Vitreoscilla massiliensis sp. nov., Isolated From the Stool of an Amazonian Patient

Sokhna Ndongo1,2 · Mossaab Maaloum1,3,4 · Magali Richez1 · Rachid Saile4 · Pierre-Edouard Fournier1,3 · Jean Christophe Lagier1,2 · Didier Raoult1,2 · Saber Khelaifia1,2

Received: 18 September 2020 / Accepted: 15 June 2021 / Published online: 24 June 2021 © The Author(s) 2021

Abstract
Strain SN6T is a non-motile and non-spore-forming gram-negative bacterium which was isolated from the stool sample of an Amazonian patient. The optimum growth was observed at 37 °C, pH 7, and 0–5 g/l of NaCl. Based on the 16S rRNA gene sequence similarity, the strain SN6T exhibited 97.5% identity with Vitreoscilla stercoraria strain ATCC_15218 (L06174), the phylogenetically closest species with standing in nomenclature. The predominant fatty acid was hexadecenoic acid (31%). The genomic DNA G + C content of the strain SN6T was 49.4 mol %. After analysis of taxonogenomic data, phenotypic and biochemical characteristics, we concluded that strain SN6T represents a new species of the genus Vitreoscilla for which the name Vitreoscilla massiliensis sp.nov is proposed. The type strain is SN6T (=CSUR P2036 = LN870312 = DSM 100958).

Abbreviations
CSUR Collection de Souches de l’Unité des Rickettsies
DSM Deutsche Sammlung von Mikroorganismen
FAME Fatty acid methyl ester
GC/SM Gaz chromatography/mass spectrometry
OrthoANI Orthologous average nucleotide identity
COGs Clusters of orthologous groups
NR BLAST Non-redundant protein sequence basic local alignment search tool
ORF Open reading frame
GGDC Genome-to-genome distance calculator

Introduction
This strain was isolated from the stool specimen of an obese Amazonian patient as part of the culturomics study [1] to search for microaerophilic bacteria from human gut. The genus Vitreoscilla was first described by Pringsheim in 1951, after having proposed the family Vitreoscillaceae in 1949. In 1986, Strohl et al. proposed three new species with validated names (Vitreoscilla stercoraria, Vitreoscilla beggiatoides and Vitreoscilla filiformis) of this genus [2]. In 2013, through the use of new-generation sequencing tools, the genus Vitreoscilla was placed in the Neisseriaceae family on the basis of its branching in the 16S rRNA gene tree [3]. Within its clade, members of the genus were the only ones capable of evolving in different habitats.

Since the use of the culturomic concept, the repertoire of bacteria isolated from the human digestive microbiota [4] has expanded considerably. The characterization of these new species is based on a ribosomal RNA sequencing coupled with a taxonogenomics description, a strategy combining a comparison of genomic analysis and phenotypic characteristics, including the matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF) spectrum. In the present study, we used this approach to facilitate the identification and the description of this novel species named Vitreoscilla massiliensis sp.nov.
Materials and Methods

Vitreoscilla massiliensis SN6T was isolated by cultivation on 5% sheep blood agar under microaerophilic conditions at 37 °C for 48 h and the strain could not be identified by Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS). The bacterial spectrum obtained was incremented in our database and its comparison with those of BioTyper database spectra and our own collection did not allow for its identification. Sequencing of 16S rRNA gene of the strain SN6T showed a nucleotide sequence similarity of 97.5% with V. stercoraria strain (ATCC 15218) and V. stercoraria strain Göttingen 1488-6 (NR_025894.1), the phylogenetically closest species with standing in nomenclature (Fig. 1).

Optimal Growth

Growth at various temperatures (28 °C, 37 °C, 42 °C, 45 °C) in different atmospheres (aerobic, microaerophilic using CampyGen from Thermo Scientific and anaerobic using AnaeroGenTM from bioMérieux) was tested by culture on Columbia agar (bioMérieux) after 48 h of incubation. The salinity acceptance limit of SN6T strain was investigated by culture on a home-made culture medium consisting of a Columbia agar culture medium (Sigma-Aldrich, Saint-Quentin Fallavier, France) modified by adding (per liter) 5 g MgCl2 6H2O, 5 g MgSO4 7H2O, 2 g KCl, 1 g CaCl2 2H2O; 0.5 g NaBr, 0.5 g NaHCO3, and 2 g glucose with various NaCl concentrations 0, 5, 10, 25, 50, and 75 g/L. The pH range (6; 6.5; 7; 8.5) for growth was also determined and pH was adjusted by addition of HCl or NaOH.

