Potassium bromate-induced nephrotoxicity and potential curative role of metformin loaded on gold nanoparticles

Ahmed S Abdel-Latif¹, Sally E Abu-Risha², Samaa M Bakr³, Wafaa M EL-Kholy¹ and Mamdouh R EL-Sawi¹

¹Department of Zoology, Faculty of Science, Mansoura University, Mansoura, Egypt
²Department of Pharmacology and Toxicology, Faculty of Pharmacy, Tanta University, Tanta, Egypt
³Department of Zoology, Faculty of Science, Kafrelsheikh University, Kafr el-Sheikh, Egypt

Abstract

Potassium bromate (KBrO₃) is classified by the International Agency for Research on Cancer as a carcinogenic compound, where it causes renal tumors. The present study investigated the potential curative effect of metformin loaded on gold nanoparticles (MET AuNPs) in attenuating KBrO₃-induced nephrotoxicity. Rats were divided into eight groups (control, MET, AuNPs, MET AuNPs, KBrO₃, KBrO₃/MET, KBrO₃/AuNPs, and KBrO₃/MET AuNPs). KBrO₃ administration resulted in a significant elevation in serum alanine aminotransferase (ALT), aspartate aminotransferase (AST), alkaline phosphatase (ALP), total protein (TP), albumin (Alb), total bilirubin (TB), direct bilirubin (DB), total cholesterol (TC), triglycerides (TG), high-density lipoprotein cholesterol (HDL-C), low-density lipoprotein cholesterol (LDL-C), creatinine, urea, uric acid. Also, KBrO₃ significantly increased renal malondialdehyde (MDA), protein carbonyl (PC), and nitric oxide (NO) levels and reduced the activities of antioxidant molecules superoxide dismutase (SOD), catalase (CAT), glutathione-S-transferase (GST), and Reduced glutathione (GSH). It also caused damaged DNA spots in comet assay and increased inflammatory IL-6 and apoptotic markers (caspase 3, Bax) while antiapoptotic Bcl-2 was significantly reduced. MET, AuNPs, MET AuNPs reduced the extent of renal damage induced by KBrO₃ as indicated by decreased (AST, ALT, ALP, Alb, TP, TB, DB, creatinine, urea, uric, Lipid profile). MET, AuNPs, MET AuNPs showed a good curative effect against KBrO₃-induced nephrotoxicity and MET AuNPS group showed better results compared with monotherapy.

Corresponding author:
Sally E Abu-Risha, Department of Pharmacology and Toxicology, Faculty of Pharmacy, Tanta University, Tanta 31527, Egypt.
Email: sally.abouresha@pharm.tanta.edu.eg
Keywords
Metformin (MET), metformin loaded on gold nanoparticles (MET AuNPs), potassium bromate (KBrO₃), nephrotoxicity

Introduction

KBrO₃ is used as food additive in cheese production, beer making, and is commonly added to fish paste products. It is also important in pharmaceutical and cosmetic industries and is a constituent of cold wave hair solutions. In addition, KBrO₃ is found as a byproduct of ozone disinfection in drinking water samples.¹

KBrO₃ has been classified by the International Agency for Research on Cancer as a carcinogenic compound, where it causes renal tumors, mesotheliomas of the peritoneum, and follicular cell tumors of the thyroid in rats. Administration of KBrO₃ to rats was found to induce oxidative stress and reduced the antioxidant capacity of rat’s deference mechanism system.² KBrO₃ is highly injurious to tissues especially the central nervous system tissue. The nephrotoxicity caused by KBrO₃ has been attributed to its ability to trigger the production of reactive oxygen species (ROS), lipid peroxidation (LPO), also, it caused primary DNA oxidative damage and increased 8-hydroxydeoxyguanosine (8-OHDG) DNA adduct levels, a representative marker of oxidative DNA modification, in vivo and in vitro. The oxidative stress induced by KBrO₃ far exceeds the cellular antioxidative defense capacity leading to marked nephrotoxicity in humans and animals as well as the carcinogenicity in experimental animals.³

When ingested, KBrO₃ is rapidly absorbed, reduced to bromide in the tissues and then partly excreted in the urine as a bromide ion. Since the kidney is the primary target organ of KBrO₃, the toxic effects of this compound in humans arise from acute poisoning causing renal failure. Yet, the exact mechanism(s), particularly the interplay among several endogenous concurrent contributing factors behind KBrO₃ acute renal toxicity and the ways to overcome its toxic effects by natural products remain hardly known.⁴

Metformin (MET) (N,N-dimethyl biguanide) is one of the oral drugs used for more than 40 years to treat patients with type 2 diabetes mellitus (T2DM) without causing over hypoglycemia. It has recently been recommended that metformin therapy be initiated at the time of diagnosis of T2DM, in conjunction with lifestyle modification.⁵

Various studies had emphasized the anti-inflammatory and antioxidant role of MET through multiple mechanisms. So, MET can be an appropriate treatment option for many diseases, when inflammatory processes and oxidative stress play a role in their pathogenesis.⁶

Metformin was found to protect against tubular injury by restoring the biochemical alterations. Moreover, MET protected podocytes in diabetic nephropathy in rats.⁷

Recent studies have suggested that MET may have therapeutic or renoprotective effects against nephrotoxic agents. It has also been shown to have a good
efficacy in diabetic nephropathy. Furthermore, it significantly decreased albuminuria in patients with DM.8

Gold nanoparticles (AuNPs) have become an important biomedical tool for scientists in research because of the several advantages of AuNPs like high loading efficiency for the target substance, enhanced ability to cross various physiological barriers, and low systemic side effects. Hyaluronic acid (HA) was used as both a reducing and a stabilizing agent in the formation of AuNPs in sizes ranging from 5 to 30 nm by thermal treatment. HA have been widely used as novel drug carriers for target-specificity and long-acting delivery, they have been employed both as delivery vehicles and angiostatic agents in cancer therapy.9 AuNPs obtained from extracellular synthesis from C. sorokiniana extract are 5–15 nm in size and spherical shape. TEM images of extracellular synthesis show noticeable cell wall and membrane damages, cytoplasm dissolutions, and irregularities. AuNPs obtained by intracellular synthesis are in 20–40 nm size and localized in the cell wall and cytoplasm.10

Drug nanoencapsulation is emerging as an effective alternative to reduce the side effects of drug administration while accomplishing controlled release and site-specific delivery.11

Based on the previous data, the present study aimed to evaluate the possible therapeutic effect of metformin loaded on gold nanoparticles against KBrO3-induced nephrotoxicity in rats.

Materials and methods

Experimental animals

Forty-eight healthy male Sprague Dawley (SD) rats 6–7 weeks old, with an average weight 95 g were used for the experiment. Rats were obtained from the Egyptian Institute for Serological and Vaccine production, Helwan, Egypt and were housed in the animal house of the Department of Zoology, Faculty of Science, Kafrelsheikh University. Rats were placed in stainless steel cages containing wood-chip bedding, renewed every day. They were kept in a temperature-controlled environment with a 12 h light/dark cycle. All rats were acclimatized for 1 week before the commencement of the experiments. All rats were fed a normal diet and water was allowed ad libitum during the study. The experimental protocol was carried out in accordance with the guide of the National Research Council for the Care and Use of Laboratory Animals and was approved by the ethics committee of the Department of Zoology, Faculty of Science, Kafrelsheikh University.

Animal grouping

After 1 week of acclimatization period, animals were divided randomly into eight groups, each consisting of six animals as follows:

Control group: Rats of this group did not receive any treatment.

