INTRODUCTION

Ameloblastoma (AM) is a benign neoplasm derived from residual epithelial components of tooth development and generally present in the jawbone. The majority of AM occurs in patients between 20 and 40 years of age, although they can occur at any age. Ameloblastoma was observed in 1% of maxillofacial tumors and approximately 35% of odontogenic tumors in Thailand AM-solid/multicystic type.1–3 This tumor is often asymptomatic, slow-growing but shows locally aggressive behavior and has high recurrence potential among odontogenic tumors. The mechanisms involved in the pathogenesis of AM have not been completely elucidated. Factors such as trauma, tooth eruption, and viral infection have been reported with AM etiopathogenesis.3–5

To date, several studies reported an association between the presences of viral DNA in many cancers. Both human papillomavirus (HPV) and Epstein-Barr virus (EBV) are known as oncogenic viruses.6–7 Human papillomavirus infection is the most common sexually transmitted infection and about 9–13% of the world's population is already infected.8 High-risk HPV (hrHPV) is an established cause of various human neoplasms including cervical, vulvar, sinonasal, oral, and penile cancers.8–11 In addition, EBV is the first human tumor virus that is observed in more than 90% of the world’s adult population.6 Epstein-Barr virus can contact and cause infectious mononucleosis during childhood. In addition, EBV infection could be linked to several other types of human malignancies, particularly nasopharyngeal cancer (NPC), gastric cancer (GC), Burkitt’s lymphoma, some Hodgkin’s lymphoma, and B-cell lymphoma.5,12

Epstein-Barr virus and HPV implicate to cellular immortalization and oncogenesis. Their genetic materials can produce viral oncoproteins that inhibit tumor suppressor gene and/or integrate viral DNA to the human genome.13,14 Considering the ameloblastoma pathogenesis, the relationship with HPV and EBV is needed to be substantiated. In this study, we aimed to evaluate the frequency of HPV and EBV DNA in solid/multicystic AM which could contribute to the knowledge concerning viral-associated AM patients in Thailand.

MATERIALS AND METHODS

Ethical Statement and Sample Recruitment

Ethical consideration of this cross-sectional study was reviewed and approved by the Institutional Review Board of Faculty of Dentistry/Faculty of Pharmacy, Mahidol University, Bangkok, Thailand (Approval number: 2018/005.1101). An informed consent was obtained from all patients before the collection of specimens. Data were analyzed anonymously. A total of 20 fresh-frozen tissue samples were obtained from the Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, Mahidol University, Bangkok, Thailand.
during January 1, 2018, to December 31, 2019. These AM patients were Thai—12 males and 8 females with a median age of 48.5 years (range 8–73 years). Most cases were located in the mandible while only four cases were located in the maxilla. All cases were histologically confirmed as solid multicystic AM 8 follicular and 12 plexiform histological subtypes by two oral pathologists based on current World Health Organization (WHO) guidelines.15 Clinical and pathological data such as age, sex, anatomic location of the lesions, and histological subtypes are summarized in Table 1.

DNA Isolation
Fresh-frozen tissues were lysed at 50°C overnight with a lysis buffer (0.75 mol/L NaCl, 0.024 mol/L EDTA, pH 8.0) that was mixed with 10% sodium dodecyl sulfate (SDS) and 20 mg/mL proteinase K (Sigma-Aldrich, St. Louis, MO, USA). Next, the DNA purification was done using a standard phenol-chloroform extraction protocol.16 Thereafter, the purified DNA was air-dried, eluted with distilled water, and stored below −20°C for subsequent use.

Detection of EBV and HPV DNA by Polymerase Chain Reaction
Polymerase chain reaction (PCR) was performed using the primers, displayed sequences, and conditions as shown in Table 2. Glycerinaldehyde 3-phosphate dehydrogenase (GAPDH) served as the internal control to test the quality of DNA. The L1 HPV primer (GP5+/GP6)17 that encodes major capsid protein of HPV was tested to detect HPV DNA. The LMP-1 EBV primer18 that encodes EBV latent membrane protein was tested to detect EBV DNA.

