Abstract

This study poses the feature correspondence problem as a hypergraph node labeling problem. Candidate feature matches and their subsets (usually of size larger than two) are considered to be the nodes and hyperedges of a hypergraph. A hypergraph labeling algorithm, which models the subset-wise interaction by an undirected graphical model, is applied to label the nodes (feature correspondences) as correct or incorrect. We describe a method to learn the cost function of this labeling algorithm from labeled examples using a graphical model training algorithm. The proposed feature matching algorithm is different from the most of the existing learning point matching methods in terms of the form of the objective function, the cost function to be learned and the optimization method applied to minimize it. The results on standard datasets demonstrate how learning over a hypergraph improves the matching performance over existing algorithms, notably one that also uses higher order information without learning.

1. Introduction

Identifying feature correspondence is an important problem in computer vision (see references in [8]). In general, matching features using only the appearance descriptor values can often result in many incorrect matches. To address this problem, most algorithms for feature correspondence combine information about both appearance and geometric structure among the feature locations. Several methods [2, 15, 17, 10] utilize the pairwise geometric consistency, along with the pointwise descriptor similarity, to design a matching cost function which is minimized using various optimization algorithms. For example, [15, 7, 13] uses spectral techniques to compute a ‘soft’ assignment vector that is later discretized to produce the correct assignment of features. These works model the appearance and pairwise geometric similarity using a graph, either explicitly or implicitly, and are commonly known as graph matching algorithms. The soft assignment vector is typically computed by an eigen-decomposition of the compatibility or the match quality matrix. Several studies applied graph matching algorithms for various vision problems [16].

Caetano et.al. [5] discusses how the parameters of the matching cost function (primarily the match compatibility scores) can be learned from pairs with labeled correspondences to maximize the matching accuracy. A more recent work [16] proposes to learn similar matching scores in an unsupervised fashion by repeatedly refining the soft assignment vector.

Higher order relationship among the feature points have also been investigated as the means of improving the matching accuracy. Zass et.al. [21] assumes two separate hypergraphs among the feature points on two images and propose an iterative algorithm to match the two hypergraphs. On the other hand, Olivier et.al. [8] generalize the pairwise spectral graph matching methods for higher order relationships among the point matches. The pairwise score matrix is generalized to a high order compatibility tensor. The eigenvectors of this tensor are used as the soft assignment matrix to recover the matches.

In our framework, each feature correspondence is considered as a datapoint and we assume a hypergraph structure among these datapoints (similar to [8]). That is, we conceive a subset of candidate feature matches as a hyperedge of the hypergraph. For subsets of such datapoints, we assume that the relationship among features of one image follows the same geometrical model as that present among the corresponding features in the other image. We compute the likelihood, using this geometrical model, for every subset of datapoints and use it as weight of the hyperedge. The objective is to label the datapoints, i.e., matches to be correct or incorrect, given this hypergraph structure among them.

We adopt a hypergraph node labeling algorithm proposed in [17]. Given a hypergraph, where the hyperedge weights are computed using a model, this algorithm produces the optimal labeling of the nodes that
maximally conforms with the hyperedge weights or likelihood values. Within the framework, the higher order interaction among subsets of datapoints is modeled using a higher order undirected graphical model or the Markov network (see [17] for details). The labels are computed by solving the inference problem on this graphical model where a labeling cost or energy function is minimized to produce the optimal labeling.

In this paper, we show that the framework of hypergraph node labeling of [17] can be applied for feature matching. In addition, we show how it is possible, and in fact advantageous, to learn (a parametric form of) the cost function for matching given several labeled examples of feature correspondences. The learned forms of cost functions are able to appropriately weight the label disagreement cost for different subsets. For example, if the number of subsets containing more accurate matches than the inaccurate ones, the associated penalty function will attain a higher weight to balance the relative importance. The learning procedure is general, i.e., in addition to the feature matching, it can be utilized for any application of the labeling problem [17].

