Design and Evaluation of Refractive Multifocal Intraocular Lenses Implanted within the Human Eye

Hussein T. Hashim1,*, Ail H. Al-Hamdani 2* and Hayfa G. Rashid3

1,3 Department of Physics, College of Education, University of Mustansiriyah, Iraq.
2 Department of Laser and Optoelectronics, Engineering University of Technology, Iraq.
Corresponding author E-mail: husseintalb11@gmail.com

Abstract. In this paper, optimum design of three classic model have been proposed, for refractive multifocal intraocular lenses (singlet, doublet, triplet-MIOLs) implanted within human eye (Liou & Brennan model). The analysis were carried out with ZEMAX-EE optical software through the polychromatic functions; MTF, PSF, spot diagram and (longitudinal-, Sphero-) chromatic aberration in addition to comparison with healthy eye. Due to good biocompatibility, AR40N Allergan and AcrySof SA60AT were used to design refractive MIOLs in unique and / or dual combination. Correction of the spherical aberration and longitudinal chromatic aberration (LCA) within 5° of visual field and 4 mm of pupil diameter were performed over the spectral region (455-655 nm). Result indicate that for all MIOLs proposed design (pseudophakic eye) sharp vision was achieved for a set of distances within range (25-108 cm) but still much less than in healthy eye and pseudophakic eye with triplet-MIOLs implanted was the best model.

Keywords: Refractive intraocular lens; classic intraocular lens implant; image quality of eye; Multifocal IOLs.

1. Introduction

In an aging society, the most frequent causes of blindness is crystalline lens cataracts or opacification which leads to significant degradation in the retinal image and decreasing the patients vision quality [1,2]. Since 1949, until now, the removal surgery of opaque crystalline lens and replacing it with an intraocular lens (IOLs) "artificial lens" was the most effective method for cataract treatment[3-6]. In the mid-20 century Sir Ridley [7, 8] developed the first artificial intraocular. PMMA material was used for the first IOLs which the implantation necessary required relatively large incision of the eye balls. Since this time high biocompatibility and flexibility new IOL materials were developed for IOL manufacture[9-11]. Due to new IOL advent technology the popular IOLs lens was foldable silicone or acrylic lenses [12] which need small enough incision to implanted. Wide review of applied manufacture materials, IOLs different category and design principles was described by Zeng and Fang [13]. The retinal image quality of IOL depends on many optical parameters and features. The most important parameter is the refractive index of material lens[12] and power of focusing, which depends on radius of curvatures, thickness (IOL shape). Nowadays multifocal intraocular lenses (MIOLs) are widely use with one implant for the pseudophakic patient to replace the opaque crystalline lens, as well for presbyopia correction [14]. Refractive separated MIOLs zones was illustrated in Figure1 [15].
Figure 1. Diagram of refractive zones of the MIOLs [15].

Recently, Al-Hamdani and Hashim [16] adopting Zemax-EE (2005)software and the Liou and Brennan human eye model to design polythiourethane contact lens and study the effect of Polychromatic Light on human eye image performance. The analysis also present conduct quantitative comparisons for different diameters of pupil entrance and the criteria for degradation of retinal image was MTF, blur spot size (RMS) and the type and amount of aberrations (monochromatic and polychromatic).

In this article, doublet and triplet proposed MIOLs of two material were presented to correct chromatic and spherical aberrations as high order aberrations. Further multi-focus refractive MIOLs also investigated.

2. Material and Method

With the aid of ZEMAX-EE software, Liou & Brennan eye models (Pseudophakic eye models) was used to design and analysis the quality of retinal image formed by the implanted MIOLs [17]. Table 1 summarized eye model parameters of optical surface. This model acquires wide acceptance as one of the best approaches to the visual system of the human eye [12].

Surface	Comment	Radius (mm)	Thickness (mm)	Glass Refractive index, \(n \) at 555 nm	Abbe number	Diameter (mm)	Conic
OBJ 1	Anterior cornea	7.77	0.50	1.376	50.23	10	-0.18
OBJ 2	Posterior cornea	6.40	3.16	1.336	50.23	10	-0.60
STO 3	Pupil	Infinity	0	1.336	50.23	2.5	0
STO 4	Lens- front	12.40	1.59	Grad A	-	-0.94	
STO 5	Lens- back	Infinity	2.43	Grad P	-	10	0.00
IMA	Retina	-12.00	-	-	-	10	0

* Where OBJ, STO and IMA are object, stop and image surfaces.
This model assumes that the crystalline lens is composed of anterior and posterior as a two parts with gradient (variable) refractive index. The distribution of gradient index and index in anterior (n_A) and posterior parts (n_P) are given by the following equations [17]:

$$[n_A(z, r)] = 1.368 + 0.049057z - 0.015427z^2 - 0.001978r^2,$$

(1)

And gradient index in the posterior part by [17]:

$$[n_P(z, r)] = 1.4078 - 0.006605z^2 - 0.001978r^2,$$

(2)

Adopting Liou & Brennan model the dispersion relation described for entire eye media is [17]:

$$n(\lambda) = n_{555} + 0.0512 - 0.1455\lambda + 0.0961\lambda^2$$

(3)

where (z, r) are the cylindrical-coordinates with the z-axis oriented along the visual-axis of the model eye and n_{555} is index of refraction for the wavelength equal to 0.555 μm.

