SYSTEMATIC REVIEWS

Surfactant therapy and antibiotics in neonates with meconium aspiration syndrome: a systematic review and meta-analysis

CK Natarajan, MJ Sankar, K Jain, R Agarwal and VK Paul

Meconium aspiration syndrome (MAS), a common cause of respiratory failure in neonates, is associated with high mortality and morbidity. The objectives of this review were to evaluate the effects of administration of (a) surfactant—either as lung lavage (SLL) or bolus surfactant (BS) and (b) antibiotics on mortality and severe morbidities in neonates with MAS. We searched the following databases: MEDLINE via PubMed, Cochrane CENTRAL, WHOLIS and CABI using sensitive search strategies. We included eight studies on use of surfactant and three studies on use of antibiotics. Neither SLL nor BS reduced the risk of mortality in neonates with MAS (relative risk (RR) 0.38, 95% confidence interval (CI) 0.09 to 1.57; and RR 0.80, 95% CI 0.39 to 1.66, respectively). Both SLL and BS reduced the duration of hospital stay (mean difference −2.0, 95% CI −3.66 to −0.34; and RR −4.68, 95% CI −7.11 to −2.24 days, respectively) and duration of mechanical ventilation (mean difference −1.31, 95% CI −1.91 to −0.72; and mean difference 5.4, 95% CI −9.76 to −1.03 days). Neonates who received BS needed extracorporeal membrane oxygenation (ECMO) less often than the controls (RR 0.64, 95% CI 0.46 to 0.91). Use of antibiotics for MAS did not result in significant reduction in the risk of mortality, sepsis or duration of hospital stay. Surfactant administration either as SLL or BS for MAS was found to reduce the duration of mechanical ventilation and hospital stay; BS also reduced the need for ECMO. Administration of antibiotics did not show any significant clinical benefits in neonates with MAS and no evidence of sepsis. Given the limited number of studies and small number of neonates enrolled, there is an urgent need to generate more evidence on the efficacy and cost-effectiveness of these two treatment modalities before recommending them in routine clinical practice.

Journal of Perinatology (2016) 36, S48–S53; doi:10.1038/jp.2016.32

INTRODUCTION

Meconium aspiration syndrome (MAS) is defined as respiratory distress in a neonate born through meconium-stained amniotic fluid (MSAF) having characteristic radiological changes whose symptoms cannot be otherwise explained.1,2 MAS accounts for about 10% of cases of respiratory failure in all neonates, and is associated with significant morbidity and high mortality (up to 39%).1,3 Although most neonates born through MSAF do not develop MAS, some—particularly those who are non-vigorous and require resuscitation at birth—are more prone to have the condition. Given the lack of evidence for efficacy of most interventions performed before, during or after birth, such as amnioinfusion, intrapartum suctioning and postpartum suctioning of the meconium in non-vigorous neonates, it is difficult to know how to prevent the occurrence of MAS in at-risk neonates.4–6

Currently, management of neonates with MAS involves only supportive care—oxygen therapy, assisted ventilation, inhaled nitric oxide and if available, extracorporeal membrane oxygenation (ECMO). In the absence of a specific therapy, clinicians often use a diverse range of treatment modalities, most of which are yet to be proven in randomized controlled trials (RCTs). In this article, we systematically reviewed the efficacy of the two commonly used interventions namely, surfactant administration and antibiotics. Surfactant is administered intratracheally as either a bolus dose or in dilute form to lavage the lungs in neonates with MAS. Although bolus administration is thought to replenish the endogenous surfactant inactivated by fatty acids present in the meconium, lung lavage with surfactant is believed to wash the residual meconium from the airways.2,6 Antibiotics, on the other hand, may reduce the risk of infection in the immediate neonatal period in neonates with MAS.7

METHODS

Types of studies
We included all RCTs including quasi-randomized trials that compared the effects of (1) intratracheal surfactant administration with placebo or no therapy and (2) systemic antibiotics with placebo or no antibiotics in late-preterm and term neonates with MAS.

Type of participants
All studies that enrolled late-preterm and term neonates with MAS were eligible for inclusion in this review.

Types of interventions
Intervention 1: surfactant therapy as either bolus surfactant (BS) administration or surfactant lung lavage (SLL).
Intervention 2: administration of systemic antibiotics for any duration.
We excluded studies wherein both SLL and BS were administered.

