Capital Adequacy Ratio and Microfinance Banks: A Study of Pakistan

Ijaz Hussain Bokhari
Bokhari.ijaz@gmail.com
School of Accounting & Finance, University of Central Punjab

Ather Azim Khan., PhD
Ather.azim@ucp.edu.pk
School of Accounting & Finance, University of Central Punjab

Areeba Suleman., PhD
areebakhan900@gmail.com
School of Accounting & Finance, University of Central Punjab

Abstract
Critical requirement imposed by regulatory authorities on financial institutions and banks is sufficient and adequate capital. State Bank of Pakistan imposed capital adequacy ratio (associated risk to its assets) requirement on microfinance banks to ensure its stability. This study focuses on determinants that influence capital adequacy in Pakistani microfinance banks for the period 2011-2015. Analysis of observations considers 12 microfinance banks operating under State Bank of Pakistan. Five factors have been considered in current study that is Share of Deposit, Return on Equity, Portfolio Risk, GDP, and Total Assets. The results indicate that total assets to capital adequacy shows insignificant and negative relationship (β=-.008, sig=.953) while the other four factors indicate positive and significant relationship. The results of multiple regression indicate total assets (βAssets=.823, t=-17.200, p=.000) and growth rate (βgrowth=.766, t=-5.112, p=.000) having negative and significant impact, however, share of deposit shows insignificant and negative impact on capital adequacy (βSOD=-.039, t=-2.446, p=.01), while the other factors have positive and significant impact on capital adequacy ratio.

Keywords: Capital Adequacy Ratio (CAR), Share of Deposit (SOD), Return on Equity (ROE), Portfolio Risk (PR), and growth rate.

Introduction
Contemporary financial system does not provide any immunity to Microfinance Banks (MFIs) during any financial crisis and problems associated with banking sector around the globe (Tsai, 2015). As the crisis due to subprime mortgage was observed in early 2007, initial assessment revealed that there is no or insignificant impact on financial statements of microfinance institutions MFIs (Bruton, Khavul, Siegel, & Wright, 2015; Janda & Zetek, 2014; Vithessonthi & Tongurai, 2015). While some previous events such as, rice in food and oil prices adversely affected the households’ total income and also affected borrowers’ ability to pay installments, numerous anticipated that MFIs are not going to face any problem because subprime mortgage had concern only with commercial banks and MFIs had no financial integration at global level (Mehrotra & Yetman, 2015; Ngo, Mullineux, & Ly, 2014). In 2008 when financial crisis “trickled down” in an unwelcomed way and reached to its peak microfinance institutions/banks witnessed scarcity of funding and financial resource; finances also became more costly due to the shortage of liquidity internationally (Banerjee, Breza, Duflo, Kinnan, & Prathap, 2014; Mader, 2016; Sainz-Fernandez, Torre-Olmo, López-Gutiérrez, & Sanfilippo-Azofra, 2015).

In earlier 2009, commercial, microfinance banks and institutions experienced high cost of borrowing due to shortage of liquidity issue. National as well as international banks tightened their grip on scarce resources and due to high demand of financial resource cost of borrowing became higher and investors’ behavior tilted towards the risk averseness (Haldar & Stiglitz, 2016). Steep increase in rate was observed in European and African countries; further, a few microfinance banks and microfinance institutions requested to borrowers for loan prepayments without any penalties and prepayment fees; international as well as national banks tried to pull themselves out together from this dramatic situation (Breza & kinnan, 2016; Sainz-Fernandez et al., 2015).

This new experience and awareness towards the risk faced by microfinance banks and institutions are comparable or similar in nature and in most of the cases connected to the mainstream financial institutions (Linnerooth-Bayer & Hochrainer-Stigler, 2015). This draws an opportunity for microfinance banks and institutions to review capital planning and improve risk management to enhance their financial performance and to be in a position to absorb such future shocks. According to Basel Committee on Banking for...
Capital Adequacy Ratio and Microfinance Banks: A Study of Pakistan

I. H. Bokhari, A.A. Khan., PhD, A. Suleman., PhD

Supervision (BCBS), banks should be in sustainable position to
survive in adverse conditions, for example losses/high loan write-off ratios or in financial crisis through capital management, which ultimately lead to drift in strategy (Mehrotra & Yetman, 2015; Serrano-Cinca, Gutiérrez-Nieto, & Reyes, 2016).