Metformin (MET) treated group: Rats of this group were administered MET 200 mg/kg bw by intragastroluminal gavage (i.g.) twice a week for 4 weeks.12
Gold nanoparticles (AuNPs) treated group: Rats of this group were administered AuNPs 5 μg Au/Animal by i.g. twice a week for 4 weeks.\(^{13}\)

Metformin loaded on gold nanoparticles (MET AuNPs) treated group: Rats of this group were administered MET AuNPs 200mg/kg bw by i.g. twice a week for 4 weeks.\(^{14}\)

Potassium bromate (KBrO\(_3\)) treated group: Rats of this group were administered KBrO\(_3\) 100 mg/kg bw by i.g. twice a week for 4 weeks.\(^{15}\)

Potassium bromate and Metformin (KBrO\(_3\) + MET) treated group: Rats were administered KBrO\(_3\) 100 mg/kg bw by i.g. twice weekly for 4 weeks alone, then rats were administered MET 200 mg/kg bw twice a week for another 4 weeks after termination of KBrO\(_3\) administration.

Potassium bromate and Gold nanoparticles (KBrO\(_3\) + AuNPs) treated group: Rats were administered KBrO\(_3\) 100 mg/kg bw by i.g. twice a week for 4 weeks alone, then rats were administered AuNPs 5 μg Au/Animal twice a week for another 4 weeks after termination of KBrO\(_3\) administration.

Potassium bromate and Metformin loaded on gold nanoparticles (KBrO\(_3\) + MET AuNPs) treated group: Rats were administered KBrO\(_3\) 100 mg/kg bw by i.g. twice a week for 4 weeks, then rats were administered MET AuNPs 200 mg/kg bw twice a week for another 4 weeks after termination of KBrO\(_3\) administration.

Chemicals

Potassium bromate (KBrO\(_3\)) is an odorless white crystalline powder. It was obtained in powder form from El-Gomhouria Chemicals Company (Cairo, Egypt). KBrO\(_3\) was dissolved in distilled water.

Metformin (MET) was obtained from Chemical Industries Development (CID) (Giza, Egypt). MET was dissolved in distilled water.

Gold nanoparticles (AuNPs) are suspension form with spheroidal to rod shape. It was obtained from Nano Gate Company (25 Ibrahim Abo Elnaga-street, Abbas ElAkkad, Nasr City, Cairo, Egypt).

Citrate-capped gold nanoparticles (GNPc) were synthesized by slightly modifying the method used in previous experiments.\(^{16,17}\)

Citrate-capped gold nanoparticles (GNPc) were synthesized following the Turkevich–Frens method and by slightly modifying the method used in our previous experiments. Briefly, 100 ml of hydrogen tetrachloroaurate (III) trihydrate HAuCl\(_4\)-3H\(_2\)O (10\(^{-3}\) M) was heated to a boiling temperature and then mixed to trisodium citrate (10 ml, 38.8 × 10\(^{-3}\) M) (Merck) under vigorous stirring. After the formation of a deep-red burgundy colloid, the stirring and boiling processes were continued for 10–15 min. Subsequently, the heating was stopped and the stirring process was continued for another 15 min. Then, 3 ml of 10\(^{-3}\) M HAuCl\(_4\) were mixed with 18 ml of 2 mg/ml chitosan solution (medium molecular weight), and then heated to 50°C. The colloidal solutions were centrifuged and suspended in ultrapure water. Loading of Met (Sigma Aldrich) onto the surface of GNPc was
performed by incubating the colloidal GNPc with Met at pH 3.5. The pH of the mixture was then adjusted to 8 with 1 M NaOH. The obtained Met gold Nano conjugates 232. Met delivery using chitosan-capped gold nanoparticles were subsequently washed to remove the free drug.

Structural characterization of NPs, gold concentration, and size

The absorption maxima were scanned at the wavelength of 200:800 nm. On the other hand, the TEM has shown a majority of nearly spherical AgNPs with diameters ranging from 15.8 to 19.6 nm. It was done according to Aldea et al.17

Methods

Blood sampling and kidney tissue preparation

At the end of the experimental period (8 weeks) rats were fasted overnight, sacrificed 24 h after the last treatment and blood samples were collected in clean centrifuge glass tubes, left to clot in a water bath at 35°C for 30 min then centrifuged at 3000 rpm for 15 min. The clear non-hemolyzed supernatant was quickly collected. In labeled Eppendorf’s tubes, the sera were divided into aliquots and frozen at −20°C for different biochemical analyses. Kidney samples were homogenized (10% w/v) in ice-cold saline. The homogenate was kept at −20°C in labeled Eppendorf’s tubes till used for biochemical estimations. Other samples of kidney tissue were stored in neutral buffered formalin (10%) for histopathological studies.

Biochemical assays

Total protein (TP) was estimated using the Biuret method of Doumas et al.18 Albumin (Alb) was evaluated according to the method of Doumas et al.19 Total bilirubin (TB) and direct bilirubin (DB) was evaluated according to Abd Elhalem et al.20 The levels of alanine aminotransferase (ALT) and aspartate aminotransferase (AST) were accomplished using the method of Schumann and Klauke.21 Alkaline phosphatase (ALP) level was measured according to the method of Belfield and Goldberg.22 Serum urea (Ur) level was determined by Mohamed and Ashour23 and creatinine (Cr) concentration was calculated according to Solt.24 Moreover, serum total cholesterol (TC) was determined as described by Iwata et al.25 Triglycerides (TG) were determined by the method of Rojkin et al.26

Estimation of antioxidant enzymes

Superoxide dismutase (SOD) activity was determined by measuring the inhibition of autoxidation of epinephrine at pH 10.2 and 30°C according to Misra and Fridovich.27 Catalase (CAT) activity was measured using hydrogen peroxide as the substrate according to the method previously described by Manubolu et al.28 Reduced glutathione (GSH) was determined according to the method of Jollow
et al.29 The determination of glutathione-S-transferase (GST) activity was assayed according to the method of Habig et al.30

\textit{Estimation of oxidative stress markers}

MDA level was assayed according to the method of Doğru-Abbasoğlu et al.31 The levels of nitric oxide (NO) production were measured according to the method of Yousef and Hussien.32 The levels of protein carbonyl according to the method of Levine.32

\textit{Estimation of apoptotic markers}

Kidney homogenates were made in lysis buffer and analyzed using a colorimetric caspase-3 assay kit (Product number: CASP3C; Sigma-Aldrich Co. USA) according to the manufacturer’s instructions. The concentrations of caspase-3 in renal lysates were calculated with the help of the calibration curve generated using known amounts of standards. Bcl-2 (Cat. No. LS-F10920) and Bax (Cat. No. LS-F5064) levels were measured in the renal tissue lysates by ELISA kits (LifeSpan BioSciences, Inc., Seattle, WA, USA). The procedure was performed according to the instructions of the manufacturer. Levels were expressed as ng/mg tissue protein according to Hamed et al.33

\textit{Estimation of inflammatory markers}

Frozen organs were sectioned at 10-\textmu m intervals by microtome and total protein was extracted as recommended by R&D Systems (Minneapolis, MN). Total protein in each extract was measured by Bradford assay (Sigma-Aldrich, St. Louis, MO). ELISA for IL-6 was performed using 50 \textmu g of total protein as described by the manufacturer (R&D Systems) and the amount of IL-6 in each extract is expressed as nanograms of IL-6 per milligram of protein. It was assayed according to the method of Ono et al.34

\textit{DNA fragmentation by comet assay}

The alkaline comet assay was performed as described by Singh et al.35 For each sample, 100 isolated comets (single-strand breaks of DNA migrate from nucleus to anode) were randomly selected and measured for comet tail length, % DNA in tail, and tail moment according to the definition.

\begin{equation*}
\text{Tail moment} = \text{Tail length} \times \%\text{DNA in tail} / 100
\end{equation*}

\textit{Histopathological examination}

Kidney specimens were dehydrated in ascending grades of ethyl alcohol (70\%, 90\%, and 100\%), cleared in xylene and impregnated and embedded in paraffin
wax. Serial sections of 4–5 \(\mu \text{m} \) thick were obtained using a rotary microtome and stained with Harris’s\(^{36} \) Hematoxylin and Eosin stain for general histological examination.

