Acute Neuromuscular, Physiological and Performance Responses After Strength Training in Runners: A Systematic Review and Meta-Analysis

Gustavo Ivo de Carvalho e Silva1, Leandro Henrique Albuquerque Brandão4, Devisson dos Santos Silva1,2,3, Micael Deivison de Jesus Alves1,2,3, Felipe J. Aidar1,2,3, Matheus Santos de Sousa Fernandes5, Ricardo Aurélio Carvalho Sampaio1,2, Beat Knechtle6,7* and Raphael Fabricio de Souza1,2,3

Abstract
Background: Strength training (ST) is commonly used to improve muscle strength, power, and neuromuscular adaptations and is recommended combined with runner training. It is possible that the acute effects of the strength training session lead to deleterious effects in the subsequent running. The aim of this systematic review and meta-analysis was to verify the acute effects of ST session on the neuromuscular, physiological and performance variables of runners.

Methods: Studies evaluating running performance after resistance exercise in runners in the PubMed and Scopus databases were selected. From 6532 initial references, 19 were selected for qualitative analysis and 13 for meta-analysis. The variables of peak torque (P_T), creatine kinase (CK), delayed-onset muscle soreness (DOMS), rating of perceived exertion (RPE), countermovement jump (CMJ), ventilation (VE), oxygen consumption (VO_2), lactate (La) and heart rate (HR) were evaluated.

Results: The methodological quality of the included studies was considered reasonable; the meta-analysis indicated that the variables P_T ($p = 0.003$), DOMS ($p < 0.0001$), CK ($p < 0.0001$), RPE ($p < 0.0001$) had a deleterious effect for the experimental group; for CMJ, VE, VO_2, La, FC there was no difference. By qualitative synthesis, running performance showed a reduction in speed for the experimental group in two studies and in all that assessed time to exhaustion.

Conclusion: The evidence indicated that acute strength training was associated with a decrease in P_T, increases in DOMS, CK, RPE and had a low impact on the acute responses of CMJ, VE, VO_2, La, HR and submaximal running sessions.

Keywords: Competitive training, Running, Aerobic performance, Strength training

Key Points
- Acute strength training (ST) was associated with a decrease in peak torque and an increase in delayed-onset muscle soreness, creatine kinase and rating of perceived exertion in a subsequent running session.
- ST did not affect submaximal running sessions and had little impact on countermovement jump, minute
ventilation, oxygen consumption, lactate and heart rate.

Introduction
To improve physiological, neuromuscular and performance parameters, recreational and professional runner routines include methods of motor skills training including continuous, interval and mixed training [1]. In addition, the specific development of cardiopulmonary capacity is essential to improve gas exchange efficiency, increase maximum oxygen consumption (VO₂max), lactate threshold, intramuscular glycogen storage capacity and increase mitochondrial density [2], which are conditions important for performance in road running [3].

In addition, the improvement of mechanical (frequency and stride length), neuromuscular (stretch–shortening cycle, muscle–tendon stiffness and muscle strength) and morphological (fiber type distribution) factors improves running economy, differentiating elite runners from long distances [4]. Other mechanisms, such as the ability to generate high power, is important in periods when the athlete performs short sprints during a race to reduce the distance between platoons or for the final sprint [5]. In this sense, strength training (ST) is commonly used to improve neuromuscular adaptation [6, 7] in order to increase anaerobic and speed capacity. Contemporarily, ST is recommended in association with running, parallel to cardiopulmonary training [8].

Although there are recommendations for the prescription of ST indicating sessions of two to three times a week, with moderate loads (40–70% RM) without reaching concentric failure [9] or the association of sessions with high loads (>80%RM) with explosive exercises [5] in programming the combination of different modalities, it is known that a concurrent training session can negatively impact a subsequent session or performance and generate residual acute fatigue [1]. Different physiological processes were raised to explain this process: muscle damage (higher creatine kinase [CK] levels, delayed-onset muscle soreness [DOMS]), kinematic change, higher energy expenditure, neural fatigue and muscle glycogen depletion, which can lead to lower aerobic and anaerobic performance [10] (Fig. 1).

On the other hand, regardless of this understanding, many ST protocols are commonly performed before the practice of running as identified after the warm-up, including cross training exercises [10]. The “acute hypothesis” on interference of ST adaptation in endurance development, would better elucidate the impact that individual training sessions have on the level of endurance response during the course of a running competitions or recreational practice in long distance runner [11]. In detail, ST may positively influence parameters that are supposed to be correlated with running performance. Improvements the eccentric–concentric transition including activation an effective stretch–shortening cycle [12]. Force development during a short ground contact leading to an increase in stride length [13]. Increase in the recognition of the core musculature, critical for the transfer of energy from the trunk to the smaller extremities, allows a better force transfer to the inferior segments during running [14].

Even though reviews and meta-analyses have already been carried out concerning the chronic adaptations of ST in running economics and runners’ performance [5, 8, 9, 15], a systematic review of studies that evaluated the acute response (i.e., immediately after, and at 24 or 48 h a single ST) in indirect and direct variables related to the performance of runners has not been performed and is necessary, since runners and coaches perform acute ST routines without conclusive scientific evidence. We hypothesized that session protocols that require higher training load, higher density and proximity to
concentric failure generate greater deleterious effects on the subsequent running session. Therefore, the aim of this systematic review and meta-analysis was to verify the acute effects of a ST session on the neuromuscular, physiological and performance variables of runners.

