Validation of reference genes for gene expression studies in tartary buckwheat (*Fagopyrum tataricum* Gaertn.) using quantitative real-time PCR

Chenglei Li¹, Haixia Zhao¹, Maofei Li¹, Panfeng Yao¹, Qingqing Li¹, Xuerong Zhao¹, Anhu Wang², Hui Chen¹, Zizhong Tang¹, Tongliang Bu¹, Qi Wu¹

¹ College of life science, Sichuan Agricultural University, Ya’an, Sichuan, China
² Xichang College, Xichang, Sichuan, China

Corresponding Author: Qi Wu
Email address: wuqi@scau.edu.cn

Quantitative real-time reverse transcriptase polymerase chain reaction (qRT-PCR) is a sensitive technique for quantifying gene expression levels. By implementing three distinct algorithms (geNorm, normFinder and BestKeeper), we have validated the stability of the expression of seven candidate reference genes in tartary buckwheat, including *FtSAND*, *FtCACS*, *FtExpressed1*, *FtGAPDH*, *FtActin*, *FtEF-1α* and *FtH3*. In this study, the results indicated that *FtCACS* and *FtSAND* were the best reference genes for ‘abiotic cotyledons’, and *FtExpressed1* and *FtEF-1α* were the best reference genes for aluminium treatment; *FtCACS* and *FtExpressed1* performed the best for the immature seed stage; *FtCACS* was best for the abiotic treatment, and *FtH3* appeared to be the most suitable reference gene for the abiotic treatment in hypocotyls and all samples in this study. In contrast, *FtActin* and *FtGAPDH* are unsuitable genes. Our findings offer additional stable reference genes for gene expression research on tartary buckwheat at the immature seed stage and under abiotic treatment.
Validation of reference genes for gene expression studies in tartary buckwheat (Fagopyrum tataricum Gaertn.) using quantitative real-time PCR

Chenglei Li¹, Haixia Zhao¹, Maofei Li¹, Panfeng Yao¹, Qingqing Li¹, Xuerong Zhao¹, Anhu Wang², Hui Chen¹, Zizhong Tang¹, Tongliang Bu¹, Qi Wu¹*

¹College of life science, Sichuan Agricultural university, Ya’an 625014, Sichuan, China
²Xichang college, Xichang 615013, Sichuan, China

*Corresponding Author: Qi Wu
Sichuan Agricultural university, Ya’an 625014, Sichuan, China
Email addresses: wuqi@sicau.edu.cn

Abstract
Quantitative real-time reverse transcriptase polymerase chain reaction (qRT-PCR) is a sensitive technique for quantifying gene expression levels. By implementing three distinct algorithms (geNorm, normFinder and BestKeeper), we have validated the stability of the expression of seven candidate reference genes in tartary buckwheat, including FtSAND, FtCACS, FtExpressed1, FtGAPDH, FtActin, FtEF-1α and FtH3. In this study, the results indicated that FtCACS and FtSAND were the best reference genes for ‘abiotic cotyledons’, and FtExpressed1 and FtEF-1α were the best reference genes for aluminium treatment; FtCACS and FtExpressed1 performed the best for the immature seed stage; FtCACS was best for the abiotic treatment, and FtH3 appeared to be the most suitable reference gene for the abiotic treatment in hypocotyls and all samples in this study. In contrast, FtActin and FtGAPDH are unsuitable genes. Our findings offer additional stable reference genes for gene expression research on tartary buckwheat at the immature seed stage and under abiotic treatment.
Introduction

Quantitative real-time reverse transcription polymerase chain reaction (qRT-PCR) has become the most prevalent quantification method used in assays of gene expression on account of its specificity, accuracy, efficiency and high sensitivity (Jiang et al. 2014). The data from qRT-PCR can be analysed using absolute or relative quantification. Absolute quantification yields an exact gene copy number by transforming quantification cycles (Hruz et al.) into a standard curve. Relative quantification relies on internal control genes as references to present the qRT-PCR data of the target genes (Ginzinger 2002). Relative quantification has become a more widely used method in gene expression assays because most researchers mainly focus on the analysis of differences in gene expression (Wu et al. 2016). To normalize qRT-PCR data, a reference gene is needed, and it should be universally valid, with a similar expression level across all feasible cells, tissue samples and experimental treatments (Huang et al. 2014). However, ideal reference genes do not actually exist (Remans et al. 2014). The selection of the appropriate reference gene is a critical step in controlling the variability of samples when using a sensitive qRT-PCR technique (Tong et al. 2009). If the reference gene is appropriate, the discrepancies that may exist in terms of the initial sample amount, RNA integrity, RNA recovery, and the efficiency of cDNA synthesis will be eliminated. Statistical algorithms, such as geNorm (Vandesompele et al. 2002), normFinder (Andersen et al. 2004) and BestKeeper (Pfaffl et al. 2004), have been developed to help to select appropriate reference genes.

Most studies about gene expression in bacteria (Wu et al. 2017), yeast (Cankorur-Cetinkaya et al. 2012) and mammals (Terzi et al. 2010) now include reference gene validation (Chapman & Waldenstrom 2015). However, the validation of reference genes in plants has received very little attention, and housekeeping genes tend to be used as references without any appropriate validation (Gutierrez et al. 2008). In 2005, Czechowski et al were the first to present a list of stably expressed Arabidopsis genes under a large range of experimental conditions, and the evidence clearly showed that several genes are expressed more stably than traditional reference genes (Czechowski et al. 2005). Since then, suitable reference genes for gene expression studies have been reported in higher plants such as flax (Huis et al. 2010), soybean (Hu et al. 2009), tomato (Lovdal & Lillo 2009), Pisum sativum (Die et al. 2010), Brachypodium distachyon (Hong et al. 2008) and carrot (Tian et al. 2015). However, reference gene stability is not consistent
across experimental conditions and plant species. Consequently, it is necessary to find additional
reference genes for different conditions and species.

