Influence of Heat Units on Defoliation, Physiology and Yield of Cotton during Defoliants Application

P. Chandrasekaran1*, V. Ravichandran1, T. Sivakumar1, A. Senthil1, L. Mahalingam2 and N. Sakthivel3

1Department of Crop Physiology, Tamil Nadu Agricultural University, Coimbatore - 641 003, Tamil Nadu, India.
2Department of Cotton, Tamil Nadu Agricultural University, Coimbatore - 641 003, Tamil Nadu, India.
3Department of Agronomy, Tamil Nadu Agricultural University, Coimbatore - 641 003, Tamil Nadu, India.

Authors’ contributions
This work was carried out in collaboration among all authors. All authors read and approved the final manuscript.

Article Information
DOI: 10.9734/IJECC/2020/v10i1030251
Editor(s):
(1) Dr. Arjun B. Chhetri, Dalhousie University, Canada.
Reviewers:
(1) De Paiva Eliege Aparecida, State University of Londrina, Brazil.
(2) Amey Kossi Bollanigni, Université de Lomé, Togo.
Complete Peer review History: http://www.sdiarticle4.com/review-history/61239

Received 10 July 2020
Accepted 17 September 2020
Published 25 September 2020

ABSTRACT

Aims: A study was conducted to determine the effect of temperature on defoliation process, physiology and yield of cotton during defoliants application.
Study Design: The experiment was laid out in split-plot design with four replications.
Place and Duration of Study: Field experiment was conducted at Department of Crop Physiology, Tamil Nadu Agricultural University, Coimbatore during 2018 to 2019.
Methodology: The main plot comprised of three stage of defoliants spray (120 DAS, 127 DAS and 134 DAS) and the sub-plots were seven defoliants treatments (Control, 2, 4 D (0.5%), Ethephon (0.5%), Ethephon (0.5%) + Triiodbenzoic acid (TIBA) (450 ppm), Sodium chlorate (0.9%), 6 benzylaminopurine (BAP) (0.1%), Thidiazuron + Diuron (0.03%).
Results: After 15 days of defoliants spray, Thidiazuron + Diuron (0.03 %) recorded highest defoliation percentage (99.3, 98.1 and 96.8%) followed by Sodium chlorate (0.9 %) (91.9, 94.6 and 93.6%) at three different stage of defoliants spray. Although a significant effect was observed on chlorophyll index value (SPAD) due to the favorable weather condition like minimum temperature

*Corresponding author: E-mail: chandrumano11@gmail.com;
The growth of older bolls

mature and harvestable with

maximizing the number of yo

optimize the timing of defoliant applications by

defoliants is premature. The producers attempt to

alter fibre quality if the application of the

matured naturally, but it can reduce yield and

produc

absorption and translocation. Defoliation allows

growth, weather conditions, spray coverage,
depends upon crop maturity, unifor

harvest practices. The effective
ness of defoliants

eventual leaf drop [3].

the formation of the abscission layer and

results in the production of enzymes necessary

for the degradation of cellular components and to

the formation of the abscission layer and

eventual leaf drop [3].

Selection of appropriate abscission chemicals is

one of the critical decisions in cotton production. An

abscission chemical with improved defoliation and

boll opening properties is needed for cotton

harvest practices. The effectiveness of defoliants

depends upon crop maturity, uniformity of plant

growth, weather conditions, spray coverage,

absorption and translocation. Defoliation allows

producers to harvest earlier than the crop

matured naturally, but it can reduce yield and

alter fibre quality if the application of the

defoliants is premature. The producers attempt to

optimize the timing of defoliant applications by

maximizing the number of young bolls that are

mature and harvestable without sacrificing the

yield and quality of older bolls [4]. The growth

and development of cotton, like many other

plants, is directly related to the amount of heat to

which the plant is exposed. Heat units are a

measurement of the amount of heat accumulated

by a plant over a certain period of time and there

are different methods for calculating heat units. Determining the optimal heat unit accumulation

cotton defoliation is important to maximize yield and fibre quality while minimizing costs of

inputs. Minimum temperature of 16°C and a
diurnal temperature of 24°C have been found
critical for minimal leaf response to most

defoliants. The Night temperature of 16°C has

been found most suitable for defoliation [5].

