Purification and Subunit Structure of Deoxyribonucleic Acid-dependent Ribonucleic Acid Polymerase III from the Mouse Plasmacytoma, MOPC 315*

(Received for publication, July 16, 1975)

VIRGIL E. F. SKLAR§ AND ROBERT G. ROEDER§

From the Department of Biological Chemistry, Division of Biology and Biomedical Sciences, Washington University, St. Louis, Missouri 63110

Class III DNA-dependent RNA polymerases were purified from the mouse plasmacytoma, MOPC 315. RNA polymerases IIIA and IIIB were solubilized from a whole cell extract and resolved by chromatography on DEAE-Sephadex. Chromatography on DEAE-cellulose, DEAE-Sephadex, CM-Sephadex, and phosphocellulose ion exchange resins and sedimentation in sucrose density gradients yielded chromatographically homogeneous Enzymes IIIA and IIIB, which were purified approximately 22,000 and 53,000-fold, respectively, relative to whole cell extracts. The specific activity of these enzymes was comparable to that reported for other purified eukaryotic RNA polymerases. Sucrose gradient sedimentation analysis suggested a molecular weight of approximately 650,000 for each of the class III enzymes.

The subunit compositions of chromatographically purified RNA polymerases IIIA and IIIB were analyzed by polyacrylamide gel electrophoresis under denaturing conditions. RNA polymerase IIIA, contained subunits with molecular weights of 155,000 (IIIa), 138,000 (IIIb), 89,000 (IIIc), 70,000 (IIId), 53,000 (IIIe1), 49,000 (IIIe2), 41,000 (IIIf), 32,000 (IIIg1), 29,000 (IIIh), and 19,000 (IIIi). RNA polymerase IIIB subunits were identical with those of Enzyme IIIA except for the replacement of subunit IIIg1 with a slightly larger subunit IIIg2 (Mr = 33,000). Molar ratios were close to unity for all subunits except for IIIi, which was present in stoichiometric excess, yielding a composite molecular weight of approximately 695,000. Analysis of purified RNA polymerases IIIA and IIIB by polyacrylamide gel electrophoresis under nondenaturing conditions revealed, in each instance, two major protein bands. Subsequent analyses of the two electrophoretic forms of Enzyme IIIA failed to reveal any structural differences since each form contained subunits IIIa to i in the same proportions as found in the unfractionated phosphocellulose enzyme.

The present data have been used to estimate the cellular concentrations of RNA polymerase III molecules. MOPC 315 cells have approximately 3×10^5 molecules/cell, while the concentrations in other cell types are estimated to be as much as 50-fold lower. However, the specific activities and subunit compositions of the enzymes purified from mouse plasmacytoma cells and from normal tissues appear similar. Thus, fluctuations in the cellular levels of RNA polymerase III activity may, in part, result from changes in the cellular concentration of RNA polymerase III molecules. The data are discussed in terms of the regulation of transfer RNA and 5 S RNA synthesis and cell growth rate by RNA polymerase III.

DNA-dependent RNA polymerase III represents one of the three principal classes of nuclear RNA polymerase found in eukaryotic cells (1). RNA polymerase III was originally distinguished from RNA polymerases I and II on the basis of its distinct catalytic properties and its elution from DEAE-Sephadex at high salt concentrations (1), features which now appear common to most or all class III enzymes (1-13). RNA polymerase III usually accounts for a small proportion of the total RNA polymerase activity and has been detected, using appropriate analytical methods, in all tissues examined (2). Chromatographically heterogeneous forms of these enzymes have been described in mouse plasmacytomas (2), mouse liver and spleen tissues (2), human peripheral lymphocytes (3), calf thymus (2), rat liver (9), and Xenopus laevis liver tissue. In contrast, only one class III enzyme has been detected in lower eukaryotes and this enzyme appears resistant to high concentrations of a-amanitin (10-13). There has been no report of physical, structural, or functional differences among the heterogeneous class III enzymes.

* This work was supported in part by National Institutes of Health Grant 1-RO1-CA16640 and by National Science Foundation Grant BMS 74-24657.
‡ Predoctoral Fellow supported by the National Institutes of Health Training Grant 5 TO1 GM-1311.
§ Recipient of Research Career Development Award 1-K04-GM-70961 from the National Institutes of Health.

1 R. G. Roeder, unpublished observations.
In the mouse plasmacytoma, class III RNA polymerases have been shown to synthesize tRNA and 5S RNA species (14). The cellular levels of solubilized RNA polymerase III activity vary among different cell types and in the same cell type under different physiological conditions (2-4) and may therefore regulate directly the cellular rate of tRNA and 5S RNA synthesis. Determination of the specific mechanism(s) accounting for these variations in RNA polymerase III activity might provide insights into the regulation of tRNA and 5S RNA synthesis and cell growth rates.

To investigate these problems, we have chosen the mouse plasmacytoma, MOPC 315, a rapidly growing malignant cell line. These cells contain high levels of RNA polymerase III (2), probably reflecting a high level of tRNA and 5S RNA synthesis characteristic of a rapid rate of cellular proliferation (15). This paper reports the purification and subunit structures of the class III enzymes from MOPC 315 cells, which have permitted a structural comparison of homologous class I, II, and III RNA polymerases (16). Evidence is presented that the heterogeneous class III enzymes, designated IIIa and IIIb, have minor differences in their physical properties and subunit compositions. These studies also provide evidence that fluctuations in the levels of RNA polymerase III activity may, in part, be mediated via changes in enzyme concentration.

