Miloš S. Kurilić and Boriša Kuzeljević

Positive families and Boolean chains of copies of ultrahomogeneous structures

Volume 358, issue 7 (2020), p. 791-796.

<https://doi.org/10.5802/crmath.82>

© Académie des sciences, Paris and the authors, 2020. Some rights reserved.

This article is licensed under the Creative Commons Attribution 4.0 International License. http://creativecommons.org/licenses/by/4.0/

Les Comptes Rendus. Mathématique sont membres du Centre Mersenne pour l’édition scientifique ouverte www.centre-mersenne.org
Positive families and Boolean chains of copies of ultrahomogeneous structures

Miloš S. Kurilić and Boriša Kuzeljević

Abstract. A family of infinite subsets of a countable set X is called positive iff it is closed under supersets and finite changes and contains a co-infinite set. We show that a countable ultrahomogeneous relational structure X has the strong amalgamation property iff the set $P(X) = \{A \subset X : A \cong X\}$ contains a positive family. In that case the family of large copies of X (i.e. copies having infinite intersection with each orbit) is the largest positive family in $P(X)$, and for each R-embeddable Boolean linear order L whose minimum is non-isolated there is a maximal chain isomorphic to $L \setminus \{\text{min } L\}$ in $\langle P(X), \subset \rangle$.

2020 Mathematics Subject Classification. 03C15, 03C50, 20M20, 06A06, 06A05.

Funding. The authors acknowledge financial support of the Ministry of Education, Science and Technological Development of the Republic of Serbia (Grant No. 451-03-68/2020-14/200125).

Manuscript received 6th April 2019, revised 27th May 2020, accepted 2nd June 2020.

1. Introduction

The purpose of this short note is twofold. One is to present some new results about positive families. The other one is to provide a natural context for the recent research from [11–13]. For a countably infinite set X, a family $\mathcal{P} \subset P(X)$ is called a positive family on X (see [10]) iff

(P1) $\mathcal{P} \subset [X]^\omega$,
(P2) $\mathcal{P} \ni A \subset B \subset X \Rightarrow B \in \mathcal{P}$,
(P3) $A \in \mathcal{P} \land |F| < \omega \Rightarrow A \setminus F \in \mathcal{P}$,
(P4) $\exists A \in \mathcal{P} \land |X \setminus A| = \omega$.

We regard a positive family \mathcal{P} on X as a suborder of the partial order $\langle [X]^\omega, \subset \rangle$ (isomorphic to $\langle [\omega]^\omega, \subset \rangle$) and important examples of positive families are co-ideals: if $\mathcal{I} \subset P(\omega)$ is an ideal containing the ideal Fin of finite subsets of ω, then the set $\mathcal{I}^+ := P(\omega) \setminus \mathcal{I}$ of \mathcal{I}-positive sets is a positive family. Thus $[\omega]^\omega$ is the largest, while non-principal ultrafilters $\mathcal{U} \subset P(\omega)$ are the minimal positive families of this form. Also, $\mathcal{I}_{\text{owd}}^+ = \{A \subset Q : \text{Int } A \neq \emptyset\}$ and $\mathcal{I}_{\text{linz}}^+ = \{A \subset Q : \mu(\overline{A}) > 0\}$ are positive families on the set of rationals Q, where \overline{S}, $\text{Int } S$ and $\mu(S)$ denote the \mathbb{R}-closure, \mathbb{R}-interior
and Lebesgue measure of a subset \(S \) of the real line \(\mathbb{R} \) with the standard topology. Taking a non-maximal filter \(\mathcal{F} \subset \mathcal{P}(\omega) \) which extends the Fréchet filter we obtain a positive family which is not a co-ideal; another such example is the family Dense\((\mathbb{Q})\) from Example 7; see also Theorem 5.