Defoliation process usually completes in 7 to 10
days, but in some situations, it may be delayed

for as long as 30 days. The success of

defoliation process depends on the maturity of
cotton crop and prevailing weather conditions at

the time of application. Cotton defoliation is often

practiced when 60% of bolls are opened to avoid

loss in yield and fibre quality [8]. Therefore, it

was intended to study the effect of different

defoliants on defoliation process of cotton and to

identify the ideal time of application based on

temperature regimes prevalent during and after

defoliant application to realize the leaf defoliation,

physiology and yield of cotton.

1. INTRODUCTION

Cotton (Gossypium hirsutum L.) is perennial crop

with an indeterminate growth habit and serves as a

significant source of fiber, feed, foodstuff, oil and

bio-fuel. Currently, the Indian cotton industry

and cotton growing farmers have moving towards

mechanization by cotton harvester. In this regard,

the farmers were facing a major problem at the

time of harvesting due to more leaf vegetation in

the cotton, which will disrupt the boll picking

efficiency and fiber quality. Defoliation is induced

in cotton as a natural physiological process

which usually is not timely enough for a complete

mechanical harvest of cotton. Therefore,

defoliation before harvest is often induced by

managing the plants so that senescence,

abscission layer development and leaf drop are

encouraged [1]. Many of the chemical defoliants

and boll openers are in use today [2] to retard the

production of auxin class hormones while

stimulating the production of ethylene and

abscisic acid (ABA) in the plant. This in turn

results in the production of enzymes necessary

for the degradation of cellular components and to

the formation of the abscission layer and

eventual leaf drop [3].

Selection of appropriate abscission chemicals is

one of the critical decisions in cotton production. An

abscission chemical with improved defoliation and

boll opening properties is needed for cotton

harvest practices. The effectiveness of defoliants

depends upon crop maturity, uniformity of plant

growth, weather conditions, spray coverage,

absorption and translocation. Defoliation allows

producers to harvest earlier than the crop

matured naturally, but it can reduce yield and

alter fibre quality if the application of the

defoliants is premature. The producers attempt to

optimize the timing of defoliant applications by

maximizing the number of young bolls that are

mature and harvestable without sacrificing the

yield and quality of older bolls [4]. The growth

and development of cotton, like many other

plants, is directly related to the amount of heat to

which the plant is exposed. Heat units are a

measurement of the amount of heat accumulated

by a plant over a certain period of time and there

are different methods for calculating heat units. Determining the optimal heat unit accumulation

cotton defoliation is important to maximize yield and fibre quality while minimizing costs of

inputs. Minimum temperature of 16°C and a
diurnal temperature of 24°C have been found
critical for minimal leaf response to most

defoliants. The Night temperature of 16°C has

been found most suitable for defoliation [5].

Defoliation process usually completes in 7 to 10
days, but in some situations, it may be delayed

for as long as 30 days. The success of

defoliation process depends on the maturity of
cotton crop and prevailing weather conditions at

the time of application. Cotton defoliation is often

practiced when 60% of bolls are opened to avoid

loss in yield and fibre quality [8]. Therefore, it

was intended to study the effect of different

defoliants on defoliation process of cotton and to

identify the ideal time of application based on

temperature regimes prevalent during and after

defoliant application to realize the leaf defoliation,

physiology and yield of cotton.

2. MATERIALS AND METHODS

Cotton was sown on 5th September 2018; a

research field located at Department of Cotton,

Tamil Nadu Agricultural University, Coimbatore. Monthly maximum and mean temperatures, heat

units and precipitation are given in (Table 1). In

this study, high density cotton variety CO 17 was

used as experimental material and it is medium
duration variety with erect, compact plant

architecture, also support much needed

mechanization of various farm operations like

sowing and picking. The experiment was laid out

in a split-plot design with four replications. The
main plot comprised of three stages of defoliant spray (Spray at 120 DAS, Spray at 127 DAS and Spray at 134 DAS) and the sub-plots were seven foliar treatments (Control, 2, 4 D (0.5%), Ethephon (0.5%), Ethephon (0.5%) + Triiodbenzoic acid (TIBA) (450 ppm), Sodium chlorate (0.9%), 6 benzylaminopurine (BAP) (0.1%), Thidiazuron + Diuron (0.03%). Control treatment was sprayed with water. Plots were arranged accordingly so that each plot could be mechanically harvested without affecting other plots. Recommended cultural practices and plant protection measures were followed throughout the crop growing season. Cumulative degree days were calculated using base temperature of cotton.