Experimental Procedures

Cells

MOPC 315 solid tumors were obtained as described previously (2).

Biochemicals

Unlabeled nucleotide triphosphates were obtained from P.L. Biochemicals; [3H]UTP from New England Nuclear; crystalline bovine serum albumin from Pentex; acrylamide, bisacrylamide, and tetramethylethlenediamine (TEMED) from both Eastman and Bio-Rad Laboratories; α-amanitin from Henley and Co.; calf thymus DNA type I, Nonidet P-40, PMSF, and iPr,P-F from Sigma; and [d(A-T)]4 from Miles.

Ion Exchange Resins

DEAE-cellulose (Whatman DE52) and phosphocellulose (Whatman P-11) obtained from Reef Angel were prepared as described previously (17, 18). DEAE-Sephadex (A-25) and CM-Sephadex (C-25) purchased from Pharmacia were prepared as described previously (2). The resins were stored at 0-4°C and prior to use were deaerated under vacuum.

Conductivity, DNA, and Protein Measurements

As previously described (2), salt concentrations were measured with a Radiometer conductivity meter (type CDM 2e) following 200-fold dilutions of the samples with water. DNA was measured according to the method of Burton (19). Protein was measured according to the method of Lowry et al. (20), after the samples were precipitated with trichloroacetic acid.

Assay for RNA Polymerase

Assays were performed in a final volume of 25 μl as described previously (3). Calf thymus DNA or [d(A-T)], used as template at a final concentration of 100 or 50 μg/ml, respectively. One unit of activity represents incorporation of 1 pmol of [3H]UMP into RNA in 20 min under the previously described conditions with calf thymus DNA (unless otherwise specified). For a given series of experiments the same template batch was always used because RNA polymerase activity varied among different template preparations.

Subunit Structure of Mouse Plasmacytoma RNA Polymerase III 1065

Purification Methods

RNA Polymerase Solubilization—RNA polymerase was solubilized from whole cells by a modification of a previously published procedure (2). MOPC 315 tumors (100 g) were homogenized (15 strokes) in 30 ml of Buffer A (0.05 M Tris·HCl (pH 7.9, 23°C), 250 mM NaCl, 0.1 mM EDTA, 0.5 mM dithioerythritol, 5 mM MgCl2, 1 mM PMSF, and 1 mM iPr,P-F) and passed through a double-layer of cheesecloth. The suspension was adjusted to 0.32 M ammonium sulfate and the viscous supernatant was sonicated as described previously (2). This solution was centrifuged for 20 min at 18,000 g in a Sorvall SS-34 rotor. The supernatants were centrifuged for 120 min at 50,000 rpm in a Spincro type Ti-60 rotor. The resultant 0.32 M ammonium sulfate supernatant fractions (F1) were diluted to 0.1 M ammonium sulfate with Buffer A and aggregated chromatin was pelleted by centrifugation for 50 min at 50,000 rpm. To the 0.1 M ammonium sulfate supernatant fractions (F2), solid ammonium sulfate (Manz enzyme grade) was added to saturating levels (0.42 g/ml). The precipitate was pelleted by centrifugation for 70 min at 35,000 rpm in a Spincro type 42 rotor. The ammonium sulfate pellets were resuspended by addition of Buffer B containing 0.05 M ammonium sulfate by the addition of Buffer B (F3). This suspension was then centrifuged for 50 min at 50,000 rpm. The resulting 0.19 M ammonium sulfate supernatant fractions (F4) were pooled and stored at -80°F. All procedures were performed at 0-4°C.

DEAE-cellulose Chromatography—Fraction F4 was subsequently dialyzed against Buffer B and diluted to a final salt concentration of 0.06 M ammonium sulfate. This sample was loaded onto a DEAE-cellulose column equilibrated with Buffer B containing 0.05 M ammonium sulfate (1 to 1.5 mg of protein/ml of bed volume). The resin was washed with 2 column volumes of the equilibration buffer and eluted with a linear gradient of 0.05 to 0.25 M ammonium sulfate in Buffer B. The total gradient size was equivalent to 4 column volumes and fractions equivalent to 2.5% of the gradient volume were collected. Following this, the remainder of the adsorbed activity was eluted with Buffer B containing 0.5 M ammonium sulfate. Appropriate column fractions containing class I plus III RNA polymerases were combined and assayed for activity and protein content.

DEAE-Sephadex Chromatography—The combined fractions from DEAE-cellulose chromatography were directly loaded onto a DEAE-Sephadex column equilibrated with Buffer B containing 0.1 M ammonium sulfate (1 to 1.5 mg of protein/ml of bed volume). The resin was washed with 1 column volume of equilibration buffer and 1 column volume of Buffer B containing 0.05 M ammonium sulfate and eluted with a linear gradient of 0.05 to 0.3 M ammonium sulfate in Buffer B. The gradient size was 3 column volumes and fractions corresponding to 2.5% of the gradient volume were collected. Fractions containing RNA polymerase IIIa were combined and assayed for enzyme activity and protein content. Bovine serum albumin was then added (0.5 mg/ml) to help stabilize enzyme activity and the solution stored at -80°F. Similarly, fractions containing RNA polymerase IIIb were combined, bovine serum albumin was added, and the solution stored at -80°F. The following procedures were used to purify further the chromatographically separated RNA polymerase IIIa and IIIb.

