Area estimates
for two-dimensional immersions of mean curvature type
in Euclidean spaces of higher codimension

Steffen Fröhlich

Abstract
We establish area bounds for two-dimensional immersions in \(\mathbb{R}^3 \) and \(\mathbb{R}^n \). Namely, for \(\mu \)-stable immersions in \(\mathbb{R}^3 \) (\(\mathbb{R}^n \)), for graphs in \(\mathbb{R}^3 \) which solve quasilinear equations in divergence form, and for graphs which are critical for Fermat-type variational problems in \(\mathbb{R}^n \).

MCS 2000: 35J60, 53A07, 53A10

Keywords: Twodimensional immersions, higher codimension, area estimates

1 Introduction

1.1 The results
In this paper we prove area bounds for the following types of surfaces:

1. \(\mu \)-stable immersions of prescribed mean curvature-type in \(\mathbb{R}^3 \) (\(\mathbb{R}^n \)) in terms of a suitable stability constant and of curvature terms (chapter 2, section 2.3, 2.5, 2.6);

2. graphs \((x, y, \zeta(x, y))\) of mean curvature type in \(\mathbb{R}^3 \), which are solutions of non-homogeneous divergence form equations (chapter 3, section 3.2);

3. graphs \((x, y, \zeta_1(x, y), \ldots, \zeta_{n-2}(x, y))\) in \(\mathbb{R}^n \), \(n \geq 3 \), which are critical for Fermat-type variational problems (chapter 4, section 4.3).

For example, area bounds are crucial for compactness results (see e.g. [7] for such results concerning weighted minimal surfaces, see section 2.2 below), but also for various gradient and curvature estimates for nonlinear differential systems: Here, we mention to [3], where such a bound for Fermat-type graphs in \(\mathbb{R}^n \) was left unproved, further [12]-[16], [20], [21], where area bounds are used for various curvature estimates, and, finally, [17] for curvature estimates of \(n \)-manifolds in \(\mathbb{R}^n \) using techniques from [9], [23].

We will not discuss isoperimetric inequalities. But we mention that such inequalities are established e.g. in [7] for immersed critical points of elliptic variational problems (2.8) using Fourier series methods, or in [9] (and references therein) for mean curvature immersions using a generalized Sobolev inequality. We want to extend this later method in a further paper to prove other area bounds for immersions of mean-curvature type (see the discussion in section 2.2).

2 \(\mu \)-stable geodesic discs of mean curvature-type

In the first part of this note we consider immersions

\[X = X(u, v) = (x^1(u, v), x^2(u, v), x^3(u, v)) \in C^3(B, \mathbb{R}^3) \] (2.1)
on the closed unit disc $B := \{(u,v) \in \mathbb{R}^2 : u^2 + v^2 \leq 1\}$ such that rank $\partial X = 2$ in B for its Jacobian $\partial X \in \mathbb{R}^{3 \times 2}$. The unit normal vector of X is defined as

$$N = \frac{X_u \times X_v}{|X_u \times X_v|} \quad \text{in } B$$

(2.2)

with the partial derivatives X_u and X_v of X, and \times means the usual vector product in \mathbb{R}^3.

In the next two sections we specify the class of immersion we will deal with.

2.1 First step: Introduction of weighted metrics

We equip the immersions with a weighted metric of Finsler type: Let us given a symmetric and positive definite weight matrix $G(X,Z) \in C^2(\mathbb{R}^3 \times \mathbb{R}^3 \setminus \{0\}, \mathbb{R}^{3 \times 3})$ (2.3)

with the properties: For all $(X,Z) \in \mathbb{R}^3 \times \mathbb{R}^3 \setminus \{0\}$ there hold

(G1) $G(X,Z) = G(X,\lambda Z)$ for all real $\lambda > 0$;

(G2) $G(X,Z) \circ Z^t = Z^t$, where the upper t denotes transposition;

(G3) $(1 + g_0)^{-1} |\xi|^2 \leq \xi \circ G(X,Z) \circ \xi^t \leq (1 + g_0) |\xi|^2$ for all $\xi \in \mathbb{R}^3$, with real $g_0 \in [0, +\infty]$;

(G4) $\det G(X,Z) = 1$.

Now, let X be an immersion with Gauss map N, and let $G(X,Z)$ be a weight matrix as above. We define the components h_{ij} of the weighted first fundamental form of X and the associated line element ds_g as (use the summation convention, and set $u^1 \equiv u$, $u^2 \equiv v$)

$$h_{ij} := X_{u^i} \circ G(X,N) \circ X_{u^j}^t, \quad ds_g^2 = h_{ij} du^i du^j.$$ (2.4)

2.2 Second step: Definition μ-stability

We want to prove an area estimate for so-called μ-stable immersions in \mathbb{R}^3:

Definition. The immersion X is called μ-stable with real $\mu > 0$ and a function $q \in C^1(B, \mathbb{R})$ iff

$$\int_B \nabla_{ds_g^2}(\varphi, \varphi) W \, du dv \geq \mu \int_B (q - K) W \varphi^2 \, du dv \quad \text{for all } \varphi \in C_0^\infty(B, \mathbb{R})$$ (2.5)

with a weighted metric ds_g^2 from (2.4), where $q - K \geq 0$ in B with the Gaussian curvature K of the surface, and where

$$\nabla_{ds_g^2}(\varphi, \psi) := h^{ij} \varphi_{u^i} \psi_{u^j}, \quad h_{ij} h^{jk} = \delta^k_i,$$ (2.6)

is the Beltrami operator w.r.t. ds_g^2, δ^k_i is the Kronecker symbol.

Examples.

In the calculus of variations we are faced with “weighted” and “unweighted” problems:

1. A conformally parametrized surface of constant mean curvature $h_0 \in \mathbb{R}$ (as a critical point of the area functional with a suitable volume constraint) is stable iff

$$\int_B |\nabla \varphi|^2 \, du dv \geq 2 \int_B (2h_0^2 - K) W \varphi^2 \, du dv \quad \text{for all } \varphi \in C_0^\infty(B, \mathbb{R}),$$ (2.7)
that is, it is μ-stable with $\mu = 2$ and $q \equiv 2h_0^2$. We have $q \equiv 0$ for minimal surfaces. Furthermore, in this case $G(X, Z) \equiv E^3$ with the three-dimensional unit matrix $E^3 \subset \mathbb{R}^{3 \times 3}$, such that $\nabla ds^2(\varphi, \varphi) = \frac{1}{\mu} |\nabla \varphi|^2 = \frac{1}{\mu} (\varphi_\mu^2 + \varphi_v^2)$ using conformal parameters, and where ds^2 stands for the non-weighted line element.

2. Critical points X of variational problems

$$\iint_B F(X, X_u \times X_v) \, du dv \longrightarrow \text{extr!} \quad (2.8)$$

are immersions of mean-curvature type, that is, they solve

$$\nabla ds^2_g(X, N) = -2H_g(X, N) = -\frac{\text{trace} \, F_{XZ}(X, N)}{\sqrt{\det F_{ZZ}(X, N)}}, \quad (2.9)$$

where $F_{XZ} = (F_{x^i z^j})_{i,j=1,2,3} \in \mathbb{R}^{3 \times 3}$ etc., with the weighted mean curvature $H_g(X, Z)$ w.r.t.

$$G(X, Z) = \left(\frac{F_{ZZ}(X, Z)}{\sqrt{\det F_{ZZ}(X, Z)}} + (z^i z^j)_{i,j=1,2,3} \right)^{-1}, \quad (2.10)$$

and ds^2_g chosen as in (2.4). This weight matrix was first introduced in [20]. For example, assume that the integrand in (2.8) has the form $F = F(Z)$. If for a critical point (a so-called G-minimal surface, $H_g(X, N) \equiv 0$) the second variation is non-negative, then it can be shown (see [12])

$$\iint_B \nabla ds^2_g(\varphi, \varphi)W \, du dv \geq \mu \iint_B (-K)W \varphi^2 \, du dv \quad \text{for all } \varphi \in C^\infty_0(B, \mathbb{R}), \quad (2.11)$$

that is, a critical point is μ-stable with $q \equiv 0$ and a suitable $\mu > 0$.

Independent of the theory of the second variation, various stability criteria were developed by analysing spherical properties of the immersions:

3. For example, stability for minimal surfaces [1], for surfaces of prescribed constant mean curvature [19], [13], for F-minimal surfaces [6], or for weighted minimal surfaces [12].
4. In [2] the reader can find stability criteria for minimal surfaces in the three-sphere S^3, in the hyperbolic space H^3, and in the Euclidean space \mathbb{R}^n. This last result was improved for minimal graphs with flat normal bundle in [16].

