ORIGINAL RESEARCH

Tobacco Consumption and High-Sensitivity Cardiac Troponin I in the General Population: The HUNT Study

Julia Brox Skranes, MD; Magnus Nakrem Lyngbakken, MD, PhD; Kristian Hveem, MD, PhD; Helge Røsjø, MD, PhD; Torbjørn Omland, MD, PhD, MPH

BACKGROUND: Cardiac troponins represent a sensitive index of subclinical myocardial injury and are associated with increased risk of cardiovascular events in the general population. Despite positive associations with cardiovascular risk of both cardiac troponins and cigarette smoking, concentrations of cardiac troponin I measured by high-sensitivity assays (hs-cTnI) are paradoxically lower in current smokers than in never-smokers. The impact of smoking intensity and time from smoking cessation on hs-cTnI remains unknown.

METHODS AND RESULTS: hs-cTnI concentrations were measured in 32028 subjects free from cardiovascular disease enrolled in the prospective, population-based HUNT (Trøndelag Health Study). Tobacco habits were self-reported and classified as never (n=14559), former (n=14248), and current (n=3221) smokers. Current smokers exhibited significantly lower concentrations of hs-cTnI than never-smokers (P<0.001). In adjusted models, both current smoking (−17.3%; 95% CI, −20.6 to −13.9%) and former smoking (−6.6%; 95% CI, −8.7 to −4.5%) were associated with significantly lower hs-cTnI concentrations. Among former smokers, higher smoking burden (>10 pack-years) were associated with lower concentrations of hs-cTnI. Time since smoking cessation was associated with increasing concentrations of hs-cTnI in a dose-dependent manner (P for trend<0.001), and subjects who quit smoking >30 years ago had concentrations of hs-cTnI comparable with those of never-smokers.

CONCLUSIONS: In the general population, both current and former cigarette smoking is associated with lower concentrations of hs-cTnI. In former smokers, there was a dose-response relationship between pack-years of smoking, and hs-cTnI. Time since smoking cessation was associated with increasing concentrations of hs-cTnI in a dose-dependent manner (P for trend<0.001), and subjects who quit smoking >30 years ago had concentrations of hs-cTnI comparable with those of never-smokers.

Key Words: cardiac troponins ■ cardiovascular disease ■ tobacco

Concentrations of cardiac troponins (cTn) measured with high-sensitivity (hs) assays are strongly associated with the risk of heart failure and cardiovascular death both in the general population and in patients with stable ischemic heart disease. A number of cardiac risk factors are associated with increasing concentrations of hs-cTn. Still, for cigarette smoking an inverse association with concentrations of hs-cTn has been demonstrated both in the general population and in patients with stable coronary artery disease. Given the established and strong relationship between smoking and cardiovascular risk, lower concentrations of hs-cTn in current smokers remains an unexpected and so far, elusive observation. Cigarette smoking has detrimental effects on the cardiovascular system. Smoking promotes both atherogenesis and thrombosis, and cigarette smoking is an especially strong risk factor for coronary artery disease. In contrast to the strong association between tobacco smoking and atherothrombotic events, the relationship...
between cigarette smoking and the risk of heart failure has not been fully elucidated. Some studies have demonstrated associations between smoking and heart failure independently of coronary artery disease,12,13 but the direct effect of tobacco smoking on cardiomyocyte health is incompletely understood. Structural myocardial alterations preceding overt heart failure, such as left ventricular hypertrophy and fibrosis, are more strongly associated with elevations in hs-cTn than the extent and severity of atherosclerosis.5,14,15 The inverse association between smoking and hs-cTn is controversial, the evidence is limited and there is a need for additional investigations. Smoking status alone may be insufficient to adjust for the detrimental effects of smoking, and results from the Multi-Ethnic Study of Atherosclerosis study indicates that the harmful effects of smoking may be more related to intensity of smoking than the duration.16 Increasing time since smoking cessation is associated with a reduction in cardiovascular risk, but whether time from cessation impacts concentrations of cardiac troponin I (cTnI) has not been explored.

Accordingly, using data from one of the largest population cohorts with measurements of hs-cTnI and a comprehensive characterization of tobacco habits currently available, we hypothesized that increasing consumption and duration of cigarette smoking would be associated with lower concentrations of hs-cTnI in a dose-dependent fashion. Further, as current smokers have lower concentrations of hs-cTnI than never-smokers, we hypothesized that concentrations of hs-cTnI would increase with time from smoking cessation in former smokers.

METHODS

The data from HUNT (Trøndelag Health Study) used in the current study are available on application to the HUNT Data Access Committee in accordance with the policy on data availability (further information and contact information: https://www.ntnu.edu/hunt/data).

Study Overview and Participants

HUNT is a population-based, cross-sectional, and prospective observational study conducted in the county of Nord-Trøndelag in Norway. Between 1984 and 2019, all residents in the county from aged ≥20 years were invited to participate in both HUNT 1 (1984–86), HUNT 2 (1995–1997), HUNT 3 (2006–2008), and HUNT 4 (2017–2019). Details of the study design and participants have been described previously.17 The present study represents a cross-sectional analysis of a subsample of 37,840 individuals participating in the fourth wave of the HUNT Study (HUNT 4) with measurement of cTnI. Participants with a history of cardiovascular disease (CVD, n=3428), or missing data on CVD (n=2258) and smoking exposure (n=126) were excluded, leaving 32,028 individuals available for the main analysis. The Regional Committee for Medical Research Ethics approved the main study and this substudy (REC 2012/859), and all participants provided informed written consent.

