Search for resonant pair production of Higgs bosons in the bbZZ channel in proton-proton collisions at $\sqrt{s} = 13$ TeV

The CMS Collaboration

Abstract

A search for the production of a narrow-width resonance decaying into a pair of Higgs bosons decaying into the bbZZ channel is presented. The analysis is based on data collected with the CMS detector during 2016, in proton-proton collisions at the LHC, corresponding to an integrated luminosity of 35.9 fb$^{-1}$. The final states considered are the ones where one of the Z bosons decays into a pair of muons or electrons, and the other Z boson decays either to a pair of quarks or a pair of neutrinos. Upper limits at 95% confidence level are placed on the production of narrow-width spin-0 or spin-2 particles decaying to a pair of Higgs bosons, in models with and without an extended Higgs sector. For a resonance mass range between 260 and 1000 GeV, limits on the production cross section times branching fraction of a spin-0 and spin-2 resonance range from 0.1 to 5.0 pb and 0.1 to 3.6 pb, respectively. These results set limits in parameter space in bulk Randall–Sundrum radion, Kaluza–Klein excitation of the graviton, and N2HDM models. For specific choices of parameters the N2HDM can be excluded in a mass range between 360 and 620 GeV for a resonance decaying to two Higgs bosons. This is the first search for Higgs boson resonant pair production in the bbZZ channel.

“Published in Physical Review D as doi:10.1103/PhysRevD.102.032003.”
1 Introduction

The discovery of the Higgs boson (h) in 2012 [1–4] has led to a detailed program of studies of the Higgs field couplings to the elementary particles of the standard model (SM) of particle physics: leptons, quarks, and gauge bosons. To fully understand the form of the Higgs field potential, which is a key element in the formulation of the SM, it is important to also study the self-interaction of the Higgs boson. The self-interaction can be investigated through measurements of the production of a pair of Higgs bosons (hh). In the SM, hh production is a rare, nonresonant process, with a small production rate [5] that will require the future data sets of the high-luminosity LHC to be observed [5]. Hence, an early observation of hh production, a resonant production in particular, would be a spectacular signature of physics beyond the standard model (BSM). The production of gravitons, radions, or stoponium [6–8], for example, could lead to s-channel hh production via narrow-width resonances. The breadth of the Higgs boson decay channels provides a unique opportunity to test the self-consistency of an hh signal with the SM or models with extended electroweak sectors, such as two-Higgs doublet models (2HDM) [9, 10] or extensions of the minimal supersymmetric standard model [11–13].

This paper reports a search for resonant pp → X → HH production in the HH → bbZZ decay channel, where X is a narrow-width resonance of spin-0 or spin-2, and H can represent either h or an additional Higgs boson from an extended electroweak sector. The search uses proton-proton (pp) collision data at √s = 13 TeV, recorded with the CMS detector at the LHC in 2016, and corresponding to an integrated luminosity of 35.9 fb⁻¹. It covers a range of resonance masses between 260 and 1000 GeV. The final state consists of two b jets from one Higgs boson decay and two distinct Z boson decay signatures from the other H → ZZ decay: two same-flavor, opposite-sign (OS) leptons from a decay of one of the Z bosons, and either two jets of any flavor (the bbℓℓjj channel) or significant missing transverse momentum (the bbℓℓνν channel) from the decay of the second Z boson to neutrinos. In both cases, the selected charged leptons are either electrons or muons. In the SM, the branching fractions of these signatures represent 0.43 (0.12)% of the full hh decay through the bbZZ intermediate state in the bbℓℓjj channel. The challenging aspect of the search in the bbℓℓjj channel is the ability to discriminate the signal containing two b jets and two additional jets from multijet background events. For a search in the bbℓℓνν channel, the challenge resides in discriminating the signal against top quark anti-top quark (tt) events and instrumental background sources of large missing transverse momentum arising from the mismeasurement of the energies of jets in the final state. The two channels are kept independent by applying orthogonal selections on the missing transverse momentum of the event. Signal yields are calculated for each individual channel and are then combined. Having multiple decay channels with complementary background compositions and sensitivities over a large resonance mass (m_X) range makes this combination of the bbℓℓνν and bbℓℓjj channels highly efficient for covering the bbZZ final state. This is the first search for Higgs boson resonant pair production in the bbZZ channel.

Previous searches for resonant hh production have been performed by the CMS and ATLAS Collaborations in the bbbb [14, 15], bbττ [16, 17], bbγγ [18], and bbℓℓνν [17, 19] channels. While coverage of as many hh decay channels as possible remains necessary to understand the exact nature of the Higgs boson self-coupling and the electroweak symmetry breaking mechanism, a bbZZ search is particularly interesting in models with extended electroweak sectors, where the phenomenology of additional Higgs bosons can lead to significantly enhanced bbZZ production, while suppressing the BSM production of bbbb, bbττ, or bbγγ final states.
2 Benchmark models

As in the previous searches, a class of narrow width resonance models arising from the Randall–Sundrum (RS) model [20] in warped extra dimensions [21–24] are considered. This scenario introduces one small spatial extra dimension with a nonfactorizable geometry, where the SM particles are not allowed to propagate along that extra dimension, and is referred to in this search as RS1. The resonant particle can be a radion (spin-0) or the first Kaluza–Klein (KK) excitation of a graviton (spin-2). The production cross section of the radion is proportional to $1/\lambda_R^2$ where λ_R is the interaction scale parameter of the theory. In this analysis, we consider the cases where $\lambda_R = 1 \text{ TeV}$ with $kL = 35$, where k is the constant in the warp factor (e^{-kL}) appearing in the space-time metric of the theory and L is the size of the extra dimension. The free parameter of the model for the graviton case is $\tilde{k} = k/M_{Pl}$, where M_{Pl} is the reduced Planck scale, and we consider $\tilde{k} = 0.1$ in this analysis [25]. We further scan the model parameter space in the λ_R and \tilde{k} parameters for their respective models. Production at hadron colliders is expected to be dominated by gluon-gluon fusion, and we assume that the radion or graviton is produced exclusively via this process. Due to the small branching fraction of $hh \rightarrow bbZZ$ and the high multiplicities of the final states, the analyses presented in this paper are less sensitive to these models compared to the previous searches. As noted in Section 1, however, certain models with extended electroweak sectors can produce significantly enhanced $bbZZ$ production, while suppressing final states with Higgs boson decays to fermions and scalar bosons.

Such an enhancement can be produced for example in the next-to-minimal 2HDM (N2HDM) extended Higgs sector [26, 27], where an additional real singlet is introduced in addition to the usual two doublet Higgs bosons of the 2HDM. This analysis is further interpreted in this context. The so-called broken phase is considered, wherein both the Higgs doublets and the singlet acquire vacuum expectation values (vev) [27]. Mixing between these states produces $3 \text{ CP-even Higgs bosons } H_1, H_2, \text{ and } H_3,$ with masses that are free parameters of the model. This search considers the nearly mass-degenerate case where the masses of the two bosons H_1 and H_2 are constrained to the experimental measurements of the h mass, which would be indistinguishable from h production with current LHC data sets [28, 29], but may give rise to manifestly non-SM-like rates in the case of hh production. In what is commonly referred to as Higgs boson cascade decays, H_3 can decay to any combination of bosons H_1 and H_2, which then both can have different decay branching fractions compared to the SM Higgs boson. The model spectrum depends on the ratio of the vevs of the two Higgs doublets $\tan \beta$, low values of which enhance H_3 production; the vev of the singlet, which affects the decay branching fractions of H_3 to H_1 and H_2; and three mixing angles, which determine the decay branching fractions of H_1 and H_2 [27]. The model spectra described below are determined using N2HDECAY [30], and are chosen to enhance production of the $bbZZ$ final state while respecting current LHC measurements of the SM h branching fractions within their experimental uncertainties [5]. The gluon-gluon fusion production cross sections of H_3 are determined from the BSM Higgs boson predictions of the LHC Higgs Cross Section Working Group [5]. These cross sections assume SM decay branching fractions of the Higgs boson, and changing these branching fractions affects the production cross section. The cross sections are corrected at leading order (LO) by the ratio of the relative partial width of H_3 in the decay to two gluons compared to the BSM Higgs boson prediction. Enhanced (reduced) coupling of H_3 to gluons will enhance (reduce) the production cross section of H_3. The mass of the Higgs bosons H_1 and H_2 are set to 125 GeV, and the mass of H_3 is generated in the range $260 \leq m_X \leq 1000 \text{ GeV}$. Two benchmark points are chosen for this analysis, corresponding to $\tan \beta = 0.5$ and 2.0. In both cases, the scalar vev is set to 45 GeV, and the mixing angles $\alpha_1, \alpha_2, \alpha_3$ are set to 0.76, 0.48, and 1.00, respectively. For $\tan \beta = 0.5$, this results in branching fractions of H_3 to $H_1H_1, H_1H_2,$...
and H_2H_2 around 0.02, 0.29, and 0.64 respectively, branching fractions of $H_1 \to bb$ ($H_1 \to ZZ$) of 0.70 (0.01), and branching fractions of $H_2 \to bb$ ($H_2 \to ZZ$) of 0.42 (0.05). This represents a 33% increase in the branching fraction to $bbZZ$ compared to SM hh decays. The correction factor based on the relative partial width of H_3 to two gluons is around 3.0. For $\tan \beta = 2.0$, this results in branching fractions of H_3 to H_1H_1, H_1H_2, and H_2H_2 around 0.07, 0.22, and 0.67 respectively, branching fractions of $H_1 \to bb$ ($H_1 \to ZZ$) of 0.53 (0.03), and branching fractions of $H_2 \to bb$ ($H_2 \to ZZ$) of 0.58 (0.03). This represents a 5% increase in the branching fraction to $bbZZ$ compared to SM hh decays. The correction factor based on the relative partial width of H_3 to two gluons is around 0.7. These corrections and branching fractions produce significant differences in the production rates of the $bbZZ$ system compared to SM hh production both in the SM and through resonant production of radions or gravitons.

3 The CMS detector

The central feature of the CMS apparatus is a superconducting solenoid of 6 m internal diameter, providing a magnetic field of 3.8 T. Within the solenoid volume are a silicon pixel and strip tracker, a lead tungstate crystal electromagnetic calorimeter (ECAL), and a brass and scintillator hadron calorimeter (HCAL), each composed of a barrel and two endcap sections. Forward calorimeters extend the pseudorapidity coverage provided by the barrel and endcap detectors, where pseudorapidity is defined as $\eta = -\ln[\tan(\theta/2)]$, and θ is the polar angle. Muons are measured in gas-ionization detectors embedded in the steel flux-return yoke outside the solenoid. CMS uses a two-level trigger system [31]. The first level of the CMS trigger system, composed of custom hardware processors, uses information from the calorimeters and muon detectors to select the most interesting events. The high-level trigger (HLT) processor farm further decreases the event rate from around 100 kHz to a rate of around 1 kHz, before data storage. A more detailed description of the CMS detector, together with a definition of the coordinate system used and the relevant kinematic variables, can be found in Ref. [32].

4 Event simulation

The signal samples of RS1 spin-0 radion and RS1 KK spin-2 graviton narrow resonances decaying to a pair of Higgs bosons ($X \to hh$) are generated at LO using MADGRAPH5_aMC@NLO. The h mass is set to 125 GeV, and the X resonance mass m_X is generated in the range of 260–1000 GeV. In the $bb\ell\ell\nu\nu$ channel the final state can be produced via either the $bbZZ$ or bbW^+W^- intermediate states.

The main background processes to production of a pair of Higgs bosons in the $bbZZ \to bb\ell\elljj$ or $bb\ell\ellvv$ final states are Z/γ^*+jets and $t\bar{t}$ processes. Less significant backgrounds arise from single top quark, $W+$jets, diboson+jets, SM Higgs boson production, and quantum chromodynamics (QCD) multijet production. Signal and background processes are modeled with simulations, with the exception of the QCD multijet background that is estimated using data control regions.

In the analysis using the $bb\ell\elljj$ channel, the Z/γ^*+jets and $W+$jets processes are generated with MADGRAPH5_aMC@NLO2.4.2 [33] at next-to-leading order (NLO). In this case, the generator uses the FxFx jet merging scheme [34]. The analysis of the $bb\ell\ellvv$ channel uses samples of Z/γ^*+jets generated with MADGRAPH5_aMC@NLO at LO, with the MLM matching scheme [35], and reweighted to account for higher order QCD and electroweak effects [36].

The $t\bar{t}$ process is generated at NLO with POWHEG 2.0 [37,42]. Single top processes and
SM Higgs boson production processes are simulated at NLO either with POWHEG or MADGRAPH5_aMC@NLO, depending on the particular channel. The diboson processes (WW+jets, WZ+jets, ZZ+jets) are simulated at NLO with MADGRAPH5_aMC@NLO.

The simulated samples are normalized to their best-known highest-order-QCD cross sections, either evaluated at NLO with MCFM [43] (diboson+jets) or at next-to-next-to-leading order with FEWZ 3.1 [44] (single top quark, W+jets, SM Higgs boson), with the exception of t\(\bar{t}\) and Z/γ∗+jets processes, which are normalized using data.

The simulated samples are interfaced with PYTHIA 8.212 [45] for parton showering and hadronization. The PYTHIA generator uses the CUETP8M1 underlying event tune [46]. The NNPDF3.0 NLO and LO parton distribution functions (PDFs) [47] are used for the various processes, with the precision matching that in the matrix element calculations.

For all the simulated samples used in this analysis, a simulation of CMS detector response based on GEANT4 [48] is applied. The presence of additional interactions in the same bunch crossing (pileup, or PU), both in-time and out-of-time with respect to the primary interaction, is simulated and corrected to agree with a multiplicity corresponding to the distribution measured in data.

5 Event reconstruction and background estimation

5.1 Event reconstruction

Events are selected using triggers that require two muons with transverse momentum \(p_T > 17\) (8) GeV or two electrons with \(p_T > 23\) (12) GeV for the leading (sub-leading) lepton.

The particle-flow (PF) algorithm [49], which combines information from various elements of the CMS detector, is used to reconstruct and identify final-state particles, such as photons, electrons, muons, and charged and neutral hadrons, as individual PF objects. Combinations of PF objects are then used to reconstruct higher-level objects such as jets and missing transverse momentum.

Jets are reconstructed from the PF objects, using the anti-\(k_T\) [50, 51] algorithm with a distance parameter of \(R = 0.4\). In order to reduce instrumental backgrounds and the contamination from PU, selected jets are required to satisfy loose identification criteria [52] based on the multiplicities and energy fractions carried by charged and neutral hadrons. The energy of reconstructed jets is calibrated using \(p_T\)- and \(\eta\)-dependent corrections to account for nonuniformity and nonlinearity effects of the ECAL and HCAL energy response to neutral hadrons, for the presence of extra particles from PU, for the thresholds used in jet constituent selection, reconstruction inefficiencies, and possible biases introduced by the clustering algorithm. These jet energy corrections are extracted from the measurement of the momentum balance in dijet, photon + jet, Z/γ∗+jets, and multijet events [53]. A residual \(\eta\)- and \(p_T\)-dependent calibration is applied to correct for the small differences between data and simulated jets. The jets that are candidates to be from the decay of one of the Higgs bosons and of one of the Z bosons are required to have \(p_T > 20\) GeV. Furthermore, jets are required to have a spatial separation of \(\Delta R > 0.3\) from lepton candidates.

Jets originating from b quarks are identified with the combined multivariate analysis (cMVA) algorithm [54]. A jet is tagged as a b jet if the cMVA discriminant is above a certain threshold, chosen such that the misidentification rate is about 1% for light-flavor quark and gluon jets, and about 13% for charm quark jets. The b jet tagging efficiency for this working point is about
The missing transverse momentum vector \vec{p}_T^{miss} is computed as the negative vector sum of the transverse momenta of all the PF candidates in an event, and its magnitude is denoted as p_T^{miss} \cite{55}. The \vec{p}_T^{miss} is modified to account for corrections to the energy scale of the reconstructed jets in the event.

