The Atiyah Algebroid of the Path Fibration over a Lie Group

ANTON ALEKSEEV1 and ECKHARD MEINRENKEN2

1Section of Mathematics, University of Geneva, 2-4 rue du Li`evre, c.p. 64, 1211 Geneva 4, Switzerland. e-mail: Anton.Alekseev@unige.ch

2Department of Mathematics, University of Toronto, 40 St George Street, Toronto, ON M4S2E4, Canada. e-mail: mein@math.toronto.edu

Received: 21 October 2008 / Revised: 2 July 2009 / Accepted: 10 July 2009
Published online: 24 September 2009 – © Springer 2009

Abstract. Let G be a connected Lie group, L_{G} its loop group, and $\pi: PG \to G$ the principal L_{G}-bundle defined by quasi-periodic paths in G. This paper is devoted to differential geometry of the Atiyah algebroid $A = T(PG)/L_{G}$ of this bundle. Given a symmetric bilinear form on g and the corresponding central extension of L_{g}, we consider the lifting problem for A, and show how the cohomology class of the Cartan 3-form $\eta \in \Omega^{3}(G)$ arises as an obstruction. This involves the construction of a 2-form $\varpi \in \Omega^{2}(P G/L_{G}) = \Gamma(\wedge^{2}A^{*})$ with $d\varpi = \pi^{*}\eta$. In the second part of this paper we obtain similar L_{G}-invariant primitives for the higher degree analogues of the form η, and for their G-equivariant extensions.

Mathematics Subject Classification (2000). 22E67, 55R91.

Keywords. Atiyah algebroid, Central extension.

Contents
1 Introduction .. 24
2 Review of Transitive Lie Algebroids 25
2.1 LIE ALGEBROIDS .. 25
2.2 TRANSITIVE LIE ALGEBROIDS 26
2.3 PULL-BACKS .. 27
2.4 EQUIVARIANT TRANSITIVE LIE ALGEBROIDS 28
3 A Lifting Problem for Transitive Lie Algebroids 29
3.1 THE LIFTING PROBLEM 29
3.2 SPLITTINGS .. 30
3.3 THE FORM ϖ 31
3.4 THE COHOMOLOGY CLASS $[\eta]$ AS AN OBSTRUCTION CLASS 32
3.5 THE EQUIVARIANT LIFTING PROBLEM 34
3.6 RELATION WITH COURANT ALGEBROIDS 35
4 The Atiyah Algebroid $A \to G$ 37
4.1 THE BUNDLE OF TWISTED LOOP ALGEBRAS 37
4.2 THE LIE ALGEBROID $A \to G$ 37
4.3 THE BUNDLE $P G \to G$ 39
1. Introduction

Let G be a connected Lie group with loop group LG. Denote by $\pi : PG \to G$ the principal LG-bundle, given by the set of ‘quasi-periodic’ paths in G. Thus $\gamma \in C^\infty(\mathbb{R}, G)$ belongs to the fiber $\pi^{-1}(g) = (PG)_g$ if it has the property,

$$\gamma(t + 1) = g\gamma(t)$$

for all t. The principal action of $\lambda \in LG$ reads $(\lambda \cdot \gamma)(t) = \gamma(t)\lambda(t)^{-1}$; it commutes with the action of $a \in G$ given as $(a \cdot \gamma)(t) = a\gamma(t)$.

We are interested in the differential geometry of the infinite-dimensional bundle $PG \to G$. Since all our considerations will be LG-equivariant, it is convenient to phrase this discussion in terms of the Atiyah algebroid $A = T(PG)/LG \to G$. As explained below, the fiber of A at $g \in G$ consists of paths $\xi \in C^\infty(\mathbb{R}, g)$ such that $\xi(t + 1) - \text{Ad}_g \xi(t) =: v_\xi$ is constant. We may directly write down the Lie algebroid bracket on sections of A, thus avoiding a discussion of Lie brackets of vector fields on infinite-dimensional spaces. Fibers of the Lie algebra bundle $L \subset A$, defined to be the kernel of the anchor map, are the twisted loop algebras defined by the condition $\xi(t + 1) = \text{Ad}_g \xi(t)$.

An invariant symmetric bilinear form on \mathfrak{g} defines a central extension $\hat{L} \to L$ by the trivial bundle $G \times \mathbb{R}$. One may then ask for a lift $\hat{A} \to A$ of the Atiyah algebroid to this central extension. More generally, we will study a similar lifting problem for any transitive Lie algebroid A over a manifold M. We will show that the choice of a connection on A, together with a ‘splitting’, define an element $\varpi \in \Gamma(\wedge^2 A^\ast)$ whose Lie algebroid differential is basic. The latter defines a closed
3-form $\eta \in \Omega^3(M)$, whose cohomology class turns out to be the obstruction to the lifting problem. In the case of the Atiyah algebroid over G, with a suitable choice of connection, η is the Cartan 3-form, while σ is explicitly given as

$$\sigma(\xi, \zeta) = \int_0^1 \dot{\xi} \cdot \zeta - \frac{1}{2} v_\xi \cdot v_\zeta - \text{Ad}_g(\xi(0)) \cdot v_\zeta$$

for $\xi, \zeta \in \Gamma(A)$. Similarly, the obstruction for the G-equivariant lifting problem is the equivariant Cartan 3-form η_G, while it turns out that $\sigma_G = \sigma$. Note that σ may be viewed as a $G \times LG$-invariant 2-form on PG.

The construction of the form σ is inspired by the theory of group-valued moment maps [1], where it plays a crucial role in establishing a one-to-one correspondence between Hamiltonian LG-spaces and Hamiltonian G-spaces with G-valued moment maps.

The second part of this paper is devoted to ‘higher analogues’ of the equations $d\sigma = \pi^* \eta$, respectively $d_G \sigma = \pi^* \eta_G$. For any invariant polynomial $p \in (S^g)^G$ of homogeneous degree k, the Bott-Shulman construction [2,11,14] defines closed forms

$$\eta^p \in \Omega^{2d-1}(G), \quad \eta^p_G \in \Omega^{2d-1}_G(G).$$

These become exact if pulled back to elements of $\Gamma(\wedge A^*)$, and we will construct explicit primitives

$$\sigma^p \in \Gamma(\wedge^{2d-2} A^*), \quad \sigma^p_G \in \Gamma_G(\wedge^{2d-2} A^*),$$

which may be viewed as LG-invariant differential forms on PG. We stress that while the exactness of $\pi^* \eta^p, \pi^* \eta^p_G$ is fairly obvious (the inclusion $i: G \to PG$ as constant paths is a homotopy equivalence, and $\pi \circ i$ is the map to $e \in G$) the existence of LG-invariant primitives is less evident. Pulling σ^p back to the fiber over the identity $LG = (PG)_e$, one recovers the closed invariant forms on the loop group LG discussed in Pressley-Segal [13].

2. Review of Transitive Lie Algebroids

In this Section we collect some basic facts about connections and curvature on transitive Lie algebroids. Most of this material is due to Mackenzie, and we refer to his book [12] or to the lecture notes by Crainic and Fernandes [7] for further details.

2.1. LIE ALGEBROIDS

A Lie algebroid is a smooth vector bundle $A \to N$, with a Lie bracket on the space of sections $\Gamma(A)$ and an anchor map $a: A \to TN$ satisfying the Leibniz
rule, $[\xi_1, f\xi_2]_A = f[\xi_1, \xi_2]_A + a(\xi_1)(f)\xi_2$. This implies that a induces a Lie algebra homomorphism on sections. An example of a Lie algebroid is the Atiyah algebroid TP/H of a principal H-bundle $P \to N$, where $\Gamma(TP/H) = \mathfrak{X}(P)^H$ with the usual bracket of vector fields. A representation of a Lie algebroid A on a vector bundle $\mathcal{V} \to N$ is given by a flat A-connection on \mathcal{V}, i.e., by a $C^\infty(N)$-linear Lie algebra homomorphism $\Gamma(A) \to \text{End}(\mathcal{V})$, $\xi \mapsto \nabla_\xi$ satisfying the Leibnitz rule, $\nabla_\xi(f\sigma) = f\nabla_\xi\sigma + a(\xi)(f)\sigma$. Given an additional structure on \mathcal{V} one can require that the representation preserves that structure. For instance, if $\mathcal{V} = L$ is a bundle of Lie algebras, one would impose that ∇_ξ acts by derivations of the bracket $[\cdot, \cdot]_L$. Tensor products and direct sums of A-representations are defined in the obvious way. The trivial A-representation is the bundle $\mathcal{V} = N \times \mathbb{R}$ with $\nabla_\xi = a(\xi)$ given by the anchor map.

Suppose \mathcal{V} is an A-representation, and consider the graded $\Gamma(\wedge A^* \otimes \mathcal{V})$-module $\Gamma(\wedge A^* \otimes \mathcal{V})$. Generalizing from $A = TM$, we will think of the sections of $\wedge A^* \otimes \mathcal{V}$ as \mathcal{V}-valued forms on A. For $\xi \in \Gamma(A)$, the Lie derivatives L_ξ are the operators of degree 0 on $\Gamma(\wedge A^* \otimes \mathcal{V})$, defined inductively by

$$t_\xi \circ L_\xi = L_\xi \circ t_\xi - t_{[\xi, \xi]}_A, \quad \xi \in \Gamma(A),$$

with $L_\xi \sigma = \nabla_\xi \sigma$ for $\sigma \in \Gamma(\mathcal{V})$. Here t_ξ are the operators of contraction by ξ. Similarly, d is the operator of degree 1 on $\Gamma(\wedge A^* \otimes \mathcal{V})$ defined by Cartan’s identity $t_\xi \circ d = L_\xi - d \circ t_\xi$. The operators t_ξ, L_ξ, d satisfy the usual commutation relations of contractions, Lie derivatives and differential. In particular, d squares to zero.

2.2. TRANSITIVE LIE ALGEBROID

A Lie algebroid A over N is called transitive if its anchor map $a: A \to TN$ is surjective. In that case, the kernel of the anchor map is a bundle $L \to N$ of Lie algebras, and we have the exact sequence of Lie algebroids,

$$0 \to L \to A \to TN \to 0. \quad (1)$$

The structure Lie algebra bundle L carries an A-representation $\nabla_\xi \zeta = [\xi, \zeta]$ ($\xi \in \Gamma(A)$, $\zeta \in \Gamma(L)$) by derivations of the Lie bracket.

EXAMPLE 2.1. The Atiyah algebroid $A = TP/H$ of a principal bundle is a transitive Lie algebroid, with L the associated bundle of Lie algebras $L = P \times_H \mathfrak{h}$. The bracket on $\Gamma(A)$ is given by its identification with H-invariant vector fields on P. The induced bracket on $\Gamma(L)$ is minus the pointwise bracket on $C^\infty(P, \mathfrak{h})^H \cong \Gamma(L)$.

The dual $a^*: T^*N \to A^*$ of the anchor map extends to the exterior algebras. Given an A-representation \mathcal{V}, it therefore yields an injective map $a^*: \wedge T^*N \otimes \mathcal{V} \to \wedge A^* \otimes \mathcal{V}$, defining a map on sections,

$$a^*: \Omega(N, \mathcal{V}) \cong \Gamma(\wedge T^*N \otimes \mathcal{V}) \to \Gamma(\wedge A^* \otimes \mathcal{V}).$$
The image of this map is the horizontal subspace $\Gamma(\wedge A^* \otimes V)_{\text{hor}}$, consisting of sections ϕ satisfying $t_\xi \phi = 0$ for all $\xi \in \Gamma(L)$. We will often view $\Omega(N, V)$ as a subspace of $\Gamma(\wedge A^* \otimes V)$, without always spelling out the inclusion map a^*. The basic subcomplex $\Gamma(\wedge A^* \otimes V)_{\text{basic}}$ is the subspace of horizontal sections satisfying $L_\xi \phi = 0$ for all $\xi \in \Gamma(L)$; it is stable under the differential d.

Lemma 2.2. Suppose that the A-connection on V descends to a flat $TN = A/L$-connection, i.e., that $\nabla_\xi = 0$ for $\xi \in \Gamma(L)$. Then

$$\Gamma(\wedge A^*, V)_{\text{basic}} \cong \Gamma(\wedge A^*, V)_{\text{hor}} \cong \Omega(N, V).$$

Proof. Let $\xi \in \Gamma(L)$ so that $a(\xi) = 0$, and let $\phi \in \Gamma(\wedge^k A^*, V)_{\text{hor}}$. We will show that $L_\xi \phi = 0$ by induction on k. If $k = 0$, we have $L_\xi \phi = \nabla_\xi \phi = 0$ by assumption. If $k > 0$, the induction hypothesis shows that for all $\zeta \in \Gamma(A)$, $t_\zeta L_\xi \phi = L_\zeta t_\xi \phi - i_{[\xi, \zeta]}A \phi = 0$, hence $L_\xi \phi = 0$. Here we used the fact that $\Gamma(\wedge A^*, V)_{\text{hor}}$ is stable under i_ζ and that $[\xi, \zeta]_A \in \Gamma(L)$.

Remark 2.3. Lemma 2.2 applies in particular to the trivial A-representation $V = N \times \mathbb{R}$. Thus $\Gamma(\wedge A^*)_{\text{basic}} \cong \Omega(N)$. For general A-representations the space $\Gamma(\wedge A^* \otimes V)_{\text{basic}}$ can be strictly smaller than $\Omega(N, V)$. For instance, if $N = \text{pt}$, so that $A = \mathfrak{k}$ is a Lie algebra and $V = \mathfrak{v}$ is a \mathfrak{k}-representation, the space $\Gamma(\wedge A^* \otimes V)_{\text{basic}} = \mathfrak{v}^k$ is the space of \mathfrak{k}-invariants, while $\Omega(N, V) = V$.

A connection on a transitive Lie algebroid is a left splitting $\theta : A \to L$ of the exact sequence (Equation 1). The corresponding right splitting $\text{Hor}^\theta : TN \to A$ is called the horizontal lift. Dually, the connection defines a horizontal projection

$$\text{Hor}^\theta_* : \Gamma(\wedge A^* \otimes V) \to \Gamma(\wedge A^* \otimes V)_{\text{hor}}.$$

One defines the covariant derivative by $d^\theta = \text{Hor}^\theta_* \circ d$, and the curvature of θ is given as

$$F^\theta = d^\theta \theta = d\theta - \frac{1}{2} [\theta, \theta]_A \in \Gamma(\wedge^2 A^* \otimes L)_{\text{hor}}.$$

(2)

2.3. Pull-backs

We recall the notion of pull-back Lie algebroids, due to Higgins-Mackenzie [10], for the special case of transitive Lie algebroids. Suppose $A \to N$ is a transitive Lie algebroid, and $\Phi : M \to N$ is a smooth map. Let $\Phi^! A \to M$ be the bundle[2] over M,

1The minus sign in this formula is consistent with Example 2.1.

