Insulin promotes sinusoidal endothelial cell proliferation mediated by upregulation of vascular endothelial growth factor in regenerating rat liver after partial hepatectomy

Jian-Guo Qiao, Long Wu, Dao-Xiong Lei, Lu Wang

INTRODUCTION

Hepatic regeneration is a key step in the recovery process that occurs after various forms of liver injury, including partial hepatectomy (PHx)\(^1\). The exact mechanism of liver regeneration remains unclear. Several important cytokines and growth factors are involved in the regulation of hepatocyte proliferation\(^2\). Angiogenesis is a fundamental course required for wound healing and regeneration\(^3\). The liver microvasculature consists of large vessels such as portal and central venules and hepatic arterioles lined with continuous endothelial cells, and sinusoids lined with sinusoidal endothelial cells (SECs) expressing undiaphragmed fenestrations\(^4\). SECs are the second largest number of resident liver cells, and are vital in supplying nutrients and growth factors to proliferating hepatocytes by the formation of new blood vessels during liver regeneration\(^5\). Vascular endothelial growth factor (VEGF) is a potent angiogenic factor stimulating the proliferation and migration of endothelial cells, and is also known as a vascular permeability factor\(^6\). The effects of VEGF are mediated through at least two specific receptors, Flt-1 and Flk-1, expressed on the endothelial cell surface\(^7\). Recent studies have revealed that VEGF stimulates endothelial cell proliferation and plays an important role in the supply of blood to the newly replicating hepatocytes during regeneration\(^8\). Moreover, it is reported that exogenous VEGF can stimulate liver cell proliferation following PHx\(^9\).

Insulin is a hepatocyte growth modulator, which is essential in liver regeneration, and is transported into the liver during the process of liver regeneration\(^10\). There is evidence that treatment with insulin contributes to the normal regeneration of liver by decreasing hepatocellular injury and by increasing hepatocyte proliferative capacity\(^11\). Additionally, it is shown epidemiologically as an independent risk factor for the progression of intraocular neovascularization in diabetic retinopathy\(^13\). Yamagishi et al\(^13\), have demonstrated that insulin stimulates the growth and tube formation of human microvascular endothelial cells through autocrine VEGF in vitro. Nevertheless the effect of insulin on blood vessels during regeneration after PHx in rats is still unknown.
Based on these studies, we believe that insulin promotes SECs and subsequently liver regeneration by accelerating the expression of VEGF. In the present study, we investigated the expression of VEGF and its receptors, Flt-1 and Flk-1, as well as the expression of proliferating cell nuclear antigen (PCNA) during rat liver regeneration after 70% PHx.

MATERIALS AND METHODS

Animals

Adult male Sprague-Dawley rats aged 7-8 wk (180-200 g; from the Center of Animal Laboratory, Wuhan University) were used for all experiments. The rats were maintained in temperature-controlled rooms in a 12-h light/dark cycle with free access to food (standard laboratory chow) and water. Seventy percent PHx was performed by the standard two-thirds PHx under light anesthesia with ether. The animals were randomly divided into two groups: PHx group was injected with insulin (300 MU/kg) in saline via the tail vein of rats every 8 h after PHx for a week, while control group was given saline alone. Five rats in each group were used at each of the eight time points (0, 24, 48, 72, 96, 120, 144, and 168 h after surgery, with a total of 80 animals). All surgeries were performed between 08:30 and 11:30 a.m.

Immunohistochemical examination of VEGF

Anti-VEGF antibody (Santa Cruz Biotechnology Inc., Delaware, CA, USA) was used for the immunohistochemical staining of VEGF on formalin-fixed and paraffin-embedded liver tissue. Briefly, liver tissues excised at designated times after surgery were fixed in 40 g/L formaldehyde solution and sectioned by a microtome. The sections were incubated with 3% H2O2 in methanol for 30 min. After being washed in PBS, 3% normal goat serum (Amersham Life Science) in PBS was applied for 20 min at room temperature. Slides were subsequently exposed to prediluted peroxidase-conjugated IgG for 40 min at room temperature. The peroxidase activity in the remnant liver was expressed as the labeling index (LI). The LI was the ratio of the number of PCNA positive nuclei of either hepatocytes or SECs to the total number of cells counted. In each liver, the hepatocytes and SECs in 200 consecutive high power fields were counted. In this study, the spindle-shaped sinusoid-lining cells in the open sinusoids were regarded as SECs.