Table 1: Clinicopathological features of ameloblastoma patients and results of EBV and HPV PCR

Code	Sex	Age	Location	Histological subtype	EBV PCR	HPV PCR
AM1	F	30	Mandible	Plexiform	Positive	Positive
AM2	M	63	Mandible	Plexiform	Negative	Negative
AM3	F	47	Mandible	Plexiform	Negative	Negative
AM4	M	11	Mandible	Plexiform	Positive	Negative
AM5	F	60	Mandible	Follicular	Negative	Negative
AM6	M	66	Mandible	Plexiform	Positive	Negative
AM7	M	23	Mandible	Follicular	Negative	Positive
AM8	M	51	Mandible	Follicular	Negative	Negative
AM9	F	30	Mandible	Plexiform	Negative	Negative
AM10	M	37	Mandible	Plexiform	Negative	Negative
AM11	M	59	Mandible	Follicular	Negative	Negative
AM12	M	44	Maxilla	Follicular	Negative	Negative
AM13	F	24	Mandible	Plexiform	Negative	Negative
AM14	F	25	Maxilla	Follicular	Negative	Negative
AM15	M	54	Mandible	Plexiform	Negative	Negative
AM16	M	54	Maxilla	Plexiform	Negative	Negative
AM17	M	73	Mandible	Follicular	Negative	Negative
AM18	F	8	Mandible	Follicular	Negative	Negative
AM19	M	66	Maxilla	Plexiform	Negative	Negative
AM20	M	50	Mandible	Plexiform	Negative	Negative

F, female; M, male

Table 2: Oligonucleotide primer sequences and conditions for PCR analyses

Detection	Primer	Sequence 5′–3′	Amplicon size (bp)	Annealing temperature (°C)
Internal control (GAPDH)	GAPDH forward	CAGCCG-CATCTTCTTTTG	150	60
	GAPDH reverse	CAAAAATATC-CACCTTAC		
EBV DNA	LMP1 forward	CCAGACAGC-CAACAATG	129	64
	LMP1 reverse	GGTAGAACAC-CCCTTAC		
HPV DNA	GP5+	TTTGTTACT-GTGGTAGATAC-TAC	150	56
	GP6+	CTATAC-TAAATGTTCAAATAGAG		
TBE buffer and then stained with SYBR Green nucleic acid gel stain (Gelstar, Lonza, Allendale, NJ, USA). Furthermore, the PCR product being positive for HPV DNA was investigated for HPV typing by Sanger sequencing. The sequencing data were then identified for the HPV genotype by nucleotide blast using https://blast.ncbi.nlm.nih.gov/Blast.cgi. Due to the limited positive cases, descriptive statistics were used for characterization of the sample.

Results

As shown in Table 1, the frequency of EBV and HPV was 3/20 (15%) and 2/20 (10%), respectively. From the histopathological feature, koilocytic changes due to viral infection were not observed in all samples. Among EBV-positive cases (AM1, AM4, and AM6), there were two males and one female. All were located in the mandible with histological plexiform subtype. Two HPV positive cases (AM1 and AM7) consisted of one male and one female. Both of them were located in the mandible, with individual histological plexiform and follicular subtypes. After sequencing and blasting, both DNA matched to the HPV 18 (KU298886.1) completely. Our results found a noteworthy case (AM1) showing mixed EBV and HPV DNA (Fig. 1).

Discussion

The EBV and HPV are common cancer-associated viruses. Both viruses have permissive cells and induce tumorigenicity in specific cell types. Race is one of the dependent factors that affect frequencies of EBV and HPV DNA in each individual population. We have summarized the varied frequencies of EBV and HPV DNA in AM from acquired previous studies in Tables 3 and 4. Since, there is no data about the frequency of HPV and EBV DNA of AM in Thai population (PubMed Database, Scopus, and Web of Science), this preliminary study was carried out to evaluate both viruses' frequencies in Thai patients. Here, we found low frequencies of both viruses, which might suggest their minor involvement in a group of AM patients.