Methods

Search Strategy

A systematic search was carried out with original articles published from 1995 to April 2021, using the PubMed and Scopus databases. Articles written in English language were included and all search results were uploaded to Rayyan's online systematic review management platform. To systematize the search, the Boolean operators (AND and OR) were combined with the following terms: “strength”, “resistance”, “weight training”, “power”, “plyometric”, “concurrent”, “combined strength and endurance”, “exercise”, “training”, “running”, “runner”, “performance”, “time”, “exhaustion”, “speed”, “efficiency”, “endurance”. The systematic review report was carried out based on the “Preferred Reporting Items for Systematic Reviews and Meta-Analyses statement” (PRISMA) [16].

Inclusion and Exclusion Criteria

The following inclusion criteria were adopted: (1) whether the intervention contained a physical exercise protocol characteristic of ST for the lower limbs; (2) if there was performance evaluation of running in runners (recreational and trained); (3) if the tests used were longer than 75 s; and (4) whether the studies presented the number of participants and all the data needed to calculate the effect size.

Articles were excluded when: (1) the full text were not available; (2) texts were not written in English; (3) studies were not performed with humans; (4) drug intake was used in all experimental groups along with physical activity; and (5) if the intervention was a training program (conducted in more than one session) or involved drug intake.
program (conducted in more than one session). Figure 2 presents the PRISMA flowchart of search and inclusion strategy.

Eligibility Criteria

Articles that compared the running performance of the experimental groups, which performed a ST session, to that of the control group or to a time prior to the intervention, were eligible for inclusion in the analysis. Studies performed with humans of male sex were selected, regardless of the resistance exercise protocol (traditional, explosive, concurrent, multicomponent, plyometrics, calisthenics). The protocols were chosen for exercise, with training duration above 15 min regardless of exercise intensity: light, moderate or intense loads, submaximal or maximum.

The primary outcome was assessed by evaluating performance on a treadmill or track running tests, running economy, or time to exhaustion on incremental tests. All titles and abstracts were independently reviewed by two investigators to determine study eligibility for inclusion in the review. In case of conflict, a third evaluator was invited. After excluding duplicates, the studies were selected by title and abstract, observing the type of study, the type of population and the type of protocol.

Quality Assessment

The “Joanna Briggs Institute (JBI) Critical Appraisal Checklist for Analytical Randomized Controlled Trial and Non-Randomized Experimental Studies” [17] was used to verify the methodological quality of the articles included. The JBI consists of 8 questions that assess the methodological quality of the articles based on the following criteria: selection of participants, confounding variables, validity and reliability of the results. The questions were answered with “Yes”, “No” or “Undefined”. When the answer was “yes”, a score was given, when the answer was “no” or “undefined”, no score was given. The score for each article was calculated as a percentage and the quality of each study was rated as high (80–100%), fair (50–79%), or low (50%). All studies were independently reviewed by two reviewers. Discrepancies between raters were resolved by consensus.

Statistical Analysis

The Review Manager statistical program (version 5.3) was used to analyze the primary and secondary outcome data. The results were presented in the form of standardized mean difference (SMD) with 95% confidence intervals (CI) presented by the forest plot. For the analyses, two groups were used: one control group (did not perform a resistance exercise protocol) and one experimental group (which performed resistance exercises). For studies with more than one intervention group, we considered for each comparison only the control versus physical exercise groups. We assessed heterogeneity with the Cochran Test (Ch²) and tau-square (τ²), measuring the inconsistency (the percentage of the total variation of studies by heterogeneity) of effects during exercise using the I² statistic [18]. The level of significance was set at $p \leq 0.05$ for all analyses.

Results

Study Selection

The present review initially identified 6532 articles from the search strategy. From these, 746 were duplicates. Of 5786 articles screened for eligibility, 5,738 were excluded based on title or abstract for reporting an inadequate intervention, had a population that was not runners, and were other types of publication. The full texts of 48 potentially eligible studies were evaluated. Of these, 19 met the criteria and were included in the review, among which 13 made up the meta-analyses (Fig. 2).

Methodological Quality Assessment

The methodological quality of the included studies was considered reasonable. Most studies presented the inclusion criteria, such as sex, age and questionnaire filling, and all presented the context of the studies. The report was reliably evaluated with valid instruments and trained evaluators; furthermore the objectives are in accordance with the methodological framework. Most studies did not present if they used strategies to identify and eliminate confounding variables (questions 5 and 6). All 19 articles were rated as having a reasonable quality score (50–79%). Table 1 summarizes the quality of the studies.

Study Characteristics

The experimental approach of 4 studies [19–22] presented as specific intervention protocols that aim to generate maximum “exercise-induced muscle damage” (EIMD), whereas 2 [23, 24] used characteristic protocols in order to generate post-activation potentiation (PAP). Other studies presented the intervention as a ST session, in which one used plyometrics combined with ST [25], five performed the intervention with combined training (combined strength exercises in the same session with aerobics) [26–30] and seven used a traditional ST session [31–37]. The summary of the characteristics of the studies included in the review is described in Table 2.
Ten studies [4, 23, 25–28, 33–37] analyzed the outcome immediately after the intervention. Eleven [19–21, 25, 27, 29–31, 33–35, 37] also analyzed outcomes 24 h later, whereas 9 [19–22, 27, 31, 33–35] also included outcomes 48 h later. The funnel plot shows symmetrical results and high concentration at the top of the pyramid indicating low risk of bias of studies included in the meta-analysis (Fig. 3).

