Reorganization of mammalian body wall patterning with cloacal septation

Margaret I. Hall1,2, José R. Rodriguez-Sosa1,2 & Jeffrey H. Plochocki1

Septation of the cloaca is a unique mammalian adaptation that required a novel reorganization of the perineum—the caudal portion of the trunk body wall not associated with the hindlimb. Fish, the basal vertebrates, separate ventrolateral body wall musculature of the trunk into two discrete layers, while most tetrapods expand this pattern in the thorax and abdomen into four. Mammals, the only vertebrate group to divide the cloaca into urogenital and anorectal portions, exhibit complex muscle morphology in the perineum. Here we describe how perineal morphology in a broad sample of mammals fits into patterning of trunk musculature as an extension of the four-layer ventrolateral muscular patterning of the thorax and abdomen. We show that each perineal muscle layer has a specific function related to structures formed by cloacal septation. From superficial to deep, there is the subcutaneous layer, which regulates orifice closure, the external layer, which supplements both erectile and micturition function, the internal layer, which provides primary micturition and defecation regulation, and the transversus layer, which provides structural support for pelvic organs. We elucidate how the four-layer body wall pattern, restricted to the non-mammal tetrapod thorax and abdomen, is observed in the mammalian perineum to regulate function of unique perineal structures derived from cloacal septation.

Our dissections reveal that mammals differentiate pelvic body wall muscles into four layers, mirroring the tetrapod thoracic and abdominal body wall (Figs 2 and 3). These layers include a subcutaneous, external, internal,
and transversus layer, with muscles in each layer demonstrating a different fiber orientation (Fig. 4). The perineal muscle layers and associated fasciae are continuous with those of the abdomen and thorax. Subcutaneous muscles of the perineum are present in the same fascial layer as M. cutaneous trunci in the thorax and abdomen. Fibers of the external layer insert caudally onto an aponeurosis that is continuous with that of the external layer of the abdomen, M. obliquus externus abdominis, which is continuous with M. intercostales externi in the thorax. Neurovasculature in the pelvic body wall courses between the internal and transversus layers (e.g., within the pudendal canal), a pattern observed in the thorax and abdomen where neurovasculature courses between M. intercostales interni and M. intercostales intimi, and M. obliquus internus abdominis and M. transversus abdominis, respectively. Endopelvic fascia covering the internal surface of the transversus layer of the pelvis is continuous with transversalis fascia of the abdomen and endoanococcygeal fascia of the thorax.

The perineal subcutaneous layer includes the M. sphincter ani externus pars subcutanea and M. constrictor vulvae (variably present) in mammals we dissected (Fig. 3). The external layer is comprised of the muscle sheet associated with the phallus, which is traditionally divided into M. bulbospongiosus, M. ischiocavernosus and M. transversus perinei superficialis. M. sphincter ani externus pars superficialis is comprised of fibers of the M. bulbospongiosus portion of the muscle sheet that continues dorsally, continuous with M. sphincter ani externus pars superficialis, to form a muscular ring. The internal muscle layer is formed by M. sphincter ani externus pars profundus and its continuity with M. levator ani. The M. transversus perinei profundus, only consistently present in males, is also part of the internal layer and its fibers intermingle with those of M. sphincter ani externus pars profundus. This layer also includes the urethral sphincter muscles. The transversus layer is comprised of M. levator ani and M. coccygeus. The portion of M. levator ani most closely associated with the anal canal, M. puborectalis, is continuous with the deepest edge of M. sphincter ani externus pars profundus. These findings suggest M. sphincter ani externus is not a single muscle, but rather a composite of several muscle layers19, 20. Because of the notable continuities between M. levator ani and M. sphincter ani externus, these muscles have also been described as continuous with one another, and even as a single, multi-layered muscle21–23.

Histological sections of the perinea of the adult dog and bovine fetus 15 weeks gestation age similarly demonstrate four layers of the ventrolateral abdomen and perineal body wall (Fig. 4). These findings agree with other histological studies of perineal development that show embryological continuities among muscles in each of the four trunk layers and separation of the muscle layers by fascial layers during fetal development24, 25. Human fetuses at roughly 13 weeks of development show continuities between the external muscle layer containing M. ischiocavernosus, M. bulbospongiosus, and the pars superficialis of the developing M. sphincter ani externus, just inferior to M. levator ani of the transversus layer26–28. This relationship arises shortly after the cloacal membrane obliterates during urogenital septation and remains in the adult29, 30. At this time, M. sphincter ani externus surrounds the anal canal, forming a column extending to the ectoderm-derived epithelium30. Also around the same time in development, the urinary sphincter muscles become well defined in the internal layer, positioned inferior to the inferior margin of M. levator ani of the transversus layer but superior to M. bulbospongiosus of the external layer31. Separations between muscles in each layer form later in development via apoptosis of muscle fibers32. Thus, the muscle layering found in dissection appears histologically subsequent to embryologic septation of the cloaca.