DNA extraction, cDNA synthesis and PCR amplification of different angiogenic factors

About 20 mg liver tissues was immediately flash frozen in liquid nitrogen and stored at -70 °C after excision for RNA isolation. Total RNA was extracted with the RNeasy® Mini kit (Qiagen Cat. No. 74104) according to the manufacturer’s protocol and eluted in 25 μL RNase-free water. Single-stranded cDNA was synthesized from 8 μL of RNA by the RevertAid™ first strand cDNA synthesis kit (MBI Cat. No. K1621) with random hexamer primers and 3 μL of the product was used for PCR.

The PCR primer pairs are listed in Table 1. Thirty cycles of DNA amplification using a Taq DNA polymerase (recombinant, MBI Cat. No. EP0404) was performed under the following conditions: denaturation at 94 °C for 1 min, annealing (β-actin, 52 °C for VEGF, 60 °C for Flt-1, 53 °C for Flk-1, 52 °C for 1 min, extension at 72 °C for 1 min. Negative controls (cDNA-free solutions) were included in each reaction. β-actin, a house-keeping gene equally expressed in most eukaryotic cells, was used as an external standard and amplified in parallel with different angiogenic factors in all PCR samples.

Table 1 Oligonucleotides used as primers in RT-PCR procedure

Primer	Nucleotide sequence	PCR product lengths (bp)
Rat VEGF	Sense: 5’-ACTGGACCTTGCTTTACTG-3’	256
Anti-sense	5’-ACGCACCTCGAGGCTCTCATC-3’	
GenBank NM031856		
Rat Flk-1	Sense: 5’-AGGAGAGGGACCTGAAACTGTCTT-3’	214
Anti-sense	5’-ATCCCTGGCCTGCAGCATAC-3’	
GenBank U93306		
Rat Flt-1	Sense: 5’-ATGTGGGCGCTCTGGAGAG-3’	337
Anti-sense	5’-TGACGATTCAGGAGGTGGAATGCTG-3’	
GenBank U29036		
Rat β-actin	Sense: 5’-TCCACACACACCACCATC-3’	366
Anti-sense	5’-GGGGTGTTGGGAGGTGTTTAGAG-3’	
GenBank NM031144		

Semi-quantification of PCR products

After PCR amplification from 50 μL reaction volume, 10 μL was electrophoresed on 1.5% agarose gel in 1X TBE buffer. The amplified bands were detected by ethidium bromide staining. The intensity of ethidium bromide fluorescence was measured by the Photo Documentation and Imaging System (Bio-1D, Vil, France). For quantification of the PCR products from all samples, the samples were evaluated by comparing the PCR product to β-actin.

Statistical analysis

The results were expressed as mean±SD. Statistical analysis was performed for the unpaired data using SPSS11.0 for Windows (SPSS Inc., Chicago, IL, USA). P<0.05 was considered statistically significant.
RESULTS

Hepatic VEGF, Flt-1 and Flk-1 mRNA expression

The changes in hepatic VEGF, Flt-1 and Flk-1 mRNA following surgery are shown in Figures 1 and 2. The expression of VEGF mRNA increased after 24 h of 70% PHx, with a peak from 48 to 72 h. Insulin significantly increased VEGF mRNA from 24 to 120 h after hepatectomy compared to controls ($P<0.01$; Figures 1C, D and 2A). Similarly, hepatic Flt-1 mRNA expression increased after hepatectomy. Insulin significantly increased Flt-1 mRNA from 24 to 96 h after hepatectomy compared to controls ($P<0.01$; Figures 1E, F and 2B). Insulin had no significant effect on Flk-1 when compared to controls (Figures 1G, H and 2C).

PCNA labeling index

The PCNA LI was lower than 5% in both hepatocytes and SECs before hepatectomy. However, liver cell proliferation was evident as early as 24 h postoperation. Insulin significantly promoted hepatocyte proliferation from 24 to 120 h compared to controls ($P<0.01$, Figure 3).

Immunohistochemical staining of VEGF protein in remnant liver

Before hepatectomy, there were very few VEGF-positive

![Figure 1](image1.png)

![Figure 2](image2.png)

Figure 1 RT-PCR results of VEGF, Flt-1, and Flk-1 mRNA expressions in liver of different groups. M: 100-bp DNA ladder (upper to lower: 1 000, 900, 800, 700, 600, 500, 400, 300, 200, and 100 bp); lane 0: 0 h; lane 1: 24 h; lane 2: 48 h; lane 3: 72 h; lane 4: 96 h; lane 5: 120 h; lane 6: 144 h; lane 7: 168 h.