Point matching problem was addressed by a probabilistic graphical model before, in [44] [45], enforcing a graph among the points for spatial consistency. The required potential (cost) functions in these two studies were pre-selected and not learned from the data. Our approach can handle match interaction in larger sets and demonstrates the advantage of learning the cost functions from the data. Feature matching problem has also been cast as an energy minimization problem in [19].

1.1. Contribution:

At this point, we would like to clarify what aspect of learning (hypergraph labeling for) point matching is different from earlier works. Let us suppose \(x_i \in \{0, 1\} \) is the label for \(i \)-th candidate feature match, \(x_i = 1 \) implies a correct match and \(x_i = 0 \) implies an incorrect one. Let \(H_{V^k} \) be the match compatibility score of a subset \(V^k \) of matches of size \(k \). The popular graph and tensor matching algorithms maximize the following overall matching score to retrieve the correct matches [13] [15] [22] [23].

\[
S(X) = \sum_{V^k} H_{V^k} \prod_{i=1}^{k} x_{i}, \tag{1}
\]

The score function is a weighted summation of subset-wise label concurrence function, \(s(V^k) = \prod_{i=1}^{k} x_{i} \). Notice that, \(s(V^k) \) is a binary valued function: \(s(V^k) = 1 \) only when all labels \(x_{i1}, \ldots, x_{ik} \) are equal to 1 and 0 otherwise. Instead of using this predefined binary valued function, we investigate whether or not such label agreement function (or, conversely a disagreement cost function) can be learned from labeled matches. We believe it is particularly useful to learn this function for higher order \((k > 2) \) methods. To illustrate the necessity of such learning, we show two images in Figure 1 with candidate feature matches \((D_1, F_1), (D_2, F_2), (D_3, F_3) \) and \((D_4, F_1) \), all with equal matching probability, overlaid on them.

![Figure 1. Triangle pairs with overlapping matches.](image)

It is assumed that the geometrical arrangement among matching features can be encoded by triangle. Clearly, the similarity between triangles \(D_1 D_2 D_3 \) (red) and \(F_1 F_2 F_3 \) (green) will be high resulting in a large match compatibility \(H_{V^3} \) (where \(V^3 = \{(D_1, F_1), (D_2, F_2), (D_3, F_3)\} \)). Notice that the triangle \(F_1 F_2 F_4 \) (blue dashed) would also have relatively large similarity with \(D_1 D_2 D_3 \). Though this subset \(\{(D_1, F_1), (D_2, F_2), (D_3, F_4)\} \) of matches contain one incorrect match \((D_3, F_4) \), it still provides us significant geometric information about the two correct matches \((D_1, F_1) \) and \((D_2, F_2) \). Incorporating this information in the algorithm should assist establishing more correct correspondences among the features. However, the form of \(s(V^k) = \prod_{i=1}^{k} x_{i} \) does not explicitly handle this situation, even when \(x_{i} \) is relaxed to take values in real domain.\(^1\) One needs to learn an appropriate label agreement (or disagreement cost) function to explicitly include this information in the framework. Learning the cost function can also counteract the uneven ratio of subsets with more correct matches and those with more incorrect matches.

As it will be explained in details later, to determine the correspondence, we in fact minimize a cost function of the form as follows.

\[
\tilde{E}(X) = \sum_{V^k} H_{V^k} \tilde{g}_1(x_{i1}, \ldots, x_{ik}) + (1 - H_{V^k}) \tilde{g}_0(x_{i1}, \ldots, x_{ik}). \tag{2}
\]

This paper describes how to learn appropriate subset-wise label disagreement cost functions (also referred as penalty functions) \(\tilde{g}_1 \) and \(\tilde{g}_0 \) from labeled matches. Our approach is significantly different in concept from previous learning algorithms for correspondence. The

\(^1\)For binary \(x_{i1}, s(V^3) = 0 \) with one incorrect match in \(V^3 \) and therefore the compatibility score is ignored.
algorithms of [3] [16] aim to learn a match compatibility function \(H_{V^k} \) from the data to optimally reflect accurate correspondences among the features. On the contrary, our algorithm learns the label disagreement cost functions \(g_l \) and \(g_0 \) to minimize the total label disagreements within the subsets given the subset matching qualities \(H_{V^k} \). The next section describes how feature correspondence can be cast as a hypergraph labeling problem as defined in [17].

