Zabezpečenost odběrů vody z vodárenských nádrží v podmínkách klimatické změny

ADAM VIZINA, PETR VYSKOČ, MARTINA PELÁKOVÁ, JIŘÍ PICEK, ADAM BERAN, ROMAN KOŽÍN

Klíčová slova: klimatická změna — vodní zdroje — nedostatek vody — zásobování pitnou vodou — vodní bilance

SOUHRN

Článek představuje průběžné výsledky vyhodnocení možného dopadu klimatické změny na zabezpečenost odběrů vody pro vodárenské účely zajištěných vodními nádržemi k časové úrovni roku 2050. Při řešení byly aplikovány postupy hydrologické a vodohospodářské bilance, včetně modelování zásobní funkce vodohospodářských soustav. Možný dopad klimatické změny na hydrologické charakteristiky a následně na zabezpečenost odběrů vody byl vyhodnocen u celkem 45 vodních nádrží v ČR. Riziko nedostatečného zajištění současných požadavků na vodárenské odběry v podmínkách klimatické změny bylo identifikováno u 17 zhodnocených vodních nádrží.

ÚVOD

Sucho spolu s povodněmi patří k extrémním hydrologickým jevům, ke kterým dochází přirozeně a nahodile. S rostoucími dopady klimatické změny se však frekvence výskytu i časový a plošný rozsah extrémních hydrologických jevů může měnit. Výsledky modelování dopadů klimatické změny pro ČR předpovídají četnější výskyt přívalových povodní a dlouhotrvajícího sucha. Tato skutečnost se v posledních letech potvrzuje na mnoha povodích. Nepříznivá situace může vést i k ohrožení spořitelnosti zásobování obyvatel pitnou vodou. Významná část odběrů vody pro vodárenské účely je v ČR zajišťována prostřednictvím vodních nádrží. Podle aktuálních dat evidovaných pro potřebu sestavení vodní bilance [1] je pomocí vodních nádrží (a to jak odběry vody přímo z vodních nádrží, tak nadlepšováním průtoků do míst odběrů vody níže položených) zajištěno cca 50 % z celkového množství vody odebrané pro veřejné vodovody (92 % z odběrů povrchových vod pro veřejné vodovody).

Prezentované vyhodnocení zabezpečení vodárenských odběrů zajištěvaných vodními nádržemi bylo zpracováno v rámci řešení projektu VI20192022159 „Vodohospodářské a vodárenské soustavy a preventivní opatření ke snížení rizik při zásobování pitnou vodou“ programu BV III/1-VS Ministerstva vnitra. Řešitelem projektu je Výzkumný ústav vodohospodářský T. G. Masaryka, v. v. i. Řešení projektu bylo zahájeno v červenci 2019, dokončení je plánováno na prosinec 2022. Projekt je zaměřen na vyhodnocení rizik zásobování pitnou vodou v důsledku klimatické změny a vytvoření technických nástrojů pro posouzení možných opatření ke zmírnění případných nepříznivých dopadů.

Preservation of drinking water demand from water reservoirs in climate change conditions

ADAM VIZINA, PETR VYSKOČ, MARTINA PELÁKOVÁ, JIŘÍ PICEK, ADAM BERAN, ROMAN KOŽÍN

Keywords: climate change — water resources — water scarcity — drinking water supply — water balance

SUMMARY

This study presents interim results of an evaluation of a potential climate change impact on the preservation of drinking water demand provided by water reservoirs in the timeframe of the year 2050. Hydrological and water sources and demands balance procedures have been applied, including modelling of the storage ability of water resources and water supply systems. A potential climate change impact on hydrological characteristics and subsequently on the security of water demand has been evaluated in a total of 45 water reservoirs in the Czech Republic. A risk of insufficient supply of current drinking water abstraction requirements in climate change conditions has been identified in 17 of the evaluated water reservoirs.

INTRODUCTION

Drought together with floods belong among extreme hydrological phenomena that occur naturally and randomly. However, with increasing climate change impacts, frequency of the occurrence, temporal and spatial distribution of extreme hydrological phenomena may change. The results of modelling climate change impacts for the Czech Republic predict a more frequent occurrence of flash floods and long-lasting drought. In recent years, this fact has been proven in many catchment areas. An unfavourable situation may even lead to putting the reliability of drinking water supply for citizens at risk. A significant part of drinking water demand in the Czech Republic is provided by water reservoirs. According to current data recorded for the sake of water balance compilation [1], approximately 50% of the total water demand for public water mains (92% of surface water for public water mains) are provided for by water reservoirs (both by water abstraction directly from water reservoirs and by ameliorating discharge to water abstraction sites at lower altitudes).

The presented evaluation of the preservation of drinking water demand provided for by water reservoirs has been made within project No. VI20192022159 “Water Resources and Water Supply Systems and Preventive Measures to Reduce Risks for Drinking Water Supply” under a Ministry of the Interior programme No. BV III/1-VS. The T. G. Masaryk Water Research Institute is the project investigator. Work on the project was launched in July 2019 and is envisaged to be...
METODIKA A MATERIÁL

Posouzení možných dopadů klimatické změny na zajištění vodárenských odběrů vodními nádržemi vychází z metodiky [2]. Při řešení jsou aplikovány v metodice uvedené postupy zpracování hydrologické a vodohospodářské bilance, včetně simuláčního modelování zásobní funkce vodohospodářských soustav. Posouzení bylo zpracováno k výhledovému období roku 2050.

Dopad klimatické změny na hydrologické charakteristiky a zabezpečenost odběrů vody byly posouzeny u vodních nádrží evidovaných jako vodárenské podle [3] (s výjimkou vodních nádrží Husinec, Jezeří, Boskovice a Fryšták, které nejsou v současnosti pro vodárenské odběry využívány). Rovněž byla posouzena zabezpečenost vodárenských odběrů z vodních nádrží Seč, Vranov a Slezská Harta. Kromě odběrů vody z těchto nádrží byly posuzovány i vodárenské odběry vody na vodních tocích, kam je průtok z vodních nádrží pro potřebu zajištění odběrů aktivně nadlepšován (ÚV Plzeň na Úhlavě z vodní nádrže Nýrsko, ÚV Milíkov na Mže z vodní nádrže Lučina) nebo převáděn (ÚV Šumná na Bílém potoce z vodní nádrže Fláje). Uvažovány byly převody vody z Třebízského potoka a z vodní nádrže Podhora do vodní nádrže Hubenov. Při simulaci zásobní funkce byla rovněž uvažována možnost spolupráce či vzájemná zastupitelnost vodních nádrží Karhov – Zhejral, Podhora – Mariánské Lázně, Vranov – Znojmo, Seč – Křižanovice, Slezská Harta – Kružberk a Morávka – Šance.

