Diagnostics and spread of SARS-CoV-2 in Western Africa: An observational laboratory-based study from Benin

Anges Yadouleton, PhD¹,²*, Anna-Lena Sander, MSc³*, Andres Moreira-Soto, PhD³*, Carine Tchibozo, MSc¹, Gildas Hounkanrin, MSc¹, Yvette Badou, MSc¹, Carlo Fischer, MSc¹, Nina Krause, MSc³, Petas Akogbeto, PhD⁴, Edmilson F. de Oliveira Filho, PhD³, Anges Dossou, PhD⁴, Sebastian Brünink³, Melchior A. Joël Aïssi, PhD⁵, Mamoudou Harouna Djingarey, PhD⁶, Benjamin Hounkpatin, PhD⁴, Michael Nagel, PhD⁷ and Jan Felix Drexler, MD³,⁸#$

¹Laboratoire des Fièvres Hémorragiques Virales du Benin, Cotonou, Benin
²Ecole Normale Supérieure de Natitingou; Université Nationale des Sciences, Technologies, Ingénierie et Mathématiques (UNSTIM).
³Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute of Virology, Berlin, Germany
⁴Ministry of Health, Cotonou, Benin
⁵Conseil National de Lutte contre le VIH-Sida, la Tuberculose, le Paludisme, les IST et les Epidémies, Benin
⁶World Health Organization, Regional Office for Africa, Health Emergencies programme, Brazzaville, Congo
⁷Deutsche Gesellschaft für Internationale Zusammenarbeit (GIZ) GmbH, Bonn, Germany
⁸German Centre for Infection Research (DZIF), associated partner Charité-Universitätsmedizin Berlin, Germany

*These first authors contributed equally; $These last authors contributed equally

#corresponding author

Corresponding author contact information

Professor Dr. Jan Felix Drexler, Helmut-Ruska-Haus, Institute of Virology, Campus Charité Mitte, Charitéplatz 1, 10117 Berlin, Germany, Tel.: +49 30 450 625461/Fax: +49 30 450 7525907, felix.drexler@charite.de

Keywords: Coronavirus, SARS-CoV-2, Africa, Benin, West-Africa

Word count, abstract: 250

Word count, text: 2,902

Running title: COVID-19 pandemic, Western Africa
Abstract

Information on severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) spread in Africa is limited by fragile surveillance systems and insufficient diagnostic capacity.

We assessed the coronavirus disease-19 (COVID-19)-related diagnostic workload in Benin, Western Africa, characterized SARS-CoV-2 genomes from 12 acute cases of COVID-19, used those together with public data to estimate SARS-CoV-2 transmission dynamics in a Bayesian framework, validated a widely used diagnostic dual target RT-PCR kit donated to African countries, and conducted serological analyses in 68 sera from confirmed COVID-19 cases and from febrile patients sampled before the predicted SARS-CoV-2 introduction.

We found a 15-fold increase in the monthly laboratory workload due to COVID-19. Genomic surveillance showed introductions of three distinct SARS-CoV-2 lineages. SARS-CoV-2 genome-based analyses yielded an R0 estimate of 4.4 (95% confidence interval: 2.0-7.7), suggesting intense spread of SARS-CoV-2 in Africa. RT-PCR-based tests were highly sensitive but showed variation of internal controls and between diagnostic targets. Commercially available SARS-CoV-2 ELISAs showed up to 25% false-positive results depending on antigen and antibody types, likely due to unspecific antibody responses elicited by acute malaria according to lack of SARS-CoV-2-specific neutralizing antibody responses and relatively higher parasitemia in those sera.

We confirm an overload of the diagnostic capacity in Benin and provide baseline information on the usability of genome-based surveillance in resource-limited settings. Sero-epidemiological studies needed to assess SARS-CoV-2 spread may be put at stake by low specificity of tests in tropical settings globally. The increasing diagnostic challenges demand continuous support of national and supranational African stakeholders.

Funding

This work was supported by the Deutsche Gesellschaft für Internationale Zusammenarbeit (GIZ) GmbH.
Introduction

Coronavirus infectious disease-19 (COVID-19) emerged in China late 2019 and has afforded over 5 million cases globally by early June 2020. The large numbers of cases cause pressure to health care systems worldwide including laboratory diagnostics of the causative severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). Africa may be particularly vulnerable to COVID-19. As shown in Figure 1A, Sub-Saharan Africa is the most underdeveloped region globally according to the United Nations Development Programme (UNDP). Weak health care and surveillance systems may fail to control SARS-CoV-2 spread and provide basic medical attention as evidenced by the low UNDP health indicators of quantity of physicians and hospital beds per 10,000 people (Figure 1B). Age is a major risk factor for severe COVID-19 globally, hence the relatively younger African population may be relatively more protected (Figure 1A). However, frequent cardiovascular and chronic respiratory diseases, malaria, HIV infection and tuberculosis combined with unhealthy diets may increase risks for severe courses of COVID-19 in Africa despite a relatively young population.

To date, over 70 thousand confirmed COVID-19 cases from all African countries have been reported. The reasons for the relatively lower numbers compared to other continents are unclear, but underreporting due to lack of diagnostic capacity is likely a major factor limiting surveillance and patient care in Africa. Therefore, the Chinese Jack Ma Foundation donated more than 1 million RT-PCR-based SARS-CoV-2 test kits to all African countries in March 2020 (https://edition.cnn.com/2020/03/16/africa/jack-ma-donate-masks-coronavirus-africa/index.html; accessed 9 June 2020).

Benin is a West-African country with 12 million inhabitants, representing one of the most densely populated African regions (Figure 1C), which may facilitate intense SARS-CoV-2 spread. The Laboratoire des Fièvres Hémorragiques Virales du Benin (LFHB) is Benin’s reference laboratory for respiratory diseases, testing all the country’s suspected COVID-19 cases. Here, we provide insight into all aspects of SARS-CoV-2 laboratory performance at LFHB, as an example for the challenges inferred by the COVID-19 pandemic in Western Africa.

Methods

Study design and participants

We assessed daily data on sample receipt and RT-PCR-based SARS-CoV-2 detections during January-April 2020. We characterized SARS-CoV-2 from 12 PCR-confirmed travelers entering Benin during March-April 2020.
We obtained early convalescent sera from eight PCR-confirmed patients sampled during March-April 2020, taken an average 8 days post SARS-CoV-2 RT-PCR confirmation (range: 1-10 days) (appendix p 4). We obtained 60 sera sampled from patients with acute febrile illness during hemorrhagic fever surveillance activities at LFHB during October-November 2019 (appendix p 5-6; p 47). Samples were taken by trained technicians and stored at –20°C until usage. This study was approved by the ethics committee of the Ministry of Health (Arrêté 2020 No. 030/MS/DC/SGM/DNSP/CJ/SA/027SGG2020) and followed the Declaration of Helsinki. Written consent was obtained from all the patients participating in the study. Anonymized datasets were used, and all analysis of personally identifiable data took place only in the LFHB.

Laboratory testing and in-silico analyses

RNA was extracted from oro-nasopharyngeal swabs suspended in 140 μl of viral transport medium using the viral RNA mini kit (Qiagen, Germany) following the manufacturer’s instructions. Diagnostics of SARS-CoV-2 was performed using the kit donated by the Jack Ma Foundation termed 2019 Novel Coronavirus RNA detection kit (Da An Gene Co., Ltd. Of SunYat-sen University, China) which targets the ORF1ab and N genes of SARS-CoV-2, the RealStar SARS-CoV-2 RT-PCR Kit 1.0 (Altona Diagnostics, Germany) which targets the E and S genes of SARS-CoV-2 as well as SarbecoV E-gene kit and SARS-CoV-2 RdRP kit (TIB Molbiol, Germany). Probit regression analyses to determine the lower limit of detection of real-time RT-PCR assays were done using full viral RNA extracted from supernatant of Vero cells infected with the strain 2019-nCoV/München-1.2/2020/985 quantified with a SARS-CoV-2-specific in-vitro RNA transcript and real-time-RT SARS-CoV-2 E-gene assay as described earlier. Analyses were done using SPSS V22 (IBM, Germany) using eight parallel test replicates. Whole genome amplification was done using the Artic Consortium PCR-based protocol (https://artic.network/ncov-2019). Library preparation and Illumina MiSeq sequencing was done using the KAPA Frag Kit and KAPA Hyper Prep kit (Roche Molecular Diagnostics, Switzerland) and MiSeq reagent v2 chemistry (Illumina, U.S.A) according to the manufacturers’ protocols. Genome assembly was done by mapping MiSeq reads to a representative African SARS-CoV-2 sequence (hCoV-19/Senegal/611/2020/EPI_ISL_420076). Genome annotations were made in analogy to a SARS-CoV-2 reference sequence (NC045512) using Geneious 9.1.8 (https://www.geneious.com).
Time-stamped Bayesian phylogenies based on sampling dates were performed in BEAST2 (appendix p 2). The phylogeny was annotated with TreeAnnotator and visualized in FigTree from the BEAST package. Bayesian birth-death skyline analyses were performed in BEAST2 using parameters described in the appendix on p 2.

Serology

Sera were tested using commercially available ELISAs relying on different antigens and antibody classes, namely SARS-CoV-2 N antigen (IgG), spike S1 subunit (both IgG and IgA) and Middle East respiratory syndrome coronavirus (MERS)-CoV S1 (IgG; all from Euroimmun, Germany). Additionally, sera were tested using commercially available ELISA kits (Euroimmun) against the Zika virus (ZIKV) NS1 antigen (IgG), the Epstein-Barr virus (EBV) EBNA1 antigen (IgG), the EBV VCA antigen (both IgM and IgG) and using real-time-PCR for Plasmodia (all human pathogenic species), EBV and cytomegalovirus (CMV) (all from TIB Molbiol). Plaque reduction neutralization tests (PRNT) for SARS-CoV-2 and ZIKV were performed as described in the appendix on p 2.

Antibody testing against common cold betacoronaviruses HCoV-OC43 and HCoV-HKU1 that belong to the same viral genus as SARS-CoV-2, and may thus elicit cross-reactive antibodies, relied on recombinant spike protein-based immunofluorescence assays as previously described (appendix p 2).

Data availability

The nucleotide sequences of the SARS-CoV-2 genomes used in this study are available at the GISAID database (https://www.gisaid.org/) under accession IDs EPI_ISL_476822- EPI_ISL_476831 and EPI_ISL_476833- EPI_ISL_476834.

Results

SARS-CoV-2 workload at LFHB

One of the major problems that health systems worldwide face during the COVID-19 pandemic is the overload of their diagnostic capacities. At the LFHB in Benin, oro-nasopharyngeal swabs for SARS-CoV-2 diagnostics were first received the 1st of March 2020 and the first case was detected in a traveler on the 14th of March. Until the 28th of April 2020, LFHB had received a total of 4,382 samples for SARS-CoV-2 molecular testing with up to 543 samples per day (Figure 2). The actual maximum testing capacity was up to 100 samples daily due to the limited availability of personnel, reagents and laboratory equipment, which was exceeded on 14 days during March-April, demonstrating
the immense workload that LFHB has compensated using night shifts and all its available workforce only for SARS-CoV-2 diagnostics, at the cost of viral hemorrhagic fever surveillance. Notably, the average number of positive samples detected per day was 1·4 (range 1-5), irrespective by the number of samples received per day, which may have resulted from imprecise country-level case definitions.10

Phylogenomic analyses of SARS-CoV-2 in Benin

By the 26th of May 2020, 29,290 SARS-CoV-2 full genomes have been fully or partially sequenced by the global scientific community and deposited in GISAID. Of those, only 1% (n=201) originated from Africa (Figure 3A). To investigate the SARS-CoV-2 diversity introduced into Benin, we amplified 12 SARS-CoV-2 genomes from Beninese citizens. One of these 12 individuals was a patient from a local hospital, whereas the other 11 were returning travelers from Europe or Central-West African countries who showed no symptoms of disease but had to be tested for SARS-CoV-2 infection during quarantine upon re-entering Benin (appendix p 3).

In a Bayesian phylogenetic analysis, the SARS-CoV-2 genomes clustered with the globally spreading SARS-CoV-2 lineages A and B11 (Figure 3B), which is in accordance with those individuals’ travel history. To further characterize the SARS-CoV-2 genomic diversity in Africa, we analyzed nucleotide differences in a dataset comprising the Beninese and another 42 full African SARS-CoV-2 genomes available in GISAID until the 13th of May. Within the Benin-derived sequences, 12 variable nucleotide positions were observed, resulting in seven amino acid exchanges, all of which were corresponding to previously published variable positions12 (Figure 3C). According to distinct genomic signatures, seven different clades were identified for SARS-CoV-2 in Africa (appendix p 7-9). The SARS-CoV-2 genomes from Benin belonged to three of those seven clades (Figure 3C). Those three clades also included viruses from Algeria, the Democratic Republic of the Congo, Senegal and South Africa, as well as France and Italy, hinting either at transmission across different African countries or parallel introduction of diverse SARS-CoV-2 lineages into African countries. In sum, genomic analyses suggest several independent introductions of globally circulating SARS-CoV-2 lineages into Africa due to returning travelers, resulting in a high SARS-CoV-2 genetic diversity in Africa.

Bayesian skyline analyses to determine R_0
Phylogenetic data can be used to estimate changes in the basic reproduction number (R_0) over time. We inferred R_0 using all SARS-CoV-2 genomes found in the GISAID databases from Africa until the 13th of May and the novel SARS-CoV-2 genomes from this study (Figure 3D). The calculated median R_0 increased from 2.4 (95% confidence interval (CI): 1.04-3.7) to 4.4 (95% CI: 2.0-7.7) from February to March 2020, consistent with the first SARS-CoV-2 detection in Africa on February 14th in Egypt (https://www.egypttoday.com/Article/1/81641/Egypt-announces-first-Coronavirus-infection), the first detection in Benin in mid-March 2020 and consistent with rapidly increasing number of cases from the African continent thereafter.

Evaluation of diagnostic tests donated to Africa

Diagnostics of acute SARS-CoV-2 infections rely on molecular testing. However, access to state-of-the-art reagents and external quality control remain unresolved key issues of outbreak response in resource-limited regions. In March 2020, Jack Ma, co-founder and head of the Alibaba Group in China, kindly donated and distributed more than 1 million RT-PCR kits produced in China to Africa. No external validation of the kit has been performed to date, hindering assessments of diagnostic performance. Using serial dilutions of quantified SARS-CoV-2 cell culture-derived RNA, we determined a very high analytical sensitivity with a 95% limit of detection of 0.7-7.8 copies per reaction of both assays included in this dual-target kit (Figure 4A). Notably, one of those two assays targeting the genomic ORF1ab region showed a 10-fold lower sensitivity than the other assay targeting the N genomic region (Figure 4A). This may lead to inconclusive results during testing of patient specimens containing low amounts of viral RNA sampled late during the course of infection.

Nucleotide mutations in binding regions of PCR oligonucleotides are known to affect the diagnostic sensitivity of an assay, potentially leading to false-negative results. The exact target sites of the assays donated by the Jack Ma foundation are unknown. Therefore, we tested the donated kit on six clinical swab samples representing the genetic variation of SARS-CoV-2 in Benin (Clades 1-3). The donated kit detected SARS-CoV-2 RNA in all six clinical samples identical or superior to commercially available assays (Figure 4B), suggesting robust diagnostic sensitivity. However, in 29.6% (21/71) of the tested clinical sample replicates, the assay’s internal control was not detected, which according to the manufacturer’s instructions invalidates the test. No further information about the internal control is given in the manufacturer’s protocol. In sum, the donated kit can be used confidently for diagnostics in Africa, but
laboratories need to be alert about variations between the two different genomic targets and variations of the assay’s internal controls, which may have to be ignored to ensure diagnostic testing.

