Abstract: The genus *Chaetomium* is a frequently occurring fungal taxon worldwide. *Chaetomium* and *Chaetomium*-like species occur in indoor environments, where they can degrade cellulose-based building materials, thereby causing structural damage. Furthermore, several species of this genus may also cause adverse effects on human health. The aims of this research were to identify *Chaetomium* and *Chaetomium*-like strains isolated from indoor environments in Hungary and Finland, two geographically distant regions of Europe with drier and wetter continental climates, respectively, and to study their morphological and physiological properties, as well as their extracellular enzyme activities, thereby comparing the *Chaetomium* and *Chaetomium*-like species isolated from these two different regions of Europe and their properties. *Chaetomium* and *Chaetomium*-like strains were isolated from flats and offices in Hungary, as well as from schools, flats, and offices in Finland. Fragments of the translation elongation factor 1α (*tef1α*), the second largest subunit of RNA polymerase II (*rpb2*) and β-tubulin (*tub2*) genes, as well as the internal transcribed spacer (ITS) region of the ribosomal RNA gene cluster were sequenced, and phylogenetic analysis of the sequences performed. Morphological examinations were performed by stereomicroscopy and scanning electron microscopy. Thirty-one *Chaetomium* sp. strains (15 from Hungary and 16 from Finland) were examined during the study. The most abundant species was *Ch. globosum* in both countries. In Hungary, 13 strains were identified as *Ch. globosum*, 1 as *Ch. cochlidiodes*, and 1 as *Ch. interruptum*. In Finland, 10 strains were *Ch. globosum*, 2 strains were *Ch. cochlidiodes*, 2 were *Ch. rectangulare*, and 2 isolates (SZMC 26527, SZMC 26529) proved to be representatives of a yet undescribed phylogenetic species from the closely related genus *Dichotomopilus*, which we formally describe here as the new species *Dichotomopilus finlandicus*. Growth of the isolates was examined at different temperatures (4, 15, 20, 25, 30, 37, 35, 40, and 45 °C), while their extracellular enzyme production was determined spectrophotometrically.

Keywords: *Chaetomium*; *Dichotomopilus*; indoor environment; extracellular enzymes
As cellulose-degrading fungi they possess the ability to degrade wet cellulosic building materials such as wood and plywood and synthetic building materials such as plastics and drywall [3]. Wet building materials are dominated by colonization and forming a dense mycelium covering most of the building materials, thereby damaging the building structure [4,5]. In addition to colonizing building materials, members of the genus Chaetomium are also known to produce more than 500 bioactive metabolites [6]. Chaetomium globosum, producing various mycotoxins—such as chaetoglobosin, chaetomin, chaetomugilin, and chaetoviridine—is the most common species of the genus in indoor environments [5,7]. Several Chaetomium species have been described to cause onychomycosis [8–12], skin surface infections [13], and cerebral mycosis [14–16]. Among them, some are able to opportunistically cause systemic infections and trigger severe allergic reactions that increase the risk of developing asthma [7]. On the other hand, some species of the genus Chaetomium are plant endophytes [17–20], producing high levels of various enzymes [21–24], antioxidants [25,26], as well as antifungal [25,27–31], antibacterial [28,32–37], and nematicidal metabolites [38,39], possessing anticancer [26,28,30,40–51] and anti-inflammatory activities [39,52], and being able to biosynthesize several types of nanoparticles [44,53,54]. The genus includes psychrotolerant [55], mesophilic, thermotolerant, and thermophilic species [5], which are widely used in the medicinal and industrial field (e.g., food, textile, and fermentation industries), agriculture (as biocontrol agents and in agricultural waste degradation), and waste processing (composting) [56].

The genus Chaetomium is generally characterized by rounded, ovoid, or obovate ascomata covered with characteristic hairs. The walls of the ascomata are usually textura intricata (tissue of interwoven irregularly disposed hyphae with distinct interhyphal spaces, the walls not united), but they occur in textura angularis (tissue of short polyhedral cells without intercellular spaces). Ascomatal hairs can be straight (seta-like), flexible, curved, wavy, circulating, spirally curled, or otherwise branched in various morphologies. Asci are clavate or fusiform with 8 biseriate or irregularly arranged ascospores, evanescent. Ascospores are limoniform to globose, or irregular in a few species, bilaterally flattened, usually more than 7 μm in length. Asexual morphs, if present, are Acremonium-like [7].

Chaetomium is an intensively studied fungal genus worldwide, as it causes one of the biggest problems in indoor environments with damaging effects both to buildings and human health [3,4,7,54,57–61]. The closely related genus Dichotomopilus was first described by Wang et al. [7]; until then, members of the genus Dichotomopilus belonged to the genus Chaetomium. The genus name Dichotomopilus refers to the shape of terminal hairs of the ascomata, which are usually dichotomously branched. So far, this genus has included 12 species.

To the best of our knowledge, the diversity of this group of fungi has not yet been studied in Hungary. This study aimed to identify Chaetomium and Chaetomium-like strains isolated from Hungary and Finland, two geographically distant regions of Europe with drier and wetter continental climates, respectively, to study their morphology, determine their physiological properties, measure their extracellular enzyme activities, and compare the properties of Chaetomium and Chaetomium-like strains isolated from different sites of the two regions.

2. Results

Based on tef1α sequences, the most abundant species in this study was Ch. globosum in both countries (Table 1, Figure 1). In Hungary, 13 strains were identified as Ch. globosum, 1 as Ch. cochliodes, and 1 as Ch. interruptum, while in Finland, 10 strains were Ch. globosum, 2 strains were Ch. cochliodes, 2 were Ch. rectangular, and 2 isolates (SZMC 26527, SZMC 26529) proved to be representatives of a yet undescribed phylogenetic species from the closely related genus Dichotomopilus (Figure 1).
Table 1. *Chaetomium* and *Chaetomium*-like isolates, reference strains and their sequences involved in the study.

