Pentagonal quasicrystals and their linear self-similarities

Zuzana Masáková and Jan Mazáč
Department of Mathematics, Faculty of Nuclear Sciences and Physical Engineering, Czech Technical University in Prague, Trojanova 13, 120 00 Praha 2, Czech Republic
E-mail: hanis.mazac@gmail.com

Abstract. We recall the construction of a cut-and-project scheme providing planar model sets with 5-fold symmetry. The cut-and-project construction consists in projecting points of a lattice \(L \subset \mathbb{R}^4 \) by two orthogonal projections \(\pi_\parallel, \pi_\perp \) to two 2-dimensional subspaces. We describe the set of all linear mappings preserving the \(\mathbb{Z} \)-modules \(\pi_\parallel(L) \) and \(\pi_\perp(L) \) and show that the set of all such mappings is in a correspondence with a 2-dimensional cut-and-project set. Finally, we describe linear self-similarities of a pentagonal cut-and-project set with circular acceptance window.

1. Introduction
We consider the cut-and-project construction of a quasicrystal model with five-fold symmetry. Classical results studying symmetries of such models only focus on rotations and inflations of such sets. For example, the result of Lagarias [1] implies that if a cut-and-project set is closed under a scaling \(\eta > 1 \), then the scaling factor is a Pisot number. In our setting, we examine general linear mappings under which a cut-and-project set is preserved (we call them linear self-similarities of the set). We provide a complete description of possible linear self-similarities of a cut-and-project set with circular acceptance window. We show that there exists a correspondence between a certain two-dimensional cut-and-project set and the set of all linear self-similarities of the quasicrystal. For a specific subclass of self-similarities we provide a full classification of them based on their eigenvalues. The present work extends our study published in [2].

2. Cut-and-project set with five-fold symmetry
Let us recall the construction of a cut-and-project scheme permitting to obtain 5-fold models of quasicrystals. We proceed according to [2], but the construction is equivalent to the classical one, see e.g. [3, 4]. The scheme is derived using the matrix \(C \), the companion matrix of the cyclotomic polynomial \(\Phi_5(X) = X^4 + X^3 + X^2 + X + 1 \). The matrix \(C \) thus satisfies \(C^5 = I \).
Defining the lattice \mathcal{L} as the \mathbb{Z}-span of basis vectors ℓ_1, \ldots, ℓ_4, in the standard basis written as

$$
\mathcal{L} = \mathbb{Z} \begin{pmatrix} 1 - \cos \frac{2\pi}{5} \\ \sin \frac{2\pi}{5} \\ 1 - \cos \frac{4\pi}{5} \\ \sin \frac{4\pi}{5} \end{pmatrix} + \mathbb{Z} \begin{pmatrix} 0 \\ 2 \sin \frac{2\pi}{5} \\ 2 \sin \frac{4\pi}{5} \end{pmatrix} + \mathbb{Z} \begin{pmatrix} \cos \frac{4\pi}{5} - \cos \frac{2\pi}{5} \\ \sin \frac{4\pi}{5} + \sin \frac{2\pi}{5} \\ \cos \frac{2\pi}{5} - \cos \frac{4\pi}{5} \end{pmatrix} + \mathbb{Z} \begin{pmatrix} \cos \frac{4\pi}{5} - \cos \frac{2\pi}{5} \\ \sin \frac{2\pi}{5} - \sin \frac{4\pi}{5} \\ \sin \frac{4\pi}{5} + \sin \frac{2\pi}{5} \end{pmatrix} = \sum_{i=1}^{4} \mathbb{Z} \ell_i,
$$

we have that $C\mathcal{L} = \mathcal{L}$, i.e. C gives a lattice transformation of order 5. We consider the projections π_\parallel, π_\perp on the subspaces generated by the standard vectors e_1, e_2, resp. e_3, e_4, usually called the physical and internal space. The action of π_\parallel, π_\perp on a lattice vector ℓ is given by

$$
\pi_\parallel(\ell) = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{pmatrix} \ell, \quad \pi_\perp(\ell) = \begin{pmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \ell.
$$

Let us depict the projections $\pi_\parallel(\ell_i)$ and $\pi_\perp(\ell_i)$ of the lattice generators in \mathbb{R}^2, i.e. in the physical and internal space, in order to underline the naturally arising pentagonal structure.