Meta-Analysis

Neuromuscular and Physiological Variables

The meta-analysis showed that there was no significant difference between the experimental and control groups for vertical jump with countermovement (CMJ): SMD [95% CI] = 0.48 [−1.5 to 2.45], Z = 0.47, p = 0.64. Whereas peak torque (P_T) showed a significant difference between groups, with deleterious effects for the experimental group: SMD [95% CI] = 41.78 [14.50 to 69.05], Z = 3, p = 0.003. Drop jump (DJ) was evaluated in only one study, which was not included in the meta-analysis, of PAP characteristics [23] and showed a significant positive effect (p = 0.02). Figure 4 graphically presents the respective analyses.

The meta-analysis showed (Fig. 5) a significant difference between groups for delayed-onset muscle soreness (DOMS) with greater effect on the experimental group: SMD [95% CI] = −3.90 [−4.37 to −3.44], Z = 16.41, p < 0.0001. For CK, there was a significant difference with greater effect on the experimental group: SMD [95% CI] = −80.18 [−110.17 to −49.39], Z = 5.1, p < 0.0001. For lactate (La) there was no significant difference between groups: SMD [95% CI] = −0.31 [−0.71 to 0.09], Z = 1.52, p = 0.13. For the rating of perceived exertion (RPE) there was a significant difference between groups with greater effect on the experimental group: SMD [95% CI] = −0.56 [−0.79 to −0.33], Z = 4.86, p < 0.0001. As for heart rate (HR), there was no significant difference between groups: SMD [95% CI] = −2.84 [−6.07 to 0.40], Z = 1.72, p = 0.09. Oxygen consumption (VO2) also showed no differences between groups: SMD [95% CI] = −4.38 [−10.02 to 1.24], Z = 1.53, p = 0.13. A low evidence of heterogeneity (Ch2 and τ2) and inconsistency (I2) was found.

Performance

Performance data were not included in the meta-analysis because they did not objectively present mean values and standard deviations at the time of interest.
Study	n	Runner’s level	Training type	Protocols	Recovery Period	Variables				
						Neuromuscular	Physiological	Performance		
Low et al. 2019 [23]	12	Trained	ST(PAP)	4 × 5RM band-squat jumps	8 min	↑ DJ	↑ HR ↔ RPE	↓ TCCT		
Marcello et al. 2017 [25]	9	Trained	FRT	ST (3 × 5×5% barbell squats, Romanian deadlifts, barbell lunges; 5RM lateral lunges); PT (3 × 5 box jumps, depth jumps)	Immediately and 24 h	–	↑ VO2 ↓ RER	↑ RE		
Blagrove et al. 2019 [4]	17	Trained	PT (PAP)	6 DJ	10 min	–	↔ HR, La, RPE	↑ Readiness ↓ RE ↔ TTE		
Drummond et al. 2005 [26]	10	Not specified level	ST + AE	3 × 10 × 70%1RM of 7 exercises + 25 min at 70% VO2max	5 min	–	↑ VO2, HR, RPE	–		
Marcora et al. 2007 [22]	24	Moderately trained	PT (EIMD)	100 DJ	48 h	↓ PT	↑ DOMS, ↑ CK, ↑ La, ↑ RPE ↔ VE VT, VO2, VCO2, HR ↑ RER	↓ Speed		
Doma et al. 2014 [32]	15	Recreational	ST	STA: Incline leg press—6 × 6, Bench press—4 × 6, Bench pulls—4 × 6 STLI: Incline leg press—6 × 20, Bench press—4 × 20, Bench pulls—4 × 20	6 h	↓ PT	↔VO2, HR, RPE ↔ RER	↓ TTE		
Tapale et al. 2014 [27]	12	Recreational	ST + AE	3 × 5x70-85%—Leg Press: 3 × 8-10 × 30—40%; Squat: 3 × 5—8 × 20-70-85%; SJ: 3 × 8-10 × 70-85%	Immediately, 24 h and 48 h	↓ P, CMJ	↑ CK, ↔ La	–		
Doma et al. 2013 [29]	14	Recreational	ST + AE	6 × 6 Leg press leg extension and leg curls 4 × 6; Running session: 70%-90% of VT1 and 110% of VT2	6 h	↓ PT	↑ RPE	↔Cmax ↓TTE		
De Souza et al. 2011 [36]	11	Recreational	ST	5 × 5RM leg press, 2 × 15RM leg press	Immediately	–	↔VO2, HR, RPE	–		
Tapale et al. 2015 [28]	12	Recreational	ST + AE	5–8/8–10 (70%–85% / 30%–40%) Maximal leg press—Explosive leg press—Squat—Jump—Calf raise	Immediately	↓ PT	↔VO2, HR, ↓ La	↑ RE ↓ Stride length ↔ distance, Speed		
Palmer et al. 2001 [37]	9	Trained	ST	3 × 8RM—Bench press; Squat, Upright Row; Dead Lift, Seated Row	Immediately, 1 h, 8 h, 24 h	↓ PT	↔VE, HR, La, RPE ↑ La	↔ Stride length ↓ RE		
Doma et al. 2015 [31]	14	Not specified level	ST	6 × 6RM squats, single-leg leg press, leg extension and leg curls	24 h and 48 h	↓ CMJ	↓ DOMS ↑ CK, VCO2, HR, RPE ↔ VO2	–		
Study	n	Runner’s level	Training type	Protocols	Recovery Period	Variables	Neuroromuscular	Physiological	Performance	
-----------------------------	----	----------------	---------------	---	----------------------------	---	-----------------	---------------	-------------	
Doma et al. 2017 [34]	12	Not specified level	ST	3 × 6RM, squats on a Smith machine, horizontal leg press, leg extension and leg curls	Immediately, 24 h, 48 h	↑ CMJ	–	–	–	
Burt et al. 2013 [20]	9	Recreational	ST (EIMD)	10 × 10x80% BW, Smith machine squats	24 h and 48 h	↓ PT; CMJ, DJ, SJ ↑ DOMS, VO₂, La, VE, RPE ↔ HR	↓ Stride length	–	–	
Burt et al. 2012 [19]	10	Not specified level	ST (EIMD)	10 × 10x80% BW Smith machine	24 h and 48 h	↓ PT ↑ CK, DOMS, VO₂ RPE ↔ HR, La	↓ Stride length	–	–	
Burt et al. 2014 [21]	8	Not specified level	ST (EIMD)	100 × 80% BW Smith Squat	24 h and 48 h	↓ PT ↑ CK, DOMS, VE, VO₂, HR, La, RPE	–	–	–	
Guimarães et al. 2020 [35]	18	Not specified level	ST	21 × 15	30 min, 24 h, 48 h, 96 h and 144 h	–	–	↑ TCTT	–	
Doma et al. 2013 [30]	12	Trained	ST + AE	6 × 6RM leg press + 4 × 6RM leg curls and leg extension; Endurance: three incremental stages—70, 90 and 110% VT2	6 h and 24 h	↓ PT ↑ RPE	↑ C₉ ↓ TTE	–	–	
Doma et al. 2020 [33]	10	Not specified level	ST	3 × 6RM squats on a Smith machine, horizontal leg press, leg extension and leg curls	Immediately, 24 h, 48 h	↓ CMJ	↑ DOMS, VE, VO₂, VCO₂, HR ↔ CK ↑ RER	–	–	–

