Abstract—A decoding algorithm for polar codes with binary 16×16 kernels with polarization rate 0.51828 and scaling exponents 3.346 and 3.450 is presented. The proposed approach exploits the relationship of the considered kernels and the Arikan matrix to significantly reduce the decoding complexity without any performance loss. Simulation results show that polar (sub)codes with 16×16 kernels can outperform polar codes with Arikan kernel, while having lower decoding complexity.

I. INTRODUCTION

Polar codes are a novel class of error-correcting codes, which achieve the symmetric capacity of a binary-input discrete memoryless channel W, have low complexity construction, encoding and decoding algorithms [1]. However, the performance of polar codes of practical length is quite poor. The reasons for this are the presence of imperfectly polarized subchannels and the suboptimality of the successive cancellation (SC) decoding algorithm. To improve performance, successive cancellation list decoding (SCL) algorithm [2], as well as various code constructions were proposed [3], [4], [5].

Polarization is a general phenomenon, and is not restricted to the case of Arikan matrix [6]. One can replace it by a larger matrix, called polarization kernel, which can provide higher polarization rate. Polar codes with large kernels were shown to provide asymptotically optimal scaling exponent [7]. Many kernels with various properties were proposed [6], [9], [10], [8], but, to the best of our knowledge, no efficient decoding algorithms for kernels with polarization rate greater than 0.5 were presented, except [11], where an approximate algorithm was introduced. Therefore, polar codes with large kernels are believed to be impractical due to very high decoding complexity.

In this paper we present reduced complexity decoding algorithms for 16×16 polarization kernels with polarization rate 0.51828 and scaling exponents 3.346 and 3.45. We show that with these kernels increasing list size in the SCL decoder provides much more significant performance gain compared to the case of Arikan kernel, and ultimately the proposed approach results in lower decoding complexity compared to the case of polar codes with Arikan kernel with the same performance.

The proposed approach exploits the relationship between the considered kernels and the Arikan matrix. Essentially, the log-likelihood ratios (LLRs) for the input symbols of the considered kernels are obtained from the LLRs computed via the Arikan recursive expressions.

II. BACKGROUND

A. Channel polarization

Consider a binary input memoryless channel with transition probabilities $W\{y|c\}, c \in \mathbb{F}_2, y \in \mathcal{Y}$, where \mathcal{Y} is output alphabet. For a positive integer n, denote by $[n]$ the set of n integers $\{0, 1, \ldots, n-1\}$. A polarization kernel K is a binary invertible $l \times l$ matrix, which is not upper-triangular under any column permutation. The Arikan kernel is given by $F_2 = \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix}$.

An $(n = l^m, k)$ polar code is a linear block code generated by k rows of matrix $G_m = M^{(m)} K^\otimes m$, where $M^{(m)}$ is a digit-reversal permutation matrix, corresponding to mapping $\sum_{i=0}^{m-1} t_i l^i \rightarrow \sum_{i=0}^{m-1} l^{m-1-i} t_i, t_i \in [l]$. The encoding scheme is given by $u_0^{n-1} = u_0^{n-1} G_m$, where $u_i, i \in \mathcal{F}$ are set to some pre-defined values, e.g. zero (frozen symbols), $|\mathcal{F}| = n - k$, and the remaining values u_i are set to the payload data.

It is possible to show that a binary input memoryless channel W together with matrix G_m gives rise to bit subchannels $W_{m,K}(y_0^{n-1}, u_0^{n-1}|u_i)$ with capacities approaching 0 or 1, and fraction of noiseless subchannels approaching $I(W)$ [6]. Selecting \mathcal{F} as the set of indices of low-capacity subchannels enables almost error-free communication. It is convenient to define probabilities

$$W_{m,K}^{(i)}(y_0^{n-1}, |u_0^{n-1}|u_i) = \frac{W_{m,K}(y_0^{n-1}, u_0^{n-1}|u_i)}{2W(y_0^{n-1})} = \sum_{u_0^{n-1}} \prod_{i=0}^{n-1} W((u_0^{n-1} G_m)_{i}|y_i). \quad (1)$$

