An Overview of Antioxidant and Pharmacological Potential of Common Fruits

Aqsa Sajjad, Shabbir Hussain*, Shumaila Zulfiqar Butt, Muazzam Ali Muazzam

Department of Chemistry, Lahore Garrison University, DHA Phase VI, Lahore, Pakistan

*dr.shabbirhussain@lgu.edu.pk; shabchem786@gmail.com

This article has been accepted for publication and undergone full peer review but has not been through the copyediting, typesetting, pagination and proofreading process, which may lead to differences between this version and the Version of Record. Please cite this article as doi: https://doi.org/10.32350/sir.51.01

Abstract

Current study was performed to evaluate the antioxidant and pharmacological potential of numerous common fruits. Prunus Domestica (Prunes) are excellent sources of dietary antioxidants and cause lowering of LDL cholesterol plasma level. Strawberries (Fragaria Ananassa) have ascorbic acid content (5-50 mg/100 g of fresh weight) and are effective in oral cancer and cardiovascular diseases. Citrus fruits (Citrus limon) are rich in flavonoids (naringin and hesperidin), polyphenols and vitamin C; the extracts of citrus peels are effective against food borne bacteria. Lime oil from Citrus aurantifolia has been used as a component of skin care products and to impart taste and flavor in food industry. Grapes (Vitis Vinifera) are rich in phenolic compounds and are active against cancer, cholera, smallpox, nausea, eye infections and skin/kidney/liver diseases. Blackberry (Rubus ulmifolius) contains polyphenol ingredients and possesses neuroprotection potential against age-related diseases. Different parts of Jamun or Java
Plum (*Syzygium Cumini*) demonstrate excellent antioxidant and antimicrobial potential and used as a remedy for diabetes mellitus, leucorrhea, fever, constipation and gastropathy. *Ziziphus mauritiana* (Ber) consists of cyclopeptide alkaloid, lupine and ceanathone triterpenes; it displays sedatives, analgesic, antibacterial and excellent antioxidant potential. *Vaccinium oxycoccus* (cranberries) has 10mg/100g of ascorbic acid content; its extract can prevent urinary tract infections.

Key words: Fruits, Antioxidant, Aging, Pharmacological, Diseases

1. **Introduction**

Plants are well known for their nutritional and medicinal value [1-3]. Different parts of the plant (root, stem, leaves, flowers and fruits) are rich in antioxidants and antimicrobial contents [1, 4]. Fruits have an immense significance in the lives of human beings. Besides their delicious taste, fruits contain a lot of natural organic products having an excellent nutritional value. Organic products are much necessary for the proper healthy growth of a body. They help body in preventing from dangerous diseases and act as a shield against cancerous and microbial diseases [5]. They have the ability to defend the body against malignant growth, other degenerative ailments [6] and oxidative harm. It is worth mentioning that oxidative species can cause huge harm in the body [7] and may lead to cardiovascular ailments, malignant growth, diabetes, Alzheimer's infection, waterfalls, chemical imbalance and maturing [8].

Present studies were focused to evaluate the antioxidant and pharmacological properties of fruits of *Prunus Domestica* (prunes), *Fragaria Ananassa* (strawberries), *Citrus limon* (citrus), *Citrus Aurantifolia* (lime), *Vitis Vinifera* (grapes), *Rubus Ulmifolius* (black berries), *Syzygium Cumini* (java plum), *Ziziphus mauritiana* (ber) and *Vaccinium oxycoccus L.* (cranberries). The fruits are rich in lycopene, anthocyanins, flavanols, flavanone etc.
2. Antioxidants and Pharmacological Potential of Fruits