Figure 1. Projections π_\parallel and π_\perp of lattice generators.

In [2] it is shown that the described cut-and-project scheme is non-degenerate, irreducible and aperiodic, in the sense of [5]. We can thus use it to obtain a cut-and-project set. Let Ω be a bounded window with non-empty interior. The resulting cut-and-project set $\Sigma(\Omega)$ can be written as

$$
\Sigma(\Omega) = \left\{ \sum_{i=1}^{4} a_i \pi_\parallel(\ell_i) : a_i \in \mathbb{Z}, \sum_{i=1}^{4} a_i \pi_\perp(\ell_i) \in \Omega \right\}.
$$

Denoting for simplicity $u = \pi_\parallel(\ell_1)$, $v = \pi_\parallel(\ell_4)$, $u^* = \pi_\perp(\ell_1)$, $v^* = \pi_\perp(\ell_4)$, we can rewrite $\Sigma(\Omega)$ into

$$
\Sigma(\Omega) = \left\{ (a + b\tau)u + (c + d\tau)v : a, b, c, d \in \mathbb{Z}, (a + b\tau^*)u^* + (c + d\tau^*)v^* \in \Omega \right\},
$$

where $\tau = \frac{1}{2}(1 + \sqrt{5}) = 2 \cos \pi/5$ is the golden ratio and $\tau' = \frac{1}{2}(1 - \sqrt{5})$ is its algebraic conjugate, see [2].
3. Self-similarities of Λ_5

Any self-similarity of the cut-and-project set $\Sigma(\Omega)$, i.e. a linear map A such that $A\Sigma(\Omega) \subset \Sigma(\Omega)$ is a self-similarity of the \mathbb{Z}-module $\pi_\parallel(L)$, i.e. $A\pi_\parallel(L) \subset \pi_\parallel(L)$. Since π_\parallel restricted to L is an injection, it induces a linear lattice transformation Z such that $ZL \subset L$, and a linear map B satisfying $B\pi_\perp(L) \subset \pi_\perp(L)$. In [2] we have described transformations Z of the lattice L as well as the mappings A,B preserving the \mathbb{Z}-modules $\pi_\parallel(L)$ and $\pi_\perp(L)$ induced by Z. Note that transformations $Z \in \mathbb{Z}^{4\times4}$ form an 8-dimensional \mathbb{Z}-algebra with a 4-dimensional commutative subalgebra of mappings that commute with C. The elements of the commutative subalgebra induce transformations A,B of $\pi_\parallel(L)$ and $\pi_\perp(L)$ that are scaled rotations. Note that the matrices of the mappings A,B in standard basis have components in the extension field $\mathbb{Q}(\cos 2\pi/5, \sin 2\pi/5)$. In particular, $A = (A_{ij})$ with

$$
A_{11} = a + b \cos \frac{2\pi}{5} + (c + d) \cos \frac{4\pi}{5},
A_{12} = b \sin \frac{2\pi}{5} + (c - d) \sin \frac{4\pi}{5},
A_{21} = \frac{1}{2} ((2a - 3b + 2c + 2d + 8e - 2f - 2g - 2h) \sin \frac{2\pi}{5} +
\qquad + (-6a + 4b - c - d - 4e + 6f - 4g - 4h) \sin \frac{4\pi}{5}),
A_{22} = -c + d + f + h + (2g - b) \cos \frac{2\pi}{5} + (-c + d + 2h) \cos \frac{4\pi}{5}.
$$

