HST observations of the QSO pair Q1026–0045A,B *

Patrick Petitjean1, Jean Surdej3,7, Alain Smette4, Peter Shaver5, Jan Mücket6, and Marc Remy3

1Institut d’Astrophysique de Paris - CNRS, 98bis Boulevard Arago, F-75014 Paris, France
2UA CNRS 173- DAEc, Observatoire de Paris-Meudon, F-92195 Meudon Principal Cedex, France
3Institut d’Astrophysique, Université de Liège, Avenue de Cointe 5, B–4000 Liège, Belgium
4NASA-Goddard Space Flight Center, Code 681, Greenbelt, MD 20771, USA
5European Southern Observatory, Karl–Schwarzschild–Str. 2, D-85748 Garching bei München, Germany
6Astrophysikalisches Institut Potsdam, An der Sternwarte 16, D-14482 Potsdam, Germany
7Directeur de Recherches du FNRS, Belgium

Abstract. The spatial distribution of the Lyα forest is studied using new HST data for the quasar pair Q 1026–0045 A and B at \(z_{em} = 1.438\) and 1.520 respectively. The angular separation is 36 arcsec and corresponds to transverse linear separations between lines of sight of \(\sim300h_{50}^{-1}\) kpc \((q_0 = 0.5)\) over the redshift range 0.833 < \(z < 1.438\). From the observed numbers of coincident and anti-coincident Lyα absorption lines, we conclude that, at this redshift, the Lyα structures have typical dimensions of \(\sim500h_{50}^{-1}\) kpc, larger than the mean separation of the two lines of sight. The velocity difference, \(\Delta V\), between coincident lines is surprisingly small (4 and 8 pairs with \(\Delta V < 50\) and 200 km s\(^{-1}\) respectively). Metal line systems are present at \(z_{abs} = 1.2651\) and 1.2969 in A, \(z_{abs} = 0.6320, 0.7090, 1.2651\) and 1.4844 in B. In addition we tentatively identify a weak Mg ii system at \(z_{abs} = 0.11\) in B. It is remarkable that the \(z_{abs} = 1.2651\) system is common to both lines of sight. The system at \(z_{abs} = 1.4844\) has strong O vi absorption.

There is a metal-poor associated system at \(z_{abs} = 1.4420\) along the line of sight to A with complex velocity profile. We detect a strong Lyα absorption along the line of sight to B redshifted by only 300 km s\(^{-1}\) relatively to the associated system. It is tempting to interpret this as the presence of a disk of radius larger than 300\(h_{50}^{-1}\) kpc surrounding quasar A.

1. Introduction

One way to probe the transverse extension of the gaseous structures giving rise to the Lyα forest seen in the spectrum of quasars is to observe multiple lines of sight to quasars with small angular separations on the sky and search the spectra for absorptions coincident in redshift.

This technique originated with a suggestion by Oort (1981) to test the possibility that the Lyα forest clouds originate in large pancake structures. The first discoveries of common and associated absorption using pairs of distinct quasars (with separations \(\sim1\) arcmin) were made by Shaver et al. (1982) and Shaver & Robertson (1983). These already indicated the possible existence of very large absorber sizes (hundreds of kpc), even for the Lyα clouds. At about the same time Sargent et al. (1982) found no detectable tendency for Lyα lines to correlate in QSO pairs separated by a few arcmin. Spectra of pairs of gravitational lens images revealed common absorptions on smaller scales (Weyman & Foltz 1983, Foltz et al. 1984). The idea that Lyα clouds might have large sizes remained controversial until the analysis by Smette et al. (1992), later confirmed by Dinshaw et al. (1994), Bechtold et al. (1994), Crotts et al. (1994), Bechtold & Yee (1994), Smette et al. (1995), D’Odorico et al. (1998).

Recently, Dinshaw et al. (1995) derived a radius of 330\(h_{50}^{-1}\) kpc at \(z \sim 0.7\) for spherical clouds from observation of Q0107–0232 and Q0107–0235 separated by 86 arcsec. Larger separations have been investigated by Crotts & Fang (1997) and Williger et al. (1997). Both studies conclude that the clouds should be correlated on scales larger than 500 kpc.