Tartary buckwheat (*Fagopyrum tataricum* Gaertn.) belongs to the Polygonaceae family (Kim
et al. 2013), and as an important functional food material, it has a relatively high flavonoid
content. Tartary buckwheat is capable of thriving in regions with poor soil or harsh climates
(Kim et al. 2009). The results of genome sequencing also show that tartary buckwheat has a
remarkable ability to cope with highly variable environmental stress, including drought, salinity,
UV-B and cold (Zhang et al. 2017). The stress resistance of tartary buckwheat is mainly due to
its abundant flavonoids (Suzuki et al. 2005). In particular, tartary buckwheat is a naturally
aluminium (Al) tolerant species (Wang et al. 2015). Abiotic stresses and flavonoid metabolism
regulate the expression of these genes in plants at both transcriptional and post-transcriptional
levels. There are many reports on tartary buckwheat under various experimental conditions in
which gene expression is normalized to a reference gene (*H3*) for semi-quantitative RT-PCR or
qRT-PCR (Bai et al. 2014). However, to date, there is no systematic strategy to analyse tartary
buckwheat reference genes at the immature seed stage or under abiotic stress.

In this work, we aimed to evaluate the potential use of different reference genes for internal
normalization to more accurately measure the expression level of genes of interest in tartary
buckwheat. Seven candidate reference genes were selected, and the stability of their expression
was assessed in tartary buckwheat at the immature seed stage and under different abiotic stress
treatments. Evaluating the stability of the expression of candidate reference genes depends on
statistical analysis. Three different statistical software programs (*geNorm*, *normFinder*, and
BestKeeper) were used to calculate the variability of the expression of the candidate genes and
determine which were the most suitable.

Materials & Methods

Plant materials and treatments

Tartary buckwheat (“Xiqiao No. 2”) seeds were grown in the field on a farm (XTBG; 29°59′N,
102°59′E; 800 m elevation) at Sichuan Agricultural University, Ya’an, Sichuan, China (Li et al.
2012). Tissues, including roots, stems, leaves, flowers, immature seed 1 (seed formation started)
and immature seed 2 (seeds in the milk) were collected at the immature seed stage (Gupta et al.
2011). The 7-day-old seedlings were stressed with saline or drought by adding 100 mM NaCl or
20% PEG 2000, respectively, to the medium. The 7-day-old seedlings were exposed in a chamber at 4°C with a 16 h photoperiod for cold treatment (Gao et al. 2016). UV-B treatment was conducted under UV-B (302 nm, 0.1 mW/cm²) in a chamber. After 0, 2, 4, 6, 12 and 24 h of treatment, all stressed seedlings were collected and separated into cotyledons and hypocotyls. For the AI treatment, the samples were processed according to a previous report (Zhu et al. 2015). Root tips (0-2 cm) and basal roots (2-4 cm) were sampled under both –AI and +AI conditions. All samples were collected in two biological replicates, and RNA was extracted immediately.

Total RNA isolation and cDNA synthesis

Total RNA was isolated from various samples with an RNAout 2.0 kit (Tiandz, China) according to the manufacturer’s instructions. To remove trace DNA from samples, total RNA extractions were treated with RNase free DNase I. The RNA integrity was detected using 2% agarose gels. A Bio-RAD smart spec™ plus spectrophotometer was used to determine the RNA purity. cDNA was synthesized with a PrimeScript™ RT reagent kit and gDNA Eraser (Perfect Real Time) (TaKaRa, Dalian, China).

Selection of candidate reference genes and design of qRT-PCR primers

Potential homologues of the seven candidate genes were identified from the transcriptome sequencing data of tartary buckwheat (‘Xiqiao No. 2’) (Yao et al. 2017). Primers were designed using Primer Premier 5.0. All primers used in this research are listed in Table 1. The specificity of the amplification was assessed based on the presence of a single band of the expected size in a 1.5% agarose gel following electrophoresis and a single peak in the qRT-PCR melting curve.

Quantitative real-time PCR

The qRT-PCR procedure was designed in accordance with MIQE guidelines (Bustin et al. 2009). qRT-PCR was executed in a CFX96 Real Time PCR system (Bio Rad, Singapore) with a SYBR Premix EX Taq kit (TaKaRa, Japan) in a total reaction volume of 15 μL that included 10 μL of SYBR Green mix, primers at 0.5 μM each and 1 μL of cDNA. The amplification conditions were as follows: 95°C for 30 s and 40 cycles of 95°C for 5 s and 60°C for 20 s. A melting curve from 60 to 95°C was used to verify the specificity of the PCR amplification. All genes were amplified from cDNA. Ten-fold serial dilutions of cDNA samples from young leaves were used to establish the standard curves to calculate the amplification efficiency of each primer pair.
Statistical analysis

Three software programs (geNorm v3.5, the Excel add in of normFinder v0.953 and BestKeeper v1) were used to analyze the stability of reference gene expression across all experimental sets (Andersen et al. 2004; Pfaffl et al. 2004; Vandesompele et al. 2002). SPSS v17.0 was used to calculate the span of Cq values for each gene by drawing a box-whisker plot, and the expression levels of *FtSTAR* and *FtDFR* were showed by mean ± standard deviation (SD).