Figure 2 VEGF (A), Flt-1 (B), and Flk-1 (C) mRNA expressions after 70% hepatectomy in rats by RT-PCR.
cells, but increased expression of VEGF was observed 24 h after surgery \((P<0.01, \text{Figure 4A})\). Insulin increased the expression of VEGF, with a peak at 72 h \((P<0.01, \text{Figure 4D})\).

DISCUSSION

Liver remodeling following PHx comprises a complex set of events including activation and secretion of numerous factors, cell proliferation, thus finally re-establishing liver architecture\(^{[15-19]}\). Angiogenesis is the integrated process of endothelial cell division, vascular sprouting, and migration from pre-existing cells\(^{[20]}\), indicating that SEC proliferation is strongly associated with hepatocyte proliferation during liver regeneration. Liver regeneration involves two processes: liver architecture remodeling and liver cell proliferation. In our study, SECs influenced the regenerative capacity of liver following PHx. Rebuilding the network of blood supply is necessary in liver regeneration. SECs play an important role in the formation of a complex network of blood vessels for remodeling liver architecture following liver resection. Additionally, SECs surround avascular clusters of hepatocytes, subsequently re-establish normal vascular architecture and directly supply nutrition and growth factors to liver cells\(^{[6]}\).

The role of VEGF in liver regeneration has been reported\(^{[20-25]}\). SECs have a unique response to growth factors\(^{[6-8,18]}\). Information on the association of angiogenic factors with liver regeneration is available\(^{[5,6,18]}\). VEGF isoform signal has several receptors, including Flt-1 and Flk-1\(^{[26-30]}\). These receptors can operate in a paracrine and cooperative manner with VEGF produced by hepatocytes in regulating SEC growth and subsequent vascularization of the liver\(^{[13]}\). The receptors are structurally similar to members of the platelet-derived growth factor receptor family and consist of an extracellular domain composed of seven immunoglobulin-like motifs, a transmembrane domain, a juxtamembrane domain, a tyrosine kinase that is split by a kinase insert region, and a C-terminal tail. It is uncertain what role each VEGF receptor actually plays in cell signaling during liver revascularization. In some studies, Flk-1/KDR and Flt-1 have been shown to act in unique capacities\(^{[8]}\). These studies have determined that Flk-1/KDR can activate both mitogenicity and motility pathways, whereas

\[\text{Figure 3 PCNA LI of hepatocytes (A) and SECS (B) after 70% hepatectomy in rats.}\]

\[\text{Figure 4 Expression of VEGF protein at 24 h in control group (A) and insulin group (B), at 72 h in control group (C), and insulin group (D).}\]
Flt-1 appears to mediate actin reorganization[8]. Moreover, Flt-1 is induced by hypoxia, which emerges during regeneration, whereas Flk-1/KDR is not[9]. Exogenous VEGF165 can stimulate liver cell proliferation following PHx and antibodies to VEGF significantly inhibit hepatocyte proliferation following PHx[5-9]. However, VEGF165 does not induce either a motogenic or a mitogenic response in isolated hepatocytes, though Flt-1 is phosphorylated[5,9], indicating that VEGF may stimulate liver cell proliferation by acting on surrounding SECs, which influence hepatocytes by improving nutrient availability or through vascular permeability.

The present study demonstrated that exogenous insulin could stimulate SECs following PHx in rats. Insulin can induce a host of effects on glucose transport and utilization, protein synthesis, and cell proliferation, etc.[10].

However, the effect of insulin on blood vessels during regeneration after PHx in rats is still unknown. It has been reported that vascular abnormalities and pathologies are commonly associated with diabetes[31,32] Jiang et al.[33], and demonstrated that insulin can stimulate several signaling cascades in endothelial cells and vascular smooth muscle cells by phosphorylating both insulin receptor substrate-1 and -2. The vascular-specific action of insulin may be attributed to the growth factors, especially VEGF, and cytokines of which the expression is regulated by insulin. The exact mechanism underlying insulin-induced VEGF mRNA upregulation in microvascular EC is currently unknown. It was reported that insulin-induced VEGF expression is mediated through the activation of phosphatidylinositol[PI(3) kinase/Akt being downstream to the insulin receptor][5,14. It was reported that the activation of PI 3-kinase/Akt pathway can upregulate the expression of hypoxia-inducible factor-1α, a principal factor that causes angiogenesis[14]. Insulin may upregulate the VEGF mRNA through a nuclear factor-κB-mediated pathway, and mAb against VEGF can completely neutralize the proliferation and tube formation of endothelial cells induced by insulin[6,13,18].