This paper reviews the micro determinants, which affect Capital Adequacy Ratio (CAR) of Microfinance Banks (MFBs). CAR is considered an important element of determination of capital necessary in order to survive in crisis and adverse conditions. CAR is an important indicator, which is an obligatory requirement imposed by State Bank of Pakistan (SBP) to absorb losses in adverse conditions. It measures the weight of portfolio risk to capital, under current political and economic conditions State Bank of Pakistan (SBP) imposes 15% minimum capital buffer for microfinance banks (SBP, 2015). CAR has positive correlation with risk level, riskier and volatile environment demands high CAR (Brown, Guin, & Kirchhoffmann, 2015; Nyambuti, 2016; Ogwuza, Jumare, & Stiegler, 2013).

Findings of many researchers indicate that microfinance banks should focus on incorporation and implementation of comprehensive system for risk identification, monitoring and management by level capital accordingly (Ali & Khan, 2015; Btissem & Bouri, 2013; Mwangi, 2014; Sánchez & Lechuga, 2016). However, the question is still there that what are the micro components of CAR in case of microfinance banks? The recent literature shows evidences that there are other factors, which determine the value of CAR in banking sector of Pakistan (Abusharba, Triyuwono, Ismail, & Rahman, 2013).

Basel-II, and Pillar I

Social Economic Engagement Program (SEEP), a practitioners’ organizations dedicated to combating poverty, promotes markets and provides financial systems. Framework of SEEP is currently under discussion and development phase. However, key components considered in upgraded framework is CAR to test the ability of microfinance banks to fulfill their obligations during unexpected losses (Allt, 2014; Amecle & Carmen, 2015). CAR measures the level of capital required by microfinance banks associated with risk-weighted assets under the guidelines of Basel II.

Capital Adequacy Ratio (CAR) = \frac{\text{Total Capital}}{\text{Risk Weighted Assets}}

Comprehensive framework for risk mitigation in banking system was issued in 2004 by Basel Committee to determine the level of capital adequacy associated with risk weighted to assets. First part of Basel II known as “Pillar I”, defines the different level capital structure consist on:

- Core equity or Tier 1; and
- General reserves/ supplementary capital and subordinated term debt or Tier 2; (provisioning against unknown losses or crises).

Framework Basel II of Basel committee set minimum capital ratio that should not be less than 8%, However; regulatory authority of banking sector in Pakistan, is State Bank of Pakistan (SBP), which sets 15% of minimum capital adequacy Ratio for microfinance banks (Hassan, Ilyas, & Rehman, 2015; Tchuiguoa, 2015).

Capital Adequacy Level for Microfinance Banks

Literature documented that most of the microfinance banks determine their Capital Adequacy Ratio based on Tier-I, which is well above the required level of 8% capital Adequacy Ratio recommended by Basel-II (Tchuiguoa, 2015, 2016). Analysts and researchers suggested that it is appropriate to set minimum level of capital adequacy at least 50% above the recommendations of Basel-II, in other words microfinance banks should set capital adequacy at least 12% or higher (Tchuiguoa, 2016). Usually microfinance banks have higher level of capital adequacy due to following reasons: first, high volatility in delinquency rates; operating expenses for microfinance institutions are quite high as compared to commercial banks; and third, access to recapitalization on emergency basis is quite difficult and limited. Policy makers recommend that in the light of greater risk exposure to sudden macroeconomic changes faced by a microfinance bank loan portfolio, in most cases banks should maintain capital levels greater than the minimum required capital required by law for their particular legal entity (Omondi, 2015; Usha, 2015).

