EXISTENCE AND STABILITY OF STRONG SOLUTIONS TO THE ABELS-GARCKE-GRÜN MODEL IN THREE DIMENSIONS

ANDREA GIORGINI

Department of Mathematics
Imperial College London
London, SW7 2AZ, UK

ABSTRACT. This work is devoted to the analysis of strong solutions to the Abels-Garcke-Grün (AGG) model in three dimensions. First, we prove the existence of local-in-time strong solutions originating from an initial datum \((u_0, \phi_0) \in H^1_\sigma \times H^2(\Omega)\) such that \(\mu_0 \in H^1(\Omega)\) and \(|\phi_0| \leq 1\). For the subclass of initial data that are strictly separated from the pure phases, the corresponding strong solutions are locally unique. Finally, we show a stability estimate between the solutions to the AGG model and the model H. These results extend the analysis achieved by the author in Calc. Var. (2021) 60:100 to three dimensional bounded domains.

1. INTRODUCTION

Given a domain \(\Omega \subset \mathbb{R}^3\), we study the Abels-Garcke-Grün (AGG) model in \(\Omega \times (0, T)\)

\[
\begin{align*}
\partial_t (\rho(\phi) u) + \nabla \cdot (u \otimes (\rho(\phi) u + \bar{J})) - \nabla \cdot (\nu(\phi) \mathbb{D} u) + \nabla P &= -\nabla \phi \otimes \nabla \phi, \\
\nabla u &= 0, \\
\partial_t \phi + u \cdot \nabla \phi &= \Delta \mu, \\
\mu &= -\Delta \phi + \Psi'(\phi),
\end{align*}
\]

completed with the following boundary and initial conditions

\[
\begin{align*}
\begin{cases}
 u = 0, & \partial_n \phi = \partial_n \mu = 0 \quad \text{on } \partial \Omega \times (0, T), \\
 u(\cdot, 0) = u_0, \quad \phi(\cdot, 0) = \phi_0 \quad \text{in } \Omega.
\end{cases}
\end{align*}
\]

Here, \(n\) is the unit outward normal vector on \(\partial \Omega\), and \(\partial_n\) denotes the outer normal derivative on \(\partial \Omega\). In the system, \(u = u(x, t)\) represents the volume averaged velocity, \(P = P(x, t)\) is the pressure of the mixture, and \(\phi = \phi(x, t)\) is the difference of the fluids concentrations. The operator \(\mathbb{D}\) is the symmetric gradient \(\frac{1}{2}(\nabla + \nabla^T)\). The flux term \(\bar{J}\), the density \(\rho\) and the viscosity \(\nu\) of the mixture are defined as

\[
\begin{align*}
\bar{J} &= -\frac{\rho_1 - \rho_2}{2} \nabla \mu, \\
\rho(\phi) &= \rho_1 \frac{1 + \phi}{2} + \rho_2 \frac{1 - \phi}{2}, \\
\nu(\phi) &= \nu_1 \frac{1 + \phi}{2} + \nu_2 \frac{1 - \phi}{2},
\end{align*}
\]

E-mail address: a.giorgini@imperial.ac.uk.
Date: December 3, 2021.
2010 Mathematics Subject Classification. 35D35, 35Q35, 76D45, 76T06.
Key words and phrases. AGG model, Navier-Stokes-Cahn-Hilliard system, unmatched densities, strong solutions.
Theorem 1.1. Let Ω be a bounded domain of class C^3 in \mathbb{R}^3. Assume that $\mathbf{u}_0 \in H^1_\sigma$ and $\phi_0 \in H^2(\Omega)$ such that $\|\phi_0\|_{L^\infty} \leq 1$, $|\vec{\phi}_0| < 1$, $\mu_0 = -\Delta \phi_0 + \Psi'(\phi_0) \in H^1(\Omega)$, and $\partial_n \phi_0 = 0$ on $\partial \Omega$. Then, there exist $T_0 > 0$,
depending on the norms of the initial data, and (at least) a strong solution \((u, P, \phi)\) to system (1.1)-(1.2) on \((0, T_0)\) in the following sense:

(i) The solution \((u, P, \phi)\) satisfies the properties
\[u \in C([0, T_0]; H^1) \cap L^2(0, T_0; H^2) \cap W^{1,2}(0, T_0; L^2), \quad P \in L^2(0, T_0; H^1(\Omega)), \]
\[\phi \in L^\infty(0, T_0; W^{2,0}(\Omega)), \quad \partial_\tau \phi \in L^\infty(0, T_0; (H^1(\Omega))') \cap L^2(0, T_0; H^1(\Omega)), \]
\[\phi \in L^\infty(\Omega \times (0, T_0)) : |\phi(x, t)| < 1 \text{ a.e. in } \Omega \times (0, T_0), \]
\[\mu \in L^\infty(0, T_0; H^1(\Omega)) \cap L^2(0, T_0; H^3(\Omega)), \quad F''(\phi) \in L^\infty(0, T_0; L^6(\Omega)). \]

(ii) The solution \((u, P, \phi)\) fulfills the system (1.1) almost everywhere in \(\Omega \times (0, T_0)\) and the boundary conditions \(\partial_n \phi = \partial_n \mu = 0\) almost everywhere in \(\partial \Omega \times (0, T_0)\).

Furthermore, if additionally \(\|\phi_0\|_{L^\infty} = 1 - \delta_0\), for some \(\delta_0 > 0\), then the solution is locally unique. This is, there exists a time \(T_1 : 0 < T_1 < T_0\), depending only on the norm of the initial data and \(\delta_0\), such that the solution is unique on the time interval \([0, T_1]\).

Before proceeding with our second result, it is worth mentioning that the proof of Theorem 1.1, although still based on a semi-Galerkin approximation, differs from the one of [21, Theorem 3.1] for several aspects. First, the proof of [21, Theorem 3.1] exploited the continuity of the chemical potential and the regularity of its time derivative, which are properties available for the strong solutions of the convective Cahn-Hilliard equation in two dimensions. Since these are still an open question in three dimensions, we overcome this issue by employing an approximation procedure involving the convective viscous Cahn-Hilliard equation (see Appendix A), together with an appropriate regularization of the initial datum. Such approximations are crucial to rigorously justify the higher-order Sobolev estimates obtained for the approximate solutions. Secondly, due to the lack of global-in-time separation property in three dimensions, we show local uniqueness of solutions departing from a subclass of initial data such that \(\|\phi_0\|_{L^\infty} < 1\). For such class of solutions, the separation property holds on a (possible short) time interval by embedding in Hölder spaces. Notice that the argument proposed in [22] based on estimates in dual spaces cannot be used due to the non-constant density. Moreover, the separation property (or, at least, \(L^p\)-estimates of \(\Psi'(\phi)\) and \(\Psi''(\phi)\)) seems to be necessary to control the additional term \(\rho'(\phi)(\nabla \mu \cdot \nabla)u\). Furthermore, the proof of the uniqueness relies on estimates of higher-order Sobolev spaces compared to the argument in [21, Theorem 3.1], which is due to the above mentioned novel term \(\rho'(\phi)(\nabla \mu \cdot \nabla)u\) in (1.1).

Next, we prove a stability result between the strong solutions to the AGG model and the model \(H\) departing from the same initial datum in terms of the density values.

Theorem 1.2. Let \(\Omega\) be a bounded domain of class \(C^3\) in \(\mathbb{R}^3\). Given an initial datum \((u_0, \phi_0)\) as in Theorems 1.1, we consider the strong solution \((u, P, \phi)\) to the AGG model with density (1.3) and the strong solution \((u_H, P_H, \phi_H)\) to the model \(H\) with constant density \(\overline{\rho} > 0\), both defined on \([0, T_0]\). Then, there exists a constant \(C\), that depends on the norm of the initial data, the time \(T_0\) and the parameters of the systems, such that
\[\sup_{t \in [0, T_0]} \|u(t) - u_H(t)\|_{(H^1)^*} + \sup_{t \in [0, T_0]} \|\phi(t) - \phi_H(t)\|_{(H^1)^*} \leq C \left(\left| \frac{\rho_1 - \rho_2}{2} \right| + \left| \frac{\rho_1 + \rho_2}{2} - \overline{\rho} \right| \right). \]

Remark 1.3. Assuming that \(\rho_1 = \overline{\rho}\) and \(\rho_2 = \overline{\rho} + \varepsilon\), for (small) \(\varepsilon > 0\), the stability estimate (1.8) reads as
\[\sup_{t \in [0, T_0]} \|u(t) - u_H(t)\|_{(H^1)^*} + \sup_{t \in [0, T_0]} \|\phi(t) - \phi_H(t)\|_{(H^1)^*} \leq C\varepsilon. \]
Theorem 1.2 justifies the model H as the constant density approximation of the AGG model when the two viscous fluids have negligible densities difference. To make a comparison with [21, Theorem 3.5], we notice that the estimate holds in dual Sobolev spaces. Indeed, the main idea is to write the momentum equation for the solutions difference \((u - u_H, \phi - \phi_H)\) as Navier-Stokes equations with constant density and exploit the uniqueness argument introduced in [22].

Plan of the paper. We report in Section 2 the preliminaries for the analysis. Sections 3 and 4 are devoted to the proof of Theorem 1.1, in particular, the local existence of strong solutions and their uniqueness, respectively. In Section 5 we prove the stability result contained in Theorem 1.2. The Appendix A is concerned with well-posedness results for the convective Viscous Cahn-Hilliard equation.

2. Notation and Functional Spaces

Let \(X\) be a real Banach space. Its norm is denoted by \(\| \cdot \|_X\) and the symbol \(\langle \cdot, \cdot \rangle_{X', X}\) stands for the duality between \(X\) and its dual space \(X'\). We assume that \(\Omega\) is a bounded domain in \(\mathbb{R}^3\) with boundary \(\partial\Omega\) of class \(C^3\). For \(p \in [1, \infty]\), let \(L^p(\Omega)\) denote the Lebesgue space with norm \(\| \cdot \|_{L^p}\). The inner product in \(L^2(\Omega)\) is denoted by \((\cdot, \cdot)\). For \(s \in \mathbb{N}, \; p \in [1, \infty]\), \(W^{s,p}(\Omega)\) is the Sobolev space with norm \(\| \cdot \|_{W^{s,p}}\). If \(p = 2\), we use the notation \(W^{s,p}(\Omega) = H^s(\Omega)\). For every \(f \in H^1(\Omega)'\), we denote by \(\overline{f}\) the generalized mean value over \(\Omega\) defined by \(\overline{f} = |\Omega|^{-1} \int_{\Omega} f \, dx\). By the generalized Poincaré inequality, there exists a positive constant \(C\) such that

\[
\|f\|_{H^1} \leq C \left(\|\nabla f\|_{L^2}^2 + |\overline{f}|^2 \right)^{\frac{1}{2}}, \quad \forall f \in H^1(\Omega). \tag{2.1}
\]

We recall the Ladyzhenskaya, Agmon and Gagliardo-Nirenberg inequalities in three dimensions

\[
\|f\|_{L^3} \leq C \|f\|_{L^2}^{\frac{1}{3}} \|f\|_{H^1}^{\frac{2}{3}}, \quad \forall f \in H^1(\Omega), \tag{2.2}
\]

\[
\|f\|_{L^\infty} \leq C \|f\|_{H^1}^3 \|f\|_{H^2}^{\frac{1}{3}}, \quad \forall f \in H^2(\Omega), \tag{2.3}
\]

\[
\|\nabla f\|_{L^3} \leq C \|f\|_{L^\infty}^{\frac{1}{3}} \|f\|_{H^2}^{\frac{2}{3}}, \quad \forall f \in H^2(\Omega), \tag{2.4}
\]

\[
\|f\|_{W^{1,4}} \leq C \|f\|_{H^1}^{\frac{5}{3}} \|f\|_{W^{2,6}}^{\frac{2}{3}}, \quad \forall f \in W^{2,6}(\Omega). \tag{2.5}
\]

Next, we introduce the Hilbert spaces of solenoidal vector-valued functions. In the case of a bounded domain \(\Omega \subset \mathbb{R}^3\), we define

\[
L^2_\sigma = \{u \in L^2(\Omega) : \text{div}u = 0 \text{ in } \Omega, \; u \cdot n = 0 \text{ on } \partial\Omega\},
\]

\[
H^1_\sigma = \{u \in H^1(\Omega) : \text{div}u = 0 \text{ in } \Omega, \; u = 0 \text{ on } \partial\Omega\}.
\]

We also use \((\cdot, \cdot)\) and \(\| \cdot \|_{L^2}\) for the inner product and the norm in \(L^2_\sigma\). The space \(H^1_\sigma\) is endowed with the inner product and norm \((u, v)_{H^1_\sigma} = (\nabla u, \nabla v)\) and \(\|u\|_{H^1_{\sigma}} = \|\nabla u\|_{L^2}\), respectively. We report the Korn inequality

\[
\|\nabla u\|_{L^2} \leq \sqrt{2} \|\mathcal{D} u\|_{L^2}, \quad \forall u \in H^1_{\sigma}, \tag{2.6}
\]

which implies that \(\|\mathcal{D} u\|_{L^2}\) is a norm on \(H^1_{\sigma}\) equivalent to \(\|u\|_{H^1_{\sigma}}\). We introduce the space \(H^2_\sigma = H^2(\Omega) \cap H^1_{\sigma}\) with inner product \((u, v)_{H^2_\sigma} = (Au, Av)\) and norm \(\|u\|_{H^2_\sigma} = \|Au\|_{L^2}\), where \(A = \mathbb{P}(-\Delta)\) is the Stokes operator and \(\mathbb{P}\) is the Leray projection from \(L^2(\Omega)\) onto \(L^2_\sigma\). We recall that there exists a positive constant \(C > 0\) such that

\[
\|u\|_{H^2} \leq C \|u\|_{H^2_\sigma}, \quad \forall u \in H^2_\sigma. \tag{2.7}
\]
We denote by $A^{-1} : (H^1_0)^\prime \to H^1_0$ the inverse map of the Stokes operator. That is, given $f \in (H^1_0)^\prime$, there exists a unique $u = A^{-1}f \in H^1_0$ such that $(\nabla A^{-1}f, \nabla v) = (f, v)$, for all $v \in H^1_0$. As a consequence, it follows that $\|f\|_2 := \|\nabla A^{-1}f\| = (f, A^{-1}f)^{1/2}$ is an equivalent norm on $(H^1_0)^\prime$.

Throughout this paper, we will use the symbol C to denote a generic positive constant whose value may change from line to line. The specific value depends on the domain Ω and the parameters of the system, such as $\rho_\ast, \rho_\ast^*, \nu_\ast, \nu_\ast^*, \theta$ and θ_0. Further dependencies will be specified when necessary.

3. **Proof of Theorem 1.1. Part one: Existence of Solutions**

In the sequel we will use the following notation

$$\rho_\ast = \min\{\rho_1, \rho_2\}, \quad \rho_\ast^* = \max\{\rho_1, \rho_2\}, \quad \nu_\ast = \min\{\nu_1, \nu_2\}, \quad \nu_\ast^* = \max\{\nu_1, \nu_2\}. $$

3.1. **Approximation of the Initial Datum.** First of all, we approximate the initial concentration ϕ_0 following the argument introduced in [22]. For $k \in \mathbb{N}$, there exists a sequence of functions $(\phi_{0,k}, \tilde{\mu}_{0,k})$ such that

$$
\begin{align*}
-\Delta \phi_{0,k} + F'(\phi_{0,k}) &= \tilde{\mu}_{0,k} \quad \text{in } \Omega, \\
\partial_n \phi_{0,k} &= 0 \quad \text{on } \partial \Omega,
\end{align*}
$$

(3.1)

where $\tilde{\mu}_{0,k} = h_k \circ \tilde{\mu}_0$, h_k is a cut-off function and $\tilde{\mu}_0 = -\Delta \phi_0 + F'(\phi_0)$. It follows that $\tilde{\mu}_0 \in H^1(\Omega)$, and

$$\|\tilde{\mu}_{0,k}\|_{H^1} \leq \|\tilde{\mu}_0\|_{H^1}. $$

(3.2)

There exists a unique solution $\phi_{0,k}$ to (3.1) such that $\phi_{0,k} \in H^2(\Omega)$, $F'(\phi_{0,k}) \in L^2(\Omega)$, which satisfies (3.1) almost everywhere in Ω and $\partial_n \phi_{0,k} = 0$ almost everywhere on $\partial \Omega$. In addition, there exist $\bar{m} \in (0, 1)$, which is independent of k, and \overline{k} sufficiently large such that

$$\|\phi_{0,k}\|_{H^1} \leq 1 + \|\phi_0\|_{H^1}, \quad |\bar{m}| < 1, \quad \|\phi_{0,k}\|_{H^2} \leq C(1 + \|\tilde{\mu}_0\|), \quad \forall k > \overline{k}. $$

(3.3)

Furthermore, since

$$\|F'(\phi_{0,k})\|_{L^\infty} \leq \|\tilde{\mu}_{0,k}\|_{L^\infty} \leq k. $$

As a byproduct, there exists $\delta = \delta(k) > 0$ such that

$$\|\phi_{0,k}\|_{L^\infty} \leq 1 - \delta. $$

(3.4)

As a consequence, due to $F'(\phi_{0,k}) \in H^1(\Omega)$, it is easily seen that $\phi_{0,k} \in H^3(\Omega)$. Finally, observing that $\tilde{\mu}_{0,k} \to \tilde{\mu}_0$ in $L^2(\Omega)$, it follows that $\phi_{0,k} \to \phi_0$ in $H^1(\Omega)$.