Současné klimatické podmínky

Pro samotné hodnocení současných podmínek byla využita data za období 1941–2017, a to časové řady teplot vzduchu, srážkových úhrnů a odtoků. Na obr. 1 jsou znázorněny odchylky průměrných ročních teplot vzduchu od průměrné roční teploty za referenční období 1981–2010 (znázorněno žlutým polygonem). Lze pozorovat výrazný nárůst teplot, a to především v posledních letech. Tento nárůst teplot je statisticky významný na vysoké hladině významnosti. Zeleně jsou zobrazena období tří nejvýznamnějších such v tomto časovém úseku. Zvyšující se teplota má vliv na velikost potenciální evapotranspirace, a pokud je k dispozici voda v půdním profilu, tak samozřejmě i na aktuální výpar.

The assessment of potential climate change impacts on the preservation of drinking water demand from water reservoirs is based on a methodology [2]. Procedures for processing hydrological and water management balance stated in the methodology have been applied in the project, including simulation modelling of the storage ability of water management systems (water reservoirs). The assessment has been made for the prospective period of 2050.

The climate change impact on hydrological characteristics and on the security of water demand have been assessed in water reservoirs that are recorded as water supply ones pursuant to [3] (with an exception of water reservoirs Husinec, Jezeří, Boskovice and Fryšták, which are at present not used for drinking water abstraction). At the same time, the security of drinking water demand from water reservoirs Seč, Vranov and Slezská Harta has also been assessed. Besides water abstraction from these reservoirs, drinking water demand has also been assessed on watercourses where discharge from water reservoirs is actively ameliorated for the sake of securing water demand (the Plzeň water treatment plant on the Úhlava River from the Nýrsko water reservoir and the Milíkov water treatment plant on the Mže River from the Lučina water reservoir) or transferred (the Šumná water reservoir on Bílý Brook from the Fláje water reservoir). Water transfers from Třebízský Brook and from the Podhora water reservoir to the Mariánské Lázně water reservoir have been considered, from Černá voda Brook to the Přísečnice water reservoir and from the Fláje water reservoir to Pekelský Brook (for the Šumná water reservoir on Bílý Brook from the Fláje water reservoir). Water transfers from Třebízský Brook and from the Podhora water reservoir to the Mariánské Lázně water reservoir have been considered, from Černá voda Brook to the Přísečnice water reservoir and from the Fláje water reservoir to Pekelský Brook (for the Šumná water reservoir on Bílý Brook from the Fláje water reservoir). Water transfers from Třebízský Brook and from the Podhora water reservoir to the Mariánské Lázně water reservoir have been considered, from Černá voda Brook to the Přísečnice water reservoir and from the Fláje water reservoir to Pekelský Brook (for the Šumná water reservoir on Bílý Brook from the Fláje water reservoir). Water transfers from Třebízský Brook and from the Podhora water reservoir to the Mariánské Lázně water reservoir have been considered, from Černá voda Brook to the Přísečnice water reservoir and from the Fláje water reservoir to Pekelský Brook (for the Šumná water reservoir on Bílý Brook from the Fláje water reservoir).

SOB. I. Průměrné roční teploty vzduchu za období 1955–2017 (trend 0,3 °C za 10 let, který je statisticky významný)

OBR. 1. Průměrné roční teploty vzduchu za období 1955–2017 (trend 0,3 °C za 10 let, který je statisticky významný)

Fìg. 1. Mean annual air temperature during the period of 1955–2017 (a statistically significant trend of 0.3 °C over 10 years)
Analogically are shown on the following figures precipitation totals and runoff heights. Fig. 2 shows the differences of precipitation totals from the reference period of 1955–2017 (a statistically insignificant trend of 3.61 mm over 10 years). However, an evaluation of annual precipitation totals during the periods of 1969–1974, 1989–1994, 2014–2017 repeats itself and is even higher than in the past five years. However, an evaluation of annual runoff shows a significant decrease in the summer and spring months and an increase in January (which is mainly due to the increase in temperature and snowmelt). A change in runoff of 1 mm means a reduction of 78.87 million m3. This value corresponds to the volume of water in the VN Rozkoš reservoir.
Scénáře změny klimatu ve vodním hospodářství

Pro tvorbu scénářů změny klimatu v kontextu odhadu změn hydrologické bilance se v České republice standardně využívá tzv. přírůstková metoda, zejména pro studie v měsíčním kroku. Tato metoda spočívá v transformaci pozorovaných dat tak, aby změny transformovaných veličin odpovídaly změnám odvozeným ze simulací klimatických modelů. V měsíčním kroku se běžně uvažují změny průměrných měsíčních úhrnů srážek a průměrné měsíční teplovy. V denním kroku je nutné uvažovat i změny variability veličin. V průběhu posledních let se jasně ukázalo, že změny srážek a teploty (zejména v denním kroku) byly vysoce odolné na transformaci. Tato skutečnost se také projevila při tvorbě scénářů změny klimatu v kontextu odhadu změn hydrologické bilance v České republice.

Podstatou přírůstkové metody je transformace pozorovaných dat způsobem, jenž zaručí, že změny mezi transformovanou a původní řadou jsou stejné jako změny odvozené z regionálního klimatického modelu. U srážek a teploty (zejména v denním kroku) je žádoucí, aby uvažované transformace zohledňovaly změny jak v průměru, tak ve variabilitě. To znamená, že extrémy se mohou měnit jinak než průměr. Při odvození změn srážek z klimatického modelu ADC metoda uvažuje i systematické chyby simulace. Jelikož teplota je transformována lineárně, nemá systematická chyba na výslednou transformaci teploty vliv [4].

Zvolenou metodou byly transformovány vybrané [5] Globální cirkulační modely (GCM) pro dílčí povodí, jedná se o:
— NorESM1-M +
— MPI-ESM-LR + HadGEM2-ES +
— GISS-E2-H + MRI-ESM1 +
— CanESM2 + GFDL-CM3

První model (NorESM1-M) představuje střed ansámblu všech GCM. Modely MPI-ESM-LR + HadGEM2-ES + vystupují jako řídící GCM pro několik Euro-CORDEX RCM simulací. To platí i pro vybraný střední model, který rovněž řídí jeden z Euro-CORDEX RCMs. Modely GISS-E2-H + MRI-ESM1 zajistí splnění podmínky na pokrytí mezi modelové variability, modely CanESM2 + GFDL-CM3 umožní splnit poslední uvedenou podmínku výběru. Tyto modely byly dále testovány pro vodní hospodářství. Testovány byly také vybrané modely RCM. Pro samotné hodnocení byl vybrán model HadGEM2-ES, který je pro střední scénář dopadů klimatické změny doporučen ve studii [6]. Vývoj teploty dle RCP8.5 je uveden na obr. 4.

