Does the Order of Training Samples Matter? Improving Neural Data-to-Text Generation with Curriculum Learning

Ernie Chang, Hui-Syuan Yeh, Vera Demberg
Dept. of Language Science and Technology, Saarland University
{cychang,yehhui,vera}@coli.uni-saarland.de

Abstract

Recent advancements in data-to-text generation largely take on the form of neural end-to-end systems. Efforts have been dedicated to improving text generation systems by changing the order of training samples in a process known as curriculum learning. Past research on sequence-to-sequence learning showed that curriculum learning helps to improve both the performance and convergence speed. In this work, we delve into the same idea surrounding the training samples consisting of structured data and text pairs, where at each update, the curriculum framework selects training samples based on the model’s competence. Specifically, we experiment with various difficulty metrics and put forward a soft edit distance metric for ranking training samples. Our benchmarks show faster convergence speed where training time is reduced by 38.7% and performance is boosted by 4.84 BLEU.

1 Introduction

Neural data-to-text generation has been the subject of much recent research. The task aims at transforming source-side structured data into target-side natural language descriptions (Reiter and Dale, 2000; Barzilay and Lapata, 2005). The process typically involves mini-matches which are randomly sampled with a fixed size from the training set to feed into the model at each training step. In this paper, we apply curriculum learning to this process, which was explored in neural machine translation (Platanios et al., 2019; Zhou et al., 2020), and show how it can help in neural data-to-text generation.

The main idea in curriculum learning is to present the training data in a specific order, starting from easy examples and moving on to more difficult ones, as the learner becomes more competent. When starting out with easier instances, the risk of getting stuck in local optima early on in training is reduced, since the loss functions in neural models are typically highly non-convex (Bengio et al., 2009). This learning paradigm enables flexible batch configurations by considering the material properties as well as the state of the learner. The idea brings in two potential benefits: (1) It speeds up the convergence and reduces the computational cost. (2) It boosts the model performance, without having to change the model or add data.

With the release of large data-to-text datasets (e.g. Wikibio (Lebret et al., 2016), Totto (Parikh et al., 2020), E2E (Novikova et al., 2017)), neural data-to-text generation is now at a point where training speed and the order of samples may begin to make a real difference. We here show the efficacy of curriculum learning with a general LSTM-based sequence-to-sequence model and define difficulty metrics that can assess the training instances, using a successful competence function which estimates the model capability during training. Such metrics have not yet been explored in neural data-to-text generation.

In this paper, we explore the effectiveness of various difficulty metrics and propose a soft edit distance metric, which leads to substantial improvements over other metrics. Crucially, we observe that difficulty metrics that consider data-text samples jointly lead to stronger improvements than metrics that consider text or data samples alone. In summary, this work makes the following contributions towards neural data-to-text generation:

1. We show that by simply changing the order of samples during training, neural models can be improved via the use of curriculum learning.

2. We explore various difficulty metrics at the level of the data, text, and data-text pairs, and propose an effective novel metric.
2 Related work

The idea of teaching algorithms in a similar manner as humans, incrementally from easy concepts to more difficult ones dates back to incremental learning, which was discussed in light of theories of cognitive development relating to the processes of acquisition in young children (Elman, 1993; Krueger and Dayan, 2009; Plunkett and Marchman, 1993). Bengio et al. (2009) first demonstrated empirically that curriculum learning approaches can decrease training times and improve generalization; later approach address these issues by changing the minibatch sampling strategy to also include model competence (Kocmi and Bojar, 2017; Zhou et al., 2020; Platanios et al., 2019; Liu et al., 2020; Zhang et al., 2018, 2019). While sample difficulty can be assessed for text samples and data samples or jointly, various measures have been proposed for text samples including n-gram frequency Haffari (2009); Platanios et al. (2019), token rarity, and sentence length (Liu et al., 2020; Platanios et al., 2019). Our approach considers data and text jointly, similar to edit distance metric – Levenshtein (Levenshtein, 1966) and Damerau-Levenshtein Distance (Damerau, 1964; Brill and Moore, 2000a), which was used as a content ordering metric in Wiseman et al. (2017) to measure the extent of alignment between data slots and text tokens.

