Atherosclerotic Change at One Year After Implantation of Endeavor Zotarolimus-Eluting Stent vs. Everolimus-Eluting Stent

Yasuhiro Akazawa, MD; Koshi Matsuo, MD; Yasunori Ueda, MD, PhD; Mayu Nishio, MD, PhD; Akio Hirata, MD, PhD; Mitsutoshi Asai, MD, PhD; Takayoshi Nemoto, MD; Mitsuru Wada, MD; Ayaka Murakami, BSc; Kazunori Kashiwase, MD, PhD; Kazuhisa Kodama, MD, PhD

Background: Atherosclerosis progression is thought to be one of the mechanisms of late stent failure. Atherosclerosis progression is detected as yellow plaque formation on angioscopy. Cypher sirolimus-eluting stent has been reported to accelerate atherosclerosis progression, but the influence of Endeavor zotarolimus-eluting stent (Endeavor-ZES) or Xience everolimus-eluting stent (Xience-EES) on atherosclerosis has not been clarified. Therefore, we examined the serial changes in extent of atherosclerosis after the implantation of Endeavor-ZES or Xience-EES.

Methods and Results: Consecutive patients who received implantation of Endeavor-ZES (n=25) or Xience-EES (n=30) at de novo lesion of native coronary artery and who had successful angioscopy immediately after stent implantation (baseline) and at 1-year follow-up were included in the study. Change in the maximum yellow color grade (grade 0–3) of the stented segment from baseline to follow-up was examined and was compared between Endeavor-ZES and Xience-EES. The maximum yellow color grade decreased significantly from baseline to follow-up in Endeavor-ZES (1.6±1.1 vs. 0.4±0.8, P<0.001), but it did not change in Xience-EES (1.7±1.0 vs. 1.4±0.7, P=0.23). Although the maximum yellow color grade was not different between Endeavor-ZES and Xience-EES at baseline (P=0.72), it was significantly lower in Endeavor-ZES than in Xience-EES at follow-up (P<0.001).

Conclusions: Atherosclerosis evaluated by yellow color of the plaque was significantly reduced at 1 year after Endeavor-ZES implantation, but was not changed after Xience-EES implantation. (Circ J 2014; 78: 1428–1436)

Key Words: Angioscopy; Drug-eluting stent; Neointima; Yellow plaque

Original Article

Ischemic Heart Disease
Atherosclerosis After ZES vs. EES Implantation

Endeavor-ZES (Endeavor stent; Medtronic, Minneapolis, MN, USA) or Xience-EES (Xience V; Abbott Vascular, Santa Clara, CA, USA) using angioscopy. The change of maximum yellow color grade from baseline to follow-up was examined for Endeavor-ZES and Xience-EES, respectively, and was compared between Endeavor-ZES and Xience-EES.

One-year follow-up catheterization was encouraged for all patients who received coronary intervention, but it was not performed when (1) the patient had renal dysfunction; or (2) informed consent was not obtained. Baseline and follow-up angioscopy was encouraged for all patients who received DES implantation, but it was not performed when (1) an angioscopic specialist was available; (2) there was not adequate time for the examination; or (3) informed consent was not obtained. We have a registry of all patients who undergo an-gioscopy. From this registry, we retrospectively analyzed for this study the consecutive patients who received implantation of Endeavor-ZES or Xience-EES at de novo lesion of native coronary artery and who had successful angioscopy immediately after stent implantation (baseline) and at 1-year follow-up (between May 2010 and July 2012).

During this period, Endeavor-ZES was implanted in 197 patients, angioscopy immediately after implantation was performed in 61 patients, and follow-up angioscopy was done in

Table 1. Patient Characteristics
No. patients
Male
Age (years)
Risk factor
Diabetes mellitus
Hypertension
Hypercholesterolemia
Current smoking
Diagnosis for stenting
ACS
Non-ACS
Target vessel
LAD
LCX
RCA
Medication
Statin
Aspirin
Clopidogrel/Ticlopidine
ARB/ACEI
β-blocker

Data given as mean±SD or n (%).
ACEI, angiotensin-converting enzyme inhibitor; ACS, acute coronary syndrome; ARB, angiotensin receptor blocker; EES, everolimus-eluting stent; LAD, left anterior descending coronary artery; LCX, left circumflex coronary artery; RCA, right coronary artery; ZES, zotarolimus-eluting stent.