2We remark that our use of the notation $\Phi^!$ is different from that in the book [12].
defined by the fiber product diagram

\[
\begin{array}{ccc}
\Phi^! A & \longrightarrow & A \\
\downarrow & & \downarrow a \\
TM & \longrightarrow & TN \\
\end{array}
\]

That is, \(\Phi^! A = (d\Phi)^* A \) if \(A \) is viewed as a bundle over \(TN \). Then \(\Phi^! A \) carries a natural structure of a transitive Lie algebroid, with the left vertical map \(\Phi^! A \to TM \) as the anchor map, and the upper horizontal map is a morphism of Lie algebroids.

We refer to \(\Phi^! A \) as the pull-back of \(A \) by the map \(\Phi \). It is a pull-back in the category of Lie algebroids, not to be confused with the pull-back \(\Phi^* A \) of \(A \) as a vector bundle. For instance, taking \(A = TN \) one has \(\Phi^! TN = TM \neq \Phi^* TN \). Note that if \(A = TP/H \) is the Atiyah algebroid of a principal \(H \)-bundle \(P \to N \), then \(\Phi^! A = T(\Phi^* P)/H \) is the Atiyah algebroid of the pull-back principal bundle.

The kernel of the anchor map of \(\Phi^! A \) is \(\Phi^* L \), the usual pull-back as a bundle of Lie algebras. For any \(A \)-representation \(V \), the pull-back \(\Phi^* V \) inherits a \(\Phi^! A \)-representation, and there is a natural cochain map \(\Phi^!: \Gamma(A^* \otimes V) \to \Gamma((\Phi^! A) \otimes \Phi^* V) \).

Given a connection \(\theta: A \to L \), the pull-back algebroid inherits a pull-back connection \(\Phi^\theta: \Phi^! A \to \Phi^* L \). The curvature of the pull-back connection is \(F^{\Phi^\theta} = \Phi^! F^\theta \).

2.4. EQUIVARIANT TRANSITIVE LIE ALGEBROIDS

Suppose \(G \) is a Lie group acting on \(A \to N \) by Lie algebroid homomorphisms. Assume the existence of a \(G \)-equivariant map

\[
g \to \Gamma(A), \quad x \mapsto x_A
\]

with the property \([x_A, \xi] = \frac{\partial}{\partial u} \bigg|_{u=0} \exp(ux) \cdot \xi \) for all \(\xi \in \Gamma(A) \). The elements \(x_A \in \Gamma(A) \) are called infinitesimal generators of the \(G \)-action, and it is automatic that Equation (3) is a Lie algebra homomorphism:

\[
[x_A, y_A] = \frac{\partial}{\partial u} \bigg|_{u=0} \exp(ux) \cdot y_A = \frac{\partial}{\partial u} \bigg|_{u=0} (\exp(ux) \cdot y)_A = [x, y]_A.
\]

For any \(G \)-equivariant \(A \)-representation \(V \), the complex \(\Lambda^* A \otimes V \) becomes a \(G \)-differential space (cf. [3,9]), with contraction operators \(\iota_x = \iota_{x_A} \). One may therefore introduce the equivariant complex

\[
\Gamma_G(\Lambda^* A \otimes V) := (Sg^* \otimes \Gamma(\Lambda^* A \otimes V))^G
\]

with differential \(d_G = 1 \otimes d - \sum_j e^j \otimes \iota_{e^j} \) for a basis \(e_j \) of \(g \), with dual basis \(e^j \) of \(g^* \). For \(A = TN \) this complex is denoted by \(\Omega_G(N, V) \). Replacing \(d \) with \(d_G \) in the discussion above, one may introduce equivariant curvatures \(F^G_\theta \) for \(G \)-invariant connections on \(A \):
\[F_G^\theta = d_G \theta - \frac{1}{2} [\theta, \theta]_A = F^\theta - \Psi \in \Gamma_G (\wedge^2 A^* \otimes L)_{\text{hor}}. \]

Here \(\Psi(x) = \iota_x \theta \in \Gamma(\wedge^0 A^* \otimes L) \) for \(x \in \mathfrak{g} \).

3. A Lifting Problem for Transitive Lie Algebroids

Let \(H \) be a Lie group, and \(\pi : P \to N \) a smooth principal \(H \)-bundle. Given a central extension \(\hat{H} \to H \) of the structure group by \(U(1) \), it is not always possible to lift \(P \) to a principal \(\hat{H} \)-bundle. As is well-known, the obstruction class is an element of \(H^3(N, \mathbb{Z}) \). A construction of Brylinski [4] gives an explicit de Rham representative of the image of this class in \(H^3(N, \mathbb{R}) \). In this Section, we will develop the analogue of Brylinski’s theory for transitive Lie algebroids.

3.1. THE LIFTING PROBLEM

Let \(A \to N \) be a transitive Lie algebroid with anchor map \(a : A \to TN \), and with structure Lie algebra bundle \(L = \ker(a) \). Suppose that

\[0 \to N \times \mathbb{R} \to \hat{A}^P \to A \to 0 \]

is a central extension of \(A \) by a Lie algebroid \(\hat{A} \). Then the structure Lie algebra bundle \(\hat{L} \) defines a central extension

\[0 \to N \times \mathbb{R} \to \hat{L}^P \to L \to 0, \]

and the \(\hat{A} \)-representation on \(\hat{L} \) descends to a representation of \(A \) (since \(N \times \mathbb{R} \subset \hat{A} \) acts trivially). Thus Equation (5) is an \(A \)-equivariant central extension of \(L \) (with the trivial representation on \(N \times \mathbb{R} \)).

Suppose conversely that we are given an \(A \)-equivariant central extension (Equation 5) of the structure Lie algebra bundle \(L \subset A \), where \(\Gamma(A) \) acts by derivations of the Lie bracket on \(\Gamma(L) \). We may then pose the

Lifting problem: Find a central extension of Lie algebroids (Equation 4) such that the given sequence of Lie algebra bundles (Equation 5) is \(A \)-equivariantly isomorphic to the central extension of \(L \) defined by the structure Lie algebra bundle of \(\hat{A} \).

We may also consider the lifting problem for a given connection \(\theta : A \to L \), where we declare that \((\hat{A}, \hat{\theta}) \) lifts \((A, \theta) \) if \(\hat{A} \) lifts \(A \) and \(p \circ \hat{\theta} = \theta \circ p \).

Example 3.1 (Principal bundles I). In the principal bundle case, \(A = TP/H \) is the Atiyah algebroid, \(L = P \times_H \mathfrak{h} \), and one obtains a lifting problem \(\hat{L} = P \times_H \mathfrak{h} \) for any given central extension \(0 \to \mathbb{R} \to \hat{\mathfrak{h}} \to \mathfrak{h} \to 0 \) of Lie algebras. Suppose these integrate to an exact sequence \(1 \to U(1) \to \hat{H} \to H \to 1 \) on the group level. Then for any principal \(\hat{H} \)-bundle \(\hat{P} \) lifting \(P \), its Atiyah algebroid \(\hat{A} = T\hat{P}/\hat{H} \) is a lift of \(A \) in the above sense.
3.2. SPLITTINGS

The set of splittings $j: L \to \hat{L}$ of the exact sequence (5) is an affine space, with underlying vector space $\Gamma(L^*)$. Any splitting j determines a cocycle $\sigma \in \Gamma(\wedge^2 L^*)$, where

$$\sigma(\xi, \zeta) = j([\xi, \zeta]_L) - [j(\xi), j(\zeta)]_\hat{L}, \quad \xi, \zeta \in \Gamma(L).$$

(The right-hand side lies in the kernel of p, hence it takes values in the trivial bundle $N \times \mathbb{R} \subset \hat{L}$.) The bracket on \hat{L} is given in terms of this cocycle as

$$[\hat{\xi}, \hat{\zeta}]_L = j([\xi, \zeta]_L) - \sigma(\xi, \zeta) \tag{6}$$

where $\xi = p(\hat{\xi})$, $\zeta = p(\hat{\zeta})$. Viewing j as a section of the A-representation $L^* \otimes \hat{L}$ we can take its differential $d_j \in \Gamma(\wedge^1 A^* \otimes L^* \otimes \hat{L})$. Similarly, viewing σ as a section of the A-representation $\wedge^2 L^*$ we can consider its differential $d\sigma \in \Gamma(\wedge^1 A^* \otimes \wedge^2 L^*)$.

PROPOSITION 3.2. The differential d_j is mapped to 0 under $p: \hat{L} \to L$, thus $d_j \in \Gamma(\wedge^1 A^* \otimes L^*)$. One has

$$(d\sigma)(\xi_1, \xi_2) = (d_j, [\xi_1, \xi_2]_L)$$

for $\xi_1, \xi_2 \in \Gamma(L)$.

Proof. The first claim follows since $p(j) = \text{id}_L \in L^* \otimes L$, hence $p(d_j) = dp(j) = 0$. For the second assertion, we use that for all $\zeta \in \Gamma(A)$ and $\xi \in \Gamma(L)$, the section $(\mathcal{L}_\zeta j)(\xi) = \iota_\zeta (d_j, \xi) \in C^\infty(N) \subset \Gamma(\hat{L})$ commutes with all sections of \hat{L}. For $\xi_1, \xi_2 \in \Gamma(L)$ and $\zeta \in \Gamma(A)$ we compute,

$$\iota_\zeta (d\sigma)(\xi_1, \xi_2) = (\mathcal{L}_\zeta \sigma)(\xi_1, \xi_2) =$$

$$= \mathcal{L}_\zeta (\sigma(\xi_1, \xi_2)) - \sigma(\mathcal{L}_\zeta \xi_1, \xi_2) - \sigma(\xi_1, \mathcal{L}_\zeta \xi_2) =$$

$$= \mathcal{L}_\zeta (j([\xi_1, \xi_2]_L) - [j(\xi_1), j(\xi_2)]_\hat{L}) - j([\mathcal{L}_\zeta \xi_1, \xi_2]_L) +$$

$$+ [j(\mathcal{L}_\zeta \xi_1), j(\xi_2)]_\hat{L} - [j(\xi_1), \mathcal{L}_\zeta (\xi_2)]_\hat{L} =$$

$$= (\mathcal{L}_\zeta j)([\xi_1, \xi_2]_L) - ([\mathcal{L}_\zeta j](\xi_1), j(\xi_2)]_\hat{L} - [j(\xi_1), (\mathcal{L}_\zeta j)(\xi_2)]_\hat{L} =$$

$$= (\mathcal{L}_\zeta j)([\xi_1, \xi_2]_L) = \iota_\zeta (d_j)([\xi_1, \xi_2]_L).$$

Hence $(d\sigma)(\xi_1, \xi_2) = (d_j)([\xi_1, \xi_2]_L)$.

Let $\theta \in \Gamma(A^* \otimes L)$ be a connection on A, and consider the covariant derivative $d^\theta j \in \Gamma(\wedge^1 A^* \otimes (L^* \otimes \hat{L}))$.

PROPOSITION 3.3. One has

$$d^\theta j = d_j + \sigma(\theta, \cdot) \in \Gamma(\wedge^1 A^* \otimes L^*)_{\text{hor}}.$$
Proof. For $\xi \in \Gamma(L)$ and $\zeta \in \Gamma(A)$,

$$\iota_\zeta (d_j, \xi) = (\mathcal{L}_\xi j)(\xi) = \mathcal{L}_\zeta (j(\xi)) - j(\mathcal{L}_\xi \xi).$$

For $\zeta \in \Gamma(L)$ the right-hand side is equal to $-\sigma(\zeta, \xi)$, and we obtain $\iota_\zeta (d_j + \sigma(\theta, \cdot)) = 0$. This shows that $d_j + \sigma(\theta, \cdot)$ is horizontal. On the other hand, it is obvious that d_j and $d_j + \sigma(\theta, \cdot)$ agree on horizontal vectors. \qed

3.3. THE FORM ϖ

Let $F^j(\theta) \in \Gamma(\bigwedge^2 A^* \otimes \hat{L})$ be the curvature-like expression,

$$F^j(\theta) = d(j(\theta)) - \frac{1}{2} [j(\theta), j(\theta)] \hat{L}.$$

Since $p(F^j(\theta)) = F^\theta$ the difference

$$\varpi := F^j(\theta) - j(F^\theta)$$

is scalar-valued, i.e., it is an element of $\Gamma(\bigwedge^2 A^*)$.

Proposition 3.4. The 2-form $\varpi \in \Gamma(\bigwedge^2 A^*)$ is given by the formula,

$$\varpi = \langle d_j, \theta \rangle + \frac{1}{2} \sigma(\theta, \theta) = \langle d^\theta j, \theta \rangle - \frac{1}{2} \sigma(\theta, \theta).$$

(7)

Its differential is basic, so that $d\varpi = a^* \eta$ for a closed 3-form $\eta \in \Omega^3(N)$. We have

$$a^* \eta = -(d^\theta j, F^\theta).$$

(8)

The contractions of ϖ with $\xi \in \Gamma(L)$ are given by $\iota_\xi \varpi = -\langle d_j, \xi \rangle$.

Proof. We compute:

$$\varpi = d(j(\theta)) - j(d\theta) - \frac{1}{2} ([j(\theta), j(\theta)] \hat{L} - j([\theta, \theta] \hat{L})) =$$

$$= \langle d_j, \theta \rangle + \frac{1}{2} \sigma(\theta, \theta) =$$

$$= \langle d^\theta j, \theta \rangle - \frac{1}{2} \sigma(\theta, \theta),$$

$$d\varpi = -\langle d_j, d\theta \rangle - \sigma(\theta, d\theta) + \frac{1}{2} (d\sigma)(\theta, \theta) =$$

$$= -\langle d^\theta j, d\theta \rangle + \frac{1}{2} (d\sigma)(\theta, \theta) =$$

$$= -\langle d^\theta j, F^\theta \rangle.$$

Here we have used $\sigma(\theta, [\theta, \theta]) = 0$ and Proposition 3.3. Since $d\varpi \in \Gamma(\bigwedge^3 A^*)$ is horizontal, by Lemma 2.2 it is also basic. Hence, it is the image of a unique closed 3-form $\eta \in \Omega^3(N)$ under the map a^*.
Finally, for the contractions of ϖ with elements $\xi \in \Gamma(L)$ we find,
\[
\iota_{\xi} \varpi = -\langle d^\theta j, \xi \rangle + \sigma(\theta, \xi) = -\langle dj, \xi \rangle.
\]

The next Proposition describes the dependence of η on the choice of splitting and connection.