Let us further define $W_{m,K}^{(j)}(u_0^{n-1} y_0^{n-1}) = W_{m,K}(u_0^{n-1} y_0^{n-1})$, where kernel K will be clear from the context. We also need probabilities $W_1^{(j)}(u_0^{l-1} y_0^{l-1}) = W_{1,F_2^1}(u_0^{l-1} y_0^{l-1})$ for Arikan matrix F_2^1. Due to the recursive structure of G_n, one has

$$W_m^{(s+t)}(u_0^{s+t} y_0^{n-1}) = \sum_{u_0^{s+t-1}} \prod_{j=0}^{l-1} W_m^{(s)}(\theta_K[u_0^{l(s+1)-1} y_0^{l-1}] y_j^{(j+1)^\frac{1}{2}-1}) \quad (2)$$

where $\theta_K[u_0^{l(s+1)-1} y_0^{l-1}] = (u_0^{l(r+1)-1} G_n)_j, r \in [s + 1]$. A trellis-based algorithm for computing these values was presented in [12].
At the receiver side, one can successfully estimate
\[\hat{u}_i = \begin{cases} \arg \max_{u_i \in F_2} W_{m}^{(i)}(u_i, y_0 - 1), & i \notin \mathcal{F}, \\ \text{the frozen value of } u_i & i \in \mathcal{F}. \end{cases} \] (3)
This is known as the successive cancellation (SC) decoding algorithm.

III. COMPUTING KERNEL INPUT SYMBOLS LLR

A. General case

Our goal is to compute efficiently probabilities
\[W_{m}^{(i)}(u_i, y_0 - 1) \] for a given polarization transform \(K^{\otimes m} \).
Let us assume for the sake of simplicity that \(m = 1 \). The corresponding task will be referred to as \(\text{kernel processing} \).
We propose to introduce approximate probabilities
\[\tilde{W}_{m}^{(i)}(u_i, y_0 - 1) = \max_{u_i} W_{m}^{(i)}(u_i, y_0 - 1) \]
\[= \max_{u_i} \prod_{i=0}^{l-1} W((u_i - 1)K)_i|y_i). \] (4)
This is the probability of the most likely continuation of path \(u_0 \) in the code tree, without taking into account possible freezing constraints on symbols \(u_i, i > j \). Note that the same probabilities were introduced in [11], [13], and shown to provide substantial reduction of the complexity of sequential decoding of polar codes.
Decoding can be implemented using the log-likelihood ratios \(S_{m}^{(i)}(u_i, y_0 - 1) = \ln W_{m}^{(i)}(u_i, y_0 - 1) \). Hence, kernel output LLRs \(S_{1,i}, i \in [l] \) can be approximated by
\[S_{1,i} \approx S_{1,i} = \ln \frac{W_{m}^{(i)}(u_i, y_0 - 1)}{W_{m}^{(i)}(u_i - 1, y_0 - 1)} = \max_{u_i} \ln W_{m}^{(i)}(u_i, y_0 - 1) - \max_{u_i} \ln W_{m}^{(i)}(u_i, y_0 - 1), \] (5)
where \(b(a)^t = (b_0^{l-1} . a, b_1^{l-1}) \). The above expression means that \(S_{1,i} \) can be computed by performing ML decoding of the code, generated by last \(l - i + 1 \) rows of the kernel \(K \), assuming that all \(u_j, i < j < l \), are equiprobable.

