Thermodynamics of Non-linear magnetic-charged AdS black hole surrounded by quintessence, in the background of perfect fluid dark matter

Ragil Brand Ndongmo1,*, Saleh Mahamat2,3, Thomas Bouetou Bouetou1,3, Conrad Bertrand Tabi4, Timoleon Crepin Kofane1,4

1 Department of Physics, Faculty of Science, University of Yaounde I, P.O. Box. 812, Yaounde, Cameroon,
2 Department of Physics, Higher Teacher’s Training College, University of Maroua, P.O. Box 55, Maroua, Cameroon,
3 National Advanced School of Engineering, University of Yaounde I, P.O. Box. 8390, Yaounde, Cameroon,
4 Department of Physics and Astronomy, Botswana International University of Science and Technology, Private Mail Bag 16, Palapye, Botswana
5 The Research Center in Didactic of Fundamental and Applied Sciences, University of Maroua, Cameroon

* nragilbrand@gmail.com

Abstract

In this paper, we study the thermodynamic features of a non-linear magnetic-charged AdS black hole surrounded by quintessence, in the background of perfect fluid dark matter (PFDM). After having constructed the corresponding metric, we analyse the structure of the horizon. We find that the existence of inner or outer horizon are constrained by the presence of dark matter. Afterwards, we put out the mass and the temperature of the black hole, in order to get its entropy. Subsequently, we find the expression of the pressure which leads us to get the table of critical values and the isothermal diagram. Especially, we find that the critical values of the temperature and the pressure increase as the dark matter parameter increases. Also, analysing the isothermal diagram, we observe a van der Waals-like behaviour remarked by the presence of a first-order phase transition when we cross the critical temperature. Additionally, we compute and plot the heat capacity and the Hessian matrix of the black hole mass. For the heat capacity, we find that a second-order phase transition occurs, leading the black hole to move from stable phase to unstable one. Furthermore, it comes out that this phase transition point is shifted towards higher values of the horizon radius, as we decrease the dark matter density and increase the quintessence density.

1 Introduction

The thermodynamic study of black holes is one of the most used way to apprehend black holes since the seminal works of Hawking \cite{Hawking1974} and Bekenstein \cite{Bekenstein1973}. Precisely, they found outstanding results such that black holes radiate as black bodies. In this way, we could find many thermodynamic quantities of the black hole, namely the temperature, the entropy, the volume, the heat capacity, and so on \cite{Bardeen1973, Rindler1975, Bekenstein1974}. Since then, many works have been done on the thermodynamics of black holes \cite{Iyer1994, Wald1994}.

One of the properties of black holes predicted by the Einstein theory of general relativity is known as Singularity, which is the point of space-time for which the predictive physical laws are broken down \cite{Hawking1974, Penrose1969}. In order to solve this problem, many alternative solutions without singularity have been constructed and they are called regular black holes. The Bardeen black hole belongs to these solutions \cite{Bardeen1973, Bekenstein1974, Wiltshire1974} with an event horizon satisfying the weak energy condition. It has been derived by introducing an energy-momentum tensor, interpreted as the gravitational field of some sort of a non-linear magnetic monopole charge Q. Thereby, many authors have been interested in these regular black holes and their geometrical and thermodynamic properties \cite{Li2004, Liu2012}.
A recent fascinating results of observational cosmology is the accelerated expansion of the Universe \[27-29\]. Moreover, this result has been confirmed by the measurement of the Cosmic Microwave Background (CMB) by the PLANCK space Satellite \[30\]. To explain such a phenomenon, an exotic scalar field with a large negative pressure called "dark energy" has been suggested as being the major component, up to 70% of the total energy of the Universe \[7\]. Many candidates have been proposed to be dark energy. A well known of them is the cosmological constant. Beside it, the model used by several authors is called quintessence, which is characterised by a parameter \(\epsilon\), defined as the ratio of the pressure to the energy density of the dark energy. \(\epsilon\) is defined in the range \(-1 < \epsilon \leq -\frac{1}{3}\) \[7,11,31\]. Therefore, it seems interesting to study the effects of quintessence on black holes. In that way, Kiselev \[32\] has proposed a solution corresponding to the Schwarzschild black hole surrounded by the quintessence. Afterwards, many works have been done in order to study the black hole in the quintessence field \[33-40\].

Beside dark energy, another unsolved problem in cosmology and astrophysics is dark matter, which constitutes about 23% of the total mass-energy of the universe \[41\], according to the Standard Model of Cosmology. Many theoretical models have been proposed to be dark matter. Beside Cold Dark Matter (CDM) \[42\], Warm Dark Matter \[43, 44\] and Scalar Field Dark Matter \[45, 46\], the Perfect fluid dark matter(PFDM) is one among them, and it has been shown that the PFDM can explain the asymptotically flat rotation curves concerning spiral galaxies \[47\]. Hence the introduction of PFDM in many works concerning black holes \[48-51\].

AdS spacetime is remarked by a constant negative scalar curvature, and corresponds to a negative cosmological constant \(\Lambda\) on the spacetime, with a positive pressure. Since the introduction of AdS spacetime, it has been proved that cosmological constant can have an influence in high energy astrophysical objects, such as active galactic nuclei and supermassive black holes \[52\]. Hence, it can be interesting to study the impact of dark energy or dark matter onto the behaviour of AdS black holes, as it has been done in \[31, 38, 41, 53-56\]. Furthermore, it has also been studied the quintessence AdS black hole in the framework of holography \[57\].

Since seminal work of Hawking and Page \[58\], it has been shown that black holes undergo to a phase transition, in the AdS/CFT correspondence. Furthermore, the understanding of the phase transition could be extended to the one between small-large black hole, as in \[59, 61\], for which they showed a complete analogy with the van der Waals liquid-gas system. Unlike the classical thermodynamics, there is no usual \(P-V\) term in the first law of the black hole thermodynamics. Therefore, in order to restore it, it has been suggested that the Cosmological constant \(\Lambda\) plays the role of the pressure \(P\) and its conjugate quantity as a thermodynamic volume \(V\) in the extended phase space, and then the black hole mass considered as the enthalpy, as suggested in \[62-64\]. Thereby, this reasoning has enriched several studies on the thermodynamic study of black holes \[65-73\].

Another way to study the black hole phase transitions is through the behaviour of its heat capacity \[7\]. Especially, Husain and Mann \[14\] suggested that the specific heat of a black hole becomes positive after a phase transition near the Planck scale, and the presence of a discontinuity in the plot of the heat capacity shows the presence of a second-order phase transition. Afterwards, it has been studied in several works, in order to explore the black hole phase transition(see \[7, 15, 24, 78\]). Especially, Nam \[79\] derived a non-linear magnetic-charged black hole surrounded by quintessence, and studied its thermodynamic stability. As a result, he found that the black hole may undergo, at a critical temperature, a thermal phase transition, between a larger unstable black hole and a smaller stable black hole. Therefore, what could we have if we also take into account the presence of dark matter, in the AdS space-time?

In this paper, we aim at studying the impact of these two quantities on the thermodynamic behaviour of the non-linear magnetic-charged AdS black hole.

