Supplemental Figure 1

Contour maps of sampling locations

Table of Contents

Bladen County 1..2
Bladen County 2-3...3
New Hanover 1-4..4
Robeson County 1-3...5
Wayne County 1-2..6
Bladen County (site 1). See Supplemental Table 1 for site locations and sampling times.
Bladen County (sites 2-3). See Supplemental Table 1 for site locations and sampling times.
New Hanover (sites 1-4). See Supplemental Table 1 for site locations and sampling times.
Robeson County (sites 1-3). See Supplemental Table 1 for site locations and sampling times.
Wayne County (sites 1-2). See Supplemental Table 1 for site locations and sampling times.
Supplemental Figure 2
Cook’s Outlier Distance Plots: Metal~Aluminum

Table of Contents
Antimony.. 1
Arsenic ... 3
Barium... 5
Beryllium.. 7
Cadmium.. 9
Chromium .. 11
Cobalt ... 13
Copper .. 15
Iron.. 17
Lead... 19
Lithium.. 21
Manganese.. 23
Nickel ... 25
Selenium... 27
Silver... 29
Strontium.. 31
Zinc.. 33
Magnesium.. 35
Tin ... 37
Vanadium.. 39
Mercury.. 41
Cooks Outlier Plot for Beryllium~Aluminum

Supplemental Figure 2: Page 8
Plot for Chromium~Aluminum

Supplemental Figure 2: Page 13
Plot for Cobalt~Aluminum

Supplemental Figure 2: Page 15
Cooks Outlier Plot for Lead~Aluminum

Supplemental Figure 2: Page 20
Plot for Silver~Aluminum
Cooks Outlier Plot for Mercury~Aluminum
Supplemental Figure 2: Page 43

Plot for Mercury~Aluminum

- Outlier

Mercury vs. Aluminum

- Green circles (0)
- Orange dots (1)

Supplemental Figure 2: Page 43
Supplemental Figure 3
Cook’s Outlier Distance Plots: Metal~Iron

Table of Contents

- Aluminum .. 1
- Antimony .. 3
- Arsenic ... 5
- Barium .. 7
- Beryllium .. 9
- Cadmium .. 11
- Chromium .. 13
- Cobalt ... 15
- Copper .. 17
- Lead .. 19
- Lithium ... 21
- Manganese ... 23
- Nickel ... 25
- Selenium ... 27
- Silver .. 29
- Strontium .. 31
- Zinc .. 33
- Magnesium ... 35
- Tin .. 37
- Vanadium .. 39
- Mercury .. 41
Supplemental Figure 3: Plot for Aluminum~Iron

Aluminum vs. Iron scatter plot with a linear trend line and shaded confidence interval. The outlier is indicated near the top right corner of the plot.
Cooks Outlier Plot for Arsenic~Iron

Supplemental Figure 3: Page 6
Supplemental Figure 3: Plot for Arsenic~Iron

- **Iron** values: 5000, 7500, 10000, 12500
- **Arsenic** values: 0, 1, NA

Outlier is indicated by the number 8.
Cooks Outlier Plot for Beryllium~Iron

Supplemental Figure 3: Page 10
Cooks Outlier Plot for Cobalt~Iron

Supplemental Figure 3: Page 16
Supplemental Figure 3: Plot for Cobalt~Iron

- Cobalt on the y-axis
- Iron on the x-axis
- Data points indicated with different symbols and colors
- Outlier points marked
- Linear trend line with shaded confidence interval

Legend:
- 0
- 1
- NA

Data points at:
- Iron 5000, Cobalt 0.0
- Iron 7500, Cobalt 1.5
Cooks Outlier Plot for Copper-Iron

Supplemental Figure 3: Page 18
Cooks Outlier Plot for Selenium~Iron

Supplemental Figure 3: Page 28
Cooks Outlier Plot for Zinc~Iron

Supplemental Figure 3: Page 34
Cooks Outlier Plot for Tin~Iron

Supplemental Figure 3: Page 38
Supplemental Figure 3: Page 42

Cooks Outlier Plot for Mercury~Iron
Supplemental Tables
Environmental impacts of Hurricane Florence flooding in Eastern North Carolina: Temporal analysis of contaminant distribution and potential human health risks

Noor A. Aly,1,2 Gaston Casillas,1,3 Yu-Syuan Luo,1,2 Thomas J. McDonald,1,3 Terry L. Wade,1,4,5 Weihsueh A. Chiu,1,2 Ivan Rusyn1,2,*

1Interdisciplinary Faculty of Toxicology, 2Department of Veterinary Integrative Biosciences, 3Department of Environmental and Occupational Health, 4Geochemical and Environmental Research Group, and 5Department of Oceanography, Texas A&M University, College Station, TX, USA

*Corresponding author: Ivan Rusyn, Texas A&M University, 4458 TAMU, College Station, TX 77843-4458, USA. Telephone: (979) 458-9866; E-mail addresses:

Table of Content:
ST1 Overview of sampling locations, dates and analysis type
ST2 Sample Locations and Dates
ST3 Raw Data for PAH
ST4 Raw data for pesticides, industrial chemicals and PCB
ST5 Raw data for metals.
ST6 QC Data for PAH and Organics
ST7 QC Data for Metals
ST8 Cook's Distance results for each sample and metal.
ST9 Pyrogenic Index (PI) and PAH Source Apportionment Ratios
ST10 Non-cancer and cancer risk values for organic compounds
ST11 PAH BaP TEF, non-cancer and cancer risk values for organic compounds
ST12 Enrichment Factors for metals
ST13 Metals Normalized to Al
ST14 Coal Ash, Superfund and Toxic Release Inventory Locations
Supplemental Table 1. Overview of sampling locations, dates and analysis type.

County (North Carolina, USA)	Sampling Dates	Organic compound samples	Metal samples	
Bladen [BL]	Sep 19 2018	2	2	
	Jan 29 2019	2	2	
	May 9 2019	2	2	
New Hanover [NH]	Sep 22 2018	4	4	
	Jan 30 2019	2	2	
	May 10 2019	2	2	
Robeson [RO]	Sep 21 2018	3	3	
	Jan 29 2019	3	3	
	May 9 2019	3	3	
Wayne [WA]	Sep 23 2018	2	1	
	Jan 30 2019	2	2	
	May 10 2019	1	1	
Total Samples		**28**	**27**	
Sample Location Name	Sampling Date	Time (EST/US)	Sample ID	Sample Type
----------------------	---------------------	---------------	-------------	-------------
Bladen County 1	September 19, 2018	19:26	BL1 [Sep-18]	Soil
Bladen County 1	September 19, 2018	19:25	BL1 [Sep-18]	Soil
Bladen County 2	September 19, 2018	17:19	BL2 [Sep-18]	Soil
Bladen County 2	January 29, 2019	15:41	BL2 [Jan-19]	Soil
Bladen County 2	May 9, 2019	16:35	BL2 [May-19]	Soil
Bladen County 2	September 19, 2018	17:19	BL2 [Sep-18]	Soil
Bladen County 2	January 29, 2019	15:41	BL2 [Jan-19]	Soil
Bladen County 3	January 29, 2019	15:41	BL3 [Jan-19]	Soil
Bladen County 3	May 9, 2019	16:35	BL3 [May-19]	Soil
Bladen County 3	January 29, 2019	15:41	BL3 [Jan-19]	Soil
Bladen County 3	May 9, 2019	16:35	BL3 [May-19]	Soil
Bladen County 3	January 29, 2019	15:41	BL3 [Jan-19]	Soil
New Hanover 1	September 22, 2018	15:07	NH1 [Sep-18]	Soil
New Hanover 1	January 30, 2019	11:45	NH1 [Jan-19]	Soil
New Hanover 1	May 10, 2019	12:40	NH1 [May-19]	Soil
New Hanover 1	September 22, 2018	15:06	NH1 [Sep-18]	Soil
New Hanover 1	January 30, 2019	11:45	NH1 [Jan-19]	Soil
New Hanover 1	May 10, 2019	12:40	NH1 [May-19]	Soil
New Hanover 2	September 22, 2018	15:31	NH2 [Sep-18]	Soil
New Hanover 2	September 22, 2018	15:30	NH2 [Sep-18]	Soil
New Hanover 3	September 22, 2018	15:50	NH3 [Sep-18]	Soil
New Hanover 3	September 22, 2018	15:49	NH3 [Sep-18]	Soil
New Hanover 4	September 22, 2018	16:32	NH4 [Sep-18]	Soil
New Hanover 4	January 30, 2019	11:20	NH4 [Jan-19]	Soil
New Hanover 4	May 10, 2019	12:10	NH4 [May-19]	Soil
New Hanover 4	September 22, 2018	16:31	NH4 [Sep-18]	Soil
New Hanover 4	January 30, 2019	11:20	NH4 [Jan-19]	Soil
Robeson County 1	September 21, 2018	12:27	RO1 [Sep-18]	Soil
Robeson County 1	January 29, 2019	12:18	RO1 [Jan-19]	Soil
Robeson County 1	May 9, 2019	14:20	RO1 [May-19]	Soil
Robeson County 1	September 21, 2018	12:25	RO1 [Sep-18]	Soil
Robeson County 1	January 29, 2019	12:18	RO1 [Jan-19]	Soil
Robeson County 1	May 9, 2019	14:20	RO1 [May-19]	Soil
Robeson County 2	September 21, 2018	12:51	RO2 [Sep-18]	Soil
Robeson County 2	January 29, 2019	12:18	RO2 [Jan-19]	Soil
Robeson County 2	May 9, 2019	14:20	RO2 [May-19]	Soil
Robeson County 2	September 21, 2018	12:49	RO2 [Sep-18]	Soil
Robeson County 2	January 29, 2019	12:18	RO2 [Jan-19]	Soil
Robeson County 2	May 9, 2019	14:20	RO2 [May-19]	Soil
Robeson County 3	September 21, 2018	13:04	RO3 [Sep-18]	Soil
Robeson County 3	January 29, 2019	12:20	RO3 [Jan-19]	Soil
Robeson County 3	May 9, 2019	14:20	RO3 [May-19]	Soil
Robeson County 3	September 21, 2018	13:02	RO3 [Sep-18]	Soil
Robeson County 3	January 29, 2019	12:20	RO3 [Jan-19]	Soil
Robeson County 3	May 9, 2019	14:20	RO3 [May-19]	Soil
Wayne County 1	September 23, 2018	11:00	WA1 [Sep-18]	Soil
Wayne County 1	January 30, 2019	14:10	WA1 [Jan-19]	Soil
Wayne County 1	May 10, 2019	14:57 WA1 [May-19] Soil		
-----------------	----------------	------------------------		
Wayne County 1	September 23, 2018	11:01 WA1 [Sep-18] Soil		
Wayne County 1	January 30, 2019	14:10 WA1 [Jan-19] Soil		
Wayne County 1	May 10, 2019	14:57 WA1 [May-19] Soil		
Wayne County 2	September 23, 2018	11:22 WA2 [Sep-18] Soil		
Wayne County 2	January 30, 2019	14:30 WA2 [Jan-19] Soil		
Wayne County 2	January 30, 2019	14:30 WA2 [Jan-19] Soil		
Analyte	Latitude	Longitude		
---------------------	-----------	------------		
Organic compounds	34.745589	-78.802357		
Metals	34.745589	-78.802357		
Metals	34.832628	-78.825824		
Organic compounds	34.83271	-78.82598		
Organic compounds	34.83271	-78.82598		
Metals	34.83271	-78.82598		
Metals	34.83271	-78.82598		
Organic compounds	34.2167342	-77.9462469		
Organic compounds	34.216403	-77.946445		
Organic compounds	34.216403	-77.946445		
Metals	34.2167342	-77.9462469		
Metals	34.216403	-77.946445		
Metals	34.216403	-77.946445		
Organic compounds	34.2050547	-77.951617		
Metals	34.2050547	-77.951617		
Organic compounds	34.1906059	-77.949146		
Metals	34.1906059	-77.949146		
Organic compounds	34.1722507	-77.9486813		
Organic compounds	34.1722507	-77.9486813		
Organic compounds	34.1722507	-77.9486813		
Metals	34.1722507	-77.9486813		
Metals	34.1722507	-77.9486813		
Organic compounds	34.7201805	-79.2123964		
Organic compounds	34.7201805	-79.2123964		
Organic compounds	34.7201805	-79.2123964		
Metals	34.7201805	-79.2123964		
Metals	34.7201805	-79.2123964		
Organic compounds	34.723014	-79.213111		
Organic compounds	34.723014	-79.213111		
Organic compounds	34.723014	-79.213111		
Metals	34.723014	-79.213111		
Metals	34.723014	-79.213111		
Organic compounds	34.723223	-79.211834		
Organic compounds	34.723223	-79.211834		
Organic compounds	34.723223	-79.211834		
Metals	34.723223	-79.211834		
Metals	34.723223	-79.211834		
Organic compounds	35.3604179	-78.078177		
Organic compounds	35.3604179	-78.078177		
Category	Value1	Value2		
---------------------	--------------	--------------		
Organic compounds	35.3604179	-78.078177		
Metals	35.3604179	-78.078177		
Metals	35.3604179	-78.078177		
Organic compounds	35.3694094	-78.0583703		
Organic compounds	35.3694094	-78.0583703		
Metals	35.3694094	-78.0583703		
Supplemental Table 3: Raw data for PAH.

Sample Location ID	Date	Time	Dry Weight (g)	Analysis Date	Sample Type	Analyte	Latitude	Longitude
Bladen County 1	9/19/2018	19:26	15	3/22/2019	Soil	PAH	34.74559	-78.8024
Bladen County 2	9/19/2018	17:19	15	3/22/2019	Soil	PAH	34.83263	-78.8258
Robeson County 1	9/21/2018	12:27	15	3/22/2019	Soil	PAH	34.72018	-79.2124
Robeson County 2	9/21/2018	12:51	15	3/22/2019	Soil	PAH	34.72301	-79.2131
New Hanover 1	9/22/2018	15:07	15	3/22/2019	Soil	PAH	34.20505	-77.9516
New Hanover 2	9/22/2018	15:31	15	3/22/2019	Soil	PAH	34.19061	-77.9491
New Hanover 3	9/22/2018	15:50	15	3/22/2019	Soil	PAH	34.17225	-77.9487
New Hanover 4	9/22/2018	16:32	15	3/22/2019	Soil	PAH	34.17225	-77.9487
Wayne County 1	9/23/2018	11:00	15	3/22/2019	Soil	PAH	35.36042	-78.0782
Wayne County 2	9/23/2018	11:22	15	3/22/2019	Soil	PAH	35.36941	-78.0584
Robeson County 1	1/29/2019	12:18	15	3/22/2019	Soil	PAH	34.72301	-79.2124
Robeson County 2	1/29/2019	12:20	15	3/22/2019	Soil	PAH	34.72322	-79.2118
Bladen County 1	1/29/2019	15:41	15	3/22/2019	Soil	PAH	34.83263	-78.8258
Bladen County 2	1/29/2019	15:41	15	3/22/2019	Soil	PAH	34.83263	-78.8258
New Hanover 1	1/30/2019	11:20	15	3/22/2019	Soil	PAH	34.17225	-77.9487
New Hanover 2	1/30/2019	11:45	15	3/22/2019	Soil	PAH	34.2164	-77.9464
Wayne County 1	1/30/2019	14:10	15	3/22/2019	Soil	PAH	35.36042	-78.0782
Wayne County 2	1/30/2019	14:30	15	3/22/2019	Soil	PAH	35.36941	-78.0584
Robeson County 1	5/9/2019	14:20	10	7/31/2019	Soil	PAH	34.72018	-79.2124
Robeson County 2	5/9/2019	14:20	10	7/31/2019	Soil	PAH	34.72301	-79.2131
Bladen County 1	5/9/2019	14:20	10	7/31/2019	Soil	PAH	34.72322	-79.2118
Bladen County 2	5/9/2019	16:35	10	7/31/2019	Soil	PAH	34.83263	-78.8258
New Hanover 1	5/10/2019	12:10	10	7/31/2019	Soil	PAH	34.17225	-77.9487
New Hanover 2	5/10/2019	12:40	10	7/31/2019	Soil	PAH	34.2164	-77.9464
Wayne County 1	5/10/2019	14:57	10	7/31/2019	Soil	PAH	35.36042	-78.0782

* Values are expressed in unit of ng/g; LLOQ, lower limit of quantification, defined by the lowest quantifiable point in calibration curve.