Species	Collection Number	Lab Code	Location of Isolation	tef1α	GenBank Accession Number
Ac. globosum	CBS 332.67 T		Rhizosphere, Lucknow, India	KM655479	
Ac. strumarium	CBS 333.67 T		Soil, Lucknow, India	KC503252	
Ch. afropliosum	CBS 145.38 T		Unknown	KT214713	
Ch. angustispirale	CBS 137.58 T		*Fraxinus* sp., Tellerman forest, Baleshev region, Russia	KF001724	
Ch. ascomicoides	CBS 113.83		*Gossypium* humicatum, Argentina	KF001742	
Ch. capitare	CBS 128489 T		Animal hair, California, USA	KT214724	
Ch. cervicicola	CBS 128492 T		Neck of *Homo sapiens* Texas, USA	KT214697	
Ch. citrinum	CBS 693.82 T		Rice field soil, Tochigi, Japan	KT214730	
Ch. coecilbere	CBS 128489 T		Seed of *Cappanula medium*, St. Petersburg, Russia,	KF001712	
Ch. coecilbere	CBS 378.71 T		*Cornea of Homo sapiens*, Northeast USA	KT214694	
Ch. cucumericola	CBS 374.66 T		Decomposing leaf, Aptos, California, USA	KT214718	
Ch. flumat	CBS 374.66 T		Cardboard, Denmark	KF001730	
Ch. finet	CBS 132037 T		Soil, Germany	KF001735	
Ch. globosporum	CBS 320.83 T		Green leaf of *Trurai aestivum*, Germany	MW556658	
Ch. globosum	SZMC 22474 T	T365	Air, hotel, Budapest, Hungary	MW556658	
Ch. globosum	SZMC 22478 T	T369	Air, shop, Szentendre, Hungary	MW556659	
Ch. globosum	SZMC 22481 T	T372A	House dust, basement, flat, Budapest, Hungary	MW556660	
Ch. globosum	SZMC 22788 T	T428B	Ceiling (swab), apartment, Budapest, Hungary	MW556661	
Ch. globosum	SZMC 23266 T	T457D	Under ceramic tiles in a kitchen (swab), apartment, Csepel, Hungary	MW556662	
Ch. globosum	SZMC 23275 T	T459A	Air, from gypsum board wall of a children’s room, house, Budapest, Hungary	MW556663	
Ch. globosum	SZMC 23688 T	T499	House dust (swab), living room, apartment, Budapest, Hungary	MW556664	
Ch. globosum	SZMC 24035 T	T356A	Wall, kitchen, apartment, Budapest, Hungary	MW556665	
Ch. globosum	SZMC 24451 C13/LM		Exhaust air filter, school, Vantaa, Finland	MW556666	
Ch. globosum	SZMC 24455 C22/LM		Exhaust air filter, school, Vantaa, Finland	MT498109	
Ch. globosum	SZMC 24456 MH5		Settled dust, public building, Espoo, Finland	MT498108	
Ch. globosum	SZMC 24464 MÖ9		Settled dust, piggery, Oriimattila, Finland	MT498106	
Species	Collection Number	Lab Code	Location of Isolation	GenBank Accession Number	
------------------	-------------------	----------	--	--------------------------	
Ch. globosum	SZMC 24508	T582D	Garage wall (swab), apartment, Budapest, Hungary	MW556667	
Ch. globosum	SZMC 24765	2c/26	Settled dust, apartment, Vantaa, Finland	MW310244	
Ch. globosum	SZMC 24766	2b/26 **	Settled dust, apartment, Vantaa, Finland	MT498110	
Ch. globosum	SZMC 24768	C22	Settled dust, apartment Vantaa, Finland	MW556668	
Ch. globosum	SZMC 24769	MH52 **	Settled dust, public building, Espoo, Finland	MT498107	
Ch. globosum	SZMC 24938	626C	Wall (swab), living room, house, Kazincbarcika, Hungary	MW556670	
Ch. globosum	SZMC 26530	Ruk10 **	Settled dust, apartment, Vantaa, Finland	MT498101	
Ch. globosum	SZMC 26534	MTAV35 **	Settled dust, University of Oulu, Finland	MW541927	
Ch. globosum	SZMC 26539	3b/APP	Exhaust air filter, public building, Espoo, Finland	MW588270	
Ch. globosum	SZMC 26845	T706	Wall (swab), kitchen, apartment, Budapest, Hungary	MW556672	
Ch. globosum	SZMC 26857	T711	Wallpaper (swab), living room, apartment, Budapest, Hungary	MW556673	
Ch. globosum	SZMC 27052	T730A	On paper packaging, imported from Sri Lanka, swab factory, Pecs, Hungary	MW556674	
Ch. globosum *	CBS 160.62 T		Compost, Germany	KT214704 NR_144851	
Ch. globosum *	MUCL 39526 T		Dead stem of *Juncus* sp.*, Hungary	KT214666 KT214742	
Ch. globosum *	CBS 666.82		Unknown	KF001710 KX976617	
Ch. graminiforme*	CBS 506.84 T		*Acer* sp., Muskoka District, Ontario, Canada	KT214725	
Ch. grande *	CBS 126780 T		Leaf of *Triticum aestivum*, Nagahedeh, Iran	KT214692	
Ch. interruptum*	SZMC 23937	T531B	Under wallpaper (swab), office, Budapest, Hungary	MW588206 MW301425	
Ch. interruptum*	CBS 126660 T		Seed of *Triticum aestivum*, Hadishahr East Azerbaijan Province, Iran	KT214703 KT214564 KT214665	
Ch. madrasense*	CBS 315.74 T		Rhizosphere of *Pennisetum typhoides*, Chennai, Tamil Nadu, India	KT214715	
Ch. novozelandicum*	CBS 124555 T		Dead decaying twig, Otaki, New Zealand	KT214729 NR_144862	
Ch. pilosum *	CBS 335.67 T		Grain of *Triticum aestivum*, Perth, Western Australia	KT214763	
Ch. pseudocochliodes*	CGMCC 3.9441 T		Roots of *Panax notoginseng*, Wenshan, Yunnan Province, China	KF001726	
Ch. pseudoglobosum*	CBS 574.71 T		Unknown	KT214712	
Ch. rectangulare*	SZMC 26533	MO13 **	Settled dust, piggery, Orimattila, Finland	MT498104 MW541928	
Ch. rectangulare*	SZMC 26535	MO15 **	Settled dust, piggery, Orimattila, Finland	MT498105 MW541929	
Ch. rectangulare*	CBS 126778 T		Leaf of *Hordeum vulgare*, Salmas, West Azerbaijan province, Iran	KT214726 NR_144817	
Ch. spiculipilium*	CBS 373.66 T		Decaying vegetable debris, California, USA	KT214688 KF001719	
Ch. spirochaete*	CBS 730.84 T		Animal dung, Great Smokey Mountains, Tennessee, USA	KF001729 NR_144823	
Species	Collection Number	Lab Code	Location of Isolation	GenBank Accession Number	
------------------------	-------------------	----------	---	--------------------------	
Ch. subaffine	CBS 637.91 T	T	Cereal, USSR	KF001727	
Ch. subfimeti	CBS 370.66 T	T	Paper and vegetable material, Cardiff, Wales	KT214701	
Ch. subglobosum	CBS 149.60 T	T	Dead hercaceous stem, St. Petersburg, Russia	KF001718	
Ch. telluricola	CBS 151.59 T	T	Soil, Suffolk, Lakenheath Warren, United Kingdom	KT214723	
Ch. tenue	CBS 139.38 T	T	Unknown	KT214707	
Ch. umbonatum	CBS 293.83 T	T	Soil, Nova Scotia, Canada	KT214714	
Ch. undulatulum	CBS 126775 T	T	Leaf of *Hordeum vulgare*, Bonab, East Azerbaijan province, Iran	KT214720	
Ch. unguicola	CBS 128446 T	T	Nail of *Homo sapiens*, Los Angeles, USA	KT214706	
Ch. megalocarpum	CBS 149.59 T	T	Leaf of *Ficus carica*, Greece	KF001738	
D. dolichotrichus	CBS 162.48 T	T	USA	KC485023	
D. erectus	CBS 140.56 T	T	*Petroselinum sativum*, USA	KC485018	
D. funicola	CBS 159.52 T	T	Germany	KC485013	
D. funicola	CBS 136.38	T	Unknown	KX976857	
D. funicola	DTO 333-F1	T	Dust, outdoors, Denmark	KX976658	
D. fusus	CBS 372.66 T	T	Unknown	KM655463	
D. indicus	CGMCC 3.14184 T	T	Rhizosphere of *Panax Notoginseng*, Wenshan county, Yunnan Province	KC485005	
D. pratensis	CGMCC 3.14181 T	T	Soil, Huangnan, Qinghai Province, China	KC485017	
D. pseudoerectus	CBS 252.75 T	T	Air, Uttar Pradesh, India	GU563367	
D. pseudofunicola	CBS 142033 T	T	Dust, USA	KX976668	
D. ramosissimus	CGMCC 3.14183 T	T	Rhizosphere of *Panax Notoginseng*, Wenshan county, Yunnan Province	KC485021	
D. reflexus	CBS 157.49 T	T	Germinating seed, USA	KC485027	
D. subfunicola	CGMCC 3.12892 T	T	Soil, Shihzei, Xinjiang Autonomous Region, China	JX867125	
D. subfunicola	CGMCC 3.9466	T	Rhizosphere of *Panax Notoginseng*, Yunnan, China	KC485016	
D. subfunicola	CBS 794.83	T	Paper, Switzerland	GU563368	
D. subfunicola	CBS 812.73	T	Pistol belt, New Guinea	KX976670	
D. variostiolatus	CBS 179.84	T	Tarpaulin, New Guinea	KX976767	
D. variostiolatus	DTO 319-B9	T	Dust, Thailand	KX976674	
D. variostiolatus	DTO 319-A2	T	Dust, USA	KX976673	
Dichotomopilus sp.	SZMC 26527	C5/LM	Exhaust air filter, school, Vantaa, Finland	MW556671	
Dichotomopilus sp.	SZMC 26529	Ch1/tu **	Inlet air filter, public building, Espoo, Finland	MT644127	

Strains isolated during this study are set in bold. * reference strain [2,7], ** described in [5].
Figure 1. Maximum likelihood phylogeny of the examined isolates (set in bold) based on translation elongation factor 1α. T = ex-type, nT = ex-neotype, eT = ex-epitype. Numbers above branches are bootstrap values. Only values greater than 70% are shown.