PROPOSITION 3.5. Let $j' = j + \beta$ be a new splitting, where $\beta \in \Gamma(L^*)$, and $\theta' = \theta + \lambda$ a new connection, with $\lambda \in \Gamma(A^* \otimes L)_{\text{hor}}$. Then $\eta' - \eta = d\gamma$ where $\gamma \in \Omega^2(N)$ is given by the following element of $\Gamma(\wedge^2 A^*)_{\text{basic}}$,
\[
a^* \gamma = \langle d^\theta j, \lambda \rangle + \frac{1}{2} \sigma(\lambda, \lambda) - \langle \beta, F^\theta + d^\theta \lambda \rangle + \frac{1}{2} \beta([\lambda, \lambda]_L).
\]

In particular, the cohomology class $[\eta] \in H^3(N, \mathbb{R})$ is independent of the choices of j and θ.

Proof. From its defining formula, we see that the cocycle σ changes by a coboundary: $\sigma'(\xi_1, \xi_2) = \sigma(\xi_1, \xi_2) + \beta([\xi_1, \xi_2]_L).$ Hence,
\[
\varpi' = \langle dj', \theta' \rangle + \frac{1}{2} \sigma(\theta', \theta') + \frac{1}{2} \beta([\theta', \theta']_L).
\]

First, consider terms which do not involve β:
\[
\langle dj, \theta + \lambda \rangle + \frac{1}{2} \sigma(\theta + \lambda, \theta + \lambda) = \varpi + \langle d^\theta j, \lambda \rangle + \frac{1}{2} \sigma(\lambda, \lambda).
\]

The remaining terms may be written as
\[
\langle d\beta, \theta + \lambda \rangle + \frac{1}{2} \beta([\theta + \lambda, \theta + \lambda]_L) = d\langle \beta, \theta + \lambda \rangle - \langle \beta, d\theta + d\lambda \rangle + \frac{1}{2} \beta([\theta + \lambda, \theta + \lambda]_L) = d\langle \beta, \theta + \lambda \rangle - \langle \beta, F^\theta + d^\theta \lambda \rangle + \frac{1}{2} \beta([\lambda, \lambda]_L).
\]

Hence, $d(\varpi' - \varpi) = d\sigma$, where
\[
\sigma = \langle d^\theta j, \lambda \rangle + \frac{1}{2} \sigma(\lambda, \lambda) - \langle \beta, F^\theta + d^\theta \lambda \rangle + \frac{1}{2} \beta([\lambda, \lambda]_L).
\]

Since $\sigma \in \Gamma(\wedge^2 A^*)_{\text{hor}}$, by Lemma 2.2 it is basic, and we conclude that $\gamma \in \Omega^2(N)$ defined by equality $a^* \gamma = \sigma$ satisfies $\eta' - \eta = d\gamma$. □

3.4. THE COHOMOLOGY CLASS $[\eta]$ AS AN OBSTRUCTION CLASS

We will now show that the cohomology class of η is precisely the obstruction class for our lifting problem.
THEOREM 3.6. Suppose that \(\theta \) is a connection on \(A \) and \(j : L \to \hat{L} \) is a splitting. Then there is a 1-1- correspondence between:

(a) isomorphism classes of lifts \((\hat{A}, \hat{\theta}) \) of the data \((A, \theta)\), and
(b) 2-forms \(\omega \in \Omega^2(N) \) such that \(d\omega = -\eta \).

It follows that \([\eta]=0\) precisely if the lifting problem (4), (5) admits a solution.

Proof. We first show how to construct a solution of the lifting problem, provided \(\eta \) is exact. Let \(A=L \oplus TN \) be the decomposition defined by the connection \(\theta \), and put

\[
\hat{A} := \hat{L} \oplus TN
\]

with the obvious projection \(p : \hat{A} \to A \), with the connection \(\hat{\theta} \) the projection to the first summand, and with anchor map \(\hat{a} \) the projection to the second summand. Let \(j_A = j \oplus \text{id}_{TN} : A \to \hat{A} \). We want to consider Lie brackets \([\cdot, \cdot]_{\hat{A}}\) on \(\Gamma(\hat{A}) \), extending the bracket on \(\Gamma(L) \), and such that \(p \) induces a Lie algebra homomorphism \(\Gamma(\hat{A}) \to \Gamma(A) \). If \(\hat{\xi} \in \Gamma(\hat{L}) \), we have

\[
-\theta[\hat{\xi}, \hat{\xi}]_{\hat{A}} = [\hat{\xi}, \hat{\xi}]_{\hat{A}} = \mathcal{L}_{\hat{\xi}} \hat{\xi}, \quad \xi = p(\hat{\xi})
\]

using the \(A \)-representation on \(\hat{L} \). Hence, the bracket is determined if one of the entries is a section of \(\hat{L} \). Consequently we only need to specify the bracket on horizontal sections. For \(X, Y \in \mathfrak{X}(N) \) these brackets will have the form

\[
[\text{Hor}^\hat{\theta}(X), \text{Hor}^\hat{\theta}(Y)]_{\hat{A}} = j_A([\text{Hor}^\theta(X), \text{Hor}^\theta(Y)]_A) - \omega(X, Y) = \text{Hor}^\hat{\theta}(\{X, Y\}) + j(F^\theta(X, Y)) - \omega(X, Y)
\]

for some 2-form \(\omega \in \Omega^2(N) \). Having defined the bracket in this way, consider the Jacobi identity

\[
[\hat{\xi}_1, [\hat{\xi}_2, \hat{\xi}_3]]_{\hat{A}} + \text{cycl.} = 0.
\]

If \(\hat{\xi}_3 \) lies in \(\Gamma(\hat{L}) \), this identity is equivalent to the representation property,

\[
\mathcal{L}_{\hat{\xi}_1} \mathcal{L}_{\hat{\xi}_2} \hat{\xi}_3 - \mathcal{L}_{\hat{\xi}_2} \mathcal{L}_{\hat{\xi}_1} \hat{\xi}_3 - \mathcal{L}_{[\hat{\xi}_1, \hat{\xi}_2]} \hat{\xi}_3 = 0,
\]

where \(\xi_i = p(\hat{\xi}_i) \). Hence, the Jacobi identity is automatic if one of the entries lies in \(\hat{L} \). It remains to consider the case that \(\xi_i = \text{Hor}^\hat{\theta}(X_i) \) for \(i = 1, 2, 3 \). Separating terms according to the decomposition \(\hat{A} = (N \times \mathbb{R}) \oplus A \), we have,

\[
[\text{Hor}^\hat{\theta}(X_1), [\text{Hor}^\hat{\theta}(X_2), \text{Hor}^\hat{\theta}(X_3)]]_{\hat{A}} = -\mathcal{L}_{X_1} \omega(X_2, X_3) + \omega(X_1, [X_2, X_3]) + (d^\theta j(X_1), F^\theta(X_2, X_3)) + \cdots
\]

where \(\cdots \) indicates sections of \(j_A(A) \equiv 0 \oplus A \). So the scalar part of the Jacobi identity reads,

\[
-\mathcal{L}_{X_1} \omega(X_2, X_3) + \omega(X_1, [X_2, X_3]) + (d^\theta j(X_1), F^\theta(X_2, X_3)) + \text{cycl.} = 0
\]
Equivalently, \(d\omega - \langle d^\theta j, F^\theta \rangle = 0 \). By Equation (8), we have \(a^*\eta = -\langle d^\theta j, F^\theta \rangle \). We therefore conclude that the bracket \([\cdot, \cdot]\) defined by \(\omega \) is a Lie bracket if and only if \(d\omega = -\eta \).

Conversely, if \(p: \hat{A} \to A \) is a solution of the lifting problem, choose a connection \(\hat{\theta} \) lifting \(\theta \). This gives a splitting \(\hat{A} = \hat{L} \oplus TN \) lifting the splitting of \(A \). Define \(\omega \) as the scalar component of the bracket on \(\Gamma(\hat{A}) \), restricted to horizontal sections. The calculation above shows that \(d\omega = -\eta \).

\[\text{EXAMPLE 3.7 (Principal bundles II)} \]

This is a continuation of Example 3.1, where we considered the lifting problem for a principal \(H \)-bundle \(P \to N \). It was shown by Brylinski that \(\eta \) is the image of the obstruction class under the coefficient homomorphism \(H^3(N, \mathbb{Z}) \to H^3(N, \mathbb{R}) \). Given a solution \(\hat{P} \to N \) of the lifting problem, the connection \(\theta \) is an ordinary principal connection on \(P \), and \(\hat{\theta} \) is a lift of \(\theta \) to \(\hat{P} \).

\[\text{3.5. THE EQUIVARIANT LIFTING PROBLEM} \]

Suppose now that the sequence (5) is \(G \)-equivariant, with the trivial action on the bundle \(N \times \mathbb{R} \), and that the \(A \)-representation on \(\Gamma(\hat{L}) \) is \(G \)-equivariant. We may then consider the \(G \)-equivariant version of the lifting problem: Thus, we are looking for a \(G \)-equivariant lift \(\hat{A} \to A \), such that the action on \(\hat{A} \) has infinitesimal generators \(x_{\hat{A}} \) satisfying \(p(x_{\hat{A}}) = x_A \).

Suppose there is a \(G \)-equivariant splitting \(j \) of the sequence (5), and a \(G \)-invariant connection \(\theta \) on \(A \). Replacing \(d \) with the equivariant differential in the discussion above, we find that the 2-form \(\sigma \) coincides with its equivariant extension. Its equivariant differential is \(d_G \sigma = a^*\eta_G \) where \(a^*\eta_G = -\langle d^\theta j, F^\theta \rangle \). Thus

\[a^*(\eta_G - \eta) = \langle d^\theta j, \Psi \rangle \]

where \(\Psi \in \Omega^0(N, L) \) was defined in Section 2.4. As in the proof of Theorem 3.6, let \(\hat{A} = \hat{L} \oplus TN \) equipped with the diagonal \(G \)-action. The map \(p: \hat{A} \to A = L \oplus TN \) is \(G \)-equivariant, and the bracket \([\cdot, \cdot]\) defined by \(\omega \) with \(d\omega = -\eta \) is \(G \)-invariant provided that \(\omega \) is \(G \)-invariant.

\[\text{THEOREM 3.8.} \]

Let \((A, \theta, x_A)\) be a \(G \)-equivariant transitive Lie algebroid, with invariant connection \(\theta \) and with equivariant generators \(x_A \). Let \(\hat{L} \to L \) a \(G \)-equivariant central extension, together with a \(G \)-equivariant splitting \(j \), defining \(\eta_G \in \Omega^3_G(N) \) as above. Then there is a 1-1 correspondence between

(a) isomorphism classes of equivariant lifts \((\hat{A}, \hat{\theta}, x_{\hat{A}})\) of the data \((A, \theta, x_A)\).
(b) equivariant 2-forms \(\omega_G \in \Omega^2_G(N) \) such that \(d_G \omega_G = -\eta_G \).
Proof. To describe generators for the action, it suffices to describe their scalar part. Thus write

$$x^{\hat{A}} = j(x_A) + \Phi(x)$$

for some G-equivariant map $\Phi: N \to g^*$. Then $x^{\hat{A}}$ are generators for the g-action if and only if the map $x \mapsto x^{\hat{A}}$ defines the g-representation on \hat{A}, i.e.,

$$[x^{\hat{A}}, \xi]^{\hat{A}} = \mathcal{L}_{x^{\hat{A}}} \xi$$

for $\xi \in \Gamma(\hat{A})$. For $\xi \in \Gamma(\hat{L})$, this property is automatic. It is hence enough to consider the condition

$$[x^{\hat{A}}, \text{Hor}^{\hat{A}}(X)]^{\hat{A}} = \mathcal{L}_{x^{\hat{A}}} \text{Hor}^{\hat{A}}(X) = \text{Hor}^{\hat{A}}([x_N, X]).$$

Writing $x^{\hat{A}} = j(x_A) + \Phi(x) = \text{Hor}^{\hat{A}}(x_N) + j(\Psi(x)) + \Phi(x)$, we find,

$$[x^{\hat{A}}, \text{Hor}^{\hat{A}}(X)]^{\hat{A}} - \text{Hor}^{\hat{A}}([x_N, X]) =$$

$$j(F^\theta(x_N, X)) - \omega(x_N, X) - \mathcal{L}_X \Phi(x) + \mathcal{L}_{\text{Hor}^a(X)} j(\Psi(x)) =$$

$$= -\omega(x_N, X) - \iota_X d\Phi(x) + \langle d^\theta j(X), \Psi(x) \rangle + \cdots$$

where \cdots indicates sections of $j_A(A) = 0 \oplus A$. The \cdots terms have to cancel (by considering their image under p), hence we obtain the condition

$$\omega(x_N, \cdot) + d\Phi(x) = \langle d^\theta j(X), \Psi(x) \rangle.$$

Since $a^*\eta_G = a^*\eta + \langle d^\theta j(X), \Psi \rangle$, this is the component of form degree 1 of the equation $d_G \omega_G = -\eta_G$, where $\omega_G = \omega - \Phi$ is an equivariant extension of ω. \qed

If G is compact (so that invariant connections, splittings etc. can be obtained by averaging), it follows that $[\eta_G] \in H^3_G(N, \mathbb{R})$ is precisely the obstruction for the equivariant lifting problem.

Below, we will encounter situations where $\Phi = 0$, so that ω coincides with its equivariant extension. Equivalently, $j(x_A)$ are generators for the action. Here is a first example.

EXAMPLE 3.9. Suppose $N = G/K$ for a compact subgroup K. Since $H_G(N, \mathbb{R}) = H_K(\text{pt}, \mathbb{R})$ vanishes in odd degrees, the class $[\eta_G]$ is necessarily trivial. Moreover, it is easy to see that $\eta_G = -d_G \omega$ for a unique invariant 2-form ω. Hence, one obtains a solution of the lifting problem with $x^{\hat{A}} = j(x_A)$.

3.6. RELATION WITH COURANT ALGEBROID

In the previous sections, we explained how the lifting problem for a transitive Lie algebroid defines an obstruction class in $H^3(N, \mathbb{R})$. By a well-known result of
Severa, the group $H^3(N, \mathbb{R})$ classifies exact Courant algebroids over N. We will explain now how to give a direct description of this Courant algebroid. As before, we start out by choosing a connection θ on A, as well as a splitting j. These data define a 2-form $\omega \in \Gamma(\wedge^2 A^*)$, such that $d\omega = a^* \eta$ is basic.

