An ethnopharmacological study of aromatic Uyghur medicinal plants in Xinjiang, China

Lu Zhaoa, Shuge Tianb, E. Wenc and Halmuart Upurb

aCollege of Chemistry and Chemical Engineering, Xinjiang Normal University, Urumqi, Xinjiang, China; bCentral Laboratory of Xinjiang Medical University, Urumqi, Xinjiang, China; cCollege of TCM, Xinjiang Medical University, Urumqi, Xinjiang, China

ABSTRACT

Context: An ethnobotanical survey was completed in a remote village and surrounding country of Xinjiang, where most Uyghur medicinal plants could be collected. This work clarifies and increases ethnobotanical data.

Objectives: We surveyed and organized aromatic medicinal plants that are commonly used in clinical settings to provide a significant reference for studying new medical activities.

Materials and methods: In the survey, informants who have traditional knowledge on aromatic Uyghur medicinal plants were interviewed between March 2014 and September 2014. Aromatic medicinal plant species and pertinent information were collected. Some therapeutic methods and modes of preparation of traditional aromatic medicinal plants were found.

Results: A total of 86 aromatic medicinal plant species belonging to 36 families were included in our study. We identified 34 plant species introduced from different regions such as Europe, India and Mediterranean areas. Fruits and whole plants were the most commonly used parts of plant, and most aromatic medicinal plants could be applied as medicine and food. We assigned the medicinal plants a use value (UV). Knowing the UV of species is useful in determining the use reliability and pharmacological features of related plants.

Conclusions: Xinjiang is an area in which indigenous aromatic medicinal plants are diversely used and has therefore established a sound dimensional medical healthcare treatment system. Some aromatic Uyghur medicinal plants are on the verge of extinction. Hence, further strategies for the conservation of these aromatic medicinal plants should be prioritized.

Introduction

China is a unified multi-ethnic country, where ethnic medicine is the official unified name for the traditional medicines of Chinese ethnic minorities because of the barriers produced by the different medical systems, language, culture and species characteristics. Research based on ethnic medicinal resources is rare (Li et al. 2006). In some ethnic minority areas, the production technology of traditional ethnic medicine and clinically common and key ethnic medicinal prescriptions is facing the risk of severe loss, without being passed on to the next generation (Vandebroek & Balick 2012).

Uyghur medicine is the scientific summary and the synthesis of the wisdom of the Uyghur people, who have been hard-working in the long-term practice of production to fight diseases. Therefore, Uyghur medicine has a complete theoretical system, involving rich practical experience and a unique method of diagnosis and treatment, representing a treasure among Chinese traditional medicine.

Uyghur medicine originated from Hetian, located in Xinjiang, and has a long history (Jiang & Nie 2015). There are more than 1000 Uyghur medicinal plants on record, among which, approximately 450 are most commonly used. Most Uyghur medicines are made from plants. The Uyghur people are skilled at using aromatic drugs, which commonly involve roses, lavender (Gonçalves & Romano 2013; Mendoza et al. 2014), lip vanilla, safflower, coriander, chicory, clove (Dalai et al. 2014), cardamom (Bajaj et al. 1993) and long pepper (Tian et al. 2012; Ding et al. 2014). An aromatic plant is a plant that contains a high content of aromatic substances (essential oils or resin) that can be used as a medicine or spice. These plants are both highly useful and of high value. The aromatic medicinal species included in this report were selected according to two books, on Chinese Aromatic Plants and Uyghur Medicine. There are many aromatic plants included in records on processing and utilization in the ancient literature of China. People have often used aromatic plants for flavouring, healthcare, in wine and cosmetics, as moth repellents and refreshing substances, and for cleaning air.

Uyghur medicine is the object of this article, therefore, herbal monographs from the literature, research data, standards and regulations and physical specimens were collected, mainly to obtain information about aromatic plant varieties (Shang et al. 2012). Information about the species used in Uyghur medicines and their distribution, clinical efficacy and applied resources (preparations) was collected and reorganized, supporting the analysis, application (Auerbach et al. 2012), sharing, use and protection of Uyghur herbal resources (Zheng et al. 2006; Fred-Jaiyesimi et al. 2015).
Materials and methods

Study area

Xinjiang Uyghur autonomous region lies in the northwest of China and is located in the centre of Eurasia. Its area is 166 km², which covers 1/6 of the total area of China. Xinjiang Uyghur autonomous region has a population of more than 16.9 million, of which more than 7.906 million are Uyghur nationality. An obvious feature of the terrain is the ‘three mountain clip two basins’ (Liu et al. 2014) (Figure 1). Xinjiang is characterized by its dry climate, with the main features of sufficient sunshine and deficient rainfall. The area is far from the ocean and is surrounded by mountains, which is not only reflected in reduced moisture in the area, but also in the difference in the rainfall distribution. The Tianshan Mountains prevent cold air from flowing to the south, thus, constituting the climate demarcation line that separates the temperate zone in the north from the warm temperate zone in the south. The annual average temperature in southern Xinjiang ranges from 10 to 13°C, whereas it is below 10°C in the north. The average rainfall is only 45 mm, and rainfall in the north is much greater than in the south (YIN et al. 2011). Another characteristic of the area is the great discrepancy of temperature between day and night; generally, the temperature increases rapidly during the day, whereas it drops at night. People in northern Xinjiang are vulnerable to rheumatism because of the cold weather, whereas people in the south commonly suffer from liver disease, gastrointestinal disease, cardiovascular disease (Cámara-Leret et al. 2014), vitiligo and psoriasis, which can be attributed to their eating habits (giving priority to meat) and its dryness and temperature range.

Field interview methods

We carried out semi-structured ethnobotanical interviews with individual natives residing in the study area in the Uyghur region between March 2014 and September 2014. A total of 200 individuals (101 men, 99 women) were interviewed in five districts, including Altay, Changji, Yili, Bazhou and Hetian. In each district, we interviewed four counties. Bazhou, Hetian are relatively large area in the south of Xinjiang. The areas are multi-ethnic areas; therefore the research on the ethnic medicine has certain representative, Altay and Yili, in the north and northwest of Xinjiang, respectively. The main nationality are Uyghur and Kazak, they have a certain understanding of the research of the ethnic medicine. Changji in the east of Xinjiang, it can be representative of the people in the east of Xinjiang on the ethnic medicine research. These five areas in Xinjiang are very representative of the region.

Figure 1. Map of the study area, Xinjiang, China.
Interviews were conducted in bazaars, houses and parks. We confirm that the field studies did not involve endangered or protected species. Additionally, no specific permissions were required for these locations because all of the locations were public, not private. After explaining the objective of our study, we asked detailed questions related to the medicinal uses of plants (Wang et al. 2013). People who demonstrated knowledge of plants were interviewed at least twice (Polat et al. 2013). The obtained information was compared with other areas and local counties to verify its accuracy. The interviewees ranged in age from 35 to 95 years, most of whom were elders. We transcribed all interviews and deposited the recordings with the Medicinal Resources Census Project Team of China (Chen et al. 2014).

The participants provided their verbal informed consent to participate in this study. During the survey, after explaining the objective of our study, the interviewees provided us with detailed answers to questions related to the medicinal uses of plants. We subsequently transcribed all the interviews and deposited the recordings in our storehouse. All the information on aromatic Uyghur medicinal plants was recorded in tables produced by the Resource Census Project Team of China. Written consent was collected and analyzed by the authors, and the authors used another method to express the main meaning of the participants’ consent. Therefore, all of the written consents are listed in Table 1. Of course, the Medical Ethics Committees of Xinjiang Medical University approved this consent procedure.