Serological assessment in the West-African setting

Serological assays detecting antibodies against SARS-CoV-2 suggestive of past infection are required for accurate estimates of viral spread and of the time of SARS-CoV-2 introduction into Africa, potentially facilitated by more than 200,000 Chinese workers on the African continent (https://sais-cari.org/data-chinese-workers-in-africa). Serological studies in European and Asian countries indicate high sensitivity and specificity of widely used SARS-CoV-2 serological tests such as ELISAs, but no assessment has been performed in African populations. In eight RT-PCR-confirmed patients from Benin, SARS-CoV-2 seroconversion ranged from 62.5 to 87.5% (7/8; 95% CI: 30.8-99.1%), depending on the ELISA that was used and confirmed a higher sensitivity of the IgA-based compared to the IgG-based SARS-CoV-2 ELISAs (Figure 5A). As shown in Figure 5B, 87.5% (7/8) of those ELISA results were confirmed by a highly specific SARS-CoV-2 PRNT. In 60 samples taken during October-November 2019 from febrile patients, 23.3% positive or borderline ELISA results potentially representing true positives were observed (14/60; 95% CI: 14.3-35.5%). Different from PCR-confirmed cases, ELISA reactivity contrasted with the complete lack of SARS-CoV-2-specific neutralizing antibodies in those samples (Figure 5A and 5B). Likely unspecific SARS-CoV-2 ELISA reactivity may be consistent with three scenarios. First, antibodies elicited by common infections with endemic human coronaviruses may cross-react with SARS-CoV-2 antigens. However, sera that yielded positive SARS-CoV-2 ELISA results did not differ significantly from sera that yielded negative SARS-CoV-2 ELISA results in their reactivity with common cold coronaviruses (45.7-63.6% versus 70.4-74.0%; p=0.1 and p=0.7, Fisher’s exact test) (appendix p 47). Similarly, the magnitude of antibody responses against common cold coronaviruses did not differ significantly between those groups (p=0.09 and p=0.8, t-test) (appendix p 47). Second, polyclonal B-cell activation can occur in infections or reactivations with herpesviruses such as CMV and EBV and elicit false-positive results in serological tests. However, only two patients were positive in a CMV PCR and one in an EBV PCR, and SARS-CoV-2 ELISA-positive versus ELISA-negative individuals did not differ in their past exposure to those human herpesviruses according to detailed serological analyses (appendix p 48). Lastly, polyclonal B-cell activation can also be caused by acute malaria, which is widespread in Africa. As shown in Figure 5C, a higher proportion of those individuals that yielded positive SARS-CoV-2 ELISA results than those that yielded negative ELISA results were
positive for Plasmodia in a highly sensitive PCR test (71.4% versus 54.3%), albeit this difference was not statistically
significant (p=0.35, Fisher’s exact test). In contrast, significantly higher parasite loads occurred within SARS-CoV-2
ELISA-positive compared to ELISA-negative individuals (Figure 5C) (p=0.035; t-test). Higher parasite loads that
decrease overtime have been observed in acute malaria, suggesting a higher proportion of acute malaria in SARS-
CoV-2 ELISA-positive patients compared to sub-acute or chronic malaria in SARS-CoV-2 ELISA-negative patients.21
To assess the breadth of potentially unspecific reactivity, we tested the sera from febrile patients using a Zika virus
(ZIKV) IgG-ELISA for which unspecific reactivity in cases of acute malaria has been reported previously.20 As shown
in Figure 5D, sera that elicited potentially unspecific SARS-CoV-2 ELISA results also elicited significantly more
frequently positive ZIKV ELISA results (57.1 versus 23.9%; p=0.019, Fisher’s exact test). None of the sera yielding
positive ZIKV ELISA results showed ZIKV-specific neutralizing antibodies, suggesting unspecific reactivity of those
sera in the ZIKV ELISA. Additionally, sera that yielded potentially false-positive results in the SARS-CoV-2 ELISA
were also significantly more likely to show potentially false-positive results in in the ZIKV ELISA (p=0.04; Chi-
Square test) (appendix p 49). Notably, no serum reacted with MERS-CoV antigens, suggesting that unspecific
reactivity may not automatically apply to all coronavirus antigens and tests (appendix p 47). In sum, close to 25% of
the febrile patients showed unspecific reactivity in SARS-CoV-2 ELISAs, possibly due to acute malaria.

Discussion

We performed an observational study investigating COVID-19-related diagnostics in a West-African reference
laboratory. Our genome-based R₀ estimates, although preliminary, provide a blueprint to support notoriously weak
surveillance in resource-limited African settings and support increased efforts to characterize SARS-CoV-2 genomes
over time across geographic regions, similar to the large genomic dataset generated by multiple groups during the
2013-2016 West African Ebola outbreak.22 Our relatively high R₀ estimate compared to other regions suggests intense
spread of SARS-CoV-2 on the African continent.23 The relatively higher R₀ compared to the initially low number of
reported cases from Africa likely results from weak surveillance systems, albeit a high number of asymptomatic
infections limiting accurate estimates of disease spread24 or an insufficient genomic dataset to infer robust R₀ estimates
cannot be ruled out. Nevertheless, Even an R₀ in the range of 2, which corresponds to the lower end of the 95%
confidence intervals of our R₀ estimate, may imply more than 80 million cases in Africa if no intervention is
established according to a recent modeling study25, highlighting the need of non-pharmaceutical and other medical
interventions in densely populated African settings.

Serological testing presenting up to 25\% unspecific reactivity might affect public health interventions in tropical
regions, leading to an overestimate of SARS-CoV-2 circulation in regions where malaria is endemic and to
misidentification of real SARS-CoV-2 hotspots. Additionally, target populations for vaccine campaigns once those
become available might be missed, and co-circulating diseases such as malaria might be overlooked based on false-
positive SARS-CoV-2 results, leading to higher mortality from those endemic diseases.26, 27 The robustness of SARS-
CoV-2 serological tests should be further assessed by multi-centric sero-epidemiological studies from different
tropical regions affected by multiple infections potentially affecting accurate serology-based SARS-CoV-2
diagnostics.28

Limitations of our study include the small number of patients as well as limited patient metadata. Furthermore, due to
the small number of available SARS-CoV-2 genomic sequences from Africa and the short time span of the pandemic,
our R_0 estimates are preliminary and should be considered with caution. However, the calculated R_0 estimates are in
concordance with estimates from Asian regions during the time of intense SARS-CoV-2 spread, suggesting robustness
of our data.29 Additionally, testing of sera for CMV and EBV by PCR may not have been sensitive due to lack of cell-
associated viral nucleic acid, so that a potential impact of herpesvirus reactivation in serologic testing cannot be fully
excluded.

Despite those limitations, we provide an assessment of COVID-19-related diagnostics from Sub-Saharan Africa that
highlights how urgently African laboratories need support to deal with the increasing diagnostic burden. Our detailed
investigation of the limitations of widely used serological test and the underlying mechanism contributes to accurate
epidemiological studies aiming at studying SARS-CoV-2 spread. Strengthening of African national and supranational
stakeholders coordinating the continent’s response such as the Africa Center for Disease Control and Prevention
(Africa CDC) and the African Union (AU) are needed to accelerate evidence-based public health responses to the
pandemic on the continent.30

\section*{Contributors}

AY, ALS, AMS, CT, GH, YB, CF, NK, EFOF and SB carried out the experiments; AY, ALS, AMS, MN and JFD
wrote the manuscript; AY, AMS, PA, AD, MAJA, MHD, BH, MN and JFD supervised the project; AY, PA, AD,
MAJA, MHD and BH obtained samples; PA, AD, MAJA, MHD, BH, MN and JFD conceptualized the project. All authors read and approved the final manuscript.

Declaration of interests

The authors declare no conflict of interests.

Acknowledgments

We thank Arne Kühne, Wendy Jo-lei and Patricia Tscheak for technical assistance.
Figure 1. Ranking of world regions and population density of the African continent.

A) Regional human development indexes. Longevity (orange), income (red) and education (gray) indexes, and the human development index (HDI) (blue) as the geometric mean of the three aforementioned indices is shown.

B) Regional quality of health indicators. Quantity of physicians (blue) and quantity of hospital beds (grey) per 10,000 people are shown. Data retrieved from The Human Development Reports from the United Nations Development Programme (http://hdr.undp.org/en/content/human-development-index-hdi; June 9 2020)

C) Population density map constructed using freely available data from (https://www.worldpop.org/doi/10.5258/SOTON/WP00004; 9 June, 2020). Benin (BJ) is shown below. The red arrow denotes the location of the the Laboratoire des Fièvres Hémorragiques Virales du Benin (LFHB) in Cotonou.

Figure 2. COVID-19 workload at the Laboratoire des Fièvres Hémorragiques Virales du Benin (LFHB).

Overall SARS-CoV-2 daily diagnostic requests received at the LFHB since late January until 28.04.2020 (black) and positive cases confirmed per day at the LFHB (red). Dotted lines denote the range of maximal daily diagnostic capacity of LFHB. Marked is the 14.03.2020, day of the first confirmed SARS-CoV-2 case in Benin.
Figure 3. Phylogenetic analyses of SARS-CoV-2 in Africa.

A) SARS-CoV-2 sequence entries per geographic region in GISAID on the 27th of May, 2020. B) Phylogenetic tree inferred using BEAST2 showing 24 complete SARS-CoV-2 genomes globally sampled from humans. A codon position-specific general time reversible (GTR) substitution model with γ-distributed rates among sites was used. SARS-CoV-2 MT019529 from Wuhan was used as an outgroup. Displayed is the majority consensus of 10,000 trees sampled from the posterior distribution with mean branch lengths. Posterior support is shown for nodes >0.90 as filled circles. Benin-derived sequences are shown in bold. Colored circles represent global lineage circulation, colors according to regions given in panel A. C) Alignment showing all variable sites across Benin SARS-CoV-2 genomes from this study. Empty characters indicate lack of sequence information. Red boxes denote variable nucleotide positions in the Benin SARS-CoV-2 sequences within the complete analyzed African dataset (appendix p 7-9). Grey boxes denote groups belonging to Lineage A or B according to Rambaut et. al.11 Asterisks indicate nonsynonymous substitutions. BEL, Belgium; BFA, Burkina Faso; COD, Democratic Republic of the Congo; FRA, France; ITA, Italy; TOG, Togo; NSP, non-structural protein; ORF, open-reading frame. D) R_0 estimation for Africa with Benin-derived SARS-CoV-2 genomes. Black line denotes median R_0 with greyish shaded standard deviation.
Figure 4. Molecular diagnostic test sensitivity. A) Analytical sensitivity of the DAAN real-time RT-PCR assay for both targets of the assay. The solid line shows predicted proportion of positive results at a given input; colored lines show the 95% CI. The genome illustration highlights the two target genes of the assay, ORF1ab and N. CI: confidence interval; LOD: lower limit of detection. B) SARS-CoV-2 assay comparison using clinical samples. LOD in a representative subset of samples using commercially available and the DAAN RT-PCR assay for both targets.
Figure 5. Serological investigation of SARS-CoV-2 in Benin.
A) SARS-CoV-2 ELISA reactivity in febrile patients from 2019 and SARS-CoV-2 RT-PCR-confirmed patients from 2020.
B) SARS-CoV-2 plaque reduction neutralization test from the same patients.
C) Parasitemia in febrile patients that were SARS-CoV-2 ELISA-positive versus SARS-CoV-2 ELISA-negative febrile patients. Right: plasmodium copies per ml. Asterisk denotes p<0.05.
D) ZIKV seropositivity between febrile patients that were SARS-CoV-2 ELISA-positive versus SARS-CoV-2 ELISA-negative patients. Asterisk denotes p<0.05. Right: ZIKV IgG ELISA reactivity within both groups. N.s. not significant.
Supplemental Material:

1. Supplementary methods
2. Supplementary Table 1: Characteristics of SARS-CoV-2 positive patients for which SARS-CoV-2 full genomes were generated for this study taken from March-April 2020.
3. Supplementary Table 2: Characteristics of confirmed SARS-CoV-2 positive patients for which serum samples were available taken from March-April 2020.
4. Supplementary Table 3: Characteristics of patients with febrile illnesses of unknown origin taken from October-November 2019.
5. Supplementary Table 4: Variable positions in a dataset comprising the Beninese and another 42 full African SARS-CoV-2 genomes.
6. Supplementary Table 5: SARS-CoV-2 sequences found in the GISAID database that were used in this study.
7. Supplementary Figure 1. Origin of the samples of febrile patients from 2019 and serological diagnostics of other betacoronaviruses in febrile patients from 2019 and SARS-CoV-2 RT-PCR confirmed patients from 2020.
8. Supplementary Figure 2. Molecular and serological diagnostics of Epstein-Barr virus (EBV) and cytomegalovirus (CMV) in febrile patients from 2019 and SARS-CoV-2 RT-PCR confirmed patients from 2020.
9. Supplementary Figure 3. Molecular and serological diagnostics of malaria and Zika virus (ZIKV) infections in febrile patients from 2019 and SARS-CoV-2 RT-PCR confirmed patients from 2020.
References

1. Gilbert M, Pullano G, Pinotti F, Valdano E, Poletto C, Boelle PY, et al. Preparedness and vulnerability of African countries against importations of COVID-19: a modelling study. Lancet. 2020; 395(10227): 871-7.

2. El-Sadr WM, Justman J. Africa in the Path of Covid-19. N Engl J Med. 2020.

3. Gaye B, Khoury S, Cene CW, Kingue S, N’Guetta R, Lassale C, et al. Socio-demographic and epidemiological consideration of Africa’s COVID-19 response: what is the possible pandemic course? Nature Medicine. 2020.

4. WHO. WHO COVID-19 Situation update for the WHO African Region; 2020 13 May 2020.

5. Kobia F, Gitaka J. COVID-19: Are Africa’s diagnostic challenges blunting response effectiveness? AAS open research. 2020; 3: 4.

6. Adotevi SS, Law R, Ronen D. Benin. Encyclopædia Britannica: Encyclopædia Britannica, inc.; 2019.

7. Corman VM, Landt O, Kaiser M, Molenkamp R, Meijer A, Chu DKW, et al. Detection of 2019 novel coronavirus (2019-nCoV) by real-time RT-PCR. Euro Surveill. 2020; 25(3).

8. Bouckaert R, Heled J, Kuhnert D, Vaughan T, Wu CH, Xie D, et al. BEAST 2: a software platform for Bayesian evolutionary analysis. PLoS computational biology. 2014; 10(4): e1003537.

9. Corman VM, Muller MA, Costabel U, Timm J, Binger T, Meyer B, et al. Assays for laboratory confirmation of novel human coronavirus (hCoV-EMC) infections. Euro Surveill. 2012; 17(49).

10. Quaresima V, Naldini MM, Cirillo DM. The prospects for the SARS-CoV-2 pandemic in Africa. EMBO molecular medicine. 2020; 12(6): e12488.

11. Rambaut A, Holmes EC, Hill V, O’Toole Á, McCrone J, Ruis C, et al. A dynamic nomenclature proposal for SARS-CoV-2 to assist genomic epidemiology. bioRxiv. 2020: 2020.04.17.046086.

12. Yin C. Genotyping coronavirus SARS-CoV-2: methods and implications. Genomics. 2020.

13. Fischer C, Drosten C, Drexler JF. The difficulties in obtaining reliable Zika virus diagnostics. Lancet Infect Dis. 2019; 19(3): 240-1.

14. Wolfe R, Corman VM, Guggemos W, Seilmaier M, Zange S, Muller MA, et al. Virological assessment of hospitalized patients with COVID-19. Nature. 2020; 581(7809): 465-9.

15. Artesi M, Bontems S, Gobbels P, Franckh M, Boreux R, Meex C, et al. Failure of the cobas® SARS-CoV-2 (Roche) E-gene assay is associated with a C-to-T transition at position 26340 of the SARS-CoV-2 genome. medRxiv. 2020: 2020.04.28.20083337.

16. Zhao R, Li M, Song H, Chen J, Ren W, Feng Y, et al. Early detection of SARS-CoV-2 antibodies in COVID-19 patients as a serologic marker of infection. Clin Infect Dis. 2020.

17. Okba NMA, Muller MA, Li W, Wang C, GeurtsvanKessel CH, Corman VM, et al. Severe Acute Respiratory Syndrome Coronavirus 2-Specific Antibody Responses in Coronavirus Disease 2019 Patients. Emerg Infect Dis. 2020; 26(7).

18. Harvey R, Mattiuzzo G, Hassall M, Sieberg A, Muller MA, Drosten C, et al. Comparison of Serologic Assays for Middle East Respiratory Syndrome Coronavirus. Emerg Infect Dis. 2019; 25(10): 1878-83.
19. Sangster MY, Topham DJ, D'Costa S, Cardin RD, Marion TN, Myers LK, et al. Analysis of the virus-specific and nonspecific B cell response to a persistent B-lymphotropic gammaherpesvirus. Journal of immunology. 2000; 164(4): 1820-8.

20. Van Esbroeck M, Meersman K, Michiels J, Arien KK, Van den Bossche D. Letter to the editor: Specificity of Zika virus ELISA: interference with malaria. Euro Surveill. 2016; 21(21).

21. Dormond L, Jaton-Ogay K, de Valliere S, Genton B, Bille J, Greub G. Multiplex real-time PCR for the diagnosis of malaria: correlation with microscopy. Clin Microbiol Infect. 2011; 17(3): 469-75.

22. Dudas G, Carvalho LM, Bedford T, Tatem AJ, Baele G, Faria NR, et al. Virus genomes reveal factors that spread and sustained the Ebola epidemic. Nature. 2017; 544(7650): 309-15.

23. Zhao S, Lin Q, Ran J, Musa SS, Yang G, Wang W, et al. Preliminary estimation of the basic reproduction number of novel coronavirus (2019-nCoV) in China, from 2019 to 2020: A data-driven analysis in the early phase of the outbreak. International journal of infectious diseases : IJID : official publication of the International Society for Infectious Diseases. 2020; 92: 214-7.

24. Li R, Pei S, Chen B, Song Y, Zhang T, Yang W, et al. Substantial undocumented infection facilitates the rapid dissemination of novel coronavirus (SARS-CoV-2). Science. 2020; 368(6490): 489-93.

25. Wells CR, Stearns JK, Lutumba P, Galvani AP. COVID-19 on the African continent. The Lancet Infectious Diseases. 2020.

