IRRATIONAL PROOFS FOR THREE THEOREMS OF STANLEY

MATTHIAS BECK AND FRANK SOTTILE

ABSTRACT. We give new proofs of three theorems of Stanley on generating functions for the integer points in rational cones. The first relates the rational generating function $\sigma_{v+K}(x) := \sum_{m \in (v+K) \cap \mathbb{Z}^d} x^m$, where K is a rational cone and $v \in \mathbb{R}^d$, with $\sigma_{-v+K^o}(1/x)$. The second theorem asserts that the generating function $1 + \sum_{n \geq 1} L_P(n) t^n$ of the Ehrhart quasi-polynomial $L_P(n) := \# (nP \cap \mathbb{Z}^d)$ of a rational polytope P can be written as a rational function $\nu_P(t) (1-t)^{\dim P+1}$ with nonnegative numerator ν_P. The third theorem asserts that if $P \subseteq Q$, then $\nu_P \leq \nu_Q$. Our proofs are based on elementary counting afforded by irrational decompositions of rational polyhedra.

1. Introduction

For us, a (convex) rational polyhedron P is the intersection of finitely many half-spaces in \mathbb{R}^d, where each half-space has the form $\{(x_1, x_2, \ldots, x_d) \in \mathbb{R}^d | a_1 x_1 + a_2 x_2 + \cdots + a_d x_d \leq b\}$ for some integers a_1, a_2, \ldots, a_d, b. A rational cone K is a rational polyhedron with a unique vertex at the origin. We are interested in the generating function $\sigma_{v+K}(x) := \sum_{m \in (v+K) \cap \mathbb{Z}^d} x^m$ for the integral points of the shifted (“affine”) cone $v + K$ and its companion $\sigma_{v+K^o}(x)$ for the integral points of the (relative) interior K^o of K. Here, x^m denotes the product $x_1^{m_1} x_2^{m_2} \cdots x_d^{m_d}$. The function σ_{v+K} (as well as σ_{v+K^o}) is a rational function in the variables x. Stanley’s Reciprocity Theorem \cite{Stanley} relates the functions σ_{v+K} and σ_{-v+K^o} for any $v \in \mathbb{R}^d$. We abbreviate the vector $(1/x_1, 1/x_2, \ldots, 1/x_d)$ by $1/x$.

Theorem 1 (Stanley). Suppose that K is a rational cone and $v \in \mathbb{R}^d$. Then, as rational functions, $\sigma_{v+K}(x) = (-1)^{\dim K} \sigma_{-v+K^o}(1/x)$.

There are proofs of Theorem 1 which involve local cohomology in commutative algebra \cite[Section I.8]{Eisenbud} and complex analysis \cite{Stanley}. Many proofs, including ours, first prove it for the easy case of simplicial cones, and then use a decomposition of K into simplicial cones to deduce...
This approach requires some device to handle the subsequent overcounting of integral points that occurs as the cones in the decomposition overlap along faces. In other proofs, this device is either a shelling argument [15], or a valuation (finitely additive measure) [6], or some other version of inclusion-exclusion. In contrast, our method of ‘irrational decomposition’ requires no such device as the proper faces of the cones we use contain no integral points.

We use the same construction to prove Stanley’s Positivity Theorem. A rational polytope is a bounded rational polyhedron. A rational polytope is integral if its vertices lie in \(\mathbb{Z}^d \). For an integral polytope \(P \subset \mathbb{R}^d \), Ehrhart [3] showed that the function

\[
L_P(n) := \#(nP \cap \mathbb{Z}^d)
\]

is a polynomial in the integer variable \(n \). If the polytope \(P \) is only rational, then the function \(L_P(n) \) is a quasi-polynomial. More precisely, let \(p \) be a positive integer such that \(pP \) is integral. Then there exist polynomials \(f_0, f_1, \ldots, f_{p-1} \) so that

\[
L_P(n) = f_{n \mod p}(n).
\]

(It is most efficient, but not necessary, to take the minimal such \(p \).)

The generating function for \(L_P \) is a rational function with denominator \((1 - t^p)^{\dim P + 1}\) (see, for example, [14, Chapter 4] or the proof we give in Section 3). But one can say more [11].

