Macroscopic Degeneracy and Order in a 3D Plaquette Ising model

Marco Mueller, Wolfhard Janke, Des Johnston
SPLDS, Pont-a-Mousson, May 2015
Plan of talk

A 3D plaquette Ising model with a highly degenerate low-T phase

Consequences for FSS at first order transition

Consequences for order parameter
A 3D Plaquette Ising action

3D cubic lattice, spins on vertices

\[H = - \sum_{ijkl} \sigma_i \sigma_j \sigma_k \sigma_l \]

Not edges

\[H = - \sum_{ijkl} U_{ij} U_{jk} U_{kl} U_{li} \]
Plaquette Hamiltonian Groundstates: Single cube
Ground states, Low T: Lattice

Persists into low temperature phase (Wegner, Pietig)

Degeneracy 2^{3L}
Consequences: FSS
First order FSS: Boundary Conditions

Pirogov-Sinai Theory (Borgs/Kotecký)

\[Z(\beta) = \left[e^{-\beta L^d f_d} + q e^{-\beta L^d f_o} \right] [1 + \ldots] \]

Fixed boundaries \((1/L \text{ leading term})\)

\[Z(\beta) = \left[e^{-\beta (L^d f_d + L^{d-1} f_o)} + q e^{-\beta (L^d f_o + L^{d-1} f_d)} \right] \]
First order FSS: Exponential Degeneracy

Exponential degeneracy

\[Z(\beta) = \left[e^{-\beta L^d f_d} + 2^3 L e^{-\beta L^d f_o} \right] \]

\[\frac{1}{L^2} \text{ in } d = 3 \]

\[Z(\beta) = \left[e^{-\beta L^d f_d} + e^{(3 \ln 2)L} e^{-\beta L^d f_o} \right] \]
FSS: Specific Heat

Probability of being in any of the states

\[p_0 \propto e^{-\beta L^d \hat{f}_0} \quad \text{and} \quad p_d \propto e^{-\beta L^d \hat{f}_d} \]

Time spent in the ordered states \(\propto qp_0 \)

\[W_o/W_d \simeq q e^{-L^d \beta \hat{f}_o} / e^{-\beta L^d \hat{f}_d} \]

Expand around \(\beta^\infty \)

\[0 = \ln q + L^d \Delta \hat{e} (\beta - \beta^\infty) + \ldots \]

Solve for specific heat peak

\[\beta_{CV}^{\text{max}} (L) = \beta^\infty - \frac{\ln q}{L^d \Delta \hat{e}} + \ldots \]
With \(q \propto 2^{3L} = e^{(3 \ln 2) L} \)

\[
\beta^{C_{\text{max}}}_{V}(L) = \beta^\infty - \frac{\ln q}{L^d \Delta \hat{e}} + \ldots
\]

become

\[
\beta^{C_{\text{max}}}_{V}(L) = \beta^\infty - \frac{3 \ln 2}{L^{d-1} \Delta \hat{e}} + \ldots
\]
Plaquette Hamiltonian fits

\[\beta^{\text{Cmax}} = 0.551221(11) \]
\[\beta^{\text{Bmin}} = 0.551347(7) \]
\[\beta^{\text{eqw}} = 0.551221(11) \]
\[\beta^{\text{eqh}} = 0.551288(14) \]

\[L = 13 \]
Consequences: Order parameter
Magnetization won’t do
Not a gauge theory
Consider anisotropic variant
Suzuki 1973, Jonsson/Savvidy 2000, Castelnovo et.al. 2010

\[H_{\text{aniso}} = -J_x \sum_{yz} \sigma_i \sigma_j \sigma_k \sigma_l - J_y \sum_{xz} \sigma_i \sigma_j \sigma_k \sigma_l \]