26. Fischer C, de Oliveira-Filho EF, Drexler JF. Viral emergence and immune interplay in flavivirus vaccines. Lancet Infect Dis. 2020; 20(1): 15-7.

27. Plucinski MM, Guiavogui T, Sidikiba S, Diakite N, Diakite S, Dioubate M, et al. Effect of the Ebola-virus-disease epidemic on malaria case management in Guinea, 2014: a cross-sectional survey of health facilities. Lancet Infect Dis. 2015; 15(9): 1017-23.

28. Elm J, Desowitz R, Diwan A. Serological cross-reactivities between the retroviruses HIV and HTLV-1 and the malaria parasite Plasmodium falciparum. Papua and New Guinea medical journal. 1998; 41(1): 15-22.

29. Kucharski AJ, Russell TW, Diamond C, Liu Y, Edmunds J, Funk S, et al. Early dynamics of transmission and control of COVID-19: a mathematical modelling study. Lancet Infect Dis. 2020; 20(5): 553-8.

30. Massinga Loembé M, Tshangela A, Salayer SJ, Varma JK, Ouma AEO, Nkengasong JN. COVID-19 in Africa: the spread and response. Nature Medicine. 2020.
Supplementary information to “Diagnostics and spread of SARS-CoV-2 in Western Africa: An observational laboratory-based study in Benin”

Anges Yadouleton, PhD1,2*, Anna-Lena Sander, MSc3*, Andres Moreira-Soto, PhD3*, Carine Tchibozo, MSc1, Gildas Hounkanrin, MSc1, Yvette Badou, MSc1, Carlo Fischer, MSc3, Nina Krause MSc3, Petas Akogbeto, PhD1, Edmilson F. de Oliveira Filho, PhD3, Anges Dossou, PhD1, Sebastian Brünink3, Melchior A. Joël Aïssi, PhD3, Mamoudou Harouna Djingarey, PhD6, Benjamin Hounkpatin, PhD4, Michael Nagel, PhD7$ and Jan Felix Drexler, MD3,8#$

1Laboratoire des Fièvres Hémorragiques Virales du Benin, Cotonou, Benin

2Ecole Normale Supérieure de Natitingou; Université Nationale des Sciences, Technologies, Ingénierie et Mathématiques (UNSTIM).

3Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute of Virology, Berlin, Germany

4Ministry of Health, Cotonou, Benin

5Conseil National de Lutte contre le VIH-Sida, la Tuberculose, le Paludisme, les IST et les Epidémies, Benin

6World Health Organization, Regional Office for Africa, Health Emergencies programme, Brazzaville, Congo

7Deutsche Gesellschaft für Internationale Zusammenarbeit (GIZ) GmbH, Bonn, Germany

8German Centre for Infection Research (DZIF), associated partner Charité-Universitätsmedizin Berlin, Germany

*These first authors contributed equally

$These last authors contributed equally

#corresponding author
Supplementary methods:

Nucleotide sequence data included in the study
The basis for all generated datasets used in this study was a search for African SARS-CoV-2 full genome information on the Global Initiative on Sharing All Influenza Data (GISAID) platform on the 13th of May 2020. To that date, 161 SARS-CoV-2 full genomes from African countries were available. Depending on the question behind the analysis, we generated three different datasets.

1. To analyze variable positions of all SARS-CoV-2 strains circulating in Africa, we generated a dataset discarding incomplete and identical sequences from the original GISAID search, resulting in 42 final sequences for analysis.
2. For the phylogenetic analysis we followed the nomenclature of Rambaut et. al. and included one representative sequence of each of the 13 identified lineages A.1-A.5 and B.1-B.8 where full-genome information was available in order to represent the global diversity of SARS-CoV-2 genomes. Finally, we completed this dataset by the full genomes we characterized from Benin.
3. For R0 estimates we generated a third dataset expanding the Benin-derived genomes with all African sequences from the original GISAID search.

Serology
Samples originated from three major health centers: Akkasato Health Center (AHC), Centre National Hospitalier Universitaire Hubert Koutoukou MAGA (CNHU) and the Clinique Boni (CB) inside or near of Cotonou.

Plaque reduction neutralization tests were performed using similar methods for SARS-CoV-2 and for Zika virus. Briefly, VeroE6 cells were seeded in 24-well plates and incubated overnight. Prior to PRNT, patient sera were heat-inactivated at 56°C for 30 minutes. Next, patient sera were serially diluted in 200 µl OptiPro and mixed 1:1 with 200 µl virus solution containing 100 plaque forming units. The 400 µl serum-virus solution was vortexed and incubated at 37°C for 1 hour. Each 24-well was incubated 1 hour at 37°C with 200 µl serum-virus solution after which the cells were washed with PBS and supplemented with 1.2% Avicel solution in DMEM. After 3 days at 37°C, the supernatants were removed, and the 24-well plates were fixed and inactivated using a 6% formaldehyde/PBS solution and stained with crystal violet.

Immunofluorescence-Assays
Briefly, open reading frames for full spike proteins were cloned from human coronaviruses (HCoV) HCoV-OC43 and HCoV-HKU1 as described previously. Vero cells were then seeded on chamber slides and transfected with equal amounts of the respective expression plasmids. Due to the limited quantity of serum available, samples were used at dilutions of 1:100, 1:1000, 1:10000.

Bayesian Skyline analysis
The following parameters and prior settings were chosen in BEAST2: SARS-CoV-2 was first detected late December of 2019, however, the earliest sequence from Africa in the GISAID database was sequenced in Nigeria on early February 2020 (hCoV-19/Nigeria/Lagos01/2020). As the origin date in BDSKY analysis has to be older than the root age, the lower bound was set to 114 days in the past from the last African sequence in the dataset, being end of April 2020 (Lognormal; M=0.8, S=1.0), to address a plausible earlier introduction to Africa in January 2020 assuming a month between introduction and detection, as suggested for SARS-CoV-2 first detection in China. The “become uninfectious” rate (the reciprocal of the duration of infection) was set to 10 days using a lognormal distribution (M= -0.6, S= 1.25), based on the assumption that no viable virus was isolated after 10 days post onset of symptoms. Priors for the sampling proportion followed the consideration that our alignment consists only of a tiny fraction of the circulating SARS-CoV-2 in Africa (alpha=1, beta=9999). All analyses were performed with a relaxed clock exponential using recent SARS-CoV-2 evolutionary rate estimates of 1E-4 substitutions per site per year.
Supplementary Tables:

Supplementary Table 1: Characteristics of SARS-CoV-2 positive patients for which SARS-CoV-2 full genomes were generated for this study taken from March-April 2020.

Sample-ID	Location	Travel history	Symptoms	Sampling date
197	Oueme	none	None	15.03.2020
260	Cotonou	France	None	17.03.2020
314	Cotonou	France	None	17.03.2020
461	Cotonou	France	None	17.03.2020
501	Cotonou	France	None	17.03.2020
843	Natitingou	Burkina Faso	None	19.03.2020
1022	Cotonou	Togo	None	25.03.2020
1092	Cotonou	Belgium	None	27.03.2020
1408	Cotonou	Italy	None	04.04.2020
1409	Cotonou	DR Congo	None	06.04.2020
1950	Cotonou	Belgium	Fever	15.04.2020
2012	Cotonou	France	None	15.04.2020
Supplementary Table 2: Characteristics of confirmed SARS-CoV-2 positive patients for which serum samples were available taken from March-April 2020.

Sample-ID	Sampling date	Location	Travel history	Symptoms	Day serum sample taken after PCR confirmation
1	March 2020	Cotonou	France	Fever	8
2	March 2020	Cotonou	Niger	Fever	1
3	March 2020	Cotonou	France	Fever	8
4	March 2020	Cotonou	France	Fever	10
5	April 2020	Cotonou	Germany	Fever	10
6	April 2020	Cotonou	France	Fever	9
7	April 2020	Cotonou	France	Fever	8
8	April 2020	Cotonou	Germany	Fever	8
Supplementary Table 3: Characteristics of patients with febrile illnesses of unknown origin taken from October-November 2019.

Sample- ID	Health Center*	Sampling date	Symptoms	Treatment
215	CNHU	October 2019	Fever	Drugs against febrile illness
311	CB	October 2019	Fever	Drugs against febrile illness
312	CB	October 2019	Fever	Drugs against febrile illness
313	CB	October 2019	Fever	Drugs against febrile illness
314	CB	October 2019	Fever	Drugs against febrile illness
315	CB	October 2019	Fever	Drugs against febrile illness
316	CB	October 2019	Fever	Drugs against febrile illness
317	CB	October 2019	Fever	Drugs against febrile illness
318	CB	October 2019	Fever	Drugs against febrile illness
319	CB	October 2019	Fever	Drugs against febrile illness
320	CB	October 2019	Fever	Drugs against febrile illness
321	CB	October 2019	Fever	Drugs against febrile illness
322	CB	October 2019	Fever	Drugs against febrile illness
323	CB	October 2019	Fever	Drugs against febrile illness
324	CB	October 2019	Fever	Drugs against febrile illness
325	CB	October 2019	Fever	Drugs against febrile illness
326	CB	October 2019	Fever	Drugs against febrile illness
327	CB	October 2019	Fever	Drugs against febrile illness
328	CB	October 2019	Fever	Drugs against febrile illness
329	CB	October 2019	Fever	Drugs against febrile illness
330	CB	October 2019	Fever	Drugs against febrile illness
331	CB	October 2019	Fever	Drugs against febrile illness
332	CB	October 2019	Fever	Drugs against febrile illness
333	CB	October 2019	Fever	Drugs against febrile illness
334	CB	October 2019	Fever	Drugs against febrile illness
335	CB	October 2019	Fever	Drugs against febrile illness
336	CB	October 2019	Fever	Drugs against febrile illness
337	CB	October 2019	Fever	Drugs against febrile illness
338	CB	October 2019	Fever	Drugs against febrile illness
339	CB	October 2019	Fever	Drugs against febrile illness
201	CB	November 2019	Fever	Drugs against febrile illness
202	CB	November 2019	Fever	Drugs against febrile illness
203	CB	November 2019	Fever	Drugs against febrile illness
204	CB	November 2019	Fever	Drugs against febrile illness
205	AHC	November 2019	Fever	Drugs against febrile illness
206	AHC	November 2019	Fever	Drugs against febrile illness
207	AHC	November 2019	Fever	Drugs against febrile illness
208	AHC	November 2019	Fever	Drugs against febrile illness
209	AHC	November 2019	Fever	Drugs against febrile illness
210	AHC	November 2019	Fever	Drugs against febrile illness
211	AHC	November 2019	Fever	Drugs against febrile illness
212	AHC	November 2019	Fever	Drugs against febrile illness
213	AHC	November 2019	Fever	Drugs against febrile illness
Sample No.	Location	Date	Symptom	Diagnosis
------------	--------------	------------	---------	------------------------------------
214	AHC	November 2019	Fever	Drugs against febrile illness
216	CNHU	November 2019	Fever	Drugs against febrile illness
217	CNHU	November 2019	Fever	Drugs against febrile illness
218	CNHU	November 2019	Fever	Drugs against febrile illness
219	CNHU	November 2019	Fever	Drugs against febrile illness
220	CNHU	November 2019	Fever	Drugs against febrile illness
221	CNHU	November 2019	Fever	Drugs against febrile illness
222	CNHU	November 2019	Fever	Drugs against febrile illness
223	CNHU	November 2019	Fever	Drugs against febrile illness
224	CNHU	November 2019	Fever	Drugs against febrile illness
225	CNHU	November 2019	Fever	Drugs against febrile illness
226	CNHU	November 2019	Fever	Drugs against febrile illness
227	CNHU	November 2019	Fever	Drugs against febrile illness
228	CNHU	November 2019	Fever	Drugs against febrile illness
229	CNHU	November 2019	Fever	Drugs against febrile illness
230	CNHU	November 2019	Fever	Drugs against febrile illness
291	AHC	November 2019	Fever	Drugs against febrile illness

* Samples originated from three major health centers: Akkasato Health Center (AHC), Centre National Hospitalier Universitaire Hubert Koutoukou MAGA (CNHU) and the Clinique Boni (CB).
Supplementary Table 4: Variable positions in a dataset comprising the Beninese and another 42 full African SARS-CoV-2 genomes.

Clade	Sample-ID	sampling date	Sample origin	Position in genome MT324062			
			1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18				
1	2012/Benin	2020-04-15	Benin	1,059 * 2,416 3,037 * 8,782 * 10,582 11,083 13,006 * 14,408 * 15,324 * 18,877 22,468 * 23,403 * 25,563 * 25,688 * 28,144 * 28,878 * 28,881 28,882 *			
	1950/Benin	2020-04-15	Benin	C C C T C G T C C C T A G C C A G G G			
	461/Benin	2020-03-17	Benin	C C C T C G T C C C G A G C C A G G G			
	843/Benin	2020-03-19	Benin	C C C Y C G T C C C G A G N:A C A G G			
	EPI_ISL_418216	2020-03-13	Senegal	C C C T C G T C C C G A G C C A G G G			
	EPI_ISL_420077	2020-03-20	Senegal	C C C T C G T C C C T A G C C A G G G			
2	1022/Benin	2020-03-25	Benin	T N:A N:A C N:A G T T T T C G G G G C T G G G			
	197/Benin	2020-03-15	Benin	T N:A N:A C N:A G T T T T C G G G G C T G G G			
	1092/Benin	2020-03-27	Benin	T N:A N:A C N:A G T T T T C G G G G C T G G G			
	EPI_ISL_417946	2020-03-18	DR Congo	C C T C C G G T T T T C G G G G C T G G G			
	EPI_ISL_437337	2020-04-15	DR Congo	C C T C C G G T T T T C G G G G C T G G G			
	EPI_ISL_437348	2020-04-16	DR Congo	C C T C C G G T T T T C G G G G C T G G G			
	EPI_ISL_435032	2020-04-09	DR Congo	C C T C C G G T T T T C G G G G C T G G G			
	EPI_ISL_417437	2020-03-17	DR Congo	C C T C C G G T T T T C G G G G C T G G G			
	EPI_ISL_420030	2020-03-21	DR Congo	C C T C C G G T T T T C G G G G C T G G G			
	EPI_ISL_420947	2020-03-26	DR Congo	C C T C C G G T T T T C G G G G C T G G G			
	EPI_ISL_417947	2020-03-19	DR Congo	C C T C C G G T T T T C G G G G C T G G G			
	EPI_ISL_437350	2020-04-16	DR Congo	C C T C C G G T T T T C G G G G C T G G G			
	EPI_ISL_420032	2020-03-22	DR Congo	C C T C C G G T T T T C G G G G C T G G G			
	EPI_ISL_417948	2020-03-19	DR Congo	C C T C C G G T T T T C G G G G C T G G G			
	EPI_ISL_437338	2020-04-15	DR Congo	C C T C C G G T T T T C G G G G C T G G G			
EPI_ISL_437352	2020-04-17	EPI_ISL_437339	2020-04-15	EPI_ISL_420070	2020-03-17	Senegal	C C T C C C G T T T C C G G G C T G G G
EPI_ISL_418210	2020-03-10	Senegal	C C T C C C G T T T C C G G G C T G G G				
EPI_ISL_418213	2020-03-12	EPI_ISL_420074	2020-03-20	South Africa	C C T C C C G T T T C C G G G C T G G G		
EPI_ISL_421574	2020-04-01	EPI_ISL_417186	2020-03-07 (MT324062)	Senegal	T C T C C G C T C C G G T T T G G G		
EPI_ISL_418207	2020-03-02	Senegal	T C T C C C G C C T C C C G G T T T G G G				
EPI_ISL_418209	2020-03-03	Senegal	T C T C C C G C C T C C C G G T T T G G G				
EPI_ISL_418241	2020-03-02	Algeria	T C T C T G T T T C C C G G T C T G G G				
EPI_ISL_418242	2020-03-08	South Africa	T C T C T G T T T C C C G G T C T G G G				
EPI_ISL_420037	2020-03-02	EPI_ISL_418241	2020-03-02	Benin	T C T C C C G T T T C C G G G T T T G G G		
EPI_ISL_418207	2020-03-02	Senegal	T C T C C C G C C T C C C G G T T T G G G				
EPI_ISL_418242	2020-03-02	South Africa	T C T C C C G T T T C C C G G T C T G G G				
EPI_ISL_420037	2020-03-02	South Africa	T C T C C C G T T T C C C G G T C T G G G				
EPI_ISL_420849	2020-03-28	DR Congo	C C T C C C G T T T C C C G G G C T G A A				
Date	EPI ISL	Country	Sequence				
------------	---------	-------------	----------------				
2020-03-22	EPI ISL	Gambia	C C T C C G G T T C C G G G C T G A A				
2020-03-17	EPI ISL	South Africa	C C T C C T T T C C G G G C T G A A				
2020-03-27	EPI ISL	South Africa	C C T C C T T T C C G G G C T G A A				
2020-04-15	EPI ISL	DR Congo	C C T C C G G T T C T G G G T C T G G G				
2020-04-15	EPI ISL	DR Congo	C C T C C G G T T C T G G G T C T G G G				
2020-04-18	EPI ISL	Egypt	C C T C C T T C T G G G T C T G G G				
2020-04-18	EPI ISL	Egypt	C C T C C T T C T G G G T C T G G G				
2020-04-20	EPI ISL	Gambia	C T T C C G G T T C C G G G T C T G G G				

