Prospective Cohort Study of Type 2 Diabetes and the Risk of Parkinson's Disease

Citation
Driver, Jane A., Ashley Smith, Julie E. Buring, J. Michael Gaziano, Tobias Kurth, and Giancarlo Logroscino. 2008. Prospective cohort study of type 2 diabetes and the risk of Parkinson’s disease. Diabetes Care 31(10): 2003-2005.

Published Version
doi:10.2337/dc08-0688

Permanent link
http://nrs.harvard.edu/urn-3:HUL.InstRepos:5025232

Terms of Use
This article was downloaded from Harvard University’s DASH repository, and is made available under the terms and conditions applicable to Other Posted Material, as set forth at http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA

Share Your Story
The Harvard community has made this article openly available. Please share how this access benefits you. Submit a story.

Accessibility
Prospective Cohort Study of Type 2 Diabetes and the Risk of Parkinson’s Disease

JANE A. DRIVER, MD, MPH1
ASHLEY SMITH, MS1
JULIE E. BURING, SCRD1,2,3
J. MICHAEL GAZIANO, MD, MPH1,2,5
TOBIAS KURTH, MD, SCRD1,2,3
GIANCARLO LOGROSCINO, MD, PHD1,3

OBJECTIVE — To evaluate the association between type 2 diabetes and newly reported Parkinson’s disease.

RESEARCH DESIGN AND METHODS — Our study included 21,841 participants in the Physicians’ Health Study, a cohort of U.S. male physicians. Diabetes and Parkinson’s disease were self-reported via questionnaire. We used time-varying Cox regression to calculate adjusted relative risk (RR) for Parkinson’s disease.

RESULTS — Over 23 years, 556 individuals with Parkinson’s disease were identified. Subjects with diabetes had an increased Parkinson’s disease risk (multivariable-adjusted RR 1.34 [95% CI 1.01–1.77]). The association remained significant after exclusion of those with known vascular disease. The diagnosis of diabetes was clustered around the diagnosis of Parkinson’s disease and was more apparent among men with short diabetes duration and those without complications from diabetes.

CONCLUSIONS — Results of this large prospective study in men do not suggest that diabetes is a preceding risk factor for Parkinson’s disease. Whether the positive association may be explained by ascertainment bias or a common underlying biological mechanism remains to be established.

Diabetes Care 31:2003–2005, 2008

A positive association between diabetes and Parkinson’s disease has been found in some epidemiologic studies (1–4) but not in others (5–7). Diabetes might promote Parkinson’s disease through various pathways, including suppression of central dopamine levels, inflammation, oxidative stress, and cerebrovascular disease. We evaluated the relationship between type 2 diabetes and Parkinson’s disease in detail in a large prospective cohort.

From the 1Division of Aging, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts; the 2Division of Preventive Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts; the 3Department of Epidemiology, Harvard School of Public Health, Boston, Massachusetts; the 4Department of Ambulatory Care and Prevention, Harvard Medical School, Boston, Massachusetts; and the 5Massachusetts Veterans Epidemiology Research Information Center, Veterans Affairs Boston Healthcare System, Boston, Massachusetts. Corresponding author: Tobias Kurth, tkurth@rics.bwh.harvard.edu. Received 9 April 2008 and accepted 25 June 2008. Published ahead of print at http://care.diabetesjournals.org on 3 July 2008. DOI: 10.2337/dc08-0688. © 2008 by the American Diabetes Association. Readers may use this article as long as the work is properly cited, the use is educational and not for profit, and the work is not altered. See http://creativecommons.org/licenses/by-nc-nd/3.0/ for details. The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked “advertisement” in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.
Type 2 diabetes and Parkinson’s disease risk