2. Matching as hypergraph labeling

Given two images \(I_L \) and \(I_R \), we denote \(a_i \) and \(a_r \) to be the indices of feature points from \(I_L \) and \(I_R \) respectively. In general, the number \(n_L \) of features in \(I_L \) is different from the number \(n_R \) of features in \(I_R \). Each candidate match \((a_i, a_r)\) is considered to be a datapoint \(v_i \), \(i = 1, \ldots, n \), in our approach. The goal is to partition the dataset \(V = \{v_1, \ldots, v_n\} \) into subset \(A \) comprising correct correspondences and to \(B \) comprising incorrect ones. This is a data labeling problem where the binary label \(x_i = 0 \) if \(v_i \) belongs to \(A \) and \(x_i = 0 \) otherwise.

We wish to exploit the information about subsets of datapoints to enforce geometric consistency in matching. More specifically, for a subset \(V^k = \{v_{i_1}, \ldots, v_{i_k}\} \) of size \(k \) of matching points, we assume the geometric relationship among \(\{a_{i_1}, \ldots, a_{i_k}\} \) to be similar to that among \(\{a_{r_1}, \ldots, a_{r_k}\} \). This similarity value (computed by a suitable function) is denoted by \(\lambda(V^k) \in [0, 1] \). Notice that, we are effectively dealing with a hypergraph with datapoints \(v_i \) as the nodes and the subsets \(V^k \) as the hyperedges. Given such hypergraph, the labeling algorithm is supposed to partition the set of nodes into two sets \(A \) and \(B \), corresponding to correct and incorrect matches respectively. We will use the term likelihood value and weight interchangeably when referring to similarity value \(\lambda(V^k) \).

The work in [17] models the higher order interactions in this hypergraph by a Markov network (by a Conditional Random Field (CRF) to be precise) [9]. The optimal labeling can then be achieved by solving the inference for this CRF model. We follow this representation which is described in the next section.

3. The cost function

Let \(V^k \) be the set of all hyperedges \(V^k \) in this hypergraph. Let \(X = \{x_1, \ldots, x_n\} \) be a label assignment of the nodes \(V \) of the hypergraph. The cost function that asserts discrepancy of node assignments \(X \) in the hypergraph nodes \(V \) can be written as

\[
\mathcal{E}(X, V) = \sum_{V^k \subset V^k} E^k(X^k, V^k),
\]

where \(X^k \) is the set labels of member nodes of subset \(V^k \) and \(E^k \) is the local discrepancy, i.e., the cost of assignment \(X^k \) in \(V^k \). We assume functionally homogeneous local costs, \(E^k = E \). Given this representation, it is possible to construct an equivalent CRF with clique potentials \(E^k \) (see [17]) and formulate the optimal assignment task as the inference in this CRF.

Following [17], each clique potential \(E \) is represented as

\[
E(X^k; V^k) = \beta_1 \lambda(V^k) g_1(\eta_0) + \beta_0 (1 - \lambda(V^k)) g_0(\eta_1). \tag{4}
\]

Here, \(g_0 \), \(c = 0, 1 \) represent a penalty function on the cost of assigning clique nodes to an incorrect class (eg, match to non-match and vice-versa). The penalty function is defined as a function of \(\eta_{1-c} \), the number of nodes in the clique whose label differs from the clique hypothesis \(c \). \(\beta_1 \) and \(\beta_0 \) are non-negative balancing parameters and \(\eta_0 + \eta_1 = k \).