We observed 15% of EBV DNA in AM that was similar to the previous study by Fujita et al. and in range with other studies (0, 26.6, and 48% by Khalele et al., Badrawy et al., and Jang et al., respectively) (Table 3). The differences of frequency may be affected by the EBV detection technique and racial involvement. In general, the gold standard technique for EBV detection is by in situ hybridization (ISH) of EBER; however, the cost of this technique is very expensive. The PCR is more convenient and highly sensitive, but it might cause false-positive results that require confirmation by immunohistochemistry (IHC) using EBV antibodies or ISH EBV-EBER. To ensure the results of this study, future investigations by the other techniques may be needed.

The EBV-associated Burkitt’s lymphoma has a high prevalence in sub-Sahara area of Africa, whereas EBV-associated nasopharyngeal cancer has a high prevalence in South China area, suggesting that the incidence of EBV-associated cancer may be attributed to racial and/or geographic distribution. The current study in Thai AM patients showed the same frequency as that in Japanese AM patients but, however, was lower than that in Korean AM patients (Table 3). Due to the small sample size in our study, investigation of EBV and HPV DNA of AM in a larger population may increase the strength of this epidemiology. It is worth noting that two studies in Egypt showed unequal results that may be caused by different detection techniques.

Table 3: Review of EBV DNA frequency in ameloblastoma

Study	Number of samples	EBV DNA (%; n)	Technique	Targeted gene	Country
Fujita et al.	53	15% (8/53)	In situ hybridization	EBER	Japan
Jang et al.	17	48% (8/17)	PCR	BamC, BMRF1, IR3	Korea
Badrawy et al.	15	26.6% (4/15)	Real-time PCR	EBV genome	Egypt
Khalele	40	0% (0/40)	Immunohistochemistry	LMP1	Egypt
This study	20	15% (3/20)	PCR	LMP1	Thailand

PCR: polymerase chain reaction

![Gel electrophoresis of EBV (LMP1) and HPV (L1) and GAPDH PCR in AM. Neg: distilled water used as negative control. B958 and HeLa cell lines DNA were used as positive controls. AM1, AM4, and AM6 showed positive for EBV PCR while AM1 and AM7 showed positive for HPV PCR. M: The ladder (left lane) is 100 bp marker.](image)
Another key oncogenic virus is HPV. Since 1989, more than 10 studies have reported the frequency of HPV DNA in AM that varied from 0 to 40% as summarized in Table 4. Our exploration is the first study in Southeast Asia and the HPV DNA frequency is 10% that was similar to the report of Migaldi et al. 26 Cooks, 22–25 Nevertheless, some studies displayed low-risk and intermediate-risk HPV types whichever may not involve in AM oncogenesis. In the present study, it is to be noted that both positive cases were HPV 18, the hrHPV that may be directly involved in AM oncogenesis.

Both HPV and EBV DNA have been remarkably observed in one case of AM. Regarding to the recent study reviewed the evidence of EBV and HPV co-infection in several cancers including cancer of nasopharynx, cervix, breast and prostate gland. 31 Apolipoprotein B mRNA editing enzyme catalytic polypeptide3 (APOBEC3) deaminase was proven to involve virus innate immunity response and may promote viral coinfection. 32 APOBEC3B mRNA levels were higher in oral squamous cell carcinoma compared to normal oral epithelium, 33 but there is no study on APOBEC3B in AM. The study of APOBEC3 in this case may elucidate whether the coinfection of EBV and HPV plays any role in the development of AM.

