Comparative efficacy of two polyherbal creams with framycetin sulfate on diabetic wound model in rats

Minakshi N. Nehete a, Sanjay Nipanikar b, Anisha S. Kanjilal b, Sanjivan Kanjilal b, Pratima A. Tatke a, *

a C. U. Shah College of Pharmacy, S.N.D.T. Women’s University, Santacruz (W), Mumbai, India
b Ari Healthcare Pvt. Ltd., Pune, Maharashtra, India

ARTICLE INFO

Article history:
Received 22 June 2015
Received in revised form 17 July 2015
Accepted 28 September 2015
Available online 21 July 2016

Keywords:
Diabetic wound
Excision model
Incision model
Wound healing

ABSTRACT

Background: Diabetes mellitus is one of the metabolic disorders that impede normal steps of wound healing process. Worldwide, 15% of the 200 million diabetics suffer from diabetic wounds. Diabetic complications, such as foot ulcer, impose major public health burdens worldwide.

Objective: The present study was carried out to evaluate comparative efficacy of polyherbal creams with framycetin sulfate cream on diabetic rats using incision and excision wound models.

Materials and methods: Alloxan (120 mg/kg, intraperitoneal) induced diabetic rat models (incision and excision models) were used to evaluate wound healing effect of cream A, B, and framycetin sulfate. Cream A and B were applied for a period of 10 and 20 days for incision and excision wound models, respectively. Incision wound model was used to assess the effect on breaking strength. Wound contraction and epithelialization period were measured using excision wound model. The data were analyzed by one-way ANOVA followed by Bonferroni post-test.

Results: Tensile strength of the animals treated with cream B (941.66 ± 15.36) was found to be significantly greater (P < 0.001) as compared to tensile strength of the animals treated with cream A (825 ± 22.36). Wound treated with cream B was found to heal significantly (P < 0.001) faster (day 17) as compared to wounds treated with framycetin sulfate (day 21).

Conclusions: Cream B was found to be more effective wound healing agent than cream A and framycetin sulfate cream in treating diabetic wounds.

© 2016 Transdisciplinary University, Bangalore and World Ayurveda Foundation. Publishing Services by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

A wound is defined as loss or breaking of cellular, anatomical, or functional continuity of living tissues [1]. It is a clinical entity, as old as human, and is often considered as major problem in clinical practice. Healing of wounds involves the activity of an intricate network of blood cells, cytokines, and growth factors which ultimately leads to the restoration of the injured skin or tissue to normal condition. The classic model of wound healing is divided into three sequential phases: Inflammatory phase (consisting of hemostasis and inflammation), proliferative phase (consisting of granulation, contraction, and epithelialization), and remodeling phase, which organizes structure with increased tensile strength [2]. Though healing process takes place by itself and does not require much help, various physiologic and mechanical factors, such as poor nutrition, insufficient oxygenation, infection, prolonged inflammation, age, diabetes and other diseases, drugs, smoking, alcoholism, depression, and other factors [3] may impair the healing response, resulting in a chronic wound that fails to proceed through the usual stepwise progression.

Diabetes mellitus constitutes one of the most important public health problems due to its high prevalence and enormous social and economic consequences [4]. Delayed cutaneous wound healing is a chronic complication in diabetic patients and is caused primarily by hyperglycemia, prolonged inflammatory phase, defective angiogenesis, diminished expression of cytokines, oxidative stress, vascular insufficiency, and microbial infections [5–8]. Several
other diabetic complications such as neuropathy, nephropathy, atherosclerosis, and foot deformities contribute to the severity of the disease and in the development of chronic wounds in diabetic patients that might be complicated leading to ulceration, necrosis, and amputation [5,7]. Diabetes mellitus is life-threatening and becomes the third largest killer of humans after cancer and cardiovascular diseases, even with the use of several recent synthetic drugs for effective treatment options [9].

Healing impairment of diabetic patients is still a serious clinical problem for physicians worldwide due to unclear etiology. Hence, impaired wound healing in diabetics has caught the attention of the world to help promote healing process and prevent the rising complications. A new era in wound healing research is required, involving new treatment strategies to deal with this emerging issue. One of these is the use of medicinal plants as a source for natural products to explore new therapeutic agents/tools intended for diabetic wound management and treatment.

India has a rich tradition of plant-based knowledge on healthcare. Many Ayurvedic plants have a very important role in the process of wound healing. A large number of plants, plant extracts, decoctions, or pastes are equally used by tribals and folklores in India for the treatment of cuts, wounds, and burns [10]. Plants are potent healers because they promote the repair mechanisms in a natural way [11]. The phytomedicines are safe, effective, and relatively cheap options for wound healing [12]. These natural agents induce healing and regeneration of the lost tissue by multiple mechanisms such as coagulation, disinfections, debridement, antioxidant, and provide suitable environment for natural healing process [3].

