Constraint-Driven Rank-Based Learning for Information Extraction

Sameer Singh Limin Yao
Sebastian Riedel Andrew McCallum

Department of Computer Science
University of Massachusetts, Amherst

Human Language Technologies: North American Chapter of the Association for Computational Linguistics (NAACL HLT)
June 2-4, 2010
Outline

1 Motivation

2 Background
 Undirected Graphical Models
 Inference and Learning

3 Semi-Supervised Rank-Based Learning
 Self-Training
 Constraints
 Self-Training and Constraints
 Model and Constraints

4 Experiments

5 Conclusions
Supervised Information Extraction

- Information Extraction models are becoming complex:
 - capture higher-order dependencies
 - represent tasks like coreference
 - jointly infer multiple tasks
Supervised Information Extraction

- Information Extraction models are becoming complex:
 - capture higher-order dependencies
 - represent tasks like coreference
 - jointly infer multiple tasks
- These additional edges make inference really slow
Supervised Information Extraction

- Information Extraction models are becoming complex:
 - capture higher-order dependencies
 - represent tasks like coreference
 - jointly infer multiple tasks
- These additional edges make inference really slow
- Training requires inference before each update:
 - over the whole dataset (*gradient descent*)
 - over a subset of the dataset (*stochastic gradient descent*)
 - over a single instance (*perceptron*)
Information Extraction models are becoming complex:
 - capture higher-order dependencies
 - represent tasks like coreference
 - jointly infer multiple tasks

These additional edges make inference really slow

Training requires inference before each update:
 - over the whole dataset (*gradient descent*)
 - over a subset of the dataset (*stochastic gradient descent*)
 - over a single instance (*perceptron*)

SampleRank* can efficiently train complex models
 - by incorporating updates *within inference*

* Khashayar et al., 2008 and Wick et al., 2009
Supervised Information Extraction

- Information Extraction models are becoming complex:
 - capture higher-order dependencies
 - represent tasks like coreference
 - jointly infer multiple tasks
- These additional edges make inference really slow
- Training requires inference before each update:
 - over the whole dataset (gradient descent)
 - over a subset of the dataset (stochastic gradient descent)
 - over a single instance (perceptron)
- SampleRank* can efficiently train complex models
 - by incorporating updates within inference

But what about Semi-Supervised Learning?

*Khashayar et al., 2008 and Wick et al., 2009
Constraint-Based SSL

Sometimes we have prior knowledge about the tasks:

- e.g. “California” is a LOCATION
- encoded as *constraints* on features
Constraint-Based SSL

Sometimes we have prior knowledge about the tasks:

- e.g. “California” is a LOCATION
- encoded as constraints on features

Use this knowledge to learn the model

- Constraint-Driven Learning (CODL): Chang et al., ACL 2007
- Generalized Expectations (GE): Mann, McCallum, ACL 2008
- Alternating Projection (AP): Bellare et al., UAI 2009
Constraint-Based SSL

Sometimes we have prior knowledge about the tasks:

- e.g. “California” is a LOCATION
- encoded as constraints on features

Use this knowledge to learn the model

- Constraint-Driven Learning (CODL): Chang et al., ACL 2007
- Generalized Expectations (GE): Mann, McCallum, ACL 2008
- Alternating Projection (AP): Bellare et al., UAI 2009

All these methods also require inference before updates
Outline

1 Motivation

2 Background
 Undirected Graphical Models
 Inference and Learning

3 Semi-Supervised Rank-Based Learning
 Self-Training
 Constraints
 Self-Training and Constraints
 Model and Constraints

4 Experiments

5 Conclusions
Factor Graphs

- Undirected bipartite graph over variables \((x, y)\) and factors
- Each factor is associated with a scalar *potential*
 - dot product between parameters and features over neighbors
- Probability distribution represented by the graph:

\[
p(y|x) = \frac{1}{Z(x)} \prod_{j \in F} \exp \langle \theta_j, \phi_j(x_j, y_j) \rangle
\]
MCMC Inference

- Each sample is a configuration of the variables
- Proposal function changes $y \rightarrow y^c$
- Acceptance probability depends on ratio of the model scores

$$\frac{p(y|x)}{p(y^c|x)} = \prod_{j \in \mathcal{F}} \frac{\exp\langle \theta_j, \phi_j(x_j, y^c_j) \rangle}{\exp\langle \theta_j, \phi_j(x_j, y^c_j) \rangle}$$
Rank-Based Learning‡

- Updates parameters *within* MCMC-inference
- Requires a truth function \(\mathcal{F} : \mathbf{Y} \rightarrow \mathcal{R} \)
 - defined as \(-\mathcal{L}(\mathbf{y}, \mathbf{y}_L) \), where \(\mathcal{L} \) is the loss, \(\mathbf{y}_L \) is labeled data
 - *e.g.* accuracy, F1-score, *etc.*

