Effects of elastic and inelastic NN scattering cross sections on π^-/π^+ ratios in heavy-ion collisions at intermediate energies

Gao-Chan Yong
Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China

Based on the isospin-dependent Boltzmann-Uehling-Uhlenbeck transport model and the scaling model according to nucleon effective mass, effects of elastic and inelastic NN scattering cross sections on π^-/π^+ in the neutron-rich reaction of $^{48}\text{Ca}+^{48}\text{Ca}$ at a beam energy of 400 MeV/nucleon are studied. It is found that cross-section effects of both NN elastic and inelastic scatterings affect Δ_{1232}, π^- and π^+ production, as well as the value of π^-/π^+.

PACS numbers: 25.70.-x, 25.60.-t, 25.80.Ls, 24.10.Lx

Recently, pion production in heavy-ion collisions has attracted much attention in the nuclear physics community. One important reason for this is that pion production is connected with the high-density behavior of nuclear symmetry energy. The latter is crucial for understanding many interesting issues in both nuclear physics and astrophysics. The high-density behavior of nuclear symmetry energy, however, has been regarded as the most uncertain property of dense neutron-rich nuclear matter. Many microscopic and/or phenomenological many-body theories using various interactions predict that the symmetry energy increases continuously at all densities. However, other models predict that the symmetry energy increases to a maximum and then may start decreasing at certain supersaturation densities. Thus, currently the theoretical predictions on the symmetry energy at supersaturation densities are extremely diverse. To make further progress in determining the symmetry energy at supersaturation densities, what is most critically needed is some guidance from dialogues between experiments and transport models, which have been done extensively in the studies of nuclear symmetry energy at low densities.

Using π^-/π^+ to probe the high-density behavior of nuclear symmetry energy has evident advantage within both the Δ resonance model and the statistical model. Several hadronic transport models have quantitatively shown that π^-/π^+ ratio is indeed sensitive to the symmetry energy, especially around pion production threshold. These transport models, however, usually use different elastic and inelastic NN scattering cross sections. For the in-medium NN elastic scattering cross section, different transport models use different forms. For the NN inelastic scattering cross section, they usually use free NN inelastic scattering cross section. The in-medium NN inelastic scattering cross section must be different from that in free space, and currently the in-medium NN inelastic scattering cross section is quite controversial. More importantly, the description of meson production in heavy-ion collisions is still a very open problem. Other effects, apart from the one considered here, may change the π^-/π^+ ratio. For instance, in Ref. the authors discuss in-medium effects, owing to the interaction of pions with nucleons, on the charged-pion ratio, which go in the direction of reducing π^-/π^+ ratio. However, the cross-section reduction effects investigated in the following increase the charged-pion ratio. All these effects on pion production are combined with the effects of the isovector part of the nuclear interaction (the symmetry energy), which influences strongly also the isotopic content of pre-equilibrium nucleon emission, changing the asymmetry of the remaining interacting system. From this point of view, it is not so easy to extract information on the high-density behavior of the symmetry energy just looking at pion production and charged-pion ratio, because several effects cooperate to build the final result. All the preceding may cause different translations from experimental data. Here we just study the effects of both elastic and inelastic NN scattering cross sections on pion production, as well as the value of π^-/π^+ in neutron-rich heavy-ion collisions because the National Superconducting Cyclotron Laboratory at Michigan State University, Rikagaku Kenkyusho (RIKEN, The Institute of Physical and Chemical Research) of Japan, and the Cooler Storage Ring in Lanzhou, China, are planning to do experiments of pion production to study the high-density behavior of nuclear symmetry energy. In the framework of the isospin-dependent Boltzmann-Uehling-Uhlenbeck (IBUU) transport model, as an example, we studied the effects of both elastic and inelastic NN scattering cross sections on π^-/π^+ in the neutron-rich reaction of $^{48}\text{Ca}+^{48}\text{Ca}$ at a beam energy of 400 MeV/nucleon. It is found that cross-section effects of both NN elastic and inelastic scatterings affect Δ_{1232}, π^- and π^+ production, as well as the value of π^-/π^+.