CM-Sephadex Chromatography—The combined fractions from DEAE-Sephadex chromatography (i.e. containing either IIIa, or IIIb) were thawed and dialyzed against 10 volumes of Buffer B to a final concentration of 0.04 M ammonium sulfate. The dialyzed preparation was loaded onto a CM-Sephadex C-50 column equilibrated with Buffer C (Buffer B plus 0.5 mg/ml of bovine serum albumin) containing 0.05 M ammonium sulfate. Excluding the carrier bovine serum albumin, 0.5 to 1.0 mg of protein was loaded/ml of bed volume. The resin was washed with 2 column volumes of Buffer C containing 0.03 M ammonium sulfate. The enzyme was eluted with a linear gradient of 0.03 to 0.25 M ammonium sulfate in Buffer C. The gradient size was 3 column volumes and fractions equivalent to 3% of the gradient volume were collected. During the loading and washing of the column and during gradient elution of the column the flow rates were, respectively, 0.06 and 0.053 ml/min/ml of bed volume. Fractions containing RNA polymerase III were pooled and reasayed for enzyme activity with calf thymus DNA.

First Phosphocellulose Chromatography—The CM-Sephadex enzyme was diluted to 0.08 M ammonium sulfate by the addition of Buffer C. This preparation was loaded onto a phosphocellulose column equilibrated with Buffer C containing 0.06 M ammonium sulfate (50,000 to 100,000 units of activity/ml of bed volume). The resin was washed with the equilibration buffer and the enzyme was then...
stained in 10% (v/v) acetic acid, 50% (v/v) ethanol, and 0.14 (w/v) ammonium sulfate. Fractions of 0.2 ml were collected at a flow rate of 0.5 ml/min and assayed for activity with calf thymus DNA.

Sucrose Density Gradients—The peak activity fractions from the first phosphocellulose column were individually layered directly onto 5 to 20% sucrose density gradients (4.4 ml) which were prepared and then used exactly as described previously (17). Unlike otherwise specified, fraction volumes of 0.22 ml were collected and assayed for activity with calf thymus DNA. Although the purification effected by this procedure is not evident from the data in Table II, omission of this step resulted in an increased background of low molecular weight polypeptides (<80,000) in the final phosphocellulose enzyme preparation (below).

Second Phosphocellulose Chromatography—The peak activity fractions from the sucrose gradients were individually loaded onto a second phosphocellulose column equilibrated with Buffer B containing 0.05 M ammonium sulfate (100,000 to 150,000 units of activity/ml of bed volume). The resin was washed with Buffer B containing 0.05 M ammonium sulfate and eluted with a 10-column volume linear gradient of 0-0.16 M ammonium sulfate. Fractions equivalent to 3% of the gradient volume were collected and individually assayed for RNA polymerase activity and protein content. Those individual fractions were then stored at -80°C.

Polyacrylamide Gel Electrophoresis—Phosphocellulose gradient (Fraction F4, containing RNA polymerase I and III) were subjected to electrophoresis on polyacrylamide gels in cylindrical tubes under both denaturing and non-denaturing conditions as described previously (17).

The denaturing sodium dodecyl sulfate gel system is a modification of Laemmli’s procedure (21). These gels were fixed in 12% (w/v) trichloroacetic acid and 50% (v/v) ethanol for 1 to 2 hours at 50°C and stained in 10% (v/v) ammonium acetate, 50% (v/v) ethanol, and 0.1% (w/v) Coomasie brilliant blue for 10 to 20 hours at 50°C. Gels were destained and stained bands were scanned with a Gilford linear transport device as described previously (17).

Electrophoresis under nondenaturing conditions was carried out on polyacrylamide gels which were constructed according to the method of Maizel (22). Fresh dithioerythritol and bromphenol blue were added to each sample to final concentrations of 20 mM and 0.005%, respectively. This solution was then layered over a 1.3-m polyacrylamide gel (6.5 x 0.3 cm) containing 5% acrylamide, 0.13% bisacrylamide, 25% (v/v) glycerol, 0.75% Tris-HCl (pH 8.9), 0.15% diethyldithiocarbamate, and 0.06% (v/v) TEMED, and 0.08% (w/v) ammonium persulfate. The gel tubes were then filled with electrode buffer (5 mM Trizma base and 38 mM glycine). Samples were subjected to electrophoresis at 1 mA/gel until the dye had stacked and entered the gel, and then the current was increased to 1.5 mA/gel until the dye front reached the bottom of the gel. These gels were either stained for protein or sliced. In the latter case, slices were subjected to electrophoresis under denaturing conditions as described previously (17).

In addition, class III RNA polymerases were subjected to electrophoresis by the denaturing conditions on a high resolution polyacrylamide gel slab (25 x 9 x 0.1 cm) using a procedure similar to that described by Studier (23). The resolving gel, 24 cm in length, contained a linear 6 to 11% acrylamide gradient. A 3% acrylamide stacking gel, 1 cm in length, was polymerized above the gradient resolving gel. Electrophoresis of the samples through the stacking gel was carried out at 110 volts (constant voltage) for 90 min and the voltage was then raised to 150 volts (constant voltage) until the dye had completely run through the resolving gel (i.e., approximately 12 hours total). The gel slab was fixed for 3 hours at 25°C and stained for 1 hours at 25°C, using the solutions described above. The gel slab was destained with several washes of 10% (v/v) acetic acid and then photographed after removal of the contaminating protein in Fraction F1, with no detectable loss in total RNA polymerase activity. The apparent increase in activity during these initial purification steps may be due to removal of inhibitory proteins.

