Characterization of Metal Matrix Composites reinforced with suitable reinforcement agents – A Comprehensive Review

S Granesan, S Deepak Ganesh and A Arul Marcel Moshi*
Department of Mechanical Engineering, National Engineering College, Kovilpatti – 628503, Tamilnadu, India.

* Corresponding author: moshibeo2010@gmail.com

Abstract. Invention of new materials is always essential for the growing industries. The materials which are newly invented or developed are expected to be of improved strength, light weight, simple preparation methods and lesser cost. Composite materials are found as better choices to be tested for satisfying the researchers’ expectations for different structural applications. Various research works are being performed with metal matrix composites (MMC) by incorporating suitable reinforcing agents with them in order to achieve better desirable properties. The current paper presents the researcher works so far carried out on distinct metal matrix composites, the incorporated reinforcement agents, the amount of reinforcement agents added, the preparation methods of MMCs and the details of mechanical characteristics which got improved out of the reinforcement. This cumulative work will surely be helpful for the researchers in this field in selecting suitable reinforcing agent for preparing their composites.

Keywords: Metal Matrix Composites; Reinforcement Agent; Characterization; Mechanical characterization.

1. Introduction
In general, composite materials are prepared by combining at least two distinct materials with different characteristics. Since there is a demand for materials with higher strength to weight ratio, composite materials are concentrated more in many industrial sectors and automobile sectors. Based on the matrix medium, composite materials are categorised as metal matrix, ceramic matrix and polymer matrix composites. Though several works are going on with polymer matrix [1–5] and ceramic matrix composites, MMCs are concentrated more because of their better mechanical characteristics. In the present study, a detailed review work has been presented on the fabrication process, inclusion of reinforcement agents and the improvement achieved on various mechanical characteristics of recently addressed metal matrix composites.

1.1. Fabrication of Metal Matrix Composites
For the fabrication of MMCs, different techniques are generally used such as stir casting process, powder metallurgy, infiltration technique etc., [6] Among them, most of the researchers have followed stir casting technique for mass production because of its simple procedure and better results. In stir casting process, the metal and reinforcement agents are mixed at molten stage with the help of a mechanical stirrer. The metal and reinforcement particles are taken in a crucible and kept inside a hot furnace for melting. After stirring the metal and reinforcement particles at molten state for required time in order to get uniform distribution of the particles in the parent metal, the molten mixture will be
transferred to a designed mould for casting; and then will be cooled at atmospheric condition to get the finished metal matrix composite [7]. In powder metallurgy process, the metal and the reinforcement agents are initially powderized using any one of the techniques like ball milling and ultrasonic concussion. Then the evenly distributed powder mixture is sintered in a spark plasma sintering system by applying compressive pressure at vacuum atmosphere [8]. Copper based metal matrix composites prepared using powder metallurgy technique were reported to have improved thermal conductivity and wear resistance properties [9].

1.2. Inclusion of reinforcement agents with MMCs
The inclusion of Aluminium Nitride (AlN) particles enhances the thermal conductivity property in aluminium based metal matrix composites in turn AlN added MMCs are suggested to used for electronic packages and in the fabrication of heat dissipation devices [10]. The inclusion of Magnesium – Ceramic particles improves the mechanical properties in magnesium based MMCs like stiffness and abrasive wear resistance. The addition of Silicon Carbide particles with Aluminium based MMCs shows improved ultimate tensile strength property [11]. Aluminium based MMCs added with Boron Nitride nanoparticles gain better tensile properties in comparison with that of the parent material. Also the inclusion of Carbon nanotubes and graphene shows better tensile characteristics in the aluminium based MMCs [12]. The increase in the addition of volume percentage of Silicon Nitride particles leads to reduction in the bending strength of the Al based metal matrix composites. The nano sized alumina particles incorporated aluminium 6061 composites were reported in the literature that they exhibited better tensile properties with more volume percentage of alumina particles reinforcement [13]. The addition of Titanium Carbide and Molybdenum disulfide particles helps to achieve improved wear resistance in magnesium based composite materials. Also, it was observed by referring several literatures in the relevant area that the effect of adding reinforcement agents and their sizes on the wear resistance characteristics changes metal to metal [14]. The uniform distribution of Zirconium silicate and Titanium diboride micro particles in the aluminium metal matrix composites results in achieving better tensile strength and hardness properties [15]. Tensile strength and hardness values can be improved in aluminium MMCs by adding coconut shell ash particles [16]. In the field of MMC characterization, recent research works are focusing on developing high strength Fiber Metal Laminates by incorporating suitable reinforcement agents [31].

