On the Amplitude/Wilson Loop duality in $\mathcal{N} = 2$ SCQCD

Marta Leoni*, †, Andrea Mauri† and Alberto Santambrogio‡

* Dipartimento di Fisica dell’Università degli studi di Milano, Via Celoria 16, I-20133 Milano, Italy
† INFN, Sezione di Milano, Via Celoria 16, I-20133 Milano, Italy
‡ Dipartimento di Fisica dell’Università degli studi di Milano–Bicocca, Piazza della Scienza 3, I-20126 Milano, Italy
E-mail: marta.leoni@mi.infn.it, andrea.mauri@mi.infn.it, alberto.santambrogio@mi.infn.it

Abstract: We compute the four–point amplitude with external adjoint particles in $\mathcal{N} = 2$ SCQCD at two loops using $\mathcal{N} = 1$ superspace Feynman diagrams, extending the results of arXiv:1406.7283. We consider the diagrammatic difference with the corresponding process of $\mathcal{N} = 4$ SYM finding a non vanishing result, which is a non trivial function of the kinematic variables. This demonstrates that in $\mathcal{N} = 2$ SCQCD, even in the sector with external particles in the vector multiplet, the amplitude/Wilson loop duality is inevitably broken at two loops.

PACS numbers: 11.25.Hf, 11.30.Pb, 11.80.-m

KEYWORDS: Scattering amplitudes, Superconformal QCD, Integrability, Superspace
1 Introduction

In this paper we pursue the analysis of [1] by computing the two–loop amplitude with four adjoint external particles in $\mathcal{N} = 2$ superconformal QCD. In [1] we have computed the one–loop four–point scattering amplitudes with general external fields and the two–loop amplitude of four fundamental particles. The calculation we present in this paper extends the two–loop analysis to the adjoint sector and assumes a special relevance since it provides a test of the presence of the duality between scattering amplitudes and light–like Wilson loops in $\mathcal{N} = 2$ SCQCD.

The original formulation of the duality was given in the planar $\mathcal{N} = 4$ SYM theory where it was first introduced at strong coupling [2] and then found at weak coupling in [3–5]. The duality relates to all orders in perturbation theory the divergent and the finite parts of MHV n–point scattering amplitudes to the expectation value of light–like polygonal Wilson loops. Its presence is connected to the existence of a hidden dynamical symmetry of the amplitudes, the so called dual conformal symmetry, which is obscured by the off–shell Lagrangian formulation of the model (see e.g. [6] for a recent review of the subject). The generators of the dual conformal symmetry and of the standard conformal symmetry close into an infinite dimensional Yangian algebra [7]. The presence of the Yangian algebra is believed to be the manifestation of the integrability of planar $\mathcal{N} = 4$ SYM in the context of scattering amplitudes.

At the moment it is not clear which class of models should display such symmetries besides $\mathcal{N} = 4$ SYM. In the three–dimensional ABJM theory [8] the planar four–point amplitude has been found to be dual conformal invariant and to coincide with the light–like four–sided Wilson loop up to two loops [9–12], suggesting that the amplitude/Wilson loop duality is valid also in this theory. Outside the four–point case the duality is not expected to have the standard form due to the fact that the ABJM amplitudes are not MHV, except for the four–point one. Nevertheless the six–point amplitude has been shown to be dual conformal invariant up to two loops [13–15] and the hexagonal light–like Wilson loop was computed up to two loops [10, 16, 17].

The aim of this paper is to check whether the dual conformal symmetry and the scattering amplitude/Wilson loop duality are present in $\mathcal{N} = 2$ SCQCD. The computation of the four–sided Wilson loop in $\mathcal{N} = 2$ SCQCD was already performed up to three loops [18], finding that the $\mathcal{N} = 4$ SYM and the $\mathcal{N} = 2$ SCQCD results match up to two loops while they are different at three loops. In [1] we confirmed the result first derived in [19], by computing with $\mathcal{N} = 1$ super Feynman diagrams the corresponding four–point one–loop amplitude and finding that the duality is valid at one–loop order. In this paper we tackle the problem at two–loop order. This computation is a crucial test for the presence of the duality: if the two–loop amplitude is equal to the one of
$\mathcal{N} = 4$ SYM up to irrelevant constants the duality is valid also at two loops, while if it is different the duality is broken. Our main result is given in equation (3.14), where we show that the difference between the two–loop amplitude in $\mathcal{N} = 2$ SCQCD and the analogous one in $\mathcal{N} = 4$ SYM consists of a non vanishing expression, which is a non trivial function of the kinematic variables. The form of our result implies that the scattering amplitude/Wilson loop duality is not valid in $\mathcal{N} = 2$ SCQCD. We also find that the maximum transcendentality principle [20] is violated at two–loop order in the adjoint sector.

The paper is organized as follows: in Section 2 we review $\mathcal{N} = 2$ SCQCD and the known results concerning scattering amplitudes, focusing on the color decomposition and on the one–loop result in the adjoint sector. In Section 3 we present the computation of the two-loop amplitude with four external particles in the adjoint representation of the gauge group. In Section 4 we comment our result and then we conclude.

