γ-ORTHOGONAL FOR K-DERIVATIONS AND K-REVERSE DERIVATIONS

Abdulrahman H. Majeed1 & Shahed Ali Hamil2
1,2 Department of Mathematics, College of Science, University of Baghdad, Baghdad, Iraq.

1Email: shahedahamil@gmail.com
2Email: ahmajeed6@yahoo.com

Abstract: In this paper, we introduce definitions of γ-orthogonality for two pairs of k-derivations, generalized k-derivations, and k-reverse derivations. And we present some results concerning with these notions on γ-semiprime gamma ring.

Key words: γ-semiprime gamma ring, k-derivation, generalized k-derivation, k-reverse derivation, γ-orthogonal.

1. Introduction
Let M and Γ be two additive abelian groups. M is said to be a Γ-ring in the sense of Barnes [1] if there exists a mapping of $M \times \Gamma \times M \to M$ satisfying these two conditions for all $a, b, c \in M, \alpha, \beta \in \Gamma$:

(1) $(a + b)\alpha c = a \alpha c + b \alpha c$

$a(\alpha + \beta)b = a\alpha b + a\beta b$

$a\alpha (b + c) = a\alpha b + a\alpha c$

(2) $(a\alpha b)c = a(\alpha bc)$

In addition, if there exists a mapping of $\Gamma \times M \times \Gamma \to \Gamma$ such that the following axioms hold for all $a, b, c \in M, \alpha, \beta \in \Gamma$:

(3) $(a\alpha b)c = a(\alpha bc)c$

(4) $a\alpha b = 0$ for all $a, b \in M$ implies $\alpha = 0$ where $\alpha \in \Gamma$.

Then M is called a Γ-ring in the sense of Nobusawa [2]. If a Γ-ring M in the sense of Barnes satisfies only the condition (3), then it is called weak Nobusawa Γ-ring [3]. We assume that all gamma rings in this paper are weak Nobusawa Γ-ring unless otherwise specified.

Let M be a Γ-ring, M is said to be a Γ-prime gamma ring if $a \Gamma M \Gamma b = 0$ with $a, b \in M$ implies that either $a = 0$ or $b = 0$ [4], and M is called a Γ-semiprime gamma ring if $a \Gamma M \Gamma a = 0$ with $a \in M$ implies $a = 0$ [4]. A weak Nobusawa Γ-ring M is said to be a γ-prime gamma ring if there exists a non-zero element γ in Γ such that $a \gamma M \gamma b = 0$ with $a, b \in M$ implies that either $a = 0$ or $b = 0$ [5] and is called a γ-semiprime gamma ring if there exists a non-zero element γ in Γ such that a $\gamma M \gamma a = 0$ with $a \in M$ implies that $a = 0$. And a Γ-ring M is said to be a 2-torsion free if $2a = 0, a \in M$ implies $a = 0$.

Recall that from [6], an additive mapping $d: M \to M$ is called a derivation on M if $d(ab) = d(a)ab + aad(b)$ for all $a, b \in M, \alpha \in \Gamma$ and a reverse derivation on M if $d(ab) = d(b)\alpha a + b\alpha d(a)$ for all $a, b \in M, \alpha \in \Gamma$ [7]. Also an additive mapping $D: M \to M$ is said to be a generalized derivation if there exists a derivation d on M such that $D(ab) = D(a)ab + aad(b)$ for all $a, b \in M, \alpha \in \Gamma$ [8]. In 2000, Kandamar[9] firstly introduced the notion of a k-derivation for a gamma ring in the sense of Barnes. Chakraborty and
Paul [10] introduced the notion of generalized k-derivations for gamma rings. Also in [11] presented the notion of a k-reverse derivation for a gamma ring.

In this work, we define γ-orthogonality for two pairs k-derivations, generalized k-derivations and k-reverse derivations for a weak Nobusawa gamma ring. And we obtain some results on 2-torsion free γ-semiprime Γ-ring.

2. γ-Orthogonal k-derivations

Now we introduce the notion of γ-orthogonal k-derivations as follows.

Definition (2.1). Let M be a Γ-ring. Two k1, k2-derivations d1 and d2 of Γ-ring M are said to be γ-orthogonal (γ be non-zero of Γ) if: d1(a)γMd2(b) = 0 = d2(b)γMd1(a) is satisfied for all a, b ∈ M.