1.3. Optimization techniques used in MMCs characterization study
Researchers have used various optimization techniques suitably in the characterization study of different MMCs. For the optimization study on the wear behavior of MMCs, sliding distance, normal load, sliding speed, vol./wt.% of the reinforcement are usually considered as the significant input parameters. Distinct optimization techniques carried out for the wear behavior study on MMCs are detailed in Table 1.

S. No.	Base Metal	Reinforcement	Objective	Optimization Technique	Result
1.	Copper	MWCNTs	To optimize the wear loss	Taguchi’s technique	Wear loss decreases with increasing the volume fraction of MWCNT up to the level of 3% [9]
2.	Al−Si alloy	Gr and Si₃N₄	To optimize the wear rate and CoF	Taguchi’s technique	25% decrement in wear rate for Al−Gr−Si₃N₄ hybrid composites than Al−Si₃N₄ nanocomposite for 1 km sliding distance;
3. Pure magnesium (CRT panel glass and BN) To optimize the wear rate and coefficient of friction Taguchi based Grey Relational Analysis

4. Aluminium (ISO 99.0Cu) Coconut shell ash To optimize the wear rate and coefficient of friction Grey–Fuzzy approach & Desirability function approach

5. AA6061 and AA7075 B_4C and Graphite To optimize the wear rate Response Surface Methodology

6. AA6061 Si_3N_4 and Graphite To optimize the wear rate and coefficient of friction Grey Relational Analysis

65% decrement in wear rate for Al–Gr–Si3N4 hybrid composite for the loads of 20 and 30 N [13].

20μm CRT panel glass at 10 wt%, 10N of applied load, 1 m/s sliding velocity and 500m sliding distance was found to be the optimal combination [14].

10N applied load, 15 vol.% of reinforcement & 2000km sliding distance was the optimal combination [16].

Wear rate was minimum at 10 N applied load, 0.8 m/s sliding speed & 2000 m sliding distance [17].

1m/s sliding speed, 10N normal load & 4 wt.% of Si3N4 was found to be the optimal combination [18].

2. Extensive Literature Survey

The base metal, reinforcement agent and method of fabrication of several MMCs, the mechanical property study and significant results of MMCs study have been referred through various literatures and collectively presented in Table 2.

S. No.	Base Metal	Reinforcement	Composition	Method of fabrication	Reported results
1.	Aluminium alloy -17Si	ZrSiO_4 and Graphite	3, 6, 9 & 12 wt.% of ZrSiO_4 & 2 wt.% of Gr	Stir casting process	• Wear rate decreased for all the loading conditions when compared to the base material when the wt.% of ZrSiO_4 reinforcement increases
• 12%ZrSiO_4+2%Gr of reinforcement will have better wear resistance properties compared to all other percentage of reinforcement					
• 6% ZrSiO_4+2%Gr reinforcement will give the					
Nr.	Material System	Additional Component(s)	Reinforcement Content	Processing Method	Additional Information
-----	-----------------	------------------------	-----------------------	-------------------	------------------------
2.	Al-17Si	ZrSiO$_4$	3, 6, 9 & 12 wt.%	Stir casting process	Better hardness property [19]
					- Tensile strength of the composite increased with ZrSiO$_4$ particles till 3% and thereafter started to decrease. The reason behind that is Zirconium has higher hardness than Al matrix [20]
					- Hardness values of Al-TiB$_2$ & Al-B$_4$C composites were higher than Al-ZrSiO$_4$ composites in equal amounts of reinforcements [15]
3.	Aluminium Alloy 356	B$_4$C, TiB$_2$ and ZrSiO$_4$ separately	5, 10 & 15 vol.%	Stir casting process	- Considerable improvement in the fracture toughness with the combinations: 6% SiC+2% ZrSiO$_4$ & 4% SiC+4%ZrSiO$_4$
					- The compositions 0%SiC+8%ZrSiO$_4$ & 2%SiC+6%ZrSiO$_4$ had high compression strength [21]
4.	AA356	SiC & ZrSiO$_4$	0%SiC+8%ZrSiO$_4$	Stir casting process	- Tensile strength increases with the increase in the wt.% of Al$_2$O$_3$
			6%SiC+2%ZrSiO$_4$		- Electromagnetic stirring action helped MMC getting composed with smaller grain size and good interface bonding [22]
			2%SiC+6%ZrSiO$_4$		- Tensile properties got enhanced with 0.3 wt% of graphene. Increasing the graphene content beyond 0.3 wt% resulted in cluster formation [23]
			4%SiC+4%ZrSiO$_4$		- Hardness increases with increasing reinforcement content up to 1 wt.% Al$_2$O$_3$ but thereafter the hardness decreases. This is due to the heterogeneous distribution of nanoparticles and high porosity
5.	A359	Al$_2$O$_3$	2, 4, 6 & 8 wt.%	Electromagnetic stir casting method	
6.	AA7050	Graphene	0.3, 0.5 & 0.7 wt.%	Stir casting method	
7.	AA6061	Nano Al$_2$O$_3$	0.5, 1 & 1.5 wt.%	Stir casting method	
No.	Alloy	Reinforcement	Volume %	Method	
-----	---------	--------------------------------	----------	---------------------------------	
8.	Al–4.5 wt.% Cu	Zircon sand and alumina particles	15 vol.%	Stir casting method	
9.	AA356	Nano SiC	0, 0.5, 1.5, 2.5, 3.5 & 4.5 vol.%	Stir casting method	
10.	AA356	palm kernel shell ash nano particles	1, 2, 3 & 4 wt.%	double layer feeding-stir casting method	
11.	AA356	Aloe vera powder	10 wt.%	Stir casting process	
12.	AA (AlSi10Mg)	Rice husk ash	3, 6, 9 & 12 wt.%	Stir casting process	
13.	AA356	AlN/MWCNT/AlN/MWCNT – 0.5,		Stir casting process	