2 Scattering in $\mathcal{N} = 2$ SCQCD

We consider the $\mathcal{N} = 1$ superfield formulation of $\mathcal{N} = 2$ SCQCD introduced in [1], which is based on the four–dimensional superspace notations of [21]. The superspace action in the Fermi–Feynman gauge is given by

$$S = S_0 + S_{gf}$$

$$S_0 = \int d^4x d^4\theta \left[\text{Tr}(e^{-gV}\bar{\Phi}e^{gV}\Phi) + \bar{Q}^I e^{gV}Q_I + \bar{\bar{Q}}^I e^{-gV}\bar{Q}_I \right] + \frac{1}{g^2} \int d^4x d^2\theta \text{Tr}(W^\alpha W_\alpha) +$$
$$+ ig \int d^4x d^2\theta \bar{Q}^I \Phi Q_I - ig \int d^4x d^2\bar{\theta} \bar{\bar{Q}}^I \bar{\Phi} \bar{Q}_I$$

$$S_{gf} = \int d^4x d^4\theta \text{Tr} \left(-(D^2V)(\bar{D}^2V) + (c' + \bar{c}')L^{2\mathcal{V}} [c + \bar{c} + \coth L^{2\mathcal{V}} (c - \bar{c})] \right)$$

This model is a $SU(N)$ gauge theory described in terms of an adjoint vector superfield V with superfield strength $W_\alpha = i\bar{D}^2(e^{-gV}D_\alpha e^{gV})$. The ghosts are introduced by anticommuting chiral superfields c and c' and are coupled to the vector superfield V through $L^{2\mathcal{V}} X = \frac{g}{2}[V, X]$. The matter is described by an adjoint chiral superfield Φ and by a pair of chiral superfields Q_I and \bar{Q}_I, transforming respectively in the fundamental and antifundamental representation of the gauge group $SU(N)$. The fundamental fields carry an additional $U(N_f)$ flavour index $I = 1, \ldots, N_f$. The number of flavours is fixed by the following condition: $N_f = 2N$, which assures that the model is conformal invariant.

We compute four–point amplitudes in perturbation theory considering the planar Veneziano limit, which consists in taking N and N_f large, keeping their ratio fixed.
We perform the calculations computing all $\mathcal{N} = 1$ super Feynman diagrams which contribute to a selected superamplitude, and then we consider only the projection of the superamplitude on the four–scalar component. We refer the reader to [1] for more details on superspace conventions, Feynman rules and a step by step description of the computational techniques.

The four–point amplitudes can be classified into three independent sectors: the adjoint, the mixed and the fundamental one, with four, two and zero adjoint external superfields respectively. Inside each sector, amplitudes are related by supersymmetry transformations. In [1] the one–loop amplitudes were analytically computed in all of the three sectors. In the mixed and fundamental sectors the one–loop amplitudes lose the dual conformal invariance but nevertheless they still exhibit maximum transcendentality weights. In the fundamental sector the computation was pushed up to two loops, showing that at this order both dual conformal invariance and maximum transcendentality are not present.

Now we briefly review the computation of the four–point one–loop amplitude in the adjoint sector. The general color decomposition of the L–loop planar amplitude in the adjoint sector is (see [22] for details)

$$\mathcal{A}^{(L)}(\{p_i, a_i\}) = \sum_{\sigma \in S} Tr(T^{a_{\sigma_1}} T^{a_{\sigma_2}} T^{a_{\sigma_3}} T^{a_{\sigma_4}}) \mathcal{A}^{(L)}(\sigma_1 \sigma_2 \sigma_3 \sigma_4)$$ \hspace{1cm} (2.2)

where the sum is done over the non-cyclic permutations inside the trace. The color ordered subamplitudes $\mathcal{A}^{(L)}(\sigma_1 \sigma_2 \sigma_3 \sigma_4)$ have all the color factors removed and contain the kinematic information. Subamplitudes receive contributions only from planar diagrams in which the cyclic ordering of the external legs matches the ordering of the arguments in $\mathcal{A}^{(L)}$. Reduced subamplitudes (namely L–loop subamplitudes divided by the corresponding tree–level one) which differ from each other for the ordering of the arguments give an identical result since they can be mapped by $\mathcal{N} = 2$ supersymmetry to proper gluon MHV amplitudes, which do not depend on the gluon ordering.

The four–point one–loop reduced subamplitude $\mathcal{M}^{(1)}(\Phi(1)\bar{\Phi}(2)\Phi(3)\bar{\Phi}(4))$ for the process $(\Phi\bar{\Phi}\Phi\bar{\Phi})$ expanded in the dimensional regularization parameter ϵ is

$$\mathcal{M}^{(1)} = \frac{\mathcal{A}^{(1)}}{\mathcal{A}^{(0)}} = 2\lambda \left\{ -\frac{1}{\epsilon^2} \left(\frac{\mu}{s} \right)^\epsilon - \frac{1}{\epsilon^2} \left(\frac{\mu}{t} \right)^\epsilon + \frac{2}{3} \pi^2 + \frac{1}{2} \ln^2 \frac{t}{s} + O(\epsilon) \right\}$$ \hspace{1cm} (2.3)

where $\mathcal{A}^{(0)} = -g^2 t / s$, $\lambda = g^2 N / (4\pi)^2$, μ is the IR scale of dimensional regularization and s and t are the usual Mandelstam variables. The diagrams which contribute to the one–loop amplitude (2.3) were depicted in Fig. 2 of [1] and explicitly computed.