The candidate vertex with the largest value of summed physics-object p_T^2 is taken to be the primary pp interaction vertex. The physics objects are the jets, clustered using the jet finding algorithm \cite{50,51} with the tracks assigned to candidate vertices as inputs, and the associated missing transverse momentum, taken as the negative vector sum of the p_T of those jets.

Muons are reconstructed as tracks in the muon system that are matched to the tracks reconstructed in the inner silicon tracking system \cite{56}. The leading muon is required to have $p_T > 20$ GeV, while the subleading muon must have $p_T > 15$ (10) GeV in the $bb\ell\ell\nu\nu$ ($bb\ell\ell jj$) channel. Muons are required to be reconstructed in the HLT fiducial volume, i.e., with $|\eta| < 2.4$, to ensure that the offline selection is at least as restrictive as the HLT requirements. The selected muons are required to satisfy a set of identification requirements based on the number of spatial measurements in the silicon tracker and in the muon system and the fit quality of the combined muon track \cite{46}, and are required to be consistent with originating from the primary vertex.

Electrons are reconstructed by matching tracks in the silicon tracker to the clusters of energy deposited in the ECAL \cite{57}. The leading (subleading) electron is required to have $p_T > 25$ (15) GeV and $|\eta| < 2.5$ to be within the geometrical acceptance, excluding candidates in the range $1.4442 < |\eta| < 1.5660$, which is the transition region between the ECAL barrel and endcaps, because the reconstruction of an electron in this region is poor compared to other regions. Electrons are required to pass an identification requirement based on an MVA \cite{58} technique that combines information from various observables related to the shower shape in the ECAL and the quality of the matching between the tracks and the associated ECAL clusters \cite{57}. They are further required to be consistent with originating from the primary vertex. Candidates that are identified as originating from photon conversions in the material of the detector are removed.

Both muons and electrons have a requirement that the lepton relative isolation, defined in Eq.\text{(1)}, be less than 0.25 (0.15) and 0.15 (0.06), respectively, for the $bb\ell\ell jj$ ($bb\ell\ell nn\nu\nu$) channel. In Eq.\text{(1)}, the sums run over charged hadrons originating from the primary vertex of the event, neutral hadrons, and photons inside a cone of radius $\Delta R = \sqrt{(\Delta \phi)^2 + (\Delta \eta)^2} < 0.4$ (0.3) around the direction of the muon (electron), where ϕ is the azimuthal angle in radians.

$$I_{\text{iso}} = \frac{1}{p_T} \left[\sum_{\text{charged}} p_T + \max \left(0, \sum_{\text{neutral}} p_T + \sum_{\text{photons}} \left(p_T - \text{Corr}_{\text{PU}} \right) \right) \right]$$ \text{(1)}

The isolation includes a correction for pileup effects, Corr_{PU}. For electrons, $\text{Corr}_{\text{PU}} = \rho A_{\text{eff}}$, where ρ is the average transverse momentum flow density, calculated using the jet area method \cite{59}, and A_{eff} is the geometric area of the isolation cone times an η-dependent correction factor that accounts for residual pileup effects. For muons, $\text{Corr}_{\text{PU}} = 0.5 \sum_{\text{PU}} p_T$, where the sum runs over charged particles not associated with the primary vertex and the factor 0.5 corresponds to an approximate average ratio of neutral to charged particles in the isolation cone \cite{60}.

Simulated background and signal events are corrected with scale factors for differences observed between data and simulation, in trigger efficiencies, in lepton p_T- and η-dependent identification and isolation efficiencies, and in b tagging efficiencies.
5.2 Event selection in the $bb\ell\ell jj$ channel

After selection of the candidate physics objects, an initial event selection is performed by requiring at least two same-flavor leptons (muons or electrons) in each event. The two leptons are required to be oppositely charged. The invariant mass of the two leptons, $m_{\ell\ell}$, is required to be larger than 15 GeV. Four of the jets in an event are designated as the h and Z boson decay products. These jets are required to have $p_T > 20$ GeV and at least one of those must be b tagged with a minimum requirement on the b tagging discriminant, that is looser than the requirement in the final selection. We refer to this selection as the preselection.

Since the signal contains two b jets from the decay of a Higgs boson, and two jets of any flavor from the decay of a Z boson, it is important to carefully categorize the jets in the event. Starting from a collection of jets identified as described above, the information from the b tagging discriminant, as well as the kinematic properties of the jets, are taken into account when assigning jets as each particle’s decay products.

The following selection is applied to identify the b jets originating from the decay of the Higgs boson. The two jets with the highest b tagging scores above a certain threshold are assigned to the decay of the Higgs boson. If only one jet is found that meets the minimum b tagging score value, a second jet that leads to an invariant mass closest to 125 GeV is selected. If no jets with b tagging scores above threshold are found, the two jets whose invariant mass is closest to 125 GeV are chosen.

After jets are assigned to the decay of $h \rightarrow bb$, from the remaining jets the two jets with four-object invariant mass $M(\ell\ell jj)$ closest to 125 GeV are assigned to the decay of the Z boson.

After preselection, additional requirements are imposed. At least one of the four jets assigned as the decay products of the h or Z boson must satisfy the b tagging requirement, to increase the signal-to-background ratio. To impose orthogonality with the $bb\ell\ell\nu\nu$ decay channel, upper limits on the p_T^{miss} are imposed as follows: $p_T^{\text{miss}} < 40, 75$, and 100 GeV for the m_X of 260–350, 350–650, and ≥ 650 GeV, respectively. We refer to this selection as the final selection in the $bb\ell\ell jj$ channel.

After the final selection, twenty-two variables that exploit the differences in kinematic and angular distributions between the signal and background processes are combined into a boosted decision tree (BDT) discriminant [61]. In the m_X range of 260–300 GeV, the most important variables are $m_{\ell\ell}$, the separation between the leading lepton and leading b tagged jet $\Delta R_{\ell b1}$, and the invariant mass of the pair of b tagged jets m_{bb}^h. In the m_X range of 350–550 GeV, m_{bb}^h is the most important variable, while $m_{\ell\ell}$ becomes less important, and the separation between the pair of leptons $\Delta R_{\ell\ell}$ gradually becomes more important when the m_X increases. For the m_X higher than 550 GeV, $\Delta R_{\ell\ell}$ becomes the most important variable followed by m_{bb}^h and the separation between the pair of b tagged jets ΔR_{bb}^h. The BDTs are configured to use stochastic gradient boosting with the binomial log-likelihood loss function. The software package TMVA [58] is used for BDT implementation, training, and application.

The BDT is trained using all background processes described in Section 4, excluding the multijet background. In each lepton channel and for each spin hypothesis, one BDT is trained for each simulated signal m_X. In the training, signal events include samples from the two neighboring mass points, in addition to the targeted mass point. In total, 48 BDTs are trained. These BDT distributions for data and expected backgrounds are used as the final discriminating variable in the analysis.
5.3 Background estimation in the bbℓℓjj channel

The main processes that can mimic the signature of the signal in the bbℓℓjj channel are Z/γ∗ + jets and t̅t, with smaller contributions from QCD multijets, diboson+jets, W+jets, and SM Higgs boson production.

The contribution from the principal background, Z/γ∗ + jets, is estimated with simulated events normalized to the data at the preselection level in the Z boson-enriched control region 80 < m_{ℓℓ} < 100 GeV. The contribution from t̅t is estimated in a similar manner, with the t̅t-enriched control region defined by m_{ℓℓ} > 100 GeV, and p_{T}^{miss} > 100 GeV. The data-to-simulation normalization factors derived from the two control regions are R_{Z} = 1.14 ± 0.01 (stat) and R_{t̅t} = 0.91 ± 0.01 (stat) in the muon channel and R_{Z} = 1.24 ± 0.01 (stat) and R_{t̅t} = 0.97 ± 0.02 (stat) in the electron channel. These normalization factors are found to be consistent between lepton flavors when applying lepton-specific systematic variations.

The contribution from QCD multijet processes is determined from data with a method that exploits the fact that neither signal events nor events from other backgrounds produce final states with same-sign leptons at any significant level. Data events with same-sign isolated leptons are used to model the shape of the multijet background, after all non-QCD sources of background contributing to this selection are subtracted using simulation. The yield in this region is normalized with the ratio of the number of events with nonisolated OS leptons to the number of events with nonisolated same-sign leptons. Here, nonisolated leptons are those muons (electrons) that fail the relative isolation requirements described in Section 5.1. All non-QCD sources of background, estimated with simulated events, are subtracted from the numerator and the denominator before computing the ratio.

The contributions from diboson+jets, W+jets, and SM Higgs boson production are estimated from simulation.

5.4 Event selection in the bbℓℓνν channel

Candidate events in the bbℓℓνν channel are reconstructed from the physics objects, as described above. The two leptons (muons or electrons) are required to have OS, and the invariant mass of the two leptons, m_{ℓℓ}, is required to exceed 76 GeV. One of the Higgs bosons is formed from the pair of b jets with the highest output value of the b tagging discriminant, and the second Higgs boson is reconstructed as a combination of the two charged leptons and the p_{T}^{miss}, representing the visible and invisible decays products, respectively, of the pair of Z bosons. The requirement on m_{ℓℓ} reduces the contribution from resonant X → hh production in the bbWW final state, and makes this measurement orthogonal to a previous bbWW search [19], where only events with m_{ℓℓ} below 76 GeV were considered.

For the Higgs boson decaying to a pair of Z bosons, the two neutrinos are not reconstructed in the detector, and a pseudo invariant mass of the Higgs boson is used to approximate the incomplete momentum four-vector of the H. The pseudo invariant mass is formed from the momenta of the two charged leptons coming from one of the Z bosons and the four-vector (p_{T}^{miss}, p_{T}^{miss}) approximating that of the two-neutrino system coming from the other of the Z bosons, where the z component of p_{T}^{miss} is zero. While the true invariant mass of the pair of neutrinos is not zero but is equal to the invariant mass of the parent Z boson, that boson is off the mass shell and has relatively low mass.

In order to suppress the backgrounds from the Z/γ∗ + jets and QCD multijet processes as well as from the SM Higgs boson production via the Zh process, a requirement is imposed on the minimum p_{T}^{miss}, which is 40 (75) GeV for the m_{X} of 260–300 (350–600) GeV, and 100 GeV for
higher m_X.

Three regions, a signal region (SR) and two control regions (CRs), are further defined using $m_{\ell\ell}$ and the invariant mass m_{bb}^h of the two b jets. The SR is defined by the requirements $76 < m_{\ell\ell} < 106$ GeV and $90 < m_{bb}^h < 150$ GeV. A first CR, dominated by $t\bar{t}$ events, is defined by $m_{\ell\ell} > 106$ GeV and $90 < m_{bb}^h < 150$ GeV. A second CR, enriched in Z/γ^*+jets events, is defined by requiring $20 < m_{bb}^h < 90$ GeV or $m_{bb}^h > 150$ GeV, and $76 < m_{\ell\ell} < 106$ GeV. The two CRs and the SR are used to estimate the backgrounds in the SR via a simultaneous fit.

To further differentiate signal from backgrounds in the SR, a BDT discriminant is trained using all simulated signal and background processes described in Section 4. Of the nine input distributions to the BDT, the most important variables in the low-mass range are the separation between the pair of b tagged jets ΔR_{bb}^h, p_{T}^{miss}, and m_{bb}^h. In the high-mass region, m_{bb}^h and ΔR_{bb}^h are also the most significant, together with the separation between the pair of charged leptons, which becomes more important as the resonance mass increases. Two BDTs are trained for each lepton channel and each resonance spin hypothesis, one for m_X in the range of 250–450 GeV, and another one for the m_X above 450 GeV. A minimum BDT value is required for candidates in the SR, optimized for each narrow m_X hypothesis to yield the best 95% confidence level (CL) expected upper limit on resonant production. The BDTs are configured with the same classification and loss function parameters described in Section 5.2.

Finally, a quantity closely correlated with the energy-momentum four-vector of the hh system is constructed as the vector sum of the two leptons, two b jets, and the four-vector formed as $(p_{T}^{miss}, \vec{p}_{T}^{miss})$ for the neutrinos, as described above. Subsequently, the pseudo transverse mass of the hh system is defined as $\tilde{M}_T^{hh} = \sqrt{E^2 - p_z^2}$, where E and p_z are the energy and the z component of the combined four-vector.

The \tilde{M}_T^{hh} distributions for data and expected backgrounds, in the combined signal and CRs, will be used as the final discriminating variable in the analysis.

After the event selection in this channel is applied, the signal hh events in the SR come predominantly from the decays with the bbZZ intermediate state (80%) with a smaller contribution from the bbW$^+W^-$ intermediate state (20%). Both intermediate states are used to calculate the limit on pp → $X → hh$ in the bb$\ell\ell\nu\nu$ channel.

5.5 Background estimation in the bb$\ell\ell\nu\nu$ channel

The dominant sources of background in the bb$\ell\ell\nu\nu$ channel are $t\bar{t}$ and Z/γ^*+jets production. Several other background processes contribute, including single top quark and diboson production, and SM Higgs boson production in association with a Z boson. While these are typically minor backgrounds, their contribution can vary over the m_X range. The QCD multijet background is negligible across the full mass range because of the stringent selection on $m_{\ell\ell}$.

The event yields in the signal and two CRs, which are dominated by $t\bar{t}$ and Z/γ^*+jets events, are determined from data. The corresponding normalizations of the simulated M_T^{hh} distributions are free parameters in the simultaneous fit of all three regions. The remaining backgrounds are estimated from simulation and normalized according to their theoretical cross sections.
6 Systematic uncertainties

The dominant source of systematic uncertainty in this analysis is the jet energy scale (JES) uncertainty, which is of the order of a few percent and is estimated as a function of jet p_T and η [53]. The η-dependent jet energy resolution (JER) correction factors are varied by ± 1 standard deviation in order to estimate the effect of the uncertainty. Uncertainties in the JES are propagated to the calculation of p_T^{miss}. A residual p_T^{miss} uncertainty of 3% is applied in the $b\bar{b}\ell\ell\nu\nu$ channel to take into account the effect, at low p_T^{miss}, of the unclustered energy from neutral hadrons and photons that do not belong to any jet, and from jets with $p_T < 10$ GeV.

An uncertainty of 2% per muon in the muon reconstruction, identification, and isolation requirements, as well as a 1% per muon uncertainty in the muon HLT efficiency are assigned [56]. A per-muon uncertainty due to measured differences of tracking efficiency in data and simulation is estimated to be 0.5% for muon $p_T < 300$ GeV and 1.0% for muon $p_T > 300$ GeV [62]. Per-electron uncertainties in the efficiency for electron trigger, identification and isolation requirements, estimated by varying the scale factors within their uncertainties, are applied. The uncertainties in the efficiency scale factors are generally $< 2\%$ for trigger and $< 3\%$ for identification and isolation [57]. The effect of the variations on the yield of the total background is $< 1\%$. Uncertainties in the data-to-simulation correction factors of the b tagging and of light flavor mis-tagging efficiencies are included.

Normalization and shape uncertainties are assigned to the modeling of the backgrounds. An uncertainty in the shape of the signal and background models is determined by varying the factorization and the renormalization scales between their nominal values and 0.5 to 2.0 times the nominal values in the simulated signal and background samples. The variations where one scale increases and the other decreases are not considered. Each of the remaining variations of the renormalization and the factorization scales are considered, and the maximum variation among all the samples with respect to the nominal sample used in the analysis is taken as the systematic uncertainty, which is found to be 5–7% depending on the process. An uncertainty in the signal acceptance and background acceptance and cross section due to PDF uncertainties and to the value chosen for the strong coupling constant is estimated by varying the NNPDF set of eigenvectors within their uncertainties, following the PDF4LHC prescription [63].