LLOQ (ng/g)
- Sep-18: 34.17225
- Jan-19: 34.72301
- May-19: 34.72322

LLOQ (ng/g): 34.17225, 34.72301, 34.72322

- Values are expressed in unit of ng/g.
- LLOQ, lower limit of quantification, defined by the lowest quantifiable point in calibration curve.
| C10H18 | C10H18 | C10H18 | C10H18 | C10H8 | C10H8 | C10H8 | C10H8 | C10H8 |
|--------|--------|--------|--------|--------|--------|--------|--------|--------|
| 91-17-8 | 91-17-8 | 91-17-8 | 91-17-8 | 91-20-3 | 91-20-3 | 91-20-3 | 91-20-3 | 91-20-3 |

cis/trans DC1-Decalin C2-Decalin C3-Decalin C4-Decalin Naphthalene C1-Naphthal C2-Naphthal C3-Naphthal

U	U	U	U	J	U	U	U	
U	U	U	U	U	U	U	U	
U	U	U	U	1.65	1.204	1.458	3.037	
U	U	U	U	U	U	U	U	
U	U	U	U	U	J	J	U	U
U	U	U	U	17.391	J	29.122	53.401	
U	U	U	U	9.339	J	14.466	24.651	
U	U	U	U	7.554	12.876	17.398	15.754	
U	U	U	U	0.598	J	U	U	
U	U	U	U	13.655	18.408	36.056	48.467	
U	U	U	U	U	J	U	U	U
U	U	U	U	1.134	0.799	1.488	J	
U	U	U	U	J	J	U	U	
U	U	U	U	0.433	J	U	U	
U	U	U	U	U	U	U	U	U
U	U	U	U	U	U	U	U	U
U	U	U	U	26.896	J	49.583	U	
U	U	U	U	2.14	2.614	6.198	7.807	
U	U	U	U	U	J	J	U	U

NA | NA | NA | NA | NA | 109.52 | 8.31 | 3.25 | 1.16 |
NA | NA | NA | NA | NA | 95.13 | 2.03 | 0.93 | J |
NA | NA | NA | NA | NA | 100.54 | 1.62 | 0.84 | J |
NA | NA | NA | NA | NA | 55.39 | 1.2 | 0.68 | J |
NA | NA | NA | NA | NA | 131.8 | 4.07 | 2.98 | 1.29 |
NA | NA | NA | NA | NA | 40.52 | 4.01 | 2.6 | 0.9 |
NA | NA | NA | NA | NA | 115.13 | 78.07 | 45.82 | 35.45 |
NA | NA | NA | NA | NA | 44.05 | 8.57 | 23.32 | 28.69 |

| 0.132 | 0.263 | 0.263 | 0.263 | 0.263 | 0.342 | 1.03 | 0.684 | 0.684 |
| 0.132 | 0.263 | 0.263 | 0.263 | 0.263 | 0.342 | 1.03 | 0.684 | 0.684 |

1 1 1 1 1 1 1 1 1

Values are expressed in unit of ng/g; LLOQ, lower limit of quantification, defined by the lowest quantifiable point in calibration curve; U, undetected, J, below limits of quantification, NA, not available.
C10H8	C8H6S	C8H6S	C8H6S	C8H6S	C12H10	C12H8	C12H8
91-20-3	95-15-8	95-15-8	95-15-8	95-15-8	92-52-4	208-96-8	208-96-8

C4-Naphth BenzothiophenC1-BenzothiC2-BenzothiC3-BenzothiC4-Benzothi Biphenyl Acenaphth Acenaphth

| C4-Naphth BenzothiophenC1-BenzothiC2-BenzothiC3-BenzothiC4-Benzothi Biphenyl Acenaphth Acenaphth |
|---|---|---|---|---|---|---|
| U | U | U | U | U | U | U | U | 1.592 | 1.696 |
| U | U | U | U | U | U | U | U | 0.853 | 2.284 | 0.293 |
| U | U | U | U | U | U | J | 0.436 | U |
| U | U | U | U | U | U | J | 0.411 | U |
| U | U | U | U | U | U | J | 29.047 | 18.16 |
| U | U | U | U | U | U | J | 41.649 | 3.971 |
| 10.329 | 0.529 | U | U | U | U | U | 2.233 | 13.903 | 2.161 |
| U | U | U | U | U | U | J | 1.689 | 0.975 |
| 41.227 | U | U | U | U | U | 11.514 | 86.283 | 3.998 |
| U | U | U | U | U | U | U | 0.24 | U |
| J | J | J | J | J | 0.394 | 1.689 | 0.331 |
| U | U | U | U | U | U | J | 0.205 | U |
| U | U | U | U | U | U | J | 0.507 | 2.496 |
| U | U | U | U | U | U | U | U | U |
| U | U | U | U | U | U | 0.176 | U |
| U | U | U | U | U | U | 3.869 | 2.143 |
| U | U | U | U | U | U | 72.731 | 14.865 |
| U | U | U | U | U | U | 1.093 | 6.232 | 0.372 |
| U | 18.215 | U | U | U | U | U | U | 0.54 | U |
| J | NA | NA | NA | NA | NA | 0.98 | 0.54 | U |
| U | NA | NA | NA | NA | NA | 0.59 | 1.52 | U |
| J | NA | NA | NA | NA | NA | 0.36 | 0.52 | U |
| U | NA | NA | NA | NA | NA | J | 0.35 | U |
| U | NA | NA | NA | NA | NA | 0.91 | 1.02 | J |
| U | NA | NA | NA | NA | NA | 1.55 | 8.53 | 1.45 |
| 6.83 | NA | NA | NA | NA | NA | 14.66 | 59.74 | 21.37 |
| 11.3 | NA | NA | NA | NA | NA | 0.97 | 2.94 | 0.61 |
| 0.684 | 0.09 | 0.18 | 0.18 | 0.18 | 0.18 | 0.294 | 0.103 | 0.041 |
| 0.684 | 0.09 | 0.18 | 0.18 | 0.18 | 0.18 | 0.294 | 0.103 | 0.041 |
| 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
Dibenzo(fur	Fluorene	C1-Fluorenes	C2-Fluorenes	C3-Fluorenes	Carbazole	Phenanthrene	Anthracene	C1-Phenanthrenes/Anthracenes													
J	2.129	U	U	U	9.088	6.135	69.017	19.815													
U	0.709	0.326	U	U	1.718	3.027	10.298	6.753													
	0.0207	0.345	U	U	0.644	1.383	5.679	3.919													
	15.235	19.334	U	U	57.718	84.32	424.486	157.847													
	5.449	3.432	U	U	11.918	55.903	77.769	63.431													
	5.078	1.924	1.334	7.503	11.417	9.339	26.187	58.567													
	0.45	0.707	U	U	2.117	2.974	11.221	5.258													
	6.945	3.71	U	U	1.877	139.09	54.893	65.297													
U	0.395	0.329	U	U	0.275	0.365	2.001	0.78													
	0.659	3.199	1.836	1.945	7.923	13.43	58.606	21.486													
U	1.396	2.113	U	U	9.103	7.89	57.482	16.15													
	16.398	13.404	U	U	53.343	135.746	320.534	132.232													
	1.269	1.113	1.698	4.93	0.373	11.04	15.709	10.802													
U	NA	U	U	U	1.203	3.683	3.028														
NA	U	U	U	U	NA	4.37	1	3.99													
NA	U	U	U	U	NA	2.95	1.71	3.05													
NA	U	J	J	U	NA	2.23	0.85	2.2													
NA	U	U	U	U	NA	1.16	0.61	1.19													
NA	U	J	J	1.54 J	NA	4.44	1.53	4.1													
NA	U	U	U	U	NA	56.65	17.83	25.84													
NA	16.17	U	U	U	NA	476.37	188.69	194.34													
	NA	3.01	12.44	20.65	21.25	NA	128.99	9.68													
	0.204	0.183	0.367	0.367	0.367	0.15	0.208	0.115													
	0.204	0.183	0.367	0.367	0.367	0.15	0.208	0.115													
	1	1	1	1	1	1	1	1													
	C14H10	C14H10	C14H10	C12H8S	C12H8S	C12H8S	C12H8S	C12H8S	C16H10	85-01-8	85-01-8	85-01-8	132-65-0	132-65-0	132-65-0	132-65-0	206-44-0	C2-Phenan	C3-Phenan	C4-Phenan	DibenzothiopheneC1-DibenzothiopheneC2-DibenzothiopheneC3-DibenzothiopheneC4-DibenzothiopheneFluoranthene
----	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	----------	----------	----------	----------	----------	----------	----------	----------	----------
	18.415	15.84	14.774	2.473	1.722	3.472	U	U	U	258.249											
	4.945	6.105	6.401	U	U	U	U	0.574													
	21.172	27.912	61.934	0.487	0.64	2.012	U	U	31.452												
	4.507	6.43	11.719	U	U	U	U	0.906													
	8.306	9.401	10.93	0.231	0.344	1.129	U	U	23.387												
	116.745	69.143	46.245	17.563	11.517	11.777	U	U	1250.582												
	60.824	38.508	25.591	3.701	4.974	7.944	U	U	373.163												
	41.933	25.682	11.836	3.131	3.531	6.335	U	3.304	135.92												
	9.709	12.8	10.176	0.503	0.632	2.166	U	3.513	37.214												
	74.483	57.561	41.068	2.744	3.89	8.489	U	U	252.402												
U	U	U	U	U	U	U	U	6.957													
U	11.233	U	U	0.316	0.411	1.316	U	U	24.573												
U	11.099	13.971	19.293	U	U	1.596	U	U	1.835												
U	17.411	11.444	11.673	2.16	1.26	1.631	U	U	153.735												
U	3.769	5.65	3.83	U	U	0.807	U	U	0.371												
U	12.613	12.927	24.248	U	U	1.172	U	U	1.057												
U	19.722	17.771	15.534	2.437	1.359	3.006	U	U	177.302												
U	120.229	80.718	56.339	13.602	9.97	14.808	U	27.328	1003.686												
U	12.594	20.195	34.199	0.639	0.738	1.757	U	U	56.02												
U	11.118	17.139	13.886	U	U	U	U	U	18.308												
U	1.1 J	2.45	U	U	NA	NA	NA	10.7													
U	3.82	3.02	U	U	U	NA	NA	10.31													
U	2.04	1.65	U	U	U	NA	NA	7.02													
U	1.31 J	U	U	U	U	NA	NA	4.04													
U	6.58	2.37	1.71 J	U	J	NA	NA	9.21													
U	15.45 U	3.84	2.08	U	NA	NA	NA	310.62													
U	122.92	55.75	23.04	U	U	NA	NA	1487.51													
U	217.07	72.79	15.48	37.66	159.54	226.24	NA	45.34													
	0.285	0.285	0.285	0.116	0.064	0.232	0.232	0.232	0.333												
	0.285	0.285	0.285	0.116	0.064	0.232	0.232	0.232	0.333												
	1	1	1	1	1	1	1	1	1												
	C16H10	C16H10	C16H10	C16H10	C16H10S	C16H10S	C16H10S	C16H10S													
-------	--------	--------	--------	--------	---------	---------	---------	---------													
129-00-0	58426-99-9	58426-99-9	58426-99-9	58426-99-9	58426-99-9																
Pyrene	C1-Fluoranthenes/Pyrenes	C2-Fluoranthenes/Pyrenes	C3-Fluoranthenes/Pyrenes	C4-Fluoranthenes/Pyrenes	Naphthobenzothiophene	C1-Naphthobenzothiophenes	C2-Naphthobenzothiophenes	C3-Naphthobenzothiophenes													
	199.451	56.214	48.664	26.094	23.139	40.176	24.59	45.87	67.049												
	1.451	U	U	U	1.138	0.752	0.526	U	U												
	24.052	8.108	7.829	3.75	3.406	17.788	6.146	3.713	2.554												
	1.323	1.006	0.997	0.608	U	U	U	U	U												
	19.759	8.147	6.067	2.039	1.081	5.558	1.851	1.309	0.728												
	1015.135	302.416	299.36	109.923	64.999	174.881	68.104	70.872	89.373												
	296.22	89.03	106.131	43.929	18.367	55.152	25.932	20.749	14.98												
	118.563	48.521	63.293	39.976	23.818	25.11	23.045	25.513	24.439												
	34.2	10.007	12.793	5.299	3.667	7.057	3.673	3.889	3.852												
	176.124	104.907	104.907	60.119	28.696	50.999	38.319	21.902	20.994												
	5.431	1.878	1.741	0.951	0.982	1.341	1.14	2.041	2.768												
	19.249	6.331	6.084	2.92	2.615	U	U	U	U												
	3.529	1.623	1.554	0.772	J	5.948	1.927	1.68	1.337												
	123.223	54.338	24.167	7.33	U	18.687	5.419	2.407	1.325												
	1.476	U	U	U	U	U	U	U	U												
	2.605	1.463	0.98	0.538	U	4.299	1.53	0.604	U												
	153.697	46.28	55.004	24.431	18.263	31.827	15.465	21.712	26.704												
	831.484	286.487	310.905	149.221	98.797	167.078	87.009	107.776	175.812												
	32.388	18.744	17.91	5.573	6.387	10.558	5.463	4.607	3.456												
	21.775	7.58	11.399	9.904	8.959	5.342	9.403	23.742	32.464												
	9.58	3.61	J	J	NA	NA	NA	NA	NA												
	10.57	3.79	1.58	U	NA	NA	NA	NA	NA												
	6.02	2.26	U	U	NA	NA	NA	NA	NA												
	3.71	1.59	U	U	NA	NA	NA	NA	NA												
	8.36	3.83	2.96	U	NA	NA	NA	NA	NA												
	269.55	59.08	41.65	22.83	NA	NA	NA	NA	NA												
	1221.74	347.62	201.45	91.19	NA	NA	NA	NA	NA												
	76.43	36.42	17.93	7.07	NA	NA	NA	NA	NA												
	0.136	0.469	0.469	0.469	0.469	0.128	0.256	0.256	0.256												
	0.136	0.469	0.469	0.469	0.469	0.128	0.256	0.256	0.256												
	1	1	1	1	1	1	1	1	1												
Compound	39.23	99.055	171.104	53.483	37.855	32.652	U	157.166	134.237												
---------------------------	-------	--------	---------	--------	--------	--------		----------	----------												
U	0.517	0.481	U	U	U	U	U														
U	9.757	21.958	8.215	11.711	6.576	U	24.822	20.655													
U	0.447	0.909	0.908	U	U	0.878	0.636														
U	12.32	14.6	5.217	3.184	U	14.305	12.743														
6.576	118.82	95.323	U	U	745.803	647.402															
10.298	53.098	113.833	61.522	48.77	35.147	18.431	105.489	87.769													
1.914	14.068	27.587	9.342	5.503	4.858	U	33.762	28.425													
U	144.651	218.678	98.546	45.682	U	U	323.844	276.019													
1.352	3.336	5.541	1.866	1.537	U	U	5.32	4.504													
1.914	7.616	18.455	6.657	7.008	4.818	U	23.761	19.339													
U	0.611	1.575	1.244	3.201	U	U	1.359	1.19													
1.914	73.419	80.326	25.042	8.399	U	U	51.231	48.987													
U	0.367	0.404	U	U	U	U	U														
U	0.437	0.97	1.038	U	U	U	0.679	0.489													
12.444	57.931	131.462	40.31	26.244	28.096	17.545	140.177	116.479													
114.287	440.931	713.509	249.463	147.398	U	U	706.059	588.146													
U	21.332	43.628	21.117	10.873	U	U	50.824	44.202													
20.725	8.179	16.861	10.294	17.466	21.465	U	14.776	13.482													
NA	4.26	6.05	2.56	1.72	U	U	9.72	5.16													
NA	4.09	6.85	3.81	2.09	U	U	14.07	4.12													
NA	2.25	3.65	U	U	U	U	5.74	2.44													
NA	1.42	2.13	2.66	U	U	U	3.78	1.91													
NA	3.67	8.91	3.33	3.89	U	4.59	15.5	2.93													
NA	124.72	199.35	66.36	26.93	U	U	419.68	184.41													
NA	651.14	785.83	322.19	108.26	43.8	U	1341.07	556.1													
NA	15.62	27.65	13.52	6.09	2.54	U	43.47	16.35													
0.256	0.192	0.116	0.232	0.232	0.232	0.125	0.098														
0.256	0.192	0.116	0.232	0.232	0.232	0.125	0.098														
0.256	0.192	0.116	0.232	0.232	0.232	0.125	0.098														
0.256	0.192	0.116	0.232	0.232	0.232	0.125	0.098														
0.256	0.192	0.116	0.232	0.232	0.232	0.125	0.098														
	Benzo(k)fluoranthene	Benzo(a)fluoranthene	Benzo(e)pyrene	Benzo(a)pyrene	Perylene	Indeno(1,2-d)pyrene	Dibenzo(a,h)anthracene	C1-Dibenzo(a,h)anthracenes	C2-Dibenzo(a,h)anthracenes												
----------	----------------------	----------------------	----------------	----------------	----------	----------------------	--------------------------	-----------------------------	-----------------------------												
NA	15.857	110.228	120.982	31.496	97.851	23.928	U	U	U												
NA	2.725	17.267	11.259	2.604	15.264	3.308	U	U	U												
NA	7.51	0.31	0.31	0.594	0.118	U	U	U	U												
NA	2.49	9.249	7.249	1.875	6.556	1.897	U	U	U												
NA	92.995	513.669	625.209	158.105	455.908	111.966	U	U	U												
NA	38.898	153.016	159.493	45.721	124.145	39.389	U	U	U												
NA	U	80.053	65.997	15.305	59.401	18.96	U	U	U												
NA	3.112	24.455	23.133	7.165	24.421	4.955	U	U	U												
NA	U	195.333	73.105	24.05	123.141	43.701	U	U	U												
NA	0.7	3.798	3.593	J	2.982	0.709	U	U	U												
NA	U	16.702	10.098	2.296	16.033	3.22	U	U	U												
NA	U	1.181	0.571	J	0.965	0.256	U	U	U												
NA	9.593	31.423	41.724	10.517	21.972	6.588	U	U	U												
NA	U	U	U	U	U	U	U	U	U												
NA	U	0.487	0.335	J	0.403	U	U	U	U												
NA	10.424	104.539	95.487	24.58	95.623	20.737	U	U	U												
NA	94.914	502.962	545.158	144.203	438.407	104.364	U	U	U												
NA	U	32.914	6.42	3.619	25.789	6.89	U	U	U												
NA	1.41	12.775	11.341	10.141	2.205	U	U	U	U												
5.16	NA	7.22	6.62	1.39	7.85	U	NA	NA	NA												
4.12	NA	9.29	6.56	1.11	8.14	1.04	NA	NA	NA												
2.44	NA	3.04	3	J	3.76	U	NA	NA	NA												
1.91	NA	2.21	2.18	J	2.2	U	NA	NA	NA												
2.93	NA	U	6.38	1.57	7.55	0.97	NA	NA	NA												
184.41	NA	253.56	199.94	25.02	314.5	36.8	NA	NA	NA												
556.1	NA	814.75	747.82	175.95	950.36	125.64	NA	NA	NA												
16.35	NA	24.79	18.75	3.73	30.29	3.92	NA	NA	NA												
NA	0.098	0.177	0.101	1.267	0.05	0.064	0.129	0.129													
NA	0.098	0.177	0.101	1.267	0.05	0.064	0.129	0.129													
1	1	1	1	1	1	1	1	1													