B. Binary algorithm

Straightforward evaluation of (5) for arbitrary kernel has complexity \(O(2^l) \). However, we have a simple explicit recursive procedure for computing these values for the case of the Arikan matrix \(F_2^{\otimes t} \).
Let \(l = 2^t \). Consider encoding scheme \(c_0^{l-1} = v_0^{l-1} F_2^{\otimes t} \). Similarly to (4), define approximate probabilities
\[\tilde{W}_{m}^{(i)}(v_0, y_0 - 1) = \max_{v_0} W_{m}^{(i)}(v_0, y_0 - 1) \]
and modified log-likelihood ratios
\[S_{m}^{(i)}(v_0 - 1, y_0 - 1) = \ln \frac{\tilde{W}_{m}^{(i)}(v_0 - 1, 0, y_0 - 1)}{\tilde{W}_{m}^{(i)}(v_0 - 1, 1, y_0 - 1)}. \]
It can be seen that
\[S_{m}^{(i)}(v_0^{l-1}, y_0^{l-1}) = Q(a, b), \] (6)
\[S_{m}^{(i+1)}(v_0^{l-1}, y_0^{l-1}) = P(a, b, c), \] (7)
where \(N = 2^h \), \(a = S_{m}^{(i)}(v_0^{l-1} + v_0^{l-1}, y_0^{l-1}), b = S_{m}^{(i)}(v_0^{l-1}, y_0^{l-1}), c = |a| \), \(Q(a, b) = \text{sgn}(a) \text{sgn}(b) \min(|a|, |b|), P(a, b, c) = (-1)^a + b + \) Then the log-likelihood of a path \(v_0^{l-1} \) can be obtained as [14]
\[R(v_0^{l-1}) = \log \tilde{W}_{m}^{(i)}(v_0^{l-1}) \]
\[= R(v_0^{l-1} y_0^{l-1}) + 2 \tau(S_{m}^{(i)}(v_0^{l-1}, y_0^{l-1}), v_0^{l-1}), \] (8)
where \(R(c) y_0^{l-1} \) can be set to 0, \(\epsilon \) is an empty sequence, and
\[\tau(S, v) = \begin{cases} 0, & \text{sgn}(S) = (-1)^v \\ -|S|, & \text{otherwise}. \end{cases} \]
It can be verified that
\[\sum_{\beta=0}^{2^l-1} \tau(S_{m}^{(i)}(v_0^{l-1}), c_\beta) = \sum_{\beta=0}^{2^l-1} \tau(S_{m}^{(i)}(v_0^{l-1}, y_0^{l-1}), v_0^{l-1}), \] (9)
where \(c = v_0^{l-1} F_2^{\otimes j} \).
It was suggested in [15] to express values \(W_{m}^{(i)}(u_i, y_0 - 1) \) via \(W_{m}^{(i)}(v_0, y_0 - 1) \) for some \(j \). One can represent the kernel \(K = T F_2^{\otimes t} \) where \(T \) is an \(l \times l \) matrix. Let \(v_0^{l-1} = u_0^{l-1} T \). Then, \(v_0^{l-1} = v_0^{l-1} F_2^{\otimes t} = u_0^{l-1} K \), so that \(u_0^{l-1} = v_0^{l-1} T^{-1} \).
Observe, that it is possible to reconstruct \(u_0^{l-1} \) from \(v_0^{l-1} \), where \(\tau_r \) is the position of the last non-zero symbol in the \(i \)-th row of \(T^{-1} \). Recall that successive cancellation decoding of polar codes with arbitrary kernel requires one to compute values \(W_{m}^{(i)}(u_i, y_0 - 1), u_i \in F_2 \). However, fixing the values \(u_0^{l-1} \) may impose constraints on \(v_0^{l-1}, j > \tau_r \), which must be taken into account while computing these probabilities.
Indeed, vectors \(u_0^{l-1} \) and \(v_0^{l-1} \) satisfy the equation
\[\Theta'(u_0^{l-1} \ldots u_1 u_0 v_0^l) = 0, \]
where \(\Theta' = (S, I) \), and \(l \times l \) matrix \(S \) is obtained by transposing \(T \) and reversing the order of columns in the obtained matrix. By applying elementary row operations, matrix \(\Theta' \) can be transformed into a minimum-span form \(\Theta \), such that the first and last non-zero elements of the \(i \)-th row are located in columns \(i \) and \(z_i \), respectively, where all \(z_i \) are distinct. This enables one to obtain symbols of vector \(u \) as
\[u_i = \sum_{s=0}^{i-1} u_s \Theta_{i-1-i}, i < 0, \]
\[v_s \Theta_{i-1-i} + \sum_{t=0}^{z_i} v_t \Theta_{i-1-i} + \] (10)
where \(j_i = z_i - j_i - i \). Let \(h_i = \max_{0 \leq t \leq i} j_i \). It can be seen that
\[W_{m}^{(i)}(u_i, y_0 - 1) = \sum_{v_0^{l-1} \in Z_j} W_{t}^{(h_i)}(v_0^{l-1}, y_0 - 1) \]
\[= \sum_{v_0^{l-1} \in Z_j} \sum_{v_0^{l-1}, v_0^{l-1}} W_{t}^{(h_i)}(v_0^{l-1}, y_0 - 1), \] (11)
It is a special case of this approach.
where Z_j is the set of vectors $v_{h_j}^i$, such that (10) holds for $i \in [j]$. Similarly we can rewrite the above expression for the case of the approximate probabilities