The isospin and momentum-dependent mean-field potential used in the present work is

\[
U(p, \rho, \tau) = \frac{A_u(x)}{\rho_0} \frac{\rho_\tau}{\rho_0} + \frac{A_l(x)}{\rho_0} \frac{\rho_\tau}{\rho_0} \\
+ B \left(\frac{\rho}{\rho_0} \right)^\sigma (1 - x\delta^2) - 8\pi B \frac{\rho^{\sigma - 1}}{\rho_0^{\sigma + 1}} \delta\rho_\tau, \\
+ \sum_{\xi = \tau, \tau'} \frac{2C_{\tau, \tau'}}{\rho_0} \int d^3p' \frac{f_\xi(p, p')}{1 + (p - p')^2/\Lambda^2} \frac{f_\tau(p, p')}{1 + (p - p')^2/\Lambda^2},
\]

where ρ_n and ρ_p denote neutron ($\tau = 1/2$) and proton.
(\(\tau = -1/2\)) densities, respectively. \(\delta = (\rho_n - \rho_p)/(\rho_n + \rho_p)\) is the isospin asymmetry of nuclear medium. All parameters in the preceding equation can be found in refs. \[48\]. The variable \(x\) is introduced to mimic different forms of the symmetry energy predicted by various many-body theories without changing any property of symmetric nuclear matter and the value of symmetry energy at normal density \(\rho_0\). In this article we let the variable \(x\) be 1. With these choices the symmetry energy obtained from the preceding single-particle potential is consistent with the Hartree-Fock prediction using the original Gogny force \[47\] and is also favored by recent studies based on FOPI experimental data \[1\]. The main reaction channels related to pion production and absorption are

\[
\begin{align*}
NN & \rightarrow NN, \\
NR & \rightarrow NR, \\
NN & \leftrightarrow NR, \\
R & \leftrightarrow N\pi,
\end{align*}
\]

where \(R\) denotes \(\Delta\) or \(N^+\) resonances. In the present work, we use the isospin-dependent in-medium reduced \(NN\) elastic scattering cross section from the scaling model according to nucleon effective mass \[45, 49–51\] and compare with the case of \(NN\) elastic cross section in free space to study the effect of elastic \(NN\) scattering cross section on pion production. Assuming in-medium \(NN\) scattering transition matrix is the same as that in vacuum \[50\], the elastic \(NN\) scattering cross section in medium \(\sigma_{NN}\) is reduced compared with their free-space value \(\sigma_{NN}^{\text{free}}\) by a factor of

\[
R_{\text{medium}}(\rho, \delta, p) = \frac{\sigma_{NN}^{\text{medium}}}{\sigma_{NN}^{\text{elastic}}} = \left(\frac{\mu_{NN}/\mu_N}{\mu_{NN}/\mu_N}\right)^2.
\]

where \(\mu_{NN}\) and \(\mu_{NN}^*\) are the reduced masses of the colliding nucleon pair in free space and medium, respectively. For in-medium \(NN\) inelastic scattering cross section, even assuming in-medium \(NN \rightarrow NR\) scattering transition matrix is the same as that in vacuum, the density of final states \(D_j\) \[50\] of \(NR\) is very hard to calculate owing to the fact that the resonance’s potential in matter is presently unknown. Because the purpose of present work is just study the effect of \(NN\) scattering cross section on pion production and charged-pion ratio, to simplify the question, for the \(NN\) inelastic scattering cross section we use the same correction factor \(R_{\text{medium}}(\rho, \delta, p)\) to study the effect of \(NN\) inelastic scattering cross sections on pion production and charged-pion ratio (i.e., one choice is \(R_{\text{medium}}(\rho, \delta, p) \ast \sigma_{NN}^{\text{elastic}}\), the other choice is \(\sigma_{NN}^{\text{elastic}}\)). The effective mass of nucleon in isospin asymmetric nuclear matter is

\[
m^*_\tau = \left(1 + \frac{m_c}{p} dU_\tau\right)^{-1}.
\]

From the definition and Eq. \[1\], we can see that the effective mass depends not only on density and asymmetry of medium but also the momentum of nucleon. We decide \(NR \rightarrow NN\) inelastic scattering cross section according to the detailed balance principle \[42\]. The reduction factor \(R_{\text{medium}}\) thus affects not only pion production but also pion absorption. Shown in Fig. 1 is the reduction factor \(R_{\text{medium}}\) as a function of asymmetry \(\delta\) of medium for \(nn\), \(np\), and \(pp\) colliding nucleon pairs. The density of medium is \(\rho/\rho_0 = 2.0\) and nucleonic momentum is \(p = 200\text{MeV}/c\).
(proton-proton) colliding nucleon pairs. We can see that the reduction factor decreases with density and increases with momentum. Also, we can clearly see that the nn pair’s reduction factor is always larger than that of the pp pair in neutron-rich nuclear matter. Fig. 2 shows the reduction factor R_{medium} as a function of the asymmetry δ of the medium. It is seen that the reduction factor R_{medium} of the nn colliding nucleon pair increases rapidly with asymmetry δ and the reduction factor R_{medium} of the np colliding nucleon pair increases slowly with asymmetry δ, whereas the reduction factor R_{medium} of the pp colliding nucleon pair decreases slowly with asymmetry δ. In the symmetric nuclear matter ($\delta=0$), however, the reduction factor R_{medium} for the three cases does not split.