The primitive vertebrate characteristic of two ventrolateral body wall muscle layers was expanded in number and in distribution in the trunk multiple times in vertebrate evolution: at the tetrapod node to four layers in the thorax and abdomen, and again at the mammal node to four layers throughout the trunk, including the perineum (Fig. 1). Mammalian perineal muscular patterning is associated with the complete septation of the cloaca, which
led to novel anatomical adaptations in mammals relative to other vertebrates. Specifically, mammals alone among vertebrates evolved the suite of characteristics from the anorectal and urogenital chambers formed by cloacal septation including the rectum, anal canal, urethra, and paired vascular erectile tissues. Other vertebrate intromission structures, such as those variably found in some fish, lizards, turtles, crocodilians, and waterfowl, arise from the cloacal wall and have either a single vascular erectile body or one engorged with lymph, and are not homologous to mammalian genitalia. Lizards, crocodilians, birds, and even monotremes have muscular sphincters that regulate opening of the cloaca. These cloacal muscles, as well as perineal muscles in mammals, were proposed to evolve from abdominal trunk muscles in previous studies. However, anatomic, embryonic, and molecular investigations indicate that, while cloacal muscle precursors temporarily reside in the limb, they later
migrate to the caudal trunk where they are subjected to the same developmental signaling that regulates trunk muscular layering to form an extended myotomal sheet similar to that of developing trunk body wall muscles. This may explain why congenital malformations affecting ventrolateral abdominal body wall musculature are commonly accompanied by perineal muscular defects. Evolutionary restructuring of mammalian perineal musculature may be a consequence of interactions between muscle precursors and connective tissue during musculoskeletal patterning. Skeletal muscles originate from undifferentiated tissue known as the epaxial and hypaxial masses, which give rise to dorsal and ventral body wall muscles, respectively. Hypaxial muscle cell precursors from the ventrolateral lip of somitic myotomes migrate through the lateral somitic frontier, i.e., from the primaxial mesodermal domain into the abaxial mesodermal domain, to populate the ventral body wall, where they are influenced by connective tissue derived from the lateral plate. Developmental signals expressed in lateral plate mesoderm that result in layering of the abdominal wall also control muscle layering in the perineum, discrete from hindlimb signaling, and are further directed by local signals that fine-tune muscle development. Variations in these interactions, along with the modular property of mesodermal domains, have been used to explain regional differences in anatomic musculoskeletal structure across related taxa. Such anatomic restructuring may also explain similarities of perineal muscle layering with that of the abdomen and thorax, as cloacal sphincter muscles adapted to specialized reproductive and excretory functions in mammals. With the evolutionary establishment of the mammalian perineum, somatic musculature associated with the derived perineal structures was reconfigured into four layers. From superficial to deep, these four muscle layers are (1) the subcutaneous layer, which regulates orifice closure, (2) the external layer, which supplements both erectile and micturition function, (3) the internal layer, which provides primary

Figure 4. Perineum of an adult dog in (A) gross dissection (left lateral view, scale bar 5 mm) and (B) histological section (left lateral view, scale bar 5 mm). Histological sections of a fetal bovine aged 15 weeks of the (C) ventrolateral abdominal wall (left anterior view, scale bar 50 µm) and (D) perineum (left lateral view, scale bar 2 mm). Structures labeled 1–4 are 1, subcutaneous layer; 2, external layer; 3, internal layer; and 4, transversus layer. Perineal muscle fibers (B and D) of the subcutaneous layer (1) are shown in cross-section, fiber orientation in the internal and external layers (2 and 3) is oblique, and fiber orientation in the transversus layer (4) is longitudinal in the taxa that have an anus that is shifted to protrude posteriorly, such as the bovine, dog, and horse, but is transverse in other taxa. The fetal muscle layers (D) are closely associated with smooth muscle of the internal anal sphincter and rectum (*) and developing sacral vertebrae (◊). a, artifact; i, integument; SCV, M. sacrocaudalis ventralis, a muscle that acts on the tail.
micrurition and defecation regulation, and (4) the transversus layer, which provides structural support for pelvic organs (Fig. 3)9.

