Experimental study of the two-body spin-orbit force

G. Burgunder,1 O. Sorlin,1 F. Nowacki,2 S. Giron,3 F. Hammache,3 M. Moukaddam,2 N. de Sérvée,3 D. Beaumel,3 L. Cáceres,1 E. Clément,1 G. Duchène,2 J.P. Ebran,4 B. Fernandez-Dominguez,1,5 F. Flavigny,6 S. Franchoo,3 J. Gibelin,7 A. Gillibert,6 S. Grévy,1,8 J. Guillot,3 V. Lapoux,6 A. Lepailleur,1 I. Matea,3 A. Matta,3,9 L. Nalpas,6 A. Obertelli,6 T. Otsuka,10 J. Pancin,1 A. Poves,11 R. Raabe,1,12 J. A. Scarpaci,13 I. Stefan,3 C. Stodel,1 T. Suzuki,14 and J.C. Thomas1

1Grand Accélérateur National d’Îons Lourds (GANIL), CEA/DSM - CNRS/IN2P3, BP 55027, F-14076 Caen Cedex 5, France
2IPHC, CNRS/IN2P3, Université de Strasbourg, F-67037 Strasbourg, France
3Institut de Physique Nucléaire, CNRS/IN2P3, Université Paris-Sud, F-91406 Orsay, France
4CEA, DAM, DIF, Bruyères-le-Châtel, F-91297 Arpajon Cedex, France
5Department of Particle Physics, Universidade de Santiago de Compostela, E-15782, Santiago de Compostela, Spain
6CEA Saclay, IRFU, Service de Physique Nucléaire, F-91191 Gif-sur-Yvette, France
7LPC Caen, ENSICAEN, Université de Caen, CNRS/IN2P3, F14050 CAEN Cedex, France
8Centre d’Études Nucléaires de Bordeaux Gradignan - Université Bordeaux 1 - UMR 5797 CNRS/IN2P3, Chemin du Solarium, BP 120, 33175 Gradignan, France
9Department of Physics, University of Surrey, Guildford, GU2 5XH, United Kingdom
10Department of Physics and Center for Nuclear Study, University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
11Departamento de Física Teórica e IFT-UAM/CSIC, Universidad Autónoma de Madrid, E-28049 Madrid, Spain
12Institut voor Kern- en Stralingsfysica, KU Leuven, Leuven, Belgium
13CSNSM-IN2P3-CNRS, Université Paris-Sud, 91405 Orsay, France
14Department of Physics, Nihon University, Sakurajosui, Setagaya-ku, Tokyo 156-8550, Japan

(Dated: January 9, 2014)

Energies and spectroscopic factors of the first 7/2−, 3/2−, 1/2− and 5/2− states in the 35Si21 nucleus were determined by means of the (d,p) transfer reaction in inverse kinematics at GANIL using the MUST2 and EXOGAM detectors. By comparing the spectroscopic information on the 34Si and 37Si isotopes, a reduction of the p3/2−p1/2 spin-orbit splitting by about 25% is proposed, while the f7/2−f5/2 spin-orbit splitting seems to remain constant. These features, derived after having unfolded nuclear correlations using shell model calculations, have been attributed to the properties of the 2-body spin-orbit interaction, the amplitude of which is derived for the first time in an atomic nucleus. The present results, remarkably well reproduced by using several realistic nucleon-nucleon forces, provide a unique touchstone for the modeling of the spin-orbit interaction in atomic nuclei.

PACS numbers: 21.10.Fc, 25.45.Hi, 21.30.-x, 27.30.+t

Introduction.- The spin-orbit (SO) interaction, which originates from the coupling of a particle spin with its orbital motion, plays essential roles in quantum physics. In atomic physics it causes shifts in electron energy levels and 2-body spin-orbit splitting in atomic nuclei in 1949 [2] to account for the magic numbers and shell gaps that could not be explained otherwise at that time. In this framework each nucleon experiences a coupling between its orbital momentum \(\ell \) and intrinsic spin \(s \). This \(\ell s \) coupling is attractive for nucleons having their orbital angular momentum aligned with respect to their spin \((j_\ell = \ell + s) \), and repulsive in case of anti-alignment \((j_\ell = \ell - s) \). Shell gaps are created between the \(j_\ell \) and \(j_\ell \) orbits at nucleon numbers 6, 14, 28, 50, 82 and 126 for \(\ell = 1-6 \), the size of which increases with the \(\ell \) value. However, quoting ref. [3], this parametrized \(\ell s \) term "may not be a real force in the nucleus, but rather a caricature of a more complicated two-body force". Moreover, it does not account for modifications of shell gaps observed throughout the chart of nuclides [4] and has no connection with realistic bare two-body forces [5].