Notes:
- **NA** indicates not available.
- **U** indicates unreported.
| Compound | MW | LogP | | | | | | | | | | |
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| C22H14 | | |
| C22H12 | | |
| C11H10 | | |
| C11H10 | | |
| C12H12 | | |
| C13H14 | | |
| C14H12 | | |
| C13H10S | | |
| C14H12S | | |
| C12H12 | | |
| C13H10S | | |
| C14H12S | | |
| C13H10S | | |
| C14H12S | | |
| C13H10S | | |
| C14H12S | | |
| C13H10S | | |
| C14H12S | | |
| C13H10S | | |
| C14H12S | | |
| C13H10S | | |
| C14H12S | | |
| C13H10S | | |
| C14H12S | | |
| C13H10S | | |
| C14H12S | | |
| C13H10S | | |
| C14H12S | | |
| C13H10S | | |
| C14H12S | | |
| C13H10S | | |
| C14H12S | | |
| C13H10S | | |
| C14H12S | | |
| C13H10S | | |
| C14H12S | | |
| C13H10S | | |
| C14H12S | | |
| C13H10S | | |
| C14H12S | | |
| C13H10S | | |
| C14H12S | | |
| C13H10S | | |
| C14H12S | | |
| C13H10S | | |
| C14H12S | | |
| C13H10S | | |
| C14H12S | | |
| C13H10S | | |
| C14H12S | | |
| C13H10S | | |
| C14H12S | | |
| C13H10S | | |
| C14H12S | | |
| C13H10S | | |
| C14H12S | | |
| C13H10S | | |
| C14H12S | | |
| C13H10S | | |
| C14H12S | | |
| C13H10S | | |
| C14H12S | | |
| C13H10S | | |
| C14H12S | | |
| C13H10S | | |
| C14H12S | | |
| C13H10S | | |
| C14H12S | | |
| C13H10S | | |
| C14H12S | | |
| C13H10S | | |
| C14H12S | | |
| C13H10S | | |
| C14H12S | | |
| C13H10S | | |
| C14H12S | | |
| C13H10S | | |
| C14H12S | | |
| C13H10S | | |
| C14H12S | | |
| C13H10S | | |
| C14H12S | | |
| C13H10S | | |
| C14H12S | | |
| C13H10S | | |
| C14H12S | | |
| C13H10S | | |
| C14H12S | | |
| C13H10S | | |
| C14H12S | | |
| C13H10S | | |
| C14H12S | | |
| C13H10S | | |
| C14H12S | | |
| C13H10S | | |
| C14H12S | | |
| C13H10S | | |
| C14H12S | | |
| C13H10S | | |
| C14H12S | | |
| C13H10S | | |
| C14H12S | | |
| C13H10S | | |
| C14H12S | | |
| C13H10S | | |
| C14H12S | | |
| C13H10S | | |
| C14H12S | | |
| C13H10S | | |
| C14H12S | | |
| C13H10S | | |
| C14H12S | | |
| C13H10S | | |
| C14H12S | | |
| C13H10S | | |
| C14H12S | | |
| C13H10S | | |
| C14H12S | | |
| C13H10S | | |
| C14H12S | | |
| C13H10S | | |
| C14H12S | | |
| C13H10S | | |
| C14H12S | | |
| C13H10S | | |
| C14H12S | | |
| C13H10S | | |
| C14H12S | | |
| C13H10S | | |
| C14H12S | | |
| C13H10S | | |
| C14H12S | | |
| C13H10S | | |
| C14H12S | | |
| C13H10S | | |
| C14H12S | | |
| C13H10S | | |
| C14H12S | | |
| C13H10S | | |
| C14H12S | | |
| C13H10S | | |
| C14H12S | | |
| C13H10S | | |
| C14H12S | | |
| C13H10S | | |
| C14H12S | | |
| C13H10S | | |
| C14H12S | | |
| C13H10S | | |
| C14H12S | | |
| C13H10S | | |
| C14H12S | | |
| C13H10S | | |
| C14H12S | | |
| C13H10S | | |
| C14H12S | | |
| C13H10S | | |
| C14H12S | | |
| C13H10S | | |
| C14H12S | | |
| C13H10S | | |
| C14H12S | | |
| C13H10S | | |
| C14H12S | | |
| C13H10S | | |
| C14H12S | | |
| C13H10S | | |
| C14H12S | | |
| C13H10S | | |
| C14H12S | | |
| C13H10S | | |
| | J | U | J | U | J | U | J | U | J | U | J | U |
|----------------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|
| 1-Methyldibenzothiophene | 7.144 | 0.148 | 1.335 | 0.156 | 1.05 | 0.143 | 2.651 | 0.0128 | 0.617 | 0.172 | 1.095 | 0.265 |
| 3-Methylphenanthrene | 8.649 | 0.252 | 2.137 | 0.086 | 1.252 | 0.325 | 64.622 | 23.609 | 16.227 | 1.505 | 14.506 | 0.325 |
| 2-Methylphenanthrene | 0.689 | 0.36 | 0.428 | 0.143 | 0.283 | 0.175 | 13.875 | 8.721 | 5.348 | 1.79 | 18.434 | 0.149 |
| 2-Methylanthracene | 5.044 | 0.541 | 1.294 | 0.279 | 1.322 | 0.224 | 44.963 | 20.07 | 12.917 | 1.881 | 23.425 | 1.244 |
| 4/9-Methylphenanthrene | 5.23 | 0.201 | 3.925 | 0.679 | 1.386 | 0.443 | 37.986 | 14.701 | 9.941 | 0.679 | 14.859 | 2.159 |
| 1-Methylphenanthrene | 1.668 | 0.157 | 0.465 | 0.157 | 0.443 | 0.175 | 10.753 | 4.951 | 3.606 | 0.679 | 42.205 | 1.047 |
| 3,6-Dimethylphenanthrene | 13.764 | 22.421 | 126.718| 39.551 | 14.604 | 0.407 | 23.338 | 11.566 | 4.076 | 6.363 | 33.697 | 1.517 |
| Retene | 11.566 | | | | | | | | | | | |
| 2-Methylfluoranthene | | | | | | | | | | | | |
| Compound | Ratio | U | U | U | U | U | U | U | U | U | U | U |
|----------|-------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| Benzo(b)fluoranthene | C29-Hopane | 15.95 | 50.827 | 4.249 | 71.785 | 3.587 | 5.948 | 8.823 | 81.941 | 45.885 |
| C29-Hopane | 18a-Oleanane | 3.42 | 6.73 | 1.02 | 7.483 | J | J | 1.074 | 2.026 |
| C30-Hopane | C20-TAS | 0.257 | 2.9 | U | 2.407 | U | U | J | 0.676 |
| C20-TAS | C21-TAS | 1.893 | 3.344 | U | 1.547 | 0.627 | J | J | U | 0.75 |
| C26(20S)-TAS | C26(20R)/C27(20S)-TAS | 65.899 | 75.709 | 12.332 | 104.719 | J | J | 11.709 | 72.297 | 76.284 |
| C26(20S)-TAS | C28(20S)-TAS | 8.457 | 30.781 | U | 38.805 | J | J | 17.409 | 25.034 |
| C28(20S)-TAS | 1.627 | 12.896 | 2.712 | 20.156 | 1.374 | 0.721 | 1.185 | 6.479 | 8.009 |
| C29-Hopane | 0.794 | 5.128 | J | 7.051 | 1.133 | 0.816 | 0.69 | 3.929 | 3.001 |
| 18a-Oleanane | 5.687 | 95.867 | 25.354 | 87.163 | J | J | 9.711 | 48.059 | 52.841 |
| C20-TAS | 0.502 | 4.871 | J | 5.321 | J | J | 0.678 | 4.064 | 2.63 |
| C21-TAS | 0.876 | 9.916 | 0.972 | 9.41 | 0.576 | 0.458 | 0.603 | 1.163 | 1.975 |
| C26(20S)-TAS | 0.327 | 1.611 | U | 1.667 | 0.89 | 0.616 | J | 0.741 | 0.982 |
| C28(20S)-TAS | 21.643 | 1.798 | U | 1.041 | J | J | U | U | 0.637 |
| C29-Hopane | 0.264 | U | U | U | U | U | U | U | U | U | U | U |
| | C27H34 | C28H36 |
|----------|--------|--------|
| | | |
| **C27(20R)-T C28(20R)-TAS** | | |
| | 60.768 | 38.183 |
| U | U | |
| | 1.823 | 2.02 |
| | 1.066 J| |
| | 2.232 U| |
| | 44.258 | 58.554 |
| | 12.775 | 11.174 |
| | 4.544 | 5.412 |
| | 2.431 | 2.068 |
| | 61.636 | 52.266 |
| | 3.171 | 1.805 |
| | 1.553 | 1.363 |
| | 1.282 | 1.005 |
| | 1.351 U| |
| U | U | |
| | 19.324 | 13.512 |
| | 161.623 J| |
| | 6.329 | 2.564 |
| | 37.052 | 27.653 |
| NA | NA | |
| | 0.575 | 0.575 |
| | 0.575 | 0.575 |
| | 1 | 1 |

Supplemental Table 3: Raw data for pesticides, industrial chemicals and PCB.

Sample Location ID	Date	Time	Sample Type	Analyte	Latitude	Longitude	Aldrin	Dieldrin
Bladen County 1	17:19	Soil	Organic	Aldrin	34.83263	-78.8258	U	U
Bladen County 2	15:07	Soil	Organic	Aldrin	34.21673	-77.9462	7.1 U	U
New Hanover 1	15:31	Soil	Organic	Aldrin	34.20505	-77.9516	U	U
New Hanover 2	15:50	Soil	Organic	Aldrin	34.19061	-77.9491	0.8 U	U
Wayne County 1	11:00	Soil	Organic	Aldrin	35.36042	-78.0782	3.8 U	U
Wayne County 2	11:22	Soil	Organic	Aldrin	35.36941	-78.0584	U	U
Robeson County 1	12:18	Soil	Organic	Aldrin	34.72018	-79.2124	0.2 U	U
Robeson County 2	12:20	Soil	Organic	Aldrin	34.72322	-79.2118	U	U
Bladen County 3	16:35	Soil	Organic	Aldrin	34.83263	-78.8258	N/A	N/A
Bladen County 4	12:40	Soil	Organic	Aldrin	34.2164	-77.9464	1.4 U	U

LLOQ (ng/g)

	September	January
Aldrin	0.05	0.05
Dieldrin	0.32	0.32

* Values are expressed in unit of ng/g; U, Undetected; J, Below Limit of Quantification; LLOQ, lower limit of quantification.
| Compound | LLOQ (ng/g) | Endrin | Endrin Aldehyde | Endrin Ketone | Heptachlor | Heptachlor-Epoxide | Oxychlordane | Alpha-Chlordane | Gamma-Chlordane | Trans-Nonachlor |
|----------|------------|--------|----------------|--------------|------------|-------------------|--------------|----------------|----------------|----------------|
| Endrin | 0.1 | U | U | U | U | U | U | U | U | U |
| Endrin | 0.2 | U | U | U | U | U | U | U | U | U |
| Endrin | 0.1 | U | U | U | U | U | U | U | U | U |
| Endrin | 0.2 | U | U | U | U | U | U | U | U | U |
| Endrin | 0.2 | U | U | U | U | U | U | U | U | U |
| Endrin | 0.5 | U | 1.4 | U | J | J | J | 3.1 | 0.2 | 0.2 |

* Values are expressed in unit of ng/g; U, Undetected; J, Below Limit of Quantification; LLOQ, lower limit of quantification, defined by the lowest quantifiable point in calibration curve; NA, not available.
| C10H5Cl9 | C6H6Cl6 | C6H6Cl6 | C6H6Cl6 | C14H9Cl3 | C14H10Cl4 | C14H10Cl4 | C14H8Cl4 | | | |
|---|---|---|---|---|---|---|---|---|---|---|
| Cis-Nonachlor | Alpha-HCH | Beta-HCH | Delta-HCH | Gamma-HCH | DDMU | 2,4'-DDD | 4,4'-DDD | 2,4'-DDE |
| U | U | 1.3 | U | U | U | U | 0.1 | 0.3 | U |
| U | U | U | U | U | U | U | 0.1 | U | U |
| U | U | U | U | U | U | U | U | 0.3 | 2.5 | 0.2 |
| U | U | U | U | U | U | U | U | 0.2 | 0.9 | U |
| U | U | U | U | U | U | U | U | 0.5 | U | U |
| U | U | 7.2 | U | U | U | U | 4.5 | U | U |
| U | U | U | U | U | U | U | U | U | U | U |
| U | U | 0.5 | U | U | U | U | U | U | U | U |
| U | U | U | U | U | U | U | U | U | U | U |
| U | U | U | 1.3 | U | U | 7.7 | U | U | 0.3 | U |
| 0.1 | U | U | U | U | U | 6.6 | U | 0.3 | J |
| 0.1 | U | U | U | U | U | J | 0.1 | 0.3 | 0.1 |
| U | U | U | U | U | U | U | 0.3 | U | U | U |
| U | U | U | U | U | U | U | U | 0.3 | U | U |
| 1.8 | U | J | U | U | U | U | 3.2 | U | U | U |
| 0.1 | U | U | U | 0.5 | U | U | 0.2 | U | 0.2 | U |
| U | U | U | U | U | U | U | U | U | U | U |
| U | U | U | U | U | U | U | U | U | U | U |
| N/A |
| N/A |
| N/A |
| N/A |
| N/A |
| N/A |
| N/A |
| 0.02 | 0.08 | 0.12 | 0.07 | 0.05 | 0.11 | 0.02 | 0.02 | 0.07 | |
| 0.02 | 0.08 | 0.12 | 0.07 | 0.05 | 0.11 | 0.02 | 0.02 | 0.07 | |
| N/A |

* Values are expressed in unit of ng/g; U, Undetected; J, Below Limit of Quantification; LLOQ, lower limit of quantifiable point in calibration curve; NA, not available.
| 4,4′-DDE | 2,4′-DDT | 4,4′-DDT | 1,2,3,4-Tet | 1,2,4,5-Tet | Hexachloro | Pentachloro | Pentachloro | Endosulfan |
|----------|----------|----------|-------------|-------------|------------|------------|------------|-----------|
| 0.2 U | U | U | U | U | U | U | U | U |
| 1.3 U | U | U | U | U | U | U | U | U |
| 14.3 U | 5.7 U | U | U | U | U | 7.9 U | | |
| 3.5 U | 0.5 U | 1.3 U | U | U | U | 3.7 U | | |
| 1.3 U | U | U | U | U | U | 2.8 U | | |
| U | U | U | U | U | 2.9 U | 1.2 U | 61.1 U | |
| 6.5 U | U | U | U | U | U | U | | |
| 0.6 U | U | U | U | 0.3 U | U | 0.1 U | | |
| 1.2 U | U | U | U | U | U | U | | |
| U | U | U | U | U | 1.1 U | 0.6 U | | |
| U | U | U | U | U | U | U | | |
| 0.1 U | U | U | U | U | U | U | | |
| 0.9 U | 1.4 U | U | U | U | U | U | | |
| 8.9 U | 1.8 U | 8.5 U | U | U | 0 U | 0 | 5.7 | |
| 5 U | 1.4 U | 6.1 U | U | U | U | 5 | | |
| 1.3 U | 0.4 U | 1 U | U | U | U | U | | |
| 10.9 U | 7.8 U | U | U | U | U | 1.3 U | | |
| 0.7 U | 0.4 U | 0.3 U | U | U | U | U | | |
| 0.8 U | U | U | U | U | U | U | | |
| U | U | U | U | U | U | U | | |
| N/A | N/A | N/A | N/A | N/A | N/A | N/A | N/A | N/A |
| N/A | N/A | N/A | N/A | N/A | N/A | N/A | N/A | N/A |
| N/A | N/A | N/A | N/A | N/A | N/A | N/A | N/A | N/A |
| N/A | N/A | N/A | N/A | N/A | N/A | N/A | N/A | N/A |
| 0.04 U | 0.04 U | 0.03 U | 0.01 U | 0.02 U | 0.02 U | 0.02 U | 0.02 U | 0.19 U |
| 0.04 U | 0.04 U | 0.03 U | 0.01 U | 0.02 U | 0.02 U | 0.02 U | 0.02 U | 0.19 U |
| N/A | N/A | N/A | N/A | N/A | N/A | N/A | N/A | N/A |
| Endosulfan | Endosulfan | Mirex | Chlorpyrifos | PCB 1 | PCB 2 | PCB 3 | PCB 4/10 | PCB 7/9 |
|-----------|------------|-------|--------------|-------|-------|-------|-----------|---------|
| U | U | 0.6 | U | U | U | U | U | U |
| U | U | 59.8 | U | U | U | U | U | U |
| U | U | 1.2 | U | U | U | U | U | U |
| U | U | 2.8 | U | U | U | U | U | U |
| U | U | 0.5 | 2.2 | U | U | U | U | U |
| U | U | 0.8 | U | U | U | U | U | U |
| U | 0.6 | 13.1 | U | U | U | U | U | U |
| U | U | 1.1 | U | U | U | U | U | U |
| U | U | 2.5 | U | U | U | U | U | U |
| U | U | 2.3 | U | U | U | U | U | U |
| U | U | 2 | U | U | U | U | U | U |
| U | 0.4 | 2.1 | U | U | U | U | U | U |
| U | U | J | U | U | U | U | U | U |
| U | U | 1.4 | U | U | U | U | U | U |
| U | U | U | U | U | U | U | U | U |

| U | U | U | U | U | U | U | U | U |

N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A

| 0.19 | 0.08 | 0.02 | 0.29 | 0.016 | 0.016 | 0.016 | 0.025 | 0.025 |
| 0.19 | 0.08 | 0.02 | 0.29 | 0.016 | 0.016 | 0.016 | 0.025 | 0.025 |

| N/A | N/A | N/A | N/A | N/A | N/A | N/A | N/A | N/A |
PCB 6	PCB 8/5	PCB 14	PCB 11	PCB 12	PCB 13	PCB 15	PCB 19	PCB 30
U	U	U	U	U	U	U	U	U
U	U	U	U	U	U	U	U	U
U	U	U	U	U	U	U	U	U
U	U	U	U	U	U	U	U	U
U	U	U	U	U	U	U	U	U
U	U	U	U	U	U	U	U	U
U	U	U	U	U	U	U	U	U
U	J	U	U	U	U	U	U	U
U	U	U	U	U	U	U	U	U
U	U	U	U	U	U	U	U	U
U	U	U	U	U	U	U	U	U
U	U	U	U	U	U	U	U	U
U	J	U	U	U	U	U	U	U
U	U	U	U	U	U	U	U	U
U	U	U	U	U	U	U	U	U
U	U	U	U	U	U	U	U	U
N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A