Theorem 2 (Stanley). Suppose \(P \) is a rational \(d \)-polytope with \(pP \) integral and set

\[
1 + \sum_{n \geq 1} L_P(n) t^n = \frac{a_{(d+1)p-1} t^{(d+1)p-1} + a_{(d+1)p-2} t^{(d+1)p-2} + \cdots + a_0}{(1 - t^p)^{d+1}}.
\]

Then \(a_0, a_1, \ldots, a_{(d+1)p-1} \geq 0 \).

Even more can be said. Suppose that \(Q \) is a rational polytope containing \(P \) and that both \(pP \) and \(pQ \) are integral. Supressing their dependence on \(p \), let \(\nu_P \) and \(\nu_Q \) be the numerators of the rational generating functions [11] for \(P \) and \(Q \), respectively. We have \(d = \dim P < \dim Q = e \) and so \(\nu_Q \) is the numerator of the rational generating function for \(L_Q(n) \), which has denominator \((1 - t^p)^e\), while \(\nu_P \) is the numerator of the rational generating function for \(L_P(n) \), which has denominator \((1 - t^p)^e\). Stanley’s Monotonicity Theorem [12] asserts that every coefficient of \(\nu_Q \) dominates the corresponding coefficient of \(\nu_P \), that is, \(\nu_P \leq \nu_Q \).

Theorem 3 (Stanley). Suppose \(P \subset Q \) are rational polytopes with \(pP \) and \(pQ \) integral. Then \(\nu_P \leq \nu_Q \).

While Theorem [11] may seem unconnected to Theorems [12] and [13], they are related by a construction which—to the best of our knowledge—is due to Ehrhart. Lift the vertices \(v_1, v_2, \ldots, v_m \) of a rational polytope \(P \subset \mathbb{R}^d \) into \(\mathbb{R}^{1+d} \), by adding 1 as their first coordinate, and let \(p \) be a positive integer such that \(pP \) is integral. Then

\[
v_1' = (p, pv_1), \quad v_2' = (p, pv_2), \quad \ldots, \quad v_m' = (p, pv_m)
\]
are integral. Now we define the **cone over** \(P \) to be
\[
\text{cone}(P) = \{ \lambda_1 v'_1 + \lambda_2 v'_2 + \cdots + \lambda_m v'_m \mid \lambda_1, \lambda_2, \ldots, \lambda_m \geq 0 \} \subset \mathbb{R}^{1+d}.
\]
We can recover our original polytope \(P \) (strictly speaking, the set \(\{(1,x) \mid x \in P\} \)) by cutting \(\text{cone}(P) \) with the hyperplane \(x_0 = 1 \). Cutting \(\text{cone}(P) \) with the hyperplane \(x_0 = 2 \), we obtain a copy of \(2P \), cutting with \(x_0 = 3 \) gives a copy of \(3P \), etc. Hence
\[
\sigma_{\text{cone}(P)}(x_0, x_1, \ldots, x_d) = 1 + \sum_{n \geq 1} \sigma_{nP}(x_1, \ldots, x_d) x_0^n.
\]
Since \(\sigma_{nP}(1,1,\ldots,1) = \#(nP \cap \mathbb{Z}^d) \), we obtain
\[
\sigma_{\text{cone}(P)}(t,1,1,\ldots,1) = 1 + \sum_{n \geq 1} L_P(n) t^n.
\]
A nice application of Theorem 1 is the following reciprocity theorem, which was conjectured (and partially proved) by Ehrhart [4] and proved by Macdonald [8].

Corollary 4 (Ehrhart-Macdonald). The quasi-polynomials \(L_P \) and \(L_{P^c} \) satisfy
\[
L_P(-t) = (-1)^{\dim P} L_{P^c}(t).
\]
As with Theorem 1 most proofs of Theorem 2 use shellings of a polyhedron or finite additive measures (see, e.g., [5, 8, 9]). The only exceptions we are aware of are proofs via complex analysis (see, e.g., [10]) and commutative algebra (see, e.g., [13, Section I.8]). We feel that no existing proof is as elementary as the one we give.

We remark that the same technique gives a similarly elementary and subtraction-free proof of Brion’s Theorem [2]. This proof will appear in [1].

2. Stanley’s Reciprocity Theorem for cones

Any cone has a triangulation into simplicial cones which are cones with a minimal number of boundary hyperplanes (see, e.g., [7]). This is the starting point for our proof, which differs from other proofs that use such a decomposition. The decomposition that we use is, from the view of integer points, non-overlapping, and thus we need only apply elementary (as in elementary–school) counting arguments, sidestepping any hint of inclusion-exclusion.