Outcome measures and their definitions
Outcomes studied included the following: (i) in-hospital mortality defined as all-cause death during the birth hospitalization; (ii) sepsis defined as clinical features of sepsis with or without isolation of organisms from blood/cerebrospinal fluid/urine and laboratory parameters suggestive of sepsis; (iii) duration of mechanical ventilation defined as number of days—either invasive or noninvasive; (iv) duration of oxygen requirement defined as the number of days of oxygen supplementation required during the initial hospital stay; (v) duration of hospital stay defined as number of days as inpatient; (vi) proportion of neonates who required ECMO therapy; and (vii) the incidence of air leaks, such as pulmonary interstitial emphysema, pneumomediastinum or pneumopericardium.

Search methods for identification of studies
We searched the following databases: MEDLINE via PubMed; Cochrane CENTRAL; WHOLIS; and CABI Global Health using the following search terms—meconium and (antibiotics or surfactant). No language restrictions were used. We also searched for ongoing/unpublished studies by hand-searching the conference proceedings of the Pediatric Academic Societies for the years 2005 to 2014.

Data extraction
Data extraction was carried out using a form designed and pretested by the authors. Two authors (CKN and KJ) independently extracted the data from the included studies, including year, setting (country, type of population, socioeconomic status, gestation and birth weight of neonates) and outcomes of interest. Disagreements in extracted data were resolved through discussion with the third author (MJS).

Statistical analysis
Data entry and meta-analysis were performed using RevMan version 5.3 (The Nordic Cochrane Centre, Copenhagen, Denmark). We analyzed the data as the proportion of neonates for categorical outcomes and mean (s.d.) or median (inter-quartile range) for continuous outcomes. We calculated relative risks (RRs) or mean differences with 95% confidence intervals (CIs) for the outcomes of interest. Heterogeneity between the studies was quantified by using a measure of the degree of inconsistency in their results (I^2 statistic > 60%). We evaluated the presence of publication bias by using funnel plots when an adequate number of studies was available for meta-analysis.

RESULTS
We retrieved 465 citations using the above-mentioned search strategy. After screening the title and abstracts and removal of duplicates, we identified nine and three studies, respectively, on surfactant administration and antibiotics in neonates with MAS (Figure 1). One study on surfactant lavage was presented in abstract form in a conference and could not be included in the final analysis due to lack of complete data; thus, eight studies were finally analyzed for use of surfactant in MAS.

All the studies were randomized trials that used accepted methods of randomization. Studies that used SLL were not blinded, whereas most of those that used BS were blinded. None of the three studies on antibiotic use in MAS attempted to blind the intervention, and none had any major loss to follow-up. About one-half of the studies on surfactant and all of the studies on antibiotic use in MAS were from low- and middle-income countries (LMICs).

Surfactant for MAS
Out of the eight studies on surfactant for MAS, two used SLL and the remaining six used BS (Table 1). Among studies that used SLL as the intervention, one study used bovine surfactant and the other synthetic surfactant for lavage. All BS studies used only natural surfactant—either bovine or porcine. Because of the different nature of interventions including the dosage of surfactant, we pooled the results of studies that used SLL and studies that used BS separately.

Use of surfactant as either SLL (RR 0.38; 95% CI 0.09 to 1.57) or BS (RR 0.80; 95% CI 0.39 to 1.66) did not reduce mortality in neonates with established MAS. Both SLL and BS reduced the duration of hospital stay by 2 days (95% CI −3.7 to −0.3) and 4.7 days (95% CI −7.1 to −2.2), respectively. Similarly, neonates who received surfactant by either SLL or BS had shorter days of mechanical ventilation (Table 2). Neonates who received BS (RR 0.64; 95% CI 0.46 to 0.91) but not SLL (RR 0.26; 95% CI 0.04 to 1.82) needed ECMO less often than those in the control group. Neither method of surfactant administration reduced the duration of oxygen therapy or the incidence of air leaks (Table 3). None of the included studies reported the rates of sepsis in intervention and control groups.

Antibiotics for MAS
Antibiotics used in the studies were either penicillin and aminoglycosides or aminoglycosides alone for 3 to 7 days’ duration (Table 3). None of the outcomes of interest such as neonatal mortality, incidence of sepsis, duration of hospital stay, duration of mechanical ventilation and duration of oxygen therapy were significantly different between neonates who received systemic antibiotics and those who did not (Table 4).