Let $A \oplus A^*$ carry the symmetric bilinear form extending the pairing between A and A^*, and the standard Courant bracket,

$$\langle (v_1, \alpha_1), (v_2, \alpha_2) \rangle = ([v_1, v_2]_A, \mathcal{L}_{v_1} \alpha_2 - \iota_{v_2} d\alpha_1).$$

Proposition 3.10. The map $f : L \to A \oplus A^*$, $\xi \mapsto (\xi, i_\xi \omega)$ defines an isotropic L-action on $A \oplus A^*$. That is, its image is isotropic, and the induced map on sections preserves brackets.

Proof. Since $d\omega$ is basic, we have $d i_\xi \omega = L_\xi \omega$. Hence

$$\| f(\xi_1), f(\xi_2) \| = \| (\xi_1, i_{\xi_1} \omega), (\xi_2, i_{\xi_2} \omega) \| =$$

$$= ([\xi_1, \xi_2]_A, L_{\xi_1} i_{\xi_2} \omega - i_{\xi_2} d i_{\xi_1} \omega) =$$

$$= ([\xi_1, \xi_2]_A, i_{[\xi_1, \xi_2]}_A \omega) = f([\xi_1, \xi_2]_A).$$

The property $\langle f(\xi), f(\xi) \rangle = 0$ is straightforward. \qed

As in Bursztyn–Cavalcanti–Gualtieri [5] we may consider the reduction of A by the isotropic L-action.

Proposition 3.11. The reduced Courant algebroid $f(L)^\perp/f(L)$ is canonically isomorphic to $TN \oplus T^*N$ with the η-twisted Courant bracket.

Proof. Let $f : A \to A \oplus A^*$, $v \mapsto (v, i_v \omega)$ be the obvious extension of the action map. Then $f(L)^\perp = f(A) + T^*N$, where T^*N is embedded as the annihilator of L in A^*, and hence $f(L)^\perp/f(L) = f(A)/f(L) = T^*N = TN \oplus T^*N$. For $v_1, v_2 \in \Gamma(A)$ and if $\alpha_1, \alpha_2 \in \Gamma(T^*N) \cong \Gamma(A^*)_{\text{basic}}$ we have

$$\| f(v_1) + \alpha_1, f(v_2) + \alpha_2 \| = ([v_1, v_2]_A, \mathcal{L}_{v_1} \iota_{v_2} \alpha_\omega - \iota_{v_2} d i_{v_1} \omega + L_{v_1} \alpha_2 - \iota_{v_2} d\alpha_1) =$$

$$= ([v_1, v_2]_A, \iota_{[v_1, v_2]}_A \alpha_\omega + \iota_{v_2} \iota_{v_1} a^* \eta + L_{v_1} \alpha_2 - \iota_{v_2} d\alpha_1) =$$

$$= f([v_1, v_2]_A) + \iota_{v_2} \iota_{v_1} a^* \eta + L_{v_1} \alpha_2 - \iota_{v_2} d\alpha_1.$$

This shows that the Courant bracket on $\Gamma(f(L)^\perp/f(L))$ is the η-twisted Courant bracket on $TN \oplus T^*N$. \qed
4. The Atiyah Algebroid $A \to G$

4.1. The Bundle of Twisted Loop Algebras

Let G be a Lie group. For $g \in G$ define the twisted loop algebra
\[L_g = \{ \xi \in C^\infty(\mathbb{R}, g) \mid \xi(t+1) = \Ad_g \xi(t) \}, \]
with bracket $[\xi_1, \xi_2]_L(t) = -[\xi_1(t), \xi_2(t)]_g$, minus\(^3\) the pointwise Lie bracket on $C^\infty(\mathbb{R}, g)$. Let $L \to G$ be the Lie algebra bundle with fibers L_g. (The isomorphism type of the fiber L_g may depend on the connected component of G containing g.)

Remark 4.1. Let us discuss briefly the local triviality of L. Consider a connected component of G, with base point g_0. For any g in the same connected component, the choice of any path $\gamma = \gamma_g \in C^\infty([0, 1], G)$ from $\gamma(0) = g_0$ to $\gamma(1) = g$, with γ constant near $t=0,1$, defines a Lie algebra isomorphism $L_{g_0} \to L_g, \xi \mapsto \tilde{\xi}$ where $\tilde{\xi}(t) = \Ad_{\gamma(t)} \xi(t)$ for $t \in [0,1]$. One may take $\gamma_g(t)$ to depend smoothly on g, t (as g varies in a small open subset), thus obtaining local trivializations of L. The smooth sections of L are thus functions $\xi \in C^\infty(G \times \mathbb{R}, g)$ satisfying $\xi(g, t+1) = \Ad_g \xi(g, t)$.

4.2. The Lie Algebroid $A \to G$

Let $\theta^L, \theta^R \in \Omega^1(G, \mathfrak{g})$ be the Maurer-Cartan forms on G. We will work with the right trivialization of the tangent bundle, $TG \to G \times \mathfrak{g}, X \mapsto i_X \theta^R$. Note that if $X, Y \in \mathfrak{X}(G)$ correspond to $v = i_X \theta^R$, $w = i_Y \theta^R$, then $[X, Y]$ corresponds to $i_{[X, Y]} \theta^R = -[v, w]_g + Xv - Yw$

where the subscript g indicates the pointwise bracket. For $g \in G$ let
\[A_g = \{ \xi \in C^\infty(\mathbb{R}, g) \mid \exists v_\xi \in \mathfrak{g}: \xi(t+1) = \Ad_g \xi(t) + v_\xi \}. \]

We obtain an exact sequence
\[0 \to L_g \to A_g \xrightarrow{a} TG \to 0 \]

where the anchor map a is defined by $i_{a(\xi)} \theta^R = v_\xi$. Let $A \to G$ be the bundle with fibers A_g.

\(^3\)The sign change will be convenient for what follows. It is related to the appearance of the minus sign in Example 2.1.
PROPOSITION 4.2. The bundle A with anchor map a is a transitive Lie algebroid over G, with bracket on

$$\Gamma(A) = \{ \xi \in C^\infty(G \times \mathbb{R}, g) \mid \exists v_\xi \in C^\infty(G, g) : \xi(t+1) = \text{Ad}_g \xi(t) + v_\xi \}.$$

given by

$$[\xi, \zeta] = -[\xi, \zeta]_g + X\zeta - Y\xi.$$

Here $X, Y \in \mathfrak{X}(G)$ are determined by $v_\xi = \iota_X \theta^R, v \zeta = \iota_Y \theta^R$.

Proof. To show that a is surjective, fix $f \in C^\infty([0, 1], \mathbb{R})$ with $f(0) = 0, f(1) = 1$, and constant near $t = 0, 1$. For $X \in T_g G$ let $\xi(t) = f(t) \iota_X \theta^R$ for $t \in [0, 1]$. Then $\xi(1) - \xi(0) = tX \theta^R$, so ξ extends uniquely to an element $\xi \in A_g$ with $a(\xi) = X$. This argument also shows that A is locally trivial, in fact $A \cong L \oplus TG$.

To check that $[\cdot, \cdot]_A$ preserves the space $\Gamma_1(A) \subset C^\infty(G \times \mathbb{R}, g)$, we calculate (at any given $g \in G$)

$$[\xi(t+1), \zeta(t+1)]_g = \text{Ad}_g[\xi(t), \zeta(t)]_g + [\text{Ad}_g \xi(t), v_\zeta]_g + [v_\xi, \text{Ad}_g \zeta(t)]_g + [v_\xi, v_\zeta]_g.$$

On the other hand,

$$(X\xi)(g, t+1) = \left. \frac{\partial}{\partial s} \right|_{s=0} (\xi(\exp(sv_\xi(g))g, t+1)) =$$

$$= \left. \frac{\partial}{\partial s} \right|_{s=0} \left(\text{Ad}_{\exp(sv_\xi(g))g} (\xi(\exp(sv_\xi(g))g, t)) + v_\xi(\exp(sv_\xi(g))g) \right) =$$

$$= [v_\xi, \text{Ad}_g \xi(t)]_g + \text{Ad}_g (X\zeta)(t) + Xv_\zeta,$$

with a similar expression for $(Y\xi)(g, t+1)$. Therefore

$$[\xi, \zeta]_A(t+1) = \text{Ad}_g[([\xi, \zeta]_A(t)) + v_{[\xi, \zeta]}_X].$$

This shows that $[\cdot, \cdot]_A$ takes values in A and also that $a([\xi, \zeta])_A = [a(\xi), a(\zeta)]$. It is straightforward to check that $[\cdot, \cdot]_A$ obeys the Jacobi identity.

PROPOSITION 4.3. The Lie group G acts on $A \to G$ by Lie algebroid automorphisms covering the conjugation action on G. This action is given on sections $\xi \in \Gamma(A)$ by

$$(k, \xi)(g, t) = \text{Ad}_k \xi(\text{Ad}_{k^{-1}} g, t), \quad \xi \in \Gamma(A), \quad k \in G,$$

and has infinitesimal generators

$$g \mapsto \Gamma(A), \quad x \mapsto x_A = -x.$$
We will now interpret $A \rightarrow G$ as the Atiyah algebroid of a principal bundle over G. Suppose first that G is connected. Let $\pi : PG \rightarrow G$ be the bundle with fibers, $(PG)_g = \{ \gamma \in C^\infty(\mathbb{R}, G) | \gamma(t + 1) = g \gamma(t) \}$.

By an argument similar to that for L_g, one sees that $PG \rightarrow G$ is a locally trivial bundle. In fact it is a principal bundle with fiber the loop group $LG = \pi^{-1}(e)$. We will argue that $A \rightarrow G$ may be regarded as the Atiyah algebroid of the principal LG-bundle $PG \rightarrow G$. Let $g \in (PG)_g$. Given a family of paths $\gamma_s \in PG$ with $\gamma_0 = \gamma$, let $\zeta : \mathbb{R} \rightarrow \mathfrak{g}$ be defined as

$$\zeta(t) = \frac{\partial}{\partial s} |_{s=0} \left(\gamma_s(t) \gamma(t)^{-1} \right).$$

Put $g_s = \pi(\gamma_s)$, so that $g_s = \gamma_s(t + 1)\gamma(t)^{-1}$ for all t. We may write $\gamma_s(t) = \exp(s \xi_s(t)) \gamma(t)$, so that $\zeta_0(t) = \zeta(t)$. Then

$$g_s = \exp(s \xi_s(t)) \gamma(t + 1) \gamma(t)^{-1} \exp(-s \xi_s(t)) =$$

$$= \exp(s \xi_s(t + 1)) \gamma(t + 1) \gamma(t)^{-1} \exp(-s \xi_s(t)).$$

We find,

$$\frac{\partial}{\partial s} |_{s=0} \left(g_s g^{-1} \right) = \zeta(t + 1) - \text{Ad}_g \zeta(t).$$
This identifies \(A_g \) as the space of maps for which \(\zeta(t+1) - \text{Ad}_g \zeta(t) \) is constant. The formula for \([\cdot, \cdot]_A\) is the expected bracket on LG-invariant vector fields on PG. However, rather than attempting to construct Lie brackets of vector fields on infinite-dimensional manifolds, we will take this formula simply as a definition.

Remark 4.4. If \(G \) is disconnected, the condition \(\gamma(t+1) = g \gamma(t) \) implies that \(g \) is in the identity component. One may however extend the definition, as follows: For any given component of \(G \), pick a base point \(g_0 \), and take \((PG)_g\) with \(g \) in the component of \(g_0 \) to consist of paths \(\gamma \) such that \(\gamma(t+1) = g \gamma(t) g_0^{-1} \). Then \(PG \to G \) is a principal \(L_{g_0} \)-bundle over the given component.

4.4. Connections on \(A \to G \)

Let us next discuss connections on the Atiyah algebroid over \(G \). It will be convenient to describe \(\theta \) in terms of the horizontal lift, \(\text{Hor}_\theta : TG \to A \subset C^\infty(\mathbb{R}, g) \). Write \(\text{Hor}_\theta = -\alpha \), and think of \(\alpha \) as a family of 1-forms \(\alpha_t \in \Omega^1(G, g) \).

Lemma 4.5. A family of 1-forms \(\alpha_t \) defines a horizontal lift \(TG \to A \) if and only if

\[
\alpha_{t+1} = \text{Ad}_g \alpha_t - \theta^R =: g \bullet \alpha_t. \tag{9}
\]

Here \(\bullet \) denotes the ‘gauge action’ of the identity map \(g \in C^\infty(G, G) \) on \(\Omega^1(G, g) \). The resulting connection is \(G \)-equivariant if and only if \(\alpha_t \in \Omega^1(G, g)^G \).

Proof. The condition for \(\text{Hor}_\theta = -\alpha \) to define a horizontal lift is that for all \(X \in \mathfrak{X}(G) \),

\[
-\iota_X \alpha_{t+1} = -\text{Ad}_g (\iota_X \alpha_t) + \iota_X \theta^R = -\iota_X (\text{Ad}_g (\alpha_t) - \theta^R|_g)
\]

for all such \(X \). This gives the condition on \(\alpha_t \). It is clear that \(\text{Hor}_\theta \) is \(G \)-equivariant exactly if \(\alpha \) is \(G \)-equivariant. \(\Box \)

The connection \(\theta = \theta^\alpha : A \to L \) defined by \(\alpha \) is \(\theta(\xi) = \xi + \alpha(\mathbf{a}(\xi)) \). Let \(F^{\alpha_t} = d\alpha_t + \frac{1}{2} [\alpha_t, \alpha_t]_g \) be the curvature of \(\alpha_t \). By the property of the curvature under gauge transformations,

\[
F^{\alpha_{t+1}} = F^g \bullet \alpha_t = \text{Ad}_g F^{\alpha_t}.
\]

Proposition 4.6. The curvature \(F^\theta \in \Omega^2(G, L) \) of the connection \(\theta(\xi) = \xi + \alpha(\mathbf{a}(\xi)) \) is given by

\[
F^\theta(X, Y)(t) = F^{\alpha_t}(X, Y), \quad X, Y \in \mathfrak{X}(G).
\]
If α is G-invariant, then the corresponding map $\Psi: g \to \Gamma(L)$ (cf. 3.5) is
\[\Psi(x) = -x + \iota(x_N)\alpha. \]

Proof. This follows from the definition of the curvature in terms of horizontal lifts:
\[
F^\theta(X, Y) = \text{Hor}_\theta([X, Y]) - [\text{Hor}_\theta(X), \text{Hor}_\theta(Y)]_A = \\
= -\alpha([X, Y]) - [\alpha(X), \alpha(Y)]_A = \\
= -\alpha([X, Y]) + [\alpha(X), \alpha(Y)]_A + X\alpha(Y) - Y\alpha(X) = \\
= \left(d\alpha + \frac{1}{2}[\alpha, \alpha] \right)(X, Y).
\]

If α is G-invariant, so that θ is G-equivariant, the map $\Psi(x) = -\iota x_A\theta$ is given by
\[\Psi(x) = -\iota x_A\theta = x_A - \text{Hor}_\theta(x_N) = -x + \iota(x_N)\alpha. \]

To construct a family of 1-forms $\alpha_t \in \Omega^1(G, g)$ with the transformation property (9), take any α_0 (for example $\alpha_0 = 0$), and put $\alpha_n = g^n \cdot \alpha_0$. Pick a smooth function $f: [0, 1] \to \mathbb{R}$ such that $f(t) = 0$ near $t = 0$ and $f(t) = 1$ near $t = 1$, and let
\[\alpha_t = \alpha_n + f(t - n)(\alpha_{n+1} - \alpha_n) \] (10)

for $n \leq t \leq n + 1$. The resulting α_t is smooth, and has the desired transformation property. If $\alpha_0 \in \Omega^1(G, g)$ is G-invariant, then for $k \in G$
\[k^*\alpha_n = (\text{Ad}_k(g))^n \cdot k^*(\alpha_0) = (\text{Ad}_k(g^n)) \cdot \text{Ad}_k(\alpha_0) = \text{Ad}_k(\alpha_n), \]

hence $\alpha_t \in \Omega^1(G, g)$ is G-invariant for all t.