Table 1—RRs of Parkinson’s disease according to history of type 2 diabetes

Participants (PD case subjects)	Person-years	RR (95% CI)*	Pinteraction				
	Without diabetes	With diabetes	Without diabetes	With diabetes			
All participants	19,431	2,410	404,923	49,031	1.00 (ref.)	1.34 (1.01–1.77)	0.0002
Baseline age (years)							
<55	11,684 (149)	1,247 (12)	259,924	27,489	1.00 (ref.)	1.12 (0.61–2.07)	0.81
55–64	5,140 (194)	790 (26)	103,743	15,937	1.00 (ref.)	1.57 (1.04–2.38)	0.14
≥65	2,607 (155)	373 (20)	41,255	5,605	1.00 (ref.)	1.25 (0.76–2.05)	0.0002
BMI							
<25 kg/m²	11,720 (289)	858 (31)	246,028	17,147	1.00 (ref.)	1.88 (1.28–2.77)	0.04
25 to <30 kg/m²	7,097 (191)	1,247 (25)	147,109	25,713	1.00 (ref.)	1.14 (0.75–1.72)	0.0002
≥30 kg/m²	614 (18)	305 (2)	11,786	6,171	1.00 (ref.)	0.36 (0.08–1.59)	0.81
Diabetes with complications	19,431 (498)	404,923					
No	1,475 (33)	30,981	1.00 (ref.)	1.63 (1.14–2.33)	0.61		
Yes	935 (25)	18,050		1.10 (0.74–1.64)	0.0002		
Diabetes duration (years)	19,432 (498)	404,931					
<5	562 (22)	11,048	1.00 (ref.)	7.17 (4.59–11.20)	0.0001		
5–9	631 (14)	12,945	1.00 (ref.)	2.03 (1.22–3.36)	0.0001		
10–14	482 (7)	9,921	1.00 (ref.)	0.82 (0.42–1.60)	0.61		
≥15	734 (15)	15,109	1.00 (ref.)	0.73 (0.45–1.18)	0.0002		
Age at onset of diabetes (median)	19,431 (498)	404,923					
≤63.7	1,213 (22)	24,654	1.00 (ref.)	1.18 (0.78–1.79)	0.0002		
>63.7	1,197 (36)	24,377	1.00 (ref.)	1.49 (1.04–2.11)	0.0002		

Data are n (%) unless otherwise indicated. *Adjusted for the following baseline variables: age (continuous), smoking status (never, past, or current), alcohol use (rarely, weekly, or daily), BMI (<25 kg/m², 25 to <30 kg/m², or ≥30 kg/m²), physical activity vigorous enough to work up a sweat (>1–3 times/month or ≥1–3 times/month), hypertension (history of treatment or blood pressure >140 systolic or >90 diastolic), and cholesterol levels (history of treatment or total cholesterol >240). PD, Parkinson’s disease.

supplementary Fig. 1A, available in an online appendix at http://dx.doi.org/10.2337/dc08-0688). A similar clustering was not seen for the diagnosis of hypercholesterolemia (supplementary Fig. 1B).

CONCLUSIONS — In this large prospective study of men, a history of type 2 diabetes was associated with an increased risk of Parkinson’s disease. The association remained significant after adjustment for confounders and the exclusion of participants with known vascular disease. If diabetes causes Parkinson’s disease, one would expect increased duration and severity to increase Parkinson’s disease risk. However, we found the highest risk for Parkinson’s disease among individuals with uncomplicated or short-duration diabetes, regardless of baseline age. This was not explained by selective mortality among those with longer diabetes duration (data not shown). Diabetic individuals who developed Parkinson’s disease had a longer median time to first complication (17.0 vs. 15.4 years), consistent with decreased severity. Those with a normal BMI at baseline had the highest risk of Parkinson’s disease, suggesting a biological pathway other than obesity. Thus, our findings do not suggest that diabetes is a preceding risk factor for Parkinson’s disease.

Comparison of Parkinson’s disease risk between case and matched control subjects showed that the difference in risk was primarily due to a clustering of diabetes cases around the time of Parkinson’s disease identification (supplementary Fig. 1A). Thus, one explanation for the association may be detection bias from increased medical surveillance. However, when we examined the diagnosis of hypercholesterolemia, another condition diagnosed by a blood test, we did not observe a similar pattern (supplementary Fig. 1B).