Bare forces can be cast into central, tensor and two-body spin-orbit parts, the latter two contributing to modifications of the SO splitting between nuclei. While the central force requires substantial and complex renormalizations to be applied in the atomic nucleus, it seems that the intensity of the tensor force can be derived from bare forces to account for some shell evolution in atomic nuclei [4,5]. The two-body SO interaction is so far the most poorly constrained. The first attempt to derive its intensity was made by looking at the increase of the \(2p_{3/2}−2p_{1/2} \) splitting between the \(^{47}\)Ar and \(^{49}\)Ca nuclei [8,10]. However, the effect of the two-body SO force was
Two dipoles of the spectrometer. A rate of 1.1×10^{34} ions/s of an achromatic Be degrader of 559.3×10^{34} spectrometer [12] was used to select and transport the Grand Accélérateur National d’Ions Lourds (GANIL) [13]. Effects of the proximity of the continuum and of proton-to-neutron binding energies on the central part of the interaction were estimated to be of less than 5% using mean field calculations constrained to experimental binding energies. The present study therefore provides a first and unique constraint of the two-body SO interaction in atomic nuclei, to be compared to the value derived from realistic nucleon-nucleon forces.

Experiment. - The changes in $2p$ and $1f$ SO splitting between the 37^S and 35^S nuclei have been studied using (d,p) transfer reactions in inverse kinematics with beams of 36^S and 34^S. The 34^S nuclei were produced at the Grand Accélérateur National d’Ions Lourds (GANIL) in the fragmentation of a 55 A-MeV $36^S{^{16}}_p$ beam, of mean intensity 3μA, in a 1075μm-thick Be target. The LISE3 spectrometer [12] was used to select and transport the 34^S nuclei which were slowed down to 20.5 AMeV by using an achromatic Be degrader of 559.3μm between the two dipoles of the spectrometer. A rate of 1.1×10^{5} 34^S ions per second and a purity of 95% were achieved. In a separate spectrometer setting, a beam of 36^S was produced in similar conditions, at an energy of 19 AMeV and an intensity limited to 2×10^5 pps. Nuclei were tracked event by event with a position resolution (FWHM) of 1 mm using a set of two position-sensitive Multi Wire Proportional Chambers (MWPC) [13] placed 0.92 m and 1.02 m upstream of the $2.6(1)$ mg/cm2 CD_2 target in which transfer reactions took place.

Nuclei were identified by means of their energy loss in an ionization chamber (IC), of 10×10 cm2 surface area, placed 40 cm downstream of the target. The energy-loss E_{IC} of the ions was obtained from the peak-height value of the digitized signal. A 1.5 cm thick plastic scintillator, located behind the IC, additionally provided a high-resolution time signal used for precise time-of-flight (TOF) measurements, and allowed the monitoring of the beam intensity complementary to the MWPC detectors. By achieving selections in E_{IC} and in TOF between the MWPCs and the plastic scintillator, the Si nuclei (in the case of $34^S(d,p)$) were selected and the part corresponding to incomplete fusion reactions induced by the C nuclei of the CD$_2$ target was rejected.

Energies and angles of the protons arising from the (d,p) reactions were measured using four modules of the MUST2 detector array [14] consisting each of a highly segmented (128×128) double-sided 300μm-thick Si detector, followed by a 16 fold segmented Si(Li) detector of 4.5 mm thickness. These detectors were placed at 10 cm from the CD$_2$ target, covering polar angles ranging from 105° to 150° with respect to the beam direction. In addition a 16 Si strips annular detector (external diameter 96 mm, central hole diameter of 48 mm and thickness 300μm) was placed at a distance of 11.3 cm to cover polar angles from 157° to 168° to detect the full energy of protons in the (d,p) reaction.