In order to design refractive MIOLs, refractive index and chromatic dispersion (determined by Abbe number) of materials must be employed. The used two materials are:

- The first material is acrylic (AR40N Allergan) with index $n_{(1)} = 1.47$ and Abbe number $V_d (1) = 71$ [18]. This material classified as relatively low dispersion material.
- The second one is more dispersive; acrylic (AcrySof SA60AT) with $n_2 = 1.55$ and $V_d (2) = 37$[19].

The optimum performance of different MIOLs were studied and evaluate with the aid of ZEMAX-EE software accessed using a merit function defined as[20].

$$MF = \left[\frac{1}{N} \sum_{j=1}^{N} \left(\frac{f(\lambda_j) - f_j}{\Delta f_j} \right)^2 \right]^{1/2}$$

(4)

Further the spectral sensitivity curve in bright illumination (photopic state) [21, 22] of human eye (pseudophakic eye). The characteristics of retina image were calculated for the input pupil of 4mm diameter and 5° X-field. The data of human eye spectral sensitivity are presented in Table 2.

Wavelength (mm)	0.455	0.505	0.555	0.605	0.655
Spectral sensitivity	0.0746	0.4027	0.8658	0.4569	0.0568

3. Results and Discussion

Optimum result of classic refractive MIOLs of the three types [singlet; doublet & triplet] implanted in pseudophakic eye are presented in Tables (3-5).
Table 4. Optical Surface Data Parameters For Doublet MIOLs Refractive

Element	Even Aspheric Coefficients	Conic constant	2\(^{\text{th}}\) order	4\(^{\text{th}}\) order	6\(^{\text{th}}\) order	8\(^{\text{th}}\) order
Anterior Surface	-1.222E+8	-0.12379	-0.016639	-5.017E-4	-2.921E-4	
Posterior Surface	-5.9580	-0.12801	-0.016800	-4.927E-4	-1.852E-4	

Table 5. Optical Surface Data Parameters For Triplet MIOLs Refractive

Element	Even Aspheric Coefficients	Conic constant	4\(^{\text{th}}\) order	6\(^{\text{th}}\) order
Anterior Surface	12.44	0.60	3	1.470
Intermediate	-5.92	0.60	3	1.550
Posterior Surface	-8.91	2.43	3	1.336

The overall optical performance of eye implanted MIOLs were based on the evaluation of the point spread function (PSF) and modulation transfer function (MTF). Figure 2 depict Liou & Brennan eye model of a healthy eye polychromatic PSF and the different types classic refractive MIOLs [singlet; doublet & triplet] implanted for a pseudophakic eye. It also showed that the optical performance of all polychromatic PSF shapes of the pseudophakic eye with refractive MIOLs seems to be look like healthy eye. Figure 3 present the respective polychromatic MTF curves.
Figure 2. Cross-section of the polychromatic PSF of the Liou and Brennan model, and refractive MIOLs [singlet; doublet & triplet] implanted for a pseudophakic eye.

Figure 3. Polychromatic MTF of the Liou and Brennan model (healthy eye), and refractive MIOLs [singlet; doublet & triplet] implanted for a pseudophakic eye.

The Liou & Brennan eye model (healthy eye) polychromatic spot diagram and different types MIOL curves were presenting in Figure 4. Root-mean square error (RMS) radius (standard for aberration spots) in Polychromatic spot diagram for Liou & Brennan eye model (healthy eye) it is equal to about 2.670, and for the eye model with refractive (singlet, doublet and triplet) MIOLs it are equal to about 2.618, 2.389 and 1.367, respectively. The aberration spots on the retina for all MIOLs proposed design less than of a healthy eye.
Figure 4. Polychromatic spot diagram for: (a) Liou-Brennan eye model (healthy eye) and models eye with refractive MIOLs implanted into three types: (b) singlet, (c) doublet, (d) triplet.

Material and design shape variation of the considered MIOLs were taken into account in this study, the effective focal length (standard for calculation power) for healthy eye and refractive MIOLs(singlet, doublet and triplet) were 16.588, 13.557, 16.539 and 16.655 mm, respectively. Figure 5 illustrate the (LCA) (left side), the sphero-chromatic aberration(right side) for Liou &Brennan model eye (healthy eye) and three eye models of classic refractive MIOLs for a pseudophakic eye.