$$W_1^{(j)}(v_{h_0}^i \mid y_{0}^{-1}) = \max_{v_{h_0}^i \in Z_j} W_t^{(h)}(v_{h_0}^i \mid y_{0}^{-1})$$

$$= \max_{v_{h_0}^i \in Z_j} W_t(v_{0}^{-1} \mid y_{0}^{-1}).$$

(12)

Let $Z_{i,b} = \left\{ v_{0}^i \mid v_{h_0}^i \in Z_i, u_i = b \right\}$. Hence, one obtains

$$S_{1,i} = \max_{v_{h_0}^i \in Z_{i,o}} R(v_{h_0}^i \mid y_{0}^{-1}) = \max_{v_{h_0}^i \in Z_{i,1}} R(v_{h_0}^i \mid y_{0}^{-1}).$$

(13)

Observe that computing these values requires considering multiple vectors v_{0}^i of input symbols of the Arikan transform $F_2^{\otimes j}$. Let $D_i = \{0, \ldots, h_i\} \setminus \{j_0, \ldots, j_i\}$ be a decoding window, i.e. the set of indices of Arikan input symbols $v_{h_0}^i$, which are not determined by symbols u_0^{-1}. The number of such vectors, which determines the decoding complexity, is $2^{|D_i|}$. In general, one has $|D_i| = O(l)$ for an arbitrary kernel.

IV. EFFICIENT PROCESSING OF 16×16 KERNELS

To minimize complexity of proposed approach (13) one needs to find kernels with small decoding windows while preserving required polarization rate (> 0.5 in our case) and scaling exponent. By computer search, based on heuristic algorithm presented in [9], we found a 16×16 kernel

$$K_1 = \left(\begin{array}{cccccccccccccccc}
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
1 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1
\end{array} \right)$$

with BEC scaling exponent $\mu(K_1) = 3.346$ [9]. Furthermore, to minimize the size of decoding windows, we derived another kernel $K_2 = P_2 K_1$, where P_2 is a permutation matrix corresponding to permutation $\sigma = \{0, 1, 2, 3, 4, 5, 6, 9, 10, 11, 12, 8, 13, 14, 15\}$, with polarization rate $\mu(K_2) = 3.45$. Both kernels have polarization rate 0.51828.

Table I presents the right hand side of expression (10) for each $i \in [16]$, as well as the corresponding decoding windows D_i, for both kernels. It can be seen that the maximal decoding windows size for K_1 and K_2 is 4 and 3, respectively. Note that by applying the row permutation to K_1, we have reduced decoding windows, but increased scaling exponent. Below we present efficient methods for computing some input symbol LLRs for these kernels.

u_0	D_2	Cost	u_0	D_2	Cost
0	1	1	0	1	1
1	1	1	1	1	1
2	1	1	2	1	1
3	1	1	3	1	1
4	1	1	10	1	1
5	1	1	10	1	1
6	1	1	10	1	1
7	1	1	10	1	1

A. Processing of kernel K_1 with $\mu = 3.346$

It can be seen that for $\phi \in \{0, 1, 2, 3, 14, 15\}$ one has $S_{1,0} = S_{1,0}^{(0)}(v_{0}^i, y_{0}^1)$, i.e. LLR for $F_2^{\otimes j}$. For $\phi = 3$, expressions (13) and (10) imply that LLR for u_3 is given by

$$S_{1,3} = \max_{v_3} R(v_0 v_1 v_2 v_3 0 \mid y_{0}^5) - \max_{v_3} R(v_0 v_1 v_2 v_3 1 \mid y_{0}^5),$$

where $v_i = u_i, i \in [3]$, are already estimated symbols.

