Screening of traditional Chinese medicines with therapeutic potential on chronic obstructive pulmonary disease through inhibiting oxidative stress and inflammatory response

Ming-Xing Zhou¹, Xuan Wei², Ai-Ling Li¹, Ai-Min Wang¹, Ling-Zi Lu¹, Yue Yang¹, Dong-Mei Ren¹, Xiao-Ning Wang¹, Xue-Sen Wen¹, Hong-Xiang Lou¹ and Tao Shen¹*

Abstract

Background: Chronic obstructive pulmonary disease (COPD) is a major public health problem and gives rise to severe chronic morbidity and mortality in the world. Inflammatory response and oxidative stress play dominant roles in the pathological mechanism of COPD, and have been regarded to be two important targets for the COPD therapy. Traditional Chinese medicines (TCMs) possess satisfying curative effects on COPD under guidance of the TCM theory in China, and merit in-depth investigations as a resource of lead compounds.

Methods: One hundred ninety-six of TCMs were collected, and extracted to establish a TCM extract library, and then further evaluated for their potency on inhibitions of oxidative stress and inflammatory response using NADP(H):quinone oxidoreductase (QR) assay and nitric oxide (NO) production assay, respectively.

Results: Our investigation observed that 38 of the tested TCM extracts induced QR activity in hepa 1c1c7 murine hepatoma cells, and 55 of them inhibited NO production in RAW 264.7 murine macrophages at the tested concentrations. Noteworthily, 20 of TCM extracts simultaneously inhibited oxidative stress and inflammatory responses.

Conclusion: The observed bioactive TCMs, particularly these 20 TCMs with dual inhibitory effects, might be useful for the treatment of COPD. More importantly, the results of the present research afford us an opportunity to discover new lead molecules as COPD therapeutic agents from these active TCMs.

Keywords: Traditional Chinese medicines, Chronic obstructive pulmonary disease, Oxidative stress, Inflammatory response

Background

Chronic obstructive pulmonary disease (COPD) is a disease characterized by progressive and not fully reversible airflow limitation, which is associated with abnormal inflammatory response of the lung to noxious particles and gases [1]. Tobacco smoke, indoor and outdoor air pollutions, as well as exposure to occupational dust and chemicals are the three dominant risk factors for COPD. It is the fourth leading cause of chronic morbidity and mortality in the United States. On the basis of investigation by the World Bank/World Health Organization, COPD is predicted to rank fifth in 2020 as a worldwide burden of disease. A horrifying fact is that half of global deaths from COPD occur in the Western Pacific Region, with the majority of these existing in China, which might be contributing to high incidence of smoking and severe air pollution in the industrialization advancement [2].

* Correspondence: shentao@sdu.edu.cn

¹Key Lab of Chemical Biology (MOE), School of Pharmaceutical Sciences, Shandong University, 44 West Wenhua Road, Jinan 250012, People’s Republic of China

Full list of author information is available at the end of the article

© 2016 The Author(s). Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.
Cumulative evidences indicate that inflammatory response, oxidative stress, and protease imbalance play dominant roles in the pathological mechanism of COPD [3, 4]. Briefly, exogenous irritants and reactive oxygen species (ROS) activate inflammatory cells (e.g. macrophages, neutrophils) and epithelial cells in the respiratory tract that release ROS, inflammatory mediators [e.g. leukotriene B4 (LTB4), interleukin-8 (IL-8), tumor necrosis factor α (TNFα), transforming growth factor-β (TGF-β)], proteases (e.g. cathepsins, matrix metalloproteinases)[3, 5, 6]. ROS stimulates nuclear factor kB (NF-κB) and increase the release of inflammatory cytokines, inflammatory mediators promote the production of endogenous ROS, while proteases cause alveolar destruction and mucus secretion. Hence, the synergistic reactions of inflammation, oxidative stress, and protease imbalance amplify pathophysiology of COPD, and inhibitions of these three processes are regarded to be effective strategies for the treatment, as well as drug research and development of COPD [7].

Plenty of traditional Chinese medicines (TCMs) have been used clinically to treat COPD in the form of single or compound prescription under guidance of the TCM theory in China, and demonstrated satisfying curative effects [8, 9]. Their clinical effectiveness implies that TCM is an important resource of new drugs and/or lead compounds with COPD therapeutic potential. Based on this rationale, we have launched a systemic research on discovering new drugs and lead molecules for COPD treatment from TCM targeting inhibitions of oxidative stress and inflammatory response. We firstly collected and extracted TCM materials to establish a TCM extract library, and then carried out a biological screening of these TCMs using NADP(H):quinone oxidoreductase (QR) assay and nitric oxide (NO) production assay to find the TCMs with potential therapeutic effect on COPD.

Methods

Chemicals
Sulforaphane (SF, purity >98 %) was purchased from Sigma-Aldrich (St. Louis, MO, USA). Didox (purity >98 %) was purchased from MedChem Express (Monmouth Junction, ON, USA). Solvents used for extraction were of analytical grade and obtained from Tianjin Fuyu Chemical Company (Tianjin, China).

Collection and Identification of tested TCMs
Traditional Chinese medicine (TCM) materials were purchased from the Jinan Jianlian TCM Co. Ltd in Shandong province, Anguo TCM market in Hebei province, and Bozhou TCM market in Anhui Province. These TCMs were identified by Prof. Lan Xiang, School of Pharmaceutical Sciences, Shandong University, through comparing their characteristics in plant morphology and taxonomy with that described in Chinese Pharmacopoeia. Voucher specimens (Voucher ID see Table 1) of TCMs have been deposited at the Laboratory of Pharmacognosy, School of Pharmaceutical Sciences, Shandong University.

Preparations of TCM extractions
Crushed aerial parts or leaves of plant materials (50 g) were extracted under reflux for 2 h with 75 % ethanol (EtOH, 2 × 500 mL), and then EtOH was removed under reduced pressure. The yield of each extract was presented as a percentage of weight of dried plant material, and has been summarized in Table 1.

Cell cultures
Hepa 1c1c7 murine hepatoma cells (American Type Culture Collection, ATCC) were maintained in Eagle’s minimal essential medium (MEM, Gibco) supplemented with 10 % fetal bovine serum (FBS, Gemini Bio-product). RAW 264.7 murine macrophages (ATCC) were cultured in Dulbecco’s Modified Eagle’s Medium (DMEM, Gibco) supplemented with 10 % FBS. All cells were incubated at 37 °C in a humidified incubator containing 5 % CO₂.