Baseline Data

Clinical examinations were performed in a standardized manner and included height, weight, waist and hip circumference, and blood pressure. Systolic and diastolic blood pressure were measured in a sitting position by the use of an automated device (Dinamap CARESCAPE V100, GE Healthcare), and the average of the second and third measurement was used. Information on health and lifestyle related items were gathered from self-reported written questionnaires. A full description of the examinations and the questionnaire is available from http://www.ntnu.edu/hunt.

Measurements of Smoking

Data on past and current cigarette smoke exposure were collected via the HUNT 4 questionnaire. Smoking
status was classified into 3 different groups based on self-reported tobacco consumption; never, former, and current smoking. Of the total population of 32,028, a subgroup of 82% of the current smokers and 59% of the former smokers had available data on smoking duration and intensity. Information on intensity of smoking was assessed as current or former daily cigarette consumption. Duration of current or former smoking was calculated by age (age at cessation in former smokers) minus age first started smoking. Pack-years were calculated as packs of cigarettes smoked daily multiplied by duration of smoking in years. Years since cessation in former smokers were calculated as age minus age at time of cessation.

Blood Sampling Procedures and Biochemical Assays
Samples of non-fasting venous blood samples were collected by trained nurses, centrifuged at room temperature and serum aspirated. Samples were kept at +4 °C until final analysis. The serum samples were shipped to Levanger Hospital, Norway for analysis of hs-cTnI within 24 hours. cTnI concentrations were measured with the Abbott Diagnostics Architect STAT High Sensitive Troponin assay, with a lower detection limit of 1.2 ng/L. CRP concentrations below lower detection limit were assigned a value of 0.6 ng/L. The manufacturer reports sex-specific 99th percentiles: 15.6 ng/L in women and 34.2 ng/L in men. The assay has a analytical coefficient of variation of 20% at 1.3 ng/L, 10% at 4.7 ng/L, and 4% at 26.2 ng/L. During the period of the HUNT samples analysis, coefficient of variation in our laboratory were 5.7%, 6.8%, and 7.7% in the low range (20, 15, and 11 ng/L, respectively) and 4.9%, 6.9%, and 6.4% in the high range (2150, 2790, and 3100 ng/L, respectively).

Estimated glomerular filtration rate was calculated by the Chronic Kidney Disease Epidemiology Collaboration equation. CRP (C-reactive protein) concentrations were determined using an hs assay with latex immunoassay methodology from Abbott. The limit of detection for CRP was 0.1 mg/L with a analytical coefficient of variation of 2.4% in the low range and 1.1% in the high range. Measurement of triglycerides was performed by enzymatic colorimetric methodol- (continuous variables) and the Fisher Exact test (categorical variables). Pack-years, smoking intensity, and time since smoking cessation were each modeled as a categorical variable. Based on the distribution of median values in former and current smokers, pack-years were categorized as ≤10 and >10 and intensity of smoking (cigarettes/day) was categorized as ≤10 and >10. Categorization of time since cessation was based on quintile values. Linear regression analyses were performed to investigate the association between cigarette smoking, pack-years, smoking intensity, and time since cessation and log-transformed hs-cTnI concentrations. The regression models were adjusted for a priori selected variables influencing concentrations of hs-cTnI, and include sex, age, current usage of moist powder smokeless tobacco (snus), total and high-density lipoprotein cholesterol, systolic blood pressure, body mass index, diabetes, estimated glomerular filtration rate, CRP, alcohol consumption (frequency of intake last 12 months), and socioeconomic status (quantified by family income and education level). Because of possible different impact of smoking status on hs-cTnI concentrations according to age, we also performed linear regression analyses in which participants were categorized in 4 groups on the basis of age (≤40, >40–53, >53–65.2, and >65.2 years). Possible modification of the effect of age on the association between cigarette smoking and log-transformed hs-cTnI concentrations was examined generating an interaction term. Finally, we performed 2 separate sensitivity analyses. First, we performed a sensitivity analysis that included all participants (and not only participants without CVD). Second, we performed a sensitivity analysis excluding outliers from the data set, ie, participants with the 1% highest hs-cTn concentrations were excluded. Statistical analyses were performed by using IBM SPSS Statistics 26 (IBM Corp) and STATA 16 (StataCorp).

RESULTS
Baseline Characteristics
A total of 5840 (40.5%) never-smokers, 5031 (35.3%) former smokers, and 1439 (44.7%) current smokers had cTnI concentrations below the lower detection limit. Clinical characteristics of the participants according to tobacco habits are summarized in Table 1. Current smokers were older and more likely to be women than never-smokers. Compared with never-smokers, current and former smokers had higher concentrations of CRP, triglycerides, and total cholesterol. Furthermore, current and former smokers were less likely to be in a high-income or high-education group compared with never-smokers.
Skranes et al Tobacco and Troponin I in the General Population

After adjustment for age and sex, a gradient in hs-cTnI concentrations was apparent with current smokers having −22.2% (95% CI, −25.5 to −19.0) lower concentrations and former smokers −8.5% (95% CI, −10.5 to −6.5) lower concentrations compared with never-smokers (*P* for trend<0.001). This gradient remained in the fully adjusted models (*P* for trend<0.001, Table 2). The sensitivity analysis also including participants with CVD and the sensitivity analysis excluding outliers also showed similar results (Table S1 and S2). We found no evidence of an interaction with age on the association between smoking status and concentrations of hs-cTnI (Table S3).