The interview questions were aimed at understanding the traditional uses of medicinal plants, including local plant names, ailments for which the plants were used, the parts of the plants used, and methods of preparation and administration. We accompanied the interviewees into the field to collect specimens of the plants to which they were referred. We also deposited the plant materials collected in our study with the Medicinal Resources Census Project Team of China (Figure 2).

Voucher specimen collection

To exemplify and protect the aromatic medicinal plants obtained in Xinjiang to the best extent possible, we collected voucher specimens between March and September 2014. Voucher specimens were collected and prepared under the directions of herbalists and local people, who have much experience with these aromatic Uyghur medicinal plants. The plants were identified by a research team specialized in Uyghur medicinal resources, consist of several pharmaceutical professors and several graduate students from Xinjiang Medicine University, and specimens were deposited in the Traditional Chinese Medicine Voucher Herbarium of Xinjiang Medicine University. All data were collected in a database.

Data analysis

The use value (UV), a quantitative index that indicates the relative importance of locally known species, was also calculated according to the following formula:

\[\text{UV} = \frac{U}{N} \]

where \(U \) is the number of reported uses cited by each informant for a given species, and \(N \) refers to the total number of reports in which UV refers to the UV of a species. UVs are high when there are many reported uses for a plant, thereby indicating that the plants are actively used by local people, whereas when there are few reports related to a plant’s use, the UV approaches zero (Boakye et al. 2015). Therefore, knowing the UV of a species may be useful in determining the reliability of the use and pharmacological features of related plants.

Results and discussion

Families and medicinal plants

A total of 86 aromatic medicinal species belonging to 36 families were included in the present study (Table 1). About 12 medicinal species belonged to Lamiaceae, which was the family with the highest percentage (13.95%) of medicinal species used by the Uyghur people, followed by Apiaceae and Rosaceae (11.63%) with 10 species, and Compositae (9.30%) with 8 species. These four families account for 46.51% of the total number of aromatic medicinal species identified. The remaining 46 species belongs to 8 other families with less than six species each, while only one species was obtained for approximately 20 families (Table 2).

In the analysis conducted in this study, many species collected in Xinjiang were observed to be used medicinally and were easily accessed (Liu & Shawuti 1985; Liu 1999).

Plant parts and mode of preparation

Fruits (22 species) were the most commonly used parts of the plants, followed by the whole plant (17 species), seeds (15 species) and flowers (7 species), respectively (Figure 3). Additionally, for 13 species, two or more parts are used in the treatment and curing of diseases, with different parts employed for different effects. For example, the root of Ephedra presents a hidrosis function to treat the night sweats caused by pulmonary tuberculosis and weakness of the body, while the herbaceous stem, which is also used for sweating, is applied to cure colds, coughs, bronchial asthma and malaria. Based on the above findings, we can safely draw the conclusion that different parts of the plants exhibit different functions. We must clarify the function of every part before it can be used to cure diseases (Song et al. 2005).

The results of our survey demonstrated that decoction was the most common mode of preparing aromatic medicinal plants, accounting for 61.72% of the recorded preparations, followed by syrups (47.66%), powders (45.31%), honey pastes (35.16%), poultices (28.13%) and pills (16.41%) (Figure 4). Therefore, there are several methods for the preparation of aromatic medicinal plants (Liu et al. 1993). However, different methods present different efficiencies, and the most appropriate preparation method should be chosen.

Disorders treated

Based on this survey, the collected aromatic plants are widely used in local traditional Chinese medicine, specifically in Uyghur medicine, to treat gastropathy, liver complaints, parasites and dysentery. Commonly, doctors combine two or more aromatic medicinal plants to treat a particular ailment. In this survey, most of the identified aromatic medicinal plants can be employed as both medicine and food. The local population uses these plants daily to maintain good health in the long-term (Halmurat et al. 2011, King et al. 2015). Some aromatic medicinal plants can be made into healthcare products, such as herbal teas, medicinal liquors and essential oils, which contribute to health in therapies or prevention. In addition, a few of the aromatic plants can be developed into insecticides against parasites. Furthermore, some farmers cultivate aromatic vegetables with certain
Table 1. Plant species used for medicinal purposes in Xinjiang, China.

Family	Latin names	Local names	Parts used	Main chemical composition of volatile oil	Administration form	Traditional therapeutic indications	The adverse reactions and remedy	Way of administration	Use report	UV
Acoraceae	Acorus calamus L.	Yi ge er	Rhizome	cis-Methylisoegenol, acoragermacrone, isocalamendiol, calamene	Pi, HP, Po	Sedation, anti-hypertension, anti-asthmatic, anti-tussive, spasmodylysis, anti-bacterial	Harmful to brain, Remedy: fennel	OR, EX	3	0.03
Amaryllidaceae	Allium cepa L.	Pi ya zi	The whole plant	Thiol, methyldisulphide, allyl disulphide, trisulphide	Po, HP, Pou	Atherosclerosis, esomeritis, diabetic, anti-diabetic, vitamin C supplement	Harmful to brain, reduce the ability of memory, Remedy: grape vinegar, honey, salt, pomegranate juice	OR, EX	1	0.01
Apiaceae	Anethum graveolens L.	Se ni ke qie ke ou ru he	Seed	Carvone, limonene, dillapiole	D,MO	Diuretic, anti-asthmatic, anti-tussive, anti-bacterial	It can reduce the ability of brain and visual acuity, Remedy: sour food	OR, EX	1	0.01
Apiaceae	Coriandrum sativum L.	You mi ha le su ti	The whole plant, fruit	Caparinaldehyde, non-anlan, linalool, geraniol	D, S, Pou	Clearing heat for demescence, anti-pyretic, diuretic	Harmful to intestinal disease and cystitis patients, Remedy: semen melo, acacia	OR, EX	0	0.00
Apiaceae	Cuminum cyminum L.	Zi re	Fruit, seed	Cuminaldehyde, cuminal, α,β-phellandrene	Po, Pou, HP	Carminative, stimulate nerves, anti-bacterial, promoting digestion	Harmful to lungs, Remedy: tragacanth gum	OR, EX	1	0.01
Apiaceae	Daucus carota L.	Sai wei zi ou ru he	Seed, fruit	1-limonene, cineole, geraniol, citronelol, cital, Caryophyllen	Po, D,S	Inducing diuresis for treating stranguria, dispelling cold, regulating menstrual cycle	/	OR	1	0.01
Apiaceae	Fừaula assafoetida L.	Ying ou ru he	Seed	(β)-2-Buty-1-propanyl, disulphide, α-pinene, phellandrine	Po, HP, Pou	Dispel the wind, relieve pain, enhance memory, diminish inflammation, apocatastasis	Harmful to intestinal disease and cystitis patients, Remedy: semen melo, acacia	OR, EX	0	0.00
Apiaceae	Ferula sinkangensis K. M. Shen.	Ying	Resin	α-Pinene, phellandrene, α-terpinen, bornyl acetate	Pi, Po, HP	Anthralgia, paralysis, traumatic injury	Forbidden for pregnant women, harmful to brain and liver, Remedy: acacia, anise, pomegranate fruit	OR, EX	0	0.00
Apiaceae	Furaiculeum vulgare Mill. A pa ba di yang	Fruit, root bark	trans-Anethole, fenchone, limonene, β-pinene, methyl cychavol	HP,S,D	Anti-tumour, cholagogue, inhibition of gastric ulcer, anti-bacterial	Harmful to febrile healthy, Remedy: sandalwood	OR, EX	10	0.11	
Apiaceae	Pimpinella anisum L.	Ru mi bie di yang	Seed	Anisaldehyde, amnic acid, anethole, anisyloectone	HP, S, Pi	Facial paralysis, headache, amenorrhea, exhausting qi, pro laction	Harmful to intestinal disease, Remedy: fennel	OR, EX	1	0.01
Apiaceae	Pleuroserpum Indieyanum (Lipsky) B. Fedtsch.	Yu re ke ou ti	The whole plant	α-Pinene, myristicin, elemicin, asarone, ocimene	A,M,F,S	Coronary, heart disease, anaesthesia, anti-asthmatic, anti-	/	OR	0	0.00