Biochemical and Chemotaxonomic Analysis

The abilities of the strain SN6T to use various substrates as sole carbon sources were evaluated using the API 20NE and API 50CH (bioMérieux) and the presence of some enzyme activities using APIZYM following the manufacturer’s instructions. All tests were performed in duplicate. Susceptibility to antimicrobial agents was determined by the disk (i2a, Montpellier, France) diffusion method [5] on Mueller–Hinton agar in a Petri dish (BioMérieux) after 48 h of incubation at 37 °C under aerobic conditions. The interpretation of inhibition diameters to the manual measurement using a ruler was done using a Sirscan system© (i2a, Montpellier, France) according to the criteria proposed by the Comité de l’Antibiogramme of the French Society for Microbiology [6]. Cellular fatty acid methyl ester (FAME) analysis was performed by GC/MS. Two samples were prepared with approximately 65 mg of bacterial biomass per tube harvested from several culture plates. Fatty acid methyl esters were prepared as previously described by Sasser [7].

Fig. 1 Phylogenetic tree showing the position of Vitreoscilla massiliensis SN6T relative to other phylogenetically close neighbors. Sequences were aligned using CLUSTALW, and phylogenetic inferences are obtained with kimura two-parameter models using the maximum-likelihood method within the MEGA software. Numbers at nodes are percentages of bootstrap values obtained by repeating analysis 1,000 times to generate majority consensus tree. Scale bar indicates 1% nucleotide sequence divergence. The scale bar represents 500 nm.
GC/MS analyses were carried out as previously described by Dione et al. [8]. Briefly, fatty acid methyl esters were separated using an Elite 5-MS column and monitored by mass spectrometry (Clarus 500—SQ 8 S, Perkin Elmer, Courtaboeuf, France). Spectral database search was performed using MS Search 2.0 operated with the Standard Reference Database 1A (NIST, Gaithersburg, USA) and the FAMEs mass spectral database (Wiley, Chichester, UK).

Genome Sequencing and Assembly

DNA of strain SN6T was extracted on the EZ1 biorobot (Qiagen) with a EZ1 DNA tissue kit after pretreatment by a lysozyme incubation at 37 °C, as previously described [9]. Genomic DNA (gDNA) was quantified by a Qubit assay with the high-sensitivity kit (Life technologies, Carlsbad, CA, USA) and sequenced on the MiSeq technology (Illumina). The assembly of the genome was carried out with the help of a pipeline that allowed the creation of an assembly with different softwares (Velvet [10], Spades [11] and Soap Denovo [12], on trimmed (MiSeq and Trimmomatic [13] softwares) or untrimmed data (only MiSeq software). For each of the six assemblies performed, GapCloser [12] was used to reduce gaps. Then, contamination with Phage Phix was identified (blastn against Phage Phix174 DNA sequence) and eliminated. Finally, scaffolds whose size was less than 800 bp were removed and scaffolds whose depth value was lower than 25% of the mean depth were removed (identified as possible contaminants). The best assembly was selected using different criteria (number of scaffolds, N50 and number of N). Spades gave the best assembly with the help of a pipeline that allowed the creation of an assembly with different softwares (Velvet [10], Spades [11] and Soap Denovo [12], on trimmed (MiSeq and Trimmomatic [13] softwares) or untrimmed data (only MiSeq software). For each of the six assemblies performed, GapCloser [12] was used to reduce gaps. Then, contamination with Phage Phix was identified (blastn against Phage Phix174 DNA sequence) and eliminated. Finally, scaffolds whose size was less than 800 bp were removed and scaffolds whose depth value was lower than 25% of the mean depth were removed (identified as possible contaminants). The best assembly was selected using different criteria (number of scaffolds, N50 and number of N). Spades gave the best assembly of this strain, with a depth coverage of 98.