In conclusion, insulin induces expression of VEGF and its receptor after PHx, and promotes liver regeneration besides the traditional metabolic action on hepatocytes.

ACKNOWLEDGMENTS

The authors thank Ms. Ou, Mr. Zhang, Mr. Gao, and Mr. Yu for their technical assistance.

REFERENCES

1 Michalopoulos GK, DeFrances MC. Liver regeneration. Science 1997; 276: 60-66
2 Kim I, Kim HG, Kim H, Kim HH, Park SK, Umh CS, Lee ZH, Koh CY. Hepatic expression, synthesis and secretion of a novel fibrinogen/angiopoietin-related protein that prevents endothelial-cell apoptosis. Biochem J 2000; 346(Pt 3): 603-610
3 Mirpuri E, Garcia-Trevijano ER, Castilla-Cortazar I, Berasain C, Quiróa J, Rodríguez-Ortigosa C, Mata JM, Prieto J, Avila MA. Altered liver gene expression in CCL4-cirrhotic rats is partially normalized by insulin-like growth factor-1. Int J Biochem Cell Biol 2002; 34: 242-252
4 Rastegar M, Lemaire FP, Rousseau GG. Control of gene expression by growth hormone in liver: key role of a network transcription. Mol Cell Endocrinol 2000; 164: 1-4
5 Kraizer Y, Mawas N, Seagal J, Paizi M, Assy N, Spaire G. Vascular endothelial growth factor and angiopoietin in liver regeneration. Biochem Biophys Res Commun 2001; 287: 209-215
6 Ross MA, Sander CM, Kloeck TB, Watkins SC, Stolz DB. Spatiotemporal expression of angiogenesis growth factor receptors during the revascularization of regenerating rat liver. Hepatology 2001; 34: 1135-1148
7 Mustonen T, Alitalo K. Endothelial receptor tyrosine kinases involved in angiogenesis. J Cell Biol 1995; 129: 895-898
8 Neufeld G, Cohen T, Gengrinovich S, Pollorak Z. Vascular endothelial growth factor (VEGF) and its receptors. FASEB J 1999; 13: 9-22
9 Stouffer RL, Martinez-Chequer JC, Molskness TA, Xu F, Hazzard TM. Regulation and action of angiogenic factors in the primate ovary. Arch Med Res 2001; 32: 567-575
10 Sato T, El-Assal ON, Ono T, Yamano A, Dhar DK, Nagasue N. Sinusoidal endothelial cell proliferation and expression of angiopoietin/Tie family in regenerating rat liver. J Hepatol 2001; 34: 690-698
11 Jiang ZY, He Z, King BL, Kuroki T, Opland DM, Sузума K, Suzumia I, Ueki K, Kulkarni RN, Kahn CR, King GL. Characterization of multiple signaling pathways of insulin in the regulation of vascular endothelial growth factor expression in vascular cells and angiogenesis. J Biol Chem 2003; 278: 31964-31971
12 Kleink D, Schubert T, Horch R, Jausch K, Jeschke MG. Insulin treatment improves hepatic morphology and function through modulation of hepatic signals after severe trauma. Ann Surg 2004; 240: 340-349
13 Yamagishi S, Kawakami T, Fujimori H, Yonekura H, Tanaka N, Yamamoto Y, Urayama H, Watanabe Y, Yamamoto H. Insulin stimulates the growth and tube formation of human microvascular endothelial cells through autocrine vascular endothelial growth factor. Microvasc Res 1999; 57: 329-339
14 Sasso FC, Carbonara O, Persico E, D’Ambrosio R, Coppola L, Nasit R, Campana B, Moschella S, Torella R, Cozzolino D. Increased vascular endothelial growth factor mRNA expression in the heart of streptozotocin-induced diabetic rats. Metabolism 2003; 52: 675-678
15 Mitchell C, Nivison M, Jackson LF, Fox R, Lee DC, Campbell JS, Fausto N. HB-EGF links hepatocyte priming with cell cycle progression during liver regeneration. J Biol Chem 2005; 280: 2562-2568
16 White P, Brestelli JE, Kaestner KH, Greenbaum LE. Identification of vascular endothelial growth factor receptors on hepatic cells. J Biol Chem 2005; 280: 3715-3722.
17 Tracy TF Jr, Fox ES. Molecular and cellular control points in pediatric liver injury and repair. Semin Pediatr Surg 1996; 5: 175-181
18 LeCouter J, Moritz DR, Li B, Phillips GL, Liang XH, Gerber HP, Hillan KJ, Ferrara N. Angiogenesis-independent endothelial protection of liver: role of VEGFR-I. Science 2003; 299: 890-893
19 Leu JJ, Crissey MA, Craig LE, Taub R. Impaired hepatocyte DNA synthetic response posthepatectomy in insulin-like growth factor binding protein 1-deficient mice with defects in C/EBPβ and mitogen-activated protein kinase/extracellular signal-regulated kinase regulation. Mol Cell Biol 2003; 23: 1251-1259
20 Grosskreutz CL, Anand-Apte B, Duplaa C, Quinn TP, Terman BI, Zetter B, D’Amore PA. Vascular endothelial growth factor-induced migration of vascular smooth muscle cells in vitro. Microvasc Res 1999; 58: 128-136
21 Unsoeld AS, Junker B, Mazitschek R, Martin G, Hansen LL, Giannis A, Agostini HT. Local injection of receptor tyrosine kinase-induced migration of vascular smooth muscle cells in vitro. Microvasc Res 1999; 58: 128-136
22 Manley PW, Bold G, Bruggen J, Fendrich G, Furet P, Mestan J, Schnell C, Stolz B, Meyer T, Meyhack B, Stark W, Strauss A, Wood J. Advances in the structural biology, design and clinical development of VEGF receptor kinase inhibitors for the treatment of angiogenesis. Biochem Biophys Acta 2004; 1697: 17-27
23 Sigrist S, Mecine-Neuville A, Mandles K, Calenda V, Legay
G, Bellocq JP, Pinget M, Kessler L. Induction of angiogenesis in omentum with vascular endothelial growth factor: influence on the viability of encapsulated rat pancreatic islets during transplantation. *J Vasc Res* 2003; 40: 359-367