(continued)
Family	Latin names	Local names	Parts used	Main chemical composition of volatile oil	Administration form	Traditional therapeutic indications	The adverse reactions and remedy	Way of administration	Use report	UV
Apiaceae	Ferula fukanensis K. M. Shen.	Ying yi li mi	Resin	Phellandrine, (R)-2-Buty-1-propanyl, disulphide, γ-pinene, phellandrine, undecyl-sulfinyl acetic acid	Po, HP, Po	Tussive, anti-hypertension	Forbidden for pregnant women, harmful to brain and liver	OR, EX	1	0.01
Apiaceae	Nerium indicum Mill.	Su gai ti gu li	Leaves, bark, root	Menthol, salicylate, acetic acid, butanone alcohol, ethyl sulphide, ethyl acetate	MO, Pou, O	Cardiotonic action, diuretic, sedation	Rank poison, harmful to brain and lungs, can make people dazzled	EX	0	0.00
Arecaceae	Areca catechu L.	Fu pai li	Seed	/	Po, D, HP	Insect repellent, against pathogen, increase appetite, anti-cancer, anti-hypertensive, antioxidant	Lead to chest and lung dryness, kidney stone and vesical calculus	OR, EX	0	0.00
Arecaceae	Cocos nucifera L.	Na er ji li	Fruit	2-Heptanone, 2-manonnone, dodecyl acid, n-amyl butyrate, γ-decanolactone	HP, Po	Tonifying brain, psychosis, hypochondria, tocolsysis	It cannot be digested easily	OR, EX	2	0.02
Araliaceae	Panax ginseng C.A.Mey.	A dai mu ge ya	Root	Panaxyol, elemene β-aromadendrene, tetradecanoic acid, cetylic acid	D, HP	Neurasthenia, amnesia, vasodilation, anti-shock, anti-hypertension, promoting metabolism	It cannot be eaten with helleborus thibetanus	OR	0	0.00
Araliaceae	Panax notoginseng (Burk) F. H. Chen	San qi	Root	Spathulenol, heptane, γ-sitosterol, panaxyol, ethyl linolenate	D, Po, Pi	Dilate the coronary arteriae, increased coronary flow, resisting acute myocardial, ischaemic injury, anti-hypertension, haematolysis	/	OR, EX	0	0.00
Aristolochiaceae	Asarum europaeum L.	A sa rong	The whole plant	Asarone, d-asarone asarylaldehyde, 1-pinene, eugenol, methyleugenol, bomylacetate	HP, D, Po	Local anaesthesia, antipyretic analgesic, anti-bacterial, anti-hypertension	Harmful to liver, Remedy: raisin grape or sophora flower	OR, EX	1	0.01
Brassicaceae	Brassica juncea (L.) Czernet Goss	Ke zi li ke zha	Seed	Dolomene, methyl-iso-rohdanate, butyl isothiocyante, propyl isorhodanate, benzene methyl, isocyante	Pou	Anti-bacterial, increase appetite, improve blood circulation, expectorant emetic	/	OR, EX	0	0.00
Brassicaceae	Sinapis alba L.	A ke le zha	Seed	/	Pou		Excessive oral can cause headache, Remedy: granulated sugar	OR, EX	2	0.02
Burseraceae	Boswellia carterii Birdw	Kun du er	Resin	Pinene, dipentene, α,β-phellandrene	HP, Po, Pou	Anti-Inflammatory, enhance memory, bronchictasia, aco-sodyne, caoachylia	Excessive oral can cause headache	OR, EX	0	0.00
Compositae	Artemisia absinthium L.	A qi ke ai man	Leaves	Thujone, thujol	S, D, T	Laryngopharyngitis, amygdalitis typhoid, fever, hepatitis	Excessive oral can cause headache, Remedy: anisum	OR, EX	3	0.03

(continued)
Family	Latin names	Local names	Parts used	Main chemical composition of volatile oil	Administration form	Traditional therapeutic indications	The adverse reactions and remedy	Way of administration	Use report	UV
Compositae	Artemisia argyi L. et Vant	Ai man	Leaves	Phellandrene, cadinene, thujyl alcohol	D, S, Pou	Anti-bacterial, antihistalgia, oedema, dys-tasia, olibacrinosis	Excessive oral can cause headache, harmful to kidney, Remedy: anisum, mastiché	OR, EX	0	0.00
Compositae	Artemisia rupestris L.	Yi zi qiu ai mi ni	The whole plant	Linalool, p-cymene, α-terpineol, β-pine terpinen-4-ol, α-pinene	D, S, Pi	Anti-anaphylaxes, cold, fever, headache, stomach ache, hepato-tis	/	OR, EX	0	0.00
Compositae	Aucklandia lappa Dence.	Ku si tai	Root	β-Elemene, globulol, α-muurolene, dehydrcocurs lactone, costunolide	HP, S, Po	Appetizing, acesodyne, insect repellent, aphoediosis, hepatalgia pneumalgia, anti- allergic	Harmful to bladder and lungs, Remedy: anisum, flos roseae rugosae, maccsecute	OR, EX	4	0.05
Compositae	Carthamus tinctorius L.	zha sang za qie qie	Flower	Decahydrate, 3,3-dimethy-3-hept-ane, 2,2,4-trimethyl-3-amyliketone, octane	D, HP, S	Irregular menstrual, impotence, asthma, leucodema, eczema	Excessive oral can cause headache, harmful to gastroitis and throat disease, Remedy: anisum and honey	OR, EX	0	0.00
Compositae	Cichorium intybus L.	Ka si ni	The whole plant	Gichorin, dixacytly, furaldehyde, furan lactate, maltol	S, D	Hepatitis, gastritis, jaundice, spleanaux, oedema	Excessive oral can cause cough, Remedy: white sugar or viola bahanicans maxima	OR, EX	7	0.08
Compositae	Dendranthema morifolium (Ramat.) Tzvel.	Ju hua gu li	Capitulum	α-verbenal, bomyl acetate, cinenile, (+)-zingibrenene, cuhenol, α-firnene	D, S	Disintoxication, anti-pruritic liver heat, ophthalmodynia, detumesence, anti-bacterial	Harmful to cold property of body, Remedy: fennel	OR	0	0.00
Cucurbitaceae	Cucumis melo L.	Kuo hun	Fruit, seed, pedicel	Ethyl acetate, 2-methylbutanol, 2-phenethyl alcohol, 2-methyl-1-propanol, 1-heptanol	D, S	Dry stool, dysuria, emaciation, stomach discomfort, quench one's thirst	Excessive oral can cause diarhoea, fever and various of eye diseases, Remedy: pomegranate juice, honey, mastic, rhizoma zingiberis	OR	0	0.00
Cucurbitaceae	Cucurbita moschata L.	Kuo ke ka wu ru he	Seed	Linoleic acid, oleic acid, palmitic acid, stearic acid, linolenic acid, myric acid	Po, cataplasm	Fever, oedema, acute pneumonia, insect repellent, anti-schistosoma	Harmful to cold property of body, Remedy: fennel, black pepper	OR	0	0.00
Cupressaceae	Sabina vulgaris Antoine	A i cha meiwei si	Cone	Sugiol, deoxyropyphiyl-lotaiin, sabina coumarin, β-sitosterol, myristic acid lactone	D, S, T, Po	Amanoitohea, stomach cold, abscess, black shading, gingival erosion	Harmful to lungs Remedy: tragacanth gum, cannot be used by pregnant woman, gastross and throat disease, Remedy: galangal, honey, Young girl and unmarried young woman had not to smell	OR, EX	0	0.00
Elaeagnaceae	Elaeagnus angustifolia L.	Ji ge de qie qi ke	Flower	Phenethyl alcohol, methyl cinnamate, palmitic acid, ethyl palmitate, ethyl deate, nonadecanoc acid	S, Pou	Inhibited sexual desire, asthma, pectoralgia, prevent disease	/	OR, EX	0	0.00