Example (2.2). Let M be a Γ-ring of characteristic equal 2. we put M1 = M × M and Γ1 = Γ× Γ, we define addition and multiplication on M1 and Γ1 as follows:

\[(a1, b1) + (a2, b2) = (a1 + a2, b1 + b2),\]
\[(a1, b1)(a2, b2) = (a1a2, b1b2),\]
\[(a1, b1) + (a2, b2) = (a1 + a2, b1 + b2)\]

for all a1, a2, b1, b2 ∈ M, α, β, α2, β2 ∈ Γ. Then M1 is a Γ1-ring under these operations. Define mappings d1, d2 on M1 and k1, k2 on Γ1 as:

\[d1(a, b) = (a, 0),\]
\[d2(a, b) = (0, b),\]
\[k1(a, β) = (a, 0),\]
\[k2(a, β) = (0, β)\]

for all a, b ∈ M, α, β ∈ Γ.

Then d1 and d2 are k1, k2-derivations of M1 respectively. Let α be non-zero of Γ, we have γ = (a, 0) ∈ Γ1. Therefore d1 and d2 are γ-orthogonal of M1. We give some results below.

Theorem (2.3). Let M be a 2-torsion free γ-semiprime gamma ring and d1, d2 be two k1, k2-derivations of M such that k1(γ) = k2(γ) = 0 respectively. Then the following conditions are equivalent:

(i) d1 and d2 are γ-orthogonal.
(ii) For all a, b ∈ M, the following relation hold:
\[d1(a)γMd2(b) + d2(a)γMd1(b) = 0.\]
(iii) d1(a)γMd2(b) = 0, for all a, b ∈ M.
(iv) d1(a)γMd2(b) = 0, for all a, b ∈ M and d1d2 = 0.

Proof: (i)→(ii) By the given hypothesis, we have d1 and d2 are orthogonal derivations of a 2-torsion free semiprime ring (M, +, ·γ). Then by [12, Theorem1], we get d1(a)γMd2(b) + d2(a)γMd1(b) = 0, for all a, b ∈ (M, +, ·γ) requires d1(a)γMd2(b) + d2(a)γMd1(b) = 0.

(ii)→(iii) By the assumption, we have (M, +, ·γ) is a 2-torsion free semiprime ring and d1, d2 are derivations of ring M. Since d1(a)γMd2(b) + d2(a)γMd1(b) = 0 for all a, b of the ring (M, +, ·γ). Then d1(a)γMd2(b) = 0 for all a, b ∈ M by [12, Theorem1]. Therefore d1(a)γMd2(b) = 0 for all a, b ∈ M.

(iii)→(iv) We have d1 and d2 are derivations of the ring (M, +, ·γ) and (M, +, ·γ) is a 2-torsion free semiprime ring. By hypothesis d1(a)γMd2(b) = 0 for all a, b in ring (M, +, ·γ). Then by [12, Theorem1], we get d1(a)γMd2(b) = 0 for all a, b ∈ M and d2 = 0 requires d1(a)γMd2(b) = 0 for all a, b ∈ M and d2 = 0.

(iv)→(i) By the given hypothesis, we get d1 and d2 are derivations of a 2-torsion free semiprime ring (M, +, ·γ). Since d1(a)γMd2(b) = 0 for all a, b ∈ M and d1d2 = 0, then we have d1 and d2 are orthogonal derivations of ring (M, +, ·γ) by [12, Theorem1]. Hence d1 and d2 are γ-orthogonal of Γ-ring.

Theorem (2.4). Let M be a 2-torsion free γ-semiprime gamma ring and d1, d2 be two k1, k2-derivations of M such that k1(γ) = k2(γ) = 0 respectively. If d1d2 is a k1k2-derivation of M, then d1 and d2 are γ-orthogonal of Γ-ring M.

Proof: By the given hypothesis, we have d1 and d2 are derivations of ring (M, +, ·γ), and (M, +, ·γ) is a 2-torsion free semiprime ring. Since d1d2 is a derivation of a ring (M, +, ·γ), then by [12, Theorem2] we get d1 and d2 are orthogonal of (M, +, ·γ). Therefore d1 and d2 are γ-orthogonal of Γ-ring M.

3. γ-Orthogonal generalized k-derivations

Now we introduce the notion of γ-orthogonal k-derivations as follows.
Definition (3.1). Let M be a Γ-ring. Two generalized k_1, k_2-derivations (D_1, d_1) and (D_2, d_2) of Γ-ring M are said to be γ-orthogonal (γ be non-zero of Γ) if: $D_1(a)\gamma M\gamma D_2(b) = 0 = D_2(b)\gamma M\gamma D_1(a)$ is satisfied for all $a, b \in M$.