Our research defines for the first time the four serially homologous trunk ventrolateral body wall layers in the perineum. Our sample consists of primates and domestic mammals that represent a broad distribution of placental mammalian groups that are not closely related phylogenetically, including perissodactyls (horse), artiodactyls (cow, goat, pig), carnivorans (cat, dog) and primates (human, monkey, prosimian) and form a robust sample from which to draw conclusions about perineal morphology13. We suggest the primitive anatomical building blocks and developmental signaling used to construct the thoracic and abdominal trunk body wall were repurposed in the perineum. Mammalian perineal structure derived from cloacal septation is an evolutionary innovation that allows for myriad anatomical configurations, diverse reproductive strategies, and precise excretory control available only to mammals.

Methods

We dissected pelvic and perineal musculature in a subset of adult mammals (Table 1). This sample was obtained from Midwestern University teaching collections, the Arizona Research Collection for Integrative Vertebrate Education and Study (ARCIVES) housed at Midwestern University (Glendale, AZ, USA), and donated human cadavers from the National Body Donor Program (St. Louis, MO, USA). All animals in the study were treated in accordance with the Guide for the Care and Use of Laboratory Animals of the National Institutes of Health with approval from the Institutional Animal Care and Use Committee at Midwestern University. All human cadavers were obtained and studied with informed consent and treated in accordance with local and national laws and regulations with approval from Midwestern University. All muscles of the perineum were dissected according to methods described in Hall and Walters13. We identified the following perineal muscles during dissection: M. coccygeus, M. levator ani, M. bulbospongiosus, M. ischiocavernosus, M. transversus perinei superficialis and profundus, M. sphincter ani externus and its subdivisions, and urinary sphincters. During dissection, we observed the layering, attachment and innervation of each muscle. Histological sections 5 µm thick were taken from the perineum and abdomen of an adult dog and a fetal cow aged 15 weeks of an approximately 40-week gestation period. Sections were stained with hematoxylin and eosin and imaged under light microscopy.

Table 1. Sample used in our study.

Family	Species	Common name	N
Hominidae	Homo sapiens	Human	43
Callitrichidae	Saginus eudlus	Cotton-top tamarin	2
Indriidae	Propithecus verreauxii	Verreaux’s sifaka	2
Lemuridae	Lemur catta	Ring-tailed lemur	1
Lorisidae	Perodicticus potto	Potto	1
Equidae	Equus caballus	Horse	3
Bovidae	Capra hircus	Goat	9
Bovidae	Bos taurus	Cow	1
Suidae	Sus domesticus	Pig	9
Canidae	Canis familiaris	Dog	21
Felidae	Felis catus	Cat	6
Gallidae	Gallus domesticus	Chicken	1

References

1. Carroll, S. B. Homeotic genes and the evolution of arthropods and chordates. Nature 376, 479–485 (1996).
2. Burke, A. C. & Nowicki, J. L. A new view of patterning domains in the vertebrate mesoderm. Dev. Cell 4, 159–165 (2003).
3. Windner, S. E. et al. Distinct modes of vertebrate hypaxial muscle formation contribute to the teleost body wall musculature. Dev. Genes Evol. 221, 167–178 (2011).
4. Carrier, D. R. Activity of the hypaxial muscles during walking in the lizard Iguana iguana. J. Exp. Biol. 152, 453–470 (1990).
5. Deban, S. M. & Schilling, N. Activity of trunk muscles during aquatic and terrestrial locomotion in Ambystoma maculatum. J. Exp. Biol. 212, 2949–2959 (2009).
6. Ritter, D. Axial muscle function during lizard locomotion. J. Exp. Biol. 199, 2499–2510 (1996).
7. Omura, A. et al. Locomotion pattern and trunk musculoskeletal architecture among Urodela. Acta Zool. 96, 225–235 (2015).
8. O’Reilly, J. C., Summers, A. P. & Ritter, D. A. The evolution of the functional role of trunk muscles during locomotion in adult amphibians 1. Am. Zool. 40, 123–135 (2000).
9. Eggeling, H. Die Muskeln des Beckenlausganges in Handbuch der vergleichenden Anatomie der Wirbeltiere, Bd. 6 (eds Bolk, L., Göppert, E., Kallis, E. & Lubosch, W.) 351–374 (Urban und Schwarzenberg, Berlin, 1933).
10. Nishi, S. 1938. Muskeln des Rumpfes in Beckenlausganges in Handbuch der vergleichenden Anatomie der Wirbeltiere, Bd. 6 (eds Bolk, L., Göppert, E., Kallis, E. & Lubosch, W.) 351–446 (Urban und Schwarzenberg, Berlin, 1938).
11. Romer, A. S. Crocodilian pelvic muscles and their avian and reptilian homologues. Bull. Am. Mus. Nat. Hist. 48, 533–552 (1923).
12. Wilson-Rawls, J., Hurt, C. R., Parsons, S. M. & Rawls, A. Differential regulation of epaxial and hypaxial muscle development by paraxis. Dev. 126, 5217–5229 (1999).
13. Okamura, H. J. Comparative study on the form of the trunk-musculature of cyclostomes. Zool. Mag. 31, 240–244 (I), 261–268 (II), 316–323 (III) (1919).
14. Sisson, S. The anatomy of the domestic animals. (WB Saunders Company, Philadelphia, 1975).
15. Gredler, M. L. et al. Evolution of external genitalia: insights from reptilian development. Sex. Dev. 8, 311–326 (2014).
16. Hynes, P. J. & Fraher, J. P. The development of the male genitourinary system. I. The origin of the urorectal septum and the formation of the perineum. Br. J. Plast. Surg. 57, 27–36 (2004).
51. Hall, M. I. & Walters, L. M. An alternate dissection approach to the female urogenital triangle.

