funded by EPSRC grant EP/M02525X/1 of the first author.

References

[1] D. Benson, R. Kessar, and M. Linckelmann, *On blocks of defect two and one simple module, and Lie algebra structure of \(HH^1 \)*, preprint (2016).

[2] N. Jacobson, *Classes of restricted Lie algebras of characteristic \(p \)*, II, Duke Math. J. **10** (1943), 107–121.

[3] S. König, Y. Liu, and G. Zhou, *Transfer maps in Hochschild cohomology and applications to stable and derived invariants and to the Auslander-Reiten conjecture*. Trans. Amer. Math. Soc. **364** (2012), 195–232.

[4] T. Okuyama and Y. Tsushima, *Local properties of \(p \)-block algebras of finite groups*, Osaka J. Math. **20** (1983), 33–41.

[5] L. Puig, *Nilpotent blocks and their source algebras*, Invent. Math. **93** (1988), 77–116.

[6] H. Strade, *Simple Lie Algebras over Fields of Positive Characteristic, I*. de Gruyter Expositions in Mathematics **38** (2004), viii+540pp.

[7] H. Strade, *Simple Lie Algebras over Fields of Positive Characteristic, II*, de Gruyter Expositions in Mathematics **42** (2009), vi+385pp.

[8] C. A. Weibel, *An introduction to homological algebra*. Cambridge Studies Adv. Math. **38** (1994), Cambridge University Press.