To study the effects of both NN elastic and inelastic scattering cross sections on π^-/π^+, we first studied their effects on $\Delta(1232)$ and pion productions. We ignore N^* production here, because it is mainly related to more energetic collisions. Shown in Fig. 3 is the evolution of pion and $\Delta(1232)$ multiplicities in the reaction of $^{48}\text{Ca}+^{48}\text{Ca}$ at a beam energy of 400 MeV/nucleon. The “ff”, “mf” and “mm” denote the NN free elastic plus NN free inelastic scattering cross sections, modified NN reduced elastic plus NN free inelastic scattering cross sections and modified NN reduced elastic plus modified NN reduced inelastic scattering cross sections, respectively.

![FIG. 3: Evolution of π^-, π^+ and $\Delta(1232)$ multiplicities in the reaction of $^{48}\text{Ca}+^{48}\text{Ca}$ at a beam energy of 400 MeV/nucleon. The “ff”, “mf” and “mm” denote the NN free elastic plus NN free inelastic scattering cross sections, modified NN reduced elastic plus NN free inelastic scattering cross sections and modified NN reduced elastic plus modified NN reduced inelastic scattering cross sections, respectively.](image)

Compared with the full free NN scattering cross-sections case, both the modified NN reduced elastic and the modified NN reduced inelastic scattering cross sections cause more $\Delta(1232)$ resonance production. This is because for the “mf” case, the modified NN reduced elastic scattering cross section causes the colliding nuclei to show less stopping [41, 46, 52], as a result more energetic NN collisions in fireball matter produce more resonances. For the “mm” case, the reduction factor R_{medium} of the NN inelastic scattering cross section not only makes the colliding nuclei further less stopping but also makes resonance less absorptive (i.e., the cross section of $NR \rightarrow NN$ decreases). Effects of the preceding two factors are larger than that of the modified NN reduced inelastic cross section. Therefore, number of resonances also relatively increase. More resonances produce more π^-’s and π^+’s. We thus see more π^-’s and π^+’s for the “mm” case than for the “mf” case and than for the “ff” case. Second, one can see that π^- production is more sensitive to NN scattering cross sections than π^+. It is known that nn collisions mainly produce π^-, pp collisions mainly produce π^+ and np collisions produce roughly equal numbers of π^- and π^+. Although the modified NN reduced cross section makes the colliding nuclei less stopping, relative to nn collisions, the Coulomb force between proton and proton almost cancel out the effect of a largely modified pp reduced cross section (shown in Fig. 2). Therefore π^- production is more sensitive to the NN elastic and inelastic scattering cross sections than π^+. Finally, we can clearly see that more π^-’s are produced than π^+’s. This is understandable for neutron-rich $^{48}\text{Ca}+^{48}\text{Ca}$ collision, in which there are more nn collisions than pp collisions [53].

![FIG. 4: Effects of both elastic and inelastic NN scattering cross sections on $(\pi^-/\pi^+)_\text{like}$ as a function of time in the reaction of $^{48}\text{Ca}+^{48}\text{Ca}$ at a beam energy of 400 MeV/nucleon.](image)

To reduce the systematic errors in simulations, especially in experimental analysis, one usually studies the
production and decays the π^-/π^+ instead of $\pi^-\pi^-$ or $\pi^+\pi^-$ only. Shown in Fig. 4 are effects of elastic and inelastic NN scattering cross sections on the (π^-/π^+) like as a function of time in the central reaction of 48Ca+48Ca at a beam energy of 400 MeV/nucleon. In the dynamics of pion resonance productions and decays the (π^-/π^+) like reads

$$
(\pi^-/\pi^+)_{\text{like}} = \frac{\pi^- + \Delta^- + \frac{4}{3} \Delta^0}{\pi^+ + \Delta^+ + \frac{4}{3} \Delta^0}.
$$