(continued)
Family	Latin names	Local names	Parts used	Main chemical composition of volatile oil	Administration form	Traditional therapeutic indications	The adverse reactions and remedy	Way of administration	Use report	UV
Elaeagnaceae	Elaeagnus rhamnoides subsp. sinensis Rouxi	Ji hang	Fruit	n-Tetradecanal, n-pentadecanal, 1,3-dihyroxynon-9-ene, α,β-limonene, 1,6-dihydroxy-7-nonenol	S, D	Anti-tussive, anti-emetic, relieving asthma, anti-hypertension, calcidiol, increase vitamin	Deleteriousness Remedy/	OR, EX	0	0.00
Ephedraceae	Ephedra equisetina Bunge	Zha kang da	Herbaceous stem, root	4-Terpineol, butylated hydroxytoluene, patchouline, octyl pyridazine ring, (4R)-naphthalene	D, S, Po	Cough, relieving asthma, cold, pneumonia, night sweat, diarrhoea, skin and external diseases	Deleteriousness, excessive oral can	OR, EX	0	0.00
Euphorbiaceae	Rauvolfia communis L.	Yi nai le pi ti ou ru he	Seed	Rcinolic acid, glyceride, isopropyl nicotinic acid, palmitic acid, octadeacenoic acid	Pi, HP, Pou	Facial paralysys, arthritis, cough, headache, celldomyia, astecion, cerebral haemorrhage	Deleteriousness, excessive oral can decreased digestive function, cause vexation, naupatha, vomit	OR, EX	0	0.00
Gentianaceae	Gentiana scabra Bunge	Jin ti ya na	Root, rhizome	Methyl benzenecarboxylate, 1-octadecene, 1-hexadecane, 9-ecosol ene, 3-nitro-1,2-methylthiatic acid	D, Pi, Po	Cocodylina, detoxification, demutemacene, acesodyne, paralysis, rables	Harmful to hot property of chest of body Remedy: centipede	OR, EX	1	0.01
Iridaceae	Crocus sativus L.	Zai fa er	Stigma	Palmitic acid, palmitoleic acid, oleic acid, linoleic acid, linolenic acid, β-sitosterol	HP, S, D	Dismayed, insomnia, congestion, amenorrhoea, anti-hypertension, heart disease, hysteroptosia, vitiologia	Harmful to kidney, can cause inappetence Remedy: anisum, vinagar syrup, amur corktree	OR, EX	21	0.24
Lamiaceae	Agastache rugosa (Fisch. et Mey.) O. Kuntze	Pin nai	Aerial part	Methylchavicol, anethole, anisaldehyde, patchouliacohol, β,β-pinene, d-linenone	Po, flower paste, S	Neurasthenia, gastro-intestinal disease, anti-hypertension, anemofrigid headache, toothache, eneache	Excessive oral can cause vertosity, dry throat Remedy: celery	OR, EX	2	0.02
Lamiaceae	Dracocephalum moldáva L.	Ba de ran ji bu ya qi ne	The whole plant	Citral, geraniol, nerol, citronellol, thymol	D, S, lotion	Heart disease, vexation, dizziness, cough asthma, detoxification, halitosis	Harmful to hot property of body Remedy: acetic acid syrup	OR, EX	7	0.08
Lamiaceae	Lavandula angustifolia Mill.	Wu si tu hu du si	Aerial part	Geraniol, safrole, carvacrol, linalool, citonellor	Essential oil	Nervous system disease, paralysis, amnesia, melancholia, arthalgia	Harmful to hot property of body Remedy: acetic acid syrup	OR, EX	7	0.08
Lamiaceae	Melissa officinalis L.	Ba de ran ji bu ya qi ni	The whole plant	Citral, crenol, gerasioli, linalool	S, Pou, A	Sterilization, stenocardia, anti-hypertension, anti-sepsis insect repellent	Excessive oral can cause ribs pain Remedy: gummi arabicum, mastic	OR, EX	0	0.00
Lamiaceae	Mentha canadensis L.	Ya li pu zi	The whole plant, leaves	Methyl, menthone, thymol, canacrol, β-eugenolic acid,	HP, S, Pou	Amenorrhoea, difficult urination, abdominal pain, expectorant	Harmful to anus Remedy: gummi arabicum, grape vinegar	OR, EX	4	0.05

(continued)
Family	Latin names	Local names	Parts used	Main chemical composition of volatile oil	Administration form	Traditional therapeutic indications	The adverse reactions and remedy	Way of administration	Use report	UV
Lamiaceae	Ocimum album L.	Ya wa re yi han	The whole plant	Caryophylllic acid, eugenol, caryophyllene, methylcinnamate	D, S, Po, MO	Anti-bacterial, anti-inflammatory, anti-viral (Jirovetz et al. 2009)	Excessive oral can cause dizziness, remedy: grape vinegar, cucumber, purslane	OR, EX	0	0.00
Lamiaceae	Ocimum basilicum L.	Re yi han	Aerial part, seed	Ocimene, 1,8-cineole, linalool, geranial, methyl cinnamate	D, S, Pou	Hepatopathy, cardiomus, melanodinia, paralysis, arthralgia, dianhaoa (Dhima et al. 2010)	Harmful to eye, can reduce vision, Remedy: grape vinegar or purslane	OR, EX	1	0.01
Lamiaceae	Ocimum gratissimum L. var. suave (Willd.) Hook. f.	Pai ran ji mu xi ke	The whole plant	3-Haxen-1-ol, thujene, sabine, 1,8-cymene, linalool, copaene	D, S	Liver vacuity, palpitation, cold, antibiotic, mastitis, asthmatic asthma, expectorant (do Nascimento Silva et al. 2016)	Excessive oral can cause headache, stomach acid reflux, remedy: grape vinegar, viola tianshanica maxim	OR, EX	2	0.02
Lamiaceae	Origanum majorana L.	Mai er zan zhu xi	The whole plant	Thymol, carvacol, geranyl acetate, 1,8-pinene, linalool	D, S	Cold headache, palpitation, peripheral facial paralysis, intestinal obstruction (Hajlaoui et al. 2016)	Harmful to kidney bladder, remedy: purslane, chrysanthemum	OR	0	0.00
Lamiaceae	Petilia frutescens (L.) Britt. var. acuta (Thum.) Kudo	Ba lan gu	The whole plant	Perillaldehyde, eisihottzia alcohol, menthaol, eugenol, linalool, olivil	D, Po	Heart deficiency, palpitation, vomitus gravidarium, threatened abortion, headache, chest tightness (Chen et al. 2004)	Harmful to stomach, remedy: white crystal sugar	OR	1	0.01
Lamiaceae	Thymus vulgaris L.	A sha	The whole plant	Linalyl acetate, bomyl acetate, caryophyllene, thujanol-4, terpinen-4, borneol	Pou, embrocation	Liver vacuity, gastric asthmia, anuresis, amniousis, facial paralysis, asthma, haemoptysis (Youdim & Deans 1999)	Harmful to pneumoathy, remedy: concretio silicca bumbuse, ageratum	OR, EX	0	0.00
Lamiaceae	Zaphora clinopodioides Lam.	Su ze	The whole plant	β-Pinene, pulegone, β-citronellol, 1,8-cymenene, ylangene	D, MT, lotion	Gold, fever, headache, palpitation, inomnina, oedema, sore throat, rickets, asynodia (Tian et al. 2012)	/	OR, EX	0	0.00
Lauraceae	Cinnamomum cassia Pers.	Da er qin	Dried bark	Cinnamaldehyde, cinnamyl acetate, anisaldehyde, t-cinnamaldehyde, benzaldehyde, sallyaldehyde, (E)-farneisen, (E)-nerolidol, nerolidol	D, HP, Pou	Stomach cold, diarrhea, dyspepsia, palpitation, venositis, hepatic asthma, asynodia (Tian et al. 2012)	Harmful to bladder, remedy: tragacanth gum or asarum europaeusm	OR, EX	19	0.22
Leguminosae	Dalbergia odorifera T. Chen	Jiang xiang	Trunk, heartwood	β-Bisabolone, (E)-farnesene, (E)-nerolidol, nerolidol	Pi, HP, A	Traumatic injury, neurasthma, vexation, thermalgia, pyogenic infections (Ooi et al. 2006)	/	OR, EX	0	0.00
Leguminosae	Glycyrrhiza uralensis Fisch.	Qu qu ke bu ya	Root, rhizome	Nonadecane, laran, ocadecane, (E)-pinane, cetyl epoxyethane, doxysine	T, D, S	Anaudia, asthma, cough, lung diseases, cold and fever detoxification, (Chen et al. 1998)	Harmful to kidney and spleen, remedy: tragacanth gum and flos rosea	OR, EX	13	0.15