NADP(H): quinone oxidoreductase (QR) assay
NADP(H):quinone oxidoreductase (QR) assay was modified from previously described method [10]. Hepa 1c1c7 cells (1.0 × 10⁴ cells/well) were seeded in 96-well plates and treated with the indicated doses of tested extracts for 24 h. The medium was decanted, and the cells were incubated with 40 μL of lysing solution [0.8 % digitonin and 2 mM EDTA solution (pH 7.8)] for 15 min at 37 °C. Then, 170 μL of a complete reaction mixture containing bovine serum albumin, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazoliumbromide (MTT), 1.5 % Tween 20, 0.5 M Tris–HCl, 7.5 mM flavin adenine dinucleotide (FAD), 150 mM glucose-6-phosphate, 10 units/μL glucose-6-phosphate dehydrogenase, 50 mM NADP, and 50 mM menadione was added into each well. After incubation for 4 min, a blue color was developed and the reaction was arrested by adding 50 μL per well of a 0.3 mM dicoumarol solution (pH 7.4). Absorbance was measured at 630 nm on the Model 680 plate reader (Bio-rad). SF (2.0 μM) was adopted as a positive control.

Nitric oxide (NO) production assay
Inhibition of NO production by LPS-stimulated RAW 264.7 murine macrophages was applied to evaluate anti-inflammatory functions of TCM extracts. RAW 264.7 cells (8.0 × 10⁴ cells/well) were seeded in 96-well plates and treated with 1 μg/mL LPS, in the absence or presence of tested TCM extractions for 24 h. Then, 100 μL of supernatant was removed to a new 96-well plate and added with 100 μL of Griess reagent (0.1 %
No.	Plant name	Part used in TCM	Voucher ID	Yields (%)	Induction of QR activity (MQI)	Inhibition of NO production (MIR)
1	Acacia catechu (L.f.) Wild.	Branch	20151128-100-EC	69.8	N/D	N/D
2	Acanthopanax graciifolius W. W. Smith	Root-bark	20150802-20-WJP	9.8	N/D	68.0 % (100)
3	Acanthopanax senticosus (Rupr. et Maxim.) Harms	Rhizome	20150801-8-CWJ	7.7	N/D	52.0 % (200)
4	Achyranthes bidentata Bl.	Rhizome	20150801-4-NX	8.7	N/D	N/D
5	Aconitum carmichaeli Debx.	Root	20151128-58-FZ	14.7	N/D	N/D
6	Acorns tatarinowii Schott	Rhizome	20151128-30-SCP	10.5	N/D	N/D
7	Adenophora tetraphylla (Thunb.) Fisch.	Root	20151128-76-SS	19.1	N/D	N/D
8	Agrimonia pilosa Ledeb.	Aerial part	20151128-31-XHC	9.8	N/D	41.2 % (200)
9	Akebia trifoliata (Thunb.) Koidz. subsp. australis (Diels) T. Shimizu	Rattan	20150802-14-BMT	11.6	N/D	N/D
10	Albitzia julibrissin Durazz.	Bark	20151128-134-HHP	8.9	1.64 fold (200)	N/D
11	Alisma orientalis (Sam.) Juzep.	Root	20151128-71-ZX	13.6	N/D	34.2 % (200)
12	Allium tuberosum Rottl.	Seed	20150717-4-JCZ	3.8	N/D	N/D
13	Amomum kravanh Pierre ex Gagnep.	Fruit	20151128-137-DK	2.1	N/D	N/D
14	Amomum villosum Loure.	Fruit	20150801-9-SR	8.3	N/D	N/D
15	Ampelopsis japonica (Thunb.) Makino	Root	20151128-127-BL	10.7	N/D	N/D
16	Andrographis paniculata (Burm.f.) Nees	Aerial part	20151128-83-CXL	9.9	2.04 fold (200)	N/D
17	Anemarrhena asphodeloides Bge.	Rhizome	20150802-17-ZM	10.2	N/D	41.2 % (200)
18	Angelica dahurica (Fisch. ex Hoffrn.) Benth. et Hook.f.	Root	20151128-125-BZ	8.9	N/D	N/D
19	Angelica pubescens Maxim. f. biserata Shan et Yuan	Root	20150802-16-DH	25.1	N/D	N/D
20	Angelica sinensis (Oliv.) Diels	Root	20151128-34-DG	19.4	1.41 fold (200)	N/D
21	Arctium lappa L.	Fruit	20151128-33-NBZ	18.4	N/D	N/D
22	Areca catechu L.	Peel	20151128-104-DFP	2.3	N/D	N/D
23	Areca catechu L.	Fruit	20151128-145-BL	8.2	1.33 fold (25)	N/D
24	Arisaema erubescens (Wall.) Schott	Tuber	20151128-23-TNX	1.2	1.36 fold (200)	N/D
25	Aristolochia debilis Sieb. et Zucc.	Aerial part	20151128-21-TXT	3.2	N/D	N/D
26	Artemisia argyi Levi. et Vant.	Leaf	20150716-6-AY	12.9	N/D	86.2 % (200)
27	Artemisia scoparia Waldst. et Kt.	Aerial part	20151128-74-YC	12.8	1.48 fold (200)	38.8 % (100)
28	Asarum heterotropoides Fr. Schmidt var. mandshuricum (Maxim.) Kitag.	Root and rhizome	20151128-72-XX	11.4	N/D	N/D
29	Atractylode lancea (Thunb.) DC.	Rhizome	20151128-136-CZ	24.2	N/D	52.3 % (200)
30	Atractylodes macrocephala Koldz.	Rhizome	20151128-123-BZ	12.9	N/D	N/D
31	Aucklandia lappa Decne.	Root	20151128-15-MX	16.3	2.31 fold (25)	94.7 % (25)
32	Belamcanda chinensis (L.) DC.	Rhizome	20151128-106-SG	29.6	N/D	N/D
33	Bletilla striata (Thunb.) Reichbf.	Rhizome	20150801-12-BJ	2.1	N/D	N/D
34	Bolbostemma paniculatum (Maxim.) Franquet	Tuber	20151128-5-TBM	15.1	N/D	N/D
35	Callicarpa macrophylla Vahl	Leaf	20151128-7-DYZZ	4.3	N/D	85.8 % (200)
36	Cassia angustifolia Vahl.	Leaf	20150802-25-FXY	9.4	1.54 fold (50)	79.7 % (200)
37	Cassia obtusifolia L.	Seed	20151128-38-JMZ	7.9	N/D	N/D
38	Chaenomeles speciosa (Sweet) Nakai	Fruit	20151128-24-MG	30.5	N/D	N/D
39	Chrysanthemum morifolium Ramat.	Flower	20150802-28-JH	23.3	N/D	90.2 % (200)
40	Cimicifuga heracleifolia Kom.	Rhizome	20151128-28-5M	14.1	1.95 fold (100)	86.4 % (200)
41	Cinamomum cassia Presl.	Branch	20150717-2-GZ	5.0	N/D	N/D
42	Cissium japonicum Fisch. ex DC.	Aerial part	20151128-9-DJ	6.7	N/D	N/D
No.	Species	Part	Code	QR Induction	NO Production Assay	
-----	----------------------------------	----------------	--------	--------------	---------------------	
43	Cirsium setosum (Willd.) M.Bieb.	Aerial part	20151128-10-XJ	12.7	1.51 fold (200) 38.8 % (200)	
44	Cistanchede deserticola Y. C. Ma	Stem	20150801-7-RCR	23.6	N/D	
45	Citrus aurantium L.	Fruit	20150801-11-ZQ	17.0	N/D	
46	Citrus limon (L.) Burm. f.	Fruit	20150716-16-NM	19.5	1.79 fold (200) N/D	
47	Citrus medica L. var. sarcodac-tylis Swingle	Fruit	20151128-55-FS	39.6	N/D	
48	Citrus reticulata Blanco.	Pericarp	20150716-10-CP	22.0	N/D	
49	Clematis armandii Franch.	Rattan	20150802-12-CMT	4.5	N/D	