Literature survey revealed that many plants are known to have antioxidant, antimicrobial, anti-inflammatory, and wound healing properties for example, Aloe vera, turmeric, and neem [13]. We searched for such medicinal plants from Ayurvedic literature and followed the reverse pharmacology path. This led us to the short-listing of plant materials from almost 200 different options.

The present study was carried out to evaluate comparative efficacy viz., cream A (Ari’s Wound Healing Cream) and cream B (Amarantha Wound Healing Cream) with framycetin sulfate cream in diabetic wounds. Cream A was prepared using extracts of eight herbs viz., Glycyrrhiza glabra, Ficus infectoria, Shorea robusta, Curcuma longa, Berberis aristata, Rubia cordifolia, Azadirachta indica, Pongamia glabra, and Yashad Bhasma as classical Ayurvedic preparation. Cream B was prepared using Jatyadi Oil and classical Ayurvedic preparation, Yashad Bhasma and extracts of seven herbs viz., Ficus religiosa, Ficus bengalensis, Centella asiatica, S. robusta, G. glabra, A. indica, and P. glabra. Cream A differs from cream B in the form of quantity and types of ingredients used in the formulations. The major differentiating factors between the two creams are the presence of Jatyadi Oil and Mandukaparni extract in cream B. Furthermore, the percentage of Yashad Bhasma in cream B is more than cream A. Both the creams have Vranaropak properties.

The selected ingredients of both formulations were reported to have significant antimicrobial, antioxidant, wound healing, and anti-inflammatory properties. The literature survey scientifically revealed the use of Jatyadi Oil in the management of wounds [14]. Yashad Bhasma is a classical Ayurvedic formulation which plays a significant role in protein synthesis, cell division, wound healing. It is known to have antiseptic and astringent properties [15]. The plant ingredients such as C. longa, B. aristata, A. indica, P. Glabra, and S. robusta possess antimicrobial and wound healing properties [16]. The plant ingredients such as F. religiosa and F. bengalensis help to constrict and heal the wounds due to their astringent property [17,18]. Few herbs such as C. asiatica have ability to heal the wounds by increasing synthesis of collagen and intracellular fibronectin content [19]. G. glabra has also been used in the treatment of wounds, ulcers, and burns [20].

The growing popularity of natural and herbal medications, easy availability of raw materials, cost-effectiveness, and paucity of reported adverse reaction, prompted us to assess wound healing efficacy of two Ayurvedic topical creams in comparison with framycetin sulfate cream.

2. Materials and methods

2.1. Materials

Cream A and B were developed and supplied by Ari Healthcare Pvt. Ltd., Pune.

Composition of cream A (Ari’s Wound Healing Cream):

Ingredients	Botanical name	Part of plant	Types of extract	Quantity (%)
Yashad Bhasma extract			Hydroalcohol	0.3
Plaksha extract	Ficus infectoria	Leaf and bark	Hydroalcohol	3
Shala extract	Shorea robusta	Bark	Hydroalcohol	2
Haridra extract	Curcuma longa	Rhizome	Alcohol	2
Durumaridra extract	Berberis aristata	Stem	Hydroalcohol	2
Manjushtha extract	Rubia cordifolia	Stem	Hydroalcohol	2
Nimba extract	Azadirachta indica	Leaf	Hydroalcohol	2
Karanja extract	Pongamia glabra	Bark	Hydroalcohol	1
Yashad Bhasma	Ayurvedic classical formulation	Powder	Powder formulation	0.3
Cream base				100

Composition of cream B (Amarantha Wound Healing Cream): Each gram of cream contains percent of ingredients (w/w).

Ingredients	Botanical name	Part of plant	Types of extract	Quantity (%)
Jatyadi Oil			Medicated oil	4
Ashvathat extract	Ficus religiosa	Stem	Hydroalcohol	3
Nygrodha extract	Ficus bengalensis	Root	Hydroalcohol	2
Mandukaparni extract	Centella asiatica	Whole plant	Alcohol	3
Shala extract	Shorea robusta	Bark	Hydroalcohol	3
Yashad-madhuka extract	Glycyrrhiza glabra	Stem	Hydroalcohol	2
Nimba extract	Azadirachta indica	Leaf	Hydroalcohol	1
Karanja extract	Pongamia glabra	Bark	Hydroalcohol	1
Yashad Bhasma	Ayurvedic classical formulation	Powder	Powder formulation	1.5
Cream base				100

