Autofluorescence-Based Investigation of Spatial Distribution of Phenolic Compounds in Soybeans Using Confocal Laser Microscopy and a High-Resolution Mass Spectrometric Approach

Mayya P. Razgonova 1,2, Yulia N. Zinchenko 1,2, Darya K. Kozak 3, Victoria A. Kuznetsova 1,3, Alexander M. Zakharenko 4, Sezai Ercisli 5 and Kirill S. Golokhvast 1,2,4,*

1 Far Eastern Experimental Station, N.I. Vavilov All-Russian Institute of Plant Genetic Resources, 190000 Saint-Petersburg, Russia
2 SEC Nanotechnology, Polytechnic Institute, Far Eastern Federal University, 690922 Vladivostok, Russia
3 Laboratory of Biochemistry, Blagoveshchensk State Pedagogical University, 675000 Blagoveshchensk, Russia
4 Laboratory of Pesticide Toxicology, Siberian Federal Scientific Center of Agrobiotechnology RAS, 633501 Krasnoyarsk, Russia
5 Department of Horticulture, Agricultural Faculty, Atatürk University, Erzurum 25240, Turkey
* Correspondence: golokhvast@sfsca.ru

Abstract: In this research, we present a detailed comparative analysis of the bioactive substances of soybean varieties k-11538 (Russia), k-11559 (Russia), k-569 (China), k-5367 (China), k-5373 (China), k-5586 (Sweden), and Primorskaya-86 (Russia) using an LSM 800 confocal laser microscope and an amaZon ion trap SL mass spectrometer. Laser microscopy made it possible to clarify in detail the spatial arrangement of the polyphenolic content of soybeans. Our results revealed that the phenolics of soybean are spatially located mainly in the seed coat and the outer layer of the cotyledon. High-performance liquid chromatography (HPLC) was used in combination with an amaZon SL BRUKER DALTONIKS ion trap (tandem mass spectrometry) to identify target analytes in soybean extracts. The results of initial studies revealed the presence of 63 compounds, and 45 of the target analytes were identified as polyphenolic compounds.

Keywords: Glycine Willd; flavonols; laser microscopy; HPLC-MS/MS; tandem mass spectrometry; polyphenols

1. Introduction

Glycine Willd (soybean) is an economically important member of the Fabaceae family. The center of origin of the soybean is located in East Asia [1], where it has been used as food for more than 5000 years [2]. As a well-known source of cheap concentrated protein and vegetable oil, soybean occupies a place of world importance among crops. Accounting for a 53% global production share of all oilseed crops, soybean occupies a significant place in the agricultural production systems of most major countries, such as the USA, China, Brazil, Argentina, and India [3]. In recent years, soybean production in Russia has shown stable growth due to the expansion of crop acreage. In total, Russia produced more than 3 million tons of soybeans in 2016 [4].

There has been considerable interest among researchers and consumers in the potential role of soybean and soy foods in the prevention of diseases. Clinical and scientific evidence has revealed the medicinal benefits of the components of soybean against metabolic disorders and other chronic diseases (cardiovascular diseases, diabetes, obesity, cancer, osteoporosis, menopausal syndrome, anemia, etc.) [2]. As a step toward understanding the mechanisms of the influence of the food components on health, it is important to investigate chemical compositions to reveal the active components responsible for beneficial effects. It
was shown that the health benefits of soybean are due to its secondary metabolites, such as isoflavones, phytosterols, lecithins, saponins, etc. [2]. In particular, Omoni et al. (2005) pointed out that isoflavones appear to work in conjunction with proteins to protect against cancer, cardiovascular disease, and osteoporosis [5].

In addition, for various crops, a relationship between the presence of phenolic compounds and the degree of plant resistance to adverse environmental conditions has been reported. Phenolic acids are important secondary plant metabolites that function as cell wall structural components, biosynthesis intermediates, and signaling and defense molecules [6]. Flavonoids, including chalcones, flavanols, flavones, flavonols, and anthocyanins, usually accumulate in the epidermal layer of plants. They are associated defense responses to ultraviolet radiation and other abiotic and biotic stresses. Thus, flavonoid distribution in the epidermal layer is an important factor for plant survival in stressful environments and is indispensable to understand the mechanisms underlying stress response and tolerance in living plant tissues and cells [7].

Polyphenolic compounds, including phenolic acids and their derivatives, tannins, and flavonoids, represent the largest group of natural plant nutrients. They determine the color of fruits and seeds and play an important role in disease resistance [8]. In soybean, the concentrations of phenolic compounds such as flavonoids and anthocyanins correlate with seed coat color [9].

One of the most important classes of phenolics is anthocyanins, which are well known for their antioxidant activity [10]. In connection with the considerable potential of anthocyanins as components of functional nutrition, knowledge about their genetic control is in demand, as they are used in breeding programs aimed at creating new varieties of cultivated plants with an increased content of these compounds that are valuable for human health. Unfortunately, as crops are cultivated, a significant portion of their biodiversity is lost, which explains the increased research interest in the study of the biodiversity of wild forms of various crops.

New progressive research methods are becoming more widespread, such as laser microscopy, a method that exploits the ability of chemicals to fluoresce when excited by a laser and can be used to solve problems of visualization. Currently, microscopic images are successfully used to visualize the location of chemicals in organs and tissues of various plants [11,12]. However, previous autofluorescence-based microscopic studies of soybean were focused on visualization of anatomical features, such as the three-dimensional (3D) internal structure of a soybean seed [13] and the leaf anatomy of *Glycine max* (L.) Merr. [14].

Although the use of various microscopy methods is common in the study of soybeans, most of these approaches focus only on optical microscopy, specific staining of proteins or polysaccharides, and analysis of the signals of specific antibodies with a fluorescence label [15–17].

Therefore, we investigated the polyphenolic composition of soybean, in particular anthocyanins, and showed their localization in seeds based on the autofluorescence. Such a simple method as recording autofluorescence signals is significantly underestimated and can provide a sufficiently large amount of information without complex sample preparation. Despite the insufficiency of using this method without the support of deeper analysis data, such as RAMAN spectroscopy or MALDI spectrometry, in this study, we show that the method is applicable to deeper analysis of seeds in terms of classes of compounds present and that the obtained data correlate with more complex methods. Thus, the proposed method promising for obtaining preliminary data and analyzing a large number of varietal samples. The use of this approach is time- resource-, and reagent-saving and can help to increase the level of research in laboratories that do not have more complex equipment.
2. Materials and Methods

2.1. Materials

As an object of research, we used the following soybean varieties cultivated at the N.I. Vavilov All-Russian Institute of Plant Genetic Resources: k-11538 (G. soja, cultivated form OLMIK-76, Russia), k-11559 (G. soja, wild, Russia), k-569 (G. gracilis, China), k-5367 (G. gracilis, E-Shen-Dow, China), k-5373 (G. gracilis, Harbin semiwild, China), k-5586 (G. max, 856-3-3, Sweden), and Primorskaya-86 (G. max, Russia).

Seeds from the VIR collection were selected, and the maximum diversity in appearance was taken into account. Seeds were obtained from the research fields of the N. I. Vavilov All-Russian Institute of Plant Genetic Resources (VIR) according to the developed VIR Guidelines. Because the purpose of this study was to investigate the diversity of polyphenolic compounds of soybean, the 5 most colored varieties and two control light-colored varieties were selected from the VIR collection (Figure 1).

![Figure 1. Soybean varieties k-11538 (Russia), k-11559 (Russia), k-569 (China), k-5367 (China), k-5373 (China), k-5586 (Sweden), and Primorskaya-86 (Russia).](image)

2.2. Chemicals and Reagents

HPLC-grade acetonitrile was purchased from Fisher Scientific (Southborough, UK), and MS-grade formic acid was obtained from Sigma-Aldrich (Steinheim, Germany). Ultra-pure water was prepared using a SIEMENS ULTRA clear (SIEMENS water technologies, Munich, Germany), and all other chemicals were of analytical grade. The results were obtained using the equipment of the Center for Collective Use of Scientific Equipment of the Tambov State University named after G.R. Derzhavin.

2.3. Fractional Maceration

A fractional maceration technique was applied to obtain highly concentrated extracts [18]. From 500 g of the sample, 1 g of soy seeds was randomly selected for maceration. The total amount of the extractant (reagent-grade methyl alcohol) was divided into three parts and consistently infused with the grains with the first, second, and third parts with a solid–solvent ratio of 1:20. The infusion of each part of the extractant lasted 7 days at room temperature.

After maceration, the samples were centrifuged to precipitate sediment at an acceleration of 5000×g and a temperature of 4 °C for 20 min; then, a 3 mL aliquot of the sample was filtered on syringe filters with a pore size of 0.45 μm, and the first 2 mL of filtrate was discarded for non-specific sorption on the membrane, and only the last milliliter was used for analysis. The filtered milliliter of the sample was diluted with 1 mL of deionized water.
2.4. Optical Microscopy

Dry, untreated soybean seeds were used for confocal laser scanning microscopy. The transverse dissection of seeds was performed with an MS-2 sled microtome (Tochmedpribor, Kharkiv, Ukraine). The autofluorescence parameters were determined using an inverted confocal laser scanning microscope in lambda mode (LSM 800, Carl Zeiss Microscopy GmbH, Jena, Germany). We carried out a lambda experiment with excitation lasers at 405, 488, 561, and 740 nm and registered emissions in the range of 400 to 700 nm with a step of 5 nm. The maxima of fluorescence were registered with the following parameters: excitation by a violet laser (405 nm) with emission in the range of 400–475 nm (blue); excitation by a blue laser (488 nm) with the emission in the range of 500–545 nm (green) and 620–700 nm (red). Images were obtained using 63× magnification and ZEN 2.1 software (Carl Zeiss Microscopy GmbH, Jena, Germany).

2.5. Liquid Chromatography

HPLC was performed using an LC-20 Prominence HPLC (Shimadzu, Kyoto, Japan) equipped with a UV sensor and a C\textsubscript{18} silica reverse-phase column (4.6 × 150 mm, particle size: 2.7 µm) for separation of multicomponent mixtures. A gradient elution program with two mobile phases (A, deionized water; B, acetonitrile with formic acid 0.1% v/v) was performed as follows: 0–2 min, 0% B; 2–50 min, 0–100% B; control washing 50–60 min, 100% B. The entire HPLC analysis was performed with an SPD-20A UV-vis detector (Shimadzu, Japan) at wavelengths of 230 nm and 330 nm; the temperature was 50 °C, and the total flow rate was 0.25 mL min−1. The injection volume was 10 µL. Additionally, liquid chromatography was combined with a mass spectrometric ion trap to identify compounds.