Irrational Proof of Theorem 7 Triangulate \(K \) into simplicial rational cones \(K_1, K_2, \ldots, K_n \), all having the same dimension as \(K \). Now there exists a vector \(s \in \mathbb{R}^d \) such that
\[
(v + K^\circ) \cap \mathbb{Z}^d = (s + K) \cap \mathbb{Z}^d
\]
and
\[
\partial(\pm s + K_j) \cap \mathbb{Z}^d = \emptyset \quad \text{for all } j = 1, \ldots, m.
\]
In fact, \(s \) may be any vector in the relative interior of some cone \(v + K_i \) for which \(s - v \) is short enough such that (2) holds.
This means, in particular, that there are no lattice points on the boundary of v + K, and so (2) implies (-v + K) ∩ Z^d = (-s + K) ∩ Z^d. Furthermore, because of (3),

\[\sigma_{-v+K}(x) = \sigma_{-s+K}(x) = \sum_{j=1}^{m} \sigma_{-s+K_j}(x) \]

and

\[\sigma_{v+K^o}(x) = \sigma_{s+K}(x) = \sum_{j=1}^{m} \sigma_{s+K_j}(x) . \]

The result now follows from reciprocity for simplicial cones, which is Lemma 5 below. □

Despite our title, the vector s − v need not be irrational as any short rational vector will do.

Lemma 5. Fix linearly independent vectors w_1, w_2, . . . , w_d ∈ Z^d, and let

\[K = \{ \lambda_1 w_1 + \lambda_2 w_2 + \cdots + \lambda_d w_d \mid \lambda_1, \ldots, \lambda_d \geq 0 \} . \]

Then for those s ∈ R^d for which the boundary of the shifted simplicial cone s + K contains no integer point,

\[\sigma_{s+K} \left(\frac{1}{x} \right) = (-1)^d \sigma_{-s+K}(x) . \]

As in Theorem 1, the reciprocity identity is one of rational functions. In the course of the proof, we will show that σ_{s+K} is indeed a rational function for s ∈ R^d.

Proof. If we tile the cone s + K with N{w_1, w_2, . . . , w_d}–translates of the half-open parallelepiped s + P, where

\[P := \{ \lambda_1 w_1 + \lambda_2 w_2 + \cdots + \lambda_d w_d \mid 0 \leq \lambda_1, \lambda_2, \ldots, \lambda_d < 1 \} , \]

then we can express σ_{s+K} using geometric series

\[\sigma_{s+K}(x) = \frac{\sigma_{s+P}(x)}{(1 - x^{w_1})(1 - x^{w_2}) \cdots (1 - x^{w_d})} . \]

(This proves that σ_{s+K} is a rational function.) Similarly,

\[\sigma_{-s+K}(x) = \frac{\sigma_{-s+P}(x)}{(1 - x^{w_1})(1 - x^{w_2}) \cdots (1 - x^{w_d})} , \]

so we only need to relate the parallelepipeds s + P and -s + P. By assumption, s + P contains no integer points on its boundary, and so we may replace P by its closure. Note that P = w_1 + w_2 + · · · + w_d − P, so we have the identity

\[s + P = -(s + P) + w_1 + w_2 + \cdots + w_d . \]

In terms of generating functions, (5) implies that

\[\sigma_{s+P}(x) = \sigma_{-s+P} \left(\frac{1}{x} \right) x^{w_1} x^{w_2} \cdots x^{w_d} , \]
whence

\[
\sigma_{s+K} \left(\frac{1}{x} \right) = \frac{\sigma_{s+p} \left(\frac{1}{x} \right)}{(1-x^{-w_1})(1-x^{-w_2}) \cdots (1-x^{-w_d})} = \frac{\sigma_{-s+p}(x)x^{-w_1}x^{-w_2} \cdots x^{-w_d}}{(1-x^{-w_1})(1-x^{-w_2}) \cdots (1-x^{-w_d})} = \frac{\sigma_{-s+p}(x)(x^{w_1}-1)(x^{w_2}-1) \cdots (x^{w_d}-1)}{(1-x^{w_1})(1-x^{w_2}) \cdots (1-x^{w_d})}
\]

\[
= (-1)^d \sigma_{-s+K}(x).
\]

\[\square\]

Lemma 5 is essentially due to Ehrhart. The new idea here is our ‘irrational’ decomposition.