3 Preliminaries of Curriculum Learning

We base our curriculum learning framework on the two standard components: (1) model competence (how capable the current model is at time t), and (2) sample difficulty, which makes independent judgement on each sample’s difficulty. Specifically, we adopt the competence function c(t) for a model at time t as in Platanios et al. (2019); Liu et al. (2020):

\[
c_{\text{sqn}}(t) \in (0, 1) = \min \left(1, \sqrt{t \frac{1 - c_0^2}{\lambda_t} + c_0^2}\right).
\]

(1)

Where \(\lambda_t\) is a hyperparameter defining the length of the curriculum and is set to 2.5 as in Liu et al. (2020). \(c_0 = 0.1\) as Platanios et al. (2019). Following this formulation, the number of new training examples per unit time is reduced as training progresses to give the learner sufficient time to obtain new knowledge. The sequence-to-sequence model learns using the curriculum as outlined in Algorithm 1 by primarily making batch-wise decisions about which samples to add to each batch. This decision is determined by comparing the competence score with the difficulty score as shown in Algorithm 1.

4 Difficulty Metrics

For ease of discussion, we denote sequence to be s, which can be either data or text, or their concatenation. For comparison, the difficulty metrics use the unit tokens as tokenized by SpaCy.\(^1\) We begin with discussion on length and word rarity, which were previously applied by Kocmi and Bojar (2017); Platanios et al. (2019) on text sentences.

Length. Length-based difficulty is based on the intuition that longer sequences are harder to encode, and that early errors may propagate during the decoding process, making longer sentences also harder to generate. It is defined as:

\[
d_{\text{length}}(s) = N.
\]

(2)

Rarity. Word rarity of a sentence is defined as the product of the unigram probabilities (Platanios et al., 2019). This metric implicitly incorporates information about sentence length since longer sentence scores are sum of more terms and are thus likely to be larger. The difficulty metric for word rarity of a sequence s is defined as:

\[
d_{\text{rarity}}(s) = -\sum_{k=1}^{N} \log p(w_k).
\]

(3)

1\text{https://spacy.io/api/tokenizer}
Damerau-Levenshtein Distance. To consider data and text jointly, we measure the alignment between data slots and text using the Damerau-Levenshtein Distance \((d_{\text{dld}})\) (Brill and Moore, 2000a).

We calculate the minimum number of edit operations needed to transform data \((s_d)\) into text \((s_t)\),^2 and relies only four operations: (a) substitute a word in \(s_d\) to a different word, (b) insert a word into \(s_d\), (c) delete a word of \(s_d\), and (d) transpose two adjacent words of \(s_d\). The process involves recursive calls that compute distance between substrings \(s_d^i \in s_d\) and \(s_t^i \in s_t\) at \(i^{th}\) comparison.

Soft Data-to-Text Edit Distance. We here present the proposed soft edit distance (SED): (1) We include the basic add and delete edit operations as in the Levenshtein Distance (Levenshtein, 1966), which was used in Levenshtein Transformer (Gu et al., 2019) as the only two necessary operations for decoding sequences since it correlates well with human text writing where humans “can revise, replace, revoke or delete any part of their generated text”. We call this variant the plain edit distance \((PED)\). (2) Next, we weight the indicator function \(I(s^i_d, s^i_t)\) for each edit operation with the negative logarithmic unigram probability \(-\log p(w)\) for each token \(w \in s^i_t\), in order to incorporate the idea of word rarity into the edit distance metric. For the delete operation, we use the \(w \in s^i_d\) and for add operations, we use \(w \in s^i_t\). This is unlike the previous proposal by Brill and Moore (2000b), in which edits are weighted by the token transition probabilities — this is not suitable for our scenario because there is no natural order of the slot sequence in data samples.

![Figure 1: Depiction of the process of soft edit distance metric with the Wagner-Fischer table. Each cell in the table represents the edit distance to convert data substring’s into the text substring.](image)

The soft distance metric \(d_{\text{sed}}\) is in principle similar to calculating the logarithmic sum as defined in the rarity function, but instead incrementally compares all substrings and calculates their edit distances. This way, \(d_{\text{sed}}\) includes the information on length, rarity but also combining the edit operations. We show this process in Figure 1.