Ultra-structural preparations

Specimens from the kidney of all animal groups were cut into small pieces, each piece measured about 1 mm\(^3 \), then fixed immediately at 4°C for 18–24 h in freshly prepared 3\% glutaraldehyde-formaldehyde. The specimens were washed in phosphate buffer (pH 7.4), and postfixed for 1 h at 4°C in isotonic 1\% osmium tetroxide.\(^{37} \) Prepared sections for electron microscopic examination followed the method of Bozzola and Russell.\(^{38} \) Semithin sections were stained with toluidine blue for detection of the area of interest, then ultrathin sections were prepared by using the ultramicrotome glass knives. Sections were stained by uranyl acetate and lead citrate, then examined by a JEOL CX 100 transmission electron microscope.

Statistical analysis

Results were expressed as mean ± standard error of the mean (SEM) \((n = 6)\). Statistical significance was calculated using one-way analysis of variance (ANOVA) followed by Waller and Duncan’s\(^{39} \) multiple range test. All the statistical analyses were carried out with the use of Graphpad prism 5 software (Graphpad prism software Inc., San Diego, California, USA). Differences were considered significant at \(p \leq 0.05 \).

Results

Effect of different treatments on lipid profile levels

As shown in Figure 1, administration of KBrO\(_3\) resulted in significant increases in serum levels of total cholesterol (TC), triglycerides (TG), and low-density lipoprotein cholesterol (LDL-C) as compared to normal control group. On the other hand, KBrO\(_3\) administration resulted in a significant reduction in serum level of high-density lipoprotein cholesterol (HDL-C) as compared to the normal control group. Treatment with either MET, AuNPs or MET/AuNPs significantly reduced serum levels of TC, TG, and LDL-C and caused a significant increase in HDL-C as compared to KBrO\(_3\) group.

Effect of different treatments on liver function tests

As shown in Figure 2, administration of KBrO\(_3\) resulted in significant increases in serum levels of alanine aminotransferase (ALT), aspartate aminotransferase (AST), alkaline phosphatase (ALP), total bilirubin (TB), and direct bilirubin (DB) as compared to the normal control group. On the other hand, KBrO\(_3\) administration resulted in a significant reduction in serum levels of total protein (TP) and albumin (Alb) as compared to the normal control group. Treatment with either MET,
AuNPs or MET/AuNPs significantly reduced serum levels of ALT, AST, ALP, TB, DB, and caused a significant increase in serum levels of TP, Alb as compared to KBrO₃ group.

Effect of different treatments on kidney function tests

As shown in Table 1, administration of KBrO₃ resulted in significant increases in serum levels of creatinine (Cr), urea (Ur), uric acid (UA) as compared to the normal control group. Treatment with either MET, AuNPs or MET/AuNPs significantly reduced serum levels of Cr, Ur, and UA as compared to KBrO₃ group.
Table 1. Kidney function tests of control and different treated rat groups.

Parameter	C	MET	AuNPs	MET AuNPs	KBrO₃	KBrO₃ + MET	KBrO₃ + AuNPs	KBrO₃ + MET/AuNPs
Cr (mg/dl)	0.71 ± 0.06	0.66 ± 0.03	0.67 ± 0.04	0.56 ± 0.03	1.46 ± 0.07^a	0.78 ± 0.01^b	0.95 ± 0.03^{a,b}	0.72 ± 0.04^b
Ur (mg/dl)	21.1 ± 2.63	19 ± 1.95	21 ± 1.73	17 ± 2.08	44 ± 1.54^a	35 ± 1.73^a	36 ± 3.46^a	27.3 ± 1.45^b
UA (mg/dl)	3.2 ± 0.28	3.2 ± 0.28	3.3 ± 0.33	2.9 ± 0.06	8.8 ± 0.26^a	7.8 ± 0.23^a	7.8 ± 0.11^a	5.4 ± 0.48^{a,b}

AuNPs: gold nanoparticles; C: control; KBrO₃: potassium bromate; MET: metformin; MET AuNPs: metformin loaded on gold nanoparticles.

Results are presented as means ± SE for six rats in each group.

^{a,b}Significant as compared to control and KBrO₃ groups, respectively at p ≤ 0.05.
Effect of different treatments on oxidative stress markers in renal tissues

As shown in Table 2, administration of KBrO3 resulted in significant increases in renal tissue contents of malondialdehyde (MDA), protein carbonyl (PC), nitric oxide (NO) as compared to the normal control group. On the other hand, KBrO3 administration resulted in a significant reduction in superoxide dismutase (SOD), catalase (CAT), glutathione-S-transferase (GST), and reduced glutathione (GSH) as compared to the normal control group. Treatment with either MET, AuNPs or MET/AuNPs significantly reduced tissue contents of MDA, PC, NO, and caused a significant increase in tissue contents of SOD, CAT, GST, and GSH as compared to KBrO3 group.

Effect of different treatments on apoptotic markers in renal tissues

As shown in Figure 3, administration of KBrO3 resulted in significant increases in renal tissue contents of cysteine-aspartic acid protease (Caspase 3) and B-cell lymphoma-2 associated X (Bax) as compared to the normal control group. On the other hand, KBrO3 administration resulted in a significant reduction in B-cell lymphoma-2 (Bcl-2) as compared to the normal control group. Treatment with either MET, AuNPs or MET/AuNPs significantly reduced tissue contents of Caspase 3, Bax, and caused a significant increase in tissue contents of Bcl-2 as compared to KBrO3 group.

Effect of different treatments on inflammatory marker in renal tissues

As shown in Table 3, administration of KBrO3 resulted in significant increases in renal tissue contents of interleukin-6 (IL-6) as compared to the normal control group. Treatment with either MET, AuNPs or MET/AuNPs significantly reduced tissue contents of IL-6 as compared to KBrO3 group.
Table 2. Oxidative stress markers in renal tissue of control and different treated rat groups.