The result (2.3) coincides with the analogue amplitude of $\mathcal{N} = 4$ SYM and manifests dual conformal invariance and maximum transcendentality weight. The matching
with the $\mathcal{N} = 4$ SYM amplitude can also be understood from a diagrammatic point of view as we now explain. We note that the only difference in the matter content of $\mathcal{N} = 2$ SCQCD and $\mathcal{N} = 4$ SYM consists in the presence of fundamental superfields Q and \tilde{Q} in the former, and in the presence of three adjoint superfields - instead of one - in the latter. Let’s consider in $\mathcal{N} = 4$ SYM the four–point one–loop amplitude with adjoint external chiral superfields with equal flavour indices $(\Phi_1 \Phi_1 \Phi_1 \Phi_1)$, which is the analogous process of the one we considered in (2.3). Every diagram which contributes to our one–loop amplitude (2.3) have an identical counterpart in $\mathcal{N} = 4$ SYM yielding the same result. The only exception is the diagram drawn in Fig. 1(a), with a loop of fundamental fields, which is present only in $\mathcal{N} = 2$ SCQCD. On the other hand it is present in $\mathcal{N} = 4$ SYM the diagram drawn in Fig. 1(b), with a loop of adjoint fields with all the possible flavour flows. The diagrams in Fig. 1(a) and (b) give the same result: indeed a general feature of $\mathcal{N} = 2$ SCQCD diagrams is that loops of fundamental fields give the same results of $\mathcal{N} = 4$ SYM loops of adjoint fields with all the possible flavour flows, as a consequence of the $N_f = 2N$ condition. So the diagrammatic analysis of the one–loop amplitudes in the two models shows that the difference vanishes. The same approach has been first used in [18] to compute the difference between closed Wilson loops in $\mathcal{N} = 2$ SCQCD and $\mathcal{N} = 4$ SYM theory. For further explanations we refer the reader to [1].

In the next Section we will present the two–loop computation of the four–point amplitude in the adjoint sector. In order for the amplitude/Wilson loop duality to be present we should find a vanishing difference between the $\mathcal{N} = 2$ SCQCD amplitude and the $\mathcal{N} = 4$ SYM one. In the next Section we will show that this is not the case.

3 The two–loop adjoint amplitude

We now present the computation of the two–loop subamplitude $\mathcal{A}^{(2)}(\Phi(1)\Phi(2)\Phi(3)\Phi(4))$ for the process $(\Phi\Phi\Phi\Phi)$ in $\mathcal{N} = 2$ SCQCD.

As already mentioned in the previous section, a convenient way to perform this calculation is to consider the diagrammatic difference with the $\mathcal{N} = 4$ SYM process.

\begin{figure}[h]
\centering
\includegraphics[width=0.5\textwidth]{diagrams.png}
\caption{Diagrams contributing to the one–loop correction to the vertex in $\mathcal{N} = 2$ SCQCD (a) and in $\mathcal{N} = 4$ SYM (b). Propagators of fundamental superfields are represented with dashed lines whereas the solid lines describe adjoint superfields.}
\end{figure}
with four external adjoint superfields with equal flavour indices, namely \((\Phi_1\Phi_1\Phi_1\Phi_1)\). Doing a projection, it is possible to extract from the \(\mathcal{N} = 4\) SYM superamplitude the component which corresponds to the MHV gluon amplitude, whose two–loop correction was found long ago using unitarity cuts [23]. Therefore, instead of computing from scratch the whole two–loop superamplitude in \(\mathcal{N} = 2\) SCQCD we consider just the diagrammatic difference between the above processes in the two models. In this way we are left with a manageable number of diagrams that have to be computed directly, while the majority of the diagrams gets canceled because they give identical expressions.

The first step in our computation is to identify which diagrams contributing to the two–loop amplitude might yield different results in \(\mathcal{N} = 4\) SYM and in \(\mathcal{N} = 2\) SCQCD. The only way to obtain diagram topologies which produce a priori different contributions in the two models is to draw chiral lines which admit a realization in terms of fundamental fields in \(\mathcal{N} = 2\) SCQCD. Moreover, since we are considering an amplitude with adjoint external fields, the fundamental lines of the \(\mathcal{N} = 2\) SCQCD diagrams must inevitably form closed circuits. We already stated that diagrams containing loops of fundamental fields in \(\mathcal{N} = 2\) SCQCD give the same results of the corresponding diagrams in \(\mathcal{N} = 4\) SYM with loops of adjoint fields with different flavours. Nevertheless, following the reasoning of [24, 25] and specifying it to the special case of \(\mathcal{N} = 2\) SCQCD, it is possible to show that whenever the chiral circuits are cut by an adjoint internal line they give rise to a non vanishing difference. These diagram topologies turn out to be the only ones which give a contribution. In the rest of this Section and in Appendix A we support with explicit examples these statements. Presenting our computation we consider only diagrams containing chiral loops cut by an adjoint internal line, but as a test of the arguments expressed above we have explicitly checked case by case that all the other two–loop diagrams do not contribute to the difference of the amplitudes.

Eventually, we organize the diagrams which contribute to the diagrammatic difference in the following classes: two–loop vertex and propagator corrections to the tree–level diagram and genuine two–loop diagrams. We now study each classes separately.

3.1 Propagator corrections

The first class of diagrams we consider is given by the two–loop dressings of the gauge superfield propagator in the tree–level process. The diagram topologies giving a non vanishing contribution to the amplitude difference are listed in Fig. 2.

1As detailed in Appendix A, for general external flavour configurations in \(\mathcal{N} = 4\) SYM there is an exception to this rule, which is not present in the case of equal flavour external legs we are considering here.
Figure 2. Diagram topologies containing the two–loop propagator correction which give a non vanishing contribution to the diagrammatic difference.