2.1. Morphological Features of the Isolated Chaetomium Strains

Among the previously described Chaetomium species, Ch. cochliodes colonies grew rapidly on MEA, OA, and PDA (Figure 2A) reaching 65–70 mm in diameter after 7 days at 25 °C. Hyphae were light beige on MEA, while brownish on OA and PDA, with powdery surface, undulate colony edges and without colored exudates. The strains were unable to produce ascospore-containing ascomata on MEA, while strong dark green ascospore formation was observed after 7 days on OA and PDA. Ch. interruptum (Figure 2B) formed white mycelium on all media, brownish exudates diffusing into the media, and did not produce spores during 7 days of culturing at 25 °C. On MEA and OA, it formed regular circular colonies, while on PDA the edges of the colonies grew irregularly. Colony diameters
after 7 days were 40–45, 50–60, and 30–40 mm on MEA, OA, and PDA, respectively. *Ch. globosum* (Figure 2C) colonies overgrew both MEA and OA media in 7 days at 25 °C. On PDA the strains grew slowly, with colony diameters of 30–40 mm after 7 days and a lobate edge. No ascospores were produced on MEA medium, but greenish ascospores were produced on OA and PDA. Colonies ranged from beige (MEA, OA) to brown (PDA) in color, the surface texture was floccose or velvety, and a brownish exudate was produced on all media. *Ch. rectangulare* (Figure 2D) completely overgrew all media in 7 days at 25 °C with white, cottony mycelium and without colored exudates. No ascospores were produced under any of the conditions tested.

![Figure 2. Colony morphology of Chaetomium strains on different agar media left to right: MEA, OA and PDA after seven days of incubation. (A). Ch. cochliodes SZMC 22473, (B). Ch. interruptum SZMC 23937, (C). Ch. globosum SZMC 23266, (D). Ch. rectangulare SZMC 26535.](image-url)
Ascomata of Ch. cochliodes (Figure 3(A1–A5)) were ostiolate, ovoid, greenish olivaceous, with brown wall, textura intricata. Terminal hairs were usually around the ostiolum, light brown or brown, spirally coiled, lateral hairs undulate or loosely coiled, tapering towards the tip. Mature ascospores were brown, limoniform, usually biapiculate at both ends, bilaterally flattened. Ascomata of Ch. globosum (Figure 3(B1–B5)) were ostiolate, greenish olivaceous, with brown wall, textura intricata. Terminal hairs were light brown or brown, undulate to loosely coiled, lateral hairs brown, flexuous, tapering towards the tips. Mature ascospores were greenish or brown, subglobose or limoniform, bilaterally flattened. Ascomata of Ch. interruptum (Figure 3(C1–C5)) were ostiolate, brown, with brown wall, textura epidermoidea (tissue of closely interwoven irregularly disposed hyphae without interhyphal spaces, the walls united, usually forming a membranous or epidermis-like tissue). Terminal hairs were brown undulate, lateral hairs brown, flexuous, tapering towards the tips. Mature ascospores were greenish or brown, subglobose, or limoniform, bilaterally flattened.

2.2. Phylogeny and Taxonomy

The tef1a, ITS, rpb2, and tub2 dataset consisted of 935, 639, 525, and 571 characters, respectively. The indel-based binary dataset was 100 characters long. Isolates SZMC 26527 and SZMC 26529 resolved as members of a new species with high confidence values on the phylograms obtained from both tef1a (Figure 1) and the other three loci (data not shown). For the final inference the four loci were concatenated and partitioned. Based on the maximum likelihood phylogenetic tree inferred from the concatenated sequences (Figure 4), isolates SZMC 26527 and SZMC 26529 formed a well-supported distinct branch inside the genus Dichotomopilus with the closest relatives being D. funicola, D. pseudofunicola, D. subfunicola, and D. variostiolatus. This new species is described below as Dichotomopilus finlandicus sp. nov.
Figure 4. Maximum likelihood phylogeny of the genus *Dichotomopilus* inferred from the concatenated translation elongation factor 1α (*tef1α*), internal transcribed spacer (ITS), second largest subunit of RNA polymerase II (*rpb2*), and β-tubulin (*tub2*) sequences. T = ex-type, nT = ex-neotype, eT = ex-epitype. Numbers above branches are bootstrap values. Only values greater than 70% are shown.

Dichotomopilus finlandicus O. Kedves, S. Kocsúbék, and L. Kredics sp. nov. MycoBank accession number: 840621. Etymology: Refers to the country of origin. Colonies on PDA (Figure 5(A1)) rapidly growing, about 51–54 mm in diameter after 7 days at 25 °C, with a slightly undulate edge, usually with a floccose, white to cream mycelium, irregular concentric rings, without colored exudates, and producing grey or black ascomata in 7 days. Colonies on MEA (Figure 5(A2)) rapidly growing, approximately 55–60 mm in diameter after 7 days at 25 °C with lobate edge, not forming ascospores under seven days. Colony color yellowish-white; the surface texture folded velvety to floccose. Colonies slowly growing on OA (Figure 5(A3)) at 25 °C, with a slightly undulate edge, usually with a floccose, white to cream mycelium, without colored exudates, and producing grey or black ascomata in seven days. Colonies slowly growing on vegetable juice agar media (Figure 5(A4)), about 31–33 mm in diameter over seven days at 25 °C, with a slightly undulate edge, usually with a floccose, white to cream mycelium, without colored exudates, not producing ascomata in seven days. On DG18 agar media (Figure 5(A5)) regular circular colonies showing weak growth, 12–13 mm in diameter. Colony color orange and white, producing orange exudates. *Ascomata* (Figure 5, B1–C3) superficial, ostiolate, subglobose to ovoid, dark brown, 150–180 µm high and 110–130 µm wide asccarp. Ascomatal wall (Figure 5(D1)) comprising of brown, elongated, or irregular cells (*textura intricata*). Terminal hairs (Figure 5(C1–C3,D1)) usually around the ostiolum, light brown, or olivaceous brown, dichotomously branched 4–6 times, up to 250–320 µm long, 3–4.5 µm in diameter at the base, at wide angles and starting primarily from the upper half part, verrucose, regularly septate. Lateral hairs unbranched, seta-like, tapering towards the tip. Asci (Figure 5(D3)) fasciculate, clavate and long stipitate, stalked, 8 irregularly-arranged ascospores, spore-
bearing portion 18–19 × 7–8 µm, stalks 6–11 µm long, evanescent. Ascospores: brown, broadly ellipsoid or almond-shaped 5.12–6.42 (5.88) × 4.06–4.82 (4.42) × 2.31–3.58 (2.82) µm (length × width × thickness). Growth temperature: optimum 25–30 °C, minimum 15 °C, and maximum 38 °C. Specimens examined: A piece of inlet air filter (2 × 2 cm), public building, Espoo, Finland; Holotype: freeze dried culture specimen in the Szeged Microbiological Collection (SZMC) at the Department of Microbiology, Faculty of Science and Informatics, University of Szeged, Hungary, SZMC 26529; Non-sporulating strain: SZMC 26527 from a school building, Vantaa, Finland.