In an effort to find possible solutions to this concern, the paper is organised as follows. In Section (2), we derive the metric corresponding to the non-linear magnetic-charged AdS black hole surrounded by quintessence, in the background of perfect fluid dark matter. Afterwards, in section (3), we study the horizon structure through the event horizon property. In Section (4), by considering the cosmological constant acting as a dynamical pressure, we study the thermodynamic
stability and the phase transitions of the black hole, and we put out the effects of the quintessence energy and the PFDM in the background of the non-linear magnetic-charged AdS black hole. The Section (5) is devoted to the conclusion.

2 Non-linear magnetic-charged AdS black hole surrounded by quintessence and the perfect fluid dark matter

In the presence of quintessence, the action corresponding to the Einstein gravity coupled to a non-linear electromagnetic field in the four-dimensional AdS space-time and in the presence of PFDM can be expressed as [41, 55, 80–84]

\[
S = \int d^4x \sqrt{-g} \left[\frac{c^4}{16\pi G} (R - 2\Lambda) - (\mathcal{L}_{\text{charge}} - 4\pi \mathcal{L}_{\text{PFDM}}) - \mathcal{L}_{\text{quint}} \right]
\]

where \(R \) is the scalar curvature, \(\Lambda \) is the cosmological constant, \(\mathcal{L}_{\text{charge}} \) is the non-linear electrodynamic term and is a function of the invariant \(F^\mu_\nu F^\nu_\mu / 4 \equiv F \), with \(F^\mu_\nu = \partial_\mu A_\nu - \partial_\nu A_\mu \), being the Faraday tensor of electromagnetic field, and \(A^\nu \) is the gauge potential of the electromagnetic field, \(g \) is the determinant of the metric tensor \(g^\mu_\nu \), \(G \) is the Newton gravity constant and \(c \) is the light speed. The expression \(\mathcal{L}_{\text{charge}} \) is given by [51, 79, 85, 86]

\[
\mathcal{L}_{\text{charge}} = \frac{3M}{|Q|^3} \frac{(2Q^2F)^{3/2}}{[1 + (2Q^2F)^{3/4}]^2},
\]

where \(M \) and \(Q \) are the parameters associated with mass and magnetic charge of the system, respectively.

The PFDM term in the action (1) is remarked by the term \(\mathcal{L}_{\text{PFDM}} \), which is the PFDM Lagrangian density, and \(\mathcal{L}_{\text{quint}} \) is the term corresponding to quintessence, which is given by [53, 87, 88]

\[
\mathcal{L}_{\text{quint}} = -\frac{1}{2}(\nabla \phi)^2 - V(\phi),
\]

where \(\phi \) is the quintessential scalar field, and \(V(\phi) \) is the potential.

Therefore, applying variational principle from Eq. (1), meaning that making the extremization of the action, with respect to the inverse of the metric \(g^{\mu\nu} \), the action leads to

\[
0 = \frac{1}{\sqrt{-g}} \frac{\delta S(\text{action})}{\delta g^{\mu\nu}}
\]

\[
= \frac{1}{\sqrt{-g}} \left\{ \frac{c^4}{16\pi G} \int d^4x \frac{\delta (\sqrt{-g} (R - 2\Lambda))}{\delta g^{\mu\nu}} \right\}
\]

\[
- \left(\int d^4x \frac{\delta (\sqrt{-g} \mathcal{L}_{\text{charge}})}{\delta g^{\mu\nu}} \right)
\]

\[
+ \left(\int d^4x 4\pi \frac{\delta (\sqrt{-g} \mathcal{L}_{\text{PFDM}})}{\delta g^{\mu\nu}} \right)
\]

\[
- \left(\int d^4x \frac{\delta (\sqrt{-g} \mathcal{L}_{\text{quint}})}{\delta g^{\mu\nu}} \right) \right\}
\]

Having this in mind, one can get

\[
G^\mu_\nu + \Lambda g^\mu_\nu = \frac{8\pi G}{c^4} (T^\mu_\nu(\text{charge}) + 4\pi T^\mu_\nu(\text{PFDM}) - T^\mu_\nu(\text{quint}))
\]
In Eq. (9), the different energy-momentum tensors are expressed as follows \cite{85, 88, 89}

\[T_{\mu\nu}^{\text{(charge)}} = \frac{2\sqrt{-g}\mathcal{L}_\text{charge}}{8\pi g^{\mu\nu}} \]
\[= -\frac{\partial \mathcal{L}_\text{charge}}{\partial F_{\mu\nu}} F^\beta_{\nu\beta} + \mathcal{L}_\text{charge} g_{\mu\nu}, \quad (10) \]

\[T_{\mu\nu}^{\text{(quint)}} = \frac{2\sqrt{-g}\mathcal{L}_\text{quint}}{8\pi g^{\mu\nu}} \]
\[= \left[\nabla_\mu \phi \nabla_\nu \phi - \frac{1}{2} g_{\mu\nu} \left((\nabla \phi)^2 + 2V(\phi) \right) \right], \quad (13) \]

\[T_{\mu\nu}^{\text{(PFDM)}} = \frac{2\sqrt{-g}\mathcal{L}_\text{PFDM}}{8\pi g^{\mu\nu}}. \quad (14) \]

In units with the normalization of Newton gravity constant \(G \), light speed \(c \) and the number \(\pi \) by \(\frac{4\pi G}{c^4} = 1 \), we finally get the Einstein-Maxwell equations of motion, expressed in the contravariant coordinates as follows

\[G^{\nu\mu} + \Lambda \delta^{\nu\mu} = 2 \left(\frac{\partial \mathcal{L}_\text{charge}}{\partial F_{\mu\nu}} F^\nu_\rho F^\rho_{\nu\mu} - \delta^{\nu}_\mu \mathcal{L}_\text{charge} \right) + 4\pi T_{\mu\nu}^{\text{(PFDM)}} - T_{\mu\nu}^{\text{(quint)}}, \quad (15) \]

\[\nabla_\mu \left(\frac{\partial \mathcal{L}_\text{charge}}{\partial F_{\nu\mu}} F^\nu_\mu \right) = 0, \quad (16) \]

\[\nabla_\mu \ast F_{\nu\mu} = 0. \quad (17) \]

Since dark matter is considered as a kind of perfect fluid, the energy-momentum tensor is then written as \(T_{\mu\nu} = \text{diag}[-\rho, p, p, p] \) \cite{41, 55, 80}, with \(\rho \) and \(p \) being the energy density and the pressure, respectively. Furthermore, in the simplest case, we assume \(\frac{\rho}{p} = \delta - 1 \), where \(\delta \) is a constant \cite{80}.