RESULTS

Solubilization, Chromatography, and Sucrose Gradient Sedimentation—Solubilized extract (F4), containing class I, II, and III RNA polymerases, was obtained as described under "Experimental Procedures." As summarized in the upper part of Table I, these prechromatographic procedures remove 65%

Table I

Fraction	Volume	Protein	Total activity	Class III specific activity
	ml	mg	units	units/g of protein
F1 0.32 M ammonium sulfate supernatant fraction	250	9,200	514,000	
F2 0.1 M ammonium sulfate supernatant fraction	710	6,100	1,850,000	
F3 resuspended ammonium sulfate supernatant fraction	280	3,800	2,380,000	
F4 0.19 M ammonium sulfate supernatant fraction	285	3,300	2,400,000	
DEAE-cellulose	550	1,100	4,300,000	
DEAE-Sephadex	70	70	495,000	

This table summarizes the activity yields of total (i.e., class I, II, and III) and class III RNA polymerases from 100 g of MOPC 315 tumor. Whole cells (containing approximately 25 g of protein and 600 mg of DNA) were homogenized, and solubilized enzyme Fractions F1, F2, F3, and F4 were obtained and assayed for RNA polymerase activity and protein content as described under "Experimental Procedures." Total activity was measured in the absence of α-amanitin. Prior to DEAE-Sephadex chromatography, the levels of class III RNA polymerases (i.e., IIIa + IIIb) were estimated as the amount of activity which was inhibited only by high concentrations of α-amanitin. Class III activity was not measured in Fractions F1, F2, and F3. Data for DEAE-cellulose chromatography were calculated from Fig. 1 and except for "Total Activity" represent only the fractions insensitive to low concentrations of α-amanitin (i.e., containing class I plus class III enzymes). Data for DEAE-Sephadex chromatography were calculated from Fig. 2 and refer to the fractions containing RNA polymerases IIIa and IIIb. Assuming that the amounts of RNA polymerases IIIa and IIIb in the crude whole cell extract (containing 25 g of protein) are equivalent to those determined after resolution of the enzyme on DEAE-Sephadex (Table II), the specific activities of enzymes IIIa and IIIb appear to be 0.014 and 0.0008 units/g of protein, respectively, in the crude extract. The data reported here and in Table II were taken from one representative experiment.

Some of the contaminating protein in Fraction F1, with no detectable loss in total RNA polymerase activity. The apparent increase in activity during these initial purification steps may be due to removal of inhibitory proteins.

RNA polymerase Fraction F4 was subjected to the chromatographic and sedimentation procedures described under "Experimental Procedures." Chromatography of Fraction F4 on DEAE-cellulose reveals two major peaks of activity (Fig. 1). The activity eluting at 0.07 to 0.12 M ammonium sulfate was completely sensitive to low concentrations of α-amanitin (2) and by its elution behavior on DEAE-Sephadex (Table II), the specific activities of enzymes IIIa and IIIb appear to be 0.014 and 0.0008 units/g of protein, respectively, in the crude extract. The data reported here and in Table II were taken from one representative experiment.

DEAE-Sephadex chromatography was calculated from Fig. 1 and except for "Total Activity" represent only the fractions insensitive to low concentrations of α-amanitin (i.e., containing class I plus class III enzymes). Data for DEAE-Sephadex chromatography were calculated from Fig. 2 and refer to the fractions containing RNA polymerases IIIa and IIIb. Assuming that the amounts of RNA polymerases IIIa and IIIb in the crude whole cell extract (containing 25 g of protein) are equivalent to those determined after resolution of the enzyme on DEAE-Sephadex (Table II), the specific activities of enzymes IIIa and IIIb appear to be 0.014 and 0.0008 units/g of protein, respectively, in the crude extract. The data reported here and in Table II were taken from one representative experiment.
and with calf thymus DNA (O---O); --, ammonium sulfate concentration; ,-- , protein content, and stored at -80°C. Fractions 32 to 35, containing RNA polymerases IIIA and IIIB, were similarly combined. Activity was measured with calf thymus DNA in the absence (O---O) or presence (G---G) of 0.5 μg/ml of α-amanitin, while the activity in Fractions 22 to 40 (2,155,000 units) was completely sensitive to 0.50 μg/ml of α-amanitin. No activity was detected in the breakthrough fractions. Fractions 8 to 18 were combined and assayed for protein content. The data summarized in Table I (except for “Total Activity”) are based on values for these 11 fractions. Activity was measured with calf thymus DNA in the absence (O---O) or presence (G---G) of 0.5 μg/ml of α-amanitin; --, ammonium sulfate concentration; ,-- , absorbance at 280 nm.

As summarized in Table I, the DEAE-cellulose and the DEAE-Sephadex chromatographic steps yield an approximately 70-fold purification with greater than 90% recovery of class III activity.

The following procedures were used to purify further the chromatographically separated RNA polymerases III, and IIIb. Since these two enzymes display similar behavior on CM-Sephadex and phosphocellulose chromatography, as well as on sucrose gradient sedimentation in the presence of 0.08 M ammonium sulfate, only the purification of RNA polymerase IIIb will be described.