Instead of exhaustive enumeration of vectors v_{0}^i in (13), we propose to exploit the structure of K_1 to identify some common subexpressions (CSE) in formulas for $R(v_{0}^i \mid y_{0}^{-1})$, which can be computed once and used multiple times. In some cases computing these subexpressions reduces to decoding of well-known codes, which can be implemented with appropriate fast algorithms. Furthermore, we observe that the set of possible values of these subexpressions is less than the number of different v_{0}^i to be considered. This results in further complexity reduction. To demonstrate this approach, we consider computing the LLR for u_3 of K_1.

This requires considering 16 vectors v_{0}^i satisfying (10). According to (8), one obtains $R(v_{0}^i \mid y_{0}^5) = R(v_{0}^i \mid y_{0}^5) + \tau \left(S_{1}^{(0)}(v_{0}^i, y_{0}^1) \right)$. Observe that $\{v_{0}^i F_2^{\otimes i} \mid v_{0}^i \in \mathbb{Z}_4\}$ is a coset of Reed-Muller code $RM(1, 3)$, where \mathbb{Z}_4 is the set of vectors v_{0}^i of length 5, so that (10) holds for $i \in [j = 1]$. Furthermore,

$$R(v_{0}^i \mid y_{0}^5) = \frac{1}{2} \left(\sum_{i=0}^{7} (-1)^{v_i} s_i - \sum_{i=0}^{7} |s_i| \right),$$

where $s_i = S_{1}^{(0)}(c, y_{0}^1), i \in [8], c_0 = v_{0}^7 F_2^{\otimes 3}$. Assume for the sake of simplicity that $v_j = 0, j \in \{0, 1, 2, 4\}$. Then the first term in this expression can be obtained for each $v_{0}^i \in \mathbb{Z}_4$ via the fast Hadamard transform (FHT) [16], and the second one does not need to be computed, since it cancels in (13).

It remains to compute $S_{1}^{(0)}(v_{0}^i, y_{0}^1)$, $v_{0}^7 \in \mathbb{Z}_4$ and $\mathbb{Z}_4 = 16$. In a straightforward implementation, one would recursively apply formulas (6) and (7) to compute $S_{1}^{(0)}$ for 16 vectors v_{0}^i. It appears that there are some CSE arising in this computation.

At first, one needs to compute $S_{1}^{(0)}(c, y_{0}^1), i \in [8], c_0 = v_{0}^7 F_2^{\otimes 3}$. Since $c_i \in \{0, 1\}$, the values
\[S_1^{(1)}(j, y_i, y_{i+8}), j \in \{0, 1\}, i \in [8] \] constitute the first set of CSE. We store them in the array \(L \)

\[L[4i + j] = S_1^{(1)}(j \mod 2, y_i + j, y_{i+8+j}), \]

where \(i, j \in [4], j = 4i/2 \). Computing these values requires 16 summations only, instead of 16 \(\cdot 8 = 128 \) summations in a straightforward implementation.

The next step is to compute the values \(S_2^{(2)}((c_i, c_{i+4}, (y_i, y_{i+4} + 8), y_{i+12})) \), \(i \in [4] \) which are equal to \(Q(S_1^{(1)}(c_i, c_{i+4}, y_{i+8}), S_1^{(1)}(c_{i+4}, y_{i+4} + 8, y_{i+12})) \). Since \((c_i, c_{i+4}) \in \mathbb{F}_2^2, S_2^{(2)} \) gives us the second set of CSE. One can use values stored in \(L \) to compute \(S_2^{(2)} \) as

\[X[i][j] = Q(X[i][j + 2], X[i + j](2), i, j \in [4]. \]