Animal groups	Parameter	C	MET	AuNPs	MET AuNPs	KBrO3	KBrO3 + MET	KBrO3 + AuNPs	KBrO3 + MET/AuNPs
	MDA (nmol/g)	325.7 ± 4.86	310.5 ± 5.14	314.9 ± 3.98	277.4 ± 12.96	1878 ± 57.5^a	637 ± 37.54^{a,b}	962.6 ± 53.29^{a,b}	467.7 ± 61.45^{a,b}
	PC (μmol DNPH/mg)	0.8 ± 0.05	0.8 ± 0.04	0.8 ± 0.06	0.7 ± 0.05	2.8 ± 0.16^a	1.9 ± 0.06^{a,b}	1.9 ± 0.19^{a,b}	1.01 ± 0.12^{a,b}
	NO (mg/g)	77.1 ± 2.65	74.2 ± 4.63	76.6 ± 4.87	65.6 ± 3.00	373.4 ± 16.84^a	245.3 ± 12.41^{a,b}	307.9 ± 13.92^{a,b}	100.9 ± 8.09^{a,b}
	SOD (U/g)	284.3 ± 4.1	300.1 ± 6.72	293.7 ± 4.49	341 ± 10.02	64.67 ± 3.53^a	156.3 ± 17.46^{a,b}	90.73 ± 5.052^a	232.1 ± 15.09^{a,b}
	CAT (U/g)	193.8 ± 6.15	205 ± 7.83	200.4 ± 6.05	246 ± 12.17	148.8 ± 6.28^a	181.2 ± 5.23	168.1 ± 8.60	196.3 ± 3.18^b
	GST (U/g)	4.8 ± 0.05	4.9 ± 0.11	4.927 ± 0.09	5.2 ± 0.30	2.8 ± 0.11^a	3.9 ± 0.07^a	3 ± 0.09^{a,b}	4.5 ± 0.28^b
	GSH (mg/g)	241.3 ± 10.56	267 ± 7.572	245 ± 14	308.7 ± 9.80	73.9 ± 2.81^a	118 ± 8.19^a	93.5 ± 3.43^a	159.7 ± 15.98^{a,b}

AuNPs: gold nanoparticles; C: control; KBrO3: potassium bromate; MET: metformin; MET AuNPs: metformin loaded on gold nanoparticles.

Results are presented as means ± SE for six rats in each group.

^{a,b}Significant as compared to control and KBrO3 groups, respectively at p ≤ 0.05.

Table 3. Inflammatory marker in renal tissue of control and different treated rat groups.

Animal groups	Parameter	C	MET	AuNPs	MET AuNPs	KBrO3	KBrO3 + MET	KBrO3 + AuNPs	KBrO3 + MET/AuNPs
	IL-6 (pg/mg)	0.4 ± 0.04	0.4 ± 0.03	0.4 ± 0.05	0.3 ± 0.03	1.3 ± 0.06^a	0.8 ± 0.05^{a,b}	0.9 ± 0.04^{a,b}	0.6 ± 0.03^a

AuNPs: gold nanoparticles; C: control; KBrO3: potassium bromate; MET: metformin; MET AuNPs: metformin loaded on gold nanoparticles.

Results are presented as means ± SE for six rats in each group.

^{a,b}Significant as compared to control and KBrO3 groups, respectively at p ≤ 0.05.
Effect of different treatments on body weight

No mortality or obvious clinical signs were observed in any group of animals throughout the experimental period. The body weights were significantly increased at the end of the experiment without intergroup differences. No significant differences were detected in final body weights between treated and non-treated rats are shown in Table 4.

Effect of different treatments on DNA damage by comet assay

As shown in Table 5 and Figure 4 administration of KBrO₃ resulted in significant increases in renal tissue contents of tail length (TL), tail DNA (% DNA), and tail moment (TM). Treatment with either MET, AuNPs or MET/AuNPs significantly reduced tissue contents of TL, % DNA and TM as compared to KBrO₃ group.

Histological examinations

Results are shown in Figures 5 to 12. Figures 13 to 16 showing portions of kidney in normal control group. Figures 17 to 19 showing portions of kidney in recovery rats administered metformin loaded on AuNps. Figures 20 to 22 showing portions of kidney of rats administered KBrO₃.

Characterization of AuNPs

Nanoparticles characteristics were monitored by UV-VIS spectrophotometer and by Transmission Electron Microscope (TEM). The identification results are presented in Figures 23 and 24. For the UV-VIS data, the absorbance was detected between λ 200 and 800 nm (Figure 23) which ensures the presence of the AuNPs in the suspension. On the other hand, the TEM images (Figure 24) have shown a majority of nearly spherical AuNPs with diameters ranging from 15.8 to 19.6 nm. The physical appearance of the AuNPs suspended in trisodium citrate was dark red (Figure 25). Presently, there have been stunning efforts to improve the synthesis of nanoparticles with anticipated sizes and characteristics to grow their biomedical applications, TEM is one of the reliable methods to detect AuNPs sizes.

Discussion

The present study was designed to investigate curative effect of METAuNPs on KBrO₃-induced nephrotoxicity. Administration of KBrO₃ caused a marked increase in TC, TG, and LDL-C levels but decreased HDL-C level, similar findings were reported.⁴⁰⁻⁴² The studied groups (MET, AuNPs, METAuNPs) decreased TC, TG, and LDL-C and increased HDL-C. This finding correlates with the report of Owolabi and Omogbai⁴³ which showed beneficial effects of MET in diabetic rats. Also, Singh
Table 4. Body weight changes of control and different treated rat groups.

Animal groups	Parameter	C	MET	AuNPs	MET	KBrO3	KBrO3 + MET	KBrO3 + MET/AuNPs	KBrO3 + MET/AuNPs
	Initial weight	95 ± 4.56	95 ± 2.89	95 ± 3.79	95 ± 4.09	95 ± 3.57	95 ± 2.82	95 ± 3.16	95 ± 4.69
	1st week (g)	107 ± 3.58	110 ± 5.87	108 ± 7.46	110 ± 4.34	116 ± 2.83	110 ± 6.32	110 ± 4.89	115 ± 5.06
	2nd week (g)	125 ± 3.03	122 ± 4.29	123 ± 13.02	122 ± 3.58	128 ± 5.79	123 ± 6.35	132 ± 9.05	127 ± 4.69
	3rd week (g)	138 ± 6.26	134 ± 2.89	140 ± 11.84	132 ± 2.61	140 ± 8.32	140 ± 9.06	147 ± 11.58	145 ± 11.76
	4th week (g)	152 ± 6.23	145 ± 2.37	159 ± 12.95	144 ± 2.61	154 ± 11.88	150 ± 10.71	157 ± 13.89	159 ± 19.05
	5th week (g)	161 ± 6.63	158 ± 2.28	180 ± 7.24	156 ± 3.16	170 ± 16.33	161 ± 11.42	171 ± 14.21	172 ± 20.21
	6th week (g)	174 ± 6.03	171 ± 2.61	191 ± 6.90	168 ± 3.74	179 ± 15.71	175 ± 12.33	183 ± 15.39	181 ± 21.68
	7th week (g)	188 ± 6.07	185 ± 2.61	202 ± 8.94	183 ± 4.10	189 ± 15.43	184 ± 12.74	192 ± 12.96	193 ± 22.29
	8th week (g)	201 ± 4.05	198 ± 3.85	214 ± 11.35	197 ± 5.51	203 ± 13.93	194 ± 13.34	202 ± 13.71	204 ± 24.05
	9th week (g)	217 ± 6.78	214 ± 5.47	225 ± 12.99	212 ± 6.36	217 ± 13.70	210 ± 12.43	218 ± 16.84	219 ± 22.62

AuNPs: gold nanoparticles; C: control; KBrO3: potassium bromate; MET: metformin; MET/AuNPs: metformin loaded on gold nanoparticles.
Results are presented as means ± SE for six rats in each group.

Table 5. DNA damage in renal tissue of control and different treated rat groups.