50	Codonopsis pilosula Franch. Nannf.	Seed	20150716-15-YYR	6.5	N/D	
51	Coix lacryma-jabu L. var. ma-yuen (Roman.) Stapf	Seed	20150716-15-YR	6.5	N/D	
52	Commelina communis L.	Aerial part	20151128-88-YZC	4.4	N/D	
53	Coptis chinensis Franch.	Rhizome	20150802-31-HL	6.6	57.1 % (200)	
54	Comus officinalis Sieb. et Zucc.	Fruit	20150802-27-SZY	43.6	N/D	
55	Crataegus pinnatifida Bge. var. major N. E. Br.	Fruit	20150716-2-SZ	34.8	N/D	
56	Cremastra appendiculata (D. Don) Makino	Pseudobulb	20151128-12-SCG	2.6	N/D	
57	Croton tiglium L.	Fruit	20150802-8-BD	1.1	N/D	
58	Curculigo archioides Gaertn.	Rhizome	20151128-121-XM	4.5	1.57 fold (200) 47.8 % at (200)	
59	Curcuma phaeocaulis Val.	Rhizome	20150801-20-EZ	2.6	N/D	
60	Curcuma wenyujin Y. H. Chen et C. Ling	Root	20150802-26-YJ	9.0	N/D	
61	Cynanchum atratum Bge.	Root and rhizome	20151128-40-BW	23.6	N/D	
62	Cynanchum stauntonii (Decne.) Schltr ex Lévl.	Rhizome	20150801-13-BQ	10.6	N/D	
63	Cynomorium songaricum Rupr.	Stem	20150716-14-5Y	17.9	N/D	
64	Cyperus rotundus L.	Rhizome	20151128-80-XF	11.6	1.74 fold (200) N/D	
65	Dendrobium nobile Lindl.	Stem	20150802-13-MH	9.0	N/D	
66	Dictamnus dasycarpus Turcz.	Velamen	20150802-4-BXP	9.0	N/D	
67	Dioscorea opposita Thunb.	Rhizome	20150716-1-SY	1.7	N/D	
68	Dipsacus asperoides C. Y. Cheng et T. M. Ai	Rhizome	20150716-13-XD	17.5	N/D	
69	Drynaria fortunei (Kunze) J. Sm.	Rhizome	20151128-78-GSB	4.8	N/D	
70	Eclipta prostrata L.	Aerial part	20151128-99-MHL	9.0	N/D	
71	Epimedium brevicomum Maxim.	Aerial part	20150716-9-YYH	20.5	N/D	
72	Equisetum hiemale L.	Aerial part	20151128-108-MZ	4.9	41.5 % (200)	
73	Eriocaulon buergerianum Koern.	Flower	20151128-139-GJC	7.9	N/D	
74	Eucommia ulmoides Oliv.	Root-bark	20151128-51-DZ	8.3	1.56 fold (200) 62.5 % (200)	
75	Eugenia caryophyllata Thunb.	Bud	20151128-1-DX	27.5	N/D	
76	Eupatorium fortunei Turcz.	Aerial part	20151128-66-PL	10.1	N/D	
77	Euphorbia humifusa Willd.	Whole plant	20151128-37-DXC	9.5	N/D	
78	Ferula Sinkiangensis K. M. Shen	Resin	20151128-140-EW	6.1	N/D	
79	Forsythia suspense (Thnub.) Vahl	Fruit	20151128-53-LQ	28.3	48.3 % (200)	
80	Fraxinus rhynchophylla Hance	Bark	20151128-86-OP	8.0	N/D	
81	Fritillaria assuriensi Maxim.	Bulb	20151128-118-PBM	4.1	N/D	
82	Ganoderma sinense Zhao, Xu et Zhang	Sporophore	20150801-2-ZZ	2.9	N/D	
83	Gardenia jasminoides Ellis.	Fruit	20150717-7-ZZ	16.1	N/D	
84	Gardenia elata Bl.	Tuber	20150801-16-TM	7.5	N/D	
85	Glycyrrhiza uralensis Fisch.	Rhizome	20150716-5-GC	15.7	2.19 fold (100) 82.9 % (200)	
86	Hippophae rhamnoides L.	Fruit	20151128-57-SJ	36.5	N/D	
No.	Common Name	Part	Code	QR (µg/mL)	Fold (µg/mL)	% Inhibition
-----	-------------------------------------	-----------------------------	------------	------------	--------------	--------------
87	Homalomena occulta (Lour.) Schott	Rhizome	20151128-13-QNJ	9.3	N/D	N/D
88	Hordeum vulgare L.	Fruit	20151128-135-MY	11.5	N/D	N/D
89	Houyttynia cordata Thunb.	Aerial part	20150801-18-YXC	16.7	N/D	N/D
90	Illicium difengpi K. I. B. et K. I. M.	Bark	20151128-132-DFP	1.9	1.52 fold (100)	N/D
91	Illicium verum Hook. f.	Fruit	20151128-2-BJHX	13.3	N/D	55.7 % (200)
92	Inula helenium L.	Root	20150802-9-BLG	13.6	1.66 fold (50)	N/D
93	Isatis indigotica Fort.	Root	20151128-9-MLY	12.5	1.11 fold (100)	N/D
94	Isatis indigotica Fort.	Leaf	20151128-102-DQY	13.6	1.66 fold (50)	N/D
95	Kaempferia galanga L.	Rhizome	20151128-105-SN	4.7	N/D	N/D
96	Kochia scoparia (L.) Schrad.	Fruit	20150801-15-WY	10.7	1.59 fold (200)	N/D
97	Laminaria Japonica Aresch.	Thallus	20151128-19-CX	16.1	1.73 fold (200)	69.0 % (100)
98	Lepidium apetalum Willd.	Seed	20150802-21-TLZ	6.3	1.52 fold (50)	N/D
99	Ligusticum chuanxiong Hort.	Rhizome	20151128-18-NZZ	24.2	N/D	N/D
100	Ligusticum lucidum Ait.	Leaf	20151128-32-BH	4.3	N/D	N/D
101	Lycium lucidum L.	Rhizome	20150801-15-WY	10.7	1.59 fold (200)	N/D
102	Lycium chinense Mill.	Root	20151128-9-ZC	6.4	1.52 fold (50)	57.1 % (200)
103	Lophatherum gracile Brongn.	Aerial part	20151128-9-JNC	18.5	N/D	N/D
104	Lycopus lucidus Turcz. var. hirtus Regel	Flower	20150801-15-WY	10.7	1.59 fold (200)	N/D
105	Lycopus lucidus Turcz. var. hirtus Regel	Flower	20150801-15-WY	10.7	1.59 fold (200)	N/D
106	Lycopus lucidus Turcz. var. hirtus Regel	Flower	20150801-15-WY	10.7	1.59 fold (200)	N/D
107	Lycopus lucidus Turcz. var. hirtus Regel	Flower	20150801-15-WY	10.7	1.59 fold (200)	N/D
108	Lycopus lucidus Turcz. var. hirtus Regel	Flower	20150801-15-WY	10.7	1.59 fold (200)	N/D
109	Lycopus lucidus Turcz. var. hirtus Regel	Flower	20150801-15-WY	10.7	1.59 fold (200)	N/D
110	Lycopus lucidus Turcz. var. hirtus Regel	Flower	20150801-15-WY	10.7	1.59 fold (200)	N/D
111	Lycopus lucidus Turcz. var. hirtus Regel	Flower	20150801-15-WY	10.7	1.59 fold (200)	N/D
112	Lycopus lucidus Turcz. var. hirtus Regel	Flower	20150801-15-WY	10.7	1.59 fold (200)	N/D
113	Lycopus lucidus Turcz. var. hirtus Regel	Flower	20150801-15-WY	10.7	1.59 fold (200)	N/D
114	Lycopus lucidus Turcz. var. hirtus Regel	Flower	20150801-15-WY	10.7	1.59 fold (200)	N/D
115	Lycopus lucidus Turcz. var. hirtus Regel	Flower	20150801-15-WY	10.7	1.59 fold (200)	N/D
116	Lycopus lucidus Turcz. var. hirtus Regel	Flower	20150801-15-WY	10.7	1.59 fold (200)	N/D
117	Lycopus lucidus Turcz. var. hirtus Regel	Flower	20150801-15-WY	10.7	1.59 fold (200)	N/D
118	Lycopus lucidus Turcz. var. hirtus Regel	Flower	20150801-15-WY	10.7	1.59 fold (200)	N/D
Table 1 Inhibitions on oxidative stress and inflammation of TCMs evaluated using QR induction and NO production assay (Continued)