Four segmented Ge detectors from the EXOGAM array [15] were installed perpendicular to the beam axis at a mean distance of 5 cm to detect the γ-rays emitted in the decay of excited states. The center of these detectors was shifted 9 cm downstream from the target in order to avoid them shadowing part of the MUST2 detectors, leading to a γ-efficiency of $\epsilon_{\gamma}=3.8(2)^\%$ at 1 MeV.

Results. - Excitation energy spectra (E*) corresponding to the $34^S(d,p)35^S$ reaction (Fig. 1) were constructed using the energy and angle of the emitted protons in coincidence with the Si nuclei. Three structures are seen below the neutron emission threshold $S_n=2.47(4)$ MeV at $E^*=0(25)$, $906(32)$ and $2060(50)$ keV. Other structures are present above S_n; tentatively at $3330(120)$ keV and more prominently at ≈ 5500 keV. The presently fitted shape of these peaks is a convolution between a rectangular step function, that takes into account the energy loss of the beam in the target before the reaction point, and a Gaussian. The energy-dependent widths of all fitted peaks are in very good accordance with Monte Carlo simulations [16]. A more accurate energy determination of the bound levels populated in 35^S is provided by the γ-energy spectrum, gated by protons associated to different E^* ranges. When applying suitable Doppler corrections to the γ’s emitted in flight and de-
ected in the EXOGAM array, two peaks are clearly observed at 910(3) keV and 1134(6) keV in the bottom part of Fig. 1. The energy of the first γ-peak matches that of $E^*=906(32)$ keV of Fig. 1, as well as the energy of a 3/2$^-$ state at 910.10(30) keV fed indirectly in the β-decay study of 35Al [17]. From the number of protons detected in the peak at 906(32) keV, $N_p=1894(185)$, an expected number of photons at 910 keV of $N_{\gamma}=72(11)$ is derived, after having corrected from the c_p value. The number of detected photons, 82(10), matches this expected value of 72(11) within one σ uncertainty. We deduce that a contamination of the excitation energy spectrum at $E^*=906(32)$ due to transfer to the 3/2$^+$ state at the nearby energy of 970 keV is less than 30% of the 3/2$^-$ component, with a confidence limit of 3 σ. With a half-life of 6 ns, the γ-decay of the 3/2$^+$ isomer would occur after the target location, mostly out of the range of the EXOGAM detectors. The energy of the second γ-peak is in accordance with the one observed in [18] at 1133(5) keV. The summed energy of the two γ peaks, 910(3)+1134(6)=2044(7) keV, matches the energy of the third peak at $E^*=2060(50)$ keV in Fig. 1, thereby establishing a level at 2044(7) keV which decays by a cascade of two γ-rays.

Proton angular distributions corresponding to transfer reactions populating the four states in 35Si are shown in Fig. 2. Adiabatic Distorted Wave Approximation (ADWA) calculations [19] were performed using the code TOWFNR [20] and the global optical potentials of [21] and [22] for the entrance and exit channels of the (d,p) reaction, respectively. A non-local correction [23] has been used with Gaussian function of widths $\beta=0.85$ fm for the nucleons and 0.54 fm for the deuteron. These calculations were fitted to the experimental angular distributions to infer the transferred angular momentum ℓ and Spectroscopic Factor (SF) of individual orbitals in 35Si, given with their uncertainties in Fig. 2. Additional uncertainties on the SF values (not given here) due to the use of other global potentials amount to about 15% [3]. The same set of optical potentials was used for the 35Si and 37S nuclei. With this set, we reproduce within one sigma the mean $<SF>$ values in 37S derived from Refs. [24, 25] for the 7/2$^-$ ground state ($<SF>=0.73$; our value 0.69(14)), the 3/2$^-$ state at 645 keV ($<SF>=0.545$; our value 0.53(10)) as well as the 1/2$^-$ state at 2638 keV ($<SF>=0.625$; our value 0.68(13)) [16]. It has been pointed out in [26] that observed SF are usually quenched, by a factor of about 0.5-0.7, as compared to the ones expected from single particle structure around closed shell nuclei. In the 37S nucleus, the SF values of the 7/2$^-$, 3/2$^-$ and 1/2$^-$ states exhaust this quenched SF sum rule, within the present experimental uncertainties.