Animal groups	Parameter	C	MET	AuNPs	MET	KBrO3	KBrO3 + MET	KBrO3 + MET/AuNPs	KBrO3 + MET/AuNPs
	Tail length (μm)	1.5 ± 0.05	1.9 ± 0.12	1.4 ± 0.12	1.6 ± 0.06	5.5 ± 0.23	3.1 ± 0.06	3.8 ± 0.11	3.2 ± 0.09
	Tail DNA (%)	1.4 ± 0.06	1.6 ± 0.06	1.6 ± 0.05	1.5 ± 0.06	5.2 ± 0.12	3.1 ± 0.12	3.4 ± 0.18	3.1 ± 0.12
	Tail moment (μm)	2.143 ± 0.09	3.107 ± 0.1	2.333 ± 0.15	2.497 ± 0.15	27.97 ± 0.58	9.493 ± 0.29	13.21 ± 1.19	10.09 ± 0.64

AuNPs: gold nanoparticles; C: control; KBrO3: potassium bromate; MET: metformin; MET/AuNPs: metformin loaded on gold nanoparticles.
Results are presented as means ± SE for six rats in each group.

*Significant as compared to control and KBrO3 groups, respectively at p ≤ 0.05.
et al.14 demonstrated that MET improved lipid profile that was deteriorated due to streptozotocin, similar findings were also reported.44 Moreover, Dhas et al.45 demonstrated that AuNPs improved alterations in lipid profile induced by alloxan. While MET loaded pectin-chitosan biohybrids ameliorated streptozotocin induced alterations in lipid profile.46

\textbf{Figure 4.} Detection of DNA damage by comet assay in kidney cells: (a) control group rats with normal spots and round shape (untailed) (arrows) (comet assay; Scale bar = 100 \textmu m), (b–d) MET group, AuNPs group, and MET/AuNPs group, respectively showing normal spots and round shape (comet assay; Scale bar = 100 \textmu m), (e) KBrO$_3$ group showing increase the number of damaged spots in which the length of the comet was greater than the diameter of the basal nuclear DNA (tailed) (arrowheads) (comet assay; Scale bar = 100 \textmu m), and (f–h) KBrO$_3$ group treated with MET, KBrO$_3$ group treated with AuNPs, KBrO$_3$ group treated with MET/AuNPs, respectively showing decreased the number of damaged spots (comet assay; Scale bar = 100 \textmu m).

\textbf{Figure 5.} Photomicrograph of kidney from group normal control showing; normal renal corpuscles (white arrow), normal PCT and DCT with intact acidophilic brush border (T). H&E.

et al.14 demonstrated that MET improved lipid profile that was deteriorated due to streptozotocin, similar findings were also reported.44 Moreover, Dhas et al.45 demonstrated that AuNPs improved alterations in lipid profile induced by alloxan. While MET loaded pectin-chitosan biohybrids ameliorated streptozotocin induced alterations in lipid profile.46
Figure 6. Photomicrograph of kidney from group MET showing slightly normal kidney tissue architecture with renal corpuscle (black arrow), with well identified PCT and DCT (T). H&E.

Figure 7. Photomicrograph of kidney from group AuNPs (a and b) showing; intact renal corpuscle with intact glomeruli (arrow) and intact renal tubules (T). H&E.

Figure 8. Photomicrograph of kidney from group MET + AuNPs showing: (a) renal cortex appeared with normal structure of renal corpuscle (arrow) and different types of renal tubules PCT and DCT (T) and (b) higher magnification of the previous showed normal renal corpuscle (arrow) and intact renal tubules (T). H&E.
Administration of KBrO₃ caused significant increases in ALT, AST, ALP, TB, and DB but decreased Alb and TP; these results were in accordance with those of other studies.⁴⁷–⁴⁹ MET, AuNPs, and METAuNPs groups significantly decreased ALT, AST, ALP, and bilirubin and increased Alb and TP. Balamash et al.⁴⁴ reported a similar effect for MET against streptozotocin. Also, MET suppressed the effect of thioacetamide on hepatic markers⁵⁰ and Dhas et al.⁴⁵ demonstrated that AuNPs ameliorated the alterations in hepatic markers induced by alloxan. Similarly, MET loaded pectin-chitosan biohybrids decreased ALT, AST, ALP, and bilirubin and increased Alb and TP that were altered by streptozotocin.⁴⁶

Figure 9. Photomicrograph of kidney from group KBrO₃ showing: (a) shrinkage glomeruli of renal corpuscle with widen capsular space (white arrow). Detached brush border with degeneration of some renal tubules (black arrow) and (b) the renal medulla showed severe degeneration of the epithelium lining of collecting tubules (arrow head). H&E.

Figure 10. Photomicrograph of kidney from group KBrO₃ + MET showing: (a) histological structure of kidney with renal corpuscles (black arrow), kidney tubules (T) and (b) higher magnification to the previous figure showing mild degeneration in the glomerular tissue (black arrow) and mild degeneration in some tubular epithelium. H&E.
Administration of KBrO₃ caused significant increases in Ur, UA, and Cr serum levels. These results indicated that KBrO₃ induced acute kidney injury, similar findings were reported.²,⁴⁷,⁴⁹,⁵¹

In the present study, MET, AuNPs, and METAuNPs groups decreased Ur, UA, and Cr serum levels. This finding correlates with Owolabi and Omogbai⁴³ which showed beneficial effects of MET in diabetic rats. MET inhibits gentamicin induced renal injury.⁵² Balamash et al.⁴⁴ confirmed the renoprotective effect of MET against streptozotocin. Also, Dhas et al.⁴⁵ demonstrated that AuNPs

Figure 11. Photomicrograph of kidney from group KBrO₃ + AuNPs showing: (a) renal cortex contains intact renal corpuscles (arrow) and renal tubules (T) and (b) higher magnification of renal cortex showing renal corpuscles (arrow) and mild pathological lesions in renal tubules (arrowhead). H&E.

Figure 12. Photomicrograph of kidney from group KBrO₃ + MET AuNPs showing: (a) renal cortex with intact renal corpuscles (arrow) and different tubules PCT and DCT (T) and (b) higher magnification of the previous figure showing intact renal corpuscles (arrow) and tubular epithelium (T). H&E.
Figure 13. An electron micrograph of normal kidney showing proximal convoluted tubule with normal brush borders (white arrows) and normal mitochondria (black arrows).

Figure 14. An electron micrograph of normal kidney showing distilled convoluted tubule, blood vessel BV, and microvilli (white arrows).

Figure 15. An electron micrograph of normal kidney showing glomerulus tubule with normal basement membrane (white arrows).
Figure 16. An electron micrograph with high magnification of normal kidney showing portion contain filtration sites (black arrow) and basement membrane (white arrow).

Figure 17. An electron micrograph of kidney showing Proximal convoluted tubule with recovery brush borders (white arrows) and slightly vacuoles (black arrows) and lysosomes (LY).

Figure 18. An electron micrographs of recovery kidney showing distilled convoluted tubule with recover brush borders (white arrows).
ameliorated the alterations in renal markers induced by alloxan and Chinnaiyan et al.46 reported that MET loaded pectin-chitosan biohybrids ameliorated nephrotoxic effects of streptozotocin.