Now, since we need to find a spherically symmetric AdS black hole solution of the mass \(M \) and the magnetic charge \(Q \) in the quintessence and PFDM, the metric has to be written with ansatz \cite{41, 79, 90}

\[ds^2 = -e^\nu dt^2 + e^\lambda dr^2 + r^2 (d\theta^2 + \sin^2 \theta d\phi^2) \]
\[\quad = -f(r)dt^2 + \frac{1}{f(r)}dr^2 + r^2 (d\theta^2 + \sin^2 \theta d\phi^2), \quad (18) \]

with
\[f(r) = 1 - 2m(r) - \frac{\Lambda}{3} r^2. \]

The ansatz we use for the Maxwell field is expressed as \cite{21, 41, 79}

\[F_{\mu\nu} = \left(\delta_\mu^\theta \delta_\nu^\phi - \delta_\mu^\phi \delta_\nu^\theta \right) B(r, \theta). \quad (19) \]

Here, one can notice that the magnetic charge \(Q \) is defined as \cite{79}

\[\frac{1}{4\pi} \int_{S^\infty_2} F = Q, \quad (20) \]

with \(S^\infty_2 \) being a two-sphere at the infinity. Note furthermore that \(Q \) is the integral constant which should be used to integrate Eqs. (16) and (17) in order to find the expression of \(F_{\mu\nu} \), and \(M \) is the one which will allow us to find the expression of \(m(r) \). Now, taking into account Eqs. (10), (17) and (20), we have \cite{79}

\[B(r, \theta) = Q \sin(\theta), \quad (21) \]

which leads straightforwardly to

\[F = \frac{Q^2}{2r^4}. \quad (22) \]

\[4/19 \]
Now, replacing it into Eq. (2), we get the non-linear electrodynamic term as
\[
\mathcal{L}_{\text{charge}} = \frac{3MQ^3}{(r^3 + Q^3)^2}. \tag{23}
\]

Considering the time component of Eq. (15), we get
\[
G^t_t + \Lambda \delta^t_t = 2 \left(\frac{\partial \mathcal{L}_{\text{charge}}}{\partial F_t^t} F_t^t F^t_t - \delta^t_t \mathcal{L}_{\text{charge}} \right) + 4\pi T^t_t (\text{PFDM}) - T^t_t (\text{quint}). \tag{24}
\]

Now, since the time components of energy-momentum for the PFDM and for quintessence are related to their energy density, they are expressed as follows \[32, 91\]
\[
T^t_t (\text{PFDM}) = \frac{1}{8\pi} \frac{\alpha}{r^3}, \tag{25}
\]
\[
T^t_t (\text{quint}) = -\frac{3\epsilon c_q}{2r^3(\epsilon+1)}, \tag{26}
\]
where \(\alpha\) denotes the intensity of the PFDM, \(c_q\) and \(\epsilon\) are the quintessence parameters.

Therefore, from Eq. (24), we get straightforwardly
\[
G^t_t + \Lambda = -2\mathcal{L}_{\text{charge}} + \frac{\alpha}{r^3} + \frac{3\epsilon c_q}{r^3(\epsilon+1)}, \tag{27}
\]

since \(\delta^t_t = 1\), and \(F_t^t F^t_t = 0\).

Before solving Eq. (27), we first have to find the component \(G^t_t\) of the Einstein tensor, which is obtained using the metric \([13]\), by
\[
G^t_t = e^\nu \left[\frac{1}{r^2} - e^{-\lambda} \left(\frac{1}{r^2} - \frac{\lambda'}{r} \right) \right]. \tag{28}
\]

Developing it, we get
\[
G^t_t = f(r) \left[\frac{1}{r^2} - f(r) \left(\frac{1}{r^2} - \frac{1}{r} \left(\frac{f'(r)}{f(r)} \right) \right) \right]
= f(r) \left[\frac{1}{r^2} - f(r) \left(\frac{1}{r^2} - \frac{1}{r f(r)} \left[2 \left(\frac{1}{r} \frac{dm(r)}{dr} \right) \right] - \right.
ight.
- \left. \left. \frac{m(r)}{r^2} + \frac{\Lambda}{3} \right)^2 \right] \right]
= f(r) \left(\frac{2}{r^2} \frac{dm(r)}{dr} + \Lambda \right).
\]

with \(\lambda = -\ln f(r)\)

Therefore, the component \(G^t_t\) of Eq. (28) is expressed as
\[
G^t_t = g^{tt} G_{tt} = (-f(r))^{-1} f(r) \left(\frac{2}{r^2} \frac{dm(r)}{dr} + \Lambda \right), \tag{29}
\]
meaning that
\[
G^t_t = \frac{2}{r^2} \frac{dm(r)}{dr} - \Lambda. \tag{30}
\]

Now, replacing Eq. (30) into Eq. (27), we get
\[
\frac{dm(r)}{dr} = \frac{3MQ^3r^2}{(r^3 + Q^3)^2} - \frac{\alpha}{2r} - \frac{3\epsilon c_q}{2r^{3(\epsilon+1)}}.
\]
By integration, we obtain
\[m(r) = -\frac{MQ^3}{r^3 + Q^3} - \frac{\alpha}{2} \ln \frac{r}{|\alpha|} + \frac{c_q}{2r^3} + C_{st}. \] (31)

Now, to find the integral constant \(C_{st} \), we will use the boundary condition
\[M = \lim_{r \to \infty} \left\{ m(r) + \frac{\alpha}{2} \ln \frac{r}{|\alpha|} - \frac{c_q}{2r^3} \right\} \]
leading to
\[C_{st} = M. \] (32)

Hence, the mass \(m(r) \) and the function \(f(r) \) are respectively given by
\[m(r) = \frac{Mr^3}{r^3 + Q^3} - \frac{\alpha}{2} \ln \frac{r}{|\alpha|} + \frac{c_q}{2r^3}, \] (33)
\[f(r) = 1 - \frac{2Mr^2}{r^3 + Q^3} + \frac{\alpha}{r} \ln \frac{r}{|\alpha|} - \frac{c_q}{r^{3\epsilon+1}} - \frac{\Lambda}{3} r^2. \] (34)

Hereby, the spherically symmetric solution for the action (1) is obtained as
\[ds^2 = -f(r)dt^2 + \frac{1}{f(r)}dr^2 + r^2(d\theta^2 + \sin^2 \theta d\phi^2), \] (35)
with \(f(r) = 1 - \frac{2Mr^2}{r^3 + Q^3} + \frac{\alpha}{r} \ln \frac{r}{|\alpha|} - \frac{c_q}{r^{3\epsilon+1}} - \frac{\Lambda}{3} r^2. \) (36)

Let us notice first that if we replace the quintessence parameter \(c = 0 \) and the cosmological constant \(\Lambda = 0 \) into Eq. (35), we recover the metric of non-linear magnetic-charged black hole surrounded by dark matter considered by Ma et al. [51].

3 Horizon structure analysis

In order to study the event horizon of the black hole, we need to use the following horizon property
\[g^{rr} = 0. \] (37)

Therefore, through this equation, we obtain
\[f(r) = 1 - \frac{2Mr^2}{r^3 + Q^3} + \frac{\alpha}{r} \ln \frac{r}{|\alpha|} - \frac{c_q}{r^{3\epsilon+1}} - \frac{\Lambda}{3} r^2 = 0. \] (38)

This means that the horizons of the black hole are solutions of Eq. (38). In the literature, it has been shown that a charged black hole with quintessence has possibly three horizons: the inner horizon \(r^- \), the event horizon \(r^+ (\geq r^-) \) and the quintessence horizon \(r_q (\geq r^+) \) [79].