Figure 5. Dichotomopilus finlandicus SZMC 26529. (A1–A5): colony morphology of seven-day-old cultures on different agar media (A1—PDA, A2—MEA, A3—OA, A4—vegetable juice agar, A5—DG18). (B1–B3): morphology of ascomata on different agar media (left to right OA, MEA, and PDA). (C1–C3): Ascomata C1, C3—side view, C2—top view. (D1): ascomatal wall. (D2): ascomatal hairs and ascospores. (D3): Asci and ascospores (Bars: D1–D3 50 µm). (E1–E6): Scanning electron-microscopic images of: E1,E2: ascomata; E3: terminal ascomatal hairs; E4,E5: ascomatal hairs and ascospores; E6: ascospores.
2.3. Physiological Characterization of the Isolated Chaetomium and Chaetomium-like Strains

The optimal growth temperature of all isolates was between 25–30 °C (Figure 6). The \textit{Ch. globosum} strains grew at temperatures between 15–40 °C, they were unable to grow at 4 °C, and only three Hungarian \textit{Ch. globosum} isolates (SZMC 22788, SZMC 24508, and SZMC 24938) grew at 40 °C (Figure 6A,B). In addition, four Hungarian isolates of \textit{Ch. globosum} (SZMC 23266, SZMC 24938, SZMC 26845, and SZMC 26857) showed more intensive growth at 30 °C than at 25 °C (Figure 6B). \textit{Ch. cochliodes} SZMC 22473 and SZMC 26528, \textit{Ch. interruptum} SZMC 23937 and \textit{Ch. rectangulare} SZMC 26535 grew at 4 °C but among these strains \textit{Ch. cochliodes} SZMC 26528, \textit{Ch. interruptum} SZMC 23937 and \textit{Ch. rectangulare} SZMC 26535 showed no growth at 37 °C, nor \textit{Ch. cochliodes} SZMC 26528 at 35 °C (Figure 6C).

![Figure 6. Temperature effect of growth rate: Colony diameters (cm) of the examined Chaetomium and Chaetomium-like isolates on PDA after four days measured at various temperatures ranging from 4 °C to 45 °C. (A): \textit{C. globosum} strains with a temperature optimum at 25 °C. (B): \textit{C. globosum} strains with a temperature optimum at 30 °C. (C): strains of other Chaetomium species. (D): \textit{D. finlandicus} strains.](image)

Strains of the new species \textit{D. finlandicus} (SZMC 26527 and SZMC 26529) showed similar growth at all temperatures tested (Figure 6D). Their colony diameters were the same at 15 °C (17 mm); furthermore, at higher temperatures, strain SZMC 26527 showed a slightly higher growth. However, the optimum growth temperature for both strains was around 30 °C, and both could also grow at 37 °C.

As \textit{Chaetomium} and \textit{Chaetomium}-like species are known as cellulolytic fungi, the polysaccharide (cellulose, hemicellulose, and chitin) degrading ability of the isolated strains was determined. The examined \textit{Chaetomium} and \textit{Dichotomopilus} strains showed various enzyme activities (Figure 7). \textit{Ch. globosum} strains produced the highest amounts of extracellular enzymes, ranging from 20.64 to 71.67 U/mL of cellobiohydrolase, 7.57 to 18.99 U/mL of β-glucosidase, 8.54 to 41.57 U/mL of β-xylosidase, and 16.38 to 45.22 U/mL of β-1,4-N-acetyl-glucosaminidase activity. Two strains of \textit{Ch. globosum} (SZMC 27052 and SZMC 26539) showed the highest cellobiohydrolase enzyme activities, which were almost identical in amount (71.13 ± 2.7 and 71.67 ± 2.3 U/mL, respectively). The smallest amount
of extracellular enzymes was produced by *Ch. interruptum* SZMC 23937 (7.88 U/mL cellobiohydrolase, 5.29 U/mL β-glucosidase, 2.28 U/mL β-xylosidase, 6.98 U/mL β-1,4-N-acetyl-glucosaminidase) and by the two *Ch. cochliodes* strains SZMC 22473 and SZMC 26528 (11.31 and 8.83 U/mL cellobiohydrolase, 7.76 and 5.83 U/mL β-glucosidase, 20.88 and 20.43 U/mL β-xylosidase, 12.41 and 18.31 U/mL β-1,4-N-acetyl-glucosaminidase, respectively). The *Ch. rectangulare* strain SZMC 26535 also produced low amounts of polysaccharide-degrading enzymes (18.57 U/mL cellobiohydrolase, 3.24 U/mL β-glucosidase, 4.58 U/mL β-xylosidase), but the β-1,4-N-acetyl-glucosaminidase enzyme activity (39.21 U/mL) was prominent. The strains of the new species *D. finlandicus* (SZMC 26527 and SZMC 26529) had lower cellobiohydrolase enzyme production (32.14 and 24.91 U/mL) than the *Ch. globosum* strains, but in the case of the other enzymes we found similar enzyme activities (21.27 and 7.06 U/mL β-glucosidase, 29.01 and 36.08 U/mL β-xylosidase, 18.29 and 26.89 U/mL β-1,4-N-acetyl-glucosaminidase) (Figure 7).

![Graph of extracellular enzyme activities](image)

Figure 7. Extracellular enzyme activities of the examined *Chaetomium* and *Chaetomium*-like strains. Error bars show standard deviation of three replicates.

3. Discussion

The dominant species in this study was *Ch. globosum* in both countries in indoor environments, as also determined in several previous studies [5,7,62]. In both countries, the species *Ch. cochliodes* was found to be also common in indoor environments. *Ch. interruptum* was isolated only from Hungary, while *Ch. rectangulare* and *D. finlandicus* only from Finland. Due to the tendency of application of cellulose-based materials (e.g., wallpapers and drywalls) in modern buildings, cellulose-degrading fungi, such as Chaetomiaceae have an increasing relevance. Most indoor strains were isolated from house dust or surface samples, while isolates from air samples were relatively rare. Similar observations were made by Fogle et al. [63] based on the analysis of samplings performed in 794 buildings in Dallas. Although several theories have emerged to explain this phenomenon, further experiments are needed to clarify the dispersal strategy of these fungi indoors.

In a previous study, Salo et al. [5] tested 42 toxin-producing *Chaetomium* isolates from Finland. In addition to the most common *Ch. globosum*, three other species, *Ch. cochliodes*, *Ch. rectangulare*, and a *Chaetomium*-like species were described for the first time from Finnish buildings. In a study by Vornanen-Winquist et al. [61], unknown indoor *Chaetomium*-like strains were designated as *Dichatomophilus* sp. The molecular results presented here revealed that the *Chaetomium*-like isolate Ch1/tu (SZMC 26529) in Salo et al. [5] and the...
Dichotomopilus sp. isolate C5/LM (SZMC 26527) from Vornanen-Winquist et al. [61] belong to the same new, previously undescribed species of the genus Dichotomopilus. Strain Ch1/tu was isolated from an inlet air filter and suggested to originate from the outdoor air [5], while strain C5/LM was isolated from an exhaust air filter. This may indicate that C5/LM had a possible indoor source. On the other hand, the fact that this new species was detected in both inlet and outlet air filters may also suggest that the strains were already incorporated into the filter material during production. Contamination of gypsum wall board with Chaetomium strains during production has been described by Andersen et al. [64].

The species D. finlandicus described in the recent study could be morphologically and molecularly differentiated from related species, the results of the phylogenetic analyses of the combined dataset of ITS, tef1α, rpb2, and tub2 (Figure 4) was 100% bootstrap support. In addition, the phylogenetically closest relative species D. finicola, D. pseudofunicola, D. subfunicola, D. variostiolatus, and D. indicus are morphologically different from the strain we studied. Based on the morphological properties of these species studied by Wang et al. [7], ascomata, terminal hairs, and the asci were different while the shape and the size of ascospores were similar to D. finlandicus, which we describe here as a new species.

The enzymatic activity of the Chaetomium and Chaetomium-like strains proved to be diverse, and no correlation was found with either the isolation site or the growing substrate. These results are consistent with the findings of Abdel Azeem et al. [22], that enzyme production is isolate-dependent. The authors concluded that enzyme production has no detectable association with ecology, however, although this may be true in the case of plant host specificity, we suggest the ability to produce cellulolytic enzymes as a clear ecological advantage in the case of fungal growth on cellulose-based building materials.

In the rapid screening assays described by Salo et al. [5] and Vornanen-Winquist et al. [65], Dichotomopilus strains gave weaker responses than the Ch. globosum, Ch. cochliodes and Ch. rectangulare strains. However, strain Ch1/tu (SZMC 26529), which was designated here as the type strain of the newly described species D. finlandicus, inhibited boar sperm motility after 3 d of exposure, indicating that the strain produced a bioactive agent possibly affecting mitochondrial functions, or ion homeostasis [66]. Purification and identification of this substance and characterization of its biological activities will be the subject of further research.