Administration of KBrO\(_3\) significantly elevated oxidative stress markers such as MDA, NO, and PC. Similar results were previously reported2,49,53,54 Meanwhile, MET, AuNPs, and METAuNPs groups decreased MDA, NO, and PC. It has been reported that MET reduced oxidative stress induced by streptozotocin.14 Lipopolysaccharide induced oxidative damage was reduced by AuNPs55 and Arun et al.56 demonstrated a synergistic antioxidant effect of novel chitosan combined

\begin{figure}
\centering
\includegraphics[width=0.5\textwidth]{figure19}
\caption{An electron micrograph of recovery kidney showing glomerulus tubule with recovery basement membrane which is slightly irregular and thick (white arrows).}
\end{figure}

\begin{figure}
\centering
\includegraphics[width=0.5\textwidth]{figure20}
\caption{An electron micrograph of kidney showing proximal convoluted tubule which lost brush borders (white arrows) with much vacuoles (black arrows) and many lysosomes (LY).}
\end{figure}
metformin drug on streptozotocin-induced diabetes mellitus. Administration of KBrO₃ decreased the activity of renal antioxidant enzymes such as SOD, CAT, GST, and GSH levels as previously reported.²,⁴⁹,⁵³ MET, AuNPs, and METAuNPs groups increased SOD, CAT, GST, and GSH. Similarly, MET improved the antioxidant enzymes that were reduced by streptozotocin.¹² A similar effect was caused by AuNPs⁵⁷ and chitosan with MET.⁵⁶

Figure 21. An electron micrograph of kidney showing plasma cell (inflammatory cell) (white arrows).

Figure 22. An electron micrograph of kidney showing glomerulus tubule with irregular basement membrane with a large thickening and fusion in pedicel (white arrows).
Administration of KBrO₃ significantly elevated renal apoptotic markers such as caspase3, Bax but decreased Bcl-2 that results were in agreement with others.² MET, AuNPs, and METAuNPs groups decreased caspase 3 and Bax and increased Bcl-2. Guigas et al.⁵⁸ demonstrated that MET downregulated caspase 3 and Bax.

Figure 23. Gold nanoparticles (AuNPs) were examined by UV/VIS spectrophotometer particles’ absorbance was maintained at a range between 200 and 800 nm.

Figure 24. Electron micrograph of AuNPs suspension on transmission electron microscopy (TEM) showing a majority of almost spheroidal to rod shaped gold nanoparticles with diameters ranging between 15.8 and 19.6 nm.
and upregulated Bcl-2. Similarly, MET inhibited apoptosis induced by gentamicin59 or cisplatin60 or streptozotocin.12 Moreover, Zheng et al.61 reported that AuNPs reduced caspase 3 and Bax and increased Bcl-2. Hyaluronic acid co-functionalized gold nanoparticle complex for the targeted delivery of MET downregulated caspase 3 and Bax and upregulated Bcl-2.9

Administration of KBrO\textsubscript{3} significantly elevated IL-6, this is consistent with other previous studies.62–64 MET, AuNPs, and METAuNPs groups decreased IL-6. These findings correlate with the report of Al-Hashem et al.50 which showed that metformin suppresses thioacetamide inflammatory response. Qu and Qu65 confirmed the anti-inflammatory effect of MET against lipopolysaccharide. Dhas et al.45 demonstrated the anti-inflammatory effect of AuNPs against alloxan. Also, MET loaded polydopamine reduced the inflammatory cytokines in Parkinson’s disease.66

Administration of KBrO\textsubscript{3} induced DNA fragmentation, as monitored by the release of nucleotides from damaged DNA, both in the renal cortex and medulla when compared to control. Previous studies showed an increased level of DNA single strand breaks and alkali labile sites in the kidney by the Comet assay.67,68 MET, AuNPs, and METAuNPs groups reduced the genetic alterations, micronucleus formation, and chromosomal aberrations. Diniz Vilela et al.69 confirmed the protective effect of MET against streptozotocin. Similarly, Abd El-Rahim et al.70 confirmed the antigenotoxic effect of MET against streptozotocin. While Fraga et al.71 demonstrated the protective effect of AuNPs against DNA damage. Also, the protective effect of hyaluronic acid co-functionalized gold nanoparticle complex for the targeted delivery of MET was established against DNA damage.9

Administration of KBrO\textsubscript{3} didn’t have an effect on the bodyweight of rats, which is consistent with previous studies.72,73

Examination of hematoxylin and eosin stained sections of rats treated with KBrO\textsubscript{3} revealed shrunken glomeruli with widening capsular space and tubular damage, similar results were reported.2,4,67 MET, AuNPs, and METAuNPs groups improved the histopathological changes caused by KBrO\textsubscript{3}, this was in agreement with Amini et al.74
Transmission electron microscope showed proximal convoluted tubule with lost brush borders and many vacuoles, glomerulus tubule with irregular basement membrane with large thickening and fusion in pedicel in the KBrO3 group. These observations were consistent with others.75 Meanwhile, MET, AuNPs, and METAuNPs groups ameliorated effects on these ultrastructural changes in the kidneys, the thickness was significantly decreased. These results agree with other studies.45,75

Conclusion

The obtained data showed that MET, AuNPs, METAuNPs, particularly METAuNPs, had a potent therapeutic effect against KBrO3-induced nephrotoxicity. This can be explained by their antioxidant, anti-inflammatory, and anti-apoptotic properties. The present work provides insight into the roles of the METAuNPs, which may be used as a therapy for KBrO3-induced nephrotoxicity.

Declaration of conflicting interests

The author(s) declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.

Funding

The author(s) received no financial support for the research, authorship, and/or publication of this article.

ORCID iD

Sally E Abu-Risha https://orcid.org/0000-0001-8099-0590

References

1. Abd El-Rahim AH, Abd-El-Moneim OM, Abd El-Kader HA, et al. Inhibitory effect of bee venom against potassium bromate causing genetic toxicity and biochemical alterations in mice. *J Arab Soc Med Res* 2018; 13(2): 89.
2. Ali BH, Za’abi MA, Karaca T, et al. Potassium bromate-induced kidney damage in rats and the effect of gum acacia thereon. *Am J Transl Res* 2018; 10(1): 126–137.
3. Ajarem J, Altoom NG, Allam AA, et al. Oral administration of potassium bromate induces neurobehavioral changes, alters cerebral neurotransmitters level and impairs brain tissue of swiss mice. *Behav Brain Funct* 2016; 12(1): 14.
4. Ben Saad H, Driss D, Ellouz Chaabouni S, et al. Vanillin mitigates potassium bromate-induced molecular, biochemical and histopathological changes in the kidney of adult mice. *Chem Biol Interact* 2016; 252: 102–113.
5. Nathan DM, Buse JB, Davidson MB, et al. Management of hyperglycemia in type 2 diabetes: a consensus algorithm for the initiation and adjustment of therapy: a consensus statement from the American Diabetes Association and the European Association for the Study of Diabetes. *Diabetes Care* 2009; 32(1): 193–203.
6. Hasanpour Dehkordi A, Abbaszadeh A, Mir S, et al. Metformin and its anti-inflammatory and anti-oxidative effects; new concepts. *J Renal Inj Prev* 2018; 8(1): 54–61.
7. Assasa M, Abd El-Raheem S, El-Lateef Said A, et al. Evaluation of the possible protective effect of metformin in cisplatin-induced nephrotoxicity in adult male albino rats. *Al-Azhar Med J* 2020; 49(1): 45–58.

8. Nasri H, Behradmanesh S, Maghsoudi AR, et al. Efficacy of supplementary vitamin D on improvement of glycemic parameters in patients with type 2 diabetes mellitus; a randomized double-blind clinical trial. *J Renal Inj Prev* 2013; 3(1): 31–34.

9. Kumar CS, Raja MD, Sundar DS, et al. Hyaluronic acid co-functionalized gold nanoparticle complex for the targeted delivery of metformin in the treatment of liver cancer (HepG2 cells). *Carbohydr Polym* 2015; 128: 63–74.

