Expected Time to Recruitment in an Organization with Two Grades Involving Two Thresholds

J. SRIDHARAN 1, P. SARANYA 2 and A. SRINIVASAN 3

1 Department of Mathematics, Government Arts College (Autonomous), Kumbakonam, Tamil Nadu, India.
2 Department of Mathematics, Parisutham Institute of Technology and Science, Thanjavur, Tamil Nadu, India.
3 Department of Mathematics, Bishop Heber College (Autonomous), Trichirappalli, Tamil Nadu, India.

Keywords: Manpower planning, Shock models, Univariate recruitment policy, Order statistics, Mean and variance of the time to recruitment.

Abstract: An organization with two grades subjected to loss of man-power due to the policy decisions taken by the organization is considered. Three mathematical models are constructed using an univariate recruitment policy, based on shock model approach involving optional and mandatory thresholds for the loss of man-power in each grade. The system performance measures namely mean and variance of time to recruitment are obtained for all the models when (i) the loss of man-hours form a sequence of independent and identically distributed exponential random variables (ii) the inter-decision times form an order statistics according as the optional thresholds follow exponential or extended exponential and the distribution of mandatory thresholds possess SCBZ property. The analytical results are numerical illustrated and the influence of nodal parameters on the performance measures is also reported.

1. Introduction

Exit of personnel in other words known as wastage is a common phenomenon in any marketing organization. In the univariate recruitment policy, based on shock model approach, recruitment is made as and when the cumulative loss of man hours crosses a threshold. In [4], for a single grade man-power system with a mandatory exponential threshold for the loss of manpower, the authors have obtained the system performance measures namely mean and variance of the time to recruitment when the inter-decision times form an order statistics. Since the number of exits in a policy decision making epoch is unpredictable and the time at which the cumulative loss of man-hours crossing a single threshold is probabilistic, the organization has left with no choice except making recruitment immediately upon threshold crossing. In [2] for a single graded system, the authors have considered a recruitment policy involving two thresholds for the loss of manpower in the organization in which one is optional and the other is mandatory and obtained the mean time to recruitment under different conditions on the nature of the thresholds according as the inter-decision times are independent and identically distributed random variables or the inter-decision times are exchangeable and constantly correlated exponential random variables. In [9-12], the authors have studied the problem of recruitment in a two-grade system according as the thresholds are exponential random variables or geometric random variables or SCBZ property possessing random variables or extended exponential random variables. Recently in [5-8], the authors have extended the results in [4] for a two-grade system involving two thresholds by assuming different distributions for thresholds. In [13], the performance measures are obtained when the inter – decision times are exchangeable and constantly correlated exponential random variables and the distributions of the thresholds have SCBZ property. The objective of the present paper is to obtain system performance measures when the optional thresholds follow either exponential or extended exponential distribution and the distribution of mandatory thresholds possess SCBZ property and there by extending the results in [4] for a two-grade man-power system.
This paper is organized as follows. In sections 2, 3 and 4 models I, II and III are described respectively and the analytical expressions for mean and variance of the time to recruitment are derived. In section 5, the influence of nodal parameters on the system performance measures is studied for all the models and relevant findings and conclusion are reported.

2. Model Description and Analysis of Model –I

Consider an organization with two grades taking decisions at random epoch in $(0, \infty)$ and at every decision epoch a random number of persons quit the organization. There is an associated loss of man-hours if a person quits. It is assumed that the loss of man-hours are linear and cumulative. Let X_i be the loss of man hours due to the i^{th} decision epoch, $i=1,2,3…$ forming a sequence of independent and identically distributed exponential random variables with mean $\frac{1}{c}(c>0)$ probability density function $g(.)$. Let U_i be a continuous random variable denoting inter-decision time between $(i-1)^{th}$ and i^{th} decision, $i=1,2,3….$ with cumulative distribution function $F(.)$, probability density function $f(.)$ and mean $\frac{1}{\lambda}(\lambda>0)$. Let $U_{(1)}$ $(U_{(k)})$ be the smallest (largest) order statistic with probability density function $f_{u(1)}(\cdot)$, $(f_{u(k)}(\cdot))$. Let Y_1, Y_2 $(Z_1$, $Z_2)$ be random variables denoting optional (mandatory) thresholds for the loss of man-hours in grades 1 and 2, with parameters θ_1, θ_2, $(\delta_1, \eta_1, \mu_1, \delta_2, \eta_2, \mu_2)$ respectively. It is assumed that $Y_1 < Z_1$ and $Y_2 < Z_2$. Write $Y = \text{Max} (Y_1$, $Y_2)$ and $Z = \text{Max} (Z_1$, $Z_2)$ where Y (Z) is the optional (mandatory) threshold for the loss of man-hours in the organization. The loss of man-hours and the optional and mandatory thresholds are statistically independent. Let T be the time to recruitment in the organization with cumulative distribution function $L(\cdot)$, probability density function $l(\cdot)$, mean $E(T)$ and variance $V(T)$. Let $F_k(.)$ be the k fold convolution of $F(.)$. Let $l^*(\cdot)$, $f^*(\cdot)$, and $g^*(\cdot)$ be the Laplace transform of $l(\cdot)$, $f(\cdot)$, and $g(\cdot)$ respectively. Let $V_k(t)$ be the probability that there are exactly k decision epochs in $(0, t]$. It is known from Renewal theory [3] that $V_k(t) = F_k(t) - F_{k+1}(t)$ with $F_0(t) = 1$. Let p be the probability that the organization is not going for recruitment whenever the total loss of man-hours crosses optional threshold Y. The univariate recruitment policy employed in this paper is as follows: If the total loss of man-hours exceeds the optional threshold Y, the organization may or may not go for recruitment. But if the total loss of man-hours exceeds the mandatory threshold Z, the recruitment is necessary.

Main results

$$P(T > t) = \sum_{k=0}^{\infty} V_k(t) P\left(\sum_{i=1}^{k} X_i \leq Y\right) + p \sum_{k=0}^{\infty} V_k(t) \times P\left(\sum_{i=1}^{k} X_i > Y\right) \times P\left(\sum_{i=1}^{k} X_i < Z\right)$$ \hspace{1cm} (1)

Case (i): If the distribution of optional thresholds follow exponential distribution and the distribution of mandatory thresholds possess SCBZ property

Using law of total probability it can be shown that

$$P(\sum_{i=1}^{k} X_i \leq Y) = (D_1)^k + (D_2)^k - (D_3)^k$$ \hspace{1cm} (2)$$

and

$$P(\sum_{i=1}^{k} X_i < Z) = p_2(D_9)^k + q_2(D_{10})^k + p_1(D_{11})^k - p_1p_2(D_{12})^k - p_1q_2(D_{13})^k + q_1(D_{14})^k + p_2q_1(D_{15})^k - q_1q_2(D_{16})^k$$ \hspace{1cm} (3)$$