*Nucleotide positions that are also variable within Benin sequences.
Supplementary Table 5: SARS-CoV-2 sequences found in the GISAID database that were used in this study

We gratefully acknowledge the following Authors from the Originating laboratories responsible for obtaining the specimens and the Submitting laboratories where genetic sequence data were generated and shared via the GISAID Initiative, on which this research is based. All submitters of data may be contacted directly via www.gisaid.org

Accession ID	Virus name	Collection date	Originating laboratory	Submitting laboratory	Authors
EPI_ISL_413550	hCoV-19/Nigeria/Lagos01/2020	2020-02-27	Centre for Human and Zoonotic Virology (CHAVZV), College of Medicine University of Lagos/Lagos University Teaching Hospital (LUTH), part of the Laboratory Network of the Nigeria Centre for Disease Control (NCDC)	African Centre of Excellence for Genomics of Infectious Diseases (ACEGID), Redeemer's University, Ede, Osun State, Nigeria	Oluniyi P.E., Ajogbasile F.V., Kayode A., Oguzie J., Folarin O.A., Ihekweazu C., Happi C.T.
EPI_ISL_414647	hCoV-19/DRC/KN-13/2020	2020-03-09	Viral Respiratory Lab, National Institute for Biomedical Research (INRB)	Pathogen Sequencing Lab, National Institute for Biomedical Research (INRB)	Placide Mbala-Kingebeni, Edith Nkwembe, Eddy Kinganda-Lusamaki, Amuri Aziza, Catherine Pratt, Matthias Pauthner, Josh Quick, Allison Black, James Hadfield, Trevor Bedford, Ian Goodfellow, Nick Loman, Kristian Andersen, Michael Wiley, Steve Ahuka-Mundeke, Jean-Jacques Muyembe Tamfum
EPI_ISL_417186	hCoV-19/South Africa/R03006/2020	2020-03-07	National Institute for Communicable Diseases of the National Health Laboratory Service	National Institute for Communicable Diseases of the National Health Laboratory Service	Allam M, Kventh S, van Heusden P, Khumalo Z, Mohale T, Subramoney K, von Gottberg, A, Ismail A, Bhiman JN
EPI_ISL_417433	hCoV-19/DRC/KN-0017/2020	2020-03-11	Viral Respiratory Lab, National Institute for Biomedical Research (INRB)	Pathogen Sequencing Lab, National Institute for Biomedical Research (INRB)	Placide Mbala-Kingebeni, Edith Nkwembe, Eddy Kinganda-Lusamaki, Amuri Aziza, Catherine Pratt, Matthias Pauthner, Josh Quick, Allison Black, James Hadfield, Trevor Bedford, Ian Goodfellow, Nick Loman, Kristian Andersen, Michael Wiley, Steve Ahuka-Mundeke, Jean-Jacques Muyembe Tamfum
EPI_ISL_417434	hCoV-19/DRC/KN-0038/2020	2020-03-14	Viral Respiratory Lab, National Institute for Biomedical Research (INRB)	Pathogen Sequencing Lab, National Institute for Biomedical Research (INRB)	Placide Mbala-Kingebeni, Edith Nkwembe, Eddy Kinganda-Lusamaki, Amuri Aziza, Catherine Pratt, Matthias Pauthner, Josh Quick, Allison Black, James Hadfield, Trevor Bedford, Ian Goodfellow, Nick Loman, Kristian Andersen, Michael Wiley, Steve Ahuka-Mundeke, Jean-Jacques Muyembe Tamfum
EPI_ISL_417435	hCoV-19/DRC/KN-0043/2020	2020-03-15	Viral Respiratory Lab, National Institute for Biomedical Research (INRB)	Pathogen Sequencing Lab, National Institute for Biomedical Research (INRB)	Placide Mbala-Kingebeni, Edith Nkwembe, Eddy Kinganda-Lusamaki, Amuri Aziza, Catherine Pratt, Matthias Pauthner, Josh Quick, Allison Black, James Hadfield, Trevor Bedford, Ian Goodfellow, Nick Loman, Kristian Andersen, Michael Wiley, Steve Ahuka-Mundeke, Jean-Jacques Muyembe Tamfum
EPI_ISL_417436	hCoV-19/DRC/KN-0051/2020	2020-03-17	Viral Respiratory Lab, National Institute for Biomedical Research (INRB)	Pathogen Sequencing Lab, National Institute for Biomedical Research (INRB)	Placide Mbala-Kingebeni, Edith Nkwembe, Eddy Kinganda-Lusamaki, Amuri Aziza, Catherine Pratt, Matthias Pauthner, Josh Quick, Allison Black, James Hadfield, Trevor Bedford, Ian Goodfellow, Nick Loman, Kristian Andersen, Michael Wiley, Steve Ahuka-Mundeke, Jean-Jacques Muyembe Tamfum
EPI_ISL_417437	hCoV-19/DRC/KN-0054/2020	2020-03-17	Viral Respiratory Lab, National Institute for Biomedical Research (INRB)	Pathogen Sequencing Lab, National Institute for Biomedical Research (INRB)	Placide Mbala-Kingebeni, Edith Nkwembe, Eddy Kinganda-Lusamaki, Amuri Aziza, Catherine Pratt, Matthias Pauthner, Josh Quick, Allison Black, James Hadfield, Trevor Bedford, Ian Goodfellow, Nick Loman, Kristian Andersen, Michael Wiley, Steve Ahuka-Mundeke, Jean-Jacques Muyembe Tamfum
EPI_ISL_417438	hCoV-19/DRC/KN-0058/2020	2020-03-17	Viral Respiratory Lab, National Institute for Biomedical Research (INRB)	Pathogen Sequencing Lab, National Institute for Biomedical Research (INRB)	Placide Mbala-Kingebeni, Edith Nkwembe, Eddy Kinganda-Lusamaki, Amuri Aziza, Catherine Pratt, Matthias Pauthner, Josh Quick, Allison Black, James Hadfield, Trevor Bedford, Ian Goodfellow, Nick Loman, Kristian Andersen, Michael Wiley, Steve Ahuka-Mundeke, Jean-Jacques Muyembe Tamfum
EPI_ISL_417439	hCoV-19/DRC/KN-0059/2020	2020-03-17	Viral Respiratory Lab, National Institute for Biomedical Research (INRB)	Pathogen Sequencing Lab, National Institute for Biomedical Research (INRB)	Placide Mbala-Kingebeni, Edith Nkwembe, Eddy Kinganda-Lusamaki, Amuri Aziza, Catherine Pratt, Matthias Pauthner, Josh Quick, Allison Black, James Hadfield, Trevor Bedford, Ian Goodfellow, Nick Loman, Kristian Andersen, Michael Wiley, Steve Ahuka-Mundeke, Jean-Jacques Muyembe Tamfum
EPI_ISL_417440	hCoV-19/DRC/KN-0060/2020	2020-03-17	Viral Respiratory Lab, National Institute for Biomedical Research (INRB)	Pathogen Sequencing Lab, National Institute for Biomedical Research (INRB)	Placide Mbala-Kingebeni, Edith Nkwembe, Eddy Kinganda-Lusamaki, Amuri Aziza, Catherine Pratt, Matthias Pauthner, Josh Quick, Allison Black, James Hadfield, Trevor Bedford, Ian Goodfellow, Nick Loman, Kristian Andersen, Michael Wiley, Steve Ahuka-Mundeke, Jean-Jacques Muyembe Tamfum
EPI_ISL_417441	hCoV-19/DRC/KN-0070/2020	2020-03-17	Viral Respiratory Lab, National Institute for Biomedical Research (INRB)	Pathogen Sequencing Lab, National Institute for Biomedical Research (INRB)	Placide Mbala-Kingebeni, Edith Nkwembe, Eddy Kinganda-Lusamaki, Amuri Aziza, Catherine Pratt, Matthias Pauthner, Josh Quick, Allison Black, James Hadfield, Trevor Bedford, Ian Goodfellow, Nick Loman, Kristian Andersen, Michael Wiley, Steve Ahuka-Mundeke, Jean-Jacques Muyembe Tamfum
EPI_ISL_417948	hCoV-19/DRC/108/2020	2020-03-19	Viral Respiratory Lab, National Institute for Biomedical Research (INRB)	Pathogen Sequencing Lab, National Institute for Biomedical Research (INRB)	Placide Mbala-Kingebeni, Edith Nkwembe, Eddy Kinganda-Lusamaki, Amuri Aziza, Catherine Pratt, Matthias Pauthner, Josh Quick, Allison Black, James Hadfield, Trevor Bedford, Ian Goodfellow, Nick Loman, Kristian Andersen, Michael Wiley, Steve Ahuka-Mundeke, Jean-Jacques Muyembe Tamfum
----------------	----------------------	------------	--	--	---
EPI_ISL_417950	hCoV-19/DRC/158/2020	2020-03-20	Viral Respiratory Lab, National Institute for Biomedical Research (INRB)	Pathogen Sequencing Lab, National Institute for Biomedical Research (INRB)	Placide Mbala-Kingebeni, Edith Nkwembe, Eddy Kinganda-Lusamaki, Amuri Aziza, Catherine Pratt, Matthias Pauthner, Josh Quick, Allison Black, James Hadfield, Trevor Bedford, Ian Goodfellow, Nick Loman, Kristian Andersen, Michael Wiley, Steve Ahuka-Mundeke, Jean-Jacques Muyembe Tamfum
EPI_ISL_417955	hCoV-19/DRC/191/2020	2020-03-21	Viral Respiratory Lab, National Institute for Biomedical Research (INRB)	Pathogen Sequencing Lab, National Institute for Biomedical Research (INRB)	Placide Mbala-Kingebeni, Edith Nkwembe, Eddy Kinganda-Lusamaki, Amuri Aziza, Catherine Pratt, Matthias Pauthner, Josh Quick, Allison Black, James Hadfield, Trevor Bedford, Ian Goodfellow, Nick Loman, Kristian Andersen, Michael Wiley, Steve Ahuka-Mundeke, Jean-Jacques Muyembe Tamfum
EPI_ISL_418206	hCoV-19/Senegal/003/2020	2020-02-28	Institut Pasteur Dakar	Institut Pasteur de Dakar	Ndongo Dia, Ousmane Faye, Amadou Alpha Sall
EPI_ISL_418207	hCoV-19/Senegal/016/2020	2020-03-02	Institut Pasteur Dakar	Institut Pasteur de Dakar	Ndongo Dia, Ousmane Faye, Amadou Alpha Sall
EPI_ISL_418208	hCoV-19/Senegal/020/2020	2020-03-04	Institut Pasteur Dakar	Institut Pasteur de Dakar	Ndongo Dia, Ousmane Faye, Amadou Alpha Sall
EPI_ISL_418209	hCoV-19/Senegal/026/2020	2020-03-03	Institut Pasteur Dakar	Institut Pasteur de Dakar	Ndongo Dia, Ousmane Faye, Amadou Alpha Sall
EPI_ISL_418210	hCoV-19/Senegal/073/2020	2020-03-10	Institut Pasteur Dakar	Institut Pasteur de Dakar	Ndongo Dia, Ousmane Faye, Amadou Alpha Sall
EPI_ISL_418211	hCoV-19/Senegal/082/2020	2020-03-11	Institut Pasteur Dakar	Institut Pasteur de Dakar	Ndongo Dia, Ousmane Faye, Amadou Alpha Sall
EPI_ISL_418212	hCoV-19/Senegal/087/2020	2020-03-11	Institut Pasteur Dakar	Institut Pasteur de Dakar	Ndongo Dia, Ousmane Faye, Amadou Alpha sall
EPI_ISL_418213	hCoV-19/Senegal/094/2020	2020-03-12	Institut Pasteur Dakar	Institut Pasteur de Dakar	Ndongo Dia, Ousmane Faye, Amadou Alpha Sall
EPI_ISL_418214	hCoV-19/Senegal/102/2020	2020-03-12	Institut Pasteur Dakar	Institut Pasteur de Dakar	Ndongo Dia, Ousmane Faye, Amadou Alpha Sall
EPI_ISL_418215	hCoV-19/Senegal/119/2020	2020-03-12	Institut Pasteur Dakar	Institut Pasteur de Dakar	Ndongo Dia, Ousmane Faye, Amadou Alpha Sall
EPI_ISL_418216	hCoV-19/Senegal/136/2020	2020-03-13	Institut Pasteur Dakar	Institut Pasteur de Dakar	Ndongo Dia, Ousmane Faye, Amadou Alpha Sall
EPI_ISL_418217	hCoV-19/Senegal/139/2020	2020-03-13	Institut Pasteur Dakar	Institut Pasteur de Dakar	Ndongo Dia, Ousmane Faye, Amadou Alpha Sall
EPI_ISL_418218	hCoV-19/Senegal/139/2020	2020-03-13	Institut Pasteur Dakar	Institut Pasteur de Dakar	Ndongo Dia, Ousmane Faye, Amadou Alpha Sall
EPI_ISL_418219	hCoV-19/Senegal/2264/2020	2020-03-02	NIC Viral Respiratory Unit - Institut Pasteur de Algerie	National Reference Center for Viruses of Respiratory Infections, Institut Pasteur, Paris	Mélanie Albert, Marion Barbet, Sylvie Behillil, Mélène Bizard, Angela Brisebarre, Flora Donati, Etienne Simon-Lorière, Vincent Enouf, Maud Vanpeene, Sylvie van der Werf, Fawzi Derrar
EPI_ISL_418242	hCoV-19/Algeria/G0640_2265/2020	2020-03-08	NIC Viral Respiratory Unit - Institut Pasteur of Algeria	National Reference Center for Viruses of Respiratory Infections, Institut Pasteur, Paris	Mélanie Albert, Marion Barbet, Sylvie Behili, Méline Bizard, Angela Brisebarre, Flora Donati, Etienne Simon-Lorière, Vincent Enouf, Maud Vanpeene, Sylvie van der Werf, Fawzi Derrar
EPI_ISL_420030	hCoV-19/DRC/214/2020	2020-03-21	Viral Respiratory Lab, National Institute for Biomedical Research (INRB)	Pathogen Sequencing Lab, National Institute for Biomedical Research (INRB)	Placide Mbala-Kingebeni, Edith Nkwembe, Eddy Kinganda-Lusamaki, Amuri Aziza, Catherine Pratt, Matthias Pauthner, Josh Quick, Allison Black, James Hadfield, Trevor Bedford, Ian Goodfellow, Nick Loman, Kristian Andersen, Michael Wiley, Steve Ahuka-Mundeke, Jean-Jacques Muyembe Tamfum
EPI_ISL_420031	hCoV-19/DRC/215/2020	2020-03-21	Viral Respiratory Lab, National Institute for Biomedical Research (INRB)	Pathogen Sequencing Lab, National Institute for Biomedical Research (INRB)	Placide Mbala-Kingebeni, Edith Nkwembe, Eddy Kinganda-Lusamaki, Amuri Aziza, Catherine Pratt, Matthias Pauthner, Josh Quick, Allison Black, James Hadfield, Trevor Bedford, Ian Goodfellow, Nick Loman, Kristian Andersen, Michael Wiley, Steve Ahuka-Mundeke, Jean-Jacques Muyembe Tamfum
EPI_ISL_420032	hCoV-19/DRC/236/2020	2020-03-22	Viral Respiratory Lab, National Institute for Biomedical Research (INRB)	Pathogen Sequencing Lab, National Institute for Biomedical Research (INRB)	Placide Mbala-Kingebeni, Edith Nkwembe, Eddy Kinganda-Lusamaki, Amuri Aziza, Catherine Pratt, Matthias Pauthner, Josh Quick, Allison Black, James Hadfield, Trevor Bedford, Ian Goodfellow, Nick Loman, Kristian Andersen, Michael Wiley, Steve Ahuka-Mundeke, Jean-Jacques Muyembe Tamfum
EPI_ISL_420033	hCoV-19/DRC/241/2020	2020-03-22	Viral Respiratory Lab, National Institute for Biomedical Research (INRB)	Pathogen Sequencing Lab, National Institute for Biomedical Research (INRB)	Placide Mbala-Kingebeni, Edith Nkwembe, Eddy Kinganda-Lusamaki, Amuri Aziza, Catherine Pratt, Matthias Pauthner, Josh Quick, Allison Black, James Hadfield, Trevor Bedford, Ian Goodfellow, Nick Loman, Kristian Andersen, Michael Wiley, Steve Ahuka-Mundeke, Jean-Jacques Muyembe Tamfum
EPI_ISL_420034	hCoV-19/DRC/243/2020	2020-03-22	Viral Respiratory Lab, National Institute for Biomedical Research (INRB)	Pathogen Sequencing Lab, National Institute for Biomedical Research (INRB)	Placide Mbala-Kingebeni, Edith Nkwembe, Eddy Kinganda-Lusamaki, Amuri Aziza, Catherine Pratt, Matthias Pauthner, Josh Quick, Allison Black, James Hadfield, Trevor Bedford, Ian Goodfellow, Nick Loman, Kristian Andersen, Michael Wiley, Steve Ahuka-Mundeke, Jean-Jacques Muyembe Tamfum
EPI_ISL_420035	hCoV-19/DRC/248/2020	2020-03-22	Viral Respiratory Lab, National Institute for Biomedical Research (INRB)	Pathogen Sequencing Lab, National Institute for Biomedical Research (INRB)	Placide Mbala-Kingebeni, Edith Nkwembe, Eddy Kinganda-Lusamaki, Amuri Aziza, Catherine Pratt, Matthias Pauthner, Josh Quick, Allison Black, James Hadfield, Trevor Bedford, Ian Goodfellow, Nick Loman, Kristian Andersen, Michael Wiley, Steve Ahuka-Mundeke, Jean-Jacques Muyembe Tamfum
