Remdesivir retreatment: another unproven intervention for COVID-19

Omar Al-Heeti1*, Rebecca N. Kumar2, Kendall Kling1, Michael Angarone1,3 and Babafemi Taiwo1

1Division of Infectious Diseases, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA; 2Division of Infectious Diseases and Tropical Medicine, Georgetown University Medical Center, Washington, DC 20007, USA; 3Institute for Global Health, Northwestern University Feinberg School of Medicine, Chicago, IL 60601, USA

*Corresponding author. E-mail: omar.al-heeti@northwestern.edu

Remdesivir is approved for the treatment of hospitalized coronavirus disease 2019 (COVID-19) patients.1 Up to 5%–10% of discharged COVID-19 patients require readmission, most commonly due to worsening respiratory status.2,3 The treatment of COVID-19 patients readmitted after receiving remdesivir is a challenge and we have observed remdesivir retreatment in such patients, though there is no proof that this practice is beneficial. Available literature is scant as remdesivir retreatment has been reported in only a few individual cases4–6 and no large studies have been performed or are ongoing to the best of our knowledge. This practice is also unaddressed in current treatment guidelines.7–8

To shed light on the practice of remdesivir retreatment and encourage an evidence-based approach, we collected retrospective data on readmitted COVID-19 patients from a single healthcare system in Chicago. Our findings illustrate the lack of a standardized approach, underscoring the need for structured studies and treatment guidelines. Specifically, we identified 13 patients with two separate admissions during which at least two doses of remdesivir were administered between June 2020 and February 2021 (Table 1). All had a positive SARS-CoV-2 PCR test at the time of readmission. The patients (eight men and five women) were between 32 and 92 years old. Eight of them had immunocompromising diagnoses of transplantation, malignancy receiving chemotherapy or current immunotherapy. Eight of these patients completed a 5 day course of remdesivir retreatment, while five patients were retreated with remdesivir for only 2 days prior to their discharge or death. Assessment of clinical notes revealed substantial subjectivity in the decision to retreat with remdesivir. Notably, the rationale provided fell into three categories: persistent symptoms, worsening respiratory status and/or ‘high-risk patient’.

High risk was not clearly or uniformly defined. In only three of the cases did physicians use low cycle threshold (Ct) measurements (16–21, corresponding to relatively high viral load) to justify retreatment; Ct values were not consistently reported to clinicians during the period. Finally, there was substantial heterogeneity in the outcomes observed, as can be expected in a population with divergent underlying medical conditions and COVID-19 disease severity. After retreatment, eight patients were discharged; five on room air and three on supplemental oxygen. In-hospital all-cause mortality rate was 5/13 (38%), being 4/8 (50%) in the immunocompromised group and 1/5 (20%) in the non-immunocompromised group.

This retrospective descriptive study highlights the need to determine whether remdesivir retreatment improves outcomes since the landscape of COVID-19 treatment is littered with interventions that were presumed effective and hence widely adopted, only to fall short under careful research scrutiny.9 In this light, remdesivir retreatment should be considered an unproven intervention unless studies indicate otherwise. Remdesivir works by inhibiting SARS-CoV-2 replication through its effect on RNA-dependent RNA polymerase.10 As such, it is most likely to be effective in the early stages of COVID-19 when viral replication is high, as opposed to later in the course when the secondary hyperactive immune response may be the dominant driver of injury. This is supported by the results of ACTT-1 where the largest effect size was recorded among patients requiring supplemental oxygen, but not mechanical ventilation.10 Moreover, the clinical impact of remdesivir has been limited in trials to date. In the landmark ACTT-1 study, this drug shortened time to recovery in hospitalized patients with COVID-19 not requiring mechanical ventilation,10 but had no significant effect on mortality, though the study was underpowered for the mortality endpoint. An adequately powered study (Solidarity) showed no significant effect on mortality.11

We opine that the immunocompromised population deserves special attention in studies of remdesivir retreatment since SARS-CoV-2 detection tends to persist longer in this subgroup. Indeed, detection of SARS-CoV-2 by PCR may continue for several months post-infection in immunocompromised patients, whereas virus remains detectable for approximately 2 weeks in the upper respiratory tract of the general population.5 A critical question is whether detected viral RNA represents shedding of non-replicating virus versus ongoing viral replication as only the latter is expected to be clinically consequential. Evaluation of Ct values is one way to separate these scenarios.12–14 This is relevant because evidence of prolonged viral replication in a population may theoretically extend the window during which pharmacological inhibition of viral replication with remdesivir may be advantageous. Meanwhile, anecdotal reports of remdesivir retreatment in immunocompromised patients who had evidence of ongoing viral replication (low Ct values) have shown mixed outcomes with some, not all, patients experiencing temporal improvements in symptoms and/or markers of inflammation.4–6 There were eight immunocompromised patients in...
In our study, a number too small to draw conclusions on the effects of remdesivir retreatment in them.

In summary, we herein draw attention to the practice of remdesivir retreatment in readmitted COVID-19 patients. Research is needed to determine whether this practice is beneficial and whether potential effects vary based on the patient’s immune status.