There is an important relationship of diet with aging and it has been largely investigated. Healthy foods, in addition to the provision of dietary antioxidants, are responsible to delaying the processes of aging. Healthy foods, including fruits, are important sources of natural bioactive compounds and dietary nutrients and possess antioxidant potential to prevent aging and other age-related disorders. Numerous health benefits are associated with intake of fruits, as reported in large number of earlier studies. They reduce the formation of free-radicals and thus suppress the oxidative stress created in the human body and also prevent aging. The fruits like cherries, grapes, berries, oranges, apples etc are important sources of natural antioxidants such as anti-aging phytochemicals (e.g., quercetin, resveratrol used to postpone the aging process), minerals, vitamins, phenolic, anthocyanins [9]. Fruits also provide protection against numerous diseases including cardiovascular diseases, inflammatory disorders, type 2 diabetes and cancer. In addition to this, fruits also possess health-promoting effects and pharmacological potential including neuroprotective, anti-diabetic, anti-cancerous, anti-inflammatory [9].

Some important antioxidants of plants are discussed below:

Lycopene

Lycopene is a plant nutrient having excellent antioxidant potential. It is a pigment which gives pink and red coloured fruits such as pink grape fruit, water melons and tomatoes [10]. Lycopene is very much effective against the fat related problems; it also reduces the risk of skin malignant growth and prostate diseases in men. An abundant quantity of lycopene is present in tomatoes and its bioavailability is increased by heating the tomatoes in cooking oil [11].

Anthocyanins
Anthocyanins are natural pigments which belong to the group of flavonoids and are responsible for the taste and colour of many vegetables and fruits [12]. Anthocyanins possess an excellent antioxidant potential against the oxidants like reactive oxygen species. Researches have shown that anthocyanin is highly beneficial in protecting the pancreas from oxidation and hence, it prevents the body from diabetes [13]. However, anthocyanin shows inhibitory effects against some digestive enzymes such as α-amylase and maltase. Due to this inhibitory action, absorption of glucose in intestinal portion is decreased which in return decreases the postprandial blood glucose [14, 15]. Anthocyanins are water-soluble pigments characterized by a shift in hue from red to purple or blue depending on the pH of the cellular fluids. Anthocyanins assist in enhancing the elasticity of vascular wall and improve blood circulation, promote cardiovascular health and improve night vision [11].

Flavanols

Many fruits like apple, Chinese bayberry and grapes are enriched with flavanol compounds. Flavanols show many properties like antihyperglycemic, antioxidant and antimicrobial etc. They also show inhibitory action against α-glucosidase [14]. In addition to this, they also lower the blood glucose level which in fact reduces the rate of diabetes [16].

Flavanone

Flavanones occur in tangerines, oranges, tangors, tangelos and citrus fruits [17, 18] and are the bioactive compounds which show good antioxidant and antimicrobial effects. It has been proved from many studies that flavanone shows good results against the diabetes due to its inhibitory effects on many enzymes [19].

3. Common fruits and Antioxidant Potential

Prunus Domestica (Prunes)
The scientific name of Prunes is *Prunus Domestica* (Figure 1). The active compounds in prunes decrease the LDL cholesterol plasma level in patients with hypercholesterolemia [20]. Prune and prune juices are excellent sources of dietary antioxidants [21]. It has been reported that prune fiber causes lowering of plasma and liver cholesterol level in hyperlipidemic rats [22]. The oxidation of low-density lipoproteins (LDL) is inhibited by pitted prune extracts [21].

![Fruits of Prunus domestica](https://en.wikipedia.org/wiki/Prunus_domestica)

Figure 1: Fruits of *Prunus domestica*

Fragaria ananassa (*Strawberries*)

Strawberry (*Fragaria Ananassa, Figure 2*) is cultivated all over the world due to its medicinal, antioxidant and antimicrobial potential. A lot of research has been made on this plant. Strawberries have a very high amount of ascorbic acid; they have four times more ascorbate content than blue berries. In strawberries, the ascorbate content ranges from 5-50 mg/100 g of fresh weight [23]. Improvement in oral cancer by using strawberries has also been noted [24]. The risk of cardiovascular diseases is lowered by the antioxidants present in strawberries [25].
Citrus limon (Citrus)