2.2. Experimental animals

Albino Wistar rats of both sexes weighing 180–200 g were used for the study. The animals were procured from Haffkine Biopharmaceuticals, Mumbai. All animals were housed in polypropylene cages under standard experimental conditions with 20 °C ± 2 °C ambient temperature and 12 h light–dark cycle. The animals were fed standard pellet diet and were provided water ad libitum. All experimental protocols were approved by the Institutional Animal Ethics Committee (CUSCP/IAEC/27/2011–12) of C.U. Shah College of Pharmacy, Santacruz (W), Mumbai, India.
2.6. Incision wound model

Animals were anesthetized before wound creation by open mask method using ether. The particular skin area was shaved using hair removal cream (Veet) 1 day prior to the experiment. A full thickness of the excision wound of circular area (approximately 500 mm²), and 2 mm depth was made on the shaved back of the rats. The wound was left undressed to the open environment. Cream A, B, and standard (framycetin sulfate) were topically applied once a day, starting from day 0 until complete epithelialization. The parameters studied were percent wound closure and epithelialization time. Wound closure was measured as a percent contraction in wound area in each 4 days over a period of 30 days. Wound closure was studied by tracing the raw wound using transparent paper, and a permanent marker on every 4th day for 16 days. Wound area was measured by retracing the wound on a millimeter scale graph paper. The period of epithelialization was calculated as the number of days required for falling off of the dead tissue remnants without any residual raw wound [23].

2.7. Excision wound model

Animals were anesthetized before wound creation by open mask method using ether. The particular skin area was shaved using hair removal cream (Veet) 1 day prior to the experiment. A full thickness of the excision wound of circular area (approximately 500 mm²), and 2 mm depth was made on the shaved back of the rats. The wound was left undressed to the open environment. Cream A, B, and standard (framycetin sulfate) were topically applied once a day, starting from day 0 until complete epithelialization. The parameters studied were percent wound closure and epithelialization time. Wound closure was measured as a percent contraction in wound area in each 4 days over a period of 30 days. Wound closure was studied by tracing the raw wound using transparent paper, and a permanent marker on every 4th day for 16 days. Wound area was measured by retracing the wound on a millimeter scale graph paper. The period of epithelialization was calculated as the number of days required for falling off of the dead tissue remnants without any residual raw wound [23].

2.8. Statistical analysis

Results were expressed as mean ± standard error of the mean (SEM). Comparisons between the groups were performed using one-way ANOVA with post-test on GraphPad Instat 3 statistical software. Differences were considered significant, if P value is < 0.05, 0.01, and 0.001.

3. Results

3.1. Safety evaluation (skin irritation study)

There were no signs of redness and itching when cream A and B were applied on the shaved back of albino rats. The primary skin irritation index of the creams was calculated as 0.00. This indicates that cream A and B were found to be safe.

3.2. Incision wound model

The results were presented as mean weight in gram ± SEM required to open the sutured wounds [Table 1]. Tensile strength of the wound in the animals treated with cream B and framycetin sulfate cream was found to be significantly higher (P < 0.001 and P < 0.01, respectively) as compared to the tensile strength of the wounds in animals treated with cream A. Tensile strength of the wounds in the animals treated with cream B was found to be greater as compared to tensile strength of the wounds in animals treated with cream A. Tensile strength of the wounds in animals treated with cream B was found to be greater as compared to tensile strength of the wounds in animals treated with cream A.

Table 1

Group	Tensile strength (g) ± SEM
I	825 ± 22.36
II	941.66 ± 15.36**
III	920.83 ± 10.04**

Data were expressed as means ± SEM for six rats in each group. The treated groups were compared by one-way ANOVA with post-test. **P < 0.01, ***P < 0.001 versus standard. Group I: Cream A treated group, Group II: Cream B treated group, and Group III: Framycetin sulfate treated group. SEM: Standard error of mean.

Table 2

Groups	4	8	12	16	20	Epithelialization period (days)
Percentage of wound contraction	48.70 ± 1.76	66.67 ± 4.27	88.37 ± 0.83**	95.43 ± 0.53*	100	19.17 ± 0.31
II	48.47 ± 2.36	77.03 ± 3.09	92.0 ± 0.59**	96.60 ± 1.16**	100	17.00 ± 0.37***
III	27.20 ± 1.29	63.33 ± 2.81	82.90 ± 2.26	92.00 ± 0.85	100	20.50 ± 0.43

Data were expressed as means ± SEM for six rats in each group. The treated groups were compared by one-way ANOVA with post-test. *P < 0.05, **P < 0.01, ***P < 0.001 versus standard. Group I: Cream A treated group, Group II: Cream B treated group, and Group III: Framycetin sulfate treated group. SEM: Standard error of mean.
treated with cream A and framycetin sulfate cream. Thus, more weight and more strength were required to break the wound treated with cream B as compared to wound treated with cream A and framycetin sulfate indicating that cream B was the most effective among all three creams. Tensile strength of the animals treated with standard (framycetin sulfate) was found to be greater than tensile strength of the animals treated with cream A. This indicates that framycetin sulfate cream has faster wound healing rate than cream A.