In our notation \(\mathcal{P}(\mathcal{X}) = \{ A \subset \mathcal{X} : A \cong \mathcal{X} \} \) denotes the set of all copies of a structure \(\mathcal{X} \) contained in \(\mathcal{X} \). The class of order types of maximal chains in the poset \((\mathcal{P}(\mathcal{X}), \subset) \) will be denoted by \(\mathcal{M}_{\mathcal{X}} \). Let \(\mathcal{C}_R \) denote the class of order types of sets of the form \(K \setminus \{ \min K \} \), where \(K \subset \mathbb{R} \) is a compact set such that \(\min K \) is an accumulation point of \(K \). Let \(\mathcal{B}_R \) be the subclass of order types from \(\mathcal{C}_R \) for which the corresponding compact set \(K \) is, in addition, nowhere dense. Main results from \([12,13]\) state that for a countable ultrahomogeneous partial order \(\mathcal{P} \)

\[
\mathcal{M}_{\mathcal{P}} = \begin{cases}
\mathcal{B}_R, & \text{if } \mathcal{P} \text{ is a countable antichain,} \\
\mathcal{C}_R, & \text{otherwise,}
\end{cases}
\]

while for a countable ultrahomogeneous graph \(\mathcal{G} \) we have

\[
\mathcal{M}_{\mathcal{G}} = \begin{cases}
\mathcal{B}_R, & \text{if } \mathcal{G} \text{ is a disjoint union of complete graphs,} \\
\mathcal{C}_R, & \text{otherwise.}
\end{cases}
\]

These results suggest that there might be a general theorem describing the classes \(\mathcal{M}_{\mathcal{X}} \). The reason for focusing on ultrahomogeneous structures is that \(\mathcal{M}_{\mathcal{X}} \subset \mathcal{C}_R \) for an ultrahomogeneous \(\mathcal{X} \) (see \([13]\) for example). Still, there are pathological structures even in the class of ultrahomogeneous ones. For example, there are ultrahomogeneous structures without non-trivial copies (see \([8, p. 399]\)). This kind of obstruction does not exist in the class of countable ultrahomogeneous relational structures whose age satisfies the strong amalgamation property (SAP). Recall the following equivalence (see \([8, p. 399]\)): a countable ultrahomogeneous relational structure \(\mathcal{X} \) satisfies SAP if and only if \(X \setminus \mathcal{F} \in \mathcal{P}(\mathcal{X}) \), for each finite \(\mathcal{F} \subset X \).

Section 2 contains results about positive families. The central one is that for a countable ultrahomogeneous relational structure \(\mathcal{X} \), there is a positive family \(\mathcal{P} \) on \(X \) such that \(\mathcal{P} \subset \mathcal{P}(\mathcal{X}) \) if and only if the age of \(\mathcal{X} \) satisfies SAP. From this result in Section 3 we deduce that the structures whose age satisfies SAP provide a natural context for investigating the phenomena we have described above.

Theorem 1. If \(\mathcal{X} \) is a countable ultrahomogeneous relational structure whose age satisfies SAP, then \(\mathcal{B}_R \subset \mathcal{M}_{\mathcal{X}} \subset \mathcal{C}_R \).

Since the class \(\mathcal{B}_R \) is quite rich, the previous result shows that many linear orders can be realized as maximal chains in \(\mathcal{P}(\mathcal{X}) \) in that case. For example, the reverse of every countable limit ordinal, or the order type of the Cantor set without \(0 \). Note also that the countable complete graph \(\mathcal{K}_\omega \) satisfies SAP and that \(\mathcal{M}_{\mathcal{K}_\omega} = \mathcal{B}_R \). On the other hand, the Rado graph \(\mathcal{G}_{Rado} \) also satisfies SAP, but \(\mathcal{M}_{\mathcal{G}_{Rado}} = \mathcal{C}_R \). This implies that it is not possible to narrow the interval of possibilities in Theorem 1. However, we do not know an answer to the following question.

Question 2. Is there a countable ultrahomogeneous relational structure \(\mathcal{X} \) whose age satisfies SAP, but such that \(\mathcal{B}_R \subset \mathcal{M}_{\mathcal{X}} \subset \mathcal{C}_R \)?