Naringin and hesperidin are among the most important and notable flavonoids that are reported in citrus fruits (Citrus limon, Figure 3). These flavonoids have been extensively used for treatment of cardiovascular diseases. Hesperidin is contained in oranges, tangerines, lemons and limes etc. The extracts of citrus peels have been appeared to be highly effective against food borne bacteria [26]. The fiber of citrus fruit contains bioactive compounds, such as polyphenols, like vitamin C (or ascorbic acid) and cure vitamin C deficiency which causes scurvy [27].
Lime fruits (*Citrus Aurantifolia*, Figure 4) are widely cultivated throughout the world and are commonly known as meetha in Pakistan [28]. The plant contains numerous secondary metabolites, triterpenoids, phenolic acids, flavonoids, essential oils, coumarins, carotenoids and alkaloids which are medicinally important. Aromatic compounds (e.g., monoterpenes and their derivatives, alcohols, esters, ketones, aldehydes) such as citral (4.4%), γ-terpinene (8.5%), γ-terpinene (8.5%) and limonene (58.4%) are abundantly present in citrus oil. Oil is mainly extracted by hydrodistillation of fruit and peel. The presence of limonoids owes aroma and bitter taste to the citrus fruit peels. Lime oil (essential oil) has been used in traditional medicines and as a component of skin care products due to its potent antifungal and antibacterial properties. It also finds applications in food industry to impart citric flavour and odour to cuisines. Its oil and juice also display multiple biological effects including hepatoprotective, antityphoid, hypolipidemic, anti-inflammatory, antiulcer, antioxidant, antimicrobial and antimicrobial properties [29]. Some
compounds derived from the lime were successful against *Pseudomonas Aeruginosa* and *Aspergillus Niger*. Highest action of the natural product oil was seen against the parasites *Candida spp* and *Aspergillus Niger* [30, 31].

![Fruit of Citrus Aurantifolia](https://www.pngitem.com/middle/ixmhmbo_citrus-aurantifolia-png-download-lime-fruit-transparent-png/)

Figure 4: Fruit of Citrus Aurantifolia

Vitis Vinifera (Grapes)

Vitis Vinifera (grapes, Figure 5) are rich in phenolic compounds and almost 75% of polyphenols exists in the skin and seeds [32]. Grapes are effective in numerous health problems including cancer, cholera, smallpox, nausea, eye infections and skin/kidney/liver diseases [33]. Grape seed extracts can be used as a dietary supplement in the form of capsules, tablets and liquid form. Grapes have active ingredients which possess pharmacological activities such anti-inflammatory, anticancer, antifungal, anti-bacteria and antioxidant [34].
Rubus ulmifolius (Black berries)

Blackberry (*Rubus ulmifolius*, Figure 6) has been used from a long time in medicine [35]; its leaves demonstrate antimicrobial and anti-inflammatory potential [36]. *Rubus ulmifolius* contains polyphenol ingredients which show good antioxidant potential [37]. Blackberries contain compounds which possess neuroprotection potential against age-related diseases [38]. Digested metabolites from wild blackberries protect neuronal cells against oxidative damage and also possess anti-inflammatory properties [39].
Syzygium Cumini (Java plum)

Jamun or Java Plum (Syzygium Cumini, Figure 7) is a common fruit which is found everywhere in the world. It is small in size but enriched in natural antioxidant and antimicrobial compounds [40]. Jamun plant is known to possess diverse phytochemicals, most of which are observed to have health benefits. Jamun leaves have been reported to possess natural antimicrobial and antioxidant compounds, and they are known to contain several flavanols like β-sitosterol, quercetin, myricitrin, the flavanol glycosides, and acylated flavanol glycosides [41]. Different parts of jamun plant have been used in ayurvedic medicine as a remedy for diabetes mellitus [42]. The leaf extract is beneficial for strengthening the gums and teeth and also used to treat
leucorrhea, fever and gastropathy [43]. It also finds applications to treat constipation due to the laxative effect and in treating the blood discharged in the feces [44].