Climate Change Scenarios in Water Management

The increment method is used as a standard for calculating climate change scenarios in the context of predicting changes of hydrological balance in the Czech Republic, especially for studies with monthly time steps. This method is based on a transformation of observed data so that changes of transformed variables would correspond to changes derived from climate model simulations. The monthly time step usually considers changes of mean monthly precipitation totals and mean monthly temperature. The daily time step needs to consider also variability changes of variables. Therefore, the ADC (Advanced Delta Change) increment method has been used for calculating climate change scenarios. The increment method is based on a transformation of observed data in a way that ensures that changes between the transformed and original series are the same as changes derived from a regional climate model. Especially in the daily time step, it is desirable that considered transformations regarding precipitation and temperature take into account changes both in the mean and in the variability. To put it simply, this means that extremes may change differently from the mean. When precipitation changes are derived from the climate model, the ADC method takes into consideration also systematic simulation errors. Since temperature is transformed linearly, a systematic error does not have an impact on the resulting temperature transformation [4].

The chosen method has been used to transform selected [5] Global Circulation Models (GCMs) for sub-catchment areas, namely:
— NorESM1-M +
— MPI-ESM-LR + HadGEM2-ES +
— GISS-E2-H + MRI-ESM1 +
— CanESM2 + GFDL-CM3.
Pro hodnocení vodohospodářské bilance byly vybrány scénáře:

1. **0** – označující současné podmínky

2. **2** – současné klima + 2 °C

3. **HadGEM2** – klima založené na výstupech GCM HadGEM2-ES RCP4.5

Modelování hydrologické bilance

K modelování hydrologické bilance byl použit model Bilan, který je vyvíjen více než 15 let v oddělení hydrologie Výzkumného ústavu Vodohospodářského T. G. Masaryka, v. v. i. Model počítá v denním či měsíčním časovém kroku chronologickou hydrologickou bilanci povodí či území. Výjadřuje základní bilanční vztahy na povrchu povodí, v zóně aerace, do níž je zahrnut i vegetační kryt povodí, a v zóně podzemní vody. Jako ukazatel bilance energie, která hydrologickou bilanci významně ovlivňuje, je použita teplota vzduchu. Výpočtem se modeluje potenciální evapotranspirace, územní výpar, infiltráce do zóny aerace, průsak touto zónou, zásoba vody ve sněhu, zásoba vody v půdě a zásoba podzemní vody. Odtok je modelován jako součet tří složek: dvě složky přímého odtoku (zahrnující i hypodermický odtok) a základní odtok [7, 8, 9]. Pro modelování hydrologické bilance byla použita měsíční verze modelu.

Hydrologické modelování změn klimatu

Postup modelování dopadu změny klimatu na hydrologický režim (viz obr. 5) lze stručně shrnout následovně:

1. Zvolený hydrologický model je pro vybrané povodí nakalibrován pomocí pozorovaných dat. Hydrologický model by měl být fyzikálně založen, aby bylo zaručeno, že i pro nepozorované podmínky bude poskytovat fyzikálně přijatele výsledky.

2. **Vstupní veličiny** z globálního, popřípadě vnořeného regionálního klimatického modelu jsou převedeny na scénářové řady pro jednotlivá povodí, a to:

 a. statistickým downsamplingem

 b. „postprocessingem“ výstupu klimatického modelu, tj. využitím přírůstkové metody či korekce systematických chyb

Často je nutné pomocí prostorové interpolace vztáhnout data z výpočetních buněk klimatického modelu k téžiští daného povodí. Pro korekci vyúžití všech metod (a–b) je nezbytné mít k dispozici pozorovaná data.

3. Pomocí nakalibrovaného hydrologického modelu a scénářových řad je provedena simulace hydrologické bilance pro scénářové období.

4. Modelované průtoky pro současnost a výhledová období jsou korigovány v jednotlivých měsících pomocí kvantilové metody [10].

The first model (NorESM1-M) represents a median of the ensemble of all GCMs. The MPI-ESM-LR + HadGEM2-ES models act as controlling GCMs for several Euro-CORDEX RCM simulations. This is after all true also for the selected median model, which also controls one of the Euro-CORDEX RCMs. The GISS-E2-H + MRI-ESM1 models ensure meeting of the condition to cover inter-model variability and the CanESM2 + GFDL-CM3 models enable the last stated condition for the selection to be met. These models have been further tested for water management. Selected RCM models have also been tested. The HadGEM2-ES model has been chosen for the actual testing, which has thus been recommended in studies [6], recommending a median scenario of climate change impacts in water management. Fig. 4 presents temperature development pursuant to RCP8.5.

The following scenarios have been selected to evaluate the water management balance:

1. **0** – current conditions

2. **2** – current climate + 2 °C

3. **HadGEM2** – climate based on the outputs of GCM HadGEM2-ES RCP4.5

Modelling of Hydrological Balance

The Bilan model, which is being developed for over 15 years at the Hydrology Department of the T. G. Masaryk Water Research Institute, has been used for modelling hydrological balance. The model calculates in daily or monthly time steps chronological hydrological balance of a catchment area or of a territory. It expresses fundamental balance relations on the surface of the catchment area, in the aeration zone that also includes the vegetation cover of the catchment area, and in the groundwater zone. Air temperature is used as an energy balance indicator that has a significant impact on hydrological balance. The calculation models potential evapotranspiration, actual evaporation, infiltration into the aeration zone, seepage through this zone, snow water equivalent, water storage in the soil and groundwater storage. Runoff is modelled as a sum of three components: two components of direct runoff (that includes also hypodermic runoff) and base flow [7, 8, 9]. The monthly version of the model has been used for modelling hydrological balance.

Hydrological Modelling of Climate Changes

The procedure for modelling the climate change impact on the hydrological regime (see Fig. 5) may be concisely summarised as follows:

1. The chosen hydrological model is calibrated for selected catchment areas using observed data. The hydrological model should have a physical basis to make sure that it yields physically acceptable results also for unobserved conditions.