- Yield strength increases with increasing the inclusion of Al$_2$O$_3$ particles [24]
- Wear resistance properties of Al–4.5 wt.% Cu alloy improved significantly with the addition of Al$_2$O$_3$ and zircon particles [25]
- Yield and ultimate tensile strength values & elastic modulus got improved with the inclusion of nano particles although some reduction in ductility was observed.
- The highest yield strength & ultimate tensile strength were obtained with the addition of 3.5% SiC nano particles [26]
- Improvement of 30.47%, 41.91%, 49.52%, 40.9% and 65.09% were obtained for hardness, tensile strength, yield strength, % of elongation & impact energy at 4 wt% addition of reinforcement [27]
- BHN was higher than that of pure Al
- Aloe vera powder increased the ultimate tensile strength 55.62% [28]
- Hardness of the composite linearly increased with the increase in wt.% of the rice husk ash particles. This occurred due to the increase in surface area of the matrix & thus the grain sizes got reduced.
- Rice husk ash increased the tensile & compressive strength of the prepared MMC [29]
- The optimal vol% of reinforcements were
Graphite 0.75, 1 & 2 vol.\% & Graphite – 0.5 vol.\% identified as 1% for MWCNT and 0.75% for AlN for mechanical properties [30]

3. Conclusion
This comprehensive study presents the cumulative details regarding the synthesis and characterization studies carried out on different metal matrix composites. Among the various available synthesis techniques, stir casting method was found to be the economical and effective technique for the preparation of MMCs. Few optimization techniques used for optimizing the wear study parameters on MMCs have been addressed. Further, the significant points taken from the characterization study results on MMCs have been presented. In which, the base metal selection, reinforcement agent consideration, preparation technique for the MMCs, composition of reinforcement inclusion, objectives of the study and the significant improvements in the mechanical, thermal and wear resistance properties of some aluminium based metal matrix composites have been detailed. This review work will definitely be helpful for the new researchers in the field of processing metal matrix composites.