Genome Annotation and Comparison

We used Prodigal as predicting tool of open reading frames (ORFs) [14] with default parameters. The predicted ORFs were excluded if they spanned a sequencing gap region (contained N). Using BLASTP, predicted bacterial protein sequences were blasted against GenBank and clusters of orthologous groups (COG) databases, DNA G+C content was identified by The RAST Server [15], and the tRNAs and rRNAs were predicted using the tRNAscan-SE [16] and Rfam tools [17], respectively. SignalP was used for Signal peptides prediction [18], the number of transmembrane helices was predicted using TMHMM [19], ORFans were identified if their BLASTP E-value was lower than 1e03 for alignment length greater than 80 amino acids. If alignment lengths were smaller than 80 amino acids, we used an E-value of 1e-05. Artemis [20] and DNA Plotter [21] were used for data management and visualization of genomic features, respectively. The Average Nucleotide identity at the genome level between V. massiliensis SN6 CZPV00000000.1, V. stercorearia ATCC_15218 (ARNN00000000.1), V. filiformis ATCC_43190 (CP022423.1), Galbenkiania mobilis E4FC31 (LIVN00000000.1), Chitinilyticum litopenaei DSM_21440 (ATZJ00000000.1), Chitinilyticum aquaticae c14 (AUMS00000000.1), Chitinibacter tainanensis BCRC_17254 (AUCN00000000.1), and Snodgrassella alvi wkB2_wkB2 (CP007446.1) was estimated using Orthologous Average nucleotide identity tool (OAT) [22].

Results and Discussion

Based on the sequence similarity threshold values of the 16S rRNA gene that delineate a new species according to the recommendations of Stackebrandt and Ebers [23], the strain SN6T can, therefore, be classified as a new species of the genus Vitreoscilla and was accordingly named *V. massiliensis* SN6T [24].

Biochemical and Chemotaxonomic Analyses

API ZYM tests show positive reactions for esterase, esterase lipase, leucine arylamidase, acid phosphatase, and naphthol-AS-BI-phosphohydrolase. In API 50CH, no substrate fermentation was observed and in API 20NE assimilation of substrates was observed for L-arginine dihydrolase and potassium gluconate. Some phenotypic characteristics of SN6T with those of closely related species are presented in Table 1. The most abundant fatty acid is hexadecenoic acid (31%). Several hydroxyl fatty acids such as C12:0 3-OH (4.5 ± 1.0) and C14:0 3-OH (2.9 ± 0.1) are described. Other fatty acids such as 9-Hexadecenoic acid (22.0 ± 0.5), Dodecanoic acid (10.2 ± 0.6), 2-hexyl-cyclopropaneoctanoic acid (8.8 ± 0.4), Octadecenoic acid (8.0 ± 0.2), Pentadecanoic acid (5.5 ± 0.2), Tetradecanoic acid (3.3 ± 0.3), and Heptadecanoic acid (1.1 ± 0.1) were detected. The strain SN6T was resistant to Oxacillin and Metronidazole, but susceptible to other antibiotics tested.

Genome Properties

The genome is 3,716,289 bp long with 49.4% GC content (Fig. 2, Table 2). It is composed of 10 scaffolds (composed of 13 contigs). Of the 3 716 predicted genes, 3 627 were protein-coding genes and 89 were RNAs (5 genes are 5S rRNA, 5 genes are 16S rRNA, 5 genes are 23S rRNA and 74 genes are tRNA genes). A total of 2,263 genes (62.3%) were assigned with putative function (by cogs or by NR blast). 475 genes were identified as ORFans (13.1%). The
remaining genes were described as hypothetical proteins (744 genes ≥ 20.5%). A summary of the distribution of *V. massiliensis* genes into the different COGs categories is presented in Table 3.

Genome Comparison

The draft genome sequence and the G+C content of *V. massiliensis* (3.71 MB and 49.4%) is larger than that of...
Vitreoscilla massiliensis sp. nov., Isolated From the Stool of an Amazonian Patient

Fig. 2 Graphical circular map of the genome of Vitreoscilla massiliensis strain SN6T from outside to the center: genes on the forward strand colored by COG categories (only genes assigned to COG), genes on the reverse strand colored by COG categories (only gene assigned to COG), RNA genes (tRNAs green, rRNAs red), GC content, and GC skew (Color figure online)