5. The Lifting Problem for $A \to G$

An invariant inner product on g defines central extensions \hat{L}_g of the twisted loop algebras L_g. In this Section, we will work out the 2-form $\varpi \in \Gamma(\wedge^2 A^*)$ defined by the lifting problem, and discuss some of its properties.

5.1. CENTRAL EXTENSIONS

Suppose the Lie algebra g carries an invariant symmetric bilinear form \cdot (possibly indefinite, or even degenerate). This then defines a central extension
\[0 \to G \times \mathbb{R} \to \hat{L} \to L \to 0, \] (11)
where $\hat{L}_g = L_g \oplus \mathbb{R}$ with bracket,

$$[(\xi_1, s_1), (\xi_2, s_2)]_{\hat{L}} = \begin{pmatrix} -[\xi_1, \xi_2]_g & \int_0^1 \dot{\xi}_2 \cdot \xi_1 \\ \int_0^1 \dot{\xi}_1 \cdot \xi_2 & 0 \end{pmatrix}.$$

Here $\dot{\xi} = \frac{\partial}{\partial s}$, and the integral is relative to the measure dt. The G-action on L lifts to an action on \hat{L}, by $k.(\xi, s) = (k.\xi, s)$.

Proposition 5.1. The representation of A on L (given by $\nabla_\xi \zeta = [\xi, \zeta]_A$) lifts to the Lie algebra bundle \hat{L}, by the formula,

$$\hat{\nabla}_\xi (\zeta, s) = \left(\nabla_\xi \zeta, \ a(\xi)s + \int_0^1 \dot{\xi} \cdot \zeta \right)$$

for $\xi \in \Gamma(A)$, $(\zeta, s) \in \Gamma(\hat{L})$. This representation is equivariant relative to the G-actions on A and \hat{L}.

Proof. We first check that this formula defines an A-representation. Clearly $\xi \mapsto \hat{\nabla}_\xi$ is $C^\infty(N)$-linear. For $\xi_1, \xi_2 \in \Gamma(A)$ and $\zeta \in \Gamma(L)$, we have

$$\int_0^1 [\xi_1, \dot{\xi}_2]_A \cdot \zeta = -\int_0^1 \dot{\xi}_2 \cdot [\xi_1, \zeta]_A + a(\xi_1) \int_0^1 \dot{\xi}_2 \cdot \zeta,$$

by the definition of the bracket on A and the Ad-invariance of \cdot. Note that $a(\dot{\xi}) = 0$ for all $\dot{\xi} \in \Gamma(A)$. Subtracting a similar equation with $1 \leftrightarrow 2$ interchanged, one obtains

$$\int_0^1 \frac{\partial}{\partial t} ([\xi_1, \dot{\xi}_2]_A) \cdot \zeta = a(\xi_1) \int_0^1 \dot{\xi}_2 \cdot \zeta - a(\xi_2) \int_0^1 \dot{\xi}_1 \cdot \zeta + \int_0^1 (\dot{\xi}_1 \cdot \nabla_\xi \zeta - \dot{\xi}_2 \cdot \nabla_\xi \zeta)$$

which easily implies the property $\hat{\nabla}_{\xi_1} \hat{\nabla}_{\xi_2} - \hat{\nabla}_{\xi_2} \hat{\nabla}_{\xi_1} = \hat{\nabla}_{[\xi_1, \xi_2]_A}$. We next check that this representation acts by derivations of the Lie bracket on $\Gamma(\hat{L})$. We have

$$[\hat{\nabla}_\xi (\xi_1, s_1), (\xi_2, s_2)]_{\hat{L}} = \begin{pmatrix} -[\nabla_\xi \xi_1, \xi_2]_g & \int_0^1 (\frac{\partial}{\partial t} [\xi, \xi_1]_g + a(\xi) \dot{\zeta}_1) \cdot \zeta_2 \\ \int_0^1 (\frac{\partial}{\partial t} [\xi, \xi_2]_g + a(\xi) \dot{\zeta}_2) \cdot \zeta_1 & -[\nabla_\xi \xi_2, \xi_1]_g \end{pmatrix},$$

$$[(\xi_1, s_1), \hat{\nabla}_\xi (\xi_2, s_2)]_{\hat{L}} = \begin{pmatrix} -[\xi_1, \nabla_\xi \xi_2]_g & \int_0^1 \dot{\zeta}_1 \cdot (\frac{\partial}{\partial t} [\xi, \xi_2]_g + a(\xi) \dot{\xi}_2) \\ \int_0^1 \dot{\zeta}_2 \cdot (\frac{\partial}{\partial t} [\xi, \xi_1]_g + a(\xi) \dot{\zeta}_1) & -[\xi_1, \nabla_\xi \xi_1]_g \end{pmatrix},$$
which adds up to
\[\hat{\nabla}_\xi [(\zeta_1, s_1), (\zeta_2, s_2)] = \left(-\nabla_\xi [\zeta_1, \zeta_2], \alpha(\xi) \int_0^1 \dot{\zeta}_1 \cdot \zeta_2 - \int_0^1 \dot{\xi} \cdot [\zeta_1, \zeta_2] \right) \]
as required. Equivariance of the action is clear. \qed

By definition, \(\hat{L} \) comes with the \(G \)-equivariant splitting \(j : L \to \hat{L}, \xi \mapsto (\xi, 0) \), with associated cocycle
\[\sigma(\xi_1, \xi_2) = -\int_0^1 \dot{\xi}_1 \cdot \dot{\xi}_2. \]

Let \(\alpha_t \in \Omega^1(G, g) \) be a family of 1-forms with the transformation property (9) and let \(\theta^a : A \to L \) be the corresponding connection. Using the results from the last Section, we obtain a 2-form \(\sigma^a \in \Gamma(\wedge^2 A^*) \) and a closed 3-form \(\eta^a \in \Omega^3(G) \), whose cohomology class is the obstruction to the existence of a lift \(\hat{A} \). If \(\alpha \) is \(G \)-equivariant, we also obtain an equivariant extension \(\eta^a_G \) of the 3-form. We will now derive explicit formulas.

5.2. THE 2-FORM \(\sigma^a \)

To begin, we need the covariant derivative \(d\theta^a \in \Omega^1(G, L^*) \) of the splitting. Note that the derivative \(\dot{\alpha}_t \) satisfies \(\dot{\alpha}_t + Ad_g \dot{\alpha} \), so it defines an element \(\dot{\alpha} \in \Omega^1(G, L) \).

Lemma 5.2. For \(\zeta \in \Gamma(L) \) one has
\[\langle d\theta^a, \zeta \rangle = -\int_0^1 \dot{\alpha} \cdot \zeta. \]

Proof. Recall that \(\langle d\theta^a, \zeta \rangle = \langle d\alpha, \zeta \rangle + \sigma(\theta^a, \zeta) \). For \(\xi \in \Gamma(A) \) we compute
\[\iota_\xi \langle d\alpha, \zeta \rangle = \mathcal{L}_\xi j(\zeta) - j(\mathcal{L}_\xi \zeta) = \int_0^1 \dot{\xi} \cdot \zeta, \]
\[\sigma(\iota_\xi \theta^a, \zeta) = \sigma(\dot{\xi} + \iota_{\alpha(\xi)} \alpha, \zeta) = -\int_0^1 \iota_{\alpha(\xi)} \dot{\alpha} \cdot \zeta - \int_0^1 \dot{\xi} \cdot \zeta. \]
\qed
Equation (7) together with this Lemma shows that

$$\varpi^\alpha = - \int_0^1 \dot{\alpha} \cdot \theta^\alpha - \frac{1}{2} \sigma(\theta^\alpha, \theta^\alpha).$$

It is convenient to introduce the forms $\kappa_t \in (\Gamma(A^*) \otimes g)^G$,

$$\kappa_t(\xi) = -\xi_t, \quad \xi \in \Gamma(A).$$

Lemma 5.3. The forms κ_t satisfy $F^\kappa_G(x) + x = 0$, and

$$\kappa_{t+1} = \text{Ad}_g(\kappa_t) - a^* \theta^R := g \cdot \kappa_t.$$

Proof.

We have

$$d\kappa_t(\xi, \zeta) = -\kappa_t([\xi, \zeta]_A) + a(\xi)\kappa_t(\zeta) - a(\zeta)\kappa_t(\xi) = -[\xi, \zeta]_g = -\frac{1}{2}[\kappa_t, \kappa_t](\xi, \zeta).$$

This shows that $F^\kappa_G = 0$. Furthermore, for $x \in g$ we have $\iota(x_A)\kappa_t = -x$, by definition of x_A. Hence $F^\kappa_G(x) + x = 0$. The transformation property $\kappa_{t+1} = \text{Ad}_g(\kappa_t) - a^* \theta^R$ follows from the definition of A. \hfill \Box

Let $Q^\alpha \in \Omega^2(G)$ be the 2-form (see Section A.1)

$$Q^\alpha = \frac{1}{2} \theta^L \cdot \alpha_0 + \frac{1}{2} \int_0^1 \alpha_t \cdot \dot{\alpha}_t,$$

and define $Q^\kappa \in \Gamma(\bigwedge^2 A^*)$ by a similar expression, with α_t replaced by κ_t.

Proposition 5.4. We have $\varpi^\alpha = a^* Q^\alpha - Q^\kappa$.

Proof.

By definition, $\theta^\alpha = a^* \alpha - \kappa$. To simplify notation, we omit the pull-back a^* in the following computation, i.e., we view $\Omega(G)$ as a subspace of $\Gamma(\bigwedge A^*)$:

$$\varpi^\alpha = - \int_0^1 \dot{\alpha} \cdot (\alpha - \kappa) + \frac{1}{2} \int_0^1 (\dot{\alpha} - \dot{\kappa}) \cdot (\alpha - \kappa) =$$

$$= \frac{1}{2} \int_0^1 \alpha \cdot \dot{\alpha} - \frac{1}{2} \int_0^1 \kappa \cdot \dot{\kappa} - \frac{1}{2} \int_0^1 \frac{\partial}{\partial t} (\kappa \cdot \alpha) =$$

$$= \frac{1}{2} \int_0^1 \alpha \cdot \dot{\alpha} - \frac{1}{2} \int_0^1 \kappa \cdot \dot{\kappa} - \frac{1}{2} (\text{Ad}_g \kappa_0 - \theta^R) \cdot (\text{Ad}_g \alpha_0 - \theta^R) + \frac{1}{2} \kappa_0 \cdot \alpha_0 =$$

$$= Q^\alpha - Q^\kappa.$$ \hfill \Box
LEMMA 5.5. For α as in (10), one has

$$Q^\alpha = \left(\frac{\theta^L + \theta^R}{2}\right) \cdot \alpha_0 + \frac{1}{2} \alpha_0 \cdot \text{Ad}_g \alpha_0.$$

In particular, $Q^\alpha = 0$ for $\alpha_0 = 0$.