2.3 An estimate for the area growth of geodesic discs

Using methods which go back to [18] and [20] we prove the following area bound:

Theorem. Let the immersion X be μ-stable in the sense of (2.5), such that

$$\mu > \frac{1 + g_0}{2} \quad \text{and} \quad q \geq 0 \quad \text{in } B. \quad (2.12)$$

Let it represent a geodesic disc $\mathcal{B}_r(X_0)$ of radius $r > 0$ and center $X_0 \in \mathbb{R}^3$. Then

$$\mathcal{A}[X] \leq \frac{2 \pi \mu}{2 \mu - (1 + g_0)} r^2 \quad (2.13)$$

for the area $\mathcal{A}[X]$ of the immersion.
Remarks. 1. The assumption \(q \geq 0 \) in \(B \) is needed in the estimate (2.21). If it is not fulfilled, we could proceed in (2.21) with \(q^-(u,v) := \min \{ q(u,v), 0 \} \). It would follow

\[
\mathcal{A}[X] \leq \frac{2\mu}{2\mu - (1 + g_0)} r^2 - \frac{\mu r^2}{2\mu - (1 + g_0)} \int_B q^-(u,v) W(u,v) dudv.
\]

(2.14)

2. The proof of the theorem uses intrinsic methods. Therefore, it could be extended to \(\mu \)-stable immersions in Euclidean spaces \(\mathbb{R}^n \) for \(n \geq 3 \). But up to now we are not able to transform critical points of general elliptic variational problems in spaces of higher codimension into a weighted form as given in (2.9), (2.10) (see also the remarks in section 4.1).

3. The smallest value for \(\mu \), such that a growth estimate of this form is true, is not known; see the discussion in [11].

For the proof we need the following result (see [12]):

Lemma. Let the immersion \(X \) be given. We denote by \(ds^2 \) its non-weighted line element, and by \(ds_\beta^2 \) its weighted element w.r.t. a weight matrix \(G(X,Z) \). Then there hold

\[
(1 + g_0)^{-1} \int_B \nabla_{ds^2} \langle \varphi, \varphi \rangle W \ dudv \leq \int_B \nabla_{ds_{\beta}^2} \langle \varphi, \varphi \rangle W \ dudv \leq (1 + g_0) \int_B \nabla_{ds^2} \langle \varphi, \varphi \rangle W \ dudv
\]

(2.15)

for all \(\varphi \in C^1_0(B, \mathbb{R}) \) with the Beltrami operators \(\nabla_{ds^2} \) and \(\nabla_{ds_{\beta}^2} \) from (2.6).

Proof of the Theorem. 1. Due to the Lemma, the \(\mu \)-stability (2.5) yields

\[
\int_B \nabla_{ds^2} \langle \varphi, \varphi \rangle W \ dudv \geq \frac{\mu}{1 + g_0} \int_B (q - K) W \varphi^2 \ dudv.
\]

(2.16)

2. Introduce geodesic polar coordinates \((\varrho, \varphi) \in [0, r] \times [0, 2\pi]\). For curves \(\varrho = \text{const} \) on the surface, the integral formula of Bonnet and Gauss reads

\[
\int_0^{2\pi} \kappa_\varrho(\varrho, \varphi) \sqrt{P(\varrho, \varphi)} \ d\varphi + \int_0^\varrho \int_0^{2\pi} K(\tau, \varphi) \sqrt{P(\tau, \varphi)} \ d\tau d\varphi = 2\pi
\]

(2.17)

with the geodesic curvature \(\kappa_\varrho \). For the area element \(P \) there hold \(P(\varrho, \varphi) > 0 \) for all \((0, r) \times [0, 2\pi]\), as well as

\[
\lim_{\varrho \to 0^+} P(\varrho, \varphi) = 0, \quad \lim_{\varrho \to 0^+} \frac{\partial}{\partial \varrho} \sqrt{P(\varrho, \varphi)} = 1 \quad \text{for all } \varphi \in [0, 2\pi].
\]

(2.18)

Following [5], §81, for such curves it holds \(\kappa_\varrho \sqrt{P} = \frac{\partial}{\partial \varrho} \sqrt{P} \) for \((\varrho, \varphi) \in (0, r) \times [0, 2\pi]\), thus

\[
\frac{\partial}{\partial \varrho} \int_0^{2\pi} \sqrt{P(\varrho, \varphi)} \ d\varphi = \int_0^{2\pi} \kappa_\varrho(\varrho, \varphi) \sqrt{P(\varrho, \varphi)} \ d\varphi
\]

(2.19)

\[
= 2\pi - \int_0^\varrho \int_0^{2\pi} K(\tau, \varphi) \sqrt{P(\tau, \varphi)} \ d\tau d\varphi.
\]
3. Define the function $L(\varrho) := \int_0^\varrho \sqrt{P(\varrho, \varphi)} \, d\varphi$, $0 < \varrho \leq r$, with the derivatives

$$L'(\varrho) = 2\pi \int_0^{2\pi} K(\tau, \varphi) \sqrt{P(\tau, \varphi)} \, d\tau \, d\varphi, \quad L''(\varrho) = -\int_0^{2\pi} K(\varrho, \varphi) \sqrt{P(\varrho, \varphi)} \, d\varphi. \quad (2.20)$$

4. Consider the test function $\Phi(\varrho) := 1 - \frac{\varrho}{r}$, $0 < \varrho \leq r$. It holds $\nabla_{ds^2} (\Phi, \Phi) = \Phi'(\varrho)^2$ with the line element ds^2. Using $q \geq 0$ we estimate as follows:

$$\int_0^r \Phi'(\varrho)^2 L(\varrho) \, d\varrho = \int_0^r \Phi'(\varrho)^2 \sqrt{P(\varrho, \varphi)} \, d\varrho \, d\varphi \geq \frac{\mu}{1 + g_0} \int_0^r q(\varrho, \varphi) \Phi(\varrho)^2 \, d\varrho \, d\varphi + \frac{\mu}{1 + g_0} \int_0^r L''(\varrho) \Phi(\varrho)^2 \, d\varrho \quad (2.21)$$

5. Together with (2.18), integration by parts yields

$$\int_0^r L''(\varrho) \Phi(\varrho)^2 \, d\varrho = L'(\varrho) \Phi(\varrho)^2 \bigg|_{\varrho=0}^{\varrho=r} - 2 \int_0^r L'(\varrho) \Phi(\varrho) \Phi'(\varrho) \, d\varrho \quad (2.22)$$

Thus, $\int_0^r L(\varrho) \Phi'(\varrho)^2 \, d\varrho \leq \frac{2\pi \mu}{2\mu - (1 + g_0)},$ and the statement follows with $\Phi'^2 = \frac{1}{r^2}$.

Example. Let the immersion X with prescribed constant mean curvature h_0 be μ-stable with real $\mu > \frac{1}{2}$ and $q \equiv 2h_0^2$ (compare with (2.7)). Furthermore, let it represent a geodesic disc $\mathcal{B}_r(X_0)$ with geodesic radius $r > 0$ and center X_0. Then it holds

$$A[X] \leq \frac{2\pi \mu}{2\mu - 1} r^2 \quad (2.23)$$

due to $G(X, Z) \equiv \mathbb{E}^3$, that is, $g_0 = 0$.