Other relevant results can be reported.
where \(D_1 = g^*(\theta_1), D_2 = g^*(\theta_2), D_3 = g^*(\theta_1 + \theta_2), D_9 = g^*(\delta_4 + \mu_4), D_{10} = g^*(\eta_4) \),
\(D_{11} = g^*(\delta_3 + \mu_3), D_{12} = g^*(\delta_3 + \delta_4 + \mu_3 + \mu_4), D_{13} = g^*(\delta_3 + \eta_4 + \mu_3), D_{14} = g^*(\eta_3) \),
\(D_{15} = g^*(\eta_3 + \delta_4 + \mu_4), D_{16} = g^*(\eta_3 + \eta_4), p_1 = \frac{(\delta_3 - \eta_3)}{(\mu_3 + \delta_3 - \eta_3)}, q_1 = 1 - p_1. \)
\[p_2 = \frac{(\delta_3 - \eta_3)}{(\mu_3 + \delta_3 - \eta_3)}, q_2 = 1 - p_2. \]

For \(a = 1, 2, 3, 9, 10, 11, 12, 13, 14, 15, 16, b = 1, 2, 3 \) and \(d = 9, 10, 11, 12, 13, 14, 15, 16, \) write
\[E_a(t) = [1 - D_a] \sum_{k=1}^{\infty} F_k(t)(D_a)^{k-1} \]
and
\[E_{b,d}(t) = [1 - D_b D_d] \sum_{k=1}^{\infty} F_k(t)(D_b D_d)^{k-1} \]

Since \(l(t) = \frac{d}{dt} L(t), L(t) = 1 - P(T > t) \) and \(l'(s) = L(l(t)) \)
from (1), (2), (3), (4), and (5) and on simplification we get
\[l'(s) = e_1^* (s) + e_2^* (s) - e_3^* (s) + p(p_2 e_2^* (s) + q_2 e_{10}^* (s) + p_1 e_{11}^* (s) - p_1 p_2 e_{12}^* (s) - p_1 q_2 e_{13}^* (s) - p_1 q_2 e_{14}^* (s) - p_1 q_2 e_{15}^* (s) - p_1 q_2 e_{16}^* (s) - p_1 q_2 e_{17}^* (s) - p_1 q_2 e_{18}^* (s) - p_1 q_2 e_{19}^* (s) - p_1 q_2 e_{20}^* (s) - p_1 q_2 e_{21}^* (s) - p_1 q_2 e_{22}^* (s) - p_1 q_2 e_{23}^* (s) - p_1 q_2 e_{24}^* (s) - p_1 q_2 e_{25}^* (s) - p_1 q_2 e_{26}^* (s) - p_1 q_2 e_{27}^* (s) - p_1 q_2 e_{28}^* (s) - p_1 q_2 e_{29}^* (s) - p_1 q_2 e_{30}^* (s) - p_1 q_2 e_{31}^* (s) - p_1 q_2 e_{32}^* (s) - p_1 q_2 e_{33}^* (s) - p_1 q_2 e_{34}^* (s) - p_1 q_2 e_{35}^* (s) - p_1 q_2 e_{36}^* (s)) \]

(6)

where
\[e_a^* (s) = \frac{(1 - D_a)f^*(s)}{[1 - f^*(s)D_a]} \quad and \quad e_{b,d}^* (s) = \frac{(1 - D_b D_d)f^*(s)}{[1 - f^*(s)D_b D_d]} \]

Let \(U_1, U_2, U_3, \ldots \ldots U_k \) be arranged in an increasing order so that we have sequence \(U_{(1)}, U_{(2)}, U_{(3)}, \ldots \ldots U_{(k)} \). Here \(U_{(r)} \) is the \(r \) th order statistics, \(r = 1, 2, 3, \ldots, k \). The random variable \(U_{(1)}, U_{(2)}, U_{(3)}, \ldots \ldots U_{(k)} \) are not independent. For \(r = 1, 2, 3 \ldots k \) the probability density function of \(U_{(r)} \) is given by
\[f_{(r)} (t) = r (k)^r \left(F(t) \right)^{r-1} f(t)(1-F(t))^{k-r} \]

Suppose \(f(t) = f_{(1)} (t) \). Then
\[f_{(1)}^* (s) = \frac{\theta_{k1}}{\theta_{kl+1}} \]

Since \(E(T) = \frac{d}{ds} \left(l'(s) \right)_{s=0} \) and
\[E(T^2) = \frac{d^2}{ds^2} \left(l'(s) \right)_{s=0} \]

Using (9), (10) in (6) we get
\[E(T) = C_1 + C_2 - C_3 + p(p_2 C_9 + q_2 C_{10} + p_1 C_{11} - p_1 p_2 C_{12} - p_1 q_2 C_{13} + q_1 C_{14} - p_2 q_1 C_{15} - q_1 q_2 C_{16} - p_2 H_{1,9} - q_2 H_{1,10} - p_1 p_2 H_{1,12} + p_1 q_2 H_{1,13} - q_1 H_{1,14} + p_2 H_{1,15} + q_1 H_{1,16} - p_2 H_{2,9} - q_2 H_{2,10} - p_1 p_2 H_{2,12} + p_1 q_2 H_{2,13} - q_1 H_{2,14} + p_2 q_1 H_{2,15} + q_1 q_2 H_{2,16} + p_2 H_{3,9} + q_2 H_{3,10} + p_1 H_{3,11} + p_1 p_2 H_{3,12} - q_1 q_2 H_{3,13} + q_1 q_2 H_{3,14} - q_1 q_2 H_{3,15}), \]
\[E(T^2) = 2(C_1 + C_2)^2 - C_3^2 + p(p_2 C_9^2 + q_2 C_{10}^2 + p_1 C_{11}^2 - p_1 p_2 C_{12}^2 - p_1 q_2 C_{13}^2 + q_1 C_{14}^2 - p_2 q_1 C_{15}^2 - q_1 q_2 C_{16}^2 - p_2 H_{1,9}^2 - q_2 H_{1,10}^2 - p_1 p_2 H_{1,12}^2 + p_1 q_2 H_{1,13}^2 - q_1 H_{1,14}^2 + p_2 H_{1,15}^2 + q_1 H_{1,16}^2 - p_2 H_{2,9}^2 - q_2 H_{2,10}^2 - p_1 p_2 H_{2,12}^2 + p_1 q_2 H_{2,13}^2 - q_1 H_{2,14}^2 + p_2 q_1 H_{2,15}^2 + q_1 q_2 H_{2,16}^2 + p_2 H_{3,9}^2 + q_2 H_{3,10}^2 + p_1 H_{3,11}^2 + p_1 p_2 H_{3,12}^2 - q_1 q_2 H_{3,13}^2 + q_1 q_2 H_{3,14}^2 - q_1 q_2 H_{3,15}^2) \]

(11)

\[where \text{ for } a = 1, 2, 3, 9, 10, 11, 12, 13, 14, 15, 16. \ b = 1, 2, 3 \text{ and } d = 9, 10, 11, 12, 13, 14, 15, 16. \]
Since \(V(T) = E(T^2) - (E(T))^2 \), the variance of the time to recruitment can be calculated from (12) and (13).