Ziziphus mauritiana (Ber)

Ziziphus mauritiana (Ber, Figure 8) is an important medicinal and traditional plant [45] and commonly known as Ber plant in Pakistan. This plant consists of cyclopeptide alkaloid, lupine and ceanathone triterpenes. These chemicals show intense biological activities such as sedatives, analgesic and antibacterial [46]. It is reported that different antimicrobial activities against different microorganisms are possessed by extract of *Z. mauritiana* leaves. Numerous antimicrobial components are present in *Z. mauritiana* plant which can be used for the therapy of microbial infections [47]. *Z. mauritiana* indicates high antioxidant potential and also shows high H$_2$O$_2$ scavenging activity as it contains a high amount of total proteins, reducing sugars, flavonoids, ascorbic acid contents, β-carotene, polyphenols, tannins and DPPH free radicals [48, 49]. It is reported that methanolic seed extracts of this plants are markedly valuable against the
cancerous cell lines. Also ethanolic extracts of seed markedly inhibit the proliferation of HL60 cells [50].

Figure 8: Fruits on the branchers of *Ziziphus mauritiana*
https://creativemarket.com/darksoul72/4514895-Ziziphus-mauritiana-chinese-date-featuring-fresh-plant-and-healthy

Vaccinium oxycoccus (cranberries)

Vaccinium oxycoccus (cranberries, Figure 9) have biologically active compounds; vitamin C is a major component of cranberries. On average cranberries have 10mg/100g of ascorbic acid content [51]. Cranberry juice intake significantly increases the plasma level of antioxidants up to 7h [52]. Cranberry extract can prevent urinary tract infections [53].
http://www.ilsentierosas.it/en/prodotti/vaccinium-oxycocos-var-oblongifolium-michx/

Figure 9: Fruits on the branchers of *Vaccinium oxycoccus Var*

4. Conclusions

Prunus Domestica (prunes), *Fragaria Ananassa* (strawberries), *Citrus limon* (citrus), *Citrus Aurantifolia* (lime), *Vitis Vinifera* (grapes), *Rubus Ulmifolius* (black berries), *Syzygium Cumini* (java plum), *Ziziphus mauritiana* (ber) and *Vaccinium oxycoccus L.* (cranberries) contain very valuable nutritional, antioxidant and antimicrobial contents and find applications in food and pharmaceutical industry. The fiber derived from the fruits contains useful components which can be employed in the pharmaceutical industry as food supplements. Fruits are reported to be rich in lycopene, anthocyanins, flavanols, flavanone etc. They provide dietary antioxidants and delay the process of aging. Fruits possess neuroprotective, anti-diabetic, anti-cancerous, anti-inflammatory potential and are also helpful against numerous diseases including cardiovascular diseases, inflammatory disorders, type 2 diabetes and stomach disorders.

References

[1] Naseer S, Hussain S, Naeem N, Pervaiz M, Rahman M. The phytochemistry and medicinal value of *Psidium guajava* (guava). *Clin. Phytoscience*. 2018;4(1):1-8.
[2] Farhat N, Hussain S, Syed SK, Amjad M, Javed M, Iqbal M, Hussain M, Haroon SM, Raza H, Butt SZ. Dietary phenolic compounds in plants: their antioxidant and pharmacological potential. *Postepy Biol. Komorki*. 2020;47(3):307-20.

[3] Kamran M, Hussain S, Abid MA, Syed SK, Suleman M, Riaz M, Iqbal M, Mahmood S, Saba I, Qadir R. Phytochemical composition of moringa oleifera its nutritional and pharmacological importance. *Postepy Biol. Komorki*. 2020;47(3):321-34.

[4] Rehman A, Hussain S, Javed M, Ali Z, Rehman H, Shahzady TG, Zahra A. Chemical composition and remedial perspectives of Hippophae rhamnoides linn. *Postepy Biol. Komorki*. 2018;45(3):199-209.

[5] Silva S, Gomes L, Leitao F, Coelho A, Boas LV. Phenolic compounds and antioxidant activity of Olea europaea L. fruits and leaves. *Food Sci. Technol. Int.* 2006;12(5):385-95.