2.6. Mass Spectrometry

MS analysis was performed on an amaZon SL ion trap (BRUKER DALTONIKS, Bremen, Germany) equipped with an ESI source in negative and positive ion mode. The optimized parameters were obtained as follows: ionization source temperature, 70 °C; gas flow, 9/min; nebulizer gas (atomizer), 7.3 psi; capillary voltage, 4500 V; end-plate bend voltage, 1500 V; fragmentary voltage, 280 V; collision energy, 60 eV. An ion trap was used in the scan range of \(m/z \) 100–1.700 for MS and MS/MS. All experiments were repeated three times. A four-stage ion separation mode (MS/MS mode) was implemented.

3. Results and Discussion

3.1. Optical Microscopy of Soybean Components

The observation of autofluorescence makes it possible to draw conclusions about the presence and localization of fluorescent substances in plant tissues. An increased level of fluorescence signal in individual areas reflects the main accumulation sites of certain classes of compounds. Figures 2–8 show transverse sections of soybean seeds under a confocal laser microscope. Microscopic examination showed the presence of fluorescent substances in the soybean seeds.

We observed three main autofluorescence maxima: in the blue (400–475 nm), green (500–545 nm), and red (620–700 nm) regions of the spectrum. According to the literature data, the blue fluorescence in plants is mainly due to the presence of phenolic hydroxycinnamic acids [19]. The main fluorescent component is ferulic acid, but other hydroxycinnamic (e.g., p-coumaric and caffeic) acids can also contribute to fluorescence [20]. Moreover, lignin is a well-known source of blue fluorescence in plants. It has a wide emission range, owing to the presence of multiple fluorophore types within the molecule and can be observed when excited by UV and visible light [21]. Previous studies have shown that the lignin content of legume seed coat is low [22,23] and that the cotyledons are poorly lignified [24]. Therefore, we concluded that most of the blue fluorescence in soybean seeds comes from hydroxycinnamic acids.
Figure 2. A transverse section of a soybean seed (variety k-11538): (a) excitation at 405 nm with emission in the range of 400–475 nm (blue); (b) excitation at 488 nm with emission in the range of 500–545 nm (green); (c) excitation at 488 nm with emission in the range of 620–700 nm (red); (d) merged; cot, cotyledon; pl, palisade layer; sc, seed coat.

The blue-light-induced green autofluorescence in the range of 500–545 nm can be explained by the presence of flavins and flavonols (myricetin, quercetin, and kaempferol) and their derivatives [7,25,26]. The emission in the red spectrum mainly occurs due to the presence of anthocyanins and anthocyanidins [27,28].

We studied the seeds of three different soybean species (G. soja in cultivated and wild forms, as well as G. gracilis and G. max) and found that the spatial distribution of fluorescent substances has features that correlate with the color of the seeds.
Figure 3. A transverse section of a soybean seed (variety k-11559): (a) excitation at 405 nm with emission in the range of 400–475 nm (blue); (b) excitation at 488 nm with emission in the range of 500–545 nm (green); (c) excitation at 488 nm with emission in the range of 620–700 nm (red); (d) merged; cot, cotyledon; pl, palisade layer; sc, seed coat.

In general, our study showed the maximum of blue fluorescence, which reflects the content of hydroxycinnamic acids, in the outer cotyledon layer. A weaker signal was observed in the rest of the cotyledon parenchyma cells. In the seed coat of the dark-colored seeds, the signal was almost absent. On the contrary, the light-colored seeds (yellow) showed a solid blue signal (Figures 7a and 8a). Similar results were obtained in the other studies on the chemical composition of legume seeds. It was reported that coumaric and ferulic acids are dominant phenolic acids in the white seed coat of pea, as compared with colored seed coats [29].
Figure 4. A transverse section of a soybean seed (variety k-569): (a) excitation at 405 nm with emission in the range of 400–475 nm (blue); (b) excitation at 488 nm with emission in the range of 500–545 nm (green); (c) excitation at 488 nm with emission in the range of 620–700 nm (red); (d) merged; cot, cotyledon; pl, palisade layer; sc, seed coat.

Green fluorescence is most pronounced in the outer layer of the cotyledon. The signal is also present in the seed coat but it is usually weaker than that in the outer layer. The brightest green fluorescence of the palisade layer of the seed coat is observed in yellow seeds. This fluorescence is the most expressed among all investigated varieties and comparable to that of the outer cotyledon layer (Figures 7b and 8b).

The level of the red fluorescence signal correlates well with the color of the seeds. Microscopic examination showed that the palisade layer of black-seeded varieties has the brightest red fluorescence, whereas yellow-seeded varieties have the weakest red fluorescence. The brown-seeded variety demonstrated red fluorescence in the form of
scattered inclusions (Figure 5c). It was previously reported that the black color of the seed coat in legumes is the result of a large amount of anthocyanins [30]. This confirms that bright red fluorescence is caused by such chemicals.

![Figure 5](image_url)

Figure 5. A transverse section of a soybean seed (variety k-5367): (a) excitation at 405 nm with emission in the range of 400–475 nm (blue); (b) excitation at 488 nm with emission in the range of 500–545 nm (green); (c) excitation at 488 nm with emission in the range of 620–700 nm (red); (d) merged; cot, cotyledon; pl, palisade layer; sc, seed coat.

Our result show that various phenolic substances are responsible for autofluorescence in soybean. The total fluorescence signal is maximal in the seed coat of all varieties. Our results are consistent with numerous publications indicating that the total concentration of phenolic compounds is always much higher in the seed coat than in the cotyledons of legumes [31,32]. The accumulation of phenolics mainly in the outer layers of the seed
may be associated with their protective function during seed development, as well as their protective function against detrimental agents in the environment [33].

Figure 6. A transverse section of a soybean seed (variety k-5373): (a) excitation at 405 nm with emission in the range of 400–475 nm (blue); (b) excitation at 488 nm with emission in the range of 500–545 nm (green); (c) excitation at 488 nm with emission in the range of 620–700 nm (red); (d) merged; cot, cotyledon; pl, palisade layer; sc, seed coat.

3.2. Tandem Mass Spectrometric Analysis

The most-consumed extracts of soybeans were analyzed by HPLC-MS/MS ion trap to better interpret the diversity of available phytochemicals. All of the examined extracts have a rich bioactive composition. Each compound was structurally identified on the basis of their accurate mass and MS/MS fragmentation by HPLC-ESI ion trap MS/MS. Sixty-three biologically active compound were successfully identified and characterized by
comparing fragmentation patterns and retention times. Other compounds were identified by comparing their MS/MS data with available literature data. All identified compounds, along with molecular formulae, calculated and observed \(m/z \), MS/MS data, and their comparative profile for soybeans (seven varieties), are summarized in Table 1.

![Figure 7. A transverse section of a soybean seed (variety k-5586): (a) excitation at 405 nm with emission in the range of 400–475 nm (blue); (b) excitation at 488 nm with emission in the range of 500–545 nm (green); (c) excitation at 488 nm with emission in the range of 620–700 nm (red); (d) merged; cot, cotyledon; pl, palisade layer; sc, seed coat.](image)

In the present study, 45 polyphenolic compounds were identified and characterized, including 17 flavones, 10 flavonols, 3 flavan-3-ols, 1 flavanone, 3 anthocyanidins, 3 condensed tannins, 5 phenolic acids, 1 lignan, 1 stilbene, and 1 hydroxycoumarin. Additionally, 18 compounds of other classes were identified in soybeans, with some identified for the
first time, for example, steroidal alkaloids Alpha-chaconine and solanidadiene solatriose. Table 2 lists the identified polyphenolic compounds in seven varieties of soybeans. In our research, the richest polyphenolic content was observed in the Chinese variety k-5373 (Harbin semiwild). In this variety, 30 polyphenolic compounds were identified during primary studies. The Russian variety k-11538 (OLMIK-76) is in second place in terms of the richness of compounds, with 23 compounds identified.

Figure 8. A transverse section of a soybean seed (variety Primorskaya-86): (a) excitation at 405 nm with emission in the range of 400–475 nm (blue); (b) excitation at 488 nm with emission in the range of 500–545 nm (green); (c) excitation at 488 nm with emission in the range of 620–700 nm (red); (d) merged; cot, cotyledon; pl, palisade layer; sc, seed coat.
Table 1. Compounds identified from the extracts of seven soybean varieties in positive and negative ionization modes by HPLC ion trap MS/MS: k-11538 (Russia), k-11559 (Russia), k-569 (China), k-5367 (China), k-5373 (China), k-5586 (Sweden), and Primorskaya-86 (Russia).