Statistical uncertainties in the simulated samples for $Z/\gamma^*+\text{jets}$ and $t\bar{t}$ background estimates result in uncertainties in the data-derived normalization factors in the $b\bar{b}\ell\ell\text{jj}$ channel.

An uncertainty of 2.5% is assigned to the determination of the integrated luminosity [64]. The uncertainty in the PU condition and modeling is assessed by varying the inelastic pp cross section from its central value by $\pm 4.6\%$ [65].

All the uncertainties discussed are applied to all background and signal simulated samples. The sensitivity of the presented search is limited by the statistical uncertainties.

7 Results

Results are obtained by performing a binned maximum likelihood fit of the BDT distributions for the $b\bar{b}\ell\ell\text{jj}$ channel, and of the hh pseudo transverse mass simultaneously in the SR and two CRs for the $b\bar{b}\ell\ell\nu\nu$ channel.

The data and background predictions at final selection level in the $b\bar{b}\ell\ell\text{jj}$ channel are shown in Fig. [] for the distributions of the BDT discriminant for signal masses of 500 and 1000 GeV, in the muon and electron final states. Studies performed on all 48 BDT discriminants show stability of the trainings with no evidence of bias or overtraining.
Figure 1: Comparison of the BDT discriminant for $m_X = 500$ and 1000 GeV after the final selection in the muon (upper row) and electron (lower row) final states of the bbℓℓjj channel. The signals of an RS1 radion with mass of 500 (left) and 1000 GeV (right) are normalized to a cross section of 1 pb for the pp $\rightarrow X \rightarrow hh$ process. The shaded area represents the combined statistical and systematic uncertainties in the background estimate.
The observed and expected 95% CL upper limits on $\sigma(pp \to X \to HH \to bbZZ)$ in the $b\ell\ell jj$ channel.

The statistical uncertainty from the limited number of events in the simulated samples is taken into account, for each bin of the discriminant distributions, by assigning a nuisance parameter to scale the sum of the process yields in that bin according to the statistical uncertainty using the Barlow–Beeston “lite” prescription \cite{67,68}.

In both channels the data distributions are well reproduced by the SM background processes. Upper limits on the resonance production cross section are set, using the asymptotic CL$_s$ modified frequentist approach \cite{69,71}.

The observed and expected 95% CL upper limits on $\sigma(pp \to X \to HH \to bbZZ)$ in the $b\ell\ell jj$ channel.

The systematic uncertainties are represented by nuisance parameters that are varied in the fit according to their probability density functions, prescribed as follows. A log-normal probability density function is assumed for the nuisance parameters affecting the event yields of the various background contributions, whereas systematic uncertainties that affect the distributions are represented by nuisance parameters whose variation is a vertical interpolation in each bin with a sixth-order polynomial for upward and downward shifts of one standard deviation, and linearly outside of that \cite{66}.

Figure 2 shows the hh pseudo transverse mass distributions in the data, background estimates, and spin-2 RS1 graviton for the 300 GeV mass hypothesis, after the final selection in the $b\ell\ell vv$ channel.

Figure 2: Pseudo transverse mass of the reconstructed hh candidates, in the $bb\ell\ell vv$ channel, for data, simulated spin-2 RS1 graviton signal with a mass of 300 GeV, and simulated backgrounds scaled according to the fit results. The upper and lower rows correspond to the muon and electrons channels. For each row, the left and middle plots are for the $Z/\gamma^{*}+\text{jets}$ and $t\bar{t}$ control regions, and the right is for the signal region. The signals are normalized to 1 pb for the $pp \to X \to hh$ process. The shaded area represents the combined statistical and systematic uncertainties in the background estimate.
and $bb\ell\ell\nu\nu$ channels as a function of m_X are shown in Fig. 3, together with the NLO predictions for the RS1 radion, RS1 KK graviton, and N2HDM resonance production cross sections, where H can represent either the SM Higgs boson or an additional Higgs boson from an extended electroweak sector. As two different BDTs are defined for the search in the low- and high-mass ranges of the $bb\ell\ell\nu\nu$ channel, the limit calculation is performed with both of the BDTs at the boundary of the two ranges, around 450 GeV, where a discontinuity is seen.

Combined 95% CL upper limits from both channels on $\sigma(pp \to X \to HH \to bbZZ)$ as a function of m_X, are shown in Fig. 4, together with the theoretical predictions for the RS1 radion and RS1 KK graviton. In the m_X range between 260 and 1000 GeV, limits on the production cross section times branching fraction of RS1 radion and RS1 KK graviton range from 0.1 to 5.0 and 0.1 to 3.6 pb, respectively. In the spin-0 case, the predictions of the N2HDM model with $\tan\beta = 0.5$ and 2.0 are shown, for all $H_3 \to H_1/H_1H_2/H_2H_2 \to bbZZ$ decays. In the $\tan\beta = 0.5$ case, the model can be excluded with H_3 in the m_X range of 360–620 GeV. In comparison to previous searches in other channels, we achieve a sensitivity to the RS1 radion and RS1 KK graviton models that is consistent with the lower value of the hh branching fraction in the bbZZ channel relative to the other channels.

Finally, the results are also interpreted as a function of both the m_X and $\lambda_R (\tilde{k})$ for the radion (graviton) case, with $\lambda_R < 0.3$ TeV ($\tilde{k} > 0.6$) excluded for all of the m_X considered, as shown in Fig. 5.

8 Summary

A search for the production of a narrow-width resonance decaying into a pair of Higgs bosons decaying into the $bbZZ$ channel is presented. The analysis is based on data collected with the CMS detector during 2016, in proton-proton collisions at the LHC, corresponding to an integrated luminosity of 35.9 fb$^{-1}$. The final states considered are the ones where one of the Z bosons decays into a pair of muons or electrons, and the other Z boson decays either to a pair of quarks or a pair of neutrinos. Upper limits at 95% confidence level are placed on the production of narrow-width spin-0 or spin-2 particles decaying to a pair of Higgs bosons, in models with and without an extended Higgs sector. For a resonance mass range between 260 and 1000 GeV, limits on the production cross section times branching fraction of a spin-0 and spin-2 resonance range from 0.1 to 5.0 pb and 0.1 to 3.6 pb, respectively. These results set limits in parameter space in bulk Randall–Sundrum radion, Kaluza–Klein excitation of the graviton, and N2HDM models. For specific choices of parameters the N2HDM can be excluded in a mass range between 360 and 620 GeV for a resonance decaying to two Higgs bosons. This is the first search for Higgs boson resonant pair production in the $bbZZ$ channel.

Acknowledgments

We congratulate our colleagues in the CERN accelerator departments for the excellent performance of the LHC and thank the technical and administrative staffs at CERN and at other CMS institutes for their contributions to the success of the CMS effort. In addition, we gratefully acknowledge the computing centers and personnel of the Worldwide LHC Computing Grid for delivering so effectively the computing infrastructure essential to our analyses. Finally, we acknowledge the enduring support for the construction and operation of the LHC and the CMS detector provided by the following funding agencies: BMBWF and FWF (Austria); FNRS and FWO (Belgium); CNPq, CAPES, FAPERJ, FAPERGS, and FAPESP (Brazil); MES (Bulgaria); CERN; CAS, MoST, and NSFC (China); COLCIENCIAS (Colombia); MSES and CSF (Croatia);
The red solid line shows the theoretical prediction for the cross section of an RS1 radion with $\lambda_R = 1 \text{ TeV}$ and $kL = 35$ (left) and an RS1 KK graviton with $\tilde{k} = 0.1$ (right). In the spin-0 case only, the blue (green) line shows the decays of $H_3 \to H_1 H_1 / H_1 H_2 / H_2 H_2 \to b\bar{b}ZZ$ in the N2HDM formulation, with $\tan \beta = 0.5 \ (2.0)$, the scalar H_3 vev set to 45 GeV, and the mixing angles α_1, α_2, α_3 set to 0.76, 0.48, and 1.00, respectively. The correction factor based on the relative partial width of H_3 to two gluons is around 3.0 (0.7) for $\tan \beta = 0.5 \ (2.0)$. In the lower row, the vertical black dashed line indicates the resonance mass of 450 GeV, a mass point where the BDT used in the analysis is switched from the one trained for low mass resonance to the one trained for high mass resonance.

Figure 3: Expected (black dashed line) and observed (black solid line) limits on the cross section of resonant HH production times the branching fraction of $HH \to b\bar{b}ZZ$ as a function of the resonance mass for the $b\ell\ell\bar{\ell}$ (upper row) and $b\ell\ell\nu\nu$ (lower row) channels, where H can represent either the SM Higgs boson or an additional Higgs boson from an extended electroweak sector. The spin-0 case is shown on the left and the spin-2 case is shown on the right.
Figure 4: Expected (black dashed line) and observed (black solid line) limits on the cross section of resonant HH production times the branching fraction of HH → bbZZ as a function of the mass of the resonance for the combination of the bbℓℓjj and bbℓℓνν channels, where H can represent either the SM Higgs boson or an additional Higgs boson from an extended electroweak sector. The spin-0 case is shown on the left and the spin-2 case is shown on the right. The expected limits for each individual channel are shown with a red dashed line for the bbℓℓjj channel and blue dashed line for the bbℓℓνν channel. The red solid lines show the theoretical prediction for the cross section of an RS1 radion with $\lambda_R = 1$ TeV and $kL = 35$ (left) and an RS1 KK graviton with $\tilde{k} = 0.1$ (right). In the spin-0 case only, the blue (green) line shows the decays of $H_3 \rightarrow H_1 H_1 / H_1 H_2 / H_2 H_2 \rightarrow bbZZ$ in the N2HDM formulation, with $\tan \beta = 0.5$ (2.0), the scalar H_3 vev set to 45 GeV, and the mixing angles $\alpha_1, \alpha_2, \alpha_3$ set to 0.76, 0.48, and 1.00, respectively. The correction factor based on the relative partial width of H_3 to two gluons is around 3.0 (0.7) for $\tan \beta = 0.5$ (2.0). The vertical black dashed line indicates the resonance mass of 450 GeV, a mass point where the BDT used in the analysis is switched from the one trained for low mass resonance to the one trained for high mass resonance.
Figure 5: The expected and observed exclusion limits at 95% CL on the RS1 radion with \(kL = 35 \) (RS1 KK graviton) hypothesis in the \(\lambda_R \) \((\tilde{k})\) versus mass plane for the individual \(bb\ell\ell jj \) (red) and \(bb\ell\ell vv \) (blue) channels and their combination (black). The dark green and light yellow expected limit uncertainty bands represent the 68 and 95% confidence intervals. Solid lines represent the observed limits and dashed lines represent the expected limits. The shaded region is excluded by the current limits. The vertical black dashed line indicates the resonance mass of 450 GeV, a mass point where the BDT used in the \(bb\ell\ell vv \) analysis is switched from the one trained for low mass resonance to the one trained for high mass resonance.
cofinanced from European Union, Regional Development Fund, the Mobility Plus program of the Ministry of Science and Higher Education, the National Science Center (Poland), contracts Harmonia 2014/14/M/ST2/00428, Opus 2014/13/B/ST2/02543, 2014/15/B/ST2/03998, and 2015/19/B/ST2/02861, Sonata-bis 2012/07/E/ST2/01406; the National Priorities Research Program by Qatar National Research Fund; the Ministry of Science and Higher Education, project no. 02.a03.21.0005 (Russia); the Tomsk Polytechnic University Competitiveness Enhancement Program and “Nauka” Project FSWW-2020-0008 (Russia); the Programa Estatal de Fomento de la Investigación Científica y Técnica de Excelencia María de Maeztu, grant MDM-2015-0509 and the Programa Severo Ochoa del Principado de Asturias; the Thalis and Aristeia programs cofinanced by EU-ESF and the Greek NSRF; the Rachadapisek Sompot Fund for Postdoctoral Fellowship, Chulalongkorn University and the Chulalongkorn Academic into Its 2nd Century Project Advancement Project (Thailand); the Kavli Foundation; the Nvidia Corporation; the SuperMicro Corporation; the Welch Foundation, contract C-1845; and the Weston Havens Foundation (USA).

References

[1] CMS Collaboration, “Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC”, *Phys. Lett. B* 716 (2012) 30, doi:10.1016/j.physletb.2012.08.021, arXiv:1207.7235.

[2] ATLAS Collaboration, “Observation of a new particle in the search for the standard model Higgs boson with the ATLAS detector at the LHC”, *Phys. Lett. B* 716 (2012) 1, doi:10.1016/j.physletb.2012.08.020, arXiv:1207.7214.

[3] CMS Collaboration, “A new boson with a mass of 125 GeV observed with the CMS experiment at the Large Hadron Collider”, *Science* 338 (2012) 1569, doi:10.1126/science.1230816.

[4] ATLAS Collaboration, “A particle consistent with the Higgs boson observed with the ATLAS detector at the Large Hadron Collider”, *Science* 338 (2012) 1576, doi:10.1126/science.1232005.

[5] LHC Higgs Cross Section Working Group, “Handbook of LHC Higgs cross sections: 4. Deciphering the nature of the Higgs sector”, CERN (2016), doi:10.23731/CYRM-2017-002, arXiv:1610.07922.

[6] Y. Tang, “Implications of LHC searches for massive graviton”, *JHEP* 08 (2012) 078, doi:10.1007/JHEP08(2012)078, arXiv:1206.6949.

[7] K. Cheung, “Phenomenology of the radion in the Randall-Sundrum scenario”, *Phys. Rev. D* 63 (2001) 056007, doi:10.1103/PhysRevD.63.056007, arXiv:hep-ph/0009232.

[8] N. Kumar and S. P. Martin, “LHC search for di-Higgs decays of stoponium and other scalars in events with two photons and two bottom jets”, *Phys. Rev. D* 90 (2014) 055007, doi:10.1103/PhysRevD.90.055007, arXiv:1404.0996.

[9] G. C. Branco et al., “Theory and phenomenology of two-Higgs-doublet models”, *Phys. Rept.* 516 (2012) 1, doi:10.1016/j.physrep.2012.02.002, arXiv:1106.0034.

[10] N. Craig, J. Galloway, and S. Thomas, “Searching for signs of the second Higgs doublet”, (2013), arXiv:1305.2424.
[11] M. Carena et al., “Alignment limit of the NMSSM Higgs sector”, *Phys. Rev. D* **93** (2016) 035013, [doi:10.1103/PhysRevD.93.035013](https://doi.org/10.1103/PhysRevD.93.035013), [arXiv:1510.09137](https://arxiv.org/abs/1510.09137).

[12] S. AbdusSalam, “Testing Higgs boson scenarios in the phenomenological NMSSM”, *Eur. Phys. J. C* **79** (2019) 442, [doi:10.1140/epjc/s10052-019-6953-7](https://doi.org/10.1140/epjc/s10052-019-6953-7), [arXiv:1710.10785](https://arxiv.org/abs/1710.10785).

[13] E. Bagnaschi et al., “Benchmark scenarios for low $\tan\beta$ in the MSSM”, Technical Report LHCHXSWG-2015-002, 2015.

[14] CMS Collaboration, “Search for resonant pair production of Higgs bosons decaying to bottom quark-antiquark pairs in proton-proton collisions at 13 TeV”, *JHEP* **08** (2018) 152, [doi:10.1007/JHEP08(2018)152](https://doi.org/10.1007/JHEP08(2018)152), [arXiv:1806.03548](https://arxiv.org/abs/1806.03548).

[15] ATLAS Collaboration, “Search for pair production of Higgs bosons in the $b\bar{b}b\bar{b}$ final state using proton-proton collisions at $\sqrt{s} = 13$ TeV with the ATLAS detector”, *JHEP* **01** (2019) 30, [doi:10.1007/JHEP01(2019)030](https://doi.org/10.1007/JHEP01(2019)030), [arXiv:1804.06174](https://arxiv.org/abs/1804.06174).

