We are pleased to introduce the newest members of the JCB editorial board. We are grateful to these and all of our board members for their contributions to JCB and service to the cell biology community.

Joerg Bewersdorf
Biophysics and super-resolution light microscopy
Joerg Bewersdorf is a professor of cell biology and of biomedical engineering at Yale University. He received his Master’s degree (1998) and his doctoral degree in physics (2002) training with Dr. Stefan W. Hell at the Max Planck Institute for Biophysical Chemistry in Göttingen, Germany. After four years at the Jackson Laboratory in Bar Harbor, Maine, he relocated his research group to Yale University in 2009. An optical physicist/biophysicist by training, Dr. Bewersdorf has been a long-time contributor to the field of super-resolution light microscopy development and the application of these techniques to cell biological questions. PHOTO COURTESY OF YALE UNIVERSITY.

Yukiko Gotoh
Neural stem/progenitor cells, mechanisms of mammalian brain development and homeostasis
Yukiko Gotoh studies neural stem/progenitor cells (NPCs) and their progeny to understand the mechanisms of mammalian brain development and homeostasis. She received her PhD in 1992 from the University of Tokyo, where she contributed to the identification of the mitogen-activated protein kinase signaling pathway in vertebrates. She performed her postdoctoral work with Jonathan A. Cooper at the Fred Hutchinson Cancer Research Center and with Michael E. Greenberg at Harvard Medical School before starting her own laboratory back at the University of Tokyo. Her group revealed time-dependent regulation of the neurogenic properties of NPCs during brain development, including that mediated by Polycomb group proteins, as well as identified the embryonic origin of adult subventricular neural stem cells. She has been awarded the Japan Society for the Promotion of Science Prize, Japan Academy Medal, Tsukahara Prize, Inoue Prize for Science, Yasuda Memorial Foundation Prize for Medicine, and Kihara Memorial Foundation Academic Award. PHOTO COURTESY OF YUKIKO GOTOH.

Fumiyo Ikeda
Ubiquitination in inflammation, cell death, and autophagy
Fumiyo Ikeda is a group leader at the Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA) in Vienna, Austria. Research in the Ikeda laboratory is aimed at understanding regulatory mechanisms of inflammation, cell death, and autophagy by the ubiquitin system. The Ikeda laboratory uses biochemical and cellular assays as well as mouse models to elucidate the molecular basis of these biological functions. PHOTO COURTESY OF THE GRAPHICS DEPARTMENT OF IMBA/IMP.

Hiroshi Kimura
Dynamics of chromatin modifications in gene regulation
Hiroshi Kimura is a professor in cell biology at the Tokyo Institute of Technology. Dr. Kimura received his PhD from the Hokkaido University, Sapporo, and completed postdoctoral research with Peter Cook at the Oxford University. Kimura’s laboratory aims to understand how genes are regulated in eukaryotic nuclei during development and differentiation and in response to external stimuli, by live cell imaging and epigenomic profiling. The laboratory uses a unique technique to track transcription and histone modifications in living cells and organisms. PHOTO COURTESY OF ERIC WAIT.

Alberto R. Kornblitht
Regulation of alternative pre-mRNA splicing
Alberto R. Kornblitht was born in Buenos Aires, Argentina, where he graduated as a biologist (1977) from the University of Buenos Aires (UBA) and obtained a PhD in Biochemistry (1980) at the Kampomar Foundation, supervised by Héctor Torres. He did a postdoc (1981–1984) at the Sir William Dunn School of Pathology in Oxford, UK, with Tito Baralle. He is plenary professor at the School of Sciences of UBA and director of the Institute of Physiology, Molecular Biology, and Neurosciences of the National Research Council (IFIBYNE-UBA-CONICET) of Argentina. From 2002 to 2017 he was a Howard Hughes Medical Institute International Research Scholar. He is a Foreign Associate of the US National Academy of Sciences, a member of the European Molecular Biology Organization, and served on the Board of Reviewing Editors of Science (2010–2015). His laboratory works on the regulation of alternative pre-mRNA splicing, with emphasis on the mechanisms that couple splicing with transcription to explain how changes in the rate of transcriptional elongation affect alternative splicing both in animal cells and plants. PHOTO COURTESY OF THE FEBS MEETING, BERLIN, 2015.
Carien Niessen
Control of cell shape and adhesive interactions in tissue formation and barrier function
Carien Niessen studies how intercellular adhesion and polarity complexes integrate mechanical and biochemical signals to control the formation, maintenance, and breaking of epithelial barriers, in particular the self-renewing stratified epidermis of the skin. Carien Niessen did her PhD at the Netherlands Cancer Institute and received a Dutch Cancer Society fellowship to do her postdoc at Memorial Sloan-Kettering Cancer Center in New York. She then moved to the University of Cologne to start her own group and became a tenured professor in 2008. From 2019 she will head the Cologne Excellence Cluster for Aging-associated Diseases. Her laboratory uncovered novel molecular principles on how cell adhesion and polarity coordinate fate, shape, and positioning of cells essential for tissue formation and barrier function. PHOTO COURTESY OF THE UNIVERSITY OF COLOGNE.