№	Class of Compound	Identified Compound	Formula	Mass	Molecular Ion [M – H]−	Molecular Ion [M + H]+	2 Fragmentation MS/MS	3 Fragmentation MS/MS	4 Fragmentation MS/MS	References
1	Amino acid	L-Leucine [(S)-2-Amino-Methylpentanoic acid]	C₆H₁₃NO₂	131.1729	132	114	Potato leaves [34]; Vigna unguiculata [35]; Lonicera japonica [36]; Camellia kucha [37]			
2	Benzaldehyde	Vanillin	C₈H₈O₃	152.15	153	151	136	Potato [38,39]; Triticum [40]; millet grains [41]		
3	Trans-cinnamic acid	Ferulic acid	C₁₀H₁₀O₄	194.184	195	177; 141	126	Lonicera japonica [36]; Potato [38,39]; Zostera marina [42]; Andean blueberry [43]; Tomato [44]; Codonopsis Radix [45]; Bougainvillea [46]		
4	Amino acid	L-Tryptophan [Trytaphlan; (S)-Tryptophan]	C₁₁H₁₂N₂O₂	204.2252	205	188	144	118	Vigna unguiculata [35]; Camellia kucha [37]; Perilla frutescens [47]; Passiflora incarnata [48]; Vigna unguiculata [49]	
5	Stilbene	Resveratrol [trans-Resveratrol; 3,4',5'-Trihydroxystilbene; Stilbentriol]	C₁₄H₁₂O₃	228.2433	229	210	141; 169	123	Embelia [50]; Red wines [51]; winery products [52]; A. cordifolia; F. glaucescens; F. herreræ [53]; Radix polygoni multiflori [54]	
6	Isoflavone	Daidzein [4',7'-Dihydroxyisoflavone; Daidzeol]	C₁₅H₁₆O₄	254.2375	255	227; 199; 137	181	Hedysotis diffusa [55]; Isoflavones [56]		
7	Ribonucleoside composite of adenine (purine)	Adenosine	C₁₀H₁₃N₅O₄	267.2413	268	136	Lonicerajaponica [36]; Huolisu Oral Liquid [57]			
8	7'-hydroxyisoflavone	Formononetin [Biochanin B; Formononetol]	C₁₆H₁₂O₄	268.2641	269	254; 159; 118	237; 181; 118	237; 181	Astragali Radix [45]; Isoflavones [56]; Huolisu Oral Liquid [57];	
№	Class of Compound	Identified Compound	Formula	Mass	Molecular Ion [M – H]−	Molecular Ion [M + H]⁺	2 Fragmentation MS/MS	3 Fragmentation MS/MS	4 Fragmentation MS/MS	References
----	-------------------	---------------------	---------------	------------	------------------------	------------------------	-----------------------	-----------------------	-----------------------	--
9	Flavone	Apigenin [5,7-Dihydroxy-2-(40Hydroxyphenyl)-4H-Chromen-4-One]	C₁₅H₁₀O₅	270.2369	271	153; 215	111			Lonicera japonica [36]; millet grains [41]; Andean blueberry [43]; Hedyotis diffusa [55]; Mexican lupine species [58]; Wissadula periplcifolia [59]
10	Anthocyanin	Pelargonidin [Pelargonidol chloride]	C₁₅H₁₁O₅⁺	271.2493	271	215; 197; 153	197; 169; 141	169	acerola [60]	
11	Flavan-3-ol	Epiafzelechin [(epi)Afzelechin]	C₁₅H₁₄O₅	274.2687	275	247; 193; 147	193; 175			A. cordifolia; F. glaucescens; F. herrerae [53]; Cassia granidis [61]; Cassia abbrevia [62]
12	Omega-3 fatty acid	Stearidonic acid [6,9,12,15-Octadecatetraenoic acid; Moroctic acid]	C₁₈H₂₆O₂	276.4137	277	217	190			G. linguiforme [53]; Salviae Miltiorrhizae [63]; Rhus coriaria [64]
13	Sceletium alkaloid	4′-O-desmethyl mesembranol	C₁₆H₂₃NO₃	277.3587	276	234	218	218		A. cordifolia [53]
14	Omega-3 fatty acid	Linolenic acid (Alpha-Linolenic acid; Linolenate)	C₁₈H₃₀O₂	278.4296						Salviae [63]; rice [65]; Pinus sylvestris [66]
15	Octadec-9-enoic acid	Oleic acid (Cis-9-Octadeconoic acid; Cis-Oleic acid)	C₁₈H₃₄O₂	282.4614	283	209; 153				Zostera marina [42]; Sanguisorba officinalis [67]; Pinus sylvestris [66]
16	Flavone	Acacetin [Linarinigen; Buddleoflavonol]	C₁₆H₁₂O₅	284.2635	285	270; 224	241			Mexican lupine species [58]; Wissadula periplcifolia [59]; Mentha [68,69]; Dracocephalum palatum [70]
17	Flavone	6,7-Dihydroxy-4′-methoxyisoflavone	C₁₆H₁₂O₅	284.2635	285	270; 229; 145	242; 152			Mentha [68]
№	Class of Compound	Identified Compound	Formula	Mass	Molecular Ion [M – H]^−	Molecular Ion [M + H]^+	2 Fragmentation MS/MS	3 Fragmentation MS/MS	4 Fragmentation MS/MS	References
---	---	---	---	---	---	---	---	---	---	---
18	Flavonol	Kaempferol [3,5,7-Trihydroxy-2-(4-hydroxyphenyl)-4H-chromen-4-one]	C_{15}H_{10}O_{6}	286.2363	285	257; 184; 117	117			Potato leaves [34]; Lonicera japonica [36]; Potato [38]; Andean blueberry [43]; Rhus coriaria [64]; Rapeseed petals [71]
19	Flavan-3-ol	Catechin	C_{15}H_{14}O_{6}	290.2681	291	243; 189	215; 197			Potato [39]; Triticum [40]; millet grains [41]; Eucalyptus [72]; Vaccinium macrocarpon [73]
20	Flavan-3-ol	(epi)catechin	C_{15}H_{14}O_{6}	290.2681	291	273; 117	255; 145			millet grains [41]; C. edulis [53]; Radix polygonyl multiflori [54]; Camellia kucha [37]
21	Flavone	Chrysoeriol [Chryseriol]	C_{16}H_{12}O_{6}	300.2629	301	299; 253; 152	226			Dracocephalum palmatum [70]; Rhus coriaria [64]; Rice [65]; Mentha [68]; Mexican lupine species [58]
22	Hydroxybenzoic acid	Ellagic acid [Benzoaric acid; Elagostasine; Lagistase; Eleagic acid]	C_{14}H_{6}O_{8}	302.1926	303	275; 202	157	139		Rhus coriaria [64]; strawberry [74]; Rubus occidentalis [75]; vinery products [52]; Chamaecrista nictitans [76]; Punica granatum [77]
23	Flavonol	Quercetin	C_{15}H_{10}O_{7}	302.2357	303	244; 202; 184	175; 156	129		Potato leaves [34]; Triticum [40]; Tomato [44]; millet grains [41]; Red wines [51]; vinery products [52]; Rhus coriaria [64]; Eucalyptus [72]; Vaccinium macrocarpon [73]
24	Flavanone	Hesperitin [Hesperetin]	C_{16}H_{14}O_{6}	302.2788	303	202; 257; 185	156			Andean blueberry [43]; [78]; Red wines [51]; Mentha [79]
№	Class of Compound	Identified Compound	Formula	Mass [M – H]	Molecular Ion [M + H]	2 Fragmentation MS/MS	3 Fragmentation MS/MS	4 Fragmentation MS/MS	References	
----	-------------------	---------------------	---------	--------------	----------------------	----------------------	----------------------	----------------------	------------	
25	Diterpenoid	Tanshinone IIB	C19H18O4	310.3438	311	292; 189; 135	217; 135	Salviae miltiorrhiza [63]		
26	Flavone	5,7-Dimethoxyluteolin	C17H14O6	314.2895	313	212; 185; 113	113	Syzygium aromaticum [80]		
27	Omega-hydroxy-long-chain fatty acid	19-Hydroxynonadecanoic acid	C19H38O3	314.5032	315	287; 241; 187	241; 187	169; 124	A. cordifolia [53]	
28	Flavonol	Rhamnetin I	C16H12O7	316.2623	317	299; 243; 189	260; 242	147; 123	Rhus coriaria L. (Sumac) [64]; Mangifera indica [81]	
29	Flavonol	Isorhamnetin	C16H12O7	316.2623	317	288; 243; 189	260; 242	171	Andean blueberry [43]; Eucalyptus [72]; Astragal Radix [45]; Embelia [50]; Rapeseed petals [71]; Syzygium aromaticum [80]	
30	Flavonol	Myricetin	C15H10O6	318.2351	319	271; 217	243; 189	171	millet grains [41]; Red wines [51]; Andean blueberry [43]; Sanguisorba officinalis [67]; F. glaucescens [53]; Clidemia rubra [82]	
31	Hydroxycoumarin	Umbelliferone hexoside	C15H16O8	324.2827	325	306; 289; 225	163	145	G. linguiforme [53]	
32	Long-Chain Polyunsaturated Fatty Acid	Docosahexaenoic acid	C22H32O2	328.4883	329	327; 281; 181	115	199	Marine extracts [83]	
№	Class of Compound	Identified Compound	Formula	Mass	Molecular Ion \([M − H]^−\)	Molecular Ion \([M + H]^+\)	2 Fragmentation MS/MS	3 Fragmentation MS/MS	4 Fragmentation MS/MS	References
----	-------------------	---------------------	---------	------------	--------------------------	--------------------------	----------------------	----------------------	----------------------	--
33	Trihydroxyflavone	Jaceosidin [5,7,4'-trihydroxy-6',5'-dimetoxylavone]	C_{17}H_{14}O_{7}	330.2889	331	329; 285; 231; 191; 163	328; 286; 216			Mentha [68,84]
34	Trihydroxyflavone	5,7-Dimethoxy-3,3',4'-trihydroxyflavone	C_{17}H_{14}O_{7}	330.2889	331	303; 185			157	Oxalis corniculata [85]
35	Flavonol	Myricetin 5-Methyl ether [5-O-Methylmyricetin]	C_{16}H_{12}O_{6}	332.2617	333	287; 241; 205; 177	177; 149	149; 123		Vitis amurensis [86]; Rhodiola rosea [87]
36	Alpha, omega-dicarboxylic acid	Eicosatetraenedioic acid	C_{20}H_{30}O_{4}	334.4498	335	307; 289; 233	277; 246; 207			G. linguiforme [53]
37	Flavone	Syringetin	C_{17}H_{14}O_{4}	346.2883	347	317; 290; 219; 169	289; 272; 219	261; 173		C. edulis [53]
38	Lignan	Matairesinol [(-)-Matairesinol; Artigenin Congener]	C_{20}H_{22}O_{6}	358.3851	359	325; 289; 258; 198	143	127		Punica granatum [88]; Lignans [89]
39	Flavone	5,6-Dihydroxy-7,8,3',4'-tetramethoxyflavone	C_{19}H_{18}O_{8}	374.3414	375	346; 219; 173	319; 273; 219; 173	273; 219; 173		Mentha [68]
40	Hydroxycinnamic acid	Caffeic acid derivative	C_{16}H_{16}O_{3}Na	377.2985	377	341; 215	179			Bougainvillea [46]; Embelia [50]
41	Sterol	Campesterol [Dihydrobrassicasterol]	C_{28}H_{46}O	400.6801	401	381; 304; 225; 171	363; 345; 279; 225; 169	345; 261; 202		A. cordifolia; C. edulis [53]
42	Sterol	Stigmasterol [Stigmasterin; Beta-Stigmasterol]	C_{29}H_{48}O	412.6908	413	301; 279; 189	171			Hedychitis diffusa [55]; A. cordifolia; F. pottsii [53]; Olive leaves [90]; Salvia [91]
43	Sterol	Beta-Sitostenone [Stigmaster-4-En-3-One; Sitostenone]	C_{29}H_{48}O	412.6908	413	395; 345; 301; 171	189; 171			F. herrerae [53]; Cryptomeria japonica bark [92]; Terminalia laxiflora [93]
№	Class of Compound	Identified Compound	Formula	Mass	Molecular Ion [M − H]^−	Molecular Ion [M + H]^+	2 Fragmentation MS/MS	3 Fragmentation MS/MS	4 Fragmentation MS/MS	References
----	--	--	-------------	-----------	-------------------------	-------------------------	-----------------------	-----------------------	-----------------------	--
44	Hydroxybenzoic acid	44 Hydroxybenzoic acid	C_{20}H_{18}O_{10}	418.3509	419	373; 293; 212; 127	329; 271; 192; 127	235	Mentha [69,94]; Salvia multiorrizae [95]	
45	Iridoid monoterpenoid	45 Iridoid monoterpenoid	C_{22}H_{32}O_{4}	424.4847	425	365; 327; 281; 207	309; 253	235	Rhus coriaria [64]	
46	Flavone	46 Flavone	C_{21}H_{20}O_{10}	432.3775	433	271	153; 214			
47	Hydroxybenzoic acid	47 Hydroxybenzoic acid	C_{19}H_{14}O_{12}	434.3073	433	257	227; 157	199; 127	Tomato [44]; Grataegi fructus [45]; Mexican lupine species [58]; Dracocephalum palatum [70]; Mentha [84]; Malva sylvestris [96]	
48	Flavonol	48 Flavonol	C_{21}H_{22}O_{10}	434.3934	433	259	258; 229	199	Vitis vinifera [98]	
49	Dihydroflavonol	49 Dihydroflavonol	C_{21}H_{22}O_{10}	434.3934	435	261; 243	243; 165	215; 161	Eucalyptus [72]	
50	Flavone	50 Flavone	C_{22}H_{22}O_{10}	446.4041	447	285	270; 225	242; 152	Andeans blueberry [43]; vinery products [52]; F. glaucescens [53]; Rhus coriaria [64]; Punica granatum [77]; Cytisus multiflorus; Malva sylvestris [96]	
51	Flavone	51 Flavone	C_{22}H_{22}O_{10}	446.4041	447	285	269; 227	241	Mexican lupine species [58]	
52	Flavonol	52 Flavonol	C_{21}H_{20}O_{11}	448.3769	449	329; 203	303; 257	213; 175	Triticum [40,101]; acerola [60]; Rice [65]; Clidemia rubra [82]; Rapeseed petals [71]; Vigna sinensis [102]; Vitis labrusca [103]	
53	Anthocyanin	53 Anthocyanin	C_{21}H_{21}O_{11}+	449.3848	449	287	213; 175	213; 185; 141		
№	Class of Compound	Identified Compound	Formula	Mass	Molecular Ion [M – H]−	Molecular Ion [M + H]+	2 Fragmentation MS/MS	3 Fragmentation MS/MS	4 Fragmentation MS/MS	References
----	-------------------------	---------------------	------------	--------	------------------------	------------------------	-----------------------	-----------------------	-----------------------	------------
54	Anabolic steroid	Vebonol C	C₃₀H₄₄O₃	452.6686	453	444; 399; 340; 276	435; 395; 336; 259	417; 331; 268	Rhus coriaria [64]; Hylocereus polyrhizus [104]	
55	Anthocyanin	Pelargonidin 3-O-(6-O-malonyl-beta-D-glucoside)	C₂₃H₂₁O₁₃	519.4388	519	271	215; 153	197	Gentiana lutea [105]; Wheat [101]; Strawberry [106]	
56	Indole sesquiterpene alkaloid	Sespendole C₃₃H₄₅NO₄	519.7147	520	184; 502	166			Rhus coriaria [64]; Hylocereus polyrhizus [104]	
57	Flavonol	Kaempferol diacetyl hexoside	C₂₃H₂₄O₁₃	532.4503	533	285	270; 229; 145	242; 224; 152	A. cordifolia [53]	
58	Flavone	AcacetinO-glucoside malonylated	C₂₅H₂₄O₁₃	532.4503	533	285	269; 228; 145	196; 152	Mexican lupine species [58]	
59	Condensed tannin	Procyanidin A-type dimer	C₃₀H₂₄O₁₂	576.501	577	547; 493; 425; 245; 181	217	189; 161	Vaccinium macrocarpon [73]; grape juice [107]; pear [108]	
60	Condensed tannin	Proanthocyanidin B1 [Procyanidin B1; Procyanidin Dimer B1; (-)-epicatechin-(4βeta->8)-(+)-catechin; Epicatechin-(4βeta->8)-ent-epicatechin]	C₃₀H₂₆O₁₂	578.5202	579	409; 343; 291; 247; 205	287; 259; 203; 163	245	Camellia kucha [37]; millet grains [41]; Vigna inguiculata [49]; vineyard products [52]; Andean blueberry [43]; Vaccinium macrocarpon [73]; strawberry [74]; grape juice [107]; pear [108]; Senna singueana [109]	
61	Condensed tannin	Procyanidin B2 [Epicatechin-(4βeta->8)-epicatechin]	C₃₀H₂₆O₁₂	578.5202	579	427; 291; 247; 211	408; 327; 227; 139	379; 287; 257; 163	millet grains [41]; F. esculentum [110]; Red wines [51]; blackberry [111]	
62	Steroidal alkaloid	Alpha-chaconine C₄₆H₇₃NO₁₄	852.0594	852	706	560	398		Potato [39,112–114]	
63	Steroidal alkaloid	Solanidadiene solatriose C₄₅H₇₃NO₁₅	868.9588	868	706; 661; 560; 477	560; 398	382; 327		Potato [113]	
Table 2. Polyphenolic compounds identified in seven varieties of soybean.