0.025	0.025	0.025	0.025	0.025	0.025	0.025	0.015	0.015
0.025	0.025	0.025	0.025	0.025	0.025	0.025	0.015	0.015
N/A								
PCB 18	PCB 17	PCB 27	PCB 24	PCB 16/32	PCB 34	PCB 23	PCB 29	PCB 26
--------	--------	--------	--------	-----------	--------	--------	--------	--------
U	U	U	U	U	U	U	U	U
U	U	U	U	U	U	U	U	U
U	U	U	U	U	U	U	U	U
U	U	U	U	U	U	U	U	U
U	U	U	U	U	U	U	U	U
U	U	U	U	U	U	U	U	U
U	U	U	U	U	U	U	U	U
U	U	U	U	U	U	U	U	U
U	U	U	U	U	U	U	U	U
U	U	U	U	U	U	U	U	U
U	U	U	U	U	U	U	U	U
U	U	U	U	U	U	U	U	U
U	U	U	U	U	U	U	U	U
N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A

0.015	0.015	0.015	0.015	0.015	0.015	0.015	0.015	0.015
0.015	0.015	0.015	0.015	0.015	0.015	0.015	0.015	0.015
N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
PCB 25	PCB 28/31	PCB 21/20, PCB 22	PCB 36	PCB 39	PCB 38	PCB 35	PCB 37	
--------	-----------	------------------	--------	--------	--------	--------	--------	
U	U	U	U	U	U	U	U	
U	U	U	U	U	U	U	U	
U	U	U	U	U	U	U	U	
U	U	U	U	U	U	U	U	
U	U	U	U	U	U	U	U	
U	U	U	U	U	U	U	U	
U	U	U	U	U	U	U	U	
U	0.1	U	U	U	U	U	U	
U	U	U	U	U	U	U	U	
U	U	U	U	U	U	U	U	
U	U	U	U	U	U	U	U	
U	U	U	U	U	U	U	U	
U	U	U	U	U	U	U	U	
U	U	U	U	U	U	U	U	
U	0.1	U	U	U	U	U	U	
U	U	U	U	U	U	U	U	
N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	
N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	
N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	
N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	
N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	
N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	
N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	
0.015	0.017	0.015	0.015	0.015	0.015	0.015	0.015	
0.015	0.017	0.015	0.015	0.015	0.015	0.015	0.015	
N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	
PCB 54	PCB 50	PCB 53	PCB 51	PCB 45	PCB 46/69, PCB 52	PCB 43	PCB 49	
--------	--------	--------	--------	--------	------------------	--------	--------	
U	U	U	U	U	U	U	U	
U	U	U	U	U	U	U	U	
U	U	U	U	U	U	U	U	
U	U	U	U	U	U	U	U	
U	U	U	U	U	U	U	U	
U	U	U	U	U	U	U	U	
U	U	U	U	U	U	U	U	
U	U	U	U	U	U	U	U	
U	U	U	U	U	U	U	U	
U	U	U	U	U	U	U	U	
U	U	U	U	U	U	U	U	
U	U	U	U	U	U	U	U	
U	U	U	U	U	U	U	U	
N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	
N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	
N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	
N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	
N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	
N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	
N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	
N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	

0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01

N/A N/A N/A N/A N/A N/A N/A N/A
PCB 48/75, PCB 65	PCB 62	PCB 44	PCB 59	PCB 42	PCB 72	PCB 71	PCB 68/41
U	U	U	U	U	U	U	U
U	U	U	U	U	U	U	U
U	U	U	U	U	U	U	U
U	U	U	U	U	U	U	U
U	U	U	U	U	U	U	U
U	U	U	U	U	U	U	U
U	U	U	U	U	U	U	U
U	U	U	U	U	U	U	U
U	U	U	U	U	U	U	U
U	U	U	U	U	U	U	U
U	U	U	U	U	U	U	U
N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
0.01	0.01	0.01	0.024	0.01	0.01	0.01	0.01
0.01	0.01	0.01	0.024	0.01	0.01	0.01	0.01
N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
PCB 40/57 PCB 67	PCB 58	PCB 63	PCB 61/74 PCB 76/70	PCB 66/80 PCB 55	PCB 56		
-----------------	--------	--------	-----------------------	-------------------	-------		
U	U	U	U	U	U		
U	U	U	U	U	U		
U	U	U	U	U	U		
U	U	U	U	U	U		
U	U	U	U	U	U		
U	U	U	U	U	U		
U	U	U	U	U	U		
U	U	U	U	U	U		
U	U	U	U	U	U		
U	U	U	U	U	U		
U	U	U	U	U	U		
U	U	U	U	U	U		
U	U	U	U	U	U		
U	U	U	U	U	U		
U	U	U	U	U	U		
N/A	N/A	N/A	N/A	N/A	N/A		
N/A	N/A	N/A	N/A	N/A	N/A		
N/A	N/A	N/A	N/A	N/A	N/A		
N/A	N/A	N/A	N/A	N/A	N/A		
N/A	N/A	N/A	N/A	N/A	N/A		
N/A	N/A	N/A	N/A	N/A	N/A		

0.01	0.01	0.01	0.01	0.01	0.013	0.01	0.01

| N/A | N/A | N/A | N/A | N/A | N/A | N/A | N/A |

Note: The table contains data on the presence or absence of chlorinated compounds. U indicates the presence of the compound, while N/A indicates data not available. The values 0.01 and 0.013 represent concentrations in mg/kg.
PCB 60	PCB 79	PCB 78	PCB 81	PCB 77	PCB 104	PCB 96/10: PCB 100	PCB 94	
U	U	U	U	U	U	U	U	
U	U	U	U	U	U	U	U	
U	U	U	U	U	U	U	U	
U	U	U	U	U	U	U	U	
U	U	U	U	U	U	U	U	
U	U	U	U	U	U	U	U	
U	U	U	U	U	U	U	U	
U	U	U	U	U	U	U	U	
U	U	U	U	U	U	U	U	
U	U	U	U	U	U	U	U	
U	U	U	U	U	U	U	U	
N/A	N/A							
N/A	N/A							
N/A	N/A							
N/A	N/A							
N/A	N/A							
N/A	N/A							
0.01	0.01	0.01	0.01	0.014	0.059	0.059	0.059	
0.01	0.01	0.01	0.01	0.014	0.059	0.059	0.059	
N/A	N/A							
PCB 102/9	PCB 121/9	PCB 88	PCB 91	PCB 92	PCB 101/8	PCB 89/11	PCB 99	PCB 119
------------	------------	--------	--------	--------	------------	------------	--------	--------
U	U	U	U	U	U	U	U	U
U	U	U	U	U	U	U	U	U
U	U	U	U	U	U	U	U	U
U	U	U	U	U	U	U	U	U
U	U	U	U	U	U	U	U	U
U	U	U	U	U	U	U	U	U
U	U	U	U	U	U	U	U	U
U	U	U	U	U	U	U	U	U
U	U	U	U	U	U	U	U	U
U	U	U	U	U	U	U	U	U
0.3	U	U	U	U	U	U	U	U
0.059	0.059	0.059	0.059	0.059	0.059	0.059	0.059	0.059
N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
0.059	0.059	0.059	0.059	0.059	0.059	0.059	0.059	0.059
N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
PCB 112	PCB 120/8:PCB 97/12:PCB 116/1:PCB 111/1:PCB 109	PCB 85	PCB 110	PCB 82				
---------	---	-------	---------	-------				
U	U	U	U	U				
U	U	U	U	U				
U	U	U	U	U				
U	U	U	U	U				
U	U	U	U	U				
U	U	U	U	U				
U	U	U	U	U				
U	U	U	U	U				
U	U	U	U	U				
U	U	U	U	U				
U	U	U	U	U				
U	U	U	U	U				
U	U	U	U	U				
U	U	U	U	U				
U	U	U	U	U				
N/A	N/A	N/A	N/A	N/A				
N/A	N/A	N/A	N/A	N/A				
N/A	N/A	N/A	N/A	N/A				
N/A	N/A	N/A	N/A	N/A				
N/A	N/A	N/A	N/A	N/A				
N/A	N/A	N/A	N/A	N/A				
N/A	N/A	N/A	N/A	N/A				
N/A	N/A	N/A	N/A	N/A				
N/A	N/A	N/A	N/A	N/A				
N/A	N/A	N/A	N/A	N/A				
0.059	0.059	0.059	0.059	0.059				
0.059	0.059	0.059	0.059	0.059				
N/A	N/A	N/A	N/A	N/A				

74472-36-9 - - - 74472-35-6 835510-45-4 38380-03-5 52663-62-4
C12H5Cl5 - - - C12H5Cl5 C12H5Cl5 C12H5Cl5 C12H5Cl5
PCB 112 PCB 120/8:PCB 97/12:PCB 116/1:PCB 111/1:PCB 109 PCB 85 PCB 110 PCB 82
U U U U U U U U
U U U U U U U U
U U U U U U U U
U U U U U U U U
U U U U U U U U
U U U U U U U U
U U U U U U U U
U U U U U U U U
U U U U U U U U
U U U U U U U U
U U U U U U U U
U U U U U U U U
N/A N/A N/A N/A N/A N/A N/A N/A
PCB 124	PCB 106/11PCB 123	PCB 118/11PCB 114/1PCB 105/1PCB 126	PCB 126	PCB 155	PCB 150
U	U	U	U	U	U
U	U	U	U	U	U
U	U	U	U	U	U
U	U	U	U	U	U
U	U	U	U	U	U
U	U	U	U	U	U
U	U	U	U	U	U
U	U	U	U	U	U
U	U	U	U	U	U
U	U	U	U	U	U
U	U	U	U	U	U
U	U	U	U	U	U
N/A	N/A	N/A	N/A	N/A	N/A
N/A	N/A	N/A	N/A	N/A	N/A
N/A	N/A	N/A	N/A	N/A	N/A
N/A	N/A	N/A	N/A	N/A	N/A
N/A	N/A	N/A	N/A	N/A	N/A
N/A	N/A	N/A	N/A	N/A	N/A
N/A	N/A	N/A	N/A	N/A	N/A

0.059	0.059	0.059	0.045	0.059	0.04	0.033	0.033	0.033
0.059	0.059	0.059	0.045	0.059	0.04	0.033	0.033	0.033
N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
PCB 152	PCB 148/1	PCB 136/1	PCB 151	PCB 135	PCB 144	PCB 147	PCB 149/1	PCB 140
U	U	U	U	U	U	U	U	U
U	U	U	U	U	U	U	U	U
U	U	U	U	U	U	U	U	U
U	U	U	U	U	U	U	U	U
U	U	U	U	U	U	U	U	U
U	U	U	U	U	U	U	U	U
U	U	U	U	U	U	U	U	U
U	U	U	U	U	U	U	U	U
U	U	U	U	U	U	U	U	U
U	U	U	U	U	U	U	U	U
U	U	U	U	U	U	U	U	U
U	U	U	U	U	U	U	U	U
U	U	U	U	U	U	U	U	U
U	U	U	U	U	U	U	U	U
N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
0.033	0.033	0.033	0.033	0.033	0.033	0.033	0.033	0.033
0.033	0.033	0.033	0.033	0.033	0.033	0.033	0.033	0.033
N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
PCB 143	PCB 134/1	PCB 165/1	PCB 142/1	PCB 153/1	PCB 132	PCB 141	PCB 137	PCB 130
---------	-----------	-----------	-----------	-----------	--------	--------	--------	--------
U	U	U	U	U	U	U	U	U
U	U	U	U	U	U	U	U	U
U	U	U	0.2	U	U	U	U	U
U	U	U	U	U	U	U	U	U
U	U	U	U	U	U	U	U	U
U	U	U	0.2	U	U	U	U	U
U	U	U	U	U	U	U	U	U
U	U	U	0.1	U	U	U	U	U
U	U	U	U	U	U	U	U	U
U	U	U	0.1	U	U	U	U	U
U	U	U	U	U	U	U	U	U
U	U	U	U	U	U	U	U	U
U	U	U	U	U	U	U	U	U
U	U	U	U	U	U	U	U	U
N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
0.033	0.033	0.033	0.033	0.028	0.033	0.033	0.033	0.033
0.033	0.033	0.033	0.033	0.028	0.033	0.033	0.033	0.033
N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
PCB 138/1	PCB 160/1	PCB 129	PCB 166	PCB 159	PCB 162	PCB 128/1	PCB 156	PCB 157
-----------	-----------	---------	---------	---------	---------	-----------	---------	---------
U	U	U	U	U	U	U	U	U
0.4	U	U	U	U	U	U	U	U
U	U	U	U	U	U	U	U	U
3.5	U	U	U	U	U	U	U	U
1.9	U	U	U	U	U	U	U	U
U	U	U	U	U	U	U	U	U
5.9	U	U	U	U	U	U	U	U
U	U	U	U	U	U	U	U	U
U	U	U	U	U	U	U	U	U
0.1	U	U	U	U	U	U	U	U
U	U	U	U	U	U	U	U	U
8.7	U	U	U	U	U	U	U	U
1.2	U	U	U	U	U	U	U	U
U	U	U	U	U	U	U	U	U
N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
0.033	0.033	0.033	0.033	0.033	0.033	0.021	0.033	0.033
0.033	0.033	0.033	0.033	0.033	0.033	0.021	0.033	0.033
N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
PCB 169	PCB 188	PCB 184	PCB 179	PCB 176	PCB 186/1:PCB 175	PCB 187/1:PCB 183		
---------	---------	---------	---------	---------	------------------	------------------		
U	U	U	U	U	U	U		
U	U	U	U	U	U	U		
U	U	U	U	U	0.1 U	U		
U	U	U	U	U	U	U		
U	U	U	U	U	U	U		
U	U	U	U	U	U	U		
U	U	U	U	U	U	U		
U	U	U	U	U	U	U		
U	U	U	U	U	U	U		
U	U	U	U	U	0.1 U	U		
U	U	U	U	U	U	U		
U	U	U	U	U	1.6 U	U		
U	U	U	U	U	0.5 U	U		
U	U	U	U	U	U	U		
U	U	U	U	U	U	U		
N/A	N/A	N/A	N/A	N/A	N/A	N/A		
N/A	N/A	N/A	N/A	N/A	N/A	N/A		
N/A	N/A	N/A	N/A	N/A	N/A	N/A		
N/A	N/A	N/A	N/A	N/A	N/A	N/A		
N/A	N/A	N/A	N/A	N/A	N/A	N/A		

PCB 169 | PCB 188 | PCB 184 | PCB 179 | PCB 176 | PCB 186/1:PCB 175 | PCB 187/1:PCB 183 |

N/A	0.033	0.028	0.028	0.028	0.028	0.028	0.023	0.028
N/A	0.033	0.028	0.028	0.028	0.028	0.028	0.023	0.028
N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
PCB 185	PCB 174	PCB 181	PCB 177	PCB 171	PCB 173	PCB 192/1	PCB 190/1	PCB 191
---------	---------	---------	---------	---------	---------	-----------	-----------	---------
U	U	U	U	U	U	U	U	U
U	U	U	U	U	U	U	U	U
U	U	U	U	U	U	U	0.3 U	U
U	U	U	U	U	U	U	U	U
U	U	U	U	U	U	U	U	U
U	U	U	U	U	U	U	U	U
U	U	U	U	U	U	U	2.6 U	U
U	U	U	U	U	U	U	U	U
U	U	U	U	U	U	U	0.1 U	U
U	U	U	U	U	U	U	3.8 U	U
U	U	U	U	U	U	U	1 U	U
U	U	U	U	U	U	U	U	U
N/A	N/A	N/A						
N/A	N/A	N/A						
N/A	N/A	N/A						
N/A	N/A	N/A						
N/A	N/A	N/A						
0.028	0.028	0.028	0.028	0.028	0.028	0.028	0.028	0.028
0.028	0.028	0.028	0.028	0.028	0.028	0.028	0.028	0.028
N/A	N/A	N/A						
PCB 170/1	PCB 189	PCB 197	PCB 198	PCB 199				
-----------	---------	---------	---------	---------				
U	U	U	U	U				
U	U	U	U	U				
U	U	U	U	U				
U	U	U	U	U				
U	U	U	U	U				
U	U	U	U	U				
U	U	U	U	U				
U	U	U	U	U				
U	U	U	U	U				
U	U	U	U	U				
U	U	U	U	U				
0.1	U	U	U	U				
U	U	U	U	U				
U	U	U	U	U				
U	U	U	U	U				
0.6	U	U	U	U				
U	U	U	U	U				
U	U	U	U	U				
U	U	U	U	U				
N/A	N/A	N/A	N/A	N/A				
N/A	N/A	N/A	N/A	N/A				
N/A	N/A	N/A	N/A	N/A				
N/A	N/A	N/A	N/A	N/A				
N/A	N/A	N/A	N/A	N/A				
N/A	N/A	N/A	N/A	N/A				
0.021	0.028	0.053	0.053	0.053				
0.021	0.028	0.053	0.053	0.053	0.053	0.053	0.053	
N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	
PCB 203/1	PCB 195	PCB 194	PCB 205	PCB 208	PCB 207	PCB 206	PCB 209	
-----------	---------	---------	---------	---------	---------	---------	---------	
U	U	U	U	U	U	U	U	
U	U	U	U	U	U	U	U	
U	U	U	U	U	U	U	U	
U	U	U	U	U	U	U	U	
U	U	U	U	U	U	U	U	
U	U	U	U	U	U	U	U	
U	U	U	U	U	U	U	U	
U	U	U	U	U	U	U	U	
0.1	U	U	U	U	U	U	U	

PCB 203/1	PCB 195	PCB 194	PCB 205	PCB 208	PCB 207	PCB 206	PCB 209
N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
0.053	0.053	0.053	0.053	0.025	0.025	0.025	0.026
0.053	0.053	0.053	0.053	0.025	0.025	0.025	0.026
N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Supplemental Table 5: Raw data for metals.