Proof. By assumption, $\alpha_t = \alpha_0 + f(t)(g \cdot \alpha_0 - \alpha_0)$ for $0 \leq t \leq 1$, where $f(0) = 0$ and $f(1) = 1$. Hence $\alpha_t \cdot \dot{\alpha}_t = \dot{f} \alpha_0 \cdot (g \cdot \alpha_0)$, and therefore

$$\frac{1}{2} \int_0^1 \alpha_t \cdot \dot{\alpha}_t = \frac{1}{2} \alpha_0 \cdot (g \cdot \alpha_0) = \frac{1}{2} \alpha_0 \cdot \text{Ad}_g \alpha_0 + \frac{1}{2} \theta^R \cdot \alpha_0.$$

Adding $\frac{1}{2} \theta^L \cdot \alpha_0$, the formula for Q^α follows. \square

For the rest of this paper, we will write $\omega := -Q^\kappa \in \Gamma(\wedge^2 A^*)$, that is

$$\omega = -\frac{1}{2} \int_0^1 \kappa \cdot \dot{\kappa} - \frac{1}{2} \alpha^* \theta^L \cdot \kappa_0.$$

(13)

Thus $\omega^\alpha = \omega$ for any choice of α with $Q^\alpha = 0$. More explicitly, for $\xi \in \Gamma(A)$ we have

$$\omega(\xi, \cdot) = \frac{1}{2} \int_0^1 (\xi \cdot \dot{\kappa} - \dot{\xi} \cdot \kappa) - \frac{1}{2} v_\xi \cdot \text{Ad}_g \kappa_0 - \frac{1}{2} \text{Ad}_g v_\xi \cdot \alpha^* \theta^R =$$

$$= -\frac{1}{2} \int_0^1 \xi \cdot \kappa + \frac{1}{2} (\xi_1 \cdot \kappa_1 - \xi_0 \cdot \kappa_0) - \frac{1}{2} v_\xi \cdot \text{Ad}_g \kappa_0 - \frac{1}{2} \text{Ad}_g v_\xi \cdot \alpha^* \theta^R =$$

$$= -\frac{1}{2} \int_0^1 \xi \cdot \kappa - \text{Ad}_g(\xi_0) \cdot \alpha^* \theta^R - \frac{1}{2} v_\xi \cdot \alpha^* \theta^R.$$

Taking another contraction with $\zeta \in \Gamma(A)$,

$$\omega(\xi, \zeta) = \frac{1}{2} \int_0^1 \xi \cdot \zeta - \text{Ad}_g(\xi_0) \cdot v_\xi - \frac{1}{2} v_\xi \cdot v_\zeta.$$

5.3. THE 3-FORM η^α

Let $\eta \in \Omega^3(G)$ be the Cartan 3-form on G given as

$$\eta = \frac{1}{12} \theta^L \cdot [\theta^L, \theta^L] \in \Omega^3(G),$$
and let $\eta_G \in \Omega^3_G(G)$ be its equivariant extension

$$\eta_G(x) = \eta - \frac{1}{2}(\theta^L + \theta^R) \cdot x.$$

The 2-form $\varpi = -Q^x \in \Gamma(\wedge^2 A^*)$ obeys

$$d_G \varpi(x) = -d_G Q^x(x) = a^* \eta_G(x) - \int_0^1 \dot{k}_t \cdot (F^x_G(x) + x) = a^* \eta_G(x),$$

in particular $d \varpi = a^* \eta$. We obtain:

Theorem 5.6. We have $d \varpi \alpha = a^*(\eta + dQ^\alpha)$, and if α is G-invariant, $d_G \varpi \alpha = a^*(\eta_G + d_G Q^\alpha)$. In particular, taking an invariant α with $Q^\alpha = 0$, the 2-form $\varpi \in \Gamma(\wedge^2 A^*)^G$ defined in (13) satisfies

$$d_G \varpi = a^* \eta_G.$$

6. Fusion

In this Section, we will study multiplicative properties of the Atiyah algebroid over G, and of the forms ϖ. We begin by introducing a (partial) multiplication on A, using concatenation of paths. Let $\xi' \in A_{g'}$, $\xi'' \in A_{g''}$, with

$$\xi_1' = \xi_0''.$$

The concatenation $\xi'' \ast \xi'$ is defined as follows:

$$(\xi'' \ast \xi')_t = \begin{cases}
\xi'_t & \text{if } 0 \leq t \leq \frac{1}{2} \\
\xi''_{2t-1} & \text{if } \frac{1}{2} \leq t \leq 1
\end{cases}$$

extended to all t by the property,

$$(\xi'' \ast \xi')_{t+1} = \text{Ad}_{g''g'}(\xi'' \ast \xi')_t + (\text{Ad}_{g''} v_{\xi'} + v_{\xi''}).$$

This is consistent since, putting $t = 0$,

$$\xi_1'' = \text{Ad}_{g''} \xi_0'' + v_{\xi''} = \text{Ad}_{g''g'} \xi_0' + (\text{Ad}_{g''} v_{\xi'} + v_{\xi''}).$$

Then $\xi'' \ast \xi' \in A_{g''g'}$ provided the concatenation is *smooth*. The concatenation is smooth if, for example, ξ'', ξ' are constant near $t = 0$. Let

$$A^{[2]} \subset A \times A$$

be the sub-bundle of *composable paths*, with fiber at (g'', g') the set of pairs $(\xi'', \xi') \in A_{g''} \times A_{g'}$ such that $\xi'_1 = \xi''_0$ and such that $\xi'' \ast \xi'$ is smooth. One easily checks that $A^{[2]}$ is a Lie subalgebroid of $A \times A$, i.e., that the bracket on $\Gamma(A \times A)$
restricts to $\Gamma(A^{[2]}).$ The kernel of its anchor map $\alpha^{[2]} : A^{[2]} \to TG^2$ is denoted $L^{[2]}$; it is a sub Lie algebra bundle of $L \times L$.

Concatenation gives a bundle map $\text{mult}_A : A^{[2]} \to A$, covering the group multiplication $\text{mult}_G : G \times G \to G$. That is, we have a commutative diagram,

$$
\begin{array}{ccc}
A^{[2]} & \xrightarrow{\text{mult}_A} & A \\
\downarrow & & \downarrow \\
G \times G & \xrightarrow{\text{mult}_G} & G
\end{array}
$$

We have three transitive Lie algebroids over G^2, with inclusion maps

$$
A^2 \leftarrow A^{[2]} \to \text{mult}_G^1 A.
$$

Here the left map is given by the definition of $A^{[2]}$, while the right map is concatenation. The two maps correspond to reductions of the Lie algebra bundles to L^2.

$$
L^2 \leftarrow L^{[2]} \to \text{mult}_G^* L.
$$

We are interested in compatible principal connections on the three transitive Lie algebroids (14) over $G \times G$. Write the elements of G^2 as (g'', g'), and use the similar notation to indicate projections to the two factors. Let $\alpha', \alpha'' : \mathbb{R} \to \Omega^1(G^2, g)^G$ be smooth families of 1-forms with

$$
\alpha'_{t+1} = g' \cdot \alpha'_t, \quad \alpha''_{t+1} = g'' \cdot \alpha''_t.
$$

Assume both of these are constant near $t = 0$ (hence near any integer $t = n$), and that $\alpha'_0 = \alpha''_0$. The concatenation (cf. Prop. A.3) $\alpha'' * \alpha' : \mathbb{R} \to \Omega^1(G^2, g)^G$ defines a connection $\theta^{\alpha'', \alpha'}$ on $\text{mult}_G^1 A$, while the pair α'', α' defines a connection $\theta^{\alpha'' \cdot \alpha'}$ on $A \times A$. These two connections are compatible, in the sense that they restrict to the same connection on $A^{[2]}$. For the corresponding forms $\varpi^{\alpha'}$ etc. this implies

$$
\varpi^{\alpha'' * \alpha'} \big|_{A^{[2]}} = \varpi^{\alpha'', \alpha'} \big|_{A^{[2]}},
$$

and therefore the 3-forms satisfy $\text{mult}_G^* \eta^{\alpha'' * \alpha'} = \eta^{\alpha'', \alpha'}$.

Let $\sigma \in \Gamma(\wedge^2 A^*)$ be the 2-form defined in (13). Then

$$
\sigma^{\alpha'' * \alpha'} = \text{mult}_A^1 \sigma + Q^{\alpha'' * \alpha'},
$$

$$
\sigma^{\alpha', \alpha''} = \text{pr}_1^1 \sigma + \text{pr}_2^1 \sigma + Q^{\alpha'} + Q^{\alpha''}.
$$

Using the property (22) of Q^α under concatenation, we obtain:

4By analogy, one may think of $L^{[2]}$ as ‘figure eight’ loops. The two maps correspond to viewing the figure eight either as a single loop or as a pair of two loops.
PROPOSITION 6.1. The 2-form ϖ satisfies, over $A^{[2]} \subset A \times A$,

$$\text{mult}^I_A \varpi = \text{pr}_1^I \varpi + \text{pr}_2^I \varpi - \lambda$$

Here $\lambda \in \Omega^2(G \times G)$ is the 2-form, $\lambda = \frac{1}{2} \text{pr}_1^* \theta^L \cdot \text{pr}_2^* \theta^R$.

This ‘lifts’ the property of the Cartan 3-form, $\text{mult}^*_G \eta = \text{pr}_1^* \eta + \text{pr}_2^* \eta - d\lambda$.

7. Pull-backs

7.1. THE LIFTING PROBLEM FOR Φ^I_A

Given a G-equivariant map $\Phi: M \to G$, consider the pull-back algebroid $A_M = \Phi^I_A \to M$. Sections of A_M are pairs (X, ξ), where $X \in \mathfrak{X}(M)$ and $\xi \in C^\infty(M \times \mathbb{R}, g)$ such that for all t,

$$\xi_{t+1} = \text{Ad}_{\Phi} \xi_t + \iota_X \Phi^* \theta^R.$$

The bracket between two such sections reads,

$$[(X, \xi), (Y, \zeta)]_{A_M} = ([X, Y], -[\xi, \zeta]_g + X\xi - Y\zeta),$$

and the anchor map is $\mathfrak{a}_M(X, \xi) = X$. The sections $x_{A_M} = \Phi^I x_A \in \Gamma(A_M)$ are generators for the G-action on A_M.

Suppose $\alpha_t \in \Omega^1(G, g)^G$ is a family of 1-forms as in (10), with $Q^\alpha = 0$, thus $\varpi^\alpha = \varpi$ and $\eta^\alpha_G = \eta_G$. Let $\varpi_M = \Phi^I \varpi \in \Gamma(\wedge^2 A_M^*)$. Suppose

$$\Phi^* \eta_G = -d_G \omega,$$

for an invariant 2-form ω. As shown in Section 3.5, this gives an equivariant solution of the lifting problem for A_M, relative to the central extension $\hat{L}_M = \Phi^* \hat{L} \to L_M = \Phi^* L$. Since we are assuming $\omega_G = \omega$, this solution will have the additional property that $j_{A_M}(x_{A_M})$ are generators for the action on \hat{A}_M. Since $d_G \varpi_M = a_M^* \Phi^* \eta_G$, the 2-form

$$a_M^* \omega + \varpi_M \in \Gamma(\wedge^2 A_M^*)$$

is equivariantly closed. Let us compute its kernel. For the following theorem, we assume that the inner product on g is non-degenerate.

THEOREM 7.1. Suppose $\Phi: M \to G$ is a G-equivariant map, and $\omega \in \Omega^2(M)$ is an invariant 2-form such that $d_G \omega = -\Phi^* \eta_G$.

At any point $m \in M$, the kernel of $a_M^* \omega + \varpi_M \in \Gamma(\wedge^2 A_M^*)$ admits a direct sum decomposition,

$$\ker(a_M^* \omega + \varpi_M) = g \oplus (\ker(\omega) \cap \ker(d\Phi)).$$

(15)
Here elements \(v \in T_m M \cap \ker(d_m \Phi) \subset T_m M \) are embedded in \(\ker(a_m^* \omega + \sigma_M) \subset A_M \subset TM \oplus A \) as elements of the form \((v, 0)\), while elements \(x \) of \(\mathfrak{g} \) are embedded diagonally as generators for the action, \(x \mapsto (x_M, x_A) \).

Proof. By definition, the fiber of \(\Phi^! A = A_M \) at \(m \in M \) is the subspace of \(T_m M \oplus A_{\Phi(m)} \) consisting of pairs \((v, \xi)\) such that \((d_m \Phi)(v) = a(\xi)\).

The property \(d_G(a_m^* \omega + \sigma_M) = 0 \) means in particular that elements of the form \((x_M, x_A)\) are in the kernel of \(\omega + \sigma_M \). On the other hand, elements of the form \((v, 0)\) with \(v \in \ker(d_m \Phi) \) are contained in \(A_M \), and they are in the kernel of \(\omega + \sigma_M \) if and only if \(v \in \ker(\omega) \). This proves the inclusion \(\supseteq \) in (15).

For the opposite inclusion, consider a general element \((w, \xi) \in A_M \subset TM \oplus A \) in the kernel of \(a_m^* \omega + \sigma_M \) at \(m \in M \). We have \(\iota_{(w, \xi)} \sigma_M = \Phi^! \iota_\xi \sigma \), where \(\iota_\xi \sigma \) is given by the calculation following Equation (13). We thus obtain the condition

\[
a_m^*(\iota_w \omega) - \int_0^1 \dot{\xi} \cdot \kappa_M - \text{Ad}_g(\xi_0) \cdot a_m^* \theta^R - \frac{1}{2} v_\xi \cdot a_m^* \theta^R = 0,
\]

where \(\kappa_M = \Phi^! \kappa \). Taking a contraction with \(\zeta \in \ker(a_M) \cong L_{\Phi(m)} \), we obtain

\[
\int_0^1 \dot{\xi} \cdot \zeta = 0.
\]

Since this is true for all \(\zeta \in L_{\Phi(m)} \), the non-degeneracy of the inner product implies \(\dot{\xi} = 0 \). Thus \(\dot{\xi} \) is a constant path. Letting \(x = -\dot{\xi} \in \mathfrak{g} \), it follows that \((v, 0)\) with \(v = w - x_M \) lies in the kernel. As seen above, this means that \(v \in \ker(\omega) \cap \ker(d \Phi) \). \(\square \)

The conditions, \(d_G \omega = -\Phi^* \eta_G \) and \(\ker(\omega) \cap \ker(d \Phi) = 0 \) are exactly the defining conditions for a \(q \)-Hamiltonian \(G \)-space [1].\(^5\) That is, for a \(q \)-Hamiltonian \(G \)-space the kernel of \(a_m^* \omega + \sigma_M \in \Gamma(\Lambda^2 A_M^*) \) is the action Lie algebroid for the \(G \)-action, embedded as the Lie subalgebroid of \(A_M \) spanned by the generators of the \(G \)-action \(x_{A_M} \).

7.2. THE SUBALGEBROID \(A' \) AND ITS PULL-BACK \(\Phi^! A' \)

Let \(A' \subset A \) be the \(G \)-invariant subalgebroid consisting of \(\xi \in A \) with \(\xi_0 = 0 \). Then \(A' \) is again a transitive Lie algebroid, and \(A = \mathfrak{g} \ltimes A' \), where \(\mathfrak{g} \) is embedded by the generators of the \(G \)-action. The Lie algebroid \(A' \) may be viewed as the Atiyah algebroid of the principal \(L_G \)-bundle \(P_e G \to G \), where the subscript indicates paths based at the group unit \(e \). In turn, \(P_e G \) may be identified with the space \(\Omega^1(S^1, \mathfrak{g}) \) of connections on \(S^1 = \mathbb{R}/\mathbb{Z} \), where the identification is given by the map

\(^5\)In [1], the second condition was stated in the form \(\ker(\omega) = \{ \xi_M | \text{Ad}_{\Phi(m)} \xi = -\xi \} \). The equivalence to \(\ker(\omega) \cap \ker(d \Phi) = 0 \) was observed independently by Bursztyn-Crainic [6] and Xu [16].
\(\gamma \mapsto \gamma^{-1} d\gamma \). (Conversely, \(\gamma \) is recovered by parallel transport.) There is a natural projection \(q: A \to A', \xi \mapsto \xi - \xi(0) \), with \(a(q(\xi)) = a(\xi) + \xi(0)G \). Of course, \(q \) does not preserve brackets.