Table 2 Nucleotide content and gene count levels of the genome

Attribute	Genome (total)	
Value	% of total a	
Size (bp)	3,716,289	100
G+C content (%)	1,836,063	49.42
Coding region (bp)	3,249,937	87.45
Total genes	3,716	100
RNA genes	89	2.39
Protein-coding genes	3,627	100
Genes with function prediction	2,263	62.39
Genes assigned to COGs	2,184	60.21
Genes with peptide signals	677	18.66
Genes with transmembrane helices	774	21.33
Genes associated to virulence	715	19.71
ORF genes	475	13.09
Genes associated with PKS or NRPS	20	0.55
Genes associated to toxine/antitoxine	115	3.17

aThe total is based on either the size of the genome in base pairs or the total number of protein-coding genes in the annotated genome

Vitreoscilla massiliensis (mas.si.li.en’sis, L. fem. adj. massiliensis, of Massilia, the Latin name of Marseille where strain SN6T was first isolated).

Cells are Gram-negative (0.5 × 1.5–2 µm), non-motile, non-spore-forming, and often occur in a long chain under electron microscopy. V. massiliensis SN6T grows at 28–37 °C and pH 7–7.5 and does not grow above 0.5% salinity. V. massiliensis SN6T grows under microaerophilic atmosphere and a lower growth was observed under anaerobic conditions. On agar plates, colonies were gray, smooth, and hemolytic with 0.5 to 1 mm in diameter after 48 h of incubation under aerobic conditions. They are catalase and oxidase negative. Tests were negative for urease, the reduction of nitrates, indole production, and fermentation of β-galactosidase. API 50CH shows that the carbohydrates provided by this panel were not used. V. massiliensis SN6T is susceptible to Vancomycin (0.5), Cefotaxime (0.94), Tobamycin (0.38 µg), Fosfomycin (16 µg), Teicoplanin (1.5 µg), Rifampicin (0.29 µg), Colistin (0.32 µg), Imipenem (0.23 µg), Erythromycin (0.25 µg), Ceftriaxone (0.32 µg), and resistant to Oxacillin and Metronidazole. Major fatty acids are hexadecanoic acid (C16:0), 9-hexadecenoic acid (C16:1n7), and an unusual cylo fatty acid named 2-hexylcyclopropanoic acid (C16:0 9,10-methylene). The DNA G+C content is about 49.4%.

The type strain is SN6T (=CSUR P2036 = LN870312 = DSM 100958) and was isolated from the stool specimen of an obese Amazonian patient.

Acknowledgements The authors thank the Xegen Company (http://www.xegen.fr/) for automating the genomic annotation process. They also thank Aurelia Caputo for submitting the genomic sequences to GenBank.

This work has benefited from the French State support, managed by the ‘Agence Nationale pour la Recherche', including the ‘Programme d’Investissement d’avenir’ under the reference Méditerranée Infection...
Table 3: Number of genes associated with the 25 general COG functional categories

Code	Value	% of total	Description
[J]	213	5.872622	Translation
[A]	1	0.027570996	RNA processing and modification
[K]	121	3.360906	Transcription
[L]	88	2.4262476	Replication, recombination and repair
[B]	4	0.110283986	Chromatin structure and dynamics
[D]	32	0.8822719	Cell cycle control, mitosis and meiosis
[Y]	0	0	Nuclear structure
[V]	44	1.2131238	Defense mechanisms
[T]	85	2.3435347	Signal transduction mechanisms
[M]	140	3.859393	Cell wall/membrane biogenesis
[N]	29	0.7995589	Cell motility
[Z]	0	0	Cytoskeleton
[W]	19	0.52384895	Extracellular structures
[U]	27	0.7441469	Intracellular trafficking and secretion
[O]	97	2.6743865	Post-translational modification, protein turnover, chaperones
[X]	77	2.1229665	Mobilome, prophages, transposons
[C]	177	4.8800664	Energy production and conversion
[G]	125	3.4463744	Carbohydrate transport and metabolism
[E]	287	7.9128757	Amino acid transport and metabolism
[F]	64	1.7645438	Nucleotide transport and metabolism
[H]	119	3.2809484	Coenzyme transport and metabolism
[I]	133	3.6669421	Lipid transport and metabolism
[P]	136	3.7496552	Inorganic ion transport and metabolism
[Q]	90	2.4813895	Secondary metabolites biosynthesis, transport and catabolism
[R]	234	6.4516125	General function prediction only
[S]	145	3.9977942	Function unknown
-	1443	39.784946	Not in COGs