Maximum focal shift range (LCA) and sphero-chromatic aberration of a healthy eye and optimum result over the spectral wavelength range (455-655 nm) with increment 60nm were as follows:

- healthy eye approximately equal to 128μm & 0.176mm.
- refractive MIOLs implanted pseudophakic eye:
 - singlet about 109 μm & 0.255mm.
 - doublet about 72 μm & 0.070mm.
 - triplet about 31μm & 0.048mm.
The results showed that the proposed refractive (doublet- and triplet-) MIOLs have a good correction of chromatic dispersion and spherical aberration.
Figure 5. LCA (left) and sphero-chromatic aberration (right) for: (a) Liou & Brennan eye model (healthy eye) and models eye with refractive MIOLs implanted into three types are: (b) singlet, (c) doublet, (d) triplet.

4. Conclusions

Image characteristic functions, i.e. MTF, PSF, (longitudinal-, Sphero-) chromatic aberration and spot diagrams were used in this study to describe the image quality of retinal image for healthy eye and artificial refractive MIOLs. Simulation with ZEMAX show that the optimum design of refractive triplet MIOLs was the best model, then after, refractive doublet MIOLs model. Refractive singlet MIOLs optimum design (including 8-zones) still safer from sphero-chromatic aberration than healthy eye. To overcome this problem, more surface (within the thickness limit) and materials of pseudophakic eye were introduce in Liou & Brennan eye model. Sphero-chromatic aberration of the pseudophakic eye with refractive (triplet- & doublet-) MIOLs implanted are less than healthy eye.

Acknowledgement

The authors would like to thank the Mustansiriya University (www.uomustansiriyah.edu.iq) and University of Technology (www.uotechnology.edu.iq) Baghdad-Iraq, for their support in the present work.
References

[1] Facts About Cataract 2004 National Eye Institute, National Institutes of Health, Department of Health and Human Services.
[2] Hess R., Woo G.1978 Vision through cataracts Investigative Ophthalmology and Visual Science 17(5) 428–35.
[3] Azar D.T. 2001 Intraocular Lenses in Cataract and Refractive Surgery, Saunders, 2001.
[4] Waifank K. 2005 Couching for cataract and Sino-Indian medical exchange from the sixth to the twelfth century AD Clinical and Experimental Ophthalmology 33(2) 188–90.
[5] Kwitko M.L., Kelman C.D. 1998 The History of Modern Cataract Surgery, Kugler Publications.
[6] Rosen E., Haining W.M. and Arnott E.J.1989 Intraocular Lens Implantation, Mosby-Year Book.
[7] Allarakhaia L., Lindstrom R.L.1988 Soft intraocular lenses International Ophthalmology 12(3) 185–91.
[8] Hamilton R.C., Sir Ridley H. 2000 MD, FRCS, FRS; Inventor of the intraocular lens implant Current Anaesthesia and Critical Care 11(6) 314–19.
[9] Amon M. 2001 Biocompatibility of intraocular lenses Journal of Cataract and Refractive Surgery 27(2) 178–79.
[10] Mamalis N.2002 Intraocular lens biocompatibility Journal of Cataract and Refractive Surgery 28(1) 1–2.
[11] Werner L., Mamalis N., Romaniv N., Haymore J., Haugen B., Hunter B., Stevens S.2006 New photochromic foldable intraocular lens: Preliminary study of feasibility and biocompatibility Journal of Cataract and Refractive Surgery 32(70) 1214–21.
[12] Siedlecki D. Zając M. and Nowak J. 2008 Retinal images in a model of a pseudophakic eye with classic and hybrid intraocular lenses Journal of Modern Optics 55 (4–5) 653–69.
[13] Zeng L. and Fang F. 2018 Advances and challenges of intraocular lens design Applied Optics, 57 (25) 7363-76.
[14] Davison A.J., Simpson J.M. 2006 History and development of the apodized diffractive intraocular lens J. Cataract Refract. Surg. 32(5) 849–58.
[15] Lane S.S., Morris M., Nordan L., M. Packer, Tarantino N., and Wallace B. R. 2006 Multifocal intraocular lens Ophthalmol. Clin. North Am. 19 89–105.
[16] Al-Hamdani H.A. and Hashim A.H.2019 Effect of polychromatic light on image performance of human eye with polythiourethane contact lens Indian Journal of Natural Sciences 9(52) 16501-507.
[17] Liou L.H. Brennan N.A. 1997 Anatomically accurate, finite model eye for optical modeling JOSA A 14 1684–95.
[18] Fernandez J.E. and Artal P. 2017 Achromatic doublet intraocular lens for full aberration correction Biomedical Optics Express 8(5) 2396–404.
[19] Bass M. 1995 Handbook of Optics McGraw-Hill, New York.
[20] ZEMAX, Optical Design Program User's Guide,” ZEMAX Development Corporation (2005).
[21] Commission Internationale de l’E´clairage, 1988 2° Spectral Luminous Efficiency Function for Photopic Vision. CIE Central Bureau CIE 86-1990.
[22] Kaiser P.K., Boynton R.M.1996 Human Color Vision Optical Society of America Washington, DC.