2. Input variables from a global or embedded regional climate model are transformed to scenario series for the individual catchment areas, namely by:

 a. statistical downscaling

 b. post-processing of the climate model output, i.e. by using the increment method or correction of systematic errors

It is often necessary to relate the data from calculation cells of the climate model to the centre of a given catchment area by spatial interpolation. It is essential to have observed data at one’s disposal in order to use all methods (a–b) correctly.
Vodohospodářská bilance

Na výše uvedené vyhodnocení dopadu klimatické změny na hydrologické charakteristiky navázalo posouzení zabezpečnosti odběrů vody pomocí metod vodohospodářské bilance a simulčního modelování zásobní funkce vodohospodářských soustav. Aplikovanou metodou podrobně popisuje [11], po- užité programové vybavení [12]. Simulační model simuluje chování soustavy v chronologické řadě diskretních časových kroků (zde zvolen měsíční krok) na základě znalosti časových řad přirozených průtoků (neovlivněných regulací a odběrů/vypouštěním vody), požadavků na užívání vody (zde odběrů vody) a zachování minimálních průtoků, technických parametrů prvků soustavy (zde objemů zásobního prostoru nádrží a kapacit převodů vody) a do modelu zavedených pravidel regulace odtoku (manipulačních pravidel). Výstupem simulace jsou časové řady simulovaných aktivit: průtoků a výpuru z hladin vodních nádrží, odběrů vody, odtoků z vodních nádrží, objemů vody a hladin v zásobním prostoru nádrží. Tyto časové řady jsou následně statisticky vyhodnoceny. Jako základní charakteristika vyjadřující zajištění odběrů vody je vyhodnocena zabezpečenost podle trvání p_t, definovaná [13] (zjednodušeně vyjadřuje procentní podíl dély období, po kterou jsou požadavky na odběry vody a minimální průtoky plně zajištěny, z celkové délky celého posouzeného období.)

Rešení bylo zpracováno variantně pro výše uvedené scénáře popisující současné podmínky a dopad klimatické změny. Časové řady přirozených průtoků a výpuru v profilích vodních nádrží a míst odběrů vody byly výsledkem výše uvedeného modelování hydrologické bilance. Celková délka těchto řad byla 718 měsíců (tj. necelých 60 let). Požadavky na odběry vody byly posuzovány alternativně jako v současnosti realizované odběry vody a jako povolené roční hodnoty odběrů. Jako současné odběry byly uvažovány maximální roční odběry vody evidované pro potřebu sestavení vodní balance [1] za období leto 2014–2019, a to jako během roku rovnoměrně rozdělené. Z údajů této evidence byly převzaty povolené hodnoty odběrů, požadavky na minimální průtoky pod vodními nádržemi a objemy zásobního prostoru vodních nádrží. Důležité bylo započítat i vliv případných dalších skutečných odběrů a vypouštění vody v povodí vodních nádrží a další relevantní požadavky na zajištění odběrů pro průmysl (např. vodní nádrže Slezská Harta, Kružberk, Morávka a Šance) či zemědělství (např. vodní nádrže Vír I, Vranov a Znojmo). Zajištění požadavků na vodárenské odběry bylo vždy (tj. v každém časovém kroku simulace) uvažováno jako přednostní oproti jiným požadavkům na vodní zdroje, včetně požadavků na minimální průtoky pod vodními nádržemi. Vzhledem k tomu, že se jednalo o modelování možné budoucí situace, nebyla uvažována současná pravidla pro dispečerskou řízení vodních nádrží (jsou nastavena na stávající hydrologické podmínky a změna těchto podmínek by si vynutila jejich revizi a optimalizaci).

Vypár VN, MR, nakládání

Odběr hydr. vody

Hydrologický model pro pozorované období

Hydrologická bilance pro pozorované období

Obsazené data

Pozorovaná data

Hydrologický model pro scénářové období

Hydrologická bilance pro scénářové období

Vypár VN, MR, nakládání

Vodohospodářský model

Odhad změn hydrologické bilance

Odhad změn hydrologické bilance

Výběr odběrů

Výběr odběrů

Změny zabezpečenosti odběrů

Změny zabezpečenosti odběrů

Obr. 5. Schéma hydrologického modelování dopadů změny klimatu

Fig. 5. Scheme of hydrological modelling of climate change impacts

3. Simulation of hydrological balance for the scenario period is done using a calibrated hydrological model and scenario series.

4. Modelled discharge for the present and future periods are adjusted in the individual months using the quantile method [10].

Water Balance

The above evaluation of the climate change impact on hydrological characteristics has been followed by an assessment of the security of water demand with the help of the water balance method and simulation modelling of the storage function of water resources and supply systems. The applied method is described in detail [11] as well as the software used [12]. The simulation model simulates behaviour of the system in a chronological series of discrete time steps (the monthly time step has been selected in this case) based on the knowledge of time series of natural discharges (unaffected by regulation and water abstraction/release), requirements for water use (water demand in this case) and maintenance of minimum discharges, technical parameters of the respective elements of the system (volume of the storage space of water reservoirs and water transfer capacity) and a model containing introduced rules of runoff regulation (handling rules). Time series of simulated activities are an output of the simulation: discharge and evaporation from the surface of water reservoirs, water demand, runoff from water reservoirs, water volume and water levels in the storage space of reservoirs. These time series are subsequently statistically evaluated. Security according to the duration of p_t, defined in [13] has been evaluated as fundamental characteristics that expresses the security of water demand (to put it simply, it expresses a percentage share of the duration of a period during which water demand and minimum discharge requirements are secured out of the whole duration of the total assessed period.)

Alternatives have been prepared for the above scenarios that describe current conditions and the climate change impact. The aforementioned modeling of hydrological balance has yielded time series of natural discharges and evaporation in the profiles of water reservoirs and water abstraction sites. The overall length of these series has been 718 months (i.e. less than 60 years). Water demand requirements have been assessed alternatively as water demand currently in place and as permitted annual demand values. Maximum annual water demand recorded for compiling the water balance between 2014 and 2019 has been considered as current demand, evenly distributed throughout the year [1]. Permitted demand values, minimum discharge requirements downstream from water reservoirs and storage space volume of water reservoirs have been taken from data contained in the above records. Impact of potential other
VÝSLEDKY

Výsledkem výše popsaného postupu řešení byla kvantifikace možných dopadů klimatické změny na hydrologické charakteristiky (průtoky a výpar z vodní hladiny a evapotranspirace krajiny) a následně zabezpečenosti vodárenských odběrů zajišťovaných vodními nádržemi v těchto podmínkách. Na obr. 6 jsou uvedeny změny přirozených odtoků (scénář/současnost) pro scénáře 2 a HadGEM formou grafu typu boxplot.