Table 1. Baseline Characteristics According to Smoking Status

Variable	Never-smoker		Former smoker		Current smoker	
n	Value	n	Value	n	Value	
Female sex, n (%)	14 559	8149 (56.0)	14 248	7865 (55.2)	3221	1966 (61.0)*§
Age, y	14 559	49.2 (35.6–62.0)	14 248	56.7 (42.6–67.7)*	3221	53.8 (41.7–63.8)*§
Weight, kg	14 411	77.9 (67.4–89.4)	14 075	79.9 (69.5–91.2)*	3199	76.2 (66.2–88.7)*§
BMI, kg/m²	14 491	26.3 (23.6–29.5)	14 169	27.1 (24.4–30.3)*	3207	26.5 (23.5–29.6)*§
Waist-hip ratio	14 088	0.94 (0.88–1.0)	13 814	0.96 (0.91–1.02)*	3145	0.96 (0.9–1.02)*
Systolic blood pressure, mm Hg	14 559	124 (113–136)	14 248	126 (116–139)*	3221	124 (114–137)*§
Diastolic blood pressure, mm Hg	14 559	72 (65–79)	14 248	73 (66–80)*	3221	71 (64–79)*§
Alcohol consumption	14 442	14 067	3183			
Nondrinker	1978 (13.7)	1069 (7.6)	323 (10.1)			
1 or less a month	4405 (30.5)	3430 (24.4)	969 (30.4)			
2–4 times a month	6029 (41.7)	6336 (45.0)	1336 (42.0)			
2–3 times a week	1821 (12.6)	2758 (19.6)	455 (14.3)			
More than 4 times a week	209 (1.4)	474 (3.4)	100 (3.1)			
Cardiac troponin I, ng/L	14 559	1.54 (0.6–3.02)	14 248	1.67 (0.6–3.19)*	3221	1.33 (0.6–2.32)*§
HbA1c mmol/mol	14 520	33 (31–35)	14 204	33 (31–36)*	3209	33 (31–36)*§
Triglycerides non-fasting, mmol/L	14 559	1.30 (0.92–1.88)	14 248	1.42 (1.0–2.05)*	3221	1.58 (1.12–2.27)*§
Total cholesterol, mmol/L	14 559	5.17 (4.47–5.94)	14 248	5.34 (4.60–6.10)*	3221	5.41 (4.66–6.23)*§
HDL cholesterol, mmol/L	14 559	1.36 (1.15–1.61)	14 248	1.37 (1.15–1.63)*	3221	1.3 (1.09–1.54)*§
Total HDL cholesterol	14 559	3.72 (3.07–4.58)	14 248	3.80 (3.14–4.68)*	3221	4.11 (3.31–5.09)*
eGFR, ml/min/1.73m²	14 559	96 (84–109)	14 248	92 (80–104)*	3221	97 (87–108)*§
CRP, mg/L	14 559	1.12 (0.55–2.45)	14 248	1.29 (0.64–2.76)*	3221	1.50 (0.73–3.14)*§
Diabetes, n (%)	14 542	572 (3.9)	14 232	806 (5.7)*	3216	153 (4.8)*§
Snus habits	14 410	14 058	3142			
Former	1113 (7.6)	2177 (15.3)	324 (10.1)			
Current	1460 (10.0)	3093 (21.7)	482 (15.0)			
Smoking habits, pack-years	8338	10 (4.5–18.0)	2629	18.5 (11.4–25.9)*§		
Higher education, n (%)	14 492	6755 (46.4)	14 189	5068 (35.6)*	3202	722 (22.4)*§
Income	14 183	13 919	3120			
Low	3752 (25.8)	4039 (28.3)	1323 (41.1)			
Middle	7206 (49.5)	7546 (53.0)	1498 (46.5)			
High	3225 (22.2)	2334 (16.4)	299 (9.3)			

BMI indicates body mass index; CRP, C-reactive protein; eGFR, estimated glomerular filtration rate; HbA1c, glycated hemoglobin A1c; and HDL, high-density lipoprotein cholesterol.

*P<0.001, †P<0.01; ‡P<0.05 compared with never-smokers.

§P<0.001, ¶P<0.01, ††P<0.05 compared with former smokers.
In fully adjusted models, increasing numbers of pack-years of smoking were associated with lower concentrations of hs-cTnI in the total population (−3.0%; 95% CI, −4.3% to −1.7% per 10 pack-years). Using never-smokers as the reference (0%), ever smokers with a history of >10 pack-years had significantly lower concentrations of hs-cTnI than those with a history of ≤10 pack-years (−13.9%; 95% CI, −16.5% to −11.3% versus −7.8%; 95% CI, −10.6 to −5.1, \(P \) for comparison=0.001).