DEAE-Sephadex fractions containing 349,000 units of RNA polymerase IIIb, activity (Fig. 2) were combined and subjected to chromatography on a CM-Sephadex column (12 x 2.5 cm) as described under “Experimental Procedures.” Less than 5% of the input activity appeared in the breakthrough fractions. The activity which bound to the column was eluted in a single symmetrical peak at an ammonium sulfate concentration of 0.10 M. A total of 160,000 units of activity were recovered. The peak fractions (containing 135,000 units) were pooled and loaded onto a phosphocellulose column (1.8 x 1.2 cm) as described under “Experimental Procedures (see “First Phosphocellulose Chromatography”). All of the activity was adsorbed to the column and eluted in a single sharp peak with a maximal enzyme concentration (peak tube) of 120,000 units/ml. A total of 105,000 units of activity were recovered. Those fractions which contained enzyme concentrations in excess of 30,000 units/ml were subjected individually to sucrose gradient sedimentation at an ammonium sulfate concentration of 0.08 M, as described under “Experimental Procedures.” A total of 95,000 units were loaded onto the sucrose gradient and the apparent yield of activity in this step was 103%. The sedimentation profile was similar to that observed in experiments described below. The final purification step was adsorption of the enzyme from the peak sucrose gradient fractions to a second phosphocellulose column and elution with a linear salt gradient (Fig. 3).

Overall Purification and Recovery—The purification of the individual class III enzymes after DEAE-Sephadex chromatography is summarized in Table II. Specific activities, shown across the peak phosphocellulose fractions averaged 310 units/mg of protein with calf thymus DNA and 5,450 units/μg of protein with [d(A-T)]p. The apparent specific activities of RNA polymerases IIIa and IIIb in the crude cellular extract are, respectively, 0.014 and 0.0058 units/μg of protein with calf thymus DNA as templates (see below). Due to the high concentration (0.1 M) of ammonium sulfate in the input sample, the majority of the enzyme I activity was not adsorbed (see legend to Fig. 2). As described previously (2), MOPC 315 cells contain two chromatographically distinct forms of RNA polymerase III, designated IIIa and IIIb. As summarized in the lower part of Table I, the DEAE-cellulose and the DEAE-Sephadex chromatographic steps yield an approximately 70-fold purification with greater than 90% recovery of class III activity.

As summarized in Table II, 14% of the initial RNA polymerase IIIb activity and 15% of the initial RNA polymerase IIIa activity, measured with calf thymus DNA, were recovered in the final phosphocellulose fractions. When activity was measured with [d(A-T)]p, 20% recovery of both Enzymes IIIa and IIIb was observed. However, as detailed in the legends to Figs. 1 and 2, N-acetyl-L-lysine and 2-mercaptoethanol were used in combination to maintain the activity of the purified IIIb enzyme in the presence of a high concentration of ammonium sulfate used in the chromatographic purification. Since these two enzymes display similar behavior on CM-Sephadex and phosphocellulose chromatography, as well as on sucrose gradient sedimentation in the presence of 0.08 M ammonium sulfate, only the purification of RNA polymerase IIIb will be described.
to 3 and in the text, not all of the activity recovered at each step was collected for subsequent purification procedures. Had no activity been discarded at each of these stages, an overall yield of 27% or 39% should have been attained, as measured with calf thymus DNA or [d(A-T)]_n, respectively. These recoveries of activity were obtained by minimizing the number and degree of dilutions of enzyme solutions, by the inclusion of bovine serum albumin in the buffers used for CM-Sephadex and the first phosphocellulose chromatography, and by the addition of bovine serum albumin and Nonidet P-40 to sucrose density gradients (17).

Properties—RNA polymerases III_\text{a} and III_\text{b} have many similar properties which distinguish them from the corresponding class I and class II enzymes. These include (a) biphasic salt activation profiles with native DNA templates (2); (b) distinct chromatographic behavior on DEAE-cellulose (elution at low ionic strength) versus DEAE-Sephadex (elution at high ionic strength) (Figs. 1 and 2); (c) sensitivity to high concentrations of a-amanitin (50% inhibition at 20 \(\mu\text{g}/\text{ml}\)) (2); and (d) increased activity (11- to 16-fold) with [d(A-T)]_n as template, relative to native DNA (Figs. 2 and 3).

Thus far only minor differences in the properties of RNA polymerase III_\text{a} and III_\text{b} have been detected. As shown above, the enzymes show distinct chromatographic properties on DEAE-Sephadex (Fig. 2). In addition, RNA polymerase III_\text{a} can be distinguished from RNA polymerase III_\text{b} by sucrose gradient sedimentation at intermediate ionic strengths (Fig. 4). In the presence of 0.125 \(M\) ammonium sulfate, Enzyme III_\text{a} sediments as a single peak of activity, while Enzyme III_\text{b} sediments as a double peak of activity (Fig. 4, Panels B and E, respectively). Similar results were observed at 0.1 \(M\) ammonium sulfate. At higher concentrations of ammonium sulfate, the additional salt is sufficient to cause the two-pointed peak of activity to coalesce into a single peak.

Fig. 3. Second phosphocellulose chromatography (linear gradient elution). RNA polymerase III, fractions from the sucrose density gradients (see text) containing 74,000 units of activity were chromatographed on a 0.5-ml column (1.0 x 0.8 cm) of phosphocellulose. Fraction volumes of 0.17 ml were collected at a flow rate of 0.17 ml/min and assayed for RNA polymerase activity and protein content. All of the activity adsorbed to the column. Averaged data for Fractions 8 to 16 are reported in Table II. These fractions were stored at -80\(^\circ\)C.