Suppose now that \(\Phi: M \to G \) is a \(G \)-equivariant map, and let \(A'_M = \Phi^! A' \). The projection \(q \) induces a projection map \(q_M: A_M \to A'_M \), given on sections by

\[
q_M(\xi, X) = (\xi - \xi(0), X + \xi(0)_M).
\]

Its kernel is the trivial bundle \(g_M = M \times g \subset A_M \), embedded by the map \(x \mapsto (-x, x_M) \) generating the \(G \)-action. Even though \(q_M \) does not preserve brackets, we have:

Corollary 7.2. If \(E \subset A_M \) is a \(G \)-invariant Lie subalgebroid, transverse to \(g_M \), then \(q_M(E) \subset A'_M \) is a Lie subalgebroid of \(A'_M \).

Proof. The transversality implies that \(q_M(E) \) is a sub-bundle of \(A'_M \), of the same rank as \(E \). Letting \(g_M = M \times g \subset A_M \) be the embedding given by the generators of the \(g \)-action, we have

\[
q_M(E) = q_M(E + g_M) = (E + g_M) \cap A'_M.
\]

But the sections of \(E + g_M \) are closed under \([\cdot, \cdot]_A\), as are the sections of \(A'_M \). \(\square \)

Example 7.3. In this example, we assume that \(G \) is compact and that the inner product \(\cdot \) on \(g \) is positive definite. Let \(\Phi: C \subset G \) be the inclusion of a conjugacy class. Then \(A_C = \Phi^! A \) is a sum

\[
A_C = L + g_C.
\]

The intersection \(L \cap g_C \) is the sub-bundle of \(g_C \) spanned by \((-x, x_C|_g) \) with \(x \in \ker(\text{Ad}_g - 1) \). Let the fibers \(L_g \) carry the inner product defined by the integration pairing. Then, after an appropriate Hilbert space completion (for instance, using the Sobolev space \(W^{1,2} \)), we obtain

\[
L^C_g = L^+_g \oplus \ker(\text{Ad}_g - 1)^C \oplus L^-_g
\]

where \(L^\pm_g \) are the direct sum of the eigenspaces for the positive/negative part of the spectrum of \(\frac{1}{\sqrt{-1}} \frac{\partial}{\partial t} \), and \(\ker(\text{Ad}_g - 1)^C \cong L^0_g \) is embedded as the kernel. Consequently,

\[
A^C_C = \Phi^! A = L^+ \oplus g_C \oplus L^-.
\]

Since \(L^\pm \) are Lie algebra sub-bundles of \(L \), their integrability is automatic, and hence

\[
(A^C'_C)^C = q(L^+) \oplus q(L^-)
\]
is an integrable polarization of A'_C. Letting \mathcal{O} be the coadjoint LG-group orbit corresponding to $\mathcal{C} = O/L_0 G$, the bundle A'_C is interpreted as $T\mathcal{O}/L_0 G$, and its polarization is the standard Kähler structure.

8. Higher Analogues of the Form ϖ

We had remarked above that the Cartan form η may be viewed as a Chern-Simons form, and similarly η_G as an equivariant Chern-Simons form. For any invariant polynomial $p \in (S^m g^*)^G$, we may define ‘higher analogues’ η^p, η^p_G of the Cartan form using the theory of Bott forms. We will not assume the existence of an invariant inner product on g.

8.1. BOTT FORMS

Let N be a manifold. Suppose that $\beta \in \Omega^1(N, g)$, and that $p \in (S^m g^*)^G$ is an invariant polynomial of degree m. Then $p(F^\beta)$ is closed, as an application of the Bianchi identity $dF^\beta + [\beta, F^\beta] = 0$. Given $\beta_0, \ldots, \beta_k \in \Omega^1(N, g)$ we define Bott forms $\Upsilon^p(\beta_0, \ldots, \beta_k) \in \Omega^{2m-k}(N)$

$$\Upsilon^p(\beta_0, \ldots, \beta_k) = (-1)^{\frac{k(k+1)}{2}} \int_{\Delta^k} p(F^\beta).$$

Here $\Delta^k = \{ s \in \mathbb{R}^{k+1} | s_i \geq 0, \sum_{i=0}^k s_i = 1 \}$ is the standard k-simplex, and $\beta = \sum_{i=0}^k s_i \beta_i$, viewed as a form $\beta \in \Omega^1(N \times \Delta^k, g)$. For a detailed discussion of Bott forms, see [15, Chapter 4]. The Bott forms satisfy

$$d\Upsilon^p(\beta_0, \ldots, \beta_k) = \sum_{i=0}^k (-1)^i \Upsilon^p(\beta_0, \ldots, \hat{\beta}_i, \ldots, \beta_k),$$

$$\Upsilon^p(\Phi \bullet \beta_0, \ldots, \Phi \bullet \beta_k) = \Upsilon^p(\beta_0, \ldots, \beta_k), \quad \Phi \in C^\infty(N, G).$$

The first identity follows from Stokes’ theorem [15, Theorem 4.1.6], while the second identity comes from the gauge equivariance of the curvature, $F^{\Phi \bullet \beta} = \text{Ad}_\Phi(F^\beta)$.

Consider the special case $N = G$. For any $p \in (S^m g^*)^G$ we define

$$\eta^p = \Upsilon^p(0, \theta^L) \in \Omega^{2m-1}(G).$$

Then $d\eta^p = \Upsilon^p(\theta^L) - \Upsilon^p(0) = 0$, using that $F^\beta = 0$ for both $\beta = 0, \theta^L$. For G compact, the classes $[\eta^p]$ are known to generate the cohomology ring $H^*(G, \mathbb{R}) \cong (\wedge g^*)^G$. (See, e.g., [8, Chapter IV.4].)

6For any polynomial $p \in S g^*$, we define its derivative $p' \in S g^* \otimes g^*$ by $\langle p'(v), w \rangle = \frac{\partial}{\partial t} |_{t=0} p(v + tw)$. If p is G-invariant, then $[x, y] \cdot p'(y) = 0$ for all $x, y \in g$. Thus $dp(F^\beta) = dF^\beta \cdot p'(F^\beta) = -[\beta, F^\beta] \cdot p'(F^\beta) = 0.$
8.2. EQUIVARIANT BOTT FORMS

With small modifications, the definition of Bott forms carries over to equivariant 1-forms $\beta \in \Omega^1(N, g)^G$ for a given G-action on N, and for the adjoint action of G on g. For any such form, and an invariant polynomial p, the equivariant Bianchi identity $d_G F^\beta_G + [\beta, F^\beta_G(x) + x] = 0$ implies that $p(F^\beta_G(x) + x)$ is equivariantly closed. Given $\beta_0, \ldots, \beta_k \in \Omega^1(N, g)^G$ we define equivariant Bott forms $\Upsilon^p_G(\beta_0, \ldots, \beta_k) \in \Omega^2_G(N)$ by

$$\Upsilon^p_G(\beta_0, \ldots, \beta_k)(x) = (-1)^{\frac{k+1}{2}} \int_{\Delta^k} p(F^\beta_G(x) + x),$$

with $\beta = \sum_{i=0}^k s_i \beta_i$ as above. Then

$$d_G \Upsilon^p_G(\beta_0, \ldots, \beta_k) = \sum_{i=0}^k (-1)^i \Upsilon^p_G(\beta_0, \ldots, \hat{\beta}_i, \ldots, \beta_k).$$

Again this follows from Stokes’ theorem, respectively from the property $F^\Phi \beta_G(x) + x = \text{Ad}_\Phi(F^\beta_G(x) + x)$ of the equivariant curvature.

If $N = G$ with conjugation action, and $p \in (S^m g^*)^G$ we define [11]

$$\eta^p_G = \Upsilon^p_G(0, \theta^L) \in \Omega^{2m-1}_G(G).$$

Since $F^\theta^L_G(x) + x = \text{Ad}_{g^{-1}}(x)$, we have

$$d_G \eta^p_G(x) = \Upsilon^p_G(\theta^L) - \Upsilon^p_G(0) = p(\text{Ad}_{g^{-1}}(x)) - p(x) = 0.$$

Thus η^p_G are closed equivariant extensions of η^p.

8.3. FAMILIES OF FLAT CONNECTIONS

Suppose that $\beta_t \in \Omega^1(N, g)^G$ is a family of invariant 1-forms, such that $F^\beta_t_G(x) + x = 0$ for all t. Then

$$d_G \Upsilon^p_G(0, \beta_t)(x) = -p(x)$$

for all t, and so the difference $\Upsilon^p_G(0, \beta_t) - \Upsilon^p_G(0, \beta_0)$ is equivariantly closed. We will construct an equivariant primitive. Let $\beta \in \Omega^1(N \times \Delta^1 \times I, g)^G$ be given as

$$\beta_{s, t} = s \beta_t, \quad t \in I = [0, 1], \quad s \in \Delta^1 \approx [0, 1].$$

We set

$$I^p_G((\beta_t))(x) = \int_{\Delta^1 \times I} p(F^\beta_G(x) + x).$$
LEMMA 8.1. If \(m = \deg(p) \geq 2 \),
\[
\gamma_G^p(0, \beta_1) - \gamma_G^p(0, \beta_0) = d_G I_G^p(\beta_1),
\]

Proof. We compute \(d_G I_G^p(\beta_1)(x) \) by Stokes’ theorem. There will be four boundary contributions, corresponding to the four sides \(s = 0, \ s = 1, \ t = 0, \ t = 1 \) of the square \(\Delta^1 \times I \). The boundary contribution for \(s = 1 \) is given as the integral of
\[
p(dt \wedge \dot{\beta}_t + F_G^{\beta_t}(x) + x).
\]

But \(F_G^{\beta_t}(x) + x = 0 \) by assumption, and hence \(p(dt \wedge \dot{\beta}_t) = 0 \) since \(\deg(p) \geq 2 \). The boundary contribution of \(s = 0 \) vanishes as well, since the pull-back of \(p(F_G^{\beta}(x) + x) \) has no \(dt \)-component there. The remaining two boundary contributions are \(\gamma_G^p(0, \beta_1) \) and \(-\gamma_G^p(0, \beta_0) \) as desired. \(\square \)

The discussion for the non-equivariant case is essentially the same: Given a family \(\beta_t \in \Omega^1(N, g) \) with \(F^{\beta_t} = 0 \), the integral \(I^p((\beta_t)) = \int_{\Delta^1 \times I} p(F^{\beta_t}) \) has the property \(\gamma^p(0, \beta_1) - \gamma^p(0, \beta_0) = dI^p((\beta_t)) \). Writing \(F^{\beta_t} = ds \wedge \beta_t + s dt \wedge \dot{\beta}_t + \frac{r(x-1)}{2} [\beta_t, \beta_t] \), we may carry out the \(s \)-integration in the definition of \(\gamma^p \), and find that \(\gamma^p \) is explicitly given as a rational multiple of
\[
\int_0^1 p(\beta_t, \dot{\beta}_t, [\beta_t, \beta_t], \ldots, [\beta_t, \beta_t]). \tag{16}
\]

Here we have associated to \(p \in (S^m g^*)^G \) the multilinear form (again denoted \(p \)) such that \(p(x, \ldots, x) = p(x) \).

8.4. THE FORM \(\sigma_G^p \)

The theory described above works equally well for \(\Omega(N) \) replaced with \(\Gamma(A) \), for \(A \to N \) a Lie algebroid. In the \(G \)-equivariant case, one has to require that the \(G \)-action on \(A \) admits infinitesimal generators \(\chi_A \). As before, we will view \(\Omega(N) \subset \Gamma(\wedge A^*) \) respectively \(\Omega_G(N) \subset \Gamma_G(\wedge A^*) \) as the basic subcomplexes.

Our goal is to construct primitives of \(a^* \eta_G^p \in \Gamma_G(\wedge A^*) \), where \(A \to G \) is the Atiyah algebroid over \(G \). Let \(\kappa_t \in \Gamma(A^*) \otimes g \) as in Section 5.2. With \(I_G^p((\kappa_t)) \in \Gamma_G(\wedge A^*) \) as above, put
\[
\sigma_G^p = I_G^p((\kappa_t)) - \gamma_G^p(0, a^* \theta^L, \kappa_0).
\]

THEOREM 8.2. The forms \(\sigma_G^p \) are equivariant primitives of \(a^* \eta_G^p \):
\[
d_G \sigma_G^p(x) = a^* \eta_G^p(x).
\]
Proof. Since $\kappa_1 = g \bullet \kappa_0$ by Lemma 5.3, we have
$$\Upsilon^p_G(0, \kappa_1) = \Upsilon^p_G(0, g \bullet \kappa_0) = \Upsilon^p_G(g^{-1} \bullet 0, \kappa_0) = \Upsilon^p_G(a^*\theta^L, \kappa_0).$$

Lemma 5.3 also shows that $F^\kappa_G(x) + x = 0$. Hence Lemma 8.1 applies and gives
$$d_G I^p_G(\{\kappa_t\}) = \Upsilon^p_G(0, \kappa_1) - \Upsilon^p_G(0, \kappa_0) =$$
$$= \Upsilon^p_G(a^*\theta^L, \kappa_0) + \Upsilon^p_G(\kappa_0, 0) =$$
$$= \Upsilon^p_G(a^*\theta^L, 0) + d_G \Upsilon^p_G(0, a^*\theta^L, \kappa_0).$$

\[\square\]

Setting the equivariant parameter equal to 0, i.e., defining $\varpi^P = \varpi^P_G(0)$, this also gives in particular non-equivariant primitives, $d\varpi^p = a^*\eta_p$.

8.5. THE CASE $p(x) = \frac{1}{2}x \cdot x$

If p is homogeneous of degree $\deg(p) = 2$, the formulas simplify. With $\beta_{s,t} = s\kappa_t$, the definition of $I^p_G(\{\kappa_t\})(x)$ gives
$$I^p_G(\{\kappa_t\})(x) = \int_{\Delta^1 \times I} p(F^\beta_G(x) + x) = \int_{\Delta^1 \times I} p(ds \wedge \kappa_t + sdt \wedge \dot{\kappa}_t).$$

Indeed, only the coefficient of $ds \wedge dt$ in $p(F^\beta_G(x) + x)$ will contribute to the integral. Hence
$$I^p_G(\{\kappa_t\})(x) = \int_0^1 p(\kappa_t, \dot{\kappa}_t),$$
where we associated to p a symmetric bilinear form, again denoted by p, with $p(x, x) = p(x)$. In particular, $I^p_G(\{\kappa_t\}) = I^p(\{\kappa_t\})$. A similar discussion applies to the 2-dimensional integral defining $\Upsilon^p_G(0, a^*\theta^L, \kappa_0)$. One obtains
$$\Upsilon^p_G(0, a^*\theta^L, \kappa_0)(x) = p(a^*\theta^L, \kappa_0),$$
which again is independent of x. We conclude that if $p(x) = \frac{1}{2}x \cdot x$ for an invariant inner product \cdot on g, then ϖ^p_G coincides with ϖ^p, and is given by formula (13).