№	Class of Compound	Identified Compound	Formula	k-569 (China)	k-5586 (Sweden)	k-5367 (China)	k-5373 (China)	k-11538 (Russia)	k-11559 (Russia)	Primorskaya-86 (Russia)
1	Isoflavone	Daidzein [4′,7′-Dihydroxyisoflavone; Daidzeol]	C_{15}H_{10}O_{4}							
2	7-hydroxyisoflavone	Formononetin [Biochanin B; Formononetol]	C_{16}H_{12}O_{4}							
3	Flavone	Apigenin	C_{15}H_{10}O_{3}							
4	7-hydroxyisoflavone	Formononetin [Biochanin B; Formononetol]	C_{16}H_{12}O_{4}							
5	Flavone	Acacetin [Linarigenin; Buddleoflavonol]	C_{16}H_{12}O_{3}							
6	Flavone	6,7-Dihydroxy-4′-methoxyisoflavone	C_{16}H_{12}O_{3}							
7	Flavone	Chrysoeriol	C_{16}H_{12}O_{6}							
8	Flavone	5,7-Dimethoxyluteolin	C_{17}H_{14}O_{6}							
9	Trihydroxyflavone	Jaceosidin	C_{17}H_{14}O_{7}							
10	Trihydroxyflavone	5,7-Dimethoxy-3,3′,4′-trihydroxyflavone	C_{17}H_{14}O_{7}							
11	Flavone	Syringetin	C_{17}H_{14}O_{4}							
12	Flavone	5,6-Dihydroxy-7,8,3′,4′-tetramethoxyflavone	C_{19}H_{18}O_{8}							
13	Flavone	Apigenin-7-O-glucoside	C_{21}H_{20}O_{10}							
14	Flavone	Calycosin-7-O-beta-D-glucoside	C_{22}H_{22}O_{10}							
15	Flavone	Acacetin O-glucoside	C_{22}H_{22}O_{10}							
16	Flavone	Acacetin O-glucoside malonylated	C_{23}H_{24}O_{13}							
17	Flavonol	Kaempferol	C_{15}H_{10}O_{6}							
18	Flavonol	Quercetin	C_{15}H_{10}O_{7}							
19	Flavonol	Rhamnetin I	C_{16}H_{12}O_{7}							
20	Flavonol	Isorhamnetin	C_{16}H_{12}O_{7}							
21	Flavonol	Myricetin	C_{15}H_{10}O_{8}							
22	Flavonol	Myricetin 5-Methyl ether [5-O-Methylmyricetin]	C_{16}H_{12}O_{8}							
№	Class of Compound	Identified Compound	Formula	k-569 (China)	k-5586 (Sweden)	k-5367 (China)	k-5373 (China)	k-11538 (Russia)	k-11559 (Russia)	Primorskaya-86 (Russia)
-----	------------------	--------------------------------------	-------------------	--------------	----------------	----------------	----------------	-----------------	-----------------	-------------------------
24	Flavonol	Dihydrokaempferol-3-O-rhamnoside	C\textsubscript{21}H\textsubscript{22}O\textsubscript{10}							
25	Dihydroflavonol	Aromadendrin 7-O-rhamnoside	C\textsubscript{21}H\textsubscript{22}O\textsubscript{10}							
26	Flavonol	Kaempferol-3-O-hexoside	C\textsubscript{21}H\textsubscript{20}O\textsubscript{11}							
27	Flavonol	Kaempferol diacetyl hexoside	C\textsubscript{22}H\textsubscript{24}O\textsubscript{13}							
28	Flavan-3-ol	Epiafzelechin [(epi)Afzelechin]	C\textsubscript{15}H\textsubscript{14}O\textsubscript{5}							
29	Flavan-3-ol	Catechin	C\textsubscript{15}H\textsubscript{14}O\textsubscript{6}							
30	Flavan-3-ol	(epi)catechin	C\textsubscript{15}H\textsubscript{14}O\textsubscript{6}							
31	Flavanone	Hesperitin [Hesperetin]	C\textsubscript{16}H\textsubscript{14}O\textsubscript{6}							
32	Anthocyanin	Pelargonidin [Pelargonidol chloride]	C\textsubscript{15}H\textsubscript{11}O\textsubscript{5}							
33	Anthocyanin	Cyanidin-3-O-glucoside	C\textsubscript{21}H\textsubscript{21}O\textsubscript{11}+							
34	Anthocyanin	Pelargonidin 3-O-(6-O-malonyl-beta-D-glucoside)	C\textsubscript{24}H\textsubscript{23}O\textsubscript{13}							
35	Condensed tannin	Procyanidin A-type dimer	C\textsubscript{30}H\textsubscript{24}O\textsubscript{12}							
36	Condensed tannin	Proanthocyanidin B1	C\textsubscript{30}H\textsubscript{26}O\textsubscript{12}							
37	Condensed tannin	Proanthocyanidin B2	C\textsubscript{30}H\textsubscript{26}O\textsubscript{12}							
38	Phenolic acid	Ferulic acid	C\textsubscript{10}H\textsubscript{10}O\textsubscript{4}							
39	Phenolic acid	Ellagic acid	C\textsubscript{14}H\textsubscript{6}O\textsubscript{3}							
40	Phenolic acid	Caffeic acid derivative	C\textsubscript{16}H\textsubscript{15}O\textsubscript{8}Na							
41	Phenolic acid	Salvianolic acid D	C\textsubscript{20}H\textsubscript{18}O\textsubscript{10}							
42	Phenolic acid	Ellagic acid pentoside	C\textsubscript{19}H\textsubscript{14}O\textsubscript{12}							
43	Stilbene	Resveratrol	C\textsubscript{14}H\textsubscript{12}O\textsubscript{3}							
44	Hydroxycoumarin	Umbelliferone hexoside	C\textsubscript{15}H\textsubscript{16}O\textsubscript{8}							
45	Lignan	Matairesinol	C\textsubscript{20}H\textsubscript{22}O\textsubscript{6}							
Figures 9 and 10 show examples of the decoding spectra (collision-induced dissociation (CID) spectrum) of the ion chromatogram obtained using tandem mass spectrometry. The mass spectrum in positive ion mode of Cyanidin 3-O-glucoside from extracts of soyabean k-5373 (China, Harbin semi-wild) is shown in Figure 9. The [M + H]+ ion produced one fragment ion at m/z 287. The fragment ion with m/z 287 yielded two daughter ions at m/z 213 and m/z 137. This compound was identified in the bibliography as cyanidin 3-O-glucoside in extracts from Clidemia rubra [82], Triticum [40,101], acerola [60], rice [65], Disterigma [43], Vigna sinensis [102], Vitis labrusca [103], and rapeseed petals [71].