----------------	----------------------	------------	--	--	--
EPI_ISL_420037	hCoV-19/Algeria/G0860_2262/2020	2020-03-02	NIC Viral Respiratory Unit - Institut Pasteur of Algeria	National Reference Center for Viruses of Respiratory Infections, Institut Pasteur, Paris	Mélanie Albert, Marion Barbet, Sylvie Behillil, Méline Bizard, Angela Brisebarre, Flora Donati, Etienne Simon-Lorière, Vincent Enouf, Maud Vanpeene, Sylvie van der Werf, Fawzi Derrar
EPI_ISL_420069	hCoV-19/Senegal/306/2020	2020-03-17	Institut Pasteur Dakar	Institut Pasteur de Dakar	Ndongo Dia, Moussa Moise Diagne, Mamadou Diop, Ousmane Faye, Amadou Alpha Sall
EPI_ISL_420070	hCoV-19/Senegal/315/2020	2020-03-17	Institut Pasteur Dakar	Institut Pasteur de Dakar	Ndongo Dia, Moussa Moise Diagne, Mamadou Diop, Ousmane Faye, Amadou Alpha Sall
EPI_ISL_420071	hCoV-19/Senegal/328/2020	2020-03-17	Institut Pasteur Dakar	Institut Pasteur de Dakar	Ndongo Dia, Moussa Moise Diagne, Mamadou Diop, Ousmane Faye, Amadou Alpha Sall
EPI_ISL_420072	hCoV-19/Senegal/370/2020	2020-03-18	Institut Pasteur Dakar	Institut Pasteur de Dakar	Ndongo Dia, Moussa Moise Diagne, Mamadou Diop, Ousmane Faye, Amadou Alpha Sall
EPI_ISL_420073	hCoV-19/Senegal/382/2020	2020-03-19	Institut Pasteur Dakar	Institut Pasteur de Dakar	Ndongo Dia, Moussa Moise Diagne, Mamadou Diop, Ousmane Faye, Amadou Alpha Sall
EPI_ISL_420074	hCoV-19/Senegal/600/2020	2020-03-20	Institut Pasteur Dakar	Institut Pasteur de Dakar	Ndongo Dia, Moussa Moise Diagne, Mamadou Diop, Ousmane Faye, Amadou Alpha Sall
EPI_ISL_420075	hCoV-19/Senegal/610/2020	2020-03-20	Institut Pasteur Dakar	Institut Pasteur de Dakar	Ndongo Dia, Moussa Moise Diagne, Mamadou Diop, Ousmane Faye, Amadou Alpha Sall
EPI_ISL_420076	hCoV-19/Senegal/611/2020	2020-03-20	Institut Pasteur Dakar	Institut Pasteur de Dakar	Ndongo Dia, Moussa Moise Diagne, Mamadou Diop, Ousmane Faye, Ndongo Dia
EPI_ISL_420077	hCoV-19/Senegal/618/2020	2020-03-20	Institut Pasteur Dakar	Institut Pasteur de Dakar	Ndongo Dia, Moussa Moise Diagne, Mamadou Diop, Ousmane Faye, Amadou Alpha Sall
EPI_ISL_420078	hCoV-19/Senegal/620/2020	2020-03-20	Institut Pasteur Dakar	Institut Pasteur de Dakar	Ndongo Dia, Moussa Moise Diagne, Mamadou Diop, Ousmane Faye, Amadou Alpha Sall
EPI_ISL_420079	hCoV-19/Senegal/640/2020	2020-03-20	Institut Pasteur Dakar	Institut Pasteur de Dakar	Ndongo Dia, Moussa Moise Diagne, Mamadou Diop, Ousmane Faye, Amadou Alpha Sall
EPI_ISL_420838	hCoV-19/DRC/253/2020	2020-03-22	Viral Respiratory Lab, National Institute for Biomedical Research (INRB)	Pathogen Sequencing Lab, National Institute for Biomedical Research (INRB)	Placide Mbala-Kingebeni, Edith Nkwembe, Eddy Kinganda-Lusamaki, Amuri Aziza, Catherine Pratt, Matthias Pauthner, Josh Quick, Allison Black, James Hadfield, Trevor Bedford, Ian Goodfellow, Nick Loman, Kristian Andersen, Michael Wiley, Steve Ahuka-Mundeke, Jean-Jacques Muyembe Tamfum
EPI_ISL_420839	hCoV-19/DRC/254/2020	2020-03-22	Viral Respiratory Lab, National Institute for Biomedical Research (INRB)	Pathogen Sequencing Lab, National Institute for Biomedical Research (INRB)	Placide Mbala-Kingebeni, Edith Nkwembe, Eddy Kinganda-Lusamaki, Amuri Aziza, Catherine Pratt, Matthias Pauthner, Josh Quick, Allison Black, James Hadfield, Trevor Bedford, Ian Goodfellow, Nick Loman, Kristian Andersen, Michael Wiley, Steve Ahuka-Mundeke, Jean-Jacques Muyembe Tamfum
EPI_ISL_420840	hCoV-19/DRC/299/2020	2020-03-20	Viral Respiratory Lab, National Institute for Biomedical Research (INRB)	Pathogen Sequencing Lab, National Institute for Biomedical Research (INRB)	Placide Mbala-Kingebeni, Edith Nkwembe, Eddy Kinganda-Lusamaki, Amuri Aziza, Catherine Pratt, Matthias Pauthner, Josh Quick, Allison Black, James Hadfield, Trevor Bedford, Ian Goodfellow, Nick Loman, Kristian Andersen, Michael Wiley, Steve Ahuka-Mundeke, Jean-Jacques Muyembe Tamfum
EPI_ISL_420841	hCoV-19/DRC/300/2020	2020-03-22	Viral Respiratory Lab, National Institute for Biomedical Research (INRB)	Pathogen Sequencing Lab, National Institute for Biomedical Research (INRB)	Placide Mbala-Kingebeni, Edith Nkwembe, Eddy Kinganda-Lusamaki, Amuri Aziza, Catherine Pratt, Matthias Pauthner, Josh Quick, Allison Black, James Hadfield, Trevor Bedford, Ian Goodfellow, Nick Loman, Kristian Andersen, Michael Wiley, Steve Ahuka-Mundeke, Jean-Jacques Muyembe Tamfum
EPI_ISL_420842	hCoV-19/DRC/307/2020	2020-03	Viral Respiratory Lab, National Institute for Biomedical Research (INRB)	Pathogen Sequencing Lab, National Institute for Biomedical Research (INRB)	Placide Mbala-Kingebeni, Edith Nkwembe, Eddy Kinganda-Lusamaki, Amuri Aziza, Catherine Pratt, Matthias Pauthner, Josh Quick, Allison Black, James Hadfield, Trevor Bedford, Ian Goodfellow, Nick Loman, Kristian Andersen, Michael Wiley, Steve Ahuka-Mundeke, Jean-Jacques Muyembe Tamfum
EPI_ISL_420843	hCoV-19/DRC/353/2020	2020-03	Viral Respiratory Lab, National Institute for Biomedical Research (INRB)	Pathogen Sequencing Lab, National Institute for Biomedical Research (INRB)	Placide Mbala-Kingebeni, Edith Nkwembe, Eddy Kinganda-Lusamaki, Amuri Aziza, Catherine Pratt, Matthias Pauthner, Josh Quick, Allison Black, James Hadfield, Trevor Bedford, Ian Goodfellow, Nick Loman, Kristian Andersen, Michael Wiley, Steve Ahuka-Mundeke, Jean-Jacques Muyembe Tamfum
EPI_ISL_420844	hCoV-19/DRC/355/2020	2020-03	Viral Respiratory Lab, National Institute for Biomedical Research (INRB)	Pathogen Sequencing Lab, National Institute for Biomedical Research (INRB)	Placide Mbala-Kingebeni, Edith Nkwembe, Eddy Kinganda-Lusamaki, Amuri Aziza, Catherine Pratt, Matthias Pauthner, Josh Quick, Allison Black, James Hadfield, Trevor Bedford, Ian Goodfellow, Nick Loman, Kristian Andersen, Michael Wiley, Steve Ahuka-Mundeke, Jean-Jacques Muyembe Tamfum
EPI_ISL_420845	hCoV-19/DRC/397/2020	2020-03-26	Viral Respiratory Lab, National Institute for Biomedical Research (INRB)	Pathogen Sequencing Lab, National Institute for Biomedical Research (INRB)	Placide Mbala-Kingebeni, Edith Nkwembe, Eddy Kinganda-Lusamaki, Amuri Aziza, Catherine Pratt, Matthias Pauthner, Josh Quick, Allison Black, James Hadfield, Trevor Bedford, Ian Goodfellow, Nick Loman, Kristian Andersen, Michael Wiley, Steve Ahuka-Mundeke, Jean-Jacques Muyembe Tamfum
---------------	----------------------	------------	----------------------------	----------------------------	--
EPI_ISL_420846	hCoV-19/DRC/400/2020	2020-03	Viral Respiratory Lab, National Institute for Biomedical Research (INRB)	Pathogen Sequencing Lab, National Institute for Biomedical Research (INRB)	Placide Mbala-Kingebeni, Edith Nkwembe, Eddy Kinganda-Lusamaki, Amuri Aziza, Catherine Pratt, Matthias Pauthner, Josh Quick, Allison Black, James Hadfield, Trevor Bedford, Ian Goodfellow, Nick Loman, Kristian Andersen, Michael Wiley, Steve Ahuka-Mundeke, Jean-Jacques Muyembe Tamfum
EPI_ISL_420847	hCoV-19/DRC/431/2020	2020-03-26	Viral Respiratory Lab, National Institute for Biomedical Research (INRB)	Pathogen Sequencing Lab, National Institute for Biomedical Research (INRB)	Placide Mbala-Kingebeni, Edith Nkwembe, Eddy Kinganda-Lusamaki, Amuri Aziza, Catherine Pratt, Matthias Pauthner, Josh Quick, Allison Black, James Hadfield, Trevor Bedford, Ian Goodfellow, Nick Loman, Kristian Andersen, Michael Wiley, Steve Ahuka-Mundeke, Jean-Jacques Muyembe Tamfum
EPI_ISL_420848	hCoV-19/DRC/445/2020	2020-03	Viral Respiratory Lab, National Institute for Biomedical Research (INRB)	Pathogen Sequencing Lab, National Institute for Biomedical Research (INRB)	Placide Mbala-Kingebeni, Edith Nkwembe, Eddy Kinganda-Lusamaki, Amuri Aziza, Catherine Pratt, Matthias Pauthner, Josh Quick, Allison Black, James Hadfield, Trevor Bedford, Ian Goodfellow, Nick Loman, Kristian Andersen, Michael Wiley, Steve Ahuka-Mundeke, Jean-Jacques Muyembe Tamfum
EPI_ISL_420853	hCoV-19/DRC/402/2020	2020-03-26	Viral Respiratory Lab, National Institute for Biomedical Research (INRB)	Pathogen Sequencing Lab, National Institute for Biomedical Research (INRB)	Placide Mbala-Kingebeni, Edith Nkwembe, Eddy Kinganda-Lusamaki, Amuri Aziza, Catherine Pratt, Matthias Pauthner, Josh Quick, Allison Black, James Hadfield, Trevor Bedford, Ian Goodfellow, Nick Loman, Kristian Andersen, Michael Wiley, Steve Ahuka-Mundeke, Jean-Jacques Muyembe Tamfum
EPI_ISL_420854	hCoV-19/DRC/521/2020	2020-03-25	Viral Respiratory Lab, National Institute for Biomedical Research (INRB)	Pathogen Sequencing Lab, National Institute for Biomedical Research (INRB)	Placide Mbala-Kingebeni, Edith Nkwembe, Eddy Kinganda-Lusamaki, Amuri Aziza, Catherine Pratt, Matthias Pauthner, Josh Quick, Allison Black, James Hadfield, Trevor Bedford, Ian Goodfellow, Nick Loman, Kristian Andersen, Michael Wiley, Steve Ahuka-Mundeke, Jean-Jacques Muyembe Tamfum
EPI_ISL_421572	hCoV-19/South Africa/KRISP-02/2020	2020-03-23	Molecular Diagnostic Services and FLowpath	KRISP, KZN Research Innovation and Sequencing Platform	Giandhari J, Pillay S, Ngcapu S, Samsunder N, Lessells R, Chimukangara B, Deforche K, Tegally H, Wilkinson E, de Oliveira T
EPI_ISL_421573	hCoV-19/South Africa/KRISP-06/2020	2020-03-31	Molecular Diagnostic Services	KRISP, KZN Research Innovation and Sequencing Platform	Giandhari J, Pillay S, Ngcapu S, Samsunder N, Lessells R, Chimukangara B, Deforche K, Tegally H, Wilkinson E, de Oliveira T
EPI_ISL_421574	hCoV-19/South Africa/KRISP-07/2020	2020-04-01	Molecular Diagnostic Services	KRISP, KZN Research Innovation and Sequencing Platform	Giandhari J, Pillay S, Ngcapu S, Samsunder N, Lessells R, Chimukangara B, Deforche K, Tegally H, Wilkinson E, de Oliveira T
EPI_ISL_421575	hCoV-19/South Africa/KRISP-011/2020	2020-04-01	Molecular Diagnostic Services	KRISP, KZN Research Innovation and Sequencing Platform	Giandhari J, Pillay S, Ngcapu S, Samsunder N, Lessells R, Chimukangara B, Deforche K, Tegally H, Wilkinson E, de Oliveira T
EPI_ISL_421576	hCoV-19/South Africa/KRISP-012/2020	2020-04-01	Molecular Diagnostic Services	KRISP, KZN Research Innovation and Sequencing Platform	Giandhari J, Pillay S, Ngcapu S, Samsunder N, Lessells R, Chimukangara B, Deforche K, Tegally H, Wilkinson E, de Oliveira T
EPI_ISL_422382	hCoV-19/Ghana/1513_S1/2020	2020-03-24	NMIMR, Department of Virology	WACCBIP, University of Ghana	Joyce M. Ngoi, Bright Adu, Collins M. Misita, Selassie Kumordjie, Miriam Eshun, Linda Boatemaa, Vanessa Magnussen, Erasmus Kotey, Fred Tei-Maya, Dominic S. Y. Amuzu, Peter Quashie, Augustina Arjaquah, Ivy Asante, Evelyn Bonney, George B. Kyei, Kofi Bonney, Gordon A. Awandare, William Ampofo
----------------	-----------------------------	------------	------------------------------	-----------------------------	--
EPI_ISL_422384	hCoV-19/Ghana/1622_S2/2020	2020-03-24	NMIMR, Department of Virology	WACCBIP, University of Ghana	Joyce M. Ngoi, Bright Adu, Collins M. Morang’a, Selassie Kumordjie, Miriam Eshun, Linda Boatemaa, Vanessa Magnussen, Erasmus Kotey, Fred Tei-May, Dominic S. Y. Amuzu, Peter Quashie, Augustina Arjaquah, Ivy Asante, Evelyn Bonney, George B. Kyei, Kofi Bonney, Abraham Kwabena Anang, Gordon A. Awandare, William Ampofo
EPI_ISL_422387	hCoV-19/Ghana/1651_S3/2020	2020-03-25	NMIMR, Department of Virology	WACCBIP, University of Ghana	Joyce M. Ngoi, Bright Adu, Collins M. Morang’a, Selassie Kumordjie, Miriam Eshun, Linda Boatemaa, Vanessa Magnussen, Erasmus Kotey, Fred Tei-May, Dominic S. Y. Amuzu, Peter Quashie, Augustina Arjaquah, Ivy Asante, Evelyn Bonney, George B. Kyei, Kofi Bonney, Abraham Kwabena Anang, Gordon A. Awandare, William Ampofo
EPI_ISL_422398	hCoV-19/Ghana/2853_S7/2020	2020-03-29	NMIMR, Department of Virology	WACCBIP, University of Ghana	Joyce M. Ngoi, Bright Adu, Collins M. Morang’a, Selassie Kumordjie, Miriam Eshun, Linda Boatemaa, Vanessa Magnussen, Erasmus Kotey, Fred Tei-Mayaa, Dominic S. Y. Amuzu, Peter Quashie, Augustina Arjarquah, Ivy Asante, Evelyn Bonney, George B. Kyei, Kofi Bonney, Abraham Kwapena Anang, Gordon A. Awandare, William Ampofo
EPI_ISL_422399	hCoV-19/Ghana/2914_S8/2020	2020-03-30	NMIMR, Department of Virology	WACCBIP, University of Ghana	Joyce M. Ngoi, Bright Adu, Collins M. Morang’a, Selassie Kumordjie, Miriam Eshun, Linda Boatemaa, Vanessa Magnussen, Erasmus Kotey, Fred Tei-Mayaa, Dominic S. Y. Amuzu, Peter Quashie, Augustina Arjarquah, Ivy Asante, Evelyn Bonney, George B. Kyei, Kofi Bonney, Abraham Kwapena Anang, Gordon A. Awandare, William Ampofo
EPI_ISL_422400	hCoV-19/Ghana/2944_S9/2020	2020-03-30	NMIMR, Department of Virology	WACCBIP, University of Ghana	Joyce M. Ngoi, Bright Adu, Collins M. Morang’a, Selassie Kumordjie, Miriam Eshun, Linda Boatemaa, Vanessa Magnussen, Erasmus Kotey, Fred Tei-Mayaa, Dominic S. Y. Amuzu, Peter Quashie, Augustina Arjarquah, Ivy Asante, Evelyn Bonney, George B. Kyei, Kofi Bonney, Abraham Kwapena Anang, Gordon A. Awandare, William Ampofo
EPI_ISL_422401	hCoV-19/Ghana/2986_S10/2020	2020-03-31	NMIMR, Department of Virology	WACCBIP, University of Ghana	
----------------	-------------------------------	------------	-------------------------------	-----------------------------	
EPI_ISL_422402	hCoV-19/Ghana/3176_S11/2020	2020-03-30	NMIMR, Department of Virology	WACCBIP, University of Ghana	
EPI_ISL_422403	hCoV-19/Ghana/3177_S12/2020	2020-03-30	NMIMR, Department of Virology	WACCBIP, University of Ghana	