8.6. PULL-BACK TO THE GROUP UNIT

The inclusion map $\iota: \{e\} \to G$ is G-equivariant, and lifts to a morphism of Lie algebroids, $Lg \to A$. (In fact, $Lg = \iota^*A$.) Let
$$\sigma^p = \iota^*\varpi^p, \quad \sigma^p_G = \iota^*\varpi^p_G$$
be the resulting elements of $\Gamma(\wedge Lg^*)$, resp., $\Gamma_G(\wedge Lg^*)$. Since $\iota^*\eta^P_G = 0$, it is immediate that these forms are closed (resp., equivariantly closed) for the Lie algebra differential.
The pull-back of $\kappa^L g := \iota^* \kappa$ may be viewed as minus the right-invariant Maurer-Cartan forms for the group LG. Since the pull-back of $\Upsilon^p(0, a^* \theta^L, \kappa_0)$ vanishes, Equation (16) shows that σ^p is a rational multiple of

$$p(\kappa_i^L g, \dot{\kappa}_i^L g, [\kappa_i^L g, \kappa_i^L g], \ldots, [\kappa_i^L g, \kappa_i^L g]).$$

These forms are discussed by Pressley-Segal in [13, Chapter 4.11], who prove that for compact G the cohomology ring $H^*(LG)$ is generated by the left-invariant forms, and is in fact isomorphic to the Lie algebra cohomology of Lg. The forms σ^p arise as some of the generators of the cohomology. (The remaining generators are obtained by pull-back under the evaluation map $LG \to G$, $\gamma \mapsto \gamma_0$). Our theory thus provides closed G-equivariant extensions of the Pressley-Segal generators, and gives explicit transgressions of these forms to η^p, η^p_G.

Appendix A. Chern-Simons forms on Lie Algebroids

In this appendix, we extend some formulas for Chern-Simons forms to the case of Lie algebroids. We omit proofs, which are all given by straightforward calculations (extending the well-known case $A = TN$).

A.1. NON-EQUIVARIANT CHERN-SIMONS FORMS

Suppose $A \to N$ is a Lie algebroid. We will consider the elements of $\Gamma(\wedge A^*)$ as forms on A. For any g-valued 1-form $\beta \in \Gamma(A^*) \otimes g$ with ‘curvature’ $F^\beta = d\beta + \frac{1}{2}[\beta, \beta]_g$, the 4-form $\frac{1}{2} F^\beta \cdot F^\beta \in \Gamma(\wedge^4 A^*)$ is exact. A primitive is given by the Chern-Simons form $CS(\beta) = \Upsilon^p(0, \beta)$ for $p(x) = \frac{1}{2} x \cdot x$, where we have used the notation from Section 8.1. Thus $d CS(\beta) = p(F^\beta) = \frac{1}{2} F^\beta \cdot F^\beta$. A short calculation gives

$$CS(\beta) = \frac{1}{2} (d\beta) \cdot \beta + \frac{1}{6} \beta \cdot [\beta, \beta]_g \in \Gamma(\wedge^3 A^*).$$

For $\Phi \in C^\infty(N, G)$ let $\Phi \cdot \beta = Ad_\Phi(\beta) - \Phi^* \theta^R$ be the gauge transform of β. (Here the last term is viewed as an element of $\Gamma(A^*)$, by the pull-back map $\Omega(N) \to \Gamma(\wedge A^*)$).

PROPOSITION A.1. For $\beta \in \Gamma(A^*) \otimes g$ and $\Phi \in C^\infty(N, G)$, we have

$$CS(\Phi \cdot \beta) = CS(\beta) + \Phi^* \eta - \frac{1}{2} d (\Phi \cdot \Phi^* \theta^L).$$

Given a smooth family β_t one has the transgression formula,

$$\frac{\partial}{\partial t} CS(\beta_t) = \dot{\beta}_t \cdot F^{\beta_t} - \frac{1}{2} d (\beta_t \cdot \dot{\beta}_t).$$

Suppose that $\beta_{t+1} = \Phi \cdot \beta_t$ for some given gauge transformation $\Phi \in C^\infty(N, G)$. Integrating (18) over $[0, 1]$, and using the property of Chern-Simons forms under
gauge transformations, we obtain
\[
\int_0^1 \beta_t \cdot F^{\beta_t} = \Phi^* \eta + dQ^\beta
\]
where \(Q^\beta \in \Gamma(\wedge^2 A^*) \) is the 2-form,
\[
Q^\beta = \frac{1}{2} \Phi^* \theta^L \cdot \beta_0 + \frac{1}{2} \int_0^1 \beta_t \cdot \dot{\beta}_t.
\]

A.2. G-EQUIVARIANT CHERN-SIMONS FORMS

Suppose that the group \(G \) acts on \(A \to N \), with infinitesimal generators \(x \mapsto x_A \). Then we can consider the complex \(\Gamma_G(\wedge A^*) \) of \(G \)-equivariant forms.

Suppose \(\beta \in (\Gamma(A^*) \otimes g)^G \), and let \(F^\beta_G = d_G \beta + \frac{1}{2} [\beta, \beta] \) be its ‘equivariant curvature’. We have
\[
d_G F^\beta_G + [\beta, F^\beta_G(x) + x] = 0.
\]

As a consequence, the equivariant 4-form \(p(F^\beta_G(x) + x) - p(x) \) for \(p(x) = \frac{1}{2} x \cdot x \) is equivariantly closed.\(^7\) Let \(CS_G(\beta) = \Upsilon^p_G(0, \beta) \in \Gamma_G(\wedge^3 A^*) \), with differential \(p(F^\beta_G(x) + x) - p(x) \). One finds
\[
CS_G(\beta)(x) = \frac{1}{2} d_G \beta(x) \cdot \beta + \frac{1}{6} \beta \cdot [\beta, \beta]_g + \beta \cdot x.
\]

PROPOSITION A.2. For \(\beta \in (\Gamma(A^*) \otimes g)^G \) and \(\Phi \in C^\infty(N, G)^G \),
\[
CS_G(\Phi \bullet \beta) = CS_G(\beta) + \Phi^* \eta_G - \frac{1}{2} d_G (\beta \cdot \Phi^* \theta^L).
\]

Given a smooth family \(\beta_t \in (\Gamma(A^*) \otimes g)^G \), one has
\[
\frac{\partial}{\partial t} CS_G(\beta_t)(x) = \dot{\beta}_t \cdot (F^\beta_G(x) + x) - \frac{1}{2} d(\beta_t \cdot \dot{\beta}_t).
\]

Hence, if \(\beta_t \in (\Gamma(A^*) \otimes g)^G \) is a family of invariant forms with \(\beta_1 = \Phi \bullet \beta_0 \), then letting \(Q^\beta \) be defined as above, one finds
\[
\int_0^1 \beta_t \cdot (F^\beta_G(x) + x) = \Phi^* \eta_G + d_G Q^\beta.
\]

\(^7\)In the case \(A = TN \), the form \(\beta \) may be regarded as the restriction to \(N \times \{e\} \) of a principal connection \(\theta \) on \(N \times G \), invariant relative to the diagonal action \(k.n = (k.n, k.u) \). The pull-back of the \(G \)-equivariant curvature \(F^\beta_G(x) \) to \(N \times \{e\} \) is \(F^\beta_G(x) + x \).
A.3. PROPERTIES OF THE FUNCTIONAL \(Q \)

Here are some properties of the functional \(Q(\beta) = Q^\beta \).

PROPOSITION A.3. \(\text{(Properties of the functional } Q \text{)} \)

(a) **Reparametrization invariance.** Let \(\beta_t \in \Gamma(A^*) \otimes g \) be a smooth family of forms with \(\beta_{t+1} = \Phi \cdot \beta_t \), and suppose \(\phi : \mathbb{R} \to \mathbb{R} \) is an orientation preserving diffeomorphism such that \(\phi(t+1) = \phi(t) + 1 \). Then \(Q(\beta) = Q(\beta) \).

(b) **Multiplicative property.** Let \(\beta', \beta'' : \mathbb{R} \to \Gamma(A^*) \otimes g \) be two maps such that \(\beta_{t+1} = \Phi' \cdot \beta_t \), \(\beta''_{t+1} = \Phi'' \cdot \beta''_t \) with \(\Phi', \Phi'' \in C^\infty(N, G) \). Suppose \(\beta'_0 = \beta''_0 \), and let the concatenation be defined for \(0 \leq t \leq 1 \) by

\[
(\beta'' \ast \beta')_t = \begin{cases}
\beta'_t & 0 \leq t \leq \frac{1}{2} \\
\beta''_{2t-1} & \frac{1}{2} \leq t \leq 1.
\end{cases}
\]

and extend to all \(t \) by the property. \((\beta'' \ast \beta')_{t+1} = (\Phi'' \Phi') \ast (\beta'' \ast \beta')_t \). (The resulting \(\beta \) is piecewise smooth, and it is smooth e.g. if \(\beta', \beta'' \) are constant near \(t=0 \).) Then

\[
Q(\beta'' \ast \beta') = Q(\beta') + Q(\beta'') + (\Phi', \Phi'')^\lambda
\]

where \(\lambda \in \Omega^2(G \times G) \) is the 2-form, \(\lambda = \frac{1}{2} \text{pr}_1^\ast \theta^L \cdot \text{pr}_2^\ast \theta^R \).

(c) **Inversion.** Let \(\beta : \mathbb{R} \to \Omega^1(N, g) \) with \(\beta_{t+1} = \Phi \cdot \beta_t \), and define \(\beta^-_t = \beta_{-t} \). Then

\[
\beta^-_{t+1} = \Phi^{-1} \ast \beta^-_t,
\]

and we have \(Q(\beta^-) = -Q(\beta) \).

Proof. (a) The claim is obvious if \(\phi(0) = 0 \), since both the integral and the term \(\frac{1}{2} \Phi^* \theta^L \cdot \beta_0 \) are unchanged in this case. It remains to check the case \(\phi(t) = t + u \), for some fixed \(u \in \mathbb{R} \). It is enough to consider the case \(0 \leq u \leq 1 \). We have

\[
\int_0^1 \beta_{t+u} \cdot \dot{\beta}_{t+u} = \int_u^{1+u} \beta_t \cdot \dot{\beta}_t = \int_u^1 \beta_t \cdot \dot{\beta}_t + \int_0^u (\text{Ad}_\Phi \beta_t - \Phi^* \theta^R) \cdot \text{Ad}_\Phi \dot{\beta}_t = \int_0^1 \beta_t \cdot \dot{\beta}_t - \int_0^u \Phi^* \theta^L \cdot \dot{\beta}_t = \int_0^1 \beta_t \cdot \dot{\beta}_t - \Phi^* \theta^L \cdot (\beta_u - \beta_0).
\]

(b) In calculating \(Q(\beta) - Q(\beta') - Q(\beta'') \), the integral contributions cancel out, and we are left with

\[
Q(\beta) - Q(\beta') - Q(\beta'') = \frac{1}{2} \left((\Phi'' \Phi')^* \theta^L \cdot \beta_0 - (\Phi')^* \theta^L \cdot \beta_0 - (\Phi'')^* \theta^L \cdot \beta_{1/2} \right).
\]
Since $\beta_{1/2} = \beta'_1 = \Phi' \cdot \beta_0 = \text{Ad}_{\Phi'} \beta_0 - (\Phi')^* \theta^R$ and $(\Phi'' \Phi')^* \theta^L = (\Phi')^* \theta^L + \text{Ad}_{(\Phi')^{-1}}(\Phi'')^* \theta^L$, we are left with $\frac{1}{2}(\Phi')^* \theta^L \cdot (\Phi'')^* \theta^R$.

(c) is a straightforward calculation. □

References

1. Alekseev, A., Malkin, A., Meinrenken, E.: Lie group valued moment maps. J. Differ. Geom. 48(3), 445–495 (1998)
2. Bott, R.: Lectures on characteristic classes and foliations, Lectures on algebraic and differential topology (Second Latin American School in Math., Mexico City, 1971), Springer, Berlin, 1972. Notes by Lawrence Conlon, with two appendices by J. Stasheff, pp. 1–94. Lecture Notes in Mathematics, vol. 279
3. Bruzzo, U., Cirio, L., Rossi, P., Rubtsov, V.: Equivariant Cohomology and Localization for Lie Algebroids and Applications. Differential Geometry and Physics, Nankai Tracts Math., vol. 10, pp. 152–159. World Sci. Publ., Hackensack (2006)
4. Brylinski, J.-L.: Loop spaces, characteristic classes and geometric quantization. Birkhäuser Boston, Boston (1993)
5. Bursztyn, H., Cavalcanti, G., Gualtieri, M.: Reduction of Courant algebroids and generalized complex structures. Adv. Math. 211(2), 726–765 (2007)
6. Bursztyn, H., Crainic, M.: Dirac structures, momentum maps, and quasi-poisson manifolds. In: The Breadth of Symplectic and Poisson Geometry, Progr. Math., vol. 232, pp. 1–40. Birkhäuser Boston, Boston, (2005)
7. Crainic, M., Fernandes, R.: Lectures on Integrability of Lie Brackets. Preprint, arXiv:math/0611259 (2006)
8. Greub, W., Halperin, S., Vanstone, R.: Connections, Curvature and Cohomology, vol. II. Academic, London (1973)
9. Guillemin, V., Sternberg, S.: Symplectic Techniques in Physics. Cambridge University Press, Cambridge (1990)
10. Higgins, P.J., Mackenzie, K.: Algebraic constructions in the category of lie algebroids. J. Algebra 129, 194–230 (1990)
11. Jeffrey, L.: Group cohomology construction of the cohomology of moduli spaces of flat connections on 2-manifolds. Duke Math. J. 77, 407–429 (1995)
12. Mackenzie, K.: General Theory of Lie Groupoids and Lie Algebroids, London Mathematical Society. Lecture Note Series, vol. 213. Cambridge University Press, Cambridge (2005)
13. Pressley, A., Segal, G.: Loop Groups. Oxford University Press, Oxford (1988)
14. Shulman, H.: On Characteristic Classes. Dissertation, Berkeley (1972)
15. Vaisman, I.: Symplectic geometry and secondary characteristic classes. Birkhäuser, Boston (1987)
16. Xu, P.: Momentum maps and Morita equivalence. J. Differential Geom. 67(2), 289–333 (2004)