Intuitively, this potential penalizes, via functions \(g_c \), the label assignments incompatible with one of the two hypotheses, matching and non-matching features. To achieve this, the penalties \(g_c \) should be non-decreasing in \(\eta_{1-c} \). If the likelihood of matching, \(\lambda(V^k) \), is high, the potential seeks to decrease \(\eta_0 \), the number of assignments to ”not-matching” hypothesis. In the opposite case, with high non-matching likelihood \(1 - \lambda(V^k) \), the potential attempts to decrease the number of labels incompatible with this hypothesis, \(\eta_1 \).

Penalty functions \(g_c \) could be directly modeled as linear and nonlinear functions of number of label disagreement \(\eta_{1-c} \) in the clique. However, as it will become clear later, it is advantageous to learn a nonlinear mappings \(g_c \) from labeled data. The next section describes how the functions \(g_c \) can be learned from labeled matches/mismatches.

4. Learning penalty functions

Given \(J \) hypergraphs with hyperedges \(V^k_j \), \(j = 1, \ldots , J \), along with the weights and labels \(X_j \) of the datapoints (or correspondences), we wish to learn the parametric form of the \(g_c \) function. We first describe two parametric forms of the penalty functions so that the clique potentials, as defined in Equation (4), become log-linear models. In particular, we seek to express the potential as a linear combination of factors defined over each clique) [9]

\[
E(X^k; V^k) = \sum w_i \phi_i(X^k; V^k). \tag{5}
\]

In this definition, \(\phi_i(X^k; V^k) \) are the factors and \(w_i \) are the mixing weights. The following sections explain
how restating the penalty functions in this manner facilitates learning using CRF training algorithms.

4.1. Discrete g_c

First, we express g_c as a discrete function. Observe that, penalty functions g_c are defined on η_{1-c} values, which are integers in our case. Therefore, it suffices to learn a set of discrete mapping $g_c(\eta_{1-c})$ for all $c \in \{0, 1\}$ and $0 \leq \eta_{1-c} \leq k$. Let us introduce two quantities as follows

$$w^c_\alpha = \beta_c g_c(\alpha),$$

$$\phi_c(\alpha; V^k) = -\lambda_c(V^k) I(\eta_{1-c}, \alpha),$$

where $I(s, t)$ is an indicator function which equals to 1 only when s is equal to t and 0 otherwise. Furthermore, the likelihood weights are denoted by $\lambda_1(V^k) = \lambda(V^k)$ and $\lambda_0(V^k) = 1 - \lambda(V^k)$ for notational convenience. Notice that, in this case, ϕ_c functions are the factors (for each clique) that assume nonzero values only when $\eta_{1-c} = \alpha$. The clique cost function defined in Equation 4 can be rewritten as follows

$$E(X^c; V^k) = \sum_{c} \sum_{\alpha=0}^{k} w^c_\alpha \phi_c(\alpha; V^k).$$

This definition of g_c expresses the joint probability of any assignment as log-linear model. For this form of g_c, the values of w^α_c are learned for all $\alpha = 1, \ldots, \eta_{1-c}$ and $c = 0, 1$

4.2. Second order polynomial g_c

Unconstrained forms of g_c may be prone to overfitting. We thus propose a more constrained g_c by assuming a second order polynomial form. In this case, the function can be expressed using the Taylor expansion around reference point 0:

$$g_c(\alpha) = g_c^{(0)} + \alpha g_c^{(1)} + \frac{\alpha^2}{2} g_c^{(2)}.$$

In Equation 4, $g_c^{(0)}, g_c^{(1)}$ and $g_c^{(2)}$ are the 0, 1st and 2nd order derivatives of g_c at 0. The features for this case can be defined as

$$\psi^0_c(\alpha; V^k) = -\sum_{\gamma=0}^{k} \lambda_c(V^k) I(\eta_{1-c}, \gamma),$$

$$\psi^1_c(\alpha; V^k) = -\sum_{\gamma=1}^{k} \alpha \lambda_c(V^k) I(\eta_{1-c}, \gamma),$$

$$\psi^2_c(\alpha; V^k) = -\sum_{\gamma=1}^{k} \frac{\alpha^2}{2} \lambda_c(V^k) I(\eta_{1-c}, \gamma).$$