![Figure 9. Mass spectrum of cyanidin 3-O-glucoside from extracts of soyabean k-5373 (China, Harbin semi-wild), m/z 448.88.](image)

![Figure 10. Mass spectrum of proanthocyanidin B1 from extracts of soyabean k-5373 (China, Harbin semi-wild), m/z 578.77.](image)

The mass spectrum in positive ion mode of proanthocyanidin B1 from extracts from extracts of soyabean k-5373 (China, Harbin semi-wild) is shown in Figure 10. The [M + H]+ ion produced five fragment ions at m/z 409, m/z 343, m/z 291, m/z 247, and m/z 205. The fragment ion with m/z 409 yielded four daughter ions at m/z 287, m/z 259, m/z 203, and m/z 163. The fragment ion with m/z 287 yielded two daughter ions at m/z 245 and m/z 203. To the best of our knowledge, proanthocyanidin B1 has been reported in millet grains [41], pear [108], Vaccinium macrocarpon [73], Andean blueberry [43], strawberry [74], Vigna inquiculata [49], Senna singueana [109], Camellia kucha [37], grape juice [107], winery products [52], etc.
4. Conclusions

The results of a preliminary study showed the presence of 63 compounds corresponding to the Glycine Willd genus (soybean), some of which were identified for the first time in Glycine. The extracts of soybean k-5373 (China, Harbin semi-wild) contain the most polyphenolic complexes, which are biologically active compounds. Laser microscopy made it possible to clarify in detail the spatial arrangement of the polyphenolic content of soybeans. Results showed that phenolics of soybean are spatially located mainly in the seed coat and the outer layer of the cotyledon. Anthocyanins are especially abundant in the palisade layer of dark-colored varieties. The seed coat of yellow-seeded varieties contains more phenolic acids and flavonols than the seed coat of dark-seeded varieties. This information can be useful for rapid evaluation of varieties for selection and breeding with respect to those compounds.

Author Contributions: M.P.R., S.E. and K.S.G. conceived the idea. Y.N.Z. analyzed the data and wrote the manuscript. M.P.R., D.K.K., V.A.K., A.M.Z., S.E. and K.S.G. participated in the literature search and data analysis and provided technical guidance. M.P.R. and K.S.G. supervised the work and edited the final version of the manuscript. All authors have read and agreed to the published version of the manuscript.

Funding: This work was carried out with financial support of the N.I. Vavilov All-Russian Institute of Plant Genetic Resources (VIR), Project No. 0662-2019-0006 “Search for and Viability Maintenance, and Disclosing the Potential of Hereditary Variation in the Global Collection of Cereal and Great Crops at VIR for the Development of an Optimized Genebank and Its Sustainable Utilization in Plant Breeding and Crop Production.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

References

1. Hymowitz, T. On the domestication of the soybean. *Econ. Bot.* 1970, 24, 408–421. [CrossRef]
2. Dixit, A.K.; Antony, J.; Sharma, N.K.; Tiwari, R.K. 12. Soybean constituents and their functional benefits. *Res. Singpost* 2011, 37, 661.
3. Pratap, A.; Gupta, S.K.; Kumar, J.; Solanki, R. Soybean. In *Technological Innovations in Major World Oil Crops*; Springer: New York, NY, USA, 2012; Volume 1.
4. Sinegovskii, M.; Yuan, S.; Sinegovskaya, V.; Han, T. Current status of the soybean industry and research in the Russian Federation. *Soybean Sci.* 2018, 37, 1–7. (In Russian)
5. Omoni, A.O.; Aluko, R.E. Soybean foods and their benefits: Potential mechanisms of action. *Nutr. Rev.* 2005, 63, 272–283. [CrossRef] [PubMed]
6. Awika, J.M.; Duodu, K.G. Bioactive polyphenols and peptides in cowpea (*Vigna unguiculata*) and their health promoting properties: A review. *J. Func. Foods* 2017, 38, 686–697. [CrossRef]
7. Sudo, E.; Teranishi, M.; Hidema, J.; Taniuchi, T. Visualization of flavonol distribution in the abaxial epidermis of onion scales via detection of its autofluorescence in the absence of chemical processes. *Biosci. Biotechnol. Biochem.* 2009, 73, 2107–2109. [CrossRef]
8. Salunkhe, D.K.; Jadhav, S.J.; Kadam, S.S.; Chavan, J.K. Chemical, biochemical, and biological significance of polyphenols in cereals and legumes. *Crit. Rev. Food Sci. Nutr.* 1982, 17, 277–305. [CrossRef]
9. Benitez, E.R.; Funatsuki, H.; Kaneko, Y.; Matsuzawa, Y.; Bang, S.W.; Takahashi, R. Soybean maturity gene effects on seed coat pigmentation and cracking in response to low temperatures. *Crop Sci.* 2004, 44, 2038–2042. [CrossRef]
10. Zhang, R.F.; Zhang, F.X.; Zhang, M.W.; Wei, Z.C.; Yang, C.Y.; Zhang, Y.; Tang, X.J.; Deng, Y.Y.; Chi, J.W. Phenolic composition and antioxidant activity in seed coats of 60 Chinese black soybean (Glycine max L. Merr.) varieties. *J. Agric. Food Chem.* 2011, 59, 5935–5944. [CrossRef]
11. Hutzler, P.; Fischbach, R.; Heller, W.; Jungblut, T.P.; Reuber, S.; Schmitz, R.; Veit, M.; Weissenböck, G.; Schnitzler, J-P. Tissue localization of phenolic compounds in plants by confocal laser scanning microscopy. *J. Exp. Bot.* 1998, 49, 953–965. [CrossRef]
12. Razgonova, M.; Zinchenko, Y.; Pikula, K.; Tekutyeva, L.; Son, O.; Zakharenko, A.; Kalenik, T.; Golokhvat, K. Spatial Distribution of Polyphenolic Compounds in Corn Grains (*Zea mays* L. var. Pioneer) Studied by Laser Confocal Microscopy and High-Resolution Mass Spectrometry. *Plants* 2022, 11, 630. [CrossRef]
13. Ogawa, Y.; Miyashita, K.; Shimizu, H.; Sugiyama, J. Three-dimensional internal structure of a soybean seed by observation of autofluorescence of sequential sections. J. Jpn. Soc. Food Sci. Technol. 2003, 50, 213–217. [CrossRef]

14. Pegg, T.J.; Gladish, D.K.; Baker, R.L. Algae to angiosperms: Autofluorescence for rapid visualization of plant anatomy among diverse taxa. Appl. Plant Sci. 2021, 9, e11437. [CrossRef]

15. Slattery, R.A.; Grennan, A.K.; Sivaguru, M.; Sozzani, R.; Ort, D.R. Light sheet microscopy reveals more gradual light attenuation in light-green versus dark-green soybean leaves. J. Exp. Bot. 2016, 67, 4697–4709. [CrossRef]

16. Wang, Z.; Amirkhani, M.; Avelar, S.A.G.; Yang, D.; Taylor, A.G. Systemic Uptake of Fluorescent Tracers by Soybean (Glycine max (L.) Merr.) Seed and Seedlings. Agriculture 2020, 10, 248. [CrossRef]

17. Krishnan, H.B.; Jurkevich, A. Confocal Fluorescence Microscopy Investigation for the Existence of Subdomains within Protein Storage Vacuoles in Soybean Cotyledons. Int. J. Mol. Sci. 2022, 23, 3664. [CrossRef]

18. Azmir, J.; Zaidul, I.S.M.; Rahman, M.M.; Sharif, K.M.; Mohamed, A.; Sahena, F.; Jahurul, M.H.A.; Ghaffoor, K.; Norulaini, N.A.N.; Omar, A.K.M. Techniques for extraction of bioactive compounds from plant materials: A review. J. Food Eng. 2013, 117, 426–436. [CrossRef]

19. Corcel, M.; Devaux, M.-F.; Guillon, F.; Barron, C. Identification of tissular origin of particles based on autofluorescence multispectral image analysis at the macroscopic scale. In Proceedings of the EPJ Web of Conferences, Crete, Greece, 17–29 August 2017; p. 05012.