Here we present observations of Q1026–005 A \((m_r = 18.4, \ z_{em} = 1.438)\) and B \((m_r = 18.5, \ z_{em} = 1.520)\), two distinct quasars separated on the sky by 36 arcsec or 300\(h_{50}^{-1}\) kpc \((q_0 = 0.5)\) at \(z \sim 1\).
The observations were carried out on the Hubble Space Telescope using the Faint Object Spectrograph with the G270H grating over the wavelength range 2250–3250 Å, for a resolution of 1.92 Å FWHM. A total of 5300 s integration time was accumulated on both quasars. The data were calibrated using the standard pipeline reduction techniques. The zero point of the wavelength scale was determined requiring that Galactic interstellar absorptions occur at rest. Most of the lines are weak or blended except Mg II λ2803; the error on the wavelength determination should be smaller than 0.3 Å however. The spectra are shown in Fig. 1, the line–lists are given in Table 1. The position of absorption features are determined by gaussian fits. Lower limits on equivalent widths of Lyα lines are at the 3σ level. The mean signal to noise ratio is 15 varying from 10 in the very blue to 20 on top of the Lyα emission lines.

3. Results

3.1. The metal line systems

Metal line systems are present at zabs = 1.2651 and 1.2969 in A, zabs = 0.11, 0.6320, 0.7090, 1.2651 and 1.4844 in B. In A, the system at zabs = 1.2651 is detected by strong H i λ1215,1220 absorptions and has a Si iv λ1393.40 doublet associated. There are strong H i λ1215,1220 absorptions at the same redshift along the line of sight to B. The fact that the positions of the H i absorptions in A and B are nearly identical (A2753.67 and λ1215.40 Å for Lyα respectively) argues for the two absorptions being produced by the same object. If true the transverse dimension is larger than the 310 h−1 kpc separation between the two lines of sight. The system at zabs = 1.2969 has strong H i (Lyα = 2.9 Å), C ii, C iii, O i, N iii, Si ii, Si iii, Si iv absorptions.

In B, both zabs = 0.6320 and 0.7090 systems have strong Si ii λ1526, Fe ii λ1608, Al ii λ1670 and C iv λ1550 absorptions. As said before the zabs = 1.2651 system is common to A and B. The presence of metals is revealed only by a λ3155.87 Å feature that we identify as Si ii λ1526. The associated Si iv λ1402 line is not detected but could be lost in the noise. The strong system at zabs = 1.4842 shows N iii, C iii, Si iii and possibly O vi associated absorptions. O vi absorption seems to be detected in most of the low and intermediate redshift systems (Bergeron et al. 1994, Vogel & Reimers 1995, Burles & Tytler 1996) and has been observed in a few high redshift Lyman limit systems (Kirkman & Tytler 1997). The velocity difference with the quasar is larger than 4000 km s−1, there is a possibility that the system is associated with the quasar. In addition we tentatively identify a weak (Lyα ∼ 0.3 Å) Mg ii system at zabs = 0.11 in B. Mg ii λ2803 is possibly blended with C iv λ1548 of a possible weak C iv system at zabs = 1.0106.
3.2. The associated system in A and the proximity effect

There is a strong associated system detected in A by its H i Lyα and Lyβ absorptions. Two components are seen at $z_{\text{abs}} = 1.4401$ and 1.4420 with $w_r(\text{Lyα}) = 0.58$ and 0.40 Å respectively. The two components are redshifted relative to the QSO by 260 and 490 km s$^{-1}$. Since the true redshift of the quasar is poorly known, these values are very uncertain. We do not detect any metal lines in the system. The O vi lines have $w_r < 0.20$ Å; the C iv lines are redshifted outside the wavelength range of the data. Interestingly enough, there is a H i absorption system at $z_{\text{abs}} = 1.4439$ along the line of sight to Q 1026–0045B. The velocity difference between this system and the $z_{\text{abs}} = 1.4420$ in A is about 230 km s$^{-1}$ only.

It is unlikely that the $z_{\text{abs}} \sim z_{\text{em}}$ system is intrinsically associated with the central AGN. Such systems usually have high metal content and are expected to exhibit strong O vi and N v absorptions (Petitjean et al. 1994, Hamann 1997), absent from the spectra of Q1026–0045 A & B. The three absorptions are thus part of an object or group of objects which transversal dimension exceeds the $300h_{50}^{-1}$ kpc separation between the two lines of sight.

The absence of metals in the system associated with A, over the observed wavelength range, suggests an intergalactic origin. The higher velocity of the gas along the line of sight to B argues against the simple picture in which the gas would be collapsing toward A. In that case, we would expect the gas along the line of sight to B to have a projected velocity smaller than the velocity of the gas just in front of A. A model where the gas would be part of a rotating disk can be accommodated if the component at $z = 1.4420$ is at the same redshift as the quasar. In this case however one could wonder why the gas is metal deficient.

