Parvovirosis is an infectious viral disease caused by canine parvovirus (CPV-2), (family Paroviridae, subfamily Parovirinae, genus Protoparvovirus) (30). The genetic material of the virus is a single stranded DNA (ssDNA), which codes two non-structural proteins (NS1 and NS2) and three structural proteins (VP1, VP2 and VP3). The VP2 protein constitutes 90% of the viral capsid and acts as its main protein antigen (32).

Paroviruses usually infect young animals (aged 6 weeks to 6 months) exposed to stress, parasitic invasions or kept in poor sanitary conditions (15). A lack of vaccinations is considered to be the most important risk factor of parvovirosis (13). The main clinical symptoms of parvovirosis are: diarrhoea, vomiting and fever. In intrauterine infected puppies or in the first two weeks of life, symptoms of congestive heart failure or inflammation may develop in the heart muscle with sudden death (1). Sometimes symptoms of cardiovascular failure they can appear even at 2 months of age (29). Some research also proves that paroviral infection could be associated with myocarditis and myocardial fibrosis in dogs younger than 2 years (11). Haematological tests performed in sick animals may reveal leukopenia and anaemia associated with the loss of blood into the lumen of the gastrointestinal tract (5, 15).

The first cases of parvovirosis in dogs, caused by the CPV-2 strain, were described in 1978 in the USA. In the following years, the virus evolved and spread to other parts of the world. Three subsequent viral strains were described: CPV-2a (426Asn), CPV-2b (426Asp) and CPV-2c (426Glu) (3). These strains almost entirely superseded CPV-2 and occur almost everywhere in the world (20). Since the introduction of vaccinations against CPV, the prevalence of the disease in the dog population has been significantly reduced. Nevertheless, in Poland a growing incidence of the disease has been recently observed, also in adult animals regularly vaccinated against CPV-2.

The aim of the study was to perform a molecular analysis of the CPV VP2 gene fragment isolated from faeces samples of 46 dogs (vaccinated, as well as non-vaccinated against parvovirosis) with clinical parvovirosis. In all animals, the infection was confirmed by PCR. The purified PCR products (fragment VP2 gene) were sequenced and compared to each other and to the sequences of CPV VP2 gene from NCBI GenBank. Readable sequences of the VP2 gene were obtained for 46 samples. In 23 out of 30 non-vaccinated dogs, the most frequently isolated CPV strain was 2b. In the remaining cases the dogs were infected with CPV-2a. The parvovirus strains isolated from faeces of vaccinated dogs were classified in most cases (14/16) as CPV-2b, one as CPV-2a and one as CPV-2c. Continuous monitoring of parvovirus infection in dogs in Poland plays an important role in updating vaccines against the disease and developing effective methods of its prevention.

Keywords: CPV, dogs, PCR
Molecular analysis. DNA for analysis was extracted from stool samples with GeneAll Exgene Stool DNA mini kit. Polymerase chain reaction (PCR) was performed using a programmable thermal cycler (Biometra). The PCR reaction for CPV VP2 gene was carried out according to a method described by Buonavoglia (3) using the following primers: 555for (positions 4003-4022) 5'→3' CAGGAAGATATCCAGAAGGA and 555rev (positions 4585-4561) 5'→3' GGTGC-TAGTGTATGTAATAAACA. This limited the DNA section to a length of 583 bp of the VP2 gene. The positive control was the DNA of CPV-2b (strain CPV-2b-Bio 12/B), isolated from a commercially available vaccine (Versican Plus DHPPi, Zoetis Belgium SA), and the negative control was DNA from the stool of a healthy dog. All samples were examined only once. Each reaction was composed of 30 cycles with the denaturation stage at 94°C for 60 s, annealing at 58°C for 60 s and elongation at 72°C for 90 s. The reaction mixture (50 µL) contained 100 µM of each dNTP, 1.6 mM of MgCl2, 0.25 µM of each primer, 2.5 U of Taq DNA polymerase, and 5 µL of DNA template. The PCR products were analysed with the electrophoresis method in a 1% agarose gel and Tris-borate-EDTA (TBE) buffer at a voltage of 10 V/cm for 50 mins. The PCR reaction products purified with the QIAquick PCR Purification Kit (Qiagen) were sequenced by the DNA Sequencing and Synthesis Service of the Institute of Biochemistry and Biophysics at Polish Academy of Science in Warsaw. The sequencing results were received via email and developed using the computer software Lasergene DNA Star MegAlign software (Madison USA). The same software was used to analyse the sequence of CPV isolates and compare them with sequences available in the National Center for Biotechnology Information (NCBI) Genebank from: Germany (AY742953, AY742935), Brazil (DQ340434), South Africa (AJ007500, AJ007498), New Zealand (AY742933), China (EU145958), Turkey (EU145958, KF500499), Italy (GU362934, FJ005252, AF306447, FJ005263, FJ005195), USA (M24000, M38245, AY742955, M74849, FJ005235), France (DQ025986, DQ025992), India (AJ698134, DQ182623), South Korea (EU009206, EF599097), Japan (AB054220), Poland (Z46651), Spain (FJ005214), Belgium (FJ005247) and Greece (GQ865518, GQ865519) and with sequences VP2 of CPV strains used in commercial vaccines. Double phylogenetic analysis was performed. The phylogenetic trees were created separately.