In former smokers, a history of >10 pack-years was associated with significantly lower concentrations of hs-cTnI than a history of ≤10 pack-years (−11.7%; 95% CI, −14.9 to −8.5 versus −7.2%; 95% CI, −10.2 to −4.1, \(P \) for comparison=0.02) in fully adjusted models (Table 3). In current smokers, concentrations of hs-cTnI did, however, not differ according to number of pack-years consumed (\(P=0.70 \), Table 3).

Intensity

Concentrations of hs-cTnI did not differ according to smoking intensity in current (\(P \) for comparison=0.81, Table 3) or former smokers (\(P \) for comparison=0.56).

Years Since Smoking Cessation and Concentrations of hs-cTnI

Time since smoking cessation was positively associated with concentrations of hs-cTnI in fully adjusted models. Overall, there was a significant trend (\(P<0.001 \)) of increasing concentrations of hs-cTnI from current smokers, to increasing time since cessation in former smokers, to never-smoker with the highest concentrations of cTnI (Figure).

DISCUSSION

The main findings in this cohort of 32,028 subjects free from established CVD, are that not only smoking status,

Table 2. Association Between Smoking Status and hs-cTnI

	Model 1	Model 2
	Change in cTnI	Change in cTnI
Never	Reference	Reference
Former smoker	−8.5% (−10.5 to −6.5)	−6.6% (−8.7 to −4.5)
Current smoker	−22.2% (−25.5 to −19.0)	−17.3% (−20.6 to −13.9)

A positive percentage indicates a relative increase in continuous concentrations of troponin compared with never smokers, whereas a negative percentage indicates an inverse association. Model 1 adjusted for sex, age, Model 2 adjusted for sex, age, current snus, total and high-density lipoprotein cholesterol, systolic blood pressure, body mass index, diabetes mellitus, estimated glomerular filtration rate, C-reactive protein, alcohol consumption, educational level, and family income.

Table 3. Association Between Smoking Variables: Pack-Years, Intensity of Smoking, and hs-cTnI

	Model 1	Model 2
	Change in cTnI	Change in cTnI
Pack, y		
Never	Reference	Reference
Former smokers≤10 pack, y		
n=4239	−10.2% (−13.1 to −7.3)	−7.2% (−10.2 to −4.1)
Former smokers>10 pack, y		
n=4099	−14.5% (−17.6 to −11.5)	−11.7% (−15.0 to −8.5)
Current smokers≤10 pack, y		
n=543	−20.7% (−28.1 to −13.4)	−16.7% (−24.2 to −9.2)
Current smokers>10 pack, y		
n=2086	−25.0% (−29.0 to −21.0)	−18.3% (−22.5 to −14.0)
Intensity, number of cigarettes/day		
Never smokers	Reference	Reference
Former smokers, ≤ 10 cigarettes/day		
n=5358	−12.0% (−14.8 to −9.3)	−8.9% (−11.8 to −6.0)
Former smokers, >10 cigarettes/day		
n=3123	−12.6% (−15.9 to −9.3)	−10.1% (−13.6 to −6.5)
Current smokers, ≤ 10 cigarettes/day		
n=1705	−23.9% (−28.2 to −19.6)	−18.3% (−22.8 to −13.7)
Current smokers, >10 cigarettes/day		
 n=936 | −24.4% (−30.1 to −18.8) | −17.4% (−23.3 to −11.5) |

A positive percentage indicates a relative increase in continuous concentrations of troponin compared with never smokers, whereas a negative percentage indicates an inverse association. Model 1 adjusted for sex, age, Model 2 adjusted for sex, age, current snus, total and high-density lipoprotein cholesterol, systolic blood pressure, body mass index, diabetes mellitus, estimated glomerular filtration rate, C-reactive protein, alcohol consumption, educational level, and family income.
but also measures of smoking intensity and duration are associated with concentrations of hs-cTnI. Authors of the current report and other groups have previously demonstrated lower cardiac troponin concentrations in current smokers compared with never-smokers in the general population.6,8 We now add to this knowledge by demonstrating lower hs-cTnI concentrations also in former smokers. Intriguingly, increasing time since smoking cessation was associated with higher concentrations of hs-cTnI in a dose-response fashion, with subjects who stopped smoking >30 years ago exhibiting concentrations comparable with those of never-smokers.

There are several different ways to quantify smoking exposure, and smoking status alone insufficiently adjusts for the effects of smoking on the cardiovascular system.16 In the current investigation, we found that in addition to smoking status, intensity and pack-years of smoking were associated with lower concentrations of hs-cTnI. In the ARIC (The Atherosclerosis Risk in Communities Study), a positive association with number of pack-years and elevated hs-cTnT was found among ever smokers.20 This discrepancy may be attributed to a less sensitive hs-cTn assay and dichotomization of hs-cTnT concentrations in ARIC. Although the increased risk of CVD persist for multiple years after smoking cessation, the difference in risk between former and never-smokers ceases with time.11 In this study, time since smoking cessation was associated with increasing concentrations of hs-cTnI and concentrations of hs-cTnI did not differ between former smokers with >30 years since cessation and never-smokers.