[16] CMS Collaboration, “Search for Higgs boson pair production in events with two bottom quarks and two tau leptons in proton-proton collisions at $\sqrt{s} = 13$ TeV”, *Phys. Lett. B* **778** (2018) 101, [doi:10.1016/j.physletb.2018.01.001](https://doi.org/10.1016/j.physletb.2018.01.001), [arXiv:1707.02909](https://arxiv.org/abs/1707.02909).

[17] ATLAS Collaboration, “Combination of searches for heavy resonances decaying into bosonic and leptonic final states using 36 fb^{-1} of proton-proton collision data at $\sqrt{s} = 13$ TeV with the ATLAS detector”, *Phys. Rev. D* **98** (2018) 052008, [doi:10.1103/PhysRevD.98.052008](https://doi.org/10.1103/PhysRevD.98.052008), [arXiv:1808.02380](https://arxiv.org/abs/1808.02380).

[18] CMS Collaboration, “Search for Higgs boson pair production in the $\gamma\gamma b\bar{b}$ final state in pp collisions at $\sqrt{s} = 13$ TeV”, *Phys. Lett. B* **788** (2019) 7, [doi:10.1016/j.physletb.2018.10.056](https://doi.org/10.1016/j.physletb.2018.10.056), [arXiv:1806.00408](https://arxiv.org/abs/1806.00408).

[19] CMS Collaboration, “Search for resonant and nonresonant Higgs boson pair production in the $b\bar{b}\ell\ell$ final state in proton-proton collisions at $\sqrt{s} = 13$ TeV”, *JHEP* **01** (2018) 54, [doi:10.1007/JHEP01(2018)054](https://doi.org/10.1007/JHEP01(2018)054), [arXiv:1708.04188](https://arxiv.org/abs/1708.04188).

[20] L. Randall and R. Sundrum, “A large mass hierarchy from a small extra dimension”, *Phys. Rev. Lett.* **83** (1999) 3370, [doi:10.1103/PhysRevLett.83.3370](https://doi.org/10.1103/PhysRevLett.83.3370), [arXiv:hep-ph/9905221](https://arxiv.org/abs/hep-ph/9905221).

[21] W. D. Goldberger and M. B. Wise, “Modulus stabilization with bulk fields”, *Phys. Rev. Lett.* **83** (1999) 4922, [doi:10.1103/PhysRevLett.83.4922](https://doi.org/10.1103/PhysRevLett.83.4922), [arXiv:hep-ph/9907447](https://arxiv.org/abs/hep-ph/9907447).

[22] O. DeWolfe, D. Z. Freedman, S. S. Gubser, and A. Karch, “Modeling the fifth-dimension with scalars and gravity”, *Phys. Rev. D* **62** (2000) 046008, [doi:10.1103/PhysRevD.62.046008](https://doi.org/10.1103/PhysRevD.62.046008), [arXiv:hep-th/9909134](https://arxiv.org/abs/hep-th/9909134).

[23] C. Csaki, M. Graesser, L. Randall, and J. Terning, “Cosmology of brane models with radion stabilization”, *Phys. Rev. D* **62** (2000) 045015, [doi:10.1103/PhysRevD.62.045015](https://doi.org/10.1103/PhysRevD.62.045015), [arXiv:hep-ph/9911406](https://arxiv.org/abs/hep-ph/9911406).

[24] C. Csaki, J. Hubisz, and S. J. Lee, “Radion phenomenology in realistic warped space models”, *Phys. Rev. D* **76** (2007) 125015, [doi:10.1103/PhysRevD.76.125015](https://doi.org/10.1103/PhysRevD.76.125015), [arXiv:0705.3844](https://arxiv.org/abs/0705.3844).
[25] A. Oliveira, “Gravity particles from warped extra dimensions, predictions for LHC”, (2014). \texttt{arXiv:1404.0102}

[26] C.-Y. Chen, M. Freid, and M. Sher, “Next-to-minimal two Higgs doublet model”, \textit{Phys. Rev. D} \textbf{89} (2014) 075009, \texttt{doi:10.1103/PhysRevD.89.075009} \texttt{arXiv:1312.3949}

[27] M. Muhlleitner, M. O. P. Sampaio, R. Santos, and J. Wittbrodt, “The N2HDM under Theoretical and Experimental Scrutiny”, \textit{JHEP} \textbf{03} (2017) 094, \texttt{doi:10.1007/JHEP03(2017)094} \texttt{arXiv:1612.01309}

[28] L. Bian et al., “Future prospects of mass-degenerate Higgs bosons in the CP-conserving two-Higgs-doublet model”, \textit{Phys. Rev. D} \textbf{97} (2018) 115007, \texttt{doi:10.1103/PhysRevD.97.115007} \texttt{arXiv:1712.01299}

[29] P. M. Ferreira, R. Santos, H. E. Haber, and J. P. Silva, “Mass-degenerate Higgs bosons at 125 GeV in the two-Higgs-doublet model”, \textit{Phys. Rev. D} \textbf{87} (2013) 055009, \texttt{doi:10.1103/PhysRevD.87.055009} \texttt{arXiv:1211.3131}

[30] I. Engeln, M. Mühlleitner, and J. Wittbrodt, “N2HDECAY: Higgs boson decays in the different phases of the N2HDM”, \textit{Comput. Phys. Commun.} \textbf{234} (2019) 256, \texttt{doi:10.1016/j.cpc.2018.07.020} \texttt{arXiv:1805.00966}

[31] CMS Collaboration, “The CMS trigger system”, \textit{JINST} \textbf{12} (2017) 1020, \texttt{doi:10.1088/1748-0221/12/01/P01020} \texttt{arXiv:1609.02366}

[32] CMS Collaboration, “The CMS experiment at the CERN LHC”, \textit{JINST} \textbf{3} (2008) S08004, \texttt{doi:10.1088/1748-0221/3/08/S08004}

[33] J. Alwall et al., “The automated computation of tree-level and next-to-leading order differential cross sections, and their matching to parton shower simulations”, \textit{JHEP} \textbf{07} (2014) 079, \texttt{doi:10.1007/JHEP07(2014)079} \texttt{arXiv:1405.0301}

[34] R. Frederix and S. Frixione, “Merging meets matching in MC@NLO”, \textit{JHEP} \textbf{12} (2012) 061, \texttt{doi:10.1007/JHEP12(2012)061} \texttt{arXiv:1209.6215}

[35] J. Alwall et al., “Comparative study of various algorithms for the merging of parton showers and matrix elements in hadronic collisions”, \textit{Eur. Phys. J. C} \textbf{53} (2008) 473, \texttt{doi:10.1140/epjc/s10052-007-0490-5} \texttt{arXiv:0706.2569}

[36] S. Kallweit et al., “NLO QCD+EW predictions for V+jets including off-shell vector-boson decays and multijet merging”, \textit{JHEP} \textbf{04} (2016) 021, \texttt{doi:10.1007/JHEP04(2016)021} \texttt{arXiv:1511.08692}

[37] P. Nason, “A new method for combining NLO QCD with shower Monte Carlo algorithms”, \textit{JHEP} \textbf{11} (2004) 040, \texttt{doi:10.1088/1126-6708/2004/11/040} \texttt{arXiv:hep-ph/0409146}

[38] S. Frixione, P. Nason, and C. Oleari, “Matching NLO QCD computations with Parton Shower simulations: the POWHEG method”, \textit{JHEP} \textbf{11} (2007) 070, \texttt{doi:10.1088/1126-6708/2007/11/070} \texttt{arXiv:0709.2092}

[39] S. Alioli, P. Nason, C. Oleari, and E. Re, “A general framework for implementing NLO calculations in shower Monte Carlo programs: the POWHEG BOX”, \textit{JHEP} \textbf{06} (2010) 043, \texttt{doi:10.1007/JHEP06(2010)043} \texttt{arXiv:1002.2581}
[40] S. Alioli, P. Nason, C. Oleari, and E. Re, “NLO single-top production matched with shower in POWHEG: s- and t-channel contributions”, *JHEP* 09 (2009) 111, doi:10.1088/1126-6708/2009/09/111, arXiv:0907.4076 [Erratum: doi:10.1007/JHEP02(2010)011].

[41] E. Re, “Single-top Wt-channel production matched with parton showers using the POWHEG method”, *Eur. Phys. J. C* 71 (2011) 1547, doi:10.1140/epjc/s10052-011-1547-z, arXiv:1009.2450.

[42] S. Alioli, P. Nason, C. Oleari, and E. Re, “NLO higgs boson production via gluon fusion matched with shower in POWHEG”, *JHEP* 04 (2009) 002, doi:10.1088/1126-6708/2009/04/002, arXiv:0812.0578.

[43] J. M. Campbell and R. K. Ellis, “MCFM for the Tevatron and the LHC”, *Nucl. Phys. Proc. Suppl.* 205 (2010) 10, doi:10.1016/j.nuclphysbps.2010.08.011, arXiv:1007.3492.

[44] Y. Li and F. Petriello, “Combining QCD and electroweak corrections to dilepton production in FEWZ”, *Phys. Rev. D* 86 (2012) 094034, doi:10.1103/PhysRevD.86.094034, arXiv:1208.5967.

[45] T. Sjöstrand et al., “An introduction to PYTHIA 8.2”, *Comput. Phys. Commun.* 191 (2015) 159, doi:10.1016/j.cpc.2015.01.024, arXiv:1410.3012.

[46] CMS Collaboration, “Event generator tunes obtained from underlying event and multiparton scattering measurements”, *Eur. Phys. J. C* 76 (2016) 155, doi:10.1140/epjc/s10052-016-3988-x, arXiv:1512.00815.

[47] NNPDF Collaboration, “Parton distributions for the LHC Run II”, *JHEP* 04 (2015) 040, doi:10.1007/JHEP04(2015)040, arXiv:1410.8849.

[48] GEANT4 Collaboration, “GEANT4—a simulation toolkit”, *Nucl. Instrum. Meth. A* 506 (2003) 250, doi:10.1016/S0168-9002(03)01368-8.

[49] CMS Collaboration, “Particle-flow reconstruction and global event description with the CMS detector”, *JINST* 12 (2017) 10003, doi:10.1088/1748-0221/12/10/P10003, arXiv:1705.04965.

[50] M. Cacciari, G. P. Salam, and G. Soyez, “The anti-kt jet clustering algorithm”, *JHEP* 04 (2008) 063, doi:10.1088/1126-6708/2008/04/063, arXiv:0802.1189.

[51] M. Cacciari, G. P. Salam, and G. Soyez, “FastJet user manual”, *Eur. Phys. J. C* 72 (2012) 1896, doi:10.1140/epjc/s10052-012-1896-2, arXiv:1111.6097.

[52] CMS Collaboration, “Jet algorithms performance in 13 TeV data”, CMS Physics Analysis Summary CMS-PAS-JME-16-003, 2017.

[53] CMS Collaboration, “Jet energy scale and resolution in the CMS experiment in pp collisions at 8 TeV”, *JINST* 12 (2017) P02014, doi:10.1088/1748-0221/12/02/P02014, arXiv:1607.03663.

[54] CMS Collaboration, “Identification of heavy-flavour jets with the CMS detector in pp collisions at 13 TeV”, *JINST* 13 (2018) P05011, doi:10.1088/1748-0221/13/05/P05011, arXiv:1712.07158.
[55] CMS Collaboration, “Performance of missing transverse momentum reconstruction in proton-proton collisions at $\sqrt{s} = 13$ TeV using the CMS detector”, *JINST* **14** (2019) P07004, [doi:10.1088/1748-0221/14/07/P07004](https://doi.org/10.1088/1748-0221/14/07/P07004), [arXiv:1903.06078](https://arxiv.org/abs/1903.06078).

[56] CMS Collaboration, “Performance of the CMS muon detector and muon reconstruction with proton-proton collisions at $\sqrt{s} = 13$ TeV”, *JINST* **13** (2018) P06015, [doi:10.1088/1748-0221/13/06/P06015](https://doi.org/10.1088/1748-0221/13/06/P06015), [arXiv:1804.04528](https://arxiv.org/abs/1804.04528).

[57] CMS Collaboration, “Performance of electron reconstruction and selection with the CMS detector in proton-proton collisions at $\sqrt{s} = 8$ TeV”, *JINST* **10** (2015) P06005, [doi:10.1088/1748-0221/10/06/P06005](https://doi.org/10.1088/1748-0221/10/06/P06005), [arXiv:1502.02701](https://arxiv.org/abs/1502.02701).

[58] H. Voss, A. Höcker, J. Stelzer, and F. Tegenfeldt, “TMVA, the toolkit for multivariate data analysis with ROOT”, in *XIth International Workshop on Advanced Computing and Analysis Techniques in Physics Research (ACAT)*, p. 40. 2007. [arXiv:physics/0703039](https://arxiv.org/abs/physics/0703039).[PoS(ACAT)040]. [doi:10.22323/1.050.0040](https://doi.org/10.22323/1.050.0040).

[59] M. Cacciari and G. P. Salam, “Pileup subtraction using jet areas”, *Phys. Lett. B* **659** (2008) 119, [doi:10.1016/j.physletb.2007.09.077](https://doi.org/10.1016/j.physletb.2007.09.077), [arXiv:0707.1378](https://arxiv.org/abs/0707.1378).

[60] CMS Collaboration, “Commissioning of the particle flow reconstruction in minimum-bias and jet events from pp collisions at 7 TeV”, CMS Physics Analysis Summary CMS-PAS-PFT-10-002, 2010.

[61] J. H. Friedman, “Greedy function approximation: A gradient boosting machine.”, *Ann. Statist.* **29** (10, 2001) 1189, [doi:10.1214/aos/1013203451](https://doi.org/10.1214/aos/1013203451).

[62] CMS Collaboration, “Search for high-mass resonances in final states with a lepton and missing transverse momentum at $\sqrt{s} = 13$ TeV”, *JHEP* **06** (2018) 128, [doi:10.1007/JHEP06(2018)128](https://doi.org/10.1007/JHEP06(2018)128), [arXiv:1803.11133](https://arxiv.org/abs/1803.11133).

[63] J. Butterworth et al., “PDF4LHC recommendations for LHC Run II”, *J. Phys. G* **43** (2016) 023001, [doi:10.1088/0954-3899/43/2/023001](https://doi.org/10.1088/0954-3899/43/2/023001), [arXiv:1510.03865](https://arxiv.org/abs/1510.03865).

[64] CMS Collaboration, “CMS luminosity measurements for the 2016 data taking period”, (2017). CMS-PAS-LUM-17-001.

[65] CMS Collaboration, “Measurement of the inelastic proton-proton cross section at $\sqrt{s} = 13$ TeV”, *JHEP* **07** (2018) 161, [doi:10.1007/JHEP07(2018)161](https://doi.org/10.1007/JHEP07(2018)161), [arXiv:1802.02613](https://arxiv.org/abs/1802.02613).

[66] The ATLAS Collaboration, The CMS Collaboration, The LHC Higgs Combination Group, “Procedure for the LHC Higgs boson search combination in Summer 2011”, Technical Report CMS-NOTE-2011-005, ATL-PHYS-PUB-2011-11, 2011.

[67] R. Barlow and C. Beeston, “Fitting using finite Monte Carlo samples”, *Comput. Phys. Commun.* **77** (1993) 219, [doi:10.1016/0010-4655(93)90005-W](https://doi.org/10.1016/0010-4655(93)90005-W).

[68] J. S. Conway, “Incorporating nuisance parameters in likelihoods for multsource spectra”, in *Proceedings, PHYSTAT 2011 workshop on statistical issues related to discovery claims in search experiments and unfolding, CERN, Geneva, Switzerland 17–20 January 2011*, p. 115. 2011. [arXiv:1103.0354](https://arxiv.org/abs/1103.0354).[doi:10.5170/CERN-2011-006.115](https://doi.org/10.5170/CERN-2011-006.115).