O.n.	Sample number	Vaccination type	Age	Gender	Breed
1	2	No vaccination	10 weeks	F	Mix
2	3	Nobivac 3x	6 months	M	Labrador retriever
3	4	No vaccination	8 months	M	German Shepherd
4	5	No vaccination	8 months	M	German Shepherd
5	6	No vaccination	8 months	M	German Shepherd
6	7	No vaccination	3 months	F	Mix
7	8	No vaccination	8 years	M	Mix
8	9	No vaccination	4 months	M	Mix
9	10	No vaccination	9 weeks	F	White Swiss Shepherd
10	11	Nobivac 3x	7 months	F	White Swiss Shepherd
11	12	Biocan 2x	9 weeks	M	German Shepherd
12	13	Biocan 2x	9 weeks	M	German Shepherd
13	14	Biocan 2x	9 weeks	M	German Shepherd
14	15	Biocan 2x	9 weeks	M	German Shepherd
15	16	Vanguard, Canigen	7 months	M	Maltese
16	17	Biocan	3 months	M	Mix
17	18	Biocan	8 weeks	F	Mix
18	19	No vaccination	8 weeks	F	Mix
19	20	No vaccination	4 months	F	Mix
20	21	Nobivac	8 years	M	Mix
21	22	No vaccination	9 weeks	M	Mix
22	23	Nobivac	9 weeks	M	Mix
23	24	Nobivac	9 weeks	F	Mix
24	25	Nobivac	9 weeks	F	Mix
25	26	Nobivac	9 weeks	F	Mix
26	27	Nobivac	8 weeks	M	Maltese
27	28	No vaccination	9 months	F	Maltese
28	29	No vaccination	4 years	M	Czechoslovakian Wolfdog
29	30	No vaccination	10 weeks	F	Mix
30	31	Biocan	19 weeks	F	Mix
31	32	No vaccination	6 months	F	Rottweiler
32	33	Biocan	17 weeks	M	Welsh Terrier
33	34	No vaccination	8 months	M	Mix
34	35	No vaccination	1 year	M	Mix
35	36	No vaccination	2 years	F	Mix
36	37	No vaccination	4 months	F	Mix
37	38	No vaccination	4 months	M	Mix
38	39	Nobivac	4 months	M	Mix
39	40	No vaccination	6 weeks	M	German Shepherd
40	41	No vaccination	9 weeks	M	Mix
41	42	No vaccination	5 months	F	White Swiss Shepherd
42	43	No vaccination	4 months	M	Mix
43	44	No vaccination	4 months	F	Mix
44	45	No vaccination	4 months	F	Mix
45	46	No vaccination	2 years	M	Mix
46	47	No vaccination	5.5 years	F	Mix
47	48	No vaccination	4.5 months	M	Mix
48	49	No vaccination	7 weeks	M	Mix
49	50	No vaccination	7 weeks	M	Mix
50	51	No vaccination	3 months	M	Mix
51	52	No vaccination	4 months	F	Mix
52	53	No vaccination	4 months	F	Mix
53	54	No vaccination	4 months	F	Mix
Results and discussion

All 46 samples gave the amplicon size of 583 bp in agarose gel electrophoresis. Vaccinated dogs ranged in age from 9 weeks to 8-years-old and 13/16 (81%) of them were up to 6-months-old. Within unvaccinated dogs were animals at age from 6-weeks- to 8-years-old, and 19/30 (63%) dogs were up to 6-months-old. Generally, fourteen out of 46 animals (30%) were over six months of age and 32/46 (70%) were 6-weeks- to 6-months-old.