$a,b,c,d,e,f,g,h \in \mathbb{Z}$. The components of the matrix $B = (B_{ij})$ can be obtained from A_{ij} by application of the automorphism ψ of the field $\mathbb{Q}(\cos 2\pi/5, \sin 2\pi/5)$, defined by

$$
\psi: \cos \frac{2\pi}{5} \mapsto \cos \frac{4\pi}{5}, \quad \cos \frac{4\pi}{5} \mapsto \cos \frac{2\pi}{5}, \quad \sin \frac{2\pi}{5} \mapsto \sin \frac{4\pi}{5}, \quad \sin \frac{4\pi}{5} \mapsto -\sin \frac{2\pi}{5}.
$$

In order to handle the self-similarities more easily, let us give another description. Let us rewrite the condition on the mapping Z (i.e. it has to preserve the two modules) in terms of its characteristic polynomial. Then we show that any such mapping Z corresponds to an element of a cut-and-project set with a triangular window. It is not difficult to show that $Z \in \mathbb{Z}^{4\times4}$ is a self-similarity of L inducing linear mappings $A,B \in \mathbb{R}^{2\times2}$, which preserve modules $\pi_\parallel(L)$ and $\pi_\perp(L)$, respectively, if and only if the characteristic polynomial $\chi_Z \in \mathbb{Z}[X]$ of Z satisfies $\chi_Z(X) = \chi(X) \cdot \chi'(X)$, where $\chi \in \mathbb{Z}[\tau][X]$ and τ is the non-trivial field automorphism of $\mathbb{Q}(\tau)$, i.e. $\chi(X) = X^2 + pX + q$, $p,q \in \mathbb{Z}[\tau]$ and $\chi'(X) = X^2 + p'X + q'$. A necessary condition for existence of a bounded window Ω so that $A\Sigma(\Omega) \subset \Sigma(\Omega)$ is that the eigenvalues of the corresponding matrix B are in modulus smaller or equal to 1, see [2]. With this in mind, one can prove the following statement.

Proposition 3.1. Let $\Lambda_5 = (L \subset \mathbb{R}^4, \mathbb{R}^2)$ be a CPS with five-fold symmetry. Let Z be a self-similarity of L inducing linear mappings A,B, which preserve the modules $\pi_\parallel(L)$ and $\pi_\perp(L)$ respectively. Let us denote $\chi_Z = \chi_A \cdot \chi'_A$ with $\chi_A(X) = X^2 + pX + q$. Then there is a window $\Omega \subset \mathbb{R}^2$ such that Z induces a mapping A that preserves $\Sigma(\Omega)$ if and only if

$$(p,q) \in \left\{ (x,y) \in (\mathbb{Z}[\tau])^2 : (x', y') = \Delta \right\}$$

where Δ denotes the convex hull of vectors $(0, -1)$, $(2, 1)$, $(-2, 1)$.

Let us focus on the subclass of mappings Z that commute with C. This subclass contains all matrices of the form $Z = \varphi(C)$ where $\varphi \in \mathbb{Z}[X]$. The induced mappings A,B in the physical and inner spaces, respectively, are then scaled rotations. We can classify the mappings A for which there exists a cut-and-project set $\Sigma(\Omega)$ with $A\Sigma(\Omega) \subset \Sigma(\Omega)$ according to factorization of the characteristic polynomial χ_Z of Z into irreducible factors, or, equivalently, according to the degree of eigenvalues of A over the rationals. The proof of the following statement can be found in [2].
Proposition 3.2. Let \(A = \mu R = \begin{pmatrix} s & -t \\ t & s \end{pmatrix} \) with \(\mu > 0 \), \(R \in O(2, \mathbb{R}) \), be such that \(A \Sigma(\Omega) \subset \Sigma(\Omega) \) for a cut-and-project set of the form (2). Then one of the following happens.

- \(A \in D_5 \) is an element of the dihedral group of order 10.
- \(A = \pm \mu I \) is a scaling by a factor \(\pm \mu \in \mathbb{Q}(\tau) \) where \(\mu \) is a Pisot number, i.e. an algebraic number of degree 2, \(\mu > 1 \), with conjugate in modulus smaller than 1.
- \(s + ti = \mu e^{i \phi} \in \mathbb{Q}(\omega) \) is a complex Pisot number, i.e. an algebraic number in \(\mathbb{Q}(\omega) \) of degree 4, \(|s + ti| = \mu > 1 \), whose algebraic conjugates different from \(s \pm ti \) are in modulus smaller than 1.

