A Study of Stability Constants of [Zn – L-Amino Acidate – Vitamin-PP] Systems

Kavita Rai, Farid Khan*

Electrochemical Laboratory, Department of Chemistry, Dr. H.S. Gour University, Sagar, 470 003, Madhya Pradesh, India

Abstract The polarographic technique was used in formation of zinc (II) mixed ligand complexes of amino acids viz. glycine, α-alanine, L-leucine, L-valine, L-asparagine L-glutamine used as primary ligands and vitamin-PP (nicotinamide) as the secondary ligand at pH = 7.30 ± 0.01, µ = 1.0 M NaClO4 at 25°C and 35°C. The complexes with metal to ligands ratio 1:1:1, 1: 1:2 and 1: 2: 1 have been reported. The stability constants varied from 1.91 to 11.50. The kinetic parameters and thermodynamic parameters were also also determined. The values of standard rate constant (k) were of the order of 10^{-3}cm sec^{-1} confirmed the quasireversible nature of electrode processes. The thermodynamic parameters reveal that complexes were lesser stable at high temperature.

Keywords L-amino Acids, Zinc (II), Vitamin-PP, Stability Constants, Kinetics, Thermodynamics

1. Introduction

Zinc acts an essential metal for number of enzymes involved in diverse biological processes but can be toxic at high concentrations[1]. Zinc has different enzymes that function in many aspects of cellular metabolism like proteins, lipids and carbohydrates metabolism[2], and anti-convulsant activities[3]. Many workers reported that the it has ability and flexibility to bind with amino acids to a variety of amino acid side-chains and substrates in a different geometry to enhance their biological activities[4-7]. Amino and carboxylic groups of amino acids that are implicated directly in enzymatic catalysis[8] with zinc metal as a function of active site of hydrolytic enzymes, where it is coordinated by N and O donor atoms[9]. Amino acids have been used as primary ligands and a large amount of research concerning metal amino acid complexation has been reported[10].

Nicotinamide also binds amino acids and transition metal ions with very high affinity[11]. It is a pyridine derivative and important bioligand for human health and occurs in plants and human tissues[12]. The complexes formed with the amino acids and vitamin-PP (nicotinamide) with zinc (II) have been found great importance in many fields of biology, medicinal, organic and material chemistry, biochemistry cell biology[13,14] and many beneficial effects to providing better clinical recoveries and mobilization of heavy metal in vivo.

In polarography, electrode kinetics is an area in which nature of electrode process has great importance. Tamamushi and Tanaka[15,16] determined the values of transfer coefficient(α), degree of irreversibility and rate constant(k) values. On the basis of α, we have located the exact position of transition state between oxidants and reductants [15,16]. The value of rate constant (k) measures the correct nature of electrode process at dropping mercury electrode.

A systematic survey of literature reveals that no complex of zinc with selected L-amino acids and nicotinamide has been reported polarographically and hence the authors have undertaken the present study for their work.

2. Experimental

2.1. Materials

All the solutions were prepared in doubled distilled water using AR grade chemicals. The metal used as Zinc Chloride from Aldrich, L-amino acids from Lobachem, vitamin-PP from Fluka. Potassium dihydrogen phosphate buffer was used to adjust the pH of the analyte. The concentrating of Zn (II), L-amino acids and vitamin-PP were taken in the ratio of 1:40:40 and current voltage curves were obtained at different pH values from 7 to 8.5, it has been observed that the maximum shift of E_{1/2} was observed at pH = 7.30 therefore; this pH was selected for the present study.

2.2. Instruments

The current-voltage curves were recorded on a manual polarograph using polyflex galvanometer-PL-50. The polarographic cell was of Laitinen and Lingane type in which a polarographic capillary of 5.0 cm in length with 0.04
mm in diameter was used. The effective height of mercury m²/3 t¹/6 value was 2.40 mg²/3s⁻¹/2 at 60.02 cm. The Elico-pH Meter (Model LI-120) was used to measure the pH of the test solution at 7.30 ± 0.01.