[69] T. Junk, “Confidence level computation for combining searches with small statistics”, *Nucl. Instrum. Meth. A* **434** (1999) 435, [doi:10.1016/S0168-9002(99)00498-2](https://doi.org/10.1016/S0168-9002(99)00498-2), [arXiv:hep-ex/9902006](https://arxiv.org/abs/hep-ex/9902006).
[70] A. L. Read, “Presentation of search results: the CL$_s$ technique”, *J. Phys. G* 28 (2002) 2693, doi:10.1088/0954-3899/28/10/313.

[71] G. Cowan, K. Cranmer, E. Gross, and O. Vitells, “Asymptotic formulae for likelihood-based tests of new physics”, *Eur. Phys. J. C* 71 (2011) 1554, doi:10.1140/epjc/s10052-011-1554-0, arXiv:1007.1727 [Erratum: doi:10.1140/epjc/s10052-013-2501-z].
A The CMS Collaboration

Yerevan Physics Institute, Yerevan, Armenia
A.M. Sirunyan†, A. Tumasyan

Institut für Hochenergiephysik, Wien, Austria
W. Adam, F. Ambroggi, T. Bergauer, M. Dragicevic, J. Erö, A. Escalante Del Valle, R. Frühwirth†, M. Jeitler†, N. Krammer, L. Lechner, D. Liko, T. Madlener, I. Mikulec, N. Rad, J. Schieck†, R. Schöfbeck, M. Spanring, S. Templ, W. Waltenberger, C.-E. Wulz†, M. Zarucki

Institute for Nuclear Problems, Minsk, Belarus
V. Chekhovsky, A. Litomin, V. Makarenko, J. Suarez Gonzalez

Universiteit Antwerpen, Antwerpen, Belgium
M.R. Darwish‡, E.A. De Wolf, D. Di Croce, X. Janssen, T. Kello‡, A. Lelek, M. Pieters, H. Rejeb Sfar, H. Van Haevermaet, S. Van Putte, N. Van Remortel

Vrije Universiteit Brussel, Brussel, Belgium
F. Blekman, E.S. Bols, S.S. Chhibra, J. D'Hondt, J. De Clercq, D. Lontkovskyi, S. Lowette, I. Marchesini, S. Moortgat, Q. Python, S. Tavernier, W. Van Doninck, P. Van Mulders

Université Libre de Bruxelles, Bruxelles, Belgium
D. Beghin, B. Bilin, B. Clerbaux, G. De Lentdecker, H. Delannoy, B. Dorney, L. Favart, A. Grebenyuk, A.K. Kalsi, I. Makarenko, L. Moureaux, L. Petrè, A. Popov, N. Postiau, E. Starling, L. Thomas, C. Vander Velde, P. Vanlaer, D. Vannerom, L. Wezenbeek

Ghent University, Ghent, Belgium
T. Cornelis, D. Dobur, I. Khvastunov¶, M. Niedziela, C. Roskas, K. Skovpen, M. Tytgat, W. Verbeke, B. Vermassen, M. Vit

Université Catholique de Louvain, Louvain-la-Neuve, Belgium
G. Bruno, F. Bury, C. Caputo, P. David, C. Delaere, M. Delcourt, I.S. Donertas, A. Giammanco, V. Lemaitre, J. Prisciandaro, A. Saggio, A. Taliercio, M. Teklihshyn, P. Vischia, S. Wuyckens, J. Zobec

Centro Brasileiro de Pesquisas Fisicas, Rio de Janeiro, Brazil
G.A. Alves, G. Correia Silva, C. Hensel, A. Moraes

Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil
W.L. Alda Júnior, E. Belchior Batista Das Chagas, W. Carvalho, J. Chinellato¶, E. Coelho, E.M. Da Costa, G.G. Da Silveira¶, D. De Jesus Damiao, S. Fonseca De Souza, H. Malbouisson, J. Martins¶, D. Matos Figueiredo, M. Medina Jaime¶, M. Melo De Almeida, C. Mora Herrera, L. Mundim, H. Nogima, P. Rebello Teles, L.J. Sanchez Rosas, A. Santoro, S.M. Silva Do Amaral, A. Szajder, M. Thiel, E.J. Tonelli Manganote¶, F. Torres Da Silva De Araujo, A. Vilela Pereira

Universidade Estadual Paulista a, Universidade Federal do ABC b, São Paulo, Brazil
C.A. Bernardes¶, L. Calligaris¶, T.R. Fernandez Perez Tomei¶, E.M. Gregoresb, D.S. Lemos¶, P.G. Mercadanteb, S.F. Novaes¶, Sandra S. Padula¶

Institute for Nuclear Research and Nuclear Energy, Bulgarian Academy of Sciences, Sofia, Bulgaria
A. Aleksandrov, G. Antchev, I. Atanasov, R. Hadjiiska, P. Iaydjiev, M. Misheva, M. Rodozov, M. Shopova, G. Sultanov

University of Sofia, Sofia, Bulgaria
M. Bonchev, A. Dimitrov, T. Ivanov, L. Litov, B. Pavlov, P. Petkov, A. Petrov
Beihang University, Beijing, China
W. Fang, Q. Guo, H. Wang, L. Yuan

Department of Physics, Tsinghua University, Beijing, China
M. Ahmad, Z. Hu, Y. Wang

Institute of High Energy Physics, Beijing, China
E. Chapon, G.M. Chen, H.S. Chen, M. Chen, C.H. Jiang, D. Leggat, H. Liao, Z. Liu, R. Sharma, A. Spiezia, J. Tao, J. Wang, H. Zhang, S. Zhang, J. Zhao

State Key Laboratory of Nuclear Physics and Technology, Peking University, Beijing, China
A. Agapitos, Y. Ban, C. Chen, G. Chen, A. Levin, J. Li, L. Li, Q. Li, X. Lyu, Y. Mao, S.J. Qian, D. Wang, Q. Wang, J. Xiao

Sun Yat-Sen University, Guangzhou, China
Z. You

Institute of Modern Physics and Key Laboratory of Nuclear Physics and Ion-beam Application (MOE) - Fudan University, Shanghai, China
X. Gao

Zhejiang University, Hangzhou, China
M. Xiao

Universidad de Los Andes, Bogota, Colombia
C. Avila, A. Cabrera, C. Florez, J. Fraga, M.A. Segura Delgado

Universidad de Antioquia, Medellin, Colombia
J. Mejia Guisao, F. Ramirez, J.D. Ruiz Alvarez, C.A. Salazar Gonzalez, N. Vanegas Arbelaez

University of Split, Faculty of Electrical Engineering, Mechanical Engineering and Naval Architecture, Split, Croatia
D. Giljanovic, N. Godinovic, D. Lelas, I. Puljak, T. Sculac

University of Split, Faculty of Science, Split, Croatia
Z. Antunovic, M. Kovac

Institute Rudjer Boskovic, Zagreb, Croatia
V. Brigljevic, D. Ferencek, D. Majumder, B. Mesic, M. Roguljic, A. Starodumov, T. Susa

University of Cyprus, Nicosia, Cyprus
M.W. Ather, A. Attikis, E. Erodotou, A. Ioannou, G. Kole, M. Kolosova, S. Konstantinou, G. Mavromanolakis, J. Mousa, C. Nicolaou, F. Ptochos, P.A. Razis, H. Rykaczewski, H. Saka, D. Tsiakkouri

Charles University, Prague, Czech Republic
M. Finger, A. Finger Jr., A. Kveton, J. Tomsa

Escuela Politecnica Nacional, Quito, Ecuador
E. Ayala

Universidad San Francisco de Quito, Quito, Ecuador
E. Carrera Jarrin

Academy of Scientific Research and Technology of the Arab Republic of Egypt, Egyptian Network of High Energy Physics, Cairo, Egypt
E. Salama
Center for High Energy Physics (CHEP-FU), Fayoum University, El-Fayoum, Egypt
M.A. Mahmoud, Y. Mohammed

National Institute of Chemical Physics and Biophysics, Tallinn, Estonia
S. Bhowmik, A. Carvalho Antunes De Oliveira, R.K. Dewanjee, K. Ehataht, M. Kadastik, M. Raidal, C. Veelken

Department of Physics, University of Helsinki, Helsinki, Finland
P. Eerola, L. Forthomme, H. Kirschenmann, K. Osterberg, M. Voutilainen

Helsinki Institute of Physics, Helsinki, Finland
E. Brücken, F. Garcia, J. Havukainen, V. Karimäki, M.S. Kim, R. Kinnunen, T. Lampén, K. Lassila-Perini, S. Laurila, S. Lehti, T. Lindén, H. Siikonen, E. Tuominen, J. Tuominiemi

Lappeenranta University of Technology, Lappeenranta, Finland
P. Luukka, T. Tuuva

IRFU, CEA, Université Paris-Saclay, Gif-sur-Yvette, France
M. Besançon, F. Coudenc, M. Dejardin, D. Denegri, J.L. Faure, F. Ferri, S. Ganjour, A. Givernaud, P. Gras, G. Hamel de Monchenault, P. Jarry, C. Leloup, B. Lenzi, E. Locci, J. Malcles, J. Rander, A. Rosowsky, M.Ö. Sahin, A. Savoy-Navarro, M. Titov, G.B. Yu

Laboratoire Leprince-Ringuet, CNRS/IN2P3, Ecole Polytechnique, Institut Polytechnique de Paris, Paris, France
S. Ahuja, C. Amendola, F. Beaudette, M. Bonanomi, P. Busson, C. Charlot, O. Davignon, B. Diab, G. Falmagne, R. Granier de Cassagnac, I. Kucher, A. Lobanov, C. Martin Perez, M. Nguyen, C. Ochando, P. Paganini, J. Rembser, R. Salerno, J.B. Sauvan, Y. Siros, A. Zabi, A. Zghiche

Université de Strasbourg, CNRS, IPHC UMR 7178, Strasbourg, France
J.-L. Agram, J. Andrea, D. Bloch, G. Bourgatte, J.-M. Brom, E.C. Chabert, C. Collard, J.-C. Fontaine, D. Gelé, U. Goerlach, C. Grimault, A.-C. Le Bihan, P. Van Hove

Université de Lyon, Université Claude Bernard Lyon 1, CNRS-IN2P3, Institut de Physique Nucléaire de Lyon, Villeurbanne, France
E. Asilar, S. Beauceron, C. Bernet, G. Boudoul, C. Camen, A. Carle, N. Chanon, R. Chierici, D. Contardo, P. Depasse, H. El Mamouni, J. Fay, S. Gascon, M. Gouzevitch, B. Ille, Sa. Jain, I.B. Laktineh, H. Lattaud, A. Lesauvage, M. Lethuillier, L. Mirabito, L. Torterotot, G. Touquet, M. Vander Donckt, S. Viret

Georgian Technical University, Tbilisi, Georgia
A. Khvedelidze

Tbilisi State University, Tbilisi, Georgia
Z. Tsamalaidze

RWTH Aachen University, I. Physikalisches Institut, Aachen, Germany
L. Feld, K. Klein, M. Lipinski, D. Meuser, A. Pauls, M. Preuten, M.P. Rauch, J. Schulz, M. Teroerde

RWTH Aachen University, III. Physikalisches Institut A, Aachen, Germany
D. Eliseev, M. Erdmann, P. Fackeldey, B. Fischer, S. Ghosh, T. Hebbeke, K. Hoepfner, H. Keller, L. Mastrolorenzo, M. Merschmeyer, A. Meyer, P. Millet, G. Mocellin, S. Mondal, S. Mukherjee, D. Noll, A. Novak, T. Pook, A. Pozdnyakov, T. Quast, M. Radziej, Y. Rath, H. Reithler, J. Roemer, A. Schmidt, S.C. Schuler, A. Sharma, S. Wiedenbeck, S. Zaleski
RWTH Aachen University, III. Physikalisches Institut B, Aachen, Germany
C. Dziwok, G. Flügge, W. Haj Ahmad, O. Hlushchenko, T. Kress, A. Nowack, C. Pistone, O. Pooth, D. Roy, H. Sert, A. Stahl, T. Ziemons

Deutsches Elektronen-Synchrotron, Hamburg, Germany
H. Aarup Petersen, M. Aldaya Martin, P. Asmuss, I. Babounikau, S. Baxter, O. Behnke, A. Bermúdez Martínez, A.A. Bin Anuar, K. Borras, V. Botta, D. Brunner, A. Campbell, A. Cardini, P. Connor, S. Consuegra Rodríguez, V. Danilov, A. De Wit, M.M. Defranchis, L. Didukh, D. Domínguez Damiani, G. Eckerlin, D. Eckstein, T. Eichhorn, A. Elwood, L.I. Estevez Banos, E. Gallo, A. Geiser, A. Giraldi, A. Grohsjean, M. Guthoff, M. Haranko, A. Harb, A. Jafari, N.Z. Jomhari, H. Jung, A. Kasem, M. Kasemann, H. Kaveh, J. Keaveney, C. Kleinwort, J. Knolle, D. Krücker, W. Lange, T. Lenz, J. Lidrych, K. Lipka, W. Lohmann, R. Mankel, I.-A. Melzer-Pellmann, J. Metwally, A.B. Meyer, M. Meyer, M. Missiroli, J. Mnich, A. Mussgiller, V. Myronenko, Y. Otard, D. Pérez Adán, S.K. Pflitsch, D. Pitzl, A. Raspereza, A. Saibel, M. Savitskyi, V. Scheurer, P. Schütze, C. Schwanenberger, R. Shevchenko, A. Singh, R.E. Sosa Ricardo, H. Tholen, N. Tonon, O. Turkid, A. Vagnerini, M. Van De Klundert, R. Walsh, D. Walter, Y. Wen, K. Wichmann, C. Wissing, S. Wuchterl, O. Zenaiev, R. Zlebcik

University of Hamburg, Hamburg, Germany
R. Aggleton, S. Bein, L. Benato, A. Benecke, K. De Leo, T. Dreyer, A. Ebrahimi, F. Feindt, A. Fröhlich, C. Garbers, E. Garutti, D. Gonzalez, P. Gunnellini, J. Haller, A. Hinzmann, A. Karavdina, G. Kasieczka, R. Klaerner, R. Kogler, S. Kurz, V. Kutzner, J. Lange, T. Lange, A. Malara, J. Multhaup, C.E.N. Niemeyer, A. Nigamova, K.J. Pena Rodriguez, A. Reimers, O. Rieger, P. Schleper, S. Schumann, J. Schwandt, D. Schwarz, J. Sonneveld, H. Stadie, G. Steinbrück, B. Vormwald, I. Zoi

Karlsruher Institut fuer Technologie, Karlsruhe, Germany
M. Akbiyik, M. Baselga, S. Baur, J. Bechtel, T. Berger, E. Butz, R. Caspart, T. Chwalek, W. De Boer, A. Dierlamm, A. Droll, K. El Morabit, R. Faltermann, K. Flöh, M. Giffels, A. Gottmann, F. Hartmann, C. Heidecker, E. Garutti, D. Gonzalez, P. Gunnellini, J. Haller, A. Hinzmann, A. Karavdina, G. Kasieczka, R. Klaerner, R. Kogler, S. Kurz, V. Kutzner, J. Lange, T. Lange, A. Malara, J. Multhaup, C.E.N. Niemeyer, A. Nigamova, K.J. Pena Rodriguez, A. Reimers, O. Rieger, P. Schleper, S. Schumann, J. Schwandt, D. Schwarz, J. Sonneveld, H. Stadie, G. Steinbrück, B. Vormwald, I. Zoi

Institute of Nuclear and Particle Physics (INPP), NCSR Demokritos, Aghia Paraskevi, Greece
G. Anagnostou, P. Asenov, G. Daskalakis, T. Geralis, A. Kyriakis, D. Loukas, G. Paspalaki, A. Stakia