Joyce M. Ngoi, Bright Adu, Collins M. Morang’a, Selassie Kumordjie, Miriam Eshun, Linda Boatemaa, Vanessa Magnussen, Erasmus Kotey, Fred Tei-Maya, Dominic S. Y. Amuzu, Peter Quashie, Augustina Arjarquah, Ivy Asante, Evelyn Bonney, George B. Kyei, Kofi Bonney, Abraham Kwabena Anang, Gordon A. Awandare, William Ampofo
EPI_ISL_422404	hCoV-19/Ghana/1565_S13/2020	2020-03-24	NMIMR, Department of Virology	WACCBIP, University of Ghana	Joyce M. Ngoi, Bright Adu, Collins M. Morang’a, Selassie Kumordjie, Miriam Eshun, Linda Boatemaa, Vanessa Magnussen, Erasmus Kotey, Fred Tei-Maya, Dominic S. Y. Amuzu, Peter Quashie, Augustina Arjarquah, Ivy Asante, Evelyn Bonney, George B. Kyei, Kofi Bonney, Abraham Kwabena Anang, Gordon A. Awandare, William Ampofo
EPI_ISL_422405	hCoV-19/Ghana/1659_S14/2020	2020-03-25	NMIMR, Department of Virology	WACCBIP, University of Ghana	Joyce M. Ngoi, Bright Adu, Collins M. Morang’a, Selassie Kumordjie, Miriam Eshun, Linda Boatemaa, Vanessa Magnussen, Erasmus Kotey, Fred Tei-Maya, Dominic S. Y. Amuzu, Peter Quashie, Augustina Arjarquah, Ivy Asante, Evelyn Bonney, George B. Kyei, Kofi Bonney, Abraham Kwabena Anang, Gordon A. Awandare, William Ampofo
EPI_ISL_422406	hCoV-19/Ghana/2850_S15/2020	2020-03-29	NMIMR, Department of Virology	WACCBIP, University of Ghana	Joyce M. Ngoi, Bright Adu, Collins M. Morang’a, Selassie Kumordjie, Miriam Eshun, Linda Boatemaa, Vanessa Magnussen, Erasmus Kotey, Fred Tei-Maya, Dominic S. Y. Amuzu, Peter Quashie, Augustina Arjarquah, Ivy Asante, Evelyn Bonney, George B. Kyei, Kofi Bonney, Abraham Kwabena Anang, Gordon A. Awandare, William Ampofo
EPI_ISL_428855	hCoV-19/Gambia/GC19-015/2020	2020-03-17	MRCG at LSHTM Genomics lab	MRCG at LSHTM Genomics lab	Sesay et al
EPI_ISL_428856	hCoV-19/Gambia/GC19-026/2020	2020-03-21	MRCG at LSHTM Genomics Lab	MRCG at LSHTM Genomics lab	Sesay et al
EPI_ISL_428857	hCoV-19/Gambia/GC19-029/2020	2020-04-20	MRCG at LSHTM Genomics lab	MRCG at LSHTM Genomics lab	Sesay et al
EPI_ISL_429254	hCoV-19/DRC/998/2020	2020-04-03	Viral Respiratory Lab, National Institute for Biomedical Research (INRB)	Pathogen Sequencing Lab, National Institute for Biomedical Research (INRB)	Placide Mbala-Kingebeni, Edith Nkwembe, Eddy Kinganda-Lusamaki, Amuri Aziza, Catherine Pratt, Matthias Pauthner, Josh Quick, Allison Black, James Hadfield, Trevor Bedford, Ian Goodfellow, Nick Loman, Kristian Andersen, Michael Wiley, Steve Ahuka-Mundeke, Jean-Jacques Muyembe Tamfum
EPI_ISL_429255	hCoV-19/DRC/1131/2020	2020-04-05	Viral Respiratory Lab, National Institute for Biomedical Research (INRB)	Pathogen Sequencing Lab, National Institute for Biomedical Research (INRB)	Placide Mbala-Kingebeni, Edith Nkwembe, Eddy Kinganda-Lusamaki, Amuri Aziza, Catherine Pratt, Matthias Pauthner, Josh Quick, Allison Black, James Hadfield, Trevor Bedford, Ian Goodfellow, Nick Loman, Kristian Andersen, Michael Wiley, Steve Ahuka-Mundeke, Jean-Jacques Muyembe Tamfum
EPI_ISL_429258	hCoV-19/DRC/1234/2020	2020-04-06	Viral Respiratory Lab, National Institute for Biomedical Research (INRB)	Pathogen Sequencing Lab, National Institute for Biomedical Research (INRB)	Placide Mbala-Kingebeni, Edith Nkwembe, Eddy Kinganda-Lusamaki, Amuri Aziza, Catherine Pratt, Matthias Pauthner, Josh Quick, Allison Black, James Hadfield, Trevor Bedford, Ian Goodfellow, Nick Loman, Kristian Andersen, Michael Wiley, Steve Ahuka-Mundeke, Jean-Jacques Muyembe Tamfum
EPI_ISL_429259	hCoV-19/DRC/1249/2020	2020-04-06	Viral Respiratory Lab, National Institute for Biomedical Research (INRB)	Pathogen Sequencing Lab, National Institute for Biomedical Research (INRB)	Placide Mbala-Kingebeni, Edith Nkwembe, Eddy Kinganda-Lusamaki, Amuri Aziza, Catherine Pratt, Matthias Pauthner, Josh Quick, Allison Black, James Hadfield, Trevor Bedford, Ian Goodfellow, Nick Loman, Kristian Andersen, Michael Wiley, Steve Ahuka-Mundeke, Jean-Jacques Muyembe Tamfum
EPI_ISL_430297	hCoV-19/South Africa/R02827/2020	2020-03-06	National Institute for Communicable Diseases of the National Health Laboratory Service	Allam M, Kwenda S, van Heusden P, Khumalo Z, Mohale T, Subramoney K, von Gottberg, A, Ismail A, Bhiman JN	
----------------	---------------------------------	------------	--	---	
EPI_ISL_430819	hCoV-19/Egypt/NRC-03/2020	2020-03-18	Center of Scientific Excellence for Influenza Viruses, National Research Centre (NRC), Egypt.	Mohamed Ahmed Ali, Ahmed Kandeil, Ahmed Mostafa, Rabeh El-Shesheny, Mahmoud Shehata, Wael Rosldy, Shymaa Showky Ahmed, Amal Naguib, Nancy M. El Guindy, Mokhtar Gomaa, Ahmed El-Taweel, Ahmed E Kayed, Yassmin Moatasim, Omnia Kutkat, Sara Mahmoud, Mina Kanel, Abo Shama, M Noura, Mohamed El Sayes	
EPI_ISL_430820	hCoV-19/Egypt/NRC-01/2020	2020-03-18	Center of Scientific Excellence for Influenza Viruses, National Research Centre (NRC), Egypt.	Mohamed Ahmed Ali, Ahmed Kandeil, Ahmed Mostafa, Rabeh El-Shesheny, Mahmoud Shehata, Wael Rosldy, Shymaa Showky Ahmed, Amal Naguib, Mokhtar Gomaa, Ahmed El-Taweel, Ahmed E Kayed, Yassmin Moatasim, Omnia Kutkat, Sara Mahmoud, Mina Kanel, Abo Shama, M Noura, Mohamed El Sayes, Nancy M. El Guindy	
EPI_ISL_431011	hCoV-19/DRC/1319/2020	2020-04-07	Viral Respiratory Lab, National Institute for Biomedical Research (INRB)	Placide Mbala-Kingebeni, Edith Nbembe, Eddy Kinganda-Lusamaki, Amuri Azita, Francisca Muyembe Mawete, Catherine Pratt, Matthias Pautner, Josh Quick, Allison Black, James Hadfield, Trevor Bedford, Ian Goodfellow, Andrew Rambaut, Nick Loman, Kristian Andersen, Michael Wiley, Steve Ahuka-Mundeke, Jean-Jacques Muyembe Tamfam	
Study ID	Sample ID	Date	Lab Information		
---------------	--------------------	------------	--		
EPI_ISL_431012	hCoV-19/DRC/1376/2020	2020-04-07	Viral Respiratory Lab, National Institute for Biomedical Research (INRB)		
			Pathogen Sequencing Lab, National Institute for Biomedical Research (INRB)		
			Placide Mbala-Kingebeni, Edith Nkwembe, Eddy Kinganda-Lusamaki, Amuri Aziza, Francisca Muyembe Mawete, Catherine Pratt, Matthias Pauthner, Josh Quick, Allison Black, James Hadfield, Trevor Bedford, Ian Goodfellow, Andrew Rambaut, Nick Loman, Kristian Andersen, Michael Wiley, Steve Ahuka-Mundeke, Jean-Jacques Muyembe Tamfum		
EPI_ISL_434678	hCoV-19/DRC/1377/2020	2020-04-07	Viral Respiratory Lab, National Institute for Biomedical Research (INRB)		
			Pathogen Sequencing Lab, National Institute for Biomedical Research (INRB)		
			Placide Mbala-Kingebeni, Edith Nkwembe, Eddy Kinganda-Lusamaki, Amuri Aziza, Francisca Muyembe Mawete, Catherine Pratt, Matthias Pauthner, Josh Quick, Allison Black, James Hadfield, Trevor Bedford, Ian Goodfellow, Andrew Rambaut, Nick Loman, Kristian Andersen, Michael Wiley, Steve Ahuka-Mundeke, Jean-Jacques Muyembe Tamfum		
EPI_ISL_434679	hCoV-19/DRC/1397/2020	2020-04-07	Viral Respiratory Lab, National Institute for Biomedical Research (INRB)		
			Pathogen Sequencing Lab, National Institute for Biomedical Research (INRB)		
			Placide Mbala-Kingebeni, Edith Nkwembe, Eddy Kinganda-Lusamaki, Amuri Aziza, Francisca Muyembe Mawete, Catherine Pratt, Matthias Pauthner, Josh Quick, Allison Black, James Hadfield, Trevor Bedford, Ian Goodfellow, Andrew Rambaut, Nick Loman, Kristian Andersen, Michael Wiley, Steve Ahuka-Mundeke, Jean-Jacques Muyembe Tamfum		
EPI_ISL_434680	hCoV-19/DRC/1422/2020	2020-04-08	Viral Respiratory Lab, National Institute for Biomedical Research (INRB)	Pathogen Sequencing Lab, National Institute for Biomedical Research (INRB)	Placide Mbala-Kingebeni; Edith Nkwembe; Eddy Kinganda-Lusamaki; Amuri Aziza; Francisca Muyembe Mawete; Catherine Pratt; Matthias Pauthner; Josh Quick; Allison Black; James Hadfield; Trevor Bedford; Ian Goodfellow; Andrew Rambaut; Nick Loman; Kristian Andersen; Michael Wiley; Steve Ahuka-Mundeke; Jean-Jacques Muyembe Tamfum
EPI_ISL_434681	hCoV-19/DRC/1565/2020	2020-04-09	Viral Respiratory Lab, National Institute for Biomedical Research (INRB)	Pathogen Sequencing Lab, National Institute for Biomedical Research (INRB)	Placide Mbala-Kingebeni; Edith Nkwembe; Eddy Kinganda-Lusamaki; Amuri Aziza; Francisca Muyembe Mawete; Catherine Pratt; Matthias Pauthner; Josh Quick; Allison Black; James Hadfield; Trevor Bedford; Ian Goodfellow; Andrew Rambaut; Nick Loman; Kristian Andersen; Michael Wiley; Steve Ahuka-Mundeke; Jean-Jacques Muyembe Tamfum
EPI_ISL_434710	hCoV-19/DRC/1423/2020	2020-04-08	Viral Respiratory Lab, National Institute for Biomedical Research (INRB)	Pathogen Sequencing Lab, National Institute for Biomedical Research (INRB)	Placide Mbala-Kingebeni, Edith Nkwembe, Eddy Kinganda-Lusamaki, Adrienne Amuri Aziza, Francisca Muyembe Mawete, Catherine Pratt, Matthias Pauthner, Josh Quick, Allison Black, James Hadfield, Trevor Bedford, Ian Goodfellow, Andrew Rambaut, Nick Loman, Kristian Andersen, Michael Wiley, Steve Ahuka-Mundeke, Jean-Jacques Muyembe Tamfum
EPI_ISL_434711	hCoV-19/DRC/1486/2020	2020-04-08	Viral Respiratory Lab, National Institute for Biomedical Research (INRB)	Pathogen Sequencing Lab, National Institute for Biomedical Research (INRB)	Placide Mbala-Kingebeni, Edith Nkwembe, Eddy Kinganda-Lusamaki, Adrienne Amuri Aziza, Francisca Muyembe Mawete, Catherine Pratt, Matthias Pauthner, Josh Quick, Allison Black, James Hadfield, Trevor Bedford, Ian Goodfellow, Andrew Rambaut, Nick Loman, Kristian Andersen, Michael Wiley, Steve Ahuka-Mundeke, Jean-Jacques Muyembe Tamfum
EPI_ISL_435032	hCoV-19/DRC/1516/2020	2020-04-09	Viral Respiratory Lab, National Institute for Biomedical Research (INRB)	Pathogen Sequencing Lab, National Institute for Biomedical Research (INRB)	Placide Mbala-Kingebeni, Edith Nkwembe, Eddy Kinganda-Lusamaki, Adrienne Amuri Aziza, Francisca Muyembe Mawete, Catherine Pratt, Matthias Pauthner, Josh Quick, Allison Black, James Hadfield, Trevor Bedford, Ian Goodfellow, Andrew Rambaut, Nick Loman, Kristian Andersen, Michael Wiley, Steve Ahuka-Mundeke, Jean-Jacques Muyembe Tamfum
EPI_ISL_435033	hCoV-19/DRC/1324/2020	2020-04-07	Viral Respiratory Lab, National Institute for Biomedical Research (INRB)	Pathogen Sequencing Lab, National Institute for Biomedical Research (INRB)	Placide Mbala-Kingebeni, Edith Nkwembe, Eddy Kinganda-Lusamaki, Adrienne Amuri Aziza, Francisca Muyembe Mawete, Catherine Pratt, Matthias Pauthner, Josh Quick, Allison Black, James Hadfield, Trevor Bedford, Ian Goodfellow, Andrew Rambaut, Nick Loman, Kristian Andersen, Michael Wiley, Steve Ahuka-Mundeke, Jean-Jacques Muyembe Tamfum
EPI_ISL_435058	hCoV-19/South Africa/R02606/2020	2020-03-11	National Institute for Communicable Diseases of the National Health Laboratory Service	National Institute for Communicable Diseases of the National Health Laboratory Service	Allam M, Kwenda S, van Heusden P, Khumalo Z, Mohale T, Subramoney K, von Gottberg, A, Ismail A, Bhiman JN
EPI_ISL_435059	hCoV-19/South Africa/R05475/2020	2020-03-20	National Institute for Communicable Diseases of the National Health Laboratory Service	National Institute for Communicable Diseases of the National Health Laboratory Service	Allam M, Kwenda S, van Heusden P, Khumalo Z, Mohale T, Subramoney K, von Gottberg, A, Ismail A, Bhiman JN
----------------	---------------------------------	------------	---	---	---
EPI_ISL_435113	hCoV-19/DRC/1382/2020	2020-04-07	Viral Respiratory Lab, National Institute for Biomedical Research (INRB)	Pathogen Sequencing Lab, National Institute for Biomedical Research (INRB)	Placide Mbala-Kingebeni, Edith Nkwembe, Eddy Kinganda-Lusamaki, Adrienne Amuri Aziza, Francisca Muyembe Mawete, Catherine Pratt, Matthias Pauthner, Josh Quick, Allison Black, James Hadfield, Trevor Bedford, Ian Goodfellow, Andrew Rambaut, Nick Loman, Kristian Andersen, Michael Wiley, Steve Ahuka-Mundeke, Jean-Jacques Muyembe Tamfum
EPI_ISL_435114	hCoV-19/DRC/1398/2020	2020-04-07	Viral Respiratory Lab, National Institute for Biomedical Research (INRB)	Pathogen Sequencing Lab, National Institute for Biomedical Research (INRB)	Placide Mbala-Kingebeni, Edith Nkwembe, Eddy Kinganda-Lusamaki, Adrienne Amuri Aziza, Francisca Muyembe Mawete, Catherine Pratt, Matthias Pauthner, Josh Quick, Allison Black, James Hadfield, Trevor Bedford, Ian Goodfellow, Andrew Rambaut, Nick Loman, Kristian Andersen, Michael Wiley, Steve Ahuka-Mundeke, Jean-Jacques Muyembe Tamfum