3.2. **Definition of the Approximate Problem.** Let us consider the family of eigenfunctions $\{w_j\}_{j=1}^\infty$ and eigenvalues $\{\lambda_j\}_{j=1}^\infty$ of the Stokes operator A. For any integer $m \geq 1$, let V_m denote the finite-dimensional subspaces of L^2_0 defined as $V_m = \text{span}\{w_1, \ldots, w_m\}$. The finite-dimensional spaces V_m are endowed with the norm of L^2_0. The orthogonal projection on V_m with respect to the inner product in L^2_0 is denoted by \mathbb{P}_m. Recalling that Ω is of class C^3, the regularity theory of the Stokes operator yields that $w_j \in H^3(\Omega) \cap H^1_0$ for all $j \in \mathbb{N}$. As a consequence, the following inverse Sobolev embedding inequalities hold for all $v \in V_m$

$$\|v\|_{H^1} \leq C_m \|v\|_{L^2}, \quad \|v\|_{H^2} \leq C_m \|v\|_{L^2}, \quad \|v\|_{H^3} \leq C_m \|v\|_{L^2}. $$

(3.5)
Let us set $T > 0$. For any $k > 0, \alpha \in (0, 1)$ and $m \in \mathbb{N}$, we claim that there exists an approximate solution (u_m, ϕ_m) to the system (1.1) - (1.2) in the following sense:

$$u_m \in C^1([0, T]; V_m),$$
$$\phi_m \in L^\infty(0, T; H^3(\Omega)), \quad \partial_t \phi_m \in L^\infty(0, T; H^1(\Omega)) \cap L^2(0, T; H^2(\Omega)), \quad \phi_m \in L^\infty(\Omega \times (0, T)) : |\phi_m(x, t)| \leq 1 - \delta \text{ a.e. in } \Omega \times (0, T),$$
$$\mu_m \in L^\infty(0, T; H^2(\Omega)) \cap W^{1,2}(0, T; L^2(\Omega)), \quad (3.6)$$

for some $\delta > 0$, such that

$$\begin{align*}
(\rho(\phi_m) \partial_t u_m, w) + (\phi_m (u_m \cdot \nabla) u_m, w) + (\nu(\phi_m) D u_m, \nabla w) \\
- \frac{\rho_1 - \rho_2}{2} ((\nabla \mu_m \cdot \nabla) u_m, w) = (\mu_m \nabla \phi_m, w),
\end{align*} \quad (3.7)$$

for all $w \in V_m$ and $t \in [0, T]$,

$$\partial_t \phi_m + u_m \cdot \nabla \phi_m = \Delta \mu_m, \quad \mu_m = \alpha \partial_t \phi_m - \Delta \phi_m + \Psi'(\phi_m) \quad \text{a.e. in } \Omega \times (0, T), \quad (3.8)$$

together with

$$\begin{cases}
u_m = 0, \quad \partial_n \phi_m = \partial_n \mu_m = 0 & \text{on } \partial \Omega \times (0, T), \\
\tilde{u}_m(x, 0) = \mathbb{P}_m u_0, \quad \phi_m(x, 0) = \phi_{0,k} & \text{in } \Omega.
\end{cases} \quad (3.9)$$

3.3. **Existence of Approximate Solutions.** We exploit a fixed point argument to show the existence of (u_m, ϕ_m) satisfying (3.6)-(3.9). For this purpose, we fix $v \in W^{1,2}(0, T; V_m)$. We consider the convective Viscous Cahn-Hilliard system

$$\begin{align*}
\partial_t \phi_m + v \cdot \nabla \phi_m = \Delta \mu_m \\
\mu_m = \alpha \partial_t \phi_m - \Delta \phi_m + F'(\phi_m) - \theta_0 \phi_m
\end{align*} \quad \text{in } \Omega \times (0, T), \quad (3.10)$$

which is equipped with the boundary and initial conditions

$$\partial_n \phi_m = \partial_n \mu_m = 0 \quad \text{on } \partial \Omega \times (0, T), \quad \phi_m(x, 0) = \phi_{0,k} \quad \text{in } \Omega. \quad (3.11)$$

Thanks to Theorem A.1, there exists a unique solution ϕ_m to (3.10)-(3.11) such that

$$\phi_m \in L^\infty(0, T; \dot{H}^3(\Omega)), \quad \partial_t \phi_m \in L^\infty(0, T; \dot{H}^1(\Omega)) \cap L^2(0, T; \dot{H}^2(\Omega)),$$
$$\phi_m \in L^\infty(\Omega \times (0, T)) : |\phi_m(x, t)| \leq 1 - \tilde{\delta} \text{ a.e. in } \Omega \times (0, T),$$
$$\mu_m \in L^\infty(0, T; H^2(\Omega)) \cap W^{1,2}(0, T; L^2(\Omega)), \quad (3.12)$$

for some $\tilde{\delta}$ depending on α and k. We report the following estimates for the system (3.10)-(3.11):

[1.] L^2 estimate: for any $T > 0$

$$\sup_{t \in [0, T]} \left(\|\phi_m(t)\|_{L^2}^2 + \alpha \|\nabla \phi_m(t)\|_{L^2}^2 \right) + \int_0^T \|\Delta \phi_m(t)\|_{L^2}^2 \, dt \leq \|\phi_{0,k}\|_{L^2}^2 + \alpha \|\nabla \phi_{0,k}\|_{L^2}^2 + \theta_0^2 \|\Omega\| T.$$
3.12 Energy estimate: for any $T > 0$

$$
\sup_{t \in [0,T]} E_{\text{free}}(\phi(t)) + \frac{1}{2} \int_0^T \|\nabla \mu_m(\tau)\|_{L^2}^2 \, d\tau + \alpha \int_0^T \|\partial_t \phi_m(\tau)\|_{L^2}^2 \, d\tau
\leq E_{\text{free}}(\phi_{0,k}) + \frac{1}{2} \int_0^T \|\nu(\tau)\|_{L^2}^2 \, d\tau.
$$

(3.13)

We now make the ansatz

$$
u_m(x, t) = \sum_{j=1}^m a_j^m(t)w_j(x)
$$

as solution to the Galerkin approximation of (1.1) that reads as

$$
(\rho(\phi_m) \partial_t u_m, w_l) + (\rho(\phi_m)(v \cdot \nabla) u_m, w_l) + (\nu(\phi_m) D u_m, \nabla w_l)
- \frac{\rho_1 - \rho_2}{2} ((\nabla \mu_m, v) u_m, w_l) = (\mu_m \nabla \phi_m, w_l), \quad \forall l = 1, \ldots, m,
$$

(3.14)

such that $u_m(\cdot, 0) = \mathbb{P}_m u_0$. Setting $A^m(t) = (a_1^m(t), \ldots, a_m^m(t))^T$, (3.14) is equivalent to the system of differential equations

$$
M^m(t) \frac{d}{dt} A^m + L^m(t) A^m = G^m(t),
$$

(3.15)

where the matrices $M^m(t)$, $L^m(t)$ and the vector $G^m(t)$ are defined as

$$
(M^m(t))_{l,j} = \int_\Omega \rho(\phi_m) w_l \cdot w_j \, dx,
(L^m(t))_{l,j} = \int_\Omega \left(\rho(\phi_m)(v \cdot \nabla) w_j \cdot w_l + \nu(\phi_m) D w_j : \nabla w_l - \left(\frac{\rho_1 - \rho_2}{2} \right) (\nabla \mu_m, v) w_j \cdot w_l \right) \, dx,
(G^m(t))_l = \int_\Omega \mu_m \nabla \phi_m \cdot w_l \, dx,
$$

and $A^m(0) = ((\mathbb{P}_m u_0, w_1), \ldots, (\mathbb{P}_m u_0, w_m))^T$. The regularity properties (3.12) imply the continuity of $\phi_m \in C([0,T]; W^{1,4}(\Omega))$ and $\mu_m \in C([0,T]; H^1(\Omega))$. In turn, we have $\rho(\phi_m), \nu(\phi) \in C(\Omega \times [0, T])$. Moreover, we observe that $v \in C([0,T]; L^2)$. Thus, we infer that M^m and L^m belong to $C([0,T]; \mathbb{R}^{m \times m})$, and $G^m \in C([0,T]; \mathbb{R}^m)$. Since the matrix $M^m(\cdot)$ is definite positive on $[0,T]$ (see [23, Appendix A]), the inverse $(M^m)^{-1} \in C([0,T]; \mathbb{R}^{m \times m})$. Thus, the existence and uniqueness theorem for system of linear ODEs guarantees that there exists a unique solution $A^m \in C^1([0,T]; \mathbb{R}^m)$ to (3.15) on $[0,T]$. As a result, the problem (3.14) has a unique solution $u_m \in C^1([0,T]; V_m)$.

Next, multiplying (3.14) by a_i^m and summing over l, we find

$$
\int_\Omega \rho(\phi_m) \partial_t \left(\frac{|u_m|^2}{2} \right) \, dx + \int_\Omega \rho(\phi_m) v \cdot \nabla \left(\frac{|u_m|^2}{2} \right) \, dx + \int_\Omega \nu(\phi_m)|D u_m|^2 \, dx
- \frac{\rho_1 - \rho_2}{2} \int_\Omega \nabla \mu_m \cdot \nabla \left(\frac{|u_m|^2}{2} \right) \, dx = \int_\Omega \mu_m \nabla \phi_m \cdot u_m \, dx.
$$

Integrating by parts, we obtain

$$
\frac{d}{dt} \int_\Omega \rho(\phi_m) \frac{|u_m|^2}{2} \, dx = \int_\Omega \left(\partial_t \rho(\phi_m) + \text{div} (\rho(\phi_m)v) \right) \frac{|u_m|^2}{2} \, dx + \int_\Omega \nu(\phi_m)|D u_m|^2 \, dx
$$
Recalling that $\rho'(\phi_m) = \frac{\rho_1 - \rho_2}{2}$ and $\text{div } v = 0$, by using (3.10)\textsubscript{1}, we have

$$- \int_{\Omega} \left(\partial_t \rho(\phi_m) + \text{div} \left(\rho(\phi_m)v \right) \right) \frac{|u_m|^2}{2} \, dx + \frac{\rho_1 - \rho_2}{2} \int_{\Omega} \Delta \mu_m \frac{|u_m|^2}{2} \, dx = 0.$$

Thus, we infer that

$$\frac{d}{dt} \int_{\Omega} \rho(\phi_m) \frac{|u_m|^2}{2} \, dx + \int_{\Omega} \nu(\phi_m) \|D u_m\|^2 \, dx = \int_{\Omega} \phi_m \nabla \mu_m \cdot u_m \, dx. \quad (3.16)$$

By using (3.12)\textsubscript{2} and the Poincaré inequality, we get

$$\int_{\Omega} \phi_m \nabla \mu_m \cdot u_m \, dx \leq \|\phi_m\|_{L^\infty} \|\nabla \mu_m\|_{L^2} \|u_m\|_{L^2} \leq \frac{\nu_s}{2} \|D u_m\|_{L^2}^2 + \frac{1}{\lambda_1 \nu_s} \|\nabla \mu_m\|_{L^2}^2,$$

so, we find the differential inequality

$$\frac{d}{dt} \int_{\Omega} \rho(\phi_m) \frac{|u_m|^2}{2} \, dx + \frac{\nu_s}{2} \int_{\Omega} \|D u_m\|^2 \, dx \leq \frac{1}{\lambda_1 \nu_s} \|\nabla \mu_m\|_{L^2}^2. \quad (3.17)$$

Integrating the above inequality on $[0, s]$, with $s \in [0, T]$, and using (3.13), it follows that

$$\int_{\Omega} \frac{\rho^*}{2} |u_m(s)|^2 \, dx \leq \int_{\Omega} \rho(\phi_{0,k}) \frac{|p_m u_0|^2}{2} \, dx + \frac{2}{\lambda_1 \nu_s} E_{\text{free}}(\phi_{0,k}) + \frac{1}{\lambda_1 \nu_s} \int_0^s \|v(\tau)\|_{L^2}^2 \, d\tau, \quad (3.18)$$

which, in turn, entails that

$$\|u_m(s)\|_{L^2}^2 \leq \frac{\rho^*}{\rho_s} \|u_0\|_{L^2}^2 + \frac{4}{\lambda_1 \rho_s \nu_s} E_{\text{free}}(\phi_{0,k}) + \frac{2}{\lambda_1 \rho_s \nu_s} \int_0^s \|v(\tau)\|_{L^2}^2 \, d\tau. \quad (3.19)$$

At this point, setting

$$C_1 = \frac{\rho^*}{\rho_s} \|u_0\|_{L^2}^2 + \frac{4}{\lambda_1 \rho_s \nu_s} E_{\text{free}}(\phi_{0,k}), \quad C_2 = \frac{2}{\lambda_1 \rho_s \nu_s},$$

and assuming

$$\int_0^t \|v(\tau)\|_{L^2}^2 \, d\tau \leq C_3 e^{C_2 t}, \quad t \in [0, T], \quad (3.20)$$

where $C_3 = C_1 T$, we deduce that

$$\int_0^t \|u_m(s)\|_{L^2}^2 \, ds \leq C_3 + C_2 \int_0^t \int_0^s \|v(\tau)\|_{L^2}^2 \, d\tau \, ds \leq C_3 e^{C_2 t}, \quad \forall \, t \in [0, T]. \quad (3.21)$$

Furthermore, thanks to (3.19) and (3.20), we also infer that

$$\sup_{t \in [0, T]} \|u_m(t)\|_{L^2} \leq \left(C_1 + C_3 C_2 e^{C_2 T} \right)^{\frac{1}{2}} =: K_0. \quad (3.22)$$

Next, we control the time derivative of u_m. Multiplying (3.14) by $\frac{d}{dt} a^m_l$ and summing over l, we find

$$\rho_s \|\partial_t u_m\|_{L^2}^2 \leq - (\rho(\phi_m)(v \cdot \nabla) u_m, \partial_t u_m) - (\nu(\phi_m) D u_m, \nabla \partial_t u_m) + \frac{\rho_1 - \rho_2}{2} ((\nabla \mu_m \cdot \nabla) u_m, \partial_t u_m) + \phi_m \nabla \mu_m \cdot \partial_t u_m).$$
By exploiting (3.5), we obtain
\[
\rho_s \| \partial_t u_m \|_{L^2}^2 \leq \rho^* \| v \|_{L^2} \| \nabla u_m \|_{L^\infty} \| \partial_t u_m \|_{L^2} + \nu^* \| \mathbb{D} u_m \|_{L^2} \| \nabla \partial_t u_m \|_{L^2} \\
+ \left[\frac{\rho_1 - \rho_2}{2} \right] \| \nabla u_m \|_{L^\infty} \| \nabla \mu_m \|_{L^2} \| \partial_t u_m \|_{L^2} + \| \phi_m \|_{L^\infty} \| \nabla \mu_m \|_{L^2} \| \nabla \partial_t u_m \|_{L^2} \\
\leq \rho^* C \| v \|_{L^2} \| u_m \|_{H^3} \| \partial_t u_m \|_{L^2} + \nu^* C_m^2 \| u_m \|_{L^2} \| \partial_t u_m \|_{L^2} \\
+ C \left[\frac{\rho_1 - \rho_2}{2} \right] \| u_m \|_{H^3} \| \nabla \mu_m \|_{L^2} \| \partial_t u_m \|_{L^2} + C_m \| \nabla \mu_m \|_{L^2} \| \partial_t u_m \|_{L^2} \\
+ C_m \left[\frac{\rho_1 - \rho_2}{2} \right] \| u_m \|_{L^2} \| \nabla \mu_m \|_{L^2} \| \partial_t u_m \|_{L^2} + C_m \| \nabla \mu_m \|_{L^2} \| \partial_t u_m \|_{L^2}.
\]

Then, by using (3.13), (3.20), (3.21) and (3.22), we infer that
\[
\int_0^T \| \partial_t u_m (\tau) \|_{L^2}^2 \, d\tau \leq 4 \left(\frac{\rho^*}{\rho_s} C_m K_0 \right)^2 \int_0^T \| v(\tau) \|_{L^2}^2 \, d\tau + 4 \left(\frac{\nu^* C_m^2}{\rho_s} \right) C_3 e^{C_2 T} \\
+ 4 \left(\frac{C_m}{\rho_s} \left[\frac{\rho_1 - \rho_2}{2} \right] K_0 \right)^2 + \frac{C_m^2}{\rho_s^2} \int_0^T \| \nabla \mu_m (\tau) \|_{L^2} \, d\tau \\
\leq 4 \left(\frac{\rho^*}{\rho_s} C_m K_0 \right)^2 + \left(\frac{\nu^* C_m}{\rho_s} \right)^2 \left(2 E_{\text{free}}(\phi_{0,k}) + C_3 e^{C_2 T} \right) =: K_1^2,
\]

where K_1 depends only on ρ_s, ρ^*, ν^*, θ_0, $\| u_0 \|_{L^2}$, $E_{\text{free}}(\phi_0)$, T, Ω, m.