Capital Adequacy Needs More than Ratios

There are several questions related to CAR, which need to be addressed such as, if a Capital Adequacy Ratio is not sufficient to facilitate banking sector about adequate capitalization, then how banking sector will judge about adequate capital requirement? Does number of banks shuttered by financial crisis around the globe had the “Right” capital adequacy ratio? They did not have adequate tools, plans and resources for assessment and management of risk when they were disrupted (Ahmed & Mian, 2015; Flumery, 2015).

The unpinning reason of banks’ failure during financial crisis was inadequate liquidity and capitalization, which ultimately led to collapse due to banks inability to absorb adverse effects and shocks. As a result, Basel Committee revised its framework and standards for risk assessment and management through liquidity coverage and capitalization to ensure the survival of banks from adverse events in future (Aktas, Acikalin, Bakin, & Celik, 2015; Alkadamani, 2015; Curcio & Hasan, 2015; Shingjergi & Hyseni, 2015).

The question of capital adequacy and it composition is therefore, integrally connected with level of risk and economic components. It cannot be answered by a simple formula.

Literature Review

The underpinning concept of capital structure was documented by Miller and Modigliani (M&M) in early 1958, and later theory of corporate finance was also documented by them. Theory of corporate finance was documented and discussed by many empirical and theoretical studies conducted on financial and non-financial sectors. Mainstream studies of capital structure considered non-financial sector only, although a number of studies also considered financial sector under observation but limited studies considered determinants of Capital Adequacy Ratio of conventional banking sector with respect to developing nations like India, Malaysia, Singapore, Thailand, Pakistan and others. Macey and Miller (1995) studied the significant factors to be considered while investing financial sector or specifically banking sector. However, theory of capital structure concludes that investors’ decisions do not impact earnings and values of organizations, based on assumptions that market is frictionless and efficient.

Number of studies documented factors that affect markets efficiency; asymmetric information, transaction cost, taxes and cost of financial distress (Berger, Harring, & Szego, 1995). Impact of these factors has been observed across the world but significant impact has been observed in under-developing & developing nations, significance of capital adequacy ratio in banking sector.

These components are considered valid across the world but indicates more significant impact in case of developing or underdeveloped as compared to developed economies because markets and regulations are weak, a number of studies was reported the significance/ importance these factors those effect the capital adequacy in case of commercial banks (Curcio & Hasan, 2015). The structure of non-financial and financial organization or especially banking institutions are quite different due to high regulated environment; this can be due to the facts that embedded structure, regulations, objectives, and functions performed by banking institutions are significantly different from other financial and non-financial organizations. However, literature categorized level of policies through, which determinants of Capital Adequacy Ratio can be inferred; market forces, regulatory requirements and internal policies are the important factors (Alfon, Argimon, & Bascuitana-Ambrós, 2004; Bokhari, Ali, & Sultan, 2012; Fiki, 2012).

Components of Capital Adequacy (CA) Ratio

Capital Adequacy Ratio imposed by the regulatory authority that is, State Bank of Pakistan in case of Pakistan, claims that this ratio facilitates in testing the health of banking sector of Pakistan. This is a mandatory requirement imposed by most of the central banks of the world on financial institutions including microfinance banks, because a certain level of capital ensures the ability of microfinance banks to absorb losses in adverse conditions and to protect the interest of...
depositors and other stakeholders. Capital adequacy level ensures microfinance banks’ capacity to meet market risk, credit risk, operational risk and other risks (Al-Sabbagh, 2004; Bokhari et al., 2012; Moyer, 1990).

Role of Portfolio Risk in Capital Adequacy

Generally, it is considered that the level of capital adequacy maintained by microfinance banks is a shock absorber, due to unanticipated losses incurred, it also reduces the probability of insolvency and bankruptcy. However, ratio set by State Bank of Pakistan (SBP) is not actually reflecting the level of risk faced by banks nevertheless, it affects the level of capital ratio maintained by individual banks in Pakistan. Although, risk level faced by banking sector can be gauged through Risk Weighted Assets/Total Assets (RWA), the risk of financial distress caused by the loss of franchise value. So far, negative and significant relationship between Capital adequacy level and Portfolio Risk at the time period for the level of CAR in Pakistan is not taken as independent variable (SBP, 2015) used for analysis; data is collected from financial statements of respective selected banks and from annual data published by SBP (SBP, 2015). Proposed level of Capital Adequacy Ratio in Banking Institutes is taken as:

\[
\text{CAR} = \alpha + \beta_1 \text{Assets} + \beta_2 \text{GDP} + \beta_3 \text{ROE} + \beta_4 \text{SOD} + \beta_5 \text{PR} + \varepsilon
\]