No.	Plant Name	Part	Assay Date	IC50 (µg/mL)	Fold (µg/mL)	% Inhibition
131	Phragmites communis Trin.	Root	20151128-49-LG	3.8	N/D	N/D
132	Physalis alkekengi L. var. franchetii (Mast.) Makino	Calyx	20150730-2-GJD	14.2	1.79 fold (200)	91.4 % (200)
133	Pinellia ternate (Thunb.) Breit.	Tuber	20151128-130-BX	0.8	1.74 fold (200)	N/D
134	Piper nigrum L.	Fruit	20151128-92-HHJ	5.4	N/D	N/D
135	Plantago asiatica L.	Whole plant	20150716-4-CQC	13.7	N/D	N/D
136	Platycodon grandiflorum (Jacq.) A. DC.	Root	20151128-87-JG	33.4	N/D	N/D
137	Pogostemon cablin (Blanco) Benth.	Aerial part	20151128-16-GHX	5.5	1.73 fold (100)	56.6 % (200)
138	Polygonatum kingianum Coll. et Hemsl.	Rhizome	20151128-90-HJ	6.8	N/D	N/D
139	Polygonatum odoratum (Mill.) Druce	Rhizome	20151128-113-YZ	21.6	N/D	N/D
140	Polygonum aviculare L.	Aerial part	20151128-89-BX	10.8	N/D	N/D
141	Polygonum cuspidatum Sieb. et Zucc.	Root and rhizome	20151128-63-HZ	21.7	N/D	60.5 % (200)
142	Polygonum multiflorum Thunb.	Root	20151128-54-HSW	6.8	N/D	35.5 % (200)
143	Pongyala tenuifolia Willd.	Root	20151128-46-YZ	34.4	N/D	N/D
144	Pseudeostellaria heterophylla (Miq.) Pax ex Pax et Hoffm.	Peel	20150716-11-XKC	4.1	N/D	N/D
145	Prunus armeniaca L. var. ansu Maxim.	Seed	20151128-60-KXR	5.7	N/D	N/D
146	Prunus persica (L.) Batsch.	Velamen	20151128-61-TR	3.7	N/D	N/D
147	Pseudolarx kaempleri Gord.	Root	20151128-27-TZS	13.5	N/D	N/D
148	Potentilla chinensis Ser.	Whole plant	20151128-65-WLC	8.9	N/D	N/D
149	Pulsatilla chinensis (Bunge) Regel	Root	20151128-124-BTW	22.7	N/D	N/D
150	Puncia granatum L.	Peel	20151128-117-SLP	31.3	N/D	N/D
151	Pyrosia sheareri (Bak.) Ching	Leaf	20151128-116-SW	12.2	1.85 fold (50)	N/D
152	Rabdosia rubescens (Hemsl) Hara	Aerial part	20151128-39-DLC	8.4	1.38 fold (100)	43.2 % (200)
153	Raphanus sativus L.	Seed	20150802-30-LFZ	13.8	N/D	N/D
154	Rhaponticum uniforum (L.) DC.	Root	20151128-97-LL	4.4	1.54 fold (200)	N/D
155	Rheum palmatum L.	Root and rhizome	20151128-103-DH	25.6	60.2 % (200)	
156	Rhodiola crenulata (Hook. f. et Thorns.) H. Ohba	Rhizome	20150801-5-HIT	13.3	46.3 % (200)	
157	Rosa chinensis Jacq.	Flower	20151128-110-YIH	18.9	N/D	N/D
158	Rosa laevigata Michx.	Fruit	20151128-68-JYZ	25.2	1.67 fold (50)	57 % (200)
159	Rubia cordifolia L.	Root and rhizome	20151128-73-QC	10.0	N/D	N/D
160	Salvia miltiorhiza Bge.	Root and rhizome	20151128-29-DS	39.7	1.44 fold (100)	64.5 % (200)
161	Sanguisorba officinalis L.	Root	20151128-36-DY	3.5	N/D	N/D
162	Saposhnikovia divaricata (Turcz.) Schischk.	Root	20150802-19-FF	15.9	1.95 fold (100)	N/D
163	Saracensium pallidum (Turn.) C. Ag.	Peel	20150802-1-HZ	11.5	N/D	N/D
164	Sargentodoxa cuneate (Oliv.) Rehd. et Wils.	Rattan	20151128-8-DXT	16.9	N/D	N/D
165	Scrophularia ningpoensis Hemsl.	Root	20151128-128-XS	50.5	N/D	N/D
166	Scutellaria baicalensis Georgi.	Rhizome	20150716-12-HQ	30.2	N/D	87.4 % (200)
167	Scutellaria barbata D. Don	Whole plant	20151128-35-BZL	10.2	N/D	59.0 % (200)
168	Sedum sarmentosum Bunge.	Whole plant	20151128-64-CPC	17.5	N/D	N/D
169	Selaginella tamariscina (Beauv.) Spring	Whole plant	20151128-69-JB	8.9	N/D	N/D
170	Senecio scandens Buch.-Ham.	Aerial part	20151128-14-QLG	11.4	N/D	38.1 % (200)
171	Sesamum indicum L.	Seed	20150717-3-HZM	3.3	N/D	N/D
172	Siegesbeckia orientalis L.	Aerial part	20151128-98-XXC	4.8	1.91 fold (200)	54.9 % (200)
naphthylethylenediamine and 1 % sulfanilamide in 5 % H$_3$PO$_4$ solution) at room temperature for 15 min. Absorbance was measured at 570 nm on the Model 680 plate reader (Bio-rad). Nitrite concentration was calculated from a NaNO$_2$ standard curve. Didox (100 μM) was used as a positive control.