(continued)
Family	Latin names	Local names	Parts used	Main chemical composition of volatile oil	Administration form	Traditional therapeutic indications	The adverse reactions and remedy	Way of administration	Use report	UV
Leguminosae	Trigonella foenum-graecum L.	Shu mi sha ou ru he	Seed	Hexanol, heptanone, enanthal, cineole, thymol, camphor	D, Po, HP	anti-tumour, antioxidant (Gong et al. 2015)	Lymphatic tuberculosis, hoarseness, amenorrhoea, hyposexuality, herpes (Goyal et al. 2016)	OR, EX	1	0.01
Moraceae	Ficus carica L.	An ji er	Receptacle of inflorescence	Furfural, phenylacetaldehyde, 2-acetetylpyrrole, ethyl linoleate, linolenic acid, phytol	S, D	Cough, inappetence, constipation, infantile paralyis, irregular menses, cacoctrophy (Harzallah et al. 2016)	Dyspepsia, arthritis, cold headache, pyocutaneous, asynodia, diarrhoea (Bajaj et al. 1993)	OR	1	0.01
Myristicae	Myristica fragrans Houtt.	Zhu you zhi seed	Seed	Sabinene, α,β-pinene, terpinen-4-ol, limonene, bornylene, β-phellandrene	HP, S, Pou	Dyspepsia, arthritis, abdominal distension, cough, headache, toothache, anti-inflammation	Harmful to hot property of body Remedy: eat with coriander, Harmful to liver and lungs Remedy: eat with honey, viola tianshanica maxim	OR, EX	15	0.17
Myrtaceae	Myrtus communis L.	Ai bu li a si	Fruit	Pinene, camphene, cineole, cine, geraniol	S, HP, Po	Gingival bleeding, haematuria, diarrhoea, hypermenorrhoea, abscess, trichomadesis (Ebahimbabadi et al. 2016)	Harmful to hot property of body Remedy: viola tianshanica maxim	OR, EX	2	0.02
Myrtaceae	Syzygium aromaticum (L) Merr. et Perry	kai lan fu er	Flower bud	Eugenol, acetyl genesis, humulene, β-caryophyllene	Po, D, HP	Gastric asphonia, dyspepsia, arthritis, paralysis, anemia (Dalai et al. 2014)	Harmful to hot property of body, kidney, and intestines Remedy: gummi arabicum	OR	11	0.13
Nymphaeaceae	Nymphaea candida Presl	Ni lu fa er	Flower	/	D, S, lotion	Heart deficiency, liver vacuity, cough, cold, vaxation, thirsty, anti-hypertension	Harmful to bladder, Remedy: honey, crystal sugar	OR, EX	4	0.05
Papaveraceae	Papaver somniferum L.	kuo ke na er po si ti	Shell	2,4-Nonadienal, 2,4-decene aldehyde, cyclopentadecane, hexanal, docosane	D, Po, S	Cough, insomnia, cephalalgia, haematemesis, hemofacia, kidney injury, diarrhoea (Paul et al. 1996)	Harmful to brain and pneumopathy patients Remedy: honey, fennel, granulated sugar, mastic	OR	17	0.20
Piperaceae	Piper nigrum L.	Mu qi	Fruit	Piperonal, dihydrocarveol, caropyllene oxide, cryptone, phellandrene, cis-p-2,8-menthadienol	HP, Pou, Po	Dyspepsia, abdominal distension, cough, headache, toothache, anti-inflammatory	Harmful to hot property of body, can cause headache, dryness of the throat and lungs Remedy: cold property of oil	OR, EX	14	0.16

(continued)
Family	Latin names	Local names	Parts used	Main chemical composition of volatile oil	Administration form	Traditional therapeutic indications	The adverse reactions and remedy	Way of administration	Use report	UV
Ranunculaceae	*Nigella glandulifera* Freyn et Sint.	Si ya dan	Seed	Thymoquinone, nigellon	HP, Po, injection	Vitiligo, amnesia, tremor, veribosity, bellyache, amenorrhea, oedema (Ghanemi & Boubertakh 2015)	Harmful to hot property of body, Remedy: eat after soaking in the grape vinegar	OR, EX	7	0.08
Ranunculaceae	*Paeonia lactiflora* Pall.	Ke zi li chu hu lu ke	Root tuber	β-Phenylethyl alcohol, citronellol, hexenic aldehyde	HP, Pi, Po	Epilepsy, paralyisis, psychosis, phobia, encephalitis, irregular menses (Wang et al. 2014)	Harmful to pregnant woman Remedy: nectar	OR, EX	0	0.00
Rosaceae	*Agrimonia eupatoria* L.	Ha pai si	The whole plant	3-Hydroxybutyric acid, α-bisabolol, ledoil, tetratriacontane, 2,6-di-tert-butylphenol	D, Po, Pou	Chronic hepatitis, oedema, urination, eczema, alopecia areata	Harmful to spleen and testicle Remedy: anisum	OR, EX	0	0.00
Rosaceae	*Crataegus pinnatifida* Bunge	Du la nai	Fruit	Malic acid, palmitic acid, octadecanoic acid, limonene, chlorogenic acid	D, Po, S	Gastroenteritis, dyspepsia, diarrhoea, dysentery, hepatic asthenia, hyperlipidaemia, (Li et al. 2010)	Harmful to kidney, gastric asthenia and enteropathy, patients, can cause headache, bowel infarction Remedy: anisum, fennel, ligaloes, qizil gulqent	OR, EX	0	0.00
Rosaceae	*Eriobotrya japonica* (Thunb.) Lindl.	Luo ka ti	Fruit	Nerolidol, famesol, camphene, p,ymene, linalool, mycene	S,D	Fever, retch, vexation, thirsty (Ge et al. 2009)	Excessive oral can cause cough Remedy: hot property of food	OR	0	0.00
Rosaceae	*Malus pumila* Mill.	A li ma	Fruit	Farnesene, malic acid, ethyl salicylate, ethyl lactate, citronellol	S	Inappetence, constipation, diarrhoea, hepatic asthenia, gastric asthma (Bai et al. 2016)	Excessive oral can cause typhoid, amnesia, pneumatosis, muscle spasm Remedy: honey, cinnamon	OR, EX	2	0.02
Rosaceae	*Prunus armeniaca* L.	Ou nu ke	Fruit	Terpinenol-4, linalyl formate, ethyl myristate, γ-caprylacetone, isobutyrionic acid	S, infusion	Dry stool, fever, stomach heat, haemorrhoids, thirsty (Lee et al. 2014)	Harmful to elderly persons and gastritis of insufficiency-cold patients Remedy: granulated sugar, anisum, ajo-wan-caraway seed	OR	0	0.00
Rosaceae	*Prunus domestica* L.	Ai nu la	Fruit	/	Extract, D.S	Fever, typhoid fever, pulmonary tuberculosis, tussication, acute laryngitis, diarrhoea, vitamin C deficiency (Baih et al. 2013)	Harmful to cold property of body, harmful to brain, gastritis patients remedy: mastic, honey water	OR	0	0.00
Rosaceae	*Prunus persica* (L.) Batsch	Sha pi tuo li	Fruit	Malic acid, citric acid	D, Jam agent, MO	Dry stool, typhoid fever, gastric asthenia, hepatic asthenia, thirst (Han et al. 2015)	Harmful to cold property of body Remedy: honey	OR, EX	0	0.00
Rosaceae	*Pyrus sinkiangensis* Yu	Nai xi pu ti	Fruit	Ethyl butyrate, ethyl caprate, hexanol, ethyl palmitate, α-farnesene	S,D	Stomach heat, thirsty, coprostasis, weak health	Harmful to cold property of body and gastric asthenia patients	OR	0	0.00