Suppose \(f(t) = f_{u(k)}(t) \). Then

\[
f_{u(k)}(s) = \frac{k! \lambda^k}{(s+\lambda)(s+2\lambda)\ldots(s+(k-1)\lambda)(s+k\lambda)}
\]

From (6), (10), (14) and on simplification it can be shown that

\[
E(T) = P_1 + P_2 - P_3 + p(p_2P_9 + q_2P_{10} + p_1P_{11} - p_1p_2P_{12} - p_1q_2P_{13} + q_1P_{14} - p_2q_1P_{15} - q_1q_2P_{16} - q_2Q_{1,9} - q_2Q_{1,10} - p_1Q_{1,11} + p_1p_2Q_{1,12} + q_1Q_{1,13} - q_1Q_{1,14} + p_2p_1Q_{1,15} - q_1q_2Q_{1,16} - p_2Q_{2,9} - q_2Q_{2,10} - q_2Q_{2,11} + p_1p_2Q_{2,12} - q_1Q_{2,13} + p_2q_1Q_{2,16} + q_1p_2Q_{3,9} + q_2p_1Q_{3,10} - p_1p_2Q_{3,12} - q_1p_2Q_{3,13} + q_1p_3Q_{3,14} - q_2p_1Q_{3,15} - q_1Q_{3,15})
\]

\[
E(T^2) = 2(P_1^2 + P_2^2 - P_3^2 + p(p_2P_9^2 + q_2P_{10}^2 + p_1P_{11}^2 - p_1p_2P_{12}^2 - p_1q_2P_{13}^2 + q_1P_{14}^2 - p_2q_1P_{15}^2 - q_1q_2P_{16}^2 - p_2Q_{1,9}^2 - q_2Q_{1,10}^2 - p_1Q_{1,11}^2 + p_1p_2Q_{1,12}^2 + q_1Q_{1,13}^2 - q_1Q_{1,14}^2 + p_2p_1Q_{1,15}^2 + q_1q_2Q_{1,16}^2 - p_2Q_{2,9}^2 - q_2Q_{2,10}^2 - q_2Q_{2,11}^2 + p_1p_2Q_{2,12}^2 + q_1p_2Q_{3,9}^2 + q_2p_1Q_{3,10}^2 - p_1p_2Q_{3,12}^2 - q_1p_2Q_{3,13}^2 + q_1p_3Q_{3,14}^2 - q_2p_1Q_{3,15}^2 - q_1Q_{3,15}^2) - \frac{1}{\lambda^4}(N^2 - M)
\]

where

\[
P_a = \frac{N}{\lambda(1-D_a)} \quad \text{and} \quad Q_{b,d} = \frac{N}{\lambda(1-D_bD_d)}, \quad N = \sum_{n=1}^{k} \frac{1}{n} \quad \text{and} \quad M = \sum_{n=1}^{k} \frac{1}{n^2}
\]

Since \(V(T) = E(T^2) - (E(T))^2 \), the variance of the time to recruitment can be calculated from (15) and (16).

Case (ii): If the distribution of optional thresholds follow extended exponential distribution and the distribution of mandatory thresholds possess SCBZ property.

\[
P(\sum_{i=1}^{k} X_i \leq Y) = 2(D_2)^k + 2(D_2)^k + 2(D_4)^k + 2(D_4)^k - (D_6)^k - (D_7)^k - (D_8)^k
\]

where

\[
D_4 = g^*(2\theta_1 + \theta_2), \quad D_5 = g^*(\theta_1 + 2\theta_2), \quad D_6 = g^*(2\theta_1), \quad D_7 = g^*(2\theta_2), \quad D_8 = g^*(2\theta_1 + 2\theta_2)
\]

Using (3) and (18) in (1) and on simplification we get

Suppose \(f(t) = f_{u(1)}(t) \). Then
\[
E(T) = 2C_1 + 2C_4 - 4C_2 + 2C_5 + 2C_6 - C_7 - C_8 + p(p_2C_9 + q_2C_{10} + p_1C_{11} - p_1p_2C_{12} - q_2p_1C_{13} + q_1C_{14} - p_2q_1C_{15} - q_2q_1C_{16} - 2p_2H_{1,9} - 2q_2H_{1,10} - 2p_1H_{1,11} + 2p_2p_1H_{1,12} + 2p_1q_2H_{1,13} - 2q_1H_{1,14} + 2p_2q_1H_{1,15} + q_1q_2H_{1,16} - 2p_2H_{2,9} - 2q_1H_{2,10} - 2p_2p_1H_{2,11} + 2p_2p_1H_{2,12} + 2p_1q_2H_{2,13} - 2q_1H_{2,14} + 2p_2q_1H_{2,15} + 2q_1q_2H_{2,16} + 4p_2H_{3,9} + 4q_2H_{3,10} + 4p_1H_{3,11} - 4p_2q_1H_{3,12} - 4p_1q_2H_{3,13} + 4q_1H_{3,14} - 4p_2q_1H_{3,15} - 4q_1q_2H_{3,16} - 2p_2H_{4,9} - 2q_2H_{4,10} - 2p_2p_1H_{4,11} + 2p_2p_1H_{4,12} + 2p_1q_2H_{4,13} - 2q_1H_{4,14} + 2p_2q_1H_{4,15} + 2q_1q_2H_{4,16} - p_2H_{5,6} + q_2H_{6,10} - p_1H_{6,11} - p_4p_2H_{6,12} - q_2p_1H_{6,13} + q_1H_{6,14} - p_2q_1H_{6,15} - 2q_1H_{6,16} + p_2H_{7,9} + q_2H_{7,10} + p_1H_{7,11} - p_1p_2H_{7,12} - q_2p_1H_{7,13} + q_1H_{7,14} - p_2q_1H_{7,15} - q_2q_1H_{7,16} + p_2H_{8,9} + q_2H_{8,10} + p_1H_{8,11} - p_1p_2H_{8,12} - q_2p_1H_{8,13} + q_1H_{8,14} - p_2q_1H_{8,15} - q_2q_1H_{8,16})
\]

(19)

\[
E(T^2) = 2(2C_1^2 + C_2^2 - 4C_3^2 + 2C_4^2 + 2C_5^2 - C_6^2 - C_7^2 - C_8^2 + p(p_2C_9 + q_2C_{10} + p_1C_{11} - p_1p_2C_{12} - q_2p_1C_{13} + q_1C_{14} - p_2q_1C_{15} - q_2q_1C_{16} - 2p_2H_{1,9} - 2q_2H_{1,10} + 2p_2H_{1,11} + 2p_2p_1H_{1,12} + 2p_1q_2H_{1,13} - 2q_1H_{1,14} + 2p_2q_1H_{1,15} + q_1q_2H_{1,16} - 2p_2H_{2,9} - 2q_2H_{2,10} - 2p_2p_1H_{2,11} + 2p_2p_1H_{2,12} + 2p_1q_2H_{2,13} - 2q_1H_{2,14} + 2p_2q_1H_{2,15} + 2q_1q_2H_{2,16} - 2p_2H_{3,9} + 2p_2q_1H_{3,10} - 4p_2p_1H_{3,11} + 4q_2H_{3,12} - 4p_2q_1H_{3,13} + 4q_1H_{3,14} - 4p_2q_1H_{3,15} - 2p_2H_{4,9} + 2q_2H_{4,10} - 2p_2p_1H_{4,11} + 2p_2p_1H_{4,12} + 2p_1q_2H_{4,13} - 2q_1H_{4,14} + 2p_2q_1H_{4,15} + 2q_1q_2H_{4,16} - 2p_2H_{5,6} + Q_2H_{6,10} - p_1H_{6,11} - p_4p_2H_{6,12} - q_2p_1H_{6,13} + q_1H_{6,14} - p_2q_1H_{6,15} - 2q_1H_{6,16} + p_2H_{7,9} + q_2H_{7,10} + p_1H_{7,11} - p_1p_2H_{7,12} - q_2p_1H_{7,13} + q_1H_{7,14} - p_2q_1H_{7,15} - q_2q_1H_{7,16} + p_2H_{8,9} + q_2H_{8,10} + p_1H_{8,11} - p_1p_2H_{8,12} - q_2p_1H_{8,13} + q_1H_{8,14} - p_2q_1H_{8,15} - q_2q_1H_{8,16}))
\]

(20)

Since \(V(T) = E(T^2) - (E(T))^2\), the variance of the time to recruitment can be calculated from (19) and (20).