50. Plochocki, J. H., Rodriguez-Sosa, J. R., Adrian, B., Ruiz, S. A. & Hall, M. I. A functional and clinical reinterpretation of human

49. Wotton, K.R., Schubert, F. R. & Dietrich, S. In

47. Ipulan, L. A.

46. Winslow, B. B., Takimoto-Kimura, R. & Burke, A. C. Global patterning of the vertebrate mesoderm.

45. Cinnamon, Y., Kahane, N. & Kalcheim, C. Characterization of the early development of specific hypaxial muscles from the

44. Hartwig, N. G.

43. Byron-Scott, R.

42. Akita, K., Sakamoto, H. & Sato, T. Muscles of the pelvic outlet in the rhesus monkey (Macaca mulatta) with special reference to their

41. Akita, K., Sakamoto, H. & Sato, T. Muscles of the pelvic outlet in the fowl (Gallus gallus domesticus) with special reference to their

40. Akita, K., Sakamoto, H. & Sato, T. Muscles of the pelvic outlet (15–30 weeks of gestation). Okajimas Folia Anat. Jpn. 87, 49–58 (2010).

39. Shafik, A., El Sibai, O., Shafik, A. A. & Shafik, I. A. A novel concept for the surgical anatomy of the perineal body. Dis. Colon Rectum 50, 2120–2125 (2007).

38. Johnson, F. P. The development of the rectum in the human embryo.

37. Eggeling, H. Z. Morphologie der Dammmuskulatur. Morph. Jahrb. 24, 405–631 (1896).

36. Farmer, C. G. & Carrier, D. R. Pelvic aspiration in the American alligator (Alligator mississippiensis). J. Exp. Biol. 203, 1679–1687 (2000).

35. Kelly, D. A. The functional morphology of penile erection: tissue designs for increasing and maintaining stiffness. Integr. Comp. Biol. 42, 216–221 (2002).

34. Farmer, C. G. & Carrier, D. R. Pelvic aspiration in the American alligator (Alligator mississippiensis). J. Exp. Biol. 203, 1679–1687 (2000).

33. Eggeling, H. Z. Morphologie der Dammmuskulatur. Morph. Jahrb. 24, 405–631 (1896).

32. Chen, Q. J.

31. Masumoto, H. et al. Reappraisal of intergender differences in the urethral striated sphincter explains why a completely circular arrangement is difficult in females: a histological study using human fetuses. Anat. Cell Biol. 45, 79–85 (2012).

30. Yamaguchi, K., Kiyokawa, J. & Akita, K. Developmental processes and ectodermal contribution to the anal canal in mice. Ann. Anat. 190, 119–128 (2008).

29. Shafik, A., El Sibai, O., Shafik, A. A. & Shafik, I. A. A novel concept for the surgical anatomy of the perineal body. Dis. Colon Rectum 50, 2120–2125 (2007).

28. Kinuasa, Y. et al. Female longitudinal anal muscles or conjoint longitudinal coats extend into the subcutaneous tissue along the vaginal vestibule: a histological study using human fetuses. Yonsei Med. J. 54, 778–784 (2013).

27. Jin, Z. W. et al. Perineal raphe with special reference to its extension to the anus: a histological study using human fetuses. Anat. Cell Biol. 49, 116–124 (2016).