Example (3.2). Let d and g be two k_1, k_2-derivations of a Γ-ring M. Consider $M_1 = M \times M$ and $\Gamma_1 = \Gamma \times \Gamma$, define addition and multiplication on M_1 and Γ_1 as: $(a_1, b_1) + i(a_2, b_2) = i(a_1 + a_2, b_1 + b_2)$, $(a_1, b_1)(a, b) = (a_1a, b_1b)$, $(a_1, b_1) + (a_2, b_2) = (a_1 + a_2, b_1 + b_2)$, for all $a_1, a_2, b_1, b_2 \in M$, α, β, γ. If $\beta \in \Gamma$, then M_1 is a Γ_1-ring under these operations. We define mappings d_1, d_2 on M_1 and k_1, k_2 on Γ_1 as:

$$d_1(a, b) = (d(a), 0), d_2(a, b) = (0, g(b)), k_1(a, b) = (k_1(a), 0), k_2(a, b) = (0, k_2(b)),$$

for all $a, b \in M$, $\alpha, \beta \in \Gamma$. Then d_1 and d_2 are k_1, k_2-derivations of M_1 respectively. Moreover, if (D, d) and (G, g) are generalized k_1, k_2-derivations of M and we define D_1, D_2 on M_1 as follows:

$$D_1(a, b) = (D(a), 0) \text{ and } D_2(a, b) = (0, G(b)) \text{ for all } a, b \in M,$$

then (D_1, d_1) and (D_2, d_2) are generalized k_1, k_2-derivations of M_1. If we take α be a non-zero element in Γ, then $\gamma = (\alpha, 0) \in \Gamma_1$. Therefore D_1 and D_2 are γ-orthogonal.

In the following theorem we give characterization of γ-orthogonal generalized k-derivations on Γ-ring.

Theorem (3.3). Let M be a 2-torsion free γ-semiprime gamma ring and (D_1, d_1), (D_2, d_2) be two generalized k_1, k_2-derivations of M such that $k_1(\gamma) = k_2(\gamma) = 0$ respectively. Then the following conditions are equivalent:

(i) D_1 and D_2 are γ-orthogonal.

(ii) For all $a, b \in M$, the following relations holds:

1. $D_1(a)\gamma D_2(b) + D_2(a)\gamma D_1(b) = 0$.
2. $D_1(a)\gamma D_2(b) + D_2(a)\gamma D_1(b) = 0$.
3. $D_1(a)\gamma D_2(b) = 0 = D_2(a)\gamma D_1(b)$ for all $a, b \in M$.
4. $D_1(a)\gamma D_2(b) = 0$ for all $a, b \in M$ and $d_1D_2 = d_2D_1 = 0$.

Proof: (i)\rightarrow(ii) By the given hypothesis, we have D_1 and D_2 are orthogonal generalized derivations of a 2-torsion free semiprime ring $(M, +, \gamma)$ associated with derivations d_1 and d_2 of $(M, +, \gamma)$. Then by [13, Theorem1], we get $D_1(a)\gamma D_2(b) + D_2(a)\gamma D_1(b) = 0$ and $d_1(a)\gamma D_1(b) + d_2(a)\gamma D_2(b) = 0$ for all $a, b \in M$.

(iii)\rightarrow(iv) By the given assumption, we have $(M, +, \gamma)$ is a 2-torsion free semiprime ring and D_1, D_2 are generalized derivations of $(M, +, \gamma)$ associated with derivations d_1 and d_2 of M. By hypothesis $D_1(a)\gamma D_2(b) + D_2(a)\gamma D_1(b) = 0$ and $d_1(a)\gamma D_2(b) + d_2(a)\gamma D_1(b) = 0$ for all $a, b \in M$. Then $D_1(a)\gamma D_2(b) = 0 = d_1(a)\gamma D_2(b)$ for all $a, b \in M$ by [13, Theorem1]. Therefore $D_1(a)\gamma D_2(b) = 0 = d_1(a)\gamma D_2(b)$, for all $a, b \in M$.

(iv)\rightarrow(i) By the given hypothesis, we have D_1 and D_2 are generalized derivations of the ring $(M, +, \gamma)$ associated with derivations d_1 and d_2 of ring M. And $(M, +, \gamma)$ is a 2-torsion free semiprime ring and since $D_1(a)\gamma D_2(b) = d_1(a)\gamma D_2(b) = 0$ for all $a, b \in M$. by [13, Theorem1], we get $D_1(a)\gamma D_2(b) = 0$ for all $a, b \in M$ and $d_1D_2 = d_2D_1 = 0$.