20. Lichtenhalter, H.K.; Schweiger, J. Cell wall bound ferulic acid, the major substance of the blue-green fluorescence emission of plants. J. Plant Physiol. 1998, 152, 272–282. [CrossRef]

21. Donaldson, L. Softwood and hardwood lignin fluorescence spectra of wood cell walls in different mounting media. IAWA J. 2013, 34, 3–19. [CrossRef]

22. Brilliouet, J.M.; Riocchet, D. Cell wall polysaccharides and lignin in cotyledons and hulls of seeds from various lupin (Lupinus L.) species. J. Sci. Food Agric. 1983, 34, 861–868. [CrossRef]

23. Krzyzanowski, F.C.; Franca Neto, J.D.B.; Mandarino, J.M.G.; Kaster, M. Evaluation of lignin content of soybean seed coat stored in a controlled environment. Rev. Bras. De Sementes 2010, 30, 220–223. [CrossRef]

24. Brilliouet, J.M.; Carré, B. Composition of cell walls from cotyledons of Pisum sativum, Vicia faba and Glycine max. Phytochemistry 1983, 22, 841–847. [CrossRef]

25. Monago-Maraña, O.; Durán-Merás, I.; Galeano-Díaz, T.; de la Peña, A.M. Fluorescence properties of flavonoid compounds. Quantification in paprika samples using spectrophotometry coupled to second order chemometric tools. Food Chem. 2016, 196, 1058–1065. [CrossRef]

26. Roshchina, V.V.; Kuchin, A.V.; Yashin, V.A. Application of Autofluorescence for Analysis of Medicinal Plants. Spectrosc. Int. J. 2017, 2017, 7159609. [CrossRef]

27. Talamond, P.; Verdeil, J.-L.; Conéjero, G. Secondary metabolite localization by autofluorescence in living plant cells. Molecules 2015, 20, 5024–5037. [CrossRef] [PubMed]

28. Collings, D.A. Anthocyanin in the vacuole of red onion epidermal cells quenches other fluorescent molecules. Plants 2019, 8, 596. [CrossRef]

29. Troszynska, A.; Ciska, E. Phenolic compounds of seed coats of white and coloured varieties of pea (Pisum sativum L.) and their total antioxidant activity. Czech J. Food Sci. 2002, 20, 15–22. [CrossRef]

30. Jo, H.; Lee, J.Y.; Cho, H.; Choi, H.J.; Son, C.K.; Bae, J.S.; Bilyeu, K.; Song, J.T.; Lee, J.D. Genetic diversity of soybeans (Glycine max (L.) Merr.) Seed and Seedlings. J. Sci. Food Agric. 2018, 98, 451–458. [CrossRef] [PubMed]

31. Moore, J.A.; Han, S.; Gudynaitė-Savich, L.; Johnson, D.A.; Miki, B.L. Seed coats: Structure, development, composition, and biotechnology. Vitr. Cell. Dev. Biol. Plant 2005, 41, 620–644. [CrossRef]

32. Jeng, T.L.; Shih, Y.J.; Wu, M.T.; Sung, J.M. Comparisons of flavonoids and anti-oxidative activities in seed coat, embryonic axis and cotyledon of black soybeans. Food Chem. 2010, 123, 1112–1116. [CrossRef]

33. Tsamo, A.T.; Mohammed, H.; Mohammed, M.; Papoh Ndibewu, P.; Dapare Dakora, F. Seed coat metabolite profiling of cowpea (Vigna unguiculata L. Walp.) accessions from Ghana using UPLC-PDA-QTOF-MS and chemometrics. Nat. Prod. Res. 2020, 34, 1158–1162. [CrossRef]

34. Tsamo, A.T.; Mohammed, H.; Mohammed, M.; Papoh Ndibewu, P.; Dapare Dakora, F. Seed coat metabolite profiling of cowpea (Vigna unguiculata L. Walp.) accessions from Ghana using UPLC-PDA-QTOF-MS and chemometrics. Nat. Prod. Res. 2020, 34, 1158–1162. [CrossRef]

35. Rodriguez-Perez, C.; Gomez-Caravaca, A.M.; Guerra-Hernandez, E.; Cerretani, L.; Garcia-Villanova, B.; Verardo, V. Comprehensive metabolite profiling of Solanum tuberosum L. (potato) leaves T by HPLC-ESI-QTOF-MS and chemometrics. Nat. Prod. Res. 2020, 34, 1158–1162. [CrossRef]

36. Cai, Z.; Wang, C.; Zou, L.; Liu, X.; Chen, J.; Tan, M.; Mei, Y.; Wei, L. Comparison of Multiple Bioactive Constituents in the Flower and the Caulis of Lonicera japonica Based on UFLC-QTRAP-MS/MS Combined with Multivariate Statistical Analysis. Molecules 2019, 24, 1936. [CrossRef]

37. Qin, D.; Wang, Q.; Li, H.; Jiang, X.; Fang, K.; Wang, Q.; Li, B.; Pan, C.; Wu, H. Identification of key metabolites based on non-targeted metabolomics and chemometrics analyses provides insights into bitterness in Kucha [Camellia kucha (Chang et Wang) Chang]. Food Res. Int. 2020, 138, 109789. [CrossRef]
38. Oertel, A.; Matros, A.; Hartmann, A.; Arapitsas, P.; Dehmer, K.J.; Martens, S.; Mock, H.P. Metabolite profiling of red and blue potatoes revealed cultivar and tissue specific patterns for anthocyanins and other polyphenols. *Planta* **2017**, *246*, 281–297. [CrossRef]

39. Deuber, H.; Guignard, C.; Hoffmann, L.; Evers, D. Polyphenol and glycoalkaloid contents in potato cultivars grown in Luxembourg. *Food Chem.* **2012**, *135*, 2814–2824.

40. Sharma, M.; Sandhir, R.; Singh, A.; Kumar, P.; Mishra, A.; Jachak, S.; Singh, S.P.; Singh, J.; Roy, J. Comparison analysis of phenolic compound characterization and their biosynthesis genes between two diverse bread wheat (*Triticum aestivum*) varieties differing for chapatti (unleavened flat bread) quality. *Front. Plant. Sci.* **2016**, *7*, 1870. [CrossRef]

41. Chandrasekara, A.; Shahidi, F. Determination of antioxidant activity in free and hydrolyzed fractions of millet grains and characterization of their phenolic profiles by HPLC-DAD-ESI-MSn. *J. Funct. Foods* **2011**, *3*, 144–158. [CrossRef]

42. Papazian, S.; Parrot, D.; Buryyskova, F.; Tademir, D. Surface chemical defence of the eelgrass *Zostera marina* against microbial foulers. *Sci. Rep.* **2019**, *9*, 3323. [CrossRef]

43. Aita, S.E.; Capriotti, A.L.; Cavalieri, C.; Cerrato, A.; Giannelli Moneta, B.; Montone, C.M.; Piovesana, S.; Laganà, A. Andean Blueberry of the Genus *Disterigma*: A High-Resolution Mass Spectrometric Approach for the Comprehensive Characterization of Phenolic Compounds. *Separations* **2021**, *8*, 58. [CrossRef]

44. Vallverdu-Queralt, A.; Jauregui, O.; Medina-Remon, A.; Lamuela-Raventos, R.M. Evaluation of a Method to Characterize the Phenolic Profile of Organic and Conventional Tomatoes. *Agricul. Food Chem.* **2012**, *60*, 3373–3380. [CrossRef] [PubMed]

45. Huang, Y.; Yao, P.; Leung, K.; Wang, H.; Kong, X.P.; Wang, L.; Dong, T.T.; Chen, Y.; Tsim, K.W.K. The Yin-Yang Property of Chinese Medicinal Herbs Relates to Chemical Composition but Not Anti-Oxidative Activity: An Illustration Using Spleen-Meridian Herbs. *Front. Pharmacol.* **2018**, *9*, 1304. [CrossRef] [PubMed]

46. El-Sayed, M.A.; Abbas, F.A.; Refaat, S.; El-Shafae, A.M.; Fikry, E. UPLC-ESI-MS/MS Profile of The Ethyl Acetate Fraction of Aerial Parts of Bougainvillea ‘Scarlett O’Hara’ Cultivated in Egypt. *Egypt J. Chem.* **2021**, *64*, 22. [CrossRef]

47. Zhou, X.J.; Yan, L.L.; Yin, P.P.; Shi, L.L.; Zhang, J.H.; Liu, Y.J.; Ma, C. Structural characterisation and antioxidant activity evaluation of phenolic compounds from cold-pressed Perilla frutescens var. arguta seed flour. *Food Chem.* **2014**, *164*, 150–157. [CrossRef] [PubMed]

48. Ozarowski, M.; Piasecka, A.; Paszel-Jaworska, A.; de Chaves, D.S.A.; Romaniuk, A.; Rybczynska, M.; Gryszczynska, A.; Sawikowska, A.; Kachlicki, P.; Mikolajczak, P.L.; et al. Comparison of bioactive compounds content in leaf extracts of *Passiflora incarnata*, *P. caerulea* and *P. itata* and in vitro cytotoxic potential on leukemia cell lines. *Braz. J. Pharmocol.* **2018**, *28*, 179–191. [CrossRef] [PubMed]

49. Ojwang, L.O.; Yang, L.; Dykes, L.; Awika, J. Proanthocyanidin profile of cowpea (*Vigna unguiculata*) reveals catechin-O-glucoside as the dominant compound. *Food Chem.* **2013**, *139*, 35–43. [CrossRef]

50. Vijayan, K.P.R.; Raghu, A.V. Tentative characterization of phenolic compounds in three species of the genus *Embelia* by liquid chromatography coupled with mass spectrometry analysis. *Spectrosc. Lett.* **2019**, *52*, 653–670. [CrossRef]

51. Sun, J.; Liang, F.; Bin, Y.; Li, P.; Duan, C. Screening Non-colored Phenolics in Red Wines using Liquid Chromatography/Ultraviolet and Mass Spectrometry/Mass Spectrometry Libraries. *Molecules* **2007**, *12*, 679–693. [CrossRef]

52. Fuchs, C.; Bakuradze, T.; Steinke, R.; Grewal, R.; Eckert, G.P.; Richling, E. Polyphenolic composition of extracts from winery by-products and effects on cellular cytotoxicity and mitochondrial functions in HepG2 cells. *J. Funct. Foods.* **2020**, *70*, 103988. [CrossRef] [PubMed]

53. Hamed, A.R.; El-Hawary, S.S.; Ibrahim, R.M.; Abdelmohsen, U.R.; El-Halawany, A.M. Dentification of Chemopreventive Components from *Halophytes* Belonging to Aizoaceae and Cactaceae Through LC/MS–Bioassay Guided Approach. *J. Chrom. Sci.* **2021**, *59*, 618–626. [CrossRef] [PubMed]

54. Zhu, Z.W.; Li, J.; Gao, X.M.; Amponson, E.; Kang, L.Y.; Hu, L.M.; Zhang, B.L.; Chang, Y.X. Simultaneous determination of stilbenes, phenolic acids, flavonoids and anthraquinones in *Radix polygoni multiflori* by LC-MS/MS. *J. Pharm. Biomed. Anal.* **2012**, *62*, 162–166. [CrossRef] [PubMed]

55. Chen, X.; Zhu, P.; Liu, B.; Wei, L.; Xu, Y. Simultaneous determination of fourteen compounds of *Hedyotis diffusa* Willd extract in rats by UHPLC-MS/MS method: Application to pharmacokinetics and tissue distribution study. *J. Pharm. Biomed. Anal.* **2018**, *159*, 490–512. [CrossRef] [PubMed]

56. Hangavan, D.; Vlase, L.; Olah, N. LC/MS analysis of isoflavones from *Fabaceae* species extracts. *Farmacia* **2010**, *58*, 177–183.