Table 2. Lesion and Procedural Characteristics
No. target lesions
Angiographic stenosis (%)
Before intervention
After intervention
At follow-up
TIMI flow grade (0/1/2/3), n
Before intervention
After intervention
At follow-up
Stent size (mm)
Total stent length (mm)
Maximum inflation pressure (atm)
Procedural success (%)

Data given as mean±SD or n (%).
TIMI, Thrombolysis in Myocardial Infarction. Other abbreviations as in Table 1.
25 patients without re-intervention before follow-up; and Xience-EES was implanted in 232 patients, angiography immediately after implantation was done in 83 patients, and follow-up angiography was carried out in 30 patients without re-intervention before follow-up. The patients who received re-intervention of the target lesion before planned follow-up (2 patients for Endeavor-ZES and 1 patient for Xience-EES) were not included, because we focused on clarifying the angioscopic characteristics of the stented lesion in the patients without early stent failure before 1-year follow-up.

Catheterization was performed via the femoral, brachial, or radial artery approach using a 6-Fr or 7-Fr sheath and catheters. Coronary angiogram was recorded using the Innova Cardiovascular imaging system (GE Healthcare Japan, Tokyo, Japan);
Atherosclerosis After ZES vs. EES Implantation

Statistical Analysis
Continuous data are presented as mean±SD. Comparison of maximum yellow color grade between baseline and follow-up was performed by Wilcoxon signed rank test. Comparison between groups was done using unpaired student t-test, chi-squared test, or Mann-Whitney test. To determine the significant factors associated with maximum yellow color grade at follow-up, multivariate stepwise linear regression analysis was done using stent type, age, gender, hypertension, hypercholesterolemia, diabetes mellitus, stenting for ACS, statin use, maximum yellow color grade at baseline, and minimum neointima coverage grade at follow-up as independent variables. P<0.05 was regarded as statistically significant. All analysis was carried out using SPSS 16.0 J for Windows (SPSS, Chicago, IL, USA).

Results
Patients and Lesion Characteristics
Included were 25 patients (25 lesions) for Endeavor-ZES and 30 patients (30 lesions) for Xience-EES. Follow-up interval was 380±53 days for Endeavor-ZES and 375±33 days for Xience-EES. There was no significant difference in patient, lesion, or procedural characteristics between the Endeavor-ZES and Xience-EES groups (Tables 1.2), except that stent diameter was larger and angiographic stenosis was more severe at follow-up in the Endeavor-ZES than in the Xience-EES group. Type of ACS was unstable angina in all cases, and no patients with acute myocardial infarction were included. Rep-
When we analyzed only the patients who received 3.0-mm stent, the degree of reduction in maximum yellow color grade was still larger in Endeavor-ZES than in Xience-EES (1.0 ± 1.0 vs. −0.1 ± 1.3, P=0.03). The changes in maximum yellow color grade are shown in Figure 3.

The prevalence of thrombus decreased significantly from baseline to follow-up in both stents and was not different between the stents (Figure 4). The maximum (1.8 ± 0.4 vs. 1.2 ± 0.4, P<0.001) and minimum (1.3 ± 0.5 vs. 0.8 ± 0.4, P=0.001) coverage grade was significantly better in Endeavor-ZES than in Xience-EES. Thrombus was detected only in 2 patients at follow-up: 1 patient with Endeavor-ZES had max-

Figure 3. Change in maximum yellow color grade from baseline to follow-up for each patient. The yellow color grade generally decreased in Endeavor zotarolimus-eluting stent (Endeavor-ZES). Xience-EES, Xience everolimus-eluting stent.

Figure 4. Prevalence of thrombus decreased significantly from baseline to follow-up in both stents and was not different between the stents. Xience-EES, Xience everolimus-eluting stent; Endeavor-ZES, Endeavor zotarolimus-eluting stent.

Angioscopic Findings
The maximum yellow color grade (Figure 2) decreased significantly from baseline to follow-up in Endeavor-ZES (1.6±1.1 vs. 0.4±0.8, P<0.001), but it did not change in Xience-EES (1.7±1.0 vs. 1.4±0.7, P=0.23). Although the maximum yellow color grade was not different between Endeavor-ZES and Xience-EES at baseline (1.6±1.1 vs. 1.7±1.0, P=0.72), it was lower in Endeavor-ZES than in Xience-EES at follow-up (0.4±0.8 vs. 1.4±0.7, P<0.001). Therefore, the degree of reduction in the maximum yellow color grade was larger in Endeavor-ZES than in Xience-EES (1.2±1.0 vs. 0.2±1.4, P=0.007). When we analyzed only the patients who received 3.0-mm stent, the degree of reduction in maximum yellow color grade was still larger in Endeavor-ZES than in Xience-EES (1.0±1.0 vs. −0.1±1.3, P=0.03). The changes in maximum yellow color grade are shown in Figure 3.