2.4 Remark: Area bounds for minimizers via outer balls

In [24] we find area bounds in terms of outer balls enclosing embedded minimizers for the general variational problem (2.8). Namely, denote by $\nu: \mathcal{M} \to S^2$ its unit normal. Intersect the surface
with the closed ball $K_\rho(X_0)$ of radius $\rho > 0$ and center $X_0 \in \mathcal{M}$. Assume that $\mathcal{M} \cap K_\rho(X_0)$ is simply connected. The greater of the two “caps” of the boundary $\partial K_\rho(X_0)$, which are generated by this intersection, is denoted by \mathcal{K}. Now, assume that

$$m_1|Z| \leq \tilde{F}(X,Z) \leq m_2|Z| \quad \text{for all } (X,Z) \in \mathbb{R}^3 \times \mathbb{R}^3 \setminus \{0\}$$

for the composition $\tilde{F} = F \circ X$, where $0 < m_1 \leq m_2 < +\infty$. Due to the minimality of X we estimate

$$A[\mathcal{M} \cap K_\rho(X_0)] = \int_{\mathcal{M} \cap K_\rho(X_0)} d\mathcal{M} \leq \frac{1}{m_1} \int_{\mathcal{M} \cap K_\rho(X_0)} \tilde{F}(X,\nu) d\mathcal{M} \leq \frac{1}{m_1} \int_{\mathcal{K}} \tilde{F}(X,\nu) d\mathcal{K} \leq \frac{m_2}{m_1} \int_{\mathcal{K}} d\mathcal{K} < \frac{4m_2\pi}{m_1} \rho^2.$$

(2.25)

2.5 An estimate in terms of the curvatura integra

The proof of our theorem allows the next result (see also [20]):

Proposition. Let the immersion X represent a geodesic disc $\mathcal{B}_r(X_0)$ of radius $r > 0$ and center X_0. Let its Gaussian curvature satisfy

$$K(\rho,\varphi) \leq K_0 \quad \text{for all } (\rho,\varphi) \in [0,r] \times [0,2\pi]$$

(2.26)

with a real constant $K_0 \in [0, +\infty)$. Then it holds

$$A[X] \leq r^2 \left\{ \pi + \frac{1}{2} \int_0^r \int_0^{2\pi} \left\{ K_0 - K(\rho,\varphi) \right\} \sqrt{P(\rho,\varphi)} d\rho d\varphi \right\}.$$

(2.27)

Example. For minimal surfaces we have $K_0 = 0$.

Proof of the Proposition. For curves $\rho = \text{const}$ we conclude from the second line in (2.19)

$$\frac{\partial}{\partial \rho} \int_0^{2\pi} \sqrt{P(\rho,\varphi)} d\varphi \leq 2\pi + \int_0^r \int_0^{2\pi} \left\{ K_0 - K(\tau,\varphi) \right\} \sqrt{P(\tau,\varphi)} d\tau d\varphi.$$

(2.28)

A first integrating w.r.t. the radius coordinate ρ, and then a further integration w.r.t. to $\rho = 0 \ldots r$ proves the statement.

2.6 An estimate in terms of the boundary curvature

Given the immersion X with its C^2-regular boundary curve. Denote by κ_g and κ_n its geodesic curvature and normal curvature, resp. It holds $\kappa = \sqrt{\kappa_g^2 + \kappa_n^2} \geq |\kappa_g|$ for the non-negative curvature of the boundary, and due to Bonnet-Gauß we conclude

$$\iint_B (-K) W dudv = \int_{\partial B} \kappa_g(s) ds - 2\pi \leq \int_{\partial B} \kappa(s) ds - 2\pi.$$

(2.29)

Inserting into (2.27) proves the
Corollary. Under the above assumptions it holds

\[A[X] \leq \frac{K_0}{2} A[X] r^2 + \frac{r^2}{2} \int_{\partial B} \kappa(s) \, ds \quad (2.30) \]

with the constant \(K_0 \in [0, +\infty) \) from (2.26). In particular, if \(K_0 = 0 \) then it holds

\[A[X] \leq \frac{r^2}{2} \int_{\partial B} \kappa(s) \, ds. \quad (2.31) \]

3 Graphs in \(\mathbb{R}^3 \)

3.1 Introductory remarks

In this chapter we want to prove an upper area bound for graphs which solve non-homogeneous quasilinear equations. First, let us give some examples:

1. Critical points of variational problems

\[
\iint_{\Omega} F(x,y,\zeta,\zeta_x,\zeta_y) \, dxdy \rightarrow \text{extr!} \quad (3.1)
\]

have non-homogeneous divergence form (see section 4.2).

2. An equation of the form

\[
A(\zeta_x,\zeta_y)\zeta_{xx} + 2B(\zeta_x,\zeta_y)\zeta_{xy} + C(\zeta_x,\zeta_y)\zeta_{yy} = 0 \quad (3.2)
\]

with smooth coefficients can always be transformed into divergence form (see [4]).

3. By introducing a suitable weight matrix, solutions of

\[
A(x,y,\zeta,\zeta_x,\zeta_y)\zeta_{xx} + 2B(x,y,\zeta,\zeta_x,\zeta_y)\zeta_{xy} + C(x,y,\zeta,\zeta_x,\zeta_y)\zeta_{yy} = R(x,y,\zeta,\zeta_x,\zeta_y) \quad (3.3)
\]

can be transformed into the Beltrami form [2.9] (see i.e. [20], [21] for \(R \equiv 0 \)). This would make the results of chapter 2 applicable to the objects of study in this part (see also the examples discussed in section 2.2).

3.2 An estimate in the general case

The next result follows ideas from [10], where area estimates for homogeneous divergence form equations are established, but where an explicit form as below is not needed. Therefore, we want to demonstrate all the essential steps.

Theorem. Let \(\zeta \in C^2(\Omega, \mathbb{R}) \cap C^1(\overline{\Omega}, \mathbb{R}) \), \(\Omega \subset \mathbb{R}^2 \) bounded and simply connected and with \(C^1 \)-regular boundary, solve the elliptic Dirichlet boundary value problem

\[
\frac{d}{dx} F_p(x,y,\zeta,\zeta_x,\zeta_y) + \frac{d}{dy} F_q(x,y,\zeta,\zeta_x,\zeta_y) = R(x,y,\zeta,\zeta_x,\zeta_y) \quad \text{in } \Omega, \\
\zeta(x,y) = \varphi(x,y) \quad \text{on } \partial \Omega, \quad (3.4)
\]

where \(\varphi \in C^1(\mathbb{R}^2, \mathbb{R}) \). Assume that
(A1) for all \((x, y, z, p, q) \in \mathbb{R}^5\)
\[
F_p(x, y, z, p, q)^2 + F_q(x, y, z, p, q)^2 \leq k_0^2
\]
with a real constant \(k_0 \in [0, +\infty)\);

(A2) with a further real constant \(m_1 \in (0, +\infty)\)
\[
m_1|\xi|^2 \leq (\xi_1, \xi_2) \circ \begin{pmatrix} F_{pp}(x, y, z, \tilde{p}, \tilde{q}) & F_{pq}(x, y, z, \tilde{p}, \tilde{q}) \\ F_{qp}(x, y, z, \tilde{p}, \tilde{q}) & F_{qq}(x, y, z, \tilde{p}, \tilde{q}) \end{pmatrix} \circ \begin{pmatrix} \xi_1 \\ \xi_2 \end{pmatrix}
\]
for all \(\xi = (\xi_1, \xi_2) \in \mathbb{R}^2\) and all \(\tilde{p}, \tilde{q} \in \mathbb{R}\) such that \(\tilde{p}^2 + \tilde{q}^2 \leq 1\);

(A3) finally
\[
F_p(x, y, z, 0, 0) = 0, \quad F_q(x, y, z, 0, 0) = 0.
\]

Then it holds
\[
\mathcal{A}[\xi] \leq \left(1 + \frac{||\xi||_{0, \Omega}||R||_{0, \Omega}}{m_1}\right) \mathcal{A}[\Omega] + \frac{||\xi||_{0, \partial \Omega}k_0}{m_1} \mathcal{L}[\partial \Omega]
\]
with the area \(\mathcal{A}[\Omega]\) of \(\Omega \subset \mathbb{R}^2\) and the length \(\mathcal{L}[\partial \Omega]\) of its boundary curve \(\partial \Omega\), and the usual Schauder norms \(|| \cdot ||_{0, \Omega}\) etc.

Proof of the Theorem.
1. Consider the function
\[
\mu(t) := pF_p(x, y, z, tp, tq) + qF_q(x, y, z, tp, tq), \quad t \in [0, 1].
\]
Assumption (A3) implies \(\mu(0) = 0\) and \(\mu(1) = pF_p(x, y, z, p, q) + qF_q(x, y, z, p, q)\).

2. For real \(t \in [0, 1]\) we introduce a real number \(m_1^*(t) = m_1^*(t) \in (0, +\infty)\) such that
\[
m_1^*(t)|\xi|^2 \leq (\xi_1, \xi_2) \circ \begin{pmatrix} F_{pp}(x, y, z, tp, tq) & F_{pq}(x, y, z, tp, tq) \\ F_{qp}(x, y, z, tp, tq) & F_{qq}(x, y, z, tp, tq) \end{pmatrix} \circ \begin{pmatrix} \xi_1 \\ \xi_2 \end{pmatrix}
\]
for all \(\xi = (\xi_1, \xi_2) \in \mathbb{R}^2\). Namely, due to (A2) we demand

(a) if \(p^2 + q^2 \geq 1\), then \(m_1^*(t) \geq m_1\) for \(t \leq \frac{1}{\sqrt{p^2 + q^2}}\);

(\beta) if \(p^2 + q^2 \leq 1\), then \(m_1^*(t) \geq m_1\) for \(t \leq 1\).