Within vaccinated dogs 8/16 (50%) were mixed breed, 3/16 (19%) German Shepherd, 2/16 Maltese (13%) and there were single representatives, 1/16 (6%), of such breeds as Labrador Retriever, White Swiss Shepherd and Welsh Terrier. Within non-vaccinated dogs 21/30 were mixed breed (70%), 4/30 (14%) were German Shepherds, 2/30 (7%) were White Swiss Shepherds and there was one case (3%) of such breeds as Maltese, Rottweiler and Czechoslovakian Wolfdog.

Generally, twenty nine out of fifty-two dogs (63%) with parvoviriosis confirmed by molecular test were mixed breed, 7/46 (15%) were German Shepherds, 3/46 (7%) Maltese Dogs, 3/46 (7%) White Swiss Shepherds and there were single cases, while 1/46 (2%) of such breeds as Welsh Terrier, Rottweiler, Czechoslovakian Wolfdog and Labrador Retriever.

Legible sequences were obtained for 46 DNA samples. The sequences of CPV VP2 gene obtained in the study demonstrated mutual homology of 98.5-100%. The similarity of the nucleotide sequences of VP2 gene fragments obtained in our study to the analogous fragments amplified from vaccine viruses was 98.5-99.3% for Intervet, 98.5-99.3% for Merial, 98.7-99.4% for Pfizer, 98.9-99.4% for Quantum, 98.9-99.4% for Biocan and 98.9-99.4% for Versican.

Computer processing of the sequences CPV VP2 gene from vaccinated dogs using the Lasergene DNA Star software enabled the creation of a phylogenetic tree demonstrating similarities between particular isolates. Differences in primary genetic structure of each isolate made it possible to distinguish 6 monophyletic groups. Group 1 was formed by isolates No: 11, 24, 25, 27, 34 and 26. It demonstrated the highest homology (99.5%) with CPV-2b strain sequence isolated in Turkey (KF500499). The next group was formed by a single strain, No 22, which demonstrated the highest similarity of the examined gene sequence (99.4%) to CPV-2b isolated in Korea (EU009206). The third group included isolates No 3, 17, 19, 39, which demonstrated the highest homology (99.8-100%) with a Japanese strain (AB054220). The fourth group was formed by a single isolate, No 31, which was homologous (100%) to Greek CPV-2c strains: (GQ865518 and GQ865519), Spanish strain (FJ005214) and American

Fig. 1. Phylogenetic tree of CPV strains isolated from dogs who had received a preventive vaccination
strain (FJ005235). The fifth group consisted of three isolates (No: 13, 14 and 18), demonstrating the highest homology (99.3-99.4%) with Indian CPV-2b strain (DQ182623). The last group was formed by one isolate (No 15), showing the greatest similarity of the examined gene sequence (99.8%) to Italian CPV-2a isolate (FJ005252). It may be stated that the parvovirus strains isolated from vaccinated dogs in which the disease developed were classified in most cases (14/16) as CPV-2b, one as CPV-2a and one as CPV-2c (Fig. 1).

Phylogenetic analysis of the VP2 CPV sequences obtained from the group of non-vaccinated dogs demonstrated the presence of 5 monophyletic groups. The first group consisted of 11 isolates (No: 2, 10, 28, 33, 35, 36, 37, 38, 40, 42, 53), demonstrating the highest similarity (99.8-100%) to the CPV-2b virus sequence isolated in Japan (AB054220). The second group was formed by a single strain (No 46) most homologous (99.8%) to CPV-2b isolated in Italy (FJ005263). The next group was formed by isolates 23, 29 and 41, demonstrating the highest homology (99.8%) to the CPV-2b virus isolated in South Korea (EU009206). The fourth group was formed by 8 isolates (No: 5, 7, 8, 9, 20, 21, 30 and 51), demonstrating the highest similarity of the analysed VP2 gene sequence to sequence DQ182623 from India (99.4-99.8%). The last group consisted of isolates No 4, 6, 44, 48, 49, 50 and 52 demonstrating the highest homology (99.6-99.8%) with CPV-2a strains from New Zealand (AY742933), China (EU145958) and Brazil (DQ340434). Similarly, to the group of vaccinated dogs the main CPV strain isolated from non-vaccinated dogs with parvovirosis was CPV-2b (23/30). In the remaining seven cases, CPV-2a was the etiological factor of the disease infectious agent. CPV2c was not isolated from any of the dogs in this study group (Fig. 2).