The prevalence of thrombus decreased significantly from baseline to follow-up in both stents and was not different between the stents (Figure 4). The maximum (1.8±0.4 vs. 1.2±0.4, P<0.001) and minimum (1.3±0.5 vs. 0.8±0.4, P=0.001) coverage grade was significantly better in Endeavor-ZES than in Xience-EES (Figure 5). The heterogeneity score was not different between Endeavor-ZES and Xience-EES (0.52±0.59 vs. 0.40±0.50, P=0.42). Thrombus was detected only in 2 patients at follow-up: 1 patient with Endeavor-ZES had max-

representative cases of Endeavor-ZES and Xience-EES are shown in Figure 1.
Atherosclerosis After ZES vs. EES Implantation

On multivariate stepwise linear regression analysis only stent type (Xience-EES=0, Endeavor-ZES=1) was a significant contributor to maximum yellow color grade at follow-up (B=-1.03; Figure 6).

Contributing Factors to Maximum Yellow Grade at Follow-up

Figure 5. Distribution of minimum and maximum neointima coverage grade at follow-up. The maximum and minimum coverage grade was significantly better in Endeavor zotarolimus-eluting stent (Endeavor-ZES) than in Xience everolimus-eluting stent (Xience-EES). Major neointima coverage grade was grade 2 in Endeavor-ZES and was grade 1 in Xience-EES.

Figure 6. Combination of maximum yellow color grade and minimum coverage grade with or without the presence of thrombus. Thrombus was detected only in 2 patients at follow-up: 1 patient with Endeavor zotarolimus-eluting stent (Endeavor-ZES) who had maximum yellow color grade 2 and minimum coverage grade 0; and 1 patient with Xience everolimus-eluting stent (Xience-EES) who had maximum yellow color grade 2 and minimum coverage grade 1. (Figure 6).
95% confidence interval, −1.48 to −0.59; P<0.001), when stent type, age, gender, hypertension, hypercholesterolemia, diabetes mellitus, stenting for ACS, statin use, maximum yellow color grade at baseline, and minimum neointima coverage grade at follow-up were included as independent variables.

Discussion

The maximum yellow color grade did not change from baseline to 1-year follow-up when Xience-EES was implanted, but it decreased significantly when Endeavor-ZES was implanted. In other words, atherosclerosis evaluated by yellow plaque was significantly reduced at 1 year after Endeavor-ZES implantation, while it was not changed after Xience-EES implantation.

Delayed Healing as Cause of Late Stent Failure

The incidence of thrombus at follow-up in Cypher-SSES has been reported to be as high as 10–40% according to previous studies. This delayed healing or lack of healing with high frequency of thrombogenesis has been regarded as one of the possible mechanisms for thrombotic occlusion or stenosis progression in the first-generation DES. As shown in the present study, however, both Endeavor-ZES and Xience-EES had very low incidence of thrombus, and therefore, delayed healing would not be a major mechanism of late stent failure in those stents. The presence of thrombus has been associated with high yellow color grade and low neointima coverage grade. Indeed, thrombus was detected in 2 patients with grade 2 maximum yellow color grade and grade 0/1 minimum coverage grade in the present study, but the incidence of thrombus was similarly low in both Endeavor-ZES and Xience-EES regardless of the different yellow color grade and different neointima coverage grade. Angioscopy can classify neointima coverage only approximately into 3 grades, and angioscopically poor coverage (grade 0 and 1) may or may not have thin but mature neointima that can prevent thrombus formation. Therefore, it would be reasonable to suggest that Xience-EES has very thin but good neointima that can prevent thrombus formation.