ST: Strength training; PAP: post-activation potentiation; DJ: drop jump; RM: repetition maximum; HR: heart rate; RPE: rating of perceived exertion; TCTT: time to complete the time trial; PRT: plyometrics and resistance training; PT: plyometric training; Pₜ: peak torque; VO₂: oxygen consumption; RER: respiratory exchange ratio; La: lactate; RE: running economy; TTE: time to exhaustion; AE: aerobic exercise; EIMD: exercise-induced muscle damage; DOMS: delayed-onset muscle soreness; VT: tidal volume; VCO₂: carbon dioxide production; VE: ventilation; CMJ: countermovement jump height; CK: creatine kinase; SJ: squat jump; BW: body mass; C₉: cost of running; VT: ventilatory threshold.
Fig. 3 Funnel plot of risk of bias of studies included in the meta-analysis

Fig. 4 Acute effects of strength training session on neuromuscular variables in subsequent running session: a Peak torque (P) b Countermovement jump (CMJ)
were collected in only one study; or because they were not collected at similar intervals between intervention and outcome. The length of the stride was evaluated in three studies. In two of them [19, 28], there was a significant reduction in stride length (2.24 ± 0.26 to 2.2 ± 0.28 m and from 1.27 ± 0.07 to 1.22 ± 0.09 m, respectively), whereas the other [37] found no differences. The time to exhaustion (TTE) was analyzed in four studies. In three studies [29, 30, 32] (traditional ST protocols), there was a reduction in time for the experimental group, whereas in one study [24] there were no significant differences. As for running speed (km/h), two studies [22, 28] evaluated this variable and in only one study [22] there was a significant change for the experimental group (Pre 13.9 ± 1.7-Post 13.6 ± 1.7 km/h).

The time to complete one kilometer was evaluated in two studies. Low [23] used a PAP protocol in which a significant reduction in time was observed, whereas in Guimarães [35] there was an increase in the time to complete 5 km when comparing the values pre vs post 30 min and post 48 h (p = 0.02 and p = 0.04, respectively). As for the distance covered, Taipale [28] used combined training protocols and reported that there was no significant difference between control or experimental conditions (11.6 ± 0.9 / 11.7 ± 1.0 km).
Discussion

The objective of this systematic review and meta-analysis was to synthesize the findings in the literature from 1995 to April 2021 regarding the acute effects of ST, in its different modalities (traditional, explosive, plyometrics and concurrent) on neuromuscular, physiological and performance responses in runners. It was verified that performing a ST session, even at high intensity (> 80%RM or 6 RM), with a 24-h interval for a submaximal running session does not change the vertical jump response, physiological respiratory capacity, performance training and submaximal running.

The literature on concurrent training, especially on the effect of aerobic training on ST adaptations, is extensive and well-developed in sports and clinical populations. [1, 38–40]. In addition, ST and its neuromuscular and mechanical adaptations already present consolidated knowledge about the benefits in the performance of aerobic modalities [5, 8]. On the other hand, knowledge of the immediate and short-term effects of a ST session on the indirect and directly related variables to running performance is necessary and should be part of the combined training intersection planning.