Observe that for any \(v_0^i \in \mathbb{R}(1, 3) \) one has \(c_i^{i+4} \in \mathbb{R}(1, 2), i \in \{0, 4\} \). That is, one needs to consider only vectors \(c_i^{i+4} \) of even weight while computing \(S_3^{(4)} \). These values can be calculated as

\[Y[i][j + 4k] = Q(X[i][j + 3k], X[i + 2][j]), i, k \in [2], j \in [4]. \]

Finally, the values \(S_4^{(8)}(v_0^9, v_0^{15}) \) can be obtained as

\[Z[i + 8j] = Q(Y[0][i + 3j], Y[1][j], i \in [8], j \in [2]. \]

Each element of \(Z \) corresponds to some \(v_0^i \in \mathbb{R}(1, 3) \). Finally, these values are used in (13) together with \(R(v_0^i, v_0^{15}) \) to calculate \(S_1, \phi \).

Similar CSE elimination techniques can be used to obtain efficient methods for computing \(S_1, \phi, 5 \leq i \leq 8 \). For \(8 < i < 13 \) one needs just to find maximal elements in the sets of \(R(v_0^i, v_0^{15}) \) computed for \(i = 8 \), as shown in (13). Furthermore, since for these phases one has \(Z_{i+1} = Z_i, b \) where \(b = 0 \) or 1, one can save and reuse the intermediate values of computing the maximum for \(i = 8 \).

Due to space constraints, we do not present the detailed description of the corresponding algorithm.

B. Processing of kernel \(K_2 \) with \(\mu = 3.45 \)

We briefly present a complete processing algorithm for kernel \(K_2 \). It provides much better performance-complexity tradeoff compared to \(K_1 \). The algorithm uses the same CSE elimination techniques as described in section IV-A. After the pre-computation steps for \(\phi \in \{5, 6, 7\} \), the LLRs are obtained via (13).

- For \(\phi \in \{0, 1, 2, 3, 4, 11, 12, 13, 14, 15\} \), compute \(S_1, \phi \) as LLRs \(S_4^{(8)}(v_0^{15}) \) for the Arikan transform \(F_2^{\oplus 4} \).
- For \(\phi = 5 \):

1. Since for fixed \(v_0, i \in \{0, 1, 2, 3, 4\} \), the set of vectors \(v_0^i \in \mathbb{R}(1, 2) \) concatenated \((2, 1, 2) \) code, one can obtain 8 values of \(R(v_0^i, v_0^{15}) \) from the FHT of vector \((S_1^{(1)}(\epsilon, (y_i, y_{i+8})), S_1^{(1)}(\epsilon, (y_{i+4}, y_{i+12})), i \in [4]). \)
2. Compute

\[L[i + 8j] = S_1^{(1)}(j \mod 2, y_i + 8j, y_{i+8}), \]

where \(i, j \in [8], j \in [2]. \)
3. Since \((c_i, c_{i+4}) \in \{(0, 0), (1, 1)\} \), compute all possible \(S_2^{(2)} \) values as

\[X[i][j] = Q(L[i + 8j], L[i + 8j]), i \in [4], j \in [2]. \]

4. Since \((c_i, c_{i+4}, c_{i+2}, c_{i+6}) \) is a code generated by

\[
\begin{pmatrix}
1 & 1 & 0 & 0 \\
1 & 1 & 1 & 1 \\
\end{pmatrix}
\]

compute all possible \(S_3^{(4)} \) values as

\[Y[i][j] = X[i][j/2], X[i + 2][j \mod 2], i \in [2]. \]

5. For every \(v_0^i \), compute \(S_4^{(8)}(v_0^j, v_0^{15}) \) as

\[Z[i + 4j] = Q(Y[0][i + 3j], Y[1][j], i \in [4], j \in [2]. \]

- For \(\phi = 6 \), compute \(S_9^{(8)}(v_0^j, v_0^{15}) \) as

\[Z[i + 4j] = P(Y[0][i + 3j], Y[1][j], v_8), i \in [4], j \in [2]. \]

- For \(\phi = 7 \):

