INEQUALITIES FROM LORENTZ–FINSLER NORMS

NICUȘOR MINCULETE∗, CHRISTIAN PFEIFER AND NICOLETA VOICU

Abstract. We show that Lorentz-Finsler geometry offers a powerful tool in obtaining inequalities. With this aim, we first point out that a series of famous inequalities such as: the (weighted) arithmetic-geometric mean inequality, Aczél’s, Popoviciu’s and Bellman’s inequalities, are all particular cases of a reverse Cauchy-Schwarz, respectively, of a reverse triangle inequality holding in Lorentz-Finsler geometry. Then, we use the same method to prove some completely new inequalities, including two refinements of Aczél’s inequality.

Mathematics subject classification (2010): 26D15, 46C05, 53B40, 53C50.

Keywords and phrases: Cauchy-Schwarz inequality, Lorentz-Finsler norms.

REFERENCES

[1] A. B. AAZAMI AND M. A. JAVA LOYES, Penrose singularity theorem in a Finsler spacetime, Class. Quant. Grav. 33 (2016) no. 2, 025003, doi:10.1088/0264-9381/33/2/025003.
[2] J. ACZÉL, Some general methods in the theory of functional equations in one variable, New applications of functional equations (Russian), Uspehi Mat. Nauk (N. S.), 11, 69 (3) (1956), 3–68.
[3] G. S. ASANOV, Finsler space with an algebraic metric defined by a field of frames, J. Math. Sci. 13 (1980), 588–600.
[4] D. BAO, S. S. CHERN AND Z. SHEN, An Introduction to Finsler-Riemann Geometry, Springer, New York, 2000.
[5] R. BELLMAN, On an inequality concerning an indefinite form, Amer. Math. Monthly 63 (1956), 108–109.
[6] J. K. BEEM, P. E. EHRlich, AND K. L. EASLEY, Global Lorentzian geometry, volume 202 of Monographs and Textbooks in Pure and Applied Mathematics. Marcel Dekker, Inc., New York, second edition, 1996.
[7] A. BERNAL, M. A. JAVA LOYES AND M. SÁNCHEZ, Foundations of Finsler spacetimes from the Observers’ Viewpoint, Universe 6 (2020) no. 4, 55, doi:10.3390/universe6040055.
[8] N. BRĂINZEI, Projective relations for m-th root metric spaces, Journal of the Calcutta Mathematical Society 5 (1–2), (2009), 21–35.
[9] E. CAPONIO, G. STANCARONE, On Finsler spacetimes with a timelike Killing vector field, Class. Quant. Grav., 35 (2018) 8, 085007.
[10] E. CAPONIO, M. A. JAVA LOYES AND M. SÁNCHEZ, Wind Finslerian structures: from Zermelo’s navigation to the causality of spacetimes, [arXiv:1407.5494 [math.DG]].
[11] M. HOHMANN, C. PFEIFER, N. VOICU, Cosmological Finsler spacetimes, Universe 6 (5), 65 (2020).
[12] M. HOHMANN, C. PFEIFER AND N. VOICU, Finsler gravity action from variational completion, Phys. Rev. D 100, no. 6 (2019), 064035, doi:10.1103/PhysRevD.100.064035.
[13] M. A. JAVA LOYES, M. SÁNCHEZ, On the definition and examples of cones and Finsler spacetimes, Rev. R. Acad. Cienc. Exactas Fis. Nat. Ser. A Mat., RACSAM 114, 30 (2020).
[14] M. A. JAVA LOYES, M. SÁNCHEZ, On the definition and examples of Finsler metrics, Ann. Sc. Norm. Super. Pisa Cl. Sci. 5, XIII (2014), 813–858.
[15] M. A. JAVA LOYES AND H. VITORIO, Some properties of Zermelo navigation in pseudo-Finsler metrics under an arbitrary wind, Houston J. Math., 44, (4) (2018), 1147–1179.
[16] V. K. KROPINA, On projective two-dimensional Finsler spaces with a special metric, Trudy Sem. Vektor. Tenzor. Anal., 11 (1961), 277–292.
observable effects in a class of spherically symmetric static finsler spacetimes, Phys. Rev. D 86, 104042 (2012), doi:10.1103/PhysRevD.86.104042.

N. Minculete, R. Păltânea, Improved estimates for the triangle inequality, J. Ineq. Appl. (2017)(1), 1–12.

E. Minguzzi, Lorentzian causality theory, Living Rev. Relativ. 22: 3 (2019).

E. Minguzzi, Light Cones in Finsler Spacetime, Comm. Math. Phys., 334 (2015), 1529–1551.

E. Minguzzi, Convex neighborhoods for Lipschitz connections and sprays, Mon. Math. 177 (2015), 569–625, doi:10.1007/s00605-014-0699-y.

D. S. Mitrović, Analytic Inequalities, Springer, Berlin-Heidelberg-New York, 1970.

D. S. Mitrović, J. Pečarić, A. M. Fink, Classical and New Inequalities in Analysis, Springer, Dordrecht 1993.

B. O’Neill, Semi-Riemannian Geometry With Applications to Relativity, Academic Press, San Diego-London, 1983.

V. Perlick, Ray Optics, Fermat’s Principle, and Applications to General Relativity, No. 61 in Lecture Notes in Physics, Springer, (2000).

C. Pfeifer and M. N. Wohlfarth, Causal structure and electrodynamics on Finsler spacetimes, Phys. Rev. D 84 (2011), 044039, doi:10.1103/PhysRevD.84.044039.

C. Pfeifer, The Finsler spacetime framework: backgrounds for physics beyond metric geometry, DESY–THESIS–2013–049.

C. Pfeifer and D. Siemssen, Electromagnetic potential in pre-metric electrodynamics: Causal structure, propagators and quantization, Phys. Rev. D 93 (2016) no. 10, 105046, doi:10.1103/PhysRevD.93.105046.

C. Pfeifer, Finsler spacetime geometry in Physics, Int. J. Geom. Meth. Mod. Phys. 16, no. supp02, 1941004, (2019), doi:10.1142/S0219887819410044.

T. Popoviciu, On an inequality (Romanian), Gaz. Mat. Fiz. Ser. A 8(64) (1959), 451–461.

R. Punzi, M. N. Wohlfarth and F. P. Schuller, Propagation of light in area metric backgrounds, Class. Quant. Grav. 26 (2009), 035024, doi:10.1088/0264-9381/26/3/035024.

G. Randers, On an Asymmetrical Metric in the Four-Space of General Relativity, Phys. Rev. 59 (1941), 195–199, doi:10.1103/PhysRev.59.195.

D. Raetz, S. Rivera and F. P. Schuller, Geometry of physical dispersion relations, Phys. Rev. D 83 (2011), 044047, doi:10.1103/PhysRevD.83.044047.