[6] Tarun E, Duduk V. Antioxidant properties of citrus fruits juice. 2016.

[7] Miyake Y, Yamamoto K, Osawa T. Metabolism of antioxidant in lemon fruit (Citrus limon BURM. f.) by human intestinal bacteria. *J. Agric. Food Chem.* 1997;45(10):3738-42.

[8] Soobrattee MA, Neergheen VS, Luximon-Ramma A, Aruoma OI, Bahorun T. Phenolics as potential antioxidant therapeutic agents: mechanism and actions. *Mutat Res-fund Mol M.* 2005;579(1-2):200-13.

[9] Dhalaria R, Verma R, Kumar D, Puri S, Tapwal A, Kumar V, Nepovimova E, Kuca K. Bioactive Compounds of Edible Fruits with Their Anti-Aging Properties: A Comprehensive Review to Prolong Human Life. *Antioxidants*. 2020;9(11):1123.

[10] Kong KW, Khoo HE, Prasad KN, Ismail A, Tan CP, Rajab NF. Revealing the power of the natural red pigment lycopene. *Molecules*. 2010;15(2):959-87.
[11] Mohideen FW. Comparison of thermally pasteurized and ultrasonically pasteurized blueberry juice (Vaccinium corymbosum) and an investigation of blueberry juice effect on lipid oxidation during microencapsulation of poly-unsaturated fish oils. 2011.

[12] Martín J, Kuskoski EM, Navas MJ, Asuero AG. Antioxidant capacity of anthocyanin pigments. *Flavonoids-from biosynthesis to human health.* 2017;3:205-55.

[13] Tena N, Martín J, Asuero AG. State of the art of anthocyanins: Antioxidant activity, sources, bioavailability, and therapeutic effect in human health. *Antioxidants.* 2020;9(5):451.

[14] Xiao J, Hogger P. Dietary polyphenols and type 2 diabetes: current insights and future perspectives. *Curr Med Chem.* 2015;22(1):23-38.

[15] Zhang J, Xiao J, Giampieri F, Forbes-Hernandez TY, Gasparrini M, Afrin S, Cianciosi D, Reboredo-Rodriguez P, Battino M, Zheng X. Inhibitory effects of anthocyanins on α-glucosidase activity. *J. Berry Res.* 2019;9(1):109-23.

[16] de Oliveira Raphaelli C, dos Santos Pereira E, Camargo TM, Vinholes J, Rombaldi CV, Vizzotto M, Nora L. Apple phenolic extracts strongly inhibit α-glucosidase activity. *Plant Foods Hum Nutr.* 2019;74(3):430-5.

[17] Di Majo D, Giammanco M, La Guardia M, Tripoli E, Giammanco S, Finotti E. Flavanones in Citrus fruit: Structure–antioxidant activity relationships. *Food Res Int.* 2005;38(10):1161-6.

[18] Peterson JJ, Dwyer JT, Beecher GR, Bhagwat SA, Gebhardt SE, Haytowitz DB, Holden JM. Flavanones in oranges, tangerines (mandarins), tangors, and tangelos: a compilation and review of the data from the analytical literature. *J. Food Compos. Anal.* 2006;19:S66-S73.
[19] Jung UJ, Lee M-K, Jeong K-S, Choi M-S. The hypoglycemic effects of hesperidin and naringin are partly mediated by hepatic glucose-regulating enzymes in C57BL/KsJ-db/db mice. *J. Nutr.* 2004;134(10):2499-503.

[20] Kunkel M, Seo A, Minten T. Magnesium binding by gum arabic, locust bean gum, and arabinogalactan. *Food Chem.* 1997;59(1):87-93.

[21] Donovan JL, Meyer AS, Waterhouse AL. Phenolic composition and antioxidant activity of prunes and prune juice (Prunus domestica). *J Agric Food Chem.* 1998;46(4):1247-52.