We assume that the reader is familiar with Fraïssé theory. The theory itself was started in \([5–7]\), while a detailed treatment is given in \([8]\). Besides the mentioned book, \([13]\) is a good reference for all undefined notions. We will only comment on the notion of an orbit. Suppose that \(\mathcal{X} \) is a relational structure and \(F \subset X \) finite. We say that \(x \sim_F y \) iff there is \(g \in \text{Aut}(\mathcal{X}) \) such that \(g \setminus F = \text{id}_F \) and \(g(x) = y \). Clearly, \(\sim_F \) is an equivalence relation, and \(\text{orb}_F(x) \) denotes the class of an element \(x \). The sets \(\text{orb}_F(x) \) are called the orbits of \(\mathcal{X} \). We call a copy \(A \in \mathcal{P}(\mathcal{X}) \) large iff it has infinite intersection with each orbit of \(\mathcal{X} \). For sets \(A \) and \(B \), let \(A \subset^* B \) denote the inclusion modulo finite, i.e. \(A \subset^* B \iff |A \setminus B| < \omega \).
2. SAP, large copies and positive families

Theorem 3. If \mathcal{X} is a countable ultrahomogeneous structure \mathcal{X} satisfying SAP, then a copy $A \in \mathcal{P}(\mathcal{X})$ is large iff it intersects each orbit of \mathcal{X}.

Proof. Suppose that A is a copy of \mathcal{X} intersecting all orbits of \mathcal{X} and that the intersection $A \cap \text{orb}_f(x) = F_1$ is finite, for some finite set $F \subset X$ and some $x \in X \setminus F$. Since \mathcal{X} satisfies SAP we have $|\text{orb}_f(x)| = \omega$ and, thus, we can assume that $x \not\in F_1$. Now, $\text{orb}_{F \cup F_1}(x) \subset \text{orb}_f(x) \setminus F_1$ and, hence, $A \cap \text{orb}_{F \cup F_1}(x) = \emptyset$, which is a contradiction. □

Note that the assumption that \mathcal{X} has SAP can not be removed from the previous theorem, since (trivially) X intersects all orbits of \mathcal{X}.

Theorem 4. For a countable ultrahomogeneous relational structure \mathcal{X} the following conditions are equivalent:

(a) \mathcal{X} satisfies the strong amalgamation property,

(b) \mathcal{X} has a large copy,

(c) There is a positive family \mathcal{P} on X such that $\mathcal{P} \subset \mathcal{P}(\mathcal{X})$,

(d) There is a co-infinite $A \in \mathcal{P}(\mathcal{X})$ such that $B \subset \mathcal{P}(\mathcal{X})$, whenever $A \subset^* B \subset X$.

Proof. (a) \Rightarrow (b). Recall that \mathcal{X} satisfies SAP iff all the orbits of \mathcal{X} are infinite (cf. [2, Theorem 2.15, p. 37]). Then X is a large copy of \mathcal{X}. Conversely, if A is a large copy of \mathcal{X}, then A witnesses that all orbits of \mathcal{X} are infinite; thus \mathcal{X} satisfies SAP.

(a) \Rightarrow (c). If \mathcal{X} satisfies SAP, then the orbits of \mathcal{X} are infinite and by Bernstein’s Lemma (see [9, Lemma 2, p. 514], with ω instead of c) there are two disjoint sets $A_0, A_1 \subset X$ intersecting all orbits of \mathcal{X}, which implies that $A_0, A_1 \in \mathcal{P}(\mathcal{X})$ (see e.g. [14, Theorem 2.3]). By Theorem 3 A_0 and A_1 are large copies of \mathcal{X} (alternatively, see [14, Theorem 3.2]). Now, $\mathcal{P} := \{ A \in \mathcal{P}(\mathcal{X}) : A_0 \subset^* A \subset [X]^{\omega} \}$ and, since $A_1 \subset X \setminus A_0$, (P4) is true. If $\mathcal{P} \ni A \subset B \subset X$, then $A_0 \subset^* B$. In addition, for each orbit O of \mathcal{X} we have $|A_0 \cap O| = \omega$ and, hence, $|B \cap O| = \omega$, which gives $B \subset \mathcal{P}(\mathcal{X})$ (by [14, Theorem 2.3] again). Thus $B \in \mathcal{P}$ and (P2) is true. If $A \in \mathcal{P}$ and $F \subset X$ is a finite set, then, clearly, $A_0 \subset^* A \setminus F$ and, as above, $A \setminus F \in \mathcal{P}(\mathcal{X})$. Thus $A \setminus F \in \mathcal{P}(\mathcal{X})$, (P3) is true and \mathcal{P} is a positive family indeed.