Further, we found inverse associations between smoking measures investigated and hs-cTnI. The consistency of the present analysis supports the validity of our results and highlights that smoking exposure may impact the cardiac troponin complex. The mechanisms behind these observations are unknown. Atherosclerotic disease is a major contributor to the detrimental cardiovascular effects of cigarette smoking21 and current and former smoking status is associated with subclinical atherosclerotic disease in subjects free from CVD.22 Low-level concentrations of circulating hs-cTn are, however, more strongly associated with remodeling of the myocardium and direct myocyte injury5,14 than atherosclerosis, and are strongly predictive of heart failure. Whether subclinical atherosclerotic disease could attenuate the association between fibrosis and hs-cTnI is unclear but is a plausible mechanism of lower hs-cTnI in current and former smokers.

Cigarette smoking induces systemic inflammation, and smoking is associated with an increased inflammatory biomarker response.23 Although the net effect of cigarette smoke exposure is proinflammatory, nicotine could have anti-inflammatory effects. Specifically, nicotine binds to the α7 subunit of the nicotinic acetylcholine receptor resulting in activation of the cholinergic anti-inflammatory pathway, which in turn
inhibits macrophage tumor necrosis factor release.24,25 Accordingly, smoking exposure could potentially inhibit immune-mediated myocardial remodeling, and the inverse association between smoking measures and hs-cTnI in our study could possibly be explained by cigarette-induced attenuation of cardiomyocyte turnover.

The smoker’s paradox refers to improved survival and more favorable outcomes in cigarette smokers after acute myocardial infarction.26–28 A proposed mechanism for this association has been that constituents of tobacco induce ischemic preconditioning and thereby confers cardioprotection.27 If cigarette smoking renders the myocardium more resistant to ischemic damage, the inverse association between smoking measures and hs-cTnI could reflect reduced myocardial damage attributable to cigarette smoke exposure. However, the smoker’s paradox could also be explained by younger age and better cardiac risk profile in smokers compared with non-smokers.29 In the present study however, the models were adjusted for age and cardiac risk factors, thereby making this possible confounding factor unlikely to explain our findings. Furthermore, the inverse association between hs-cTnI and smoking remained similar in the sensitivity analysis including participants with CVD. Importantly, our study and results do not question the harmful effects of smoking and we support all efforts of reducing tobacco consumption.

Numerous studies have demonstrated the prognostic merits of hs-cTn in populations that included both smokers and non-smokers, suggesting that measurement of hs-cTn could help the clinician to identify individuals with increased risk for CVD.3–5 Moreover, hs-cTnI measurements may identify those who benefit more from statin therapy.30,31 The potential interaction by smoking on the association between hs-cTn and outcomes is, however, less studied. In the HUNT 2 study, smoking status was found to modify the association between hs-cTnI and cardiovascular death, admission for MI, and heart failure.6 However, no significant interaction by smoking status was found on the association between hs-cTnI and cardiovascular events in the prevention of events with angiotensin converting enzyme inhibition cohort.7 Moreover, in the Generation Scotland population-based study, no interaction by smoking on the prognostic value of hs-cTnI was observed.32 Because of the cross-sectional design of the current analysis, we could not evaluate if smoking affects the prognostic value of hs-cTnI.

Demographic characteristics, ie, sex and gender, impact on hs-cTn concentrations, and in the context of acute myocardial injury, it is debated if these characteristics should be considered when evaluating hs-cTn concentrations. Whether the inverse association between hs-cTnI concentrations and cigarette smoking also holds true in the setting of acute myocardial injury has yet to be determined, but smoking status could represent another relevant covariate for individualized hs-cTn cut-offs in the future.

Strengths and Limitations

This study has several strengths, most importantly the large study sample consisting of both men and women in a wide age range and quantification of hs-cTnI with one of the most sensitive assays available. Moreover, data on income and education are included in the multivariable models to adjust for socioeconomic factors. Several limitations of this study should also be acknowledged. First, all data on tobacco habits are self-reported and not confirmed by biochemical tests. However, the correlation between self-reported tobacco/non-tobacco use and nicotine exposure, assessed by blood cotinine and nicotine, has been shown to be high. Secondly, information on second-hand cigarette smoke exposure was not available, and whether this affects hs-cTn concentrations is unknown. However, data on snus tobacco, an oral tobacco product commonly used in Scandinavia, was available and adjusted for in the multivariable models. Thirdly, missing data on smoking duration and intensity (18% in current smokers, and 41% in former smokers) could have resulted in under- or over-estimation of the association between these parameters and hs-cTnI. Fourthly, since smoking both affects left ventricular mass and coronary artery disease, the addition of cardiac imaging to the study could have provided better understanding of the mechanisms underlying the difference in hs-cTnI. Lastly, regardless of the adjustment for education level and family income, residual confounding could theoretically explain our findings.

CONCLUSIONS

In this general population cohort free of CVD, both current and former smoking status and pack-years were associated with lower concentrations of hs-cTnI compared with never-smokers. Increasing time from smoking cessation was associated with elevation of hs-cTnI, and after >30 years of cessation, hs-cTnI concentrations did not differ significantly in former and never-smokers. This observation suggests that tobacco smoking affects the cardiac troponin complex even after smoking cessation. Future research should further investigate the mechanisms of these associations, and whether smoking directly affects the release or degradation of cardiac troponins.