We hypothesized that session protocols that require higher training load (repetitions, sets, load, execution speed), higher density and proximity to concentric failure generate greater deleterious effects on the subsequent running session [10]. Thus, the hypothesis was partially rejected. The results showed that the variables P_{T1}, DOMS, CK, RPE had a deleterious effect for the experimental group that performed ST. Although it was expected that studies that performed a protocol to promote exercise-induced muscle damage would show this behavior [19–22], this fact has not been confirmed in plyometrics and traditional training protocols.

As for the outcome of the neuromuscular variables, it is known that the accumulated fatigue after the ST session is due to central factors (reduction in the levels of recruitment of motor units, as well as their activation frequencies) [41], local and peripheral alteration of the structure of the sarcolemma, accumulation of metabolites in the blood flow and ionic imbalance [42]. Consequently, it is expected that there will be changes in the mechanical aspects during the session. Among these variables, high levels of force, such as P_{T1}, measured at fixed angles in isometric action, decreased. As for the CMJ, a variable related to jumping ability, sensitive to fatigue and neuromuscular status [43, 44], with characteristics of dynamic contraction (fast eccentric and concentric phase) in contrast to P_{T1}, it did not present a significant difference. This observation can be justified according to studies that used combined training protocols and traditional intensities of ST (6RM) [31] or ST combined with explosive exercises (30% to 40% of 1RM) [28] in study design with 24 h interval. Suggesting a greater need for recovery following the initial session of lower segments [31]. As for those studies that analyzed P_{T1}, three used EIMD protocols, such as the 10 sets of 10 repetitions at 80% of 1RM in the Smith squat in the study of Burt [19]. This protocol showed higher values in the variables of late muscle pain, swelling and stiffness, caused by disruption of the intracellular structure, sarcolemma, extracellular matrix and impaired muscle function [45].

For lactate levels, no statistically significant difference was observed in the meta-analysis [19, 21, 22, 36, 37]. Changes in La metabolism after an ST sequence do not seem to show consistent results, especially when evaluated during submaximal aerobic exercise. In some studies, the values of this variable did not show statistically significant differences [22, 46], whereas in others, significant differences were observed [47]. De Souza [36] points out that although there was a significant change in La immediately after ST in the two strength protocols used (maximum strength and endurance strength), there was no change after the first km of running (control, maximum strength, and endurance strength (2.7±0.8, 2.7±1.2, and 3.2±1.8 mmol.L^{-1}, respectively) even when the run was immediately afterward. Increased blood La level is associated with high intensity exercise due to higher anaerobic metabolism [48, 49], in contrast, it is believed that in the studies evaluated, the runners had a greater predominance of the aerobic zone or resynthesis handsome lactate during submaximal running [50]. Ventilatory variables such as VE, VO_{2}, RER and running economy (RE kcal/min/kg or kJ/min/kg and C_{R}) were not affected by the previous ST session. The effort of running at a speed corresponding to the oxygen consumption in submaximal efforts (around 55 to 75% of VO_{2max}) seems not to be affected by the ST session, even in sessions that used EIMD protocols [19, 22]. Other studies that evaluated VO_{2} after ST in aerobic modalities such as cycling or cycle ergometer showed no change [47, 51–53] in accordance with the result verified in this meta-analysis. The results indicate that the performance of runners after sessions of EIMD and ST seem not to be mediated by cardiorespiratory and metabolic responses to exercise. Mechanical efficiency has been reported as an important determinant of running economy. However, 1 study [37] showed no change in stride length and 3 [20, 28, 39] showed a reduction. Thus, variations in running technique did not favor running economy, further
suggesting that any disturbance in this efficiency will subsequently increase aerobic demand [37].

Regarding direct performance measures, few studies have evaluated this variable. Of the selected articles, although statistically different values were observed between the experimental and control groups for speed (km/h) during treadmill running at 1% incline in one study [22]; stride length [19, 28]; and in the time to finish a 5 km run, in absolute values this difference was relevant immediately after the session, but irrelevant after 48 h (20.63 ± 2.42 min before intervention; 22.40 ± 2.86 min after 30 min and 21.26 ± 2.56 min after 48 h) [35].

The exception seems to be in studies that analyzed responses to TTE followed by high-intensity strength sessions (4 × 6RM), in which there was a significant difference with deleterious effects for groups that performed ST concurrently with the running session within 24 h later of the ST session. Doma [30] performed a combined training on the same day: a ST session and, 6 h later, a running session, and applied the TTE the following day (24 h after the ST session and 18 h after the running session). In this case, the high intensity of workload in the ST and the short time between intervention and outcome assessment may have been the main reasons that caused this drop in performance. In the same study, the Cs of the running session was also higher, demonstrating from 6 h deleterious changes in running economy for the group that performed ST.