10. Gürsoy N, Öztürk BY and Dağ I. Synthesis of intracellular and extracellular gold nanoparticles with a green machine and its antifungal activity. *Turk J Biol* 2021; 45(2): 196–213.

11. Kumar S, Bhanjana G, Verma RK, et al. Metformin-loaded alginate nanoparticles as an effective antidiabetic agent for controlled drug release. *J Pharm Pharmacol* 2017; 69(2): 143–150.

12. Alasmari WA, Faruk EM, Abourehab MA, et al. The effect of metformin versus vitamin E on the testis of adult diabetic albino rats: histological, biochemical and immunohistochemistry study. *Adv Reprod Sci* 2018; 6(4): 113–132.

13. Ibrahim KE, Al-Mutary MG, Bakhiet AO, et al. Histopathology of the liver, kidney, and spleen of mice exposed to gold nanoparticles. *Molecules* 2018; 23(8): 1848.

14. Singh BK, Singh A and Kumar V. Ameliorative effect of adjunct therapy of metformin with atorvastatin on streptozotocin-induced diabetes mellitus in rats. *Drug Res* 2016; 66(1): 28–32.

15. Moubarak HS, Essawy TA and Mohammed SS. Carcinogenic effect of potassium bromate on tongue of adult male albino rats. *J Radiat Res Appl Sci* 2020; 13(1): 121–131.

16. Potara M, Maniu D and Astilean S. The synthesis of biocompatible and SERS-active gold nanoparticles using chitosan. *Nanotechnology* 2009; 20(31): 315602.

17. Aldea M, Florian IS, Potara M, et al. Metformin delivery using chitosan-capped gold nanoparticles in glioblastoma cell lines. *Rom Neurosurg* 2018; 32(2): 230–239.

18. Doumas B, Watson W and Biggs H. Colorimetric determination of total protein in serum or plasma. *Clin Chim Acta* 1975; 21(8): 1159–1166.

19. Doumas BT, Watson WA and Biggs HG. Albumin standards and the measurement of serum albumin with bromocresol green. *Clin Chim Acta* 1997; 258(1): 21–30.

20. Abd Elhalem S, EL-Atrash A, Osman A, et al. Short term toxicity of food additive azo dye, sunset yellow (E110), at low doses, in male Sprague-Dawley rats. *Egypt J Exp Biol Zool* 2016; 12: 13–21.

21. Schumann G and Klauke R. New IFCC reference procedures for the determination of catalytic activity concentrations of five enzymes in serum: preliminary upper reference limits obtained in hospitalized subjects. *Clin Chim Acta* 2003; 327(1–2): 69–79.

22. Belfield A and Goldberg D. Hydrolysis of adenosine monophosphates by acid phosphatases as measured by a continuous spectrophotometric assay. *Biochem Med* 1970; 4(2): 135–148.

23. Mohamed NE and Ashour SE. Influence of ethanolic extract of strawberry leaves for abrogating bromate hazards in male rats. *J Basic Appl Zool* 2019; 80(1): 19.

24. Slot C. Plasma creatinine determination a new and specific Jaffe reaction method. *Scand J Clin Lab Invest* 1965; 17(4): 381–387.

25. Iwata K, Inayama T and Kato T. Effects of Spirulina platensis on plasma lipoprotein lipase activity in fructose-induced hyperlipidemic rats. *J Nutr Sci Vitaminol* 1990; 36(2): 165–171.
26. Rojkin M, Olguin de Mariani MC, Drappo G, et al. Proteínas totales del suero. *Bioquímica del Atlántico* 1974; 63: 1931–1954.
27. Misra HP and Fridovich I. The role of superoxide anion in the autoxidation of epinephrine and a simple assay for superoxide dismutase. *J Biol Chem* 1972; 247(10): 3170–3175.
28. Manubolu M, Goodla L, Ravilla S, et al. Protective effect of Actiniopteris radiata (Sw.) link. Against CCl4 induced oxidative stress in albino rats. *J Ethnopharmacol* 2014; 153(3): 744–752.
29. Jollow D, Mitchell JR, Zampaglione N, et al. Bromobenzene-induced liver necrosis. Protective role of glutathione and evidence for 3, 4-bromobenzene oxide as the hepatotoxic metabolite. *Pharmacology* 1974; 11(3): 151–169.
30. Habig WH, Pabst MJ and Jakoby WB. Glutathione S-transferases the first enzymatic step in mercapturic acid formation. *J Biol Chem* 1974; 249(22): 7130–7139.
31. Doğru-Abbasoğlu S, Tamer-Toptani S, Üğurnal B, et al. Lipid peroxidation and antioxidant enzymes in livers and brains of aged rats. *Mech Ageing Dev* 1997; 98(2): 177–180.
32. Yousef MI and Hussien HM. Cisplatin-induced renal toxicity via tumor necrosis factor-α, interleukin 6, tumor suppressor P53, DNA damage, xanthine oxidase, histological changes, oxidative stress and nitric oxide in rats: protective effect of ginseng. *Food Chem Toxicol* 2015; 78: 17–25.
33. Hamed SS, Al-Yhya NA, El-Khadragy MF, et al. The protective properties of the strawberry (Fragaria ananassa) against carbon tetrachloride-induced hepatotoxicity in rats mediated by anti-apoptotic and upregulation of antioxidant genes expression effects. *Front Physiol* 2016; 7: 325.
34. Ono M, Yu B, Hardison EG, et al. Increased susceptibility to liver injury after hemorrhagic shock in rats chronically fed ethanol: role of nuclear factor-κB, interleukin-6, and granulocyte colony-stimulating factor. *Shock* 2004; 21(6): 519–525.
35. Singh NP, McCoy MT, Tice RR, et al. A simple technique for quantitation of low levels of DNA damage in individual cells. *Exp Cell Res* 1988; 175(1): 184–191.
36. Harris H. After Bruce Casselman WC (1959). In: *Histochemical technique*. London: Methuen and Co. Ltd, 1900.
37. Mercer EH and Birbeck MS. *Electron microscopy: a handbook for biologists*. Oxford: Blackwell Scientific Publications, 1972.
38. Bozzola JJ and Russell LD. *Electron microscopy: principles and techniques for biologists*. Boston, MA: Jones & Bartlett Learning, 1999.
39. Waller RA and Duncan DB. A Bayes rule for the symmetric multiple comparisons problem. *J Am Stat Assoc* 1969; 64(328): 1484–1503.
40. Khan RA, Khan MR, Sahreem S, et al. Protective effects of Launaea procumbens against KBrO3-induced hepatic serum marker enzymes. *Afr J Pharm Pharmacol* 2011; 5(23): 2639–2641.
41. Maharjan B, Jha JC, Adhikari D, et al. Oxidative stress, antioxidant status and lipid profile in ischemic heart disease patients from western region of Nepal. *Nepal Med Coll J* 2008; 10(1): 20–24.
42. Ahmad MK and Mahmood R. Oral administration of potassium bromate, a major water disinfection by-product, induces oxidative stress and impairs the antioxidant power of rat blood. *Chemosphere* 2012; 87(7): 750–756.
43. Owolabi O and Omogbai E. Effect of metformin on potassium-adapted and nonadapted diabetic rats. *Trop J Pharm Res* 2012; 11(5): 747–752.
44. Balamash KS, Alkreathy HM, Al Gahdali EH, et al. Comparative biochemical and histopathological studies on the efficacy of metformin and virgin olive oil against streptozotocin-induced diabetes in Sprague-Dawley rats. *J Diabetes Res* 2018; 2018: 4692197.