ARTICLE INFORMATION

Received April 7, 2021; accepted November 11, 2021.
Tobacco and Troponin I in the General Population

 patients with stable coronary artery disease: the peace trial. Circulation. 2019;140:2044–2046. doi: 10.1161/CIRCULATIONAHA.119.041991
8. Welsh P, Preiss D, Shah ASV, McAllister D, Briggs A, Boachie C, McConnachie A, Hayward C, Padmanabhan S, Welsh C, et al. Comparison between high-sensitivity cardiac troponin I and cardiac troponin I in a large general population cohort. Clin Chem. 2018;64:1607–1616. doi: 10.1373/clinchem.2018.292086
9. Jha P, Ramsundararathie C, Landsman V, Rostron B, Thun M, Anderson RN, McAtef T, Peto R. 21st-century hazards of smoking and benefits of cessation in the united states. N Engl J Med. 2013;368:341–350. doi: 10.1056/NEJMsa1211128
10. Ambrose JA, Barua RS. The pathophysiology of cigarette smoking and cardiovascular disease: an update. J Am Coll Cardiol. 2004;43:1731–1737. doi: 10.1016/j.jACC.2003.02.11073
11. Teo KK, Opuuuu S, Hawken S, Pandey MR, Valentin V, Hunt D, Diaz R, Rashed W, Freeman R, Jiang L, et al. Tobacco use and risk of myocardial infarction in 52 countries in the interheart study: a case-control study. Lancet. 2006;368:647–658. doi: 10.1016/S0140-6736(06)68294-9
12. Kamimura D, Cair LF, Mentz RJ, White WB, Blaha MJ, DeFilippis AP, Fox ER, Rodriguez CJ, Keith RJ, Benjamin EJ, et al. Cigarette smoking and incident heart failure: Insights from the Jackson Heart Study. Circulation. 2018;137:2572–2582. doi: 10.1161/CIRCULATIONAHA.117.031912
13. Watson M, Dardari Z, Kianoush S, Hall ME, DeFilippis AP, Keith RJ, Benjamin EJ, Rodriguez CJ, Bhatnagar A, Lima JA, et al. Relation between cigarette smoking and heart failure (from the multiethnic study of atherosclerosis). Am J Cardiol. 2018;123:1972–1977. doi: 10.1016/j.amjcard.2019.03.015
14. Seliger SL, Hong SN, Christenson RH, Kronmal R, Daniels LB, Lima JAC, de Lemos JA, Bertoni A, deFilippis CR, CR. Higher-sensitive cardiac troponin I as an early biochemical signature for clinical and subclinical heart failure: MESA (Multi-Ethnic Study of Atherosclerosis). Circulation. 2017;135:1494–1500. doi: 10.1161/CIRCULATIONAHA.116.025505
15. Myhre PL, Omland T, Sarvari F, Lekkies H, Rademakers F, Engvall JE, Høyse TA, Nøgel E, Sicari R, Zamorano JL, DOPPLER-CIP Study Group, et al. Cardiac troponin T concentrations, reversible myocardial ischemia, and indices of left ventricular remodeling in patients with suspected stable angina pectoris; a doppler-cip substudy. Clin Chem. 2018;64:1370–1379. doi: 10.1373/clinchem.2018.288894
16. Nance R, Delaney J, McEvoy JW, Blaha MJ, Burke GL, Navas-Acien A, Kaufman JD, Oelsten EC, McClelland RL. Smoking intensity (pack/day) is a better measure than pack-years or smoking status for modeling cardiovascular disease outcomes. J Clin Epidemiol. 2017;81:111–119. doi: 10.1016/j.jclinepi.2016.09.010
17. Krokstad S, Langhammer A, Hveem K, Holmen TL, Midttjell K, Stein-T, Bratberg G, Heggland J, Holmen J. Cohort profile: the HUNT study, Norway. Int J Epidemiol. 2013;42:968–977. doi: 10.1093/ije/dys096
18. Aapini PS, Ler R, Røsjø H, Skranes JB, Pfeffer MA. Determination of 19 cardiac troponin I and T assay 99th percentile values from a commonly preasumable healthy population. Clin Chem. 2012;58:1574–1581. doi: 10.1373/clichem.2012.192716
19. Levey AS, Stevens LA, Schmid CH, Zhang YL, Nasav-Acien A, Kaufman JD, Oelsten EC, McClelland RL. Smoking intensity (pack/day) is a better measure than pack-years or smoking status for modeling cardiovascular disease outcomes. J Clin Epidemiol. 2017;81:111–119. doi: 10.1016/j.jclinepi.2016.09.010
20. Nadae W Jr, Gonzalez P, Caggetti B, Queireceta Roca G, Shah AM, Cheng S, Heiss G, Ballantyne CM, Solomon SD. Influence of cigarette smoking on cardiovascular biomarkers: the atherosclerosis risk in communities (ARIC) study. Eur J Heart Fail. 2018;20:627–631. doi: 10.1002/ejhf.511
21. Csordas A, Bernhard D. The biology behind the atherothrombotic effects of cigarette smoke. Nat Rev Cardiol. 2013;10:219–230. doi: 10.1038/nrcardio.2013.8
22. Kianoush S, Yakoob MM, Al-Riiai M, DeFilippis AP, Bittencourt M, Duncan BB, Bensenor IM, Bhatnagar A, Lotufo PA, Blaha MJ, et al. Association of cigarette smoking with subclinical inflammation and atherosclerosis: Elba-Brasil (the Brazilian longitudinal study of adult health). J Am Heart Assoc. 2017;6:e005688. doi: 10.1161/JAHA.116.005688
23. Al Riiai M, DeFilippis AP, McEvoy JW, Hall ME, Aciin AN, Jones MR, Keith R, Magid HS, Rodriguez CJ, Berr GR, et al. The relationship between smoking intensity and subclinical cardiovascular injury: the Multi-Ethnic Study of Atherosclerosis (MESA). Atherosclerosis. 2017;258:119–130. doi: 10.1016/j.atherosclerosis.2017.01.021
24. de Jonge WJ, van der Zanden EP, The FC, Bijlsma MV, van Westerloo DJ, Bennink RJ, Berthoud HR, Uematsu S, Akira S, van den Wijngaard