In $\mathcal{N} = 4$ SYM the diagram (a) of Fig. 2 can be drawn with six different flavour flows, as shown in the left side of Fig. 3, all giving the same contribution. There are three diagrams in $\mathcal{N} = 2$ SCQCD with topology (a), depicted on the right side of Fig. 3. The first one is subleading in the large N limit, whereas each one of the other two gives an expression which is two times a single $\mathcal{N} = 4$ SYM flavour flow diagram. This happens because the fundamental loop produces a $N_f = 2N$ factor. Taking the difference between diagrams with topology (a) in $\mathcal{N} = 4$ SYM and in $\mathcal{N} = 2$ SCQCD we thus obtain two times a single flavour flow diagram of $\mathcal{N} = 4$ SYM.

Figure 3. $\mathcal{N} = 4$ SYM diagrams of topology (a) on the left side and $\mathcal{N} = 2$ SCQCD ones on the right side.

Figure 4. $\mathcal{N} = 4$ SYM diagrams of topology (b) on the left side and $\mathcal{N} = 2$ SCQCD ones on the right side. In $\mathcal{N} = 4$ SYM we have three flavour flows while in $\mathcal{N} = 2$ SCQCD only the diagram with the adjoint loop survives the large N limit.

The analysis of the other diagrams is straightforward; as an example we picture in Fig. 4 the case of diagram (b) of Fig. 2. Eventually it is found that for every diagram of Fig. 2 the difference between their evaluation in $\mathcal{N} = 4$ SYM and $\mathcal{N} = 2$ SCQCD is always twice a single flavour flow diagram of $\mathcal{N} = 4$ SYM. We should also consider an additional color factor 2 for diagrams (a), (b) and (c) and a color factor 4 coming from the contractions giving diagram (d) and its permutations. After performing D-algebra,
projecting to components and solving the bosonic Feynman integrals we find that

\begin{align}
(a) &= \frac{4t}{s^{1+2\epsilon}} \left[\frac{1}{2} G[1, 1]^2 - G[1, 1] G[1, \epsilon] \right] \\
(b) &= \frac{4t}{s^{1+2\epsilon}} \left[- \frac{1}{2} G[1, 1]^2 + 2G[1, 1] G[1, 1 + \epsilon] \right] - 2t \left\langle \frac{1}{2} \right\rangle \\
(c) &= - \frac{4t}{s^{1+2\epsilon}} G[1, 1] G[1, \epsilon] \\
(d) &= \frac{4t}{s^{1+2\epsilon}} \left[2G[1, 1] G[1, \epsilon] - 2G[1, 1] G[1, 1 + \epsilon] \right]
\end{align}

where the G–functions are defined in Appendix B. We have left the pictorial representation of the double triangle integral in (3.2) instead of putting its expansion in terms of G-functions because it is immediate to see that it is the only term surviving to the sum of all the diagrams (3.1)–(3.4). Moreover the double triangle integral is at a glance known to be finite in four dimensions and proportional to the Riemann \(\zeta(3) \). We thus obtain the following overall difference between the diagrams containing the two–loop propagator correction in the two models

\[-2t \left\langle \frac{1}{2} \right\rangle = -\frac{12t}{s^{1+2\epsilon}} \frac{e^{-2\epsilon\gamma_E}}{(4\pi)^{4-2\epsilon}} \zeta(3) + O(\epsilon) \quad (3.5) \]

Notice that this contribution to the amplitude difference does not exhibit maximum degree of transcendentality, which should be 4 for the \(O(\epsilon^0) \) terms at two loops.\(^3\)

3.2 Vertex corrections

The second class of diagrams we analyze is given by two–loop vertex corrections of the tree level process. The diagram topologies which might give a non–vanishing contribution to the difference are listed in Fig. 5.

In \(\mathcal{N} = 4 \) SYM the diagram (e) has four independent flavour flows, as shown in the left side of Fig. 6. On the other hand in \(\mathcal{N} = 2 \) SCQCD we have two diagrams, as shown in the right side of Fig. 6. The first one is subleading in the planar limit, while the second one gives two times a single flavour diagram of \(\mathcal{N} = 4 \) SYM, again because of the presence of a fundamental matter loop. Taking the difference, we are then left with two times a single flavour contribution of \(\mathcal{N} = 4 \) SYM.

\(^2\)We systematically omit an overall \(g^6N^2 \) in all intermediate steps of the calculation.

\(^3\)Strictly speaking, in number theory the transcendentality of \(\zeta(n) \) with odd \(n \) has not been proven yet. Here, in analogy with the case of even argument, we assume a degree of transcendentality \(n \) for the \(\zeta(n) \) numbers.
Figure 5. Diagram topologies containing the two–loop vertex corrections which give a non vanishing contribution to the diagrammatic difference.

Figure 6. Flavour flows of $\mathcal{N} = 4$ SYM diagrams with topology (e) on the left side and $\mathcal{N} = 2$ SCQCD ones on the right side.

The diagram (f) of Fig. 5 has two flavour choices in $\mathcal{N} = 4$ SYM while in $\mathcal{N} = 2$ SCQCD we only have the subleading diagram. A similar reasoning can be applied to diagrams (g) and (h). Therefore for all the diagrams (e), (f), (g) and (h) we obtain a contribution to the amplitude difference given by twice a single flavour diagram of $\mathcal{N} = 4$ SYM. After the first steps of D-algebra diagrams (i) and (l) can be quickly shown to vanish on–shell. Taking into account an additional factor 2 by considering also the correction to the right vertex of the tree–level diagram we obtain after D-algebra and projections

\[
(e) = 4 \left(- k_1^2 \text{Tr}(k_2 p_2 p_1 p_4) + k_2^2 \text{Tr}(k_1 p_3 p_4 p_1) - s \text{Tr}(k_1 k_2 p_4 p_1) \right)
\]

\[
(f) = 4 \left(k_1^2 \text{Tr}(k_2 p_3 p_4 p_1) + (k_2 - p_3 - p_4)^2 \text{Tr}(k_1 p_3 p_4 p_1) + \right.