2.1 Plant Sampling and Measurements

There are many ways to determine proper defoliation timing, but the following have proven to be effective. Measuring percent open boll has been the standard defoliation technique for many years. The chemical defoliants were applied as a foliar spray as per treatments when cotton crop attained 60% of the bolls are open. However, this strategy may vary depends on weather conditions during crop period. Timing for the initial defoliant applications were determined using percent open boll. Defoliation process and open bolls were evaluated for the two-centered rows in the middle portion of the plot to avoid evaluation of the foliage in the control plots and defoliated plots were individually conducted. Prior to treatment application, five plants were randomly tagged from the two rows at the center of each plot for number of green leaves present. Treatment effects were detected by counting and recording the number of green leaves remaining on the same tagged plants 4 and 15 Days after Treatment.

2.2 Weather Parameters and Heat Units

The weather conditions prevailed during the entire cropping period was collected from meteorological observatory at Department of Cotton, Tamil Nadu Agricultural University, Coimbatore. Growing Degree Day or heat units are calculated by taking the daily average temperature, (Max + Min)/2, and subtracting the base temperature, either 15.6 for Celsius from the daily average. Heat Units or (GDD) expressed in (°C day) (Table.1).

2.3 Defoliation and Boll Opening Percentage

The defoliation percentage was recorded 4th and 15 days after defoliants spray. The number of leaves observed before day defoliants spray at randomly selected 5 plants for 4 replications and also observed the leaf numbers after spray was calculated by following formula 1,

\[Dp = \frac{L_a - L_b}{L_a} \times 100 \]

Where, \(L_a \) = Number of leaves before treatment, \(L_b \) = Number of leaves after treatment.

Boll opening percentage was determined on the same tagged plants. Bolls on each plant were examined and recorded as either opened or closed and the boll opening percentage was calculated by following formula 2,

\[p_{BO} = \frac{OB}{TB} \times 100 \]

where \(OB \) = Number of opened bolls, \(TB \) = Number of Total bolls [6].

2.4 Chlorophyll Index (SPAD Value)

Chlorophyll meter from Minolta (model 502 of Minolta, Japan) was used to measure chlorophyll index values for each defoliant treatment of Cotton. Chlorophyll meter determines the relative amount of chlorophyll present by measuring the absorbance of the leaf in two wavelength regions that chlorophyll has absorbance peaks in the blue (400 – 500 nm) and red (600 – 700 nm) regions, with no absorbance in the near-infrared region. The chlorophyll meter measures the absorbance; the meter calculates a numerical SPAD value which is proportional to the amount of chlorophyll present in the leaf [7].

2.5 Yield

One week after application of the last defoliation treatments, seed cotton yield was determined in plots by manual harvesting of the center two rows of each plot and calculated g plant⁻¹.

2.6 Data Processing and Statistical Analysis

The data collected were subjected to statistical analysis in split plot design [8].
Table 1. Crop calendar, temperature regimes and heat units during crop season