4. References
[1] Moshi AAM, Madasamy S, Bharathi SRS, Periyayaganathan P, Prabaharan A (2019) Investigation on the mechanical properties of sisal-banana hybridized natural fiber composites with distinct weight fractions. AIP Conference Proceedings 2128(1): 020029. DOI: https://doi.org/10.1063/1.5117941
[2] Ramaswamy S, Rajadurai JS, Moshi AAM (2017) Comparative analysis on classical laminated plate theory and higher order lamination plate theory for cross-ply FRP composite structures. J Comput Theor Nanos 14(11): 5444–5449. https://doi.org/10.1166/jctn.2017.6968
[3] Ramaswamy S, Rajadurai JS, Moshi AAM (2019) Software analysis on free edge stresses in the composite laminates using various approaches and its applications. Appl Math Inform Sci 13(S1): 297–302. DOI: https://doi.org/10.12785/amis/13S133
[4] Ramasamy S, Moshi AAM, Rajadurai JS (2015) Effect of warping deformation mode in the prediction of free edge stresses in the composite laminates. Int J Applied Engineering Research 10(62): 223–229
[5] Vijayakumar K, Moshi AAM and Rajadurari JS (2020) Mechanical Property Analysis on Bamboo-Glass Fiber Reinforced Hybrid Composite Structures under Different Lamina Orders. Materials Today: Proceedings (Accepted on 17th August 2020)
[6] Bedolla E, Ruiz JL, Contreras A (2012) Synthesis and characterization of Mg-AZ91 AlN composites. Materials and Design 38: 91–98. DOI: https://doi.org/10.1016/j.matdes.2012.02.001
[7] Kumar M, Gupta RK, Pandey A (2018) A Review on Fabrication and Characteristics of Metal Matrix Composites fabricated by Stir Casting. IOP Conf. Series: Materials Science and Engineering 377: 012125. DOI: https://doi.org/10.1088/1757-899X/377/1/012125
[8] Pan Y, Xiao S, Lu X, Zhou C, Li Y, Liu Z, Liu B, Xu W, Jia C, Qu X (2019) Fabrication, Mechanical Properties and Electrical conductivity of Al2O3 reinforced Cu/CNTs
composites. Journal of Alloys and Compounds 782: 1015–102. DOI: https://doi.org/10.1016/j.jallcom.2018.12.222

[9] Prakash KS, Thankachan T, Radhakrishnan R (2017) Parametric Optimization of dry sliding wear loss of copper-MWCNT composites. Transactions of Nonferrous Metals Society of China 27: 627–637. DOI: https://doi.org/10.1016/S1003-6326(17)60070-0

[10] Balog M, Yu P, Qian M, Behulova M, Sr PS, Cicka R (2013) Nanoscaled Al-AlN composites consolidated by equal channel angular pressing (ECAP) of partially in situ nitrided Al powder. Materials Science and Engineering A 562: 190–195. DOI: http://dx.doi.org/10.1016/j.msea.2012.11.040

[11] Zhang B, Yang C, Zhao D, Sun Y, Wang X, Liu F (2018) Microstructure characteristics and enhanced tensile properties of in-situ AlN/AZ91 composites prepared by liquid nitriding method. Materials Science and Engineering A 725: 207–214. DOI: https://doi.org/10.1016/j.msea.2018.03.126

[12] Firestein KL, Steinman AE, Golovin IS, Cifre J, Obraztsova EA, Matveev AT, Kovalskii AM, Lebedev OI, Shtansky DV, Golberg D (2015) Fabrication, Characterization and Mechanical properties of spark plasma sintered Al-BN nanoparticle composites. Materials Science and Engineering A 642: 104–112. DOI: https://doi.org/10.1016/j.msea.2015.06.059

[13] Ambigai R, Prabhu S (2017) Optimization of friction and wear behaviour of Al-Si₃N₄ and Al-Gr- Si₃N₄ hybrid composite under dry sliding conditions. Transactions of Nonferrous Metals Society of China 27: 986–997. DOI: https://doi.org/10.1016/S1003-6326(17)60116-X

[14] Gopal PM, Prakash KS, Nagaraja S, Aravindh NK (2017) Effect of weight fraction and particle size of CRT glass on the tribological behavior of Mg-CRT-BN hybrid composites. Tribology International 116: 338–350. DOI: https://doi.org/10.1016/j.triboint.2017.07.025

[15] Shirvanimoghaddam K, Khayyam H, Abdzadeh H, Akbari MK, Pakseresht AH, Abdi F, Abbasi A, Naebe M (2016) Effect of B₄C, TiB₂ and ZrSiO₄ ceramic particles on mechanical properties of aluminium matrix composites: Experimental investigation and predictive modeling. Ceramics International 42(5): 6206–6220. DOI: https://doi.org/10.1016/j.ceramint.2015.12.181

[16] Raju SS, Rao GS, Samantra C (2019) Wear behavioral assessment of Al-CSAp-MMCs using Grey-Fuzzy approach. Measurement 140: 254–268. DOI: https://doi.org/10.1016/j.measurement.2019.04.004