Then, the cost function in Equation 4 can be expressed as linear combination of features $\psi^e_c(\alpha)$, $e = 0, \ldots, 2$

$$E(X^c; V^k) = \sum_{c} \sum_{e=0}^{2} g_c^{(e)} \psi^e_c(\alpha; V^k).$$

For polynomial g_c, we learn the values of $g_c^{(e)}$ for all $e = 0, 1, 2$ and $c = 0, 1$. This redefinition of g_c has the benefit of regulating the learned form to be of some specific type. Also, regardless of the size k or data subset, we only need to learn $3 \times C$ parameters, where C is the total number of classes. Next section briefly discusses existing techniques for learning CRFs.

4.3. Learning algorithms

In last two sections we have shown that the clique potential function of the proposed framework can be expressed as a linear combination of features or factors. The joint probability of any label configuration for a CRF, with discrete form of g_c, can be stated as follows

$$p(X \mid V) = \frac{1}{Z(V)} \exp \left\{ \sum_{k \in V^k} \sum_{c=0}^{k} w^c_\alpha \phi_c(\alpha, V^k) \right\}$$

where $Z(V)$ is a normalizing term, $Z(V) = \sum_{X} p(X \mid V)$. The joint probability will be similar for second order polynomial g_c, and we are omitting the derivation for it here. There are two types of algorithms to estimate the parameters w^α_c from data: one that aims at determining the parameters by maximizing the log-likelihood [9] and the other that maximizes the separation, or the label margin, between classes of datapoints [1].

4.3.1 Likelihood Maximization

The log-likelihood function for the training data is given by

$$l(w) = \sum_{j=1}^{J} \sum_{\psi \in \psi^k} \sum_{c=0}^{k} w^c_\alpha \phi_c(\alpha; V^k) - \log Z(V).$$

It has been shown that $l(w)$ is concave [9]. Therefore, a Gradient Ascent algorithm is able to produce the globally optimal values for w^α_c. It is straightforward to see that the gradient with respect to w^α_c is the difference between summation of observed and expected $\phi_c(\alpha)$ values

$$\frac{\partial l}{\partial w^\alpha_c} = \sum_{j=1}^{J} \sum_{\psi \in \psi^k} \phi_c(\alpha; V^k)$$

$$- \sum_{j=1}^{J} \sum_{\psi \in \psi^k} \phi_c(\alpha; V^k) p(X^k \mid V^k).$$

We used a sum-product belief propagation algorithm [14] to compute the marginal posteriors $p(X^k \mid V^k)$. A regularizer term was added to the likelihood function to penalize large parameter values. Apart from Gradient Ascent, other algorithms such as Conjugate Gradient and L-BFGS have also been used for this maximization problem [9].
4.3.2 Margin maximization

The second type of algorithms try to estimate the parameters by maximizing the class margin of the labeled examples. Margin maximization is useful if the data distribution is biased to one of the classes or there are many noisy samples in the data. Bartlett et al. [1] proposed a constrained optimization problem, in terms of primal variables w^c_l, for parameter learning in maximal margin setting. Their formulation minimizes a loss function, defined in terms of the number of incorrectly labeled examples, and a regularizer term. An exponentiated gradient (EG) algorithm is applied to minimize the objective that updates the primal variables w^c_l similarly as in Equation (16). In addition, the EG algorithm also updates the dual variables to minimize the subset-wise mislabeling error. Furthermore, the marginal terms are different from those in likelihood maximization— in [1], they are calculated from a Markov network where the dual variables act as potential functions.

More efficient version of both these algorithms have been described in [6]. In our experiments, parameters were learned by standard Gradient Ascent optimization to maximize the likelihood for a discrete g_c.