Cell viability assay
The anti-proliferative effect of TCM extracts on RAW 264.7 cells were simultaneously determined using a 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT, Sigma) assay. Briefly, 100 μL of DMEM media containing 0.4 % MTT were added to each well, after removing 100 μL of supernatant as described in NO production assay. Then, the cells were incubated at 37 °C for 3 h, and absorbance was measured at 570 nm on the Model 680 plate reader (Bio-rad).

Statistical analysis
One way analysis of variance (ANOVA) and post hoc multiple comparison Bonferroni test were applied to compare the significant difference between two groups. Results are presented as the mean ± SD. $P < 0.05$ was considered to be significant.

Results and Discussion
To establish a TCM extract library for biological screening, we firstly selected 196 TCMs based on Chinese Pharmacopoeia (Edition 2015) and TCM literatures, and collected TCMs from Jinan local TCM drugstore, as well as the two biggest Chinese TCM markets, Anguo and Bozhou TCM markets. After plant material authentication, TCMs were extracted with 75 % EtOH to prepare their EtOH extracts, and then the concentrations of 200, 100, 50, 25, 12.5, 6.25 μg/mL were selected as tested doses for bioassays. Names, origin, extract yields and biological activities of investigated TCMs were summarized in Table 1.

Name	Origin	Extract yield	Anti-inflammation activity	Anti-oxidative stress activity	
Siphonostegia chinensis Benth.	Whole plant	20151128-119-BLJM	9.7	N/D	34.6 % (200)
Smilax glabra Roxb.	Rhizome	20151128-101-TFL	10.9	N/D	N/D
Sophora flavescens Ait.	Root	20151128-62-KS	21.4	N/D	N/D
Sophora japonica L.	Flower and bud	20151128-95-HH	37.1	1.44 fold (200)	N/D
Sparganium stoloniferum Buch.-Ham.	Tuber	20151128-3-SL	4.5	1.57 fold (200)	N/D
Spatholobus suberectus Dunn	Rattan	20151128-56-JXT	5.8	N/D	N/D
Stemona sessilifolia (Miq.) Miq.	Root	20150802-24-BB	30.6	N/D	N/D
Stephania tetrandra S. Moore	Root	20151128-43-FJ	72.9	N/D	50.0 % (200)
Sterculia lychnophora Hance	Seed	20150801-21-PDH	3.2	N/D	30.7 % (200)
Taraxacum mongolicum Hand.-Mazz.	Whole plant	20150716-3-PGY	17.2	N/D	42.3 % (200)
Taxillus chinesis (DC.) Danser	Aerial part	20150802-15-SJS	6.3	N/D	N/D
Trichosanthes kirilowii Maxim.	Seed	20131120-1-GL	20.5	N/D	N/D
Tripterygium wilfordii Hook. f.	Root	20150802-18-LGT	8.3	N/D	N/D
Tussilago farfara L.	Bud	20150802-6-KDH	9.9	2.38 fold (50)	N/D
Uncaria rhynchophylla (Miq.) Miq. ex Havil.	Stem	20151128-79-GT	6.5	N/D	N/D
Urolea diffacta Vain.	Thallus	20150802-2-SL	11.0	N/D	44.5 % (200)
Vaccaria segetatis (Neck.) Garcke	Seed	20151128-20-WBLX	4.9	N/D	N/D
Verbena officinalis L.	Aerial part	20151128-17-MBC	7.9	N/D	N/D
Viola yedoensis Makino	Whole plant	20150802-7-ZHDD	25.6	N/D	N/D
Xanthium sibiricum Patr.	Fruit	20151128-47-CEZ	3.5	N/D	N/D
Zanthoxylum nitidum (Roxb.) DC.	Root	20151128-52-LMZ	6.1	N/D	38.2 % (200)
Zanthoxylum schinifolium Sleb. et Zucc.	Peel	20151128-48-HI	21.2	1.75 fold (200)	50.3 % (200)

SF (2.0 μM) with an approximately 1.7-fold induction was used as a positive control for QR assay; Didox (100 μM) with an approximately 60 % inhibition of NO production was adopted as a positive control for NO inhibitory assay; MQI: the maximum folds of QR inducing activity under the tested concentration; MIR: the maximum inhibition rate of NO production under the nontoxic tested concentration; N/D, undetected.
enzymes are antioxidant response element (ARE)-containing target genes and are mediated by ARE located in their promoter region [11]. Specially, upon the exposure of cells to oxidative stress and/or toxicants, nuclear factor E2-related factor 2 (Nrf2) translocates into the nucleus, binds to the ARE sequence, and activates the transcription of these ARE-target genes [12]. Therefore, QR and antioxidant enzymes (e.g. GCLM and HO-1) possess same responses against endogenous and exogenous insults, which have also been verified by our recent researches [13, 14]. Considering above mentioned inducing mechanism of QR and antioxidant enzymes, determination of QR activity is a rational and effective method for analyzing the potency of oxidative stress inhibition. In the current study, we normalized the data by setting the untreated control group as 1, and then the QR inducing activity of tested extracts was represented by the maximum folds of QR inducing activity (MQI) compared with the untreated control group. SF as a positive control displayed an approximately 1.7-fold induction at 2.0 μM. 1.3-fold of QR inducing activity (MQI = 1.3) under the tested concentrations was adopted as a criterion for bioactive TCM extracts. To be more precise, the level of QR inducing activity was ranked as the following criteria: strong (MQI ≥ 1.8); moderate (1.8 > MQI ≥ 1.5); weak (1.5 > MQI ≥ 1.3); undetected (MQI < 1.3).