(continued)
Family	Latin names	Local names	Parts used	Main chemical composition of volatile oil	Administration form	Traditional therapeutic indications	The adverse reactions and remedy	Way of administration	Use report	UV
Rosaceae	Rosa chinensis Jacq.	Ai ti ni gu li	Flower bud	Geraniol, nerol, citronellol, coriandrol	Flower paste	Neurasthenia, gloomy, amenorrhea, anti-bacterial	Remedy: fennel, ginger	OR	0	0.00
Rosaceae	Rosa rugosa Thunb.	Ke zi li gu li	Petal	Linalool, linalyl formate, l-limonool, citronenyl formate, l-damasone, roseoxide	D, T	Hepatitis, neurasthenia, pilpitation and insomnia, megism, coproprostasis, myocarditis	Excessive oral can cause sexual function decline	OR, EX	19	0.22
Rutaeeae	Citrus limon Burm.	Li meng	Fruit	d-limonene, citral, gerangl-acetate, linalyl-acetate	S, D, Pou	Dyspepsia, diarrhoea, nausea, vomit, gastric asthma, black shading	Harmful to cold property	OR	1	0.01
Rutaeeae	Citrus medica L.	Tu run ji po si ti	Pericarp	Hesperidin, nobeletin, l-pherellamide, l-terpinene, cineole, camphene	D, S, Po	Dyspepsia, diarrhoea, nausea, vomit, gastric asthma, black shading	Excessive oral can cause hot property of body headache	OR, EX	0	0.00
Rutaeeae	Ruta graveolens L.	Suo za bi	The whole plant	l-Pinene, linalool, camphene, c-cymene, cineole, camphene	HP, D, Po	Dysuria, arthralgia, otalgia, convulsion, menstrual disorder, mental decline, paralyisis, vitiligo	Harmful to bladder	OR, EX	2	0.02
Rutaeeae	Zanthoxylum bungeanum Maxim.	Ka ba bai qi ni	Pericarp	Limonene, cumc alcohol, geranool, estragole, chavicol, methylethether	HP, Po, S	Dyspepsia, gomphaxis, otalgia,resholdema, local anaesthesia, anti-inflammatory, insect repellent	Harmful to bladder	OR, EX	3	0.03
Schisandraceae	Illicium verum Hook.f.	Sha ka li ba di yang	Fruit	Anethole, methylchavicol, safrole, 1,8-cineole, aubepine, fendone	D, Pou	Gastric asthenia, emesis, abdominal pain, lumbago due to deficiency of the kidney	Excessive oral can cause headache	OR, EX	0	0.00
Smilacaceae	Smilax china L.	Qie bi qi ni	Rhizome /	/	HP, Po, S, D	Headache, paralyisis, melancholia, arthralgia, hepatic asthenia, ahepnoea, scrotocele	Harmful to hot property of body	OR	3	0.03
Solanaceae	Lycium chinense Mill.	A li ha ti	Fruit	Ionone, benzil alcohol, phenethyl alcohol, methyl linoleate, methyl linoleate, 7,10,13-hexadeconetraenonic acid methyl ester	D, S	Hypophthalmia, spermatorrhoea, hepatic asthenia, neurosis, hyperglycaemia, hyperlipidaemia	Harmful to loosen stoo patients	OR	0	0.00
Styracaceae	Styrax benzoin Dryand.	Luo bang	Balm	Liquid storax, cinnamyl benzoate, vanilline, benzoic acid, a-cedrene	Po, Pi, O	Cold, cough, asthma, bronchictasis, kidney calculi, pyotaneous, haemorrhage, asyndia	Harmful to hot property of body	OR, EX	0	0.00
Family	Latin names	Local names	Parts used	Main chemical composition of volatile oil	Administration form	Traditional therapeutic indications	The adverse reactions and remedy	Way of administration	Use report	UV
-----------------	----------------------	---------------------	------------	---	--------------------	--	--	-----------------------	------------	-----
Thymelaeaceae	Aquilaria agallocha	Ou di yin di	Resin wood	α-Agarofuran, α-agarol, agarapirin, jinkoheremol, kusunol, didikaranone	S, D, Po	Gastric atonia, arthralgia, halitosis, cough, asthma, hypnosis, (Bhuiyan et al. 2008)	Harmful to hot property of body: clove, cassia twig, saffron, dushmanjipie fruit	OR, EX	4	0.05
Vitaceae	Vitis vinifera L.	Ou su he si zi ou zu mi	Fruit	β-Myrcone, myrcene, hexenoic aldehyde, geran acid, p-toluene	D, S, HP	Constipation, hepatic atonia, asydonia, melancholia	Harmful to hot property of body: remedy: acid fruit	OR	2	0.02
Zingiberaceae	Amomum tsao-ko	Chong ka ke le	Fruit	α-β-Pinenone, α-terpinol, nerol, geranil, linalool	D, D, HP	Stomach cold, anorexia, ventrity, diarheoa, loose stool	Harmful to lungs: remedy: cube sugar excessive oral harmful to intestinal tract	OR	7	0.08
Zingiberaceae	Curcuma longa L.	Ze qi wai	Root	Turmerone, arturmer(ne, zingiberene, phellandrene, sabinene	D, HP, Po	Traumatic injury, oedema, bronchadhe, cineole, cough, cataract, trachoma, asydona, dermatoasis	Harmful to heart: remedy: lemon juice, orange juice	OR, EX	0	0.00
Zingiberaceae	Elettaria cardamomum	La qin da nai	Fruit	Terpineol-4, α-terpineol, terpinylacetate, cineole	D, HP	Gastric atonia, oestersmia, dyspepsia, ventrity, vomit, nausea, belljache, palipitate	Harmful to lungs: remedy: tragacanth gum, concreto silicea bambuse	OR, EX	4	0.05
Zingiberaceae	Zingiber officinalis	Zan le bi li	Rhizome	α-zingiberene, geranil, geranil, isogingere-none, hexahydocurumin, 6-gingerol	Pi, Po, Pou	Gastric atonia, anemofrigid cold leucorrhage, asydonia, loose stool	Harmful to throat: remedy: honey	OR, EX	12	0.14

Administration form: S: syrup; HP: honey paste; Pou: poultice; Pi: pill; Po: powder; D: decoction; A: apozem; MO: medicinal oil; MT: medicinal tea; T: tablet.
Way of administration: OR: oral EX: external.
/No up-to-date report was there on these aspects.
characteristics that are conducive to supplying the body with necessary nutrients and particular trace elements.