Neo/Atherosclerosis Progression as Cause of Late Stent Failure

Development of atherosclerotic plaque and its disruption is known as a cause of ACS after BMS implantation, but it usually takes approximately 5–10 years for the formation of atherosclerotic yellow plaque in the non-atherosclerotic (fibrous) white thick neointima formed over BMS and the resultant development of ACS due to its disruption. Development of neoatherosclerosis has also been reported as a cause of very late stent thrombosis and of restenosis after DES implantation. In a porcine model study, long-term inhibition of neointima hyperplasia after polymer-based SES was not maintained, partly because of persistent inflammatory stimuli and subsequent cellular proliferation. Higo et al reported for the first time in living humans that Cypher-SSES accelerated the formation of atherosclerotic yellow neointima at 10 months, with intramural thrombus being more frequently detected in the newly formed yellow neointima. A recent histopathologic study by Nakazawa et al confirmed the presence of neoatherosclerosis in the neointima after BMS and DES implantation, with a shorter time to develop neoatherosclerosis for DES than BMS. Although Cypher-SSES accelerates the progression of atherosclerosis, as we have previously demonstrated by the increase of yellow color, and Endeavor-ZES causes the stabilization of atherosclerosis, as shown in the present study by the reduction of yellow color, Xience-EES did not significantly cause progression of atherosclerosis in the present study, given that the yellow color was not changed. The reduction of yellow color by Endeavor-ZES would be caused mainly by the formation of thick non-atherosclerotic fibrous white neointima, as in BMS. The formation of thick non-atherosclerotic fibrous white neointima over atherosclerotic lesions plays a role in sealing and shielding that makes the vulnerable plaque stable. In contrast, Xience-EES had very thin neointima that could not seal and shield the yellow plaque under the stent. Another important finding is that Xience-EES did not accelerate the formation of yellow plaque like Cypher-SSES. Yellow plaque formation is accelerated by various coronary risk factors as a process of atherosclerosis progression, and is regressed by various treatments such as statins. Therefore, in combination with these systemic factors and medications, the characteristics of DES may influence the formation of yellow plaques in the stent-implanted segments. We believe that the presence of in-stent yellow plaque at 1-year follow-up, resulting from the combination of these mechanisms, would be a risk for future stent failure after 1 year. Indeed, statin use has been associated with lower risk of late TLR after Cypher-SSES implantation. It has been shown that the coronary segment with peri-stent contrast staining, which is known as a predictor of late stent thrombosis after DES implantation, frequently has yellow plaque (82%) and thrombus (64%).

According to the results of clinical trials with long-term follow-up to 5 years available in previous reports or at the website ClinicalTrials.gov, TLR at 1 and 5 years are 4.9% and 9.4% in Cypher-SSES; 4.4% and 9.1% in Taxus paclitaxel-eluting stent (Taxus-PES); 5.9% and 7.5% in Endeavor-ZES; 3.3% and 3.4% and 8.9% in Xience-EES. Therefore, the very late stent failure as shown by the yearly TLR between 1 and 5 years is 1.1%/year, 1.2%/year, 0.4%/year, and 1.4%/year in Cypher-SSES, Taxus-PES, Endeavor-ZES, and Xience-EES, respectively, which appears to be lower in Endeavor-ZES than in other DES, although this is not the result of direct head-to-head comparison. A recent report clarified that, in the ENDEAVOR III trial, although higher angiographic restenosis was observed in Endeavor-ZES than in Cypher-SSES in the primary results reported for the 9-month follow-up, cumulative outcomes through 5 years showed that the composite endpoint of main adverse coronary event and the important components of death, as well as cardiac death and myocardial infarction, favored treatment with Endeavor-ZES compared with Cypher-SSES. Furthermore, despite early difference in angiographic outcome, rates of clinical restenosis beyond 9-month follow-up remained stable with Endeavor-ZES compared with Cypher-SSES, resulting in similar late-term efficacy as measured by the need for TLR. The higher incidence of late-term stent failure in Cypher-SSES than in Endeavor-ZES may possibly be explained by the fact that Cypher-SSES accelerates the progression of yellow plaque and Endeavor-ZES induces regression of the yellow color. Judging from the present results, the stability of the stented segments with Xience-EES may be between those of Endeavor-ZES and Cypher-SSES. The difference in long-term clinical outcome between Xience-EES and Endeavor-ZES may not be clarified without randomized trials.