5. Inference

Once $g_c(\cdot)$, $c \in \{0,1\}$, are learned, problems with nonlinear $g_c(\cdot)$ can be solved using any efficient Markov network inference algorithm. See [11, 20], and references therein. We adopted the sum-product belief propagation [14] since we also use it for computing the marginal probabilities $p(X^k | V^k)$ required to learn the parameters. The output of this algorithm is belief (approximate marginal probability) $b_l(1)$ and $b_l(0)$ that any datapoint v_l belong to class 1 and 0 respectively.

The belief values for each datapoint v_l could be used to determine the hard one to one assignment for any feature a_l of image I_l to its unique match a_r on image I_R. To do this, for each a_l, we select the match corresponding to the datapoint with the largest ratio of two beliefs $b_l(1) / b_l(0)$ among all the datapoints associated with a_l. The accompanying feature a_r on the right image is selected as the resultant match for a_l. This method of discretization is similar to [15].

6. Experiments and Results

This section describes different matching experiments conducted on standard datasets to test the proposed method and compares the performances with past studies. For all the experiments, the penalty functions were learned using Gradient Ascent to maximize the likelihood for a discrete mapping g_c (Section 4.1).
We considered four sets of image pairs where, in each pair, the two images are \(\{20, 40, 60, 80\} \) frames apart from the other (also 100 for Horse datasets). For each set of image pairs, first five pairs were selected to learn the parameters for the proposed matching algorithm. We learned the parameters for a discrete \(g_c \) by maximum likelihood (ML) method (refer to Section 4).

The performance of our algorithm is compared against the following algorithms:

1. Tensor matching method [8] (implementation available at author’s website): The parameter values such as number of triangles to be generated, number of nearest neighbors of each triangle and the distances are tuned to produce the best results in each of the experiments.

2. Graph matching of [15]: We used the exact same procedure as described in the paper with the same \(m = 3 \) candidate matches for each keypoint and the used 3 as the distance threshold to determine the neighboring keypoints (also tuned for best result).

3. Learning graph matching [5]: The results of learning both the linear and quadratic assignments have been used for comparison.

Figure 2 shows the percentage of incorrect matches produced by these and proposed method. Some qualitative results are supplied as supplementary material.

The results show that none of the spectral Graph matching and Tensor matching techniques was able to perform well on all of these datasets. On the other hand, the proposed method, with learned cost functions is more robust and accurate than all other methods in House, Hotel and Horse-shear datasets. The result of learned Linear Assignment procedure of [5] closely follows that of our method. However, learning linear assignment produces unacceptably high error rates (much higher than the proposed method) for Horse-rotate dataset. This is due to the fact that Linear Assignment learns the weight vector for descriptor similarity for a candidate match. Unless the window– in which the descriptor is computed– is also rotated, the descriptor similarity would be too low in rotated images for a weight vector to generate a correct match. This observation supports the claim made in [16] that, in general, Linear Assignment alone cannot result in accurate matches. The proposed algorithm and Graph matching [15] could not identify the correct matches for larger rotational angles (>80 degrees) due to inferior initial candidate matches.

These results attest the advantage of using higher order information and learning the cost function for matching. Utilizing higher order information consistently produced higher accuracy than learning Quadratic Assignment in all but one dataset. The Tensor matching algorithm, which uses higher order information but does not learn from data, was not robust either on different datasets. The reason for this behavior was surmised in the introduction: the number of subsets generated by higher order algorithm is usually large with imbalanced ratio of useful subsets. One needs to learn the appropriate cost functions for accurate labeling of the members of these subsets. However, it is interesting to see that both Quadratic Assignment [5] and Tensor matching [8] produced a perfect matching for rotated images (Figure 2, rightmost plot). Indeed, [8] also reports similar matching results on synthetic 2D points.

In Figure 3, we show the discrete \(g_c \) learned by the ML algorithm for \(c = 0.1 \). As expected, the learned penalty functions resemble strongly to smooth concave \(w_{1} \), left in Figure 3 and convex \(w_{0} \), right in Figure 3.