Lemma (3.5). Let M be a 2-torsion free γ-semiprime gamma ring. If (D_1, d_1) and (D_2, d_2) are γ-orthogonal generalized k_1, k_2-derivations of Γ-ring M such that $k_1(\gamma) = k_2(\gamma) = 0$ respectively. Then the following relations are holds.

(i) $D_1(a)\gamma D_2(b) = D_2(a)\gamma D_1(b) = 0$, hence $D_1(a)\gamma D_2(b) + D_2(a)\gamma D_1(b) = 0$, for all $a, b \in M$.

Therefore, $Hence$

M is a γ-orthogonal, and

D_1 and D_2 are γ-orthogonal, and

$D_1(a)D_2(b) = D_2(b)D_1(a) = 0$, for all $a, b \in M$.

(iii) D_1 and D_2 are γ-orthogonal, and

$D_1(a)D_2(b) = D_2(b)D_1(a) = 0$, for all $a, b \in M$.

(iv) D_1 and D_2 are γ-orthogonal.

(v) $D_1D_2 = D_2D_1 = 0$.

(vi) $D_1D_2 = D_2D_1 = 0$.

Proof: (i) By the given hypothesis, we have D_1 and D_2 are generalized derivations of a 2-torsion free semiprime ring $(M, +, \cdot, \gamma)$ associated with derivations d_1 and d_2 of $(M, +, \cdot, \gamma)$. Since D_1 and D_2 are orthogonal of the ring $(M, +, \cdot, \gamma)$. Then by [13, Lemma 2], we get $D_1(a)D_2(b) = D_2(b)D_1(a) = 0$ and $D_1(a)D_1(b) + D_2(a)D_1(b) = 0$ for all $a, b \in M$. Therefore D_1 and D_2 are γ-orthogonal of R-ring M.

(ii) By the given assumption, we have D_1 and D_2 are orthogonal generalized derivations of a 2-torsion free semiprime ring $(M, +, \cdot, \gamma)$ associated with derivations d_1 and d_2 of M. Then by [13, Lemma 2], we have D_1 and D_2 are orthogonal of the ring $(M, +, \cdot, \gamma)$. Hence by [13, Lemma 2], we get d_1 and d_2 are orthogonal of the ring $(M, +, \cdot, \gamma)$. Therefore D_1 and D_2 are γ-orthogonal.

(vi) By the hypothesis, we get D_1 and D_2 are orthogonal generalized derivations of a 2-torsion free semiprime ring $(M, +, \cdot, \gamma)$ associated with derivations d_1 and d_2 of $(M, +, \cdot, \gamma)$. Then by [13, Lemma 2], we have d_1 and d_2 are orthogonal of the ring $(M, +, \cdot, \gamma)$. Therefore D_1 and D_2 are γ-orthogonal of R-ring M.

(vi) By the given assumption, we have D_1, D_2 are generalized derivations of a 2-torsion free semiprime ring $(M, +, \cdot, \gamma)$ associated with derivations d_1 and d_2 of M. By hypothesis D_1 and D_2 are orthogonal of the ring $(M, +, \cdot, \gamma)$. Then by [13, Lemma 2], we get $d_1D_1 = D_2D_1 = 0$ and $d_1D_2 = D_2D_1 = 0$.

Now, for the production of generalized k-derivations we give the following results.

Theorem (3.6). Let M be a 2-torsion free γ-semiprime gamma ring and $(D_1, d_1), (D_2, d_2)$ be two generalized α_1, k_2-derivations of M such that $k_1(\gamma) = k_2(\gamma) = 0$ respectively. Then D_1 and D_2 are γ-orthogonal, and D_1 and D_2 are γ-orthogonal if one of the following conditions holds:

(i) (D_1D_2, d_1d_2) is a generalized k_1k_2-derivation of M.

(ii) $(D_1, d_1), (D_2, d_2)$ is a generalized k_1k_2-derivation of M.

Proof: We prove (i) and the other by the same way: By the given hypothesis, we have D_1 and D_2 are generalized derivations of 2-torsion free semiprime ring $(M, +, \cdot, \gamma)$ associated with derivations d_1 and d_2 of $(M, +, \cdot, \gamma)$. Since D_1D_2 is a generalized derivation of a ring $(M, +, \cdot, \gamma)$ associated with derivation d_1d_2 of M. Hence D_1 and D_2 are orthogonal of ring $(M, +, \cdot, \gamma)$, and D_1 and D_2 are orthogonal of $(M, +, \cdot, \gamma)$ by [13, Theorem 2]. Therefore D_1 and D_2 are γ-orthogonal of R-ring M.