Results

RNA solution and quality

A series of 58 samples from tartary buckwheat were divided into six different groups. ‘Abiotic cotyledons’ was composed of cotyledons from all stress-treated samples. ‘Abiotic hypocotyls’ included hypocotyls from all stress-treated samples. ‘Abiotic total’ was composed of ‘abiotic cotyledons’ and ‘abiotic hypocotyls’. ‘Al treatment’ comprised all samples that were treated with Al. ‘Immature seed stage’ consisted of six tissues (roots, stems, leaves, flowers, immature seed 1 and immature seed 2) at the immature seed stage based on the state of the seed. Finally, ‘total’ included all the samples in this study. Protein and organic pollutants were isolated and removed from all samples via RNA extraction. The total RNAs, with A_{260}/A_{280} ratios of 1.8-2.0, were reverse transcribed into cDNA as templates for qRT-PCR detection.

Expression profiles of candidate reference genes

We selected the best reference genes (among the 7 candidate genes) from the seven candidate genes in six different groups (sequencing data was shown in Supplemental Fig. S1). The amplification efficiencies (E) of all reactions ranged from 95.5% to 107.5% and were calculated from standard curves with good linear relationships ($R^2>0.99$). Single-peak melting curves were obtained for all qRT-PCR amplifications (Supplemental Fig. S2). A simple and commonly used method to identify stably expressed genes is to compare the span of quantification cycle (Hruz et al.) values for each gene in the qRT-PCR reactions. The results showed that the candidate reference genes spanned a wide range of Cq values, ranging from 14.98 (*FtGAPDH*) to 29.65 (*FtActin*), with the median Cq values of the genes ranging from 17.59 (*FtGADPH*) to 25.5 (*FtSAND*). The reference gene expression levels, in descending order, were *FtGAPDH*, *FtEF-1*, *FtH3*, *FtCACS*, *FtActin*, *FtExpressed1* and *FtSAND*. *FtActin* (median, 23.55; Cq variation,
11.38) showed the most variability, and the *FtH3* gene (median, 20.19; Cq variation, 3.67) showed the least variability (Fig. 1).

Software: geNorm, NormFinder and BestKeeper

After a simple comparison of the raw Cq values, the three software programs were used to further analyse the stability of the expression of the seven candidate genes. The genes were ranked in descending order in terms of the stability of their expression in each of six groups (Table 2), and the details of the cotyledons and hypocotyls under abiotic stress are provided in Supplemental Table S1. GeNorm performed a stepwise exclusion of the most unstable gene and then recalculated M until only two genes remained, and these two genes had the most stable expression (Vandesompele et al. 2002). The gene with the lower M value was considered to have the most stable expression. An M value limit of <1.5 was suggested by geNorm. All the results from geNorm were lower than 1.5 in ‘abiotic cotyledons’ and ‘total’; *FtCACS* and *FtH3* (M = 0.33, 0.60) were chosen as the most stable genes, while *FtH3* and *FtSAND* (M = 0.65, 0.55) were identified as the most stable genes in the ‘abiotic hypocotyls’ and ‘abiotic total’ groups, respectively. In ‘immature seed stage’, *FtCACS* and *FtExpressed1* (M = 0.16) were recognized as the most stable genes. Finally, *FtEF-1a* and *FtExpressed1* (M = 0.16) were the most stable genes in ‘Al treatment’.

To determine the optimal number of reference genes required for accurate normalization, geNorm was used to calculate the pairwise variation (Vn/Vn+1) between the sequential normalization factors (NFs) (NFn and NFn+1). As suggested, a threshold value of 0.15 was adopted. As depicted in Fig. 2, pairwise variation analysis indicated that the ideal number of reference genes may be different for the different groups. For instance, only two genes are necessary for normalization for ‘immature seed stage’, ‘abiotic cotyledons’ and ‘Al treatment’, but the pairwise variation of the other three groups was above the threshold of 0.15. The pairwise variations for cotyledons and hypocotyls under different abiotic treatments are provided in Supplemental Fig. S3.

Unlike geNorm, normFinder (Andersen et al. 2004) depends on a variance estimation approach, which allows the comparison of inter/intra-group variation. Genes with the lowest average expression stability values are the most stable. In the normFinder analysis, *FtH3* and *FtCACS* were the most stable genes in ‘abiotic cotyledons’, and *FtSAND* and *FtExpressed1* were the most stable genes under ‘Al treatment’. In addition, the most stable reference genes in
‘immature seed stage’ were *FtSAND* and *FtGAPDH*, while the other three groups had the same two most stable reference genes (*FtSAND* and *FtCACS*). The least stable gene in all groups was *FtActin*.

BestKeeper (Pfaffl et al. 2004) determines the most stable genes by taking the coefficient of variance (CV) and SD of the Cq values. The more stably expressed genes are indicated by the lower SD and CV values. The results showed that the most stably expressed genes were *FtSAND* (CV ± SD = 1.32 ± 0.33) and *FtCACS* (CV ± SD = 1.47 ± 0.31) for ‘abiotic cotyledons’. In ‘abiotic hypocotyls’, *FtH3* (CV ± SD = 2.47 ± 0.51) and *FtSAND* (CV ± SD = 2.68 ± 0.69) were the most stable genes. *FtH3* (CV ± SD = 2.55 ± 0.52, CV ± SD = 2.69 ± 0.54) and *FtCACS* (CV ± SD = 2.70 ± 0.61, CV ± SD = 2.33 ± 0.53) were the most stable genes in the ‘abiotic total’ and ‘total’ groups, respectively. *FtExpressed1* (CV ± SD = 0.73 ± 0.17) and *FtEF-1α* (CV ± SD = 1.55 ± 0.25) showed the most stable expression in ‘Al treatment’, and *FtExpressed1* (CV ± SD = 2.00 ± 0.50) and *FtCACS* (CV ± SD = 2.43 ± 0.57) showed the highest expression stabilities in ‘immature seed stage’. The least stable gene was *FtActin*, but the *FtGAPDH* gene, with a CV ± SD of 7.59 ± 1.39 in ‘abiotic hypocotyls’, was considered the least acceptable for gene expression normalization.