Nucleotide substitutions among VP2 CPV sequences obtained from vaccinated as well as non-vaccinated dogs with paravovirosis are presented in Table 2 and 3. All sequences for tested isolates are available in GenBank database.

CPV VP2 is the main structural protein, which determines the major mutations during the evolution of CPV. VP1 and VP2 proteins are formed by alternative splicing from
In 1995 Mizak and Plucienniczak examined CPV strains isolated between 1982-1993 and showed that CPV-2a strain is dominant within the dog population in Poland. On the other hand, in 2011 Majer-Dziedzic et al. and in 2019 Kowalczyk et al., showed that the CPV-2c, and CPV 2a respectively are dominant among other strains. In our research, in which material was collected between 2017-2019, we showed that the dominant variant in the dog population in eastern Poland is CPV-2b. The results of all above mentioned results indicates the dynamic changes in the dominant parvovirus strains (17, 19, 21). Phylogenetic analysis demonstrated that the recent CPV-2c isolate shares a common evolutionary origin with CPV-2c from Greece: (GQ865518 and GQ865519), Spain (FJ005214) and the USA (FJ005235). CPV-2c has been detected also in dogs from the United Kingdom, Greece and Bulgaria, where there was a higher frequency of CPV-2a/2b infections (7, 10, 24). Outside Europe, type 2c isolates were detected in North America (12, 16), in South America (4, 26), in India (23), in Vietnam (22) and in Taiwan (6). Two different European epidemiological surveys (7, 8) showed that CPV-2c is now predominant in Italy, Germany and Spain and is also widely distributed in Portugal and France.

It should be kept in mind that in our study, the 2c strain was detected in only 1 out of 46 dogs with the symptoms of parvovirus. Thus, we cannot talk about a widespread presence of this pathogen in the population of dogs in Poland. Nevertheless, the fact of recording its occurrence in our country is disturbing and may explain the increased incidence of the disease in older animals which have undergone vaccination with traditional anti-CPV vaccines. It may be presumed with a high degree of probability that the number of CPV-2c infections will increase in Poland, as has been happening in other European countries, where, in Italy for example, within 10 years from 1995 to 2005, CPV-2c very rapidly superseded CPV-2b.

The occurrence of parvovirus in regularly vaccinated dogs (as in our own study) poses intriguing questions about the real efficacy of the vaccines although there are some reports about cross-protection within different strains of canine parvovirus (18, 31). Because of this, the isolation of new CPV circulating variants is important in order to be used more effectively in the manufacture of vaccines, from an immunogenic point of view (27).

References

1. Agungpriyono D. R., Uchida K., Tabaru H., Yamaguchi R., Tateyama S.; Subacute massive necrotizing myocarditis by canine parvovirus type 2 infection with diffuse leukoencephalomalacia in a puppy. Vet Pathol. 1999, 36, 77-80.
2. Buonavoglia C., Cavalli A., Pratelli A., Martella V., Greco G., Tempesta M., Buonavoglia C.: Antigenic analysis of canine parvovirus strains isolated in Italy. New Microbiol. 2000, 23, 93-96.
3. Buonavoglia C., Martella V., Pratelli A., Tempesta M., Cavalli A., Buonavoglia D., Bozzo G., Elia G., Decaro N., Carmichael L.: Evidence for evolution of canine parvovirus type 2 in Italy. J. Gen. Virol. 2001, 82, 3021-3025.
Decaro N., Desario C., Addie D. D., Martella V., Vieira M. J., Elia G., Zicola A., Chiang S.-Y., Wu H.-Y., Chiou M.-T., Chang M.-C., Lin C.-N.: Identification of the pathogenic variant CPV2c in vaccinated dogs. J. Virol. Methods 2009, 59, 333-339.