National and Kapodistrian University of Athens, Athens, Greece
M. Diamantopoulou, D. Karasavvas, G. Karathanasis, P. Kontaxakis, C.K. Koraka, A. Manousakis-katsikakis, A. Panagiotou, I. Papavergou, N. Saoulidou, K. Theofilatos, K. Vellidis, E. Vourliotis

National Technical University of Athens, Athens, Greece
G. Bakas, K. Kousouris, I. Papakrivopoulos, G. Tsipolitis, A. Zacharopoulou

University of Ioánnina, Ioánnina, Greece
I. Evangelou, C. Foudas, P. Gianneios, P. Katsoulis, P. Kokkas, S. Mallios, K. Manita, N. Manthos, I. Papadopoulos, J. Strologas, D. Tsitsonis
MTA-ELTE Lendület CMS Particle and Nuclear Physics Group, Eötvös Loránd University, Budapest, Hungary
M. Bartók, R. Chudasama, M. Csanad, M.M.A. Gadallah, P. Major, K. Mandal, A. Mehta, G. Pasztor, O. Surányi, G.I. Veres

Wigner Research Centre for Physics, Budapest, Hungary
G. Bencze, C. Hajdu, D. Horváth, F. Sikler, V. Veszpremi, G. Vesztergombi

Institute of Nuclear Research ATOMKI, Debrecen, Hungary
N. Beni, S. Czellar, J. Karancsi, J. Molnar, Z. Szillasi, D. Teyssier

Institute of Physics, University of Debrecen, Debrecen, Hungary
P. Raics, Z.L. Trocsanyi, B. Ujvari

Eszterhazy Karoly University, Karoly Robert Campus, Gyongyos, Hungary
T. Csorgo, S. Lókös, F. Nemes, T. Novak

Indian Institute of Science (IISc), Bangalore, India
S. Choudhury, J.R. Komaragiri, D. Kumar, L. Panwar, P.C. Tiwari

National Institute of Science Education and Research, HBNI, Bhubaneswar, India
S. Bahinipati, D. Dash, C. Kar, P. Mal, T. Mishra, V.K. Muraleedharan Nair Bindhu, A. Nayak, D.K. Sahoo, N. Sur, S.K. Swain

Panjab University, Chandigarh, India
S. Bansal, S.B. Beri, V. Bhattacharya, S. Chauhan, N. Dhandra, R. Gupta, A. Kaur, A. Kaur, S. Kaur, P. Kumari, M. Lohan, M. Meena, K. Sandeep, S. Sharma, J.B. Singh, A.K. Virdi

University of Delhi, Delhi, India
A. Ahmed, A. Bhardwaj, B.C. Choudhary, R.B. Garg, M. Gola, S. Keshri, A. Kumar, M. Naimuddin, P. Priyanka, K. Ranjan, A. Shah

Saha Institute of Nuclear Physics, HBNI, Kolkata, India
M. Bharti, R. Bhattacharya, S. Bhattacharya, D. Bhowmik, S. Dutta, S. Ghosh, B. Gomber, M. Maity, K. Mondal, S. Nandan, P. Palit, A. Purohit, P.K. Rout, G. Saha, S. Sarkar, M. Sharan, B. Singh, S. Thakur

Indian Institute of Technology Madras, Madras, India
P.K. Behera, S.C. Behera, P. Kalbhor, A. Muhammad, R. Pradhan, P.R. Pujahari, A. Sharma, A.K. Sikdar

Bhabha Atomic Research Centre, Mumbai, India
D. Dutta, V. Jha, V. Kumar, D.K. Mishra, K. Naskar, P.K. Nettrakanti, L.M. Pant, P. Shukla

Tata Institute of Fundamental Research-A, Mumbai, India
T. Aziz, M.A. Bhat, S. Dugad, R. Kumar Verma, U. Sarkar

Tata Institute of Fundamental Research-B, Mumbai, India
S. Banerjee, S. Bhattacharya, S. Chatterjee, P. Das, M. Guchait, S. Karmakar, S. Kumar, G. Majumder, K. Mazumdar, S. Mukherjee, D. Roy, N. Sahoo

Indian Institute of Science Education and Research (IISER), Pune, India
S. Dube, B. Kansal, A. Kapoor, K. Kothekar, S. Pandey, A. Rane, A. Rastogi, S. Sharma

Department of Physics, Isfahan University of Technology, Isfahan, Iran
H. Bakhshiansohi
INFIN Sezione di Perugia a, Università di Perugia b, Perugia, Italy
M. Biasini a, b, G.M. Bilei a, D. Ciangottini a, b, L. Fanò a, b, P. Lariccia a, b, G. Mantovani a, b, V. Mariani a, b, M. Menichelli a, F. Moscatelli a, A. Ross a, b, A. Santocchia a, b, D. Spiga a, T. Tedeschi a, b

INFIN Sezione di Pisa a, Università di Pisa b, Scuola Normale Superiore di Pisa c, Pisa, Italy
K. Androsov a, P. Azzurri a, G. Bagliesi a, V. Bertacchi a, c, L. Bianchini a, T. Boccali a, R. Castaldi a, M.A. Ciocci a, b, R. Dell’Orso a, M.R. Di Domenico a, b, S. Donato a, L. Giannini a, c, A. Giassi a, M.T. Grippo a, F. Ligabue a, c, E. Manca a, c, G. Mandorli a, c, A. Messineo a, b, F. Palla a, A. Rizzi a, b, G. Rolandi a, c, S. Roy Chowdhury a, c, A. Scribano a, N. Shafiei a, b, P. Spagnolo a, R. Tencini a, G. Tonelli a, b, N. Turini a, A. Venturi a, b, F. Vazzoler a, b

INFIN Sezione di Roma a, Sapienza Università di Roma b, Rome, Italy
F. Cavallari a, M. Cipriani a, b, D. Del Re a, b, E. Di Marco a, M. Diemoz a, E. Longo a, b, P. Meridiani a, G. Organtini a, b, F. Pandolfi a, R. Paramatti a, b, C. Quaranta a, b, S. Rahatlou a, b, C. Rovelli a, F. Santanastasio a, b, L. Soffi a, b, R. Tramontano a, b

INFIN Sezione di Torino a, Università di Torino b, Torino, Italy, Università del Piemonte Orientale c, Novara, Italy
N. Amapane a, b, R. Arcidiacono a, c, S. Argiro a, b, M. Arneodo a, c, N. Bartosik a, R. Bellan a, b, A. Bellora a, b, C. Biino a, A. Cappati a, b, N. Cartiglia a, S. Cometti a, M. Costa a, b, R. Covarelli a, b, N. Demaria a, B. Kiani a, b, F. Legger a, C. Mariotti a, S. Maselli a, E. Migliore a, b, V. Monaco a, b, E. Monteil a, b, M. Monteno a, M.M. Obertino a, b, G. Ortona a, L. Pacher a, b, N. Pastrone a, M. Pelliccioni a, G.L. Pinna Angioni a, b, M. Rupas a, c, R. Salvatico a, b, F. Siviero a, b, V. Sola a, A. Solano a, b, D. Soldi a, b, A. Staiano a, D. Trocino a, b

INFIN Sezione di Trieste a, Università di Trieste b, Trieste, Italy
S. Belforte a, V. Candelise a, b, M. Casarsa a, F. Cossutti a, A. Da Rold a, b, G. Della Ricca a, b, F. Vazzoler a, b

Kyungpook National University, Daegu, Korea
S. Dogra, C. Huh, B. Kim, D.H. Kim, G.N. Kim, J. Lee, S.W. Lee, C.S. Moon, Y.D. Oh, S.I. Pak, S. Sekmen, Y.C. Yang

Chonnam National University, Institute for Universe and Elementary Particles, Kwangju, Korea
H. Kim, D.H. Moon

Hanyang University, Seoul, Korea
B. Francois, T.J. Kim, J. Park

Korea University, Seoul, Korea
S. Cho, S. Choi, Y. Go, S. Ha, B. Hong, K. Lee, K.S. Lee, J. Lim, J. Park, S.K. Park, Y. Roh, J. Yoo

Kyung Hee University, Department of Physics, Seoul, Republic of Korea
J. Goh, A. Gurtu

Sejong University, Seoul, Korea
H.S. Kim, Y. Kim

Seoul National University, Seoul, Korea
J. Almond, J.H. Bhyun, J. Choi, S. Jeon, J. Kim, J.S. Kim, S. Ko, H. Kwon, H. Lee, K. Lee, S. Lee, K. Nam, B.H. Oh, M. Oh, S.B. Oh, B.C. Radburn-Smith, H. Seo, U.K. Yang, I. Yoon
University of Seoul, Seoul, Korea
D. Jeon, J.H. Kim, B. Ko, J.S.H. Lee, I.C. Park, I.J. Watson

Yonsei University, Department of Physics, Seoul, Korea
H.D. Yoo

Sungkyunkwan University, Suwon, Korea
Y. Choi, C. Hwang, Y. Jeong, H. Lee, J. Lee, Y. Lee, I. Yu

Riga Technical University, Riga, Latvia
V. Veckalns

Vilnius University, Vilnius, Lithuania
A. Juodagalvis, A. Rinkevicius, G. Tamulaitis

National Centre for Particle Physics, Universiti Malaya, Kuala Lumpur, Malaysia
W.A.T. Wan Abdullah, M.N. Yusli, Z. Zolkapli

Universidad de Sonora (UNISON), Hermosillo, Mexico
J.F. Benitez, A. Castaneda Hernandez, J.A. Murillo Quijada, L. Valencia Palomo

Centro de Investigacion y de Estudios Avanzados del IPN, Mexico City, Mexico
H. Castilla-Valdez, E. De La Cruz-Burelo, I. Heredia-De La Cruz, R. Lopez-Fernandez, A. Sanchez-Hernandez

Universidad Iberoamericana, Mexico City, Mexico
S. Carrillo Moreno, C. Oropeza Barrera, M. Ramirez-Garcia, F. Vazquez Valencia

Benemerita Universidad Autonoma de Puebla, Puebla, Mexico
J. Eysermans, I. Pedraza, H.A. Salazar Ibarquen, C. Uribe Estrada

Universidad Autónoma de San Luis Potosí, San Luis Potosí, Mexico
A. Morelos Pineda

University of Montenegro, Podgorica, Montenegro
J. Mijuskovic, N. Raicevic

University of Auckland, Auckland, New Zealand
D. Krofcheck

University of Canterbury, Christchurch, New Zealand
S. Bheesette, P.H. Butler

National Centre for Physics, Quaid-I-Azam University, Islamabad, Pakistan
A. Ahmad, M.I. Asghar, M.I.M. Awan, Q. Hassan, H.R. Hoorani, W.A. Khan, M.A. Shah, M. Shoaib, M. Waqas

AGH University of Science and Technology Faculty of Computer Science, Electronics and Telecommunications, Krakow, Poland
V. Avati, L. Grzanka, M. Malawski

National Centre for Nuclear Research, Swierk, Poland
H. Bialkowska, M. Bluj, B. Boimska, T. Frueboes, M. Górski, M. Kazana, M. Szleper, P. Traczyk, P. Zalewski

Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Warsaw, Poland
K. Bunkowski, A. Byszuk, K. Doroba, A. Kalinowski, M. Konecki, J. Krolikowski, M. Olszewski, M. Walczak
Laboratório de Instrumentação e Física Experimental de Partículas, Lisboa, Portugal
M. Araujo, P. Bargassa, D. Bastos, A. Di Francesco, P. Faccioli, B. Galinhas, M. Gallinaro, J. Hollar, N. Leonardo, T. Niknejad, J. Seixas, K. Shchelina, O. Toldaiev, J. Varela

Joint Institute for Nuclear Research, Dubna, Russia
V. Alexakhin, A. Golunov, A. Golunov, I. Golutvin, N. Gorbounov, I. Gorbunov, V. Karjavine, A. Lanev, A. Malakhov, V. Matveev, V.V. Mitsyn, P. Moisenz, V. Palichik, V. Perelygin, D. Seitova, V. Shalaev, S. Shmatov, O. Teryaev, V. Trofimov, N. Voityshin, B.S. Yuldashev, A. Zarubin, I. Zhizhin

Petersburg Nuclear Physics Institute, Gatchina (St. Petersburg), Russia
G. Gavrilov, V. Golovtcov, Y. Ivanov, V. Kim, E. Kuznetsova, V. Murzin, V. Oreshkin, I. Smirnov, D. Soknov, V. Sulimov, L. Uvarov, S. Volkov, A. Vorobyev

Institute for Nuclear Research, Moscow, Russia
Yu. Andreev, A. Dermev, S. Ginenko, N. Golubev, A. Karneyeu, M. Kirsanov, N. Krasnikov, A. Pashenkov, G. Pipovarov, D. Tislov, A. Toropin

Institute for Theoretical and Experimental Physics named by A.I. Alikhanov of NRC ‘Kurchatov Institute’, Moscow, Russia
V. Epshteyn, V. Gavrilov, N. Lychkovskaya, A. Nikitenko, V. Popov, I. Pozdnyakov, G. Safronov, A. Spiridonov, A. Stepennow, M. Toms, E. Vlasov, A. Zhokin

Moscow Institute of Physics and Technology, Moscow, Russia
T. Aushev

National Research Nuclear University ‘Moscow Engineering Physics Institute’ (MEPhI), Moscow, Russia
O. Bychkova, M. Chadeeva, D. Philippov, E. Popova, V. Rusinov

P.N. Lebedev Physical Institute, Moscow, Russia
V. Andreev, M. Azarkin, I. Dremin, M. Kirakosyan, A. Terkulov

Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University, Moscow, Russia
A. Belyaev, E. Boos, M. Dubinin, L. Dudko, A. Ershov, A. Gribushin, V. Klyukhin, O. Kodolova, I. Lokhtin, S. Obraztsov, S. Petrushanko, V. Savrin, A. Snigirev

Novosibirsk State University (NSU), Novosibirsk, Russia
V. Blinov, T. Dimova, L. Kardapoltsev, I. Ovtin, Y. Skovpen

Institute for High Energy Physics of National Research Centre ‘Kurchatov Institute’, Protvino, Russia
I. Azhgirey, I. Bayshev, V. Kachanov, A. Kalinin, D. Konstantinov, V. Petrov, R. Ryutin, A. Sobol, S. Troshin, N. Tyurin, A. Uznian, A. Volkov

National Research Tomsk Polytechnic University, Tomsk, Russia
A. Babaev, A. Iuzhakov, V. Okhotnikov

Tomsk State University, Tomsk, Russia
V. Borshch, V. Ivanchenko, E. Tcherniaev

University of Belgrade: Faculty of Physics and VINCA Institute of Nuclear Sciences, Belgrade, Serbia
P. Adzic, P. Cirkovic, M. Dordevic, P. Milenovic, J. Milosevic, M. Stojanovic
Centro de Investigaciones Energéticas Medioambientales y Tecnológicas (CIEMAT), Madrid, Spain
M. Aguilar-Benitez, J. Alcaraz Maestre, A. Álvarez Fernández, I. Bachiller, M. Barrio Luna, Cristina F. Bedoya, J.A. Brochero Cifuentes, C.A. Carrillo Montoya, M. Cepeda, M. Cerrada, N. Colino, B. De La Cruz, A. Delgado Peris, J.P. Fernández Ramos, J. Flix, M.C. Fouz, O. Gonzalez Lopez, S. Goy Lopez, J.M. Hernandez, M.I. Josa, D. Moran, Á. Navarro Tobar, A. Pérez-Calero Yzquierdo, J. Puerta Pelayo, I. Redondo, L. Romero, S. Sánchez Navas, M.S. Soares, A. Triossi, C. Willmott

Universidad Autónoma de Madrid, Madrid, Spain
C. Albajar, J.F. de Trocóniz, R. Reyes-Almanza