Note that in both cases \(t^2p^2 + t^2q^2 \leq 1\).

3. Differentiating \(\mu = \mu(t)\) yields
\[
\mu'(t) = F_{pp}(x, y, z, tp, tq)p^2 + 2F_{pq}(x, y, z, tp, tq)pq + F_{qq}(x, y, z, tp, tq)q^2
\]
and by definition of \(m_1^*(t)\) we have \(m_1^*(t)(p^2 + q^2) \leq \mu'(t)\). It follows that
\[
\mu(1) = \int_0^1 \mu'(t) \, dt \geq (p^2 + q^2) \int_0^1 m_1^*(t) \, dt.
\]
4. Now, note that
(γ) if \(p^2 + q^2 \geq 1 \), then due to (α)
\[
\mu(1) \geq (p^2 + q^2)^{-\frac{1}{2}} \int_0^1 m_1^*(t) \, dt \geq (p^2 + q^2)^{-\frac{1}{2}} \int_0^1 m_1 \, dt = m_1 \sqrt{p^2 + q^2}; \quad (3.13)
\]

(δ) if \(p^2 + q^2 \leq 1 \), then due to (β)
\[
\mu(1) \geq (p^2 + q^2)^{-\frac{1}{2}} \int_0^1 m_1 \, dt = m_1(p^2 + q^2). \quad (3.14)
\]

Summarising we arrive at (cp. [10], Lemma 4)
\[
p_{F_p}(x, y, z, p, q) + q_{F_q}(x, y, z, p, q) \geq \begin{cases} m_1(p^2 + q^2), & \text{if } p^2 + q^2 \leq 1 \\ m_1 \sqrt{p^2 + q^2}, & \text{if } p^2 + q^2 \geq 1 \end{cases}. \quad (3.15)
\]

5. Making use of the divergence structur of our Dirichlet problem we infer
\[
\text{div} (\zeta_{F_p}, \zeta_{F_q}) = p_{F_p} + q_{F_q} + \zeta \left(\frac{d}{dx} F_p + \frac{d}{dy} F_q \right) = p_{F_p} + q_{F_q} + \zeta R, \quad (3.16)
\]
and integration by parts yields (cp. [10], Lemma 5)
\[
\iint_{\Omega} (p_{F_p} + q_{F_q}) \, dxdy = \iint_{\Omega} \text{div} (\zeta_{F_p}, \zeta_{F_q}) \, dxdy - \iint_{\Omega} \zeta R \, dxdy = \int_{\partial \Omega} \zeta (F_p, F_q) \cdot \nu \, ds + \iint_{\Omega} \zeta R \, dxdy \quad (3.17)
\]
\[
\leq \| \zeta \|_{0, \partial \Omega} \int_{\partial \Omega} \sqrt{F_p^2 + F_q^2} \, ds + \| \zeta \|_{0, \Omega} \| R \|_{0, \Omega} A \| \Omega \|
\]
\[
\leq \| \zeta \|_{0, \partial \Omega} k_0 L[\partial \Omega] + \| \zeta \|_{0, \Omega} \| R \|_{0, \Omega} A \| \Omega \|
\]
with \(\nu = \nu(s) \) normal to the boundary \(\partial \Omega \subset \mathbb{R}^2 \).

6. Taking \(\sqrt{1 + p^2 + q^2} \leq 1 + \sqrt{p^2 + q^2} \) for \(p^2 + q^2 \geq 1 \), and \(\sqrt{1 + p^2 + q^2} \leq 1 + p^2 + q^2 \) for \(p^2 + q^2 \leq 1 \) into account, we calculate for \(p^2 + q^2 \leq 1 \) and \(p^2 + q^2 \geq 1 \) (cp. [10], Proof of Theorem III)
\[
\iint_{\Omega} \sqrt{1 + p^2 + q^2} \, dxdy \leq A \| \Omega \| + \frac{1}{m_1} \iint_{\Omega} (p_{F_p} + q_{F_q}) \, dxdy. \quad (3.18)
\]
The statement follows.

Remark. Various variations of the proof are possible: For example, we could alter (3.17) to obtain
\[
\iint_{\Omega} (p_{F_p} + q_{F_q}) \, dxdy \leq \| \zeta \|_{0, \partial \Omega} k_0 L[\partial \Omega] + \| \zeta \|_{0, \Omega} \| R \|_{L^1(\Omega)}
\]
with the \(L^1 \)-norm on \(\Omega \). Then (3.18) would change according to this new estimate.
3.3 Homogeneous divergence equations

Corollary. In the homogeneous case $R \equiv 0$ we conclude from the Theorem

$$ A[\zeta] \leq A[\Omega] + \frac{\|\zeta\|_{0,\partial\Omega} k_0}{m_1} L[\partial\Omega]. \quad (3.19) $$

For example, let us consider minimal graphs with $F(p,q) = \sqrt{1 + p^2 + q^2}$ such that

$$ F_p(p,q) = \frac{p}{\sqrt{1 + p^2 + q^2}}, \quad F_q(p,q) = \frac{q}{\sqrt{1 + p^2 + q^2}}. \quad (3.20) $$

For (A1), we calculate

$$ F_p^2 + F_q^2 = \frac{p^2 + q^2}{1 + p^2 + q^2} \leq 1 =: k_0. \quad (3.21) $$

Furthermore, we set $m_1 := \frac{1}{\sqrt{8}}$ due to

$$ \frac{1}{\sqrt{8}} \cdot |\xi|^2 \leq (\xi_1, \xi_2) \circ \left(\begin{array}{cc} 1 + q^2 & -pq \\ (1 + p^2 + q^2)^{3/2} & (1 + p^2 + q^2)^{3/2} \\ -pq & 1 + p^2 \\ (1 + p^2 + q^2)^{3/2} & (1 + p^2 + q^2)^{3/2} \end{array} \right) \circ \left(\begin{array}{c} \xi_1 \\ \xi_2 \end{array} \right) $$

as well as $\lambda_1 = \frac{1}{(1 + p^2 + q^2)^{3/2}} \geq \frac{1}{\sqrt{8}}$, $p^2 + q^2 \leq 1$, for the “restricted” smallest eigenvalue from (A2).

Corollary. For minimal graphs it holds

$$ A[\zeta] \leq A[\Omega] + \sqrt{8} \|\zeta\|_{0,\partial\Omega} L[\partial\Omega]. \quad (3.22) $$

For the inhomogeneous divergence equation

$$ \text{div} \frac{(p,q)}{\sqrt{1 + p^2 + q^2}} = 2H(x,y,z) \quad (3.23) $$

with prescribed mean curvature H such that $h_0 = \|H\|_{0,\Omega}$, we conclude

Corollary. In this case of prescribed mean curvature it holds

$$ A[\zeta] \leq \left\{ 1 + 2\sqrt{8} h_0 \|\zeta\|_{0,\Omega} \right\} A[\Omega] + \sqrt{8} \|\zeta\|_{0,\partial\Omega} L[\partial\Omega]. \quad (3.24) $$

Remark. This result is not sharp. From the estimate of the next chapter we will conclude

$$ A[\zeta] \leq \left\{ 1 + 2h_0 \|\zeta\|_{0,\Omega} \right\} \text{Area}[\Omega] + \|\zeta\|_{0,\partial\Omega} L[\partial\Omega]. \quad (3.25) $$

3.4 An interior estimate

The next result is motivated from [8] where sharp bounds for mean-curvature-graphs are proved.