Fig. 4 are effects of elastic and inelastic NN scattering cross sections at an early stage of the reaction. The sensitivity of (π^-/π^+) like to the effects of both elastic and inelastic NN scattering cross sections is clearly shown after $t = 15 fm/c$. We can see that the π^-/π^+ value using full free NN scattering cross sections is smaller than that of using modified NN reduced elastic scattering cross section. The π^-/π^+ value using modified NN reduced elastic scattering cross section is also smaller than that of using full modified NN reduced scattering cross sections. This is understandable from the preceding charged-pion production analysis shown in Fig. 4. We also did a calculation for central Au+Au reaction at 400 MeV/nucleon and found that compared with the "mf" case used in Ref. [1], with the "mm" case the π^-/π^+ ratio increases about 7% while the charged-pion multiplicity increases about 30%. Hence the effects of NN elastic and inelastic scattering cross sections play an important role in studying the high-density behavior of nuclear symmetry energy by using π^-/π^+ in neutron-rich heavy-ion collisions.

In conclusion, in the framework of the isospin-dependent transport model IBUU and the scaling model according to nucleon effective mass, we studied the effects of elastic and inelastic NN scattering cross sections on π^-/π^+ in the neutron-rich reaction of 48Ca+48Ca at a beam energy of 400 MeV/nucleon. We find that both NN elastic and inelastic scattering cross sections in neutron-rich heavy-ion collisions affect Δ_{1232}, π^- and π^+ production, as well as the value of π^-/π^+. The reduced NN elastic and inelastic cross sections increase the number of π^- more evidently than π^+. The value of π^-/π^+ thus also increases accordingly. It is expected that the choice adopted for the NN cross section affects significantly also the amount of pre-equilibrium nucleon emission and the corresponding N/Z ratio, which is also an observable widely investigated in heavy-ion reactions, from both the experimental and the theoretical point of view. Such an observable also needs to be carefully investigated, in parallel with meson production, before reaching any conclusion about the cross sections and the behavior of the symmetry energy at high densities.

This work is supported in part by the National Natural Science Foundation of China under grants 10740420550, 10875151.

[1] Z.G. Xiao, B.A. Li, L.W. Chen, G.C. Yong, M. Zhang, Phys. Rev. Lett. 102 062502 (2009).
[2] M. Di Toro, V. Baran, M. Colonna, V. Greco, J. Phys. G: Nucl. Phys. 37, 083101 (2010).
[3] J. Xu, C.M. Ko, Y. Oh, Phys. Rev. C81, 024901 (2010).
[4] W. Reisdorf, M. Stockmeier, A. Andronic, M.L. Ben-rief, Nucl. Phys. A781, 459 (2007).
[5] G.C. Yong, B.A. Li, L.W. Chen, W. Zuo, Phys. Rev. C73, 034603 (2006).
[6] B.A. Li, Phys. Rev. Lett. 88, 192701 (2002).
[7] B.A. Brown, Phys. Rev. Lett. 85, 5296 (2000).
[8] P. Danielewicz, R. Lacey, W.G. Lynch, Science 298, 1592 (2002).
[9] V. Baran, M. Colonna, V. Greco, M. Di Toro, Phys. Rep. 410, 335 (2005).
[10] B.A. Li, L.W. Chen and C.M. Ko, Phys. Rep. 464, 115 (2008).
[11] K. Sumiyoshi and H. Toki, Astrophys. J. 422, 700 (1994).
[12] J.M. Lattimer, M. Prakash, Science 304, 536 (2004).
[13] A.W. Steiner, M. Prakash, J.M. Lattimer, P.J. Ellis, Phys. Rep. 411, 325 (2005).
[14] M. Kutschera, Phys. Lett. B340, 1 (1994).
[15] S. Kubis and M. Kutschera, Acta Phys. Pol. B30, 2747 (1999); Nucl. Phys. A720, 189 (2003).
[16] L.W. Chen, C.M. Ko, B.A. Li, Phys. Rev. C76, 054316 (2007).
[17] Z.H. Li, U. Lombardo, H.J. Schulze, W. Zuo, L.W. Chen, and H.R. Ma, Phys. Rev. C74, 047304 (2006).
[18] V.R. Pandharipande, V.K. Garde, Phys. Lett. B39, 608 (1972).
[19] B. Friedman, V.R. Pandharipande, Nucl. Phys. A361, 502 (1981).
[20] R.B. Wiringa, V. Fiks, Phys. Rev. C38, 1010 (1988).
[21] P. Krastev and F. Sammarruca, Phys. Rev. C74, 025808 (2006).
[22] A. Szymanski, W. Wójcik, M. Kutschera, Acta Phys. Polon. B37, 227 (2006).
[23] E. Chabanat, P. Bonche, P. Haensel, J. Meyer, R. Schaeffer, Nucl. Phys. A627 (1997) 710; ibid. 635 (1998) 231.
[24] J.R. Stone, J.C. Miller, R. Koncewicz, P.D. Stevenson, M. R. Strayer, Phys. Rev. C68, 034324 (2003).
[25] L.W. Chen, C.M. Ko and B.A. Li, Phys. Rev. C72, 064309 (2005).
[26] J. Decharge and D. Gogny, Phys. Rev. C21, 1568 (1980).
[27] W.D. Myers and W.J. Swiatecki, Acta Phys. Polon. B26, 111 (1995).
[28] D.T. Khoa, W. von Oertzen, A.A. Ogloblin, Nucl. Phys. A602, 98 (1996).
[29] D.N. Basu, T. Mukhopadhyay, Acta Phys. Polon. B38, 169 (2007).
[30] S. Banik and D. Bandyopadhyay, J. Phys. G 26, 1495 (2000).
[31] M.B. Tsang, Y.X. Zhang, P. Danielewicz, M. Famiano, Z.X. Li, W.G. Lynch, and A.W. Steiner, Phys. Rev. Lett. 102, 122701 (2009).