Reference gene validation

To validate the availability of a reference gene, the expression levels of *FtSTAR* under Al treatment and of the *FtDFR* gene under UV treatment were determined using the seven candidate reference genes for normalization. For Al treatment, *STAR* has a conserved response in plants, and this has been shown in previous reports, such as reports on rice *STAR2* (Huang et al. 2009), *Arabidopsis ALS* (Larsen et al. 2005) and tartary buckwheat *FtSTAR2* (Zhu et al. 2015), whose expression increased after exposure to Al. The expression of *FtSTAR2* was greatly increased (Fig. 3), which was reinforced by the Al-induced expression of *STAR2*. The use of the most favourable reference gene (*FtExpressed1*) resulted in the greatest variation, resulting in increases of approximately 1.67-fold in root tips and 6.24-fold in basal roots, and the use of the other most stable gene (*FtEF-1α*) resulted in increases of approximately 1.42-fold and 6.19-fold, respectively. Finally, the use of the least stable gene (*FtActin*) resulted in increases of approximately 1.90-fold in root tips and 2.48-fold in basal roots. These genes also showed a pattern of increased expression, regardless of whether stable or unstable reference genes were used for normalization. However, the relative expression using the most stable genes showed the
higher fold increases compared with the unstable genes. Therefore, *FtExpressed1* and *FtEF-1a* are the most suitable genes under Al treatment.

DFR catalyses the reduction of dihydroflavonols to leuco-anthocyanins and is a key enzyme in the biosynthesis of anthocyanins (Yuan et al. 2007). The contents of anthocyanin increased under UV treatment in tartary buckwheat hypocotyls (Eguchi & Sato 2009). In hypocotyls under UV treatment, the relative quantification of *FtDFR* using the most stable genes (*FtCACS, FtH3* and *FtActin*) for normalization exhibited similar expression patterns but different expression levels. When other less stable genes were used for normalization, the results obviously differed from those with the most stable genes (Fig. 4). The expression levels of the *FtDFR* gene under UV treatment showed similar trends after normalization to stable genes in hypocotyls. Thus, we selected the most stable reference genes for gene expression normalization in tartary buckwheat.

Discussion

SYBR Green I is a fluorescent reporter dye used in qRT-PCR; when it binds double-stranded DNA, its fluorescence increases nearly 1000-fold (Morrison et al. 1998). The problems in qRT-PCR caused by the variability of RNA templates and inappropriate data normalization are obvious and widely known but disregarded (Nolan et al. 2006). To address these questions, proper reference genes should be used. Thus, validating candidate reference genes and selecting stable reference genes are becoming general interests for researchers.

Candidate reference genes can be selected from reference gene validation papers that use the same experimental conditions or closely related species (orthologies) or by mining transcriptomic data for stably expressed genes or traditional housekeeping genes (Hruz et al. 2011). The seven candidate reference genes tested in tartary buckwheat include three genes that are stably expressed in common buckwheat (*SAND, CACS* and *Expressed1*), three commonly used reference genes (*GAPDH, Actin* and *EF-1a*) and one unique gene (*H3*). Neither high (>30) nor low (<15) Cq values are recommended based on general guidelines (Wan et al. 2010). In this study, the Cq values of the reference genes ranged from 14.98 (*FtGAPDH*) to 29.65 (*FtActin*), suggesting variable expression. Although the raw Cq value comparison can provide a rough estimate of the stability of gene expression, it is not sufficient to accurately evaluate the expression patterns of reference genes.
Scientists have developed several approaches to select stable reference genes for normalization. However, to date, there is no consistent algorithm that can be used to test gene stability. These software programs have their own merits and drawbacks: NormFinder can avoid the misinterpretations caused by the artificial selection of co-regulated genes (Andersen et al. 2004); geNorm is based on the assumption that none of the analysed genes are co-regulated (Vandesompele et al. 2002); and geNorm can estimate the fewest number of reference genes needed for accurate normalization (Stamova et al. 2009). It seems possible that more reliable controls can be obtained using a combination of different algorithms (de Almeida et al. 2010).

We used three software programs that were based on different statistical approaches to assess seven candidate genes in tartary buckwheat. The distinct statistical algorithms are likely to generate inconsistent rankings of stability. After integrating the outcomes of the three programs above in this study, we recommend the reference genes in tartary buckwheat as follows: *FtCACS* + *FtSAND* for ‘abiotic cotyledons’; *FtExpressed1* + *FtEF-1α* for ‘Al treatment’; *FtCACS* + *FtExpressed1* for ‘immature seed stage’; *FtCACS* for ‘abiotic total’; and *FtH3* for ‘abiotic hypocotyls’ and ‘total’. The *H3* gene is the most commonly used internal gene for normalization in tartary buckwheat (Luo et al. 2016). Our results indicate that *FtH3* is a stable gene under abiotic treatment. However, it is not stable across different organs or after Al treatment. In common buckwheat (Demidenko et al. 2011), *CACS* and *Expressed1* were validated as the most stable genes in the development and fruit stages. *FtCACS* and *FtExpressed1* being the most stable reference genes in the immature seed stage of tartary buckwheat supports the statement that the orthologues of identified reference genes could serve the same purpose in other species.