57. Yin, Y.; Zhang, K.; Wei, L.; Chen, D.; Chen, Q.; Jiao, M.; Li, X.; Huang, J.; Gong, Z.; Kang, N.; et al. The Molecular Mechanism of Antioxidation of Huolisu Oral Liquid Based on Serum Analysis and Network Analysis. *Front. Pharmacol.* **2021**, *12*, 710976. [CrossRef]

58. Wojakowska, A.; Piasecka, A.; García-López, P.M.; Zamora-Natera, F.; Krawjeński, P.; Marczał, L.; Kachlicki, P.; Stobiecki, M. Structural analysis and profiling of phenolic secondary metabolites of Mexican lupine species using LC-MS techniques. *Phytochemistry* **2013**, *92*, 71–86. [CrossRef]

59. Teles, Y.C.E.; Rebello Horta, C.C.; de Fatima Agra, M.; Siheri, W.; Boyd, M.; Igoli, J.O.; Gray, A.I.; de Fatima Vanderlei de Souza, M. New Sulphated Flavonoids from *Wissadula periplocofolia* (L.) C. Preis (*Malvaceae*). *Molecules* **2015**, *20*, 20161–20172. [CrossRef]

60. Vera de Rosso, V.; Hillebrand, S.; Cuevas Montilla, E.; Bobbio, F.O.; Winterhalter, P.; Mercadante, A.Z. Determination of anthocyanins from acerola (*Malpighia emarginata* DC.) and ac-ai (*Euterpe oleracea* Mart.) by HPLC–PDA–MS/MS. *J. Food Compos. Anal.* **2008**, *21*, 291–299. [CrossRef]
61. Marcia Fuentes, J.A.; Lopez-Salas, L.; Borras-Linares, I.; Navarro-Alarcon, M.; Segura-Carretero, A.; Lozano-Sanchez, J. Development of an Innovative Pressurized Liquid Extraction Procedure by Response Surface Methodology to Recover Bioactive Compounds from Carao Tree Seeds. *Foods* 2021, 10, 398. [CrossRef]

62. Thomford, N.E.; Dzobo, K.; Chopera, D.; Wonkam, A.; Maroyi, A.; Blackhurst, D.; Dandara, C. In vitro reversible and time-dependent CYP450 inhibition profiles of medicinal plant extracts *Newbouldia laevis* and *Cassia abbreviata*: Implications for herb-drug interactions. *Molecules* 2021, 26, 891. [CrossRef]

63. Yang, D.; Du, X.; Liang, X.; Han, R.; Liang, Z.; Liu, Y.; Liu, F.; Zhao, J. Different roles of the mevalonate and mevthlyerythritol phosphate pathways in cell growth and tanshinone production of *Salvia miltiorrhiza* hairy roots. *PLoS ONE* 2012, 7, e46797. [CrossRef]

64. Abu-Reidah, I.M.; Ali-Shateh, M.S.; Jamous, R.M.; Arrez-Arromán, D.; Segura-Carretero, A. HPLC-DAD-ESI-MS/MS screening of bioactive components from *Rhus coriaria* (Sumac) fruits. *Food Chem.* 2015, 166, 179–191. [CrossRef]

65. Chen, W.; Gong, L.; Guo, Z.; Wang, W.; Zhang, H.; Liu, X.; Yu, S.; Xiong, L.; Luo, J. A novel integrated method for large-scale detection, identification, and quantification of widely targeted metabolites: Application in the study of rice metabolomics. *Mol. Plant.* 2013, 6, 1769–1780. [CrossRef]

66. Ekeberg, D.; Flate, P.-O.; Eikenes, M.; Fongen, M.; Naess-Andresen, C.F. Qualitative and quantitative determination of extractives in heartwood of Scots pine (*Pinus sylvestris* L.) by gas chromatography. *J. Chromatogr. A* 2006, 1109, 267–272. [CrossRef]

67. Kim, S.; Oh, S.; Noh, H.B.; Ji, S.; Lee, S.H.; Koo, J.M.; Choi, C.W.; Juhn, H.P. In Vitro Antioxidant and Anti-Propionibacterium acne Activities of Cold Water, Hot Water, and Methanol Extracts, and Their Respective Ethyl Acetate Fractions, from *Sanguisorba officinalis* L. Roots. *Molecules* 2018, 23, 3001. [CrossRef]

68. Xu, L.L.; Xu, J.J.; Zhong, K.R.; Wang, F.; Wang, R.E.; Zhang, L.; Zhang, J.Y.; Liu, B. Analysis of Non-Volatile Chemical Constituents of Menthae Haplocalycis Herba by Ultra-High Performance Liquid Chromatography-High Resolution Mass Spectrometry. *Molecules* 2017, 22, 1756. [CrossRef]

69. Cirlini, M.; Mena, P.; Tassotti, M.; Herrlinger, K.A.; Nieman, K.M.; Dall’Ast, C.; Del Rio, D. Phenolic and Volatile Composition of a Dry Spearmint (Mentha spicata L.) Extract. *Molecules* 2016, 21, 1007. [CrossRef]

70. Olennikov, D.O.; Chirikova, N.K.; Okhlopkova, Z.M.; Zul'figarov, I.S. Chemical Composition and Antioxidant Activity of Tánara Ótò (*Dracontophalum palmatum* Stephan), a Medicinal Plant Used by the North-Yakutian Nomads. *Molecules* 2013, 18, 14106. [CrossRef]

71. Yin, N.W.; Wang, S.X.; Jia, L.D.; Zhu, M.C.; Yang, J.; Zhou, B.J.; Yin, J.M.; Lu, K.; Wang, R.; Li, J.N.; et al. Identification and Characterization of Major Constituents in Different-Colored Rapeseed Petals by Ultra-Liquid Chromatography-High Resolution Mass Spectrometry. *Molecules* 2017, 22, 1756. [CrossRef]

72. Santos, S.A.O.; Vilela, C.; Freire, C.S.R.; Neto, C.P.; Silvestre, A.J.D. Ultra-high performance liquid chromatography coupled to mass spectrometry applied to the identification of valuable phenolic compounds from Eucalyptus wood. *J. Chromatogr. B* 2013, 938, 65–74. [CrossRef]

73. Abeywickrama, G.; Debath, S.C.; Ambigaipalan, P.; Shahidi, F. Phenolics of Selected Cranberry Genotypes (*Vaccinium macrocarpon* Ait.) and Their Antioxidant Efficacy. *J. Agric. Food Chem.* 2016, 64, 9342–9351. [CrossRef] [PubMed]

74. Sun, J.; Liu, X.; Yang, T.; Slavin, J.; Chen, P. Profiling polyphenols of two diploid strawberry (*Fragaria vesca*) inbred lines using UHPLC-HRMS®. *Food Chem.* 2014, 146, 289–298. [CrossRef] [PubMed]

75. Paudel, L.; Wyczgoski, F.J.; Scheeren, J.C.; Channon, A.M.; Reese, R.N.; Smiljanić, D.; Wesdemiotis, C.; Blakeslee, J.J.; Riedl, K.M.; Rinaldi, P.L. Nonanthocyanin secondary metabolites of black raspberry (*Rubus occidentalis*) fruits: Identification by HPLC-DAD, NMR, HPLC-ESI-MS, and ESI-MS/MS analyses. *J. Agr. Food Chem.* 2013, 61, 12032–12043. [CrossRef] [PubMed]

76. Mateos-Martin, M.L.; Fuguet, E.; Jimenes-Ardon, A.; Herrero-Urbe, L.; Tamayo-Castillo, G.; Lluis Torres, J. Identification of polyphenols from antiviral *Chaenactis nictitans* tinctus extract using high-resolution LC–ESI–MS/MS. *J. Agric. Food Chem.* 2014, 62, 5501–5506. [CrossRef] [PubMed]

77. Mena, P.; Calani, L.; Dall’Asta, C.; Galaverna, G.; Garcia-Viguera, C.; Bruni, R.; Crozier, A.; Del Rio, D. Rapid and Comprehensive Evaluation of (Poly)phenolic Compounds in Pomegranate (*Punica granatum*) L. Juice by UHPLC-MSn. *Molecules* 2012, 17, 14821–14840. [CrossRef]

78. Leveques, A.; Actis-Goretti, L.; Rein, M.J.; Williamson, G.; Dionisi, F.; Giuffrida, F. UPLC–MS/MS quantification of total hesperitin and hesperetin enantiomers in biological matrices. *J. Pharmaceut. Biomed. Anal.* 2012, 57, 1–6. [CrossRef]

79. Szodlaska, A.; Kowalczyk, A.; Wlodarczyk, M.; Fecka, I. Analysis of Polyphenolic Composition of a Herbal Medicinal Product- Peppermint Tincture. *Molecules* 2019, 25, 69. [CrossRef]

80. Fathoni, A.; Saepudin, E.; Cahayana, A.H.; Rahayu, D.U.C.; Haib, J. Identification of Nonvolatile Compounds in Clove (*Syzygium aromaticum*) from Manado. In AIP Conference Proceedings; AIP Publishing LLC: Melville, NY, USA, 2016. [CrossRef]

81. Navarro, M.; Arnaez, E.; Moreira, I.; Quesada, S.; Azofeifa, G.; Wilhelm, K.; Vargas, F.; Chen, P. Polyphenolic Characterization, Antioxidant, and Cytotoxic Activities of *Clidemia hirta* Cultivars from Costa Rica. *Foods* 2019, 8, 384. [CrossRef]

82. Gordon, A.; Schadow, B.; Quijano, C.E.; Marx, F. Chemical characterization and antioxidant capacity of berries from *Clidemia rubra* (Aubl.) Mart. *Mar. (Melastomataceae).* *Food Res. Int.* 2011, 44, 2120–2127. [CrossRef]

83. Thomas, M.C.; Dunn, S.R.; Altwater, J.; Dove, S.G.; Nette, G.W. Rapid Identification of Long-Chain Polyunsaturated Fatty Acids in a Marine Extract by HPLC-MS Using Data-Dependent Acquisition. *Analyst.* 2012, 84, 5976–5983. [CrossRef]
84. Marzouk, M.M.; Hussein, S.R.; Elkhatteeb, A.; El-shabrawy, M.; Abdel-Hameed, E.-S.S.; Kaswasha, S.Y. Comparative study of Mentha species growing wild in Egypt: LC-ESI-MS analysis and chemosystematic significance. J. Appl. Pharm. Sci. 2018, 8, 116–122.