Note that we can compute length and rarity on the concatenation of input data and text sequence, or as individual sequences; whereas Damerau-Levenshtein distance and soft edit distance are computed jointly on data and text.

5 Experiment Setting

Data. We conduct experiments on the E2E (Novikova et al., 2017) and WebNLG (Colin et al., 2016) datasets. E2E is a crowd-sourced dataset containing 50k instances in the restaurant domain. The inputs are dialogue acts consisting of three to 8 slot-value pairs. WebNLG contains 25k instances describing entities belonging to 15 distinct DBpedia categories, where the data contain are up to 7 RDF triples of the form \((subject, relation, object)\).

Configurations. The LSTM-based model is implemented based on PyTorch (Paszke et al., 2019). We use 200-dimensional token embeddings and the Adam optimizer with an initial learning rate at 0.0001. Batch size is kept at 28, and we decode with beam search with size 5. The performance scores are averaged over 5 random initialization runs.

Settings. We first perform ablation studies (Table 1) on the impact of difficulty metrics on data, text or both (joint). We also analyse the average bin size for each metric — a metric that gives the same score to many instances creates large bins.
This means that the order of samples within the bin will still be random. On the other hand, a metric that assigns a lot of different difficulty scores to the instances can yield a more complete ordering (and a smaller step size in moving from one level of difficulty to the next). We present the change in performance (BLEU) as the training progresses in order to compare the various difficulty metrics on both datasets (See Figure 3).

6 Results & Analysis

On Table 3, we observe that soft edit distance (SED) yields the best performance, outperforming a model that does not use curriculum learning by as much as 2.42 BLEU. It also outperforms all other metrics by roughly 1 BLEU. In general, we see that models perform better on joint and text than on data. This correlates to how a difficulty function is related to the average bin sizes of scores it generates. We see that for models that distinguish samples in a more defined manner, it will have a smaller average bin size where probability of having more difficult samples at every confidence threshold is lower. From this, we see that length and DLD have larger average bin sizes across its difficulty scores and this makes samples less distinguishable from one another. Thus, they result in the smallest improvement over plain. We show reordered samples in Table ?? for all difficulty metrics computed jointly on data and text. We include length (L), rarity (R), Damerau-Levenshtein Distance (DLD), plain edit distance (PED), and the proposed soft edit distance (SED). Plain means no curriculum learning techniques are added. All scores are computed based on the E2E corpus, consisting of both performance (BLEU) and the average bin size. Each bin is defined by the number of training samples with the same difficulty scores.

Table 1: Ablation studies for the impact of difficulty metrics on data, text or both (joint) with normalized scores including length (L), rarity (R), Damerau-Levenshtein Distance (DLD), plain edit distance (PED), and the proposed soft edit distance (SED). Plain means no curriculum learning techniques are added. All scores are computed based on the E2E corpus, consisting of both performance (BLEU) and the average bin size. Each bin is defined by the number of training samples with the same difficulty scores.
weighting for edit operation where PED, which is the “hard” variant of SED that does not weight edit operations like SED, is shown to be far inferior to that of SED. The score margin comes up to 2.81 BLEU. Moreover, we further examine the difference in sample orders and observe that SED yields more intuitive and better sample ordering as opposed to other metrics.

Human Evaluation. For human evaluation, three annotators are instructed to evaluate 100 samples from the joint variant to see (1) if the text is fluent (score 0-5 with 5 being fully fluent), (2) if it misses information contained in the source data and (3) if it includes wrong information. These scores are averaged and presented in Table 1.

On Training Speed. We define speed by the number of updates it takes to reach a performance plateau. On Figure 3, the speedup is measured by the difference between the vertical bars. It can be observed that curriculum learning reduces the training steps to converge, where it consists of up to 38.7% of the total updates for the same model without curriculum learning (on E2E). Further, we see that the use of curriculum learning yields slightly worse performance in the initial training steps, but rise to a higher score and flattens as it converges.