Ultimately, 38 TCM extracts demonstrated the QR inducing activities with MQI ranging from 1.33- to 2.38- folds under the tested concentrations (Table 1). Of which, eight TCM extracts strongly induced QR activity in hepa 1c1c7 cells (MQI ≥ 1.8), including Andrographis paniculata (aerial part, 16), Aucklandia lappa (root, 31), Cimicifuga heracleifolia (rhizome, 40), Glycyrrhiz uralensis (rhizome, 85), Pyrosyss shearei (leaf, 153), Saposhnikovia divaricate (root, 164), Siegesbeckia orientalis (aerial part, 174), and Tussilago farfara (bud, 188). Twenty-two extracts are moderate QR inducers (1.8 > MQI ≥ 1.5), containing Albizia julibrissin (bark, 10), Cassia angustifolia (leaf, 36), Cirsium setosum (aerial part, 43), Citrus limon (fruit, 46), Curculigo orchioides (rhizome, 58), Cyperus rotundus (rhizome, 64), Eucommia ulmoides (root-bark, 74), Illicium dengfeng (bark, 90), Inula helenium (root, 92), Isatis indigotica (leaf, 93), Ligusticum chuanxiong (rhizome, 99), Lindera aggregata (root, 102), Lithospermum erythrhorhizon (root, 103), Misla chinensis (aerial part, 118), Perilla frutescens (leaf, 128), Physalis alkekengi L. var. franchetii (calyx, 132), Pinellia ternata (tuber, 133), Pogostemon cablin (aerial part, 137), Rhaponticum uniflorum (root, 156), Rosa laevigata (fruit, 160), Sparganium stoloniferum (tuber, 179), and Zanthoxylum schinifolium (peel, 196). Moreover, eight extracts possessed weak QR inducing effect (1.5 > MQI ≥ 1.3), including Angelica sinensis (root, 20), Areca catechu (fruit, 23), Arisaema turbescens (tuber, 24), Artemisia scoparia (aerial part, 27), Morus alba (branch, 120), Rabdosia rubescens (aerial part, 154), Salvia miltiorrhiza (root and rhizome, 162), and Sophora japonica (flower and bud, 178). QR inducing effects of 38 bioactive TCM extracts in hepa 1c1c7 cells have been detailedly summarized in Additional file 1: Table S1 and Figure S1.

During the chronic inflammation process, excessive NO have been produced and involved in the tissue injury through damages to proteins, lipids, DNA, and the modulation of leukocyte activity [15]. Accordingly, inhibiting NO production is regarded to be an effective strategy for the therapy of inflammation-related diseases. Herein, we detected NO level in LPS-stimulated RAW264.7 macrophages to evaluate anti-inflammatory function of TCM extracts. Cytotoxicities of tested TCM extracts were simultaneously evaluated by a MTT assay to confirm that the decrease of NO production was not attributed to inhibition of cell proliferation. The maximum inhibition rate (MIR) of NO production under the nontoxic tested concentration, which was calculated by comparing the decreased NO concentration in TCM-treated group with that in LPS-stimulated group, was adopted to evaluate the anti-inflammatory property. Didox with an approximately 60 % inhibition of NO production at 100 μM was used as a positive control. The inhibitory potency of TCM extracts on NO production was ranked according to the criteria as follows: strong (MIR ≥ 80 %); moderate (80 % > MIR ≥ 50 %); weak (50 % > MIR ≥ 30 %); undetected (MIR < 30 %).

Our investigation indicated that 55 TCM extracts inhibited the LPS-induced NO production with MIRs between 30.7 % and 100 % under the tested nontoxic concentrations (Table 1). Thereinto, 11 TCM extracts strongly inhibited NO production in RAW 264.7 cells (MIR ≥ 80 %), including Artemisia argyi (leaf, 26), Aucklandia lappa (root, 31), Callicarpa macrophylla (leaf, 35), Chrysanthemum morifolium (flower, 39), Cimicifuga heracleifolia (rhizome, 40), Fraxinus rhynophylla (bark, 80), Glycerrhiza uralensis (rhizome, 85), Inula helenium (root, 92), Oraxylum inddicum (seed, 123), Physalis alkekengi L. var. franchetii (calyx, 132), and Scutellaria baicalensis (rhizome, 168). Moreover, 25 extracts displayed moderate inhibitory effect of NO production (80 % > MIR ≥ 50 %), and 19 extracts weakly inhibited NO production (50 % > MIR ≥ 30 %). Inhibitory effects on NO production of 55 bioactive TCM extracts in RAW 264.7 cells have been detailedly summarized in Additional file 1: Table S1 and Figure S1.

Since oxidative stress and inflammatory response have the synergistic reactions in the pathophysiology of COPD, TCMs having dual inhibitions on the two targets are apt to be the resource for discovering lead molecules [5, 7]. Our results indicated that the extracts of Artemisia scoparia (aerial part, 27), Aucklandia lappa
Aucklandia lappa

Simultaneously inhibited oxidative stress and inflammation (Table 1 and Additional file 1: Table S1). Most of these comprehensively investigated molecules, a great deal of constituents have been isolated from these active TCMs, and required further confirmation of their anti-inflammatory function. Meanwhile, a number of TCMs (e.g. Alisma orientalis (11), Equisetum hiemale (72), Cirsium setosum (43)) have not been investigated in the field of inflammation. Significantly, little research on the therapeutic effect of COPD has been performed, and thus these active TCMs are still being researched.

In the present screening assay, we only adopted two typical markers, QR and NO, to evaluate the potential of TCMs as oxidative stress and inflammation inhibitory agents. Based on our preliminary results, active TCM extracts could be subjected to further research in the field of phytochemistry and pharmacology, however, solid evidences on their biological functions are required before a systemic investigation [14]. With regard to the inhibition on oxidative stress, the levels of endogenous glutathione (GSH) and reactive ROS, as well as the protein level of key intracellular redox-balancing protein GCLM, are suggested to be detected to estimate the intracellular redox state and antioxidant capacity when exposed to TCM extracts [30–32]. Concerning the inhibition of inflammation by the active TCMs, the levels of crucial inflammatory mediators in the COPD pathology, including TNFα, LTβ4, and IL-8, should be determined to confirm their anti-inflammatory potential [33].