26. Arakawat, T.

25. Valasek, P.

24. Arakawa, T.

23. Lesshaft, P. Grundlagen der theoretischen Anatomie. (Mason, Leipzig, 1892).

22. Bogduk, N. Issues in anatomy: The external anal sphincter revisited. Aust. NZ. J. Surg. 66, 626–629 (1996).

21. Ayoub, S. F. Anatomy of the external anal sphincter in man. Clin. Anat. 25, 235–243 (1992).

20. Shafik, A. A new concept of the anatomy of the anal sphincter mechanism and the physiology of defecation. The external anal sphincter: a triple-loop system. Invest. Urol. 12, 412–9 (1975).

19. Santorini, G.D. Anatomički summi septemdecim tabulae. (Regia Typographica, Parma, 1775).

18. Mo, R. et al. Anorectal malformations caused by defects in sonic hedgehog signaling. Am J Pathol. 159, 765–774 (2001).

17. Seifert, A. W., Harfe, B. D. & Cohn, M. J. Cell lineage analysis demonstrates an endodermal origin of the distal urethra and perineum. Dev. Biol. 318, 143–152 (2008).

16. Arakawa, T. et al. Development of the external anal sphincter with special reference to intergender difference: observations of mid-term fetuses (15–30 weeks of gestation). Okajimas Folia Anat. Jpn. 87, 49–58 (2010).

15. Valsek, P. et al. A dual fate of the hindlimb muscle mass: cloacal/perineal musculature develops from leg muscle cells. Dev. 132, 447–458 (2005).

14. Wotton, K.R., Schubert, F. R. & Dietrich, S. In

13. Byron-Scott, R.

12. Wotton, K.R., Schubert, F. R. & Dietrich, S. In

11. Akita, K., Sakamoto, H. & Sato, T. Muscles of the pelvic outlet in the rhesus monkey (Macaca mulatta) with special reference to

10. Yamaguchi, K., Kiyokawa, J. & Akita, K. Developmental processes and ectodermal contribution to the anal canal in mice. Ann. Anat. 190, 119–128 (2008).

9. Shafik, A., El Sibai, O., Shafik, A. A. & Shafik, I. A. A novel concept for the surgical anatomy of the perineal body. Dis. Colon Rectum 50, 2120–2125 (2007).

8. Kinuasa, Y. et al. Female longitudinal anal muscles or conjoint longitudinal coats extend into the subcutaneous tissue along the vaginal vestibule: a histological study using human fetuses. Yonsei Med. J. 54, 778–784 (2013).

7. Jin, Z. W. et al. Perineal raphe with special reference to its extension to the anus: a histological study using human fetuses. Anat. Cell Biol. 49, 116–124 (2016).

6. Arakawa, T. et al. Development of the external anal sphincter with special reference to intergender difference: Observations of mid-term fetuses (15–30 weeks of gestation). Okajimas Folia Anat Jap 87, 49–58 (2010).

5. Valsek, P. et al. A dual fate of the hindlimb muscle mass: cloacal/perineal musculature develops from leg muscle cells. Dev. 132, 447–458 (2005).

4. Wotton, K.R., Schubert, F. R. & Dietrich, S. In

3. Byron-Scott, R. et al. A population-based study of abdominal wall defects in South Australia and Western Australia. Paediatr. Perinat. Epidemiol. 12, 136–151 (1998).

2. Hartwig, N. G. et al. Abdominal wall defect associated with persistent cloaca: the embryologic clues in autopsy. Am. J. Clin. Pathol. 96, 640–647 (1991).

1. Cinnammon, Y., Kahane, N. & Kalcheim, C. Characterization of the early development of specific hypaxial muscles from the ventrolateral myotome. Dev. 126, 4305–4315 (1999).

Acknowledgements

We thank Drs K. Baab, S. Dobson, A. Grossman, W. Grow, C.P. Heeys, K. Muldoon, H. Smith, and J. VandenBrooks for discussions about the anatomy, S. Ruiz who assisted with dissection preparation, A. Bergeron for access to specimens, and M. Neumann for assistance with Figure 4. This is Midwestern University Arizona Research Collection for Integrated Vertebrate Education and Study (ARCIVES) Publication #2. Lastly, we thank the human cadaveric donors and their families.

Author Contributions

J.H.P., I.R-R.S., and M.I.H. formulated the study design, performed the dissections, and conducted the analyses. J.H.P. wrote the original draft of the manuscript and I.R-R.S. and M.I.H. contributed to revisions. All authors approved the final version and may be held accountable for the work.

Additional Information

Competing Interests: The authors declare that they have no competing interests.