REFERENCES

1. Omland T, de Lemos JA, Sabatine MS, Christophi CA, Rice MM, Jablonski KA, Tjora S, Domanski MJ, Gerthes BJ, Rouleau JL, et al. Prevention of Events with Angiotensin Converting Enzyme Inhibition Trial I. A sensitive cardiac troponin t assay in stable coronary artery disease. N Engl J Med. 2009;361:2538–2547. doi: 10.1056/NEJMoa0805299
2. Omland T, Pfeffer MA, Solomon SD, de Lemos JA, Røsjø H, Šaltytė Bernt J, Maggioni A, Domanski MJ, Rouleau JL, Sabatine MS, et al. Prognostic value of cardiac troponin I measured with a highly sensitive assay in patients with stable coronary artery disease. J Am Coll Cardiol. 2013;61:1240–1249. doi: 10.1016/j.jacc.2012.12.026
3. deFilippis CR, de Lemos JA, Christenson RH, Gottdiener JS, Kop WJ, Zhan M, Seliger SL. Association of serial measurements of cardiac troponin t using a sensitive assay with incident heart failure and cardiovascular mortality in older adults. JAMA. 2010;304:2494–2502. doi: 10.1001/jama.2010.1708
4. Saunders JT, Nambi V, de Lemos JA, Chambless LE, Virani SS, Boerwinkle E, Hoogeveen RC, Liu X, Astor BC, Mosley TH, et al. Cardiac troponin T measured by a highly sensitive assay predicts coronary heart disease, heart failure, and mortality in the atherosclerosis risk in communities study. Circulation. 2011;123:1367–1376. doi: 10.1161/CIRCULATIONAHA.110.005264
5. de Lemos JA, Omland T, de Lemos JA, Ayers CR, Khera A, Rohtagi A, Hashim I, Berry JD, Das SR, Morrow DA, et al. Association of troponin t detected with a highly sensitive assay and cardiac structure and mortality risk in the general population. JAMA. 2010;304:2503–2512. doi: 10.1001/jama.2010.1768
6. Lyngbakken MN, Snaranes JB, de Lemos JA, Nygaard S, Dalen H, Hveem K, Røsjø H, Omland T. Impact of smoking on circulating cardiac troponin I concentrations and cardiovascular events in the general population: the HUNT study (North-Trondelag Health Study). Circulation. 2016;134:1962–1972. doi: 10.1161/CIRCULATIONAHA.116.023726
7. Skranes JB, Caggetti BL, Myhre PL, Lyngbakken MN, Solomon SD, Sabatine MS, Pfeffer MA, Omland T. Current smoking is associated with lower concentrations of high-sensitivity cardiac troponin t in
RM, et al. Stimulation of the vagus nerve attenuates macrophage activation by activating the Jak2-STAT3 signaling pathway. Nat Immunol. 2005;6:844–851. doi: 10.1038/ni1229

25. Wang H, Yu M, Ochani M, Amella CA, Tanovic M, Susaria S, Li JH, Wang H, Yang H, Ulloa L, et al. Nicotinic acetylcholine receptor alpha7 subunit is an essential regulator of inflammation. Nature. 2003;421:384–388. doi: 10.1038/nature01339

26. Gourlay SG, Rundle AC, Barron HV. Smoking and mortality following acute myocardial infarction: results from the National Registry of Myocardial Infarction 2 (NRMI 2). Nicotine Tob Res. 2002;4:101–107. doi: 10.1080/14622200110103205

27. Pollock JS, Hollenbeck RD, Wang L, Janz DR, Rice TW, McPherson JA. A history of smoking is associated with improved survival in patients treated with mild therapeutic hypothermia following cardiac arrest. Resuscitation. 2014;85:99–103. doi: 10.1016/j.resuscitation.2013.08.275

28. Gupta T, Kolte D, Khera S, Harikrishnan P, Mujib M, Aronow WS, Jain D, Ahmed A, Cooper HA, Frishman WH, et al. Smoker’s paradox in patients with ST-segment elevation myocardial infarction undergoing primary percutaneous coronary intervention. J Am Heart Assoc. 2016;5:e003370. doi: 10.1161/JAHA.116.003370