Suppose \(f(t) = f_{u(k)}(t)\). Then
\[
E(T) = 2P_1 + 2P_2 - 4P_3 + 2P_4 + 2P_5 - P_6 - P_7 - P_8 + p(p_2P_9 + q_2P_{10} + p_1P_{11} - p_1P_{12} - q_2P_{13} + q_1P_{14} - p_2q_1P_{15} - q_2q_1P_{16} - 2p_2Q_{1.9} - 2q_2Q_{1.1.0} - 2p_2Q_{1.1.1} + 2p_2P_1Q_{1.1.2} - 2p_1q_1Q_{1.3.3} - 2q_1Q_{1.4.1} + 2p_2q_1Q_{1.5.1} + 2q_1q_2Q_{1.6.1} - 2p_2Q_{1.9} - 2q_2Q_{2.1.1} + 2p_2P_1Q_{2.1.2} + 2p_1q_2Q_{2.3.1} - 2q_1Q_{2.3.4} + 2p_2q_2Q_{2.6.1} + 2q_1q_2Q_{2.6.6} + 4p_2Q_{3.9} + 4q_2Q_{3.1.0} + 4p_1Q_{3.1.1} - 4p_2P_1Q_{3.1.2} - 4q_1q_2Q_{3.3.1} + 2q_1Q_{3.1.3} - 4q_2Q_{3.3.5} - 4q_2Q_{3.3.6} - 2p_2Q_{3.4.9} + 2q_2Q_{3.4.1} + 2p_2q_1Q_{4.4.1} + 2q_1q_2Q_{4.4.5} + 2p_1q_1Q_{4.5.6} - 2p_2Q_{5.5.6} + 2q_2Q_{5.6.8} + 2p_2P_1Q_{5.5.12} + 2p_1q_2Q_{5.5.13} - 2q_1Q_{5.5.14} + 2p_2q_1Q_{5.6.15} + 2q_1Q_{5.6.15} - q_2P_1Q_{6.1.13} + q_1Q_{6.1.14} - p_2q_1Q_{6.15} + q_1Q_{6.14} - p_2q_1Q_{6.15} - 2q_1Q_{6.16})
\]

\[
E(T^2) = 2(2P_1^2 + 2P_2^2 - 4P_3^2 + 2P_4^2 + 2P_5^2 - P_6^2 - P_7^2 - P_8^2 + p(p_2P_9 + q_2P_{10} + p_1P_{11} - p_1P_{12} - q_2P_{13} + q_1P_{14} - p_2q_1P_{15} - q_2q_1P_{16} - 2p_2Q_{1.9} - 2q_2Q_{1.1.0} - 2p_2Q_{1.1.1} + 2p_2P_1Q_{1.1.2} - 2p_1q_1Q_{1.3.3} - 2q_1Q_{1.4.1} + 2p_2q_1Q_{1.5.1} + 2q_1q_2Q_{1.6.1} - 2p_2Q_{1.9} - 2q_2Q_{2.1.1} + 2p_2P_1Q_{2.1.2} + 2p_1q_2Q_{2.3.1} - 2q_1Q_{2.3.4} + 2p_2q_2Q_{2.6.1} + 2q_1q_2Q_{2.6.6} + 4p_2Q_{3.9} + 4q_2Q_{3.1.0} + 4p_1Q_{3.1.1} - 4p_2P_1Q_{3.1.2} - 4q_1q_2Q_{3.3.1} + 2q_1Q_{3.1.3} - 4q_2Q_{3.3.5} - 4q_2Q_{3.3.6} - 2p_2Q_{3.4.9} + 2q_2Q_{3.4.1} + 2p_2q_1Q_{4.4.1} + 2q_1q_2Q_{4.4.5} + 2p_1q_1Q_{4.5.6} - 2p_2Q_{5.5.6} + 2q_2Q_{5.6.8} + 2p_2P_1Q_{5.5.12} + 2p_1q_2Q_{5.5.13} - 2q_1Q_{5.5.14} + 2p_2q_1Q_{5.6.15} + 2q_1Q_{5.6.15} - q_2P_1Q_{6.1.13} + q_1Q_{6.1.14} - p_2q_1Q_{6.15} + q_1Q_{6.14} - p_2q_1Q_{6.15} - 2q_1Q_{6.16})
\]

\[
-2p_1Q_{5.11} - 2p_1Q_{5.12} + 2p_1q_2Q_{5.15} - 2q_1Q_{5.14} + 2p_2q_1Q_{5.15} + 2q_1Q_{5.16} + q_2Q_{5.9} + q_2Q_{6.10} + q_1Q_{6.11} + p_1P_{6.11} - p_1P_{6.12} - q_2P_{6.13} + q_1Q_{6.14} - p_2q_1Q_{6.15} + q_1Q_{6.14} - p_2q_1Q_{6.15} - 2q_1Q_{6.16})
\]

\[
\frac{1}{\lambda^2}\left(\left(N^2 - M\right)\left(\frac{2}{1-D_1} + \frac{2}{1-D_2} - \frac{4}{1-D_3} + \frac{2}{1-D_4} + \frac{2}{1-D_5} - \frac{1}{1-D_6}
\right)
\right)
\]

\[
\frac{p}{\lambda^2}\left(\left(N^2 - M\right)\left(\frac{2}{1-D_9} + \frac{q_2}{1-D_{10}} + \frac{p_1}{1-D_{11}} - \frac{p_1P_{12}}{1-D_{12}} - \frac{q_2P_{13}}{1-D_{13}} + \frac{q_1}{1-D_{14}}
\right)
\right)
\]

\[
\frac{1}{\lambda^2}\left(\left(N^2 - M\right)\left(\frac{2}{1-D_9} + \frac{q_2}{1-D_{10}} + \frac{p_1}{1-D_{11}} - \frac{p_1P_{12}}{1-D_{12}} - \frac{q_2P_{13}}{1-D_{13}} + \frac{q_1}{1-D_{14}}
\right)
\right)
\]

\[
\frac{2p_1q_1}{1-D_{15}} + \frac{2p_2}{1-D_9} + \frac{2q_2}{1-D_{10}} + \frac{2p_1q_1}{1-D_{11}} + \frac{q_1}{1-D_{14}}
\]

\[
\frac{2p_1q_1}{1-D_{15}} + \frac{2p_2}{1-D_9} + \frac{2q_2}{1-D_{10}} + \frac{2p_1q_1}{1-D_{11}} + \frac{q_1}{1-D_{14}}
\]

\[
\frac{2q_2}{1-D_{15}} + \frac{2p_1q_1}{1-D_{11}} + \frac{q_1}{1-D_{14}}
\]

\[
\frac{2q_2}{1-D_{15}} + \frac{2p_1q_1}{1-D_{11}} + \frac{q_1}{1-D_{14}}
\]

\[
\frac{2q_2}{1-D_{15}} + \frac{2p_1q_1}{1-D_{11}} + \frac{q_1}{1-D_{14}}
\]
Since \(V(T) = E(T^2) - (E(T))^2 \), the variance of the time to recruitment can be calculated from (21) and (22).