The required level of Capital Adequacy Ratio for microfinance banks set by State Bank of Pakistan was 15% in 2010, till then there is no change in this ratio (SBP, 2015). Although, it was frequently changed for commercial banks on annual basis, so regulatory requirement of for the level of CAR in Pakistan is not taken as independent variable in the model. Table 1 displays the summary statistics of variables used in this study of capital adequacy ratio.

Table 1

	LNSOD	LNROE	LNCAR	LNPC	LNGDP	LNASSETS
Mean	20.40620	2.836206	3.534437	20.91155	19.14258	22.02066
Median	21.14546	2.780410	4.101933	20.81408	18.72021	22.27829
Maximum	23.54445	4.190262	4.555774	23.92623	22.19668	24.00779
Minimum	15.01925	1.734870	1.395247	16.36102	14.43455	18.52155
Std. Dev.	2.518264	0.690623	0.982174	1.589011	1.750281	1.283305
Skewness	-0.712704	0.254394	-0.617646	-0.223922	-0.225320	-0.468664
Kurtosis	2.288612	2.346413	1.680003	2.895944	2.638421	2.377542
Jarque-Bera	6.344648	1.715102	8.170850	0.525664	0.834539	3.165092
Probability	0.041906	0.424200	0.016816	0.768871	0.658843	0.205451
Observations	60	60	60	60	60	60

LNSOD_i representing the natural log share of deposit LNROE_i is representing the Returns on Equity at the time period <i>t</i> LNCAR_i is capital adequacy Ratio at the time period <i>t</i> LNPR_i is representing Portfolio Risk at the time period <i>t</i> LNGDP_i is representing the Gross Domestic Product at the time period <i>t</i> LNASSETS_i is representing the Total Assets at the time period <i>t</i>

Assumptions of multiple regressions has been tested carefully and as our data set is panel so to test presence of stationarity ADF (augmented dickey fuller) and PP (Phillip Person) tools has been employed. Table 2 shows the results of Unit root of each variables considered under study.
Table 2
Results of unit root test

Method	Statistic	Prob.**	Cross-sections	Obs	
Share of Deposit					
Null: Unit root (assumes common unit root process)	Levin, Lin & Chu t*	-8.82569	0.0000	12	48
Null: Unit root (assumes individual unit root process)	Im, Pesaran and Shin W-stat	-2.78010	0.0027	12	48
ADF - Fisher Chi-square	34.2388	0.0805	12	48	
PP - Fisher Chi-square	38.4516	0.0312	12	48	

** Probabilities for Fisher tests are computed using an asymptotic Chi-square distribution. All other tests assume asymptotic normality.

Return on Equity

Method	Statistic	Prob.**	Cross-sections	Obs	
Null: Unit root (assumes common unit root process)	Levin, Lin & Chu t*	-2.70460	0.0441	12	48
Null: Unit root (assumes individual unit root process)	Im, Pesaran and Shin W-stat	0.41092	0.6594	12	48
ADF - Fisher Chi-square	23.8768	0.4687	12	48	
PP - Fisher Chi-square	28.3174	0.2469	12	48	

** Probabilities for Fisher tests are computed using an asymptotic Chi-square distribution. All other tests assume asymptotic normality.

Assets

Method	Statistic	Prob.**	Cross-sections	Obs	
Null: Unit root (assumes common unit root process)	Levin, Lin & Chu t*	-4.32740	0.0000	12	48
Null: Unit root (assumes individual unit root process)	Im, Pesaran and Shin W-stat	8.1E-05	0.5000	12	48
ADF - Fisher Chi-square	23.8394	0.4708	12	48	
PP - Fisher Chi-square	33.4319	0.0953	12	48	

** Probabilities for Fisher tests are computed using an asymptotic Chi-square distribution. All other tests assume asymptotic normality.