Universidad de Oviedo, Instituto Universitario de Ciencias y Tecnologías Espaciales de Asturias (ICTEA), Oviedo, Spain
B. Alvarez Gonzalez, J. Cuevas, C. Erice, J. Fernandez Menendez, S. Folgueras, I. Gonzalez Caballero, E. Palencia Cortezon, C. Ramón Álvarez, V. Rodríguez Bouza, S. Sanchez Cruz

Instituto de Física de Cantabria (IFCA), CSIC-Universidad de Cantabria, Santander, Spain
I.J. Cabrillo, A. Calderon, B. Chazin Quero, J. Duarte Campderros, M. Fernandez, P.J. Fernández Manteca, A. García Alonso, G. Gomez, C. Martinez Rivero, P. Martinez Ruiz del Arbol, F. Matorras, J. Piedra Gomez, C. Prieels, F. Ricci-Tam, T. Rodrigo, A. Ruiz-Jimeno, L. Russo, S. Sanchez Navas, M.S. Soares, A. Triossi, C. Willmott

University of Colombo, Colombo, Sri Lanka
MK Jayananda, B. Kailasapathy, D.U.J. Sonnadara, DDC Wickramarathna

University of Ruhuna, Department of Physics, Matara, Sri Lanka
W.G.D. Dharmaratna, K. Liyanage, N. Perera, N. Wickramage

CERN, European Organization for Nuclear Research, Geneva, Switzerland
T.K. Aarrestad, D. Abbaneo, B. Akgun, E. Auffray, G. Auzinger, J. Baechler, P. Baillon, A.H. Ball, D. Barney, J. Bendavid, M. Bianco, A. Boci, P. Bortignon, E. Bossini, E. Brondolin, T. Camporesi, G. Cerminara, L. Cristella, D. d’Enterria, A. Dabrowski, N. Daci, V. Daponte, A. David, A. De Roeck, M. Deile, R. Di Maria, M. Dobson, M. Dünser, N. Dupont, A. Elliott-Peisert, N. Emriksova, F. Fallavollita, D. Fasanella, S. Fiorendi, G. Franzoni, J. Fulcher, W. Funk, S. Giani, D. Gigi, K. Gill, F. Glege, L. Gouskos, M. Gruchala, M. Guilbaud, D. Gulhan, J. Hegeman, Y. Iiyama, V. Innocente, T. James, P. Janot, J. Kaspar, J. Kieseler, M. Komm, N. Kratochwil, C. Lange, P. Lecoq, K. Long, C. Lourenço, L. Malgeri, M. Mannelli, A. Massironi, F. Meijers, S. Mersi, E. Meschi, F. Moortgat, M. Mulders, J. Ngadiuba, J. Niedziela, S. Orfanelli, L. Orsini, F. Pantaleo, L. Pape, E. Perez, M. Peruzzi, A. Petrilli, G. Petrussiani, A. Pfeiffer, M. Pierini, F.M. Pitters, D. Rabady, A. Racz, M. Rieger, M. Rovere, H. Sakulin, J. Salfeld-Nebgen, S. Scarfi, C. Schäfer, C. Schwick, M. Selvaggi, A. Sharma, P. Silva, W. Snoeys, P. Spichas, J. Steggemann, S. Summers, V.R. Tavolaro, D. Treille, A. Tsirou, G.P. Van Onsem, A. Vartak, M. Verzetti, K.A. Wozniak, W.D. Zeuner

Paul Scherrer Institut, Villigen, Switzerland
L. Caminada, W. Erdmann, R. Horisberger, Q. Ingram, H.C. Kaestli, D. Kotlinski, U. Langenegger, T. Rohe

ETH Zurich - Institute for Particle Physics and Astrophysics (IPA), Zurich, Switzerland
M. Backhaus, P. Berger, A. Calandri, N. Chernyavskaya, G. Dissertori, M. Dittmar, M. Donegà, C. Dorfer, T. Gadek, T.A. Gómez Espinosa, C. Grab, D. Hits, W. Lustermann, A.-M. Lyon, R.A. Manzoni, M.T. Meinhard, F. Micheli, P. Musella, F. Nessi-Tedaldi, F. Pauss, V. Perovic,
G. Perrin, L. Perrogetti, S. Pigazzini, M.G. Ratti, M. Reichmann, C. Reissel, T. Reitenspiess, B. Ristic, D. Ruini, D.A. Sanz Becerra, M. Schönberger, L. Shchutska, V. Stampf, M.L. Vesterbacka Olsson, R. Wallny, D.H. Zhu

Universität Zürich, Zurich, Switzerland
C. Amsler, C. Botta, D. Brzhechko, M.F. Canelli, A. De Cosa, R. Del Burgo, J.K. Heikkilä, M. Huwiler, A. Jofrehei, B. Kilminster, S. Leontsinis, A. Macchiolo, P. Meiring, V.M. Mikuni, U. Molinatti, I. Neutelings, G. Rauco, P. Robmann, K. Schweiger, Y. Takahashi, S. Wertz

National Central University, Chung-Li, Taiwan
C. Adloff, C.M. Kuo, W. Lin, A. Roy, T. Sarkar, S.S. Yu

National Taiwan University (NTU), Taipei, Taiwan
L. Ceard, P. Chang, Y. Chao, K.F. Chen, P.H. Chen, W.-S. Hou, Y.y. Li, R.-S. Lu, E. Paganis, A. Psallidas, A. Steen, E. Yazzan

Chulalongkorn University, Faculty of Science, Department of Physics, Bangkok, Thailand
B. Asavapibhop, C. Asawatangtrakuldee, N. Srimanobhas

Çukurova University, Physics Department, Science and Art Faculty, Adana, Turkey
F. Boran, S. Damarseckin, Z.S. Demiroglu, F. Dolek, C. Dozen, I. Dumanoglu, E. Eskut, G. Gokbulut, Y. Guler, E. Gurpinar Guler, I. Hos, C. Isik, E.E. Kangal, O. Kara, A. Kayis Topaksu, U. Kimsinsu, G. Onengut, K. Ozdemir, A. Polatoz, A.E. Simsek, B. Tali, U.G. Tok, S. Turkapar, I.S. Zorbakir, C. Zorbilmez

Middle East Technical University, Physics Department, Ankara, Turkey
B. Isildak, G. Karapinar, K. Ocalan, M. Yalvac

Bogazici University, Istanbul, Turkey
I.O. Atakisi, E. Gülmez, M. Kaya, O. Kaya, Ö. Özel, S. Tekten, E.A. Yetkin

Istanbul Technical University, Istanbul, Turkey
A. Cakir, K. Cankocak, Y. Komurcu, S. Sen

Istanbul University, Istanbul, Turkey
F. Aydogmus Sen, S. Cerci, B. Kaynak, S. Ozkorucuklu, D. Sunar Cerci

Institute for Scintillation Materials of National Academy of Science of Ukraine, Kharkov, Ukraine
B. Grynyov

National Scientific Center, Kharkov Institute of Physics and Technology, Kharkov, Ukraine
L. Levchuk

University of Bristol, Bristol, United Kingdom
E. Bhal, S. Bologna, J.J. Brooke, D. Burns, E. Clement, D. Cussans, H. Flacher, J. Goldstein, G.P. Heath, H.F. Heath, L. Kreczko, B. Krikler, S. Parameswaran, T. Sakuma, S. Seif El Nasr-Storey, V.J. Smith, J. Taylor, A. Titterton

Rutherford Appleton Laboratory, Didcot, United Kingdom
K.W. Bell, A. Belyaev, C. Brew, R.M. Brown, D.J.A. Cocke, J. Ellis, K. Harder, S. Harper, J. Linacre, K. Manolopoulos, D.M. Newbold, E. Olaiya, D. Petyt, T. Reis, T. Schuh, C.H. Shepherd-Themistocleous, A. Thea, I.R. Tomalin, T. Williams

Imperial College, London, United Kingdom
R. Bainbridge, P. Bloch, S. Bonomally, J. Borg, S. Breeze, O. Buchmuller, A. Bundock, V. Cepaitis,
G.S. Chahal79, D. Colling, P. Dauncey, G. Davies, M. Della Negra, P. Everaerts, G. Fedi, G. Hall, G. Iles, J. Langford, L. Lyons, A.-M. Magnan, S. Malik, A. Martelli, V. Milosevic, A. Morton, J. Nash80, V. Palladino, M. Pesaresi, D.M. Raymond, A. Richards, A. Rose, E. Scott, C. Seez, A. Shtipliyski, M. Stoye, A. Tapper, K. Uchida, T. Virdee18, N. Wardle, S.N. Webb, D. Winterbottom, A.G. Zecchinelli, S.C. Zenz

Brunel University, Uxbridge, United Kingdom
J.E. Cole, P.R. Hobson, A. Khan, P. Kyberd, C.K. Mackay, I.D. Reid, L. Teodorescu, S. Zahid

Baylor University, Waco, USA
A. Brinkerhoff, K. Call, B. Caraway, J. Dittmann, K. Hatakeyama, C. Madrid, B. McMaster, N. Pastika, C. Smith

Catholic University of America, Washington, DC, USA
R. Bartek, A. Dominguez, R. Uniyal, A.M. Vargas Hernandez

The University of Alabama, Tuscaloosa, USA
A. Buccilli, O. Charaf, S.I. Cooper, S.V. Gleyzer, C. Henderson, P. Rumerio, C. West

Boston University, Boston, USA
A. Akpinar, A. Albert, D. Arcaro, C. Cosby, Z. Demiragli, D. Gastler, C. Richardson, J. Rohlf, K. Salyer, D. Sperka, D. Spitzbart, I. Suarez, S. Yuan, D. Zou

Brown University, Providence, USA
G. Benelli, B. Burkle, X. Coubet19, D. Cutts, Y.t. Duh, M. Hadley, U. Heintz, J.M. Hogan81, K.H.M. Kwok, E. Laird, G. Landsberg, K.T. Lau, J. Lee, M. Narain, S. Sagir82, R. Syarif, E. Usai, W.Y. Wong, D. Yu, W. Zhang

University of California, Davis, Davis, USA
R. Band, C. Brainerd, R. Breedon, M. Calderon De La Barca Sanchez, M. Chertok, J. Conway, R. Conway, P.T. Cox, R. Erbacher, C. Flores, G. Funk, F. Jensen, W. Ko†, O. Kukral, R. Lander, M. Mulhearn, D. Pellett, J. Pilot, M. Shi, D. Taylor, K. Tos, M. Tripathi, Y. Yao, F. Zhang

University of California, Los Angeles, USA
M. Bachtis, C. Bravo, R. Cousins, A. Dasgupta, A. Florent, D. Hamilton, J. Hauser, M. Ignatenko, T. Lam, N. Mccoll, W.A. Nash, S. Regnard, D. Saltzberg, C. Schnaible, B. Stone, V. Valuev

University of California, Riverside, Riverside, USA
K. Burt, Y. Chen, R. Clare, J.W. Gary, S.M.A. Ghiasi Shirazi, G. Hanson, G. Karapostoli, O.R. Long, N. Manganelli, M. Olmedo Negrete, M.I. Paneva, W. Si, S. Wimpenny, Y. Zhang

University of California, San Diego, La Jolla, USA
J.G. Branson, P. Chang, S. Cittolin, S. Cooperstein, N. Deelen, M. Derdzinski, J. Duarte, R. Gerosa, D. Gilbert, B. Hashemi, D. Klein, V. Krutelyov, J. Letts, M. Masciovecchio, S. May, S. Padhi, M. Pieri, V. Sharma, M. Tadel, F. Würthwein, A. Yagil

University of California, Santa Barbara - Department of Physics, Santa Barbara, USA
N. Amin, R. Bhandari, C. Campagnari, M. Citron, A. Dorsett, V. Dutta, J. Incandela, B. Marsh, H. Mei, A. Ovcharova, H. Qu, M. Quinlan, J. Richman, U. Sarica, D. Stuart, S. Wang

California Institute of Technology, Pasadena, USA
D. Anderson, A. Bornheim, O. Cerri, I. Dutta, J.M. Lawhorn, N. Lu, J. Mao, H.B. Newman, T.Q. Nguyen, J. Pata, M. Spiropulu, J.R. Vlimant, S. Xie, Z. Zhang, R.Y. Zhu
Carnegie Mellon University, Pittsburgh, USA
J. Alison, M.B. Andrews, T. Ferguson, T. Mudholkar, M. Paulini, M. Sun, I. Vorobiev, M. Weinberg

University of Colorado Boulder, Boulder, USA
J.P. Cumalat, W.T. Ford, E. MacDonald, T. Mulholland, R. Patel, A. Perloff, K. Stenson, K.A. Ulmer, S.R. Wagner

Cornell University, Ithaca, USA
J. Alexander, Y. Cheng, J. Chu, D.J. Cranshaw, A. Datta, A. Frankenthal, K. Mcdermott, J. Monroy, J.R. Patterson, D. Quach, A. Ryd, W. Sun, S.M. Tan, Z. Tao, J. Thom, P. Wittich, M. Zientek

Fermi National Accelerator Laboratory, Batavia, USA
S. Abdullin, M. Albrown, M. Alyari, G. Apollinari, A. Apresyan, A. Apyan, S. Banerjee, L.A.T. Bauerick, A. Beretvas, D. Berry, J. Berryhill, P.C. Bhat, K. Burkett, J.N. Butler, A. Canepa, G.B. Cerati, H.W.K. Cheung, F. Chlebana, M. Cremonesi, V.D. Elvira, J. Freeman, Z. Gecse, E. Gottschalk, L. Gray, D. Green, S. Grunendahl, O. Gutsche, R.M. Harris, S. Hasegawa, R. Heller, T.C. Herwig, J. Hirschauer, B. Jayatilaka, S. Jindariani, M. Johnson, U. Joshi, T. Klijnsma, B. Klima, M.J. Kortelainen, S. Lammel, J. Lewis, D. Lincoln, R. Lipton, M. Liu, T. Liu, J. Lykken, K. Maeshima, D. Mason, P. McBride, P. Merkel, S. Mrenna, S. Nahn, V. O’Dell, V. Papadimitriou, K. Pedro, C. Pena, O. Prokofyev, F. Ravera, A. Reinsvold Hall, L. Ristori, B. Schneider, E. Sexton-Kennedy, N. Smith, A. Soha, W.J. Spalding, L. Spiegel, S. Stoynev, J. Strait, L. Taylor, S. Tkaczyk, N.V. Tran, L. Updegerg, E.W. Vaandering, M. Wang, H.A. Weber, A. Woodard

University of Florida, Gainesville, USA
D. Acosta, P. Avery, D. Bourilkov, L. Cadamuro, V. Cherepanov, F. Errico, R.D. Field, D. Guerrero, B.M. Joshi, M. Kim, J. Konigsberg, A. Korytov, K.H. Lo, K. Matchev, N. Menendez, G. Mitselmakher, D. Rosenzweig, K. Shi, J. Wang, S. Wang, X. Zuo

Florida International University, Miami, USA
Y.R. Joshi

Florida State University, Tallahassee, USA
T. Adams, A. Askew, D. Diaz, R. Habibullah, S. Hagopian, V. Hagopian, K.F. Johnson, R. Khurana, T. Kolberg, G. Martinez, H. Prosper, C. Schiber, R. Yohay, J. Zhang

Florida Institute of Technology, Melbourne, USA
M.M. Baarmand, S. Butalla, T. Elkafrawy, M. Hohlmann, D. Noonan, M. Rahmani, M. Saunders, F. Yumiceva

University of Illinois at Chicago (UIC), Chicago, USA
M.R. Adams, L. Apanasевич, H. Becerril Gonzalez, R. Cavanaugh, X. Chen, S. Dittmer, O. Evdokimov, C.E. Gerber, D.A. Hangal, D.J. Hofman, C. Mills, G. Oh, T. Roy, M.B. Tonjes, N. Varelas, J. Viinikainen, H. Wang, X. Wang, Z. Wu