The relative equivalent widths of the hydrogen lines in the Lyman series of the system at $z_{\text{abs}} = 1.4842$ toward B are indicative of H i column densities in excess of 10^{16} cm$^{-2}$. The presence of strong metal lines suggests that the gas is associated with the halo of a galaxy. Very deep imaging in this field to search for any enhanced density of objects would help to understand the nature of these intriguing systems.

There are only two systems in both lines of sight from $z = 1.3436$ to 1.520, the associated system in A (and its counterpart in B) and the metal system at $z_{\text{abs}} = 1.4842$ in B. The number of lines with $w_r > 0.24$ Å expected in this redshift range is 7 ± 2 (Bahcall et al. 1996). It is probable that we see the effect of the enhanced photo-ionizing field due to the proximity of the quasars.

3.3. The Lyα forest

3.3.1. The line-lists

Table 1 lists all the absorption features detected at the 3σ level in the spectra. Identification of Lyα lines is sometimes uncertain due to blending with lines from the numerous metal line systems. We discuss here individual lines. In Q 1026–0045A, the A2259 feature could be partly Lyγ from the $z_{\text{abs}} = 1.4420$ system but given the strength of the other lines in the series, the contribution is most certainly negligible. There is a broad feature centered at 2452 Å that we decompose into two components at 2450 and 2454 Å. This feature is uncertain however. Galactic Fe II λ2374 absorption should not contribute too much to the λ2375 feature that is mostly Lyγ at $z_{\text{abs}} = 1.4405$ and 1.4420. The line is quite strong however and could be
partly produced by a Lyα absorption at \(z_{\text{abs}} = 0.9536 \). The two lines at \(\lambda 2458 \) and \(\lambda 2474 \) could correspond to a Si iv \(\lambda 1393,1402 \) doublet at \(z_{\text{abs}} = 0.7639 \). The corresponding C iv \(\lambda 1334 \) line would be blended with Lyβ at \(z_{\text{abs}} = 1.2964 \) but the feature at \(\lambda 2736 \) could be C iv \(\lambda 1550 \) at the same redshift with no C iv \(\lambda 1548 \) detected. The line however is displaced by more than 1 Å from the expected position which is not acceptable. We thus consider the Si iv identification as doubtful.

In Q 1026–0045B, there is a broad feature at \(\lambda 2288.5 \) that cannot be accounted for by Si iv \(\lambda 1402 \) at \(z = 0.6320 \) only. The feature at \(\lambda 2376 \) may have a double structure. Lyγ at 1.4438 and Fe ii \(\lambda 2374 \) definitively contribute to this feature which is strong enough however to be partly produced by Lyα absorption at \(z_{\text{abs}} = 0.9545 \). Since C iv \(\lambda 1550 \) at \(z_{\text{abs}} = 0.6321 \) has \(w_{\text{abs}} = 0.46 \) Å, C iv \(\lambda 1548 \) at the same redshift should have \(w_{\text{abs}} < 0.92 \) Å. Consequently there is a Lyα line at \(z_{\text{abs}} = 1.0782 \) with \(w_{\text{abs}} > 0.6 \) Å.

We detect 11 and 12 Lyα lines with \(w_\ell > 0.2 \) Å over the redshift range 0.8335–1.3436 along the lines of sight to A and B respectively. The density of lines with \(w_\ell > 0.24 \) Å detected by the HST in the same redshift range is \(\sim 17 \pm 3 \) (Jannuzi et al. 1998). The number of lines we detect is thus small. This might be a consequence of blending effects. Two lines observed along A and B are said coincident when their redshifts are within 200 km s\(^{-1}\).

The Lyman forest is sparse at low redshift which implies that the probability for random coincidence is negligible (only 0.05 for \(w_\ell > 0.2 \) Å). Last column of Table 1 indicates for each Lyα line with \(w_\ell > 0.2, 0.3, 0.6 \) Å whether there is coincidence (C) or anti-coincidence (A). A letter (u) marks lines that are out of the sample or uncertain cases because of blending effects.