Theorem (3.7). Let M be a 2-torsion free γ-prime gamma ring and $(D_1, d_1), (D_2, d_2)$ be two generalized k_1, k_2-derivations of M such that $k_1(\gamma) = k_2(\gamma) = 0$ respectively. If D_1 and D_2 are γ-orthogonal, and D_1 and D_2 are γ-orthogonal, then $D_1 = d_1 = 0$ or $D_2 = d_2 = 0$.

Proof: By the given assumption, we have $(M, +, \cdot, \gamma)$ is a 2-torsion free primering and D_1, D_2 are generalized derivations of the ring $(M, +, \cdot, \gamma)$ associated with derivations d_1, d_2 of $(M, +, \cdot, \gamma)$. By hypothesis
D_1 and d_2 are orthogonal of the ring $(M, +, \cdot_1)$, and D_2 and d_1 are orthogonal of $(M, +, \cdot_\gamma)$. Hence $D_1 = d_1 = 0$ or $D_2 = d_2 = 0$ by [13, Corollary 5].

4. γ-Orthogonal k-reverse derivations

Definition (4.1). Let M be a Γ-ring. Two k_1, k_2-reverse derivations d_1 and d_2 of Γ-ring M are said to be γ-orthogonal (γ be non-zero of Γ) if: $d_1(a)\gamma M d_2(b) = 0 = d_2(b)\gamma M d_1(a)$ is satisfied for all $a, b \in M$.

We give an example of γ-orthogonal k-reverse derivations on Γ-ring.

Example (4.2). Let d_1 and d_2 be two k_1, k_2-reverse derivations of Γ-ring M. Set $M_1 = M \times M$ and $\Gamma_1 = \Gamma \times \Gamma$, define addition and multiplication on M_1 and Γ_1 as:

$$(a_1, b_1) + (a_2, b_2) = (a_1 + a_2, b_1 + b_2), (a_1, b_1)(a, \beta) (a_2, b_2) = (a_1 a, a_2 b, b_1 \beta b_2), (a_1, \beta_1) + (a_2, \beta_2) = (a_1 + a_2, \beta_1 + \beta_2),$$

for all $a_1, a_2, b_1, b_2 \in M$, $\alpha, \beta, \alpha_1, \alpha_2, \beta_1, \beta_2 \in \Gamma_1$, then M_1 is a Γ_1-ring. Define mappings d_1, d_2 on M_1 and k_1, k_2-derivations Γ_1 as:

$$d_1(a, b) = (d_1(a), 0), d_2(a, b) = (0, d_2(b)), k_1(a, \beta) = (k_1(a), 0), k_2(a, \beta) = (0, k_2(\beta))$$

for all $a, b \in M$, $\alpha, \beta \in \Gamma_1$. Then d_1 and d_2 are k_1, k_2-derivations of M_1 respectively. Let β be non-zero of Γ, we have $\gamma = (0, \beta) \in \Gamma_1$. Therefore d_1 and d_2 are γ-orthogonal of M_1.

In the following theorem we give characterization of γ-orthogonal k-reverse derivations on Γ-ring.

Theorem (4.3). Let M be a 2-torsion free γ-semiprimer ring and d_1, d_2 be two k_1, k_2-reverse derivations of M such that $k_1(\gamma) = k_2(\gamma) = 0$ respectively. Then d_1 and d_2 are γ-orthogonal of Γ-ring M if and only if one of the following conditions holds:

(i) $d_1d_1 = 0$.

(ii) $d_2d_2 = 0$.

(iii) $d_1d_2 + d_2d_1 = 0$.

(iv) $d_1(a)\gamma d_1(a) = 0$, for all $a \in M$.

(v) $d_2(a)\gamma d_2(a) + d_2(a)\gamma d_1(a) = 0$, for all $a \in M$.

proof: (i) \Rightarrow “d_1 and d_2 are γ-orthogonal of M”.

By the given hypothesis, we have d_1 and d_2 are reverse derivations of the ring $(M, +, \cdot_\gamma)$ and $(M, +, \cdot_\gamma)$ is a 2-torsion free semiprimer ring. Since $d_1d_2 = 0$. Hence d_1 and d_2 are orthogonal of the ring $(M, +, \cdot_\gamma)$ by [14, Theorem 1]. Therefore d_1 and d_2 are γ-orthogonal of Γ-ring M since orthogonality of the ring $(M, +, \cdot_\gamma)$ requires γ-orthogonality of Γ-ring M.