Additionally, the pivotal regulators for oxidative stress and inflammation should be sufficiently investigated to verify action of mechanism of the active TCMs. The transcription factor Nrf2 plays a dominant role for regulating oxidative stress. It is ubiquitously expressed in human organs, particularly rich in lung, and counteracts oxidative injury through activating intracellular redox-balancing proteins (e.g. GCLM, GST, HO-1) and up-regulating endogenous antioxidants (e.g. GSH) [11, 34]. NF-kB regulates the expression of proinflammatory genes including cytokines, chemokines, and adhesion molecules, and its inhibition therefore definitely relieves the inflammatory response of COPD [7, 35]. It has also been verified that phosphatidylinositol 3-kinase (PI3K) and mitogen-activated protein kinase (MAPK) are involved in the regulation of inflammatory response [36, 37]. Hence, the further research on active TCM extracts and purified ingredients could focus on their action of mechanism on Nrf2, NF-kB, PI3K, and MAPK signaling pathways, as well as the cross talk between these pathways.
Conclusion
Although the present research indicates that some TCMs possessed inhibitory effects on inflammation and oxidative stress, further pharmacological investigations in vitro and in vivo models are warranted. Furthermore, bioassay-guided fractionations and identifications of active ingredients should be launched to help us illustrate the mechanism of these active species, and discover new lead molecules with unknown mechanisms and potent functions on oxidative stress- and inflammation-related diseases, especially COPD. Accordingly, these results may give new insight in research and development of COPD therapeutic agents.

Additional file

Additional file 1: Figure S1. NADP(H)-: quinone oxidoreductase (QR) inducing effects of 38 bioactive TCM extracts in hepa 1c1c7 cells. The QR inducing effect was determined after 24h treatment of the hepa 1c1c7 cells in the presence or absence of tested TCMs. The data of the untreated control group was normalized as 1, and then the QR inducing activity of tested extracts was represented by the maximum folds of QR activity compared with the untreated control group. Sulforaphane (SF, 2.0 μM) was used as a positive control. The data are reported the means ± SD from three independent experiments. Figure S2. Inhibitory effects on NO production of 55 bioactive TCM extracts in RAW 264.7 cells. The NO concentration in the RAW 264.7 cell culture media was determined through the Griess reaction 24 h after treated in the presence or absence of tested TCMs and lipopolysaccharides (LPS, 1.0 μg/mL). Didox (100 μM) was adopted as a positive control. The data are reported the means ± SD from three independent experiments. The maximum inhibition rates (MIRs) of NO production under the untoxic tested concentration were calculated by comparing the decreased NO concentration in TCM-treated group with that in LPS-stimulated group.

Table S1. TCM extracts with QR inducing activity and/or NO inhibitory effect. (DOCX 4312 kb)

Abbreviations
ARE: Antioxidant response element; COPD: Chronic obstructive pulmonary disease; GCLM: Glutamate-cysteine ligase, modifier subunit; GSH: Glutathione; GST: Glutathione S transferase; HO-1: Heme oxygenase-1; IL-8: Interleukin-8; NF-κB: Nuclear factor κB; Nrf2: Nuclear factor E2-related factor 2; TGF-β: Transforming growth factor-β; TNFα: Tumor necrosis factor α.

Acknowledgments
The authors would like to appreciate Profs. Lan Xiang and Hu-Ning Chen, as well as Mr. Yu Zhao in Shandong University for TCM collection and screening of COPD therapeutic agents.

Funding
This work was supported by NNSF of China (31470419), NSF of Shandong (ZR2014HM019 and 2015ZB22209), Science & Technology Development Plan Project of Shandong (2014GSF118023) and Young Scholars Program of Shandong University (2015WLJH50).

Availability of data and materials
The datasets during and/or analysed during the current study available from the corresponding author on reasonable request. Moreover, Additional file 1 is available along with the manuscript.

Authors’ contributions
D-MR, H-XL and TS conceived and designed the experiments; M-XZ, XW, A-MW, L-ZL, YY and X-SW performed the experiments; X-NW and TS analyzed the data; A-LL contributed reagents, materials, and analysis tools; M-XZ and TS wrote the paper. All authors read and approved the final manuscript.

Competing interests
The authors state no conflict or competing interests are associated with the present study.

Consent for publication
Not applicable.

Ethics approval and consent to participate
Not applicable.

Author details
1Key Lab of Chemical Biology (MOE), School of Pharmaceutical Sciences, Shandong University, 44 West Wenhua Road, Jinan 250012, People’s Republic of China. 2School of Pharmaceutical Sciences, Shandong University, Traditional Chinese Medicine, Jinan, People’s Republic of China.