4. Materials and Methods
4.1. Sample Collection and Isolation

Chaetomium and Chaetomium-like strains were collected and isolated from schools, flats, and offices in Finland as described previously by Salo et al. [5], as well as from houses, flats, and offices in Hungary (Table 1). To collect fungi from walls, visible colonies, or wet surfaces detected by moisture meter (Greisinger GMI 15) were sampled with sterile swabs. House dust samples were also collected with swabs. Samples were spread directly onto malt extract agar (MEA) supplemented with 2% chloramphenicol, Dichloran - Rose Bengal Agar, or Casitone Agar on MEA. To collect airborne fungi, air samples of 100 L were collected at 150 cm a.g.l. with 400-hole one-stage Andersen samplers [67] (MAS 100, EMD Millipore, Merck, Darmstadt, Germany; SAS IAQ, International PBI SpA, Milan, Italy; Samp’Air MK2, AES Chemunex, Bruz, France), at a flow of 100 L/min onto MEA. Between samplings, the devices were sterilized with ethanol (abs.). Incubation of the samples was performed for 5 to 7 days at room temperature. The isolated pure cultures were deposited in the Szeged Microbiology Collection (SZMC, http://szmc.hu), Szeged, Hungary.

4.2. Morphological Characterization

The morphology and colony characteristics of the isolates were examined on three different media: 2% (w/v) MEA (VWR, Debrecen, Hungary), 3% (w/v) oatmeal agar (OA, Merck, Darmstadt, Germany; SAS IAQ, International PBI SpA, Milan, Italy; Samp’Air MK2, AES Chemunex, Bruz, France), and potato dextrose agar (PDA, VWR, Debrecen, Hungary), and incubated for seven days in the dark at 25 °C [2,7]. Microscopic studies were performed using light—(Zeiss Primostar, Carl Zeiss, Suzhou, China), stereo—(Zeiss Stemi 305, Carl
Zeiss, Suzhou, China), and scanning electron microscopes. SEM samples were prepared by stabilization in 0.1 M phosphate buffer (pH 7.3) containing 2.5% glutaraldehyde (12 h, 4 °C). The samples were then dehydrated with ethanol-water, gradually increasing the volume ratio of ethanol (50% v/v, 60% v/v, 70% v/v, 80% v/v, 90% v/v, 95% v/v, 100% v/v). Finally, the samples were dried (3 h, 30 °C) and coated with gold for microscopic examination. Electron microscopy images were taken with a 10 kV accelerating voltage Hitachi S-4700 Type II FE-SEM microscope, observing secondary electrons with magnitudes of 150 ×, 250 ×, 600 ×, and 2000 × [68].

4.3. DNA Extraction, Identification, and Phylogenetic Analysis

Pure cultures of fungi were grown in 2% (w/v) MEA for 7 days at room temperature. Fungal genomic DNA was then extracted using the E.Z.N.A.®Fungal DNA Mini Kit (Omega Biotek, Norcross, GA, USA). The extracted genomic DNA was amplified by PCR with the primers listed in Table 2. The PCR mixture (20 µL) contained 2 µL 10× DreamTaq Buffer with 20 mM MgCl₂, 2 µL of 2 mM dNTP mix, 4 µL of each primer (100 µM), 7 µL bidistilled water, 0.1 µL of 5 U/µL DreamTaq DNA Polymerase (Thermo Fisher Scientific, Vilnius, Lithuania) and 1 µL genomic DNA. Amplifications were performed in a Doppio Gradient 2 × 48-well thermal cycler (VWR International, Debrecen, Hungary) according to the amplification cycles shown in Table 2. PCR products were purified using NucleoSpin™ Gel and PCR Clean-up Kit (Macherey-Nagel, Düren, Germany). Sequencing was performed on the sequencing platform of Eurofins Genomics (http://www.eurofinsgenomics.com, accessed on 2 September 2021). The resulting sequences were submitted to the GenBank Nucleotide database (ncbi.nlm.nih.gov) under the accession numbers listed in Table 1. In addition to the sequences generated in this study, sequences of reference strains were obtained from the GenBank Nucleotide database (Table 1).

Sequences of the two Dichotomopilus isolates were aligned with publicly available sequences of 12 and 11 previously described Dichotomopilus and Chaetomium species, respectively. Phylogenetic analyses were conducted using four loci (ITS, tef1α, rpb2, and tub2).

Sequences were aligned with Prank v170427 [69]. Alignments of the four loci were concatenated and partitioned. Tef1α and rpb2 sequences were defined as two single partitions, while the tub2 dataset was partitioned to exons and introns. The ITS dataset was divided to rDNA and ITS1-ITS2 regions. Alignments of tub2 and ITS datasets contained relative high number of indels, therefore gaps were coded as absence/presence characters by 2matrix v1.0 [70] using the simple indel coding algorithm [71]. The two indel matrices were concatenated and added as a single partition to the dataset. Best fitting model for the phylogenetic inference was selected by using ModelTest-NG v0.1.4 [72], based on the Bayesian information criterion [73], with discrete gamma rate categories. Best fit models for each partition are shown in Table 3. Maximum likelihood analysis was performed using RAxML-NG v0.9.0 [74]. Statistical support of the best ML tree was obtained with 1000 bootstrap replicates.
Table 2. List of the amplified genes, used primers, and PCR conditions.

Gene	Primer	PCR Condition	
tef1α	EF1-728F: CATCGAGAAGTTGCAGAAGG TEF1-LLErev: AACTTGAGGCAATGTGG	94 °C 5 min 94 °C 30 s 57 °C 30 s 72 °C 90 s 72 °C 7 min	40 cycles
ITS	ITS1: TCCGTAGGTAACCTGCGG ITS4: TCCTCAGCTATTGATATGC	94 °C 2 min 94 °C 30 s 48 °C 40 s 72 °C 40 s 72 °C 2 min	35 cycles
tub2	BT2a: GGTAACCAAATCGGTGCTTTC BT2b: ACCCTCAGTGTAGTGACCCTTGGC	94 °C 2 min 94 °C 30 s 55 °C 30 s 72 °C 45 s 72 °C 7 min	35 cycles
rpb2	RPB2 5F_Eur: GAYGAYCGKGAYCAYTTCGG RPB2 7CR_Eur: CCCATRGCYTGYTTRCCCAT	94 °C 5 min 94 °C 45 s 60 °C 45 s 72 °C 2 min	5 cycles
		94 °C 45 s 60 °C 45 s 72 °C 2 min	5 cycles
		94 °C 45 s 58 °C 45 s 72 °C 2 min	5 cycles
		94 °C 45 s 54 °C 45 s 72 °C 2 min	30 cycles
		94 °C 45 s 54 °C 45 s 72 °C 2 min	30 cycles

Table 3. Best-fit models for each partition proposed by ModelTest-NG based on Bayesian information criterion.

Partition	Best-Fit Model
rpb2	TrN + G4
tef1α	TIM2 + G4
tub2 intron	HKY + G4
tub2 exon	TrN + G4
rDNA	F81 + G4
ITS	TIM2 + G4
Indel	BIN + ASC_LEWIS

4.4. Enzyme Production

For enzyme activity measurements, fungal strains were grown in cellulose-containing broth (20 g/L mannitol, 10 g/L KH₂PO₄, 5 g/L NaNO₃, 2 g/L MgSO₄·7H₂O, 20 g/L cellulose powder) for seven days at 25 °C with shaking (150 rpm) on a MaxQ 8000 Incubated Stackable Shaker (Thermo Fisher Scientific, Waltham, USA). Enzyme activity measurements were performed from culture supernatants with the chromogenic substrates 4-nitrophenyl-β-D-glucopyranoside (β-glucosidase), 4-nitrophenyl-β-D-cellubiose (celllobiohydrolase), 4-nitrophenyl-β-D-xylopyranoside (β-xylanase), 4-nitrophenyl-N-acetyl-β-D-glucosamine (β-1,4-N-acetyl-glucosaminidase) (Sigma Aldrich, St. Louis, MO, USA). 100 μL of the culture supernatants were pipetted into the wells of a microtiter plate and 100 μL of 3 mM 4-nitrophenyl substrate was added. The mixtures were incubated at
37 °C for 1 hour; thereafter the reactions were stopped by the addition of 100 µL Na₂CO₃ solution (0.1 M). The released 4-nitrophenol was measured on a Spectrostar Nano microtiter plate reader (BMG Labtech, Ortenberg, Germany) at 405 nm. The optical density values obtained were converted to units: 1 unit of enzyme activity was defined as the amount of enzyme required to release 1 µmol of p-nitrophenol per min under the determined reaction conditions. Calibration curve was used preparing standard solutions of 4-nitrophenol of known concentration.