S. no.	Parameters	Particulars
1	Date of sowing	05.09.2018
2	Date of defoliants spray	First stage of defoliants spray - 03.01.2019 (120 DAS)
		Second stage of defoliants spray - 10.01.2019 (127 DAS)
		Third stage of defoliants spray - 18.01.2019 (134 DAS)
3	Boll opening percentage (%) at defoliants spray	60 %
4	Average maximum temperature during first defoliants spray (°C)	30.8 (03.01.2019 to 17.01.2019)
5	Average maximum temperature during second defoliants spray (°C)	31.8 (10.01.2019 to 25.01.2019)
6	Average maximum temperature during third defoliants spray (°C)	33.3 (18.01.2019 to 02.02.2019)
7	Average minimum temperature during first defoliants spray (°C)	14.3 (03.01.2019 to 17.01.2019)
8	Average minimum temperature during second defoliants spray (°C)	16.9 (10.01.2019 to 25.01.2019)
9	Average minimum temperature during third defoliants spray (°C)	19.3 (18.01.2019 to 02.02.2019)
10	Base Temperature of Cotton	15.6 °C
11	Heat unit (°C day) during defoliation process (15 days after first stage of defoliants spray)	113.5 (03.01.2019 to 17.01.2019)
12	Heat unit (°C day) during defoliation process (15 days after second stage of defoliants spray)	140.5 (10.01.2019 to 25.01.2019)
13	Heat unit (°C day) during defoliation process (15 days after third stage of defoliants spray)	169.5 (18.01.2019 to 02.02.2019)
14	Heat units (°C day) from sowing to first stage of defoliants spray	1381.3 (05.09.2018 to 03.01.2019)
15	Heat units (°C day) from sowing to second stage of defoliants spray	1432.8 (05.09.2018 to 10.01.2019)
16	Heat units (°C day) from sowing to third stage of defoliants spray	1497.89 (05.09.2018 to 18.01.2019)

3. RESULTS AND DISCUSSION

3.1 Heat Units

Defoliation in cotton by using different defoliants was influenced by various factors like type of chemical, rate of application, crop coverage, and maturity of the plant and weather conditions. The crop completed its defoliation in 15 days after treatment imposition indicating that the temperature prevailing at the time of defoliant application played a significant role in inducing defoliation. Efficacy of defoliation was affected strongly by temperature and heat units. In this experiment, changes occurred in all three time of defoliants application maximum (30.8°C) and minimum (14.3°C) temperatures in 120 days after sowing, maximum (31.8°C) and minimum (16.9°C) at 127 days after sowing and maximum (33.3°C) and minimum (19.3°C) in 134 days after sowing (Table 1). This occurred during the fifteen days from date of defoliant application. Heat unit accumulated more than 100°C favors good defoliation in cotton. In the present study, heat units 113.5, 140.5 and 169.6°C days at (120, 127 and 134 days after sowing respectively) were received which hastened the defoliation process. This implies that warm temperatures played a dominant role to stimulate defoliation and boll opening processes. In this study, the defoliants [Thidiazuron + Dianuron (0.03 %)] works better at 113.5°C days heat units and minimum temperature of 14.3°C in 120 DAS compared to 140.5°C heat units and 19.6°C minimum temperature in 127 DAS. The role of crop maturity was of lesser degree than that of
temperatures not withstanding differences in crop ontogeny. Cathey [9] and Munalini al [5] stated that condition of plant and prevailing weather at the time of application are the major factors that limit efficiency of defoliation process.

3.2 Defoliation Percentage

Defoliation starts from 4 days after defoliant application, there was a significant increase in per cent defoliation (66.82, 33.02 and 61.90%) in Thidiazuron + Diuron (0.03%) at three different days (120 DAS, 127 DAS and 134 DAS) of applications and it was also significantly highest defoliation than remaining treatments. But interestingly, among the different day of defoliants application, defoliants spray at 120 DAS and 134 DAS recorded highest defoliation rate. The results indicated that, defoliation effect was influenced by time of defoliant application and some plant internal and environmental factors. Defoliants spray at 134 DAS registered highest defoliation than other stages of defoliants application and was coincided with higher heat units 169.6°C days and low level of SPAD value. Among the treatments, application of Thidiazuron + Diuron (0.03%) (99.3, 98.1 and 9.8%) recorded highest defoliation rate followed by Sodium chlorate (0.9%) (91.9, 94.6 and 94.3%) was effective to induce defoliation at 15 days after defoliant spray (Fig. 1). However higher defoliation percentage recorded at 120 days after sowing it may due to low level of SPAD value and leaf characters like leaf area, leaf area ratio and specific leaf weight. In interaction effect of application of Thidiazuron + Diuron (0.03%) at 120 DAS and 134 DAS recorded higher defoliation. In this stage, the defoliants Thidiazuron + Diuron (0.03%) works better in both time of application. Under warmer conditions, physiological activity in cotton is higher, so defoliant effects may be more pronounced and rapid when compared with cooler conditions. Harvest aids like thidiazuran/diuron and ethephon/cyclanilide have optimal activity when maximum and minimum daily temperatures are above 27°C and 10°C, respectively [10].