Now we define the setting of the fixed point argument. We introduce the set
\[
S = \left\{ u \in W^{1,2}(0, T; V_m) : \int_0^t \| u(\tau) \|_{L^2}^2 \, d\tau \leq C_3 e^{C_2 t}, \quad t \in [0, T], \quad \| \partial_t u \|_{L^2(0, T; V_m)} \leq K_1 \right\},
\]
which is a subset of $L^2(0, T; V_m)$. We define the map
\[
\Lambda : S \to L^2(0, T; V_m), \quad \Lambda(u) = u_m,
\]
where u_m is the solution to the system (3.14). In light of (3.21) and (3.23), we deduce that $\Lambda : S \to S$. It is easily seen that S is convex and closed. Furthermore, S is a compact set in $L^2(0, T; V_m)$. We are left to prove that the map Λ is continuous. This is done by adapting the argument in [21, Proof of Theorem 3.1] to the viscous case. Let us consider a sequence $\{ v_n \} \subset S$ such that $v_n \to \bar{v}$ in $L^2(0, T; V_m)$. By arguing as above, there exists a sequence $\{ (\psi_n, \mu_n) \}$ and $\bar{\psi}$ that solve the convective viscous Cahn-Hilliard equation (3.10)-(3.11), where v is replaced by v_n and \bar{v}, respectively. Repeating the uniqueness argument in the proof of Theorem A.1, we have
\[
\frac{1}{2} \frac{d}{dt} \left(\| \nabla A^{-1}(\psi_n - \bar{\psi}) \|_{L^2}^2 + \alpha \| \psi_n - \bar{\psi} \|_{L^2}^2 \right) + \| \nabla (\psi_n - \bar{\psi}) \|_{L^2}^2 \\
\leq \int_{\Omega} \psi_n (v_n - \bar{v}) \cdot \nabla A^{-1}(\psi_n - \bar{\psi}) \, dx + \int_{\Omega} (\psi_n - \bar{\psi}) \bar{v} \cdot \nabla A^{-1}(\psi_n - \bar{\psi}) \, dx + \theta_0 \| \psi_n - \bar{\psi} \|_{L^2}^2,
\]
where the operator A is the Laplace operator $-\Delta$ with homogeneous Neumann boundary conditions. Since \tilde{v} belong to S, we infer that
\[
\frac{1}{2} \frac{d}{dt} f(t) + \frac{1}{2} \| \nabla (\psi_n - \tilde{\psi}) \|^2_{L^2} \leq C f(t) + \| \nu_n - \tilde{\nu} \|^2_{L^2},
\]
where $f(t) = \| \nabla A^{-1}(\psi_n(t) - \tilde{\psi}(t)) \|^2_{L^2} + \alpha \| \psi_n(t) - \tilde{\psi}(t) \|^2_{L^2}$, for some constant C depending on C_1, C_2, K_1 and θ_0. Observing that $\psi_n(0) - \tilde{\psi}(0) = 0$, by the Gronwall lemma we obtain
\[
\| \psi_n - \tilde{\psi} \|_{L^\infty(0,T;L^2(\Omega))} \leq e^{CT} \int_0^T \| \nu_n(\tau) - \tilde{\nu}(\tau) \|^2_{L^2} d\tau \to 0, \quad \text{as } n \to \infty. \tag{3.24}
\]
On the other hand, using that $\{\nu_n\}$ and \tilde{v} belong to S, the continuous embedding $W^{1,2}(0, T; V_n) \hookrightarrow Y_T$ (see Appendix A for the definition of Y_T and the properties of the initial condition $\phi_{0,k}$ (cf. $\phi_{0,k} \in H^3(\Omega)$ and (3.4)) it follows from Theorem A.1 that
\[
\| \partial_t \psi_n \|_{L^\infty(0,T;H^1(\Omega))} + \| \partial_t \psi_n \|_{L^2(0,T;H^2(\Omega))} \leq C, \tag{3.25}
\]
\[
\| \partial_t \tilde{\psi} \|_{L^\infty(0,T;H^1(\Omega))} + \| \partial_t \tilde{\psi} \|_{L^2(0,T;H^2(\Omega))} \leq C, \tag{3.26}
\]
for some C independent of n. Moreover, we also have
\[
\| \mu_n \|_{L^\infty(0,T;H^1(\Omega))} + \| \nu_n \|_{L^\infty(0,T;H^1(\Omega))} \leq C, \tag{3.27}
\]
\[
\| \tilde{\mu} \|_{L^\infty(0,T;H^1(\Omega))} + \| \tilde{\psi} \|_{L^\infty(0,T;H^1(\Omega))} \leq C, \tag{3.28}
\]
\[
\| \partial_t \mu_n \|_{L^2(0,T;L^2(\Omega))} \leq C, \quad \| \partial_t \tilde{\mu} \|_{L^2(0,T;L^2(\Omega))} \leq C, \tag{3.29}
\]
and
\[
\max_{(x,t) \in \Omega \times (0,T)} | \psi_n(x,t) | \leq 1 - \delta^*, \quad \max_{(x,t) \in \Omega \times (0,T)} | \tilde{\psi}(x,t) | \leq 1 - \delta^*, \tag{3.30}
\]
for some positive C and $\delta^* \in (0, 1)$, which are independent of n. In light of the above estimates, we first observe that $\mu_n - \tilde{\mu} \to \mu^*$ in $L^\infty(0,T;L^2(\Omega))$. Our goal is to show that $\mu^* = 0$. To this aim, we use the equation
\[
\mu_n - \tilde{\mu} = \varepsilon \partial_t (\psi_n - \tilde{\psi}) - \Delta (\psi_n - \tilde{\psi}) + \Psi'(\psi_n) - \Psi'(\tilde{\psi}).
\]
By standard interpolation, we deduce from (3.24), (3.27) and (3.28) that
\[
\| \psi_n - \tilde{\psi} \|_{L^\infty(0,T;H^2(\Omega))} \to 0, \quad \text{as } n \to \infty. \tag{3.31}
\]
As a consequence, thanks to (3.30), $\| \Psi'(\psi_n) - \Psi'(\tilde{\psi}) \|_{L^\infty(0,T;L^2(\Omega))} \to 0$, as $n \to \infty$. On the other hand, it follows from (3.24), (3.25) and (3.26) that $\partial_t (\psi_n - \tilde{\psi}) \to 0$ weakly in $L^2(0,T;H^2(\Omega))$. Thus, by uniqueness of the weak limit, we can conclude that
\[
\| \mu_n - \tilde{\mu} \|_{L^\infty(0,T;L^2(\Omega))} \to 0, \quad \text{as } n \to \infty. \tag{3.32}
\]
We now define $u_n = \Lambda(\nu_n) \in S$, for any $n \in \mathbb{N}$, and $\tilde{u} = \Lambda(\tilde{\nu}) \in S$. We consider $u = u_n - \tilde{u}$, $\psi = \psi_n - \tilde{\psi}$, $\nu = \nu_n - \tilde{\nu}$, and $\mu = \mu_n - \tilde{\mu}$ that solve
\[
(\rho(\psi_n) \partial_t u, w) + ((\rho(\psi_n) - \rho(\tilde{\psi})) \partial_t \tilde{u}, w) + (\rho(\psi_n)(\nu_n \cdot \nabla) u_n - \rho(\tilde{\psi})(\nu \cdot \nabla) \tilde{u}, w)
\]
\[
+ (\nu(\psi_n) \nabla u, \nabla w) + ((\nu(\psi_n) - \nu(\tilde{\psi})) \nabla \tilde{u}, \nabla w)
\]
\[
- \frac{p_1 - p_2}{2} ((\nabla \mu_n \cdot \nabla) u_n - (\nabla \nu \cdot \nabla) \tilde{u}, w) = (\mu_n \nabla \psi_n - \tilde{\mu} \nabla \tilde{\psi}, w),
\]
for all \(w \in V_m \), for all \(t \in [0, T] \). Taking \(w = u \), we obtain
\[
\frac{1}{2} \frac{d}{dt} \int_{\Omega} \rho(\psi_n) |u|^2 \, dx + \int_{\Omega} \nu(\psi_n) |D u|^2 \, dx = \frac{\rho_1 - \rho_2}{4} \int_{\Omega} \partial_t \psi_n |u|^2 \, dx - \frac{\rho_1 - \rho_2}{2} \int_{\Omega} \psi(\partial_t \tilde{u} \cdot u) \, dx
\]
\[
- \int_{\Omega} \left(\rho(\psi_n)(v \cdot \nabla)u_n - \rho(\tilde{\psi})(\tilde{v} \cdot \nabla)\tilde{u} \right) \cdot u \, dx - \frac{\nu_1 - \nu_2}{2} \int_{\Omega} \psi(D \tilde{u} : D u) \, dx
\]
\[
+ \frac{\rho_1 - \rho_2}{2} \int_{\Omega} \left((\nabla \mu_n \cdot \nabla)u_n - (\nabla \tilde{\mu} \cdot \nabla)\tilde{u} \right) \cdot u \, dx + \int_{\Omega} \left(\mu_n \nabla \psi_n - \tilde{\mu} \nabla \tilde{\psi} \right) \cdot u \, dx.
\]
Thanks to (2.6) and (3.25), we have
\[
\frac{\rho_1 - \rho_2}{4} \int_{\Ω} \partial_t \psi_n |u|^2 \, dx \leq C \| \partial_t \psi_n \|_{L^6} \| u \|_{L^2} \| u \|_{L^3} \leq \frac{\nu_s}{10} \| D u \|_{L^2}^2 + C \| u \|_{L^2}^2,
\]
and
\[
- \frac{\rho_1 - \rho_2}{2} \int_{\Ω} \psi(\partial_t \tilde{u} \cdot u) \, dx \leq C \| \psi \|_{L^\infty} \| \partial_t \tilde{u} \|_{L^2} \| u \|_{L^2} \leq C \| u \|_{L^2}^2 + C \| \partial_t \tilde{u} \|_{L^2} \| \psi \|_{H^2}^2.
\]
Noticing that \(v_n, \tilde{v}, u_n \in S \), by exploiting (2.6) and (3.5), we find
\[
- \int_{\Omega} \left(\rho(\psi_n)(v \cdot \nabla)u_n - \rho(\tilde{\psi})(\tilde{v} \cdot \nabla)\tilde{u} \right) \cdot u \, dx
\]
\[
= - \frac{\rho_1 - \rho_2}{2} \int_{\Omega} \psi((v \cdot \nabla)u_n) \cdot u \, dx - \int_{\Omega} \rho(\tilde{\psi})((\tilde{v} \cdot \nabla)u_n) \cdot u \, dx - \int_{\Omega} \rho(\tilde{\psi})((\tilde{v} \cdot \nabla)u_n) \cdot u \, dx
\]
\[
\leq C \| \psi \|_{L^\infty} \| v \|_{L^\infty} \| \nabla u_n \|_{L^2} \| u \|_{L^2} + C \| v \|_{L^2} \| \nabla u_n \|_{L^2} \| u \|_{L^2} + C \| \tilde{v} \|_{L^\infty} \| \nabla u \|_{L^2} \| u \|_{L^2}
\]
\[
\leq C_m \| \psi \|_{H^2} \| u \|_{L^2} + C_m \| v \|_{L^2} \| u \|_{L^2} + C \| \nabla u \|_{L^2} \| u \|_{L^2}
\]
\[
\leq \frac{\nu_s}{10} \| D u \|_{L^2}^2 + C_m \| u \|_{L^2}^2 + C_m \| \psi \|_{H^2}^2 + C_m \| v \|_{L^2}^2.
\]
In addition, we deduce that
\[
- \frac{\nu_1 - \nu_2}{2} \int_{\Omega} \psi(D \tilde{u} : D u) \, dx \leq C \| \psi \|_{L^\infty} \| D \tilde{u} \|_{L^2} \| D u \|_{L^2} \leq \frac{\nu_s}{10} \| D u \|_{L^2}^2 + C_m \| \psi \|_{H^2}^2,
\]
and
\[
\frac{\rho_1 - \rho_2}{2} \int_{\Omega} \left((\nabla \mu_n \cdot \nabla)u_n - (\nabla \tilde{\mu} \cdot \nabla)\tilde{u} \right) \cdot u \, dx
\]
\[
= - \frac{\rho_1 - \rho_2}{2} \int_{\Ω} (\mu_n \Delta u_n - \tilde{\mu} \Delta \tilde{u}) \cdot u \, dx - \frac{\rho_1 - \rho_2}{2} \int_{\Ω} (\mu_n \nabla u_n - \tilde{\mu} \nabla \tilde{u}) : \nabla u \, dx
\]
\[
= - \frac{\rho_1 - \rho_2}{2} \int_{\Ω} (\mu_n \Delta u_n + \tilde{\mu} \Delta \tilde{u}) \cdot u \, dx - \frac{\rho_1 - \rho_2}{2} \int_{\Ω} (\mu \nabla u_n + \tilde{\mu} \nabla \tilde{u}) : \nabla u \, dx
\]
\[
\leq C \| \mu \|_{L^\infty} \| \Delta u_n \|_{L^2} \| u \|_{L^\infty} + C \| \tilde{\mu} \|_{L^\infty} \| \Delta \tilde{u} \|_{L^2} \| u \|_{L^3}
\]
\[
+ C \| \mu \|_{L^\infty} \| \nabla u_n \|_{L^6} \| \nabla u \|_{L^3} + C \| \tilde{\mu} \|_{L^\infty} \| \nabla \tilde{u} \|_{L^6} \| \nabla u \|_{L^3}
\]
\[
\leq C_m \| \mu \|_{L^2} \| \nabla u \|_{L^2} + C_m \| \nabla u \|_{L^2} \| u \|_{L^2}
\]
Finally, by (3.27)-(3.28), we have
\[
\int_\Omega (\mu_n \nabla \psi_n - \bar{\mu} \nabla \tilde{\psi}) \cdot \mathbf{u} \, dx \leq (\|\mu\|_{L^2} \|
abla \psi_n\|_{L^2} + \|\bar{\mu}\|_{L^2} \|\nabla \psi\|_{L^2}) \|\mathbf{u}\|_{L^2}
\leq C (\|\mu\|_{L^2} + \|\psi\|_{H^2}) \|
abla \mathbf{u}\|_{L^2}
\leq \frac{\nu_*}{10} \|\nabla \mathbf{u}\|_{L^2}^2 + C \|\mu\|_{L^2}^2 + C \|\nabla \psi\|_{H^2}^2.
\]
Combining the above inequalities, we are led to the differential inequality
\[
\frac{d}{dt} \int_\Omega \rho(\psi_n) |\mathbf{u}|^2 \, dx \leq h_1(t) \int_\Omega \rho(\psi_n) |\mathbf{u}|^2 \, dx + h_2(t),
\]
where
\[
h_1(t) = C_m \left(1 + \|\partial_t \psi_n(t)\|_{H^1}^2\right)
\]
and
\[
h_2(t) = C_m \left(\|\nabla \mathbf{u}^\prime(t)\|_{L^2}^2 \|\psi(t)\|_{H^2}^2 + \|\psi(t)\|_{H^2}^2 + \|\mathbf{v}(t)\|_{L^2}^2 + \|\mu(t)\|_{L^2}^2\right).
\]
Thus, the Gronwall lemma entails
\[
\sup_{t \in [0,T]} \|\mathbf{u}(t)\|_{L^2}^2 \leq \frac{1}{\rho_*} e^{\int_0^t h_1(\tau) d\tau} \int_0^T h_2(\tau) d\tau.
\]
On account of (3.25), (3.31), (3.32), and the convergence \(v_n \to \tilde{\nu}\) in \(L^2(0, T; V_m)\), we deduce that \(u_n \to \tilde{\mathbf{u}}\) in \(L^\infty(0, T; V_m)\), implying that the map \(\Lambda\) is continuous. Finally, we are in the position to apply the Schauder fixed point theorem and conclude that the map \(\Lambda\) has a fixed point in \(S\), which gives the existence of the approximate solution \((\mathbf{u}_m, \phi_m)\) on \([0, T]\) satisfying (3.6)-(3.9) for any \(m \in \mathbb{N}\).

3.4. Uniform estimates independent of the approximation parameters. First, integrating (3.8) over \(\Omega\)
\[
\int_\Omega \phi_m(t) \, dx = \int_\Omega \phi_{0,k} \, dx, \quad \forall \, t \in [0, T].
\]
Owing to (3.3), for \(k > \overline{k}\), \(|\phi_m(t)| \leq \overline{m} < 1\) for all \(t \in [0, T]\). Taking \(w = \mathbf{u}_m\) in (3.7) and integrating by parts, we have (cf. (3.16))
\[
\frac{d}{dt} \int_\Omega \frac{1}{2} \rho(\phi_m) |\mathbf{u}_m|^2 \, dx + \int_\Omega \nu(\phi_m) |\nabla \mathbf{u}_m|^2 \, dx = \int_\Omega \mu_m \nabla \phi_m \cdot \mathbf{u}_m \, dx.
\]
Multiplying (3.10) by \(\mu_m\), integrating over \(\Omega\) and exploiting the definition of \(\mu_m\), we find
\[
\frac{d}{dt} \left(\int_\Omega \frac{1}{2} |\nabla \phi_m|^2 + \Psi(\phi_m) \, dx\right) + \int_\Omega |\nabla \mu_m|^2 + \alpha |\partial_t \phi_m|^2 \, dx + \int_\Omega \mathbf{u}_m \cdot \nabla \phi_m \mu_m \, dx = 0.
\]
By summing (3.35) and (3.36), we reach
\[
\frac{d}{dt} E(\mathbf{u}_m, \phi_m) + \int_\Omega \nu(\phi_m) |\nabla \mathbf{u}_m|^2 \, dx + \int_\Omega |\nabla \mu_m|^2 \, dx = 0.
\]
An integration in time on \([0, t]\), with \(0 < t \leq T\), yields
\[
E(\mathbf{u}_m(t), \phi_m(t)) + \int_0^t \int_\Omega \nu(\phi_m) |\nabla \mathbf{u}_m|^2 \, dx + \int_0^t \int_\Omega |\nabla \mu_m|^2 \, dx = E(\mathbb{P}_m \mathbf{u}_0, \phi_{0,k}), \quad \forall \, t \in [0, T].
\]
Thanks to (3.3) and (3.4), we observe that
\[
E(\mathbb{P}_m u_0, \phi_{0,k}) \leq \frac{\rho^*}{2} \|u_0\|_{L^2}^2 + \frac{1}{2} \|\phi_0\|_{H^1}^2 + \theta_0 \left(1 + |\Omega| \max_{s \in [-1,1]} |\Psi(s)| \right).
\]
Since \(\phi_m \in L^\infty(\Omega \times (0,T)) : |\phi_m(x,t)| < 1 \) almost everywhere in \(\Omega \times (0,T), \) we obtain
\[
\|u_m\|_{L^\infty(0,T;L^2)} + \|u_m\|_{L^2(0,T;H^1)} \leq C,
\]
(3.38)
\[
\|\phi_m\|_{L^\infty(0,T;H^1(\Omega))} \leq C,
\]
(3.39)
\[
\|\nabla \mu_m\|_{L^2(0,T;L^2(\Omega))} \leq C,
\]
(3.40)
\[
\sqrt{\alpha} \|\partial_t \phi_m\|_{L^2(0,T;L^2(\Omega))} \leq C,
\]
(3.41)
where the constant \(C \) depends on \(\|u_0\|_{L^2} \) and \(\|\phi_0\|_{H^1}, \) but is independent of \(m, \alpha \) and \(k. \) Multiplying (3.10) by \(-\Delta \phi_m, \) integrating over \(\Omega \) and using (3.12), we get
\[
\|\Delta \phi_m\|_{L^2}^2 + \int_\Omega F''(\phi_m)|\nabla \phi_m|^2 \, dx = \alpha \int_\Omega \partial_t \phi_m \Delta \phi_m \, dx + \int_\Omega \nabla \mu_m \cdot \nabla \phi_m \, dx + \theta_0 \|\nabla \phi_m\|_{L^2}^2.
\]
(3.42)
Since \(F''(s) > 0 \) for \(s \in (-1,1), \) by using (3.39), we have
\[
\|\Delta \phi_m\|_{L^2}^2 \leq C \left(1 + \|\nabla \mu_m\|_{L^2}^2 + \alpha^2 \|\partial_t \phi_m\|_{L^2}^2\right) ,
\]
for some \(C \) independent of \(m. \) Then, it follows from (3.40) and (3.41) that
\[
\|\phi_m\|_{L^2(0,T;H^2(\Omega))} \leq C.
\]
(3.43)
We now recall the well-known inequality (see [28])
\[
\int_\Omega |F'(\phi_m)| \, dx \leq C \int_\Omega F'(\phi_m)(\phi_m - \bar{\phi}_{0,k}) \, dx + C,
\]
(3.44)
where the constant \(C \) depends only on \(\bar{\phi}_{0,k}, \) thereby it is independent of \(k \) (for \(k \) large). Then, multiplying (3.8) by \(\phi_m - \bar{\phi}_{0,k} \) (cf. (3.34)), we find
\[
\int_\Omega |\nabla \phi_m|^2 \, dx + \int_\Omega F'(\phi_m)(\phi_m - \bar{\phi}_{0,k}) \, dx \\
= -\alpha \int_\Omega \partial_t \phi_m (\phi_m - \bar{\phi}_{0,k}) \, dx + \int_\Omega (\mu - \bar{\mu}) \phi_m \, dx + \theta_0 \int_\Omega \phi_m (\phi_m - \bar{\phi}_{0,k}) \, dx.
\]
By the Poincaré inequality and (3.39), we obtain
\[
\left| \int_\Omega F'(\phi_m)(\phi_m - \bar{\phi}_{0,k}) \, dx \right| \leq C \left(1 + \|\nabla \mu_m\|_{L^2} + \alpha \|\partial_t \phi_m\|_{L^2}\right).
\]
(3.45)
Since \(\bar{\mu}_m = F'(\bar{\phi}_m) - \theta_0 \bar{\phi}_{0,k} \), we infer from (3.44) and (3.45) that
\[
\|\bar{\mu}_m\| \leq C \left(1 + \|\nabla \mu_m\|_{L^2} + \alpha \|\partial_t \phi_m\|_{L^2}\right).
\]
Thanks to (2.1), we have
\[
\|\mu_m\|_{H^1} \leq C \left(1 + \|\nabla \mu_m\|_{L^2} + \alpha \|\partial_t \phi_m\|_{L^2}\right).
\]
(3.46)
As a direct consequence, we deduce that
\[
\|\mu_m\|_{L^2(0,T;H^1(\Omega))} \leq C,
\]
(3.47)
for some constant C independent of m, α and k. In addition, using the boundary conditions (3.9) and (3.38), we find
\[
\| \partial_t \phi_m \|_{(H^1)'(\Omega)} \leq C (1 + \| \nabla \mu_m \|_{L^2}) ,
\]
which, in turn, implies that
\[
\| \partial_t \phi_m \|_{L^2(0,T;(H^1(\Omega))')} \leq C.
\]
Next, taking $w = \partial_t u_m$ in (3.7), we find
\[
\frac{1}{2} \frac{d}{dt} \int_\Omega \nu(\phi_m) \| \nabla \phi_m \|^2 \, dx + \int_\Omega \rho(\phi_m) \| \partial_t \phi_m \|^2 \, dx
\]
\[
= - \int_\Omega \rho(\phi_m) (u_m \cdot \nabla) \phi_m \cdot \partial_t u_m \, dx + \frac{\nu_1 - \nu_2}{2} \int_\Omega \partial_t \phi_m \| \nabla \phi_m \|^2 \, dx
\]
\[
+ \frac{\rho_1 - \rho_2}{2} \int_\Omega (\nabla u_m) \cdot \partial_t u_m \, dx + \int_\Omega \mu \nabla \phi_m \cdot \partial_t u_m \, dx. \tag{3.49}
\]
Thanks to the regularity of μ (cf. (3.12)), we multiply (3.8) by $\partial_t \mu_m$ and integrate over Ω
\[
\frac{1}{2} \frac{d}{dt} \int_\Omega \| \nabla \mu_m \|^2 \, dx + (\partial_t \mu_m, \partial_t \phi_m) + (\partial_t \mu_m, u_m \cdot \nabla \phi_m) = 0.
\]
Direct computations give that
\[
(\partial_t \mu_m, \partial_t \phi_m) = \alpha (\partial_t \mu_m, \partial_t \phi_m) + \| \nabla \partial_t \phi_m \|^2_{L^2} + \int_\Omega F''(\phi_m) |\partial_t \phi_m|^2 \, dx - \theta_0 \| \partial_t \phi_m \|^2_{L^2}
\]
and
\[
(\partial_t \mu_m, u_m \cdot \nabla \phi_m) = \frac{d}{dt} \left(\int_\Omega \mu \nabla u_m \cdot \nabla \phi_m \, dx \right) - \int_\Omega \mu \partial_t u_m \cdot \nabla \phi_m \, dx - \int_\Omega \mu u_m \cdot \nabla \partial_t \phi_m \, dx.
\]
As a result, we find
\[
\frac{d}{dt} \left(\int_\Omega \frac{1}{2} \| \nabla \mu_m \|^2 \, dx + \int_\Omega \frac{\alpha}{2} |\partial_t \phi_m|^2 \, dx + \int_\Omega \mu u_m \cdot \nabla \phi_m \, dx \right) + \| \nabla \partial_t \phi_m \|^2_{L^2}
\]
\[
\leq \theta_0 \| \partial_t \phi_m \|^2_{L^2} + \int_\Omega \mu \partial_t u_m \cdot \nabla \phi_m \, dx + \int_\Omega \mu u_m \cdot \nabla \partial_t \phi_m \, dx. \tag{3.50}
\]
By summing (3.49) and (3.50), we arrive at
\[
\frac{d}{dt} H_m + \rho_s \| \partial_t u_m \|^2_{L^2} + \| \nabla \partial_t \phi_m \|^2_{L^2}
\]
\[
\leq - \int_\Omega \rho(\phi_m) (u_m \cdot \nabla) u_m \cdot \partial_t u_m \, dx + \frac{\nu_1 - \nu_2}{2} \int_\Omega \partial_t \phi_m \| \nabla \phi_m \|^2 \, dx
\]
\[
+ \frac{\rho_1 - \rho_2}{2} \int_\Omega (\nabla u_m) \cdot \partial_t u_m \, dx + 2 \int_\Omega \mu \nabla \phi_m \cdot \partial_t u_m \, dx + \theta_0 \| \partial_t \phi_m \|^2_{L^2} + \int_\Omega \mu u_m \cdot \nabla \partial_t \phi_m \, dx \tag{3.51}
\]
\[
= \sum_{k=1}^{6} R_k,
\]
Similarly, it is easily seen that for some C where
\[|\int_{\Omega} \mu_m u_m \cdot \nabla \phi_m \, dx| \leq \mu_m ||u_m||_{L^6} ||\nabla \phi_m||_{L^2} \]
\[\leq C \left(1 + ||\nabla \mu_m||_{L^2} + \alpha ||\partial_t \phi_m||_{L^2}\right) ||\nabla u_m||_{L^2}^\frac{3}{2} \]
\[\leq \frac{1}{4} \int_{\Omega} \nu(\phi_m) ||\nabla u_m||^2 \, dx + \frac{1}{4} ||\nabla \mu_m||_{L^2}^2 + \frac{\alpha}{4} ||\partial_t \phi_m||_{L^2}^2 + C_0, \]
for some C_0 independent of m, α and k. Thus, it follows that
\[H_m \geq \frac{1}{4} \int_{\Omega} \nu(\phi_m) ||\nabla u_m||^2 \, dx + \frac{1}{4} ||\nabla \mu_m||_{L^2}^2 + \frac{\alpha}{4} ||\partial_t \phi_m||_{L^2}^2 - C_0. \] (3.52)
Similarly, it is easily seen that
\[H_m \leq \int_{\Omega} \nu(\phi_m) ||\nabla u_m||^2 \, dx + ||\nabla \mu_m||_{L^2}^2 + \alpha ||\partial_t \phi_m||_{L^2}^2 + \tilde{C}_0, \] (3.53)
for some \tilde{C}_0 independent of m, α and k. Before proceeding with the estimate of the terms R_i, $i = 1, \ldots, 7$, we need to control the norms $||Au_m||_{L^2}$ and $||\mu_m||_{H^3}$. To this aim, taking $w = Au_m$ in (3.14), we have
\[-\frac{1}{2} \nu(\phi_m) \Delta u_m, Au_m = - (\rho(\phi_m) \partial_t u_m, Au_m) - (\rho(\phi_m) (u_m \cdot \nabla)u_m, Au_m) \]
\[+ \frac{\rho_1 - \rho_2}{2} (\nabla \mu_m \cdot \nabla)u_m, Au_m) + (\mu_m \nabla \phi_m, Au_m) \] (3.54)
+ \[\nu_1 - \nu_2 \frac{1}{2} (\nabla u_m \nabla \phi_m, Au_m). \]
By arguing as in [22] (see also [21]), there exists $\pi_m \in C([0, T]; H^1(\Omega))$ such that $-\Delta u_m + \nabla \pi_m = Au_m$ almost everywhere in $\Omega \times (0, T)$ and satisfies
\[||\pi_m||_{L^2} \leq C ||\nabla u_m||_{L^2}^\frac{3}{2} ||Au_m||_{L^2}^\frac{1}{2}, \quad ||\pi_m||_{H^1} \leq C ||Au_m||_{L^2}, \] (3.55)
where C is independent of m, α and k. Therefore, we obtain
\[\frac{1}{2} \nu(\phi_m) Au_m, Au_m = - (\rho(\phi_m) \partial_t u_m, Au_m) - (\rho(\phi_m) (u_m \cdot \nabla)u_m, Au_m) \]
\[+ \frac{\rho_1 - \rho_2}{2} (\nabla \mu_m \cdot \nabla)u_m, Au_m) + (\mu_m \nabla \phi_m, Au_m) \]
\[+ \frac{\nu_1 - \nu_2}{2} (\nabla u_m \nabla \phi_m, Au_m) - \frac{\nu_1 - \nu_2}{4} (\nabla \pi_m \nabla \phi_m, Au_m) \] (3.56)
\[= \sum_{i=7}^{12} R_i. \]
On the other hand, taking the gradient of (3.8), multiplying it by $\nabla \Delta \mu$ and integrating over Ω, we find
\[||\nabla \Delta \mu_m||_{L^2}^2 = (\nabla \partial_t \phi_m, \nabla \Delta \mu_m) + (\nabla (u_m \cdot \nabla \phi_m), \nabla \Delta \mu_m). \] (3.57)
Then, in light of (3.8)$_1$ and (3.9)$_1$, it follows that
\[\|\mu_m\|^2_{H^3} \leq C \left(\|\mu_m\|^2_{H^1} + \|\nabla\Delta\mu_m\|^2_{L^2} \right), \]
which, in turn, by (3.52) gives that
\[\|\mu_m\|^2_{H^3} \leq C \left(1 + \|\nabla\mu_m\|^2_{L^2} + \alpha^2\|\partial_t\phi_m\|^2_{L^2} + (\nabla\partial_t\phi_m, \nabla\Delta\mu_m) + (\nabla(u_m \cdot \nabla\phi_m), \nabla\Delta\mu_m) \right) \]
\[= C \left(1 + C_0 + H_m \right) + \sum_{i=13}^{14} R_i, \tag{3.58} \]
where C is independent of m, α and k. Now, multiplying (3.56) and (3.58) by two positive constants ϖ_1 and ϖ_2 (which will be chosen later on), respectively, and summing them to (3.51), we obtain
\[\frac{d}{dt} H_m + \rho_s\|\partial_t u_m\|^2_{L^2} + \|\nabla\partial_t\phi_m\|^2_{L^2} + \frac{\nu_s\varpi_1}{2}\|A_u_m\|^2_{L^2} + \varpi_2\|\mu_m\|^2_{H^3} \]
\[\leq C \left(1 + \varpi_2 \right) \left(1 + C_0 + H_m \right) + \sum_{i=1}^{6} R_i + \varpi_1 \sum_{i=7}^{12} R_i + \varpi_2 \sum_{i=13}^{14} R_i. \tag{3.59} \]
Let us proceed with the estimate of the terms R_i, $i = 1, \ldots, 14$. In the sequel the generic constant C may depend on ϖ_1 and ϖ_2. Exploiting (2.2), (2.6), (3.38) and (3.52), we have
\[\left| - \int_{\Omega} \rho(\phi_m)(u_m \cdot \nabla)u_m \cdot \partial_t u_m \, dx \right| \leq \rho_s\|u_m\|^6_{L^\infty} \|\nabla u_m\|^3_{L^3} \|\partial_t u_m\|^2_{L^2} \]
\[\leq \frac{\rho_s}{8} \|\partial_t u_m\|^2_{L^2} + C \|\nabla u_m\|^3_{L^2} \|A_u_m\|_{L^2} \]
\[\leq \frac{\rho_s}{8} \|\partial_t u_m\|^2_{L^2} + \frac{\nu_s\varpi_1}{32} \|A_u_m\|^2_{L^2} + C \|\nabla u_m\|^6_{L^2} \]
\[\leq \frac{\rho_s}{8} \|\partial_t u_m\|^2_{L^2} + \frac{\nu_s\varpi_1}{32} \|A_u_m\|^2_{L^2} + C \left(C_0 + H_m \right)^3. \]
By Sobolev embedding, (2.2) and (3.52), we obtain
\[\left| \frac{\nu_1 - \nu_2}{2} \int_{\Omega} \partial_t\phi_m \|\nabla u_m\|^2 \, dx \right| \leq C \|\partial_t\phi_m\|_{L^6} \|\nabla u_m\|_{L^3} \|\nabla u_m\|_{L^2} \]
\[\leq \frac{1}{8} \|\nabla\partial_t\phi_m\|^2_{L^2} + C \|A_u_m\|^3_{L^2} \|\nabla u_m\|_{L^2} \]
\[\leq \frac{1}{8} \|\nabla\partial_t\phi_m\|^2_{L^2} + \frac{\nu_s\varpi_1}{32} \|A_u_m\|^2_{L^2} + C \|\nabla u_m\|^3_{L^2} \]
\[\leq \frac{1}{8} \|\nabla\partial_t\phi_m\|^2_{L^2} + \frac{\nu_s\varpi_1}{32} \|A_u_m\|^2_{L^2} + C \left(C_0 + H_m \right)^3. \]
By Sobolev interpolation, (2.3) and (3.46), we get
\[
\left| \frac{\rho_1 - \rho_2}{2} \int_\Omega (\nabla \mu_m \cdot \nabla) u_m \cdot \partial_t u_m \, dx \right| \leq C \| \nabla \mu_m \|_{L^\infty} \| \nabla u_m \|_{L^2} \| \partial_t u_m \|_{L^2}
\]
\[
\leq C \| \nabla \mu_m \|_{H^1} \| \mu_m \|_{H^3} \| \nabla u_m \|_{L^2} \| \partial_t u_m \|_{L^2}
\]
\[
\leq \frac{\rho_s}{8} \| \partial_t u_m \|_{L^2}^2 + C \| \nabla \mu_m \|_{H^1} \| \mu_m \|_{H^3} \| \nabla u_m \|_{L^2}^2
\]
\[
\leq \frac{\rho_s}{8} \| \partial_t u_m \|_{L^2}^2 + \frac{\omega_2}{6} \| \mu_m \|_{H^3}^2 + C \| \nabla \mu_m \|_{L^2} \| \nabla u_m \|_{L^2}^8
\]
\[
\leq \frac{\rho_s}{8} \| \partial_t u_m \|_{L^2}^2 + \frac{\omega_2}{6} \| \mu_m \|_{H^3}^2 + C (C_0 + H_m)^5.
\]