Capital Adequacy Ratio

Method	Statistic	Prob.**	Cross-sections	Obs	
Null: Unit root (assumes common unit root process)	Levin, Lin & Chu t*	-16.1400	0.0000	12	48
Null: Unit root (assumes individual unit root process)	Im, Pesaran and Shin W-stat	-10.0051	0.0000	12	48
ADF - Fisher Chi-square	74.6009	0.0000	12	48	
PP - Fisher Chi-square	90.0173	0.0000	12	48	

** Probabilities for Fisher tests are computed using an asymptotic Chi-square distribution. All other tests assume asymptotic normality.

Portfolio Risk

Method	Statistic	Prob.**	Cross-sections	Obs	
Null: Unit root (assumes common unit root process)	Levin, Lin & Chu t*	-6.17702	0.0000	12	48
Null: Unit root (assumes individual unit root process)	Im, Pesaran and Shin W-stat	-6.40993	0.0000	12	48
ADF - Fisher Chi-square	57.9597	0.0001	12	48	
PP - Fisher Chi-square	80.9931	0.0000	12	48	

** Probabilities for Fisher tests are computed using an asymptotic Chi-square distribution. All other tests assume asymptotic normality.
Results of unit root test infer that all the variables under consideration are stationary at level, so panel regression can be applied. Table 3 shows the results of Correlation matrix where, all variables considered show positive and significant association. Although the results of Assets indicate insignificant association with capital ratio (-.008), Return of Equity indicates insignificant association with Assets and Portfolio Risk respectively (-.179 and 0.86). Economic Growth (GDP) and Share of Deposits also revealed insignificant association (-.036). Results of correlation indicate that banks with risk averse strategies require higher level of capital ratio much above as compared to regulatory minimum level of capital adequacy ratio (Argimón & Ambrós, 2015).

Conclusion
State Bank of Pakistan (SBP) imposed regulatory requirement of financial sector especially banks (Commercial and Microfinance) to maintain a minimum level of capital ratio. Commercial and microfinance banks are bound to test and perform individual capacities regarding credit risk to ensure depositors’ protection and to ensure that their level of confidence should remain intact in financial sector. Determining the behavioral trends of capital ratio for commercial banks has been tested and explained by numerous studies in literature however, the current study is one of the few that are conducted on determinants of capital ratio of microfinance banks except the regulatory requirement. The underpinning objective of current study is to examine various factors or determinants that affect capital adequacy ratio of microfinance banks of Pakistan. Study employed panel regression on a dataset from 12 out of 13 microfinance banks registered with State Bank of Pakistan for the period of 5 years from 2011-15 on annual basis.

Results show that factors considered in this study are significant and important in determining the capital adequacy ratio of microfinance banks of Pakistan. These factors are Return on Equity (LNROE=0.88, S.E.=0.129, t-value=6.848, p-value=0.000), Share of Deposits (LNROE=0.039, S.E.=0.0163, t-value=2.446, p-value=0.0176), Portfolio Risk (LNPR=-0.03991, S.E.=0.016343, t-value=-2.446, p-value=0.0176), Economic Growth (LNGDP=-0.766163, S.E.=0.14985, t-value=-5.112, p-value=0.000) and Total Assets (LNNASSETS=-0.823170, S.E.=0.047857, t-value=-17.20046, p-value=0.000) and the results of these factors are significant in determination of capital adequacy ratio for microfinance banks of Pakistan. Future research can be performed on primary data about how managers take...
decision in determining capital ratio of particular microfinance bank, secondly a comparative study can be performed between commercial and microfinance banks on the basis factors that influence capital adequacy ratio.