7 Conclusion

To conclude, we show that the sample order does indeed matter when taking into account model competence during training. Further, we demonstrate that the proposed metrics are effective in speeding up model convergence. Given that curriculum learning can be combined with pretty much any neural architecture, we recommend the use of curriculum learning for data-to-text generation. We believe this work offers insights into the annotation process of data with text labels where reduced number of labels are needed (Hong et al., 2019; de Souza et al., 2018; Zhuang and Chang, 2017; Chang et al., 2020a; Wiehr et al., 2020; Shen et al., 2020; Chang et al., 2020b; Su et al., 2020; Chang et al., 2021b,a).

Acknowledgements

This research was funded in part by the German Research Foundation (DFG) as part of SFB 248 “Foundations of Perspicuous Software Systems”. We sincerely thank the anonymous reviewers for their insightful comments that helped us to improve this paper.

References

Regina Barzilay and Mirella Lapata. 2005. Modeling local coherence: An entity-based approach. In Proceedings of the 43rd Annual Meeting of the Association for Computational Linguistics (ACL’05), pages 141–148, Ann Arbor, Michigan. Association for Computational Linguistics.

Yoshua Bengio, Jérôme Louradour, Ronan Collobert, and Jason Weston. 2009. Curriculum learning. In Proceedings of the 26th annual international conference on machine learning, pages 41–48.

Eric Brill and Robert C Moore. 2000a. An improved error model for noisy channel spelling correction. In Proceedings of the 38th annual meeting of the association for computational linguistics, pages 286–293.

Eric Brill and Robert C. Moore. 2000b. An improved error model for noisy channel spelling correction. In Proceedings of the 38th Annual Meeting of the Association for Computational Linguistics, pages 286–293, Hong Kong. Association for Computational Linguistics.
Ernie Chang, David Adelani, Xiaoyu Shen, and Vera Demberg. 2020a. Unsupervised pidgin text generation by pivoting english data and self-training. In In Proceedings of Workshop at ICLR.

Ernie Chang, Jeriah Caplinger, Alex Marin, Xiaoyu Shen, and Vera Demberg. 2020b. Dart: A lightweight quality-sensitive data-to-text annotation tool. In COLING 2020, pages 12–17.

Ernie Chang, Vera Demberg, and Alex Marin. 2021a. Jointly improving language understanding and generation with quality-weighted weak supervision of automatic labeling. In EACL 2021.

Ernie Chang, Xiaoyu Shen, Dawei Zhu, Vera Demberg, and Hui. Su. 2021b. Neural data-to-text generation with lm-based text augmentation. EACL 2021.

Emilie Colin, Claire Gardent, Yassine M’rabet, Shashi Narayan, and Laura Perez-Beltrachini. 2016. The WebNLG challenge: Generating text from DBPedia data. In Proceedings of the 9th International Natural Language Generation conference, pages 163–167. Edinburgh, UK. Association for Computational Linguistics.

Fred J Damerau. 1964. A technique for computer detection and correction of spelling errors. Communications of the ACM, 7(3):171–176.

Jeffrey L Elman. 1993. Learning and development in neural networks: The importance of starting small. Cognition, 48(1):71–99.

Jiatao Gu, Changhan Wang, and Junbo Zhao. 2019. Levenshtein transformer. In Advances in Neural Information Processing Systems, pages 11181–11191.

Gholam Reza Haffari. 2009. Machine learning approaches for dealing with limited bilingual data in statistical machine translation. Ph.D. thesis, School of Computing Science-Simon Fraser University.

Xudong Hong, Ernie Chang, and Vera Demberg. 2019. Improving language generation from feature-rich tree-structured data with relational graph convolutional encoders. In Proceedings of the 2nd Workshop on Multilingual Surface Realisation (MSR 2019), pages 75–80.

Tom Kocmi and Ondřej Dušek. 2017. Curriculum learning and minibatch bucketing in neural machine translation. In Proceedings of the International Conference Recent Advances in Natural Language Processing, RANLP 2017, pages 379–386.