Proposition. For real $\nu > 0$ we define the interior set

$$ \Omega_\nu := \left\{ (x,y) \in \Omega : \text{dist}((x,y), \partial\Omega) > \nu \right\}. \quad (3.26) $$

Then, under the conditions of the above Theorem and the additional assumption

$$ pF_p(x,y,z,p,q) + qF_q(x,y,z,p,q) \geq 0 \quad \text{for all } (x,y,z,p,q) \in \mathbb{R}^5 \quad (3.27) $$

(compare with (3.20)) it holds

$$ \int\int_{\Omega_\nu} \sqrt{1 + \zeta_x^2 + \zeta_y^2} \, dx dy \leq A[\Omega] + \frac{1}{m_1} \left(\frac{2k_0}{\nu} + \|R\|_{0,\Omega} \right) \|\zeta\|_{0,\Omega} A[\Omega]. \quad (3.28) $$
Proof. Choose a test function $\varphi \in C^\infty_0(\Omega, \mathbb{R})$ such that

$$\varphi(u, v) = 1 \quad \text{in } \Omega \nu, \quad |\nabla \varphi(u, v)| \leq \frac{2}{\nu} \quad \text{in } \Omega.$$ \hfill (3.29)

We compute $\text{div}(\varphi \zeta F_p, \varphi \zeta F_q) = \zeta \nabla \varphi \cdot (F_p, F_q)^t + \varphi(pF_p + qF_q) + \varphi \zeta R$. Integrating the divergence term would give no contribution due to $\varphi = 0$ on $\partial \Omega$. Therefore,

$$\iint\limits_{\Omega \nu} (pF_p + qF_q) \, dxdy \leq \iint\limits_{\Omega} \varphi(pF_p + qF_q) \, dxdy$$

$$= - \iint\limits_{\Omega} \zeta \nabla \varphi \cdot (F_p, F_q)^t \, dxdy - \iint\limits_{\Omega} \varphi \zeta R \, dxdy$$ \hfill (3.30)

$$\leq \left(\frac{2k_0}{\nu} + \|R\|_{0, \Omega} \right) \|\zeta\|_{0, \Omega} \mathcal{A}[\Omega].$$

We proceed as in point 6, i.e. (3.15) and (3.18), of the proof of our theorem. \hfill \square

4 Fermat-type graphs in \mathbb{R}^n

4.1 Introductory remarks

In this final chapter we establish an area bound for graphs of Fermat-type in divergence form which are critical for the variational problem $(X = (x, y, \zeta_1, \ldots, \zeta_{n-2}))$

$$\iint\limits_{\Omega} \Gamma(X) W \, dxdy \rightarrow \text{extr!}$$ \hfill (4.1)

1. For $\Gamma(X) \equiv 1$ we have the usual area functional.

2. In contrast to the case of $n = 3$, the following area bounds depend additionally on the derivatives of the graphs on the boundary. For example, the area of the conformally parametrized minimal graph (z, z^n), $z = x + iy \in B$ and $n \in \mathbb{N}$, depends on the maximum norm of the mapping (which does not depend on n) and the exponent n.

3. It remains open how to transform the Euler-Lagrange system of (4.1) into a Beltrami form by means of a suitable weight matrix (see the remarks in section 3.1).

4.2 The Euler-Lagrange equations

Let us start with the general functional

$$\mathcal{F}[\zeta_1, \ldots, \zeta_{n-2}] = \iint\limits_{\Omega} F(x, y, \zeta_1, \ldots, \zeta_{n-2}, \nabla \zeta_1, \ldots, \nabla \zeta_{n-2}) \, dxdy.$$ \hfill (4.2)

We set $\zeta = (\zeta_1, \ldots, \zeta_{n-2})$, $p_\sigma = \zeta_{\sigma, x}$, $q_\sigma = \zeta_{\sigma, y}$ etc.

Proposition. The $n - 2$ Euler-Lagrange equations of $\mathcal{F}[\zeta_1, \ldots, \zeta_{n-2}]$ are

$$\frac{dF_{p_\sigma}(x, y, \zeta, \nabla \zeta)}{dx} + \frac{dF_{q_\sigma}(x, y, \zeta, \nabla \zeta)}{dy} = F_{z_\sigma}(x, y, \zeta, \nabla \zeta) \quad \text{for } \sigma = 1, \ldots, n - 2.$$ \hfill (4.3)
Corollary. The non-parametric minimal surface system is
\[
\text{div} \left(\frac{p_\sigma q_\sigma}{W} \right) = - \text{div} \left(\frac{p_\sigma \sum_{\theta=1}^{n-2} q_\theta^2 - q_\sigma \sum_{\theta=1}^{n-2} p_\sigma q_\theta, q_\sigma \sum_{\theta=1}^{n-2} p_\theta^2 - p_\sigma \sum_{\theta=1}^{n-2} p_\theta q_\theta}{W} \right)
\]
(4.4)
for \(\sigma = 1, \ldots, n - 2 \).

Proof of the Corollary. From \(X_x = (1,0,\zeta_{1,x}, \ldots, \zeta_{n-2,x}) \), \(X_y = (0,1,\zeta_{1,y}, \ldots, \zeta_{n-2,y}) \) it follows
\[
h_{11} = 1 + \sum_{\sigma=1}^{n-2} \zeta_{\sigma,x}^2 = 1 + p^2, \quad h_{12} = \sum_{\sigma=1}^{n-2} \zeta_{\sigma,x} \zeta_{\sigma,y} = p \cdot q^t, \quad h_{22} = 1 + \sum_{\sigma=1}^{n-2} \zeta_{\sigma,y}^2 = 1 + q^2 \]
(4.5)
setting \(p = (p_1, \ldots, p_{n-2}) \), \(q = (q_1, \ldots, q_{n-2}) \). Therefore, we have (let \(W = F(p,q) \))
\[
A[\zeta] = \iint_{\Omega} F(p,q) \, dxdy \equiv \iint_{\Omega} \sqrt{1 + p^2 + q^2 + p^2q^2 - (p \cdot q^t)^2} \, dxdy.
\]
(4.6)
Differentiation shows
\[
F_{p_\sigma} = \frac{p_\sigma + p_\sigma q^t - q_\sigma (p \cdot q^t)}{W}, \quad F_{q_\sigma} = \frac{q_\sigma + q_\sigma p^2 - p_\sigma (p \cdot q^t)}{W},
\]
(4.7)
together with \(F_{z_\sigma}(p,q) \equiv 0 \) for \(\sigma = 1, \ldots, n - 2 \). The statement follows. \(\Box \)

Remark. For \(n = 3 \), the minimal surface system reduces to \(\text{div} \sqrt{\zeta} = 0 \) in \(\Omega \).

Corollary. Critical points \((x,y,\zeta)\) of Fermat’s functional with the integrand
\[
F(x,y,z,p,q) = \Gamma(x,y,z) \sqrt{1 + p^2 + q^2 + p^2q^2 - (p \cdot q^t)^2}
\]
(4.8)
solve the Euler-Lagrange system
\[
\text{div} \left(\frac{p_\sigma q_\sigma}{W} \right) = 2H(X, \tilde{N}_\sigma) \sqrt{1 + p_\sigma^2 + q_\sigma^2}
\]
\[
+ \frac{1}{\Gamma W} \left\{ \left[p^2 + q^2 + p^2q^2 - (p \cdot q^t)^2 \right] \Gamma_{z_\sigma} - \sum_{\omega=1}^{n-2} (p_\sigma p_\omega + q_\sigma q_\omega) \Gamma_{z_\omega} \right\}
\]
\[
- \frac{1}{\Gamma} \text{div} \left(\frac{p_\sigma q^2 - q_\sigma (p \cdot q^t)}{W} \Gamma, \frac{q_\sigma p^2 - p_\sigma (p \cdot q^t)}{W} \Gamma \right)
\]
(4.9)
for \(\sigma = 1, \ldots, n - 2 \) with the mean curvature field
\[
H(X, \tilde{N}_\sigma) = \frac{\Gamma(X) \cdot \tilde{N}_\sigma^t}{2\Gamma(X)W}, \quad X = (x,y,\zeta),
\]
(4.10)
\(w.r.t. \) to the non-orthogonally unit normal field
\[
\tilde{N}_\sigma = \frac{1}{\sqrt{1 + |\nabla \zeta_{\sigma}|^2}} (-\zeta_{\sigma,x}, -\zeta_{\sigma,y}, 0, \ldots, 0, 1, 0, \ldots, 0), \quad \sigma = 1, \ldots, n - 2.
\]
(4.11)
Proof of the Corollary. We compute

\[
F_{p_\sigma} = \frac{p_\sigma + p_\sigma q^2 - q_\sigma (p \cdot q^t)}{W} \Gamma, \quad F_{q_\sigma} = \frac{q_\sigma + q_\sigma p^2 - p_\sigma (p \cdot q^t)}{W} \Gamma, \quad F_{z_\sigma} = \Gamma z_\sigma \Gamma W
\]