In tomato, similar results were obtained in a study on reference gene selection (Exposito-Rodriguez et al. 2008).

GAPDH and *Actin* are the most generally used reference genes for the analysis of gene expression in various plant species (Kumar et al. 2011). However, our analysis indicates that *GAPDH* and *Actin* are not reliable genes for comparative expression analysis. The cause of these fluctuations at the gene expression level is probably that *GAPDH* and *Actin* have several biological functions, such as participating in the glycolytic pathway and other processes (Stürzenbaum & Kille 2001). *Actin* supports the cell and determines its shape, and it also takes part in other cellular functions (Kravets et al. 2017). Although *Actin* is a stable reference gene in developmental studies, it is not stable under various conditions.
Conclusions

As far as we know, our studies take advantage of three software (geNorm, NormFinder and BestKeeper) to analysis the stability of seven candidate reference genes for the first time in tartary buckwheat using qRT-PCR. Three software identified slightly different genes as most suited for normalization prompted us to merge the data. The result showed that the expression of GAPDH or Actin is unstable across all samples. We also provide a list with the stable reference genes in six group and under certain conditions.

References

Andersen CL, Jensen JL, and Orntoft TF. 2004. Normalization of real-time quantitative reverse transcription-PCR data: a model-based variance estimation approach to identify genes suited for normalization, applied to bladder and colon cancer data sets. Cancer Res 64:5245-5250. 10.1158/0008-5472.CAN-04-0496

Bai YC, Li CL, Zhang JW, Li SJ, Luo XP, Yao HP, Chen H, Zhao HX, Park SU, and Wu Q. 2014. Characterization of two tartary buckwheat R2R3-MYB transcription factors and their regulation of proanthocyanidin biosynthesis. Physiol Plant 152:431-440. 10.1111/ppl.12199

Bustin SA, Benes V, Garson JA, Hellemans J, Huggett J, Kubista M, Mueller R, Nolan T, Pfaffl MW, Shipley GL, Vandesompele J, and Wittwer CT. 2009. The MIQE guidelines: minimum information for publication of quantitative real-time PCR experiments. Clin Chem 55:611-622. 10.1373/clinchem.2008.112797

Cankorur-Cetinkaya A, Dereli E, Eraslan S, Karabekmez E, Dikicioglu D, and Kirdar B. 2012. A novel strategy for selection and validation of reference genes in dynamic multidimensional experimental design in yeast. PLoS One 7:e38351. 10.1371/journal.pone.0038351

Chapman JR, and Waldenstrom J. 2015. With Reference to Reference Genes: A Systematic Review of Endogenous Controls in Gene Expression Studies. PLoS One 10:e0141853. 10.1371/journal.pone.0141853

Czechowski T, Stitt M, Altmann T, Udvardi MK, and Scheible WR. 2005. Genome-wide identification and testing of superior reference genes for transcript normalization in Arabidopsis. Plant Physiol 139:5-17. 10.1104/pp.105.063743

de Almeida MR, Ruedell CM, Ricachenevsky FK, Sperotto RA, Pasquali G, and Fett-Neto AG. 2010. Reference gene selection for quantitative reverse transcription-polymerase chain reaction normalization during in vitro adventitious rooting in Eucalyptus globulus Labill. BMC Mol Biol 11:73. 10.1186/1471-2199-11-73

Demidenko NV, Logacheva MD, and Penin AA. 2011. Selection and validation of reference genes for quantitative real-time PCR in buckwheat (Fagopyrum esculentum) based on transcriptome sequence data. PLoS One 6:e19434. 10.1371/journal.pone.0019434

Die JV, Roman B, Nadal S, and Gonzalez-Verdejo CI. 2010. Evaluation of candidate reference genes for expression studies in Pisum sativum under different experimental conditions. Planta 232:145-153. 10.1007/s00425-010-1158-1

Eguchi K, and Sato T. 2009. Differences in the Ratios of Cyanidin-3-O-glucoside and Cyanidin-3-O-rutinocide to Total Anthocyanin under UV and Non-UV Conditions in
Tartary Buckwheat (*Fagopyrum tataricum* Garten). *Plant Production Science* 12:150-155. Doi 10.1626/PPs.12.150

Exposito-Rodriguez M, Borges AA, Borges-Perez A, and Perez JA. 2008. Selection of internal control genes for quantitative real-time RT-PCR studies during tomato development process. *BMC Plant Biol* 8:131. 10.1186/1471-2229-8-131

Gao F, Zhao HX, Yao HP, Li CL, Chen H, Wang AH, Park SU, and Wu Q. 2016. Identification, isolation and expression analysis of eight stress-related R2R3-MYB genes in tartary buckwheat (*Fagopyrum tataricum*). *Plant Cell Rep* 35:1385-1396. 10.1007/s00299-016-1971-5

Ginzinger DG. 2002. Gene quantification using real-time quantitative PCR. *Experimental Hematology* 30:503-512. 10.1016/s0301-472x(02)00806-8

Gupta N, Sharma SK, Rana JC, and Chauhan RS. 2011. Expression of flavonoid biosynthesis genes vis-a-vis rutin content variation in different growth stages of *Fagopyrum* species. *Journal of Plant Physiology* 168:2117-2123. 10.1016/j.jplph.2011.06.018

H Ruiz T, Wyss M, Docquier M, Pfaffi MW, Masanetz S, Borghi L, Verbrugghe P, Kalaydjieva L, Bleuler S, Laule O, Descombes P, Grissem W, and Zimmermann P. 2011. RefGenes: identification of reliable and condition specific reference genes for RT-qPCR data normalization. *BMC Genomics* 12:156. 10.1186/1471-2164-12-156