DISCUSSION
In this review we have attempted to summarize the studies on potential adjuvant therapies in the management of MAS such as antibiotics and surfactant administration. Use of intratracheal surfactant either as bolus administration or as lavage therapy in
S. No.	Study's first author, country	Study design	Study population/mean (s.d.) gestation/BW	Intervention	Control group	Outcome parameters of interest	Comments
1	Dargaville, Multicentric trial from Australia, New Zealand, Malaysia, Singapore and Taiwan	RCT	\(\geq 36\) wk with MAS \(n=30\) \(\text{GA: 39 (38–40) wk}\) \(\text{BW: 3.4 (3.0–3.6) g}\) \(\text{Control: n=35}\) \(\text{GA: 40 (39–41) wk}\) \(\text{BW: 3.5 (3.2–3.9) g}\)	Lung lavage with surfactant (Survanta) 15 ml kg\(^{-1}\) \(\times 2\) aliquots	No lavage	Duration of respiratory support Days of intubation Duration of hospital stay Mortality Duration of oxygen dependence Duration of inhaled nitric oxide therapy Need for ECMO	Not blinded
2	Wiswell, USA	RCT	\(\geq 35\) wk with MAS \(n=15\) \(\text{GA: 39.9 (1.2) wk}\) \(\text{BW: 3491 (517) g}\) \(\text{Control: n=7}\) \(\text{GA: 39.4 (1.9) wk}\) \(\text{BW: 3601 (126) g}\)	Lung lavage with Surfaxin, synthetic surfactant 3 doses for each lung 8 ml kg\(^{-1}\) \((2.5 \text{ mg ml}\(^{-1}\) \(\times 2\) doses followed by 8 ml kg\(^{-1}\) \((10 \text{ mg ml}\(^{-1}\) \(\times 1\) dose)	No lavage; supportive care	Time to extubation Days in NICU Duration of oxygen therapy Need for ECMO	Not blinded
3	Zhixia, China	RCT	Term neonates with MAS; \(\text{BW > 2500 g}\) Pulmonary surfactant: \(n=22\) \(\text{GA: 39.2 (1.6) wk}\) \(\text{BW: 3234 (336) g}\) \(\text{Control: n=23}\) \(\text{GA: 39.5 (1.3) wk}\) \(\text{BW: 3148 (295) g}\)	Bovine surfactant 70 mg kg\(^{-1}\)	Supportive treatment	Mortality/abandon treatment Duration of mechanical ventilation Duration of oxygen therapy Duration of hospital stay	Article in Chinese; information extracted using Google Translator; blinding unclear
4	Wanying, China	RCT	Term neonates with MAS; \(\text{BW > 2500 g}\) Pulmonary surfactant: \(n=24\) \(\text{GA: 39.2 (1.6) wk}\) \(\text{BW: 3234 (336) g}\) \(\text{Control: n=23}\) \(\text{GA: 39.5 (1.3) wk}\) \(\text{BW: 3148 (295) g}\)	Porcine surfactant 120 mg kg\(^{-1}\)	Supportive treatment	Mortality/abandon treatment	Article in Chinese; information extracted using Google Translator; blinding unclear
5	Chinese Collaborative Study Group, China	RCT	Term and near-term with MAS; \(\text{BW > 2500 g}\) Intervention: \(n=31\) \(\text{GA: 40.0 (1.4) wk}\) \(\text{BW: 3444 (534) g}\) \(\text{Control: n=30}\) \(\text{GA: 39.6 (1.7) wk}\) \(\text{BW: 3359 (506) g}\)	Curosurf 1st and 2nd dose: 200 mg kg\(^{-1}\); 3rd and 4th dose: 100 mg kg\(^{-1}\) \(\times 4\) doses	Air placebo	Mortality Duration of mechanical ventilation Mortality	Blinded
6	Findlay, USA	RCT	Term neonates Intervention: \(n=20\) \(\text{GA: 40.2 (0.3) wk}\) \(\text{BW: 3370 (112) g}\) \(\text{Control: n=20}\) \(\text{GA: 39.6 (0.5) wk}\) \(\text{BW: 3507 (128) g}\)	Survanta 150 mg kg\(^{-1}\) bolus 4 doses	Air placebo	Duration of mechanical ventilation Duration of hospital stay Mortality Duration of oxygen dependence Need for ECMO Incidence of air leaks	Blinded
neonates with MAS reduced the duration of mechanical ventilation and duration of hospital stay. There was also a significant reduction in the need for ECMO in neonates who received BS therapy for MAS. Administration of antibiotics in MAS did not result in any beneficial outcomes. Neither intervention reduced in-hospital mortality or sepsis.