3.3.2. Correlations

The numbers of coincidences and anticoincidences for \(w_\ell > 0.2, 0.3 \) and \(0.6 \) Å are 4, 3, 1 and 7, 8, 3 respectively. Assuming that the Lyα clouds are spheres of radius \(R \), we calculate the probability density for \(R \) (see Fig. 2) following Fang et al. (1996). The peak of the probability is at \(R = 267, 305 \) and \(364h_{50}^{-1} \) kpc for \(w_\ell > 0.6, 0.3 \) and \(0.2 \) Å. There is a hint for the dimensions of the structures to be larger for smaller equivalent widths. This property is expected in simulations (Charlton et al. 1997). However as shown by Fang et al. (1996) and Crotts & Fang (1997), the radius determined by this method increases with the separation of the lines of sight indicating that the assumption of a single structure size is invalid. This has been recognized to be a characteristic of the spatial distribution of the Lyα gas in the simulations (Charlton et al. 1997). It is clear that better statistics in the data are needed to have a better understanding of the structures especially to discuss the difference between real size of the clouds and correlation length (Cen & Simcoe 1997).

Fig. 2. Probability distribution \(P(R) \), normalized to one at its peak, and cumulative distribution versus cloud radius from the number of coincidences and anticoincidences of Lyα lines with \(w_\ell > 0.2 \) (dashed-dotted lines), 0.3 (dashed lines) and 0.6 Å (solid lines). The peak of the probability is at \(R = 267, 305 \) and \(364h_{50}^{-1} \) kpc for \(w_\ell > 0.6, 0.3 \) and 0.2 Å respectively.

It is intriguing to note that the velocity difference \(\Delta V \) between lines coincident in redshift along the two lines of sight is small. Considering all the pairs, we find 4 and 8 pairs with \(\Delta V < 50 \) and 200 km s\(^{-1}\) respectively. There is no pair, even along one single line of sight with \(200 < \Delta V < 400 \) km s\(^{-1}\). This has been shown to favor disk-like structures (Charlton et al. 1995) but should be studied in more detail.

Acknowledgements. MR and JS wish to thank the SSTE/PRODEX project for partial support during this work.

References

Bahcall J.N., Bergeron J., Boksenberg A., et al., 1996, ApJ 457, 19

Bechtold J., Crotts A.P.S., Duncan R.C., Fang Y., 1994, ApJ 437, L83

Bechtold J., Yee H.K.C., 1994, AJ 110, 1984

Bergeron J., Petitjean P., Sargent W.L.W., et al., 1994, ApJ 436, 33

Burles S., Tytler D., 1996, ApJ 460, 584

Cen R., Simcoe R.A., 1997, ApJ 483, 8

Charlton J.C., Anninos P., Zhang Y., Norman M.L., 1997, ApJ 485, 26

Charlton J.C., Churchill C.W., Linder S.M., 1995, ApJ 452, L81

Crotts A.P.S., Bechtold J., Fang Y., Duncan C., 1994, ApJ 437, 79

Crotts A.P.S., Fang Y., 1997, astro-ph 9702185

Dinshaw N., Foltz C.B., Impey C.D., Weymann R.J., Morris S.L., 1995, Nature 373, 223
Dinshaw N., Impey C.D., Foltz C.B., Weymann R.J., Chaffee F.H.Jr., 1994, ApJ 437, L87
D’Odorico S., Cristiani S., D’Odorico V., et al., 1998, in P. Petitjean & S. Charlot, XIIIe IAP Colloquium, Editions Frontières, Paris, p. 392
Fang Y., Duncan R.C., Crotts A.P.S., Bechtold J., 1996, ApJ 462, 77
Foltz C.B., Weymann R.J., Röser H.J., Chaffee F.H.Jr., 1984, ApJ 281, L1
Hamann F., 1997, ApJS 109, 279
Jannuzi B., et al., 1998, ApJS in press
Kirkman D., Tytler D., 1997, ApJ 489, L123
Oort J.H., 1981, A&A, 94, 359
Petitjean P., Rauch M., Carswell R.F., 1994, A&A 291, 29
Sargent L.W.L., Young P., Schneider D.P., 1982, ApJ 256, 374
Shaver P.A., Boksenberg A., Robertson J.G., 1982, ApJ 261, L7
Shaver P.A., Robertson J.G., 1983, ApJ 268, L57
Smette A., Robertson J.G., Shaver P.A., et al., 1995, A&AS 113, 199
Smette A., Surdej J., Shaver P.A., et al., 1992, A&A 289, 39
Vogel S., Reimers D., 1995, A&A 294, 377
Weymann R.J., Foltz C.B., 1983, ApJ 272, L1
Williger G.M., Smette A., Hazard C., Baldwin J.A., McMahon R.G., 1997, astro-ph/9709170