The present review has the following limitations. Due to the low quantity of studies we were unable to perform a robust analysis of the differences between the effects immediately, and at 6, 10, 24 or 48 h. In general, the main outcome observed was that there was a reduction in PR independent of the evaluation immediately, and at 6, 24 and 48 h [16, 19, 21, 22, 27, 28, 30, 32, 37]. Regarding the other variables, we can still notice a discrepancy between the results, which makes practical implications difficult. For example, in the study by Palmer et al. [37] after ST: 3 × 8RM—bench press; squat; upright row; dead lift; seated row, no changes were observed in VE, HR, La, RPE and stride length after 24 h. In contrast Burt et al. [19] after performing ST: 10 × 10x80% body mass Smith machine showed an increase in the evaluations of CK, DOMS, VO2, RPE and reduction of stride length after 24 and 48 h. The other variables presented heterogeneous conditions for this evaluation. Furthermore, with the increase in the number of publications on the subject we suggest further studies with a specific population of runners (i.e., recreational or athletes). Some studies proposed different aims and experimental protocols which lead to heterogeneous results. The strengths of this review were the variety of ST protocols added, the sample size, and the reasonable quality of the studies, showing that it is possible for athletic coaches, professionals, and researchers to expect results in line with those presented in this study. It is suggested that more research evaluate direct performance measures, a point considered limited in this study. In addition, studies that use protocols with lower loads, training with body weight and multicomponent strategies are also suggested.

Practical Implications

In summary, although many runners use ST prior to participating in running competitions and during recreational practice, has not been shown to acutely improve performance. This complementary preparation strategy, commonly used to improve neuromuscular adaptation, showed a substantial deleterious effect. So, care to decrease potential muscle damage before competition is recommended. The acute use of ST in combined training programs (i.e., cross training exercises) could be indicated as aerobic benefit and little indicated for immediate performance gains for the runner. Thus, regular (chronic effect) and alternating day ST sessions remain recommended.

Conclusion

Performing acute strength-training session in conjunction with endurance-training decrease the peak torque, increase delayed-onset muscle soreness, creatine kinase and rating of perceived exertion but not affect submaximal running sessions. In addition, performing these modes of training showed low impact in the countermovement jump, ventilation, oxygen consumption, lactate and heart rate.

Abbreviations

ST: Strength training; PR: Peak torque; CK: Creatine kinase; DOMS: Delayed-onset muscle soreness; RPE: Rating of perceived exertion; CMJ: Countermovement jump; VE: Ventilation; VO2: Oxygen consumption; La: Lactate; HR: Heart rate; RM: Maximum repetition; EIMD: Exercise-induced muscle damage; PAP: Post-activation potentiation; JBI: Joanna Briggs Institute; SMD: Standardized mean difference; CI: Confidence intervals; Ch 2: Cochran Test; tau 2: Tau-square; I 2: Inconsistency.

Acknowledgements

This paper and the research behind it would not have been possible without the exceptional support of the running club team of the Federal University of Sergipe. The members of the Group of studies and Research of performance, sport, health and Paralympic Sports scientific research group also read the draft manuscript and provided comments prior to the journal review process. We would like to thank the members of the Group of Studies and Research of Performance, Sport, Health and Paralympic Sports (GEPEPS), and the members of the Running Club of UFS.

Author Contributions

GICS, DSS and MDJA: Planning, Searching, Data Extraction, LHAB—Planning, search, data extraction and partial correction of the document; MSSF: Planning, research, partial correction of the document and quality analysis, RAC, FJA and BK: Article review and writing contributions, RFS: Planning.
Article review and writing contributions in the final version of the manuscript. All authors read and approved the final manuscript.

Funding
No funding was used to assist in the preparation of this article.

Availability of Data and Materials
Data and materials support published claims and field standards.

Declarations

Competing interests
Gustavo Ivo de Carvalho e Silva, Leandro Henrique Albuquerque Brandão, Devisson dos Santos Silva, Micael Devisson de Jesus Alves, Felipe J. Aidar, Matheus Santos de Sousa Fernandes, Ricardo Aurélio Carvalho Sampaio, Beat Knechtle and Raphael Fabrício de Souza declare that they have no competing interests.

Author details
1. Department of Physical Education, Federal University of Sergipe (UFS), São Cristóvão, Brazil. 2. Graduate Program in Physical Education, Federal University of Sergipe (UFS), São Cristóvão, Sergipe, Brazil. 3. Group of Studies and Research of Performance, Sport Health and Paralympic Sports—GEPEPS, Federal University of Sergipe, UFS, São Cristóvão, Sergipe, Brazil. 4. Graduate Program in Sports Science, Federal University of Minas Gerais (UFMG), Belo Horizonte, Brazil. 5. Graduate Program in Neuropsychiatry and Behavioral Sciences, Federal University of Pernambuco (UFPE), Recife, Brazil. 6. Institute of Primary Care, University of Zurich, 8091 Zurich, Switzerland. 7. Medbase St. Gallen Am Vadianplatz, 9001 St. Gallen, Switzerland.