\left. - s \text{Tr}(k_1 p_3 p_4 p_1) + s \text{Tr}(k_1 k_2 p_4 p_1) \right)
\]

\[
(g) = 4 \left(t k_2^2 (k_1 + p_1 + p_2)^2 - k_2^2 \text{Tr}((k_1 + p_1 + p_2)p_2 p_1 p_4) \right)
\]
\((h) = 4 \left(\frac{t}{s} k_1^2 (k_2 - p_3 - p_4)^2 - (k_2 - p_3 - p_4)^2 \text{Tr}(k_1 p_3 p_4 p_1) \right) \)

We found convenient to combine the trace structure of diagrams (e) with (f) and (g) with (h). Completing the squares we can cast their sum in terms of the following combination of scalar integrals

\[
(e) + (f) = 4 \left(-\frac{t}{s} \begin{array}{c} \downarrow \\ \downarrow \end{array} + \frac{s + 2t}{2} \downarrow + \frac{s}{2} \begin{array}{c} \downarrow \\ \downarrow \end{array} \right) (k - p_4)^2 + \]

\[
(g) + (h) = 4 \left(\frac{t}{s} \begin{array}{c} \downarrow \\ \downarrow \end{array} + \frac{s}{2} \begin{array}{c} \downarrow \\ \downarrow \end{array} \right) (k - p_4)^2 \]

(3.6)

Taking the sum, the remaining contribution can be expanded in terms of master integrals using the expressions (B.2)–(B.8) of Appendix B, which have been obtained through the Mathematica package FIRE [26]. The final result turns out again to be proportional to the double triangle integral

\[
\begin{array}{c} \bullet \\ \bullet \end{array} = 4t \begin{array}{c} \downarrow \\ \downarrow \end{array} = \frac{24t}{s^{1+2\epsilon} (4\pi)^{4-2\epsilon}} \zeta(3) + O(\epsilon) \]

(3.7)

Again, this contribution to the difference of amplitudes does not exhibit maximum degree of transcendentality. From equations (3.5) and (3.8) we also notice that the propagator and vertex dressings of the tree level process only give constant contributions to the amplitude difference. This kind of terms does not affect the potential presence of the duality with Wilson loops.

3.3 Genuine two–loop diagram

There is a third class of diagrams which have to be considered, which are the genuine two–loop diagrams. In Fig. 7 we depicted the ladder diagram, which is the only diagram topology which contributes to the amplitude difference.

In \(\mathcal{N} = 4 \) SYM there are two flavour flows for the diagram (m), as shown in the left side of Fig. 8, whereas in \(\mathcal{N} = 2 \) SCQCD this topology only admits a subleading realization, as shown in the right side of Fig. 8. After performing D-algebra and projections, we are left with the following combination of bosonic integrals with \(\gamma \)-trace numerators

\[
(m) = 2 \left(-\frac{t}{s} k_2^2 (k_1 - p_1 - p_2)^2 + k_2^2 \text{Tr}\left((k_1 - p_1 - p_2)p_3 p_4 p_1\right) + \right.

\[
\left. - \text{Tr}(k_1 k_2 p_3 p_4 p_1(k_1 - p_1 - p_2)) \right) \]

(3.9)
Figure 7. Two-loop ladder topology contributing to the diagrammatic difference.

Figure 8. Flavour flows of $\mathcal{N} = 4$ SYM diagrams with topology (m) on the left side and the $\mathcal{N} = 2$ SCQCD one on the right side.

After some algebra and completing the squares we end up with a linear combination of scalar integrals

\[
(m) = s \quad - 2s \quad + 2s \quad (k - p_4)^2 + 2s \quad (k - p_4)^2 \quad + \\
\quad + st \quad - 2(s + t) \quad - 2st \quad + st^2 \quad - s \quad (k - p_4)^2(l + p_1)^2
\]

(3.10)

The scalar integrals in (3.10) can be expanded on the basis of two–loop master integrals as given in eq. (B.2)–(B.8) in Appendix B. We finally obtain

\[
(m) = - \frac{1}{2} s^2 t \quad + \frac{3}{2} s^2 \quad + 7 (s + t) \quad - 8as \quad + \\
\quad - 6a^2 \quad + 2c \quad - \frac{9c}{t} \quad - \frac{17b}{2}
\]

(3.11)

where we defined the coefficients

\[
a = - \frac{1 - 2\epsilon}{2\epsilon} \quad b = \frac{(1 - 2\epsilon)(1 - 3\epsilon)}{2\epsilon^2} \quad c = - \frac{(1 - 2\epsilon)(1 - 3\epsilon)(2 - 3\epsilon)}{2\epsilon^3}
\]

(3.12)

Expanding the master integrals of eq. (3.11) in terms of the dimensional regularization parameter ϵ gives
\((m) = \frac{2}{s^{2\epsilon}} \frac{e^{-2\gamma_E}}{(4\pi)^{4-2\epsilon}} \left[\frac{1}{6} \ln(1 + x) \left(2\pi^2 \ln x - 3(\pi^2 + \ln^2 x) \ln(1 + x) \right) + \frac{\pi^2}{3} \operatorname{Li}_2(-x) + \\
+ 2S_{2,2}(-x) - 2\ln x S_{1,2}(-x) - 2\ln(1 + x) \left(\ln x \operatorname{Li}_2(-x) - \operatorname{Li}_3(-x) + \zeta(3) \right) \right] \)

(3.13)

where \(x = t/s \). We thus see that even if the master integrals in eq. (3.11) exhibit individually poles up to \(1/\epsilon^4 \), the non trivial combination of them produces a contribution which is only finite. Nevertheless, this finite contribution depends non trivially on the kinematics and it is responsible for the breaking of the duality with Wilson loops.