(c) \Rightarrow (d). If $\mathcal{P} \subset \mathcal{P}(\mathcal{X})$ is a positive family, then by (P4) there is a co-infinite set $A \in \mathcal{P}$ and, hence, $A \in \mathcal{P}(\mathcal{X})$. For $B \subset X$ such that $A \setminus B =: F$ is a finite set, by (P3) we have $\mathcal{P} \ni A \setminus F \subset B$ and, by (P2), $B \in \mathcal{P}$, thus $B \in \mathcal{P}(\mathcal{X})$.

(d) \Rightarrow (a). Suppose that $A \subset X$ is a copy given by (d). Then for each finite set $F \subset X$ we have $A \subset^* X \setminus F$. Thus, by (d), $X \setminus F \in \mathcal{P}(\mathcal{X})$. Now [4, Theorem 2] implies that the structure \mathcal{X} satisfies SAP. □

Now we turn to maximal positive families.

Theorem 5. Let \mathcal{X} be a countable ultrahomogeneous relational structure satisfying SAP. If $\mathcal{P}_\text{max} := \{ A \in \mathcal{P}(\mathcal{X}) : \forall B \subset X \ (A \subset^* B \Rightarrow B \in \mathcal{P}(\mathcal{X})) \}$, then

(a) \mathcal{P}_max is the largest positive family on X contained in $\mathcal{P}(\mathcal{X})$;

(b) $\mathcal{P}_\text{max} = \{ A \in \mathcal{P}(\mathcal{X}) : \forall B \subset X \ (A \subset B \Rightarrow B \in \mathcal{P}(\mathcal{X})) \}$;

(c) $\mathcal{P}_\text{max} = \{ A \subset X : A \text{ intersects all the orbits of } \mathcal{X} \}$;

(d) $\mathcal{P}_\text{max} = \{ A \subset X : A \text{ is a large copy of } \mathcal{X} \}$.

C. R. Mathématique, 2020, 358, no 7, 791–796
Example 7. For the rational line, \(\mathbb{Q} \), the orbits are open intervals. Thus \(\mathcal{P}_{\text{max}} = \text{Dense}(\mathbb{Q}) := \{ A \subset \mathbb{Q} : \forall p, q \in \mathbb{Q} \ (p < q \Rightarrow A \cap (p, q) \neq \emptyset) \} \).

This means that the fact that the rational line can be split into countably many disjoint dense sets is a special case of Theorem 3.2 in [14], while the fact that there is a continuum-sized almost disjoint family of dense subsets of the rational line is a special case of Theorem 4.1 in [14].
3. Boolean maximal chains of copies

Here we prove Theorem 1 and present some applications. Let X be a countable ultrahomogeneous relational structure satisfying SAP. As already mentioned, $M_X \subset C_R$ is known (for example, take a look at [13, Theorem 2.2]). The remaining part of the statement follows from the next proposition.

Theorem 8. If X is a countable ultrahomogeneous relational structure satisfying SAP, then $B_R \subset M_X$.

Proof. Suppose that L is such that $\text{otp}(L) \in B_R$. Let $L' = L \cup \{-\infty\}$ where $\{-\infty\}$ is the minimum of L'. By Theorem 3 in [11], L' is isomorphic to an R-embeddable complete linear order whose minimum is non-isolated. Since X satisfies SAP, by Theorem 5(d) $P = \{A \subset X : A$ is a large copy of $X\}$ is a positive family contained in $P(X)$. Theorem 3.2 in [14] guarantees that $\bigcap P = \emptyset$. Hence, Theorem 3.6(a) in [12] implies that there is a maximal chain L in $(P(X), \subset)$ isomorphic to L. Thus $B_R \subset M_X$. □

Example 9. Countable ultrahomogeneous digraphs have been classified by Cherlin [3]. Referring to the list given in [1] and [15], we mention some structures satisfying SAP, i.e. structures to which Theorem 1 can be applied.