Surfactant for MAS

We found two Cochrane reviews on use of surfactant in MAS, one on SLL and the other on BS. The Cochrane review on SLL included two studies and reported a significant reduction in the combined outcome of mortality or need for ECMO in the intervention group (RR 0.33; 95% CI 0.11 to 0.96). The risk of mortality was not reduced significantly in neonates who received lung lavage with surfactant (RR: 0.42; 95% CI 0.12 to 1.46). The results of the present review are similar to those from the Cochrane review. The latter review, however, included another study by Gadzinowski et al., which used both surfactant lavage and BS in the intervention arm (this study was analyzed separately). Also, we did not examine the combined outcome of mortality and ECMO in our review.

The Cochrane review on BS included four studies and found the risk of requiring ECMO to be lower in the intervention group (RR 0.64; 95% CI 0.46 to 0.91). However, the risk of mortality and air leaks was comparable between the two groups. We included two additional studies from China in our review. Inclusion of these did not change the results on neonatal mortality or need for ECMO. However, the duration of mechanical ventilation and hospital stay were found to be significantly shorter in our review compared with the Cochrane review, which reported no difference between the groups.

Lack of benefits in key outcomes such as mortality and air leaks following either mode of surfactant therapy could be related to (a) the degree of illness of the neonates and (b) timing of lavage therapy. Neonates included in these trials were moderately ill and received the intervention relatively late when compared with the timing in experimental studies in animals that have shown beneficial effects with surfactant lavage.

Notwithstanding the lack of benefits in key outcomes, significant benefits observed in the need for ECMO (for BS), and duration of hospital stay and mechanical ventilation (with both SLL and BS) underscore the importance of generating more

Table 1. (Continued)

Control group	Intervention	Study population/mean (SD) gestation/BW	Study design	Study country	Study’s first author, country
Air placebo	Survanta 100 mg kg\(^{-1}\) bolus 4 doses, +4 more doses if ECMO required	RCT >36 weeks	GA: 39 (1.8) wk	7 Lotze, 12 USA	Lotze, 12 USA
Air placebo	Survanta 100 mg kg\(^{-1}\) bolus 3 doses, +4 more doses if ECMO required	RCT >36 weeks	GA: 39 (1.7) wk	8 Maturana, 13 Chile	Maturana, 13 Chile

Table 2. Summary of outcomes for use of surfactant in MAS

Outcome	Number of studies and participants; effect size (95% CI)	
SLL	BS	
In-hospital mortality	2 studies; \(n = 87\); 5 studies; \(n = 536\); 0.38 (0.09, 1.57)	0.80 (0.39, 1.66)
Duration of ventilation	1 study; \(n = 65\); 4 studies; \(n = 467\); -2.0 (-3.66, -0.34)	-4.68 (-7.11, -2.24)
Duration of mechanical ventilation	2 studies; \(n = 87\); 5 studies; \(n = 527\); -1.31 (-1.91, -0.72)	-5.4 (-9.76, -1.03)
Duration of oxygen therapy	2 studies; \(n = 87\); 4 studies; \(n = 466\); 0.03 (-1.36, 1.42)	-4.06 (-10.8, 2.7)
Need for ECMO	2 studies; \(n = 87\); 2 studies; \(n = 208\); 0.26 (0.04, 1.82)	0.64 (0.46, 0.91)
Air leaks	1 study; \(n = 65\); 3 studies; \(n = 154\); 0.23 (0.03, 1.89)	1.30 (0.61, 2.77)

Abbreviations: BS, bolus surfactant; CI, confidence interval; ECMO, extracorporeal membrane oxygenation; MAS, meconium aspiration syndrome; NICU, neonatal intensive care unit; RCT, randomized controlled trial.

SLL and BS are lung lavage with surfactant and bolus surfactant, respectively. The latter review, however, included another study by Gadzinowski et al., which used both surfactant lavage and BS in the intervention arm (this study was analyzed separately). Also, we did not examine the combined outcome of mortality and ECMO in our review.

The Cochrane review on BS included four studies and found the risk of requiring ECMO to be lower in the intervention group (RR 0.64; 95% CI 0.46 to 0.91). However, the risk of mortality and air leaks was comparable between the two groups. We included two additional studies from China in our review. Inclusion of these did not change the results on neonatal mortality or need for ECMO. However, the duration of mechanical ventilation and hospital stay were found to be significantly shorter in our review compared with the Cochrane review, which reported no difference between the groups.