References

i. Abusharba, M. T., Triyuwono, I., Ismail, M., & Rahman, A. F. (2013). Determinants of capital adequacy ratio (CAR) in Indonesian Islamic commercial banks. Global Review of Accounting and Finance, 4(1), 139-170.

ii. Aktas, R., Acikalin, S., Bakan, B., & Celik, G. (2015). The Determinants of Banks' Capital Adequacy Ratio: Some Evidence from South Eastern European Countries. Journal of Economics and Behavioral Studies, 7(1), 79.

iii. Amelec, Viloria, & Carmen, Vasquez. (2015). Validation of a model for productivity evaluation for microfinance institutions. Advanced Science Letters, 21(5), 1610-1614.

iv. Allet, Marion. (2014). Why do microfinance institutions go green? An exploratory study. Journal of Business Ethics, 122(3), 405-424.

v. Alkadamani, Khaled. (2015). Capital Adequacy, Bank Behavior and Crisis: Evidence from Emergent Economies. European Journal of Sustainable Development, 4(2), 329.

vi. Ali, Sadiq Shabaz, & Khan, MNA. (2015). ICT Infrastructure Framework for Microfinance Institutions and Banks in Pakistan: An Optimized Approach Banking, Finance, and Accounting: Concepts, Methodologies, Tools, and Applications (pp. 532-543): IGI Global.

vii. Alfon, Isaac, Argimon, Isabel, & Bascuñana-Ambrós, Patricia. (2004). What determines how much capital is held by UK banks and building societies? . Financial Services Authority London.

viii. Alfas, Rafet, Acikalin, Sulayman, Bakan, Bilge, & Celik, Gokhan. (2015). The Determinants of Banks' Capital Adequacy Ratio: Some Evidence from South Eastern European Countries. Journal of Economics and Behavioral Studies, 7(1), 79.

ix. Ahmed, Sufi Faizan, & Malik, Qaisar Ali. (2015). Credit Risk Management and Loan Performance: Empirical Investigation of Micro Finance Banks of Pakistan. International Journal of Economics and Financial Issues, 5(2).

x. Abusharba, Mohammed T, Triyuwono, Iwan, Ismail, Munawar, & Rahman, Aulia F. (2013). Determinants of capital adequacy ratio (CAR) in Indonesian Islamic commercial banks. Global Review of Accounting and Finance, 4(1), 139-170.

xi. Adreani, Stephen Oluwafemi, Kolapo Funso Tajudelen, & Aluko, Adewale Olufemi. (2014). DETERMINANTS OF COMMERCIAL BANKS' PROFITABILITY PANEL EVIDENCE FROM NIGERIA.

xii. Ahmed, Sufi Faizan, & Malik, Qaisar Ali. (2015). Credit Risk Management and Loan Performance: Empirical Investigation of Micro Finance Banks of Pakistan. International Journal of Economics and Financial Issues, 5(2).

xiii. Aktas, Rafet, Acikalin, Saleyman, Bakan, Bilge, & Celik, Gokhan. (2015). The Determinants of Banks' Capital Adequacy Ratio: Some Evidence from South Eastern European Countries. Journal of Economics and Behavioral Studies, 7(1), 79.

xiv. Al-Sabbagh, Noor Mohammad. (2004). Determinants of Capital Adequacy Ratio. Yarmouk University.

xv. Alfon, Isaac, Argimon, Isabel, & Bascuñana-Ambrós, Patricia. (2004). What determines how much capital is held by UK banks and building societies? . Financial Services Authority London.

xvi. Ali, Sadiq Shabaz, & Khan, MNA. (2015). ICT Infrastructure Framework for Microfinance Institutions and Banks in Pakistan: An Optimized Approach Banking, Finance, and Accounting: Concepts, Methodologies, Tools, and Applications (pp. 532-543): IGI Global.

xvii. Alkadamani, Khaled. (2015). Capital Adequacy, Bank Behavior and Crisis: Evidence from Emergent Economies. European Journal of Sustainable Development, 4(2), 329.

xviii. Allet, Marion. (2014). Why do microfinance institutions go green? An exploratory study. Journal of Business Ethics, 122(3), 405-424.

xix. Amelec, Viloria, & Carmen, Vasquez. (2015). Validation of a model for productivity evaluation for microfinance institutions. Advanced Science Letters, 21(5), 1610-1614.