3. Model description and Analysis of Model-II

For this model, the optional and mandatory thresholds for the loss of man-hours in the organization are taken as \(Y = \min (Y_1, Y_2) \) and \(Z = \min (Z_1, Z_2) \). All the other assumptions and notations are as in model-I.

Proceeding as in model-I, it can be shown for the present model that

\[
\begin{align*}
\text{Case (i):} & \quad \text{If the distribution of optional thresholds follow exponential distribution and the distribution of mandatory thresholds possess SCBZ property} \\
\text{Suppose } f(t) &= f_{(1)}(t). \text{Then} \\
E(T) &= C_3 + p \left(p_1 p_2 C_{12} + p_1 q_2 C_{12} + p_2 q_1 C_{15} + q_1 q_2 C_{16} - p_1 p_2 H_{3,12} - p_2 q_2 H_{3,15} - q_1 q_2 H_{3,16} \right) \quad (24) \\
E(T^2) &= 2C_3^2 + p \left(p_1 p_2 C_{12}^2 + p_1 q_2 C_{12}^2 + p_2 q_1 C_{15}^2 + q_1 q_2 C_{16}^2 - p_1 p_2 H_{3,12}^2 - p_2 q_2 H_{3,15}^2 - q_1 q_2 H_{3,16}^2 \right) \quad (25)
\end{align*}
\]

where \(C_a, H_{b,d} \) are given by equation (13) for \(a = 3, 12, 13, 15, 16 \), \(b = 3 \) and \(d = 12, 13, 15, 16 \).

Since \(V(T) = E(T^2) - (E(T))^2 \), the variance of the time to recruitment can be calculated from (24) and (25).

Suppose \(f(t) = f_{(2)}(t) \). Then

\[
\begin{align*}
E(T) &= P_3 + p \left(p_1 p_2 P_{12} + p_1 q_2 P_{13} + p_2 q_1 P_{15} + q_1 q_2 P_{16} - p_1 p_2 Q_{3,12} - p_2 q_2 Q_{3,15} - q_1 q_2 Q_{3,16} \right) \quad (26) \\
E(T^2) &= 2P_3^2 + p \left(p_1 p_2 P_{12}^2 + p_1 q_2 P_{13}^2 + p_2 q_1 P_{15}^2 + q_1 q_2 P_{16}^2 - p_1 p_2 Q_{3,12}^2 - p_2 q_2 Q_{3,15}^2 - q_1 q_2 Q_{3,16}^2 \right) - \frac{1}{12} (N^2 - M) \left[\left(\frac{1}{1-D_3} \right) + p \left(\frac{P_4 P_6 + P_2 Q_3}{1-D_{3,15}} + \frac{P_4 Q_3}{1-D_{3,16}} + \frac{P_2 P_3}{1-D_{3,12}} - \frac{P_4 Q_3}{1-D_{3,15}} - \frac{P_4 Q_3}{1-D_{3,16}} \right) \right] \quad (27)
\end{align*}
\]

where \(P_{a,b}, Q_{b,d} \) are given by equation (17) for \(a = 3, 12, 13, 15, 16 \), \(b = 3 \) and \(d = 12, 13, 15, 16 \).
Case (ii): If the distribution of optional thresholds follow extended exponential distribution and the distribution of mandatory thresholds possess SCBZ property.
Assume $f(t) = f_{u(t)}(t)$. Then

$$E(T) = 4c_3 - 2c_4 - 2c_5 + c_8 + p(p_1p_2c_{12} - 4p_1p_2H_{3,12} + 2p_1p_2H_{4,12} + 2p_1p_2H_{5,12} - p_1p_2H_{8,12} + q_1p_2c_{15} - 4q_1p_2H_{3,15} + 2q_1p_2H_{4,15} + 2q_1p_2H_{5,15} - q_1p_2H_{8,15} + q_2p_1c_{13} - 4q_2p_1H_{3,13} + 2q_2p_1H_{4,13} + 2q_2p_1H_{5,13} - q_2p_1H_{8,13} + q_1c_2c_{16} - 4q_1c_2H_{3,16} + 2q_1c_2H_{4,16} + 2q_1c_2H_{5,16} - q_1c_2H_{8,16})$$

$$E(T^2) = 2(4c_3^2 - 2c_4^2 - 2c_5^2 + c_8^2 + p(p_1p_2c_{12}^2 - 4p_1p_2H_{3,12}^2 + 2p_1p_2H_{4,12}^2 + 2p_1p_2H_{5,12}^2 - p_1p_2H_{8,12}^2 + q_1p_2c_{15}^2 - 4q_1p_2H_{3,15}^2 + 2q_1p_2H_{4,15}^2 + 2q_1p_2H_{5,15}^2 - q_1p_2H_{8,15}^2 + q_2p_1c_{13}^2 - 4q_2p_1H_{3,13}^2 + 2q_2p_1H_{4,13}^2 + 2q_2p_1H_{5,13}^2 - q_2p_1H_{8,13}^2 + q_1c_2c_{16}^2 - 4q_1c_2H_{3,16}^2 + 2q_1c_2H_{4,16}^2 + 2q_1c_2H_{5,16}^2 - q_1c_2H_{8,16}^2)$$