4.5. Temperature Profiling

Optimal growth temperature ranges were determined for all Chaetomium and Chaetomium-like isolates. PDA plates were inoculated with 7 mm agar plates taken from the edge of seven-day-old colonies. The plates were incubated at 4, 15, 21, 25, 30, 35, 37, and 45 °C, with six replicates each. Colony diameters were measured after four days.

Author Contributions: Conceptualization, O.K. and L.K.; Methodology, O.K., T.B., M.A.A., J.M.S., R.M., H.S., A.K. and Z.K.; Software, S.K. and A.S.; Validation, J.M.S., S.K., A.S., Z.K., C.V. and D.M.; Formal analysis, O.K., S.K. and A.S.; Investigation, O.K., T.B., M.A.A., R.M. and A.K.; Resources, H.S., Z.K., C.V. and D.M.; Data curation, O.K., M.A.A., D.M., S.K. and L.K.; Writing—original draft, O.K., S.K., M.A.A., A.S., A.K., D.M. and L.K.; Writing—review and editing, O.K., M.A.A., J.M.S., H.S., R.M., C.V., Z.K., D.M. and L.K.; Visualization, O.K., S.K. and A.K.; Supervision, O.K., Z.K. and L.K.; Project administration, H.S., D.M. and L.K.; Funding acquisition, O.K., M.A.A., H.S. and R.M. All authors have read and agreed to the published version of the manuscript.