3. Stanley’s Positivity and Monotonicity Theorems for Ehrhart Polynomials

Irrational Proof of Theorem 2. As before, triangulate \(\text{cone}(P) \subset \mathbb{R}^{d+1} \) into simple rational cones \(K_1, K_2, \ldots, K_m \), each of whose generators are among the generators \((p, pv_i)\) of \(\text{cone}(P) \). (Such a triangulation always exists; see, e.g., [7].) Again there exists a vector \(s \in \mathbb{R}^{d+1} \) such that

\[
\text{cone}(P) \cap \mathbb{Z}^d = (s + \text{cone}(P)) \cap \mathbb{Z}^d
\]

and no facet of any cone \(s + K_i \) contains any integral points. Thus every integral point in \(s + \text{cone}(P) \) belongs to exactly one simplicial cone \(s + K_j \), and we have

\[
\text{cone}(P) \cap \mathbb{Z}^d = (s + \text{cone}(P)) \cap \mathbb{Z}^d = \bigcup_{j=1}^m ((s + K_j) \cap \mathbb{Z}^d)
\]

and this union is disjoint. We obtain the identity of generating functions,

\[
\sigma_{\text{cone}(p)}(x) = \sum_{j=1}^m \sigma_{s+K_j}(x).
\]

But now we recall from the introduction that

\[
1 + \sum_{n \geq 1} L_P(n) t^n = \sigma_{\text{cone}(p)}(t, 1, 1, \ldots, 1) = \sum_{j=1}^m \sigma_{s+K_j}(t, 1, 1, \ldots, 1).
\]

So it suffices to show that the rational generating functions \(\sigma_{s+K_j}(t, 1, 1, \ldots, 1) \) for the simplicial cones \(s + K_j \) have nonnegative numerators and denominators of the form \((1-t^p)^{d+1}\).

In this case, the cone \(s + K_j \) has integral generators of the form \(w_i = (p, pv_i) \), for some vertices \(v_1, \ldots, v_{d+1} \) of the polytope \(P \), where \(p \) is a positive integer such that \(pP \) is integral.
Substituting \((t, 1, 1, \ldots, 1)\) into the concrete form of the rational generating function (4), gives denominator \((1 - t^d)^{d+1}\) and numerator the generating function for the integer points in the parallelepiped which is generated by \(w_1, \ldots, w_{d+1}\) and shifted by \(s\), where the coefficient \(a_i\) of \(t^i\) counts points with first coordinate \(i\).

\[\square\]

Irrational Proof of Theorem 3. Suppose first that \(\dim \mathcal{P} = \dim \mathcal{Q}\). As in the previous proof, suppose that \(\mathcal{K}_1, \mathcal{K}_2, \ldots, \mathcal{K}_m\) triangulate \(\text{cone}(\mathcal{P})\) into simplicial rational cones, each of whose generators are among the generators \((p, pv_i)\) of \(\text{cone}(\mathcal{P})\). We may extend this to a triangulation \(\mathcal{L}_1, \mathcal{L}_2, \ldots, \mathcal{L}_l\) of \(\text{cone}(\mathcal{Q})\), where the additional simplicial cones have generators from the given generators \((p, pv_i)\) of \(\text{cone}(\mathcal{P})\) and \((p, pw_i)\) of \(\text{cone}(\mathcal{Q})\). The generators of each cone \(\mathcal{L}_j\) and the irrational shift vector \(s\) together give a parallelepiped with no lattice points on its boundary, and the coefficient of \(t^j\) in \(\nu_{\mathcal{P}}\) is the number of integer points with last coordinate \(j\) in the union of these parallelepipeds for \(\mathcal{K}_1, \ldots, \mathcal{K}_m\). The result follows as the coefficient of \(t^j\) in \(\nu_{\mathcal{Q}}\) is the number of integer points with last coordinate \(j\) in the parallelepipeds for \(\mathcal{K}_1, \ldots, \mathcal{K}_l\), and \(m < l\).