Výsledky vyhodnocení zabezpečenosti vodárenských odběrů jsou – pro středděním hodnoty zabezpečenosti podle trvání pr (tj. p = 99,9) – uvedeny v tab. 1 a ilustrovaný na obr. 7. Pro snadnější orientaci jsou odběry podle dosažené zabezpečenosti rozděleny do čtyř skupin a označeny pomocí barevné škály, a to následujícím způsobem: (a) modré jsou označeny odběry s bezporuchovou (tj. p = 99,9) zabezpečeností současných i povolených odběrů ve všech hodnocených scénářích; (b) zeleně jsou označeny středně rizikové odběry s bezporuchovou zabezpečeností pouze současných odběrů ve všech hodnocených scénářích; (c) žlutě jsou označeny odběry s bezporuchovou zabezpečeností pouze v příznivějším scénáři dopadu klimatické změny HadGEM2 a (d) červeně jsou jsou vysoce rizikové označeny odběry, kde bezporuchová zabezpečenost není dosažena ani v jednom ze scénářů dopadu klimatické změny.

Jako vysoce rizikové vzhledem k zajištění odběrů vody vepodmínkách klimatické změny byly vyhodnoceny vodní nádrže Stanovice, Žlutice, Pilská, Obecnice, Opatovice, Bajkovice, Mariánské Lázně – Podhora, Kličava a Nová Říše. jako středně rizikové byly vyhodnoceny vodní nádrže Vranov – Znojmo, Vichlice, Slušovice, Koryčany a Ludkovic. Naopak bezproblémové zajištění současných i povolených odběrů vody bylo vyhodnoceno u vodních nádrží Římov, Nýrsko, Horka, Lučina, Slezská Harta – Kružberk, Seč – Křižanovice, Jirkov, Myslivny, Josefův Důl, Souš, Mostiště, Hubenov a Landštejn.

Obr. 8 ilustruje efekt využití akumulace vody v zásobním prostoru vodních nádrží na zajištění současných požadavků na vodárenské odběry a minimální průtoky ve vodních tocích pod nádržemi. Výsledky jsou podstavou pro zajištění požadavků na zásobní funkci v měsíčním kroku (kdy jsou uvažovány průměrné měsíční průtoky ve vodních tocích pod nádržemi. Vyjádřen je podíl objemu těchto požadovaných průtoků v průběhu jednotlivých měsíců.

Results

The aforementioned procedure has resulted in a quantification of potential climate change impacts on hydrological characteristics (discharges and evapotranspiration of the landscape) and subsequent evaluation of the security drinking water demand provided for by water reservoirs in these conditions. Fig. 6 presents changes of natural runoffs (scenario/the present) for scenario 2 and for the HadGEM scenario in the form of a boxplot.

Results of the evaluation of the security of drinking water demand are presented in Tab. 1 and are illustrated in Fig. 7 by the security value according to the duration of p. In order to make the presentation more straightforward, water demand has been divided according to achieved security into four groups and has been colour-marked in the following way: (a) the blue colour marks water demand with trouble-free (i.e. p = 99,9) security of current and permitted demand in all evaluated scenarios; (b) the green colour marks demand with a medium risk with trouble-free security only of current demand in all evaluated scenarios; (c) the yellow colour marks demand with trouble-free security of current demand only in the more favourable HadGEM2 scenario of the climate change impact and (d) the red colour marks demand with a high risk, i.e. where trouble-free security is not ensured in any of the scenarios of the climate change impact.

Obr. 6. Snížení odtoku z povodí vodárenských nádrží

Fig. 6. Reduction in runoff from the catchment area of water reservoirs
Tab. 1. Zabezpečenost požadavků na vodárenské odběry vody v podmínkách klimatické změny

Vodní nádrž	Objem zásob. prostoru [mil.m³]	Úpravna vody	Skutečný roční odběr [tis.m³]	Povolený roční odběr [tis.m³]	Varianta hydrologických podmínek a požadavků na odběry	Zabezpečenost podle trvání p_t [%]		
					„0“ současné odběry	HadGEM2 současné odběry	„2“ současné odběry	HadGEM2 povolené odběry
Bojkovice	0,770	Bojkovice	546	1200	93,1	91,8	83,3	80,7
Fláje	19,500	Meziboří	12119	14000	99,9	99,9	99,9	98,7
		Litvinov-Šumná	2524	5800	99,9	99,9	99,9	98,7
Hamry	1,206	Hamry	452	1600	99,9	99,8	99,8	98,1
Horka	16,539	Horka	3185	5110	99,9	99,9	99,9	99,9
Hubenov	2,395	Hosi	3984	4446	99,9	99,9	99,9	99,9
Chřibská	0,839	Chřibská	481	1250	99,9	99,9	99,9	98,2
Jirkov	1,917	Jirkov	1082	2700	99,9	99,9	99,9	99,9
Joseřův Důl	19,133	Bedřichov	5427	9000	99,9	99,9	99,9	99,9
Kamenička	0,594	III. Mlýn	984	2000	99,9	99,9	99,9	96,8
Klínov	1,260	III. Mlýn	2205	3000	99,9	99,9	99,9	96,8
Karhov	0,288	Studená-Horní Pole	237	400	99,9	99,1	95,9	96,1
Zhejral	0,157							
Karolinka	5,813	Karolinka	4200	7884	99,9	99,9	99,9	99,3
Kličava	7,860	Kličava	2333	3469	98,9	98,1	95,4	95,2
Koryčany	2,130	Koryčany	942	1450	99,9	99,9	98,5	97,4
Kružberg	24,580	Podhradí	34537	85147	99,9	99,9	99,9	99,9
Slezská Harta	182,010	Leskovec	869	3154	99,9	99,9	99,9	99,9
Křižanovice	1,620	Monaco	3679	6500	99,9	99,9	99,9	99,9
Seč	14,017	Seč	202	350	99,9	99,9	99,9	99,9
Landštejn	2,590	Landštejn	753	1200	99,9	99,9	99,9	99,9
Láz	0,820	Kozičín	741	1113	99,9	99,9	99,8	98,9
Lučina	3,457	Milikov	1035	1500	99,9	99,9	99,9	99,9
		Svobodka	1347	2500	99,9	99,9	99,9	99,9
Ludkovice	0,498	Ludkovice	479	772	99,9	99,9	99,8	99,5
Vodní nádrž	Objem zásob. prostoru [mil.m³]	Úpravna vody	Skutečný roční odběr [tis.m³]	Povolený roční odběr [tis.m³]	Varianta hydrologických podmínek a požadavků na odběry	Zabezpečenost podle trvání p₁ [%]		
----------------------	--------------------------------	-----------------------------	-------------------------------	-------------------------------	--	----------------------------------		
					„0“ současné odběry	HadGEM2 současné odběry	„2“ současné odběry	HadGEM2 povolené odběry
Mariánské Lázně	0,211	Mariánské Lázně	725	1200	99,9	98,5	97,8	96,0
Podhora	2,041							
Morávka*	4,960	Vyšní Lhoty	6139	14500	99,9	99,9	99,9	95,4
Šance*	39,960	Nová Ves u Frýdlantu	25415	69379	99,9	99,9	99,9	95,4
Mostiště	9,339	Mostiště	3183	6300	99,9	99,9	99,9	99,9
Myslivny	0,036	Myslivny	284	694	99,9	99,9	99,9	99,9
Nová Říše	2,237	Nová Říše	1038	2523	96,3	88,9	79,4	55,8
Nýrsko	15,966	Klatovy	3253	4500	99,9	99,9	99,9	99,9
		Plzeň	14125	16500	99,9	99,9	99,9	98,9
Obecnice	0,547	Hvězdička	972	1662	99,9	99,6	98,9	96,0
Opatovice	7,784	Lhota	2010	3784	99,3	98,5	96,7	89,0
Pílská	1,306	Kozičín	1085	1142	99,6	99,3	98,4	99,1
Přísečnice	46,670	Hradiště	15699	30300	99,9	99,9	99,9	78,6
Římov	30,016	Plav	17175	34600	99,9	99,9	99,9	99,9
Slušovice	7,245	Klečůvka	5080	7128	99,9	99,9	99,9	99,9
Souš	4,621	Souš	5156	7000	99,9	99,9	99,9	99,9
Stanovice	20,164	Březová	7059	12614	99,9	99,6	96,0	84,0
Švihov	246,068	Želivka	93291	165600	99,9	99,9	99,9	94,9
Vír I	44,056	Vír	1244	3150	99,9	99,9	99,9	99,9
		Švařec	7688	56765	99,9	99,9	99,9	99,9
Vranov	79,668	Štítary	3019	4200	99,9	99,9	99,9	99,9
Vrchlice	7,890	Trojice	3677	7884	99,9	99,8	92,2	85,7
Znojmo	2,450	Znojmo	2668	4730	99,9	99,9	98,1	99,6
Žlutice	10,281	Žlutice	2650	4730	99,9	98,8	98,0	97,4