Hu R, Fan C, Li H, Zhang Q, and Fu YF. 2009. Evaluation of putative reference genes for gene expression normalization in soybean by quantitative real-time RT-PCR. *BMC Mol Biol* 10:93. 10.1186/1471-2199-10-93

Huang CF, Yamaji N, Mitani N, Yano M, Nagamura Y, and Ma JF. 2009. A bacterial-type ABC transporter is involved in aluminum tolerance in rice. *Plant Cell* 21:655-667. 10.1105/tpc.108.064543

Huang L, Yan H, Jiang X, Yin G, Zhang X, Qi X, Zhang Y, Yan Y, Ma X, and Peng Y. 2014. Identification of candidate reference genes in perennial ryegrass for quantitative RT-PCR under various abiotic stress conditions. *PLoS One* 9:e93724. 10.1371/journal.pone.0093724

Kim YK, Li XH, Xu H, Il Park N, Uddin MR, Pyon JY, and Park SU. 2009. Production of phenolic compounds in hairy root culture of tartary buckwheat (*Fagopyrum tataricum* Gaertn). *Journal of Crop Science and Biotechnology* 12:53-57. 10.1007/s12892-009-0075-y
Kravets EA, Yemets AI, and Blume YB. 2017. Cytoskeleton and nucleoskeleton involvement in processes of cytomixis in plants. *Cell Biol Int*. 10.1002/cbin.10842

Kumar V, Sharma R, Trivedi PC, Vyas GK, and Khandelwal V. 2011. Traditional and novel references towards systematic normalization of qRT-PCR data in plants. *Australian Journal of Crop Science* 5:1455-1468. 10.1016/j.fcr.2011.04.016

Larsen PB, Geisler MJ, Jones CA, Williams KM, and Cancel JD. 2005. ALS3 encodes a phloem-localized ABC transporter-like protein that is required for aluminum tolerance in *Arabidopsis*. *Plant J* 41:353-363. 10.1111/j.1365-313X.2004.02306.x

Li C, Bai Y, Li S, Chen H, Han X, Zhao H, Shao J, Park SU, and Wu Q. 2012. Cloning, characterization, and activity analysis of a flavonol synthase gene FtFLS1 and its association with flavonoid content in tartary buckwheat. *J Agric Food Chem* 60:5161-5168. 10.1021/jf205192q

Lovdal T, and Lillo C. 2009. Reference gene selection for quantitative real-time PCR normalization in tomato subjected to nitrogen, cold, and light stress. *Anal Biochem* 387:238-242. 10.1016/j.ab.2009.01.024

Luo XP, Zhao HX, Xue J, Li CL, Chen H, Park SU, and Wu Q. 2016. Cloning of two basic helix-loop-helix transcription factor genes from Tartary buckwheat (*Fagopyrum tataricum*) and their expression under abiotic stress. *Turkish Journal of Biology* 40:1192-1201. 10.3906/biy-1511-36

Morrison TB, Weis JJ, and Wittwer CT. 1998. Quantification of low-copy transcripts by continuous SYBR Green I monitoring during amplification. *Biotechniques* 24:954-958, 960, 962. 10.1271/bbb.62.1271

Nolan T, Hands RE, and Bustin SA. 2006. Quantification of mRNA using real-time RT-PCR. *Nat Protoc* 1:1559-1582. 10.1038/nprot.2006.236

Pfaffl MW, Tichopad A, Prgomet C, and Neuvians TP. 2004. Determination of stable housekeeping genes, differentially regulated target genes and sample integrity: BestKeeper--Excel-based tool using pair-wise correlations. *Biotechnol Lett* 26:509-515. 10.1023/B:BILE.0000019559.84305.47

Remans T, Keunen E, Bex GJ, Smeets K, Vangronsveld J, and Cuypers A. 2014. Reliable gene expression analysis by reverse transcription-quantitative PCR: reporting and minimizing the uncertainty in data accuracy. *Plant Cell* 26:3829-3837. 10.1105/tpc.114.130641

Stürzenbaum SR, and Kille P. 2001. Control genes in quantitative molecular biological techniques: the variability of invariance. *Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology* 130:281-289. 10.1016/s1096-4959(01)00440-7

Stamova BS, Apperson M, Walker WL, Tian Y, Xu H, Adamczy P, Zhan X, Liu DZ, Ander BP, Liao IH, Gregg JP, Turner RJ, Jickling G, Lit L, and Sharp FR. 2009. Identification and validation of suitable endogenous reference genes for gene expression studies in human peripheral blood. *BMC Med Genomics* 2:49. 10.1186/1755-8794-2-49

Suzuki T, Honda Y, and Mukasa Y. 2005. Effects of UV-B radiation, cold and desiccation stress on rutin concentration and rutin glucosidase activity in tartary buckwheat (*Fagopyrum tataricum*) leaves. *Plant Science* 168:1303-1307. 10.1016/j.plantsci.2005.01.007

Terzi V, Morcia C, Spini M, Tudisco R, Cutrignelli MI, Infascelli F, Stanca AM, and Faccioli P. 2010. Identification and validation of reference genes for gene expression studies in water buffalo. *Animal* 4:853-860. 10.1017/S1751731110000042

Tian C, Jiang Q, Wang F, Wang GL, Xu ZS, and Xiong AS. 2015. Selection of suitable reference genes for qPCR normalization under abiotic stresses and hormone stimuli in carrot leaves. *PLoS One* 10:e0117569. 10.1371/journal.pone.0117569
Tong Z, Gao Z, Wang F, Zhou J, and Zhang Z. 2009. Selection of reliable reference genes for gene expression studies in peach using real-time PCR. *BMC Mol Biol* 10:71. 10.1186/1471-2199-10-71