Exploiting (3.42), (3.46),(3.48) and (3.52), we find
\[
\left| \int_\Omega \mu_m \nabla \phi_m \cdot \partial_t u_m \, dx \right| \leq 2 \| \mu_m \|_{L^6} \| \nabla \phi_m \|_{L^4} \| \partial_t u_m \|_{L^2}
\]
\[
\leq \frac{\rho_s}{8} \| \partial_t u_m \|_{L^2}^2 + C \| \phi_m \|_{H^1} \| \mu_m \|_{H^3}^2
\]
\[
\leq \frac{\rho_s}{8} \| \partial_t u_m \|_{L^2}^2 + C \left(1 + \| \nabla \mu_m \|_{L^2}^2 + \alpha^2 \| \partial_t \phi_m \|_{L^2}^2 \right)^2
\]
\[
\leq \frac{\rho_s}{8} \| \partial_t u_m \|_{L^2}^2 + C \left(1 + C_0 + H_m \right)^2,
\]
\[
\theta_0 \| \partial_t \phi_m \|_{L^2}^2 \leq C \| \partial_t \phi_m \|_{H^1} \| \nabla \partial_t \phi_m \|_{L^2}
\]
\[
\leq \frac{1}{8} \| \nabla \partial_t \phi_m \|_{L^2}^2 + C \left(1 + C_0 + H_m \right),
\]

and
\[
\left| \int_\Omega \mu_m u_m \cdot \nabla \partial_t \phi_m \, dx \right| \leq \| \mu_m \|_{L^6} \| u_m \|_{L^4} \| \nabla \partial_t \phi_m \|_{L^2}
\]
\[
\leq \frac{1}{8} \| \nabla \partial_t \phi_m \|_{L^2}^2 + C \| \nabla u_m \|_{L^2}^2 \left(1 + \| \nabla \mu_m \|_{L^2}^2 + \alpha^2 \| \partial_t \phi_m \|_{L^2}^2 \right)
\]
\[
\leq \frac{1}{8} \| \nabla \partial_t \phi_m \|_{L^2}^2 + C \left(1 + C_0 + H_m \right)^2.
\]

By Young’s inequality, we have
\[
\left| - \int_\Omega \rho(\phi_m) \partial_t u_m \cdot Au_m \, dx \right| \leq \omega_1 \rho_s \| \partial_t u_m \|_{L^2} \| Au_m \|_{L^2}
\]
\[
\leq \frac{\rho_s}{8 \omega_1} \| \partial_t u_m \|_{L^2}^2 + \frac{2 (\rho_s)^2 \omega_1}{\rho_s} \| Au_m \|_{L^2}^2.
\]
By using (2.2), (2.3), (2.6) and (3.52), we find

$$\left| - \int_{\Omega} \rho(\phi_m)(u_m \cdot \nabla) u_m \cdot Au_m \, dx \right| \leq \rho^* \| u_m \|_{L^6} \| \nabla u_m \|_{L^6} \| Au_m \|_{L^2}$$

$$\leq C \| \mathbb{D} u_m \|_{L^2} \| Au_m \|_{L^2}$$

$$\leq \frac{\nu_s}{32} \| Au_m \|_{L^2}^2 + C \| \mathbb{D} u_m \|_{L^2}^6$$

and

$$\left| \frac{\rho_1 - \rho_2}{2} \int_{\Omega} (\nabla \mu_m \cdot \nabla) u_m \cdot Au_m \, dx \right| \leq C \| \nabla \mu_m \|_{L^\infty} \| \nabla u_m \|_{L^2} \| Au_m \|_{L^2}$$

$$\leq C \| \nabla \mu_m \|_{L^1} \| \mu_m \|_{H^3} \| \nabla u_m \|_{L^2} \| Au_m \|_{L^2}$$

$$\leq \frac{\nu_s}{32} \| Au_m \|_{L^2}^2 + \frac{\nu_s^2}{6 \omega_1} \| \mu_m \|_{H^3}^2 + C \| \nabla \mu_m \|_{L^2}^2 \| \mathbb{D} u_m \|_{L^2}^8$$

$$\leq \frac{\nu_s}{32} \| Au_m \|_{L^2}^2 + \frac{\nu_s^2}{6 \omega_1} \| \mu_m \|_{H^3}^2 + C \| \nabla \mu_m \|_{L^2}^2 \| \mathbb{D} u_m \|_{L^2}^8$$

In light of (3.42) and (3.46), we have

$$\left| \int_{\Omega} \mu_m \nabla \phi_m \cdot Au_m \, dx \right| \leq \| \mu_m \|_{L^6} \| \nabla \phi_m \|_{L^6} \| Au_m \|_{L^2}$$

$$\leq \frac{\nu_s}{32} \| Au_m \|_{L^2}^2 + C \| \mu_m \|_{H^3} \| \phi_m \|_{H^2}^2$$

$$\leq \frac{\nu_s}{32} \| Au_m \|_{L^2}^2 + C \left(1 + \| \nabla \mu_m \|_{L^2}^2 + \alpha^2 \| \partial_t \phi_m \|_{L^2}^2 \right)^2$$

$$\leq \frac{\nu_s}{32} \| Au_m \|_{L^2}^2 + C \left(1 + C_0 + H_m \right)^2,$$

and

$$\left| \frac{\nu_1 - \nu_2}{2} \int_{\Omega} \mathbb{D} u_m \nabla \phi_m \cdot Au_m \, dx \right| \leq C \| \mathbb{D} u_m \|_{L^1} \| \nabla \phi_m \|_{L^6} \| Au_m \|_{L^2}$$

$$\leq C \| \mathbb{D} u_m \|_{L^2} \| Au_m \|_{L^2} \| \phi_m \|_{H^2}$$

$$\leq \frac{\nu_s}{32} \| Au_m \|_{L^2}^2 + C \| \mathbb{D} u_m \|_{L^2} \| \phi_m \|_{H^2}^4$$

$$\leq \frac{\nu_s}{32} \| Au_m \|_{L^2}^2 + C \left(1 + C_0 + H_m \right)^2.$$.
Finally, by exploiting (2.2), (2.3), (2.6), (3.42) and (3.52), we infer that

\[
\int_\Omega \nabla \partial_t \phi_m \cdot \nabla \Delta \phi_m \, dx \leq C \left(\| \nabla \phi_m \|_{L^2}^2 + \| \nabla^2 \phi_m \|_{L^2} \right) \| \nabla \Delta \phi_m \|_{L^2}.
\]

Combining (3.59) with the above estimates, we arrive at

\[
\frac{d}{dt} H_m + \frac{\rho_s}{2} \| \partial_t u_m \|_{L^2}^2 + \frac{1}{2} \| \nabla \partial_t \phi_m \|_{L^2}^2 + \left(\frac{\nu_s \varpi_1}{4} - \frac{2 (\rho^*)^2 \varpi_2}{\rho_s} \right) \| \Delta u_m \|_{L^2}^2
\]

\[
+ \left(\frac{\varpi_2}{2} - 2 \varpi_2 \right) \| \mu_m \|_{H^3}^2 \leq C \left(1 + C_0 + H_m \right)^5,
\]

where the positive constant \(C \) depends on \(\varpi_1 \) and \(\varpi_2 \), but is independent of \(m \), \(\alpha \) and \(k \). Therefore, by setting

\[
\varpi_1 = \frac{\rho_s \nu_s}{16 (\rho^*)^2}, \quad \varpi_2 = \frac{1}{8},
\]

we deduce the differential inequality

\[
\frac{d}{dt} H_m + F_m \leq C \left(1 + C_0 + H_m \right)^5,
\]

where

\[
F_m(t) = \frac{\rho_s}{2} \| \partial_t u_m(t) \|_{L^2}^2 + \frac{1}{2} \| \nabla \partial_t \phi_m(t) \|_{L^2}^2 + \frac{\varpi_1 \nu_s}{8} \| \Delta u_m(t) \|_{L^2}^2 + \frac{1}{32} \| \mu_m(t) \|_{H^3}^2,
\]

and the constant \(C \) is independent of the approximation parameters \(\alpha \), \(m \) and \(k \). Hence, whenever \(\tilde{T} > 0 \) satisfies

\[
1 - 4 C \tilde{T} \left(1 + C_0 + H_m(0) \right)^4 > 0,
\]

we have

\[
H_m(t) \leq C \left(1 + C_0 + H_m(0) \right)^5.
\]
we infer that
\[C_0 + H_m(t) \leq \frac{1 + C_0 + H_m(0)}{(1 - 4Ct (C_1 + H_m(0))^4)^{\frac{1}{4}}}, \quad \forall t \in [0, \tilde{T}]. \quad (3.62) \]

To deduce an estimate of \(H_m \) which is independent of \(m, \alpha \) and \(k \), we are left to control \(\alpha \| \partial_t \phi_m(0) \|_{L^2} \) (cf. definition of \(H_m \) and (3.53)). To this aim, we first observe that \(\partial_t \phi_m \in C([0, T]; H^1(\Omega)) \), \(\mu_m \in C([0, T]; H^1(\Omega)) \) due to the regularity in Theorem A.1. By comparison in (3.8)_2, it follows that \(-\Delta \phi_m + \Psi'(\phi_m) \in C([0, T]; H^1(\Omega)) \). Now, multiplying (3.8)_2 by \(\partial_t \phi_m \) and integrating over \(\Omega \), we have
\[\alpha \| \partial_t \phi_m \|^2_{L^2} + (-\Delta \phi_m + \Psi'(\phi_m), \partial_t \phi_m) = (\mu_m, \Delta \phi_m - \nabla \phi_m). \]

By using (3.8)_1, we find
\[\alpha \| \partial_t \phi_m \|^2_{L^2} + \| \nabla \mu_m \|^2_{L^2} = (\nabla(-\Delta \phi_m + \Psi'(\phi_m)), \nabla \mu_m - \phi_m u_m) + (\nabla \mu_m, \phi_m u_m). \]

Integrating by parts, we arrive at
\[\alpha \| \partial_t \phi_m \|^2_{L^2} + \| \nabla \mu_m \|^2_{L^2} = (\nabla(-\Delta \phi_{0,k} + \Psi'(\phi_{0,k})), \nabla \mu_m - \phi_{0,k} u_m(0)) + (\nabla \mu_m(0), \phi_{0,k} u_m(0)), \]

which, in turn, implies that
\[\alpha \| \partial_t \phi_m(0) \|^2_{L^2} + \| \nabla \mu_m(0) \|^2_{L^2} \leq C \| \nabla(-\Delta \phi_{0,k} + \Psi'(\phi_{0,k})) \|^2_{L^2} + C \| u_m(0) \|^2_{L^2}. \]

Thus, we conclude from (3.1), (3.2), (3.3) and (3.53) that
\[H_m(0) \leq C \left(1 + \| u_0 \|^2_{H^3} + \| -\Delta \phi_0 + F'(\phi_0) \|^2_{H^1} + \| \phi_0 \|^2_{H^1} \right) + \tilde{C}_0 := \tilde{K}_0, \]

where the constant \(C \) is independent of \(m, \alpha \) and \(k \). Therefore, setting \(\tilde{T}_0 = \frac{1}{4C(C_1 + \tilde{K}_0)^2} \), it yields that
\[0 \leq C_0 + H_m(t) \leq \frac{1 + C_0 + \tilde{K}_0}{(1 - 4Ct (C_1 + \tilde{K}_0)^4)^{\frac{1}{4}}}, \quad \forall t \in [0, \tilde{T}_0). \]

Notice that \(\tilde{T}_0 \) is independent of \(m, \alpha \) and \(k \). Let us now fix \(T_0 \in (0, \tilde{T}_0) \). Thanks to (3.52), we infer that
\[\sup_{t \in [0, T_0]} \| \nabla u_m(t) \|_{L^2} + \sup_{t \in [0, T_0]} \| \nabla \mu_m(t) \|_{L^2} + \sup_{t \in [0, T_0]} \sqrt{\alpha} \| \partial_t \phi_m(t) \|_{L^2} \leq K_1, \quad (3.64) \]

where \(K_1 \) is a positive constant that depends on \(E(u_0, \phi_0) \), \(\| u_0 \|_{H^3} \), \(\| \mu_0 \|_{H^1} \), and the parameters of the system, but is independent of \(m, \alpha \) and \(k \). Recalling (3.42) and (3.46), we immediately obtain
\[\sup_{t \in [0, T_0]} \| \phi_m(t) \|_{H^2} + \sup_{t \in [0, T_0]} \| \mu_m(t) \|_{H^1} + \sup_{t \in [0, T_0]} \| F'(\phi_m(t)) \|_{L^2} \leq K_2. \]

Integrating (3.59) on \([0, T_0]\), we deduce that
\[\int_0^{T_0} \| \partial_t u_m(\tau) \|^2_{L^2} + \| \nabla \partial_t \phi_m(\tau) \|^2_{L^2} + \| A u_m(\tau) \|^2_{L^2} + \| \mu_m(\tau) \|^2_{H^3} \, d\tau \leq K_3. \]

\[\text{(3.66)} \]
Finally, in light of the regularity properties (3.64) and (3.66) of the velocity, we observe that the separation property (3.12)\textsubscript{2} (cf. Theorem A.1) only depends on α and k, but it independent of m, namely

\[
\phi_m \in L^\infty (\Omega \times (0, T)) : |\phi_m(x, t)| \leq 1 - \delta \text{ a.e. in } \Omega \times (0, T_0)
\]

(3.67) for some $\tilde{\delta} = \tilde{\delta}(\alpha, k)$.