From the shape of the proton angular distributions of Fig. 2, the first peak in 35Si could be attributed to a $\ell=3$ transfer to the $f_{7/2}$ ground state with SF=0.56(6). The angular distributions of the second and third peaks correspond to $\ell=1$, with SF values of 0.69(10) and 0.73(10), respectively. The third peak at 2044 keV is likely to be 1/2$^-$ as its large SF value discards another large $\ell=1$, 3/2$^-$ component. The SF values of these 7/2$^-$, 3/2$^-$ and 1/2$^-$ states in 35Si are compatible, within one σ, with the ones measured in 37S. However the excitation energy of the 1/2$^-$ state in 35Si ($E^*=2044$ keV) is significantly smaller than that in 37S ($E^*=2638$ keV). The structure above the neutron threshold at about 3330 keV likely corresponds to the elastic deuteron break-up process, the cross section of which was estimated to be 0.1mb/MeV [27] and the shape of which was obtained from phase-space simulations (hatched zone below the black curve of the top part of Fig. 1). The broad structure around 5.5 MeV in 35Si could be fitted with an angular distribution corresponding to a $\ell=3$ state coming from a fraction of the $f_{5/2}$ strength. Using the prescription of Ref. [28] for the states lying in the continuum, a value of SF=0.32(2) has been extracted. It has a similar amplitude as the $f_{5/2}$ component SF=0.36 found in three states centered around 5.6 MeV in 37S [24].

Change in p-orbitals SO splitting? - To a first approximation the first states in 41Ca, 37S and 35Si can be viewed as one $1f_{7/2}$ or $2p_{1/2,3/2}$ neutron on top of the core nuclei 40Ca, 36S and 34Si, respectively, as these N=20 nuclei can be considered as doubly magic nuclei. When taking the major fragment of the $2p_{1/2}$ and $2p_{3/2}$ single-particle (SP) strengths, the 3/2$^-$ - 1/2$^-$ splitting remains close to 2 MeV in the 41Ca [20] and 37S [21, 22, 25] nuclei after the removal of 4 protons from the $1d_{3/2}$ orbit. As shown in Fig. 3 it drops to 1.134 MeV in 35Si by removing 2 protons from the $2s_{1/2}$ orbit. This sudden reduction of the 3/2$^-$ - 1/2$^-$ splitting is attributed to the difference in the two-body proton-neutron monopole terms $V_{pn}^{2s_{1/2}2p_{1/2}}$ and $V_{pn}^{2s_{1/2}2p_{3/2}}$ involved between the 35Si and 37S nuclei as well as to the effects of correlations inherent to atomic nuclei. As there is no change in 3/2$^-$ - 1/2$^-$ splitting

FIG. 2: Proton angular distributions of the states at $E^*=0$, 910, 2044 and 5500 keV in 35Si. The curves correspond to ADWA calculations assuming transfer to $\ell=1$ (dashed dotted) or $\ell=3$ (full line) states.
between the 41Ca and 37S nuclei, other monopole terms such as the ones involving the proton $1d_{3/2}$ orbit are negligible.

Shell model calculations have been used in the full $sd - pf$ shells [30] (including cross-shell mixing between normal and intruder neutron configurations [31]) as a tool to determine the role of correlations and to deduce the change of the proton SO splitting $\Delta SO(p)$ between the 37S and 35Si nuclei from experimental data. The $V^{pn}_{2s_{1/2}2p_{3/2}}$ and $V^{pn}_{2s_{1/2}2p_{1/2}}$ monopole terms have been constrained to match, after taking into account the correlations in the full valence space, the experimental energies of the major fragments in the 37S and 35Si isotones, leading to -0.844 and -1.011 MeV, respectively. The calculated $2s_{1/2}$ occupancy varies from 1.66 in 37S (close to the experimental value of ≈ 1.7 [22]) to 0.19 in 35Si, yielding $\Delta 2s_{1/2}=1.47$. Following the previous discussion, $\Delta SO(p)$ can be expressed as:

$$\Delta SO(p) \approx \Delta 2s_{1/2}(V^{pn}_{2s_{1/2}2p_{1/2}} - V^{pn}_{2s_{1/2}2p_{3/2}})$$