3.4 Two–loop result

Combining eq. (3.5), (3.8) and (3.13), we can write the full two–loop reduced adjoint amplitude in \(\mathcal{N} = 2 \) SCQCD

\[
\mathcal{M}^{(2)}_{\mathcal{N}=2} = \mathcal{M}^{(2)}_{\mathcal{N}=4} + \frac{\lambda^2}{s^{2\epsilon}} \frac{e^{-2\gamma_E}}{(4\pi)^{4-2\epsilon}} \left[\frac{2}{x} \left(\frac{1}{6} \ln(1 + x) \left(2\pi^2 \ln x - 3(\pi^2 + \ln^2 x) \ln(1 + x) \right) + \\
+ 2S_{2,2}(-x) - 2\ln x S_{1,2}(-x) + \frac{\pi^2}{3} \operatorname{Li}_2(-x) - 2\ln(1 + x) \left(\ln x \operatorname{Li}_2(-x) - \operatorname{Li}_3(-x) + \zeta(3) \right) \right) + 12\zeta(3) \right]
\]

(3.14)

The result is equal to the \(\mathcal{N} = 4 \) SYM one plus a finite part. Since the \(\mathcal{N} = 4 \) SYM amplitude is dual conformal invariant we conclude that the two–loop amplitude in \(\mathcal{N} = 2 \) SCQCD does not manifest this symmetry. The difference of amplitudes in \(\mathcal{N} = 4 \) and in \(\mathcal{N} = 2 \) consists in a finite expression, which depends non trivially on the kinematic variables \(s \) and \(t \). This result does not agree with the null difference between the two–loop expectation value of the four–sided Wilson loop in the two models. So we conclude that the scattering amplitude/Wilson loop duality is broken at two loops in \(\mathcal{N} = 2 \) SCQCD. Nonetheless the difference of amplitudes between \(\mathcal{N} = 4 \) and \(\mathcal{N} = 2 \), except for the irrelevant constant \(12\zeta(3) \), is suppressed at large \(x \) by a factor of \(1/x \), where \(x = t/s \). The limit of large \(x \) corresponds to the Regge asymptotics of the amplitude. This means that even though the amplitude/Wilson loop duality is broken at two loops, it gets restored in the Regge limit.\(^4\) This behaviour for the four–point amplitude was first observed in QCD [3, 27] and in this respect it makes \(\mathcal{N} = 2 \) SCQCD

\(^4\)We thank G. Korchemsky for raising our attention on this point.
a much closer relative of QCD rather than of \(\mathcal{N} = 4 \) SYM, where the amplitude turns out to be Regge exact.

The finiteness of the difference is consistent with the exponentiation of the infrared poles of amplitudes in \(\mathcal{N} = 4 \) SYM and in \(\mathcal{N} = 2 \) SCQCD: the two–loop poles indeed are fixed by the one–loop amplitude, which is identical in the two models. A non finite difference instead would have spoiled the exponentiation.

The result (3.14) does not exhibit uniform transcendentality weight due to the presence of the \(\zeta(3) \) term, meaning that even in the adjoint sector of \(\mathcal{N} = 2 \) SCQCD the maximum transcendentality principle is violated.

4 Comments and conclusions

We computed the two–loop four–point reduced amplitude in the adjoint sector of \(\mathcal{N} = 2 \) SCQCD and the result is presented in eq. (3.14). We found that the difference between the \(\mathcal{N} = 4 \) SYM and the \(\mathcal{N} = 2 \) SCQCD amplitudes is finite and depends non trivially on the kinematic variables. This implies that the \(\mathcal{N} = 2 \) SCQCD amplitude is not dual conformal invariant and the scattering amplitude/Wilson loop duality is broken in \(\mathcal{N} = 2 \) SCQCD, since the expectation value of the four–sided Wilson loop perfectly matches the \(\mathcal{N} = 4 \) SYM one at two loops [18]. Furthermore we found that the two–loop amplitude in \(\mathcal{N} = 2 \) SCQCD does not respect the maximum transcendentality principle.

The absence of duality and the lack of dual conformal invariance might give an insight into the possible presence of integrable structures in \(\mathcal{N} = 2 \) SCQCD. Indeed, a spin chain picture for the composite operators has been introduced and the properties of the dilatation operator have been studied [24, 28, 29]. As a result, even if the full \(\mathcal{N} = 2 \) SCQCD model was not found to be integrable [30], it was suggested that the \(SU(2,1|2) \) sector might be integrable at all loops [25] and it was argued that its integrable structure might be obtained from the one of \(\mathcal{N} = 4 \) SYM by simply replacing the gauge coupling with an effective coupling [31].

It would be then interesting to explore the consequences of the absence of duality and the lack of dual conformal invariance of our result (3.14) on the integrability of the \(SU(2,1|2) \) sector. In fact, this sector of the theory is obtained by restricting to operators built with selected fields in the \(\mathcal{N} = 2 \) vector multiplet, in a similar way as we only consider amplitudes with external adjoint particles. In this direction it would be important to understand if it is possible to apply the knowledge of amplitudes in \(\mathcal{N} = 2 \) SCQCD to compute off–shell quantities, and in particular the dilatation operator. Recently some first attempts to find this connection in \(\mathcal{N} = 4 \) SYM were done in [32–35], applying methods originally devised for computing MHV amplitudes.
to the derivation of the one–loop dilatation operator and of the anomalous dimensions at higher loops [36]. Such techniques might help to connect our on–shell results to the spin chain picture also in the $\mathcal{N} = 2$ SCQCD case.