3.3 Chlorophyll Index Value

SPAD chlorophyll meter permits a rapid and non-destructive determination of leaf chlorophyll content by measuring leaf transmittance. The SPAD value decreased upon increases in the duration of defoliants spray from 4 to 15 days after defoliants spray. Lower the chlorophyll index is symptoms of degrading the chlorophyll leading to accelerating the defoliation. Among the different defoliants, highest chlorophyll index (SPAD value) was recorded in defoliants spray at 127 DAS followed by 134 DAS. Defoliant Sodium chlorate (0.9%) recorded lowest SPAD value (34.70, 38.13 and 35.45) followed by 2, 4 D (0.5%) (39.2, 35.9 and 37.9) at 4 Days after defoliants spray. At 120 DAS, the defoliant Ethephon (0.5%) + TIBA (450 ppm) and Sodium chlorate (0.9%) had lowest SPAD value which is accelerating the defoliation process. This trend was followed in 15 days after defoliants spray, the lowest SPAD value was recorded in defoliants spray at 127 DAS. (Fig. 2). Similar result showed that the chlorophyll content decreased more in control plants when compare to thidiazuran defoliant treated plants [11].

3.4 Boll Opening Percentage and Seed Cotton Yield

Application timings and defoliants had differential effects on percent open boll. After 10 days spray of defoliants, Sodium chlorate (0.9%) and 6-BAP (0.1 %) recorded 100 per cent boll opening rate at 120 DAS. However, Thidiazuron + Diuron (0.03 %) showed 100 per cent boll opening in 127 and 134 DAS. This may be due to cytokinin like activity present in the defoliant. Part of these differences between times of application can be explained by the lower heat units accumulated in 120 DAS. Thidiazuron accelerates boll dehiscence by increasing ethylene level in cotton leaves. Light penetration is also improved by leaf removal. These crop conditions lead to early maturity and opening of bolls [12]. Use of different defoliants and intervals of their application significantly affect seed cotton yield. Among the defoliants, Ethephon (0.5%) and Ethephon (0.5%) + TIBA (450 ppm) showed increment in seed cotton yield from 56.8 g plant\(^{-1}\) to 54.0 g plant\(^{-1}\) and on par with Thidiazuron + Diuron (0.03%) (53.4 g plant\(^{-1}\)) comparing to control (49.9 g plant\(^{-1}\)) at 120 DAS (Table 2). To achieve consistent results, the heat-unit approach is suitable for use but only in conjunction with other traditional methods of defoliation timing. Dehiscence of boll requires dehydration of the entire boll and is accelerated by ethylene. Defoliation and opening boll numbers were significantly increased by a defoliant-ethephon and thidiazuron it can be used effectively and safely in the field-grown cotton [13]. Singh and al [14] conducted a study on the effect of defoliants on number of bolls picked per plant and percent defoliation. The increase in boll opening percentage of 98.76 and 98.82 was recorded with ethrel and Thidiazuron.
Table 2. Effect of defoliants on boll opening percentage and seed cotton yield of CO17

Treatments	Boll opening percentage (%)	Seed cotton yield (g plant⁻¹)						
	120 DAS	127 DAS	134 DAS	Mean	120 DAS	127 DAS	134 DAS	Mean
Control	70.0	92.3	80.0	80.8	49.9	46.5	59.0	51.8
2, 4 D (0.5 %)	100.0	83.3	75.0	86.1	44.1	49.0	56.8	50.0
Ethephon (0.5 %)	94.1	64.3	81.8	80.1	56.8	64.8	53.9	58.5
Ethephon (0.5 %)+ TIBA (450 ppm)	69.2	94.7	77.8	80.6	54.0	54.9	57.6	55.5
Sodium chlorate (0.9 %)	100.0	90.9	92.3	94.4	46.4	48.1	54.3	49.6
6-BAP (0.1 %)	100.0	88.9	82.9	90.6	52.9	53.2	55.6	53.9
Thidiazuron + Diuron (0.03 %)	94.4	100.0	100.0	98.1	53.4	54.7	59.5	55.9
Mean	89.7	87.8	84.3	51.0	53.1	56.7		
Factors	M	S	M at S	S at M	M	S	M at S	S at M
SEd	0.353**	0.984**	1.617**	1.704**	0.29**	0.62**	1.04**	1.08**
CD (0.05)	0.982	1.996	3.338	3.458	0.81	1.26	2.17	2.19