Another possible explanation is that the development of Parkinson’s disease may influence diabetes risk. By the time Parkinson’s disease becomes clinically apparent, dopaminergic cell loss has reached 70–80% (10). Dopaminergic neurons help motivate feeding behavior when glucose levels are low. This feedback loop is mediated by insulin receptors in the substantia nigra, and postmortem studies of Parkinson’s disease show a loss of these receptors (11). Drugs that modulate central dopamine, such as bromocriptine, are known to affect peripheral glucose control. Changes in glucose control associated with loss of dopaminergic function might occur early in the course of Parkinson’s disease, perhaps even before neurological symptoms develop. If Parkinson’s disease were a cause of diabetes, one would expect an increased incidence after the diagnosis of Parkinson’s disease. However, the incidence dropped dramatically the year after Parkinson’s disease diagnosis (supplementary Fig. 1A). As over 25% of our Parkinson’s disease patients were aged ≥80 years at diagnosis, this might reflect decreased reporting from increased comorbidity and mortality. Parkinson’s disease treatment might also modulate diabetes risk.

In conclusion, results of this large prospective study in men do not suggest that diabetes is a preceding risk factor for Parkinson’s disease. The observed clustering of diabetes cases around the time of Parkinson’s disease diagnosis suggests as-
certainty bias or an underlying common biological mechanism. Future studies are warranted to further unveil this association.

Acknowledgments — J.A.D. is supported by a grant from the Parkinson's Disease Foundation. The Physicians' Health Study is supported by grants CA-34944, CA-40360, and CA-097193 from the National Cancer Institute and grants HL-26490 and HL-34595 from the National Heart, Lung, and Blood Institute, Bethesda, Maryland.

We are grateful to the staff of the Physicians' Health Study and to the 22,071 dedicated physicians who have made this project possible.

References
1. Sandyk R: The relationship between diabetes mellitus and Parkinson's disease. Int J Neurosci 69:125–130, 1993
2. Hu G, Jousilahti P, Bidel S, Antikainen R, Tuomilehto J: Type 2 diabetes and the risk of Parkinson's disease. Diabetes Care 30:842–847, 2007
3. Lipman JJ, Boykin ME, Flora RE: Glucose intolerance in Parkinson's disease. J Chronic Dis 27:573–579, 1974
4. Pressley JC, Louis ED, Tang MX, Cote L, Cohen PD, Glied S, Mayeux R: The impact of comorbid disease and injuries on resource use and expenditures in Parkinsonism. Neurology 60:87–93, 2003
5. Powers KM, Smith-Weller T, Franklin GM, Longstreth WT Jr, Swanson PD, Checkoway H: Diabetes, smoking, and other medical conditions in relation to Parkinson's disease risk. Parkinsonism Relat Disord 12:185–189, 2006
6. Scigliano G, Muscico M, Soliveri P, Piccolo I, Ronchetti G, Girotti F: Reduced risk factors for vascular disorders in Parkinson disease patients: a case-control study. Stroke 37:1184–1188, 2006
7. Simon KC, Chen H, Schwarzschild M, Aschero A: Hypertension, hypercholesterolemia, diabetes, and risk of Parkinson disease. Neurology 69:1688–1695, 2007
8. Steering Committee of the Physicians' Health Study Research Group: Final report on the aspirin component of the ongoing Physicians' Health Study. N Engl J Med 321:129–135, 1989
9. Driver JA, Kurth T, Buring JE, Gaziano JM, Logroscino G: Parkinson disease and risk of mortality: a prospective comorbidity-matched cohort study. Neurology 70:1423–1430, 2008
10. Ben-Shlomo Y, Marmot MG: Survival and cause of death in a cohort of patients with Parkinsonism: possible clues to aetiology? J Neurol Neurosurg Psychiatry 58:293–299, 1995
11. Moroo I, Yamada T, Makino H, Tooyama I, McGeer PL, McGeer EG, Hirayama K: Loss of insulin receptor immunoreactivity from the substantia nigra pars compacta neurons in Parkinson's disease. Acta Neuropathol (Berl) 87:343–348, 1994