Fig. 3 Distribution of functional classes of predicted genes according to the clusters of orthologous groups of proteins
Table 4 Pairwise comparison of *Vitreoscilla massiliensis* SN6^T with other species using GGDC, formula 2 (DNA-DNA hybridization estimates based on identities/HSP length)

	C. tainanensis	*C. aquatile*	*G. mobilis*	*S. alvi*	*C. litopenaei*	*V. stercoraria*	*V. filiformis*
V. massiliensis	23.20%	30.00%	29.40%	26.80%	30.80%	21.50%	28.30%
	±2.4	±2.45	±2.45	±2.45	±2.45	±2.35	±2.45
C. tainanensis	18.80%	19.30%	19.30%	19.20%	19.70%	26.30%	26.30%
	±2.3	±2.25	±2.45	±2.35	±2.35	±2.3	±2.3
C. aquatile	18.30%	37.20%	25.60%	25.60%	25.60%	28.40%	19.50%
	±2.25	±2.5	±2.45	±2.45	±2.45	±2.3	±2.3
G. mobilis	29.30%	18.7%	18.7%	18.7%	18.7%	18.7%	18.7%
	±2.45	±2.25	±2.45	±2.35	±2.35	±2.3	±2.3
S. alvi	33.8%	24.00%	24.00%	24.00%	24.00%	29.60%	29.60%
	±2.5	±2.35	±2.45	±2.45	±2.45	±2.45	±2.45
C. litopenaei	32.9%	18.40%	18.40%	18.40%	18.40%	18.40%	18.40%
	±2.5	±2.25	±2.25	±2.25	±2.25	±2.25	±2.25
V. stercoraria							31.60%
							±2.45

V. massiliensis *Vitreoscilla massiliensis* SN6^T, *G. mobilis* *Gulbenkiania mobilis* E4FC31, *C. litopenaei* *Chitinilyticum litopenaei* DSM 21440^c, *S. alvi* *Snodgrassella alvi* wkB2 wkB2, *C. tainanensis* *Chitinibacter tainanensis* BCRC 17254, *C. aquatile* *Chitinilyticum aquatile* c14, *V. stercoraria* *Vitreoscilla stercoraria* ATCC 15218 and *V. filiformis* *Vitreoscilla filiformis* ATCC 15551
Author Contributions SN, MM, and MR performed the experiments. SN and SK wrote the manuscript. SK, DR, RS, and PEF reviewed the drafts of the manuscript. SK, JCL, and DR are responsible for data interpretation.

Declarations

Conflict of interest The authors have no conflicts of interest to declare.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