Lack of benefits in key outcomes such as mortality and air leaks following either mode of surfactant therapy could be related to (a) the degree of illness of the neonates and (b) timing of lavage therapy. Neonates included in these trials were moderately ill and received the intervention relatively late when compared with the timing in experimental studies in animals that have shown beneficial effects with surfactant lavage.

Notwithstanding the lack of benefits in key outcomes, significant benefits observed in the need for ECMO (for BS), and duration of hospital stay and mechanical ventilation (with both SLL and BS) underscore the importance of generating more
Table 3. Characteristics of studies on use of systemic antibiotics for established MAS

S. No.	Study’s first author, country	Study design	Study population	intervention	control group	outcome parameter of interest	comments
1	Shankar, India	RCT	Term neonates with MAS	Gentamicin 6 mg kg⁻¹ per day × 7 days	No antibiotics	Duration of respiratory distress	Not blinded
	n = 20	Antibiotic group:				Sepsis	
	Control group: n = 20	Control group:				Mortality	
2	Lin, Taiwan	RCT	Term neonates with MAS	Amoxicillin 100 mg kg⁻¹ per day	Study group: no antibiotics	Sepsis	Not blinded
	n = 127	Antibiotic group:			Study group: no antibiotics	Mortality	
	Control group: n = 132	Control group:				Duration of oxygen therapy	
		Study group:				Duration of continuous positive airway pressure	
3	Basu, India	RCT	Term neonates with MAS	Amoxicillin 100 mg kg⁻¹ per day	Antibiotic group	Study group: antibiotic group	
	Group A = antibiotics	Antibiotic group:			Study group:	Sepsis	Not blinded
	Group B = control	Control group:			antibiotics	Mortality	
	n = 72	Study group:				Duration of oxygen therapy	
		Group A:				Duration of continuous positive airway pressure	
		n = 146				Duration of hospital stay; X-ray clearance	
		Group B:					
		n = 146					

Abbreviations: BW, birth weight; GA, gestational age; MAS, meconium aspiration syndrome; RCT, randomized controlled trial.

Table 4. Summary of outcomes for use of antibiotics in MAS

Outcome	Number of studies and participants	Effect size (95% CI)
Sepsis	1 study (n = 146)	1.72 (0.22, 13.31)
Duration of hospital stay	3 studies (n = 445)	1.21 (0.15, 10.00)
Duration of oxygen therapy	1 study (n = 146)	0.16 (0.00, 1.15)

Abbreviations: CI, confidence interval; MAS, meconium aspiration syndrome.
CONFLICT OF INTEREST
The authors declare no conflict of interest.

ACKNOWLEDGEMENTS
The Department of Maternal, Newborn, Child and Adolescent Health and Development, World Health Organization, Geneva, Switzerland, funded this review.

AUTHOR CONTRIBUTIONS
CKN prepared the protocol, applied the search strategy, retrieved the articles, extracted data, made the initial tables and wrote the initial draft of the manuscript. MJG guided development of the study protocol, searched the databases, also extracted data, carried out the statistical analysis and modified the manuscript. RA and VKP modified the study protocol, supervised data extraction and modified the final version of the manuscript.