Consistent values of $\Delta SO(p)$=1.47×257=378 keV and 380 keV are found using Eq. 1 and the prescription of Baranger [33], respectively. The latter value is obtained from the energies of the single-particle centroids of the $p_{3/2}$ and $p_{1/2}$ states derived from the calculated particle and hole energy weighted sum rules of all $3/2^{-}$ and $1/2^{-}$ states. The agreement between the two methods shows that the earlier assumption that the changes in the p SO splitting are solely carried by the V_{sp} monopoles is correct. After applying a quenching factor of 0.7 to the SM calculations, we find that the calculated SF values of the major fragments $7/2^{-}$ (SF=0.59), $3/2^{-}$ (0.59), $1/2^{-}$ (0.61) and $5/2^{-}$ (0.28) agree with the experimental values of 0.56(6), 0.69(10), 0.73(10), 0.32(3).

Realistic two-body SO interactions - The M3Y interaction [34], constructed as a model to realistic G-matrix interaction, was used to calculate the 2-body SO parts of the monopole matrix elements for $A\approx 40$. We find that $V^{pn}_{2s_{1/2}2p_{1/2}}$ is repulsive (attractive) and amounts to +0.178 MeV (-0.089 MeV). Their difference, 0.267 MeV, is also in remarkable agreement with the value of 0.257 MeV derived from the experimental. We then look at more modern interactions obtained from chiral effective field theory [35] as well as from the Kahan-Lee-Scott (KLS) potential [36], the latter being used for cross-shell matrix elements in the SDPF-U interaction [31]. The N3LO results a) of Table I correspond to the V_{lowk} renormalization with a cut-off $\Lambda = 1.8 fm^{-1}$ in an harmonic oscillator basis with $\hbar \omega = 11.5$ MeV, appropriate for $A \sim 36$. We see a very small sensitivity to the cut-off renormalization of the interaction when many-body perturbation theory (MBPT) techniques from [37] are applied respectively in a b) and 4 c) major shells basis. The order of magnitude of the difference between the $V^{pn}_{2s_{1/2}2p_{3/2}}$ and $V^{pn}_{2s_{1/2}2p_{1/2}}$ (~ 300 keV) monopoles derived from the bare interactions is similar to the value of 257 keV derived from the experiment. Their spin-tensor decomposition, using the same procedure as in [11], shows that their difference is totally carried by the two-body SO term (K=1).

Conclusions. - The energies and spectroscopic factors of the first $7/2^{-}$, $3/2^{-}$, $1/2^{-}$ and $5/2^{-}$ neutron states have been determined in the 37S and 35Si isotones. A change by 25% in the neutron SO splitting $p_{3/2} - p_{1/2}$ is derived between the 37S and 35Si nuclei from exper-

![FIG. 3: Distribution of the major fragments of the single particle strength in 41Ca (top), 37S (middle) and in 35Si (bottom). SF values in 41Ca are taken from [29]. The centroid of the $5/2^{-}$ strength, obtained from a summed SF strength of 0.32, is indicated as $f_{5/2}$. The SF of the $5/2^{-}$ components in 37S are taken from [24], while all others SF are derived from the present work with error bars due to statistics and fit distributions.](image-url)
imental data corrected for correlation effects, while no change in the $f_{7/2} - f_{5/2}$ SO splitting is observed within the present experimental limitations. This work presents the cleanest extraction of the 2-body SO interaction by choosing an experimental situation in which contributions from other components of the nuclear force are likely suppressed or modest. The derived strength of the 2-body SO interaction is remarkably well reproduced by realistic nucleon-nucleon forces such as N3LO and KLS, suggesting that these forces could be used more widely to predict its strength in other regions of the chart of the nuclides. The present results also carry important potentials to test the density and isospin dependencies of the SO interaction in mean field theories.

Acknowledgments

The GANIL technical groups are warmly acknowledged for their help during the preparation and running of the experiment. A. Bonaccorso is greatly acknowledged for discussions and calculations related to the deuteron break-up component.