Funding: O.K. was supported by the ÚNKP-20-3—New National Excellence Program of the Ministry for Innovation and Technology from the source of the National Research, Development and Innovation Fund. M.A.A., H.S. and R.M. are grateful to the Academy of Finland (CleanSchool-project, grant no. 330150) for financial support.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Nucleotide sequences were deposited in the GenBank Nucleotide Database (https://www.ncbi.nlm.nih.gov), accession numbers are provided in Table 1.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Rodríguez, K.; Stchigel, A.; Guarro, J. Three new species of Chaetomium from soil. *Mycologia* 2002, 94, 116–126. [CrossRef] [PubMed]
2. Wang, X.W.; Wang, X.L.; Liu, F.J.; Zhao, X.M.; Li, J.; Cai, L. Phylogenetic assessment of *Chaetomium indicum* and allied species, with the introduction of three new species and epitypification of *C. funicola* and *C. indicum*. *Mycol. Prog.* 2014, 13, 719–732. [CrossRef]
3. Došen, I.; Nielsen, K.F.; Clausen, G.; Andersen, B. Potentially harmful secondary metabolites produced by indoor *Chaetomium* species on artificially and naturally contaminated building materials. *Indoor Air* 2017, 27, 34–46. [CrossRef] [PubMed]
4. Andersen, B.; Frisvad, J.C.; Søndergaard, I.; Rasmussen, I.S.; Larsen, L.S. Associations between fungal species and water-damaged building materials. *Appl. Environ. Microbiol.* 2011, 77, 4180–4188. [CrossRef]
5. Salo, J.M.; Nedves, O.; Mikkola, R.; Kredis, L.; Andersson, M.A.; Kurnitski, J.; Salonen, H. Detection of *Chaetomium globosum*, *C. cochliodes* and *C. rectangulare* during the diversity tracking of mycotoxin-producing *Chaetomium*-like fungi from indoor environments. *Toxins* 2020, 12, 443. [CrossRef]
6. Castagnoli, E.; Mikkola, R.; Vornanen-Winquist, C.; Andersson, M.; Kredis, L.; Marik, T.; Kurnitski, J.; Salonen, H. Indoor *Chaetomium*-like isolates; resistance to chemicals, fluorescence and mycotoxin production. *Sisäilmastoseminaari* 2017, 35, 227–232.
7. Wang, X.W.; Houbraken, J.; Groenewald, J.Z.; Meijer, M.; Andersen, B.; Nielsen, K.F.; Crous, P.W.; Samson, R.A. Diversity and taxonomy of *Chaetomium* and *Chaetomium*-like fungi from indoor environments. *Stud. Mycol.* 2016, 84, 145–224. [CrossRef]
8. Stiller, M.J.; Rosenthal, S.; Summerbell, R.C.; Pollack, J.; Chan, A. Onychomycosis of the toenails caused by *Chaetomium globosum*. *J. Am. Acad. Dermatol.* 1992, 26, 775–776. [CrossRef]
9. Aspiroz, C.; Gené, J.; Rezusta, A.; Charlez, L.; Summerbell, R.C. First Spanish case of onychomycosis caused by *Chaetomium globosum*. *Med. Mycol.* 2007, 45, 279–282. [CrossRef] [PubMed]
10. Hwang, S.M.; Suh, M.K.; Ha, G.Y. Onychomycosis due to nondermatophytic molds. *Ann. Dermatol.* 2012, 24, 175–180. [CrossRef] [PubMed]
11. Kim, D.M.; Lee, M.H.; Suh, M.K.; Ha, G.Y.; Kim, H.; Choi, J.S. Onychomycosis caused by Chaetomium globosum. Ann. Dermatol. 2013, 25, 232–236. [CrossRef]
12. Shi, D.; Lu, G.; Mei, H.; de Hoog, G.S.; Zheng, H.; Liang, G.; Shen, Y.; Li, T.; Liu, W. Onychomycosis due to Chaetomium globosum with yellowish black discoloration and periungual inflammation. Med. Mycol. Case Rep. 2016, 13, 12–16. [CrossRef] [PubMed]
13. Hubka, V.; Menc, K.; Skorepova, M.; Lyskova, P.; Zalabska, E. Phaeohyphomycosis and onychomycosis due to Chaetomium spp., including the first report of Chaetomium brasilienne infection. Med. Mycol. 2011, 49, 724–733. [CrossRef] [PubMed]
14. Abbott, S.P.; Sigler, L.; McAleer, R.; McGough, D.A.; Rinaldi, M.G.; Mizell, G. Fatal cerebral mycoses caused by the ascomycete Chaetomium strumarum. J. Clin. Microbiol. 1995, 33, 2692–2698. [CrossRef] [PubMed]
15. Thomas, C.; Mileusnic, D.; Carey, R.B.; Kampert, M.; Anderson, D. Fatal Chaetomium cerebritis in a bone marrow transplant patient. Hum. Pathol. 1999, 874–879. [CrossRef]
16. Barron, M.A.; Sutton, D.A.; Veve, R.; Guarro, J.; Rinaldi, M.; Thompson, E.; Cagnoni, P.; Moultney, K.; Madinger, N.E. Invasive mycotic infections caused by Chaetomium perlicium, a new agent of cerebral phaeohyphomycosis. J. Clin. Microbiol. 2003, 41, 5302–5307. [CrossRef]
17. Gao, K.; Liu, X.; Kang, Z.; Mendgen, K. Mycoparasitism of Rhizoctonia solani by endophytic Chaetomium spirale ND35: Ultrastructure and cytochemistry of the interaction. J. Phytopathol. 2005, 153, 280–290. [CrossRef]
18. Ding, G.; Song, Y.C.; Chen, J.R.; Xu, C.; Ge, H.M.; Wang, X.T.; Tan, R.X. Chaetoglobosin U, a cytochalasan alkaloid from endophytic Chaetomium globosum IFB-E019. J. Nat. Prod. 2006, 69, 302–304. [CrossRef] [PubMed]
19. Sharma, R.; Kulkarni, G.; Sonawane, M.S.; Shouche, Y.S. A new endophytic species of Chaetomium from Jatropha podagrica. Mycotoxins 2013, 124, 117–126. [CrossRef]
20. Kamat, S.; Kumari, M.; Sajna, K.V.; Jayabaskaran, C. Endophytic fungus, Chaetomium globosum, associated with marine green alga, a new source of Chrysins. Sci. Rep. 2020, 10, 18726. [CrossRef]
21. Lakshminant; Kamal; Mathur, S.N. Cellulolytic activities of Chaetomium globosum on different cellulosic substrates. World J. Microbiol. Biotechnol. 1990, 6, 23–26. [CrossRef]
22. Abdel-Azeem, A.M.; Gherbawy, Y.A.; Sabry, A.M. Enzyme profiles and genotyping of Chaetomium globosum isolates from various substrates. Plant Biosyst. 2016, 150, 420–428. [CrossRef]
23. Wannmolee, W.; Sornlake, W.; Ratanaphan, N.; Suwannarangsee, S.; Laosiripojana, N.; Champreda, V. Biochemical characterization and synergism of cellulolytic enzyme system from Chaetomium globosum on rice straw saccharification. BMC Biotechnol. 2016, 16, 82. [CrossRef]
24. Zhou, Q.; Jia, J.; Ji, P.; Han, C. A novel application potential of GH6 cellobiohydrolase ctcel6 from thermophilic Chaetomium thermophilum for gene cloning, heterologous expression and biological characterization. Int. J. Agric. Biol. 2017, 19, 355–362. [CrossRef]
25. Li, H.; Liao, Z.B.; Tang, D.; Han, W.B.; Zhang, Q.; Gao, J.M. Polyketides from two Chaetomium species and their biological functions. J. Antibiot. 2018, 71, 677–681. [CrossRef]
26. Wang, Z.; Jia, S.; Cui, J.; Qu, J.; Yue, Y.; Sun, Q.; Zhang, H. Antioxidant activity of a polysaccharide produced by Chaetomium globosum CGMCC 6882. Int. J. Biol. Macromol. 2019, 141, 955–960. [CrossRef]
27. Serena, C.; Ortoneda, M.; Capilla, J.; Pastor, F.J.; Sutton, D.A.; Rinaldi, M.G.; Guarro, J. In vitro activities of new antifungal agents against Chaetomium spp. and inoucon standardization. Antimicrob. Agents Chemother. 2003, 47, 3161–3164. [CrossRef] [PubMed]
28. Jiao, W.; Feng, Y.; Blunt, J.W.; Cole, A.L.J.; Munro, M.H.G. Chaetoglobosins Q, R, and T, three further new metabolites from Chaetomium globosum. J. Nat. Prod. 2016, 79, 1272–1275. [CrossRef]
29. Park, J.H.; Gyung, J.C.; Kyoung, S.J.; He, K.L.; Heung, T.K.; Kwang, Y.C.; Kim, J.C. Antifungal activity against plant pathogenic fungi of chaetoviridins isolated from Chaetomium globosum. FEMS Microbiol. Lett. 2005, 252, 309–313. [CrossRef]
30. Huang, S.; Chen, H.; Li, W.; ZHU, X.; Ding, W.; Li, C. Bioactive chaetoglobosins from the mangrove endophytic fungus Penicillium chrysogenum. Mar. Drugs 2016, 14, 172. [CrossRef]
31. Yan, W.; Cao, L.L.; Zhang, Y.Y.; Zhao, R.; Zhao, S.S.; Khan, B.; Ye, Y.H. New metabolites from endophytic fungus Chaetomium globosum CDW7. Molecules 2018, 23, 2873. [CrossRef]
32. Chovanová, K.; Zámocký, M. Detection of the antibacterial effect of Chaetomium cochlodes Palliser CCM F-232 based on agar plugs and unprocessed fungal substances from cultivation media. Biologia 2016, 71, 1204–1211. [CrossRef]
33. Dissanayake, R.K.; Ratnaweera, P.B.; Williams, D.E.; Wijayarathne, C.D.; Wijesundera, R.L.C.; Andersen, R.J.; de Silva, E.D. Antimicrobial activities of endophytic fungi of the Sri Lankan aquatic plant Nymphea nouchali and chaetoglobosin A and C, produced by the endophytic fungus Chaetomium globosum. Mycology 2016, 7, 1–8. [CrossRef]
34. Gao, W.; He, Y.; Li, F.; Chai, C.; Zhang, J.; Guo, J.; Chen, C.; Wang, J.; Zhu, H.; Hu, Z.; et al. Antibacterial activity against drug-resistant microbial pathogens of cytochalasan alkaloids from the arthrospore-associated fungus Chaetomium globosum TW1-1. Bioorg. Chem. 2019, 83, 98–104. [CrossRef]
35. Wang, Z.; Xue, R.; Cui, J.; Wang, J.; Fan, W.; Zhang, H.; Zhan, X. Antibacterial activity of a polysaccharide produced from Chaetomium globosum CGMCC 6682. Int. J. Biol. Macromol. 2019, 125, 376–382. [CrossRef] [PubMed]
36. Wani, N.; Khanday, W.; Tirumale, S. Evaluation of In vitro antioxidant potential of active metabolite constituents of different extracts of Chaetomium cupreum-S502 by spectrophotometric method. Matrix Sci. Pharma 2020, 4, 50. [CrossRef]
37. Attia, E.; Dashora, K.; Abdel-azeem, A. A potential antimicrobial, extracellular enzymes, and antioxidants resource: Endophytic fungi associated with medicinal plants. Int. J. Biosci. 2020, 17, 119–132. [CrossRef]
38. Khan, B.; Yan, W.; Wei, S.; Wang, Z.; Zhao, S.; Cao, L.; Raijput, N.A.; Ye, Y. Nematicidal metabolites from endophytic fungus Chaetomium globosum YSC5. FEMS Microbiol. Lett. 2019, 396, fnz169. [CrossRef]
39. Hu, Y.; Zhang, W.; Zhang, P.; Ruan, W.; Zhu, X. Nematicidal activity of chaetoglobosin A produced by Chaetomium globosum NK102 against Meloidogyne incognita. J. Agric. Food Chem. 2013, 61, 41–46. [CrossRef]
40. Chen, C.; Tong, Q.; Zhu, H.; Tan, D.; Zhang, J.; Xue, Y.; Yao, G.; Luo, Z.; Wang, J.; Wang, Y.; et al. Nine new cytochalasan alkaloids from Chaetomium globosum TW1-1 (Ascomycota, Sordariales). Sci. Rep. 2016, 6, 18711. [CrossRef]
41. Ruan, B.H.; Yu, Z.F.; Yang, X.Q.; Yang, Y.B.; Hu, M.; Zhang, Z.X.; Zhou, Q.Y.; Zhou, H.; Ding, Z.T. New bioactive compounds from aquatic endophyte Chaetomium globosum. Nat. Prod. Res. 2018, 32, 1050–1055. [CrossRef]
42. Wang, Z.; Chen, P.; Tao, N.; Zhang, H.; Li, R.; Zhan, X.; Wang, F.; Shen, Y. Anticancer activity of polysaccharides produced from Chaetomium globosum CGMCC 6882 on human lung cancer A549 cells. Biomolecules 2018, 8, 171. [CrossRef] [PubMed]
43. Senthil Kumar, V.; Kumaresan, S.; Tamizh, M.M.; Hairul Islam, M.I.; Thirugnanasambantham, K. Anticancer potential of NF-κB targeting apoptotic molecule “flavipin” isolated from endophytic Chaetomium globosum. Phytotherapy Research 2019, 61, 152830. [CrossRef]
44. Wani, N.; Khanday, W.; Tirumale, S. Biosynthesis of iron oxide nanoparticles using ethyl acetate extract of Chaetomium globosum. IET Nanobiotechnol. 2014, 8, 331–337. [CrossRef] [PubMed]
45. Wijeratne, E.M.K.; Turbyville, T.J.; Fritz, A.; Whitesell, L.; Gunatilaka, A.A.L. A new dihydroxanthenone from a plant-associated fungus Chroococcum sp. TW1-2. J. Nat. Prod. 2016, 79, 1145–1151. [CrossRef] [PubMed]
46. Wanjura, S.I. A new species of Chaetomium globosum. J. Mycol. Med. 2012, 22, 222–227. [CrossRef]
47. Gatumbi, R.W.; Kung’u, J.N. Notes on species of the genus Chaetomium. Mycologia 1999, 91, 125–130. [CrossRef] [PubMed]
48. Li, H.; Xiao, J.; Gao, Y.Q.; Tang, J.J.; Zhang, A.L.; Gao, J.M. Chaetoglobosins from Chaetomium globosum. Bioorg. Med. Chem. 2014, 22, 3282–3292. [CrossRef]
49. El-Mohamedy, R.S.R.; El-Gamal, N.G.; El-Shamy, A.R.; Atalla, S.M.M. Biosynthesis of zinc nanoparticles and its effect on enzymes targeting apoptotic molecule “flavipin” isolated from endophytic Chaetomium globosum culture. Chem. Commun. 2016, 52, 5979–5981. [CrossRef] [PubMed]
50. Madbouly, A.K.; Abdel-Aziz, M.S.; Abdel-Wahhab, M.A. Biosynthesis of nanosilver using Chaetomium globosum and its application to control Fusarium wilt of tomato. IET Nanobiotechnol. 2017, 11, 702–708. [CrossRef]
51. Wang, Z.; Liu, X.; Bao, Y.; Wang, X.; Zhai, J.; Zhan, X.; Zhang, H. Characterization and anti-inflammation of a polysaccharide from Chaetomium globosum CGMCC 6882 on LPS-induced RAW 264.7 cells. Carbohydr. Polym. 2021, 251, 111729. [CrossRef] [PubMed]
52. Mobley, A.K.; Abdel-Aziz, M.S.; Abdel-Wahhab, M.A. Biosynthesis of nanosilver using Chaetomium globosum and its application to control Fusarium wilt of tomato. IET Nanobiotechnol. 2017, 11, 702–708. [CrossRef]
53. Mohamed, R.S.R.; El-Gamal, N.G.; El-Shamy, A.R.; Atalla, S.M.M. Biosynthesis of zinc nanoparticles and its effect on enzymes production by Bacillus subtilis and Pseudomonas fluorescens using different agricultural wastes. Int. J. Agric. Technol. 2018, 14, 833–844. [CrossRef]
54. Wang, X.W.; Zheng, R.Y. Chaetomium acropullum sp. nov. (Chaetomiaceae, Ascomycota), a new psychrotolerant mesophilic species from China. Nova Hedwigia 2005, 80, 413–417. [CrossRef]
55. Abdel-Azim, A.M.; Abdel-Azim, M.A.; Balboul, B.A.; Moussa, M.K.; Ali, N.H.; Darwish, A.M.G. Biodiversity and industrial applications of genus Chaetomium. In Industrially Important Fungi for Sustainable Development; Abdel-Azim, A.M., Yadav, A.N., Yadav, N., Usmani, Z., Eds.; Springer: Cham, Switzerland, 2021; Volume 1, pp. 147–206.
56. Gatumbi, R.W.; Kung’u, J.N. Notes on species of the genus Chaetomium from Kenya. East. Afr. Agric. For. J. 1994, 60, 79–89. [CrossRef]
57. Udagawa, S.I. A new species of Chaetomium from house dust. Mycoscience 1997, 38, 399–402. [CrossRef]
58. Andersen, B.; Nissen, A.T. Optimization of dynamic microwave-assisted extraction of Armillaria polysaccharides using RSM, and their biological activity. LWT-Food Sci. Technol. 2015, 64, 1263–1269. [CrossRef]
59. Wang, Z.; Liu, X.; Bao, Y.; Wang, X.; Zhai, J.; Zhan, X.; Zhang, H. Characterization and anti-inflammation of a polysaccharide produced by Chaetomium globosum CGMCC 6882 on LPS-induced RAW 264.7 cells. Carbohydr. Polym. 2021, 251, 111729. [CrossRef] [PubMed]
60. Madbouly, A.K.; Abdel-Aziz, M.S.; Abdel-Wahhab, M.A. Biosynthesis of nanosilver using Chaetomium globosum and its application to control Fusarium wilt of tomato. IET Nanobiotechnol. 2017, 11, 702–708. [CrossRef]
61. El-Mohamedy, R.S.R.; El-Gamal, N.G.; El-Shamy, A.R.; Atalla, S.M.M. Biosynthesis of zinc nanoparticles and its effect on enzymes production by Bacillus subtilis and Pseudomonas fluorescens using different agricultural wastes. Int. J. Agric. Technol. 2018, 14, 833–844. [CrossRef]
62. Wang, X.W.; Zheng, R.Y. Chaetomium acropullum sp. nov. (Chaetomiaceae, Ascomycota), a new psychrotolerant mesophilic species from China. Nova Hedwigia 2005, 80, 413–417. [CrossRef]
63. Abdel-Azim, A.M.; Abdel-Azim, M.A.; Balboul, B.A.; Moussa, M.K.; Ali, N.H.; Darwish, A.M.G. Biodiversity and industrial applications of genus Chaetomium. In Industrially Important Fungi for Sustainable Development; Abdel-Azim, A.M., Yadav, A.N., Yadav, N., Usmani, Z., Eds.; Springer: Cham, Switzerland, 2021; Volume 1, pp. 147–206.
64. Andersen, B.; Dosen, I.; Lewinska, A.M.; Nielsen, K.F. Pre-contamination of new gypsum wallboard with potentially harmful fungal species. Indoor Air 2017, 27, 6–12. [CrossRef]
65. Vornanen-Winqvist, C.; Järvi, K.; Toomla, S.; Ahmed, K.; Andersson, M.A.; Mikkola, R.; Marik, T.; Kredics, L.; Salonen, H.; Kurnitski, J. Ventilation positive pressure intervention effect on indoor air quality in a school building with moisture problems. *Int. J. Environ. Res. Public Health* 2018, 15, 230. [CrossRef]