Besides the above mappings in the form of scaled rotations, a cut-and-project set (2) may have other linear self-similarities. Their eigenvalues belong to some quadratic extension \(K \) of \(\mathbb{Q}(\tau) \). The opposite statement holds as well. Let \(K \) be a quadratic extension of \(\mathbb{Q}(\tau) \), and \(\psi \) the non-trivial automorphism in \(\text{Aut}(K/\mathbb{Q}(\tau)) \). Denote by \(O_K \) the ring of integers in \(K \).

Then for all \(\lambda \in O_K \) there exists a transformation \(Z \in Z^{4 \times 4} \) inducing a self-similarity \(A \) of a cut-and-project set \(\Sigma(\Omega) \), such that \(\lambda, \psi(\lambda) \) are eigenvalues of \(A \).

4. General self-similarity preserving circular window

Let us focus on the cut-and-project set (2) where \(\Omega \) is fixed to be a disk. It is important to note that not all the mappings \(A \) described in Proposition 3.1 are self-similarities of this fixed cut-and-project set. A counterexample can be found in [2]. The condition \(\rho(B) \leq 1 \) on the spectral radius \(\rho \) of the corresponding mapping \(B \) is necessary but not sufficient. In order to describe all linear self-similarities of a given cut-and-project set, we have to verify whether \(B \) preserves the chosen window \(\Omega \).

Let \(\Omega \) be a disk of radius \(r \) centered in the origin. Such \(\Omega \) is closed under the action of \(B \) if every \(x \in \mathbb{R}^2 \) of norm \(\|x\| \leq r \) satisfies \(\|Bx\| \leq r \), where \(\|\cdot\| \) stands for the standard Euclidean norm on \(\mathbb{R}^2 \). Defining the operator norm \(\|B\| := \sup_{\|x\|=1} \|Bx\| \), we translate the condition to the requirement that \(\|B\| \leq 1 \). This matrix norm is usually called the spectral norm.

It can be shown (see e.g. [6]) that the spectral norm can be computed as

\[
\|B\| = \sqrt{\rho(B^*B)},
\]

where \(B^* \) is Hermitian conjugate of \(B \). Simple algebraic manipulation yields the following statement.

Proposition 4.1. Let \(\Sigma(\Omega) \) be as in (2) with \(\Omega \) being a disc centered at the origin. Let \(A \) be a linear mapping such that \(A \pi(L) \subset \pi(L) \). Then \(A \Sigma(\Omega) \subset \Sigma(\Omega) \) if and only if the mapping \(B \) corresponding to \(A \) satisfies

\[
\text{tr} B^*B \leq 1 + \det B^*B.
\]

Let us mention that all mappings \(A \) from Proposition 3.2 satisfy the condition of Proposition 4.1. They are therefore among the self-similarities of cut-and-project sets with circular acceptance window.

Acknowledgments

This work was supported by the project CZ.02.1.01/0.0/0.0/16_019/0000778. We also acknowledge financial support of the Grant Agency of the Czech Technical University in Prague, grant No. SGS17/193/0HK4/3T/14.
References

[1] Lagarias J C 1999 Discrete Comput. Geom. 21 161–191
[2] Masáková Z and Mazáč J 2017 Acta Polytechnica 57 430–445
[3] Kramer P and Neri R 1984 Acta Cryst. Sect. A 40 580–587
[4] Moody R V and Patera J 1993 J. Phys. A 26 2829–2853
[5] Baake M and Grimm U 2013 Aperiodic order. Vol. I (Cambridge University Press, Cambridge)
[6] Fiedler M 2008 Special matrices and their applications in numerical mathematics 2nd ed (Dover Publications, Inc., Mineola, NY)