1. Compute \(S_5^{(3)} \) as

\[Y[0][j + 4k] = P(X[0][j/2], X[2][j \mod 2], c_0[k]), \]

\[Y[1][j + 4k] = P(X[3][j/2], X[1][j \mod 2], c_1[k]), \]

\[c_0[k] = v_8 \oplus u_6 \oplus k, c_1[k] = u_6 \oplus k, j_k = j + 3, i \in [2], j \in [4], k \in [2]. \]

2. Obtain \(S_5^{(10)} \) as \(Z[i] = Q(Y[0][i], \tilde{Y}[1][i], i \in [8]. \)

- For \(\phi \in \{8, 9, 10\} \): Use 16 already computed values of \(R(v_0^j, v_0^{15}) \) to obtain \(S_1, \phi \).

Remark 1.
Let us comment the case of \(\phi = 7 \). In conventional Arikan SC for \(F_2^{\oplus 4} \), after symbol \(v_0 \) is estimated, the LLRs \(S_5^{(3)} \) for \(v_10 \) are obtained by applying \(P \) function to \(S_2^{(2)} \) and values \(v_8 \oplus v_9 \). In the case of \(K_2 \), we do not have a fixed value for \(v_9 \). Instead, we have a constraint \(u_6 = v_6 + 9v_6 \). Therefore, for each vector \(v_9^i \in \mathbb{Z}_7 \) the value of \(v_9 \) is changed according to \(v_6 \). This property is taken into account in the expressions for computing \(\tilde{Y}[i][j]. \)

The cost, in terms of the total number of summations and comparisons, of computing \(S_1, \phi \) using the proposed algorithm is shown in Table I. The overall processing complexity is 472 and 183 operations for kernels \(K_1 \) and \(K_2 \) respectively, while the trellis-based algorithm [12] requires 7557 and 9693 operations, respectively.

The above described techniques can also be used to implement an SCL decoder for polar codes with the considered kernels, using a straightforward generalization of the algorithm and data structures presented in [2].

V. Numeric Results
We constructed (4096, 2048) polar codes with the considered kernels, and investigated their performance for the case of AWGN channel with BPSK modulation. The sets of frozen symbols were obtained by Monte-Karlo simulations.

Figure 1 illustrates the performance of plain polar codes, polar codes with CRC\(^2\) and polar subcodes [4]. It can be seen that the codes based on kernels \(K_1 \) and \(K_2 \) with improved polarization rate \(E(K_1) = E(K_2) = 0.51828 \) provide significant performance gain compared to polar codes with Arikan kernel. Observe also that randomized polar subcodes provide better performance compared to polar codes with CRC. Moreover, polar subcodes with kernels \(K_1, K_2 \) under SCL with \(L = 8 \) have almost the same performance as polar subcodes with Arikan kernel under SCL with \(L = 32 \). Observe also that the

\(^2\)CRC length was selected to minimize FER with \(L = 8 \).
codes based on kernels with lower scaling exponent exhibit better performance.

Figure 2a presents simulation results for (4096, 2048) polar subcodes with different kernels under SCL with different L at $E_b/N_0 = 1.25$ dB. It can be seen that the kernels with polarization rate 0.51828 require significantly lower list size L to achieve the same performance as the code with the Arikan kernel. Moreover, this gap grows with L. This is due to improved rate of polarization, which results in smaller number of unfrozen imperfectly polarized bit subchannels. The size of the list needed to correct possible errors in these subchannels grows exponentially with their number (at least for the genie-aided decoder considered in [17]). On the other hand, lower scaling exponent gives better performance with the same list size L, but the slope of the curve remains the same for both kernels K_1, K_2.

Figure 2b presents the same results in terms of the actual decoding complexity. Recall that proposed kernel processing algorithm uses only summations and comparisons. The SCL algorithm was implemented using the randomized order statistic algorithm for selection of the paths to be killed at each phase, which has complexity $O(L)$. Observe that the polar subcode based on kernel K_2 can provide better performance with the same decoding complexity for FER $\leq 8 \cdot 10^{-3}$. This is due to higher slope of the corresponding curve in Figure 2a, which eventually enables one to compensate relatively high complexity of the LLR computation algorithm presented in Section IV.