3.5. **Passage to the Limit and Existence of Strong Solutions.** Thanks to the above estimates (3.64)-(3.66), we deduce the following convergences (up to a subsequence) as $m \to \infty$

\[
\begin{align*}
 u_m &\to u_\alpha \quad \text{weak-star in } L^\infty (0, T_0; H^1_\sigma), \\
 u_m &\to u_\alpha \quad \text{weakly in } L^2 (0, T_0; H^2) \cap W^{1,2} (0, T_0; L^2_\sigma), \\
 \phi_m &\to \phi_\alpha \quad \text{weak-star in } L^\infty (0, T_0; H^2 (\Omega)), \\
 \phi_m &\to \phi_\alpha \quad \text{weakly in } W^{1,2} (0, T_0; H^1 (\Omega)), \\
 \mu_m &\to \mu_\alpha \quad \text{weak-star in } L^\infty (0, T_0; H^1 (\Omega)), \\
 \mu_m &\to \mu_\alpha \quad \text{weakly in } L^2 (0, T_0; H^3 (\Omega)).
\end{align*}
\]

(3.68)

The strong convergences of u_m and ϕ_m are recovered through the Aubin-Lions lemma, which implies that

\[
\begin{align*}
 u_m &\to u_\alpha \quad \text{strongly in } L^2 (0, T_0; H^1_\sigma), \\
 \phi_m &\to \phi_\alpha \quad \text{strongly in } C ([0, T_0]; W^{1,p} (\Omega)), \quad \forall \ p \in [2, 6].
\end{align*}
\]

(3.69)

As a consequence, we infer that

\[
\rho (\phi_m) \to \rho (\phi_\alpha), \quad \nu (\phi_m) \to \nu (\phi_\alpha) \quad \text{strongly in } C ([0, T_0]; W^{1,p} (\Omega)),
\]

(3.70)

for all $p \in [2, 6]$. Additionally, we have

\[
\phi_\alpha \in L^\infty (\Omega \times (0, T)) : |\phi_\alpha(x, t)| \leq 1 - \delta \text{ a.e. in } \Omega \times (0, T_0)
\]

(3.71)

for some $\delta = \delta(\alpha, k)$. The above properties entail the convergence of the nonlinear terms in (3.7) and of the logarithmic potential $\Psi(\phi)$ in (3.8), thereby we pass to the limit in the Galerkin formulation as $m \to \infty$ in (3.7)-(3.8). The limit solution (u_α, ϕ_α) satisfies

\[
\begin{align*}
 \rho (\phi_\alpha) \partial_t u_\alpha + (\rho (\phi_\alpha) (u_\alpha \cdot \nabla) u_\alpha, w) - (\partial_t \nu (\phi_\alpha) \delta u_\alpha, w) - \rho (\phi_\alpha) (\nabla \mu_\alpha \cdot \nabla) u_\alpha, w) - \rho (\phi_\alpha) \nabla \mu_\alpha, w) &= 0,
\end{align*}
\]

(3.72)

for all $w \in L^2_\sigma$, $t \in [0, T_0]$, and

\[
\partial_t \phi_\alpha + u_\alpha \cdot \nabla \phi_\alpha = \Delta \mu_\alpha, \quad \mu_\alpha = \alpha \partial_t \phi_\alpha - \Delta \phi_\alpha + \Psi'(\phi_\alpha) \quad \text{a.e. in } \Omega \times (0, T_0).
\]

(3.73)

Moreover, we have

\[
\begin{align*}
 \begin{cases}
 u_\alpha &= 0, \quad \partial_n \phi_\alpha = \partial_n \mu_\alpha = 0 \quad \text{a.e. on } \partial \Omega \times (0, T), \\
 u_\alpha (\cdot, 0) &= u_0, \quad \phi_\alpha (\cdot, 0) = \phi_{0,k} \quad \text{in } \Omega.
 \end{cases}
\end{align*}
\]

(3.74)

Next, we proceed with the vanishing viscosity limit in the Cahn-Hilliard equation. Thanks to the lower semicontinuity of the norm, we obtain from (3.64)-(3.66) that

\[
\begin{align*}
 \text{ess sup}_{t \in (0, T_0)} \| \nabla u_\alpha (t) \|_{L^2} + \text{ess sup}_{t \in (0, T_0)} \| \mu_\alpha (t) \|_{H^1} + \text{ess sup}_{t \in (0, T_0)} \sqrt{\alpha} \| \partial_t \phi_\alpha (t) \|_{L^2} &\leq K_1, \\
 \text{ess sup}_{t \in [0, T_0]} \| \phi_\alpha (t) \|_{H^2} + \text{ess sup}_{t \in [0, T_0]} \| F'(\phi_\alpha (t)) \|_{L^2} &\leq K_2.
\end{align*}
\]

(3.75) (3.76)
and
\[\int_0^{T_0} \|\partial_t \mathbf{u}_\alpha(\tau)\|^2_{L^2} + \|\nabla \partial_t \phi_\alpha(\tau)\|^2_{L^2} + \|A \mathbf{u}_\alpha(\tau)\|^2_{L^2} + \|\mu_\alpha(\tau)\|^2_{H^3} \, d\tau \leq K_3. \] (3.77)
Therefore, we can infer that
\[\mathbf{u}_\alpha \rightharpoonup \mathbf{u}_k \quad \text{weak-star in } L^\infty(0, T_0; H^1_\sigma), \]
\[\mathbf{u}_\alpha \to \mathbf{u}_k \quad \text{weakly in } L^2(0, T_0; H^2) \cap W^{1,2}(0, T_0; L^2_\sigma), \]
\[\phi_\alpha \rightharpoonup \phi_k \quad \text{weak-star in } L^\infty(0, T_0; H^2(\Omega)), \]
\[\phi_\alpha \to \phi_k \quad \text{weakly in } W^{1,2}(0, T_0; H^1(\Omega)), \] (3.78)
\[\mu_\alpha \rightharpoonup \mu_k \quad \text{weak-star in } L^\infty(0, T_0; H^1(\Omega)), \]
\[\mu_\alpha \to \mu_k \quad \text{weakly in } L^2(0, T_0; H^3(\Omega)). \]

In a similar manner as above, we have
\[\mathbf{u}_\alpha \to \mathbf{u}_k \quad \text{strongly in } L^2(0, T_0; H^1_\sigma), \]
\[\phi_\alpha \to \phi_k \quad \text{strongly in } C([0, T_0]; W^{1,p}(\Omega)), \]
\[\rho(\phi_\alpha) \to \rho(\phi_k) \quad \text{strongly in } C([0, T_0]; W^{1,p}(\Omega)), \]
\[\nu(\phi_\alpha) \to \nu(\phi_k) \quad \text{strongly in } C([0, T_0]; W^{1,p}(\Omega)), \] (3.79)
for all \(p \in [2, 6) \). In order to pass to the limit in \(F' \), we observe that
\[\phi_\alpha \in L^\infty(\Omega \times (0, T_0)) : |\phi_\alpha(x, t)| < 1 \, \text{a.e. in } \Omega \times (0, T_0). \]
Thanks to (3.79)_2, it follows that \(\phi_\alpha \to \phi_k \) almost everywhere in \(\Omega \times (0, T) \), and thereby
\[\phi_k \in L^\infty(\Omega \times (0, T_0)) : |\phi_k(x, t)| < 1 \, \text{a.e. in } \Omega \times (0, T_0). \]
Then, we have that \(F'(\phi_\alpha) \to F'(\phi_k) \) almost everywhere in \(\Omega \times (0, T) \) and, by Fatou Lemma, \(F'(\phi_k) \in L^2(\Omega \times (0, T)) \). Owing to this, and by (3.76), we conclude that
\[F'(\phi_\alpha) \to F'(\phi_k) \quad \text{weakly in } L^\infty(0, T; L^2(\Omega)). \]
Thus, letting \(\alpha \to 0 \) in (3.73)-(3.72), we obtain
\[(\rho(\phi_k)\partial_t \mathbf{u}_k, \mathbf{w}) + (\rho(\phi_k)(\mathbf{u}_k \cdot \nabla)\mathbf{u}_k, \mathbf{w}) - (\text{div} (\nu(\phi_k) \nabla \mathbf{u}_k), \mathbf{w}) - (\rho'(\phi_k)(\nabla \mu_k \cdot \nabla)\mathbf{u}_k, \mathbf{w}) - (\mu_k \nabla \phi_k, \mathbf{w}) = 0, \] (3.80)
for all \(\mathbf{w} \in L^2_\sigma, \ t \in [0, T_0], \) and
\[\partial_t \phi_k + \mathbf{u}_k \cdot \nabla \phi_k = \Delta \mu_k, \quad \mu_k = -\Delta \phi_k + \Psi'(\phi_k) \quad \text{a.e. in } \Omega \times (0, T_0), \] (3.81)

\[\begin{cases} \mathbf{u}_k = 0, & \partial_n \phi_k = \partial_n \mu_k = 0 \quad \text{a.e. on } \partial \Omega \times (0, T), \\ (\mathbf{u}_k(\cdot, 0) = \mathbf{u}_0, \ \phi(\cdot, 0) = \phi_{0,k} & \text{in } \Omega. \end{cases} \] (3.82)

Finally, since the estimates (3.75)-(3.77) are independent of \(k \), we can further pass to the limit as \(k \to \infty \). The argument readily follows the one above, and so it left to the reader. As a result, we obtain
\[(\rho(\phi)\partial_t \mathbf{u} + \rho(\phi)(\mathbf{u} \cdot \nabla)\mathbf{u} - \text{div} (\nu(\phi) \nabla \mathbf{u}) - \rho'(\phi)(\nabla \mu \cdot \nabla)\mathbf{u} - \mu \nabla \phi, \mathbf{w}) = 0, \] (3.83)
for all \(w \in L^2_\sigma, \ t \in [0, T_0], \) and
\[
\partial_t \phi + u \cdot \nabla \phi = \Delta \mu \quad \mu = -\Delta \phi + \Psi' (\phi) \quad \text{a.e. in } \Omega \times (0, T_0),
\]
(3.84)

together with
\[
\begin{cases}
u = 0, \quad \partial_{nn} \phi = \partial_{nn} \mu = 0 \quad \text{a.e. on } \partial \Omega \times (0, T), \\\nu (\cdot, 0) = \nu_0, \quad \phi (\cdot, 0) = \phi_0 \quad \text{in } \Omega.
\end{cases}
\]
(3.85)

Recalling the well-known relation
\[
\mu \nabla \phi = -\operatorname{div} (\nabla \phi \otimes \nabla \phi) + \nabla \left(\frac{1}{2} |\nabla \phi|^2 + \Psi(\phi) \right),
\]

in a classical way, there exists \(P \in L^2 (0, T_0; H^1 (\Omega)) \), \(\bar{P} (t) = 0 \) (see, e.g., [18]) such that
\[
\nabla P = -\rho (\phi) \partial_t u - \rho (\phi) (u \cdot \nabla u) + \operatorname{div} (\nu (\phi) \nabla u) + \rho ' (\phi) \nabla u \nabla \mu - \operatorname{div} (\nabla \phi \otimes \nabla \phi).
\]

Moreover, exploiting the regularity theory of the Cahn-Hilliard equation with logarithmic potential (see [1, Lemma 2] or [22, Theorem A.2]), we deduce that \(\phi \in L^\infty (0, T; W^{2,6} (\Omega)) \) and \(F' (\phi) \in L^\infty (0, T; L^6 (\Omega)) \).

4. PROOF OF THEOREM 1.1. PART TWO: UNIQUENESS

Let \((u_1, P_1, \phi_1)\) and \((u_2, P_2, \phi_2)\) be two strong solutions to system (1.1)-(1.2) defined on the interval \([0, T_0]\) as stated in Theorem 1.1. We define \(u = u_1 - u_2, \ P = P_1 - P_2 \) and \(\phi = \phi_1 - \phi_2 \), which solve
\[
\begin{align*}
\rho (\phi_1) \partial_t u + (\rho (\phi_1) - \rho (\phi_2)) \partial_t u_2 + (\rho (\phi_1) (u_1 \cdot \nabla) u_1 - \rho (\phi_2) (u_2 \cdot \nabla) u_2) \\
- \frac{\rho_1 - \rho_2}{2} \left((\nabla \mu_1 \cdot \nabla) u_1 - (\nabla \mu_2 \cdot \nabla) u_2 \right) - \operatorname{div} (\nu (\phi_1) \nabla u) - \operatorname{div} ((\nu (\phi_1) - \nu (\phi_2)) \nabla u_2) \\
+ \nabla P = -\operatorname{div} (\nabla \phi_1 \otimes \nabla \phi_2 - \nabla \phi_2 \otimes \nabla \phi_2),
\end{align*}
\]
(4.1)
\[
\begin{align*}
\partial_t \phi + u_1 \cdot \nabla \phi + u_2 \cdot \nabla \phi_2 = \Delta \mu, \\
\mu = -\Delta \phi + \Psi' (\phi_1) - \Psi' (\phi_2),
\end{align*}
\]
(4.2)

almost everywhere in \(\Omega \times (0, T_0) \). We recall that
\[
\| \phi_i \|_{L^\infty (0, T_0; W^{2,6} (\Omega))} + \| \partial_t \phi_i \|_{L^2 (0, T_0; H^1 (\Omega))} \leq K, \quad i = 1, 2,
\]
(4.3)

where \(K \) is a positive constant only depending on \(E (u_0, \phi_0), \| u_0 \|_{H^5}, \| \mu_0 \|_{H^1} \) and \(T_0 \). As a consequence, we claim that
\[
\| \phi_i \|_{C\left([0,T_0];C(\overline{\Omega})\right)} \leq CK, \quad i = 1, 2,
\]
for some constant \(C \) depending only on \(\Omega \). Indeed, by (2.5), we have
\[
\| \phi_i (t_1) - \phi_i (t_2) \|_{C(\overline{\Omega})} \leq C \| \phi_i (t_1) - \phi_i (t_2) \|_{W^{1,4}}
\]
\[
\leq C \| \phi_i (t_1) - \phi_i (t_2) \|_{H^1} \| \phi_i (t_1) - \phi_i (t_2) \|_{W^{2,6}}^{\frac{3}{5}}
\]
\[
\leq CK^{\frac{2}{5}} \left(\int_{t_1}^{t_2} \| \partial_t \phi_i (\tau) \|_{H^1} \, d\tau \right)^{\frac{3}{5}}
\]
\[
\leq CK^{\frac{2}{5}} \| \partial_t \phi_i \|_{L^2(0,T_0;H^1(\Omega))} |t_1 - t_2|^{\frac{3}{10}}, \quad \forall t_1, t_2 \in [0, T_0], \ i = 1, 2.
\]
In light of the assumption \(\| \phi_0 \|_{L^\infty} = 1 - \delta_0 \) for some \(\delta_0 > 0 \), we infer that

\[
\| \phi(t) \|_{L^\infty} \leq 1 - \frac{\delta_0}{2}, \quad \forall t \in [0, T_1], \quad \text{where} \quad T_1 = \left(\frac{\delta_0}{2CK} \right)^{\frac{4}{5}}. \tag{4.4}
\]

Owing to (4.4), it is possible to deduce by elliptic regularity that \(\phi \in L^2(0, T_1; H^5(\Omega)) \) and \(\partial_t \mu \in L^2(0, T_1; (H^1(\Omega))^\prime) \).