Shu-ou Shan
Biochemistry, biophysics, and mechanistic enzymology, protein biogenesis, and homeostasis
Shu-ou Shan completed her undergraduate degree in chemistry and biochemistry at the University of Maryland and her doctorate in biochemistry at Stanford University (2000). After her postdoctoral training in cell biology and biophysics at the University of California, San Francisco, she joined the California Institute of Technology as an assistant professor in 2005 and became full professor in 2011. Work in the Shan laboratory aims to understand the mechanism of cellular machines in protein biogenesis and homeostasis by integrating quantitative approaches in biochemistry, biophysics, and mechanistic enzymology with structural and molecular cell biology. Her current work focuses on the mechanism of cotranslational protein targeting by the signal recognition particle, the mechanism of post-translational membrane protein targeting by the Guided-Entry-of-Tail-Anchored Proteins (GfET) pathway, the roles and mechanisms of molecular chaperones dedicated to membrane proteins, and the principles of molecular recognition and regulation by a large, growing class of dimerization-activated nucleotide hydrolases. PHOTO COURTESY OF MARGOT HOYT.

Min Wu
Membrane dynamics, pattern formation, and cell size
Min Wu is an associate professor of biological sciences at the National University of Singapore and a principal investigator at the Center for Bioimaging Sciences and the Mechanobiology Institute. Dr. Wu received her PhD from Cornell University and completed her postdoctoral research with Pietro De Camilli at Yale School of Medicine. The Wu laboratory studies single cell oscillations and traveling waves, membrane curvature, and cell size homeostasis. The laboratory is particularly interested in the collective dynamics within the cell cortex mediated by the interplay of endocytic trafficking, the cytoskeleton, and lipid metabolism. PHOTO COURTESY OF MIN WU.

Li Yu
Autophagy and the migrasome
Li Yu is a professor in the School of Life Sciences at Tsinghua University. Dr. Yu received his PhD from the Peking University at Beijing and completed his postdoctoral training at the National Institutes of Health, Bethesda, MD. Research in the Yu laboratory focuses on autophagy and the migrasome, which was identified by Yu's group in 2014. PHOTO COURTESY OF LI YU.

Xiang Yu
Neural circuit development and plasticity
Xiang Yu is principal investigator at the Institute of Neuroscience, Chinese Academy of Sciences, in Shanghai, China. After receiving her bachelor’s degree from Trinity College, University of Cambridge, she completed her PhD at the Medical Research Council Laboratory of Molecular Biology in Cambridge, UK, and her postdoctoral work at Stanford University. She is interested in understanding the morphological and synaptic bases of experience-dependent neural circuit development and plasticity, together with its underlying molecular mechanisms. Recent work from her laboratory showed that the neuropeptide oxytocin mediates global and crossmodal plasticity in the mouse sensory cortices during early development and demonstrated a critical role of the cadherin/catenin cell adhesion complex in activity-dependent spine pruning, through a competition-based mechanism. She is a recipient of the Grass Fellowship at the Marine Biological Laboratory, the Talented Young Investigator Award of the National Science Foundation of China, the China Young Women Scientists’ Award, and the Ten Thousand Talent Program of China. PHOTO COURTESY OF XIANG YU.