(4.12)
as well as

\[
\frac{dF_{p_\sigma}}{dx} = \Gamma \frac{d}{dx} \frac{p_\sigma + p_\sigma q^2 - q_\sigma (p \cdot q^t)}{W} \Gamma + \frac{d}{dx} \frac{p_\sigma q^2 - q_\sigma (p \cdot q^t)}{W} + \frac{p_\sigma + p_\sigma q^2 - q_\sigma (p \cdot q^t)}{W} \frac{d\Gamma}{dx},
\]

\[
\frac{dF_{q_\sigma}}{dy} = \Gamma \frac{d}{dy} \frac{q_\sigma + q_\sigma p^2 - p_\sigma (p \cdot q^t)}{W} \Gamma + \frac{d}{dy} \frac{q_\sigma p^2 - p_\sigma (p \cdot q^t)}{W} + \frac{q_\sigma + q_\sigma p^2 - p_\sigma (p \cdot q^t)}{W} \frac{d\Gamma}{dy}.
\]

Thus, (4.3) takes the form

\[
\text{div} \left(\frac{p_\sigma, q_\sigma}{W} \right) = \frac{\Gamma z_\sigma W}{\Gamma} - \text{div} \left(\frac{p_\sigma q^2 - q_\sigma (p \cdot q^t)}{W}, \frac{q_\sigma p^2 - p_\sigma (p \cdot q^t)}{W} \right)
\]

\[
- \frac{p_\sigma + p_\sigma q^2 - q_\sigma (p \cdot q^t)}{W} \frac{d\Gamma}{dx} - \frac{q_\sigma + q_\sigma p^2 - p_\sigma (p \cdot q^t)}{W} \frac{d\Gamma}{dy}.
\]

(4.14)

Performing the differentiation gives \(\frac{\partial}{\partial x} = \Gamma_x + \Gamma_{z_\omega} p_\omega \) etc.

\[
\text{div} \left(\frac{p_\sigma, q_\sigma}{W} \right) = \frac{1}{\Gamma W} \left\{ \Gamma z_\sigma - p_\sigma \Gamma_x - q_\sigma \Gamma_y \right\}
\]

\[
+ \frac{1}{\Gamma W} \left\{ \left[p^2 + q^2 + p^2 q^2 - (p \cdot q^t)^2 \right] \Gamma z_\sigma - \sum_{\omega=1}^{n-2} (p_\sigma p_\omega + q_\sigma q_\omega) \Gamma z_\omega \right\}
\]

\[
- \frac{p_\sigma q^2 - q_\sigma (p \cdot q^t)}{W} \frac{d\Gamma}{dx} - \frac{q_\sigma p^2 - p_\sigma (p \cdot q^t)}{W} \frac{d\Gamma}{dy}
\]

\[
- \text{div} \left(\frac{p_\sigma q^2 - q_\sigma (p \cdot q^t)}{W}, \frac{q_\sigma p^2 - p_\sigma (p \cdot q^t)}{W} \right).
\]

(4.15)

With \(\Gamma_X = (\Gamma_x, \Gamma_y, \Gamma_{z_1}, \ldots, \Gamma_{z_{n-2}}) \), the first row can be transformed into

\[
\frac{1}{\Gamma W} \left\{ \Gamma z_\sigma - p_\sigma \Gamma_x - q_\sigma \Gamma_y \right\} = \frac{1}{\Gamma W} \mathbf{\tilde{N}}_\sigma \cdot \Gamma_X \sqrt{1 + |\nabla \zeta_\sigma|^2} = 2H(X, \mathbf{\tilde{N}}_\sigma) \sqrt{1 + |\nabla \zeta_\sigma|^2},
\]

(4.16)

and the statement follows.

\[\square \]

Remark. For \(n = 3 \), the Euler-Lagrange system reduces to

\[
\text{div} \left(\nabla \zeta \right) = 2H(X, \mathbf{\tilde{N}}) \quad \text{in} \ \Omega.
\]

(4.17)

4.3 An area estimate

The main result of this chapter is the following

Theorem. Let \(\zeta \in C^1(\overline{\Omega}, \mathbb{R}^{n-2}) \cap C^2(\Omega, \mathbb{R}^{n-2}) \) solve (4.1) where \(\Gamma = \Gamma(x, y) \in C^1(\overline{\Omega}, \mathbb{R}) \) such that with real constants \(\Gamma_0, \Gamma_1, \) and \(\Gamma_2 \) it holds

\[
0 < \Gamma_0 \leq \Gamma(X) \leq \Gamma_1 < +\infty, \quad \Gamma_2 := \|\Gamma\|_{1, \Omega}, \quad h_0 := \sup_{(X, Z) \in \mathbb{R}^3 \times S^1} |H(X, Z)|.
\]

(4.18)
We require the smallness condition
\[\Lambda := 1 - \frac{\sqrt{2} (n - 2)^2 \Gamma_2}{\Gamma_0} \max_{\sigma=1,\ldots,n-2} \| \zeta_{0,\Omega} \| > 0. \] (4.19)

Then it holds
\[\Lambda \cdot \mathcal{A}[\zeta] \leq \mathcal{A}[\Omega] + (n - 2) \mathcal{L}[\partial \Omega] \max_{\sigma=1,\ldots,n-2} \| \zeta_{\sigma} \|_{0,\partial \Omega} \]
\[+ 2(n - 2) h_0 \mathcal{A}[\Omega] \max_{\sigma=1,\ldots,n-2} \| \zeta_{\sigma} \|_{0,\Omega} \]
\[+ (n - 2)^2 \mathcal{L}[\partial \Omega] \max_{\sigma=1,\ldots,n-2} \| \zeta_{\sigma} \|_{0,\partial \Omega} ||D^T \zeta_{\sigma}||_{0,\partial \Omega} \] (4.20)

with the tangential derivative \(D^T \zeta_{\sigma} = (q_{\sigma}, -p_{\sigma}) \cdot \nu \), \(\nu \) unit normal along \(\partial \Omega \), \(\sigma = 1, \ldots, n-2 \).

Remarks.
1. The third line in (4.20) does not appear if \(n = 3 \). Furthermore, in this case we set \(\Lambda := 1 \). Furthermore, \(\Gamma_2 = 0 \) implies \(\Lambda = 1 \).
2. If we prescribe boundary values \(\zeta_{\sigma,R}, \), we can replace the tangential derivatives \(D^T \zeta_{\sigma} \) by the derivatives of \(\zeta_{\sigma,R} \).

Proof of the Theorem. 1. We add the \(n - 2 \) identities \(\zeta_{\sigma} \) \(\text{div} \frac{\nabla \zeta_{\sigma}}{W} = \text{div} \frac{\zeta_{\sigma} \nabla \zeta_{\sigma}}{W} - \frac{||\nabla \zeta_{\sigma}||^2}{W} \):
\[\sum_{\sigma=1}^{n-2} \zeta_{\sigma} \text{div} \frac{\nabla \zeta_{\sigma}}{W} = \sum_{\sigma=1}^{n-2} \text{div} \frac{\zeta_{\sigma} \nabla \zeta_{\sigma}}{W} - \sum_{\sigma=1}^{n-2} \frac{p_{\sigma,0}^2 + q_{\sigma,0}^2}{W} = \sum_{\sigma=1}^{n-2} \text{div} \frac{\zeta_{\sigma} \nabla \zeta_{\sigma}}{W} - \frac{p^2 + q^2}{W}. \] (4.21)

For the area element we have
\[\frac{1}{W} - W = \frac{1}{W} - \frac{1}{W} - \frac{[1 + p^2 + q^2 + 2p^2q^2 - (p \cdot q)^2]}{W} = - \frac{p^2 + q^2}{W} - \frac{p^2q^2 - (p \cdot q)^2}{W}, \] (4.22)

therefore,
\[W = \frac{1}{W} + \sum_{\sigma=1}^{n-2} \zeta_{\sigma} \text{div} \frac{\nabla \zeta_{\sigma}}{W} - \sum_{\sigma=1}^{n-2} \zeta_{\sigma} \text{div} \frac{\nabla \zeta_{\sigma}}{W} + \frac{p^2q^2 - (p \cdot q)^2}{W}. \] (4.23)