The variation of \(f(r) \) is depicted in Fig. (1), in term of the radius, for different values of the dark matter parameter \(\alpha \). This plot, especially Fig. (1) (a), shows that the black hole has a quintessence horizon, which is in our case, in the range \([1, 1.5]\). However the black hole cannot necessarily have the inner and outer horizons, as it is shown in Fig. (1) (b). Indeed, this figure shows that in the absence of dark matter, it only has an outer horizon(for \(\alpha = 0 \)). Moreover, in the case of very small dark matter parameter(for example \(\alpha = 0.01 \)), we see the presence of two horizons, but for higher values of dark matter parameter(for example \(\alpha = 0.05 \) or \(\alpha = 0.1 \)) there is no horizon, which leads
the black hole to have only the quintessence horizon. This analysis tells us that dark matter has a considerable effect on the behaviour of the non-linear magnetic-charged black hole horizon.

Now, using the horizon property \[77, 79\], and solving the following equation at the horizon

\[f(r_h) = 0, \] (39)

leads to

\[M = \frac{(r_h^3 + Q^3)}{2 r_h^2} \left(1 + \frac{\alpha}{r_h^3} \ln \frac{r_h}{|\alpha|} - \frac{c_q}{r_h^{3\epsilon+1}} - \frac{\Lambda}{3 r_h^2} \right). \] (40)

Eq. (40) gives the relation between the black hole mass and its horizon radius.

4 Thermodynamic phase transition

For the next step, we will make the thermodynamic analysis of the black hole. First, we will get the isothermal \(P - r_h \) diagram, and to do that, we consider that the cosmological constant term \(\Lambda \) will act as a dynamical pressure. Thus, we could write \[65, 73\]

\[P = -\frac{\Lambda}{8\pi}. \] (41)

Therefore, substituting \(\Lambda \) from Eq. (41) into Eq. (40), we readily find

\[M = \frac{(r_h^3 + Q^3)}{2 r_h^2} \left(1 + \frac{\alpha}{r_h^3} \ln \frac{r_h}{|\alpha|} - \frac{c_q}{r_h^{3\epsilon+1}} + \frac{8\pi P^4}{3 r_h^2} \right). \] (42)

The Hawking temperature is found through the surface gravity definition at the horizon \[79\]

\[T = \frac{\alpha}{2\pi} f'(r_h) = \frac{1}{4\pi} \left\{ -2M \left[\frac{2r_h (r_h^3 + Q^3) - 3\epsilon r_h^3}{(r_h^3 + Q^3)^2} \right] - \frac{\alpha}{r_h^{3\epsilon} + 1} \ln \frac{r_h}{|\alpha|} \right\}. \] (43)

Thus, using Eq. (42), Eq. (43) may become as

\[T = \frac{1}{4\pi (r_h^3 + Q^3)} \left[\frac{r_h^3 - 2Q^3}{r_h} + \frac{3c_q}{r_h^{3(1+\epsilon)}} (r_h^3 + Q^3 (1 + \frac{1}{\epsilon})) \right] + \frac{\alpha Q^3}{r_h} \left(1 - 3 \ln \frac{r_h}{|\alpha|} \right) + \alpha r_h + 8\pi P r_h^4. \] (44)
Eq. (44) represents the Hawking temperature of the non-linear magnetic-charged black hole in the quintessence field, surrounded by perfect fluid dark matter.

Let us notice that for $\alpha \approx 0$ and $P = 0$, meaning that in the absence of both dark matter and cosmological constant, we find the Hawking temperature of the non-linear magnetic-charged black hole surrounded by quintessence which has been obtained by Nam [79], given by

$$T = \frac{1}{4\pi (r_h^3 + Q^3)} \left[\frac{r_h^3 - 2Q^3}{r_h} + \frac{3 \epsilon \alpha}{r_h^{3+2}} \left(r_h^3 + Q^3 \left(\frac{\epsilon + 1}{\epsilon} \right) \right) \right].$$

(45)

The entropy is obtained from the temperature and mass, through the relation

$$S = \int \frac{1}{T} \frac{\partial M}{\partial r_h} dr_h.$$

(46)

From Eq. (42), we have obtained the first derivative of the mass with respect to the horizon radius as

$$\frac{\partial M}{\partial r_h} = \frac{1}{4\pi} \left[\frac{r_h^3 - 2Q^3}{r_h} + \frac{3 \epsilon \alpha}{r_h^{3+2}} \left(r_h^3 + Q^3 \left(\frac{\epsilon + 1}{\epsilon} \right) \right) \right] + \frac{\alpha Q^3}{r_h} \left(1 - 3 \ln \frac{r_h}{|\alpha|} \right) \left[\frac{r_h^3}{\alpha} \right] + \alpha r_h + 8\pi P r_h^4.$$

(47)

Hence, from Eq. (44) and (47), the entropy of the black hole in (46), is straightforwardly obtained as

$$S = \pi r_h^2 \left(1 - \frac{2Q^3}{r_h^3} \right).$$

(48)

Now, the next step consists of deriving the expression of the pressure P as a function of T and r_h, then ending by analysing the critical behaviour of $P - r_h$ diagram. From Eq. (44), one can explicitly express the pressure P as a function of T and r_h as

$$P = \frac{1}{8\pi r_h^4} \left[4\pi (r_h^3 + Q^3) T - \frac{r_h^3 - 2Q^3}{r_h} \right] - \frac{3 \epsilon \alpha}{r_h} \left(r_h^3 + Q^3 \left(\frac{\epsilon + 1}{\epsilon} \right) \right) - \frac{\alpha Q^3}{r_h} \left(1 - 3 \ln \frac{r_h}{|\alpha|} \right) \left[\frac{r_h^3}{\alpha} \right] + \alpha r_h + 8\pi P r_h^4.$$

(49)

Since the black hole mass M is most naturally associated with the enthalpy H of the black hole in the extended phase space [77], the expression of the volume can be expressed as follows

$$V = \left(\frac{\partial H}{\partial P} \right)_{r_h,Q} = \left(\frac{\partial M}{\partial P} \right)_{r_h,Q} = \frac{4}{3\pi} (r_h^3 + Q^3).$$

(50)

However, given that the expression of pressure would be less complex if we express it in term of horizon radius rather than volume, we will make our thermodynamic analysis with the isothermal $P - r_h$ diagram. Therefore, we putted out in table 1 critical values which leads us to have an inflexion point in the isothermal $P - r_h$ diagram. They are found through the following system of equations

$$\left(\frac{\partial P}{\partial r_h} \right)_{T} = 0, \quad \left(\frac{\partial^2 P}{\partial r_h^2} \right)_{T} = 0.$$

(51)

Next, we investigate Eq. (51) numerically in order to get the Table 1 since it is not a trivial task to solve it analytically.

Therefore, it is shown in the present calculation(see table 1) the impact of PFDM on the critical values. remarkably, we can notice that when increasing the PFDM parameter α, we see that r_{hc} increases for $\alpha < 0.2$ and then decreases when $\alpha > 0.2$. At the same time, we notice that T_c and P_c increase as we increase α.
Table 1. Critical values for \((Q, c_q, \epsilon) = (1, 0.2, -2/3)\) for different dark matter parameters \(\alpha\).