If however, \(\dim \mathcal{P} < \dim \mathcal{Q}\), then the triangulation \(\mathcal{K}_1, \mathcal{K}_2, \ldots, \mathcal{K}_m\) of \(\text{cone}(\mathcal{P})\) extends to a triangulation \(\mathcal{L}_1, \mathcal{L}_2, \ldots, \mathcal{L}_l\) of \(\text{cone}(\mathcal{Q})\), where now the simplicial cones \(\mathcal{K}_i\) are \(d\)-faces of the simplicial cones \(\mathcal{L}_j\). Note that the irrational decomposition \(s + \mathcal{L}_j, j = 1, \ldots, l\) restricts to an irrational decomposition of \(\text{cone}(\mathcal{P})\) given by some vector \(s' \in \mathbb{R} \cdot \text{cone}(\mathcal{P})\). Moreover, for every \(i = 1, \ldots, m\) there is a unique \(a(i)\) with \(1 \leq a(i) \leq l\) such that \(s' + \mathcal{K}_i \subset s + \mathcal{L}_{a(i)}\). The same is true for the parallelepipeds generated by the vectors \((p, v)\) along the rays of these cones, and also for their shifts by \(s'\) and \(s\). Then the result follows by the same argument as before once we interpret the coefficients of \(t^j\) in \(\nu_{\mathcal{P}}\) and \(\nu_{\mathcal{Q}}\) as the number of points with second coordinate \(j\) in the union of these parallelepipeds.

\[\square\]

References

1. Matthias Beck, Christian Haase, and Frank Sottile, [Theorems of Brion, Lawrence, and Varchenko on rational generating functions for cones], in preparation.
2. Michel Brion, Points entiers dans les polyédres convexes, Ann. Sci. École Norm. Sup. 21 (1988), no. 4, 653–663.
3. Eugène Ehrhart, Sur les polyédres rationnels homothétiques à \(n\) dimensions, C. R. Acad. Sci. Paris 254 (1962), 616–618.
4. , Sur un problème de géométrie diophantienne linéaire. II. Systèmes diophantiens linéaires, J. Reine Angew. Math. 227 (1967), 25–49.
5. , Polynômes arithmétiques et méthode des polyédres en combinatoire, Birkhäuser Verlag, Basel, 1977, International Series of Numerical Mathematics, Vol. 35.
6. Daniel A. Klain and Gian-Carlo Rota, Introduction to geometric probability, Lezioni Lincee. [Lincei Lectures], Cambridge University Press, Cambridge, 1997.
7. Carl W. Lee, Subdivisions and triangulations of polytopes, Handbook of discrete and computational geometry, CRC Press Ser. Discrete Math. Appl., CRC, Boca Raton, FL, 1997, pp. 271–290.
8. Ian G. Macdonald, Polynomials associated with finite cell-complexes, J. London Math. Soc. (2) 4 (1971), 181–192.
9. Peter McMullen, Lattice invariant valuations on rational polytopes, Arch. Math. (Basel) 31 (1978/79), no. 5, 509–516.
10. Richard P. Stanley, *Combinatorial reciprocity theorems*, Advances in Math. 14 (1974), 194–253.
11. ______, *Decompositions of rational convex polytopes*, Ann. Discrete Math. 6 (1980), 333–342, Combinatorial mathematics, optimal designs and their applications (Proc. Sympos. Combin. Math. and Optimal Design, Colorado State Univ., Fort Collins, Colo., 1978).
12. ______, *A monotonicity property of h-vectors and h*-vectors*, European J. Combin. 14 (1993), no. 3, 251–258.
13. ______, *Combinatorics and commutative algebra*, second ed., Progress in Mathematics, vol. 41, Birkhäuser Boston Inc., Boston, MA, 1996.
14. ______, *Enumerative combinatorics. Vol. 1*, Cambridge Studies in Advanced Mathematics, vol. 49, Cambridge University Press, Cambridge, 1997, With a foreword by Gian-Carlo Rota, Corrected reprint of the 1986 original.
15. Günter M. Ziegler, *Lectures on polytopes*, Springer-Verlag, New York, 1995, Revised edition, 1998; “Updates, corrections, and more” at www.math.tu-berlin.de/~ziegler.

Department of Mathematics, San Francisco State University, San Francisco, CA 94132, USA

E-mail address: beck@math.sfsu.edu

URL: http://math.sfsu.edu/beck

Department of Mathematics, Texas A&M University, College Station, TX 77843-3368, USA

E-mail address: sottile@math.tamu.edu

URL: http://www.math.tamu.edu/~sottile