Since $V(T) = E(T^2) - (E(T))^2$, the variance of the time to recruitment can be calculated from (28) and (29).
Assume $f(t) = f_{u(t)}(t)$. Then

$$E(T) = 4p_3 - 2p_4 - p_5 + p(p_1p_2p_{12} - 4p_1p_2Q_{3,12} + 2p_1p_2Q_{4,12} + 2p_1p_2Q_{5,12} - p_1p_2Q_{8,12} + q_1p_2p_{15} - 4q_1p_2Q_{3,15} + 2q_1p_2Q_{4,15} + 2q_1p_2Q_{5,15} - q_1p_2Q_{8,15} + q_2p_1p_{13} - 4q_2p_1P_{3,13} + 2q_2p_1P_{4,13} + 2q_2p_1P_{5,13} - q_2p_1P_{8,13} + q_1c_2Q_{16} - 4q_1c_2Q_{4,16} + 2q_1c_2Q_{5,16} - q_1c_2Q_{8,16})$$

$$E(T^2) = 2(4p_3^2 - 2p_4^2 - 2p_5^2 + p_8^2 + p(p_1p_2p_{12}^2 - 4p_1p_2Q_{3,12}^2 + 2p_1p_2Q_{4,12}^2 + 2p_1p_2Q_{5,12}^2 - p_1p_2Q_{8,12}^2 + q_1p_2p_{15}^2 - 4q_1p_2Q_{3,15}^2 + 2q_1p_2Q_{4,15}^2 + 2q_1p_2Q_{5,15}^2 - q_1p_2Q_{8,15}^2 + q_2p_1p_{13}^2 - 4q_2p_1P_{3,13}^2 + 2q_2p_1P_{4,13}^2 + 2q_2p_1P_{5,13}^2 - q_2p_1P_{8,13}^2 + q_1c_2Q_{16}^2 - 4q_1c_2Q_{4,16}^2 + 2q_1c_2Q_{5,16}^2 - q_1c_2Q_{8,16}^2)$$

$$- \frac{1}{\lambda^2}(N^2 - M)\left(\frac{4}{1-D_3} - \frac{2}{1-D_4} - \frac{2}{1-D_5} + \frac{1}{1-D_6} + p\left[\frac{p_1p_2}{1-D_{12}} - \frac{4p_1p_2}{1-D_{8}D_{12}} + \frac{2p_1p_2}{1-D_{4}D_{12}} - \frac{2p_1p_2}{1-D_5D_{12}} - \frac{2p_1p_2}{1-D_4_{12}} + \frac{2p_1p_2}{1-D_5_{12}} + \frac{q_1p_2}{1-D_{15}} - \frac{4q_1p_2}{1-D_{8}D_{15}} + \frac{2q_1p_2}{1-D_4D_{15}} + \frac{2q_1p_2}{1-D_5D_{15}} - \frac{q_2p_1}{1-D_13} - \frac{4q_2p_1}{1-D_8D_{13}} + \frac{2q_2p_1}{1-D_4D_{13}} + \frac{2q_2p_1}{1-D_5D_{13}} - \frac{q_1c_2}{1-D_6} - \frac{4q_1c_2}{1-D_8D_{6}} + \frac{2q_1c_2}{1-D_4D_{6}} + \frac{2q_1c_2}{1-D_5D_{6}} - \frac{q_1c_2}{1-D_6D_{16}} \right)$$

(31)

4. Model description And Analysis of Model-III

For this model, the optional and mandatory thresholds for the loss of man-hours in the organization are taken as $Y=Y_1+Y_2$ and $Z=Z_1+Z_2$. All the other assumptions and notations are as in model-I.
Proceeding as in model-I, it can be shown for the present model that
Case (i): If the distribution of optional thresholds follow exponential distribution and the distribution of mandatory thresholds possess SCBZ property

Suppose \(f(t) = f_{u(1)}(t) \). Then

\[
E(T) = A_2 C_2 - A_1 C_1 + p[(A_3 + A_4)C_9 + (A_5 + A_6)C_{10} - (A_7 + A_8)C_{11} - (A_9 + A_{10})C_{14} - A_2 (A_3 + A_4)H_{2,9} - A_2 (A_5 + A_6)H_{2,10} + A_2 (A_7 + A_8)H_{2,11} + A_2 (A_9 + A_{10})H_{2,14} + A_1 (A_3 + A_4)H_{1,9} + A_1 (A_5 + A_6)H_{1,10} - A_1 (A_7 + A_8)H_{1,11} - A_1 (A_9 + A_{10})H_{1,14}]
\]

(32)

\[
E(T^2) = 2(A_2 C_2^2 - A_1 C_1^2 + p[(A_3 + A_4)C_9^2 + (A_5 + A_6)C_{10}^2 - (A_7 + A_8)C_{11}^2 - (A_9 + A_{10})C_{14}^2 - A_2 (A_3 + A_4)H_{2,9}^2 - A_2 (A_5 + A_6)H_{2,10}^2 + A_2 (A_7 + A_8)H_{2,11}^2 + A_2 (A_9 + A_{10})H_{2,14}^2 + 2A_1 (A_3 + A_4)H_{1,9}^2 + 2A_1 (A_5 + A_6)H_{1,10}^2 - A_1 (A_7 + A_8)H_{1,11}^2 - A_1 (A_9 + A_{10})H_{1,14}^2)]
\]

(33)

Since \(V(T) = E(T^2) - (E(T))^2 \), the variance of the time to recruitment can be calculated from (32) and (33).

Assume \(f(t) = f_{u(1)}(t) \). Then

\[
E(T) = A_2 C_2 - A_1 C_1 + p[(A_3 + A_4)C_9 + (A_5 + A_6)C_{10} - (A_7 + A_8)C_{11} - (A_9 + A_{10})C_{14} - A_2 (A_3 + A_4)H_{2,9} - A_2 (A_5 + A_6)H_{2,10} + A_2 (A_7 + A_8)H_{2,11} + A_2 (A_9 + A_{10})H_{2,14} + A_1 (A_3 + A_4)H_{1,9} + A_1 (A_5 + A_6)H_{1,10} - A_1 (A_7 + A_8)H_{1,11} - A_1 (A_9 + A_{10})H_{1,14}]
\]

(34)

\[
E(T^2) = 2(A_2 P_2^2 - A_1 P_1^2 + p[(A_3 + A_4)P_9^2 + (A_5 + A_6)P_{10}^2 - (A_7 + A_8)P_{11}^2 - (A_9 + A_{10})P_{14}^2 - A_2 (A_3 + A_4)Q_{2,9}^2 - A_2 (A_5 + A_6)Q_{2,10}^2 + A_2 (A_7 + A_8)Q_{2,11}^2 + A_2 (A_9 + A_{10})Q_{2,14}^2 + 2A_1 (A_3 + A_4)Q_{1,9}^2 + 2A_1 (A_5 + A_6)Q_{1,10}^2 - A_1 (A_7 + A_8)Q_{1,11}^2 - A_1 (A_9 + A_{10})Q_{1,14}^2)]
\]

(35)

Since \(V(T) = E(T^2) - (E(T))^2 \), the variance of the time to recruitment can be calculated from (34) and (35).