\(\alpha\)	\(r_h\)	\(T_c\)	\(P_c\)
0.01	2.7109	0.0126	0.0032
0.05	2.7546	0.0127	0.0032
0.1	2.7776	0.0132	0.0033
0.2	2.7763	0.0148	0.0034
0.4	2.7090	0.0190	0.0039
0.6	2.5947	0.0240	0.0045
0.8	2.4418	0.0308	0.0054

Figure 2. Variation of pressure for different values of \(\alpha\), with \((Q, c_q, \epsilon) = (1, 0.2, -2/3)\).
In Fig. 2 we plotted the $P - r_h$ diagram. Analysing this plot, we observe a van der Waals like behaviour. This means that a first-order phase transition occurs, moving from $T < T_c$ to $T > T_c$. Here, the first region ($T < T_c$) is remarked by one value of the horizon radius for a high pressure, and two or three horizon radii for low pressure, and the second region ($T > T_c$) is remarked by only one horizon radius, for any value of pressure P. Furthermore, we can see that this van der Waals like behaviour occurs whatever the value of PFDM parameter α.

On the other hand, one can get the Gibbs free energy G, through the following relation

$$G = H - TS,$$

where the enthalpy H is considered as the black hole mass. In Fig. 3 we depicted the behaviour of the Gibbs free energy. Here, we can see that the plot presents the swallow tail characteristic, which appears below the critical temperature and critical pressure (we can see the corresponding critical values for $\alpha = 0.4$ on Table 1), and hence confirms the existence of first order phase transition. Furthermore, in Fig. 3 the swallow tail behaviour disappears, for higher values of the pressure and temperature. Therefore, we can say that quintessence and PFDM allow the occurrence of a swallow tail on Gibbs free energy behaviour.

To get more information about phase transition, we have also studied the heat capacity C, and see how the presence of PFDM and quintessence impact the behaviour of the black hole. The heat capacity is expressed as

$$C = T \left(\frac{\partial S}{\partial T} \right)_{Q,c_q,\epsilon,P}.$$

Taking into account Eqs. (44) and (48), (53), becomes

$$C = \frac{2\pi(Q^3 + r_h^3)^2}{B - D},$$

with

$$A = -3r_h^3\alpha Q^3 \ln \left(\frac{r_h}{|\alpha|} \right) + r_h^3\alpha Q^3 - 2r_h^3 + 1,$$

$$B = 32\pi PQ^3r_h^3 + 8\pi Pr_h^3 + 9.$$

Figure 3. Variation of the Gibbs free energy G for different values of P, with $(Q, c_q, \epsilon, \alpha) = (1, 0.2, -2/3, 0.4).$
(a) For smaller values of horizon radius with $(Q, c_q, \epsilon) = (1, 0.02, -2/3)$.

(b) For higher values of horizon radius with $(Q, c_q, \epsilon) = (1, 0.02, -2/3)$.

(c) For smaller values of horizon radius with $(Q, \alpha, \epsilon) = (1, 0.6, -2/3)$.

(d) For higher values of horizon radius with $(Q, \alpha, \epsilon) = (1, 0.6, -2/3)$.

Figure 4. Variation of Heat capacity C in term of horizon radius.

\[
D = 10Q^3r_h^3 + 4 - 2Qr_h^3 + 6 - r_h^3 + 7 - 9Q^6c_q\epsilon^2 \\
- 18r_h^3Q^3c_q\epsilon^2 - 9Q^6c_q\epsilon^2 - 15Q^6c_q\epsilon \\
- 21r_h^3Q^3c_q\epsilon - 6r_h^3c_q\epsilon - 6Q^6c_q - 15r_h^3Q^3c_q.
\]

(57)

With this in mind, in Fig. 4 (a) and (b), the heat capacity is reported for different values of PFDM parameter α. In these plots, it comes that the heat capacity moves from stable phase to unstable one through a second-order phase transition. Here, the unstable phase is remarked by the negative heat capacity ($C < 0$), the stable one by the positive heat capacity ($C > 0$) and the discontinuity on the plot of heat capacity is identified as the second-order phase transition (see Fig. 4 (a) and (c)). Also, notice that this phase transition is shifted towards higher values of the horizon radius as the PFDM parameter increases (see Fig. 4 (a)). Furthermore, for higher values of the horizon radius (see Fig. 4 (b)), we can see that the heat capacity of the black hole moves from unstable phase to stable phase without any discontinuity, and hence without second-order phase transition. The same behaviour is noticed before the appearance of the phase transition in Fig. 4 (a).

On the other hand, in order to get more information about the stability of the black hole, in Fig. 4 (c) and (d), the heat capacity is plotted for different values of the quintessence parameter.
c. Analysing these plots, we observe that a second-order phase transition occurs for lower values of the horizon radius. Also, notice that this phase transition is shifted towards higher values of the horizon radius as the quintessence parameter increases. Furthermore for higher values of the horizon radius, the black hole moves from unstable phase to stable phase without second-order phase transition (see Fig. 4(d)).

However, looking at Fig. 4(a) and 4(c), which correspond to smaller values of the horizon radius, we see that the black hole moves from unstable phase to stable phase, which implies that the black hole to undergo a first-order phase transition, but this could not be the case if for example we take into account quantum corrections such as logarithmic correction as it is done in [17, 93]. For instance, in [17], the authors found that the Banados-Teitelboim-Zanelli black hole in massive gravity undergoes a first-order phase transition, but this is not the case when avoiding the correction. Furthermore, another correction such as exponential corrections [17] could also lead to a deep change on the behaviour of the heat capacity.

Next, let us consider the relationship between the density of PFDM and quintessence in terms of α and c_q, respectively. From (25), they are expressed as $\rho_{PFDM} = -\frac{3}{8}\pi\alpha r^3$ and $\rho_{quint} = -\frac{3 c_q}{\pi r^3 + 1}$. Then we study the impact of them on the behaviour of the black hole. These relations clearly show that the second-order phase transition occurs in the presence of both PFDM and quintessence dark energy, and this phase transition is shifted towards higher values of horizon radius as we decrease the PFDM density and increase the quintessence density.

Another way to study the stability of the black hole is through the determinant of Hessian matrix of the black hole mass with respect to its extensive variables ($M(S, Q)$) [94]. In such analysis, the positivity of this determinant also represents the local stability. Hence, the Hessian matrix is defined as follows:

$$H = \begin{bmatrix} \frac{\partial^2 M}{\partial S^2} & \frac{\partial^2 M}{\partial S \partial Q} \\ \frac{\partial^2 M}{\partial Q \partial S} & \frac{\partial^2 M}{\partial Q^2} \end{bmatrix} \quad (58)$$

The compute each of these components we need to have the first derivative, expressed as

\[
\frac{\partial M}{\partial S} = \frac{\partial M}{\partial r_h} \frac{\partial r_h}{\partial S} = 3 r^{-3} Q^3 c + 3 r^{-3} c + 3 \pi P r^6 \\
+ 3 r^{-3} Q^3 c + 3 \ln((\alpha)) Q^3 \alpha \\
- 3 \ln(r) Q^3 \alpha + Q^3 \alpha - 2 Q^3 r + \alpha r^3 \\
+ r^4/(4 \pi r^2 (Q^3 + r^3)), \quad (59)
\]

and

$$\frac{\partial M}{\partial Q} = \frac{3 Q^2}{2r_h^2} \left(1 + \ln \left(\frac{r_h}{|\alpha|} \right) - \frac{c_q}{r_h^{3+1}} \right) \quad (60)$$

Now, after computing the determinant $Det(H)$ of the Hessian matrix, we plotted it in Fig. 5, we found that the black hole also has the possibility to be stable, (for $Det(H) > 0$). Furthermore, we can see that its change of sign appears later as the dark matter parameter α decreases. This results also corresponds to the behaviour of the heat capacity.