Table II

Fraction	Volume (ml)	Protein (\(\mu\text{g}\))	Activity (units/\(\mu\text{g}\) protein)	Specific Activity Recovery (\%)
RNA polymerase III_\text{a}				
DEAE-Sephadex	420	51,000	349,000	6.8 100
CM-Sephadex	40	160,000	160,000	26 96
First phosphocellulose	2.3	105,000	98,000	5.5 28
Second phosphocellulose	1.5	178	48,000	270 14

Fig. 4. Sucrose gradient sedimentation at different ionic strengths. Samples of RNA polymerases III_\text{a} (Panels A to C) and III_\text{b} (Panels D to F) were subjected to sucrose density gradient sedimentation as described under “Experimental Procedures.” In order to better visualize the data in the various experiments the activity in each fraction of a given gradient is plotted as a percent of the activity present in the fraction containing the highest level of enzyme activity (designated 100%). For each experiment the concentration of ammonium sulfate (\(M\)) fraction volume collected (ml), and units of activity in the peak tube were, respectively, 0.02, 0.13, and 1,000 (Panel A); 0.125, 0.22, and 67,100 (Panel B); 0.40, 0.11, and 1,150 (Panel C); 0.05, 0.13, and 450 (Panel D); 0.125, 0.22, and 19,800 (Panel E); and 0.40, 0.11, and 850 (Panel F). Arrows in Panels B and C denote the sedimentation position of Escherichia coli core RNA polymerase in parallel gradients containing 0.125 and 0.40 \(M\) ammonium sulfate, respectively. Activity was measured with [d(A-T)]_n, and in each case greater than 70% recovery of activity was observed. The sedimentation profiles shown are from several experiments, not all of which were done in parallel. These results are representative of at least three separate experiments performed at each salt concentration. From the relationship \(M_1/M_2)^{1/3} = S_2/S_1\) (36) and a molecular weight of 400,000 (37) for E. coli core RNA polymerase, the molecular weight of RNA polymerase III activity appears to be approximately 650,000 (data from Panels B and C).
sulfate both enzymes sediment as single peaks of activity as shown in Panels C and F (Fig. 4). However, at concentrations of ammonium sulfate lower than 0.1 M (Fig. 4, Panels A and D), both enzymes display heterogeneous peaks of activity. These data are consistent with the idea that Enzyme IIIₐ aggregates at both low and intermediate ionic strengths, whereas Enzyme IIIₐ does so only at low ionic strengths.

Although these enzymes have been purified by chromatography on two cation exchange columns and on two strong anion exchange columns prior to sedimentation on sucrose gradients, the possibility remains that a contaminating substance (e.g., a nucleic acid) may be responsible for the characteristic sedimentation properties of RNA polymerases IIIₐ and IIIₐ.

Polycrylamide Gel Electrophoresis under Denaturing Conditions—Individual phosphocellulose gradient fractions, containing RNA polymerase IIIₐ activity, were subjected to electrophoresis in the presence of sodium dodecyl sulfate (Fig. 5). The 10 polypeptides designated IIIa,b,c,d,e₁,e₂,f,g,h, and i, in order of decreasing molecular weight, are regarded as putative subunits based on the following observations. First, the mass of each of these polypeptides is directly proportional to the enzyme activity present in each phosphocellulose gradient fraction (Fig. 5). In contrast, this relationship does not hold for the additional polypeptides which are apparent in the second and fourth columns of Table III, respectively.

Table III

Subunit	Molecular weight	Molar ratios			
	Phosphocellulose IIIₐ				
a	185,000	185,000	1.0	1.1	1.1
b	188,000	188,000	1.0	1.0	1.0
c	89,000	89,000	1.1	0.9	1.0
d	70,000	70,000	1.1	1.0	1.0
e₁	52,000	53,000	1.0	1.0	1.0
e₂	49,000	49,000	1.2	1.0	1.0
e	41,000	41,000	1.2	0.9	0.8
f	22,000	23,000	0.8	0.9	0.9
g	29,000	29,000	1.1	1.1	0.9
h	19,000	19,000	1-3	1-3	1-3

See text for a discussion of the heterogeneity of subunit i.

Under the conditions of electrophoresis used previously (cylindrical gels, Eastman reagents) (16), a polypeptide designated IIIₐ was present in a molar ratio of greater than unity (relative to subunit IIIb) and two polypeptides designated IIIa and IIIb were each present in molar ratios less than unity. Under the conditions of electrophoresis used in Fig. 5 (cylindrical gels, Bio-Rad reagents), polypeptide III is resolved into two components (IIIa and IIIb) each present in molar ratio of unity (Table III), whereas polypeptides IIIa and IIIb (16) appear to migrate as a single component (IIIi) which is present in a molar ratio of approximately unity (Table III). However, heterogeneity in polypeptide III has also been observed in the present studies, when the enzyme is subjected to electrophoresis in a high resolution polycrylamide gel slab (Fig. 8). The molar ratios of the individual heterogeneous IIIi polypeptides vary in different enzyme preparations, but their sum is approximately unity. The basis for the heterogeneity in subunit III is not known.
Polyacrylamide Gel Electrophoresis under Nondenaturing Conditions—Highly purified RNA polymerase III, (phosphocellulose gradient fraction) was analyzed by polyacrylamide gel electrophoresis under nondenaturing conditions. When these gels were stained for protein, two major bands (designated III,,-1 and III,,-2) were routinely observed, and one minor diffuse band was occasionally detected (Fig. 6). Greater than 96% of the protein stain was associated with these bands. The migration of these bands and their relative intensities were somewhat variable in different experiments, yielding two patterns as shown in Fig. 6 (compare Gels 1 and 2). The cause of this variability is not clear, but samples containing high concentrations of enzyme seemed to yield the pattern shown in Gel 1 (Fig. 6), while less concentrated samples yielded the pattern shown in Gel 2 (Fig. 6). However, other factors such as minor differences in the salt concentration of the samples may contribute to this variability. No activity measurements (see Ref. 17) were attempted on the electrophoretically separated protein bands.