Next, multiplying (4.1) by \(u \) and integrating over \(\Omega \), we find

\[
\frac{1}{2} \frac{d}{dt} \int_\Omega \rho(\phi_1)|u|^2 \, dx + \int_\Omega \nabla(\phi_1)||\nabla u||^2 \, dx
\]

\[
= - \int_\Omega \left(\frac{\rho(\phi_1) - \rho(\phi_2)}{2} \right) \partial_t u_2 \cdot u \, dx - \int_\Omega \rho(\phi_1)(u_2 \cdot \nabla)u_2 \cdot u \, dx
\]

\[
- \int_\Omega \left(\frac{\rho(\phi_1) - \rho(\phi_2)}{2} \right) (u_2 \cdot \nabla)u_2 \cdot u \, dx + \frac{\rho_1 - \rho_2}{2} \int_\Omega ((\nabla \mu \cdot \nabla)u_2) \cdot u \, dx
\]

\[
- \int_\Omega \left(\frac{\rho(\phi_1) - \rho(\phi_2)}{2} \right) \nabla u_2 : \nabla u \, dx + \int_\Omega \left(\nabla \phi_1 \otimes \nabla \phi + \nabla \phi \otimes \nabla \phi_2 \right) \cdot \nabla u \, dx
\]

\[
= \sum_{i=1}^{6} Z_i.
\]

Here we have used that

\[
- \int_\Omega \partial_t \rho(\phi_1) \frac{|u|^2}{2} \, dx + \int_\Omega \rho(\phi_1)u_1 \cdot \nabla \frac{|u|^2}{2} \, dx - \frac{\rho_1 - \rho_2}{2} \int_\Omega \nabla \mu_1 \cdot \nabla \frac{|u|^2}{2} \, dx = 0.
\]

Taking the gradient of (4.2), multiplying by \(\nabla \Delta \phi \) and integrating over \(\Omega \), we obtain

\[
\frac{1}{2} \frac{d}{dt} \| \Delta \phi \|_{L^2}^2 + \| \Delta^2 \phi \|_{L^2}^2 = \int \nabla u_1 \cdot \nabla \phi \Delta^2 \phi \, dx + \int \nabla u_2 \cdot \nabla \phi_2 \Delta^2 \phi \, dx + \int \Delta(\Psi'(\phi_1) - \Psi'(\phi_2)) \Delta^2 \phi \, dx
\]

\[
= \sum_{i=7}^{9} Z_i.
\]

Therefore, we arrive at

\[
\frac{d}{dt} \left(\frac{1}{2} \int_\Omega \rho(\phi_1)|u|^2 \, dx + \frac{1}{2} \| \Delta \phi \|_{L^2}^2 \right) + \int_\Omega \nu(\phi_1)\|\nabla u\|^2 \, dx + \| \Delta^2 \phi \|_{L^2}^2 = \sum_{i=1}^{9} Z_i.
\]

Arguing in a similar way as in [21, Section 6], it is easily seen that

\[
|Z_1 + Z_2 + Z_3 + Z_5 + Z_6| \leq \frac{\nu}{2} \| \nabla u \|_{L^2}^2 + C \left(1 + \| u_2 \|_{L^2}^2 + \| \partial_t u_2 \|_{L^2}^2 \right) \left(\| u \|_{L^2}^2 + \| \Delta \phi \|_{L^2}^2 \right).
\]

By (4.3) and (4.4), together with Sobolev embeddings, we find

\[
|Z_4| \leq \int \left| (\nabla \Delta \phi \cdot \nabla) u_2 - u_2 \cdot \partial_t \phi \right| \, dx + \int \left| (\nabla (\Psi'(\phi_1) - \Psi'(\phi_2)) \cdot \nabla) u_2 \cdot u_2 \cdot u \right| \, dx
\]

\[
\leq \| \nabla \Delta \phi \|_{L^6} \| \nabla u_2 \|_{L^3} \| u_2 \|_{L^2} + \| \Psi''(\phi_1) \|_{L^\infty} \| \nabla \phi \|_{L^6} \| \nabla u_2 \|_{L^3} \| u \|_{L^2}
\]

\[
+ \| \Psi''(\phi_1) - \Psi''(\phi_2) \|_{L^\infty} \| \phi \|_{L^6} \| \nabla \phi_2 \|_{L^6} \| \nabla u_2 \|_{L^2} \| u \|_{L^2}.
\]
As to the remaining terms, by using (4.3) and (4.4) once more, we have
\[
\begin{align*}
|Z_7 + Z_8| &\leq \|u_1\|_{L^6} \|\nabla \phi\|_{L^6} \|\Delta^2 \phi\|_{L^2} + \|u\|_{L^2} \|\nabla \phi_2\|_{L^\infty} \|\Delta^2 \phi\|_{L^2} \\
&\leq \frac{1}{6} \|\Delta^2 \phi\|_{L^2}^2 + C (\|\Delta \phi\|_{L^2}^2 + \|\Delta \phi\|_{L^2}^2),
\end{align*}
\]
and
\[
|Z_9| \leq \int_{\Omega} \left| \left(\Psi''(\phi_1) \Delta \phi + (\Psi''(\phi_1) - \Psi''(\phi_2)) \Delta \phi_2 \right) \Delta^2 \phi \right| \, dx \\
+ \int_{\Omega} \left| \left(\Psi'''(\phi_1) \left(|\nabla \phi_1|^2 - |\nabla \phi_2|^2 \right) + (\Psi'''(\phi_1) - \Psi'''(\phi_2)) |\nabla \phi_2|^2 \right) \Delta^2 \phi \right| \, dx \\
\leq C \|\Delta \phi\|_{L^2} \|\Delta^2 \phi\|_{L^2} + C \left(\|\Psi''(\phi_1)\|_{L^\infty} + \|\Psi''(\phi_2)\|_{L^\infty} \right) \|\Delta \phi_2\|_{L^2} \|\Delta^2 \phi\|_{L^2} \\
+ C \left(\|\nabla \phi_1\|_{L^\infty} + \|\nabla \phi_2\|_{L^\infty} \right) \|\Delta \phi\|_{L^2} \|\Delta^2 \phi\|_{L^2} \\
\leq \frac{1}{6} \|\Delta^2 \phi\|_{L^2}^2 + C \|\Delta \phi\|_{L^2}^2.
\]
In conclusion, we find the differential inequality
\[
\frac{d}{dt} \left(\frac{1}{2} \int_{\Omega} \rho(\phi_1) |u|^2 \, dx + \frac{1}{2} \|\Delta \phi\|_{L^2}^2 \right) + \frac{\nu}{2} \|\Delta \phi\|_{L^2}^2 + \frac{1}{2} \|\Delta^2 \phi\|_{L^2}^2 \\
\leq C(K) \left(1 + \|u_2\|_{H^2}^2 + \|\partial_t u_2\|_{L^2}^2 \right) \left(\|\Delta \phi\|_{L^2}^2 + \|\Delta \phi\|_{L^2}^2 \right).
\]
An application of the Gronwall lemma implies the desired uniqueness of strong solutions on the time interval \([0, T_1]\).

5. PROOF OF THEOREM 1.2: STABILITY

Let \((u, P, \phi) \) and \((u_H, P_H, \phi_H) \) be the strong solutions to the AGG model with density \(\rho(\phi) \) and to the model H with constant density \(\overline{\rho} \), respectively, defined on a common interval \([0, T_0]\). We recall that the existence of \((u_H, P_H, \phi_H) \) fulfilling the same regularity properties of \((u, P, \phi) \), as stated in Theorem (1.1), has been proven in [22, Theorem 5.1]. For simplicity, we assume that the viscosity function is given by \(\nu(s) = \nu_1 \frac{\nu_1}{2} + \nu_2 \frac{\nu_2}{2} \) (cf. (1.3)) for both systems. We define \(v = u - u_H, Q = P - P_H, \varphi = \phi - \phi_H, \) and the difference of the chemical potentials \(w = \mu - \mu_H \). They clearly solve the problem
\[
\begin{align*}
\frac{\partial_1 + \rho_2}{2} \partial_t v + \left(\frac{\rho_1 - \rho_2}{2} \right) \partial_t u + \left(\frac{\rho_1 + \rho_2}{2} - \overline{\rho} \right) \partial_t u_H + (\rho(\phi)(u \cdot \nabla)u - \overline{\rho} (u_H \cdot \nabla)u_H) \\
- \left(\frac{\rho_1 - \rho_2}{2} \right) (\nabla \mu \cdot \nabla)u - \nabla (\nu(\phi) \nabla v) - \nabla ((\nu(\phi) - \nu(\phi_H)) \nabla u_H) \\
+ \nabla Q = -\nabla (\nabla \phi \otimes \nabla \varphi - \nabla \phi_H \otimes \nabla \phi_H),
\end{align*}
\]
(5.1)
\[
\partial_t \varphi + u \cdot \nabla \varphi + v \cdot \nabla \varphi_H = \Delta w,
\]
(5.2)
\[
w = -\Delta \varphi + \Psi'(\phi) - \Psi'(\phi_H),
\]
almost everywhere in $\Omega \times (0, T_0)$. In addition, we have the boundary and initial conditions

$$v = 0, \quad \partial_n \varphi = \partial_n w = 0 \quad \text{on} \quad \partial\Omega \times (0, T), \quad v(\cdot, 0) = 0, \quad \varphi(\cdot, 0) = 0 \quad \text{in} \quad \Omega.$$ \hfill (5.3)

Multiplying (5.1) by $A^{-1}v$ and integrating over Ω, we obtain

$$\left(\frac{\rho_1 + \rho_2}{4}\right) \frac{d}{dt} \|v\|^2 + \int_{\Omega} \nu(\phi) \nabla v : \nabla A^{-1}v \, dx = - \int_{\Omega} \left(\frac{\rho_1 - \rho_2}{2}\right) \partial_t u \cdot A^{-1}v \, dx
- \int_{\Omega} \left(\frac{\rho_1 + \rho_2}{2} - \overline{\rho}\right) \partial_t u_H \cdot A^{-1}v \, dx - \int_{\Omega} (\rho(\phi)(u \cdot \nabla)u - \overline{p}(u_H \cdot \nabla)u_H) \cdot A^{-1}v \, dx
+ \int_{\Omega} \int_{\Omega} \left(\frac{\rho_1 - \rho_2}{2}\right) ((\nabla \mu \cdot \nabla)u) \cdot A^{-1}v \, dx - \int_{\Omega} (\nu(\phi) - \nu(\phi_H)) \nabla u_H : \nabla A^{-1}v \, dx
+ \int_{\Omega} \nabla \phi \otimes \nabla \phi - \nabla \phi_H \otimes \nabla \phi_H : \nabla A^{-1}v \, dx.$$ \hfill (5.4)

Following [22, proof of Theorem 3.1], we infer that

$$\int_{\Omega} \nu(\phi) \nabla v : \nabla A^{-1}v \, dx \geq \frac{\nu_*}{2} \|u\|^2_{L^2} - \int_{\Omega} \nu'(\phi) \nabla A^{-1}v \nabla \phi \cdot v \, dx + \frac{1}{2} \int_{\Omega} \nu'(\phi) \nabla \phi \cdot v \Pi \, dx,$$ \hfill (5.5)

where $\Pi \in L^\infty(0, T_0; H^1(\Omega))$ is such that $-\Delta A^{-1}v + \nabla \Pi = v$ a.e. in $\Omega \times (0, T_0)$. In addition, it fulfills the estimates

$$\|\Pi\|_{L^2} \leq C\|\nabla A^{-1}v\|_{L^2}^{\frac{1}{2}}\|v\|_{L^2}^{\frac{1}{2}}, \quad \|\Pi\|_{H^1} \leq C\|v\|_{L^2}.$$ \hfill (5.6)

Therefore, we are led to

$$\left(\frac{\rho_1 + \rho_2}{4}\right) \frac{d}{dt} \|v\|^2 + \frac{\nu_*}{2} \|v\|^2 = - \int_{\Omega} \left(\frac{\rho_1 - \rho_2}{2}\right) \partial_t u \cdot A^{-1}v \, dx
- \int_{\Omega} \left(\frac{\rho_1 + \rho_2}{2} - \overline{\rho}\right) \partial_t u_H \cdot A^{-1}v \, dx
- \int_{\Omega} (\rho(\phi)(u \cdot \nabla)u - \overline{p}(u_H \cdot \nabla)u_H) \cdot A^{-1}v \, dx
- \int_{\Omega} \int_{\Omega} \left(\frac{\rho_1 - \rho_2}{2}\right) ((\nabla \mu \cdot \nabla)u) \cdot A^{-1}v \, dx
+ \int_{\Omega} \nabla \phi \otimes \nabla \phi - \nabla \phi_H \otimes \nabla \phi_H : \nabla A^{-1}v \, dx
+ \frac{1}{2} \int_{\Omega} \nu'(\phi) \nabla \phi \cdot v \Pi \, dx.$$ \hfill (5.7)

On the other hand, multiplying (5.2) by $A^{-1}\varphi$, where A is the Laplace operator with homogeneous Neumann boundary conditions, and integrating over Ω, we get (see [22, Proof of Theorem 3.1] for more details)

$$\frac{1}{2} \frac{d}{dt} \|\varphi\|^2 + \frac{1}{2} \|\nabla A^{-1}\varphi\|^2_{L^2} \leq C\|\varphi\|^2_{L^2} + \int_{\Omega} \varphi u \cdot \nabla A^{-1}\varphi \, dx + \int_{\Omega} \phi_H v \cdot \nabla A^{-1}\varphi \, dx.$$ \hfill (5.8)

We proceed with the estimate of the terms on the right-hand side of (5.6) and (5.7). To this aim, we will exploit the following bounds on the solution

$$\|u \cdot u_H\|_{L^\infty(0, T_0; H_{\text{reg}}^1(\Omega))} \leq K_0,$$
$$\|\phi \cdot \phi_H\|_{L^\infty(0, T_0; W^{2,6}(\Omega))} \leq K_0,$$
$$\|\nabla \mu\|_{L^\infty(0, T_0; L^2(\Omega))} \leq K_0.$$ \hfill (5.9)
where K_0 is a constant depending on the norms of the initial conditions. Exploiting this estimates, we have

$$\int_{\Omega} \left(\frac{\rho_1 - \rho_2}{2} \right) \partial_t u \cdot A^{-1} v \, dx \leq \left| \frac{\rho_1 - \rho_2}{2} \right| \| \phi \|_{L^{\infty}} \| \partial_t u \|_{L^2} \| A^{-1} v \|_{L^2}$$

$$\leq C \| v \|_2^2 + C \left| \frac{\rho_1 - \rho_2}{2} \right|^2 \| \partial_t u \|_{L^2}^2,$$

and

$$\int_{\Omega} \left(\frac{\rho_1 + \rho_2 - p}{2} \right) \partial_t u_H \cdot A^{-1} v \, dx \leq C \| v \|_{1_+}^2 + C \left| \frac{\rho_1 + \rho_2 - p}{2} \right|^2 \| \partial_t u_H \|_{L^2}^2.$$

By Sobolev embedding, we find

$$\int_{\Omega} (\rho(\phi)(u \cdot \nabla)u - \rho(u_H \cdot \nabla)u_H) \cdot A^{-1} v \, dx$$

$$\leq \left| \int_{\Omega} \rho(\phi)(v \cdot \nabla)u \cdot A^{-1} v \, dx \right| + \left| \int_{\Omega} \rho(\phi)(u_H \cdot \nabla)A^{-1} v \, dx \right| + \left| \int_{\Omega} (\rho(\phi) - p)(u_H \cdot \nabla)A^{-1} v \, dx \right|$$

$$\leq \rho^* \| v \|_{L^2} \| \nabla u \|_{L^6} \| A^{-1} v \|_{L^3} + \int_{\Omega} \rho(\phi)(u_H \cdot \nabla)A^{-1} v \cdot v \, dx + \int_{\Omega} \rho(\phi)(\nabla \phi \cdot u_H) (v \cdot A^{-1} v) \, dx$$

$$+ \| \rho(\phi) - p \|_{L^{\infty}} \| u_H \|_{L^6} \| \nabla u_H \|_{L^2} \| A^{-1} v \|_{L^3}$$

$$\leq \frac{\nu_*}{10} \| v \|_{L^2}^2 + C (1 + \| u \|_{H^2}^2) \| v \|_{L^2}^2 + \rho^* \| \nabla A^{-1} v \|_{L^2} \| u_H \|_{L^{\infty}} \| v \|_{L^2}$$

$$+ \frac{\rho_1 - \rho_2}{2} \| \nabla \phi \|_{L^{\infty}} \| u_H \|_{L^6} \| v \|_{L^2} \| A^{-1} v \|_{L^3} + C(K_0) \left(\left| \frac{\rho_1 - \rho_2}{2} \right|^2 + \left| \frac{\rho_1 + \rho_2 - p}{2} \right|^2 \right)$$

$$\leq \frac{\nu_*}{8} \| v \|_{L^2}^2 + C(K_0) (1 + \| u \|_{H^2}^2 + \| u_H \|_{H^2}^2) \| v \|_{L^2}^2 + C(K_0) \left(\left| \frac{\rho_1 - \rho_2}{2} \right|^2 + \left| \frac{\rho_1 + \rho_2 - p}{2} \right|^2 \right),$$

and

$$\int_{\Omega} \left(\frac{\rho_1 - \rho_2}{2} \right) (\nabla \mu \cdot \nabla) u \cdot A^{-1} v \, dx \leq \left| \frac{\rho_1 - \rho_2}{2} \right| \| \nabla \mu \|_{L^2} \| \nabla u \|_{L^3} \| A^{-1} v \|_{L^6}$$

$$\leq C \| v \|_{1_+}^2 + C(K_0) \left| \frac{\rho_1 - \rho_2}{2} \right|^2 \| \nabla u \|_{L^3}^2.$$

In a similar way as in [22, Proof of Theorem 5.1], we obtain

$$\int_{\Omega} (\nu(\phi) - \nu(\phi_H)) \nabla A^{-1} v \, dx \leq C \| \phi \|_{L^6} \| \nabla u_H \|_{L^2} \| \nabla A^{-1} v \|_{L^2}$$

$$\leq \frac{1}{6} \| \nabla \phi \|_{L^2}^2 + C \| u_H \|_{H^2}^2 \| v \|_{L^2}^2,$$

$$\int_{\Omega} (\nabla \phi \otimes \nabla \phi - \nabla \phi_H \otimes \nabla \phi_H) : \nabla A^{-1} v \, dx \leq (\| \nabla \phi \|_{L^{\infty}} + \| \nabla \phi_H \|_{L^{\infty}}) \| \nabla \phi \|_{L^2} \| \nabla A^{-1} v \|_{L^2}$$

$$\leq \frac{1}{6} \| \nabla \phi \|_{L^2}^2 + C(K_0) \| v \|_{L^2}^2,$$
\[
\left| \int_{\Omega} \nu'(p) \mathbb{D} A^{-1} \nabla \phi \cdot \mathbf{v} \, dx \right| \leq C \| \mathbb{D} A^{-1} \mathbf{v} \|_{L^2} \| \nabla \phi \|_{L^\infty} \| \mathbf{v} \|_{L^2} \leq \frac{\nu_s}{8} \| \mathbf{v} \|_{L^2}^2 + C(K_0) \| \mathbf{v} \|_{L^2}^2
\]

\[
\left| \frac{1}{2} \int_{\Omega} \nu'(p) (\nabla \phi \cdot \mathbf{v}) \, dx \right| \leq C \| \nabla \phi \|_{L^\infty} \| \mathbf{v} \|_{L^2} \| \Pi \|_{L^2} \leq \frac{\nu_s}{8} \| \mathbf{v} \|_{L^2}^2 + C(K_0) \| \mathbf{v} \|_{L^2}^2
\]

\[
\int_{\Omega} \phi \mathbf{u} \cdot \nabla A^{-1} \phi \, dx \leq \frac{1}{6} \| \nabla \phi \|_{L^2}^2 + C \| \mathbf{u} \|_{H^2(\Omega)}^2 \| \phi \|_{L^\infty}^2
\]

\[
\int \phi_H \mathbf{v} \cdot \nabla A^{-1} \phi \, dx \leq \frac{\nu_s}{8} \| \mathbf{v} \|_{L^2}^2 + C \| \phi \|_{L^\infty}^2
\]

Collecting the above estimates together, we find the differential inequality

\[
\frac{d}{dt} \left(\frac{\rho_1 + \rho_2}{4} \| \mathbf{v} \|_{L^2}^2 + \frac{1}{2} \| \phi \|_{L^\infty}^2 \right) \leq f_1(t) (\| \mathbf{v} \|_{L^2}^2 + \| \phi \|_{L^\infty}^2) + f_2(t) \left(\left| \frac{\rho_1 - \rho_2}{2} \right|^2 + \left| \frac{\rho_1 + \rho_2}{2} - \rho_0 \right|^2 \right),
\]

where

\[
f_1(t) = C(K_0) \left(1 + \| \mathbf{u_H} \|_{H^2}^2 + \| \mathbf{u} \|_{H^2}^2 \right),
\]

\[
f_2(t) = C(K_0) \left(1 + \| \partial_t \mathbf{u_H} \|_{L^2}^2 + \| \mathbf{u_H} \|_{H^2}^2 + \| \partial_t \mathbf{u} \|_{L^2}^2 + \| \mathbf{u} \|_{H^2}^2 \right).
\]

Here, the positive constant \(C \) depends on the norm of the initial data and the time \(T_0 \). By using the Gronwall lemma, together with the initial conditions (5.3), we infer that

\[
\| \mathbf{v}(t) \|_{L^2}^2 + \| \phi(t) \|_{L^\infty}^2 \leq \frac{\left(\left| \frac{\rho_1 - \rho_2}{2} \right|^2 + \left| \frac{\rho_1 + \rho_2}{2} - \rho_0 \right|^2 \right)}{\min \left\{ \frac{\rho_1 + \rho_2}{4}, \frac{1}{2} \right\}} \int_0^t e^{\int_s^t f_1(r) \, dr} f_2(s) \, ds, \quad \forall t \in [0, T_0].
\]

Thus, the above inequality implies that

\[
\| \mathbf{u}(t) - \mathbf{u_H}(t) \|_{H^\gamma} + \| \phi(t) - \phi_H(t) \|_{H^\gamma} \leq \frac{C(K_0)}{\min \{ \sqrt{\rho_1, 1} \} \left(\left| \frac{\rho_1 - \rho_2}{2} \right| + \left| \frac{\rho_1 + \rho_2}{2} - \rho_0 \right| \right)} , \quad \forall t \in [0, T_0],
\]

where the positive constant \(C(K_0) \) depends on the norm of the initial data, the time \(T_0 \) and the parameters of the systems.