[32] D.V. Shetty, S.J. Yennello, and G.A. Souliotis, Phys. Rev. C76, 024606 (2007).

[33] M.A. Famiano, T. Liu, W.G. Lynch, M. Mocko, A.M. Rogers, M.B. Tsang, M.S. Wallace, R.J. Charity, S. Komarov, D.G. Sarantites, L.G. Sobotka, and G. Verde, Phys. Rev. Lett. 97, 052701 (2006).

[34] M.B. Tsang, T.X. Liu, L. Shi, P. Danielewicz, C.K. Gelbke, X.D. Liu, W.G. Lynch, W.P. Tan, G. Verde, A. Wagner, and H.S. Xu, Phys. Rev. Lett. 92, 062701 (2004).

[35] L.W. Chen, C.M. Ko and B.A. Li, Phys. Rev. Lett. 94, 032701 (2005).

[36] R. Stock, Phys. Rep., 135, 259 (1986).

[37] G.F. Bertsch, Nature 283, 280 (1980); A. Bonasera and G.F. Bertsch, Phys. Lett. B195 (1987) 521.

[38] T. Gaitanos, M. Di Toro, S. Typel, V. Baran, C. Fuchs, V. Greco, H.H. Wolter, Nucl. Phys. A732, 24 (2004).

[39] Q.F. Li, Z.X. Li, S. Soff, M. Bleicher, and Horst Stöcker, Phys. Rev. C72, 034613 (2005).

[40] V. Prassa, G. Ferini, T. Gaitanos, H.H. Wolter, G.A. Lalazissis, M. Di Toro, Nucl. Phys. A789, 311 (2007).

[41] A.B. Larionov, W. Cassing, S. Leupold, U. Mosel, Nucl. Phys. A696, 747 (2001).

[42] A.B. Larionov, U. Mosel, Nucl. Phys. A728, 135 (2003).

[43] G.F. Bertsch, G.E. Brown, V. Koch, B.A. Li, Nucl. Phys. A490, 745 (1988).

[44] G.J. Mao, Z.X. Li, Y.Z. Zhuo and E.G. Zhao, Phys. Rev. C55, 792 (1997).

[45] B.A. Li and L.W. Chen, Phys. Rev. C72, 064611 (2005).

[46] Q.F. Li, Z.X. Li, S. Soff, M. Bleicher, H. Stoecker, J. Phys. G32, 151 (2006).

[47] C. B. Das, S. Das Gupta, C. Gale, and B.A. Li, Phys. Rev. C67, 034611 (2003).

[48] B.A. Li, C.B. Das, S. Das Gupta, C. Gale, Nucl. Phys. A735, 563 (2004); Phys. Rev. C69, 064602 (2004).

[49] J.W. Negele and K. Yazaki, Phys. Rev. Lett. 47, 71 (1981).

[50] V.R. Pandharipande and S.C. Pieper, Phys. Rev. C45, 791 (1991).

[51] D. Persram and C. Gale, Phys. Rev. C65, 064611 (2002).

[52] J.Y. Liu, W.J. Guo, S.J. Wang, W. Zuo, Q. Zhao, and Y.F. Yang, Phys. Rev. Lett. 86, 975 (2001).

[53] B.A. Li, G.C. Yong and W. Zuo, Phys. Rev. C71, 014608 (2005).