“d_1 and d_2 are γ-orthogonal of M” \Rightarrow (i).

By the given assumption, we have d_1 and d_2 are orthogonal reverse derivations of a 2-torsion free semiprimer ring $(M, +, \cdot_\gamma)$. Then $d_1d_2 = 0$ by [14, Theorem 1].

(ii) Similar way used in the proof of (i).

(iii) \Rightarrow “d_1 and d_2 are γ-orthogonal of M”.

By the hypothesis, we have $(M, +, \cdot_\gamma)$ is a 2-torsion free semiprimer ring and d_1, d_2 are reverse derivations of $(M, +, \cdot_\gamma)$. Since $d_1d_2 = 0$. Then we get d_1 and d_2 are orthogonal of the ring $(M, +, \cdot_\gamma)$ by [14, Theorem 1]. Therefore d_1 and d_2 are γ-orthogonal of Γ-ring M.

(iv) \Rightarrow “d_1 and d_2 are γ-orthogonal of M”.

By the given assumption, we have d_1 and d_2 are reverse derivations of the ring $(M, +, \cdot_\gamma)$ and $(M, +, \cdot_\gamma)$ is a 2-torsion free semiprimer ring. By hypothesis $d_1(a)\gamma d_2(a) = 0$, for all $a \in M$, then d_1 and d_2 are orthogonal of the ring $(M, +, \cdot_\gamma)$ by [14, Theorem 1]. Therefore d_1 and d_2 are γ-orthogonal of Γ-ring M.

“d_1 and d_2 are γ-orthogonal of M” \Rightarrow (v).

By the hypothesis, we have d_1 and d_2 are orthogonal reverse derivations of a 2-torsion free semiprimer ring $(M, +, \cdot_\gamma)$, then we get $d_1(a)\gamma d_2(a) + d_2(a)\gamma d_1(a) = 0$, for all $a \in M$ by [14, Theorem 1]. Therefore $d_1(a)\gamma d_2(a) + d_2(a)\gamma d_1(a) = 0$, for all $a \in M$.

References

[1] Barnes, W. E. 1966. On the Γ-rings of Nobusawa, Pacific J. Math., 18(3), 411-422.
[2] Nobusawa, N. 1964. On a generalization of the ring theory, *Osaka J. Math.*, 1, 81-89.
[3] Kyuno, S. 1991. Gamma Rings, *Iladrionic Press, Plm Ilabor*.
[4] Lu, J. 1969. On the theory of simple Γ-rings, *Michigan Math. J.*, 65-75.
[5] Arslan, O. and Kandamar, H. 2016. On commutativity of prime gamma rings with derivations, *Hiiacettepe J. of Math. And Stat.*, 45(5), 1321-1328.
[6] Jing, F. J. 1987. On derivations of Γ-rings, *Qu fu Shifan Daxue Xuebo Ziran Kexue Ban*, 13(4), 159-161.
[7] Dey, K. K., Paul, A. C., and Rakhimov, I. S. 2013. Semiprime gamma rings with orthogonal reverse derivations, *Inter. J. of pure and applied Math.*, 83, 233-245.
[8] Dey, K. K., Paul, A. C., and Rakhimov, I. S. 2014. Generalized derivations in semiprime gamma rings, *Inter. J. of Math. And Mathematical Sciences*.
[9] Kandamar, H. 2000. The k-Derivation of Gamma –ring Turk. J. Math., 23(3), 221-229.
[10] Hakraborty, S., and Paul A. C. 2007. On Jordan generalized k-derivation of 2-torsion free prime ΓN-rings, *Inth. Math.*, 1, 2823-2829.
[11] Majeed, A.H. and Hamil, Sh. A. 2019. On commutativity of prime and semiprime gamma rings with reverse derivations, *Iraqi Journal of Science*.
[12] Bresar, M. and Vukman, J. 1991. Orthogonal derivations and an extension of a theorem of Posner, *Radov Matematick*, 237-246.
[13] Argac, N., Nakajima, A., and Albas, E. 2004. On orthogonal generalized derivations of semiprime rings, *Turk J. Math.*, (28), 185-194.
[14] Majeed, A. H., 2009. On orthogonal reverse derivations of semiprime rings, *Iraqi J. of science*, 50(1), 84-88.