xx. Batn, L., Vakilifar, H., & Asghar, F. (2014). The influential factors on capital adequacy ratio in Iranian banks. International Journal of Economics and Finance, 6(11), 108.

xxi. Bokhari, I. H., Ali, S. M., & Sultan, K. (2012). Determinants of Capital Adequacy Ratio in Banking Sector: An Empirical Analysis from Pakistan. Academy of Contemporary Research Journal, 2(1), 1-9.

xxii. Büyüksalvarci, A., & Abdiglu, H. (2011). Determinants of capital adequacy ratio in Turkish Banks: A panel data analysis. African Journal of Business Management, 5(27), 11199.

xxiii. Bruton, Garry, Khavul, Susanna, Siegel, Donald, & Wright, Mike. (2015). New financial alternatives in seeding entrepreneurship: Microfinance, crowdfunding, and peer-to-peer innovations. Entrepreneurship Theory and Practice, 39(1), 9-26.

xxiv. Brown, Martin, Guin, Benjamin, & Kirschenmann, Karolin. (2015). Microfinance banks and financial inclusion. Review of Finance, 0-26.

xxv. Bokhari, Ijaz Hussain, Ali, Syed Muhamad, & Sultan, Khurram. (2012). Determinants of capital adequacy ratio in banking Sector: An Empirical analysis from Pakistan. Academy of Contemporary Research Journal, 2(1), 1-9.

xxvi. Batn, Leila, Vakilifar, Hamidreza, & Asghar, Farshid. (2014). The influential factors on capital adequacy ratio in Iranian banks. International Journal of Economics and Finance, 6(11), 108.

xxvii. Büyüksalvarci, Ahmet, & Abdulg, Hasan. (2011). Determinants of capital adequacy ratio in Turkish Banks: A panel data analysis. African Journal of Business Management, 5(27), 11199.

xxviii. Batn, Leila, Vakilifar, Hamidreza, & Asghar, Farshid. (2014). The influential factors on capital adequacy ratio in Iranian banks. International Journal of Economics and Finance, 6(11), 108.

xxix. Bokhari, Ijaz Hussain. (2013). Social Relationship between Exchange Rate and Stock Prices, a Case on SAARC Economies. Academy of Contemporary Research Journal, 175-181.

xxx. Banerjee, A, Breza, E, Duflo, E, Kinnan, C, & Prathap, K. (2014). Microfinance as commitment savings: Evidence from the AP crisis aftermath.

xxxi. Batn, Leila, Vakilifar, Hamidreza, & Asghar, Farshid. (2014). The influential factors on capital adequacy ratio in Iranian banks. International Journal of Economics and Finance, 6(11), 108.

xxxi. Bokhari, Ijaz Hussain, Ali, Syed Muhamad, & Sultan, Khurram. (2012). Determinants of capital adequacy ratio in banking Sector: An Empirical analysis from Pakistan. Academy of Contemporary Research Journal, 2(1), 1-9.

xxxi. Breza, emily, & kinnan, cynthia. (2016). MEASURING THE AVERAGE IMPACTS OF CREDIT: EVIDENCE FROM THE INDIAN MICROFINANCE CRISIS.

xxxiv. Brown, Martin, Guin, Benjamin, & Kirschenmann, Karolin. (2015). Microfinance banks and financial inclusion. Review of Finance, rfv026.

xxv. Bruton, Garry, Khavul, Susanna, Siegel, Donald, & Wright, Mike. (2015). New financial alternatives in seeding entrepreneurship: Microfinance, crowdfunding, and peer-to-peer innovations. Entrepreneurship Theory and Practice, 39(1), 9-26.

xxvi. Chalermchatvichien, Pichaphop, & Jumreornvong, Seksak, Jiraporn, Pornsit, & Singh, Manohar. (2014). The effect of bank ownership concentration on capital adequacy, liquidity, and capital stability. Journal of Financial Services Research, 45(2), 219-240.

xxvii. Curcio, Domenico, & Hasan, Itfekhar. (2015). Earnings and capital management and signaling: the use of loan-loss provisions by European banks. The European Journal of Finance, 21(11), 26-50.