Case (ii): If the distribution of optional thresholds follow extended exponential distribution and the distribution of mandatory thresholds possess SCBZ property

Assume \(f(t) = f_{u(1)}(t) \). Then
Since 1975, the variance of the time to recruitment can be calculated from (39) and (40).

\[
E(T) = S_1 C_1 + S_3 C_2 - S_4 C_7 - S_2 C_6 + p[(A_3 + A_4)C_9 + (A_5 + A_6)C_{10} - (A_7 + A_9)C_{11} - (A_9 + A_{10})C_{14} - S_1(A_3 + A_4)H_{1,1} - S_4(A_5 + A_6)H_{1,10} + S_1(A_7 + A_9)H_{1,11} + S_4(A_9 + A_{10})H_{1,14} - S_2(A_3 + A_4)H_{2,9} - S_4(A_5 + A_6)H_{2,10} + S_7(A_7 + A_9)H_{2,11} + S_9(A_9 + A_{10})H_{2,14} + S_4(A_3 + A_4)H_{7,9} + S_4(A_5 + A_6)H_{7,10} - S_4(A_7 + A_9)H_{7,11} - S_4(A_9 + A_{10})H_{7,14} + S_2(A_3 + A_4)H_{6,9} + S_2(A_5 + A_6)H_{6,10} - S_2(A_7 + A_9)H_{6,11} - S_2(A_9 + A_{10})H_{6,14} - S_2(A_9 + A_{10})H_{6,14}^{-2}]
\]

\[
E(T^2) = 2S_1 C_1^2 + S_3 C_2^2 - S_4 C_7^2 - S_2 C_6^2 + p[(A_3 + A_4)C_9^2 + (A_5 + A_6)C_{10}^2 - (A_7 + A_9)C_{11}^2 - (A_9 + A_{10})C_{14}^2 - S_1(A_3 + A_4)H_{1,1}^2 - S_4(A_5 + A_6)H_{1,10}^2 + S_1(A_7 + A_9)H_{1,11}^2 + S_4(A_9 + A_{10})H_{1,14}^2 - S_2(A_3 + A_4)H_{2,9}^2 - S_4(A_5 + A_6)H_{2,10}^2 + S_7(A_7 + A_9)H_{2,11}^2 + S_9(A_9 + A_{10})H_{2,14}^2 + S_4(A_3 + A_4)H_{7,9}^2 + S_4(A_5 + A_6)H_{7,10}^2 - S_4(A_7 + A_9)H_{7,11}^2 - S_4(A_9 + A_{10})H_{7,14}^2 - S_2(A_3 + A_4)H_{6,9}^2 + S_2(A_5 + A_6)H_{6,10}^2 - S_2(A_7 + A_9)H_{6,11}^2 - S_2(A_9 + A_{10})H_{6,14}^2)^2]
\]

where

\[
S_1 = \frac{4\theta_2^2}{(\theta_1 - \theta_2)(\theta_1 - 2\theta_2)}, S_2 = \frac{\theta_2^2}{(\theta_1 - \theta_2)(\theta_2 - \theta_2)} S_1 = \frac{4\theta_2^2}{(\theta_1 - \theta_2)(\theta_1 - 2\theta_2)} \text{ and } S_4 = \frac{\theta_2^2}{(\theta_1 - \theta_2)(\theta_1 - 2\theta_2)}
\]

Suppose \(f(t) = \frac{f_i(k)}{t} \). Then

\[
E(T) = S_1 P_1 + S_2 P_2 - S_2 P_6 + P_6 P_6 + p[(A_3 + A_4)P_9 + (A_5 + A_6)P_{10} - (A_7 + A_8)P_{11} - (A_9 + A_{10})P_{14} - S_1(A_3 + A_4)Q_{1,1} - S_4(A_5 + A_6)Q_{1,10} + S_1(A_7 + A_9)Q_{1,11} + S_4(A_9 + A_{10})Q_{1,14} - S_2(A_3 + A_4)Q_{2,9} - S_4(A_5 + A_6)Q_{2,10} + S_7(A_7 + A_9)Q_{2,11} + S_9(A_9 + A_{10})Q_{2,14} + S_4(A_3 + A_4)Q_{7,9} + S_4(A_5 + A_6)Q_{7,10} - S_4(A_7 + A_9)Q_{7,11} - S_4(A_9 + A_{10})Q_{7,14} + S_2(A_3 + A_4)Q_{6,9} + S_2(A_5 + A_6)Q_{6,10} - S_2(A_7 + A_9)Q_{6,11} - S_2(A_9 + A_{10})Q_{6,14}]
\]

\[
E(T^2) = 2S_1 P_1^2 + S_2 P_2^2 - S_2 P_6^2 + P_6 P_6 + p[(A_3 + A_4)P_9^2 + (A_5 + A_6)P_{10}^2 - (A_7 + A_8)P_{11}^2 - (A_9 + A_{10})P_{14}^2 - S_1(A_3 + A_4)Q_{1,1}^2 - S_4(A_5 + A_6)Q_{1,10}^2 + S_1(A_7 + A_9)Q_{1,11}^2 + S_4(A_9 + A_{10})Q_{1,14}^2 - S_2(A_3 + A_4)Q_{2,9}^2 - S_4(A_5 + A_6)Q_{2,10}^2 + S_7(A_7 + A_9)Q_{2,11}^2 + S_9(A_9 + A_{10})Q_{2,14}^2 + S_4(A_3 + A_4)Q_{7,9}^2 + S_4(A_5 + A_6)Q_{7,10}^2 - S_4(A_7 + A_9)Q_{7,11}^2 - S_4(A_9 + A_{10})Q_{7,14}^2 - S_2(A_3 + A_4)Q_{6,9}^2 + S_2(A_5 + A_6)Q_{6,10}^2 - S_2(A_7 + A_9)Q_{6,11}^2 - S_2(A_9 + A_{10})Q_{6,14}^2]
\]

\[
\frac{1}{\lambda^2}(N^2 - M) \left(\left(\begin{array}{cccc} S_1 & S_2 & S_4 & S_2 \\ 1 - D_1 & 1 - D_2 & 1 - D_7 & 1 - D_6 \\ \end{array} \right) + p \left(\begin{array}{cccc} A_3 + A_4 & A_3 + A_4 & A_7 + A_9 & A_7 + A_9 \\ 1 - D_4 & 1 - D_10 & 1 - D_{14} & 1 - D_{14} \\ S_2(A_3 + A_4) & S_2(A_3 + A_4) & S_2(A_7 + A_9) & S_2(A_7 + A_9) \\ 1 - D_4D_10 & 1 - D_4D_10 & 1 - D_{14D_{14}} & 1 - D_{14D_{14}} \\ \end{array} \right) \right)
\]

Since \(V(T) = E(T^2) - (E(T))^2 \), the variance of the time to recruitment can be calculated from (39) and (40).
5. Numerical Illustrations

The mean and variance of the time to recruitment for the above models are given in the following tables for the cases (i),(ii) respectively by keeping p fixed and varying c, k, and λ one at a time and the results are tabulated below.

Table 1: (Effect of c, k, λ on the performance measures $E(T)$ and $V(T)$)

\[\delta_3 = 0.3, \eta_3 = 0.4, \delta_3 = 0.5, \eta_4 = 0.6, \theta_1 = 0.1, \theta_2 = 0.2, \mu_3 = 0.9, \mu_4 = 1 \text{ and } p = 0.2 \]