1. Lagier J-C, Edouard S, Pagnier I et al (2015) Current and past strategies for bacterial culture in clinical microbiology. Clin Microbiol Rev 28:208–236
2. Strohl WR, Schmidt TM, Lawry NH et al (1986) Characterization of Vitreoscilla beggiatoidea and Vitreoscilla filiformis sp. nov., nom. rev., and comparison with Vitreoscilla stercoraria and Beggiatoa alba. Int J Syst Evol Microbiol 36:302–313
3. Adeolu M, Gupta RS (2013) Phylogenomics and molecular signatures for the order Neisseriales: proposal for division of the order Neisseriales into the emended family Neisseriaceae and Chromobacteriaceae fam. nov. Antonie Van Leeuwenhoek 104:1–24
4. Lagier J-C, Khelaiafi S, Alou MT et al (2016) Culture of previously uncultured members of the human gut microbiota by culturomics. Nat Microbiol 1:16203
5. Le Page S, van Bellen A, Fulchiron C et al (2015) Evaluation of the PREVI® Isola automated seeder system compared to reference manual inoculation for antibiotic susceptibility testing by the disk diffusion method. Eur J Clin Microbiol Infect Dis Off Publ Eur Soc Clin Microbiol 34:1859–1869
6. The European Committee on Antimicrobial Susceptibility Testing (2016) Breakpoint tables for interpretation of MICs and zone diameters. http://www.eucast.org/clinical_breakpoints/
7. Sasser M (2006) Bacterial identification by gas chromatographic analysis of fatty acid methyl esters (GC-FAME). MIDI, Technical Note, New York
8. Dione N, Sankar SA, Lagier J-C et al (2016) Genome sequence and description of Anaerosalibacter massiliensis sp. nov. New Microbes New Microbiol 10:66–76
9. Lagier J-C, Ramasamy D, Rivet R et al (2012) Non-contiguous finished genome sequence and description of Cellulomonas massiliensis sp. nov. Stand Genomic Sci 7:258–270
10. Zerbino DR, Birney E (2008) Velvet: algorithms for de novo short read assembly using de Bruijn graphs. Genome Res 18:821–829
11. Bankevich A, Nurk S, Antipov D et al (2012) SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol J Comput Mol Cell Biol 19:455–477
12. Luo R, Liu B, Xie Y et al (2012) SOAPdenovo2: an empirically improved memory-efficient short-read de novo assembler. GigaScience 1:18
13. Bolger AM, Lohse M, Usadel B (2014) Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinforma Oxf Engl 30:2114–2120
14. Hyatt D, Chen G-L, Locascio PF et al (2010) Prodigal: prokaryotic gene recognition and translation initiation site identification. BMC Bioinform 11:119
15. Aziz RK, Bartels D, Best AA et al (2008) The RAST server: rapid annotations using subsystems technology. BMC Genom 9:75
16. Avni D, Biberman Y, Meyuhas O (1997) The 5′ terminal oligopyrimidine tract confers translational control on TOP mRNAs in a cell-type- and sequence context-dependent manner. Nucleic Acids Res 25:995–1001
17. Lagesen K, Hallin P, Rødland EA et al (2007) RNaMMer: consistent and rapid annotation of ribosomal RNA genes. Nucleic Acids Res 35:3100–3108
18. Bendtsen JD, Nielsen H, von Heijne G, Brunak S (2004) Improved prediction of signal peptides: signalp 3.0. J Mol Biol 340:783–795
19. Krogh A, Larsson B, von Heijne G, Sonnhammer EL (2001) Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes. J Mol Biol 305:567–580
20. Carver T, Thomson N, Blesby A et al (2009) DNAPlotter: circular and linear interactive genome visualization. Bioinforma Oxf Engl 25:119–120
21. Rutherford K, Parkhill J, Crook J et al (2000) Artemis: sequence visualization and annotation. Bioinforma Oxf Engl 16:944–945
22. Lee I, Kim YO, Park S-C, Chun J (2015) OrthoANI: an improved algorithm and software for calculating average nucleotide identity. Int J Syst Evol Microbiol 66:1100–1103
23. Stacksbrandt E, Ebers J (2006) Taxonomic parameters revisited: tarnished gold standards. Microbiol Today 33:152–155
24. Ndongo S, Lagier J-C, Raoult D, Fournier P-E (2018) Gorillibacterium timonense sp. nov., isolated from Amazonian patients. New Microbes New Infect 23:48–51
25. Mayfield DC, Kester AS (1972) Physiological studies on Beggiatoa alba and a new Beggiatoa sp. J Bacteriol 112:1052–1056
26. Vaz-Moreira I, Nobre MF, Nunes OC, Manaia CM (2007) characterization of Anaerosalibacter massiliensis sp. nov. as a new bacterial species isolated from trout stomachs of obtuse Amazonian patients. New Microbes New Infect 23:48–51
27. Chang S-C, Wu M-C, Chen W-M et al (2009) Chitinilyticum litopenaei sp. nov., isolated from a freshwater shrimp pond, and emended description of the genus Chitinilyticum. Int J Syst Evol Microbiol 57:1108–1112
28. Chern L-L, Stackebrandt E, Lee S-F et al (2004) Chitinibacterium tainanensis gen. nov., sp. nov., a chitin-degrading aerobe from soil in Taiwan. Int J Syst Evol Microbiol 54:1387–1391
29. Kwong WK, Moran NA (2013) Cultivation and characterization of the gut symbionts of honey bees and bumble bees: description of Snodgrassella alvi gen. nov., sp. nov., a member of the family Neisseriaceae of the Betaproteobacteria, and Gilliamella apicola gen. nov., sp. nov., a member of the family Orbaceae fam. nov., Orbales ord. nov., a sister taxon to the order ”Enterobacteriales” of the Gammaproteobacteria. Int J Syst Evol Microbiol 63:2008–2018

Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.