5 Conclusion

In summary, we have studied the thermodynamics of non-linear magnetic-charged black hole surrounded by quintessence in the PFDM background. First, we found the corresponding metric, starting by the action, and then deriving the Einstein-Maxwell equations of motion. Using the energy-momentum tensor of quintessence obtained by Kiselev, and the one for PFDM, used by...
Zhang et al. [91], the metric we found corresponds to the metric obtained by Ma et al. [51], for the quintessence parameter $c_q = 0$ and cosmological constant $\Lambda = 0$.

Secondly, considering the cosmological constant term Λ as a dynamical pressure, we found the thermodynamic quantities at the horizon radius, namely the mass, temperature, entropy, pressure and the heat capacity. We found that they are affected by the presence of quintessence and PFDM. In particular, for fixed values of quintessence parameters, the critical values of temperature and pressure increase as we increase the PFDM parameter α (see table 1). Furthermore, our analysis led us to plot the pressure, with respect to the horizon radius. In this plot, we localized two regions, and the presence of a first-order phase transition, which allows us to move from one region to the second one. Indeed, we found a first region ($T < T_c$), remarked by one value of radius for a high pressure, and two or three horizon radii for low pressure, and the second region ($T > T_c$) is remarked by only one horizon radius, for any value of pressure P (see Fig. 1). This behaviour is similar to the van der Waals gas one.

Thirdly, another phase transition we observed is the second-order phase transition, localised in the plot of the heat capacity, with respect to the horizon radius (see Fig. 4). Looking at this the plot, we saw that as we increase PFDM parameter α as well as the quintessence parameter c_q, the second-order phase transition occurs, and is shifted towards higher values of the horizon radius.

Finally, taking into account the relationship between PFDM and quintessence densities in term of α and c_q, respectively, we found that the second-order phase transition is shifted towards higher values of the horizon radius as the PFDM density decreases and the quintessence density increases.

References

1. Stephen W Hawking. Black hole explosions? Nature, 248(5443):30–31, 1974.
2. Jacob D Bekenstein. Black holes and entropy. Physical Review D, 7(8):2333, 1973.
3. Jacob D Bekenstein. Statistical black-hole thermodynamics. Physical Review D, 12(10):3077, 1975.
4. Jacob D Bekenstein. Extraction of energy and charge from a black hole. Physical Review D, 7(4):949, 1973.
5. James M Bardeen, Brandon Carter, and Stephen W Hawking. The four laws of black hole mechanics. Communications in mathematical physics, 31(2):161–170, 1973.
6. Stephen W Hawking. Particle creation by black holes. In *Euclidean quantum gravity*, pages 167–188. World Scientific, 1975.

7. R Tharanath and VC Kuriakose. Thermodynamics and spectroscopy of schwarzschild black hole surrounded by quintessence. *Modern Physics Letters A*, 28(04):1350003, 2013.

8. Gary W Gibbons and Stephen W Hawking. Cosmological event horizons, thermodynamics, and particle creation. *Physical Review D*, 15(10):2738, 1977.

9. Wei Yi-Huan and Chu Zhong-Hui. Thermodynamic properties of a reissner—nordström quintessence black hole. *Chinese Physics Letters*, 28(10):100403, 2011.

10. K Ghaderi and B Malakolkalami. Thermodynamics of the schwarzschild and the reissner—nordström black holes with quintessence. *Nuclear physics B*, 903:10–18, 2016.

11. Md Shahjalal. Thermodynamics of quantum-corrected schwarzschild black hole surrounded by quintessence. *Nuclear Physics B*, 940:63–77, 2019.

12. Rabin Banerjee and Dibakar Roychowdhury. Thermodynamics of phase transition in higher dimensional ads black holes. *Journal of High Energy Physics*, 2011(11):4, 2011.

13. Michael Appels, Ruth Gregory, and David Kubizňák. Thermodynamics of accelerating black holes. *Physical review letters*, 117(13):131303, 2016.

14. Viqar Husain and Robert B Mann. Thermodynamics and phases in quantum gravity. *Classical and Quantum Gravity*, 26(7):075010, 2009.

15. Mahamat Saleh, Bouetou Bouetou Thomas, and Timoleon Crepin Kofane. Thermodynamics and phase transition from regular bardeen black hole surrounded by quintessence. *International Journal of Theoretical Physics*, 57(9):2640–2647, 2018.

16. Paul CW Davies. The thermodynamic theory of black holes. *Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences*, 353(1675):499–521, 1977.

17. Hossein Ghaffarnejad and Elham Ghasemi. Magnetic charge effects on thermodynamic phase transition of modified anti de sitter ayón-beato-garcía black holes with five parameters. *Journal of Holography Applications in Physics*, 2(2):47–56, 2022.

18. Stephen Hawking and Roger Penrose. *The nature of space and time*. Princeton University Press, 2010.

19. Stephen W Hawking and George Francis Rayner Ellis. *The large scale structure of space-time*, volume 1. Cambridge university press, 1973.

20. J. M Bardeen. The four laws of black hole mechanics. *in: Conference Proceedings of GR5*, pages Tbilisi, USSR, p. 174, 1968.

21. Eloy Ayón-Beato and Alberto García. The bardeen model as a nonlinear magnetic monopole. *Physics Letters B*, 493(1-2):149–152, 2000.

22. Nora Bretón. Stability of nonlinear magnetic black holes. *Physical Review D*, 72(4):044015, 2005.

23. Ahmadjon A Abdujabbarov, Bobomurat J Ahmedov, and Nozima B Jurayeva. Charged-particle motion around a rotating non-kerr black hole immersed in a uniform magnetic field. *Physical Review D*, 87(6):064042, 2013.

24. Remo Ruffini, Yuan-Bin Wu, and She-Sheng Xue. Einstein-euler-heisenberg theory and charged black holes. *Physical Review D*, 88(8):085004, 2013.
25. Yen-Kheng Lim. Motion of charged particles around a magnetized/electrified black hole. *Physical Review D*, 91(2):024048, 2015.

26. Alireza Allahyari, Mohsen Khodadi, Sunny Vagnozzi, and David F Mota. Magnetically charged black holes from non-linear electrodynamics and the event horizon telescope. *Journal of Cosmology and Astroparticle Physics*, 2020(02):003, 2020.

27. Adam G Riess, Alexei V Filippenko, Peter Challis, Alejandro Clocchiatti, Alan Diercks, Peter M Garnavich, Ron L Gilliland, Craig J Hogan, Saurabh Jha, Robert P Kirshner, et al. Observational evidence from supernovae for an accelerating universe and a cosmological constant. *The Astronomical Journal*, 116(3):1009, 1998.