Table 1. Patients retreated with remdesivir

Comorbidities	Age (years)	Gender	Remdesivir treatment	Days of therapy	Days between treatment	Room air saturation at admission (%)	Maximal oxygen requirement	Days of steroid treatment	Hospitalization outcomes
Non-immunosuppressed									
asthma, CAD, CKD, HTN	92	male	initial	5	9	93	2 L	10	discharged on RA
retreatment			retreatment	5	9	86	5 L	5	discharged on RA
CAD, CHF, COPD, DM, DVT, HL, iron deficiency anaemia, obesity, TIA	77	female	initial	5	14	87	3 L	5	discharged on RA
retreatment			retreatment	5	9	94	2 L	10	discharged on RA
Angelman syndrome, chronic aspiration, chronic hypoxic respiratory failure (an oxygen at night), obesity, seizures	40	male	initial	5	10	84	4 L	10	discharged on oxygen
retreatment			retreatment	2	10	88	6 L	5	
DM, HTN, hypothyroidism, NHL in remission	55	female	initial	5	106	92	3 L	0	discharged on RA
retreatment			retreatment	3	139	89	RA	0	discharged on RA
retreatment^a			retreatment^a	5	90	90	3 L	0^b	
CHF, COPD on oxygen, CVA, DM, DVT/PE, HTN, NSTEMI	72	female	initial	5	27	100	MV	8	deceased
retreatment			retreatment	2	99	MV	MV	2	
Immunosuppressed									
bullous pemphigoid on rituximab, CKD, COPD, DM BOLT, ILD	62	female	initial	3	16	92	2 L	10^b	discharged home on RA
retreatment			retreatment	5	85	85	HFNC	10^b	discharged home on oxygen
CKD, metastatic colon cancer	48	male	initial	5	15	98	RA	0	discharged on oxygen
retreatment			retreatment	2	100	100	3 L	0	deceased
follicular lymphoma	49	male	initial	5	49	97	4 L	14	discharged home on oxygen
retreatment			retreatment	5	98	MV	MV	taper for new HLH	deceased
lymphoma, DVT	72	female	initial	2	36	94	RA	2	discharged on oxygen
retreatment			retreatment	5	70	70	4 L	5	deceased
AML, fungal pneumonia, Staphylococcus epidermidis endocarditis	40	male	initial	5	9	89	4 L	11	deceased
kidney transplant	53	male	initial	4	15	85	3 L	4	deceased
retreatment			retreatment	2	50	MV	MV	10	discharged on RA
atrial fibrillation, NHL on rituximab, CKD, HTN	84	male	initial	3	20	90	RA	0	discharged on oxygen
retreatment			retreatment	5	88	3 L	5	RA	

BOLT, bilateral orthotopic lung transplantation; CAD, coronary artery disease; CHF, chronic heart failure; CKD, chronic kidney disease; CVA, cerebrovascular accident; DM, diabetes mellitus; DVT, deep-vein thrombosis; HFNC, high-flow nasal cannula; HL, hyperlipidaemia; HLH, haemophagocytic lymphohistiocytosis; HTN, hypertension; ILD, interstitial lung disease; MV, mechanical ventilation; NHL, non-Hodgkin’s lymphoma; NSTEMI, non-ST-elevation myocardial infarction; PE, pulmonary embolism; RA, room air; TIA, transient ischaemic attack.

^aPatient received third treatment of remdesivir.

^bPatient received prednisone taper after initial steroid treatment.

^cPatient was on chronic prednisone due to recent transplant status.

Funding

The research reported in this publication was supported, in part, by the National Institutes of Health’s National Center for Advancing Translational Sciences (Grant Number UL1TR001422). R.N.K. is supported by the National Institutes of Health (Grant Number T32 AI095207).
Transparency declarations
None to declare.

Disclaimer
The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.

References
1. U.S. FDA. Coronavirus Disease 2019 (COVID-19) EUA Information. 2021. https://www.fda.gov/emergency-preparedness-and-response/mcm-legal-regulatory-and-policy-framework/emergency-use-authorization/#coviddrugs.
2. Atallah E, Kalligeros M, Giampaolo G et al. Readmissions among patients with COVID-19. Int J Clin Pract 2021; 75: e13700.
3. Kuehn BM. Hospital readmission is common among COVID-19 survivors. JAMA 2020; 324: 2477.
4. Choi B, Choudhary MC, Regan J et al. Persistence and evolution of SARS-CoV-2 in an immunocompromised host. N Engl J Med 2020; 383: 2291–3.
5. Camprubi D, Gaya A, Marcos MA et al. Persistent replication of SARS-CoV-2 in a severely immunocompromised patient treated with several courses of remdesivir. Int J Infect Dis 2021; 104: 379–81.
6. Helleberg M, Niemann CU, Moestrup KS et al. Persistent COVID-19 in an immunocompromised patient temporarily responsive to two courses of remdesivir therapy. J Infect Dis 2020; 222: 1103–7.
7. IDSA. IDSA Guidelines on the Treatment and Management of Patients with COVID-19. https://www.idsociety.org/practice-guideline/covid-19-guideline-treatment-and-management/.
8. NIH. Coronavirus Disease 2019 (COVID-19) Treatment Guidelines. 2021. https://www.covid19treatmentguidelines.nih.gov/.
9. Read SH, Khachatryan A, Chandak A et al. Comparative effectiveness research in COVID-19 using real-world data: methodological considerations. J Comp Eff Res 2021; 10: 1259–64.
10. Beigel JH, Tomashek KM, Dodd LE et al. Remdesivir for the treatment of Covid-19 - final report. N Engl J Med 2020; 383: 1813–26.
11. WHO Solidarity Trial Consortium. Repurposed antiviral drugs for Covid-19 - interim WHO Solidarity trial results. N Engl J Med 2021; 384: 497–511.
12. Rhoads D, Peaper DR, She RC et al. College of American Pathologists (CAP) Microbiology Committee perspective: caution must be used in interpreting the cycle threshold (CT) value. Clin Infect Dis 2021; 72: e685–6.
13. Fajnzylber J, Regan J, Coxen K et al. SARS-CoV-2 viral load is associated with increased disease severity and mortality. Nat Commun 2020; 11: 5493.
14. Osman AA, Al Daajani MM, Alsahofi AJ. Re-positive coronavirus disease 2019 PCR test: could it be a reinfection? New Microbes New Infect 2020; 37: 100748.