The EBV and HPV association in AM oncogenesis has been curiously underlined. In this study, we did not observe koilocytic changes in both HPV positive samples, meaning that no morphological appearance of HPV infection like what observed in the study of Migaldi et al. 26 We also did not observe syncytial formation in EBV-positive cases. Both viruses may transform normal odontogenic epithelium to ameloblastoma epithelial cells without any feature of viral cytopathologic changes. It was also suggested that HPV in AM may represent a background infection without AM oncogenesis development. 28 Sensitivity of PCR technique should also be a concern. Both HPV and EBV DNA might contaminate in normal epithelium or from the surgically acquired contamination during the procedure. In the other aspects, the common permissive cells of EBV are lymphocytes and epithelial cells, while of HPV are epithelial cells. 8,31,34 Several reports exhibited HPV and EBV positive cases derived from the in situ hybridization technique and demonstrated EBV and HPV infected in AM cells. 5,19,22,23,26,28 (Tables 3 and 4). We hypothesize that AM may possess EBV and HPV receptors, which need to be explored in further studies. To evaluate if EBV and HPV were related to AM oncogenesis, the PCR positive cases must be confirmed by ISH or IHC.

Conclusion

The low frequencies of EBV and HPV DNA in a group of Thai AM patients may suggest their minor participation in the biological events related to AM pathogenesis. Nevertheless, it could not be concluded that the virus was involved in the etiology and pathogenesis of the lesions. These studies are preliminary in nature involving limited number of AM patients and hence further work with a larger sample size comprising various techniques is required. Finally, the studies of in-depth mechanisms in the role of viruses in AM oncogenesis were suggested for further prevention and treatment of virus-associated ameloblastoma.

Clinical Significance

HPV and EBV may not be involved in ameloblastogenesis.

Availability of Data and Materials

The data analyzed during this present study are available from corresponding author on reasonable request.
Low Frequency of HPV and EBV DNA in Ameloblastoma of Thai Patients

Author’s Contributions
Dusit Bumalee and Nakarin Kitkumthorn conceived the original idea, designed the experiment, analyzed data, and interpreted results. Dusit Bumalee, Puangwan Laphanansukul, Ekapong Tamboon, Anucha Aitiwarapoj, Boworn Kongnoi, and Nakarin Kitkumthorn performed the experiment and collected data. Dusit Bumalee wrote the manuscript with support from Nakarin Kitkumthorn. All authors read and approved the final manuscript.

Ethics Approval and Consent to Participate
This study was approved by the Institutional Review Board of Faculty of the Dentistry/Faculty of Pharmacy, Mahidol University, Bangkok, Thailand (approval number: 2018/005.1101).

Consent to Publish
The authors have given the consent for publication.

References
1. Yanatatsanejit P, Boonsuwan T, Mutirangura A, et al. XRCC1 gene polymorphisms and risk of ameloblastoma. Archs Oral Biol 2013;58(6):583–589. DOI: 10.1016/j.archoralbio.2012.10.016.
2. Worawongvasu R, Tiensuwan M. Odontogenic tumors in Thailand: a study of 590 Thai patients. J Oral Maxillofac Surg Med Pathol 2015;27(4):567–576. DOI: 10.1016/j.ajoms.2014.11.004.
3. Effiom O, Ogundana O, Akinshipo A, et al. Ameloblastoma: current etiopathological concepts and management. Oral Dis 2018;24(3):307–316. DOI: 10.1111/odi.12646.
4. Kahn MA. Ameloblastoma in young persons: a clinicopathologic analysis and etiologic investigation. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 2010;110(3):e20–e24. DOI: 10.1016/j.tripleo.2010.04.030.
5. Niedobitek G, Meru N, Delecluse HJ. Epstein‐Barr virus infection in cervical cancer. Int J Gynecol Cancer 2011;21(5):902–906. DOI: 10.1111/j.1365 -2613. 20 01. iep19 0. x .
6. zur Hausen H. Papillomaviruses in the causation of human cancers—a review on the etiology, pathogenesis and genomics of human papilloma virus infection in cervical intraepithelial neoplasia in Thai women. J Med Assoc Thai 2002;85:S336–S343.
7. Kikuchi K, Inoue H, Miyazaki Y, et al. Epstein–Barr virus (EBV)-associated epithelial and non-epithelial lesions of the oral cavity. Jpn Dent Sci Rev 2017;53(3):95–109. DOI: 10.1001/j.jdsr.2017.01.002.