5 Acknowledgements

This work has been supported in part by INFN and MPNS-COST Action MP1210 “The String Theory Universe”.

A Diagrammatic difference

We report here some examples of diagrams which do not contribute to the amplitude difference between $\mathcal{N} = 4$ SYM and $\mathcal{N} = 2$ SCQCD.

At first, whenever there is a chiral circuit which is not cut by any line, the amplitude difference turns out to be vanishing. As an example consider the diagram in Fig. 9.

![Figure 9](image.png)

Figure 9. Example of an uncut chiral circuit topology. The $\mathcal{N} = 4$ SYM diagrams on the left are exactly canceled by the $\mathcal{N} = 2$ SCQCD diagram on the right because of the fundamental flavour loop giving a $N_f^2 N$ factor.

In this case the $\mathcal{N} = 4$ SYM flavour counting is balanced by the presence of the flavour loop in the $\mathcal{N} = 2$ SCQCD diagram. The condition $N_f = 2N$ plays a crucial role here. A similar analysis can be repeated for all the diagrams with an uncut chiral circuit.

A bit more subtle is the case depicted in Fig. 10. Now the diagram involves cubic chiral vertices but neither cut or uncut chiral circuits and clearly can be drawn only in $\mathcal{N} = 4$ SYM. This would be an exception to the rule that diagrams contributing to the amplitude difference should involve an $\mathcal{N} = 2$ SCQCD realization with fundamental circuits. Nevertheless one can show that, at least at two loops, in $\mathcal{N} = 4$ SYM all such diagrams give rise to unequal external flavour configurations and then can be discarded.
Figure 10. Example of a $\mathcal{N} = 4$ SYM diagram which does not exist in $\mathcal{N} = 2$ SCQCD. Such diagrams never contribute to equal flavour configurations in $\mathcal{N} = 4$ SYM.

B Integrals

The G-functions of Section 3.1 are defined canonically in terms of products of Euler Gamma functions as

$$G[a,b] = \frac{\Gamma(a + b - d/2)\Gamma(d/2 - a)\Gamma(d/2 - b)}{(4\pi)^{d/2}\Gamma(a)\Gamma(b)\Gamma(d - a - b)}$$ \hspace{1cm} (B.1)

The scalar integrals produced by the computations of Section 3 can be expanded on the basis of two–loop master integrals as follows

$$\begin{eqnarray*}
\begin{figure}[h]
\end{figure}
\end{eqnarray*}$$

(B.2)

$$\begin{eqnarray*}
\begin{figure}[h]
\end{figure}
\end{eqnarray*}$$

(B.3)

$$\begin{eqnarray*}
\begin{figure}[h]
\end{figure}
\end{eqnarray*}$$

(B.4)

$$\begin{eqnarray*}
\begin{figure}[h]
\end{figure}
\end{eqnarray*}$$

(B.5)

$$\begin{eqnarray*}
\begin{figure}[h]
\end{figure}
\end{eqnarray*}$$

(B.6)

$$\begin{eqnarray*}
\begin{figure}[h]
\end{figure}
\end{eqnarray*}$$

(B.7)
where the coefficients a, b, c are defined in (3.12). Corresponding integrals in the t-channel can be obtained by $s \leftrightarrow t$. Details on the definitions and ϵ series expansions of the master integrals can be found in Appendix D of [1].

References

[1] M. Leoni, A. Mauri, and A. Santambrogio, *Four-point amplitudes in $\mathcal{N} = 2$ SCQCD*, JHEP 1409 (2014) 017 [Erratum-ibid. 1502 (2015) 022], [arXiv:1406.7283].

[2] L. F. Alday and J. M. Maldacena, *Gluon scattering amplitudes at strong coupling*, JHEP 0706 (2007) 064, [arXiv:0705.0303].

[3] J. Drummond, G. Korchemsky, and E. Sokatchev, *Conformal properties of four-gluon planar amplitudes and Wilson loops*, Nucl.Phys. B795 (2008) 385–408, [arXiv:0707.0243].

[4] A. Brandhuber, P. Heslop, and G. Travaglini, *MHV amplitudes in $N=4$ super Yang-Mills and Wilson loops*, Nucl.Phys. B794 (2008) 231–243, [arXiv:0707.1153].

[5] J. Drummond, J. Henn, G. Korchemsky, and E. Sokatchev, *On planar gluon amplitudes/Wilson loops duality*, Nucl.Phys. B795 (2008) 52–68, [arXiv:0709.2368].

[6] H. Elvang and Y.-t. Huang, *Scattering Amplitudes*, arXiv:1308.1697.

[7] J. M. Drummond, J. M. Henn, and J. Plefka, *Yangian symmetry of scattering amplitudes in $N=4$ super Yang-Mills theory*, JHEP 0905 (2009) 046, [arXiv:0902.2987].

[8] O. Aharony, O. Bergman, D. L. Jafferis, and J. Maldacena, *N=6 superconformal Chern-Simons-matter theories, M2-branes and their gravity duals*, JHEP 0810 (2008) 091, [arXiv:0806.1218].

[9] A. Agarwal, N. Beisert, and T. McLoughlin, *Scattering in Mass-Deformed $N \geq 4$ Chern-Simons Models*, JHEP 0906 (2009) 045, [arXiv:0812.3367].