28. Adam G Riess, Robert P Kirshner, Brian P Schmidt, Saurabh Jha, Peter Challis, Peter M Garnavich, Ann A Esin, Chris Carpenter, Randy Grishium, Rudolph E Schild, et al. Bvri light curves for 22 type ia supernovae. *The Astronomical Journal*, 117(2):707, 1999.

29. Saul Perlmutter, G Aldering, G Goldhaber, RA Knop, P Nugent, PG Castro, S Deustua, S Fabbro, A Goobar, DE Groom, et al. Measurements of ω and λ from 42 high-redshift supernovae. *The Astrophysical Journal*, 517(2):565, 1999.

30. Planck Collaboration. Par ade, n. aghanim, c. armitage-caplan, m. arnaud, et al. *Astron. and Astrophys.*, 571:A16, 2014.

31. Wajiha Javed and Rimsha Babar. Fermions tunneling and quantum corrections for quintessential kerr-newman-ads black hole. *Advances in High Energy Physics*, 2019:2759641, 2019.

32. VV Kiselev. Quintessence and black holes. *Classical and Quantum Gravity*, 20(6):1187, 2003.

33. Songbai Chen, Bin Wang, and Rukeng Su. Hawking radiation in a d-dimensional static spherically symmetric black hole surrounded by quintessence. *Physical Review D*, 77(12):124011, 2008.

34. Ragil Tsafack Ndongmo, Saleh Mahamat, Thomas Bouetou Bouetou, and Timoleon Crepin Kofane. Thermodynamic of a rotating and non-linear magnetic-charged black hole in the quintessence field. *Physica Scripta*, 96:095001, 2021.

35. Bouetou Bouetou Thomas, Mahamat Saleh, and Timoleon Crepin Kofane. Thermodynamics and phase transition of the reissner-nordstr"om black hole surrounded by quintessence. *General Relativity and Gravitation*, 44(9):2181–2189, 2012.

36. Sharmanthie Fernando. Nariai black holes with quintessence. *Modern Physics Letters A*, 28(40):1350189, 2013.

37. Gu-Qiang Li. Effects of dark energy on p–v criticality of charged ads black holes. *Physics Letters B*, 735:256–260, 2014.

38. Zhaoyi Xu and Jiancheng Wang. Kerr-newman-ads black hole in quintessential dark energy. *Physical Review D*, 95(6):064015, 2017.

39. Azka Younas, Mubasher Jamil, Sebastian Bahamonde, and Saqib Hussain. Strong gravitational lensing by kiselev black hole. *Physical Review D*, 92(8):084042, 2015.

40. Jeferson de Oliveira and RDB Fontana. Three-dimensional black holes with quintessence. *Physical Review D*, 98(4):044005, 2018.

41. Zhaoyi Xu, Xian Hou, and Jiancheng Wang. Kerr-anti-de sitter/de sitter black hole in perfect fluid dark matter background. *Classical and Quantum Gravity*, 35(11):115003, 2018.
42. Julio F Navarro, Carlos S Frenk, and Simon DM White. A universal density profile from hierarchical clustering. *The Astrophysical Journal*, 490(2):493, 1997.

43. Koushik Dutta, Avirup Ghosh, Arpan Kar, and Biswarup Mukhopadhyaya. Decaying fermionic warm dark matter and xenon1t electronic recoil excess. *Physics of the Dark Universe*, 33:100855, 2021.

44. Jhonny A Agudelo Ruiz. Scalar field theory for warm dark matter. *The European Physical Journal Plus*, 136(1):33, 2021.

45. MB Paranjape, Richard MacKenzie, Zora Thomova, Pavel Winternitz, and William Witzczak-Krempa. *Quantum Theory and Symmetries: Proceedings of the 11th International Symposium, Montreal, Canada*. Springer Nature, 2021.

46. Luis E Padilla, Jordi Solís-López, Tonatiuh Matos, and Ana A Avilez-López. Consequences for the scalar field dark matter model from the mcgaugh observed-baryon acceleration correlation. *The Astrophysical Journal*, 909(2):162, 2021.

47. F Siddhartha Guzmán, Tonatiuh Matos, Dario Nunez, and Erandy Ramirez. Quintessence-like dark matter in spiral galaxies. *Revista mexicana de física*, 49(3):203–206, 2003.

48. K Saurabh and Kimet Jusufi. Imprints of dark matter on black hole shadows using spherical accretions. *The European Physical Journal C*, 81(6):490, 2021.

49. Sanjar Shaymatov, Bobomurat Ahmedov, and Mubasher Jamil. Testing the weak cosmic censorship conjecture for a reissner–nordström–de sitter black hole surrounded by perfect fluid dark matter. *The European Physical Journal C*, 81(7):588, 2021.

50. Mithun Ghosh. Charged perfect fluid dark matter model: Known mass density function approach. *Modern Physics Letters A*, 36(07):2150043, 2021.

51. Tian-Chi Ma, He-Xu Zhang, Peng-Zhang He, Hao-Ran Zhang, Yuan Chen, and Jian-Bo Deng. Shadow cast by a rotating and nonlinear magnetic-charged black hole in perfect fluid dark matter. *Modern Physics Letters A*, page 2150112, 2021.

52. Zdeněk Stuchlík. Influence of the relict cosmological constant on accretion discs. *Modern Physics Letters A*, 20(08):561–575, 2005.

53. Mehdi Sadeghi. Ads black brane solution surrounded by quintessence in massive gravity and kss bound. *arXiv preprint arXiv:2007.09688*, 2020.

54. Yihe Cao, Hanwen Feng, Wei Hong, and Jun Tao. Joule–thomson expansion of rn-ads black hole immersed in perfect fluid dark matter. *Communications in Theoretical Physics*, 73(9):095403, 2021.

55. Zhaoyi Xu, Xian Hou, Jiancheng Wang, and Yi Liao. Perfect fluid dark matter influence on thermodynamics and phase transition for a reissner-nordstrom-anti-de sitter black hole. *Advances in High Energy Physics*, 2019, 2019.

56. CL Ahmed Rizwan, A Naveena Kumara, KV Rajani, Deepak Vaid, and KM Ajith. Effect of dark energy in geometrothermodynamics and phase transitions of regular bardeen ads black hole. *General Relativity and Gravitation*, 51(12):161, 2019.

57. Songbai Chen, Qiyuan Pan, and Jiliang Jing. Holographic superconductors in quintessence ads black hole spacetime. *Classical and Quantum Gravity*, 30(14):145001, 2013.

58. Stephen W Hawking and Don N Page. Thermodynamics of black holes in anti-de sitter space. *Communications in Mathematical Physics*, 87(4):577–588, 1983.
59. N Farhangkhah and Z Dayyani. Extended phase space thermodynamics for third-order love-lock black holes with nonmaximally symmetric horizons. *Physical Review D*, 104(2):024068, 2021.

60. Bin Wu, Chao Wang, Zhen-Ming Xu, and Wen-Li Yang. Ruppeiner geometry and thermodynamic phase transition of the black hole in massive gravity. *The European Physical Journal C*, 81(7):626, 2021.