MODEL-I	Case – I	Case – II						
$f(t) = f_{u(i)}(t)$	$f(t) = f_{u(k)}(t)$	$f(t) = f_{u(i)}(t)$	$f(t) = f_{u(k)}(t)$					
k	c	λ	$E(T)$	$V(T)$	$E(T)$	$V(T)$	$E(T)$	$V(T)$
1	0.5	1	6.9061	35.0660	6.9061	35.0660	9.2829	45.1911
2	0.5	1	3.4531	8.7665	10.3592	71.9924	4.6414	11.2978
3	0.5	1	2.3020	3.8962	12.6610	104.0442	3.0943	5.0212
2	0.5	1	3.4531	8.7665	10.3592	71.9924	4.6414	11.2978
2	1	1	6.3890	28.6330	19.1670	244.9191	8.7710	36.2740
2	1.5	1	9.3244	59.8402	27.9732	519.9133	12.9008	38.7024
2	0.5	1	3.4531	8.7665	10.3592	71.9924	4.6414	11.2978
2	0.5	2	1.7265	2.1916	5.1796	17.9981	2.3207	2.8244
2	0.5	3	1.1510	0.9741	3.4531	7.9992	1.5471	1.2553
Table II: (Effect of c, k, \(\lambda \) on the performance measures \(E(T) \) and \(V(T) \))
\[
(\delta_3 = 0.3, \eta_3 = 0.4, \delta_3 = 0.5, \eta_4 = 0.6, \theta_1 = 0.1, \theta_2 = 0.2, \mu_3 = 0.9, \mu_4 = 1 \text{ and } p = 0.2)
\]

MODEL-II	Case –I	Case –II						
\(f(t) = f_{u(1)}(t) \)	\(f(t) = f_{u(k)}(t) \)	\(f(t) = f_{u(1)}(t) \)	\(f(t) = f_{u(k)}(t) \)					
k	C	\(\lambda \)	\(E(T) \)	\(V(T) \)	\(E(T) \)	\(V(T) \)	\(E(T) \)	\(V(T) \)
1	0.5	1	2.7199	8.2841	8.5803	46.7284	4.2902	10.1460
2	0.5	1	1.36	2.0710	4.0799	16.2882	2.0140	2.8268
3	0.5	1	0.9066	0.9205	4.9864	23.1407	1.3427	1.2564
2	0.5	1	1.36	2.0710	4.0799	16.2882	2.0140	2.8268
2	1	1	2.2092	5.2838	6.6275	43.6284	3.5180	7.5622
2	1.5	1	3.0570	9.9531	9.1709	84.0813	5.0216	14.4464
2	0.5	1	1.3600	2.0710	4.0799	16.2882	2.0140	2.8268
2	0.5	2	0.6800	0.5178	2.0399	4.0721	1.0070	0.7067
2	0.5	3	0.4533	0.2301	1.36	1.8098	0.6713	0.3141

Table III: (Effect of c, k, \(\lambda \) on the performance measures \(E(T) \) and \(V(T) \))
\[
(\delta_3 = 0.3, \eta_3 = 0.4, \delta_3 = 0.5, \eta_4 = 0.6, \theta_1 = 0.1, \theta_2 = 0.2, \mu_3 = 0.9, \mu_4 = 1 \text{ and } p = 0.2)
\]

MODEL-III	Case –I	Case –II						
\(f(t) = f_{u(1)}(t) \)	\(f(t) = f_{u(k)}(t) \)	\(f(t) = f_{u(1)}(t) \)	\(f(t) = f_{u(k)}(t) \)					
k	\(\lambda \)	C	\(E(T) \)	\(V(T) \)	\(E(T) \)	\(V(T) \)	\(E(T) \)	\(V(T) \)
1	0.5	1	8.5803	46.7284	8.5803	46.7284	4.2902	10.1460
2	0.5	1	4.2902	11.6821	12.8705	96.5595	2.1451	2.5365
3	0.5	1	2.8601	5.1920	15.7303	139.8948	1.4301	1.1273
2	0.5	1	4.2902	11.6821	12.8705	96.5595	2.1451	2.5365
2	1	1	8.0623	38.5433	24.1870	330.7669	3.7607	6.2420
2	1.5	1	11.8341	80.8518	35.5024	704.0014	5.3742	11.3673
2	0.5	1	4.2902	11.6821	12.8705	96.5595	2.1451	2.5365
2	0.5	2	2.1451	2.9205	6.4353	24.1399	1.0726	0.6341
2	0.5	3	1.4301	1.2980	4.2902	10.7288	0.7150	0.2818
FINDINGS

The influence of nodal parameters on the performance measures namely mean and variance of the time to recruitment for all the models are reported below.

i. It is observed that if k, the number of decision epochs in $(0, t]$ increases, the mean and variance of the time to recruitment of all these models decreases, when the probability density function of inter-decision times follows probability density function of first order statistics and increases when it follows probability density function of kth order statistics.

ii. If c increases, the average number of exits increases, which, in turn, implies that mean and variance of the time to recruitment increase for both the models.

iii. As λ increases, the average inter-decision time decreases, which, in turn, shows that frequent decisions are made on average and hence mean and variance of the time to recruitment decrease for both the models.

References

[1]. Bartholomew, D.J., and Forbes, A.F., “Statistical Techniques for Manpower planning”, John Wiley and sons (1979).

[2]. Esther Clara, J.B., Contributions to the study of Stochastic models in Manpower planning, Bharathidasan University, Ph.D Thesis June 2012.

[3]. Medhi, J. Stochastic Processes, Wiley Eastern, New Delhi.

[4]. Muthaiyan, A., Sulaiman, A., and Sathiyanamoorthi, R.A Stochastic model based on Order Statistics for Estimation of Expected Time to Recruitment. Acta Ciencia Indica, 5(2) (2009)

[5]. Sridharan, J., Saranya, P., and Srinivasan, A. A Stochastic model based on order statistics for estimation of expected time to recruitment in a two-grade man-power system with different types of thresholds, International Journal of Multidisciplinary Research and Advances in Engineering 6(5) (2012), 1-10.

[6]. Sridharan, J., Saranya, P., and Srinivasan, A. A Stochastic model based on order statistics for estimation of expected time to recruitment in a two-grade man-power system using a univariate recruitment policy involving geometric threshold, Antarctica journal of Mathematics, 10(1), (2013), 11-19.

[7]. Sridharan, J., Saranya, P., and Srinivasan, A. Variance of time to recruitment in a two-grade man-power system with extended exponential thresholds using Order Statistics for inter-decision times, Archimedes journal of Mathematics, 3(1), (2013), 19-30.

[8]. Sridharan, J., Saranya, P., and Srinivasan, A. Variance of time to recruitment in a two-grade man-power system with exponential and extended exponential thresholds using order statistics for inter-decision times, To appear in Bessel Journal of Mathematics.

[9]. Srinivasan, A., Vasudevan, V., Variance of the time to recruitment in an organization with two grades. Recent Research in Science and technology, 3(1), (2011), 128-131.

[10]. Srinivasan, A., Vasudevan, V., A Stochastic model for the expected time to recruitment in atwo graded manpower system, Antarctica Journal of Mathematics, 8(3),(2011), 241-248.

[11]. Srinivasan, A., Vasudevan, V., A manpower model for a two-grade system with univariate policy of recruitment. International review of pure and Applied Mathematics, 7(1), (2011), 79-88.

[12]. Srinivasan, A., Vasudevan, V. A Stochastic model for the expected time to recruitment in a two graded manpower system with two discrete thresholds. International Journal of Mathematical Analysis and Applications, 6(1), (2011), 119-126.

[13]. Vidhya, S., and Srinivasan, A., Expected time for recruitment in a multigraded manpower system having correlated inter –decision times when the threshold distribution has SCBZ property, Reflection des ERA-JMS, 5(3), (2010), 229-238.