3.3. Excision wound model

The effect of wound healing activity in this model was evaluated by determining the percent wound contraction and epithelialization period. The results in Table 2 are expressed as % wound contraction and epithelialization period (mean ± SEM). The studies on excision wound healing model revealed that both the groups (cream A and B) showed decreased wound area from day 0 to day 20. On the 12th and 16th day, the % wound contraction of excision wounds treated with cream A and B (95.43 ± 0.53 and 96.60 ± 1.16%, respectively) was found to be significantly higher (P < 0.05 and P < 0.01, respectively) than the wounds treated with framycetin sulfate cream (92.00 ± 0.85%). The complete healing of wound is seen when the eschar falls. Wounds treated with cream B healed faster (day 17) and the healing was statistically significant (P < 0.001) as compared to the wounds treated with framycetin sulfate (day 21).

The period of epithelization of wounds treated with cream A was found to be low as compared to standard group. This indicates that cream A and B promotes epithelialization of wound faster than framycetin sulfate.

4. Discussion

The wound healing process consists of different phases such as granulation, collagenation, collagen maturation, and scar matura-

tion which are concurrent but independent of each other [24]. Therefore, it may not be possible to draw firm conclusion about the influence of a given agent on healing by studying only one phase of healing. Hence, in the present study, two different wound models were used to evaluate the wound healing efficacy of cream A and B in comparison with framycetin sulfate cream in diabetic wound models. The results of the present study showed that cream A and B possessed a definite pro-healing action.

The results indicated that both the creams (cream A and B) did not cause any skin reaction after examining at 24, 48, and 72 h. It can be concluded that both the creams did not cause any skin irritation and can be classified as non-irritant. Both the creams were found to be safe for topical application.

In incision wound, the increase in the tensile strength of skin in treated wounds may be due to increase in the collagen concentration and stabilization of fibers facilitating wound healing. The highest tensile strength of the wounded skin was observed in the animals treated with cream B.

Animals treated with cream A and B showed enhanced rate of wound contraction and drastic reduction in healing time than framycetin sulfate cream, which might be due to enhanced epithelialization and cellular proliferation. This enhanced epithelization may be due to the antioxidant effect of medicinal plants, which augments collagen synthesis. The period of epithelialization of animals treated with creams A and B was less than framycetin sulfate indicating faster wound healing. The animal treated with cream B showed significant results when compared with cream A and standard.

The results of the present study showed that the cream B possessed significant wound healing activity than cream A due to the synergistic effects of Jayyadi Oil, C. asiatica, and other ingredients present in cream B. Asiaticoside isolated from C. asiatica showed promising wound healing activity in normal as well as in diabetic animals [25]. Jayyadi Oil is a classical Ayurvedic formulation in oil form used for healing wounds. It is to be applied externally over non-healing wounds, sinus, blisters, abscess, and bite wounds. It is also beneficial in burn wounds. It possesses antimicrobial activity, due to that it acts as antiseptic and fungicidal. It is also useful in various skin afflictions. Wound healing efficacy of Jayyadi Oil was also evaluated scientifically by in vivo evaluation in rat using excision wound model [14].

5. Conclusion

Cream A and B were found to be non-irritant and safe for topical application. Both cream A (Ari’s Wound Healing Cream) and cream B (Amarantha Wound Healing Cream) enhanced wound healing process in albino rats when tested by incision and excision of fresh and diabetic wound models. Thus, the prepared topical creams possess multifaceted properties in healing the wound.

Source of support
Nil.

Conflicts of interest
None declared.