Polyacrylamide Gel Electrophoresis under Denaturing Conditions Following Electrophoresis under Nondenaturing Conditions—The subunit compositions of electrophoretic forms III,,-1 and III,,-2 have been determined. An unstained polyacrylamide gel, containing 6 times more sample protein than Gel 1 (Fig. 6), was divided into 1-mm wide slices and the protein in the individual slices was subjected to electrophoresis under denaturing conditions as described previously (17). Panel A in Fig. 7 shows the subunit composition of the phosphocellulose enzyme prior to electrophoresis under nondenaturing conditions. Panels B and C in Fig. 7 show the polypeptide compositions of electrophoretic forms III,,-1 and III,,-2, respectively. The subunit compositions of electrophoretic forms III,,-1 and III,,-2 were identical and, except for a shoulder of staining material migrating slightly faster than subunit III,,- they were the same as that of the phosphocellulose enzyme. Subunit molecular weights and molar ratios are summarized in Table III.

The enzyme preparation analyzed in this experiment (Fig. 7) also appeared to contain two polypeptide components between polypeptides III,,-1 and III,,-2 (cf. Fig. 5). Although the polypeptide bands were diffuse (Panels B and C), these two components appeared to remain associated with electrophoretic forms III,,-1 and III,,-2. As noted above, however, these components are not readily detected in all RNA polymerase III preparations.

A small amount of protein was recovered from slices corresponding to the minor diffuse band in Gel 1 of Fig. 6. With the probable exception of polypeptides III,,-1 and III,,-2, this material contained all the subunits present in the phosphocellulose enzyme preparation.
Electrophoretic Comparison of RNA Polymerases IIIa and IIIb—Electrophoresis of RNA polymerase IIIb under non-denaturing conditions revealed two major protein bands similar to the results obtained with Enzyme IIIa (Fig. 6). The subunit compositions of electrophoretic forms IIIb-1 and IIIb-2 were not investigated.

Electrophoresis of individual phosphocellulose gradient fractions containing RNA polymerase IIIb activity revealed a subunit pattern similar to the one obtained with Enzyme IIIa. To resolve minor differences in the subunit compositions between RNA polymerases IIIa and IIIb, these enzymes were subjected to electrophoresis individually and in combination on a 25-cm polyacrylamide gel slab under denaturing conditions (Fig. 8). These data clearly illustrate that RNA polymerases IIIa and IIIb differ only in one subunit. Except for a 32,000 dalton subunit IIIgA, which is unique to Enzyme IIIa, and a 33,000 dalton subunit IIIgH, which is unique to Enzyme IIIb, the subunit molecular weights in Enzyme IIIa appear identical with those in Enzyme IIIb (Table III). The molar ratios of the subunits in Enzyme IIIa are similar to those for the analogous subunits in Enzyme IIIb. The electrophoretic system used here (Fig. 8) resolves polypeptide IIIb into two components as observed previously (Ref. 16, see also Footnote 4). This electrophoretic system also resolves subunit III into several polypeptides. Although subunit IIIb appears to be present in stoichiometric excess after electrophoresis under non-denaturing conditions (Fig. 7), it is not clear which of the low molecular weight polypeptides observed in Fig. 8 remain associated with the enzyme under these conditions.

Discussion

Purification, Structure, and Heterogeneity of RNA Polymerases IIIa and IIIb—Two chromatographic forms of RNA polymerase III are present in the mouse plasmacytoma MOPC 315. Previous studies have shown the presence of RNA polymerase III activity in both cytoplasmic and nuclear fractions following cellular disruption and fractionation (2, 5, 8, 9). We have, therefore, purified the MOPC class III enzymes from whole cells in order to study the total cellular population of these molecules. RNA polymerases IIIa and IIIb were resolved by chromatography on DEAE-Sephadex and purified by ion exchange chromatography and sucrose gradient sedimentation. Relative to whole cell extracts the overall purifications were 22,000- and 53,000-fold, respectively, for enzymes IIIa and IIIb.

Chromatographically homogeneous RNA polymerases IIIa and IIIb each contains at least 10 putative subunits designated IIIa,b,c,d,e,f,g,h, and i. That these RNA polymerase III-associated polypeptides represent enzyme subunits is suggested by the following observations: (a) the ratio of the amount of each polypeptide to the amount of enzyme activity is approximately constant for individual phosphocellulose gradient fractions; (b) the molar ratios of these polypeptides are approximately unity, with the exception of polypeptide IIIh which is present in a higher but constant molar ratio; (c) the molecular weight of RNA polymerase III calculated from the molecular weights and molar ratios of the individual polypeptides (695,000) is compatible with that estimated from sucrose gradient sedimentation (650,000); (d) polypeptides IIIa to i co-sediment with RNA polymerase III activity upon sucrose density gradient sedimentation and they remain associated with the major protein bands when RNA polymerase III is subjected to electrophoresis under non-denaturing conditions; and (e) the murine and amphibian class III enzymes contain analogous polypeptides of the same or similar size (16), even though these enzymes are from grossly different cell types.

The subunit compositions of RNA polymerases IIIa and IIIb are very similar, differing only in subunit IIIg which is slightly smaller in Enzyme IIIa (IIIgH=32,000 daltons) than in Enzyme IIIb (IIIgH=33,000 daltons). As reported previously (2), no evidence for interconversion of these enzyme forms could be found since they maintain their distinctive properties upon rechromatography on DEAE-Sephadex. The presence of serine protease inhibitors (i.e. PMSF and iPr,P-F) during enzyme isolation and purification did not alter the subunit patterns of the purified enzymes. The general similarity between the subunit structures of Enzymes IIIa and IIIb correlates with the similarities in their catalytic properties and α-amanitin sensitivities. However, the minor structural difference between subunits IIIgA and IIIgH may be responsible for differences in...
the sedimentation properties and DEAE-Sephadex elution positions of Enzymes IIIα and IIIβ and might also reflect functional differences.