Formula

CAS RN

Name

Sample Location ID	Date	Time	Analysis Date	Sample Type	Analyte	Latitude	Longitude
Bladen County 1	9/19/18	17:19	9/2/2019	Soil	Metal	34.83263	-78.8258
Bladen County 2	9/19/18	19:25	9/2/2019	Soil	Metal	34.74559	-78.8024
Robeson County 1	9/21/18	12:25	9/2/2019	Soil	Metal	34.72018	-79.2124
Robeson County 2	9/21/18	12:49	9/2/2019	Soil	Metal	34.72301	-79.2131
Robeson County 3	9/21/18	13:02	9/2/2019	Soil	Metal	34.72322	-79.2118
New Hanover 1	9/22/18	15:06	9/2/2019	Soil	Metal	34.20505	-77.9516
New Hanover 2	9/22/18	15:30	9/2/2019	Soil	Metal	34.20613	-77.9491
New Hanover 3	9/22/18	15:49	9/2/2019	Soil	Metal	34.20646	-77.9491
New Hanover 4	9/22/18	16:31	9/2/2019	Soil	Metal	34.17225	-77.9487
Wayne County 1	9/23/18	11:01	9/2/2019	Soil	Metal	35.36042	-78.0782
Robeson County 1	1/29/19	12:18	9/2/2019	Soil	Metal	34.72301	-79.2131
Robeson County 2	1/29/19	12:18	9/2/2019	Soil	Metal	34.72018	-79.2124
Robeson County 3	1/29/19	12:20	9/2/2019	Soil	Metal	34.72322	-79.2118
Bladen County 2	1/29/19	15:41	9/2/2019	Soil	Metal	34.83263	-78.8258
Bladen County 3	1/29/19	15:41	9/2/2019	Soil	Metal	34.83263	-78.8258
New Hanover 1	1/30/19	11:20	9/2/2019	Soil	Metal	34.17225	-79.2124
New Hanover 2	1/30/19	11:45	9/2/2019	Soil	Metal	34.2164	-77.9464
Wayne County 1	1/30/19	14:10	9/2/2019	Soil	Metal	35.36042	-78.0782
Wayne County 2	1/30/19	14:30	9/2/2019	Soil	Metal	35.36941	-78.0584
Robeson County 1	5/9/19	14:20	9/2/2019	Soil	Metal	34.72018	-79.2124
Robeson County 2	5/9/19	14:20	9/2/2019	Soil	Metal	34.72301	-79.2131
Robeson County 3	5/9/19	14:20	9/2/2019	Soil	Metal	34.72322	-79.2118
Bladen County 1	5/9/19	16:35	9/2/2019	Soil	Metal	34.83263	-78.8258
Bladen County 2	5/9/19	16:35	9/2/2019	Soil	Metal	34.83263	-78.8258
New Hanover 1	5/10/19	12:10	9/2/2019	Soil	Metal	34.17225	-77.9464
New Hanover 2	5/10/19	12:40	9/2/2019	Soil	Metal	34.2164	-77.9464
Wayne County 1	5/10/19	14:57	9/2/2019	Soil	Metal	35.36042	-78.0782

LLOQ (ug/g)

* Values are expressed in unit of ug/g; LLOQ, lower limit of quantification, defined by the lowest qua
| | Al | Sb | As | Ba | Be | Cd | Cr | Co | Cu |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| Code| 7429-90-5 | 7440-36-0 | 7440-38-2 | 7440-39-3 | 7440-41-7 | 7440-43-9 | 7440-47-3 | 7440-48-4 | 7440-50-8 |
| Al | J | J | J | J | J | J | J | J | J |
| Sb | 0.1 | 1 | 5 | 0.1 | 0.1 | 5 | 0.1 | 1 |
| As | 50 | 0.1 | 1 | 5 | 0.1 | 0.1 | 5 | 0.1 | 1 |

Values are expressed in unit of ug/g; LLOQ, lower limit of quantification, defined by the lowest quantifiable point in calibration curve; J, below limit of quantification.
Iron	Lead	Lithium	Manganese/Nickel	Selenium	Silver	Strontium	Zinc
4946	2.858 J	37.24	0.2246	0.2454 J	2.475	12.44	
7378	6.283 J	32.27	1.165	0.2609 J	2.059	12.33	
6571	32.04 J	22.49	1.188	0.4528 J	1.627	20.77	
5686	4.253 J	J	J	J	1.052	6.386	
13260	5.175	5.354	19.13	1.387	0.4024 J	2.519	12.22
7139	32.58 J	167.9	2.883	0.3175 J	61.24	102.6	
9202	58.48 J	77.51	2.696	0.3872 J	19.42	87.23	
7648	50.21 J	35.78	2.687	0.23 J	17.27	274.3	
3014	3.596 J	J	0.4269 J	J	5.057	12.54	
8114	22.23 J	69.79	0.5878	0.3452 J	3.941	19.59	
7393	17.18 J	32.94	1.142	0.4213 J	1.912	22.35	
4930	7.245 J	J	0.7292	0.3143 J	1.094	9.902	
12330	4.787	5.309	15.73	1.227	0.3124 J	2.386	23.92
12660	5.344 J	J	0.3472	0.238 J	6.847	4.052	
5735	2.614 J	J	0.3625 J	J	2.986	2.542	
14070	105.6 J	94.85	6.487	0.6178	0.1996	50.46	288.6
4519	3.128 J	28.02	1.285	0.2405 J	19.5	17.32	
11520	6.283 J	80.08	0.414	0.5198	0.05994	4.998	22.35
6016	3.537 J	77.54	0.6958 J	J	4.213	16.23	
5916	10.35 J	26.3	0.9321	0.2665 J	1.45	15.82	
10680	16.86	5.627	15.09	1.562	0.7693 J	1.888	15.95
9346	8.794 J	23.26	1.433	0.2623 J	1.556	16.74	
9451	7.819 J	47.42 J	0.3661 J	J	16.88	12.72	
5060	10.32 J	116.9	1.495	0.2361 J	12.76	10.5	
7617	18.84 J	45.43	3.992	0.2878 J	42.53	95.28	
8811	98.44 J	55.82	4.938	2.421	0.1468	23.29	176.1
6285	7.085 J	61.55	0.7702 J	J	2.445	16.64	

| 50 | 1 | 5 | 15 | 0.1 | 0.2 | 0.05 | 0.1 | 1 |
Mg	Sn	Tl	V	Hg
7439-95-4	7440-31-5	7440-28-0	7440-62-2	7439-97-6

Magnesium Tin	Thallium	Vanadium	Mercury	
247.9	0.9087 J	2.926	0.006	
236.9	0.8736 J	8.047	0.011	
548.9	0.3837 J	8.007	0.017	
232	0.6986 J	5.709	0.016	
442.6	0.5098 J	13.5	0.018	
571.5	1.365 J	4.725	0.05	
498.2	0.6949 J	9.103	0.047	
642.5	1.021 J	5.62	0.008	
165.9	0.7685 J	1.737	0.003	
430.4	0.3912 J	8.067	0.028	
496.3	0.2933 J	9.006	0.014	
158.3	0.2569 J	5.488	0.02	
389.5	0.5449 J	13.26	0.022	
192.4	0.5405 J	11.87	0.022	
128.8	0.6172 J	5.613	0.011	
1462	1.301 J	18.08	0.051	
269.6	1.315 J	4.402	0.006	
569.5	0.5655 J	10.65	0.022	
383.9	0.9038 J	3.873	0.004	
267.2	0.3154 J	7.255	0.017	
352.8	0.5643 J	12.73	0.031	
995.8	0.4201 J	11.19	0.025	
250.8	0.2081 J	10.23	0.009	
279.6	0.4538 J	6.856	0.058	
940	0.3978 J	8.647	0.014	
857.1	0.4913 J	13.83	0.094	
307.5	0.6697 J	5.285	0.006	
50	0.1	0.1	0.1	0.002
Supplemental Table 6: QC Data for PAH and Organics

Sample Descriptor	Procedure Blank	SAMPLE
Original Sample		
Reporting Units	ng/g	ng/g
Calculation Basis (dry/wet)	Dry	Dry
Method	GCMS	GCMS
Analysis Date	07/31/19	07/31/19

Surrogate Compounds

Surrogate Compounds	% Recovery	% Recovery
d8-Naphthalene	98.9	81.2
d10-Acenaphthene	88.3	78.1
d10-Phenanthrene	78.4	75.2
d12-Chrysene	126.6	76.8
d12-Perylene	110.1	74.5

Total PAHs

Total PAHs	Concentration	Concentration
Total PAHs with Perylene	1.7	224.7
Total PAHs without Perylene	1.7	223.3
Total NS&T PAHs	1.7	174.2

PAH Compounds

PAH Compounds	Concentration	Concentration	
Naphthalene	0.5 J	109.5	
C1-Naphthalenes	0.3 J	8.3	
C2-Naphthalenes	0.0 ND	3.3	
C3-Naphthalenes	0.0 ND	1.2	
C4-Naphthalenes	0.0 ND	0.3 J	
Biphenyl	0.4 <3xMDL	1.0	
Acenaphylene	0.0 ND	0.5	
Acenaphthene	0.0 ND	0.0 ND	
Fluorene	0.0 ND	0.0 ND	
C1-Fluorenes	0.0 ND	0.0 ND	
C2-Fluorenes	0.0 ND	0.0 ND	
C3-Fluorenes	0.0 ND	0.0 ND	
Phenanthrene	0.5 <3xMDL	4.4	
Anthracene	0.0 ND	1.0	
C1-Phenanthrenes/Anthracenes	0.0 ND	4.0	
C2-Phenanthrenes/Anthracenes	0.0 ND	1.1	
C3-Phenanthrenes/Anthracenes	0.0 ND	0.8 J	
C4-Phenanthrenes/Anthracenes	0.0 ND	2.5	
Dibenzothiophene	0.0 ND	0.0 ND	
C1-Dibenzothiophenes	0.0 ND	0.0 ND	
C2-Dibenzothiophenes	0.0 ND	0.0 ND	
C3-Dibenzothiophenes	0.0 ND	0.0 ND	
Fluoranthene	0.0 ND	10.7	
Pyrene	0.0 ND	9.6	
C1-Fluoranthenes/Pyrenes	0.0 ND	3.6	
Compound	Concentration	Detection Limit	J
--------------------------------	---------------	-----------------	------
C2-Fluoranthenes/Pyrenes	0.0	ND	1.4
C3-Fluoranthenes/Pyrenes	0.0	ND	1.0
Benzo(a)anthracene	0.0	ND	4.3
Chrysene	0.0	ND	6.1
C1-Chrysenes	0.0	ND	2.6
C2-Chrysenes	0.0	ND	1.7
C3-Chrysenes	0.0	ND	0.0
C4-Chrysenes	0.0	ND	0.0
Benzo(b)fluoranthene	0.0	ND	9.7
Benzo(k)fluoranthene	0.0	ND	5.2
Benzo(e)pyrene	0.0	ND	7.2
Benzo(a)pyrene	0.0	ND	6.6
Perylene	0.0	ND	1.4
Indeno(1,2,3-c,d)pyrene	0.0	ND	7.9
Dibenzo(a,h)anthracene	0.0	ND	0.0
Benzo(g,h,i)perylene	0.0	ND	8.1
2-Methylnaphthalene	0.2	J	5.2
1-Methylnaphthalene	0.2	J	3.1
2,6-Dimethylnaphthalene	0.0	ND	1.2
1,6,7-Trimethylnaphthalene	0.0	ND	0.6
1-Methylphenanthrene	0.0	ND	3.0
% Recovery	% Recovery		
------------	------------		
81.3	81.2		
78.8	78.1		
79.0	75.2		
74.2	76.8		
76.7	74.5		

Concentration	RPD	Concentration
215.4	4.3	224.7
213.9	4.3	223.3
168.0	3.6	174.2

Concentration	RPD	Concentration	
109.0	0.5	109.5	
2.2	116.3	<10xMDL	8.3
1.0	104.4	<10xMDL	3.3
0.0	ND	1.2	
0.0	ND	0.3	
1.3	26.5	<10xMDL	1.0
0.9	46.8	<10xMDL	0.5
0.0	ND	0.0	
0.2	J	0.0	
0.0	ND	0.0	
0.7	J	0.0	
0.0	ND	0.0	
4.2	4.7	<10xMDL	4.4
1.1	11.3	<10xMDL	1.0
3.5	14.2	<10xMDL	4.0
0.7	J	1.1	
2.8	8.8	0.8	
2.0	22.7	<10xMDL	2.5
0.0	ND	0.0	
0.0	ND	0.0	
0.0	ND	0.0	
10.8	0.5	10.7	
9.3	2.6	<10xMDL	9.6
3.6	0.8	<10xMDL	3.6
J	ND	1.4	
0.0	ND	1.0	
4.3	0.2	<10xMDL	4.3
6.9	12.4	6.1	
2.0	23.6	<10xMDL	2.6
0.0	ND	1.7	
0.0	ND	0.0	
0.0	ND	0.0	
10.0	2.6	9.7	
5.8	10.8	5.2	
7.9	9.5	7.2	
7.1	6.4	<10xMDL	6.6
1.4	2.8	<10xMDL	1.4
7.7	1.7	7.9	
0.0	ND	0.0	
8.2	2.1	8.1	
1.5	109.6 Q	<10xMDL	5.2
0.7	J	3.1	
0.4	103.7 Q	<10xMDL	1.2
0.0	ND	0.6	
2.1	36.4 Q	<10xMDL	3.0

Average %RPD 26.9
Matrix Spike	Robeson County 1_May 20:
19	%
	Dry
	GCMS
	07/31/19

% Recovery
90.2
79.6
76.0
82.0
91.8

Concentration
NA
NA
NA

% Recovery
43.5

J

| 106.1 |
| 88.5 |
| 88.0 |
| 87.1 |
| 74.5 |
| 93.9 |

J

| 89.3 |
| 111.2 |
| 106.0 |
J	J
77.0	93.9

ND	ND
84.6	116.4
102.2	111.5
85.3	133.9

ND	101.8
107.5	43.5
56.5	77.4
79.5	78.1

Average %Recovery 89.5
Supplemental Table 7: QC Data for Metals

ID	17075
SDG	Soil
Matrix	Soil
Receive Date	
Digestion Batch	SD-0472
Sample Type	Blank
Digestion Date	8/28/2019
Analysis Date	9/2/2019
Digestion Dry Wt(g)	1.00

	Reporting Limit	ICP-MS	Conc.(ug/g)	Conc.(ug/g)	QUAL	Spike (ug)
Alum	50.00		17.51	J	200.00	
Antim	0.10	0.08	J	50.00		
Arsen	1.00	0.01	J	200.00		
Barai	5.00	0.00	ND	200.00		
Beryl	0.10	0.00	J	5.00		
Cadmi	0.10	0.00	J	5.00		
Chrom	5.00	0.00	ND	20.00		
Cobal	0.10	0.00	ND	50.00		
Copper	1.00	0.03	J	25.00		
Iron	50.00	405.50	100.00			
Lead	1.00	0.03	J	50.00		
Lithiu	5.00	0.00	ND	20.00		
Mangan	15.00	0.00	ND	50.00		
Nickel	0.10	0.00	ND	50.00		
Seleni	0.20	0.02	J	200.00		
Silver	0.05	0.01	J	5.00		
Stront	0.10	0.07	J	na		
Zinc	1.00	0.17	J	50.00		
Magnes	50.00	60.53	na			
Tin	0.10	1.36	na			
Thall	0.10	0.00	J	200.00		
Vanad	0.10	0.00	ND	50.00		
Mercur	0.002	0.002	J	1		
Conc. (ug/g)	QUAL	% Recov	Recov	QUAL	Conc. (ug/g)	
-------------	------	---------	-------	------	-------------	
195.50		97.75			743.50	
45.83		91.66			0.02	
186.80		93.40			0.19	
195.80		97.90			2.94	
5.08		101.68			0.02	
4.68		93.58			0.02	
20.18		100.90			1.52	
50.99		101.98			0.10	
25.20		100.80			3.15	
713.60			invalid		1472.00	
49.71		99.42			3.60	
21.00		105.00			0.43	
48.19		96.38			7.30	
51.13		102.26			0.43	
187.70		93.85			0.15	
5.83		116.68			0.01	
na		na			5.06	
47.37		94.74			12.54	
na		na			165.90	
na		na			0.77	
201.20		100.60			0.00	
51.13		102.26			1.74	
0.101		101			0.003	
New Hanover 4_Sep 2018

T7554

Soil

SD-0472

DUP

8/28/2019

9/2/2019

1.015

Duplicate Concentrations (ug/g)

QUAL	Conc. (ug/g)	QUAL	RPD	QUAL
J	863.90	J	3.75	
J	0.03	J	7.94	
J	0.27	J	9.34	
J	2.76	J	1.55	
J	0.02	J	4.30	
J	0.03	J	10.57	
J	1.50	J	0.25	
	0.13		5.66	
	4.81		10.44	
	1494.00		0.37	
	4.08		3.13	
J	0.51	J	4.23	
J	8.44	J	3.62	
J	0.48		3.10	
J	0.24		11.95	
J	0.01	J	3.47	
	5.73		3.14	
	14.28		3.24	
	168.80		0.43	
	0.88		3.41	
J	0.01	J	5.51	
	2.37		7.74	
	0.005		0.50	
New Hanover 4_Sep 2018
T7554
Soil
Soil
SD-0472
SPIKE
8/28/2019
9/2/2019
1.001
SD-0472
SRM-SAND-B
8/28/2019
9/2/2019
1.055

Conc.(ug/g)	QUAL	% Recov	Recov	QUAL	Conc.(ug/g)
1223.00	in valid	6663.00	1.30		
34.10	68.23	1.30			
183.20	91.60	23.36			
191.90	94.58	10.97			
4.89	97.43	1.83			
4.70	93.75	104.80			
20.89	96.97	45.44			
48.98	97.86	10.36			
28.63	102.03	47.74			
1652.00	in valid	10690.00	111.10		
52.72	98.35	na			
20.45	100.18	na			
52.69	90.87	248.40			
49.26	97.76	36.26			
183.50	91.77	50.47			
5.87	117.33	3.38			
na	na	38.31			
61.52	98.06	554.70			
na	na	960.90			
na	na	19.62			
196.60	98.40	45.52			
50.12	96.86	50.99			
0.083	83.522	0.074			
QUAL	% Recov	Recov			
------	---------	-------			
		QUAL			
103.62					
50.12					
91.25					
106.50					
76.25					
94.41					
93.31					
87.06					
85.25					
100.85					
82.30					
na					
85.07					
85.52					
80.88					
102.33					
103.54					
88.33					
89.80					
98.10					
79.72					
82.24					
92.5					
Supplemental Table 8: Cook's Distance results for each sample and metal.