45. Dhas TS, Kumar VG, Karthick V, et al. Effect of biosynthesized gold nanoparticles by Sargassum swartzii in alloxan induced diabetic rats. *Enzyme Microb Technol* 2016; 95: 100–106.

46. Chinnaian SK, Deivasigamani K and Gadela VR. Combined synergetic potential of metformin loaded pectin-chitosan biohybrids nanoparticle for NIDDM. *Int J Biol Macromol* 2019; 125: 278–289.

47. Waffa SA and Farida AA. Effect of consumption of kiwi fruit on potassium bromate induced oxidative stress in rats. *Aust J Basic Appl Sci* 2012; 6: 519–524.

48. Dimkpa U, Ukoha UU, Anyabolu EA, et al. Hepatotoxic effects of potassium bromate on adult Wistar rats. *J Biol Agric Healthe* 2013; 3(7): 111–115.

49. Kanadi M, Wudil AM, Alhassan AJ, et al. Dose-dependent chemopreventive effect of methanol extract of Carica papaya seed on potassium bromate-induced nephrotoxicity in rats. *Asian J Biochem Genet Mol Biol* 2019; 2(1): 1–12.

50. Al-Hashem F, Al-Humayed S, Amin SN, et al. Metformin inhibits mTOR–HIF-1α axis and profibrogenic and inflammatory biomarkers in thioacetamide-induced hepatic tissue alterations. *J Cell Physiol* 2019; 234(6): 9328–9337.

51. Khan RA, Khan MR and Sahreen S. Protective effects of rutin against potassium bromate induced nephrotoxicity in rats. *BMC Complement Altern Med* 2012; 12(1): 204.

52. Janjua A, Waheed A and Bakhtiar S. Protective effect of metformin against gentamicin induced nephrotoxicity in rabbits. *Pak J Pharm Sci* 2014; 27(6): 1863–1872.

53. Altoom NG, Ajarem J, Allam AA, et al. Deleterious effects of potassium bromate administration on renal and hepatic tissues of Swiss mice. *Saudi J Biol Sci* 2018; 25(2): 278–284.

54. Förstermann U and Sessa WC. Nitric oxide synthases: regulation and function. *Eur Heart J* 2012; 33(7): 829–837.

55. dos Santos Haupenthal DP, Mendes C, de Bem Silveira G, et al. Effects of treatment with gold nanoparticles in a model of acute pulmonary inflammation induced by lipopolysaccharide. *J Biomed Mater Res Part A* 2020; 108(1): 103–115.

56. Arun G, Rajaram R, Kaleshkumar K, et al. Synergistic effect of novel chitosan combined metformin drug on streptozotocin-induced diabetes mellitus rat. *Int J Biol Macromol* 2020; 153: 1335–1349.

57. Sengani M. Identification of potential antioxidant indices by biogenic gold nanoparticles in hyperglycemic Wistar rats. *Environ Toxicol Pharmacol* 2017; 50: 11–19.

58. Guigas B, Detaille D, Chauvin C, et al. Metformin inhibits mitochondrial permeability transition and cell death: a pharmacological in vitro study. *Biochem J* 2004; 382(3): 877–884.

59. Morales AI, Detaille D, Prieto M, et al. Metformin prevents experimental gentamicin-induced nephropathy by a mitochondria-dependent pathway. *Kidney Int* 2010; 77(10): 861–869.

60. Li J, Gui Y, Ren J, et al. Metformin protects against cisplatin-induced tubular cell apoptosis and acute kidney injury via AMPKα-regulated autophagy induction. *Sci Rep* 2016; 6(1): 23975.

61. Zheng Y, Wu Y, Liu Y, et al. Intrinsic effects of gold nanoparticles on oxygen–glucose deprivation/reperfusion injury in rat cortical neurons. *Neurochem Res* 2019; 44(7): 1549–1566.
62. Kielar ML, John R, Bennett M, et al. Maladaptive role of IL-6 in ischemic acute renal failure. *J Am Soc Nephrol* 2005; 16(11): 3315–3325.

63. Mohamed EAK. The protective effect of taurine and/or vanillin against renal, testicular, and hematological alterations induced by potassium bromate toxicity in rats. *J Basic Appl Zool* 2019; 80(1): 3.

64. Elsayed M and Barakat H. Vitamins C and E alleviate nephrotoxicity-induced by potassium bromate in rats. *J Appl Life Sci Int* 2016; 8(1): 1–8.

65. Qu R and Qu W. Metformin inhibits LPS-induced inflammatory response in VSMCs by regulating TLR4 and PPAR-gamma. *Eur Rev Med Pharmacol Sci* 2019; 23(11): 4988–4995.

66. Sardoiwala MN, Srivastava AK, Kaundal B, et al. Recuperative effect of metformin loaded polydopamine nanoformulation promoting EZH2 mediated proteasomal degradation of phospho-α-synuclein in Parkinson’s disease model. *Nanomedicine* 2020; 24: 102088.

67. Ahmad MK, Khan AA and Mahmood R. Taurine ameliorates potassium bromate-induced kidney damage in rats. *Amino Acids* 2013; 45(5): 1109–1121.

68. Li J, Shi M, Ma B, et al. Protective effects of fraction 4a of polysaccharides isolated from Lycium barbarum against KBrO3-induced renal damage in rats. *Food Funct* 2017; 8(7): 2566–2572.

69. Diniz Vilela D, Gomes Peixoto L, Teixeira RR, et al. The role of metformin in controlling oxidative stress in muscle of diabetic rats. *Oxid Med Cell Longev* 2016; 2016: 6978625.

70. Abd El-Rahim AH, Abd-Elmoneim OM and Hafiz NA. Assessment of antigenotoxic effect of nanoselenium and metformin on diabetic rats. *Jordan J Biol Sci* 2017; 10: 159–165.

71. Fraga S, Faria H, Soares ME, et al. Influence of the surface coating on the cytotoxicity, genotoxicity and uptake of gold nanoparticles in human HepG2 cells. *J Appl Toxicol* 2013; 33(10): 1111–1119.

72. Rezq AA. Potential protective and ameliorate effects of sesame oil and jojoba oil against potassium bromate (KBrO3)-induced oxidative stress in rats. التربوية النوعية 2019; 1(1): 155–189.

73. Elsheikh AS, Fadul TF, Aboagla EM, et al. Effects of potassium bromate on male rat growth and testicular histology. *Asian Pac J Reprod* 2016; 5(5): 376–380.

74. Amini FG, Rafieian-Kopaei M, Nematbakhsh M, et al. Ameliorative effects of metformin on renal histologic and biochemical alterations of gentamicin-induced renal toxicity in Wistar rats. *J Res Med Sci* 2012; 17(7): 621–625.

75. Kashef SM, Abd El, Hafez AA, Sarhan NI, et al. Automated image analysis system for renal filtration barrier integrity of potassium bromate treated adult male albino rat. *Multimed Tools Appl* 2020; 79(11–12): 7559–7575.

Author biographies

Ahmed S Abdel-Latif is a Researcher in Faculty of Science, Mansoura University.

Sally E Abu-Risha is an Associate Professor of Pharmacology & Toxicology, Faculty of Pharmacy, Tanta University.
Samaa M Bakr is a Professor of Genetics, Zoology Department, Faculty of Science, Kafr El-Sheikh University.

Wafaa M EL-Kholy is a Professor of Physiology, Zoology Department, Faculty of Science, Mansoura University.

Mamdouh R EL-Sawi is a Professor of Physiology, Zoology Department, Faculty of Science, Mansoura University.