[17] Baradeswaran A, Vettivel SC, Perumal AE, Selvakumar N, Issac RF (2014) Experimental investigation on mechanical behaviour, modelling and optimization of wear parameters of B₄C and graphite reinforced aluminium hybrid composites. Materials and Design 63: 620–632. DOI: http://dx.doi.org/10.1016/j.matdes.2014.06.054

[18] Hariharasakthisudhan P, Moshi AAM, Bharathi SRS, Logesh K (2019) Regression and Grey Relational Analysis on friction and wear behavior of AA6061/Al₂O₃/Si₃N₄/graphite hybrid nano composites. Materials Research Express 6: 085017. DOI: https://doi.org/10.1088/2053-1591/ab1cd3

[19] Ramesha V, Prasad TB, Nayak V, Neelakantha VL (2018) Experimental investigation of hardness and wear characteristics of ZrSiO₄ and Graphite reinforced hybrid aluminium
MMC. Global Journal of Advance Engineering Technology and Sciences 5(9): 1–9. DOI: https://doi.org/10.5281/zenodo.1412991

[20] Ramesha V, Prasad TB, Nayak V, Neelakantha VL (2018) A study on mechanical properties of Al-17Si Metal Matrix Composites. IOP Conf. Series: Materials Science and Engineering 376: 012100. DOI: https://doi.org/10.1088/1757-899X/376/1/012100

[21] Shivaraaja HB, Kumar BSP (2014) Experimental determination and analysis of Fracture toughness of MMC. International Journal of Science and Research 3(7): 887–892. Paper ID: 020141213

[22] Kumar A, Lal S, Kumar S (2013) Fabrication and Characterization of A359/Al2O3 metal matrix composite using electromagnetic stir casting method. Journal of Materials Research and Technology 2(3): 250–254. DOI: http://dx.doi.org/10.1016/j.jmrt.2013.03.015

[23] Venkatesan S, Xavior MA (2018) Tensile behavior of aluminium alloy (AA7050) metal matrix composite reinforced with graphene fabricated by stir and squeeze cast processes. Science and Technology of Materials 30(2): 74–85. DOI: https://doi.org/10.1016/j.stmat.2018.02.005

[24] Ezatpour HR, Sajjadi SA, Sabzevar MH, Huang Y (2014) Investigation of microstructure and mechanical properties Al-6061 nanocomposite fabricated by stir casting. Materials and Design 55: 921–928. DOI: http://dx.doi.org/10.1016/j.matdes.2013.10.060

[25] Das S, Das S, Das K (2007) Abrasive wear of zircon sand and alumina reinforced Al-4.5wt%Cu alloy matrix composites – A comparative study. Composites Science and Technology 67: 746–751. DOI: https://doi.org/10.1016/j.compsci.2006.05.001

[26] Mazahery A, Shabani MO (2012) Characterization of cast A356 alloy reinforced with nano SiC composites. Transactions of Nonferrous Metals Society of China 22: 275–280. DOI: https://doi.org/10.1016/S1003-6326(11)61171-0

[27] Aigbodion VS, Ezema IC (2020) Multifunctional A356 alloy/PKSAnp composites: microstructure and mechanical properties. Defence Technology 16(3): 731–736. DOI: https://doi.org/10.1016/j.dt.2019.05.017

[28] Gireesh CH, Prasad KGD, Ramji K, Vinay PV (2018) Mechanical characterization of Aluminium Metal Matrix Composite reinforced with Aloe vera powder. Materials Today: Proceedings 5: 3289–3297. DOI: https://doi.org/10.1016/j.matpr.2017.11.571

[29] Saravanan SD, Kumar MS (2013) Effect of mechanical properties on Rice husk ash reinforced aluminium alloy (AlSi10Mg) Matrix composites. Procedia Engineering 64: 1505–1513. DOI: https://doi.org/10.1016/j.proeng.2013.09.232

[30] Logesh K, Harirarasakthisudhan P, Moshi AAM, Rajan BS, Basha KS (2019) Meechanical properties and microstructure of A356alloy reinforced AlN/MWCNT/Graphite/Al composites fabricated by stir casting. Materials Research Express 7(1): 015004. DOI: https://doi.org/10.1088/2053-1591/ab587d

[31] Logesh K, Harirarasakthisudhan P, Rajan BS, Moshi AAM, Khalkar V (2020) Effect of multi-walled carbon nano-tube on mechanical behavior of glass laminate aluminium reinforced epoxy composites. Polymer composites. DOI: https://doi.org/10.1002/pc.25757