* Při uvažování vzájemné zastupitelnosti vodních nádrží Morávka a Šance
Tab. 1. Security of drinking water demand in climate change conditions

Water reservoir	Volume of the storage capacity [million m³]	Water treatment plant	Actual annual demand [thousand m³]	Permitted annual demand [thousand m³]	Security according to the duration of p_t (%)			
Bojkovice	0.770	Bojkovice	546	1200	93.1 91.8 83.3 80.7			
Fláje	19,500	Meziboří	1219	14000	99.9 99.9 99.9 98.7			
		Litvinov-Šumná	2524	5800	99.9 99.9 99.9 98.7			
Hamry	1,206	Hamry	452	1600	99.9 99.8 99.8 98.1			
Horka	16,539	Horka	3185	5110	99.9 99.9 99.9 99.9			
Hubenov	2,395	Hosov	3984	4446	99.9 99.9 99.9 99.9			
Chřibská	0.839	Chřibská	481	1250	99.9 99.9 99.9 98.2			
Jirkov	1,917	Jirkov	1082	2700	99.9 99.9 99.9 99.9			
Josefův Důl	19,133	Bedřichov	5427	9000	99.9 99.9 99.9 99.9			
Kamenička	0.594	III. Mlýn	984	2000	99.9 99.9 99.9 96.8			
Křimov	1,260	III. Mlýn	2205	3000	99.9 99.9 99.9 96.8			
Karhov	0.288	Studená-Horní Pole	237	400	99.9 99.1 95.9 96.1			
Zhejral	0.157							
Karolina	5.813	Karolina	4200	7884	99.9 99.9 99.9 99.3			
Klčava	7.860	Klčava	2333	3469	98.9 98.1 95.4 95.2			
Koryčany	2.130	Koryčany	942	1450	99.9 99.9 98.5 97.4			
Kružberk	24.580	Podhradí	34537	85147	99.9 99.9 99.9 99.9			
Slezská Harta	182,010	Leskovec	869	3154	99.9 99.9 99.9 99.9			
Křižanovice	1.620	Monaco	3679	6500	99.9 99.9 99.9 99.9			
Seč	14.017	Seč	202	350	99.9 99.9 99.9 99.9			
Landštejn	2.590	Landštejn	753	1200	99.9 99.9 99.9 99.9			
Láž	0.820	Kozičín	741	1113	99.9 99.9 99.8 98.9			
Lučina	3.457	Milíkov	1035	1500	99.9 99.9 99.9 99.9			
		Svobodka	1347	2500	99.9 99.9 99.9 99.9			
Ludkovice	0.498	Ludkovice	479	772	99.9 99.9 99.8 99.5			
Water reservoir	Volume of the storage capacity [million m³]	Water treatment plant	Actual annual demand [thousand m³]	Permitted annual demand [thousand m³]	Alternative of hydrological conditions and water abstraction requirements			
-----------------	---	-----------------------	-------------------------------------	--	--			
					“0” Current demand	HadGEM2 Current demand	“2” Current demand	HadGEM2 Permitted demand
					“99.9”	“98.5”	“97.8”	“96.0”
Mariánské Lázně	0.211	Mariánské Lázně	725	1200	99.9	98.5	97.8	96.0
Podhora	2.041							
Morávka*	4.960	Vyšní Lhoty	6139	14500	99.9	99.9	99.9	99.9
Šance*	39.960	Nová Ves u Frýdlantu	24515	69389	99.9	99.9	99.9	95.4
Mostišťe	9.339	Mostišťe	3183	6300	99.9	99.9	99.9	99.9
Myslivny	0.036	Myslivny	284	694	99.9	99.9	99.9	99.9
Nová Říše	2.237	Nová Říše	1038	2523	96.3	88.9	79.4	55.8
Nýrsko	15.966	Klatovy	3253	4500	99.9	99.9	99.9	99.9
		Plzeň	14125	16500	99.9	99.9	99.9	98.9
Obecnice	0.547	Hvězdička	972	1662	99.9	99.6	98.9	96.0
Opatovice	7.784	Lhota	2010	3784	99.3	98.5	96.7	89.0
Plíská	1.306	Kozičín	1085	1142	99.6	99.3	98.4	99.1
Přísečnice	46.670	Hradiště	15699	30300	99.9	99.9	99.9	78.6
Římov	30.016	Plav	17175	34600	99.9	99.9	99.9	99.9
Slušovice	7.245	Klečůvka	5080	7128	99.9	99.9	99.1	97.8
Souš	4.621	Souš	5156	7000	99.9	99.9	99.9	99.9
Stanovice	20.164	Březová	7059	12614	99.9	99.6	96.0	84.0
Švihov	246.068	Želivka	93291	165000	99.9	99.9	99.9	94.9
Vir I	44.056	Vir	1244	3150	99.9	99.9	99.9	99.3
		Švářec	7688	56765	99.9	99.9	99.9	99.3
Vranov	79.668	Štítnice	3019	4200	99.9	99.9	99.1	99.9
Vrchlice	7.890	Trojice	3677	7884	99.9	99.8	92.2	85.7
Znojmo	2.450	Znojmo	2668	4730	99.9	99.9	98.1	99.6
Žlutice	10.281	Žlutice	2650	4730	99.9	98.8	98.0	97.4