‡SampleRank: Khashayar et al., 2008 and Wick et al., 2009

Rank-Based Learning

- Updates parameters within MCMC-inference
- Requires a truth function $\mathcal{F}: \mathbf{Y} \rightarrow \mathcal{R}$
 - defined as $-\mathcal{L}(\mathbf{y}, \mathbf{y}_L)$, where \mathcal{L} is the loss, \mathbf{y}_L is labeled data
 - e.g. accuracy, F1-score, etc.
- Each pair of consecutive samples (\mathbf{y}, \mathbf{y}^c) is ranked by:
 1. the model: $p(\mathbf{y}|\mathbf{x})$ and $p(\mathbf{y}^c|\mathbf{x})$
 2. the truth function: $\mathcal{F}(\mathbf{y})$ and $\mathcal{F}(\mathbf{y}^c)$
- If the rankings disagree, parameters are updated
- Shown to be efficient and achieve high-accuracy

† Culotta et al., NAACL–HLT 2007 and Singh et al. ECML–PKDD 2009
‡ SampleRank: Khashayar et al., 2008 and Wick et al., 2009
1 Motivation

2 Background
 Undirected Graphical Models
 Inference and Learning

3 Semi-Supervised Rank-Based Learning
 Self-Training
 Constraints
 Self-Training and Constraints
 Model and Constraints

4 Experiments

5 Conclusions
Unlabeled Data

- If we can specify F, we can perform Rank-Based Learning
- If $x \in$ labeled data, $F(y) = -L(y, y_L)$
- For unlabeled data, we explore multiple candidates
 - based on existing semi-supervised learning techniques
(II) Self-Training

Works as follows:

1. Train model on labeled data
2. Find the predictions on the unlabeled data
3. Add the *confident* predictions to labeled data
4. go to (1)
(Ⅰ) Self-Training

Works as follows:

1. Train model on labeled data
2. Find the predictions on the unlabeled data
3. Add the *confident* predictions to labeled data
4. go to (1)

Can be directly incorporated into the truth function:

\[
F_S(y) = -L(y, \hat{y}_U)
\]
(-Encoding Constraints)

We may have prior knowledge about our labels:
- Constraints \(\{c_i\} \), where \(c_i(y) \) denotes whether:
 - \(y \) satisfies the constraint \((+1) \)
 - \(y \) violates the constraint \((-1) \)
 - constraint does not apply to \(y \) \((0) \)
(-Encoding Constraints)

We may have prior knowledge about our labels - Constraints \{c_i\}, where \(c_i(y)\) denotes whether:
- \(y\) satisfies the constraint (+1)
- \(y\) violates the constraint (−1)
- constraint does not apply to \(y\) (0)

Can be incorporated into the truth function:

\[
F_c(y) = \sum_i c_i(y)
\]
By themselves, Self-Training and Constraints have major drawbacks - combine the two by including model predictions into the truth function

\[
F_{sc}(y) = F_s(y) + \lambda_s F_c(y) \\
= -L(y, \hat{y}_U) + \lambda_s \sum_i c_i(y)
\]
Previous function has two potential drawbacks:

1. Since we make updates constantly, \hat{y}_U may be obsolete
2. Obtaining \hat{y}_U requires full inference
(IV) Incorporating Model Scores

Previous function has two potential drawbacks:

1. Since we make updates constantly, \hat{y}_U may be obsolete
2. Obtaining \hat{y}_U requires full inference

Instead, use the current model score directly!

$$
F_{mc}(y) = \log p(y|x, \Theta) + \lambda_m F_c(y) \\
\equiv \sum_j \langle \theta_j, \phi_j(x_j, y_j) \rangle + \lambda_m \sum_i c_i(y)$$

§ Ignore $\log Z(x)$ since it is independent of y.

Singh, Yao, Riedel, McCallum (UMass) Constraint-Driven Rank-Based Learning NAACL HLT 2010 15 / 21
Experiments

Setup

- Experiments on a sequential modeling task
 - Compare with existing work
 - Evaluate utility where exact inference is possible
- Cora citation dataset
 - Segment into fields such as “author”, “title” and “venue”
 - 300 training, 100 test and 100 dev
 - Same constraints as in (Chang et al. ACL 2007)
- The candidates are compared with CODL† and Supervised

†results that did not incorporate constraints during inference
Experiments

Results

Figure:
Singh, Yao, Riedel, McCallum (UMass) Constraint-Driven Rank-Based Learning NAACL HLT 2010 18 / 21
Outline

1 Motivation

2 Background
 Undirected Graphical Models
 Inference and Learning

3 Semi-Supervised Rank-Based Learning
 Self-Training
 Constraints
 Self-Training and Constraints
 Model and Constraints

4 Experiments

5 Conclusions
Summary

• Incorporate semi-supervision into Rank-Based Learning
 - enabling SSL over complex graphical models
• Approach is competitive on a standard dataset
 - with methods that are intractable for complicated models

• Future Work:
 • Apply to more complicated, loopy models
 • Analysis of which candidate is the best
 • Running time comparisons
 • Consider more SSL algorithms (e.g. co-training, ...)

Singh, Yao, Riedel, McCallum (UMass)
Thanks!

Sameer Singh, Limin Yao, Sebastian Riedel, Andrew McCallum

University of Massachusetts, Amherst

{sameer,lmyao,riedel,mccallum}@cs.umass.edu

factorie.googlecode.com