2.3. Methods

The concentrations of zinc (II), NaClO₄ and Triton X-100 (as suppressor) in the test solution were 0.50 mM, 1.0 M and 0.001 % respectively. For ternary system, the concentrations of primary ligands i.e. L-amino acids varied from 0.5 mM to 30.0 mM at 0.025 M and 0.050 M fixed concentration of secondary ligand vitamin-PP (nicotinamide) respectively. The E₁/₂ became more negative with the addition of secondary ligand (vitamin-PP) to the binary system [Zn-L-amino acids] showed ternary complex formation of 1:1:1, 1:1:2 and 1:2:1 complexes. The zinc (II) showed quasireversible reduction wave involving two electrons, at pH = 7.30 ± 0.01 and µ = 1.0 M NaClO₄ at 25°C and 35°C [17,18]. The nature of current-voltage curves for complexes was also quasireversible. The stability constants of ternary systems are represented in table 1.

3. Results and Discussion

3.1. Polarographic Studies

The polarographic data and plots of F_ij [X, Y] against [X] (where F_ij is a Schaap and McMaster function to evaluate the stability constant β_ij, X = L-glycine, Y = vitamin-PP and i and j are their stoichiometric numbers respectively) for [Zn-L-glycine-vitamin-PP] system are shown in the table 2 and Figure 1 respectively [19]. The polarographic data are used to determine the values of function F₀₀, F₁₀, F₂₀ and F₃₀. The values of E₁/₂ from Eqr₁/₂ were determined by Gellings [20] methods by plotting the graph between [E-RT/nF log (i₀-i)/i] vs. i for all the complexes were given in Figure 2 (a) and (b) respectively.

3.2. Comparison of the Stability of Binary Complexes and Ternary Complexes

The relative stabilities of the binary and ternary complexes are quantitatively expressed in term log K_m values which were calculated by the following equation[21]

\[\log K_m = \log \beta_{11} - 1/2(\log \beta_{02} + \log \beta_{10}) \]

The values of logK_m were 0.659, 649, 0.635, 0.617, 0.614 and 0.611 respectively for[Zn - L-glycinate - vitamin-PP], [Zn - α-alaninate - vitamin-PP], [Zn - L-leucinate - vitamin-PP], [Zn - L-valinate-vitamin-PP], [Zn - L-asparaginate – vitamin-PP] and [Zn - L-glutamate - vitamin-PP] system respectively. The positive values of log k_m indicated that the ternary complexes are more stable than the corresponding binary complexes.

3.3. Trends of the Stability Constants of the Complexes

The trend of stability constants of the complexes was found L-glutamine < L-asparagine < L-valine < L-leucine < α-alanine < L-glycine. The sequence may be explained[22] on the basis of basicities and structures of the primary ligands (L-amino acids). The metal ion zinc (II) is bound to the amino group and carboxyl group of the amino acids[23]. The stability constants of L-glycine complexes are maximum might be due to decreases in the side chain of L-amino acids than the rest of primary ligands. The stability of complexes decreases with the increases in the size of L-amino acids[24]. The values of stability constant (log β) varied from 1.91 to 11.50. The zinc (II) metal ion is coordinated through the nitrogen of pyridine group and oxygen of amide group in vitamin-PP to form a five membered ring[25]. The values of stability constants of the complexes that vitamin-PP and amino acids used either singly or simultaneously might be effective to reduce the toxicity of metal in vivo.

Table 1. Stability constant of [Zn - L-amino acidate - vitamin-PP] system

Primary ligands	logβ₀₁	logβ₀₂	logβ₀₃	logβ₁₀	logβ₂₀	logβ₃₀	logβ₁₁	logβ₁₂	logβ₂₁
glycine				4.80	8.94	11.41	4.85	9.00	11.50
α-alanine				4.73	8.80	11.22	4.75	8.90	11.42
L-leucine				4.50	8.72	11.03	4.61	8.852	11.30
L-valine				4.43	8.58	10.84	4.50	8.70	11.00
L-asparagine				4.40	8.52	10.43	4.45	10.92	
L-glutamine				4.38	8.38	10.24	4.42	8.56	10.62
vitamin-PP [nicotinamide]	1.91	2.90	3.30						

Zn (II) = 0.050 M, µ = 1.0 M NaClO₄, pH = 7.30 ± 0.01, Temp. = 25ºC/35ºC
Figure 1. Plots of $F_{ij}[X, Y]$ vs. $[X]$ for Zn-glycinate-vitamin-PP system.