Received: 28 October 2021 Accepted: 25 July 2022

Published online: 17 August 2022

References
1. Berryman N, Mujika I, Bosquet L. Concurrent training for sports performance: the 2 sides of the medal. Int J Sports Physiol Perform. 2019;14:279–85.
2. Hawley JA. Molecular responses to strength and endurance training: are they incompatible? Appl Physiol Nutr Metab. 2009;34:355–61.
3. Hawley JA. Adaptations of skeletal muscle to prolonged, intense endurance training. Clin Experim Pharmacol Physiol. 2002;29(3):218–22.
4. Blagrove RC, Howatson G, Hayes PR. Effects of strength training on the physiological determinants of middle- and long-distance running performance: a systematic review. Sports Med. 2018;48:1117–49.
5. Denada BS, de Aguiar RA, de Lima LCR, Greco CC, Caputo F. Explosive training and heavy weight training are effective for improving running economy in endurance athletes: a systematic review and meta-analysis. Sports Med. 2017;47:545–54.
6. Komiv P. Training of muscle strength and power: Interaction of neuromotoric, hypertrophic, and mechanical factors. Int J Sports Med. 1986;7:10–5.
7. Cormie P, McGauig MR, Newton RU. Developing maximal neuromuscular power: part 1 - biological basis of maximal power production. Sport Med. 2011;41:17–27.
8. Rønnestad BR, Mujika I. Optimizing strength training for running and cycling endurance performance: a review. Scand J Med Sci Sports. 2014;24:603–12.
9. Balsalobre-Fernández C, Santos-Conçejo J, Grivas GV. Effects of strength training on running economy in highly trained runners: a systematic review with meta-analysis of controlled trials. J Strength Cond Res. 2016;30:2361–8.
10. Doma K, Deakin GB, Schumann M, Bentley DJ. Training considerations for optimising endurance development: an alternate concurrent training perspective. Sport Med. 2019;49:669–82.
11. Doma K, Deakin G. The acute effect of concurrent training on running performance over 6 days. Res Q Exerc Sport. 2015;86:387–96.
12. Foster C, Lucia A. Running economy : the forgotten factor in elite performance. Sports Med. 2007;37:316–9.
13. Karp JR. Strength training for distance running: a scientific perspective. Strength Cond J 2010;32 Im Internet: https://journals.lww.com/nsca-scj/Fulltext/2010/06000/Strength_Training_For_Distance_Running__A.10.aspx
14. Ben Kieler W, Press Joel, Sciascia Aaron. The role of core stability in athletic function. Sports Med. 2006;36(3):189–98. https://doi.org/10.2165/00007256-200636030-00001.
15. Berryman N, Mujika I, Arvisais D, Roubeix M, Binet C, Bosquet L. Strength training for middle- and long-distance performance: a meta-analysis. Int J Sports Physiol Perform. 2018;13:57–63.
16. Page MJ, McKenzie JE, Bossuyt PM, Bouton I, Hoffmann TC, Mulrow CD, Shamseer L, Tetzlaff J, Ah K, Brennan SE, Chou R, Glavine J, Grimshaw JM, Hróbjartsson A, Lalu MM, Li T, Loder EW, Mayo-Williams E, McDonald S, McGuinness LA, Stewart LA, Thomas J, Tricco AC, Welch VA, Whiting P, Moher D. The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. BMJ. 2021;372: n71.
17. Joanna Briggs Institute. Critical Appraisal Checklist for Case Series. Joanna Briggs Inst Crit Apprais tools use. JBI Syst Rev 2017;1–7.
18. Higgins JPT, Whitehead A, Turner RM, Omar RZ, Thompson SG. Meta-analysis of continuous outcome data from individual patients. Stat Med. 2001;20:2219–41.
19. Burt D, Lamb K, Nicholas C, Twist C. Effects of muscle-damaging exercise on physiological, metabolic, and perceptual responses during two modes of endurance exercise. J Exerc Sci Fit. 2012;10:70–7.
20. Burt D, Lamb K, Nicholas C, Twist C. Effects of repeated bouts of squatting exercise on sub-maximal endurance running performance. Eur J Appl Physiol. 2013;113:285–93.
21. Burt DG, Lamb K, Nicholas C, Twist C. Effects of exercise-induced muscle damage on resting metabolic rate, sub-maximal running and post-exercise oxygen consumption. Eur J Sport Sci. 2014;14:337–44.
22. Maroça SM, Bosio A. Effect of exercise-induced muscle damage on endurance running performance in humans. Scand J Med Sci Sport. 2007;17:662–71.
23. Low JL, Ahmadi H, Kelly LP, Willardson J, Boullosa D, Behm DG. Prior band-resisted squat jumps improves running and neuromuscular performance in middle-distance runners. J Sport Sci Med. 2019;18:301–15.
24. Blagrove RC, Holding KM, Patterson SD, Howatson G, Hayes PR. Efficacy of depth jumps to elicit a post-activation performance enhancement in junior endurance runners. J Sci Med Sport. 2019;22:239–44.
25. Marcello RT, Greer BK, Greer AE. Acute effects of plyometric and resistance training on running economy in trained runners. J Strength Cond Res. 2017;31:2432–37.
26. Drummond MJ, Vehrs PR, Schaalje GB, Parcell AC. Aerobic and resistance exercise sequence affects excess postexercise oxygen consumption. J Strength Cond Res. 2005;19;332–7.
27. Taipale RS, Schumann M, Mikkola J, Nyman K, Kyröläinen H, Nummelä A, Hakkinen K. Acute neuromuscular and metabolic responses to combined strength and endurance loadings: the order effect in recreationally endurance trained runners. J Sports Sci. 2014;32:1155–64.
28. Taipale RS, Mikkola J, Nummelä AT, Sorvisto J, Nyman K, Kyröläinen H, Hakkinen K. Combined strength and endurance session order: Differences in force production and oxygen uptake. Int J Sports Physiol Perform. 2015;10:418–25.
29. Doma K, Deakin GB. The effects of strength training and endurance training order on running economy and performance. Appl Physiol Nutr Metab. 2013;38:651–6.
30. Doma K, Bede DG. The effects of combined strength and endurance training on running performance the following day. Int J Sport Heal Sci. 2013;11:1–9.
31. Doma K, Schumann M, Sinclair WH, Leicht AS, Deakin GB, Hakkinen K. The repeated bout effect of typical lower body strength training sessions on sub-maximal running performance and hormonal response. Eur J Appl Physiol. 2015;115:789–99.
32. Doma K, Deakin GB. The acute effects intensity and volume of strength training on running performance. Eur J Sport Sci. 2014;14:107–15.
33. Doma K, Nicholls A, Gahraman D, Damas F, Libardi CA, Sinclair W. The effect of a resistance training session on physiological and thermoregulatory measures of sub-maximal running performance in the heat in heat-acclimatized men. Sports Med Open. 2019;5(1):1–9.
34. Doma K. The repeated bout effect of traditional resistance exercises on running performance across three bouts. Authors. J Appl Physiol Nutr Metab. 2017;42:978–85.