Molecular characterization of canine parvovirus strains in Argentina: Detection of Western European epidemiological survey for parvovirus infections and coronavirus infections in dogs. Vet. J. 2011, 187, 195-199.

Decaro N., Desario C., Belluscio A. L., Camero M., Manna L., d’Aloja D., Buonavoglia C.: First detection of canine parvovirus type 2c in pups with haemorrhagic enteritis in Spain. J. Vet. Med. B. Infect. Vet. Pathol. 2017, 54, 964-971.

Filipov C., Decaro N., Desario C., Amorisco F., Sciarretta R., Buonavoglia C.: Canine parvovirus epidemiology in Bulgaria. J. Vet. Diagn. Invest. Off. Publ. Am. Assoc. Vet. Lab. Diagn. Inc. 2011, 23, 152-154.

Ford J., McEndaffer L., Renshaw R., Molesan A., Kelly K.: Parvovirus infection is associated with myocarditis and myocardial fibrosis in young dogs. Vet. Pathol. 2017, 54, 964-971.

Hong C., Decaro N., Desario C., Tanner P., Pardo M. C., Sanchez S., Buonavoglia C., Saliki J. T.: Occurrence of canine parvovirus type 2c in the United States. J. Vet. Diagn. Invest. Off. Publ. Am. Assoc. Vet. Lab. Diagn. Inc. 2007, 19, 535-539.

Hong C., Tanner P., Pardo M. C., Sanchez S., Buonavoglia C., Saliki J. T.: Occurrence of canine parvovirus type 2c in the United States. J. Vet. Diagn. Investig. Off. Publ. Am. Assoc. Vet. Lab. Diagn. Inc. 2007, 19, 535-539.

Houston D. M., Ribble C. S., Head L. L.: Risk factors associated with parvovirus enteritis in dogs: 283 cases (1982-1991). J. Am. Vet. Med. Assoc. 1996, 208, 542-546.

Hueffer K., Parker J. S. L., Weichert W. S., Geisel R. E., Sgro J.-Y., Parrish C. R., Aquadro C. F., Strassheim M. L., Evermann J. F., Sgro J. Y.: Do two current canine parvovirus type 2 and 2b vaccines provide protection against the new type 2c variant? Vet. Ther. 2008, 9, 94-101.

Hübner S. O., Esteves P. A., Puentes R., Eliopulos N., Pérez R., Franco G., Sosa K., Bianchi P., Furtado A., Hübner S. O., Esteves P. A.: Isolation and characterization of canine parvovirus type 2C (CPV-2C) from symptomatic puppies. Braz. J. Microbiol. 2012, 43, 1005-1009.

Reed A. P., Jones E. V., Miller T. J.: Nucleotide sequence and genome organization of canine parvovirus. J. Virol. 1988, 62, 266-276.

Robinson W. F., Huxtable R. C., Pass D. A.: Canine parvoviral myocarditis: a morphologic description of the natural disease. Vet. Pathol. 1980, 17, 282-293.

Ros C., Bayat N., Wolfberg R., Almedral J. M.: Protoparvovirus Cell Entry. Viruses 2017, 9, pii: E133, doi: 10.3390/v9110313.

Siedek E. M., Schmidt H., Sture G. H., Raue R.: Vaccination with canine parvovirus type 2 (CPV-2) protects against challenge with virulent CPV-2b and CPV-2c. Berl. Munch. Tierarztl. Wochenschr. 2011, 124, 58-64.

Steinel A., Parrish C. R., Bloom M. E., Trayen U.: Parvovirus infections in wild carnivores. J. Wildl. Dis. 2001, 37, 594-607.

Zienius D., Leleits R., Kavaliauskis H., Stankevičius A., Salomskas A.: Phylogenetic characterization of Canine Parvovirus VP2 partial sequences from symptomatic dogs samples. Pol. J. Vet. Sci. 2016, 19, 187-196.

Corresponding author: Wójcik Alicja DVM, Department of Epizootiology and Clinic of Infectious Diseases, Faculty of Veterinary Medicine of the University of Life Sciences in Lublin, Gęboka 30, 20-612 Lublin, Poland; e-mail: lis.alicja@gmail.com