* Considering the mutual replaceability of Morávka and Šance water reservoirs
Fig. 7. Risk of insufficient security of requirements for drinking water demand in climate change conditions
Cílem výše popsaného řešení bylo identifikovat potenciální problémy způsobené možných dopadů klimatické změny na dostupnost vodních zdrojů. Nejistota předeku dopadů klimatické změny na průtoky je reflektována v obci více možných scénářů pro hydrologické modelování, počátečními a okrajovými podmínkami klimatických modelů a jejich strukturou. Dalšími nejistotami jsou výběr korekce systematických chyb klimatických modelů a struktura hydrologického modelu (modelování různými hydrologickými modely). Ze studií porovnávacích podíl jednotlivých zdrojů nejistot na celkovou nejistotu v hydrologickém modelování vypovídá, že nejistota pramenící z modelování budoucího klimatu (struktura modelu) značně převyšuje nejistotu svázanou s volbou emisního scénáře nebo nejistotu vyplývající z hydrologického modelování. Celková nejistota protimánuje výsledků hydrologického modelování je značná.

Určitou nejistotu rovněž představují budoucí změny v požadavcích na odběr vody nebo zajištění minimálních průtoků (např. i s ohledem na případné dopady klimatické změny na jakost vody). Řada posuzovaných vodních nádrží a odběrů vody je součástí vodárenských soustav. Případné deficit se mohou být u některých vodních nádrží pokryty jinými disponibilními vodními zdroji v soustavě, ale i naopak v období sucha může vzniknout požadavek na zvýšení odběrů z vodních nádrží k pokrytí deficitů ostatních, zranitelnějších zdrojů soustavy (odběrů přímo z vodních toků nebo odběrů podzemní vody). Řešení bylo zpracováno variantně pro současné skutečné odběry a odběry povolené. Do výsledků se tak ve značné míře promítá i nízký podíl využití povolených hodnot (viz tab. 1). Vyhodnocená nízká zabezpečenost povolených hodnot odběrů u některých vodních nádrží může být v budoucnu limitující pro případné napojení dalších spotřebičů na tyto zdroje.

ZÁVĚR

Cílem výše popsaného řešení bylo identifikovat potenciální problémy způsobené možných dopadů klimatické změny k časové úrovni roku 2050 při zásobování pitnou vodou zajišťovanou vodními nádržemi. Při řešení využily aplikovány metody hydrologické a vodohospodářské bilance, včetně simulovacího modelování zásobní funkce vodohospodářských soustav. Pomocí použitých modelů byl kvantifikován možný dopad klimatické změny na hydrologické charakteristiky (zejména průtoky) a následně vyhodnocena zabezpečenost vodárenských odběrů zajišťovaných vodními nádržemi. Hodnocené lokality (vodní nádrže a místa odběrů vody) lze podle výsledné zabezpečenosti orientačně rozdělit do

DISCUSSION

The following water reservoirs have been evaluated as having a high risk with regard to the security of water demand in climate change conditions: Stanovice, Žlutice, Plíšk, Obecnice, Opatovice, Bojkovice, Mariánské Lázně – Podhora, Klíčava and Nová Říše. Medium risk has been evaluated in water reservoirs Vranov – Znojmo, Vrchlice, Slušovice, Koryčany and Ludkovice. Problem-free security of current and permitted water demand has been evaluated in water reservoirs Římov, Nýrsko, Horka, Lučina, Slezská Harta – Kružberk, Seč – Klížanovice, Jirkov, Myslivny, Josefuš Důl, Souš, Mostiště, Hubenov and Landštějn.

Fig. 8 illustrates the impact of using water accumulation in the storage space of water reservoirs on the security of current requirements for drinking water demand and minimum discharges in water courses downstream from water reservoirs. A share of the volume of these requirements has been expressed that may be ensured only by an inflow into a water reservoir as well as a share that may be secured only with the help of water accumulation in the storage space. The whole length of the time series of the simulation has been evaluated for water reservoirs Vranov with a storage space volume over 10 mil. m³. With regard to simulation of the storage function in the monthly time step (when mean monthly discharges are considered), the impact of discharge variability in the course of individual months has been disregarded.
několika skupin. Z celkem 45 hodnocených vodních nádrží jich bylo 15 vyhodnoceno jako bezproblémové jak pro všechny scénáře klimatické změny, tak pro skutečné i povolené odběry (z větších vodních nádrží mj. Římov, Kružberk – Slezská Harta, Horka). U dalších 13 vodních nádrží byla vyhodnocena bezproblémová zabezpečenost u obou scénářů klimatické změny pouze pro současné hodnoty odběrů (mj. Švihov, Nýrsko, Vír I, Přísečnice, Fláje a Šance). Naopak střední riziko nedostatečného zabezpečení odběrů vody bylo identifikováno u 7 vodních nádrží (mj. Vranov – Znojmo a Stanovice) a vysoké riziko u 10 vodních nádrží (mj. Žlutice). Predikce zabezpečenosti odběrů v podmínkách klimatické změny je přirozeně zatížena nejistotami řešení jak s ohledem na nezbytné zjednodušení komplexní problematiky při jejím modelování, tak s ohledem na další vývoj na straně požadavků na odběry vody (včetně jejich fungování v rámci větších vodárenských soustav) i zajištění minimálních průtoků.