REFERENCES
1 Dargaville PA, Copnell B. Australian and New Zealand Neonatal Network The epidemiology of meconium aspiration syndrome: incidence, risk factors, therapies, and outcome. Pediatrics 2006; 117 (5):1712–1721.
2 Swarnam K, Soraisham AS, Sivanandan S. Advances in the management of meconium aspiration syndrome. Int J Pediatr 2012; 2012: 7.
3 Malik AS, Hillman D. Meconium aspiration syndrome and neonatal outcome in a developing country. Ann Trop Paediatr 1994; 14(1): 47–51.
4 Hofmeyr GJ, Xu H, Eke AC. Ammonium for meconium-stained liquor in labour. Cochrane Database Syst Rev 2014; 1: CD000014.
5 Van NE, Syld EG, Prudent LM, Wiswell TE, Aguilar AM, Vivas NL. Oropharyngeal and nasopharyngeal suctioning of meconium-stained neonates before delivery of their shoulders: multicentre, randomised controlled trial. Lancet 2004; 364(9434): 597–602.
6 Wiswell TE, Gannon CM, Jacob J, Goldsmith L, Syld E, Weiss K et al. Delivery room management of the apparently vigorous meconium-stained neonate: results of the multicenter, international collaborative trial. Pediatrics 2000; 105(1 Pt 1): 1–7.
7 Basu S, Kumar A, Bhatia BD. Role of antibiotics in meconium aspiration syndrome. Ann Trop Paediatr 2007; 27(2): 107–113.
8 Gadzimowicz J, Kawalka K, Vidyasagar D. Treatment of MAS with PPHN using combined therapy: SLL, bolus surfactant and iNO. J Perinatol 2008; 28(Suppl 3): 556–566.
9 Wiswell TE, Knight GR, Finner NN, Donn SM, Desai H, Walsh WF et al. A multicenter, randomized, controlled trial comparing Surfaxin (Lucinactant) lavage with standard care for treatment of meconium aspiration syndrome. Pediatrics 2002; 109(6): 1081–1087.
10 Dargaville PA, Copnell B, Mills JF, Haron I, Lee JKF, Tingay DG et al. Randomized controlled trial of lung lavage with dilute surfactant for meconium aspiration syndrome. J Pediatr 2011; 158(3): 383–389.e2.
11 Findlay RD, Taesch HW, Walther FJ. Surfactant replacement therapy for meconium aspiration syndrome. Pediatrics 1996; 97(1): 48–52.
12 Lotze A, Mitchell BR, Bulas DI, Zola EM, Shalwitz RA, Gunkel JH. Multicenter study of surfactant (beractant) use in the treatment of term infants with severe respiratory failure. Survanta in Term Infants Study Group. J Pediatr 1998; 132(1): 40–47.
13 Maturana A, Torres-Pereyra J, Salinas R, Astudillo P, Moya FR. The Chile Surf Group. A randomized trial of natural surfactant for moderate to severe meconium aspiration syndrome. Pediatr Acad Soc 2005; 57: 1545.
14 Chinese Collaborative Study Group for Neonatal Respiratory Diseases. Treatment of severe meconium aspiration syndrome with porcine surfactant: a multicentre, randomized, controlled trial. Acta Paediatr 2005; 94(7): 896–902.
15 Zhixia C, Cuiqing Liu, Haiyan MA. The influence of exogenous pulmonary surfactant on pulmonary surfactant 2 associated proteins in infants with meconium aspiration syndrome. Chin J Neonatal 2009; 24(5): 273–276.
16 Wanying H. Early application of pulmonary surfactant in the neonatal meconium aspiration syndrome. Guangdong Med J 2009; 30 (7):1151–1153.
17 Hahn S, Choi HJ, Soll R, Dargaville PA. Lung lavage for meconium aspiration syndrome in newborn infants. Cochrane Database Syst Rev 2013; 4: CD003486.
18 El Shahed AI, Dargaville PA, Ohlsson A, Soll R. Surfactant for meconium aspiration syndrome in term and late preterm infants. Cochrane Database Syst Rev 2014; 12: CD002054.
19 Choi HJ, Hahn S, Lee J, Park B-J, Lee SM, Kim H-S et al. Surfactant lavage therapy for meconium aspiration syndrome: a systematic review and meta-analysis. Neonatology 2012; 101(3): 183–191.
20 Cleary GM, Antunes MJ, Ciesielka DA, Higgins ST, Spitzer AR, Chander A. Exudative lung injury is associated with decreased levels of surfactant proteins in a rat model of meconium aspiration. Pediatrics 1997; 100(6): 998–1003.
21 Davey AM, Becker JD, Davis JM. Meconium aspiration syndrome: physiological and inflammatory changes in a newborn piglet model. Pediatr Pulmonol 1993; 16 (2): 101–108.
22 Vidyasagar D, Velaphi S, Bhat VB. Surfactant replacement therapy in developing countries. Neonatology 2011; 99(4): 355–366.
23 Florman AL, Teubner D. Enhancement of bacterial growth in amniotic fluid by meconium. J Pediatr 1969; 74(1): 111–114.
24 Ostfeld E, Segal J, Segal A, Bogokovski B. Bacterial colonization of the nose and external ear canal in newborn infants. Isr J Med Sci 1983; 19(12): 1046–1049.
25 Wiswell TE, Henley MA. Intratracheal suctioning, systemic infection, and the meconium aspiration syndrome. Pediatrics 1992; 89(2): 203–206.
26 Shankar V, Paul VK, Deorari AK, Singh M. Do neonates with meconium aspiration syndrome require antibiotics? Indian J Pediatr 1995; 62(3): 327–331.
27 Lin H-C, Su B-H, Tsai C-H, Lin T-W, Yeh T-F. Role of antibiotics in management of non-ventilated cases of meconium aspiration syndrome without risk factors for infection. Biol Neonate 2005; 87(1): 51–55.