[22] Tinker LF, Davis PA, Schneeman BO. Prune fiber or pectin compared with cellulose lowers plasma and liver lipids in rats with diet-induced hyperlipidemia. *J. Nutr.* 1994;124(1):31-40.

[23] Škrovánková S, Kramářová D, Šimánková K, Hoza I. Determination of ascorbic acid by HPLC with electrochemical detection. *Chem Listy.* 2006;100:736.

[24] Wu H-J, Ma Y-K, Chen T, Wang M, Wang X-J. PsRobot: a web-based plant small RNA meta-analysis toolbox. *Nucleic Acids Res.* 2012;40(W1):W22-W8.

[25] Prasath GS, Pillai SI, Subramanian SP. Fisetin improves glucose homeostasis through the inhibition of gluconeogenic enzymes in hepatic tissues of streptozotocin induced diabetic rats. *Eur J Pharmacol.* 2014;740:248-54.

[26] Chanthaphon S, Chanthachum S, Hongpattarakere T. Antimicrobial activities of essential oils and crude extracts from tropical Citrus spp. against food-related microorganisms. *Songklanakarin. J. Sci. Technol.* 2008;30.

[27] Aronson AR, editor Effective mapping of biomedical text to the UMLS Metathesaurus: the MetaMap program. Proceedings of the AMIA Symposium; 2001: American Medical Informatics Association.
[28] González-Estrada RR, Chalier P, Ragazzo-Sánchez JA, Konuk D, Calderón-Santoyo M. Antimicrobial soy protein based coatings: Application to Persian lime (Citrus latifolia Tanaka) for protection and preservation. Postharvest Biol Technol. 2017;132:138-44.

[29] Jain S, Arora P, Popli H. A comprehensive review on Citrus aurantifolia essential oil: its phytochemistry and pharmacological aspects. Brazilian Journal of Natural Sciences. 2020;3(2):354-.

[30] Lota M-L, de Rocca Serra D, Tomi F, Jacquemond C, Casanova J. Volatile components of peel and leaf oils of lemon and lime species. J Agric Food Chem. 2002;50(4):796-805.

[31] Moscoso-Ramírez PA, Montesinos-Herrero C, Palou L. Control of citrus postharvest penicillium molds with sodium ethylparaben. Crop Protect. 2013;46:44-51.

[32] Terra X, Valls J, Vitrac X, Mérrillon J-M, Arola L, Ardèvol A, Bladé C, Fernández-Larrea J, Pujadas G, Salvadó J. Grape-seed procyanidins act as antiinflammatory agents in endotoxin-stimulated RAW 264.7 macrophages by inhibiting NFkB signaling pathway. J Agric Food Chem. 2007;55(11):4357-65.

[33] Nilgün G, Gülcan O, Osman S. Total phenolic contents and antibacterial activities of grape. Vitis vinifera. 2004:335-9.

[34] Kaur M, Agarwal C, Agarwal R. Anticancer and cancer chemopreventive potential of grape seed extract and other grape-based products. J Nutr. 2009;139(9):1806S-12S.

[35] Patel A, Rojas-Vera J, Dacke C. Therapeutic constituents and actions of Rubus species. Curr Med Chem. 2004;11(11):1501-12.

[36] Panizzi L, Caponi C, Catalano S, Cioni P, Morelli I. In vitro antimicrobial activity of extracts and isolated constituents of Rubus ulmifolius. J Ethnopharmacol. 2002;79(2):165-8.
[37] Martini S, d’Addario C, Colacevich A, Focardi S, Borghini F, Santucci A, Figura N, Rossi C. Antimicrobial activity against Helicobacter pylori strains and antioxidant properties of blackberry leaves (Rubus ulmifolius) and isolated compounds. *Int J Antimicrob Agents*. 2009;34(1):50-9.

[38] Tavares L, Figueira I, McDougall GJ, Vieira HL, Stewart D, Alves PM, Ferreira RB, Santos CN. Neuroprotective effects of digested polyphenols from wild blackberry species. *Eur J Nutr.* 2013;52(1):225-36.