4In [8], the authors did not report the results on all possible pairs of images. Results for one pair of images for each interval on House dataset were reported at these values are the same as the minimum error rates of our result.
functions. The forms of \(g_c \) functions also provides some insight about the subsets generated for matching. A convex penalty imposes ‘lenient’ penalties on lower values of \(\eta_1 \), number of label variables assuming the opposite class, class 1. This penalty function would be effective when there are many subsets comprising very few (e.g., one) correct matches. For these subsets, a convex \(g_0 \) would allow to let few datapoints within the subset to assume the opposite label 1. Examining the matching triangles used for matching, one can verify that there are indeed many subsets that contains one correct matches and two incorrect matches in them. On the other hand, the triangles with all correct matches are rare and therefore the penalty function is ‘strict’ (i.e., concave) on the value of \(\eta_0 \).

More plots of such learned penalty functions, as well as non-discretized belief values (i.e., the soft assignment vector) generated by inference algorithm and some qualitative matching results are presented as supplementary material.

6.2. KTH Activity

We applied our method on some KTH activity recognition data \[5\]. For this dataset, we chose three activities, walking, jogging and hand waving and for each of these activities we randomly selected two sequences. The experimental setup is almost same as above except the features are detected using Kadir-Brady (KB) keypoint detector algorithm \[12\] on both the images, i.e., we do not manually select keypoints on image. For each keypoint selected by the feature detector (KB) on the left image, the goal is to find its best match on the right image.

One of the objectives of this experiment is to show the necessity of learning the penalty function instead of employing predefined (linear) ones. We applied the labeling algorithm with predefined linear penalty functions and compared the results to show the improvement achieved by learning \(g_c \). For the learning algorithms, discrete \(g_c \) functions are learned using the ML estimation procedure as before. All parameters for both methods are the same for all the experiments in this section. Sample output matches are shown in Figure 4. The top row shows the output produced by the proposed method using linear penalties, and the bottom row shows the results produced by discrete \(g_c \) trained from data. The matching algorithm with learned penalty function were able to extract more accurate matches than that with linear penalties.

Table 1 summarizes the quantitative matching performances of these two methods. The results clearly show that hypergraph labeling with learned penalty function consistently produces better results than the same method with predefined linear penalties. It is worth mentioning here that the proposed matching algorithm was applied to the (spatially clustered) keypoint locations detected by the KB detector leading to variable number of feature locations in different images. We manually counted the number of correct and incorrect matches from the output for quantitative performance evaluations.

The learned penalty functions for each of these datasets resemble closely to those shown in Figure 3 please refer to the supplementary material specific plots. These learned optimal penalty functions are clearly non-linear which explains why predefined linear penalty functions produce inferior matching results.

6.3. Caltech Aeroplane and Motorbike

Finally, we are showing some more qualitative results on Caltech objects, such as airplanes and motorbikes, in Figure 5. The experimental setup is exactly same as that described in the last section. Notice that, in this experiment, we are establishing correspondences between two different instances of same object category, unlike the experiments described before.

7. Discussion

In this paper, we propose a novel feature matching algorithm based on higher order information among them. The feature correspondence problem is formulated as a hypergraph node labeling problem. A recent algorithm that models the higher order interaction among the datapoints using a Markov network is applied to address the labeling problem. We describe how the associated cost function can be learned from labeled data using existing graphical model training algorithm. The results show that learning the cost function makes the proposed matching algorithm more robust than other pairwise and higher order methods.

This paper presents methods to learn the appropriate cost functions (in terms of the penalty functions) of a hypergraph node labeling algorithm \[17\]. Feature correspondence is one significant application of the supervised hypergraph labeling algorithm, but the learning procedure can benefit any applications of it. We strongly believe learning penalty functions will improve the performances of model estimation and object localization demonstrated in \[17\].