EPI_ISL_435116	hCoV-19/DRC/1326/2020	2020-04-07	Viral Respiratory Lab, National Institute for Biomedical Research (INRB)	Pathogen Sequencing Lab, National Institute for Biomedical Research (INRB)	Placide Mbala-Kingebeni, Edith Nkwembe, Eddy Kinganda-Lusamaki, Adrienne Amuri Aziza, Francisca Muyembe Mawete, Catherine Pratt, Matthias Pauthner, Josh Quick, Allison Black, James Hadfield, Trevor Bedford, Ian Goodfellow, Andrew Rambaut, Nick Loman, Kristian Andersen, Michael Wiley, Steve Ahuka-Mundeke, Jean-Jacques Muyembe Tamfum
Accession Number	Sample Name	Collection Date	Institution	Authors	
------------------	----------------------	-----------------	-----------------------------	---	
EPI_ISL_435117	hCoV-19/DRC/1375/2020	2020-04-07	Viral Respiratory Lab, National Institute for Biomedical Research (INRB)	Placide Mbala-Kingebeni, Edith Nkwembe, Eddy Kinganda-Lusamaki, Adrienne Amuri Aziza, Francisca Muyembe Mawete, Catherine Pratt, Matthias Pauthner, Josh Quick, Allison Black, James Hadfield, Trevor Bedford, Ian Goodfellow, Andrew Rambaut, Nick Loman, Kristian Andersen, Michael Wiley, Steve Ahuka-Mundeke, Jean-Jacques Muyembe Tamfum	
EPI_ISL_435118	hCoV-19/DRC/1378/2020	2020-04-07	Viral Respiratory Lab, National Institute for Biomedical Research (INRB)	Placide Mbala-Kingebeni, Edith Nkwembe, Eddy Kinganda-Lusamaki, Adrienne Amuri Aziza, Francisca Muyembe Mawete, Catherine Pratt, Matthias Pauthner, Josh Quick, Allison Black, James Hadfield, Trevor Bedford, Ian Goodfellow, Andrew Rambaut, Nick Loman, Kristian Andersen, Michael Wiley, Steve Ahuka-Mundeke, Jean-Jacques Muyembe Tamfum	
EPI_ISL_435156	hCoV-19/DRC/1715/2020	2020-04-10	Viral Respiratory Lab, National Institute for Biomedical Research (INRB)	Placide Mbala-Kingebeni, Edith Nkwembe, Eddy Kinganda-Lusamaki, Amuri Aziza, Francisca Muyembe Mawete, Catherine Pratt, Matthias Pauthner, Josh Quick, Allison Black, James Hadfield, Trevor Bedford, Ian Goodfellow, Andrew Rambaut, Nick Loman, Kristian Andersen, Michael Wiley, Steve Ahuka-Mundeke, Jean-Jacques Muyembe Tamfum	
EPI_ISL_435157	hCoV-19/DRC/1767/2020	2020-04-10	Viral Respiratory Lab, National Institute for Biomedical Research (INRB)	Pathogen Sequencing Lab, National Institute for Biomedical Research (INRB)	Placide Mbala-Kingebeni, Edith Nkwembe, Eddy Kinganda-Lusamaki, Amuri Aziza, Francisca Muyembe Mawete, Catherine Pratt, Matthias Pauthner, Josh Quick, Allison Black, James Hadfield, Trevor Bedford, Ian Goodfellow, Andrew Rambaut, Nick Loman, Kristian Andersen, Michael Wiley, Steve Ahuka-Mundeke, Jean-Jacques Muyembe Tamfum
---	---	---	---	---	---
EPI_ISL_435158	hCoV-19/DRC/1779/2020	2020-04-10	Viral Respiratory Lab, National Institute for Biomedical Research (INRB)	Pathogen Sequencing Lab, National Institute for Biomedical Research (INRB)	Placide Mbala-Kingebeni, Edith Nkwembe, Eddy Kinganda-Lusamaki, Amuri Aziza, Francisca Muyembe Mawete, Catherine Pratt, Matthias Pauthner, Josh Quick, Allison Black, James Hadfield, Trevor Bedford, Ian Goodfellow, Andrew Rambaut, Nick Loman, Kristian Andersen, Michael Wiley, Steve Ahuka-Mundeke, Jean-Jacques Muyembe Tamfum
EPI_ISL_435159	hCoV-19/DRC/1952/2020	2020-04-11	Viral Respiratory Lab, National Institute for Biomedical Research (INRB)	Pathogen Sequencing Lab, National Institute for Biomedical Research (INRB)	Placide Mbala-Kingebeni, Edith Nkwembe, Eddy Kinganda-Lusamaki, Amuri Aziza, Francisca Muyembe Mawete, Catherine Pratt, Matthias Pauthner, Josh Quick, Allison Black, James Hadfield, Trevor Bedford, Ian Goodfellow, Andrew Rambaut, Nick Loman, Kristian Andersen, Michael Wiley, Steve Ahuka-Mundeke, Jean-Jacques Muyembe Tamfum
EPI_ISL_435160	hCoV-19/DRC/1982/2020	2020-04-12	Viral Respiratory Lab, National Institute for Biomedical Research (INRB)	Pathogen Sequencing Lab, National Institute for Biomedical Research (INRB)	Placide Mbala-Kingebeni, Edith Nkwembe, Eddy Kinganda-Lusamaki, Amuri Aziza, Francisca Muyembe Mawete, Catherine Pratt, Matthias Pauthner, Josh Quick, Allison Black, James Hadfield, Trevor Bedford, Ian Goodfellow, Andrew Rambaut, Nick Loman, Kristian Andersen, Michael Wiley, Steve Ahuka-Mundeke, Jean-Jacques Muyembe Tamfum
----------------	-----------------------	------------	--	--	--
EPI_ISL_435161	hCoV-19/DRC/2047/2020	2020-04-12	Viral Respiratory Lab, National Institute for Biomedical Research (INRB)	Pathogen Sequencing Lab, National Institute for Biomedical Research (INRB)	Placide Mbala-Kingebeni, Edith Nkwembe, Eddy Kinganda-Lusamaki, Amuri Aziza, Francisca Muyembe Mawete, Catherine Pratt, Matthias Pauthner, Josh Quick, Allison Black, James Hadfield, Trevor Bedford, Ian Goodfellow, Andrew Rambaut, Nick Loman, Kristian Andersen, Michael Wiley, Steve Ahuka-Mundeke, Jean-Jacques Muyembe Tamfum
EPI_ISL_435162	hCoV-19/DRC/2063/2020	2020-04-12	Viral Respiratory Lab, National Institute for Biomedical Research (INRB)	Pathogen Sequencing Lab, National Institute for Biomedical Research (INRB)	Placide Mbala-Kingebeni, Edith Nkwembe, Eddy Kinganda-Lusamaki, Amuri Aziza, Francisca Muyembe Mawete, Catherine Pratt, Matthias Pauthner, Josh Quick, Allison Black, James Hadfield, Trevor Bedford, Ian Goodfellow, Andrew Rambaut, Nick Loman, Kristian Andersen, Michael Wiley, Steve Ahuka-Mundeke, Jean-Jacques Muyembe Tamfum
EPI_ISL_435163	hCoV-19/DRC/2120/2020	2020-04-12	Viral Respiratory Lab, National Institute for Biomedical Research (INRB)	Pathogen Sequencing Lab, National Institute for Biomedical Research (INRB)	Placide Mbala-Kingebeni, Edith Nkwembe, Eddy Kinganda-Lusamaki, Amuri Aziza, Franciscia Muyembe Mawete, Catherine Pratt, Matthias Pauthner, Josh Quick, Allison Black, James Hadfield, Trevor Bedford, Ian Goodfellow, Andrew Rambaut, Nick Loman, Kristian Andersen, Michael Wiley, Steve Ahuka-Mundeke, Jean-Jacques Muyembe Tamfum
----------------	----------------------	-----------	--	--	---
EPI_ISL_435164	hCoV-19/DRC/2121/2020	2020-04-12	Viral Respiratory Lab, National Institute for Biomedical Research (INRB)	Pathogen Sequencing Lab, National Institute for Biomedical Research (INRB)	Placide Mbala-Kingebeni, Edith Nkwembe, Eddy Kinganda-Lusamaki, Amuri Aziza, Franciscia Muyembe Mawete, Catherine Pratt, Matthias Pauthner, Josh Quick, Allison Black, James Hadfield, Trevor Bedford, Ian Goodfellow, Andrew Rambaut, Nick Loman, Kristian Andersen, Michael Wiley, Steve Ahuka-Mundeke, Jean-Jacques Muyembe Tamfum
EPI_ISL_435165	hCoV-19/DRC/2122/2020	2020-04-13	Viral Respiratory Lab, National Institute for Biomedical Research (INRB)	Pathogen Sequencing Lab, National Institute for Biomedical Research (INRB)	Placide Mbala-Kingebeni, Edith Nkwembe, Eddy Kinganda-Lusamaki, Amuri Aziza, Franciscia Muyembe Mawete, Catherine Pratt, Matthias Pauthner, Josh Quick, Allison Black, James Hadfield, Trevor Bedford, Ian Goodfellow, Andrew Rambaut, Nick Loman, Kristian Andersen, Michael Wiley, Steve Ahuka-Mundeke, Jean-Jacques Muyembe Tamfum
EPI_ISL_435166	hCoV-19/DRC/2125/2020	2020-04-13	Viral Respiratory Lab, National Institute for Biomedical Research (INRB)	Pathogen Sequencing Lab, National Institute for Biomedical Research (INRB)	Placide Mbala-Kingebeni, Edith Nkwembe, Eddy Kinganda-Lusamaki, Amuri Aziza, Francisca Muyembe Mawete, Catherine Pratt, Matthias Pauthner, Josh Quick, Allison Black, James Hadfield, Trevor Bedford, Ian Goodfellow, Andrew Rambaut, Nick Loman, Kristian Andersen, Michael Wiley, Steve Ahuka-Mundeke, Jean-Jacques Muyembe Tamfum
EPI_ISL_435167	hCoV-19/DRC/2128/2020	2020-04-13	Viral Respiratory Lab, National Institute for Biomedical Research (INRB)	Pathogen Sequencing Lab, National Institute for Biomedical Research (INRB)	Placide Mbala-Kingebeni, Edith Nkwembe, Eddy Kinganda-Lusamaki, Amuri Aziza, Francisca Muyembe Mawete, Catherine Pratt, Matthias Pauthner, Josh Quick, Allison Black, James Hadfield, Trevor Bedford, Ian Goodfellow, Andrew Rambaut, Nick Loman, Kristian Andersen, Michael Wiley, Steve Ahuka-Mundeke, Jean-Jacques Muyembe Tamfum
EPI_ISL_435168	hCoV-19/DRC/2133/2020	2020-04-13	Viral Respiratory Lab, National Institute for Biomedical Research (INRB)	Pathogen Sequencing Lab, National Institute for Biomedical Research (INRB)	Placide Mbala-Kingebeni, Edith Nkwembe, Eddy Kinganda-Lusamaki, Amuri Aziza, Francisca Muyembe Mawete, Catherine Pratt, Matthias Pauthner, Josh Quick, Allison Black, James Hadfield, Trevor Bedford, Ian Goodfellow, Andrew Rambaut, Nick Loman, Kristian Andersen, Michael Wiley, Steve Ahuka-Mundeke, Jean-Jacques Muyembe Tamfum
EPI_ISL_436194	hCoV-19/DRC/2169/2020	2020-04-13	Viral Respiratory Lab, National Institute for Biomedical Research (INRB)	Pathogen Sequencing Lab, National Institute for Biomedical Research (INRB)	Placide Mbala-Kingebeni, Edith Nkwembe, Eddy Kinganda-Lusamaki, Amuri Aziza, Francisca Muyembe Mawete, Catherine Pratt, Matthias Pauthner, Josh Quick, Allison Black, James Hadfield, Trevor Bedford, Ian Goodfellow, Andrew Rambaut, Nick Loman, Kristian Andersen, Michael Wiley, Steve Ahuka-Mundeke, Jean-Jacques Muyembe Tamfum
EPI_ISL_436412	hCoV-19/DRC/2299/2020	2020-04-14	Viral Respiratory Lab, National Institute for Biomedical Research (INRB)	Pathogen Sequencing Lab, National Institute for Biomedical Research (INRB)	Placide Mbala-Kingebeni, Edith Nkwembe, Eddy Kinganda-Lusamaki, Amuri Aziza, Francisca Muyembe Mawete, Catherine Pratt, Matthias Pauthner, Josh Quick, Allison Black, James Hadfield, Trevor Bedford, Ian Goodfellow, Andrew Rambaut, Nick Loman, Kristian Andersen, Michael Wiley, Steve Ahuka-Mundeke, Jean-Jacques Muyembe Tamfum
EPI_ISL_436684	hCoV-19/South Africa/KRISP-04/2020	2020-03-31	KRISP, KZN Research Innovation and Sequencing Platform	KRISP, KZN Research Innovation and Sequencing Platform	Giandhari J, Pillay S, Lessells R, Chimukangara B, Deforce K, Teghally H, Wilkinson E, de Oliveira T
EPI_ISL_436685	hCoV-19/South Africa/KRISP-010/2020	2020-04-01	KRISP, KZN Research Innovation and Sequencing Platform	KRISP, KZN Research Innovation and Sequencing Platform	Giandhari J, Pillay S, Lessells R, Chimukangara B, Deforce K, Teghally H, Wilkinson E, de Oliveira T
EPI_ISL_436686	hCoV-19/South Africa/KRISP-045/2020	2020-03-27	KRISP, KZN Research Innovation and Sequencing Platform	KRISP, KZN Research Innovation and Sequencing Platform	Giandhari J, Pillay S, Lessells R, Chimukangara B, Deforce K, Teghally H, Wilkinson E, de Oliveira T
EPI_ISL_436687	hCoV-19/South Africa/KRISP-051/2020	2020-03-28	KRISP, KZN Research Innovation and Sequencing Platform	KRISP, KZN Research Innovation and Sequencing Platform	Giandhari J, Pillay S, Lessells R, Chimukangara B, Deforce K, Teghally H, Wilkinson E, de Oliveira T
ID	Sample ID	Date	Lab Name	Authorship	
-------------	--------------------	------------	---	---	
EPI_ISL_437193	hCoV-19/DRC/2364/2020	2020-04-14	Viral Respiratory Lab, National Institute for Biomedical Research (INRB)	Placide Mbala-Kingebeni, Edith Nkwembe, Eddy Kinganda-Lusamaki, Amuri Aziza, Francisca Muyembe Mawete, Catherine Pratt, Matthias Pauthner, Josh Quick, Allison Black, James Hadfield, Trevor Bedford, Ian Goodfellow, Andrew Rambaut, Nick Loman, Kristian Andersen, Michael Wiley, Steve Ahuka-Mundeke, Jean-Jacques Muyembe Tamfum	
EPI_ISL_437194	hCoV-19/DRC/2363/2020	2020-04-14	Viral Respiratory Lab, National Institute for Biomedical Research (INRB)	Placide Mbala-Kingebeni, Edith Nkwembe, Eddy Kinganda-Lusamaki, Amuri Aziza, Francisca Muyembe Mawete, Catherine Pratt, Matthias Pauthner, Josh Quick, Allison Black, James Hadfield, Trevor Bedford, Ian Goodfellow, Andrew Rambaut, Nick Loman, Kristian Andersen, Michael Wiley, Steve Ahuka-Mundeke, Jean-Jacques Muyembe Tamfum	
EPI_ISL_437195	hCoV-19/DRC/2369/2020	2020-04-14	Viral Respiratory Lab, National Institute for Biomedical Research (INRB)	Placide Mbala-Kingebeni, Edith Nkwembe, Eddy Kinganda-Lusamaki, Amuri Aziza, Francisca Muyembe Mawete, Catherine Pratt, Matthias Pauthner, Josh Quick, Allison Black, James Hadfield, Trevor Bedford, Ian Goodfellow, Andrew Rambaut, Nick Loman, Kristian Andersen, Michael Wiley, Steve Ahuka-Mundeke, Jean-Jacques Muyembe Tamfum	
EPI_ISL_437196	hCoV-19/DRC/2384/2020	2020-04-14	Viral Respiratory Lab, National Institute for Biomedical Research (INRB)	Pathogen Sequencing Lab, National Institute for Biomedical Research (INRB)	Placide Mbala-Kingebeni, Edith Nkwembe, Eddy Kinganda-Lusamaki, Amuri Aziza, Francisca Muyembe Mawete, Catherine Pratt, Matthias Pauthner, Josh Quick, Allison Black, James Hadfield, Trevor Bedford, Ian Goodfellow, Andrew Rambaut, Nick Loman, Kristian Andersen, Michael Wiley, Steve Ahuka-Mundeke, Jean-Jacques Muyembe Tamfum