Chromatographically purified RNA polymerases IIIα and IIIβ were each resolved into two electrophoretic forms. The subunit compositions of the electrophoretic forms of RNA polymerase III, (IIIα-1 and IIIα-2) were indistinguishable. Therefore, the electrophoretic forms of RNA polymerase III may differ primarily in the charge of a specific subunit(s), which would not be detected by electrophoresis in the presence of sodium dodecyl sulfate. Alternatively, these electrophoretic forms could reflect different states of aggregation of the enzyme or other minor structural differences not detectable in the present analytical systems.

**Alterations in RNA Polymerase Activity—Class III RNA polymerases have been shown to synthesize tRNA and 5 S RNA in mouse plasmacytoma cell nuclei (14). These enzymes have also been shown to synthesize several distinct, low molecular weight viral RNAs in adenovirus 2-infected KB cells8 (24) which, like plasmacytoma cells, contain two chromatographic forms of RNA polymerase III (25). These observations and the subunit structures presented here suggest the possibility of functional differences between RNA polymerases IIIα and IIIβ. Although the basis and significance of the distinct electrophoretic forms of each class III enzyme remain unclear, electrophoretic variants might represent distinct functional states or regulatory modifications of a single enzyme.

Previous studies have shown both increased rates of tRNA and 5 S RNA synthesis (15) and increased cellular levels of solubilized RNA polymerase III activity in more rapidly growing cell types (2, 3, see introduction to the text). In an attempt to distinguish whether increased enzyme activities result from RNA polymerase modifications or from increased enzyme concentrations, the purified class III RNA polymerases from several cell types have been compared. The intrinsic specific activity of the mouse class III enzymes (Table II) is similar to that observed for RNA polymerase III from both Xenopus laevis oocytes4 and from the posterior silk gland of Bombyx mori5 and is comparable to the specific activities reported for other purified eukaryotic RNA polymerases (17, 18, 20, 26-29). Furthermore, the subunit compositions of the murine and the amphibian class III enzymes are remarkably similar (25). These observations and analytical systems.

(24) which, like plasmacytoma cells, contain two chromatographic forms of RNA polymerase III (25). These observations and the subunit structures presented here suggest the possibility of functional differences between RNA polymerases IIIα and IIIβ. Although the basis and significance of the distinct electrophoretic forms of each class III enzyme remain unclear, electrophoretic variants might represent distinct functional states or regulatory modifications of a single enzyme.

**Alterations in RNA Polymerase Activity—Class III RNA polymerases have been shown to synthesize tRNA and 5 S RNA in mouse plasmacytoma cell nuclei (14). These enzymes have also been shown to synthesize several distinct, low molecular weight viral RNAs in adenovirus 2-infected KB cells8 (24) which, like plasmacytoma cells, contain two chromatographic forms of RNA polymerase III (25). These observations and the subunit structures presented here suggest the possibility of functional differences between RNA polymerases IIIα and IIIβ. Although the basis and significance of the distinct electrophoretic forms of each class III enzyme remain unclear, electrophoretic variants might represent distinct functional states or regulatory modifications of a single enzyme.

Previous studies have shown both increased rates of tRNA and 5 S RNA synthesis (15) and increased cellular levels of solubilized RNA polymerase III activity in more rapidly growing cell types (2, 3, see introduction to the text). In an attempt to distinguish whether increased enzyme activities result from RNA polymerase modifications or from increased enzyme concentrations, the purified class III RNA polymerases from several cell types have been compared. The intrinsic specific activity of the mouse class III enzymes (Table II) is similar to that observed for RNA polymerase III from both Xenopus laevis oocytes4 and from the posterior silk gland of Bombyx mori5 and is comparable to the specific activities reported for other purified eukaryotic RNA polymerases (17, 18, 20, 26-29). Furthermore, the subunit compositions of the murine and the amphibian class III enzymes are remarkably similar (25). These observations and analytical systems.
32. Hatlen, L., and Attardi, G. (1971) *J. Mol. Biol.* **56**, 535-553
33. Miller, O. L., Jr., and Hamkalo, B. A. (1972) *Molecular Genetics and Molecular Biology* (Sussman, M., ed) pp. 183-199, Prentice Hall, N. J.
34. Littauer, U. Z., and Inouye, H. (1973) *Annu. Rev. Biochem.* **42**, 439-470
35. Denis, H. (1974) *Biochemistry of Cell Differentiation* (Paul, J., ed) pp. 95-125, University Park Press, Baltimore
36. Martin, R. G., and Ames, B. N. (1961) *J. Biol. Chem.* **236**, 1372-1379
37. Burgess, R. R. (1969) *J. Biol. Chem.* **244**, 6168-6176
Purification and subunit structure of deoxyribonucleic acid-dependent ribonucleic acid polymerase III from the mouse plasmacytoma, MOPC 315.
V E Sklar and R G Roeder

J. Biol. Chem. 1976, 251:1064-1073.

Access the most updated version of this article at http://www.jbc.org/content/251/4/1064

Alerts:
- When this article is cited
- When a correction for this article is posted

Click here to choose from all of JBC's e-mail alerts

This article cites 0 references, 0 of which can be accessed free at http://www.jbc.org/content/251/4/1064.full.html#ref-list-1