Vandesompele J, De Preter K, Pattyn F, Poppe B, Van Roy N, De Paepe A, and Speleman F. 2002. Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. *Genome Biol* 3:RESEARCH0034. 10.1186/gb-2002-3-7-research0034

Wan H, Zhao Z, Qian C, Sui Y, Malik AA, and Chen J. 2010. Selection of appropriate reference genes for gene expression studies by quantitative real-time polymerase chain reaction in cucumber. *Anal Biochem* 399:257-261. 10.1016/j.ab.2009.12.008

Wang H, Chen RF, Iwashita T, Shen RF, and Ma JF. 2015. Physiological characterization of aluminum tolerance and accumulation in tartary and wild buckwheat. *New Phytol* 205:273-279. 10.1111/nph.13011

Wu BY, Ye JR, Huang L, He LM, and Li DW. 2017. Validation of reference genes for RT-qPCR analysis in Burkholderia pyrrocinia JK-SH007. *J Microbiol Methods* 132:95-98. 10.1016/j.mimet.2016.10.004

Wu ZJ, Tian C, Jiang Q, Li XH, and Zhuang J. 2016. Selection of suitable reference genes for qRT-PCR normalization during leaf development and hormonal stimuli in tea plant (*Camellia sinensis*). *Sci Rep* 6:19748. 10.1038/srep19748

Yao H, Li C, Zhao H, Zhao J, Chen H, Bu T, Anhu W, and Wu Q. 2017. Deep sequencing of the transcriptome reveals distinct flavonoid metabolism features of black tartary buckwheat (*Fagopyrum tataricum* Garetn.). *Prog Biophys Mol Biol* 124:49-60. 10.1016/j.pbiomolbio.2016.11.003

Yuan T, Fujioka S, Takatsuto S, Matsumoto S, Gou XP, He K, Russell SD, and Li J. 2007. *BEN1*, a gene encoding a dihydroflavonol 4-reductase (DFR)-like protein, regulates the levels of brassinosteroids in *Arabidopsis thaliana*. *The Plant Journal* 51:220-233. 10.1111/j.1365-313X.2007.03129.x

Zhang L, Li X, Ma B, Gao Q, Du H, Han Y, Li Y, Cao Y, Qi M, Zhu Y, Lu H, Ma M, Liu L, Zhou J, Nan C, Qin Y, Wang J, Cui L, Liu H, Liang C, and Qiao Z. 2017. The Tartary Buckwheat Genome Provides Insights into Rutin Biosynthesis and Abiotic Stress Tolerance. *Mol Plant* 10:1224-1237. 10.1016/j.molp.2017.08.013

Zhu H, Wang H, Zhu Y, Zou J, Zhao FJ, and Huang CF. 2015. Genome-wide transcriptomic and phylogenetic analyses reveal distinct aluminum-tolerance mechanisms in the aluminum-accumulating species buckwheat (*Fagopyrum tataricum*). *BMC Plant Biol* 15:16. 10.1186/s12870-014-0395-z
Figure 1

Cq values of seven candidate reference genes across all experimental sets in tartary buckwheat.

A line across the box depicts the median. The box indicates the 25% and 75% percentiles. Whiskers represent the maximum and minimum values, and asterisks indicate extremes.
Figure 2

Optimal number of reference genes required for accurate normalization entile.

	V2/3	V3/4	V4/5	V5/6	V6/7
'abiotic Hypocotyls'	0.228	0.218	0.176	0.199	0.19
'abiotic cotyledons'	0.14	0.154	0.196	0.158	0.348
'abiotic total'	0.191	0.19	0.215	0.181	0.277
'Al treatment'	0.072	0.057	0.06	0.057	0.135
'immature seed stage'	0.125	0.099	0.113	0.153	0.276
'total'	0.208	0.167	0.205	0.168	0.308
Figure 3

Relative quantification of *FtSTAR2* gene expression under Al treatment in tartary buckwheat.

Error bars represent standard deviation of the mean, data shown are means ± SD (n = 3).
Figure 4

Relative quantification of *FtDFR* gene expression under UV treatment in tartary buckwheat hypocotyls.

Error bars represent standard deviation of the mean, data shown are means ± SD (n = 3).
Table 1 (on next page)

Genes, primers and different features derived from qRT-PCR analysis
Table 1 Genes, primers and different features derived from qRT-PCR analysis

Gene symbol	Gene name	Amplification length (bp)	Primer sequences	E%	TM/℃
FtSAND	SAND family protein gene	79	GACCCCCTTGCAAGACAAAGCATGGCA TCTCGTTCTCAACGTCTTTTACCCACTGG	98.9	81
FtCACS	Clathrin adapter complex subunit family protein	125	AAGACAGTCAGTTTCGTGCCACCTGA TCCATGCCTGTTCTACCCACAACCTCCT	90.3	82.5
FtExpressed1	Expressed protein of unknown function	127	AGGCCAGTTCCTGTAAATGTAATGC TAGCCTGATCAAACAAAGCTGGCAA	90.9	83
FtH3	Histones 3	158	GAAATTCGAAGTACACGAAGAG CCAACAAAGTTATGCCTCAGC	109.3	85
FtGAPDH	Glyceradehyde-3-phosphate dehydrogenase gene	155	TGGAGCTGCTAAGGCTGTG TGATACGACTTGTGATGTCCCTGTA	91.9	83
FtActin	Actin 2 genes	118	GGAATAGCAGTTCGTGCTGCTGCC CACTTGCGTCAAGGCTG	93.1	82.5
FtEF-1α	Elongation factor-1α gene	108	GCTGTGAGATGAAGAGGTC TCTACCTGCCAACACCGGAT	91.2	82.5
Table 2 (on next page)