EPI_ISL_437337	hCoV-19/DRC/2496/2020	2020-04-15	Viral Respiratory Lab, National Institute for Biomedical Research (INRB)	Pathogen Sequencing Lab, National Institute for Biomedical Research (INRB)	Placide Mbala-Kingebeni, Edith Nkwembe, Eddy Kinganda-Lusamaki, Amuri Aziza, Francisca Muyembe Mawete, Catherine Pratt, Matthias Pauthner, Josh Quick, Allison Black, James Hadfield, Trevor Bedford, Ian Goodfellow, Andrew Rambaut, Nick Loman, Kristian Andersen, Michael Wiley, Steve Ahuka-Mundeke, Jean-Jacques Muyembe Tamfum
EPI_ISL_437338	hCoV-19/DRC/2529/2020	2020-04-15	Viral Respiratory Lab, National Institute for Biomedical Research (INRB)	Pathogen Sequencing Lab, National Institute for Biomedical Research (INRB)	Placide Mbala-Kingebeni, Edith Nkwembe, Eddy Kinganda-Lusamaki, Amuri Aziza, Francisca Muyembe Mawete, Catherine Pratt, Matthias Pauthner, Josh Quick, Allison Black, James Hadfield, Trevor Bedford, Ian Goodfellow, Andrew Rambaut, Nick Loman, Kristian Andersen, Michael Wiley, Steve Ahuka-Mundeke, Jean-Jacques Muyembe Tamfum
EPI_ISL_437339	hCoV-19/DRC/2536/2020	2020-04-15	Viral Respiratory Lab, National Institute for Biomedical Research (INRB)	Pathogen Sequencing Lab, National Institute for Biomedical Research (INRB)	Placide Mbala-Kingebeni, Edith Nkwembe, Eddy Kinganda-Lusamaki, Amuri Aziza, Francisca Muyembe Mawete, Catherine Pratt, Matthias Pauthner, Josh Quick, Allison Black, James Hadfield, Trevor Bedford, Ian Goodfellow, Andrew Rambaut, Nick Loman, Kristian Andersen, Michael Wiley, Steve Ahuka-Mundeke, Jean-Jacques Muyembe Tamfum
----------------	-----------------------	------------	---	---	--
EPI_ISL_437340	hCoV-19/DRC/2563/2020	2020-04-15	Viral Respiratory Lab, National Institute for Biomedical Research (INRB)	Pathogen Sequencing Lab, National Institute for Biomedical Research (INRB)	Placide Mbala-Kingebeni, Edith Nkwembe, Eddy Kinganda-Lusamaki, Amuri Aziza, Francisca Muyembe Mawete, Catherine Pratt, Matthias Pauthner, Josh Quick, Allison Black, James Hadfield, Trevor Bedford, Ian Goodfellow, Andrew Rambaut, Nick Loman, Kristian Andersen, Michael Wiley, Steve Ahuka-Mundeke, Jean-Jacques Muyembe Tamfum
EPI_ISL_437341	hCoV-19/DRC/2580/2020	2020-04-15	Viral Respiratory Lab, National Institute for Biomedical Research (INRB)	Pathogen Sequencing Lab, National Institute for Biomedical Research (INRB)	Placide Mbala-Kingebeni, Edith Nkwembe, Eddy Kinganda-Lusamaki, Amuri Aziza, Francisca Muyembe Mawete, Catherine Pratt, Matthias Pauthner, Josh Quick, Allison Black, James Hadfield, Trevor Bedford, Ian Goodfellow, Andrew Rambaut, Nick Loman, Kristian Andersen, Michael Wiley, Steve Ahuka-Mundeke, Jean-Jacques Muyembe Tamfum
Entry	Sample Name	Date	Laboratory	Authors	
-------	-------------	------	------------	---------	
EPI.ISL.437342	hCoV-19/DRC/2644/2020	2020-04-15	Viral Respiratory Lab, National Institute for Biomedical Research (INRB)	Placide Mbala-Kingebeni, Edith Nkwembe, Eddy Kinganda-Lusamaki, Amuri Aziza, Francisca Muyembe Mawete, Catherine Pratt, Matthias Pauthner, Josh Quick, Allison Black, James Hadfield, Trevor Bedford, Ian Goodfellow, Andrew Rambaut, Nick Loman, Kristian Andersen, Michael Wiley, Steve Ahuka-Mundeke, Jean-Jacques Muyembe Tamfum	
EPI.ISL.437343	hCoV-19/DRC/2670/2020	2020-04-15	Viral Respiratory Lab, National Institute for Biomedical Research (INRB)	Placide Mbala-Kingebeni, Edith Nkwembe, Eddy Kinganda-Lusamaki, Amuri Aziza, Francisca Muyembe Mawete, Catherine Pratt, Matthias Pauthner, Josh Quick, Allison Black, James Hadfield, Trevor Bedford, Ian Goodfellow, Andrew Rambaut, Nick Loman, Kristian Andersen, Michael Wiley, Steve Ahuka-Mundeke, Jean-Jacques Muyembe Tamfum	
EPI.ISL.437344	hCoV-19/DRC/2727/2020	2020-04-16	Viral Respiratory Lab, National Institute for Biomedical Research (INRB)	Placide Mbala-Kingebeni, Edith Nkwembe, Eddy Kinganda-Lusamaki, Amuri Aziza, Francisca Muyembe Mawete, Catherine Pratt, Matthias Pauthner, Josh Quick, Allison Black, James Hadfield, Trevor Bedford, Ian Goodfellow, Andrew Rambaut, Nick Loman, Kristian Andersen, Michael Wiley, Steve Ahuka-Mundeke, Jean-Jacques Muyembe Tamfum	
EPI_ISL_437345	hCoV-19/DRC/2728/2020	2020-04-16	Viral Respiratory Lab, National Institute for Biomedical Research (INRB)	Pathogen Sequencing Lab, National Institute for Biomedical Research (INRB)	Placide Mbala-Kingebeni, Edith Nkwembe, Eddy Kinganda-Lusamaki, Amuri Aziza, Francisca Muyembe Mawete, Catherine Pratt, Matthias Pauthner, Josh Quick, Allison Black, James Hadfield, Trevor Bedford, Ian Goodfellow, Andrew Rambaut, Nick Loman, Kristian Andersen, Michael Wiley, Steve Ahuka-Mundeke, Jean-Jacques Muyembe Tamfum
EPI_ISL_437346	hCoV-19/DRC/2813/2020	2020-04-16	Viral Respiratory Lab, National Institute for Biomedical Research (INRB)	Pathogen Sequencing Lab, National Institute for Biomedical Research (INRB)	Placide Mbala-Kingebeni, Edith Nkwembe, Eddy Kinganda-Lusamaki, Amuri Aziza, Francisca Muyembe Mawete, Catherine Pratt, Matthias Pauthner, Josh Quick, Allison Black, James Hadfield, Trevor Bedford, Ian Goodfellow, Andrew Rambaut, Nick Loman, Kristian Andersen, Michael Wiley, Steve Ahuka-Mundeke, Jean-Jacques Muyembe Tamfum
EPI_ISL_437347	hCoV-19/DRC/2819/2020	2020-04-16	Viral Respiratory Lab, National Institute for Biomedical Research (INRB)	Pathogen Sequencing Lab, National Institute for Biomedical Research (INRB)	Placide Mbala-Kingebeni, Edith Nkwembe, Eddy Kinganda-Lusamaki, Amuri Aziza, Francisca Muyembe Mawete, Catherine Pratt, Matthias Pauthner, Josh Quick, Allison Black, James Hadfield, Trevor Bedford, Ian Goodfellow, Andrew Rambaut, Nick Loman, Kristian Andersen, Michael Wiley, Steve Ahuka-Mundeke, Jean-Jacques Muyembe Tamfum
EPI_ISL_437352	hCoV-19/DRC/2904/2020	2020-04-17	Viral Respiratory Lab, National Institute for Biomedical Research (INRB)	Pathogen Sequencing Lab, National Institute for Biomedical Research (INRB)	Placide Mbala-Kingebeni, Edith Nkwembe, Eddy Kinganda-Lusamaki, Amuri Aziza, Francisca Muyembe Mawete, Catherine Pratt, Matthias Pauthner, Josh Quick, Allison Black, James Hadfield, Trevor Bedford, Ian Goodfellow, Andrew Rambaut, Nick Loman, Kristian Andersen, Michael Wiley, Steve Ahuka-Mundeke, Jean-Jacques Muyembe Tamfum
EPI_ISL_437353	hCoV-19/DRC/2938/2020	2020-04-17	Viral Respiratory Lab, National Institute for Biomedical Research (INRB)	Pathogen Sequencing Lab, National Institute for Biomedical Research (INRB)	Placide Mbala-Kingebeni, Edith Nkwembe, Eddy Kinganda-Lusamaki, Amuri Aziza, Francisca Muyembe Mawete, Catherine Pratt, Matthias Pauthner, Josh Quick, Allison Black, James Hadfield, Trevor Bedford, Ian Goodfellow, Andrew Rambaut, Nick Loman, Kristian Andersen, Michael Wiley, Steve Ahuka-Mundeke, Jean-Jacques Muyembe Tamfum
EPI_ISL_437354	hCoV-19/DRC/2939/2020	2020-04-17	Viral Respiratory Lab, National Institute for Biomedical Research (INRB)	Pathogen Sequencing Lab, National Institute for Biomedical Research (INRB)	Placide Mbala-Kingebeni, Edith Nkwembe, Eddy Kinganda-Lusamaki, Amuri Aziza, Francisca Muyembe Mawete, Catherine Pratt, Matthias Pauthner, Josh Quick, Allison Black, James Hadfield, Trevor Bedford, Ian Goodfellow, Andrew Rambaut, Nick Loman, Kristian Andersen, Michael Wiley, Steve Ahuka-Mundeke, Jean-Jacques Muyembe Tamfum
EPI_ISL_437355	hCoV-19/DRC/2942/2020	2020-04-17	Viral Respiratory Lab, National Institute for Biomedical Research (INRB)	Pathogen Sequencing Lab, National Institute for Biomedical Research (INRB)	Placide Mbala-Kingebeni, Edith Nkwembe, Eddy Kinganda-Lusamaki, Amuri Aziza, Francisca Muyembe Mawete, Catherine Pratt, Matthias Pauthner, Josh Quick, Allison Black, James Hadfield, Trevor Bedford, Ian Goodfellow, Andrew Rambaut, Nick Loman, Kristian Andersen, Michael Wiley, Steve Ahuka-Mundeke, Jean-Jacques Muyembe Tamfum
----------------	----------------------	-----------	--	--	--
EPI_ISL_437356	hCoV-19/DRC/3041/2020	2020-04-18	Viral Respiratory Lab, National Institute for Biomedical Research (INRB)	Pathogen Sequencing Lab, National Institute for Biomedical Research (INRB)	Placide Mbala-Kingebeni, Edith Nkwembe, Eddy Kinganda-Lusamaki, Amuri Aziza, Francisca Muyembe Mawete, Catherine Pratt, Matthias Pauthner, Josh Quick, Allison Black, James Hadfield, Trevor Bedford, Ian Goodfellow, Andrew Rambaut, Nick Loman, Kristian Andersen, Michael Wiley, Steve Ahuka-Mundeke, Jean-Jacques Muyembe Tamfum
EPI_ISL_437357	hCoV-19/DRC/3070/2020	2020-04-18	Viral Respiratory Lab, National Institute for Biomedical Research (INRB)	Pathogen Sequencing Lab, National Institute for Biomedical Research (INRB)	Placide Mbala-Kingebeni, Edith Nkwembe, Eddy Kinganda-Lusamaki, Amuri Aziza, Francisca Muyembe Mawete, Catherine Pratt, Matthias Pauthner, Josh Quick, Allison Black, James Hadfield, Trevor Bedford, Ian Goodfellow, Andrew Rambaut, Nick Loman, Kristian Andersen, Michael Wiley, Steve Ahuka-Mundeke, Jean-Jacques Muyembe Tamfum
Supplementary Figure 1. Origin of the samples of febrile patients from 2019 and serological diagnostics of other betacoronaviruses in febrile patients from 2019 and SARS-CoV-2 RT-PCR confirmed patients from 2020. A) Sampling sites of the serum samples from patients with febrile illness of unknown origin. Akkasato Health Center (AHC), Centre National Hospitalier Universitaire Hubert Koutoukou MAGA (CNHU) and the Clinique Boni (CB). B) Individual reactivity of SARS-CoV-2 ELISA, SARS-CoV-2 plaque reduction neutralization test (PRNT) and Immunofluorescence (IFA) reactivity to common cold betacoronaviruses OC43 and HKU1 in febrile patients from 2019 and SARS-CoV-2 RT-PCR confirmed patients from 2020. –, assay not performed. C) Common cold betacoronaviruses seropositivity between 2019 febrile patients that were SARS-CoV-2 ELISA positive versus SARS-CoV-2 ELISA negative. D) HKU1 and OC43 IFA log_{10} titers of SARS-CoV-2 ELISA positive versus SARS-CoV-2 ELISA negative patients. Samples that were negative are not shown for graphical reasons. N.s., not significant. E) MERS-CoV ELISA ratio in febrile patients from 2019 and SARS-CoV-2 RT-PCR confirmed patients from 2020.
Supplementary Figure 2. Molecular and serological diagnostics of Epstein-Barr virus (EBV) and cytomegalovirus (CMV) in febrile patients from 2019 and SARS-CoV-2 RT-PCR confirmed patients from 2020. A) Individual reactivity of SARS-CoV-2 ELISA, SARS-CoV-2 plaque reduction neutralization test (PRNT), EBV-PCR, CMV-PCR and three EBV ELISA: CA-IgM, CA-IgG and EBNA-1-IgG in febrile patients from 2019 and SARS-CoV-2 RT-PCR confirmed patients from 2020. B) EBV-CA-IgM, EBV-CA-IgG and EBNA-1-IgG ELISA ratio between 2019 febrile patients that were SARS-CoV-2 ELISA positive versus SARS-CoV-2 ELISA negative. Line shows the median ELISA ratio. N.s.; not significant.
Supplementary Figure 3. Molecular and serological diagnostics of malaria and Zika virus (ZIKV) infection in febrile patients from 2019 and SARS-CoV-2 RT-PCR confirmed patients from 2020. A) Individual reactivity of SARS-CoV-2 ELISA, SARS-CoV-2 plaque reduction neutralization test (PRNT), ZIKV-IgG ELISA, ZIKV-PRNT and Plasmodium PCR in febrile patients from 2019 and SARS-CoV-2 RT-PCR confirmed patients from 2020. B) ZIKV-PRNT50 log10 results of 2019 febrile patients that were SARS-CoV-2 ELISA positive versus SARS-CoV-2 ELISA negative. C) Relation of reactivity between SARS-CoV-2 S1-IgA, S1-IgG and N-IgG ELISA positive patients with ZIKV-IgG ELISA.
References

1. Shu Y, McCauley J. GISAID: Global initiative on sharing all influenza data - from vision to reality. Euro Surveill 2017; 22(13).
2. Rambaut A, Holmes EC, Hill V, et al. A dynamic nomenclature proposal for SARS-CoV-2 to assist genomic epidemiology. bioRxiv 2020: 2020.04.17.046086.
3. Netto EM, Moreira-Soto A, Pedroso C, et al. High Zika Virus Seroprevalence in Salvador, Northeastern Brazil Limits the Potential for Further Outbreaks. mBio 2017; 8(6).
4. Okba NMA, Muller MA, Li W, et al. Severe Acute Respiratory Syndrome Coronavirus 2-Specific Antibody Responses in Coronavirus Disease 2019 Patients. Emerg Infect Dis 2020; 26(7).
5. Wolfel R, Corman VM, Guggemos W, et al. Virological assessment of hospitalized patients with COVID-2019. Nature 2020; 581(7809): 465-9.
6. van Dorp L, Richard D, Tan CC, Shaw LP, Acman M, Balloux F. No evidence for increased transmissibility from recurrent mutations in SARS-CoV-2. bioRxiv 2020: 2020.05.21.108506.