ID	Short_ID	Aluminum	Antimony	cooksd	outlier	Y_Column	Arsenic	cooksd	
1	BL1 [Sep-1]	1276	NA	NA	NA	Antimony	NA	NA	
2	BL2 [Sep-1]	5435	NA	NA	NA	Antimony	NA	NA	
3	BL2 [Jan-1]	10920	NA	NA	Antimony	1.621	0.011487	NA	
4	BL2 [May-1]	6292	NA	NA	Antimony	NA	NA		
5	BL3 [Jan-1]	4139	NA	NA	Antimony	NA	NA		
6	BL3 [May-1]	2516	NA	NA	Antimony	NA	NA		
7	RO1 [Sep-1]	6364	NA	NA	Antimony	1.07	0.063914	NA	
8	RO1 [Jan-1]	3960	NA	NA	Antimony	2.425	0.0943	NA	
9	RO1 [May-1]	5250	NA	NA	Antimony	NA	NA		
10	RO2 [Sep-1]	4014	NA	NA	Antimony	1.454	0.01825	NA	
11	RO2 [Jan-1]	6642	NA	NA	Antimony	1.041	0.069225	NA	
12	RO2 [May-1]	11670	NA	NA	Antimony	1.702	0.005153	NA	
13	RO3 [Sep-1]	13120	NA	NA	Antimony	1.96	0.016192	NA	
14	RO3 [Jan-1]	11740	NA	NA	Antimony	1.807	1.03E-06	NA	
15	RO3 [May-1]	8254	NA	NA	Antimony	2.636	0.112957	NA	
16	NH1 [Sep-1]	1508	0.2327	167.458	1	Antimony	NA	NA	
17	NH1 [Jan-1]	888.5	NA	NA	Antimony	NA	NA		
18	NH1 [May-1]	3037	0.1779	0.431088	1	Antimony	2.401	0.120545	NA
19	NH2 [Sep-1]	3160	0.1273	0.586916	1	Antimony	2.442	0.13021	NA
20	NH3 [Sep-1]	1561	NA	NA	Antimony	1.402	0.052788	NA	
21	NH4 [Sep-1]	743.5	NA	NA	Antimony	NA	NA		
22	NH4 [May-1]	2233	NA	NA	Antimony	1.071	0.166314	NA	
23	WA1 [Sep-1]	6117	NA	NA	Antimony	NA	NA		
24	WA1 [Jan-1]	6286	NA	NA	Antimony	NA	NA		
25	WA1 [May-1]	2924	NA	NA	Antimony	NA	NA		
26	WA2 [Jan-1]	1486	NA	NA	Antimony	NA	NA		
outlier	Y_Column	Barium	cooksD	outlier	Y_Column	Beryllium	cooksD	outlier	
---------	----------	---------	--------	---------	----------	-----------	--------	---------	
NA	Arsenic	6.37	0.044992	NA	Barium	NA	NA	NA	
NA	Arsenic	9.077	0.006341	0	Barium	0.1239	0.044753	0	
0	Arsenic	11.18	0.002087	0	Barium	NA	NA	NA	
NA	Arsenic	13.64	0.001366	0	Barium	0.1182	0.374628	1	
NA	Arsenic	5.556	0.015504	0	Barium	NA	NA	NA	
NA	Arsenic	23.74	0.000715	0	Barium	NA	NA	NA	
0	Arsenic	15.78	0.000319	0	Barium	NA	NA	NA	
0	Arsenic	7.813	0.011669	0	Barium	NA	NA	NA	
NA	Arsenic	13.88	0.001679	0	Barium	NA	NA	NA	
0	Arsenic	5.487	0.016276	0	Barium	NA	NA	NA	
0	Arsenic	18.86	0.000135	0	Barium	NA	NA	NA	
0	Arsenic	15.86	0.003206	0	Barium	NA	NA	NA	
0	Arsenic	13.16	0.001309	0	Barium	NA	NA	NA	
0	Arsenic	14.71	0.001224	0	Barium	NA	NA	NA	
0	Arsenic	20.59	0.002559	0	Barium	NA	NA	NA	
NA	Arsenic	91.17	0.773076	1	Barium	NA	NA	NA	
NA	Arsenic	5.776	0.057593	0	Barium	NA	NA	NA	
0	Arsenic	46.43	0.065325	0	Barium	0.1184	0.10307	0	
0	Arsenic	23.62	0.000826	0	Barium	0.1035	0.024954	0	
0	Arsenic	14.47	0.009326	0	Barium	NA	NA	NA	
NA	Arsenic	23.89	0.000718	0	Barium	NA	NA	NA	
NA	Arsenic	19.36	0.000129	0	Barium	0.1562	0.000921	0	
NA	Arsenic	31.13	0.013291	0	Barium	0.2081	0.664088	1	
NA	Arsenic	9.25	0.01394	0	Barium	NA	NA	NA	
NA	Arsenic	10	0.024285	0	Barium	NA	NA	NA	
Beryllium	Cadmium	outlier	Chromium	Cadmium	outlier	Chromium			
-----------	---------	---------	----------	---------	---------	----------			
NA	NA	NA	NA	NA	NA	NA			
NA	NA	NA	Cadmium	7.066	0.001979	0			
NA	NA	NA	Cadmium	5.532	0.02709	0			
NA	NA	NA	Cadmium	NA	NA	NA			
NA	NA	NA	Cadmium	NA	NA	NA			
0.1059	0.073592	0	Cadmium	5.127	0.050481	0			
NA	NA	NA	Cadmium	NA	NA	NA			
NA	NA	NA	Cadmium	5.143	0.070199	0			
NA	NA	NA	Cadmium	5.067	0.054799	0			
NA	NA	NA	Cadmium	7.78	0.057654	0			
NA	NA	NA	Cadmium	7.559	0.044078	0			
0.1663	0.133133	0	Cadmium	7.216	0.006776	0			
NA	NA	NA	Cadmium	7.093	0.003127	0			
0.2776	0.002045	0	Cadmium	6.549	0.002378	0			
NA	NA	NA	Cadmium	NA	NA	NA			
0.6114	0.427373	1	Cadmium	10.01	0.650232	1			
0.2645	0.000192	0	Cadmium	7.079	0.01807	0			
0.2052	0.050899	0	Cadmium	NA	NA	NA			
NA	NA	NA	Cadmium	NA	NA	NA			
0.1649	0.069572	0	Cadmium	6.39	9.48E-05	0			
NA	NA	NA	Cadmium	NA	NA	NA			
NA	NA	NA	Cadmium	5.723	0.018551	0			
NA	NA	NA	Cadmium	NA	NA	NA			
NA	NA	NA	Cadmium	NA	NA	NA			
NA	NA	NA	Cadmium	NA	NA	NA			
NA	NA	NA	Cadmium	NA	NA	NA			
NA	NA	NA	Cadmium	NA	NA	NA			
NA	NA	NA	Cadmium	NA	NA	NA			
Cobalt	cooksd	outlier	Y_Column	Copper	cooksd	outlier	Y_Column	Iron	
---------	--------	---------	----------	---------	--------	---------	----------	-------	
0.2592	0.025984	0	Cobalt	1.825	0.035704	0	Copper	4946	
0.6202	0.00158	0	Cobalt	2.719	0.002621	0	Copper	7378	
NA	NA	NA	Cobalt	1.561	5.17E-05	0	Copper	12660	
0.3106	0.005419	0	Cobalt	2.601	0.001917	0	Copper	9451	
NA	NA	NA	Cobalt	1.024	5.17E-05	0	Copper	5735	
0.3597	0.006582	0	Cobalt	3.109	0.011121	0	Copper	5060	
0.213	0.012571	0	Cobalt	2.501	0.002017	0	Copper	6571	
0.1066	0.024119	0	Cobalt	1.46	0.009652	0	Copper	4930	
0.1827	0.013982	0	Cobalt	1.859	0.004724	0	Copper	5916	
0.1052	0.024013	0	Cobalt	1.045	0.010963	0	Copper	5686	
0.3232	0.004905	0	Cobalt	2.519	0.00174	0	Copper	7393	
0.2513	0.030592	0	Cobalt	1.72	0.001576	0	Copper	10680	
0.2387	0.048846	0	Cobalt	1.846	0.014026	0	Copper	13260	
0.2556	0.029641	0	Cobalt	1.732	0.00185	0	Copper	12330	
0.469	1.67E-05	0	Cobalt	2.052	0.001117	0	Copper	9346	
0.5888	0.000273	0	Cobalt	13.72	0.017526	0	Copper	7139	
0.3487	0.015282	0	Cobalt	2.494	0.036404	0	Copper	4519	
1.172	0.066412	0	Cobalt	23.78	0.113489	0	Copper	8811	
0.8627	0.016993	0	Cobalt	21.21	0.079095	0	Copper	9202	
0.7486	0.009682	0	Cobalt	6.245	0.003672	0	Copper	7648	
0.1006	0.074961	0	Cobalt	3.149	0.03219	0	Copper	3014	
0.7929	0.012553	0	Cobalt	36.02	0.419935	1	Copper	7617	
1.502	0.145287	0	Cobalt	2.608	0.002069	0	Copper	8114	
1.6	0.182301	1	Cobalt	3.716	0.000529	0	Copper	11520	
0.5501	1.74E-05	0	Cobalt	2.63	0.01059	0	Copper	6285	
0.45	0.003072	0	Cobalt	2.51	0.025738	0	Copper	6016	
cooks	outlier	Y_Column	Lead	cooks	outlier	Y_Column	Lithium	cooks	
-------	---------	----------	------	-------	---------	----------	---------	-------	
0.004438	0	Iron	2.858	0.03655	0	Lead	NA	NA	
0.002937	0	Iron	6.283	0.0047	0	Lead	NA	NA	
0.069597	0	Iron	5.344	0.004142	0	Lead	NA	NA	
0.008587	0	Iron	7.819	0.002959	0	Lead	NA	NA	
0.018475	0	Iron	2.614	0.011328	0	Lead	NA	NA	
0.016519	0	Iron	10.32	0.006801	0	Lead	NA	NA	
0.036871	0	Iron	32.04	0.01339	0	Lead	NA	NA	
0.041808	0	Iron	7.245	0.006033	0	Lead	NA	NA	
0.031302	0	Iron	10.35	0.001858	0	Lead	NA	NA	
0.018132	0	Iron	4.253	0.009475	0	Lead	NA	NA	
0.017517	0	Iron	17.18	0.000206	0	Lead	NA	NA	
0.062064	0	Iron	16.86	0.016418	0	Lead	5.627	0.553298	
0.027949	0	Iron	5.175	0.001604	0	Lead	5.354	408.8673	
0.012847	0	Iron	4.787	0.004384	0	Lead	5.309	0.454055	
0.001977	0	Iron	8.794	0.001604	0	Lead	NA	NA	
0.044876	0	Iron	32.58	0.011287	0	Lead	NA	NA	
0.009877	0	Iron	3.128	0.042551	0	Lead	NA	NA	
0.060291	0	Iron	98.44	0.361951	1	Lead	NA	NA	
0.075389	0	Iron	58.48	0.085674	0	Lead	NA	NA	
0.07483	0	Iron	50.21	0.075592	0	Lead	NA	NA	
0.101345	0	Iron	3.596	0.043353	0	Lead	NA	NA	
0.037045	0	Iron	18.84	0.000253	0	Lead	NA	NA	
0.00068	0	Iron	22.23	0.001914	0	Lead	NA	NA	
0.086041	0	Iron	6.283	0.004238	0	Lead	NA	NA	
0.000251	0	Iron	7.085	0.009775	0	Lead	NA	NA	
0.003942	0	Iron	3.537	0.030799	0	Lead	NA	NA	
outlier	Y_Column	Magnesium	cooksd	outlier	Y_Column	Manganese	cooksd		
---------	----------	-----------	--------	---------	----------	-----------	--------		
NA	Lithium	247.9	0.023404	0	Magnesium	37.24	0.069472	0	
NA	Lithium	236.9	0.011828	0	Magnesium	32.27	0.007456	0	
NA	Lithium	192.4	0.089303	0	Magnesium	NA	NA	NA	
NA	Lithium	250.8	0.011372	0	Magnesium	47.42	6.98E-05	0	
NA	Lithium	128.8	0.031795	0	Magnesium	NA	NA	NA	
NA	Lithium	279.6	0.01045	0	Magnesium	116.9	0.102526	0	
NA	Lithium	548.9	0.00697	0	Magnesium	22.49	0.014191	0	
NA	Lithium	158.3	0.026343	0	Magnesium	NA	NA	NA	
NA	Lithium	267.2	0.008109	0	Magnesium	26.3	0.014789	0	
NA	Lithium	232	0.013341	0	Magnesium	NA	NA	NA	
NA	Lithium	496.3	0.002619	0	Magnesium	32.94	0.003488	0	
1	Lithium	352.8	0.010618	0	Magnesium	15.09	0.001193	0	
1	Lithium	442.6	0.001252	0	Magnesium	19.13	0.019385	0	
1	Lithium	389.5	0.002457	0	Magnesium	15.73	0.000509	0	
NA	Lithium	995.8	0.230036	1	Magnesium	23.26	0.006947	0	
NA	Lithium	571.5	0.019152	0	Magnesium	167.9	0.50836	1	
NA	Lithium	269.6	0.020077	0	Magnesium	28.02	0.139404	0	
NA	Lithium	857.1	0.09471	0	Magnesium	55.82	0.001558	0	
NA	Lithium	498.2	0.003178	0	Magnesium	77.51	0.007667	0	
NA	Lithium	642.5	0.03972	0	Magnesium	35.78	0.06297	0	
NA	Lithium	165.9	0.062066	0	Magnesium	NA	NA	NA	
NA	Lithium	940	0.169782	1	Magnesium	45.43	0.019371	0	
NA	Lithium	430.4	5.68E-05	0	Magnesium	69.79	0.013759	0	
NA	Lithium	569.5	0.009212	0	Magnesium	80.08	0.031178	0	
NA	Lithium	307.5	0.005897	0	Magnesium	61.55	0.000101	0	
NA	Lithium	383.9	0.000748	0	Magnesium	77.54	0.002516	0	
Y_Column	Mercury	cooksd	outlier	Y_Column	Nickel	cooksd	outlier	Y_Column	
----------	---------	--------	---------	----------	--------	--------	---------	----------	
Manganese	0.006	0.029527	0	Mercury	0.2246	0.078027	0	Nickel	
Manganese	0.011	0.006248	0	Mercury	1.165	0.001009	0	Nickel	
Manganese	0.022	7.51E-05	0	Mercury	0.3472	0.035587	0	Nickel	
Manganese	0.009	0.009755	0	Mercury	NA	NA	NA	Nickel	
Manganese	0.011	0.006549	0	Mercury	0.3625	0.022112	0	Nickel	
Manganese	0.058	0.098653	0	Mercury	1.495	0.000323	0	Nickel	
Manganese	0.017	0.001585	0	Mercury	1.188	0.000495	0	Nickel	
Manganese	0.02	0.000262	0	Mercury	0.7292	0.01077	0	Nickel	
Manganese	0.017	0.001354	0	Mercury	0.9321	0.003926	0	Nickel	
Manganese	0.016	0.002049	0	Mercury	NA	NA	0	Nickel	
Manganese	0.014	0.004123	0	Mercury	1.142	0.000714	0	Nickel	
Manganese	0.031	0.020775	0	Mercury	1.562	0.029368	0	Nickel	
Manganese	0.018	0.01054	0	Mercury	1.387	0.035337	0	Nickel	
Manganese	0.022	0.000114	0	Mercury	1.227	0.005135	0	Nickel	
Manganese	0.025	0.00062	0	Mercury	1.433	0.001283	0	Nickel	
Manganese	0.05	0.082444	0	Mercury	2.883	0.048904	0	Nickel	
Manganese	0.006	0.033535	0	Mercury	1.285	0.007711	0	Nickel	
Manganese	0.094	0.340787	1	Mercury	4.938	0.24162	1	Nickel	
Manganese	0.047	0.039402	0	Mercury	2.696	0.026415	0	Nickel	
Manganese	0.008	0.020637	0	Mercury	2.687	0.033961	0	Nickel	
Manganese	0.003	0.04956	0	Mercury	0.4269	0.072964	0	Nickel	
Manganese	0.014	0.005523	0	Mercury	3.992	0.149695	0	Nickel	
Manganese	0.028	0.001713	0	Mercury	0.5878	0.010658	0	Nickel	
Manganese	0.022	6.06E-06	0	Mercury	0.414	0.016009	0	Nickel	
Manganese	0.006	0.017788	0	Mercury	0.7702	0.014511	0	Nickel	
Manganese	0.004	0.034858	0	Mercury	0.6958	0.032671	0	Nickel	
Selenium	cooksd	outlier	Y_Column	Silver	cooksd	outlier	Y_Column	Strontium	
----------	--------	---------	----------	--------	--------	---------	----------	-----------	
0.2454	0.014471	0	Selenium	NA	NA	NA	Silver	2.475	
0.2609	0.007377	0	Selenium	NA	NA	NA	Silver	2.059	
0.238	0.014927	0	Selenium	NA	NA	NA	Silver	6.847	
0.3661	0.000642	0	Selenium	NA	NA	NA	Silver	16.88	
NA	NA	NA	Selenium	NA	NA	NA	Silver	2.986	
0.2361	0.010007	0	Selenium	NA	NA	NA	Silver	12.76	
0.4528	1.95E-05	0	Selenium	NA	NA	NA	Silver	1.627	
0.3143	0.002527	0	Selenium	NA	NA	NA	Silver	1.094	
0.2665	0.003601	0	Selenium	NA	NA	NA	Silver	1.45	
NA	NA	NA	Selenium	NA	NA	NA	Silver	1.052	
0.4213	3.79E-05	0	Selenium	NA	NA	NA	Silver	1.912	
0.7693	0.069132	0	Selenium	NA	NA	NA	Silver	1.888	
0.4024	0.00014	0	Selenium	NA	NA	NA	Silver	2.519	
0.3124	0.00669	0	Selenium	NA	NA	NA	Silver	2.386	
0.2623	0.005245	0	Selenium	NA	NA	NA	Silver	1.556	
0.3175	0.0058	0	Selenium	NA	NA	NA	Silver	61.24	
0.2405	0.017517	0	Selenium	NA	NA	NA	Silver	19.5	
2.421	0.692376	1	Selenium	0.1468	NA	NA	Silver	23.29	
0.3872	0.000723	0	Selenium	NA	NA	NA	Silver	19.42	
0.23	0.014959	0	Selenium	NA	NA	NA	Silver	17.27	
NA	NA	NA	Selenium	NA	NA	Silver	5.057		
0.2878	0.006469	0	Selenium	NA	NA	NA	Silver	42.53	
0.3452	0.001053	0	Selenium	NA	NA	NA	Silver	3.941	
0.5198	0.000739	0	Selenium	0.05994	NA	NA	Silver	4.998	
NA	NA	NA	Selenium	NA	NA	Silver	2.445		
NA	NA	NA	Selenium	NA	NA	Silver	4.213		
cooksd	outlier	Y_Column	Tin	cooksd	outlier	Y_Column	Vanadium	cooksd	
--------	---------	----------	---------	--------	---------	----------	----------	--------	
0.05189	0	Strontium	0.9087	0.012864	0	Tin	2.926	0.053933	
0.006578	0	Strontium	0.8736	0.0207	0	Tin	8.047	0.000249	
0.020825	0	Strontium	0.5405	0.030546	0	Tin	11.87	0.007967	
0.010066	0	Strontium	0.2081	0.043569	0	Tin	10.23	0.009323	
0.009306	0	Strontium	0.6172	0.000522	0	Tin	5.613	0.014513	
0.000393	0	Strontium	0.4538	0.032891	0	Tin	6.856	0.00505	
0.005495	0	Strontium	0.3837	0.011564	0	Tin	8.007	0.005287	
0.015036	0	Strontium	0.2569	0.053141	0	Tin	5.488	0.014734	
0.008197	0	Strontium	0.3154	0.02586	0	Tin	7.255	0.003732	
0.014774	0	Strontium	0.6986	0.000395	0	Tin	5.709	0.011606	
0.004579	0	Strontium	0.2933	0.024945	0	Tin	9.006	0.00208	
0.00404	0	Strontium	0.5643	0.072272	0	Tin	12.73	0.00268	
0.033031	0	Strontium	0.5098	0.120666	0	Tin	13.5	0.019548	
0.006524	0	Strontium	0.5449	0.062343	0	Tin	13.26	0.000928	
0.002678	0	Strontium	0.4201	0.003234	0	Tin	11.19	0.005524	
0.524743	1	Strontium	1.365	0.228875	1	Tin	4.725	0.003205	
0.002223	0	Strontium	1.315	0.216273	1	Tin	4.402	0.002087	
0.015601	0	Strontium	0.4913	0.017397	0	Tin	13.83	0.360492	
0.005981	0	Strontium	0.6949	1.5E-06	0	Tin	9.103	0.042118	
0.000575	0	Strontium	1.021	0.042163	0	Tin	5.62	0.000963	
0.047424	0	Strontium	0.7685	0.000454	0	Tin	1.737	0.119297	
0.15629	1	Strontium	0.3978	0.056086	0	Tin	8.647	0.066489	
0.002578	0	Strontium	0.3912	0.011313	0	Tin	8.067	0.002803	
0.001317	0	Strontium	0.5655	2.17E-05	0	Tin	10.65	0.016368	
0.02026	0	Strontium	0.6697	0.00054	0	Tin	5.285	0.007816	
0.034874	0	Strontium	0.9038	0.012593	0	Tin	3.873	0.020462	
outlier	Y_Column	Zinc	cooksdf outlier	Y_Column					
---------	----------	-------	-----------------	----------					
0	Vanadium	12.44	0.032913	0					
0	Vanadium	12.33	0.003795	0					
0	Vanadium	4.052	0.000157	0					
0	Vanadium	12.72	0.002667	0					
0	Vanadium	2.542	0.011294	0					
0	Vanadium	10.5	0.017705	0					
0	Vanadium	20.77	0.000912	0					
0	Vanadium	9.902	0.00843	0					
0	Vanadium	15.82	0.003077	0					
0	Vanadium	6.386	0.009893	0					
0	Vanadium	22.35	0.000516	0					
0	Vanadium	15.95	0.006693	0					
0	Vanadium	12.22	0.019278	0					
0	Vanadium	23.92	0.017694	0					
0	Vanadium	16.74	0.000275	0					
0	Vanadium	102.6	0.022624	0					
0	Vanadium	17.32	0.033519	0					
1	Vanadium	176.1	0.122241	0					
0	Vanadium	87.23	0.010109	0					
0	Vanadium	274.3	0.569666	1					
0	Vanadium	12.54	0.044201	0					
0	Vanadium	95.28	0.015313	0					
0	Vanadium	19.59	0.0013	0					
0	Vanadium	22.35	0.000733	0					
0	Vanadium	16.64	0.01025	0					
0	Vanadium	16.23	0.024777	0					
Supplemental Table 9: Pyrogenic Index (PI) and PAH Source Apportionment Ratios.