Received: 19 July 2016 Accepted: 10 September 2016

Published online: 13 September 2016

References
1. Pauweels RA, Buist AS, Calverley PM, Jenkins CR, Hurd S. Global strategy for the diagnosis, management, and prevention of chronic obstructive pulmonary disease: NHBLI/WHO Global Initiative for Chronic Obstructive Lung Disease (GOLD) workshop summary. Am J Respir Crit Care Med. 2001;163:1256–76.
2. Lopez A, Shibuya K, Rao C, Mathers C, Hansell A, Held L, Schmid V, Buist S. Chronic obstructive pulmonary disease: current burden and future projections. Eur Respir J. 2006;27:397–412.
3. Barnes PJ, Shapiro S, Pauweels R. Chronic obstructive pulmonary disease: molecular and cellular mechanisms: Eur Respir J. 2003;22:672–88.
4. Barnes PJ, Hansel TT. Prospects for new drugs for chronic obstructive pulmonary disease. Lancet. 2004;364:948–96.
5. Barnes PJ. Medicators of chronic obstructive pulmonary disease. Pharmacol Rev. 2004;56:515–48.
6. Yao H, Rahman I. Current concepts on oxidative/carbonyl stress, inflammation and epigenetics in pathogenesis of chronic obstructive pulmonary disease. Toxicol Appl Pharmacol. 2011;254:72–85.
7. Barnes PJ. Novel approaches and targets for treatment of chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 1999;160:572–9.
8. Jiang YX, Wu JF, Du J. Survey of study on therapeutic mechanism of chronic obstructive pulmonary disease treated by traditional Chinese medicine. Zhongguo Zhong Xi Yi Jie He Za Zhi. 2005;25:860–4.
9. Gao Z, Li F, Yang J, Xu D, Yang C. Investigation on the literature concerning the clinically used traditional Chinese medicines for the treatment of chronic obstructive pulmonary disease in the past ten years. Zhongguo Shi Yan Fang Ji Xue Za Zhi. 2010;16:286–8.
10. Gerhäuser C, You M, Liu J, Moriarty RM, Hawthorne M, Mehta RG, Moon RC, Pozzuto JM. Cancer chemopreventive potential of sulfonamide, a novel analogue of sulforaphane that induces phase 2 drug-metabolizing enzymes. Cancer Res. 1997;57:272–8.
11. Lau A, Villeneuve NF, Sun Z, Wong PK, Zhang DD. Dual roles of Nrf2 in cancer. Pharmacol Res. 2008;58:262–70.
12. Bryan HK, Olayanju A, Goldberg CE, Park BK. The Nrf2 cell defence pathway: Keap1-dependent and-independent mechanisms of regulation. Biochem Pharmacol. 2013;85:705–17.
13. Shen T, Jiang T, Long M, Chen J, Ren D-M, Wong PK, Chapman E, Zhou B, Zhang DD. A curcumin derivative that inhibits vinyl carbamate-induced lung carcinogenesis via activation of the Nrf2 protective response. Antioxid Redox Signal. 2015;23:651–64.
14. Shen T, Chen X-M, Harder B, Long M, Wang X-N, Lou H-X, Wondrak GT, Ren D-M, Zhang DD. Plant extracts of the family Lauraceae: a potential resource for chemopreventive agents that activate the nuclear factor-erythroid 2-related factor 2/antioxidant response element pathway. Planta Med. 2014;80:426–34.
15. Faro MLL, Fox B, Whatmore JL, Winyard PG, Whiteman M. Hydrogen sulfide and nitric oxide interactions in inflammation. Nitric Oxide. 2014;41:38–47.
16. Guan S, Tee W, Ng D, Chan T, Peh H, Ho W, Cheng C, Mak J, Wong W. Andrographolide protects against cigarette smoke-induced oxidative lung injury via augmentation of Nrf2 activity. Br J Pharmaco. 2013;168:1707–18.
17. Dietz BW, Liu D, Hagos GK, Yao P, Schinkovitz A, Pro SM, Deng S, Farnsworth NR, Pauli GF, van Beemen RB. Angelica sinensis and its alkylthiolsalicylates induce the detoxification enzyme NAD(P)H:quinone oxidoreductase 1 by activating Keap1. Chem Res Toxicol. 2008;21:1939–48.
18. Kim HJ, Lim SS, Park IS, Lim JS, Seo JY, Kim JS. Neuroprotective effects of dehydroglyasperin C through activation of heme oxygenase-1 in mouse hippocampal cells. J Agri Food Chem. 2012;60:5583–9.
19. Seo JY, Park J, Kim HJ, Lee IA, Lim JS, Lim SS, Choi SJ, Park JHY, Kang HJ, Kim JS. Isoalantolactone from Inula helenium caused Nrf2-mediated induction of detoxifying enzymes. J Med Food. 2009;12:1038–45.
20. Izumi Y, Matsumura A, Wakita S, Akagi K, Fukuda H, Kume T, Irie K, Takada-Takatori Y, Sugimoto H, Hashimoto T. Isolation, identification, and biological evaluation of Nrf2-ARE activator from the leaves of green perilla (Perilla frutescens var. crispus f. viridis). Free Radic Biol Med. 2012;53:669–79.
21. Du Y, Villaneuva NF, Wang X-J, Sun Z, Chen W, Li J, Lou H, Wong PK, Zhang DD. Oridonin confers protection against arsenic-induced toxicity through activation of the Nrf2-mediated defensive response. Environ Health Persp. 2008;116:154–61.
22. Tao S, Zheng Y, Lau A, Jaramillo MC, Chau BT, Lantz RC, Wong PK, Wondrak GT, Zhang DD. Tanshinone I activates the Nrf2-dependent antioxidant response and protects against As(III)-induced lung inflammation in vitro and in vivo. Antioxid Redox Signal. 2013;19:1647–61.
23. Kumar H, Kim IS, More SV, Kim BW, Choi DK. Natural product-derived pharmacological modulators of Nrf2/ARE pathway for chronic diseases.Nat Prod Rep. 2014;31:109–39.
24. Chen L, Teng H, Fang T, Xiao J. Agrimoniolide from Agrimonia pilosa suppresses inflammatory responses through down-regulation of COX-2/ iNOS and inactivation of NF-KB in lipopolysaccharide-stimulated macrophages. Phytomedicine. 2016;23:846–55.
25. Lee HJ, Li H, Chang HR, Jung H, Lee DY, Ryu JH. (−)-Nyasol, isolated from Anemarrhena asphodeloides suppresses neuroinflammatory response through the inhibition of iKβ alpha degradation in LPS-stimulated BV-2 microglial cells. J Enzyme Inhib Med. 2013;28:954–9.
26. Chun J, Choi RJ, Khan S, Lee DS, Kim YC, Nam YJ, Lee DU, Kim YS. Alantolactone suppresses inducible nitric oxide synthase and cyclooxygenase-2 expression by down-regulating NF-kB, MAPK and AP-1 via the MyD88 signaling pathway in LPS-activated RAW 264.7 cells. Int Immunopharmacol. 2012;14:375–83.
27. Li Z, Geng Y-N, Jiang J-D, Kong W-J. Antioxidant and anti-inflammatory activities of berberine in the treatment of diabetes mellitus. Evid-Based Compl Alt. 2014;2014:280264.
28. Cheng LA, Li F, Ma R, Hu XP. Forsythiaside inhibits cigarette smoke-induced lung inflammation by activation of Nrf2 and inhibition of NF-kappa B. Int Immunopharmacol. 2015;28:494–9.
29. Das S, Das DK. Anti-inflammatory responses of resveratrol. Inflamm Allergy Drug Targets. 2007;6:68–73.
30. Sies H. Glutathione and its role in cellular functions. Free Radic Biol Med. 1999;27:916–21.
31. Lim J, Nakamura BN, Mohar I, Kavanagh TJ, Luderer U. Glutamate cysteine ligase modifier subunit (Gclm) null mice have increased ovarian oxidative stress and accelerated age-related ovarian failure. Endocrinology. 2015;156:3239–43.
32. Tong L, Chuang CC, Wu S, Zuo L. Reactive oxygen species in redox cancer therapy. Cancer Lett. 2015;367:18–25.
33. Barnes PJ. Cellular and molecular mechanisms of chronic obstructive pulmonary disease. Clin Chest Med. 2014;35:71–86.
34. Cho HY, Kleeberger SR. Nrf2 protects against airway disorders. Toxicol Appl Pharmacol. 2010;244:43–56.
35. Lawrence T. The Nuclear Factor NF-kappa B Pathway in Inflammation. Cold Spring Harb Perspect Biol. 2009;1:a001651.
36. Johnson GL, Lapadat R. Mitogen-activated protein kinase pathways. Pharmacol Rep. 2014;66:109.
37. Suzuki A, Penninger JM. Function of PI3K -γ-Activation of the Nrf2-mediated defensive response. Environ Health Persp. 2008;116:1154–61.
38. Johnson GL, Lapadat R. Mitogen-activated protein kinase pathways. Pharmacol Rep. 2014;66:109.