29. Yadav M, Mintz GS, Genereux P, Liu M, McAndrew T, Redfors B, Madhavan MV, Leon MB, Stone GW. The smoker’s paradox revisited: a patient-level pooled analysis of 18 randomized controlled trials. JACC Cardiometab Syndr. 2019;12:1941–1950. doi: 10.1016/j.jcmcs.2019.06.034

30. Ford I, Shah AS, Zhang R, McAllister DA, Strachan FE, Caslake M, Newby DE, Packard CJ, Mills NL. High-sensitivity cardiac troponin, statin therapy, and risk of coronary heart disease. J Am Coll Cardiol. 2016;68:2719–2728. doi: 10.1016/j.jacc.2016.10.020

31. Everett BM, Zeller T, Glynn RJ, Ridker PM, Blankenberg S. High-sensitivity cardiac troponin I and B-type natriuretic peptide as predictors of vascular events in primary prevention: impact of statin therapy. Circulation. 2015;131:1851–1860. doi: 10.1161/CIRCU Later.2015.04.068

32. Welsh P, Preiss D, Hayward C, Shah ASV, McAlister D, Briggs A, Boachie C, McConnellie A, Padmanabhan S, Welsh C, et al. Cardiac troponin T and troponin I in the general population. Circulation. 2019;139:2754–2764. doi: 10.1161/CIRCULATIONAHA.118.038529
SUPPLEMENTAL MATERIAL
Table S1. Association between smoking status and hs-cTnI.

	Model 1	Model 2		
	P value	P value		
Never	Reference	Reference		
Former smoker	-8.6% (-10.5 to -6.7)	< 0.001	-6.7% (-8.7 to -4.7)	< 0.001
Current smoker	-22.3% (-25.3 to – 19.2)	< 0.001	-17.0% (-20.2 to -13.7)	< 0.001

* The analysis includes all participants (and not only participants without cardiovascular disease). N=35417 (16281 never smokers, 16988 former smokers and 3791 current smokers)

** A positive percentage indicates a relative increase in cardiac troponin I compared to never users, whereas a negative percentage indicates an inverse association

Model 1 adjusted for sex, age, Model 2 adjusted for sex, age, current snus, total and high-density lipoprotein cholesterol, systolic blood pressure, body mass index, diabetes mellitus, eGFR, CRP, alcohol consumption, educational level and family income.
Table S2. Association between smoking status and hs-cTnI.

	Model 1	P value	Model 2	P value
Never	Reference	Reference		
Former smoker	-7.6%	< 0.001	-5.9 %	< 0.001
	(-9.4 to -5.8)		(-7.9 to -4.0)	
Current smoker	-20.0%	< 0.001	-15.1%	< 0.001
	(-23.0 to – 17.0)		(-18.2 to -12.0)	

*The analysis includes participants without cardiovascular disease, participants with the one percent highest hs-cTnI concentrations are excluded. N=31723 (14399 never smokers, 14103 former smokers and 3206 current smokers)

* A positive percentage indicates a relative increase in cardiac troponin I compared to never users, whereas a negative percentage indicates an inverse association

Model 1 adjusted for sex, age, Model 2 adjusted for sex, age, current snus, total and high-density lipoprotein cholesterol, systolic blood pressure, body mass index, diabetes mellitus, eGFR, CRP, alcohol consumption, educational level and family income.
Table S3. Association between smoking status and hs-cTnI according to age.

	Model 1	P value	Model 2	P value
Never	Reference		Reference	
Former smoker				
Age ≤ 40	-7.6% [-11.2 to -4.0]	<0.001	-5.8% [-9.8 to -1.9]	0.004
Age > 40-53	-7.1% [-11.1 to -3.0]	0.001	-4.5% [-8.8 to 0.2]	0.041
Age > 53-65.2	-3.5% [-7.6 to 0.7]	0.099	-3.4% [-7.7 to 0.8]	0.113
Age > 65.2	-10.1% [-14.4 to -5.8]	<0.001	-5.1% [-9.6 to -0.7]	0.023
Current smoker				
Age ≤ 40	-20.8% [-26.9 to -14.7]	<0.001	-16.1% [-22.6 to -9.7]	<0.001
Age > 40-53	-19.6% [-26.0 to -13.1]	<0.001	-10.4% [-17.2 to -3.6]	0.003
Age > 53-65.2	-18.3% [-24.5 to -12.0]	<0.001	-11.6% [-18.1 to -5.1]	<0.001
Age > 65.2	-24.4 [-32.0 to -16.8]	<0.001	-11.7% [-19.4 to -3.9]	0.003

* A positive percentage indicates a relative increase in cardiac troponin I compared to never users, whereas a negative percentage indicates an inverse association.

Model 1 adjusted for sex, Model 2 adjusted for sex, current snus, total and high-density lipoprotein cholesterol, systolic blood pressure, body mass index, diabetes mellitus, eGFR, CRP, alcohol consumption, educational level and family income and model 1.

p for interaction between age and smoking status > 0.05 for all regressions models.