Location	Date	Pyrogenic Index	Fanth/Fanth+Pyre													
Bladen County 1	9/19/2018	6.873366017	0.56													
Bladen County 2	9/19/2018	0.076667019														
Robeson County 1	9/21/2018	1.230711601	0.57													
Robeson County 2	9/21/2018	0.053651811	0.00													
Robeson County 3	9/21/2018	2.747979775	0.54													
New Hanover 1	9/22/2018	7.261122568	0.55													
New Hanover 2	9/22/2018	5.544656686	0.56													
New Hanover 3	9/22/2018	2.417385008	0.53													
New Hanover 4	9/22/2018	4.115972819	0.52													
Wayne County 1	9/23/2018	3.463263798	0.59													
Wayne County 2	9/23/2018	10.07076261	0.56													
Bladen County 2	1/29/2019	0.088235294	0.00													
Bladen County 3	1/29/2019	0.064941744	0.29													
Robeson County 1	1/29/2019	4.090841566	0.56													
Robeson County 2	1/29/2019	0.21560181	0.34													
Robeson County 3	1/29/2019	6.556415439	0.56													
New Hanover 1	1/30/2019	7.109966828	0.55													
New Hanover 4	1/30/2019	5.976717834	0.54													
Wayne County 1	1/30/2019	2.357564479	0.63													
Wayne County 2	1/30/2019	1.413025976	0.46													
Bladen County 2	5/9/2019	3.401988636	0.52													
Bladen County 3	5/9/2019	1.615897573	0.52													
Robeson County 1	5/9/2019	2.88793806	0.53													
Robeson County 2	5/9/2019	4.108266667	0.49													
Robeson County 3	5/9/2019	4.498203593	0.54													
New Hanover 1	5/10/2019	8.941278628	0.55													
New Hanover 4	5/10/2019	15.60672925	0.54													
Wayne County 1	5/10/2019	0.350572614	0.37													
BaA/BaA+Chrys	Anth/Anth+Phen	Indeno/Indeno+BghiP														
--------------	---------------	--------------------														
0.37	0.92	0.48														
0.31	0.77	0.45														
0.46	0.80	0.49														
0.40	0.83	0.47														
0.43	0.58	0.47														
0.32	0.69	0.44														
0.34	0.79	0.46														
0.40	0.28	0.52														
0.38		0.48														
0.29	0.75	0.45														
		0.41														
0.48	0.81	0.50														
0.38	0.70	0.46														
0.31	0.88	0.46														
0.33	0.59	0.56														
0.33	0.75	0.43														
0.40		0.42														
0.29	0.26	0.53														
0.41	0.19	0.49														
0.37	0.37	0.45														
0.38		0.48														
0.45	0.28	0.50														
0.38	0.24	0.51														
0.36	0.07	0.52														
Analyte	Screening Levels (ng/g)	key	Wayne County 2 January 30, 2019	Wayne County 2 September 23, 2018												
----------------------	-------------------------	-----------	---------------------------------	-----------------------------------												
Aldrin	39 cancer	0	0	0												
Alpha-Chlordane	1700 cancer	0	0	0												
Gamma-Chlordane	1700 cancer	0	0	0												
Oxychlordane	1700 cancer	0	0	0												
2,4'-DDE	2000 cancer	0	0	0												
4,4'-DDE	2000 cancer	0	0	0												
2,4'-DDT	1900 cancer	0	0	0												
4,4'-DDT	1900 cancer	0	0	0												
Dieldrin	34 cancer	0	0	0												
Heptachlor	130 cancer	0	0	0												
Hexachlorobenzene	210 cancer	0	0	0												
Mirex	36 cancer	0	0	0												
PCB 128/167	120 cancer	0	0	0												
PCB 105/127	120 cancer	0	0	0												
4,4'-DDD	1900 non-cancer	0	0	0												
2,4'-DDD	1900 non-cancer	0	0	0												
Chlorpyrifos	63000 non-cancer	0	0	0												
Endosulfan II	470000 non-cancer	0	0	0												
Endosulfan Sulfate	380000 non-cancer	0	0	0												
Pentachlorobenzene	63000 non-cancer	0	0	0												
Wayne Co	Wayne Co	New Hanover	Robeson Co													
----------	----------	-------------	-------------	-------------	-------------	-------------	-------------	-------------								
0 0.097436 0.025641 0.020513 0.035897 0.182051 0 0.004118 0 0 0 0	0 0 0 0 0 0 0.000118 0 0 0 0	0 0 0 0 0 0 0 0.000118 0 0 0	0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0.0001 0 0 0 0.00005	0 0.004 0.00545 0.0006 0.0003 0.00325 0.00035 0 0.00445	0 0 0 0 0 0 0.000211 0 0.000947 0 0.004105 0 0 0 0 0.000158 0 0.004474 0.179412	0 0 0 0 0 0 0 0 0 0 0	0 0 0.010769 0 0 0 0 0 0 0 0	0 0.005238 0 0 0.001429 0 0 0 0.01381 0 0 0.016667	0 0 0 0 0 0 0 0 0 0 0 0 0.024167	0 0 0 0 0 0.001667 0 0 0 0.014167 0 0 0 0 0.001684 0 0 0 0 0 0.002368 0.000158	0 0 0 0 0 0 0 0.000105 0 5.26E-05	0 0.000208 0 1.27E-05 3.49E-05 0 2.22E-05 0 3.65E-05	0 0 0 0 0 0 0 0 0 0 0 0 0 0.00013 1.21E-05	0 0 0 0 0 1.32E-06 0 0 0 0 0 0 0 0 0 0.000019 0	0 9.52E-06 2.06E-05 0 1.59E-06 0 0 0 0 0 0 0 0 0 0 0 0 0
Robeson	Robeson	Robeson	Robeson	Robeson	Bladen	Bladen	Bladen	Bladen								
----------	----------	----------	----------	----------	-----------	-----------	-----------	-----------								
0	0.005128	0	0	0	0	0	0	0								
0	0.000118	0	0	0	0	0	0	0								
0	0.000118	0	0	0	0	0	0	0								
0	0	0	0	0.000294	0	0	0	0								
0	0	0	0	0.0001	0	0	0	0								
0.00065	0.00045	0.00175	0.0005	0.00715	0.00065	0.0025	0.00065	0.0001								
0	0	0.000263	0	0	0.000211	0.000737	0	0								
0	0.000737	0.000684	0	0.003	0.000526	0.003211	0	0								
0	0	0	0	0	0	0	0	0								
0	0	0	0	0	0	0	0	0								
0.000263	0.000158	0.000474	0	0.001316	0.000158	0.000368	0.000895	0.000158								
0	0	0.000105	0	0.000158	0	0.000158	0	5.26E-05								
4.44E-05	3.97E-05	0.000019	1.75E-05	0.000949	3.33E-05	3.17E-05	0	9.52E-06								
5.96E-06	0	7.87E-06	0	1.68E-05	0	1.06E-05	0	0								
0	0	0	0	0	0	0	0	0								
0.00263	0.00158	0.00158	0.000474	0	0.000368	0.000895	0.000158	0								
4.44E-05	3.97E-05	0.000019	1.75E-05	0.000949	3.33E-05	3.17E-05	0	9.52E-06								
5.96E-06	0	7.87E-06	0	1.68E-05	0	1.06E-05	0	0								
Unity 1																
Sample Location ID	Date	Naphthalene	Acenaphthene	Acenaphthylene	Fluorene											
---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---
Bladen County 1	9/19/2018	NA	1.592	NA	1.696	2.129										
Bladen County 2	9/19/2018	NA	NA	NA	NA											
Bladen County 2	1/29/2019	1.65	NA	NA	NA											
Bladen County 2	1/29/2019	NA	0.176	NA	NA											
Bladen County 2	5/9/2019	NA	0.35	NA	NA											
Bladen County 2	5/9/2019	17.391	1.02	NA	NA											
Robeson County 1	9/21/2018	9.339	2.284	0.293	0.326											
Robeson County 2	9/21/2018	7.554	0.436	NA	NA											
Robeson County 3	9/21/2018	0.598	0.411	NA	0.345											
Robeson County 1	1/29/2019	13.655	1.689	0.331	0.329											
Robeson County 2	1/29/2019	NA	0.205	NA	NA											
Robeson County 3	1/29/2019	1.134	0.507	2.496	3.199											
Robeson County 1	5/9/2019	NA	0.54	NA	NA											
Robeson County 2	5/9/2019	0.433	1.52	NA	NA											
Robeson County 3	5/9/2019	NA	0.52	NA	NA											
New Hanover 1	9/22/2018	NA	29.047	18.16	19.334											
New Hanover 2	9/22/2018	NA	41.649	3.971	3.432											
New Hanover 3	9/22/2018	26.896	13.903	2.161	1.924											
New Hanover 4	9/22/2018	2.14	1.689	0.975	0.707											
New Hanover 4	1/30/2019	NA	3.869	2.143	2.113											
New Hanover 1	1/30/2019	109.52	72.731	14.865	13.404											
New Hanover 4	5/10/2019	95.13	8.53	1.45	NA											
New Hanover 1	5/10/2019	100.54	59.74	21.37	16.17											
Wayne County 1	9/23/2018	55.39	86.283	3.998	3.71											
Wayne County 2	9/23/2018	131.8	0.24	NA	NA											
Wayne County 1	1/30/2019	40.52	6.232	0.372	1.113											
Wayne County 2	1/30/2019	115.13	NA	NA	NA											
Wayne County 1	5/10/2019	44.05	2.94	0.61	3.01											
Phenanthrene	Anthracene	Fluoranthene	Pyrene	Benz.a.ant	Chrysene	TiBenzo.k.j.fli	Benzo.a.py	Indeno.1.2	6.135	69.017	258.249	199.451	99.055	171.104	134.237	120.982
--------------	------------	--------------	--------	------------	----------	----------------	------------	------------	-------	--------	---------	---------	--------	---------	---------	---------
NA	0.321	0.574	1.451	NA	0.517	NA	0.367	NA	0.133							
0.173	0.713	1.057	2.605	0.437	0.97	0.489	0.335	0.403								
1.16	0.61	4.04	3.71	1.42	2.13	1.91	2.18	2.2								
4.44	1.53	9.21	8.36	3.67	8.91	2.93	6.38	7.55								
3.027	10.298	31.452	24.052	9.757	21.958	20.655	11.259	15.264								
0.471	0.468	0.906	1.323	0.447	0.909	0.636	0.31	0.594								
1.383	5.679	23.387	19.759	12.32	14.6	12.743	7.249	6.556								
2.182	6.499	24.573	19.249	7.616	18.455	19.339	10.098	16.033								
0.188	0.884	1.835	3.529	0.611	1.575	1.19	0.571	0.965								
13.43	58.606	153.735	123.223	73.419	80.326	48.987	41.724	21.972								
4.37	10.7	9.58	4.26	6.05	5.16	6.62	7.85									
2.95	1.71	10.31	10.57	4.09	6.85	4.12	6.56	8.14								
2.23	0.85	7.02	6.02	2.25	3.65	2.44	3	3.76								
84.32	424.486	1250.582	1015.135	533.851	813.438	647.402	625.209	455.908								
55.903	77.769	373.163	296.22	180.827	235.203	201.541	159.493	124.145								
26.187	58.567	135.92	118.563	53.098	113.833	87.769	65.997	59.401								
2.974	11.221	37.214	34.2	14.068	27.587	28.425	23.133	24.421								
7.89	57.482	177.302	153.697	57.931	131.462	116.479	95.487	95.623								
135.746	320.534	1003.686	831.484	440.931	713.509	588.146	545.158	438.407								
56.65	17.83	310.62	269.55	124.72	199.35	184.41	199.94	314.5								
476.37	188.69	1487.51	1221.74	651.14	785.83	556.1	747.82	950.36								
139.09	54.893	252.402	176.124	144.651	218.678	276.019	73.105	123.141								
0.365	2.001	6.957	5.431	3.336	5.541	4.504	3.593	2.982								
11.04	15.709	56.02	32.388	21.332	43.628	44.202	6.42	25.789								
1.203	3.683	18.308	21.775	8.179	16.861	13.482	11.341	10.141								
128.99	9.68	45.34	76.43	15.62	27.65	16.35	18.75	30.29								
Compound	CRisk	HI.RSL	BaPeq.TEF.EPA2010	BaPeq.TEF.Nisbet1992	BaPeq.TEF.EPA1993	0.006945	2.538902									
----------------------------------	-------	---------	-------------------	----------------------	-------------------	-----------	----------									
Dibenzo.a.h.anthracene	23.928	15.95	107.743	279.2792	167.7091	0.006945	2.538902									
Benzo.b.fluoranthene	NA	NA	0.206	0.025765	0.013817	0.108784	1.06E-06									
Benzo.g.h.i.perylene	NA	NA	0.009367	0.000367	0.006638	2.36E-06	8.52E-05									
0.97 NA	0.264	0.529	0.520431	0.45126	0.862801	2.06E-05	0.004731									
3.308	2.99	2.79956	2.56323	3.23841	0.000125	2.52451										
3.018	6.58	12.85562	8.51021	19.1174	0.000378	0.116869										
0.118	0.342	0.859	0.12645	0.565069	2.016771	2.48E+05	0.01024									
0.725	0.876	19.57	31.90165	15.98235	0.000594	0.282651										
0.256	1.381	2.204457	1.030775	3.934779	0.0002041	0.84703										
6.588	21.643	22.018	93.17332	163.19412	0.002456	0.077484										
1.04 NA	8.06	8.52329	7.88865	9.70984	0.000378	0.123683										
4.15	9.88	13.60518	8.87105	20.0712	0.000375	0.123683										
111.966	65.899	510.156	1375.242	2141.67584	0.035859	12.5022										
39.389	8.457	137.839	413.2174	665.664271	0.009198	3.756522										
18.96	1.627	75.081	183.7869	297.241969	0.003819	1.67079										
4.955	0.794	29.142	55.4382	84.692118	0.001323	0.503984										
20.737	14.076	112.516	230.9445	364.234984	0.005469	2.099496										
104.364	45.9	524.132	1366.08	1918.40038	0.031302	11.23709										
36.8 NA	4.15	3.94729	3.62905	4.75035	0.000173	0.035884										
125.64 NA	45.9	524.132	1366.08	1918.40038	0.031302	11.23709										
43.701	5.687	111.79	351.1304	603.56131	0.004339	3.192095										
0.709	0.502	3.274	8.523353	13.235786	0.000316	0.077485										
6.89	3.468	20.639	51.29655	94.522421	0.000435	0.466332										
2.205	1.503	13.431	26.19267	40.615149	0.000746	0.238115										
3.92 NA	28.17	45.53237	27.45215	70.33053	0.001142	0.413931										
e-6
Supplemental Table 12: Enrichment Factors for metals.