- **[Glycine] X 103, [vitamin-PP] = 0.025 M**
- **[Glycine] X 103, [vitamin-PP] = 0.050 M**
- **[Glycine] X 103, [vitamin-PP] = 0.500 M**
- **[Glycine] X 103, [vitamin-PP] = 3.000 M**
- **[Glycine] X 103, [vitamin-PP] = 10.000 M**

- **[L-Glycinate] = 0.00 mM**
- **[L-Glycinate] = 5 mM**
- **[L-Glycinate] = 10 mM**
- **[L-Glycinate] = 20 mM**
- **[L-Glycinate] = 30 mM**

- **[L-Glycinate] = 6 mM**
- **[L-Glycinate] = 8 mM**
- **[L-Glycinate] = 2 mM**
- **[L-Glycinate] = 10 mM**

- **E1/2r-E. d. e.**
Figure 2. (a) [Zn-glycinate-vitamin-PP]:[vitamin-PP] = 0.025 M, Plots of
\((E_{1/2} - E)\) vs. \(\log (Z-1)\), Y-axis = \(\log (Z-1)\), X-axis = \((E_{1/2} - E)\)

Figure 2(b). [Zn-glycinate-vitamin-PP]:[vitamin-PP] = 0.050 M, Plots of
\((E_{1/2} - E)\) vs. \(\log (Z-1)\), Y-axis = \(\log (Z-1)\), X-axis = \((E_{1/2} - E)\)
Table 2. Polarographic characteristics and $F_{ij} [X,Y]$ values for the [Zn - glycinate - vitamin-PP] system

$[\text{gly}] \times 10^3$ M	$E_{1/2}^{V}$ vs. SCE	$\log I_m/I_c$	$F_{0i}[X,Y]$	$F_{0i}[X,Y] \times 10^3$	$F_{0i}[X,Y] \times 10^6$	$E_{1/2}^{V}$ vs. SCE	$\log I_m/I_c$	$F_{0i}[X,Y]$	$F_{0i}[X,Y] \times 10^3$	$F_{0i}[X,Y] \times 10^6$		
0.00	0.989	-	3.55	68.99	87.77	25.70	0.989	-	7.29	25.67	166.82	25.70
0.50	1.089	0.0071	2574.78	514.24	89.05	25.70	1.099	0.0071	5493.21	109.72	168.10	25.70
1.00	1.041	0.0142	9727.22	972.37	90.34	25.71	1.115	0.0142	19512.99	195.06	169.39	25.71
2.00	1.124	0.0215	38546.88	1927.17	92.91	25.72	1.132	0.0215	79924.49	369.58	171.96	25.70
3.00	1.134	0.0215	87999.73	2933.21	95.47	25.69	1.142	0.0289	164781.39	549.25	174.53	25.69
4.00	1.142	0.0289	15938.19	3990.87	98.04	25.70	1.149	0.0365	293633.69	734.06	177.10	25.70
5.00	1.148	0.0365	254987.86	5099.68	100.61	25.70	1.155	0.0442	46202.29	923.99	179.66	25.69
6.00	1.152	0.0442	375594.31	6259.85	103.18	25.69	1.159	0.0520	671470.89	1119.11	182.24	25.70
8.00	1.160	0.0520	698815.23	8735.15	108.33	25.70	1.167	0.0599	1219823.29	1524.77	187.39	25.71
10.00	1.166	0.0681	1141672.16	111416.68	113.48	25.71	1.173	0.0681	1950773.29	1950.77	192.51	25.69
20.00	1.185	0.0681	5580480.76	27902.38	139.17	25.70	1.192	0.0681	8780139.29	4390.07	218.22	25.70
30.00	1.199	0.0681	14861429.36	49538.08	164.89	25.71	1.204	0.0681	21865105.29	7288.37	242.09	25.69