Poděkování

Článek vznikl na základě výzkumu prováděného v rámci projektu VI20192022159 „Vodohospodářské a vodárenské soustavy a preventivní opatření ke snížení rizik při zásobování pitnou vodou“ programu BV III/1-VS, který financuje Ministerstvo vnitra ČR.

Poznámky

1. Reprezentativní směry vývoje koncentrací (RCP). Jsou označeny podle přibližného celkového radiačního působení v roce 2100 v porovnání s rokem 1750.

2. V deskriptivní (popisné) statistice je boxplot nebo krabicový graf či krabicový diagram jeden ze způsobů grafické vizualizace numerických dat pomocí jejich kvartilů. Střední „krabicová“ část diagramu je shora ohraničena 3. kvartilem, zespodu 1. kvartilem a mezi nimi se nachází linie vymezující medián. Body „outliers“ zobrazují odlehlé hodnoty (mimo rozpětí 5–95 %).

CONCLUSION

The aim of the above analysis has been to identify potential problems caused by climate change impacts in the timeframe of the year 2050 with respect to drinking water supply provided for by water reservoirs. Hydrological and water management balance procedures have been applied, including modelling of the storage function of water management systems. A potential climate change impact on hydrological characteristics (especially discharges) has been quantified by the applied models, and the security of drinking water demand provided for by water reservoirs has been subsequently evaluated. According to the security that has resulted from the above, the evaluated sites (water reservoirs and water abstraction sites) may be roughly divided into several groups. Out of a total of 45 evaluated water reservoirs, 15 have been evaluated as problem-free for all climate change scenarios as well as for actual demand and permitted water abstraction (among others Římov – Znojmo and Stanovice) and a high risk has been established in 10 water reservoirs (among others Žlutice). Prediction of the security of water demand in climate change conditions is naturally burdened with uncertainties both with regard to the necessary simplification of a complex issue in the modelling as well as with regard to further development concerning requirements for water demand (including its functioning within larger water supply systems) and the security of minimum discharges.

Notes

1. Representative Concentration Pathways (RCPs). They are designated according to the approximate total radiation effect in 2100 in comparison with 1750.

2. In descriptive statistics, a boxplot or a box-and-whisker plot or a box-and-whisker diagram is one of the modes of graphical visualisation of numerical data by their quartiles. The middle “box” part of the diagram is delimited by the 3rd quartile from the top, by the 1st quartile from the bottom, with a line between them that delimits the median value. The “outliers” are points that represent outlying values (outside the 5–95 % range).
Literature

[1] Vyhláška č. 431/2001 Sb., o obsahu vodní bilance, způsobu jejího sestavení a o údajích pro vodní bilanci, v. v. i., 2019, certifikovaná metodika MZe. ISBN 978-80-87402-70-2.

[2] BERÁN, A. a kol., Metodika pro navrhování adaptačních opatření k eliminaci dopadů nedostatku vody. VÚV TGM, v. v. i., 2019, certifikovaná metodika MZe. ISBN 978-80-87402-70-2.

[3] Vyhláška č. 137/1999 Ministerstva životního prostředí, kterou se stanoví seznam vodárenských nádrží a zásady pro stanovení a změny ochranných pásů vodních zdrojů.

[4] HANEL, M., VIZINA, A., MARTINÍKOVÁ, M., a FENDENKOVÁ, M., Changes of drought characteristics in small Czech and Slovakian catchments projected by th CMIP5 GCM ensemble, 2014.

[5] ŠTĚPÁNEK, P. a kol., Očekávané klimatické podmínky v České republice, 2019. Vydáno v rámci projektu: „SustES – Adaptační strategie pro udržitelnou ekosystémovou služeb a potravinovou bezpečnost v nepříznivých přírodních podmínkách“ (CZ.02.1.01/0.0/0.0/16_019/0000797). ISBN. 978-8-87902-28-8.

[6] VIZINA, A., HANEL, M. a kol. Střední scénář klimatické změny pro vodní hospodářství v České republice, zprávy pro státní podniky povodí: VÚV TGM, v. v. i. 2019

[7] TALLAKSEN, L. M., & VAN LANEN, H. A. (Eds.), Hydrological drought: processes and estimation methods for streamflow and groundwater, 2004.

[8] VIZINA, A., HORÁČEK, S., & HANEL, M., Recent developments of the BILAN model. Vodohospodářské technicko-ekonomické informace, 2015, roč. 57, č. 4–5, s. 7–10.

[9] MELÍŠOVÁ, E., VIZINA, A., STAPONITES, L. R., a HANEL, M., The Role of Hydrological Signatures in Calibration of Conceptual Hydrological Model. Water, 2020, 12(12), 3401.

[10] GUDMUNDSSON, L., BREMNES, J. B., HAUGEN, J. E., a ENGEN-SKAUGEN, T., Downscaling RCM precipitation to the station scale using statistical transformations—a comparison of methods. Hydrology and Earth System Sciences, 2012, 16(9), 3383–3390.

[11] VYSKOČ, P., ZEMAN, V., Metodický postup zpracování vodohospodářské bilance současného a výhledového stavu množství povrchových vod. Praha: VÚV TGM, v. v. i. 2008

[12] PICEK, J., VYSKOČ, P. a ZEMAN, V., Simulační model množství povrchových vod: zásobní funkce vodohospodářské soustavy. Praha: VÚV TGM, v. v. i. 2008.

[13] ČSN 75 2405 Vodohospodářská řešení vodních nádrží

Acknowledgements

The study has been elaborated on the basis of a research conducted within No. VI20192022159 “Water Management and Water Supply Systems and Preventive Measures to Reduce Risks for Drinking Water Supply” under programme No. BV III/1-VS, which is funded by the Ministry of the Interior of the Czech Republic.

Autoři

Ing. Adam Vizina, Ph.D.
adam.vizina@vuv.cz
ORCID: 0000-0002-4683-9624

Ing. Petr Vyskoč
petr.vyskoc@vuv.cz
ORCID: 0000-0002-5006-5414

Ing. Martina Peláková
martina.pelakova@vuv.cz
ORCID: 0000-0003-0485-1542

Ing. Jiří Picek
jiri.picek@vuv.cz
ORCID: 0000-0002-6978-6801

Ing. Adam Beran
adam.beran@vuv.cz
ORCID: 0000-0002-8800-5599

Ing. Roman Kožín
roman.kozin@vuv.cz
ORCID: 0000-0002-5773-6567

Výzkumný ústav vodohospodářský T. G. Masaryka

Přispěvek prošel lektorským řízením.

DOI: 10.46555/VTEI.2021.03.001