In our survey, plants such as lavender, saffron crocus and mint were found to be commonly used. Lavender essential oil made from lavender plants is good for nervous system disease, paralysis, amnesia, melancholia and arthralgia. Meanwhile it has anti-inflammatory and anti-bacterial functions. The lavender essential oil treatment balanced the inflammatory signaling induced by \textit{S. aureus} by repressing the principal pro-inflammatory cytokines and their receptors and inducing the heme oxygenase-1 gene transcription. The essential oil can stimulate the human innate macrophage response to a bacterium, which is responsible for one of the most important nosocomial infection (Giovannini et al. 2016). Saffron crocus is a kind of common, traditional precious herb among local aromatic medicinal plants. Saffron crocus have anti-oxidant, analgesic, anti-inflammatory, anti-diabetic and several other properties. The kaempferol 3-O-rutinoside and kaempferol 3-O-glucoside from saffron crocus treatment increased the level of total protein and prevented the carbon tetrachloride-induced increases in serum aspartate aminotransferase, serum alkaline phosphatase and hepatic malondialdehyde levels. And, it has protective effects against acute carbon tetrachloride-induced oxidative liver damage (Wang et al. 2015). Mint presents a wide range of uses; its basic pharmacology involves anti-pyretic and anti-sweating effects. Mint is both a medicinal and culinary herb, employed in mint condiments, spices, teas and so on. There were many aromatic plants identified during this survey that present unique characteristics and play specific roles in the medical community.

Intake of aromatic medicinal plants

According to the results of our study, the most common methods of application are oral and external, accounting for 72.2% of applications, while 23 of the aromatic plants can be used as oral medicines (26.8%), whereas only one plant, \textit{Nerium indicum} Mill., was reported to be employed only as an externally applied drug (Qian et al. 2005). Under some circumstances, oral and external treatments can better cure disease.

Table 2. Frequency of plant species by family used for medicinal purposes in the study area.

Family	Frequency	Family	Frequency
Acoraceae	1	Leguminosae	3
Amaryllidaceae	1	Gentianaceae	1
Apiaceae	10	Moraceae	1
Apocynaceae	1	Myristicaceae	1
Araliaceae	2	Myrtaceae	2
Areaceae	2	Nymphaeaceae	1
Aristolochiaceae	1	Papaveraceae	1
Brassicaceae	2	Piperaceae	1
Burseraceae	1	Ranunculaceae	2
Compositae	7	Rosaceae	10
Cucurbitaceae	2	Rutaceae	4
Cupressaceae	1	Schisandraceae	1
Elaeagnaceae	2	Smilacaceae	1
Ephedraceae	1	Solanaceae	1
Euphorbiaceae	1	Styracaceae	1
Iridaceae	1	Thymeleaceae	1
Lamiaceae	12	Vitaceae	1
Lauraceae	1	Zingiberaceae	4

Figure 2. Aromatic Uyghur medicinal plants and field interview. (a) \textit{Gentiana scabra} Bunge, (b) \textit{Papaver somniferum} L., (c) commercially available \textit{Artemisia rupestris} L., (d) field interview about \textit{Ziziphus clinopodioides} Lam., (e) field interview about aromatic Uyghur medicinal plants in ethnological hospital, (f) field interview about \textit{Melissa officinalis} L. with retired ethnological doctor.

Figure 3. Frequency of aromatic Uygur medicinal plants parts used by the village people of Xinjiang.
Additional description of introduced aromatic medicinal materials

Families and plant parts

In the present study, some of the medicinal plants we investigated were not native materials. We identified 34 introduced plants, belonging to 24 families, coming from different regions, such as surrounding areas of Europe and the Mediterranean (Souza et al. 2014). Zingiberaceae was the family accounting for the greatest percentage of introduced medicinal materials (25.00%), followed by Rutaceae (20.83%), Lamiaceae (16.67%), Rosaceae (12.50%). Fruits (22.73%) are the most widely used part of the plant, followed by the whole plant (15.91%), roots (13.64%) and seeds (6.82%).

Remedy of aromatic plants, administration form and route

Aromatic plants are vital as remedies and in the economic development of Xinjiang. Introduced plants can be used to treat diseases such as colds, gastric diseases and asthma. The most important form of administration of these plants is decoction, similar to findings for native medicinal plants, while the oral administration route is used for every plant. Compared with the native plant species employed in Xinjiang, some introduced plants present specific functions in local use (Di Novella et al. 2013).

Conclusions

This study first recorded use information on aromatic plants employed in traditional Uyghur medicine in Xinjiang, demonstrating that Xinjiang possesses various raw medicinal herbs. A total of 86 kinds of aromatic plants used by local people belonging to 36 genera were identified, and these plants are still commonly used in daily life. To evaluate the value of the medicinal plants in the target region, the UV was employed in a quantitative analysis. Many plants are used to relieve coughs, eliminate phlegm in treating cardiovascular diseases, colds, haemorrhoids, constipation, stomach diseases, diabetes, urinary diseases, respiratory conditions and throat disease. Therefore, Xinjiang is an area where indigenous medicinal plants present diverse uses, and a sound dimensional medical healthcare treatment system has been developed in this region.

However, some of the traditional Uyghur medicines used in this region still lack physiotherapeutic evidence. Hence, analysis of the chemical constituents and pharmacological activities of certain Uyghur medicines are necessary to explore the potential of Uyghur medicinal plants. This study also provides protection for the local medicinal plant group. Some Uyghur medicinal plants are on the verge of extinction because of frequent natural disasters and the development of urbanization, and the UV of these plants therefore cannot be presented. Thus, the development of further strategies for the conservation of these medicinal plants should be of priority.

Acknowledgements

We present our sincere gratitude for the enthusiasm of the local people interviewed in this study. Not only did they offer us a considerable amount of information about Uyghur medicine, but they also helped us in the protection of plants. We appreciate that they helped the present research to be completed in a satisfactory way, contributing to laying the foundation for further studies in the Uyghur region of Xinjiang.

Disclosure statement

The authors report no conflicts of interest. The authors alone are responsible for the content and writing of this article.

Funding

This work was financially supported by the China Russian France International Cooperation Research Project [Grant no: 87E2A0313397].

Figure 4. Administration form of aromatic Uygur medicinal plants by village people to treat various ailments.
Pei Y, Wang S, Wang W, Zhou Y, Zhao H, Jia L. 2014. Isolation and structure-activity relationship of the antioxidant chemical constituents from the bark of some plants of the Elaeagnaceae family as a natural source of essential oils. J Ethnopharmacol. 157:54–62.

Rahim H, Khan MA, Sadiq A, Khan S, Chishti KA, Rahman IU. 2015. Comparative studies of binding potential of the essential oils of natural populations of Tunisian Daucus carota L. (Apiaceae). Chem Biodivers. 10:2278–2290.