$\log A = 0.55, \log B = 5.84, \log C = 9.94, \log D = 11.41$

Table 3. Kinetic parameters of [Zn-L-glycinate-vitamin-PP] system

$[\text{gly}] \times 10^3$	$(E_{0}^{\text{V}})_{\text{V}-\text{SCE}}$	α	λ	$D_{0}^{\text{V}} \times 10^{3}$	$K_{0}^{\text{V}} \times 10^{3}$	$(E_{0}^{\text{V}})_{\text{V}-\text{SCE}}$	α	λ	$D_{0}^{\text{V}} \times 10^{3}$	$K_{0}^{\text{V}} \times 10^{3}$
0.00	1.000	0.41	1.91	3.89	7.42	1.000	0.42	1.07	4.08	4.38
0.50	1.096	0.42	1.91	4.08	7.80	1.011	0.54	1.52	4.08	6.19
1.00	1.112	0.45	1.20	4.02	4.84	1.126	0.46	1.52	4.02	6.09
2.00	1.132	0.42	1.51	3.95	5.99	1.140	0.45	1.20	3.95	4.76
3.00	1.138	0.45	1.70	3.89	6.62	1.147	0.45	1.35	3.89	5.26
4.00	1.146	0.45	1.20	3.89	4.68	1.156	0.44	1.20	3.82	4.60
5.00	1.153	0.40	1.20	3.82	4.60	1.159	0.51	1.35	3.69	4.98
6.00	1.158	0.49	1.35	3.75	5.08	1.167	0.44	1.20	3.62	4.36
8.00	1.165	0.41	1.35	3.69	4.98	1.169	0.51	1.20	3.49	4.21
10.00	1.174	0.40	1.20	3.62	4.36	1.180	0.54	1.35	3.49	4.72
20.00	1.195	0.42	1.20	3.49	4.21	1.198	0.42	1.20	3.49	4.21
30.00	1.210	0.50	1.07	3.49	3.75	1.216	0.47	2.14	3.49	7.48

$\text{Zn(II)} = 0.050 \text{ M}, \mu = 1.0 \text{ M NaClO}_4, \text{pH} = 7.30 \pm 0.01, \text{Temp.} = 25^\circ/35^\circ \text{C}$
Table 4. Thermodynamic Parameters of [Zn–L-amino acidates – vitamin-PP] ternary system

System	Stability Constant	-ΔH	-ΔG	-ΔS							
log β₁₁	log β₁₂	log β₂₁	log β₁₁	log β₁₂	log β₂₁	log β₁₁	log β₁₂	log β₂₁	log β₁₁	log β₁₂	log β₂₁
25°C/ 35°C											
[Zn-gly -vit.-PP]	4.85	9.00	11.50	17.6404	13.0203	16.3804	6.6137	12.2729	15.6820	17.6182	12.9791
	4.43	8.69	11.11				6.2436	12.2476	15.6584	12.5802	11.3049
[Zn-α-ala- vit.-PP]	4.75	8.90	11.42	15.9603	17.2204	10.9202	6.47738	12.1365	15.5729	15.9386	17.1796
	4.37	8.49	11.04				6.1590	11.9658	15.5597	12.1606	12.9852
[Zn- L-leu -vit.-PP]	4.61	8.82	11.30	-15.1203	15.5403	15.9603	6.2864	12.0274	15.4093	15.0992	15.5000
	4.25	8.45	10.92				5.9899	11.9094	15.3903		13.4072
[Zn- L-val-vit.-PP]	4.50	8.70	11.00	15.9603	13.4403	11.3402	6.1364	11.8638	15.9397	15.9397	13.4005
	4.12	8.38	10.62				5.8067	11.8107	14.9678	11.3218	14.2478
[Zn-L-asn- vit.-PP]	4.45	–	10.92	-18.0604	–	15.9603	6.0682	–	14.8911	18.0400	–
	4.02	–	10.54				5.6657	–	14.8550	14.6825	–
[Zn-L-gln-vit.-PP]	4.42	8.56	10.62	-15.5403	18.4804	17.6404	6.0273	11.6729	14.4820	10.9011	15.0872
	4.05	8.12	10.20				5.7080	11.4443	14.3758	10.9023	15.0888

Zn (II) = 0.050 M, µ = 1.0 M NaClO₄, pH = 7.30 ± 0.01, Temp. = 25/35 °C
3.4. Kinetic Parameters and Thermodynamic Parameters

The kinetic parameters of the complexes such as transfer coefficient (α), degree of irreversibility (λ) and rate constant (k) were determined by Tamamushi and Tanaka[15,16] methods and presented in the Table 3. The parameter Z, which measures the degree of irreversibility, has been calculated by the equation given in the literature[25]. The plots between (E" 1/2 -E) against log (Z-1) were given in Figure 3(a) and 3(b) respectively, where the terms have the usual significance.

The thermodynamic parameters [19] such as enthalpy change (ΔH), free energy change (ΔG), and entropy change of the complexes are presented in the Table 4 and have been calculated by the equations given below

\[
\Delta H = 2.303 \frac{RT_1 (\log \beta_2 - \log \beta_1)}{T_2 - T_1} \quad (1)
\]

\[
\Delta G = -2.303 RT \log \beta \quad (2)
\]

\[
\Delta G = \Delta H - \Delta S \quad (3)
\]

It is obvious from the values of thermodynamic parameters that ΔG values are less negative followed by the more negative values of ΔS at higher temperature, confirming that the complexes are lesser stable at higher temperature. The negative values of ΔH show that the reactions are exothermic in nature[26].