References

[1] Fulzele SV, Sattuwar PM, Joshi SB, Dorle AK. Wound healing activity of Hingvadya Ghrita in rats. Indian Drugs 2002;39(Suppl. 11):605–9.
[2] Clark RA. Physiology, bio-chemistry and molecular biology of skin. In: Goldsmith LA, editor. Cutaneous wound repair. New York: Oxford University Press; 1991. p. 576.
[3] Priya KS, Gnanamani A, Radhakrishnan N, Babu M. Healing potential of Datura alba on burn wounds in albino rats. J Ethnopharmacol 2002;83:193–9.
[4] Abu-Al-Basal MA. Healing potential of Rosmarinus officinalis L. on full-thickness excision cutaneous wounds in ailoxan-induced-diabetic BALB/c mice. J Ethnopharmacol 2010;131:443–50.
[5] Lerman CZ, Galano RD, Armour M, Levine JP, Gurtner GC. Cellular dysfunction in the diabetic fibroblast: impairment in migration, vascular endothelial growth factor production, and response to hypoxia. Am J Pathol 2003;162:303–12.
[6] Sivan-Loukianova E, Awad OA, Stepanovic V, Rickenbach J, Schatteman GC. CD34+ blood cells accelerate vascularization and healing of diabetic mouse skin wounds. J Vasc Res 2003;40:368–77.
[7] Hirsh T, Spielmann M, Zuhali B, Koehler T, Fossum M, Steinau HU, et al. Enhanced susceptibility to infections in a diabetic wound healing model. BMC Surg 2008;8:5.
[8] Abu-Al-Basal MA. In vitro and in vivo anti-microbial effects of Nigella sativa Linn. Seed extracts against clinical isolates from skin wound infections. Am J Appl Sci 2009;6:1440–7.
[9] Li WL, Zheng HC, Bukuru J, De Kimpe N. Natural medicines used in the treatment of diabetes mellitus. J Ethnopharmacol 2004;92:1–21.
[10] Kumar B, Vijayakumar M, Govindarajan R, Pushpangadan P. Ethnopharmacological approaches to wound healing – exploring medicinal plants of India. J Ethnopharmacol 2007;114:103–13.
[11] Kumarsamyraja DN, Jeganathan S, Manavalan R. A review on medicinal plants with potential wound healing activity. Int J Pharma Sci 2012;2(Suppl. 4):105–11.
[12] Raina R, Parkhe S, Verma PK, Pankaj NR. Medicinal plants and their role in wound healing. Vet Scan 2009;3(Suppl. 1):21–6 [Vet Scan is correct].
[13] Kumar P, Yadav P, Verma PR, Kumar S, Aya A. A review on wound healing properties of Indian medicinal plants. Indian J Fundam Appl Life Sci 2011;3(Suppl. 1):220–32.
[14] Shailaja S, Menon S, Pednekar S, Singh A. Wound healing efficacy of Jayyadi Taila: in vivo evaluation in rat using excision wound model. J Ethnopharmacol 2011;138:99–104.
[15] Umachop SJ, Jayaveera K, Ashokkumar CK. Evaluation of wound healing potential of poly herbal formulation. Pharmacologyonline 2009;3:505–12.
[16] Chopda MZ, Mahajan RT. Wound healing plants of Jalgaon district of Maharashtra state India. Ethnobot Lealf 2009;13:1–32.
[17] Kaur A, Rana AC, Tiwari V, Sharma R, Kumar S. Review on ethanomedicinal and pharmacological properties of Ficus religiosa. J Appl Pharm Sci 2011;1:6–11.
[18] Garg VK, Paliwal SK. Wound-healing activity of ethanolic and aqueous extracts of Ficus benghalensis. J Adv Pharm Technol Res 2011;2:110–4.
[19] Babu MK, Prasad OS, Murthy TE. Comparison of the dermal wound healing of Centella asiatica extract impregnated collagen and cross linked collagen scaffolds. J Chem Pharm Res 2011;3:353–62.
[20] Oloumi MM, Nikpoor DA. Healing potential of liquorice root extract on dermal wounds in rats. J Vet Res 2007;62:147–54.
[21] Draize JH, Woodard G, Calvery HO. Methods for the study of irritation and toxicity of substances applied topically to the skin and mucous membranes. J Pharmacol Exp Ther 1944;82:377–90.
[22] Lee KH. Studies on the mechanism of action of salicylate. II. Retardation of wound healing by aspirin. J Pharm Sci 1968;57:1042–3.
[23] Morton JP, Malone MH. Evaluation of vulnerary activity by an open wound procedure in rats. Arch Int Pharmacodyn 1972;196:117.
[24] Panda V, Sonkamble M, Patil S. Wound healing activity of Ipomoea batatas tubers (sweet potato). Funct Foods Health Dis 2011;10:403–15.
[25] Shukla A, Rasik AM, Jain GK, Shankar R, Kuishrestha DK, Dhawan BN. In vitro and in vivo wound healing activity of asiaticoside isolated from Centella asiatica. J Ethnopharmacol 1999;65:1–11.