85. Pandey, B.P.; Pradhan, S.P.; Adhikari, K. LC-ESI-QTOF-MS for the Profiling of the Metabolites and in Vitro Enzymes Inhibition Activity of Bryophyllum pinnatum and Oxalis corniculata Collected from Ramechhap District of Nepal. Chem. Biodivers. 2020, 17, e2000155.

86. Razgonova, M.; Zakhareenko, A.; Pikula, K.; Manakov, Y.; Ercisli, S.; Derbush, I.; Kislin, E.; Seryodkin, I.; Sabitov, A.; Kalenik, T.; et al. LC-MS/MS Screening of Phenolic Compounds in Wild and Cultivated Grapes Vitis amurensis Rupr. Molecules 2021, 26, 360. [CrossRef]

87. Zakhareenko, A.M.; Razgonova, M.P.; Pikula, K.S.; Golokhvat, K.S. Simultaneous determination of 78 compounds of Rhodiola rosea extract using supercritical CO2-extraction and HPLC-ESI-MS/MS spectrometry. HINDAWI. Biochem. Res. Int. 2021, 2021, 9957490. [CrossRef]

88. Bonzanini, F.; Bruni, R.; Palla, G.; Serlataite, N.; Caligiani, A. Identification and Distribution of Lignans in Punica granatum L. Fruit Endocarp. Pulp, Seeds, Wood Knots and Commercial Juices by GC–MS. Food Chem. 2009, 117, 745–749. [CrossRef]

89. Eklund, P.C.; Backman, M.J.; Kronberg, L.A.; Smeds, A.I.; Stenhof, R.E. Identification of lignans by liquid chromatography-electrospray ionization ion-trap mass spectrometry. J. Mass Spectrom. 2008, 43, 97–107. [CrossRef]

90. Suárez Montenegro, Z.J.; Álvarez-Rivera, G.; Mendiola, J.A.; Ibanez, E.; Cifuentes, A. Extraction and Mass Spectrometric Characterization of Terpenes Recovered from Olive Leaves Using a New Adsorbent-Assisted Supercritical CO2 Process. Foods 2021, 10, 1301. [CrossRef]

91. Bakir, D.; Akdeniz, M.; Ertas, A.; Yilmaz, M.A.; Yener, I.; First, M.; Kolak, U. A GC-MS method validation for quantitative investigation of some chemical markers in Salvia hypargia Fisch. & C.A. Mey. of Turkey: Enzyme inhibitory potential of ferruginol. J. Food Biochem. 2020, 44, e13350. [CrossRef]

92. Li, W.-H.; Chang, S.-T.; Chang, S.-C.; Chang, H.-T. Isolation of antibacterial diterpenoids from Cryptomeria japonica bark. Nat. Prod. Res. 2008, 22, 1085–1093. [CrossRef]

93. Salih, E.Y.A.; Julkunen-Titto, R.; Lampi, A.-M.; Kanninen, M.; Luukkanen, A.; Sipi, M.; Vuorela, H.; Fyrquist, P. Terminalia laxiflora and Terminalia brownii contain a broad spectrum of antimycobacterial compounds including ellagitannins, ellagic acid derivatives, triterpenes, fatty acids and fatty alcohols. J. Ethnopharmacol. 2018, 227, 82–96. [CrossRef]

94. Chen, X.; Zhang, S.; Xuan, Z.; Ge, D.; Chen, X.; Zhang, J.; Wang, Q.; Wu, Y.; Liu, B. The Phenolic Fraction of Mentha haplocalyx and Its Constituent Linarin Ameliorate Inflammatory Response through Inactivation of NF-κB and MAPKs in Lipopolysaccharide-Induced RAW264.7 Cells. Molecules 2017, 22, 811. [CrossRef] [PubMed]

95. Jiang, R.-W.; Lau, K.-M.; Hon, P.-M.; Mak, T.C.W.; Woo, K.-S.; Fung, K.-P. Chemistry and Biological Activities of Caffeic Acid Derivatives from Salvia miltiorrhiza. J. Agric. Food Chem. 2005, 53, 237–246. [CrossRef] [PubMed]

96. Barros, L.; Dueñas, M.; Carvalho, A.M.; Ferreira, I.C.; Santos-Buelga, C. Characterization of Phenolic Compounds in Flowers of Hylocereus polyrhizus extract using supercritical CO2-extraction and HPLC-ESI-MS/MS spectrometry. HINDAWI. Biochem. Res. Int. 2021, 2021, 9957490. [CrossRef]

97. Primo da Silva, L.; Pereira, E.; Pires, T.C.S.P.; Alves, M.J.; Pereira, O.R.; Barros, L.; Ferreira, I.C.F.R. Comparative study of Terminalia laxiflora and Terminalia brownii from Macedonia. Maced. J. Chem. Chem. Eng. 2021, 20, 29, 181–194. [CrossRef]

98. De Rosso, M.; Panighel, A.; Vedota, A.D.; Gardiman, M.; Flamini, R. Characterization of Non-Anthocyanic Flavonoids in Some Hybrid Red Grape Extracts Potentially Interesting for Industrial Uses. Food Res. Int. 2019, 121, 1–8. [CrossRef] [PubMed]

99. Salih, E.Y.A.; Julkunen-Titto, R.; Lampi, A.-M.; Kanninen, M.; Luukkanen, A.; Sipi, M.; Vuorela, H.; Fyrquist, P. Terminalia laxiflora and Terminalia brownii contain a broad spectrum of antimycobacterial compounds including ellagitannins, ellagic acid derivatives, triterpenes, fatty acids and fatty alcohols. J. Ethnopharmacol. 2018, 227, 82–96. [CrossRef]

100. Liu, R.; Ma, R.; Palla, G.; Serlataite, N.; Caligiani, A. Identification and Distribution of Lignans in Punica granatum L. Fruit Endocarp. Pulp, Seeds, Wood Knots and Commercial Juices by GC–MS. Food Chem. 2009, 117, 745–749. [CrossRef]

101. Wu, Y.; Xu, J.; He, Y.; Shi, M.; Han, X.; Li, W.; Zhang, X.; Wen, X. Metabolic Profiling of Pitaya (Hylocereus polyrhizus) during Fruit Development and Maturation. Molecules 2019, 24, 1114. [CrossRef]

102. Chang, Q.; Wang, Y.-S. Identification of Flavonoids in Hamiteau Beans (Vigna sinensis) by High-Performance Liquid Chromatography–Mass Spectrometry (LC–ESI/MS). Agric. Food Chem. 2004, 52, 6694–6699. [CrossRef]

103. Lago-Vanzela, E.S.; Da-Silva, R.; Gomes, E.; Garcia-Romero, E.; Hermosin-Gutierrez, E. Phenolic Composition of the Edible Parts (Flesh and Skin) of Bordó Grape (dessert) Using HPLC–DAD–ESI–MS/MS. Agric. Food Chem. 2011, 59, 13136–13146. [CrossRef]

104. Suarez Montenegro, Z.J.; Alvarez-Rivera, G.; Mendiola, J.A.; Ibanez, E.; Cifuentes, A. Extraction and Mass Spectrometric Characterization of Terpenes Recovered from Olive Leaves Using a New Adsorbent-Assisted Supercritical CO2 Process. Foods 2021, 10, 1301. [CrossRef]

105. Li, W.-H.; Chang, S.-T.; Chang, S.-C.; Chang, H.-T. Isolation of antibacterial diterpenoids from Cryptomeria japonica bark. Nat. Prod. Res. 2008, 22, 1085–1093. [CrossRef]

106. Kajdzanoska, M.; Gjamovski, V.; Stefova, M. HPLC–DAD–ESI–MSn identification of phenolic compounds in cultivated strawberries from Macedonia. Maced. J. Chem. Chem. Eng. 2010, 29, 181–194. [CrossRef]

107. Costa de Camargo, A.; Regitano-d’Arce, M.A.B.; Telles Biasoto, A.C.; Shahidi, F. Low Molecular Weight Phenolics of Grape Juice and Winemaking Byproducts: Antioxidant Activities and Inhibition of Oxidation of Human Low-Density Lipoprotein Cholesterol and DNA Strand Breakage. J. Agricul. Food Chem. 2014, 62, 12159–12171. [CrossRef]
108. Sun, L.; Tao, S.; Zhang, S. Characterization and Quantification of Polyphenols and Triterpenoids in Thinned Young Fruits of Ten Pear Varieties by UPLC-Q TRAP-MS/MS. *Molecules* 2019, 24, 159. [CrossRef]

109. Sobeh, M.; Mahmoud, M.F.; Hasan, R.A.; Cheng, H.; El-Shazly, A.M.; Wink, M. *Senna singueana*: Antioxidant, Hepatoprotective, Antiapoptotic Properties and Phytochemical Profiling of a Methanol Bark Extract. *Molecules* 2017, 22, 1502. [CrossRef]

110. Ölschläger, C.; Regos, I.; Zeller, F.J.; Treutter, D. Identification of galloylated propelargonidins and procyanidins in buckwheat grain and quantification of rutin and flavanols from homostyloous hybrids originating from *F. esculentum* × *F. homotropicum*. *Phytochemistry* 2008, 69, 1389–1397. [CrossRef]

111. Ayoub, M.; de Camargo, A.C.; Shahidi, F. Antioxidants and bioactivities of free, esterified and insoluble-bound phenolics from berry seed meals. *Food Chem.* 2016, 197, 221–232. [CrossRef]

112. Deng, Y.; He, M.; Feng, F.; Feng, X.; Zhang, Y.; Zhang, F. The distribution and changes of glycoalkaloids in potato tubers under different storage time based on MALDI-TOF mass spectrometry imaging. *Talanta* 2021, 221, 121453. [CrossRef]

113. Shakya, R.; Navarre, D.A. LC-MS Analysis of Solanidane Glycoalkaloid Diversity among Tubers of Four Wild Potato Species and Three Cultivars (*Solanum tuberosum*). *J. Agric. Food Chem.* 2008, 56, 6949–6958. [CrossRef]

114. Hossain, M.B.; Brunton, N.P.; Rai, D.K. Effect of Drying Methods on the Steroidal Alkaloid Content of Potato Peels, Shoots and Berries. *Molecules* 2016, 21, 403. [CrossRef] [PubMed]