66. Castagnoli, E.; Salo, J.; Toivonen, M.S.; Marik, T.; Mikkola, R.; Kredics, L.; Vicente-Carrillo, A.; Nagy, S.; Andersson, M.T.; Andersson, M.A.; et al. An evaluation of boar spermatozoa as a biosensor for the detection of sublethal and lethal toxicity. *Toxins* 2018, 10, 463. [CrossRef]

67. Andersen, A.A. New sampler for the collection, sizing, and enumeration of viable airborne particles. *J. Bacteriol.* 1958, 76, 471–484. [CrossRef]

68. Kedves, A.; Rónavári, A.; Kónya, Z. Long-term effect of graphene oxide on the aerobic granular sludge wastewater treatment process. *J. Environ. Chem. Eng.* 2021, 9, 104853. [CrossRef]

69. Löytynoja, A. Phylogeny-aware alignment with PRANK. *Meth. Mol. Biol.* 2014, 1079, 155–170. [CrossRef]

70. Salinas, N.R.; Little, D.P. 2matrix: A utility for indel coding and phylogenetic matrix concatenation. *Appl. Plant Sci.* 2014, 2, 1300083. [CrossRef] [PubMed]

71. Simmons, M.P.; Ochoterena, H. Gaps as characters in sequence-based phylogenetic analysis. *Syst. Biol.* 2000, 49, 369–381. [CrossRef] [PubMed]

72. Darriba, D.; Posada, D.; Kozlov, A.M.; Stamatakis, A.; Morel, B.; Flouri, T. ModelTest-NG: A new and scalable tool for the selection of DNA and protein evolutionary models. *Mol. Biol. Evol.* 2020, 37, 291–294. [CrossRef] [PubMed]

73. Schwarz, G. Estimating the dimension of a model. *Ann. Stat.* 1978, 6, 461–464. [CrossRef]

74. Kozlov, A.M.; Darriba, D.; Flouri, T.; Morel, B.; Stamatakis, A. RAxML-NG: A fast, scalable, and user-friendly tool for maximum likelihood phylogenetic inference. *Bioinformatics* 2019, 35, 4453–4455. [CrossRef] [PubMed]