Raghav R, Cui MY, Zhang QL, Zhang MY, Yu YM, Zhou XY, Yu ZG, Zhao YL. 2016. Anesthetic constituents of Zanthoxylum bungeanum Maxim. pharmacokinetic study. J Sep Sci. 14:2728–2735.

Ru W, Wang D, Xu Y, He X, Sun YE, Qian L, Zhou X, Qin Y. 2015. Chemical constituents and bioactivities of Panax ginseng (CA Mey.). Drug Discov Ther. 9:23–22.

Sadak L, Ardekani MRS, Ebad N, Yakhchali M, Dana AR, Masoomi F, Khamani M, Ramezany F. 2016. Review of scientific evidence of medicinal convey plants in traditional Persian medicine. Pharmracogn Rev. 10:33.

Seo CS, Lim HS, Jeong SJ, Shin HK. 2015. Anti-allergic effects of sesquiterpene lactones from the root of Aucklandia lappa Decne. Mol Med Rep. 12:7789–7795.

Settanni L, Randazzo W, Palazzolo E, Moschetti M, Aleo A, Guarrasi V, Mammina C, San Biagio PL, Marra FP, Moschetti G, Germana MA. 2014. Seasonal variations of antimicrobial activity and chemical composition of essential oils extracted from three Citrus limon L. Burm. cultivars. Nat Prod Res. 28:383–391.

Shakeri A, Sehebkar A, Javadi B. 2016. Melissa officinalis L: a review of its traditional uses, phytochemistry and pharmacology. J Ethnopharmacol. 180:204–223.

Shanex A, Tan C, Xiao X, Wang D, Wang Y, Yang Y, Pan H. 2012. Ethnoveterinary survey of medicinal plants in Ruoergai region, Sichuan province, China. J Ethnopharmacol. 142:390–400.

Shin JS, Ryu S, Jang DS, et al. (2016). Anomum tsao-ko fruit extract suppresses lipopolysaccharide-induced inducible nitric oxide synthase by inducing heme oxygenase-1 in macrophages and in septic mice. Int J Exp Pathol. 97:39–403.

Song LR, Hu L, Hong X, Wang JH, Yin L, Liu XH, Xu HQ, Li Y, Chen RS, Hang AW, et al. (2005). Chinese material medica (Uyghur Medicine Volume). Shanghai: Shanghai Scientific and Technical Publishers. p. 45–409.

Souza RKD, da Silva MAP, de Mendes IRA, Ribeiro DA, Bezerra LR, de Almeida Souza MM. 2014. Ethnoveterinary pharmacology of medicinal plants of caras, northeastern Brazil. J Ethnopharmacol. 157:99–104.

Tian J, Ban X, Zeng H, He J, Chen Y, Wang Y. 2012. The mechanism of antimicrobial action of essential oil from dill (Anethum graveolens L.) on Aspergillus flavus. Plos One. 7:e30147.

Tian S, Yu Q, Wang D, Upur H. 2012. Development of a rapid resolution liquid chromatography-diode array detector method for the determination of three compounds in Ziziphus clinopodioides Lam from different origins of Xinjiang. Pharmacog Mag. 8:280–284.

Vandebroek I, Balick MJ. 2012. Globalization and loss of plant knowledge: a review of its pharmaceutical, ecological, and cultural aspects. J Pharmaceut Biomed. 73:476–484.

Vohora SB, Shah SA, Dandiya PC. 1990. Central nervous system studies on an ethanol extract of Acorus calamus rhizomes. J Ethnopharmacol. 258:1–32.

Wu-bao W, Han-kui W, Hang B, Akber Aisa H. 2005. Flavonoids in Sabina vulgaris. Anticancer Drugs. 16:471–474.

Wang QS, Gao T, Cui YL, Gao LN, Jiang HL. 2014. Comparative studies of paenolinor and alfibolin from Paonia lactiflora on anti-inflammatory activities. Pharm Biol. 52:1189–1195.

Wang T, Guo R, Zhou G, Zhou X, Kou Z, Sui F, Li C, Tang L, Wang Z. 2016. Traditional uses, botany, phytochemistry, pharmacology and toxicology of Panax notoginseng (Burk.) FH Chen: a review. J Ethnopharmacol. 188:234–258.

Wang W, Wang H, Zhang Y, Yu Y. 2013. In vitro antioxidant and antimicrobial activity of anhydroxy extracts from Dendranthema morifolium (Ramat.) Tzvel. and Chrysanthemum indicum L. J Med Plants Res. 7:2657–2661.

WenXian, T, Tang C, Zhang H. 2015. Hepatoprotective effects of kaempferol 3-O-rutinoside and kaempferol 3'-O-glucoside from Carthamus tinctorus L. on CCl4-induced oxidative liver injury in mice. J Food Drug Anal. 23:310–317.

Wang YM, Ren AX, Xiao YH, Pan CX, Cui SM, Yu MG, Ma LX, Bai Y, Han FY, He JM, et al. 2013. Medicinal and aromatic plants. Beijing: Science Press. p. 16; Elsevier Science Pub House; 63:285–290.

Wenqiang J, Shufen L, Ruixiang Y, Yanfeng H. 2006. Comparison of composition and antimicrobial activity of Artemisia argyi Levl. et Vant
inflorescence essential oil extracted by hydrodistillation and supercritical carbon dioxide. Nat Prod Res. 20:992–998.

Yin Q, Xu XJ, Hu GM, Liang XH, Han L. 2011. The analysis of electrolyte and the relative factors of hypertension among Uyghur people in Hetian, Xinjiang. Int J Cardiol. 152:539.

Yildiz H. 2016. Chemical composition, antimicrobial, and antioxidant activities of essential oil and ethanol extract of Coriandrum sativum L. leaves from Turkey. Int J Food Prop. 19:1593–1603.

Yoshizawa C, Kitade M, Mikage M. 2004. Herbological studies on Chinese crude drug Ma-huang. Part I-On the botanical origin of Ma-huang in ancient China and the origin of Japanese Ma-huang. Yakushigaku Zasshi. 40:107–116.

Youdim KA, Deans SG. 1999. Dietary supplementation of thyme (Thymus vulgaris L.) essential oil during the lifetime of the rat: its effects on the antioxidant status in liver, kidney and heart tissues. Mech Ageing Dev. 109:163–175.

Zhang LL, Tian K, Tang ZH, Chen XJ, Bian ZX, Wang YT, Lu JJ. 2016. Phytochemistry and pharmacology of Carthamus tinctorius L. Am J Chin Med. 44:197–226.

Zhang W, Zhang Y, Yuan X, Sun E. 2015. Determination of Volatile Compounds of Illicium verum Hook. f. Using simultaneous distillation-extraction and solid phase microextraction coupled with gas chromatography-mass spectrometry. Trop J Pharm Res. 14:1879–1884.

Zarai Z, Chobba IB, Mansour RB, Bekir A, Gharsallah N, Kadri A. 2012. Essential oil of the leaves of Ricinus communis L.: in vitro cytotoxicity and antimicrobial properties. Lipids Health Dis. 11:102.

Zheng Y, Xie Z, Jiang L, Shimizu H, Drake S. 2006. Changes in hol-ridge life zone diversity in the Xinjiang Uyghur Autonomous Region (XUAR) of China over the past 40 years. J Arid Environ. 66:113–126.

Zia-Ul-Haq M, Shahid SA, Ahmad S, Qayum M, Khan I. 2012. Antioxidant potential of various parts of Ferula assafoetida L. J Med Plants Res. 6:3254–3258.