Unfortunately, K_1 kernel, which provides lower scaling exponent, has greater processing complexity than K_2, so that its curve intersects the one for the Arikan kernel only at $FER = 2 \cdot 10^{-3}$.

VI. CONCLUSIONS

In this paper efficient decoding algorithms for some 16×16 polarization kernels with polarization rate 0.51828 were proposed. The algorithms compute kernel input symbols LLRs via the ones for the Arikan kernel, and exploit the structure of the codes induced by the kernel to identify and re-use the values of some common subexpressions. It was shown that in the case of SCL decoding with sufficiently large list size, the proposed approach results in lower decoding complexity compared to the case of polar (sub)codes with Arikan kernel with the same performance.

Extension of the proposed approach to the case of other kernels remains an open problem.

REFERENCES

[1] E. Arikan, “Channel polarization: A method for constructing capacity-achieving codes for symmetric binary-input memoryless channels,” IEEE Trans. on Inf. Theory, vol. 55, no. 7, pp. 3051–3073, July 2009.
[2] I. Tal and A. Vardy, “List decoding of polar codes,” IEEE Transactions On Information Theory, vol. 61, no. 5, pp. 2213–2226, May 2015.
[3] P. Trifonov and V. Miloslavskaya, “Polar subcodes,” IEEE J. on Selected Areas in Comm., vol. 34, no. 2, pp. 254–266, February 2016.
[4] P. Trifonov and G. Trofimiuk, “A randomized construction of polar subcodes,” in Proc. of IEEE ISIT, 2017, pp. 1863–1867.
[5] T. Wang, D. Qu, and T. Jiang, “Parity-check-concatenated polar codes,” IEEE Communications Letters, vol. 20, no. 12, December 2016.
[6] S. B. Korada, E. Sasoglu, and R. Urbanke, “Polar codes: Characterization of exponent, bounds, and constructions,” IEEE Trans. on Inf. Theory, vol. 56, no. 12, pp. 6253–6264, December 2010.
[7] A. Fazeli, S. H. Hassani, M. Mondelli, and A. Vardy, “Binary linear codes with optimal scaling and quasi-linear complexity,” arXiv:1711.01339, 2017.
[8] S. Buzaglo, A. Fazeli, P. H. Siegel, V. Tarannali, and A. Vardy, “On efficient decoding of polar codes with large kernels,” in Proc. of 2017 IEEE WCNC Workshops, March 2017, pp. 1–6.
[9] A. Fazeli and A. Vardy, “On the scaling exponent of binary polarization kernels,” in Proceedings of 52nd Annual Allerton Conference on Communication, Control and Computing, 2014, pp. 797 – 804.
[10] N. Presman, O. Shahira, S. Litsyn, T. Etzion, and A. Vardy, “Binary polarization kernels from code decompositions,” IEEE Trans. On Inf. Theory, vol. 61, no. 5, May 2015.
[11] V. Miloslavskaya and P. Trifonov, “Sequential decoding of polar codes with arbitrary binary kernel,” in Proc of IEEE ITW, 2014, pp. 377–381.
[12] H. Griesser and V. R. Sidorenko, “A posteriori probability decoding of nonsystematically encoded block codes,” Problems of Information Transmission, vol. 38, no. 3, 2002.
[13] V. Miloslavskaya and P. Trifonov, “Sequential decoding of polar codes,” IEEE Communications Letters, vol. 18, no. 7, pp. 1127–1130, 2014.
[14] P. Trifonov, “A score function for sequential decoding of polar codes,” in Proc. of IEEE ISIT, 2015.
[15] ———, “Binary successive cancellation decoding of polar codes with Reed-Solomon kernel,” in Proc. of IEEE ISIT, 2014, pp. 2972 – 2976.
[16] Y. Beery and J. Snyders, “Optimal soft decision block decoders based on fast Hadamard transform,” IEEE Trans. on Inf. Theory, vol. 32, no. 3, May 1986.
[17] M. Mondelli, S. H. Hassani, and R. Urbanke, “Scaling exponent of list decoders with applications to polar codes,” IEEE Trans. On Inf. Theory, vol. 61, no. 9, September 2015.