- All countable ultrahomogeneous partial orders except the posets $\langle C_n, <_n \rangle$, for $2 \leq n < \omega$, where $C_n = \mathbb{Q} \times n$ and $\langle q_1, k_1 \rangle <_n \langle q_2, k_2 \rangle$ iff $q_1 < q_2$ (thus, C_n is a \mathbb{Q}-chain of antichains of size n).
- All countable ultrahomogeneous tournaments: the rational line \mathbb{Q}; the random tournament T_∞; and the local order $\langle S(2), \rightarrow \rangle$, where $S(2)$ is a countable dense subset of the unit circle, such that no two of its points are antipodal, and $x \rightarrow y$ iff the counterclockwise angle between x and y is less than π.
- All Henson’s digraphs with forbidden sets of tournaments;
- The digraphs Γ_n, for $n > 1$, where Γ_n is the Fraïssé limit of the amalgamation class of all finite digraphs not embedding the empty digraph of size n.
- Two “sporadic” primitive digraphs $S(3)$ and $P(3)$. The digraph $S(3)$ is defined as the local order $S(2)$, but with angle $2\pi/3$. The digraph $P(3)$ has a more complicated definition; it is precisely defined in [3, p. 76].
- The imprimitive digraphs $n * I_\infty$, for $2 \leq n \leq \omega$. The digraph $n * I_\infty$ is obtained from a countable complete n-partite graph by randomly orienting its edges.
- The digraph which is a semigeneric variant of $\omega * I_\infty$ with a parity constraint, i.e. it is a countable ultrahomogeneous digraph in which non-relatedness is an equivalence relation and for any two pairs A_1, A_2 taken from distinct equivalence classes, the number of edges from A_1 to A_2 is even.

Acknowledgements

The authors would like to thank the anonymous referee for helpful comments.

References

[1] N. Ackerman, C. Freer, R. Patel, “Invariant measures concentrated on countable structures”, *Forum Math. Sigma* 4 (2016), article ID e17 (59 pages).
[2] P. J. Cameron, *Oligomorphic permutation groups*, London Mathematical Society Lecture Note Series, vol. 152, Cambridge University Press, 1990, viii+160 pages.
[3] G. L. Cherlin, “The classification of countable homogeneous directed graphs and countable homogeneous n-tournaments”, *Mem. Am. Math. Soc.* **131** (1998), no. 621, p. xiv+161.

[4] M. El-Zahar, N. W. Sauer, “Ramsey-type properties of relational structures”, *Discrete Math.* **94** (1991), no. 1, p. 1-10.

[5] R. Fraïssé, “Sur certaines relations qui généralisent l’ordre des nombres rationnels”, *C. R. Math. Acad. Sci. Paris* **237** (1953), p. 540-542.

[6] ———, “Sur l’extension aux relations de quelques propriétés connues des ordres”, *C. R. Math. Acad. Sci. Paris* **237** (1953), p. 508-510.

[7] ———, “Sur l’extension aux relations de quelques propriétés des ordres”, *Ann. Sci. Éc. Norm. Supér.* **71** (1954), p. 363-388.

[8] ———, *Theory of relations*, revised ed., Studies in Logic and the Foundations of Mathematics, vol. 145, North-Holland, 2000, With an appendix by Norbert Sauer, ii+451 pages.

[9] K. Kuratowski, *Topology. Vol I*, Academic Press Inc.; Państwowwe Wydawnictwo Naukowe, 1966, New edition, revised and augmented. Translated from the French by J. Jaworowski, xx+560 pages.

[10] M. S. Kurilić, “Maximal chains in positive subfamilies of $P(\omega)$”, *Order* **29** (2012), no. 1, p. 119-129.

[11] ———, “Maximal chains of copies of the rational line”, *Order* **30** (2013), no. 3, p. 737-748.

[12] M. S. Kurilić, B. Kuzeljević, “Maximal chains of isomorphic subgraphs of countable ultrahomogeneous graphs”, *Adv. Math.* **264** (2014), p. 762-775.

[13] ———, “Maximal chains of isomorphic suborders of countable ultrahomogeneous partial orders”, *Order* **32** (2015), no. 1, p. 83-99.

[14] ———, “Antichains of Copies of Ultrahomogeneous Structures”, 2019, https://arxiv.org/abs/1904.00656.

[15] D. Macpherson, “A survey of homogeneous structures”, *Discrete Math.* **311** (2011), no. 15, p. 1599-1634.