The University of Iowa, Iowa City, USA
M. Alhusseini, B. Bilki, K. Dilsiz, S. Durgut, R.P. Gandrjula, M. Haytmyradov, V. Khristenko, O.K. Köseyan, J.-P. Merlo, A. Mostvirishvili, A. Moeller, J. Nachtman, H. Ogul, Y. Onel, F. Ozok, A. Penzo, C. Snyder, E. Tiras, J. Wetzel, K. Yi

Johns Hopkins University, Baltimore, USA
O. Amram, B. Blumenfeld, L. Corcodilos, M. Eminizer, A.V. Gritsan, S. Kyriacou, P. Maksimovic, C. Mantilla, J. Roskes, M. Swartz, T.Á. Vámi

The University of Kansas, Lawrence, USA
C. Baldegenro Barrera, P. Baringer, A. Bean, A. Bylinkin, T. Isidori, S. Khalil, J. King, G. Krintiras, A. Kropivnitskaya, C. Lindsey, W. Mcbrayer, N. Minafra, M. Murray, C. Rogen, C. Royon, S. Sanders, E. Schmitz, J.D. Tapia Takaki, Q. Wang, J. Williams, G. Wilson

Kansas State University, Manhattan, USA
S. Duric, A. Ivanov, K. Kaadze, D. Kim, Y. Maravin, D.R. Mendis, T. Mitchell, A. Modak, A. Mohammadi

Lawrence Livermore National Laboratory, Livermore, USA
F. Rebassoo, D. Wright

University of Maryland, College Park, USA
E. Adams, A. Baden, O. Baron, A. Belloni, S.C. En, Y. Feng, N.J. Hadley, S. Jabeen, G.Y. Jeng, R.G. Kellogg, T. Koeth, A.C. Mignerey, S. Nabili, M. Seidel, A. Skuja, S.C. Tonwar, L. Wang, K. Wong

Massachusetts Institute of Technology, Cambridge, USA
D. Abercrombie, B. Allen, R. Bi, S. Brandt, W. Busza, I.A. Cali, Y. Chen, M. D’Alfonso, G. Gomez Ceballos, M. Gorcharov, P. Harris, D. Hsu, M. Hu, M. Klute, D. Kovalskyi, J. Krupa, Y.-J. Lee, P.D. Luckey, B. Maier, A.C. Marini, C. McGinn, C. Mironov, S. Narayanan, X. Niu, C. Paus, D. Rankin, C. Roland, G. Roland, Z. Shi, G.S.F. Stephens, K. Sumorok, K. Tatar, D. Velicanu, J. Wang, T.W. Wang, Z. Wang, B. Wyslouch

University of Minnesota, Minneapolis, USA
R.M. Chatterjee, A. Evans, S. Guts†, P. Hansen, J. Hiltbrand, Sh. Jain, M. Krohn, Y. Kubota, Z. Lesko, J. Mans, M. Revering, R. Rusack, R. Saradhy, N. Schroeder, N. Strobbe, M.A. Wadud

University of Mississippi, Oxford, USA
J.G. Acosta, S. Oliveros

University of Nebraska-Lincoln, Lincoln, USA
K. Bloom, S. Chauhan, D.R. Claes, C. Fangmeier, L. Finco, F. Golf, J.R. González Fernández, R. Kamalieddin, I. Kravchenko, J.E. Siado, G.R. Snow†, B. Stieger, W. Tabb

State University of New York at Buffalo, Buffalo, USA
G. Agarwal, C. Harrington, L. Hay, I. Iashvili, A. Kharchilava, C. McLean, D. Nguyen, A. Parker, J. Pekkanen, S. Rappoccio, B. Roozbahani

Northeastern University, Boston, USA
G. Alverson, E. Barberis, C. Freer, Y. Haddad, A. Hortiangtham, G. Madigan, B. Marzocchi, D.M. Morse, V. Nguyen, T. Orimoto, L. Skinnari, A. Tishelman-Charny, T. Wamorkar, B. Wang, A. Wisecarver, D. Wood

Northwestern University, Evanston, USA
S. Bhattacharya, J. Buieghly, Z. Chen, A. Gilbert, T. Gunter, K.A. Hahn, N. Odell, M.H. Schmitt, K. Sung, M. Velasco

University of Notre Dame, Notre Dame, USA
R. Bucci, N. Dev, R. Goldouzian, M. Hildreth, K. Hurtado Anampa, C. Jessop, D.J. Karmgard, K. Lannon, W. Li, N. Loukas, N. Marinelli, I. Mcalister, F. Meng, K. Mohrman, Y. Musienko13, R. Ruchti, P. Siddireddy, S. Taroni, M. Wayne, A. Wightman, M. Wolf, L. Zygala
The Ohio State University, Columbus, USA
J. Alimena, B. Bylsma, B. Cardwell, L.S. Durkin, B. Francis, C. Hill, W. Ji, A. Lefeld, B.L. Winer, B.R. Yates

Princeton University, Princeton, USA
G. Dezoort, P. Elmer, B. Greenberg, N. Haubrich, S. Higginbotham, A. Kalogeropoulos, G. Kopp, S. Kwan, D. Lange, M.T. Lucchini, J. Luo, D. Marlow, K. Mei, I. Ojalvo, J. Olsen, C. Palmer, P. Piroué, D. Stickland, C. Tully

University of Puerto Rico, Mayaguez, USA
S. Malik, S. Norberg

Purdue University, West Lafayette, USA
V.E. Barnes, R. Chawla, S. Das, L. Gutay, M. Jones, A.W. Jung, B. Mahakud, G. Negro, N. Neumeister, C.C. Peng, S. Piperov, H. Qiu, J.F. Schulte, N. Trevisani, F. Wang, R. Xiao, W. Xie

Purdue University Northwest, Hammond, USA
T. Cheng, J. Dolen, N. Parashar

Rice University, Houston, USA
A. Baty, S. Dildick, K.M. Ecklund, S. Freed, F.J.M. Geurts, M. Kilpatrick, A. Kumar, W. Li, B.P. Padley, R. Redjimi, J. Roberts†, J. Rorie, W. Shi, A.G. Stahl Leiton, Z. Tu, A. Zhang

University of Rochester, Rochester, USA
A. Bodek, P. de Barbaro, R. Demina, J.L. Dulemba, C. Fallon, T. Ferbel, M. Galanti, A. Garcia-Bellido, O. Hindrichs, A. Khukhunaishvili, E. Ranken, R. Taus

Rutgers, The State University of New Jersey, Piscataway, USA
B. Chiarito, J.P. Chou, A. Gandrakota, Y. Gershtein, E. Halkiadakis, A. Hart, M. Heindl, E. Hughes, S. Kaplan, O. Karacheban22, I. Laflotte, A. Lath, R. Montalvo, K. Nash, M. Osherson, S. Salur, S. Schnetzer, S. Somalwar, R. Stone, S.A. Thayil, S. Thomas

University of Tennessee, Knoxville, USA
H. Acharya, A.G. Delannoy, S. Spanier

Texas A&M University, College Station, USA
O. Bouhali88, M. Dalchenko, A. Delgado, R. Eusebi, J. Gilmore, T. Huang, T. Kamon89, H. Kim, S. Luo, S. Malhotra, D. Marley, R. Mueller, D. Overton, L. Perniè, D. Rathjens, A. Safonov

Texas Tech University, Lubbock, USA
N. Akchurin, J. Damgov, V. Hegde, S. Kunori, K. Lamichhane, S.W. Lee, T. Mengke, S. Muthumuni, T. Peltola, S. Undleeb, I. Volobouev, Z. Wang, A. Whitbeck

Vanderbilt University, Nashville, USA
E. Appelt, S. Greene, A. Gurrola, R. Janjam, W. Johns, C. Maguire, A. Melo, H. Ni, K. Padeken, F. Romeo, P. Sheldon, S. Tuo, J. Velkovska, M. Verweij

University of Virginia, Charlottesville, USA
L. Ang, M.W. Arenton, B. Cox, G. Cummings, J. Hakala, R. Hirosky, M. Joyce, A. Ledovskoy, C. Neu, B. Tannenwald, Y. Wang, E. Wolfe, F. Xia

Wayne State University, Detroit, USA
P.E. Karchin, N. Poudyal, J. Sturdy, P. Thapa

University of Wisconsin - Madison, Madison, WI, USA
K. Black, T. Bose, J. Buchanan, C. Caillol, S. Dasu, I. De Bruyn, L. Dodd, C. Galloni,
H. He, M. Herndon, A. Hervé, U. Hussain, A. Lanaro, A. Loeliger, R. Loveless, J. Madhusudanan Sreekala, A. Mallampalli, D. Pinna, T. Ruggles, A. Savin, V. Shang, V. Sharma, W.H. Smith, D. Teague, S. Trembath-reichert, W. Vetens

†: Deceased
1: Also at Vienna University of Technology, Vienna, Austria
2: Also at Department of Basic and Applied Sciences, Faculty of Engineering, Arab Academy for Science, Technology and Maritime Transport, Alexandria, Egypt
3: Also at Université Libre de Bruxelles, Bruxelles, Belgium
4: Also at IRFU, CEA, Université Paris-Saclay, Gif-sur-Yvette, France
5: Also at Universidade Estadual de Campinas, Campinas, Brazil
6: Also at Federal University of Rio Grande do Sul, Porto Alegre, Brazil
7: Also at UFMS, Nova Andradina, Brazil
8: Also at Universidade Federal de Pelotas, Pelotas, Brazil
9: Also at University of Chinese Academy of Sciences, Beijing, China
10: Also at Institute for Theoretical and Experimental Physics named by A.I. Alikhanov of NRC ‘Kurchatov Institute’, Moscow, Russia
11: Also at Joint Institute for Nuclear Research, Dubna, Russia
12: Also at British University in Egypt, Cairo, Egypt
13: Now at Ain Shams University, Cairo, Egypt
14: Now at Fayoum University, El-Fayoum, Egypt
15: Also at Purdue University, West Lafayette, USA
16: Also at Université de Haute Alsace, Mulhouse, France
17: Also at Erzincan Binali Yildirim University, Erzincan, Turkey
18: Also at CERN, European Organization for Nuclear Research, Geneva, Switzerland
19: Also at RWTH Aachen University, III. Physikalisches Institut A, Aachen, Germany
20: Also at University of Hamburg, Hamburg, Germany
21: Also at Department of Physics, Isfahan University of Technology, Isfahan, Iran, Isfahan, Iran
22: Also at Brandenburg University of Technology, Cottbus, Germany
23: Also at Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University, Moscow, Russia
24: Also at Institute of Physics, University of Debrecen, Debrecen, Hungary, Debrecen, Hungary
25: Also at Physics Department, Faculty of Science, Assiut University, Assiut, Egypt
26: Also at Institute of Nuclear Research ATOMKI, Debrecen, Hungary
27: Also at MTA-ELTE Lendület CMS Particle and Nuclear Physics Group, Eötvös Loránd University, Budapest, Hungary, Budapest, Hungary
28: Also at IIT Bhubaneswar, Bhubaneswar, India, Bhubaneswar, India
29: Also at Institute of Physics, Bhubaneswar, India
30: Also at G.H.G. Khalsa College, Punjab, India
31: Also at Shoolini University, Solan, India
32: Also at University of Hyderabad, Hyderabad, India
33: Also at University of Visva-Bharati, Santiniketan, India
34: Also at Indian Institute of Technology (IIT), Mumbai, India
35: Also at Deutsches Elektronen-Synchrotron, Hamburg, Germany
36: Also at Department of Physics, University of Science and Technology of Mazandaran, Behshahr, Iran
37: Now at INFN Sezione di Bari a, Università di Bari b, Politecnico di Bari c, Bari, Italy
38: Also at Italian National Agency for New Technologies, Energy and Sustainable Economic
Development, Bologna, Italy
39: Also at Centro Siciliano di Fisica Nucleare e di Struttura Della Materia, Catania, Italy
40: Also at Riga Technical University, Riga, Latvia, Riga, Latvia
41: Also at Consejo Nacional de Ciencia y Tecnología, Mexico City, Mexico
42: Also at Warsaw University of Technology, Institute of Electronic Systems, Warsaw, Poland
43: Also at Institute for Nuclear Research, Moscow, Russia
44: Now at National Research Nuclear University ‘Moscow Engineering Physics Institute’ (MEPhI), Moscow, Russia
45: Also at Institute of Nuclear Physics of the Uzbekistan Academy of Sciences, Tashkent, Uzbekistan
46: Also at St. Petersburg State Polytechnical University, St. Petersburg, Russia
47: Also at University of Florida, Gainesville, USA
48: Also at Imperial College, London, United Kingdom
49: Also at P.N. Lebedev Physical Institute, Moscow, Russia
50: Also at California Institute of Technology, Pasadena, USA
51: Also at Budker Institute of Nuclear Physics, Novosibirsk, Russia
52: Also at Faculty of Physics, University of Belgrade, Belgrade, Serbia
53: Also at Università degli Studi di Siena, Siena, Italy
54: Also at Trincomalee Campus, Eastern University, Sri Lanka, Nilaveli, Sri Lanka
55: Also at INFN Sezione di Pavia 4, Università di Pavia 5, Pavia, Italy, Pavia, Italy
56: Also at National and Kapodistrian University of Athens, Athens, Greece
57: Also at Universität Zürich, Zurich, Switzerland
58: Also at Stefan Meyer Institute for Subatomic Physics, Vienna, Austria, Vienna, Austria
59: Also at Laboratoire d’Annecy-le-Vieux de Physique des Particules, IN2P3-CNRS, Annecy-le-Vieux, France
60: Also at Şırnak University, Şırnak, Turkey
61: Also at Department of Physics, Tsinghua University, Beijing, China, Beijing, China
62: Also at Near East University, Research Center of Experimental Health Science, Nicosia, Turkey
63: Also at Beykent University, Istanbul, Turkey, Istanbul, Turkey
64: Also at Istanbul Aydin University, Application and Research Center for Advanced Studies (App. & Res. Cent. for Advanced Studies), Istanbul, Turkey
65: Also at Mersin University, Mersin, Turkey
66: Also at Piri Reis University, Istanbul, Turkey
67: Also at Adiyaman University, Adiyaman, Turkey
68: Also at Ozyegin University, Istanbul, Turkey
69: Also at Izmir Institute of Technology, Izmir, Turkey
70: Also at Necmettin Erbakan University, Konya, Turkey
71: Also at Bozok Universitetesi Rektörlüğü, Yozgat, Turkey
72: Also at Marmara University, Istanbul, Turkey
73: Also at Milli Savunma University, Istanbul, Turkey
74: Also at Kafkas University, Kars, Turkey
75: Also at Istanbul Bilgi University, Istanbul, Turkey
76: Also at Hacettepe University, Ankara, Turkey
77: Also at Vrije Universiteit Brussel, Brussel, Belgium
78: Also at School of Physics and Astronomy, University of Southampton, Southampton, United Kingdom
79: Also at IPPP Durham University, Durham, United Kingdom
80: Also at Monash University, Faculty of Science, Clayton, Australia
81: Also at Bethel University, St. Paul, Minneapolis, USA, St. Paul, USA
82: Also at Karamanoğlu Mehmetbey University, Karaman, Turkey
83: Also at Bingöl University, Bingöl, Turkey
84: Also at Georgian Technical University, Tbilisi, Georgia
85: Also at Sinop University, Sinop, Turkey
86: Also at Mimar Sinan University, Istanbul, Istanbul, Turkey
87: Also at Nanjing Normal University Department of Physics, Nanjing, China
88: Also at Texas A&M University at Qatar, Doha, Qatar
89: Also at Kyungpook National University, Daegu, Korea, Daegu, Korea