[10] J. M. Henn, J. Plefka, and K. Wiegandt, *Light-like polygonal Wilson loops in 3d Chern-Simons and ABJM theory*, JHEP 1008 (2010) 032, [arXiv:1004.0226].

[11] W.-M. Chen and Y.-t. Huang, *Dualities for Loop Amplitudes of $N=6$ Chern-Simons Matter Theory*, JHEP 1111 (2011) 057, [arXiv:1107.2710].
[12] M. S. Bianchi, M. Leoni, A. Mauri, S. Penati, and A. Santambrogio, *Scattering Amplitudes/Wilson Loop Duality In ABJM Theory*, JHEP 1201 (2012) 056, [arXiv:1107.3139].

[13] T. Bargheer, N. Beisert, F. Loebbert, and T. McLoughlin, *Conformal Anomaly for Amplitudes in $\mathcal{N} = 6$ Superconformal Chern-Simons Theory*, J.Phys. A45 (2012) 475402, [arXiv:1204.4406].

[14] M. S. Bianchi, M. Leoni, A. Mauri, S. Penati, and A. Santambrogio, *One Loop Amplitudes In ABJM*, JHEP 1207 (2012) 029, [arXiv:1204.4407].

[15] S. Caron-Huot and Y.-t. Huang, *The two-loop six-point amplitude in ABJM theory*, JHEP 1303 (2013) 075, [arXiv:1210.4226].

[16] M. S. Bianchi, M. Leoni, A. Mauri, S. Penati, C. Ratti, et al., *From Correlators to Wilson Loops in Chern-Simons Matter Theories*, JHEP 1106 (2011) 118, [arXiv:1103.3675].

[17] J.-B. Bae and S.-J. Rey, *Antenna Operator Product Expansion of ABJ(M) Lightlike Polygon Wilson Loop*, arXiv:1412.8747.

[18] R. Andree and D. Young, *Wilson Loops in $\mathcal{N}=2$ Superconformal Yang-Mills Theory*, JHEP 1009 (2010) 095, [arXiv:1007.4923].

[19] E. N. Glover, V. V. Khoze, and C. Williams, *Component MHV amplitudes in $\mathcal{N}=2$ SQCD and in $\mathcal{N}=4$ SYM at one loop*, JHEP 0808 (2008) 033, [arXiv:0805.4190].

[20] A. V. Kotikov and L. N. Lipatov, *DGLAP and BFKL evolution equations in the $\mathcal{N}=4$ supersymmetric gauge theory*, hep-ph/0112346

[21] S. Gates, M. T. Grisaru, M. Rocek, and W. Siegel, *Superspace Or One Thousand and One Lessons in Supersymmetry*, hep-th/0108200.

[22] L. J. Dixon, *Calculating scattering amplitudes efficiently*, hep-ph/9601359.

[23] Z. Bern, J. Rozowsky, and B. Yan, *Two loop four gluon amplitudes in $\mathcal{N}=4$ superYang-Mills*, Phys.Lett. B401 (1997) 273–282, [hep-ph/9702424].

[24] E. Pomoni and C. Sieg, *From $\mathcal{N}=4$ gauge theory to $\mathcal{N}=2$ conformal QCD: three-loop mixing of scalar composite operators*, arXiv:1105.3487.

[25] E. Pomoni, *Integrability in $\mathcal{N}=2$ superconformal gauge theories*, Nucl. Phys. B 893 (2015) 21, [arXiv:1310.5709].

[26] A. Smirnov, *Algorithm FIRE – Feynman Integral REduction*, JHEP 0810 (2008) 107, [arXiv:0807.3243].

[27] I. A. Korchemskaya and G. P. Korchemsky, *Evolution equation for gluon Regge trajectory*, Phys. Lett. B387 (1996) 346, [hep-ph/9607229].
[28] A. Gadde, E. Pomoni, and L. Rastelli, Spin Chains in $N = 2$ Superconformal Theories: From the Z_2 Quiver to Superconformal QCD, JHEP 1206 (2012) 107, [arXiv:1006.0015].

[29] P. Liendo, E. Pomoni, and L. Rastelli, The Complete One-Loop Dilation Operator of $N=2$ SuperConformal QCD, JHEP 1207 (2012) 003, [arXiv:1105.3972].

[30] A. Gadde, P. Liendo, L. Rastelli, and W. Yan, On the Integrability of Planar $N = 2$ Superconformal Gauge Theories, JHEP 1308 (2013) 015, [arXiv:1211.0271].

[31] V. Mitev and E. Pomoni, The Exact Effective Couplings of 4D $N=2$ gauge theories, arXiv:1406.3629.

[32] B. I. Zwiebel, From Scattering Amplitudes to the Dilatation Generator in $N=4$ SYM, J. Phys. A 45 (2012) 115401, [arXiv:1111.0083].

[33] M. Wilhelm, Amplitudes, Form Factors and the Dilatation Operator in $N = 4$ SYM Theory, JHEP 1502 (2015) 149 [arXiv:1410.6309].

[34] A. Brandhuber, B. Penante, G. Travaglini, and D. Young, Integrability and MHV diagrams in $N=4$ supersymmetric Yang-Mills theory, arXiv:1412.1019.

[35] A. Brandhuber, B. Penante, G. Travaglini, and D. Young, Integrability and unitarity, arXiv:1502.06627.

[36] D. Nandan, C. Sieg, M. Wilhelm and G. Yang, Cutting through form factors and cross sections of non-protected operators in $N=4$ SYM, arXiv:1410.8485.