35. Guimarães MP, Campos YAC, de Souza HLR, da Silva GP, Hernández-Mosqueira C, da Silva SF. Effect of neuromuscular resistance training on the performance of 5-km runners. Kinesiology. 2020;52:64–71.

36. de Souza EO, Rosa LF, de Oliveira Pires F, Wilson J, Franchini E, Tricoli V, Ugirnokwitsch C. The acute effects of varying strength exercises bouts on 5km running. J Sports Sci Med. 2011;10(3):565–70.

37. Palmer CD, Sleivert GG. Running economy is impaired following a single bout of resistance exercise. J Sci Med Sport. 2001;4:447–59.

38. Coffey VG, Hawley JA. Concurrent exercise training: do opposites distract? J Physiol. 2017;595:2883–96.

39. Perez-Schindler J, Hamilton DL, Moore DR, Baar K, Philip A. Nutritional strategies to support concurrent training. Eur J Sport Sci. 2015;15:41–52.

40. Fyfe JJ, Bishop DJ, Stepto NK. Interference between concurrent resistance and endurance exercise: molecular bases and the role of individual training variables. Sports Med. 2014;44:743–62.

41. Gandevia SC. Spinal and supraspinal factors in human muscle fatigue. Physiol Rev. 2001;81:1725–89.

42. Kirkendall DT. Mechanisms of peripheral fatigue. Med Sci Sports Exerc. 1990;22:444–9.

43. Wu WP, Sterkenburg N, Everett K, Chapman DW, White N, Mengersen K. Predicting fatigue using countermovement jump force-time signatures: PCA can distinguish neuromuscular versus metabolic fatigue. PLoS One. 2019;14(7):e0219295.

44. Claudio JD, Cronin J, Mestizo C, McMaster DT, Mcguigan M, Tricoli V, Armadio AC, Serrao JC. The countermovement jump to monitor neuromuscular status: a meta-analysis. J Sci Med Sport. 2017;20:397–402.

45. Byrne C, Twist C, Eston R. Neuromuscular function after exercise-induced muscle damage: theoretical and applied implications. Sport Med. 2004;34:49–69.

46. Scott KE, Rozenek R, Russo AC, Crussemeyer JA, Lacourse MG. Effects of delayed onset muscle soreness on selected physiological responses to submaximal running. J Strength Cond Res. 2003;17:652–8.

47. Schneider DA, Berwick JP, Sabapathy S, Minahan CL. Delayed onset muscle soreness does not alter O2 uptake kinetics during heavy-intensity cycling in humans. Int J Sports Med. 2007;28:550–6.

48. Brandão LHA, Chagas TPN, Vasconcelos ABS, de Oliveira VC, de Fortes LS, de Almeida MB, Mendes Netto RS, Del Vecchio FB, Neto EP, Chaves LMS, Jimenez-Pavón D, Da Silva-Gregoletto ME. Physiological and performance impacts after field supramaximal high-intensity interval training with different work-recovery duration. Front Physiol. 2020;11:1075.

49. Schoenmakers PPM, Hettinga FJ, Reed KE. The moderating role of recovery durations in high-intensity interval training protocols. Int J Sports Physiol Perform. 2019;14:659–67.

50. Stevenson RW, Mitchell DR, Hendrick GK, Rainey R, Cherrington AD, Frizzell RT. Lactate as substrate for glycogen resynthesis after exercise. J Appl Physiol. 1987;62:2237–40.

51. Gleeson M, Blannin AK, Walsh NP, Field CNE, Pritchard JC. Effect of exercise-induced muscle damage on the blood lactate response to incremental exercise in humans. Eur J Appl Physiol Occup Physiol. 1998;77:292–5.

52. Moyi JS, Garcia-Romero JC, Alvero-Cruz JR, Vicente-Rodriguez G, Ara I, Dorado C, Calbet JAL. Effects of eccentric exercise on cycling efficiency. Can J Appl Physiol. 2005;30:259–75.

53. Davies RC, Rowlands AV, Eston RG. Effect of exercise-induced muscle damage on ventilatory and perceived exertion responses to moderate and severe intensity cycle exercise. Eur J Appl Physiol. 2009;107:11–9.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.