Carmeliet P, Storkebaum E. Vascular and neuronal effects of VEGF in the nervous system: implications for neurological disorders. *Semin Cell Dev Biol* 2002; 13: 39-53

Jiang ZY, Lin YW, Clement A, Feener EP, Hein KD, Igarashi M, Yamauchi T, White MF, King GL. Characterization of selective resistance to insulin signaling in the vasculature of obese Zucker (fa/fa) rats. *J Clin Invest* 1999; 104: 447-457

Nakagawa M, Kameda T, Arakawa T, Morita S, Sato T, Yomada T, Hanada K, Kumegawa M, Hakeda Y. Vascular endothelial growth factor (VEGF) directly enhances osteoclastic bone resorption and survival of mature osteoclasts. *FEBS Lett* 2000; 473: 161-164

Tarnawski AS, Chai J, Pai R, Chiou SK. Rebamipide activates genes encoding angiogenic growth factors and Cox2 and stimulates angiogenesis: a key to its ulcer healing action? *Dig Dis Sci* 2004; 49: 202-209

Kranenburg O, Gebbink MF, Voest EE. Stimulation of angiogenesis by Ras proteins. *Biochim Biophys Acta* 2004; 1654: 23-37

Assy N, Spira G, Paizi M, Shenkar L, Kraizer Y, Cohen T, Neufeld G, Dabbah B, Enat R, Baruc Y. Effect of vascular endothelial growth factor on hepatic regenerative activity following partial hepatectomy in rats. *J Hepatol* 1999; 30: 911-915

Shimizu H, Miyazaki M, Wakabayashi Y, Mitsuhashi N, Kato A, Ito H, Nakagawa K, Yoshidome H, Kataoka M, Nakajima N. Vascular endothelial growth factor secreted by replicating hepatocytes induces sinusoidal endothelial cell proliferation during regeneration after partial hepatectomy in rats. *J Hepatol* 2001; 34: 683-689

Carrillo MC, Favre C, Monti JA, Alvarez ML, Carnovale CE. Insulin hyperresponsiveness in partially hepatectomized diabetic rats. *Life Sci* 2001; 68: 1417-1426

Chiarelli F, Santilli F, Mohn A. Role of growth factors in the development of diabetic complications. *Horm Res* 2000; 53: 53-67

Stiehl DP, Jelkmann W, Wenger RH, Hellwig-Burgel T. Normoxic induction of the hypoxia-inducible factor 1alpha by insulin and interleukin-1beta involves the phosphatidylinositol 3-kinase pathway. *FEBS Lett* 2002; 512: 157-162

Poulaki V, Qin W, Joussen AM, Hurlbut P, Wiegard SJ, Rudge J, Yancopoulos GD, Adams AP. Acute intensive insulin therapy exacerbates diabetic blood-retinal barrier breakdown via hypoxia-inducible factor-1alpha and VEGF. *J Clin Invest* 2002; 109: 805-815