4. Conclusions

Here we report the stability constants of [Zn – L-amino acidate – vitamin-PP] systems at pH = 7.30 ± 0.01, μ = 1.0 M NaClO4 at 25°C and 35°C, polarographically. The thermodynamic and kinetic parameters were also reported. The result showed that the zinc complexes gave quasiirreversible reduction wave involving two electrons with diffusion controlled. The rate constant (k) determined the exact nature of electrode process on the basis of its values (k = 2x10^{-2} – 5x10^{-5} cms^{-1}) which is quasiirreversible. Also the transfer coefficient (α) determined about 0.50 which confirmed that the ‘transition state’ lies in mid of the oxidant and reductant. Degree of irreversibility (λ) and diffusion coefficient (D) are also having the expected values. The knowledge of stability constants and kinetic parameters exploits in diverse fields in applied and theoretical chemistry.

ACKNOWLEDGEMENTS

The authors are thankful to University Grant Commission, New Delhi for providing the Rajeev Gandhi fellowship to KR and the Head, Department of the Chemistry, Dr. H. S. Gour University, Sagar, for providing the laboratory facilities.

REFERENCES

[1] Hantke K., Biometals, 2001, 14, 239.
[2] Parkin G., 2004, Chem. Rev., 104, 699.
[3] Sorenson J.R.J., Soderberg L.S.F., Chang L.W., Willingham W.M., Baker M.L., Barnett J.B., Salari H., Bond K., 1993, Eur. J. Med. Chem., 28, 221.
[4] Lipscomb W. N., Strater N., 1996, Recent advances in zinc enzymology, Chemical Reviews 96, 2375.
[5] Ferrari M.B., Capacchi S., Pelosi G., Refo G., Tarasconi P., Albertini R., Pinelli S., Lunghi P., 1999, Inorg. Chim. Acta, 286, 134.
[6] Canpolat E. Kaya M., 2004, J. Coord. Chem., 57, 1217.
[7] Yildiz M., Dulger B., Koyuncu S.Y., Yapici B.M., 2004, J. Indian Chem. Soc. 81, 7-12.
[8] Stubbe J., vander Donk W., 1998, Protein radicals in enzyme catalysis, Chemical Reviews 98, 705.
[9] Sun X.X., Qi C.M., Ma S.L., Huang H.B., Zhu W.X., Liu Y.C., 2006, Inorg. Chem. Commun., 9, 911.
[10] Khodari M., Ghandour M. A., Mansour H., El-Din H., 1995, Chem. Papers, 49, 21.
[11] Benes I., Schreiber K., Ripperger H., Kircheiss A., 1983, Cell. Mol. Life Sci., 39, 261.
[12] Singh P.P., Singh D., Khan S.A., 1986, J. Indian Chem. Soc., 63, 951.
[13] Fish R. H., 2006, Bioorganometallics, 321.
[14] Nevo Y., Nelson N., 2006, Biochim. Biophys. Acta, 1763, 609.
[15] Tamamushi R, Ishibashi K., Tanaka N., 1962, Z. Phys. Chem. Neue Folge, 35, 211.
[16] Tamamushi R., Tanaka N., 1963, Z. Phys. Chem. Neue Folge, 35, 211.
[17] Khan F. and Khanam A., 2009, Port. Electrochim. Acta, 27, 87.
[18] Devries T., Kroon J. L., 1953, J. Am. Chem. Soc.75, 2484.
[19] Chadar S. N. and Khan F., 2008, Chemija, 19 (3-4), 1-6.
[20] Gellings P.J, 1962, Z. Electrochem. Ber. Bunsenges phys. Chem., 66, 481.
[21] Schaap W. B., McMaster D. L., 1961, J. Am. Chem. Soc. 82, 4699.
[22] Mohamoud A.A.A., Farghely O.A., El. Said Ghandour,, 2000, Monatsch. Chem., 131, 1031.
[23] McMurray J., Fay R.C., 1995, Chemistry, Prentice Hall, New Jersey, 812.
[24] F. Khan, K. Rai, 2010, J. Indian Chem. Soc., 87, 971.
[25] Khan F., 2007, J. Chin. Chem. Soc., 54, 673.
[26] Akgemei E. G., Atalay T., 1998, Turk. J. Chem., 22, 123.