61. SH Hendi and Kh Jafarzade. Critical behavior of charged ads black holes surrounded by quintessence via an alternative phase space. *Physical Review D*, 103(10):104011, 2021.

62. David Kastor, Sourya Ray, and Jennie Traschen. Enthalpy and the mechanics of ads black holes. *Classical and Quantum Gravity*, 26(19):195011, 2009.

63. David Kastor, Sourya Ray, and Jennie Traschen. Mass and free energy of lovelock black holes. *Classical and Quantum Gravity*, 28(19):195022, 2011.

64. David Kastor, Sourya Ray, and Jennie Traschen. Black hole enthalpy and scalar fields. *Classical and Quantum Gravity*, 36(2):024002, 2018.

65. Brian P Dolan. Pressure and volume in the first law of black hole thermodynamics. *Classical and Quantum Gravity*, 28(23):235017, 2011.

66. Brian P Dolan. The cosmological constant and black-hole thermodynamic potentials. *Classical and Quantum Gravity*, 28(12):125020, 2011.

67. Seyed Hendi, Azadeh Nemati, Kai Lin, and Mubasher Jamil. Instability and phase transitions of a rotating black hole in the presence of perfect fluid dark matter. *European Physical Journal C*, 80(2001.01591):296, 2020.

68. Wei Hong, Benrong Mu, and Jun Tao. Thermodynamics and weak cosmic censorship conjecture in the charged rn-ads black hole surrounded by quintessence under the scalar field.

69. Ke-Jian He, Xin-Yun Hu, and Xiao-Xiong Zeng. Weak cosmic censorship conjecture and thermodynamics in quintessence ads black hole under charged particle absorption. *Chinese Physics C*, 43(12):125101, 2019.

70. JM Toledo and VB Bezerra. Kerr–newman–ads black hole with quintessence and cloud of strings. *General Relativity and Gravitation*, 52(4):34, 2020.

71. Xiong-Ying Guo, Huai-Fan Li, Li-Chun Zhang, and Ren Zhao. Continuous phase transition and microstructure of charged ads black hole with quintessence. *The European Physical Journal C*, 80(2):168, 2020.

72. M Chabab and S Iraoui. Thermodynamic criticality of d-dimensional charged ads black holes surrounded by quintessence with a cloud of strings background. *General Relativity and Gravitation*, 52(8):75, 2020.

73. Jing Liang, Benrong Mu, and Jun Tao. Thermodynamics and overcharging problem in extended phase space of charged ads black holes with cloud of strings and quintessence under charged particle absorption. *Chinese Physics C*, 45(2):023121, 2021.

74. Kamiko Kouemeni Jean Rodrigue, Mahamat Saleh, Bouetou Bouetou Thomas, and Kofane Timoleon Crepin. Thermodynamic phase transition and global stability of the regular hayward black hole surrounded by quintessence. *Modern Physics Letters A*, 35(16):2050129, 2020.

75. Rong-Gen Cai, Li-Ming Cao, and Nobuyoshi Ohta. Thermodynamics of black holes in horava–lifshitz gravity. *Physics Letters B*, 679(5):504–509, 2009.
76. Kamiko Kouemeni Jean Rodrigue, Mahamat Saleh, Bouetou Bouetou Thomas, and Timoleon Crepin Kofane. Thermodynamics phase transition and hawking radiation of the schwarzschild black hole with quintessence-like matter and a deficit solid angle. *General Relativity and Gravitation*, 50(5):52, 2018.

77. R Tharanath, Nijo Varghese, and VC Kuriakose. Phase transition, quasinormal modes and hawking radiation of schwarzschild black hole in quintessence field. *Modern Physics Letters A*, 29(11):1450057, 2014.

78. Hui-Ling Li and Wei Li. Thermodynamic phase transition of black hole. *International Journal of Theoretical Physics*, 59(10):3032–3042, 2020.

79. Cao H Nam. On non-linear magnetic-charged black hole surrounded by quintessence. *General Relativity and Gravitation*, 50(6):57, 2018.

80. Ming-Hsun Li and Kwei-Chou Yang. Galactic dark matter in the phantom field. *Physical Review D*, 86(12):123015, 2012.

81. J Sadeghi, E Naghd Mezerji, and S Noori Gashti. Universal relations and weak gravity conjecture of ads black holes surrounded by perfect fluid dark matter with small correction. *arXiv preprint arXiv:2011.14366*, 2020.

82. Humberto Salazar I, Alberto García D, and Jerzy Plebański. Duality rotations and type d solutions to einstein equations with nonlinear electromagnetic sources. *Journal of Mathematical Physics*, 28(9):2171–2181, 1987.

83. M Novello, SE Perez Bergliaffa, and JM Salim. Singularities in general relativity coupled to nonlinear electrodynamics. *Classical and Quantum Gravity*, 17(18):3821, 2000.

84. Cao H Nam. Higher dimensional charged black hole surrounded by quintessence in massive gravity. *General Relativity and Gravitation*, 52(1):1, 2020.

85. Cao H Nam. Non-linear charged ds black hole and its thermodynamics and phase transitions. *The European Physical Journal C*, 78(5):418, 2018.

86. Yuan Chen, He-Xu Zhang, Tian-Chi Ma, and Jian-Bo Deng. Optical properties of a non-linear magnetic charged rotating black hole surrounded by quintessence with a cosmological constant. *arXiv preprint arXiv:2009.03778*, 2020.

87. Sushant G Ghosh, Sunil D Maharaj, Dharmanand Baboolal, and Tae-Hun Lee. Lovelock black holes surrounded by quintessence. *The European Physical Journal C*, 78(2):90, 2018.

88. Christian G Böhmer, Nicola Tamanini, and Matthew Wright. Interacting quintessence from a variational approach. i. algebraic couplings. *Physical Review D*, 91(12):123002, 2015.

89. Tame Gonzalez and Israel Quiros. Exact models with non-minimal interaction between dark matter and (either phantom or quintessence) dark energy. *Classical and Quantum Gravity*, 25(17):175019, 2008.

90. CL Ahmed Rizwan, A Naveena Kumara, Kartheek Hegde, and Deepak Vaid. Coexistent physics and microstructure of the regular bardeen black hole in anti-de sitter spacetime. *Annals of Physics*, 422:168320, 2020.

91. He-Xu Zhang, Yuan Chen, Tian-Chi Ma, Peng-Zhang He, and Jian-Bo Deng. Regular (bardeen) black hole surrounded by perfect fluid dark matter. *Chinese Physics C*, 2021.

92. Carlos A Benavides-Gallego, Ahmadjon Abdusharbo v, and Cosimo Bambi. Rotating and nonlinear magnetic-charged black hole surrounded by quintessence. *Physical Review D*, 101(4):044038, 2020.
93. Sudhaker Upadhyay, Prince A Ganai, and Nadeem ul islam. A modified thermodynamics of rotating and charged btz black hole. *Journal of Holography Applications in Physics, 2*(2):47–56, 2022.

94. Seyed H Hendi, Shahram Panahiyan, and R Mamasani. Thermodynamic stability of charged btz black holes: Ensemble dependency problem and its solution. *General Relativity and Gravitation, 47*:1–24, 2015.