Kai A Krueger and Peter Dayan. 2009. Flexible shaping: How learning in small steps helps. Cognition, 110(3):380–394.

Rémi Lebret, David Grangier, and Michael Auli. 2016. Neural text generation from structured data with application to the biography domain. In Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pages 1203–1213.

Vladimir I Levenshtein. 1966. Binary codes capable of correcting deletions, insertions, and reversals. In Soviet physics doklady, volume 10, pages 707–710.

Xuebo Liu, Houtim Lai, Derek F Wong, and Lidia S Chao. 2020. Norm-based curriculum learning for neural machine translation. arXiv preprint arXiv:2006.02014.

Jekaterina Novikova, Ondřej Dušek, and Verena Rieser. 2017. The e2e dataset: New challenges for end-to-end generation. In Proceedings of the 18th Annual SIGdial Meeting on Discourse and Dialogue, pages 201–206.

Ankur P Parikh, Xuezhi Wang, Sebastian Gehrmann, Manaal Faruqui, Bhuvan Dhingra, Diyi Yang, and Dipanjan Das. 2020. Totto: A controlled table-to-text generation dataset. arXiv preprint arXiv:2004.14373.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. 2019. Pytorch: An imperative style, high-performance deep learning library. In Advances in Neural Information Processing Systems, pages 8024–8035.

Emmanouil Antonios Platanios, Otilia Stretcu, Graham Neubig, Barnabas Poczos, and Tom M. Mitchell. 2019. Competence-based curriculum learning for neural machine translation. NAACL HLT 2019 - 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies - Proceedings of the Conference, 1:1162–1172.

Kim Plunkett and Virginia Marchman. 1993. From rote learning to system building: Acquiring verb morphology in children and connectionist nets. Cognition, 48(1):21–69.

Ehud Reiter and Robert Dale. 2000. Building natural language generation systems. Cambridge university press.

Xiaoyu Shen, Ernie Chang, Hui Su, Jie Zhou, and Dietrich Klakow. 2020. Neural data-to-text generation via jointly learning the segmentation and correspondence. In ACL 2020. https://www.aclweb.org/anthology/2020.acl-main.641.pdf.

José GC de Souza, Michael Kozielski, Prashant Mathur, Ernie Chang, Marco Guerini, Matteo Negri, Marco Turchi, and Evgeny Matusov. 2018. Generating e-commerce product titles and predicting their quality. In INLG, pages 233–243.

Hui Su, Xiaoyu Shen, Zhou Xiao, Zheng Zhang, Ernie Chang, Cheng Zhang, Cheng Niu, and Jie Zhou. 2020. Moviechats: Chat like humans in a closed domain. In EMNLP 2020, pages 6605–6619.
Frederik Wiehr, Anke Hirsch, Florian Daiber, Antonio Kruger, Alisa Kovtunova, Stefan Borgwardt, Ernie Chang, Vera Demberg, Marcel Steinmetz, and Hoffmann Jorg. 2020. Safe handover in mixed-initiative control for cyber-physical systems. In Proceedings of Workshop at CHI.

Sam Wiseman, Stuart Shieber, and Alexander Rush. 2017. Challenges in data-to-document generation. In Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing, pages 2253–2263.

Xuan Zhang, Gaurav Kumar, Huda Khayrallah, Kenton Murray, Jeremy Gwinnup, Marianna J Martindale, Paul McNamee, Kevin Duh, and Marine Carpuat. 2018. An empirical exploration of curriculum learning for neural machine translation. arXiv preprint arXiv:1811.00739.

Xuan Zhang, Pamela Shapiro, Gaurav Kumar, Paul McNamee, Marine Carpuat, and Kevin Duh. 2019. Curriculum learning for domain adaptation in neural machine translation. In Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pages 1903–1915.

Yikai Zhou, Baosong Yang, Derek F Wong, Yu Wan, and Lidia S Chao. 2020. Uncertainty-aware curriculum learning for neural machine translation. In Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pages 6934–6944.

WenLi Zhuang and Ernie Chang. 2017. Neobility at semeval-2017 task 1: An attention-based sentence similarity model. In Proceedings of SemEval-2017 at ACL 2017.