Angioscopic Findings and Future DES Failure

According to the accumulated findings described here, we believe that the extent of atherosclerosis in the DES-implanted segment as shown by its yellow color would be associated with future DES failure. In order to demonstrate that the angioscopic findings at 1-year follow-up would be associated with future DES failure, we are now performing a single-center prospective study (DESNOTE study: Detect the Event
of very late Stent failure from the drug-eluting stent NOT well covered by neointima determined on angioscopy). All patients with successful angiography at planned 1-year follow-up after DES implantation without any event of DES failure before the follow-up have been enrolled since 2004 and are clinically followed up at the outpatient clinic. Angiographic findings are yellow color, neointima coverage, and thrombus at the DES-implanted segment. DES failure is defined as (1) cardiac death; (2) myocardial infarction or unstable angina at the target stent; or (3) TLR.

Study Limitations

Although we have demonstrated the changes in yellow color after the implantation of Endeavor-ZES and Xience-EES, it remains to be clarified whether the yellow color is a surrogate endpoint of future stent failure. Therefore, the present results do not indicate the clinical superiority or inferiority of the examined DES. Although patient characteristics were generally similar between the Endeavor-ZES and Xience-EES groups, they were not completely matched, because this was not a randomized trial. Although there was a significant difference in stent diameter between the groups, the degree of reduction in maximum yellow color grade was still larger in Endeavor-ZES than in Xience-EES when we included 0.0-mm stent alone. Although the atherosclerotic change up to 1 year has been clarified in the present study, the change thereafter should be clarified in further investigations. Only a small percentage of all patients who received Endeavor-ZES or Xience-EES were included in the present analysis. Possible selection bias would be that the patients with renal dysfunction and those with small or tortuous coronary artery not suitable for angiography were not included in the present analysis.

Conclusions

Atherosclerosis evaluated by yellow color of the plaque was significantly reduced at 1 year after Endeavor-ZES implantation, but it was not changed after Xience-EES implantation.

Disclosures

The authors have no conflicts of interest.