APPENDIX A. ON THE CONVECTIVE VISCOS Cahn-Hilliard SYSTEM

Given \(\alpha > 0 \) and an incompressible velocity field \(\mathbf{u} \), we consider the convective Viscous Cahn-Hilliard (cVCH) system

\[
\partial_t \phi + \mathbf{u} \cdot \nabla \phi = \Delta \mu, \quad \mu = \alpha \partial_t \phi - \Delta \phi + \Psi'(\phi) \quad \text{in} \, \Omega \times (0, T), \quad \text{(A.1)}
\]

with boundary and initial conditions

\[
\partial_n \phi = \partial_n \mu = 0 \quad \text{on} \, \partial \Omega \times (0, T), \quad \phi(\cdot, 0) = \phi_0 \quad \text{in} \, \Omega. \quad \text{(A.2)}
\]

We observe that (A.1) can be rewritten as

\[
\partial_t (\phi - \alpha \Delta \phi) + \mathbf{u} \cdot \nabla \phi = \Delta (-\Delta \phi + F'(\phi) - \theta_0 \phi) \quad \text{in} \, \Omega \times (0, T).
\]

We state well-posedness and regularity results for system (A.1). The aim of this Appendix is to extend the analysis performed in [28] to the convective case under minimal assumptions on the velocity field. In particular, we focus on the regularity of the chemical potential.
Theorem A.1. Assume that \(u \in L^\infty(0, T; L^2(\Omega) \cap L^3(\Omega)), \phi_0 \in H^1(\Omega) \cap L^\infty(\Omega) \) such that \(\|\phi_0\|_{L^\infty} \leq 1 \) and \(|\phi_0| < 1 \). Then, there exists a unique a weak solution to (A.1)-(A.2) such that

\[
\phi \in L^\infty(0, T; H^1(\Omega) \cap L^\infty(\Omega)) : |\phi(x, t)| < 1 \text{ a.e. in } \Omega \times (0, T),
\phi \in L^2(0, T; H^2(\Omega)) \cap W^{1,2}(0, T; L^2(\Omega)),
\mu \in L^2(0, T; H^2(\Omega)),
\]

which satisfies (A.1) almost everywhere in \(\Omega \times (0, T) \), (A.2) almost everywhere on \(\partial \Omega \times (0, T) \) and \(\phi(\cdot, 0) = \phi_0(\cdot) \) in \(\Omega \). In addition, the following regularity results hold:

(R1) If \(-\Delta \phi_0 + F'(\phi_0) \in L^2(\Omega) \) and \(\partial_t u \in L^{2^*}(0, T; L^2(\Omega)) \), we have

\[
\partial_t \phi \in L^\infty(0, T; L^2(\Omega)) \cap L^2(0, T; H^1(\Omega)),
\phi \in L^\infty(0, T; H^2(\Omega)),
\mu \in L^\infty(0, T; H^2(\Omega)).
\]

(R2) Let the assumptions of (R1) hold. Suppose that \(\|\phi_0\|_{L^\infty} \leq 1 - \delta_0 \), for some \(\delta_0 \in (0, 1) \). Then, there exists \(\delta > 0 \) such that

\[
\max_{(x, t) \in \Omega \times (0, T)} |\phi(x, t)| \leq 1 - \delta,
\]

and

\[
\phi \in L^2(0, T; H^3(\Omega)).
\]

(R3) Let the assumption of (R2) hold. Suppose that \(\phi_0 \in H^3(\Omega) \) such that \(\partial_\nu \phi = 0 \) on \(\partial \Omega \), and \(\partial_t u \in L^2(0, T; L^{3^*}(\Omega)) \), we have

\[
\partial_t \phi \in L^\infty(0, T; H^1(\Omega)) \cap L^2(0, T; H^2(\Omega)),
\phi \in L^\infty(0, T; H^3(\Omega)) \cap L^2(0, T; H^4(\Omega)),
\partial^2_t \phi \in L^2(0, T; L^2(\Omega)),
\partial_t \mu \in L^2(0, T; L^2(\Omega)).
\]

Proof. The proof is divided in several parts. We notify the reader that the estimates herein proved are not independent of the viscous parameter \(\alpha \).

Existence. The existence of a weak solution satisfying (A.3) is proved in a classical way\(^1\). We proceed here by proving the basic energy estimates. First, we observe that, by integrating (A.1)\(_1\) over \(\Omega \) and using the boundary conditions, we have

\[
\overline{\phi}(t) = \overline{\phi_0} \quad \text{and} \quad \partial_t \phi(t) = 0 \quad \forall \ t \in [0, T].
\]

Multiplying (A.1)\(_1\) by \(\mu \), integrating over \(\Omega \), using the boundary conditions (A.2) and [30, Lemma 4.3, Ch. IV], we find

\[
\frac{d}{dt} \left(\int_\Omega \frac{1}{2} |\nabla \phi|^2 + \Psi(\phi) \, dx \right) + \|\nabla \mu\|_{L^2}^2 + \alpha \|\partial_t \phi\|_{L^2}^2 = \int_\Omega \phi u \cdot \nabla \mu \, dx.
\]

By the Hölder inequality and the boundedness of \(\phi \), we simply obtain

\[
\frac{d}{dt} \left(\int_\Omega \frac{1}{2} |\nabla \phi|^2 + \Psi(\phi) \, dx \right) + \frac{1}{2} \|\nabla \mu\|_{L^2}^2 + \alpha \|\partial_t \phi\|_{L^2}^2 \leq \frac{1}{2} \|u\|_{L^2}^2.
\]

\(^1\)The interested reader might exploit the combination of the Galerkin method with the approximation of the logarithmic potential by smooth potentials.
Thus, integrating over $[0,T]$ and using the continuity of Ψ, we have
\[
\|\nabla \phi\|_{L^\infty(0,T;L^2(\Omega))} + \|\nabla \mu\|_{L^2(0,T;L^2(\Omega))} + \|\partial_t \phi\|_{L^2(0,T;L^2(\Omega))}
\leq C_{\alpha} \left(\sqrt{\mathcal{E}_{\text{free}}(\phi_0)} + \|u\|_{L^2(0,T;L^2(\Omega))} \right).
\] (A.6)

In light of (2.1) and (A.5), we infer that
\[
\|\phi\|_{L^\infty(0,T;H^1(\Omega))} \leq C_{\alpha} \left(\sqrt{\mathcal{E}_{\text{free}}(\phi_0)} + \|u\|_{L^2(0,T;L^2(\Omega))} + \|\phi_0\|_{L^2(\Omega)} \right).
\] (A.7)

Now, multiplying (A.1) by $-\Delta \phi$ and integrating over Ω, we get
\[
\int_0^T \frac{\alpha}{2} \frac{d}{dt} \|\nabla \phi\|_{L^2}^2 + \|\Delta \phi\|_{L^2}^2 + \int_\Omega -F'(\phi) \Delta \phi \, dx = \int_\Omega \nabla \mu \cdot \nabla \phi \, dx + \theta_0 \|\nabla \phi\|_{L^2}^2.
\]

The second term on the left-hand side is clearly positive by monotonicity. Then, using (A.7) we obtain
\[
\int_0^T \|\Delta \phi(\tau)\|_{L^2}^2 \, d\tau \leq \frac{\alpha}{2} \|\nabla \phi_0\|_{L^2}^2 + C_{\alpha} (1 + T) \left(\sqrt{\mathcal{E}_{\text{free}}(\phi_0)} + \|u\|_{L^2(0,T;L^2(\Omega))} \right)^2,
\] (A.8)

which entails that
\[
\|\phi\|_{L^2(0,T;H^2(\Omega))} \leq C_{\alpha} \left(1 + \|\nabla \phi_0\|_{L^2} + \sqrt{1 + T} \left(\sqrt{\mathcal{E}_{\text{free}}(\phi_0)} + \|u\|_{L^2(0,T;L^2(\Omega))} \right) \right).
\] (A.9)

Next, we control the total mass of the chemical potential. Arguing as for the Cahn-Hilliard equation, we multiply (A.1) by $\phi - \overline{\phi}$ and integrate over Ω. We find
\[
\int_\Omega |\nabla \phi|^2 \, dx + \int_\Omega F'(\phi)(\phi - \overline{\phi}) \, dx = \int_\Omega \mu(\phi - \overline{\phi}) \, dx + \theta_0 \|\phi - \overline{\phi}\|_{L^2}^2 - \alpha \int_\Omega \partial_t \phi(\phi - \overline{\phi}) \, dx.
\]

By using the Poincaré inequality and (A.3), we find
\[
\int_\Omega F'(\phi)(\phi - \overline{\phi}) \, dx \leq C_{\alpha} \left(1 + \|\nabla \mu\|_{L^2} + \|\partial_t \phi\|_{L^2} \right),
\]

for some C_{α} depending on Ω, θ_0 and α. We are now in position to control a full Sobolev norm of μ. Thanks to [28, Proposition A.1], there exist two positive constants C_1, C_2 (only depending on $\overline{\phi_0}$) such that
\[
\int_\Omega |F'(\phi)| \, dx \leq C_1 \int_\Omega F'(\phi)(\phi - \overline{\phi_0}) \, dx + C_2,
\]

thus we infer that
\[
\|F'(\phi)\|_{L^1} \leq C_{\alpha} \left(1 + \|\nabla \mu\|_{L^2} + \|\partial_t \phi\|_{L^2} \right).
\]

Since $\overline{\mu} = F'(\phi) - \theta_0 \overline{\phi_0}$, the above control yields
\[
\|\overline{\mu}\| \leq C_{\alpha} \left(1 + \|\nabla \mu\|_{L^2} + \|\partial_t \phi\|_{L^2} \right).
\] (A.10)

As a result, it immediately follows that
\[
\|\mu\|_{L^2(0,T;H^1(\Omega))} \leq C_{\alpha} \left(\sqrt{T} + \sqrt{\mathcal{E}_{\text{free}}(\phi_0)} + \|u\|_{L^2(0,T;L^2(\Omega))} \right).
\] (A.11)

In addition, by using (A.1) we observe that
\[
\|\Delta \mu\|_{L^2} \leq \|\partial_t \phi\|_{L^2} + \|u\|_{L^2} \|\nabla \phi\|_{L^6}.
\]

Then, combining the elliptic regularity with (A.6) and (A.9), we find
\[
\|\mu\|_{L^2(0,T;H^2(\Omega))} \leq C_{\alpha} \mathcal{E}_{\text{free}}(\phi_0) \left(1 + \|u\|_{L^\infty(0,T;L^3(\Omega))} \right) \left(1 + \|u\|_{L^2(0,T;L^2(\Omega))} \right).
\] (A.12)
By comparison in (A.1)2, a similar estimate can be obtained for $F'(\phi)$ in $L^2(0,T; L^2(\Omega))$.

Uniqueness. Let ϕ_1, ϕ_2 be two weak solutions. We define the solutions difference $\psi = \phi_1 - \phi_2$ which solves

$$\partial_t \psi + u \cdot \nabla \psi = \Delta (\alpha \partial_t \psi - \Delta \psi + \Psi'(\phi_1) - \Psi'(\phi_2)) \quad \text{in } \Omega \times (0,T).$$

Since $\overline{\psi}(t) = 0$ for all $t \in [0,T]$, multiplying by $A^{-1}\psi$, where the operator A is the Laplace operator $-\Delta$ with homogeneous Neumann boundary conditions, and integrating over Ω, we obtain

$$\frac{1}{2} \frac{d}{dt} \left(\| \nabla A^{-1}\psi \|_{L^2}^2 + \alpha \| \psi \|_{L^2}^2 \right) + \| \nabla \psi \|_{L^2}^2 \leq \int_{\Omega} \psi u \cdot \nabla A^{-1}\psi \, dx + \theta_0 \| \psi \|_{L^2}^2.$$

Here we have used that F' is a monotone function. Observing that

$$\left| \int_{\Omega} \psi u \cdot \nabla A^{-1}\psi \, dx \right| \leq \| \psi \|_{L^2} \| u \|_{L^2} \| \nabla A^{-1}\psi \|_{L^2} \leq C \| u \|_{L^2} \| \psi \|_{L^2}^2,$$

it is easily seen that

$$\frac{1}{2} \frac{d}{dt} \left(\| \nabla A^{-1}\psi \|_{L^2}^2 + \alpha \| \psi \|_{L^2}^2 \right) \leq C \left(1 + \| u \|_{L^2} \right) \| \psi \|_{L^2}^2.$$

An application of the Gronwall lemma yields

$$\| \nabla A^{-1}\psi(t) \|_{L^2}^2 + \alpha \| \psi(t) \|_{L^2}^2 \leq \left(\| \nabla A^{-1}\psi(0) \|_{L^2}^2 + \alpha \| \psi(0) \|_{L^2}^2 \right) e^{C \int_0^t (1 + \| u(\tau) \|_{L^2}) \, d\tau}$$

for all $t \in [0,T]$, which implies the uniqueness of the solution.

Regularity 1. For $h \in (0,1)$, we define the notation $\partial_t^h f(\cdot,t) = \frac{1}{h}(f(\cdot,t+h) - f(\cdot,t))$. We observe that $\phi \in C([0,T]; H^1(\Omega))$ and $u \in C([0,T]; L^1(\Omega))$, thereby we can extend both ϕ and u on $[0,T+1]$ by $\phi(t) = \phi(T)$ and $u(t) = u(T)$ for $t \in (T,T+1)$. It follows from (A.1) that

$$\partial_t \partial_t^h \phi + \partial_t^h u \cdot \nabla \phi(\cdot+h) + u \cdot \nabla \partial_t^h \phi = \Delta (\varepsilon \partial_t \partial_t^h \phi - \Delta \partial_t^h \phi + \partial_t^h \Psi'(\phi)) \quad \text{in } \Omega \times (0,T). \quad (A.13)$$

We multiply the above equation by $A^{-1} \partial_t^h \phi$ and integrate over Ω. Exploiting the monotonicity of F', the boundary condition of u and the Agmon inequality (2.3), we obtain

$$\frac{1}{2} \frac{d}{dt} \left(\| \nabla A^{-1} \partial_t^h \phi \|_{L^2}^2 + \alpha \| \partial_t^h \phi \|_{L^2}^2 \right) + \| \nabla \partial_t^h \phi \|_{L^2}^2$$

$$\leq \int_{\Omega} \phi(\cdot+h) \partial_t^h u \cdot \nabla A^{-1} \partial_t^h \phi \, dx + \int_{\Omega} \partial_t^h \phi u \cdot \nabla A^{-1} \partial_t^h \phi \, dx + \theta_0 \| \partial_t^h \phi \|_{L^2}^2$$

$$\leq \| \partial_t^h u \|_{L^1} \| \nabla A^{-1} \partial_t^h \phi \|_{L^\infty} + \| \partial_t^h \phi \|_{L^2} \| u \|_{L^1} \| \nabla A^{-1} \partial_t^h \phi \|_{L^2} \leq \theta_0 \| \partial_t^h \phi \|_{L^2} + C(1 + \| u \|_{L^1}) \| \partial_t^h \phi \|_{L^2}$$

$$\leq \frac{1}{2} \| \nabla \partial_t^h \phi \|_{L^2}^2 + C \| \partial_t^h u \|_{L^1} \left(1 + \| \partial_t^h \phi \|_{L^2}^2 \right) + C(1 + \| u \|_{L^2}) \| \partial_t^h \phi \|_{L^2}^2.$$

The Gronwall lemma entails

$$\alpha \| \partial_t^h \phi(t) \|_{L^2}^2 + \int_0^t \| \nabla \partial_t^h \phi(\tau) \|_{L^2}^2 \, d\tau \leq \left(\| \nabla A^{-1} \partial_t^h \phi(0) \|_{L^2}^2 + \alpha \| \partial_t^h \phi(0) \|_{L^2}^2 \right. + C \int_0^t \| \partial_t^h u(\tau) \|_{L^1}^\frac{3}{2} \, d\tau \right) e^{\int_0^t (1 + \| u(\tau) \|_{L^2}) \, d\tau} \quad (A.14)$$
for all $t \in [0, T]$, where $g(\tau) = C_\alpha \left(1 + \|u\|_{L^3} + \|\partial_t^3 u\|_{L^1}^4\right)$. In order to control the right-hand side, we compute

$$\frac{1}{2} \frac{d}{dt} \left(\|\nabla^{-1}(\phi - \phi_0)\|_{L^2}^2 + \alpha \|\phi - \phi_0\|_{L^2}^2\right) = (\alpha \partial_t \phi - \mu, \phi - \phi_0) + (\phi u, \nabla A^{-1}(\phi - \phi_0))$$

$$= (\Delta \phi - \Psi'(\phi), \phi - \phi_0) + (\phi u, \nabla A^{-1}(\phi - \phi_0))$$

$$= (\Delta(\phi - \phi_0) - (F'(\phi - F'\phi_0)), \phi - \phi_0) + (\Delta \phi_0 - F'(\phi_0), \phi - \phi_0) + \theta_0(\phi, \phi - \phi_0)$$

$$+ (\phi u, \nabla A^{-1}(\phi - \phi_0)).$$

Therefore, we have

$$\frac{1}{2} \frac{d}{dt} \left(\|\nabla^{-1}(\phi - \phi_0)\|_{L^2}^2 + \alpha \|\phi - \phi_0\|_{L^2}^2\right) \leq C_\alpha \left(1 + \|\Delta \phi_0 - F'(\phi_0)\|_{L^2} + \|u\|_{L^2}\right)\|\phi - \phi_0\|_{L^2}.$$

Thanks to [30,Lemma 4.1, Chap. IV], we arrive at

$$\|\nabla^{-1}(\phi(t) - \phi_0)\|_{L^2}^2 + \alpha \|\phi(t) - \phi_0\|_{L^2}^2 \leq \left(C_\alpha \left(1 + \|\Delta \phi_0 - F'(\phi_0)\|_{L^2} + \|u\|_{L^2}\right) t + C_\alpha \int_0^t \|u(\tau)\|_{L^2} d\tau\right)^2,$$

for all $t \in [0, T]$. By choosing $t = h$, we deduce that

$$\|\nabla^{-1}\partial_t^3 \phi(0)\|_{L^2}^2 + \alpha \|\partial_t^3 \phi(0)\|_{L^2}^2 \leq C_\alpha \left(1 + \|\Delta \phi_0 - F'(\phi_0)\|_{L^2}^2 + \|u\|_{L^2(0,T;L^2(\Omega))}\right).$$

Since $\|\partial_t^3 u\|_{L^4(0,T;L^1(\Omega))} \leq \|\partial_t u\|_{L^4(0,T;L^1(\Omega))}$, by combining (A.14) and (A.15), we obtain

$$\alpha \|\partial_t^3 \phi(t)\|_{L^2}^2 + \int_0^t \|\nabla \partial_t^3 \phi(\tau)\|_{L^2}^2 d\tau$$

$$\leq C_\alpha \left(1 + \|\Delta \phi_0 - F'(\phi_0)\|_{L^2}^2 + \|u\|_{L^2(0,T;L^2(\Omega))}^2 + \|\partial_t u\|_{L^4(0,T;L^1(\Omega))}^4\right)e^{G(T)},$$

for all $t \in [0, T]$, where $G(T) = \int_0^T C_\alpha \left(1 + \|u(\tau)\|_{L^2}\right) d\tau + C_\alpha \int_0^T \|\partial_t u(\tau)\|_{L^1}^4 d\tau$. In light of the convergence $\partial_t^3 \phi \rightarrow \partial_t \phi$ in $L^2(0,T;L^2(\Omega))$ as $h \rightarrow 0$, we infer that

$$\|\partial_t \phi\|_{L^2(0,T;L^2(\Omega))} + \|\partial_t \phi\|_{L^2(0,T;H^1(\Omega))} \leq C(\alpha, T, \|\Delta \phi_0 - F'(\phi_0)\|_{L^2}, \|u\|_{X_T}),$$

where $X_T = L^\infty(0,T;L^2(\Omega)) \cap W^{1,4}(0,T;L^1(\Omega))$. Next, we derive further regularity properties on ϕ and μ. By the incompressibility constraint, we recall that $\|\nabla \mu\|_{L^2} \leq C \left(\|\partial_t \phi\|_{L^2} + \|u\|_{L^2}\right)$. Then, thanks to (A.10) and (A.17), we easily have

$$\|\mu\|_{L^\infty(0,T;H^1(\Omega))} \leq C(\alpha, T, \|\Delta \phi_0 - F'(\phi_0)\|_{L^2(\Omega)}, \|u\|_{X_T}).$$