2. Multiply the Euler-Lagrange equations (4.9) by \(\zeta_{\sigma} \). Summation gives \((\Gamma_{\zeta_{\sigma}} \equiv 0)\)
\[\sum_{\sigma=1}^{n-2} \zeta_{\sigma} \text{div} \frac{\nabla \zeta_{\sigma}}{W} = 2 \sum_{\sigma=1}^{n-2} H(X, \vec{N}_\sigma) \zeta_{\sigma} \sqrt{1 + p_{\sigma}^2 + q_{\sigma}^2} \]
\[- \sum_{\sigma=1}^{n-2} \zeta_{\sigma} \text{div} \left(\frac{p_{\sigma}q^2 - q_{\sigma}(p \cdot q^i)}{W}, \frac{q_{\sigma}p^2 - p_{\sigma}(p \cdot q^i)}{W} \right) \]
\[- \sum_{\sigma=1}^{n-2} \left\{ \frac{p_{\sigma}q^2 - q_{\sigma}(p \cdot q^i)}{W} \zeta_{\sigma} \Gamma_x + \frac{q_{\sigma}p^2 - p_{\sigma}(p \cdot q^i)}{W} \zeta_{\sigma} \Gamma_y \right\}. \] (4.24)

Note that in the second line
\[\text{div} \left(\frac{p_{\sigma}q^2 - q_{\sigma}(p \cdot q^i)}{W}, \frac{q_{\sigma}p^2 - p_{\sigma}(p \cdot q^i)}{W} \right) \zeta_{\sigma} \]
\[= \zeta_{\sigma} \text{div} \left(\frac{p_{\sigma}q^2 - q_{\sigma}(p \cdot q^i)}{W}, \frac{q_{\sigma}p^2 - p_{\sigma}(p \cdot q^i)}{W} \right) + \frac{p_{\sigma}^2q^2 - p_{\sigma}q_{\sigma}(p \cdot q^i)}{W} + \frac{q_{\sigma}^2p^2 - q_{\sigma}p_{\sigma}(p \cdot q^i)}{W}, \] (4.25)
and adding up brings
\[
\sum_{\sigma = 1}^{n-2} \zeta_\sigma \text{div} \left(\frac{p_\sigma q^2 - q_\sigma (p \cdot q^t)}{W}, \frac{q_\sigma p^2 - p_\sigma (p \cdot q^t)}{W} \right) = \sum_{\sigma = 1}^{n-2} \text{div} \left(\frac{p_\sigma q^2 - q_\sigma (p \cdot q^t)}{W} \zeta_\sigma, \frac{q_\sigma p^2 - p_\sigma (p \cdot q^t)}{W} \zeta_\sigma \right) - \frac{2}{W} \left\{ p^2 q^2 - (p \cdot q^t)^2 \right\}.
\]

(4.26)

Now, (4.23) can be written as
\[
W = \frac{1}{W} + \sum_{\sigma = 1}^{n-2} \zeta_\sigma \nabla \zeta_\sigma \frac{\zeta_\sigma}{W} - \frac{p^2 q^2 - (p \cdot q^t)^2}{W} - 2 \sum_{\sigma = 1}^{n-2} H(X, \tilde{N}_\sigma) \zeta_\sigma \sqrt{1 + p_\sigma^2 + q_\sigma^2} W
\]
\[
+ \sum_{\sigma = 1}^{n-2} \text{div} \left(\frac{p_\sigma q^2 - q_\sigma (p \cdot q^t)}{W} \zeta_\sigma, \frac{q_\sigma p^2 - p_\sigma (p \cdot q^t)}{W} \zeta_\sigma \right)
\]
\[
+ \sum_{\sigma = 1}^{n-2} \left\{ p_\sigma q^2 - q_\sigma (p \cdot q^t) \zeta_\sigma \zeta_x + q_\sigma p^2 - p_\sigma (p \cdot q^t) \zeta_\sigma \zeta_y \right\}.
\]

(4.27)

3. This last identity will be integrated by parts.

(i) First, observe that due to \(\frac{1}{W} \leq 1 \), if holds
\[
\int \int_{\Omega} \frac{1}{W} \ dxdy \leq A[\Omega].
\]

(ii) The second is evaluated as
\[
\sum_{\sigma = 1}^{n-2} \int_{\Omega} \text{div} \left(\frac{\zeta_\sigma \nabla \zeta_\sigma}{W} \right) \ dx\ dy \leq \sum_{\sigma = 1}^{n-2} \int_{\partial \Omega} |\nabla \zeta_\sigma \cdot \nu| \ ds \leq (n-2) L[\partial \Omega] \max_\sigma \left\| \zeta_\sigma \right\|_{0, \partial \Omega}
\]

\[
\leq (n-2) \sqrt{1 + p_\sigma^2 + q_\sigma^2} W \]

(4.28)

(iii) The third term is non-negative by Hölder’s inequality.

(iv) Analogously, we have
\[
2 \sum_{\sigma = 1}^{n-2} \int_{\Omega} H(X, \tilde{N}_\sigma) \zeta_\sigma \sqrt{1 + p_\sigma^2 + q_\sigma^2} \ dxdy \leq 2(n-2) h_0 A[\Omega] \max_\sigma \left\| \zeta_\sigma \right\|_{0, \Omega}.
\]

(4.29)

(v) We consider the second line in (4.27): First, note that
\[
p_\sigma q^2 - q_\sigma (p \cdot q^t) = \sum_{\theta = 1}^{n-2} (p_\sigma q_\theta - q_\sigma q_\theta) q_\theta, \quad q_\sigma p^2 - p_\sigma (p \cdot q^t) = \sum_{\theta = 1}^{n-2} (q_\sigma q_\theta - q_\theta q_\sigma) p_\theta,
\]

(4.30)

and, therefore, multiplication by \(p_\sigma \) resp. \(q_\sigma \), and summation brings
\[
p^2 q^2 - (p \cdot q^t)^2 = \frac{1}{2} \sum_{\sigma, \theta = 1}^{n-2} (p_\sigma q_\theta - q_\sigma q_\theta)^2.
\]

(4.31)
Integration yields
\[
\sum_{\sigma=1}^{n-2} \iint_{\Omega} \text{div} \left(\frac{p_{\sigma}q^2 - q_{\sigma}(p \cdot q^t)}{W} \zeta_{\sigma} + \frac{q_{\sigma}p^2 - q_{\sigma}(p \cdot q^t)}{W} \zeta_{\sigma} \right) \, dx dy
\]

\[
= \sum_{\sigma, \omega=1}^{n-2} \iint_{\Omega} \text{div} \left(\frac{(p_{\sigma}q_{\omega} - p_{\sigma}q_{\sigma})q_{\omega}}{W} \zeta_{\sigma} - \frac{(p_{\sigma}q_{\omega} - p_{\sigma}q_{\sigma})p_{\omega}}{W} \zeta_{\sigma} \right) \, dx dy
\]

\[
= \sum_{\sigma, \omega=1}^{n-2} \int_{\partial \Omega} \left(\frac{p_{\sigma}q_{\omega} - p_{\sigma}q_{\sigma})}{W} \zeta_{\sigma} \right) (q_{\omega}, -p_{\omega}) \cdot v \, ds
\]

\[
\leq \sum_{\sigma, \omega=1}^{n-2} \int |\zeta_{\sigma}| |D^{\top} \zeta_{\sigma}| \, ds
\]

\[
\leq (n - 2)^2 L[\partial \Omega] \max_{\sigma} \|\zeta_{\sigma}\|_{0, \partial \Omega} \|D^{\top} \zeta_{\sigma}\|_{0, \partial \Omega}.
\]

(vi) To control the last term in (4.27) we use again (4.29), (4.30), and \((p_{\sigma}q_{\theta} - p_{\sigma}q_{\theta})^2 \leq 2[p^2 q^2 - (p \cdot q^t)^2]\) from (4.31)

\[
\left| \frac{p_{\sigma}q^2 - q_{\sigma}(p \cdot q^t)}{W} \right| \leq \sum_{\theta=1}^{n-2} \left| \frac{p_{\sigma}q_{\theta} - q_{\sigma}p_{\theta}}{W} \right| \leq \sqrt{2} \sum_{\theta=1}^{n-2} \sqrt{\frac{p^2 q^2 - (p \cdot q^t)^2}{W}} |q_{\theta}|,
\]

and analogously for \(|q_{\sigma}^2 - q_{\sigma}(p \cdot q^t)|\), we obtain

\[
\frac{|p_{\sigma}q^2 - q_{\sigma}(p \cdot q^t)|}{GW} \leq \sqrt{2} (n - 2) \Gamma_0^{-1} \|q\|, \quad \frac{|q_{\sigma}p^2 - q_{\sigma}(p \cdot q^t)|}{GW} \leq \sqrt{2} (n - 2) \Gamma_0^{-1} |p|.
\]