Hypergraph labeling method could potentially be applied to other problems where learning cost functions could be advantageous. One such problem is object boundary detection or image segmentation. We performed a small experiment on natural images of Berkeley dataset. The description of the procedure and sample results are shown in the supplementary material to
Figure 4. Improvement achieved by learning. Top: results of [17] using a predefined linear penalty, bottom: matches after learning. More correct correspondences are recovered by learned penalty function.

method	Jog1	Jog4	Walk1	Walk4	Wave4	Wave7		
	True	False	True	False	True	False	True	False
Linear g_c	4.33	0.83	5.5	1.83	4.89	0.78	5.71	1
Learned g_c	4.83	0.67	6	1.5	6.89	0.89	7.5	0.67

Table 1. Average number of correct and incorrect matches (NOT percentages) found on the image pairs. The proposed algorithm with learned penalty functions consistently produces more true positives with less false positives on all the sequences.

These results suggest the method can be used for segmentation problems, at least for specific domain if not for natural images, with appropriately chosen image features and model.

References

[1] P. L. Bartlett, B. Taskar, M. Collins, and D. Mcallester. Exponentiated gradient algorithms for large-margin structured classification. In *NIPS*, 2005.

[2] A. Berg, T. Berg, and J. Malik. Shape matching and object recognition using low distortion correspondences. In *CVPR*, 2005.

[3] A. Berg and J. Malik. Geometric blur for template matching. In *CVPR*, 2001.

[4] T. S. Caetano, T. Caelli, D. Schuurmans, and D. A. Barone. Graphical models and point pattern matching. *PAMI*, 28:1646–1663, 2006.

[5] T. S. Caetano, J. J. McAuley, L. Cheng, Q. V. Le, and A. J. Smola. Learning graph matching. *PAMI*, 31:1048–1058, 2009.

[6] M. Collins, A. Globerson, T. Koo, X. Carreras, and P. Bartlett. Exponentiated gradient algorithms for conditional random fields and max-margin markov networks. *JMLR*, 9:1775–1822, 2008.

[7] T. Cour, P. Srinivasan, and J. Shi. Balanced graph matching. In *NIPS 19*, 2007.

[8] O. Duchenne, F. Bach, I. Kweon, and J. Ponce. A tensor-based algorithm for high-order graph matching. In *CVPR*, 2009.

[9] L. Getoor and B. Taskar. *Introduction to Statistical Relational Learning*. MIT Press, 2007.

[10] S. Gold and A. Rangarajan. A graduated assignment algorithm for graph matching. *TPAMI*, 1996.

[11] H. Ishikawa. Higher order clique reduction in binary graph cut. In *CVPR*, 2009.

[12] T. Kadir and M. Brady. Saliency, scale and image description. *IJCV*, 45(2):83–105, 2001.

[13] N. Komodakis and N. Paragios. Beyond loose lp-relaxations: Optimizing mrfs by repairing cycles. In *ECCV*, 2008.

[14] F. R. Kschischang, B. J. Frey, and H. andrea Loeliger. Factor graphs and the sum-product algorithm. *IEEE Transactions on Information Theory*, 47:498–519, 1998.

[15] M. Leordeanu and M. Hebert. A spectral technique for correspondence problems using pairwise constraints. In *ICCV*, 2005.

[16] M. Leordeanu and M. Hebert. Unsupervised learning for graph matching. In *CVPR*, 2009.

[17] T. Parag and A. Elgammal. Supervised hypergraph labeling. In *CVPR*, 2011.

[18] L. S. Shapiro and J. M. Brady. Feature-based correspondence: an eigenvector approach. *Image and Vision Computing*, 10(5):283 – 288, 1992.

[19] L. Torresani, V. Kolmogorov, and C. Rother. Feature correspondence via graph matching: Models and global optimization. In *ECCV*, 2008.

[20] T. Werner. A linear programming approach to max-sum problem: A review. *PAMI*, 29(7):1165–1179, 2007.

[21] R. Zass and A. Shashua. Probabilistic graph and hypergraph matching. In *CVPR*, 2008.
Figure 5. Qualitative results on Caltech aeroplanes and motorbikes.