The stability of the expression of seven candidate reference genes in six groups as analysed by geNorm, NormFinder, BestKeeper
Table 2 The stability of the expression of seven candidate reference genes in six groups as analysed by geNorm, NormFinder, BestKeeper

Group	Rank	geNorm	NormFinder	BestKeeper						
		Gene	Stability	Gene	Stability	Gene	SD	CV		
Abiotic Cotyledons	1	FtCACS	0.33	FtH3	0.058	FtSAND	0.33	1.32		
Abiotic Cotyledons	2	FtH3	0.33	FtCACS	0.080	FtCACS	0.31	1.47		
Abiotic Cotyledons	3	FtSAND	0.41	FtSAND	0.129	FtH3	0.33	1.64		
Abiotic Cotyledons	4	FtExpressed1	0.54	FtExpressed1	0.280	FtExpressed1	0.59	2.48		
Abiotic Cotyledons	5	FtEF-1α	0.73	FtEF-1α	0.683	FtEF-1α	1.04	5.70		
Abiotic Cotyledons	6	FtGAPDH	0.84	FtGAPDH	0.751	FtGAPDH	1.07	6.26		
Abiotic Cotyledons	7	FtActin	1.31	FtActin	1.678	FtActin	1.46	6.36		
Abiotic Hypocotyls	1	FtH3	0.65	FtSAND	0.416	FtH3	0.51	2.47		
Abiotic Hypocotyls	2	FtSAND	0.65	FtCACS	0.437	FtSAND	0.69	2.68		
Abiotic Hypocotyls	3	FtCACS	0.72	FtH3	0.449	FtActin	0.79	3.38		
Abiotic Hypocotyls	4	FtExpressed1	0.84	FtEF-1α	0.469	FtExpressed1	0.81	3.34		
Abiotic Hypocotyls	5	FtEF-1α	0.91	FtExpressed1	0.475	FtCACS	0.86	3.75		
Abiotic Hypocotyls	6	FtGAPDH	1.05	FtGAPDH	0.811	FtEF-1α	0.92	5.32		
Abiotic Hypocotyls	7	FtActin	1.17	FtActin	0.895	FtGAPDH	1.35	7.59		
Abiotic total	1	FtH3	0.55	FtCACS	0.304	FtH3	0.52	2.55		
Abiotic total	2	FtSAND	0.55	FtSAND	0.327	FtCACS	0.61	2.70		
Abiotic total	3	FtCACS	0.61	FtH3	0.349	FtSAND	0.63	2.46		
Abiotic total	4	FtExpressed1	0.72	FtExpressed1	0.380	FtExpressed1	0.73	3.02		
Abiotic total	5	FtEF-1α	0.89	FtEF-1α	0.694	FtEF-1α	1.02	5.71		
Abiotic total	6	FtGAPDH	1.01	FtGAPDH	0.782	FtActin	1.17	5.07		
Abiotic total	7	FtActin	1.30	FtActin	1.329	FtGAPDH	1.20	6.89		
Al treatment	1	FtEF-1α	0.16	FtSAND	0.091	FtExpressed1	0.17	0.73		
Al treatment	2	FtExpressed1	0.16	FtExpressed1	0.100	FtEF-1α	0.25	1.55		
Al treatment	3	FtSAND	0.21	FtH3	0.105	FtH3	0.31	1.56		
Al treatment	4	FtGAPDH	0.23	FtEF-1α	0.106	FtGAPDH	0.34	1.88		
Al treatment	5	FtH3	0.27	FtGAPDH	0.156	FtCACS	0.35	1.57		
Al treatment	6	FtCACS	0.30	FtCACS	0.282	FtSAND	0.37	1.43		
Al treatment	7	FtActin	0.49	FtActin	0.652	FtActin	1.05	4.16		
Immature	1	FtExpressed1	0.16	FtSAND	0.097	FtExpressed1	0.50	2.00		
Seed stage	FtCACS	FtGAPDH	FtExpressed1	FtCACS	FtGAPDH	FtEF-1α	FtH	FtActin	FtActin	FtActin
------------	--------	---------	-------------	--------	---------	---------	------	---------	---------	---------
2	0.16	0.097	0.292	0.57	0.86	0.83	0.45	1.01	1.354	2.16
3	0.30	0.167	0.029	0.82	0.86	0.83	0.54	0.60	0.304	2.69
4	0.36	0.292	0.0422	0.83	0.86	0.83	0.54	0.60	0.304	2.69
5	0.60	0.304	0.131	0.57	0.68	0.68	0.54	0.60	0.304	2.69
6	0.62	0.675	0.677	1.11	1.11	1.11	0.54	0.60	0.304	2.69
7	1.01	1.354	1.354	2.16	2.16	2.16	1.36	1.33	1.480	5.70

Total

FtH	FtCACS	FtSAND	FtActin	FtGAPDH	FtEF-1α	FtH	FtActin
0.60	0.245	0.304	1.01	0.60	0.60	0.54	1.01
0.66	0.313	0.313	0.66	0.66	0.66	0.54	0.66
0.71	0.377	0.377	0.71	0.71	0.71	0.54	0.71
0.87	0.650	0.650	0.87	0.87	0.87	0.54	0.87
0.97	0.780	0.780	0.97	0.97	0.97	0.54	0.97
1.33	1.480	1.480	1.33	1.33	1.33	1.36	1.33