Then we may estimate
\[
\sum_{\sigma=1}^{n-2} \iint_{\Omega} \left\{ \frac{p_{\sigma}q^2 - q_{\sigma}(p \cdot q^t)}{W} \zeta_{\sigma} \Gamma_x + \frac{q_{\sigma}p^2 - q_{\sigma}(p \cdot q^t)}{W} \zeta_{\sigma} \Gamma_y \right\} \, dx dy
\]

\[
\leq \sum_{\sigma=1}^{n-2} \frac{\Gamma_2}{\Gamma_0} \iint_{\Omega} \left| \zeta_{\sigma} \right| \left\{ \frac{|p_{\sigma}q^2 - q_{\sigma}(p \cdot q^t)|}{W} + \frac{|q_{\sigma}p^2 - q_{\sigma}(p \cdot q^t)|}{W} \right\} \, dx dy
\]

\[
\leq \frac{\sqrt{2} (n - 2)^2 \Gamma_2}{\Gamma_0} \max_{\sigma} \|\zeta_{\sigma}\|_{0, \Omega} \iint_{\Omega} \sqrt{1 + p^2 + q^2 + p^2 q^2 - (p \cdot q^t)^2} \, dx dy.
\]

6. Taking our results together, we arrive at
\[
\mathcal{A}[\cdot] \leq \mathcal{A}[\Omega] + (n-2) L[\partial \Omega] \max_{\sigma} \|\zeta_{\sigma}\|_{0, \partial \Omega} + 2(n-2) h_0 \mathcal{A}[\Omega] \max_{\sigma} \|\zeta_{\sigma}\|_{C^0(\Omega)}
\]

\[
+ (n-2)^2 L[\partial \Omega] \max_{\sigma} \|\zeta_{\sigma}\|_{0, \partial \Omega} \|D^{\top} \zeta_{\sigma}\|_{0, \Omega}
\]

\[
+ \frac{\sqrt{2} (n-2)^2 \Gamma_2}{\Gamma_0} \max_{\sigma} \|\zeta_{\sigma}\|_{0, \Omega} \mathcal{A}[\cdot].
\]

Rearranging proves the statement.

\[\square \]

Remark. In (4.35) we need the special form \(\Gamma = \Gamma(x, y)\). Otherwise, due to (4.34) there would remain terms quadratically in \(p_{\theta}, q_{\theta}\) in the integrand.
4.4 Minimal surfaces

We consider the special case \(\Gamma \equiv 1 \) (that is, \(h_0 = 0 \)):

Corollary. Let \(\zeta \in C^2(\Omega, \mathbb{R}^{n-2}) \cap C^1(\overline{\Omega}, \mathbb{R}^{n-2}) \) solve the minimal surface system \((4.4)\). Then

\[
A[\zeta] \leq A[\Omega] + (n - 2)\mathcal{L}[\partial \Omega] \max_{\sigma=1,\ldots,n-2} \|\zeta_\sigma\|_{0,\partial \Omega}^0
\]

\[
+ (n - 2)^2\mathcal{L}[\partial \Omega] \max_{\sigma=1,\ldots,n-2} \|\zeta_\sigma\|_{0,\partial \Omega}^0 \|D^{\top} \zeta_\sigma\|_{0,\partial \Omega}^0.
\]

(4.37)

References

[1] Barbosa, J.L.; do Carmo, M.: *On the size of stable minimal surfaces in \(\mathbb{R}^3 \).* Am. Journal Math. **98**, 515–528, 1974.

[2] Barbosa, J.L.; do Carmo, M.: *Stability of minimal surfaces and eigenvalues of the Laplacian.* Math. Z. **173**, 13–28, 1980.

[3] Bergner, M.; Fröhlich, S.: *On two-dimensional immersions of prescribed mean curvature in \(\mathbb{R}^n \).* Accept. for publication in Zeitschrift Anal. Anw.

[4] Bers, L.: *Univalent solutions of Linear elliptic systems.* Comm. Pure Appl. Math. **VI**, 513–526, 1953.

[5] Blaschke, W.; Leichtweiss, K.: *Elementare Differentialgeometrie.* Grundlehren der mathematischen Wissenschaften **1**, Springer, 1973.

[6] Clarenz, U.: *Sätze über Extremalen zu parametrischen Funktionalen.* Bonner mathematische Schriften **322**, 1999.

[7] Clarenz, U.; von der Mosel, H.: *Isoperimetric inequalities for parametric variational problems.* Ann. I.H. Poincaré - AN **19**, No. 5, 617–629, 2002.

[8] Colding, T.H.: *Sharp estimates for mean curvature flow of graphs.* J. reine angew. Math. **574**, 187–195, 2004.

[9] Ecker, K.: *Regularity theory for mean curvature flow.* Birkhäuser, 2004.

[10] Finn, R.: *On equations of minimal surface type.* Annals of Math. **60**, No. 3, 1954.

[11] Fischer-Colbrie, D.; Schoen, R.: *The structure of complete stable minimal surfaces in 3-manifolds of non-negative scalar curvature.* Commun. Pure Appl. Math. **33**, 199–211, 1980.

[12] Fröhlich, S.: *Curvature estimates for \(\mu \)-stable \(G \)-minimal surfaces and theorems of Bernstein type.* Analysis **22**, 109–130, 2002.

[13] Fröhlich, S.: *A note on \(\mu \)-stable surfaces with prescribed constant mean curvature.* Zeitschrift Anal. Anw. **22**, Nr. 2, 455–462, 2003.

[14] Fröhlich, S.: *On twodimensional immersions that are stable for parametric functionals of constant mean curvature type.* Differential Geom. and Appl. **23**, 235–256, 2005.

[15] Fröhlich, S.: *On 2-surfaces in \(\mathbb{R}^4 \) and \(\mathbb{R}^n \).* Proceedings of the 5th Conference of Balkan Society of Geometers, Mangalia 2005.

[16] Fröhlich, S.: *\(\mu \)-stability of 2-immersions of prescribed mean curvature and flat normal bundle in Euclidean spaces of higher codimension.* Preprint.

[17] Fröhlich, S.; Winklmann, S.: *Curvature estimates for graphs with prescribed mean curvature and flat normal bundle.* Accept. for publication in manuscripta mathematica.
[18] **Gulliver, R.**: *Minimal surfaces of finite index in manifolds of positive scalar curvature*. In: Calculus of variations and partial differential equations, S. Hildebrandt, D. Kinderlehrer, M. Miranda, Ed., Lecture Notes in mathematics **1340**, 115–122, Springer-Verlag, 1988.

[19] **Ruchert, H.**: *Ein Eindeutigkeitssatz für Flächen konstanter mittlerer Krümmung*. Arch. math. **33**, 91–104, 1979.

[20] **Sauvigny, F.**: *A-priori-Abschätzungen der Hauptkrümmungen für Immersionen vom Mittleren-Krümmungs-Typ mittels Uniformisierung und Sätze vom Bernstein-Typ*. Habilitationsschrift, Göttingen 1988.

[21] **Sauvigny, F.**: *Curvature estimates for immersions of minimal surface type via uniformization and theorems of Bernstein type*. manuscripta math. **67**, 567–582, 1990.

[22] **Sauvigny, F.**: *Introduction of isothermal parameters into a Riemannian metric by the continuity method*. Analysis **19**, No. 3, 235–243, 1999.

[23] **Schoen, R.; Simon, L.; Yau, S.T.**: *Curvature estimates for minimal hypersurfaces*. Acta Math. **134**, 275–288, 1975.

[24] **Winklmann, S.**: *Krümmungsabschätzungen für stabile Extremalen parametrischer Funktionale*. Dissertations, Universität Duisburg-Essen (Campus Duisburg), 2004.

[25] **Winklmann, S.**: *Estimates for stable hypersurfaces of prescribed F-mean curvature*. Preprint, SM-DU-602, Universität Duisburg-Essen, 2005.

Steffen Fröhlich
Freie Universität Berlin
Fachbereich Mathematik und Informatik
Institut für Mathematik I
Arnimalle 2-6
D-14195 Berlin
Germany
e-mail: sfroehli@mi.fu-berlin.de