As a consequence, by [22, Theorem A.1] we get

$$\|\phi\|_{L^\infty(0,T;H^2(\Omega))} + \|F'(\phi)\|_{L^\infty(0,T;L^2(\Omega))} \leq C(\alpha, T, \|\Delta \phi_0 - F'(\phi_0)\|_{L^2(\Omega)}, \|u\|_{X_T}).$$

Finally, since $u \in L^\infty(0,T;L^2(\Omega))$ and $\nabla \phi \in L^\infty(0,T;L^6(\Omega))$, by comparison in (A.1), we also find

$$\|\mu\|_{L^\infty(0,T;H^2(\Omega))} \leq C(\alpha, T, \|\Delta \phi_0 - F'(\phi_0)\|_{L^2(\Omega)}, \|u\|_{X_T}).$$
Regularity 2. Let us now write (A.1) as follows
\[\alpha \partial_t \phi - \Delta \phi + F'(\phi) = h \quad \text{in } \Omega \times (0, T), \]
where \(h = \mu + \theta_0 \phi \). Thanks to (A.20), \(h \in L^\infty(0, T; L^\infty(\Omega)) \). Next, we consider the ODEs problems
\[
\begin{aligned}
\alpha \partial_t U + F'(U) &= \mathcal{H}, \\
U(0) &= 1 - \delta_0 \\
\alpha \partial_t V + F'(V) &= H, \\
V(0) &= -1 + \delta_0
\end{aligned}
\]
in \((0, T) \), (A.22)

where \(\mathcal{H} = \|h\|_{L^\infty} \) and \(H = -\|h\|_{L^\infty} \). It is not difficult to show that there exist two unique solutions \(U, V \in C([0, T]) \) with \(U_t, V_t \in L^\infty(0, T) \). In particular, since \(\lim_{s \to \pm 1} F'(s) = \pm \infty \) and \(\mathcal{H}, H \in L^\infty(0, T) \), a simple comparison argument entails that there exists \(\delta > 0 \) such that
\[-1 + \delta \leq V(t) \leq U(t) \leq 1 - \delta, \quad \forall t \in [0, T]. \]

More precisely, it can be checked that \(1 - \delta \leq \max\{1 - \delta_0, (F')^{-1}(\|H\|_{L^\infty(0, T)})\} \). We are left to show that \(V(t) \leq \phi(x, t) \leq U(t) \) in \(\Omega \times [0, T] \). To this aim, we use the Stampacchia method. We define \(w = \phi - U \) and consider the problem
\[
\begin{aligned}
\alpha \partial_t w + u \cdot \nabla \phi - \Delta \phi + F'\phi - F'(U) &= h - \mathcal{H} \\
w(0) &= \phi_0 - 1 + \delta_0
\end{aligned}
\]
in \(\Omega \times (0, T) \), (A.23)

Multiplying the equation by \(w^+ = \max\{\phi - U, 0\} \) and integrating over \(\Omega \), and using that \(\nabla \phi = \nabla w^+ \) on the set \(\{x \in \Omega : \phi \leq 0\} \), we find
\[
\frac{\alpha}{2} \frac{d}{dt} \|w^+\|_{L^2}^2 + \int_{\Omega} (u \cdot \nabla w^+) w^+ \, dx + \|\nabla w^+\|_{L^2}^2 + \int_{\Omega} (F'(\phi) - F'(U)) w^+ \, dx = \int_{\Omega} (h - \mathcal{H}) w^+ \, dx.
\]

By the monotonicity of \(F' \), it follows that
\[
\frac{d}{dt} \|w^+\|_{L^2}^2 \leq 0 \quad \Rightarrow \quad \|w^+(t)\|_{L^2}^2 \leq \|w^+(0)\|_{L^2}^2 = 0, \quad \forall t \in [0, T],
\]
which, in turn, gives the desired result, namely \(\phi(x, t) \leq U(t) \) in \(\Omega \times [0, T] \). A similar argument entails that \(V(t) \leq \phi(x, t) \) in \(\Omega \times [0, T] \). Therefore, we obtain by continuity the separation property
\[\max_{(x, t) \in [0, T]} |\phi(x, t)| \leq 1 - \delta. \]
(A.24)

As a consequence, it follows from (A.19) that \(\Psi'(\phi) \in L^\infty(0, T; H^1(\Omega)) \). Then, we deduce by comparison in (A.1) and by elliptic regularity that
\[\|\phi\|_{L^2(0, T; H^3(\Omega))} \leq C(\alpha, T, \delta, \|\Delta \phi_0 - F'(\phi_0)\|_{L^2}, \|u\|_{L^2}. \]

Regularity 3. Thanks to the above regularity, we rewrite (A.13) as follows
\[\int_{\Omega} \partial_t \partial_t^h \phi \cdot v + \alpha \nabla \partial_t \partial_t^h \phi \cdot \nabla v \, dx + \int_{\Omega} \partial_t^h \partial_t^h \phi \cdot \nabla v \, dx = \int_{\Omega} (\nabla \Delta \partial_t^h \phi - \nabla \partial_t^h \Psi'(\phi)) \cdot \nabla v \, dx \]
(A.25)

for all \(v \in H^1(\Omega) \). Taking \(v = \partial_t^h \phi \) and exploiting the boundary conditions of \(\phi \) and \(u \), we find
\[
\frac{1}{2} \frac{d}{dt} \left(\|\partial_t^h \phi\|_{L^2}^2 + \alpha \|\nabla \partial_t^h \phi\|_{L^2}^2 \right) + \int_{\Omega} |\Delta \partial_t^h \phi|^2 \, dx
\]
\[= \int_{\Omega} \partial_t^h (u \phi) \cdot \nabla \partial_t^h \phi \, dx + \int_{\Omega} \partial_t^h F'(\phi) \Delta \partial_t^h \phi \, dx + \theta_0 \|\nabla \partial_t^h \phi\|_{L^2}^2
\]

THE ABELS-GARCKE-GRÜN MODEL IN 3D 33
\[\leq \| \partial_t^h u \|_{L^6} + \| \Delta \partial_t^h \phi \|_{L^6} + \| \partial_t^h \phi \|_{L^6} + \| \nabla \partial_t^h \phi \|_{L^6} + C \| \partial_t^h \phi \|_{L^2} \| \Delta \partial_t^h \phi \|_{L^2} + \theta_0 \| \nabla \partial_t^h \phi \|_{L^2}^2 \]

\[\leq \frac{1}{2} \| \Delta \partial_t^h \phi \|_{L^2}^2 + C \| \partial_t^h \phi \|_{L^2}^2 + C (1 + \| u \|_{L^1}) \| \nabla \partial_t^h \phi \|_{L^2}^2 + C \| \partial_t^h \phi \|_{L^2}^2. \]

Here we have used the separation property (A.24) and the inequality \(\| \partial_t^h \phi \|_{H^2} \leq C \| \Delta \partial_t^h \phi \|_{L^2} \). Then, we infer from the Gronwall lemma that

\[\| \partial_t^h \phi(t) \|_{L^2}^2 + \alpha \| \nabla \partial_t^h \phi(t) \|_{L^2}^2 + \int_0^t \| \Delta \partial_t^h \phi(\tau) \|_{L^2}^2 \, d\tau \]

\[\leq \left(\| \partial_t^h \phi(0) \|_{L^2}^2 + \alpha \| \nabla \partial_t^h \phi(0) \|_{L^2}^2 + C \int_0^t \| \partial_t^h u(\tau) \|_{L^6}^2 \, d\tau \right) e^{\bar{G}(T)} \tag{A.26} \]

for all \(t \in [0, T] \), where \(\bar{G}(T) = C_o \int_0^T (1 + \| u(\tau) \|_{L^3}) \, d\tau \). Since \(\partial u \phi_0 = 0 \) on \(\partial \Omega \) by assumption, we observe that

\[\frac{1}{2} \frac{d}{dt} \left(\| \phi - \phi_0 \|_{L^2}^2 + \alpha \| \nabla (\phi - \phi_0) \|_{L^2}^2 \right) \]

\[= \int_{\Omega} \phi u \cdot \nabla (\phi - \phi_0) \, dx + \int_{\Omega} \nabla (\Delta \phi - F'(\phi) + \theta_0 \phi) \cdot \nabla (\phi - \phi_0) \, dx \]

\[= \int_{\Omega} \phi u \cdot \nabla (\phi - \phi_0) \, dx - \| \Delta (\phi - \phi_0) \|_{L^2}^2 + \int_{\Omega} \nabla \Delta \phi_0 \cdot \nabla (\phi - \phi_0) \, dx \]

\[+ \int_{\Omega} \nabla (-F'(\phi) + \theta_0 \phi) \cdot \nabla (\phi - \phi_0) \, dx. \]

Thus, we obtain

\[\frac{1}{2} \frac{d}{dt} \left(\| \phi - \phi_0 \|_{L^2}^2 + \alpha \| \nabla (\phi - \phi_0) \|_{L^2}^2 \right) \leq C (1 + \| u \|_{L^2} + \| \phi_0 \|_{H^3}) \| \nabla (\phi - \phi_0) \|_{L^2}. \]

By using [30, Lemma 4.1, Chap. IV] and taking \(t = h \), we arrive at

\[\| \partial_t^h \phi(0) \|_{L^2}^2 + \alpha \| \nabla \partial_t^h \phi(0) \|_{L^2}^2 \leq C_o \left(1 + \| \phi_0 \|_{H^3}^2 + \| u \|_{L^6(0,T)}^2 \right). \tag{A.27} \]

Combining the above inequality with (A.26), we are led to

\[\| \partial_t^h \phi(t) \|_{L^2}^2 + \alpha \| \nabla \partial_t^h \phi(t) \|_{L^2}^2 + \int_0^t \| \Delta \partial_t^h \phi(\tau) \|_{L^2}^2 \, d\tau \]

\[\leq C_o \left(1 + \| \phi_0 \|_{H^3}^2 + \| u \|_{L^6(0,T)}^2 + \| \partial u \|_{L^6(0,T)}^2 + \| u \|_{L^6(0,T)}^2 \right) e^{C \int_0^T (1 + \| u(\tau) \|_{L^3}) \, d\tau} \]

for all \(t \in [0, T] \), which, in turn, implies

\[\| \partial_t \phi \|_{L^6(0,T;H^1(\Omega))} + \| \partial_t \phi \|_{L^2(0,T;H^2(\Omega))} \leq C(\alpha, T, \delta, \| \phi_0 \|_{H^3}, \| u \|_{Y_T}), \tag{A.28} \]

where \(Y_T = L^6(0, T; L^3(\Omega)) \cap W^{1,2}(0, T; L^6(\Omega)) \). As an immediate consequence, in light of (A.19), (A.20) and (A.24), we infer by comparison in (A.1) that

\[\| \phi \|_{L^6(0,T;H^3(\Omega))} + \| \phi \|_{L^2(0,T;H^4(\Omega))} \leq C(\alpha, T, \delta, \| \phi_0 \|_{H^3(\Omega)}, \| u \|_{Y_T}), \tag{A.29} \]
Next, we take \(v = A^{-1} \partial_t^h \partial_t \phi \) in (A.25). Exploiting (A.24) and (A.28), we obtain
\[
\frac{1}{2} \frac{d}{dt} \| \nabla \partial_t^h \phi \|_{L^2}^2 + \| \nabla A^{-1} \partial_t^h \partial_t \phi \|_{L^2}^2 + \alpha \| \partial_t^h \partial_t \phi \|_{L^2}^2 \leq \int_{\Omega} \partial_t^h (\phi u) \cdot \nabla A^{-1} \partial_t^h \partial_t \phi \, dx - \int_{\Omega} \partial_t^h \Psi' (\phi) \partial_t^h \partial_t \phi \, dx
\]
\[
\leq C \| \partial_t \mu \|_{L^6} \| \partial_t \partial_t \phi \|_{L^2} + C \| \mu \|_{L^3} \| \partial_t \partial_t \phi \|_{L^2} \| \nabla A^{-1} \partial_t^h \partial_t \phi \|_{L^6} + C \| \partial_t^h \phi \|_{L^2} \| \partial_t^h \partial_t \phi \|_{L^2}
\]
\[
\leq \frac{1}{2} \| \partial_t^h \partial_t \phi \|_{L^2}^2 + C \left(1 + \| \partial_t \mu \|_{L^6}^3 + \| \mu \|_{L^3}^2 \right).
\]

By recalling (A.27), the Gronwall lemma entails
\[
\int_0^T \| \partial_t^h \partial_t \phi \|_{L^2}^2 \, dt \leq C (\alpha, T, \delta, \| \phi_0 \|_{H^3}, \| \mu \|_{Y_T}),
\]
which, in turn, gives that there exists \(\partial_t^2 \phi \in L^2(0, T; L^2(\Omega)) \) such that
\[
\| \partial_t^2 \phi \|_{L^2(0, T; L^2(\Omega))} \leq C (\alpha, T, \delta, \| \phi_0 \|_{H^3}, \| \mu \|_{Y_T}).
\]
Thus, by comparison in (A.1), we conclude that there exists \(\partial_t \mu \in L^2(0, T; L^2(\Omega)) \) such that
\[
\| \partial_t \mu \|_{L^2(0, T; L^2(\Omega))} \leq C (\alpha, T, \delta, \| \phi_0 \|_{H^3(\Omega)}, \| \mu \|_{Y_T}).
\]

The proof is complete. \(\square \)

REFERENCES

[1] H. Abels, On a diffuse interface model for two-phase flows of viscous, incompressible fluids with matched densities, Arch. Ration. Mech. Anal. 194 (2009), 463–506.

[2] H. Abels. Existence of weak solutions for a diffuse interface model for viscous, incompressible fluids with general densities, Comm. Math. Phys. 289 (2009), 45–73.

[3] H. Abels, Strong well-posedness of a diffuse interface model for a viscous, quasi-incompressible two-phase flow, SIAM J. Math. Anal. 44 (2012), 316–340.

[4] H. Abels, D. Breit, Weak solutions for a non-Newtonian diffuse interface model with different densities, Nonlinearity 29 (2016), 3426–3453.

[5] H. Abels, D. Depner, H. Garcke, Existence of weak solutions for a diffuse interface model for two-phase flows of incompressible fluids with different densities, J. Math. Fluid Mech. 15 (2013), 453–480.

[6] H. Abels, D. Depner, H. Garcke, On an incompressible Navier-Stokes/Cahn-Hilliard system with degenerate mobility, Ann. Inst. H. Poincaré Anal. Non Linéaire 30 (2013), 1175–1190.

[7] H. Abels, E. Feireisl, On a diffuse interface model for two-phase flow of compressible viscous fluids, Indiana Univ. Math. J. 57 (2008), 659–698.

[8] H. Abels, H. Garcke, G. Grün, Thermodynamically consistent, frame indifferent diffuse interface models for incompressible two-phase flows with different densities, Math. Models Methods Appl. Sci. 22 (2012), 1150013.

[9] H. Abels, H. Garcke, Weak solutions and diffuse interface models for incompressible two-phase flows. Handbook of Mathematical Analysis in Mechanics of Viscous Fluid, Springer International Publishing, 2018.

[10] H. Abels, Y. Terasawa, Weak solutions for a diffuse interface model for two-phase flows of incompressible fluids with different densities and nonlocal free energies, Math. Meth. Appl. Sci. 43 (2020), 3200–3219.

[11] H. Abels, J. Weber, Local well-posedness of a quasi-incompressible two-phase flow, J. Evol. Equ. (2020). https://doi.org/10.1007/s00028-020-00646-2

[12] F. Boyer, Nonhomogeneous Cahn-Hilliard fluids, Ann. Inst. H. Poincaré Anal. Non Linéaire 18 (2001), 225–259.
[13] F. Boyer, A theoretical and numerical model for the study of incompressible mixture flows, Comput. Fluids 31 (2002), 41–68.

[14] L. Cherfils, E. Feireisl, M. Michálek, A. Miranville, M. Petcu, D. Pražák, The compressible Navier-Stokes-Cahn-Hilliard equations with dynamic boundary conditions, Math. Models Methods Appl. Sci. 29 (2019), 2557–2584.

[15] H. Ding, P.D.M. Spelt, C. Shu, Diffuse interface model for incompressible two-phase flows with large density ratios, J. Comput. Phys. 226 (2007), 2078–2095.

[16] S. Frigeri, Global existence of weak solutions for a nonlocal model for two-phase flows of incompressible fluids with unmatched densities, Math. Models Methods Appl. Sci. 26 (2016), 1957–1993.

[17] S. Frigeri, On a nonlocal Cahn-Hilliard/Navier-Stokes system with degenerate mobility and singular potential for incompressible fluids with different densities, Ann. Inst. H. Poincaré Anal. Non Linéaire 38 (2021), 647–687.

[18] G.P. Galdi, An Introduction to the Mathematical Theory of the Navier–Stokes Equations, Vol. 1. Springer, Berlin, 1994.

[19] C.G. Gal, M. Grasselli, H. Wu, Global weak solutions to a diffuse interface model for incompressible two-phase flows with moving contact lines and different densities, Arch. Ration. Mech. Anal. 234 (2019), 1–56.

[20] M.H. Giga, A. Kirshtein, C. Liu, Variational modeling and complex fluids, Handbook of mathematical analysis in mechanics of viscous fluids, 73–113, Springer, Cham, 2018.

[21] A. Giorgini, Well-posedness of the two-dimensional Abels-Garcke-Grüner model for two-phase flows with unmatched densities, Calc. Var. 60, 100 (2021).

[22] A. Giorgini, A. Miranville, R. Temam, Uniqueness and Regularity for the Navier-Stokes-Cahn-Hilliard system, SIAM J. Math. Anal. 51 (2019), 2535–2574.

[23] A. Giorgini, R. Temam, Weak and strong solutions to the nonhomogeneous incompressible Navier-Stokes-Cahn-Hilliard system, J. Math. Pures Appl. 144 (2020), 194–249.

[24] M.E. Gurtin, D. Polignone, J. Viñals, Two-phase binary fluids and immiscible fluids described by an order parameter, Math. Models Methods Appl. Sci. 6 (1996), 815–831.

[25] M. Heida, J. Málek, K.R. Rajagopal, On the development and generalizations of Cahn-Hilliard equations within a thermodynamic framework, Z. Angew. Math. Phys. 63 (2012), 145–169.

[26] M. Kotschote, R. Zacher, Strong solutions in the dynamical theory of compressible fluid mixtures, Math. Models Meth. Appl. Sci. 25 (2015), 1217–1256.

[27] J. Lowengrub, L. Truskinovsky, Quasi-incompressible Cahn-Hilliard fluids and topological transitions, Proc. Roy. Soc. Lond. A 454 (1998), 2617–2654.

[28] A. Miranville, S. Zelik, Robust exponential attractors for Cahn-Hilliard type equations with singular potentials, Math. Methods. Appl. Sci. 27 (2004), 545–582.

[29] M. Shokrpour Roudbari, G. Şimşek, E.H. van Brummelen, K.G. van der Zee, Diffuse-interface two-phase flow models with different densities: A new quasi-incompressible form and a linear energy-stable method, Math. Models Meth. Appl. Sci. 28 (2017), 733–770.

[30] R.E. Showalter, Monotone Operators in Banach Space and Nonlinear Partial Differential Equations, Vol. 49 of Mathematical Surveys and Monographs, American Mathematical Society, Providence, 1997.

[31] L. Zhao, Strong solutions to the density-dependent incompressible Cahn–Hilliard–Navier–Stokes system, J. Hyperbolic Differ. Equ. 16 (2019), 701–742.