*Denotes significant at the 0.01 level of probability ** Denotes significant at the 0.05 level of probability
4. CONCLUSION

Use of different defoliants and intervals of their application significantly affect seed cotton yield. It can be concluded that cotton under high density planting 60-70% open boll may be sprayed with defoliants without loss in boll opening and seed cotton yield. The ambient minimum and maximum temperatures of 14.3 and 33.3°C were found conducive for
inducement of defoliation process. Therefore, heat unit can be used as an important tool along with defoliant application for inducing leaf defoliation in cotton.

DISCLAIMER

The research work was funded and supported by University Core Project (UCP 2019-20), Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, India.

ACKNOWLEDGEMENTS

The authors are grateful to University Core Project (2019-2020) and also acknowledge Department of Crop Physiology and Department of Cotton, Tamil Nadu Agricultural University, Coimbatore for financially supporting this research work.

COMPETING INTERESTS

Authors have declared that no competing interests exist.

REFERENCES

1. Mishra A, Khare S, Trivedi PK, Nath P. Effect of ethylene, 1-MCP, ABA and IAA on break strength, cellulose and polygalacturonase activities during cotton leaf abscission. S Afr J of Bot. 2004; 74:282–287.
2. Wang G, Norton R. Choosing harvest aid chemicals for Arizona Cotton. Harvest aid materials and practices for California cotton. The Cotton Foundation, Publisher Memphis, Tennessee, USA; 2012.
3. Ayala F, Silvertooth JC, Tucson AZ. Physiology of cotton defoliation. University of Arizona Publication AZ; 2001.
4. Copur O, Demrel U, Karakus M. Effects of several plant growth regulators on the yield and fiber quality of cotton (Gossypium hirsutum L.). Not Bot Horti Agrobo. 2010; 38-3:104-110.
5. Munalini K, Sree Rekha M, Murthy VRK. Effectiveness of harvest – Aid defoliants and environmental conditions in high density cotton. Int. J. Curr. Microbiol. App. Sci. 2018;7(02): 2312-2316.
6. Chandrasekaran P, Ravichandran V, Senthil A, Mahalingam L, Sakhivel N. Effect of different defoliants and time of application on defoliation percentage and boll opening percentage in high density cotton (Gossypium hirsutum L.) Int. J. Plant & Soil Sci. 2020;32(10): 37-45.
7. Monje OA, Bughree, B. Inherent limitation of non-destructive chlorophyll meters. A comparison of two types of meters. Hort. Sci. 1992;(27):71-89.
8. Gomez KA, Gomez AA. Statistical procedures for agricultural research (2 ed.). John wiley and sons, NewYork. 1984; 680.
9. Cathey GW. Physiology of defoliation in cotton production. Cotton physiology. 1986;1:143-53.
10. Wright SD, Hutmacher RB, Shrestha A, Banuelos G, Rios S, Hutmacher KA, Munk DS, Keeley MP.). Impact of early defoliation on california pima cotton boll opening, lint yield, and quality. J. Crop Improv. 2015;29:528–541.
11. Jin D, Wang X, Xu Y, Gui H, Zhang H, Dong Q, Sikder RK, Yang G, Song M. Chemical defoliant promotes leaf abscission by altering ros metabolism and photosynthetic efficiency in Gossypium hirsutum. International journal of molecular sciences. 2020;21(8):2738.
12. Malik MN, Din S. Efficacy of thidiazuron defoliant in cotton cultivars varying in maturity. Pak Cottons. 1997;41:36-42.
13. Du MW, Ren XM, Tian XL, Duan LS, Zhang MC, Tan WM, Li ZH. Evaluation of harvest aid chemicals for the cotton-winter wheat double cropping system. J Integr Agric. 2013;12(2):273-82.
14. Singh T, Brar ZS, Prakash R, Hassan H. Effect of dates of planting and defoliant on yield and quality of cotton (Gossypium hirsutum L.). J Cotton Res and Dev. 2003; 17(2):146-49.

© 2020 Chandrasekaran et al.; This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.