[39] Feresin RG, Zhang J, Elam M, Hooshmand S, Kim J-S, Arjmandi BH. Effects of blackberry and blueberry polyphenol extracts on NO, TNF-α, and COX-2 production in LPS-stimulated RAW264.7 macrophages. Federation of American Societies for Experimental Biology; 2012.

[40] Baraiya NS, Rao TVR, Thakkar VR. Improvement of postharvest quality and storability of jamun fruit (Syzygium cumini L. Var. Paras) by zein coating enriched with antioxidants. *Food Bioproc Tech.* 2015;8(11):2225-34.

[41] Mahmoud II, Marzouk MS, Moharram FA, El-Gindi MR, Hassan AM. Acylated flavonol glycosides from Eugenia jambolana leaves. *Phytochemistry.* 2001;58(8):1239-44.

[42] Rahman A, Qureshi M, Zaman K, Malik S, Ali S. The alkaloids of Rhazya stricta and R. orientalis-a review. *Fitoterapia.* 1989;60(4):291-322.

[43] Warrier P, Nambiar V, Ramankutty C. Indian medicinal plants. *A compendium of.* 1996;500:34-5.

[44] Bhandary M, Chandrashekar K, Kaveriappa K. Medical ethnobotany of the siddis of Uttara Kannada district, Karnataka, India. *J Ethnopharmacol.* 1995;47(3):149-58.
[45] Goyal M, Nagori BP, Sasmal D. Review on ethnomedicinal uses, pharmacological activity and phytochemical constituents of Ziziphus mauritiana (Z. jujuba Lam., non Mill). Spatula DD. 2012;2(2):107-16.

[46] Hussain H, Ahmad VU, Green IR, Krohn K, Hussain J, Badshah A. Antibacterial organotin (IV) compounds, their synthesis and spectral characterization. ARKIVOC. 2007;2007(14):289-99.

[47] Asimuddin M, Shaik MR, Fathima N, Afreen MS, Adil SF, Siddiqui RH, Jamil K, Khan M. Study of antibacterial properties of Ziziphus mauritiana based green synthesized silver nanoparticles against various bacterial strains. Sustainability. 2020;12(4):1484.

[48] Afroz R, Tanvir E, Islam MA, Alam F, Gan SH, Khalil MI. Potential Antioxidant and Antibacterial Properties of a Popular Jujube Fruit: Apple Kul (Zizyphus mauritiana). J. Food Biochem. 2014;38(6):592-601.

[49] Al Ghasham A, Al Muzaini M, Qureshi KA, Elhassan GO, Khan RA, Farhana SA, Hashmi S, El-Agamy E, Abdallah WE. Phytochemical Screening, Antioxidant and Antimicrobial Activities of Methanolic Extract of Ziziphus mauritiana Lam. Leaves Collected from Unaizah, Saudi Arabia. Int. J. Pharm. Res. Allied Sci. 2017;6(3).

[50] Mishra T, Khullar M, Bhatia A. Anticancer potential of aqueous ethanol seed extract of Ziziphus mauritiana against cancer cell lines and Ehrlich ascites carcinoma. Evid. Based Complementary Altern Med. 2011;2011.

[51] Ruse K, Sabovics M, Rakcejeva T, Dukalska L, Galoburda R, Berzina L. The effect of drying conditions on the presence of volatile compounds in cranberries. World Acad Sci Eng Technol. 2012;64:854-60.
[52] Chu Y-F, Liu RH. Cranberries inhibit LDL oxidation and induce LDL receptor expression in hepatocytes. *Life sciences*. 2005;77(15):1892-901.

[53] Sun J, Marais JP, Khoo C, LaPlante K, Vejborg RM, Givskov M, Tolker-Nielsen T, Seeram NP, Rowley DC. Cranberry (*Vaccinium macrocarpon*) oligosaccharides decrease biofilm formation by uropathogenic *Escherichia coli*. *J Funct Foods*. 2015;17:235-42.