[1] M. Johnson and R.H. Silsbee Phys. Rev. Lett. 55 (1985) 1790; M. Baibich et al. Phys. Rev. Lett. 61 (1988) 2472; G. Binasch et al. Phys. Rev. B 39 (1989) 4828
[2] M. G. Mayer, Phys. Rev. 75 (1949) 1969; O. Haxel et al. Phys. Rev. 75 (1949) 1766
[3] J. P. Elliott and A. M. Lane Phys. Rev. 96 (1954) 1160
[4] O. Sorlin and M.-G. Porquet, Prog. Part. Nucl. Phys. 61 602 (2008) 602
[5] E. Eplebaum, H-W. Hammer and Ulf-G Meissner, Rev. Mod. Phys. 81 (2009)1773
[6] T. Otsuka et al., Phys. Rev. Lett. 95 (2005) 232502
[7] T. Otsuka et al., Phys. Rev. Lett. 104 (2010) 012501
[8] L. Gaudemoy et al., Phys. Rev. Lett. 97 (2006) 092501
[9] L. Gaudemoy et al., Phys. Rev. Lett. 99 (2007) 099202
[10] O. Sorlin and M.-G. Porquet, Phys. Scr. T 152 (2013) 014003
[11] N. Smirnova et al., Phys. Lett B 686 (2010) 109
[12] R. Anne et al., Nucl. Inst. Meth. A 257, 215 (1987)
[13] S. Ottini-Hustache et al., Nucl. Inst. Meth. A 431 (1999) 476
[14] E. Pollacco et al., Eur. Phy. J A 25 (2005) 287
[15] S.L. Shepherd et al., Nucl. Inst. Meth. A434 (1999) 373
[16] G. Burgunder, PhD thesis, Université de Caen, GANIL T 06 (2011) [http://tel.archives-ouvertes.fr/tel-00695010]
[17] S. Nummela et al., Phys. Rev. C 63 (2001)044316
[18] M. Gélin, PhD thesis, Université de Caen, GANIL T 07 02 (2007), [http://tel.archives-ouvertes.fr/tel-00193046]
[19] R. C. Johnson and P. C. Tandy, Nucl. Phys. A 235 (1974) 56
[20] J. A. Tostevin, University of Surrey version of the code TWOFNR (M. Toyama, M. Igarashi and N.Kishida), [http://www.nucleartheory.net/NPG/code.htm]
[21] G. L. Wales and R. C. Johnson, Nucl. Phys. A 274 (1976)168
[22] R. L. Varner et al., Phys. Rep. 201 (1991) 57
[23] F. Perey and B. Buck, Nucl. Phys. A 32 (1962) 353
[24] G. Eckle et al., Nucl. Phys. A 491 (1989) 205
[25] C. E. Thorn, J. W. Ollisa, E. K. Warburton and S. Raman, Phys. Rev. C 30 (1984) 1442
[26] G. J. Kramer, H. P. Block and L. Lapikás, Nucl. Phys. A 679 (2001) 267; B. P. Kay, J. P. Schiffer and S. J. Freeman, Phys. Rev. Lett.111 (2013) 042502.
[27] A. Bonaccorso, private communication.
[28] R.C. Johnson and P. J. R. Soper, Phys. Rev. C 1 (1970) 976
[29] Y. Uozumi et al., Phys. Rev. C 50 (1994) 263
[30] F. Nowacki and A. Poves, Phys. Rev. C 79 (2009) 014310
[31] F. Rotaru et al., Phys. Rev. Lett.109 (2012) 092503
[32] S. Khan et al. Phys. Lett. B 156 (1985) 155
[33] M. Baranger Nucl. Phys. A 149 (1970) 225
[34] G. Bertsch, J. Borysowicz, H. McManus and W.G. Love, Nucl. Phys. A284 (1977) 399
[35] D. R. Entem and R. Machleidt, Phys. Rev. C 68 (2003) 041001
[36] S. Kahana, H. C. Lee and C. K. Scott, Phys. Rev. 180 (1969) 956
[37] M. Hjorth-Jensen, T. T. S. Kuo, E. Osnes, Phys. Rep. 261 (1995) 125