Set \(J_z = 0, J_x = J_y = 1 \). No horizontal plaquettes
Anisotropic Model

Define new spins τ from pairs of σ's

$$\tau_{x,y,z} = \sigma_{x,y,z} \sigma_{x,y,z} + 1$$
Anisotropic Model = Stack of $2D$ Ising

\[H_{\text{fuki-nuke}} = - \sum_{x=1}^{L} \sum_{y=1}^{L} \sum_{z=1}^{L} (\tau_{x,y,z} \tau_{x+1,y,z} + \tau_{x,y,z} \tau_{x,y+1,z}) , \]
Anisotropic Model Order Parameter

Single layer

\[m_{2d,z} = \left\langle \frac{1}{L^2} \sum_{x=1}^{L} \sum_{y=1}^{L} \tau_{x,y,z} \right\rangle \]

In terms of original variables

\[m_{2d,z} = \left\langle \frac{1}{L^2} \sum_{x=1}^{L} \sum_{y=1}^{L} \sigma_{x,y,z} \sigma_{x,y,z+1} \right\rangle \]

Add 'em up

\[m_{\text{abs}} = \left\langle \frac{1}{L^3} \sum_{z=1}^{L} \left| \sum_{x=1}^{L} \sum_{y=1}^{L} \sigma_{x,y,z} \sigma_{x,y,z+1} \right| \right\rangle , \]
Isotropic case

Hypothesis: Same order parameter works

Hashizume and Suzuki (2011)

Take layers, add 'em up

\[
\begin{align*}
m_{\text{abs}} &= \left\langle \frac{1}{L^3} \sum_{z=1}^{L} \left| \sum_{x=1}^{L} \sum_{y=1}^{L} \sigma_{x,y,z} \sigma_{x,y,z+1} \right| \right
angle \\
\end{align*}
\]

\[
\begin{align*}
m_{\text{sq}} &= \left\langle \frac{1}{L^5} \sum_{z=1}^{L} \left(\sum_{x=1}^{L} \sum_{y=1}^{L} \sigma_{x,y,z} \sigma_{x,y,z+1} \right)^2 \right
angle
\end{align*}
\]
Isotropic case: Effect of flips

\[m_{\text{abs}}^{z} = \left\langle \frac{1}{L^3} \sum_{z=1}^{L} \left| \sum_{x=1}^{L} \sum_{y=1}^{L} \sigma_{x,y,z} \sigma_{x,y,z+1} \right| \right\rangle \]
Isotropic case: numerical investigation

Strong first order PT

Multicanonical simulation

Correct order parameter: predicts PT point? isotropic?

FSS properties?
Numerical results: order parameters

Order parameter m^x_{abs}

Order parameter m^x_{sq}

m^y and m^z identical to m^x - isotropy restored
Numerical results: scaled susceptibilities

\[\chi(\beta) = \beta L^3 \left(\langle m^2 \rangle(\beta) - \langle m \rangle(\beta)^2 \right) \]

\[\beta \chi_{m_{abs}^x}(L) = 0.551 \, 37(3) - 2.46(3)/L^2 + 2.4(3)/L^3 \]

Susceptibility for \(m_{abs}^x \)

Susceptibility for \(m_{sq}^x \)
Exponential degeneracy gives $\frac{1}{L^2}$ corrections in 3D

Suzuki was right - isotropic model displays Fuki-Nuke order

OP Scaling agrees well with energetic observables
Cases where *ground state* is exponentially degenerate but low-T phase is not: AFM Ising on FCC

Scaling at first order Quantum PTs
G. K. Savvidy and F.J. Wegner, Nucl. Phys. B 413 (1994) 605.

Y. Hashizume and M. Suzuki, Int. J. Mod. Phys. B 25 (2011) 73; Int. J. Mod. Phys. B 25 (2011) 3529.

M. Mueller, W. Janke and D. A. Johnston, Phys. Rev. Lett. 112 (2014) 200601.

M. Mueller, D. A. Johnston and W. Janke, Nucl. Phys. B 888 (2014) 214.

M. Mueller, W. Janke and D. A. Johnston, Nucl. Phys. B 894 (2015) 1.