	Aluminum	Antimony	Arsenic	Barium	Beryllium	
NH 1 [Sep-18]	0.449411414	N/A	N/A	11.80423383	N/A	
NH 1 [Jan-19]	0.118002523	N/A	N/A	0.690248566	N/A	
NH 1 [May-19]	0.689600363	N/A	N/A	2.484216158	1.001692047	
NH 2 [Sep-18]	0.941737446	N/A	N/A	3.058199003	0.83535109	
NH 3 [Sep-18]	0.465206378	N/A	N/A	1.873502946	N/A	
NH 4 [Sep-18]	0.221576516	N/A	N/A	N/A	N/A	
NH 4 [Jan-19]	0.644265888	N/A	2.496607033	8.695028681	N/A	
NH 4 [May-19]	0.507039055	N/A	N/A	1.278223649	N/A	
Cadmium	Chromium	Cobalt	Copper	Iron	Lead	Lithium
---------	----------	-------------	----------------	----------------	----------------	-----------------
N/A	N/A	1.339094837	6.038732394	1.158552418	7.128322941	N/A
N/A	N/A	N/A	1.597693786	0.491329166	0.786127168	N/A
N/A	1.809472162	3.496941668	8.329246935	1.214389084	10.85396108	N/A
N/A	N/A	1.962019559	9.335387324	1.493346316	12.795099	N/A
N/A	N/A	1.702524448	2.748679577	1.241155469	10.98566896	N/A
N/A	N/A	0.228792358	1.386003521	0.489126907	0.786784816	N/A
N/A	2.035097651	N/A	22.40871236	1.529763523	26.53933149	N/A
N/A	1.155097614	2.365806355	12.61646235	1.049824271	2.077292023	N/A
Manganese	Nickel	Selenium	Silver	Strontium	Zinc	Magnesium
---------------	--------------	----------------	----------------	-----------	---------------	---------------
4.830959574	4.149395509	1.254197116	N/A	27.01367446	8.284214776	2.357673267
N/A	3.621248415	1.010504202	N/A	3.966236144	5.25326054	1.678704857
0.679406037	3.303010033	8.0405181	N/A	1.571524966	15.16795866	3.231900452
2.230182708	3.88025331	1.529527948	N/A	8.566387296	7.043197416	2.055280528
1.029492159	3.867299942	0.908552242	N/A	7.617997353	22.14775939	2.650577558
N/A	0.614421416	N/A	N/A	2.230701367	1.012515139	0.684405941
N/A	18.28096379	2.595798319	N/A	10.26339876	87.53412193	9.103362391
0.552945472	2.670234114	0.955828628	N/A	2.86977058	8.206718346	3.544494721
Tin	Thallium	Vanadium	Mercury			
---------	----------	----------	----------			
1.531728665 N/A	0.861204775	5.882352941				
2.271745703 N/A	0.503574901	0.363636364				
1.484514277 N/A	1.61886925	2.805970149				
0.779778937 N/A	1.659163401	5.529411765				
1.145710599 N/A	1.024332452	0.941176471				
0.862368849 N/A	0.316595279	0.352941176				
2.247559817 N/A	2.068294915	3.090909091				
1.201994259 N/A	1.012173709	0.417910448				
Supplemental Table 13: Metals Normalized to Al

Formula	CAS RN	Name	Sample Location ID	Date	Time	Analysis Date	Digestion Dry Wt (g)	Sample Ty	Analyte	Latitude	Longitude
9/19/18	17:19	9/2/2019	1.144 Soil Metal	34.83263	-78.8258						
9/19/18	19:25	9/2/2019	1.024 Soil Metal	34.74559	-78.8024						
9/21/18	12:25	9/2/2019	1.111 Soil Metal	34.72018	-79.2124						
9/21/18	12:49	9/2/2019	1.053 Soil Metal	34.72301	-79.2131						
9/21/18	19:25	9/2/2019	1.084 Soil Metal	34.72322	-79.2118						
9/22/18	15:06	9/2/2019	1.015 Soil Metal	34.21673	-77.9462						
9/22/18	15:30	9/2/2019	1.044 Soil Metal	34.20505	-77.9516						
9/22/18	15:49	9/2/2019	1.197 Soil Metal	34.19061	-77.9491						
9/23/18	11:01	9/2/2019	1.247 Soil Metal	34.17225	-77.9487						
1/29/19	12:18	9/2/2019	1.067 Soil Metal	34.72301	-79.2131						
1/29/19	12:18	9/2/2019	1.098 Soil Metal	34.72018	-79.2124						
1/29/19	12:20	9/2/2019	1 Soil Metal	34.72322	-79.2118						
1/29/19	15:41	9/2/2019	1.11 Soil Metal	34.83263	-78.8258						
1/29/19	15:41	9/2/2019	1.242 Soil Metal	34.83263	-78.8258						
1/30/19	11:20	9/2/2019	1.023 Soil Metal	34.17225	-77.9487						
1/30/19	11:45	9/2/2019	1.037 Soil Metal	34.2164	-77.9464						
1/30/19	14:10	9/2/2019	1.006 Soil Metal	35.36042	-78.0782						
1/30/19	14:30	9/2/2019	1.071 Soil Metal	35.36941	-78.0584						
5/9/19	14:20	9/2/2019	1.014 Soil Metal	34.72018	-79.2124						
5/9/19	14:20	9/2/2019	1.089 Soil Metal	34.72301	-79.2131						
5/9/19	14:20	9/2/2019	1.007 Soil Metal	34.72322	-79.2118						
5/9/19	16:35	9/2/2019	1.173 Soil Metal	34.83263	-78.8258						
5/9/19	16:35	9/2/2019	1.003 Soil Metal	34.83263	-78.8258						
5/10/19	12:10	9/2/2019	1.072 Soil Metal	34.17225	-77.9487						
5/10/19	12:40	9/2/2019	1.026 Soil Metal	34.2164	-77.9464						
5/10/19	14:57	9/2/2019	1.078 Soil Metal	35.36042	-78.0782						
	Al	Sb	As	Ba	Be	Cd	Cr	Co	Cu		
----	-----	-----	-----	-----	-----	-----	-----	-----	-----		
7429-90-5	7440-36-0	7440-38-2	7440-39-3	7440-41-7	7440-43-9	7440-47-3	7440-48-4	7440-50-8			
Aluminum	Antimony	Arsenic	Barium	Beryllium	Cadmium	Chromium	Cobalt	Copper			
100	N/A	N/A	0.499216	N/A	N/A	N/A	0.020313	0.143025			
100	N/A	N/A	0.16701	0.00228	N/A	N/A	0.011411	0.050028			
100	N/A	0.016813	0.247957	N/A	0.001664	0.080563	0.003347	0.039299			
100	N/A	0.036223	0.136697	N/A	0.128127	0.002621	0.026034				
100	N/A	0.014939	0.100305	N/A	0.057614	0.001819	0.1407				
100	0.015431	N/A	6.045756	N/A	0.018408	0.434284	0.039045	0.909814			
100	0.004028	0.077278	0.747468	0.003275	0.00837	0.224019	0.027301	0.671203			
100	N/A	0.089814	0.92697	N/A	0.013145	0.047956	0.400064				
100	N/A	N/A	0.316495	0.002554	N/A	N/A	0.013531	0.423537			
100	N/A	0.015673	0.283951	N/A	0.076287	0.004866	0.037925				
100	N/A	0.061237	0.197298	N/A	N/A	0.002692	0.036869				
100	N/A	0.015392	0.125298	N/A	0.001417	0.061465	0.002177	0.014753			
100	N/A	0.014844	0.102381	N/A	0.064707	N/A	0.014295				
100	N/A	0.134235	N/A	N/A	N/A	N/A	N/A	N/A			
100	0.012115	0.083426	1.499897	0.003496	0.013667	0.296434	0.033725	0.721088			
100	N/A	N/A	0.650084	N/A	N/A	N/A	0.039246	0.280698			
100	N/A	0.495227	0.003311	N/A	0.091044	0.025453	0.059115				
100	N/A	0.672948	N/A	N/A	N/A	0.030283	0.16891				
100	N/A	0.264381	N/A	N/A	N/A	0.00348	0.03541				
100	N/A	0.014584	0.135904	N/A	0.066667	0.002153	0.014739				
100	N/A	0.031936	0.249455	N/A	0.085934	0.005682	0.024861				
100	N/A	0.216783	0.001879	N/A	0.087921	0.004936	0.041338				
100	N/A	0.943561	N/A	N/A	N/A	N/A	0.014297	0.123569			
100	N/A	0.047962	1.069861	N/A	0.007385	0.286162	0.035508	1.613077			
100	0.005858	0.079058	1.528811	0.003899	0.020132	0.329602	0.038591	0.78301			
100	N/A	N/A	0.316347	N/A	N/A	N/A	0.018813	0.089945			
Iron	Lead	Lithium	Manganese	Nickel	Selenium	Silver	Strontium	Zinc			
------	------	---------	-----------	--------	----------	--------	-----------	------			
387.6176	0.223981	N/A	2.918495	0.017602	0.019232	N/A	0.193966	0.974922			
135.7498	0.115603	N/A	0.593744	0.021435	0.0048	N/A	0.037884	0.226863			
103.2527	0.503457	N/A	0.353394	0.018668	0.007115	N/A	0.025566	0.326367			
141.6542	0.105954	N/A	N/A	N/A	N/A	N/A	0.026208	0.159093			
101.0671	0.039444	0.040808	0.145808	0.010572	0.003067	N/A	0.0192	0.09314			
473.4085	2.160477	N/A	11.13395	0.021054	0.0048	N/A	0.037884	0.226863			
291.2025	1.850633	N/A	2.452848	0.085316	0.012253	N/A	0.061457	2.760443			
489.9423	3.216528	N/A	2.29212	0.172133	0.014734	N/A	1.106342	17.527			
Mg	Sn	TI	V	Hg							
-----	-----	-----	-----	------							
7439-95-4	7440-31-5	7440-28-0	7440-62-2	7439-97-6							

Magnesiun Tin	**Thallium**	**Vanadium**	**Mercury**
19.4279	0.071215	N/A	0.22931
4.358786	0.016074	N/A	0.148059
8.625079	0.006029	N/A	0.125817
5.779771	0.017404	N/A	0.142227
3.373476	0.003886	N/A	0.102896
37.89788	0.090517	N/A	0.313329
15.76582	0.021991	N/A	0.28807
41.15951	0.065407	N/A	0.360026
22.31338	0.103362	N/A	0.233625
7.036129	0.006395	N/A	0.131878
7.472147	0.004416	N/A	0.135592
3.997475	0.006487	N/A	0.138586
3.317717	0.004641	N/A	0.112947
1.761905	0.00495	N/A	0.1087
3.111863	0.014912	N/A	0.135612
30.13812	0.026819	N/A	0.372707
30.34328	0.148002	N/A	0.495442
9.059815	0.000996	N/A	0.169424
25.83445	0.060821	N/A	0.260633
5.089524	0.006008	N/A	0.13819
3.023136	0.004835	N/A	0.109083
12.06445	0.00509	N/A	0.135571
3.986014	0.003307	N/A	0.162587
11.11288	0.018037	N/A	0.272496
42.09584	0.017815	N/A	0.387237
28.22193	0.016177	N/A	0.455384
10.51642	0.022904	N/A	0.180746
Supplemental Table 14: Coal Ash, Superfund and Toxic Release Inventory Locations

Name	Type	Latitude	Longitude
Sutton Steam Electric Plant	Coal Ash	34.297253	-77.985077
Lee Steam Electric Plant	Coal Ash	35.392527	-78.071346
Horton Iron a Superfund	Superfund	34.2666507	-77.955935
New Hanover Superfund	Superfund	34.27364	-77.91457
Argos SunnyV	Toxic Release	34.172	-77.94168
Sturdy Corp	Toxic Release	34.21003	-77.94499
Argos Hwy 42	Toxic Release	34.320496	-77.992068
Smithfield - T	Toxic Release	34.7465	-78.8061
Campbell Sou	Toxic Release	34.7724	-79.325
Silgan Contair	Toxic Release	34.772816	-79.326733
Chemours Co	Toxic Release	34.840301	-78.838889
Kuraray America	Toxic Release	34.840301	-78.838889
Dupont Speci	Toxic Release	34.845568	-78.854426
AP Emissions	Toxic Release	35.3577	-78.00213
Duke Energy	Toxic Release	35.37991	-78.087688
Argos Ready	Toxic Release	35.38374	-78.00461
SPX Flow Tec	Toxic Release	35.39172	-78.01624
Reporting Checklist

This checklist is used to ensure the quality, transparency, and reproducibility of published results. We require authors attest that these components have been considered and addressed.

Exposure Assessment Guiding Principle	Yes/No/Not Applicable
Has the method to estimate exposure been described clearly?	Yes
Has the exposure assessment method been validated/evaluated as a proxy for exposure and is its validity or agreement with other methods described?	Yes
Is the time period over which the exposure assessment method is considered to be a proxy for exposure appropriate for the research question?	Yes
If exposure is modeled or measured, were all critical potential routes and sources of exposure considered?	Yes
If exposure is modeled, how does it vary over space and time and are necessary historical data incorporated?	Not applicable
If biomarkers are used as indicators of exposure, could the biomarker measurement have been affected by the outcome (i.e., reverse causality)?	Not applicable
Are the strengths and weaknesses of the exposure approach detailed and discussed?	Yes