References

1. Daemen J, Wenaweser P, Tsuchida K, Abrecht L, Vaina S, Morger PJ, et al. Extended follow-up of the XIENCE V Everolimus Eluting Coronary Stent System in the treatment of patients with de novo coronary artery disease: The SPIRIT II trial. European Society of Cardiology 2009; 58: 19 – 25.
2. Ueda Y, Ohtani T, Shimizu M, Hirayama A, Kodama K. Assessment of plaque vulnerability by angiographic classification of plaque color. *Am Heart J* 2004; 148: 333 – 335.
3. Ueda Y, Asakura M, Yamaguchi O, Hirayama A, Hori M, Kodama K. The healing process of infant-related plaques. Insights from 18 months of serial angiographic follow-up. *J Am Coll Cardiol* 2001; 38: 1916 – 1922.
4. Higo T, Ueda Y, Oyabu J, Okada K, Nishio M, Hirata A, et al. Atherosclerotic and thrombogenic neointima formed over sirolimus drug-eluting stent: An angiographic study. *JACC Cardiovasc Imaging* 2009; 2: 616 – 624.
5. Ueda Y, Nanto S, Komamura K, Kodama K. Neointimal coverage of stents in human coronary arteries observed by angioscopy. *Circulation* 1994; 23: 341 – 346.
6. Uyama Y, Ogasawara N, Okada K, Hirayama A, Kodama K. Angiographic evaluation of neointima coverage: Sirolimus drug-eluting stent versus bare metal stent. *Am Heart J* 2006; 152: 1168 – 1174.
7. Kondo J, Awata M, Nanto S, Uematsu M, Minamiguchi H, et al. Incomplete neointimal coverage of sirolimus-eluting stents: Angiographic findings. *J Am Coll Cardiol* 2006; 47: 2108 – 2111.
8. Hara M, Nishino T, Tanaka Y, Makino N, Kato H, Egami Y, et al. High incidence of thrombus formation at 18 months after paclitaxel-eluting stent implantation: Angiographic comparison with sirolimus-eluting stent. *J Am Coll Cardiol* 2010; 159: 905 – 910.
9. Takano T, Nakamoto Y, Nakagawa K, Nakamura T, Watanabe T, Onishi T, et al. Randomized comparison of everolimus-eluting and paclitaxel-eluting stents: Two-year clinical follow-up from the Clinical Evaluation of the Xience V Everolimus Eluting Coronary Stent System IV trial. *J Am Coll Cardiol* 2011; 58: 19 – 25.
stents. JACC Cardiovasc Interv 2009; 2: 453–458.
24. Finn AV, Joner M, Nakazawa G, Kolodgie F, Newell J, John MC, et al. Pathological correlates of late drug-eluting stent thrombosis: Strut coverage as a marker of endothelialization. Circulation 2007; 115: 2435–2441.
25. Liistro F, Stankovic G, Di Mario C, Takagi T, Chieffo A, Mosher S, et al. First clinical experience with a paclitaxel derivate-eluting polymer stent system implantation for in-stent restenosis: Immediate and long-term clinical and angiographic outcome. Circulation 2002; 105: 1883–1886.
26. Carter AJ, Aggarwal M, Kopia GA, Tio F, Tsao PS, Kolata R, et al. Long-term effects of polymer-based, slow-release, sirolimus-eluting stents in a porcine coronary model. Cardiovasc Res 2004; 63: 617–624.
27. Hirayama A, Saito S, Ueda Y, Takayama T, Honye J, Komatsu S, et al. Qualitative and quantitative changes in coronary plaque associated with atorvastatin therapy. Circ J 2009; 73: 718–725.
28. Okada K, Ueda Y, Takayama T, Honye J, Komatsu S, Yamaguchi O, et al. Influence of achieved low-density lipoprotein cholesterol level with atorvastatin therapy on stabilization of coronary plaques: Sub-analysis of the TWINS study. Circ J 2012; 76: 1197–1202.
29. Natsuaki M, Nakagawa Y, Morimoto T, Ono K, Shizuta S, Furukawa Y, et al. Impact of statin therapy on late target lesion revascularization after sirolimus-eluting stent implantation (from the CREDO-Kyoto Registry Cohort-2). Am J Cardiol 2012; 109: 1387–1396.
30. Ishihara T, Awata M, Fujita M, Watanabe T, Iida O, Ishida Y, et al. Angioscopic assessment of peri-stent contrast staining following drug-eluting stent implantation. Circ J 2013; 78: 122–127.
31. Holmes DR Jr, Leon MB, Moses JW, Popma JJ, Cutlip D, Fitzgerald PJ, et al. Analysis of 1-year clinical outcomes in the SIRIUS trial: A randomized trial of a sirolimus-eluting stent versus a standard stent in patients at high risk for coronary restenosis. Circulation 2004; 109: 634–640.
32. Weisz G, Leon MB, Holmes Dr Jr, Kereiakes DJ, Popma JJ, Teirstein PS, et al. Five-year follow-up after sirolimus-eluting stent implantation results of the SIRIUS (Sirolimus-Eluting Stent in De-Novo Native Coronary Lesions) Trial. J Am Coll Cardiol 2009; 53: 1488–1497.
33. Stone GW, Ellis SG, Cox DA, Hermiller J, O’Shaughnessy C, Mann JT, et al. One-year clinical results with the slow-release, polymer-based, paclitaxel-eluting TAXUS stent: The TAXUS-IV trial. Circulation 2004; 109: 1942–1947.
34. Ellis SG, Stone GW, Cox DA, Hermiller J, O’Shaughnessy C, Mann JT, et al. Long-term safety and efficacy with paclitaxel-eluting stents: 5-year final results of the TAXUS IV clinical trial (TAXUS IV-SR: Treatment of De Novo Coronary Disease Using a Single Paclitaxel-Eluting Stent). JACC Cardiovasc Interv 2009; 2: 1248–1259.
35. Fajadet J, Wijns W, Laarman GJ, Kuck KH, Ormiston J, Münzel T, et al. Randomized, double-blind, multicenter study of the Endeavor zotarolimus-eluting phosphorylcholine-encapsulated stent for treatment of native coronary artery lesions: Clinical and angiographic results of the ENDEAVOR II trial. Circulation 2006; 114: 798–806.
36. Fajadet J, Wijns W, Laarman GJ, Kuck KH, Ormiston J, Baldus S, et al. Long-term follow-up of the randomised controlled trial to evaluate the safety and efficacy of the zotarolimus-eluting driver coronary stent in de novo native coronary artery lesions: Five year outcomes in the ENDEAVOR II study. EuroIntervention 2010; 6: 562–567.
37. Stone GW, Midei M, Newman W, Sanz M, Hermiller JB, Williams J, et al. Comparison of an everolimus-eluting stent and a paclitaxel-eluting stent in patients with coronary artery disease: A randomized trial. JAMA 2008; 299: 1903–1913.